MicroRNAs in obesity, sarcopenia, and commonalities for sarcopenic obesity: a systematic review

Lisa Dowling1*, Ankita Duseja1, Tatiane Vilaca1, Jennifer S. Walsh1 & Katarzyna Goljanek-Whysall2,3

1The University of Sheffield, Sheffield, UK; 2The University of Liverpool, Liverpool, UK; 3Department of Physiology, School of Medicine, Nursing and Health Sciences, College of Medicine, National University of Ireland, Galway, Galway, Ireland

Abstract

Sarcopenic obesity is a distinct condition of sarcopenia in the context of obesity, with the cumulative health risks of both phenotypes. Differential expression of microRNAs (miRNAs) has been reported separately in people with obesity and sarcopenia and may play a role in the pathogenesis of sarcopenic obesity. However, this has not been explored to date. This study aimed to identify differentially expressed miRNAs reported in serum, plasma, and skeletal muscle of people with obesity and sarcopenia and whether there are any commonalities between these conditions. We performed a systematic review on Embase and MEDLINE (PROSPERO, CRD42020224486) for differentially expressed miRNAs (fold change >1.5 or P-value <0.05) in (i) sarcopenia or frailty and (ii) obesity or metabolic syndrome. The functions and targets of miRNAs commonly changed in both conditions, in the same direction, were searched using PubMed. Following deduplication, 247 obesity and 42 sarcopenia studies were identified for full-text screening. Screening identified 36 obesity and 6 sarcopenia studies for final inclusion. A total of 351 miRNAs were identified in obesity and 157 in sarcopenia. Fifty-five miRNAs were identified in both obesity and sarcopenia—by sample type, 48 were found in plasma and one each in serum and skeletal muscle. Twenty-four miRNAs were identified from 10 of the included studies as commonly changed in the same direction (22 in plasma and one each in serum and skeletal muscle) in obesity and sarcopenia. The majority of miRNA-validated targets identified in the literature search were members of the phosphoinositide 3-kinase/protein kinase B and transforming growth factor-β signalling pathways. The most common targets identified were insulin-like growth factor 1 (miR-424-5p, miR-483-3p, and miR-18b-5p) and members of the SMAD family (miR-483-3p, miR-92a-3p, and miR-424-5p). The majority of commonly changed miRNAs were involved in protein homeostasis, mitochondrial dynamics, determination of muscle fibre type, insulin resistance, and adipogenesis. Twenty-four miRNAs were identified as commonly dysregulated in obesity and sarcopenia with functions and targets implicated in the pathogenesis of sarcopenic obesity. Given the adverse health outcomes associated with sarcopenic obesity, understanding the pathogenesis underlying this phenotype has the potential to lead to effective screening, monitoring, or treatment strategies. Further research is now required to confirm whether these miRNAs are differentially expressed in older adults with sarcopenic obesity.

Keywords MicroRNA; Sarcopenia; Obesity; Frailty; Metabolic syndrome

Received: 23 July 2021; Revised: 24 October 2021; Accepted: 29 October 2021
*Correspondence to: Lisa Dowling, The University of Sheffield, Sheffield, UK. Email: lmdowling1@sheffield.ac.uk

Introduction

Sarcopenic obesity is a condition of excess fat mass and sarcopenia.1,2 Differing definitions of sarcopenia have been proposed with growing consensus on the importance of muscle function.1,3 Sarcopenic obesity is more commonly found amongst older adults; however, it can also be found in younger adults during both acute and chronic disease, or intermit-
tent weight cycling.4 Dependent on the definition used, sarcopenic obesity is thought to range in prevalence from 2.75% to over 20%.4 Of clinical importance, sarcopenic obesity may have the cumulative risk of both sarcopenia and obesity.5 Growing evidence supports this with a greater risk of falls, hospitalization, worsening disability, and all-cause mortality reported.6–8

The aetiology of sarcopenic obesity is complex and not fully understood (see Batsis and Villareal and Zamboni et al.5,9 for detailed reviews). Ageing is associated with changes in body composition including a loss of lean mass, increased body fat, and muscular fat infiltration, with a subsequent reduction in resting metabolic rate.2,10 Reduced physical activity and malnutrition (including overnutrition or undernutrition and malabsorption) associated with ageing contribute to a gradual increase in body fat7 and the development of sarcopenia.1 Moreover, excess body fat or obesity can exacerbate sarcopenia.1,11 Obesity is associated with low-grade inflammation with the secretion of tumour necrosis factor, leptin, and C-reactive protein.2,12 Leptin elevates the levels of pro-inflammatory cytokines, which cause a reduction in the anabolic effects of insulin-like growth factor 1 (IGF-1).2 This inflammation leads to insulin resistance, further exacerbated by muscle catabolism, which promotes fat mass and loss of muscle mass.2,12 As such, changes associated with ageing, obesity, and sarcopenia as well as interrelationships between these phenotypes can contribute to the pathogenesis of sarcopenic obesity.

MicroRNAs (miRNAs, miRs) are short, non-coding RNAs that can regulate gene expression at a post-transcriptional level.13 To date, 2654 miRNAs have been discovered, which are predicted to regulate two-thirds of the human genome.14,15 Therefore, many miRNAs may modulate many physiological processes. There is evidence that ageing changes miRNA levels in the muscle and that these changes may have a detrimental impact on muscle quality and quantity.16,17 However, the influence of obesity or adiposity on the miRNA profile of older adults and whether this translates into functional impairment has not yet been established. Evidence from rodent studies has demonstrated that adipose-derived miRNAs can be transported via exosomes to a variety of host cells including myocytes, hepatocytes, and macrophages.18–20 Likewise, skeletal muscle-derived miRNAs can be taken up by adipose tissue.21 Functionally, this inter-organ crosstalk has been implicated in insulin resistance, adipogenesis, and lipid metabolism,19–21 thus suggesting a role for miRNAs in the pathogenesis of sarcopenic obesity. MiRNAs are an exciting area of research due to the potential of antagonomiRs, which are already been explored as pharmacological options in conditions such as cardiovascular disease and cancer.22,23

The primary aim of this systematic review was to identify differentially expressed miRNAs reported in plasma, serum, or skeletal muscle of adults with obesity or sarcopenia to determine common miRNA changes between these phenotypes. As this is an emerging area with limited research, studies reporting (i) sarcopenia or frailty and (ii) obesity or metabolic syndrome were included because of similarities between definitions. A secondary aim of this review was to identify the targets and functions of these differentially expressed miRNAs.

Methods

Protocol registration

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was followed as a reference protocol standard.24 A PRISMA flow chart is included. Our protocol was registered at the International Prospective Register of Systematic Reviews PROSPERO, with Registration Number CRD42020224486; available at https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020224486.

Bibliographical search and eligibility criteria

This systematic review consisted of two searches performed on MEDLINE and Embase (last searched 6 January 2021). Part 1 searched for studies of sarcopenia or frailty using the following terms: MicroRNA/miR/miRNA AND ‘sarcopenia’, ‘muscle strength’, ‘frail’, ‘ageing’/‘older adult’/‘aged’ AND ‘muscle’, ‘muscle weakness’, OR ‘dynapenia’. Part 2 searched for studies of obesity or metabolic syndrome using the following terms: MicroRNA/miR/miRNA combined with ‘obesity’ OR ‘metabolic syndrome’. The multipurpose function was used for keywords, and MeSH terms were used where available. Articles were limited to the English language and human studies. Eligible studies enrolled adult participants (>18 years) with sarcopenia, frailty, metabolic syndrome, or obesity and comparable non-sarcopenic/frail or non-obese/metabolic syndrome controls as outlined in Supporting Information, Table S1. Studies were excluded if the primary condition of interest was not sarcopenia, frailty, metabolic syndrome, or obesity but instead an unrelated disease or condition, for example, type 1 diabetes, cancer, or pregnancy, which may have confounded findings. Study groups containing some, but not all, type 2 diabetes participants were included. The considered biological fluids and tissues were serum, plasma, and skeletal muscle. Results on tissue samples or cell lines were excluded. Observational (cohort and case control) studies or intervention studies with relevant baseline results were included.
Study selection

Following deduplication, all selected titles and abstracts were screened to identify articles for full-text screening. A second reviewer verified a random sample of articles included in the first sift. The second sift, which consisted of full-text screening, was independently conducted by two reviewers to confirm that the criteria for the condition of interest, samples, age group, and outcome measure in the study met eligibility criteria. In cases where the same or similar results were reported in more than one study, the publication with the most information was included and the other rejected for duplication. Authors of papers with insufficient information relating to eligibility criteria or outcome measures for this review were contacted. If a reply was not received within one month, only the information reported in the paper was included (e.g. incomplete list of miRNAs) or else the paper was rejected if eligibility criteria remained uncertain (e.g. age group). A more comprehensive list of miRNA results was obtained from one study following email correspondence. Disagreements between reviewers that could not be solved with discussion were resolved with a third reviewer by consensus.

Data extraction

A standardized form was used to extract trial features (authors, published year, and country), patient characteristics (age and sex), RNA extraction and detection methods, and the subset of differentially expressed miRNAs between the two conditions. Extracted information was verified by a second reviewer.

Risk of bias in individual studies

Two reviewers assessed the quality and risk of bias of individual studies using the Newcastle–Ottawa Scale (NOS) with an additional star for validation of results within the study using either two measurement methods or two study groups (Table S2). Because of the type of studies included, all studies were given a star for the question on non-response rate. Disagreements between reviewers that could not be solved through discussion were resolved with a third reviewer by consensus.

Summary measures

The outcome measure was differentially expressed miRNAs in human skeletal muscle, plasma, or serum with at least a 1.5-fold change or $P < 0.05$ measured using RT-qPCR, next-generation sequencing, or microarray. Circulating (serum and plasma) miRNAs may be useful as non-invasive biomarkers, whereas miRNAs found in muscle may provide a mechanistic insight into sarcopenic obesity.

Because of differences in nomenclature between studies, we used the information for previous miRNA IDs on miRBase (Release 22.1; October 2018) to clarify and update the nomenclature of included miRNAs, which did not specify whether they were -3p or -5p. The BioVenn online interface was then used to identify potentially overlapping miRNAs. Overlapping miRNAs that were differentially expressed in both obesity and sarcopenia were further classified by tissue/fluid type and as either differentially expressed in (i) the same direction (e.g. up-regulated), (ii) different directions (e.g. up-regulated in obesity and down-regulated in sarcopenia), (iii) conflicting directions (e.g. both up-regulated and down-regulated in one condition but not the other), or (iv) unclear (e.g. differences in nomenclature limited interpretation).

Synthesis of results and additional analyses

MicroRNAs that were differentially expressed in the same direction in obesity and sarcopenia were identified for further investigation. A literature search was conducted on PubMed to identify validated target genes or functions of these miRNAs with regard to muscle, sarcopenia or frailty and obesity, metabolic syndrome, or insulin resistance. A narrative synthesis of the findings from the studies and in the context of sarcopenic obesity, their target genes, and metabolic pathways implicated is provided.

Results

Bibliographical search

The bibliographical search in MEDLINE and Embase retrieved 4097 obesity-related papers and 2357 sarcopenia-related papers published before 6 January 2021. Following deduplication, 2971 papers were screened for obesity and 2019 for sarcopenia. Following screening, 247 obesity studies and 42 sarcopenia studies were included for full-text review. In total, 36 studies were identified for obesity and six for sarcopenia (Figure 1). MiRNAs dysregulated in both sarcopenia and obesity were identified from 10 studies.

Studies were conducted in Korea, China, Singapore, New Zealand, the USA, Spain, and the UK. The majority of obesity studies used World Health Organization criteria for obesity, although the criteria for two studies were unclear. The sarcopenia studies used Fried...
Identification of Obesity studies via databases and registers

Records identified from: Databases (n = 4097)

Records after duplicates were removed (n = 2971)

Reports excluded: Ineligible sample (n = 83) Case/control group (n = 39) Alternative focus (n = 24) Study type (n = 9) Duplicate results (n = 13) Animal/in vitro/silico (n = 7) Inadequate information (n = 19) No outcome (n = 16) Age < 18 years (n = 1)

Records screened (n = 2971)

Full text articles assessed for eligibility (n = 247)

Studies included (n = 36)

MicroRNAs reported as dysregulated in the context of sarcopenia and obesity

A total of 351 miRNAs were identified in obesity and 157 in sarcopenia (Figure 2). Fifty-five potential miRNAs were identified in both obesity and sarcopenia. When examined by sample type, 48 overlapping miRNAs were identified in plasma and one each in serum and skeletal muscle (vastus lateralis). Sixteen plasma miRNAs were expressed in differing directions in obesity and sarcopenia. Eight plasma miRNAs in obesity, which were also present in sarcopenia, were expressed in

Identification of Sarcopenia studies via databases and registers

Records identified from: Databases (n = 2357)

Records after duplicates were removed (n = 2019)

Reports excluded: No case group (n = 20) Case definition (n = 1) Control group (n = 2) No miRNA measures (n = 2) Publication type (n = 7) Sample type (n = 2) Duplicate results (n = 1) Inadequate information (n = 1)

Records screened (n = 2019)

Full text articles assessed for eligibility (n = 42)

Studies included (n = 6)

Studies with commonly expressed miRNAs (n = 10)

Figure 1 PRISMA flow chart for obesity/metabolic syndrome and sarcopenia/frailty parts of the systematic review.
conflicting directions. Two plasma miRNAs could not be determined with confidence because of the nomenclature in the studies (miR-328 and miR-215). Therefore, across six obesity25,27–30,35 and four sarcopenia31–34 studies, we manually identified 24 miRNAs differentially expressed in the same direction. Twenty-two of these miRNAs were found in plasma and one each in serum and skeletal muscle (Table 1). Of these overlapping miRNAs, only miR-23a-3p was reported in more

Figure 2 (A) Venn diagram of miRNAs commonly expressed in all tissues in both obesity and sarcopenia. (B) MiRNAs by sample type (plasma, serum, or vastus lateralis) found in both obesity and sarcopenia. ‘↑’ refers to overexpressed; ‘↓’ refers to underexpressed. Since the publication of several studies included in this review, some reported miRs have been removed from the latest version of miRBase (e.g. miR-4461, miR-4532, and miR-6087); this does not affect overlapping miRs.
MiRNA	Country	Obesity definition	N (%female)	Age (years)	Log2FC	Sarcopenia definition	N (%female)	Age (years)	Log2FC
Plasma									
Mir-106a-5p	Spain	BMI ≥ 30 kg/m²	Ob 12 (100%)	Range 30–70	ND	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	1.81
			Lean 19 (100%)	49.9 ± 11.3	(Up)	N-F 7 (71%)	76 ± 6.5	4.00	
Mir-18b-5p	New Zealand	ND	Ob 11 (100%)	41 ± 5	ND	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	1.96
			Lean 12 (100%)	44 ± 9	(Up)	N-F 7 (71%)	76 ± 6.5	76 ± 6.5	
Mir-193b-5p	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	1.89	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	1.85
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	
Mir-197-3p	New Zealand	ND	Ob 11 (100%)	41 ± 5	ND	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	1.85
			Lean 12 (100%)	44 ± 9	(Up)	N-F 7 (71%)	76 ± 6.5	4.00	
Mir-199a-5p	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	−1.324	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	−0.74
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	
Mir-483-3p	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	1.413	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	3.92
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	
Mir-499	New Zealand	BMI > 30 kg/m²	Ob 80 (100%)	52.5 ± 10.5^b	ND	China[^32]	S 93 (ND)	76 ± 6.5	
			Lean 80 (100%)	53.0 ± 13.5	(Down)	N-S 93 (ND)	76 ± 6.5	0.76	
Mir-550a-3p	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	0.782	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	3.08
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	
Mir-576-5p	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	0.501	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	3.24
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	
Mir-589-5p	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	0.274	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	1.81
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	
Mir-92a-3p	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	0.571	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	0.78
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	
Mir-1224-5p	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	0.987	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	0.49
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	
Mir-1246	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	1.254	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	3.23
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	
Mir-145-5p	New Zealand	ND	Ob 11 (100%)	41 ± 5	Up	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	3.23
			Lean 12 (100%)	44 ± 9			N-F 7 (71%)	76 ± 6.5	
Mir-196a-5p	Singapore	BMI ≥ 27.5 kg/m²	Ob 9 (0%)	28.4 ± 1.6^a	0.885	USA[^71]	Fr 7 (0%)	85.6 ± 3.8	1.48
			Lean 9 (0%)	23.2 ± 0.2^a			N-F 7 (71%)	76 ± 6.5	

(Continues)
MiRNA	Country	Obesity definition	N (%female)	Age (years)	Log2FC	Country	Sarcopenia definition	N (%female)	Age (years)	Log2FC
16 MiR-296-3p	Singapore 🇸🇬	BMI ≥ 27.5 kg/m²	Ob 9 (0%) Lean 9 (0%)	28.4 ± 1.6ᵃ 23.2 ± 0.2ᵇ	1.049 USA³¹	Fried Frailty Phenotype	Fr 7 (0%) N-F 7 (71%)	Range 71–89	85.6 ± 3.8	0.20
17 MiR-29b-2-5p	New Zealand 🇳🇿	ND	Ob 11 (100%) Lean 12 (100%)	41 ± 5 44 ± 9	ND (Up) USA³¹	Fried Frailty Phenotype	Fr 7 (0%) N-F 7 (71%)	Range 71–89	85.6 ± 3.8	3.68
18 MiR-301b-3p	Singapore 🇸🇬	BMI ≥ 27.5 kg/m²	Ob 9 (0%) Lean 9 (0%)	28.4 ± 1.6ᵃ 23.2 ± 0.2ᵇ	−0.973 USA³¹	Fried Frailty Phenotype	Fr 7 (0%) N-F 7 (71%)	Range 71–89	85.6 ± 3.8	−1.00
19 MiR-378c	Singapore 🇸🇬	BMI ≥ 27.5 kg/m²	Ob 9 (0%) Lean 9 (0%)	28.4 ± 1.6ᵃ 23.2 ± 0.2ᵇ	0.676 USA³¹	Fried Frailty Phenotype	Fr 7 (0%) N-F 7 (71%)	Range 71–89	85.6 ± 3.8	2.41
20 MiR-4732-5p	Singapore 🇸🇬	BMI ≥ 27.5 kg/m²	Ob 9 (0%) Lean 9 (0%)	28.4 ± 1.6ᵃ 23.2 ± 0.2ᵇ	0.88 USA³¹	Fried Frailty Phenotype	Fr 7 (0%) N-F 7 (71%)	Range 71–89	85.6 ± 3.8	2.97
21 MiR-487a-3p	Singapore 🇸🇬	BMI ≥ 27.5 kg/m²	Ob 9 (0%) Lean 9 (0%)	28.4 ± 1.6ᵃ 23.2 ± 0.2ᵇ	−1.3 USA³¹	Fried Frailty Phenotype	Fr 7 (0%) N-F 7 (71%)	Range 71–89	85.6 ± 3.8	−1.03
22 MiR-766-3p	New Zealand 🇳🇿	ND	Ob 11 (100%) Lean 12 (100%)	41 ± 5 44 ± 9	ND (Up) USA³¹	Fried Frailty Phenotype	Fr 7 (0%) N-F 7 (71%)	Range 71–89	85.6 ± 3.8	1.14

Serum

MiRNA	Country	Obesity definition	N (%female)	Age (years)	Log2FC	Country	Sarcopenia definition	N (%female)	Age (years)	Log2FC	
23 MiR-23a-3p	Korea 🇰🇷	BMI ≥ 35 kg/m²	Ob 16 (56%) Lean 18 (72%)	Range 30–59	31.3 ± 8.76	38.6 ± 7.9	USA³⁴	EWGSOP 2010	S 12 (100%) N-S 51 (100%)	Range 60–85	1.66 (NS)

Vastus lateralis

MiRNA	Country	Obesity definition	N (%female)	Age (years)	Log2FC	Country	Sarcopenia definition	N (%female)	Age (years)	Log2FC
24 MiR-424-5p	ND 🇬🇧	ND	Ob 5 (0%) Lean 5 (0%)	ND (Up)	UK³³	EWGSOP 2010	S 5 (0%) N-S 99 (0%)	Range 68–76	Up	

AWGS, Asian Working Group for Sarcopenia; BMI, body mass index; EWGSOP, European Working Group on Sarcopenia in Older People; Fr, frail; IQR, inter-quartile range; ND, not documented; N-F, non-frail; N-S, non-sarcopenic; NS, not statistically significant; Ob, obese; S, sarcopenic; SD, standard deviation; SEM, standard error of the mean.

Age is presented as mean ± SD unless specified.

ᵃ±SEM.

ᵇMedian ± IQR.
than one tissue (serum and plasma) of both sarcopenia and obesity; however, in plasma, conflicting directions were reported in obesity. The majority of overlapping miRNAs were identified in two studies, one of which used RT-qPCR and the other used RNA-Seq. Exosomal miRNAs were reported by three studies. Twenty-one of the 24 overlapping miRNAs were found in one study of frailty using plasma exosomes.

Two miRNAs may also be commonly expressed in obesity and sarcopenia, but differences in nomenclature limited our understanding. Plasma miR-328-3p and miR-328 were down-regulated and up-regulated in obesity, respectively, and miR-328 was down-regulated in sarcopenia. Plasma miR-215 was up-regulated in both obesity and sarcopenia, and miR-215-5p was also up-regulated in obesity. However, as we could not determine whether miR-215 was -3p or -5p using the previous ID section on miRBase, we classified this miRNA as an unclear match. A list of the top externally validated circulating (plasma or serum) miRNAs in obesity or sarcopenia is available in Table S3.

Assessment of risk of bias

The majority of studies scored ≤6 on the NOS (2,25 3,28,35 4,31 5,29 and 6,33,34), two received a star for validation (4*27 and 6*30), and one study scored >6 (8*12). All studies lost a mark for failing to comment on the representativeness of cases, five of six obesity studies lost a mark for failing to adequately define how controls were selected, and only four studies received marks for adequately describing how exposure was ascertained. All studies, except those that scored ≤6, received a mark for adequately describing the case definition.

Validated target genes, metabolic pathways, and functions of microRNAs

Validated target genes of the miRNAs of interest, in relation to sarcopenia, obesity, and related conditions (e.g. insulin resistance, inflammation, and cachexia) where possible, were identified by conducting a literature search using PubMed (Table 2). The majority of validated targets identified in the literature search were members of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and transforming growth factor-β (TGF-β) signalling pathways. The most common targets identified were IGF-1 (miR-424-5p, miR-483-3p, and miR-18b-5p) and members of the SMAD family (miR-483-3p, miR-92a-3p, and miR-424-5p). MiRNAs also targeted phosphatase and tensin homologue (PTEN) (miR-296-3p and miR-499) and peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) both directly (miR-23a-3p) and indirectly (miR-499 via Fnip). The forkhead box protein (FOXO) family was targeted by miR193b-5p. AMP-activated protein kinase (AMPK) was also targeted directly (miR-1224-5p) and indirectly (miR-499 via Fnip). The majority of commonly expressed miRNAs were involved in protein homeostasis, mitochondrial dynamics, determination of muscle fibre type, insulin resistance, and adipogenesis.

Discussion

In this systematic review, we identified 24 miRNAs that are differentially expressed in both sarcopenia and obesity. These findings are particularly novel as miRNAs have not yet been explored in the context of sarcopenic obesity. The common dysregulation of the miRNAs identified in this review may therefore provide clues to understand the pathogenesis of sarcopenic obesity. To address this aim, a search was subsequently undertaken to understand the functions of these 24 miRNAs in relation to muscle/sarcopenia and adiposity/obesity. For some miRNAs, there were limited or no studies in the context of obesity or sarcopenia, and therefore, their relevance in relation to sarcopenic obesity is still unclear at present (miR-29b-2-5p, miR-378c, miR-4732-5p, miR-487a-3p, miR-550a-3p, miR-576-5p, and miR-589-5p). Other miRNAs have been shown to be differentially regulated in related diseases or metabolic responses, for example, in chronic obstructive pulmonary disease or amyotrophic lateral sclerosis (miR-1246), in response to a high-fat meal (miR-145-5p) or exercise (miR-766-3p). However, we found that the majority of these commonly expressed miRNAs were involved in protein homeostasis, mitochondrial dynamics, determination of muscle fibre type, insulin resistance, and adipogenesis—processes implicated in the development of sarcopenic obesity. The targets identified were predominantly found in the PI3K/AKT and TGF-β pathways.

Protein homeostasis

IGF-1 is one of the most important mediators of muscle growth and repair, however, IGF-1 declines with age. MiRNAs identified to be up-regulated in both obesity and sarcopenia target IGF-1, leading to its inhibition. The miRNAs miR-18b-5p, miR-483-3p, and miR-424-5p target IGF-1 in vitro. Functionally, in vitro studies have shown that miR-483-3p inhibits bovine myoblast cell proliferation through the IGF1/PI3K/AKT pathway and promotes apoptosis in hyperglycaemic cardiomyocytes. Up-regulation of miR-483-3p causes a reduction in muscle diameter in mice and is also up-regulated in muscle wasting conditions in humans. These studies therefore suggest that up-regulation of these miRNAs could be detrimental to muscle metabolism.
Table 2 Functions and predicted targets of miRNAs that are differentially expressed in the same direction in obesity and sarcopenia

MiRNA (family)	Cluster	↑ ↓	Function in relation to obesity/adiposity/insulin resistance or sarcopenia/muscle/exercise	Sample	Target
Plasma					
MiR-106a-5p	MiR-106a, miR-18b, miR-20b, miR-19b-2, miR-92a-2, miR-363	↑	Down-regulated in polycystic ovary syndrome (PCOS) Elevated in aged muscles (mice) and dexamethasone-treated myotubes; agomir results in down-regulation of both myogenic regulatory factors (MyoD, MyoG, and MyHC) and phosphorylation of AKT and decreased myotube size	Plasma exosomes	C2C12 cells
					Mice
MiR-1224-5p	N/A	↑	Up-regulated in the liver of obese and high-fat diet-fed mice, contributes to hepatic lipid accumulation by targeting AMPKα	Mice	AMPKα
(miR-1224)					
MiR-1246	N/A	↑	Down-regulated in patients with chronic obstructive pulmonary disease (COPD) and emphysema (n = 20) and amyotrophic lateral sclerosis (ALS) patients (n = 14) Up-regulated in diabetic nephropathy patients (n = 23); positively correlated with BMI	Plasma	
(miR-1246)					
MiR-145-5p	MiR-145, miR-143	↑	Limited studies on obesity/sarcopenia	Plasma	
(miR-145)					
MiR-18b-5p	MiR-106a, miR-18b, miR-20b, miR-19b-2, miR-92a-2, miR-363	↑	Up-regulated in PCOS and relapsing multiple sclerosis (MS), may be involved in inflammatory pathways SORBS2 identified as a target in diabetic nephropathy model cells Targets and inhibits IGF-1, suppressing the activation of p-AKT, p-MEK, and p-ERK1/2 in vitro	Serum	HMGCS, HRECs
(miR-17)					IF-1
MiR-193b-5p	MiR-193b, miR-365a	↑	Limited studies on obesity/sarcopenia Weak negative correlations with BMI, plasma glucose levels, and insulin response to OGTT in younger adults Targets and decreases expression of FoxO3 in cells, regulating cell cycle and cell proliferation	Subcutaneous adipose tissue	FoxO3
(miR-193)					BRL-3A
MiR-196a-5p	N/A	↑	High level of expression in myoblasts, suppresses mitochondrial biogenesis and its master regulator, PGC1β, and ND4.Suppresses osteoclast formation induced by RANKL in Raw264.7 cells	Serum	C2C12 cells
(miR-196)					RAW264.7 cells
MiR-197-3p	N/A	↑	Increased after high-intensity resistance exercise in young adults	Serum	STC-1 cells
(miR-197)					
MiR-199a-5p	MiR-199a-5p with a subsequent increase in targets Sirt1 and Hif-1α in cardiomyocytes Down-regulated in mild and terminal-stage ALS and patients with Parkinson's disease Up-regulated in middle-aged adults with T2DM; in vitro studies showed that miR-199a regulates cellular glucose uptake by targeting and suppressing GLUT4 Up-regulated in rat pancreatic β-cells exposed to high glucose, promotes apoptosis and ROS formation, suppresses SIRT1 Inhibition results in decreased myogenic differentiation and increased MyoD1 and Pax7 in human myoblasts. High levels inhibit WNT signalling in HEK293T cells. Overexpression in zebrafish results in disorganization and detachment of myofibres	Cardiomyocytes	Sirt1		
(miR-199)					
MiR-296-3p	MiR-296, miR-298	↑	Up-regulated in PCOS; reduction in miR-296-3p promotes cell proliferation	Human granulosa cells	PTEN

(Continues)
MiRNA (family)	Cluster	Function in relation to obesity/adiposity/insulin resistance or sarcopenia/muscle/exercise	Target
MiR-29b-2-5p (miR-29)	MiR-29b-2, miR-29c	↑ Limited studies in the context of muscle/obesity Targets STAT3 in a fibroblast cell line	Human granulosa-like tumour cells, L929 cells, STAT3
MiR-301b-3p (miR-130)	MiR-301b, miR-130	↓ Decreased during myogenic differentiation; may be involved in muscle differentiation by regulating Rb1cc	Chicken myoblasts, Rb1cc
MiR-378c	N/A	↑ Studies not identified in the context of muscle/obesity	
MiR-4732-5p (miR-4732)	MiR-4732, miR-144, miR-451a, miR-451b	↑ Up-regulated in hyperglycaemic mice and cardiomyocytes. Overexpression down-regulates IGF-1, thus promoting apoptosis in hyperglycaemic cardiomyocytes. Overexpression inhibits bovine myoblast cell proliferation through the IGF1/Pi3K/AKT pathway; knockdown of miR-483 enhances the expression of myogenic maker genes MyoD1, MyoG, and MyHC	Mice, H9c2 cell line, Bovine myoblasts, Serum
MiR-483-3p (miR-483)	N/A	↑ Up-regulated in hyperglycaemic mice and cardiomyocytes. Overexpression down-regulates IGF-1, thus promoting apoptosis in hyperglycaemic cardiomyocytes. Overexpression inhibits bovine myoblast cell proliferation through the IGF1/Pi3K/AKT pathway; knockdown of miR-483 enhances the expression of myogenic marker genes MyoD1, MyoG, and MyHC	Mice, H9c2 cell line, Bovine myoblasts, Serum
MiR-487a-3p (miR-154)	MiR-1185-1, miR-1185-2, miR-381, miR-487a, miR-487b, miR-539, miR-889, miR-544a, miR-655, miR-382, miR-154, miR-496, miR-377, miR-134, miR-668, miR-485, miR-323b	↓ Studies not identified in the context of muscle/obesity	
MiR-499a (miR-499) MyomiR	MiR-499a, miR-499b	Elevated in patients and carriers (mothers) with Duchenne’s muscular dystrophy and COPD (n = 103) and significantly correlated with NF-kB p50; Affected by aerobic exercise—no changes after acute bout in young men; decreased following acute bout with weight vest with/without nutritional supplementation; increased in male marathon runners (n = 21) after competitive marathon competition; Increased after essential amino acid (EAA) ingestion in young adults (n = 7); Associated with a slow muscle fibre phenotype in human muscle; Double knockout miR-499/miR-208b mice lost slow Type I fibres with a concomitant increase in fast Type Ibx/d and Ibx myosin isoforms; forced expression of miR-499 converted fast myosin fibres to slow; Sox6 helps mediate the actions of miR-499 on slow myofibre gene programming; Targets Thrap1 to promote slow muscle fibre type; Targets TGF-jR1, a known regulator of skeletal myoblast development. Knockdown of TGF-jR1 inhibits myogenic differentiation in C2C12 cells; Targets PRDM16, which subsequently promotes myogenic, rather than brown adipogenic, differentiation in mouse skeletal muscle stem cells (SMSCs); Promotes mitochondrial function. Targets Fnp1, a negative regulator of mitochondrial function in myocytes, which leads to activation of chronic inflammation and decreased mitochondrial function	Plasma, Serum, Vastus lateralis, Mice, C2C12 cells, SMSCs, H9c2 cells, Murine liver cells NCTC1469, PTEN

(Continues)
Table 2 (continued)

MiRNA (family)	Cluster	Function in relation to obesity/adiposity/insulin resistance or sarcopenia/muscle/exercise	Sample	Target
MiR-550a-3p (miR-550)	MiR-550a-1, miR-550b-1	Limited studies in muscle/obesity	Peripheral blood	Serum
MiR-576-5p (miR-576)	N/A	Limited studies not identified in the context of muscle/obesity	Fibroblasts	
MiR-589-5p (miR-589)	N/A	Decreased upon TGF-β stimulation in control fibroblasts, with no effect seen in COPD fibroblasts		
MiR-766-3p (miR-766)	N/A	Decreased in older (60–73 years; n = 51) compared with younger (19–42 years; n = 55) or long-lived (90–102 years; n = 51) adults. Overexpressed in older adult human dermal fibroblasts (HDFs)	PBMC	SIRT6
MiR-92a-3p (miR-92a)	MiR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, miR-92a-1	Anti-miR, MRG-110, was tested in adult men and found to counteract the repression of known miR-92a-3p targets, ITGAS and CD93. Elevated levels of DDIT4, an inhibitor of mTOR, were found in cells treated with MRG-110. In a systematic review, down-regulated following bariatric surgery	Whole blood	ITGAS

(Continues)
We found that miRNAs implicated in both obesity and sarcopenia regulate several targets of the PI3K/AKT pathway, which is involved in protein homeostasis.108 Downstream of AKT, FoxO3 is targeted by miR-193b-5p.48 The FOXO family is implicated in many processes including cell cycle, apoptosis, autophagy, and muscle atrophy.48,108 In muscle, FOXO proteins are important mediators of major proteolytic cellular pathways—the autophagy–lysosome and ubiquitin–proteasome systems.108 These pathways are critical for quality control of sarcomeric proteins.108 Interestingly, miR-23a-3p targets the muscle atrophy genes atrogin-1/MAFbx1 and MURF-1, which are downstream targets of FOXO.100 Ectopic overexpression of miR-23a-3p counteracts muscle atrophy induced by dexamethasone in myotubes and glucocorticoids in mice.100

Table 2 (continued)

MiRNA (family)	Function in relation to obesity/adiposity/insulin resistance or sarcopenia/muscle/exercise	Sample	Target
Serum	MiR-23a-3p (miR-23)	↑↓	VAT, SAT43
	Significantly down-regulated in SAT and VAT of obese participants and significantly correlated with measures of adiposity (BMI, waist circumference, insulin measures). Involved in the regulation of PTEN, although the molecular mechanism is unclear.96 In young men (n = 7), increased following resistance or endurance exercise and protein ingestion.97 Increased following EAA ingestion alone.70 Decreased after an acute bout of endurance exercise in young adults (n = 9).98 Up-regulated in ALS. Targets PGC-1α with subsequent effects on mitochondrial biogenesis and activity. Protects muscles from atrophy by targeting atrogin-1/MAFbx1 and MURF-1. Overexpression causes a reduction in muscle diameter of mice.33 Saturated fat/high-fat diet impairs insulin signalling (INSR and IRS-1) and up-regulated miR-424-5p in hepatocytes and mice. Overexpression causes a significant decrease in insulin-induced glycogen synthesis in hepatocytes. INSR is a direct target. Targets IGF-1 in mice and human myocytes.105		
Vastus lateralis	MiR-424, miR-503, miR-542, miR-450a-2, miR-450a-1, miR-450b	↑	Serum33,104
	Down-regulated in young women with PCOS (n = 24).43 No difference between obese (n = 21) and NW (n = 19) women but correlated with waist circumference.102 Increased in cachectic cancer patients.103 Up-regulated in muscle wasting conditions—ICU-acquired weakness and COPD. Overexpression causes a reduction in muscle diameter of mice.33 Saturated fat/high-fat diet impairs insulin signalling (INSR and IRS-1) and up-regulated miR-424-5p in hepatocytes and mice. Overexpression causes a significant decrease in insulin-induced glycogen synthesis in hepatocytes. INSR is a direct target. Targets IGF-1 in mice and human myocytes.105		

\(\uparrow\), up-regulated in sarcopenia/obesity; \(\downarrow\), down-regulated in sarcopenia/obesity; HGMCs, human glomerular mesangial cells; HRECs, human retinal endothelial cells; HRGECs, human renal glomerular endothelial cells; PBMCs, peripheral blood mononuclear cells.
Mitochondrial dynamics

MicroRNAs dysregulated in both obesity and sarcopenia regulate mitochondrial biogenesis. MiR-196a-5p is highly expressed in myoblasts and suppresses PGC1α, a regulator of mitochondrial biogenesis. MiR-499a-5p, which is down-regulated in sarcopenia and obesity, targets Fnip1, which in turn inhibits AMPK with subsequent reduced activation of PGC-1α. Functionally, inhibition of Fnip1 by miR-499a-5p results in improved mitochondrial function in myocytes and improved mitochondrial capacity in mice with muscular dystrophy. In adults with amyotrophic lateral sclerosis, of mitochondrial senescence in vitro. Up-regulation of miR-199a-5p promotes apoptosis and ROS formation in vitro. Dysregulation in the PI3K/AKT/FOXO pathway may have implications on muscle atrophy and muscle quality control with implications for sarcopenia.

In mature adult muscle, TGF-β is a potent regulator of muscle atrophy, which impairs skeletal muscle regeneration through inhibition of satellite cell proliferation, myofibre fusion, and expression of some muscle-specific genes. Multiple miRNAs commonly expressed in sarcopenia and obesity target this pathway. MiR-499 targets TGF-βR1, a receptor for TGF-β. Knockdown of this receptor inhibits myogenic differentiation in C2C12 cells. Downstream of TGF-βR1, Smad4 is down-regulated by miR-483-3p to induce apoptosis in vitro. Two miRNAs up-regulated in obesity and sarcopenia, miR-424-5p and miR-92a-3p, target Smad7, a strong inhibitor of the TGF-β pathway, which in turn inhibits SMAD2/3. Therefore, in sarcopenia and obesity, the TGF-β pathway may be inhibited by miR-483-3p but promoted by miR-424-5p, miR-92a-3p, and the down-regulation of miR-499. It is unclear what effect this may have in relation to the pathogenesis of sarcopenic obesity, but known targets of TGF-β pathway include the muscle atrophy genes, atrogin-1 and MuRF-1.

Fibre-type switching

Ageing is associated with a switch from a fast muscle fibre phenotype to one of a slow muscle fibre type, whereas obesity is associated with a greater proportion of fast, Type II, muscle fibres. Overexpression of miR-499 in vitro is associated with conversion of fast myofibres to slow through targeting of Sox6 and Thrap1. In mice, knockout of miR-499 and miR-208b results in a loss of slow Type I myofibres and an increase in fast Type IIX/d and IIB myofibres. In humans, miR-499 is associated with a slow muscle fibre phenotype and is elevated in patients with Duchenne’s muscular dystrophy and chronic obstructive pulmonary disease. It is interesting that miR-499 is underexpressed in both sarcopenia and obesity in light of the different muscle fibre properties of obesity and sarcopenia. However, it must be noted that this miRNA was reported to be increased in plasma rather than skeletal muscle where levels may be different.

Insulin resistance

Obesity is associated with insulin resistance, which can also impair muscle regeneration. Several miRNAs identified as commonly up-regulated in sarcopenia and obesity affect glucose metabolism and are associated with insulin resistance. MiR-197-3p can regulate glucose metabolism by suppressing PCSK1/3 to inhibit GIP and GLP-1 production, incretin hormones implicated in the pathogenesis of diabetes. Overexpression of miR-424-5p is associated with decreased insulin-induced glycogen synthesis in hepatocytes. In young adults, miR-193b-5p is also negatively correlated with BMI, plasma glucose levels, and insulin response. In contrast, down-regulation of two miRNAs in obesity and sarcopenia may be beneficial for glucose metabolism—miR-199a-5p and miR-499. MiR-199a-5p is up-regulated in diabetes, and in vitro studies have shown that miR-199a-5p targets and represses GLUT4, a glucose transporter isoform that increases glucose transport in response to insulin. MiR-499 targets both PTEN and PTENP1, which porters isoform that increases glucose transport in response to insulin. PTENP1 can act as a ‘sink’ for miR-499 to allow glucose metabolism. It is unclear what effect these miRNAs may have in relation to the pathogenesis sarcopenic obesity.

Adiposity and adipogenesis

Gains in body fat and intramyocellular lipid deposition are characteristic of ageing, obesity, and sarcopenia. MiRNAs differentially expressed in both obesity and sarcopenia...
nia were associated with parameters of adiposity. Body mass index is correlated with miR-1246 and miR-193b-5p in adults. MiR-92a is negatively correlated with brown adipose tissue activity in young adults, and inhibition of miR-92a up-regulates brown adipocyte differentiation in vitro. MiR-499a-5p promotes myogenic rather than adipogenic differentiation in skeletal muscle stem cells. MiR-1224-5p contributes to hepatic lipid accumulation in mice by targeting AMPKα1.

Limitations

The limitations of this study must be considered. Firstly, the heterogeneity and low quality of the studies identified in this review must be acknowledged. In some cases, matches were found between younger or female obese studies and older or predominantly male sarcopenia studies. As such, it is unclear how the interaction of age or sex has impacted our findings. It is known that age affects miRNA profiles, so perhaps older obese adults have differing miRNA profiles than younger obese adults, likewise men and women may exhibit differing profiles within the same condition. Secondly, we only included studies that had significantly different miRNAs, and therefore, we may have missed studies with non-significant miRNAs, which may dispute our findings. However, this approach is commonly accepted. Thirdly, because of the large number of overlapping miRNAs identified, we chose to discuss miRNAs, which were commonly deregulated in the same direction in both conditions. The overlapping miRNAs identified were not externally validated, and therefore, our results should be viewed with caution and in need of further validation. MiRNAs that were reported as being expressed in conflicting directions in obesity may be due to differences between study methodology. Therefore, these miRNAs also warrant consideration in future research. Because of the large number of overlapping miRNAs, we chose to search for functions and targets in the context of obesity and sarcopenia and therefore may have omitted findings from other conditions, which may be relevant to sarcopenic obesity. However, a strength of our approach is that we focused on sarcopenia, obesity, and related conditions or diseases to focus our narrative review. It is possible that frailty and sarcopenia have differing miRNA profiles; however, because of limited studies and a similar clinical manifestation, it was deemed that information available on frailty may be useful in this context. In addition, the majority of miRNAs identified in sarcopenia/frailty were found in exosomes. There is evidence to suggest that some miRNAs appear to be preferentially recruited to exosomes whereas others are retained within the original cell. However, because of a limited number of studies conducted in sarcopenia, we therefore opted to use a more open definition and a less specific outcome measure to avoid missing potentially relevant findings.

Conclusions

The pathogenesis underlying sarcopenic obesity is not fully understood. This is the first study to examine the potential role of miRNAs in the context of sarcopenic obesity and thus offers a novel perspective on this topic. We have provided an overview of the field and identified a panel of miRNAs, which may be implicated in sarcopenic obesity. Given the synergistic effect of sarcopenia and obesity on the risk of adverse health outcomes (falls, hospitalization, worsening disability, and all-cause mortality), understanding the pathogenesis of sarcopenic obesity has the potential to lead to effective screening, monitoring, or treatment strategies. However, this systematic review was exploratory, and further work is now required to validate the findings presented here in older adults with sarcopenic obesity.

Acknowledgements

The authors of this manuscript certify that they comply with the ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle.

Conflict of interest

None declared.

Funding

K.G.-W. is funded by Science Foundation Ireland (SFI) FFP (19/FFP/6709), Irish Research Council (IRC) (IRCLA/2017/101), Health Research Board (HRB) (COV19-2020-060), and Dunhill Medical Trust (R545/0217). A.D. is funded by FIDELIO, an MSCA Innovative Training Network, receiving funding from the European Union’s Horizon 2020 Framework Programme under Grant Agreement No. 860898. This work was supported by a studentship from the Medical Research Council (MRC) and Versus Arthritis as part of the Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA) (MR/RS02182/1). The MRC Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing is a collaboration between the University of Liverpool, the University of Sheffield, and Newcastle University.
Online supplementary material

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Eligible definitions/criteria for conditions studied.

Table S2. Interpretation of Newcastle-Ottawa Quality Assessment Scale for Case Control Studies in the context of this study.

Table S3. Top externally validated circulating (plasma or serum) miRNAs in obesity and sarcopenia.

References

1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48:16–31.

2. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol 2018; 14:513–537.

3. Bhasin S, Travison TG, Manini TM, Patel S, Bhatnagar D, Sinha MK, et al. Sarcopenic obesity: the consortium. J Am Geriatr Soc 2017; 65:1105–1111.

4. Donini LM, Busetto L, Bauer JM, Bischoff SC, Bruyère O, Cederholm T, et al. Sarcope...ria Y, Cederholm T, et al. Sarcope...s. miRBase: from microRNA sequences to genome. Nucleic Acids Res 2019; 47:D1–D162.

5. Kozomara A, Birgaoanu M, Griffiths-Jones S. mirBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47(D1):D155–D162.

6. Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, et al. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 2011; 43:595–603.

7. Huang Z, Xu A. Adipose extracellular vesicles in intercellular and inter-organ crosstalk in metabolic health and diseases. Front Immunol 2021; 12:463.

8. Liu Y, Wang C, Wei M, Yang G, Yuan L. Multifaceted roles of adipose tissue-derived exosomes in physiological and pathological conditions. Front Physiol 2021; 12:669429, https://doi.org/10.3389/fphys.2021.669429.

9. Kita S, Maeda N, Shimomura I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J Clin Invest 2019; 129:4041–4049.

10. Vechetti IJ Jr, Peck BD, Wen Y, Walton RG, Valentino TR, Alimov AP, et al. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J 2021; 35:e21644, https://doi.org/10.1172/JCI129193.

11. de Carvalho DHT, Scholes S, Santos JLF, de Oliveira C, Alexandre TDS. Does abdominal obesity accelerate muscle strength decline in older adults? Evidence from the English Longitudinal Study of Ageing. J Gerontol A Biol Sci Med Sci 2019; 74:1105–1111.

12. Schrager MA, Metter EJ, Simonsick E, Bander BM, Velasquez-Meyer P, et al. Acute weight loss restores mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J 2021; 35:21644, https://doi.org/10.1172/JCI129193.
dysregulated circulating microRNAs in individuals who are obese. *J Clin Endocrinol Metab* **2019;104**:1239–1248.

31. Ipson BR, Fletcher MB, Espinoza SE, Fisher AL. Identifying exosome-derived MicroRNAs as candidate biomarkers of frailty. *J Frailty Aging* **2018;7**:100–103.

32. He N, Zhang YL, Zhang Y, Feng B, Zheng Z, Wang D, et al. Circulating microRNAs in plasma decrease in response to sarcopenia in the elderly. *Front Genet* **2020;11**:167.

33. Connelly M, Paul R, Farre-Garros R, Natanek SA, Bloch S, Lee J, et al. miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting. *J Cachexia Sarcopenia Muscle* **2018;9**:400–416.

34. Chen Z, Bembrin MG, Bembrin DA. Bone and muscle specific circulating microRNAs in postmenopausal women based on osteoporosis and sarcopenia status. *Bone* **2019;120**:271–278.

35. Samjoo I, Safdar A, Hamadeh M, Akhtar M, Raha S, Timmons J, et al. Circulating plasma microRNAs dysregulated in frailty. *Metab* **2019;68**:754, https://doi.org/10.1002/met.3390/genes9070333.

36. Li X, Zhu Y, Zhang H, Ma G, Wu G, Xiang A, et al. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. *Diabetologia* **2013;56**:1971–1979.

37. Yang C, Nan B, Ye H, Yan W, Wang M, Yuan Y. MiR-199a-5p promotes RBL-3A cells from acrylamide-induced cell cycle arrest by targeting FoxO3. *Food Chem Toxicol* **2021;150**:12059, https://doi.org/10.1016/j.fct.2021.12059.

38. Takafulji Y, Tamaki K, Kawao N, Okada K, Muratani M, Kaji H. MicroRNA-196a-5p mediates high glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. *Int J Biochem Cell Biol* **2016;73**:41–52.

39. Seo A, Traurig M, Osowski V, Fleming J, Mullins M, Baier L. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. *Diabetologia* **2013;56**:1971–1979.

40. Yang C, Nan B, Ye H, Yan W, Wang M, Yuan Y. MiR-199a-5p promotes RBL-3A cells from acrylamide-induced cell cycle arrest by targeting FoxO3. *Food Chem Toxicol* **2021;150**:12059, https://doi.org/10.1016/j.fct.2021.12059.

41. Jie R, Zhu P, Zhong J, Zhang Y, Wu H. LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-κB pathway in diabetic nephropathy. *Diabetol Metab Syndr* **2020;12**:1–11.

42. Wu JH, Wang YH, Wang W, Shen W, Sang YZ, Liu L, et al. MiR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. *Int J Biochem Cell Biol* **2016;73**:41–52.

43. Butler AE, Ramachandran V, Cunningham TK, David R, Gooderham NJ, Benurwar M, et al. Increased microRNA levels in women with polycystic ovarian syndrome but without insulin resistance: a pilot prospective study. *Front Endocrinol* **2020;11**:754, https://doi.org/10.3389/fendo.2020.571357.

44. Mohamed MS, Nahery E, Shalaby N, Hussein M, Aal RAE, Mohamed MM. Micro-RNA 18b and inter leukin 17A profiles in relapsing remitting multiple sclerosis. *Mult Scler Relat Disord* **2019;28**:226–229.

45. Jie R, Zhu P, Zhong J, Zhang Y, Wu H. LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-κB pathway in diabetic nephropathy. *Diabetol Metab Syndr* **2020;12**:1–11.

46. Wu JH, Wang YH, Wang W, Shen W, Sang YZ, Liu L, et al. MiR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. *Int J Biochem Cell Biol* **2016;73**:41–52.

47. Yang C, Nan B, Ye H, Yan W, Wang M, Yuan Y. MiR-199a-5p promotes RBL-3A cells from acrylamide-induced cell cycle arrest by targeting FoxO3. *Food Chem Toxicol* **2021;150**:12059, https://doi.org/10.1016/j.fct.2021.12059.

48. Takafulji Y, Tatsuuki K, Kawao N, Okada K, Muratani M, Kaji H. MicroRNA-196a-5p mediates high glucose-induced proliferation in HRECs by targeting FoxO3. *Food Chem Toxicol* **2021;150**:12059, https://doi.org/10.1016/j.fct.2021.12059.

49. Takafuji Y, Tatsumi K, Kawao N, Okada K, Muratani M, Kaji H. MicroRNA-196a-5p mediates high glucose-induced proliferation in HRECs by targeting FoxO3. *Food Chem Toxicol* **2021;150**:12059, https://doi.org/10.1016/j.fct.2021.12059.

50. Vogel J, Niederer D, Engeroff T, Vogt L, Troidl C, Schmitz-Rixen T, et al. Effects on the profile of circulating miRNAs after single bouts of resistance training with and without blood flow restriction—a three-arm, randomized crossover trial. *Int J Mol Sci* **2020;21**:3249, https://doi.org/10.3390/ijms203249.

51. Zhang Y, Huang S, Li P, Chen Q, Li Y, Zhou Y, et al. Pancreatic cancer-derived exosomes suppress the production of GIP and GLP-1 from STC-1 cells in vitro by down-regulating the PCKS1/3. *Cancer Lett* **2018;431**:190–200.

52. Rane S, He M, Sayed D, Yan L,فئر و، د. Abdelatif M. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. *Cell Signal* **2010;22**:1054–1062.

53. Dobrovolsky G, Martone J, Gatto S, Abdellatif A, Fahmy N, Zada S, et al. Comprehensive RNA-sequencing analysis in serum and muscle reveals novel small RNA signatures with biomarker potential for DMD. *Mol Ther Nucleic Acids* **2018;13**:1–15.

54. Mousa NO, Abdelatif A, Fahmy N, Zada S, El-Fawal H, Osman A. Circulating microRNAs in Duchenne muscular dystrophy. *Clin Neuro Neurol Sci* **2020;189**:105634, https://doi.org/10.1016/j.jclineuro.2019.105634.
66. Donaldson A, Natanek SA, Lewis A, Man WD, Hopkinson NS, Polkey MJ, et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax 2013;68:1140–1149.

67. Zhou Q, Shi C, Lv Y, Zhao C, Jiao Z, Wang T. Circulating microRNAs in response to exercise training in healthy adults. Front Genet 2020;11:256, https://doi.org/10.3389/fgene.2020.00256.

68. Margolis LM, McClung HL, Murphy NE, Carrigan CT, Pasiaski SM. Skeletal muscle myomiR are differentially expressed by endurance exercise mode and combined essential amino acid and carbohydrate supplementation. Front Physiol 2017;8:182, https://doi.org/10.3389/fphys.2017.00182.

69. Bagash AL, Park J, Min PK, Isaacs S, Parker BA, Thompson PD, et al. Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J Appl Physiol (1985) 2014;116:522–531.

70. Drummond MJ, Glynn EL, Fry CS, Dhanani S, Volpi E, Rasmussen BB. Essential amino acids increase microRNA-499-208b and -23a and downregulate myostatin and myocyte enhancer factor 2C microRNA expression in human skeletal muscle. J Nutr 2009;139:2279–2284.

71. Gan Z, Rumsey J, Hazen BC, Lai L, Leone TC, Vega RB, et al. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. J Clin Invest 2013;123:2564–2575.

72. van Rooij E, Quait D, Johnson KA, Sutherland LB, Qi X, Richardson JA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009;17:662–673.

73. Xu M, Chen X, Chen D, Yu B, Li M, He J, et al. MicroRNA-499-5p regulates skeletal myofiber specification via NFATc1/MEF2C pathway and Thrap1/MEF2C axis. Life Sci 2010;80:215–223.

74. Wu J, Yue L, Lan X, Wang Y, Fang X, Ma Y, et al. MiR-499 regulates myoblast proliferation and differentiation by targeting transforming growth factor β receptor 1. J Cell Physiol 2019;234:2523–2536.

75. Jiang J, Li P, Feng H, Xu Z, Yu B, Zhu S. MiR-499/PRDM16 axis modulates the adipogenic differentiation of mouse skeletal muscle satellite cells. Hum Cell 2018;31:282–291.

76. Liu J, Jiang X, Zhou D, Lai L, Xiao L, Liu L, et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnin1/AMPK circuit. EMBO Mol Med 2016;8:1212–1228.

77. Wan Q, Xu T, Ding W, Zhang X, Ji X, Yu T, et al. miR-499-5p attenuates mitochondrial fission and cell apoptosis via p21 in doxorubicin cardiotoxicity. Front Genet 2018;9:734, https://doi.org/10.3389/fgen.2018.00734.

78. Wang L, Zhang N, Wang Z, D-M A, Z-Y C, H-P P. Pseudogene PTEFNP1 functions as a competing endogenous RNA (ceRNA) to regulate PTEN expression by sponging miR-499-5p. Biochemistry (Mosc) 2016;81:739–747.

79. Wang L, Zhang N, Pan HP, Wang Z, Cao ZY. MiR-499-5p contributes to hepatic insulin resistance by suppressing PTEN. Cell Physiol Biochem 2015;36:2357–2365.

80. Liguori M, Nuzziello N, Introna A, Consiglio A, Licciulli F, D’Errico E, et al. Dysregulation of MicroRNAs and target genes networks in peripheral blood of patients with sporadic amyotrophic lateral sclerosis. Front Mol Neurosci 2018;11:288, https://doi.org/10.3389/fnmol.2018.00288.

81. Feichtinger X, Muschitz C, Heimel P, Baier A, Fahreltramer-Pammer A, Redl H, et al. Bone-related circulating microRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their association to bone microstructure and histomorphometry. Sci Rep 2018;8:11–11.

82. Kocijan R, Muschitz C, Geiger E, Skalicky S, Baier A, Dornmann R, et al. Circulating microRNA signatures in patients with idiopathic pulmonary fibrosis, usual interstitial pneumonia, and fragility fractures. J Clin Endocrinol Metab 2016;101:4125–4134.

83. Ong J, Faiz A, Timens W, van den Berge M, Terpstra M, Kok K, et al. Marked TGF-β-regulated microRNA expression changes in both COPD and control lung fibroblasts. Sci Rep 2019;9:1–11.

84. Owczarz M, Polosak J, Damaszewska-Szotek A, Kолодziej P, Kuryłowicz A, Puzianowska-Kuznicka M. Age-related epigenetic drift deregulates SIRT6 expression and affects its downstream genes in human peripheral blood mononuclear cells. Epigenetics. 2020;15(12):1336–1347. https://doi.org/10.1080/15592294.2020.1780081.

85. Sharma A, Dieckie S, Zhang WY, Lan F, He C, Mordwinkin NM, et al. The role of SIRT6 protein in aging and short-term endurance training. J Appl Physiol (1985) 2016;120:1169–1178.

86. Nielsen S, Akerstrom T, Rinnov A, Yu Y, Terpstra M, Kok K, et al. Marked TGF-β-regulated microRNA expression changes in both COPD and control lung fibroblasts. Sci Rep 2019;9:1–11.

87. Owczarz M, Polosak J, Damaszewska-Szotek A, Kолодziej P, Kuryłowicz A, Puzianowska-Kuznicka M. Age-related epigenetic drift deregulates SIRT6 expression and affects its downstream genes in human peripheral blood mononuclear cells. Epigenetics. 2020;15(12):1336–1347. https://doi.org/10.1080/15592294.2020.1780081.

88. Zhang H, Yang H, Zhang C, Jing Y, Wang C, Liu C, et al. Investigation of microRNA expression in human serum during the aging process. J Gerontol A Biol Sci Med Sci 2015;70:102–109.

89. Lozano-Bartolomé J, Llaràudó G, Portero-Otin M, Altuna-Coy A, Rojo-Martínez G, Vendrell J, et al. Altered expression of miR-181a-5p and miR-23a-3p is associated with obesity and TNFα-induced insulin resistance. J Clin Endocrinol Metab 2018;103:1447–1458.

90. Camera DM, Ong NJ, Coffey VG, Hawley JA. Selective modulation of microRNA expression with protein ingestion following concurrent resistance and endurance exercise in human skeletal muscle. Front Physiol 2016;7:87, https://doi.org/10.3389/fphys.2016.00087.

91. Russell AP, Lamon S, Boon H, Wada S, Guller I, Brown EL, et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol 2013;591:4637–4653.

92. Russell AP, Wada S, Vergani I, Hock MB, Lamon S, Leger B, et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 2013;49:107–117.

93. Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem 2011;286:38456–38465.

94. Dai Y, Zheng C, Li H. Inhibition of miR-23a-3p preserves osteoblast proliferation and differentiation. J Cell Biochem 2019;122:1251, https://doi.org/10.1002/jcb.29497.

95. Gasparotto AS, Borges DO, Sassi MGM, Milani A, Rech DL, Terres M, et al. The effects of regular exercise on circulating cardiovascular-related microRNAs. Sci Rep 2019;9:7527.

96. Keller P, Volldard NB, Gustafsson T, Gallagher U, Sundberg CJ, Rankinen T, et al. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol (1985) 2011;110:46–59.

97. Zhang T, Brinkley TE, Liu K, Feng X, Marsh AP, Kritchevsky S, et al. Circulating MiRNAs as biomarkers of gait speed responses to aerobic exercise training in obese older adults. Aging (Albany NY) 2017;9:900–913, https://doi.org/10.18632/aging.101199.

98. Zhang J, Jiang H, Li X, Chen X, Huang Y. MiR-92a regulates brown adipocytes differentiation, mitochondrial oxidative respiration, and heat generation by targeting SMOAT1. J Cell Biochem 2020;121(8-9):3825–3836. https://doi.org/10.1002/jcb.29539.

99. Chen Y, Buely JJ, Hansen MJ, Siegel F, Pan R, Naumann J, et al. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun 2016;7:11420, https://doi.org/10.1038/ncomms11420.

100. Zhang H, Yang H, Zhang C, Jing Y, Wang C, Liu C, et al. Investigation of microRNA expression in human serum during the aging process. J Gerontol A Biol Sci Med Sci 2015;70:102–109.
et al. Differential expression of miRNAs related to angiogenesis and adipogenesis in subcutaneous fat of obese and nonobese women. *Mol Biol Rep* 2019;46:965–973.

103. van de Worp W, Schols A, Dingemans AC, Op den Kamp CMH, Degens J, Kelders M, et al. Identification of microRNAs in skeletal muscle associated with lung cancer cachexia. *J Cachexia Sarcopenia Muscle* 2020;11:452–463.

104. Min KH, Yang WM, Lee W. Saturated fatty acids-induced miR-424-5p aggravates insulin resistance via targeting insulin receptor in hepatocytes. *Biochem Biophys Res Commun* 2018;503:1587–1593.

105. Connolly M, Garfield BE, Crosby A, Morrell NW, Wort SJ, Kemp PR. miR-322-5p targets IGF-1 and is suppressed in the heart of rats with pulmonary hypertension. *FEBS Open Bio* 2018;8:339–348.

106. Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalichio A, Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. *J Endocrinol* 2010;205:201–210.

107. Bidlingmaier M, Friedrich N, Emeny RT, Spranger J, Wolthers OD, Roswall J, et al. Reference intervals for insulin-like growth factor-1 (IGF-I) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. *J Clin Endocrinol Metab* 2014;99:1712–1721.

108. Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, et al. Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway. *Biogerontology* 2013;14:303–323.

109. Burks TN, Cohn RD. Role of TGF-β signaling in inherited and acquired myopathies. *Skelet Muscle* 2011;1:19. https://doi.org/10.1186/2044-5040-1-19.

110. Anderson BA, McAlinden A. miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. *J Orthop Res* 2017;35:2369–2377.

111. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. *The Lancet* 2019;393:2636–2646.

112. Wade AJ, Marbut MM, Round JM. Muscle fibre type and aetiology of obesity. *Lancet* 1990;335:805–808.

113. Ortiz-Dosal A, Rodil-Garcia P, Salazar-Olivo LA. Circulating microRNAs in human obesity: a systematic review. *Biomarkers* 2019;24:499–509.

114. Yanai K, Kaneko S, Ishii H, Aomatsu A, Ito K, Hirai K, et al. MicroRNAs in sarcopenia: a systematic review. *Front Med (Lausanne)* 2020;7:180. https://doi.org/10.3389/fmed.2020.00180.

115. Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. *BMC Genomics* 2012;13:357. https://doi.org/10.1186/1471-2164-13-357.

116. von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2019. *J Cachexia Sarcopenia Muscle* 2019;10:1143–1145.