Supernova 2010ev: A reddened high velocity gradient type Ia supernova

Claudia P. Gutiérrez, Santiago González-Gaitán, Gastón Folatelli, Giuliano Pignata, Joseph P. Anderson, Mario Hamuy, Nidia Morrell, Maximilian Stritzinger, Stefan Taubenberger, Filomena Bufano, Felipe Olivares, and Daniel E. Reichart

1 Millennium Institute of Astrophysics, Casilla 36-D, Santiago, Chile
2 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
3 European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, Chile
4 Instituto de Astrofísica de La Plata (IALP, CONICET), Argentina
5 Departamento de Ciencias Físicas, Universidad Andres Bello, Avda. República 252, Santiago, Chile
6 Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile
7 Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
8 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
9 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
10 INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia, 78, 95123, Catania, Italy
11 University of North Carolina at Chapel Hill, Campus Box 3255, Chapel Hill, NC 27599-3255, USA

e-mail: cgutierr@das.uchile.cl

Preprint online version: January 29, 2016

ABSTRACT

Aims. We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev.

Methods. We obtain and analyze multi-band optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning from −7 days to +300 days from the B-band maximum.

Results. A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light curve shape of Δm_{15}(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B − V) = 0.25 ± 0.05 and a reddening law of R_V = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si II λ6355 absorption features. We also find that SN 2010ev is a high-velocity gradient SN, with v_{iso} = 164 ± 7 km s^{-1}. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II] λ7155 and [Ni II] λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions.

Key words. stars: supernovae: general stars: supernovae: individual: SN 2010ev

1. Introduction

Type Ia supernovae (SNe Ia) play an important role in stellar evolution and in the chemical enrichment of the universe, as well as in the determination of extragalactic distances, thanks to the relation between the decline rate of the light curve and its peak luminosity (Phillips, 1993; Hamuy et al., 1995) and between color and peak luminosity (Tripp, 1998). SNe Ia represent a homogeneous class and are thought to arise from the thermonuclear explosion of a carbon-oxygen white-dwarf either triggered by the interaction with the companion in a close binary system (Hoyle & Fowler, 1960) or by direct collisions of white dwarfs (Raskin et al., 2009). In the leading scenario of a close binary system, the nature of the explosion and of the companion star are still debated. Two of the models considered are: the single degenerate (SD) scenario (Nomoto, 1982; Iben & Tutukov, 1984), and the double degenerate (DD) scenario (Iben & Tutukov, 1984; Webbink, 1984). In the former, a white dwarf accretes matter from the companion which can be a sub-giant or main sequence star, while in the latter the SN is produced by the merging of two white dwarfs. SNe Ia are thought to explode near the Chandrasekhar mass, although recent simulations of sub-Chandrasekhar mass explosions have been successful for both scenarios (Sim et al., 2012; Kromer et al., 2010; Pakmor et al., 2012).

The study of SN Ia spectral and photometric parameters in both early and late epochs can give key indications about the nature of the explosion. Studies of SN Ia spectroscopic properties reveal significant diversity among the population. Benetti et al. (2005) defined a sub-classification of SNe Ia based on expansion velocities, line ratios and light curve decline rates. They classified the SN Ia population in three different sub-groups: High Velocity Gradient (HVG), Low Velocity Gradient (LVG) and FAINT objects. A parallel classification was proposed by Branch et al. (2006) based on absorption equivalent widths of...

Si\textsc{ii} λ5972 and λ6355 lines at maximum, which defines four subtypes: Core-Normal (CN), Broad-Line (BL), Cool (CL) and Shallow Silicon (SS). Wang et al. (2009) classified their SNe Ia sample in two groups based on the blueshifted velocity of Si\textsc{ii} absorption lines at maximum: Normal velocity (NV; \(v \sim 10500 \text{ km s}^{-1} \)) and High velocity (HV; \(v \geq 12000 \text{ km s}^{-1} \)) SNe. Contemporary analyses of large samples of SNe Ia spectra (e.g. Branch et al. 2009, Blondin et al. 2012, Silverman et al. 2013, Silverman & Filippenko 2012, Silverman et al. 2013, Folatelli et al. 2013) have confirmed this diversity and suggest that it could be key to understanding the explosion mechanism(s). In fact, Maeda et al. (2010) proposed an explanation in which velocity gradients vary as a consequence of different viewing directions towards an aspherical explosion scenario. Nebular [Fe\textsc{ii}] λ7155 and [Ni\textsc{ii}] λ7378 Å lines are redshifted and are generally associated with HVG SNe, while blueshifted lines correspond to LVG SNe.

Recent observational evidence suggests the presence of circumstellar material (CSM) around SN Ia progenitors, which in principle could favor the SD model (Raskin et al. 2013), but some DD models have also presented CSM (Shen et al. 2013). In observed spectra, the temporal evolution in the narrow NaI D lines has been attributed to CSM (Patat et al., 2007; Simon et al., 2013, Folatelli et al. 2013). The SN lies 1°6 East and 12°4 South of the center of the host galaxy (see Figure 1). Optical spectra of the host-galaxy properties are summarised in Table 1.

In observed spectra, the temporal evolution in the narrow NaI D lines has been attributed to CSM (Patat et al., 2007; Simon et al., 2013, Folatelli et al. 2013). The SN lies 1°6 East and 12°4 South of the center of the host galaxy (see Figure 1). Optical spectra of the host-galaxy properties are summarised in Table 1.

Table 1. Main parameters of SN 2010ev and its host galaxy

Parameter	Value
Host galaxy	NGC 3244
Host galaxy type	SA(rs)cd
Redshift	0.0092
Distance modulus \(\mu \)	32.31±0.06
RA\textsubscript{SN}	10°25′28″
Dec\textsubscript{SN}	−39°49′51″
\((B − V)\)\textsubscript{host}	0.92 mag
\((E(B − V))\textsubscript{host} \)	0.25 ± 0.05 mag
\(\Delta m_{15}(B) \)	1.12 ± 0.02
Stretch factor(B)	0.94 ± 0.01
\(B_{\text{max}} \) epoch (JD)	2455384.60
\(R_{\text{max}} \) epoch (UT)	2010 July 7.1
\(B_{\text{max}} \)	14.94 ± 0.02
\(V_{\text{max}} \)	14.98 ± 0.02
\(R_{\text{max}} \) epoch (JD)	2455385.60
\(I_{\text{max}} \) epoch (JD)	14.56 ± 0.02
\(I_{\text{max}} \)	2455382.60
\(g′ \)	1.63 ± 0.03
\(r′ \)	1.15 ± 0.02
\(i′ \)	1.16 ± 0.05
\(z′ \)	0.83 ± 0.02

* NED (NASA/IPAC Extragalactic Database).
† Obtained with SNooPy.
†† See SI.
†‡ Obtained by SiFTO.
‡ Late-time decline \(\gamma \) [Magnitudes per 100 days] between 175 and 290 days.

2. Observations and data reduction

SN 2010ev was discovered by the Chilean Automatic Supernova Search (CHASE) program on June 27.5 UT (Pignata et al. 2010) in the spiral galaxy NGC 3244 (\(\alpha = 10°25′28″ \), \(\delta = −39°49′51″ \)). The SN lies 1°6 East and 12°4 South of the center of the host galaxy (see Figure 1). Optical spectra of the SN 2010ev were obtained 3 days after discovery on June 30 2010 UT with the Gemini South (GMOS-S) telescope by Stritzinger et al. 2010. The spectrum revealed that SN 2010ev was a young (\(~7\) days before maximum) SN Ia. Details on SN 2010ev and its host-galaxy properties are summarised in Table 1.

2.1. Optical photometry

Optical imaging of SN 2010ev was acquired with the PROMPT1, PROMPT3 and PROMPT5 telescopes located at Cerro Tololo Interamerican Observatory, FORS2 at the ESO Very Large Telescope (VLT) and IMACS at Las Campanas Observatory. The PROMPT telescopes are equipped with an Apogee Alta U47 E2V CCD47-10 CCD camera (1024×1024, pixel scale = 0.6″ per pixel). With PROMPT1, SN 2010ev was observed with the \(B, V, R \) and \(I \) Johnson-Kron-Cousins filters, with PROMPT3 it was observed with \(B \) filter and the Sloan \(u′, g′ \) filters, and in PROMPT5 using \(V, R \) and \(I \) and \(r′, i′ \) and \(z′ \) filters.

2
filters.

Since the PROMPT cameras operate between -20 and -30 degrees Celsius, all optical images were dark subtracted to remove the dark current. After flat-field corrections all images taken with a given filter were registered and stacked in order to produce a final deeper image. PSF photometry of the supernova was computed relative to a sequence of stars located close to the SN but not contaminated by host galaxy light (see Figure 1).

The photometric sequence itself was calibrated to the standard Johnson Kron-Cousins and Sloan photometric systems using observations of photometric standard stars (Landolt 1992, Landolt 2007, Smith et al. 2002), respectively. The BVRI and u'g'r'i'z' magnitudes of the local sequence are reported in Table A.1.

Given that SN 2010ev exploded in a region of significant background galaxy flux, it was necessary to apply galaxy template subtractions to all of the optical images. Three template images for each filter were acquired with the PROMPT telescopes between 2012 January 24–30, i.e. more than 565 days after B maximum brightness. This makes us confident that the residual SN flux on the template images is negligible. Each flux measurement was computed as a weighted average of the values obtained from the three templates. To account for the error introduced by the templates we add in quadrature the rms flux computed from the three measurements with errors obtained from the PSF fitting and flux calibration. In Table A.1 we report the BVRI and u'g'r'i'z' photometry of SN 2010ev, together with their uncertainties.

2.2. Optical and near infrared spectroscopy

Optical spectra were obtained at 16 epochs spanning phases between ~6 and +270 days with respect to B-band maximum. These observations were acquired with four different instruments: X-Shooter and FORS2 at the ESO Very Large Telescope (VLT), GMOS-S at the Gemini Observatory and the WFCCD at the du Pont Telescope of the Las Campanas Observatory. Near infrared spectra were obtained with X-Shooter covering 9 epochs from ~6 to +15 days. A log of the spectroscopic observations of SN 2010ev is reported in Table 2.

Data reduction for GMOS-S, WFCCD and FORS2 were performed with IRAF1 using the standard routines (bias subtraction, flat-field correction, 1D extraction, and wavelength calibration), while for X-Shooter the dedicated pipeline (Modigliani et al. 2010) was employed for most of the process, leaving the telluric line correction and flux calibration to be done with IRAF. To remove the telluric optical and NIR features, the SN spectrum was divided by the standard star spectrum observed during the same night. The SN spectra were flux-calibrated using response curves acquired from the spectra of standard stars.

3. Results

In this section we show the spectral and photometric results obtained for SN 2010ev. The principal measurements are compared with other well-studied SNe Ia that have similar characteristics, such as colors, line ratios and velocities. In order to interpret our observations and results, we compare them with the Hsiao SN Ia spectral template (Hsiao et al. 2003, hereafter “H07”) and synthetic spectra computed from a delayed-detonation model

\(B_{\text{max}} \approx 14.94 \pm 0.02 \) on JD = 2455384.60 ± 0.30 (2010 July 7.1 UT), which indicates that SN 2010ev was observed in BVRI and u'g'r'i'z' from ~7.5 to 289.5 days with respect to maximum light. The peak VRI magnitudes are \(V_{\text{max}} = 14.98 \pm 0.02 \), \(R_{\text{max}} = 14.45 \pm 0.02 \) and \(I_{\text{max}} = 14.56 \pm 0.01 \), that occur at \(-1\),

\[^{1}\text{IRAF is distributed by the National Optical Astronomy Observatories (NOAO), which are operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.}\]

\[^{2}\text{Synthetic spectra obtained from: https://www-n.oca.eu/supernova/snia/sn2002bo.html}\]
metric parameters of SN 2010ev are reported in Table 1.

ear decline due to the exponentially decreasing rate of energy

1 and ~2 days with respect to B max. The I and r' bands show a

parameters of SN 2010ev are reported in Table 1.

During the nebular phase the BVR/I magnitudes follow a lin-

3.2. Color Curves

The (B − V), (V − R) and (V − I) color curves of SN 2010ev are com-

SN 2002bo. The colors have been corrected for Milky Way (MW)

100 days, respectively. The slope of the B light curve is higher that those found by Lair et al. (2006)

0.83 ± 0.02 magnitudes per 100 days, respectively. The slope of the

and I bands. Despite these differences, these decline rates are consistent with other well studied

gray line) obtained in section 3.6. The di-

extinction (solid grey line) and with the host extinction (dashed

The peak of the (B − V) color evolution happens around 30
days, compared to around 26 days in the B15 model. This evolu-

tion is similar in (V − R) and (V − I). The difference in the time of

0.1M⊙ of 56Ni synthesized during the explosion. Since these

in 56Ni mass, which also affect the temperature and ionization.

Gutiérrez et al.: SN 2010ev: A reddened HVG SN.

Table 2. Spectroscopic observations of SN 2010ev.

UT date	MJD.	Phase*	Range	Telescope + Instrument*	Arm/Grim*
2010/06/30	55378.47	-6.1	3590-9640	GEM-GM	B600-500 & R600-750
2010/06/30	55378.48	-6.1	3500-25000	VLT+XS	UV/VIS/NIR
2010/07/01	55379.49	-5.1	3580-9640	GEM+GM	B600-500 & R600-750
2010/07/03	55380.54	-4.1	3500-25000	VLT+XS	UV/VIS/NIR
2010/07/04	55382.48	-2.1	3500-25000	VLT+XS	UV/VIS/NIR
2010/07/05	55383.48	-1.1	3500-25000	VLT+XS	UV/VIS/NIR
2010/07/06	55384.48	-0.1	3500-25000	VLT+XS	UV/VIS/NIR
2010/07/07	55385.48	0.9	3500-25000	VLT+XS	UV/VIS/NIR
2010/07/07	55385.49	0.9	3600-9212	DP+WF	blue
2010/07/09	55387.49	2.9	3500-25000	VLT+XS	UV/VIS/NIR
2010/07/11	55389.49	4.8	3635-9212	DP+WF	blue
2010/07/13	55391.48	6.9	3500-25000	VLT+XS	UV/VIS/NIR
2010/07/21	55399.50	14.9	3500-25000	VLT+XS	UV/VIS/NIR
2010/07/26	55404.48	19.9	3590-8960	GEM+GM	B600-500 & R600-750
2010/12/31	55614.49	176.9	3600-10500	VLT+FS	300V
2011/04/03	55654.49	269.9	3600-10500	VLT+FS	300V + OG590

* Relative to B max (MJD= 2455384.60)

Fig. 3. Color evolution of SN 2010ev compared with high velocity gradient (HVG) SNe Ia: SN 2002bo, SN 2002dj and SN 2002er. The SN colors have been dereddened for MW extinction only. We also show the colors of the B15 model without extinction (solid grey line) and with the host extinction (dashed grey line) obtained in section 3.6.
3.3. Optical spectral evolution

3.3.1. Early phases

Figure 4 shows the optical spectra evolution of SN 2010ev from −6.1 to 19.9 days. The spectra show that SN 2010ev is a normal SN Ia with very prominent Si\textsc{ii} \(\lambda 6355 \) Å absorption. Pre-maximum spectra exhibit characteristic P-Cygni profiles of Si\textsc{ii} \(\lambda \lambda 4130, 5972 \) and \(\lambda 6355 \); Ca\textsc{ii} H & K \(\lambda 3945 \) and IR triplet \(\lambda 8579 \); S\textsc{ii} \(\lambda \lambda 5449, 5622 \) Å. Other lines such as Mg\textsc{ii} \(\lambda 4481 \) Å, and some blends caused by Fe\textsc{ii} in the 4500 to 5500 Å range are clearly visible. Despite contamination from the telluric feature near \(\lambda 7600 \), O\textsc{i} \(\lambda 7774 \) Å is also detected. The narrow Na\textsc{i} D and Ca\textsc{ii} H & K from the host galaxy and the MW, as well as diffuse interstellar bands (DIBs) at \(\lambda \lambda 5780 \) and \(\lambda 6283 \) Å are also present, which suggest significant reddening.

In Figure 5, the optical spectrum of SN 2010ev at approximately −4 days from \(B \)-band maximum is compared at the same epoch with SNe with very prominent Si\textsc{ii} \(\lambda 6355 \) Å absorption and similar colors, such as SN 2002bo and SN 2002dj. The H07 template and B15 model are also shown for comparison. As can be seen, SN 2010ev shows stronger Si\textsc{ii} \(\lambda 6355 \) absorption features compared with SN 2002bo and SN 2002dj, and similarities in lines like Ca\textsc{ii} and S\textsc{ii}. Since the B15 model is well matched
with SN 2002bo, their lines widths and the pseudo-continuum are very similar, while the H07 template shows smaller absorption lines of Si ii \(\lambda 6355 \) Å and the Ca ii IR triplet. The O i \(\lambda 7774 \) Å line is more prominent in SN 2010ev than the other SNe, which could suggest either differences in the amount of unburned material or in the oxygen abundance, produced by C burning. Considering its velocity (~14500 km s\(^{-1}\)), it could be attributed to unburnt C \cite{Blondin2015}. However, we can not confirm the latter using the possible presence of C i due to a lack of very early spectra.

At maximum, the ratio of the depth of the Si ii \(\lambda 5972 \) and \(\lambda 6355 \) absorption features, \(R(\text{Si ii}) \) \cite{Nugent1995} is \(R(\text{Si ii}) = 0.20 \pm 0.03 \), while the pseudo-equivalent widths (pEWs) give 150.80 ± 1.21 Å and 15.91 ± 0.72 Å respectively. Based on the strength of the Si ii lines defined by \cite{Branch2009}, SN 2010ev is a Broad-Line (BL) SN. The evolution of \(R(\text{Si ii}) \) of SN 2010ev is compared in Figure 6 with HVG and low velocity gradient (LVG, \cite{Benetti2008}) SNe. As can be seen, SN 2010ev shows a dramatic decline before maximum from \(R(\text{Si ii})= 0.40 \) at ~6 days to \(R(\text{Si ii})= 0.20 \) around maximum. Then, it shows a flat evolution, which is consistent with HVG SNe. This behavior reflects lower temperatures before maximum in the spectrum-forming region, which then increase. Figure 6 also shows the evolution of \(R(\text{Si ii}) \) for H07 template and B15 model. The B15 model is consistent with the evolution of the HVG SN 2002bo; meanwhile, the evolution of H07 template shows a behavior similar to LVG SNe.

After maximum, the Ca ii IR triplet (Figure 4) becomes very prominent, while the Si ii \(\lambda 5972 \) and S ii lines fade rapidly. The S ii lines are not detectable ~2 weeks after maximum whereas Si ii \(\lambda 6355 \) is visible for ~20 days. At 14 days after maximum the O i \(\lambda 7774 \) line disappears and Ca ii H & K decreases significantly. At around 20 days from iron-group elements start to dominate the spectrum, as the SN ejecta layers expand and become more transparent.

3.3.2. Late phases

In the nebular phase, two spectra were obtained at ~177 and ~270 days with FORS2. In this phase, the spectrum is mainly dominated by forbidden lines of iron-group elements: [Fe ii], [Fe iii], [Ni ii], [Ni iii] and [Co ii], which were identified in SN 2010ev (see Figure 7). The spectra also show typical lines of an H ii region at the SN site such as H\(_\alpha\), [Ni ii], and [Si ii]. The strongest feature at this epoch is the blend of [Fe iii] lines at \(\lambda 4701 \) Å \cite{Maeda2010b}. The velocity offset of peak emission shows a significant temporal change from 1300 ± 100 km s\(^{-1}\) at 177 days to 490 ± 20 km s\(^{-1}\) at 270 days from the rest position. This behavior is consistent with that found by \cite{Maeda2010b} for a sample of 20 SNe Ia with late-time nebular spectra and different velocities, light-curve widths and colors. Meanwhile, the FWHM velocities show the opposite trend: At 177 days, the FWHM=14800 ± 300 km s\(^{-1}\) and increases to 16400 ± 600 km s\(^{-1}\) at 270 days. Taking an average of the relation derived by \cite{Mazzali1998} and more recently by \cite{Blondin2012}, we can infer \(\Delta m_{15}(B) = 1.10 \pm 0.03 \) based on the FWHM velocities of [Fe ii] at \(t > 200d \), which is consistent with the one obtained with SNooPy. However, it should be noted that this relation is not significant when subluminous events are excluded \cite{Blondin2012, Silverman2013}.

Other lines in the spectra seem to have no significant evolution, except the emission lines near ~6000 Å, which appear to decrease with time, and the blend of [Fe ii] \(\lambda 7155 \) and [Ni ii] \(\lambda 7378 \) features that develop a double-peak profile.

In Figure 7 the nebular spectra of SN 2010ev are compared with SN 2003du \cite{Stanishev2007} and SN 2002dj...
Fig. 7. Nebular spectra of SN 2010ev taken at 177 and 270 days compared with SN 2003du, and SN 2002dj around 270 days. The spectra have been corrected for redshift and normalized with respect to the SN 2010ev flux in V-band (and shifted by an arbitrary constant). The main features have been labeled, while the epochs and the SN name are shown on the right. The dashed lines are the rest position of [Fe\textsc{ii}] $\lambda 7155$ and [Ni\textsc{ii}] $\lambda 7378$ (Pignata et al., 2008) around 270 days. The ~ 4700 Å feature is similar in SN 2010ev and SN 2002dj, although slightly more pronounced in the latter. In SN 2003du this feature appears to be stronger. Also, the [Fe\textsc{ii}] $\lambda 7155$ and [Ni\textsc{ii}] $\lambda 7378$ lines are blueshifted. This shift may suggest an asymmetry during the initial deflagration of the explosion in the direction away from the observer (Maeda et al., 2010a).

At 270 days, we find $v_{\text{neb}} = 2150 \pm 220$ km s$^{-1}$, inferred from the average of the Doppler shifts of the emission lines of [Fe\textsc{ii}] $\lambda 7155$ and [Ni\textsc{ii}] $\lambda 7378$. Redshifted nebular velocities have been seen to relate with HVG and redder colors (Maeda et al., 2011; Förster et al., 2012) and with narrow Na\textsc{i} D equivalent width (Förster et al., 2012). We confirm these trends with SN 2010ev.

3.4. NIR Spectral evolution

The NIR spectra of SN 2010ev between -6 to 15 days with respect to B$_{\text{max}}$ are presented in Figure 8. The early spectra show a blue pseudo-continuum with a weak feature at ~ 10500 Å which corresponds to Mg\textsc{ii} $\lambda 10927$ (Wheeler et al., 1998). The strength of this feature seems to be constant with time, while other lines are getting stronger. Near ~ 16500 Å a weak feature is clearly visible, which has been identified as Si\textsc{ii} by Gall et al. (2012) and as Fe\textsc{ii} by Hsiao et al. (2013). Near ~ 20800 Å we detect a feature which has not been clearly identified, but according to Benetti et al. (2004) this line is due to Si\textsc{ii}, while Stanishev et al. (2007) suggest that the line is Si \textsc{iii} $\lambda 10693$ is not detected in our spectra, but possibly contributes to Mg\textsc{ii} $\lambda 10927$.

The H-band break ratio ($R = f_1/f_2$) defined by Hsiao et al. (2013) as the ratio between the maximum flux level redwards of 1.5 μm (f_1) and the maximum flux just bluewards of 1.5 μm (f_2), can be seen in the spectra of SN 2010ev at 2.9 days. The break at this epoch increases from $R = 1.26 \pm 0.14$ to 2.14 ± 0.11 at 6.9 days and takes the maximum value at 14.9 days ($R = 3.11 \pm 0.09$). Hsiao et al. (2013) found that this parameter appears to peak uniformly around 12 days past B-band maximum, and that it is correlated with $\Delta m_{15}(B)$. Using the mean decline rate estimated by Hsiao et al. (2013) for a sample of SNe Ia, we measure the ratio at 12 days and find $R_{12} = 3.39 \pm 0.15$, which corresponds well with our $\Delta m_{15}(B)$ estimate (Hsiao et al. 2013, Figure 11).

At 6.9 days the spectrum shows emission features present at 15500 Å and 17500 Å. These features are attributed to blends of iron group elements: Co\textsc{ii}, Fe\textsc{ii} and Ni\textsc{ii} (Wheeler et al., 1998; Marion et al., 2003). Above 20000 Å, lines of Co\textsc{ii} dominate the spectrum (Marion et al., 2009). The presence of these lines means that the spectrum-forming region has receded enough to reach the iron group dominated region.
3.5. Expansion velocities

The analysis of the spectra indicate large and rapidly decreasing expansion velocities due to the rapidly receding spectrum-forming region to deeper layers with time. In Figure 8, we present the velocity evolution for selected lines of Si\textsc{ii}, Ca\textsc{ii}, S\textsc{ii} and Mg\textsc{ii}. It clearly shows that the expansion velocity of Ca\textsc{ii} is higher than Si\textsc{ii}. The Si\textsc{ii} minimum evolves from 14800 km s\(^{-1}\) at -7 days to 10200 km s\(^{-1}\) at 19 days, while at the same epoch Ca\textsc{ii} H & K decrease from 20100 to 14000 km s\(^{-1}\) and the Ca\textsc{ii} IR triplet from 17000 to 11900 km s\(^{-1}\). This implies that the Ca\textsc{ii} lines mostly form in the outer shell of the ejecta, while Si\textsc{ii}, which has a higher ionization potential, forms in deeper layers, resulting in lower absorption velocities (11400 at -7 days to 8600 km s\(^{-1}\) at 5 days and then disappears). Meanwhile, Mg\textsc{ii} \(\lambda10900\) Å shows a nearly constant velocity, which is consistent with the findings of Hsiao et al. (2013), who show that the velocity is remarkably constant after a short period of decline in very early phases. After 1 day past maximum, the Mg\textsc{ii} feature is difficult to measure due to the blend with other lines.

From the velocity evolution of Si\textsc{ii} \(\lambda6355\) between maximum and 20 days, we obtain a velocity gradient of \(v_{\text{Si}} = 164 \pm 7\) km s\(^{-1}\) d\(^{-1}\), which places SN 2010ev among the HVG group (Benetti et al., 2005). This result is comparable with the definitions of velocity gradient put forward by Blondin et al. (2012) and Folatelli et al. (2013). In the former we obtain \(\Delta v_{\text{abs}}/\Delta t = (166 \pm 14)\) km s\(^{-1}\) d\(^{-1}\), while in the latter we find \(\Delta v_{20}(\text{Si}) = 3210 \pm 183\) km s\(^{-1}\). To be consistent with the units, we divide this last value by 20 days and we obtain \(160.5 \pm 9.2\) km s\(^{-1}\) d\(^{-1}\). Since the Si\textsc{ii} velocity in SN 2010ev is quasi-linear, all three gradients agree with each other.
shows the velocity gradient for these SNe measured in different ways. SN 1994D and SN 2005cf belong to the LVG group. Table 3 and SN 2002dj are consistent with the HVG class. In contrast, the velocity evolution of SN 2010ev, SN 2002bo is clearly seen that the velocity evolution of SN 2010ev, SN 2002bo shows the velocity evolution for H07 template and B15 model. In Figure 10 we compare the time evolution of the expansion velocity of Si II λ6355 with eight well studied SNe Ia. It can be seen that the velocity evolution of SN 2010ev, SN 2002bo and SN 2002dj are consistent with the HVG class. In contrast, the velocity evolution of SN 2010ev, SN 2002bo shows the velocity evolution for H07 template and B15 model. The nature of red colors towards SN Ia is still debated. It is not clear what is intrinsic to the SN and what is due to reddening from material in the line of sight. Recent claims of circumstellar interaction have fed the question of whether their color evolution and the atypical inferred host extinction laws actually relate to nearby material ejected close to explosion. In this section we explore different methods to estimate the reddening and extinction law towards SN 2010ev, as well as any other evidence for CSM from a photometric point of view. The B-max template gives better agreement with our SN, while the H07 template gives better results for the LVG group.

Table 3. Velocity decline for the sample used in Figure 10. The second column is the mean velocity decline between maximum and +10 days (Blondin et al., 2012). The third column is estimated in the same way but between maximum and 20 days (Folatelli et al., 2013). The last column is derived doing a fit between maximum and the last available value (Benetti et al., 2005).

SN	ΔVabs/Δt +0,10	ΔVabs(Si) /20	VS
2003du	17 33	17 31	
2005cf	52 54	52 35	
1994D	64 54	64 39	
2009Y	96 86	96 125	
2002bo	122 115	122 110	
2002dj	145 132	145 86	
2010ev	166 160	166 164	
2006X	235 179	235 123	
2004dt	244 245	244 160	

* Taken from Maeda et al. (2010a), except the value of SN 2010ev, which was estimated in this work.

3.6. Extinction from the light-curve

The nature of red colors towards SN Ia is still debated. It is not clear what is intrinsic to the SN and what is due to reddening from material in the line of sight. Recent claims of circumstellar interaction have fed the question of whether their color evolution and the atypical inferred host extinction laws actually relate to nearby material ejected close to explosion. In this section we explore different methods to estimate the reddening and extinction law towards SN 2010ev, as well as any other evidence for CSM from a photometric point of view. The B-max template gives better agreement with our SN, while the H07 template gives better results for the LVG group. The last column is derived doing a fit between maximum and the last available value (Benetti et al., 2005).

In Figure 10 we compare the time evolution of the expansion velocity of Si II λ6355 with eight well studied SNe Ia. It can be seen that the velocity evolution of SN 2010ev, SN 2002bo and SN 2002dj are consistent with the HVG class. In contrast, the velocity evolution of SN 2010ev, SN 2002bo shows the velocity evolution for H07 template and B15 model. In Figure 10 we compare the time evolution of the expansion velocity of Si II λ6355 with eight well studied SNe Ia. It can be seen that the velocity evolution of SN 2010ev, SN 2002bo and SN 2002dj are consistent with the HVG class. In contrast, the velocity evolution of SN 2010ev, SN 2002bo shows the velocity evolution for H07 template and B15 model.
ent from the Milky Way (MW), or if some nearby material affects the color of SNe Ia in such a way as to mimic this effect, SN 2010ev is reddened and is thus a good candidate for low R_V.

In order to estimate a reddening law for SN 2010ev, we calculate the color excesses at maximum at different wavelengths to fit them to various reddening laws in a similar way to Folatelli et al. (2010). Firstly, we obtain colors ($V - X$) at B-band maximum light for bands $X = u', g', r'$ and i' obtained from our SiFTO fit. These colors have been K-corrected through the H07 template warped to the observed photometric colors, and then corrected for MW extinction. To obtain color excesses we use intrinsic colors from both the H07 template and the B15 model.

The resulting color excesses using intrinsic colors from the B15 model are shown in Figure 11 where we also show different reddening law fits. The best reddening law we find for Cardelli et al. (1989), modified by O'Donnell (1994) (CCM) is $R_V = 1.54 \pm 0.65$ with $E(B - V) = 0.25 \pm 0.05$, which is consistent with the model by Fitzpatrick (1999) ($R_V = 1.72 \pm 0.60$), and is also consistent with the reddening law of Goobar (2008) for circumstellar dust. The reddening law of SN 2010ev is different from standard values for the MW and is consistent with other values of reddened SNe. This argues for different dust properties such as size in the CSM or ISM around the SN, or a combination of normal dust from CSM and ISM (Foley et al., 2014). If we were to use the intrinsic colors of the H07 template instead, the R_V obtained would be even lower. Such a low R_V for SN 2010ev has recently also been constrained by Burns et al. (2014) who applied a detailed Bayesian analysis to a large sample of SN Ia light curves. They obtained $R_V = 1.54^{+0.57}_{-0.59}$ and $A_V = 0.50^{+0.17}_{-0.19}$ which yields $E(B - V) = 0.32$, consistent with our approach. One can see that the u' band is crucial to differentiate between different reddening law values. The NIR could help to constrain these estimates further, however we do not have NIR photometry.

We did similar fits to data at other epochs, in order to investigate the evolution of the reddening law. We do not find any significant change for R_V or $E(B - V)$ between -4 and $+15$ days from maximum. This argues for no evolution and therefore no nearby dust. We note that for SN 2014J, a highly reddened

Table 4. Line of sight extinction A_V, reddening law R_V and color excess $E(B - V)$ for SN 2010ev according to different spectroscopic and photometric techniques.

A_V	R_V	$E(B - V)$	Reference
$0.28 \pm 0.06^*$	\cdots	\cdots	MW dust extinction maps (Schlafly & Finkbeiner, 2011)
\cdots	0.147 ± 0.003	\cdots	EW(Na I D) via Turatto et al. (2003)
\cdots	0.169 ± 0.034	\cdots	EW(Na I D) via Poznanski et al. (2012)
0.28 ± 0.02	\cdots	\cdots	MW Na I D column density (Phillips et al., 2013)
\cdots	0.26 ± 0.07	\cdots	Maximum light colors via Phillips et al. (1999)
\cdots	0.29 ± 0.05	\cdots	Maximum light colors via Folatelli et al. (2010)
\cdots	0.29 ± 0.02	\cdots	SNooPy fit (Burns et al., 2011)
$0.50^{+0.17}_{-0.19}$	$1.54^{+0.57}_{-0.59}$	0.25 ± 0.05	Color excess fit (this work)
\cdots	1.54 ± 0.65	\cdots	EW(Na I D) via Turatto et al. (2003)
\cdots	0.107 ± 0.008	\cdots	EW(Na I D) via Poznanski et al. (2012)
0.38 ± 0.02	\cdots	\cdots	Na I D column density (Phillips et al., 2013)
1.18 ± 0.01	\cdots	\cdots	EW(DIB) 5780 Å via Luna et al. (2008)
\cdots	0.50 ± 0.04	\cdots	EW(DIB) 6283 Å via Luna et al. (2008)
0.24 ± 0.03	≤ 2	\cdots	K_l column density (Phillips et al., 2013)
\cdots	\cdots	\cdots	Continuum polarization (Zeljaca et al., 2015)

* The error is calculated from the difference with Schlegel et al. (1998).
SN, there is an increase of ~ 0.4 in R_V in the same time range (Foley et al., 2014).

We note that the intrinsic color of SN 2010ev using the observed colors measured by SiFTO and our host reddening estimate is: $(B-V)_{int} = (B-V) - E(B-V) \approx 0.06$ which is slightly redder than the average intrinsic SN Ia color of $(B-V)_{int} \approx 0$. This is consistent with the idea that HVG SNe might be redder both intrinsically and because of host extinction (Foley et al., 2011).

3.7. Narrow absorption features of intervening material

The spectra of SN 2010ev exhibit strong interstellar narrow absorption lines Na I D and Ca II H & K at the redshift of the host galaxy and the MW, as well as narrow absorption features that correspond to DIBs at the redshift of the host galaxy ($\lambda 5780$ and $\lambda 6283$). Typically, DIBs tend to be seen in the spectra of stars (Herbig, 1994) or supernovae (e.g. Welty et al., 2014) reddened by interstellar dust, giving further evidence for the strong extinction inferred for SN 2010ev in the previous section. The identification of these lines was made using the diffuse interstellar band catalog (Jenniskens & Desert, 1994).

Figure 12 shows some of these lines and another unknown narrow line complex in the red part of $\lambda 6283$ Å which we have not identified.

![Figure 12](https://leonid.arc.nasa.gov/DIBCatalog.html)

Fig. 12. Inset of medium-resolution spectra of SN 2010ev showing characteristic narrow absorption lines from intervening material in the line of sight.

Temporal evolution of these lines could signify changes in ionization balance induced by the SN radiation field as shown for Na I D (Patat et al., 2007; Blondin et al., 2009; Simon et al., 2008; Sternberg et al., 2013), for K i (Graham et al., 2015) and possibly for DIBs as well (Milisavljevic et al., 2014). We investigate this by analyzing the temporal evolution of the pEW of these lines. We measure them simply by tracing a straight line along the absorption feature to mimic the pseudo-continuum flux, and then estimate the error measuring the pEW many times, changing the trace of the continuum. Using these multiple measurements we calculate a mean and take the standard deviation to be the error on that measurement. The absorption features of Na I D and Ca II H & K from the MW and the host galaxy do not seem to evolve with time. Regarding the DIBs, we find no evidence of evolution for $\lambda 5780$ but a slight decrease for $\lambda 6283$.

Recent studies of moderate-resolution absorption lines of Na I D have revealed an interesting excess of blueshifted absorptions towards SNe Ia, suggestive of pre-SN outflows (Sternberg et al., 2011; Maguire et al., 2013; Phillips et al., 2013). The SNe that show blueshifted absorption seem to relate with the strength of the Na I D absorption, as well as with the color of the SN (Maguire et al., 2013). Having strong absorption features and red colors, one could expect SN 2010ev to present these shifts. However, we do not find any evidence for blueshift in any of our narrow absorption lines (in agreement with Phillips et al., 2013) arguing for a low amount of CSM in this SN, nevertheless, this may also be due to a lack of sufficient spectral resolution to confidently rule out such a feature.

Besides giving us possible information about the CSM interaction, the strength of the line can be a useful diagnostic of the amount of absorption by intervening material in the line of sight. The Na I D doublet has been used in the past as an indicator of the host galaxy extinction (Turatto et al., 2003; Poznanski et al., 2012) although its validity has been put into question (Poznanski et al., 2011; Phillips et al., 2013). Using the method introduced by Phillips et al. (2013) with column densities of Na I D, one gets: $E(B-V)_{MW} = 0.09$ (using $R_V = 3.1$) and $E(B-V)_{Host} = 0.25$ (using $R_V = 1.54$).

For the host galaxy, we can additionally use independent constraints on the reddening from the DIBs. Using the relations between the EW of the DIBs and $E(B-V)$ proposed by Luna et al. (2008) for post-AGB stars, we estimate a reddening for $\lambda 5780$ of $E(B-V)_{Host} = 0.53 \pm 0.09$ and for $\lambda 6283$ of $E(B-V)_{Host} = 0.50 \pm 0.04$. These values are too large compared with other photometric and spectroscopic estimates, as much as a factor of ~ 2, as also recently shown by Welty et al. (2014). For the host, there is another narrow line that we can use, K i, with the relation found by Phillips et al. (2013), yielding $E(B-V)_{Host} = 0.16$ (using $R_V = 1.54$). These results are summarized in Table 6. The color excesses obtained with photometric analysis give consistent results, while the narrow absorption features agree only for the more recent studies of Phillips et al. (2013).

4. Discussion

4.1. Bolometric luminosity and Nickel mass

In this section we calculate the bolometric light-curve of SN 2010ev, a valuable tool to describe the general properties of the SN, and to infer characteristics of the explosion and progenitor. We assume the reddening law of $R_V = 1.54$ for the host, as previously calculated, with an extinction of $E(B-V)_{Host} \approx 0.25$. We used a distance of 29.88 ± 8.11 Mpc taken from a mean of several methods from NED. Since we have enough photometric optical coverage but no NIR nor UV photometry, we can obtain a “pseudo-bolometric” light-curve by integrating all $B'g'V'i'R'I'$ photometry corrected for MW and host extinctions. The pseudo-bolometric light curve is shown in circles in Figure 13. Errors are calculated integrating the photometry taking into account their respective errors. We also obtain the bolometric light-curve for

3 http://leonid.arc.nasa.gov/DIBCatalog.html
the H07 template and the B15 model (solid and dashed lines in Figure 13) from the integration of their SEDs in the same wavelength range covered by the filters.

The bolometric luminosity at maximum is \(L_{\text{bol}} = (1.54 \pm 0.07) \times 10^{53} \text{erg s}^{-1} \). A simple estimate of the \(^{56}\text{Ni}\) mass synthesized during the explosion can be obtained using Arnett’s rule \((\text{Arnett}, 1982) \). Adopting a rise-time, i.e. the duration from explosion to maximum light, of \(t_r = 16.00 \pm 0.21 \) days given the stretch of the SN \((\text{González-Gaitán et al.}, 2012) \) we obtain \(0.56 \pm 0.10 M_\odot \) of \(^{56}\text{Ni}\).

To model the entire bolometric light curve, we employ a modified version of the approach by \(\text{Arnett}, 1982 \): the work by \(\text{Maeda et al.}, 2003 \) shows that a two-component model is necessary to fit both the optically thick and thin regimes. Therefore, in addition to the synthesized \(^{56}\text{Ni}\) mass \((M_{\text{Ni}}) \), and the kinetic energy \((E_k) \), two new physical parameters are invoked: the fraction of mass \((f_M) \) and energy \((f_E) \) of the inner component. Moreover, in addition to these two physical components, we define two different regimes in the temporal evolution of the luminosity: the optically thick phase (around maximum light) and the optically thin (or nebular) phase. In our modeling procedure, the transition will lie at the epoch when the optically thick model does not provide a good fit anymore. Usually it would overestimate the luminosity 30 to 40 days after the explosion.

The optically thick phase was modeled as if only the outer component was contributing to the total observed luminosity according to \(\text{Valenti et al.}, 2008 \). As suggested by \(\text{Pignata et al.}, 2008 \), we measure the velocity maximum absorption of \(^{56}\text{Ni}\) at 4560 Å and obtain \(5270 \pm 110 \) km s\(^{-1}\). Using SYNOW \((\text{Branch et al.}, 2006) \), we obtain a range of acceptable velocity matches between \(\sim 5000 \) – \(10000 \) km s\(^{-1}\). Thus, we use \(7500 \pm 2500 \) km s\(^{-1}\) and model the error with a Monte Carlo simulation.

The final physical parameters we obtain are \(M_{\text{Ni}} = 0.51 \pm 0.01 M_\odot \), with \(t_0 = -15.8 \pm 0.1 \) days, and \(M_{e j} = 1.2 \pm 0.5 M_\odot \). The other parameters are presented in Table 5.

The nickel mass that we obtain is quite standard for a normal stretch \(s \sim 1 \) SN Ia. The B15 model has 0.51M\(_\odot\) of synthesized nickel in remarkable agreement with our estimate. This value is very similar to the nickel mass inferred by Stehle et al. \((2005) \) for SN 2002bo. Scalzo et al. \((2014b) \) find a relation between peak \(M_B \) and \(M_{\text{Ni}} \). Based on their relations, from our observed extinction-corrected \(M_B \), we get \(M_{\text{Ni}} \sim 0.26 M_\odot \), clearly below our calculation, even if we assume a standard \(R_V = 3.1 \) host reddening law. This could be due to the fact that the relations presented in Scalzo et al. \((2014b) \) are for SNe Ia with normal colors, and are not suited for HVG SNe Ia.

The ejecta mass we obtain is consistent within the errors with a Chandrasekhar explosion, although a sub-Chandrasekhar event is possible. If this were the case, it would support the idea that a fraction of SNe Ia explodes below the Chandrasekhar mass \((\text{Strzitzinger et al.}, 2006; \text{Scalzo et al.}, 2014b) \). Using our stretch and the relation of Scalzo et al. \((2014b) \), we obtain \(M_{e j} \sim 1.24 M_\odot \).

Table 5. Main bolometric parameters of SN 2010ev

Parameter	Value
\(M_{\text{Ni}} \)	\(0.51 \pm 0.01 M_\odot \)
\(t_0 \)	\(-15.8 \pm 0.1 \)
\(M_{e j} \)	\(1.2 \pm 0.5 M_\odot \)
\(\tau \)	\(0.08 \pm 0.01 \)
\(J_e \)	\(0.01 \pm 0.01 \)
\(\nu_{10} \)	\(7500 \pm 2500 \) km s\(^{-1}\)
\(E_k \)	\((1.1 \pm 1.2) \times 10^{51} \) erg

Fig. 13. Bolometric light-curve of SN 2010ev. Circles denote the optical pseudo-bolometric light-curve, the solid blue line is the two-component fit (see text), the dotted cyan line is the one-component fit (simple model), and the red and grey lines are the pseudo-bolometric light-curves for the H07 template and B15 model normalized to the peak bolometric luminosity of SN 2010ev.

4.2. Comparison with other SNe and templates

The analysis done in the previous sections shows that the properties of SN 2010ev such as high velocities and their fast gradient, evolution of the \(R(\text{Si}_ii) \), line widths, and overall match with the spectra at different epochs, are in better agreement with the B15 model and HVG SNe. Since the B15 model is a good match to SN 2002bo, a similar object to our SN, we expect all of them (SN 2002bo-like objects) to have similar physical parameters like density profile, explosion energy, nickel mass and nucleosynthetic yields \((\text{see Blondin et al., 2015}) \).

The differences between these two groups of objects (HVG and LVG), best represented by the H07 template and the B15 model, could suggest two different explosion mechanisms in normal SNe Ia. On one side, the Chandrasekhar mass delayed detonation model can fit the HVG SNe quite well, while on the other hand, the more common LVG SNe are not well matched and could be explained by alternative models such as pulsational-delayed detonations \((\text{Dessart et al., 2014}) \). The colors at maximum and their evolution also differ considerably. However, both groups have similar light-curve widths and only small differences in \(B \)-band magnitude. This shows that the diversity of SNe Ia goes beyond a simple parameter related to
4.3. Extinction and reddening

It has become clear in recent years that for some SNe Ia we infer extremely low R_V values (even lower than 2) in the line of sight to their host galaxies that are atypical of the MW. This has been shown for average reddening laws of SN populations (Wang et al. 2009) and for individual SNe (e.g. Burns et al. 2014). SN 2010ev is one of these SNe. The reddening is inferred from photometric and spectroscopic studies. To do this, one should not assume a global intrinsic color for all SNe Ia: here we use the B15 model which is well matched to another similar HVG SN, SN 2002bo. The unusual reddening laws for SN 2010ev and other SNe are confirmed through other studies such as Phillips et al. (2013) and also through independent polarimetric analysis (Zelaya et al. 2015; Kawabata et al. 2014). As a matter of fact, Zelaya et al. (2015) measure a continuum polarization for SN 2010ev of (1.67 ± 0.65)% higher than for normal unreddened SNe Ia, and peaking at <3500Å implying an $R_V < 2$ (Hough et al. 1987; Wang et al. 2003; Patat et al. 2009).

These SNe with low R_V values are redder, they suffer more extinction, and have spectra that present normal absorption lines and DIBs, typically attributed to the same intervening material. This poses the question of whether the deviation from the standard MW reddening law is a common feature of SN host environments. However, a recent study of the reddening of the environment of the redenned SN 2014I (Hutton et al. 2015) shows that the R_V values in the vicinity of the SN do not have the atypical value found with the SN data of $R_V \sim 1-4$ (Foley et al. 2014; Amanullah et al. 2014), arguing for an effect of the SN radiation on nearby material. Furthermore, the observation of an excess population of SNe Ia with blueshifted Na D absorption (Sternberg et al. 2011) has been explained through outflowing nearby material instead of galactic winds (Park et al. 2015), especially since the same excess is not observed for CC SNe. SNe with low R_V values are redder at maximum due to extinction but possibly also intrinsically, and they have characteristic ejecta properties different from the LVG objects. These objects are generally HVG SNe, which show a correlation between their high velocities decline rates at early epochs and the redshifted nebular velocities at late phases. This relation between intrinsic and extrinsic properties has encouraged the idea that perhaps the material in the line of sight stems from the progenitor itself. Recent searches for light-echoes from CSM for a large fraction of SNe Ia in optical spectra (Marino et al. 2015) or NIR photometry (Maeda et al. 2014) defy the CSM light-echo hypothesis. Either another mechanism like CSM dust sublimation is at hand or simply low R_V's originate from ISM (perhaps patchy ISM, Forster et al. 2013). Furthermore, the majority of these SNe (with few exceptions) do not show any variation of narrow absorption lines nor of the continuum polarization, which in principle are typical signatures of CSM.

5. Conclusions

We presented an analysis of SN 2010ev spectra and photometry ranging from ~7.5 to 289.5 days around the time of B-band maximum. SN 2010ev has a light-curve width typical of normal SN Ia, but with high reddening in the line of sight. The presence of strong Na I D features invariant in time and DIBs located at ~ 5780 and ~ 6283 Å suggest a high extinction possibly due to ISM of the host galaxy. The $E(B-V)$ is calculated with different methods and our best estimate is $E(B-V)_{Host} = 0.25 \pm 0.05$ with an $R_V = 1.54 \pm 0.65$.

In general, the spectral evolution of SN 2010ev shows similarities to the high velocity gradient (HVG) group (Benetti et al. 2005), with a velocity gradient value of $v_{eb} = 164 \pm 7$ km s$^{-1}$. Within the classification presented by Branch et al. (2006), SN 2010ev is placed in the BL group, which is almost equivalent to HVG. The early-time spectra, both in the optical and NIR ranges, show characteristic P-Cygni profiles of Si ii, Ca ii, S ii, Mg ii, and Fe ii. We found no evidence of either High Velocity Features (HVF) or C II lines, due to the lack of very early-time spectra. The nebular spectra show the redshifted [Fe ii] $\lambda 7155$ and [Ni ii] $\lambda 7378$ features, which may suggest an asymmetry during the explosion (Maeda et al. 2010a). The estimated nebular velocity $v_{eb} \sim 2145 \pm 225$ km s$^{-1}$ is consistent with that of HVG SNe. The spectral and photometric evolution is also similar to other HVG SNe such as SN 2002bo and SN 2002dj.

The bolometric analysis gives a nickel mass of 0.51 $\pm 0.01 M_\odot$ in agreement with 0.51 M_\odot from the Chandrasekhar delayed-detonation model of Blondin et al. (2015), and an ejected mass of 1.2 $\pm 0.5 M_\odot$, also consistent with a standard Chandrasekhar mass explosion. This SN is a further member of the group of SNe Ia with normal light-curve decline and standard inferred nickel mass, yet reddened by dust with an unusual low R_V. It also has high velocity gradient and reddished nebular velocities. There seems to be a coincidence of intrinsic and extrinsic properties for certain SNe Ia that necessitates an explanation and may be key to understanding the SN Ia progenitor and explosion mechanism.

Acknowledgements. We thank the anonymous referee for the useful suggestions. C.P.G, S.G., G.P., M.H., F.B. acknowledge support by projects IC120009 “Millennium Institute of Astrophysics (MAS)” and P10-006-F “Millennium Center for Supernova Science” of the Iniciativa Científica Milenio del Ministerio Economía, Fomento y Turismo de Chile. S.G. acknowledges support by CONICYT through FonDECYT grant 3100680. G.P. acknowledges support from the Proyecto FONDECYT 11090421. M.S. gratefully acknowledges the generous support provided by the Danish Agency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant. S.T. is supported by the Transregional Collaborative Research Centre TRR 33 “The Dark Universe” of the DFG This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics.

References

Alvulilla, G., Stehle, M., Ruiz-Lapuente, P., et al. 2007, A&A, 475, S85
Amanullah, R. et al. 2014, ApJ, 735, 20
Amanullah, R. et al. 2014, ApJ, 788, L21
Arnett, W. D. 1982, ApJ, 253, 785
Benetti, S., Cappellaro, E., Mazzali, P. A., et al. 2005, ApJ, 623, 1011
Benetti, S., Mekle, P., Stehle, M., et al. 2004, MNRAS, 348, 261
Blondin, S., Dessart, L., & Hillier, D. J. 2015, MNRAS, 448, 2766
Blondin, S., Matheson, T., Kirshner, R. P., et al. 2012, AJ, 143, 126
Blondin, S., Prieto, J. L., Patat, F., et al. 2009, ApJ, 693, 207
Branch, D., Dang, L. C., & Bar-on, E. 2009, PASP, 121, 238
Branch, D., Dang, L. C., Hall, N., et al. 2006, PASP, 118, 560
Burns, C. R., Stritzinger, M., Phillips, M. M., et al. 2014, ApJ, 789, 32
Burns, C. R., Stritzinger, M., Phillips, M. M., et al. 2011, AJ, 141, 19
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Conley, A., Margutti, R. G., Guy, J., et al. 2007, ApJ, 664, L13
Conley, A., Sullivan, M., Hsiao, E. Y., et al. 2008, ApJ, 681, 482
Dessart, L., Blondin, S., & Hillier, D. J. 2015, MNRAS, 448, 2766
Dessart, L., Matheson, T., Kirshner, R. P., et al. 2012, AJ, 143, 126
Dessart, L., Prieto, J. L., Patat, F., et al. 2009, ApJ, 693, 207
Folatelli, G., Morrell, N., Phillips, M. M., et al. 2013, ApJ, 773, 53
Folatelli, G., Morrell, N., Phillips, M. M., et al. 2013, ApJ, 773, 53
Folatelli, G., Phillips, M. M., Burns, C. R., et al. 2010, AJ, 139, 120
Foley, R. J., Sanders, N. E., & Kirshner, R. P. 2011, ApJ, 742, 89
Foley, R. J. et al. 2014, ArXiv e-prints
Förster, F., González-Gaitán, S., Anderson, J., et al. 2012, ApJ, 754, L21
Förster, F., González-Gaitán, S., Folatelli, G., & Morrell. N. 2013, ApJ, 772, 19
Gall, E. E. E., Taubenberger, S., Kromer, M., et al. 2012, MNRAS, 427, 994
González-Gaitán, S., Conley, A., Bianco, F. B., et al. 2012, ApJ, 745, 44
González-Gaitán, S., Hsiao, E. Y., Pignata, G., et al. 2014, ApJ, 795, 142
Goobar, A. 2008, ApJ, 686, L103
Goobar, A., Johansson, J., Amanullah, R., et al. 2014, ArXiv e-prints
Graham, M. L. et al. 2015, ApJ, 801, 136
Guy, J. et al. 2007, A&A, 466, 11
Hamuy, M., Phillips, M. M., Suntzeff, N. B., et al. 1996, AJ, 112, 2438
Herbig, G. H. 1995, ARA&A, 33, 19
Hough, J. H., Bailey, J. A., Rouse, M. F., & Whittet, D. C. B. 1987, MNRAS, 227, 1P
Hoyle, F. & Fowler, W. A. 1960, ApJ, 132, 565
Hsiao, E. Y., Conley, A., Howell, D. A., et al. 2007, ApJ, 663, 1187
Hsiao, E. Y., Marion, G. H., Phillips, M. M., et al. 2013, ApJ, 766, 72
Hutton, S., Ferreras, I., & Yershov, V. 2015, MNRAS, 452, 1412
Iben, Jr., I. & Tutukov, A. V. 1984, ApJS, 54, 335
Jenniskens, P. & Desert, F.-X. 1994, A&AS, 106, 39
Kawabata, K. S., Akitaya, H., Yamanaka, M., et al. 2014, ApJ, 795, L4
Krischnasw, K. et al. 2007, AJ, 133, 58
Kromer, M., Sim, S. A., Fink, M., et al. 2010, ApJ, 719, 1067
 Lair, C. J., Leising, M. D., Milne, P. A., & Williams, G. G. 2006, AJ, 132, 2024
Landolt, A. U. 1992, AJ, 104, 372
Landolt, A. U. 2007, AJ, 133, 2502
Leloudas, G., Stritzinger, M. D., Sollerman, J., et al. 2009, A&A, 505, 265
Luna, R., Cox, N. L. J., Satorre, M. A., et al. 2008, A&A, 480, 133
Maeda, K., Benetti, S., Stritzinger, M., et al. 2010a, Nature, 466, 82
Maeda, K., Mazzali, P. A., Deng, J., et al. 2003, ApJ, 593, 931
Maeda, K., Nozawa, T., Nogao, T., & Motohara, K. 2014, ArXiv e-prints
Maeda, K., Taubenberger, S., Sollerman, J., et al. 2010b, ApJ, 708, 1703
Maeda, K. et al. 2011, MNRAS, 413, 3075
Maguire, K., Sullivan, M., Patat, F., et al. 2013, MNRAS, 436, 222
Mandel, K. S., Narayan, G., & Kirshner, R. P. 2011, ApJ, 731, 120
Marino, S., González-Gaitán, S., Förster, F., et al. 2015, ApJ, 806, 134
Marion, G. H., Höflich, P., Gerardy, C. L., et al. 2008, Science, 317, 127
Marion, G. H., Höflich, P., Vacca, W. D., & Wheeler, J. C. 2003, ApJ, 591, 316
Mazzali, P. A., Cappellaro, E., Danziger, I. J., Turatto, M., & Benetti, S. 1998, ApJ, 499, L49
Milisavljevic, D., Margutt, R., Crabtree, K. N., et al. 2014, ApJ, 782, L5
Modigliani, A., Goldoni, P., Royer, F., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7737, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
Nomoto, K. 1982, ApJ, 253, 798
Nugent, P., Phillips, M., Baron, E., Branch, D., & Hauschildt, P. 1995, ApJ, 455, L147
O’Donnell, J. E. 1994, ApJ, 437, 262
Pakmor, R., Kromer, M., Taubenberger, S., et al. 2012, ApJ, 747, L10
Park, J., Jeong, H., & Yi, S. K. 2015, ArXiv e-prints
Pastorello, A. et al. 2007, MNRAS, 376, 1301
Patat, F., Baade, D., Höflich, P., et al. 2009, A&A, 508, 229
Patat, F., Benetti, S., Cappellaro, E., et al. 1996, MNRAS, 278, 111
Patat, F., Chandra, P., Chevalier, R., et al. 2007, Science, 317, 924
Phillips, M. M. 1993, ApJ, 413, L105
Phillips, M. M., Lira, P., Suntzeff, N. B., et al. 1999, AJ, 118, 1766
Phillips, M. M. et al. 2013, ApJ, 779, 38
Pingat, G., Benetti, S., Mazzali, P. A., et al. 2008, MNRAS, 388, 971
Pingat, G., Cifuentes, M., Maza, J., et al. 2010, Central Bureau Electronic Telegrams, 2344, 1
Pingat, G. et al. 2004, MNRAS, 355, 178
Poznanski, D., Ganeshalingam, M., Silverman, J. M., & Filippenko, A. V. 2011, MNRAS, 415, L81
Poznanski, D., Prochaska, J. X., & Bloom, J. S. 2012, MNRAS, 426, 1465
Raskin, C., Kasen, D., Moll, R., Schwab, J., & Woosley, S. 2013, ArXiv e-prints
Raskin, C., Timmes, F. X., Sannapase, E., Diehl, S., & Fryer, C. 2009, MNRAS, 399, L156
Riess, A. G., Press, W. H., & Kirshner, R. P. 1996, ApJ, 473, 588
Scalzo, R., Aldering, G., Antilogus, P., et al. 2014a, MNRAS, 440, 1498
Scalzo, R. A., Ruijer, A. J., & Sim, S. A. 2014b, MNRAS, 445, 2535
Schlafly, E. F. & Finkbeiner, D. P. 2011, ApJ, 737, 103
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Shen, K. J., Guillochon, J., & Foley, R. J. 2013, ApJ, 770, L35
Silverman, J. M. & Filippenko, A. V. 2012, MNRAS, 425, 1917
Silverman, J. M., Ganeshalingam, M., & Filippenko, A. V. 2013, MNRAS, 430, 1030
Silverman, J. M., Kong, J. J., & Filippenko, A. V. 2012, MNRAS, 425, 1819

Gutiérrez et al.: SN 2010ev: A reddened HVG SN.

Appendix A: Photometric tables
ID	B	V	R	I	u'	g'	r'	i'	z'
1	15.74 ± 0.02	15.10 ± 0.03	14.75 ± 0.02	14.38 ± 0.02	16.70 ± 0.07	15.41 ± 0.01	14.97 ± 0.01	14.81 ± 0.01	14.79 ± 0.01
2	17.08 ± 0.04	16.20 ± 0.04	15.71 ± 0.03	15.26 ± 0.02	18.50 ± 0.09	16.62 ± 0.01	15.94 ± 0.01	15.70 ± 0.01	15.62 ± 0.01
3	14.39 ± 0.01	13.77 ± 0.03	13.43 ± 0.02	13.07 ± 0.02	15.36 ± 0.03	14.06 ± 0.01	13.65 ± 0.01	13.51 ± 0.01	13.49 ± 0.01
4	16.83 ± 0.04	15.74 ± 0.034	15.19 ± 0.03	14.63 ± 0.03	18.76 ± 0.01	16.27 ± 0.01	15.45 ± 0.01	15.12 ± 0.01	14.97 ± 0.01
5	16.90 ± 0.03	15.93 ± 0.03	15.43 ± 0.03	14.91 ± 0.02	16.41 ± 0.01	15.68 ± 0.01	15.38 ± 0.01	15.26 ± 0.01	
6	17.42 ± 0.04	16.42 ± 0.03	15.84 ± 0.03	15.28 ± 0.02	16.94 ± 0.02	16.09 ± 0.017	15.77 ± 0.01	15.61 ± 0.01	
7	17.05 ± 0.04	16.58 ± 0.02	16.11 ± 0.04	19.30 ± 0.01	17.50 ± 0.01	16.82 ± 0.01	16.57 ± 0.01	16.46 ± 0.01	
8	16.14 ± 0.02	15.35 ± 0.03	14.93 ± 0.02	14.51 ± 0.02	17.33 ± 0.03	15.75 ± 0.01	15.18 ± 0.01	14.97 ± 0.01	14.89 ± 0.01
9	18.10 ± 0.08	17.45 ± 0.04	17.10 ± 0.04	16.72 ± 0.02	17.80 ± 0.01	17.33 ± 0.01	17.15 ± 0.01	17.11 ± 0.01	
10	17.53 ± 0.03	16.83 ± 0.02	16.46 ± 0.03	16.06 ± 0.03	17.21 ± 0.02	16.68 ± 0.01	16.49 ± 0.01	16.43 ± 0.02	
11	16.08 ± 0.01	15.44 ± 0.04	15.09 ± 0.02	14.73 ± 0.02	16.98 ± 0.00	15.76 ± 0.02	15.30 ± 0.01	15.15 ± 0.01	15.12 ± 0.01
12	17.47 ± 0.01	16.60 ± 0.03	16.15 ± 0.03	15.70 ± 0.03	18.86 ± 0.06	17.04 ± 0.01	16.37 ± 0.01	16.15 ± 0.01	16.07 ± 0.03
13					17.55 ± 0.00	16.92 ± 0.01	16.69 ± 0.01	16.62 ± 0.04	
14	13.78 ± 0.02	13.21 ± 0.03	12.88 ± 0.02	12.56 ± 0.02	14.70 ± 0.03	13.49 ± 0.01	13.12 ± 0.01	13.00 ± 0.01	13.00 ± 0.01
15	15.42 ± 0.02	14.81 ± 0.03	14.46 ± 0.02	14.12 ± 0.02	16.46 ± 0.02	15.13 ± 0.01	14.69 ± 0.01	14.55 ± 0.01	14.53 ± 0.01
16	16.27 ± 0.02	15.41 ± 0.03	14.94 ± 0.02	14.47 ± 0.02	17.47 ± 0.01	15.85 ± 0.01	15.20 ± 0.01	14.94 ± 0.01	14.84 ± 0.02
17	14.38 ± 0.03	12.28 ± 0.02	11.59 ± 0.02		13.65 ± 0.01	12.56 ± 0.00	12.10 ± 0.01		
18	14.77 ± 0.02	14.11 ± 0.03	13.73 ± 0.02	13.32 ± 0.02	15.63 ± 0.02		13.95 ± 0.00	13.76 ± 0.00	
19	16.93 ± 0.02		15.24 ± 0.03	14.69 ± 0.02	18.77 ± 0.06	16.38 ± 0.01	15.52 ± 0.01		15.03 ± 0.01
20	16.36 ± 0.03	15.20 ± 0.03	14.79 ± 0.02	17.42 ± 0.07	15.96 ± 0.02	15.43 ± 0.00	15.23 ± 0.00		
21	12.26 ± 0.02	11.77 ± 0.03	11.48 ± 0.02		13.16 ± 0.03		11.67 ± 0.01	11.60 ± 0.00	
Table A.2. *BVRI* and Sloan photometry of SN 2010ev with PROMPT1, PROMPT3 and PROMPT5 telescopes.

UT date	MJD	Phase(*)	B	V	R	I	R'	R''	I'	I''	c
2010/07/24	55377.08	-7.3	15.43 ± 0.01	15.92 ± 0.01	15.01 ± 0.01	15.02 ± 0.01	16.53 ± 0.06	15.34 ± 0.01	15.12 ± 0.01	15.50 ± 0.01	15.42 ± 0.02
2010/07/10	55386.98	2.4	15.01 ± 0.01	14.64 ± 0.01	14.48 ± 0.01	14.68 ± 0.01	16.19 ± 0.05	14.80 ± 0.01	14.62 ± 0.01	15.24 ± 0.01	15.16 ± 0.01
2010/07/12	55388.60	4.0	14.69 ± 0.01	14.50 ± 0.01	14.80 ± 0.01	16.39 ± 0.05	14.88 ± 0.01	14.64 ± 0.01	15.27 ± 0.01	15.23 ± 0.01	
2010/07/17	55388.96	4.4	15.08 ± 0.01	14.65 ± 0.01	14.50 ± 0.01	14.76 ± 0.01					
2010/07/13	55389.98	5.4	14.71 ± 0.01	14.57 ± 0.01	14.85 ± 0.01						
2010/07/23	55399.99	15.4	16.19 ± 0.02	15.3 ± 0.01	15.14 ± 0.01	15.15 ± 0.01	17.79 ± 0.09	15.71 ± 0.01			
2010/07/24	55400.95	16.3	15.27 ± 0.04	15.14 ± 0.03	15.12 ± 0.04		15.26 ± 0.02	15.88 ± 0.05	15.43 ± 0.04		
2010/07/26	55403.03	18.4	16.61 ± 0.03	15.38 ± 0.01	15.14 ± 0.01	15.03 ± 0.02					
2010/07/27	55403.97	19.4	16.70 ± 0.02	15.39 ± 0.03	15.13 ± 0.02	15.03 ± 0.02	18.40 ± 0.12	15.96 ± 0.02	15.28 ± 0.01	15.75 ± 0.02	15.54 ± 0.03
2010/07/28	55404.96	20.4	16.77 ± 0.06	15.48 ± 0.02	15.15 ± 0.01	15.01 ± 0.01					
2010/07/28	55404.96	20.4	16.79 ± 0.03	15.46 ± 0.02			15.59 ± 0.03				
2010/08/29	55405.98	21.4	16.95 ± 0.01	15.58 ± 0.01	15.21 ± 0.01	15.02 ± 0.01	18.47 ± 0.10	16.16 ± 0.01	15.30 ± 0.02	15.67 ± 0.03	
2010/08/29	55405.98	21.4	16.91 ± 0.03	15.55 ± 0.01							
2010/08/30	55406.98	22.4	17.06 ± 0.02	15.63 ± 0.01	15.21 ± 0.01	15.00 ± 0.01	18.66 ± 0.09	16.22 ± 0.02			
2010/08/30	55406.98	22.4	17.08 ± 0.02	15.60 ± 0.01							
2010/08/30	55408.99	24.4	17.29 ± 0.02	15.76 ± 0.01	15.26 ± 0.01	14.97 ± 0.01		16.40 ± 0.01	15.39 ± 0.02	15.69 ± 0.03	15.29 ± 0.01
2010/08/30	55409.97	25.4	15.80 ± 0.01	15.30 ± 0.01	14.98 ± 0.01						
2010/08/30	55412.98	28.4	15.94 ± 0.03								
2010/08/30	55413.98	29.4	17.64 ± 0.04	15.52 ± 0.01	15.07 ± 0.01		16.75 ± 0.01	15.67 ± 0.01	15.74 ± 0.01	15.35 ± 0.01	
2010/08/30	55415.98	31.4	17.79 ± 0.04	16.24 ± 0.01	15.64 ± 0.01	15.24 ± 0.01		16.88 ± 0.01	15.84 ± 0.01	15.88 ± 0.02	
2010/08/30	55416.97	32.4									16.02 ± 0.05
2010/08/30	55421.98	37.4	16.01 ± 0.01								
2010/08/30	55426.98	42.4	18.30 ± 0.06	16.70 ± 0.02	16.21 ± 0.01	16.05 ± 0.06	17.35 ± 0.02	16.37 ± 0.01	16.56 ± 0.04		
2010/08/30	55560.03	175.4	19.84 ± 0.02	20.16 ± 0.01	20.11 ± 0.03						
2010/09/03	55649.15	264.6	20.85 ± 0.04	20.70 ± 0.04			20.49 ± 0.21	21.35 ± 0.21			
2010/09/03	55655.03	270.4	20.99 ± 0.04	21.20 ± 0.03	21.55 ± 0.05	21.12 ± 0.04					
2010/09/23	55674.08	289.5	21.27 ± 0.23	21.17 ± 0.10	21.33 ± 0.12	20.93 ± 0.13		20.88 ± 0.06	21.86 ± 0.18	21.08 ± 0.09	

* Relative to B_{max} (MJD= 2455384.60)