Non-native fishes of Belarus: diversity, distribution, and risk classification using the Fish Invasiveness Screening Kit (FISK)

Sergey E. Mastitsky1,2*, Alexander Y. Karatayev2, Lyubov E. Burlakova2 and Boris V. Adamovich3

1General Ecology Department, Biology Faculty, Belarusian State University, 4 Nezalezhnosti Avenue, Minsk, 220030 Belarus
2Great Lakes Center of the Research Foundation of SUNY, 261 Science Building, Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
3Republican Unitary Enterprise ‘Institute of Fish Industry’, 22 Stebeneva Street, Minsk, 220024 Belarus
E-mail: aliensinbelarus@gmail.com (SEM), karataay@buffalostate.edu (AYK), burlakle@buffalostate.edu (LEB), borya_mail@mail.ru (BVA)
*Corresponding author

Abstract

As of the end of 2008, 25 species of non-native fishes have been documented in the Republic of Belarus. Of these, 17 (68%) species were deliberately introduced for aquaculture, six (24%) species invaded from the adjacent territories by natural dispersal, and two (8%) species were likely introduced accidentally. During the 20th century, the number of non-native fishes in Belarus increased exponentially, resulting in significant shifts in taxonomic composition of the country’s ichthyofauna. For the first time, we assessed the invasive potential of the introduced fishes by applying a uniform protocol, the Fish Invasiveness Screening Kit (FISK). Based on the total FISK scores, all the non-native fishes in Belarus were classified into two groups: high and medium risk of becoming invasive. In terms of the economic sectors at risk (‘aquacultural/fisheries’, ‘environmental’, and ‘nuisance’), all species were classified into three distinct groups. The highest risk to all of these sectors was posed by the brown bullhead Ameiurus nebulosus Le Sueur, 1819, gibel carp Carassius gibelio (Bloch, 1782), round goby Neogobius melanostomus (Pallas, 1814), Amur sleeper Percottus glenii Dybowski, 1877, and topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel, 1846). The two risk categories identified in the present study can be used in prioritizing the resources for the management of non-native fish species of Belarus and in countries with similar environmental conditions.

Key words: invasiveness potential, risk analysis, vector of introduction

Introduction

The Republic of Belarus is currently subject to introductions of many non-native species (Semenchenko and Pugachevskiy 2006; Karatayev et al. 2008), including fishes (Rizevsky and Ermolaeva 2002; Rizevsky 2004; Semencheko and Pugachevskiy 2006; Rizevsky et al. 2007; Mastitsky and Veres 2008). The geographic position of Belarus on the continental divide between the Black Sea and Baltic Sea basins as well as the country’s ongoing development of a market economy are expected to promote new invasions (Semenchenko and Pugachevskiy 2006; Karatayev et al. 2008). In addition, the translocations of non-native fishes that have already been introduced in Belarus are on the official agenda of the government, which aims at increasing the volume of fish production (The Republican Programme 2006). Despite the growing diversity and distribution of non-native fishes in Belarus, relevant studies documenting and quantifying their negative impacts on the environment and economy are scarce. At the same time, the identification of potentially harmful non-native fishes is a critical step in prioritizing the increasingly limited managerial resources. The main aim of the present study was to identify which of the existing non-native fishes of Belarus are potentially invasive. This is intended to assist environmental managers in deciding which of the existing non-native species would be suitable for use in aquaculture without posing a substantial risk to the environment. To achieve this aim, we first reviewed current knowledge on the diversity and distribution of non-native fishes of Belarus, and then classified the list of existing non-native species according to their invasiveness potential as defined using scores produced by FISK, the Fish Invasiveness Screening Kit (Copp et al. 2005b, 2009). Species that are found to pose particularly high risks to
Belarus should be subjected to subsequent full risk assessment (Copp et al. 2005b).

Material and methods

Study area

Belarus has a territory of approximately 200 000 km², which is characterised by a moderate continental climate. The highest mean monthly air temperatures and precipitation are typically observed from June to September, varying among different regions from 15–16°C and 280–310 mm, respectively (State Water Cadastre 2004). Inland standing waters are normally frozen from the late November or early December until March or early April (State Water Cadastre 2002). Based on the number of days with daily air temperature >15°C and the absence of Zone I, the territory of Belarus can be divided into two major fish-farming zones (Konchits et al. 2005): Zone II comprises ≈75% of the territory (76–90 days) and the rest falls under Zone III (91–105 days), and Zone IV, the latter represented by one large-scale warm-water fishery ‘Selets’ (Figure 1).

The territory of Belarus includes the continental divide between the Black Sea and Baltic Sea basins. About 57% of the territory drains into the Black Sea through the rivers Dnieper and Pripyat, whereas the remaining 43% drains into the Baltic Sea through the rivers Neman, Zapadnaya Dvina, Narev, Zapadnyi Bug, and Lovat (Blue treasure of Belarus 2007). In the late 1700s and early 1800s, three canals were constructed in Belarus to connect the River Dnieper (Black Sea basin) with the rivers of the Baltic Sea. These shipping corridors also facilitated the exchange of aquatic species between the Ponto-Caspian and Baltic biogeographical regions (Karataev et al. 2008). Only the Dnieper-Bug Canal (part of the ‘central European invasion corridor’; Bij de Vaate et al. 2002) is still in operation, whereas the other two canals were abandoned in the first half of the 20th century (Karataev et al. 2008).

There are 1072 lakes of >0.1 km², most of these are of glacial origin and situated in northern part of Belarus within the drainage basin of the River Zapadnaya Dvina. The river valleys of Belarus, in particular those of the rivers Dnieper, Pripyat and Sozh (Black Sea drainage), also contain >1000 floodplain lakes, which are typically very small (Kurlovich and Serafimovich 1981).

![Figure 1. Map of Belarus with the fish-farming zones indicated.](image-url)

Screening for potentially invasive fish species

The list of non-native fishes of Belarus examined in this study was compiled from reports published between 1999 and 2008 (Gulyugin and Kunitskiy 1999; Rizevsky and Ermolaeva 2002; Kunitskiy 2001; Zhukov 2002; Konchits et al. 2003a,b; Rizevsky 2004; Dudarenko 2005; Mamedov 2006; Kostousov 2007; Rizevsky et al. 2007). The taxonomy used in the present paper follows that in FishBase (http://www.fishbase.org). We used the biogeographical approach in defining a species as non-native (alien, exotic). A species (sub-species, variety or race) is considered non-native if it has not previously occurred in a geographical area because of a certain barrier, e.g. unsuitable climatic or hydrological regime, absence of hydrological links between drainage basins, etc. Overcoming a biogeographical barrier is usually mediated by humans, whether deliberately or unintentionally (Copp et al. 2005a).

Non-native species were considered invasive if they ‘…spread, with or without the aid of humans, in natural or semi-natural habitats, producing a significant change in composition, structure, or ecosystem processes, or cause severe economic losses to human activities’.
Non-native fish risk identification in Belarus

(Copp et al. 2005a). To assess the invasiveness potential of fishes alien to Belarusian waters, we used the Fish Invasiveness Screening Kit (FISK), a tool adapted for freshwater fishes by Copp et al. (2005b, 2009) from the Weed Risk Assessment scheme (Pheloung et al. 1999). FISK is a semi-quantitative scoring system, based in Excel® with Visual Basic® driven menus, composed of 49 questions on biogeography, invasion history, biology and ecology of a species under evaluation. With each response, the assessor must indicate his/her level of confidence, ranging from 4 (=highly certain) to 1 (=very uncertain). We calculated the mean certainty across all 49 questions to estimate the overall certainty for each of the 25 species tested, and the percentage of questions answered for a given species. The assessments of all species had initially been conducted by one of the authors (SEM) and then were discussed with other authors to come up with joint decisions. Consistent with Copp et al. (2005b), the FISK assessments were undertaken in conjunction with thorough literature and web-based searches, which included: primary papers in scientific journals available through the Web of Science, ScienceDirect, SpringerLink, and JSTOR; books and ‘grey’ literature; FishBase (http://www.fishbase.org); FAO (http://www.fao.org); Pesticide Action Network Pesticides Database (http://www.pesticideinfo.org), and regional exotic species databases.

The assessments were carried out using the calibrated version of FISK, which is freely available for download (v1.19, http://www.cefas.co.uk/4200.aspx). The critical thresholds for categorizing fish species as low, medium or high risk of being invasive have been calibrated by Copp et al. (2009), whereby scores <1 indicate low risk, scores of 1 to 18.9 indicate medium risk, and scores of ≥19 (to a maximum of 54) indicate high risk. These threshold values were used in the present study.

Although the total FISK score per se provides important information for developing management strategies for non-native fishes, it does not discriminate among species in relation to their potential effects. However, all the FISK questions are automatically grouped into several categories, including those that reflect the economic sectors that are most likely to be affected, i.e. ‘aquacultural/fisheries’ (8 questions), ‘environmental’ (8 questions), ‘nuisance’ (n = 2), and ‘combined’ (31 questions), with the scores assigned to the category ‘combined’ shared by the categories ‘aquacultural/fisheries’ and ‘environmental’ (Copp et al. 2005b). We used the summed scores for the categories ‘aquacultural/fisheries’, ‘environmental’ and ‘nuisance’ to reveal the groups of non-native fishes similar in their potential effects. This classification was facilitated by running the hierarchical cluster analysis based on Euclidian distance as the similarity measure and the group mean as clustering algorithm. Statistical significance of dissimilarity among the found clusters was tested by analysis of similarity (ANOSIM; 1000 permutations) at the significance level of 0.05 (Clarke and Warwick 2001). Both the cluster analysis and ANOSIM were performed with the help of PRIMER 6 software (PRIMER-E Ltd, 2006).

Results

Diversity and reproductive status of non-native fishes

As of the end of 2008, 25 non-native fishes representing six orders and eight families were reported in Belarus (Table 1). Only three species had been recorded before 1900; however, their number increased exponentially over the 20th century (Table 1; Figure 2). Seventeen alien fish species (68%), mainly originating from Asia or North America, were introduced intentionally for aquaculture, six species (24%) invaded the territory of Belarus from the neighboring countries by natural dispersal, and two species (8%) were likely introduced accidentally (Table 1).

Twelve species (48%) have established self-sustaining populations, including the brown bullhead Ameiurus nebulosus Le Sueur, 1819, gibel carp Carassius gibelio (Bloch, 1782), common carp Cyprinus carpio Linnaeus, 1758, Amur sazan Cyprinus carpio haematopterus Temminck et Schlegel, 1846, threespine stickleback Gasterosteus aculeatus Linnaeus, 1758, monkey goby Neogobius fluviatilis (Pallas, 1814), racer goby Neogobius gymnotrachalus (Kessler, 1857), round goby Neogobius melanostomus (Pallas, 1814), Amur sleeper Percottus gleniıı Dybowski, 1877, tubenose goby Proterorhinus marmoratus (Pallas, 1814), topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel, 1846), and ninespine stickleback Pungitius pungitius (Linnaeus, 1758). However, the current geographical distribution of these established species is not
Table 1. Non-native fishes documented in Belarus by the end of 2008 (except the hybrids and species with uncertain status). Suspected vectors of introduction: AQ – aquaculture, NS – natural spread from the adjacent territories, UN – unintentional, OR – ornamental. Donor area: HA – Holarctic, NA – North America, PC – Ponto-Caspian, AS – South-Eastern Asia.

Species	Donor area	Date of introduction or first record	Vector of introduction	Distribution	Percent of FISK questions answered
Acipenser rathenus	PC	1948	AQ, NS	Naturally occurs in the River Dnieper basin, though extremely rarely	91.8
Ameiurus nebulosus	NA	1935	AQ	Zapadnyi Bug and Pripyat river basins	91.8
Aristichthys nobilis	AS	1965	AQ	Fish farms, several natural lakes	89.8
Carassius gibelio	AS	1864	AQ	Basins of all large rivers	91.8
Coregonus lavaretus maraenoidei	HA	1926	AQ	A few natural waterbodies within the Zapadnaya Dvina and Neman river basins	85.7
Coregonus peled	HA	1957	AQ	Fish farms; natural waterbodies, especially in the northern part of Belarus	91.8
Ctenopharyngodon idella	AS	1965	AQ	Fish farms; several natural waterbodies	89.8
Cyprinus carpio	PC	Late 16th century	AQ, NS	Fish farms and natural waterbodies all over the country	91.8
Cyprinus carpio haematopterus	AS	1948	AQ	Fish farms and natural waterbodies all over the country	85.7
Gasterosteus aculeatus	HA	Second half of the 20th century	NS	Naturally occurs in rivers of the Baltic Sea basin; penetrated into the River Dnieper basin	85.7
Hypophthalmichthys molitrix	AS	1965	AQ	Fish farms; several natural waterbodies	89.8
Ictalurus punctatus	NA	1979	AQ	Lake Beloe (cooling reservoir for the Berezovskaya Power Plant); fish farms	89.8
Ictiothys belahus	NA	1976	AQ	Fish farms	91.8
Ictiothys cyrinellus	NA	1976	AQ	Fish farms	89.8
Ictiothys niger	NA	1976	AQ	Fish farms	89.8
Mylopharyngodon piceus	AS	1977	AQ	Fish farms	89.8
Neogobius fluviatilis	PC	1937	NS	Dnieper and Zapadnyi Bug river basins	87.8
Neogobius gymnnotrachelus	PC	1998	NS	Dnieper and Zapadnyi Bug River basins	81.6
Neogobius melanostomus	PC	1998	NS	Dnieper River basin	91.8
Oncorhyncus mykiss	NA	1956	AQ	Fish farms; streams and rivers adjacent to some of the fish farms	89.8
Percottus glenii	AS	1972	UN, OR?	Dnieper River and Zapadaya Dvina river basins	91.8
Polyodon spathula	NA	2001	AQ	Fish farms	89.8
Protoerophysus marmoratus	PC	2007	NS	River Pripyat	87.8
Pseudorasbora parva	NA	1996	UN	River Ptitch	91.8
Pungitius pungitius	HA	1906	NS	Neman and Pripyat river basins	85.7

1 Adamovich et al. (2009); 2 Borovik (1969); 3 Chesalin (1958); 4 Dudarenko et al. (2005); 5 Gratsiansian (1907), cited after Semenchenko et al. (2009); 6 Gulyugin and Kunitskiy (1999); 7 Kokhnenko and Borovik (1973); 8 Konchits (2003a); 9 Konchits et al. (2003b); 10 Kostyuchenko (1972); 11 Kunitskiy (2001); 12 Kunitskiy and Plyuta (1999); 13 Makushok (1951); 14 Mamedov (2006); 15 Rizevsky (2004); 16 Rizevsky and Ermolaeva (2002); 17 Rizevsky et al. (1999); 18 Rizevsky et al. (2007); 19 Schetinina (1960); 20 Schetinina (1864), cited after Zhukov (1988); 21 Shumak and Mischenko (1989); 22 Vorontsov (1937); 23 Zelenskiy (1864), cited after Semenchenko et al. (2009); 24 Zhukov (1988); 25 Zhukov (1994); 26 Zhukov et al. (1986).

For example, gibel carp, common carp, and Amur sazan occur in nearly all major river basins of Belarus, whereas the distribution of Ponto-Caspian gobies is restricted to the Dnieper and Pripyat river basins in the southern part of the country (Table 1).

Five species (20%) cannot reproduce under the climatic and hydrological conditions of Belarus: bighead carp Aristichthys nobilis (Richardson, 1845), grass carp Ctenopharyngodon idella (Valenciennes, 1844), silver carp Hypophthalmichthys molitrix (Valenciennes, 1844), black carp Mylopharyngodon piceus (Richardson, 1846), and rainbow trout Oncorhyncus mykiss (Walbaum, 1792). These species occur mainly in the ponds of fish farms and/or in a few stocked natural waterbodies (Table 1). Channel catfish Ictalurus punctatus (Rafinesque, 1818) is also unable to reproduce in Belarus under natural conditions; however, this
species has established a self-sustaining population in the warmer conditions of Lake Beloe, which serves as a power plant cooling reservoir.

The other seven species are able to reproduce but currently do not occur in open waters: the smallmouth buffalo *Ictiobus bubalus* (Rafinesque, 1818), bigmouth buffalo *I. cyprinellus* (Valenciennes, 1844), black buffalo *I. niger* (Rafinesque, 1819), and paddlefish *Polyodon spathula* (Walbaum, 1772) or have reached rather limited distribution and abundance: the sterlet *Acipenser ruthenus* (Linnaeus, 1758), peled Coregonus peled (Gmelin, 1789), and peipsi whitefish Coregonus lavaretus maraenoides Berg, 1916.

FISK analyses

Twelve of the 25 examined fish species received FISK scores ≥19 (scores between 19 and 37), and thus could be classified as species posing high risk of becoming invasive in Belarus (Figure 3). The remaining 13 species were classified as medium risk (scores from 3 to 18). The fraction of questions answered for each of the 25 assessment runs was high and did not vary substantially among species (Table 1). The mean certainty of responses to FISK questions was also high (Figure 4), varying among species from 3.3±0.09 to 3.7±0.06 (± SE). The five questions answered with the lowest certainty were related to dispersal and impacts of the tested species: Q45 – Any life stage likely to survive out of water transport? (2.9±0.07); Q48: Does the species tolerate or benefit from the environmental disturbance? (2.9±0.13); Q39: Are life stages likely to be dispersed as a contaminant of commodities? (3.0±0.08); Q15: Does the species outcompete with native species? (3.0±0.12); Q12: In the species naturalized range, are there impacts to rivers, lakes or amenity values? (3.0±0.15).

Three distinct groups of fish species were revealed by cluster analysis, differing in the level of risk posed to the three sectors examined, i.e. ‘aquacultural/fisheries’, ‘environmental’ and ‘nuisance’ (Figure 5). For all of these categories, the level of risk was found to increase gradually from the group of species A to the group C (Figure 6). The greatest differences among groups were observed for the aquacultural/fisheries and environmental sectors, whereas the risk of becoming nuisance was similarly low in all of the fishes. In contrast to the levels of risk,

the number of species gradually decreased from 12 in group A (48% of all species examined) to 5 in group C (20%) (Figure 5). The five species found to pose the highest risk were brown bullhead, gibel carp, round goby, Amur sleeper, and topmouth gudgeon.

Discussion

Introduction histories and diversity of non-native fishes

Of the 65 fish taxa recorded in Belarus by the end of 2008, 25 species (38%) are non-native. Twelve of these 25 species (48%) established self-sustaining populations in open waters (Table 1). Non-native species introductions have thus increased considerably the diversity of fishes in Belarus, with four of the eight introduced fish families (Catastomidae, Gobiidae, Ictaluridae, and Polyodontidae) being not previously recorded in the country. Similarly, Karatayev et al. (2008) found a very high proportion of non-native species in selected taxonomic groups of aquatic benthic invertebrates of Belarus, indicating that invaders can strongly shift the taxonomic structure of native benthic communities. Exponential growth of the number of non-native fishes revealed in our study (Figure 2) suggests that the rate of taxonomic shifts in native fish fauna of Belarus may increase accordingly.

The true number of non-native fish species currently present in the country is probably higher than reported here. For example, there have been oral reports in the mass media that
suggest the presence of the black-striped pipefish *Syngnathus abaster* Risso, 1827, southern nine-spined stickleback *Pungitius platygaster* (Kessler, 1859) (Belayavskaya 2008), spotted gar *Lepisosteus oculatus* Winchell, 1864 (ONT TV-channel 2007), the North African catfish *Clarias gariepinus* (Burchell, 1822), and several other species. Field surveys are needed to confirm the records of these species and to reveal the extent of their distribution, their abundance, and whether they can reproduce under natural conditions of Belarus. Another category of species with uncertain status includes those reared at private fish farms in closed recirculating water facilities, e.g., Russian sturgeon *Acipenser gueldenstaedtii* Brandt & Ratzeburg, 1833 and Siberian sturgeon *Acipenser baerii baerii* Brandt, 1869 (Mamedov 2006). Although the escape of such species into the wild is unlikely and has not been reported thus far, this possibility does exist and should be taken into account in future risk assessments.

Although the first intentional introductions of non-native fishes to Belarus took place at the end of 16th century (Zhukov 1994), an increased rate of introductions did not occur until after World War II (Kostyuchenko 1970; Kokhnenko and Borovik 1973; Figure 2), a pattern in line with that observed in most European countries (Casal 2006; Gozlan 2008; Turchini and De Silva 2008).
Non-native fish risk identification in Belarus

Figure 5. Clusterization of the non-native fish species of Belarus based on the risks they pose to the three economic sectors (‘aquacultural/fisheries’, ‘environmental’, and ‘nuisance’). Three statistically distinct risk groups (denoted ‘A’ to ‘C’) were revealed at the Euclidian distance of 11.2 (ANOSIM, P < 0.001). The abbreviations of species names correspond to those in Figure 3.

Figure 6. The mean sector-related FISK scores in the three risk groups of fishes revealed by the cluster analysis (see Figure 5).

2008). Non-native fish introductions to Belarus have also followed the global trend, with the majority of species (17 species, or 68%) introduced deliberately for aquaculture, and most species originating from Asia or North America (Table 1). Aquaculture is the leading introduction vector for non-native fishes worldwide (Casal 2006; Gozlan 2008; Turchini and De Silva 2008), being linked to global population growth and the inability of capture-based fisheries to respond to the demand for fish proteins (Casal 2006). Thus, deliberate introductions and translocations may remain as the main vectors of spread of non-native fishes in Belarus. For example, the Belarus Republican Programme for Development of the Fish Industry (2006) implies a number of measures to increase the production of fish in the country, including a wider utilization of Asian phytophagous carps, common carp, gibel carp, and rainbow trout. The implementation of this programme can, therefore, result in multiple translocations of non-native fishes that are already present in the country.
The second-most important pathway for non-native fish introductions to Belarus was by natural dispersal from adjacent countries (6 of 25 species), though this type of dispersal has largely been the indirect consequence of human activities. For example, the upstream ‘stepping stone’ (Havel et al. 2005) invasions of Belarusian river basins by four Ponto-Caspian gobies (Table 1) has been facilitated by the creation of river impoundments and canal construction; this now characterizes the man-made hydrologic connection between the rivers Dnieper (Black Sea basin) and Zapadniy Bug (Baltic Sea basin), which was used by these Ponto-Caspian gobies to expand westward through Belarus into Poland (Grabowska et al. 2008). The Ukraine has been and will likely remain the main donor to Belarus of non-native aquatic species that arrive by natural dispersal or unintentional introduction (Gulyugin and Kunitskiy 1999; Rizevsky 2004; Semenchenko and Pugachevskiy 2006; Rizevsky et al. 2007; Karatayev et al. 2008). Several years ago, Rizevsky and Ermolaeva (2002) predicted the arrival of three gobiid species from the Ukrainian territory: the bighead goby Neogobius kessleri (Günther, 1861), tubenose goby Proterorhinus marmoratus, and stellate tadpole-goby Benthophilus stellatus (Sauvage, 1874). The recent record of P. marmoratus in the Belarusian section of the River Pripyat (Rizevsky et al. 2007) proves their forecast correct and suggests that the other two gobiids may also be revealed in the near future.

Natural dispersal has also been used by threespine and ninespine sticklebacks, which are native to Belarusian rivers that drain into the Baltic Sea, to invade rivers of the Black Sea via a network of ameliorative canals (Zhukov et al. 1986; Zhukov 1988; Kunitskiy 2001; Adamovich et al. 2009). However, a morphological study of threespine stickleback (Kunitskiy 2001) has hypothesized an alternative pathway through the Belarusian section of the River Dnieper via upstream migration from the Ukraine, where this species widely occurs in the northern Black Sea region.

Two species introduced accidentally to Belarus (Table 1) are topmouth gudgeon and Amur sleeper. Topmouth gudgeon was first recorded in 1996 from the upper River Ptitch (a tributary of the River Pripyat) and is thought to have escaped from a nearby fish-farm, where it was delivered with contaminated consignments of Asian carp (Kunitskiy and Plyuta 1999).

A similar means of introduction is hypothesized for Amur sleeper, though Amur sleeper is a popular ornamental species and may have also been deliberately released into the wild by aquarium keepers (Rizevsky et al. 1999; Kunitskiy 2001). Intentional release or escape of the species kept by aquarium keepers is an important pathway of alien fish introductions (e.g., Copp et al. 2005c; Rixon et al. 2005). The pet fish trade is popular in Belarus, with over 50 non-native fish species available in pet shops of the country (Lebedev 2004). This is likely to increase the risk of pet fish introductions; however, this pathway has not been assessed for Belarus and therefore requires investigation.

Risk classifications

Similar to Copp et al. (2009), who found 51% (34 species) and 48% (32 species) of 67 non-native fishes assessed for the United Kingdom to pose high risk and medium risk, respectively, we classified 48% and 52% of fishes as posing high and medium risks, respectively, of becoming invasive in Belarus (Figure 2). Also, many of the species assessed by Copp et al. (2009) received total FISK scores similar to those in the present study (Figure 3). Nevertheless, some of the fishes ranked as medium risk in our study were classified as high risk by Copp et al. (2009), who conducted dual independent assessments for each of the species. The most drastic differences between the studies were found for the peipsi whitefish, racer goby, bighead carp, grass carp, Chinese black carp, and silver carp (Figure 3). Between-assessor differences in risk category classification are not uncommon in FISK exercises (18% of all species examined by Copp et al. 2009), emphasizing the importance of repeated independent assessments for a species. Such assessments would greatly improve our classification, especially for the aforementioned six species.

The lowest certainty in our assessments was assigned to the five questions related to dispersal and impacts of the examined species. Not surprisingly, similar types of questions were answered with the lowest certainty by Copp et al. (2009). Major obstacles in prediction of non-native species impacts are the limited knowledge of biological traits and a scarcity or complete lack of information on the species’ quantitative effects. However, the high percentage of questions answered (Table 1) and the high overall certainty of responses (Figure 4) suggest
that our current risk classification of the non-native fishes of Belarus is reliable and can be used for prioritizing the management resources.

In terms of the economic sectors under threat (‘aquacultural/fisheries’, ‘environmental’, and ‘nuiance’), the non-native fishes of group C (brown bullhead, gibel carp, round goby, Amur sleeper, and topmouth gudgeon) represent 20% of all the fishes assessed (Figure 5). This agrees roughly with the ‘tens rule’ (Williamson and Fitter 1996), which predicts that 5% to 20% (on average 10%) of established non-native species become pests in the introduced areas. These five species have previously been documented to impose a wide range of negative impacts on invaded waters, including competition with non-native fishes for food and spawning substrates, predation on native biota, the introduction and transmission of infectious agents, and reductions in water quality (Table 2). Although poorly documented to date, similar impacts have been postulated in Belarus. For example, Zhukov (1988) hypothesized that introduced gibel carp will displace its native congener, crucian carp Carassius carassius, such as reported for the lower Danube in Romania (Navodaru et al. 2002). Indeed, results from an extensive fish community survey conducted in the Belarusian section of the River Dnieper during 2002–2003 (Adamovich et al. 2009) failed to find crucian carp, which was previously common, and gibel carp had become one of the dominant species. Similarly, brown

Species	Competition	Predation on native biota	Hostling of pathogenic diseases	Water quality reduction
Carassius gibelio	Strongly competes for food with native fishes	Consumes large amounts of native benthos and zooplankton	Hosts several recognized parasites, including the ciliates Ichthyophthirius multifiliis and Clodolentella cyprini, and the myxosporean Hoferellus carassii	Increases turbidity due to the (i) sucking up sediments when feeding on benthos, and (ii) predation upon zooplankton, resulting in reduced grazing on phytoplankton
Neogobius melanostomus	Severely affects the recruitment of native fishes through competition for food and aggressive displacement from spawning sites	Voracious predation on native benthos, fish eggs, and fish larvae	Hosts a diverse range of pathogens, including such pathogenic organisms as the nematode Raphidascaris acus and acanthocephalan Pomphorynchus laevis. Supposedly, promotes the outbreaks of Clostridium botulinum in the Great Lakes	–
Percottus glenii	Strongly competes for food with native fishes	Voracious predation on native benthos and fish, which in combination with strong competition for food often results in local extirpations of native fishes and other aquatic species	In its native range, has been reported as host of the oriental liver fluke Clonorchis sinensis, a pathogenic parasite of humans. At least one exotic parasite has been introduced along with P. glenii to Europe, i.e. the tapeworm Nippostrongylus megurnda	
Pseudorasbora parva	Strongly competes for food with native fishes	Consumes large amounts of native planktonic crustaceans and juveniles of valuable fish species, and is known to be a facultative parasite	Hosts a rosette-like intracellular eukaryotic parasite, which is a non-specific highly virulent parasite of native European fishes	Feeds on larger species of zooplankton, resulting in an increase of the phytoplankton abundance, and further in facilitation of eutrophication

1Balik et al. (2003); 2Bogutskaya and Naseka (2002); 3Bogutskaya et al. (2004); 4Corkum et al. (2004); 5Crivelli (1995); 6Declerck et al. (2002); 7Gaygusuz et al. (2007); 8Gozlan et al. (2005); 9Košuthová et al. (2004); 10Kozlov (1974); 11Lun et al. (2005); 12Makushok (1951); 13Molnár et al. (1989); 14Ondráčková et al. (2006); 15Petrusevskiy and Bauer (1953); 16Reshetnikov (2003); 17Rowe (2007); 18Şaşi and Balik (2003); 19Withowski (2006); 20Trombitskiy and Kakhovskiy (1987); 21Libovský et al. (1990)
bullhead has become a dominant species in industrial catchments from several lakes in the southern part of Belarus (Makushok 1951), though the kind and extent of the impacts on native species remain poorly understood. Given the variety of potential adverse impacts associated with species from group C (Table 2), especially on the aquacultural/fisheries and environmental sectors, a precautionary approach would be appropriate, with control measures recommended to prevent any further dispersal of these species in Belarus.

The FISK scores associated with members of other two clusters (A and B; Figure 5) were lower (Figure 6); however, the release of these species should be subject to regulation and appropriate risk assessment so that managerial decisions are informed and balanced. Otherwise, any economic profits for aquaculture or other commercial purposes could be outweighed by the subsequent costs to eradicate the species or to mitigate their negative impacts (Turchini and De Silva 2008).

One of the recent examples of ill-conceived aquaculture projects implemented in Belarus is the introduction of grass carp into Lake Bolshie Shvakshty, which is located in Narochanskiy National Park. Despite the inability of this phytophagous fish to reproduce naturally in Belarus (Zhukov 1988), the high stocking rates employed have resulted in a catastrophic decline in the lake’s water quality and thus its value as a recreational amenity (Ostapenya and Zhukova 2009). We hope that the risk categorization of non-native fishes in the present study will help environmental managers of Belarus to plan sustainable and ecologically sound aquaculture projects that will not repeat the story of Lake Bolshie Shvakshty. The outcome of the present study can also be used in neighboring countries with similar environmental conditions.

New species of non-native freshwater fish continue to arrive in Belarus, and since completion of this study, five new species have been reported in scientific literature: the Black Sea sprat Clupeonella cultriventris, southern ninespine stickleback Pungitius platygaster, Syngnathus abaster (syn. nigrilineatus) Eichwald, 1831 (Semenchenko et al. 2009), white-finned gudgeon Romanooggio albipinnatus (Lukasch, 1933), and golden spined loach Sabanejewia aurata (De Filippi, 1863) (Rizevsky et al. 2009). These new species will be assessed with FISK in the near future.

Acknowledgements

The participation of SEM in the 16th International Conference on Aquatic Invasive Species (ICAIS) to present this paper was supported by the Research Foundation of SUNY at Buffalo State College. We are very grateful to an anonymous reviewer whose constructive recommendations substantially improved the manuscript. Dr. Frances Lucy (Institute of Technology, Sligo, Ireland) is acknowledged for correction of English of the manuscript. Publication of this paper was supported by the European Commission FP7 project EnviroGRIDS (http://www.envirogrids.net).

References

Adamovich B, Voronova G, Prischepov G, Kucko L, Sennicova V (2009) The change of trophic state downstream in Dnieper River and influence of it on fish community. In: Proceedings of the IV International conference ‘Fishery’, 27–29 May 2009, Belgrade-Zemun. Faculty of Agriculture University of Belgrade, Belgrade, pp 231–238

Balik I, Karasahin B, Ozrik R, Cubuk H, Uysal R (2003) Diet of silver crucian carp Carassius gibelio in Lake Eğirdir. Turkish Journal of Fisheries and Aquatic Sciences 3: 87–91

Belyavskay O (2008) A new exotic fish species found in Belarus. http://news.tut.by/kaleidoscope/115717.html (Accessed on 13 December 2009)

Bij de Vaate A, Jazdzewski K, Kelelaars HAM, Gollas S, Van der Velde G (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 59: 1159-1174, doi:10.1139/f02-098

Blue treasure of Belarus (2007) Blue treasure of Belarus: rivers, lakes, reservoirs, and their tourist potential. Encyclopaedia. BelEn Press, Minsk, 480 pp

Bogutskaya NG, Naseka AM (2002) Freshwater fishes of Russia: Percottus glenii Dybowski, 1877. http://www.zin.ru/Animalia/Pisces (Accessed on 13 December 2009)

Bogutskaya NG, Boldyrev VS, Naseka AM (2004) The gobies Neogobiinae (Teleostei, Gobiidae) in ecosystems of Eurasia and North America. In: Alimov AF, Bogutskaya NG (eds) Biological invasions in aquatic and terrestrial ecosystems. KMK Ltd., Moscow, pp 254-268

Borovik EA (1969) Rainbow trout. Nauka i Technika, Minsk, 154 pp

Casal CMV (2006) Global documentation of fish introductions: the growing crisis and recommendations for action. Biological Invasions 8: 3-11, doi:10.1007/s10530-005-0231-3

Chesalin VA (1958) Establishment of the Amur sazan in waterbodies of Belarus. Trudy BelgIRKh 2: 95-114

Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E Ltd., Plymouth, 172 pp

Copp GH, Bianco PG, Bogutskaya NG, Erós T, Falka I, Ferreira MT, Fox MG, Freyhof J, Gozlan RE, Grabowska J, Kováč V, Moreno-Amich R, Naseka AM, Peňáz M, Povž M, Przybylski M, Robillard M, Russell IC, Sennicova V, Sürger S, Vila-Gispert A, Wiesner C (2005a) To be, or not to be, a non-native freshwater fish? Journal of Applied Ichthyology 21: 242-262, doi:10.1111/j.1439-0426.2005.00690.x
Copp GH, Garthwaite R, Gozlan RE (2005b) Risk identification and assessment of non-native freshwater fishes: concepts and perspectives on protocols for the UK. Science Series Technical Report, Cefas Lowestoft, 32 pp

Copp GH, Wesley KJ, Vilizzi L (2005c) Pathways of ornamental and aquarium fish introductions into urban ponds of Epping Forest (London, England): the human vector. Journal of Applied Ichthyology 21: 263-274, doi:10.1111/j.1439-0426.2005.00673.x

Copp GH, Vilizzi L, Mumford J, Fenwick GV, Godard MJ, Gozlan RE (2009) Calibration of FISK, an invasiveness screening tool for nonnative freshwater fishes. Risk Analysis 29: 457-467, doi:10.1111/j.1539-6924.2008.01159.x

Corkum LD, Sapota MR, Skora KE (2004) The round goby, Neogobius melanostomus, a fish invader on both sides of the Atlantic Ocean. Biological Invasions 6: 173-181, doi:10.1023/B:BINV.0000022136.43502.db

Crivelli AJ (1995) Are fish introductions a threat to endemic freshwater fishes in the Northern Mediterranean region? Biological Conservation 72: 311-319, doi:10.1016/0006-3207(94)00092-5

Declerck S, Louette G, Bie T, Meester L (2002) Patterns of diet overlap between populations of non-indigenous and native fishes in shallow ponds. Journal of Fish Biology 61: 1182-1197, doi:10.1006/jfbi.2002.10464.x

Dudarenko LS, Tarazevich EV, Suzanov VB (2005) On the possibility of wintering of the black carp in waterbodies of Belarus. Voprosy Rybno Khozyaystva 21: 56-59

Gaygusuz Ö, Tarkan AS, Gaygusuz CG (2007) Changes in the fish community of the Ömerli Reservoir (Turkey) following the introduction of non-native gibel carp Carassius gibelio (Bloch, 1782) and other human impacts. Aquatic Invasions 2: 117-120, doi:10.3391/ai.2007.2.2.6

Gozlan RE (2008) Introduction of non-native freshwater fish: is it all bad? Fish and Fisheries 9: 106-115, doi:10.1111/j.1467-2135.2007.00267.x

Grabowska J, Pietraszewski D, Ondračková D (2008) On the position of aquaria fishes in ecosystem of aquaculture systems. Vestnik Belorusskogo Gosudarstvennogo Universiteta. Ser. 2. 1: 68-72

Gulyugin SY, Kunitskiy DF (1999) New data on range extension of three gobid species: N. flavitilis, N. melanostomus, N. gynnochrachelus. Abstracts of the International scientific-technical conference, 17-19 November 1998. Kaliningrad, p 5

Havel JE, Lee CE, Zanden JMV (2005) Do reservoirs facilitate invasions into landscapes? BioScience 55: 518-525, doi:10.1641/0006-3568(2005)055[0151:DRFHIL]2.0.CO;2

Karatayev AY, Mastitsky SE, Burlakova LE, Olenin S (2008) Past, present, and future of the central European corridor for aquatic invasions in Belarus. Biological Invasions 10: 215-232, doi:10.1007/s10530-007-9124-y

Kokhenenko SV, Borovik EA (1973) Introduction and acclimatization of fishes in the BSSR. Proceedings XV Scientific conference on studies of inland waters of the Baltic Sea region. Vysheshebaya Shkola Press, Minsk, pp 168-171

Konchits VV (2003a) North American fishes of the genus Buffalo (Ictiobus) – perspective candidates for culturing in waterbodies of Belarus (biological traits, technology of rearing, and economic importance). Tonpik Press, Minsk, 104 pp

Konchits VV, Chutaeva AI, Mamedov RA, Dokuchaeva SI, Sennikova VD, Us VV, Fedorova VG, Khasevich AI (2003b) First experience of the rearing of paddlefish in fish farms of Belarus. Voprosy Rybnoho Khozyaystva Belarusi 19: 102-112

Konchits VV, Kostousov VG, Stolovich VN, Voronova GP, Skurat EK, Chutaeva AI, Tarazevich EV (2005) The system of fish industry of Belarus. Tonpik Press, Minsk, 144 pp

Kostousov VG (2007) Genesis of the ichthyofauna of Belarus: the analysis of hypotheses and a modern view. Voprosy Rybnoho Khozyaystva Belarusi 20: 5-11

Kostyuchenko AA (1970) Acclimatization of fishes in the waterbodies of Belarus. Voprosy Rybnoho Khozyaystva Belarusi 7: 147-180

Kostyuchenko AA (1972) Results of the introduction of fishes into the natural waterbodies of Belarus. Abstracts of the scientific conference on the results and perspectives of acclimatization of fishes and invertebrates in waterbodies of the USSR. Frunze, pp 45-49

Kolushová L, Letková V, Kolšo J, Kolšh P (2004) First record of Nippotheia mogurndae Yamaguti and Miyata, 1940 (Cestoda: Nippotheiidae), a parasite of Percottus glenii Dybowski, 1877, from Europe. Helminthology 41: 55-57

Kozlov VI (1974) The topmouth gudgeon – Pseudorasbora parva (Schl.) – new species in ichthyofauna of the Dnieper basin. Vestnik Zoologii 1: 77-78

Kunitskiy DF (2001) Change in the structure of fish populations in waterbodies of the Pripyat River basin under conditions of anthropogenic transformation of Polesye depression. PhD Thesis. Institute of Zoology of the National Academy of Sciences of the Republic of Belarus, Minsk, 126 pp

Kunitskiy DF, Plyuta MV (1999) The topmouth gudgeon (Pseudorasbora parva) – a new species in fish fauna of Belarus. Vestsi Natsyjnalnay Akademi Nauk Belarusi. Serja Biyalagichnykh Navuk 3: 122-125

Kurlovich NN, Serafimovich AA (1981) Lake resources of Belarus. Vestnik Belaruskogo Gosudarstvennego Universiteta. Ser. 2. 1: 68-72

Lebedev NA (2004) Species composition of aquaria fishes in the Republic of Belarus. Vestnik Mavzyskaga Dzyarzhaunaga Pedagagichnaga Universiteta 1: 27-31

Libosvárský C, Baruš CV, Sterba O (1990) Facultative parasitism of Pseudorasbora parva (Pisces). Folia Zoologica 39: 355-360

Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY (2005) Clonorchiasis: a key foodborne zoonosis in China. The Lancet Infectious Diseases 5: 31-41, doi:10.1016/S1473-3099(04)01252-6

Makushok ME (1951) The brown catfish: its economic significance and biological traits. Academia Nauk BSSR Press, Minsk, 64 pp

Mamedov RA (2006) The modern state and perspectives of commercial culturing of sturgeons in Belarus. Voprosy Rybnoho Khozyaystva Belarusi 22: 134-137

Mastitsky SE, Veres YK (2008) Ecological risk associated with the spread of alien species of fishes across the waterbodies of Belarus. Voprosy Rybnoho Khozyaystva Belarusi 24: 308-310

ONT TV-channel (2007) Ancient predator threatens Belarusian ecosystems. http://ont.by/news/our_news/0022995/ (Accessed on 13 December 2009)
Молнар К., Фишер-Шерль Т., Баска Ф., Хофманн Р. (1989) Анапест в гольфштах Carassius auratus и гibel карп. Carassius auratus gibelio. Diseases of Aquatic Organisms 7: 89-95

Наводару И., Буйсо Дж., Старас М. (2002) Effects of hydrology and water quality on the fish community in Danube delta lakes. International Review of Hydrobiology 87: 329-348, doi:10.1016/S0377-0257(02)00076-4

Ондрачкова М., Давидова М., Печникова М., Блацек Р., Гельн М., Валов З., Чернь В., Юрацдя П. (2006) Метазоан паразиты Neogobius fishes in the Slovak section of the River Danube. Journal of Applied Ichthyology 21: 345-349, doi:10.1111/j.1439-0426.2005.00682.x

Остапенка А.Р., Зукова К. (2009) Change of the ecological state of Lake Bolshe Shvakhits and its reasons. Doklady National Academy of Sciences Belarus 53: 98-101

Петрушенчик Г., Бойер О.Н. (1953) Influence of the acclimatization of fishes on their parasitoфаuna. In: Proceedings of the All-Union Scientific-Research Institute on Lake and River Fisheries 32: 259-273

Фелонг П.С., Пилсман П., Халлоу С.Р. (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. Journal of Environmental Management 57: 239-251, doi:10.1006/jema.1999.0297

Решетников А.Н. (2003) The introduced fish, rotan (Percottus gleni), depresses populations of aquatic animals (macroinvertebrates, amphibians, and a fish). Hydrobiologia 510: 83-90, doi:10.1023/B:HYDR.0000008634.92659.84

Риcxон К.М., Дугган И.С., Бергер Н.М., Риччарди А., Максаак И. (2005) Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes. Biodiversity and Conservation 14: 1365-1381, doi:10.1007/s10531-004-9663-9

Ризевский В.К. (2004) Invasive fishes of the waterbodies of Belarus. Voprosy Rybnogo Khозяйства Беларуси 20: 68-75

Ризевский В.К., Ермолаева И.А. (2002) Representatives of the family Gobiidae in waterbodies of Belarus. Voprosy Rybnogo Khозяйства Беларуси 18: 241-250

Ризевский В.К., Плюта М.В., Ермолаева И.А., Адамовский В.В. (1999) Morphological description of rotan (Percottus gleni) Dybowski) from the waterbodies of Minsk municipal system. Vestsi Natsyanalnay Akademii Navuk Belarus. Серыя Біялагічних Наук 3: 119-121

Ризевский В., Плюта М., Лешенко А., Ермолаева И. (2007) First report of the invasive Pontos-Caspian tubenose goby Proterorhinus marmoratus (Pallas, 1814) from the River Pripyat, Belarus. Aquatic Invasions 2: 275-277, doi:10.3391/aiv.2007.2.3.15

Ризевский В.К., Плюта М.В., Лешенко А., Ермолаева И., Новик И. (2009) New species in ichthyofauna of Belarus. Doklady National Academy of Sciences Belarus 53: 95-97

Роу Д. (2007) Exotic fish introductions and the decline of water clarity in small North Island, New Zealand lakes: a multi-species problem. Hydrobiologia 583: 345-358, doi:10.1007/s10750-007-0646-1

Şaşi H., Балык S. (2003) The distribution of three exotic fishes in Anatolia. Turkish Journal of Zoology 27: 319-322

Сечетинина Л.А. (1960) Results of the introduction of sterlet into the rivers Pechora and Zapadnaya Divna. Scientific-Technical Bulletin of GosNIOРKh 10: 32-33

Семенченко В.П., Пугачевский А.В. (2006) The problem of alien species in fauna and flora of Belarus. Nauka i Innovatissy 44: 15-20

Семенченко В., Ризевский В., Маситис В., Везнховец В., Плюта М., Ралюк И., Ланко Т. (2009) Checklist of aquatic alien species established in large river basins of Belarus. Aquatic Invasions 4: 337-347, doi:10.3391/ai.2009.4.2.5

Sheitfeld AL. (1958) Acclimatization of whitefish in Lake Lukomskoe. Proceedings of the Belarusian Research Institute of Fishery 2: 26-59

Шумак В.В., Мисченко Н.В. (1989) First results of acclimatization of the channel catfish Ictalurus punctatus in the cooling reservoir Lake Beloe. In: Proceedings of the All-Union workshop on new objects and technologies of fishery on thermal waters. VNIIPRKH Press, Moscow, pp 92-93

State Water Cadastre (2002) State Water Cadastre: aquatic resources, their use and water quality. Minsk, 136 pp

State Water Cadastre (2004) State Water Cadastre: aquatic resources, their use and water quality. Minsk, 128 pp

The Republican Programme (2006) The Republican Programme for Development of Fish Industry. Approved by the Council of Ministers of the Republic of Belarus on 19 April 2006, Minsk

Трбмбйтскй ИД., Кахковский Е. (1987) On the facultative parasitism of the chebachok, Pseudorasbora parva, in fish ponds. Journal of Ichthyology 27: 180-182

Торхини Г.М., Де Сильва С.С. (2008) Bio-economic and ethical impacts of alien finfish culture in European inland waters. Aquaculture International 16: 243-272, doi:10.1007/s10499-007-9414-y

Воронцов И.М. (1937) Composition of fish fauna in waterbodies of the western part of the BSSR and description of fish fauna of the upper Dnieper basin. Fauna i Ekologiya 3: 219-228

Уэлламонтон М., Фиттер А. (1996) The varying success of invaders. Ecology 77: 1661-1666, doi:10.2307/2265769

Витковский А. (2006) NOBANIS – Invasive Alien Species Fact Sheet – Pseudorasbora parva. Database of the North European and Baltic Network on Invasive Alien Species – NOBANIS, http://www.nobanis.org (Accessed on 13 December 2009)

Зуков П.И. (1988) Encyclopedia on ecology of freshwater fishes. Nauka i Tekhnika Press, Minsk, 299 pp

Зуков П.И. (1994) The common carp: ecology and economic importance. Nauka i Tekhnika Press, Minsk, 85 pp

Зуков П.И. (2002) General description of the ichthyofauna of Belarus. Voprosy Rybnogho Khозяйства Беларуси 18: 28-36

Зуков П., Кунстйдт Ф., Ризевский В.К. (1986) Invasion of the threespine stickleback into the Dnieper River basin. Voprosy Ikhtiologi 26: 515-517