Polymorphic variants in Sweet and Umami taste receptor genes and birthweight

Riccardo Farinella1,4, Ilaria Erbi1,4, Alice Bedini2, Sara Donato1, Manuel Gentiluomo1, Claudia Angelucci2, Antonella Lupetti3, Armando Cuttano2, Francesca Moscuzza2, Cristina Tuoni2, Cosmeri Rizzato3, Massimiliano Ciantelli2,5 & Daniele Campa1,5

The first thousand days of life from conception have a significant impact on the health status with short, and long-term effects. Among several anthropometric and maternal lifestyle parameters birth weight plays a crucial role on the growth and neurological development of infants. Recent genome wide association studies (GWAS) have demonstrated a robust foetal and maternal genetic background of birth weight, however only a small proportion of the genetic hereditability has been already identified. Considering the extensive number of phenotypes on which they are involved, we focused on identifying the possible effect of genetic variants belonging to taste receptor genes and birthweight. In the human genome there are two taste receptors family the bitter receptors (TAS2Rs) and the sweet and umami receptors (TAS1Rs). In particular, sweet perception is due to a heterodimeric receptor encoded by the \(\text{TAS1R2} \) and the \(\text{TAS1R3} \) gene, while the umami taste receptor is encoded by the \(\text{TAS1R1} \) and the \(\text{TAS1R3} \) genes. We observed that carriers of the T allele of the \(\text{TAS1R1}-\text{rs4908932} \) SNPs showed an increase in birthweight compared to GG homozygotes Coeff: 87.40 (35.13–139.68) p-value = 0.001. The association remained significant after correction for multiple testing. \(\text{TAS1R1}-\text{rs4908932} \) is a potentially functional SNP and is in linkage disequilibrium with another polymorphism that has been associated with BMI in adults showing the importance of this variant from the early stages of conception through all the adult life.

The first thousand days of life from conception have a significant impact on the health status with short and long-term effects for each individual1. Among several anthropometric and maternal lifestyle parameters birth weight plays a crucial role on the growth and neurological development of infants2. For example, SGA infants (small for gestational age: birth weight < 3rd percentile for their gestational age) have been reported to show several problems that could lead to increased morbidity and mortality in the perinatal period3. In addition, many studies show that both SGA infants as well as LGA infants (large for gestational age: birth weight > 97th percentile for their gestational age) have an increased risk to develop, at later ages of their life, several health conditions, such as, cardiovascular diseases4, obesity5, type 2 diabetes6, arterial hypertension7 and chronic renal insufficiency8. In addition, children and adolescents delivered SGA have often highlighted cognitive and relational disorders, communication and concentration difficulties and therefore poor academic performance9.

Foetal growth, on which birth weight depends, is the result of the interaction of numerous and complex genetic, epidemiologic and environmental variables. Recent genome wide association studies (GWAS) have demonstrated a robust foetal and maternal genetic background of birth weight, however only a small proportion of the genetic hereditability has been already identified10–13 and the discovery of novel loci is warranted. Several of the single nucleotide polymorphisms (SNPs) associated with birth weight have been suggested to play a role in determination of glycaemic traits in adults14, suggesting a link between the genetics of the metabolism regulation in the newborns and in adults. Considering all these premises, we focused on identifying the possible effect of genetic variants belonging to taste receptor genes and birthweight. In the human genome there are two taste receptors family the bitter receptors (TAS2Rs) and the sweet and umami receptors (TAS1Rs). In particular, sweet perception is due to a heterodimeric receptor encoded by the \(\text{TAS1R2} \) and the \(\text{TAS1R3} \) gene, while the umami taste receptor is encoded by the \(\text{TAS1R1} \) and the \(\text{TAS1R3} \) genes.

1Department of Biology, University of Pisa, Pisa, Italy. 2Division of Neonatology, Santa Chiara Hospital, Via Roma, 67, 56126 Pisa, Italy. 3Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy. 4These authors contributed equally: Riccardo Farinella and Ilaria Erbi. 5These authors jointly supervised this work: Massimiliano Ciantelli and Daniele Campa. *email: m.ciantelli@ao-pisa.toscana.it
Vol:.(1234567890)

www.nature.com/scientificreports/

Scientific Reports | (2021) 11:4971 | https://doi.org/10.1038/s41598-021-84491-4

TAS gene expression has been firstly identified in the tongue, but subsequently in a multitude of human tissues and organs. TAS genes have various functions, alongside tasting, such as gut motility, glucose homeostasis, defense against bacterial infection in the upper airway tract\(^{15-20}\). SNPs belonging to these genes have been thoroughly studied in relation to a multitude of human traits, among which nicotine dependence, caloric intake, obesity, body mass index (BMI), food and beverage acceptance, ageing and various human neoplasms\(^{21-31}\).

Polymorphisms in the TAS1Rs family have been associated to food intake and overweight in children\(^{32}\) and adults\(^{33}\), sweet taste and sucrose detection threshold and sensitivity\(^{34,35}\) and with food intake and gastric cancer\(^{36}\). We investigated the effect of polymorphic variants in the \(\text{TAS1R1, TAS1R2 and TAS1R3}\) genes on birth weight on \(1077\) newborns of Caucasian origin.

Results

Among the \(1077\) full term-newborns recruited, \(25\) (2.3%) were discarded because they had a genotyping call rate lower than 75%. The average SNP call rate of the remaining samples was 98.70%, with a minimum of 95.64% for \(\text{TAS1R3-rs11165792}\) and a maximum of 99.53% for \(\text{TAS1R1-rs17029626}\) and for \(\text{TAS1R1-rs4908563}\). The QC analysis showed a concordance among duplicates greater than 99%. All the SNPs allelic and genotyping frequencies resulted in Hardy–Weinberg equilibrium (\(p\)-value \(>0.01\)). The average weight measured for males was \(3376\) g and \(3251\) g for females. The average gestational time was \(39 + 3\) weeks (\(39 + 3\) for males and \(39 + 4\) for females). The relevant characteristics of the population are given in Table 1.

Results of the association analysis between epidemiologic variables and genotypes on birth weight.

We performed a linear regression analysis to evaluate the association with the genetic and non-genetic variables and birth weight. We observed that birth weight is significantly associated with sex with males being heavier than females, \(\text{Coeff} = 124.5; 95\% \text{CI (72.17–176.83)}; p\text{-value} = 3.11 \times 10^{-6}\). Gestational age showed a very strong proportional effect in birthweight increase with longer gestational time (expressed in weeks) \(\text{Coeff} = 160.77; 95\% \text{CI (140.96–180.58)}; p\text{-value} = 5.72 \times 10^{-57}\). We also observed an inverse association between maternal smoking and birthweight with a \(\text{Coeff} = -202.95; 95\% \text{CI (−328.09 to 77.81)}; p\text{-value} = 0.001\). The measurement unit is “kg/m\(^2\)”.

Variable	Males (n = 554)	Females (n = 495)	Total
Average gestational age\(^{a}\)	39 + 3	39 + 4	39 + 4
Average birthweight\(^{b}\)	3375.620	3251.116	3316.896
Average length\(^{c}\)	50.648	50.120	50.392
Average head circumference\(^{d}\)	34.940	34.226	34.605
Mother’s age\(^{e}\)	33 years and 321 days	34 years and 77 days	34 years and 14 days
Pre-gravidic BMI\(^{f}\)	22.458	23.162	22.866
Weight increase during pregnancy\(^{g}\)	13.346	12.811	13.057
Smoking status of the mother (yes/no)\(^{h}\)	27/522	21/467	48/989
Maternal gestational diabetes (yes/no)\(^{i}\)	83/467	78/415	161/882
Maternal pre-gravidic diabetes (yes/no)\(^{j}\)	7/543	5/486	12/1029

Table 1. Characteristics of the population in study. \(^{a}\)This information was available for \(1046\) subjects. The measurement unit is “weeks”. \(^{b}\)This information was available for \(1041\) subjects. The measurement unit is “g”. \(^{c}\)This information was available for \(733\) subjects. The unit of measure is “cm”. \(^{d}\)This information was available for \(1029\) subjects. The unit of measure is “years”. \(^{e}\)This information was available for \(731\) subjects. The measurement unit is “cm” . \(^{f}\)This information was available for \(1029\) subjects. The unit of measure is “cm”. \(^{g}\)This information was available for \(736\) subjects. The unit of measure is “g. \(^{h}\)This information was available for \(733\) subjects. The unit of measure is “g”. \(^{i}\)This information was available for \(736\) subjects. The unit of measure is “g”. \(^{j}\)This information was available for \(736\) subjects. The unit of measure is “g”.

\(\text{TAS1R1-rs4908932}\) showed a maximum of 99.53% for \(\text{TAS1R1-rs17029626}\) and for \(\text{TAS1R1-rs4908563}\). The QC analysis showed a concordance among duplicates greater than 99%. All the SNPs allelic and genotyping frequencies resulted in Hardy–Weinberg equilibrium (\(p\)-value \(>0.01\)). The average weight measured for males was \(3376\) g and \(3251\) g for females. The average gestational time was \(39 + 4\) weeks (\(39 + 3\) for males and \(39 + 4\) for females). The relevant characteristics of the population are given in Table 1.

The results of these analysis are shown in Table 2.

All the analysis conducted to establish the effect of genetic variables were corrected for these three variables. We observed four associations between the genotypes and birthweight, however only one resulted statistically significant after correction for multiple testing. In specific, heterozygous carriers of the \(T\) allele of the \(\text{TAS1R1-rs4908932}\) SNP showed an increase in birthweight compared to \(\text{GG}\) homozygotes \(\text{Coeff}: 87.40 (35.13–139.68) \text{p-value} = 0.001\). We observed an additional association in the \(\text{TAS1R1}\) gene and birthweight, namely the positive effect of the \(G\) allele of \(\text{TAS1R1-rs4908930}\) \(\text{Coeff}_{\text{rs4908930}} = 50.60; 95\% \text{CI (0.70–100.49); p-value} = 0.047\), compared to the common \(\text{A}\) homozygotes. Finally, we observed two associations in the \(\text{TAS1R2}\) gene, an increase in birthweight for the \(\text{G}\) allele of \(\text{TAS1R2-rs4920566}\) SNP \(\text{Coeff} = 71.65; 95\% \text{CI (2.40–140.91); p-value} = 0.043\) and for the carriers of the \(G\) allele of \(\text{TAS1R2-rs9701796}\) \(\text{Coeff} = 136.98; 95\% \text{CI (7.80–266.16); p-value} = 0.038\). The SNPs selected for the \(\text{TAS1R3}\) gene did not show any statistically significant association with birth weight. The results of these analysis are shown in Table 3.

Functional relevance of the SNPs. In the GTEx database there are no eQTLs for \(\text{TAS1R2-rs9701796}\) and \(\text{TAS1R2-rs4920566}\), while for \(\text{TAS1R1-rs4908932}\) there is only one eQTL in the aorta artery. The database shows ten eQTLs for \(\text{TAS1R1-rs4908930}\), but none in the gastro-enteric tract. RegulomeDB assigns a rank of 4 to \(\text{TAS1R1-rs4908932}\) and \(\text{TAS1R1-rs4908930}\) and a rank of 5 for \(\text{TAS1R2-rs9701796}\) and \(\text{TAS1R2-rs4920566}\).
Haploreg, shows that all the SNPs are situated in potentially methylated regions and that they alter a potential TF binding site, although with a null or modest effect.

Discussion

Birthweight can have a dramatic impact in the development and health of the newborn in the short-period and in the long-term period. There are several well-known factors that have a strong effect on birthweight and genetic variability has been investigated in this regard. GWAS have identified a relatively small number of risk loci and the hereditability explained is still limited. We have taken into consideration the genetic variability in taste receptors since it has been repeatedly associated with BMI and metabolic traits, dietary behaviours and human pathologies. This study has been conducted on more than 1000 new-borns of Italian origin collected by the Santa Chiara Hospital of Pisa with the aim to further improve our knowledge on the epidemiologic and genetic factors that influence birthweight.

Table 2. Results of the association analysis between clinical and anthropometric variables and birthweight.

- This information was available for 1037 subjects.
- This information was available for 1046 subjects.
- This information was available for 1029 subjects.
- This information was available for 1043 subjects.
- This information was available for 1041 subjects.
- This information was available for 733 subjects.
- This information was available for 731 subjects.
- This information was available for 726 subjects.

Covariates	Coeff. (CI)	p-value
Sexa	124.50 (72.17 to 176.83)	3.11 × 10⁻⁶
Gestational ageb	160.77 (140.96 to 180.58)	5.72 × 10⁻²⁶
Maternal agec	3.47 (– 9.40 to 0.66)	0.088
Maternal gestational diabetesd	17.11 (– 56.11 to 90.33)	0.647
Maternal pregravidic diabetesd	18.34 (– 228.96 to 265.65)	0.884
Maternal smoking behaviorf	19.95 (– 202.90 to 77.81)	0.001
Pre-gravidic BMF	12.52 (5.78 to 19.26)	2.5 × 10⁻⁴

Table 3. Results of the association analysis between epidemiologic variables and genotypes on birthweight.

Values in bold are significant at the conventional level of p < 0.05.

GENE_SNP	Alleles	Genotypes	Coeff (IC)	p-value	
TAS1R1_rs11587438	T/C	MM	713 254 27	– 23.35 (– 78.06 to 31.36)	0.403
TAS1R1_rs12008675	A/C	Mm	686 295 41	1.63 (– 50.48 to 53.74)	0.951
TAS1R1_rs12132145	G/A	mm	427 469 107	– 20.98 (– 70.93 to 28.97)	0.410
TAS1R1_rs12565181	G/A	Co-dhet	760 235 25	18.76 (– 36.97 to 74.50)	0.509
TAS1R1_rs12702626	A/G	Co-rec	826 189 12	27.68 (– 32.64 to 88.00)	0.368
TAS1R1_rs4908563	T/C	307 527	192	14.67 (– 39.15 to 68.49)	0.593
TAS1R1_rs4908930	A/G	459 443 116	50.60 (0.70 to 100.49)	0.047	
TAS1R1_rs4908932	G/T	717 283 27	87.40 (35.13 to 139.68)	0.001	
TAS1R2_rs12028479	G/T	864 149 7	– 8.30 (– 74.61 to 58.00)	0.806	
TAS1R2_rs12038332	G/A	473 436 84	– 19.87 (– 69.67 to 29.94)	0.434	
TAS1R2_rs12137730	A/C	436 460 120	17.41 (– 32.63 to 67.46)	0.495	
TAS1R2_rs3935570	G/T	494 457 74	– 30.53 (– 79.12 to 18.06)	0.218	
TAS1R2_rs4920564	A/G	401 456 164	20.73 (– 30.44 to 71.90)	0.427	
TAS1R2_rs6662746	C/T	918 98 1	4.82 (– 75.02 to 84.66)	0.906	
TAS1R2_rs9701796	C/G	688 293 35	– 49.43 (– 101.44 to 257)	0.062	
TAS1R3_rs111615792	G/A	949 37 0	– 74.51 (– 200.38 to 51.36)	0.246	
TAS1R3_rs307374	C/T	971 54 1	40.88 (– 63.12 to 144.88)	0.441	
TAS1R3_rs3813210	C/T	915 100 5	9.85 (– 69.06 to 88.76)	0.807	

Haploreg, shows that all the SNPs are situated in potentially methylated regions and that they alter a potential TF binding site, although with a null or modest effect.
We observed a very strong effect of sex, gestational age and maternal smoking on the birthweight as expected and reported in the literature. The most novel findings of this study are represented by several associations between the SNPs and birthweight. In particular, we found two hits in the TAS1R1 (rs4908930, rs4908932) and TAS1R2 (rs4920566, rs9701796) genes. None of these SNPs has previously been reported with body weight in adults or children. The best finding, both considering the strength of the association (i.e. coefficient) and the statistical significance (p value) that we observed was the average increase of 87 g for the carriers of the T allele of TAS1R1-rs4908932 (p = 0.001). This finding is the only one that remains significant after multiple testing correction according to Bonferroni.

According to Haploreg TAS1R1-rs4908932 is situated 29 bp in the 3'-UTR of the TAS1R1 gene and could modify the methylation status of the gene in 24 tissues among which several belonging to the GI tract including the colon, the liver, the stomach and the pancreas. It is interesting to note that the SNP possibly modifies the methylation status also in several foetal organs, including the intestine. In addition, Haploreg also suggests that the SNP could modify the binding of several transcription factors including HNF4A which is involved in the development of the intestines and mutation of which have been associated with metabolic diseases. These indications suggest a potential key role of the SNP in regulating the gene expression that could translate in the differential birthweight observed. TAS1R1-rs4908932 is in moderate LD with several SNPs that have been found to be associated with human traits. Of particular relevance is rs6577584 (r² = 0.114, D' = 0.9402 in the European individuals of the 1000G project, according to LDlink) since it has been found to be associated, at genome wide level, with BMI in adults in a study conducted using the UK biobank repository, highlighting the importance of the locus from foetal life to adulthood.

In addition to BMI variants in LD with TAS1R1-rs4908932 have also been reported to be associated with cardiovascular disease, age at menopause, and medication use as reported in the GWAS catalogues, making this a potential pleiotropic locus of the genome.

The effect size on birthweight associated TAS1R1-rs4908932 observed in our study is rather large (87 g) compared with what reported by others for several SNPs associated with birthweight. For example, Beaumont and colleagues, in a study that included UK biobank data, reported a maximum effect size of around 50 g. Even though, the SNPs are not the same and therefore not directly comparable, this difference could be at least partially explained by the size of the two studies with ours being smaller. It would be therefore important to replicate our finding in a larger cohort of individuals to better compute the effect of the variant.

A clear strength of this study is the fact that the individuals collected are consecutive and therefore they are an unbiased representation of the individuals born in a high-volume centre such as the Santa Chiara university hospital in Pisa. Moreover, population stratification is not an issue considering that all the subjects of the study have been collected in the same center.

In conclusion the association that we propose here between TAS1R1-rs4908932 and birthweight is corroborated by a study-wise significance and reflects the association of a locus on chromosome 1 that has been already observed in adults showing the importance of this variant from the early stages of conception through all the adult life.

Materials and methods

Study population. This study was carried out on 1077 new-born recruited at the Division of Neonatology of the Santa Chiara Hospital (Pisa, Italy) from 2015 to 2019. Inclusion criteria in the recruitment were term birth defined as a gestational age ≥37 weeks and five minutes Apgar score ≥7 that indicates that the newborn is in good health and does not require additional interventions or treatments. Exclusion criteria consisted of cardiovascular disease, age at menopause, and medication use as reported in the GWAS catalogue, making this a potential pleiotropic locus of the genome.

The selection of polymorphisms included in the study focused on tagging (tSNP) and functional SNPs. The choice of the tSNPs was based on the Linkage Disequilibrium (LD) in the Caucasian population. To select the tSNP of TAS1R1, TAS1R2 and TAS1R3, the chromosomal position of these genes was inserted in Ensembl genome browser’s VCF to PED conversion tool (online version http://grch37.ensembl.org/Homo_sapiens/Tools/VcfToPed), which returns a linkage pedigree file and a marker information file with European population genotype data. These files were uploaded to Haplovie, a bioinformatic software (https://www.broadinstitute.org/haploview/haploview version 4.2) used to choose tagging SNPs. The search criteria for tSNP set on the Haplovie software were: r² > 0.8 and minimum allele frequency (MAF) > 0.05.

The choice of functional polymorphisms was focused on expression Quantitative Trait Loci (eQTLs), genetic variants, including SNPs, that can modify and regulate gene expression. The expression Single Nucleotide Polymorphisms (eSNPs) selected for this study are significant eQTL of the digestive tract, in particular at the level of the pancreas, liver, terminal ileum, transverse colon and sigmoid colon. The choice fell on these five tissues in view of a possible association with different perception and/or metabolization of nutrients with birthweight. The final list consisted in 21 SNPs among which 4 eQTLs.
Samples preparation and genotyping. DNA was extracted using Quick-DNA Universal Kit (Zymo Research, Irvine, CA, USA) from cord blood that was collected during delivery and then stored frozen at –20 °C. Genotyping was conducted in 384 well plates using TaqMan assays (Thermo Fisher Scientific, Waltham, Massachusetts, USA) as recommended by the provider. For quality control of the genotyping 36 (3.3%) duplicated samples were added and processed as the rest. Genotyping call was done using the QuantStudio 5 Real-Time PCR System (Applied Biosystems) and the QuantStudio Design & Analysis Software V1.4.3 (Thermo Fisher Scientific, Waltham, MA, USA).

Statistical analysis. For each SNP Hardy–Weinberg equilibrium was assessed using Pearson chi-square test. To estimate how the anthropometric and epidemiologic variables and genetic variability affects birth weight a linear regression model was used, calculating the regression coefficient, its confidence interval (95% CI) and the p-value. If the regression coefficient takes positive values, it indicates that the average weight increases for carriers of the rare allele, on the contrary, in the case of negative values, the regression coefficient represents how much the birth weight is reduced on average in the presence of rare allele. For the genetic variables we used a codominant model of inheritance putting the most common allele as reference category in each analysis. Applying the Bonferroni correction (dividing the threshold value of 0.05 by the number of SNPs) we considered the p-value = 0.0024 as threshold for statistical significance.

Bioinformatic tools. To test the functional relevance of the SNPs associated with birthweight we used three bioinformatic tools. The Genotype-Tissue Expression (GTEx- version v7release, GRCh37/hg19 assembly, data access on 04/01/2019) project to identify if the variants where associated with gene expression. Such variants are called expression quantitative trait loci (eQTLs). RegulomeDB 2.0 (https://www.regulomedb.org/regulome-search/) was used, instead, to assess whether the variant is associated with regulatory potential. RegulomeDB assigns to each SNP a rank, going from 1a to 7 in descending order of the accumulated evidences of functional relevance of the SNP. The accumulated evidence consists in several items such as whether the SNPs binds to one or more transcription factor, if it lies in a DNAse sensitive region (i.e. a region that is accessible to transcription factors), and it is an eQTL. Finally, we used Haploreg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) to assess whether the variants belong to transcription factor binding sites or if they are in methylated DNA regions.

Data availability The data for this work will be made available to researchers who submit a reasonable and detailed request to the corresponding author, conditional to approval of the Ethics Commission of the Meyer Children Hospital of Florence which is the appointed IRB for all the pediatric study in the Tuscany region. Data will be stripped from all information allowing identification of study participants.

Received: 14 September 2020; Accepted: 29 December 2020
Published online: 02 March 2021

References
1. Barker, D. J. & Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. *Lancet* **1**, 1077–1081. https://doi.org/10.1016/s0140-6736(86)91340-1 (1986).
2. Palatianou, M. E., Simos, Y. V., Andronikou, S. K. & Kiortsis, D. N. Long-term metabolic effects of high birth weight: A critical review of the literature. *Horm. Metab. Res.** **46**, 911–920. https://doi.org/10.1055/s-0034-1395561 (2014).
3. McIntire, D. D., Bloom, S. L., Casey, B. M. & Leveno, K. J. Birth weight in relation to morbidity and mortality among newborn infants. *N. Engl. J. Med.* **340**, 1234–1238. https://doi.org/10.1056/nejm19990423401603 (1999).
4. Rich-Edwards, J. W. et al. Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. *BMJ* **330**, 1115. https://doi.org/10.1136/bmj.38434.629630.E0 (2005).
5. Oken, E. & Gillman, M. W. Fetal origins of obesity. *Obes Res** **11*, 496–506. https://doi.org/10.1038/oby.2003.69 (2003).
6. Wang, T. et al. Low birthweight and risk of type 2 diabetes: A Mendelian randomisation study. *Diabetologia* **59**, 1920–1927. https://doi.org/10.1007/s00125-016-4019-z (2016).
7. Gamborg, M. et al. Birth weight and systolic blood pressure in adolescence and adulthood: meta-regression analysis of sex- and age-specific results from 20 Nordic studies. *Am. J. Epidemiol.* **166**, 634–645. https://doi.org/10.1093/aje/kwi042 (2007).
8. Luyckx, V. A. & Brenner, B. M. Low birth weight, nephron number, and kidney disease. *Kidney Int. Suppl.* **S68–77. https://doi.org/10.1111/j.1523-1755.2005.00712.x (2005).
9. Aarnoudse-Moens, C. S., Weisglas-Kuperus, N., van Goudoever, J. B. & Oosterlaan, J. Meta-analysis of neurobehavioral outcomes and stroke in women. *Diabetologia* **59**, 717–728. https://doi.org/10.1542/peds.2008-2816 (2009).
10. Beaumont, R. N. et al. Genetic evidence for causal relationships between maternal obesity-related traits and birth weight. *JAMA* **315**, 1129–1140. https://doi.org/10.1001/jama.2016.1975 (2016).
11. Horikoshi, M. et al. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. *Hum. Mol. Genet.* **27**, 742–756. https://doi.org/10.1093/hmg/ddx429 (2018).
12. Aarnoudse-Moens, C. S., Weisglas-Kuperus, N., van Goudioever, J. B. & Oosterlaan, J. Meta-analysis of neurobehavioral outcomes and stroke in women. *Diabetologia* **59**, 717–728. https://doi.org/10.1542/peds.2008-2816 (2009).
13. Tyrrell, J. et al. Low birthweight and risk of type 2 diabetes: A Mendelian randomisation study. *Diabetologia* **59**, 1920–1927. https://doi.org/10.1007/s00125-016-4019-z (2016).
14. Hughes, A. E. et al. Fetal genotype and maternal glucose have independent and additive effects on birth weight. *Diabetes* **67**, 1024–1029. https://doi.org/10.2337/db17-1188 (2018).
15. Avau, B. et al. The gustatory signaling pathway and bitter taste receptors affect the development of obesity and adipocyte metabolism in mice. *PLoS ONE* **10**, e0145538. https://doi.org/10.1371/journal.pone.0145538 (2015).
16. Avau, B. & Depoortere, I. The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity. *Acta Physiol. (Oxf)* **216**, 407–420. https://doi.org/10.1111/apha.12621 (2016).
Author contributions

d.c. and m.c. conceived and designed the study. r.f., s.d. and l.e. performed labwork. d.c., m.c. and c.r. drafted the manuscript. m.g., p.m., c.t., m.c., d.c. critically read, commented, and approved the manuscript.

Acknowledgements

the genotype–tissue expression (gtex) project was supported by the common fund of the office of the director of the national institutes of health, and by nci, nhgri, nhlbi, nida, nimh, and ninds. the data used for the analyses described in this manuscript were obtained from the gtex portal on 04/01/2019.

17. depoortere, i. taste receptors of the gut: Emerging roles in health and disease. Gut 63, 179–190. doi:10.1136/gutjnl-2013-305112 (2014).
18. freund, j. r. & lee, r. j. taste receptors in the upper airway. world j. otorhinolaryngol. head neck surg. 4, 67–76. doi:10.1016/j.wjorn.2018.02.004 (2018).
19. kochem, m. type 1 taste receptors in taste and metabolism. ann. nutr. metab. 70(suppl 3), 27–36. doi:10.1159/00047 8760 (2017).
20. meyer-gerspach, a. c., wolferthanssen, b. & beglinger, c. gut sweet taste receptors and their role in metabolism. front. horm. res. 42, 123–133. doi:10.1016/j.1535-0458.s21 (2014).
21. barontini, j. et al. association between polymorphisms of tas2r16 and susceptibility to colorectal cancer. bmc gastroenterol. 17, 104. doi:10.1186/s12876-017-0659-9 (2017).
22. campa, d. et al. bitter taste receptor polymorphisms and human aging. plos one 7, e45232. doi:10.1371/journal.pone.0045232 (2012).
23. campa, d. et al. a gene-wide investigation on polymorphisms in the taste receptor 2r14 (tas2r14) and susceptibility to colorectal cancer. bmc med. genet. 11, 88. doi:10.1186/1471-2350-11-88 (2010).
24. carrai, m. et al. association between taste receptor (tas) genes and the perception of wine characteristics. sci. rep. 7, 9239. doi:10.1038/s41598-017-08946-3 (2017).
25. carrai, m. et al. association between tas2r38 gene polymorphisms and colorectal cancer risk: A case-control study in two independent populations of caucasian origin. plos one 6, e20464. doi:10.1371/journal.pone.0020464 (2011).
26. chamoun, e. et al. single nucleotide polymorphisms in taste receptor genes are associated with snacking patterns of preschool-aged children in the guelph family health study: A pilot study. nutrients 10. doi:10.3390/nut10020153 (2018).
27. chamoun, e. et al. a review of the associations between single nucleotide polymorphisms in taste receptors, eating behaviors, and health. crit. rev. food sci. nutr. 58, 194–207. doi:10.1080/10408398.2016.1152229 (2018).
28. diószegi, j., llnai, e. & ádány, r. genetic background of taste perception, taste preferences, and its nutritional implications: A systematic review. front. genet. 10. doi:10.3389/fgene.2019.01272 (2019).
29. gentilomoro, m. et al. taste receptor polymorphisms and male infertility. hum. reprod. 32, 2324–2331. doi:10.1093/humrep/deex305 (2017).
30. gentilomoro, m., lu, y., canzian, f. & campa, d. genetic variants in taste-related genes and risk of pancreatic cancer. mutagenesis 34, 391–394. doi:10.1093/mutage/gez352 (2019).
31. keller, k. l. & adise, s. variation in the ability to taste bitter thiourea compounds: Implications for food acceptance, dietary intake, and obesity risk in children. annu. rev. nutr. 36, 157–182. doi:10.1146/annurev-nutr-071715-050916 (2016).
32. melo, s. v. et al. evaluation of the association between the tas1r2 and tas1r3 variants and food intake and nutritional status in children. genet. mol. biol. 40, 415–420. doi:10.1590/1678-4605-gmb-2016-0205 (2017).
33. ramos-lopez, o., panduro, a., martinez-lopez, e. & roman, s. sweet taste receptor tas1r2 polymorphism (val191val) is associated with a higher carbohydrate intake and hypertglycemicdiabetes among the population of west mexico. nutrients 8, 101. doi:10.3390/nut8020101 (2016).
34. joseph, p. v., reed, d. r. & mennella, j. a. individual differences among children in sucrose detection thresholds: Relationship with age, gender, and bitter taste genotype. nurs. res. 65, 3–12. doi:10.1097/nnr.0000000000000138 (2016).
35. fushan, a. a., simons, c. t., slack, j. p., manichaud, a. & drayna, d. allelic polymorphism within the tas1r3 promoter is associated with human taste sensitivity to sucrose. curr. biol. 19, 1288–1293. doi:10.1016/j.cub.2009.06.015 (2009).
36. choi, j. h. et al. variations in tas1r taste receptor gene family modify food intake and gastric cancer risk in a korean population. mol. nutr. food res. 60, 2433–2445. doi:10.1002/mnfr.201600145 (2016).
37. bertino, e. et al. neonatal anthropometric charts: the italian neonatal study compared with other european studies. j. pediatr. gastroenterol. nutr. 51, 353–361. doi:10.1097/mpg.0b013e3181da213e (2010).
38. witt, s. h. et al. impact on birth weight of maternal smoking throughout pregnancy mediated by dna methylation. bmc genomics 19, 290. doi:10.1186/s12864-018-4652-7 (2018).
39. bactu, c. et al. systematic integrative analysis of gene expression identifies hnf4a as the central gene in pathogenesis of non-alcoholic steatohepatitis. plos one 12, e0189223. doi:10.1371/journal.pone.0189223 (2017).
40. hanawa, m., takayama, k., sakurai, f., tachibana, m. & mizuuchi, h. Hepatocyte nuclear factor 4 alpha promotes definitive endoderm differentiation from human induced pluripotent stem cells. stem cell rev. rep. 13, 542–551. doi:10.1007/12105-016-9709-x (2017).
41. shi, y., zhou, d., wang, b., zhou, d. & shi, b. roles and mechanisms of action of hnf4alpha in the hepatic differentiation of wbf344 cells. int. j. mol. med. 43, 1021–1032. doi:10.3892/ijmm.2018.4010 (2019).
42. yeh, m. m., bosch, d. e. & daoud, s. s. role of hepatocyte nuclear factor 4 alpha in gastrointestinal and liver diseases. world j. gastroenterol. 25, 4074–4091. doi:10.3748/wjg.v25.i30.4074 (2019).
43. kichaev, g. et al. leveraging polygenic functional enrichment to improve gwas power. am. j. hum. genet. 104, 65–75. doi:10.1016/j.ajhg.2018.11.008 (2019).
44. freathy, r. m. et al. variants in adcys5 and near ccnl1 are associated with fetal growth and birth weight. nat. genet. 42, 430–435. doi:10.1038/ng.857 (2010).
45. practice., a. a. o. p. c. o. f. a. n. a. c. o. o. g. o. o. the appgar score. adv neonatal care 6, 220–223. doi:10.1016/j. adnc.2006.04.008 (2006).
46. appgar, v. a proposal for a new method of evaluation of the newborn infant. originally published in july 1953, volume 32, pages 250–259. anesth. analg. 120, 1056–1059. doi:10.1213/ane.0b013e318292bdcc6 (2015).
47. erbi, i. et al. role of oprml1, clinical and anthropometric variants in neonatal pain reduction. sci. rep. 10, 7091. doi:10.1038/s41598-020-63790-2 (2020).
48. barrett, j. c., fry, b., maller, j. & daly, m. j. haploview: Analysis and visualization of ld and haplotype maps. bioinformatics 21, 263–265. doi:10.1093/bioinformatics/bth457 (2005).
Funding
This work was supported by Fondazione Arpa (www.fondazionearpa.it) and by the PRA 2018–2019 grant round, with project code -PRA_2018_39 funded by the University of Pisa.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021