1. INTRODUCTION

Interval preference relations (IPRs) have been widely used in uncertain group decision making (GDM) to represent decision makers' (DMs') preference over alternatives. When encountering complex or emergent situations, DMs cannot express their complete preference information on alternatives and often present an incomplete (sparse) form of judgment because of knowledge reserve, information mastery, environment impact, and so on. Incomplete IPRs can be managed by two approaches. One is filling in incomplete values based on consistency [1–6], and the other is ranking alternatives directly with known elements [7–9]. Although the latter preserves the true preferences of DMs, it cannot guarantee the consistency between individuals, thus resulting in the distortion of decision making. Based on consistency, the iterative algorithm [10–13] and the optimisation model [4,14–17] are two typical methods to complete missing values. Based on the iterative algorithm, although it is easy to change the original preference relations and the convergence speed is slow, the process is robust and the consistency is good. Furthermore, the optimisation model with missing parameter constraints can obtain the optimal solutions of incomplete values.

The consistency index is typically used for measuring the consistency level of an individual IPR; subsequently, an iterative algorithm is established to achieve an acceptable level of consistency, such as in an interval fuzzy preference relation (IFPR) [18,19], interval intuitionistic preference relation [20–22], linguistic preference relation [23,24], and hesitant fuzzy preference relation (FPR) [25,26]. The compatibility [27–32] is used similar to the consistency index. To ensure the efficiency and consensus [11,33–35], GDM typically aggregates individual preference relations into a collective preference relation, which is often obtained by the weighted averaging operator [36,37], ordered weighted averaging operator [6,10,38], and weighted geometric averaging operator [39,40], followed by a consensus to measure the difference among all individuals.

In traditional GDM, an incomplete value is often determined by minimising the deviation between the incomplete value and a supplementary value obtained by the consistency property. However, the new supplementary value may not necessarily match the original preference information, and the DM cannot measure the authenticity between the supplementary value and original missing information. Belief degrees in the uncertainty theory proposed by Liu [41] can solve this problem. Moreover, when handling the interval information, only the two end points of the interval are used in the operation, and the internal information of the interval is
completely ignored, which easily results in decision distortion caused by the discretisation operation of the intervals.

In fact, the pairwise comparison of alternatives is located in an uncertain interval range in the IPRs, which is an uncertain estimation based on subjective experience. It can be understood as the uncertainty distribution (UD) of the subjective preference of the DM [41–47]: for the linear uncertainty distribution (LUD), every value of the DM’s preference in the interval is equally possible; for the normal uncertainty distribution (NUD), the preference value obeys the NUD under a certain belief degree, and so on. As a mathematical system dedicated to researching the belief degrees of experts, uncertainty theory [41] provides a new solution to GDM problems.

Let Γ be a nonempty set, and let \mathcal{L} be a σ-algebra over Γ, and let M be an uncertain measure. Then the triplet (Γ, \mathcal{L}, M) is called an uncertainty space.

Axiom 1. $M(\Gamma) = 1$ for the universal set Γ.

Axiom 2. $M(\lambda) + M(\lambda^c) = 1$ for any event λ.

Axiom 3. For each countable sequence of events $\lambda_1, \lambda_2, \ldots$, we have $M\left(\bigcup_{i=1}^{n} \lambda_i\right) \leq \sum_{i=1}^{n} M(\lambda_i)$.

Axiom 4. Let $(\Gamma_k, \mathcal{L}_k, M_k)$ be uncertainty spaces for $k = 1, 2, \ldots$. The product uncertain measure M is an uncertain measure satisfying $M\left(\prod_{k=1}^{\infty} \lambda_k\right) = \bigwedge_{k=1}^{\infty} M_k(\lambda_k)$, where λ_k are arbitrarily chosen events from \mathcal{L}_k for $k = 1, 2, \ldots$, respectively.

Definition 3. An uncertain variable is a function ξ from an uncertainty space (Γ, \mathcal{L}, M) to the set of real numbers. Let $\xi_1, \xi_2, \ldots, \xi_n$ be uncertain variables, and let f be a real-valued measurable function. Then $\xi = f(\xi_1, \xi_2, \ldots, \xi_n)$ is an uncertain variable.

Definition 4. The UD Φ of an uncertain variable ξ is defined by $\Phi(x) = M[\xi \leq x]$ for any real number x. $\Phi(x)$ is a monotone increasing function and $0 \leq \Phi(x) \leq 1$ (Figure 1).

From Axiom 2, we have $M[\xi \leq x] + M[\xi > x] = 1$, then $M[\xi > x] = 1 - \Phi(x)$. When the UD Φ is continuous, we also have $M[\xi < x] = M[\xi < x] = \Phi(x), M[\xi > x] = 1 - \Phi(x)$.

Definition 5. An UD $\Phi(x)$ is said to be regular if it is a continuous and strictly increasing function with respect to x at which $0 < \Phi(x) < 1$, and $\lim_{x \rightarrow -\infty} \Phi(x) = 0$, $\lim_{x \rightarrow +\infty} \Phi(x) = 1$.

Definition 6. Let ξ be an uncertain variable with regular UD $\Phi(x)$. Then the inverse function $\Phi^{-1}(\alpha)$ is called the inverse uncertain distribution (IUD) of ξ. A function $\Phi^{-1} : (0, 1) \rightarrow R$ is the IUD of an uncertain variable ξ if and only if $M[\xi \leq \Phi^{-1}(\alpha)] = \Phi(\Phi^{-1}(\alpha)) = \alpha$, for all $\alpha \in (0, 1)$.

Definition 7. An uncertain variable ξ is called linear if it has a LUD $\Phi(x)$:

$$
\Phi(x) = \begin{cases}
0 & x \leq a \\
\frac{x-a}{b-a} & a \leq x \leq b \\
1 & x \geq b
\end{cases}
$$

(1)

denoted by $\xi \sim \mathcal{L}(a, b)$ where a and b are real numbers with $a < b$ (Figure 2).
The IUD of linear uncertain variable (LUV) \(\xi \) is \(\Phi^{-1}(\alpha) = (1 - \alpha) a + \alpha b \) (Figure 3). LUD is regular.

Theorem 1. Let \(\xi_1, \xi_2, \ldots, \xi_n \) be independent uncertain variables with regular UDs \(\Phi_1, \Phi_2, \ldots, \Phi_n \), respectively. If \(f(\xi_1, \xi_2, \ldots, \xi_n) \) is strictly increasing with respect to \(\xi_1, \xi_2, \ldots, \xi_m \), and strictly decreasing with respect to \(\xi_{m+1}, \xi_{m+2}, \ldots, \xi_n \), then \(f(\xi_1, \xi_2, \ldots, \xi_n) \) has an IUD \(\Psi^{-1}(\alpha) \). \(\Psi^{-1}(\alpha) \) is defined as follows:

\[
f(\Phi^{-1}_1(\alpha), \ldots, \Phi^{-1}_m(\alpha), \Phi^{-1}_{m+1}(1 - \alpha), \ldots, \Phi^{-1}_n(1 - \alpha))
\]

2.2. Several Preference Relations

Let \(X = \{x_i \} (i \in N = \{1, 2, \ldots, n \}, n \geq 2 \) be a nonempty set of alternatives, \(D = \{d_i \} (t \in M = \{1, 2, \ldots, m \}) \) be the set of DMs.

2.2.1. Fuzzy preference relations

Definition 8. [48] A FPR \(R = (r_{ij})_{n \times n} \) is characterised by a function \(\mu_R : X \times X \rightarrow [0, 1] \), where \(\mu_R(x_i, x_j) = r_{ij} \) indicates the preference intensity with which alternative \(x_i \) is preferred over \(x_j \). \(R \) is additive reciprocal, if

\[
r_{ij} + r_{ji} = 1, \quad r_{ii} = 0.5, \quad i, j \in N
\]

\(r_{ij} = 0.5 \) indicates that there is no difference between \(x_i \) and \(x_j \); \(r_{ij} > 0.5 \) represents that \(x_i \) is preferred to \(x_j \); \(r_{ij} < 0.5 \) depicts that \(x_j \) is better than \(x_i \).

Definition 9. [49] The FPR \(R = (r_{ij})_{n \times n} \) is additively consistent, if it satisfies

\[
r_{ij} = r_{ik} + r_{kj} - 0.5, \quad i, j, k \in N
\]

2.2.2. Interval fuzzy preference relations

Definition 10. [50] Let \(\widetilde{a}_1 = [a^+_1, a^-_1] \), \(\widetilde{a}_2 = [a^+_2, a^-_2] \) be any two positive intervals.

(a) \(\widetilde{a}_1 \ominus \widetilde{a}_2 = [a^+_1, a^-_1] \ominus [a^+_2, a^-_2] = [a^+_1 - a^-_2, a^-_1 - a^+_2] \)

(b) \(\widetilde{a}_1 \ominus \widetilde{a}_2 = [a^+_1, a^-_1] \ominus [a^+_2, a^-_2] = [a^-_1 - a^+_2, a^-_1 - a^+_2] \)

(c) \(\lambda\widetilde{a}_1 = \lambda [a^+_1, a^-_1] = \begin{cases} [\lambda a^+_1, \lambda a^-_1] & \lambda \geq 0 \\ [\lambda a^-_1, \lambda a^+_1] & \lambda < 0 \end{cases} \)

Definition 11. [51] Let \(\widetilde{R} = (\tilde{r}_{ij})_{n \times n} \) be a FPR. \(\widetilde{R} \) is called an IFPR if \(\tilde{r}_{ij} = [r^+_{ij}, r^-_{ij}] \) and \(\tilde{r}_{ji} = [r^+_{ji}, r^-_{ji}] \) satisfy

\[
r^+_{ij} + r^-_{ij} = r^+_{ji} + r^-_{ji} = 1
\]

\[
r^+_{ii} = r^-_{ii} = 0.5
\]

\(r^+_{ij} \geq r^-_{ij} \geq 0 \), Eq. (5) is the additive reciprocity of \(\widetilde{R} \).

Definition 12. [1] Let \(\widetilde{R} = (\tilde{r}_{ij})_{n \times n} \) be an IFPR. \(\widetilde{R} \) is additively consistent if

\[
\begin{cases}
 r^+_{ik} + r^-_{kj} = r^+_{ij} + 0.5 \\
 r^+_{ki} + r^-_{jk} = r^+_{ji} + 0.5
\end{cases}, \quad i < k < j, \quad i, j, k \in N
\]

is true. Additionally, it can be represented as \(\tilde{r}_{ik} \oplus \tilde{r}_{kj} = \tilde{r}_{ij} \oplus [0.5, 0.5] \).

2.2.3. Incomplete fuzzy preference relations

Definition 13. [10] Let \(\widetilde{R} = (\tilde{r}_{ij})_{n \times n} \) be a FPR. If at least an unknown preference value \(r_{ij} \) exists in \(\widetilde{R} \), then \(\widetilde{R} \) is called an incomplete FPR. The incomplete FPR \(R = (r_{ij})_{n \times n} \) can be completed based on the additive consistency if \(n - 1 \) nonleading diagonal preference values are known.

3. FPRs BASED ON UNCERTAINTY THEORY

3.1. Uncertain Preference Relations

Definition 14. Let \(\widetilde{R} = (\mathcal{L}(r^+_{ij}, r^-_{ij}))_{n \times n} \) be a non-negative matrix, where \(\tilde{r}_{ij} \) is an uncertain variable. The UD of \(\tilde{r}_{ij} \) is \(\Phi_{ij} \), and the IUD is \(\Phi_{ij}^{-1} \). \(\widetilde{R} \) is an UPR if it satisfies

\[
\Phi_{ij}^{-1}(\beta) + \Phi_{ji}^{-1}(1 - \beta) = 1
\]

\[
\Phi_{ii}^{-1}(\beta) = 0.5
\]

for any \(\beta \) in \([0, 1]\), \(i, j \in N \).
Eq. (8) is the additive reciprocity of \bar{R}. The judgment element \bar{r}_{ij} in an UPR indicates the degree to which the alternative x_i is superior to x_j, $\Phi_{ij}^1(\beta) = \beta$ denotes that there is no difference between x_i and x_j; $\Phi_{ij}^1(\beta) > 0.5$ indicates that x_j is superior to x_i; $\Phi_{ij}^1(\beta) < 0.5$ depicts that x_j is better than x_i.

For example, if \bar{r}_{ij} obeys the LUD, $\bar{r}_{ij} \sim \mathcal{L}(r_{ij}', r_{ij})$, $\bar{r}_{ii} \sim \mathcal{L}(0, 1)$, then $\bar{R} = (\bar{r}_{ij})_{n \times n}$ is called a linear uncertainty preference relation.

According to the additive reciprocity, $(1 - \beta)r_{ij}' + \beta r_{ij}' + \beta(1 - r_{ij}') + (1 - \beta)(1 - r_{ij}') = 1$ (Figure 4). When $\beta = 0$, $r_{ij}' + (1 - r_{ij}') = 1$. When $\beta = 1$, $r_{ij}' + (1 - r_{ij}') = 1$. These are the definitions of additive reciprocity of IFPRs. That is, when β moves in $[0, 1]$, $\Phi_{ij}^1(\beta)$ corresponds to each value in the interval.

Definition 15. Let $\bar{R} = (\bar{r}_{ij})_{n \times n}$ be an UPR. \bar{R} is additively consistent if it satisfies

$$\Phi_{ik}^1(\beta) + \Phi_{ji}^1(\beta) = \Phi_{ij}^1(\beta) + 0.5$$

(10)

for any β in $[0, 1]$, $i < k < j, i, j, k \in N$.

3.2. Uncertain Chance Constrained Programming Model

Let $\bar{R}' = (\bar{r}_{ij}')_{n \times n}$ be the incomplete preference relation given by the DM d_t ($t \in M$). The DMs are independent. \bar{r}_{ij} is an uncertain variable and its UD is Φ_{ij}. We have $\Phi_{ij}^1(\beta) + \Phi_{ji}^1(1 - \beta) = 1$, $\Phi_{ij}^1(\beta) = 0.5$ for any β in $[0, 1]$. \bar{R}, \bar{r}_{ij}, and \bar{r}_{ij}' are obtained from Eq. (10).

We have two sets of equations, one for diagonal elements and the other for incomplete values. \bar{r}_{ij}' is determined using the mean value, and the incomplete values in the lower triangular matrix can be obtained from the additive reciprocity.

For higher accuracy, the deviation between the ideal value \bar{r}_{ij}' and the estimated value \bar{r}_{ij} should be as small as possible. An UCCPM is established as follows:

$$\min \sum_{i < j} \varepsilon_{ijt} \quad (M - 1)$$

Figure 4 | Additive reciprocity of inverse LUD.
Therefore, the equivalent model of \((M - 1)\) represented by an inverse distribution is as follows:

\[
\min \sum_{i,j,t=1}^{n} \varepsilon_{ijt} \quad (M - 2)
\]

\[
\begin{align*}
\varepsilon_{ijt} \geq \Phi_{ijt}^{1}(\alpha) - \\
\frac{1}{n-2} \sum_{k=1,k \neq ij,t}^{n} \left[\Phi_{ikt}^{1}(1-\alpha) + \Phi_{kjt}^{1}(1-\alpha) - 0.5 \right] \\
\varepsilon_{ijt} \leq \Phi_{ijt}^{1}(1-\alpha) - \\
\frac{1}{n-2} \sum_{k=1,k \neq ij,t}^{n} \left[\Phi_{ikt}^{1}(\alpha) + \Phi_{kjt}^{1}(\alpha) - 0.5 \right] \\
\Phi_{ijt}^{1}(\vartheta) + \Phi_{ijt}^{1}(1-\vartheta) = 1, \vartheta \in [0, 1] \\
\varepsilon_{ijt} \geq 0, i < j, j \in N, t \in M
\end{align*}
\]

\(s.t.
\]

\[
\begin{align*}
\Phi_{ijt}^{1}(\vartheta) + \Phi_{ijt}^{1}(1-\vartheta) & = 1, \vartheta \in [0, 1]\\
\varepsilon_{ijt} & \geq 0, i < j, j \in N, t \in M
\end{align*}
\]

\[
\Rightarrow \left\{ \begin{array}{l}
\Phi_{ijt}^{1}(\vartheta) + \Phi_{ijt}^{1}(1-\vartheta) = 1, \vartheta \in [0, 1]\\
\varepsilon_{ijt} \geq 0, i < j, j \in N, t \in M
\end{array} \right.
\]

Let \(\bar{r}_{ijt}\) be a LUV, \(\bar{r}_{ijt} \sim \mathcal{L}(\tilde{r}_{ijt}, \tilde{r}_{ijt}')\). \((M - 2)\) equals to

\[
\Rightarrow (1-\alpha)\bar{r}_{ijt} + \alpha \bar{r}_{ijt}' - \frac{1}{n-2} \sum_{k=1,k \neq ij,t}^{n} \left[(1-\alpha)\bar{r}_{ikt} + \alpha \bar{r}_{ikt}' + (1-\alpha)\bar{r}_{kjt} + \alpha \bar{r}_{kjt}' - 0.5 \right] \]

\((M - 2)\) equals to

\[
\Rightarrow \frac{1}{n-2} \sum_{k=1,k \neq ij,t}^{n} \left[(1-\alpha)\bar{r}_{ikt} + \alpha \bar{r}_{ikt}' + (1-\alpha)\bar{r}_{kjt} + \alpha \bar{r}_{kjt}' - 0.5 \right]
\]

Therefore, the equivalent model of \((M - 2)\) is

\[
\min \sum_{i,j,t=1}^{n} \varepsilon_{ijt} \quad (M - 3)
\]

\[
\begin{align*}
\varepsilon_{ijt} & \geq (1-\alpha)\bar{r}_{ijt} + \alpha \bar{r}_{ijt}' - \\
\frac{1}{n-2} \sum_{k=1,k \neq ij,t}^{n} \left[(1-\alpha)\bar{r}_{ikt} + \alpha \bar{r}_{ikt}' + (1-\alpha)\bar{r}_{kjt} + \alpha \bar{r}_{kjt}' - 0.5 \right] \\
\varepsilon_{ijt} & \leq (1-\alpha)\bar{r}_{ijt} + \alpha \bar{r}_{ijt}' - \\
\frac{1}{n-2} \sum_{k=1,k \neq ij,t}^{n} \left[(1-\alpha)\bar{r}_{ikt} + \alpha \bar{r}_{ikt}' + (1-\alpha)\bar{r}_{kjt} + \alpha \bar{r}_{kjt}' - 0.5 \right] \\
\left(1-\beta\right)\bar{r}_{ijt} + \beta \bar{r}_{ijt}' + \beta \bar{r}_{ijt}' + (1-\beta)\bar{r}_{ijt} & = 1 \\
\beta \in [0, 1], \varepsilon_{ijt} & \geq 0, i < j, i, j \in N, t \in M
\end{align*}
\]

\(s.t.
\]

Theorem 2. The linear equivalent model of UCCPM \((M - 2)\) is \((M - 3)\).

3.3. Consistency Analysis of UPRs

3.3.1. Individual additive consistency analysis

Let \(\bar{R}^{'}\) be the associated additively consistent UPR of \(\bar{R}\). \(\bar{R}^{'}\) is an uncertain variable and its UD is \(\Phi^{'}\), IUD is \(\Phi^{'}^{'}\). When the completed UPR \(\bar{R}^{'}\) is equal to \(\bar{R}^{'}\), then \(\bar{R}^{'}\) is additively consistent. When \(i < j\), the deviations of the upper triangular matrix and lower triangular matrix between \(\bar{R}^{'}\) and \(\bar{R}^{'}\) are respectively defined as follows:

\[
d \left(\bar{r}_{ijt}, \bar{r}_{ijt}' \right) = |\Phi_{ijt}^{'}(\beta) - \Phi_{ijt}^{'}(1-\beta)| \quad (11)
\]

\[
d \left(\bar{r}_{ijt}, \bar{r}_{ijt}' \right) = |\Phi_{ijt}^{'}(\beta) - \Phi_{ijt}^{'}(1-\beta)| \quad (12)
\]

The smaller the value of \(d\), the closer is \(\bar{R}^{'}\) to \(\bar{R}^{'}\). Additionally, the consistency level of \(\bar{R}^{'}\) is higher. Considering that

\[
d \left(\bar{r}_{ijt}, \bar{r}_{ijt}' \right) = |\Phi_{ijt}^{'}(\beta) - \Phi_{ijt}^{'}(1-\beta) - \left| -1 - \Phi_{ijt}^{'}(\beta) \right| + \Phi_{ijt}^{'}(\beta) - \Phi_{ijt}^{'}(1-\beta)|
\]

the deviations of the upper triangular matrix and lower triangular matrix can be expressed in the same formula; thus, we will no longer calculate the deviation of the lower triangular matrix separately.

Definition 16. [16] Let \(\bar{R}^{'} = (\bar{r}_{ijt}')_{n \times n}\) be the associated additively consistent UPR of \(\bar{R}\). The additive consistency index (ACI) of \(\bar{R}^{'}\) is defined as follows:

\[
ACI \left(\bar{R}^{'} \right) = 1 - \frac{1}{n(n-1)} \sum_{ij=1}^{n} d \left(\bar{r}_{ijt}, \bar{r}_{ijt}' \right) \quad (13)
\]

The larger the \(ACI \left(\bar{R}^{'} \right)\), the higher the consistency level of \(\bar{R}^{'}\). If and only if \(d \left(\bar{r}_{ijt}, \bar{r}_{ijt}' \right) = 0\), \(ACI(\bar{R}^{'}) = 1\) and \(\bar{R}^{'}\) is fully additively consistent.

3.3.2. Adjustment of inconsistent UPRs

Definition 17. Let \(\tilde{R}^{'} = (\tilde{r}_{ijt}')_{n \times n}\) be the associated additively consistent UPR of \(\bar{R}\). Suppose the UD of \(\tilde{R}^{'}\) is \(\tilde{r}_{ijt}^{'}, \tilde{r}_{ijt}^{'}\) is an improved UPR, if it satisfies

\[
\Phi_{ijt}^{'}(\beta) = \theta \Phi_{ijt}^{'}(\beta) + (1-\theta) \Phi_{ijt}^{'}(1-\beta) \quad (14)
\]

Theorem 3. Let \(\tilde{R}^{'}\) be an improved UPR and \(\tilde{R}^{'}\) be a complete UPR. Therefore, we can derive that \(ACI(\tilde{R}^{'}) > ACI(\tilde{R}^{'})\).
Proof.
\[
d (\tilde{r}_{ijt}, \tilde{r}_{ijt}^{'}) = |\Phi_{ijt}^{1} (\beta) - \Phi_{ijt}^{1!} (1 - \beta)| \\
= |\delta \Phi_{ijt}^{1} (\beta) + (1 - \delta) \Phi_{ijt}^{1!} (1 - \beta) - \Phi_{ijt}^{1} (1 - \beta)| \\
= \delta |[\Phi_{ijt}^{1} (\beta) - \Phi_{ijt}^{1!} (1 - \beta)]| \\
= \delta |[\Phi_{ijt}^{1} (\beta) - \Phi_{ijt}^{1!} (1 - \beta)]| \\
= \delta |d (\tilde{r}_{ijt}, \tilde{r}_{ijt}^{'})| \\
< d (\tilde{r}_{ijt}, \tilde{r}_{ijt}^{'}) \\
\]
Thus, \(ACI (\tilde{R}) > ACI (\tilde{R})\).

Corollary 1. Let \(\tilde{R}^{(h)} = (\tilde{r}_{ijt}^{(h)})_{h\in D}\) be the \(h\)th improved UPR. After an adjustment, the consistency index of the UPR is better than that of the previous one.

Proof. Let \(\tilde{R}^{(h)}_{n(h-1)} = (\tilde{r}_{ijt}^{(h-1)})\) be the additively consistent UPR with UD \(\Phi_{ijt}^{(h-1)}\) and IUD \(\Phi_{ijt}^{(h-1)}\).

\[
d (\tilde{r}_{ijt}^{(h)}, \tilde{r}_{ijt}^{(h-1)}) = |\Phi_{ijt}^{(h-1)} (\beta) - \Phi_{ijt}^{(h-1)} (1 - \beta)| \\
= \delta |[\Phi_{ijt}^{(h-1)} (\beta) - \Phi_{ijt}^{(h-1)} (1 - \beta)]| \\
= \delta |d (\tilde{r}_{ijt}^{(h)}, \tilde{r}_{ijt}^{(h-1)})| \\
\]
Since \(\delta \in (0, 1), d (\tilde{r}_{ijt}^{(h-1)}, \tilde{r}_{ijt}^{(h-1)})\) are known constants, the deviation after each adjustment is smaller than that of the previous one.

In Corollary 1, after \(h_0\) number of iterations, a certain threshold \(Z_0\) is obtained. When \(d (\tilde{r}_{ijt}^{(h_0)}, \tilde{r}_{ijt}^{(h_0)}) < Z_0\), we consider the additive consistency of \(\tilde{R}^{(h_0)}\) to be acceptable.

3.3.3. Consensus analysis

To improve the level of consensus in GDM, all individual FPRs are typically aggregated to obtain a collective FPR. The latter is used to obtain the individual preference relation which deviates significantly from the consensus [4, 52, 53]. Combining the uncertainty theory and the aggregation operator, a consensus index which measures the deviation between an individual UPR and a collective UPR is introduced.

Let \(\tilde{R}^{\ast} = (\tilde{r}_{ijc})_{i\in D}\) be the collective UPR of all individual DMs. \(\tilde{r}_{ijc}\) is an uncertain variable with an UD \(\Phi_{ijc}\). For any \(\beta \in [0, 1]\), we have \(\Phi_{ijc}^{1} (\beta) + \Phi_{ijc}^{1!} (1 - \beta) = 1, \Phi_{ijc}^{1} (\beta) = 0.5\).

Definition 18. [16] Let \(\tilde{R}^{\ast} = (\tilde{r}_{ijc})_{i\in D}\) be the UPR of \(d_i\), and its IUD is \(\Phi_{ijc}^{1}\). The consensus index of \(\tilde{R}^{\ast}\) is defined as follows:

\[
COI (\tilde{R}, \tilde{R}^{\ast}) = 1 - \frac{1}{n(n - 1)} \sum_{i,j=1}^{n} d (\tilde{r}_{ijt}, \tilde{r}_{ijc}) \\
\]
(15)

The smaller the \(d (\tilde{r}_{ijt}, \tilde{r}_{ijc})\), the larger the consensus index of \(\tilde{R}\). If and only if \(d (\tilde{r}_{ijt}, \tilde{r}_{ijc}) = 0\), \(COI (\tilde{R}, \tilde{R}^{\ast}) = 1\), and the individuals reach full consensus.

Since \(d (\tilde{r}_{ijt}, \tilde{r}_{ijc}) = |\Phi_{ijc}^{1} (\beta) - \Phi_{ijc}^{1!} (1 - \beta)|\), we have

\[
d (\tilde{r}_{ijt}, \tilde{r}_{ijc}) = |\Phi_{ijc}^{1} (\beta) - \Phi_{ijc}^{1!} (1 - \beta)| = |1 - \Phi_{ijc}^{1} (1 - \beta) - [1 - \Phi_{ijc}^{1!} (\beta)]| \\
= |\Phi_{ijc}^{1} (1 - \beta) + \Phi_{ijc}^{1!} (\beta)| \\
= |\Phi_{ijc}^{1} (\beta) - \Phi_{ijc}^{1!} (1 - \beta)| \\
= d (\tilde{r}_{ijt}, \tilde{r}_{ijc}) \\
\]
with \(i < j\). The deviations of the upper triangular matrix and lower triangular matrix between \(\tilde{R}\) and \(\tilde{R}^{\ast}\) can be expressed in the same formula.

- IHWA Operator

Meng and Chen [16] propose an IHWA operator to calculate the elements of a collective FPR based on the importance of DMs (or criteria) and ordered positions. Extending the operator to interval UPRs, we propose the following definition of the collective UPR.

Definition 19. [16] An IHWA operator with dimension \(n\) is a mapping IHWA: Let \(\tilde{R}^{n} \rightarrow \tilde{R}\) be defined on the set of the second arguments of two tuples \((u_1, a_1), (u_2, a_2), \ldots, (u_n, a_n)\) with a set of order-inducing variables \(\{u_i\}_{i \in N}\), denoted by

\[
IHWA_{\lambda, \nu} ((u_1, a_1), (u_2, a_2), \ldots, (u_n, a_n)) \\
= \sum_{l=1}^{n} v_{l} A_{l}^{(i)}(u_1, a_1, \ldots, a_n) \\
\]
(16)
where \((\cdot)\) is a permutation on \(u_i\) such that \(u_i(\lambda)\) is the \(j\)th smallest value of \(u_i\), \(v = (v_1, v_2, \ldots, v_n)^T\) is the weight vector on the ordered set \(O = \{1, 2, \ldots, n\}\), and \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)^T\) is the weight vector on object set \(A = \{a_1, a_2, \ldots, a_n\}\).

Definition 20. Let \(\tilde{R} = (\tilde{r}_{ijc})_{i\in D}\) be the UPR of DM \(d_i\), \(v = (v_1, v_2, \ldots, v_n)^T\) and \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)^T\) be the respective weight vectors on the ordered set \(O\) and on the DM set \(D = \{d_1, d_2, \ldots, d_m\}\). Then, the collective UPR \(\tilde{R} = (\tilde{r}_{ijc})_{i\in D}\) is defined by

\[
IHWA (ACI (\tilde{R}^{\ast}), \Phi_{ijc}^{1}) = \left\langle ACI (\tilde{R}^{\ast}), \Phi_{ijc}^{1} \right\rangle \ldots \\
\]
(17)
\[
= \sum_{k=1}^{m} \sum_{l=1}^{n} v_{k} A_{k}^{(i)} \Phi_{ijc}^{1} = \Phi_{ijc}^{1} \\
\]
\(\Phi_{ij}^1 \) represents the IUD of \(\vec{R}_i \), and \(\Phi_{ij}^{k} \) represents the IUD of \(\vec{R}_i \). \(u_i \) is represented as the ACI. (.) is a permutation on \(ACI(\vec{R}_i) \) (\(k \in M \)) such that \(ACI(\vec{R}_i)^{(k)} \) is the \(k \)th smallest value of \(ACI(\vec{R}_i) \).

Theorem 4. Let \(\vec{R}_i \) be the UPR of DM \(d_i \), and \(\vec{R} = (\vec{r}_{ijc})_{n \times n} \) be the collective UPR; then, the consistency index of the collective UPR is no less than the minimum value of any individual consistency index. That is, \(ACI(\vec{R}) \geq \min_{1 \leq i \leq n} ACI(\vec{R}_i) \).

Proof. From Eq. (13), we have

\[
ACI(\vec{R})
= 1 - \frac{1}{n(n-1)} \sum_{i,j=1}^{n} d(\vec{r}_{ijc}, \vec{r}_{ijc}')
= 1 - \frac{1}{n(n-1)} \sum_{i,j=1}^{n} [\Phi_{ijc}((\beta) - \Phi_{ijc}^{-1}(1 - \beta)]
= 1 - \frac{1}{n(n-1)} \sum_{i,j=1}^{n} \left[\sum_{p=1}^{n-1} \sum_{p \neq i,j} \left[\Phi_{ipk}(1 - \beta) + \Phi_{pjk}(1 - \beta) \right] + 0.5 \right]
= \sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{i=1}^{n} \left[1 - \frac{1}{n(n-1)} \sum_{i,j=1}^{n} \left[\Phi_{ijc}(\beta) - \Phi_{ijc}^{-1}(1 - \beta)] \right] \right]
\geq \min_{1 \leq i, j \leq n} \left\{ 1 - \frac{1}{n(n-1)} \sum_{i,j=1}^{n} \left[\sum_{p=1}^{n-1} \sum_{p \neq i,j} \left[\Phi_{ipk}(1 - \beta) + \Phi_{pjk}(1 - \beta) \right] + 0.5 \right] \right\}
= \min_{1 \leq i, j \leq n} \left\{ 1 - \frac{1}{n(n-1)} \sum_{i,j=1}^{n} \left[\sum_{p=1}^{n-1} \sum_{p \neq i,j} \left[\Phi_{ipk}(1 - \beta) + \Phi_{pjk}(1 - \beta) \right] + 0.5 \right] \right\}
= \min_{1 \leq i, j \leq n} \left\{ \sum_{i,j=1}^{n} d(\vec{r}_{ijc}, \vec{r}_{ijc}') \right\}
= \min_{1 \leq i, j \leq n} ACI(\vec{R}_i)
\]

\[
\text{Definition 21.} \ [16] \text{Let } \vec{R} = (\vec{r}_{ijc})_{n \times n} \text{ be the UPR of DM } d_i; \lambda = (\lambda_1, \lambda_2, ..., \lambda_m)^T \text{ be the weight vector of DM set } D = \{d_1, d_2, ..., d_m\}; \bar{R} = (\vec{r}_{ijc})_{m \times n} \text{ be the collective UPR. Then, the weighted averaging consensus index is defined by}
\]

\[
\overline{\text{COI}}(\vec{R}) = \sum_{i=1}^{m} \lambda_i \text{COI}(\vec{R}, \vec{R}_i)
\]

\[
\text{Theorem 5. Let } \omega \text{ be the consensus threshold value, } \vec{R} \vec{(h,a+1)} = (\vec{r}_{ijc})_{n \times n} (g \in Z) \text{ be the } (g+1) \text{th improved individual UPR for } \text{COI}(\vec{R}, \vec{R}) \leq \omega, \Phi_i^{(h,a+1)} \text{ be the IUD of } \vec{R} \vec{(h,a+1)}, \text{ and } \Phi_i^{(h,a)} \text{ be the IUD of } \vec{R} \vec{(h,a)}. \text{ When } \Phi_i^{(h,a+1)}(\beta) = \partial \Phi_i^{(h,a)}(\beta) + (1 - \partial) \Phi_i^{(h,a)}(1 - \beta), \partial \in (0,1), \text{ we have}
\]

\[
\text{COI}(\vec{R}, \vec{R}) > \text{COI}(\vec{R} \vec{(h,a+1)}, \vec{R}(h,a))
\]
Step 1. Determine the preference relations and weight vectors.
Let $\tilde{R} = (\tilde{r}_{ij})_{n \times n}$ be an independent UPR of the DM d_i, $v = (v_1, v_2, ..., v_n)^T$ and $\lambda = (\lambda_1, \lambda_2, ..., \lambda_m)^T$ be the weight vectors on the ordered set O and on the DM set $D = \{d_1, d_2, ..., d_m\}$, respectively.

Step 2. Complete the incomplete UPRs.
Use UCCPM $(M - 3)$ to compute the incomplete values in individual preference relation \tilde{R}. Additionally, use \tilde{R} to represent the completed individual preference relation.

Step 3. Calculate the individual consistency index.
Let $\tilde{R} = (\tilde{r}_{ij})_{10n \times n}$ be the hth improved individual preference relation, $h = 0, \tilde{R} = \tilde{R}$. The individual ACI threshold value is λ ($\lambda \in [0, 1]$). If $ACI (\tilde{r}_{ij}) \geq \lambda$, then proceed to Step 5; otherwise, proceed to the next step.

Step 4. Adjust inconsistent individual UPRs.
Let $\tilde{R}^{(1)} = \tilde{R}$. If $ACI (\tilde{r}_{ij}) < \lambda$, let $\tilde{R}^{(k+1)} = \tilde{R}^{(k)}$. Adjust inconsistent individual UPRs.

Step 5. Calculate the individual consensus index.
Let ω be the weighted averaging consensus index threshold value, g be the number of iterations, and $\tilde{R} = (\tilde{r}_{ij})_{n \times n}$ be the gth improved individual UPR for $\tilde{R}^{(g-1)} = \tilde{R}$. When $g = 1$, we have $\tilde{R} = \tilde{R}$. Use the IHWA operator to calculate the collective UPR $\tilde{R}^{(g)}$. Use Eq. (15) to calculate the individual consensus index $COI (\tilde{r}_{ij}) (\tilde{r}_{ij})$

Step 6. Calculate the weighted averaging consensus index.
Use Eq. (18) to calculate the weighted averaging consensus index. If $COI (\tilde{r}_{ij}) \geq \omega$, proceed to Step 7; otherwise, proceed to Step 8.

Step 7. Adjust the individual UPRs.
Let $\tilde{R} = \tilde{R}^{(g)}$. If $ACI (\tilde{r}_{ij}) < \lambda$, let $\tilde{R}^{(g+1)} = \tilde{R}^{(g)}$ be the collective UPR improved for $ACI (\tilde{r}_{ij}) < \lambda$. When $s = 0$, $\tilde{R}^{(s)} = \tilde{R}$. If $ACI (\tilde{r}_{ij}) \geq \lambda$, then $\tilde{R}^{(s)}$ is additively consistent; otherwise, proceed to Step 9.

Step 9. Adjust inconsistent collective preference relation.
Let $\tilde{R}^{(s+1)}$ be the IUD of $\tilde{R}^{(s)}$. If $ACI (\tilde{r}_{ij}) < \lambda$, let $\tilde{R}^{(s+1)} = \tilde{R}^{(s)}$. Adjust inconsistent collective preference relation.

3.4. Illustrative Example
Let $X = \{x_1, x_2, x_3, x_4\}$ be the set of alternatives, $D = \{d_1, d_2, d_3\}$ be the set of DMs, $\tilde{R} = (\tilde{r}_{ij})_{4 \times 4}$ be the independent UPR of d_i ($i \in N = \{1, 2, 3, 4\}$) be the independent UPR of d_i ($i \in M = \{1, 2, 3\}$). \tilde{r}_{ij} is a LUV, i.e., $\tilde{r}_{ij} = L(\tilde{r}_{ij})$, and an UD \tilde{r}_{ij}. Let $\tilde{R} = (\tilde{r}_{ij})_{4 \times 4}$ be the collective UPR, $\tilde{r}_{ij} = L(\tilde{r}_{ij})$, and \tilde{r}_{ij} be its UD function. For any β ($\beta \in [0, 1]$), we have $\Phi^{i_1}(\beta) + \Phi^{i_2}(1 - \beta) = 1$, and $\Phi^{i_1}(\beta) = 0.5$. The incomplete UPRs $\tilde{R}^1, \tilde{R}^2, \tilde{R}^3$ provided separately by the three DMs are as follows:

$$
\begin{bmatrix}
L(0.5, 0.5) & L(0.6, 0.8) & L(x_{13}^{1}, 0.75) & L(0.4, 0.7) \\
L(0.2, 0.4) & L(0.5, 0.5) & L(x_{23}^{1}, x_{23}^{2}) & L(0.35, 0.55) \\
L(0.25, x_{31}^{1}) & L(x_{32}^{2}, x_{32}^{3}) & L(0.5, 0.5) & L(0.3, x_{34}^{1}) \\
L(0.3, 0.6) & L(0.45, 0.65) & L(x_{33}^{4}, 0.7) & L(0.5, 0.5)
\end{bmatrix}
$$

$$
\begin{bmatrix}
L(0.5, 0.5) & L(x_{13}^{2}, 0.75) & L(0.5, 0.75) & L(x_{14}^{1}, x_{14}^{2}) \\
L(0.3, x_{21}^{1}) & L(x_{32}^{1}, x_{32}^{3}) & L(0.5, 0.5) & L(0.3, x_{34}^{1}) \\
L(0.25, 0.5) & L(x_{33}^{4}, 0.7) & L(0.5, 0.5) & L(0.7, 0.8) \\
L(x_{41}^{1}, x_{41}^{2}) & L(0.2, 0.45) & L(0.2, 0.3) & L(0.5, 0.5)
\end{bmatrix}
$$
\[
\left(L(0.5,0.5) \ L(0.1,0.3) \ L(x_{13}',x_{13}') \ L(0.3',x_{14}') \ L(0.7,0.9) \ L(0.5,0.5) \ L(0.2,0.4) \ L(x_{24}',x_{24}') \ L(x_{11}',x_{11}') \ L(0.6,0.8) \ L(0.5,0.5) \ L(0.7,0.8) \ L(x_{41}',0.7) \ L(x_{42}',x_{42}') \ L(0.2,0.3) \ L(0.5,0.5) \right)
\]

Step 1. Let the belief degree \(\alpha = 0.8 \). Based on (M – 3), the complete values are estimated. In \(R^1 \), \(x_{13}' = 0.75, x_{23}' = 0.58, x_{23}' = 0.37 \). In \(R^2 \), \(x_{14}' = 0.7, x_{14}' = 0.875, x_{14}' = 0.785, x_{14}' = 0.34 \). In \(R^3 \), \(x_{13}' = 0.025, x_{13}' = 0.025, x_{14}' = 0.3, x_{14}' = 0.575, x_{24}' = 0.575 \).

Step 2. Let the individual ACI threshold value \(\lambda \) be 0.95. Since the actual deviation is an interval with the same end points, it is treated as a real number. Based on Eq. (13), the individual ACI is calculated. \(ACI\left(1\right) = 0.952, ACI\left(2\right) = 0.932, \) and \(ACI\left(3\right) = 0.953 \).

Let \(\delta = 0.8 \) and the adjusted ACI \(ACI\left(F(1)\right) = 0.955, R^1 \) is defined as follows:

\[
\left(L(0.5,0.5) \ L(0.7,0.7) \ L(0.52,0.71) \ L(0.88,0.88) \ L(0.3,0.3) \ L(0.5,0.5) \ L(0.34,0.34) \ L(0.57,0.76) \ L(0.29,0.48) \ L(0.65,0.66) \ L(0.5,0.5) \ L(0.24,0.43) \ L(0.23,0.25) \ L(0.5,0.5) \right)
\]

Step 3. Let the consensus threshold value \(\omega \) be 0.85. The weight vector on the set of DMs \(D = \{d_1, d_2, d_3\} \) is \(\lambda = (\lambda_1, \lambda_2, \lambda_3)^T = \left(\frac{1}{3} \ 1 \ \frac{1}{3}\right)^T \), and the weight vector on the ordered set \(O = \{1,2,3\} \) is \(v = (v_1 \ v_2 \ v_3)^T = \left(\frac{1}{9} \ \frac{3}{9} \ \frac{5}{9}\right)^T \). As \(ACI\left(R^1\right) \) < \(ACI\left(R^2\right) \), the weights of \(R^1, R^2 \), and \(R^3 \) are \(\frac{1}{9}, \frac{3}{9}, \frac{5}{9} \), respectively. The collective UPR \(R' = (\bar{\tau}_c)_{4 \times 4} \) is defined as follows:

\[
\left(L(0.5,0.5) \ L(0.49,0.58) \ L(0.38,0.49) \ L(0.63,0.67) \ L(0.42,0.51) \ L(0.5,0.5) \ L(0.32,0.39) \ L(0.55,0.68) \ L(0.51,0.62) \ L(0.61,0.68) \ L(0.5,0.5) \ L(0.68,0.74) \ L(0.33,0.37) \ L(0.33,0.45) \ L(0.26,0.32) \ L(0.5,0.5) \right)
\]

Step 4. From Eq. (15), \(COI\left(1, R'\right) = 0.767 \), \(COI\left(2, R'\right) = 0.904 \), \(COI\left(3, R'\right) = 0.778 \). From Eq. (18), \(COI\left(R\right) = \frac{1}{5} \times 0.767 + \frac{1}{5} \times 0.904 + \frac{1}{5} \times 0.778 = 0.816 < \omega \).

Step 5. As \(COI\left(R^1, R'\right) < \omega \), \(COI\left(R^2, R'\right) < \omega \), \(\lambda \), and \(R^3 \) must be adjusted. The ultimate individual UPRs are as follows:

\[
\left(\begin{array}{cccc}
L(0.5,0.5) & L(0.58,0.67) & L(0.61,0.61) & L(0.47,0.64) \\
L(0.33,0.42) & L(0.5,0.5) & L(0.65,0.65) & L(0.49,0.64) \\
L(0.39,0.39) & L(0.5,0.5) & L(0.5,0.5) & L(0.5,0.5) \\
L(0.36,0.53) & L(0.45,0.55) & L(0.53,0.56) & L(0.5,0.5)
\end{array}\right)
\]

Let the ACI threshold value of the collective UPR be \(\delta = \lambda = 0.95; \) then, \(ACI\left(R'\right) = 0.982 > 0.95 \), the priority problem is written separately, and this indicates that the individuals have reached the optimal consensus.

To verify the feasibility and efficiency of the proposed method, comparative analysis is conducted using existing methods to estimate the missing values and calculate ACI.

\[
\left(\begin{array}{cccc}
L(0.5,0.5) & L(0.46,0.56) & L(0.43,0.44) & L(0.47,0.57) \\
L(0.44,0.54) & L(0.5,0.5) & L(0.44,0.44) & L(0.51,0.58) \\
L(0.56,0.57) & L(0.6,0.6) & L(0.6,0.6) & L(0.56,0.6) \\
L(0.43,0.53) & L(0.42,0.49) & L(0.4,0.44) & L(0.5,0.5)
\end{array}\right)
\]

Meng et al. [54] propose the concepts of quasi intervals with its additive consistency presentation. It is independent of the permutation of object labels and considers the additive consistency of lower and upper endpoints of IPRs simultaneously. Further, Meng et al. [55] discover that the additive consistency of quasi intervals is included in Krečiš [56] which is more flexible.

Using model (26) in [54] whose solutions of missing values has the highest additive consistency level with respect to known values and model (M-3) in [55] separately, the results are shown in Table 1. Although the proposed method is dependent on the labels of objects, the estimated values of proposed method are all included in the results of [54,55] when the belief degree \(\alpha = 0.8 \). It lessens uncertainty and has higher consistency level. Meanwhile, [54,55] are based on the interval with end points transformation
which ignores internal values. The proposed method treats subjective preference as certain UD which handles the interval preference collectively. Furthermore, when the belief degree is higher, the stricter the requirement for deviation between estimated values and ideal values is, the greater the influence on ACI is. When end points of missing values are equal, the estimated values will not change whatever the belief degree changes.

4. CONCLUSION

Based on the LUD and its consistency condition, the algorithm to fill in the incomplete values and the optimisation of group consistency of completed UPRs are investigated in this study.

The main contributions of this study are as follows:

• An UCCPM is introduced to calculate the missing values in incomplete UPRs, which allows DMs to measure the confidence level of deviation between the supplementary values and the original incomplete information and guarantees the effectiveness of estimated values via a belief degree. It also proves that the operation of incomplete UPRs is an extension of that of traditional IPRs under a certain belief degree.

• A novel distance measure and the ACI of incomplete UPRs are proposed to calculate the consistency and consensus degree of preference relations based on LUD. They are also used to improve the consistency and consensus index of UPRs iteratively.

• The interval preference is treated collectively by obeying the LUD, which avoids the decision distortion and discretisation operation of intervals in the traditional interval operation.

Our future research will focus on two aspects. We discuss the situation of independent DMs in current work. If social relationships of individuals are considered, then GDM can be more scientific. Besides the interval preference information of DMs obeys a LUD, it may obey a NUD, zigzag uncertainty distribution, or lognormal uncertainty distribution, etc. Nonlinear distributions of other types of preference relations with their multiplicative consistency indices will be further investigated.

CONFLICT OF INTEREST

Authors have no conflict of interest to declare.

AUTHORS’ CONTRIBUTIONS

The study is guided by Zaiwu Gong and written by all authors.

Table 1

Methods	Consistency	Missing Values	ACI
Method of Meng et al.	Quasi intervals additive consistency	0.6 0.3 0.63 0.1 0.43 0.893	
Method of Meng et al.	Krejčí’s additive consistency	0.65 0.6 0.6 0.25 0.4 0.918	
The proposed method with	UPRs additive consistency	0.75 0.62 0.62 0.55 0.43 0.919	
The proposed method with	UPRs additive consistency	0.75 0.65 0.65 0.55 0.3 0.909	
The proposed method with	UPRs additive consistency	0.75 0.65 0.65 0.55 0.3 0.909	

Funding statement

This work is supported in part by the National Natural Science Foundation of China under Grant 71971121, 71571104, 71871121 and 71401078, in part by the NUIST-UoR International Research Institute, in part by the Major Project Plan of Philosophy and Social Sciences Research in Jiangsu Universities under Grant 2018JZJDAD038, in part by the 2019 Jiangsu Province Policy Guidance Program (Soft Science Research) under Grant BR2019064.

ACKNOWLEDGMENTS

Thank reviewers and editors for their valuable suggestions.

REFERENCES

[1] Y. Xu, Incomplete interval fuzzy preference relations and their applications, Comput. Ind. Eng. 67 (2014), 93–103.
[2] R. Ureña, F. Chiclana, J. A. Morente-Molinera, E. Herrera-Viedma, Managing incomplete preference relations in decision making: a review and future trends, Inf. Sci. (Ny). 302 (2015), 14–32.
[3] Z. Xu, Incomplete linguistic preference relations and their fusion, Inf. Fusion. 7 (2006), 331–337.
[4] F. Liu, W.-G. Zhang, Z.-X. Wang, A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making, Eur. J. Oper. Res. 218 (2012), 747–754.
[5] Z. Zhang, Deriving the priority weights from incomplete hesitant fuzzy preference relations based on multiplicative consistency, Appl. Soft Comput. J. 46 (2016), 37–59.
[6] Y. Xu, Z. Zhang, H. Wang, A consensus-based method for group decision making with incomplete uncertain preference relations, Soft Comput. 23 (2019), 669–682.
[7] Z.S. Xu, Goal programming models for obtaining the priority vector of incomplete fuzzy preference relation, Int. J. Approx. Reason. 36 (2004), 261–270.
[8] Z. P. Fan, Y. Zhang, A goal programming approach to group decision-making with three formats of incomplete preference relations, Soft Comput. 14 (2010), 1083–1090.
[9] Y. Xu, On group decision making with four formats of incomplete preference relations, Comput. Ind. Eng. 61 (2011), 48–54.
[10] E. Herrera-Viedma, F. Chiclana, F. Herrera, S. Alonso, Group decision-making model with incomplete fuzzy preference relations based on additive consistency, IEEE Trans. Syst. Man, Cybern. Part B Cybern. 37 (2007), 176–189.
[11] E. Herrera-Viedma, S. Alonso, F. Chiclana, F. Herrera, A consensus model for group decision making with incomplete
fuzzy preference relations, Fuzzy Syst. IEEE Trans. 15 (2007), 863–877.

[12] F.J. Cabrerozo, R. Heradio, I.J. Pérez, E. Herrera-Viedma, A selection process based on additive consistency to deal with incomplete fuzzy linguistic information, J. Univers. Comput. Sci. 16 (2010), 62–81.

[13] F. Chiclana, E. Herrera-Viedma, S. Alonso, F. Herrera, A note on the estimation of missing pairwise preference values: a uninorm consistency based method, Int. J. Uncertain. Fuzziness Knowl. Based Syst. 16 (2008), 19–32.

[14] M. Fedrizzi, S. Giove, Incomplete pairwise comparison and consistency optimization, Eur. J. Oper. Res. 183 (2007), 303–313.

[15] G. Zhang, Y. Dong, Y. Xu, Linear optimization modeling of consistency issues in group decision making based on fuzzy preference relations, Expert Syst. Appl. 39 (2012), 2415–2420.

[16] F. Meng, X. Chen, A new method for group decision making with incomplete fuzzy preference relations, Knowl. Based Syst. 73 (2015), 111–123.

[17] S. Genç, F.E. Boran, D. Akay, Z. Xu, Interval multiplicative transitivity for consistency, missing values and priority weights of interval fuzzy preference relations, Inf. Sci. (Ny.) 180 (2010), 4877–4891.

[18] S.M. Chen, S.H. Cheng, T.E. Lin, Group decision making systems using group recommendations based on interval fuzzy preference relations and consistency matrices, Inf. Sci. (Ny.) 298 (2015), 555–567.

[19] F. Meng, X. Chen, Y. Zhang, Consistency-based linear programming models for generating the priority vector from interval fuzzy preference relations, Appl. Soft Comput. J. 41 (2016), 247–264.

[20] S. Wan, G. Xu, J. Dong, A novel method for group decision making with interval-valued Atanassov intuitionistic fuzzy preference relations, Inf. Sci. (Ny.) 372 (2016), 53–71.

[21] S.P. Wan, D.F. Li, Fuzzy mathematical programming approach to heterogeneous multiattribute decision-making with interval-valued intuitionistic fuzzy truth degrees, Inf. Sci. (Ny.) 325 (2015), 484–503.

[22] Z. Zhang, W. Pedrycz, A consistency and consensus-based goal programming method for group decision-making with interval-valued intuitionistic multiplicative preference relations, IEEE Trans. Cybern. 49 (2019), 3640–3654.

[23] S. Zhang, J. Zhu, X. Liu, Y. Chen, Z. Ma, Adaptive consensus model with multiplicative linguistic preferences based on fuzzy information granulation, Appl. Soft Comput. J. 60 (2016), 30–47.

[24] H. Liu, Y. Ma, L. Jiang, Managing incomplete preferences and consistency improvement in hesitant fuzzy linguistic preference relations with applications in group decision making, Inf. Fusion. 51 (2019), 19–29.

[25] Y. Song, G. Li, Handling group decision-making model with incomplete hesitant fuzzy preference relations and its application in medical decision, Soft Comput. 23 (2019), 6657–6666.

[26] H. Liu, Z. Xu, H. Liao, The multiplicative consistency index of hesitant fuzzy preference relation, IEEE Trans. Fuzzy Syst. 24 (2016), 82–93.

[27] Y. Wang, H. Chen, L. Zhou, Logarithm compatibility of interval multiplicative preference relations with an application to determining the optimal weights of experts in the group decision making, Gr. Decis. Negot. 22 (2013), 759–772.

[28] Y. Jiang, An approach to group decision making based on interval fuzzy preference relations, J. Syst. Sci. Syst. Eng. 16 (2007), 113–120.

[29] Z. Xu, Compatibility analysis of intuitionistic fuzzy preference relations in group decision making, Gr. Decis. Negot. 22 (2013), 463–482.

[30] Y. Zhou, L. Cheng, L. Zhou, H. Chen, J. Ge, A group decision making approach for trapezoidal fuzzy preference relations with compatibility measure, Soft Comput. 21 (2017), 2709–2721.

[31] L. Zhou, J.M. Mergiò, H. Chen, J. Liu, The optimal group continuous logarithm compatibility measure for interval multiplicative preference relations based on the COWGA operator, Inf. Sci. (Ny.) 328 (2016), 250–269.

[32] P. Wu, S. Liu, L. Zhou, H. Chen, A fuzzy group decision making model with trapezoidal fuzzy preference relations based on compatibility measure and COWGA operator, Appl. Intell. 48 (2018), 46–67.

[33] S. Wibowo, H. Deng, Consensus-based decision support for multicriteria group decision making, Comput. Ind. Eng. 66 (2013), 625–633.

[34] Y. Li, H. Zhang, Y. Dong, The interactive consensus reaching process with the minimum and uncertain cost in group decision making, Appl. Soft Comput. J. 60 (2017), 202–212.

[35] E. Herrera-Viedma, F. Herrera, F. Chiclana, A consensus model for multiperson decision making with different preference structures, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 32 (2002), 394–402.

[36] Z. Xu, X. Cai, Group decision making with incomplete interval-valued intuitionistic preference relations, Gr. Decis. Negot. 24 (2015), 193–215.

[37] S.P. Wan, Q.Y. Wang, J.Y. Dong, The extended VIKOR method for multi attribute group decision making with triangular intuitionistic fuzzy numbers, Knowl. Based Syst. 52 (2013), 65–77.

[38] R. Ureña, F. Chiclana, H. Fujita, E. Herrera-Viedma, Confidence-consistency driven group decision making approach with incomplete reciprocal intuitionistic preference relations, Knowl. Based Syst. 89 (2015), 86–96.

[39] M. Sahu, A. Gupta, A. Mehra, Acceptably consistent incomplete interval-valued intuitionistic multiplicative preference relations, Soft Comput. 22 (2018), 7463–7477.

[40] Z. Xu, A practical procedure for group decision making under incomplete multiplicative linguistic preference relations, Gr. Decis. Negot. 15 (2006), 581–591.

[41] B. Liu, Uncertainty Theory, fourth ed., Springer, Berlin, Heidelberg, 2015.

[42] B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst. 3 (2009), 3–10. http://www.worldacademicunion.com/journal/jus/jusVol03No1paper01.pdf

[43] B. Liu, Why is there a need for uncertainty theory?, J. Uncertain Syst. 6 (2012), 3–10. http://www.worldacademicunion.com/journal/jus/jusVol06No1paper01.pdf

[44] B. Liu, Membership functions and operational law of uncertain sets, Fuzzy Optim. Decis. Mak. 11 (2012), 387–410.

[45] B. Liu, A new definition of independence of uncertain sets, Fuzzy Optim. Decis. Mak. 12 (2013), 451–461.

[46] B. Liu, Uncertainty distribution and independence of uncertain processes, Fuzzy Optim. Decis. Mak. 13 (2014), 259–271.
[47] B. Liu, X. Chen, Uncertain multiobjective programming and uncertain goal programming, J. Uncertain. Anal. Appl. 3 (2015), 4–11.

[48] S. A. Orlovsky, decision-making with a fuzzy preference relation, Fuzzy Sets Syst. 1 (1978), 155–167.

[49] T. Tanino, Fuzzy preference orderings in group decision making, Fuzzy Sets Syst. 12 (1984), 117–131.

[50] J. Tang, F. Meng, S. Zhang, Consistency comparison analysis of decision making with intuitionistic fuzzy preference relations, IEEE Trans. Eng. Manag. PP (Mcc), (2019), 1–15.

[51] Z. Xu, On compatibility of interval fuzzy preference relations, Fuzzy Optim. Decis. Mak. 3 (2004), 217–225.

[52] F. Herrera, E. Herrera-Viedma, J.L. Verdegay, Direct approach processes in group decision making using linguistic OWA operators, Fuzzy Sets Syst. 79 (1996), 175–190.

[53] Z. Xu, Induced uncertain linguistic OWA operators applied to group decision making, Inf. Fusion. 7 (2006), 231–238.

[54] F.Y. Meng, Q.X. An, C.Q. Tan, X.H. Chen, An approach for group decision making with interval fuzzy preference relations based on additive consistency and consensus analysis, IEEE Trans. Syst. Man, Cybern. Syst. 47 (2017),2069–2082.

[55] F.Y. Meng, J. Tang, H. Fujita, Consistency-based algorithms for decision-making with interval fuzzy preference relations, IEEE Trans. Fuzzy Syst. 27 (2019),2052–2066.

[56] J. Krejčí, On additive consistency of interval fuzzy preference relations, Comput. Ind. Eng. 107 (2017), 128–140.