Mountain cloud forest and grown-shade coffee plantations: A comparison of tree biodiversity in central Veracruz, Mexico

Alfredo González-Zamora¹, Manuel Esperón-Rodríguez¹², Víctor L. Barradas¹*

¹ Laboratorio de Ecofisiología Tropical. Instituto de Ecología. Universidad Nacional Autónoma de México. 04510. México, D.F. México
² Department of Biological Sciences. Faculty of Sciences and Engineering. Macquarie University. NSW 2109. Australia

Abstract

Aim of study: The objective of this work is to compare tree diversity and richness among one grown-shade coffee plantation (CAE) and two sites of montane cloud forests, one preserved (MCF1) and other perturbed (MCF2). We also develop an analysis of the importance of coffee plantations as a refuge of tree species, holding a potential role for conservation.

Area of study: Our study area is the coffee region of Coatepec-Xico, in the state of Veracruz, Mexico.

Material and Methods: We compiled a list of all tree species in each site to determine tree diversity and floristic similarity (dis-similarity). We used different similarity indices and a cluster analysis to show relations among sites.

Main results: 2721 individuals from 154 species were registered in the montane cloud forests as a whole. In the grown-shade coffee plantation we registered 2947 individuals from 64 species. The most similar sites were the perturbed montane cloud forest and the grown-shade coffee plantation and the least similar were the preserved montane cloud forest and the grown-shade coffee plantation. The high biodiversity found in all sites and the differences in tree composition between the two montane cloud forests supports evidence of the ecosystems richness in the region.

Research highlights: Diversity differences among sites determine that the grown-shade coffee plantation is not substitute for montane cloud forest. CAE’s are developed under similar environmental conditions than the MCF; therefore, coexistence and recombination (replacement) of species make them particularly complementary. CAE’s in Veracruz have a potential role as refuge for biodiversity.

Keywords: Agroforestry systems; floristic similarity; diversity; richness; biodiversity refuge.

Citation: González-Zamora, A., Esperón-Rodríguez, M., Barradas, V. L. (2016). Mountain cloud forest and grown-shade coffee plantations: A comparison of tree biodiversity in central Veracruz, Mexico. Forest Systems, Volume 25, Issue 1, e055. http://dx.doi.org/10.5424/fs/2016251-07538.

Received: 11 Feb 2015. Accepted: 09 Feb 2016

Copyright © 2016 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Funding: This research was supported by CONACYT (Mexican Council of Science and Technology) and SEMARNAT (Secretariat of Environment and Natural Resources) research grant SEMARNAT-2004-C01-332.

Conflicts of Interest: The authors have declared that no competing interests exist.

Correspondence should be addressed to Víctor L. Barradas: vlbarradas@ecologia.unam.mx

Introduction

In tropical regions, extensive conversion of forests and agricultural intensification are typically identified as the most prominent drivers of land-use change and biodiversity loss (Sala et al., 2000; Wright 2005). The mitigation of tropical deforestation and biodiversity protection must address livelihoods and needs of local communities (Bhagwat et al., 2008). In this sense, agroforestry is considered as a promising approach to reduce deforestation and improve rural livelihoods in the tropics (Current et al., 1995; Ashley et al., 2006). Agroforestry is a land-use management system where trees or shrubs develop around or among crops or pastureland, providing economic, social and environmental benefits (McNeely, 1995; Bhagwat et al., 2008).

Agroforestry systems are often very small in size and surrounded by open landscapes and resemble forest fragments. Species distinctiveness (presence of rare or endemic species) is frequently low, even though their species richness (total number of species) might be equal to, or higher than that of neighboring forests (O’Dea & Whittaker, 2007). Many agroforestry systems are important for protection of species and habitats outside protected areas, and agroforestry systems can be considered as refuges for biodiversity (Bhagwat et al., 2008; Manson et al., 2008; Nonato de Souza et al., 2012). These systems conserve biodiversity in remnant
habitats and provide potential movement for species among these remnants (Bhagwat et al., 2008). These systems also provide environmental services such as carbon stock and sequestration (Albrecht & Kandji, 2003; Dávalos Sotelo et al., 2008; Thangata & Hildebrand, 2012), improvement of environmental quality (Tornquist et al., 1999; Geissert & Ibáñez, 2008), water harvesting, reducing water runoff, and increased recharge of aquifers, reduction of floods and droughts, among other services (Mejía et al., 2004).

Almost three quarters of the planet’s surface and 67.3% of Mexico’s surface are covered by ecosystems managed or modified by humans (Pimentel et al., 1992; McNeely, 1995; Palacio-Prieto et al., 2000; SAGARPA, 2007). Because of the dominance of these systems, their management changes can affect biodiversity conservation and ecosystem services (Tilman et al., 2002; MEA, 2005). For the montane cloud forest (MCF), despite its high strategic value for sustainable development, the key role it plays in the hydrological cycle, and being considered as reservoir of endemic biodiversity (Toledo-Aceves et al., 2011), in Mexico it is considered the most threatened terrestrial ecosystem because of land-use changes and the effects of global climate change. Currently, this ecosystem has been assigned as high priority for conservation and promotion of sustainable development (Aldrich et al., 1997; CONABIO, 2010; Toledo-Aceves et al., 2011; Calderon Aguilera et al., 2012).

Montane cloud forest (MCF) in Veracruz occupies ca. 1243.65 km² (1.73% of the total area; Ortega & Castillo, 1996; Ellis & Martinez, 2010; Castillo-Campos et al., 2011). In the central region of the state the MCF area was reduced gradually because of the expansion of the coffee cultivation. Since the late XIX century to 1960’s, MCF’s were replaced with coffee agro-ecosystems (Ruelas-Monjardín et al., 2014), and the forest fragmentation was accelerated because of the demographic pressure and territorial expansion (Williams-Linera et al., 2002), where the greatest impact on vegetation (transformation in species composition) was caused mostly by deforestation, fires, plantations establishment, and land-use conversion to pasture (Ellis & Martinez, 2010). As a result the development of several types of grown-shade coffee such as shade monoculture, simple polyculture, diverse or traditional polyculture, and rustic plantations in which the forest canopy is used as shade for coffee have taken place.

Currently, Veracruz is the second largest producer of coffee in Mexico with the 24.7% of the national coffee production, occupying an area of 1520 km², equivalent to 13.92% of total of vegetation present in the state (Olguín et al., 2011). Coffee agro-ecosystems (CAE) are developed at the lowest elevation of the MCF under similar environmental and climate conditions; therefore, coexistence and recombination (replacement) of species make them particularly complementary (Castillo-Campos et al., 2011). When coffee plantations are under shade, the system “CAE–MCF” maintains forest cover, although with less species diversity compared to the undisturbed MCF. However, because of its structure, species diversity, and environmental services provided, CAE’s are of great importance for conservation (Ellis & Martinez, 2010; Olguín et al., 2011; Toledo-Aceves et al., 2011).

In this work, we compared tree diversity and richness among one grown-shade coffee plantations (CAE) and two sites of montane cloud forests (MCF), one preserved (MCF1) and other perturbed (MCF2), in the coffee region of Coatepec-Xico, Veracruz, Mexico. We also analyzed the importance of coffee plantations as a refuge of tree species, holding a potential role for conservation.

Material and methods

Study area and site selection

The coffee region of Coatepec-Xico is located in the central highlands of the state of Veracruz, Mexico (19° 29’ 25’’N, 97° 02’ 30’’W). In this region, the MCF is the dominant vegetation type. The area is located in the eastern slope of the Cofre de Perote, with altitudes from 1000 to 1350 m asl. Climate is temperate humid with an average annual temperature of 18 °C and annual precipitation between 1000 and 1500 mm (CONABIO, 2010; González-Espinosa et al., 2012). Dominated soil types are yellowish soils derived from volcanic rocks (Gómez-Pompa, 1978). The coffee region is located near the city of Coatepec in central Veracruz. Coatepec is the largest coffee producer of the state, with 24.59% of the total cultivated area in Veracruz (Landeros-Sánchez et al., 2011; Olguín et al., 2011).

We selected three sites. The first site (MCF1) corresponded to a preserved forest located at La Corta-dura (19°29’ 29”N, 97° 01’ 58”W). The second site (MCF2, 19°26’ 29”N, 97° 00’ 02”W) was a perturbed forest, finding vegetation disturbance by anthropogenic causes with presence of Citrus spp. and some species of primary succession such as Senecio arbore-scens and Myrsine coriacea. The third site, a coffee agro-ecosystem (CAE) was located near to La Orduña (19°29’ 17”N, 97° 55’ 32”W; Figure 1).

Data collection

For each MCFs site we sampled an area of 1500 m² with two perpendicular and two parallel transects. For the CAE site we also sampled an area of 1500 m² divided in ten traditional coffee areas dedicated only to
Comparing of tree biodiversity in central Veracruz

the number of tree species per unit of sampled area. Species diversity of each site was determined using the indices of dominance and equity of Margalef (DMg) and Simpson (λ), equity of Menhinick (DMn), and Shannon-Wiener; this in order to obtain the diversity parameters of species and their quantification and representativeness (Mostacedo & Fredericksen, 2000; Moreno, 2001; Villarreal et al., 2004). To compare the number of species shared among sites, we estimated the floristic similarity using the similarity/dissimilarity indices and the coefficients of Jaccard (IJ), Sørensen (IS), Morisita-Horn (IM-H), and the similarity coefficient of Sørensen for quantitative data (Iscuant). All data were entered with the established formulas of diversity indices to a database where calculations were performed to determine the diversity in Excel version 14.5.2.

For a visual representation of the potential relationships among sites and to determine whether the degree of environmental disturbance of each site allowed a specific grouping we plotted a cluster dendrogram. In this case we used as measure the distance of Manhattan and the Average method. All statistical analyses were conducted using the statistical environment software R (RCoreTeam, 2014).

Results

The most representative/abundant species were: i) MCF1: _Parathesis melanosticta_ and _Hedyosmum mexicanum_, ii) MCF2: _Beilschmiedia mexicana_, _Clethra macrophylla_ and _Carpinus tropicalis_, and iii) CAE:
Citrus spp. and *Inga vera* (Table 1). For MCF1 the 14 most abundant species accounted only 15.26%, whereas for MCF2 and CAE the 14 most abundant species accounted 70 and 77.5% respectively (Table 1). For MCF2 we found several species that evidenced the perturbation degree: *Citrus* spp., *Helicocarpus donnell-smithii*, *Lippia myriocephala*, *Myrsine coriácea*, *Solanum schlechtendalianum* and *Trema micrantha*.

2721 individuals from 154 tree species were registered in MCF1 and MCF2; 116 species in MCF1 and 38 in MCF2. In CAE we registered 64 tree species with 2947 individuals (Table 1). The highest and lowest species diversity corresponded to MCF1 and MCF2 respectively; this was reflected in the Margalef (DMg) and the Menhinick (DMn) indices (Table 2). The Shannon-Wiener (H) index also indicated that MCF1 had the greatest diversity of species, and the Simpson dominance (λ) index showed that CAE was the least diverse site, whereas MCF1 was the most diverse (Table 2).

Regarding floristic similarity, we found that MCF1 and MCF2 shared 15 species, with *Alchornea latifolia*, *Psychotria* sp. and *C. macrophylla* as the most represented (higher number of individuals; Table 3). The greatest similarity was found between sites MCF2 and CAE, sharing 16 species, of which the most frequent species were *C. tropicalis* and *Citrus* spp. (Table 3). This similarity between MCF2 and CAE was also observed in the cluster analysis (Figure 2). The sites sharing less number of species (12) were MCF1 and CAE (Table 3). The Jaccard (IJ) and the Sørensen (IS) similarity coefficients, and the Morisita-Horn (IM-H) and the Sørensen (Iscuant) indices also confirmed that sites with less similarity were MCF1 and CAE, and those having the highest similarity were MCF2 and CAE. Values obtained to calculate these indices were higher for both qualitative and quantitative data (Table 4).

Discussion

We confirmed similarity/dissimilarity among sites using different qualitative and quantitative methods. Measuring species’ relative abundance and similarity among sites allowed us to identify those species whose low representation make them more sensitive or vulnerable to environmental perturbations: *B. mexicana*, *Miconia glaberrima* and *I. punctata*. It is important to note that the most similar sites were MCF2 and CAE, but only with 16 species, i.e. the 20% of species present in MCF2 and CAE as a whole. Low similarity among sites might be due to the low number of common species between pairs of comparisons, finding a high percentage of species exclusive of each site, which contributes to biodiversity conservation at regional scale. These findings highlight the CAE importance for conservation and the high tree biodiversity in the region, especially considering that the sites are not far apart geographically (Figure 1).

Another important finding is the high dissimilarity between MCF1 and MCF2, where the low number of species in MCF2 shows the shocking biodiversity loss in perturbed areas. Although ecosystems such as MCF2, are subject to influences determined by other species (e.g. predators, competitors, invaders), and temporal and spatial variations of environmental conditions, such as nutrient availability, temperature and precipitation (Chapin *et al.*, 2000; Bellemare *et al.*, 2002), human activities and perturbations have a great impact on them. Human perturbations can decrease local diversity or richness, as it was seen in MCF2; however, for CAE this is not necessarily true. Human perturbations can widely change floristic composition of ecosystems, but agroforestry can help to mitigate
Comparing of tree biodiversity in central Veracruz

Table 1. Total number of individuals and percentage of the most abundant species of the three study sites from the coffee region of Coatepec-Xico, Veracruz, Mexico: i) undisturbed montane cloud forest (MCF1); ii) perturbed montane cloud forest (MCF2), and iii) coffee agro-ecosystem (CAE)

Species	Number of individuals	Percentage (%)
MCF1		
Zanthoxylum melanostictum Schltdl. & Cham	10	0.72
Phyllonoma laticepsis (Turcz.) Engl.	10	0.72
Arachnothryx bourgaei (Standl.) Borhid	10	0.72
Oreopanax xalapensis (Kunth) Decne. & Planch	12	0.86
Clethra macrophylla DC.	12	0.86
Turpinia occidentalis (Swartz) G. Don.	13	0.94
Calyptranthes schlechtendaliana O. Berg	13	0.94
Miconia glaberrima (Schltdl.) Naudin	16	1.15
Alchornea latifolia Sw.	17	1.22
Piper xanthostachyum C. DC.	17	1.22
Psychotria spp.	17	1.22
Miconia chrysoneura Triana	18	1.30
Hedysurus mexicanum Cordem.	22	1.59
Parathesis melanosticta (Schltdl.) Hemsl.	25	1.80
Number of individuals with the highest frequency	212	15.27
Total number of individuals (N)	1388	-
MCF2		
Brunellia mexicana Standl.	38	2.85
Quercus xalapensis Bonpl.	38	2.85
Senecio arborescens Steetz	39	2.93
Quercus leiophylla A. DC.	44	3.30
Myrsine coriacea (Sw.) R. Br. ex Roem. & Schult.	46	3.45
Liquidambar styraciflua L.	47	3.53
Styrax glabrescens Benth.	47	3.53
Citrus spp.	51	3.83
Hampea integerrima Schltdl.	51	3.83
Quercus insignis M. Martens & Galeotti	60	4.50
Turpinia insignis (Kunth) Tul.	79	5.93
Beilschmiedia mexicana (Mez) Kosterm.	90	6.75
Clethra macrophylla DC.	90	6.75
Carpinus tropicalis Walter	214	16.05
Number of individuals with the highest frequency	934	70.07
Total number of individuals (N)	1338	-
CAE		
Inga punctata Willd.	42	1.43
Quercus sapotifolia Liebm.	42	1.43
Alchornea latifolia Sw.	46	1.56
Acrocarpus fraxinifolius Wright & Arn.	47	1.59
Erythrina poeppigiana (Walp.) Skeels.	47	1.59
Eriochrysum japonica Lindley	78	2.65
Enterolobium cyclocarpum (Jacq.) Griseb.	80	2.71
Heliocarpus donnell-smithii Rose	82	2.78
Mimosa scabrella Benth.	144	4.89
Trema micrantha (L.) Blume	145	4.92
I. jinicuil Schltr.	162	5.50
I. latibracteata Harms	163	5.53
Citrus spp.	225	7.63
I. vera Willd.	983	33.36
Number of individuals with the highest frequency	2286	77.57
Total number of individuals (N)	2947	-
the impacts of land-use change and preserve local biodiversity.

We found that vegetation in CAE included a wide variability of species, and richness increased probably for a species recombination with the MCF surrounding CAE (Villavicencio-Enriquez & Valdez-Hernández, 2003). We observed evidence of this recombination finding species similarities between CAE and the perturbed MFC2. High diversity might be due to a species shift with the MFC nearby (Williams-Linera, 2002). Also, the highest floristic similarity between MFC2 and CAE indicates that CAE is also a perturbed ecosystem. In CAE, the lower diversity in comparison with MFC1 is probably caused by the dominance of some species, partially Citrus spp. and I. vera.

The floristic composition in CAE is the result of the system’s function directed to coffee cultivation. We found in CAE that 33.36% of the individuals were I. vera, which are promoted by farmers. Here, it is clear that diversity is influenced by local management, and not only by topography, precipitation or temperature. Trees provide numerous benefits such as building materials, food and firewood, generate family income, promote ecological conditions for wildlife habitats and ecological balance, and also protect against soil erosion (Salam et al., 2000). It has been shown that farmers in agroforestry systems select and eliminate certain tree species according to their preferences and beliefs (Salam et al., 2000; Russell & Franzel, 2004), and also to morphological characteristics (Schroth, 1995); therefore, species composition is confounded by ecological and biophysical variables, and management as well. Also, farmers are paid to modify their farming practice to provide environmental benefits (Salam et al., 2000; Kleijn & Sutherland, 2003). This management provides economic profit and income for local farmers, but it also contributes to improve social levels through the production of important goods, including export crops, fruits, raw material and firewood. Agroforestry systems success lies in the ecological productive capacity over the long term and also in economic benefits (Michon & de Foresta, 1995).

Maintaining biological diversity is essential for productive agriculture, and ecologically sustainable agriculture is in turn essential for maintaining biological diversity (Pimentel et al., 1992). This maintenance by CAE is reflected in the high number of different species compared to MFC2 and MFC1, which shows CAE’s conservation potential, in spite of the presence of exotic (e.g. Citrus spp.) and secondary tree species (Table 1) that would be indicators of disturbance. Also, the high proportion of species registered in CAE can support evidence of the services that can provide this system, although we did not evaluate environmental services. Preservation of this agro-ecosystem might represent a possible solution to minimize local biodiversity loss and improve conservation in the central region of Veracruz, especially because the coffee cultivation is more beneficial to the environment than pasture and monocrops such as sugarcane (Esperón-Rodríguez et al., 2016), because coffee conserves tree cover and allows connectivity between open landscapes and forest fragments.

CAE’s in Veracruz have a potential role as reservoirs of biodiversity maintaining the forest cover; their conservation as refuges must be considered a priority especially in areas where deforestation and land-use change are increasing. Conservation plans should be addressed to maintain local connection and species recombination between CAE and preserved forests. Knowing the local biodiversity can help local farmers to make better management decision, introducing agroforestry systems with consideration of the markets and products, and also the potential productivity gains and food crops. It must be noticed that although similar, CAE’s are not substitute for natural forests; therefore, surrounding forest play an important role in conservation, especially for species that cannot thrive in human modified landscapes. Local management must prioritize the biodiversity preservation and conservation.

MCF1	MCF2	CAE	
Total number of individuals (N)	1388	1333	2947
Species number (S)	252	64	110
Margalef index DMg	34.69	8.756	13.64
Menhinick index DMn	6.764	1.753	2.026
Simpson index λ	0.0075	0.0532	0.1326
Diversity based on Gini–Simpson index (1–λ)	0.9925	0.9468	0.8674
Shannon-Wiener index	5.1521	3.4613	3.0364

Shannon-Wiener index $H' = -\sum P_i \log P_i$; Simpson index $\lambda = 1 / \sum P_i^2$; Menhinick index $DMn = 1 + \sum P_i (1 - P_i)$; Margalef index $DMg = \log S / \overline{N}$; Total number of individuals (N) N; Species number (S) S; Shannon-Wiener index H'; Simpson index λ; diversity based on Gini–Simpson index (1–λ); Shannon-Wiener index H'.
Comparing of tree biodiversity in central Veracruz

...despite the size of the sampled area (1500 m²). When we compared our results with previous studies from Veracruz, Mexico and South America (Table 5) we found a high biodiversity in Veracruz. Although differences may be due to several factors, precipitation is a factor that caught our attention because rainfall is a highly varying...

Table 3. Tree species diversity comparison among the study sites from the coffee region of Coatepec-Xico, Veracruz, Mexico: i) undisturbed montane cloud forest (MCF1); ii) perturbed montane cloud forest (MCF2), and iii) coffee agro-ecosystem (CAE)

Species	Number of individuals	Percentage (%)		
	MCF1	MCF2	MCF1	MCF2
Alchornea latifolia	17	2	0.1848	0.0054
Cinnamomum effusum	9	13	0.0978	0.0352
Clethra macrophylla	12	90	0.1304	0.2439
Cojoba arborea	1	4	0.0109	0.0108
Liquidambar styaciflua	1	47	0.0109	0.1274
Meliosma alba	2	16	0.0217	0.0434
Myrsine coriacea	2	46	0.0217	0.1247
Ocotea psychotrioides	6	2	0.0652	0.0054
Oreopanax xalapensis	12	4	0.1304	0.0108
Psychotria spp.	17	3	0.1848	0.0081
Quercus xalapensis	3	38	0.0326	0.1029
Styrax glabrescens	4	47	0.0435	0.1274
Symlocos cocinea	1	4	0.0109	0.0108
Trophis mexicana	4	2	0.0435	0.0054
Total number of individuals	92	369	-	-

Species	Number of individuals	Percentage (%)		
	MCF2	CAE	MCF2	CAE
Alchornea latifolia	2	46	0.0047	0.0765
Carpinus tropicalis	214	1	0.50352	0.0017
Cinnamomum effusum	13	2	0.0306	0.0033
Citrus spp.	51	225	0.12	0.3744
Cojoba arborea	4	5	0.0094	0.0083
Erythrina americana	5	13	0.0118	0.0216
Heliocarpus donnell-smithii	5	82	0.0118	0.1364
Juglas pyriforums	3	2	0.0071	0.0033
Leucaena leucocephala	2	4	0.0047	0.0067
Lippia myrocephala	11	1	0.0259	0.0017
Myrsine coriacea	46	8	0.1082	0.0133
Quercus sartorii	21	37	0.0494	0.0616
Solanum schlechtendalianum	4	2	0.0094	0.0033
Tapihiria mexicana	18	14	0.0424	0.0233
Trema micrantha	3	145	0.0071	0.2413
Unidentified	23	14	0.0541	0.0233
Total number of individuals	425	601	-	-

Species	Number of individuals	Percentage (%)		
	MCF1	CAE	MCF	CAE
Alchornea latifolia	17	46	0.3269	0.1411
Cinnamomum effusum	9	2	0.1731	0.0061
Cojoba arborea	1	5	0.0192	0.0153
Dendropanax arboreus	2	9	0.0385	0.0276
Magnolia schiedeana	3	1	0.0577	0.0031
Myrsine coriacea	2	8	0.0385	0.0245
Oreopanax capitatus	1	2	0.0192	0.0061
Oreopanax liebmanni	6	13	0.1154	0.0399
Persea americana	4	7	0.0769	0.0215
Picramnia antidesma	1	7	0.0192	0.0215
Piper nudum	5	1	0.0962	0.0031
Total number of individuals	52	326	-	-

But, what causes this biodiversity in Veracruz? We registered high biodiversity in our study sites despite the size of the sampled area (1500 m²). When we compared our results with previous studies from Veracruz, Mexico and South America (Table 5) we found a high biodiversity in Veracruz. Although differences may be due to several factors, precipitation is a factor that caught our attention because rainfall is a highly varying...
Table 4. Floristic similarity (dissimilarity) components. Indices of similarity/dissimilarity with qualitative and quantitative data of the three study sites from the coffee region of Coatepec-Xico, Veracruz, Mexico: i) undisturbed montane cloud forest (MCF1); ii) perturbed montane cloud forest (MCF2), and iii) coffee agro-ecosystem (CAE).

	MCF1 & MCF2	MCF1 & CAE	MCF2 & CAE
Number of species shared between sites	15	12	16

Indices of similarity/dissimilarity with qualitative data

	MCF1 & MCF2	MCF1 & CAE	MCF2 & CAE
Jaccard similarity coefficient IJ	0.0498	0.0343	0.1013
IJ %	4.9834	3.429	10.1266
Sørensen similarity coefficient of IS	0.0949	0.0663	0.1839
IS %	9.4937	6.629	18.3908

Indices of similarity/dissimilarity with quantitative data

	MCF1 & MCF2	MCF1 & CAE	MCF2 & CAE
Morisita-Horn index IM-H	0.1796	0.0912	0.1897
IM-H %	17.959	9.115	18.971
Sørensen index (coefficiente of similarity-quantitative)	0.0360	0.0179	0.0640
Isquant %	3.602	1.799	6.402

Table 5. Biodiversity studies in montane cloud forests and coffee agro-ecosystems comparing mean annual precipitation (Pp), and species and individual numbers. In bold is indicated data from this work.

Location	Pp (mm)	Species	Individuals	Reference
Montane cloud forest				
Teocelo, Veracruz	1500 - 2500	277	600	Luna et al. (1988)
Cofre de Perote, Cortadura, Veracruz	2500	258	Not reported	García et al. (2008)
El Cielo, Tamaulipas	2000	51	2322	Rivas et al. (2005)
Coatepec and Huatusco, Veracruz	1900 - 2000	62	775	López-Gómez et al. (2008)
Central region of Veracruz	1500-2000	83	1029	Williams-Linera (2007)
Central Cordillera of the Colombian Andes	2435	56	Not reported	Cavelier & Tobler (1998)
Western Andean, Peru	1750-2000	88	Not reported	Ledo et al. (2012)
Andean Slope of Bolivia	3500	73	Not reported	Kessler (1999)
Coatepec-Xico, Veracruz	1000-1500	154	2721	-

Coffee agro-ecosystem

Location	Pp (mm)	Species	Individuals	Reference
Central region of Veracruz	1500-2000	107	2863	López-Gómez et al. (2008)
Coatepec and Huatusco, Veracruz	1900 - 2000	150	Not reported	Traviés-Bello & Ros (2011)
Coatepec and Huatusco, Veracruz	1900 - 2000	107	2833	Williams-Linera & López-Gómez (2008)
Jitotol, Chiapas	1200 - 3000	50	Not reported	Peeters et al. (2003)
Coatepec-Xico, Veracruz	1000-1500	64	2947	-

be because of a relatively low precipitation compared to other regions.

Regardless what is causing this high biodiversity, our results indicate that the central region of Veracruz is an important refuge for species, where CAE’s parameter in Veracruz (Barradas et al., 2010), and previous studies have shown the importance of water for the species development in the MCF of Veracruz (Esperón-Rodriguez & Barradas, 2015). We hypothesize that the high biodiversity found in our study might be because of a relatively low precipitation compared to other regions.
plays an important role in the conservation of biodiversity.

Acknowledgments

We thank to the anonymous reviewers for their critical observations and thoughtful contributions to improve this work.

References

Albrecht A, Kandji ST, 2003. Carbon sequestration in tropical agroforestry systems. Agr Ecosyst Environ 99: 15-27. http://dx.doi.org/10.1016/S0167-8809(03)00138-5.

Aldrich M, Billington NC, Edwards M, Laidlaw R, 1997. Tropical Montane Cloud Forests: An Urgent Priority for Conservation. World Conservation Monitoring Centre, Cambridge, United Kingdom. 407 pp.

Ashley R, Russell D, Swallow B, 2006. The policy terrain in protected area landscapes: challenges for agroforestry in integrated landscape conservation. Biodivers Conserv 15: 663–689. http://dx.doi.org/10.1007/s10531-005-2100-x.

Barradas VL, Cervantes-Pérez J, Ramos-Palacios R, Puchet-Albrecht A, Kandji ST, 2003. Carbon sequestration in tropical montane forests of Mexico: Almacenamiento de carbono. In: Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación (Manson RH, Hernández-Ortíz V, Gallina S, Mehltreter K, eds.). Instituto de Ecología A.C. (INECOL), Instituto Nacional de Ecología (INE-SEMARNAT), México, pp: 223-234.

Ellis E, Martínez M, 2010. Vegetación y Uso de Suelo de Veracruz. In: Atlas del Patrimonio Natural, Histórico y Cultural del Estado de Veracruz (Tomo 1, Patrimonio Natural). Comisión para la Conmemoración del Bicentenario de la Independencia Nacional y del Centenario de la Revolución Mexicana. Gobierno del Estado de Veracruz, Xalapa, Veracruz, pp: 203-226.

Espíritu-Rodríguez M, Barradas VL, 2015. Comparing environmental vulnerability in the montane cloud forest of eastern Mexico: A vulnerability index. Ecol Indic 52: 300-310. http://dx.doi.org/10.1016/j.ecolind.2014.12.019.

Espíritu-Rodríguez M, Bonifacio-Martínez M, Barradas VL, 2016. Socio-economical vulnerability to climate change in the central mountainous region of eastern Mexico. Ambio 45:146-160. http://dx.doi.org/10.1007/s13280-015-0690-4.

García JG, Castillo G, Mehltreter K, Martínez ML, Vázquez G, 2008. Composición florística de un bosque mesófilo a ladera de la Revolución Mexicana. Gobierno del Estado de Veracruz, Xalapa, Veracruz, pp: 203-226.

González-Espinosa M, Bonifacio-Martínez M, Barradas VL, 2012. An assessment of natural and human disturbance effects on Mexican ecosystems: current trends and research gaps. Biodivers Conserv 21: 589-617.

Gómez-Pompa A, 1978. Ecología de la vegetación del estado de Veracruz. La Revolución Mexicana. Gobierno del Estado de Veracruz, Xalapa, Veracruz, pp: 203-226.

Kessler M, 1999. Plant species richness and endemism during natural landslide succession in a perhumid montane forest in the Bolivian Andes. Ectotropical 5: 123-136.
Kleijn D, Sutherland JW, 2003. How effective are European agro-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40: 947-969. http://dx.doi.org/10.1111/j.1365-2664.2003.00868.x.

Landeros-Sánchez C, Moreno-Secena JC, Escamilla-Prado E, Ruiz-Bello R, 2011. La biodiversidad en Veracruz: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, SECCIÓN VII, Sistemas productivos y alternativas económicas sustentables. Diversificación de cultivos. Universidad Veracruzana, Instituto de Ecología, A.C. México, pp: 463-475.

Ledo A, Condés S, Alberdi I, 2012. Forest biodiversity assessment in Peruvian Andean montane cloud forest. J Mount Sci 9: 372-384. http://dx.doi.org/10.1007/s11629-009-2172-2.

López-Gómez AM, Williams-Linker G, Manson RH, 2008. Tree species diversity and vegetation structure in shade coffee farms in Veracruz, Mexico. Agr Ecosyst Environ 124: 160-172. http://dx.doi.org/10.1016/j.agee.2007.09.008.

Luna I, Almeida L, Villers L, Lorenzo L, 1988. Reconocimiento florístico y consideraciones fitogeográficas del bosque mesófilo de montaña de Teocelo, Veracruz. Bol Soc Bot Méx 48: 35-63.

Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds.), 2008. Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología A.C. (INECOL), Instituto Nacional de Ecología (INE-SEMARNAIT), México. 330 pp.

Mcneely JA, 1995. How traditional agro-ecosystems can contribute to conserving biodiversity. In: Conserving biodiversity outside protected areas. The role of traditional agro-ecosystems (Halladay P, Gilmour DA, eds.). IUCN, Gland, Switzerland, and Cambridge, UK in collaboration with AMA Andalucía and Centro de Investigación F. González-Bernáldez, pp: 20-40.

MEA, 2005. Ecosystems and Human well-being. Millennium Ecosystem Assessment, Island Press, New York.

Mejía NR, Meave JA, Ruiz CA, 2004. Análisis estructural de un bosque mesófilo de montaña en el extremo oriental de la sierra madre del sur (Oaxaca), México. Bol Soc Bot Méx 74: 13-29.

Michon G, De Foresta H, 1995 The Indonesian agro-forest model. Conserving biodiversity outside protected areas. In: The role of traditional agro-ecosystems (Halliday P, Gilmour DA, eds.). IUCN, Gland, Switzerland, and Cambridge, UK in collaboration with AMA Andalucía and Centro de Investigación F. González-Bernáldez, pp: 90-104.

Moreno CE, 2001. Métodos para medir la biodiversidad. M&T—Manuales y Tesis SEA, vol. 1. Zaragoza, Spain.

Mostacedo B, Fredericksen TS, 2000. Manual de Métodos Básicos de Maestro y Análisis en Ecología Vegetal. Santa Cruz, Bolivia. BOLFOR. 87 pp.

Nonato De Souza H, De Goede RGM, Brussaard L, Cardoso IM, Duarte EMG, F RBA, Gomes LC, Pulleman MM, 2012. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agr Ecosys Environ 146: 179-196. http://dx.doi.org/10.1016/j.agee.2011.11.007.

O’Dea N, Whittaker RJ, 2007. How resilient are Andean montane forest bird communities to habitat degradation? Biodivers Conserv 16: 1131–1159. http://dx.doi.org/10.1007/s10531-006-9095-9.

Olguín J, Sánchez—Galván G, Vidal G, 2011. La biodiversidad en Veracruz: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, SECCIÓN V, La biodiversidad del estado y algunas de sus amenazas. La producción de café como amenaza a la biodiversidad. Universidad Veracruzana, Instituto de Ecología, A.C. México, pp: 391-425.

Ortega F, Castillo, G, 1996. El bosque mesófilo de montaña y sus implicaciones forestales. Ciencias 43: 32-39.

Palacio-Prieto JL, Bocco G, Velásquez A, Mas JF, Takaki-Takaki F, Victoria A, Luna González L, Gómez-Rodríguez G, López-García J, Palma M, et al., 2000. Technical Note: Current situation of forest resources in Mexico: results of the 2000 National Forest Inventory. Inv Geogr Bol Inst Geogr 43: 183-203.

Peeters L, Soto-Pinto L, Perales H, Montoya G, Ishiki M, 2003. Coffee production, timber, and redwood in traditional and Inga-shaded plantations in Southern Mexico. Agr Ecosys Environ 95: 481-493. http://dx.doi.org/10.1016/S0167-8809(02)00204-9.

Pimentel D, Stachow U, Takacs DW, Buabaker HW, Dumas AR, Meaney JJ, O’Neil J, Onsi DE, Corzilius DB, 1992. Conserving Biological Diversity in Agricultural Forestry Systems—Most Biological Diversity Exists in Human-Managed Ecosystems. Bioscience 42(5): 354-362. http://dx.doi.org/10.2307/1311782.

R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rivas CJ, Aguirre C, Jiménez P, Corral R, 2005. Un análisis del efecto del aprovechamiento forestal sobre la diversidad estructural en el bosque mesófilo de montaña «El Cielo», Tamaulipas, México. Sist Rec Forest 14(2): 217-228.

Ruelas Monjardín LC, Nava Tablada ME, Cervantes J, Baradas VL, 2014. Importancia ambiental de los agroecosistemas cafetaleros bajo sombra en la zona central montañosa del estado de Veracruz, México. Madera y Bosque 20: 27-40.

Russell D, Franzel S, 2004. Trees of prosperity: Agroforestry, markets and the African smallholder. Agroforest Syst 61: 345-355. http://dx.doi.org/10.1023/B:AGFO.0000029009.53337.33.

SAGARPA, 2007. Sistema Integral de Información Agroalimentaria y Pesquera (SIAP). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación de México. (http://www.siap.sagarpa.gob.mx/).

Sala OE, Chapin FS III, Armesto J, Berlow R, Bloomfield J, Dirzo R, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker W, Wall DH, 2000. Biodiversity—global biodiversity scenarios for the year 2100. Science 287: 1770-1774. http://dx.doi.org/10.1126/science.287.5459.1770.
Comparing tree biodiversity in central Veracruz

Salam MA, Noguchi T, Koike M, 2000. Understanding why farmers plant trees in the homestead agroforestry in Bangladesh. Agroforest Syst 50: 77-93. http://dx.doi.org/10.1023/A:1006403101782.

Schroth G, 1995. Tree root characteristics as criteria for species selection and systems design in agroforestry. Agroforest Syst 30: 125-143. http://dx.doi.org/10.1007/BF00708917.

Villarreal H, Álvarez M, Córdoba S, Escobar F, Fagua G, Gast F, Mendoza H, Ospina M, Umaña AM, 2004. Manual de métodos para el desarrollo de inventarios de biodiversidad. Programa de inventarios de Biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, Colombia. pp: 185-227.

Villavicencio-Enríquez L, Valdez-Hernández JI, 2003. Análisis de la estructura arbórea del sistema agroforestal rustico de café en San Miguel, Veracruz, México. Agrociencia 37(4): 413-423.

Williams-Linera G, 2002. Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodivers Conserv 11: 1825-1843. http://dx.doi.org/10.1023/A:1020346519085.

Williams-Linera G, Manson RH, Isunza-Vera E, 2002. La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz. México. Madera y Bosques 8:73-89.

Williams-Linera G, 2007. El bosque de niebla del centro de Veracruz: ecología, historia y destino en tiempos de fragmentación y cambio climático. CONABIO, Instituto de Ecología, A.C. Mexico. 197 pp.

Williams-Linera G, López-Gómez A, 2008. Estructura y diversidad de la vegetación leñosa. In: Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación (Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K, eds.). Instituto de Ecología A.C. and Instituto Nacional de Ecología (INE-SEMARNAT), México, pp. 55-63.

Wright SJ, 2005. Tropical forests in a changing environment. Trends Ecol Evol 20:5 53-60.