Physicochemical Properties of Acylglutamic Acid-Alkylamine Complexes in Aqueous Media

Ryo Yoshikawa¹, Masaaki Akamatsu¹, Kenichi Sakai¹,²*, and Hideki Sakai¹,²

¹ Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, JAPAN
² Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, JAPAN

Abstract: We studied the physicochemical properties of 1:1 stoichiometric complexes of acylglutamic acids (CnGlu) in water at their low and high concentrations. Static surface tensiometry suggested that the critical micelle concentration (cmc) decreased with increasing hydrophobic chain length of the complexes. In addition, CnGlu-CnDMA yielded lower cmc than the C12Glu single system. In the region of high concentrations, several phase states including isotropic liquid (L₁) phase, hexagonal liquid crystal (H₁) phase, bicontinuous cubic liquid crystal (V₁) phase, and lamellar liquid crystal (Lₐ) phase were observed. Assemblies with lesser positive curvature tend to be formed with increasing complex concentration, increasing temperature, and increasing hydrophobic chain length. Additionally, the complex formation resulted in the molecular assemblies with lesser positive curvature.

Key words: acylglutamic acid, alkylamine, gemini surfactant, surface tension, liquid crystal

1 Introduction

Gemini surfactant is a dimer of monomeric surfactants linked by a space unit, being composed of two hydrophilic headgroups and two hydrophobic chains in a molecule¹,². Gemini surfactants have been attracted as a new type of surfactants because of their excellent micellization efficiency at low concentrations and good solubility in water¹,². Thus, gemini surfactants are generally categorized into an eco-friendly surfactant. However, their synthesis and purification processes are usually complicated, and this leads to their high selling price in the market.

Based on these backgrounds, functionally-equivalent materials with gemini surfactants have been investigated, including dicarboxylic acid-alkylamine (or diamine-alkyl carboxylic acid) complexes, as shown in the following references. The stoichiometric complex formation is simply based on the proton transfer from the acid to the amine. This does not lead to an increase in the ionic strength in solution, which is significantly different from systems of catanionic (cationic and anionic) surfactant mixtures. They are sometimes called "gemini-like amphiphile"⁷, "pseudo-gemini surfactant"⁷,⁸, or "counterion-coupled gemini surfactant"⁷,⁸. Such noncovalent-type amphiphiles have been investigated in the aspect of surface tension in water⁹ and rheology based on the formation of wormlike micelles⁹ or hydrogels¹⁰. Recently, reversible control of stability of emulsion¹¹ was also achieved in the system of citric acid-alkylamidodimethyl amine complex. However, we find a lack of knowledge about their phase behaviors at low and high concentrations in water, which is an important and novel subject for reporting.

In our previous work, we reported that acylglutamic acid-alkylamine complexes (CnGlu-CnDMA, where n is the number of carbon atoms in the hydrophobic chains) form pH-sensitive wormlike micelles and hydrogels¹². In addition, these complexes can stabilize oil droplets dispersed in water against their coalescence¹³. In this paper, we report the physicochemical property of CnGlu-CnDMA in their dilute aqueous solutions by static surface tensiometry. We also demonstrate the phase behavior of CnGlu-CnDMA in water on the basis of polarized optical microscopy (POM) and small angle X-ray scattering (SAXS) results.

2 Experimental Section

2.1 Materials.

Dodecanoylglutamic acid (C12Glu) and CnGlu-CnDMA, (n = 10, 12, and 14) were synthesized according to the same procedure mentioned in our previous paper¹⁴. Figure
shows chemical structures of \(C_n \text{Glu-C}_n \text{DMA} \) neutralized by NaOH. \(1 \text{ mol/L NaOH aqueous solution was purchased from Fujifilm Wako Pure Chemical Co. The water used in this study was deionized with a Barnstead NANO Pure DIamond UV system and filtered with a Millipore membrane filter (0.22 \mu m \text{ pore size}). \)

2.2 Preparations and Instrumentations

In our previous papers\(^ {12, 14} \), we reported the solubility of \(C_n \text{Glu-C}_n \text{DMA} \) in their aqueous solutions as a function of pH. In our present study, \(C_n \text{Glu-C}_n \text{DMA} \) was always neutralized by NaOH at a fixed mole ratio, \(C_n \text{Glu-C}_n \text{DMA}: \text{NaOH} = 1:1. \)

The Krafft point of \(C_{12} \text{Glu monosodium salt is reported as } 38.1 \degree C \), being higher than room temperature \(25 \degree C \). This means that the surfactant precipitates in water at \(25 \degree C \). Therefore, \(C_{12} \text{Glu} \) was neutralized by NaOH at a mole ratio, \(C_{12} \text{Glu}: \text{NaOH} = 1:2. \)

Static surface tension measurements were performed using a Kruss K100C Wilhelmy auto surface tensiometer with a platinum plate. The surface tension was assumed to be equilibrated when the change in the surface tension became less than 0.01 mN m\(^{-1}\) per 90 s. The measurement temperature was set at 25°C.

Mixtures composed of \(C_n \text{Glu-C}_n \text{DMA} \) and water were prepared as follows. The mixtures were sealed in a glass test tube. The system was heated up to 80°C using a temperature-controlled water bath for 30 min, mixed at a constant rotation speed of 3,000 rpm for 3 min using a vortex mixer, centrifuged for 30 min at a constant rotation speed of 3,500 rpm using a Kokusan H11-NB centrifuge, and finally the equilibration cycle was repeated 3 times. Then, the system was left for 2 weeks in an incubator set at a constant temperature of 25°C. The phase state was examined after this equilibration period.

3 Results and Discussion

3.1 Aqueous solution properties at low concentrations

The \(C_n \text{Glu-C}_n \text{DMA} \) complex is a mixture of the two possible isomers shown in Fig. 1. Furthermore, the complex is a dynamic amphiphile. This means that the complex formation/deformation (in other words, the complex-monomer transition) would continually occur not only in the solution phase but also at the air/solution interface. Figure 2 shows the surface tension results for the aqueous \(C_n \text{Glu-C}_n \text{DMA} \) and \(C_{12} \text{Glu} \) systems as a function of their concentrations.

POM observations were performed at 25°C using an Olympus IX73 microscope.

SAXS measurements were carried out using an Anton Paar SANSess camera equipped with a PANalytical PW3830 laboratory X-ray generator, a multilayer film Goebel mirror, a block collimator, a semi-transmissible beam stop, a TCS120 temperature controller, and an imaging plate detector. The apparatus was operated at 40 kV and 50 mA using Cu-K\(\alpha \) X-rays (wavelength of 0.154 nm). The measurement time was fixed at 10 min. The measurement temperatures were in the range 25 – 65°C.
Acylglutamic Acid-Alkylamine Complexes

J. Oleo Sci.

Table 1: Interfacial parameters calculated from the surface tension data.

System	cmc (mmol dm\(^{-3}\))	\(\gamma_{\text{cmc}}\) (mN m\(^{-1}\))	\(I_{\text{cmc}}\) (µmol m\(^{-2}\))	\(A_{\text{cmc}}\) (nm\(^2\))
C10Glu-C10DMA	2.7	25	1.3	1.3
C12Glu-C12DMA	0.15	26	1.5	1.1
C14Glu-C14DMA	0.014	25	1.6	1.1
C12Glu	9.7	24	0.75	2.2

\[A_{\text{cmc}} = \frac{1}{N_i \Gamma_{\text{cmc}}} \]

(2)

where, \(R\) is the gas constant, \(T\) is the absolute temperature, and \(N_i\) is the Avogadro number. Additionally, \(i\) is the number of adsorption species. In this study, \(\Gamma_{\text{cmc}}\) and \(A_{\text{cmc}}\) values were calculated under the assumption \(i = 3\), although the dissociation constant of \(C_{n}\text{Glu-C}n\text{DMA}\) in the solution phase has not been known, yet.

The cmc of \(C_{n}\text{Glu-C}n\text{DMA}\) decreased with increasing chain length, as expected. The increased chain length resulted in the increased hydrophobicity of \(C_{n}\text{Glu-C}n\text{DMA}\), leading to the decrease in cmc. This behavior is generally observed in many surfactant systems \(^{16}\), including the \(C_{n}\text{Glu}\) analogs \(^{15}\) and the carboxylic acid-alkylamine complex systems \(^{6,7}\). In general, the linear relationship between \(n\) and cmc is present for surfactant systems \(^{17}\).

\[
\log \text{cmc} = A - Bn
\]

(3)

where \(A\) and \(B\) are constant. Figure 3 shows the log cmc \(-n\) plot for the \(C_{n}\text{Glu-C}n\text{DMA}\) and \(C_{n}\text{Glu}\) disodium salts \(^{15}\) systems. Here, we plotted the log cmc as a function of \(n\) \((C_{n}\text{Glu}) or 2n \((C_{n}\text{Glu-C}n\text{DMA})\), based on the expectation that the chain length of \(C_{n}\text{DMA}\) also affects the cmc, even if \(C_{n}\text{DMA}\) merely acts as a counterion and dissociates from \(C_{n}\text{Glu}\). The cmc decreased linearly with increasing \(n\) or \(2n\), as expected. The slope was greater for \(C_{n}\text{Glu-C}n\text{DMA}\) than for \(C_{n}\text{Glu}\), suggesting the larger impact of hydrophobic chain length on the cmc for the \(C_{n}\text{Glu-C}n\text{DMA}\) analogs.

As shown in Table 1, the \(A_{\text{cmc}}\) values estimated for \(C_{n}\text{Glu-C}n\text{DMA}\) were much smaller than that for \(C12\text{Glu}\). \(C_{n}\text{DMA}\) acts as not only a counterion of \(C_{n}\text{Glu}\) but also a hydrophobic enhancer of the complex. As a result of these effects, the packing density of the complexes became larger at the air/solution interface than that of \(C12\text{Glu}\).

3.2 Phase behavior at high concentrations

As stated in the Experimental section, the aqueous phase behavior was studied through POM and SAXS measurements. The temperature-concentration phase diagrams of \(C_{n}\text{Glu-C}n\text{DMA}\) are summarized in Fig. 4. We discussed their phase behaviors as a function of (i) concentration, (ii) temperature, (iii) hydrophobic chain length, and (iv) complex formation with comparison for the reported \(C12\text{Glu}\) system \(^{18}\).

(i) Figure 5 shows typical SAXS and POM results obtained for the (a)\(C10\text{Glu-C}10\text{DMA}\), (b)\(C12\text{Glu-C}12\text{DMA}\), and (c)\(C14\text{Glu-C}14\text{DMA}\) systems at various concentrations at a constant temperature of 25°C. In the case of \(C10\text{Glu-C}10\text{DMA}\) (Fig. 5a), the phase states were determined as follows: hexagonal liquid crystal (H\(_1\)) phase at 36 wt% (indicated by the ratio of \(q\) values = 1 : \(\sqrt{3}\) : 2, the fan-like texture observed in the POM image, and its optically anisotropic nature), \(V_1\) and bicontinuous cubic liquid crystal (\(V_1\)) phases at 55 wt% (indicated by the ratio of \(q\) values = \(\sqrt{6}\) : \(\sqrt{8}\), the fan-like texture observed in the POM image, and its optically anisotropic nature), \(V_1\) phase at 70 wt% (indicated by the ratio of \(q\) values = \(\sqrt{6}\) : \(\sqrt{8}\), and its optically isotropic nature), and lamellar liquid crystal (L\(_a\)) phase at 73 wt% (indicated by the ratio of \(q\) values = 1 : 2, the Maltese-cross texture observed in the POM image, and its optically anisotropic nature).

Similarly, the \(H_1\) phase was identified in the cases of \(C12\text{Glu-C}12\text{DMA}\) (Fig. 5b) and \(C14\text{Glu-C}14\text{DMA}\) (Fig. 5c). However, the SAXS pattern yielded splitting of the peaks above the concentration of 54 wt% (\(C12\text{Glu-C}12\text{DMA}\)) and 48 wt% (\(C14\text{Glu-C}14\text{DMA}\)). This means the coexistence of two lyotropic liquid crystals. These complexes have a gel-liquid crystal phase transition temperature, and the temperature increases with hydrophobic chain length \(^{19}\). This causes a difficulty in preparing a homogenous sample at high concentrations and at low temperatures, under a given homogenization process.

In summary, the increased concentration resulted in the
Fig. 4 Temperature-concentration phase diagrams of (a) C10Glu-C10DMA, (b) C12Glu-C12DMA, and (c) C14Glu-C14DMA. The complex samples were neutralized by 1 eq. NaOH.

Fig. 5 POM images and SAXS patterns obtained for the (a) C10Glu-C10DMA, (b) C12Glu-C12DMA, and (c) C14Glu-C14DMA systems at various concentrations at a constant temperature of 25°C. The characteristic ratios of q values and POM images are as follows: (b) H1 phase at 30 wt% (1 : \(\sqrt{3} : 2\), the fan-like texture), H1 + V1 phases at 55 wt% (1 : \(\sqrt{3} : 2\) and \(\sqrt{2} : \sqrt{3}\), the fan-like texture), and V1 + L\(\alpha\) phases at 60 wt% (\(\sqrt{2} : \sqrt{3} : 4\) and 1 : 2, the Maltese-cross texture); and (c) H1 phase at 20 wt% (1 : \(\sqrt{3} : 2\), the fan-like texture), and V1 + L\(\alpha\) phases at 54 wt% (\(\sqrt{6} : \sqrt{20} : \sqrt{26}\) and 1 : 2). The characterization information of (a) is shown in the text.
phase transitions as L₁-H₁-V₁-L for all of the complexes. This means that the increased complex concentration yields molecular assemblies with lesser positive curvature, resulting from a decreased cross-sectional area of the headgroups and hence an increased critical packing parameter (CPP) of the complexes.

(ii) Figure 6 shows typical SAXS patterns obtained for the (a) C₁₀Glu-C₁₀DMA, (b) C₁₂Glu-C₁₂DMA, and (c) C₁₄Glu-C₁₄DMA systems at various temperatures at a given concentration. For example, we observed the (H₁ + V₁)-V₁-L₀ phase transition with increasing temperature in the C₁₀Glu-C₁₀DMA system at a fixed concentration of 55 wt\%. These phase transitions reflect the decreased hydration around the headgroups and the amide bond, leading to the decreased cross-sectional area of the headgroups. Hence, the positive curvature becomes lower at high temperatures. We confirmed the similar behavior in the CnGlu single system\(^{18}\), the amino acid-based gemini surfactant system\(^{18}\), and the oleic acid-based gemini surfactant system\(^{19}\).

(iii) For understanding the effects of hydrophobic chain length, the phase diagrams in Fig. 4 were compared. First, the single V₁ phase is present in the C₁₀Glu-C₁₀DMA system, whereas this phase appears as mixture with other phases in the C₁₂Glu-C₁₂DMA and C₁₄Glu-C₁₄DMA systems. Second, the phase transitions occur at lower concentrations for longer hydrophobic chain analogs. This behavior is predicted by the CPP; the shorter hydrophobic chain analog tends to form assemblies with greater positive curvature, whereas the longer hydrophobic chain analog tends to form assemblies with lesser positive curvature. Third, the d-spacing values of the H₁ phase are shown in Table 2. The values become larger with increasing chain length. Fourth, the increased chain length also resulted in the narrower L₁ region and the wider solid-present region. This results from the increased hydrophobicity and hence the decreased solubility in water for the longer chain analogs.

(iv) Finally, the phase diagrams of the C₁₂Glu-C₁₂DMA and C₁₂Glu systems\(^{18}\) were compared. In the case of the C₁₂Glu-C₁₂DMA system, the L₁-H₁ phase transition occurs and the H₁ region appears in a wide range, whereas in the case of the C₁₂Glu system, the discontinuous cubic liquid crystal (L₁) phase appeared and L₁-I₁ phase transition occurred. Here, C₁₂Glu-C₁₂DMA consists of double-chains and a single-head, whereas C₁₂Glu consists of a single-chain and double-heads. Clearly, the CPP of C₁₂Glu-C₁₂DMA is expected to be larger than that of C₁₂Glu, and hence the assemblies having lesser positive curvature (such as H₁ phase) are preferentially formed for C₁₂Glu-C₁₂DMA.
DMA induced the formation of assemblies with lesser positive curvature. The complex formation of C\(_n\)Glu as well as a hydrophobicity enhancer. This leads to the excellent surface activity, being comparable to C\(_n\)DMA in water at low and high concentrations. The static surface tensiometry revealed that the increased chain length of C\(_n\)Glu-C\(_n\)DMA resulted in a phase transition with increasing concentration. The increased temperature also yielded the assemblies with lesser positive curvature. The complex formation of C\(_n\)Glu with C\(_n\)DMA induced the formation of assemblies with lesser positive curvature, and hence C\(_n\)DMA also acts as a curvature modifier of C\(_n\)Glu.

Complex	d (nm)
C10Glu-C10DMA	4.08
C12Glu-C12DMA	4.80
C14Glu-C14DMA	5.57

4 Conclusions
In this study, we characterized the physicochemical properties of CnGlu-CnDMA in water at low and high concentrations. The static surface tensiometry revealed that the increased chain length of CnGlu-CnDMA resulted in a phase transition with increasing concentration. The increased temperature also yielded the assemblies with lesser positive curvature. The complex formation of CnGlu with CnDMA induced the formation of assemblies with lesser positive curvature, and hence CnDMA also acts as a curvature modifier of CnGlu.

References
1) Zana, R.; Xia, J. Gemini Surfactants, Synthesis, Interfacial and Solution-Phase Behavior, and Applications (Zana, R.; Xia, J. ed.). Marcel Dekker, New York. Chapter 1 (2003).
2) Zana, R.; Alam, E. Novel Surfactants: Preparation, Applications, and Biodegradability (Holmberg, K. ed.). Marcel Dekker, New York. Chapter 12 (2003).
3) Sakai, H.; Okabe, Y.; Tsuchiya, K.; Sakai, K.; Abe, M. Catanionic mixtures forming gemini-like amphiphiles. J. Oleo Sci. 60, 549-555 (2011).
4) Liu, D.; Suo, Y.; Tan, J.; Lu, H. CO\(_2\)-Switchable micro-emulsion based on a pseudogemini surfactant. Soft Matter 13, 3783-3788 (2017).
5) Wang, Z.; Ren, G.; Yang, J.; Xu, Z.; Sun, D. CO\(_2\)-Responsive aqueous forms stabilized by pseudogemini surfactants. J. Colloid Interface Sci. 536, 381-388 (2019).
6) Zhang, Y.; Feng, Y.; Wang, Y.; Li, X. CO\(_2\)-Switchable viscoelastic fluids based on a pseudogemini surfactant. Langmuir 29, 4187-4192 (2013).
7) Noori, S.; Naqvi, A.Z.; Ansari, W.H.; Akram, M.; Kabir-Ud-Din, K. Synthesis and investigation of surface active properties of counterion coupled gemini surfactants. J. Surfactants Deterg. 17, 409-417 (2014).
8) Asadov, Z.H.; Huseynova, S.M.; Almadova, G.A.; Rahimov, R.A.; Sharbatov, S.U.; Zubkov, F.I.; Jafarova, R.A. Synthesis, colloidal-chemical and petroleum collecting properties of new counterion coupled gemini surfactants based on hexadecylbis(2-hydroxypropyl)amine and dicarboxylic acids. J. Dispers. Sci. Technol. 34, 17617-17622 (2013).
9) Chu, Z.; Feng, Y. pH-Switchable wormlike micelles. Chem. Commun. 46, 9028-9030 (2010).
10) Akong, F.O.; Pasc, A.; Emo, M.; Gérardin-Charbonnier, C. A supramolecular hydrogel based on an original pseudopeptidic catanionic surfactant. New J. Chem. 37, 559-562 (2013).
11) Hao, L.; Yegin, C.; Chen, I.C.; Oh, J.K.; Liu, S.; Scholar, E.; Zhang, L.; Akbulut, M.; Jiang, B. pH-Responsive emulsions with supramolecularly assembled shells. Ind. Eng. Chem. Res. 57, 9231-9239 (2018).
12) Sakai, K.; Sawa, M.; Nomura, K.; Endo, T.; Tsuchiya, K.; Sakamoto, K.; Abe, M.; Sakai, H. pH-Sensitive wormlike micelle and hydrogel formation by acylglutamic acid-alkylamine complex. Chem. Lett. 45, 655-657 (2016).
13) Tojinbara, T.; Akamatsu, M.; Sakai, K.; Sakai, H. Oil-in-water emulsions stabilized by acylglutamic acid-alkylamine complexes as noncovalent-type double-chain amphiphiles. Langmuir 34, 268-272 (2017).
14) Sakai, K.; Nomura, K.; Shrestha, R.G.; Endo, T.; Sakamoto, K.; Sakai, H.; Abe, M. Wormlike micelle formation by acylglutamic acid with alkylamines. Langmuir 28, 17617-17622 (2012).
15) Takehara, M.; Moriyuki, H.; Yoshimura, I.; Yoshida, R. Surface active N-acylglutamate: II. Physicochemical properties of long chain N-Acylglutamic acids and their sodium salts. J. Am. Oil Chem. Soc. 49, 143-150 (1972).
16) Moulik, S.P.; Haque, M.E.; Jana, P.K.; Das, A.R. Micellar properties of cationic surfactants in pure and mixed states. J. Phys. Chem. 100, 701-708 (1996).
17) Klevens, B.H. Critical micelle concentrations as determined by refraction. J. Phys. Colloid Chem. 52, 130-148 (1948).
18) Shrestha, R.G.; Nomura, K.; Yamamoto, M.; Yamawaki, Y.; Tamura, Y.; Sakai, K.; Sakamoto, K.; Sakai, H.; Abe, M. Peptide-based gemini amphiphiles: Phase behavior and rheology of wormlike micelles. Langmuir 28, 15472-15481 (2012).
19) Sakai, K.; Umemoto, N.; Aburai, K.; Takamatsu, Y.; Endo, T.; Kitiyanan, B.; Matsumoto, M.; Sakai, H.; Abe, M. Physicochemical properties of oleic acid-based partially fluorinated gemini surfactants. J. Oleo Sci. 63, 257-267 (2014).