COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers

Olga Shomron1, Inbar Nevo-Yassaf1, Tamar Aviad1, Yakey Yaffe1, Eitan Erez Zahavi2, Anna Dukhovny3, Eran Perlson2, Ilya Brodsky4, Adva Yehezkeli5, Metsada Pasmanik-Chor5, Anna Mironov6, Galina V. Bezoussenko6, Alexander A. Mironov6, Ella H. Sklan3, George H. Patterson3, Yoji Yonemura5, Mara Sannai4, Christoph Kaether5, and Koret Hirschberg1

COPII and COPI mediate the formation of membrane vesicles translocating in opposite directions within the secretory pathway. Live-cell and electron microscopy revealed a novel mode of function for COPII during cargo export from the ER. COPII is recruited to membranes defining the boundary between the ER and ER exit sites, facilitating selective cargo concentration. Using direct observation of living cells, we monitored cargo selection processes, accumulation, and fission of COPII-free ERES membranes. CRISPR/Cas12a tagging, the RUSH system, and pharmaceutical and genetic perturbations of ER-Golgi transport demonstrated that the COPII coat remains bound to the ER-ERES boundary during protein export. Manipulation of the cargo-binding domain in COPII Sec24B prohibits cargo accumulation in ERES. These findings suggest a role for COPII in selecting and concentrating exported cargo rather than coating Golgi-bound carriers. These findings transform our understanding of coat proteins’ role in ER-to-Golgi transport.

Introduction

The first sorting stations for proteins in the secretory pathway are ER exit sites (EREs; Balch et al., 1994). These are specialized membrane domains on the surface of the ER that are identified by the COPII heterocomplex and ER-Golgi recycling proteins such as ERGIC53 (Schindler et al., 1993). The COPII protein complex has been identified in yeast and mammalian cells as a membrane coat involved in anterograde trafficking from the ER (Barlowe et al., 1994; Kirk and Ward, 2007). The complex formation is initiated by the Sar1 small GTPase, which is recruited to the ER membrane by Sec12, a protein that acts as its GDP-to-GTP exchange factor. Sar1 recruitment triggers the assembly of Sec23/24 subcomplexes with cargo proteins, and then Sec13/31 forms the outer cage of the coat (Aridor, 2018; Peotter et al., 2019; Zanetti et al., 2011). The complex formation is initiated by the Sar1 small GTPase, which is recruited to the ER membrane by Sec12, a protein that acts as its GDP-to-GTP exchange factor. Sar1 recruitment triggers the assembly of Sec23/24 subcomplexes with cargo proteins, and then Sec13/31 forms the outer cage of the coat (Aridor, 2018; Peotter et al., 2019; Zanetti et al., 2011). The assembling lattice deforms the membrane to become spherical or tubular membrane structures (Mancias and Goldberg, 2008; Zanetti et al., 2013). Mezzacasa and Helenius (2002) demonstrated that the COPII-labeled transitional ER defines the quality control boundary, after which misfolded proteins are not retrieved back to the ER. COPII machinery is involved in cargo recruitment, sorting, and exit out of the ER (Aridor, 2018; Barlowe and Helenius, 2016; Gomez-Navarro and Miller, 2016; Zanetti et al., 2011). However, in mammalian cells, the existence of COPII vesicles is still controversial (Mironov and Bezoussenko, 2019; Mironov et al., 2003; Zeuschner et al., 2006). Recent research focused on large cargo proteins such as procollagen stimulated alternative or additional hypotheses about the role of COPII components in cargo sorting, concentration, and export from the ER (Saito et al., 2009). Large procollagen-containing COPII carriers were described (Gorur et al., 2017; Yuan et al., 2018), but more and more data show that, alternatively, large cargo leaves the ER without COPII (McCaughey et al., 2019). TANGO, an ER resident protein, together with cTAGES, is associated with mediating the interaction between soluble cargo proteins and COPII to facilitate their export from the ER (Saito et al., 2009; Saito et al., 2011). COPII with TANGO’s help may function by forming a collar that...
restricts and controls access to post-ER compartments (Raote et al., 2017; Raote et al., 2018; Santos et al., 2015). Following these findings, COPII was shown to be required for stringent ER retention of misfolded and ER resident proteins (Ma et al., 2017).

Here, living intact cells expressing fluorescent protein (FP)-tagged COPII either transiently or via knock-in at endogenous levels were used to visualize ER-to-Golgi trafficking of FP-tagged cargo. We found that carrier fission, the earlier step of cargo selection, and FP-tagged cargo accumulation occur essentially downstream from COPII-labeled membranes. Confocal and immunoelectron microscopy of cells treated with Brefeldin A (BFA) and nocodazole (Noc) demonstrated that COPII defines the ER–ERES boundary, facilitating cargo selection and concentration in ERES membranes. Using mutagenesis to perturb cargo binding of COPII, we found that cargo accumulated in the ER, thus supporting COPII localization and function at the ER–ERES boundary. Furthermore, we demonstrate that a subpopulation of COPII is localized to ERESs and is also seen on ER–Golgi anterograde carriers. Our data suggest a revised model for COPII functioning as a stable gatekeeper at the ERES boundary rather than as a transient coat of transport carriers.

Results

The distribution of ER exit sites

The well-established ERES distribution (Stephens et al., 2000) was confirmed using our markers expressed in living intact cells. To determine the robustness of our findings, we used COS7, HeLa, and Huh7 cell lines. The COPII subunit mCherry-Sec24C was coexpressed either with the FP-tagged ER marker reticulon or VSVG (Fig. 1 A). Fig. 1 B and Video 1 demonstrate the distribution of ERESs in living HeLa cells coexpressing COPII Sec13-mCherry and the secretory transport of VSVG-GFP at permissive temperature of 32°C. In these cells, we also demonstrate that VSVG secretory traffic is indistinguishable from what is reported in other cell lines (Hirschberg et al., 1998). Upon temperature shift, the ER-resident VSVG is transported to the Golgi apparatus and further to the cell surface. The Sec13-mCherry is under endogenous expression as the mCherry tag was knocked in at the Sec13 C terminus using CRISPR/Cas12a (Fueller et al., 2020). The characterization of this cell line is detailed in Fig. S1. In these cells, Sec13-mCherry shows the typical intracellular distribution of ERESs and, in so doing, also serves as a control for experiments where fluorescently labeled COPII subunits (Sec13, Sec24B, Sec24C, and Sec23) were transiently expressed. In either type of experimental system, the intracellular distributions of COPII subunits appeared identical.

COPII membranes are stable and immobile

Next, we compared the lateral movement of membrane-associated COPII with ER-to-Golgi cargo carriers and plus-ends growth of microtubules labeled with GFP-EB3 in living intact cells. Fig. 2 A shows a maximum-intensity projection of 50 consecutive frames taken at 0.66-s intervals (see also Video 2). Compared with the rapid movement of transport carriers covering significant distances along microtubular tracks toward the Golgi apparatus, COPII-labeled membranes are practically immobile. Similar results are obtained when COPII-labeled membranes are compared with microtubule plus-end tip progression using GFP-EB3 (Fig. 2 B and Video 3). Thus, at the time frame of 3 min when carriers or microtubule plus-ends cover a distance of 10s of microns, COPII membranes are nearly stable and immobile with only minor local random movements.

Additionally, using EB3, the secretory pathway is at a steady-state compared with cells expressing VSVG, where a large mass of cargo is released from the ER. In both states, COPII-labeled membranes are stationary. These data are consistent with early observations (Hammond and Glick, 2000; Stephens et al., 2000; Westrate et al., 2020) and support the idea that COPII membranes are involved in recruiting but not transporting cargo.

Cargo accumulation and fission occur downstream from stationary COPII-coated membranes

As membrane-bound COPII is stable and stationary, we analyzed the early stages of ER export of VSVG. ER export was visualized at the level of a single ERES in a living intact cell. To this end, cells coexpressing the cargo protein VSVG-YFP and the COPII subunit Sec24C-mCherry were shifted to permissive temperature (32°C) after overnight incubation at the nonpermissive temperature of 39.5°C. Fig. 3 A and Video 4 show the dynamics of ER export in a single ERES in a living cell. Cargo is primarily concentrated and accumulated in growing dynamic tubular membranes that mostly do not overlap with COPII membranes and later bud as a whole.

Moreover, during multiple cycles of cargo accumulation and fission, COPII membranes are stable and stationary. Cargo accumulation and carrier fission are coupled and continuous processes. They can only be distinguished at a higher spatiotemporal resolution, as in Fig. 3 B, Video 5, Video 6, Video 7, and Video 8. Based on these image sequences, the first stage is cargo accumulation in ERES membranes (Fig. 3 B, two top panels). Subsequently, these membranes undergo fission to become membrane carriers (Fig. 3 B, two bottom panels). A key observation is that fission sites occur on contiguous ERES membranes adjacent yet segregated from COPII-coated membranes. COPII does not localize to these growing tubular membranes where the cargo is accumulating but instead remains at the tubule base without changing its intensity. An identical cargo accumulation pattern as proliferating dynamic round-shaped or tubular elements and carrier fission is apparent for other types of cargo such as the RUSH-TNF (Boncompain et al., 2012; Fig. 3 C). Also, using the knock-in Sec13-mCherry HeLa cell line transfected with VSVG-GFP (Fig. 3, D and E) and using RUSH-TNF (data not shown) show identical results.

The life history of ER-to-Golgi carriers: Rab1 colocalizes with cargo to the Golgi apparatus

Next, we sought to follow the transport carriers that bud from ERESs to the Golgi apparatus. The knock-in Sec13-mCherry HeLa cells were transfected with VSVG-GFP. About 10 min after the shift to permissive temperature (32°C), the VSVG-GFP within the region of interest surrounding the Golgi was photo-bleached with a high-power laser (Fig. 4 A) before capturing the image sequence. Fig. 4 B shows selected images and a projection
demonstrating a transport carrier budding from an ERES and translocating to connect to the Golgi apparatus (see also Video 9). Next, we attempted to follow the life history of ER-to-Golgi carriers using the Rab1 molecular switch. Rab1, part of the early secretory transport machinery, was recently reported on ERESs and transport vesicles (Westrate et al., 2020). Fig. 4C shows selected images of HuH7 cells cotransfected with VSVG-GFP and Rab1b-mCherry and incubated overnight at the nonpermissive temperature of 39.5°C. Cells were transferred to permissive temperature, and confocal images were captured at 0.8-s intervals. The path from the ERES to the Golgi apparatus of the transport carriers is also shown in the projection and Video 10. Both Rab1 and VSVG colocalization are observed on ERES and transport carriers throughout their path to the Golgi. These data demonstrate that VSVG containing ERES membranes apparently bud and move directly to the Golgi apparatus. Unlike COPII, Rab1b is bound to the carrier membrane throughout its lifetime. Furthermore, our ability to visualize the carrier membrane-bound subpopulation of the small GTPase Rab1, on the background of its soluble form, argues against the view that carrier-bound COPII is below detection levels.

COP II localizes to the ER–ERES boundary, where it mediates selective cargo sorting, and concentration in Noc-BFA–treated cells

Next, we asked to establish the relative localization of ERES, COPII-coated, and ER membranes. To this end, we used a previously reported experimental system where cells are simultaneously treated with BFA and Noc (Dukhovny et al., 2008). We found that the simultaneous inhibition of both Arf1 activation by BFA (Lippincott-Schwartz et al., 1989) and microtubules polymerization by Noc (Hirschberg et al., 1998) preserves the COPII-mediated cargo sorting functions within ERESs while blocking the subsequent exit of cargo from the ER (Dukhovny et al., 2008). Release of VSVG-YFP at permissive temperature in the presence of BFA and Noc results in active COPII-mediated sorting of VSVG-YFP into ERES membranes that now transform at the light microscope level into growing spherical structures (Fig. 5A, Fig. S2, Video 11, and Video 12; Dukhovny et al., 2008; Yonemura et al., 2016). Another key feature of BFA/Noc treatment is that the COPII-cargo segregation is effectively visually emphasized. ERES membrane growth is a direct outcome of COPII-mediated cargo selection, sorting, and accumulation (Fig. S2). The localization of endogenous COPII was verified using immunofluorescence with antibodies against Sec24C (Fig. S2). The effect shown in Fig. 5A is not a side effect of BFA and Noc because it could be reproduced using Golgicide A and colchicine, a BFA analogue with the same target, and a microtubule polymerization inhibitor (Säenz et al., 2009), respectively (Fig. S2). A variety of cargo proteins could be localized to the ERES membrane under BFA and Noc: WT CFTR, GalT, and ERGIC53 (Fig. 5B and Fig. S2). Interestingly, ERGIC53 under BFA/Noc treatment is restricted to the ER and is concentrated in ERES membranes indistinguishable from any other type of exported cargo.
cargo. Next, localization of the membrane-bound COPII collar relative to both cargo-enriched membranes and the ER was determined using deconvolved confocal microscopy analysis of living BFA/Noc-treated cells (Fig. 5 C, Video 11, and Video 12). These data demonstrate that membrane-bound COPII is consistently positioned between the ER and ERESs. To verify whether the membrane and lumen of ERESs in BFA/Noc-treated cells are at all times continuous with those of the ER, we coexpressed mCherry with a cleavable signal sequence with VSVG-YFP. The signal sequence confers insertion into the ER lumen and its further secretion. The continuous lumen labeled with mCherry shown in Fig. 5 D and Video 13 confirms that ERESs under BFA/Noc are linked to the ER. To demonstrate that COPII can distinguish between transport-competent and -incompetent proteins in BFA/Noc-treated cells, we compared COPII-mediated sorting of WT and the Δ508 transport-incompetent mutant of CFTR. While WT CFTR accumulates in ERESs, the transport-incompetent misfolded mutant protein CFTR-Δ508 is excluded from ERESs (Fig. S2; Wang et al., 2004). These data demonstrate that COPII is functional in BFA/Noc: the membrane-bound COPII collar identifies and excludes transport-incompetent misfolded mutant proteins from entering ERESs. Moreover, cargo accumulation proceeds at a normal rate compared with untreated cells (Fig. S2; Dukhovny et al., 2008). ERESs in BFA/Noc-treated cells coexpressing the COPII subunit Sec24C and cargo were monitored using high-speed confocal microscopy to follow cycles of membrane (Fig. S2 and Video 14) and cargo accumulation. The membrane-bound COPII fluorescence levels were indifferent to the undulating cargo concentrations within ERES (Fig. S2 and Video 15) as seen for untreated cells (Fig. 3). This result is consistent with COPII stably occupying the ER–ERES boundary. At the light microscopy level, COPII forms a collar that localizes between ER and ERES membranes. To study the ultrastructure of the BFA/Noc-dilated ERESs, we performed EM using immunogold anti-GFP antibodies on cells coexpressing Sec23C-GFP and VSVG-Scarlet (Fig. 5 E). Cells used for the EM analysis were primarily examined at the light confocal level immediately after fixation (Fig. 5 E, left). The EM images of ERESs and the 3D serial sections reconstruction of the membrane structure (Fig. 5 E, bottom) reveal a highly complex topology of a hollow multilayered perforated sphere (Fig. 5 E, scheme, bottom right). These structures correspond to the membranes in which cargo is sorted and concentrated (Fig. 5 E). The scheme in Fig. 5 E, bottom right, illustrates the positioning of the section relative to the ERESs under BFA/Noc treatment. These structures were previously observed in several studies. The first set of observations reporting on analogous structures titled fenestrated spheres were from thick sectioning EM analysis of the Golgi apparatus (Rambourg and Clermont, 1992). Similar structures were also observed in BFA-treated cells and were referred to as Glumerolini (Pavelka and Ellinger, 1993). Moreover, Golgi fenestrated membranes and ERESs of BFA-treated yeast Schizosaccharomyces pombe (Rambourg et al., 1995b) and Saccharomyces cerevisiae (Rambourg et al., 1995a) exhibited the same morphology and dimensional scale. The immunogold labeling of Sec23 is significantly concentrated at the base of the perforated globular membranes (Fig. 5 E, yellow arrowhead). These data underpin

Figure 2. Membrane-associated COPII is stationary compared with cargo vesicle movement and microtubule plus-end polymerization. (A) Comparison between membrane-associated COPII movement and transport of ER-to-Golgi carriers. An inverted brightest pixel projection of 50 images from a 0.66-s interval time-lapse sequence of COS7 cell coexpressing VSVG-YFP (left, and green in merged image) and the COPII subunit Sec24C-mCherry (center, and red in merged image) after a shift to permissive temperature (32°C). See Video 2. Scale bar = 5 µm. (B) Comparison between membrane-associated COPII and microtubule plus-end polymerization using EB3-GFP. An inverted brightest pixel projection of 50 images from a 3.7-s interval time-lapse sequence of COS7 coexpressing EB3-GFP (left, and green in merged image) and the COPII subunit Sec24C-mCherry (center, and red in merged image). See Video 3. Scale bar = 10 µm.
our observation that the membrane-bound COPII is localized between ER and ERESs.

Mutagenesis of the cargo-binding Sec24B disrupts cargo accumulation in ERESs, causing ER retention

Sec24 is a COPII subunit that directly interacts with cargo (Wendeler et al., 2007). The B isoform of Sec24 interacts with acidic export motifs found in numerous surface proteins, including VSVG and CFTR (Wang et al., 2004). To enhance the binding between Sec24B and the di-acidic motif of cargo proteins, we used structure-based computer modeling of Sec24B (Protein Data Bank accession no. 3EH1; Mancias and Goldberg, 2008) and designed a mutant of Sec24B by substituting valine at position 932 with the basic amino acid arginine (V932R; Fig. 6, A and B). This substitution adds another positive charge to the already existing three arginines in the binding pocket for acidic export motifs of cargo proteins. A stronger binding of the VSVG tail by the V932R mutant than the WT was predicted by both allowed docking peptide states and surface electrostatic potential analysis (Dolinsky et al., 2007; London et al., 2011; Pettersen et al., 2004).

Primarily, we confirmed that the mutant Sec24B\textsubscript{V932R} bound VSVG using coimmunoprecipitation (Fig. 3). Fluorescence recovery after photobleaching was measured for WT or mutant Sec24B in BFA/Noc-treated cells in the presence of coexpressed VSVG (Fig. 6 C). As predicted by the abovementioned models in Fig. 6, A and B, the results show that membrane-bound Sec24B\textsubscript{V932R} has a 1.5-fold slower on/off rate and a significantly smaller mobile fraction than WT Sec24B.
Figure 4. Analysis of the life history of ER-to-Golgi carriers: budding translocation, fusion, and colocalization of cargo with the small GTPase Rab1b. (A) Photobleaching of the Golgi to expose ER-to-Golgi carrier life history. The Golgi region of interest was photobleached in the VSVG-GFP (green) channel after transfer to permissive temperature (32°C), following overnight at 39.5°C. Cells used were a HeLa cell clone expressing an endogenous (endo) Sec13-mCherry (center, and red in merged image) transfected with VSVG-GFP (bottom, and green in merged image). Scale bars = 5 µm. (B) Representative images from a time-
COPII defines the boundary between ER and ERESs

This accumulation can be interpreted at least in Golgi membranes that appear decorated with ERES (Fig. 7C). Retention in the ER of cargo proteins in permissive temperature supports our previous results of the localization of membrane-bound COPII to the ER–ERES boundary, where it controls access of ER proteins to ERES. The phenotype of Sec24BVT was further studied using CFTR, another di-acidic motif-containing multi-transmembrane domain surface protein (Wang et al., 2004). Fig. 6H shows that in BFA/Noc-treated cells, CFTR-GFP is excluded from ERESs in cells coexpressing Sec24BVT, but not Sec24BWT. These data demonstrate that COPII localizes and functions at the ER–ERES boundary, essentially mediating selective cargo concentration from ER via COPII-coated membranes to ERES.

Model of COPII function at the ER boundary

Implication I: Transport from ER through COPII collar to Golgi via direct membrane connection

In this study, we provide data that support an alternative hypothesis for the role of the COPII machinery in ER export. Rather than COPII-coated vesicles, we demonstrate that COPII-coated membranes form a collar that defines the boundary between the ER and ERES membranes (Fig. 7A). The traditional mechanism described for COPII recruitment, assembly, and cargo selection is compatible with our alternative model. Specifically, ER-localized Sec12-activated Sar1 recruits the Sec24-Sec23 to the membrane at the ER side of the COPII collar. Next, the Sec23-Sec24 complex interacts with transport competent cargo, and the complex translocates to release the cargo at the ERES. The drive for this COPII-cargo complex movement toward the ERES is based on two types of well-documented interactions: non-specific interaction between cargo transmembrane domain and surrounding lipids (Fig. 7A, top right; Dukhovny et al., 2009; Sharpe et al., 2010), and specific interaction between cargo export signal and COPII (Fig. 7A, bottom right; Kuehn et al., 1998; Lee and Goldberg, 2010). These interactions in the context of our new model are discussed in detail in the Discussion. This model is fully compatible with the new revisited hypothesis of COPII-mediated ER–Golgi direct connectivity that is gaining momentum (Griffiths, 2000; Raote and Malhotra, 2019). A subpopulation of Golgi-associated ERESs is consistently present when labeling with COPII markers (Fig. 1, A and B; and Fig. 2, A and B). ERESs are also frequently observed adjacent to Golgi cisternae in EM studies (Fan et al., 2003; Sesso et al., 1994). After the shift to permissive temperature, we visualized VSVG-YFP accumulation in Golgi membranes that appear decorated with ERES (Fig. 7C and Video 1). This accumulation can be interpreted at least in part as mediated by direct transfer of cargo from ER to the Golgi via the Golgi-associated COPII domains. The simultaneous disappearance of the Golgi and subpopulation of Golgi-associated COPII domains upon BFA treatment (Video 16) provides some support for direct connectivity between ER and Golgi. Notably, under that BFA treatment, the rest of the peripheral non–Golgi-associated ERESs were apparently not affected (Ward et al., 2001).

Implication II: Evidence for COPI in anterograde traffic

The localization of COPII to the boundary between the ER and ERES membranes prompts a question about the coat protein’s identity for anterograde ER-to-Golgi carriers. Several observations clearly show COPI’s involvement in anterograde traffic (Scales et al., 1997; Shima et al., 1999). Both Scales et al. (1997) and Shima et al. (1999) demonstrated a sequential mode of action for COPII replacing COPII on ER-to-Golgi vesicles. COPII-positive membranes are considered as markers of the adjacent ER–Golgi intermediate compartment (Ben-Tekaya et al., 2005; Klumperman et al., 1998). However, it is still accepted in the literature that COPI is exclusively associated with retrograde transport. Confocal time-lapse microscopy of living intact LdlF cells (Presley et al., 2002) coexpressing Sec24C-mCherry and the ER marker KDEL-BFP2 demonstrated that COPII localized to Golgi apparatus membranes and Sec24C-positive ERESs (Fig. S4). Before budding, both eCOPI-YFP and Sec24C-mCherry partially overlap and display local random movements as a single object on top of the ER (Video 17). Upon budding, the COPII-positive membranes rapidly move toward the Golgi. This observation challenges the retrograde role of COPI and is consistent with the idea that COPI is labeling a separate organelle such as ERGIC (Blum et al., 2000). A rapid movement toward the Golgi follows the budding of COPII membranes.

Thus, we demonstrate a new model for the function of COPII based on direct live-cell microscopy and EM. We find that COPIII occupies and defines the boundary between the ER and ERESs, where it functions in cargo sorting and concentration. COPII-free cargo-loaded ERES membranes undergo fission to form ER-to-Golgi carriers.

Discussion

The COPII machinery role in the concentration of cargo has been previously reported (Farhan et al., 2007; Malkus et al., 2002) and reviewed (Gomez-Navarro and Miller, 2016). Traditionally, cargo concentration is coupled to COPII-coated vesicle formation (Béthune and Wieland, 2018). However, our data demonstrate a well-defined localization of COPII to the ER–ERES boundary. Accordingly, the membranes that accumulate cargo, transform
Figure 5. Characterization and localization of COPII in ERESs in BFA/Noc-treated intact living cells. (A) 3D confocal analysis of ERESs in BFA/Noc-treated living cells. A single confocal image from a z-section stack of a COS7 cell cotransfected with VSVG-YFP (green) and Sec24C-mCherry (red) transferred to permissive temperature (32°C) after overnight incubation at 39.5°C and treated with BFA/Noc as described in Materials and methods. The top left insert is a fivefold enlargement of a single ERES. The top right insert is a 3D reconstruction of the same ERES. Bar and white arrows are 1 µm in the x, y, and z directions. Scale bar = 10 µm. (B) Colocalization of ERGIC53 and COPII in ERESs under BFA/Noc treatment. COS7 cells expressing ERGIC53-YFP and the COPII subunit Sec24C-mCherry were treated with BFA/Noc as described in Materials and methods section. Inset (scale bar = 2 µm) is a fivefold enlargement of a single representative ERES. Scale bar = 10 µm. (C) COPII-labeled membranes separate ER and ERES membranes. Confocal deconvolved images of a COS7 cell were transfected and treated as in A. Six representative fourfold enlarged images of ERESs are shown on the right. Yellow/blue arrows point to COPII-coated collars (Sec24C-mCherry, red) intersecting between ER and ERES. The VSVG (green) channel is shown inverted on the right. See Video 11 and Video 12. Scale bar = 10 µm. (D) ERESs are connected to the ER in BFA/Noc-treated cells. Confocal image of a living COS7 cell cotransfected with VSVG-YFP (green) and the soluble secreted luminal marker signal sequence-mCherry (red) under BFA/Noc treatment. See Video 13. Bar = 1 µm. (E) Immunogold EM analysis demonstrates the transformation of ERES membranes under BFA/Noc treatment to spherical-tubular membranes known as glumerolini. Left: Confocal image of an ERES of a fixed COS7 cell expressing Sec23-GFP (green) and VSVG-Scarlet (red) under BFA/Noc treatment after 30 min at the permissive temperature 32°C. Right: Immunogold EM serial sections labeled with anti-GFP antibodies of ERESs in BFA/Noc-treated cells. Yellow arrowheads point to sites of contact to ER with increased labeling of COPII. Scale bar = 200 nm. Bottom: A 3D reconstruction of the membrane structure from serial sections. Bottom right: A scheme depicting the positioning of the section relative to the ERESs under BFA/Noc treatment.
Figure 6. A site-directed gain of function mutation of the cargo binding site of Sec24B obstructs ER export at the ER–ERES boundary. (A) Computer modeling of the binding of Sec24B WT or the V932R mutant to the VSVG export motif. (A) A ribbon diagram of the crystallographic structure of the binding pocket of Sec24B is shown in gray with allowed conformations of the VSVG export motif in colors. In green are the amino acids with side chain structural representations before and after substitution. (B) Electrostatic potential and solvent accessibility maps demonstrate a more defined pocket for the VSVG tail binding site in the V932R mutant compared with the WT. (C) FRAP of COS7 cells coexpressing the VSVG-GFP (green) and the Sec24B-mCherry (red, WT on the left and V932R mutant on the right) under BFA/Noc treatment as described in Materials and methods. Images were captured after bleaching a rectangle of WT or mutant Sec24B-mCherry to follow the recovery rate. Scale bar = 5 µm. (D) FRAP analysis for the experiments in C. Comparison of the membrane-binding dynamics for the WT (black) or V932R mutant (red) Sec24B. To avoid background fluorescence, maximum pixel intensities within the bleach box were exclusively plotted. Data represent an average of 10–12 experiments. Data were fitted to a single exponential equation shown in the graph. Bar graphs show the average mobile fractions (left) and exponential rate constant (right) with SDs. (E) Dose–response of Sec24B V932R mutant (red) overexpression inhibiting ER-to-Golgi export of VSVG-YFP (green). Three cells with different levels of expression of Sec24B V932R with a corresponding degree of ER export inhibition. Arrowhead points to the Golgi apparatus. Scale bar = 10 µm. (F) Expression of Sec24B V932R mutant (red) overexpression inhibiting ER export of VSVG-YFP (green). Three cells with different levels of expression of Sec24B V932R with a corresponding degree of ER export inhibition. Arrowhead points to the Golgi apparatus. Scale bar = 10 µm. (G) Sec24B V932R prevents VSVG cargo accumulation in ERESs in BFA/Noc-treated cells. COS7 cells were cotransfected with VSVG-YFP (green) and Sec24B V932R-mCherry (red) and treated with Noc and BFA. Yellow arrowheads point to ERESs. Scale bar = 10 µm. (H) Sec24B V932R blocks the accumulation of CFTR in ERESs in BFA/Noc-treated cells. COS7 cells cotransfected with CFTR-GFP (green, inverted on the right) and either Sec24B V932R-mCherry or Sec24B WT-mCherry (red) were treated with Noc and BFA. Yellow arrowheads point to ERESs. Scale bar = 10 µm.
to carriers, and move to fuse with the Golgi are COPII-deficient. Our findings are consistent with several previously published studies. (i) The stationary and stable appearance of COPII-labeled domains (Hammond and Glick, 2000; Stephens et al., 2000; Weststrate et al., 2020) challenges the role of COPII as a vesicle coat as it is absent from mobile carriers. Its apparent stability during cargo accumulation in adjacent ERESs is inconsistent with the expected COPII accumulation during the cargo selection-coupled coat assembly (Kuehn et al., 1998). (ii) The localization and function of COPII as a gatekeeper at the ER–ERES boundary is consistent with its emerging role in quality control (Ma et al., 2017; Mezzacasa and Helenius, 2002). (iii) Our model is compatible with the export mechanism proposed for large cargo molecules such as procollagen (Raote et al., 2020; Raote and Malhotra, 2019; Raote et al., 2018; Saito et al., 2009). Essentially, the localization of COPII to the ER–ERES boundary is preempting the need for a variety of coat configurations to fit different cargo shapes and sizes. (iv) Our model explains the observations of early recruitment of COPI to an-terograde transport carriers in close proximity to the ER (Bednarek et al., 1995; Orci et al., 1997; Presley et al., 2002; Scales et al., 1997; Stephens et al., 2000). As COPII occupies the ER–ERES boundary, COPI on ERES membranes may well be involved in the fission of the final transport carrier from the ERES, also more directly explaining why BFA, an inhibitor of the ARF1 GDP-to-GTP exchange factor, inhibits ER export. Undoubtedly, the core COPII proteins Sar1, Sec13/31, Sec23/24, Sec12, and Sec16 are essential for ER export. They are involved in recruiting and concentrating cargo at ERES. It is widely accepted that upon recruitment to ER membranes, COPII coat induces buds that eventually transform to spherical 60–70-nm vesicles (Zanetti et al., 2011; Barlowe and Helenius, 2016; Gomez-Navarro and

Figure 7. Schematic representation for the localization and function of the COPII heterocomplex at the ER–ERES boundary: Support for direct ERES to Golgi transport. (A) The localization and function of the COPII heterocomplex at the ER–ERES boundary. Main panel: COPII dynamically binds and establishes domains of collar-like elongated membranes that comprise a stable ER–ERES boundary. Cargo accumulates in COPII-free ERES membranes by passage through the COPII coated neck. Fission ensues to form Golgi bound COPII-deficient carriers. Top right: Hydrophobic mismatching between transmembrane domains of cargo proteins and surrounding lipids is essential for cargo sorting: Schematic representation demonstrating how bilayer thickness gradient from thinner ER to thicker ERES membranes drives cargo into ERES. Allivation of hydrophobic mismatching of cargo transmembrane domains facilitates their concentration in ERES membranes by preventing their diffusion through the COPII neck back to the ER. Bottom right: A detailed model of the COPII cargo sorting machinery at the ER–ERES boundary. COPII is recruited exclusively at the ER adjacent to the COPII neck by Sec12 and Sar1-GTP and binds cargo via the Sec24 subunit. The COPII-cargo complex is driven toward ERES potentially by the abovementioned hydrophobic mismatch interactions. COPII coat disassembly initiated by Sar1-GTP hydrolysis releases the cargo at the distal ERES end of the COPII-coated neck. (B) Golgi-associated ERESs in living intact cells. The intracellular distribution of COPII subunit Sec24C-mCherry (red) and Rab1b-YFP were used here as a Golgi marker. A confocal image of the Huh7 cell coexpressing the Rab1b-YFP (left, and green in merged image) and the COPII subunit Sec24C-mCherry (center, and red in merged image). Golgi apparatus marked by G. The frame showing the Golgi apparatus is enlarged threefold below. Scale bar = 5 µm. (C) Stable Golgi-associated ERES during cargo accumulation in Golgi apparatus. Time-lapse analysis of living cells coexpressing Sec24C-mCherry (red) and VSVG-YFP (green), showing an accumulation of cargo VSVG-YFP in Golgi membranes decorated with COPII-labeled domains. The area in white rectangles is magnified 3.3-fold on the bottom. Scale bars in top and bottom panels are 10 and 5 µm, respectively. (D) Golgi-associated ERESs disappear upon BFA-induced Golgi membranes blink-out. Representative images from a time-lapse sequence taken at 3-s intervals after addition of 5 µg/ml BFA to living cells coexpressing GalT-YFP (green, bottom) and Sec24C-mCherry (red and inverted, middle). Times are counted. Scale bar = 5 µm.
We and others have found COPI colocalizing with COPII and their sequential function in ER-to-Golgi transport (Lavoie et al., 1999; Scales et al., 1997). Based on our model placing COPII at the ER–ERES boundary, we propose that COPI binds cargo carriers already on ERES membranes and not at a later stage in the ER–Golgi intermediary compartment. This hypothesis is supported by a coincidental decrease of COPII and an increase of COPI on ER-to-Golgi carriers (Scales et al., 1997). Also, at the EM level, it was shown that cargo undergoes concentration only on ERES but not later (Balch et al., 1994). The idea that the ERGIC is essentially a COPI-coated anterograde carrier that buds en bloc from ERESs is not very different from the current concept of ERGIC. The juxtaposition of COPII-positive ERGIC and ERESs was also demonstrated (Ben-Tekaya et al., 2005). In this and other studies (Farhan et al., 2008; Shima et al., 1999), COPII-positive membranes are considered to be ERGIC that is adjacent yet physically separated from ERESs.

How to reconcile our hypothesis with previous data and models?

The genetic and protein–protein interactions data surrounding COPII-mediated ER cargo export are all entirely consistent with our model. What indeed conflicts with our data is the evidence for COPII vesicles from EM data (Zeuschner et al., 2006). The conventional vesicle coat model of COPII is based on ultrastructural studies of purified COPII components and artificial membranes (Béthune and Wieland, 2018; Mancias and Goldberg, 2008). These studies could not identify the function of COPII at the ER–ERES boundary as vesicle formation was analyzed in a cell-free system that cannot assign a precise intracellular localization to the process. The use of semi-permeable cells to reconstruct COPII vesicle formation may also have altered the fragile tubular-vesicular structure of the ERESs due to potentially destructive effects of the permeabilizing detergent on membranes. The concern that a substantial amount of data on COPII vesicles is indirect has been raised previously (Mironov, 2014; Mironov et al., 2003). Recent ultrastructural studies demonstrated and analyzed COPII-mediated tubular membrane structures (O’Donnell et al., 2011; Zanetti et al., 2013). These structures observed in vitro might correlate with the COPII collar in situ. Small round COPII vesicles (Donohoe et al., 2013; Staelhelin and Kang, 2008; Zeuschner et al., 2006) may be more common in lower organisms, yet are the exception rather than the rule in mammalian cells. Future work using ultrafast super-resolution microscopy could clarify this point as there should be no principal obstacle to visualize 50–100-nm vesicles labeled with fluorescent cargo or coat.

The data presented here lay the foundation for an alternative model of how, where, and when the COPII complex orchestrates the functions of the ERES domain. This model is of major significance as it allows a better understanding of protein retention mechanisms and export from the ER in health and disease.

Materials and methods

Reagents and constructs

All reagents were purchased from Sigma-Aldrich unless otherwise stated. Human Sec24B was subcloned into pmCherry-C1
(Clontech) using SalI and BglII restriction sites and verified by sequencing. Human Sec24C was subcloned into pmCherry-C1 or pEYFP-C1 (Clontech) using XhoI and SacII restriction sites and verified by sequencing. Human Rab1B was cloned into pEGFP-C1 (Clontech) using XhoI and BamHI restriction sites and verified by sequencing. ss-mCherry (mCherry with the signal sequence from hen-egg-lysozyme). YFP-VSVGts045 was prepared as described elsewhere (Ward et al., 2001). GalT-YFP was prepared as described elsewhere (Zaal et al., 1999). GFP-CFTR was a kind gift from R. Harbesfeld (TAU, Tel-Aviv, Israel). Sec24B V932R mutant was prepared using the Quick-Change kit from Stratagene. The primer used for the PCR reaction was 5'-CAAGAAAAATTTGTTTGAAAGCTGAAATGAAA TAAGGTGTACATAAAGG-3'.

Cell culture, and transfections

COS-7, Huh7, or HeLa cells were grown at 37°C in a 5% CO₂-humidified atmosphere. Cell cultures were maintained in DMEM supplemented with 10% (vol/vol) fetal bovine serum and penicillin and streptomycin (Biological Industries). A final concentration of 1% (vol/vol) nonessential amino acids was added to the Huh7 cells culture media. Polyethyleneimine MAX transfection reagent (Thermo Fisher Scientific) was used following the manufacturer’s protocols for plasmid DNA transfections of subconfluent COS7 and Huh7 cells. Confocal laser scanning microscopy experiments were performed 18–24 h after transfection.

CRISPR-Cas12a–assisted PCR tagging of SEC13 with mCherry

Endogenous SEC13 was tagged at the C terminus with mCherry using the PCR-based method described by Fueller et al. (2020). PCR was performed on plasmid pMaCTag-P13 (Addgene; #120024), kindly provided by Marius Lemberg (Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany), using oligos M1_SEC13, 5’-GGTAGTGCTGGCGGGTGGGGAGCCAGGCCCCACCTGTCTTGAAAAAAAGG and M2_SEC13, 5’-CGAAGGGGCACTGGCTGAGGAGGTAGTGC-3’. PCR product, and enAsCas12a was a gift from Keith Joung and Benjamin Kleinstiver (Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA; Addgene; #107941; Kleinstiver et al., 2019) and selected for 7 d with puromycin.

After that, cells were FACS-sorted in four different fractions that were analyzed for proper mCherry localization. The fraction with the lowest intensity contained mainly cells with mCherry staining ERES. Single-cell clones were isolated and characterized. One representative clone, L6, heterozygous for the tagged insertion, was chosen for further analysis. The amino acid sequence at the fusion site is SVTEGQNEQSGGGGSGGGGVSVK-GEENDMNIAKE (underlined, SEC13; italics, mCherry; GGGGSGGGGSGGS, inserted linker).

Live-cell microscopy

Cells were imaged in DMEM without phenol red but with supplements, including 20 mM Hepes, pH 7.4. Transfection and imaging were performed in a 35-mm glass-bottomed microwell dish (MatTek) or glass coverslips. A Zeiss LSM710 or LSM800 confocal laser-scanning microscope was used (Carl Zeiss MicroImaging). Fluorescence emissions resulting from 405-nm excitation for CFP, 488-nm excitation for GFP, and 543-nm excitation for mCherry were detected using filter sets supplied by the manufacturer. The confocal and time-lapse images were captured using a Plan-Apochromat 63× 1.4-NA objective (Carl Zeiss MicroImaging). The temperature on the microscope stage was held stable during time-lapse sessions using an electronic temperature-controlled airstream incubator. Images and videos were generated and analyzed using the Zeiss LSM Zen software and National Institutes of Health Image and ImageJ software (W. Rasband, National Institutes of Health, Bethesda, MD). High-frequency images were captured using a Nikon Ti microscope equipped with a Yokogawa CSU X-1 spinning disc, controlled by Andor IQ2 software, or a spinning disk confocal unit (Yokogawa Electric; CSU-Xi) attached to an Axio Observer Z1 microscope (Carl Zeiss).

Confocal lasers scanning microscopy, time-lapse imaging, and FRAP analyses

For FRAP measurements, a 63× 1.4-NA Plan-Apochromat objective was used on an inverted LSM800 system. Photobleaching of GFP was performed using four to six rapid scans with the laser at full power. Pre- and post-bleach images were captured at 0.5- to 3-s intervals, using low laser intensity. Fluorescence recovery in the bleached region during the time series was quantified using LSM Zen software (Carl Zeiss MicroImaging). For presentation purposes, 16-bit confocal images were exported in TIFF, and their contrast and brightness were optimized in Adobe Photoshop software or ImageJ. The characteristic fluorescence recovery time (τ) values for membrane-bound Sec24b turnover were calculated from the photobleaching data by fitting the data to a simple exponential equation using Kaladaggraph software (Synergy Software),

\[
y = M_f \cdot (1 - e^{-\frac{t}{\tau}}),
\]

where \(M_f \) is mobile fraction. \(R^2 = 0.98 \) and 0.97 for WT and mutant, respectively.

Immunofluorescence antibody staining

Cells cultured on coverslips were fixed at room temperature in a mixture of 2% paraformaldehyde–PBS for 10 min, then washed three times with 1× PBS + 3% FCS. Cells were permeabilized and labeled simultaneously by incubation with appropriate primary antibodies: anti-Sec24C (4 μg/ml; Abcam; catalog no. Ab122635) and 0.01% saponin at room temperature for 1 h. Cells were washed three times with 1× PBS for 5 min at room temperature and incubated for 1 h at room temperature with appropriate Cy3 secondary antibodies (dilution, 1:200; Jackson Immunoresearch) and 0.1% saponin. Images were acquired using a Zeiss Pascal confocal laser-scanning microscope as described above or an Axio Observer Z1 fluorescence microscope (Carl Zeiss). For
Sec3 detection, a rabbit anti-SEC31 antibody was used (1:1,000; R&D Systems; MAB9055-SP).

EM
COS7 cells expressing Sec23-GFP and VSVG-Scarlet under BFA/Noc treatment were fixed 30 min after the shift to permissive temperature for immuno-EM (Beznoussenko et al., 2014). Briefly, cells were fixed with 1% glutaraldehyde in Hepes, pH 7.0, post-fixed in reduced OsO4 for 2 h, washed, treated with 0.3% thiocarbohydrazide for 30 min, and then, after the wash-out, with 1% OsO4 for 1 h (sometimes treatment with thiocarbohydrazide and OsO4 was done three times) followed by dehydration and embedding in Epon-812. Cells were then incubated with polyonal anti-GFP antibody (Abcam; UK AB6556) for 2 h and subsequently with anti-rabbit Fab’ fragment nangold conjugates (Nanoprobe; #2004) for 2 h, enhanced with the GoldEnhance kit (NanoProbes) according to the manufacturer’s instruction. Epon embedding and sectioning of the gold-labeled cells, two-step EM tomography, and 3D reconstruction were performed as reported earlier (Beznoussenko et al., 2014; Beznoussenko et al., 2016). Briefly, an ultratome (Leica AFS; Leica Microsystems) was used to cut 60-nm serial thin sections and 200-nm semi-thick sections. Sections were collected onto 1% Formvar films adhered to slot grids. Both sides of the grids were labeled with fiduciary 10-nm colloidal gold (British Biocell International). Sections were analyzed under a Tecnai-12 electron microscope (Thermo Fisher Scientific) equipped with Analysis software.

Immunoprecipitation and Western blot analysis
24 h following transfection, cells were washed with PBS and solubilized in lysis buffer (50 mm Tris-HCl, pH 7.4, 1% NP-40, 0.25% sodium deoxycholate, 150 mm NaCl, and 1 mm EDTA) containing protease inhibitor cocktail (Sigma-Aldrich). Extracts were clarified by centrifugation at 12,000 g for 15 min at 4°C. Following SDS-PAGE separation, proteins were transferred onto nitrocellulose membranes and blocked with 5% low-fat milk. Membranes were incubated with specific primary antibodies, washed with PBS containing 0.001% Tween-20, and incubated with the appropriate horseradish peroxidase–conjugated secondary antibody. After washing in PBS containing 0.001% Tween-20, membranes were subjected to enhanced chemiluminescence detection analysis. For immunoprecipitation analysis, cells were solubilized in lysis buffer (see above). Cell lysates were incubated with the specific antibody for 2–3 h, at 4°C, followed by 3–18 h rotated incubation with protein A/G agarose beads (Santa Cruz Biotechnology) at 4°C. Beads were collected by slow centrifugation, washed four times with lysis buffer, and analyzed by SDS-PAGE followed by detection with a specific antibody. Immunoprecipitation from the medium was performed similarly.

Antibodies used were Sec31-mouse anti-SEC31A antibody (Becton Dickinson; 61235), actin-rabbit anti-actin (Abcam; ab8227), mCherry-rabbit anti-mCherry antibody (Abcam; 167453), VSVG-mouse anti-VSVG antibody (8G5F11; Kerafast; EBO010), GFP-rabbit anti-GFP (Invitrogen; A-11122), and tubulin-mouse anti-tubulin (Sigma-Aldrich; T6199).

Chemiluminescence was recorded with an Imager LAS4000 mini (FujiFilm Live Science USA).

Online supplemental material
Fig. S1 illustrates characterization of HeLa cells with Sec13 endogenously tagged with mCherry, using immunofluorescence microscopy and Western blot analysis. Fig. S2 shows the structure and function of ER exit sites in BFA/Noc-treated cells. Fig. S3 shows that the Sec24BV932R mutant interacts with VSVG. Fig. S4 displays colocalization to and translocation from ERESs of COPI-coated membranes. Video 1 shows a time-lapse of VSVG-EGFP trafficking in Sec13-mCherry CRSPR/CAS9 knock-in HeLa cells. Video 2 shows COS7 cell co-expressing VSVG-YFP and the COPII subunit Sec24C-mCherry after shift to permissive temperature (32°C). Video 3 shows microtubule plus-end polymerization in COS7 co-expressing EB3-GFP and the COPII subunit Sec24C-mCherry. Video 4 shows cargo accumulation and fission of carriers from ERESs in COS7 cells co-expressing COPII subunit Sec24C-mCherry and VSVG-YFP. Video 5, Video 6, Video 7, and Video 8 show cargo accumulation and carrier fission in a single ERES. Video 9 shows photobleaching of the Golgi to expose ER to Golgi carrier life history. Video 10 shows Rab11 localizes with VSVG-YFP cargo throughout the Life history of ER-to-Golgi carriers. Video 11 and Video 12 show COPII labeled membranes separate ER and ERES membranes in BFA/nocodazole treated cells. Video 13 shows that ERESs are connected to the ER in BFA/Noc treated cells. Video 14 shows cargo and membrane accumulation in a single exit site under BFA/Nocodazole treatment. Video 15 shows COPII-mediated cargo sorting in ERESs of BFA/Nocodazole-treated COS7 cells. Video 16 shows that Golgi-associated ERESs disappear upon BFA-induced Golgi membranes blink-out. Video 17 shows translocation from ERESs of COPII coated membranes in e-COP-YFP expressing Ldlf cells.

Acknowledgments
Thanks to Ben Nichols (Medical Research Council), Jennifer Lippincott Schwartz (Janelia), and Nihal Altan Bonnet (National Institutes of Health) for critical reading and suggestions, Ron Kopito for the CFTR-GFP constructs, Tom Rapoport for the ric-tusion-GFP, Rina Harbesfeld for carboxypeptidase E–GFP, and M. Lemberg, Keith Joung, and Benjamin Kleinstiver for Addgene plasmids. Many thanks to the team of the imaging facility at the Fritz Lipmann Institute, Jena, Germany.

This work was supported by Israel Science Foundation grant 1063/16 to K. Hirschberg.

The authors declare no competing financial interests.

Author contributions: O. Shomron, I. Nevo-Yassaf, T. Aviad, I. Brodsky, Y. Yaffe, E. Erez Zahavi, Anna Dukhovny, E.H. Sklan, E. Perison, and Y. Yonemura carried out experiments. A. Yeheksel and M. Pasmanik-Chor performed bioinformatics analysis. G.H. Patterson carried out multifocal structured illumination microscopy analysis. O. Shomron, C. Kaether, and K. Hirschberg wrote the manuscript. A. Mironov, G.V. Beznoussenko, and A.A. Mironov carried out experiments. A. Yeheksel and M. Pasmanik-Chor performed bioinformatics analysis.
Fan, J.Y., J. Roth, and C. Zuber. 2003. Ultrastructural analysis of transitional endoplasmic reticulum and pre-Golgi intermediates: a highway for cars and trucks. Histochem. Cell Biol. 120:455-463. https://doi.org/10.1007/s00418-003-0597-1

Farhan, H., V. Reiterer, V.M. Korkhov, J.A. Schmid, M. Freisemuth, and H.H. Sitte. 2007. Concentrative export from the endoplasmic reticulum of the gamma-aminoxybutyric acid transporter 1 requires binding to SEC24D. J. Biol. Chem. 282:7679-7689. https://doi.org/10.1074/jbc.M609720200

Farhan, H., M. Weiss, K. Tani, R.J. Kaufman, and H.P. Hauri. 2008. Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. EMBO J. 27:2043-2054. https://doi.org/10.1038/emboj.2008.136

Forster, R., M. Weiss, T. Zimmermann, E.G. Reynaud, F. Verissimo, D.J. Stephens, and R. Pepperkok. 2006. Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr. Biol. 16:173-179. https://doi.org/10.1016/j.cub.2005.11.076

Fromme, J.C., and R. Schekman. 2005. COPII-coated vesicles: flexible enough for large cargo? Curr. Opin. Cell Biol. 17:345-352. https://doi.org/10.1016/j.celrep.2005.06.004

Fueller, J., K. Herbst, M. Meurer, K. Gubicza, B. Kurtulmus, J.D. Knopf, D. Kirmaier, B.C. Buchmuller, G. Pereira, M.K. Lemberg, and M. Knopf. 2020. CRISPR-Cas12a-assisted PCR tagging of mammalian genes. J. Cell Biol. 219:e201910210. https://doi.org/10.1083/jcb.201910210

Gomez-Navarro, N., and E. Miller. 2016. Protein sorting at the ER-Golgi interface. J. Cell Biol. 215:769-778. https://doi.org/10.1083/jcb.201610031

Gorur, A., L. Yuan, S.J. Kenny, S. Baba, K. Xu, and R. Schekman. 2017. COPII-coated membranes function as transport carriers of intracellular procol- lagen. J. Cell Biol. 216:1745-1759. https://doi.org/10.1083/jcb.201702135

Griffiths, G. 2000. Gut thoughts on the Golgi complex. Traffic. 1:738-745. https://doi.org/10.1034/j.1600-0854.2000.01090.x

Hammond, A.T., and B.S. Glick. 2000. Dynamics of transitional endoplasmic reticulum site in vertebrate cells. Mol. Biol. Cell. 11:3013-3030. https://doi.org/10.1091/mbc.11.9.3013

Herzig, Y., H.J. Sharpe, Y. Elbaz, S. Munro, and M. Schuldiner. 2012. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Env4. PLoS Biol. 10: e1001329. https://doi.org/10.1371/journal.pbio.1001329

Hirschberg, K., C.M. Miller, J. Ellenberger, J.F. Presley, E.D. Sigga, R.D. Phair, and J. Lippincott-Schwartz. 1998. Kinetic analysis of secretory protein trafficking and characterization of golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143:1485–1503. https://doi.org/10.1083/jcb.143.6.1485

Kirk, S.J., and T.H. Ward. 2007. COP112 under the microscope. Semin. Cell Dev. Biol. 18:435-447. https://doi.org/10.1016/j.semcdb.2007.07.007

Kleinstiver, B.P., A.A. Sousa, R.T. Walton, Y.E. Tak, J.Y. Hsu, K. Clement, M.W. Welch, J.E. Horng, J. Malagon-Lopez, I. Scarfo, et al. 2019. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37:276–282. https://doi.org/10.1038/s41587-018-0011-0

Klumpeman, J., A. Schweizer, H. Clausen, B.L. Tang, W. Hong, V. Oorschot, and H.P. Hauri. 1998. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J. Cell Sci. 111:3411–3425.

Kuehn, M.J., J.M. Herrmann, and R. Schekman. 1998. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature. 391:187-190. https://doi.org/10.1038/34438

Kurokawa, K., Y. Suda, and A. Nakano. 2016. Sarl localizes at the rims of COPII-coated membranes in vivo. J. Cell Sci. 129:3231–3237. https://doi.org/10.1242/jcs.194423

Lavoie, C., J. Paienten, M. Dominguez, L. Roy, S. Dahman, J.N. Guahue, and J.J. Bergersen. 1999. Roles for alpha(2)p24 and COPI in endoplasmic reticulum cargo exit site formation. J. Cell Biol. 146:285–299. https://doi.org/10.1083/jcb.146.2.285

Lee, C., and J. Goldberg. 2010. Structure of coatamer cargo proteins and the relationship among COPI, COPII, and clathrin vesicle coats. Cell. 142:123-132. https://doi.org/10.1016/j.jcb.2010.05.030

Lippincott-Schwartz, J., L.C. Yuan, J.S. Bonifacino, and R.D. Klausner. 1989. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 56:801-813. https://doi.org/10.1016/0092-8674(90)90685-5

London, N., B. Raveh, E. Cohen, G. Fatih, and O. Schuler-Furman. 2011. Rosetta FlexPepDock web server—high resolution modeling of peptide-protein interactions. Nucleic Acids Res. 39(suppl 2):W249-53. https://doi.org/10.1093/nar/gkr431
Pavelka, M., and A. Ellinger. 1993. Early and late transformations occurring at Rambourg, A., Y. Clermont, L. Ovtracht, and F. Képès. 1995b. Three-dimensional structure of tubular networks, presumably Golgi in nature, in various yeast strains: a comparative study. Anat. Rec. 245: 283–293. https://doi.org/10.1002/ar.1092403002

Raote, I. and V. Malhotra. 2019. Protein transport by vesicles and tunnels. J. Cell Biol. 218:773–779. https://doi.org/10.1083/jcb.201811073

Raote, I., M. Ortega Bellido, M. Pirozzi, C. Zhang, D. Melville, S. Parashara-man, T. Zimmermann, and V. Malhotra. 2017. TANGO1 assembles into rings around COPII coats at ER exit sites. J. Cell Biol. 216:901–909. https://doi.org/10.1083/jcb.201611080

Raote, I., M. Ortega-Bellido, A.J. Santos, O. Foresti, C. Zhang, M.F. Garcia-Parajo, F. Campeol, and V. Malhotra. 2018. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. eLife. 7:e37273. https://doi.org/10.7554/eLife.37273

Raote, I., M. Chabanon, N. Walani, M. Arroyo, M.F. Garcia-Parajo, V. Malhotra, and F. Campeol. 2020. A physical mechanism of TANGO1-mediated bulky cargo export. eLife. 9:e59426. https://doi.org/10.7554/eLife.59426

Sánchez, J.B., W.J. Sun, J.W. Chang, J. Li, B. Bursulatory, N.S. Gray, and D.B. Haslam. 2009. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat. Chem. Biol. 5:157–165. https://doi.org/10.1038/nchembio.144

Saito, K., M. Chen, F. Bard, S. Chen, H. Zhou, D. Woodley, R. Polischuk, R. Schekman, and V. Malhotra. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell. 136:891–902. https://doi.org/10.1016/j.cell.2008.12.025

Saito, K., K. Yamashiro, Y. Ichikawa, P. Ellinger, K. Kontani, V. Malhotra, and T. Katala. 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell. 22:2301–2308. https://doi.org/10.1091/mbc.e11-02-0143

Santos, A.J., I. Raote, M. Scapa, N. Brouwers, and V. Malhotra. 2015. TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procol- lagen export. eLife. 4:e10982. https://doi.org/10.7554/eLife.10982

Scales, S.J., R. Peperkok, and T.E. Kreis. 1997. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPI and COPII. Curr. Biol. 9:1137–1148. https://doi.org/10.1016/S0960-8767(97)00379-7

Schindler, C., R. Itin, M. Zerial, F. Lottepeich, and H.P. Hauri. 1993. ERGIC-53, a membrane protein of the ER-Golgi intermediate compartment, carries an ER retention motif. Eur. J. Cell Biol. 61:1–9.

Sesso, A., F.P. de Faria, E.S. Iwamura, and H. Corrêa. 1994. A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J. Cell Sci. 107:517–528.

Sharpe, H.J., T.J. Stevens, and S. Munro. 2010. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell. 142:158–169. https://doi.org/10.1016/j.cell.2010.05.037

Shima, D.T., S.J. Scales, T.E. Kreis, and R. Peperkok. 1999. Segregation of COPII-rich and anterograde-cargo-rich domains in endoplasmic-reticulum to Golgi transport complexes.Curr. Biol. 9:821–824. https://doi.org/10.1016/S0960-9822(99)80365-0

Staehelin, L.A., and B.H. Kang. 2008. Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol. 147:1454–1468. https://doi.org/10.1104/pp.108.120618

Stephens, D.J., N. Lin-Marq, A. Pagano, R. Peperkok, and J.P. Paccaud. 2000. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J. Cell Sci. 113:2177–2185.

Wang, X., J. Matteson, Y. An, B. Moyer, J.S. Yoo, S. Bannykh, I.A. Wilson, J.R. Riordan, and W.E. Balch. 2004. COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a diacidic exit code. J. Cell Biol. 167:65–74. https://doi.org/10.1083/jcb.200401035

Ward, T.H., R.S. Polischuk, S. Caplan, K. Hirschberg, and J. Lippincott-Schwartz. 2001. Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol. 155:557–570. https://doi.org/10.1083/jcb.200107049

Wellesley, M.W., J.P. Paccaud, and H.P. Hauri. 2007. Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum. EMBO Rep. 8:258–264. https://doi.org/10.1038/sj.embor.7400893

Withers, L.M., M.J. Hoyer, M.J. Nash, and G.K. Voeltz. 2020. Vesicular and uncoated Rab-dependent cargo carriers facilitate ER to Golgi transport. J. Cell Sci. 133:jcs239814. https://doi.org/10.1242/jcs.239814

Yonemura, Y., X. Li, K. Muller, A. Kramer, P. Atigbire, M. Tentrup, T. Feuerhake, T. Kroll, O. Shomron, R. Noh, et al. 2016. Inhibition of cargo export from the endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol. 147:1454–1468. https://doi.org/10.1104/pp.108.120618

Shomron, et al. 2019. Journal of Cell Biology. 15:16 of 15. 16.
export at ER-exit sites and the trans-Golgi network by the secretion inhibitor FLI-06. J. Cell Sci. 129:3868–3877.
Yuan, L., S.J. Kenny, J. Hemmati, K. Xu, and R. Schekman. 2018. TANGO1 and SEC12 are copackaged with procollagen I to facilitate the generation of large COPII carriers. Proc. Natl. Acad. Sci. USA. 115:E12255–E12264. https://doi.org/10.1073/pnas.1814810115
Zaal, K.J., C.L. Smith, R.S. Polishchuk, N. Altan, N.B. Cole, J. Ellenberg, K. Hirschberg, J.F. Presley, T.H. Roberts, E. Siggia, et al. 1999. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell. 99:589–601. https://doi.org/10.1016/S0092-8674(00)81348-2
Zanetti, G., K.B. Pahuja, S. Studer, S. Shim, and R. Schekman. 2011. COPII and the regulation of protein sorting in mammals. Nat. Cell Biol. 14:20–28. https://doi.org/10.1038/ncb2390
Zanetti, G., S. Prinz, S. Daum, A. Meister, R. Schekman, K. Bacía, and J.A. Briggs. 2013. The structure of the COPII transport-vesicle coat assembled on membranes. eLife. 2:e00951. https://doi.org/10.7554/eLife.00951
Zeuschner, D., W.J. Geerts, E. van Donselaar, B.M. Humbel, J.W. Slot, A.J. Koster, and J. Klumperman. 2006. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat. Cell Biol. 8:377–383. https://doi.org/10.1038/ncb1371
Supplemental material

Figure S1. **Characterization of HeLa cells with Sec13 endogenously tagged with mCherry.** (A) Single apotome section of a pool of HeLa-L6 cells expressing endogenously tagged (endo) Sec13-mCherry costained with Sec31 antibodies. Sec13-mCherry nicely localizes to ERES. Scale bar = 5 µm. (B) Single apotome section of a pool of HeLa cells expressing Sec13-mCherry costained with Sec13. The untagged cells (asterisks) express similar levels of Sec13 as the Sec13-mCherry expressing cells, demonstrating that Sec13-mCherry is expressed at or below endogenous levels. Scale bar = 5 µm. (C) siRNA against Sec13, but not control (ctrl) siRNA, reduced expression of Sec13-mCherry as visualized by mCherry fluorescence and immunostaining against Sec13. Scale bars = 5 µm. (D) Western blot of HeLa and HeLa-L6 cells expressing Sec13-mCherry using Sec13 antibodies demonstrates efficiency of Sec13 siRNA. Sec13-mCherry is expressed below Sec13 levels and is efficiently reduced by Sec13 siRNA, validating that the identity of the Sec13-mCherry fusion.
Figure S2. Structure and function of ER exit sites in BFA/Noc treated cells. (A) Relative localization of Sec24C-mCherry (red) and VSVG (green) within ERES of BFA/Noc-treated COS7 cells. Top, left to right: (1) Confocal microscope. (2) Immunofluorescence analysis of endogenous Sec24C (red) in a cell expressing VSVG-YFP (green). (3) Cells under Golgiocide A/Colchicin treatment. (4) Deconvolution using DeltaVision microscope. Bottom, left to right: (1) Multifocal structured illumination microscopy (M-SIM). (2) Relative localization of Sec24C-mCherry (red) and ERGIC53-YFP, GaIT-YFP, or CFTR-GFP (green) within a representative ERES of COS7 cells under BFA/Noc treatment. Scale bars = 1 µm. (B) Cargo and membrane accumulation in a single dilated exit site. A COS7 cell transfected with cargo protein VSVG-YFP and treated with BFA/Noc was monitored by a spinning disk confocal microscope captured at 5 frames/s. Representative time-lapse images of a single dilated exit site marked by the white square frame, are shown in the middle panel. Bottom: A kymogram generated from the line marked by the yellow line. Scale bar = 1 µm. (C) Analysis of COPII-mediated cargo sorting dynamics in ERESs of BFA/Noc-treated living COS7 cells. A cell coexpressing VSVG-YFP (green) and Sec24C-mCherry (red) was imaged using a spinning disk confocal microscope at 0.2-s intervals at the permissive temperature 32°C. The fluorescence intensity of VSVG-YFP (green line) and Sec24C-mCherry (red line) in three representative ERESs I through III (in white frames) are plotted, and representative images are shown on the right. Black arrowheads in the graph show time points of images on the right. Scale bar = 5 µm. (D) The mutant cargo protein CFTRΔ508-GFP (green, bottom) is excluded from ERES in BFA/Noc-treated COS7 cells. The cells are coexpressing Sec24C-mCherry (red) with either WT CFTR-GFP (green, top) or CFTRΔ508-GFP (green, bottom). Insets are enlarged fivefold. Left scale bars = 10 µm. Right scale bars = 1 µm.
Figure S3. The Sec24B_{932R} mutant interacts with VSVG. Immunoprecipitation (IP) analysis demonstrating interaction between the Sec24B_{932R} mutant and VSVG. Cells coexpressing VSVG-YFP and WT or mutant Sec24B were immunoprecipitated with anti-VSVG antibodies, separated on SDS-PAGE, blotted, and probed with anti-GFP and anti-mCherry for VSVG and Sec24B, respectively. WB, Western blot.

Figure S4. Colocalization to and translocation from ERESs of COPI-coated membranes. Time-lapse microscopy analysis of living LDLF cells stably expressing ε-COP-YFP (green) cotransfected with Sec24C-mCherry (red) and KDEL-BFP (Blue). Yellow arrows point to ERES labeled with Sec24C, and yellow arrowheads point to COPI membranes moving toward the Golgi (G). Scale bar = 10 µm.

Video 1. A HeLa cell clone expressing an endogenous Sec13-mCherry (red) inserted using the CRISPR/CAS12 knock-in method was transfected with VSVG-EGFP (green). Cells were transferred to permissive temperature (32°C) after overnight in 39.5°C, and images were taken at 15-s intervals for ~40 min (related to Fig. 1 B).
Video 2. **Comparison between membrane-associated COPII movement and transport of ER-to-Golgi carriers.** COS7 cell coexpressing VSVG-YFP (green) and the COPII subunit Sec24C-mCherry (red) after shift to permissive temperature (32°C; related to Fig. 2 A).

Video 3. **Comparison between membrane-associated COPII and microtubule plus-end polymerization using EB3-GFP.** A 3.7-s interval time-lapse sequence of COS7 coexpressing EB3-GFP (green) and the COPII subunit Sec24C-mCherry (red; related to Fig. 2 B).

Video 4. **Accumulation of VSVG-YFP cargo and fission of carriers from ERESs in living cells.** Confocal images were captured after shift to permissive temperature of COS7 cells coexpressing COPII subunit Sec24C-mCherry (red) and the cargo protein VSVG-YFP (green; related to Fig. 3 A).

Video 5. **Cargo accumulation in a single ERES and carrier fission.** Confocal images captured at 2.6-s intervals of COS7 cells transfected and treated as in A. VSVG-YFP (green) accumulation occurs downstream of Sec24C-mCherry (red; related to Fig. 3 B).

Video 6. **Cargo accumulation in a single ERES and carrier fission.** Confocal images captured at 2.6-s intervals of COS7 cells transfected and treated as in Fig. 3 A. VSVG-YFP (green) accumulation occurs downstream of Sec24C-mCherry (red; related to Fig. 3 B).

Video 7. **Cargo accumulation in a single ERES and carrier fission.** Confocal images captured at 2.6-s intervals of COS7 cells transfected and treated as in Fig. 3 A. VSVG-YFP (green) accumulation occurs downstream of Sec24C-mCherry (red; related to Fig. 3 B).

Video 8. **Cargo accumulation in a single ERES and carrier fission.** Confocal images captured at 2.6-s intervals of COS7 cells transfected and treated as in Fig. 3 A. VSVG-YFP (green) accumulation occurs downstream of Sec24C-mCherry (red; related to Fig. 3 B).

Video 9. **Photobleaching of the Golgi to expose ER-to-Golgi carrier life history.** The Golgi region of interest was photobleached in the VSVG-GFP (green) channel after transfer to permissive temperature (32°C) after overnight at 39.5°C. Cells used were HeLa cell clones expressing an endogenous Sec13-mCherry (red) transfected with VSVG-GFP (green; related to Fig. 4, A and B).

Video 10. **Rab1b localizes with cargo throughout the life history of ER-to-Golgi carriers.** Huh7 cells cotransfected with VSVG-YFP (green and middle) and Rab1-mCherry (red and right) were shifted to permissive temperature of 32°C after overnight in nonpermissive temperature (39.5°C; related to Fig. 4 C).

Video 11. **COPII-labeled membranes separate between ER and ERES membranes.** Confocal deconvolved images of a COS7 cell transfected and treated as described in Fig. 5 A (related to Fig. 5 C).

Video 12. **COPII-labeled membranes separate between ER and ERES membranes.** Confocal deconvolved images of a COS7 cell transfected and treated as described in Fig. 5 A (related to Fig. 5 C).

Video 13. **ERESs are connected to the ER in BFA/Noc-treated cells.** Confocal image of a living COS7 cell cotransfected with VSVG-YFP (green and right) and the soluble secreted luminal marker signal sequence-mCherry (red and middle) under BFA/Noc treatment (related to Fig. 5 D).
Video 14. **Cargo and membrane accumulation in a single dilated exit site.** A COS7 cell transfected with cargo protein VSVG-YFP and treated with BFA/Noc was monitored by a spinning disk confocal microscope captured at 5 frames/s (related to Fig. S2 B).

Video 15. **Analysis of COPII-mediated cargo sorting dynamics in ERESs of BFA/Noc-treated living COS7 cells.** ERESs in a cell coexpressing VSVG-YFP (green) and Sec24C-mCherry (red) was imaged using a spinning disk confocal microscope at 0.2-s intervals at the permissive temperature 32°C (related to Fig. S2 C).

Video 16. **Golgi-associated ERESs disappear upon BFA-induced Golgi membranes blink-out.** Time-lapse sequence taken at 3-s intervals after addition of 5 µg/ml BFA to living cells coexpressing GalT-YFP and Sec24C-mCherry (related to Fig. 7 D).

Video 17. **Translocation from ERESs of COPI-coated membranes.** Time-lapse microscopy analysis of living LDLF cells stably expressing ε-COP-YFP (green) cotransfected with Sec24C-mCherry (red) and KDEL-BFP (blue; related to Fig. S4).