Hematopoietic stem cell transplantation in children and adolescents with GATA2-related myelodysplastic syndrome

Rachel Bortnick1,23, Marcin Włodarski1,2, Valerie de Haas3, Barbara De Moerloose4, Michael Dworzak5, Henrik Hasle6, Riccardo Masetti7, Jan Stary8, Dominik Turkiewicz9, Marek Ussowicz10, Emilia Kozyra4, Michael Albert11, Peter Bader12, Victoria Bordon1, Gunnar Cario13, Rita Beier14, Johannes Schulte15, Dorine Bresters16, Ingo Müller17, Herbert Pichler8, Martin G. Sauer18, Marco Zecca19, Gudrun Göhring20, Ayami Yoshimi1, Peter Noellke15, Dorine Bresters16, Ingo Müller1

INTRODUCTION

Myelodysplastic syndrome (MDS) in young individuals consists of a heterogeneous group of hematopoietic disorders characterized by ineffective hematopoiesis, peripheral blood cytopenia, cellular dysplasia and a high risk of progression to acute myeloid leukemia (AML). In contrast to older adults, in whom MDS is associated with age-related somatic mutations, MDS in young patients is often associated with genetic syndromes predisposing to myeloid neoplasia. Next to the well-known inherited bone marrow failure syndromes like Fanconi anemia, Shwachman syndrome, severe congenital neutropenia, or dyserthrosis congenita, a slew of predisposition syndromes involving genes like GATA2, SAMD9/SAMD9L, RUNX1, ANKRD26, ETV6, SRP72, ERCC6L2, and others have recently been uncovered [1–4].

Among these new genetic entities, GATA2 deficiency resulting from heterozygous germline mutations in the gene encoding the zinc-finger transcription factor GATA2 appears to be the most common predisposing condition for MDS in childhood [5, 6]. Although some patients with germline mutations in GATA2 (GATA2mut) have a positive family history, de novo germline

© The Author(s) 2021

Bone Marrow Transplantation (2021) 56:2732–2741; https://doi.org/10.1038/s41409-021-01374-y

GATA2 deficiency is a heterogeneous multi-system disorder characterized by a high risk of developing myelodysplastic syndrome (MDS) and myeloid leukemia. We analyzed the outcome of 65 patients reported to the registry of the European Working Group (EWOG) of MDS in childhood carrying a germline GATA2 mutation (GATA2mut) who had undergone hematopoietic stem cell transplantation (HSCT). At 5 years the probability of overall survival and disease-free survival (DFS) was 75% and 70%, respectively. Non-relapse mortality and relapse equally contributed to treatment failure. There was no evidence of increased incidence of graft-versus-host-disease or excessive rates of infections or organ toxicities. Advanced disease and monosomy 7 (−7) were associated with worse outcome. Patients with refractory cytopenia of childhood (RCC) and normal karyotype showed an excellent outcome (DFS 90%) compared to RCC and −7 (DFS 67%). Comparing outcome of GATA2mut with GATA2wt patients, there was no difference in DFS in patients with RCC and normal karyotype. The same was true for patients with −7 across morphological subtypes. We demonstrate that HSCT outcome is independent of GATA2 germline mutations in pediatric MDS suggesting the application of standard MDS algorithms and protocols. Our data support considering HSCT early in the course of GATA2 deficiency in young individuals.

1Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 2Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN, USA. 3Princess Maxima Center, Diagnostic Laboratory/DCOG Laboratory, Utrecht, The Netherlands. 4Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium. 5Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria. 6Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark. 7Department of Pediatric Oncology and Hematology, University of Bologna, Bologna, Italy. 8Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic. 9Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden. 10Department of Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland. 11Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU, Munich, Germany. 12Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt am Main, Frankfurt, Germany. 13Department of Pediatrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany. 14Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Hospital of Essen, Essen, Germany. 15Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Charité University Medicine Berlin, Berlin, Germany. 16Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands. 17Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 18Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany. 19Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. 20Department of Human Genetics, Hannover Medical School, Hannover, Germany. 21German Cancer Consortium (DKTK), Heidelberg and Freiburg, Freiburg, Germany. 22Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy. 23Present address: Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria. *A list of members and their affiliations appears at the end of the paper. **email: brigitte.strahm@uniklinik-freiburg.de

Received: 5 February 2021 Revised: 20 May 2021 Accepted: 1 June 2021
Published online: 9 July 2021

SCHRINGER NATURE
mutations have been reported in a majority of children with GATA2mut MDS [6]. Despite the observation that the loss of B-cells is a common feature of GATA2 deficiency [7], children with GATA2 germline mutations often present as MDS without prior infections. In contrast, young adults often display a history of opportunistic infections, slowly progressing bone marrow failure, and subsequent transformation to AML.

The prevalence of myeloid neoplasia in GATA2 deficiency has been estimated to be 75%, with a median age at diagnosis of 19.7 years [8]. Studying a series of 79 GATA2mut patients, Donadieu described that more than 80% of patients had developed a hematological malignancy by the age of 40 years; progression from MDS to AML was observed in 16% [5]. Examining a cohort of over 600 individuals with MDS enrolled in the registries of the European Working Group of MDS in Childhood (EWOG-MDS), our group reported a prevalence of GATA2mut in 7% of all primary MDS and 15% in advanced primary MDS. GATA2 germline disease was associated with more advanced MDS type and often accompanied by monosomy 7 [6].

Allogeneic HSCT is the only curative therapy for hematological complications of GATA2 deficiency, and has been shown to eradicate clonal malignancy, restore normal hematopoiesis, clear underlying infections and improve pulmonary function. As GATA2 deficiency is a newly defined disease, HSCT strategies, as well as outcome, have yet to be fully elucidated. In particular, it is unclear whether applying guidelines for HSCT in pediatric MDS results in similar outcome. Most published reports refer to single-patient case studies, small series of primarily adult patients, or patients with immunodeficiency in the absence of clonal disease [9–15]. We have previously observed that 34 individuals with MDS, monosomy 7 and GATA2mut had a similar outcome compared to their counterparts with wildtype GATA2 (GATA2wt) [6]. Here we expand the analysis to an enlarged cohort with longer follow-up and provide a detailed review of HSCT in young individuals with GATA2 deficiency.

METHODS

Study population
We identified 66 patients with MDS and GATA2 germline mutation prospectively enrolled for MDS in the EWOG-MDS registries (EWOG-MDS 98 #NCT0047268, EWOG-MDS 2006 #NCT0062090) who had undergone HSCT at an age of <20 years between 01/1997 and 11/2018. One patient was excluded from the analysis due to missing data. Genetic and/or clinical data from 50 patients had partially been included in previous publications [6, 16]. HSCT procedures had been performed in accordance with EWOG-MDS recommendations (www.euwog-mds-saa.org). MDS was classified based on the 2016 WHO classification for pediatric MDS, and included refractory cytopenia of childhood (RCC), MDS with excess blasts (MDS-EB), MDS-EB in transformation (MDS-EBT), and MDS-related acute myeloid leukemia (MDS-AML) [17]. One patient with myelofibrotic MDS and increased BM blasts was classified as MDS-EBT. Cyto genetic analysis was performed according to standard procedures and described according to the International System for Human Cytogenetic Nomenclature. Karyotypes with sole monosomy 7, and monosomy 7 with one or two additional random aberrations were classified as monosomy 7 and analyzed in one group [18].

Molecular studies to identify GATA2 mutations were conducted as previously described [6, 16]. In patients enrolled before 2013 GATA2 testing was performed retrospectively, thereafter the diagnosis of MDS prompted GATA2 testing independent of the clinical presentation. For the analyses comparing GATA2mut to GATA2wt patients, we identified 404 GATA2mut MDS patients without known underlying predisposition (including SAMP6/L) who otherwise fulfilled the study criteria (Supplementary Fig. 1).

All studies were approved by the institutional ethics committees of the respective institutions. Written informed consent was obtained from patients or patients’ guardians. The study was conducted in accordance with the Declaration of Helsinki.

RESULTS

Characteristics of the cohort
The 65 children and adolescents with GATA2 deficiency had been diagnosed with RCC (n = 36), MDS-EB (n = 22), MDS-EBT (n = 6) or MDR-AML (1) at a median age of 12.8 (4.4–18.6) years. Karyotypes included monosomy 7 (n = 44), der (1;7) (n = 4), trisomy 8 (n = 4), random aberration (n = 1) or a normal karyotype (n = 12). Forty patients (71%) had additional non-hematological features of GATA2 deficiency (Table 1). Prior to HSCT, 16 patients had progressed to a more advanced stage of MDS and five had received AML-type chemotherapy, resulting in a BM blast count of <5% at the time of HSCT.

Patients who had undergone HSCT from a matched sibling donor (MDS; n = 17), unrelated donor (UD; n = 40) or mismatched family donor (MMFD; n = 8) at a median age of 13.5 (4.6–19.9) years (Table 1). Stem cell source was BM (n = 37), peripheral blood (n = 27) or cord blood (n = 1). Patients were prepared with a busulfan-based (n = 35), treosulfan-based (n = 21), total body irradiation-based (n = 5) or an alternative conditioning regimen (n = 4). Graft-versus-host-disease (GvHD) prophylaxis included cyclosporine ± methotrexate for the majority of MSD-HSCT and additional anti-thymocyte globulin in UD-HSCT.

Engraftment and GvHD
All patients achieved initial engraftment. Secondary graft failure occurred in four patients (Supplementary Table 1) following MMFD-HSCT (n = 2) or MUD-HSCT (n = 2) resulting in death in two patients.

The cumulative incidence of acute GvHD (aGvHD) at day 100 was 0.34 [95% CI 0.24–0.48] for grade II–IV and 0.12 [0.06–0.24] for grade III–IV (Fig. 1A). Following MSD-HSCT two patients developed grade III–IV aGvHD (12%), while six patients grafted from an UD experienced grade III–IV aGvHD (15%). None of the patients transplanted from a MMFD had grade II–IV aGvHD (Supplementary Table 1).

Fifteen of the 62 patients at risk (24%) developed chronic GvHD (cGvHD), which scored limited in 11 cases and extensive in the remaining four. The cumulative incidence of overall and extensive cGvHD was 0.25 [0.16–0.39] and 0.08 [0.03–0.20], respectively (Fig. 1B). Among the 16 patients at risk grafted from a MUD, four (25%) developed cGvHD, while nine of 39 patients at risk (23%) developed cGvHD following UD-HSCT. Of the patients transplanted with a MMFD, two out of seven patients at risk developed limited cGvHD (Suppl. Table 1).

Statistical analysis
Overall survival (OS) was defined as the time from HSCT to death or last follow-up, disease-free survival (DFS) was defined as the time from HSCT to death, disease recurrence, or last follow-up. The Kaplan–Meier method was used to estimate survival rates, and the two-sided log-rank test was used to evaluate the equality of the survivorship functions in different subgroups. Time-to-event outcome for relapse and non-relapse mortality (NRM) were estimated using cumulative incidence curves, using relapse and NRM as the respective competing risks [19, 20]. Differences in the cumulative incidence functions among groups were compared using Gray’s test [21].

For the analyses comparing GATA2mut with GATA2wt patients the χ\textsuperscript2 test was used to examine the statistical significance of the association between GATA2 status and categorized factors. Fisher’s exact test was calculated for 2 × 2 contingency analyses. Nonparametric statistics were used to test for differences in continuous variables in terms of mutational status (Mann–Whitney U test).

For multivariate analysis, a cause-specific Cox model was fitted, including all variables with P less than 0.1 in the univariate analysis for DFS [22]. The model included the GATA2 status, karyotype, and highest WHO-type. All P values were two-sided, and values < 0.05 were considered to be statistically significant. Software packages SPSS for Windows 25.0.0 (IBM Corp, New York, NY) and NCSS 2004 (NCSS, Kaysville, UT) were used.
Item	Specification	At diagnosis/prior to HSCT	N	%	
Patients			65	100	
Gender	Male		34	52	
	Female		31	48	
Age at diagnosis of MDS	Years, median(range)	12.8 (4.4–18.6)	43	66	
GATA2 Type of mutation	Truncating		14	22	
	Missense		4	6	
	Non-Coding Intron 4		3	5	
	Synonymous		1	2	
	Whole gene deletion		1	2	
MDS subtype at diagnosis	RCC		36	55	
	MDS-EB		22	34	
	MDS-EBt/ MDR-AML		6 /1	11	
Karyotype	Monosomy 7		44	68	
	Der (1;7)		4	6	
	Trisomy 8		4	6	
	Normala		12	19	
	Other		1	1	
Non-Hematological features	Any		40	71	
	Immunea	deficiencyb		24	
	Lymphedema/ hydrocele		13		
	Deafness/hearing impairment		8		
	Urogenital malformations		10		
	Neurocognitive/ behavioral problems		10		
Highest MDS subtype (prior to HSCT)	RCC		27	42	
	MDS-EB		23	35	
	MDS-EBt/ MDR-AML		10/5	23	
At HSCT	Age at HSCT	Years, median (range)	13.5 (4.6-19.9)		
	Interval MDS to HSCT	Months, median (range)	5.6 (1.4 – 67)		
	Therapy prior to 1st HSCT	No therapy	55	85	
	AML-type		5	8	
	other		5	8	
	BM blasts at HSCT	< 5%	34	56	
	5–19%		19	31	
	≥ 20%		8	13	
	No data		4		
H SCT procedure	Donor	MSD	17	26	
	MUD (10/10)/(9/10)		24/6	46	
	UD (6/6)/(5/6)/(8/10)f/ incomplete typing	1/2/6/1	15		
	MMFD		8	12	
Stem cell source	BM		37	57	
	PBSC		19	29	
	PBSC (T-cell depleted)		8	12	
	CB		1	2	
Conditioning regimen	Busulfan- based		35	54	
	Treosulfan-based		21	32	
	TBI-based		5	8	
	Other		4	6	
Infections and toxicity

Evaluating the frequency of infections post-HSCT, 49 patients were noted to develop any infection. Forty-one had viral infections, 16 bacterial infections, and 9 patients fungal disease (7 aspergillosis, one candidiasis, one unknown). The most common viral infections were CMV and EBV in 16 and 10 patients, respectively; one patient each developed CMV disease and post-transplant lymphoproliferative disease (Table 2). Adenovirus infection was recorded in four patients.

With respect to non-infectious complications, the rate of complications resulting in toxicity of grade 3 or more according to Common Terminology Criteria for Adverse Events was 43%. Thirteen patients had ≥1 non-infectious complication.

Overall outcome

Fifty patients were alive 5 years after HSCT, resulting in a Kaplan–Meier estimate of 5-year OS of 0.75 [0.63–0.87] (Fig. 2A). The probability of DFS was 0.70 [0.58–0.82] (Fig. 2A). The cumulative incidence of relapse (CIR) was 0.16 [0.08–0.29] and of NRM 0.14 [0.08–0.26; Fig. 2A]. Nine patients died of transplant-related causes. DFS was comparable for patients transplanted from MUD (0.74 [0.56–0.93]) versus MSD (0.82 [0.64–1.00]), whereas patients transplanted from mismatched UD (UD other) had a significantly lower DFS (0.30 [0.01–0.59]; p = 0.01) (Fig. 2A). The latter was primarily due to a significantly higher NRM for UD other of 0.40 [0.19–0.85] compared to 0.12 [0.03–0.43] for MSD and 0.07 [0.02–0.26] for MUD, p = 0.03; (Fig. 2C) whereas there was no significant difference in the CIR according to type of donor (Fig. 2D). Of note, of the eight patients transplanted from a MMFD,
only one died after secondary graft failure, while the other seven patients are alive and disease-free. In univariate analysis, none of the other transplantation procedure-related variables such as year of HSCT, conditioning regimen, time from diagnosis to HSCT, stem cell source or donor and recipient sex had a significant impact on DFS, NRM, and CIR (Supplementary Table 2).

Outcome according to MDS type and karyotype

Patients with a BM blast percentage of >20% at any time prior to HSCT showed a trend toward inferior DFS (0.49 [0.21–0.77]) compared to patients with 5–19% BM blasts (0.73 [0.54–0.92]) or with <5% blasts (0.81 [0.66–0.96]) (p = 0.15; Fig. 3A). Similarly, there was a trend toward a higher CIR and NRM (data not shown).

We next assessed the association between karyotype and morphologic diagnosis. Normal karyotype was associated with RCC (10/12 patients with normal karyotype had RCC) and monosomy 7 was associated with advanced MDS (32/38 advanced MDS patients had monosomy 7) (Supplementary Table 3). Thus, we performed a stratified analysis combining MDS type and karyotype. Patients with RCC and normal karyotype showed a superior DFS (0.90 [0.71–1.00]) compared to patients with monosomy seven independent of disease status (RCC 0.67 [0.40–0.94], MDS-EB 0.69 [0.48–0.90], MDS-EBt/MDR-AML 0.43 [0.12–0.74]) (Fig. 3B). While none of the patients with RCC and normal karyotype relapsed, patients with MDS-EBt/MDR-AML and monosomy 7 karyotype showed the highest relapse rate (0.40 [0.19–0.86]) (Fig. 3C).

Comparison of outcome to MDS without known underlying predisposition syndrome

Next, we performed an analysis comparing the HSCT outcome of 65 GATA2mut patients with a cohort of 404 GATA2wt patients registered in EWOG-MDS and transplanted during the same time period (Supplementary Table 3). As expected, GATA2mut patients were slightly older, had more advanced disease, and carried a monosomy 7 karyotype more frequently (Supplementary Table 3). At 5 years there was no significant difference in OS (GATA2wt 0.78 [0.78–0.86] vs GATA2mut 0.75 [0.63–0.87]) and DFS (GATA2wt 0.78 [0.63–0.87] vs GATA2mut 0.75 [0.63–0.87]).

Table 3. Non-infectious complications post-HSCT.

Type of complications	Number of patients (N)	Number of patients (%)
Pulmonary toxicity	13	13
Liver complications	13	13
VOD	3	3
Renal complications	6	6
Neurological complications	4	4
Gastrointestinal complications	3	3
Cardiac complications	2	2
Transplant-related complications	3	3
Autoimmune hemolytic anemia	1	1
Acute pancreatitis	1	1

VOD veno-occlusive disease, HSCT hematopoietic stem cell transplantation.

Fig. 2 Overall outcome and outcome according to type of donor.

A Overall and disease-free survival and cumulative incidence of relapse and non-relapse mortality for 65 patients with MDS and GATA2 germline mutation undergoing HSCT. B Disease-free survival, C non-relapse mortality and D relapse according to type of donor. In the group of eight patients grafted from a mismatched family donor (MMFD) only one non-relapse mortality was observed (data not shown). MSD matched sibling donor, MUD matched unrelated donor (9/10 or 10/10), UD other unrelated donor, N numbers in subgroup, E events.
[0.74–0.82] vs GATA2mut 0.70 [0.58–0.82]). Comparing the outcome of RCC patients with normal karyotype with respect to the presence or absence of a germline GATA2 mutation, both groups showed nearly identical probabilities of DFS of 90% and 89%, respectively (Fig. 4A). Similarly, there was no significant difference in DFS among patients of any MDS type with monosomy 7 with respect to the presence or absence of GATA2 deficiency (Fig. 4B–D).

In multivariate analysis of variables predicting DFS (including age, karyotype, highest MDS subtype and GATA2 status), the most important factors were karyotype (monosomy 7 vs. normal; p < 0.01) and most advanced MDS type (RCC vs MDS-EBt/MDR-AML; p < 0.01, Table 4). GATA2 mutation status was not significantly associated with DFS.

DISCUSSION

We present a comprehensive analysis of pediatric patients with GATA2 deficiency undergoing HSCT for MDS. Patients with inherited bone marrow failure disorders frequently demonstrate increased transplant-related toxicity and mortality upon undergoing HSCT, but whether this is true for pediatric patients with GATA2 deficiency has remained unclear. Several studies on HSCT in GATA2 deficiency reported small numbers of patients and/or patients of varying ages and heterogeneous disease characteristics [23]. For example, Parta reported the HSCT outcome of 22 patients with GATA2 deficiency conditioned with a busulfan-based regimen [10]. Although the results are encouraging, only four patients were under the age of 20 years, and infection was the indication in approximately half of the patients, rendering it difficult to interpret the results for pediatric GATA2-deficient patients with MDS.

In our study, patients with GATA2 deficiency transplanted for MDS had a similar outcome as compared to GATA2mut patients. In multivariate analysis MDS type and karyotype but not GATA2 mutational status were significant variables for DFS, suggesting that the presence of the GATA2 mutation is not a relevant risk factor.

We did not observe an unusually high rate of NRM or atypical non-infectious complications in GATA2mut patients. A recent study reported a surprisingly high incidence of neurologic toxicities in 40% of transplanted GATA2mut patients [24]. Here, we observed neurologic complications in four patients. Hofmann also noted an increased rate of thrombotic events. Although we did not observe a high incidence of thrombotic complications, several patients experienced transplant-associated thrombotic microangiopathy, and three of the four neurologic events were posterior reversible encephalopathy syndrome. This observation might indicate a defined endothelial vulnerability in GATA2mut patients, consistent with the known role of GATA2 in the regulation of vascular integrity [25].

Interestingly, no mycobacterial infections were reported in this cohort. We did observe, however, a relatively high rate of fungal infections. HSCT performed in the past with limited surveillance and anti-fungal prophylaxis/treatments may have contributed to these findings. Overall, the frequency and distribution of different types of infections were consistent with general expectations in HSCT, with viral infections by far the most common complication.

Similar to organ toxicity, the rate of GvHD was not unusually high. In particular, cGvHD was observed in only 15 patients (24%). This is in contrast to the study by Parta [10] reporting cGvHD in 46% of patients, and points towards lower rates of GvHD in pediatric GATA2mut patients.

EWOG-MDS HSCT recommendations stratify pediatric patients with MDS according to disease stage, karyotype and hematological presentation including bone marrow cellularity (Supplementary Figure 2). HSCT with a myeloablative regimen such as busulfan, cyclophosphamide, and melphalan is recommended for patients with increased blast count [26]. Patients with RCC and abnormal karyotype are also offered HSCT soon after diagnosis;
we currently recommend a preparative regimen of thiotepa, treosulfan, and fludarabine. For patients with RCC and a normal karyotype, the decision to transplant depends on the hematological presentation. Transfusion dependent or neutropenic patients with RCC and hypocellular bone marrow are offered HSCT following a reduced toxicity regimen such as treosulfan and cytarabine, while in the absence of cytopenias patients with stable disease are generally offered a watch-and-wait strategy. The HSCT data presented here, in particular the highly similar outcome in GATA$^{\text{mut}}$ as compared to GATA$^{\text{wt}}$ patients with respect to OS, DFS, NRM and relapse, support the hypothesis that the currently recommended EWOG-MDS algorithm for therapy of pediatric MDS can also be applied to children with GATA2 deficiency. Although our series includes a limited number of patients with MDS and >20% blasts, the dismal outcome of this group with a high risk of relapse indicates the urgent need for evaluation of novel strategies including cytoreduction with modern agents such as CPX351 or venetoclax, and/or post-HSCT therapy with preemptive azacitidine and donor lymphocyte infusions.

The excellent outcome of HSCT in patients with GATA2 germline disease, RCC morphology and normal karyotype raises the question whether these children should be offered HSCT once they have been diagnosed irrespective of their hematological presentation. The probability for progression to more advanced MDS is considerable, and early HSCT will spare patients cumbersome surveillance as well as the risk of inferior outcome of HSCT in more advanced disease. A similar issue arises for patients with GATA2 deficiency presenting with mild to moderate signs of deficiency prior to the acquisition of severe infections or secondary organ damage, such as progressive pulmonary disease, due to GATA2 deficiency. Although the analysis presented here is limited to patients with MDS, the lack of evidence of increased transplant-related toxicity inherent to the GATA2 germline mutation indicates that in young individuals with GATA2 deficiency the indication for HSCT can be based on the expected clinical course. Thus, preemptive HSCT might be an acceptable strategy. Our current approach is to perform a donor search as soon as GATA2 deficiency is diagnosed. In the absence of cytopenia, karyotypic abnormalities, increase in bone marrow blasts or clinically relevant immunodeficiency, we monitor the patient closely and consider a well-matched HSCT even without severe disease manifestations. Transplanting patients with GATA2 deficiency prior to the acquisition of severe infections or secondary organ damage, such as progressive pulmonary disease, is likely to increase long-term survival of adult patients with GATA2 deficiency.
One limitation of our study is that the presence of secondary mutations was unknown. It has previously been demonstrated that somatic ASXL1 or RAS pathway mutations lead to leukemic transformation and inferior outcome [6, 27, 28]. In future prospective trials, secondary mutations need to be analyzed because they may serve as prognostic markers predicting the risk of relapse, and thus be crucial in guiding HSCT strategy.

In summary, our results indicate that pediatric patients with GATA2 deficiency are not at higher risk for HSCT-related complications or mortality compared to MDS patients without GATA2 germline mutations. Overall, the relatively low rates of GVHD, infections, and organ toxicities suggest that standard HSCT protocols can be recommended. Considering the high mortality of untreated GATA2 deficiency and the high likelihood of developing MDS/AML, these data support a strategy of early preemptive HSCT in all pediatric patients with GATA2 deficiency.

REFERENCES

1. Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133:1071–85. https://doi.org/10.1182/blood-2018-10-844662
2. Babushok DV, Bessler M, Olson TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma. 2016;57:520–36. https://doi.org/10.1080/10428194.2015.1115041
3. Pastor VB, Sahoo SS, Boklan J, Schwabe GC, Saribeyoglu E, Strahm B, et al. Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica. 2018;103:427–37. https://doi.org/10.3324/haematol.2017.180778
4. Sahoo SS, Kozyra EJ, Wlodarski MW. Germline predisposition in myeloid neoplasms: unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol. 2020;33(3):101197 https://doi.org/10.1016/j.beha.2020.10.004
5. Donadieu J, Lamant M, Fieschi C, de Fontbrune F, Caye A, Ouacemee M, et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica. 2018;103:1278–87. https://doi.org/10.3324/haematol.2017.181909
6. Wlodarski MW, Hirabayashi S, Pastor V, Starz J, Hasle H, Masetti R, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127:1387–97. https://doi.org/10.1182/blood-2015-09-669937. quiz 1518
7. Novakova M, Zaliova M, Sukova M, Wlodarski M, Janda A, Fronkova E, et al. Loss of B cells and their precursors is the most constant feature of GATA-2 deficiency in childhood myelodysplastic syndrome. Haematologica. 2016;101:707–16. https://doi.org/10.3324/haematol.2015.137711
8. Wlodarski MW, Collin M, Horwitz MS. GATA2 deficiency and related myeloid neoplasms. Semin Hematol. 2017;54:81–86. https://doi.org/10.1053/j.seminhematol.2017.05.002
9. Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, Hsu AP, Zerbe CS, Calvo KR, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2011;118:3715–20. https://doi.org/10.1182/blood-2011-06-365049
10. Parta M, Shah NN, Baird K, Rafei H, Calvo KR, Hughes T, et al. Allogeneic hematopoietic stem cell transplantation in patients with GATA2 deficiency—a case report and comprehensive review of the literature. Ann Hematol. 2018;97:1961–73. https://doi.org/10.1007/s00277-018-3388-4
11. Hofmann I, Avagyan S, Stetson A, Guo D, Al-Sayegh H, London WB, et al. Comparison of outcomes of myeloablative allogeneic stem cell transplantation for pediatric patients with bone marrow failure, myelodysplastic syndrome and acute myeloid leukemia with and without germline GATA2 mutations. Biol Blood Marrow Transplant. 2020;26:1124–30. https://doi.org/10.1016/j.bbmt.2020.02.015
12. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protein disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123:809–21. https://doi.org/10.1182/blood-2013-07-515528
13. Locatelli F, Strahm B. How I treat myelodysplastic syndromes of childhood. Blood. 2018;131:1406–14. https://doi.org/10.1182/blood-2017-09-765214
14. Bazerach A, Renneville A, Smith M, Charazac A, Iqbal S, Etancelin P, et al. Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica. 2012;97:890–4. https://doi.org/10.3324/haematol.2011.054361
15. West RR, Hsu AP, Holland SM, Cuellar-Rodriguez J, Hickstein DD. Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica. 2014;99:276–81. https://doi.org/10.3324/haematol.2013.090217

ACKNOWLEDGEMENTS

The authors thank all members of the European Working Group of MDS in Childhood (EWOG-MDS) who contributed to this effort by performing reference pathology, reference cytogenetics, reference molecular genetics, hematopoietic stem cell transplantation, or other forms of patient care. This work was generated within the European Reference Network for Paediatric Cancer (PAEDOCON). It was supported by the German Federal Ministry of Education and Research (BMBF) 01GM1911A “MyPred - Network for young individuals with syndromes predisposing to myeloid malignancies” to BS, CMN, GG, ME, AW, MW, Fritz-Thyssen Foundation 10.1.1.026MN, ERAPEMD 01UK1904, Deutsche Krebshilfe 109005, and Deutsche Kinderkrebsstiftung DKS2017.03 to MW.

AUTHOR CONTRIBUTIONS

RBo, BS, and CMN conceived and designed the study; all authors collected clinical data; RBo, GG, BS, and CMN analyzed and interpreted the data; PN provided statistical analysis; RBo, BS, and CMN wrote the manuscript and all authors contributed to the final version of the manuscript.

FUNDING

Open Access funding enabled and organized by Projekt DEAL.
COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41409-021-01374-y.

Correspondence and requests for materials should be addressed to B.S.

Reprints and permission information is available at https://doi.org/10.1038/s41409-021-01374-y.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

FOR EWOG-MDS
Kaan Boztug24, Michael Dworzak24, Karin Nebral25, Herbert Pichler24, Ingrid Simonitsch-Klupp26, Pascale De Paepe27, Victoria Bordon28, Barbara De Moerlooze28, Mattias Hofmans29, Tim Lammens29, Jan Philippe29, Nadine Van Roy30, Ester Meijstrikova32, Vic Campra33, Petr Sedlacek33, Zuzana Zemanova33, Eva Frankova33, Jan Star34, Henrik Hasel34, Erik Clasen-Linde34, Marianne Iversen35, Tine Plesner35, Kiri Jahnukainen36, Kim Vettenranta36, Irith Baumann37, Miriam Erlacher38, Christian Flotho38, Dirk Lebrecht38, Ayami Yoshimi-Nöllke38, Orly Dgani44, Marta Jeison45, Silvia Rathmann46, Brigitte Strahm46, Gudrun Göhring47, Brigitte Schlegelberger47, Stephan Schwarz-Furlan47,49, Martina Radelius50, Kalliopi Manolά50, Sophia Polychronopoulou50, Kalliopi Stefanaki50, Konstantinos Tsitsikas50, Csaba Bődör51, Judith Csomor51, Krisztán Kállay52, David Betts53, Maureen O’Sullivan53, Owen Smith54, Yaniv Zohar55, Shlomit Barzilai56, Buechner57, Jadwiga Maldyk58, Olga Haus58, Marek Ussowicz58, Helena Alaiz59, Paula Kjollerstrom59, Luis Mascarénhas de Lemos60, Ivana Bodova60, Martin Cermák60, Lukas Plank60, Petra Vasekova60, Maruša Debeljak60, Barbara Gacic61, Kamil Gabric62, Helena Podgornik62, Alenka Trampuz Bakija63, Albert Catala64, Cristina Diaz-de-Heredia65, Eva Gálvez65, Margarita Llavador Ros66, Jose Cervera67, Leonor Senent67, Jonas Abrahamsson68, Dominik Turkiewicz68, Carole Gengler68, Raffaele Renella69, Markus Schmugge70, Joelle Tchinda71, Berna Bevelerco72, Roos Leguit73, Konnie Hebeda74, Dorine Bresters75, Valérie De Haas76 and Hajnalka Andrikovics77

24Department of Pediatrics, St. Anna Children’s Hospital and Children’s Cancer Research Institute (CCRI), Medical University of Vienna, Vienna, Austria. 25Labdia Labordiagnostik GmbH, Clinical Genetics, Vienna, Austria. 26Department of Dermatology and Institute of Pathology, Medical University of Vienna, Vienna, Austria. 27Department of Pathology, AZ Sint-Jan Brugge-Oostende, Brugge, Belgium. 28Department of Paediatric Haematology-Oncology, Ghent University Hospital Gent, Gent, Belgium. 29Lab for Pediatric Hematology-oncology, Ghent University Hospital Gent, Gent, Belgium. 30Department of Clinical Biology, Microbiology and Immunology, Ghent University Hospital Gent, Gent, Belgium. 31Center for Medical Genetics, Ghent University Hospital, Gent, Belgium. 32Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic. 33Department of Pathology and Molecular Medicine, Charles University and University Hospital Motol, Prague, Czech Republic. 34Center of Oncycytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic. 35Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark. 36Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark. 37Department of Paediatrics, Rigshospitalet, Copenhagen, Denmark. 38Division of Hematology-Oncology and SCT Children’s Hospital, University of Helsinki and Helsinki University Hospital, Finland. 39Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany. 40Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Pediatric University Hospital Erlangen, Erlangen, Germany. 41Department of Human Genetics, Hannover Medical School, Hannover, Germany. 42Institute of Pathology, University Hospital Erlangen, Erlangen, Germany. 43Department of Pathology, University Hospital, LMU Munich, Munich, Germany. 44Department of Diagnostics and Pathology, INRATES, National Centre for Research ‘Demokritos’, Athens, Greece. 45Department of Pediatric Hematology Oncology, Agia Sophia Children Hospital, Athens, Greece. 46Department of Pathology, Agia Sophia Children’s Hospital, Athens, Greece. 47First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary. 48Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pst - National Institute of Hematology and Infectious Diseases, Budapest, Hungary. 49National Children’s Cancer Service, Children’s Health Ireland at Crumlin, Dublin, Ireland. 50Department of Histology, Our Lady’s Children’s Hospital, Dublin, Ireland. 51Pediatric Haematology, Our Lady’s Children’s Hospital, Dublin, Ireland. 52Department of Pathology, Rambam Medical Center, Haifa, Israel. 53Pediatric Hematology Oncology, Schneider Children’s Medical Center of Israel, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 54Molecular hematology research laboratory, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel. 55Cancer Cytogenetic and Molecular Cytogenetic Laboratory, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel. 56Paediatric Oncology and Haematology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy. 57Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy. 58Medical Genetics, Department of Medicine and Surgery, University of Insubria, Varese, Italy. 59Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway. 60Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland. 61Department of Clinical Genetics, Nicolaus Copernicus University, Bydgoszcz, Poland. 62Department of Pediatric Hematology and Oncology, BMT Unit CIC 817, Wroclaw Medical University, Wroclaw, Poland. 63Laboratory of Hemato Oncology, Portuguese Oncology Institute Francisco Gentil, Lisbon, Portugal. 64Pediatric Hematology Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal. 65Division of Genetics, The National Institute of Oncology, Bratislava, Slovakia. 66Department of Pathological Anatomy, Comenius University in Bratislava, Bratislava, Slovakia. 67Division of Cytogenetic Laboratory, University Children’s Hospital, Bratislava, Slovakia. 68Unit of Special laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Centre, Ljubljana, Slovenia. 69Division of Haematology, Institute of Oncology Ljubljana, Ljubljana, Slovenia. 70Unit of Oncology and Haematology, University Children’s Hospital Ljubljana University Medical Centre, Ljubljana, Slovenia. 71Department of Pathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia. 72Department of Hematology and Oncology, Hospital Infantil Universitario Nino Jesus, Madrid, Spain. 73Department of Pathology, Hospital Universitari i Politècnic La Fe, Valencia, Spain. 74Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Spain. 75Department of Pediatrics, Sahlgrenska University Hospital, Goeteborg, Sweden. 76Department of Pediatric Genetics, Section of Pediatric Oncology, Hematology, Immunology and Nephrology, Skåne University Hospital, Lund, Sweden. 77Institut universitaire de pathologie, Lausanne University Hospital (CHUV), Lausanne, Switzerland. 78Department of Hematology and Oncology, University Children’s Hospital, Stockholms Universitet, Stockholm, Sweden. 79Department of Pathology, University of Oslo, Oslo, Norway. 80Department of Hematology, Florida International University, Miami, Florida, USA. 81Department of Haematology, University of East Anglia, Norwich, United Kingdom. 82Institut universitaire de pathologie, Chirurgie, Lausanne University Hospital, Lausanne, Switzerland.
Zurich, Switzerland. 85Laboratory for Oncology, University Children’s Hospital Zürich, Zürich, Switzerland. 86Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. 87Dutch Childhood Oncology Group (DCOG), Princess Máxima Centre, Utrecht, The Netherlands. 88Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands. 89Department of Pathology, Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands. 90Dutch Childhood Oncology Group, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands. 91Laboratory of Molecular Diagnostics, Central Hospital of Southern Pest, Budapest, Hungary