Intervention Effect of Rehabilitation Robotic Bed Under Machine Learning Combined With Intensive Motor Training on Stroke Patients With Hemiplegia

Guangliang Liu 1,*, Haiqin Cai 2 and Naruemon Leelayuwat 1

1 Graduate School of Khon Kaen University, Khon Kaen, Thailand, 2 College of Music, Gannan Normal University, Ganzhou, China

It was aimed to discuss the effect of bed-type rehabilitation robots under machine learning combined with intensive motor training on the motor function of lower limbs of stroke patients with hemiplegia. A total of 80 patients with stroke hemiplegia were taken as the subjects, who all had a course of treatment for less than 6 months in the Rehabilitation Medicine Department of Ganzhou Hospital. These patients were divided into the experimental group (40 cases) and the control group (40 cases) by random number method. For patients in the control group, conventional intensive motor training was adopted, whereas the conventional intensive motor training combined with the bed-type rehabilitation robot under machine learning was applied for patients in the experimental group. Fugl-Meyer Assessment of Lower Extremity (FMA-LE), Rivermead Mobility Index (RMI), and Modified Barthel Index (MBI) were used to evaluate the motor function and mobility of patients. The human–machine collaboration experiment system was constructed, and the software and hardware of the control system were designed. Then, the experimental platform for lower limb rehabilitation training robots was built, and the rehabilitation training methods for stroke patients with hemiplegia were determined by completing the contact force experiment. The results showed that the prediction effect of back-propagation neural network (BPNN) was better than that of the radial basis neural network (RBNN). The bed-type rehabilitation robot under machine learning combined with intensive motor training could significantly improve the motor function and mobility of the lower limbs of stroke patients with hemiplegia.

Keywords: stroke, hemiplegia, intensive motor training, machine learning, bed-type lower limb rehabilitation robot

INTRODUCTION

Stroke, also known as cerebrovascular accident, shows high morbidity, high mortality, high disability, and high recurrence (Pan, 2018; D’Ancona et al., 2020). At present, the incidence of stroke exceeds that of tumors and heart diseases in China, and it has become the world's second and the China's first most fatal disease (Luney et al., 2020; Xia et al., 2021). Hemiplegia is the most common sequelae of stroke. It has been surveyed that more than 50% of patients with...
hemiplegia suffer from lower limb spasm, and the severity of spasm increases over time (Suri et al., 2018; Tomida et al., 2019; Tsuchimoto et al., 2019; Park et al., 2021). Stroke patients with hemiplegia have a high incidence of lower limb motor dysfunction, which is difficult to recover with a poor prognosis. It seriously affects the independence of the patients’ daily life and social activities (Yang et al., 2021).

From the overall rehabilitation process after stroke, it is difficult to recover from hemiplegia of the lower limbs, which not only takes a long time but also costs a lot of money; the treatment effect is limited (Alawieh et al., 2018; Uwatoko et al., 2020; Tang et al., 2021). With the rapid development of modernization, informatization, and intelligent technology, high-performance rehabilitation robots have emerged. Bed-type rehabilitation robots have been gradually used in clinical research on the rehabilitation of lower limbs of stroke patients with hemiplegia (Zhang et al., 2021). The bed-type rehabilitation robot, as an emerging physical therapy technology for the treatment of lower limb dysfunction of stroke patients with hemiplegia, can provide high-precision and high-repeatability training. At present, the gait training robot Rehoambulator (Calabrò et al., 2016) developed by American HealthSouth Medical Company has been productized and popularized to the market by Motorika Company. Its two separate mechanical legs are fixed on the frame: one leg only has two degrees of freedom of hip joint and knee joint, and the two connecting rods on the leg are driven by the motor to drive the big leg and the small leg to reciprocate. Erigo (Sarabadani Tafreshi et al., 2016), an early rehabilitation training system for nerve injury developed and promoted by Swiss company Hocoma, consists of a rehabilitation bed with an adjustable angle and a stepping system to help lower limb rehabilitation, which can realize early intensive rehabilitation training.

Nowadays, machine learning-based algorithms can train the human body model directly, which makes the prediction and recognition of human intentions more accurate in human–computer collaboration. The algorithm based on machine learning captures, learns, and predicts human actions by visual sensors to identify the operator’s intention, so as to improve the coordination between patients and robots (Cha et al., 2021). Therefore, developing a lower limb rehabilitation robot with independent intellectual property rights, simple structure, low cost, and convenient operation will be of great significance to the development of the rehabilitation medical robot industry in China.

It was innovated based on the intensive motor training that the bed-type rehabilitation robot under machine learning was used to perform lower limb rehabilitation training for stroke patients with hemiplegia. The effect on lower limb motor function of stroke patients with hemiplegia was observed in this work.

MATERIALS AND METHODS

Study Subjects

A total of 80 patients with stroke hemiplegia were selected to be the research subjects, and they all had a course of treatment for less than 6 months in the Rehabilitation Medicine Department of Ganzhou Hospital. All patients met the stroke diagnostic criteria established by the cerebrovascular disease academic conference (Hellmich et al., 2020). They were divided into the experimental group (40 cases) and the control group (40 cases) by random number method, and their data were evaluated, trained, and analyzed by 3 physicians. There were 38 men and 42 women, with an average age of 48.52 ± 11.46 years. This work was approved by the Medical Ethics Committee of Ganzhou Hospital, and the patients and their families understood the research situation and signed informed consent forms.

The following were the inclusion criteria. With transcranial magnetic resonance imaging examination, the patients met the diagnostic criteria for stroke combined with hemiplegia. It was the first onset of the patients, Brunnstrom stage of the affected lower limb is above stage II, and the course of the disease was less than half a year. The patients and their families accepted and cooperated with the experiments.

Exclusion criteria were as follows. Patients were in progress with cerebrovascular diseases. Patients had serious heart, liver, lung, and other organ damages. Patients suffered from severe cognitive dysfunction and sensory aphasia. Patients had other major mental illnesses. Patients had diseases that did not allow them to complete the lower limb motor training, such as thrombosis of the lower limbs, joint swelling, and joint stiffness. Patients had other diseases that might lead them and their families to be unable to cooperate, or they were unwilling to participate.

Collection of the Patients’ Clinical Data

Clinical data of all research subjects were collected, including the name, age, race, place of residence, education level, stroke type, course of disease, hemiplegic side, history of atrial fibrillation, history of coronary heart disease, history of diabetes, history of smoking, and history of drinking. After treatment, the patients were followed up for 8 weeks, and the total recovery time of the two groups was compared.

Examination and Evaluation of Motor Function and Mobility

Fugl-Meyer Assessment Lower Extremity (FMA-LE) (Madhoun et al., 2020), **Rivermead Mobility Index** (RMI) (Lim et al., 2019), and **Modified Barthel Index** (MBI) (Taghizadeh et al., 2020) were adopted jointly to test and evaluate patients’ motor function and mobility. The subjective state of the examination process and the environment had a certain impact, so it was necessary to be guided in accordance with the unified instructions. The hints that exceed the specified range were eliminated, to create a relaxing, comfortable, and quiet evaluation environment.

Fugl-Meyer Assessment Lower Extremity score is internationally recognized as the most standard and most widely used method for evaluating stroke combined with hemiplegia, with high sensitivity and reliability. It is mainly used to evaluate autonomous, separated, and independent movements related to coordinated movements. It could be used for accurate quantitative assessment of lower limb motor function of patients with hemiplegia. There are 34 evaluation items, and each item is scored to be 0–1 points. There are three levels for the score, as 0
The rehabilitation robot was completed by professional therapists. The training of the intelligent robot was under machine learning. The training of the intelligent robot was composed of professional therapists. The training of the intelligent robot was completed by professional therapists. Bed-type rehabilitation robot can provide patients with a maximum height of 2 m, dynamic weight support: 0–85 kg, maximum weight of 135 kg, accommodate patients with a disability, and less than 40 points mean severe dependence. The MBI was used to evaluate the patient's daily mobility. The MBI covers 10 items, such as eating, dressing, going up and downstairs, transferring, and walking. The scores are graded into four levels of 0, 5, 10, and 15 points, with a total score of 100. Then, 100 points mean there is no need for dependence, 60–99 points mean light dependence, 41–59 points mean moderate dependence, and less than 40 points mean severe dependence.

Treatment Methods

For patients in the control group, conventional intensive motor training was given. According to the results of motor dysfunction in patients, the appropriate intensive motor training method was chosen.

In the experimental group, conventional intensive motor training was combined with the bed-type rehabilitation robot under machine learning. The training of the intelligent rehabilitation robot was completed by professional therapists. Bed-type rehabilitation robot can provide patients with a maximum height of 135 kg, accommodate patients with a maximum height of 2 m, dynamic weight support: 0–85 kg, dynamic weight support range: 0–18 cm, treadmill speed range: 1–3.2 km/h, treadmill speed accuracy: +/- 0.1 km/h, as shown in Figure 1. The therapists instructed the patients to complete the isolating movements with the uninhibited lower limb before training. Bed-type rehabilitation robot training was as follows:

During the training, the patients were required to look at the front horizontally. The patients were asked to adjust their body posture and maintain the symmetry of their body posture as looking themselves in the mirror. They should extend the knee actively in the middle of the support phase and fully extend the hip joint at the end of the support phase. The virtual mode and training parameters of the rehabilitation robot were set as follows. The treatment time was 30 min, the rising angle of the bed was 70–80°, and the training pace was 1.24–1.78 km/h. Throughout the training process, the therapists tried not to help as much as possible. If the patients had negative emotions, lack of concentration, and so on, the therapists should promptly encourage and remind the patients to participate in the training actively. The training time for walking was 30 min per day, and the total time was 45 min (including robot setting, patients' preparation, training time of walking, and getting out of the bed after training). It should be trained 5 times a week, and 2 weeks were spent to complete. In the training process, if the blood pressure of patients exceeded 180/110 mmHg, the heart rate exceeded 75% of the age-standard heart rate, or they had headaches, nausea, or other adverse symptoms, the training had to be stopped immediately.

Human–Machine Coordination Experimental System Model

After the human–machine collaboration started, it was expected that the rehabilitation robot could cooperate with the human limb movement, to speed up the response speed of the robot. The dynamic function of the human–machine coordinated motion model was expressed as Equation (1).

\[
Ma + Bv + Gv = F_1 + F_2
\]

In Equation (1), \(M \), \(B \), \(G \), \(a \), and \(v \) represented system inertia, damping, stiffness, the end acceleration of the robot, and the speed and the desired end speed, respectively. \(F_1 \) and \(F_2 \) represented the force of the operator and the force of the rehabilitation robot, respectively. The human–machine coordinated motion model was a load with a mass of \(m \) that was coordinated by humans and robots. It was necessary to consider the inertia, damping, and stiffness of the system comprehensively, as shown in Figure 2, in which \(F_3 \) was the force of the object. In the process of human–machine collaboration, the force contributed by the robot needed to exceed the force exerted by the operator, thus reducing the burden on the operator.

Construction of Human–Machine Coordinated Motion Experiment System Under Machine Learning

The principle of operator intention recognition under machine learning mainly consists of two parts. One part is offline learning, in which the data are collected and classified using a fuzzy method, and the samples are trained in the neural network. The other part is online execution, including information acquisition and the prediction of back-propagation neural network (BPNN), as shown in Figure 3. The characteristics of fuzzy classification were utilized to perform cluster analysis on the required data in the offline part. Then BPNN was applied to train the data samples. The model constructed in the offline part was used to predict the speed information of the operator during the process of robot identification, learning, and prediction of operator information in the online execution part. The information predicted by the BPNN was inputted into the robot in advance, to make the robot follow the operator for collaborative tasks.

Back-propagation neural network was composed of an input layer, a hidden layer, and an output layer. The number of network layers was determined by the hidden layer. The input layer node entered the input quantity, the input layer node output quantity was the input quantity of the hidden layer, and the hidden layer output quantity was taken as the input quantity of the output layer. The final output is worked out as shown in Figure 4. The BPNN shows strong learning ability, adaptability, and high fault tolerance. During the training process, the difference between the output and the expected value was adjusted to
change the parameters for self-adjustment. The three-layer neural network could complete the work well of prediction, linear approximation, recognition, etc., so it was chosen and applied.

Due to the slow convergence of the BPNN and the difficulty of determining the hidden layer and the number of nodes, it was aimed to improve the limitations of the BPNN.

On the one hand, the momentum term was added. Since the BPNN did not consider the direction of the previous gradient when modifying the weight or threshold, the stability was poor and the convergence was slow. Therefore, the momentum term could be added for correction, which was expressed as Equation (2) and Equation (3).

In Equations (2) and (3), $\Delta W(k)$ represented the weight at the moment, $\Delta W(k-1)$ represented the weight at the previous moment, and $G(k)$ represented the negative gradient function at moment k. γ was the learning rate and z was the momentum factor.

On the other hand, the step size was changed. The convergence speed of the network was mainly determined by the learning rate γ. If γ was too small, the convergence speed became slower. If γ was too large, the system would be unstable. The step size of seat could be optimized, and the Equations (4) and (5) were as follows.

In Equations (4) and (5), $\sgn(\cdot)$ represented the sign function, $G(k)$ and $G(k-1)$ represented the negative gradient function at moments k and $k-1$, respectively. γ was still the learning rate.
The hardware of the human–machine coordinated motion experiment system included industrial control computer, force information acquisition module, servo control system, and motion execution module. Figure 5 is a simplified diagram of the human–machine coordinated motion experiment system. The force information acquisition module was made up of a six-dimensional force sensor and the matched data acquisition card, and the six-dimensional force sensor was to collect the
interaction force between human and machine. The servo control system consisted of a motion control card and a servo driver. Figure 6 shows the hardware structure of the system.

The robot control program was compiled by SMC Basic Studio software, which supported online programming and debugging of Basic language and G code, with rich programming languages and concise programs. In addition, the software supported the function demonstration and debugging of the motion controller, mainly including IO monitoring, uniaxial motion function test, zero-return motion function test, psychomotor vigilance test (PVT), and DA/PWM output function test. The control software can control the related motion parameters and IO parameters of the controller by the user through the upper computer, which was convenient to operate. The multi-task mode set by Basic language was adopted in the control program design.

When the trajectory data of human walking joints were analyzed, it was necessary to prevent the vibration of the motor caused by the uneven speed from affecting the wearing comfort of patients and the life of the motor, so as to ensure the characteristics and smoothness of the motion curve of the collected trajectory. Multi-order sine trigonometric function is used to fit the collected discrete data. The fitting function is as follows:

$$f(t) = \sum_{i=1}^{n} A_i \sin(x_i t + b_i)$$ \hspace{1cm} (6)

In Equation (6), n represented the order of sine trigonometric function, A_i represented amplitude modulation coefficient, x_i represented frequency coefficient, and b_i represented offset.

$$\min \|f\|_2^2 = \sum_{i=0}^{l} [(g(t) - f(t))]^2$$ \hspace{1cm} (7)

In Equation (7), $g(t)$ represented the collected discrete trajectory points, and f referred to the fitting order.

Sample Data Collection

The data were collected with the human–machine coordinated motion experiment system, as shown in Figure 7. First, the tension and pressure sensor used in the system and the alternating current servo motor representing the robot were initialized. The zero-return operation opportunity was set on the end handle, to ensure that the collected end position information of the robot was consistent. When sample data were collected, the robot in the one-degree-of-freedom human–machine collaboration system was controlled by impedance control. The operator used the movements in motor spaces restricted by each speed as much as possible to cover the one-degree-of-freedom human–machine collaboration data space, so that the samples had diversity. The operating frequency of the human–machine coordinated motion experiment system was 1 kHz during the data collection process, and the sampling frequency was 60 Hz. During the data collection, data in 5 s were randomly selected, and the number of repeated samplings was 3 times.
Simulation Experimental Verification
A simulation experiment was performed to verify the effectiveness of the above experiments and to prevent the diversity of verification equipment and the multi-degree-of-freedom motion control coupling. The above-mentioned human–machine coordinated motion experiment system was applied, and the BALM-3 tension and pressure sensor (Honeywell, China) was used to detect the magnitude and direction of the interaction force during human–machine collaboration. The IPC-610H industrial control computer (Shanghai Senke Electronic Technology Co., Ltd.) was used to compile the program, collect the force sensor information, and control the servo motor (robot) when the program was applied. PCI-1245E control card (Beijing Konrad Technology Co., Ltd.) was used as the information collection system. 60HBM0130CM servo motor was also utilized with a rated power of 400W and a rated torque of 1.27 nm.

For the human–machine cooperative control system, the rotation angle \(\alpha \) was taken as the generalized coordinate. If the loss between the shaft couplings was neglected, the kinetic energy in the system energy was expressed as Equation (8).

\[
K = J_s \times \frac{\alpha^2}{2} + J_b \times \frac{\alpha^2}{2} + \frac{m v^2}{2} = J_s \times \frac{\alpha^2}{2} + J_b \times \frac{\alpha^2}{2} + \frac{m (\frac{L \alpha}{2})^2}{2}
\]

In Equation (8), \(K \) stood for the kinetic energy, and \(J_s \) and \(J_b \) were the magnetic flux of each pole of the servo motor and the ball motor, respectively. \(m \) was the mass of the object, and \(L \) was the lead of the screw.

\[
V = (F - mg) \times z = (F_2 - mg) \times \frac{L \alpha}{2\pi}
\]

In Equation (9), \(V \) represented potential energy, and \(F_2 \) was the force of the operator.

\[
D = \frac{C z^2}{2} = \frac{C (\frac{L \alpha}{2\pi})^2}{2}
\]

In Equation (10), \(D \) meant the energy consumption, and \(C \) was the system damping.

Generalized dynamic function for rotation angle \(\alpha \) was expressed as Equation (11).

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \alpha} \right) - \frac{\partial L}{\partial \alpha} + \frac{\partial D}{\partial \alpha} = K
\]

After the final handling, Equation (12) was obtained.

\[
K = \left[J_s + J_b + m \times \left(\frac{L}{2\pi} \right)^2 \right] \times \alpha + \left(-F_2 + mg \right) \times \frac{L \alpha}{2\pi} + C \left(\frac{L \alpha}{2\pi} \right)^2 \times \alpha
\]
FIGURE 6 | Hardware structure of the human–machine coordinated motion experiment system.

FIGURE 7 | Flowchart of data collection.
Statistical Methods
The data were processed and analyzed via SPSS19.0. The measurement data were expressed as the mean ± standard deviation (± s), and the enumeration data were expressed as the percentage (%). Pairwise comparison was performed through one-way analysis of variance. The difference was statistically significant at $p < 0.05$.

RESULTS
Verification of Experiment Results
It was compared with the RBNN model, to test the experimental effect of identifying and predicting the operator’s intention under the BPNN model constructed above. The test samples collected by impedance control were detected. With 80 sets of test data, the predicted value and true value of the operator’s intention under the BPNN and RBNN are shown in Figures 8, 9, respectively. There was less difference between the two networks in prediction effect, and the predicted results were both acceptable. After training, the mean square error (MSE) of the BPNN model was 0.9975, and that of the RBNN model was 0.9642. The MSE was closer to the real number 1, the better the prediction and training effect. It was indicated that the prediction effect of the BPNN was better than that of RBNN.

Amplitude of Driving Torque
The simulation time was set as the standard gait cycle of human walking of 1.3 s, which can be obtained by motion analysis and calculation. The maximum driving torque required by the single-leg movement of the robot was 14 Nm, and the maximum driving torque required by the whole lower limb rehabilitation robot was 28 Nm. At this time, the crank speed was 4.67 md/s, and the maximum power required by the system was 125.7 W. The driving torque amplitude curve is shown in Figure 10.

Comparison of Baseline Data of Patients in the Two Groups
Among the 80 patients included, those in the experimental group received training of the intelligent lower limb rehabilitation robot. At the end, all 80 patients completed the entire training. There were no significant differences between the two groups in gender, age, course of disease, stroke type, hemiplegic location, past history of atrial fibrillation, history of coronary heart disease, history of diabetes, history of smoking, and history of drinking ($p > 0.05$). The details are shown in Table 1.
FIGURE 9 | Predicted value and true value of the operator’s intention recognition in the human–machine collaboration experiment system under RBNN.

FIGURE 10 | Driving torque amplitude curve.
TABLE 1 | Comparison of patients’ baseline data in the two groups.

Indicators	Control group (n = 40)	Experimental group (n = 40)	p
Gender	Male 17	19	0.256
	Female 23	21	
Age (years old)	48.68 ± 11.21	49.68 ± 12.16	0.312
Course of disease (days)	43.56 ± 19.34	45.27 ± 20.58	0.283
Stroke types	ischemic 22	22	1.000
	Hemorrhagic 18	18	
Hemiplegic location	Left side 20	21	1.000
	Right side 20	19	
History of atrial fibrillation	Yes 2	0	1.000
	No 38	40	
History of coronary heart disease	Yes 3	3	1.000
	No 37	37	
History of diabetes	Yes 11	12	1.000
	No 29	28	
History of smoking	Yes 20	19	1.000
	No 20	21	
History of drinking alcohol	Yes 19	18	1.000
	No 21	22	

FIGURE 11 | Comparison of FMA-LE scores before and after treatment. * and # indicated that the difference was statistically significant compared with the data before treatment and that in the control group, respectively (p < 0.05).
Comparison of FMA-LE Scores of Lower Limb Motor Function Between the Two Groups

Before treatment, there was no significant difference in FMA-LE scores between the two groups ($p > 0.05$). After 2 weeks of treatment, the FMA-LE scores of both the experimental group and the control group were higher than those before treatment, and the difference was statistically significant ($p < 0.05$). In addition, as shown in Figure 11, the FMA-LE score of the experimental group (10.58 ± 6.89) was significantly higher than that of the control group (26.57 ± 6.26), and the differences were statistically significant ($p < 0.05$).

Comparison of the Patients' Mobility Scores and Total Recovery Time Between Two Groups

Before treatment, there was no significant difference between the two groups of RMI scores ($p > 0.05$). After 2 weeks of treatment, the RMI scores of both groups were higher than those before treatment ($p < 0.05$). Moreover, the score of the experimental group was significantly higher than that of the control group ($p < 0.05$), as more details are shown in Figure 12.

Before treatment, no significant difference was found in the MBI scores between the two groups ($p > 0.05$). After 2 weeks of treatment, the MBI scores of both the experimental group and the control group were increased than those before treatment ($p < 0.05$). It is also shown in Figure 13 that the BMI score of the experimental group was significantly higher than the score of the control group ($p < 0.05$).

The total rehabilitation time of the experimental group was significantly shorter than that of the control group (4.57 ± 1.21 vs. 6.23 ± 2.13) weeks ($p < 0.05$).

DISCUSSION

Stroke has gradually become the leading cause of death and disability in middle-aged and elderly people (Cipolla et al., 2018). Therefore, how to achieve the recovery of lower limb dysfunction quickly has become the primary goal of rehabilitation for stroke patients with hemiplegia. The bed-type rehabilitation robot was designed for intensive motor rehabilitation training, to help...
stroke patients with hemiplegia who lack the motor ability of lower limbs. First, the human–machine collaboration experiment system was constructed, and the software and hardware of the control system were designed. Then, the experimental platform for the lower limb rehabilitation training robot was set up, and the specific rehabilitation training methods for stroke patients with hemiplegia were determined by the contact force evaluation experiment.

The training control experiment was completed under BPNN and RBNN, to verify the feasibility of the robot control algorithm. The results showed that the prediction effect of BPNN was better than that of RBNN, which was consistent with what was obtained by Espinoza Bernal et al. (2021). Although the mechanical structure design, control system construction, and control method design of the bed-type rehabilitation robot were basically completed, the robot still needed to be further improved with the issues found in the experiments and the future development trend of robots. For the mechanical structure, the bed-type rehabilitation robot basically conformed to the trajectory of human walking joints merely, but cannot complete a real-time change. It was still necessary to further optimize the structure design later to work out a mechanical structure that was more in line with the walking of human body. In addition, due to the cantilever beam structure, the mechanical strength did not meet the expected requirements, and further improvements were needed in the future. For the robot control system, the single motor was mainly used to drive both lower limbs for rehabilitation training synchronously. It was temporarily unable to complete the single-leg training. In the subsequent control system design, drive motors should be added for the needs for separate rehabilitation training for the two lower limbs. Besides, the passive control training of this control system was only for the speed control of the servo motor, and the control accuracy was insufficient. In the follow-up, the joint information at the end of the rehabilitation training robot is needed to be fed back to complete the closed-loop control, so as to improve the control accuracy.

After stroke hemiplegia, the upper motor neuron of patients will be damaged, and the motor reflex of the lower center will be released, resulting in motor dysfunction. The main clinical
manifestations are weakened muscle strength, increased muscle tone, and tendon hyperreflexia (Zhang et al., 2018; Kimura et al., 2019; Ratanapinunchai et al., 2019). The FMA-LE motor function scale was used to evaluate the lower extremity motor function of stroke patients with hemiplegia. Before treatment, no significant difference was in FMA-LE score between the two groups (p > 0.05). After 2 weeks of treatment, the FMA-LE scores were higher than those before treatment in both groups (p < 0.05), and the score of the experimental group was significantly higher than that of the control group (p < 0.05), which were consistent with the research results of Huang et al. (2019). This suggested that a machine learning-based bed-type rehabilitation robot combined with intensive motor training could significantly improve the lower limb motor function of stroke patients with hemiplegia, and the effect was better than that of single intensive motor training.

Motor dysfunction after stroke often leads to a decline in the mobility of patients with hemiplegia, thereby reducing the life quality of patients (Sethy and Sahoo, 2018). The RMI score and the MBI score were adopted to evaluate the mobility of stroke patients with hemiplegia. Before treatment, no significant difference was discovered between the two groups in RMI score as well as BMI score (p > 0.05). After 2 weeks of treatment, the RMI and BMI scores of both groups were higher than those before treatment (p < 0.05). Both RMI and BMI scores of the experimental group were significantly higher than those of the control group (p < 0.05), which were consistent with the results of Yao et al. (2020). It proved that a machine learning-based bed-type rehabilitation robot combined with intensive motor training improved the mobility of stroke patients with hemiplegia significantly, with a better effect than that under intensive motor training alone.

In recent years, as the incidence of stroke has gradually shown a younger trend, patients’ expectations for rehabilitation are also increasing. The efficacy evaluation of the rehabilitation not only focuses on weakening muscle strength, increasing muscle tone, tendon hyperreflexia, etc., but also paid more attention to the application of limbs in real life (Yu et al., 2020). Therefore, in addition to treating the damaged structure and function of the patients, the ultimate goal is to make patients restore motor and social activities. Based on the conventional intensive motor training, the bed-type rehabilitation robot under machine learning could help to improve the motor function and walking function of the lower limbs of stroke patients with hemiplegia, further improving the ability to transfer, go up and downstairs, walk, and do other daily living activities. It aimed to make patients return to their family and society to the greatest extent, thus reducing the family and social burdens.

CONCLUSION

The human–machine collaboration experiment system was built with the software and hardware designs of the control system. The experimental platform for lower limb rehabilitation training robots was also established to determine the rehabilitation training methods for stroke patients with hemiplegia through the contact force evaluation experiment. It was aimed to discuss the effect of a machine learning-based bed-type rehabilitation robot combined with intensive motor training on the lower limb motor function of stroke patients with hemiplegia. The bed-type rehabilitation robot under machine learning combined with intensive motor training had the effect of improving the motor function and mobility of the lower limbs of stroke patients with hemiplegia. There were certain shortcomings shown. For the limitation of the study time, there were no long-term follow-ups. Thus, the patients needed to be followed up for a long time in the later period to verify the long-term efficacy. The included sample size was also too small to represent the training effect on all patients with stroke hemiplegia. It was necessary to increase the sample size for further clinical research in the future. It was believed that some ideas and experimental support were offered for the diagnosis and treatment of motor dysfunction in stroke patients with hemiplegia.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

REFERENCES

Alawieh, A., Zhao, J., and Feng, W. (2018). Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. *Behav. Brain Res.* 340, 94–101. doi: 10.1016/j.bbr.2016.08.029

Calabrò, R. S., Cacciola, A., Bertè, F., Manuli, A., Leo, A., Bramanti, A., et al. (2016). Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? *Neurol. Sci.* 37, 503–514. doi: 10.1007/s10072-016-2474-4

Cha, B., Lee, K. H., and Ryu, J. (2021). Deep-learning-based emergency stop prediction for robotic lower-limb rehabilitation training systems. *IEEE Trans. Neural Syst. Rehabil. Eng.* 29, 1120–1128. doi: 10.1109/TNSRE.2021.3087725

Cipolla, M. J., Liebeskind, D. S., and Chan, S. L. (2018). The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. *J. Cereb. Blood Flow Metab.* 38, 2129–2149. doi: 10.1177/0271678X18800889

D’Ancona, G., Ketterer, U., Kische, S., Muriero, M., Feickert, S., Ortak, J., et al. (2020). Percutaneous left atrial appendage closure for cerebrovascular accident prevention: rationale, indications, technical aspects, clinical results and future perspective. *Fut. Cardiol.* 16, 237–250. doi: 10.2217/fca-2019-0086

Espinoza Bernal, V. C., Hiremath, S. V., Wolf, B., Riley, B., Mendonca, R. J., and Johnson, M. J. (2021). Classifying and tracking rehabilitation interventions through machine-learning algorithms in individuals with stroke. *J. Rehabil. Assist. Technol. Eng.* 8, 20556683211044640. doi: 10.1177/20556683211044640

Frontiers in Neuro robotics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 865403
Liu, C., Cai, and Leelayuwat (2021). "Combination of pregabalin and transcutaneous electrical nerve stimulation for neuropathic pain in a stroke patient after contralateral C7 nerve transfer: a case report." *Int. J. Neurol.*, 131, 1248–1253. doi: 10.1080/00207454.2020.1786687

Yang, F., Chen, L., Wang, H., Zhang, J., Shen, Y., Qiu, Y., et al. (2021). "Combined contralateral C7 to L5 to S1 cross nerve transfer for treating limb hemiplegia after stroke." *Br. J. Neurosurg.*, 10, 1–4. doi: 10.1080/02688697.2021.1910764

Yao, D., Stukensborg-Golsman, C., Ettinger, S., Claassen, L., Plass, C., Martinelli, N., et al. (2020). "Subjective outcome following neurostimulator implantation as drop foot therapy due to lesions in the central nervous system-midterm results." *Musculoskelet Surg.*, 104, 93–99. doi: 10.1007/s12306-019-00604-3

Yu, X. M., Jin, X. M., Lu, Y., Gao, Y., Xu, H. C., Xue, X., et al. (2020). "Effects of body weight support-tai chi footwork training on balance control and walking function in stroke survivors with hemiplegia: a pilot randomized controlled trial." *Evid. Based Compl. Alternat. Med.*, 2020, 9218078. doi: 10.1155/2020/9218078

Zhang, C., Huang, M. Z., Kehs, G. J., Braun, R. G., Cole, J. W., and Zhang, L. Q. (2021). "Intensive in-bed sensorimotor rehabilitation of early subacute stroke survivors with severe hemiplegia using a wearable robot." *IEEE Trans. Neural. Syst. Rehabil. Eng.*, 29, 2252–2259. doi: 10.1109/TNSRE.2021.3121204

Zhang, S., Chen, M., Gao, L., and Liu, Y. (2018). "Investigating muscle function after stroke rehabilitation with 31P-MRS: a preliminary study." *Med. Sci. Monit.*, 24, 2841–2848. doi: 10.12659/MSM.907372

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Liu, Cai and Leelayuwat. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.