Observation of \(B_s^0 \to \phi \gamma \) and Search for \(B_s^0 \to \gamma \gamma \) Decays at Belle

J. Wicht,17 I. Adachi,8 H. Aihara,10 K. Arinstein,1 V. Aulchenko,1 T. Aushev,17,12 A. M. Bakich,37 V. Balagura,12 A. Bay,17 K. Belous,11 V. Bhardwaj,32 U. Bitenc,13 A. Bondar,1 A. Bozek,26 M. Bračko,19,13 T. E. Browder,7 P. Chang,25 Y. Chao,25 A. Chen,23 K.-F. Chen,25 W. T. Chen,25 B. G. Cheon,6 R. Chistov,12 I.-S. Cho,15 Y. Choi,36 J. Dalseno,20 M. Dash,44 A. Drutskoy,3 S. Eidelman,1 N. Gabyshev,1 P. Goldenzweig,3 B. Golob,18,13 J. Haba,8 K. Hayasaka,21 M. Hazumi,8 D. Heffernan,31 Y. Hoshi,39 W.-S. Hou,25 Y. B. Hsiung,25 H. J. Hym,16 T. Iijima,21 K. Inami,21 A. Ishikawa,33 H. Ishino,39 Y. Iwasaki,8 D. H. Kah,16 H. Kaji,21 J. H. Kang,45 P. Kapusta,26 H. Kawai,2 T. Kawasaki,28 H. Kichimi,8 H. J. Kim,16 H. O. Kim,16 S. K. Kim,35 Y. J. Kim,5 K. Kinoshita,3 S. Korpar,19,13 P. Krizan,18,13 R. Kumar,32 C. C. Kuo,23 Y.-J. Kwon,45 J. S. Lange,4 J. Lee,35 J. S. Lee,36 S. E. Lee,35 T. Lesiak,26 A. Limosani,20 S.-W. Lin,25 Y. Liu,5 D. Liventsev,12 F. Mandl,10 S. McOnie,37 T. Medvedeva,12 W. Mitaroff,10 K. Miyabayashi,22 H. Miyake,31 H. Miyata,28 Y. Miyazaki,21 R. Mizuk,12 D. Mohapatra,44 G. R. Moloney,20 M. Nakao,8 Z. Natkaniec,26 S. Nishida,8 O. Nitoh,43 T. Nozaki,8 S. Ogawa,38 T. Ohshima,21 S. Okuno,14 H. Ozaki,8 P. Pakhlova,12 G. Pakhlova,12 H. Pakla,26 C. W. Park,36 H. Park,16 K. S. Park,36 R. Pestotnik,13 L. E. Pilon,44 Y. Sakai,8 O. Schneider,17 J. Schümann,8 A. J. Schwartz,3 K. Senyo,21 M. E. Sevior,20 M. Shapkin,11 H. Shibuya,38 J.-G. Shiu,25 B. Shiwartz,1 J. B. Singh,32 A. Somov,3 S. Stanic,29 M. Starić,13 K. Sumisawa,8 T. Sumiyoshi,42 F. Takasaka,8 K. Tamai,8 M. Tanaka,8 G. N. Taylor,20 Y. Teramoto,30 K. Trabelsi,8 T. Tsuboyama,8 S. Uehara,8 K. Ueno,25 Y. Unno,6 S. Uno,8 Y. Ushiroda,8 Y. Usov,1 G. Varner,7 K. Vervink,17 S. Villa,17 C. H. Wang,24 P. Wang,9 X. L. Wang,9 Y. Watanabe,14 E. Won,15 B. D. Yabsley,37 Y. Yamashita,27 M. Yamauchi,8 Y. Yusa,44 Z. P. Zhang,34 V. Zhilich,1 A. Zupanc,13 and N. Zwahlen17

(The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3University of Cincinnati, Cincinnati, Ohio 45221
4Justus-Liebig-Universität Gießen, Gießen
5The Graduate University for Advanced Studies, Hayama
6Hanyang University, Seoul
7University of Hawaii, Honolulu, Hawaii 96822
8High Energy Accelerator Research Organization (KEK), Tsukuba
9Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
10Institute of High Energy Physics, Vienna
11Institute of High Energy Physics, Protvino
12Institute for Theoretical and Experimental Physics, Moscow
13J. Stefan Institute, Ljubljana
14Kanagawa University, Yokohama
15Korea University, Seoul
16Kyungpook National University, Taegu
17École Polytechnique Fédérale de Lausanne (EPFL), Lausanne
18Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana
19University of Maribor, Maribor
20University of Melbourne, School of Physics, University of Ljubljana, Ljubljana
21Nagoya University, Nagoya
22Nara Women's University, Nara
23National Central University, Chung-li
24National United University, Miaoli
25Department of Physics, National Taiwan University, Taipei
26H. Niewodniczański Institute of Nuclear Physics, Krakow
27Nippon Dental University, Niigata
28Niigata University, Niigata
29University of Nova Gorica, Nova Gorica
30Osaka City University, Osaka
31Osaka University, Osaka
32Panjab University, Chandigarh
33Saga University, Saga
34University of Science and Technology of China, Hefei
35Seoul National University, Seoul
36Sungkyunkwan University, Suwon
37University of Sydney, Sydney, New South Wales
38University of Tokyo, Tokyo
39University of Turin, Turin
40Yonsei University, Seoul
41University of Zagreb, Zagreb
42University of Zielona Góra, Zielona Góra
43Budapest University of Technology and Economics, Budapest
44Chulalongkorn University, Bangkok
45University of Zagreb, Zagreb
46Xi'an Jiaotong University, Xi'an
We search for the radiative penguin decays $B^0 \to \phi \gamma$ and $B^0 \to \gamma \gamma$ in a 23.6 fb$^{-1}$ data sample collected at the $\Upsilon(5S)$ resonance with the Belle detector at the KEKB e^+e^- asymmetric-energy collider. We observe for the first time a radiative penguin decay of the B^0 meson in the $B^0 \to \phi \gamma$ mode and we measure $B(B^0 \to \phi \gamma) = (57^{+16}_{-15}(\text{stat})^{+12}_{-11}(\text{syst})) \times 10^{-6}$. No significant $B^0 \to \gamma \gamma$ signal is observed and we set a 90% confidence level upper limit of $B(B^0 \to \gamma \gamma) < 8.7 \times 10^{-6}$.

PACS numbers: 13.25.Gv, 13.25.Hw, 14.40.Gx, 14.40.Nd

Radiative penguin decays, which produce a photon via a one-loop Feynman diagram, are a good tool to search for physics beyond the Standard Model (SM) because particles not yet produced in the laboratory can make large contributions to such loop effects. The $B^0 \to \phi \gamma$ mode is a radiative process described within the SM by a $\bar{b} \to s\gamma$ penguin diagram (Fig. 1 left); it is the strange counterpart of the $B \to K^*(892)\gamma$ decay, whose observation by CLEO in 1993 unambiguously demonstrated the existence of penguin processes. In the SM, the $B^0 \to \phi \gamma$ branching fraction has been computed with $\sim 30\%$ uncertainty to be about 40×10^{-6} [2, 3]. The $B^0 \to \gamma \gamma$ mode is usually described by a penguin annihilation diagram (Fig. 1 right), and its branching fraction has been calculated in the SM to be in the range $(0.5-1.0) \times 10^{-6}$ [4, 5, 6]. Neither $B^0 \to \phi \gamma$ nor $B^0 \to \gamma \gamma$ has yet been observed, and the upper limits at the 90% confidence level (CL) on their branching fractions are, respectively, 120×10^{-6} [8] and 53×10^{-6} [7].

A strong theoretical constraint on the $B^0 \to \phi \gamma$ branching fraction is generally assumed due to good agreement between SM expectations and experimental results for $b \to s\gamma$ rates, such as in $B^+ \to K^+(892)^+\gamma$ and $B^0 \to K^*(892)^0\gamma$ decays [2, 4, 10, 11] or inclusive $B \to X_s\gamma$ decays [11, 12]. The $B^0 \to \gamma \gamma$ decay rate is constrained in a similar way [15], though various New Physics (NP) scenarios such as supersymmetry with broken R-parity [14], a fourth quark generation [15] or a two Higgs doublet model with flavor changing neutral currents [16], can increase the $B^0 \to \gamma \gamma$ branching fraction by up to an order of magnitude without violating constraints on the $B \to X_s\gamma$ branching fraction.

In this study, we use a data sample with an integrated luminosity (L_{int}) of 23.6 fb$^{-1}$ that was collected with the Belle detector at the KEKB asymmetric-energy e^+e^- (3.6 on 8.2 GeV) collider operating at the $\Upsilon(5S)$ resonance (10.87 GeV).

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a 4-layer silicon detector (SVD [18]), a central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside the coil is instrumented to detect K_L^0 mesons and to identify muons. The detector is described in detail elsewhere [19].

The variety of hadronic events at the $\Upsilon(5S)$ resonance is richer than at the $\Upsilon(4S)$. B^\pm, B^0 and B^\pm mesons are all produced in $\Upsilon(5S)$ decay. B^0 mesons are produced mainly via $\Upsilon(5S) \to B^+_s\bar{B}^+_s$ decays, with subsequent B^+_s low energy photon de-excitation. The $\bar{b}\bar{b}$ production cross section at the $\Upsilon(5S)$, the fraction of $B^+_s\bar{B}^+_s$ events in the $\bar{b}\bar{b}$ events, and the fraction of $B^+_s\bar{B}^+_s$ events among $B^+_s\bar{B}^+_s$ events have been measured to be, respectively, $\sigma_{\bar{b}\bar{b}}^{\Upsilon(5S)} = (0.302 \pm 0.015) \text{ nb}$ [20], $f_s = (19.5^{+3.0}_{-2.3})\%$ [11] and $f_{B^+_s\bar{B}^+_s} = (93^{+7}_{-9})\%$ [17]. The $B^+_s\bar{B}^+_s$ and $B^0\bar{B}^0$ decay fractions are small and not yet measured.

Charged tracks are reconstructed using the SVD and CDC detectors and are required to originate from the interaction point. Kaon candidates are selected from charged tracks with the requirement $L_K/(L_K + L_\pi) > 0.6$, where $L_K (L_\pi)$ is the likelihood for a track to be a kaon (pion) based on the response of the ACC and on measurements from the CDC and TOF. For the selected kaons, the identification efficiency is about 85% with about 9% of pions misidentified as kaons.

We reconstruct ϕ mesons in the decay mode $\phi \to K^+K^-$ by combining oppositely charged kaons having an invariant mass within ± 12 MeV/c^2 ($\sim 2.5\sigma$) of the nominal ϕ mass [11].
We reject photons from π^0 and η decays to two photons using a likelihood based on the energy and polar angles of the photons in the laboratory frame and the invariant mass of the photon pair. To reject merged photons from π^0 decays and neutral hadrons such as neutrons and K^0_L, we require an ECL shower shape consistent with that of a single photon: for each cluster, the ratio of the energy deposited in the central 3×3 calorimeter cells to that of the larger 5×5 array of cells has to be greater than 0.95.

Candidate photons are required to have a signal timing consistent with originating from the same event. For the $B_s^0 \rightarrow \gamma \gamma$ mode, photons are selected in the barrel part of the ECL ($33^\circ < \theta < 128^\circ$) and we require that the total energy of the event be less than 12 GeV.

B_s^0 meson candidates are selected using the beam-energy-constrained mass $M_{bc} = \sqrt{(E_{\text{beam}}^\text{CM})^2 - (p_{\text{BC}}^\text{CM})^2}$ and the energy difference $\Delta E = E_{\gamma_1}^\text{CM} - E_{\gamma_2}^\text{CM}$. In these definitions, $E_{\text{beam}}^\text{CM}$ is the beam energy and p_{BC}^CM and $E_{\gamma_1,\gamma_2}^\text{CM}$ are the momentum and the energy of the B_s^0 meson, with all variables being evaluated in the center-of-mass (CM) frame. We select B_s^0 meson candidates with $M_{bc} > 5.3$ GeV/c2 for both modes, and -0.4 GeV $< \Delta E < 0.4$ GeV for the $B_s^0 \rightarrow \phi \gamma$ mode and -0.7 GeV $< \Delta E < 0.4$ GeV for the $B_s^0 \rightarrow \gamma \gamma$ mode. No events with multiple B_s^0 candidates are observed in either data or Monte Carlo (MC) simulation. B_s^0 mesons are not fully reconstructed due to the low energy of the photon from the B_s^0 decay. Signal candidates coming from $B_s^0 \rightarrow \phi \gamma$, $B_s^0 \rightarrow \gamma \gamma$ and $B_s^0 \rightarrow B_s^0$ are well-separated in M_{bc}, but they overlap in ΔE.

The main background in both search modes is due to continuum events coming from light-quark pair production ($u\bar{u}, d\bar{d}, s\bar{s}$ and $c\bar{c}$). Rejection of this background is studied and optimized using large signal MC samples and a continuum MC sample having about three times the size of the data sample. A Fisher discriminant based on modified Fox-Wolfram moments (SFW [21]) is used to separate signal from continuum background. The process $e^+e^- \rightarrow qq\gamma$ is a source of high-energy photons with low polar angles and can thus be a background for radiative B decays. Therefore, for the $B_s^0 \rightarrow \phi \gamma$ mode, we apply a more restrictive SFW requirement when the candidate photon is reconstructed outside the barrel part of the ECL. This procedure is not used for the $B_s^0 \rightarrow \gamma \gamma$ mode where photons are selected only in the barrel. For the $B_s^0 \rightarrow \phi \gamma$ mode, the SFW requirement is chosen in order to maximize a figure of merit defined as $N_{\text{sig}}/\sqrt{N_{\text{sig}} + N_{\text{bd}}}$, where N_{sig} and N_{bd} are the expected number of signal events coming from $B_s^0 \rightarrow B_s^0$ events and continuum events, respectively. N_{sig} and N_{bd} are computed in the $B_s^0 \rightarrow \phi \gamma$ signal window ($M_{bc} > 5.4$ GeV/c2, -0.2 GeV $< \Delta E < 0.02$ GeV and $|\cos \theta_{\text{hel}}| < 0.8$) and are normalized to an integrated luminosity of 23.6 fb$^{-1}$ assuming $\mathcal{B}(B_s^0 \rightarrow \phi \gamma) = 40 \times 10^{-6}$. The helicity angle θ_{hel} is the angle between the B_s^0 and the K^+ in the ϕ rest frame. For signal events $\cos \theta_{\text{hel}}$ should follow a $1 - \cos^2 \theta_{\text{hel}}$ distribution, while for continuum events the distribution is found to be flat. For the $B_s^0 \rightarrow \gamma \gamma$ mode, we optimize the SFW requirement to minimize the 90% CL upper limit on the branching fraction computed by the Feldman-Cousins method [22]. The upper limit calculation requires two inputs: the number of observed events (N_{obs}) and the expected number of background events (N_{bg}). We assume $N_{\text{obs}} \equiv N_{\text{sig}} + N_{\text{bd}}$ and $N_{\text{bg}} \equiv N_{\text{bd}}$. N_{sig} and N_{bd} are computed in the $B_s^0 \rightarrow \gamma \gamma$ signal window ($M_{bc} > 5.4$ GeV/c2 and -0.3 GeV $< \Delta E < 0.05$ GeV) assuming $\mathcal{B}(B_s^0 \rightarrow \gamma \gamma) = 1.0 \times 10^{-6}$.

Inclusive $b\bar{b}$ backgrounds from $\Upsilon(5S)$ decays are studied using MC samples having about the same size as the data sample. Backgrounds coming from B^+ or B^0 decays are found to lie outside of the fit region. For B_s^0 decays, no event is reconstructed in the $B_s^0 \rightarrow \gamma \gamma$ mode. The $B_s^0 \rightarrow \phi \eta(\gamma \gamma)$ decay is a potential background for the $B_s^0 \rightarrow \phi \gamma$ mode and is studied using a dedicated MC sample. Assuming that its branching fraction is the same as its B^0 counterpart $B^0 \rightarrow K^*(892)^0 \eta$ [11], we expect to reconstruct one $B_s^0 \rightarrow \phi \eta(\gamma \gamma)$ event. Considering the large $B_s^0 \rightarrow \phi \eta(\gamma \gamma)$ branching fraction uncertainty, this background is treated as a source of systematic error.

For the $B_s^0 \rightarrow B_s^0$ mode, we perform a three-dimensional (two-dimensional) unbinned extended maximum likelihood fit to M_{bc}, ΔE and $\cos \theta_{\text{hel}}$ (M_{bc} and ΔE) using the probability density functions (PDF) described below.

The signal PDFs for M_{bc} and ΔE are modeled separately for events coming from $B_s^0 \rightarrow B_s^0$, $B_s^0 \rightarrow B_s^0$ and $B_s^0 \rightarrow B_s^0$ with smoothed two-dimensional histograms built from signal MC events. The M_{bc} (ΔE) mean for the $B_s^0 \rightarrow B_s^0$ signal is adjusted to the B_s^0 mass (the $B_s^0 \rightarrow B_s^0$ mass difference) obtained from $B_s^0 \rightarrow D_s^- \pi^+ \pi^-$ events reconstructed in the same $\Upsilon(5S)$ data sample. The M_{bc} and ΔE resolutions for the $B_s^0 \rightarrow B_s^0$ ($B_s^0 \rightarrow B_s^0$) signal are corrected using a control sample of $B^0 \rightarrow K^*(892)^0 \gamma$ events ($e^+e^- \rightarrow \gamma \gamma$ events) recorded on the $\Upsilon(4S)$ resonance. Statistical uncertainties contained in these corrections are included in the systematic uncertainty. Continuum background is modeled with an ARGUS function [23] for M_{bc} and a first-order polynomial function for ΔE. For the $B_s^0 \rightarrow \phi \gamma$ mode, the signal (continuum) PDF for $\cos \theta_{\text{hel}}$ is modeled with a $1 - \cos^2 \theta_{\text{hel}}$ (constant) function. The $B_s^0 \rightarrow \phi \eta(\gamma \gamma)$ background PDF is modeled using MC events as the product of a two-dimensional PDF for M_{bc} and ΔE and a one-dimensional histogram for $\cos \theta_{\text{hel}}$. The likelihood is defined as

$$L = e^{-\sum_i S_i} \times \prod_i (\sum_j S_j P_{ij}),$$

where i runs over all events, j runs over the possible event categories (signals or backgrounds), S_i is the number of events in each category and P_{ij} is the corresponding PDF.
Neither the question of the significance (Sig.) obtained from the fits described in the text. The first uncertainty is a floating number, and the second is systematic. The upper limit is calculated at the 90% CL.

Mode	ϵ (%)	$S_{B_s^0 B_s^0}$	$S_{B_s^0 B_s^0}$	$S_{B_s^0 B_s^0}$	$B_{(10^{-6})}$	Sig.
$\phi \gamma$	24.7 $^{+2.5}_{-1.6}$	0.5 $^{+2.9}_{-1.9}$	18 $^{+6}_{-5}$	57 $^{+18}_{-15}$	11 $^{+12}_{-11}$	5.5
$\gamma \gamma$	17.8 $^{+2.3}_{-2.8}$	0.8 $^{+2.4}_{-2.0}$	7.3 $^{+2.4}_{-2.0}$	5.5 $^{+12}_{-11}$	11 $^{+12}_{-11}$	5.5

Both fits have six free fit variables: the yields for the $B_s^0 B_s^0$, $B_s^0 B_s^0$, and $B_s^0 B_s^0$ signals ($S_{B_s^0 B_s^0}$ and $S_{B_s^0 B_s^0}$), the continuum background normalization and PDF parameters, except the ARGUS endpoint which is fixed to 5.435 GeV. The branching fractions ($B(B_s^0 \rightarrow \phi \gamma)$ and $B(B_s^0 \rightarrow \phi \gamma)$) are determined from the B_s^0 signal yields with the relations

$$
S_{B_s^0 B_s^0} \rightarrow \phi \gamma = B(B_s^0 \rightarrow \phi \gamma) \times c_{\gamma \gamma} \times N_{B_s^0} \times f_{B_s^0 B_s^0} ,
$$

$$
S_{B_s^0 B_s^0} \rightarrow \phi \gamma = B(B_s^0 \rightarrow \phi \gamma) \times B(\phi \rightarrow K^+ K^-) \times c_{\phi \phi} \times N_{B_s^0} \times f_{B_s^0 B_s^0} ,
$$

where c’s are the MC signal efficiencies listed in Table 1 and $N_{B_s^0}$ is the number of B_s^0 mesons evaluated as $N_{B_s^0} = 2 \times L_{int} \times \sigma_{bb}^{(3S)} \times f_s = (2.8 \pm 0.5) \times 10^6$.

In the $B_s^0 \rightarrow \phi \gamma$ mode we observe 18 $^{+5}_{-6}$ signal events in the $B_s^0 B_s^0$ region and no significant signals in the two other regions. These signal yields are compatible with $f_{B_s^0 B_s^0} = (93.5 \pm 9.7)\%$ 8. We measure $B(B_s^0 \rightarrow \phi \gamma) \times f_s = f_{B_s^0 B_s^0} = (10.3 \pm 3.2 \pm 1.3) \times 10^{-6}$ and $B(B_s^0 \rightarrow \phi \gamma) = (57.1 \pm 18.0 \pm 12.2) \times 10^{-6}$ with a significance of 5.5σ, where the first uncertainty is statistical and the second is systematic. Systematic uncertainties and computation of the significance are detailed below. The measured branching fraction is in agreement with SM expectations 3, 4, and with the measurements $B(B_s^0 \rightarrow K^+(892)^0 \gamma) = (40.1 \pm 2.0) \times 10^{-6}$ and $B(B^0_s \rightarrow K^+(892)^0 \gamma) = (40.3 \pm 2.6) \times 10^{-6}$ 11. We observe no significant $B_s^0 \rightarrow \gamma \gamma$ signal and, including systematic uncertainties, determine a 90% CL upper limit of $B(B_s^0 \rightarrow \gamma \gamma) < 8.7 \times 10^{-6}$. This limit is about six times more restrictive than the previous one 8, though still about one order of magnitude larger than SM expectations 3, 4, 7, and still above the predictions of NP models 14, 13, 16. The results are summarized in Table 1 and fit projections in the signal regions are shown in Figs. 2 and 3.

Systematic uncertainties are listed in Table II. The error on the signal reconstruction efficiency is dominated by uncertainty on the efficiency of the SFW requirement. This uncertainty is evaluated by comparing efficiencies in data and MC using the $B_s^0 \rightarrow D_s^- \pi^+$ control sample. For the $B_s^0 \rightarrow \phi \gamma$ mode, we take as systematic uncertainty the B difference between the results of the nominal fit and the results of a fit where the continuum is parametrized with a second-order polynomial function for ΔE. For the $B_s^0 \rightarrow \gamma \gamma$ mode, the limit obtained with the nominal continuum parametrization is found to be conservative. For the $B_s^0 \rightarrow \phi \gamma$ mode, systematic uncertainties on B are evaluated by repeating the fit with each parameter successively varied by plus or minus one standard deviation around its central value. The positive and negative uncertainty on B are obtained from the quadratic sum of the corresponding deviations from
We acknowledge support from MEXT.

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and Super-SINET network support.

We measure the B value returned by the nominal fit. The significance of the branching fraction measurement is defined as $\sqrt{2(\ln L_{\text{max}} - \ln L_0)}$, where L_{max} is the likelihood returned by the nominal fit and L_0 is the likelihood returned by the fit with B set to zero. Systematic uncertainties are included by choosing the lowest significance value returned by the fits used to evaluate the systematic uncertainty. The $B^0 \to \phi \eta (\gamma \gamma)$ background is the only source of systematic uncertainty having a non-negligible effect on the significance. For the $B^0 \to \gamma \gamma$ mode, the 90% CL limit, B_{limit}, is computed by likelihood integration, according to $\int_0^{B_{\text{limit}}} L(B) \, dB = 0.9 \times \int_0^{B_0} L(B) \, dB$. Systematic uncertainties are included by convolving the likelihood function with Gaussian distributions for the parameters giving rise to systematic uncertainty.

In summary, we observe for the first time a radiative penguin decay of the B^0_s meson in the $B^0_s \to \phi \gamma$ mode. We measure $B(B_s^0 \to \phi \gamma) = (57^{+18}_{-15}(\text{stat})^{+12}_{-11}(\text{syst})) \times 10^{-6}$, which is in agreement with both the SM predictions and with extrapolations from measured $B^+ \to K^+(892)^+ \gamma$ and $B^0 \to K^+(892)^0 \gamma$ decay branching fractions. No significant signal is observed in the $B^0_s \to \gamma \gamma$ mode and we set an upper limit at the 90% CL of $B(B_s^0 \to \gamma \gamma) < 8.7 \times 10^{-6}$. This limit significantly improves on the previously reported one and is only an order of magnitude larger than the SM prediction, providing the possibility of observing this decay at a future Super B-factory.

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and Super-SINET network support.

Table II: Systematic uncertainties.

Source	$B^0_s \to \phi \gamma$	$B^0_s \to \gamma \gamma$
Photon reconstruction efficiency	2.2%	2 x 2.2%
Tracking efficiency	2 x 1%	-
Kaon identification efficiency	2 x 1.1%	-
SFW requirement efficiency	10%	10%
MC statistics	0.8%	1.1%
ϵ (quadratic sum)	10.7%	11.0%
Signal shape	+4.2%	negl.
ΔE continuum shape	+2.8%	negl.
B^0_s backgrounds	+0.0%	negl.
$B_s(\phi \to K^+ K^-)$	1.2%	-
\mathcal{L}_{int}	1.4%	
$\sigma_{\text{T}^{(S)}}$	5.0%	
f_s	+15%	-12%
$N_{B^0_s}(\text{quadratic sum})$	+16%	-13%
$f_{B^0_s, B_s}$	+2%	-9.7%
Total (quadratic sum)	+24%	-19%

The \mathcal{B} value returned by the nominal fit. The significance of the branching fraction measurement is defined as $\sqrt{2(\ln L_{\text{max}} - \ln L_0)}$, where L_{max} is the likelihood returned by the nominal fit and L_0 is the likelihood returned by the fit with \mathcal{B} set to zero. Systematic uncertainties are included by choosing the lowest significance value returned by the fits used to evaluate the systematic uncertainty. The $B^0_s \to \phi \eta (\gamma \gamma)$ background is the only source of systematic uncertainty having a non-negligible effect on the significance. For the $B^0_s \to \gamma \gamma$ mode, the 90% CL limit, B_{limit}, is computed by likelihood integration, according to $\int_0^{B_{\text{limit}}} L(B) \, dB = 0.9 \times \int_0^{B_0} L(B) \, dB$. Systematic uncertainties are included by convolving the likelihood function with Gaussian distributions for the parameters giving rise to systematic uncertainty.

In summary, we observe for the first time a radiative penguin decay of the B^0_s meson in the $B^0_s \to \phi \gamma$ mode. We measure $B(B_s^0 \to \phi \gamma) = (57^{+18}_{-15}(\text{stat})^{+12}_{-11}(\text{syst})) \times 10^{-6}$, which is in agreement with both the SM predictions and with extrapolations from measured $B^+ \to K^+(892)^+ \gamma$ and $B^0 \to K^+(892)^0 \gamma$ decay branching fractions. No significant signal is observed in the $B^0_s \to \gamma \gamma$ mode and we set an upper limit at the 90% CL of $B(B_s^0 \to \gamma \gamma) < 8.7 \times 10^{-6}$. This limit significantly improves on the previously reported one and is only an order of magnitude larger than the SM prediction, providing the possibility of observing this decay at a future Super B-factory.

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and Super-SINET network support.

We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (China); DST (India); MOEHRD, KOSEF and KRF (Korea); KBN (Poland); MES and RF AAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

[1] The inclusion of the charge-conjugate mode is implied throughout this letter.
[2] R. Ammar et al. (CLEO Collaboration), Phys. Rev. Lett. 71, 674 (1993).
[3] P. Ball, G.W. Jones and R. Zwicky, Phys. Rev. D 75, 054004 (2007).
[4] A. Ali, B.D. Pecjak and C. Greub, submitted to Eur. Phys. J. C [arXiv:0709.4422] (2007).
[5] C.-H.V. Chang, G.-L. Lin, and Y.-P. Yao, Phys. Lett. B 415, 395 (1997).
[6] L. Reina, G. Ricciardi and A. Soni, Phys. Rev. D 56, 5805 (1997).
[7] S.W. Bosch and G. Buchalla, JHEP 0208, 054 (2002).
[8] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 66, 112002 (2002).
[9] A. Drutskoy et al. (Belle Collaboration), Phys. Rev. D 76, 012002 (2007).
[10] A. Ali and A.Ya. Parkhomenko, Eur. Phys. J. C 23, 89 (2002).
[11] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) and 2007 partial update for the 2008 edition.
[12] M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007).
[13] S. Bertolini and J. Matias, Phys. Rev. D 57, 4197 (1998).
[14] A. Gem intimate, S. Bar-Shalom and G. Eilam, Phys. Rev. D 70, 035008 (2004).
[15] W.J. Huo, C.D. Lu and Z.J. Xiao, arXiv:hep-ph/0302177 (2003).
[16] T.M. Aliev and E.O. Iltan, Phys. Rev. D 58, 095014 (1998).
[17] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003) and other papers included in this volume.
[18] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instr. and Meth. A 560, 1 (2006).
[19] A. Abashian et al. (Belle Collaboration), Nucl. Instr. and Meth. A 479, 117 (2002).
[20] A. Drutskoy et al. (Belle Collaboration), Phys. Rev. Lett. 98, 052001 (2007).
[21] The Fox-Wolfram moments were introduced in G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The Fisher discriminant used by Belle, based on modified Fox-Wolfram moments, is described in K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 101801 (2001) and K. Abe et al. (Belle Collaboration), Phys. Lett. B 511, 151 (2001).
[22] G.J. Feldman and R.D. Cousins, Phys. Rev. D 57, 3873 (1998).
[23] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 185, 218 (1987).
[24] K. Abe et al., KEK Report 04-4 (2004).
[25] A.G. Akesson et al., [arXiv:hep-ex/0406071] (2004).
[26] M. Bona et al., [arXiv:0709.0451] (2007).