Evaluate the Effectiveness of Serum Magnesium Level in Patients with Newly Diagnosed Acute Leukemia

Dr. Md. Abdul Kader Zilani\(^1\), Dr. Jannatul Ferdous\(^2\), Dr. Mohammad Nurul Islam Khan\(^3\), Dr. Masuda Begum\(^4\), Dr. Sushanta Kumar Barman\(^5\), Dr. Showrab Biswas\(^6\)

\(^{1}\)Assistant Professor, Department of Haematology, Rangpur Medical College, Rangpur, Bangladesh
\(^{2}\)Assistant Registrar, Department of Anaesthesiology, Rangpur Medical College Hospital, Rangpur, Bangladesh
\(^{3}\)Assistant Registrar, Department of Medicine, Rangpur Medical College Hospital, Rangpur, Bangladesh
\(^{4}\)Assistant Professor, Department of Haematology, BSMMU, Dhaka, Bangladesh
\(^{5}\)Registrar, Department of Medicine, Rangpur Medical College Hospital, Rangpur, Bangladesh
\(^{6}\)Registrar, Department of Haematology, Chottogram Medical College Hospital, Chottogram, Bangladesh

DOI: 10.36347/sjams.2020.v08i07.015 | Received: 02.07.2020 | Accepted: 09.07.2020 | Published: 18.07.2020

Abstract

Background: Acute leukaemia is a clonal malignant disorder affecting all age groups. It is characterized by the accumulation of immature blast cells in the bone marrow. This results in bone marrow failure, reflected by peripheral blood cytopenias and circulating blast cells. In most cases the etiology is not obvious, but internal and external factors associated with damage to DNA can predispose to acute leukaemia. **Objective:** In this study our main goal is to evaluate the effectiveness of serum magnesium level in patients with newly diagnosed acute leukemia. **Method:** This Observational cross-sectional study was done at Department of Haematology, BSMMU, Dhaka from September 2016 to August 2017. During the study period of total 85 patients were enrolled for the study. **Results:** Most of the patient’s age was found 36.17(±19.15) years, majority age group was found 10-40 years of age which was (62.4%). Regarding gender 55% were found male and 45% were found female and educational status 45(54.12%) were primary level, 21(24.71%)were SSC, 5(5.88%) were HSC and 07(8.24%). Majority 59% of the patients came from poor class socioeconomic status followed by 40% were came from middle class socioeconomic status. Regarding occupational status 33(38.82%) were house wife, 10(11.76%) were day laborer, 12(14.12%) were farmer and 19(22.35%) was student. Regarding acute leukemia majority 60(70.6%) were found AML and 25(29.4%) ALL. **Conclusion:** From our result we can conclude that, significantly lower serum magnesium level was found in newly diagnosed acute leukemia patients. Among them significantly lower in ALL patients than AML patients. Half of the acute leukemia patients were found hypomagnesaemia. **Keywords:** Acute leukaemia, hypocalcemia, serum magnesium, hypomagnesaemia.

INTRODUCTION

Hematological malignancies (HM) comprise approximately 6.5% of all cancer incidences worldwide in 2012 [1]. WHO predicts that the number of blood-related cancer cases would increase about 48% in less developed countries by 2030 as compared to 2012[1]. Leukemia is a cancer of the bone marrow and blood, characterized by the uncontrolled growth of specific types of white blood cells. While leukemia occurs about 10 times more often in adults than in children [2]. Acute leukemia is a clonal malignant disorder affecting all age groups. It is characterized by the accumulation of immature blast cells in the bone marrow. This results in bone marrow failure, reflected by peripheral blood cytopenias and circulating blast cells. In most cases the etiology is not obvious, but internal and external factors associated with damage to DNA can predispose to acute leukaemia[3]. Trace elements at optimum levels are required for numerous metabolic and physiological processes in the human body. Zinc (Zn), Copper (Cu) and Manganese (Mn) are important cofactors for several enzymes that play a role in maintaining DNA integrity [4]. In addition, they are involved in membrane transport, nerve conduction and muscle contraction and also in the function of subcellular systems such as mitochondria. Cu, Zn, Mn and selenium also act as antioxidants [5]. Therefore, imbalances in the optimum levels of these trace elements may adversely affect biological processes and are associated with many fatal diseases, such as cancer. There are several reports on serum trace element levels in malignant diseases including leukemia and lymphomas [6].
Hypomagnesemia is a relatively common electrolyte abnormality in leukemic patients. It has been reported that low serum magnesium levels may be detected in as many as 30% of AL patients [7]. Several studies have shown an increase cancer rate in regions with low magnesium levels in soil & drinking water. Magnesium is actually the key to the body’s proper assimilation and use of calcium as well as other important nutrients. Patients with hypomagnesaemia consume too much calcium without sufficient magnesium the excess calcium is not utilized correctly & may actually become toxic, causing painful conditions in the body. Hypocalcemia is a prominent manifestation of magnesium deficiency in humans [8].

OBJECTIVES

General objective

To determine the status of serum magnesium level in patients with newly diagnosed acute leukemia.

Specific objectives

- To measure magnesium level in study subjects.
- To correlate magnesium level with sodium, potassium, chloride
- To correlate magnesium level with calcium and albumin.

METHODOLOGY

Type of study	Observational cross-sectional study
Place of study	Department of Haematology, BSMMU, Dhaka
Study period	September 2016 to August 2017
Study population	All newly diagnosed acute leukemia patients attending department of Haematology
Sampling technique	Purposive

METHOD

SELECTION CRITERIA

Inclusion Criteria

- All patients with newly diagnosis of acute leukemia.
- The diagnosis confirmed by bone marrow study and/or immunophenotyping.
- Giving informed written consent to participate.

Exclusion Criteria

- Patients already received chemotherapy.
- Patients already received any mineral supplementation.
- Moribund patients.
- Patient refuses to participate.
- Subject with diabetes mellitus
- Subject with diuretic therapy

Data Collection procedure

A pre-designed structured data collection sheet was used. For each and every subject separate data collection sheet was prepared. After selection of study subjects data was collected by details history taking and clinical examination. Written consent was taken from those who was agree to participate in the study. The patients were chosen according to purposive sampling as diagnosed case of acute leukemia attending department of Haematology. The diagnosis was confirmed by bone marrow study. All patients’ data including demographical, clinical and laboratory data was collected to evaluate basic hemogram and trace elements status specially magnesium

Statistical Analysis

All data were processed by utilizing SPSS program (Version 23.0) and expressed as frequencies or percentages as well as mean (SD/SEM) as applicable. Unpaired t-test was used for continuous variables. Pearson’s correlation coefficients were used between serum magnesium level with other sodium, potassium, chloride, calcium and albumin. The level of significance was determined as <0.05. p value <0.05 was declared as statistically significant.

RESULT

Age distribution of the study population

Table 1 showed mean age was found 36.17(±19.15) years, majority age group was found 10-40 years of age which was (62.4%).

Table-1: Age distribution of the study population (n=85)

Age in years	Number	Percentage
10-20 years	27	31.8
21-30 years	13	15.3
31-40 years	13	15.3
41-50 years	15	17.6
51-60 years	06	07.1
> 60 years	11	12.9
Total	85	100.0
Mean ±SD	36.17(±19.15)	Range (10-78)
Sex distribution of the study population

Regarding gender 55% were found male and 45% were found female.

Educational status of the study population

Figure 1 showed regarding educational status 45(54.12%) were primary level, 21(24.71%) were SSC, 5(5.88%) were HSC and 07(8.24%).

Marital status of the study population

Figure 2 showed majority (60%) of the patients were found married

Socio-economic status of the study population

Figure 3 showed majority 59% of the patients came from poor class socioeconomic status followed by 40% were came from middle class socioeconomic status.
Occupational status of the study population

Regarding occupational status 33(38.82%) were housewife, 10(11.76%) were day laborer, 12(14.12%) were farmer and 19(22.35%) was student.

Nutritional status of the study population

Table II showed regarding nutritional status 25(29.4%) was well nourished, 50(58.8%) was moderately nourished and 10(11.8%) was malnourished.

Table II: Nutritional status of the study population (n=85)

Status	Number	Percentage
Well nourished	25	29.4
Moderately nourished	50	58.8
Malnourished	10	11.8
Total	85	100.0

Life style of the study population

Table III showed most (96.5%) of the lifestyle was found active.

Table III: Life style of the study population (n=85)

Status	Number of patients	Percentage
Moderately sedentary	03	03.5
Active	82	96.5
Total	85	100.0

Distribution of acute leukemia of the study population

Regarding acute leukemia majority 60(70.6%) were found AML and 25(29.4%) ALL.

Table IV: Distribution of acute leukemia of the study population (n=85)

Leukemia	Number	Percentage
ALL	25	29.4
AML	60	70.6
Total	85	100.0

Distribution of serum magnesium level of the study population

Regarding serum magnesium level majority 44(51.8%) was found hypomagnesaemia followed by 38(44.7%) were normal magnesium and 03(3.5%) were hypermagnesaemia.

Table V: Distribution of serum magnesium level of the study population (n=85)

Magnesium	Normal	Percentage
Hypomagnesaemia	44	51.8
Normal	38	44.7
Hypermagnesaemia	3	3.5
Total	85	100.0
DISCUSSION

In present study observed that the mean age was found 36.17±19.15 years, majority age group was found 10-40 years of age which was (62.4%). Similar observation was found in Demir et al. study they showed that the average age of patients was 38.08±11.22 years (range 24-56) [9]. In study of Merza et al. also observed similar observation [10].

In present study regarding gender 55% were found male and 45% were found female. In study of Demir et al. observed that out of 42 cases 14(33.3%) of them were females and the other 28(66.7%) were males [9]. In study of Merza et al. observed acute leukemia group composed of 42-person (AML: 38; ALL: 4), 14(33.3%) of them were females and the other 28(66.7%) person were males [10].

In present study investigation of the population, it was reported that mean serum sodium was 136.00±4.54 mmol/L, serum potassium was 3.77±.49 mmol/L, serum chloride was 101.85±11.05 mmol/L, serum albumin was 34.56±6.47 g/L, serum calcium was 8.16±1.14 mg/dl, serum creatinine was 0.78±0.18 mg/dl, RBS was 5.98±1.22 mmol/L, HB% was 8.75±1.97 gm/dl, ESR was 78.6±87.28 ×10⁹/L, platelets count was 77.86±87.28 ×10⁹/L, and WBC was 51.5±35.1×10⁹/L.

In present study observed that regarding acute leukemia majority 60(70.6%) were found AML and 25(29.4%) ALL. Similar observation was found Demir et al. they showed Acute leukemia group composed of 42 person (AML: 38; 90.5%; ALL: 4(9.5%).

In present study observed that the mean serum magnesium was found 1.56±0.60 mg/dl in ALL patients and 1.89±0.49 mg/dl in AML patients which was significantly lower in ALL patient than AML patients (p =0.009). Mean serum Sodium, Potassium and Chloride were not significantly associated with ALL and AML patients. Merza et al. study observed that the mean concentration of serum magnesium (S[Mg]) (mg/dl) in All 1.623(±0.453) (mg/dl), AML was 1.737 (±0.385) (mg/dl). Milionis et al. study reported that there were no significant differences in the incidence of serum Sodium, Potassium and Chloride between patients with AML and ALL, which was more frequently observed in AML patients [13].

In present study regarding serum magnesium level majority 44(51.8%) was found hypomagnesaemia followed by 38(44.7%) were normal magnesium and 03(3.5%) were hypermagnesaemia. In study of Demir et al. observed that the serum levels of Mg were significantly lower in with acute leukemia patients than in the controls (p<0.001) [9]. The decreased S[Mg] in ALL patients (65.7%) can be explained in accordance with the findings of Sahin et al. and Orhun et al. [11]. Moreover, Guo et al. reported that hypomagnesemia was a result of movement of extracellular Mg into the skeleton through bone formation after initiation of treatment for ALL [12].

The normal S [Mg] indicated by (38.2%) of total patients is in accordance with the observation made by Sahin et al. [11]. Other workers had also reported similar findings on the normal and decreased S[Mg] in patients with malignant disorders Atkinson et al. and Milionis et al. showed a controversial results that may have been related to the fact that S[Mg] are not always stable and may be affected by variable factors [13]. Thus, measurement of hair [Mg] seems to be a better indicator in the detection of its chronic deficiency as recorded by Sahin et al. and Domna et al. [11]. The increased S[Mg] represented as 3.6% in ALL are cases of hypermagnesemia. Conditions that interfere with the glomerular filtration (e.g. renal glomerular dysfunction) result in the retention of Mg and hence elevation of serum level [14]. Further work on the measurement of urine [Mg] would be valuable in distinguishing renal losses of Mg from other causes of hypomagnesemia.

CONCLUSION

Significantly lower serum magnesium level was found in newly diagnosed acute leukemia patients. Among them significantly lower in ALL patients than AML patients. Half of the acute leukemia patients were found hypomagnesaemia.

REFERENCES

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10. GLOBOCAN 2008 v1. 2, Lyon, France: International Agency for Research on Cancer; 2010. Lancet Oncol. 2012;13(6):607-15.
2. Jönsson-Videsäter K, Björkhem-Bergman L, Hossain A, Söderberg A, Eriksson LC, Paul C, Rosén A, Björnstedt M. Selenite-induced apoptosis in doxorubicin-resistant cells and effects on the thioredoxin system. Biochemical pharmacology. 2004 Feb 1;67(3):513-22.
3. Everington T, Liesner RJ and Goldstone AH. ‘The Acute Leukaemias’, In ‘ABC of Clinical Haematology’, Ed Provan D. BMJ Books, London. 2003: 23-7.
4. Mahabir S, Spitz MR and Barrera SL.’ Dietary zinc, copper and selenium, and risk of lung cancer’, Int J Cancer. 2007; (120):1108-15.
5. Shenkin A. ‘Micronutrients and outcome’, Nutrition.1997; 13: 825-8.
6. Tessmer CF Hrgovic M, Thomas FB, Wilbur J and Mumford DM. ‘Long term serum copper studies in
acute leukemia in children’, Cancer.1972; (30): 35-65.

7. Milionis HJ, Bourantas CL, Siamopoulos KC, Elisaf MS. Acid-base and electrolyte abnormalities in patients with acute leukemia. American journal of hematology. 1999 Dec;62(4):201-7.

8. Rude R. ‘Magnesium’, In: Biochemical and Physiological Basis of Human Nutrition, edited by Stipanuk M, Orlando, Saunders. 2000: 671-685.

9. Demir C, Demir H, Esen R, Sehitogullari A, Atmaca M and Alay M. ‘Altered Serum Levels of Elements in Acute Leukemia Cases in Turkey’, Asian Pacific J Cancer Prev. 2011; 12: 3471-4.

10. Merza WM, Daoud MS, Jawad AM. Serum magnesium concentration in patients with leukemia and lymphoma. Journal of the Faculty of Medicine Baghdad. 2009 Apr 1;51(1):101-4.

11. Sahin G, Erten U, Duru F, Biraen D, Kuksek N. High prevalence of chronic magnesium deficiency in children with acute lymphoblastic leukemia and malignant lymphoma. Leuk Lymphoma. 2000;39(5-6):555-62.

12. Guo CY, Halton JM, Barr R and Atkinson SA. 2004, ‘Hypomagnesemia associated with chemotherapy in patients treated for acute lymphoblastic leukemia: Possible mechanisms’, Oncol. Rep. 2004; 11(1): 185-9.

13. Atkinson, SA, Halton, JM, Bradley, C, Wu, B & Barr, RD 1998, ‘Bone and mineral abnormalities in acute childhood lymphoblastic leukemia: Influence of disease, drugs and nutrition’, Int. J. Cancer Supp.1998; 11: 35-39.

14. Whitby LG, Percy-Robb IW, Smith AF. Lecture notes on clinical chemistry. Blackwell Scientific Publications; 1975.