Characterization and CRISPR-based genotyping of clinical trh-positive *Vibrio parahaemolyticus*

Jetnapang Kongrueng¹, Kanchana Srinitiwarawong¹, Mitsuaki Nishibuchi², Pimonsri Mittraparp-arthorn¹* and Varaporn Vuddhakul¹

Abstract

Background: *Vibrio parahaemolyticus* is a causative agent of gastroenteritis. Most of the clinical isolates carry either *tdh* and/or *trh* genes which are considered as the major virulence genes of this pathogen. In this study, the clinical isolates of *V. parahaemolyticus* carrying *trh* gene (n = 73) obtained from 1886 to 2012 from various countries were investigated for the urease production, haemolytic activity, and biofilm formation. In addition, the potential of clustered regularly interspaced short palindromic repeats (CRISPR)-based genotyping among these isolates was investigated.

Results: In this study, no significant differences were observed in the urease production between *tdh*⁺ *trh*1⁺ and *tdh*⁺ *trh*2⁺ isolates (p = 0.063) and between the *tdh*⁻ *trh*1⁺ and *tdh*⁻ *trh*2⁺ isolates (p = 0.788). The isolates carrying only the *trh* gene showed variation in their haemolytic activity. The ratio of urease production and haemolytic activity between the *trh*1⁺ and *trh*2⁺ isolates and biofilm formation of *trh*⁺ *V. parahaemolyticus* isolates were not significantly different. Sixteen of thirty-four tested isolates (47.0%) of *trh*⁺ *V. parahaemolyticus* were positive for CRISPR detection. The discriminatory power index (DI) of CRISPR-virulence typing was higher than the DI obtained by CRISPR typing alone.

Conclusion: The *tdh* and *trh* genes were not involved in urease production in the *trh*⁺ *V. parahaemolyticus*, and variation of haemolytic activity detected in *V. parahaemolyticus* carrying only the *trh* gene might be correlated to the sequence variation within *trh*1 and *trh*2 genes. Additionally, biofilm production of *V. parahaemolyticus* was not associated with harboring of virulence genes. For genotyping, CRISPR sequences combined with virulence genes can be used as genetic markers to differentiate *trh*⁺ *V. parahaemolyticus* strains.

Keywords: CRISPR, CRISPR-virulence typing, *trh* gene, *Vibrio parahaemolyticus*

Background

Vibrio parahaemolyticus is a halophilic Gram-negative bacterium that occurs naturally in worldwide aquatic environments. The organism causes gastroenteritis in several countries due to consumption of raw or undercooked seafood [1]. The pathogenicity of this bacterium in humans is associated to the production of thermostable direct hemolysin (TDH) encoded by *tdh* gene and/or TDH-related hemolysin (TRH) encoded by *trh* gene, which are considered to be the major virulence factors, however, not many isolates from the environment possess these genes [2]. *V. parahaemolyticus* obtained the *tdh* and *trh* genes from other organisms and transmit them among *V. parahaemolyticus* strains via horizontal gene transfer [3]. TDH and TRH are approximately 67% identity in their amino acid sequences and possess common biological activities including haemolytic activity, enterotoxicity, cytotoxicity, and cardiotoxicity [4]. The *trh* gene possesses a significantly broader nucleotide sequence variation and can be subdivided into two main subtypes (*trh*1 and *trh*2) which share 84% identity in their sequences [5]. The presence of *trh* gene in...
V. parahaemolyticus isolates is associated with the urease production because of the genetic linkage between ure and trh genes on the chromosome of trh+ V. parahaemolyticus [6]. Urease is an enzyme that catalyzes the hydrolysis of urea to ammonia, raising the pH of environment inside the host. It is possible that urease contributes to the pathogenicity of this bacterium by increasing its chance of survival after entering the human body, as has been previously demonstrated for Yersinia enterocolitica infections [7]. Clustered regularly interspaced short palindromic repeats (CRISPR) and repetitive sequences such as tandem repeats are commonly detected in the genomes of bacteria. Their lengths and numbers are highly variable among bacterial strains and are useful for bacterial genotyping [8]. CRISPR is a segment of prokaryotic DNA containing direct repeats (DRs), typically 24–47 bp nucleotides in length, and spacer (non-repetitive sequences obtained from foreign genetic elements). The polymorphism detected in CRISPR loci has been applied as a genetic marker for typing many bacteria, such as Campylobacter fetus and S. Typhimurium [9, 10]. Association of CRISPR and virulence factors of bacteria has been demonstrated in Pseudomonas aeruginosa, Myxococcus xanthus, Francisella novicida and Listeria monocytogenes [11]. In V. parahaemolyticus, correlation between CRISPR and virulence genes was determined in 208 isolates from clinical and food samples [12]. CRISPR was detected in 149 of 153 (97.4%) of tdh+ isolates. In contrast, among the 6 trh+ V. parahaemolyticus tested isolates, only 2 were positive for CRISPR locus [12]. Therefore, association of CRISPR and the trh+ V. parahaemolyticus is not completely concluded.

In this work, trh+ V. parahaemolyticus isolates from clinical samples were investigated for urease production, haemolytic activity and biofilm formation. In addition, molecular typing based on CRISPR was analyzed.

Methods

Bacterial strains
A total of 73 clinical trh+ V. parahaemolyticus isolates were obtained from various countries between 1886 and 2012 (Table 1). They belonged to 28 different serotypes consisting of 10 O serogroups and 19 K antigens. All isolates were confirmed as V. parahaemolyticus using PCR targeted to the toxR gene [13].

Detection of virulence genes
Genomic DNA of all V. parahaemolyticus isolates was extracted using boiling method [14] and was used as templates to detect the virulence genes, tdh, trh1 and trh2. A 251-bp sequence of tdh gene was amplified by PCR [15]. For detection of trh genes, PCR was performed using two primer sets based on trh1 and trh2 sequences available in the NCBI GenBank database. The trh1 primers: Trh1-F1 (5ʹ-CTG AAT CAC CAG TTA ACG C-3ʹ) and Trh1-R1: (5ʹ-GGC GTT TRA TCC AAA TAC -3ʹ) generated

Country	Year	Presence of gene	No. of isolates	O:K serotype (no. of isolates)
Thailand	1991–2012	+ + -	14	O1:KUT (3), O3:K6 (5), O3:K72 (2), O4:K62 (2), O4:K63 (1), O12:KUT (1)
	1987–2006	- - +	10	O1:K48 (1), O1:K56 (1), O1:K69 (1), O3:K6 (3), O3:KUT (2), O4:K53 (1), O5:KUT (1)
	1886–2012	+ - +	9	O1:K1 (1), O1:KUT (4), O1:K69 (1), O3:K72 (1), O3:KUT (1), O8:K56 (1)
USA	1999–2012	- - +	6	O1:K25 (1), O1:K41 (2), O1:K69 (1), O1:KUT (2)
	1990–1996	+ + -	5	O1:K56 (1), O4:K12 (2), O4:K63 (1), O1:KUT (1)
	1990	- + -	1	O4:K12 (1)
	1991–1996	- - +	2	O3:K59 (1), O11:K15 (1)
Bangladesh	1994	+ + -	1	O4:K11 (1)
	1981	- + -	1	O4:K11 (1)
	1977–1986	- - +	11	O1:K25 (1), O1:K56 (2), O1:KUT (3), O3:K7 (1), O3:KUT (2), O13:KUT (1), O5:KUT (1)
Maldives	1985	- - +	1	O3:K6 (1)
Singapore	1985–1992	+ - +	2	O1:K69 (1), O1:KUT (1)
	1985	- + -	1	O4:K11 (1)
Vietnam	2010	- + -	1	O1:K1 (1)
India	1994	+ - +	1	O1:KUT (1)
	1994	- - +	1	O1:KUT (1)
Philippines	1983–1987	+ - +	3	O3:KUT (1), O10:K71 (1), O6:K46 (1)
Hong Kong	1983–1993	+ - +	2	O1:K1 (1), O1:K69 (1)
Malaysia	1995	+ - +	1	O4:K12 (1)
a PCR product of 313-bp and trh2 primers: Trh2-F2 (5'-CAATCAAACAGTACCC-3') and Trh2-R3 (5'-CAT CAACAAAAMATTCTACCA-3') provided an ampli-
con of 276-bp. The PCR reaction was carried out with a
reaction mixture consisting of 1.5 mM MgCl₂, 0.2 mM
dNTPs, 0.2 μM of each primer, 0.025 U of GoTag DNA
polymerase and 2.0 μl DNA templates in a 20 μl volume.
The reactions were performed with a Thermal Cycler
Gene Atlas (Astec, Fukuoka, Japan) as follows: 5 min for
a hot start at 96 °C, followed by 35 cycles of amplification
consisting of denaturation at 94 °C for 1 min, annealing
at 53 °C for 1 min and extension at 72 °C for 1 min and
final extension at 72 °C for 7 min. Electrophoresis was
performed on a 1.5% agarose gel and the amplicons were
detected using a UV transilluminator. In addition, the
specificity of the trh1 and trh2 primers was also deter-
mined by purification of PCR products using ethanol/
sodium acetate precipitation, and sequencing.

Quantitative urease assay
Urease was quantified using a colorimetric assay based on
the reaction of ammonia (NH₃) and phenol in the
presence of hypochlorite which yields a blue product of
indophenol [16]. Briefly, bacteria were inoculated in LB
broth supplemented with 3% sodium chloride (NaCl) and
0.1% urea and incubated at 37 °C. Overnight cul-
tures were concentrated by centrifugation, washed twice
with 50 mM HEPES buffer (pH 7.5) and resuspended in
the same buffer. The cells were lysed by sonication, then,
50 μl of supernatant obtained after centrifugation was
mixed with 25 mM of urea in HEPES buffer (pH 7.5).
After incubation at 37 °C for 30 min, ammonia released
from the lysate was determined by adding solution of 1%
(w/v) phenol and 170 μM sodium nitroprusside followed
solution of 125 mM sodium hydroxide (NaOH) and
0.05% (w/v) sodium hypochlorite (NaOCl). Subsequently,
the tubes were incubated at 37 °C for 30 min and the
absorbance was determined on a Hitachi U 2000 Double-
Beam UV/VIS spectrophotometer (Hitachi Instruments
Inc., Danbury, CT) at a wavelength of 625 nm. Ammoni-
um chloride (NH₄Cl) was used to perform standard
curve. The total protein concentration from the same
lysate was determined by Lowry’s method with Folin-
Ciocalteu’s reagent solution (Nacalai Tesque Inc., Kyoto,
Japan) and bovine serum albumin (BSA) was used to set
up standard curve [17]. Urease activity was calculated as
micromoles of NH₃ per minute per milligram of protein.

Determination of haemolytic activity

V. parahaemolyticus carrying either the trh1 or trh2
gene could lyse human erythrocyte [5, 18]. In this study,
haemolytic activity of 15 tdh⁻ trh1⁺ and 20 tdh⁻ trh2⁺
isolates of V. parahaemolyticus was evaluated using the
blood agarose assay [19] with some modification. Briefly,
V. parahaemolyticus was grown in LB broth supple-
mented with 2% NaCl at 37 °C for 18 h, the pellet was
harvested and resuspended in PBS (pH 7.0). Then, the
cells were sonicated and the supernatant obtained by
centrifugation was determined. The 50 μl of the super-
natant was added into the agarose wells containing vari-
ous concentration of human blood (1%, 0.5% and 0.25%).
After incubation at 37 °C for 24 h, a clear zone around the
well was indicated as haemolytic activity. High haemo-
lytic activity (+3) was defined as the isolates can lyse all
three concentration of erythrocytes whereas medium
(+2) and low (+1) haemolytic activities were defined as
the isolates can haemolysed two (0.5% and 0.25%) and one
(0.25%) blood concentrations, respectively.

Quantitative biofilm assays
Each 5 isolates of V. parahaemolyticus belonging to the
tdh⁻ trh1⁺, tdh⁻ trh2⁺, tdh⁺ trh1⁺ and tdh⁺ trh2⁺ iso-
lates was investigated for biofilm formation as previ-
ously described [20]. Biofilm formation was quantified by
measuring the optical density (OD) at 570 nm using a
LUMIstar Omega spectrophotometer (BMG LABTECH,
Germany). LB broth supplemented with 2% NaCl was
used as control. The experiment was performed in
triplicate.

Determination of CRISPR using PCR technique
The primers for detection of CRISPR of V. parahaemo-
lyticus were designed from the CRISPR sequences of
V. parahaemolyticus serotype O3:K6 (strain RIMD2210633)
obtained from the CRISPR database website (http://crisp
ru-psud.fr/) [21]. The forward primer: VpCRISPR_3-
F (5'-ATGCATTCCAAAGCTCACCCT-3') and the
reverse primer: VpCRISPR_705-R (5'-GCCTACCA
TAGCAGTGCC-3') generated a 592-bp product.
The PCR reaction mixture consisted of 1 × Ex Taq Buffer,
2 mM MgCl₂, 1.25 U Takara Ex Taq DNA polymerase
(Takara Biochemicals, Tokyo, Japan), 200 μM dNTPs,
0.2 μM of each primer, and 5 μl of DNA template in a
total volume of 50 μl. The PCR reaction was performed
using the following conditions: initial denaturation cycle
for 1 min at 94 °C, followed by 30 cycles of amplification
consisting of denaturation at 94 °C for 1 min, anneal-
ing at 50 °C for 1 min and extension at 72 °C for 1 min
and final extension at 72 °C for 5 min. The PCR product
was confirmed by sequencing using the forward primer:
VpCRISPR_3-F.

CRISPR pattern including the DRs and spacers was
investigated using the CRISPRfinder tool (http://
crispr.i2bc.paris-saclay.fr/Server/). The DR sequences
in each isolate were analyzed based on the similarity
of consensus direct repeat sequences (CDRs). In
addition, all spacer sequences were investigated using the CRISPRTarget tool (http://bioanalysis.otago.ac.nz/CRISPRTarget/) and were used for phylogenetic tree construction.

In this work, CRISPR-virulence typing was constructed and compared to profiles obtained by CRISPR typing alone. CRISPR-virulence typing was constructed based on the CRISPR spacer sequences and the presence of virulence genes that included the \textit{tdh}, \textit{trh1} and \textit{trh2} genes. A profile of each isolate was created using a binary matrix of presence or absence of spacer sequences and virulence genes. The dendrogram was constructed using BioNumerics 7.0 software (Applied Maths, Saint-Martens-Latem, Belgium) with the UPGMA algorithm using the Dice similarity coefficient. The discriminatory power index (DI) of CRISPR typing alone and CRISPR-virulence typing were assessed by Simpson’s diversity index [22].

Statistical analysis

Urease activity and correlation between urease and haemolytic activities of \textit{trh}^+ \textit{V. parahaemolyticus} isolates were determined by the independent samples \textit{t} test analysis using SPSS 11.5 software. The differences observed were considered statistically significant at \(p < 0.05 \).

Results and discussion

Urease production in \textit{trh}^+ \textit{V. parahaemolyticus}

Urease is detected in many pathogenic bacteria such as
Proteus mirabilis, Helicobacter pylori and Yersinia enterocolitica [23–25]. In *V. parahaemolyticus*, urease-positive phenotype strongly correlates with the possession of the trh gene making it as a marker of trh⁺ strains [26]. In this work, urease production in trh⁺ *V. parahaemolyticus* isolates was evaluated. Previous results have suggested that the presence of urea is involved in the urease induction of trh⁺ *V. parahaemolyticus* TH3996 strain [27]. Therefore, in this work, all tested isolates were grown in the liquid medium supplemented with 0.1% urea before testing.

Urease production of the *tdh*⁺ trh¹⁺, *tdh*⁺ trh²⁺, *tdh*[−] trh^{1−} and *tdh*[−] trh^{2−} *V. parahaemolyticus* isolates varied from 0.46 to 15.54, 1.75 to 21.05, 0.89 to 20.79 and 3.46 to 21.20 μmol NH₃/min/mg protein, respectively. No significant differences were observed in the urease production between the *tdh*⁺ trh¹⁺ and *tdh*[−] trh^{2−} (*p = 0.063*) as well as in the *tdh*[−] trh^{1−} and *tdh*[−] trh^{2−} isolates (*p = 0.788*) (Fig. 1). These indicated that urease production among clinical trh⁺ *V. parahaemolyticus* isolates varied distinctively but it was not associated with either the trh or *tdh* genes. In addition, no correlation between urease production and serotypes of *V. parahaemolyticus* was observed in this study (Additional file 1: Table S1).

Haemolytic activity of trh⁺ *V. parahaemolyticus*

A total of 15 trh⁺ isolates was determined, 13.3%, 53.3% and 33.3% of the total isolates exhibited high, medium and low haemolytic activity, respectively (Fig. 2). For 20 isolates of *V. parahaemolyticus* carrying the trh² gene, 5%, 35% and 60% of the total isolates displayed high, medium and low haemolytic activity. It has been demonstrated that the expression of trh² was lower than the trh¹ [5, 28]. Therefore, the results obtained in this study might correlate to the expression of the genes and the sequences variation within the trh¹ and trh² genes [5].

In this work, correlation between urease production and haemolytic activity of trh⁺ isolates was evaluated. Although the urease production and haemolytic activity ratio of trh²⁺ isolates was higher (1.65 to 21.20 μmol

Table 2 Characteristics of CRISPR loci in all 16 CRISPR-positive *V. parahaemolyticus* isolates

Isolate assigned	Gene harboring	Consensus direct repeats (CDRs) sequences^a	No. of DRs	No. of spacers	CRISPR locus pattern (bp)^b
PSU4921	tdh⁺ trh¹⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-31-28 31-28
PSU5105	tdh⁺ trh¹⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-31-28 31-28
PSU5106	tdh⁺ trh¹⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-31-28 31-28
PSU5107	tdh⁺ trh¹⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-31-28 31-28
PSU5264	tdh⁺ trh¹⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	2	1	28-33-28
PSU5296	tdh⁺ trh¹⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-31-28 31-28
PSU5322	tdh⁺ trh¹⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-30-28 31-28
1884	tdh⁺ trh¹⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	2	1	28-31-26
1990	tdh⁺ trh²⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	2	1	28-31-28
2475	tdh⁺ trh²⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	2	1	28-32-28
2435	tdh⁺ trh²⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-32-28 31-28
2443	tdh⁺ trh²⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-31-28 31-28
2463	tdh⁺ trh²⁺	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-31-25 31-25
PSU5256	tdh[−] trh^{2−}	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-32-28 31-28
PSU5323	tdh[−] trh^{2−}	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-30-28 31-28
PSU5331	tdh[−] trh^{2−}	GTGAACCTGCGGAATAGGTAGCTGATAAT	3	2	28-30-28 31-28

^a Underline indicates the consensus sequence

^b Underline indicates the direct repeat length and bold indicates the spacer length
were positive for CRISPR, they were 8, 5 and 3 from for CRISPR sequences analysis. Sixteen isolates (47.0%) difference was observed ($p=0.683$) (Fig. 3). This indicated the urease was not involved in the human erythrocyte lysis by TRH hemolysin of trh^+ V. parahaemolyticus strains.

Biofilm formation
Most of human bacterial infections are associated with biofilms that contributed to their resistance and persistence in the host [29]. Previous study demonstrated that biofilm formation of vibrios was a survival mechanism associated with their pathogenesis and stress tolerance [30]. In order to investigate the involvement of the virulence genes and biofilm production, 4 categories of V. parahaemolyticus ($tdh^+ trh1^+$, $tdh^+ trh2^+$, $tdh^- trh1^-$, and $tdh^- trh2^-$) were determined. There was no any difference in biofilm formation among 4 categories of V. parahaemolyticus because high variation of biofilm formation within the isolates in each category was observed (Fig. 4). Variation in biofilm formation among the bacterial isolates has been reported. High variability in biofilm formation of 34 strains of Acinetobacter baumannii isolated from hospitalized patients was observed without correlation to molecular types and antimicrobial resistance [31]. Ninety-eight strains with the same serotype of Listeria monocytogenes displayed different biofilm formation [32]. Additionally, quantitative biofilm assay of Vibrio cholerae isolates in Thailand demonstrated that those isolates possessed a wide range of biofilm production [33].

CRISPR sequences in trh^+ V. parahaemolyticus
In the present study, specific primer pairs for detecting CRISPR region were designed and compared to the previously reported by Sun and co-workers [12]. No difference in the specificity detected in the 5 V. parahaemolyticus tested isolates after confirmation by sequencing (data not shown). Thirty-four isolates of trh^+ V. parahaemolyticus including 10 isolates of $tdh^+ trh1^+$ and each 8 isolates of $tdh^- trh1^-$, $tdh^- trh2^-$ were selected for CRISPR sequences analysis. Sixteen isolates (47.0%) were positive for CRISPR, they were 8, 5 and 3 from $tdh^- trh1^-$, $tdh^- trh2^-$, and $tdh^- trh2^-$ isolates, respectively (Table 2). None of the isolate carrying only the $trh1$ gene was positive for CRISPR. The result indicated that the number of CRISPR-positive isolates of trh^+ V. parahaemolyticus obtained in this study was higher than the 2 out of 6 (33.3%) isolates reported in a previous study [12]. It is of interest that CRISPR was mostly detected in the isolates carrying the trh gene together with the tdh gene. Association of tdh and the presence of CRISPR was observed in 97.4% of V. parahaemolyticus isolates [12]. Thus, horizontal gene transfer of virulence genes might have occurred among V. parahaemolyticus and close related species. The numbers of DRs were between 25 and 28 bp nucleotides in lengths and the DR unique sequences of all CRISPR-positive isolates were GTGACATGCGCTGAT (Table 2). A total of 28 spacers were obtained and the number of spacer detected in each isolate was between 1 or 2 with 30 to 32 bp nucleotides in lengths (Additional file 1: Table S1). Spacer analysis using the CRISPRTarget and the BLAST databases from NCBI revealed that most of them showed 87–100% similarity to Vibrio alginolyticus plasmids except one spacer of PSU5256 suggesting the possibility of genetic transfer between V. alginolyticus and V. parahaemolyticus (Additional file 2: Table S2). Phylogenetic tree of all 28 spacers were generated and 6 different spacer patterns designated as SP1 to SP6 were classified using maximum likelihood method (Fig. 5).
CRISPR analysis based on the CRISPR spacer sequences has been applied for bacterial subtyping such as *Campylobacter jejuni*, *Mycobacterium tuberculosis*, *Salmonella enterica* and *Yersinia pestis* [9, 34–36]. In this work, a total of 16 of 34 trh \(^+\) *V. parahaemolyticus* isolates were positive for CRISPR detection, and they were classified into 5 CRISPR types (CTs) based on CRISPR spacer patterns at 75% similarity level (Fig. 6). All isolates in CT1 type were trh\(^1\)\(^+\) that contained spacers SP4 and SP6. CT2 of both the trh\(^1\)\(^+\) and trh\(^2\)\(^+\) isolates harbored spacers SP1 and SP6. One isolate of trh\(^2\)\(^+\) *V. parahaemolyticus* containing spacers SP1 and SP5 was classified into CT3 type. However, CT4 and CT5 contained only one spacer (SP3 in CT4; SP2 in CT5) (Fig. 6). Although the tested *V. parahaemolyticus* isolates were classified using CPISPR-based typing, they could not be grouped according to the trh gene harboring (trh\(^1\) or trh\(^2\)) (Fig. 6).

Previous study demonstrated that a combination of CRISPR and virulence genes significantly increased the discriminatory power and could be a useful subtyping method for investigation of *Salmonella* outbreaks [37]. In this work, a combination of CRISPR spacer sequences with virulence genes (tdh, trh1 and trh2 genes) of *V. parahaemolyticus* isolates was investigated. CRISPR-virulence typing profiles obtained from 34 isolates of trh \(^+\) *V. parahaemolyticus* were organized into 7 clusters with 12 different profiles at 75% similarity level (Fig. 7). The isolates within the same cluster possessed the identical subtype of the trh gene (either trh\(^1\) or trh\(^2\)). All trh\(^1\)\(^+\) isolates were classified in the CV1, CV2 and CV3 clusters of CRISPR-virulence typing, while the remaining four clusters (CV4 to CV7) were trh\(^2\)\(^+\) isolates. The isolates in clusters CV1, CV2, CV4 and CV6 possessed the tdh gene, but not all of them gave positive results for CRISPR detection. The CV3 and CV5 clusters were negative for CRISPR (Fig. 7). Identical CRISPR-virulence typing profiles were detected in clusters CV1 (PSU5105 and PSU5106; PSU4921, PSU5107, PSU5296 and PSU5322), CV2 (PSU5069 and PSU5305; PSU5264 and 1884) and CV6 (PSU5323 and PSU5331; 2435, 2443 and 2463) (Fig. 7). It is postulated that these bacteria might obtain the plasmids or exogenous genetic elements derived from the same origin. It was of interest that the spacers SP2 and SP5 were not detected in trh\(^1\)\(^+\) isolates, whereas trh\(^2\)\(^+\) isolates lacked spacer SP4 (Fig. 7). The spacer SP2 and SP4 were homologous to *V. alginolyticus* plasmids, whereas spacer SP5 showed no sequence homology with any bacteriophages or plasmids (Additional file 2: Table S2). Self-derived spacers have been detected in some microbial genomes [38–40]. It has been postulated that some bacterial spacers may be self-targeting spacers that are a form of autoimmunity [40, 41].

The discriminatory power index (DI) of both CRISPR analysis and CRISPR-virulence typing were evaluated. DI of CRISPR-virulence typing (DI\(=\)0.90) was higher than that of CRISPR typing (DI\(=\)0.67). This was in agreement with a recent study that DI of CRISPR-virulence typing of *Helicobacter pylori* was higher than CRISPR
typing alone [42]. Although, pulse field gel electrophoresis (PFGE) is a good method for discrimination of \textit{V. parahaemolyticus}, it is laborious, time consuming [43, 44]. In this study, Analysis of CRISPR spacers and virulence genes were evaluated for typing \textit{trh}^+ \textit{V. parahaemolyticus}. CRISPR-virulence gene typing is a method based
on PCR detection that provided high DI (0.90). It is easy to perform which required only PCR machine, therefore, CRISPR-virulence gene typing could be a useful method for typing \(trh^+ \) \(V.\) parahaemolyticus.

Conclusions

A total of 73 isolates of \(trh^+ \) \(V.\) parahaemolyticus obtained from clinical samples were characterized. There was no significant difference in the urease production between the \(tdh^+\) \(trh1^+ \) and \(tdh^+\) \(trh2^+ \) and between the \(tdh^-\) \(trh1^+ \) and \(tdh^-\) \(trh2^+ \) isolates indicating that the \(tdh \) and \(trh \) genes were not involved in urease production in the \(trh^+ \) \(V.\) parahaemolyticus isolates. The haemolytic activity of \(trh1^+ \) isolates was higher than the \(trh2^+ \) isolates. Variation in biofilm production was detected in the isolates belonging to the \(tdh^+\) \(trh1^+ , \) \(tdh^+\) \(trh2^+ , \) \(tdh^-\) \(trh1^+ , \) and \(tdh^-\) \(trh2^+ \) groups. For genotyping, combination of CRISPR spacers and virulence genes provide high discriminatory power than that of CRISPR typing alone and it was able to distinguish between \(trh1^+ \) and \(trh2^+ \) \(V.\) parahaemolyticus isolates. Thus, CRISPR-virulence gene typing can be a useful method for typing \(trh^+ \) \(V.\) parahaemolyticus strains.

Additional files

- **Additional file 1:** Table S1. Urease production, haemolytic activity and the ratio of urease production to haemolytic activity of all 73 \(trh^+ \) \(V.\) parahaemolyticus isolates.
- **Additional file 2:** Table S2. Foreign genetic element similar to spacers using CRISPR targets analysis.

Authors’ contributions

Conceptualization: VV. Formal analysis: PM, MN, KS. Investigation: JK, PM. Methodology: JK, PM, MN. Supervision: VV. All authors read and approved the final manuscript.

Author details

1. Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand. 2. Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All data generated or analyzed during this study are included in this published article (and its additional files).

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

This work was financially supported by the Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0213/2556) and the Center for Southeast Asia Studies (CSEAS), Kyoto University.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 21 August 2018 **Accepted:** 8 November 2018 **Published online:** 13 November 2018

References

1. Chiou CS, Hu SY, Chiu SI, Wang TK, Chao CS. Vibrio parahaemolyticus serovar O3:K6 as cause of unusually high incidence of food-borne disease outbreaks in Taiwan from 1996 to 1999. J Clin Microbiol. 2000;38:4621–5.
2. Vuddhakul V, Chowdhury A, Lachapretetthian V, Pungrasinghe P, Patara‑rungrong N, Thannomonti P, Ishibashi M, Matsumoto C, Nishibuchi M. Isolation of a pandemic O3:K6 clone of a \(V.\) parahaemolyticus strain from environmental and clinical sources in Thailand. Appl Environ Microbiol. 2000;66:2685–9.
3. Terai A, Baba K, Shirai H, Yoshida O, Takeda Y, Nishibuchi M. Evidence for insertion sequence-mediated spread of the thermostable direct hemolysin gene among \(V.\) species. J Bacteriol. 1991;173:5036–46.
4. Nishibuchi M, Fasano A, Russell RG, Kaper JB. Enterotoxigenicity of \(V.\) parahaemolyticus with and without genes encoding thermostable direct hemolysin. Infect Immun. 1992;60:3539–45.
5. Kishishita M, Matsuoka N, Kumagai K, Yamasaki S, Takeda Y, Nishibuchi M. Sequence variation in the thermostable direct hemolysin-related hemolysin (\(trh \)) gene of \(V.\) parahaemolyticus. Appl Environ Microbiol. 1992;58:2449–57.
6. Iida T, Park KS, Suthienkul O, Koawza J, Yamaichi T, Yamamoto K, Honda T. Close proximity of the \(tdh , \) \(trh , \) and ure genes on the chromosome of \(V.\) parahaemolyticus. Microbiology. 1998;144:2517–23.
7. De Koning-Ward TF, Robins-Browne RM. Contribution of urease to acid tolerance in \(Yersinia enterocolitica.\) Infect Immun. 1995;63:2793–5.
8. Lupski JR, Roth JR, Weinstock GM. Chromosomal duplications in bacteria, fruit flies, and humans. Am J Hum Genet. 1996;58:21–7.
9. Calleros L, Betancor L, Iraola G, Méndez A, Morsella C, Paolicchi F, Silveyra S, Vellilla A, Pérez R. Assessing the intra–species genetic variability in the clonal pathogen \(Campylobacter\) fetus: CRISPRs are highly polymorphic DNA markers. J Microbiol Methods. 2017;132:86–94.
10. Almeida F, Medeiros MI, Rodrigues DD, Allard MW, Falcão JP. Molecular characterization of \(Salmonella typhimurium\) isolated in Brazil by CRISPR-MLST. J Microbiol Methods. 2017;133:55–61.
11. Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol. 2014;12:317–26.
12. Sun H, Li Y, Shi X, Lin Y, Qiu Y, Zhang J, Liu Y, Jiang M, Zhang Z, Chen Q, Sun Q, Hu Q. Association of CRISPR/Cas evolution with \(V.\) parahaemolyticus virulence factors and genotypes. Foodborne Pathog Dis. 2015;12:68–73.
13. Kim YB, Okuda J, Matsumoto C, Takahashi N, Hashimoto S, Nishibuchi M. Identification of \(V.\) parahaemolyticus strains at the species level by PCR targeted to the \(ps\) gene. J Clin Microbiol. 1999;37:1173–7.
14. Therien J, Ciliens J, Du Preez M, Bro E, Zell VS, Venter SN. Detection of toxigenic \(V.\) cholerae from environmental water samples by an enrichment broth cultivation-pit-stop semi‑nested PCR procedure. J Appl Microbiol. 2000;89:539–46.
15. Tada J, Ohashi T, Nishimura N, Shirasaki Y, Ozaki H, Fukushima S, Takano J, Nishibuchi M, Takeda Y. Detection of thermostable direct hemolysin gene (\(tdh \)) and the thermostable direct hemolysin-related hemolysin gene (\(trh \)) of \(V.\) parahaemolyticus by polymerase chain reaction. Mol Cell Probes. 1992;6:477–87.
16. Weatherburn MW. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967;39:971–4.
17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

18. Honda T, Ni Y, Miwatani T. Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun. 1988;56:961–5.

19. Nishibuchi M, Kaper JB. Nucleotide sequence of the thermostable direct hemolysin gene of Vibrio parahaemolyticus. J Bacteriol. 1985;162:558–64.

20. Kongrueng J, Mittraparp-Arthorn P, Bangpanwimon K, Robins W, Vuddhakul V, Mekalanos J. Isolation of Bdellovibrio and like organisms and potential to reduce acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. Dis Aquat Org. 2017;124:23–32.

21. Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007;8:172.

22. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26:2465–6.

23. Probst P, Hermann E, zum Büschenfelde KH, Fleischer B. Identification of the Yersinia enterocolitica urease subunit as a target antigen for human synovial T lymphocytes in reactive arthritis. Infect Immun. 1993;61:4507–9.

24. Sriwanthana B, Island MD, Mobley HLT. Sequence of the urease gene cluster. Am J Physiol Gastrointest Liver Physiol. 2003;284:96–106.

25. Voland P, Weeks DL, Marcus EA, Prinz C, Sachs G, Scott D. Interactions among the seven Helicobacter pylori ureA proteins encoded by the urease gene cluster. Am J Physiol Gastrointest Liver Physiol. 2003;284:96–106.

26. Suthienkul O, Ihibashi M, Iida T, Nettip N, Supavej S, Eampokalap B, and like organisms and potential to reduce acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. Dis Aquat Org. 2017;124:23–32.

27. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26:2465–6.

28. Okuda J, Nishibuch M. Manifestation of the Kanagawa phenomenon, the virulence-associated phenotype, of Vibrio parahaemolyticus strains isolated in Thailand. J Infect Dis. 1995;172:1405–8.

29. Honda T, Ni Y, Miwatani T. Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun. 1988;56:961–5.

30. Nishibuchi M, Kaper JB. Nucleotide sequence of the thermostable direct hemolysin gene in Vibrio parahaemolyticus gene in trh strains isolated in Thailand. J Infect Dis. 1995;172:1405–8.

31. Wroblewska MM, Sawicka-Grzelak A, Marchel H, Luczak M, Sivan A. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017;15:169–82.

32. Bangpanwimon K, Sottisuporn J, Mittraparp-Arthorn P, Pourcel C, Vuddhakul V. Characterization of pathogenic Vibrio parahaemolyticus isolates from seafood in Hat Yai City, Songkhla, Thailand. Foodborne Pathog Dis. 2014;11:881–6.

33. Fricke W, Marmel M, McDermott P, Tantarla C, White D, Leclerc J, Ravel J, Cebula T. Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol. 2011;193:3556–68.

34. Pourcel C, Savignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151:653–63.

35. Shariat N, Dudley EG. CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol. 2014;80:430–9.

36. Liu F, Karlyawasam S, Jayaraa BM, Barrangou R, Gerner-Smidt P, Ribot EM, Knabel SJ, Dudley EG. Self-targeting by CRISPR: Salmoellna enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs). Appl Environ Microbiol. 2011;7:4520–6.

37. Martinez-Urtaza J, Lozano-Leon A, DePaola A, Ishibashi M, Shimada K, Nishibuchi M, Liebana E. Characterization of pathogenic Vibrio parahaemolyticus isolates from clinical sources in Spain and comparison with Asian and North American pandemic isolates. J Clin Microbiol. 2004;42:4672–8.

38. Hooton SP. Brathwaite KJ, Connerton IF. The bacteriophage carrier state of Campylobacter jejuni features changes in host non-coding RNAs and the acquisition of new host-derived CRISPR spacer sequences. Front Microbiol. 2018;9:355.

39. Hooton SP, Connerton IF. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein. Front Microbiol. 2014;5:744.

40. Stern A, Keren L, Wurtzel O, Amitai G, Sorek R. Targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 2010;26:335–40.

41. Smakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koozin EV. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2015;13:169–82.

42. Bangpanwimon K, Sottisuporn J, Mittraparp-Arthorn P, Ueaphathanaphich W, Rattanasuwar P, Pourcel C, Vuddhakul V. Characterization of pathogenic Vibrio parahaemolyticus isolates from Hats Yai City, Songkhla, Thailand. Foodborne Pathog Dis. 2014;11:881–6.

43. Kam KM, Luey CKY, Parsons MB, Cooper KLE, Nair GB, Alam M, Islam MA, Cheung DTL, Chu YY, Ramamurthy T, Pzhanzi GP, Bhattacharya SK, Watanabe H, Terajima J, Arakawa E, Ratchrachenchai OA, Huttayananont S, Ribot EM, Gerner-Smidt P, Swaminathan B. Evaluation and validation of a PulseNet standardized pulsed-field gel electrophoresis protocol for subtyping Vibrio parahaemolyticus: an international multicenter collaborative study. J Clin Microbiol. 2008;46:7266–73.

44. Martinez-Urtaza J, Lozano-Leon A, DePaola A, Ishibashi M, Shimada K, Nishibuchi M, Liebana E. Characterization of pathogenic Vibrio parahaemolyticus isolates from clinical sources in Spain and comparison with Asian and North American pandemic isolates. J Clin Microbiol. 2004;42:4672–8.