A New Class of Index Coding Instances Where Linear Coding is Optimal

Lawrence Ong
School of Electrical Engineering and Computer Science, The University of Newcastle, Australia

Abstract—We study index-coding problems (one sender broadcasting messages to multiple receivers) where each message is requested by one receiver, and each receiver may know some messages a priori. This type of index-coding problems can be fully described by directed graphs. The aim is to find the minimum codelength that the sender needs to transmit in order to simultaneously satisfy all receivers’ requests. For any directed graph, we show that if a maximum acyclic induced subgraph (MAIS) is obtained by removing two or fewer vertices from the graph, then the minimum codelength (i.e., the solution to the index-coding problem) equals the number of vertices in the MAIS, and linear codes are optimal for this index-coding problem. Our result increases the set of index-coding problems for which linear index codes are proven to be optimal.

I. INTRODUCTION

We consider index-coding problems, first introduced by Birk and Kol [1], where a sender communicates with multiple receivers simultaneously through a shared broadcast medium. The aim is to find the shortest codeword that the sender needs to broadcast in order for each receiver, knowing some of the messages broadcast by the sender a priori, to obtain its requested message. Index-coding problems have been receiving much attention lately due to its equivalence to network-coding problems [2]–[4].

Each index-coding problem instance can be fully described by a directed or an undirected graph. Bar-Yossef et al. [5] characterized the optimal index codelength for graphs of the following types: (a) directed and acyclic, (b) undirected and perfect, (c) undirected odd holes of five or more vertices, and (d) undirected anti-holes of five or more vertices. In general, the index-coding problem remains open to date, though having practical advantages of simplifying encoding and decoding, are not necessarily optimal.

In this paper, we extend existing results to a new class of problem instances: we show that if an MAIS is formed by removing two or fewer vertices, then the MAIS lower bound is achievable using linear index codes, meaning that linear index codes are optimal for this class of index-coding problems. To this end, we show that this class of graphs must contain some special configurations; by proposing a new coding scheme on these special configurations, we are able to construct the required optimal index code. This incidentally characterizes a class of (infinitely many) graphs where the minrank upper bound and the MAIS lower bound coincide.

II. NOTATION AND AN EXISTING LOWER BOUND TO THE OPTIMAL INDEX CODELENGTH

Let there be n receivers, $\{1,2,\ldots,n\}$, and each receiver i requests a message $x_i \in \mathcal{X} \triangleq \{0,1,\ldots,|\mathcal{X}| - 1\}$ from the sender. The sender knows all the messages, $\mathbf{x} = (x_1,x_2,\ldots,x_n)$. It encodes \mathbf{x} into a length-ℓ codeword $E(\mathbf{x}) \in \mathcal{X}^\ell$. It then broadcasts the codeword to all receivers noiselessly to allow each receiver i—who knows some prior side information $\mathcal{K}_i \subseteq \{x_1,x_2,\ldots,x_n\} \setminus \{x_i\}$—to decode its requested message, i.e., $\mathcal{B}_i(E(\mathbf{x}), \mathcal{K}_i) = x_i$, for all $i \in \{1,2,\ldots,n\}$. Here, $E(\mathbf{x})$ is the index code, and ℓ is the index codelength. The aim is the find the minimum index codelength, denoted by ℓ^*.

Each index-coding problem instance is completely specified by \mathcal{K}_i for all $i \in \{1,2,\ldots,n\}$. It can also be fully described by a directed graph G, consisting of a set of vertices $V(G) = \{1,2,\ldots,n\}$ and a set of arcs $A(G)$. An arc from vertex i to vertex j exists, denoted by $(i \rightarrow j) \in A(G)$, if and only if receiver i knows x_j, or equivalently, $x_j \in \mathcal{K}_i$. By definition, there is no self loop or parallel arc. For an arc $(i \rightarrow j)$, vertex i is the tail and j the head. We term this graphical representation side-information graph. Each vertex i in G represents both message x_i and receiver i.

For the special case where for each $(i \rightarrow j) \in A(G)$, there exists an arc $(j \rightarrow i) \in A(G)$, the index-coding problem instance can also be represented by an undirected graph G'', consisting of the same set of vertices $V(G'') = V(G)$, and a set of edges $E(G'')$, where $(i,j) \in E(G'')$ if and only if $(i \rightarrow j) \in A(G)$, which also means $(j \rightarrow i) \in A(G)$.

We denote by $\ell^*(G)$ the optimal (or minimum) index codelength of an index-coding problem instance represented by graph G, which can be directed or undirected. Bar-Yossef et al. have shown the following lower bound [5]:

$$\ell^*(G) \geq \text{MAIS}(G),$$

where $\text{MAIS}(G)$ is the number of vertices in a maximum acyclic induced subgraph (MAIS) of G. An MAIS is obtained...
Bipartite graphs are also used to represent a more general—in fact, the most general—class of index-coding problem instances where a message can be requested by more than one receiver (cf. side-information graphs). Neely et al. [6] Theorem 1] found ℓ^* for all acyclic bipartite graphs; Yu and Neely [9] found ℓ^* for all planar bipartite graphs. The bipartite graph that represents our example is depicted in Figure 1(b), which contains cycles. Also, ignoring the arc direction, we contract the edges \{(1, x_1), (1, x_2), (4, x_4), (4, x_5)\} to obtain a complete bipartite graph on three and three vertices, commonly denoted by $K_{3,3}$. Since any planar graph cannot contain a $K_{3,3}$ minor, Figure 1(b) is not planar.

Tehrani et al. [7] have proposed a packet decomposition scheme to obtain an upper bound on bipartite graphs. Achievability of the scheme was derived on the assumption that ℓ' is a large finite field. Even if the results can be shown to hold for smaller alphabets, the scheme can only achieve $\ell = 4$ for the instance in Figure 1(a).

Consequently, our results strictly extend the existing results. Recently, we built on the results of this paper to characterize ℓ^* for all G up to five vertices [13].

The optimal linear index codelength for any graph G is given by its minrank value [5]. Characterizing graphs having a certain minrank value is hard; Dau et al. [14] managed to characterize all undirected graphs whose minrank value is $|V(G)| - 2$ or $|V(G)| - 1$, and all directed graphs whose minrank value is 2 or $|V(G)|$. They are, however, unable to characterize directed graphs whose minrank value is $|V(G)| - 1$ or $|V(G)| - 2$. For any directed graph G whose $\text{MAIS}(G)$ equals $|V(G)| - 1$ or $|V(G)| - 2$, we show in this paper that linear index codes are optimal, meaning that $\text{MAIS}(G)$ equals its minrank. So, we have incidentally characterized a subset of directed graphs whose minrank equals $|V(G)| - 1$ or $|V(G)| - 2$.

IV. PROOF OF THEOREM I

As $\text{MAIS}(G)$ is a lower bound to ℓ^*, we only need to prove achievability. Recall that $|V_i|$ is the minimum number of vertices we need to remove from G to make it acyclic, i.e., to obtain an MAIS.

Firstly, suppose that $|V_i| = 0$. Sending all messages uncoded achieves the index codelength $|V(G)|$, and we have (2).

Next, suppose that $|V_i| = 1$. The directed graph G must contain at least one cycle; otherwise, $|V_i| = 0$. It follows from Lemma 2 that $|V(G)| - 1$ is achievable.

Lastly, $|V_i| = 2$. There are two possibilities for G:

(i) There exist two vertex-disjoint cycles, or
(ii) There are no two vertex-disjoint cycles.

For case (i), it again follows from Lemma 2 that $|V(G)| - 2$ is achievable. The savings of two symbols (compared to sending all $|V(G)|$ symbols uncoded) can be achieved using a cyclic code on each disjoint cycle. For example, for a cycle of length L, say $1 \to 2 \to \cdots \to L$, we send the following $(L - 1)$ coded symbols, thereby saving one symbol: $(x_1 \oplus x_2, x_2 \oplus x_3, \ldots, x_{L-1} \oplus x_L)$. Since each receiver i knows at least one other symbol in the cyclic code, it can decode its required x_i.
The main challenge of Theorem 1 is to show that for case (ii), even though we cannot find two vertex-disjoint cycles, we can still save two symbols. To this end, we will show that if \(|V_i| = 2\) and condition (ii) above is true, then there exists a subgraph in \(G\) of a certain configuration, stated as follows:

Lemma 2: If \(|V_i| = 2\), and there are no two vertex-disjoint cycles (i.e., condition (ii)), then \(G\) must contain a subgraph (not necessarily an induced subgraph) shown in Figure 2.

We will design a special code on this subgraph to show that \(|V(G)| - 2\) is indeed achievable. We will first present the code in the next section, and then prove Lemma 2 in Section V.

A. New Coding Scheme

We now propose a new coding scheme that achieves the code length \(|V(G)| - 2\) for case (ii). We need to show that each receiver \(i \in V(G)\) can decode its intended message, i.e., \(x_i\). We will propose a code for the subgraph in Figure 2, denoted by \(G_{sub}\), and send the rest of the messages (which correspond to the vertices in \(V(G) \setminus V(G_{sub})\)) uncoded. This means all receivers \(i \in V(G) \setminus V(G_{sub})\) can decode their intended messages, and we only need to show that all receivers \(j \in V(G_{sub})\) can also decode their intended messages. We propose the following coding strategy: for each vertex \(a \in V(G_{sub})\), with all its outgoing arcs in \(G_{sub}\) denoted by \(\{(a \to a_{out1}), (a \to a_{out2}), \ldots, (a \to a_{outT})\}\), we send the code symbol \(x_a \oplus x_{a_{out1}} \oplus x_{a_{out2}} \oplus \cdots \oplus x_{a_{outT}} \in \mathcal{X}\).

For each path in \(G_{sub}\) (denoted by a capital letter), we denote the vertices therein by its corresponding small letter, indexed in the direction of the arcs. For example, path \(C = c_1 \to c_2 \to \cdots \to c_{last}\). In Figure 2 we have \(c_1 = u_{last} = f_1\), i.e., the first vertex in path \(C\) is the last vertex in path \(U\), which is also the first vertex in path \(F\). We use the above coding strategy to send the code symbol for all vertices in \(G_{sub}\) except \(c_1\) and \(d_1\). By design, all receivers—except \(c_1\) and \(d_1\)—can decode their requested messages, as each receiver \(a\) knows a priori the messages corresponding to the head of all outgoing arcs from \(a\). So, we only need to show that receivers \(c_1\) and \(d_1\) can decode their respective requested messages, \(x_{c_1}\) and \(x_{d_1}\).

We start with receiver \(c_1 = f_1\). Knowing \(x_{f_2}\) a priori, it decodes along path \(F\) (i.e., \(x_{f_2} \oplus x_{f_3} \oplus x_{f_4} \oplus \cdots \oplus x_{f_{last-1}} \oplus x_{f_{last}}\), to get \(x_{f_{last}} = x_{e_1}\), and continues along path \(I\) to get \(x_{i_{last}} = x_{e_1}\). In the event that path \(I\) has zero arc, it can also obtain \(x_{e_1}\), which is \(x_{f_{last}}\). Also knowing \(x_{e_2}\) a priori, receiver \(c_1\) decodes along path \(C\) to get \(x_{i_{last}} = x_{i_{last}}\), from which it can decode backward along path \(E\) to get \(x_{e_2}\). Having decoded \(x_{e_1}\) earlier and now \(x_{e_2}\), it obtains \(x_{h_2}\) from \(x_{e_1} \oplus x_{e_2} \oplus x_{e_2}\). With \(x_{e_2}\), it decodes along path \(H\) and then path \(U\) to get \(x_{i_{last}} = x_{c_1}\). In the event that path \(U\) has zero arc, the receiver would have obtained \(x_{c_1} = x_{i_{last}}\) earlier.

For receiver \(d_1\), knowing \(x_{e_2}\), it decodes along path \(B\) to get \(x_{i_{last}} = x_{h_{last}}\). It then decodes backward along path \(H\) to get \(x_{h_{last}}\). Also knowing \(x_{d_2}\) receiver \(d_1\) decodes along path \(D\), and then path \(I\) to get \(x_{i_{last}} = x_{h_1}\). In the even that path \(I\) has zero arc, receiver \(d_1\) would have obtained \(x_{h_1} = x_{d_{last}}\) earlier. Knowing both \(x_{h_1}\) and \(x_{h_2}\), the receiver obtains \(x_{e_2}\) from \(x_{h_1} \oplus x_{h_1} \oplus x_{e_2}\). It then decodes along path \(E\), and then path \(W\) to get the requested \(x_{d_1} = x_{w_{last}}\). If \(W\) has zero arc, the receiver can also obtain \(x_{d_1} = x_{w_{last}}\).

In this coding scheme, we send one symbol for each vertex (encoded symbols for \(V(G_{sub})\), and uncoded symbols for the rest) except for \(c_1\) and \(d_1\). We have shown that this index code satisfies the decoding requirements of all receivers, meaning that \(|V(G)| - 2\) is achievable.

V. Proof of Lemma 2: A Special Configuration

We first give an intuition for Lemma 2 by showing that there must exist three interlinked cycles in \(G\). In Subsection V-A we prove that these three interlinked cycles must assume the configuration in Figure 2.

V-A. The Existence of Three Interlinked Cycles

Let \(V_i = \{u,v\}\), i.e., vertices \(u\) and \(v\) are removed from \(G\) to get an MAIS. We first show the following:

Proposition 1: There exist three cycles in \(G\), each containing either \(u\) or \(v\), or both \(u\) and \(v\).

Proof: Every cycle must contain \(u\) or \(v\), or both. Otherwise, removing \(u\) or \(v\) will not give an acyclic induced subgraph.

Suppose that there is only one cycle in \(G\). Removing any vertex from the cycle gives an acyclic induced subgraph. Hence, \(|V(G)| - \text{MAIS}(G) = 1\). (Contradiction)

Suppose that there are only two cycles in \(G\). Note that these two cycles cannot be vertex-disjoint, as per condition (ii) above. So, these two cycles must share at least one vertex, and removing only this shared vertex gives an acyclic induced subgraph, i.e., \(|V(G)| - \text{MAIS}(G) = 1\). (Contradiction)

So, there must exist at least three cycles.

We further show some properties of these three cycles:

Proposition 2: There exist three cycles in \(G\), where

1) any two cycles must have at least one common vertex, and
2) the three cycles do not have any common vertex.

Proof: It follows from Proposition 1 that there are at least three cycles. As no two cycles are vertex-disjoint, we have property 1. Arbitrarily select one cycle, say \(C\). Consider every other cycle \(C_k \neq C\), and denote the set of common vertices between \(C_k\) and \(C\) as \(V_{\text{common}}(k) \triangleq V(C_k) \cap V(C)\). Since every \(C_k\) shares some vertex with \(C\), we have \(V_{\text{common}}(k) \neq \emptyset\).
Now suppose that \(\bigcap_{k \in \mathbb{C}} V_{\text{common}}(k) \neq \emptyset \), meaning that some vertex is shared among all cycles. Then removing only this vertex from \(G \) would have resulted in an acyclic subgraph (contradiction). So, there must exist two cycles, say \(C_1 \) and \(C_2 \), where \(V_{\text{common}}(1) \cap V_{\text{common}}(2) = \emptyset \). Selecting \(C' \), \(C_1 \), and \(C_2 \) gives property 2.

Denote the subgraph formed by the three cycles in Proposition 2 by \(G_{\text{sub}} \). We have the following:

Proposition 3: The subgraph \(G_{\text{sub}} \) formed by the three cycles in Proposition 2 satisfies both the following: (1) we cannot find two vertex-disjoint cycle in \(G_{\text{sub}} \), and (2) we need to remove two—or fewer—vertices to make \(G_{\text{sub}} \) acyclic.

Proof: Since \(G \) cannot contain two vertex-disjoint cycles, so does any of its subgraphs. We have property 1. Denote by \(N \) the minimum number of vertices we need to remove to make \(G_{\text{sub}} \) acyclic. From Proposition 2, there is no common vertex among the three cycles. So, removing any one vertex will not disconnect all three cycles simultaneously, i.e., \(N \geq 2 \). On the other hand, we only need to remove two vertices, \(V_1 \), to make \(G \) acyclic. So, removing \(V_1 \cap V(G_{\text{sub}}) \) from \(G_{\text{sub}} \) will definitely make it acyclic, i.e., \(N \leq 2 \). So, we have property 2.

Note that these three cycles, \(G_{\text{sub}} \), capture all the constraints we impose on \(G \) in Lemma 2.

B. The Three Interlinked Cycles Must Assume Figure 2

We will proceed to show that \(G_{\text{sub}} \) must assume the configuration in Figure 2. We will build the configuration from a cycle, say \(C_1 \), in \(G_{\text{sub}} \). We call it the center cycle. We re-label the vertices in \(G_{\text{sub}} \) such that the vertices in \(C_1 \) are in ascending order in the direction of the arcs, i.e., \(1 \to 2 \to \cdots \to (|V(C_1)| - 1) \to |V(C_1)| \to 1 \), where the choice of vertex 1 is arbitrary.

For any path \(P \) that originates from vertex \(b \) and terminates at vertex \(c \), i.e., \(b \to \cdots \to c \), we refer to all \(\{z : z \in V(P) \setminus \{b,c\}\} \) as inner vertices. Here, we allow \(b = c \); in such a case, \(P \) is a cycle.

We first show the following:

Proposition 4: Consider the subgraph \(G_{\text{sub}} \) and the cycle \(C_1 \) in the subgraph. Every arc not in \(C_1 \) belongs to some outer path, defined as a path that originates from a vertex in \(C_1 \) and terminates at a vertex (which can be the same vertex) in \(C_1 \), but with all arcs and inner vertices (if exists) not in \(C_1 \).

Proof: Since \(G_{\text{sub}} \) is constructed by three cycles, any arc, say \((i \to j) \), not in \(C_1 \) must belong to either \(C_2 \) or \(C_3 \) (or both). Furthermore, from Proposition 2, \(C_2 \) and \(C_3 \) must each share some vertex with \(C_1 \). Hence, \((i \to j) \) must belong to an outer path that originates from \(C_1 \) and terminates at \(C_1 \).

Note that the outer paths cannot form any cycle outside \(C_1 \). Otherwise, we have two vertex-disjoint cycles.

It follows from Proposition 4 that \(G_{\text{sub}} \) consists of only a cycle \(C_1 \) and outer paths (from \(C_1 \) and back to \(C_1 \)). Figure 4(a) shows an example of \(G_{\text{sub}} \) where \(C_1 \) is marked with thick arrows and all outer paths thin arrows.

We now prove a key proposition for proving Lemma 2.

Fig. 3. Case 1 where there exists a looping outer path (drawn with thin black lines) that starts and ends at vertex 1. The center cycle \(C_1 \) is drawn with thick lines, and the second outer path (denoted as \(P \)) from \(b \) to \(c \), blue lines. To get another cycle after removing vertex 1, we must have that \(1 < c < b \leq |V(C_1)| \), as shown in subfigure (a). However, there are two vertex-disjoint cycles in subfigure (c). We can re-draw the path from 1 to \(c \) and from \(c \) to 1 in subfigure (c) to get subfigure (d), where we have drawn the new center cycle with thick lines.

Proposition 5: Remove vertex 1 in \(C_1 \). There exists another cycle in \(G_{\text{sub}} \) if and only if there is an outer path from some \(b \in V(C_1) \setminus \{1\} \) to some \(c \in V(C_1) \setminus \{1\} \), where \(b \geq c \).

Proof: [The only if part:] We remove vertex 1. If there is another cycle, then there is a vertex (not vertex 1) in \(C_1 \) that has a path back to itself (this is because any cycle must share some vertex with \(C_1 \)). This cannot happen if every outer path terminates at a higher-indexed vertex (we can ignore all outer paths that originate or terminate at vertex 1 as the vertex has been removed). So, there must exist an outer path with \(b \geq c \).

[The if part:] Clearly, if \(b = c \), we have another cycle formed by the outer path. Otherwise, i.e., \(b > c \), the outer path and the path along \(C_1 \) from \(c \) to \(b \) form a cycle. See Figure 3(a) for an example.

Next, we define a looping outer path as an outer path that originates and terminates at the same vertex in \(C_1 \). The graph \(G_{\text{sub}} \) can be categorized as follows:

- there exists one or more looping outer path (Case 1), or
- there is no looping outer path (which we will further divide into Cases 2 and 3).

We will show that in any case, we have Figure 2.

C. Case 1: There Exists a Looping Outer Path

Suppose that there exists a looping outer path from and to vertex \(1 \in V(C_1) \). This incurs no loss of generality as the choice of vertex 1 is arbitrary. Removing vertex 1 disconnects cycle \(C_1 \) and the cycle formed by the looping outer path. Recall that we need to remove two vertices to disconnect all cycles in \(G_{\text{sub}} \). So, there must exist another cycle in \(G_{\text{sub}} \).

From Proposition 5, there exists another outer path \(P \) from \(b \in V(C_1) \setminus \{1\} \) to \(c \in V(C_1) \setminus \{1\} \), where \(b \geq c \). The outer path \(P \) must share some vertex with the looping outer path; otherwise, there exist two cycles as shown in Figure 3(a).

Re-label the inner vertices of the looping outer path in ascending order, as follows: \(1 \to (|V(C_1)| + 1) \to (|V(C_1)| + 2) \to \cdots \to (|V(C_1)| + L) \to 1 \), where \(L \) is the number of inner vertices. It follows that the sequence of vertices shared
by P and the looping outer path (in the order of the direction of P) must be in ascending order (see Figure 3(b)); otherwise, a cycle forms outside C_1.

See Figure 3(c). Consider only the following segments of P: (i) from b to the vertex where P first touches the looping outer path, denoted by d; and (ii) the vertex where P leaves the looping outer path, denoted by e. It follows that $d \leq e$. By construction, all paths in Figure 3(c) do not share inner vertices, i.e., they touch only at end points. Finally, re-draw Figure 3(c) to get Figure 3(d), which is isomorphic to Figure 2.

Note that vertices 1, b, and d must be unique. We have shown that if there is a looping outer path, then we have the configuration in Figure 2 where path I has zero arc, paths W and U possibly have zero arc (if $b = c$ and/or $d = e$), and all other paths must contain at least one arc.

D. No Looping Outer Path

For a non-looping outer path from vertex $b \in V(C_1)$ to $c \in V(C_1) \setminus \{b\}$, we say that the vertices in C_1 from b to c (in the direction of the arcs in C_1) but excluding b and c is covered by this outer path. See Figure 4(b) for an example.

For the purpose of this paper, we exclude outer paths with strictly smaller coverage, or multiple outer paths with equal coverage. Referring to Figure 4(c), consider an outer path that originates from b. Suppose that it has multiple paths back to C_1. We consider only the path (back to C_1) that has the largest coverage. Similarly, for any path that terminates at c, we consider only the path (leaving C_1) that has the largest coverage. By doing this, each path that we consider has a unique originating vertex and a unique terminating vertex.

We now show the following property:

Proposition 6: If there is no looping outer paths in G_{sub}, then all largest-covering outer paths must, together, provide full coverage for the cycle C_1. In other words, every vertex in C_1 must be covered by some outer path(s).

Proof: Consider any vertex $a \in V(C_1)$. Re-label a as vertex 1, and other vertices $V(C_1)$ in ascending order in the arc direction. Remove vertex 1 from G_{sub}. There must exist another cycle. It follows from Proposition 5 that an outer path P from b to c must exist, where $1 < c < b \leq |V(C_1)|$ (since there is no looping path), meaning that this outer path must cover vertex 1. We can safely ignore other outer paths that provide smaller or equal coverage, because if P does not cover vertex 1, then none of the ignored outer paths does.

Since the choice of a is arbitrary, we have Proposition 6.

For example, the outer paths in Figure 4(d) provides full coverage for C_1, but the outer paths in Figures 4(b)–(c) do not. Removing one uncovered vertex from C_1 makes G_{sub} acyclic.

Now, we consider G_{sub} that consists of the cycle C_1 and all outer paths that provide the largest coverage (i.e., we remove all other arcs have gives smaller or equal coverage). We are ready to proceed with Cases 2 and 3:

- There is no looping outer path, and no two outer paths have any common inner vertex (Case 2).
- There is no looping outer path, and there exist two outer paths sharing the same inner vertex (Case 3).

E. Case 2: No Looping Outer Path, and All Outer Paths Do Not Share Inner Vertices

We will show that we can always choose three outer paths to provide full coverage.

First, note that one outer path cannot provide full coverage. Now, suppose that we can find two outer paths providing full coverage. We show in Figure 5(a) that we can always form two vertex-disjoint cycles. So, this also cannot happen.

Next, suppose that we can find three outer paths providing full coverage, we have Figure 2. As there is no looping outer path, the nine paths in Figure 2 each have one or more arcs.

Finally, we show that if we can find $K \geq 4$ outer paths providing full coverage, we can always modify the cycles such that $(K - 2)$ outer paths provide full coverage. We illustrate this in Figure 5(b). We do the following:

1. Combine the dashed blue arrows to be the new C_1.
2. Combine the two adjacent (red) outer paths, and the red arc in C_1 that connects the two red outer paths (i.e., P, which can be of zero length) into a new outer path.
3. Remove the two green paths in C_1. Each green path must contain at least one arc; otherwise, the outer paths cannot provide full coverage.

Note that by doing this, the new graph still retains the structure of a cycle with outer paths covering it. The new graph has $K - 2$ outer paths providing full coverage. This reduction is always possible as the coverage of two non-adjacent outer paths does not overlap, illustrated in Figure 5(c).
By repeating this step, starting from any $K \geq 4$ outer paths, we can find a graph with $K = 2$ or $K = 3$ outer paths. As $K = 2$ is not possible, we will always get a graph with $K = 3$ outer paths providing full coverage, i.e., Figure 6(c).

F. Case 3: No Looping Outer Path and Two Outer Paths Share Some Inner Vertices

Let the two outer paths that share some common inner vertex be P and Q, and one of the shared inner vertices be z. Further, let the originating and terminating vertices of P be p_1 and p_{last} respectively, and those of Q be q_1 and q_{last}. Here, $p_1 \neq p_{\text{last}}$ and $q_1 \neq q_{\text{last}}$ as there is no looping outer path, and $p_1
eq q_1$ and $p_{\text{last}} \neq q_{\text{last}}$ as no two outer paths have the same originating or terminating vertices.

Now, the coverage of P and Q can be either (a) non-overlapping, (b) overlapping once, or (c) overlapping twice, as shown in Figure 6. The red line shows the coverage of P, and the green line Q. By definition, there is a subpath from p_1 to z along P and another subpath from z to p_{last} along P. The two subpaths must be vertex-disjoint, except z, as there is no cycle in P. Similarly, we have two vertex-disjoint paths from q_1 to z, and from z to q_{last}, both along Q. This means, there is an subpath from p_1 to q_{last} through z, and another from q_1 to p_{last} through z. So, $p_1 \neq q_{\text{last}}$, $q_1 \neq p_{\text{last}}$, as there is no looping outer path, and hence p_1, p_{last}, q_1, and q_{last} are distinct.

Suppose that we have Figure 6(a). The largest-covering outer path from p_1 should terminate at q_{last}, and that from q_1 at p_{last}. The outer path from p_1 to q_{last} and that from q_1 to p_{last} should have been chosen. This means the largest-covering paths actually overlap twice, i.e., we should have Figure 6(c).

Suppose that we have Figure 6(b). The outer path from p_1 to q_{last}, through z, gives the largest coverage, and it would have been chosen.

So, we can only have the configuration in Figure 6(c), where the coverage overlaps twice. The coverage from p_1 to q_{last} is smaller than that from p_1 to p_{last}. So, the largest-covering outer path from p_1 was correctly identified. Similarly, the largest-covering outer path from q_1 terminates at q_{last}.

We will now show that we can always get Figure 6(c) from Figure 6(c). Recall that there is a subpath from p_1 to z and another subpath from z to q_{last}, and these two subpaths are vertex-disjoint, except z. We denote the outer path from p_1 to q_{last} (through z) by Z (drawn with a thick dashed line).

Next, recall that there is a subpath from q_1 to z, and another from z to p_{last}. So, the subpath from q_1 to z must meet Z. Denote the vertex it first meets Z as q'. Similarly, the subpath from z to p_{last} must share some common vertices with Z (at least vertex z). Let the last shared vertex be p'. With this construction, Z, the subpath from q_1 to q', and the subpath from p' to p_{last} are vertex-disjoint, except at p' and q'.

We now re-draw Figure 6(c) as follows: Let the path from q_{last} to p_1 along C_1 (drawn with a thick solid line) plus path Z (drawn with a thick dashed line) be the center cycle, and let the subpaths (drawn with dotted arrows) (i) from p_1 to q_{last} along C_1, (ii) from p' to p_{last}, and (iii) from q_1 to q' be the three outer paths. Note that only p' and q' can co-locate. This is isomorphic to Figure 6 with path J possibly having zero arc (if $p' = q' = z$).

Combining the Cases 1–3, we have Lemma 1.

VI. Conclusion

We have solved a new class of index-coding problems, characterized by their side-information graphs. We have shown that for any side-information graph whose maximum acyclic induced subgraph (MAIS) can be formed by removing two or fewer vertices, the optimal index code length (i) equals the order of the MAIS, and (ii) is achievable by linear index codes. We proved this by constructing a special subgraph that the side-information graph must contain, and design a linear index code on it. We then show that the linear index code achieves the MAIS lower bound.

We have incidentally characterized a subset of directed graphs whose minrank equals $|V(G)|−1$ or $|V(G)|−2$, where $|V(G)|$ is the order of the graph G.

The result of this paper has led to another recent result: for any side-information graph of up to five vertices, the optimal index code length is achievable using linear index codes \[13\].

REFERENCES

[1] Y. Birk and T. Kol, “Coding on demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to caching clients,” *IEEE Trans. Inf. Theory*, vol. 52, no. 6, pp. 2825–2830, June 2006.

[2] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the index coding problem and its relation to network coding and matroid theory,” *IEEE Trans. Inf. Theory*, vol. 56, no. 7, pp. 3187–3195, July 2010.

[3] M. Effros, S. El Rouayheb, and M. Langberg, “An equivalence between network coding and index coding,” in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Istanbul, Turkey, July 7–12 2013, pp. 967–971.

[4] M. F. Wong, M. Langberg, and M. Effros, “On a capacity equivalence between network and index coding and the edge removal problem,” in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Istanbul, Turkey, July 7–12 2013, pp. 972–976.

[5] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side information,” *IEEE Trans. Inf. Theory*, vol. 57, no. 3, pp. 1479–1494, Mar. 2011.

[6] M. J. Neely, A. S. Tehrani, and Z. Zhang, “Dynamic index coding for wireless broadcast networks,” in *Proc. 31st IEEE Conf. Comput. Commun. (INFOCOM)*, Orlando, USA, Mar. 25–30 2012, pp. 316–324.

[7] A. S. Tehrani, A. G. Dimakis, and M. J. Neely, “ Bipartite index coding,” in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Cambridge, USA, July 1–6 2012, pp. 2256–2260.

[8] K. Shanmugam, A. G. Dimakis, and M. Langberg, “Local graph coloring and index coding,” in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Istanbul, Turkey, July 7–12 2013, pp. 1152–1156.
[9] H. Yu and M. J. Neely, “Duality codes and the integrality gap bound for index coding,” in Proc. 51st Allerton Conf. Commun. Control Comput. (Allerton Conf.), Monticello, USA, Oct. 2–4 2013.

[10] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds. Plenum Press, New York-London, 1972, pp. 85–104.

[11] R. Peeters, “Orthogonal representations over finite fields and the chromatic number of graphs,” Combinatorica, vol. 16, no. 3, pp. 417–431, Sept. 1996.

[12] E. Lubetzky and U. Stav, “Nonlinear index coding outperforming the linear optimum,” IEEE Trans. Inf. Theory, vol. 55, no. 8, pp. 3544–3551, Aug. 2009.

[13] L. Ong, “Linear codes are optimal for index-coding instances with five or fewer receivers,” in accepted and to be presented at ISIT, 2014. [Online]. Available: http://arxiv.org/abs/1401.7369

[14] S. H. Dau, V. Skachek, and Y. M. Chee, “Optimal index codes with near-extreme rates,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, USA, July 1–6 2012, pp. 2241–2245.