A SPHERE HARD TO CUT

PANOS PAPASOGLU, ERIC SWENSON

Abstract. We show that for any \(\epsilon, M > 0 \) there is a Riemannian 3-sphere \(S \) of volume 1, such that any (not necessarily connected) surface separating \(S \) in two regions of volume greater than \(\epsilon \), has area greater than \(M \).

1. Introduction

Glynn-Adey and Zhu show in [4] that for any \(\epsilon > 0, M > 0 \) there is a Riemannian 3-ball \(B \) of volume 1 such that any smooth disk separating \(B \) in two regions of volume greater than \(\epsilon \) has area greater than \(M \). We prove the same result here both for the 3-ball and the 3-sphere for separations by arbitrary surfaces and not just disks. Glynn-Adey and Zhu assume further that the ball \(B \) has bounded diameter and boundary surface area but these are properties that are easy to arrange in general modifying slightly the ball \(B \).

These results contrast with the situation in dimension 2. Liokumovich, Nabutovsky and Rotman showed in [7] that if \(D \) is a Riemannian 2-disc there is a simple arc of length bounded by \(2\sqrt{3} \sqrt{\text{area}(D)} + \delta \) which cuts the disc into two regions of area greater than \(\text{area}(D)/4 - \delta \) where \(\delta \) is any positive real. A similar result was shown in [9] for the sphere. The results in [7] were prompted by a question of Gromov [5] and Frankel-Katz [2] concerning bounding the length of contracting homotopies of a 2-disk.

Balacheff-Sabourau [1] showed that there is some \(c > 0 \) such that any Riemannian surface \(M \) of genus \(g \) can be separated in two domains of equal area by a 1-cycle of length bounded by \(c\sqrt{g + 1}\sqrt{\text{area}(M)} \). Liokumovich [6] on the other hand showed that given \(C > 0 \) and a closed surface \(M \) there is a Riemannian metric of diameter 1 on \(M \) such that any 1-cycle splitting it into two regions of equal area has length greater than \(C \).
2. A sphere hard to cut

Definition. Let B be a Riemannian 3-ball. If $F \subset B$ is a smoothly embedded orientable surface with boundary we say that F *separates* B if $F \cap \partial B = \partial F$.

If F is a surface separating a Riemannian 3-ball B we say that F *cuts an ϵ-piece* of B if $B - F$ can be written as a union of two disjoint open sets U, V both of which have volume greater than ϵ.

We define similarly what it means for a closed surface to cut an ϵ-piece of a Riemannian 3-sphere.

Our construction relies on the existence of expander graphs. We recall now the definition of expanders. Let $\Gamma = (V, E)$ be a graph. For $S, T \subseteq V$ denote the set of all edges between S and T by $E(S, T) = \{(u, v) : u \in S, v \in T, (u, v) \in E\}$.

Definition. The *edge boundary* of a set $S \subseteq V$, denoted ∂S is defined as $\partial S = E(S, S^c)$.

A k-regular graph $\Gamma = (V, E)$ is called a *c-expander graph* if for all $S \subset V$ with $|S| \leq |V|/2$, $|\partial S| \geq c|S|$.

Pinsker [8] has shown that there is a $c > 0$ such that for any n large enough there is a 3-regular expander graph with n^3 vertices.

Consider a 3-regular c-expander graph Γ_n with n^3 vertices. We give a way to ‘thicken’ this graph, i.e. replace it by a Riemannian handlebody. For each vertex we pick a Euclidean 3-ball B_v of radius $1/n$. Recall that the volume of this ball is $4\pi/3 \cdot (1/n)^3$. Let S_v be the boundary sphere of B_v. If l is an equator of of S_v we pick 3 equidistant points e_1, e_2, e_3 on l and we consider 3 disjoint (spherical) discs on S_v with centers e_1, e_2, e_3 and radii equal to $1/n$. Clearly these discs are disjoint. Now to each edge E_i in Γ leaving v we associate the disc with center e_i. If an edge e joins the vertices v, w of Γ we identify the discs of the balls B_v, B_w corresponding to this edge.

In this way we obtain a handlebody Σ_n. Note that $\partial \Sigma_n \cap B_v$ is a pair of pants. We will refer to B_v later on as a filled in pair of pants and we will call the discs with centers e_1, e_2, e_3 on S_v the holes of this pair of pants. We note that the area of S_v is $4\pi (1/n)^2$ and the area of of S_v minus the 3 spherical discs is

$$4\pi (1/n)^2 - 6\pi (1/n)^2 (1 - \sin 0.5) = \pi (1/n)^2 (6 \sin 0.5 - 2).$$

By changing the metric of Σ_n slightly we get a smooth handlebody, denoted still by Σ_n, of volume $4\pi/3$. Finally by gluing appropriately thickened discs to this handlebody we obtain a ball B_n. We may assume that this gluing operation changes the volume of B_n and the area of
its boundary by a negligible amount. We may pick a simple curve \(\gamma \) on \(\partial B_n \) such that every point of \(\partial B_n \) is at distance at most \(1/n \) from \(\gamma \). By gluing a thickened disk of diameter \(1/n \) and negligible volume to \(\partial B_n \) along \(\gamma \) we obtain a new ball of arbitrarily small diameter. We still denote this 3-ball by \(B_n \). In fact it follows also directly by the properties of expander graphs that the diameter of \(B_n \) is bounded.

We double \(B_n \) along its boundary to obtain a 3-sphere. By changing the metric slightly along the doubling locus we may ensure that we obtain a smooth sphere \(S_n \) of volume \(8\pi/3 \).

Theorem 2.1. Given \(\epsilon, M > 0 \) there is some \(n \) such that any surface that cuts an \(\epsilon \)-piece of \(B_n \) (or \(S_n \)) has area greater than \(M \).

Proof. We may (and will) assume that \(\epsilon < 1/100 \). Let \(F \) be a (not necessarily connected) surface cutting an \(\epsilon \)-piece of \(B_n \). So \(B_n - F = U_1 \cup U_2 \) with \(U_1, U_2 \) open of volume greater than \(\epsilon \). We denote by \(Q_1, Q_2 \) the closures of \(U_1, U_2 \) respectively. Without loss of generality we assume that \(\text{vol}(U_2) \geq \text{vol}(U_1) \).

We note that \(B_n \) contains a handlebody \(\Sigma_n \) which is a union of filled in pairs of pants \(B_v \)-one for each vertex of the graph \(\Gamma_n \). Clearly \(S_v \cap \partial \Sigma_n \) is a pair of pants with 3 holes.

Let \(B_v \) be one such (filled in) pair of pants. Its volume is \(4\pi/3n^3 \). By the solution of the isoperimetric problem for a ball \([10]\) if a surface cuts an \(\epsilon 4\pi/3n^3 \) piece of \(B_v \) then its area is greater than \((4\pi\epsilon/3n^3)^{2/3} \geq \epsilon/n^2 \).

Let’s say that for \(n_1 \) filled in pairs of pants \(F \) cuts an \(\epsilon/n^3 \) piece and that for \(n_2 \) filled in pairs of pants more than \(4\pi(1-\epsilon)/3n^3 \) of their volume is contained in \(U_1 \). Since \(\text{vol}(U_1) \leq \text{vol}(U_2) \)

\[
n_2 \leq 2\epsilon n^3 \leq n^3/2
\]

We distinguish two cases.

Case 1. \(n_1 \geq \epsilon n^3/2 \). Since the area of intersection of \(F \) with each one of these \(n_1 \) filled in pairs of pants is greater than \(\epsilon/n^2 \) the area of \(F \) is greater than \(\epsilon^2 n/2 \) which clearly tends to infinity as \(n \to \infty \).

Case 2. \(n_1 < \epsilon n^3/2 \). Since \(\text{vol}(U_1) > \epsilon \) we have that \(n_2 \geq \epsilon n^3/2 \). Let’s denote this set of \(n_2 \)-filled pairs of pants by \(A \). Let \(B_v \) be in \(A \), and let \(U_v = B_v \cap U_1 \). Since

\[
\text{vol}(U_v) \geq \frac{4\pi(1-\epsilon)}{3n^3}
\]
by the Euclidean isoperimetric inequality the boundary of U_v has area at least
$$\frac{4\pi(1-\epsilon)^{2/3}}{n^2}.$$

Since $\epsilon < 1/100$ it follows that if the area of $F \cap B_v$ is less than $\epsilon/2n^2$ then U_1 intersects non-trivially all 3 holes of the filled-in pair of pants. In fact since the area of a spherical cap is given by $2\pi rh$ where r is the radius and h the height, the area of the intersection of U_1 with a hole is greater than
$$\frac{2\pi}{4n^2} > \frac{1}{n^2} \quad \text{(**).}$$

Let’s denote by A_1 the set of filled-in pair of pants in A for which the area of intersection of $F \cap B_v$ is more than $\epsilon/2n^2$ and let $A_2 = A - A_1$. We set $k_1 = |A_1|$, $k_2 = |A_2|$ and note that
$$k_1 + k_2 = n^2 \geq \epsilon n^3 \frac{3}{2}.$$

If $k_1 \geq \epsilon n^3/4$ then we see that the area of F is greater than $\epsilon^2 n/8$ which clearly tends to infinity as $n \to \infty$. Otherwise $k_2 \geq \epsilon n^3/4$. By the expander property (and since $k_2 \leq n^3/2$) the (not necessarily connected) union of filled in pairs of pants in A_2, Σ, has a boundary that consists of at least
$$ck_2 \geq \frac{\epsilon n^3}{4}$$
holes. Let B_v be a filled-in pair of pants adjacent to one of these holes. Clearly B_v intersects U_1. We claim that the area of $B_v \cap F$ is at least ϵ/n^2. This is clear if F cuts an $4\pi\epsilon/3n^3$ piece of B_v or if B_v lies in A_1. If this is not the case then more than $(1 - \epsilon)4\pi/n^3$ of the volume of B_v is contained in U_2. Let O_v be the center of B_v. Let’s denote by C_r the sphere with radius r and center O_v. Let l_r be the length of the intersection of F with C_r. If $l_r > 1/10n$ for all r with $1/n > r > 9/10n$ then by the co-area formula ([3], 3.2.22) the area of $F \cap B_v$ is greater than $1/100n^2 > \epsilon/n^2$. Otherwise we consider an $r_0 \in (9/10n, 1/n)$ for which l_{r_0} is smaller than $1/10n$. We consider the portion F_1 of F between C_{r_0} and the boundary of B_v and we fill the holes of F_1 lying on C_{r_0} by minimal area discs. The total area of these discs is smaller than $\frac{\pi}{100n^2}$.

Let’s call the surface obtained this way by F_2. Note that F_2 separates $U_1 \cap B_v$ from O_v. Let f be the radial projection from O_v to $C_1 = S_v$. Clearly $f(F_2)$ contains $S_v \cap U_1$ and by inequality (***) the area of $S_v \cap U_1$ is greater than $\frac{1}{n^2}$. Also f is Lipschitz with Lipschitz
A SPHERE HARD TO CUT

constant less than 2. So the area of \(f(F_2 - F_1) \) is less than \(\frac{\pi}{50n^2} \). It follows that the area of \(F_1 \) is greater than
\[
\frac{1}{4n^2}
\]
so the area of \(F \cap B_\nu \) is greater than \(\epsilon/n^2 \) in this case too.

It follows as before that the area of \(F \) is at least
\[
\frac{c\epsilon n^3 \cdot \epsilon}{4} = \frac{c\epsilon^2 n}{4}
\]
which clearly tends to infinity as \(n \to \infty \).

The result for the 3-sphere \(S_n \) follows immediately from \(B_n \) as \(S_n \) is a union of two copies of \(B_n \) and if a surface cuts an \(\epsilon \)-piece of \(S_n \) is cuts an \(\epsilon/2 \) piece in one of these two copies of \(B_n \). Finally clearly we may normalize the volume of \(S_n, B_n \) to 1.

□

Remark 1. In [4] it is assumed additionally that the surface area and the diameter of the ball \(B_n \) is bounded. However both these properties are easy to arrange. As for the surface area one may excise a small ball from the 3-sphere \(S_n \) in the proof above and obtain a ball \(B \) such that the area of \(\partial B \) is arbitrarily small. By construction \(B_n, S_n \) have diameter less than 1. In fact given any ball (in any dimension \(\geq 3 \)) one can easily decrease its diameter by surgery: one may cut out a thickened simple curve and glue back in a ball with small diameter. This has no effect on the volume- or separation properties of the ball. Even though we stated our result only for dimension 3 the same construction applies for spheres (balls) of any dimension \(n \geq 3 \).

References

[1] F. Balacheff, S. Sabourau, Diastolic and isoperimetric inequalities on surfaces, Ann. Sci. Ecole Norm. Sup. 43 (2010) 579-605.
[2] S. Frankel, M. Katz, The Morse landscape of a Riemannian disc , Annales de l’ Inst. Fourier 43 (1993), no. 2, 503-507.
[3] H. Federer, Geometric Measure Theory, Springer Verlag, New York, 1969.
[4] P. Glynn-Adey, Z. Zhu, Subdividing 3-dimensional Riemannian disks, arXiv preprint, arXiv:1508.03746, 2015.
[5] M. Gromov, Asymptotic invariants of infinite groups, in Geometric Group Theory, v. 2, 1-295, London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993.
[6] Y. Liokumovich. Surfaces of small diameter with large width J. Topol. Anal., 06, 383 (2014). Surfaces of small diameter with large width
[7] Y. Liokumovich, A. Nabutovsky, R. Rotman Contracting the boundary of a Riemannian 2-disc, arXiv preprint arXiv:1205.5474 2012.
[8] M. Pinsker, *On the complexity of a concentrator*, 7th International Teletraffic Conference, Stockholm, June 1973, 318/1–318/4.

[9] P. Papasoglu, *Cheeger constants of surfaces and isoperimetric inequalities*, Trans. Amer. Math. Soc 361 (2009), no. 10, 5139-5162.

[10] A. Ros, *The isoperimetric problem* in Global theory of minimal surfaces, volume 2 of Clay Math. Proc., pages 175-209. Amer. Math. Soc., Providence, RI, 2005.

(Panos Papasoglu) Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, U.K.

E-mail address, Panos Papasoglu: papazoglou@maths.ox.ac.uk

(Eric Swenson) Mathematics Department, Brigham Young University, Provo UT 84602

E-mail address, Eric Swenson: eric@math.byu.edu