Adaptive Teaching of Temporal Logic Formulas to Learners with Preferences

Zhe Xu†, Yuxin Chen, and Ufuk Topcu

Abstract

Machine teaching is an algorithmic framework for teaching a target hypothesis via a sequence of examples or demonstrations. We investigate machine teaching for temporal logic formulas—a novel and expressive hypothesis class amenable to time-related task specifications. In the context of teaching temporal logic formulas, an exhaustive search even for a myopic solution takes exponential time (with respect to the time span of the task). We propose an efficient approach for teaching parametric linear temporal logic formulas. Concretely, we derive a necessary condition for the minimal time length of a demonstration to eliminate a set of hypotheses. Utilizing this condition, we propose a myopic teaching algorithm by solving a sequence of integer programming problems. We further show that, under two notions of teaching complexity, the proposed algorithm has near-optimal performance. The results strictly generalize the previous results on teaching preference-based version space learners. We evaluate our algorithm extensively under a variety of learner types (i.e., learners with different preference models) and interactive protocols (e.g., batched and adaptive). The results show that the proposed algorithms can efficiently teach a given target temporal logic formula under various settings, and that there are significant gains of teaching efficacy when the teacher adapts to the learner’s current hypotheses or uses oracles.

1 Introduction

Machine teaching, also known as algorithmic teaching, is an algorithmic framework for teaching a target hypothesis via a sequence of examples or demonstrations [1]. Due to limited availability of data or high cost of data collection in real-world learning scenarios, machine teaching provides a viable solution to optimize the training data for a learner to efficiently learn a target hypothesis.

Recently, there has been an increasing interest in designing learning algorithms for inferring task specifications from data (e.g., in robotics) [2, 3]. Machine teaching can be used to optimize the training data for various learning algorithms [4], hence it

†Zhe Xu is with the Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Austin, TX 78712. Yuxin Chen is with the Department of Computer Science, University of Chicago, Chicago, IL 60637. Ufuk Topcu is with the Department of Aerospace Engineering and Engineering Mechanics, and the Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Austin, TX 78712, e-mail: zhexu@utexas.edu, chenyuxin@uchicago.edu, utopcu@utexas.edu.
can be potentially used for task specification inference algorithms. Machine teaching can be also used in adversarial settings [5] where an attacker (machine teaching algorithm) manipulates specification inference by modifying the training data. Unfortunately, finding the optimal teaching sequence with minimal teaching cost is notoriously hard [6]. As task specifications are often time-related and the demonstration data are trajectories with a time evolution, an exhaustive search even for the myopic solution has exponential time complexity with the time span of the task, making it prohibitive to run existing myopic teaching algorithms in practice.

In this paper, we investigate machine teaching of target hypothesis represented in temporal logic [7], which has been used to express task specifications in many applications in robotics and artificial intelligence [8, 9]. Specifically, we use a fragment of parametric linear temporal logic (pLTL) [10, 11]. We derive a necessary condition for the minimal time length of a demonstration so that a set of pLTL formulas can be eliminated by this demonstration. Utilizing this necessary condition, we provide a myopic teaching approach by solving a sequence of integer programming problems which, under certain conditions, guarantees a logarithmic factor of the optimal teaching cost.

We evaluate the proposed algorithm extensively under a variety of learner types (i.e., learner with different preference models) and interactive protocols (i.e., batched and adaptive). The results show that the proposed algorithm can efficiently teach a given target hypothesis under various settings, and that there are significant gains of teaching efficacy when the teacher adapts to the learner’s current hypotheses (up to 31.15% reduction in teaching cost compared to the non-adaptive setting) or with oracles (up to 75% reduction in teaching cost compared to the myopic setting).

Related Work

There has been a surge of interest in machine teaching in several different application domains, including personalized educational systems [1], citizen sciences [12], adversarial attacks [5] and imitation learning [13]. Most theoretical work in algorithmic machine teaching assumes the version space model [6, 14–16]. Recently, some teaching complexity results have been extended beyond version space learners, such as Bayesian learners [17] and gradient learners [18] (e.g., learners implementing a gradient-based optimization algorithm). However, most algorithms are restricted to simple concept classes. In this work, we aim to understand the complexity of teaching the class of pLTL formulas. There has been extensive study in modeling a learner for temporal logic formulas, for example, see [2,3,19–28], while it is much less understood in the context of machine teaching. In this paper, we abstract these learner models as preference-based version space learners, and focus on developing efficient algorithms for teaching such learners.

2 Parametric Linear Temporal Logic

In this section, we present an overview of parametric linear temporal logic (pLTL) [10, 11]. We start with the syntax and semantics of pLTL. The domain $\mathbb{B} = \{\top, \bot\}$ (\(\top\) and \(\bot\) represents True and False respectively) is the Boolean domain and the time index set $\mathbb{T} = \{0, 1, \ldots\}$ is a discrete set of natural numbers. We assume that there is
an underlying system \(\mathcal{H} \). The state \(s \) of the system \(\mathcal{H} \) belongs to a finite set \(S \) of states. A trajectory \(\rho_L = s_0s_1 \cdots s_{L-1} \) of length \(L \in \mathbb{Z}_{>0} \) describing an evolution of the system \(\mathcal{H} \) is a function from \(\mathbb{T} \) to \(S \). A set \(\mathcal{AP} = \{ \pi_1, \pi_2, \ldots, \pi_n \} \) is a set of atomic predicates. \(\mathcal{L} : S \to 2^{\mathcal{AP}} \) is a labeling function assigning a subset of atomic predicates in \(\mathcal{AP} \) to each state \(s \in S \). The syntax of the \((F,G)\)-fragment bounded pLTL is defined recursively as\(^1\)

\[
\phi := \top \mid \pi \mid \neg \phi \mid \phi_1 \land \phi_2 \mid G_{\leq \tau} \phi \mid F_{\leq \tau} \phi,
\]

where \(\pi \) is an atomic predicate; \(\neg \) and \(\land \) stand for negation and conjunction, respectively; \(G_{\leq \tau} \) and \(F_{\leq \tau} \) are temporal operators representing “parameterized always” and “parameterized eventually”, respectively (\(\tau \in \mathbb{T} \) is a temporal parameter). From the above-mentioned operators, we can also derive other operators such as \(\lor \) (disjunction) and \(\Rightarrow \) (implication). In the following content of the paper, we refer to \((F,G)\)-fragment bounded pLTL as pLTL\(_f\) for brevity.

Next, we introduce the Boolean semantics of a pLTL\(_f\) formula in the strong and the weak view [29–31]. In the following, \((\rho_L, t) \models_S \phi \) (resp. \((\rho_L, t) \models_W \phi \)) means the trajectory \(\rho_L \) strongly (resp. weakly) satisfies \(\phi \) at time \(t \), and \((\rho_L, t) \not\models_S \phi \) (resp. \((\rho_L, t) \not\models_W \phi \)) means the trajectory \(\rho_L \) fails to strongly (resp. weakly) satisfy \(\phi \) at time \(t \).

Definition 1. The Boolean semantics of the pLTL\(_f\) in the strong view is defined recursively as

\[
\begin{align*}
(\rho_L, t) &\models_S \pi \quad \text{iff} \quad t \leq L - 1 \text{ and } f(\rho_L(t)) > 0, \\
(\rho_L, t) &\models_S \neg \phi \quad \text{iff} \quad (\rho_L, t) \not\models_W \phi, \\
(\rho_L, t) &\models_S \phi_1 \land \phi_2 \quad \text{iff} \quad (\rho_L, t) \models_S \phi_1 \text{ and } (\rho_L, t) \models_S \phi_2, \\
(\rho_L, t) &\models_S F_{\leq \tau} \phi \quad \text{iff} \quad \exists t' \in [t, t + \tau), \text{s.t.} \ (\rho_L, t') \models_S \phi, \\
(\rho_L, t) &\models_S G_{\leq \tau} \phi \quad \text{iff} \quad (\rho_L, t') \models_S \phi, \forall t' \in [t, t + \tau].
\end{align*}
\]

Definition 2. The Boolean semantics of the pLTL\(_f\) in the weak view is defined recursively as

\[
\begin{align*}
(\rho_L, t) &\models_W \pi \quad \text{iff} \quad \text{either } t > L - 1, \\
&\quad \text{or } (t \leq L - 1 \text{ and } f(\rho_L(t)) > 0), \\
(\rho_L, t) &\models_W \neg \phi \quad \text{iff} \quad (\rho_L, t) \not\models_S \phi, \\
(\rho_L, t) &\models_W \phi_1 \land \phi_2 \quad \text{iff} \quad (\rho_L, t) \models_W \phi_1 \text{ and } (\rho_L, t) \models_W \phi_2, \\
(\rho_L, t) &\models_W F_{\leq \tau} \phi \quad \text{iff} \quad \exists t' \in [t, t + \tau], \text{s.t.} \ (\rho_L, t') \models_W \phi, \\
(\rho_L, t) &\models_W G_{\leq \tau} \phi \quad \text{iff} \quad (\rho_L, t') \models_W \phi, \forall t' \in [t, t + \tau].
\end{align*}
\]

\(^1\)Although other temporal operators such as “Until”(\(\mathcal{U}\)) may also appear in the full syntax of pLTL, they are omitted from the syntax of \((F,G)\)-fragment bounded pLTL as they can be hard to interpret and are not often used for the inference of pLTL formulas.
Intuitively, if a trajectory of finite length can be extended to infinite length, then the strong view indicates that the truth value of the formula on the infinite-length trajectory is already “determined” on the trajectory of finite length, while the weak view indicates that it may not be “determined” yet. As shown in the simple example in Fig. 1, with the set $S = \{\clubsuit, \spadesuit, \heartsuit\}$ of states and three trajectories ρ_1^5, ρ_2^{10}, and ρ_3^2, $F \leq 4 \clubsuit$ is strongly satisfied by all three trajectories, while $F \leq 4 \spadesuit$ is strongly violated by ρ_1^5, strongly satisfied by ρ_2^{10}, and weakly satisfied (and also weakly violated) by ρ_3^2.

3 Teaching $pLTL_f$ Formulas with Demonstrations of Varying Lengths

We now provide the framework for teaching $pLTL_f$ formulas with demonstrations (trajectories) of varying lengths.

3.1 Teaching Model

Let $Z := S^+ \times \{-1, 1\}$ be the ground set of (labeled) demonstrations (trajectories), where S^+ denotes the Kleene plus of S, and $\{-1, 1\}$ is the set of labels. There is a hypothesis set $\Phi = \{\phi_1, \ldots, \phi_n\}$ consisting of $n \in \mathbb{Z}_{>0}$ hypothesis $pLTL_f$ formulas. The teacher knows a target hypothesis $\phi^* \in \Phi$ and intends to teach ϕ^* to a learner.

We define the preference function $\sigma : \Phi \times \Phi \to \mathbb{R}_{>0}$ as a function that encodes the learner’s transition preferences. Specifically, given the current hypothesis ϕ and any two hypotheses ϕ' and ϕ'', ϕ' is preferred to ϕ'' from ϕ if and only if $\sigma(\phi'; \phi) < \sigma(\phi''; \phi)$. If for any ϕ', $\sigma(\phi'; \phi)$ does not depend on ϕ, then σ is a global preference function; otherwise, σ is a local preference function. If $\sigma(\phi'; \phi)$ is a constant for any ϕ and ϕ', then σ is a uniform preference function.

Definition 3. Given a target hypothesis ϕ^* and a demonstration (ρ_L, l), where $l = 1$ represents positive demonstration and $l = -1$ represents negative demonstration, (ρ_L, l) is strongly inconsistent with a $pLTL_f$ formula $\phi \in \Phi$, if and only if the following condition is satisfied:

$$
\begin{align*}
\begin{cases}
(\rho_L, 0) \models_S \phi^*, & (\rho_L, 0) \models_S \neg \phi, \quad \text{if } l = 1; \\
(\rho_L, 0) \models_S \neg \phi^*, & (\rho_L, 0) \models_S \phi, \quad \text{if } l = -1.
\end{cases}
\end{align*}
$$
Starting from the teacher’s first demonstration, the teaching stops as soon as the learner’s current hypothesis reaches the target hypothesis, and we call it a teaching session. For a sequence D of demonstrations, we define the version space induced by D, denoted as $\Phi(D)$, as the subset of pLTL$_f$ formulas in Φ that are not strongly inconsistent with any demonstration in D. We use Θ to denote the random variable representing the randomness of the environment (e.g., learner’s random choice of next hypothesis in the presence of ties) and θ to denote the realization of Θ in each teaching session.

Definition 4. We define a teaching setting as a 4-tuple $S = (\phi^*, \phi^0, \Phi, \text{dom}(\Theta))$, where ϕ^* is the target hypothesis, $\phi^0 \neq \phi^*$ is the learner’s initial hypothesis, Φ is the hypothesis set and $\text{dom}(\Theta)$ is the domain of the random variable Θ.

Let T be a teacher that outputs a sequence of demonstrations based on the target hypothesis, the version space, and either the learner’s initial hypothesis (non-adaptive teacher) or the learner’s current hypothesis (adaptive teacher). For a learner with preference function σ, let $L_{\sigma} : \Phi \times 2^\Phi \times \mathcal{Z} \times \text{dom}(\Theta) \to \Phi$ be the learner’s mapping that maps the learner’s current hypothesis, the current version space, the current demonstration and the randomness of the environment to the learner’s next updated hypothesis. Given a teacher T, a learner L_{σ} and the randomness θ in the teaching setting $S = (\phi^*, \phi^0, \Phi, \text{dom}(\Theta))$, we use $D_S(T, L_{\sigma}, \theta)$ to denote the sequence of demonstrations provided by the teacher T before the learner’s hypothesis reaches ϕ^*.

Definition 5. The accumulated-number (AN) teaching cost and accumulated-length (AL) teaching cost are defined as

$$AN-Cost_{S}(T, L_{\sigma}, \theta) := |D_S(T, L_{\sigma}, \theta)|,$$

$$AL-Cost_{S}(T, L_{\sigma}, \theta) := \sum_{(\rho_k^L, \lambda_k) \in D_S(T, L_{\sigma}, \theta)} L_k.$$

Intuitively, the AN teaching cost and the AL teaching cost are the number of demonstrations and the accumulated time lengths of the demonstrations for the learner’s hypothesis to reach ϕ^* in a specific teaching session, respectively.

Definition 6. Given a teacher T and a learner L_{σ} in the teaching setting $S = (\phi^*, \phi^0, \Phi, \text{dom}(\Theta))$, we define the worst-case AN teaching cost and AL teaching cost as

$$AN-Cost^{WC}_{S}(T, L_{\sigma}) := \max_{\theta \in \text{dom}(\Theta)} AN-Cost_{S}(T, L_{\sigma}, \theta),$$

$$AL-Cost^{WC}_{S}(T, L_{\sigma}) := \max_{\theta \in \text{dom}(\Theta)} AL-Cost_{S}(T, L_{\sigma}, \theta).$$

Definition 7. Given a learner L_{σ} in the teaching setting $S = (\phi^*, \phi^0, \Phi, \text{dom}(\Theta))$, we define the AN teaching complexity and AL teaching complexity respectively as

$$AN-Complexity_{S}(L_{\sigma}) := \min_{T} AN-Cost^{WC}_{S}(T, L_{\sigma}),$$

$$AL-Complexity_{S}(L_{\sigma}) := \min_{T} AL-Cost^{WC}_{S}(T, L_{\sigma}).$$
Intuitively, the AN teaching complexity and the AL teaching complexity are the minimal number of demonstrations and the minimal accumulated time lengths of the demonstrations needed for the learner’s hypothesis to reach ϕ^* despite the randomness of the environment, respectively.

For example, we consider the hypothesis set $\Phi = \{F_{\leq i}s\}$, where $i \in \{0, \ldots, 4\}$, and $s \in S = \{\heartsuit, \diamondsuit, \spadesuit\}$. If ϕ^* is $F_{\leq 2}\spadesuit$, and the learner has uniform preference, then for any ϕ^0, one sequence of demonstrations which can minimize both the (worst-case) AN and AL teaching costs are firstly a negative demonstration of $\heartsuit, \diamondsuit, \spadesuit, \spadesuit, \spadesuit$, and then a positive demonstration of $\spadesuit, \spadesuit, \spadesuit$. In this teaching setting, the AN and AL teaching complexities are 2 and 8, respectively.

3.2 TLIP: Teaching pLTL$_f$ Formulas with Integer Programming

Finding the optimal sequence of demonstrations with minimal AN or AL teaching cost has time complexity in the order of $2^{|D_{L_{\text{max}}}|}$, where $D_{L_{\text{max}}}$ is the set of all possible demonstrations with length at most L_{max}. As $|D_{L_{\text{max}}}| = \sum_{i=1}^{L_{\text{max}}}|S|^{|S|}$, $2^{|D_{L_{\text{max}}}|}$ is doubly exponential with the maximal length of the demonstrations.

We resort to greedy methods for myopic teaching with near-optimal performance. To compute the greedy solution, we first derive a necessary condition through Definition 8 and Theorem 1 for the minimal time length of a demonstration so that a set of pLTL$_f$ formulas are strongly inconsistent with (thus can be eliminated by) this demonstration.

Definition 8. We define the minimal time length $\zeta(\phi, l)$ of a pLTL$_f$ formula ϕ with respect to a label l recursively as

\[
\begin{align*}
\zeta(\pi, l) &= 0, & \zeta(\neg\phi, l) &= \zeta(\phi, -l), \\
\zeta(\phi_1 \land \phi_2, l) &= \begin{cases}
\max\{\zeta(\phi_1, l), \zeta(\phi_2, l)\}, & \text{if } l = 1; \\
\min\{\zeta(\phi_1, l), \zeta(\phi_2, l)\}, & \text{if } l = -1,
\end{cases} \\
\zeta(F_{\leq \tau}\phi, l) &= \begin{cases}
\zeta(\phi, l), & \text{if } l = 1; \\
\zeta(\phi, l) + \tau, & \text{if } l = -1,
\end{cases} \\
\zeta(G_{\leq \tau}\phi, l) &= \begin{cases}
\zeta(\phi, l), & \text{if } l = 1; \\
\zeta(\phi, l) + \tau, & \text{if } l = -1.
\end{cases}
\end{align*}
\]

Theorem 1. Given a target hypothesis ϕ^* and the hypothesis set Φ, if a demonstration (ρ_L, l) is strongly inconsistent with a subset $\hat{\Phi} = \{\phi_i\}_{i=1}^{\hat{N}} \subset \Phi$ of pLTL$_f$ formulas, then

\[
L \geq \max\{\zeta(\phi^*, l), \max_{1 \leq i \leq \hat{N}} \zeta(\phi_i, -l)\}.
\]

Note that there does not always exist a sequence of demonstrations that minimizes both the AN and AL teaching costs.
Algorithm 1: Teaching of pLTL$_f$ Formulas with Integer Programming (TLIP)

1. **Input:** hypothesis set Φ, initial hypothesis ϕ^0
2. Initialize $k \leftarrow 0$, $\tilde{\Phi} \leftarrow \emptyset$, $\Phi^0 \leftarrow \Phi$
3. while $\phi^k \neq \phi^*$ do
4. if $\text{MyopicTeacher} = 1$ then $\phi^{k*} = \phi^*$
5. else Compute $\phi^{k*} \leftarrow \text{Oracle}(\phi^k, \Phi^k, \phi^*)$
6. if σ is global then
7. $\tilde{\Phi} \leftarrow \{\phi \in \Phi^k : \sigma(\phi; \cdot) \leq \sigma(\phi^{k*}; \cdot)\}$
8. else
9. $\tilde{\Phi} \leftarrow \{\phi \in \Phi^k : \sigma(\phi; \phi') \leq \sigma(\phi^{k*}; \phi')$ for some $\phi' \in \Phi^k\}$
10. $(\rho^k, \ell^k) \leftarrow \text{ComputeDemonstration}(\Phi^k, \tilde{\Phi}, \phi^{k*})$
11. $\Phi^{k+1} \leftarrow \Phi^k \setminus \tilde{\Phi}$, $\tilde{\Phi} \leftarrow \tilde{\Phi} \setminus \tilde{\Phi}$, $k \leftarrow k + 1$
12. if $\text{AdaptiveTeacher} = 0$ then
13. if $\tilde{\Phi} = \{\phi^*\}$ then $\phi^k \leftarrow \phi^*$
14. else Randomly select $\phi^k \neq \phi^*$ from $\tilde{\Phi}$
15. else Observe the learner’s next hypothesis ϕ^k
16. $K \leftarrow k - 1$
17. return $\{(\rho^0, \ell^0), (\rho^1, \ell^1), \ldots, (\rho^K, \ell^K)\}$

Algorithm 1 shows the proposed TLIP approach for teaching pLTL$_f$ formulas to learners with preferences. Here we focus on the myopic solution ($\text{MyopicTeacher} = 1$) under the non-adaptive setting ($\text{AdaptiveTeacher} = 0$) where the teacher does not observe the learner’s current hypothesis and provides the sequence of demonstrations based on the learner’s initial hypothesis. We compute $\tilde{\Phi}$ as either (i) the set of hypotheses that are preferred over the target hypothesis in the current version space if the learner has global preferences (Line 7), or (ii) the union of the sets of hypotheses that are preferred over target hypothesis based on each hypothesis in the current version space if the learner has local preferences (Line 9). Then we call Algorithm 2 to compute the demonstrations that achieve the greedy myopic solution (Line 10).

Algorithm 2: ComputeDemonstration

1. **Input:** Φ, $\tilde{\Phi}$, ϕ^*
2. Compute ρ^*_{pos} and $\kappa(\rho^*_{\text{pos}})$ for $\text{IP}_{\text{pos}}(\tilde{\Phi}, \phi^*)$
3. Compute ρ^*_{neg} and $\kappa(\rho^*_{\text{neg}})$ for $\text{IP}_{\text{neg}}(\tilde{\Phi}, \phi^*)$
4. if $\kappa(\rho^*_{\text{pos}}) \geq \kappa(\rho^*_{\text{neg}})$ then
5. $$(\rho, \ell) \leftarrow (\rho^*_{\text{pos}}, 1), \tilde{\Phi} \leftarrow \{\phi \in \Phi : c(\phi, \rho) = -1\}$$
6. else
7. $$(\rho, \ell) \leftarrow (\rho^*_{\text{neg}}, -1), \tilde{\Phi} \leftarrow \{\phi \in \Phi : c(\phi, \rho) = 1\}$$
8. return $(\rho, \ell), \tilde{\Phi}$
Note that finding the greedy myopic solution via exhaustive search amounts to traversing the space of demonstrations, which is exponential with the maximal length of the demonstrations. We propose to find the greedy solution via a novel integer programming (IP) formulation. For a trajectory of the demonstrations. We propose to find the greedy solution via a novel integer traversing the space of demonstrations, which is exponential with the maximal length of the demonstrations. We propose to find the greedy solution via a novel integer

subject to: \(b_j \in \{0, 1\}, \forall j, \text{s.t. } \phi_j \in \Phi, \ c(\phi^*, \rho_L) = 1, \)

\[c(\phi_j, \rho_L) = 1 - 2b_j, \forall j, \text{s.t. } \phi_j \in \Phi, \]

\[L \geq \zeta(\phi^*, 1), L \geq b_j\zeta(\phi_j, -1), \forall j, \text{s.t. } \phi_j \in \Phi, \]

where \(\kappa(\rho_L) = (\sum_{\phi_j \in \Phi} b_j) \) when optimizing for the AN teaching cost and \(\kappa(\rho_L) = (\sum_{\phi_j \in \Phi} b_j) / L \) when optimizing for the AL teaching cost, the strong satisfaction or strong violation of a pLTL formula \(\phi \) by \(\rho_L \) can be encoded as integer linear constraints of \(\rho_L \), and the constraints for \(L \) are obtained from Theorem 1. In practice, the problem \(\text{IP}_{\text{pos}}(\Phi, \phi^*) \) can be efficiently solved by highly-optimized IP solvers [32], which, as demonstrated in §5, is significantly more efficient than the exhaustive search method.

For negative demonstrations, the integer programming problem \(\text{IP}_{\text{neg}}(\Phi, \phi^*) \) can be similarly formulated with the constraints \(c(\phi^*, \rho_L) = -1 \) and \(c(\phi_j, \rho_L) = -1 + 2b_j, \forall j, \text{s.t. } \phi_j \in \Phi. \) We use \(\rho^*_{\text{pos}} \) and \(\rho^*_{\text{neg}} \) to denote the optimal positive and negative demonstration computed from \(\text{IP}_{\text{pos}}(\Phi, \phi^*) \) and \(\text{IP}_{\text{neg}}(\Phi, \phi^*) \), respectively. We select \(\rho^*_{\text{pos}} \) or \(\rho^*_{\text{neg}} \) depending on whether \(\kappa(\rho^*_{\text{pos}}) \) is no less than \(\kappa(\rho^*_{\text{neg}}) \) or not. Then, we eliminate the hypothesis pLTL formulas that are strongly inconsistent with the selected demonstration (Line 11). For non-adaptive teaching, we randomly select a pLTL formula different from the target hypothesis (Line 14, as we consider the worst case) and perform another round of computation for the demonstration until the current hypothesis reaches the target hypothesis.

3.3 Teaching with Positive Demonstrations Only

Learning temporal logic formulas from positive demonstrations is a typical problem in temporal logic inference [3, 22, 28].

The algorithm for teaching pLTL formulas with positive demonstrations only can be modified from Algorithms 1 and 2, by deleting Lines 3-7 of Algorithm 2 and obtaining \((\rho, l) \) as \((\rho^*_{\text{pos}}, 1) \). The following theorem provides a necessary condition for successfully teaching a pLTL formula with positive demonstrations to a learner with global preferences.

Theorem 2. Given a hypothesis set \(\Phi \) and a sequence of positive demonstrations \(D_p \), if a target hypothesis \(\phi^* \in \Phi \) is teachable from \(D_p \) to a learner with global preference function \(\sigma \), i.e., \(\forall \phi \in \Phi(D) \setminus \{\phi^*\}, \sigma(\phi; \cdot) \leq \sigma(\phi^*; \cdot) \), then it holds that

\[
\max_{1 \leq k \leq |D_p|} L_k \geq \frac{1}{\rho^*_{\text{pos}}}.
\]
\[
\max_{\phi_i \in \Phi \setminus \{\phi^*\}} \zeta(\phi_i, -1), \text{ and that there does not exist a pLTL}_f \text{ formula } \phi' \text{ with } \sigma(\phi'; :) \leq \sigma(\phi^*; :) \text{ such that } \phi^* \Rightarrow \phi'. \text{ Here, } \tilde{\Phi} := \{\phi \in \Phi : \sigma(\phi; :) \leq \sigma(\phi^*; :)\}, L_k \text{ is the time length of the } k\text{-th demonstration in } D_p, \text{ and } \zeta(\phi_i, -1) \text{ is as defined in Definition 8.}
\]

4 Adaptive Teaching of pLTL$ _f$ Formulas

We now explore the theoretical aspects of machine teaching for pLTL$ _f$ formulas under the adaptive setting.

4.1 Teaching Complexity

Different from non-adaptive teaching, an adaptive teacher observes the learner’s current hypothesis and provides the next demonstration according to the target hypothesis, the current version space and the learner’s current hypothesis. Algorithm 1 with \textit{AdaptiveTeacher} = 1 shows the procedure for adaptive teaching using TLIP.

The following theorem provides near-optimality guarantees under the adaptive myopic setting [15].

Theorem 3. We denote the myopic adaptive teacher in TLIP as T_m. Given a target hypothesis ϕ^* and the hypothesis set Φ, then

\[
\begin{align*}
\text{AN-Cost}^{WC}_{\tilde{\Phi}} (T_m, L_\sigma) &\leq \lambda (\log |\tilde{\Phi}_S| + 1) \text{AN-Complexity}_{\tilde{\Phi}} (L_\sigma), \\
\text{AL-Cost}^{WC}_{\tilde{\Phi}} (T_m, L_\sigma) &\leq \lambda (\log |\tilde{\Phi}_S| + 1) \text{AL-Complexity}_{\tilde{\Phi}} (L_\sigma),
\end{align*}
\]

where $\tilde{\Phi}_S := \{\phi \in \Phi : \sigma(\phi; \phi^0) \leq \sigma(\phi^*; \phi^0)\}$, $\lambda = 1$ if σ is global, and $\lambda = 2$ if σ is local and the following two conditions are satisfied for both σ and the sequence D of demonstrations.

\[
\begin{align*}
1. &\forall \phi', \phi'' \in \Phi, \sigma(\phi'; \phi) \leq \sigma(\phi''; \phi) \leq \sigma(\phi^*; \phi) \\
&\Rightarrow \sigma(\phi''; \phi') \leq \sigma(\phi^*; \phi'); \\
2. &\forall \Phi' \subset \tilde{\Phi} \{(\rho, l)\}, \exists (\rho', l') \in D, \text{s.t.}, \tilde{\Phi}(\{(\rho', l')\}) = \Phi'.
\end{align*}
\]

In Condition 2, $\tilde{\Phi}(\{(\rho, l)\})$ denotes the set of hypotheses in Φ which are strongly inconsistent with demonstration (ρ, l).

Theorem 3 shows that, under the adaptive myopic setting, TLIP can achieve near-optimal performance for global preferences and certain local preferences that satisfy Conditions 1 and 2. This motivates us to design intermediate target hypotheses as shown in §4.2.

4.2 Teaching with Oracles

For learners with local preferences, we can design intermediate target hypotheses so that Condition 1 of Theorem 3 can be satisfied for learning each target hypothesis. In
Algorithm 1, we assume that we have access to an oracle, i.e., Oracle(ϕ^k, Φ^k, ϕ^*), which outputs an intermediate target hypothesis ϕ^* at each step.

For example, if the learner’s current hypothesis ϕ does not contain \diamond, then the learner prefers formulas with the same temporal operator as that in ϕ; and if ϕ contains \diamond, then the learner prefers G-formulas than F-formulas. With the same temporal operator, the learner prefers formulas with \spadesuit than formulas with \heartsuit, and prefers formulas with \clubsuit the least. Then, for $\phi^* = G_{\leq 2} \diamond, \phi^1 = F_{\leq 3} \diamond, \phi^2 = F_{\leq 5} \diamond, \phi^3 = F_{\leq 3} \bowtie$, we have $\sigma(\phi^2; \phi^1) < \sigma(\phi^3; \phi^1) < \sigma(\phi^*; \phi^1)$, but $\sigma(\phi^*; \phi^2) < \sigma(\phi^1; \phi^2)$. Therefore, Condition 1 of Theorem 3 does not hold. If the oracle outputs ϕ^2 as an intermediate target hypothesis before the learner’s hypothesis reaches ϕ^2, then the teaching problem is decomposed into two subproblems, i.e., teaching before ϕ^2 and after ϕ^2, and both subproblems satisfy Condition 1 of Theorem 3.

5 Experiments

In this section, we evaluate the proposed approach under different teaching settings. The hypothesis set of pLTL$_f$ formulas are listed in Table 1. The set S of states is \{0, 1, \ldots, 10\}. In each teaching session, we randomly select both the initial hypothesis and the target hypothesis from the hypothesis set. All results are averaged over 10 teaching sessions.

Category	Hypothesis pLTL$_f$ Formulas
F-formulas	$F_{\leq 1}(x \leq 1), \ldots, F_{\leq 1}(x \leq 9)$, \ldots $F_{\leq a}(x \leq 1), \ldots, F_{\leq a}(x \leq 9)$
G-formulas	$G_{\leq 1}(x \leq 1), \ldots, G_{\leq 1}(x \leq 9)$, \ldots $G_{\leq a}(x \leq 1), \ldots, G_{\leq a}(x \leq 9)$

5.1 Teaching pLTL$_f$ Formulas under Global Preferences

We first compare TLIP with the exhaustive search method for myopic teaching (ESMT). Table 2 shows the computation time for TLIP using myopic teaching and ESMT (minimizing the AL teaching costs) for learners with uniform preferences, where timeout (TO) is 300 minutes. ESMT becomes intractable when the maximal length L_{max} of the demonstrations reaches 10 or above, while TLIP maintains relatively short computation time with increasing L_{max}.

As ESMT is not scalable, we implement the following four methods for comparison for myopic teaching performances.

- **AN-TLIP**: TLIP for minimizing AN teaching cost.
Table 2: Computation time for computing the myopic solution.

	$L_{\text{max}} = 5$	$L_{\text{max}} = 10$	$L_{\text{max}} = 15$
TLIP	3.67 s	5.29 s	7.65 s
ESMT	4.57 s	TO	TO

- **AL-TLIP**: TLIP for minimizing AL teaching cost.
- **AN-RG**: randomized greedy algorithm for minimizing AN teaching cost. At each iteration, we greedily pick the demonstration with minimal AN teaching cost among a randomly selected subset of demonstrations.
- **AL-RG**: same with AN-RG except that here we minimize the AL teaching cost.

![Figure 2: AN and AL teaching costs under global (uniform) preference with increasing sizes of the hypothesis set.](image)

Fig. 2 shows that AN-TLIP (resp. AL-TLIP) outperforms the other three methods when minimizing the AN teaching costs (resp. the AL teaching costs). Specifically, the AN teaching costs using AN-TLIP are 50%, 78.26% and 80.39% less than those using AL-TLIP, AN-RG and AL-RG, respectively. The AL teaching costs using AL-TLIP are 52.63%, 91.37% and 90.23% less than those using AN-TLIP, AN-RG and AL-RG, respectively. Fig. 2 also shows that the growth of the AL teaching cost is more significant with the increasing size of the hypothesis set than that of the AN teaching costs.

Teaching with Positive Demonstrations Only We test the machine teaching algorithm with positive demonstrations only. We consider global preferences, where the learner prefers F-formulas than G-formulas, and with the same temporal operator the learner prefers formula ϕ_1 than ϕ_2 if and only if ϕ_1 implies ϕ_2. It can be shown that this preference function satisfies the condition of Theorem 2.

The corresponding algorithms for AN-TLIP and AL-TLIP with positive demonstrations only are referred to as POS-AN-TLIP and POS-AL-TLIP, respectively. Fig. 3 shows that POS-AN-TLIP and POS-AL-TLIP do not incur much additional teaching cost (up to 20% more) when restricted to only positive demonstrations.

5.2 Teaching pLTL$_f$ Formulas under Local Preferences

Local preferences For two pLTL$_f$ formulas $\phi_1 = F_{\leq i_1}(x \leq v_1)$ and $\phi_2 = F_{\leq i_2}(x \leq v_2)$, we define the Manhattan distance between ϕ_1 and ϕ_2 as $|i_1 - i_2| + |v_1 - v_2|$. We
consider the following local preference:
(1) The learner prefers formulas with the same temporal operator as that in the learner’s previous hypothesis;
(2) With the same temporal operator the learner prefers formulas that are “closer” to the learner’s previous hypothesis in terms of the Manhattan distance;
(3) The learner prefers G-formulas than F-formulas if the learner’s current hypothesis are in the form of $F_{\leq i} (x \leq 0)$ or $F_{\leq i} (x \leq 10) (i = 1, \ldots, a)$. This is intuitively consistent with human’s preferences to switch categories when the values reach certain boundary values.

Adaptive Teaching

To test the advantage of adaptive teaching, we compare it with non-adaptive teaching in the presence of uncertainties. We consider local preferences with added uncertainty noises. Specifically, the learner has equal preference of selecting the formulas in the version space that have the least Manhattan distance from the current hypothesis and also any formula that can be perturbed from these formulas in the version space (here “perturb” means adding or subtracting the parameters i or v by 1, e.g., as in $F_{\leq i} (x \leq v)$).

Fig. 8 shows that Ada-AN-TLIP (i.e., adaptive AN-TLIP) can reduce the AN teaching costs by up to 27.5% compared with NAda-AN-TLIP (i.e., non-adaptive AN-TLIP), Ada-AN-RG (i.e., adaptive AN-RG) can reduce the AN teaching costs by up to 44% compared with NAda-AN-RG (i.e., non-adaptive AN-RG), Ada-AL-TLIP (i.e., adaptive AL-TLIP) can reduce the AN teaching costs by up to 31.15% compared with NAda-AL-TLIP (i.e., non-adaptive AL-TLIP), and Ada-AL-RG (i.e., adaptive AL-RG) can reduce the AN teaching costs by up to 36.34% compared with NAda-AL-RG (i.e., non-adaptive AL-RG).
Adaptive Teaching with Oracles To decompose the teaching problem into subproblems that satisfy Condition 1 of Theorem 3, we design the oracle which outputs an intermediate target hypothesis $F_{\leq i}(x \leq 10)$. Fig. 5 shows that Oracle-Ada-AN-TLIP (adaptive AN-TLIP with oracles) can reduce the AN teaching costs by 25% compared with Ada-AN-TLIP and Oracle-Ada-AL-TLIP (adaptive AL-TLIP with oracles) can reduce the AL teaching costs by up to 75% compared with Ada-AL-TLIP.

6 Conclusion

We presented the first attempt for teaching parametric linear temporal logic formulas to a learner with preferences. We also explored how to more efficiently teach the learner utilizing adaptivity and oracles. The results show the effectiveness of the proposed approach. We believe this is an important step towards practical algorithms for teaching more complex concept classes in the real-world scenarios. For future work, we will explore teaching methods for more general forms of temporal logic formulas, with more specific learning algorithms for inferring temporal logic formulas.

References

[1] X. Zhu, “Machine teaching: An inverse problem to machine learning and an approach toward optimal education,” ser. AAAI, 2015, pp. 4083–4087. [Online]. Available: http://dl.acm.org/citation.cfm?id=2888116.2888288

[2] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and detection of anomalous behavior,” IEEE TAC, vol. 62, no. 3, pp. 1210–1222, Mar. 2017.

[3] M. Vazquez-Chanlatte, S. Jha, A. Tiwari, M. K. Ho, and S. A. Seshia, “Learning task specifications from demonstrations,” in NeurIPS, 2018, pp. 5372–5382.

[4] S. Dasgupta, D. Hsu, S. Poulis, and X. Zhu, “Teaching a black-box learner,” in International Conference on Machine Learning, 2019, pp. 1547–1555.

3Theoretically, the oracle can be designed to output any formula of the form $F_{\leq i}(x \leq 0)$ or $F_{\leq i}(x \leq 10)$ ($i = 1, \ldots, a$).
[5] Y. Ma, X. Zhang, W. Sun, and J. Zhu, “Policy poisoning in batch reinforcement learning and control,” in *Advances in Neural Information Processing Systems*, 2019, pp. 14 543–14 553.

[6] S. A. Goldman and M. J. Kearns, “On the complexity of teaching,” *Journal of Computer and System Sciences*, vol. 50, no. 1, pp. 20–31, 1995.

[7] A. Pnueli, “The temporal logic of programs,” in *Proc. 18th Annu. Symp. Found. Computer Sci.*, Washington, D.C., USA, 1977, pp. 46–57.

[8] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive, high-level robot control,” *IEEE Robotics Automation Magazine*, vol. 18, no. 3, pp. 65–74, Sept 2011.

[9] S. T. To, M. Roberts, homas Apker, B. Johnson, and D. W. Aha, “Mixed propositional metric temporal logic: A new formalism for temporal planning,” in *AAAI Workshop on Planning for Hybrid Systems*. Phoenix, AZ: AAAI Press, 2015. [Online]. Available: http://www.knexusresearch.com/wp-content/uploads/2016/03/AAAI16.pdf

[10] S. Chakraborty and J.-P. Katoen, “Parametric LTL on Markov chains,” in *Theoretical Computer Science*. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 207–221.

[11] R. Alur, K. Etessami, S. La Torre, and D. Peled, “Parametric temporal logic for “Model Measuring”,” *ACM Trans. Comput. Logic*, vol. 2, no. 3, pp. 388–407, Jul. 2001.

[12] O. Mac Aodha, S. Su, Y. Chen, P. Perona, and Y. Yue, “Teaching categories to human learners with visual explanations,” in *CVPR*, 2018, pp. 3820–3828.

[13] D. S. Brown and S. Niekum, “Machine teaching for inverse reinforcement learning: Algorithms and applications,” in *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 33, 2019, pp. 7749–7758.

[14] Z. Gao, C. Ries, H. U. Simon, and S. Zilles, “Preference-based teaching,” *The Journal of Machine Learning Research*, vol. 18, no. 1, pp. 1012–1043, 2017.

[15] Y. Chen, A. Singla, O. M. Aodha, P. Perona, and Y. Yue, “Understanding the role of adaptivity in machine teaching: The case of version space learners,” in *Proc. Conference on Neural Information Processing Systems (NIPS)*, December 2018.

[16] F. Mansouri, Y. Chen, A. Vartanian, J. Zhu, and A. Singla, “Preference-based batch and sequential teaching: Towards a unified view of models,” in *Advances in Neural Information Processing Systems*, 2019, pp. 9195–9205.

[17] J. Zhu, “Machine teaching for bayesian learners in the exponential family,” in *Advances in Neural Information Processing Systems*, 2013, pp. 1905–1913.
[18] W. Liu, B. Dai, A. Humayun, C. Tay, C. Yu, L. B. Smith, J. M. Rehg, and L. Song, “Iterative machine teaching,” in Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp. 2149–2158.

[19] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric temporal logic properties in model-based design for cyber-physical systems,” International Journal on Software Tools for Technology Transfer, pp. 79–93, Feb 2017. [Online]. Available: http://dx.doi.org/10.1007/s10009-017-0447-4

[20] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A decision tree approach to data classification using signal temporal logic,” in Proc. HSCC’16, 2016, pp. 1–10.

[21] D. Neider and I. Gavran, “Learning linear temporal properties,” in Formal Methods in Computer Aided Design (FMCAD), 2018, pp. 1–10.

[22] Z. Xu, M. Ornik, A. Julius, and U. Topcu, “Information-guided temporal logic inference with prior knowledge,” in ACC, 2019. [Online]. Available: https://arxiv.org/abs/1811.08846

[23] Z. Xu and U. Topcu, “Transfer of temporal logic formulas in reinforcement learning,” in Proc. IJCAI’2019, 7 2019, pp. 4010–4018. [Online]. Available: https://doi.org/10.24963/ijcai.2019/557

[24] Z. Xu, M. Birtwistle, C. Belta, and A. Julius, “A temporal logic inference approach for model discrimination,” IEEE Life Sciences Letters, vol. 2, no. 3, pp. 19–22, Sept 2016.

[25] Z. Xu, S. Saha, B. Hu, S. Mishra, and A. Julius, “Advisory temporal logic inference and controller design for semi-autonomous robots,” IEEE Trans. Autom. Sci. and Eng., may 2018, in press.

[26] Z. Xu and A. Julius, “Census signal temporal logic inference for multiagent group behavior analysis,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 1, pp. 264–277, Jan. 2018.

[27] A. J. Zhe Xu, Calin Belta, “Temporal logic inference with prior information: An application to robot arm movements,” in 5th IFAC Conference on Analysis and Design of Hybrid Systems (ADHS), 2015.

[28] A. Shah, P. Kamath, J. A. Shah, and S. Li, “Bayesian inference of temporal task specifications from demonstrations,” in NeurIPS. Curran Associates, Inc., 2018, pp. 3808–3817. [Online]. Available: http://papers.nips.cc/paper/7637-bayesian-inference-of-temporal-task-specifications-from-demonstrations. pdf

[29] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van Campenhout, Reasoning with Temporal Logic on Truncated Paths. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 27–39.
We formulate an integer programming problem for optimally teaching a pLTL$_f$ formula to a learner with global preferences. We define the preferred hypothesis set as $\tilde{\Phi} := \{ \phi \in \Phi : \sigma(\phi; \cdot) \leq \sigma(\phi^*; \cdot) \}$, i.e., the set of hypotheses that are more preferred by the learner than the target hypothesis. For a trajectory ρ_L and a pLTL$_f$ formula ϕ, we denote $c(\phi, \rho_L) = 1$ if $(\rho_L, 0) \models S \phi$; $c(\phi, \rho_L) = -1$ if $(\rho_L, 0) \models S \neg \phi$; and $c(\phi, \rho_L) = 0$ if $(\rho_L, 0) \not\models S \phi$ and $(\rho_L, 0) \not\models S \neg \phi$.

One way to optimally solve the machine teaching problem is to enumerate all possible demonstrations in $D_{L_{\text{max}}}$ and solve the following integer programming problem.

$$\min \sum_{1 \leq i \leq |D_{L_{\text{max}}}|} \chi_i$$

subject to: $\xi_i \in \{0, 1\}$, $\forall i \in \{1, 2, \ldots, |D_{L_{\text{max}}}|\}$,

$$\sum_{k=1}^{|D_{L_{\text{max}}}|} b_{j,k} \gamma_j \xi_k \geq 1, \forall j, \text{s.t., } \phi_j \in \tilde{\Phi},$$

where $\chi = \xi_i$ for AN teaching costs and $\chi = \xi_i L_i$ (where L_i is the length of the i-th demonstration in $D_{L_{\text{max}}}$) for AL teaching costs, $b_{j,k} = 1$ if either $c(\phi^*, \rho_{L_k}) = 1$ and $c(\phi^*, \rho_{L_k}) = -1$, or $c(\phi^*, \rho_{L_k}) = -1$ and $c(\phi^*, \rho_{L_k}) = 1$, and $b_{j,k} = 0$ otherwise. As $c(\phi^*, \rho_{L_k})$ is known by evaluating the satisfaction of ρ_{L_k} with respect to ϕ^*, $b_{j,k}$ is also a known variable. Therefore, problem (7.1) is an integer programming problem with the worst-case time complexity in the order of $2^{|D_{L_{\text{max}}}|}$. As $|D_{L_{\text{max}}}| = \sum_{i=1}^{L_{\text{max}}} |S| L_{\text{max}}, 2^{|D_{L_{\text{max}}}|}$ is doubly exponential with respect to the maximal length of the demonstrations; hence the optimization is intractable to solve. Therefore, we resort to greedy methods for myopic teaching with near-optimal performance in §3.2.
7.2 Teachable Hypotheses

For a global preference function \(\sigma \), we say \(\phi^* \) is teachable from a sequence of demonstrations \(D \) if and only if \(\forall \phi \in \Phi(D) \setminus \{ \phi^* \}, \sigma(\phi; \cdot) > \sigma(\phi^*; \cdot) \).

Corollary 1. Given a target pLTL formula \(\phi^* \), the hypothesis set \(\Phi = \{ \phi_1, \phi_2, \ldots, \phi_n \} \) and global preference function \(\sigma \), if \(\phi^* \in \Phi \) is teachable from a sequence of demonstrations \(D = \{ (\rho_{L_1}^\varepsilon, t_1), (\rho_{L_2}^\varepsilon, t_2), \ldots, (\rho_{L_D}^N, t_D^N) \} \), then \(\max_{1 \leq k \leq N_D} L_k \geq \max_{\phi_i \in \Phi} \min \{ \zeta(\phi_i, 1), \zeta(\phi_i, -1) \} \),

where \(\tilde{\Phi} := \{ \phi \in \Phi | \sigma(\phi; \cdot) \leq \sigma(\phi^*; \cdot) \} \) is the preferred hypothesis set.

Proof of Corollary 1: Each demonstration \(\rho_{L_k}^k \) is strongly inconsistent with a subset \(\tilde{\Phi}_k \) of pLTL formulas in \(\Phi \) (\(\tilde{\Phi}_k \) may be empty). If \(\phi^* \in \Phi \) is teachable from a sequence of demonstrations \(D = \{ (\rho_{L_1}^\varepsilon, t_1), (\rho_{L_2}^\varepsilon, t_2), \ldots, (\rho_{L_D}^N, t_D^N) \} \), then it holds that \(\tilde{\Phi} \setminus \{ \phi^* \} \subset \bigcup_{k} \tilde{\Phi}_k \). From Theorem 1, for each \(k \), we have \(L_k \geq \max \{ \zeta(\phi^*, l), \max_{1 \leq i \leq |\Phi_k|} \zeta(\phi_i, -l) \} \). Therefore, we have

\[
\max_{1 \leq k \leq N_D} L_k \geq \max_{1 \leq k \leq N_D} \max \{ \zeta(\phi^*, l), \max_{1 \leq i \leq |\Phi_k|} \zeta(\phi_i, -l) \} \\
\geq \max_{\phi_i \in \tilde{\Phi}} \min \{ \zeta(\phi_i, 1), \zeta(\phi_i, -1) \}.
\]

8 Theoretical Proofs

Proof of Theorem 1: To prove Theorem 1, we first prove the following lemma.

Lemma 1. For a demonstration \((\rho_L, l) \) and the minimal time length \(\zeta(\phi, l) \), if \(L < t + \zeta(\phi, l) \), then if \(l = 1 \), \((\rho_L, t) \models W \neg \phi \); and if \(l = -1 \), \((\rho_L, t) \models W \phi \).

Proof. We use induction to prove Lemma 1.

(i) We first prove that Lemma 1 holds for atomic predicate \(\pi \). As \(\zeta(\pi, l) = 0 \), if \(L < t + \zeta(\phi, l) \), then \(L < t \), so according to Definition 2, for \(l = 1 \) and \(l = -1 \), \((\rho_L, t) \models W \pi \) and \((\rho_L, t) \models W \neg \pi \), Lemma 1 trivially holds.

(ii) We assume that Lemma 1 holds for \(\phi \) and prove Lemma 1 holds for \(\neg \phi \). If Lemma 1 holds for \(\phi \), then if \(L < t + \zeta(\phi, l) \), we have for \(l = 1 \), \((\rho_L, t) \models W \neg \phi \); for \(l = -1 \), \((\rho_L, t) \models W \phi \). Thus if \(L < t + \zeta(\phi, -l) \), we have for \(l = -1 \), \((\rho_L, t) \models W \neg \phi \); for \(l = 1 \), \((\rho_L, t) \models W \phi \). Therefore, if

\[
L < t + \zeta(\neg \phi, l) = t + \zeta(\phi, -l),
\]

we have for \(l = 1 \), \((\rho_L, t) \models W \phi \), i.e. \((\rho_L, t) \models W \neg (\neg \phi) \); for \(l = -1 \), \((\rho_L, t) \models W \neg \phi \). Therefore, Lemma 1 holds for \(\neg \phi \).

(iii) We assume that Lemma 1 holds for \(\phi_1, \phi_2 \) and prove Lemma 1 holds for \(\phi_1 \land \phi_2 \) and \(\phi_1 \lor \phi_2 \).
For $l = 1$, if Lemma 1 holds for ϕ_1 and ϕ_2, then if $L < t + \zeta(\phi_1, l)$, we have $(\rho_L, t) \models W \neg \phi_1$; if $L < \zeta(\phi_2, l)$, we have $(\rho_L, t) \models W \neg \phi_2$.

If $L < t + \max\{\zeta(\phi_1, l), \zeta(\phi_2, l)\}$, then $L < t + \zeta(\phi_1, l)$ or $L < t + \zeta(\phi_2, l)$, thus $(\rho_L, t) \models W \neg \phi_1$ or $(\rho_L, t) \models W \neg \phi_2$.

So we have $(\rho_L, t) \models W \neg \phi_1 \lor \neg \phi_2$.

Therefore, Lemma 1 holds for $\phi_1 \lor \phi_2$.

Similarly, it can be proved by induction that Lemma 1 holds for $\phi_1 \land \phi_2$.

(iv) We assume that Lemma 1 holds for ϕ and prove Lemma 1 holds for $F_{\leq \tau} \phi$ and $G_{\leq \tau} \phi$.

For $l = 1$, if $L < t + \zeta(\phi, l) + 1$, then for any $t' \in [t, t+\tau]$, we have $L < \zeta(\phi, l) + t'$, so if Lemma 1 holds for ϕ, then for any $t' \in [t, t + \tau]$, we have $(\rho_L, t') \models W \neg \phi$, thus $(\rho_L, t) \models W G_{\leq \tau} \neg \phi$, hence we have $(\rho_L, t) \models W F_{\leq \tau} \neg \phi$.

Therefore, Lemma 1 holds for $F_{\leq \tau} \phi$.

Similarly, it can be proved by induction that Lemma 1 holds for $G_{\leq \tau} \phi$.

Therefore, it is proved by induction that Lemma 1 holds for any pLTL$_f$ formula ϕ. \hfill \Box

Now we proceed to prove Theorem 1. According to Definition 3, if a demonstration (ρ_L, l) is strongly inconsistent with a subset $\hat{\Phi} = \{\phi_i\}_{i=1}^{N} \subset \Phi$ of pLTL$_f$ formulas, then either $l = 1$, $(\rho_L, 0) \models_S \phi^*$, $(\rho_L, 0) \models_S \neg \phi_i$ for any $\phi_i \in \hat{\Phi}$, or $l = -1$, $(\rho_L, 0) \models_S \neg \phi^*$, $(\rho_L, 0) \models_S \phi_i$ for any $\phi_i \in \hat{\Phi}$.

From Lemma 1, if $L < \zeta(\phi^*, l)$, then either $l = 1$, $(\rho_L, 0) \models W \neg \phi^*$ holds, i.e., $(\rho_L, 0) \models_S \phi^*$ does not hold, or $l = -1$, $(\rho_L, 0) \models W \phi^*$ holds, i.e., $(\rho_L, 0) \models_S \neg \phi^*$ does not hold. Therefore, the demonstration (ρ_L, l) is not strongly inconsistent with a subset $\hat{\Phi} = \{\phi_i\}_{i=1}^{N} \subset \Phi$ of pLTL$_f$ formulas. Contradiction! Hence we have $L \geq \zeta(\phi^*, l)$.

Similarly, from Lemma 1, for any $\phi_i \in \hat{\Phi}$, if $L < \zeta(\phi_i, -l)$, then either $l = 1$, $(\rho_L, 0) \models W \phi_i$ holds, i.e., $(\rho_L, 0) \models_S \neg \phi_i$ does not hold, or $l = -1$, $(\rho_L, 0) \models W \neg \phi_i$ holds, i.e.
Therefore, we have \(L \geq \zeta(\phi_i, l) \) for any \(\phi_i \in \Phi \).

Therefore, we have \(L \geq \zeta(\phi^*, l) \), and \(L \geq \zeta(\phi_i, l) \) for any \(\phi_i \in \Phi \), hence \(L \geq \max\{\zeta(\phi^*, l), \max_{1 \leq i \leq N} \zeta(\phi_i, l)\} \).

Proof of Theorem 2:

If there exists a \(\text{pLTL}_f \) formula \(\phi \) such that \(\phi^* \Rightarrow \phi' \) and \(\sigma(\cdot, \phi') < \sigma(\cdot, \phi^*) \), then for any demonstration \((\rho_L, 1)\), if \((\rho_L, 0) \models_S \phi^*\), then \((\rho_L, 0) \models_S \phi'\). However, in order to teach \(\phi^* \) using a sequence \(D_p \) of positive demonstrations, there should be one demonstration \((\rho_L^*, 1)\) that is strongly inconsistent with \(\phi' \), as \(\sigma(\cdot, \phi') < \sigma(\cdot, \phi^*) \). Therefore, \((\rho_L^*, 0) \models_S \neg \phi'\). Contradiction!

For a sequence of demonstrations \(D_p = \{(\rho_{L_1}^1, 1), (\rho_{L_2}^2, 1), \ldots, (\rho_{L_{\text{ND}}}^{N_{\text{D}}}, 1)\} \), each demonstration \(\rho_{L_k}^k \) is strongly inconsistent with a subset \(\Phi_k \) of \(\text{pLTL}_f \) formulas in \(\Phi \) (\(\Phi_k \) may be empty). If \(\phi^* \in \Phi \) is teachable from \(D_p \), then it holds that \(\Phi \setminus \{\phi^*\} \subset \bigcup_k \Phi_k \). From Theorem 1, for each \(k \), we have \(L_k \geq \max\{\zeta(\phi^*, 1), \max_{1 \leq i \leq |\Phi_k|} \zeta(\phi_i, -1)\} \).

Therefore, we have

\[
\max_{1 \leq k \leq |D_p|} L_k \geq \max_{1 \leq k \leq |D_p|} \max\{\zeta(\phi^*, 1), \max_{1 \leq i \leq |\Phi_k|} \zeta(\phi_i, -1)\} \\
\geq \max\{\zeta(\phi^*, 1), \max_{\phi_i \in \Phi \setminus \{\phi^*\}} \zeta(\phi_i, -1)\} \\
\geq \max_{\phi_i \in \Phi \setminus \{\phi^*\}} \zeta(\phi_i, -1).
\]

Proof of Theorem 3:

Global preferences When the preference function is global, the myopic adaptive TLIP algorithm reduces to a greedy set cover algorithm for minimizing the AN teaching cost. Therefore, we have

\[
\text{AN-Cost}_{S}^{\text{WC}}(T^m, \mathcal{L}_\sigma) \leq (\log |\Phi_S| + 1)\text{AN-Complexity}_S(\mathcal{L}_\sigma).
\]

For minimizing the AL teaching cost, the myopic adaptive TLIP algorithm reduces to a greedy weighted set cover algorithm with the weights being the lengths of the demonstrations. Therefore, we have

\[
\text{AL-Cost}_{S}^{\text{WC}}(T^m, \mathcal{L}_\sigma) \leq (\log |\Phi_S| + 1)\text{AL-Complexity}_S(\mathcal{L}_\sigma).
\]

Local preferences To be consistent with the notations used in the main paper, for any integer \(k \in [1, K] \), we use \(\phi_k \) to denote the learner’s hypothesis formula after \(k \) demonstrations, and \(\Phi^k \) to denote the version space after \(k \) demonstrations.
After \(k \) demonstrations, we define the **preferred version space**

\[
\mathcal{P}_{\sigma, \phi^*}(\phi^k, \Phi^k) := \{ \phi' \in \Phi^k : \sigma(\phi'; \phi^k) \leq \sigma(\phi^*; \phi^k) \}
\]

(8.1)
to be the set of hypotheses in the current version space \(\Phi^k \) that are preferred over \(\phi^* \) (according to \(\sigma \)) from \(\phi^k \).

Assume that the preference function \(\sigma \) and the structure of tests satisfy Condition 1 and 2 from Theorem 3. Suppose we have run the myopic adaptive TLIP algorithm which gives us \(|P| \).

The myopic adaptive TLIP algorithm picks the demonstration which leads to the smallest preferred version space. That is,

\[z^k = \arg \min_z |\mathcal{P}_{\sigma, \phi^*}(\phi_z, \Phi(D_k \cup \{z\})|. \]

Here, \(\phi_z \) denotes the hypothesis that the learner takes if the learner observes demonstration \(z \) after \(k \) demonstrations. If \(z \) is inconsistent with \(\phi^k \), then by Condition 2 of Theorem 3, there exists a demonstration \(z' \) which is consistent with \(\phi^k \) and only differs from \(z \) at \(\phi^k \), i.e., \(\Phi(\{z'\}) \setminus \Phi(\{z\}) = \{\phi^k\} \). Then we have

\[
\mathcal{P}_{\sigma, \phi^*}(\phi^k, \Phi(D_k \cup \{z\}))
\]

\[
= \{ \phi' \in \Phi(D_k \cup \{z\}) : \sigma(\phi'; \phi^k) \leq \sigma(\phi^*; \phi^k) \}
\]

\[
= \{ \phi' \in \Phi(D_k \cup \{z\}) : \sigma(\phi_z; \phi^k) \leq \sigma(\phi^*; \phi^k) \}
\]

(8.3)

\[
\leq \{ \phi' \in \Phi(D_k \cup \{z\}) : \sigma(\phi'; \phi_z) \leq \sigma(\phi^*; \phi_z) \}
\]

\[
= \mathcal{P}_{\sigma, \phi^*}(\phi_z, \Phi(D_k \cup \{z\})),
\]

where step (a) follows from the fact that \(\Phi(D_k \cup \{z\}) \cap \mathcal{P}_{\sigma, \phi_z}(\phi_z, \Phi(D_k)) = \phi_z \), and step (b) follows from Condition 2 of Theorem 3. From (8.3) we know \(\mathcal{P}_{\sigma, \phi^*}(\phi^k, \Phi(D_k \cup \{z\})) \leq \mathcal{P}_{\sigma, \phi^*}(\phi_z, \Phi(D_k \cup \{z\})). \) Therefore,

\[
|\mathcal{P}_{\sigma, \phi^*}(\phi^k, \Phi(D_k \cup \{z'\}))| - 1 = |\mathcal{P}_{\sigma, \phi^*}(\phi^k, \Phi(D_k \cup \{z\}))|
\]

\[
\leq |\mathcal{P}_{\sigma, \phi^*}(\phi_z, \Phi(D_k \cup \{z\}))|,
\]

(8.4)

which gives us \(|\mathcal{P}_{\sigma, \phi^*}(\phi^k, \Phi(D_k \cup \{z'\}))| \leq |\mathcal{P}_{\sigma, \phi^*}(\phi_z, \Phi(D_k \cup \{z\}))| + 1. \)

We consider the following three cases.
I. \(|P_{\sigma,\phi^*}(\phi_k, \Phi(D_k \cup \{z'\}))| = |P_{\sigma,\phi^*}(\phi_z, \Phi(D_k \cup \{z\}))| + 1\). Then, by Eq. (8.4), we have
\[
P_{\sigma,\phi^*}(\phi_k, \Phi(D_k \cup \{z\})) = P_{\sigma,\phi^*}(\phi_z, \Phi(D_k \cup \{z\})).
\]
That is, even the demonstration \(z\) can bring the learner to a new hypothesis \(\phi_z\), it does not introduce new hypotheses into the preferred version space.

II. \(|P_{\sigma,\phi^*}(\phi_k, \Phi(D_k \cup \{z'\}))| < P_{\sigma,\phi^*}(\phi_z, \Phi(D_k \cup \{z\}))| + 1\). In this case, the greedy teacher will not pick \(z\), because the gain of demonstration \(z'\) is no less than the gain of \(z\) in terms of the greedy heuristic. In the special case where \(|P_{\sigma,\phi^*}(\phi_k, \Phi(D_k \cup \{z'\}))| = P_{\sigma,\phi^*}(\phi_z, \Phi(D_k \cup \{z\}))|\), the teacher does not pick \(z\), because it makes the learner move away from its current hypothesis and hence is less preferred.

For completeness, we also consider the case when the demonstration \(z\) is consistent with \(\phi^k\):

III. If the teacher picks a consistent demonstration \(z\), then the learner does not move away from her current hypothesis \(\phi^k\). As a result, the preference ordering among set \(P_{\sigma,\phi^*}(\phi_k, \Phi(D_k \cup \{z'\}))\) remains the same.

With the above three cases set up, we now reason about the gain of the myopic algorithm. An important observation is that, the greedy teaching demonstrations never add any hypotheses into the preferred version space. Therefore, after \(k\) demonstrations, for any demonstration \(z\), we have
\[
P_{\sigma,\phi^*}(\phi_k, \Phi(D_k \cup \{z\})) = P_{\sigma,\phi^*}(\phi_{k-1}, \Phi(D_k \cup \{z\})) = \ldots = P_{\sigma,\phi^*}(\phi_0, \Phi(D_k \cup \{z\})).\] (8.5)

Next, we look into the gain for each of the three cases above.

I. Adding \(z^k\) changes the learner’s hypothesis, i.e., \(\phi^{k+1} \neq \phi^k\), but the resulting preferred version space induced by \(\phi^{k+1}\) is the same with that of \(\phi^k\). In this case, we have
\[
|P_{\sigma,\phi^*}(\phi^k, \Phi(D^k))| - |P_{\sigma,\phi^*}(\phi^{k+1}, \Phi(D^k \cup \{z^k\}))|
= |P_{\sigma,\phi^*}(\phi^0, \Phi(D^k))| - \min_z |P_{\sigma,\phi^*}(\phi^{k+1}, \Phi(D^k \cup \{z\}))|
= |P_{\sigma,\phi^*}(\phi^0, \Phi(D^k))| - \min_z |P_{\sigma,\phi^*}(\phi^0, \Phi(D^k \cup \{z\}))|
= \max_z (|P_{\sigma,\phi^*}(\phi^0, \Phi(D^k))| - |P_{\sigma,\phi^*}(\phi^0, \Phi(D^k \cup \{z\}))|).\] (8.6)
II. In this case, we have

\[
|\mathcal{P}_{\sigma,\phi^*}(\phi^k, \Phi(D^k \cup \{z^k\}))| \\
= |\mathcal{P}_{\sigma,\phi^*}(\phi^2, \Phi(D^k \cup \{z\}))| \\
= |\mathcal{P}_{\sigma,\phi^*}(\phi^k, \Phi(D^k \cup \{z'\}))|
\]

and the myopic algorithm picks \(z^k = z'\). The learner does not move away from her current hypothesis: \(\phi^{k+1} = \phi^k\). However, since \(\Phi(\{z'\}) \setminus \Phi(\{z\}) = \{\phi^k\}\), we get

\[
|\mathcal{P}_{\sigma,\phi^*}(\phi^{k+1}, \Phi(D^k \cup \{z^k\}))| \\
= |\mathcal{P}_{\sigma,\phi^*}(\phi^k, \Phi(D^k \cup \{z'\}))| + 1 \\
= \min_{z''} |\mathcal{P}_{\sigma,\phi^*}(\phi^0, \Phi(D^k \cup \{z''\}))| + 1.
\]

(8.7)

where step (a) is due to the greedy choice of the myopic algorithm. Further note that before reaching \(\phi^*\), the gain of a greedy demonstration is positive. Therefore,

\[
|\mathcal{P}_{\sigma,\phi^*}(\phi^k, \Phi(D^k))| - |\mathcal{P}_{\sigma,\phi^*}(\phi^{k+1}, \Phi(D^k \cup \{z^k\}))| \\
\geq \frac{1}{2} (1 + |\mathcal{P}_{\sigma,\phi^*}(\phi^k, \Phi(D^k))| - |\mathcal{P}_{\sigma,\phi^*}(\phi^{k+1}, \Phi(D^k \cup \{z^k\}))|) \\
= \frac{1}{2} \max_{z} (|\mathcal{P}_{\sigma,\phi^*}(\phi^0, \Phi(D^k))| - |\mathcal{P}_{\sigma,\phi^*}(\phi^0, \Phi(D^k \cup \{z\}))|).
\]

(8.8)

III. In this case, \(z^k\) is consistent with \(\phi^k\), the greedy gain amounts to the maximal number of hypotheses removed from the preferred version space. Thus we have

\[
|\mathcal{P}_{\sigma,\phi^*}(\phi^k, \Phi(D^k))| - |\mathcal{P}_{\sigma,\phi^*}(\phi^{k+1}, \Phi(D^k \cup \{z^k\}))| \\
= \max_{z} (|\mathcal{P}_{\sigma,\phi^*}(\phi^0, \Phi(D^k))| - |\mathcal{P}_{\sigma,\phi^*}(\phi^0, \Phi(D^k \cup \{z\}))|).
\]

(8.9)

Combining Eq. (8.6), (8.8), (8.9), we have proven the inequality (8.2).

Based on the above discussions, we know that the teaching sequence provided by the myopic adaptive TLIP algorithm never adds new hypotheses into the initial preferred version space \(\mathcal{P}_{\sigma,\phi^*}(\phi^0, \Phi(D^k))\), and neither does it move consistent hypotheses out of \(\mathcal{P}_{\sigma,\phi^*}(\phi^0, \Phi(D^k))\). The teaching objective thus reduces to a set cover objective, and the teaching finishes once all hypotheses, except \(\phi^*\), in the initial preferred version space are covered.
From inequality (8.2), we show that with each demonstration, the gain of the myopic adaptive TLIP algorithm is at least $\frac{1}{2}$ the gain of the greedy set cover algorithm. Therefore, when the preference function is local but satisfies Conditions 1 and 2 of Theorem 3, the myopic adaptive TLIP algorithm reduces to a 2-approximate greedy set cover algorithm for minimizing the AN teaching cost [33]. So we have the logarithmic approximation results as follows.

$$\text{AN-Cost}_{\text{WC}}^S (T^m, \mathcal{L}_\sigma) \leq 2(\log |\tilde{\Phi}_S| + 1)\text{AN-Complexity}_{\text{S}}(\mathcal{L}_\sigma).$$

For minimizing the AL teaching cost, the myopic adaptive TLIP algorithm reduces to a 2-approximate greedy weighted set cover algorithm with the weights being the lengths of the demonstrations. So we have the logarithmic approximation results as follows.

$$\text{AL-Cost}_{\text{WC}}^S (T^m, \mathcal{L}_\sigma) \leq 2(\log |\tilde{\Phi}_S| + 1)\text{AL-Complexity}_{\text{S}}(\mathcal{L}_\sigma).$$

9 Case Study: Robot Navigation Scenario

In this case study, we consider a robotic navigation scenario in a simulated space partitioned into 81 cells as shown in Fig.6. Each cell is associated with a color. A robot can be only at one cell at any time. The robot has five possible actions at each time step: stay still, go north, go south, go east or go west. For simplicity, we assume that each action is deterministic, i.e., there is zero slip rate. For example, when the robot takes action to go north at the cell located at (1, 1), it will land in the cell located at (2, 1). However, if the robot hits the boundaries, it will remain at the same position.

As shown in the gridworld map, if the robot is at a red cell, then at the next time step, it can be at a red cell or a blue cell, but cannot be at a green cell or a yellow cell; and if the robot is at a green cell, then at the next time step, it can be at a green cell, a yellow cell or a blue cell, but cannot be at a red cell. We add such transition constraints to the Integer programming formulation in computing the demonstrations.

The hypothesis set of $pLTL_f$ formulas are listed in Table 1. The set S of states is \{Red, Blue, Green, Yellow\}. In each teaching session, we randomly select both the initial hypothesis and the target hypothesis from the hypothesis set. All results are averaged over 10 teaching sessions.

Global preferences We implement the following four methods for comparison for myopic teaching performances.

- **AN-TLIP**: TLIP for minimizing AN teaching cost.
- **AL-TLIP**: TLIP for minimizing AL teaching cost.
- **AN-RG**: randomized greedy algorithm for minimizing AN teaching cost. At each iteration, we greedily pick the demonstration with minimal AN teaching cost among a randomly selected subset of demonstrations.
Table 3: Hypothesis set of pLTL$_f$ formulas ($\alpha = 5, 10, 15$ correspond to hypothesis sets of sizes 90, 180 and 270, respectively).

Example	Hypothesis pLTL$_f$ Formulas
F-formulas	$F_{\leq 1}$Red, $F_{\leq 1}$Blue, $F_{\leq 1}$Green, $F_{\leq 1}$Yellow, $F_{\leq 2}$Red, $F_{\leq 2}$Blue, $F_{\leq 2}$Green, $F_{\leq 2}$Yellow, ... $F_{\leq \alpha}$Red, $F_{\leq \alpha}$Blue, $F_{\leq \alpha}$Green, $F_{\leq \alpha}$Yellow
G-formulas	$G_{\leq 1}$Red, $G_{\leq 1}$Blue, $G_{\leq 1}$Green, $G_{\leq 2}$Red, $G_{\leq 2}$Blue, $G_{\leq 2}$Green, $G_{\leq 2}$Yellow, ... $G_{\leq \alpha}$Red, $G_{\leq \alpha}$Blue, $G_{\leq \alpha}$Green, $G_{\leq \alpha}$Yellow

Figure 7: AN and AL teaching costs under global (uniform) preferences with increasing sizes of the hypothesis set in the robotic navigation scenario.

- **AL-RG**: same with AN-RG except that here we minimize the AL teaching cost.

Fig. 7 shows that AN-TLIP and AL-TLIP are the best for minimizing the AN teach-
ing costs and the AL teaching costs, respectively. The AN teaching costs using AN-TLIP are the same as the AN teaching costs using AL-TLIP, which are up to 62.5% less than those using AN-RG and AL-RG. The AL teaching costs using AL-TLIP are 17.78%, 45.43% and 42.64% less than those using AN-TLIP, AN-RG and AL-RG, respectively.

Local preferences We use the mapping ϱ that maps each color to an integer. Specifically, ϱ(Red) = 1, ϱ(Blue) = 2, ϱ(Green) = 3, and ϱ(Yellow) = 4. For two pLTL$_f$ formulas $\phi_1 = F \leq i_1$, Red and $\phi_2 = F \leq i_2$, Green, we define the Manhattan distance between ϕ_1 and ϕ_2 as $|i_1 - i_2| + |\varrho$(Red) - ϱ(Green)|. We consider the following local preference:

1. The learner prefers formulas with the same temporal operator as that in the learner’s previous hypothesis;
2. With the same temporal operator the learner prefers formulas that are “closer” to the learner’s previous hypothesis in terms of the Manhattan distance.

![Figure 8: AN and AL teaching costs for adaptive and non-adaptive teaching with increasing sizes of the hypothesis set in the robotic navigation scenario.](image)

To test the advantage of adaptive teaching, we compare it with non-adaptive teaching in the presence of uncertainty. We consider local preferences with added uncertainty noises. Specifically, the learner has equal preference of selecting the formulas in the version space that have the least Manhattan distance from the current hypothesis and also any formula that can be perturbed from these formulas in the version space (here “perturb” means adding or subtracting the parameters i or ϱ(·) by 1).

Fig. 8 shows that Ada-AN-TLIP (i.e., adaptive AN-TLIP) can reduce the AN teaching costs by 28% compared with NAda-AN-TLIP (i.e., non-adaptive AN-TLIP), and Ada-AL-TLIP (i.e., adaptive AL-TLIP) can reduce the AN teaching costs by 30.75% compared with NAda-AL-TLIP (i.e., non-adaptive AL-TLIP).