Characterizing NO$_2$ in Indonesia Using Satellite Ozone Monitoring Instruments

Trio Bagoes Darmawan, Arie Dipareza Syafei
Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia

Email: dipareza@enviro.its.ac.id

Abstract. Indonesia suffers from high annual vehicle ownership growth, resulting in worsening urban air quality. Nitrogen dioxide (NO$_2$) is one of the combustion products of vehicles which needs to be monitored. Unfortunately, few cities have air quality monitoring stations, thus there is an immediate need to tackle this issue. One way to do so is by utilizing remote sensing via satellite. In this study, we utilized a satellite OMI (Ozone Monitoring Instrument) to read patterns in gaseous NO$_2$ concentrations. This work was assisted by a Geographical Information System (GIS) program, which used the results from the satellite to create images. Data validation was conducted by comparing the results from the satellite images in the form of color pixels with the results obtained from monitoring stations in Jakarta and Surabaya via linear regression. The results showed a weak correlation. Further research should introduce additional variables to improve accuracy.

1. Introduction
Air pollution is one of the major factors contributing to the decline in air quality in urban areas [1]. In an urban environment, the spatial and temporal variabilities in Nitrogen dioxide (NO$_2$) concentrations are high due to the short lifetime of the troposphere [2]. Growth in the number of vehicles, especially in urban areas, results in an increased amount of exhaust, mainly NO$_2$. Hence, NO$_2$ concentrations are indicative of the quality of ambient air. Once the concentration exceeds the threshold value, it affects human health directly or indirectly through an increase in the concentration of ozone[3] since NO$_2$ acts as a catalyst in the formation of ozone [4].

For better urban air quality management, local governments should monitor ambient air quality. Therefore, the presence of air quality monitoring stations is crucial. However, due to the cost of a station, only large cities can afford such a system, leaving more than 80% of the cities in Indonesia without monitoring stations. Hence, there is a lack of data with which to evaluate ambient levels. In order to combat this problem, it is necessary to find an alternative means of providing information on the air quality in those cities without monitoring stations. One such method is to utilize remote sensing of air quality. Remote sensing from various spacecraft and aerial sensors provides a large amount of data on the Earth's surface for detecting and monitoring changes on the Earth's surface [5].

Remote Sensing Imagery produced by satellites can determine the distributions of gasses and aerosols, and there is currently global coverage of tropospheric NO2 [6]. The two satellite of Ozone Monitoring Instruments (OMIs) products available for reading NO$_2$ concentrations are the NASA
standard product (SP) [7,8] and the Dutch OMI NO2 product (DOMINO) [9], which are both available in their second version (SP2 and DOMINO-2).

A satellite OMI is used to obtain an inversion algorithm from which to calculate the amounts of NO2, SO2, HCHO, BrO and OCIO in the ozone column. The use of satellite OMIs has been growing rapidly for the analysis of data around the world since they use a programming language that is both functional and generally suitable for scientific programming [10]. OMI uses spectrometer images with data coverage on a daily basis to determine the air quality at the Earth's surface [11]. An OMI is one of the four instruments on NASA's EOS-Aura satellite, launched on 15 July 2004 [12]. In particular, the OMI on this satellite uses images from the troposphere to measure NO2 by means of Vertical Column Density (VCD) [11]. This technique is also used by other satellites, namely, SCHIAMACY and GOME.

The modeled emissions data was taken from monitoring stations in Jakarta and Surabaya in Indonesia. In this study, we used the Dutch OMI NO2 (DOMINO) satellite as secondary data for the NO2 column in these urban areas. The column data from the satellite images was extracted using a GIS program, then validated with data from the air quality monitoring stations every month in the period 2012 to 2015. In this paper, we attempt to evaluate the correlation between tropospheric NO2 and ground measurements.

2. Data and Method

Correlation between tropospheric NO2 and ground measurements was evaluated using simple linear regression. Data from OMI is explained in Subsection and NO2 from ground measurements is explained in subsection 2.2.

2.1. OMI NO2 Column Data (DOMINO-2)

An OMI is one of four instruments on NASA's EOS-Aura satellite [12]. The OMI was built by Dutch Space and TNO TPD in the Netherlands in cooperation with the Finnish VTT and Patria Advanced Solutions Ltd. The Royal Netherlands Meteorological Institute (KNMI) is the Principal Investigator Institute, while the overall responsibility for OMI missions lies with the Netherlands for Aerospace Programs (NIVR) with the participation of the Finnish Meteorological Institute (FMI). The OMI-equipped satellites measure solar radiation in the visible part of the spectral range between 270 and 500 nm using two telescopes with a spectral resolution of 0.5 nm.

Tropospheric NO2 data was extracted from OMI images. Since it is raster image, one pixel corresponds to single unit of NO2 in molecule/cm2. Since only Surabaya and Jakarta that have air quality monitoring station, we concentrate on obtaining images that cover the two cities. We selected image pixels where the monitoring stations reside (figure 1 and figure 2).

2.2. Monitoring Station Data

Data were obtained from monitoring stations in the two major cities of Surabaya and Jakarta. There are seven monitoring stations in the city of Surabaya, i.e., SUF1, SUF2, SUF3, SUF4, SUF5, SUF6 and SUF7. In the city of Jakarta, there are six monitoring stations, i.e., DKI2, DKI3, DKI4, DKI5 and JAF4. Information on these stations, along with their location coordinates, can be seen in table 1.

Trio Bagoes Darmawan, Arie Dipareza Syafei
Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
Table 1. Coordinates and Locations of the Monitoring Stations.

Cities	Monitoring Point	Location	Coordinates (x, y)	Coordinates
Surabaya	SUF 1	Taman Prestasi	-7.262016, 112.746425	112° 44' 47.130" E and 7° 15' 43.258" S
	SUF 2	Perak Timur	-7.223738, 112.733968	112° 44' 2.285" E and 7° 13' 25.457" S
	SUF 3	Sukomanunggal	-7.248917, 112.647734	112° 38' 51.842" E and 7° 14' 56.101" S
	SUF 4	Gayungan	-7.333790, 112.707853	112° 42' 28.271" E and 7° 20' 1.644" S
	SUF 5	Gebang Putih	-7.290515, 112.793565	112° 47' 36.834" E and 7° 17' 25.854" S
	SUF 6	Wonorejo	-7.327922, 112.713241	112° 42' 47.668" E and 7° 18' 47.074" S
	SUF 7	Kebon Sari	-6.1949571, 106.82306	106° 49' 23.016" E and 6° 21' 8.464" S
Jakarta	DKI1	Bunderan HI	-6.1604549, 106.90546	106° 54' 19.660" E and 6° 20' 5.701" S
	DKI2	Kelapa Gading	-6.334917, 106.823737	106° 49' 25.453" E and 6° 9' 37.638" S
	DKI3	Jagakarsa	-6.2939072, 106.90339	106° 54' 12.233" E and 6° 17' 38.066" S
	DKI4	Lubang Buaya	-6.2069444, 106.75222	106° 45' 7.999" E and 6° 12' 25.000" S
	DKI5	East Jakarta	-6.1683295, 106.75884	106° 45' 31.856" E and 6° 10' 5.986" S
	JAF4	West Jakarta	-7.262016, 112.746425	112° 44' 47.130" E and 7° 15' 43.258" S

From all seven stations in Surabaya, there were only five monitoring stations in Surabaya with sufficient data of reading NO₂ from 2012 to 2015. The SUF2 monitoring station could not read the NO₂ concentrations in 2014. Further, the SUF5 monitoring station could only read the NO₂ concentrations for 3 months in early 2014. Hence, the NO₂ gas concentration data from SUF2 and SUF5 were not used in the analysis. All six monitoring stations in Jakarta were functional in 2014. Summary data for the NO₂ concentrations at any point in the cities of Surabaya and Jakarta can be seen in Table 2. The data in this table is the data are average monthly concentrations which have been processed from daily data.

Table 2. Monitoring Station Data.

Period	SUF 1	SUF 3	SUF 4	SUF 6	SUF 7	DKI1	DKI2	DKI3	DKI4	DKI 5	JAF4
January	0.00248	-	-	-	-	0.01746	0.01748	0.00633	0.01206	-	0.00481
February	0.00268	0.03886	-	-	-	0.01896	0.02148	0.01132	0.02003	-	0.00260
March	0.00656	0.04434	0.00795	-	-	0.01493	0.01730	0.00715	0.01389	-	0.00918
April	0.00613	0.04580	0.00498	-	-	0.02997	0.02178	0.01420	0.01853	-	0.01948
May	0.00434	0.04520	0.00210	-	-	0.03042	0.02096	0.01488	0.01958	-	0.02183
June	0.00724	-	-	-	-	0.02984	0.01957	0.01605	0.01878	-	0.02166
Table 2. Monitoring Station Data.

Period	Concentration (ppm)	Jakarta	Surabaya	SUF 1	SUF 3	SUF 4	SUF 6	SUF 7	DKI1	DKI2	DKI3	DKI4	DKI 5	JAF4	
2013															
March	0.00177	0.00113	0.01155	0.02706	0.02288	0.00950	0.01538	0.01589	-						
April	0.00072	0.00972	0.00274	0.02490	0.02025	0.01100	0.01459	0.01730	-						
May	0.00002		0.00806	0.02929	0.02242	0.01256	0.01692	0.01899	-						
June	-	0.00376	0.01081	0.02744	0.02167	0.01207	0.01642	0.01770	-						
July	-	0.00883	0.00809	0.02905	0.02098	0.01307	0.01692	0.02067	-						
August	-	0.00327	0.00303	0.02327	0.01686	0.01110	0.01385	0.01587	-						
September	-	0.00657	0.00674	0.03036	0.02253	0.01108	0.01540	0.01664	-						
October	-		0.00618	0.03188	0.02657	0.01186	0.01479	0.01777	-						
November	-	0.00847		0.02762	0.02770	0.01005	0.01280	0.01676	-						
December	-	-	-	0.02422	0.02413	0.00870	0.01107	0.01141	-						
2014															
January	-	-	-	0.00895	0.01210	0.02323	0.02053	0.00547	0.00899	0.01237	-				
February	-	-	-	0.01142	0.01184	0.02787	0.02576	0.00862	0.01163	0.01634	-				
March	-	-	-	0.01060	0.01787	0.03319	0.02858	0.01299	0.01978	0.01832	-				
April	-	-	-	0.01067	0.02263	0.02440	0.02281	0.00899	0.01357	0.01227	-				
May	-	-	-	0.00660	0.01879	-	-	-	-	-					
June	-	-	-	0.00556	0.02045	-	-	-	-	-					
July	-	-	-	0.00534	0.01797	-	-	-	-	-					
August	-	-	-	0.00592	0.01942	-	-	-	-	-					
September	-	-	-	0.00736	0.02312	-	-	-	-	-					
October	-	-	-	0.00656	0.02128	-	-	-	-	-					
November	-	-	-	0.00824	0.02230	-	-	-	-	-					
December	-	-	-	0.01135	0.01175	-	-	-	-	-					
2015															
January	-	-	-	0.00965	0.00311	-	-	-	-	-					
February	-	-	-	0.01113	0.00423	-	-	-	-	-					
March	-	-	-	0.00905	0.00365	-	-	-	-	-					
April	-	-	-	0.00998	0.00476	-	-	-	-	-					
May	-	-	-	0.00509	0.00536	-	-	-	-	-					
June	-	-	-	0.00462	0.00842	-	-	-	-	-					

Note:
- *SUF 2, 5 not functioning properly*
- *SUF 1, 3, 4 not functioning properly starting in 2013*
- *DKI 5 not functioning properly starting in 2012*
- *DKI 1,2,3,4,5 not functioning properly starting in 2014*

3. Results and Discussion

In this study, we investigated the correlation between the value of the tropospheric NO₂ column and the value of the air quality provided by the monitoring stations via a linear regression model. The location determination is based on the monitoring stations points in the cities of Surabaya and Jakarta.
On the OMI satellite imagery, the locations of the monitoring stations in the city of Surabaya are covered by three pixels points. In Jakarta, the monitoring stations are covered by five pixels. The locations of the monitoring stations in Jakarta and Surabaya are detailed in figure 1 and figure 2, respectively.

![Figure 1](image1.png)

Figure 1. Overlay of the monitoring stations in Jakarta with the OMI satellite image. This figure is from November 2013. Each dark blue box corresponds to one pixel.

![Figure 2](image2.png)

Figure 2. Overlay of the monitoring stations in Surabaya with the OMI satellite image. This figure is from November 2013. Each dark blue box corresponds to one pixel. Only three pixels were used for comparison due to data availability from those stations.

The data from the monitoring station groups per pixel were averaged and became data per pixel. The data per pixel from the monitoring stations (see table 2) and the satellite OMI were then compiled. Recapitulation produced 192 pairs of data. Summary data from the monitoring stations and satellite based on the pixels can be seen in table 3.

Period	Pixel A	Pixel B	Pixel C
	(SUF 3 and SUF 6)	(SUF 1, SUF 4 and SUF 7)	(SUF5)
SPKU Satellite	SPKU Satellite	SPKU Satellite	SPKU Satellite

Table 3. Summary pixel data from the monitoring stations and satellite OMI in Surabaya.
Year	Month	(ppm)	$(10^{15} \text{ mol/cm}^2)$	(ppm)	$(10^{15} \text{ mol/cm}^2)$		
2012	JANUARY		0.00248	187	-		
	FEBRUARY	0.03889	298	0.00268	153		
	MARCH	0.04437	300	0.00726	324		
	APRIL	0.04583	338	0.00556	236	0.00079	225
	MAY	0.04523	436	0.00322	292	0.00001	282
	JUNE	-	0.00724	295	-		
	JULY	-	0.00856	321	0.00036	190	
	AUGUST	-	0.00507	249	-		
	SEPTEMBER	-	0.00718	303	-		
	OCTOBER	-	0.00451	320	-		
	NOVEMBER	0.01277	366	0.00411	360		
	DECEMBER	0.01493	259	0.00873	365		
2013	JANUARY	0.006701	243	0.003125	227		
	FEBRUARY	0.006186	392	0.000916	312		
	MARCH	0.006346	457	0.000886	366		
	APRIL	0.001728	200	0.003766	334		
	MAY	0.004042	283	0.008834	286		
	JUNE	0.010815	450	0.003271	197		
	JULY	0.008099	401	0.006571	306		
	AUGUST	0.003032	228	-	-		
	SEPTEMBER	0.006747	388	-	-		
	OCTOBER	0.006186	423	-	-		
	NOVEMBER	0.008473	359	-	-		
	DECEMBER	0.003125	227	-	-		
2014	JANUARY	0.008969	191	0.012097	194		
	FEBRUARY	0.011427	314	0.01185	282		
	MARCH	0.01061	411	0.017884	386		
	APRIL	0.010678	432	0.022647	221		
	MAY	0.006602	259	0.018803	221		
	JUNE	0.005661	218	0.020462	168		
	JULY	0.005341	236	0.017982	205		
	AUGUST	0.005919	272	0.019434	254		
	SEPTEMBER	0.007363	271	0.023137	243		
	OCTOBER	0.006564	362	0.021296	291		
	NOVEMBER	0.008249	413	0.022313	312		
	DECEMBER	0.011362	455	0.011757	233		
2015	JANUARY	0.00944	206	0.00319	201		
	FEBRUARY	0.01114	306	0.00423	356		
Table 3. Summary pixel data from the monitoring stations and satellite OMI in Surabaya.

Period	Pixel A (SUF 3 and SUF 6)	Pixel B (SUF 1, SUF 4 and SUF 7)	Pixel C (SUF 5)			
	SPKU (ppm)	Satellite (10^15 mol/cm²)	SPKU (ppm)	Satellite (10^15 mol/cm²)	SPKU (ppm)	Satellite (10^15 mol/cm²)
MARCH	0.00902	386	0.00357	584	-	-
APRIL	0.00998	692	0.00476	404	-	-
MAY	0.00511	222	0.00551	196	-	-
JUNE	0.00462	294	0.00842	245	-	-

*) There is an empty data in Pixel A, B, C this is indeed the absence of data at a monitoring station malfunction

Table 4. Summary pixel data from the monitoring stations and satellite OMI in Jakarta.

Period	Pixel D (DKI1 and JAF4)	Pixel E (DKI2)	Pixel F (DKI3)	Pixel G (DKI4)	Pixel H (DKI5)				
	SPKU (pixel value)	Satellite (pixel value)	SPKU (pixel value)	Satellite (pixel value)	SPKU (pixel value)	Satellite (pixel value)	SPKU (pixel value)	Satellite (pixel value)	
2012									
JANUARY	0.01114	622	0.017488	469	0.006335	121	0.012068	324	-
FEBRUARY	0.010789	622	0.021493	464	0.011329	570	0.028046	623	-
MARCH	0.012063	279	0.017312	334	0.007159	313	0.013898	354	-
APRIL	0.02474	464	0.021796	393	0.014211	380	0.018541	389	-
MAY	0.026144	501	0.020971	508	0.014887	495	0.019589	509	-
JUNE	0.025772	705	0.019583	502	0.016062	547	0.018796	516	-
JULY	0.029008	798	0.02496	679	0.015185	603	0.022017	603	-
AUGUST	0.024006	689	0.018264	437	0.012435	625	0.016030	465	-
SEPTEMBER	0.027306	628	0.020668	689	0.014089	636	0.021689	626	-
OCTOBER	0.026607	621	0.022189	483	0.012946	692	0.018312	522	-
NOVEMBER	0.034741	354	0.029375	251	0.013031	439	0.022163	211	-
DECEMBER	0.019285	288	0.020413	457	0.008877	234	0.015318	214	-
2013									
JANUARY	0.020096	266	0.017788	412	0.009023	259	0.012815	430	0.011941
FEBRUARY	0.025087	429	0.021284	533	0.009504	427	0.015249	498	0.014139
MARCH	0.027074	405	0.022892	403	0.011009	354	0.015359	373	0.015903
APRIL	0.024911	489	0.020265	564	0.012566	666	0.014601	430	0.017311
MAY	0.029307	873	0.022436	782	0.012082	404	0.016193	566	0.018998
JUNE	0.027453	505	0.021681	441	0.013076	324	0.016434	397	0.017709
JULY	0.029067	403	0.020992	395	0.011103	496	0.016927	307	0.020677
AUGUST	0.023283	473	0.016876	398	0.011086	857	0.013862	452	0.015877
SEPTEMBER	0.030377	757	0.022546	694	0.011865	461	0.015413	703	0.016646
OCTOBER	0.031898	531	0.026587	512	0.010057	387	0.014801	501	0.017786
NOVEMBER	0.027641	590	0.027715	547	0.008705	167	0.012805	431	0.016774
DECEMBER	0.024232	386	0.024143	434	0.011074	246	0.011414	393	-
2014									
JANUARY	0.017734	311	0.020539	283	0.005473	255	0.008998	255	-
FEBRUARY	0.022112	243	0.025774	250	0.008629	293	0.011639	420	-

7
Table 4. Summary pixel data from the monitoring stations and satellite OMI in Jakarta.

Period	Pixel D (DKI1 and JAF4)	Pixel E (DKI2)	Pixel F (DKI3)	Pixel G (DKI4)	Pixel H (DKI5)
	SPKU Satellite (pixel value)				
MARCH	0.025932 695 0.0286718 0.013002812 0.019792790	-	-	-	-
APRIL	0.018262436 0.022826486 0.008994297 0.013582265	-	-	-	-

* There is missing data in Pixels E, F, G, H due to monitoring station malfunction

* In 2015, only at a monitoring station Surabaya and only until the month of May, whereas data exists for the Jakarta monitoring stations until April 2014

Figure 3 shows the trends for the air quality monitoring stations so that the patterns in the air quality in the cities of Surabaya and Jakarta from 2012 to 2015 can be seen. In Figure 3 it can be seen that the trend in the average air quality for all monitoring stations capturing NO2 values was negative between November until January. This pattern appears repeatedly each year from 2012 to 2015 due to the rainy season from November until January. Further, the concentrations of NO2 in Surabaya and Jakarta did not differ significantly, perhaps because the two cities both have a large number of vehicles. For example, if we compare the monitoring station SUF6 with DKI3, the difference between the two is not significant.

Figure 3. Trends in air quality in Jakarta and Surabaya City.

The data in Tables 3 and 4 is fed into the regression model assuming that ‘x’ represents the total NO2 data column (1015 mol/ cm²) from the satellite OMI and ‘y’ is the average concentration of NO2 (ppm) from the monitoring stations. Figure 4 shows that the correlation between tropospheric NO2 and NO2 at ground level is weak, as indicated by a low R2. The large disparity may be due to the dynamics within atmospheric layers since the NO2 concentration at ground level was taken at 5m above the ground, whereas the tropospheric NO2 concentration is based on the total amount of NO2 in a column of up to 10 km in height.
Figure 4. Linear regression model for the concentration of NO$_2$ measured by monitoring stations and satellite OMI, obtained from the linear regression equation $y = 2E-05x + 0.005$, with $R^2 = 0.2452$.

4. Conclusions

This paper examines the correlation between tropospheric NO$_2$ concentrations obtained from OMI with ground measurements taken from two large cities, Surabaya and Jakarta. Regression analysis reveals a weak correlation between the two types of measurements, as indicated by the low coefficient of determination. This result is probably due to the changing dynamics between ground-level measurements and measurements taken in an atmospheric column. In order to improve accuracy and make image analysis useful in predicting ground level concentrations, future research could be expanded to examine additional variables such as meteorological aspects and topographical items.

References

[1] Colls J 2002 Air Pollution ed (London: Spon Press)
[2] Kuhlman G, Lam Y F, Cheung H M, Hartl A, Fung J C H, Chan P W and Wenig M O 2014 Development of A Custom OMI NO$_2$ Data Product for Evaluating Biases in A Regional Chemistry Transport Model Atmos. Chem. Phys 15 5627–5644
[3] Godowitch J M, Gilliland A B, Draxler R R, And Rao S T 2008 Modeling Assessment Of Point Source NO$_x$ Emission Reductions on Ozone Air Quality in The Eastern United States, Atmos. Environ., 42, 87–100
[4] Knowlton K, Rosenthal J E, Hogrefe C, Lynn B, Gaffin S, Goldberg R, Rosenzweig C, Civerolo K, Ku J Y, Kinney P L. 2004 Assessing Ozone-Related Health Impacts Under A Changing Climate Environ. Health Perspect, 112, 1557-1563
[5] Curlander J, Kober, W 1992 Rule Based System for Thematic Classification in SAR Imagery Proc. IGARSS (New York: IEEE Press) pp. 854-856
[6] Akimoto H 2003 Global air quality and pollution Science 302(5651): 1716-1719
[7] Bucsela E J, Celarier E A, Wenig M O, Gleason J F, Veekind J P, Boersma K F, And Brinksma E J 2006 Algorithm for NO$_2$ Vertical Column Retreival from The Ozone Monitoring Instrument IEEE. T. Geosci, Remote Sens 44
[8] Bucsela E J, Krotko N A, Celarier E A, Lamsal L N, Gleason J F and Pickering K E 2013 A New Stratospheric and Tropospheric NO$_2$ Retrieval Algorithm for Nadir-Viewing Satellite
Instruments Applications To OMI, Atmos. Meas. Tech, 6 2607-2626

[9] Boersma K F, Eskes H J, Veefkind J P, Brinksma E J, Van Der A R, Sneep M, Van Den Oord G H, Levelt P F, Stammes P, Gleason J, And Bucsela E J 2007 Near-Real Time Retrieval of Tropospheric NO₂ from OMI, Atmos Chem. Phys 7 2103-2118

[10] Boersma K F, Eskes H J, Dirksen R J et al 2011 An Improved Tropospheric NO₂ Column Retrieval Algorithm For the Ozone Monitoring Instrument Atmos Meas Tech 4:1905–1928

[11] Boersma K F, Eskes H J, Brinksma E J 2004 Error Analysis for Tropospheric NO₂ Retrieval from Space J. Geophys. Res 109 (D4)

[12] Schoeberl, M R, Et Al 2006 Overview of The EOS Aura Mission IEEE Trans, Geosci, Remote Sens., 44(5), 1066-1074