Respiratory changes in the E/A wave pattern can be an early sign of diastolic dysfunction: An echocardiographic long-term follow-up study

Tayfun Sahin, Umut Celikyurt, Teoman Kilic, Goksel Kahraman, Güliz Kozdag, Aysen Agacdiken, Ertan Ural, Dilek Ural

Kocaeli University, Medical Faculty, Department of Cardiology, Kocaeli, Turkey

Source of support: Departmental sources

Summary

Background: The left ventricular filling pattern may show changes during respiration, which are generally used in the diagnosis of diastolic dysfunction. The clinical importance of the respiratory E/A wave pattern change has been investigated in a limited number of studies. The aim of the present study was to assess the diastolic function of hypertensive patients with respiratory changes in mitral flow over a long-term follow-up period.

Material/Methods: Our study included 107 newly diagnosed and untreated hypertensive patients (49 males; mean age, 46±10 years) with respiratory changes during transthoracic echocardiography (TTE). In addition, the patient group was classified into 2 groups according to the change in E/A pattern by the Valsalva maneuver. After a mean follow-up period of 44±7 month, 90% of the hypertensive patients and the entire control group were re-examined.

Results: Relaxation abnormalities developed in 84% of the patients (58/80) in the Valsalva-positive group after the follow-up period. The frequency of relaxation abnormalities was 60% in the Valsalva-negative group and 3.1% in the control group (p<0.001). Based on multivariate regression analysis, the echocardiographic predictors of the development of relaxation impairment were mitral E velocity, A velocity, deceleration time, isovolumetric contraction time, E/E’ ratio, and the presence of respiratory change. The most important parameter for the development of an abnormal relaxation pattern was the presence of respiratory change after adjustment according to the changes with the Valsalva maneuver.

Conclusions: Respiratory change in mitral flow can be evaluated as an early sign of diastolic dysfunction in patients with hypertension.

key words: respiratory changes • hypertension • diastolic dysfunction • Doppler echocardiography

Full-text PDF: http://www.medscimonit.com/fulltxt.php?ICID=883472

Word count: 2221

Tables: 4

Figures: –

References: 38

Author’s address: Tayfun Sahin, Kocaeli University Medical Faculty Cardiology Department, Umuttepe Yerleskesi Eski Istanbul Yolu 10. km 41380 Umuttepe, İzmit, Turkey, e-mail: tayfuns@yahoo.com
BACKGROUND

One of the earliest manifestations of hypertensive heart disease is left ventricular diastolic dysfunction, followed by left ventricular hypertrophy. Doppler echocardiography has become the primary non-invasive tool for the identification of left ventricular diastolic dysfunction [1,2]. The early diagnosis of diastolic dysfunction in asymptomatic patients may provide an opportunity to manage the underlying disease and to prevent progression to heart failure. However, in some hypertensive patients, routine echocardiographic examination may not reveal any abnormalities (either diastolic dysfunction or significant left ventricular wall thickening) in spite of a documented blood pressure elevation for several months or years.

Pulsed Doppler echocardiographic examination of mitral inflow has been widely used to evaluate left ventricular diastolic function. However, it is well-known that diastolic filling indices are highly preload-dependent [3,4]. Preload alterations or other maneuvers (e.g., Valsalva maneuver) may significantly change the mitral inflow pattern [5,6]. In some patients, a reversal in the mitral flow E/A ratio is observed during spontaneous respiration [7,8]. The E and A waves show an abnormal relaxation pattern during inspiration and a normal filling pattern during expiration. This phenomenon is considered as an early sign of diastolic dysfunction; however, its clinical importance has only been investigated in a limited number of studies. The aim of the present study was to assess the diastolic function of hypertensive patients with respiratory changes in mitral flow during a long-term follow-up period.

MATERIAL AND METHODS

Patients

The study included 137 hypertensive patients admitted to our university clinic with the diagnosis of new onset and untreated essential hypertension with respiratory reversal in E/A flow. The control group consisted of 32 normotensive subjects with normal cardiovascular histories, physical examinations, and normal diastolic function without respiratory changes in mitral flow. The study protocol was approved by the local Ethics Committee and all subjects gave written informed consent to participate in the study.

All patients underwent a thorough clinical, physical, and electrocardiographic examination. Patients with clinical findings suggesting heart failure (n=5), arrhythmic events (n=6), significant valvular disease (n=12), and coronary artery disease (n=7) were excluded from the study. As a result, 107 patients (49 males and 58 females) were evaluated.

Methods

Echocardiographic examination of the patients and the controls was performed with a Vivid 7 ultrasound machine (GE Medical Systems, Horten, Norway) using a broadband transducer. Evaluation of the patient group was performed by the local Ethics Committee and all subjects gave written informed consent to participate in the study.

All analyses were performed using SPSS for Windows (version 11; SPSS Inc., Chicago, IL, USA). Data are expressed as the mean value and 1 standard deviation. Clinical and
echocardiographic findings of the patient and control groups were compared with an unpaired 2-sample t test or a Mann-Whitney U test. Non-parametric variables were compared with a chi-square test. In subjects who performed the Valsalva maneuver, data before and after the maneuver were compared with a paired samples t test for variables with a Gaussian distribution or the Wilcoxon signed rank test for variables with a non-Gaussian distribution. A p value <0.05 was accepted as statistical significance.

Intra-observer variability

All echocardiographic studies and measurements were performed by the same cardiologist (T. S.). The intra-observer variability was as follows: r=0.98 for Doppler measurements; r=0.96 for PV measurements; and r=0.98 for PW-TDE measurements.

RESULTS

The demographic and clinical characteristics, as well as echocardiographic parameters of 107 hypertensive patients and 32 healthy volunteers, are presented in Table 1.

The age, baseline blood pressure, and IVS, PW, LVDd, left atrium (LA), and LVMI values were higher in the hypertensive group compared to the control group.

The pulsed-wave Doppler findings at end-expiration and end-inspiration of the patients and controls are summarized in Table 2.

While the E and PV values at end-expiration were significantly lower in the hypertensive patients compared to the controls, the A, E/A, DT, and IVRT values were significantly higher. The E and PV values at end-inspiration were significantly lower in the hypertensive group compared to the control group, while the A, DT, and IVRT values were significantly higher. The mitral annulus TDE values are presented in Table 3.

A significant difference was found between the parameters of the hypertensive and control groups. The E’/A’ values were significantly lower in the hypertensive group compared to the control group in the 4 measurement regions, and the septal and inferior mitral annulus values were <1.0.

Table 1. Baseline characteristics of the patients and the controls.

	Hypertensive patients	Controls	p
Age (years)	46±10	39±7	<0.001
Gender (F/M)	58/49	21/11	NS
Body mass index (kg/m²)	28±5	27±5	NS
Smoking	28 (26)	10 (31)	NS
Diabetes mellitus	12 (11)	3 (9)	NS
Systolic blood pressure (mmHg)	183±20	120±8	<0.001
Diastolic blood pressure (mmHg)	103±10	78±5	<0.001
IVS (mm)	9.2±1.0	8.6±0.9	<0.001
PW (mm)	9.0±0.9	8.4±0.8	<0.001
LVDd (mm)	48.9±3.4	46.8±3.2	0.003
LA (mm)	36±3	35±3	0.02
LVMI (g/m²)	98±19	86±16	<0.001
EF (%)	71±4	71±5	NS
FS (%)	40±4	40±4	NS

The results are expressed as mean ±SD or n (%). F – female; M – male; NS – not significant; IVS – interventricular septum; PW – posterior wall; LVDd – left ventricular end-diastolic dimension; LA – left atrium; LVMI – left ventricular mass index; EF – ejection fraction; FS – fractional shortening.

Table 2. Pulsed-wave Doppler findings at end-expiration and end-inspiration of the patients and controls.

	Hypertensive patients	Controls	p
End-expiration			
E (cm/s)	0.81±0.14	0.87±0.16	0.04
A (cm/s)	0.70±0.13	0.67±0.11	NS
E/A	1.16	1.3	0.001
DT (ms)	198±20	181±16	0.001
IVRT (ms)	90±7	86±7	0.005
PV (cm/s)	409±58	470±47	0.001
End-inspiration			
E (cm/s)	70±16	88±18	<0.001
A (cm/s)	80±15	66±14	<0.001
E/A	0.93±0.74	1.35±0.25	0.002
DT (ms)	234±22	197±21	<0.001
IVRT (ms)	108±7	94±7	<0.001

	Valsalva maneuver		
E (cm/s)	68±19	83±18	<0.001
A (cm/s)	80±18	67±14	<0.001
E/A	0.92±0.69	1.25±0.24	0.009
DT (ms)	274±39	216±13	<0.001
IVRT (ms)	121±12	100±7	<0.001

SD – standard deviation; NS – not significant; E – early diastolic peak flow velocity; A – late diastolic peak flow velocity; DT – deceleration time; IVRT – isovolumetric relaxation time; PV – propagation velocity.

The pulsed-wave Doppler findings at end-expiration and end-inspiration of patients and controls are summarized in Table 2.

While the E and PV values at end-expiration were significantly lower in the hypertensive patients compared to the controls, the A, E/A, DT, and IVRT values were significantly higher. The E and PV values at end-inspiration were significantly lower in the hypertensive group compared to the control group; however, the A, E/A, DT, and IVRT values were significantly higher. The E and E/A values in measurements during the Valsalva maneuver were significantly lower in the hypertensive group compared to the control group, while the A, DT, and IVRT values were significantly higher. The mitral annulus TDE values are presented in Table 3.

A significant difference was found between the parameters of the hypertensive and control groups. The E’/A’ values were significantly lower in the hypertensive group compared to the control group in the 4 measurement regions, and the septal and inferior mitral annulus values were <1.0.
After a mean follow-up period of 44±7 months, 90% of the hypertensive patients (n=96) and the entire control group were re-examined with echocardiography. The results are presented in Table 4.

Relaxation abnormalities developed in 84% of the patients (58/80) in the Valsalva-positive group after the follow-up period. The frequency of relaxation abnormalities was 60% (6/10) in the Valsalva-negative group and 3.1% (1/32) in the control group (p<0.001). Based on multivariate regression analysis, the echocardiographic predictors of the development of relaxation impairment were mitral E velocity, A velocity, DT, ICT, E/A’ ratio, and the presence of respiratory change. The most important parameter for the development of an abnormal relaxation pattern was the presence of respiratory change after adjustment according to the changes with the Valsalva maneuver.

DISCUSSION

Left ventricular diastolic dysfunction (LVDD) is a preliminary finding in many cardiac disorders and diastolic dysfunction is a significant cardiac finding, even if the patient has normal left ventricular systolic function [13]. The predominant role of arterial hypertension in the development of diastolic heart failure was first noted in the Framingham study [14]. Detection of LVDD, which is an early sign in preventing heart failure in hypertensive patients, is especially important in those who are asymptomatic. Several diagnostic guidelines and echocardiographic parameters are used for the detection of left ventricular diastolic functions. The diagnosis of diastolic dysfunction can sometimes be missed due to variability in guidelines or echocardiographic parameters [15]. Owing to certain limitations and/or advantages of these parameters, it is recommended that patients be assessed by more than 1 parameter, also taking clinical features into account [16–19].

There are several physiologic variables that affect diastolic functions and may lead to diagnostic difficulties by affecting Doppler echocardiography parameters [20]. Most of the current information about the effects of various physiologic conditions, including respiration on echocardiographic parameters, comes from studies conducted in healthy volunteers or experimental animal studies [8,21–33]. The effect of respiration in patients with diastolic dysfunction has yet to be defined. In the current study we evaluated respiratory change in mitral flow as an early sign of diastolic dysfunction in patients with hypertension by pulsed-wave Doppler and tissue Doppler echocardiography.

Although the exact prevalence of diastolic abnormalities in the normal population is not known, diastolic dysfunction has been reported in 3% of the population by echocardiographic evaluation [14]. Similar to this finding, relaxation abnormalities were found in 3.1% of healthy controls during the follow-up period in our study.

Tsai et al. [7] investigated the respiratory changes of Doppler transmitral flow velocity indices in 20 patients with coronary artery disease and found that left ventricular early diastolic filling can be reduced by inspiration. We also found that E values at end-inspiration were decreased in hypertensive patients. A more pronounced reduction was noted with the Valsalva maneuver. It has been reported that reduction of preload is important in determining the diastolic filling grade [34]. Performing the Valsalva maneuver as a preload reduction method during Doppler echocardiographic evaluation may facilitate the detection of LVDD through unmasking in patients who appear normal [35]. In their study involving 51 patients with hypertension, Yuan et al. [36] reported that they observed this characteristic phenomenon in 19.6% of the patients and stated that considering this phenomenon within the normal or abnormal group of pattern classification was controversial. They also suggested that because E/A <1 is usually thought to represent abnormal left ventricular filling and 1≤E/A<2 with E/A<1 is thought to be pseudonormal left ventricular filling, the phenomenon of E/A<1 on inspiration appears to be in between the abnormal relaxation and pseudonormal patterns. In addition, this phenomenon is a strong indication that reverse E/A value on end-inspiration, rather than on end-expiration, might be a more sensitive and accurate indicator for abnormal left ventricular diastolic function, which may help early identification of diastolic dysfunction. In the present study, we found in the hypertensive group that the mean baseline E/A value was 1.16 at end-expiration and 0.93 at end-inspiration, which was compatible with the characteristic phenomenon. The mean E/A values in hypertensive patients were <1.0 at the end of the follow-up period. The LVDD can be determined at the time of initial diagnosis in hypertensive patients and the prevalence is increased during long-term follow-up.

Table 3. The pulsed-wave tissue Doppler echocardiography findings of the patients and controls.

	Hypertensive patients Mean ±SD	Controls Mean ±SD	p
Lateral mitral annulus			
E’	0.15±0.03	0.18±0.03	<0.001
A’	0.14±0.03	0.13±0.03	NS
E’/A’	1.20±0.30	1.50±0.20	<0.001
Septal mitral annulus			
E’	0.13±0.03	0.16±0.02	<0.001
A’	0.14±0.03	0.12±0.02	0.003
E’/A’	0.97±0.30	1.30±0.20	<0.001
Anterior mitral annulus			
E’	0.14±0.03	0.18±0.03	<0.001
A’	0.14±0.03	0.12±0.02	0.03
E’/A’	1.10±0.30	1.50±0.30	<0.001
Inferior mitral annulus			
E’	0.30±0.02	0.17±0.03	<0.001
A’	0.50±0.02	0.13±0.02	<0.001
E’/A’	0.90±0.20	1.30±0.20	<0.001

SD – standard deviation; NS – not significant; E’– peak early diastolic mitral annular velocity; A’ – peak late diastolic mitral annular velocity.
DT has been used as a measure of chamber stiffness [37]. Yuan et al. [36] found that DT on expiration was significantly shortened compared to inspiration. Hsu et al. [38] showed that DT did not exhibit significant variation with respiration in hypertensive patients. We found that DT values at end-expiration were shorter in our study.

Relaxation abnormalities developed in 84% of the patients (58/80) in the Valsalva-positive group after the follow-up period. This frequency was 60% (6/10) in the Valsalva-negative group and 3.1% (1/32) in the control group (p<0.001). The most important parameter for the development of an abnormal relaxation pattern was the presence of respiratory change after adjustment according to the changes with the Valsalva maneuver.

As only newly diagnosed hypertensive patients were included in our study, the mean age of the patients was close to the middle-age range; however, the control group consisted of younger individuals. This difference between the mean age of the patients and controls may be considered a limitation of our study. Thus, larger studies, especially including elderly patients, are needed.

Conclusions

In conclusion, respiratory change in mitral flow can be evaluated as an early sign of diastolic dysfunction in patients with hypertension. A significant percentage of those patients, especially those with respiratory changes, will develop diastolic dysfunction in subsequent years. It should be kept in mind during assessment of diastolic function in patients at risk for cardiovascular disease that echocardiographic parameters may be affected by respiration. Hypertensive patients with normal transmitral Doppler pattern should also be investigated with the Valsalva maneuver.

Statement

The authors declare they have no conflict of interest regarding this article.

References:

1. Khouri SJ, Mah GT, Suh DD, Walsh TE: A practical approach to the echocardiographic evaluation of diastolic function. J Am Soc Echocardiogr, 2004; 17: 290-97
19. Danzmann LC, de Freitas VC, Araújo LF, Torres MA: Assessment of left ventricular relaxation. Int J Cardiol, 2005; 98: 67–72.

18. Khan S, Bess RL, Rosman HS et al: Technical aspects of diastology: why mitral inflow and tissue Doppler imaging are the preferred parameters? Echocardiography, 2006; 23: 332–39.

17. Bella JN, Wachtell K, Palmieri V et al: Relation of left ventricular geometric alterations, sample position, and normal values. J Am Soc Echocardiogr, 2002; 15: 1225–31.

16. Ommen SR, Nishimura RA, Appleton CP et al: Clinical utility of Doppler echocardiographic techniques for determination of left ventricular diastolic function in hemodialysis patients. J Am Soc Nephrol, 2003; 14: 1858–62.

15. Almuntaser I, Brown A, Murphy R et al: Comparison of echocardiography and tissue Doppler echocardiography in patients with coronary artery disease. Am Heart J, 1998; 136: 99–102.

14. Fischer M, Baessler A, Hense HW et al: Prevalence of left ventricular diastolic dysfunction in healthy children. Eur Heart J, 1996; 17: 453–56.

13. Tsai LM, Kuo KJ, Chen JH: Effects of spontaneous respiration on transmural Doppler flow patterns in normal subjects and patients with coronary artery disease. Am Heart J, 1999; 138: 556–61.

12. Alsheh MK, Onishi K, Dohi K et al: Mitral annulus velocities by Doppler tissue imaging: practical implications with regard to preload alterations, sample position, and normal values. J Am Soc Echocardiogr, 2002; 15: 600–58.

11. Phillips RA, Diamond JA: Ambulatory blood pressure monitoring and echocardiography – noninvasive techniques for evaluation of the hypertensive patient. Prog Cardiovasc Dis, 1999; 41: 397–440.

10. Dumesnil JG, Gaudreault G, Honos GN, Kingma GJ Jr: Use of Valvulovenous maneuver to unmask left ventricular diastolic dysfunction abnormalities by Doppler echocardiography in patients with coronary artery disease or systemic hypertension. Am J Cardiol, 1999; 61: 513–19.

9. Sahn DJ, DeMaria A, Kisslo J, Weyman A: Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation, 1978; 58: 1072–83.

8. Alehan FK, Ozkutlu S, Alehan D: Effects of respiration on left ventricular diastolic function in hypertensive patients. Clin Physiol Funct Imaging, 2005; 25: 327–31.

7. Tsai LM, Kuo KJ, Chen JH: Effects of spontaneous respiration on transmural Doppler flow patterns in normal subjects and patients with coronary artery disease. Eur Heart J, 2000; 21: 108–12.