Supplementary Note: Circadian and light signaling evolutionary linkage

Core circadian clock and light signaling genes brought into genetic linkage across the green lineage

Todd P. Michael1

1The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA

Corresponding author: Todd P. Michael; tmichael@salk.edu

Phenotypes of core circadian clock genes in \textit{Arabidopsis}

The first plant circadian clock mutant described in \textit{Arabidopsis} was timing of cab expression 1 (\textit{toc}1) that has short free-running period (FRP) under continuous conditions and early flowering phenotypes (Millar et al., 1995; Somers et al., 1998). It was later cloned and shown to encode \textit{PSEUDO-RESPONSE REGULATOR (PRR1)} with conserved CCT (CONSTANS, CO-like, and TOC1) and REC (receiver) domains (Strayer et al., 2000). \textit{TOC1/PRR1} is part of a five gene family including \textit{PRR3}, \textit{PRR5}, \textit{PRR7}, and \textit{PRR9} that is regulated in “circadian waves of expression” with peak gene expression at Zeitgeber (ZT, German for “time giver”) 13, 11, 8, 7 and 4 hours (hrs) after lights on (dawn) respectively in long day conditions (16 hrs light/8 hrs dark) (Matsushika et al., 2000; Michael et al., 2008). The loss of evening expressed \textit{PRRs} (\textit{PRR1/3/5}) result in short FRP, while the morning expressed \textit{PRRs} (\textit{PRR7/9}) result in a long FRP (Michael et al., 2003; Salomé and McClung, 2005). Loss of \textit{PRR9} results in differential impact depending on the output rhythm assayed; there is a change in the phase of circadian regulated leaf movement, and core clock gene expression displayed a long FRP (Michael et al., 2003; Salomé and McClung, 2005). Similarly, \textit{PRR7} is essential for the cycling of \textit{CCA1} in the shoots but not in the roots, suggesting that it has tissue specific roles in circadian clock regulation (Nimmo and Laird, 2021). The double mutant combination of \textit{PRR7} and \textit{PRR9} (\textit{prr7/9}) results in loss of temperature compensation and very long FRP, suggesting that they have independent functions in the circadian clock consistent with not being direct paralogs of one another or having similar expression (Figure 1; Supplemental Table S4) (Farré et al., 2005; Salomé and McClung, 2005).

The second family of core circadian clock genes identified were \textit{LATE ELONGATED HYPOCOTYL (LHY)} and \textit{CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)}, which are part of a sub-family of the large myeloblastosis (MYB) transcription factors (TF) family defined by the “SHAQKYF” protein motif (\textit{sMYB}) (Schaffer et al., 1998; Wang and Tobin, 1998). Both \textit{LHY} and \textit{CCA1} have peak expression at dawn regardless of entraining conditions (different photocycles and thermocycles) or under driven (diurnal) or free-run (circadian) conditions (Michael et al., 2008). Gain of function (overexpression) of either \textit{LHY} or \textit{CCA1} results in arrhythmic leaf movement, hypocotyl elongation, and gene expression of clock-controlled genes (Schaffer et al., 1998; Wang and Tobin, 1998). In contrast, loss of function of either result in a short FRP (3 hrs) and early flowering under short days (SD), although hypocotyl length and flowering time are wild type under long days (LD) (Green and Tobin, 1999; Alabadi et al., 2002; Mizoguchi et al., 2005).
2002; Oda et al., 2007). The double mutant (cca1/lhy) results in an even shorter FRP (6 hrs) than the single mutant, early flowering and plants with very small stature, suggesting that these orthologs are partly redundant in the core clock (Mizoguchi et al., 2002; Lu et al., 2009; Salomé et al., 2010).

In addition to CCA1 and LHY, the sMYB sub-family consists of eight other genes that share both the “SHAQKYF” motif as well as dawn-specific expression and thus were named REVEILLE (RVE) (Chaudhury et al., 1999). RVE3, RVE4, RVE5, RVE6, and RVE8 form a sub-clade of the RVEs since they also share the LHY-CCA1-like (LCL) domain and hence have also been referred to as LCL3, LCL1, LCL4, LCL2, and LCL5 respectively (Farinas and Mas, 2011). The LCL sub-clade are generally expressed at dawn like the other RVEs except RVE6/LCL2 only cycles under LD and SD conditions (not under circadian free-run conditions), and RVE4 peaks in the afternoon under thermocycles (Michael et al., 2008). In contrast, RVE1, RVE2 and RVE7 peak at ZT0 (dawn), ZT18 (midnight) and ZT07 (afternoon) respectively (Supplemental Figure S1) (Michael et al., 2008).

The first RVE gene described was an gain of function (overexpression) line of RVE7/EARLY-PHYTOCHROME-RESPONSIVE 1 (EPR1) that didn’t result in circadian period defects but did cause late flowering under LD and repressed its own expression consistent with it forming a slave oscillator (Kuno et al., 2003). Next, an overexpressing line of RVE2/CIRCADIAN 1 (CIR1) was described that resulted in short FRP, delayed flowering, longer hypocotyls and reduced seed germination in the dark (Zhang et al., 2007). Similar to RVE7, loss of RVE1 did not result in a defect in FRP, but it does result in changes in growth due to alterations in the auxin pathway (Rawat et al., 2009). The LCL sub-clade was the last to be described beginning with RVE8/LCL5; overexpression results in a shorter FRP and late flowering under both LD and SD, while loss of function causes a long FRP and early flowering (Farinas and Mas, 2011; Rawat et al., 2011). Loss of function of either of the closely related RVE4/LCL1 or RVE6/LCL2 does not result in a FRP change, but the double (rve4/8, 27 hrs; rve6/8, 26 hrs) or triple (rve4/6/8, 28 hrs) with RVE8/LCL5 results in a progressively longer FRP (Figure 1) (Hsu et al., 2013). Loss of function of either RVE3/LCL3 or RVE5/LCL4 also do not result in FRP changes, while the double mutant (rve3/5) has a slightly shorter FRP and the quintuple mutant (rve3/4/5/6/8) has a a even longer FRP (28 hrs) (Gray et al., 2017).

Since both the sMYB and PRR gene families are redundant, combinatorial mutation analysis provides clues as to significance of the CCA1-PRR9 and RVE4-PRR7 genetic linkages. One study has looked at the loss of the CCA1-PRR9 linkage but in the context of other redundant genes LHY and PRR7 (Salomé et al., 2010). The double mutant prr7/9 results in a very long FRP, yet when CCA1 or LHY are reduced using artificial microRNAs (amiR) silencing technology, the period is shortened almost to wild type FRP, while loss of both CCA1 and LHY has a similar short FRP as the lhy/cca1 (Salomé et al., 2010). These results suggest that the CCA1-PRR9 linkage results in reciprocal impacts on FRP, but that CCA1 and LHY are epistatic to PRR7 and PRR9 impacts on FRP.

In contrast to the lhy/cca1 double mutant that results in plants with a smaller stature, the rve4/6/8 triple mutant results in larger plants and the increased growth that is dependent on PIF4 and PIF5 (Gray et al., 2017). However, loss of both lhy/cca1 and rve4/6/8 (lhy/cca1/rve4/6/8 quintuple) restores the growth defect and FRP, suggesting that the the two clades of sMYB have reciprocal and dispensable roles in maintaining timing information and
growth (Shalit-Kaneh et al., 2018). So what are these specific feedback loops used for? While the *lhy/cca1/rve4/6/8* quintuple has restored growth and FRP, the circadian clock is less robust with decreased amplitude and suboptimal response to adverse environmental conditions (Shalit-Kaneh et al., 2018). Since *CCA1-LHY*-mediated temperature compensation requires both *PRR7* and *PRR9* (Salomé et al., 2010), it is possible that the *CCA1-PRR9* and *RVE4-PRR7* linkages represented inherited positive and negative respectively regulators of growth through the *PIFs* in a thermo and photo-sensitive way. To this end, the *PRR9* and *RVE4* phase of expression is shifted by 4 hours under thermocycles (while *CCA1* and *PRR7* are not), suggesting differential integration of thermocycle information (Michael et al., 2008).

Gene neighborhoods in plant genomes

Gene order in eukaryotes is generally poorly conserved resulting in seemingly random organization across chromosomes in contrast to prokaryotes where genes are often organized in functional arrays, or operons (Rocha, 2008). However, with more high-quality genomes and analytical tools it has become clear that there is in fact some level of gene clustering in eukaryotes and that some gene order is conserved evolutionarily (Hurst et al., 2004; Michalak, 2008). Two different studies across a collection of eukaryotic genomes spanning from plants to humans revealed that functionally and transcriptionally related genes are found in non-random clusters in the genome (Lee and Sonnhammer, 2003; Dávila López et al., 2010). In humans, bidirectional promoters play a role in proximally co-expressed genes (Adachi and Lieber, 2002; Trinklein et al., 2004). In yeast, essential genes are more likely to be found in clusters where the recombination rate is lower and this is independent of co-expression, suggesting that at some level genetics plays a role at preserving gene order (Pál and Hurst, 2003).

While many studies focus on identifying clusters based on functional or co-expression information, several tools have been developed to take an unbiased approach to find “gene neighborhoods,” or Proximal Ortholog Gene (POG) pairs of non-homologous genes (Winter et al., 2016; Marcat-Houben and Gabaldón, 2020; Foflonker and Blaby-Haas, 2021). Leveraging an evolutionary approach, up to 32% of the gene space across 341 fungal genomes are found in gene neighborhoods with many representing metabolic clusters (Marcat-Houben and Gabaldón, 2019). In algal genomes far fewer gene neighborhoods were identified, but they revealed several non-metabolic novel pathways (Foflonker and Blaby-Haas, 2021).

In plants a systematic look for gene neighbors has primarily been restricted to metabolic pathways (Osborn, 2010; Kautsar et al., 2017; Nützmann et al., 2018; Nützmann et al., 2020; Bharadwaj et al., 2021), or co-expressed genes (Williams and Bowles, 2004; Zhan et al., 2006; Chen et al., 2010). Plants are special amongst the eukaryotes since they undergo extensive whole genome duplication (WGD) and polyploidy events followed by rounds of fractionation that greatly increases the random order of genes and decreases gene synteny across lineages (Vision, 2005; Cheng et al., 2018). For instance, it has been shown across an array of high-quality genomes of mammals and plants that only closely related plants retain a similar level of synteny that is found across all mammals (Zhao and Schranz, 2019). Therefore, the *sMYB-PRR* and *PIF3-PHYA* evolutionarily conserved non-homologous gene clusters involved in a genetic network (as opposed to a metabolic pathway) are the first to be described across plant genomes.
The evolutionary significance of the environmental robustness model

The increasing closeness of the gene linkages appears around the same time as the rise to dominance of angiosperms over gymnosperms and ferns during the Cretaceous (Condamine et al., 2020). The phenotypic and species diversity of the angiosperm has been attributed to the multiple rounds of whole genome duplication (polyploidy) and fractionation (Soltis et al., 2009), which is the process by which the gene linkages are moving closer together over evolutionary time. There are two forces at work here: first, polyploidy often brings together distant genomes (allopolyploidy), which is thought to be maintained due to hybrid vigor enabling the ability to thrive in harsh/disparate environments or an asexual lifestyle (Fawcett et al., 2009; Cheng et al., 2018). Second, polyploids are ultimately reduced back to diploids (Zhao et al., 2017), which must thrive in their specific environment, yet sex is risky because it would be easy to make an unwanted genetic combination for a local environment (Freeling, 2017).

It is thought that the major innovation that led to the dominance of angiosperm was the flower and the specific relationship that it fostered with pollinators (Supplementary Figure S10) (Regal, 1977). Therefore, the linkage of light and circadian genes ensures that plants are tuned to exploit their specific environments, inheriting the correct combination for their local conditions so they will grow optimally under different seasons (Michael et al., 2003; Dodd et al., 2005). Another burst of polyploidy occurred at the Cretaceous/Tertiary (K/Pg) boundary that coincided with several natural disasters (Fawcett et al., 2009), and at this time the light and circadian gene linkages moved closer together in almost all species tested, except the grasses. This suggests that most plants “doubled down” on ensuring that the circadian system was inherited for a specific location; maybe the global decreasing temperature and carbon dioxide made it more likely that plants specially tuned for their environment would thrive and reproduce (Condamine et al., 2020).

At the same time, grasses became the most successful angiosperms and started to fill new ecological niches such as shaded forests and later open plains (Linder et al., 2018). Grasses are completely wind pollinated and flower at specific times of day (TOD) (Friedman and Barrett, 2009), suggesting they have taken the exact opposite route from other angiosperms and aggressively ensure every progeny has a new combination of circadian and light alleles. In essence, every pollination event represents a wide-hybrid that experiences heterosis or hybrid vigor, which enables it to outcompete populations in its new location. This strategy has been termed the “Viking syndrome” describing the ability of the grasses to colonize, persist and transform their environments (Linder et al., 2018). Taken together, the close genetic linkage favors animal pollination where specific circadian timing states are maintained; whereas the broken linkages favors wind pollination where diverse circadian states enable possible colonization of new environments.
Supplemental Figure S1. Expression of core circadian clock genes in *Arabidopsis*. Core circadian clock genes grouped by gene family or function. A) RVE1 (blue), RVE2 (orange) and RVE7 (grey). B) RVE3 (blue), RVE5 (orange), and RVE7 (grey). C) RVE4 (blue) and RVE8 (orange). D) PRR1 (blue), PRR3 (orange), PRR5 (grey), PRR7 (yellow) and PRR9 (aqua); E) GI (blue), ELF3 (orange), ELF4 (grey), and LUX (yellow). F) ZTL (blue), LKP2 (orange) and FKF1 (grey). Normalized RNA-seq expression was plotted over the day with grey boxes representing the dark period.
Supplemental Figure S2. Syntenic orthologs and expression of core circadian clock genes. A) The syntenic block for LUX (top) and BOA (bottom). B) The expression for LUX (blue) and BOA (orange). C) The syntenic block for RVE3 (top) and RVE5 (bottom). D) The expression RVE3 (blue), RVE5 (orange) and RVE6 (grey). E) The syntenic block for LKP2 (top) and ZTL (bottom). F) The expression of ZTL (grey), LKP2 (orange) and FKF1 (blue). Key syntenic relationships (red) and other syntenic genes (grey) for the entire syntenic block. In the syntenic plots the genes on the positive strand (blue) and negative strand (green).
Supplemental Figure S3. **PIF3** and **PHYA** linkage conserved back to *Amborella*. **PIF3** syntenic relationships (red), **PHYA** syntenic relationships (blue) and other syntenic genes (grey) for the entire syntenic block. Genes on the positive strand (blue) and negative strand (green). A) Syntenic blocks between *Amborella* (*Amborella trichopoda*), grape (*Vitis vinifera*) and *Arabidopsis* (*Arabidopsis thaliana*). B) Syntenic blocks between grape (*Vitis vinifera*) and soy (*Glycine max*).
Supplemental Figure S4. Syntenic sMYB-PRR pairs between Amborella and grape. LHY/CCA1 syntenic relationships (red), PRR3/5/7/9 syntenic relationships (blue) and other syntenic genes (grey) for the entire syntenic block. Genes on the positive strand (blue) and negative strand (green). A) Syntenic blocks between Amborella (Amborella trichopoda) and grape (Vitis vinifera) for the RVE4/8-PRR3/7. B) A) Syntenic blocks between Amborella (Amborella trichopoda) and grape (Vitis vinifera) for the LHY/CCA1-PRR5/9.
Supplemental Figure S5. CCA1/LHY lineage across monocots and eudicots. Both trees are pre-generated from the PLAZA dicot and monocot web pages. Gene names are on the tips of the tree and domain structure is depicted to the left. A) Monocot LHY/CCA1 tree; and B) Eudicot LHY/CCA1 tree. CCA1 genes boxed.
Supplemental Figure S6. The sMYB-PRR syntenic block in pineapple reveals relationships across monocots. LHY/CCA1/RVE syntenic relationships (red), PRR3/5/7/9 syntenic relationships (blue) and other syntenic genes (grey) for the entire syntenic block. Genes on the positive strand (blue) and negative strand (green). A) Pineapple (Ananas comosus) versus oro (Oropetium thomaeum); B) pineapple versus orchid (Apostasia shenzhenica); C) pineapple versus coconut (Cocos nucifera); D) pineapple versus palm (Elaeis guineensis).
Supplemental Figure S7. Different sMYB-PRR combinations are found across plant genomes with distinct whole genome duplication (WGD) events. LHY/CCA1/RVE syntenic relationships (red), PRR3/5/7/9 syntenic relationships (blue) and other syntenic genes (grey) for the entire syntenic block. Genes on the positive strand (blue) and negative strand (green). A) Amborella versus cassava (Manihot esculenta); B) Sequoia (Sequoiadendron giganteum) versus Amborella; C) Cuscuta (Caustralis; Cuscuta australis) versus Inil (Ipomoea nil) D) Eight different sMYB-PRR combinations and genome examples for each; this is not meant to be an exhaustive list.
Supplemental Figure S8. *PIF3-PHYA* are expressed at distinct times of day in *Arabidopsis* and soybean. A) *Arabidopsis* *PHYA* (blue) shows peak expression at ZT11, while *PIF3* (orange) has peak expression ZT16. B) One syntenic pair of the four *PIF3-PHYA* linkages in soybean robustly cycles under circadian conditions with *PHYA* (blue) peaking at CT8 and *PIF3* (orange) peaking at CT17. ZT; Zeitgeber Time. CT; Circadian Time.
Supplemental Figure S9. Circadian clock and light signaling genes are duplicated in Ostreococcus. A) CRYPTOCHROME (CRY/UVR) family in Ostreococcus; all CRY2 genes (blue box) and duplicated CRY2 genes in O. lucimarinus (brown box). B) Dotplot of O. lucimarinus (Ol) showing both the CRY2 and PRR5 duplications. C) PRR genes across Arabidopsis, Chlamydomonas (red box) and Ostreococcus (blue box). All of the PRR from Ostreococcus (Ol, O. lucimarinus; Or, O. tauri; and Or) and the duplicated PRR5 in Ol (luci).
Supplemental Tables

Supplemental Table S1. *Arabidopsis* circadian clock, light signaling and flowering time genes.

Gene name	Gene ID	Gene name	Gene ID
sMYB family	light/flowering		
CCA1	AT2G46830	ARR3	At1g59940
LHY	AT1G01060	ARR4	At1g10470
RVE1	AT5G17300	bHLH69	At4g30980
RVE2	AT5G37260	bHLH92	At5g43650
RVE3	AT1G01520	CCR1	At4g39260
RVE4	AT5G02840	CCR2	At2g21660
RVE5	AT4G01280	COL2	At3g02380
RVE6	AT5G52660	COL9	At3g07650
RVE7	AT1G18330	COP1	At2g32950
RVE8	AT3G09600	CRB	At1g09340
PRR family		CRY1	At4g08920
PRR1	AT5G61380	DET1	At4g10180
PRR3	AT5G60100	EID1	At4g02440
PRR5	AT5G24470	FHY3	At3g22170
PRR7	AT5G02810	FIO1	At2g21070
PRR9	AT2G46790	FLC	At5g10140
ZTL	HYH	FT	At1g65480
ZTL	AT5G57360	LIP1	At2g20860
LKP2	AT2G18915	LNK1	AT5G64170
FKF1	AT1G68050	LNK2	AT3G54500
GI	AT1G22770	PHYA	At1g09570
ELF3	AT2G25930	PIF3	At1g09530
-----	--------	--------	--------
ELF4	AT2G40080	PRMT5	At4g31120
PCL1/LUX	AT3G46640	SEC	At3g04240
LUX-like	AT5G59570	SFR6	At4g04920
SPA1			At2g46340
TEJ	AT2G31870	SPY	At3g11540
TIC	AT3G22380	SRR1	At5g59560
CDF3	AT3G47500	STN7	At1g68830
CHE	AT5G08330		
CKB3	AT3G60250		
CKB4	AT2G44680		
Supplemental Table S2. Syntenic regions for core circadian clock genes in *Arabidopsis*.

Gene	Gene ID 1	Gene ID 2					
LHY	AT1G01060.1	AT2G46830.1	CCA1	AT1G01160.1	AT4G00850.1		
	AT1G01120.1	AT2G46720.1		AT1G01170.1	AT4G00860.1		
	AT1G01190.1	AT2G46660.1		AT1G01225.1	AT4G00905.1		
	AT1G01240.1	AT2G46550.1		AT1G01340.2	AT4G01010.1		
	AT1G01260.1	AT2G46510.1		AT1G01350.1	AT4G01023.1		
	AT1G01340.2	AT2G46430.1		AT1G01360.1	AT4G01026.1		
	AT1G01380.1	AT2G46410.1		AT1G01380.1	AT4G01060.1		
	AT1G01440.1	AT2G46380.1		AT1G01420.1	AT4G01070.2		
	AT1G01453.1	AT2G46300.1		AT1G01430.1	AT4G01080.1		
	AT1G01440.1	AT4G01090.1		AT1G01440.1	AT4G01090.1		
	AT2G18650.1	AT5G57750.1		AT1G01453.1	AT4G01110.1		
	AT2G18730.1	AT5G57690.1		AT1G01460.1	AT4G01190.1		
	AT2G18750.1	AT5G57580.1	RVE3	AT1G01520.1	AT4G01280.1	RVE5	
	AT2G18800.1	AT5G57550.1		AT1G01540.2	AT4G01330.1		
	AT2G18876.1	AT5G57410.3		AT1G01550.1	AT4G01360.1		
	AT2G18880.1	AT5G57380.1		AT1G01560.2	AT4G01370.1		
	AT2G18915.1	AT5G57360.2	ZTL	AT3G46350.1	AT5G59270.1		
	AT2G18960.1	AT5G57350.1		AT3G46440.1	AT5G59290.2		
	AT2G19160.1	AT5G57270.1		AT3G46590.1	AT5G59300.1		
	AT2G19230.1	AT5G57210.1		AT3G46520.1	AT5G59370.1		
	AT5G64960.1	AT5G10270.1		AT3G46580.1	AT5G59380.1		
	AT5G64990.1	AT5G10260.1		AT3G46590.1	AT5G59430.3		
	AT5G65010.1	AT5G10240.1		AT3G46600.1	AT5G59450.1		
	AT5G65020.1	AT5G10220.1		AT3G46613.1	AT5G59510.1		
	AT5G65030.1	AT5G10210.1		AT3G46620.1	AT5G59550.1		
MAF5	AT5G65080.1	AT5G10140.1	FLC	LUX	AT3G46640.3	AT5G59570.1	BOA
------	-------------	-------------	-----	-----	-------------	-------------	-----
AT5G65100.1	AT5G10120.1				AT3G46650.1	AT5G59580.1	
AT5G65120.1	AT5G10110.1						
AT5G65140.1	AT5G10100.1			AT3G09300.1	AT5G02100.1		
AT5G65160.1	AT5G10090.1	AT3G09340.1	AT5G02170.2				
AT5G65180.1	AT5G10060.1	AT3G09370.1	AT5G02320.1				
AT5G65205.1	AT5G10050.1	AT3G09390.1	AT5G02380.1				
AT5G65207.1	AT5G10040.1	AT3G09400.1	AT5G02400.1				
AT5G65210.1	AT5G10030.1	AT3G09440.1	AT5G02500.1				
		AT3G09470.1	AT5G02502.1				
AT5G08190.1	AT5G23090.1			AT3G09480.1	AT5G02570.1		
AT5G08200.1	AT5G23130.1			AT3G09490.1	AT5G02590.1		
AT5G08230.1	AT5G23150.1	AT3G09500.1	AT5G02610.1				
AT5G08240.1	AT5G23160.1	AT3G09550.1	AT5G02620.1				
AT5G08250.1	AT5G23190.1	AT3G09570.1	AT5G02630.1				
AT5G08270.1	AT5G23200.1	AT3G09590.1	AT5G02730.1				
AT5G08300.1	AT5G23250.1	RVE8	AT3G09600.1	AT5G02840.1	RVE4		
AT5G08330.1	AT5G23280.1	TCP7	AT3G09630.1	AT5G02870.1			
AT5G08335.1	AT5G23320.1		AT3G09670.1	AT5G02950.1			
AT5G08340.2	AT5G23330.1		AT3G09680.1	AT5G02960.1			
AT5G08350.1	AT5G23350.1		AT3G09690.1	AT5G02970.1			
AT5G08360.1	AT5G23380.1		AT3G09700.1	AT5G03030.1			
AT5G08390.1	AT5G23430.1		AT3G09710.1	AT5G03040.1			
AT5G08410.1	AT5G23440.1		AT3G09760.1	AT5G03180.1			
AT5G08430.1	AT5G23480.1		AT3G09770.1	AT5G03200.1			
AT5G08440.1	AT5G23490.1		AT3G09790.1	AT5G03240.1			
AT5G08500.1	AT5G23575.1		AT3G09810.1	AT5G03290.1			
AT5G08520.1	AT5G23650.1		AT3G09820.1	AT5G03300.1			
			AT3G09840.1	AT5G03340.1			
Supplemental Table S3. Synonymous substitution (Ks) across *Arabidopsis* sMYB proteins. Coloring (from green to red) indicates the magnitude of the Ks value where green is a high number representing genes that are evolutionarily distant, and red indicates a low Ks value representing genes that are evolutionarily close.

Gene name	Gene ID	CCA1	LHY	RVE1	RVE2	RVE3	RVE4	RVE5	RVE6	RVE7	RVE8
CCA1	AT2G46830	2.8531	3.2959	3.8734	3.8241	3.8795	3.8421	3.6285	3.9743	2.1194	
LHY	AT1G01060	2.8531	3.9771	3.8654	3.8257	4.2384	3.9251	3.9332	3.9372	3.8884	
RVE1	AT5G17300	3.2959	3.9771	3.9174	1.8631	5.648	2.3697	2.3213	4.0707	4.3232	
RVE2	AT5G37260	3.8734	3.8654	3.9174	3.8757	2.2745	3.495	3.8795	3.742	2.4353	
RVE3	AT1G01520	3.8241	3.8257	1.8631	3.8757	3.8886	1.2433	3.9338	3.8388	3.8348	
RVE4	AT5G02840	3.8795	4.2384	5.648	2.2745	3.8886	2.1927	3.9253	3.92	0.8413	
RVE5	AT4G01280	3.8421	3.9251	2.3697	3.495	1.2433	2.1927	3.9399	2.0931	1.9066	
RVE6	AT5G52860	3.6285	3.9332	2.3213	3.8795	3.9338	3.9253	3.9399	3.9268	4.6156	
RVE7	AT1G18330	3.9743	3.9372	4.0707	3.742	3.8388	3.92	2.0931	3.9268	3.9438	
RVE8	AT3G09600	2.1194	3.8884	4.3232	2.4353	3.8348	0.8413	1.9066	4.6156	3.9438	
Supplemental Table S4. Synonymous substitution (Ks) across *Arabidopsis* PRR proteins. Coloring (from green to red) indicates the magnitude of the Ks value where green is a high number representing genes that are evolutionarily distant, and red indicates a low Ks value representing genes that are evolutionarily close.

Gene name	Gene ID	PRR1	PRR3	PRR5	PRR7	PRR9
PRR1	AT5G61380	4.1647		4.3028	4.2329	
PRR3	AT5G60100	4.1647	4.2775		4.2402	2.641
PRR5	AT5G24470	4.2759	4.2775	4.381		2.328
PRR7	AT5G02810	4.3028	4.2402	4.381		2.5112
PRR9	AT2G46790	4.2329	2.641	2.328	2.5112	
Supplemental Table S5. Genetic linkages between *CCA1/LHY*-PRR5/9 and *RVE4/8-PRR3/7* from PLAZA dicot 4.5. For each species the number of genetic linkages is presented.

Abbreviation	Common Name	TaxID	PubMedID	LHY/CCA1-PRR5/9	RVE4/8-PRR3/7	Total linkages
ach	*Actinidia chinensis*	3625	24136039	0	0	0
Ahy	*Amaranthus hypochondriacus*	NA	NA	1	2	3
aip	*Arachis ipaensis*	130453	26901068	0	1	1
aly	*Arabidopsis lyrata*	59689	26382944	1	1	2
ath	*Arabidopsis thaliana*	3702	27862469	1	1	2
atr	*Amborella trichopoda*	13333	24357323	1	1	2
bol	*Brassica oleracea*	109376	24852848	1	0	1
bra	*Brassica rapa*	3711	21873998	0	1	1
bvu	*Beta vulgaris*	161934	24352233	1	0	1
can	*Capsicum annuum*	4072	24441736	0	0	0
car	*Cicer arietinum*	3827	23354103	1	1	2
ccaj	*Cajanus cajan*	3821	22057054	0	0	0
ccan	*Coffea canephora*	49390	25190796	1	1	2
ccl	*Citrus clementina*	85681	24908277	1	1	2
cla	*Citrus lanatus*	3654	23179023	0	0	0
cme	*Cucumis melo*	3656	22753475	0	0	0
col	*Corchorus olitorius*	93759	28134914	1	0	1
CPA	*Carica papaya*	3649	18432245	0	0	0
cqu	*Chenopodium quinoa*	63459	28178233	2	0	2
cre	*Chlamydomonas reinhardtii*	3055	17932292	0	0	0
cru	*Capsella rubella*	81985	23749190	1	1	2
csa	*Cucumis sativus L.*	3659	NA	0	0	0
dca	*Daucus carota*	4039	27158781	0	0	0
egr	*Eucalyptus grandis*	71139	24919147	0	0	0
egut	*Erythranthe guttata*	4155	24225854	0	1	1
Code	Species Name	Accession	GenBank ID	SRA	NCBI	JGI
------	----------------------------------	-----------	-------------	-----	------	-----
fve	Fragaria vesca	57918	21186353	0	1	1
gma	Glycine max	3847	20075913	4	2	6
gra	Gossypium raimondii	29730	22922876	1	1	2
hbr	Hevea brasiliensis	3981	27255837	1	2	3
mco	Micromonas commoda	296587	19359590	0	0	0
mdo	Malus domestica	3750	20802477	0	0	0
mes	Manihot esculenta	3983	22523606	0	0	0
mpo	Marchantia polymorpha	3197	28985561	0	0	0
mtr	Medicago truncatula	3880	22089132	1	1	2
nnu	Nelumbo nucifera	4432	23663246	0	1	1
osa	Oryza sativa ssp. japonica	39947	16100779	0	0	0
pab	Picea abies	3329	23698360	0	0	0
pax	Petunia axillaris	33119	27255838	0	0	0
pbr	Pyrus bretschneideri	225117	23149293	0	1	1
ppa	Physcomitrella patens	3218	18079367	0	0	0
ppe	Prunus persica	3760	23525075	0	1	1
ptr	Populus trichocarpa	3694	16973872	2	0	2
rco	Ricinus communis	3988	20729833	0	1	1
sly	Solanum lycopersicum	4081	22660326	1	0	1
smo	Selaginella moellendorffii	88036	21551031	0	0	0
spa	Schrenkiella parvula	98039	21822265	1	1	2
stu	Solanum tuberosum	4113	21743474	0	1	1
tca	Theobroma cacao	3641	21186351	1	1	2
tha	Tarenaya hassleriana	28532	23983221	1	2	3
tpr	Trifolium pratense	57577	26617401	1	0	1
ugi	Utricularia gibba	13748	23665961	0	0	0
vra	Vigna radiata var. radiata	157791	25384727	1	1	2
vvi	Vitis vinifera	29760	17721507	1	1	2
zju	Ziziphus jujuba	326968	25350882	0	0	0
zma	Zea mays	4577	19965430	0	0	0
Supplemental Table S6. Number of syntenic blocks and genetic linkages between CCA1/LHY-PRR5/9, RVE4/8-PRR3/7 and PIF3-PHYA. The number under each individual gene pair is the number of syntenic blocks found per species. The number under the genetic linkages represents the number of species sharing genetic linkages with that species.

species	Clade	Order	CCA1/LHY	RVE4/8	PRR3/7	PRR5/9	PHYA	PIF3	RVE4/8-PRR3/7	LHY/CCA1-PRR5/9	PIF3-PHYA		
Amborella trichopoda	Basal-Angiosperm	Amborellales	1 1 1 2 1 1	23	29	42							
Nymphaea tetragona	Basal-Angiosperm	Nymphaeales	1 0 2 2 1 1	0 2	41								
Nelumbo nucifera	Basal-Eudicots	Proteales	1 1 2 2 0 2	46	50	0							
Macleaya cordata	Basal-Eudicots	Ranunculales	2 1 1 1 1 1	44	6	72							
Papaver somniferum	Basal-Eudicots	Ranunculales	2 2 1 2 2 2	11	50	108							
Aquilegia coerulea	Basal-Eudicots	Ranunculales	1 1 2 0 1 1	24	0	1							
Vitis vinifera	Basal-Eudicots	Vitales	1 1 4 2 1 2	22	56	72							
Cinnamomum micranthum	Magnoliids	Magnoliales	2 0 2 3 1 2	0	59	64							
Persea americana	Magnoliids	Magnoliales	2 0 2 3 1 2	0	40	0							
Liriodendron chinense	Magnoliids	Magnoliales	3 0 4 2 1 2	1	35	55							
Spirodela polyrhiza	Monocots	Alismatales	2 1 1 1 2 2	0	2	0							
Zostera marina	Monocots	Alismatales	0 0 0 0 0 2	0	0	0							
Elaeis guineensis	Monocots	Arecales	1 1 3 0 1 4	50	1	41							
Phoenix dactylifera	Monocots	Arecales	1 1 2 0 1 2	39	0	0							
Asparagus officinalis	Monocots	Asparagales	1 1 1 0 1 5	17	0	31							
Apostasia shenzhenica	Monocots	Asparagales	1 1 2 0 1 1	6	0	0							
Phalaeopsis equestris	Monocots	Asparagales	1 0 1 0 1 0	0	0	0							
Xerophyta viscosa	Monocots	Pandanales	0 1 3 1 1 3	0	0	2							
Ananas comosus	Monocots	Poales	1 1 2 0 1 2	47	0	59							
Brachypodium distachyon	Monocots	Poales	0 0 2 0 0 2	0	0	0							
Echinochloa crus-galli	Monocots	Poales	0 0 4 0 0 6	0	0	0							
Hordeum vulgare	Monocots	Poales	0 0 2 0 0 1	0	0	0							
leersia perrieri	Monocots	Poales	0 0 3 0 0 2	0	0	0							
Species	Order	Family	1	2	3	4	5	6	7	8	9		
-------------------------------	------------	------------	---	---	---	---	---	---	---	---	---		
Capsicum chinense	Monocots	Poales	0	0	2	0	0	1	0	0	0		
Cuscuta campestris	Monocots	Poales	0	0	3	0	0	2	0	0	0		
Kalanchoe	Monocots	Poales	0	0	3	0	0	2	0	0	0		
Malania oleifera	Monocots	Poales	0	0	2	0	0	1	0	0	0		
Olea europaea	Monocots	Poales	0	0	3	0	0	2	0	0	0		
Chenopodium quinoa hypochondriacus	Super-Asterids	Caryophyllales	2	1	2	2	2	2	46	58	0		
Beta vulgaris	Super-Asterids	Caryophyllales	1	1	2	1	1	0	0	0	0		
Beta vulgaris	Super-Asterids	Caryophyllales	1	1	1	2	1	1	0	0	0		
Beta vulgaris	Super-Asterids	Caryophyllales	1	1	2	1	1	0	0	0	0		
Beta vulgaris	Super-Asterids	Caryophyllales	1	1	3	4	2	2	7	59	0		
Actinidia chinensis	Super-Asterids	Ericales	1	2	5	3	3	3	0	0	131		
Actinidia eriantha	Super-Asterids	Ericales	2	3	6	3	3	4	1	1	85		
Coffea canephora	Super-Asterids	Gentianales	1	1	2	1	1	1	27	0	0		
Olea europaea	Super-Asterids	Lamiales	1	2	4	3	1	3	0	0	0		
Sesamum indicum	Super-Asterids	Lamiales	1	1	1	2	2	1	55	0	76		
Olecrania guttata	Super-Asterids	Lamiales	1	1	2	2	2	1	53	0	74		
Malania oleifera	Super-Asterids	Santalales	1	0	1	1	1	1	0	0	70		
Kalanchoe fedtschenkoi	Super-Asterids	Saxifragales	2	1	5	2	2	2	0	17	71		
Cuscuta campestris	Super-Asterids	Solanales	1	2	8	2	2	0	52	0	0		
Ipomoea nil	Super-Asterids	Solanales	0	1	3	3	1	2	41	0	0		
Capsicum annuum	Super-Asterids	Solanales	1	1	4	2	0	1	1	33	0		
Capsicum baccatum	Super-Asterids	Solanales	2	1	2	2	0	1	0	32	0		
Capsicum chinense	Super-Asterids	Solanales	1	1	2	2	0	1	0	0	0		
Species	Class	Order	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6					
-------------------------------	---------------	-------------	---------	---------	---------	---------	---------	---------					
Petunia axillaris	Super-Asterids	Solanales	0	1	3	3	0	2					
Solanum lycopersicum	Super-Asterids	Solanales	1	1	3	2	0	1					
Solanum pennellii	Super-Asterids	Solanales	1	1	2	2	0	1					
Solanum tuberosum	Super-Asterids	Solanales	1	1	0	2	0	1					
Aethionema arabicum	Super-Rosids	Brassicales	2	2	2	2	1	3					
Arabidopsis lyrata	Super-Rosids	Brassicales	2	2	4	2	1	6					
Arabidopsis thaliana	Super-Rosids	Brassicales	2	2	2	3	1	4					
Arabis alpina	Super-Rosids	Brassicales	0	2	1	0	0	5					
Boechera stricta	Super-Rosids	Brassicales	2	2	2	2	1	4					
Brassica napus	Super-Rosids	Brassicales	3	10	7	9	4	15					
Brassica oleracea	Super-Rosids	Brassicales	4	5	3	4	2	8					
Brassica rapa	Super-Rosids	Brassicales	4	4	3	3	2	8					
Camelina sativa	Super-Rosids	Brassicales	5	8	6	6	3	10					
Capsella rubella	Super-Rosids	Brassicales	2	2	3	2	1	4					
Lepidium meyenii	Super-Rosids	Brassicales	6	8	9	8	4	12					
Schrenkiella parvula	Super-Rosids	Brassicales	1	1	2	2	1	5					
Thellungiella halophila	Super-Rosids	Brassicales	1	2	5	2	1	3					
Thellungiella salsuginea	Super-Rosids	Brassicales	1	2	2	2	1	3					
Carica papaya	Super-Rosids	Brassicales	1	1	2	2	1	1					
Cleome gynandra	Super-Rosids	Brassicales	3	1	1	4	0	3					
Tarenaya hasseriana	Super-Rosids	Brassicales	5	2	6	4	2	6					
Begonia fuchsiioides	Super-Rosids	Cucurbitales	7	1	2	7	2	2					
Citrullus lanatus	Super-Rosids	Cucurbitales	1	1	1	1	0	1					
Cucumis melo	Super-Rosids	Cucurbitales	1	1	1	1	0	1					
Cucumis sativus	Super-Rosids	Cucurbitales	1	1	1	1	0	1					
Cucurbita maxima	Super-Rosids	Cucurbitales	2	0	2	3	0	2					
Datisca glomerata	Super-Rosids	Cucurbitales	1	1	2	1	0	1					
Ammopiptanthus nanus	Super-Rosids	Fabales	0	1	2	3	1	2					
Arachis duranensis	Super-Rosids	Fabales	2	2	2	2	3	4					
Cajanus cajan	Super-Rosids	Fabales	1	1	1	2	2	4					
Cicer arietinum	Super-Rosids	Fabales	1	0	2	2	2	2					
Species	Super-Order	Super-Families	Family	1	2	3	4	5	6	7	8	9	10
------------------------	---------------	----------------	--------	----	----	----	----	----	----	----	----	----	----
Glycine max	Super-Rosids	Fabales		4	4	4	6	4	8	53	61	337	
Lotus japonicus	Super-Rosids	Fabales		1	1	1	8	1	3	51	52	75	
Lupinus angustifolius	Super-Rosids	Fabales		3	1	2	3	3	7	0	55	181	
Medicago truncatula	Super-Rosids	Fabales		1	1	2	3	1	3	55	51	92	
Phaseolus vulgaris	Super-Rosids	Fabales		3	2	3	3	2	3	53	62	117	
Trifolium pratense	Super-Rosids	Fabales		1	1	1	2	1	3	0	54	53	
Vigna angularis	Super-Rosids	Fabales		2	2	3	3	2	4	31	51	180	
Vigna radiata	Super-Rosids	Fabales		2	2	4	2	2	3	40	47	165	
Betula pendula	Super-Rosids	Fagales		1	1	2	3	1	2	0	56	22	
Casuarina glauca	Super-Rosids	Fagales		1	1	2	2	1	2	48	57	57	
Quercus robur	Super-Rosids	Fagales		2	1	3	1	1	3	52	5	7	
Carya illinoiensis	Super-Rosids	Fagales		1	0	3	2	0	3	0	0	0	
Manihot esculenta	Super-Rosids	Malpighiales		2	1	5	3	1	3	16	58	78	
Ricinus communis	Super-Rosids	Malpighiales		1	1	4	2	1	2	54	53	76	
Linum usitatissimum	Super-Rosids	Malpighiales		5	2	2	6	0	2	50	7	0	
Populus trichocarpa	Super-Rosids	Malpighiales		4	2	2	4	1	3	0	60	77	
Durio zibethinus	Super-Rosids	Malvales		2	2	5	4	0	4	57	0	0	
Gossypium barbadense	Super-Rosids	Malvales		5	2	8	9	0	6	47	58	2	
Gossypium hirsutum	Super-Rosids	Malvales		6	2	8	8	0	6	47	58	2	
Gossypium raimondii	Super-Rosids	Malvales		3	1	5	4	0	3	46	59	0	
Theobroma cacao	Super-Rosids	Malvales		1	1	3	2	1	2	52	58	78	
Punica granatum	Super-Rosids	Myrtales		1	1	2	2	2	3	49	0	74	
Eucalyptus grandis	Super-Rosids	Myrtales		1	1	2	1	1	3	0	0	3	
Trema orientale	Super-Rosids	Rosales		1	1	3	2	1	2	51	54	71	
Morus notabilis	Super-Rosids	Rosales		1	1	5	2	1	2	50	55	75	
Ziziphus jujuba	Super-Rosids	Rosales		1	0	3	2	3	2	0	2	79	
Dryas drummondii	Super-Rosids	Rosales		1	1	2	2	1	1	53	51	75	
Fragaria vesca	Super-Rosids	Rosales		2	1	1	2	1	1	51	60	61	
Malus domestica	Super-Rosids	Rosales		2	1	5	3	2	3	57	54	149	
Prunus mume	Super-Rosids	Rosales		1	1	1	1	1	1	53	0	74	
Prunus persica	Super-Rosids	Rosales		2	1	1	2	1	1	52	55	76	
Species	Super-Order	Order	2	1	4	2	2	3	54	1	74		
-----------------------------	-------------	---------	----	----	----	----	----	----	----	----	----		
Pyrus x bretschneideri	Super-Rosids	Rosales	2	1	4	2	2	3	54	1	74		
Rosa chinensis	Super-Rosids	Rosales	1	1	2	2	1	2	50	58	73		
Rubus occidentalis	Super-Rosids	Rosales	1	1	2	2	1	1	53	1	76		
Parasponia andersonii	Super-Rosids	Rosales	1	1	3	2	1	2	0	32	75		
Citrus maxima	Super-Rosids	Sapindales	1	0	3	2	1	2	0	58	58		
Citrus sinensis	Super-Rosids	Sapindales	1	1	5	1	1	2	43	59	52		
Xanthoceras sorbifolium	Super-Rosids	Sapindales	1	0	2	2	1	2	0	58	75		
Supplemental Table S7. Summary of syntenic blocks across 123 plant genome assemblies for circadian genes.

Family name	CCA1/LHY	RVE4/8	PRR3/7	PRR5/9	PHYA	PIF3
Syntenic blocks (#)	182	152	345	264	129	330
Most syntenic blocks (#)	7	10	9	9	4	15
Fewest syntenic blocks (#)	0	0	0	0	0	0
Median syntenic blocks (#)	1	1	2	2	1	2
Average syntenic blocks (#)	1.5	1.2	2.8	2.1	1	2.7
Zero syntenic blocks	23	28	2	24	37	4
Total genomes tested (#)	123	123	123	123	123	123
missing (%)	18.70%	22.80%	1.60%	19.50%	30.10%	3.30%
present (%)	81.30%	77.20%	98.40%	80.50%	69.90%	96.70%
References

Adachi N, Lieber MR (2002) Bidirectional gene organization: a common architectural feature of the human genome. Cell 109: 807–809

Alabadi D, Yanovsky MJ, Más P, Harmer SL, Kay SA (2002) Critical Role for CCA1 and LHY in Maintaining Circadian Rhythmicity in Arabidopsis. Current Biology 12: 757–761

Bharadwaj R, Kumar SR, Sharma A, Sathishkumar R (2021) Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology. Front Plant Sci 12: 697318

Chaudhury A, Okada K, Raikhel NV, Shinozaki K, Sundaresan V V (1999) A weed reaches new heights down under. Plant Cell 11: 1817–1826

Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X (2018) Gene retention, fractionation and subgenome differences in polyploid plants. Nat Plants 4: 258–268

Chen W-H, de Meaux J, Lercher MJ (2010) Co-expression of neighbouring genes in Arabidopsis: separating chromatin effects from direct interactions. BMC Genomics 11: 178

Condamine FL, Silvestro D, Koppelhus EB, Antonelli A (2020) The rise of angiosperms pushed conifers to decline during global cooling. Proc Natl Acad Sci U S A 117: 28867–28875

Dávila López M, Martínez Guerra JJ, Samuelsson T (2010) Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes. PLoS One 5: e10654

Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309: 630–633

Farinas B, Mas P (2011) Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. Plant J 66: 318–329

Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15: 47–54

Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proc Natl Acad Sci U S A 106: 5737–5742

Foflonker F, Blaby-Haas CE (2021) Colocality to Cofunctionality: Eukaryotic Gene Neighborhoods as a Resource for Function Discovery. Mol Biol Evol 38: 650–662

Freeling M (2017) Picking up the ball at the K/pg boundary: The distribution of ancient polyploidies in the plant phylogenetic tree as a spandrel of asexuality with occasional sex. Plant Cell 29: 202–206

Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of
pollination and mating in wind-pollinated plants. Ann Bot 103: 1515–1527

Gray JA, Shalit-Kaneh A, Chu DN, Hsu PY, Harmer SL (2017) The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size. Plant Physiol 173: 2308–2322

Green RM, Tobin EM (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci U S A 96: 4176–4179

Hsu PY, Devisetty UK, Harmer SL (2013) Accurate timekeeping is controlled by a cycling activator in Arabidopsis. Elife 2: e00473

Hurst LD, Pál C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5: 299–310

Kautsar SA, Suarez Duran HG, Blin K, Osbourn A, Medema MH (2017) plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res 45: W55–W63

Kuno N, Møller SG, Shinomura T, Xu X, Chua N-H, Furuya M (2003) The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis. Plant Cell 15: 2476–2488

Lee JM, Sonnhammer ELL (2003) Genomic gene clustering analysis of pathways in eukaryotes. Genome Res 13: 875–882

Linder HP, Lehmann CER, Archibald S, Osborne CP, Richardson DM (2018) Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol Rev Camb Philos Soc 93: 1125–1144

Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM (2009) CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCHOTYL Function Synergistically in the Circadian Clock of Arabidopsis. Plant Physiology 150: 834–843

Marcet-Houben M, Gabaldón T (2020) EvolClust: automated inference of evolutionary conserved gene clusters in eukaryotes. Bioinformatics 36: 1265–1266

Marcet-Houben M, Gabaldón T (2019) Evolutionary and functional patterns of shared gene neighbourhood in fungi. Nature Microbiology 4: 2383–2392

Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41: 1002–1012

Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, et al (2008) Network Discovery Pipeline Elucidates Conserved Time-of-Day–Specific cis-Regulatory Modules. PLoS Genet 4: e14

Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302: 1049–1053
Michalak P (2008) Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 91: 243–248

Millar AJ, Carré IA, Strayer CA, Chua NH, Kay SA (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267: 1161–1163

Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carré IA, Coupland G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2: 629–641

Nimmo HG, Laird J (2021) Arabidopsis thaliana PRR7 Provides Circadian Input to the CCA1 Promoter in Shoots but not Roots. Front Plant Sci 12: 750367

Nützmann H-W, Doerr D, Ramirez-Colmenero A, Sotelo-Fonseca JE, Wegel E, Di Stefano M, Wingett SW, Fraser P, Hurst L, Fernandez-Valverde SL, et al (2020) Active and repressed biosynthetic gene clusters have spatially distinct chromosome states. Proc Natl Acad Sci U S A 117: 13800–13809

Nützmann H-W, Scazzocchio C, Osbourn A (2018) Metabolic Gene Clusters in Eukaryotes. Annu Rev Genet 52: 159–183

Oda A, Reeves PH, Tajima T, Nakagawa M, Kamada H, Coupland G, Mizoguchi T (2007) Isolation of novel gain- and loss-of-function alleles of the circadian clock gene LATE ELONGATED HYPOCOTYL (LHY) in Arabidopsis. Plant Biotechnology 24: 457–465

Osbourn A (2010) Gene clusters for secondary metabolic pathways: an emerging theme in plant biology. Plant Physiol 154: 531–535

Pál C, Hurst LD (2003) Evidence for co-evolution of gene order and recombination rate. Nat Genet 33: 392–395

Rawat R, Schwartz J, Jones MA, Sairanen I, Cheng Y, Andersson CR, Zhao Y, Ljung K, Harmer SL (2009) REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc Natl Acad Sci U S A 106: 16883–16888

Rawat R, Takahashi N, Hsu PY, Jones MA, Schwartz J, Salemi MR, Phinney BS, Harmer SL (2011) REVEILLE8 and PSEUDO-RESPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet 7: e1001350

Regal PJ (1977) Ecology and evolution of flowering plant dominance. Science 196: 622–629

Rocha EPC (2008) The organization of the bacterial genome. Annu Rev Genet 42: 211–233

Salomé PA, McClung CR (2005) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17: 791–803

Salomé PA, Weigel D, McClung CR (2010) The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22: 3650–3661

Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the
photoperiodic control of flowering. Cell 93: 1219–1229

Shalit-Kaneh A, Kumimoto RW, Filkov V, Harmer SL (2018) Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. Proc Natl Acad Sci U S A 115: 7147–7152

Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96: 336–348

Somers DE, Webb AA, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125: 485–494

Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289: 768–771

Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM (2004) An abundance of bidirectional promoters in the human genome. Genome Res 14: 62–66

Vision TJ (2005) Gene order in plants: a slow but sure shuffle. New Phytol 168: 51–60

Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207–1217

Williams EJB, Bowles DJ (2004) Coexpression of neighboring genes in the genome of Arabidopsis thaliana. Genome Res 14: 1060–1067

Winter S, Jahn K, Wehner S, Kuchenbecker L, Marz M, Stoye J, Böcker S (2016) Finding approximate gene clusters with Gecko 3. Nucleic Acids Res 44: 9600–9610

Zhang X, Chen Y, Wang Z-Y, Chen Z, Gu H, Qu L-J (2007) Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. The Plant Journal 51: 512–525

Zhan S, Horrocks J, Lukens LN (2006) Islands of co-expressed neighbouring genes in Arabidopsis thaliana suggest higher-order chromosome domains. Plant J 45: 347–357

Zhao M, Zhang B, Lisch D, Ma J (2017) Patterns and Consequences of Subgenome Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants. Plant Cell 29: 2974–2994

Zhao T, Schranz ME (2019) Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes. Proc Natl Acad Sci U S A 116: 2165–2174