Regulation of Anterior Chamber Drainage by Bicarbonate-sensitive Soluble Adenylyl Cyclase in the Ciliary Body*

Received for publication, July 20, 2011, and in revised form, September 29, 2011 Published, JBC Papers in Press, October 12, 2011, DOI 10.1074/jbc.M111.284679

Yong S. Lee‡, Martin Tresguerres§¶, Kenneth Hess§, Lihua Y. Marmorstein§, Lonny R. Levin§, Jochen Buck§, and Alan D. Marmorstein¶§

From the ‡Department of Ophthalmology and Vision Science, the §Department of Physiology, and the ¶Department of Pharmacology, Weill Cornell College of Medicine, New York, New York 10065

Glucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (Ct). Modulation of “inflow” and “outflow” pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in IOP production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in Ct with no effect on inflow. In mice deficient in sAC IOP is elevated, and Ct is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or Ct in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate Ct and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.

Glucoma is a leading cause of blindness in the United States affecting as many as 2.2 million Americans (1). All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP), even in patients with “normal tension” glucoma (2). It has long been recognized that IOP is the quotient of the rate of aqueous humor (AH) production (inflow) divided by the drainage resistance (outflow). As such, all therapies applied to date have sought to either diminish inflow or increase outflow using drugs and surgery. Carbonic anhydrase inhibitors, drugs that inhibit enzymes catalyzing hydration of CO₂ to H⁺ and HCO₃⁻, have been used for many years to treat glucoma (3, 4). However, the role of CO₂/HCO₃⁻ in regulating aqueous flow is poorly understood (5, 6). It is generally accepted that a transepithelial Cl⁻/HCO₃⁻ exchanger drives the generation of AH with net transport occurring across the ciliary body (CB) epithelium in the stromal to aqueous direction (6). Uptake of Cl⁻ by the pigment epithelium is thought to occur at least in part by parallel Cl⁻/HCO₃⁻ and Na⁺/H⁺ exchangers. The relative importance of these mechanisms varies from species to species, but the source of H⁺ and HCO₃⁻ driving the exchangers is the CO₂ generated by respiration and its hydration by carbonic anhydride in the pigment epithelium and the nonpigmented epithelium (NPE).

Bestrophins are a family of integral membrane proteins (7–9) that function as anion channels and regulators of Ca²⁺ signaling. Recently, we demonstrated that bestrophin 2 (Best2) functions as a HCO₃⁻ channel in colon goblet cells (10). In the eye, Best2 is uniquely localized to the basal membrane of NPE cells (11, 12). Best2⁻/⁻ mice have a significantly lower IOP than their wild-type (WT) littermates (11, 13). Interestingly, this lower IOP occurs despite an increase in aqueous flow (Fa). The lower IOP results from overcompensation in conventional (Ct) and uveoscleral (Cu) drainage. The absence of Best2 in outflow tissues suggests the existence of pressure-independent, biochemical communication between the inflow and outflow pathways (13).

In trying to understand how absence of a HCO₃⁻ channel could affect inflow and outflow we considered that HCO₃⁻ would most likely be increased in the NPE of Best2⁻/⁻ mice. This would result in an increase in aqueous flow as observed, but would not explain the effects observed on drainage in Best2⁻/⁻ mice. Soluble adenylyl cyclase (sAC) serves as a HCO₃⁻ sensor in many tissues (14, 15). sAC catalyzes the formation of cAMP in response to increasing HCO₃⁻. In 1993, Mittag et al. (16) reported a bicarbonate-sensitive adenylyl cyclase activity in rabbit CB. Here, we confirm that CB processes contain a high level of bicarbonate-sensitive adenylyl cyclase activity, and we show that sAC is expressed in the NPE and the stroma of the CB process. Administration of KH7, a specific inhibitor of sAC activity (17), caused a marked increase in IOP due to a decrease in Ct with no effect on Ct or Fa in WT
mice. Sacytm1Lex/tm1Lex mice, deficient in sAC, exhibited a higher IOP and lower C_t than WT mice, and KH7 had no effect on these parameters in Sacytm1Lex/tm1Lex mice. These data demonstrate that sAC is a critical regulator of IOP and provide strong evidence for the existence of a biochemical pathway for communication between the CB processes and drainage tissues that is regulated by HCO_3^- and cAMP.

**EXPERIMENTAL PROCEDURES**

Assay for Bicarbonate-sensitive Adenylyl Cyclase Activity—Ciliary bodies were dissected from pig or human eyes and stored at −80 °C. Ciliary bodies were homogenized in 5 volumes of lysis buffer (50 mm Tris, pH 7.5, 150 mm NaCl, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 1 mm PMSF, 1 mm DTT) using a Dounce homogenizer on ice. Homogenates were centrifuged (10 min, 3000 × g, 4 °C), and the supernatant was assayed for cAMP forming activity. Aliquots were incubated in assay buffer (100 mM Tris, 2.5 mM ATP, 10 mM MgCl_2, 0.5 mM vehicle (dimethyl sulfoxide) (total volume 100 μl) and always between 2:00 and 6:00 p.m. to avoid diurnal pressure variations. Measurement of IOP, episcleral venous pressure (EVP), Fa, and Ct were made by cannulation of the anterior chamber with borosilicate glass microneedles as described previously (13, 21) in mice anesthetized with Avertin (300 mg/kg injected intraperitoneally). C_u was calculated using measured parameters according to the modified Goldmann equation: C_u = F_a – C_t × (IOP – EVP).

**RESULTS**

To understand how bicarbonate may regulate aqueous flow, we performed assays of adenylyl cyclase activity on pig and human CB homogenates. In 1993, Mittag et al. (16) reported a bicarbonate-sensitive adenylyl cyclase activity in these tissues, and we sought to determine whether this was due to sAC expression. We assayed adenylyl cyclase activity in the presence or absence of bicarbonate and in the presence of the sAC-specific inhibitor KH7 (Fig. 1, A and B). In tissue homogenates, basal adenylyl cyclase activity will reflect contributions from both G protein-regulated transmembrane adenylyl cyclases (tmACs) and sAC, but the tmAC contribution will be unaffected by bicarbonate stimulation (22) or by KH7 inhibition (17). In porcine CB lysates, bicarbonate significantly stimulated (148 ± 26%, n = 5) and KH7 significantly diminished (61 ±...
Regulation of IOP by sAC

21%, n = 5) cAMP production relative to basal levels. Production of cAMP in human CB lysate responded in similar fashion (bicarbonate stimulation = 124 ± 5%, KH7 inhibition = 80 ± 4%, n = 9). To confirm that KH7 inhibited only sAC and not tmAC, we repeated the assay using porcine CB lysates stimulated by the tmAC-specific activator, forskolin, in the absence of bicarbonate. Whereas KH7 exhibited a dose-dependent effect on bicarbonate-stimulated adenylyl cyclase activity, forskolin stimulated activity was unaffected (Fig. 2). These data indicate the CB contains bicarbonate-sensitive sAC activity. To confirm that CB expresses sAC, we immunoprecipitated the protein from isolated pig or human CB using a specific monoclonal antibody (R37) as before (18, 23). A band of ~50 kDa was observed in Western blots of immunoprecipitates from CB using a biotinylated distinct, nonoverlapping sAC-specific monoclonal antibody (R21) (18, 23) as well as in positive controls including pig brain and cornea (Fig. 1, C and D). This band was absent in controls in which monoclonal antibody R37 was omitted during immunoprecipitation.

FIGURE 1. Expression of sAC in pig and human CB. A and B, assays of adenylyl cyclase activity were performed on pig (A) or human (B) CB lysates. Shown are values normalized to basal activity. Basal adenylyl cyclase activity was 12.81 ± 2.19 and 2.01 ± 0.11 pmol of cAMP mg protein−1 min−1 for pig and human CB, respectively. KH7 reduced basal adenylyl cyclase activity to 7.86 ± 2.72 and 1.62 ± 0.11 pmol of cAMP mg protein−1 min−1 for pig and human, respectively. Bicarbonate increased adenylyl cyclase activity to 18.90 ± 3.31 and 2.48 ± 0.12 pmol of cAMP mg protein−1 min−1 for pig and human respectively. Data are mean ± S.E. (error bars). C and D, for pig n = 5, for human n = 9. A ~50-kDA band corresponding to pig (C) or human (D) sAC was identified by immunoprecipitation and blot back from CB lysates. Pig brain and cornea (C) or pig brain and human cornea (D) were used as positive controls. Lanes marked − (minus) in C and D were negative controls in which antibody R37 was omitted during immunoprecipitation.

We next examined expression of sAC in the mouse eye with the goal of using mice for functional assays to determine the role of sAC in the CB. The small size of the mouse eye limited our ability to examine sAC expression by immunoprecipitation or enzymatic assays. However, we could identify sAC mRNA using RT-PCR of isolated mouse CB (Fig. 3A). Immunofluorescence staining of mouse eyes using biotinylated anti-sAC monoclonal antibody R21 identified strong expression in CB where sAC co-localized in NPE cells with Best2 and was also strongly expressed in CB stroma, but not pigment epithelium cells (Fig. 3, B–D). sAC expression was also noted in corneal endothelia and epithelia, inner retina, and retinal pigment epithelium (RPE) cells. sAC expression was absent or at levels below detection in the tissues comprising the conventional outflow pathway, TM and Schlemm’s canal.

To determine further whether outflow tissues express sAC, we probed for sAC in lysates from CB and TM by immunoprecipitation (Fig. 4A). Whereas immunoprecipitation of porcine CB lysates consistently revealed strong expression of sAC in CB (Figs. 1, C and D, and 4A), no sAC was observed in immunoprecipitates of TM lysates (Fig. 4A). Next, we assayed isolated porcine TM for sAC by measuring KH7-sensitive adenylyl cyclase activity (Fig. 4B). Mn2+-ATP supports much higher levels of sAC activity than Mg2+-ATP; therefore, we measured adenylyl cyclase activity in TM in the presence of Mn2+-ATP to perform the most sensitive assay for sAC. In the presence of 10 mM Mn2+ basal adenylyl cyclase activity in TM was 122.48 pmol of cAMP/mg of protein. KH7 significantly (p < 0.001) inhibited adenylyl cyclase activity in CB by nearly 50%. In contrast, KH7 did not significantly affect adenylyl cyclase activity in TM. Because we could not identify sAC in TM by immunofluorescence, immunoprecipitation, or enzymatic assays, we conclude that in contrast to CB, where sAC activity is highly expressed, sAC is either absent from or expressed at trace levels in TM.

To determine whether sAC plays a role in regulating aqueous flow, we injected mice with the sAC inhibitor KH7. As shown in Fig. 5A and Table 1, mice receiving KH7 exhibited an increase in IOP but not EVP, indicating that the effect of KH7 was spe-
specifically on aqueous flow. In KH7-treated mice IOP—EVP was elevated by an average of 42% over sham-injected controls. Similarly, KH7 treatment of Best2−/− mice (Fig. 5B) resulted in a significant (p < 0.001) increase in IOP (10.26 ± 0.87 for Best2+/+ versus 13.70 ± 0.64 for Best2−/−, mean ± S.D., n = 5) but not EVP. In Best2−/− mice KH7 treatment resulted in an increase in IOP—EVP of 46% over sham-injected controls.

To determine how IOP was increased we examined the effect of KH7 on Fa and Ct in WT mice. As shown in Fig. 6 and Table 1, administration of KH7 had no significant effect on Fa (p = 0.77), but caused an ~50% decrease in Ct (p < 0.001) compared with sham-injected controls. Using the measured parameters of IOP, EVP, Fa, and Ct, we derived the value for Cu. Cu was elevated by ~16% in KH7-treated mice versus controls, a difference that is likely within the range of our experimental error.

To ensure that the effects we observe were due to inhibition of sAC activity and not nonspecific effects of KH7, we next examined Sacytm1Lex/tm1Lex mice (17, 24). These mice have been genetically altered to abolish the C1 catalytic domain of sAC. IOP in Sacytm1Lex/tm1Lex mice was significantly (p < 0.03) ele-
Regulation of IOP by sAC

TABLE 1
Summary of effect of KH7 on aqueous humor dynamics in the WT mouse

| Parameters          | Control          | KH7             |
|---------------------|------------------|-----------------|
|                     | Mean ± S.D.      | Mean ± S.D.     |
| IOP (mm Hg)         | 12.22 ± 1.08     | 14.60 ± 1.52    |
| EVP (mm Hg)         | 6.49 ± 0.30      | 6.45 ± 0.21     |
| IOP – EVP (mm Hg)   | 5.73             | 8.15            |
| F_0 (μl/min)        | 0.1996 ± 0.0040  | 0.2043 ± 0.033  |
| C_i (μl/min·mm Hg⁻¹) | 0.0105 ± 0.0021  | 0.0054 ± 0.0010 |
| C_m (μl/min)        | 0.1377           | 0.1595          |

* Derived from other values as described under “Experimental Procedures.”

FIGURE 6. Inhibition of sAC diminishes C_i but not F_0. Aqueous dynamics studies were performed to assess the effect of KH7 on C_i and F_0 in WT mice. C_i was significantly (p < 0.01) lower in KH7-treated mice compared with controls, but F_0 was unaltered. Data are box plots in which 75% of measured values fall within the box, with remaining values in the range indicated by error bars. Lines in boxes represent median values. The number of individual measurements made for each condition as is indicated in Table 1.

DISCUSSION

The role of bicarbonate in the generation and regulation of aqueous flow is poorly understood. Although it is generally agreed that bicarbonate provides fuel for generating the Cl⁻ flux that drives generation of aqueous humor (5), regulation of drainage by the CB has, to date, remained in the realm of speculation (25). Here, we have shown that high levels of a bicarbonate-sensitive adenylyl cyclase activity are found in CB (Figs. 1, A and B, and 2). A portion of the basal adenylyl cyclase activity is inhibited by KH7 (Figs. 1, A and B, and 2), a highly specific inhibitor of sAC (17), and the enzyme was immunoprecipitated from pig and human ciliary body (Fig. 1, C and D). In mouse, mRNA for sAC was found in CB (Fig. 3A). Immunofluorescence experiments in mouse demonstrated high levels of sAC in CB, specifically in NPE and stromal cells (Fig. 3B and D). However, sAC was not observed to be present in drainage tissues by immunofluorescence, immunoprecipitation, or enzymatic assays (Figs. 1, C and D, 2, B–D, and 4) although its expression in other tissues such as corneal endothelia (26, 27) and retinal ganglion cells (28) previously demonstrated to express sAC, was confirmed. Administration of KH7 to either WT or Best2⁻/⁻ mice (Fig. 5) raised IOP independent of EVP; this effect was due entirely to a suppression of C_i (Fig. 5 and Table 1). Sacytm1Lex/tm1Lex, which lacks sAC activity, exhibited an increase in IOP and decreased C_i compared with Sacy⁺/⁺ mice (Fig. 7). Furthermore, the specificity of KH7 effects in the mouse was confirmed by the absence of a KH7 effect on IOP or C_i on the Sacytm1Lex/tm1Lex mouse (Fig. 7). Based on these data, we conclude that a pathway for acute regulation of C_i exists between the CB and drainage tissues and that this pathway responds to bicarbonate using the bicarbonate sensor sAC.

The idea that the CB secretes substances into the AH that can regulate C_i is not new. Escrivano and Coca-Prados (29) demonstrated that ciliary epithelial cells produce neuropeptides, leading them to hypothesize that the CB may function as a neuroendocrine gland, regulating drainage by secreting neuropeptides or other substances into the AH (25, 29). However, to date, there have been no experimental data demonstrating that the CB can influence IOP by any mechanism other than changing F_0, which in effect is increasing pressure. Our prior studies using Best2⁻/⁻ mice suggested that a communicative pathway exists between the CB and drainage tissues. In the eye, Best2 is expressed uniquely in the NPE (Fig. 3B) (11, 12). The effect of knocking out Best2 was to decrease IOP despite an increase in F_0 (11, 13). Measurement of aqueous dynamics in those mice demonstrated that both C_i and C_m were increased to more than compensate for the increase in F_0. However, the complexity of aqueous dynamics in these mice, and the possibility of compensation for the knock-out, did not allow us to rule out that enhanced drainage in Best2⁻/⁻ mice could be due to something other than direct communication between the CB and drainage tissues.

Our first hint of a mechanism behind the effect of Best2 on drainage came from the effect of the carbonic anhydrase inhibitor brinzolamide on IOP in Best2⁺/⁺ mice (11). Topical application of brinzolamide led to a greater decrease in IOP than was observed in Best2⁺/⁺ mice, suggesting a role for bicarbonate in these effects. Indeed, we have since shown that Best2 functions as a critical bicarbonate channel in colon goblet cells (10), and it is likely that it functions similarly in NPE cells. This led us to examine the role of sAC in regulation of IOP. As shown in Figs. 5 and 6A and Table 1, inhibition of sAC increases IOP by decreasing C_i. Because sAC expression was below our limit of detection in drainage tissues (Figs. 2, B–D, and 4), we propose that the effects of sAC inhibition on IOP and C_i represent the clearest evidence to date that a communicative pathway must exist between the CB and drainage tissues for the specific purpose of regulating C_i independent of pressure. Based on these
data, we propose that bicarbonate stimulates sAC activity in the NPE and fuels Cl⁻ uptake. When bicarbonate levels are high in NPE cells, Fa is high. Under these conditions, sAC is maximally stimulated, causing the NPE to secrete factors into the AH that cause Ct to increase to accommodate the increase in Fa. Future studies will clarify additional steps in this pathway and identify the specific messengers secreted into AH in response to sAC activity. Further characterization of this pathway represents a new avenue for the development of glaucoma therapeutics.

Acknowledgments—We thank Dr. W. Dan Stamer for critical reading of this manuscript and Jason Chang for excellent technical assistance. We thank those individuals and their families who donated their eyes for this study.

REFERENCES

1. Friedman, D. S., Wolfs, R. C., O’Colmain, B. J., Klein, B. E., Taylor, H. R., West, S., Leske, M. C., Mitchell, P., Congdon, N., and Kempen, J. (2004) Arch. Ophthalmol. 122, 532–538
2. Lee, D. A., and Higginbotham, E. J. (2005) Am. J. Health Syst. Pharm. 62, 691–699
3. Sugrue, M. F. (1996) J. Ocul. Pharmacol. Ther. 12, 363–376
4. Sugrue, M. F. (2000) Prog. Retin. Eye Res. 19, 87–112
5. Civan, M. M., and Macknight, A. D. (2004) Exp. Eye Res. 78, 625–631
6. Do, C. W., and Civan, M. M. (2004) J. Membr. Biol. 200, 1–13
7. Marmorstein, A. D., Cross, H. E., and Peachey, N. S. (2009) Prog. Retin. Eye Res. 28, 206–226
8. Hartzell, H. C., Qu, Z., Yu, K., Xiao, Q., and Chien, L. T. (2008) Physiol. Rev. 88, 639–672
9. Marmorstein, A. D., and Kinnick, T. R. (2007) Exp. Eye Res. 85, 423–424
10. Yu, K., Lujan, R., Marmorstein, A., Gabriel, S., and Hartzell, H. C. (2010) J. Clin. Invest. 120, 1722–1735
11. Bakall, B., McLaughlin, P., Stanton, J. B., Zhang, Y., Hartzell, H. C., Marmorstein, L. Y., and Marmorstein, A. D. (2008) Invest. Ophthalmol. Vis. Sci. 49, 1563–1570
12. Zhang, Y., Patil, R. V., and Marmorstein, A. D. (2010) Mol. Vis. 16, 200–206
13. Zhang, Y., Davidson, B. R., Stamer, W. D., Barton, I. K., Marmorstein, L. Y., and Marmorstein, A. D. (2009) Invest. Ophthalmol. Vis. Sci. 50, 765–770
14. Tresguerres, M., Buck, J., and Levin, L. R. (2010) Pflugers Arch. 460, 953–964
15. Tresguerres, M., Levin, L. R., and Buck, J. (2011) Kidney Int. 79, 1277–1288
16. Mittag, T. W., Guo, W. B., and Kobayashi, K. (1993) Am. J. Physiol. 264, F1060–1064
17. Hess, K. C., Jones, B. H., Marquez, B., Chen, Y., Ord, T. S., Kamenetsky, M., Miyamoto, C., Zippin, J. H., Kopf, G. S., Suarez, S. S., Levin, L. R., Williams, C. J., Buck, J., and Moss, S. B. (2005) Dev. Cell 9, 249–259
18. Farrell, J., Ramos, L., Tresguerres, M., Kamenetsky, M., Levin, L. R., and Buck, J. (2008) PLoS ONE 3, e3251
19. Deleted in proof
20. Brown, D., Lydon, J., McLaughlin, M., Stuart-Tilley, A., Tyszkowski, R., and Alper, S. (1996) Histoch. Cell Biol. 105, 261–267
21. Aihara, M., Lindsey, J. D., and Weinreb, R. N. (2003) Invest. Ophthalmol. Vis. Sci. 44, 5168–5173
22. Chen, Y., Cann, M. J., Litvin, T. N., Iourgenko, V., Sinclair, M. L., Levin, L. R., and Buck, J. (2000) Science 289, 625–628
23. Wu, K. Y., Zippin, J. H., Huron, D. R., Kamenetsky, M., Hengst, U., Buck, J., Levin, L. R., and Jaffrey, S. R. (2006) Nat. Neurosci. 9, 1257–1264
24. Esposito, G., Jaiswal, B. S., Xie, F., Krajnc-Franken, M. A., Robben, T. J., Strik, A. M., Kui, C., Philipsen, R. L., van Duijn, M., Conti, M., Gossen, J. A., and Jaiswal, B. S. (2004) Proc. Natl. Acad. Sci. USA 101, 2993–2998
25. Coca-Prados, M., and Escrivan, J. (2007) Prog. Retin. Eye Res. 26, 239–262
26. Sun, X. C., Zhai, C. B., Cui, M., Cui, M., Levin, L. R., Buck, J., and Bonanno, J. A. (2003) Am. J. Physiol. Cell Physiol. 284, C1114–1122
27. Sun, X. C., Cui, M., and Bonanno, J. A. (2004) BMC Physiol. 4, 8
28. Dunn, T. A., Storm, D. R., and Feller, M. B. (2009) PLoS ONE 4, e7877
29. Escrivan, J., and Coca-Prados, M. (2002) Mol. Vis. 8, 315–332