Mesomorphy and vulnerability indices of *Solanum melongena* and *Corchorus olitorius* in Nsukka metropolis

Eli Ogonna Precious and Ajuziogu Godswill Chukwunonso

1Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria

*Corresponding author: Eli Ogonna Precious. Email Address: Ogonnael@yahoo.com

Abstract

Global warming is no longer just a prediction. It is happening. Variability in climate is deeply rooted within the West African society. Understanding the response of plants to increased drought would be desirable in the light of global and regional changes, not only to forecast population dynamics in natural ecosystem, but also to adjust management practices in agriculture. This study evaluated the vulnerability and mesomorphic indices of two woody farm shrubs (*Solanum melongena* and *Corchorus olitorius*) from three locations (Odoru, Ogige, Odenigwe) using their anatomical structures. The sectioning of the plant stems was carried out in the anatomy laboratory of the department of Plant science and Biotechnology, University of Nigeria Nsukka. The result was significantly different (P <0.05) in the vessel length of the two plants with *Corchorus olitorius* having longer vessels (0.302 ± 0.012mm). Similarly, the vessel length varied significantly (P < 0.05) across the different locations. The vulnerability and mesomorphy indices observed across the plants from the different locations were <1 indicating the xeromorphic nature of the plants. Therefore, both species can withstand drought conditions, but at different degrees.

Keywords: Global warming, Climate change, West African society, Drought, Adaptation

Received September 24, 2021; Revised December 26, 2021; Accepted January 21, 2022

https://dx.doi.org/10.4314/br.v19i2.9 This is an Open Access article distributed under the terms of the Creative Commons License [CC BY-NC-ND 4.0] http://creativecommons.org/licenses/by-nc-nd/4.0.

Journal Homepage: http://www.bioresearch.com.ng.

Publisher: Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria.
INTRODUCTION

The hydraulic designs of trees, shrubs and vines have an influence on the overall movement of water within the plant body and it is one important factor used to determine the plant size, the vulnerability of stems to periods of drought, water storage capacity of the tissues (mesomorphy) and their geographical distribution (Dickson, 2000). By identifying species most at risk from effects of climate change, conservation and management efforts can be targeted to reduce these impacts, such as by protecting existing habitat or through assisted migration. The structure and function of the different types of cells and tissues found in plants are forces for water movement and transpiration in plants (Lopez and Barcay, 2017).

Mesomorphic plants are adapted to conditions of abundant water and relatively humid conditions and are designed to function optimally for water uptake and gas exchange in photosynthesis. The anatomy of a mature dicot plants generally reflects the habitat, especially the availability of water. Most of the structural diversity encountered within the secondary xylem of woody plants has a functional explanation and can be related to plant habits as well as to varying atmospheric conditions and soil moisture availability (Dickson 2000).

According to (Dickson, 2000), the vulnerability index of wood anatomy can be calculated by dividing the mean vessels diameter by the mean numbers of vessels per square millimeter. The lower indices appear in xerophytic taxa with narrow but very numerous vessels per unit area. The xylem formulation is much safer than the one that consist of wider and fewer vessels per unit area because it will restrict air embolisms to a smaller and more localized portion of the transpiration stem. Meanwhile, the wood anatomical mesomorphy index can be calculated by multiplying the vulnerability index by the mean length of the vessel elements. Plants that are considered mesomorphic on ecological and macromorphological grounds exhibits wood mesomorphy indices greater than 200, whereby xerophytic taxa hardly possess indices of xylem anatomical mesomorphyn excess of 75. (Dickson 2000). Drought stress is a factor that affects plant growth and development, both in terms of morphology, anatomy, and physiology. (Patmi et al, 2020). The aim of this study is to determine the mesomorphy and vulnerability indices of Solanum melongena and Corchorus olitorius and to establish through the study, the various habitats where the two species can grow optimally.

MATERIALS AND METHODS

Study Area

The study area (Nsukka) lies between latitude 06° 52'E and longitude 07°24’N and at an altitude of 447m above sea level. The average daily temperature ranges between 29°C and 31°C, annual rainfall distribution ranges from 1155mm to 1955mm and a relative humidity that ranges from 69% to 79% (Uguru et al., 2011). From the study of (Uguru et al., 2011), there is a rise in temperature in the recent years with a record of warmer temperatures. There is also shift in rainfall pattern which resulted in drop in relative humidity. These showed that the ecology has warmed up over the years and the rate of warming increased over a decade.

Collection and preservation of specimens

The first sample of Solanum melongena was collected in Ogige in Nsukka metropolis, the second sample was collected in Odenigwe in Nsukka metropolis, and the third sample was gotten from Odoru in Nsukka metropolis. The first sample of Corchorus olitorius was collected in Oduru in Nsukka metropolis, the second sample was collected in Ogige in Nsukka metropolis, and the third sample was collected Odenigwe in Nsukka metropolis. The stems of both plants were cut in their transverse section. The sectioning was done using Reihert sledge microtome, the automatic microtome knife sharpener was used to sharpen the blade. The sections were collected using different petri dishes to preserve the sample for further anatomical studies.

The Petri dishes were properly labelled according to their contents. After the sectioning of the stems, a chemical solution was prepared. A solution of 70% alcohol was prepared by diluting absolute alcohol by adding 30 ml of water to100 ml of absolute alcohol. The 70% alcohol was used for temporary preservation. A solution of formalin acetic acid (FAA) was prepared for permanent preservation. The solution was prepared by adding 90 ml of 70% alcohol, 5 ml of acetic acid and 5 ml of formalin to get 100 ml of FAA. The solutions were measured with a measuring cylinder and poured into a Bama bottle, the sectioned stems were then put inside the bottle, labelled, and covered.
Sectioning of stems

The sections were counter stained with 1% fast green for 5 minutes and washed three times in absolute alcohol. Fast green and safranin serve to identify a lignified and un lignified tissues. The sections were transferred into containing jar containing 50/50 alcohol and xylene in the ratio of 1:1 and washed until clear. Pure xylene was finally used to clear the sections further.

Temporary slide preparations and permanent slide preparations

Iodine solution was prepared by dissolving 1g of iodine crystals and 2g of potassium iodide in 300ml of distilled water and then the sectioned sample were mounted on a KARL KAPS asslar/Wetzlar Nr39805 microscope with 1-2 drops of iodine. Iodine was used because it detects the presence of starch granules in the sectioned sample; thereby forming blue-black stains which helps to identify tissues easily. After mounting of the slide with the sample, 1-2 drops of concentrated hydrochloric acid were added to identify the presence of lignin. The sectioned sample were transferred into a staining jar and stained with 1% safranin for 5 minutes, the sections were removed and washed three times in distilled water, two times in 97% alcohol and two times in absolute alcohol in order to dehydrate the samples.

Wood maceration

The method used for maceration in this study was that of Schlueze's according to Mahesh et al., (2015). The bark of the air-dried stem discs was excised from the wood after which the wood was cut into tiny bits of blocks. The tiny bits of wood blocks(woodchips) were then placed in a well labeled test tube to which 1g of 5% chlorate and 10ml of nitric acids were added after which they were allowed to react in a fume cupboard until the lignin and middle lamella of the chips dissolved. Since potassium chlorate is a strong oxidizing agent, it accelerated instant reactions with nitric acid (HNO₃) to affect the maceration while the presence of lignin was revealed by the reddish-brown color of the test tubes. A white tissue appeared at the base of the test tubes indicating that maceration had taken place. The residual acid was decanted from the test tubes into a reserve receptacle after which distilled water was added to the test tubes, the test tubes were then covered with caps or stoppers and shaken vigorously to allow the tissue dissolve and also stop further reactions. The test tubes were left in a standing position for 24hours, and the supernatant was decanted thereafter. The macerated tissues were stored in specimen bottles where formalin was also added to prevent further fungal growth or decay of the tissue. Staining of the macerated tissues was done using 1% safranin solution.

Microscopic examination

The ordinary light microscope was used to study the vessel distribution in the transverse section. The prepared sections were viewed under the KARL KAPS asslar/Wetzlar Nr39805 microscope x100 magnification. The vessel characteristics were measured using a monocular microscope to which ocular micrometers were fitted in the eye-piece tubes. The ocular micrometer was first calibrated using a stage micrometer of 2mm range according to Adinde et al. (2016). The vessels were observed, and photomicrographs were taken.

Determination of Number of Vessels

The number of vessels for each of the species was counted within 1 square millimeter. The number of vessels that fell within a square millimeter were counted and recorded. A replication of 30 was made. Meanwhile, the square millimeter was prepared according to Adinde et al. (2016).

Calculation of Vulnerability Indices

A replication of 30 was taken and the vulnerability of the wood specimen was evaluated using Calquist (1977) Vulnerability index = mean vessel diameter / Mean vessel number per mm

Calculation of Mesomorphy Indices

A replication of 30 was taken and the mesomorphy of the wood specimens was evaluated as stated by Calquist (1977). Mesomorphy index = Vulnerability index x Mean vessel length

RESULTS

Results on wood measurements and vessel characteristics

Vessel characteristics studied include the number of vessels, the vessel diameter, the vessel length which are used to get the vulnerability, and mesomorphy index. Plate 1 to 3 show the vessel length, vessel diameter and number of vessels of Corchorus olitorius. Plate 1 shows that the plant adapted better to the environment in terms of water conduction.
compared to others from other location. The vulnerability of plate 1 will be higher compared to plates 2 and 3. Plates 2 and 3 are able to adapt to their location but at varying degrees. Plates 4 to 6 show the vessel length, vessel diameter and number of vessels of Solanum melongena. Plate 4 shows that the plant adapted better to the environment in terms of water conduction compared to others from other location. The vulnerability of plate 4 will be higher compared to plates 5 and 6. Plates 5 and 6 are able to adapt to their location but at varying degrees. Table 1 below shows the effect of the plant species (factor A) on the vessel characteristics irrespective of the location, those that showed the vessel length of Corchorus olitorius varies significantly to that of Solanum melongena, and the mesomorphy index of jute also varies significantly to that of garden egg by 0.002 mean difference. Table 2 below shows the effect of the location (factor B) on the vessel characteristics irrespective of the species, according to the study, it was seen that the vessel length between Odoru and Odenigwe were the same but varied significantly to that of Ogige, and the mesomorphy index varied significantly between Ogige and Odoru but showed similarity to that of Odenigwe. Table 3 shows the effect of factor A (plant species) and factor B (location) on vessel characteristics, according to the study carried out, the vessel characteristics showed significant difference in Corchorus olitorius collected from Odoru but no difference in that of Ogige and Odenigwe. Also, the variability in vessel characteristics showed significant difference in Solanum melongena collected in Odoru

DISCUSSION

According to the Dickson (2000), because vessel diameter appears to be functionally related to the volume of water being conducted through the xylem, differences in pore diameter in ring porous trees reflect difference in the amount of water transported at various times throughout the growing season. Plants with narrow vessel diameter but very numerous vessels per square mm are xerophytic and is theoretically safer than ones that consist of wider and fewer vessels per square mm because it will restrict air embolisms to a smaller and more localized portion of the transpiration stems. Drought stress is one of the most impacting factors which alter seriously the plant physiology, finally leading to the decline of the crop productivity.

The result showed a significant difference in the vessel length of the two plants with Corchorus olitorius having longer vessels. The significant differences recorded in the vessel length of the plant could probably be attributed to the differences in plant species. Similarly, the vessel length varied significantly across the different locations which clearly indicate the effect of the environment on the plants. Drought stress causes in plants a set of morpho-anatomical, physiological, and biochemical changes, mainly addressed to limit the loss of water by transpiration with the attempt to increase the plant water use efficiency. (Dhriti et al, 2020). The vulnerability and mesomorphy indices observed across the plants from the different locations were <1 indicating the xeromorphic nature of the plants. The vulnerability and mesomorphy indices observed in these plants were much lower that the reported indices for Gymelina arborea, Pentaclethra macrophylla and Ceiba pentandra collected from the Botanic Garden, University of Nigeria Nsukka by Adinde et al. (2016).

Many adaptations of woody plants have been identified in their stems, chief among them is the low resistance to water flow in vascular tissues (Kozlowski and Pallardy, 2002). Desert areas are characterized with low rainfall and shortage of soil water. Humidity is as well low. These suggest that rate of transpiration would also be high. For plants to survive in desert areas they must have some modifications to adapt to the harsh environment. Plants must absorb water efficiently to be able to compensate for the shortage of water and for the loss of water through transpiration. According to Carlquist (1997), based on the indicators used it is determined that vulnerability index lower that one reflects adaption to drier areas, while values greater than three are found in plants living in areas with high water availability. From the research conducted, it can be deduced that Corchorus olitorius that are found within the region of Odenigwe in Nsukka metropolis have more ability to adapt to drier areas compared to those found in Odoru and Ogige. The Solanum melongena found in Odoru in Nsukka metropolis similarly would adapt to drier areas compared to those found in Ogige and Odenigwe.
Table 1: Mean differences in vessel characteristics, vulnerability and mesomorphy index between plant species

Vessel Characteristics	Corchorus olitorius	Solanum melongena	LSD
No of vessels per square mm	3.578 ± 0.327	3.367 ± 0.286	NS
Vessel diameter	0.070 ± 0.002	0.079 ± 0.006	NS
Vessel length	0.302 ± 0.012a	0.177 ± 0.011b	0.03
Vulnerability index	0.032 ± 0.002	0.034 ± 0.003	NS
Mesomorphy index	0.010 ± 0.0008a	0.005 ± 0.0005b	0.002

Data presented with means ± standard error. Means are separated using least significant difference test (LSD) at P < 0.05 with means with different alphabets on each row representing significant differences; NS-Not significant.

Table 2: Mean differences in vessel characteristics, vulnerability and mesomorphy index between locations

Location	No of vessels per square mm	Vessel diameter	Vessel length	LSD
Ogige	2.933 ± 0.266	0.076 ± 0.008	0.280 ± 0.013a	
Odoru	3.767 ± 0.362	0.076 ± 0.003	0.204 ± 0.022b	
Odenigwe	3.717 ± 0.467	0.071 ± 0.003	0.233 ± 0.007b	

Data presented with means ± standard error. Means are separated using least significant difference test (LSD) at P < 0.05 with means with different alphabets on each row representing significant differences; NS-Not significant.

Table 3: Variability in vessel characteristics of plant species collected from different locations

Plants	Location	No of vessels per square mm	Vessel diameter	Vessel length
Corchorus olitorius	Ogige	2.600 ± 0.170	0.076 ± 0.003ab	0.343 ± 0.020a
	Odoru	4.267 ± 0.547	0.061 ± 0.003b	0.323 ± 0.024a
	Odenigwe	3.867 ± 0.777	0.074 ± 0.003ab	0.299 ± 0.010b
Solanum melongena	Ogige	3.267 ± 0.500	0.076 ± 0.016ab	0.217 ± 0.007b
	Odoru	3.267 ± 0.465	0.091 ± 0.004a	0.086 ± 0.021c
	Odenigwe	3.567 ± 0.531	0.068 ± 0.004b	0.227 ± 0.011b

LSD

Data presented with means ± standard error. Means are separated using least significant difference test (LSD) at P < 0.05 with means with different alphabets on each column representing significant differences; NS-Not significant.
Below are plates showing the microscopic features of *Solanum melogena* and *Corchorus olitorius*.

Plate 1-Transverse section (Ts) of *Corchorus olitorius* (Location- Ogidje; Ts of *Corchorus olitorius* (location- Odo), Plate 3- Ts of *Corchorus olitorius* (location-Odenigwe); Plate 4- Ts of *Solanum melogena* (location- Odenigwe); Plate 5-Ts of *Solanum melogena* (location-Odige);Plate 6- Ts of *Solanum melogena* (location- Odo). Magnification X100.
Figure 1: Vulnerability index of vessel characteristics on the two plant species in different location

Figure 2: Mesomorphy index of vessel characteristics on the two plant species in different location
CONCLUSION

The research showed that the Corchorus olitorius found in Ogige have higher mesomorphy index compared to those found in Odoru and Odenigwe but still <1. Solanum melongena have shown to have less mesomorphy indexes but the species gotten from Ogige region have more mesomorphy index compared to those found in Odoru and Odenigwe. However, both plants can adapt to drier areas but at different degrees. Mitigation and adaptation are the two principal ways of dealing with the threat of climate change (Ozor et al., 2010). Understanding the response of plants to increase drought would be desirable in the light of global and regional changes, not only to forecast population dynamics in natural ecosystem, but also to adjust management practices in agriculture. The research can be diversified by using both field work and lab work approach to understand the various habitats where different species can grow optimally and understanding the impact of anatomy on the physiology of trees and crop plants. Physiology and anatomy are tightly correlated, as cell and tissue structure has changed with respect to the evolution of novel functional mechanisms. (Simpson, 2019). Morpho-anatomical characters supporting the resilience of a plant under certain environmental conditions cannot be interpreted individually but thoroughly along with the physiological factors to determine the ability of plants to survive in the drought environment. (Salsinha et al., 2020).

Acknowledgement

To friends and colleagues who contributed ideas during the study

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

Abd-Allah, S. A. M. and Nasr, M. A. (2002). Effect of sowing date and preservation methods on some Egyptian molokhia genotypes (Corchorus olitorius L.). Journal for Agricultural Research, 31(4):981-995.

Abdellatif, E. and Khalallah, M. (2008). Influence of growth regulators on callus induction from hypocotyls of medium staple cotton (Gossypium hirsutum L.).

Abo, K.A., Fred-Jaiyesimi, A.A. and Jaiyesimi, A.E. (2008). Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in Southwestern Nigeria. Journal for Ethnopharmacology, 115: 67-71.

Adinde, J. O., Ajuziogu, G.C., Nwafor, B.C., Omeje, T.E., Uche, O. J., Anieke, U.J. Ukwuani, C. M., Agu, C. J. and Nwankwo, O. G. (2016): Wood anatomy indices in revegetation of desertified areas. Global Journal for Bioscience and Biotechnology, 5(2): 247-252.

Akueshi, C.O., Kadiri, C.O., Akueshi, E.U., Agina, S.E. and Gurukwem, B. (2002). Antimicrobial potential of Hyptis serrata from Nigeria. Journal for Botany, 15: 37 -41.

Barku, V.Y.A., Boye, A. and Quansah, N. (2013). Antioxidant and wound healing studies on the extracts of Corchorus olitorius leaf. World Essays Journal, 1: 67-73.

Carlquist S. (1977). Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64(7): 887–896.

Dhriti K., Savita B., Marco L., Arti S., Muthusamy R., and Anket S. (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10: 5692-5711.

Dickson, W. C. (2000). Integrative Plant Anatomy. Academic Press, San Diego, 314-317 pp.

Downing, T. (2001): Vulnerability indices. Climate Change Impacts and Adaptation. UNEP, Policy Series, 3: 91 pp.

Furumoto, T., Wang, R., Okazaki, K., Hasan, A.F.M.F., Ali, M.I., Kondo, A. and Fukui, H.(2002). Antitumor promoters in leaves of jute (Corchorus capsularis and Corchorus olitorius). Food Science Technology, 8: 239-243.

Hanson P.M., Yang R.Y., Tsou S.C.S., Ledesma D., Engle L. and Lee T.C. (2006). Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. Journal of Food Composition and Analysis, 19: 594–600.
Heller, N.E. and Zavaleta, E.S. (2009). Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological Conservation, 142:14-32.

Hijmans, R. J. (2012). Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology, 93:679-688.

Ismail, I.F. Golbabapour, S. and Hassandarvish, P. (2012). Gastro protective activity of Polygonumchinense aqueous leaf extract on ethanol-induced hemorrhagic mucosal lesions in rats. Avic Based Complement Alternate Medicine, 20: 40-45.

Klausmeyer K.R., Shaw, M.R., MacKenzie, J.B., Cameron, D.R. (2000). Landscape- scale indicators of biodiversity's vulnerability to climate change. Ecosphere, 2 (8): 1-18.

Kozlowski, T.T. and Pallardy, S. G. (2002). Acclimation and adaptive responses of woody plants to environmental stresses. Botanic Review, 68(2): 270–334.

Lopez F.B. and Barclay G.F. Plant anatomy and physiology, Simone Badal, Rupika Delgoda, pharmacognosy, Academic press, 2017, Pp 45-60

Mahesh, S., Kumar, P. and Anasri, S. (2015). A rapid and economical method for the maceration of wood fibres in Boswellia serrata Roxb. Tropical Plant Research, 2(2):108-111.

Nuwangburuka, C.C. and Denton, O.A. (2012). Heritability, character association and genetic advance in six agronomic and yield related characters in leaf Corchorus olitorius. International Agricultural Research, 7:367–375

Oboh, G., Raddatz, H. and Henle, T. (2009). Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of Jute (Corchorus olitorius) leaf. International Journal for Food Science and Nutrition, 60: 124-134.

Okmen, B., Sigva, H.O., Mutlu, S., Doganlar, S., Yemencioglu, A. and Frary A. (2009). Total antioxidant activity and total phenolics contents in different Turkish eggplant (Solanummelongena L.) cultivars. International Journal of Food Properties, 12: 616–624.

Osawaru, M. E., Ogwu, M. C., Chime, A. O. and Amorighaye, A. R. (2012). Morphological evaluation and protein profiling of three accessions of Nigeria Corchorus L. species. Journal of Pure and Applied Sciences, 5(1): 26-32.

Oyedele, D.J., Asomigho, C. and Awotoye, O.O. (2006). Heavy metals in soil and accumulation by edible vegetables after phosphate fertilizers application. Journal for Agricultural Food Chemical, 5:1446-1453.

Ozor, N., Madukwe, M. C., Onokala, P. C., Enete, A., Garforth, C. J., Eboh, E. C., Ujah, O. And Amaechina, E. (2010). A framework for agricultural adaptation to climate change in Southern Nigeria. A development partnership in higher education (DELPHE) 326 project executive summary. African Institute for Applied Economics.

Salsinha, Y., Maryani, M., Purwestri, Y., A., Indraweda, D. and Rachmawati, D. (2020). Leaf physiological and anatomical characters contribute to drought tolerance of Nusa Tenggara Timur local rice cultivars. Journal of Crop Science and Biotechnology, 24, 337-348

Semra, I., Filiz, S. and Ferdag, C. (2007). Antibacterial and antifungal activity of Corchorus olitorius L. (Molokhia) extracts. International Journal of Natural Engineering Science, 1: 59-61.

Sharma, R.C. and Rashid, A. (1980). Isolation and characterization of catechol oxidase from Solanum melongena. Phytochemistry, 19: 1597 600.

Shaukat, M.A. (2012). Review on Jute. International Journal for Applied Biotechnology, 6(3): 199-20.

Shen, G., Van Kiem, P., Cai, X.F., Li, G., Dat, N.T. and Choi, Y.A. (2005). Solanoflavone, a new biflavonal glycoside from Solanum melongena: Seeking for anti-inflammatory components. Pharmacology Research, 28: 657 9.

Simpson, M G. (2019). Plant systematics. Plant anatomy and physiology. Academic press, Pp 537-566.

Shrivastava, A., Srivastava, N. and Kumar, N. (2012). Phytochemical screening and study of analgesic activity of brinjal leaves. Pharmacology Science, 3: 3028-3033.

Sokoloff, D., Jura-Morawiec, J., & Zoric, L. and Fay, Michael. (2021). Plant anatomy: At the heart of modern
botany. Botanical Journal of the Linnean Society. 195: 249-253.

Patmi, Y. S., Pitoyo, A., Solichatun, and Sutarno. (2020). Effect of drought stress on morphological, anatomical, and physiological characteristics of Cempo Iren cultivar mutant rice (Oryza sativa l.) strain 51 irradiated by gamma-ray. Journal of Physics: Conferences Series: 1436:012015.

Uguru, M. I., Baiyeri, P. and Aba, S. C. (2011). Indicators of climate change in the derived Savannah Niche of Nsukka, South-Eastern Nigeria. Journal of Tropical Agriculture, Food, Environment and Extension, 10(1): 1-10.

Velempini, P., Riddoch, I. and Batisani, N. (2004). Seed treatments for enhancing germination in wild okra (C.olitorius). Experimental Agriculture, 39: 441-447.

Waipara, N. W., Obanor, F. O. and Walter, M. (2002). Impact of phylloplane management on microbial population. Plant Protection Society.55:125-128.

Yoshikawa, M., Shimada, H., Saka, M., Yoshizumi, S., Yamahara, J. and Matsuda, H. (1997). Medicinal foodstuffs. V. Moroheya (1): Absolute stereostructures of corchoionosides A, B and C, histamine inhibitors from the leaves of Vietnamese Corchorus olitorius L. (Tiliaceae). Chemical Pharmacy,45: 464-469.

Zakaria, Z. A., Somchit, M. N., Zaiton, H., Jais, A. M. and Sulaiman, M.R. (2006). The in vitro antibacterial activity of C. olitorius extracts. International Journal of Pharmacology,2: 213-215.