RESEARCH ARTICLE

Genetic Divergence Studies in Little Millet (Panicum sumatrense)

T. Venkataratnam1, L. Madhavi Latha2*, M. Reddi Sekhar3, A.R. Nirmal Kumar4

Abstract

Genetic diversity was estimated in 50 little millet genotypes by Mahalanobis D^2 analysis for nine quantitative and eight physiological traits. In the present investigation based on D^2 analysis fifty genotypes were grouped into 7 clusters. Among the different clusters cluster I had maximum number 35 genotypes followed by cluster II contains 10 and clusters III, IV, V, VI, VII were solitary. Inter cluster distances were higher than intra cluster distances indicating wider genetic diversity among the genotypes. The maximum inter cluster distance was observed between cluster IV and VII (131.19) followed by cluster II and IV (112.18) and cluster III and VII (104.28) indicated the existence of highly divergent genotypes. The genotypes from these clusters could be used as parents in hybridization programme to develop good recombinants. Days to 50% flowering, plant height, leaf area index at panicle initiation stage and 1000 seed weight contributed maximum towards genetic diversity. These traits could be given importance for selecting parents in crop improvement programme.

Keywords: Genetic divergence, Little millet, Physiological traits, Quantitative.

Agricultural Science Digest (2019)

Introduction

Little millet (Panicum sumatrense) belongs to family Poaceae (Gramineae), having diploid chromosome number $2n = 4x = 36$ popularly known as Sama, samo, vari or kutki. It is an important reliable climate resistance small seeded crop grown in tribal areas and dry lands with poor resources. The advantage of millets lies in the fact that they can be grown in infertile soil, intense heat, and scanty rainfall (Gupta et al. 2014). Little millet Agricultural Research Station, Perumallapalle, Tirupati -517505, Andhra Pradesh, India is cultivated in Tamil Nadu, Karnataka, Andhra Pradesh, Maharashtra, Orissa, Bihar, Madhya Pradesh, Uttar Pradesh, Jharkhand, Chattisgarh and Gujarat. Little millet is cultivated in an area of 2.34 lakh hectares with annual production of 1.27 lakh t and productivity of 544 kg ha-1 in our country (Annual report, AICPMIP, 2017-2018). In Andhra Pradesh little millet is grown in an area of 7000 ha with production of 3000 t and productivity of 354 kg ha-1 during the year 2017 -2018(AP statistics at a glance 2017-18).

In the last 50 years decline in little millet area and irregular cultivation resulted in lesser diversity. In little millet yields are very less; therefore it is essential to increase the yields by developing high yielding varieties. Genetic diversity is a powerful tool to identify the genetically appropriate divergent genotypes for hybridization to develop high yielding varieties (Bhatt, 1970). With the development of biometrical methods such as multivariate analysis (Rao, 1952) based on Mahalonobis’s D^2 statistics, it has become possible to estimate genetic diversity among the germplasm. For the development of promising genotypes with desirable traits, it is necessary to have divergent parents in the crossing programme. Joshi and Dhawan (1966) reported that genetic diversity was very much important factor for any hybridization programme aiming at genetic improvement of yield especially in self pollinated crops. They also inferred that Mahalonobis’s D^2 statistics was a powerful tool choosing parents for hybridization aiming high yielding varieties. Very few studies are available on diversity analysis in little millet, therefore the present study was carried out to analyze the genetic divergence of 50 little millet genotypes for identification of divergent lines which could be used as parents in crop improvement programme.

Materials and methods

The experiment was carried out with 50 little millet genotypes including improved lines developed from different research centres and released varieties at Agricultural Research Station, Perumallapalle, during Kharif 2018. The details of 50 little millet genotypes along with pedigree were presented in Table 1. The experiment was laid out in a randomized block design with three replications. Each genotype was sown in three rows of 3 m length with a spacing of 20 x 7.5 cm (plot size 1.8 sq.m). The crop was provided with fertilizer doses...
Table 1: List of pedigree details of 50 little millet genotypes

S. No	Genotype	Pedigree	Center
1	BL-2	CO-2 × OLM-56	Jagdalpur
2	BL-4	CO-2 × TNAU-97	Jagdalpur
3	BL-8	CO-2 × OLM-56	Jagdalpur
4	BL-41-3	Paivur-2 × TNAU-97	Jagdalpur
5	BL-150	Paivur-2 × DLM-369	Jagdalpur
6	CO-2	Pure line selection	Coimbatore
7	DhLtMV-10-2	CO-4 × Paivur-2	Hanumanamatti
8	DhLtMV-14-1	CO-2 × TNAU-110	Hanumanamatti
9	DhLtMV-21-1	CO-2 × TNAU-26	Hanumanamatti
10	DhLtMV-28-4	CO-2 × TNAU-26	Hanumanamatti
11	DhLtMV-36-3	CO-4 × Paivur-2	Hanumanamatti
12	DhLtMV-39-1	CO-4 × Paivur-2	Hanumanamatti
13	DLM-8	Pure line selection from local germplasm	Dindori
14	DLM-14	Pure line selection from local germplasm	Dindori
15	DLM-89	Pure line selection from local germplasm	Dindori
16	DLM-95	Selection from local germplasm	Rewa
17	DLM-103	Pure line selection from local germplasm	Rewa
18	RLM-186	Selection from local germplasm of Rewa	Rewa
19	DhLt-28-4	CO-2 × TNAU-26	Hanumanamatti
20	GPUL-1	JK-8 × Peddasame	Bangalore
21	GPUL-2	Pure line selection from peddasame	Bangalore
22	GPUL-3	JK-8 × Peddasame	Bangalore
23	GPUL-4	JK-8 × Peddasame	Bangalore
24	GPUL-5	JK-8 × Peddasame	Bangalore
25	GV-2-1	Mutant of Gujarat Vari-1	Waghai
26	IIMRLM-7012	Selection from IPMR-699	IIMR, Hydrabad
27	IIMRLM-7162	Selection from GPMR-1153	IIMR, Hydrabad
28	KADIRI-1	Selection from Kadiri local	Bangalore
29	KOPLM-53	IPS from local germplasm	Kolhapur
30	NALLASAMA	Selection from local	ARS, Perumallapalle
31	OLM-217	Selection from Udayagiri local	Berhampur
32	OLM-233	Selection from L55	Berhampur
33	RLM-37	Selection from local germplasm No 37	Rewa
34	RLM-238	Selection from local germplasm of Rewa	Rewa
35	RLM-367	Selection from local germplasm No. 367	Rewa
36	TNAU-152	Paivur-1 × PM-29	Coimbatore
37	TNAU-159	TNAU-81 × TNAU-25	Coimbatore
38	TNAU-160	TNAU-91 × MS-4729	Coimbatore
39	TNPsu-167	CO-2 × TNAU-26	Coimbatore
40	TNPsu-170	CO-4 × IPM-113	Coimbatore
41	TNPsu-171	CO-2 × TNAU-28	Coimbatore
42	TNPsu-174	CO-2 × IPM-113	Coimbatore
43	TNPsu-183	CO-2 × MS-4729	Athiyandal
44	TNPsu-186	MS-507 × MS-1211	Athiyandal
45	WV-125	Local collection from Waghai	Waghai
46	WV-126	Local collection from Dangas	Waghai
47	WV-167	Local selection from Subir	Waghai
48	BL-6	Paivur-1 × OLM-29	Jagdalpur
49	JK-8	Selection from local germplasm	Rewa
50	OLM-203	Pure line selection from Lakshmipur local	Berhampur
Genetic divergence studies in Little Millet (*Panicum sumatrense*)

20:20:20 N: P: K Kg ha\(^{-1}\). Recommended package of practices were followed during the crop period. Observations were recorded from five randomly selected plants from each entry in three replications for 9 quantitative traits viz., days to 50% flowering, days to maturity, plant height (cm), number of productive tillers per plant, panicle length (cm), main panicle weight (g), 1000 seed weight (g), grain yield plot\(^{-1}\) (kg), fodder yield plot\(^{-1}\) (kg) and 8 physiological traits viz., leaf area index at both panicle initiation and 15 days after panicle initiation, society for cardiovascular magnetic resonance (SCMR) at panicle initiation and 15 days after panicle initiation, specific leaf weight at panicle initiation and 15 days after panicle initiation, harvest index (%) and relative injury (%) at 15 days after panicle initiation. Genetic divergence studies were done by following Mahalanobis D\(^2\) statistics and genotypes were grouped into different clusters according to Tocher’s method as given by Rao, (1952).

Results and Discussion

Analysis of variance in the study revealed the significant difference for all the traits studied indicated the presence of sufficient variability among 50 genotypes. Based on the D\(^2\) values 50 genotypes were grouped into 7 clusters by Tocher’s method (Table 2). Among the different clusters cluster I had maximum number 35 genotypes followed by cluster II contains 10 and clusters III, IV, V, VI, VII were solitary. Solitary clusters revealed that presence of wide genetic divergence for various characters among these genotypes. Clustering pattern of genotypes revealed that little millet accessions from different origin were accommodated in same cluster indicating their close affinity. On the other hand the accessions collected from the same origin were distributed in different clusters indicating that geographical diversity may not be necessarily related with genetic diversity. Therefore, the selection of genotypes for hybridization to generate new gene combination should be based on genetic diversity rather than geographical diversity.

Cluster means for nine quantitative traits and eight physiological traits were presented in Table 3 and Table 4. Considerable differences were observed among the cluster means for most of the traits studied. Early flowering genotype was observed in cluster IV (49 days), while delayed flowering genotype was in cluster II (75 days). Among seven clusters, cluster IV showed higher mean values for days to 50% flowering, day to maturity, panicle length, thousand seed weight and grain yield plot\(^{-1}\). Cluster VI also recorded higher mean values for number of productive tillers plant\(^{-1}\), fodder yield and grain yield (Table 3). Among seven clusters, cluster IV was recorded higher mean value for physiological traits viz., SCMR at both panicle initiation and 15 days after panicle initiation, SLW at panicle initiation and also recorded the low relative injury. Therefore hybridization between the promising genotypes having desirable traits in divergent clusters could be attempted to develop high yielding varieties.

Intra and inter cluster distance (D\(^2\)) among seven clusters of little millet is presented in Fig 1. Among the clusters, maximum intra cluster distance was observed in the cluster

Table 2: Cluster composition of 50 little millet genotypes (Tochers method)

Cluster no	No of genotypes	genotypes
I	35	DhLtMV-36-3, DhLt-28-4, DLM-8, TNAU-160, TNAU-152, DhLtMV-39-1, BL-2, GPUL-4, BL-6, JK-8, RLM-238, RLM-37, DLM-14, DLM-89, BL-41-3, OLM-233, RLM-367, NALLASAMA, RLM-186, TNPsu-171, GPUL-5, DLM-103, TNPsu-174, DhLtMV-10-2, TNPsu-170, KADIRI-I, BL-150, TNPsu-167, DhLtMV-28-4, DhLtMV-14-1, IIMRLM-7162, CO-2, WV-167, DLM-95 and BL-4.
II	10	GPUL-2, OLM-203, GV-2-1, KOPLM-53, GPUL-1, GPUL-3, WV-126, OLM-217, DhLtMV-21-1and WV-125
III	1	TNAU-159
IV	1	BL-8
V	1	TNPsu-186
VI	1	TNPsu-183
VII	1	IIMRLM-7012

Table 3: Cluster means for yield and yield attributing traits in little millet

Cluster	DFF	DM	PH	NPT	PL	MPW	TSW	FYPP	GYPP
Cluster I	53.61	83.74	120.30	7.70	27.10	1.80	2.30	1.09	0.20
Cluster II	75.43	105.10	111.67	5.58	25.03	1.92	1.95	1.37	0.17
Cluster III	53.67	83.67	138.33	6.60	32.23	1.51	2.14	0.86	0.18
Cluster IV	49.33	79.33	124.00	8.00	32.28	1.68	2.58	0.83	0.22
Cluster V	52.33	82.33	127.00	6.07	25.50	2.07	2.50	1.07	0.19
Cluster VI	63.33	93.33	123.33	9.40	32.47	1.71	2.56	1.43	0.31
Cluster VII	61.00	94.67	114.33	5.67	21.47	4.57	1.94	1.32	0.22

DFF: Days to 50% flowering; DM: Days to maturity; PH: Plant height (cm); NPT: Number of productive tillers plant\(^{-1}\); PL: Panicle length (cm); MPW: Main panicle weight (g); TSW: Thousand seed weight (g); FYPP: Fodder yield plot\(^{-1}\) (kg); GYPP: Grain yield plot\(^{-1}\) (kg).
Table 4: Cluster means for physiological characters in little millet

Cluster	LAI (PI)	LAI (15 DA PI)	SCMR (PI)	SCMR (15 DA PI)	SLW (PI)	SLW (15DA PI)	RI	H.I
Cluster I	1.17	1.57	37.04	29.55	0.03	0.03	32.49	19.65
Cluster II	1.61	2.10	38.42	28.50	0.04	0.03	30.07	12.96
Cluster III	1.74	2.45	34.89	33.26	0.03	0.04	28.68	20.52
Cluster IV	0.50	0.86	45.47	36.96	0.04	0.04	26.18	26.14
Cluster V	2.34	2.67	34.79	28.95	0.04	0.06	39.58	17.63
Cluster VI	2.07	2.26	33.54	29.22	0.02	0.03	44.54	26.48
Cluster VII	1.93	2.15	41.70	29.86	0.04	0.03	40.22	20.80

LAI (PI): Leaf area index at panicle initiation stage; LAI (15 DAPI): Leaf area index at 15 days after panicle initiation stage; SCMR (PI): SPAD chlorophyll meter reading at panicle initiation stage; SCMR (15 DA PI): SPAD chlorophyll meter reading at 15 days after panicle initiation stage; SLW (g cm\(^{-2}\)) (PI): Specific leaf weight panicle initiation stage; SLW (g cm\(^{-2}\)) (15 DAPI): Specific leaf weight at 15 days after panicle initiation stage; RI: Relative injury (%) at 15 days after panicle initiation stage; HI: Harvest index (%)

II (40.73) and cluster I (30.47) indicating that genotypes within the cluster were similar. Remaining clusters III, IV, V, VI, VII recorded was zero intra cluster distance because these clusters possessed only one genotype which revealed that the presence of wide genetic diversity for various traits between the genotypes. Arunachalam et al. (2005) and selvi et al. (2015) were observed solitary clusters in their studies in little millet. Maximum inter cluster D\(^2\) value was observed between cluster IV and VII (131.19) followed by between cluster II and IV (112.18) and cluster III and VII (104.29) suggested that genotypes present in these clusters are genetically divergent and could be used as parents in hybridization programme for high heterotic response in little millet. Similar results were reported earlier by Arunachalam et al. (2005), Selvi et al. (2015), Nagar (2015) and Patel et al. (2018) in little millet.

Contribution of different traits towards genetic divergence is presented in Fig.2. Among the 17 traits studied days to fifty percent flowering contributed maximum to the divergence (21.47%) followed by plant height (9.96%), fodder yield plot\(^{-1}\) (9.71) and leaf area index panicle (LAI) initiation (9.39) which implying that these traits could be helpful in crop improvement programme in little millet. Similar results of maximum contribution of divergence for days to 50% flowering was reported earlier by Arunachalam et al. (2005) in little millet, Selvi et al. (2015) in little millet for plant height and thousand seed weight; Nagar (2015) in little millet for days to 50% flowering; Thippeswamy et al. (2018) in foxtail millet for days to 50% flowering, thousand seed weight, fodder yield and Bheemesh et al. (2018) in foxtail millet for fodder yield. However, grain yield per plot contributed very less to the genetic divergence indicating narrow range of diversity among the genotypes under study.

Based on mean performance of genotypes, genetic divergence and cluster means clusters III, IV, V, VI and VII were identified as best clusters and genotypes in these clusters viz., TNPsu-183, BL-8, IIMRLM- 7012 and TNPsu -186 were

Fig. 1: Intra cluster (D) and inter cluster distance (D\(^2\)) among seven clusters of little millet
Genetic divergence studies in Little Millet (*Panicum sumatrense*) identified as promising genotypes for yield and physiological traits (Table 5).

CONCLUSION

From the study it was concluded that hybridization among the promising genotypes are expected to give more desirable recombinants in segregating generations. The crosses *viz.*, BL-8 (cluster-IV) × IIMRLM-7012 (cluster-VII) for short duration, grain yield and drought tolerance, BL-8 (cluster-IV) × TNPsu-183 (cluster-VI) for short duration, high yielding and drought tolerance, TNAU-159 (cluster-III) × IIMRLM-7012 (cluster-VII) for more plant height and main panicle weight and TNPsu-186 (cluster-V) × TNPsu-183 (cluster-VI) for high yielding and drought tolerance were proposed for in future breeding programme for little millet crop improvement.

REFERENCES

Anonymous, (2018). Andhra Pradesh Agricultural Statistics at a glance 2017-18.

Arunachalam, V., Rengalakshmi, R and Raj, M.S.K. (2005). Ecological stability of genetic diversity among landraces of little millet (*Panicum sumatrense*) in south india. Genetic Resources and Crop Evolution, 52: 15-19.

Bhatt, G.M. (1970). Multivariate analysis approach to selection of parents of hybridization aiming at yield improvement in self pollinated crops. Australian Journal of Agricultural Research, 21: 1-7.

Bheemesh, S.J. Subbarao, S and Reddi sekhar, M. (2017). Genetic divergence studies for yield and Physiological traits fox tail millet. Bulletin of Environment, Pharmacology and Life Sciences, 7: 88-94.

Gupta, S., Shrivastava, S.K. and Shrivastava, M. (2014). Fatty Acid Composition of New Hybrid Varieties of Minor Millets Seed. The Institute of Integrative Omics and Applied Biotechnology Journal, 5: 15–18.

Joshi, A.B. and Dhawan, N.L. (1966). Genetic improvement of yield with special reference to self fertilizing crops, Indian Journal of Genetics and Plant Breeding, 26: 101-113.

Nagar, J. (2015). Studies on character association and genetic divergence for morphological factors and its influencing traits in little millet (*Panicum sumatrense*). M.sc. Thesis Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur.

Patel, S.N., Patil, H.E., Patel, S.P and Patel, U.M. (2018). Genetic diversity study in relation to yield and quality traits in little millet (*Panicum miliare* L.). International Journal of Current Microbiology and Applied Sciences, 7: 2702-2711.

Project Co-ordinator unit, AICRP on small millets. Annual Progress Report (2018).

Rao, C.R. (1952). Advanced statistical methods in biometric research, John Wiley and Sons, Inc. New York. pp. 390.

Selvi, V.M., Nirmalakumari, A and Subramanian, A. (2015 a). Assessment of genetic diversity using morphometric traits in little millet (*Panicum sumatrense*). Trends in Biosciences, 8: 119-125.

Thippeswamy, V., Sajjanar, G.M and Prabhakar. (2018). Genetic diversity analysis for yield and yield components in foxtail millet (*Setaria italica* L. Beauv.). International Journal of Plant Sciences, 13: 82-89.