Blood transcriptomics of captive forest musk deer (*Moschus berezovskii*) and possible associations with the immune response to abscesses

Xiaoning Sun\(^1\), Ruibo Cai\(^1\), Xuelin Jin\(^2\), Aaron B. A. Shafer\(^3\), Xiaolong Hu\(^1\), Shuang Yang\(^1\), Yimeng Li\(^1\), Lei Qi\(^1\), Shuqiang Liu\(^1\) & Defu Hu\(^1\)

Forest musk deer (*Moschus berezovskii*; FMD) are both economically valuable and highly endangered. A problem for FMD captive breeding programs has been the susceptibility of FMD to abscesses. To investigate the mechanisms of abscess development in FMD, the blood transcriptomes of three purulent and three healthy individuals were generated. A total of ~39.68 Gb bases were generated using Illumina HiSeq 4000 sequencing technology and 77,752 unigenes were identified after assembling. All the unigenes were annotated, with 63,531 (81.71%) mapping to at least one database. Based on these functional annotations, 45,798 coding sequences (CDS) were detected, along with 12,697 simple sequence repeats (SSRs) and 65,536 single nucleotide polymorphisms (SNPs). A total of 113 unigenes were found to be differentially expressed between healthy and purulent individuals. Functional annotation indicated that most of these differentially expressed genes were involved in the regulation of immune system processes, particularly those associated with parasitic and bacterial infection pathways.

Forest musk deer (*Moschus berezovskii*; FMD) are primarily found in Southern Asia and are economically valuable due to the musk that is secreted by the musk gland of males\(^1\)–\(^3\). China has the largest population of FMD and is the source of over 70% of the global musk supply\(^4\). Extensive illegal hunting and the anthropogenic disturbance of suitable habitats have decimated wild FMD populations in China\(^3\),\(^5\)–\(^7\). To help save the FMD from extinction, the Chinese government, since 1958, has encouraged enterprises to participate in captive breeding programs\(^8\),\(^9\). These captive breeding programs face serious problems, particularly that of disease\(^10\),\(^11\) with abscesses accounting for 50% of all diagnoses\(^12\),\(^13\). Infections arise when foreign bacteria enter the blood stream and cause suppurative lesions and abscesses in various organs and tissues of the infected animals\(^14\),\(^15\), which there is likely variation in gene expression among health and infected cells. Abscesses can cause any tissues or organs, from the head to the extremities including the mouth or the digestive tract, to become purulent\(^16\). It is difficult to cure abscesses\(^10\) and the frequency with which FMD contract the disease has hampered efforts to increase the captive population numbers\(^17\),\(^18\).

Luo et al.\(^20\) suggested that the FMD purulent diseases were primarily caused by *Escherichia coli*. In contrast, Zhao et al.\(^12\) found that *Arcanobacterium pyogenes* (also known as *Trueperella pyogenes*) was the primary aetiological agent of abscesses in FMD, causing secondary and mixed infections, eventually leading to serious illness and death. Another study of bacterial pathogens in FMD found that suppurative disease was typically caused by *Pasteurella spp.* or *Pseudomonas aeruginosa* or *Yersinia spp.*, *Actinomyces pyogenes* and *Staphylococcus spp.*\(^21\).

1Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China. 2Shaanxi Institute of Zoology, No. 88 Xing Qing Ave Xian, Shaanxi, 710032, China. 3Forensic Science and Environmental & Life Sciences, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada. Xiaoning Sun and Ruibo Cai contributed equally to this work. Correspondence and requests for materials should be addressed to S.L. (email: liushuqiang@bjfu.edu.cn) or D.H. (email: hudf@bjfu.edu.cn)
These apparently conflicting results highlight the complexity of the pathogenesis of the suppurative disease in FMD19,22. To date, quinolone antibiotics, especially ciprofloxacin, are the most effective drugs for treatment of abscesses in FMD23.

Very few studies of endangered ungulates have approached understanding disease threats from the molecular level. Two studies have assessed the genetic diversity of captive populations of FMD using small numbers of molecular markers9,24. Due to the key role that the major histocompatibility complex (MHC) plays in immune responses, the genetic diversity of the MHC class II proteins was linked to abscesses in FMD25–27 and it has been suggested that the MHC plays a critical role in determining the resistance or susceptibility of an individual FMD to abscesses28. However, knowledge of the mechanism of abscess formation in FMD is limited, partly due to the lack of understanding of how gene regulation impacts disease formation and progression. This limitation is not trivial because diseases, as we have noted with purulent disease, are usually complex and involve numerous diverse metabolic pathways.

Transcriptomes are the complete set of the mRNAs of a specific tissue or cell at a particular stage or under a given physiological condition. Transcriptome analyses can be used to identify functional elements of the genome, to reveal the molecular constituents of cells and tissues, and to analyze biological processes at the molecular level28,29. The immune system is vital for the maintenance of health and plays an important role in the pathogenesis of many diseases. As blood is a major component of the immune system30,31, the profiling of blood gene transcripts is often used to analyze the immune response31. Moreover, analysis of the blood transcriptome can contribute to the identification of inflammatory pathways, and more broadly has been profiled in several mammals, including brown bears32, polar bears33, humans31,33,34, swine35, cattle36 and giant panda37. Therefore, transcriptome analysis is a powerful means with which to explore disease pathogenesis, physiological homeostasis and the complexity of systems biology28.

In this study, we used high-throughput sequencing (HTS) to generate blood transcriptome profiles of 6 captive FMD: 3 purulent and 3 healthy. Through a comparison of the blood transcriptome responses between the two groups, we aimed first to perform a functional annotation of the blood transcriptome of captive FMD, and secondly to identify the signatures that differed between purulent and healthy FMD. Finally, we discuss the role of the FMD immune system and gene regulation in the process of abscesses formation.

Results

Sequencing and assembly.

To obtain a global overview of the FMD blood transcriptome, 6 cDNA samples from the two groups (healthy and purulent) of FMD were prepared and sequenced on a HiSeq 4000. All short reads have been deposited in the Sequence Read Archive of the National Center for Biotechnology Information (NCBI SRA; accession numbers: SRA 616228). In total, we generated \(\sim 39.68\) Gb raw sequence reads from the 6 samples with an average of 68.13 Mb from each sample (Supplementary Table S1). After stringent quality assessment and data filtering, we selected 65.75–66.30 Mb high-quality clean reads from each sample for further analysis. All analyzed reads had more than 97.28% Q20 bases (Q20 indicates the rate of bases where quality is greater than 20; see Supplementary Table S1 for an overview). After assembly, we recovered 77,752 unigenes with a total length of 78,169,844 bp, an average length of 1,005 bp, an N50 of 2,206 bp, and a GC content of 51.91% (Table 1).

Transcriptome annotation and CDS prediction.

We successfully annotated 63,531 (81.71%) of our unigenes with 7 functional databases (Non-Redundant protein database (NR), Nucleotide sequence database (NT), Gene ontology (GO), Cluster of Orthologous Groups of proteins(COG), Kyoto encyclopedia of genes and genomes (KEGG), SwissProt and InterPro; Table 2). Preliminary functional annotations are shown in Supplementary Fig. S2, S3, and S4. Specifically, 58,736 of our unigenes (75.54%) had similar matches in NT, while 17,796 (22.89%) were significantly similar in COG. Concurrently, we analyzed unigenes separately in the NR, COG, KEGG, SwissProt and InterPro databases. We found that 3894 unigenes were matched uniquely in NR, 429 only in COG, 125 only in KEGG, 152 only in SwissProt, and 831 only in InterPro. Only 13,244 of our unigenes (17.03%) had significantly similar matches in all five databases (Fig. 1). Across all unigenes we predicted 45,798 CDS. The predicted CDS had a mean length of 780 bp and an N50 of 1,374 bp. The length of the predicted CDS ranged from 200 bp to more than 3000 bp, up to 36,741 CDS concentrated in 200–1200 bp in length which accounted for 80.24% of unigenes (Supplementary Fig. S5; Supplementary Table S2).

Table 1. Unigenes of the forest musk deer (Moschus berezovskii) transcriptome generated in this study. N50/ N70/N90: a weighted median statistic where 50%/70%/90% of the total sequence length is contained in unigenes greater than or equal to this value; GC (%): the percentage of G and C bases in all transcripts.

Sample	Total unigenes	Total length of unigenes (bp)	Mean length of unigenes (bp)	N50 (bp)	N70 (bp)	N90 (bp)	GC (%)
Purulent 1	44097	36962323	838	1549	792	306	51.45
Purulent 2	46283	42021313	907	1736	906	328	51.37
Purulent 3	53331	4034593	756	1357	676	282	51.93
Healthy 1	43475	33762201	776	1384	698	290	52.37
Healthy 2	50759	37704954	742	1312	652	279	52.59
Healthy 3	64862	62759668	967	2052	1041	327	51.64
All-Unigene	77752	78169844	1005	2206	1173	328	51.91
We identified 5,093 potential SSRs in 9,293 unigenes (54.80%); 2,304 of these unigenes contained more than one SSR. Among these SSRs, the most abundant motifs were the mononucleotide repeats (35.26%), the trinucleotide repeats (34.27%), and the dinucleotide repeats (25.68%). Quad-, penta-, and hexanucleotide repeats appeared with lower frequency. The most common motifs were the mononucleotide SSR \((A/T)n\) (42.09 SSR/Mb), dinucleotide SSR \((AC/GT)n\) (19.26 SSR/Mb) and trinucleotide SSR \((CCG/CGG)n\) (19.65 SSR/Mb; Fig. 2; Supplementary Table S3).

We identified 65,526 SNPs across the 6 FMD. For each individual, the ratio of transitions to transversion \((Ts/Tv)\) was between 2.6 and 2.7 (Supplementary Table S4). When comparing SNPs between the 2 groups (healthy and purulent), we found that 770 SNPs were conserved within groups but polymorphic between groups, indicating that variation at these SNPs sites might be closely related to the occurrence of abscesses in FMD (Supplementary Table S6).

Analysis of DEGs.

We found that 113 of the 77,752 total unigenes (0.15%) were differentially expressed between the two FMD groups: 56 were upregulated in the purulent individuals as compared to the healthy individuals, and 57 were downregulated. PCA analysis of these gene expression patterns showed that DEGs from the healthy FMD clustered separately from the DEGs from the purulent FMD (Fig. 3; Supplementary Table S4; Figure S6).

The GO annotation classified the differentially expressed genes into 3 categories: molecular functions, cellular components and biological processes (Fig. 4a). Molecular functions included genes involved in binding (39 genes; GO:0005488) and catalytic activity (26 genes; GO:0003824). Genes related to cellular components were primarily cell (41 genes; GO:0005623) and cell part (41 genes; GO:0044464) related. Biological process genes were mainly involved in metabolism (37 genes; GO:0008152) and cellular processes (37 genes; GO:0009987). The distribution of GO annotations in different functional categories indicated a substantial diversity of DEGs (Fig. 4a).

Table 2. Percentage of genes that were successfully annotated in each functional database searched. ‘Overall’ indicates the number of unigenes that were annotated by at least one functional database.

Item	Number	Percentage
Total unigenes	77,752	100%
NR	40,344	51.89%
NT	58,736	75.54%
SwissProt	34,717	44.65%
KEGG	29,087	37.41%
COG	17,796	22.89%
InterPro	29,941	38.51%
GO	20,510	26.38%
Overall	63,531	81.71%

SSR detection and SNP identification. We identified 5,093 potential SSRs in 9,293 unigenes (54.80%); 2,304 of these unigenes contained more than one SSR. Among these SSRs, the most abundant motifs were the mononucleotide repeats (35.26%), the trinucleotide repeats (34.27%), and the dinucleotide repeats (25.68%). Quad-, penta-, and hexanucleotide repeats appeared with lower frequency. The most common motifs were the mononucleotide SSR \((A/T)n\) (42.09 SSR/Mb), dinucleotide SSR \((AC/GT)n\) (19.26 SSR/Mb) and trinucleotide SSR \((CCG/CGG)n\) (19.65 SSR/Mb; Fig. 2; Supplementary Table S3).

We identified 65,526 SNPs across the 6 FMD. For each individual, the ratio of transitions to transversion \((Ts/Tv)\) was between 2.6 and 2.7 (Supplementary Table S4). When comparing SNPs between the 2 groups (healthy and purulent), we found that 770 SNPs were conserved within groups but polymorphic between groups, indicating that variation at these SNPs sites might be closely related to the occurrence of abscesses in FMD (Supplementary Table S6).
We identified biochemical pathways represented by the unigene category. The KEGG annotation of the DEGs suggested that they were distributed in 29 pathways related to cellular processing (17 genes), environmental information processing (16 genes), genetic information processing (13 genes), disease (53 genes), metabolism (14 genes), and organismal systems (23 genes; Fig. 4b). Among the identified functional categories, infectious diseases (24) and immune diseases (13) were most highly represented, followed by immune system (7), signaling molecules and interaction (7), and cancers (9).

Genes related to the FMD immune system response to abscesses. We found that 16 of the 113 DEGs were involved in the immune system of the FMD (Table 3). Among these DEGs, 11 genes encoding immunoglobulin-like proteins and the interleukin-2 receptor gene (IL2RB; Table 3) were upregulated. In contrast, the B-cell translocation gene 1 (BTG1) and genes encoding the T-cell differentiation antigen CD6, the COMM domain-containing protein gene, and the interferon regulatory factor 2 (IRF2) were downregulated (Table 3). We observed several upregulated FMD immunoglobulin genes in primary immunodeficiency and amoebiasis pathways (Supplementary Fig. S7). Of the 770 SNPs that were polymorphic between groups, 27 were found in genes responsible for immune response (Supplementary Table S7).
Discussion

When bacteria or viruses infect organisms patterns of gene expression within cells change dramatically\(^{36,37}\). Many of these changes are crucial to the immune response and characterizing patterns of gene expression patterns in a viral or bacterial infection can provide important clues to understanding the cells resistance to pathogen infection. Using blood transcriptomes to study disease has several potential benefits\(^{39}\). Firstly, peripheral blood is relatively easier to acquire than the tissue of organism and often causes less damage to the sampled animal, which is particularly relevant for the study of wild animals\(^{37}\). Secondly, blood is an important component of the immune system and it is useful to study it directly\(^{31,37}\). Thirdly, blood-based profiles have the potential to

Figure 4. Functional distribution of differently expressed genes (DEGs). (a) Functional distribution of DEGs according to the gene ontology (GO) database. The y-axis shows the GO functional categories, while the number of genes in each category is plotted on the x-axis. (b) Functional distribution of DEGs according to the KEGG pathway database. The y-axis shows the KEGG functional categories, while the number of genes in each category is plotted on the x-axis.
et al. used to estimate the overall genetic variation and thus, the ongoing viability of the species. In the FMD blood compared to healthy individuals.

Genes related to immune system function that were differentially expressed in purulent individuals, as shown in Table 3.

Sample collection and RNA extraction.

Methods
Sample collection and RNA extraction. This study was approved by the Ethics Committee of Beijing Forestry University. Blood samples were collected from 6 different FMDs at the Pien Tze Huang Forest Musk Deer Breeding Center in August 2015. The FMD were categorized as healthy (n = 3) or purulent (with symptoms of abscess; n = 3) according to the medical records provided by the Breeding Center. All FMD sampled were both males with similar age between 3 to 3.5 years old except one purulent male of 7 years old. Individuals in the purulent group contained superficial abscesses. All 6 FMDs were kept in the same captive environment, with the same diet and the same standards of sanitation.
Using disposable sterile syringes we extracted 1–2 mL venous blood from the elbows of each FMD. Fresh blood was collected in tubes containing EDTA and stored in liquid nitrogen. The total RNA of each sample was extracted using TRIzol reagent (Invitrogen, USA) following the manufacturer’s instructions and treated with DNase I (Qiagen, Mississauga, Ontario, Canada). The quality and quantity of total RNA was analyzed using an Agilent 2100 Bioanalyzer, and RNA integrity was checked with agarose gel electrophoresis (1% agarose gel). Suitable RNA samples were selected for cDNA synthesis.

cDNA library preparation and sequencing. Poly (A) mRNA was isolated using oligo-dt beads. All mRNA was broken into shorter fragments (ca. 200 nt) by adding a fragmentation buffer, and cDNA was synthesized using the mRNA fragments as templates. Short fragments were purified using a QIAquick PCR extraction kit (Qiagen, Germany) and resolved with EB buffer (Qiagen, Germany) for end repair and single nucleotide A (adenine) addition. The short fragments were then ligated with adapters. Suitable fragments were selected for PCR amplification to construct the final cDNA library. The cDNA library was sequenced with RNA sequencing (RNA-Seq) on an Illumina HiSeq 4000 sequencing platform (Illumina HS4000 PE101) using paired-end technology (Fig. S1) at BGI (Shenzhen, Guangdong, China).

Transcriptomic data analysis. Raw reads were cleaned first by removing all adaptor sequences, followed by removing reads in which unknown bases (N) made up more than 5% of the total sequence, and finally by removing reads where the quality of more than 20% of all bases was less than or equal to 10. After this data filtering, the remaining ‘clean reads’ were assembled de novo with Trinity v2.0.6 to produce transcripts. We then clustered these transcript sequences with Tgicl v2.0.6 to generate unigenes. We calculated the length of all unigenes combined as well as average unigene length, N50 (a weighted median statistic where 50% of the total gene length is contained in Unigenes greater than or equal to this value), and GC-content of each unigene.

We used BLAST v2.2.23 with a threshold E-value of 10−5 to search for our unigenes in the databases NT (ftp://ftp.ncbi.nlm.nih.gov/blast/db), NR (ftp://ftp.ncbi.nlm.nih.gov/blast/db), COG (http://www.ncbi.nlm.nih.gov/COG), KEGG (http://www.genome.jp/kegg), and SwissProt (http://ftp.ebi.ac.uk/pub/databases/swissprot). We generated gene ontology (GO) annotations for our unigenes with Blast2GO v2.5.0 and probability ≥ 0.8 (as calculated by NOIseq) while fold change was >2.0 and probability ≥ 0.8 (as calculated by NOIseq) while fold change was >2.0 and the FDR (false discovery rate) was <0.001 (as calculated by PossionDis). To reduce the risk of overfitting the data, we retained only genes where the expression level of genes from different individuals within the same group was relatively consistent. We further filtered the remaining genes based on their significance with NOIseq and QuantSeq v1.2.12.

Analysis of differentially expressed genes (DEGs). We used NOIseq and PossionDis to identify DEGs between the healthy and purulent groups as those where the absolute value of log2Foldchange was ≥2.0 and probability ≥ 0.8 (as calculated by NOIseq) while fold change was >2.0 and the FDR (false discovery rate) was <0.001 (as calculated by PossionDis). To reduce the risk of overfitting the data, we retained only genes where the expression level of genes from different individuals within the same group was relatively consistent. We classified DEGs according to the GO annotation, and then performed GO functional enrichment using phyper in R. Next, we classified DEGs according to the KEGG annotation result and performed pathway functional enrichment using phyper in R.

Data availability. All data generated or analyzed during this study are included in this published article (and its Supplementary Information files).

References
1. Guha, S., Goyal, S. P. & Kashyap, V. K. Molecular phylogeny of musk deer: a genomic view with mitochondrial 16S r RNA and cytochrome b gene. Mol. Phylogen. Evol. 42, 585–597 (2007).
2. Groves, C. P., Wang, Y. & Grubb, P. Taxonomy of Musk-Deer, Genus Moschus (Moschidae, Mammalia). Acta Theriologica Sinica. 15, 181–197 (1995).
3. Sheng, H. L. & Liu, Z. X. The Musk Deer in China (ed. Sheng, H. L. & Liu, Z. X.) 145–147 (The Shanghai Scientific & Technical Publishers, 2007).
4. Liu, Z. X. & Sheng, H. L. The summary of ecological research and conservation problems of musk deer in China. Chin. J. Zool. 35, 54–57 (2000).
5. Yang, Q. S., Meng, X. X., Xia, L. & Feng, Z. J. Conservation status and causes of decline of musk deer (Moschus spp.) in China. Mol. Phylogenet. Evol. 42, 585–597 (2007).
6. Liu, Z. X. & Sheng, H. L. The summary of ecological research and conservation problems of musk deer in China. Chin. J. Zool. 35, 54–57 (2000).
7. Yang, Q. S., Meng, X. X., Xia, L. & Feng, Z. J. Conservation status and causes of decline of musk deer (Moschus spp.) in China. Mol. Phylogenet. Evol. 42, 585–597 (2007).
8. Liu, Z. X. & Sheng, H. L. The summary of ecological research and conservation problems of musk deer in China. Chin. J. Zool. 35, 54–57 (2000).
9. Peng, H., Liu, S., Zou, F., Zeng, B. & Yue, B. Genetic diversity of captive forest musk deer (Moschus berezovskii) inferred from the mitochondrial DNA control region. Annu. Genet. 40, 65–72 (2009).
10. Li, Y. H., Qiao, J. Y., Wu, X. M. & Su, L. N. A. Review of Mainly Affected on Musk-Deer Diseases: Purulent, Respiratory System and Parasitic Diseases. Journal of Economic Animal 13, 104–107 (2009).

11. Huang, T. et al. DNA vaccination based on pyolysin co-immunized with IL-1β enhances host antibacterial immunity against Trueperella pyogenes infection. Vaccine. 34, 3469–3477 (2016).

12. Zhao, K. L. et al. Isolation and identification on pathogens of Musk-deer abscess disease and antibiotic susceptibility assay. Sichuan Journal of Zoology 30, 522–526 (2011).

13. Luo, Y. et al. Histopathological observations of forest musk deer died in pneumonia and supplicative diseases. Progress in Veterinary Medicine 30, 122–123 (2009).

14. Lechtenberg, K. F., Nagaraja, T. G., Leipold, H. W. & Chengappa, M. M. Bacteriologic and histologic studies of hepatic abscesses in cattle. Am. J. Vet. Res. 49, 58–62 (1988).

15. Haritani, M. et al. Immunoperoxidase evaluation of the relationship between necrotic lesions and causative bacteria in lungs of calves with naturally acquired pneumonia. Am. J. Vet. Res. 51, 1975–1979 (1990).

16. Liu, H. Y. The diagnosis and treatment of the purulent disease of musk deer. Journal of South West University of Science and Technology 19, 99–101 (2004).

17. Chen, G. L., Liu, X. U., Yue, B. S. & Zou, F. D. Molecular cloning, characterizing of interferon-α (IFN-α) from forest musk deer (Moschus berezovskii) and its expression and purification in escherichia coli. Sichuan Journal of Zoology 26, 22–25 (2007).

18. Guan, T. L., Zeng, B., Peng, Q. K., Yue, B. S. & Zou, F. D. Microsatellite allele of the genetic structure of captive forest musk deer populations and its implication for conservation. Biochem. Syst. Ecol. 37, 166–173 (2009).

19. Zhao, K. L. et al. Detection and characterization of antibiotic-resistance genes in Arcanobacterium pyogenes strains from abscesses of forest musk deer. J. Med. Microbiol. 60, 1820–1826 (2011).

20. Luo, Y. et al. Isolation and identification of pathogenic Escherichia coli of hypochondrissias of musk deer. Heilongjiang Animal Science and Veterinary Medicine 11, 81–83 (2006).

21. Li, Q. B., Yan, Q. G., Kang, J. P., Li, P. & Xiong, W. P. Isolation and identification of purulent bacteria from forest musk deer (Moschus berezovskii). Journal of Wildlife 33, 211–213 (2012).

22. Liu, Z. B. & Dai, X. Y. Prevention and control of forest musk deer supplicative diseases. Special Economic Animal and Plant 9, 43–44 (2006).

23. Palahati, P., Zhao, K. L., Liu, Y., Zhang, X. Y. & Yue, B. S. Minimum Bactericidal Concentration of 5 Antibiotics Against 4 Trueperella pyogenes Strains. Sichuan Journal of Zoology 31, 580–582 (2012).

24. Cai, R. B. et al. Recombination and selection in the major histocompatibility complex of the endangered forest musk deer (Moschus berezovskii). Sci. Rep. 5, 17285 (2015).

25. Yao, G., Zhu, Y., Wan, Q. H. & Fang, S. G. Major histocompatibility complex class II genetic variation in forest musk deer (Moschus berezovskii) in China. Anim. Genet. 46, 533–543 (2015).

26. Li, L., Wang, B. B., Ge, Y. F. & Wan, Q. H. Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease. Int. J. Immunogenet. 41, 401–412 (2014).

27. Xia, S. et al. Molecular polymorphism of MHC-DRB gene and genetic diversity analysis of captive forest musk deer (Moschus berezovskii). Biochem. Syst. Ecol. 67, 37–43 (2016).

28. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

29. Wei, W. et al. Characterization of the sesame (Sesamum indicum L.) global transcriptome using illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics. 12, 451 (2011).

30. Liew, C., Ma, J., Tang, H., Zheng, R. & Dempsey, A. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J. Lab. Clin. Med. 147, 126–132 (2006).

31. Chaussabel, D., Pasqual, V. & Banchereau, J. Assessing the human immune system through blood transcriptomics. BMC Biol. 8, 84 (2010).

32. Miller, W. et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc. Natl. Acad. Sci. USA 109(36), E2382 (2012).

33. Luo, Y. et al. Transcriptome profiling of whole blood cells identifies PLEK2 and C1QB in human melanoma. PLoS One. 6, e20971 (2011).

34. Zaataar, A. M. et al. Whole blood transcriptome correlates with treatment response in nasopharyngeal carcinoma. J. Exp.Clin. Cancer Res. 31, 76 (2012).

35. Mach, N. et al. The peripheral blood transcriptome reflects variations in immunity traits in swine: towards the identification of biomarkers. BMC Genomics. 14, 894 (2013).

36. Demius, W., Weiskard, R., Hadlich, F., Müller, K. & Kühn, C. Monitoring the immune response to vaccination with an inactivated vaccine associated to bovine neonatal pancytopenia by deep sequencing transcriptomic analysis in cattle. Vet. Res. 44, 93 (2013).

37. Du, L. M. et al. First insights into the giant panda (Ailuropoda melanoleuca) blood transcriptome: a resource for novel gene loci and immunogenetics. Mol. Ecol. Resour. 15, 1001–1013 (2015).

38. Hool, L. et al. Systems Biology and New Technologies Enable Predictive and Preventative Medicine. Science. 306, 640–643 (2004).

39. Mohr, S. & Liew, C. The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends. Mol. Med. 13, 422–432 (2007).

40. Li, H. et al. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. PLoS One. 7, e30987 (2012).

41. Ma, H. et al. Identification of transcriptome-derived microsatellite markers and their association with the growth performance of the mud crab (Scylla paramamosain). PLoS One. 9, e89134 (2014).

42. Wang, H. L. et al. Developing conserved microsatellite markers and their implications in evolutionary analysis of the bermisia tabaci complex. Sci. Rep. 4, 6351 (2014).

43. Haas, B. J. et al. De novo transcript sequence reconstruction from rna-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

44. Pertea, G. et al. Tigr gene indices clustering tools (tgicl): a software system for fast clustering of large est datasets. Bioinformatics. 19, 651 (2003).

45. Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

46. Conesa, A. et al. Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 21, 3674 (2005).

47. Quevillon, E. et al. Interproscan: protein domains identifier. Nucleic Acids Res. 33, W116–20 (2005).

48. Iedl, C., Jongeneel, C. V. & Bucher, P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol.138 (1999).

49. Thiel, T., Michalek, W., Varshney, R. K. & Graner, A. Exploiting est databases for the development and characterization of gene-derived ssr-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422 (2003).

50. McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing data. Genome Res. 20, 1297–1303 (2010).

51. Langmead, B. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357–359 (2012).

52. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12, 323 (2011).
Acknowledgements
We thank the Pien Tze Huang Forest Musk Deer Breeding Center for their help in collecting the samples for this study. We also appreciate the anonymous referees and the editor for their comments and suggestions that helped to improve the manuscript. We are also grateful to all persons that in any way contributed to the development of this work.

Author Contributions
D.H., X.S. and R.C. conceived the experiments. X.S., R.C., and X.H. conducted the experiments. S.Y. and Y.L. analyzed the results. X.S., R.C., A.B.A.S. and L.Q. wrote the paper, X.J., S.L. and D.H. reviewed the manuscript. All authors approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-18534-0.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018