The need to intensify the extraction process using the influence of chemical reagents on beet chips was substantiated. The analysis of application of natural sorbents in food production technologies was carried out. The physical and chemical properties of zeolite were explored. The indicators that make it possible to apply natural zeolite for additional treatment of water and juices in sugar production were shown.

The effectiveness of the use of natural zeolite for feed water treatment with the view to enhancing the technological quality of diffusive juice was determined. Experimental research revealed that feed water treatment with zeolite decreases the content of total iron, ammonium, and permanganate oxidation indicator. It was proved that microbial seeding of feed water and diffusive juice decreases in case of treatment with zeolite.

It was established experimentally that the purification of diffusion juice occurs during zeolite application for feed water treatment. We determined the effectiveness of removal of macromolecular compounds, including dextran, from diffusive juice obtained during processing sugar beets of various technological quality with natural zeolite. It was shown that at the zeolite consumption of 0.1–0.4 % to the weight of beets, the content of high-molecular compounds and pectic substances in diffusive juice decreases by 30–40 %, and the content of dextran – by 20–40 %, respectively.

During the zeolite treatment, an enhancement of the quality of diffusion juice and improvement of filtration and saturation properties of defeco-saturated precipitate are observed. Thus, the average rate of sedimentation of the precipitate of juice of I carbonation S5 in, when using zeolite for feed water preparation increases by 10–50 % for the best different technological quality.

In the course of research, we designed the technique of zeolite application, which ensures a decrease in coloration, an increase in the purity of the cleared juice, enhancement of filtration and sedimentation properties of the precipitate of juice of I carbonation. High effectiveness of the proposed method is pronounced in processing raw materials of lowered quality. Thus, there are some grounds to claim the effectiveness of zeolite application to enhance the quality of diffusion juice and products in sugar production.

Keywords: diffusion juice, dextran, sucrose extraction, purification of diffusion juice, zeolite.
Oksana Dzyundzya
Kherson State University, Kherson, Ukraine
ORCID: http://orcid.org/0000-0002-1996-7065

Valentyna Burak
Kherson State Agricultural University, Kherson, Ukraine
ORCID: http://orcid.org/0000-0001-9085-9000

Alexander Averchev
Kherson State Agricultural University, Kherson, Ukraine
ORCID: http://orcid.org/0000-0002-8335-2419

Natalya Novikova
Kherson State Agricultural University, Kherson, Ukraine
ORCID: http://orcid.org/0000-0001-5393-688X

Irina Ryapolova
Kherson State Agricultural University, Kherson, Ukraine
ORCID: http://orcid.org/0000-0002-7672-6639

Artem Antonenko
Kyiv National University of Culture and Arts, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0001-9307-1209

Tetiana Brovenko
Kyiv National University of Culture and Arts, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0003-1552-2103

Myroslav Kryvoruchko
Kyiv National University of Trade and Economics, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-7378-1050

Galina Tolok
Kyiv National University of Culture and Arts, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-2971-1645

Results of the research into development of the advanced technological solutions for the processing of eggplants are reported. The proposed technology resolves the task on the rational use of eggplants. Owing to the infrared drying, a qualitatively new product is obtained, which makes it possible to maximally retain nutrients. During thermal treatment, the following physical-chemical characteristics of the dried material change: density, heat capacity, elasticity, porosity, chemical composition, and others. Therefore, we studied and report here the results of studying the properties of eggplant powders. The organoleptic, physical-chemical, and structural-mechanical indicators were determined, which makes it possible to calculate the required amount of powder, which could be introduced as an additive, without affecting the structural-technical properties of the finished product. The rational conditions for restoring the rehydration of eggplant powders were established: temperature in the range from 45 °C to 60 °C; duration of swelling 10–15 minutes, ratio of powder to liquid 1:3 and 1:4. The content of toxic elements (lead, cadmium, arsenic, copper, zinc) and the microbiological indices (mesophilic aerobic, extra-anaerobic, Escherichia sticks, Salmonella bacteria) were investigated. Compliance with the requirements for this type of raw material is established and the safety of the developed eggplant powders is confirmed. It has been established that the developed food powder has a number of positive qualities, namely: a long shelf life, it does not require additional storage space, it is easily restored.

Owing to the technology of infrared drying, which is one of the methods for eggplant canning, the productivity of the technological process of making powders improves. This is explained by that over the same time interval we obtain twice as much of the dried product compared with convective methods. Taking into consideration the nutritional value of eggplants, powders can be used in various combinations to ensure the predefined properties in the resulting product. That will reduce the time for cooking, and expand the range of functional products.

Keywords: infrared drying, drying process, vegetable powders, eggplant powders, hydro module, swelling coefficient, safety indicators.

References
1. Snezhkin, Yu. F., Petrova, Zh. O. (2010). Kharchovi porohy z roslinnoi syrovyny. Klasyfikatsiya, metody otrymania, analiz rynku. Biotechno-logia Acta, 3 (3), 43–49.
2. Havrysh, A. V., Novouad, O. O., Pohohykh, M. I., Niemirich, O. V., Kardavar, K. M., Yevlash, V. V., Tarasenko, T. A. (2013). Pat. No. 107146 UA. Spосob vyrobnytstva sushenoi syranoi. MPK A23L 3/40. No. a201308406; declared: 04.07.2013; published: 25.11.2014, Bul. No. 22.
3. Pyo, J. G. (2014). Pat. No. 1020140049693 Korean: Preparing method of apple chips.
We report a study into the fermentation of the reconstituted whey-malt mixtures using the lactose-fermenting yeast and saccharomyces. The use of such mixtures for production of fermentation beverages using the appropriate kinds of yeast makes it possible to improve the biological value, compared to traditional (water-based) ones, through the nutrient components of milk whey and fermentation products. The result of the experiments is the selected optimum ratio of dry rye malt to milk whey for the preparation of mixtures. During our study, we took into consideration the chemical composition, solubility, and possible utilization of carbohydrates by different strains of yeast. It was revealed that the rational ratio of dry malt to whey is 1:2. During fermentation of wort, we observed the greatest increase in the yeast cells Kluyveromyces lactis 469, from 73 to 75.2 thousand/cm², with the active phase of the process occurring from hour 4 to hour 16 of fermentation. Such indicators testify to the high fermentative activity to the carbohydrates of milk whey.

Based on the amount of the accumulated ethyl alcohol and the content of reducing substances, we investigated the fermentative activity of different parts of two south Algerian eggplant cultivars. Journal of Medicinal Plants Research, 5 (18), 4610–4615.

To avoid the overestimation of the parameters, we used the immobilized whole cells of yeast (Kluyveromyces lactis 469) in dry reconstituted wort mixtures with the optimal ratio of components. It was revealed that the most active alcoholic fermentation took place in the wort fermented with the yeast Saccharomyces lactis 95. Less effective was the yeast Saccharomyces cerevisiae P-87 in the above-specified environment. At a joint cultivation of lactose-fermenting yeast and saccharomyces, the fermentation process is greatly enhanced. No synergism of microorganisms was observed.

Based on the results from a chromatographic analysis, we identified the by-products of fermentation from the fermented whey-malt wort. It has been established that the concentrations of methyl...
acetic acid, (11.72±0.59) mg/dm³ and ethyl acetate, (92.17±4.61) mg/dm³, in the wort, fermented by the yeast Saccharomyces cerevisiae P-87, are sufficient for creating a harmonious taste and aroma of the fermented beverage.

Keywords: dry milk whey, dried rye malt, lactose-fermenting yeast, saccharomyces, whey-malt wort.

References

1. Alekseeva, M. S. (2016). Razrabotka reseptury i tekhnologii kvasa is pischenichnego syr'ya. Vestnik KrauGAU, 10, 155–153.

2. Sagaydak, M., Blisch, R., Prybylsky, V., Mudrak, T., Kuts, A. (2016). Selection of cultures of microorganisms for the production of bread kvass. Scientific Messenger of LNU of Veterinary Medicine and Bioresource Technologies, 12 (2 (68)), 87–91. doi:10.15472/avr8-817

3. Basinskiene, L., Juodeikiene, G., Vidmantiene, D., Tenkenan, M., Makaravicius, T., Bartkieni, E. (2016). Non-Alcoholic beverages from fermented cereals with increased oligosaccharide content. Food Technol Biotechnol, 54 (1), 36–44. doi: https://doi.org/10.17113/fb.54.01.16.4106

4. Zarubin, D. A. (2007). Sovershenstvovanie tekhnologii proizvodstva syr'ev khlororavnykh kvassov. Produkty pitania i racional'noe ispol'zovanie syr'evykh resursov: sbornik nauchnyh rabot. Kemerovo, 14, 44–45.

5. Ha, E., Zemel, M. B. (2003). Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). The Journal of Nutritional Biochemistry, 14 (5), 251–258. doi: https://doi.org/10.1016/s0955-2863(03)60030-5

6. Banavara, D. S., Anupama, D., Rankin, S. A. (2003). Studies on Phsyicochemical and Functional Properties of Commercial Sweet Whey Powders. Journal of Dairy Science, 96 (12), 3866–3873. doi: https://doi.org/10.3168/jds.02-3002(03)3894-0

7. Taves, C., Malecka, F. (2013). Whey and Whey Powders: Fermentation of Whey. Encyclopedia of Food and Health, 486–492. doi: https://doi.org/10.1016/b978-0-12-384947-2.00749-2

8. Gallardo-Escamilla, F. J., Kelly, A. L., Delahunty, C. M. (2005). Sensory Characteristics and Related Volatile Flavor Compound Profiles of Different Types of Whey. Journal of Dairy Science, 88 (8), 2689–2699. doi: https://doi.org/10.3168/jds.02-3002(05)2689-7

9. Savchenko, O. A., Hrek, O. V., Krasuliya, O. O. (2015). Aktualni problemy tekhnologiyi molochno-bilkovykh kontsentrativ: teoriya i praktika. Kyiv: TsP «Komprynt», 293.

10. Legarova, V., Kourimska, L. (2010). Whey-based beverages. Mljekarstvo, 60 (4), 280–287.

11. Chepel, N., Grek, O., Krasuliya, O. (2016). Study of lactose–fermenting yeasts klavyvermose lactis for whey and apple percin mixture fermentation. Eastern-European Journal of Enterprise Technologies, 1 (10 (79)), 58–64. doi: https://doi.org/10.15587/1729-4061.2016.59692

12. Dragone, G., Mussatto, S. I., Oliveira, J. M., Teixeira, J. A. (2009). Caracterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry, 112 (4), 929–935. doi:10.1016/j.foodchem.2008.07.003

13. Rudolf, F. V., Oreshchenko, A. V., Vashnov, P. M. (2000). Proizvodstvo bezalkogol'nyh napitkov. Sankt-Peterburg: Izd-vo «Komprynt», 293.

14. Tavares, T., Malcata, F. X. (2016). Whey and Whey Powders: Fermentation of Whey. Encyclopedia of Food and Health, 486–492. doi: https://doi.org/10.1016/b978-0-12-384947-2.00749-2

15. Zivhetvyn, M. A., Graskova, I. A., Voinikov, V. K. (2013). Activity of guaicol-dependent peroxidase in Plantago major L. leaves. Journal of Stress Physiology and Biochemistry, 93, 326–332.

16. Brovko, E. I. (2006). Razrabotka tekhnologii i tovarovednaya ocenka kachestva suhih smesey dlya kvasa. Kemerovo, 21.

17. Mazur, P. Ya., Demchenko, V. I., Korshagin, V. I., Magomedov, G. O., Novikova, S. G. (1998). Pat. No. 2162100 RF. Sposob poluchen- ya polufabrikata suhogo hlebveno kvass. Pat. No. 2162100 RF. No. 98122565/3; declared: 08.12.1998; published: 20.01.2001.

18. Parashar, A., Jin, Y., Mason, B., Chae, M., Bressler, D. C. (2016). Incorporation of whey permeate, a dairy effluent, in ethanol fermention to provide a zero waste solution for the dairy industry. Journal of Dairy Science, 99 (3), 1859–1867. doi: https://doi.org/10.3168/jds.2015-10059

19. Eliseev, M. N., Patalaha, A. E., Volkovik, S. V. (2010). Sostav kvasov brosheniya i kvassovogo napitka. Prii i napitki, 4, 46–47.

20. Domínguez, L., Dantas, M. M., Lima, N., Teixeira, J. A. (1999). Identification of by-products of fermentation of whey and malt wort. Nauka i studia, 17 (85), 73–80.

21. Janiaski, D. R., Pimentel, T. C., Cruz, A. G., Prudencio, S. H. (2016). Strawberry-flavored yogurts and whey beverages: What is the sensory profile of the ideal product? Journal of Dairy Science, 99 (7), 3273–3283. doi: https://doi.org/10.3168/jds.2015-10057

22. King, A., Dickinson, J. R. (2000). Biotransformation of monoter-pene alcohols by Saccharomyces cerevisiae. Torulaqora dellbrueckii and Kluyveromyces lactis. Yeast, 16 (6), 499–506. doi: https://doi.org/10.1016/s1097-0061(2000)0416:499+aide-yeas48 >3.3co2-a

23. Chepel, N. V., Grek, O. V., Krasuliya, O. O. (2013). Identification of by-products of fermentation of whey and malt wort. Nauka i studia, 17 (85), 73–80.

24. Kobelev, K. V., Selina, I. V., Sozinova, M. S. et. al. (2011). Razrabotka i identifikaciya kvassov. Prii i napitki, 1, 23–27.

25. Kruš, G. N., Shalygina, A. M., Volokitina, Z. V., Shalygina, A. M. (Ed.) (2000). Metody issledovaniya moloka i molochnykh produktov. Moscow: Kolos, 368.

26. Hrek, O. V., Ushchenko, N. M., Osnak, T. H. et. al. (2015). Praktikum z tekhnolohiyi moloka ta molochnykh produktiv. Kyiv: NUKhT, 431.

27. Tsygankov, S., Grek, O., Krasuliya, O., Shalkovenko, I., Teixeira, J. A. et. al. (2018). Methods of determination of parameters of fermented whey-malty mixtures. EUREKA: Life Sciences, 5, 30–38. doi: https://doi.org/10.21309/2504-5695.2018.00710

28. Rudol'f, V. V., Oreshchenko, A. V., Vashnov, P. M. et. al. (2018). Astabilizing System for Butter Pastes Based on the Dry Concentrates of Milk Protein (p. 30-36)

Oksana Kochuebi-Lytvynenko
National University of Food Technologies, Kyiv, Ukraine

ORCID: https://orcid.org/0000-0003-0712-448X

DOI: 10.15587/1729-4061.2018.143105
The composition of the stabilizing system for butter pastes based on dry concentrates of milk and whey proteins has been substantiated; that would help reduce the deficiency of protein in the diet of modern humans and would make it possible to further improve the balance of the composition of the butter paste.

Considering their functional-technological characteristics, conditions for gelation and synergy, the polysaccharides carrageenan and guar gum were introduced to the composition of the stabilizing system.

The dynamics in the gradient of the limiting stress of protein and protein-polysaccharide systems have been studied. We established that gels based on the dry concentrate of milk protein are the plastic systems, they have sufficient strength and possess thixotropic properties. In order to reduce the quantitative content of the stabilizing system in the production of butter paste with a structural frame similar to that of butter, we introduced carrageenan to the system. However, an increase in its concentration led to the formation of strong cross-linked gels unsuitable for the production of butter pastes. Increasing the stability of the system against the “freeze-defrost” cycles could be achieved by the introduction of guar gum. Based on the indicator of the limiting stress at a variable deformation rate of the model samples, a rational ratio of the components in the stabilizing system was established. Its composition includes: milk protein concentrate: whey protein concentrate: guar gum: carrageenan: 10:3.0:0.3:0.05.

The rational concentration of the stabilizing component based on skimmed milk was determined, which was 13.35 %.

The water activity indicator is determined for the model samples of the selected stabilizing substances and mixtures in certain ratios. Stabilizing substances have been shown to exhibit the pronounced moisture-retaining properties, which increase at certain ratios. Stabilizing substances have been shown to exhibit the pronounced moisture-retaining properties, which increase at their combination.

The effectiveness of the developed system is proven based on indicators for the water activity and enthalpy of the system. The indicator of water activity for the butter paste with a 40 % mass fraction of fat was 0.981, which is close to the respective indicator for the butter with a mass fraction of fat of 72.5 % (control) – 0.979. The enthalpy index of the butter paste was 61.35 J/g; for control, it was 61.13 J/g. This is due to the additional bonding of moisture by the functional groups of components in the protein-polysaccharide complex, indicating the thermodynamic stability of the butter paste.

The efficiency of application of the developed system in the technology of butter pastes has been determined: indicator of heat resistance of the butter paste with a mass fraction of fat of 40 % was 0.87 (control, 091), the size of droplets in the aqueous phase at the cut did not exceed 0.2 mm.

Keywords: butter paste, milk protein concentrate, whey milk protein, protein-polysaccharide complex.

References

1. Codex Alimentarius: Standard 279–1971. Available at: http://www.fao.org/foodw-who-codesalimentarius
2. Codex Alimentarius: Standard 253–2006. Available at: http://www.fao.org/fao-who-codesalimentarius
3. Gulyaev-Zaitev, S. S. (1986). The Role of Milk Plasma in Forming the Structure and Consistency of a Low-Calorie Oil. Dairy industry, 12, 24–28.
4. Ipsen, R. (2017). Microparticulated whey proteins for improving dairy product texture. International Dairy Journal, 67, 73–79. doi: https://doi.org/10.1016/j.idairyj.2016.08.009
5. Topnikova, E. V. (2004). Study of the effectiveness of using stabilizers of the structure in the production of butter of low fat content. Storage and processing of agricultural raw materials, 5, 23–26.
6. Topnikova, E. V. (2005). Features of the formation of the structure of butter of low fat content. Storage and processing of agricultural raw materials, 2, 34–37.
7. Bogdanova, N. S. (2013). Modified starches for the production of processed cheese products. Materials of the international scientific-practical conference «Modern problems of machinery and technologies of food production». Barnaul, 87–90.
8. Kovtun, Yu. (2014). Investigation of the process of water absorption by the concentrate of serum proteins and the microstructure of its solution. Scientific Bulletin of LNUVMBT named after S. Z. G szytsky, 2, 72–78.
9. Siseen, D. (2017). The why, where and when of hydrocolloids. The word of food ingredients, 34–36.
10. De Boer, R. (2017). Future proteins for application success. The word of food ingredients, 42–46.
11. Zhu, Y., Bhandari, B., Prakash, S. (2018). Tribo-rheometry behaviour and gel strength of κ-carrageenan and gelatin solutions at concentrations, pH and ionic conditions used in dairy products. Food Hydrocolloids, 84, 292–302. doi: https://doi.org/10.1016/j.foodhyd.2018.06.016
12. Arloti, D., Maslen, F., Ipsen, R. (2008). Relating the microstructure of pectin and carrageenan in dairy desserts to rheological and sensory characteristics. Food Hydrocolloids, 22 (4), 660–673. doi: https://doi.org/10.1016/j.foodhyd.2007.01.025
13. Javidli, F., Razavi, S. M. A., Behrouzian, E., Alghooehi, A. (2016). The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low fat ice cream. Food Hydrocolloids, 52, 625–633. doi: https://doi.org/10.1016/j.foodhyd.2015.08.006
14. Pasichnyi, V., Yushchenko, N., Mykoliv, I., Kuzmyk, U. (2015). Structure stabilization of fermented-milk pastes. Ukrainian Food Journal, IV (3), 431–439.
15. Sukmanov, V. A. (2012). Water activity as a factor of microbiological activity in butter treated with high cyclic pressure. Scientific works of UFT Volum LІX «Food science, engineering and technologies», 409–415.
16. Podkovko, O. A. (2014). Investigation of indicators of structure and consistency of oil paste. Scientific works of University of Food Technologies, 2, 163–166.
17. Johnson, M. E., Kapoor, R., McMahan, D. J., McCoy, D. R., Narasimmon, R. G. (2009). Reduction of Sodium and Fat Levels in Natural and Processed Cheeses: Scientific and Technological Aspects. Comprehensive Reviews in Food Science and Food Safety, 8 (3), 252–268. doi: https://doi.org/10.1111/j.1541-4337.2009.00080.x

DOI: 10.15587/1729-4061.2018.143140

OPTIMIZATION OF WATER-HEAT TREATMENT WHEN MAKING FLOUR FROM ANCIENT WHEAT (p. 37–44)

Hirgori Hospodarenko
Uman National University of Horticulture, Uman, Ukraine
ORCID: http://orcid.org/0000-0002-6495-2647
Recommendations for processing spelt wheat into high and first grade flour were developed. The studies of the influence of parameters of water-heat treatment on the yield of flour from spelt wheat grain, its whiteness and ash content were conducted. The hypothesis about the influence of moisture on the properties of spelt wheat grains similar to grain of bare-grain-kinds of wheat was proved. A comparative analysis of the yield and quality of the samples that were milled after conducting water-heat treatment and at actual initial humidity of grain from 13.0 % to 14.5 % was performed. The use of the water-heat treatment (humidity of 15–16 %) allow obtaining the total yield of flour that is by 0.6–3.0 % higher, ash content decreases by 0.26 % after the first milling and by 0.22 % after the second milling. Flour whiteness after the first and second milling increases by 10 and 20 units, respectively. During milling, the spelt wheat grain without water-heat treatment, the samples with the highest initial humidity (14.0–14.5 %) demonstrated the best results (total yield of flour is 83.0–83.3 %, ash content is 0.76–0.91 %, whiteness 25–51 units).

In the production of flour from wheat spelt the recommended way to water-heat treatment implies single damping and softening of grain. Unlike the classical method, there is no damping stage before early break. Grain damping to 15.5 % and softening duration of 30 hours is optimal. The use the proposed treatment makes it possible to obtain the total yield of flour of 85.0 %. By major quality indicators, the resulting product refers to high and first grade flour.

The results, presented in the article, make it possible to adjust reasonably the operation of the units for grain damping and choosing the optimum time for its softening.

Keywords: spelt wheat, water-heat treatment, ash content, whiteness, flour yield.

References

1. Akel, W., Thorwarth, P., Mirdita, V., Weissman, E. A., Liu, G., Würschum, T., Longin, C. F. H. (2018). Can spelt wheat be used as heterotic group for hybrid wheat breeding? Theoretical and Applied Genetics, 131 (4), 973–984. doi: https://doi.org/10.1007/s00122-018-4052-3

2. Osohina, N., Liubych, V., Novak, L., Pushkarova-Bezhil, T., Priss, O., Verkholantsvea, V. et. al. (2018). Elucidation of the mechanism that forms baking properties of the spelt grain. Eastern-European Journal of Enterprise Technologies, 2 (11 (92)), 39–47. doi: https://doi.org/10.15877/1729-3774.2018.126512

3. Bokun, I., Gajew, M., Fecka, I. (2017). The potential role of selected bioactive compounds from spelt and common wheat in glycemic control. Advances in Clinical and Experimental Medicine, 26 (6), 1015–1021. doi: https://doi.org/10.17219/acem/61665

4. Koenig, A., Konitzer, K., Wieser, H., Koehler, P. (2015). Classification of spelt cultivars based on differences in storage protein compositions from wheat. Food Chemistry, 168, 176–182. doi: https://doi.org/10.1016/j.foodchem.2014.07.040

5. Wu, T., Taylor, C., Nehl, T., Ng, K., Bennett, L. E. (2017). Effects of chemical composition and baking on in vitro digestibility of proteins in breads made from selected gluten-containing and gluten-free flours. Food Chemistry, 233, 514–524. doi: https://doi.org/10.1016/j.foodchem.2017.04.158

6. Mellado-Ortega, E., Hornero-Méndez, D. (2017). Lutein Esterification in Wheat Flour Increases the Carotenoid Retention and Is Induced by Storage Temperatures. Foods, 6 (12), 111. doi: https://doi.org/10.3390/foods6120111

7. Goriewa-Duba, K., Duba, A., Kwiatek, M., Wśniewska, H., Wadowska, U., Wiatr, M. (2018). Chromosomal distribution of pTa-533, pTa-86, pTa-713, 355S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.). PLOS ONE, 13 (2), e0192862. doi: https://doi.org/10.1371/journal.pone.0192862

8. Müller, T., Schierscher-Viret, B., Fossati, D., Brabant, C., Schoi, A., Keller, B., Kräutiger, S. G. (2017). Unlocking the diversity of genomes: whole-genome marker analysis of Swiss bread wheat and spelt. Theoretical and Applied Genetics, 131 (2), 407–416. doi: https://doi.org/10.1007/s00122-017-4305-4

9. Liu, M., Zhao, Q., Qi, F., Stiller, J., Tang, S., Miao, J. et. al. (2018). Sequence divergence between spelt and common wheat. Theoretical and Applied Genetics, 131 (5), 1125–1132. doi: https://doi.org/10.1007/s00122-018-4364-z

10. Rezaei, M., Shariatifar, N., Shoebi, S., Ahmadi, M. A., Khankia, G. J. (2017). Simultaneous Determination of Residue from 58 Pesticides in the Wheat Flour Consumed in Tehran, Iran by GC/MS. Iranian J Pharm Res., 16 (3), 1048–1058.

11. Saleh, M., Lee, Y., Obiedat, H. (2018). Effects of incorporating nonmodified sweet potato (Ipomoea batatas) flour on wheat pasta functional characteristics. Journal of Texture Studies. doi: https://doi.org/10.1111/jtxs.12319

12. Filipeč, B., Bodroža-Solarov, M., Pestošić, M., Šimurina, O. (2016). Breeding performance and textural changes during storage of composite breads made from spelt wheat and different forms of amaranth grain. Food Science and Technology International, 23 (3), 235–244. doi: https://doi.org/10.1177/1082013217745199

13. Suja, K., Koczó, P., Ceglowski, A., Reder, M., Ciemniewska-Zytkiewicz, H. (2017). The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers. Journal of Analytical Methods in Chemistry, 2017, 1–9. doi: https://doi.org/10.1155/2017/4315678

14. Ciccoritti, R., Terracciano, G., Cammerata, A., Sguinletta, D., Del Frate, V., Gazza, L., Nocente, F. (2017). Hydrothermal grain pre-processing and ultra-fine milling for the production of durum wheat flour fractions with high nutritional value. Food Science and Technology International, 24 (3), 242–250. doi: https://10.1117/10.1007/s108201321683133

15. Petrenko, V., Liubich, V., Bondar, V. (2017). Baking quality of wheat flour as influenced by agriculture systems, weather and storing conditions. Romanian Agricultural Research, 34, 69–76.

16. Liubych, V. V. (2017). Vplyv abiotychnykh ta biotychnykh chynnykiv na produktivnist sortiv i liniy pshenyci spelty. Visnyk Poltavs'koi derzhavnoi ahrarnoi akademiyi, 3, 18–24.

17. Bokun, I., Gajew, M., Fecka, I. (2017). The potential role of selected bioactive compounds from spelt and common wheat in glycemic control. Advances in Clinical and Experimental Medicine, 26 (6), 1015–1021. doi: https://doi.org/10.17219/acem/61665

18. Koenig, A., Konitzer, K., Wieser, H., Koehler, P. (2015). Classification of spelt cultivars based on differences in storage protein compositions from wheat. Food Chemistry, 168, 176–182. doi: https://doi.org/10.1016/j.foodchem.2014.07.040
In recent years, there has been a deficit of several essential components, with the iodine deficiency of varying degree, from mild to severe, relating to the most common phenomena and is observed in 90 % of the Ukrainian population.

Deficiency of iodine is the cause of many illnesses: disturbance of thyroid gland function, delayed mental and physical development of children, deafness, blurred vision, neurological cretinism. Therefore, one of the most important tasks in the food industry is to provide people with foods containing iodine in the required amount, and to expanding the range of iodine-containing products.

To improve the quality of cottage cheese made from goat’s milk and to enrich it with iodine, we have used the iodine-containing protein preparation Yodkazeine.

It was established that the enrichment of milk with Yodkazeine in the amount of 0.01–0.025 % by weight in the production of cottage cheese from goat’s milk improves its quality. The application of the preparation, which includes a complex of organic iodine, associated with the protein, in the amount of 0.01 to 0.025 % by weight of milk in the production of experimental batches of product (E.1, E.2) helps increase the moisture-retaining capacity of the cheese. This property predetermines an increase in the mass proportion of moisture in the product by 0.87 and 2.37 %. That affects the reduction of the mass share of fat in cheese by 0.5 and 1.74 %, in dairy milk: Sources, concentrations and importance to human health. Best Practice & Research Clinical Endocrinology & Metabolism, 31 (4), 385–395. doi: https://doi.org/10.1016/j.beem.2017.10.004

S. G. (2009). Effect of Lactation on Physico-Chemical Properties of Local Goat Milk. Veterinary World, 2 (1), 17–19.

Iryna Goncharova
Kharkiv State Zooveterinary Academy, Mala Danylivka, Dergachivsky district, Kharkiv region, Ukraine
ORCID: http://orcid.org/0000-0001-9318-2015

Galina Dyukareva
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-6279-0859

Vasily Prudnikov
Kharkiv State Zooveterinary Academy, Mala Danylivka, Dergachivsky district, Kharkiv region, Ukraine
ORCID: http://orcid.org/0000-0001-9318-2015

Taisia Ryzhkova
Kharkiv State Zooveterinary Academy, Mala Danylivka, Dergachivsky district, Kharkiv region, Ukraine
ORCID: http://orcid.org/0000-0003-0190-7803

References

1. Pandya, A. J., Ghodke, K. M. (2007). Goat and sheep milk products other than cheeses and yoghurt. Small Ruminant Research, 68 (1-2), 193–206. doi: https://doi.org/10.1016/j.smallrumres.2006.09.007

2. Ryzhkova, T. N. (2013). Vliyanie kombinatsionnykh sochetaniy bakteriyam kyshkovoy palychki. Voprosy himii i himicheskie baktorialnykh zakvasok na zasiuvanist syru iz koziachoho moloka. Voprosy himii i himicheskie baktorialnykh zakvasok na zasiuvanist syru iz koziachoho moloka. Kiv, 147.

3. Haldimann, M., Alt, A., Blanc, A., Blondeau, K. (2005). Iodine in the feed of cows: effect of diet supplementation and milk yield. Animal, 4 (01), 17. doi: https://doi.org/10.1016/j.animal.2004.06.003

4. Van der Reijden, O. L., Zimmermann, M. B., Galetti, V. (2017). Iodine in dairy milk: Sources, concentrations and importance to human health. Best Practice & Research Clinical Endocrinology & Metabolism, 31 (4), 385–395. doi: https://doi.org/10.1016/j.beem.2017.10.004

5. Baldini, L., Miari, F., Spirl, K., Leiterrer, M. (2017). Iodine in the feed of cows and in the milk with a view to the consumer’s iodine supply. Journal of Trace Elements in Medicine and Biology, 39, 202–209. doi: https://doi.org/10.1016/j.jtemb.2016.10.004

6. Moschini, M., Battaglia, M., Beone, G. M., Piva, G., Masiero, F. (2009). Iodine and selenium carry over in milk and cheese in dairy cows: effect of diet supplementation and milk yield. Animal, 4 (01), 147–155. doi: https://doi.org/10.1016/j.animal.2007.11.013

7. Nazari, P., Mirmiran, P., Tahmasebinejad, Z., Hedayat, M., Deshad, H., Azizi, F. (2017). The Effects of Iodine Fortified Milk on the Iodine Status of Lactating Mothers and Infants in an Area with a Successful Salt Iodization Program: A Randomized Controlled Trial. Nutrients, 9 (2), 180. doi: https://doi.org/10.3390/nu9020180

8. Roziev, R. A., Evdokunina, E. A., Goncharova, A. Ya., Homichek, V. V., Miroevskaya, A. S., Erimbetov, K. T., Zemlyanoy, R. A. (2017). Yodirovanie molocnykh produktov – zabora o budushchem. Pererabotka moloca, 2.

9. Nazarov, V. P., Derevyanko, L. P. (2009). Ispol’zovanie koncentrata elama iz morskoy vodorosli laminarii dlya minimizatsii deystviya radiacii i yodnyh nedostatocnosti. Naukovyi prats Chornomorskogo derzhavnogo universytetu imeni Petra Mohyly. Ser.: Tekhnohenna bezpeka, 116 (103), 57–62.
19. Bondarenko, T. A., Ryzhkova, T. M., Prudnikov, V. H. (2010).
Vykoryshchannya «Elinimu» v ratsionakh kharchuvannia naselennia
Ukrayini. Prohresyvni tekhnika ta tekhnoholihi kharchovykh vyrob-
nytstv restorannoho hospodarstva i torhivli, 2 (12), 325–327.

20. Ryzhkova, T., Bondarenko, T., Dynkareva, G., Biletlykaya, Y. (2017).
Development of a technology with an iodine-containing additive
to produce kefir from goat milk. Eastern-European Journal of
Enterprise Technologies, 3 (11 (87)), 37–44. doi: https://doi.org/
10.15587/1729-4061.2017.103824

21. Abakul-Gadica, L., Cardador, A., Martin del Campo, S. T., Arvi-
zu, S. M., Castano-Tostado, E., Regalado-Gonzalez, C. et. al. (2013).
Influence of probiotic strains added to cottage cheese on generation
of potentially antioxidant peptides, anti-listerial activity, and sur-
vival of probiotic microorganisms in simulated gastrointestinal con-
ditions. International Dairy Journal, 33 (2), 191–197. doi: https://
doi.org/10.1016/j.idairyj.2013.04.005

22. Jesus, A. L. T., Fernandes, M. S., Kaminura, B. A., Prado-Silva, L.,
Silva, R., Esmerino, E. A. et. al. (2016). Growth potential of Liste-
rinia monocytogenes in probiotic cottage cheese formulations with
reduced sodium content. Food Research International, 81, 180–187.
doi: https://doi.org/10.1016/j.foodres.2015.12.030

23. Ribeiro, A., Caleja, C., Barros, L., Santos-Buelga, C., Barreiro, M. F.,
Ferreira, I. C. F. R. (2016). Rosemary extracts in functional foods:
extration, chemical characterization and incorporation of free and
microencapsulated forms in cottage cheese. Food & Function, 7 (5),
2185–2196. doi: https://doi.org/10.1039/c6fo00270f

24. Caleja, C., Ribeiro, A., Barros, L., Barreira, J. C. M., Antonio, A. L.,
Beatriz, P. P., Oliveira, M. et. al. (2016). Cottage cheeses functional-
ized with fennel and chamomile extracts: Comparative performance
between free and microencapsulated forms. Food Chemistry, 199,
720–726. doi: https://doi.org/10.1016/j.foodchem.2015.12.065

25. Buhaiova, V. M. (2012). Vykoryshchannya finikiv u tekhnoholi-
yi kyslomolochynykh syr`ach. Materiały 78 Mezhdunarodnoi konferenci
miolod`ikh v`chenykh, aspirantiv i studentov: Naukovi zdobutky molodi – vyrishennia
problem kharchuvannia liudstva u XXI stoliti. Kiyv: NUKhT, 162.

26. Serhienko, L. Ye. (2012). Pokrashchen`ia v`ystvyost`i kyslomoloch-
n`oho syr`a za umovy dodavannia yablak. Materiały 78 Mezhdunarodnoi
konferenci `i molod`ykh v`chenykh, aspirantiv i studentiv: Naukovi zdobutky molodi – vyrishennia
problem kharchuvannia liudstva u XXI stoliti. Kiyv: NUKhT, 163.

27. Crevier, B., Belanger, G., Vuillemand, J.-C., St-Gelais, D. (2017).
Short communication: Production of cottage cheese fortified with
vitamin D. Journal of Dairy Science, 100 (7), 5212–5216. doi: https://
doi.org/10.3168/jds.2016-12308

28. Sviridova, T. V., Orlotsev, O. A., Yusupova, K. R. (2016). Research
of organoleptic, physical-chemical and microbiological indicators
of the enriched cottage cheese. Proceedings of the Voronezh State
University of Engineering Technologies, 1, 186–190. doi: https://
doi.org/10.20914/2310-1202-2016-1-186-190

29. Ryzhkova, T., Dynkareva, G., Prudnikov, V., Goncharova, I. (2018).
Development of cottage cheese technology using whey broth of
beef bone. EUREKA: Life Sciences, 5, 44–54. doi: http://doi.org/
10.21303/2504-5059.2018.00712

The process of concentrating vegetable juice in an improved vacuum evaporator with a stirrer which is simultaneously a heat exchanger was studied. A mathematical model describing kinetics of product heating combined with constant stirring was obtained. The proposed equations make it possible to calculate duration of the heating process in a steady-state mode taking into account thermophysical and rheological characteristics of the product under study. The resulting dependence differed in that the calculations took into account changes in rheological properties of the liquid being processed, namely, apparent viscosity characterizing the shear properties of the non-Newtonian fluids including majority of food products. The process of drying carrot cake in the developed vibratory vacuum dryer was studied. Dependence of content of beta-carotene on operating parameters of the dryer, namely amplitude and frequency was determined. Based on the obtained results of the study of colorimetric characteristics, it was proved that the proposed method for production of concentrates contributes to preservation and formation of colorimetric characteristics of the final product. It was found that technological processing affects objective colorimetric characteristics of plant materials, namely, deviation of values of the dominant wavelength, color purity and brightness from the values for the reference sample. The determined colorimetric characteristics have made it possible to establish that it is very important to reduce time of the raw material processing and temperature during heating. These studies have shown the prospects for production of concentrated products in a separated way (separation of raw materials into juice and cake, separate boiling of juice and drying of cake, mixing of components in various concentrations depending on technological tasks). This makes it possible to adjust organoleptic characteristics of the final product including color, brightness, consistency, viscosity and physical-chemical properties.

Keywords: heating kinetics, concentrated products, evaporators, dryers, colorimetric evaluation, beta-carotene.

References

1. Tyuzeleva, K., Zambrzhickyi, O., Bacukova, N. (2009). Soki kak fakt-
for formirovaniya zdorov'ya. Produkt.by, 20, 75–76.

2. Mikhailov, V. M., Bakkina, S. V., Shevchenko, A. A., Borisova, A. A. (2014). Designing the apparatus for the combined frying of culinary products with the electric contact heating. Scientific letters of Academic society of Michal Balandas, 2 (5), 67–70.

3. Mihaylov, V. M., Bakkina, I. V., Mihaylova, S. V., Shevchenko, A. O., Avdeev, S. S. (2015). Issledovanie kachestvennykh pokazateley psichveyo produkt`i iz rasti-te`noy syry`a pri SVCh-obrabotke
s vakumirovaniem i peremeshivaniem. Pererobotka i upravle-

DOI: 10.15587/1729-4061.2018.143408

STUDY INTO THE INFLUENCE OF OPERATING PROCESSING PARAMETERS ON QUALITATIVE CHARACTERISTICS OF THE CARROT CONCENTRATED PRODUCT (p. 55-62)

Aziz Sardarov
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-0973-8197

Olga Mayak
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-3059-4589

Andrey Shevchenko
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-0506-472X

Svitlana Prasol
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-3937-0335

Gennadiy Shersheov
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-3937-0335
GOST EN 12823-2-2014. Izmerenie soderzhaniya beta-karotina

Bizmark, N., Mostoufi, N., Sotudeh-Gharebagh, R., Ehsani, H., Wibowo, S., Grauwet, T., Santiago, J. S., Tomic, J., Vervoort, L., Hen Demarchi, S. M., Torrez Irigoyen, R. M., Giner, S. A. (2018).

Kiptela, L. V., Zahorulko, A. M., Zahorulko, O. Y., Liashенко, B. V., Chen, Z.-G., Guo, X.-Y., Wu, T. (2016). A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics Sonochemistry, 30, 28–34. doi: https://doi.org/10.1016/j.ultrasonic.2015.11.027

Chen, Z.-G., Guo, X.-Y., Wu, T. (2016). A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics Sonochemistry, 30, 28–34. doi: https://doi.org/10.1016/j.ultrasonic.2015.11.027

7. Demarchi, S. M., Trozzi Irgoyen, R. M., Giner, S. A. (2018). Vacuum drying of rosehip leathers: Modelling of coupled moisture content and temperature curves as a function of time with simultaneous time-variant acetic acid retention. Journal of Food Engineering, 233, 9–16. doi: https://doi.org/10.1016/j.jfoodeng.2018.03.027

9. Bizmark, N., Mostoufi, N., Sotudeh-Gharebagh, R., Elhans, H. (2010). Sequential modeling of fluidized bed paddle dryer. Journal of Food Engineering, 101 (3), 303–308. doi: https://doi.org/10.1016/j.jfoodeng.2010.07.015

10. Lauri Pla, D., Kamyar, R., Hashemian, N., Mehdizadeh, H., Mosh, M. (2016). Moisture soft sensor for batch fluid bed dryers: A practical approach. Powder Technology, 326, 69–77. doi: https://doi.org/10.1016/j.powtec.2017.11.036

12. Kowalski, S. J., Sazdziańska, J., Lechtańska, J. (2013). Non-stationary drying of carrot. Effect on product quality. Journal of Food Engineering, 118 (4), 393–399. doi: https://doi.org/10.1016/j.jfoodeng.2013.04.028

13. Sardarov, A. M., Maiak, O. A., Kostenko, S. M. (2015). Pat. No. 105419 UA. Pristriy dlia перерисування ta наривання вівкалях кхарохвих продуктів. MPK B01F 15/06 (2006.01), A21C 1/00. No. 201505846, declared: 15.06.2015, published: 25.03.2016, Bul. No. 6, 4.

14. Maiak, V. I., Mykhaylov, V. V., Smlyk, M. M. (2006). Pat. No. 24105 UA. Pristriy dla перерисування вівкалях кхарохвих продуктів. MPK A21S 1/00. No. u200611832; declareted: 10.11.2006; published: 25.06.2007, Bul. No. 9.

15. Maiak, O. A., Sardarov, A. M. (2016). Obladnannya dlia kontsentruvannya vівкалях kхарoхvих produkтив. Kompleksne zabezpechennia yakosti technolohichnykh protsessiv ta system (KZhTPPS – 2016) materialy tez dopovidedi VI mizhnarodnoi naukovo-praktychnyi konferentsiyi. Chernihiv: ChNTU, 192.

16. GOST EN 12823-2-2014. Izmerenie soderzhania beta-karotina prodcontinental: II Mezdzhurnal. nauch.-prakt. konf. Minsk: BGATU, 54–57.

19. Cherevko, O., Mykhaylov, Z., Zahorulko, A., Zahorulko, A., Borysova, A. (2018). Color characteristics of dried three-component fruit and berry pastes. Food science and technology, 12 (1), 50–54. doi: https://doi.org/10.15673/fst.v12i1.840

20. Cherevko, O., Kiptelaya, L., Mikhaylov, Z., Zagorulko, A., Zahorulko, A. (2015). Development of energy-efficient ir dryer for plant raw materials. Eastern-European Journal of Enterprise Technologies, 4 (8 (76)), 36–41. doi: https://doi.org/10.15587/1729-4061.2015.47777

21. Dubinina, A., Selyutina, G., Letuta, T., Shcherbakova, T., Afa nasieva, V. (2017). Effect of the parameters of rhubarb and gooseberry treatment on the formation of color. Eastern-European Journal of Enterprise Technologies, 6 (11 (90)), 66–71. doi: https://doi.org/10.15587/1729-4061.2017.117253

22. Cherevko, A. I., Mayak, O. A. (2006). Issledovanie processa teploobuchvaniya za kolorom. Prohresyvni tekhnika ta aparaty kharchovykh vyrobnytstv: metodychni vka (p. 63-70)

Katerina Iorgachova

Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: http://orcid.org/0000-0003-3390-1756

Olga Makarova

Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: http://orcid.org/0000-0001-6593-2915

Kateryna Khvostenko

Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: http://orcid.org/0000-0002-6532-6576

We have analyzed problems arising in the production of bakery products without sugar or with its reduced content. The technological properties of flour made from a new kind of wheat, the waxy wheat variety Sofiyka, which characterize the state of its protein-proteinaise complex, were investigated. When evaluating the strength of this flour based on the structural-mechanical properties of the dough prepared from it, it was found that it is characterized as the weaker one compared to baking flour. We have substantiated the advantage of using the weaker amylose-free flour to manufacture products from yeast dough, specifically hardtacks, when substituting sugar with the Jerusalem artichoke powder. The lesser manifestation of the elastic properties of dough forming capability, characteristic of it, would partially neutralize the difficulties arising in the manufacture of products on yeast without sugar. In the course of present research, we determined the effect of flour made from the waxy wheat and the Jerusalem artichoke powder, depending on the stage of its introduction, on the decrease in the shear stress limit and an increase in the stickiness of the dough. Rolling is accompanied by the opposite influence –
an increase in its strength and a decrease in adhesion tension. The expediency of introducing the Jerusalem artichoke powder in equal parts at the stages of kneading the sponge dough and regular dough in the production of hardtacks has been shown – these samples were characterized by the looser structure compared to the sample whose preparation involved introducing the Jerusalem artichoke powder when kneading the sponge dough. It was established that the combined application of flour made from the waxy wheat and the Jerusalem artichoke powder when preparing semi-finished products for hardtacks without sugar contributes to obtaining the dough with lower strength, adhesive properties, and elasticity, and a well-loomed structure, compared to control.

Keywords: waxy wheat flour, structural-mechanical properties of dough, hardtacks without sugar.

References

1. Sugar and Health (2015). Houses of Parliament. The Parliamentary Office of Science and Technology. Available at: http://researchbriefings.parliament.uk/ResearchBriefing/Summary/POST-PN-0403
2. Guideline: Sugars intake for adults and children (2015). World Health Organization. Available at: http://www.who.int/iris/handle/10665/149782
3. Zhang, G., Hasek, L. Y., Lee, B.-H., Hamaker, B. R. (2015). Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food & Function, 6 (4), 1072–1089. doi: https://doi.org/10.1039/c4ff00803k
4. Manley, D. (2011). Manley’s Technology of Biscuits, Crackers and Cookies. Woodhead Publishing Limited. Cambridge, 632. doi: https://doi.org/10.1016/9780857099364
5. Struck, S., Jaros, D., Brennan, C. S., Rohm, H. (2014). Sugar replacement in sweetened bakery goods. International Journal of Food Science & Technology, 49 (9), 1963–1976. doi: https://doi.org/10.1111/j.1365-2611.2014.05013.x
6. Tafatka, M., Roszkowska, B., Czaplicki, S., Borowska, E., Bojar, J., Dabrowska, A. (2016). Effect of Fruit Pomace Addition on Shortbread Cookies to Improve Their Physical and Nutritional Values. Plant Foods for Human Nutrition, 71 (3), 307–313. doi:https://doi.org/10.1007/s11130-016-0561-6
7. Dorokhovych, A. M., Dorokhovych, V. V., Kolchan, O. O., Mazur, L. S., Bozhok, O. S. (2016). Otsnity kaktsia tsukrozamniki za kompleksnym pokaznykom. Kharchova promyslovist, 20, 34–40. Available at: http://nbuv.gov.ua/UJRN/Khp_2016_20_7
8. Pourmohammadi, K., Najafi, H., Pourmohammadi, K., Majzoobi, M., Koocheki, A., Farahnaki, A. (2017). Evaluation of dough rheology and quality of sugar-free biscuits: Isomalt, maltodextrin, and stevia. Carpathian Journal of Food Science and Technology, 9 (4), 119–130.
9. Kutyja-Kupidura, E. M., Sikora, M., Krystyjan, M., Dobosz, A., Kowalski, S., Pysz, M., Tomask, P. (2015). Properties of Sugar-Free Cakes with Xylitol, Sucrose, Acesulfame K and Their Blends. Journal of Food Process Engineering, 39 (4), 321–329. doi: https://doi.org/10.1111/jfpe.12222
10. Fernandez, M. L., Santos, M. E. S. M. (2018). Effects of consuming sweeteners on metabolic disorders. Journal of Nutrition, Food Research and Technology, 1 (2), 34–38. doi: https://doi.org/10.30881/jnfrt.00008
11. Suez, J., Koren, T., Zeevi, D., Zilberman-Schapira, G., Thais, C. A., Maza, O. et. al. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514 (7521), 181–186. doi: https://doi.org/10.1038/nature13793
12. Zeynep, F., Sifa, T. (2014). Determination of the effects of some artificial sweeteners on human peripheral lymphocytes using the comet assay. Journal of Toxicology and Environmental Health Sciences, 6 (8), 147–153. doi: https://doi.org/10.3897/jtehs.2014.0113
13. Ayerton, D. K. (2009). Sekrety pitaniya. Moscow, 300.
14. Meidjie, A. (2016). Metabolic Response of Slowly Absorbed Carbohydrates in Type 2 Diabetes Mellitus. Springer, 135. doi: https://doi.org/10.1007/978-3-319-27888-8
15. Dragilev, A. I., Sezanaa, Y. M. (2000). Proizvodstvo mnozhnykh kondyterskikh izdeliy. Moscow, 445.
16. Iorgachova, K. H., Makarova, O. V., Hsvostenko, E. V. (2011). Tekhnolohiya kondyterskoho vyrobnytstva. Praktykum. Odessa, 208.
17. Drobot, V. I. (2002). Tekhnolohiya khlibopekarskoho vyrobnytstva. Kyiv, 365.
18. Davis, C. (2017). Inulin: Chemical Properties, Uses & Health Benefits. Nova Science Publishers Inc, 120.
19. Yays, N., Nottingham, S. (2007). Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L. CRC Press, 496. doi: https://doi.org/10.1201/9781420044966
20. Iorgachova, E. G., Makarova, O. V., Hsvostenko, E. V. (2010). Ispol’zovanie inulinsoderzhashchego syr’ya v tekhnikologii khlebovolphinichykh i kondyterskikh izdeliy. Kharchova nauka i tekhnolohiya, 1, 13–17.
21. Iorgachova, E. G., Makarova, O. V., Hsvostenko, E. V., Gromova, A. V. (2011). Vliyanie inulinsoderzhashchego syr’ya na process brozhennya polufabrikatov dlya galet. Kharchova nauka i tekhnolohiya, 1, 6–9.
22. Iorgachova, K., Makarova, O., Hsvostenko, K. (2016). The rationale of selecting pastries to be made with waxy wheat flour. Eastern-European Journal of Enterprise Technologies, 2 (11 (80)), 12–18. doi: https://doi.org/10.15587/1729-4061.2016.65756
23. Iorgachova, K., Makarova, O., Fateeva, A., Khvostenko, K. (2017). Intensification of fermentation of semi-finished products of hardtacks with lowered sugar content. Technics, technologies and education. Yambol of Trakia University, 363–367.
24. Yu, X. R., Zhou, L., Zhang, J., Yu, H., Gao, D. R., Zhang, B. Q. et. al. (2015). Comparison of Structural Development and Biochemical Accumulation of Waxy and Non-waxy Wheat Caryopses. Cereal Research Communications, 43 (2), 307–317. doi: https://doi.org/10.1556/crc.2014.0038
25. Lekarstvennoe rastenie topinambur. Available at: http://www.malva-topinambur.com
26. Rybalka, O. I. (2011). Yakist pshenitsy ta yii polipshennia. Kyiv, 495.
27. Lebedenko, T. Ye., Pshenyshnik, H. F., Sokolova, N. Yu (2014). Tekhnolohiya khlibopekarskoho vyrobnytstva. Praktykum. Odessa, 392.
28. Iorgachova, K., Makarova, O., Hsvostenko, K. (2018). The study of technological properties of waxy wheat flour and its influence on refined sugar-free hardtack’s dough. EUKRA: Life Sciences, 5, 54–62. doi: http://dx.doi.org/10.21309/2594-5605.2018.00721
29. Guan, L. (2008). Wet-milling of waxy wheat flours and characteristics of waxy wheat starch. Kansas, 95.