Introduction

The search and attraction of new, unconventional or forgotten plant species with useful properties continues to be a priority in modern biological and agricultural science. In this case, the introduction of plants is an important source of culture phytocenoses enrichment [1]. It should be noted that wild and non-traditional plants can be characterized by such useful properties as medicinal, food, fodder, energy, etc. [2, 3]. Among the wide variety of phytoresources, plants of the Brassicaceae family, containing antioxidants and anticancer components, deserve special attention for economic use [4]. Representatives of the Brassicaceae family are well known and widespread as food plants [5] and promising energy crops [6]. *Bunias orientalis* L. can be distinguished among this large group of plants with various uses [7]. This species originates from Eastern Europe and Central Asia and slowly spreads to other parts of Europe after its introduction into culture in the 18th century [8]. Species of the genus *Bunias* L. exhibited antioxidant, anticholinesterase, cytotoxic activities [9, 10]. Ethanol extracts from the aboveground phytomass of *B. orientalis* have high antioxidant, and from the root system – antimicrobial activity [11]. Studies of flavonols from the aerial part of *B. orientalis* showed increase of their concentration in flowers during the flowering stage in comparison with budding one [12]. Flavonoids are present in all tissues of *B. orientalis*; kaempferol, quercetin, and isorhamnetin are prevailing compounds [7].

At the M. M. Gryshko National Botanical Garden *B. orientalis* has been studied over the past decades as a fodder and energy plant [13, 14].
This culture is characterized by a valuable biochemical composition, but the study of the characteristics of various genotypes is still a relevant direction for further breeding work [15]. This study aims to determine the biochemical composition of the aboveground organs of different *B. orientalis* genotypes in the conditions of the M. M. Gryshko National Botanical Garden of the NAS of Ukraine.

Material and methods

Plant material

The studies were carried out in the conditions of the M. M. Gryshko National Botanical Garden of the NAS of Ukraine (NBG) during 2017–2020. We used samples of plant organs of different *Bunias orientalis* L. genotypes (Genotype 1-Genotype 6), created at the NBG. The genotypes created by the method of multiple individual selection from different populations of plants introduced from the natural flora of Ukraine (except for one sample – Genotype 6, which was derived from a population imported from the Czech Republic) were investigated. The indicated genotypes are characterized by excellent biological, morphological, biochemical and productive characteristics. As perennial plants, the created genotypes of *B. orientalis* L. vegetate in one place from 4–5 to 10–12 years, depending on their characteristics. The generative period of development in all genotypes begins in the second year of vegetation.

Plant samples were selected and analyzed at the flowering stage, as the active phase of plant development, when they acquire the highest productivity. For analysis, 25 plants were selected from different parts of the plot. Biometric measurements were performed on 10 plants in four replicates.

Study of plant morphometric parameters

The following plant morphometric parameters were measured: plant height (cm), stem diameter (mm), number of internodes, number of leaves on the shoot, leaf lamina length (cm), leaf lamina width (cm), inflorescence length (cm), inflorescence width (cm), the number of stems (pcs.).

Biochemical analyses

Biochemical analyses of plants were carried out in the biochemical laboratory of the Department of Cultural Flora of the NBG. Dry matter was determined after drying plant samples at a temperature of 105 °C to constant weight. The ash content was investigated by burning samples in a muffle furnace (SNOL 7.2-1100, Termolab) at 200–500 °C [16]. After the combustion of the test sample, the ash was used to determine the content of calcium and phosphorus by titration methods. The ash was dissolved in hydrochloric acid solution to determine the total calcium content. After the usual procedure described in the method, the solution was titrated with Trilon-B with hydroxylamine and murexide [16].

The ash was dissolved in a nitric acid solution to determine the total phosphorus content. After adding molybdic acid ammonium, potassium oxalate solution, the whole mixture was titrated with sodium hydroxide with phenolphthalein [17].

The total sugar content was determined by Bertrand’s Method using Fehling’s solutions. The total content of ascorbic acid was determined by Tillmans’ method [18]. The determination of β-carotene was carried out in extracts of gasoline Kalosh on a Unico UV 2800 spectrophotometer [19]. Lipid content was identified using the Soxhlet extractor in petroleum ether according to Krishchenko [18] with minor changes. Caloric content of raw materials was determined on an IKA C-200 calorimeter (benzoic acid as a standard).

Statistical analysis

The obtained data are analysed using Microsoft Excel software and presented as average values and standard deviation of the mean. Correlation analysis was carried out using Pearson’s coefficient. The results are summarized in Tables 1, 2 and Figures 1–6.

Results and discussion

The morphometric parameters of the investigated *B. orientalis* genotypes were studied during the flowering stage (Table 1). These measurements were carried out for the first time.

It was revealed that the plant height varied from 140.9 to 157.5 cm, the stem diameter from 11.67 to 16.1 mm, the number of internodes from 18.7 to 25.7, the number of leaves on the stem from 14.11 to 21 8, leaf lamina length from 14.2 to 23.45 cm, leaf lamina width from 6.34 to 14.5 cm, inflorescence length from 27.4 to 45.4 cm, inflorescence width from 2.32 to 4.92 cm, the number of stems from 2.55 to 5.33, depending on the studied genotypes.

Analysis of morphometric parameters revealed a very strong positive correlation between the length and width of the inflorescence \(r = 0.934 \), stem diameter and the number of leaves \(r = 0.866 \), stem diameter and leaf lamina width \(r = 0.852 \), the height of plants and the inflorescences width \(r = 0.820 \) (Table 2).
The study of biochemical indicators of agricultural crops is a very important stage for a comprehensive assessment of plants, further research and selection of promising species, forms and varieties [15]. The study of *B. orientalis* samples showed that dry matter content in the aboveground phytomass ranged from 13.58 (Genotype 1) to 16.0 (Genotype 2)%, total sugar content from 5.07 (Genotype 2) to 8.86 (Genotype 1)%, lipids from 3.33 (Genotype 1) to 6.61 (Genotype 2)% depending on genotypic characteristics (Fig. 1). The acidity level ranged from 3.28 (Genotype 6) to 4.25 (Genotype 5)%.

The lack of literature data on species of the genus *Bunias* complicates comparison. In this regard, we have compared the obtained results with the elaborated data of other representatives of Brassicaceae. The dry matter content in the samples of different *Camelina sativa* genotypes was 18.13–23.38%, ascorbic acid 207.23–410.23 mg/100 g, β-carotene 0.43–2.23 mg/100 g, ash 5.08–8.75%, calcium 1.008–2.633%, phosphorus 0.086–0.157%, sugars 4.76–8.12%. The energy value was 3925.71–4097.00 cal/g [20].

The study revealed that the content of ascorbic acid ranged from 382.83 (Genotype 1) to 693.82 (Genotype 3) mg/100 g and β-carotene from 0.94 (Genotype 2) to 3.48 (Genotype 6) mg/100 g (Fig. 2). In various food plants of the Brassicaceae family, the content of ascorbic acid was for *Brassica oleracea* var. *italica* – 93.2 mg/100 g in *B. rapa* var. *ruvo* 20.1; *B. oleracea* var. *gemmafera* – 90.3; *B. juncea* var. *juncea* 70.0; *B. rapa* var. *perviridis* 130.0 and *B. rapa* var. *rapa* – 60.0 mg/100 g [5].

The study of ash level and its components, as well as the determination of the caloric content of phyto-raw-materials, makes it possible to select promising energy genotypes. Thus, plants with a low ash level are the most valuable [21]. The energy value of the phytomass ranged from 3337 (Genotype 5) to 3498 (Genotype 2) cal/g (Fig. 3). At the same time, preliminary results of studies of other energy crops showed that the caloric content of *Miscanthus* spp. is 3811.87–4193.17 cal/g [22], *Panicum virgatum* – 3588.18–3719.22 [23], sugar sorghum – 2228.77–4075.62 cal/g [24].

The ash content in *B. orientalis* plants ranged from 6.79 (Genotype 5) to 9.2 (Genotype 4)%, calcium from 1.00 (Genotype 2) to 2.44 (Genotype 5)%, phosphorus from 1.61 (Genotype 4) to 2.67 (Genotype 3)%. According to Barbash et al. [25], the ash content in plants was 5.1%, cellulose 34.3%, lignin 22%.

As a result of studies on the accumulation of biochemical compounds in *B. orientalis* sam-

Table 1

Plant parameters	Genotype 1*	Genotype 2*	Genotype 3*	Genotype 4*	Genotype 5*	Genotype 6*
Plant height, cm	144.6±11.32	152.4±13.70	157.5±8.49	140.9±13.30	154.3±13.11	141.2±13.31
Stem diameter, mm	11.6±0.96	12.1±0.96	13.5±0.64	15.5±0.57	15.8±0.73	16.1±1.18
Number of internodes, pcs.	17.5±1.03	23.2±0.95	18.7±1.09	18.8±0.95	23.7±1.09	25.7±0.77
Number of leaves on the shoot, pcs.	14.1±1.27	16.4±0.17	15.7±1.64	18.3±0.64	21.8±0.26	19.2±0.44
Leaf lamina length, cm	14.2±1.43	18.0±0.93	22.4±0.35	19.5±0.16	21.8±0.33	23.4±1.67
Leaf lamina width, cm	6.3±0.24	10.18±0.90	11.78±0.54	14.5±0.72	12.9±0.11	12.5±0.77
Inflorescence length, cm	27.4±1.91	38.9±2.49	45.4±2.46	33.4±1.24	35.6±0.35	36.8±0.97
Inflorescence width, cm	2.3±0.17	3.9±0.27	4.9±0.36	3.2±0.23	3.9±0.26	3.1±0.27
Number of stems	5.3±0.22	2.5±0.18	4.1±0.32	3.4±0.23	3.8±0.21	2.6±0.13

* *Bunias orientalis* L. genotypes.

Table 2

Parameter	PH	SD	NI	NL	LL	LW	IL	IW	NS
SD	-0.275	1							
NI	0.212	0.478	1						
NL	-0.009	0.866	0.791	1					
LL	0.209	0.774	0.514	0.655	1				
LW	-0.050	0.852	0.361	0.732	0.775	1			
IL	0.657	0.115	0.203	0.079	0.686	0.422	1		
IW	0.820	0.130	0.223	0.187	0.633	0.442	0.934	1	
NS	0.101	-0.429	-0.621	-0.465	-0.546	0.590	-0.443	-0.256	1

Note. PH – plant height, SD – stem diameter, NI – number of internodes, NL – number of leaves, LL – leaf length, LW – leaf width, IL – inflorescence length, IW – inflorescence width, NS – number of stems.
Fig. 1. The content of dry matter, lipids, sugars and the level of titratable acidity in the samples of different *Bunias orientalis* L. genotypes at the flowering stage.

Genotype 1 Genotype 2 Genotype 3 Genotype 4 Genotype 5 Genotype 6

Dry matter Sugars Titratable acidity Lipids

Fig. 2. Vitamin content in samples of different *Bunias orientalis* L. genotypes at the flowering stage.

Genotype 1 Genotype 2 Genotype 3 Genotype 4 Genotype 5 Genotype 6

Vitamin C β-carotene

800 700 600 500 400 300 200 100 0

mg/100 g

Fig. 3. Energy value and ash content in samples of different *Bunias orientalis* L. genotypes at the flowering stage.

Genotype 1 Genotype 2 Genotype 3 Genotype 4 Genotype 5 Genotype 6

Ash Ca P Energetic value

3800 3700 3600 3500 3400 3300 3200 3100 3000 2900

Cal/g
ples a very strong positive correlation was found between carotene and calcium levels ($r = 0.834$) (Table 3). A strong correlation was also found between the accumulation of ascorbic acid and tannins ($r = 0.675$), dry matter and lipids ($r = 0.626$), carotenes and phosphorus ($r = 0.619$). A moderate correlation is observed between the level of dry matter and tannins ($r = 0.492$), ascorbic acid and phosphorus ($r = 0.479$), lipids and calories ($r = 0.489$), tannins and carotene ($r = 0.479$), tannins and phosphorus ($r = 0.442$).

Table 3

Pearson’s correlation coefficient between morphometric biochemical parameters of different *Bunias orientalis* L. genotypes at the flowering stage

Parameter	DM	TSC	AA	TC	TA	C	A	Ca	P	LC
TSC	-0.851	1								
AA	0.236	-0.459	1							
TC	0.596	-0.407	0.675	-0.185	1					
TA	0.062	0.179	-0.372	-0.185	1					
C	0.047	0.052	0.268	0.479	0.377	1				
A	-0.627	0.263	-0.215	-0.676	-0.573	-0.247	1			
Ga	0.253	-0.019	-0.182	0.300	0.079	0.834	-0.234	1		
P	-0.250	0.328	0.492	0.442	0.293	0.619	-0.433	0.171	1	
LC	0.626	-0.787	0.018	-0.077	-0.188	-0.601	0.062	-0.335	-0.780	1
EV	-0.136	-0.221	0.239	-0.384	-0.003	-0.749	0.272	-0.911	-0.216	0.489

Note. DM – dry matter, TSC – total sugar content, AA – ascorbic acid, TC – tannin content, TA – titratable acidity, C – carotene, A – ash, Ca – calcium, P – phosphorus, LC – lipid content, EV – energy value.

Taking into account the preliminary results of the correlation analysis of various genotypes, the correlation coefficient depends on the species, form, varietal characteristics and phase of plant development [26, 27]. In addition, the correlation does not show a clear relationship between two parameters, but allows for a level of variability from one to the other.

Conclusions

Analysis of morphometric parameters revealed a strong positive correlation between the length and inflorescence width, stem diameter and the number of leaves, stem diameter and leaf lamina width, the height of plants and inflorescences width. It was determined that various *B. orientalis* genotypes are characterized by high nutrient content, in particular, ascorbic acid and β-carotene. The highest dry matter and lipid content was found in Genotype 2, sugar in Genotype 1, ascorbic acid and phosphorus in Genotype 3, β-carotene in Genotype 6, and ash in Genotype 4 and titratable acidity and calcium in Genotype 5.

Strong positive correlation between β-carotene and calcium, vitamin C and tannins, dry matter and lipids, β-carotene and phosphorus was defined. The obtained data can be used to predict and evaluate the results of introduction and breeding studies with *Bunias orientalis* genotypes as promising crops in Ukraine.

References

1. Rakhmetov, D. B. (2011). *Teoretychni ta praktyni aspekty introdukcii roslyn v Ukrainy* [Theoretical and practical aspects of plant introduction in Ukraine]. Kyiv: Agrar Media Hrup. [in Ukrainian]
2. Rakhmetov, D. B. (2018). *Netraditsionnye vidy rasteniy dlya biowenergetiki* [Non-traditional Plant Species for Bioenergetics]. Nitra: Slovak University of Agriculture in Nitra. doi: 10.15414/2018.fe-9788055218557 [in Russian]
3. Xu, J., Liang, D., Wang, G.-T., Wen, J., & Wang, R.-J. (2020). *Nutritional and functional properties of wild food-medcine plants from the coastal region of South China*. *Journal of Evidence-Based Integrative Medicine*, 25, 1–13. doi: 10.1177/2515690X20913267
4. Avato, P., & Argentieri, M. P. (2015). *Brassicaeae: a rich source of health improving phytochemicals*. *Phytochem. Rev.*, 14(6), 1019–1033. doi: 10.1007/s11101-015-9414-4
5. Dominguez-Perles, R., Mena, P., Garcia-Viguera, C., & Moreno, D. A. (2014). *Brassica foods as a dietary source of vitamin C: a review*. *Critical Reviews in Food Science and Nutrition*, 54(8), 1076–1091. doi: 10.1080/10408398.2011.626873
6. Jankowski, K. J., Budzynski, W. S., & Kijewski, L. (2015). *An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland*. *Energy*, 81, 674–681. doi: 10.1016/j.energy.2015.01.012
7. Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). *Ontogenetic profiling of glucosinolates, flavonoids, and other secondary metabolites in *Eruca sativa* (Salad Rocket), *Diplolaxis erucoides* (Wall Rocket), *Diplolaxis tenuifolia* (Wild Rocket), and *Bunias orientalis* (Turkish Rocket)*. *J. Agric. Food Chem.*, 54(11), 4005–4015. doi: 10.1021/jf052756t
8. Keityk, P. (2014). *Distribution pattern of the invasive alien plant Bunias orientalis in Row Podtatrzanski Trench, North of the Tatra Mts, Poland*. *Biologia*, 69(3), 323–331. doi: 10.2478/s11756-013-0319-7
9. Martinez-Sanchez, A., Gil-Izquierdo, A., Gil, M. I., & Ferreres, F. (2008). *A Comparative Study of Flavonoid Compounds, Vitamin C, and Antioxidant Properties of Baby Leaf Brassicaceae Species*. *J. Agric. Food Chem.*, 56(7), 2330–2340. doi: 10.1021/jf072975+
Фізіологія рослин

16. Гриценко З. М., Гриценко А. О., Карпенко В. П. Методи біологічних і агромічних досліджень рослин і їх ґрунтів. Київ, 2003. 320 с.
17. Почнюк Х. Н. Методи біохімічного аналізу рослин. Київ : Наук. думка, 1976. 334 с.
18. Крищенко В. П. Методи оцінки качества растительной продукции. Москва : Колос, 1983. 192 с.
19. Плечко Б. П. Практикум по біохимії рослин. Москва : Колос, 1985. 255 с.
20. Вергун О. М., Рахметов Д. Б., Шиманська О. В. та ін. Біохімічна характеристика сировини Camelina sativa (L.) Crantz. Інтроdukція рослин. 2017. № 2. С. 80–88. doi: 10.5281/zenodo.2300770
21. Prochnow A., Hiermann M., Plochl M. et al. Bioenergy from permanent grassland – a review: 2. Combustion. Bioresour. Technol., 2009, Vol. 100, Iss. 21. P. 4945–4954. doi: 10.1016/j.biotech.2009.05069
22. Vergun O. M., Rakhmetov D. B., Rakhmetova S. O., Fishchenko V. V. Distribution of nutrients in different organs of plants of Miscanthus Anderss. genotypes. Інтроdukція рослин. 2019. № 1. С. 75–81. doi: 10.5281/zenodo.2650469

UDK 582.683.2: 581.4+581.192

Вергун О. М., Рахметов Д. Б., Шиманська О. В., Рахметова С. О., Бондарчук О. П., Фіщенко В. В. Морфометричні та біохімічні особливості різних генотипів рослин Bunias orientalis L. у Національному ботанічному саду імені М. М. Гришка НАН України. Plant Varieties Studying and Protection. 2021. T. 17, № 1. С. 66–72. https://doi.org/10.21498/2518-1017.17.1.2021.228213

Напружений ботанічний сад імені М. М. Гришка НАН України, вул. Тимірязєвська, 1, м. Київ, 01014, Україна, e-mail: jamal_r@bigmir.net

Мета. Визначити декілька морфометричних та біохімічних параметри генотипів Bunias orientalis L. у Національному ботанічному саду імені М. М. Гришка НАН України (НБС).

Методи. Рослинну сировину B. orientalis досліджували в період квітіння (6 генотипів власної селекції НБС). Визначення сухої речовини, золи, кальцію проводили згідно з Гриценко та ін. (2003), фосфор — згідно з Починком (1976), цукерів, аскорбінову кислоту та ліпіді — згідно з Крищенком (1983), β-каротин — згідно з Плещковим (1985). Енергетична цінність визначалась на калориметрі ИКА C-200. Дані проаналізовано статистично.

Результати. Висота рослин становила від 140,9 (генотип 1) до 157,5 см, діаметр стебла — від 11,67 (генотип 1) до 16,1 см, кількість міжузлів — від 18,7 (генотип 1) до 25,7 (генотип 6) шт., кількість листків на стеблі — від 14,11 (генотип 1) до 21,8 (генотип 5) шт., довжина листкової пластинки — від 14,2 (генотип 1) до 23,45 (генотип 6) см, ширина листкової пластинки — від 6,34 (генотип 1) до 14,5 (генотип 4) см, довжина суцвіття — від 27,4 (генотип 1) до 45,4 (генотип 3) см, ширина суцвіття — від 2,32 (генотип 1) до 4,92 (генотип 3) см та кількість стебел — від 2,55 (генотип 2) до 5,33 (генотип 1) шт. Дослідження поживних речовин у період квітіння показало, що вміст сухої речовини становив 13,58–16,00%, цукерів — 5,07–8,86%, питома кислотність — 3,28–4,25%, йодність — 3,33–6,61%, аскорбінової кислоти — 382,83–663,82 мг%, β-каротину — 9,4–34,48 мг%, золи — 6,79–9,2%, кальцію — 1,00–2,44%, фосфору — 1,61–2,67%, енергетична цінність — 3337,0–3498,0 кал/г. Висновки. Рослинна сировина генотипів B. orientalis є цінною джерелом поживних речовин у період квітіння. Біохімічний склад рослин залежить від генотипу та фази розвитку. У результаті морфометричних вимірювань показано варіабельність досліджуваних параметрів. Отримані дані можуть бути використані для прогнозування та оцінювання результатів інтроductory і селекційної роботи з генотипами B. orientalis як перспективних культур в Україні.

Ключові слова: Bunias orientalis; генотипи; морфометричні параметри; поживні речовини.

Надійшла / Received 04.03.2021
Погоджено до друку / Accepted 18.03.2021