Impact of tenofovir on SARS-CoV-2 infection and severe outcomes among people living with HIV: a propensity score-matched study

Daniel K. Nomah1,2,3†, Juliana Reyes-Urueña1,3,4*, Yesika Díaz1,3, Sergio Moreno1,3, Jordi Aceitón1,3, Andreu Bruguera1,2,3, Rosa M. Vivanco-Hidalgo5, Jordi Casabona1,2,3,6, Jordi Navarro7, Arkaitz Imaz8, Elisabet Deig9, Gemma Navarro10, Josep M. Llibre11 and Jose M. Miro12 on behalf of the PISCIS study group‡

1Centre Estudis Epidemiològics sobre les Infeccions de Transmissió Sexual i Sida de Catalunya (CEEISCAT), Dept Salut, Generalitat de Catalunya, Badalona, Spain; 2Departament de Pediatría, d’Obstetrícia i Ginecologia i de Medicina Preventiva i de Salut Pública, Universitat Autònoma de Barcelona, Bellaterra, Spain; 3Institut d’Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain; 4CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; 5Agència de Qualitat i Avaluació Sanitàries de Catalunya, Barcelona, Spain; 6Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 7Vall d’Hebron Research Institute (VHIR), Hospital de Vall d’Hebron, Barcelona, Spain; 8Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, Spain; 9Hospital General de Granollers, Granollers, Spain; 10Unitat de VIH/SIDA, Corporació Sanitària i Universitària Parc Taulí-Universitat Autònoma de Barcelona, Sabadell, Spain; 11Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; 12Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

*Corresponding author. E-mail: jmreyes@iconcologia.net
†These authors contributed equally to this manuscript.
‡Members are listed in the Acknowledgements.

Received 22 February 2022; accepted 13 May 2022

Background: Reports on the impact of some antiretrovirals against SARS-CoV-2 infection and disease severity are conflicting.

Objectives: We evaluated the effect of tenofovir as either tenofovir alafenamide/emtricitabine (TAF/FTC) or tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) against SARS-CoV-2 infection and associated clinical outcomes among people living with HIV (PLWH).

Methods: We conducted a propensity score-matched analysis in the prospective PISCIS cohort of PLWH (n = 14 978) in Catalonia, Spain. We used adjusted Cox regression models to assess the association between tenofovir and SARS-CoV-2 outcomes.

Results: After propensity score-matching, SARS-CoV-2 diagnosis rates were similar in TAF/FTC versus ABC/3TC recipients (11.6% versus 12.5%, P = 0.256); lower among TDF/FTC versus ABC/3TC recipients (9.6% versus 12.8%, P = 0.021); and lower among TDF/FTC versus TAF/FTC recipients (9.6% versus 12.1%, P = 0.012). In well-adjusted logistic regression models, TAF/FTC was no longer associated with reduced SARS-CoV-2 diagnosis [adjusted odds ratio (aOR) 0.90; 95% confidence interval (CI), 0.78–1.04] or hospitalization (aOR 0.93; 95% CI, 0.60–1.43). When compared with ABC/3TC, TDF/FTC was not associated with reduced SARS-CoV-2 diagnosis (aOR 0.79; 95% CI, 0.60–1.04) or hospitalization (aOR 0.51; 95% CI, 0.15–1.70). TDF/FTC was not associated with reduced SARS-CoV-2 diagnosis (aOR 0.79; 95% CI, 0.60–1.04) or associated hospitalization (aOR 0.33; 95% CI, 0.10–1.07) compared with TAF/FTC.

Conclusions: TAF/FTC or TDF/FTC were not associated with reduced SARS-CoV-2 diagnosis rates or associated hospitalizations among PLWH. TDF/FTC users had baseline characteristics intrinsically associated with more benign SARS-CoV-2 infection outcomes. Tenofovir exposure should not modify any preventive or therapeutic SARS-CoV-2 infection management.
Introduction

Tenofovir has been postulated as a treatment candidate for COVID-19.1 This nucleotide analogue is very prominent in anti-retroviral treatment (ART) and is available as the prodrugs tenofovir alafenamide (TAF) and tenofovir disoproxil fumarate (TDF). The two medicines are also efficacious as HIV pre-exposure prophylaxis (PrEP) in high-risk populations without HIV infection.2 The repurposing of TAF and TDF is due to their well-established safety profile, the wide availability of the generic forms, and the low cost of TDF.3 In pre-clinical studies, tenofovir showed some in vitro activity against SARS-CoV-2, inhibiting its RNA-dependent RNA polymerase (RdRp).4 Furthermore, triphosphate forms of tenofovir are believed to be incorporated by SARS-CoV-2 RdRp and retard polymerase extension, which could explain why the nucleotide analogue could inhibit SARS-CoV-2.5 However, a recent comprehensive set of in vitro analyses performed by the drug manufacturer has finally indicated that neither TAF, TDF, nor emtricitabine (FTC) are inactive against SARS-CoV-2.6 These results are corroborated by the lack of interaction between tenofovir triphosphates and SARS-CoV-2 RdRp observed both in biochemical assays and in structural modelling analyses.6

A study of people living with HIV (PLWH) receiving ART in Spain suggested that individuals receiving TDF/FTC were at a lower risk of COVID-19 and related hospitalization than those receiving other antiretroviral regimens.7 However, the analysis was not adjusted for baseline co-morbidities and important sociodemographic characteristics, and could be overestimating the protective effect of TDF/FTC because recipients of TDF/FTC are likely to be younger and without co-morbidities such as renal and cardiovascular diseases, which have been established as risk factors for COVID-19 and severe outcomes.8–10 In another study, from South Africa, TDF/FTC (versus abacavir or zidovudine) was again associated with lower mortality among PLWH after adjusting for kidney disease, viral suppression, and antiretroviral treatment duration.11 Zidovudine, a second-line regimen, is however associated with prior virological failure or presence of tuberculosis, both of which were not adjusted for in that study. Similarly, among HIV-negative individuals with chronic hepatitis B infection, lower rates of severe COVID-19, ICU admission, need for respiratory support, and shorter hospitalization duration were found among patients receiving TDF/FTC compared with entecavir.12 However, again, the prevalence of chronic comorbidities was significantly lower among those receiving TDF/FTC, establishing again a channelling prescription bias.12

A study that assessed the protective effects of tenofovir against SARS-CoV-2 infection among HIV-negative individuals found just the opposite: a higher SARS-CoV-2 seropositivity among PrEP (tenofovir) users compared with persons not receiving tenofovir (15.5% versus 9.2%, P = 0.026).13 The study found no statistically significant differences in COVID-19 clinical manifestations between users of PrEP, TDF/FTC or TAF/FTC and the control group.13 Similarly, the PREVENIR-ANRS and SAPRIS-Sero study from France also showed no reduction in SARS-CoV-2 seroprevalence among TDF/FTC PrEP users.14 That study is particularly relevant as there were no baseline patient characteristics biasing the analysis through a channelling prescription.

There are several on-going clinical trials assessing the potential of tenofovir as prophylaxis against SARS-CoV-2 infection and treatment for COVID-19.3 Understanding the preventive effect of tenofovir is very relevant given the rapidly changing COVID-19 situation and the surge of new variants with potential to escape vaccine- or infection-induced immune protection.

We evaluated the association between TAF/FTC and TDF/FTC exposure against SARS-CoV-2 infection and severe COVID-19 among PLWH, mitigating the limitations in existing studies by adjusting adequately for potential baseline confounders.

Patients and methods

Study population and design

We performed a retrospective study using data from the Populational HIV Cohort from Catalonia and Balearic Islands (PISCIS). PISCIS is a prospective, multicentre, population-based cohort which follows PLWH aged ≥16 years accessing care at 15 hospitals in Catalonia, Spain.15 We linked PISCIS data with data from several administrative official public health databases to obtain information about chronic comorbidities, SARS-CoV-2 diagnosis, and related clinical outcomes. Data were managed through the Analytical Data for Research and Innovation in Health Project of Catalonia (PADRIS) so as to ensure anonymization in accordance with current data protection legislation.16 The study period was from 1 March 2020 to 18 July 2021. We excluded patients who were reported dead before 1 March 2020, those without information on ART, and those who had at any point switched their ART regimen since cohort entry.

Study definitions and outcomes

We divided the study population into three groups according to nucleos(t)ide reverse transcriptase inhibitor (NRTI) exposure: (i) TAF/FTC; (ii) TDF/FTC; and (iii) abacavir/lamivudine (ABC/3TC). The primary outcome variables of interest were SARS-CoV-2 diagnosis confirmed by a positive reverse transcription polymerase chain reaction (RT-PCR) and/or antigen detection; and COVID-19 outcomes graded as asymptomatic, symptomatic requiring community management (mild symptoms managed as outpatients or at the emergency department for ≤24 h), and hospital admissions (>24 h with any of the following signs: dyspnoea, tachypnoea, hypoxaemia, asphyxia or hyperventilation). Among hospitalized patients, we also assessed admission to the ICU (suffered a respiratory failure or sepsis) and death.

Independent variables in the study included patient sociodemographic characteristics: age; sex; socioeconomic deprivation based on the Catalanian Government socioeconomic deprivation index classified as least deprived, mildly deprived, and moderately/severely deprived;17 and country of origin (Spanish and non-Spanish origin). The HIV-associated variables we included in the study were HIV acquisition risk groups as stated in Table 1; duration since HIV diagnosis in years; CD4 cell count (categorized <350 cells/mm3, 350–499 cells/mm3, and ≥500 cells/mm3) and CD4/CD8 cell ratio; plasma HIV-RNA [detectable and undetectable (≤50 copies/mL)]; and duration on ART in years. We included chronic comorbidities extracted using the International Classification of Diseases, ninth revision, Clinical Modification (ICD-9-CM) and tenth revision (ICD-10-CM) and grouped them into 11 groups (Table S1, available as Supplementary data at JAC Online).

Statistical analysis

Continuous variables are presented as median with interquartile ranges (IQR) and frequencies with percentages for categorical variables. Proportions for categorical variables were compared using the χ² or Fisher’s exact test where appropriate. Continuous variables were
Characteristic	TAF/FTC versus ABC/3TC	TDF/FTC versus ABC/3TC	TAF/FTC versus TDF/FTC									
	Total (n = 7024)	TAF/FTC (n = 3512)	ABC/3TC (n = 3512)	P value	Total (n = 3052)	TDF/FTC (n = 1521)	ABC/3TC (n = 1531)	P value	Total (n = 3080)	TAF/FTC (n = 2310)	TDF/FTC (n = 770)	P value
Sex, n (%)												
Male	5678 (80.8)	2841 (80.9)	2837 (80.8)	0.926	1000	2504 (81.3)	1884 (81.6)	0.557	620 (80.5)			
Female	1346 (19.2)	671 (19.1)	675 (19.2)		0.893	576 (18.7)	426 (18.4)	0.587	150 (19.5)			
Age, years, median (IQR)	48.2 (39.6–55.4)	48.0 (39.4–55.2)	48.4 (39.8–55.6)	0.117	0.803	45.2 (38.0–53.1)	45.0 (38.3–52.4)	0.594	44.9 (37.9–52.3)	0.542		
Sex, n (%)	0.642				0.608	0.001	0.608	0.032	0.621			
Spain	4354 (62.0)	2121 (60.4)	2233 (63.6)	0.058	0.978	1285 (41.7)	970 (42.0)	0.266	315 (40.9)			
Outside Spain	2669 (38.0)	1390 (39.6)	1279 (36.4)									
Social economic deprivation, n (%)	0.001				0.978	0.057	0.869	0.983				
Least deprived	3361 (47.9)	1754 (49.9)	1607 (45.8)	1443 (4.7)	10 (47.3)	361 (47.3)	1082 (47.3)		1559 (50.6)	1196 (51.8)	363 (47.1)	
Mildly deprived	1372 (19.5)	659 (18.8)	713 (20.3)	597 (19.6)	137 (18.0)	460 (20.1)	559 (18.2)		421 (18.2)	138 (17.9)		
Moderately/severely deprived	2123 (30.2)	1021 (29.3)	1102 (31.4)	933 (30.6)	237 (31.1)	695 (30.4)	884 (28.7)		643 (27.8)	241 (33.1)		
HIV acquisition risk group, n (%)	0.058				0.938	0.001	1.000					
PWID	853 (12.1)	442 (12.6)	411 (11.7)	291 (9.5)	71 (9.3)	220 (9.6)	335 (10.9)		264 (11.4)	71 (9.2)		
MSM	3631 (51.7)	1835 (52.3)	1796 (51.1)	1663 (5.4)	408 (53.5)	1255 (54.8)	1663 (54.0)		1255 (54.3)	408 (53.0)		
Male	978 (13.9)	469 (13.4)	509 (14.5)	427 (14.0)	111 (14.6)	316 (13.8)	401 (13.0)		290 (12.6)	111 (14.4)		
Female	1032 (14.7)	526 (15.0)	506 (14.4)	448 (14.7)	111 (14.6)	337 (14.7)	451 (14.6)		336 (14.6)	115 (14.9)		
Heterosexual	397 (5.7)	175 (5.0)	222 (6.3)	171 (5.6)	46 (6.0)	125 (5.5)	175 (5.7)		126 (5.5)	49 (6.4)		
Missing	133 (1.9)	65 (1.9)	68 (1.9)	52 (1.7)	16 (2.1)	36 (1.6)	55 (1.8)		39 (1.7)	16 (2.1)		
Years since HIV diagnosis, median (IQR)	11.7 (6.3–18.1)	11.6 (6.6–18.1)	11.8 (6.0–18.1)	0.877	1.000	11.0 (6.3–17.0)	10.7 (6.0–16.8)	0.001	11.7 (7.3–17.1)	0.001		
CD4 count (cells/mm³)					0.057	0.869	0.983					
< 350	781 (11.1)	424 (12.1)	357 (10.2)	303 (9.9)	79 (10.4)	224 (9.8)	335 (10.9)		254 (11.0)	81 (10.5)		
350–<499	981 (14.0)	482 (13.7)	499 (14.2)	431 (14.1)	105 (13.8)	326 (14.2)	428 (13.9)		320 (13.9)	108 (14.0)		
≥ 500	5262 (74.9)	2406 (74.2)	2656 (75.6)	2318 (76.0)	579 (75.9)	1739 (76.0)	2317 (75.2)		1736 (75.2)	581 (75.5)		
CD4 count (cells/mm³), median (IQR)	695.5 (499.0–926.0)	680.0 (490.0–904.0)	711.0 (506.0–950.0)	<0.001	0.103	686.0 (500.0–910.0)	684.5 (500.0–906.0)	0.681	688.5 (505.3–917.5)	0.011		
CD4/CD8 ratio, median (IQR)	0.9 (0.6–1.2)	0.9 (0.6–1.2)	0.9 (0.6–1.2)	0.323	0.030	0.9 (0.6–1.3)	0.9 (0.6–1.2)		0.9 (0.6–1.3)	0.9 (0.6–1.2)		
Plasma HIV RNA, n (%)	0.581				0.840	1.000						
Table 1. Continued

Characteristic	Total (n = 7024)	TAF/FTC (n = 3512)	ABC/3TC (n = 3512)	P value	Total (n = 3512)	TDF/FTC (n = 2289)	ABC/3TC (n = 2289)	P value	Total (n = 3512)	TAF/FTC (n = 3052)	ABC/3TC (n = 763)	P value	TDF/FTC (n = 2310)	ABC/3TC (n = 2289)	P value
Detectableb	511 (7.3)	262 (7.5)	249 (7.1)	0.915	219 (7.2)	53 (7.0)	166 (7.3)	0.983	220 (7.1)	165 (7.1)	55 (7.1)	0.978			
Undetectableb	6513 (92.7)	3250 (92.5)	3263 (92.9)	0.001	2833 (92.8)	710 (93.1)	2123 (92.8)	0.001	2860 (92.9)	2145 (92.9)	715 (92.9)	0.001			

Number of comorbidities, n (%)

Type of comorbidity	n	TAF/FTC (n = 3512)	ABC/3TC (n = 3512)	P value	TDF/FTC (n = 2289)	ABC/3TC (n = 2289)	P value	TDF/FTC (n = 2310)	ABC/3TC (n = 2289)	P value
0	201 (29.1)	104 (29.8)	97 (28.3)	0.983	1218 (39.6)	920 (39.8)	0.978	298 (39.7)	198 (39.6)	0.968
1	1651 (23.5)	818 (23.1)	833 (23.7)	0.978	754 (24.5)	561 (24.3)	0.978	193 (25.1)	136 (24.5)	0.978
2	1244 (17.7)	613 (17.5)	631 (18.0)	0.978	507 (16.5)	381 (16.5)	0.978	126 (16.4)	78 (16.4)	0.978
3	773 (11.0)	383 (10.9)	390 (11.1)	0.978	264 (8.6)	198 (8.6)	0.978	66 (8.6)	49 (8.6)	0.978
≥4	1315 (18.7)	650 (18.5)	665 (18.9)	0.978	337 (10.9)	250 (10.8)	0.978	87 (11.3)	47 (11.3)	0.978

Type of comorbidity, n (%)

Type of comorbidity	n	TAF/FTC (n = 3512)	ABC/3TC (n = 3512)	P value	TDF/FTC (n = 2289)	ABC/3TC (n = 2289)	P value	TDF/FTC (n = 2310)	ABC/3TC (n = 2289)	P value
Respiratory disease	1596 (22.7)	811 (23.1)	785 (22.4)	0.477	539 (17.5)	390 (16.9)	0.132	149 (19.4)	71 (19.4)	0.036
Cardiovascular disease	1220 (17.4)	612 (17.4)	608 (17.3)	0.925	554 (18.2)	405 (17.7)	0.746	267 (16.6)	93 (12.1)	0.468
Autoimmune disease	840 (12.0)	393 (11.2)	447 (12.7)	0.284	378 (12.4)	285 (12.5)	0.132	239 (10.4)	72 (9.4)	0.468
Chronic kidney disease	374 (5.3)	136 (3.9)	238 (6.8)	<0.001	295 (9.7)	223 (9.7)	0.800	39 (1.2)	9 (1.2)	0.026
Chronic liver disease	1393 (19.8)	722 (20.6)	671 (19.1)	0.357	506 (16.4)	379 (16.4)	1.000	127 (16.5)	127 (16.5)	1.000
Neuropsychiatric	2128 (30.3)	1077 (30.7)	1051 (29.9)	0.516	467 (15.3)	340 (14.9)	0.187	207 (26.9)	134 (26.9)	0.187
Diabetest	464 (6.6)	210 (6.0)	254 (7.2)	0.423	746 (24.4)	533 (23.6)	0.294	89 (3.9)	37 (4.8)	0.294
Metabolic disease	1839 (26.2)	878 (25.0)	961 (27.4)	0.262	140 (4.6)	103 (4.5)	0.589	424 (18.4)	134 (17.4)	0.589
Cancer	789 (11.2)	381 (10.9)	408 (11.6)	0.326	598 (19.6)	464 (20.3)	0.114	161 (7.0)	67 (8.7)	0.131
Hypertension	1630 (23.2)	790 (22.5)	840 (23.9)	0.366	262 (8.8)	195 (8.5)	0.536	386 (16.6)	120 (15.6)	0.536
Obesity	699 (10.0)	362 (9.7)	337 (10.2)	0.223	526 (17.2)	406 (17.7)	0.752	170 (7.4)	60 (7.8)	0.752
Years on ART, median (IQR)	9.9 (5.4–15.3)	9.8 (5.7–14.9)	10.1 (5.3–15.5)	0.001	9.8 (5.6–13.7)	9.3 (5.4–13.7)	0.001	10.4 (6.1–14.1)	10.4 (6.1–14.1)	0.001

Abbreviations: IQR, interquartile range; PWID, people who inject drugs; MSM, men who have sex with men; ART, antiretroviral therapy; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate; FTC, emtricitabine; ABC/3TC, abacavir/lamivudine.

aPropensity score-matching ratio is 1:1 for TAF/FTC versus ABC/3TC, 1:3 for TDF/FTC versus ABC/3TC, and 1:3 for TDF/FTC versus TAF/FTC.

bHIV-RNA viral load (detectable: ≥50 copies per mL, undetectable: <50 copies per mL).
Table 2. SARS-Cov-2 diagnosis and clinical severity in propensity score-matched groups of PLWH based on antiretroviral therapy (ART) and results from Cox regression models that evaluated the effect of ART regimens on SARS-CoV-2 diagnosis and associated hospitalization.

TAF/FTC versus ABC/3TC

	Total	TAF/FTC	ABC/3TC	\(P \) value	uOR (95% CI)	aOR (95% CI)
SARS-CoV-2 diagnosis						
Positive	848 (12.1)	408 (11.6)	440 (12.5)	0.256	0.92 (0.80–1.05)	0.90 (0.78–1.04)
Negative	6176 (87.9)	3104 (88.4)	3072 (87.5)			
Clinical severity						
Asymptomatic	380 (44.8)	186 (45.6)	194 (44.1)	0.838		
Symptomatic mild community management	370 (43.6)	172 (42.3)	198 (45.0)			
Hospitalization\(^d\)	98 (11.6)	50 (12.3)	48 (10.9)		1.04 (0.70–1.55)	0.93 (0.60–1.43)
ICU admission	4 (0.5)	2 (0.5)	2 (0.5)			
Death\(^e\)	17 (2.0)	9 (2.2)	8 (1.8)			

TDF/FTC versus ABC/3TC

	Total	TDF/FTC	ABC/3TC	\(P \) value	uOR (95% CI)	aOR (95% CI)
SARS-CoV-2 diagnosis						
Positive	369 (12.0)	74 (9.6)	295 (12.8)	0.021	**0.74 (0.57–0.95)**	0.79 (0.60–1.04)
Negative	2704 (88.0)	697 (90.4)	2007 (87.2)			
Clinical severity						
Asymptomatic	172 (46.6)	40 (54.1)	132 (44.8)	0.352		
Symptomatic mild community management	170 (46.1)	31 (41.9)	139 (47.1)			
Hospitalization\(^d\)	27 (7.3)	3 (4.1)	24 (8.1)		0.37 (0.11–1.24)	0.51 (0.15–1.70)
ICU admission	2 (0.5)	0 (0)	2 (0.7)			
Death\(^e\)	3 (0.8)	0 (0)	3 (1.0)			

TAF/FTC versus TDF/FTC

	Total	TAF/FTC	TDF/FTC	\(P \) value	uOR (95% CI)	aOR (95% CI)
SARS-CoV-2 diagnosis						
Positive	377 (12.2)	303 (13.1)	74 (9.6)	0.012	**0.72 (0.56–0.93)**	0.79 (0.60–1.04)
Negative	2703 (87.8)	2007 (86.9)	696 (90.4)			
Clinical severity						
Asymptomatic	190 (50.4)	150 (49.5)	40 (54.1)	0.274		
Symptomatic mild community management	150 (39.8)	119 (39.3)	31 (41.9)			
Hospitalization\(^d\)	37 (9.8)	34 (11.2)	3 (4.1)		**0.26 (0.08–0.86)**	0.33 (0.10–1.07)
ICU admission	3 (0.8)	3 (1.0)	0 (0)			
Death\(^e\)	6 (1.6)	6 (2.0)	0 (0)			

Adjusted model: Adjusted for country of origin, socioeconomic status, CD4 count (continuous variable), time in years on ART, CD4/CD8 ratio, diabetes, chronic kidney disease, chronic liver disease, and metabolic disease.

Abbreviations: TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate; FTC, emtricitabine; ABC/3TC, abacavir/lamivudine; ICU, intensive care unit, SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; OR, odds ratio; uOR, unadjusted odds ratio; aOR, adjusted odds ratio; CI, confidence interval.

\(^a\)Data in this category is presented as \(n \)%.

\(^b\)Reference group for odds ratios.

\(^c\)Numbers in bold indicate significant differences (\(P < 0.05 \)).

\(^d\)Including ICU admissions.

\(^e\)Also included in hospitalized patients.
compared using the Kruskal Wallis test. We performed four rounds of propensity-score matching for TAF/FTC versus ABC/3TC and a single round for TDF/FTC versus ABC/3TC and TAF/FTC versus TDF/FTC using nearest-neighbour algorithms with a caliper width of 0.1 of the pooled standard deviations to ensure that key baseline characteristics of the groups were adequately balanced. We matched patients by sex, age, plasma HIV-RNA (detectable and undetectable (HIV RNA <50 copies/mL)), and number of comorbidities (none, one, two, three, four or more). We did three separate propensity score matches in a ratio 1:1 for TAF/FTC versus ABC/3TC, and 1:3 for TDF/FTC versus ABC/3TC, and TDF/FTC versus TAF/FTC. To evaluate the effect of ART regimens on SARS-CoV-2 diagnosis and severe outcomes, we used Cox regression models and provided adjusted odds ratios (aOR) and unadjusted odds ratios (uOR) along with their 95% confidence intervals (95% CI) to remove residual confounding. We adjusted for the factors that were significantly different after propensity score matching. We adjusted for country of origin, socioeconomic status, CD4 count (continuous variable), time in years on ART, CD4/CD8 ratio, diabetes, chronic kidney disease, and metabolic disease. In multivariable analysis, we removed the time since HIV diagnosis due to collinearity with the time in years on ART (Table S2). Records of missing values for adjustment covariates were excluded in adjusted analyses, as they were few and not expected to affect estimates significantly. A two-sided P value <0.05 was considered statistically significant. We performed all statistical analyses using R Statistical Software version 4.0.2.

Ethics

The PISCIS cohort study was approved by the Ethics Committee of the Germans Trias i Pujol University Hospital, Badalona, Spain (EO-11–108). Data collection was also approved by the ethics committees of participating hospitals. Patient-level information obtained from PADRIS was anonymized and de-identified before the analysis. This study follows the Strengthening the Reporting of Observational studies in Epidemiology (STROBE) guidelines. The planning, conduct, and reporting of the study was in line with the Declaration of Helsinki, as revised in 2013.

Access to data

The study protocol is available from Dr Juliana Reyes-Urueña (e-mail: jmreyes@iconcologia.net). Statistical code for the analysis can be requested from Yesika Díaz, Sergio Moreno, and Jordi Aceiton (ydiazr@iconcologia.net, smorenof@iconcologia.net, jaceiton@igtp.cat). The data for this study is available at the Centre for Epidemiological Studies of Sexually Transmitted Diseases and HIV/AIDS in Catalonia (CEEISCAT).
the coordinating centre of the PISCIS cohort and from each of the collaborating hospitals upon request via https://pisciscohort.org/contact/.

Results

Out of 14,978 PLWH (median age: 46.4 years, male sex: 82.1%) on follow-up in our cohort, 1562 had missing information on ART; 776 had switched their ART regimen at least once during the study period, and 11,958 were included in the present analysis. Of them, 7099 were treated with TAF/FTC, 943 with TDF/FTC, 3916 with ABC/3TC, and 682 were receiving other regimens (Figure 1). PLWH receiving TDF/FTC were younger (median age 44.6 years) compared with those receiving TAF/FTC (45.6 years) or ABC/3TC (48.2 years) (P < 0.001). Individuals receiving TDF/FTC had a lower number of comorbidities than those receiving TAF/FTC or ABC/3TC (P < 0.001) and significantly different socioeconomic deprivation (Table S3).

Of the patients included in the analysis, 1445 (12.1%) individuals had tested positive for SARS-CoV-2 as of 18 July 2021, of whom 670 (46.4%) were asymptomatic, 630 (43.6%) were symptomatic with mild disease requiring community management, and 145 (10.0%) were hospitalized. In the latter, 7 (0.5%) were admitted to the ICU, and 20 (1.4%) died.

Out of 7099 PLWH receiving TAF/FTC, 3512 were matched 1:1 to an equal number of ABC/3TC recipients (n = 3512). Out of 943 TDF/FTC recipients, 763 were matched 1:3 to 2289 ABC/3TC recipients; and 770 TDF/FTC recipients were matched 1:3 to 2310 TAF/FTC recipients. No key covariates exhibited major imbalances between TAF and TDF recipients. No key covariates exhibited major imbalances (standard mean difference <0.1) (Figure S1). The baseline characteristics of the propensity score-matched groups are presented in Table 1.

TAF/FTC was not associated with a reduction in SARS-CoV-2 diagnosis (aOR 0.90; 95% CI, 0.78–1.04) or associated hospitalization (aOR 0.93; 95% CI, 0.60–1.43) compared with ABC/3TC in adjusted analysis. TDF/FTC compared with ABC/3TC was not associated with a reduction in SARS-CoV-2 diagnosis (aOR 0.79; 95% CI, 0.60–1.04) or hospitalization (aOR 0.51; 95% CI, 0.15–1.70). We finally compared the association between TDF/FTC and TAF/FTC in adjusted analysis. TDF/FTC was not associated with a reduction in SARS-CoV-2 diagnosis (aOR 0.79; 95% CI, 0.60–1.04) or associated hospital admissions (aOR 0.33; 95% CI, 0.10–1.07) compared with TAF/FTC (Table 2).

Discussion

We assessed the association between current TAF/FTC and TDF/FTC treatment and SARS-CoV-2 diagnosis and COVID-19 outcomes in a prospective multicentre cohort of PLWH using a propensity score-matched approach. TAF/FTC and TDF/FTC were not significantly associated with a reduction in SARS-CoV-2 diagnosis and poorer COVID-19-related outcomes including hospitalizations, ICU admissions, and death among PLWH. We found no significant association either when TAF/FTC or TDF/FTC were compared with ABC/3TC or against each other.

Importantly, we found significantly lower rates of SARS-CoV-2 infection and associated hospitalizations in unadjusted analyses among those receiving TDF/FTC. Compared with patients receiving TAF/FTC and ABC/3TC, those receiving TDF/FTC were significantly younger, and had a lower number and prevalence of comorbidities. When the analysis was adjusted for these variables, the potential protective effect disappeared. This finding supports that the differences in baseline factors intrinsically associated with lower SARS-CoV-2 infection rates and more benign SARS-CoV-2 infection outcomes constitute a channelling bias that could have influenced many previous analyses that indicated that TDF could have a protective role against SARS-CoV-2 infection, but lacked an adequate adjustment of these variables that are directly correlated with the primary outcome.

Analyses performed in PrEP studies with TDF/FTC, such as PREVENIR-ANRS and SAPPRI-Sero sub-study from France, where these biases do not exist, found no reduced risk in SARS-CoV-2 infection among TDF/FTC PrEP users.

Similarly, TDF/FTC in our study reduced COVID-19-associated hospitalizations in unadjusted analysis but not in adjusted analysis, which is contrary to previous large studies. As previously discussed, the lack of adjustment for baseline patient characteristics probably influenced the results of the study from del Amo et al. by confounding and channelling bias. In the subsequent large study from the Western Cape, South Africa, there was an adjustment for kidney disease, viral suppression, and anti-retroviral treatment. Zidovudine use (the alternative to TDF), however, was preferentially prescribed to individuals with prior virologic failure as per the WHO guidelines and can be associated with higher rates of tuberculosis, both of which were not adjusted for in that study.

The rationale behind the possible protective benefits of tenofovir was a result of the potential activity that the nucleotide analogue showed against SARS-CoV-2 in pre-clinical studies and animal models (ferrets) and the more potent immunomodulatory effects of TDF including the decreased production of interleukin-8 and -10 and the higher penetration into mucosal tissues. However, in a recent analysis, none of these drugs (TAF, TDF or FTC) showed any significant in vitro anti-SARS-CoV-2 effect at concentrations up to 100-fold higher than the clinically relevant levels. These results are corroborated by the lack of interaction between the respective NRTI-triphosphates and SARS-CoV-2 RdRp observed both in biochemical assays and in structural modelling analyses.

Our finding that TDF does not prevent SARS-CoV-2 diagnosis or severe disease is in-line with a report from Ayerdi et al. who actually found a higher SARS-CoV-2 seroprevalence among HIV-negative PrEP users receiving TAF or TDF versus those without PrEP. That study also demonstrated no differences in terms of clinical manifestations between people receiving tenofovir (TAF or TDF) and those not on tenofovir.

The study by del Amo et al. found a lower risk for SARS-CoV-2 diagnosis among persons receiving TDF/FTC compared with those on other regimens. SARS-CoV-2 diagnosis in Spain has also been disproportionately affected by sociodemographic factors including country of origin and socioeconomic status in both the general population and among PLWH. The del Amo et al. study did not adjust for these sociodemographic factors.

In recent findings from a clinical trial involving 30 participants on TDF/FTC and a control group of 30 participants on standard of care therapy, TDF/FTC did not expedite the natural clearance of nasopharyngeal SARS-CoV-2 viral load at day 4 (primary endpoint), there were no differences in the time to symptom recovery nor in the hospitalization rates. However, there was a
significantly greater increase in the Ct RT-PCR on the seventh day, with an effect corresponding to approximately 0.8 log10 decrease of SARS-CoV-2 RNA, a reduction of unknown microbiological or clinical relevance.

Our study is limited by its epidemiological nature, depriving us of having information on treatment adherence and exposure to SARS-CoV-2, which are both relevant given the objectives of our study. Secondly, assessing the association between ART and SARS-CoV-2 infection is challenging in a scenario where not everyone is tested equally for SARS-CoV-2. For example, testing could be more frequent among patients with higher risks of poor COVID-19 outcomes. The identification of a higher incidence of SARS-CoV-2 infection and associated hospitalizations in unadjusted analyses that disappear in the propensity score matching and adjusted Cox regression models suggests that indeed subjects treated with TDF have intrinsic characteristics that lend them a lower risk for SARS-CoV-2 infection or poorer COVID-19 outcomes. Our analyses demonstrate that failure to evaluate potential sociodemographic and clinical confounding factors can bias observational study results and lead to erroneous inferences.

In conclusion, the use of TAF/FTC or TDF/FTC among PLWH was not associated with a reduction in SARS-CoV-2 diagnosis or poorer COVID-19 outcomes including hospital and ICU admissions or death. Until well-designed randomized clinical trials reveal new robust evidence, existing preventive measures and treatment approaches for PLWH against SARS-CoV-2 infection should be maintained, independent of tenofovir exposure.

Acknowledgements
We thank the Public Data Analysis for Health Research and Innovation Program of Catalonia (PADRIS) and the Programme for the Prevention, Control and Care for HIV, Sexually Transmitted Diseases and Viral Hepatitis (PCAVIH) of the Ministry of Health, Government of Catalonia for their support.

Members of the PISC study group
Estève Muntada, Anna Estève, Francisco Fanjul, Vicenç Falcó, Hernandez Knobel, Josep Mallolas, Juan Tiraboschi, Adrià Curran, Joaquin Burgos, Boris Revollo, Maria Gracia, Maria del Mar Gutierrez, Javier Murillas, Francisco Hamar, Jose V. Fernandez-Montero, Eva Gonzalez, Joaquim Peraire, Lluis Force, Elena Leon, Miquel Horts, Ingrid Vilaró, Amat Orti, David Dalmàs, Angells Jaen, Elisa De Lazzari, Leire Berrocal, Lucia Rodriguez, Freya Gargoulas, Toni Vanrell, Jose Carlos, Josep Vilà, Marina Martinez, Bibiana Morell, Maribel Tamayo, Jorge Palacio, Juan Ambrosioni, Montse Laguno, Maria Martinez-Rebullar, Jose L. Blanco, Felipe Garcia, Berta Torres, Lorena de la Mora, Alexy Inciarte, Ainoa Ambrosioni, Montse Laguno, Maria Martinez-Rebullar, Jose L. Blanco, Felipe Garcia, Berta Torres, Lorena de la Mora, Alexy Inciarte, Ainoa Ugarte, Iván Chivite, Ana González-Cordon, Lorna Leal, Antoni Jou, Eugènia Negredo, Maria Saumoy, Ana Silva, Sofia Scévola, Paula Suanzes, Patricia Alvarez, Isabel Mur, Melchor Riera Jaume, Mercedes Garcia-Gasalla, Maria À. Ribas, Antoni A. Campins, Maria Peñaranda, Maria L. Martin, Helenc Haydee, Sònia Calzado, Manel Cervantes, Marta Navarro, Antoni Payeras, Carmen Cifuentes, Aroa Viladós, Patricia Sorni, Marta Molero, Nadia Abdulghani, Thais Comella, Rocio Sola, Montserrat Vargas, Consuelo Viladés, Anna Martí, Elena Yeregui, Anna Rull, PILAR Barrufet, Laia Arbones, Elena Chamarro, Cristina Escrig, Mireia Cairó, Xavier Martinez-Lacasa, Roser Font, Lizza Macorigh, Juanse Hernández.

Funding
This work was supported by Fundació ‘La Caixa’ (grant number: COVICHAT). The funder of the study had no role in study design, data collection, data analysis, data interpretation, or report writing.

Transparency declarations
J.M.M. reported receiving a personal 80:20 research grant from Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, during 2017–22 and consulting honoraria and/or research grants from Angelini, Contraflow, Genentech, Gilead Sciences, Jansen, Lysovant, Medtronic, MSD, Novartis, Pfizer, and ViVi HealthCare, outside the submitted work. P.D. reported that his institution received grants from Gilead Sciences, Janssen & Cilag, and ViVi HealthCare; and he personally received honoraria from Gilead Sciences, Janssen & Cilag, MSD, ViVi HealthCare, Roche, and Thera Technologies. A.I. reported that his institution received grants from Gilead Sciences and MSD; and he personally received consultation fees from Gilead Sciences, ViVi HealthCare, and Thera Technologies; honoraria for lectures and presentations from Gilead Sciences, MSD, Jansen, and ViVi HealthCare; travel support for attending meetings from Gilead Sciences, Janssen, and ViVi HealthCare. J.M.L. has received honoraria from Gilead Sciences, Janssen-Cilag, and ViVi HealthCare outside of the present work. J.N. has received honoraria and/or speakers’ fees from Abbvie, Gilead, Janssen-Cilag, Merck Sharp & Dohme and ViVi HealthCare outside of the submitted work. All other authors: none to declare.

Author contributions
D.K.N., J.R.U., Y.D., and J.M.M. conceived and designed the study. D.K.N., J.R.U., Y.D. had full access to all of the study data, verified the data, and take responsibility for the integrity of the data and the accuracy of the data analysis. D.K.N., J.R.U., Y.D., S.M. and J.A. performed the analyses. D.K.N. and J.R.U. wrote the first draft of the paper and incorporated revisions. All authors contributed to the interpretation of results. All authors critically revised and approved the final manuscript.

Supplementary data
Figure S1 and Tables S1 to S4 are available as Supplementary data at JAC Online.

References
1 Sanders JM, Monague ML, Jodlowski TZ et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 2020; 323: 1824–36.
2 Riddell J, Amico KR, Mayer KH. HIV preexposure prophylaxis: a review. JAMA 2018; 319: 1261–8.
3 Zanella I, Zizioli D, Castelli F et al. Tenofovir, another inexpensive, well-known and widely available old drug repurposed for SARS-COV-2 infection. Pharmaceuticals 2021; 14: 454.
4 Ellfky AA. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci 2020; 253: 117592.
5 Chien M, Anderson TK, Jockusch S et al. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. J Proteome Res 2020; 19: 4690–7.
6 Feng J, Bilélo J, Babusis D et al. NRTIs tenofovir, TAF, TDF, and FTC are inactive against SARS-CoV-2. HIV Med 2021; 22. https://doi.org/10.1111/hiv.13183
Impact of tenofovir on SARS-CoV-2

del Amo J, Polo R, Moreno S et al. Incidence and severity of COVID-19 in HIV-positive persons receiving antiretroviral therapy. Ann Intern Med 2021; 174: 581–2.

Hall AM, Hendry BM, Nitsch D et al. Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. Am J Kidney Dis 2011; 57: 773–80.

Baxi SM, Scherzer R, Greenblatt RM et al. Higher tenofovir exposure is associated with longitudinal declines in kidney function in women living with HIV. AIDS 2016; 30: 609–18.

Sutton SS, Magagnoli J, Hardin JW et al. Association of tenofovir disoproxil fumarate exposure with chronic kidney disease and osteoporotic fracture in US veterans with HIV. Clin Infect Dis 2020; 70: e2005–15.

Western Cape Department of Health in collaboration with the National Institute for Communicable Diseases SA. Risk Factors for Coronavirus Disease 2019 (COVID-19) Death in a Population Cohort Study from the Western Cape Province, South Africa. Clin Infect Dis 2021; 73: e2005–15.

Muñoz B, Rutti M, Vazquez J et al. Tenofovir reduces severity of COVID-19 infection in chronic hepatitis B patients. EASL International Liver Congress, 23–26 June 2021. Abstract PO-1449.

Ayerdi O, Puerta T, Clavo P et al. Prevalence of tenofovir/emtricitabine against severe acute respiratory syndrome coronavirus 2 among pre-exposure prophylaxis users. Open Forum Infect Dis 2020; 7: ofaa455.

Delaugerre C, Assoumou L, Maylin S. SARS CoV-2 seroprevalence among HIV-negative participants using tenofovir/emtricitabine-based PrEP in 2020: a sub-study of PREVENIR-ANRS and SAPRIS-Sero. 11th IAS Conference on HIV Science, 18–21 July 2021. Abstract OAC0201.

Nomah D, Reyes-Ureña J, Díaz Y et al. Sociodemographic, clinical, and immunological factors associated with SARS-CoV-2 diagnosis and severe COVID-19 outcomes in people living with HIV: A retrospective cohort study. Lancet HIV 2021; 3018: 1–10.

Generalitat de Catalunya. Agència de Qualitat i Avaluació Sanitàries de Catalunya. Programa públic d’analítica de dades per a la recerca i la innovació en salut a Catalunya – PADRIS. 2017. https://aquas.gencat.cat/web/content/minisite/aquas/publicacions/2017/Programa_analitica_dades_PADRIS_aquas2017.pdf.

García-Altés A, Ruiz-Muñoz D, Colls C et al. Socioeconomic inequalities in health and the use of healthcare services in Catalonia: analysis of the individual data of 7.5 million residents. J Epidemiol Community Health 2018; 72: 871–9.

Nguyen T-L, Collins GS, Spence J et al. Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbalance. BMC Med Res Methodol 2017; 17: 18.

Van Elm E, Altman DG, Egger M et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Bull World Health Organ 2007; 85: 867–72.

World Health Organization. Policy brief: update of recommendations on first-and second-line antiretroviral regimens. 2019. https://apps.who.int/iris/bitstream/handle/10665/325892/WHO-CDS-HIV-19.15-eng.pdf.

Park S-J, Yu K-M, Kim Y-I et al. Antiviral efficacies of FDA-approved drugs against SARS-CoV-2 infection in ferrets. MBio 2020; 11: e01114-20.

Castillo-Mancilla JR, Meditz A, Wilson C et al. Reduced immune activation during tenofovir-emtricitabine therapy in HIV-negative individuals. J Acquir Immune Defic Syndr 2015; 68: 495.

Melchjorsen J, Risér MW, Søgaard OS et al. Tenofovir selectively regulates production of inflammatory cytokines and shifts the IL-12/IL-10 balance in human primary cells. JAIDS J Acquir Immune Defic Syndr 2011; 57: 265–75.

Cottrell ML, Garrett KL, Prince H et al. Single-dose pharmacokinetics of tenofovir alafenamide and its active metabolite in the mucosal tissues. J Antimicrob Chemother 2017; 72: 1731–40.

Polán M, Pérez-Gómez B, Pastor-Barriuso R et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seropidemiological study. Lancet 2020; 353: 44–54.

Parienti J-J, Prauzuck T, Peyro-Saint-Paul L et al. Effect of tenofovir disoproxil fumarate and emtricitabine on nasopharyngeal SARS-CoV-2 viral load burden amongst outpatients with COVID-19: A pilot, randomized, open-label phase 2 trial. EClinicalMedicine 2021; 38: 100993.