The Effect of Dietary Glucose Oxidase Supplementation on Production Performance, Egg Quality and Nutrient Digestibility in Laying Hens

ABSTRACT

The study was conducted to investigate the effect of GOX on performance, egg quality, and nutrient digestibility in laying hens. In total, 432, 50-week-old Hy-Line brown breeder hens were assigned into four treatments, and fed a basal diet with GOX at 0, 100, 200 and 300 units for 10 weeks, respectively. A Quadratic decrease in FI in week 3 (p<0.05) and linear increase in egg production in week 6 to 10 and overall experiment period (p<0.05) and Quadratic increase in egg production in week 7 (p<0.05), a linear decrease in broken egg rate in week 6 (p<0.05) a quadratic increase in egg weight on day 14 (p<0.05), a linear increase in egg weight on day 28 (p<0.05), and linear decrease in yolk color on day 7 (p<0.05), a linear increase in yolk color on day 42 and day 70 (p<0.05), and linear increase in haugh unit on day 28 and 70 (p<0.05), a linear increase in eggshell strength and eggshell thickness on day 56 (p<0.05), and linear decrease in shell color on day 14 (p<0.05) and day 28 (p<0.05), a linear and quadratic increases in eggshell strength and eggshell thickness on day 56 (p<0.05), and linear increase in eggshell strength and eggshell thickness on day 70 (p<0.05) were observed with the addition of GOX the the diet. Conclusion: This study suggested that the supplementation of GOX may have beneficial effects on feed intake and egg quality in laying hens.

INTRODUCTION

Eggs can create considerable value for animal husbandry as animal products. Antibiotics as performance enhancers in layer production have primarily been applied to improve the utilization of the feed and reduce the pathogenic bacteria in the gut, and in turn, improve production performance (Bozkurt et al., 2009). However, due to the increase of multiple resistance bacteria and the decrease of consumers' acceptance of antibiotics, it has been prohibited gradually (Li et al., 2015). In recent years, enzymes feed additives have attracted more and more attention because of their safe and environmentally friendly nature (Li et al., 2015). Some researchers have reported the positive effects of enzymes supplementation on production performance and egg quality of laying hens (Ghasemi et al., 2010; Alagawany & Abd El-Hack, 2015).

GOD (β-d-glucose:oxygen 1-oxidoreductase) catalyzes the oxidation of β-d-glucose to gluconic acid by utilizing molecular oxygen as an electron acceptor with simultaneous production of hydrogen peroxide (H2O2) (Bankar et al., 2009). The glucose oxidase enzyme is commercially produced from Aspergillus niger and Penicillium glaucum through a solid-state fermentation method. Muller was first to report the catalyzation of glucose oxidase and the breakdown of glucose into gluconic acid in the presence of dissolved oxygen (Singh
The Effect of Dietary Glucose Oxidase Supplementation on Production Performance, Egg Quality and Nutrient Digestibility in Laying Hens

Experimental Design, Diets And Animal Management

A total of 432 Hy-line brown laying hens (50-week-age) were used in a 10-week trial to evaluate the production performance, egg quality parameters, and nutrient digestibility. Laying hens were randomly allotted into four treatments. There were 9 replication pens with 12 hens per replication (1 hen/cage). Dietary treatment groups were as follows: 1) CON, Basal diet, 2) TRT1, Basal diet + 100 unit Glucose oxidase, 3) TRT2, Basal diet + 200 unit Glucose oxidase, 4) TRT3, Basal diet + 300 unit Glucose oxidase. Feeds of corn-soybean meal were fed to the experimental diets according to the requirement of NRC (1994). The composition of the basal diet, experimental diets, and nutrient levels are presented in Table 1. All hens were

Table 1 – Composition of laying hen diets (as fed-basis).

Item	CON	TRT1	TRT2	TRT3
Ingredients (%)				
Corn	53.11	53.09	53.07	53.05
DDDS	20.01	20.01	20.01	20.01
Palm kernel meal	1.85	1.85	1.85	1.85
Soybean meal	10.99	11.00	11.00	11.00
Seasame meal	2.00	2.00	2.00	2.00
Tallow	0.94	0.94	0.95	0.96
MDCP	0.06	0.06	0.06	0.06
Limestone	10.32	10.32	10.32	10.32
Salt	0.05	0.05	0.05	0.05
Methionine (99%)	0.27	0.27	0.27	0.27
Lysine (50%)	0.10	0.10	0.10	0.10
Vitamin mix¹	0.05	0.05	0.05	0.05
Mineral mix²	0.10	0.10	0.10	0.10
Choline (50%)	0.10	0.10	0.10	0.10
Phytase (500 unit)	0.05	0.05	0.05	0.05
GOX	-	0.01	0.02	0.03
Total	100.00	100.00	100.00	100.00

Item	Experimental diets
Crude Protein, %	16.02
Crude Fat, %	5.03
Crude Fiber, %	4.24
Crude Ash, %	4.57
Calcium, %	4.10
Phosphorus, %	0.51
Available Phosphorus, %	0.20
Lysine, %	0.75
Methionine+Cystine, %	0.94
Metabolizable energy, kcal/kg	2650
Linoleic Acid, %	2.43

¹ Provided per kg of diet: vitamin A, 10,800 IU; vitamin D₃, 4,000 IU; vitamin E, 40 IU; vitamin K₃, 4 mg; vitamin B₁, 6 mg; vitamin B₂, 12 mg; vitamin B₆, 6 mg; vitamin B₁₂, 0.05 mg; biotin, 0.2 mg; folic acid, 2 mg; niacin, 50 mg; D-calcium pantothenate, 25 mg.
² Provided per kg of diet: Fe, 100 mg as ferrous sulfate; Cu, 17 mg as copper sulfate; Mn, 17 mg as manganese oxide; Zn, 100 mg as zinc oxide; I, 0.3 mg as potassium iodide; and Se, 0.3 mg as sodium selenite.

MATERIALS AND METHODS

Animal experiments were approved by the Dankook University Animal Care and Use Committee, Cheonan, Republic of Korea. (Permit number DK-1-1963).

Sources of Gox

The commercial GOX (Bestzyme Bio-engineering Co., LTD; Jinan, China) was expressed by Aspergillus niger. According to the information provided by the manufacturer, the optimum temperature for the enzymatic function of GOX is 28-80 °C and the optimum pH is 2.0-7.0. The activity of GOX was 2000 unit/g. One unit of GOX activity is defined as the amount of enzyme which oxidizes 1 μmol β-D-glucose per minute to D-gluconic acid and hydrogen peroxide at 37 °C and pH 5.5.

& Kumar, 2019). Fungal strains Aspergillus niger are able to produce notable amounts of glucose oxidase. Fungal strains Aspergillus niger are able to produce notable amounts of glucose oxidase. Glucose oxidase enzymes are used to remove small amounts of oxygen from food products or glucose from diabetic drinks. Glucose oxidase plays an important role in color development, flavor, texture, and increasing the shelf life of food products (Singh & Kumar, 2019). The enzyme has been widely used in the feed production industry, because it has been verified that GOD has effects on bacteriostasis (Zhao et al., 2014), growth-promotion (Tang et al., 2016), immunity (Cui et al., 2015), and digestion, and it is non-toxic, low-residue, and difficult to arise resistance (Chen, 2017). This enzyme has been widely used in animal production by its characteristics of producing acid, deoxygenation, and sterilization (Kapat et al., 1998). Heenkenda et al. (2019) have been shown that 0.025% GOD could significantly improve the BW of broilers. Wu et al. (2019) also indicated that dietary supplement GOD could significantly influence growth performance of broilers between days 1 to 21, and even achieve similareffects as antibiotic supplemented groups. Tang et al. (2016) and Mu et al. (2018) declared that GOD significantly improve the ADG and decrease the feed-to-gain ratio (F:G) of weaned piglets.

To our knowledge, there is little research reported on the effect of these additives in laying hens. Therefore, the current study was designed to evaluate the effect of glucose oxidase supplementation to layer diets on laying performance, egg quality, and nutrient digestibility.
housed in an environmentally controlled house with the temperature maintained at approximately 18 °C to 23 °C, from 50 to 60 weeks of age. Ventilation and lighting (16L: 8D) were automatically controlled in the house. All hens were supplied with mash feed and water ad libitum. The relative humidity was maintained at 60–70% throughout the trial period. The current study lasted 10 weeks and the hens were allowed a 7-day adaptation period.

Production Performance

The number of eggs produced was recorded daily at 13:00 h including those that were broken. Egg production rate (%) was calculated from the total number of eggs laid in 1 wk divided by the total number of hen days in that week on a replicate basis. Average egg weight was obtained by dividing the total weight of collected eggs by the number of normal eggs. We recorded feed intake weekly for each replicate.

Egg Quality Assessment

In addition, on weeks 2, 4, 6, 8 and 10 of the experiment, 48 eggs (4 eggs per replication) were randomly collected for the egg quality measurements including egg weight, egg breaking strength, Haugh unit (HU), eggshell color, yolk color, and eggshell thickness. The egg breaking strength was measured using an egg breaking strength tester (FHK, Fujihira Co. Ltd., Tokyo, Japan). HU, a measure of the height of the albumen of the eggs broken out on a flat surface, was calculated using the formula 100×log (H+7.57–1.7W0.37), where H is the height of the egg white (mm) and W is the weight of the egg (g). Egg shell color was measured using an eggshell color fan (Samyang Co., Ltd., Seoul, Korea). Egg yolk color was measured using an egg yolk color fan of Roche. Egg shell thickness was measured at the central part of the eggshell fragments without eggshell membrane using a Digimatic micrometer (Series 293-330-30, Mitutoyo Corporation, Kawasaki, Japan).

Nutrient Digestibility

Laying hens were fed their respective diets containing chromic oxide (Cr2 O3 at 0.20% level) for 4 days prior to the collection period to determine nutrient digestibility. Whole excreta collection was performed daily for three days in week 5 and 10 and stored at -20 °C until further analysis. All feed and fecal samples were ground to pass through a 1-mm screen, after which they were analyzed for dry matter (DM) (method 930.15), and nitrogen (N) (method 990.03) following the procedures outlined by the Association of Official Analytical Chemists International AOAC (2000). The digestible energy was determined by measuring the heat of combustion by Parr 6400 oxygen bomb calorimeter (Parr Instrument Co., Moline, USA). Nitrogen was determined (Kjectec2300 Nitrogen Analyzer; Foss Tector AB, Höganaes, Sweden), and CP was calculated as N × 6.25.

Chromium concentrations were determined via UV-absorption spectrophotometry (UV-1201, Shimadzu, Kyoto, Japan). The apparent total tract digestibility was then calculated using the following formula:

\[
\text{Digestibility} \% = \left(1 - \frac{(\text{Nf} \times \text{Cd})}{(\text{Nd} \times \text{Cf})}\right) \times 100
\]

where \(\text{Nf} = \) nutrient concentration in feces (% DM), \(\text{Cd} = \) chromium concentration in diet (% DM), \(\text{Nd} = \) nutrient concentration in diet (% DM), and \(\text{Cf} = \) chromium concentration in feces (% DM).

Statistical Analysis

All data were subjected to statistical analysis in a randomized complete block design using the General Linear Model procedure of the SAS (Version 9.2., SAS Institute Inc., Cary, NC, USA), with each replicate cage being defined as the experiment unit. Orthogonal contrasts were used to examine the linear and quadratic effects in response to increasing the dietary supplementation of herbal mixture extract. The results were presented as means and pooled standard error of the mean (SEM). Probability values less than 0.05 were considered significant.

RESULTS

A Quadratic decrease in FI in week 3 \((p<0.05)\) and linear increase in egg production in week 6 to 10 and overall experiment period \((p<0.05)\) a Quadratic increase in egg production in week 7 \((p<0.05)\), as well as a linear decrease in egg broken rate in week 6 \((p<0.05)\) were observed with the dose of GOX in the diet. (Table 2). Egg weight on day 28 \((p<0.05)\), and yolk color on day 42 \((p<0.05)\) and day 70 \((p<0.001)\), haugh unit on days 28 and 70 \((p<0.05)\), albumen height on day 28 and day 56 \((p<0.05)\), eggshell strength on day 56\((p<0.05)\) and day 70 \((p<0.001)\) and eggshell thickness on days 56 and 70 \((p<0.05)\) increased linearly with increasing GOX dose in the diet. However, egg weight on day 14 \((p<0.05)\), eggshell strength on day 56 \((p<0.001)\), and eggshell thickness on day 56 \((p<0.05)\) quadratically increased by YGF251 supplementation. Supplementing GOX to the diet of laying hens linearly decreased yolk color \((p<0.05)\), and shell color on day 14 \((p<0.001)\),
The Effect of Dietary Glucose Oxidase Supplementation on Production Performance, Egg Quality and Nutrient Digestibility in Laying Hens

Muniyappan M, Chen N, Liu Y, Kim IH

The Effect of Dietary Glucose Oxidase Supplementation on Production Performance, Egg Quality and Nutrient Digestibility in Laying Hens

DISCUSSION

Studies reported beneficial effects of GOX supplementation in layer’s diet on laying performance (Zhao et al., 2009; Wen et al., 2012; Adubados, 2011). However, in the present study, hen-day egg production was improved in weeks 6 to 10 and in the overall experimental period, and broken egg rate decreased in week 6, and decreased in FI in week 3 with dietary supplementation GOX. This result was consistent with previous reports which showed no significant difference in egg production, egg weight, feed intake and the FCR when laying hens were given diet supplemented with GOX (Mathlouthi et al. 2003; Wu et al., 2005; Yoruk et al., 2006). Vieira Filho et al. (2015) indicated that enzymes supplementation in the laying hen diet significantly increased the egg production rate and egg weight, but the feed consumption, and FCR were not affected. However, Zhao et al. (2009) and Weiping et al. (2019) found that the FI was reduced when the birds were fed GOX diet. Mathlouthi et al. (2003) found that GOX supplementation at 200 units in the diet did not affect egg production of broiler breeders from 40 weeks and day 28 (p<0.05) (Table 3). Laying hens fed the diet supplemented with GOX had no effect on DM, N, and GE during week 5 and 10 (Table 4).

Table 2 – Effects of Glucose oxidase on feed intake, egg production and egg broken rate in laying hens

Items	CON	TRT1	TRT2	TRT3	SEM	p-value
FI, g						
Week 1	95.23	95.59	93.71	95.62	0.97	0.8610 0.4030
Week 2	97.81	96.99	97.57	96.74	0.65	0.3136 0.9298
Week 3	98.38	97.89	96.88	98.01	0.58	0.2942 0.0520
Week 4	98.72	98.87	98.19	98.08	0.59	0.3737 0.9770
Week 5	98.74	98.46	98.56	98.00	0.63	0.1469 0.1635
Week 6	97.80	97.65	98.58	97.93	0.51	0.5449 0.5993
Week 7	97.12	96.61	96.35	96.98	1.00	0.8966 0.6123
Week 8	97.82	96.90	96.55	98.28	0.82	0.7949 0.1480
Week 9	97.91	97.17	96.08	96.90	0.95	0.3637 0.4428
Week 10	97.03	97.34	97.89	97.87	0.77	0.3772 0.8296
TF1	97.46	97.35	97.01	97.44	0.51	0.8480 0.5775
Egg production, %						
Week 1	81.88	82.28	82.54	82.41	1.98	0.8427 0.8982
Week 2	83.86	84.26	84.79	85.05	0.95	0.3505 0.9457
Week 3	83.60	83.86	84.66	84.39	0.99	0.4822 0.7912
Week 4	84.39	84.52	84.13	85.32	0.77	0.4979 0.4992
Week 5	84.66	86.38	87.83	87.30	1.05	0.0639 0.3014
Week 6	84.79	87.17	88.62	87.70	0.85	0.0170 0.0700
Week 7	86.64	88.89	89.55	89.29	0.51	0.0019 0.0263
Week 8	85.58	87.43	88.23	87.96	0.81	0.0454 0.2126
Week 9	85.58	87.04	87.96	88.49	0.68	0.0060 0.5045
Week 10	85.85	87.30	88.10	87.83	0.65	0.0355 0.2081
Overall	84.70	85.91	86.63	85.79	0.30	0.0023 0.1166
Egg broken rate, %						
Week 1	0.32	0.47	0.17	0.30	0.24	0.7426 0.9616
Week 2	0.47	0.31	0.16	0.00	0.22	0.1383 0.9882
Week 3	0.49	0.31	0.63	0.47	0.22	0.7899 0.9910
Week 4	0.31	0.16	0.00	0.15	0.16	0.4001 0.3483
Week 5	0.47	0.14	0.30	0.45	0.20	0.9141 0.2545
Week 6	0.47	0.30	0.15	0.00	0.16	0.0442 0.9470
Week 7	0.76	0.59	0.29	0.45	0.31	0.3741 0.6008
Week 8	0.31	0.30	0.15	0.31	0.22	0.8864 0.7108
Week 9	0.78	0.46	0.31	0.44	0.32	0.4229 0.4880
Week 10	0.61	0.30	0.45	0.30	0.18	0.3599 0.6697
Overall	0.50	0.34	0.26	0.29	0.08	0.0709 0.2658

1 Abbreviation: CON, Basal diet; TRT1, CON + 100 unit Glucose oxidase; TRT2, CON + 200 unit Glucose oxidase; TRT3, CON + 300 unit Glucose oxidase.

2 Standard error of means.

3 Means in the same row with different superscripts differ (p<0.05).
The Effect of Dietary Glucose Oxidase Supplementation on Production Performance, Egg Quality and Nutrient Digestibility in Laying Hens

Egg quality is one of the factors that directly influence economic outcomes for livestock farmers in the intensive farm of laying hen (Ding et al., 2016). Eggshell strength and eggshell thickness are the 2 primary indicators of eggshell quality, as they influence the storage and transportation stability of eggs. Eggshell and egg internal quality are influenced by various factors such as egg weight, shell weight, specific gravity, shell breaking strength, shell deformation, shell thickness, albumen height, and albumen color. The inconsistent determination regarding egg production in laying hens could be due to the diverse feed ingredients, activity and concentration of GOX, or ages of the hens. Additionally, the interaction of the GOX may also contribute to the inconsistent results. Besides, in the present study, the nonconsecutive positive effects on egg production may be due to the age of the hens that during the middle and end laying period, egg production ratio increased rapidly (Guoxian et al., 2006).

Table 3 – Effects of Glucose oxidase on egg quality in laying hens

Items	CON	TRT1	TRT2	TRT3	SEM	p-value
Day 14						
Egg weight, g	64.62	65.88	65.55	65.43	0.59	0.7327
Yolk color	6.85	6.95	6.74	6.62	0.08	0.0101
HU	85.52	85.82	88.66	87.34	1.30	0.2793
Albumen height	7.88	8.49	8.87	9.15	0.31	0.8320
Shell color	10.32	10.58	9.80	9.53	0.20	0.0008
Eggshell strength, kg/cm²	3.83	3.85	3.71	3.91	0.11	0.8820
Eggshell thickness, mm²	36.21	36.88	36.63	36.64	0.60	0.6983
Day 28						
Egg weight, g	62.82	64.78	64.19	65.17	0.67	0.0312
Yolk color	7.11	7.16	7.07	7.10	0.08	0.7903
HU	82.05	83.80	84.76	86.34	1.37	0.0410
Albumen height	7.13	7.61	8.11	8.36	0.29	0.0002
Shell color	11.00	10.72	10.80	10.37	0.21	0.0545
Eggshell strength, kg/cm²	3.76	3.77	3.78	3.74	0.12	0.9433
Eggshell thickness, mm²	38.33	37.99	37.66	38.66	0.43	0.7438
Day 42						
Egg weight, g	65.90	65.81	65.96	64.91	0.73	0.3836
Yolk color	7.73	7.88	7.90	7.93	0.10	0.0379
HU	81.05	82.79	85.72	86.06	1.54	0.0860
Albumen height	7.33	7.47	7.78	7.91	0.18	0.8183
Shell color	11.72	12.37	11.57	11.55	0.28	0.3044
Eggshell strength, kg/cm²	3.95	4.07	3.96	4.18	0.14	0.3601
Eggshell thickness, mm²	41.97	42.38	42.48	43.11	0.48	0.1021
Day 56						
Egg weight, g	61.01	61.86	63.14	62.89	0.86	0.0739
Yolk color	6.96	7.12	6.98	7.07	0.07	0.5314
HU	85.38	87.37	88.36	89.82	1.20	0.1703
Albumen height	7.81	8.50	8.71	8.94	0.34	0.0179
Shell color	10.47	10.75	11.00	10.87	0.26	0.2144
Eggshell strength, kg/cm²	3.78	4.35	4.23	4.15	0.12	0.0537
Eggshell thickness, mm²	42.43	44.49	44.52	43.40	0.62	0.0292
Day 70						
Egg weight, g	62.89	63.91	64.29	64.24	0.61	0.1066
Yolk color	7.18	7.31	7.47	7.61	0.18	0.0002
HU	88.82	90.78	91.75	92.60	1.20	0.0249
Albumen height	8.27	8.58	8.87	9.11	0.20	0.0765
Shell color	11.75	11.48	11.67	11.43	0.20	0.3827
Eggshell strength, kg/cm²	3.99	4.20	4.11	4.58	0.12	0.0025
Eggshell thickness, mm²	43.46	45.32	44.22	45.58	0.46	0.0124

1 Abbreviation: CON, Basal diet; TRT1, CON + 100 unit Glucose oxidase; TRT2, CON + 200 unit Glucose oxidase; TRT3, CON + 300 unit Glucose oxidase.
2 Standard error of means.
3 Means in the same row with different superscripts differ (p<0.05).

of the age. The inconsistent determination regarding egg production in laying hens could be due to the diverse feed ingredients, activity and concentration of GOX, or ages of the hens. Additionally, the interaction of the GOX may also contribute to the inconsistent results. Besides, in the present study, the nonconsecutive positive effects on egg production may be due to the age of the hens that during the middle and end laying period, egg production ratio increased rapidly (Guoxian et al., 2006).
The Effect of Dietary Glucose Oxidase Supplementation on Production Performance, Egg Quality and Nutrient Digestibility in Laying Hens

Muniyappan M, Chen N, Liu Y, Kim IH

The Effect of Dietary Glucose Oxidase Supplementation on Production Performance, Egg Quality and Nutrient Digestibility in Laying Hens

Muniyappan M, Chen N, Liu Y, Kim IH The Effect of Dietary Glucose Oxidase Supplementation on Production Performance, Egg Quality and Nutrient Digestibility in Laying Hens

yolk color. Our results showed that the addition of GOX into laying hen's diet difference egg weight, yolk color, albumen height, shell color, haugh unit, eggshell thickness, and eggshell strength in this overall trial, which is consistent with the findings of Guoxian et al. (2006). However, on days 28 and 42 of this trial, this beneficial effect was found to lose its significance. This may be attributed to the advanced age of the hens, meaning the positive gains attributable early to GOX inclusion eventually become masked by age-related performance decline. In agreement with our findings, another research has similarly found significant effect of multi-enzyme product containing xylanase and β-glucanase on eggshell strength and eggshell thickness (Khan et al., 2011; Sun & Kim, 2019). In the further evaluation of eggs, their protein quality is another important judgment data of egg quality. Egg protein quality is mainly evaluated by albumen height and Haugh units (Leng et al., 2014). However, the introduction of GOX to the basal diet failed to influence either albumen height or Haugh units. In further egg analysis, both yolk color and yolk relative weight are also used to examine yolk quality, while the yolk relative weight directly reflects yolk quality. Results from the current study show the effect on yolk color and yolk relative weight when our laying hen diets are included with GOX. A significant correlation between brown shell color and shell strength (Yang et al., 2009) may indicate that brown eggshell pigment affects shell quality. A dark brown eggshell color has been linked to higher eggshell specific gravity, which is a shell quality indicator (Joseph et al., 1999). Brown eggshell color has been positively correlated with some shell characteristics such as shell strength and hatchability (Sekeroglu & Duman, 2011), while egg internal quality has no correlation with shell color (Yang et al., 2009). In brief, laying hens fed the GOX containing diet could increase the acceptance of eggs in consumers through increasing haugh unit, albumen height, eggshell color, eggshell thickness, and eggshell strength.

GOX affected gut functions by stimulating digestive secretions and enhancing enzyme activity (Manzanilla et al., 2004). In our study, the supplementation of 300 units of GOX had no effect on DM, N and GE digestibility. Consistent with the results of our study, Mathlouthi et al. (2010) reported that enzymes supplementation in the wheat diet of broilers also had no effect on nutrient digestibility. However, Wu et al. (2019) and Weiping et al. (2019) also reported that the supplementation of GOX had increased nutrient digestibility in laying hens. Likewise, Wang et al. (2005) indicated that the dietary inclusion of GOX had enhanced the nutrient digestibility of broilers. The dietary supplementation of GOX improved DM on weaning piglets (Hou et al., 2017). The varied response of nutrient digestibility to GOX addition among different studies may result from the differences in dietary composition, the dose of GOX in the diet and the status of gut maturation.

CONCLUSION

Supplementing glucose oxidase to the diet of laying hens could improve the production performance and egg quality (haugh unit, egg weight, albumen height, eggshell thickness, and eggshell strength). Overall, in nutshell, GOX at the high dose of 300 units in layer diets may be beneficial and recommended.

AUTHOR CONTRIBUTIONS

Muniyappan Madesh: Conceptualization, software, validation, visualization. Yan Jie Liu: formal analysis, project administration. Ning Bo Chen: investigation, resources. In Ho Kim: data curation, methodology, supervision, writing - original draft.
DECLARATION OF COMPETING INTEREST

The authors have declared that they have no conflict of interest.

ACKNOWLEDGEMENTS

This study was supported by the International Science & Business Belt support program (1711124011) through the Korea Innovation Foundation funded by the Ministry of Science and ICT and The Department of Animal Resource & Science was supported through the Research-Focused Department Promotion Project as a part of the University Innovation Support Program for Dankook University in 2021.

REFERENCES

Abudabos AM. Effect of enzyme supplementation and wheat middlings as an alternative to corn on laying hens performance. Italian Journal of Animal Science 2011;10(4):e57.

Alagawany M, Abd EI-Hack ME. The effect of rosemary herb as a dietary supplement on performance, egg quality, serum biochemical parameters, and oxidative status in laying hens. Journal of Animal and Feed Sciences 2015;24(4):341-347.

Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. Glucose oxidase—an overview. Biotechnology advances 2009;27(4):489-501.

Bozkurt M, Alçiçek AHMET, Cabuk M, Küçükyilmaz K, Catli AU. Effect of an herbal essential oil mixture on growth, laying traits, and egg hatching characteristics of broiler breeders. Poultry Science 2009;88(11):2368-2374.

Chen B. Application of glucose oxidase in animal production. Animal Nutrition 2017;38:328-338.

Cui YL, Zhao YJ, Sun HY, Chen BJ, Liu SX. Effects of glucose oxidase on serum indexes, antioxidative ability and histological structure of liver in mice. Animal Husbandry and Veterinary Medicine 2015;47:47-51.

Ghasemi R, Zarei M, Torki M. Adding medicinal herbs including garlic (Allium sativum) and thyme (Thymus vulgaris) to diet of laying hens and evaluating productive performance and egg quality characteristics. American Journal of Animal and Veterinary Sciences 2010;5(2):151-154.

Guoxian Z, Xiaoyun Z, Cheng J, Qiugang M. Effects of glucose oxidase on egg quality. China Poultry 2006;2006:29.

Haiou T, Xiuhua G, Bin Y, Guangmin Z, Zhenxing W. Study on the effects of glucose oxidase on growth performance and replacing antibiotics in broilers. Feed Industry 2016;6:4.

Heenkenda HMDBP, Illippangama IPAUNK, Arsecularatne MDNAF, Palliyeguru MWCD, Jayasena DD. Effect of glucose oxidase on performance and meat quality of broiler chicken. 2019. Available from: http://erepo.lib.uwu.ac.lk/bitstream/handle/123456789/715/519.pdf?sequence=1&isAllowed=y

Hou Z, Jiang G, Wu D, Li C, Liu Y, Wang H. Effects of glucose oxidase on growth performance, serum biochemical indexes and antioxidation function, and nutrient digestibility of weaned piglets. Chinese Journal of Animal Nutrition 2017;29(10):3482-3488.

Joseph NS, Robinson NA, Renema RA, Robinson FE. Shell quality and color variation in broiler breeder eggs. Journal of Applied Poultry Research 1999;8(1):70-74.

Kapat A, Jung JK, Park YH. Improvement of extracellular recombinant glucose oxidase production in fed-batch culture of Saccharomyces cerevisiae:effect of different feeding strategies. Biotechnology Letters 1998;20(3):319-323.

Khan SH, Atif M, Mukhtar N, Rehman A, Fareed G. Effects of supplementation of multi-enzyme and multi-species probiotic on production performance, egg quality, cholesterol level and immune system in laying hens. Journal of Applied Animal Research 2011;39(4):386-398.

Leng X, Hsu KN, Austic RE. Effect of dietary defatted diatom biomass on egg production and quality of laying hens. Journal of Animal Science and Biotechnology 2014;5(1):1-7.

Li DD, Ding XM, Zhang KY, Bai SP, Wang JP, Zeng QF, et al. Effects of dietary xylooligosaccharides on the performance, egg quality, nutrient digestibility and plasma parameters of laying hens. Animal Feed Science and Technology 2017;225:20-26.

Li HL, Zhao PY, Lei Y, Hossain MM, Kim IH. Phytoncide, phytogenic feed additive as an alternative to conventional antibiotics, improved growth performance and decreased excreta gas emission without adverse effect on meat quality in broiler chickens. Livestock Science 2015;181:1-6.

Manzanilla EG, Perez JF, Martin M, Kamel C, BaucellsF, Gasa J. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. Journal of Animal Science 2004;82(11):3210-3218.

Mathlouthi N, Bouzaïenne T, Oueslati I, Recoquillay F, Hamdi M, Urdaci M, et al. Use of rosemary, oregano, and a commercial blend of essential oils in broiler chickens: in vitro antimicrobial activities and effects on growth performance. Journal of Animal Science 2012;90(3):813-823.

Mathlouthi N, Mohamed MA, Larbier M. Effect of enzyme preparation containing xylanase and β-glucanase on performance of laying hens fed wheat/barley or maize/soybean meal-based diets. British Poultry Science 2003;44(1):60-66.

Mu SQ, Li N, Yan J, Zheng X, MaY, Li QI, et al. Effect of glucose oxidase on the growth performance and serum biochemical indexes of piglets. Chinese Journal of Animal Husbandry and Veterinary Medicine 2018;45:2212-2218.

Şekeroğlu A, Duman M. Effect of egg shell colour of broiler parent stocks on hatching results, chickens performance, carcass characteristics, internal organ weights and some stress indicators. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2011;17(5):837-842.

Sun HY, Kim IH. Effects of multi-enzyme on production performance, egg quality, nutrient digestibility, and excreta noxious gas emission of early-phase Hy-line brown hens. Poultry Science 2019;98(10):4889-4895.

Tang H, Yao B, Gao X, Yang P, Wang Z, Zhang G. Effects of glucose oxidase on the growth performance, serum parameters and faecal microflora of piglets. South African Journal of Animal Science 2016;46(1):1-14.

Vieira Filho JA, Geraldo A, Machado LC, Brito JA de, Bettechin AG, Murakami ES. Effect of protease supplementation on the production performance of laying hens. Acta Scientiarum (Health Sciences) Animal Sciences 2015;37:112-120.

Weiping Z, Hongjun W, Min Z, Xiaoming X, Wenhui Q, Yuchuan B, et al. Effects of glucose oxidase and catalase on growth performance and nutrient digestibility of broilers. Feed Industry 2019;4:35-39.

Wen C, Wang LC, Zhou YM, Jiang ZY, Wang T. Effect of enzyme preparation on egg production, nutrient retention, digestive enzyme activities and pancreatic enzyme messenger RNA expression of late-phase laying hens. Animal Feed Science and Technology 2012;172(3-4):180-186.
Muniyappan M, Chen N, Liu Y, Kim IH

The Effect of Dietary Glucose Oxidase Supplementation on Production Performance, Egg Quality and Nutrient Digestibility in Laying Hens

Wu G, Bryant MM, Voitle RA, Roland DA. Effects of β-mannanase in corn-soy diets on commercial leghorns in second-cycle hens. Poultry Science 2005;84(6):894-897.

Wu S, Li T, Niu H, Zhu Y, Liu Y, Duan Y, et al. Effects of glucose oxidase on growth performance, gut function, and cecal microbiota of broiler chickens. Poultry Science 2019;98(2):828-841.

Yang HM, Wang ZY, Lu J. Study on the relationship between eggshell colors and egg quality as well as shell ultrastructure in Yangzhou chicken. African Journal of Biotechnology 2009;8(12):2898-2902.

Yoruk MA, Gul M, Hayirli A, Karaoglu M. Multi-enzyme supplementation to peak producing hens fed corn-soybean meal based diets. International Journal of Poultry Science 2006;5(4):374-380.

ZHAO GX, ZHANG XY, ZUO XL, JI C, MA QG. Effect of glucose oxidase on performance and serum biochemical parameters of laying hens. Acta Agriculturae Boreali-Sinica 2009;51(1):290-294.

Zhao Y, Cui Y, Chen B, Sun H, Li S, Li T. Glucose oxidase effects on body weight and intestinal flora of mice with moldy feed. Chinese Journal of Animal Nutrition 2014;26(11):3531-3536.