Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac]

Suresh* and Jagir Singh Sandhu

Abstract

Background: Synthesized arylidene derivatives of rhodanine and 2,4-thiazolidinedione have potent pharmacological activities, and these are also key substrates for the preparation of clinically used antidiabetics.

Findings: Some 1,1,3,3-tetramethylguanidine-based task-specific ionic liquids (TSILs) 1a-1e were prepared and employed to the catalyzed solvent-free Knoevenagel condensation of 2,4-thiazolidinedione 3a and rhodanine 3b with a variety of aldehydes.

Conclusions: Best results were obtained with 1,1,3,3-tetramethylguanidine lactate ([TMG][Lac]) 1c. The TSIL used can be easily recovered and recycled, yielding products 4–5 in excellent yields under ultrasonic environment without the formation of any side products or toxic waste.

Keywords: 2,4-thiazolidinedione, Rhodanine, Knoevenagel condensation, Recyclability, Task-specific ionic liquid

Findings

Background

2,4-thiazolidinedione (TZD) is an attractive scaffold because of its prestigious position in medicinal chemistry as this unit is responsible for numerous pharmacological and biological activities, e.g., antidiabetic [1,2], antidiarrheal [3], anticonvulsant [4], antimicrobial [5], antihistaminic [6], anticaner [7], anti-HIV [8], 15-hydroxyprostaglandin dehydrogenase inhibitors [9], and anti-ischemic [10]. The position of these molecules seems to be most significant as they are a subset of commercially employed non-insulin-dependent diabetes mellitus and insulin-sensitizing agents (Figure 1) such as rosiglitazone, epalrestat, cigitazone, AD5061, pioglitazone, and so on.

Several methods have been developed for their condensation with aldehydes as this is a crucial step in the production of the above clinically used drugs (Figure 1), and thus, this condensation is of commercial value. To achieve this end, several production protocols are reported employing several catalysts used such as amines [11], amine derivatives [12], amines salts [13], baker’s yeast [14], sodium acetate [15-17], glycine [18,19], KF-Al2O3 [20], and ionic liquids [21-25]. Several of these existing protocols for achieving this step have drawbacks like having long reaction times and low yields and leaving toxic residues on aqueous work-up; amine use is also now found to be carcinogenic. In addition, ionic liquids used earlier to accelerate this reaction are not environmentally benign because their preparation involves the harmful chemical intake, that is, volatile solvent and corrosive/toxic reagents [21-25]. Hence, a facile efficient process is still desirable. In search of greener chemical process development, ionic liquids are finding a prominent place [26-30]; herein, we report the first-ever sonically enhanced procedure using the environmentally benign ionic liquid 1,1,3,3-tetramethylguanidine lactate ([TMG][Lac]).

This ionic liquid based on TMGs is stable and easy to prepare in the laboratory, e.g., [TMG][Lac] 1c is prepared by neutralizing TMG with lactic acid [31]. [TMG][Lac] has already been reported to accelerate important reactions such as Henry reactions, hydrogenation of olefins, hydrogenolysis of glycerol, aldol reaction, and so on [32-38]. Our own interest in ionic liquids (ILs) and in green synthetic transformations [29,30] prompted us to explore the catalytic activities of TMG-based ILs in the synthesis of 2-TZD and rhodanine derivatives. On top of
all these factors, sonication is finding extensive use as it saves time and is environmentally friendly [39-41].

Results and discussion

In our initial pilot experiments, ionic liquids 1a-1e based on TMGs were used to catalyze condensation of 4-methoxybenzaldehyde 2a with 2,4-thiazolidinedione 3a (Table 1). The best results were obtained when the reaction was catalyzed by task-specific ionic liquid (TSIL) [TMG][Lac] 1c under ultrasound irradiations at 80°C for 20 min (Table 1, entry 3) among the ILs 1a-1e. The amount of catalyst 1c was also established as 20 mol% by carrying out reactions of 2a with 3a using different amounts of catalyst (5 to 50 mol%).

To check the effect of catalyst, temperature, and ultrasound irradiations, a set of reactions was performed using different reaction conditions such as heating alone (Table 2, entry 2), ultrasound alone (Table 2, entries 6 and 7), heating along with ultrasound irradiations (Table 2, entries 5 to 10), and in the absence of both (Table 2, entry 1). Conclusively, catalyst, temperature, and ultrasound irradiations are all equally important to accelerate the Knoevenagel condensation of aryl aldehydes 2 and 2,4-thiazolidinedione/rhodanine 3 to afford 5-arylidene-2,4-thiazolidinediones and 5-arylidenerhodanines 4–5 with excellent yields (Table 2, entry 9).

Further, a variety of carbonyl compounds such as aromatic aldehydes 2a-2b, heterocyclic aldehydes 2c-2e (furan-2-carbaldehyde 2c, thiophene-2-carbaldehyde 2d, and 3-formylchromone 2e) were condensed with 5-membered active hydrogen compounds 2,4-thiazolidinedione 3a and rhodanine 3b in the presence of 20 mol% 1c under ultrasound irradiations at 80°C under solvent-free conditions to provide Knoevenagel products 4–5 in excellent yields (Scheme 1). Aromatic aldehydes 2a-2b afforded excellent yields in a shorter reaction time, whereas heterocyclic 2c-2e gave high yields in a slightly long reaction time (Table 3).

Active methylene compounds 3a-3b afforded the Knoevenagel products selectively with exo-double bond without the formation of other side products/bis-products as shown in Scheme 2. Electron-withdrawing and electron-donating groups on aromatic aldehyde showed a slight diversion in the rate of reaction and yields, i.e.,

Table 1 Synthesis of (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione 4a via Knoevenagel condensation of 2a with 3a employing different ILs as catalyst

Entry	ILs (20 mol%)	Time (min)	Yield (%)^a
1	[TMG][CH₃COO⁻]: 1a	50	92
2	[TMG][CF₃COO⁻]: 1b	120	85
3	[TMG][CH₃CHOHCOO⁻]: 1c	20	95
4	[TMG][CH₃CH₂COO⁻]: 1d	75	91
5	[TMG][CH₃CH₂CH₂COO⁻]: 1e	40	94

The reaction conditions for (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione 4a are as follows: 2a (1 mmol), 3a (1 mmol), and catalysts (20 mol%) were irradiated under ultrasound irradiations at 80°C. The product was characterized by spectral techniques like IR, ¹H NMR, ¹³C NMR, and mass spectra. ^aIsolated yields after recrystallization.
the electron-withdrawing group containing aromatic aldehydes afforded arylidene compounds 4–6 with better yields in a shorter reaction time (Table 3).

Next, the recyclability of the catalyst 1c was studied using 2a and 3a as the model substrate. We observed that 1c could be recovered by extraction of the filtrate with a particular solvent, and pure IL (colorless oil) was obtained after drying the water-rich layer under vacuum. The recovered catalyst was successfully recycled and reused for five runs.

As plausible reaction mechanism is concerned, 1c catalyzed synthesis of arylidene products 4–5 by facilitating the nucleophilic attack of 3a–3b (lactate anion abstract the active hydrogen of 3) on the electrophilic carbon of carbonyl compounds (activated by TGA cation) 2a–2e, and subsequent dehydration leads to the product formation (Scheme 2).

Conclusion
In summary, we have disclosed a clean and efficient procedure for the synthesis of pharmacologically significant thiazolidine derivatives via Knoevenagel condensation of aldehydes with 2,4-thiazolidinedione/rhodanine.

The task-specific ionic liquid [TMG][Lac] catalyst used is biodegradable, recyclable, and purely environmentally benign as it is easy to prepare, without the involvement of any harmful solvents/chemicals [31]; hence, it is better than already used imidazolium-based ionic liquids [21-25] as catalysts. The scope is fairly large as the range of aldehydes and active methylene compounds used afforded products in very good to excellent yields. Other prominent features are as follows: the reaction time is shorter, no polluting volatile solvents are used, reaction work-up is simple, no toxic by-products are formed during aqueous work-up, and all these green aspects place this method at an advantageous position compared to already reported methods for these molecules of commercial value.

Methods
General
All starting materials were commercial products and were used without further purification except liquid aldehydes, which were distilled before use. Yields refer to yield of the isolated products. Melting points were determined in open capillaries in a paraffin bath and are uncorrected. Nuclear magnetic resonance spectra were obtained on a 400 MHz Bruker AMX instrument (Bruker Corporation, Billerica, MA, USA) in DMSO-d6 using TMS as a standard. HRMS analyses were carried out using a ESI-Q TOF instrument (Bruker Corporation). Infrared spectra were recorded using a Shimadzu FT-IR-8400 s spectrophotometer (Shimadzu Corporation, Kyoto, Japan) as KBr pellets. All the reactions were studied using a SIDILU Indian-made sonic bath (Sidilu Ultrasonic Technology, Bangalore India) working at 35 kHz (constant frequency, 120 W) maintained at 80°C without mechanical stirring.

General procedure for the synthesis of arylidene-thiazolidines
A mixture of aldehyde (1 mmol), 2,4-thiazolidinedione/rhodanine (1 mmol), and [TMG][Lac] (20 mol%) was irradiated under ultrasonic irradiation at 80°C for a few
minutes (see Table 3). The progress of the reaction was monitored via thin layer chromatography. After the reaction completion, the reaction mass was cooled (15°C to 20°C) and stirred with water (10 mL) for 30 min. The solid product was filtered and dried. The obtained products were recrystallized in EtOH/DMF (3:2). The products 4–5 were confirmed by their spectral data after comparison with authentic samples, infrared (IR), proton nuclear magnetic resonance (1H NMR), mass spectra, and melting points.

General procedure for the recovery of [TMG][Lac]

Further, the obtained filtrate was extracted with diethyl ether (3 × 10 mL), and the aqueous layer was dried under pressure. IL as a colorless oil was obtained which was further reused to catalyze more reactions.

Table 3 [TMG][Lac]-catalyzed solvent-free reactions of thiazolidines 3 with aldehydes 2

Entry	Aldehydes	Thiazolidenes	Product*	Time (min)	Yield (%)b
1	2a	3a	4a	20	95
2	2b	3a	4b	15	98
3	2c	3a	4c	25	91
4	2d	3a	4d	30	92
5	2e	3a	4e	20	96
6	2a	3b	5a	15	97
7	2b	3b	5b	10	99
8	2c	3b	5c	20	92
9	2d	3b	5d	25	91
10	2e	3b	5e	15	98

*aReaction conditions: 2a–2e (1 mmol), 3a–3b (1 mmol), and 1c (20 mol%) were irradiated under ultrasound irradiations at 80°C. The products were characterized by spectral techniques like IR, 1H NMR, 13C NMR, and mass spectra. bIsolated yields after recrystallization.

Spectral data of representative compounds

The following are the spectral data for 4a, 4e, 5b, and 5e:

- (4a): Mp. 249°C to 250°C, IR (KBr, cm⁻¹): 3393, 1671, 1605, 1434, 1201; 1H NMR (300 MHz, DMSO-d₆): δ 3.09 (s, 3H), 7.08 (d, 2H, J = 8.2 Hz), 7.52 (d, 2H, J = 8.2 Hz), 7.61 (s, 1H), 13.71 (s, 1H). Analysis calculated for C₁₁H₉NO₂S₂: C, 52.57%; H, 3.61%; N, 5.57%; S, 25.52%; found: C, 52.78%; H, 3.95%; N, 5.48%; S, 25.79%

- (4e): Mp.: 259°C to 260°C, IR (KBr, cm⁻¹): 1647 (γ pyrone CO); 1H NMR: δ 7.54 (ddd, 1H, 6-H), 7.62 (s, 1H, C = C-H), 7.71 (d, 1H, J₈,₇ = 8.41 Hz, 8-H), 7.98 (ddd, 1H, 7-H), 8.17 (dd, 1H, J₅,₆ = 8.41 Hz, J₅,₇ = 1.68 Hz, 5-H), 8.83 (s, 1H, 2-H), 12.41 (s, 1H, NH). Analysis calculated for C₁₃H₇NO₃S₂: C, 53.98%; H, 2.42%; N, 4.84%; S, 22.15%; found: C, 53.84%; H, 2.74%; N, 4.95%; S, 21.96%

- (5b): Mp. 268°C to 269°C. IR (KBr, cm⁻¹): 3148, 1719, 1610; 1H NMR (300 MHz, DMSO-d₆): δ 7.53 (2H, m), 7.72 (2H, m), 7.76 (1H, s), 12.65 (1H, bs). Analysis calculated for C₁₀H₆ClNO₂S: C, 50.11%; H, 2.52%; N, 5.84%; S, 13.38%; found: C, 49.87%; H, 2.63%; N, 5.92%; S, 13.78%

- (5e): Mp.: 290°C, IR (KBr, cm⁻¹): 3148, 1719, 1610; 1H NMR (300 MHz, DMSO-d₆): δ 7.53 (2H, m), 7.72 (2H, m), 7.76 (1H, s), 12.65 (1H, bs). Analysis calculated for C₁₃H₇NO₄S: C, 57.14%, H 2.58%, N 5.13%, S 11.73%; found: C, 56.84%, H 2.74%, N 5.25%, S 11.46%

Scheme 2 The possible reaction mechanism for the Knoevenagel reaction catalyzed by TSIL.
Competing interests
The authors declare that they have no competing interests.

Acknowledgments
The authors are also thankful to the Sophisticated Analytical Instrument Facility Central Instrument Laboratory (SAIF-CIL), Panjab University, Chandigarh for the spectral analysis.

Received: 25 August 2012 Accepted: 6 February 2013
Published: 3 March 2013

References
1. Carroll RT, Dluzen DE, Stinnet H, Awale PS, Funk MO, Geldenhuys WJ (2011) Synthesis and anticonvulsant activity of novel 4-thiophen-2-carboxylic acid amides. Bioorg Med Chem Lett 21:4798–4803. doi:10.1016/j.bmcl.2011.06.060
2. Bruno G, Costantino L, Curinga C, Maccari R, Monforte F, Nicolò F, Ottanà R, Vigorita MG (2002) Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg Med Chem 10:1077–1084. doi:10.1016/S0968-0896(01)00366-2
3. Diuomo MV, Mazzoni OS, Coreale G, Monti AM, Calignano A, Rana GL, Bolognese A (1999) Synthesis and structure-activity relationships of 2-(substituted phenethyl)-3-n-undecanamido-propyl-1,3-thiazolidin-4-ones acting as H1-histamine antagonists. IL Farmaco 54:579–583. doi:10.1007/s11096-000-0064-6
4. Ergenc N, Capan G (1994) Synthesis and anticonvulsant activity of new 4-thiazolidone and 4-thiazoline derivatives. IL Farmaco 49:123–135
5. Pisceco E, Diuomo MV, Gagliardi R, Mazzoni O (1989) Studies on heterocyclic compounds: 1,3-thiazolidin-4-one derivatives. IV. Biological activity of variously substituted 2,3-dianil-1,3-thiazolidin-4-ones. Boll Soc Ital Sper 65:853–859
6. Previtera T, Vigorita MG, Bisiá M, Orsini F, Benetolla F, Bombieri G (2004) 3,3'-di(1H-thiazol-4-yl)methyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg Med Chem Lett 14:313–316. doi:10.1016/j.bmcl.2004.05.009
7. Havyryllya D, Zimenkovska B, Lesyk R (2009) Synthesis and antitumor activity of novel nonfused bicyclic thiazolidinone derivatives. Phosphorus, sulfur, and silicon and the related elements. 184:638–650. doi:10.1080/10426500802247563
8. Rawal RK, Prabhaker VS, Katti SB, De Clercq E (2005) 2-(Aril)-3-fluoro-2- ymethyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg Med Chem 13:6771–6776. doi:10.1016/j.bmc.2005.07.063
9. Wu Y, Karna S, Choi CH, Tong M, Tai HH, Na DH, Jang CH, Cho H (2011) Synthesis and biological evaluation of novel thiazolidinedione analogues containing thiazolidinedione derivatives as potent euglycemic and antiobesity agents. J Med Chem 54:5260–5264. doi:10.1021/jm200590u
10. Adachi Y, Suzuki Y, Homma N, Fukazawa M, Tamura K, Nishie I, Kuroyama O (1999) The anti-ischemic effects of CP-060S during pacing-induced ischemia in anesthetized dogs. Eur J Pharmocol 367:267–273. doi:10.1016/S0014-2999(98)00038-8
11. Salonen IV, Herdberg DA, Keenan RM, Price AT, Erickson-Muller CL, Hopson JD, Peterson MG, Tonn GR, Ye QY, Walker NPC, Wang Z (2006) SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5B RNA polymerase. J Med Chem 49:1034–1046. doi:10.1021/jm050859x
12. Wuirebelski ML, Reichard GA, Palival W, Shah S, Tse HC, Duffy RA, Lachowicz JE, Morgan CA, Varty GB, Shih NY (2006) Cyclobutane derivatives as potent NK1 selective antagonists. Bioorg Med Chem Lett 16:3859–3863. doi:10.1016/j.bmcl.2006.04.031
13. Song Y, Connor DT, Doubleday R, Sorensen RJ, Sercel AD, Unangst PC, Roth BD, Gilbertsen RB, Chan K, Schier DJ, Giuglietta A, Borneemeier DA, Dyer RD (1999) Synthesis, structure-activity relationships, and in vivo evaluations of substituted di-tet-butylphenoins as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 1. Thiazoline and oxazoline series. J Med Chem 42:1151–1160. doi:10.1021/jm9805081
14. Chowdry MM, Michael D, Mingas P, White AJP, Williams DJ (2000) Synthesis and characterization of 5-pyridylmethylene-2-thiophen-2-carboxylate: Solid-state and molecular characterization data compared with 5-pyridylmethylene-2-thiazole-4-dione. J Mol Struct 548:85–90. doi:10.1016/S0022-2860(99)00409-9
15. Previtera T, Vigorita MG, Bisiá M, Orsini F, Benetolla F, Bombieri G (1994) Synthesis and anticonvulsant activity of new 4-thiazolidone and 4-thiazoline derivatives. IL Farmaco 49:123–135
16. Powers JP, Piper DE, Li Y, Mayorga V, Anzola J, Chen JM, Jaen JC, Lee G, Liu J, Peterson MG, Tong Y, Ye QY, Walker NPC, Wang Z (2006) SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5B RNA polymerase. J Med Chem 49:1034–1046. doi:10.1021/jm050859x
17. Pratap UR, Jawale DV, Lingamapalle DL, Mane RA (2011) Recent advances in ionic liquids: Green unconventional solvents of this century Part II. Green Chem Lett Rev 4:311–314. doi:10.1002/1521-3773.20110131151021
18. Sauresh SJS (2011) Recent advances in ionic liquids: Green unconventional solvents of this century Part I. Green Chem Lett Rev 4:289–310. doi:10.1008/1751-8223.2011.572294
19. Suresh SJS (2011) Recent advances in ionic liquids: Green unconventional solvents of this century Part II. Green Chem Lett Rev 4:431–390. doi:10.1008/1751-8223.2011.572295
20. Suresh SJS (2011) Recent advances in ionic liquids: Green unconventional solvents of this century Part II. Green Chem Lett Rev 4:289–310. doi:10.1008/1751-8223.2011.572294
36. Zhu A, Jiang T, Wang D, Han B, Liu L, Huang J, Zhang J, Sun D (2005) Direct aldol reactions catalyzed by 1,1,3,3-tetramethylguanidine lactate without solvent. Green Chem 7:514–517. doi:10.1039/B501925G
37. Chavan SS, Degani MS (2011) Ionic liquid catalyzed 4,6-disubstituted-3-cyano-2-pyridone synthesis under solvent-free conditions. Catal Lett 141:1693–1697. doi:10.1007/s10562-011-0700-5
38. Liang S, Liu H, Zhou Y, Jiang T, Han B (2010) The tetramethylguanidine-based ionic liquid-catalyzed synthesis of propylene glycol methyl ether. New J Chem 34:2534–2536. doi:10.1039/C0NJ00502A
39. Li JT, Wang SX, Chen GF, Li TS (2005) Some applications of ultrasound irradiation in organic synthesis. Curr Org Synth 2:415–436. doi:10.1002/chin.200541232
40. Cravotto G, Cintas P (2006) Power ultrasound in organic synthesis: moving cavitation chemistry from academia to innovative and large-scale applications. Chem Soc Rev 35:180–196. doi:10.1039/B503848K
41. Cella R, Stefani H (2009) Ultrasound in heterocycles chemistry. Tetrahedron 65:2619–2641. http://dx.doi.org/10.1016/j.tet.2008.12.027

Cite this article as: Suresh and Sandhu: Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac]. Organic and Medicinal Chemistry Letters 2013 3:2.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ➤ springeropen.com