Mitogen-activated protein kinase cascades in *Vitis vinifera*

Birsen Çakır1* and Ozan Kılıçkaya2

1 Department of Horticulture, Faculty of Agriculture, Ege University, Izmir, Turkey, 2 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey

Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKKK kinases (MAPKKKKS), MAPKK kinases (MAPKKKS), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in *Vitis vinifera*, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase members of *Arabidopsis thaliana*, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in *Vitis vinifera*. We identified orthologs of *V. vinifera* putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in *V. vinifera* and could help elucidate the biological and physiological functions of these proteins in *V. vinifera*.

Keywords: MAP kinase, *Vitis vinifera*, signal transduction, protein phosphorylation

Introduction

Mitogen-activated protein kinase (MAPK) cascades are higly conserved modules of signal transduction in eucaryotes including yeast, animals, and plants. MAPK cascades play an important role in protein phosphorylation of signal transduction events (Rodriguez et al., 2010). MAPK cascades typically consist of three protein kinases, MAPK, MAPK kinase (MAPKK), and MAPK kinase kinase (MAPKKK), but sometimes include MAP3K kinase (MAP4K) that phosphorylate the corresponding downstream substrates (Jonak et al., 2002; Champion et al., 2004).

MAPK is activated via phophorylation of conserved threonine (T) and tyrosine (Y) residues in the catalytic subdomain by its specific MAPKKK, which is in turn activated by phosphorylation of two serine/threonine residues in a conserved S/T-X33-5-S/T motif by an upstream MAPKKK (Stulemeijer et al., 2007; Zaïdi et al., 2010; Huang et al., 2011). Upon activation, the MAPK cascade could be translocated into the nucleus or cytoplasm to trigger the cellular responses through phosphorylation of downstream transcription factors or components of transcription machinery while some MAP kinases, like ERK3, are constitutively present in the nucleus and may function...
and AtMPK6, have been identified in Arabidopsis. The MAPKK4 induces cell death (Kishi-Kaboshi et al., 2010). Induced by a chitin elicitor in rice and the activated form OsMAPK3, OsMAPK6, and the MAPK kinase OsMKK4 are reported to be involved in biotic and abiotic stress responses (Mizoguchi et al., 1996; Ichimura et al., 2000; Jonak et al., 2002). MAPK genes such as AtMPK4 and AtMPK6 are regulated by biotic elicitors via AtMKK4/5 and AtMPK4 is a negative regulator of defense response (Asai et al., 2002; Nadarajah and Sidek, 2010). For example, NtWIPK, OsMPK5, and AtMPK3 were activated by wounding and abiotic stress (Matsuoka et al., 1999). The MEKK subfamily contains NPK1, NbMAPKKK, NbMAPKKK, and rice, tobacco and barley, and oat (Huttly and Phillips, 1995; Knetsc et al., 1996; Mizoguchi et al., 1998; Nadarajah and Sidek, 2010; Zaïdi et al., 2010; Sun et al., 2014). The Arabidopsis genome contains 20 MAPK genes (Group et al., 2002; Jonak et al., 2002). MAPK genes such as AtMPK4 and AtMPK6, have been identified in Arabidopsis (Ichimura et al., 1998, 2000; Nadarajah and Sidek, 2010). It has been reported that MAPK genes are involved in biotic and abiotic stress responses (Mizoguchi et al., 1996; Ichimura et al., 2000; Asai et al., 2002; Nadarajah and Sidek, 2010). For example, OsMPK3, OsMPK6, and the MAPK kinase OsMKK4 are induced from a chitin elicitor in rice and the activated form of OsMKK4 induces cell death (Kishi-Kaboshi et al., 2010). Similarly, NtWIPK, OsMPK5, and AtMPK3 were activated by pathogens and abiotic stresses (Zhang and Klessig, 2001; Hamel et al., 2006; Rohila and Yang, 2007). AtMPK4 and AtMPK6 are activated by osmotic stress, low humidity, low temperature, and wounding (Ichimura et al., 2000; Teige et al., 2004). AtMPK3 and AtMPK6 are also regulated by biotic elicitors via AtMKK4/5 and AtMPK4 is a negative regulator of defense response (Asai et al., 2002). In addition, AtMPK3 and AtMPK6 are involved in the embryo, anther and inflorescence development and stomatal distribution on the leaf surface (Bergmann et al., 2004; Gray and Hetherington, 2004; Bush and Krysan, 2007).

MKKs are activated by the phosphorylation on conserved serine and threonine residues in the S/T-X3-5-S/T motif and characterized by a putative MAPK-docking domain K/R-K/R-K/X1-6-I-X-L/V/S, and a kinase domain (Group et al., 2002). To date, many MAPKKs have been identified from several plant species. All the identified MAPKK genes from Arabidopsis, rice and poplar contain 11 catalytic subdomains (Ichimura et al., 2002; Rao et al., 2010; Wang et al., 2014c). In Arabidopsis, MKK1 was activated by wounding and abiotic stress (Matsuoka et al., 2002). Alfalfa SIMKK mediates both salt and elicitor-induced signals (Kiegerl et al., 2000; Cardinale et al., 2002). NtMEK2 activates SLPK and WIPK resulting in cell death (Yang et al., 2001).

MAPKKks form the largest class of MAPK cascade enzymes with 80 members classified into three subfamilies, MEKK, Raf, and ZIK containing 21, 11, and 48 genes, respectively in Arabidopsis (Jonak et al., 2002). Plant MAPKKks are characterized by different primary structures of their kinase domains, but are conserved within a single group (Champion et al., 2004). The MEKK subfamily comprises a conserved kinase domain of G(T/S)Px(W/Y,F)MAPEV (Jonak et al., 2002). The ZIK subfamily contains GTPEFMAP(L)V(Y) while the Raf subfamily has GTx(W/Y)MAPE (Jonak et al., 2002). All the MAPKKs have a kinase domain, and most of them have a serine/threonine protein kinase active site (Wang et al., 2015). In the RAF subfamily, most of the proteins have a long N-terminal regulatory domain and C-terminal kinase domain. By contrast, majority of the members in the ZIK subfamily have an N-terminal kinase domain (Wang et al., 2015). However, the MEKK subfamily has a less conserved protein structure with a kinase domain located either at the C- or N-terminal or in the central part of the protein (Wang et al., 2015). Homologs of MAPKKks have been identified in plant species such as alfalfa, Arabidopsis, tobacco (Kovtun et al., 2000; Mizoguchi et al., 2004; Nakagami et al., 2004). The MEKK subfamily contains NPK1, NbMAPKKK, NbMAPKKK, and SIMAPKKK in tomato (Oh et al., 2010; Sun et al., 2014). The second subfamily, Raf, includes Arabidopsis CTR1/raf1 (Kieber et al., 1993), EDR/Raf2 (Frye et al., 2001), and DSK1 in rice (Ning et al., 2010). In Arabidopsis, MEKK1 regulates defense responses against different pathogens including bacteria and fungi (Asai et al., 2002; Qiu et al., 2008; Galletti et al., 2011). In addition, AtEDR1, a Raf-like MAPKKK, regulates SA-inducible defense responses (Frye et al., 2001). The ZIK subfamily which contains 10 and 9 members in Arabidopsis and rice, respectively, are able to regulate flowering time and circadian rhythms (Wang et al., 2008; Kumar et al., 2011).

A putative phosphorylation domain T/Sx̆T/S is found between domains VII and VIII in MAP4ks, which is identical to the phosphorylation motif of MAPKKks from plants (Jouannic et al., 1999; Ichimura et al., 2002). Both domains participate in peptide-substrate recognition (Champion et al., 2004). MAP4ks can be linked to the plasma membrane through association with a small GTPase or lipid (Qi and Elion, 2005). They are directly activated by stimulated interaction with adaptor proteins (Qi and Elion, 2005). The MAP4ks are divided into eight classes including PAK-related, Gck, Mst, Tao, Ste/PAK, Sok (Champion et al., 2004). The majority of MAP4ks are from the large class of Ste20 protein kinases, which exhibit a highly diverse noncatalytic domain (Dan et al., 2001). The PAKs, which have a C-terminal catalytic domain, are separated from the GC Kinase-related polypeptides, which contain an N-terminal catalytic domain (Dan et al., 2001). Most of the MAP4ks contain an N-terminal catalytic domain, but members of the STE20/PAK group have a C-terminal kinase domain and some plant MAP4ks have their kinase domain in the middle of the sequences (Leprince et al., 1999). The Arabidopsis genome contains 10 putative MAP4ks (Champion et al., 2004). A maize gene encoding MIK is a GCK-like kinase being a subfamily of MAP4K (Llompart et al., 2003).
which relates membrane-located receptors to MAP kinases (Dan et al., 2001). Some MAP4K are able to phosphorylate MEKK or Raf members whereas other MAP4Ks either phosphorylate MAPKKs or function as adaptors (Champion et al., 2004).

However, the functions of most MAPK genes in plants are still unknown. Although MAPK cascades are involved in signaling multiple defense responses, the role of Vitis MAPK cascades in response to biotic and abiotic stresses are not elucidated. In previous studies in grapevine, a few components of the MAPK gene family were isolated (Wang et al., 2014a). In addition, the gene family of MAPKKKs were identified and their expression profiles were analyzed in different organs in response to different stresses (Wang et al., 2014b). Interestingly, the expression of VvMAP kinase gene was induced by salinity and drought (Daldou et al., 2012). However, the MAPKK and the MAPKKKK subfamilies have not yet been characterized. To explore the role of MAPK cascade proteins in biotic and abiotic stress responses in grapevine, the publicly available grapevine genome (Jaillon et al., 2007) was analyzed to identify all members of MAPK cascade proteins. Using these databases, we characterized all members of MAPK cascades of V. vinifera and performed a phylogenetic analysis in comparison with members of Arabidopsis MAPK cascade proteins.

Materials and Methods

Genome-wide Identification of MAPK Cascade Genes in Grapevine

The MAPK cascade protein sequences of Arabidopsis thaliana were used to search against the V. vinifera proteome 12x database (http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/) using a BLASTP analysis (http://www.ncbi.nlm.nih.gov/blast) (Altschul et al., 1990) with scores higher than 400 and an “E” value > e-120 (Çakır and Kılıçkaya, 2013). The sequences of Arabidopsis MAPK cascade proteins were obtained from the TAIR (http://www.arabidopsis.org/). MAPK domain (PS01351), ATP-binding domain (PS00107), protein kinase domain (PS00011), serine/threonine protein kinase active site (PS00108) were identified in the sequences of polypeptides corresponding to V. vinifera MAPK cascade proteins by the Conserved Domain Database (CDD) at NCBI (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and PROSITE (http://prosite.expasy.org/) (Marchler-Bauer et al., 2009). In addition, the NCBI non-redundant protein database was screened with each sequence in order to independently validate the automatic annotation.

Multiple-sequence Alignment and Phylogenetic Tree Construction

Multiple-sequence alignments of the putative MAPK cascade proteins were aligned using CLUSTAL W and subjected to phylogenetic analysis by both the maximum parsimony and distance with neighbor-joining methods with 1000 bootstrap replicates (Saitou and Nei, 1987; Thompson et al., 1994). The phylogenetic tree was illustrated using MEGAS. Because similar results were obtained with both methods, only the single tree retrieved from the distance analysis is discussed in detail.

For MAPK cascade subfamilies from both V. vinifera and A. thaliana, multiple sequence alignment was performed using the multiple sequence comparison by log-expectation (MUSCLE) alignment tool (http://www.ebi.ac.uk/Tools/msa/muscle/) (Edgar, 2004). The phylogenetic analysis was performed using a neighbor-joining method with 1000 bootstrap replicates and visualized with MEGA5 software (Tamura et al., 2011). The protein theoretical molecular weight and isoelectric point were predicted using compute pi/MW (http://au.expasy.org/tools).

Orthology Analysis and Database Search

Orthology analysis was performed using the PHOG web server (http://phylofacts.berkeley.edu/orthologs/) (Datta et al., 2009). The sequences of conserved domains with similarity over 70% and an “E” value of 0.0 were selected as queries. The selected sequences of conserved domains from different species were then used in a BLASTP search against the V. vinifera protein sequence database. The best hits were annotated as putative orthologous sequences (Moreno-Hagelsieb and Latimer, 2008).

Expressed sequence tags (ESTs) were identified by BLASTn of the V. vinifera expressed sequence tag (EST) database (http://www.ncbi.nlm.nih.gov/dbEST). Using the sequences of all of the MAPK cascade proteins as queries. The positives sequences were then confirmed by alignment with the query ORF.

Results and Discussion

Genome-wide Identification of MAPK Cascade Genes in Vitis vinifera

Vitis vinifera MAPK cascade sequences were mined from the grapevine genome proteome 12x database (Jaillon et al., 2007). We identified 88 ORFs encoding putative MAPK cascade proteins containing at least MAPK domain by BLAST searches of the grapevine genome proteome 12x database with the amino acid sequences of the MAPK cascade proteins from A. thaliana as queries (Table 1). The completed Vitis genome contains 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs (Table 1).

Phylogenetic Analysis

All predicted MAPK cascade family sequences were aligned using ClustalW (Thompson et al., 1994). A rooted phylogenetic tree was constructed by alignment of full length amino acid sequences using the MEGA5 program and maximum parsimony and distance with neighbor-joining methods (Saitou and Nei, 1987) (Figure 1). One thousand bootstrap replicates were produced for each analysis.

Vitis MAPK cascade sequences can be divided into four subfamilies on the basis of the presence of conserved threonine and tyrosine residues in the motif TxY located in the activation loop (T-loop) between kinase subdomains VII and VIII. In addition, we identified MAPKKKK subfamily with 7 members in Vitis genome, which has the conserved amino acid motifs TFVGTPTxWMAPEV as described (Jonak et al., 2002). The members of four subfamilies clustered more tightly with each other than with members of other subfamilies (Figure 1).
Subfamily name	GenBank ID	Chr	Str	Genomic location	Gene length	CDS length	Length of protein in AA	Number of Exon	Number of Intron	pI	mW (kDa)
VvMPKs	CBI00001753	12	+	12432-13328	8787	1518	505	10	9	3.41	57.43
	CBI00001753	17	+	8661-9627	9068	1501	489	10	9	3.25	56.98
	CBI00001753	18	+	14457-2610	11645	960	368	8	9	3.25	56.89
	CBI00001753	19	+	10280-22193	11203	1561	509	8	9	3.25	56.89
	CBI00001753	5	+	5638-13328	7690	1280	416	10	9	3.25	56.98
	CBI00001753	4	+	4454-18647	14193	2030	612	12	10	3.64	59.75
	CBI00001753	3	+	3409-12306	9697	1620	541	10	9	3.57	59.38
	CBI00001753	2	+	2275-10641	8376	1400	460	10	9	3.64	59.75
	CBI00001753	1	+	1149-8705	7219	1075	342	9	9	3.64	59.75
VvMAPKKs	CBI00001987	14	+	24322-2431707	20700	1365	449	9	8	3.64	59.75
	CBI00001987	13	+	21900-2190257	18025	1184	352	8	9	3.64	59.75
	CBI00001987	12	+	19570-1957228	18025	1184	352	8	9	3.64	59.75
	CBI00001987	11	+	17250-1725289	18025	1184	352	8	9	3.64	59.75
	CBI00001987	10	+	14925-1492882	18025	1184	352	8	9	3.64	59.75
	CBI00001987	9	+	12600-1260335	18025	1184	352	8	9	3.64	59.75
	CBI00001987	8	+	10275-1027962	18025	1184	352	8	9	3.64	59.75
	CBI00001987	7	+	7950-795467	18025	1184	352	8	9	3.64	59.75
	CBI00001987	6	+	5625-563029	18025	1184	352	8	9	3.64	59.75
	CBI00001987	5	+	3300-330472	18025	1184	352	8	9	3.64	59.75
	CBI00001987	4	+	9975-998013	18025	1184	352	8	9	3.64	59.75
	CBI00001987	3	+	6650-665467	18025	1184	352	8	9	3.64	59.75
	CBI00001987	2	+	4325-433029	18025	1184	352	8	9	3.64	59.75
	CBI00001987	1	+	19975-1998013	18025	1184	352	8	9	3.64	59.75

(Continued)
Subfamily name	12×Vitis vinifera ID	NCBI GeneBank ID	Genomic location	Gene length in bp	CDS length in bp	Length of protein in AA	mW (kDa)	pI	Number of isoforms	Number of Exons	Number of Intron
TABLE 1 | Continued

Subfamily name	12X Vitis vinifera ID	NCBI GenBank ID	Chr	Str	Length of protein in AA	ODS length in bp	Gene length in bp	Genomic location	Number of Intron	Number of Exon	pl	mW (kDa)	pI
VviMAPKKK56	GSVIVT01033779001	CBI30245.3	8	16	746	17884683–17902051	17369	2238	17	10	6.14	82.96	7.00
VviMAPKKK57	GSVIVT01034710001	CBI40217.3	13	14	698	7730105–7732118	6988	2199	13	10	6.42	81.58	6.58
VviMAPKKK58	GSVIVT01034988001	CBI22876.3	5	6	733	18395010–18410644	15635	30889	19	14	9.31	41.78	9.76
VviMAPKKK59	GSVIVT01035409001	CBI20668.3	4	10	894	7076729–7078360	1632	70767	4	3	5.20	88.93	5.80
VviMAPKKK60	GSVIVT01036758001	CBI24172.3	19	20	1046	22924599–22935504	10906	22924599–22935504	10906	20	1046	34.22	7.00
VviMAPKKK61	GSVIVT01037773001	CBI26734.3	19	20	298	7730105–7732118	2014	7730105–7732118	2014	19	1046	34.22	7.00
VvMAPKKKKs													
VvMAP4K1	GSVIVT01012233001	CBI27303.3	5	6	733	7076729–7078360	1632	70767	4	3	5.20	88.93	5.80
VvMAP4K2	GSVIVT01013739001	CBI28527.3	9	15	746	18395010–18410644	15635	30889	19	14	9.31	41.78	9.76
VvMAP4K3	GSVIVT01014297001	CBI20268.3	1	8	8597	8012586–8021182	8597	8012586–8021182	8597	18	8597	115.81	8.13
VvMAP4K4	GSVIVT01016074001	CBI25246.3	14	16	1046	27646939–27657107	10169	27646939–27657107	10169	16	1046	34.22	7.00
VvMAP4K5	GSVIVT01019643001	CBI34578.3	2	10	298	7730105–7732118	2014	7730105–7732118	2014	19	1046	34.22	7.00
VvMAP4K6	GSVIVT01027718001	CBI23577.3	1	8	31170	342583–373752	31170	342583–373752	31170	19	31170	707	21.21
VvMAP4K7	GSVIVT01032461001	CBI34913.3	19	20	298	7730105–7732118	2014	7730105–7732118	2014	19	1046	34.22	7.00

The identified open reading frames (ORFs) are classified into four subfamilies, MAPK, MAPKK, MAPKKK, and MAPKKKK. Columns 1–13 contain the protein acronym (Name), coding sequence (CDS), Vitis proteome 12x genome coverage (Hyun et al., 2010), which may be due to the errors corrected in 12x genome sequence coverage. The grapevine genome contains less MAPKs than Arabidopsis (20 MAPKs) (Ichimura et al., 2002) and rice (17 MAPKs) (Liu and Xue, 2007). Members of the Vitis MAPK subfamily show 20–86% identity to each other. Full length MAPK proteins ranged in size from 195 to 769 amino acids (Table 1). Variation in length of the entire MAPK gene is usually due to differences in the length of MAPK domain and/or, due to the number of introns. The difference in length among MAPK genes may indicate the presence or absence of motifs which could affect functional specificity.

VvMPK12, VvMPK14 belong to the group I., which contains well-characterized MAPK genes including AtMPK3, AtMPK6 (Figure 2). It has been demonstrated that AtMPK3, OsMPK5 were activated in response to pathogens and abiotic stresses (Zhang and Klessig, 2001; Hamel et al., 2006; Rohila and Yang, 2007). OsMPK5 plays an important role for the resistance to blast disease (Song and Goodman, 2002; Huang et al., 2011). AtMPK6 can be activated by various abiotic and biotic stresses (Ichimura et al., 2000; Yuasa et al., 2001; Feilner et al., 2005; Huang et al., 2011). Similarly, PtrMAPK is involved in resistance to both dehydration and cold (Huang et al., 2011).

Group II MAPKs are involved in both abiotic stresses and cell division in Arabidopsis. VvMPK13, VvMPK11, and VvMPK9 are clustered with Group II., which includes AtMPK4, AtMPK5, AtMPK12, and AtMPK11. AtMPK4 and its upstream MAPKK AtMK2 can be activated by biotic and abiotic stresses (Ichimura et al., 2000; Teige et al., 2004).

VvMPK4 and VvMPK8 belong to group III. AtMPK1 in the group III is regulated by salt stress treatment (Mizoguchi et al., 1996). In addition, AtMPK1 and AtMPK2 are activated by ABA (Ortiz-Masia et al., 2007). The Group III genes, such as rice BWMK1 and alfalfa TDY1, are activated by wounding and pathogens (Nowak et al., 1997; Lynch et al., 2001).

Group IV, which includes VvMPK1, VvMPK3, VvMPK5, VvMPK6, and VvMPK7 of the Vitis MAPKs, have the TDY motif in their T-loop and the absence of the C-terminal CD domain, which is consistently found in members of the other MAPK groups. VvMPK2 and VvMPK10 belonging to group V were separated from other groups.

The orthology analysis program identified one hundred-fourteen orthologs from various plant species for this subfamily (Table 2). The VvMAPK3 amino acid sequence shows 83% similarity with AtMPK9, and VvMPK12 shows 84% similarity with AtMPK3 from A. thaliana. The members of VvMAPK subfamily share between 75.8 and 91.8% similarity to the MAPK members from Ricinus communis.
Oryza sativa, and A. thaliana. The phylogenetic analysis of A. thaliana and V. vinifera MAPK subfamilies confirmed the orthologs of VvMPK14/AtMPK6, VvMPK12/AtMPK3, VvMAPK11/AtMAPK13, VvMPK13/AtMPK12, VvMPK7/AtMPK16, and VvMPK3/AtMPK9 (Figure 2).

All of the 14 Vitis MAPK proteins are represented in the Vitis ESTs database (Supplementary Table 1) and are expressed in different tissues such as fruits, berries, buds, flowers, leaves, and roots. In addition, 12 VvMPK genes were isolated (Wang et al., 2014a). Expression analysis of VvMPK genes showed that all VvMPK genes are expressed during grapevine growth and development, and in biotic and abiotic stresses (Wang et al., 2014a).

MAPKKs

This subfamily consists of 10 members in Arabidopsis genome (Group et al., 2002), whereas Vitis genome contains 5 members of MAPKK subfamily. The full length VvMKK sequences range in size from 224 to 519 amino acids (Table 1). The members of the MAPKK subfamily in the Vitis genome share 29–40%
similarity with each other. By phylogenetic analysis, we also identified orthologs of Vitis MAPKKs in Arabidopsis such as VvMKK5/AtMKK3 (78.6% similarity), VvMKK3/AtMKK6 (83.1% similarity), and VvMKK2/AtMKK2 (70.4% similarity) supported with significant bootstrap values. The phylogenetic analysis confirmed that VvMKK3 shares 83.3% similarity with its homolog from Arabidopsis on the basis of orthology analysis, (Figure 3, Table 2).

To date, none of the Vitis MAPKK homologs have been cloned or characterized. However, 98 ESTs were identified for this subfamily in different tissues in response to biotic or abiotic stresses (Supplementary Table 2). A role of MAPK kinase, MKK1 in abiotic stress signaling was previously demonstrated (Matsuoka et al., 2002). Analysis of MKK1 revealed that drought, salt stress, cold, wounding activated MKK1, which in turns activates its downstream target MPK4 (Matsuoka et al., 2002). Tobacco NtMEK2 is functionally interchangeable with two Arabidopsis MAPKKs, AtMKK4, and AtMKK5 in activating the downstream MAPKs (Ren et al., 2002). MdMKK1 was reported to be downregulated by ABA (Wang et al., 2010). In Arabidopsis, AtMKK3 is upregulated in response to ABA (Hwa and Yang, 2008). Interestingly, AtMKK1/AtMKK2 play an important role in signaling in ROS homeostasis (Liu, 2012).

MAPKKKs

With 62 members, the MAPKKK subfamily represents the largest subfamily of V. vinifera MAP cascade proteins, which is smaller than those of Arabidopsis (80 members) and rice (75 members) (Colcombet and Hirt, 2008; Rao et al., 2010). Recently, Wang et al. (2014b) identified 45 MAPKKK genes in grapevine 12x
Subfamily name	Vitis proteome 12 x ID	Species	%ID	UniprotKB ID
VvMPK1	GSVIVT01000784001	Ricinus communis	82.7	B9H311_POPTR
VvMPK2	GSVIVT01005924001	Ricinus communis	75.8	B9SYK7_RICCO
VvMPK3	GSVIVT01008408001	Populus trichocarpa	84.0	B92202_POPTR
		Brassica napus	82.0	Q5XU40_BRAH
		Arabidopsis thaliana	81.8	MPK9_ARATH
		Arabidopsis lyrata subsp. Lyrata	81.2	D7L7Z0_ARALL
		Oryza sativa subsp. Indica	77.6	B3GCL0_ORYSI
Zea mays		76.6	B9T7E7_RICCO	
		75.7	B4F907_MAIZE	
		76.6	MPK16_ORYSI	
VvMPK6	GSVIVT01104810001	Ricinus communis	80.1	B9SR58_RICCO
		Populus trichocarpa	78.7	B9G024_POPTR
VvMPK7	GSVIVT011017873001	Ricinus communis	90.9	B9RSS7_RICCO
		Populus trichocarpa	90.2	B9M787_POPTR
		Arabidopsis lyrata subsp. Lyrata	84.7	D7L7Z6_ARALL
		Arabidopsis thaliana	84.5	MPK16_ARATH
		Oryza sativa subsp. Japonica	83.2	B3GCK9_ORYSI
Zea mays		79.9	06T169_MAIZE	
		77.9	A9RAB1_WHEAT	
VvMPK9	GSVIVT011019460001	Populus trichocarpa	91.4	B9GW40_POPTR
		Papaver rhoes	89.3	Q683Y4_9MAGN
		Ricinus communis	87.4	B9RGG7_RICCO
		Solanum tuberosum	84.8	Q8LT16_SOLTU
		Sorghum bicolor	82.7	CSYH06_SORBI
		Medicago trunculata	81.9	B1F493_MEDTR
VvMPK10	GSVIVT01227710001	Populus trichocarpa	75.7	B9G269_POPTR
VvMPK11	GSVIVT01025091001	Nicotiana attenuate	86.6	ASH116_NICAT
		Ricinus communis	86.0	B9SW48_RICCO
		Malus domestica	85.3	D1MFM2_MALDO
		Solanum lycopersicum	83.5	E2GLN8_SOLL
		Nicotiana benthamiana	83.5	B2NIC1_NICBE
		Medicago sativa	82.7	Q92P91_MEDSA
		Nicotiana tabacum	82.7	NTF6_TOBAC
		Solanum tuberosum	82.7	Q8LT15_SOLTU
		Arabidopsis lyrata subsp. Lyrata	80.4	D7R4W6_ARALL
VvMPK12	GSVIVT01025105001	Citrus sinensis	90.3	A2IB84_CITIS
		Populus trichocarpa	90.0	B9HNK3_POPTR
		Catharanthus roseus	89.7	B8LFA0_CATRO
		Cucumis sativus	89.3	Q0R412_CUCSA
		Solanum lycopersicum	86.9	Q84M14_SOLL
		Medicago trunculata	86.8	B7FD99_MEDTR
		Solanum peruvianum	86.6	A6VUL7_SOLPE
		Solanum tuberosum	86.6	Q5V6C6_SOLTU
		Nicotiana attenuate	86.6	ASH211_NICAT
		Ricinus communis	86.4	B9T127_RICCO
		Capsicum annuum	86.3	Q9L2J2_CAPAN
		Nicotiana benthamiana	86.3	Q8H0B4_NICBE
		Nicotiana tabacum	86.0	Q8W406_TOBAC
		Pisum sativum	86.0	Q9N6S1_PEA

(Continued)
Subfamily name	Vitis proteome 12x ID	Species	%ID	UniprotKB ID
Brassica napus	Q5IV18_BRANA	86.0		
Medicago sativa	O24077_MEDSA	85.7		
Petroselinum crispum	O04694_PETCR	85.7		
Glycine max	Q5KBQ4_SOYBN	85.4		
Arabidopsis thaliana	MPK3_ARATH	84.2		
Saccharum officinarum	Q4OWG7_SACOF	78.2		
Oryza sativa subsp. Yndica	MPK5_ORYSI	77.6		
Avena sativa	Q43379_AVESA	77.3		
Nicotiana attenuate	AS7H74_NICAT	90.7		
Rucinis communis	B9RDW5_RICCO	90.5		
Glycine max	C6TEP0_SOYBN	89.9		
Populus trichocarpa	B9GQC1_POPTR	89.2		
Malus hupehensis	B1N8YS_9ROSA	89.2		
Petroselinum crispum	Q84XZ6_PETCR	89.0		
Nicotiana tabacum	Q3C254_TOBAC	88.5		
Solanum lycopersicum	D7R517_SOLLC	88.2		
Thellungiella halophila	E4MW58_THEHA	87.4		
Brassica napus	E3US78_BRANA	87.3		
Arabidopsis thaliana	MPK4_ARATH	87.2		
Arabidopsis lyrata subsp. Lyrata	D7M4W5_ARALL	86.9		
Malus micromalus	Q82Z55_MALMI	86.4		
Medicago sativa	MMK2_MEDSA	86.3		
Oryza sativa subsp. Yndica	A2Z9P1_ORYSI	83.6		
Oryza sativa subsp. Japonica	MPK6_ORYSJ	83.6		
Zea mays	B4HF09_MAIZE	83.2		
Sorghum bicolor	CSWUG0_SORBI	82.4		
Physcomitrella patens subsp. patens	A9S9Q8_PHYP	80.9		
Pinus tadea	C7ENI4_PINTE	78.0		
Populus trichocarpa	B9H0G0_POPTR	96.7		
Malus domestica	D1MFM1_MALDO	96.2		
Pismum sativum	MAPK_PEA	94.8		
Rucinis communis	B9SFT4_RICCO	94.5		
Medicago sativa	MMK1_MEDSA	94.2		
Glycine max	Q5KBX6_SOYBN	94.2		
Nicotiana tabacum	NTF4_TOBAC	93.3		
Solanum tuberosum	Q8LT17_SOLTU	93.0		
Nicotiana benthamiana	B3IWK6_NICBE	93.0		
Solanum lycopersicum	Q84M55_SOLLCC	93.0		
Capsicum annuum	Q9LJK1_CAPAN	92.7		
Solanum peruvianum	B5B2H6_SOLPE	92.7		
Nicotiana attenuate	ASH2LO_NICAT	92.4		
Arabidopsis thaliana	MPK6_ARATH	91.8		
Arabidopsis lyrata subsp. Lyrata	D7K4K6_ARALL	91.8		
Brassica napus	E1B2J5_BRANA	91.5		
Sorghum bicolor	CSZAD1_SORBI	90.9		
Oryza sativa subsp. Japonica	MPK1_ORYSJ	90.5		
Zea mays	B8QN51_MAIZE	90.5		
Oryza sativa subsp. Indica	B3GOK7_ORYSI	90.5		
Triticum aestivum	Q84X3Z_WHEAT	89.9		
Pinus tadea	C7ENI3_PINTE	87.5		
Populus trichocarpa	B9K3C3_POPTR	81.7		
Subfamily name	Vitis proteome 12x ID	Species	%ID	UniprotKB ID
----------------	----------------------	--------------------------	-----	--------------
VvM KK3	GSVIVT010152830001	Ricinus communis	81.2	B9PK49_RICCO
		Petroselinum crispum	79.3	Q6QM75_PETCOR
		Malus domestica	77.6	D1MF3_MALDO
		Nicotiana tabacum	76.8	Q9M6Q9_TOBAC
		Solanum lycopersicum	76.3	O48616_SOULLC
		Arabidopsis thaliana	75.6	Q0Z2L0_ARATH
		Glycine max	75.1	Q5JCL0_SOYBN
		Ricinus communis	89.0	B9PKG0_RICCO
		Solanum lycopersicum	88.7	Q66M77_SOULLC
		Nicotiana tabacum	88.1	Q9AY98_TOBAC
		Nicotiana benthamiana	87.3	B2NIC2_NICBE
		Oryza sativa	87.1	O80396_ARATH
		Oryza sativa	87.1	O99755_MAIZE
		Zea mays	76.8	CSXIE1_SORBI
		Sorghum bicolor	86.3	B9S641_RICCO
		Populus trichocarpa	84.6	B9GIS7_POPTR
		Nicotiana tabacum	82.8	G0542_TOBAC
		Suaeda salsa	79.0	Q8LIS2_SUASA
		Arabidopsis thaliana	78.6	Q80396_ARATH
		Populus trichocarpa	85.5	B9GSK4_POPTR
		Ricinus communis	77.8	B9SH00_RICCO
		Populus trichocarpa	82.2	B9G7K7_POPTR
		Ricinus communis	80.7	B9T446_RICCO
		Populus trichocarpa	80.5	B9K94F6_POPTR
		Ricinus communis	79.3	B9IRAT5_RICCO
		Glycine max	78.7	C0M04_SOYBN
		Medicago sativa	78.0	Q64R31_MEDSA
		Oryza sativa	82.1	B8AEQ7_ORYSI
		Zea mays	82.1	COP3M4_MAIZE
		Oryza sativa	82.1	Q6ZH81_ORYSI
		Arabidopsis thaliana	82.1	Q9FS77_ARATH
		Populus trichocarpa	88.0	B9IE09_POPTR
		Ricinus communis	84.1	B9IE33_RICCO
		Populus trichocarpa	80.8	B9IEA9_POPTR
		Ricinus communis	79.8	B9IS48_RICCO
		Arabidopsis thaliana	76.9	Q9LJD8_ARATH
		Populus trichocarpa	84.0	B9H15U5_POPTR
		Ricinus communis	79.4	B9RT51_RICCO
		Arabidopsis thaliana	75.1	Q9LI16_ARATH
		Populus trichocarpa	76.3	B9RC55_RICCO
		Ricinus communis	84.0	B945R1_RICCO
		Populus trichocarpa	82.4	B9IA51_POPTR
		Arabidopsis thaliana	82.7	B9HA54_RICCO
		Populus trichocarpa	82.2	B9H14M1_POPTR

(Continued)
TABLE 2 | Continued

Subfamily name	Vitis proteome 12× ID	Species	%ID	UniprotKB ID
WvMAPKKK42	GSVIVT010268470001	Ricinus communis	79.8	B9S5G6_RICCO
WvMAPKKK45	GSVIVT010288970001	Ricinus communis	77.0	B9SRUR2_RICCO
WvMAPKKK50	GSVIVT010301940001	Populus trichocarpa	82.9	B9IDAH8_POPTR
WvMAPKKK54	GSVIVT010323890001	Populus trichocarpa	85.4	B9TSP6_RICCO
WvMAPKKK55	GSVIVT010324870001	Populus trichocarpa	84.3	B9GIR67_POPTR
WvMAPKKK56	GSVIVT010337790001	Glycine max	81.6	C6TMB8_SOYBN
WvMAPKKK58	GSVIVT010348880001	Arabidopsis thaliana	80.9	Q8LE9Y_ARATH
WvMAPKKK61	GSVIVT010377730001	Populus trichocarpa	91.2	B9G175_POPTR
WvMAPKKK62	GSVIVT010388970001	Populus trichocarpa	89.5	B9SB62_RICCO
WvMAPKKK7	GSVIVT010324610001	Arabidopsis thaliana	86.9	Q9SSA4_ARATH
WvMAPKKK7	GSVIVT010324610001	Orzya sativa subsp. Japonica	84.6	Q8L5F3ORYSJ
WvMAPKKK7	GSVIVT010324610001	Orzya sativa subsp. Indica	84.6	A2Y7U2ORYSI
WvMAPKKK7	GSVIVT010324610001	Zea mays	83.3	B6U616_MAIZE
WvMAPKKK7	GSVIVT010324610001	Prunus salicina	80.9	B9F5P3_POPTR
WvMAPKKK7	GSVIVT010324610001	Prunus persica	79.8	A9UAN3_ROSA
WvMAPKKK7	GSVIVT010324610001	Rosa hybrid cultivar	78.9	C4PKG3_PRIPE
WvMAPKKK7	GSVIVT010324610001	Malus domestica	78.5	A2T3V2_MALDO
WvMAPKKK7	GSVIVT010324610001	Solarum lycopersicum	77.1	Q5YSK5_SOLL
WvMAPKKK7	GSVIVT010324610001	Ricinus communis	78.3	B9R2R2_RICCO
WvMAPKKK7	GSVIVT010324610001	Populus trichocarpa	78.0	B9H9N4_POPTR
WvMAPKKK7	GSVIVT010324610001	Gossypium hirsutum	79.5	Q7Y236_GOSHI
WvMAPKKK7	GSVIVT010324610001	Arabidopsis thaliana	76.8	WNK11_ARATH
WvMAPKKK7	GSVIVT010324610001	Ricinus communis	76.6	B9T3W4_RICCO
WvMAPKKK7	GSVIVT010324610001	Populus trichocarpa	76.1	B9NE17_POPTR
WvMAPKKK7	GSVIVT010324610001	Populus trichocarpa	79.8	B9GK86_POPTR
WvMAPKKK7	GSVIVT010324610001	Ricinus communis	79.3	B9YRT1_RICCO
WvMAPKKK7	GSVIVT010324610001	Populus trichocarpa	80.0	B9H6Q7_POPTR
WvMAPKKK7	GSVIVT010324610001	Carica papaya	79.0	A7L4B0_CARPA
WvMAPKKK7	GSVIVT010324610001	Arabidopsis thaliana	75.6	Q8LER4_ARATH

Columns 1–4 contain the protein name, Vitis proteome 12× ID, GenBank ID, species, percentage identity (%ID), UniprotKB ID.

genome coverage (Wang et al., 2014b). The difference in the number of MAPKKK members in grapevine genome may be related to the “E” value > E-120 used in this report, which is more significant. In addition, domain scan using two different databases (PROSITE and CDD) can identify more sequences in the grapevine genome.

The members of the Vitis MAPKKK subfamily share 11–35% identity with each other and distributed on various chromosomes (from 2 to 18) (Table 1). The full length Vitis MAPKKK sequences range from 175 (VvI MAPKKK38) to 1397 (VvI MAPKKK17) amino acids. The phylogenetic analysis of both Vitis and Arabidopsis MAPKKK sequences shows that this subfamily is categorized into three main groups with bootstrap values up to 93% (Figure 4).

The first group contains MAPKKKs whose kinase domains have similarity to MEKK subfamily members (Figure 4) (Jonak et al., 2002). A second group includes Raf subfamily members while a third group presents ZIK subfamily members (Figure 4) (Jonak et al., 2002). In total, there are 21 VviMAPKKKs in the MEKK subfamily, while there are 12 in the ZIK subfamily and 29 in the Raf subfamily among the 62 members in the Vitis genome.
FIGURE 3 | Phylogenetic tree of MAPKK protein sequences from Arabidopsis and Vitis vinifera. The amino acid sequences of all Arabidopsis MAPKK proteins and those of Vitis vinifera were aligned using the MUSCLE program and subjected to phylogenetic analysis by the distance with neighbor-joining method using MEGA5 programme. Accession numbers for Arabidopsis sequences are AtMKK1 (At4g26070), AtMKK2 (At4g29810), AtMKK3 (At5g40440), AtMKK4 (At1g51660), AtMKK5 (At3g21220), AtMKK6 (At5g56580), AtMKK7 (At1g18350), AtMKK8 (At3g06230), AtMKK9 (At1g73500), AtMKK10 (At1g32320).

Analysis of conserved domain of VviMAPKKKs identified a long regulatory domain in the N-terminal region and a kinase domain in the C-terminal region in most of VviMAPKKKs. It is suggested that the long regulatory domain in the N-terminal region of the Raf subfamily may be involved in protein-protein interactions and regulate or specify their kinase activity (Jouannic et al., 1999). Twenty members of the Vitis MAPKKK subfamily share 75.1–89.2% similarity with their orthologs from different plant species (Table 2).

We identified at least 640 ESTs for 59 of the Vitis MAPKKKs (Supplementary Table 3) indicating that MAPKKK subfamily is transcriptionally active. Expression profile of VviMAPKKK genes suggested that some of them are involved in response to biotic and abiotic stresses in different tissues and organs (Wang et al., 2014b). In support of a role for some Vitis MAPKKKs, AtMEKK1 expression is enhanced by drought, salt, stress (Mizoguchi et al., 1996). Recently, it was reported that AtMKK3/MKK2 and AtMEKK1 were able to negatively regulate programmed cell death (PCD) as well as immune responses (Kong et al., 2012). In tobacco, NPK1-MEK1-Ntf6 are also involved in resistance to tobacco mosaic virus (TMV) (Jin et al., 2002; Liu et al., 2004). In addition, AtEDR1, a Raf-like MAPKKK could regulate SA-inducible defense responses negatively (Frye et al., 2001).

MAPKKKKs
In non-plants, MAPKKKs are activated either through phosphorylation by MAPKKK kinase (MAPKKKK or MAP4K) (Posas and Saito, 1997; Sells et al., 1997) or by G protein and G
FIGURE 4 | Phylogenetic tree of MAPKKK protein sequences from *Arabidopsis* and *Vitis vinifera*. The amino acid sequences of all Arabidopsis MAPKKK proteins and those of *Vitis vinifera* were aligned using the MUSCLE program and subjected to phylogenetic analysis by the distance with neighbor-joining method using MEGA5 programme. MAPKKK forms the largest group of MAPK cascades with 62 members classified into three subfamilies, MEKK, Raf, and ZIK containing 21, 29, and 12 genes, respectively in *Vitis* genome. Accession numbers for Arabidopsis sequences are AtMEKK1 (At1g09000), AtMEKK2 (At1g54960), AtMEKK3 (At1g53370), AtMEKK4 (At1g63700), AtMEKK5 (At5g66850), AtMEKK6 (At3g07980), AtMEKK7 (At3g13530), AtMEKK8 (At4g08500), AtMEKK9 (At4g08480), AtMEKK10 (At4g08470), AtMEKK11 (At4g12020), AtMEKK12 (At3g06030), AtMEKK13 (At1g07150), AtMEKK14 (At2g30040), AtMEKK15 (At5g55090), AtMEKK16 (At4g26890), AtMEKK17 (At2g32510), AtMEKK18 (At1g05100), AtMEKK19 (At5g57080), AtMEKK20 (At3g05310), AtMEKK21 (At4g36950), AtRAF1 (At5g03730), AtRAF2 (At1g06720), AtRAF3 (At5g11850), AtRAF4 (At1g18160), AtRAF5 (At5g38680), AtRAF6 (At4g24480), AtRAF7 (At3g06620), AtRAF8 (At3g06630), AtRAF9 (At3g06640), AtRAF10 (At5g49470), AtRAF11 (At1g67890), AtRAF12 (At4g23050), AtRAF13 (At2g31010), AtRAF14 (At2g42630), AtRAF15 (At3g58640), AtRAF16 (At1g04700), AtRAF17 (At1g14000), AtRAF18 (At1g16270), AtRAF19 (At1g62400), AtRAF20 (At1g79570), AtRAF21 (At2g17700), AtRAF22 (At2g24360), AtRAF23 (At2g31800), AtRAF24 (At2g35060), AtRAF25 (At2g43650), AtRAF26 (At4g14780), AtRAF27 (At4g19950), AtRAF28 (At4g31170), AtRAF29 (At4g35780), AtRAF30 (At4g38470), AtRAF31 (At5g01850), AtRAF32 (At5g40350), AtRAF33 (At5g50000), AtRAF34 (At5g50180), AtRAF35 (At5g57610), AtRAF36 (At5g58950), AtRAF37 (At5g66710), AtRAF38 (At3g01490), AtRAF39 (At3g22750), AtRAF40 (At3g24720), AtRAF41 (At3g27560), AtRAF42 (At3g46920), AtRAF43 (At3g46930), AtRAF44 (At3g50720), AtRAF45 (At3g50730), AtRAF46 (At3g59830), AtRAF47 (At3g58760), AtRAF48 (At3g63260), AtZIK1 (At3g51630), AtZIK2 (At5g8350), AtZIK3 (At3g24240), AtZIK4 (At3g04910), AtZIK5 (At3g18750), AtZIK6 (At3g41990), AtZIK7 (At1g49160), AtZIK8 (At5g55660), AtZIK9 (At5g28690), AtZIK10 (At1g64630), AtZIK11 (At5g48260).
FIGURE 5 | Phylogenetic tree of MAPKKKK protein sequences from *Arabidopsis* and *Vitis vinifera*. The amino acid sequences of all *Arabidopsis* MAPKKKK proteins and those of *Vitis vinifera* were aligned using the MUSCLE program and subjected to phylogenetic analysis by the distance with neighboring method using MEGA5 programme.

Accession numbers for Arabidopsis sequences are AtMAP4K1 (At1g3165), AtMAP4K2 (At3g15220), AtMAP4K3 (At1g69220), AtMAP4K4 (At5g14720), AtMAP4K5 (At4g24100), AtMAP4K6 (At4g10730), AtMAP4K7 (At1g70430), AtMAP4K8 (At1g79640), AtMAP4K9 (At1g23700), AtMAP4K10 (At4g14480).

protein-coupled receptors (Fanger et al., 1997; Sugden and Clerk, 1997).

Several MAP4Ks have been identified in plant genomes based on phylogenetic analyses of their kinase domain. A MAP4K, named MIK, was characterized from the *Zea mays* (Wang et al., 2014). Recently, a new MAP4K from GCK-II subfamily named ScMAP4K1, which play important roles in ovule, seed, and fruit development was characterized (Major et al., 2009).

In fully sequenced genomes, like *Arabidopsis* and rice at least 10 protein kinases can be phylogenetically classified as MAP4K (Champion et al., 2004). Little is known about the roles of MAP4Ks in plants. Seven ORFs showing strong similarity with the 10 *Arabidopsis* MAP4Ks were identified in *Vitis* genome (Figure 5) and shared 18–74% similarity with each other. They have been named VvMAP4K1 through 7 (Table 1). The phylogenetic analysis of *V. vinifera* and *A. thaliana* MAP4Ks proteins identified several orthologs in the two species such as VvMAP4K4/AtMAP4K8 (70% similarity), VvMAP4K1/AtMAP4K3 (66% similarity), VvMAP4K7/AtMAP4K4 (68% similarity), and VvMAP4K6/AtMAP4K10 (64% similarity) (Figure 5).

In addition, we identified several orthologs from different species for 3 VvMAP4Ks (Table 2). Among 7 ORFs encoding
Vitis MAP4Ks, all of them are transcriptionally active (Supplementary Table 4), but none of them has been cloned and characterized.

Conclusions

This report represents the first complete genome-wide analysis of MAPK cascade proteins in grapevine. The identification of Vitis MAPK cascade proteins and their comparative analysis with the Arabidopsis MAPK cascade proteins indicates that MAPK cascade genes have been conserved during evolution. In this report, we annotated 90 ORFs encoding MAPK cascade proteins in V. vinifera using a bioinformatics approach. Taken as a whole, our data provide significant insights into future biological and physiological analysis of MAPK cascades from V. vinifera.

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(95)80360-2

Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., et al. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983. doi: 10.1038/415977a

Bergmann, D. C., Lukowitz, W., and Somerville, C. R. (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science 304, 1494–1497. doi: 10.1126/science.1096014

Bögre, L., Calderini, O., Binarova, P., Mattauch, M., Till, S., Kiegerl, S., et al. (2009). A MAP kinase cascade is activated in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11, 101–113. doi: 10.1105/tpc.111.1101

Bush, S. M., and Krysan, P. J. (2007). Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J. Exp. Bot. 58, 2181–2191. doi: 10.1093/jxb/erm092

Çakır, B., and Kılıçkaya, O. (2013). Whole-genome survey of the putative ATP-champion, A., Picaud, A., and Henry, Y. (2004). Reassessing the MAP3Ks of Arabidopsis: A conserved module affecting inflorescence branching. Curr. Biol. 14, R488–R490. doi: 10.1016/j.cub.2004.06.019

Datta, R. S., Meacham, C., Samad, B., Neyer, C., and Sjolander, K. (2009). Berkeley PHOG: PhyloFacts orthology group prediction web server. Nucleic Acids Res. 37, W84–W89. doi: 10.1093/nar/gkp373

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi: 10.1093/nar/gkh340

Feilner, T., Hultschig, C., Lee, J., Meyer, S., Immink, R. G. H., Koenig, A., et al. (2005). High throughput identification of potential Arabidopsis mitogen-activated protein kinase substrates. Mol. Cell. Proteomics 4, 1558–1568. doi: 10.1074/mcp.M500007-MCP200

S. Daldoul, S., Hoefer, M. II, and Mliki, A. (2012). Osmotic Stress Induces the MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J. Exp. Bot. 58, 2181–2191. doi: 10.1093/jxb/erm092

Various abiotic stresses rapidly activate Arabidopsis MAP kinase family. T. Bögre, L., Calderini, O., Binarova, P., Mattauch, M., Till, S., Kiegerl, S., et al. (2009). A MAP kinase cascade is activated in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11, 101–113. doi: 10.1105/tpc.111.1101

Acknowledgments

This work was funded by the Department of Horticulture, Ege University, Turkey.

Supplementary Material

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2015.00556

Author Contributions

BÇ conceived and designed all research. OK performed the bioinformatic analyses. BÇ analyzed data and wrote the article.

Frontiers in Plant Science | www.frontiersin.org 16 July 2015 | Volume 6 | Article 556
ICHIMURA, K., SHINOZAKI, K., TENA, G., SHEEN, J., HENRY, Y., CHAMPION, A., et al. (2002). MAPK: Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301–308. doi: 10.1016/S1360-1382(02)02302-6

JAILLON, O., AURY, J. M., NOEL, B., POLITCI, A., CHEPET, C., CASAGRANDE, A., et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467. doi: 10.1038/nature06148

JIN, H., AXTELL, M. J., DALBLEICH, D., EKWENNA, O., ZHANG, S., STASKAWICZ, B., et al. (2002). NPK1, and MEKK1-like mitogen-activated protein kinase gene, regulates innate immunity and development in plants. Dev. Cell 3, 291–297. doi: 10.1016/S1534-5807(02)00205-8

JONAK, C., OKRÉZS, L., BÖGRE, L., and HIRT, H. (2002). Complexity, cross talk and integration of plant MAP kinase signaling. Curr. Opin. Plant Biol. 5, 415–424. doi: 10.1016/S1369-5266(02)00285-8

JONAK, C., PAY, A., BOGRE, L., HIRT, H., and HEBERLE-BORS, E. (1993). The plant homologues of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner. Plant J. 3, 611–617. doi: 10.1046/j.1365-313X.1993.03040611.x

JOUANNIC, S., HAMAL, A., LEPRINCE, A., TREGEAR, J. W., KREIS, M., and HENRY, Y. (1999). Molecular characterisation of plant cDNAs BnMAP4Kalpha1 and BnMAP4Kalpha2 from grapevine. FEBS Lett. 449, 463–467. doi: 10.1016/S0014-5793(02)01106-5

Liu, Y., SCHIFF, M., and DINESH-KUMAR, S. P. (2004). Involvement of MEK1 MAPKKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTRL in N-mediated resistance to tobacco mosaic virus. Plant J. 38, 800–809. doi: 10.1111/j.1365-313X.2004.02085.x

Lompart, B., CASTELLS, E., RIO, A., ROCA, R., FERRANDO, A., STIEFEL, V., et al. (2003). The direct activation of MKK, a germinal center kinase (GCK) like-kinase, by MARK, a maize atypical receptor kinase, suggests a new mechanism for signaling through kinase-dead receptors. J. Biol. Chem. 28, 48105–48111. doi: 10.1074/jbc.M307482200

LUKOWITZ, W., ROEDER, A., PARMENTER, D., and SOMERVILLE, C. (2004). A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116, 109–119. doi: 10.1016/S0092-8674(03)01067-5

Lynch, M., O’HELY, M., WALSH, B., and FORCE, A. (2001). The probability of preservation of a newly arisen gene duplicate. Genetics 159, 1789–1804.

Major, G., DUGA, C., LAFFLUE, E., CARON, S., and MATTON, D. (2009). Characterization of ScMAPK1, a MAP kinase kinase kinase in ovule, seed and fruit development in Solanum chacoense. Bitt. Curr. Topics Plant Biol. 10, 27–46.

Marchler-Bauer, A., Anderson, J. B., Chitsaz, F., Derbishy, M. K., DeWeese-Scott, C., Fong, J. H., et al. (2009). CDD: Specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 37, D205–D210. doi: 10.1093/nar/gkn845

MATSUOKA, D., NAMNORTI, T., SATO, K., FUKAMI, Y., KIKKAWA, U., and YASUDA, T. (2002). Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase gene, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J. 29, 637–647. doi: 10.1046/j.0960-7412.2001.01246.x.

MELECH-BONIFIL, S., and Sessa, G. (2010). Tomato MAPKKK phospholkinase is a positive regulator of cell-death signaling networks associated with plant immunity. Plant J. 64, 379–391. doi: 10.1111/j.1365-313X.2010.04333.x

MENG, X., WANG, H., HE, Y., LIU, Y., WALKER, J. C., TORRII, K. U., et al. (2012). A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. Plant Cell 24, 4948–4960. doi: 10.1105/tpc.112.104695

MIZOGUCHI, T., CHIMICHU, K., IRIE, K., MORRIS, P., GIURADJAT, D., MATSUMOTO, K., et al. (1996). Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett. 437, 56–60. doi: 10.1016/S0014-5793(98)01197-1

MIZOGUCHI, T., IRIE, K., HIYARAYAMA, T., HAYASHIDA, N., YAMAGUCHI-SHINOZAKI, K., MATSUMOTO, K., et al. (1996). A gene encoding a mitogen-activated protein kinase gene is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 93, 765–769. doi: 10.1073/pnas.93.2.765

MORENO-HAGELISBIEG, G., and LÄTTERM, K. (2008). Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24, 319–324. doi: 10.1093/bioinformatics/btm585

NADARAJAH, K., and SIDEK, H. (2010). The green MAPKS. Asian J. Plant Sci. 9, 1–10. doi: 10.3923/ajps.2010.1.10

NAKAGAMI, H., KIEGER, S., and HIRT, H. (2004). OMT1K, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J. Biol. Chem. 279, 26959–26966. doi: 10.1074/jbc.M103662000

NING, J., LI, X., HICKS, L. M., and XIONG, L. (2010). Araf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol. 152, 876–890. doi: 10.1104/tpc.109.149856

NISHIHAMA, R., ISHIKAWA, M., ARAKI, S., SOYANO, T., ASADA, T., and MACHIDA, Y. (2001). The NPK1 mitogen-activated protein kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev. 15, 352–363. doi: 10.1101/gad.863701

NOWAK, M. A., BOERLJIST, M. C., COOKE, J., and SMITH, J. M. (1997). Evolution of genetic redundancy. Nature 388, 167–171. doi: 10.1038/40618

OH, C.-S., PEDLEY, K. F., and MARTIN, G. B. (2010). Tomato 14-3-3 protein 7 encodes a member of the raf family of protein kinases. Plant J. 62, 2247–2258. doi: 10.1111/j.1365-313X.2010.04669.x

ORTIZ-MASIA, D., PEREZ-AMADOR, M. A., CARBONELL, J., and MARCOTE, M. J. (2007). Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett. 581, 1834–1840. doi: 10.1016/j.febslet.2007.03.075
