Parametric Blending of Hole Patches Based on Shape Difference

Jung-Ho Park1,10 \quad Sanghun Park2 \quad Seung-Hyun Yoon1,10*

1,10Dept. of Multimedia Engineering, Dongguk University
2Dept. of Multimedia, Dongguk University

Abstract

In this paper, we propose a new technique for filling holes in triangular mesh. First, arbitrary shaped holes are detected. Second, source and target hole patches are generated through triangulation, refinement, fairing, and smoothing. Finally, the shape difference between the two patches is analyzed and a patch with enhanced features is obtained through blending between patches. The effectiveness of the proposed technique is demonstrated by applying the hole filling technique to the triangular mesh model with various shaped holes.

Keywords: Mesh Hole Filling, Mesh Fairing, Shape Blending

Received : 2020.06.19. / Review completed : 1st 2020.06.22. / Accepted : 2020.06.25.
DOI : 10.15701/kcgs.2020.26.3.39
ISSN : 1975-7883(Print)/2383-529X(Online)
지간 블렌딩을 수행하면 사용자가 원하는 수준의 홈 패치를 얻을 수 있다. 제안된 양각 메쉬 홀 채움 기법은 다음과 같은 장점을 가진다.

1. 홈의 크기가 크더라도, 삼각형과 사각형이 단순하게 맞물려야 할 경우에 별도의 시간 내에 수행된다(Figure 9 참조).

2. 단일화 과정으로 인하여 임의의 모양의 홈에 대해서도 강화계 양각을 작동한다(Figure 10d 참조).

3. 소스와 타겟 패치 사이의 형상 차이를 고려함으로써 주변 메쉬와 아울러고 특정이 더욱 향상된 홈 패치를 얻을 수 있다.

2. 관련연구

지금까지 다양한 메쉬 홈 채울 알고리즘이 개발되었음을 알 수 있다. Barquet 등 [21]은 메쉬에 존재하는 홈 또는 겹(gap)을 채우기 위해 최소 면적 삼각화(minimum area triangulation) 방법을 사용한 동적 프로그래밍 방식을 사용하였다. 이 방식은 다른 많은 메쉬 리파이어(repair) 알고리즘의 기반이 되었다 [3]. 그러나 홈 경계선에서의 부드러움은 고려하지 않으며 거친(rough) 홈 패치를 생성한다.

Piffl 등 [4]는 조각 다양성 곡면(piecewise polynomial surfaces)에 존재하는 홈을 채우기 위해 Delaunay 삼각함을 이용한 새로운 고정화 과정을 사용하여 부드러운 홈 패치를 생성했다. Liepa 등 [5] 또한 홈을 채우기 위해 삼각화, 세분화를 사용했고 더 나아가 홈 패치의 삼각형의 밀도를 주변 메시키와 비슷하게 했다. 홈 패치를 공정화시키기 위해 umbrella 연산자를 제안한 삼각화 과정에서 O(n³) 성능을 때문에, 크기가 큰 홈의 경우는 시간이 오래 걸리는 한계가 존재한다. Chen 등 [6, 7]은 날카로운 부분에 의존적인 홈 채울 정규법을 제안하였다. 그들은 벤딩기 기준 함수(radial basis function)에 기반한 보간법을 이용하여 초기 음성/우성 패치를 생성하고 만약 홈 경계에 날카로운 특성이 존재하면 홈 패치에 베이지안 분류법(Bayesian classification) [8]과 날카로운 음성 필터(sharpness dependence filter) [9] 기반의 특성 향상 과정을 적용한다. 그러나 날카로움에 의존적인 필터에 사용되는 메개변수에 따라 홈 패치의 형상이 크게 달라진다 [10].

홈 패치를 주변 메시키의 부드럽게 연결되도록 하는 기법 또한 연구되어 왔다. Zhao 등 [11]은 AFM 기법을 이용함으로써 40개의 홈 채우는 초기 패치를 생성하고, 다리를会引起(Dirichlet) 경계 조건을 만족하는 포아송(Poisson) 방정식 [13]을 사용하여 홈 패치의 경계를 제어한다. Pernot 등 [14]은 도로의 일반화를 사용하여 초기 홈 패치를 생성하고, 주변 메시키와의 블렌딩 조 련을 시각화하면서 패치 경계의 제세제한한다. 하지만 그들의 방식은 곡률이 큰 홈을 채우는 데에는 적합하지 않다. Branch 등 [15]은 경계 주변의 이웃 경계를 삽입하고, 방변 기준 함수(RBF)를 사용하여 홈 패치를 생성한다. RBF 기반의 형상 복원은 간단하며 유용하지만 새로운 생성되는 홈 패치가 경계의

3. 두 개의 패치 생성

3.1 홈 경계의 양각

오직 한 개의 양각 경계를 갖는 메시를 경계 경계라 부른다. 만약 경계와 연결된 모든 경계가 존재한다면 그 경계는 경계 경계라고 부른다. 홈은 경계 경계로 이루어진 단면 경계이다. 한 개의 경계에 연결된 모든 메시들은 그 경계의 1-링 경계라고 부른다. 경계의 1-링 경계들은 경계점(자기 자신 경계)을 제외한 1-링 경계라고 한다. 이는 경계 경계의 1-링 경계도 포함한다고 부른다. 영역 메시와 홈 채우는 메시키가 각 주변 메시키와 홈 패치라고 부른다. 본 논문에서는 정방(affine) 메시키를 만든다. 또한 삼각 메시키를 표현하기 위해 Kettner [19]가 제안한 하프지(half edge) 자료구조를 활용한다. 삼각 메시키에 대한 하프지 자료구조로 메시키의 기하학적 연결 정보를 실시간으로 빠르게 얻을 수 있다. 앞서 설명한 개념들을 이용하면 메시키의 홈을 빠르고 쉽게 검출할 수 있다. 특히, Pernot 등은 만족스럽지 않은 홈 패치의 경계를 생성할 수 있도록 하기 위해 홈을 채우기 전에 홈 경계를 다듬었다. 하지만 본 논문에서 제시된 기법은 복잡한 홈을 다룰 수 있기 때문에 홈 삼각화를 위한 전처리 단계를 생략할 수 있다.

3.2 삼각화

홈 경계가 완료되면, 홈과 페니의 초깃 홈 패치를 생성하기 위한 참여와 경계를 시작한다. 본 논문에서는 AFM 기법 [12]의 간략화된 버전을 사용하는데, 이는 다음과 같이 몇 가지 단계로 구성된다.
1. 각 경계 정점에서 인접한 두 예지 사이의 가장 작은 각도를 찾는다.

2. 하나의 예지를 추가하여 두 개의 인접한 예지와 경계 정점을 포함하는 새로운 삼각형을 만든다.

3. 새로 생성되는 모든 삼각형으로 홀 영역을 채울 때까지 과정 1과 2를 반복한다.

이 방식을 사용함으로써 우리는 복잡하고 곡률이 큰 경계에 쪼그라들게 할 수 있는 새로운 삼각형을 생성할 수 있다. 세분화 생성되는 폭의 폭은 제한적이고, 이는 세분화 단계에서 이러한 문제점은 자동적으로 해결된다. Figure 1(c)는 거친 삼각형들을 규칙적으로 만든 결과를 보여준다.

3.3 세분화(Refinement)

초기 폐지 메쉬의 폼질 향상을 위해 세분화 과정을 진행한다. 경계 예지를 제외한 내부 예지들은 매우 길며, 삼각형들은 비등방성 성질을 갖는다. 우리는 이러한 문제점을 해결하기 위해 점진적 리 멋지 알고리즘을 적용한다 [3, 20, 21]. Algorithm 1은 목표 에지 길이를 입력으로 취하고, 예지 분할, 예지 제거, 예지 플립, 정점 이동을 순차적으로 수행한다.

목표 에지 길이l은 경계 에지의 평균 길이로 정하고, 세분화 후 폐지와 주변 메쉬를 병합하기 위해 경계 에지를 분할 후보에서 제외한다. 예지 분할 단계에서는 임계 길이 high보다 긴 에지를 분할한다. 예지 제거 단계에서는 임계 길이 low보다 짧은 에지는 제거하고, 만약 임계 길이 high보다 긴 에지가 생성될 경우, 에지를 제거하지 않는다. 모든 에지 길이l에 근접하고 삼각형 밀도가 주변 메쉬와 비슷하며 규칙적인 삼각형을 가진 폐지들 없을 때까지 알고리즘을 반복 수행한다. 폼질이 향상된 홀 폐지는 공정화 단계의 입력으로 사용된다. Figure 3은 알고리즘의 반복 수행 결과를 보여준다.

Algorithm 1 Incremental remeshing of the mesh.

Input: M: input mesh, l: target edge length

Output: M': remeshed mesh

1. $\text{low} = (\frac{1}{2}) * l$
2. $\text{high} = (\frac{3}{2}) * l$
3. $\text{SPLIT EDGES}($high$)$
4. $\text{COLLAPSE EDGES}($low$, high)$
5. $\text{FLIP EDGES}($)
6. $\text{RELAXATION}($)

3.4 공정화(Fairing)

세분화 후 폐지 폐지 정점의 위치를 재조정하고 부드럽게 만들기 위한 공정화(fairing) 과정을 시작한다. 공정화는 공정 에너지(fairness energy)를 최소화함으로써 곡면을 가능할 부드럽게 만들 수 있다. 최소화하려는 공정 에너지 함수에 따라 최종적으로 원하는 곡면을 생성할 수 있다 [3]. 본 논문에서는 핸드레인 (membrane) 에너지, 슬림체이트(thin-plate) 에너지, 곡률 변화율
(curvature variation) 에너지 중에서 곡률 변화를 고려한 에너지에 초점을 맞춘다.

만약에 변화의 꼭대기 $x(u, v) : \Omega \rightarrow S$의 멤브레인 에너지는 다음 식으로 표현될 수 있으며 디리클레(Dirichlet) 에너지라고도 불린다:

$$\bar{E}_M(x) = \int_{\Omega} \left(\left\| \nabla_x u \right\|^2 + \left\| \nabla_v u \right\|^2 \right) \, du \, dv,$$

여기에서 $x_u = \partial x / \partial u$이고 $x_v = \partial x / \partial v$이다. 꼭대기의 좌표 함수 $x(u, v)$를 삼각 메쉬 정점의 좌표 $x = (x_1, \ldots, x_n)^T$으로 대체하고, 이산 라플라스-벨트라미(Laplace-Beltrami) 연산자를 사용함으로써 위의 연속적인 영역의 공식을 삼각 메쉬로 이산화한다. 따라서 미지의 정점의 좌표 x에 대하여 다음 이산 라플라스 방정식을 얻 수 있다:

$$\Delta x = 0, \quad x \big|_{\partial \Omega} = x^* \big|_{\partial \Omega},$$

여기서 Δ는 이산 라플라스-벨트라미 연산자이며 x^*는 경계 조건 $\partial \Omega$을 만족하는 알려진 정점의 좌표이다. Figure 4에서 삼각 메쉬의 꼭대기 정점 v_i를 공유한 n개의 삼각형을 가정하자. 국소 영역 $[22] A_i$를 갖는 v_i에 대한 이산 라플라스-벨트라미 연산자는 다음과 같이 정의된다:

$$\Delta f(v_i) = \frac{1}{2A_i} \sum_{v_j \in N_i(v_i)} (\cot \alpha_{i,j} + \cot \beta_{i,j})(f_j - f_i),$$

f는 정점의 좌표의 x, y, z 성분 중 하나가 될 수 있다.

이것은 곡면의 곡률을 최소화하는 것이 목적이라면 다음 렌洱 средств에

Figure 4: Local area and angles for the Laplace-Beltrami operator.

이트 에너지 함수를 사용한다:

$$\bar{E}_{TP}(x) = \int_{\Omega} \left(\left\| \nabla_x u \right\|^2 + 2\left\| \nabla_v u \right\|^2 \right) \, du \, dv.$$

$$\bar{E}_{TP}(x) = \text{최소화 하기 위한 이산 라플라스 방정식 } \Delta^2 x = 0, \quad x \big|_{\partial \Omega} = x^* \big|_{\partial \Omega}.$$

이것은 곡률의 변화율이 최소화된 구면을 얻기 위해 Moreton 등 [23]이 제시한 구면 변형을 에너지에 사용할 수 있다:

$$\bar{E}_{CV}(x) = \int_{\Omega} \left(\frac{\partial \kappa_1}{\partial \kappa_1} \right)^2 + \left(\frac{\partial \kappa_2}{\partial \kappa_2} \right)^2 \, du \, dv,$$

여기서 κ_1, κ_2는 주곡률이고 t_1, t_2는 그에 대응되는 주방향이다. $\bar{E}_{CV}(x)$의 최소화 하기 위한 이산 라플라스 방정식은 $\Delta^2 x = 0, \quad x \big|_{\partial \Omega} = x^* \big|_{\partial \Omega}$이다.

Figure 5은 홀 폴리에의 공정화 결과를 보여준다. Figure 5(a)에서는 홀 폴리의 경계 정점들이 고정되어 C^0 경계 조건이 만족되고, Figure 5(b)에서는 경계 정점과 경계의 1-평 정점이 고정되어 C^1 경계 조건이 만족되고, Figure 5(c)에서는 경계 정점과 경계의 1, 2-평정점이 고정되어 C^2 경계 조건이 만족된다. 이는 이 중에서 주변 메쉬의 형상과 가장 잘 반영하는 곡률의 변화를 최소화하라 온면(Figure 5(c))을 블렌딩을 위한 타켓 메쉬로 사용한다.

Figure 5: (a) A hole patch by minimizing membrane energy($\Delta x = 0$), (b) A hole patch by minimizing thin-plate energy($\Delta^2 x = 0$), (c) A hole patch by minimizing curvature variation energy($\Delta^1 x = 0$).
3.5 라플라시안 스무딩

타겟 패치에 라플라시안 스무딩을 적용하여 블렌딩을 위한 소스 패치를 생성한다. 타겟 패치 각각의 정점 \(v_i\)에 대하여 다음 umbrella 연산자를 사용하여 정점의 위치 \(v'_i\)를 계산한다:

\[
v'_i = -v_i + \frac{1}{W(v_i)} \sum_{v_j \in N_i(v_i)} W(v_i, v_j) v_j,
\]

여기서, \(W(v_i) = \sum_{v_j \in N_i(v_i)} W(v_i, v_j)\)이다. 본 논문에서는 타겟 패치의 삼각형 모양을 유지시키기 위해 다음과 같은 cotangent 가중치 [24]를 사용하였다(Figure 4 참조):

\[
w(v_i, v_j) = \cot \alpha_{i,j} + \cot \beta_{i,j}
\]

타겟 패치의 삼각형 모양을 유지시키는 라플라시안 스무딩을 적용하여 소스 패치를 생성함으로써 패치간 자연스러운 블렌딩 방향을 설정할 수 있다.

4. 홀 패치 블렌딩

매쉬 공정화를 통해 생성한 타겟 패치는 형상이 특이 표현이 두드러지지 못한 한계점이 존재한다. 매명 주변 메쉬의 곡률이 심한 경우에는 원하지 않는 형상의 홀 패치가 생성될 수 있다. 이러한 한계점을 극복하기 위해 본 절에서는 소스-타겟 패치간 형상 차이에 기반한 블렌딩을 제안한다.

타겟 패치에서 곡률과 디테일이 충분히 제거된 소스 패치와 곡률의 변화율을 최소화한 타겟 패치 사이의 균형 및 변위 측, 형상 차이를 분석한다. 이러한 형상 차이에 기반한 블렌딩을 수행함으로써 곡률이 더욱 강조되고 주변 메쉬와 어울리는 형태의 홀 패치를 사용자가 원하는 수준으로 얻을 수 있다.

여기서 \(\Delta_k\)는 두 정점의 곡률 차이 \(|H_k^s - H_k^t|\)이고, \(d_i\)는 정점간 변위 \(|p_k^i - p_k^j|\)이다. \(0 \leq \alpha \leq 1\)는 사용자 정의 파라미터이다. 만약 \(\alpha = 0\)이라면 형상 차이는 오직 곡률의 차이에만 비례한다. 반면 \(\alpha = 1\)이라면 형상 차이는 오직 변위에만 비례한다. 사용자는 \(\alpha\)를 조절함으로써 패치간의 형상 차이를 제한할 수 있다. Figure 6는 홀에서 생성된 소스-타겟 패치와 그 둘의 형상 차이를 클러블을 이용하여 가시화한 결과를 보이준다.

4.2 형상 차이 기반 블렌딩 함수

소스-타겟 패치는 형상은 다르지만 모든 점에 대해 일대일 대응관계가 성립하기 때문에 형상 블렌딩이 가능하다. 제어 파라미터 \(w\)에 따라 소스 패치 \(S\)와 타겟 패치 \(T\) 사이에 다음 블렌딩을 적용하면 새로운 패치 \(P\)를 생성할 수 있다:

\[
P(w) = (1 - w)S + wT,
\]

제어 파라미터 \(0 \leq w \leq 1\) 경우, \(P\)는 \(S\)와 \(T\)의 보간법 (interpolation)에 의해 생성된다. 반면 \(w < 0\) 또는 \(w > 1\) 경우, \(P\)는 \(S\)와 \(T\)의 보간법 (extrapolation)에 의해 생성된다. 본 논문에서 제어 파라미터 \(w\)를 정점별로 계계평화하여 형성 파라미터 \(\hat{w}\)를 정의하였다:

\[
\hat{w}_i = w \times \left(1 + \frac{1}{1 + e^{-10\sigma_i + 5}}\right).
\]

적절한 \(\hat{w}_i\)를 설정하기 위해 각각의 정점 \(v_i\)에 대하여 패치 사이의 형상 차이 \(\sigma_i\)를 계산한다. 만약 형상 차이 \(\sigma_i\)가 크다면, 이는 정점 \(v_i\) 주변에서 패치 메쉬의 형상의 변화가 크다는 것을 유추할 수 있다. 형상 차이가 큰 정점 \(v_i\)는 상대적으로 홀 패치의 중요한 특징을 표현한다고 해석할 수 있다. 따라서 이러한 정점들은 변형 파라미터를 더 크게하여 블렌딩 과정에서 더욱 강조되도록 한다.
만약 한 정점에서 $\sigma_i = 0$, 즉 형상 차이가 거의 없다면 변형 파라미터 \hat{w}_i는 w와 같다. 반면 $\sigma_i = 1$, 즉 형상 차이가 큰 정점에서는 $\hat{w}_i = 2w$이므로 소스-타겟간 형상 차이가 강조된다(Figure 7 참조).

Figure 7: 3D graph of reparameterization by shape difference σ.

Figure 8: Difficulty to reconstruct a detail without enough information.

5. 실험결과

본 논문에서 제안한 형상 차이 기반 홀 채움 기법은 C++언어를 사용하여 Intel i7-9700F CPU, 16Gb의 메인메모리와 NVIDIA RTX 2060 그래픽 카드가 설치된 PC에서 구현되었다. 제안된 기법의 효과성을 실험하기 위해 다양한 홀을 가진 모델을 사용하였다. Figure 10은 각각의 모델에 대해서 최소 곡률 변화량 방식의 홀 채울 결과와 형상 차이 기반 블렌딩 방식의 홀 채울 결과를 비교하여 보여준다. 본 논문에서 제시한 기법은 특히 주변 매치에 곡률 및 특징이 많이 존재하는 경우를 효과적으로 복원 가능하다. Figure 10(a)에서는 $\alpha = 0.5$로 설정하여 소스-타겟 폐치간의 곡률과 변위를 절단적으로 고려하여 곡률을 강화시켰다. Figure 10(b)에서는 토끼 모델의 귀 주변에 생성되는 소스-타겟 페치 사이의 변위를 크게 고려하였다. 따라서 변위가 큰 정점들은 블렌딩 과정 중 폭으로 이동하여 부식된 형상이 복원되었다. Figure 10(c)처럼 옆쪽 폐치 형상에 홀이 있는 경우 곡률과 변위를 충분히 고려하여 이를 복원하였다. Figure 10(d)는 생성된 소스-타겟 폐치간의 곡률차가 심한 특성을 이용하여 홀 폐치에 존재하는 돌기를 과장시키는 결과를 얻었다. Table 1은 홀의 크기와 늘리기며 홀 폐치를 생성하는 시간을 측정한 결과이고, Figure 9은 Table 1의 결과를 가시화한 결과이다. 실험 결과에서 보듯이 메쉬의 홀을 이는 정점의 개수에 따라 홀 폐치를 생성하는 시간은 선형적으로 증가하는 것을 볼 수 있다.

Table 1: Computational time for creating hole patch

Hole size (# vertices of hole)	Time (ms)
41	75
81	102
127	195
166	307
206	464
296	625

6. 결론

본 논문에서는 형상 차이 기반 블렌딩을 이용하여 삼각 메쉬의 홀을 채우는 기법을 제안하였다. 메쓰 홀을 채우는 소스 및 타겟 폐치를 생성하여 그 둘의 형상 차이를 분석하였으며, 이를 기반한 형상 블렌딩을 통해 주변 메씨에 아름다운 홀 폐치를 사용사가 결정할 수 있도록 하였다. 그리고 다양한 홀을 가진 메시 모델에 대하여 제안된 기법을 적용한 결과, 기존 방식으로는 복원될 수 없었던 주변의 곡률이나 특징이 만족할 만한 수준으로 복원되는 결과를 얻었다.

제시된 방법은 공정화를 통해 생성한 폐치를 블렌딩 타겟으로 선정했기 때문에 메치의 블렌딩 방향이 자연스럽지 못할 때가 있다. 또한 타겟 폐치 생성 과정에서 주변 메씨를 최대 2-링 까지만 고려하였기 때문에 주변의 더 많은 특징을 고려하지 못하는 한계점이 존재한다(Figure 8 참조). 뒤로 연구에서는 생성하는 홀 폐치가 더 넓은 주변 영역의 데이터를 충분히 반영하도록 홀 채움 기법을 확장할 계획이다.

감사의 글

이 성과는 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구 (No. NRF-2018R1D1A1B07048036)와 과학기술정보통신부 방송통신진흥기금으로 한국전자진흥협회의 지원을 받아 수행된 연구임.
Figure 9: Computational time of creating hole patch for different size of hole.

References

[1] J. Branch, F. Prieto, and P. Boulanger, “A hole-filling algorithm for triangular meshes using local radial basis function,” in Proceedings of the 15th International Meshing Roundtable. Springer, 2006, pp. 411–431.

[2] G. Barequet and M. Sharir, “Filling gaps in the boundary of a polyhedron,” Computer Aided Geometric Design, vol. 12, no. 2, pp. 207–229, 1995.

[3] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon mesh processing. CRC press, 2010.

[4] R. Pfeifle and H.-P. Seidel, “Triangular B-splines for blending & filling of polygonal holes.” in Graphics Interface, 1996, pp. 186–193.

[5] P. Liepa, “Filling holes in meshes,” in Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, 2003, pp. 200–205.

[6] C.-Y. Chen, K.-Y. Cheng, and H. Liao, “A sharpness dependent approach to 3d polygon mesh hole filling,” 2005.

[7] C.-Y. Chen and K.-Y. Cheng, “A sharpness-dependent filter for recovering sharp features in repaired 3D mesh models,” IEEE Transactions on visualization and computer graphics, vol. 14, no. 1, pp. 200–212, 2007.

[8] C.-Y. Chen, K.-Y. Cheng, and H.-Y. M. Liao, “Fairing of polygon meshes via bayesian discriminant analysis,” 2004.

[9] C.-Y. Chen and K.-Y. Cheng, “A sharpness dependent filter for mesh smoothing,” Computer Aided Geometric Design, vol. 22, no. 5, pp. 376–391, 2005.

[10] X. Wang, X. Liu, L. Lu, B. Li, J. Cao, B. Yin, and X. Shi, “Automatic hole-filling of CAD models with feature-preserving,” Computers & Graphics, vol. 36, no. 2, pp. 101–110, 2012.

[11] W. Zhao, S. Gao, and H. Lin, “A robust hole-filling algorithm for triangular mesh,” The Visual Computer, vol. 23, no. 12, pp. 987–997, 2007.

[12] P. L. George and É. Seveno, “The advancing-front mesh generation method revisited,” International Journal for Numerical Methods in Engineering, vol. 37, no. 21, pp. 3605–3619, 1994.

[13] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum, “Mesh editing with poisson-based gradient field manipulation,” in ACM SIGGRAPH 2004 Papers, 2004, pp. 644–651.

[14] J.-P. Pernet, G. Moraru, and P. Véron, “Filling holes in meshes using a mechanical model to simulate the curvature variation minimization,” Computers & Graphics, vol. 30, no. 6, pp. 892–902, 2006.

[15] X. J. Wu, M. Y. Wang, and B. Han, “An automatic hole-filling algorithm for polygon meshes,” Computer-Aided Design and Applications, vol. 5, no. 6, pp. 889–899, 2008.
[16] C. K. Chui and M.-J. Lai, “Filling polygonal holes using C^1 cubic triangular spline patches,” *Computer Aided Geometric Design*, vol. 17, no. 4, pp. 297–307, 2000.

[17] Z. Li, D. S. Meek, and D. J. Walton, “Polynomial blending in a mesh hole-filling application,” *Computer-Aided Design*, vol. 42, no. 4, pp. 340–349, 2010.

[18] M. Fortes, P. González, A. Palomares, and M. Rodríguez, “Filling holes using a mesh of filled curves,” *Mathematics and Computers in Simulation*, vol. 164, pp. 78–93, 2019.

[19] L. Kettner, “Using generic programming for designing a data structure for polyhedral surfaces,” *Computational Geometry*, vol. 13, no. 1, pp. 65–90, 1999.

[20] J. Vorosatz, C. Roß, and H.-P. Seidel, “Dynamic remeshing and applications,” *J. Comput. Inf. Sci. Eng.*, vol. 3, no. 4, pp. 338–344, 2003.

[21] M. Botsch and L. Kobbelt, “A remeshing approach to multiresolution modeling,” in *Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing*, 2004, pp. 185–192.

[22] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete differential-geometry operators for triangulated 2-manifolds,” in *Visualization and mathematics III*. Springer, 2003, pp. 35–57.

[23] H. P. Moreton and C. H. Séquin, “Functional optimization for fair surface design,” *ACM SIGGRAPH Computer Graphics*, vol. 26, no. 2, pp. 167–176, 1992.

[24] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, “Implicit fairing of irregular meshes using diffusion and curvature flow,” in *Proceedings of the 26th annual conference on Computer graphics and interactive techniques*, 1999, pp. 317–324.

[25] L. P. Kobbelt, T. Bareuther, and H.-P. Seidel, “Multiresolution shape deformations for meshes with dynamic vertex connectivity,” in *Computer Graphics Forum*, vol. 19, no. 3. Wiley Online Library, 2000, pp. 249–260.

[26] M. Botsch and L. Kobbelt, “An intuitive framework for real-time freeform modeling,” *ACM Transactions on Graphics (TOG)*, vol. 23, no. 3, pp. 630–634, 2004.

[27] M. Wei, J. Wu, and M. Pang, “An integrated approach to filling holes in meshes,” in *2010 International Conference on Artificial Intelligence and Computational Intelligence*, vol. 3. IEEE, 2010, pp. 306–310.

[28] M. Attene, “A lightweight approach to repairing digitized polygon meshes,” *The visual computer*, vol. 26, no. 11, pp. 1393–1406, 2010.
Figure 10: Four examples with complex holes. (a): left, a bunny model; middle: minimizing curvature variation($\Delta^3 x = 0$), right: shape difference-based blending(our method), $\alpha = 0.5, w = 1.2$. (b): left, a bunny model; middle: $\Delta^3 x = 0$, right: our method, $\alpha = 0.9, w = 3.3$. (c): left, a molar model; middle: $\Delta^3 x = 0$, right: our method, $\alpha = 0.5, w = 1.55$. (d): left, an armadillo model; middle: $\Delta^3 x = 0$, right: our method, $\alpha = 0.2, w = 1.4$.
<저자 소개>

박정호
- 2019 동국대학교 멀티미디어공학과 학사
- 2019 ~ 현재 동국대학교 멀티미디어공학전공 석사과정
- 관심분야: 기하 모델링, 가상현실, 컴퓨터 그래픽스
- https://orcid.org/0000-0002-6708-6692

박상훈
- 1993 서강대학교 수학과 학사
- 1995 서강대학교 컴퓨터학과 석사
- 2000 서강대학교 컴퓨터학과 박사
- 2002 ~ 2005 대구카톨릭대학교 컴퓨터정보통신공학부 조교수
- 2001 University of California, Davis 방문 연구원
- 2005 ~ 현재 동국대학교 멀티미디어학과 교수
- 관심분야: 실시간 렌더링, 사실적 렌더링, 과학적 가시화, 고성능 컴퓨팅 등
- https://orcid.org/0000-0001-5383-7005

윤승현
- 2001 한양대학교 수학과 학사
- 2007 서울대학교 컴퓨터공학과 박사
- 2007 ~ 현재 동국대학교 멀티미디어공학과 조교수/부교수/교수
- 관심분야: 컴퓨터그래픽스, 기하모델링, 가상/증강현실
- https://orcid.org/0000-0002-0015-8305