Use of energy trapping type piezoelectric transducer to suppress lateral vibration in the transducer

Kazuhiko Imano\textsuperscript{a)"

Abstract Vibration characteristics of two types of piezoelectric transducers with whole-surface electrode and a partially electrode were driven in the thickness direction in air and water acoustic loading on the acoustic radiation surface. Partial electrode transducers had an acoustic loading on the side surface, which is called “siding”. Use of partial electrode transducer allowed the lateral vibration on the acoustic radiation surface to be flattened, and thickness vibration becomes almost uniform. Schlieren observation and wavenumber analysis indicate that lateral waves were identified as Lamb waves. An A1 mode Lamb wave is given as a sample to verify the usefulness of this method.

key words: piezoelectric transducer, thickness vibration, lateral vibration, partial electrode transducer, siding, Lamb wave, A1 mode Lamb wave

Classification: Circuits and modules for electronic instrumentation

1. Introduction

Piezoelectric transducers have been used for the transmitting and receiving ultrasonic waves in various non-destructive tests and diagnoses, and are used for a range of instrumentation and medical imaging\textsuperscript{1). Many of the piezoelectric transducer, for example a circular type transducer, are used in the thickness expansion mode, and the sound waves from thickness driven transducers are believed to be plane waves. However, since the transducer is an elastic body, other wave components propagate in the lateral direction (in-plane) and interfere the thickness direction mode of the transducer. For this reason, vibration of the transducer is not like piston source and vibration velocity is distributed on the surface of transducer\textsuperscript{2-5). As a result, the sound field is not always generated as represented by Rayleigh integral\textsuperscript{6-12). Usually, the piezoelectric transducer has the backing material to suppress the ringing vibration which gives an acoustic load on the back of transducer to improve pulse characteristics\textsuperscript{13-16). Another method of suppressing ringing vibration is to mount a matching layer on the front surface of the transducer\textsuperscript{17,19). However, both method are of limited effectiveness in suppressing lateral vibration propagating from the edge toward the center of transducer\textsuperscript{17-20). Moreover, the wave propagating properties of the lateral waves are not fully understood. Although, Ueha et al. estimated these waves to be A-mode Lamb wave, a detailed analysis has not been performed\textsuperscript{15,19). In addition, there has been no research on suppression of this wave. In this work, the effect of suppression by “siding”\textsuperscript{21) was demonstrated experimentally and an analysis of the mode of lateral waves was attempted from the analysis for wavenumber spectrum.

2. Experiments

2.1 Transducer with siding

When thickness mode vibration is excited to the piezo material, lateral vibration generated due to the elastic coupling with the thickness vibration will also be excited. In addition, if an exciting voltage is applied to the piezoelectric transducer, a lateral wave concurrently with the vibration in the thickness direction is also generated electrically. Source of lateral vibration exist at the circumference of the transducer. There are thus two factors that contribute to the occurrence of lateral waves, which propagate from the edge to the center of the transducer and they spreads the opposite process and repeats this process on the surface of transducers. At the center of the transducer, only thickness vibration is observed until lateral wave arrives. Thereafter, lateral waves are multi-reflected in the plane of the transducer to form the multiple waves\textsuperscript{15,20). In order to suppress the lateral vibration, two types of transducer were used: a whole electrode type and a partially electrode type. Fig.1 shows the pictures of the whole electrode type of transducer (a) and the circular partial electrode type of 30×40 mm rectangular piezoelectric plate (b). The whole electrode type is conventionally used transducer. In the partial electrode type transducer, partial electrodes are fabricated to both sides of one rectangular piezoelectric plate which is the electrode part and the outside made of the same ceramic.

\textsuperscript{a)\textsc{Imano@gipc.akita-u.ac.jp}}
material as shown in Fig. 1(d). That is, the outer portion of the electrode operates as the acoustic load and the same acoustic load and the same acoustic impedance as the internal part under electrodes (Fig. 1(d)). Thus, the outer part of the electrode exerts a lateral load, we have called this condition “siding”. This structure is acoustically continuous with no bonding part between transducer and siding material. Moreover, this transducer is simple in structure and easy to manufacture. The piezoelectric transducers used in the experiment were made of lead-titanate-based ceramic PbTiO_3 having an electrode diameter of 20 mm ϕ, a thickness of 2 mm, a resonance frequency of 1 MHz, an electromechanical coupling coefficient in the thickness direction of 0.54, and in the lateral direction of less than 0.03 (Fuji Ceramics: M-6), respectively. The material of this transducer has an electromechanical coupling coefficient in the lateral direction is almost 0. There is only elastic coupling due to expansion and contraction in the thickness direction, and lateral vibration due to the excitation by electrical coupling does not occur (22,23).

2.2 Admittance response of transducers
Fig. 2 shows the electrical admittance responses of the whole electrode type (without siding) (a) and the partial electrode type (with siding) (c) in air which is the acoustic load on the radiation surfaces of transducers. Fig. 2 (b) (without siding) and (d) (with siding) show the admittance characteristics when water is loaded onto the acoustic radiation surface (thickness direction). The peak admittance around 1 MHz of transducers (a) and (c) are almost equal. Furthermore, the motional admittance response of partial electrode type (d) is not reduced compared with whole electrode type (b). Because the motional admittance are proportional to the vibration velocity of the acoustic radiation surface of the transducer, these figures confirm that siding is almost no effect to the thickness vibration efficiency. In the following experiments the front acoustic radiation surface is loaded with water assuming that it radiate sound in water and the back side surface of the transducer is air. The velocity of surface of transducer was observed in the diameter direction with a laser Doppler vibrometer (Graphitec: AT3100 & AT027). Measurement method and system were the same as in ref. 21. Optical method is useful for this experiments (24-28).

2.3 Measurements of vibration velocity distribution
Figs. 3 (a) and (b) show the vibration distribution of the acoustic radiation surface for the whole electrode type without siding and for the partial electrode type with siding, respectively. The distribution pattern varied as the sound wave propagation in water. Measurements were made every 0.1 mm in the diameter direction through the center. These figures show the vibration velocity after 10 μs from exciting the transducer. The results in Fig. 3 (a) shows that when siding is not applied, lateral waves that appear to be Lamb waves are seen on the acoustic radiation surface. The lateral vibrations superimpose the
thickness vibration, and the entire waveform moves up and down in the vertical direction. In contrast to this, in Fig. 3 (b), these wave almost disappear and the vibration distribution becomes almost flat. Since acoustic energy is almost trapped under the electrodes in partial electrode transducer, there are few reflection from the edge of rectangular plate.

2.4 Schlieren observation of sound field

Fig. 4 shows Schlieren photograph of the underwater sound field when the transducer was driven with 1 MHz, burst sine waves of 80 cycles of 100 Vp-p to evaluate the sound field in water. The photographs show that the 1 MHz ultrasonic wave radiated upward from the lower transducer. As can be seen in Fig. 4 (a), waves other than the waves generated from the thickness vibration are radiated to the outside of the radiating face. These results suggest that the lateral vibration is one cause of unnecessary radiation and is consistent with the previous experimental result of the authors. Conversely, in the partially electrode transducer shown in Fig. 4 (b), unnecessary radiation was drastically reduced, and the ultrasonic beam is narrowed at the head of the wave front. This seems to be mainly due to the energy trapping effect. This property may be advantageous for improving spatial resolution in the non-destructive evaluation. Even an ideal piston sound source generates side lobes, but these are small in the case of the partial electrode transducer. Since the side lobe is one factor that determines the directivity of the transducer, it is important to consider the directivity of a partial electrode transducer in designing the ultrasonic probe.

2.5 Wavenumber analysis

For the lateral vibration such as Fig. 3 (a), a wavenumber analysis was performed to identify the mode of the Lamb wave existing on the acoustic radiation surface, as shown in Fig. 5 (a). In the figure, vertical and horizontal axes show the amplitude and wavenumber (1/λ), respectively. The figures shows that not a single mode, but multiple Lamb wave modes will be exist on the acoustic radiation surface. Fig. 5 (b) is one sample of Lamb wave dispersion curve which corresponds to the peak wave number (1/λ) in Fig. 5(a). In this case, we can determine this large wavenumber (1/λ = 426.6 mm) component as A1. Since λ=1/426.6 = 2.344 mm from Fig.5 (a), Lamb wave velocity can be determine from f・λ=1MHz・2.344 mm=2344 m/s. This velocity corresponds to A1 mode Lamb wave as shown in Fig. 5(b). Other modes were similarly obtained from wave number analysis. For the every lateral waves, siding is effective because siding is the same material for the transducer and therefore acoustic impedance always becomes equal and acoustic matching condition is always achieved for all Lamb waves. Since wavenumber spectrum varies with time, it is considered that the Lamb waves do not exist as a single standing wave.

3. Conclusion

This paper proposes a new method called “siding” applied to the side surface of a piezoelectric transducer as a method of flattening the vibration velocity distribution on the acoustic radiation surface. The experiments showed that this method flattened the vibration velocity distribution on the radiation surface,
resulting in almost pure thickness vibration. Future work will include closer examination of the mode of the Lamb wave existing on the acoustic radiation surface of the piezoelectric transducer though experiment and analysis. I would like to improve the performance of the ultrasonic probe using these results.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP16K06376.

References

[1] Lester W. Schmerr Jr.: “Fundamentals of Ultrasonic Nondestructive Evaluation: A Modeling Approach”, Springer Series in Measurement Science and Technology, springer; 2nd ed. (2016).

[2] S. Sakuma, S. Ueha and E. Mori, “Measurement of vibration velocity distribution in disks of Pb(Zr-Ti)O$_3$ using optical heterodyne technique,” J. Acoust. Soc. Jpn. 39 (1982) 45. [in Japanese]

[3] H. Hatano and J. Osumiya, “The effects of beveling on the thickness vibrations of Pb(Zr-Ti)O$_3$ ceramic for generating high-frequency ultrasonic power,” J. Acoust. Soc. Jpn. 38 (1982) 477 [in Japanese].

[4] S. Ueha, T. Shinada and E. Mori, “Laser Doppler vibration amplitude measurement with optical fiber probe,” J. Acoust. Soc. Jpn. 40 (1983) 420-423 [in Japanese].

[5] S. Ueha, E. Mori, Y. Hasimoto and T. Kobayashi, “Vibration characteristics of a piezoelectric disk resonator with small transversal electromechanical coupling coefficient,” J. Acoust. Soc. Jpn. 40 (1984) 629 [in Japanese].

[6] J.W.S. Rayleigh, The Theory of Sound (Dover, New York., 1945), vol.II, p.107.

[7] K. Shibayama and Y. Kikuchi, “Studies on vibration of short-column”, Sci. Res. Inst., Tohoku Univ., Ser.B 8, (1956) 133.

[8] K. Shibayama and Y. Kikuchi, “Studies on vibration of short-column,” Sci. Res. Inst., Tohoku Univ., Ser.B 11 (1960) 133.

[9] K. Imano, “A method of observing the sound field in transient radiation from a piston source,” J. Acoust. Soc Jpn., E 12, (1991) 233-234.

[10] Lu. L. Gazarin, “On Producing a Sound Pulse of Specified shape by Means of a Piezoelectric Plate,” Soviet. Phys. Acoust. 4 (1958) 31.

[11] K. Takasaki, K. Imano and H. Inoue, “Generation of monopole ultrasonic pulse from a circular source and its on-axis pressure characteristics,” Jpn. J. Appl. Phys. 37 (1998) 3049.

[12] Y. Yoshida, N. Kimoto, K. Imano, H. Inoue and K. Murata, “Experiments on monopole ultrasonic pulse radiated from the piezoelectric polymer film transducers,” Jpn. J. Appl. Phys., 38 (1999) 3101.

[13] K. Saito, M. Nishihira and K. Imano, “Experimental study on intermediate layer made of (0-3) composite materials for use in air-coupled ultrasonic transducers,” Jpn. J. Appl. Phys. 46 (2007) 4479.

[14] K. Sugawara, M. Nishihira and K. Imano, “Experimental study of acoustic properties of (0-3) composite materials for intermediate layer or backing of ultrasonic transducers,” Jpn. J. Appl. Phys. 44 (2005) 4347-4349.

[15] G. Gosoff., “The effect of Backing and Matching on the Performance of Piezoelectric Ceramic transducers,” IEEE Trans. SU-13, (1966) 20.

[16] R. J. Kazys and V. Domarkas, “The Frequency and transient Response of Piezo transducers with Intermediate layers and electrical Matching Circuits,” 7-th ICA, 4, 25u3 (1971) 629.

[17] M. Nishihira, M. Kaido and K. Imano, “Experimental determination of piezoelectric constants of transversal effects of Pb(Zr-Ti)O$_3$ (PZT) transducer using transient response,” Jpn. J. Appl. Phys. 41 (2002) 3354.

[18] M. Nishihira and K. Imano, “Simulation study of acoustic intermediate layer and electrical source impedance in an ultrasonic pulse system,” Acoust. Sci. & Tech. 25 (2004) 203.

[19] K. Imano and H. Saito, “An ultrasonic imaging method using vibration velocity information,” Int. Jour. Resource & Eng., 25 (2013) 14-19 [in Japanese].

[20] K. Imano, “Barker-coded Ultrasonic Imaging using Optical Surface Vibration Measurement,” Journal of the Imaging Society of Japan 53 (2014) 476.

[21] K. Imano and T. Ohishi, “A method of equalizing the vibration velocity on the acoustic radiation surface of the piezoelectric transducer,” Trans. IEICE, J101-A (2018) 20 [in Japanese]

[22] S. Iekami, I. Ueda and S. Kobayashi, “Frequency spectra of resonant vibration in disk plates of PbTiO$_3$, piezoelectric ceramics,” J. Acoust. Soc. Am. 55 (1974) 339.

[23] S. Iekami, T. Nagata and Y. Nakajima, “Frequency spectra of extensional vibration in Pb(Zr-Ti)O$_3$ disks with Poisson’s ratio larger than 1/3,” J. Acoust. Soc. Am. 60 (1976) 113.

[24] F.J.Eberhardt, “Laser heterodyne system for measurement and analysis of vibrations,” J. Acoust. Soc. Am. 48 (1970) 603.

[25] G. Sauerbrey, “Measurement of amplitude distribution of vibrating AT-cut crystals by means of optical observation,” Proc. 17th Freq. Control (1963) 28.

[26] F.J.Eberhardt, “Laser heterodyne system for measurement and analysis of vibrations,” J. Acoust. Soc. Am. 48 (1970) 603.

[27] G. Sauerbrey, “Measurement of amplitude distribution of vibrating AT-cut crystals by means of optical observation,” Proc. 17th Freq. Control, (1963) 28.

[28] K. Imano, “Optical observation method for ultrasonic field using the shadowgraph introducing pulse inversion averaging,” IEICE Electronics Express, 11 (2014) 1.

[29] M. Ooe, “Theory of energy trapping vibration”, Electro-mechanical functional elements,” IEEJ (1963) 291 [in Japanese].

[30] M. Onoe, “Analysis of energy trapping type piezoelectric resonator,” IEICE 48 (1965) 70-77 [in Japanese].

[31] Y. Hosaka and K. Imano, “Sensitive tint visualization system for Lamb waves propagation in a glass plate,” Acoust. Sci. & Tech., 38 (2017) 165.

[32] K. Imano, “Quantitative Measurement of Ultrasonic Velocity Using Lamb Wave Imaging by the Sensitive Tint Method”, Journal of the Imaging Society of Japan 57 (2018) 525 [in Japanese].