Biochemical characteristics and antibiotic resistance of bacterial isolate from *Ctenocephalides felis*

D Rombot¹ and M Y Semuel²,*

¹ Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
² Department of Biology, Faculty of Mathematics and Natural Science, State University of Manado, Tondano, North Sulawesi, Indonesia

yermiamokosuli@unima.ac.id

Abstract. Cats are the most domesticated animals kept by humans in the world. Cat fleas are ectoparasites that have the potential to transmit disease caused by microbes in humans. Biochemical identification research and antibiotic resistance tests have been carried out against bacterial isolates from cat fleas. Cat fleas were isolated from cats in Manado City, North Sulawesi, Indonesia. Isolation of bacteria was conducted using the scratch method on nutrient agar media. The pure bacterial culture is then used for biochemical analysis and antibiotic resistance testing. Biochemical analysis and resistance tests were performed using the Vitec 2 Compact instrument with a standardized automatic analysis model. The results obtained three species of bacteria from cat fleas based on biochemical identification, namely *S. equorum*, *C. freundii*, and *Pantoea* spp. Antibiotic resistance test on *S. equorum* showed that of the 60 types of antibiotics used, 55 were sensitive and 7 were resistant. Furthermore, *C. freundii*, of the 18 types of drugs, 7 were sensitive and 11 were resistant. Meanwhile, in *Pantoea* spp., Sensitive and resistant drugs were not found. However, the results of this study prove that bacteria from cat fleas have the potential to infect humans with relatively high antibiotic resistance.

1. **Introduction**

The spread of infectious diseases transmitted by insects is a major public health issue in tropical countries. Species in the insect class are the largest contributor to the arthropod phylum, which act as disease vectors in humans and animals. Several insect species related to public health include *Aedes aegypti* (dengue virus vector), *Anopheles* sp. (malaria vector), *Culex* sp. (vector of filariasis), and fleas (vector of parasites and vector of pathogenic microbes) [1,2]. However, parasite insects in pets such as cats and dogs are potential vectors of pathogenic microbes in humans as well. A very little exploration of pathogenic bacteria found in human-pet parasite insects is still being explored. In fact, pets interact closely with humans, so that they have the potential to be a vector of transmission of various infectious diseases caused by pathogenic viruses and bacteria [3-6].

High population growth rates, uneven population distribution, low educational, and socio-economic levels are factors in the development of diseases transmitted by arthropods to communities in tropical countries [6]. The characteristics of pathogenic microbes that are genetically easy to change have the potential to raise new health problems in the future. One of the pathogenic microbial vectors in pets and humans is cat fleas. As domestic animals, the microbes carried by cat fleas have the potential to infect humans. On the other hand, cat fleas are also ectoparasites [7,8].
C. felis and C. canis are competent vectors for zoonotic pathogens such as Rickettsia and Bartonella spp. Increased knowledge of cat flea diversity and phylogenetics is important for understanding the pathogen transmission cycle sustained by cat fleas. Cat fleas not only cause health problems in animals but also in humans. Reported by Eisen et. al. [3]; The cat flea causes an epidemic of disease caused by Y. pestis in Uganda. Furthermore, cat flea bites can cause flea allergic dermatitis (FAD), for example the case of C. felis cat flea infestation in six male students in Kuala Lumpur with clinical symptoms of Pruritus and Macula papular rashes [9,10]. When sucking blood, cat fleas also inject saliva so that it irritates the host. The indirect impact of cat flea bites is its role as a vector of plague disease [3-5]. Another disease that can be transmitted by cat fleas is parasitic worms in humans because it is the host between the Diphylidium caninum tapeworms [11]. Dipylidiasis cases through oral transmission have been reported by Adam, et al., [12] in a 41-year-old male in Sudan. Thus the identification and test of antibiotic resistance of bacterial isolates from cat fleas are very necessary.

2. Materials and methods

2.1. Sample

The study was started by conducting a location survey as a sampling site for cat fleas (Ctenocephalides felis) on cats in Manado City, North Sulawesi, Indonesia (Figure 1). Determination of location based on the largest number of cats in Manado City. The survey results obtained four locations (four districts) as sampling sites, namely: Karombasan, Malalayang, Paal dua, and Ranotana. The four locations found many cat populations that interact with humans. Each location was taken 10 individual cats as a source of cat fleas. Cat fleas were isolated directly from the body parts of cat samples, namely: head, neck, chest, groin, and back. Each location was taken 10 adult cat fleas without differentiating gender. Caught C. felis insects were included in the sample bottles. The sample was taken to the Parasitology Laboratory of the Medical Faculty, Sam Ratulangi University.
Figure 1. Map of C. felis sample locations from Manado City, North Sulawesi Indonesia (Red circles are sample locations for C. felisi). (Map source: https://www.google.com/maps/place/Sulawesi).
2.2. Isolation of bacteria
The bacteria were isolated from the body surface and sliced from the posterior to the anterior direction of C. felis. Isolation of bacteria was carried out through the scratch method. The bacteria were cultured on nutrient agar media (Merck). After incubation for 3 x 24 hours, the morphology of the bacteria was observed. Incubation was carried out at 37°C in an incubator. The purified isolates were used for biochemical analysis and antibiotic sensitivity testing [13].

2.3. Biochemical analysis of bacterial isolates using Vitek 2 Compact.
Biochemical identification was performed using the Vitek 2 Compact automatic identification instrument, which is available at the Laboratory of the Regional General Hospital Dr. Kandouw Manado (Figure 3). Vitek 2 Compact is an automatic identification system for microorganisms. The latest technology using Vitek 2 Compact makes it easy to use, namely with only 3 stages of examination that will easily obtain the results of identification and sensitivity) of antibiotics that have been validated and interpreted by international standards Clinical Laboratory Standard International (CLSI) [14,15].
The three stages are preparation or standardization of the inoculum turbidity, entering data with a barcode system, and inserting a card into the instrument. Furthermore, the whole process of inoculation, incubation, reading, validation, and interpretation of the results will be carried out automatically by the instrument. Furthermore, the completed examination will automatically produce a printout, while the ID / AST (Identification / Antimicroba Sensitivity Test) card by the system will automatically be discarded.

The principle of automatic identification is to use an identification card, on the card, there is a well or like a biochemical test medium that is modified in such a way that it can be used for rapid identification of bacteria. The test procedure with the Vitek2 Compact tool starts from the gram test, selecting the card, and making a bacterial suspension according to the McFarland standard and identification using the tool until an identification result sheet comes out. Based on the theory that the results obtained in identification with Vitek 2 Compact are expressed as a percentage for the correctness of the identified organisms (Table 1) [14,16].

Confidence Level	Choice	% Probability
Excellent	1	96 to 99
Very Good	1	93 to 95
Good	1	89 to 92
Acceptable	1	85 to 88

2.4. Analysis of sensitive drugs and resistance to bacteria
Analysis of antibiotics that are sensitive and resistant to bacterial isolates found in cat fleas was carried out together with the identification of bacteria. In this study using an automatic biochemical method (Vitek 2 Compact).

3. Results and discussion
Bacterial isolates from C. felis were identified using the Vitek2 Compact automatic bacterial identification instrument. Vitek 2 Compact is used in bacterial identification and antibiotic sensitivity testing. Validation of analysis results according to clinical laboratory international standards (CLSI). Bacterial isolates were isolated from the body surface and sliced from the posterior to the anterior direction of C. felis. Bacterial isolation which was carried out by using the scratch method resulted in three bacterial isolates with the morphological characteristics of the elevation and colour.
The results of identification by Vitek 2 Compact showed that the three bacterial isolates were different species. Based on the confidence level of the three isolates, it shows that isolate C1 has an acceptable confidence level with a probability of 88%, isolate C2 has a very good confidence level (very good) with a probability of 93%, and isolate C3 has a very good confidence level (very good) with a probability of 95% (Table 2).

Table 2. Results of biochemical identification of isolates with Vitek 2 compact.

No	Sample Code	Confidence Level	% Probability	Identification Results
1	C1	Acceptable	88	Staphylococcus equorum
2	C2	Very Good	93	Citrobacter freundii
3	C3	Very Good	95	Pantoea spp

The biochemical profile of the analysis results for each isolate is shown in the Vitek 2 Compact output (Tables 3 to 5). S. equorum is a gram-positive bacterium. A total of 43 biochemical test parameters, 14 parameters showed positive results, while the rest were negative. Citrobacter freundii and Pantoea spp are gram-negative bacteria.

Table 3. Biochemical composition of S. Equorum.

No	Symbol	Chemistry name	No	Symbol	Chemistry name
2	AMY	D-Xylene	13	APPA	L-Proline Arylamidase
13	CDEX	Beta-Galactosidase	20	LeuA	Tyrosin Arylamidase
		Beta-Glucuronidase	28	AlaA	L-Pyrrolidonyl-Arylamidase
		L-Pyrrolidonyl-Arylamidase	38	dRIB	Lactose
		Urease	47	NOVO	Novobiocin Resistance
		dSor	57	dRAF	Arginine Dihydrolase i
		dMAL	64	OPTO	Saccharose/Sucrose

Table 4. Biochemical parameters of Staphylococcus equorum.

No	Symbol	Chemistry name	No	Symbol	Chemistry name
1	dXYL	D-Xylitol	23	ProA	Beta-Galactosidase
2	BGAL	Beta-Glucuronidase	24	TryA	Beta-Glucuronidase
3	BGURr	L-Galactosidase	25	ILATk	L-Glucuronidase
4	PyrA	L-Galactosidase	26	O129R	L-Glucuronidase
5	URE	Urease	27	ASPA	L-Glucuronidase
6	LAC	Lactose	28	dSor	L-Glucuronidase
7	NOVO	Novobiocin Resistance	29	SAL	L-Glucuronidase
8	NC6.5	Growth in 65% NaCl	30	ADHI	Arginine Dihydrolase i
9	MBdG	Methyl B-D Glucopyranoside	31	BGAR	Beta-Galactopyranosidase
10	dRAF	D-Fructose	32	AGAL	Beta-Galactopyranosidase
11	SAC	Saccharose	33	NAG	Beta-Galactopyranosidase
12	dTRE	D-Trehalose	34	dMNE	Beta-Galactopyranosidase
13	OPTO	Optochin Resistance	35	AMAN	Beta-Galactopyranosidase
14	dMAN	D-Mannitol	36	POLYB	Beta-Galactopyranosidase
15	Ure	Urease	37	dMAL	Beta-Galactopyranosidase
16	AMY	D-Amygdalin	38	AGLU	Beta-Galactopyranosidase
17	APPA	Ala-Phe-Pro Arylamidase	39	PHOS	Beta-Galactopyranosidase
18	LeuA	Leucin Arylamidase	40	D GAL	Beta-Galactopyranosidase
19	ALA	Alanine Arylamidase	41	BACI	Beta-Galactopyranosidase
20	dRIB	D-Ribose	42	PUL	Beta-Galactopyranosidase
21	PIPLC	Phosphatidylinositol Phospholipase C	43	ADH2S	Beta-Galactopyranosidase
22	CDEX	Cyclodextrin			Beta-Galactopyranosidase
Table 5. Biochemical composition of *Pantoea* spp.

No	Symbol	Chemistry name	No	Symbol	Chemistry name						
2	APPA	3	ADO	4	PyrA	5	IARL	7	dCEL	9	BGAL
10	H2S	11	BNLG	12	AGLtp	13	dGLU	14	GGT	15	CFF
17	BGLU	18	dMAL	19	dMAN	20	dMANE	21	BXYL	22	BAlap
23	ProA	26	LIP	27	PLE	29	TyrA	31	URE	32	dSOR
33	SAC	34	dTAG	35	dTRE	36	CIT	37	MNT	39	5KG
40	IALTk	41	AGLU	42	SUCT	43	NAGA	44	AGAL	45	PHOS
46	GlyA	47	ODC	48	LDC	53	IHISa	56	CMT	57	BGUR
58	O129R	3	ADO	61	IMLTα	62	ELLM	64	ILATa		

Table 6. Biochemical parameters of *Pantoea* spp.

No	Symbol	Chemistry name	No	Symbol	Chemistry name
1	H2S	Produksi H2S	25	ProA	L-Prolin Arylamidase
2	BGLU	Beta-Glucose	26	GGAA	Glu-Gly-Arg-Arylamidase
3	BGURr	Beta-Glucuronidase	27	PLE	Palatinose
4	PyrA	L-Pyrrolidonyl-Arylamidase	28	AGLtp	Glutamyl Arylamidase Pna
5	SAC	Saccharose/Sucrose	29	SUCT	Succinate alkalinization
6	dTRE	D-Trehalose	30	ELLM	Ellman
7	dMAN	D-Mannitol	31	BGAL	Beta-Galactosidase
8	APPA	Ala-Phe-Pro Arylamidase	32	OFF	Fermentation Glucose
9	IALTk	L-Lactate alkalinization	33	LDC	Lysine Decarboxylase
10	GlyA	Glycine Arylamidase	34	IMTLα	L-Malate assimilation
11	O129r	O129 Resistance	35	IARL	L-Arabitol
12	dMAL	D-Maltose	36	NAGA	Beta-N-Acetyl
13	LIP	Lipase	37	IHISA	Histidine assimilation
14	dTAG	D-Tagatosa	38	BAlap	Beta-Alanine Arylamidase
15	AGLU	Alpha-Glucosidase	39	dSOR	D-Sorbitol
16	ODC	Ornithine Decarboxylase	40	SKG	5-Keto-D-Glconate
17	dGLU	d-Glucose	41	PHOS	Phosphatase
18	dMNE	d-Mannose	42	ADO	Adonitol
19	TyrA	Tyrosine Arylamidase	43	BNAG	Beta-N-Acetyl-Glucosaminidase
20	CIT	Citrate/Sodium	44	ILATa	L-Lactate assimilation
21	dCEL	D-Cellobiose	45	MNT	Malonate
22	GGT	Gamma-Glutamyl-Transferase	46	AGAL	Alpha-Galactosidase
23	BXYL	B-Xylose	47	CMT	Coumarate
24	URE	Urease			

Table 7. Biochemical Parameters of *Citrobacter freundii*.

No	Symbol	Chemistry name	No	Symbol	Chemistry name
1	H2S	Produksi H2S	25	ProA	L-Prolin Arylamidase
2	BGLU	Beta-Glucose	26	GGAA	Glu-Gly-Arg-Arylamidase
3	BGURr	Beta-Glucuronidase	27	PLE	Palatinose
4	PyrA	L-Pyrrolidonyl-Arylamidase	28	AGLtp	Glutamyl Arylamidase Pna
5	SAC	Saccharose/Sucrose	29	SUCT	Succinate alkalinization
6	dTRE	D-Trehalose	30	ELLM	Ellman
7	dMAN	D-Mannitol	31	BGAL	Beta-Galactosidase
8	APPA	Ala-Phe-Pro Arylamidase	32	OFF	Fermentation Glucose
9	IALTk	L-Lactate alkalinization	33	LDC	Lysine Decarboxylase
10	GlyA	Glycine Arylamidase	34	IMTLα	L-Malate assimilation
11	O129r	O129 Resistance	35	IARL	L-Arabitol
12	dMAL	D-Maltose	36	NAGA	Beta-N-Acetyl
13	LIP	Lipase	37	IHISA	Histidine assimilation

7
Table 7. Cont.

No	Code	Enzyme Name	No	Code	Enzyme Name
14	dTAG	D-Tagatosa	38	BAAlap	Beta-Alanine Arylamidase
15	AGLU	Alpha-Glucosidase	39	dSOR	D-Sorbitol
16	ODC	Ornithine Decarboxylase	40	SKG	5-Keto-D-Gloconate
17	dGLU	d-Glucose	41	PHOS	Phosphatase
18	dMNE	d-Mannose	42	ADO	Adonitol
19	TyrA	Tyrosine Arylamidase	43	BNAG	Beta-N-Acetyl-Glucosaminidase
20	CIT	Citrate/Sodium	44	ILATa	L-Lactate assimilation
21	dCEL	D-Cellobiose	45	MNT	Malonate
22	GGT	Gamma-Glutamyl-Transferase	46	AGAL	Alpha-Galactosidase
23	BXYL	B-Xylose	47	CMT	Coumarate
24	URE	Urease			

The results of the identification of bacteria by biochemical analysis methods showed that three bacterial isolates from C. felis belonged to different species. Furthermore, the three isolates had different biochemical profiles. *Citrobacter freundii* has also been reported to be found on the body surface of cockroaches [17]. Meanwhile, *Staphylococcus* sp is a common pathogenic bacterium [18]. *Pantotea* sp. many are reported to be associated with plants and not with animals [19]. The existence of *Pantotea* sp from the identification results in this study is interesting to study more deeply.

3.1. Antibiotic sensitivity and resistance

The results of the sensitivity and resistance analysis of *C. freundii* showed that seven types of antibiotics were sensitive and 11 types of antibiotics were resistant. A total of 18 drugs are circulating regularly in the market, only seven are sensitive and 11 are resistant. This shows that antibiotics against these bacteria have often been used. Meanwhile, the results of the analysis of drug sensitivity and resistance to *S. equorum*, there were 45 sensitive and only 5 resistances.

The results of the sensitivity analysis and drug resistance of the isolate *Pantotea* spp showed that of the 60 types of antibiotics circulating regularly in the community, generally, 55 were sensitive, while only 5 were resistant. This is certainly very encouraging for the community, indicating that the use of antibiotics against these bacteria is still very little. Many cases of antibiotic resistance *Citrobacter freundii* have been reported. *Citrobacter freundii* has even become multidrug resistance [20]. Report from Indonesia, *Citrobacter freundii* is 100% resistant to cefadroxyl, cefuroxime, cephalexin, clindamycin, doxycycline, erythromycin, lincomycin, oxacillin, colistin sulfate, sulfonamides and metronidazole [21]. Isolated from cockroaches, *Staphylococcus equorum* has been reported to have moderate antibiotic resistance [22]. *Pantotea* sp, has been reported very little in animals. Generally, found in plants.

There are still few isolation studies and analyzes of bacterial antibiotic resistance in insects, especially parasite insects in human pets. Research in this field is important because pathogenic bacteria in pet parasite insects have the potential to infect humans and cause disease in the future.

4. Conclusion

There are three isolates of pathogenic bacteria that were isolated from *C. felis* from Manado City, North Sulawesi, Indonesia. The results of sensitivity and antibiotic resistance tests of the three isolates showed that the level of antibiotic resistance was moderate.

References

[1] Manuahe C, Mokosuli Y S and Roring V T Y 2016 Optimization of DNA extraction and the position of mosquito Species from southeast Minahasa in North Sulawesi using NADH dehydrogenase Gene and Cytochrome oxidase Sub Unit 1 Gene Journal of Entomology and Zoology Studies 2016 4(4) 498-508

[2] Rotty I E, Pinontoan O, Tulung M, Rumengan I and Mokosuli Y S 2018 Molecular identification
of house fly, Musca domestica L. (Diptera : Muscidae), using mitochondrial DNA partial genes cytochrome oxidase sub unit 1 (CO1) in Manado city International Journal of Entomology Research. www.entomologyjournals.com 168(2) 168–176

[3] Eisen R J, Borchert J N, Holmes J L, Amatre G, Wyk K V, Enscore R E and Vetter S M 2008 Early-phase Transmission of Yersinia pestis by Cat Fleas (Ctenocephalides felis) and Their Potential Role as Vectors in a Plague-endemic Region of Uganda American Journal of Tropical Medicine and Hygiene 78(6) 949–956

[4] Bitam I, Dittmar K, Parola P, Whiting M F and Raoult D 2010 Fleas and flea-borne diseases International Journal of Infectious Diseases 14(8)

[5] McElroy K M, Blagburn B L, Breitschwerdt E B, Mead P S and McQuiston J H 2010 Flea-associated zoonotic diseases of cats in the USA: bartonellosis, flea-borne rickettsioses, and plague Trends in Parasitology 26(4) 197–204

[6] Ekawasti F and Martindah E 2017 Vector Control of Zoonotic Arbovirus Disease in Indonesia Wartazoa 26(4) 151–162

[7] Ristiyanto, Nalim S, Suskamdani, Wiyono, and Notosodarmo S 1993 Ektoparasit penular penyakit pada mamalia kecil ;suatu studi awal ektoparasit di Lereng Merapi Seri Penelitian Biologi. Fak. Biologi Unv. Kristen Satya Wacana 3(1) 52-64

[8] Hadi U K and Soviana 2013 Ektoparasit: Pengenalan, Identifikasi, dan Pengendaliannya. Ed ke-3 (Bogor: ID): IPB Press

[9] Chin H C, Ahmad N W, Lim L H, Jeffery J, Hadi A A, Othman H and Omar B 2010 Infestation with the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae) among students in Kuala Lumpur, Malaysia Southeast Asian J. Trop. Med. 41(6) 1331-1334

[10] Noli C 2009 Flea allergy in cat clinical signs and diagnosis E.J.C.A.P 19 248-253

[11] Ballweber L R 2001 Veterinary Parasitologi (United States of America (US): Butterworth–Heinemann)

[12] Adam A A, Saeed O M, Ibrahim H M, Malik H Y E and Ahmed M E 2012 D. caninum infection in a 41 year old sudanese man in Nyla, Suda: the first reported case in Sudan in 2006 Neel Med J. 6(2) 37-42

[13] Simandjuntak S, Mokosuli Y S, Marcelina W, Orbanus N and Ardi K 2019 Molecular Barcoding Based 16S rRNA Gene of Thermophilic Bacteria from Vulcanic Sites, Linow Lake, Tomohon. In Materials Science Forum 967 83-92

[14] Barry J, Brown A, Ensor V, Lakhani U, Petts D, Warren C and Winstanley T 2003 Compararive evaluation o f the VITEK-2 Advanced Expert System (AES) in the five UK hospitals J of Antimicrobial Chemotherapy 51 1191–202

[15] Larone D H, Tucci L J and Samide D O 2000 Time study of three Automated Systems for the identification and Susceptibility of Bacteria: The Microscan WalkAway 96,VITEK, and VITEK-2, Annual Meeting of the American Society for Microbiology Meeting Los Angeles, CA 2000, 279

[16] Prihatini, Aryati and Hetty 2007 Identifikasi Cepat Mikroorganisme Menggunakan Alat VITEK-2 Indonesian Journal Of Clinical Pathology And Medical Laboratory 13(3) 129-132

[17] Czajka E, Pancer K, Kochman M, Gliniewicz A, Sawicka B, Rabczenko D and Stypułkowska-Misiurowicz H 2003 Charakterystyka bakterii wyizolowanych z powierzchni ciała karaczanów prusaków występujących w środowisku szpitalnym (Characteristics of bacteria isolated from body surface of German cockroaches caught in hospitals) Przeglad epidemiologiczny 57(4) 655–662

[18] Pollitt E J G, Szkuta P T, Burns N and Foster S J 2018 Staphylococcus aureus infection dynamics PLOS Pathogens 14(6)

[19] Ali B 2019 Functional and Genetic Diversity of Bacteria Associated with the Surfaces of Agronomic Plants Plants (Basel, Switzerland) 8(4) 91

[20] Liu L, Chen D, Liu L, Lan R, Hao S, Jin W, and Xu J 2018 Genetic Diversity, Multidrug Resistance, and Virulence of Citrobacter freundii From Diarrheal Patients and Healthy
[21] Nurmala N, Virgiandhy I, Andriani A and Liana D F 2015 Resistensi dan Sensitivitas Bakteri terhadap Antibiotik di RSU dr. Soedarso Pontianak Tahun 2011-2013 *EJournal Kedokteran Indonesia* 3(1) 60551

[22] Pai H H, Chen W C and Peng C F 2005 Isolation of bacteria with antibiotic resistance from household cockroaches (Periplaneta americana and Blattella germanica) *Acta Trop.* 9(3) 259-265