Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics

Yakir A. Reshef1,2,3,4,5,8, Laurie Rumker1,2,3,4,5,8, Joyce B. Kang1,2,3,4,5, Aparna Nathan1,2,3,4,5, Ilya Korsunsky1,2,3,4,5, Samira Asgari1,2,3,4,5, Megan B. Murray6, D. Branch Moody7 and Soumya Raychaudhuri1,2,3,4,5,7

As single-cell datasets grow in sample size, there is a critical need to characterize cell states that vary across samples and associate with sample attributes, such as clinical phenotypes. Current statistical approaches typically map cells to clusters and then assess differences in cluster abundance. Here we present co-varying neighborhood analysis (CNA), an unbiased method to identify associated cell populations with greater flexibility than cluster-based approaches. CNA characterizes dominant axes of variation across samples by identifying groups of small regions in transcriptional space—termed neighborhoods—that co-vary in abundance across samples, suggesting shared function or regulation. CNA performs statistical testing for associations between any sample-level attribute and the abundances of these co-varying neighborhood groups. Simulations show that CNA enables more sensitive and accurate identification of disease-associated cell states than a cluster-based approach. When applied to published datasets, CNA captures a Notch activation signature in rheumatoid arthritis, identifies monocyte populations expanded in sepsis and identifies a novel T cell population associated with progression to active tuberculosis.

High-dimensional profiling of single cells is a central tool for understanding complex biological systems. Cells gathered from distinct samples are used to characterize cell states that associate with a sample attribute, such as a clinical phenotype or an experimental perturbation. Current methods for analyzing multi-sample single-cell datasets typically impose a global transcriptional structure on the dataset by partitioning cells into groups through clustering. The data are then analyzed solely through this lens by asking whether a sample attribute is associated with expansion or depletion of any clusters. Such approaches assume that the underlying biology is well-captured by the imposed structure and often require substantial tuning of parameters, such as clustering resolution.

Here we present CNA, a method for characterizing dominant axes of inter-sample variability and conducting association testing in single-cell datasets without requiring a pre-specified transcriptional structure. The core notion of CNA is the value of granular analysis of neighborhoods—very small regions in transcriptional space—with aggregation of neighborhoods according to their co-variation across samples. We posit that groups of neighborhoods that change in abundance together across samples are likely to represent biologically meaningful units that share function, regulatory influences or both. CNA can be used to define these co-varying neighborhood groups and then identify statistical associations between them and any sample-level attribute. One published method, MELD, has already demonstrated the potential of neighborhood-scale abundance information in datasets with small sample size; however, this method does not provide a framework for determining statistical significance to differentiate true from false discoveries. As we show, the large number of neighborhoods in many single-cell datasets makes well-powered association testing at this granularity a challenge. CNA addresses this challenge by leveraging the extensive co-variance structure that we show exists across neighborhoods. As a result, CNA offers both a data-dependent, parsimonious representation of single-cell data and well-powered and accurate association testing.

By testing simulated sample attributes in real single-cell data, we demonstrate that CNA is well-calibrated and, compared to cluster-based analysis, detects diverse signals with improved power and ability to correctly recover the cell populations driving those signals. We then apply CNA to three published datasets, demonstrating that it both refines and expands upon the associations previously found using standard approaches.

Results

Overview of methods. CNA relies on a representation of each sample in a single-cell dataset by its abundance of cells across neighborhoods. To construct this representation, we begin with a cell–cell similarity graph that captures all cells from all samples. This graph can be created from any representation chosen by the user, such as gene expression principal components (PCs) or canonical co-variates for a multimodal dataset, typically processed with
Articles

NATURE BIoTECHNOLOGY

A batch correction tool. We then define one neighborhood per cell in the dataset: every other cell m belongs to the neighborhood anchored at cell m according to the probability that a random walk in the graph from m' will arrive at m after s steps (Methods and Fig. 1a). CNA chooses s in a data-dependent manner to minimize neighborhood size while ensuring that neighborhoods are not dominated by cells from only a few samples. Supplementary Fig. 1 and Supplementary Table 1 show example neighborhoods and average neighborhood sizes for the real datasets analyzed in this paper.

We aggregate this information into a neighborhood abundance matrix (NAM) whose n,m-th entry is the relative abundance of cells from sample n in neighborhood m (Fig. 1b,c). We then apply principal component analysis (PCA) to the NAM to define neighborhood groups whose abundances change in concert across samples (Fig. 1d). For each NAM principal component (NAM-PC), the neighborhoods with positive loadings tend to have high abundance together in the samples for which the neighborhoods with negative loadings have low abundance. Likewise, the sample loadings for each NAM-PC yield information about the extent to which that NAM-PC’s pattern of co-varying neighborhoods appears in each sample.

NAM-PCs can be used to characterize transcriptional changes that comprise the axes of greatest variation in neighborhood abundances across samples. They can also be used to test for associations between these transcriptional changes and a per-sample attribute of interest—for example, a clinical attribute, genotype or experimental condition. To perform this test, we model the attribute value for each sample as a linear function of the sample’s loadings on the first k NAM-PCs, where k is chosen in a data-dependent manner to optimize model performance without overfitting (Methods). We report a P value for this association by permuting attribute values within experimental batches to obtain a null distribution.

Finally, we define the specific cell populations driving any detected associations. We do so by using the neighborhood loadings on the first k NAM-PCs and the estimated per-PC effect sizes from our linear model to estimate per-neighborhood correlations between neighborhood abundance—as captured by the first k NAM-PCs—and the sample attribute (Methods). We report false discovery rates (FDRs) for each per-neighborhood association by again permuting attribute values within experimental batches to obtain null distributions. We refer to the correlation between the attribute and the abundance of the neighborhood anchored at each cell as the neighborhood coefficient of that cell. We control for sample-level confounders, such as demographic variables, technical parameters and batch effects, by linearly projecting them out of the NAM and the attribute before association testing (Methods). We have released open-source software implementing the method.

CNA requires no parameter tuning, and it has favorable runtime properties: given a nearest neighbor graph, computing the NAM and conducting permutation-based association testing takes less than 1 min (and 579 MB of memory) for a dataset of more than 500,000 cells and more than 250 samples.

Performance assessment with simulations. We used real single-cell data with simulated per-sample attributes (Supplementary Fig. 2)
to assess CNAs calibration (type I error) and to compare CNAs statistical power (type II error) against cluster-based analysis. This published dataset of 259 patients previously infected with *Mycobacterium tuberculosis* contains 500,089 memory T cells in a canonical correlation analysis (CCA)-based per-cell joint representation of whole-transcriptome mRNA and abundances of 31 surface proteins. In addition to assessing calibration and power, we also assessed CNAs ability to recover the precise cell populations underlying an association by computing the correlation between the per-cell ground truth values used to create the simulated attribute and effect sizes estimated by the method; we refer to this quantity as 'signal recovery' (Methods and Supplementary Fig. 3).

To assess type I error, we simulated sample attributes without true associations to the data and found that CNA was well-calibrated. We first permuted patient age across all samples and observed a $P < 0.05$ global association in 41/1000 trials (type I error rate at $\alpha = 0.05$ of 0.041 ± 0.013; Supplementary Fig. 4). We next permuted patient ages within experimental batches and observed $P < 0.05$ for 44/1000 trials (type I error 0.044 ± 0.013; Supplementary Fig. 4). Finally, to simulate extreme batch effects, we selected batches at random and, for each randomly selected batch, assigned case status to the samples in the selected batch and control status to all other samples. We observed $P < 0.05$ for 60/1000 trials (type I error 0.060 ± 0.015; Supplementary Fig. 4).

To assess CNAs power and signal recovery, we simulated sample attributes with true associations to different types of cell populations and compared CNAs performance to that of a cluster-based association test using mixed-effects modeling of associations of single cells (MASC); MASC offers greater power than a t-test or linear model by accounting for per-cell information. For CNA, power was defined as the proportion of simulations with global $P < 0.05$. For MASC, power was defined as the proportion of simulations for which at least one cluster achieved $P < 0.05$ (total clusters). Cluster-based analysis is sensitive to the choice of parameters, such as the resolution parameter, and users typically explore a range of resolutions before selecting one. To reflect this, we ran MASC using four different clustering resolutions. We aggregated power results across these resolutions by taking the minimum P value and correcting for the four resolutions tested. We aggregated signal recovery results by taking the average signal recovery across the tested resolutions (Methods).

We simulated three signal types, each at a variety of noise levels: (1) cluster abundance, where the attribute is a sample's abundance of cells from a given cluster (matching the cluster-based analysis model; Fig. 2a); (2) global gene expression program (GEP), where the attribute is a sample's average use of a GEP across all cells (Fig. 2b); and (3) cluster-specific GEP, where the attribute is a sample's average use of a GEP across cells in one cluster (Fig. 2c). We used PCs computed from the matrix of cells by canonical variables for the whole dataset or for cells within a cluster as our global and cluster-specific GEPS, respectively.

CNA had superior power over cluster-based analysis to detect global GEP and cluster-specific GEP signals while retaining similar power for cluster abundance signals (Fig. 2a–c). These conclusions also hold with respect to the best-performing individual clustering resolution: for the global GEP and cluster-specific GEP signals, CNA had better power than cluster-based analysis at the best-performing resolution, and, for cluster abundance signals, CNA had similar power to cluster-based analysis run on the best-performing clustering resolutions, including the ground truth resolution used to define the clusters (Supplementary Fig. 5).

CNA also had superior signal recovery relative to cluster-based analysis for all three signal types (Fig. 2a–c). Moreover, for global GEP signals, CNAs signal recovery was superior to signal recovery for cluster-based analysis even at the best-performing clustering resolution (Supplementary Fig. 5). For cluster abundance signals, the only resolution parameter choice that obtained superior signal recovery to CNA was the one used to create the simulated cluster signals. For cluster-specific GEPS, the only resolution outperforming CNA was the finest resolution tested, which included 72 clusters; all other resolutions were less accurate, and two had signal recovery near zero (Supplementary Fig. 5). In downsampled versions of the Tuberculosis Research Unit (TBRU) data at lower sample sizes (18 batches/n = 107, 12 batches/n = 71 and 8 batches/n = 48), CNA generally continued to outperform the cluster-based comparator, although the latter gained an advantage for the causal cluster signal type at lower sample sizes (Supplementary Fig. 6). In a second smaller dataset of patients with and without sepsis (n = 65), as well as in downsampled versions of this smaller dataset (n = 40 and n = 20), CNA outperformed the cluster-based comparator method across all three signal types (Supplementary Fig. 7).

CNA captures Notch activation gradient implicated in rheumatoid arthritis. To assess whether CNA can detect important biological structure in real data, we applied CNA to 27,216 fibroblast single-cell RNA sequencing (scRNA-seq) profiles from synovial joint tissue of six patients with rheumatoid arthritis (RA) and six patients with osteoarthritis (OA). The original study, also by our group, used trajectory analysis to uncover a fibroblast trajectory corresponding to endothelial Notch signaling and found expansion of Notch-activated fibroblasts in RA. This previous study also identified two fibroblast clusters—representing the lining versus sublining synovium regions—and demonstrated sublining fibroblast expansion in RA.

CNA identifies NAM-PC1 as the dominant signal in this dataset: NAM-PC 1 explains 39% of the variance in the NAM, whereas no other NAM-PC explains more than 12%. NAM-PC1 reflects Notch activation: cells' expression of PRG4—an established Notch-response gene in the synovial joint tissue—was most strongly correlated with their anchored neighborhoods' NAM-PC1 loadings (Pearson $r = 0.79$, $P < 10^{-10}$), followed by expression of FNI (Pearson $r = 0.71$, $P < 10^{-18}$), a signaling molecule shown to regulate Notch. Furthermore, two Notch gene sets were significantly enriched among all gene correlations to NAM-PC1 (‘Vilimas NOTCH1 targets up’ and ‘Reactome signalling by NOTCH’; FDR = 0.0073 and FDR = 0.019, respectively). Moreover, NAM-PC1 has a stronger correlation than the published trajectory to the experimentally defined Notch activation score from the original study (Spearman $r = 0.56$ versus $r = 0.43$, $P < 0.01$ by bootstrapped permutation test; Fig. 3a–c). CNAs focus on inter-sample abundance co-variance information was useful for uncovering this structure: PC1 from naive transcriptional PCA of the cells-by-genes expression matrix has a low correlation (Spearman $r = 0.71$, $P < 10^{-18}$). NAM-PC1 largely separates the sublining and lining clusters ($r = 0.71$ and $P < 10^{-10}$) because sublining cells generally have higher Notch expression. CNA identified NAM-PC1 as the dominant signal in this dataset by identifying the causal cluster that explained the majority of the variance in the NAM, which is consistent with the original study's findings.

NAM-PC1 largely separates the sublining and lining clusters ($P < 0.01$) because sublining cells generally have higher Notch activation, but CNA shows that Notch activation variation exists within these clusters. Neighborhood loadings on NAM-PC1 are correlated to the Notch activation scores of their anchor cells even within each cluster (Pearson $r = 0.36$ lining cluster with $P < 0.001$ and Pearson $r = 0.33$ sublining cluster with $P < 0.001$; Fig. 3e,f). NAM-PC2 appears to reflect an axis of fibroblast activation in response to interferon (Supplementary Table 2). Low sample size precludes detailed interpretation of additional NAM-PCs in this dataset.

CNA identified RA-associated cell populations (global $P = 0.02$) that recapitulate the coarse cluster-based associations but more precisely reflect the driving Notch mechanism. Nearly all cells to which CNA assigned significantly positive neighborhood coefficients (99.9% of 5,181 total cells at FDR < 0.05) belong to the sublining...
cluster, and nearly all cells assigned significantly negative neighborhood coefficients belong to the lining cluster (96.8% of 7,169 total cells at FDR < 0.05). However, CNA assigned some sublining cluster cells to the depleted population, and these cells have lower Notch activation gene expression than other sublining cluster cells. Likewise, CNA assigned some lining cluster cells with higher Notch activation to the expanded population (Fig. 3e,f). Therefore, CNA adds informative granularity beyond the cluster-based associations.

CNA refines sepsis-associated blood cell populations. To assess CNA's ability to identify granular case–control associations in a dataset with many cell types, we next applied CNA to scRNA-seq...
profiles of 102,814 peripheral blood mononuclear cells (PBMCs) from 29 patients with sepsis and 36 patients without sepsis. The published analysis compared patients with and without sepsis in several sub-cohorts—for example, intensive care unit (ICU) patients and emergency department (ED) patients. Using a clustering of the data (Fig. 4a), this analysis identified expansion of a monocyte state in sepsis (19,991 monocytes at FDR 5 × 7 × 10\(^{-5}\)); each cell is colored according to its neighborhood coefficient, with red indicating high correlation and blue indicating low correlation. CNA, the cluster closest to approaching nominal significance (MASC P = 0.26) in a cluster-based association test for sepsis across the whole cohort. b, Cells colored according to their summed expression of genes in the RAC1 activation gene set. c, MS1, the cluster closest to approaching nominal significance (MASC P = 0.26) in a cluster-based association test for sepsis across the whole cohort. d, Cells colored according to their summed expression of genes in the RAC1 activation gene set. e–h, The distribution of neighborhood coefficients to sepsis phenotype within several of the original clusters—MS1 (e), MS4 (f), BS1 (g) and TS2 (h)—are shown as histograms (top) and in t-SNE space (bottom). t-SNE, t-distributed stochastic neighbor embedding.

To explore local contrasts in gene expression between cluster subpopulations implicated in sepsis by CNA and closely related but non-sepsis-associated cells, we conducted differential expression analyses of BS1 and MS4. For example, the depleted subpopulations of BS1 and MS4 are negatively enriched in class II histone deacetylase complex (HDAC) activity, consistent with literature showing that HDAC activity increases in sepsis and also that inhibition of class II HDAC therapeutically increases B cell and monocyte populations in patients with sepsis. Furthermore, interleukin...
(IL)-12 signaling gene sets were negatively enriched in the depleted subpopulations of DS1, DS2, MS4 and TS2, matching a known elevation of serum IL-12 in patients with sepsis\(^23,22\). Finally, telomerase pathway genes are negatively enriched in the depleted subpopulation of BSI1; telomere lengths are known to be shortened in patients with sepsis\(^23\).

For comparison, we also ran MELD on this dataset. MELD per-cell abundance relationship scores to sepsis were correlated with CNA's neighborhood coefficient values \((r=0.6;\) Supplementary Fig. 10\). In contrast to CNA, however, MELD does not assess significance for these scores and produced patterns of scores on randomly permuted case-control labels that also appear to have non-trivial structure (Supplementary Fig. 10). When we applied a permutation-based approach identical to the one used by CNA to assess significance at the neighborhood level, none of the individual per-cell MELD scores was significant at FDR < 0.05 (Supplementary Fig. 10). This highlights the power advantage of CNA's use of inter-sample co-variance information.

To understand the dominant axes of inter-sample variation in this dataset, we examined gene expression and cell type abundance correlates of each of the first five NAM-PCs. We found that some NAM-PCs do indeed capture information related to broad cell type populations (Supplementary Fig. 11, Supplementary Table 7 and Supplementary Table 8). For example, NAM-PC 1 has statistically significant positive correlation with natural killer (NK) cell abundance \((P = 0.55, P = 1.7 \times 10^{-4})\), whereas NAM-PC 2 has statistically significant positive correlation with B cell abundance \((P = 0.53, P = 5.1 \times 10^{-6})\) and T cell abundance \((P = 0.84, P = 4.0 \times 10^{-10})\) and negative correlation with macrophage abundance \((P = 0.89, P = 1.1 \times 10^{-5})\). In contrast, other NAM-PCs, such as NAM-PC 3, do not exhibit statistically significant correlation with broad cell type abundance, suggesting that they capture finer-scale structure. At the level of pathways, we found several immune activation and inflammation-related gene sets enriched in these NAM-PCs that largely recapitulated the gene sets that we identified as relating to sepsis (Supplementary Fig. 11 and Supplementary Table 9). These included some gene sets, such as RAC1 signaling, that were enriched in multiple NAM-PCs, and others, such as IL12 signaling mediated by STAT4, that were enriched only in one NAM-PC.

CNA captures diverse associations in a large tuberculosis dataset. We next applied CNA to a larger and more richly phenotyped dataset: 500,089 memory T cells from 259 patients in a tuberculosis (TB) progression cohort. (This dataset, recently published by our group, was also used above for simulations.) The published analysis employed 31 clusters to compare patients previously infected with M. tuberculosis who rapidly developed symptoms ('progressors', \(n = 128\)) to those who sustained latent infections ('non-progressors', \(n = 131\)).

The NAM-PCs in this dataset appear to carry biologic meaning. For example, neighborhood loadings on NAM-PC 1 correlate strongly across cells with a previously defined transcriptional signature of 'innateness'—the degree of effector function in each cell \((r = 0.81;\) Fig. 5a)\(^{3,25}\); individual gene correlations to NAM-PC 1 also reflect this (Supplementary Table 10). This result shows that individuals vary to a substantial degree in their average T cell 'innateness'. Moreover, NAM-PC 1 sample loadings were nearly identical when computed using protein profiling, mRNA profiling or the joint CCA representation of these data (Fig. 5b); by contrast, PC 1 sample loadings from naive PCA of each data type were far less correlated (Fig. 5b). Across the three modalities, 50% of total variance in each NAM was explained by the top 5–10 PCs (out of 271; Fig. 5c), suggesting that NAM-PCs offer a parsimonious representation of this dataset.

To assess whether NAM-PCs can detect nuanced transcriptional shifts that span a broad range of cell types, we re-computed NAM-PCs for this dataset without the upstream batch correction from the published analysis, which has the potential to eliminate subtle biologic variation\(^26,27\). Indeed, in the mRNA data, we found that NAM-PC 2 and NAM-PC 4 correlate strongly with sex (joint \(R^2 = 0.76;\) Fig 5d). Neighborhood loadings on NAM-PC 4 indeed capture sex chromosome gene expression (Supplementary Table 11)—which differentiates otherwise very similar cells from individuals with different sex chromosomes across all cell types—whereas NAM-PC 2 captures cell states known to vary in abundance with sex\(^23\) (Fig. 5c, Supplementary Fig. 12 and Supplementary Tables 12 and 13). Although sex information is also encoded in naive gene expression PCs, it is captured primarily in later PCs: the total predictive power of the first four naive gene expression PCs for sex was \(R^2 = 0.05\) as compared with \(R^2 = 0.76\) for the first four NAM-PCs. When we instead expanded to the first 20 naive gene expression PCs, we found that the PC most strongly correlated with sex was PC-18 \((R = 0.84;\) Supplementary Table 14\). Thus, NAM-PCs better prioritize—that is, capture in earlier PCs—expression variation that is relevant to inter-sample differences (for example, sex) rather than intra-sample differences (for example, cell cycle) that might not differ strongly across samples.

We next analyzed the primary phenotype, TB progression, using identical data processing and co-variate control to the published analysis (Methods), which defined 31 clusters (Fig. 6a) and found two clusters with Th17-like and innate-like character ('C-12' and 'C-20', respectively) to be depleted among progressors. CNA found a significant global association (CNA global \(P = 0.0015\)) driven by a depleted population (FDR < 0.05) as well as an expanded population (FDR < 0.05). CNAs depleted population overlapped with the previously published C-12 (86% of cluster) and C-20 (64% of cluster) but also contained many cells from additional, phenotypically similar clusters (74% of depleted population; Fig. 6b). Overall, this population had similar characteristic proteins and genes to the cluster-based depleted population (Fig. 6c and Supplementary Table 15) but contained substantially more cells.

In contrast to the cluster-based analysis, CNA identified a population of cytotoxic cells expanded among progressors (Fig. 6b,c and Supplementary Table 15), consistent with previous work describing the interplay between cytotoxic cells and mycobacteria\(^28\). These cells were predominantly captured by two clusters: 72% were from cluster C-23 ('CD4\(^+\)cytotoxic'). and 27% were from C-22 ('CD4\(^+\)CD16\(^+\)cytotoxic'). Tested individually, these clusters show weak evidence of association with progressor status \((P = 0.013\) and \(P = 0.022\), respectively) and do not pass multiple testing correction for the 31 clusters total. With a single test, CNA detected an associated population of functionally similar cells that had been split across multiple clusters.

As reported in the original publication, the association to progressor status was significant only after unbiased mRNA profiling was combined with targeted surface protein quantification in a multimodal representation. Given our observed correlations among NAM-PCs across data modalities, we speculated that CNA might identify this association in unbiased mRNA data alone, and indeed it does \((P \approx 4.5 \times 10^{-5}\)).

Finally, we conducted a survey for associations between the single-cell data (multimodal representation) and 17 sample-level attributes besides progressor status (Methods). With control for confounders and multiple testing (Methods and Supplementary Table 16), we found global associations for age \((P < 1 \times 10^{-5};\) Fig. 6d,e), season of blood draw \((P < 1 \times 10^{-4};\) Fig. 6f), genetic ancestry \((P = 1.8 \times 10^{-4};\) Fig. 6g) and sex \((P = 3 \times 10^{-4};\) Supplementary Fig. 13 and Supplementary Table 17). These results align with the published cluster-based analysis, which also found evidence of these associations, and demonstrate that CNA can detect associations to a variety of signals, including demographic, environmental and genetic factors. On average, CNA chose 19 (out of 271;
Fig. 5 | CNA characterizes biologically meaningful structure in TB dataset. a, UMAP with cells colored by their anchored neighborhood's loading on NAM-PC1 (left) or the transcriptional score of innateness from Gutierrez-Arcelus et al. (right). b, Left, sample loadings along the first PCs resulting from naive PCA of mRNA expression and protein expression plotted against the same loadings for the CCA-based joint mRNA/protein representation. Right, sample loadings along the first PCs resulting from PCA of the NAM generated from mRNA expression and protein expression plotted against the same loadings for the CCA-based joint mRNA/protein representation. c, The cumulative percent of variance in the NAM explained by the NAM-PCs in each data modality. The minimum number of NAM-PCs needed to capture 50% of variance in each modality is highlighted. d, Plot of sample loadings on NAM-PC2 and NAM-PC4 colored by biological sex. e, UMAP with cells colored by their anchored neighborhood's loading on NAM-PC2 (left) or NAM-PC4 (right).

7%) NAM-PCs to explain 26% of variance in these attributes, a 3.7× enrichment, suggesting that NAM-PCs are a parsimonious, phenotype-relevant representation of this complex dataset. The cell populations associated by CNA are juxtaposed with those found by a conventional cluster-based approach with identical co-variate control in Supplementary Fig. 13.

Some of the distinguishing cell states that CNA finds associated with these attributes are established in the literature, whereas others are less well elucidated. We found that older age is associated with higher CD8+ /CD4+ ratio, decreased co-stimulatory molecule expression and greater effector memory character relative to central memory character30 (Fig. 6c and Supplementary Table 18). CNA highlights a shift toward more Th2 character relative to Th1 character during the winter season in contrast to studies of seasonality in other locations31 and identifies an expanded CD8+ central memory population and depleted CD4+ cytotoxic population with increasing European genetic ancestry (Supplementary Tables 19 and 20). Cluster-based analyses with identical co-variate control produced generally similar results but implicated fewer cells in each association than CNA (Supplementary Fig. 13and Supplementary Table 17).

Discussion
Here we introduced CNA, a method to characterize dominant axes of abundance variation across samples in a single-cell dataset and to identify, with greater flexibility and granularity, cell populations whose abundance correlates with sample attributes of interest. CNA offers improved power and signal recovery over traditional cluster-based analysis while remaining robust to experimental artifacts and providing control for sample-level confounders, and it does so without requiring parameter tuning or long computation times. CNA can be used to study diverse sample attributes, enabling improved understanding of disease pathology, risk and treatment.

In addition to their utility for testing for associations to sample-level attributes, NAM-PCs themselves appear to carry biological meaning: for example, our analyses revealed NAM-PCs that correspond to Notch signaling, memory T cell innateness and a sex chromosome gene signature. For NAM-PCs without clear biological interpretation, characterizing the cellular functions and/or regulatory influences that unify these co-varying neighborhood groups could yield insight into basic biology. Co-varying neighborhood groups might, for example, delineate cell states most relevant to context-dependent cellular processes, such as gene regulation and cellular metabolism.

CNA offers a versatile framework that can be easily extended to other data modalities. We highlight datasets of scRNA-seq and multimodal mRNA and protein profiling, but CNA can be extended to any modality for which cell–cell graphs can be built, such as single-cell ATAC-seq epigenome profiling or mass cytometry protein profiling. For some of these applications, NAM factorization with approaches besides PCA, such as non-negative matrix factorization or independent components analysis, might be useful. For example, decomposition methods that do not enforce orthogonality among components could result in components with clearer correspondence to individual cellular programs. Such exploration, however, is beyond the scope of this work.

CNA has several limitations. First, because its emphasis is explicitly on inter-sample variation, CNA’s power and signal recovery do degrade with sample size, as demonstrated in our simulations. Second, due to its signal type-agnostic methodology, CNA might also be less powerful than more constrained models at lower sample sizes specifically when the underlying biology matches those models. Third, although existing approaches for biological annotation of clusters and trajectories can be applied to CNA populations and NAM-PCs, respectively, such approaches typically seek a single explanatory signal; an associated population or NAM-PC might
capture multiple related processes, and a given biological process might be captured by multiple NAM-PCs. Fourth, although cell assignments into clusters are discrete, CNA’s neighborhoods have probabilistic distributions in transcriptional space. As a result, it is not always obvious where the boundary of a CNA-associated population lies or whether such a boundary exists.

Despite these limitations, CNA is a sensitive way to identify disease states and drivers of variation across samples in single-cell datasets that is unique in taking advantage of inter-sample variation. As single-cell datasets grow in sample volume, methods that use and characterize inter-sample information at fine-scale transcriptional resolution will become crucial to realize the promise of single-cell technologies.
Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41587-021-01066-4.

Received: 18 April 2021; Accepted: 18 August 2021; Published online: 21 October 2021

References

1. Kashima, Y. et al. Single-cell sequencing techniques from individual to multisomics analyses. Exp. Mol. Med. 52, 1419–1427 (2020).
2. Andrews, T. S. et al. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat. Protoc. 16, 1–9 (2021).
3. Rueckert, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).
4. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
5. Burkhardt, D. B. et al. Quantifying the effect of experimental perturbations at single-cell resolution. Nat. Biotechnol. 39, 619–629 (2021).
6. Nathan, A. et al. Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nat. Immunol. 22, 781–793 (2021).
7. Reyes, M. et al. An immune-cell signature of bacterial sepsis. Nat. Med. 26, 333–340 (2020).
8. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).
9. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
10. Butler, A. et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
11. Haghverdi, L. et al. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).
12. Liu, J. et al. Jointly defining cell types from multiple single-cell datasets using LIGER. Nat. Protoc. 15, 3632–3662 (2020).
13. Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis. Sci. Transl. Med. 10, eaau0305 (2018).
14. Millard, N. et al. Maximizing statistical power to detect clinically associated cell states with scPOST. Preprint at https://www.biorxiv.org/content/10.1101/2021.11.23.390682v1 (2020).
15. Liu, Z. et al. Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance. Osteoarthritis Cartilage 24, 740–751 (2016).
16. Wang, X. & Astrof, S. Neural crest cell-autonomous roles of fibronectin in cardiovascular development. Development 143, 88–100 (2016).
17. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).
18. Sanlougou, S. et al. Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-α secretion through IKK regulation of NF-κB. J. Biol. Chem. 276, 30188–30198 (2001).
19. Pan, C. et al. Suppression of the RAC1/MLK3/p38 signaling pathway by β-elemene alleviates sepsis-associated encephalopathy in mice. Front. Neurosci. 13, 358 (2019).
20. von Knecht, A. & Brüne, B. Histone deacetylation inhibitors as therapy concept in sepsis. Int. J. Mol. Sci. 20, 346 (2019).
21. Wu, H.-P. et al. Serial increase of IL-12 response and human leukocyte antigen-DR expression in severe sepsis survivors. Crit. Care 15, R224 (2011).
22. Steinhauser, M. L. et al. Multiple roles for IL-12 in a model of acute septic peritonitis. J. Immunol. 162, 5437–5443 (1999).
23. Oliveira, N. M. et al. Sepsis induces telomere shortening: a potential mechanism responsible for delayed pathophysiological events in sepsis survivors? Mol. Med. 22, 886–891 (2016).
24. Gutierrez-Arcelus, M. et al. Lymphocyte inmateness defined by transcriptional states reflects a balance between proliferation and effector functions. Nat. Commun. 10, 687 (2019).
25. Cano-Gomez, E. et al. Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines. Nat. Commun. 11, 1801 (2020).
26. Rueckert, M. et al. Benchmarking atlas-level data integration in single-cell genomics. Preprint at https://www.biorxiv.org/content/10.1101/2020.05.22.11161v1 (2020).
27. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).
28. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).
29. Silva, C. L. et al. Cytotoxic T cells and mycobacteria. FEMS Microbiol. Lett. 197, 11–18 (2001).
30. Li, M. et al. Age related human T cell subset evolution and senescence. Immun. Ageing 16, 24 (2019).
31. Shirai, T. et al. TH1-biased immunity induced by exposure to Antarctic winter. J. Allergy Clin. Immunol. 111, 1353–1360 (2003).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
Methods

Co-varying neighborhood analysis. **Intuition.** Co-varying neighborhood analysis is built on the idea of a transcriptional neighborhood, a very small subset of transcriptional space, typically much smaller than would arise from traditional clustering. Our method is based on two intuitions about transcriptional neighborhoods. First, because of the neighborhoods’ granularity, any meaningful variation across samples will result in differential abundance of one or more neighborhoods across samples. Second, neighborhoods co-vary in abundance across samples because of shared function and/or regulatory influences. The first intuition leads us to represent multi-sample single-cell data using the NAM, a samples-by-neighborhoods matrix that describes the relative abundance of each neighborhood in each sample. The second intuition leads us to analyze the NAM using PCA. The resulting PCs reveal sets of neighborhoods that co-vary in abundance across samples as well as samples with similar abundance profiles across neighborhoods. We use this information to find structure and conduct association testing with sample-level attributes, such as clinical information, genotypic information or experimental conditions. The remainder of our technical material establishes notation and assumptions and then provides detailed descriptions of (1) definition of transcriptional neighborhoods, (2) construction and quality control of the NAM, (3) PCA of the NAM controlling for batch and co-variables and (4) association testing.

Notation and assumptions. Let \(X \) be an \(M \times G \) matrix representing a single-cell dataset with \(M \) cells and \(G \) cell-level features, such as genes. Let \(N \) be the number of distinct samples to which the cells belong, and, for every cell \(m \) and every sample \(n \), let \(C_n \) be the set of cells belonging to the \(n \)-th sample. We assume that \(X \) has already undergone quality control and (if desired) batch correction and that a \((X)\) be the set of cells belonging to the \(n \)-th sample. Each of the right singular vectors identifies neighborhoods that co-vary in abundance across samples. Each of the left singular vectors identifies samples that have similar abundance profiles across neighborhoods.

Association testing. GNA quantifies association of the NAM to a given sample-level attribute in two ways: (1) a global quantification of the fraction of variance in the attribute explained by the single-cell data, with an associated \(P \)-value, and (2) a local estimate of the correlation between the attribute and each neighborhood’s abundance across samples, with associated FDRs.

Global association test. Let \(y \) be a length-\(N \) vector containing a sample-level attribute of interest, such as clinical information, genotypic information or experimental condition, and suppose we want to associate \(y \) with the inter-sample variation in \(X \). Because the left singular vectors of the NAM—that is, the columns of \(U \)—each contain one number per sample, we can do this in a simple linear model in which each sample is an observation. That is, for some number \(k \) of PCs, we can fit the model

\[
y = U \beta + e
\]

where \(U \) denotes the first \(k \) columns of \(U \); \(\beta \) is a length-\(k \) vector with one coefficient per PC; and \(e \) represents mean-zero noise.

To choose \(k \) in a flexible and automatic way, we fit the above model for four different values of \(k \) ranging from \([N/50] \) through \(\min([N/50], N/5) \), where \([\ldots]\) denotes the ceiling function. For each value of \(k \), we compute a multivariate \(F \)-test \(P \)-value for the null hypothesis \(H_0: \beta = 0 \), and we choose the value \(k \) that yields the minimal \(P \)-value. Thus, larger values of \(k \) are selected only if they provide increased predictive power for \(y \) beyond what we would expect simply from their providing more degrees of freedom to the model.

If co-variables were residualized out of the NAM, these are residualized out of \(y \) before fitting the model. Similarly, if batch information was residualized out of the NAM, it is likewise residualized out of \(y \) before fitting the model using the same ridge parameter. To obtain a \(P \) value for global association, we perform the above procedure, including selection of \(k \), on a large number of empirical null instantiations (1,000 by default) obtained by permuting the values of \(y \) within each batch of the dataset. We then use the resulting set of \(P \)-values, of which there is one per null instantiation, as our null distribution.

Local association test. A natural notion of neighborhood-level effect size would be the correlation between the \(m \)-th column of the NAM and \(y \). However, the NAM is very high-dimensional, and so these correlations are noisy. Instead, we therefore...
compute a ‘smoothed correlation’ between neighborhood m and y—that is, the correlation between the mth column of the rank-k representation of the NAM and y. Mathematically, this equals

$$
gamma = \mathbf{v}^* \mathbf{t}^* / \beta^*$$

where D denotes the upper-left $k \times k$ submatrix of D, \mathbf{v}^* denotes the first k columns of V and β^* is the estimate from the model for global association. We refer to the entries of this submatrix as the neighborhood correlation of y. To assess statistical significance, we again compute null versions of γ and use these to estimate an empirical FDR for a variety of magnitudes of correlation by comparing the number of entries of γ with magnitude above a given threshold to the average number of entries in the null versions of γ with magnitude above that threshold.

Assessing performance with simulations. To assess the calibration and power of our method, we conducted simulations using two real single-cell datasets. Our primary simulations were conducted with data from the TBRU cohort. This dataset consists of $M = 500,089$ memory T cells from $N = 271$ samples profiled with CITE-seq, which simultaneously provides both scRNA-seq and single-cell quantification of 31 surface proteins. We also conducted supplementary simulations on data from $M = 102,814$ CD45+ PBMCs from $N = 65$ samples profiled with scRNA-seq. (Additional aspects of these datasets are described elsewhere in the Methods.) All simulations in the TBRU dataset used a 20-dimensional CCA-based representation of each cell generated in the original study reflecting information shared by the RNA-seq and surface protein modalities. This representation was subsequently run through Harmony to remove sample-specific and batch effects. We first describe our simulations for quantifying type I error, generation of simulated non-null attributes and analysis of those non-null attributes in our primary simulations using the TBRU dataset at full sample size ($N = 271$). We then describe how we adapted these procedures for our supplementary simulations using the smaller sepsis dataset ($N = 65$) as well as downsampled versions of the two datasets (18 batches/$N = 107$, 12 batches/$N = 71$ and 8 batches/$N = 48$ for TBRU; $N = 40$ and $N = 20$ for sepsis).

Quantifying type I error. For the simulation in Supplementary Fig. 4a, we simulated 1,000 independent null attributes by permuting an existing sample attribute in the TBRU dataset (age at sample collection) across all samples in the dataset. For the simulation in Supplementary Fig. 4b, we simulated 1,000 independent null attributes by permuting this same sample attribute in the TBRU dataset (age at sample collection) within each batch. This was done to preserve whatever batch effects might be present in the data in our null attributes. For the simulation in Supplementary Fig. 4c, we created 1,000 independent null attributes with maximal batch effect by selecting 1,000 batches $[b_1, ..., b_{1000}]$ randomly with replacement and setting the b_i attribute to equal 1 for all the samples in batch b_i and 0 otherwise.

In all of the above simulations, we used CNA to obtain a P value for association to the single-cell data for each attribute, accounting for possible batch effects. This yielded 1,000 P values in each case.

Generation of simulated non-null attributes. For Fig. 2, we simulated three signal types in the full sample size TBRU dataset: cluster abundance (Fig. 2a), global GEP (Fig. 2b) and cluster-specific GEP (Fig. 2c). In each case, we added Gaussian noise to each simulated attribute to achieve signal-to-noise ratios of $\{0.01, 0.1, 0.2, 0.5, 0.9, 0.99\}$. For the cluster abundance signal type (Fig. 2a), we clustered the data using the Leiden algorithm with the same resolution (2.0) used by the authors of the original TBRU study. We then removed any clusters lacking at least ten samples with at least 50 cells each, and we removed any clusters whose abundance had correlation greater than 0.25 to membership in any batch. This reduced the number of clusters from 26 to 24. For each remaining cluster, we computed the abundance of that cluster per sample. For each of our 11 signal-to-noise ratios, we then simulated ten independent attributes by summing this attribute with the appropriate amount of Gaussian noise.

For the global GEP signal type (Fig. 2b), we treated the 20 per-cell harmonized canonical variables as each representing the activity of a GEP across cells. For each canonical variable, we computed the average value of that variable across all cells in each sample. For each of our 11 signal-to-noise ratios, we then simulated ten independent attributes by summing this attribute with the appropriate amount of Gaussian noise. This resulted in $20 \times 10 = 200$ attributes per noise level.

For the cluster-specific GEP signal type (Fig. 2c), we first clustered the cells using the Leiden algorithm with a resolution of 1.0 and filtered the clusters using the same criteria as in the cluster abundance simulation. We used a coarser clustering resolution here because this signal type is driven by intra-cluster variability rather than inter-cluster variability, so we wanted to use larger clusters.

For each of the ten largest clusters, we then computed the top three PCs of all the harmonized canonical variables among only the cells in that cluster, which we treated as each representing activity of a cluster-specific GEP. For each of these PCs, we computed the average value of that component across all the cells in each sample, assigning cells outside the cluster in question a score of 0. For each

Simulations at lower sample size. We adapted our simulation framework to the sepsis dataset at full sample size ($N = 65$) by Leiden clustering the cells at resolutions of $\{0.2, 1, 2, 5\}$, resulting in $3, 15, 26$ and 72 clusters, respectively.

For CNA, we used the neighborhood coefficient for each cell, which is the per-neighborhood correlation to the attribute from the neighborhood for which that cell is the anchor. For MAS, we used a clustering resolution, which was assigned to each cell the signed effect size beta that MAS estimated for that cell’s parent cluster. We then defined ground truth per-cell scores for each signal type such that the noiseless version of each attribute would be obtained by averaging the per-cell score for all cells in each cluster. For global GEP, we simulated a score of 1 to cells in the causal cluster and a score of 0 to other cells; for global GEP signals, we used the per-cell values of the canonical variable in question; and for cluster-specific GEP signals, we used the per-cell values of the PC in question, with a score of 0 assigned to all cells outside the cluster.

To estimate signal recovery for a given signal type, we then computed, for each method and for each signal-to-noise ratio, the average per-attribute correlation between the method’s reported per-cell scores and the ground truth per-cell scores for that attribute. Thus, signal recovery takes values between −1 (worst) and 1 (best). We emphasize that this is distinct from correlating a method’s estimated per-sample attribute value with the ground truth sample attribute values. This latter approach would be an assessment of each method’s accuracy as a predictor of the sample attributes, whereas our approach assesses something more challenging: the ability of each method to identify the underlying causal cells driving the sample attribute in question. We quantified uncertainty in our estimate of signal recovery by computing empirical standard errors for our estimate of this mean. In Fig. 2, we aggregated the four versions of MAS and into one P value by averaging their P values.

Analyses of real data. We analyzed three real datasets: syncitial fibroblasts from patients with RA versus OA ($N = 12$ samples, $M = 27,216$ cells); PBMCs from
patients with and without sepsis (N = 65 samples, M = 102,814 cells); and memory T cells from patients in a large TB progression cohort (N = 271 samples, M = 500,089 cells).

Analysis of RA dataset. We obtained the RA dataset from the authors of a study of synovium of patients with RA and OA. The dataset consisted of M = 27,216 synovial cells from N = 12 samples profiled with scRNA-seq and processed with the Harmony algorithm to mitigate sample-specific effects. The cells also had cluster labels—identifying them versus sub-lining populations—assigned by the authors of the original study. Mirroring the original study, we filtered this dataset to fibroblasts only. We then applied CNA to this dataset without co-variates or batch correction to produce a NAM with PCs as well as a P value for global association to RA/OA status and neighborhood-level correlations to RA/OA status with corresponding FDRs.

To assess whether NAM-PC1 was related to Notch activation, we obtained the per-cell Notch activation scores defined using the experimentally derived Notch activation gene set from the original study and computed the correlation across cells between these scores and the NAM-PC1 neighborhood loading assigned to each cell’s neighborhood. We computed a P value for whether this correlation was significantly greater than the corresponding correlation to Notch activation per-cell expression level in each cell and the cells’ anchored neighborhood loadings on NAM-PC1. Using these per-genome correlations as our input ranked list, we computed the enrichment of gene sets containing the term ‘NOTCH’ from MSigDB’s ‘C7’ catalogue of immune-related gene sets. We used R’s FGSEA package33 with a maximum gene set size of 500, a minimum size of 15 and 100,000 permutations. This approach to gene set enrichment analysis along a NAM-PC, which we refer to as ‘NAM-PC gene set enrichment analysis’, can identify both biological processes reflected by NAM-PC2 using gene sets from the Reactome database in MSigDB’s ‘C2’ catalogue.

Analysis of sepsis dataset. We downloaded the sepsis dataset of Reyes et al. from the Broad Institute Single Cell Portal. The dataset consisted of M = 102,814 CD45+ PBMCs from N = 65 samples profiled with scRNA-seq. The study consisted of three clinical cohorts: (1) patients presenting to the ED with urinary tract infection (UTI), divided into patients with leukocytosis but no organ dysfunction (Leuk-UTI, N = 10), urosepsis (Int-UTI, N = 7) and persistent urosepsis (URO, N = 10); (2) bacteremic patients with lesions in hospital wards (Bac-SEP, N = 14); and (3) patients admitted to the ICU with either sepsis (ICU-SEP, N = 8) or no sepsis (ICU-NoSeps, N = 10). There were also 19 healthy controls (Control, N = 19). In total, the study included 29 patients with sepsis (Int-UTI, URO and Bac-SEP) and 36 patients without sepsis (Control, Leuk-UTI and ICU-NoSeps).

To maximize comparability between the published analysis and ours, we analyzed the data following the same pre-processing steps as the original authors, namely: we removed cells with fewer than 100 unique molecular identifiers and genes with expression in fewer than cells, and then we log-normalized the counts and filtered out genes with mean expression <0.0125 or dispersion <0.5. The dataset also includes some samples that are enriched for dendritic cells; following the original analysis, we excluded these in the subsequent analysis of them phenotype labels so that they could be included in the unsupervised portion of the analysis but would not directly affect any of the association analyses.

The original study conducted case–control comparisons in nine different subgroups of patients with sepsis and controls (for example, (UTI, Int-UTI) versus (Control, Leuk-UTI)). We conducted the same nine association tests using CNA (without batch information or co-variates, following the original study) and found good qualitative agreement (Supplementary Table 5).

We then ran CNA on the aggregate phenotype of ‘any sepsis’, for which sepsis was defined as (Int-UTI, URO, Bac-SEP, ICU-SEP), and non-sepsis was defined as (Control, Leuk-UTI, ICU-NoSeps). To assess for heterogeneity within the 15 author-defined cell states, we then examined the distribution of CNA-estimated neighborhood correlations to the ‘any sepsis’ phenotype within each published cell state (Supplementary Fig. 8). We identified MS4, TS2 and BS1 as the most visually striking examples of bimodality in intra-cluster heterogeneity in effect size (TS1, TS2, MS4, DS1, DS2, BS1 and BS2) to (1) the remaining cells of the same published cluster (for example, TS1) and (2) the remaining cells of the same major cell type (for example, T cells). Then, using these per-genome correlations as our input ranked lists, we computed the enrichment of gene sets from the PID stored in MSigDB’s ‘C2’ catalogue and plotted these values in Supplementary Fig. 9. We used R’s FGSEA package33 with parameters as above.

We produced interpretations of each of the first five NAM-PCs in this dataset in two ways. First, we computed the correlation across samples between each NAM-PC’s sample loadings and the abundances per sample of each of the five main cell populations in the dataset—T cells, B cells, monocytes, NK cells and dendritic cells—with corresponding P values based on a beta-distributed null. We plotted these values as a heat map in Supplementary Fig. 11, retaining only those correlations that achieved nominal significance. Second, we conducted NAM-PC gene set enrichment analysis (see above) for gene sets from the PID stored in MSigDB’s ‘C2’ catalogue and plotted these values in Supplementary Fig. 11.

Analysis of TB dataset. We obtained the pre-processed TBTRU dataset directly from the authors of the index study. This dataset consisted of M = 500,089 memory T cells from N = 271 samples that were profiled with CITE-seq32, which simultaneously provides both scRNA-seq and single-cell quantification of 31 surface proteins. The TBTRU dataset included two clusters, identified to identify coordinates of progression to active TB infection compared to latent TB infection. Accordingly, approximately half of the samples came from patients who had active TB at enrollment (4–7 years before the single-cell data were collected), and half of the samples came from household contacts of patients who had developed latent infection (which also need to be linked to the index patient) for the study to also contain. To perform CNA, we downloaded the sepsis dataset of Reyes et al. from the Broad Institute Single Cell Portal. The dataset consisted of M = 102,814 CD45+ PBMCs from N = 65 samples profiled with scRNA-seq and processed with the Harmony algorithm to mitigate sample-specific effects. To maximize comparability between the published analysis and ours, we used this representation in all analyses unless stated otherwise.

Unsupervised analysis. We computed the initial NAM by running CNA on the full dataset with correlation only for batch and per-probe averages of (1) the percent mitochondrial (pMT) reads of each cell and (2) the number of unique molecular identifiers (uUMIs) for each cell. To identify biological processes corresponding to NAM-PCs, we then computed the correlation per-genome (the top 5,000 most variable in the dataset) and per-protein between expression level of each cell and the cells’ anchored neighborhood loadings on each NAM-PC. To evaluate the extent to which NAM-PC2 reflects known sex differences in T cell populations, we computed per-sample the ratio of total cell fraction from CD4+\(^+\)-labeled clusters to total cell fraction from CD8\(^+\)-labeled clusters using cluster assignments with cell type annotations from the original publication of this dataset. Then we computed the correlation (and corresponding analytical P value using a beta-distributed null) between CD4\(^+\)/CD8\(^+\) ratio and sample loading on NAM-PC2. We also computed per-sample the ratio of total cell fraction in the T regulatory CD4\(^+\) cluster to total cell fraction from all CD4\(^+\)-labeled clusters and computed the correlation (P value) between this ratio and sample loading on NAM-PC2. Finally, we computed the correlation in the same across the five NAM-PC2 neighborhood loadings and binary cell membership in CD4\(^+\)-labeled clusters, CD8\(^+\)-labeled clusters and the T regulatory cluster (Supplementary Fig. 12 and Supplementary Tables 12 and 13).

Association analysis for TB progression phenotype. We analyzed the TB progression attribute with CNA, controlling for the same co-variates that the authors of the original study used in their analysis: pMT, uUMIs, age, sex, season of blood draw and percent European ancestry. We retained cells whose neighborhood coefficients showed correlation to TB progression at FDR <0.05. These cells clearly segregated into two contiguous groups in UMAP space: a depleted population and an enriched population. We examined the genes, among the top 5,000 most variable in the dataset, that had the highest correlations with the cells’ anchored neighborhoods’ estimated abundance correlations to the TB phenotype.

Association survey across many sample-level attributes. We one-hot encoded all categorical attributes and standardized all continuous attributes. We then removed any attributes with missing values for more than 10% of samples, any one-hot categorical attributes with fewer than 20 individuals represented and one from every attribute pair with a correlation greater than 0.75. Seventeen of the attributes were retained after this step. We then determined for each of these 17 attributes y which others (including TB progression status) had a nominally significant (P <0.05) correlation to y and included those as co-variates when analyzing y. Using the resulting selected co-variates, shown in Supplementary Table 6, we ran CNA. Using the 31 clusters previously identified in these data, we ran a per-cluster association test with each co-variates control for each attribute. We added multiple hypothesis testing correction across clusters and for both cluster-based analysis and CNA, across the 17 attributes tested. For each attribute with a globally
significant association by CNA, we examined the genes, among the top 5,000 variable genes, and the surface proteins whose expression per anchor cell was most highly correlated with corresponding neighborhood coefficients to the given attribute.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All data analyzed during this study are available in three previously published articles. Source data are provided with this paper.

Code availability

An open-source repository containing code for running CNA is available at https://github.com/immunogenomics/cna; an open-source repository containing code underlying all figures and tables is available at https://github.com/immunogenomics/cna-display; and an open-source repository containing code underlying all simulations is available at https://github.com/immunogenomics/cna-sim. Source data are provided with this paper.

References

32. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. *Nat. Methods* **14**, 865–868 (2017).

33. Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at https://www.biorxiv.org/content/10.1101/060012v2 (2021).

Acknowledgements

We thank A. Gupta, D. Kotliar, Y. Luo, N. Millard, M. Reyes, S. Sakaue, F. Zhang, the members of the CGTA discussion group and the Raychaudhuri lab for helpful discussions and feedback. This work is supported, in part, by funding from the National Institutes of Health (NIH) including UH2AR067677, U19 AI111224, U01 HG009379 and 1R01AR063759. S.A. was supported by the Swiss National Science Foundation postdoctoral mobility fellowships P2ELP3_172101 and P400PB_183823 and NIH grant T32HG004644. L.R. was supported, in part, by NIH 5T32HG22985-17. I.K. was supported by NIH grant T32GM007753. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author contributions

Y.A.R., L.R. and S.R. designed and conceptualized the study. Y.A.R. and L.R. designed and implemented the algorithm and performed simulations. Y.A.R., L.R. and J.K. performed analysis of real data. A.N., S.A. and I.K. provided input on methodologic design and real data analysis. D.B.M., M.M., A.N. and I.K. provided dataset-specific expertise. Y.A.R., L.R. and S.R. wrote the manuscript with input from the remaining authors.

Competing interests

S.R. serves as a consultant for Gilead, Pfizer, Janssen and Rheos Medicines and is a founder of Mestag Therapeutics. I.K. serves as a consultant for Mestag Therapeutics. The other authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41587-021-01066-4.

Correspondence and requests for materials should be addressed to Soumya Raychaudhuri.

Peer review information Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g., F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection: Described in detail in our manuscript, as this is a computational methods paper.

Data analysis: cna, FGSEA, MASC, Leiden clustering and UMAP, scampy, numpy, scapy

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

NA
Field-specific reporting

Please select the one that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [x] Life sciences
- [] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Sample size was determined by counting the number of distinct tissue samples that were sequenced. This followed the procedures used by the authors of each of the datasets analyzed in this paper, all of which are previously published. N=12 for notch, N=65 for sepsis, and N=271 for TBRU.
Data exclusions	We did not impose exclusions beyond those performed in the original publications of the datasets we analyzed. Please refer to the original publications for more detail.
Replication	Our analyses are all publicly available via a github repository described in the paper. We have verified reproducibility by re-running these notebooks and ensuring similar results (up to variation in random seeds).
Randomization	There was no randomization of samples in the datasets we analyzed.
Blinding	There was no blinding in the datasets we analyzed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	n/a
[x] Antigens	[x] Involved in the study
[x] Antibodies	[x] ChIP-seq
[x] Eukaryotic cell lines	[x] Flow cytometry
[x] Palaeontology and archaeology	[x] MRI-based neuroimaging
[x] Animals and other organisms	
[x] Human research participants	
[x] Clinical data	
[x] Dual use research of concern	