First report of environmental isolation of *Cryptococcus neoformans* and other fungi from pigeon droppings in Makkah, Saudi Arabia and *in vitro* susceptibility testing

Hussein Hasan Abulreesh1, Sameer Rushdi Organji1, Khaled Elbanna1,2, Gamal Ebrahim Haridy Osman1,3, Meshal Helal Kareem Almalki1, Ahmed Yahya Abdel-Mallek1,4

1Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
2Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
3Agriculture and Genetic Engineering Research Institute (AGER) - ARC, Giza, Egypt
4Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt

ABSTRACT

Objective: To verify the occurrence of *Cryptococcus neoformans* (*C. neoformans*) and other fungi in samples of pigeon droppings collected from Makkah city, Saudi Arabia.

Methods: One hundred and twelve withered pigeon dropping samples were collected from 12 different districts. Using the dilution plate technique, samples were cultured on Sabouraud dextrose agar and esculin agar. Colonies were examined microscopically and *C. neoformans* identification is confirmed by India ink preparation, observation of urease activity and brown pigmentation on esculin medium. Susceptibility patterns of five yeast species and four molds against five antifungal drugs were tested using agar disk diffusion method.

Results: *C. neoformans* was recovered from 38 samples (34%). Na’aman valley was recorded to be the highest contaminated site (66.7%) with *C. neoformans*, while the samples collected from Al Awaly district were considered as the lowest contaminated samples (6.7%). Also, twenty species related to sixteen genera of fungi other than *C. neoformans* were recovered from which, three yeast genera were recorded. The antifungal susceptibility testing showed that the nine tested fungal species were sensitive to Mycosat, while Fungican exerted inhibition zones of four species only.

C. neoformans was moderately sensitive towards all tested compounds but it can resist Flucoral where no inhibition zone could be detected.

Conclusions: Our results are considered to be the first report on the environmental prevalence of *C. neoformans* in pigeon feces in Makkah, Saudi Arabia. The data indicated that pigeon droppings can be considered as a potential source of this basidiomycetous yeast in addition to other fungal species in this region.

Keywords:

Cryptococcus neoformans
Fungi
Pigeon droppings
Susceptibility testing
Antifungal compounds
Makkah

1. Introduction

Makkah is located in a narrow valley at a height of 277 m above sea level (Figure 1a). The resident population in 2012 was roughly 7.47 million representing 26% of the total Saudi Arabian population[1]. Visitors to Makkah can reach more than 7 million every year. Makkah is characterized by the existence of a large number of free-living pigeon flocks in many sites of the city. In general, wild free-living birds (e.g. pigeons) are regarded as visible indicators of diverse and healthy environments. Yet, from a public health standpoint, this positive view may not always be valid, since free-living birds carry a diversity of microorganisms that are pathogenic to humans[2]. Pigeon droppings have been reported as the major environmental source of *Cryptococcus neoformans* (*C. neoformans*) as well as many other pathogens in several countries[3-5]. *C. neoformans* is an encapsulated yeast-like fungus that causes cryptococcosis and its inhalation from environmental sources may cause pulmonary and neurological diseases in susceptible humans[6]. The incidence of cryptococcal infection has recently increased around the world as a result of a large increase in patients suffering from AIDS, population aging, and the expanded use of immunosuppressive drugs for cancer treatment and organ transplantation[6-8]. Since there are no available studies on the environmental distribution of *C. neoformans* in Saudi Arabia, there is an urgent need to investigate this point. The present study...
can be considered as the first step that aimed to know the extent of existence and environmental distribution of \textit{C. neoformans} in pigeon droppings in Makkah that is considered as the highest populated city in Saudi Arabia.

2. Materials and methods

2.1. Collection of samples

Total of one hundred and twelve samples of withered pigeon droppings were collected from 12 different sites within the city (Figure 1b), over a period of six months (July to December, 2014). The samples were placed in sterile universal bottles and processed in the same day of sampling.

2.2. Isolation and identification of \textit{C. neoformans} and other fungi

The method described by Xavier \textit{et al.} was adapted as follows: About 10 g of withered pigeon droppings from each site were transferred to Erlenmeyer flasks containing a saline solution (0.9%) with chloramphenicol (200 mg/L), achieving 1:10 dilution (w/v) \cite{9}. The mixture was shaken for 20 min and allowed to settle for 30 min. Aliquots of 0.5 mL supernatant were streaked on esculin agar (Oxoid, Basingstoke, UK) for isolation of \textit{C. neoformans} and on Sabouraud dextrose agar (SDA) (Oxoid), for isolation of other fungal species \cite{10}. The plates were then incubated at 37 °C for 10 days. Each inoculated plate was examined daily for yeast growth. Colonies with a mucous apperence and those with brown pigmentation on esculin agar (Oxoid) were selected and subcultured on SDA slants to obtain pure cultures. For identification of \textit{C. neoformans}, morphological and biochemical tests were used. The presence of capsule on India ink preparation was considered as one of the bases of \textit{C. neoformans} identification and confirmed by melanin synthesis on esculin agar (Oxoid), urease production on urea agar (Oxoid), and ability to grow at 37 °C \cite{9,11}. The other fungal species growing on SDA were identified microscopically.

2.3. Antifungal susceptibility testing

Agar disk diffusion method described by Elbanna \textit{et al.} was mainly applied, and five antifungal compounds were purchased from different pharmacies in Makkah city to examine the antifungal susceptibility patterns of \textit{C. neoformans} and other medically important fungal species that were recovered from pigeon feces \cite{12}. These antifungal drugs were: Batrafen (ciclopirox–olamine), Canasten (clotrimazole), Fluoral (fluconazole), Fungican (fluconazole) and Mycosat (nystatin). The tested species were \textit{Aspergillus flavus} (\textit{A. flavus}), \textit{Candida albicans} (\textit{C. albicans}), \textit{C. neoformans}, \textit{Rhizopus stolonifer} (\textit{R. stolonifer}), \textit{Rhodotorula mucilaginosa} (\textit{R. mucilaginosa}), \textit{Syncephalastrum racemosum} (\textit{S. racemosum}), \textit{Trichoderma harzianum} (\textit{T. harzianum}), \textit{Trichosporon asahii} (\textit{T. asahii}) and \textit{Trichosporon mucoides} (\textit{T. mucoides}). Potato dextrose agar plates were inoculated with each tested species by swabbing the fresh cultures onto the surface of agar plates. Sterilized filter paper discs (6 mm) were saturated with 100 µg/mL of each tested antifungal drug and subsequently dried at 40 °C. The dried disks were transferred to the surface of the inoculated plates in triplicates. Plates were incubated for 36 h at the optimum temperature for each fungal species and their sensitivity to the antifungal compounds was determined by measuring the diameter of inhibition zones (mm). Sterilized water without tested compounds was used as a control.

3. Results

\textit{C. neoformans} was recovered from 38 out of 112 (34%) pigeon droppings in 11 out of 12 sites examined. Samples collected from site number 3 yielded negative result (Table 1). The highest rate of \textit{C. neoformans} contamination was recorded from the samples collected.
from Na’aman valley (site number 10), where 66.7% (four out of six samples) was positive. North Aziziya (site number 11) came second to Na’aman valley regarding C. neoforms recovery rate where it was isolated from 9 out of 16 (56.3%) samples. Al-Hegra district came third, where 50% of samples (3 out of 6) were positive (Table 1). C. neoforms was also recorded in four other sites (6, 1, 7 and 12) with percentage of contamination as: 40.0%, 37.5%, 33.3% and 33.3%, respectively. The occurrence of C. neoforms in samples collected from sites number 5, 8 and 9 were ranged between 20%–25%. On the other hand, samples collected from Al-Awaly district recorded the lowest rate of recovery, where C. neoforms was isolated once out of 15 samples representing 6.7% of tested samples (Table 1).

Table 1

Site of isolation	Site number	Total number of samples	Positive samples	% of positive samples
Al-Ahedia	1	16	6	37.5
Al-Awaly	2	15	1	6.7
Al-Hamraa	3	1	0	0.0
Al-Hegra	4	6	3	50.0
Al-Nawaria	5	4	1	25.0
Al-Onma	6	5	2	40.0
Al-Sharayie	7	9	3	33.3
Ashawquia	8	17	4	23.5
Gorana	9	5	1	20.0
Na’aman valley	10	6	4	66.7
North Aziziya	11	16	9	56.3
South Aziziya	12	12	4	33.3
Total	112	38	34.0	

The isolation of other yeast and molds species from pigeon fecal droppings was shown in Table 2. Twenty species related to sixteen fungal genera were isolated within the twelve sites that were surveyed. Mucorales were represented by 8 species related to 6 genera from which R. stolonifer, S. racemosum and Mucor hiemalis were the most common and appeared in 16.1%, 11.6% and 10.7% of the examined samples, respectively. According to the diversity of genera, the genus Aspergillus ranked the second to Mucorales isolated from pigeon fecal samples and was represented by five species, namely, A. flavus, Aspergillus niger (A. niger), Aspergillus parasiticus, Aspergillus tamarii and Aspergillus terreus. The remaining genera listed in Table 2 were represented either by two or one species. A. niger and R. mucilaginosa were recorded in high frequency of occurrence and isolated from 43 and 35 pigeon fecal samples representing 38.4% and 31.3%, respectively. A. flavus, R. stolonifer and Saccharomyces species were encountered in moderate frequency of occurrence. The remaining fungal species were recovered from less than 15% of the samples.

Antifungal susceptibility patterns against five antifungal drugs were shown in Table 3. C. albicans and T. mucoides were sensitive to all tested antifungal compounds followed by T. harzianum, C. neoforms, R. mucilaginosa and A. flavus that were sensitive to 4 out of 5 tested compounds. S. racemosum and T. asahii were sensitive to three out of five compounds. On the other hand, R. stolonifer exhibited the lowest susceptibility patterns to all tested compounds. Also, it was noticed that Mycosat was found to be effective as antifungal compound against all tested isolates, followed by Canasten and Flucoral.

Table 2

| Fungal genera and species (other than C. neoforms) isolated from pigeon droppings in Makkah. |
|---------------------------------|-----------------|------------------|
| **Fungal genera and species** | **No. of isolation** | **Frequency of occurrence %** |
| Actinomucor elegans | 2 | 1.8R |
| Absidia corymbifera | 1 | 0.9R |
| A. flavus | 22 | 19.6M |
| A. niger | 43 | 38.4H |
| Aspergillus parasiticus | 13 | 11.6L |
| Aspergillus tamarii | 3 | 2.7R |
| Aspergillus terreus | 7 | 0.9R |
| C. albicans | 14 | 12.5L |
| Cunninghamella echinulata | 4 | 3.6R |
| Mucor hiemalis | 12 | 10.7L |
| Mucor racemosus | 10 | 8.9L |
| Papulaspora candida | 9 | 8.0L |
| Penicillium spp. | 7 | 6.3L |
| Rhizoctonia solani | 4 | 3.6R |
| Rhizopus oryzae | 2 | 1.8R |
| R. stolonifer | 18 | 16.1M |
| R. mucilaginosa | 35 | 31.3H |
| Saccharomyces spp. | 18 | 16.1M |
| S. racemosum | 13 | 11.6L |
| T. harzianum | 1 | 0.9R |
| T. asahii | 7 | 6.3L |
| T. mucoides | 3 | 2.7R |
| Trichosporon spp. | 7 | 6.3L |
| Ulocladium sp. | 2 | 1.8R |
| Sterile mycelia dark | 7 | 6.3L |
| **Total** | **16 genera and 20 species** |

Table 3

Tested fungi	Inhibition zone in diameter (mm)				
	Bacafen	Canasten	Flucoral	Fungican	Mycosat
A. flavus	20	10	35	0.0	39
C. albicans	20	11	41	25	32
C. neoforms	35	28	0	27	20
R. stolonifer	0	0	30	0	11
R. mucilaginosa	27	20	60	0	43
S. racemosum	0	11	35	0	36
T. harzianum	0	15	40	10	48
T. asahii	0	11	24	0	35
T. mucoides	24	9	25	22	25

0: Resistant; < 20: Low sensitive; 20 – < 40: Moderately sensitive; ≥ 40: Highly sensitive.

4. Discussion

The current study showed that C. neoforms was found in 34% of 112 samples of pigeon droppings collected from 12 different sites in Makkah. Although the saprophytic distribution of C. neoforms in pigeon droppings was previously reported in different countries around the world such as Brazil[13], China[14], Columbia[15], Iran[16], India[9], and Italy[17], information about the environmental existence of this opportunistic fungus in Saudi Arabia is sparse. Currently there is only one published record reporting the incidence of C. neoforms infection in a tuberculous lymphadenitis patient in Saudi Arabia[18], therefore, the current study reports for the first time the isolation of environmental C. neoforms in Saudi Arabia.
It must be mentioned that, all pigeon dropping samples collected in our study were withered, based on the previous reports indicated that C. neoformans was not found in fresh pigeon droppings, probably because dry fecal droppings contain less bacterial flora and thus less competition for nutrients[19,20]. It is generally considered that the pigeon droppings are the main environmental source of C. neoformans probably due to its high content of organic material, particularly urea and creatinine[3,5,9,13,14,16,19]. Other environmental sources of the fungus include dust, chicken habitats, fruits and trees[21-23].

In this study, the relatively high rate of C. neoformans contamination (> 50%) in three sites (Na’aman valley, Al-Hegra and north Aziziya) could be attributed to the environmental conditions such as large amount of pigeon droppings, dense populated resident and commercial areas, parks and trees, where pigeons may find appropriate locations for nesting and gathering in large numbers. On the other hand, our results showed that C. neoformans was recovered once from 15 pigeon fecal samples collected from Al-Awayli district. This can be explained on the basis that this district is relatively newly constructed comparing with the other districts in Makkah resulting relatively lower numbers of human and pigeon population. Thus areas inhabited by large numbers of pigeons flocks may be considered as an important ecological niche for C. neoformans[20].

Using the dilution plate method and SDA medium, our data showed that 20 species related to 16 genera of molds and yeasts other than C. neoformans were recovered from pigeon droppings. It must be mentioned that, among these 20 molds and yeasts species that were recovered, four species were of medical importance: C. albicans, R. mucilaginosus, T. asahii and T. mucoides. Costa et al. confirmed that urban pigeon droppings are a potential source of pathogenic yeasts and they isolate the same genera from pigeon droppings in Northeast Brazil[13]. C. albicans and other Candida spp. are commonly found in the gastrointestinal tract, oral cavity, and genital areas as harmless commensals[24]. It is worth noting that as well being harmless commensals, Candida spp. are opportunistic pathogens capable of causing a wide range of superficial, localized, and/or systemic infections[25]. Trichosporon species are considered the second most common cause of fungaemia in patients with haematological malignant disease[25]. Rhodotorula species are being increasingly recognized as important human pathogens in severely immunosuppressed hosts, especially for patients with advanced HIV infection or cancer who are undergoing transplant[25-28].

In the present study, eight species related to Mucorales and five Aspergillus spp. in addition to unidentified Penicillium were recorded. Also, a number of species related to the following genera Penicillium, Aspergillus, Mucor, and Rhizopus were isolated from pigeon droppings samples collected from Isfahan[16]. Some molds recovered during the present study were previously reported to be associated with human diseases such as Aspergillus species[29,30]. The Mucorales group (Mucor spp., Rhizopus spp., Absidia spp., and Cunninghamella spp.) were also considered as opportunistic human pathogens[31,32]. One species of Trichoderma (T. harzianum) recorded once in our study. T. harzianum and Trichoderma longibrachiatum constitute a lethal hazard for individuals with reduced resistance including patients with leukemia, HIV positive or having transplants[33,34].

The results of antifungal susceptibility testing showed that Mycosat (nystatin) had a broad spectrum antifungal effect where it inhibited all tested fungal species. On the contrary, Fungican (fluconazole) had the narrowest antifungal effect spectrum on tested species, where five of them were resistant. C. neoformans showed resistance to Flucoral but was moderately sensitive to other antifungal drugs. The resistance of C. neoformans to Fluconal (fluconazole) was in accordance with the finding of some other authors[35]. Varma et al. reported heteroresistance of Cryptococcus gattii to fluconazole[36]. The in vitro antifungal susceptibility studies of isolates of the C. neoformans/Cryptococcus gattii species complex revealed contradictory results[37]. The study indicated a clear correlation between antifungal susceptibilities and genotypes of the causative cryptoccocosis agents. Resistance to antifungal drugs is rare among clinical isolates of C. neoformans but has been reported[38]. Despite there is few comparison of minimum inhibitory concentrations data between clinical and environmental isolates, the results obtained by Chowdhry et al. showed some differences in the patterns of susceptibility according to the origin of C. neoformans isolates (i.e. clinical or environmental)[39].

With respect to other fungal genera, our results showed that A. flavus, R. stolonifer and S. racemosus were resistant to Fungican (fluconazole). The isolates of A. niger and A. flavus showed varying degrees of resistance to itraconazole, ketoconazole and amphotericin B, resulting in moderate zone of inhibitions against the antifungal agents[40]. In the present study, two yeast species isolates (C. albicans and T. mucoides) were sensitive to all tested drugs, while R. mucilaginosus showed resistance to Fungican. Also, T. asahii can resist Fungican in addition to Batrafen. The resistance or sensitivity of some yeast isolates were also noticed by Sardi et al. who reported that 62.2% of the C. albicans isolates tested were susceptible to fluconazole, 15.6% to voriconazole, 91.1% to amphotericin B and 95.5% to caspofungin[41].

Our results are considered to be the first report on the environmental prevalence of C. neoformans in pigeon fecal samples collected from different sites of Makkah, Saudi Arabia. The data indicated that pigeon droppings can be considered as a potential source of this basidiomycetous yeast in addition to other fungal species in this region. Some of the recovered fungal species reported in this study were previously reported as pathogens associated with various types of infections in immunocompromised patients. The possibility of inhalation of the fungal spores by immunocompetent individuals, would probably lead to serious health hazards. Therefore, it is necessary to prevent the accumulations of these large flocks of pigeons for long periods of time in public areas, particularly near residential areas, public parks, food outlets and hospitals. Further studies are required to investigate the environmental distribution of C. neoformans and other opportunistic fungi in pigeon droppings in other populated major cities of Saudi Arabia. The in vitro susceptibility of nine selected fungal species with medicinal interest isolated from pigeon droppings to five conventional antifungal drugs that recommended for use in Makkah proved that tested fungal species responded variably between resistance and susceptibility.

Conflict of interest statement

We declare that we have no conflict of interest.

References

[1] Saudi Arabian Monetary Agency. The annual report of Saudi Arabian Monetary Agency. Saudi Arabia: Saudi Arabian Monetary Agency; 2010. [Online] Available from: http://piketty.pse.ens.fr/files/capital21c/xls/RevBiol/SAMAAnnualReportJuly2010.pdf [Accessed on 11th April, 2015]

[2] Abude esos HH. Faecal shedding of antibiotic resistant Escherichia coli serogroups in pigeons with special reference to E. coli O157. Ann Rev Biol 2014; 4: 2184-91.

[3] Dickx V, Beeckman DS, Dossche L, Tavernier P, Vanrompay D. A.
Chlamydoma psittaci in homing and feral pigeons and zoonotic transmission. J Med Microbiol 2010; 59: 1348-53.

[4] Liu Z, Ma L, Zhong Y, Wang X, Xie S. Isolation, identification and significance of Cryptococcus neoformans and Candida albicans from faecal specimen of pigeon. Inf Technol Agric Eng 2012; 134: 507-12.

[5] Rad FS. Isolation of Cryptococcus neoformans from pigeon excreta in Qazvin. Life Sci J 2013; 10: 214-9.

[6] Goldman JD, Vollmer ME, Luks AM. Cryptococcosis in the immunocompetent patient. Respir Care 2010; 55: 1499-503.

[7] Bratton EW, El Hussein N, Chastain CA, Lee MS, Poole C, Sturmer T, et al. Comparison and temporal trends of three groups with cryptococcosis: HIV infected; solid organ transplants and HIV-negative/non-transplants. PLoS One 2012; 7: e34552.

[8] Chae HS, Park GN, Kim SH, Jo HJ, Kim JT, Jeoung HY, et al. Rapid direct identification of Cryptococcus neoformans from pigeon droppings by nested PCR using CNLACI gene. Poult Sci 2012; 91: 1983-9.

[9] Xavier TF, Auxillia A, Kannan M, Rose AF, Kumar SR. Isolation and identification of Cryptococcus neoformans from pigeon droppings in Tiruchirapalli district of Tamil Nadu, South India. Int J Curr Microbiol Appl Sci 2013; 2: 404-9.

[10] Oh KS, Hwang SM. Isolation and characterization of Cryptococcus neoformans from environmental sources in Busan. Mycobiology 2005; 33: 188-93.

[11] Junior AMB, Santos BF, Carvalho EO, Melo DL, Trindade RC, de Resende Stoianoff MA. Biological activity of Cryptococcus neoformans and Cryptococcus gattii from clinical and environmental isolates. J Bras Pathol Med Lab 2013; 49: 160-8.

[12] Elbanna K, Attalla K, Elbadry M, Abdeltawab A, Gamal-Eldin MF. Urban pigeons (Columba livia) as a potential source of pathogenic yeasts: a focus on antifungal susceptibility of Cryptococcus strains in Northeast Brazil. Mycopathologia 2010; 169: 207-13.

[13] Costa AK, Sidrini JJ, Cordeiro RA, Brilhante RS, Monteiro AJ, Rocha MF. Urban pigeons (Columba livia) as a potential source of pathogenic yeasts: a focus on antifungal susceptibility of Cryptococcus strains in Northeast Brazil. Mycopathologia 2010; 169: 207-13.

[14] Li AS, Pan WH, Wu SX, Hideaki T, Guo N, Shen Y, et al. Ecological surveys of Cryptococcus species complex in China. Chin Med J 2012; 125: 511-6.

[15] Firacatice C, Torres G, Rodriguez MC, Escandon P. First environmental isolation of Cryptococcus gattii serotype B from Cucuta, Colombia. Biomedica 2011; 31: 118-23.

[16] Soltani M, Bayat M, Hashemi SJ, Zia M, Pestiiehian N. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. J Res Med Sci 2013; 18: 56-60.

[17] Romeo O, Scordino F, Criseo G. Environmental isolation of Cryptococcus gattii serotype B VGI/MATα strains in Southern Italy. Mycopathologia 2011; 171: 423-30.

[18] Al-Tawfiq JA, Ghandour J. Cryptococcus neoformans abscess and osteomyelitis in an immunocompetent patient with tuberculous lymphadenitis. Infection 2007; 35: 377-82.

[19] Zarrin M, Jofri M, Amirzahra R, Rostami M. Isolation of Cryptococcus neoformans from pigeon droppings in Ahwaz, Iran. Turk J Med Sci 2010; 40: 313-6.

[20] Teodoro VL, Gullo FP, Sardi JCO, Torres EM, Fusco-Almeida AM, Mendes-Giammini MJ. Environmental isolation, biochemical identification and antifungal drug susceptibility of Cryptococcus species. Rev Soc Bras Med Trop 2013; 46: 759-64.

[21] Kemoi EK, Okemo P, Bii CC. Presence of Cryptococcus species in domestic chicken (Gallus gallus) droppings and the possible risk it posed to humans in Kabigeriet village, Nakura County, Kenya. East Afr Med J 2012; 89: 277-80.

[22] Leite DP, Amadio JV, Martins ER, Simões SA, Yamamoto AC, Leal-Santos FA, et al. Cryptococcus spp isolated from dust microhabitats in Brazilian libraries. J Occup Med Toxicol 2012; 7: 11.

[23] Ilmiz-Baraglozi MT, Martinez-Machin GF, Fernández-Andreu CM, Perurena-Lancha MR, Theelen B, Beolkhout T, et al. Environmental isolation and characterization of Cryptococcus species from living trees in Havana city, Cuba. Mycoses 2012; 55: e138-44.

[24] Abu-Etteen KH, Hamad MA. Changing epidemiology of classical and emerging human fungal infections: A review. Jordan J Biol Sci 2012; 5: 215-30.

[25] Miceli MH, Diaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis 2011; 11: 142-51.

[26] Garcia-Suarez J, Gomez-Herruz P, Cuadros JA, Lee MD, Poole C, Sturmer T, et al. Comparison and temporal trends of three groups with cryptococcosis: HIV infected; solid organ transplants and HIV-negative/non-transplants. PLoS One 2012; 7: e34552.

[27]Loss SH, Antonio AC, Roehrig C, Castro PS, Maccari JG. Meningitis and infective endocarditis caused by Rhodotorula mucilaginosa in an immunocompetent patient. Rev Bras Ter Intensiva 2011; 23: 507-9.

[28] Tsiodras S, Papageorgiou S, Meletiadis J, Tofas P, Papa V, Panayioides J, et al. Rhodotorula mucilaginosa associated meningitis: a subacute entity with high mortality. Case report and review. Med Mycol Case Rep 2014; 4: 46-50.

[29] Kousha M, Tadi R, Soubhani OA. Pulmonary aspergillosis: a clinical review. Eur Respir Rev 2011; 20: 156-74.

[30] Thompson GR 3rd, Patterson TF. Pulmonary aspergillosis: recent advances. Semin Respir Crit Care Med 2011; 32: 673-81.

[31] Bitar D, Van Cauteren D, Lantermier F, Dannoua E, Ch D, Dromer F, et al. Increasing incidence of zygomycosis (mucormycosis), France, 1997-2006. Emerg Infect Dis 2009; 15: 1395-401.

[32] Skiada A, Pagano L, Groll A, Zimmerli S, Dupont B, Lagrou K, et al. Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin Microbiol Infect 2011; 17: 1859-67.

[33] Kredics L, Antal Z, Docii Z, Manczinger L, Kevei F, Nagy E. Clinical importance of the genus Trichoderma. A review. Acta Microbiol Immunol Hung 2003; 50: 105-17.

[34] Trabelsi S, Hariga D, Khalef S. First case of Trichoderma longibrachiatum infection in a renal transplant recipient in Tunisia and review of the literatures. Tunis Med 2010; 88: 52-7.

[35] Sionov E, Chang YC, Kwon-Chang JK. Azole heteroresistance in Cryptococcus neoformans: emergence of resistant clones with chromosomal disomy in the mouse brain during fluconazole treatment. Antimicrob Agents Chemother 2013; 57: 5127-30.

[36] Varma A, Kwon-Chang JK. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob Agents Chemother 2010; 54: 2303-11.

[37] Trilles L, Meyer W, Banke B, Guarro J, Lazéra L. Correlation of antifungal susceptibility and molecular type within the Cryptococcus neoformans/C. gattii species complex. Med Mycol 2012; 50: 328-32.

[38] Thompson GR 3rd, Wiederhold NP, Fothergill AW, Vallor AC, Wickes BL, Patterson TF. Antifungal susceptibilities among different serotypes of Cryptococcus gattii and Cryptococcus neoformans. Antimicrob Agents Chemother 2009; 53: 309-11.

[39] Chowdhury A, Randhawa HS, Sundar G, Kathuria S, Prakash A, Khan Z, et al. In vitro antifungal susceptibility profiles and genotypes of 308 clinical and environmental isolates of Cryptococcus neoformans var. grubii and C. gattii serotype B from North-western India. J Med Microbiol 2011; 60: 961-7.

[40] Ramesh S, Kumar RS, Balaji RM. Antibioc susceptibility of Aspergillus spp isolated from contaminated food sources. Der Pharmacia Lettre 2013; 5: 179-83.

[41] Sardi JCO, Gullo FP, Pitangut NS, Fusco-Almeida AM, Mendes-Giammini MJS. In vitro antifungal susceptibility of Candida albicans isolates from patients with chronic periodontitis and diabetes. Clin Microbiol 2013; 2: 1-4.