Core–Shell Bimetallic Nanoparticles Robustly Fixed on the Outermost Surface of Magnetic Silica Microspheres

Hye Hun Park¹, Kyoungja Woo¹ & Jae-Pyoung Ahn²

¹Molecular Recognition Research Center, ²Advanced Analysis Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea).

The major challenges in practically utilising the immense potential benefits of nanomaterials are controlling aggregation, recycling the nanomaterials, and fabricating well-defined nanoparticulate materials using innovative methods. We present a novel innovative synthetic strategy for core–shell bimetallic nanoparticles that are well-defined, ligand-free, and robustly fixed on the outermost surface of recyclable magnetic silica microspheres. The strategy includes seeding, coalescing the seeds to cores, and then growing shells from the cores on aminopropyl-functionalised silica microspheres so that the cores and aminopropyl moieties are robustly embedded in the shell materials. The representative Au–Ag bimetallic nanoparticles fixed on the microsphere showed excellent catalytic performance that remained consistent during repeated catalytic cycles.

The functionalization of silica or polymer microspheres with –NH₂ or other groups has been used to attach the metal nanoparticles, as well as to control the direct growth of nanoparticles. The resulting composites showed comparable catalytic activity to and improved recyclability over the corresponding free nanoparticles. However, their catalytic performance and the yields of the catalytic reactions gradually decreased to a substantial extent over repeated cycles, due to the detachment of the nanoparticles from the spheres. A polymer or etched-silica shield was elaborately constructed on the surface of the composite and the resultant nanosystems exhibited comparable catalytic property and highly improved recyclability. Their catalytic performance still decreased gradually but to a small extent over a series of repeated catalytic reactions, despite the complicated and elaborate synthetic process required. Moreover, most studies have been focused on homometallic nanoparticles weakly attached to the microspheres.

For the first time, we present a novel innovative synthetic strategy for core–shell bimetallic nanoparticles that are well-defined, ligand-free, and robustly fixed on the outermost surface of magnetically recyclable silica microspheres (MSM). The strategy includes seeding metal seeds, coalescing the seeds to cores, and then growing shells directly from the cores on the aminopropyl (AP)-functionalised MSM (AP-MSM) so that the cores and AP moieties are robustly embedded in the shell materials. The representative and least expensive noble material, Au–Ag core–shell bimetallic nanoparticles fixed on MSM, consistently showed excellent catalytic performance upon repeated catalytic cycles of a benchmark reaction for the noble metal nanocatalysts. The current synthetic strategy was extended to Au–Pd core–shell bimetallic nanoparticles fixed on MSM and may pave the way for the beneficial utilisation of nanomaterials.
Results

Synthetic strategy. Figure 1 shows our seeding, coalescing, and growing (SCG) strategy for core–shell bimetallic nanoparticles robustly fixed on the outermost surface of magnetic silica microsphere (MSM). In the seeding step, 1–2 nm Au seeds are self-assembled on the AP-functionalised MSM. In the coalescing step, excess metal ions displace the small (~1 nm) Au seeds, which coalesce to 2–3 nm Au cores and are multi-bonded with more AP moieties. In the growing step, the shells are formed so that the cores and AP moieties are embedded in the shell materials.

Structural analysis. Figure 2 shows various electron microscopic images of the materials generated according to the SCG strategy. The TEM image b shows homogeneously self-assembled 1–2 nm Au seeds on the AP-MSM (a). After the addition of Ag⁺ ions, the Au seeds coalesce, yielding 2–3 nm Au cores, which are shown in image c. In the growing step, adding more metal ions yielded larger nanoparticles on the MSM, as indicated by the n values of 1 to 3 for all of the samples dₙ, eₙ, and fₙ; the particle size distributions were relatively homogeneous as shown in the histograms of Fig. S3. The elemental analysis of dₙ samples gave Au:Ag atomic ratios of (d₁) 1:4, (d₂) 1:10, and (d₃) 1:16, and their combined (Au and Ag) weight fractions in the composite system were 3.85, 6.54, and 10.7% respectively. In the images of e₃ and B₃, the Au–Au and Au–Pd nanoparticles have merged with their neighboring nanoparticles. The SEM image (Fig. 2g–i) of each composite system shows relatively homogeneous nanoparticle size and surface coverage.

Catalytic properties and reusability. Figure 4 shows the linear relationship between ln(Cₜ/C₀) and time t for the reductions of p-nitrophenol (Nip) to p-aminophenol (Amp) by NaBH₄, where Cₜ and C₀ represent the concentration of Nip at time t and 0, respectively. The apparent rate constant k at room temperature was calculated from the equation ln(Cₜ/C₀) = −kt, and the turn over frequency (TOF) was calculated based on 90% conversion and the number of total surface atoms of the Ag nanocatalysts. The resultant data are summarised in Table S1 for five runs, which used magnetically recovered d₂ and e₂ from the previous run.

Discussion

For the seeding step, AP-MSM (~500 nm) and Au seeds (1–2 nm) were prepared independently according to published methods²¹,²⁶,²⁷ (SI). The as-prepared Au seeds are protected by tetrakis(hydroxyethyl)methylphosphonium chloride (THPC) and are well-dispersed without aggregation. Simply mixing AP-MSM with excess Au seeds yields homogeneously self-assembled Au seeds on the AP-MSM. The negatively charged THPCs on the Au seed play an important role in the even distribution of Au seeds on the AP-MSM due to electrostatic repulsion. The NH₂ moieties dangling from the MSM surface are known to have kinetically strong chemical affinity for Ag and Au, especially for Au nanoparticles. Therefore, we utilised NH₂ moieties for attaching Au seeds. The unbound excess Au seeds are easily removed by magnetic decantation, and the Au-seeded MSM are stably dispersed in water by sonication for a few seconds.

For the shell materials, we have chosen Ag, the least expensive noble metal, which is well known to make alloys with Au to form core–shell bimetallic nanoparticles while minimising separate nucleation during the growth process. Moreover, Au–Ag core–shell bimetallic nanoparticles are known to exhibit improved catalytic performance relative to Au or Ag homometallic nanoparticles. Au was also chosen to grow homometallic nanoparticles as a comparison. In addition, Pd was chosen to investigate the extendibility of the SCG strategy because Pd is quite expensive and known to make important Au–Pd core–shell bimetallic nanocatalysts. Moreover, these choices can facilitate predictions of nanoparticle growth patterns because Ag and Pd show, respectively, weaker and stronger

Figure 1 | Schematic representation of the SCG strategy for core-shell bimetallic nanoparticles robustly fixed on the outermost surface of magnetic silica microsphere (MSM). In the seeding step, 1–2 nm Au seeds are self-assembled on the AP-functionalised MSM. In the coalescing step, excess metal ions displace the small (~1 nm) Au seeds, which coalesce to 2–3 nm Au cores and are multi-bonded with more AP moieties. In the growing step, the shells are formed so that the cores and AP moieties are embedded in the shell materials.
chemical affinity for NH₂ than Au. Here, we assumed that the number of NH₂ moieties bonded to a single Au seed increases with the size of the Au seed and that the area occupied by a single AP moiety is \(\sim 0.69 \text{ nm}^2 \). For the coalescing step, large excess metal ions are added. The metal ions can also make a complex with the NH₂ moieties of AP-MSM. Thus, the small (\(\sim 1 \text{ nm} \)) Au seeds on the AP-MSM can be displaced by metal ions whereas relatively larger (\(\sim 2 \text{ nm} \)) Au seeds, which bond with more NH₂ moieties, remain attached. The small Au seeds, displaced from NH₂ moieties, are likely to collide and coalesce with a neighboring Au seed to form a sintered core that is then large (2–3 nm) enough to make strong multi-bonds with more NH₂ moieties. Therefore, less closely assembled 2–3 nm cores are formed on the AP-MSM. This coalescing step can be illustrated as in Fig. 1 and is observed by comparing the TEM images taken before and after coalescence (Figs. 2b and c for a small area and Fig. S4 for the larger area). The particles on the AP-MSM are slightly larger after coalescence. The coalescence of Au seeds to cores in Ag solution seems to progress further than in Pd solution due to kinetic effects and yields less closely assembled cores. This difference provides information concerning the difference between d3 and f3, as will be discussed later.

For the growing step, the appropriate mild reducing agent is added. The reduced metal component will grow around the Au cores. However, the multi-bonds between the Au core and NH₂ moieties will indicate the growth direction of the shell materials further upward and sideway rather than downward because there is limited space (only AP unit distance) under the Au cores. Therefore, as the shells grow, they are expected to be eccentric or hemisphere-shaped cores–shell bimetallic nanoparticles rather than concentric ones. Also, the AP moieties are expected to be embedded by the growing shell and this type of embedding, together with the strong multi-bonds between core and amines, can be the origin of robust fixation of core–shell bimetallic nanoparticles on the MSM. With more metal ions, the nanoparticles are likely to grow further and gradually merge with the neighboring nanoparticles.

Assuming that the growth of metal nanoparticles on the AP-MSM surface is strongly influenced by the presence of the Au seeds, we examined the dependence of d, e, and f synthesis on Au seeding in greater detail. Considering that NH₂ moieties themselves might act as nucleation sites, direct growth of metal nanoparticles from AP-MSM, without the Au-seeding process, was tried to yield nAg@MSM, nAu@MSM, and nPd@MSM. The overall procedures were kept the same except omitting the Au-seeding step. Given that NH₂ moieties on the MSM surface are able to bond with metal nanoparticles, we were surprised to observe only several Ag and Au nanoparticles attached to MSM (Fig. S2). Pd nanoparticles showed more frequent but inhomogeneous attachment. Moreover, free nanoparticles detached from these composites were observed during repeated recovery processes. This control experiment strongly suggests that Au seeding is a prerequisite process in the current SCG strategy.

In Fig. 2, the Au–Ag bimetallic nanoparticles show similar growth behaviour at the early stages 1 and 2 but somewhat different behaviour at stage 3. The Au–Ag nanoparticle shape of d3 still looks like a hemisphere. Ag, Au, and Pd shells appear to grow from the Au cores. However, Ag shells tend to grow upwards, whereas Au and Pd shells
tend to grow sideways. This observation is in agreement with the previous report\(^{25}\) that Ag metal exhibits island-type growth, whereas Au and Pd metals exhibit lateral growth; the tendency for lateral growth is higher in Pd than Au. Moreover, less coalescence of Au seeds to cores occurs in Pd\(^{2+}\) solution than in Ag\(^{+}\) solution; as a result, the cores are more closely assembled in Pd\(^{2+}\) solution. Thus, the growing Pd shells tend to make a closed micro-shell, as shown in Fig. 2f.\(^{3}\) Therefore, the shell thickness trend appears to be Ag > Au > Pd. The SEM images (Fig. S5–7) of many composites show bright Fe\(_3\)O\(_4\) cores, gray SiO\(_2\) shells, and brighter metal shells, due to electron scattering effects, and images (Fig. 2g–i) of each composite reveal relatively homogeneous nanoparticle sizes and surface coverage.

Spot analysis using EDS on a single core–shell nanoparticle of an intact composite system reveals the coexistence of Ag/Au and Au/Pd (Fig. S8), although this technique is not quantitatively reliable, because the nanoparticles are present on a three dimensional (3D) architecture and are projected onto the 2D plane, resulting in overlapping. The nanoparticles torn away from d\(_2\) by etching reveal distinct bimetallic contrast of the Au cores and the Ag shell in Figs. 3a and b and Fig. S9. However, data acquisition using EDS was difficult due to sample drift. For precise analysis of the core–shell architecture as fixed on the MSM, we prepared an epoxy resin embedding d\(_2\) and investigated it after milling with FIB. Milling at room temperature induced serious damage (evaporation) to the Ag shell (Fig. 3c). Nevertheless, the EDS line profile (e) collected along the indicated line in magnified image d indicates that the Au cores were eccentrically surrounded by Ag. We managed to reduce the damage to the Ag shell (Fig. 3f and g) by milling the resin under liquid N\(_2\) conditions. The nanoparticles distant from the milled plane show blurred image in Fig. 3f due to defocusing caused by depth. Fortunately, the damage to the Ag shell caused by FIB was not completely even, and various sizes of nanoparticles were observed on the surface of MSM. The smaller particles (∼5 nm) have a single Au core, and the larger particles (∼10 nm) have multiple Au cores within each bimetallic nanoparticle. The HRSTEM image (inset of Fig. 3g) of a selected bimetallic nanoparticle shows the Au core surrounded by the Ag shell at atomic resolution with a regular crystalline structure. The core–shell architecture on the outermost surface of MSM, which includes multi-bonds between the Au core and NH\(_2\) moieties and embedded core and AP moieties in the shell materials, seems to contribute to the robust fixation of Au–Ag nanoparticles on the MSM. Therefore, the resulting nanosystems have effectively exposed surface areas and the structural robustness required for consistent catalytic activity during repeated cycles, as discussed in the following section.

The reduction of Nip to Amp by NaBH\(_4\) was chosen as a model reaction because it has been known to be catalysed by noble metal (Pt, Pd, Au, and Ag) nanoparticles.\(^{2,22,23,33}\) Due to its much lower cost, Ag is of particular interest. Thus, we briefly investigated the reduction of Nip using d\(_2\) and c\(_2\) composite system as catalysts. The decrease of the absorption peak at 400 nm, which resulted from the presence of p-nitrophenolate ions, provides direct information about the degree of conversion from Nip to Amp.\(^{33}\) Primarily, the reaction without a catalyst system did not proceed at all, even with...
The incomplete reaction and the decrease of reaction rate over repeated cycles due to the loss of catalysts during recovery. However, san-AgNP composites showed a decrease of the reaction rate over chitosan-AgNP composites with 4 nm AgNPs. Furthermore, chitosan-AgNP composites robustly fixed on recyclable magnetic silica microspheres so that the core–shell bimetallic nanoparticles robustly fixed on the recyclable SM.

Figure 4 | Relationship of ln(Ct/C0) and reaction time for the catalysed reduction of p-nitrophenol by composite systems over repeated cycles. (a) nAg/Au@MSM (d2). (b) nAu/Au@MSM (e2).

In summary, we have demonstrated an innovative strategy of synthesising well-defined Au–Ag core–shell bimetallic nanoparticles robustly fixed on recyclable magnetic silica microspheres so that the cores and aminopropyl moieties are robustly embedded in the shells. These materials have consistently excellent catalytic performances over repeated cycles. The current synthetic strategy was facile, easily scalable, and extendible to other important core–shell nanoparticles, such as Au–Pd.

Methods

AP-MSM and Au seeds were prepared according to the published method21,26,27. The complete details can be found in the SI. Fifteen millilitres of the Au seed solution was mixed with 3 mL of AP-MSM (0.010 g/mL, ~5.7 × 1010 particles/mL) to self-assemble the Au seeds on the AP-MSM. The unbound Au seeds were separated using magnetic decantation and the Au-seeded MSM was dispersed in 3 mL of de-ionized water (DW). This solution was used for the following syntheses.

nAg/Au@MSM (d1~d3). For a typical synthesis of d1, 1 mL of the Au-seeded MSM was added to a mixture containing 5 mL (10 and 20 mL for d2 and d3) of AgNO3 (0.01 wt% in water) and 0.001 mL (0.002 and 0.004 mL for d2 and d3) of NH4OH (30% in water) and stirred for 5 min with a vortex mixer. Then, 0.02 mL (0.02 and 0.04 mL for d2 and d3) of formaldehyde (37% in water) was injected as a reducing reagent and stirred for 30 min with a vortex mixer. After allowing the solution to sit for 1.5 h without perturbation, the d1~d3 samples were rinsed with DW three times using magnetic decantation to remove a small amount of unbound nanoparticles, and dispersed in 1 mL of DW. From elemental analysis using AAS and ICP, the concentrations of Au and Ag were 136 and 301, 131 and 576, and 138 and higher than that reported for MSM-based Au nanocatalysts with an etched silica shield (6.3 emug−1)22 that were separable from the solution within 3 min in a magnetic field gradient ~30 Tm−1.

For practical utilisation of the well-defined nanosystems, scalability is also important. For a scale-up (×125) synthesis of nAg/Au@MSM (d1~d3) systems, we utilised 125 mL of the Au-seeded MSM with appropriate amounts of the other reagents, which yielded reproducible results. A preliminary study using these systems showed potent antimicrobial effects; these results will be reported elsewhere after further detailed investigation.

Although we utilised MSM as a substrate in most syntheses, industrial scalability is more likely to be achievable for the synthesis utilising SM, because the scale-up synthesis of SM proceeds easily under ambient conditions whereas that of MSM is limited by the volume of the hydrothermal container.21-24. A representative nAg/Au@SM system utilising SM as a substrate was prepared according to the current SCG strategy and separated by normal centrifugation as described in the methods section and shown in Fig. S13. The surface chemistry of SM and MSM was exactly the same and the synthesis yielded well-defined core–shell bimetallic nanoparticles robustly fixed on the recyclable SM.

The Fe3O4 core, MSM, and d2 samples displayed superparamagnetic behavior (Fig. S12), which is essential for a magnetic separation and re-dispersion. The d2 sample was easily separated using an external magnet as shown in the inset of Fig. S12. The saturation magnetization (Ms) of the Fe3O4 core was approximately 70 emug−1, which is in good agreement with the literature value (62~78 emug−1)24, whereas those of MSM and d2 were 22 and 18 emug−1, respectively. The lower Ms of d2 was caused by the heavy silica shell and Au–Ag nanoparticles, but the value was still much higher than that reported for MSM-based Au nanocatalysts with an etched silica shield (6.3 emug−1)22 that were separable from the solution within 3 min in a magnetic field gradient ~30 Tm−1.
1128 μg/mL, respectively, and the combined weight fraction of Au and Ag in the composite system was 3.85, 6.54, and 10.7% for the respective d1, d2, and d3 systems. Size analysis (Fig S3) using the TEM images showed 5.8 ± 1.0, 11.4 ± 2.4, and 20.1 ± 4.1 nm particles, respectively. For a scaled-up synthesis of d1–d3, 125 ml of the Au-seeded MSM was used with appropriate amounts of the other reagents and yielded reproducible results.

nAu/Au@MSM (e1–e3). First, the Au+ solution was prepared by mixing 0.025 g of potassium carbonate with 1.5 ml of HAuCl4 (1 wt%) in 100 ml of DW. For a typical synthesis of e1, 0.2 ml of the Au-seeded MSM was added to 1 ml (3 and 5 ml for e2 and e3) of Au+ solution and stirred for 5 min with a vortex mixer. To this solution, 0.02 ml of formaldehyde was injected as a reducing reagent, and then, the same process was followed as for d1. Finally, the rinsed e1–e3 samples were dispersed in 0.2 ml of DW. Size analysis using the TEM images showed 5.8 ± 0.9, 9.9 ± 1.1, and 14.5 ± 12.3 nm (partially merged) particles for the e1, e2, and e3 systems, respectively.

nPd/Au@MSM (f1–f3). First, the Pd2+ solution was prepared by dissolving 8.87 mg of PdCl2 in 100 ml of 1 mM HCl solution. To synthesise f1, 0.2 ml of the Au-seeded MSM was added to 2 ml (4 and 8 ml for f2 and f3) of Pd2+ solution and stirred for 5 min using a vortex mixer. To this solution, 0.12 ml of sodium chloride (1.0 mM) was added as a reducing agent and then the same process was followed as for d1. Finally, the rinsed f1–f3 samples were dispersed in 0.2 ml of DW. Size analysis using the TEM images showed 3.3 ± 0.4, 5.4 ± 1.0 nm, and merged particles for the f1, f2, and f3 systems, respectively.

nAg/Au@MSM. First, 0.080 g of AP-SM (~470 nm in diameter) in 1 ml DW was mixed with 10 ml of Au seed solution to self-assemble Au seeds on the AP-SM. Then, the unbound Au seeds were removed using centrifugation (4000 rpm, 10 min), and the Au-seeded SM (precipitate) was dispersed in 3 ml of DW. This solution was added to the mixture of AgNO3 (0.02 g) and NaOH (30 wt% in water, 0.02 ml) in 100 ml of DW in an ice bath and stirred for 10 min with a magnetic stirrer. Then, 0.04 ml of formaldehyde was slowly injected into the reaction mixture as a reducing reagent and stirred for 30 min in an ice bath. After allowing the solution to sit for 1.5 h without perturbation, the nAg/Au@MSM sample was rinsed with DW three times using centrifugation (4000 rpm, 10 min) to remove unbound nanoparticles and dispersed in 50 ml of DW. Then, 25 ml (50%) of the solution was fully dried to give 0.048 g of nAg/Au@SM, with a total estimated yield of 0.096 g.

Catalytic reductions of Nip to Amp by NaBH4 were performed using nAg/Au@MSM (d2) and nAg/Au@MSM (e2) as catalysts. First, 0.1 ml of catalyst solution (~5.7 × 10^10 composite systems and 0.07 mg of combined weight for Au and Ag in d2) was added to a quartz cuvette containing 2 ml of aqueous Nip (0.2 mM) and 0.2 ml of NaBH4 (30 mM) with stirring and the absorption at 400 nm was recorded for a magnetically recyclable protein separation system. J. Phys. Chem. C 126, 362–365 (2006).

Acknowledgments
This research was supported by Future-based Technology Development Program (Green Nano Technology Development Program) through the National Research Foundation of Korea. 10.1038/srep01497
Korea (NRF) funded by the Ministry of Education, Science and Technology (grant number 2012-0009627) and Future Key Technology Program of Korea Institute of Science and Technology.

Author contributions
K.W. conceived the project. K.W. and H.H.P. designed the experiments. H.H.P. conducted the experiments. J.-P.A. performed Z-contrast HAADF-STEM imaging. All authors contributed to analysing the data. K.W. and H.H.P. wrote the paper.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.
License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
How to cite this article: Park, H.H., Woo, K. & Ahn, J. Core–Shell Bimetallic Nanoparticles Robustly Fixed on the Outermost Surface of Magnetic Silica Microspheres. Sci. Rep. 3, 1497; DOI:10.1038/srep01497 (2013).