Lifetimes of some b-flavored hadrons

SHELDON STONE

Physics Department
Syracuse University, Syracuse, New York, USA 13244-1130

Recent measurements of lifetimes of some b-flavored hadrons are presented and interpreted in the context of theoretical models, especially the Heavy Quark Expansion. Decay widths and decay width differences in the $B_s^0 - \bar{B}_s^0$ system are discussed from studies of decays into the final states $J/\psi K^+ K^-$, $J/\psi \pi^+ \pi^-$, $D_s^+ D_s^-$, $K^+ K^-$, and $D_s^\pm \pi^\mp$. Lifetime measurements of the baryons Λ_b^0, Ξ_b^-, Ξ_b^0, and Ω_b^- are also shown.

PRESENTED AT

2014 Flavor Physics and CP Violation (FPCP-2014)
Marseille, France, May 26–30, 2014

\(^1\)Work supported by the U.S. National Science Foundation.
1 Introduction

Lifetimes of elementary particles contain important information about the interactions that govern their decays. Theoretical models worthy of consideration must predict lifetimes, or ratios of lifetimes, accurately. Decay time distributions are basically exponential but in neutral meson decays can be modified by both mixing and CP violation. However, this is a crude way to learn about CP violation. One model, called the Heavy Quark Expansion, HQE, is used to determine $|V_{cb}|$ and $|V_{ub}|$. It can be tested by using its predictions for relative b-hadron lifetimes [1]. At lowest order the b-quark decay governs the lifetime, except for B_c decays that are not covered here, but higher order corrections are important.

Let us first consider the decay of B^0_s mesons. Since we sum over B^0_s and \bar{B}^0_s decays to measure lifetimes, the decay time distribution into a given final state f is given by [2]

$$\Gamma[f,t] = \Gamma(B^0_s(t) \rightarrow f) + \Gamma(\bar{B}^0_s(t) \rightarrow f) = \mathcal{N}_f \left[e^{-\Gamma_L t} |\langle f|B_L\rangle|^2 + e^{-\Gamma_H t} |\langle f|B_H\rangle|^2 \right]$$

$$= \mathcal{N}_f |A_f|^2 \left[1 + |\lambda_f|^2 \right] e^{-\Gamma_s t} \left\{ \cosh \frac{\Delta \Gamma_s t}{2} + A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_s t}{2} \right\}, \quad (1)$$

where $|B_L\rangle$ and $|B_H\rangle$ are the mass eigenstates with corresponding decay widths Γ_L and Γ_H, so that $\Delta \Gamma_s = \Gamma_L - \Gamma_H$, and $\Gamma_s = (\Gamma_L + \Gamma_H)/2$. The amplitude for $B^0_s \rightarrow f$ is given by A_f, while for $\bar{B}^0_s \rightarrow f$ the amplitude is described by \overline{A}_f. The parameters p and q relate the mass eigenstates to the flavor eigenstates: $|B_L\rangle = p|B^0_s\rangle + q|\bar{B}^0_s\rangle$ and $|B_H\rangle = p|B^0_s\rangle - q|\bar{B}^0_s\rangle$. In addition, $A_{\Delta \Gamma} \equiv -2\text{Re}(\lambda_f)/(1 + |\lambda_f|^2)$, where $\lambda_f = \frac{q}{p} \frac{A_f}{A_{\Delta \Gamma}}$. The decay time shape is not exponential and depends on the specific decay mode. To second order in $\Delta \Gamma_s t$

$$\Gamma[f,t] \propto e^{-\Gamma_s t} \left[1 + \frac{1}{2} \left(\frac{\Delta \Gamma_s}{2} \right)^2 \right] + A_{\Delta \Gamma} \left(\frac{\Delta \Gamma_s t}{2} \right). \quad (2)$$

In this paper we work in units where $\hbar = c = 1$, so the lifetime $\tau = 1/\Gamma$.

While the above equations equally can be applied to $B^0 \equiv B_d$ decays, $\Delta \Gamma_d/\Gamma_d$ has been measured as 0.015 ± 0.018 by the $e^+ e^-$ B-factories [3], so the decay time distribution can be treated as purely exponential given the derived limit $\Delta \Gamma_d < 0.032 \text{ps}^{-1}$ @ 95% confidence level (CL), consistent with the theoretical prediction in the Standard Model (SM) of $2 \times 10^{-3} \text{ps}^{-1}$ [4]. This measurement should be pursued as the sensitivity is not close to the theoretical prediction and physics beyond the SM may well appear [5].

For B^0_s decays, $\Delta \Gamma_s$ is not small and $A_{\Delta \Gamma}$ depends on the decay mode, mainly through \bar{A}_f/A_f as $1 - |q/p|$ has been measured as being small [6]. For “flavor specific”
B_s^0 decay modes, where $B_s^0 \rightarrow \bar{f}$ and $B_s^0 \rightarrow f$, the decay is the sum of two exponentials that when fit with a single exponential can be approximated as [7]

$$\Gamma_s \approx \Gamma_{\text{flavor specific}} \frac{1 - \left(\frac{\Delta \Gamma_s}{2\Gamma_s} \right)^2}{1 + \left(\frac{\Delta \Gamma_s}{2\Gamma_s} \right)^2}. \quad (3)$$

I distinguish between two different methods of measuring lifetimes here. The usual method is to measure lifetimes absolutely, by fitting distributions of decay times to appropriate exponential or modified distributions after determining acceptances. For example, the B^0_s lifetime is measured as $1.519 \pm 0.00\text{ps}$, from many sources [6], the most precise being the $e^+ e^-$ B-factory experiments.

Another strategy is to measure the ratio of lifetimes of two different B species. This usually done with the same decay topologies, for example $B_s^0 \rightarrow J/\psi f_0(980)$, $f_0(980) \rightarrow \pi^+ \pi^-$ compared with $B^0 \rightarrow J/\psi K^{*0}(980)$, $K^{*0}(980) \rightarrow K^- \pi^+$ [8] and then use the precisely determined B^0 lifetime to extract the B_s^0 lifetime. The advantage of this method is that many systematic uncertainties associated with the decay time acceptance are eliminated.

2 Widths and width differences in B_s^0 decays

To find a value for Γ_s I will use absolute decay time measurements in the $J/\psi K^+ K^-$ and $J/\psi \pi^+ \pi^-$ decay modes, since all three observables governing the decay width Γ_s, $\Delta \Gamma_s$, and $A_{\Delta \Gamma}$ are determined simultaneously. The $K^+ K^-$ mode is restricted to the low mass region, dominated by the ϕ with a small component of S-wave [9] that was predicted [10], while the $\pi^+ \pi^-$ mode has a large $f_0(980)$ contribution [11] that was also predicted [10]. The suitability of using the $J/\psi \pi^+ \pi^-$ mode was questioned [12] because the $f_0(980)$ was postulated as being a tetraquark state. However, a recent full Dalitz analysis of the final state shows that this is not the case [13], based on the model of [14].

Since the decay time distribution is modified by the presence of CP violation, even if B_s^0 and B_s^0 decays are summed over (see Ref. [11] for a discussion), only measurements that determine simultaneously the width, the width difference and the CP violating phase are considered. These measurements are listed in Table I. This approach differs from the current HFAG scheme of averaging all measurements including those in CP eigenstate modes, by estimating $A_{\Delta \Gamma}$ from SM theory. An example of the decay time distributions and signal fits is given in Fig. 1 from the ATLAS collaboration [15].

The average values are $\Gamma_s = 0.6662 \pm 0.0045 \text{ps}^{-1}$, and $\Delta \Gamma_s = 0.106 \pm 0.013 \text{ps}^{-1}$, leading to a ratio $\Delta \Gamma_s / \Gamma_s = 0.16 \pm 0.02$. While Γ_s is known with an impressive
\[\int \mathcal{L} \ (fb^{-1}) \quad \Gamma_s \ (ps^{-1}) \quad \Delta \Gamma_s \ (ps^{-1}) \]

Exp.	\(\int \mathcal{L} \) (fb\(^{-1}\))	\(\Gamma_s \) (ps\(^{-1}\))	\(\Delta \Gamma_s \) (ps\(^{-1}\))
ATLAS	4.9	0.6770 ± 0.0070 ± 0.0040	0.053 ± 0.021 ± 0.010
CDF	9.6	0.6545 ± 0.0081 ± 0.0039	0.068 ± 0.026 ± 0.009
D0	8.0	0.6930 ± 0.0182	0.163 ± 0.065
LHCb	1.0	0.6610 ± 0.0040 ± 0.0060	0.106 ± 0.011 ± 0.007
Average		0.6662 ± 0.0045	0.106 ± 0.013

Table 1: Measurements of \(\Gamma_s \) and \(\Delta \Gamma_s \) in \(\bar{B}_s^0 \) plus \(B_s^0 \rightarrow J/\psi \phi \) and \(J/\psi \pi^+\pi^- \) decays.

Figure 1: Proper decay time fit projection for \(\bar{B}_s^0 \rightarrow J/\psi \phi \). The pull distribution at the bottom shows the difference between the data and fit value normalized to the data uncertainty.

The precision of 0.7\%, \(\Delta \Gamma_s \) is much less well determined with the measurements widely scattered. Figure 2 shows the different measurements and my average, which is consistent with theoretical predictions [4, 19]. It is also important for the interpretation of these results that \(\text{CP} \) violation in these modes is measured to be small. The recent LHCb results, summarized by Artuso at this meeting [20] average to 70 ± 55 mrad, sufficiently small to be ignored when only the \(\text{CP} \) violation due to mixing is in play.

To get a better idea on the size of \(\Delta \Gamma_s \) it is useful to look at decays into specific eigenstates. The final state \(J/\psi f_0(980) \) is \(\text{CP} \) odd, corresponding to the \(|B_H\rangle \).
state, while \(D_s^+ D_s^- \) and \(K^+ K^- \) are \(CP \) even corresponding to the \(|B_L| \) state. The \(J/\psi f_0(980) \) and \(D_s^+ D_s^- \) modes are expected to be dominated by tree level decays and thus direct \(CP \) violation resulting from interference with Penguin diagrams is expected to be small. On the other hand the \(K^+ K^- \) mode is expected to be affected.

The relative measurement of the lifetime in the mode \(B_s^0 \to J/\psi f_0(980) \) with respect to \(B^0 \to J/\psi K^{*0}(890) \) was made by LHCb \(^8\). The invariant mass spectra of

\[
\begin{align*}
\text{Candidates / 4 MeV} & \quad \text{Candidates / 4 MeV} \\
\text{(a) LHCb} & \quad \text{(b) LHCb}
\end{align*}
\]

Figure 3: Invariant mass distributions of selected (a) \(J/\psi \pi^+ \pi^- \) and (b) \(J/\psi K^+ \pi^- \) candidates. The dipion candidates have been selected to be in the \(f_1(980) \) mass region and the \(K^- \pi^+ \) candidates selected to be near the \(K^{*0}(890) \).
the signal decay products is shown in Fig. 3 using 1 fb$^{-1}$ of data. There are 4040±75 $J/\psi f_0(980)$ and 131,900±400 $J/\psi K^{*0}(890)$ signal events, respectively. Since the decay time acceptance is not quite the same for both modes, due to the different kinematics in the decay, simulation is used to determine the relative acceptance. This is shown in Fig. 4. The lifetime is computed as 1.700 ± 0.040 ± 0.26 ps. This result should not be included in an average with the previous one for Γ_s, as the data have already been used as part of the $J/\psi \pi^+\pi^-$ final state in the LHCb measurement of Γ_s. It is useful, however, to view this component separately.

Let us turn to the CP-even $B^0_s \rightarrow D^+ D^-$ decay mode that has been analyzed by LHCb [21]. The invariant mass distributions for the signal, and the normalization mode are shown in Fig. 5, along with the results of binned maximum likelihood fits for the various components. In total, there are 3499 ± 65 $B^0_s \rightarrow D^+_s D^-_s$ and 19,432 ± 140 $B^- \rightarrow D^0 D^-_s$ decays. The lifetime is measured to be 1.379 ± 0.026 ± 0.017 ps.

Next we return to an absolute lifetime measurement done in the $\overline{B}^0_s \rightarrow K^+ K^-$ mode by LHCb. This mode can have both Tree and Penguin diagram contributions as illustrated in Fig. 6.

The $K^+ K^-$ invariant mass distribution for this mode is shown in Fig. 7(left). There is clear signal with small backgrounds. There are 10,471±121 events in the 1 fb$^{-1}$ sample. The signal lifetime distribution along with the backgrounds and the lifetime fit are shown in Fig. 7(right). The lifetime acceptance is determined by using a procedure called “swimming” of the primary vertex, developed by previous experiments [22]. For each decay a per-event acceptance function is determined by moving the primary vertex along the momentum vector of the B particle. The measured
Figure 5: Mass distributions and fits to the full data sample for (left) $B_s^0 \to D_s^+ D_s^-$ and (right) $B^- \to D^0 D_s^-$ candidates. The points are the data and the curves and shaded regions show the fit components.

Figure 6: Feynman diagrams for $B_s^0 \to K^+ K^-$ decay, (a) Tree and (b) Penguin.

lifetime is $1.407 \pm 0.016 \pm 0.007$ ps. LHCb uses their measurements of Γ_s and $\Delta \Gamma_s$ and an approximate first order equation, $\Gamma[f, t] \propto e^{-\Gamma_s t} \left[1 + A_{\Delta \Gamma} \left(\frac{\Delta \Gamma_s}{2} t \right) \right]$, to derive a value of $A_{\Delta \Gamma} = -0.87 \pm 0.17 \pm 0.13$. A value of -1 is expected if there is no CP violation.

From the measurements of Γ_s and $\Delta \Gamma_s$ discussed above in the $J/\psi K^+ K^-$ and $J/\psi \pi^+ \pi^-$ modes, the lifetimes of B_s^0 CP eigenstate and flavor specific modes can be predicted if Tree diagrams are dominant. Then the lifetimes in the CP eigenstates are given by $1/\tau_{L} = \Gamma_s \pm \Delta \Gamma_s/2$. The predictions and measured results are shown in Fig. 8. For the CP eigenstates, CP violation is taken to be zero, consistent with the current measurements. For the flavor specific prediction Eq. 3 is used.

The measured values for the CP eigenstate lifetimes are in good agreement with the “predicted” values. This is expected for all the modes except $K^+ K^-$, which also is in good agreement showing that $A_{\Delta \Gamma}$ is consistent with not being affected by CP violation. I conclude that we now have a good experimental understanding of the B_s^0 lifetime and width difference.

*Another mode that could have a significant Penguin amplitude contributions is $B_s^0 \to J/\psi K_S^0$. The effective lifetime in this mode has been measured as $1.75 \pm 0.12 \pm 0.07$ ps [23]. Due to the relatively large uncertainty, this mode is not discussed further.
Figure 7: The invariant K^+K^- mass spectrum (left) and the decay time distribution for $B_s^0 \to K^+K^-$ decay (right) along with backgrounds and the fit.

\[
\frac{1}{\tau_H} = \Gamma_s - \Delta \Gamma_s / 2 \quad \tau_H
\]

\[
\frac{1}{\tau_L} = \Gamma_s + \Delta \Gamma_s / 2 \quad \tau_L
\]

Figure 8: World average measurement of τ_s using the values from Table 1. The middle column shows predictions for B_s^0 lifetime values in CP eigenstate and flavor specific modes (blue). The right column gives the measured values (red). The data values for the final states come from: $J/\psi f_0(980)$ [8,24], $D_s^\pm X^\mp$ [25], K^+K^- an LHCb preliminary result, and $D_s^+D_s^-$ [21].
3 The heavy quark expansion (HQE)

The use of the optical theorem and the operator product expansion leads to a theoretical prediction for the decay width, and hence lifetime, for each b-flavored hadron [1]

$$\Gamma = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \left\{ c_{3,b} \left[1 - \frac{\mu_\pi}{2 m_b^2} + \mathcal{O} \left(\frac{1}{m_b^3} \right) \right] \right.$$

$$+ 2 c_{5,b} \left[\frac{\mu_G^2}{m_b^2} + \mathcal{O} \left(\frac{1}{m_b^3} \right) \right] + c_{6,b} \frac{\langle B|\langle \bar{b}q\rangle \Gamma(\bar{q}b)\Gamma|B \rangle}{M_B} + \ldots \right\} . \quad (4)$$

Note first of all that there are no $\mathcal{O}(1/m_b)$ correction terms. The $c_{i,b}$ coefficients, except for $c_{3,b}$, and the matrix elements are different for each b-hadron. (The terms μ_π and μ_G are matrix elements of the kinetic operator and chromomagnetic operator, respectively.) This theory is used to extract values of $|V_{ub}|$ and $|V_{cb}|$ from inclusive B^- and \bar{B}^0 semileptonic decays, so its verification is of prime importance.

The HQE was first invented circa 1986 [26]. Predictions were made using available calculations for the $c_{i,b}$ and matrix elements. One such set of predictions was [27] that $\frac{\tau(B^0_\Lambda)}{\tau(B^0)} \approx 1.0$, $\frac{\tau(B^-)}{\tau(B^0)} \approx 1.1$ and $\frac{\tau(A^0_b)}{\tau(B^0)} \approx 0.96$.

4 The saga of the A^0_b lifetime

Tests of the HQE using lifetime measurements started in the 1990’s. The theory was improved by further calculations. For example, in the case of the ratio of lifetimes of the A^0_b baryon, $\tau(A^0_b)$, to the B^0 meson, $\tau(B^0)$, the corrections of order $\mathcal{O}(1/m_b^2)$ were found to be small, initial estimates of $\mathcal{O}(1/m_b^3)$ effects were also small, thus differences of only a few percent were expected [28, 30]. Measurements at LEP in the indicated that $\tau(A^0_b)/\tau(B^0)$ was significantly lower than the prediction: in 2003 one widely quoted average of all data gave 0.798 ± 0.052 [31], while another gave 0.786 ± 0.034 [32]. Explanations of the small value of the ratio were attempted by including additional operators or other modifications [33], while there was resistance by others, who thought that the HQE could be pushed to provide a ratio of ~ 0.9, but no smaller [34].

More recent measurements showed indications that a higher value is possible [35], although the uncertainties of these measurements are large. The LHCb collaboration performed two measurements of the lifetime ratio using the $A^0_b \rightarrow J/\psi pK^-$ decay, one using 1 fb$^{-1}$ of data [36] and the other using their 3 fb$^{-1}$ sample [37]. This A^0_b decay mode was first seen by LHCb. It is quite useful for lifetime measurements as it contains four charged tracks from the A^0_b decay vertex the decay time resolution is a remarkable good 40 fs. I will only discuss the 3 fb$^{-1}$ measurement.

1LHCb also made an absolute measurement of $\tau(A^0_b)$ using the $J/\psi A$ final state, but since the precision is much worse than the relative measurements, I will not discuss it [38].
Figure 9: Fits to the invariant mass spectrum of (a) $J/\psi pK^-$ and (b) $J/\psi \pi^+ K^-$ combinations. The Λ_0^b and \bar{B}^0 signals are shown by the (magenta) solid curves. The (black) dotted lines are the combinatorial backgrounds, and the (blue) solid curves show the totals. In (a) the $\bar{B}_s^0 \to J/\psi K^+ K^-$ and $\bar{B}^0 \to J/\psi \pi^+ K^-$ reflections, caused by particle misidentification, are shown with the (brown) dot-dot-dashed and (red) dot-dashed shapes, respectively, and the (green) dashed shape represents the doubly misidentified $J/\psi K^+ p$ final state, where the kaon and proton masses are swapped. In (b) the $\bar{B}^0 \to J/\psi \pi^+ K^-$ mode is shown by the (red) dashed curve and the (green) dot-dashed shape represents the $\Lambda_0^b \to J/\psi pK^-$ reflection.

In this measurement the Λ_0^b decay time distribution is compared to that of $\bar{B}^0 \to J/\psi K^- \pi^+$ decays. The reconstructed invariant mass distributions for both modes are shown in Fig. 9. For \bar{B}^0 candidates the invariant $\pi^+ K^-$ mass was required to be within ± 100 MeV of the $K^{*0}(892)$ mass. There are approximately 50,000 Λ_0^b signal events and 340,000 \bar{B}^0 signal events.

The decay time acceptances obtained from the simulations are shown in Fig. 10(a). The individual acceptances in both cases exhibit the same behaviour of decreasing below 1 ps. The ratio of the decay time acceptances is shown in Fig. 10(b). The decay time range is chosen between 0.4–7 ps because the acceptance is poorly determined for larger decay times, while for smaller ones the individual acceptances decrease quickly.

The yield of b hadrons for both decay modes is determined by fitting the candidate invariant mass distributions in each decay time bin. The resulting signal yields as a function of decay time are shown in Fig. 11.

The ratio of lifetimes is determined as $\frac{\tau(\Lambda_0^b)}{\tau(\bar{B}^0)} = 0.974 \pm 0.006 \pm 0.004$. Multiplying the lifetime ratio by $\tau(\bar{B}^0) = 1.519 \pm 0.007$ ps, the Λ_0^b baryon lifetime is $\tau(\Lambda_0^b) = 1.479 \pm 0.009 \pm 0.010$ ps. A summary of Λ_0^b lifetime measurements done since 1990 is shown in Fig. 12. The LHCb recent values lead to the weighted LHCb average of

$$\tau(\Lambda_0^b) = 1.468 \pm 0.009 \pm 0.008 \text{ ps.}$$

In what follows I will use this value rather than an average of all the measurements.
Figure 10: (a) Decay time acceptances (arbitrary scale) from simulation for (green) circles $\Lambda^0_b \to J/\psi pK^-$, and (red) open-boxes $B^0 \to J/\psi K^{*0}(892)$ decays. (b) Ratio of the decay time acceptances between $\Lambda^0_b \to J/\psi pK^-$ and $B^0 \to J/\psi K^{*0}(892)$ decays obtained from simulation. The (blue) line shows the result of the linear fit.

Figure 11: Decay time distributions for $\Lambda^0_b \to J/\psi pK^-$ shown as (blue) circles, and $B^0 \to J/\psi K^{*0}(892)$ shown as (green) squares. For most entries the error bars are smaller than the points.
Figure 12: Summary of measured Λ^0_b lifetimes. The vertical dashed line shows the world average B^0 lifetime.

as it is somewhat ad hoc to know which to include. It might be a good idea, however, to use only full reconstructed hadronic decays in averages whenever possible. The decay times in semileptonic decays must be corrected for missing particles and this processes could be biased and is subjected to additional systematic uncertainties.
5 Measurement of the Ξ_b^-, Ω_b^- and Ξ_b^0 lifetimes.

The charged final states are found in the decay modes $\Xi_b^- \to J/\psi \Xi^-$, $\Xi^- \to \Lambda \pi^-$ and $\Omega_b^- \to J/\psi \Omega^-$, $\Omega^- \to \Lambda K^-$. A pictorial diagram of the decay topology is shown in Fig. 13 for the Ξ_b^- decay. In both cases the Λ is detected in the $p\pi^-$ decay mode. Absolute lifetime measurements have been made by CDF and LHCb. The LHCb b-baryon candidate invariant mass spectra and decay time distributions are shown in Fig. 14. There are 313$^{+20}_{-20}$ Ξ_b^- events, and 58$^{+8}_{-8}$ Ω_b^- events. The lifetime results are summarized in Table 2.

![Figure 13: Pictorial representation of Ξ_b^- decay used in the CDF and LHCb lifetime measurements.](image)

The relative lifetime of the Ξ_b^0 with respect to the Λ_b^0 has been measured by LHCb cleverly using two decay modes with exactly the same particle content namely, $\Xi_b^0 \to \Xi^+_c \pi^-$, and $\Lambda_b^0 \to \Lambda_c^+ \pi^-$, with both Ξ^+_c and Λ_c^+ decaying into $pK^-\pi^+$. Thus, the relative acceptance ratio is the consequence of different masses and different charm baryon lifetimes. The invariant mass for candidate decays is shown in Fig. 15.

The measured yield ratio in each time bin is corrected by the relative efficiency of the two decay modes, as obtained from simulated decays. The efficiency-corrected yield ratio is shown in Fig. 16 along with the fit to an exponential function. The points are placed at the weighted average time value within each bin, assuming an exponential distribution with lifetime equal to $\tau(\Lambda_b^0)$. The bias due to this assumption is negligible. From the fit, we find $\beta = (0.40 \pm 1.21) \times 10^{-2}$ ps$^{-1}$. Using the measured Λ_b^0 lifetime from of $1.468 \pm 0.009 \pm 0.008$ ps, LHCb finds

$$\frac{\tau(\Xi_b^0)}{\tau(\Lambda_b^0)} = 1.006 \pm 0.018 \pm 0.010,$$

$$\tau(\Xi_b^0) = 1.477 \pm 0.026 \pm 0.014 \pm 0.013 \text{ ps},$$

where the last uncertainty in $\tau(\Xi_b^0)$ is due to the precision of $\tau(\Lambda_b^0)$.

Exp.	Ξ_b^- lifetime (ps)	Ω_b^- lifetime (ps)
CDF	$1.32 \pm 0.14 \pm 0.02$	$1.66^{+0.54}_{-0.40} \pm 0.02$
LHCb	$1.55^{+0.10}_{-0.09} \pm 0.03$	$1.54^{+0.26}_{-0.21} \pm 0.05$
Average	1.47 ± 0.08	1.57 ± 0.21

Table 2: Measurements of the Ξ_b^- and Ω_b^- lifetimes.
Figure 14: Distributions of the reconstructed invariant mass (top) and decay time of the $\Xi^-_b \to J/\psi \Xi^-$ (left) and $\Omega^-_b \to J/\psi \Omega^-$ (right) candidates. The signal mass region is defined as 5773–5825 MeV for Ξ^-_b and 6028–6073 MeV for Ω^-_b candidates, shown by the vertical dotted lines. The results of the fits are overlaid.

Figure 15: Invariant mass spectrum for (left) $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and (right) $\Xi_b^0 \to \Xi_c^+ \pi^-$ candidates along with the projections of the fit.
Figure 16: Efficiency-corrected yield ratio of $\Xi^0_b \rightarrow \Xi^+_c \pi^-$ relative to $\Lambda^0_b \rightarrow \Lambda^+_c \pi^-$ decays in bins of decay time. A fit using an exponential function is shown. The uncertainties are statistical only.

6 Conclusions

Lifetimes from many new measurements of b-flavored hadrons have been presented. We have a good picture of the B^0_s lifetime including the value for $\Delta \Gamma_s$\(^\ddagger\). The Λ_b lifetime is now measured precisely and is consistent with the original predictions of the Heavy Quark Expansion, contrary to early indications. In Fig. 17 I compare recent HQE predictions \([1]\) for the ratio of lifetimes with the measurements. The data is in good agreement with the theoretical predictions where they exist. Furthermore, except for the τ_{b^-}/τ_{B^0} ratio, all the measurements with respect to τ_{B^0} are consistent with a value slightly smaller than one. The higher ratio for τ_{b^-}/τ_{B^0} is explained using Pauli interference. The $\tau_{\Lambda^0_b}/\tau_{B^0}$ ratio is measured much better than the theoretical prediction, so more effort here can be used to improve the calculation. For all the calculations, the current inaccuracy in theory is dominated by the unknown non-perturbative matrix elements, which could be determined by lattice calculations.

In conclusion, a great deal of progress has been made recently understanding b-hadron lifetimes.

ACKNOWLEDGEMENTS

I thank the U.S. National Science Foundation for support. Useful conversations are acknowledged with Marina Artuso, Paolo Gandini, Alexander Lenz, and Olivier Leroy.

\(^\ddagger\)The value for $\tau(B^0_s)$ can be improved upon by judiciously averaging the values from the different decay modes that are not expected to be affected by Penguin contributions.
Figure 17: Measured and predicted lifetime ratios using HQE [1] for different b-flavored hadrons.
References

[1] A. Lenz, Lifetimes and HQE, arXiv:1405.3601.

[2] I. Dunietz, R. Fleischer, and U. Nierste, In pursuit of new physics with B_s decays, Phys. Rev. D63 (2001) 114015, arXiv:hep-ph/0012219. I. Dunietz and J. L. Rosner, Time dependent CP violation effects in $B^0\bar{B}^0$ systems, Phys. Rev. D34 (1986) 1404.

[3] Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D86 (2012) 010001, and 2013 update for 2014 edition.

[4] A. Lenz and U. Nierste, Numerical updates of lifetimes and mixing parameters of B mesons, arXiv:1102.4274.

[5] T. Gershon, $\Delta\Gamma_d$: A Forgotten Null Test of the Standard Model, J. Phys. G38 (2011) 015007, arXiv:1007.5135. C. Bobeth et al., On new physics in $\Delta\Gamma_d$, arXiv:1404.2531.

[6] Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of early 2012 and online update at http://www.slac.stanford.edu/xorg/hfag, arXiv:1207.1158, updated results and plots available at: http://www.slac.stanford.edu/xorg/hfag/.

[7] K. Hartkorn and H. Moser, A new method of measuring $\Delta\Gamma/\Gamma$ in the $B^0_s - \bar{B}^0_s$ system, Eur. Phys. J. C8 (1999) 381.

[8] LHCb Collaboration, R. Aaij et al., Measurement of the B^0_s effective lifetime in the $J/\psi f_0(980)$ final state, Phys. Rev. Lett. 109 (2012) 152002, arXiv:1207.0878.

[9] LHCb Collaboration, R. Aaij et al., Amplitude analysis and the branching fraction measurement of $B^0_s\to J/\psi K^+K^-$, Phys. Rev. D87 (2013), no. 7 072004, arXiv:1302.1213.

[10] S. Stone and L. Zhang, S-waves and the Measurement of CP Violating Phases in B_s Decays, Phys. Rev. D79 (2009) 074024, arXiv:0812.2832.

[11] LHCb Collaboration, R. Aaij et al., Measurement of resonant and CP components in $B^0_{s,d}\to J/\psi f_0(980)$ decays, Phys. Rev. D89 (2014) 092006, arXiv:1402.6248.

[12] R. Fleischer, R. Knegjens, and G. Ricciardi, Anatomy of $B^0_{s,d} \to J/\psi f_0(980)$, Eur. Phys. J. C71 (2011) 1832, arXiv:1109.1112.
[13] LHCb Collaboration, R. Aaij et al., Measurement of the resonant and CP components in $B^0 \to J/\psi \pi^+ \pi^-$ decays, arXiv:1404.5673.

[14] S. Stone and L. Zhang, Use of $B \to J/\psi f_0$ decays to discern the $q\bar{q}$ or tetraquark nature of scalar mesons, Phys. Rev. Lett. 111 (2013), no. 6 062001, arXiv:1305.6554.

[15] ATLAS Collaboration, G. Aad et al., Time-dependent angular analysis of the decay $B^0_s \to J/\psi \phi$ and extraction of $\Delta \Gamma_s$ and the CP-violating weak phase ϕ_s by ATLAS, JHEP 1212 (2012) 072, arXiv:1208.0572.

[16] CDF Collaboration, T. Aaltonen et al., Measurement of the Bottom-Strange meson mixing phase in the full CDF data set, Phys. Rev. Lett. 109 (2012) 171802, arXiv:1208.2967.

[17] D0 Collaboration, V. M. Abazov et al., Measurement of the CP-violating phase $\phi_{J/\psi \phi}$ using the flavor-tagged decay $B^0_s \to J/\psi \phi$ in 8 fb$^{-1}$ of $p\bar{p}$ collisions, Phys. Rev. D85 (2012) 032006, arXiv:1109.3166.

[18] LHCb collaboration, R. Aaij et al., Measurement of CP violation and the B^0_s meson decay width difference with $B^0_s \to J/\psi K^+K^-$ and $B^0_s \to J/\psi \pi^+\pi^-$ decays, Phys. Rev. D87 (2013), no. 11 112010, arXiv:1304.2600.

[19] A. Lenz and U. Nierste, Theoretical update of $B^0_s - \bar{B}^0_s$ mixing, JHEP 0706 (2007) 072, arXiv:hep-ph/0612167.

[20] M. Artuso, Mixing induced CP violation in B^0_s, presented at FPCP 2014, Marseilles, France.

[21] LHCb collaboration, R. Aaij et al., Measurement of the $\bar{B}^0_s \to D^-D^+$ and $\bar{B}^0_s \to D^-D^+$ effective lifetimes, Phys. Rev. Lett. 112 (2014) 111802, arXiv:1312.1217.

[22] R. Bailey et al., Measurement of the lifetime of charged and neutral D mesons with high resolution silicon strip detectors, Z. Phys. C28 (1985) 357; DELPHI Collaboration, W. Adam et al., Lifetimes of charged and neutral B hadrons using event topology, Z. Phys. C68 (1995) 363; CDF Collaboration, T. Aaltonen et al., Measurement of the B^- lifetime using a simulation free approach for trigger bias correction, Phys. Rev. D83 (2011) 032008, arXiv:1004.4855.

[23] LHCb collaboration, R. Aaij et al., Measurement of the effective $B^0_s \to J/\psi K^0_S$ lifetime, Nucl. Phys. B873 (2013) 275, arXiv:1304.4500.
[24] CDF Collaboration, T. Aaltonen et al., Measurement of branching ratio and B_0^s lifetime in the decay $B_0^s \to J/\psi f_0(980)$ at CDF. Phys. Rev. D84 (2011) 052012, arXiv:1106.3682.

[25] CDF Collaboration, T. Aaltonen et al., Measurement of the B_0^s lifetime in fully and artially reconstructed $B_0^s \to D^+_s(\phi\pi^-)X$ decays in $\bar{p}p$ collisions at $\sqrt{s} = 1.96$ TeV. Phys. Rev. Lett. 107 (2011) 272001, arXiv:1103.1864.

[26] M. A. Shifman and M. Voloshin, Preasymptotic effects in inclusive weak decays of charmed particles, Sov. J. Nucl. Phys. 41 (1985) 120; I. I. Bigi and N. Uraltsev, Gluonic enhancements in non-spectator beauty decays: An Inclusive mirage though an exclusive possibility, Phys. Lett. B280 (1992) 271; I. I. Bigi, N. Uraltsev, and A. Vainshtein, Nonperturbative corrections to inclusive beauty and charm decays: QCD versus phenomenological models, Phys. Lett. B293 (1992) 430, arXiv:hep-ph/9207214.

[27] M. A. Shifman and M. Voloshin, Hierarchy of Lifetimes of Charmed and Beautiful Hadrons, Sov. Phys. JETP 64 (1986) 698.

[28] M. Neubert and C. T. Sachrajda, Spectator effects in inclusive decays of beauty hadrons, Nucl. Phys. B483 (1997) 339, arXiv:hep-ph/9603202.

[29] N. Uraltsev, On the problem of boosting nonleptonic b baryon decays, Phys. Lett. B376 (1996) 303, arXiv:hep-ph/9602324; UKQCD collaboration, M. Di Pierro, C. T. Sachrajda, and C. Michael, An Exploratory lattice study of spectator effects in inclusive decays of the Lambda(b) baryon, Phys. Lett. B468 (1999) 143, arXiv:hep-lat/9906031.

[30] H.-Y. Cheng, Phenomenological analysis of heavy hadron lifetimes, Phys. Rev. D56 (1997) 2783, arXiv:hep-ph/9704260; J. L. Rosner, Enhancement of the Λ_b^0 decay rate, Phys. Lett. B379 (1996) 267, arXiv:hep-ph/9602265.

[31] M. Battaglia et al., The CKM matrix and the unitarity triangle, arXiv:hep-ph/0304132.

[32] C. Tarantino, Beauty hadron lifetimes and B meson CP violation parameters from lattice QCD, Eur. Phys. J. C33 (2004) S895, arXiv:hep-ph/0310241; E. Franco, V. Lubicz, F. Mescia, and C. Tarantino, Lifetime ratios of beauty hadrons at the next-to-leading order in QCD, Nucl. Phys. B633 (2002) 212, arXiv:hep-ph/0203089.

[33] T. Ito, M. Matsuda, and Y. Matsui, New possibility of solving the problem of the lifetime ratio $\tau(\Lambda_b^0)/\tau(B_d)$, Prog. Theor. Phys. 99 (1998) 271, arXiv:hep-ph/9705402; F. Gabbiani, A. I. Onishchenko, and A. A. Petrov,
A\(0\) lifetime puzzle in heavy quark expansion, Phys. Rev. D68 (2003) 114006, arXiv:hep-ph/0303235. F. Gabbiani, A. I. Onishchenko, and A. A. Petrov, Spectator effects and lifetimes of heavy hadrons, Phys. Rev. D70 (2004) 094031, arXiv:hep-ph/0407004.

[34] N. Uraltsev, Topics in the heavy quark expansion, arXiv:hep-ph/0010328.

[35] ATLAS collaboration, G. Aad et al., Measurement of the A\(0\) lifetime and mass in the ATLAS experiment, Phys. Rev. D87 (2013) 032002, arXiv:1207.2284. CMS collaboration, S. Chatrchyan et al., Measurement of the A\(0\) lifetime in pp collisions at \(\sqrt{s} = 7\) TeV, arXiv:1304.7495. CDF collaboration, T. Aaltonen et al., Measurement of the A\(0\) lifetime in A\(0\) \(\rightarrow\) \(\Lambda^+\pi^-\) decays in pp collisions at \(\sqrt{s} = 1.96\) TeV, Phys. Rev. Lett. 104 (2010) 102002, arXiv:0912.3566. CDF collaboration, T. Aaltonen et al., Measurement of \(b\) hadron lifetimes in exclusive decays containing a J/\(\psi\) in pp collisions at \(\sqrt{s} = 1.96\) TeV, Phys. Rev. Lett. 106 (2011) 121804, arXiv:1012.3138. D0 collaboration, V. M. Abazov et al., Measurement of the A\(0\) lifetime in the exclusive decay A\(0\) \(\rightarrow\) J/\(\psi\)\(\Lambda\) in pp collisions at \(\sqrt{s} = 1.96\) TeV, Phys. Rev. D85 (2012) 112003, arXiv:1204.2340.

[36] LHCb collaboration, R. Aaij et al., Precision measurement of the A\(0\) baryon lifetime, Phys. Rev. Lett. 111 (2013) 102003, arXiv:1307.2476.

[37] LHCb Collaboration, R. Aaij et al., Precision measurement of the ratio of the A\(b\) to \(B^0\) lifetimes, Phys. Lett. B734 (2014) 122, arXiv:1402.6242.

[38] LHCb collaboration, R. Aaij et al., Measurements of the \(B^+, B^0, B^{0_s}\) meson and A\(0\) baryon lifetimes, JHEP 1404 (2014) 114, arXiv:1402.2554.

[39] CDF Collaboration, T. A. Aaltonen et al., Mass and lifetime measurements of bottom and charm baryons in pp collisions at \(\sqrt{s} = 1.96\) TeV, Phys. Rev. D89 (2014) 072014, arXiv:1403.8126.

[40] LHCb collaboration, R. Aaij et al., Measurement of the \(\Xi_b^+\) and \(\Omega_b^+\) baryon lifetimes, arXiv:1405.1543.