کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله
p63 is more sensitive and specific than 34βE12 to differentiate adenocarcinoma of prostate from cancer mimickers

Mahmoud Reza Kalantari 1, Kazem Anvari 2, Hasan Jabbari 3, Fatemeh Varshoee Tabrizi 2

1 Kidney Transplantation Complications Research Center, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 2 Solid Tumor Treatment Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 3 Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Introduction

Prostate cancer is the world's leading cause of cancer and the second cause of cancer-related death in men after lung cancer. Differentiation of prostate adenocarcinoma from benign prostate lesions and hyperplasia sometimes cannot be done on the basis of morphologic findings. Considering the fact that in the prostate adenocarcinoma, there is no basal cell layer, basal cell markers can help to differentiate prostate adenocarcinoma from cancer mimickers.

Materials and Methods

In this cross sectional study we had 98 prostate specimens in the Pathology Department, Ghaem Hospital, Mashhad, Iran that were referred for pathologic assessment. These specimens were collected between April 2009 and March 2010. Out of 98 cases; 40 cases were prostate adenocarcinomas and 58 were benign diseases (cancer mimickers) (Table 1).

Sampling procedures were different, including transurethral resection (TUR), needle biopsy and prostate adenectomy. Biopsy specimens were fixed in 10% formalin. We reviewed the microscopic slides; confirmed Gleason score and grade in prostatic adenocarcinoma cases; and provided 4 µm slices from paraffin blocks. Immunohistochemical staining was performed.
A benign prostate biopsy stained with 34BE12. The basal cells show moderate to severe nuclear staining. Nuclei of epithelial cells are negative for p63.

The remaining 38 cases had shown no p63 reactivity for adenocarcinoma were excluded because of small limited foci.

We divided basal cell staining into three categories; <5%, 5–75%, and >75% (2).

Statistical analysis
Chi-square and Fisher's exact tests were used to compare the p63 and 34BE12 percentage and staining intensity data.

Results
All BPH cases were immunoreactive for p63 in more than 75% of the basal cells (sensitivity 100%) (Figure 1). Two out of 40 cases of prostate adenocarcinoma were excluded because of small limited foci. The remaining 38 cases had shown no p63 immunoreactivity (Figure 2).

All cases with high grade prostate intraepithelial neoplasia (HGPIN) were immunoreactive for p63 in more than 75% of the cases. 8 out of 12 cases of adenosis had 5–75% p63 immunoreactivity. It was less than 5% in the remaining 4 cases.

In 16 cases with partial atrophy, 6 cases showed p63 reactivity in 5–75% of the cells and 10 cases were reactive in less than 5% (Table 2).

In all BPH cases, basal cells showed immunoreactivity for 34BE12 in >75% (Figure 3).

Two out of 40 cases of adenocarcinoma were excluded because of small limited foci; the remaining 38 cases were 34BE12 negative.

All 10 cases of HGPIN were immunoreactive for 34BE12 in >75%. 6 out of 12 cases of adenosis showed reactivity in 5–75% of their cells, 2 cases showed reactivity in <5%, and 2 cases did not show 34BE12 reactivity.

Diagnosis	Number	p63 reactivity percentage	p63 reactivity intensity	
Adenocarcinoma	40	38	20	+++
BPH	20			
HGPIN	10			
Adenosis	12	4	8	++
Partial atrophy	16	10	6	++/+++

BPH: Benign prostatic hyperplasia; HGPIN: High grade prostatic intraepithelial neoplasia

Table 1. Frequency of pathologic lesions in prostate specimens

Table 2. p63 immunoreactivity in adenocarcinoma of prostate and cancer mimickers

Figure 1. A benign prostate biopsy (BPH) stained with p63. The basal cells show moderate to severe nuclear staining. Nuclei of epithelial cells are negative for p63

Figure 2. Prostate adenocarcinoma is negative for p63 immunostaining. There is no non-specific staining in cancer cells.

Figure 3. A benign prostate biopsy stained with 34BE12. The basal cells reveal cytoplasmic staining with moderate intensity. The epithelial cells show non-specific cytoplasmic staining with mild intensity.

www.SID.ir
Four out of 16 partial atrophy cases had 5–75% reactive cells, while 6 cases were reactive in <5% (partially staining) and 6 cases were negative for 34βE12 immunoreactivity (Table 3).

In 8 cases of BPH, 8 cases of adenocarcinoma, two cases of HGPIN, 4 cases of adenosis, and 8 cases of partial atrophy, the epithelial cell cytoplasm showed non-specific staining for 34βE12 with weak to moderate intensity (Figures 3–5).

Discussion

In 1984, Gown and Vogel reported for the first time that high molecular weight (HMW) anti keratin Ab stained prostatic basal cells specifically (3). Results of later studies showed that basal cells exist only in normal prostatic gland but not in prostate adenocarcinoma (4–6). Wojno and Epstein showed that in highly suspicious for prostate cancer cases, the proof of basal cell absence by 34βE12 marker is very helpful to confirm prostate adenocarcinoma diagnosis (7).

Signoretti et al reported that all basal cells express p63, therefore this marker can be useful in distinguishing benign lesions from prostate malignancy (8). Person et al showed that p63 is expressed in normal basal cells and benign prostate hyperplasia (BPH). It is focally expressed in prostate atrophy and HGPIN, but there is no p63 expression in the majority of prostate adenocarcinomas (9). However, some studies showed p63 and 34βE12 negativity in some benign lesions such as adenosis, prostate atrophy, and HGPIN (2, 5, 10–15).

In this study, IHC staining for 34βE12 was negative in 4 cases with adenosis and 6 cases with partial atrophy, but they showed patchy positivity for p63. There are different reasons for unexpressed 34βE12, such as unexpressed 34βE12 gene, formalin fixation interval, and long term fixation which may result in 34βE12 Ag deficiency (16).

IHC techniques, especially Ag retrieval method has a role in 34βE12 expression detection (16, 17), but staining differences were more specific in transurethral prostate biopsy (TURP) (18).

Multhaupt et al reported that 88% of benign glands in the transitional zone lost 34βE12 antigenicity without Ag retrieval, in TURP samples (19).

In this study like others, adenocarcinoma were p63 and 34βE12 (basal cell markers) negative, while benign lesions expressed them in more than 75%. In some studies basal cell markers were focally positive in morphologically benign lesions such as BPH (13, 18).

In this study, specificity and sensitivity of p63 and 34βE12 were 100% in pure benign lesions and adenocarcinoma.

Our results showed p63 expression in 36 cancer mimicker cases; however, in some, p63 expressed patchy positivity. In some studies cancer mimickers, such as partial atrophy and adenosis, expressed p63 focally, which supports our findings (2).

Table 3.34βE12 Immunoreactivity in adenocarcinoma of prostate and cancer mimickers

Diagnosis	Number	0%	<5%	5-75%	>75%	34βE12 Reactivity intensity
Adenocarcinoma	40				20	+++
BPH	20				10	+++
HGPIN	10					-/+
Adenosis	12	4	2	6		-/+
Partial atrophy	16	6	6	4		-/+

BPH: Benign prostatic hyperplasia; HGPIN: High grade prostatic intraepithelial neoplasia
In the Wang et al study, 30% of partial atrophy cases were p63 and 34βE12 negative (cancer pattern) (2).

On the other hand, there are studies showing that p63 expression in some adenocarcinoma cases may be due to trapped benign glands between malignant cells (13, 20–24).

In the Shah et al study, 2 out of 27 partial atrophy cases were 34βE12 negative, but p63 was positive (18). In our study 10 out of 28 cases of cancer mimickers (25%) were 34βE12 negative but all (100%) were p63 positive. It seems that p63 is more specific than 34βE12 to distinguish prostate cancer mimickers from adenocarcinoma, which is clinically important.

There was a problem in 34βE12 staining, like in the Shah study (18). This problem was nonspecific epithelial cell staining in 8 (25%) BPH (Figure 3), 8 (21%) adenocarcinoma (Figure 4), and 14 (35%) cancer mimicker cases, which complicates diagnosis.

Other IHC markers, which preferentially are overexpressed in prostate cancer cells but not in basal cells, are α-methyl-acetyl-co A (AMACR) (25–28) and recently introduced marker erythroblastosis virus E26 oncogene (ERG), which can improve distinguishing benign epithelial lesions from prostate adenocarcinoma (18, 29–31).

Conclusion

Other than selection bias in sampling, the specificity and sensitivity of p63 and 34βE12 in true adenocarcinoma and benign lesions (BPH) are high, but in cancer mimickers, especially, when morphologic differentiation is impossible between benign and malignant lesions, p63 sensitivity is significantly higher than 34βE12.

Moreover, 34βE12 nonspecific staining in benign lesions is a problem in interpretation of the results; therefore, in our opinion, p63 is a better marker than 34βE12 for differentiation of benign lesions from prostate adenocarcinoma.

In clinical practice, combination of prostate cancer and basal cell markers is helpful for improved differentiation of prostate cancers from mimickers.

Acknowledgment

The authors would like to thank the Deputy of Research, Mashhad University of Medical Sciences, Mashhad, Iran for supporting this study.

References

1. Rosai J. Rosai and Ackermans surgical pathology, 11th ed. Edinburg: Mosby; 2012. P. 1295.
2. Wang W, Sun X, Epstein JI. Partial atrophy on prostate needle biopsy cores: a morphologic and immune histochemical study. AM J Surg Pathol 2008; 32:851-857.
3. Gown AM, Vogel AM. Monoclonal antibodies to human intermediate filament proteins: II. Distribution of filament proteins in normal human tissues. Am J Pathol 1984; 114:309-321.
4. Brawer MK, Peelh DM, Stamy TA, Bostwick DG. Keratin immunoreactivity in the being and neoplastic human prostate. Cancer Res 1985; 45: 3663-3667.
5. Hedrick L, Epstein JL. Use of keratin 903 as an adjunct in the diagnosis of prostate carcinoma. Am J Surg Pathol 1983; 13:350-353.
6. O’Malley FP, Grignon DJ, shum DT. Use fullness of immune peroxides staining with high – molecular – weight cytokeratin in the differential diagnosis of small-acinar lesions of the prostate gland. Virchows Arch A Pathol Anat Histopathol 1995; 417:191-196.
7. Wogno KI, Epstein JI. The utility of basal cell-specific anti cyto keratin antibody (34 beta E 12) in the diagnosis of prostate cancer: a review of 228 cases. Am J Surg Pathol 1995; 19:251-260.
8. Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, et al. P63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 2000; 157:1769-1775.
9. Parsons GK, Gage W, Nelsen WG, De Marzo AM. P63 protein expression is rare in prostate adenocarcinoma: implications for cancer diagnosis and carcinogenesis. Urology 2001; 58:619-624.
10. Amin MB, Tamboli P,Varma M, Siglely JI. Postatrophic hyper plasia of the prostate gland: e detailed analysis of its morphology in needle biopsy specimens. Am J Pathol 1999; 12:925-931.
11. Humphrey PA. Prostate pathology. Chicago: ASCP press; 2003.
12. Jppenheimer JR, Wills ML, Epstein JI. Partial atrophy in prostate needle cores: Another diagnostic pitfall for the surgical pathologist. Am J Surg Pathol 1998; 22:440-445.
13. Zhou M, Shah R, Shen R, Rubin MA. Basal cell cocktail (34 βE12+p63) improve the detection of prostate basal cells. Am J Surg Pathol 2003; 27:365-371.
14. Gaudin PB, Epstein JI. Adenosis of the prostate. Histologic features in needle biopsy specimens. Am J Surg Pathol 1995; 19:737-747.
15. Bostwick DG, Siglely J, Grignon D, Maksem J, Humphrey F, van der Kwast TH, et al. Atypical adenomatous hyper plasia of the prostate: morphologic criteria for its distinction from well-differentiated carcinoma. Hum Pathol 1993; 24:819-832.
16. Varma M, Linden MD, Amin MB. Effect of formalin fixation and epitone retrieval techiques on antibody 34betaE12 immunostaining of prostate tissues. Mod Pathol 1999; 12:472-478.
17. Jczkowski KA, Cheng L, Craeford BG, Bostwick DG. Steam heat with on EDTA buffer and protease digestion optimizes immune histochemical expression of basal cell-specific antikertin 34 beta E12 to discriminate cancer in prostate epithelium. Mod Pathol 1999; 12:1-4.
18. Shah RB, Ming Z, Le Blanc M, Snyder M, Rubin MA. Comparison of the basal cell-specific, markers, 34BE12 and P63, in the diagnosis of prostate cancer. Am J Surg Pathol 2002; 26:1161-1168.
19. Multaupt HA, Fessler JN, Warol MJ. Loss of high-molecular weight antigenicity in prostate tissue obtained by trans urethral resection. Arch Pathol Lab Med 2000; 124:1764-1770.
20. Yang XJ, Leckell K, Gaudin P, Epstein JI. Rare expression of high molecular-weight cytokeratin in adenocarcinoma of the prostate gland: a study of 100 cases of metastatic and locally advanced prostate cancer. Am J Surg Pathol 1999; 23:147-152.
21. Shah IA, Schlageter MO, Stinett P, Lechago J. Cytokeratin immunohistochemistry as a diagnostic tool for distinguishing malignant from benign epithelial lesions of the prostate. Mod Pathol 1991; 4:220-224.
22. Lindeman N, Weinder N. Immunohistochemical profile of prostatic and urothelial carcinoma impact of heat-induced epitope retrieval and presentation of tumors with intermediate features. Appl Immunohistochem 1996; 4:264-275.
23. Oliai BR, Kahane H, Epstein JJ. Can basal cells be seen in adenocarcinoma of the prostate? an immunohistochemical study using high molecular weight cytokeratin (clone 34BE12) antibody. Am J Surg Pathol 2002; 26:1151-1160.
24. Herawi M, Epstein JJ. Immunohistochemical antibody cocktail staining (P63/HMWCK/AMACR) of ductal carcinoma and Gleason pattern 4 cribriform and non cribriform acinar adenocarcinomas of the prostate. Am J Surg Pathol 2007; 31:889-894.
25. Beach R, Gown AM, De Peralta-Venturina MN. P504S immunohistochemical detection in 405 prostatic specimens including 376 18-gauge needle biopsies. Am J Surg Pathol 2002; 26:1588-1596.
26. Browne TJ, Hirsch MS, Brodsky G, Welch WR, Loda MF, Rubin MA. Prospective evaluation of AMACR (P504S) and basal cell markers in the assessment of routine prostate needle biopsy specimens. Hum Pathol 2004; 35:1462-1468.
27. Jiang Z, Woda BA, Rock KL, Xu Y, Savas L, Khan A, et al. P504S; a new molecular marker for detection of prostate carcinoma. Am J Surg Pathol 2001; 25:1397-1404.
28. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, et al. alpha-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 2002; 287:1662-1670.
29. Furusato B, Tan SH, Young D, Dobi A, Sun C, Mohamed AA, et al. ERG oncprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis 2010; 13:228-237.
30. Yaskiv O, Zhang X, Simmerman K, Daly T, He H, Falzarano S, et al. The utility of ERG/P63 double immunohistochemical staining in the diagnosis of limited cancer in prostate needle biopsies. Am J Surg Pathol 2010; 35:1062-1068.
31. Park K, Tomlin SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra K, et al. Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 2010; 12:590-598.
کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله