Abstract. We study the rationality of gamma factors associated to certain Hasse zeta functions. We show many explicit examples of rational gamma factors coming from products of $\text{GL}(n)$.

1. Introduction

Let $X = \text{GL}(n_1) \times \cdots \times \text{GL}(n_r)$ for $n_1, \ldots, n_r \geq 1$ and q be a prime power. Then the congruence zeta function $\zeta_{X/\mathbb{F}_q}(s)$ associated with X over \mathbb{F}_q is defined by

$$
\zeta_{X/\mathbb{F}_q}(s) = \exp \left(\sum_{m=1}^{\infty} \frac{|X(\mathbb{F}_q^m)|}{m} q^{-ms} \right).
$$

The Hasse zeta function $\zeta_{X/\mathbb{Z}}(s)$ associated with X over \mathbb{Z} is defined by

$$
\zeta_{X/\mathbb{Z}}(s) = \prod_{p\text{-primes}} \zeta_{X/\mathbb{F}_p}(s).
$$

In this case it is not difficult to show that $\zeta_{X/\mathbb{Z}}(s)$ has a functional equation of the type

$$
\Gamma_{X/\mathbb{Z}}(s) \zeta_{X/\mathbb{Z}}(s) = (\Gamma_{X/\mathbb{Z}}(d-s) \zeta_{X/\mathbb{Z}}(d-s))(-1)^{n_1+\cdots+n_r},
$$

where $d = \sum_{j=1}^{r} n_j (3n_j - 1)/2 + 1$ and $\Gamma_{X/\mathbb{Z}}(s)$ is expressed in terms of a product/quotient of the gamma function. We call $\Gamma_{X/\mathbb{Z}}(s)$ the gamma factor for $\zeta_{X/\mathbb{Z}}(s)$.

In this paper, we study the rationality of the gamma factor $\Gamma_{X/\mathbb{Z}}(s)$. We prove the following result.

Main Theorem. $\Gamma_{X/\mathbb{Z}}(s)$ is a non-rational function if and only if $n_1 = \cdots = n_r = 1$.

This result will be shown in Section 4 using Theorem 1 for absolute zeta functions proved in Section 3. Then we study its analogues over algebraic integer rings in Section 5.

We refer to Manin [7] and Connes and Consani [2] for gamma factors of Hasse zeta functions.

2010 Mathematics Subject Classification: Primary 14G10.

Keywords: rationality; gamma factor; Hasse zeta function.

© 2020 Faculty of Mathematics, Kyushu University
2. Absolute zeta functions

In this section we study expressions of gamma factors of some Hasse zeta functions as absolute zeta functions. Absolute zeta functions were studied by Soulé [8] and Connes and Consani [1].

First, we recall absolute zeta functions following Kurokawa and Tanaka [4, 5]. Let

\[f(x) \in \frac{1}{(1 - x^{-\omega_1}) \cdots (1 - x^{-\omega_r})} \mathbb{Z}[x] \]

for \(\omega_1, \ldots, \omega_r > 0 \). Assume the absolute automorphy

\[f\left(\frac{1}{x}\right) = C x^{-D} f(x) \quad (2.1) \]

with \(C = \pm 1 \) and \(D \in \mathbb{R} \). We construct the absolute zeta function \(\zeta_f(s) \) via

\[\zeta_f(s) = \exp\left(\frac{\partial}{\partial w} Z_f(w, s) \bigg|_{w=0}\right) \]

with

\[Z_f(w, s) = \frac{1}{\Gamma(w)} \int_1^\infty f(x) x^{-s-1} (\log x)^{w-1} dx. \]

We see that \(\zeta_f(s) \) is a meromorphic function as in Kurokawa and Tanaka [4, 5] (cf. Kurokawa and Ochiai [3]). We call \(\zeta_f(s) \) the absolute zeta function associated to the absolute automorphic form \(f \). Moreover, for \(f(x) \in \mathbb{Z}[x] \), the Hasse zeta function \(\zeta_{f/\mathbb{Z}}(s) \) is defined by

\[\zeta_{f/\mathbb{Z}}(s) = \prod_{p: \text{primes}} \exp\left(\sum_{m=1}^\infty \frac{f(p^m)}{m} p^{-ms}\right). \]

Let \(f(x) \in \mathbb{Z}[x] \). Assume the absolute automorphy (2.1) for \(x > 0 \) with \(C = \pm 1 \) and \(D \in \mathbb{Z} \). Expand

\[f(x) = \sum_k a(k) x^k \quad (2.2) \]

and put

\[\hat{\zeta}_{f/\mathbb{Z}}(s) = \zeta_{f/\mathbb{Z}}(s) \Gamma_f(s) \]

with

\[\Gamma_f(s) = \prod_k \Gamma_{\mathbb{R}}(s - k)^{a(k)} \quad (2.3) \]

for

\[\Gamma_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right). \]

Then by the absolute automorphy (2.1) \(\hat{\zeta}_{f/\mathbb{Z}}(s) \) satisfies the functional equation (see Theorem 1(3) for detail). So we call \(\Gamma_f(s) \) the gamma factor for the Hasse zeta function \(\zeta_{f/\mathbb{Z}}(s) \). Concerning gamma factors of Hasse zeta functions we prove the following results.
Theorem 1. We have the following.

1. \(\zeta_{f/Z}(s) = \prod_k \zeta_Z(s - k)^{a(k)} \), \hspace{1cm} (2.4)

where \(\zeta_Z(s) \) is the Riemann zeta function.

2. \(\hat{\zeta}_{f/Z}(s) = \prod_k \hat{\zeta}_Z(s - k)^{a(k)} \),

where \(\hat{\zeta}_Z(s) \) is the completed Riemann zeta function defined as \(\hat{\zeta}_Z(s) = \zeta_Z(s) \Gamma_R(s) \).

3. \(\hat{\zeta}_{f/Z}(s) \) satisfies the functional equation

\[\hat{\zeta}_{f/Z}(D + 1 - s) = \hat{\zeta}_{f/Z}(s). \]

4. Let

\(f_\infty(x) = \frac{f(x)}{1 - x^{-2}}. \)

Then

\(f_\infty\left(\frac{1}{x}\right) = -Cx^{-(D+2)} f_\infty(x) \)

and

\[\Gamma_f(s) = \zeta_{f_\infty}(s)(4\pi)^{f(1)/2}(2\pi)^{-f(1)/2} (2\pi)^{-f(1)/2}. \]

5. \(\Gamma_f(s) \) is a rational function (in \(s \)) if and only if \(f(\pm 1) = 0. \)

3. Proof of Theorem 1

1. Let

\[\zeta_{f/P}(s) = \exp\left(\sum_{m=1}^\infty \frac{f(p^m)}{m} p^{-ms}\right). \]

By (2.2),

\[\zeta_{f/P}(s) = \exp\left(\sum_{m=1}^\infty \frac{1}{m} \left(\sum_k a(k) p^{mk}\right) p^{-ms}\right) = \prod_k \left(1 - p^{k-s}\right)^{-a(k)}. \]

Multiplying these over the prime numbers \(p \), we obtain (1).

2. By (2.3) and (2.4) we obtain

\[\hat{\zeta}_{f/Z}(s) = \prod_k \zeta_Z(s - k)^{a(k)} \Gamma_R(s - k)^{a(k)} = \prod_k \hat{\zeta}_Z(s - k)^{a(k)}. \]
(3) From the absolute automorphy (2.1) we see that
\[\sum_k a(k)x^{-k} = C \sum_k a(k)x^{-(D-k)} \]
\[= C \sum_k a(D-k)x^{-k}. \]
Hence using \(C = \pm 1 \) we get \(a(D-k) = Ca(k) \). Now, the expression (3.1) gives
\[\hat{\zeta}_{f/\mathbb{Z}}(D + 1 - s)^C = \prod_k \hat{\zeta}_Z(D - k + 1 - s)^{Ca(k)} \]
\[= \prod_k \hat{\zeta}_Z((D - k) + 1 - s)^{(D-k)} \]
\[= \prod_k \hat{\zeta}_Z(k + 1 - s)^{a(k)}. \]
Then, from the functional equation \(\hat{\zeta}_Z(1 - s) = \hat{\zeta}_Z(s) \), we see \(\hat{\zeta}_Z(k + 1 - s) = \hat{\zeta}_Z(s - k) \).
Thus we obtain \(\hat{\zeta}_{f/\mathbb{Z}}(D + 1 - s)^C = \hat{\zeta}_{f/\mathbb{Z}}(s) \) as claimed.

(4) The absolute automorphy of \(f_\infty(x) \) is easily seen:
\[f_\infty\left(\frac{1}{x}\right) = \frac{f(1/x)}{1 - x^2} \]
\[= -x^{-2} \frac{Cx^{-D}f(x)}{1 - x^{-2}} \]
\[= -Cx^{-(D+2)}f_\infty(x). \]
Next, we calculate \(\Gamma_f(s) \) as
\[\Gamma_f(s) = \prod_k \Gamma_Z(s - k)^{a(k)} \]
\[= \prod_k \left(\pi^{-(s-k)/2} \Gamma\left(\frac{s-k}{2}\right) \right)^{a(k)} \]
\[= \pi^{-(f(1)/2)s} \pi^{f'(1)/2} \prod_k \Gamma\left(\frac{s-k}{2}\right)^{a(k)}. \]
where we have used the following facts:
\[f(1) = \sum_k a(k), \quad f'(1) = \sum_k ka(k). \]
Finally, we calculate \(\zeta_{f_\infty}(s) \). Since
\[f_\infty(x) = \sum_k a(k) \frac{x^k}{1 - x^{-2}}, \]
we have
\[Z_{f\infty}(w, s) = \frac{1}{\Gamma(w)} \int_{1}^{\infty} \left(\sum_k a(k) \frac{x^k}{1 - x^{-2}} \right) x^{-s-1} (\log x)^{w-1} dx \]
\[= \sum_k a(k) \zeta_1(w, s - k, (2)). \]
Here
\[
\zeta_1(s, x, (\omega)) = \sum_{n=0}^{\infty} (n\omega + x)^{-s} = \omega^{-s} \sum_{n=0}^{\infty} \left(n + \frac{x}{\omega}\right)^{-s} = \omega^{-s} \zeta(s - 1, x/\omega)
\]
and \(\zeta(s, x)\) is the Hurwitz zeta function. By the formula of Lerch [6] we have
\[
\frac{\partial}{\partial s} \zeta_1(s, x, (\omega)) \bigg|_{s=0} = -\log(\omega) \left(\frac{1}{2} - \frac{x}{\omega}\right) + \log \frac{\Gamma(x/\omega)}{\sqrt{2\pi}}.
\]
Hence we get
\[
\zeta_{f_\infty}(s) = \exp \left(\frac{\partial}{\partial w} Z_{f_\infty}(w, s) \bigg|_{w=0} \right) = \prod_k \left(\frac{\Gamma((s-k)/2) 2^{(s-k)/2-1/2}}{\sqrt{2\pi}} \right)^{a(k)} = (4\pi)^{-f(1)/2} 2^{f(1)/2} 2^{-f'(1)/2} \prod_k \Gamma \left(\frac{s-k}{2} \right)^{a(k)}.
\]
Comparing equations (3.2) and (3.3), we obtain (4).

(5) First, suppose \(f(\pm 1) = 0\). Then, we know that \(f_\infty(x) \in \mathbb{Z}[x]\). Hence \(\zeta_{f_\infty}(s)\) is a rational function. Thus
\[
\Gamma_f(s) = \zeta_{f_\infty}(s) (2\pi)^{f'(1)/2}
\]
is a rational function.

Next, suppose that \(\Gamma_f(s)\) is a rational function. Then, it is obvious that
\[
\lim_{s \to +\infty} \frac{\log \Gamma_f(s)}{s \log s} = 0.
\]
On the other hand, applying the Stirling formula
\[
\lim_{s \to +\infty} \frac{\log \Gamma(s)}{s \log s} = 1
\]
to (3.2), we find
\[
\lim_{s \to +\infty} \frac{\log \Gamma_f(s)}{s \log s} = \frac{1}{2} \sum_k a(k) = \frac{1}{2} f(1).
\]
Hence, we get \(f(1) = 0\). Thus
\[
\zeta_{f_\infty}(s) = \Gamma_f(s) (2\pi)^{-f'(1)/2}
\]
is a rational function. Hence, by the rationality criterion (see Kurokawa and Tanaka [4, Theorem 1]) we see that \(f_\infty(x) \in \mathbb{Z}[x]\). Hence, \(f(-1) = 0\) also. This completes the proof of Theorem 1.
4. Proof of Main Theorem

For prime powers \(q \) put
\[
f(q) = |X(\mathbb{F}_q)|,
\]
where \(X = \text{GL}(n_1) \times \cdots \times \text{GL}(n_r) \); and
\[
f(q) = f_1(q) \cdots f_r(q)
\]
with
\[
f_j(q) = |\text{GL}(n_j, \mathbb{F}_q)|.
\]

It is well known that each \(f_j(x) \in \mathbb{Z}[x] \), so \(f(x) \in \mathbb{Z}[x] \). Actually,
\[
|\text{GL}(n, \mathbb{F}_q)| = q^{n(n-1)/2}(q-1)(q^2-1)\cdots(q^n-1) \in \mathbb{Z}[q].
\]

Now, applying Theorem 1 to this \(f(x) \) with \(C = (-1)^{n_1+\cdots+n_r} \) and \(D = \sum_{j=1}^r n_j(3n_j-1)/2 \), we know that \(\Gamma_{X/\mathbb{Z}}(s) = \Gamma_f(s) \) and that
\[
\Gamma_{X/\mathbb{Z}}(s) \text{ is a rational function } \iff f(\pm 1) = 0.
\]

Looking at the vanishing of \(f(\pm 1) = f_1(\pm 1) \cdots f_r(\pm 1) \) we see that
\[
\Gamma_{X/\mathbb{Z}}(s) \text{ is a rational function } \iff \text{some } n_j \geq 2.
\]

Thus,
\[
\Gamma_{X/\mathbb{Z}}(s) \text{ is a non-rational function } \iff n_1 = \cdots = n_r = 1.
\]

This completes the proof of the Main Theorem.

5. Gamma factors of Hasse zeta functions for \(\text{GL}(n_1) \times \cdots \times \text{GL}(n_r) \) over algebraic integer rings

In this section we explain briefly an extension of the Main Theorem and Theorem 1 to the case of algebraic number fields briefly. Let \(f(x) \in \mathbb{Z}[x] \), \(K \) be an algebraic number field and \(\mathcal{O}_K \) be its integer ring. Then the Hasse zeta function \(\zeta_{f/\mathcal{O}_K}(s) \) associated with \(f \) over \(\mathcal{O}_K \) is defined by
\[
\zeta_{f/\mathcal{O}_K}(s) = \prod_{\mathcal{P}} \zeta_{f/(\mathcal{O}_K/\mathcal{P})}(s),
\]
where \(\mathcal{P} \) runs over the maximal ideals of \(\mathcal{O}_K \) and
\[
\zeta_{f/(\mathcal{O}_K/\mathcal{P})}(s) = \exp\left(\sum_{m=1}^{\infty} \frac{f(N(\mathcal{P})^m)}{m} N(\mathcal{P})^{-ms}\right)
\]
with \(N(\mathcal{P}) = |\mathcal{O}_K/\mathcal{P}| \). In the same manner as in the proof of Theorem 1 (1) we see that
\[
\zeta_{f/\mathcal{O}_K}(s) = \prod_{k} \zeta_K(s-k)^{a(k)},
\]
where \(f(x) = \sum_k a(k)x^k \) and \(\zeta_K(s) \) is the Dedekind zeta function of \(K \). Below we always assume the absolute automorphy (2.1) for \(f \). We put
\[
\Gamma_{f/O_K}(s) = \prod_k (|\Delta_K|^{(s-k)/2}\Gamma_{\mathbb{R}}(s-k)\Gamma_{\mathbb{C}}(s-k)^2)^{a(k)},
\]
where \(\Delta_K \) is the discriminant of \(K \), \(r_1 \) (respectively \(r_2 \)) is the number of real (respectively complex) places for \(K \) and \(\Gamma_{\mathbb{R}}(s) = 2(2\pi)^{-s}\Gamma(s) \). Then the absolute automorphy and the functional equation \(\widehat{\zeta_K}(s) = \zeta_K(1-s) \), where \(\widehat{\zeta_K}(s) = |\Delta_K|^{s/2}\Gamma_{\mathbb{R}}(s)\Gamma_{\mathbb{C}}(s)^2\zeta_K(s) \), yield
\[
\widehat{\zeta_{f/O_K}}(D+1-s)^{C} = \widehat{\zeta_{f/O_K}}(s),
\]
where \(\widehat{\zeta_{f/O_K}}(s) = \Gamma_{f/O_K}(s)\zeta_{f/O_K}(s) \). We call \(\Gamma_{f/O_K}(s) \) the gamma factor for \(\zeta_{f/O_K}(s) \).

Taking the above observation into account, we can show the following claim, which can be regarded as an extension of Theorem 1.

Theorem 2. \(\Gamma_{f/O_K}(s) \) is a rational function (in \(s \)) if and only if
\[
\begin{align*}
f(1) = 0 & \quad \text{if } K \text{ is a totally imaginary field}, \\
f(\pm 1) = 0 & \quad \text{if } K \text{ is not a totally imaginary field}.
\end{align*}
\]

Sketch of proof. By the Stirling formula we have
\[
\lim_{s \to +\infty} \frac{\log(\prod_k \Gamma_{\mathbb{R}}(s-k)^{a(k)})}{s \log s} = f(1)/2,
\]
\[
\lim_{s \to +\infty} \frac{\log(\prod_k \Gamma_{\mathbb{C}}(s-k)^{a(k)})}{s \log s} = f(1).
\]
This gives
\[
\lim_{s \to +\infty} \frac{\log \Gamma_{f/O_K}(s)}{s \log s} = \left(\frac{r_1}{2} + r_2 \right) f(1).
\]
(5.1)

To express \(\Gamma_{f/O_K}(s) \) in terms of absolute zeta functions, we introduce \(f_{\text{real}}(x) \) and \(f_{\text{cpx}}(x) \) by
\[
f_{\text{real}}(x) = \frac{f(x)}{1 - x^{-2}}, \quad f_{\text{cpx}}(x) = \frac{f(x)}{1 - x^{-1}}.
\]
After a routine calculation using Lerch’s formula, we have
\[
\zeta_{f_{\text{real}}}(s) = 2^{(s/2-1)f(1)-f'(1)/2}\pi^{-f(1)/2} \prod_k \Gamma_{\mathbb{R}}(s-k)^{a(k)},
\]
\[
\zeta_{f_{\text{cpx}}}(s) = (2\pi)^{-f(1)/2} \prod_k \Gamma_{\mathbb{C}}(s-k)^{a(k)}.
\]
This gives
\[
\prod_k \Gamma_{\mathbb{R}}(s-k)^{a(k)} = 2^{f(1)/2}(2\pi)^{-f(1)/2}\zeta_{f_{\text{real}}}(s),
\]
\[
\prod_k \Gamma_{\mathbb{C}}(s-k)^{a(k)} = 2^{f(1)}(2\pi)^{-f(1)/2 + f'(1)/2}\zeta_{f_{\text{cpx}}}(s).
\]
We consider the case \(r_1 = 0 \). Firstly, we assume \(f(1) = 0 \). Then \(\Gamma_{f/\mathcal{O}_K}(s) \) is written as
\[
\Gamma_{f/\mathcal{O}_K}(s) = |\Delta_K|^{-f'(1)/2} (2\pi)^{r_2/2} f'(1) \xi_{f_{\text{cpx}}}(s)^{r_2}.
\]
Since \(f_{\text{cpx}}(x) \) is a polynomial with integer coefficients, \(\xi_{f_{\text{cpx}}}(s) \) is a rational function. This implies \(\Gamma_{f/\mathcal{O}_K}(s) \) is a rational function. Secondly we assume that \(\Gamma_{f/\mathcal{O}_K}(s) \) is a rational function. Then (5.1) says \(f(1) = 0 \). These complete the proof of the first claim.

We consider the case \(r_1 \geq 1 \). Firstly we assume \(f(1) = f(-1) = 0 \). Then
\[
\Gamma_{f/\mathcal{O}_K}(s) = |\Delta_K|^{-f'(1)/2} (2\pi)^{(r_1/2+r_1)} f'(1) \xi_{f_{\text{real}}}(s)^{r_1} \xi_{f_{\text{cpx}}}(s)^{r_2}.
\]
(5.2)
Since both \(f_{\text{real}}(x) \) and \(f_{\text{cpx}}(x) \) are polynomials with integer coefficients, we see that \(\Gamma_{f/\mathcal{O}_K}(s) \) is a rational function. Secondly we assume that \(\Gamma_{f/\mathcal{O}_K}(s) \) is a rational function. Then (5.1) implies \(f(1) = 0 \). This gives (5.2) and that \(\xi_{f_{\text{cpx}}}(s) \) is a rational function. In consequence \(\xi_{f_{\text{real}}}(s)^{r_1} \) is a rational function. This implies that \(f_{\text{real}}(x) \) is a polynomial, which gives \(f(-1) = 0 \).

Let \(X = \text{GL}(n_1) \times \cdots \times \text{GL}(n_r) \). The Hasse zeta function associated with \(X \) over \(\mathcal{O}_K \) is defined by
\[
\xi_{X/\mathcal{O}_K}(s) = \prod_{\mathfrak{p}} \xi_{X/(\mathcal{O}_K/\mathfrak{p})}(s).
\]
We specialize \(f \) in Theorem 2 in the same manner as in Section 4. Then \(\xi_{X/\mathcal{O}_K}(s) \) has a functional equation of the type
\[
\Gamma_{X/\mathcal{O}_K}(s) \xi_{X/\mathcal{O}_K}(s) = (\Gamma_{X/\mathcal{O}_K}(d-s) \xi_{X/\mathcal{O}_K}(d-s))(-1)^{n_1+\cdots+n_r},
\]
where \(d = \sum_{j=1}^{r} n_j (3n_j-1)/2 + 1 \) and we obtain the following.

Corollary. \(\Gamma_{X/\mathcal{O}_K}(s) \) is a rational function if and only if
\[
\begin{cases}
\text{any} & \text{if } K \text{ is a totally imaginary field,} \\
(n_1, \ldots, n_r) \neq (1, \ldots, 1) & \text{if } K \text{ is not a totally imaginary field.}
\end{cases}
\]

Acknowledgements. I would like to thank Professors Nobushige Kurokawa and Hiroyuki Ochiai for their advice on the subject. I would also like to thank the referee for refinements of this paper.

References

[1] A. Connes and C. Consani. Schemes over \(\mathbb{F}_1 \) and zeta functions. Compos. Math. 146 (2010), 1383–1415.
[2] A. Connes and C. Consani. Cyclic homology, Serre’s local factors and \(\lambda \)-operations. J. K-Theory 14 (2014), 1–45.
[3] N. Kurokawa and H. Ochiai. Dualities for absolute zeta functions and multiple gamma functions. Proc. Japan Acad. Ser. A 89 (2013), 75–79.
[4] N. Kurokawa and H. Tanaka. Absolute zeta functions and the automorphy. Kodai Math. J. 40 (2017), 584–614.
[5] N. Kurokawa and H. Tanaka. Absolute zeta functions and absolute automorphic forms. J. Geom. Phys. 126 (2018), 168–180 (NCG 2017: Connes’ 70th birthday celebration).
[6] M. Lerch. Další studie v oboru Malmsténovských řad. Rozpravy České Akad. 3 (1894), 1–61.
[7] Yu. I. Manin. Lectures on zeta functions and motives (according to Deninger and Kurokawa). Asterisque 228 (1995), 121–163.

[8] C. Soulé. Les variétés sur le corps à un élément. Mosc. Math. J. 4 (2004), 217–244.

Hidekazu Tanaka
Department of Mathematics
Shibaura Institute of Technology
Fukasaku
Saitama 337-8570
Japan
(E-mail: htanaka@sic.shibaura-it.ac.jp)