Neutrinoless double beta decay and nuclear environment

F. Šimkovic1,2,3, M.I. Krivoruchenko3,4,5, S. Kovalenko6
1Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK-84215 Bratislava, Slovakia
2Laboratory of Theoretical Physics, JINR, RU-141980 Dubna, Moscow region, Russia
3Czech Technical University in Prague, 128-00 Prague, Czech Republic
4Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow, Russia
5Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
6Universidad Tecnica Federico Santa Maria, Centro-Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso, Chile

e-mail: simkovic@fmph.uniba.sk

Abstract. We show that the presence in the nuclear medium of lepton number violating four-fermion interactions of neutrinos with quarks from a decaying nucleus could account for an apparent incompatibility among the 0νββ searches in the laboratory, the direct neutrino mass measurement with the nuclear β-decay and cosmological data.

1. Introduction
The most sensitive probe for Majorana neutrinos mass is the neutrinoless double-beta decay (0νββ-decay) \cite{1},
\[(A, Z) \rightarrow (A, Z + 2) + 2e^-, \] (1)
whereby a nucleus decays by emitting only two electrons, while changing its charge by two units.

The 0νββ-decay has not been observed yet. The main aim of experiments on the search for 0νββ-decay is the measurement of the effective Majorana mass $m_{\beta\beta}$. The inverse value of the 0νββ-decay half-life can be written as \cite{1}
\[(T_{1/2}^{0\nu})^{-1} = m_{\beta\beta}^2 g_A^4 |M_{0\nu}|^2 G_{0\nu}(E_0, Z). \] (2)
Here, $G_{0\nu}(E_0, Z)$ and $M_{0\nu}$ are, respectively, the known phase-space factor (E_0 is the energy release) and the nuclear matrix element. g_A is the axial vector coupling constant.

2. The effect of nuclear environment on $m_{\beta\beta}$
The neutrino oscillation data, accumulated over many years, converge towards a minimal three-neutrino framework, where known flavor states (ν_e, ν_μ, ν_τ) are expressed as a quantum superpositions of three massive states ν_i (i=1,2,3) with masses m_i. We have
\[|\nu_\alpha\rangle = \sum_{j=1}^{3} U_{\alpha j}^* |\nu_j\rangle \quad (\alpha = e, \mu, \tau). \] (3)
The Pontecorvo-Maki-Nakagawa-Sakata neutrino mixing matrix U is represented by six parameters: three lepton mixing angles ($\theta_{12}, \theta_{23}, \theta_{13}$), CP-violating Dirac phase δ, and two CP-violating Majorana phases α_1, α_2.

Neutrino oscillation experiments cannot tell us about the overall scale of neutrino masses. The measured two neutrino mass squared differences suggest two scenarios for neutrino mass pattern: i) Normal Spectrum: $m_1 < m_2 < m_3$; ii) Inverted Spectrum, $m_3 < m_1 < m_2$.

Absolute neutrino masses in vacuum are probed via three main methods:

i) The first one is provided by tritium β-decay, sensitive to so-called effective electron neutrino mass m_β,

$$m_\beta = \left[\sum_{i=1}^{3} |U_{e i}|^2 m_i^2 \right]^{1/2} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2 \right]^{1/2}.$$ \hspace{1cm} (4)

Currently, from the Mainz and Troitsk experiments we have $m_\beta < 2.1$ eV. The KATRIN experiment in construction aims at reaching a sensitivity of $m_\beta = 0.2$ eV2 [1].

ii) The second observable is the effective Majorana mass,

$$m_{\beta\beta} = \left| \sum_{k=1}^{3} U_{e k}^2 m_k \right| = \left| c_{13}^2 c_{12}^2 m_1 e^{i\alpha_1} + c_{13}^2 s_{12}^2 m_2 e^{i\alpha_2} + s_{13}^2 m_3 \right|,$$ \hspace{1cm} (5)

which enters the $0\nu\beta\beta$-decay half-life in Eq. (2). The current $0\nu\beta\beta$-decay data imply $|m_{\beta\beta}| \lesssim (0.20 - 0.3)$ eV [1]. In future experiments a sensitivity $m_{\beta\beta} \lesssim$ a few meV is planned to be reached.

iii) The third observable is the cosmological mass Σ, which is the sum of three active neutrino masses ($\Sigma = m_1 + m_2 + m_3$). The combination of several cosmological data sets allows to put an upper bound $\Sigma < 0.18$ eV [1].

Recently, it was proposed that the neutrino mixing and masses in nucleus can differ significantly from those in vacuum, if there are exotic particles, preferably scalars, which do interact with neutrinos. The nuclear matter effect on the $0\nu\beta\beta$-decay rate can be calculated in the mean field approach [2].

The effective lepton number violating four-fermion neutrino-quark Lagrangian with the operators of the lowest dimension can be written as

$$L_{eff} = \frac{1}{\Lambda^2_{LNV}} \sum_{i,j,q} \left(g^{\nu L}_{ij} \bar{\nu}_{Li} \nu_{Lj} \bar{q} q + H.c. \right),$$ \hspace{1cm} (6)

where the fields ν_{Lj} are the active neutrino left-handed flavor states, $g^{\nu L}_{ij}$ are their dimensionless couplings to the scalar quark currents with $i, j = e, \mu, \tau$.

For sake of simplicity we consider case of scalar coupling such that $2 \hat{g}_{ij} / \Lambda^2_{LNV} = \delta_{ij} g$, where $\hat{g} = U^\dagger g^2 U$ In this case the effective Majorana mass (5) is

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} (U_{ei})^2 \xi_i |m_i - \langle qq \rangle g| \right|.$$ \hspace{1cm} (7)

The Majorana phase factor ξ_i is given in [2].

With the above simplification the quantity $m_{\beta\beta}$ in nuclear medium in comparison with the one in vacuum depends on the new unknown parameter g. The unknown phases in Eq. (7) are varied in the interval $[0, 2\pi]$. In Figure 1 $m_{\beta\beta}$ is expressed as a function of a directly observable parameters, namely m_β and Σ. The best-fit values of vacuum mixing angles and the neutrino mass squared differences are taken from [3]. In upper and lower panels green, blue and red bands refer to values $\langle qq \rangle g = 0$ (vacuum), 0.1, and -0.05 eV, respectively. We see that in-medium ($g \neq 0$) values of $m_{\beta\beta}$ differ significantly from those for a vacuum ($g = 0$).
Figure 1. (Color online) The allowed range of values for effective Majorana mass $m_{\beta\beta}$ as a function of the effective electron neutrino mass m_β (left panels) and sum of neutrino masses Σ (right panels). The upper and lower panels correspond to the cases of the inverted and normal spectrum of neutrino masses. In panels yellow, blue and red bands refer to $\langle \bar{q}q \rangle g = 0$ (vacuum), 0.1, and -0.05 eV, respectively.

3. Conclusion
In summary, if in the future gradually improving limits on m_β and Σ will come into conflict with the possible evidence of the $0\nu\beta\beta$-decay represented by $m_{\beta\beta}$ in vacuum, new physics would be mandatory. A possible explanation could be a generation of in-medium Majorana neutrino mass due to nonstandard interactions of neutrinos with nuclear matter of decaying nuclei.

References
[1] J.D. Vergados, H. Ejiri, and F. Šimkovic, Rep. Prog. Phys. 71 (2012) 106301.
[2] S. Kovalenko, M.I. Krivoruchenko, F. Šimkovic, Phys. Rev. Lett. 112 (2014) 142503.
[3] F. Capozzi et al., Phys. Rev. D 89 (2014) 093018.