Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case

MARCEL BISCHOFF, YASUYUKI KAWAHIGASHI, AND ROBERTO LONGO

Abstract. Let \mathcal{A} be a completely rational local Möbius covariant net on S^1, which describes a set of chiral observables. We show that local Möbius covariant nets \mathcal{B} on 2D Minkowski space which contain the chiral theory \mathcal{A} are in one-to-one correspondence with Morita equivalence classes of Q-systems in the unitary modular tensor category $DHR(\mathcal{A})$. The Möbius covariant boundary conditions with symmetry \mathcal{A} of such a net \mathcal{B} are given by the Q-systems in the Morita equivalence class or by simple objects in the module category modulo automorphisms of the dual category. We generalize to reducible boundary conditions.

To establish this result we define the notion of Morita equivalence for Q-systems (special symmetric \ast-Frobenius algebra objects) and non-degenerately braided subfactors. We prove a conjecture by Kong and Runkel, namely that Rehren’s construction (generalized Longo-Rehren construction, α-induction construction) coincides with the categorical full center. This gives a new view and new results for the study of braided subfactors.

Contents

1. Introduction 2
2. Preliminaries 4
2.1. Endomorphisms of type III factors and Q-systems 4
2.2. UMTC in End(N) and braided subfactors 9
2.3. Braided subfactors and α-induction 10
3. Morita equivalence for braided subfactors 12
3.1. Module categories, modules and bimodules 12
3.2. The Morita equivalence class of a braided subfactor 15
4. α-induction construction and the full center 16
4.1. The full center and Rehren’s construction coincide 16
4.2. The adjoint functor of the full center 24
5. Modular invariance and Q-systems in $N\mathcal{C}_N \otimes \overline{N\mathcal{C}_N}$ 25
5.1. Characterization of modular invariant Q-systems 25
5.2. Permutation modular invariants 26

Date: November 3, 2014.

The first author is supported by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) by the DFG Research Training Group 1493 “Mathematical Structures in Modern Quantum Physics” until August 2014.

The second author is supported by the Grants-in-Aid for Scientific Research, JSPS.

The third author is supported by ERC, PRIN-MIUR, GNAMPA-INDAM.
1. Introduction

The subject of algebraic quantum field theory has led to many structural results and recently also to interesting constructions and classifications in quantum field theory. Conformal quantum field theory can be conveniently studied in this approach. In particular there is the notion of a conformal QFT on Minkowski space and boundary conformal QFT on Minkowski half-plane $x > 0$.

One can associate with a boundary conformal QFT (boundary theory) a conformal QFT on Minkowski space (bulk theory), but in general several boundary theories can have the same bulk theory, which correspond to different boundary conditions of the bulk theory.

In a different framework Fuchs, Runkel and Schweigert gave a general construction, the so-called TFT construction, of a (euclidean) rational full conformal field theory (CFT). The construction can be divided into two steps: first one chooses a certain vertex operator algebra (VOA), whose representation category \mathcal{C} is a modular tensor category and which specifies chiral fields. This can be seen as the analytical part. Then with a choice of a special symmetric Frobenius algebra object $A \in \mathcal{C}$ one can construct correlators on an arbitrary Riemann surface. The bulk field content depend on the Morita equivalence class of A, while A itself fixes a boundary condition.

Carpi, and two of the authors gave a general procedure starting from an algebraic quantum field theory on the Minkowski space, to obtain all locally isomorphic boundary conformal QFT nets, in other words to find all possible boundary conditions (with unique vacuum). The main purpose of this paper is to show that there is a similar classification for the boundary conditions for maximal (full) (conformal) local nets on Minkowski space and its boundary conditions as in the aforementioned TFT construction.

Let us consider more concretely a quantum field theory on Minkowski space. By introducing new coordinates $x_{\pm} = t \mp x$ we identify the two-dimensional Minkowski space $\mathbb{M} = \{(t, x) \in \mathbb{R}^2\}$ with metric $ds^2 = dt^2 - dx^2$ with the product $L_+ \times L_-$ of two light rays $L_\pm = \{(t, x) : t \pm x = 0\}$ with metric $ds^2 = dx_+ dx_-$.

5.3. Maximal chiral subalgebras and second cohomology for modular invariant Q-systems

6. Conformal nets

6.1. Extensions and Q-systems

6.2. Representation theory of local extensions

6.3. Maximal 2D nets with chiral observables \mathcal{A}

6.4. Boundary conditions

6.5. Non-irreducible boundary conditions

6.6. Adding the boundary

7. Acknowledgements

References
The densities of conserved quantities (symmetries) are prescribed by left and right moving chiral fields, i.e. fields just depending on x_+ or x_-, respectively.

For example for the stress-energy tensor holds $T_{00,01} = T_+(x_+) \pm T_-(x_-)$ and for the conserved $U(1)$-currents $j_{0,1}(t,x) = j_+(x_+) \pm j_-(x_-)$.

In the algebraic setting such conserved quantities are abstractly given by a net $A_2(O) = A_+(I) \otimes A_-(J)$.

In general there can be further local observables, so the net of observables is a local extension $B(O) \supset A_2(O)$ of A_2. We ask this extension to be irreducible ($B(O) \cap A_2(O)' = \mathbb{C} \cdot 1$), which is for example true if we assume that A_2 contains the stress energy tensor of B.

We will also assume that the algebras of left and right moving chiral fields are isomorphic in other words $A_2(O) = A(I) \otimes A(J)$ where $O = I \times J \subset L_+ \times L_-$ and A is a local Möbius covariant net on \mathbb{R}. So in this case symmetries are prescribed by the net A.

We further assume A to be completely rational, this is for example true for the net Vir_c generated by the stress energy tensor with central charge $c < 1$, $\text{SU}(N)$ loop group models, or conformal nets associated with even lattices (lattice compactifications). The category of Doplicher–Haag–Roberts superselection sectors of a completely rational conformal net is a unitary modular tensor category [KLM01].

Fixing A we are, as a first step, interested to classify all nets B “containing the symmetries described by A”, i.e. to classify all local extensions $B_2 \supset A_2$. It turns out that the maximal are classified by Morita equivalence class of chiral extensions $A \subset B$.

Let us look a moment into nets defined on $M_+ = \{(t,x) \in M : x > 0\}$, i.e. nets with a boundary at $x = 0$. We are interested to prescribe boundary conditions of B_2 without flow of “charges” associated with A. The vanishing of the chargeflow across the boundary of the charges associated with A is encoded in the algebraic framework via the trivial boundary net $A_+(O) = A(I) \vee A(J)$ with $I \times J \in M_+$. This net is locally isomorphic to A_2 restricted to M_+. In other words A_+ prescribes the boundary condition of A_2 such that there is no charge flow across the boundary.

Now given a two-dimensional net B_2 which contains the given rational symmetries described by A, i.e. a local irreducible extension $B_2 \supset A_2$, we are now interested in all boundary conditions with no charge flow associated with A as above. Such a boundary condition is abstractly given [LR04][CKL13] by a net $B_+ \supset A_+$ on M_+ which is locally isomorphic to B_2 such that this isomorphism restricts to an isomorphism of $A_+ \cong A_2$.

A classification gets feasible by operator algebraic methods. Finite index subfactors $N \subset M$ are in one-to-one correspondence with algebra objects (Q-systems) in the unitary tensor category $\text{End}(N)$ of endomorphisms of N.

Local irreducible extension $B \supset A$ of nets with finite index give rise to nets of subfactors $A(O) \subset B(O)$ and the corresponding Q-system (up to isomorphism) is independent of O and is in the category of localized DHR endomorphisms. Conversely, every such Q-system gives a relatively local extension, which is local if and only if the Q-system is commutative. In particular, one has a one-to-one correspondence between Q-systems and relatively local extensions.
This situation can be abstracted to the setting of braided subfactors, namely we fix an interval I, set $N = A(I)$ and denote by \mathcal{NC}_N the category of localized DHR endomorphisms which are localized in I. We can start with a type III factor N and a modular tensor category $\mathcal{NC}_N \subset \text{End}(I)$ and look into subfactors $N \subset M$ such that the corresponding \mathcal{Q}-system is in \mathcal{NC}_N. We introduce the notion of Morita equivalence of such braided subfactors and show that the generalized Longo–Rehren construction coincides with the full center construction and give some consequences on the study of braided subfactors. This gives us the possibility to apply many results known for the full center of an algebra.

Going back to the conformal net setting this will give us a classification of maximal 2D extensions $B_2 \supset A_2$ and its boundary conditions.

The article is structured as follows.

In Sec. 2 we give some background on the category of endomorphisms of a type III factor, \mathcal{Q}-systems, unitary modular tensor categories (UMTC), braided subfactors and the α-induction construction.

In Sec. 3 we give a notion of Morita equivalence for subfactors and \mathcal{Q}-systems in UMTCs. The Morita equivalence class of a subfactor in a UMTC can be described by irreducible sectors in the module category of the subfactor modulo automorphisms of some dual category.

In Sec. 4 we show that the α-induction construction in subfactors coincide with the full center construction in the categorical literature. This is the first main technical result.

In Sec. 5 we study maximal commutative \mathcal{Q}-systems in the category $\mathcal{NC}_N \boxtimes \mathcal{NC}_N$ (the Drinfel’d center of \mathcal{NC}_N) and give a characterization of them. We give some application to the study of modular invariants and examples of inequivalent extensions with same modular invariant, i.e. example of non-vanishing second cohomology.

In Sec. 6 we apply our former results to the study of conformal field theory on the Minkowski space in the operator algebraic (Haag–Kastler) framework. Given a completely rational conformal net \mathcal{A}, we get a classification of maximal local CFTs containing the chiral observables described by \mathcal{A} and all its boundary conditions. We also discuss reducible boundary conditions, i.e. we drop the assumption that the boundary condition possesses a unique vacuum. Finally, we give a relation to the construction of adding a boundary in [CKL13].

2. Preliminaries

2.1. Endomorphisms of type III factors and \mathcal{Q}-systems. Let us look into the following strict 2–\mathcal{C}^*-category \mathcal{C}. Its 0-cells $\text{Ob}(\mathcal{C}) = \{N, M, P, \ldots\}$ are given by a (finite) set of type III factors. The 1-cells are given for $M, N \in \text{Ob}(\mathcal{C})$ by $\text{Mor}(M, N)$, i.e. the set of unital \ast-homomorphisms (morphism) from $\rho : M \rightarrow N$ with finite (statistical) dimension $d\rho \equiv d_{\rho} = [N : \rho(M)]^{\frac{1}{2}}$, where $[N : \rho(M)]$ denotes the minimal index [Jon83,Kos86]. The 2-cells are intertwiners, i.e. for $\lambda, \mu \in \text{Mor}(M, N)$ we define $\text{Hom}(\lambda, \mu) = \{t \in N : t\lambda(m) = \mu(m)t \text{ for all } m \in M\}$.
\(\text{Hom}(\lambda, \mu) \) is a vector space and we write \(\langle \lambda, \mu \rangle = \dim \text{Hom}(\lambda, \mu) \) for its dimension. Let \(\rho \in \text{Mor}(M, N) \). We call \(\rho \) **irreducible** if \(\rho(M)^{\perp} \cap N = \mathbb{C} \cdot 1_N \). A sector is a unitary equivalence class \([\rho] = \{ U : U \in N \text{ unitary} \} \). We denote by \(\text{End}(N) = \text{Mor}(N, N) \), which is a \(2-\mathbb{C}^* \)-category with only one 0-cell, so a \(\mathbb{C}^* \)-tensor category.

Let \(\rho_1, \ldots, \rho_n \in \text{Mor}(M, N) \), and let \(r_i \in N \) be generators of the Cuntz algebra \(\mathcal{O}_N \), i.e. \(\sum_{i=1}^n r_i r_i^* = 1_N \) and \(r_i r_j = \delta_{ij} \cdot 1_N \). The morphism

\[
\rho = \sum_{i=1}^n \text{Ad} r_i \circ \rho_i \in \text{Mor}(M, N),
\]

is called **direct sum** of \(\rho_1, \ldots, \rho_n \) and we have \(r_i \in \text{Hom}(\rho_i, \rho) \). The direct sum is unique on sectors and we write it as

\[
[r] = [\rho_1] \oplus \cdots \oplus [\rho_n] = \bigoplus_{i=1}^n [\rho_i],
\]

and for the multiple direct sum we introduce the notation:

\[
n[\sigma] := \bigoplus_{i=1}^n [\sigma_i] \quad \text{for } n \in \mathbb{N}, \sigma \in \text{Mor}(M, N).
\]

We say that a full and replete subcategory \(\mathcal{C} \) of \(\text{Mor}(M, N) \) has **subobjects**, if every object is a finite direct sum of irreducible sectors in \(\mathcal{C} \). Similarly, we say it has **direct sums**, if \(\rho_1, \ldots, \rho_n \in \mathcal{C} \) implies that also the direct sum is in \(\mathcal{C} \). Let us assume \(\mathcal{C} \) has subobjects. If \(e \in \text{Hom}(\rho, \rho) \) is a (not necessarily orthogonal) projection (idempotent), then there exists a \(\rho' \in \mathcal{C} \) and \(s \in \text{Hom}(\rho', \rho) \) and \(t \in \text{Hom}(\rho, \rho') \) such that \(s \cdot t = e \) and \(t \cdot s = 1_{\rho'} \equiv 1_N \). We note that if we have \(e \in \text{Hom}(\theta, \theta) \) we have an orthonormal projection \(p = e(1 + e - e^\ast)^{-1} \) \in \(\text{Hom}(\theta, \theta) \) with the same range. If \([\rho] = \bigoplus_{i=1}^m [\rho_i] \) and \([\sigma] = \bigoplus_{j=1}^n [\sigma_j] \) we can decompose \(t \in \text{Hom}(\rho, \sigma) \) as

\[
t = \bigoplus_{ij} t_{ij} := s_i \cdot t_{ij} \cdot r_i^\ast,
\]

where \(r_i \in \text{Hom}(\rho_i, \rho) \) and \(s_j \in \text{Hom}(\sigma_j, \sigma) \) are isometries as above. Similarly, one can decompose \(t \in \text{Hom}(\rho, \sigma \cdot \tau) \) etc.

Let us briefly explain the graphical notation (string diagrams) [JS91, BEK99, BEK00, Sci11, BDH11] which we will use. The 0-cells \(N, M, \ldots \) are drawn as shaded two-dimensional regions, with different shadings for each factor. A 1-cell \(\rho \in \text{Mor}(N, M) \) is a vertical line (one dimensional) between the region \(M \) and \(N \) and composition of 1-cells correspond to horizontal concatenation. The identity \(\text{id}_N \in \text{End}(N) \) is not drawn. The 2-cells \(t \in \text{Hom}(\rho, \sigma) \) are vertices between two lines. Sometimes we draw also boxes and again the identity \(1_N \equiv 1 \in \text{Hom}(\rho, \rho) \) is in general not drawn. The composition of intertwiners is vertical concatenation and the monoidal product horizontal concatenation.
We use a Frobenius rotation invariant convention for trivalent vertices, namely for an isometry \(e \in \text{Hom}(\nu, \lambda\mu) \) we introduce the diagram
\[
\begin{array}{c}
\lambda \quad \mu \\
\downarrow \quad \downarrow \\
\nu \quad \nu \\
\end{array} =: \sqrt{\frac{d\lambda d\mu}{d\nu}} e.
\]

Let \(C \subset \text{End}(N) \) and \(D \subset \text{End}(M) \) be two full subcategories. We define the Deligne product \(C \bowtie D \) to be the completion of \(C \otimes_C D \) under subobjects and direct sums cf. [LR97, Appendix].

A morphism \(\bar{\rho} : N \to M \) is said to be a conjugate to \(\rho : M \to N \) if there exist intertwiners \(R \in (\text{id}_M, \bar{\rho}\rho) \) and \(\bar{R} \in (\text{id}_N, \rho\bar{\rho}) \) such that the conjugate equations hold:
\[
(1_\rho \otimes R^*) \cdot (\bar{R} \otimes 1_\rho) \equiv \rho(R^*) \cdot \bar{R} = 1_\rho \quad (1)
\]
\[
(1_{\bar{\rho}} \otimes \bar{R}^*) \cdot (R \otimes 1_{\bar{\rho}}) \equiv \bar{\rho}(\bar{R}^*) \cdot R = 1_{\bar{\rho}}. \quad (2)
\]

The 2–morphisms \(R, \bar{R} \) will graphically be represented by
\[
\bar{R} = \begin{array}{c}
\rho \quad \bar{\rho} \\
\downarrow \quad \downarrow \\
\text{id}_N \quad \text{id}_M \\
\end{array} \quad R = \begin{array}{c}
\rho \quad \bar{\rho} \\
\downarrow \quad \downarrow \\
\text{id}_M \quad \text{id}_N \\
\end{array}
\]
and the above equations (1), (2) are sometimes called zig-zag identities, because in diagrams they are given by
\[
\begin{array}{c}
\rho \quad \rho \\
\downarrow \quad \downarrow \\
\rho \quad \rho \\
\end{array}, \quad \begin{array}{c}
\bar{\rho} \quad \bar{\rho} \\
\downarrow \quad \downarrow \\
\bar{\rho} \quad \bar{\rho} \\
\end{array}.
\]

If \(\rho \) is irreducible we ask the solution \(R, \bar{R} \) to be normalized, i.e. \(||R|| = ||\bar{R}|| \). In the case that \(\rho \) is not irreducible we further ask that \(R, \bar{R} \) is a standard solution of the conjugate equation, i.e. \(R \) (and similar \(\bar{R} \)) is of the form
\[
R = \sum_i (W_i \otimes W_i) \cdot R_i \equiv \bigoplus_i R_i,
\]
where \(R_i \in (\text{id}_M, \bar{\rho}_i\rho_i) \) is a normalized solution for an irreducible object \(\rho_i \prec \rho \) and \(W_i \in (\rho_i, \rho) \) and \(\bar{W}_i \in (\rho_i, \rho) \) are isometries expressing \(\rho \) and \(\bar{\rho} \) as direct sums of irreducibles. We note that for the dimension \(d_\rho \equiv d_\rho \) of \(\rho \) it holds \(R^*R = d_\rho \cdot 1_M \) and note that \(d_\rho = d_{\bar{\rho}} \). For \(N \neq M \) we may always choose \(\bar{R}_\rho = R_\rho \). If we have a subcategory \(N\mathcal{C}_N \subset \text{End}(N) \) we may choose a system \(N\Delta_N \) of representants for every sector in \(N\mathcal{C}_N \) and choose \(R_\rho \) for every \(\rho \in N\Delta_N \) such that for \(\rho \neq \bar{\rho} \) we have \(\bar{R}_\rho = R_\rho \). For \(\bar{\rho} = \rho \) the intertwiners \(R_\rho \) and \(\bar{R}_\rho \) are intrinsically related, namely \(\bar{R}_\rho = \pm R_\rho \) holds, where the sign \(\pm 1 \) is called the Frobenius–Schur indicator. In this case the sector \(\rho \) is called real for \(+1\) and pseudo-real for \(-1 \).
Although $[\rho]$ and $[\bar{\rho}]$ might be represented by the same $\rho \in \chi \Delta_N$ we still use $\bar{\rho}$ in the diagrammatically notation to distinguish between R_ρ and \bar{R}_ρ.

A triple $\Theta = (\theta, w, x)$ with $\theta \in \text{End}(N)$ and isometries $w: \text{id}_N \to \theta$ and $x: \theta \to \theta^2$, which we will graphically display as

$$\sqrt{d\theta} w = \begin{array}{c} \theta \\ w \end{array} \quad \sqrt{d\theta} x = \begin{array}{c} \theta \\ x \\ \theta \end{array}$$

is called a Q-system (cf. [Lon94, LR97]) if it fulfills

$$xx = \theta(x)x \quad (x \otimes 1_\theta)x = (1_\theta \otimes x)x \quad \text{(associativity)}$$
$$w^*x = \theta(w^*)x = \lambda 1_\theta \quad (w^* \otimes 1_\theta)x = (1_\theta \otimes w^*)x = \lambda 1_\theta \quad \text{(unit law)}$$

where $\lambda = \sqrt{d\theta}^{-1}$. In graphical notation this reads:

$$\begin{array}{c} \theta \\ \theta \end{array} \theta = \begin{array}{c} \theta \\ \theta \end{array} \quad \theta = \begin{array}{c} \theta \\ \theta \end{array} \theta \theta$$

Two Q-systems $\Theta = (\theta, w, x)$ and $\tilde{\Theta} = (\tilde{\theta}, \tilde{w}, \tilde{x})$ in $\text{End}(N)$ are called equivalent, if there is a unitary $u \in \text{Hom}(\theta, \tilde{\theta})$, such that

$$\tilde{x}u = (u \otimes u)x \equiv u\theta(u)x; \quad u\tilde{w} = w$$

hold, or graphically:

$$\begin{array}{c} \tilde{\theta} \\ \tilde{\theta} \end{array} \begin{array}{c} \tilde{\theta} \\ \tilde{\theta} \end{array} \quad \begin{array}{c} \tilde{\theta} \\ \tilde{\theta} \end{array} \begin{array}{c} \tilde{\theta} \\ \tilde{\theta} \end{array} \quad \tilde{w}^* = \begin{array}{c} \tilde{w}^* \\ \tilde{\theta} \end{array} \quad w^* = \begin{array}{c} w^* \\ \theta \end{array} \quad \begin{array}{c} \theta \\ \theta \end{array} \theta \theta \theta \theta \theta$$

A Q-system in a C*-tensor category automatically [LR97] fulfills the “Frobenius law”

$$(x^* \otimes 1_\theta)(1_\theta \otimes x) \equiv x^* \theta(x) = xx^* = (1_\theta \otimes x^*)(x \otimes 1_\theta) \equiv \theta(x^*)$$

or graphically:

$$\begin{array}{c} \theta \\ \theta \end{array} = \begin{array}{c} \theta \\ \theta \end{array} \quad \begin{array}{c} \theta \\ \theta \end{array} \theta \theta = \begin{array}{c} \theta \\ \theta \end{array} \theta \theta \quad \begin{array}{c} \theta \\ \theta \end{array}$$

This means a Q-system is a special symmetric *-Frobenius algebra object, but we prefer to use the name Q-system which is most common in the subfactor context, (other names would be monoid, algebra object, monoidal algebra). We say
a Q-system $\Theta = (\theta, w, X)$ is **irreducible** (called haploid in the Frobenius algebra context) if $(\text{id}_N, \theta) = 1$.

Definition 2.1. Every irreducible $a \in \text{Mor}(M, N)$ defines an irreducible Q-system

$$\Theta_a = (\theta_a, w_a, r_a) := (a\bar{a}, \tilde{r}_a, a(r_a))$$

in $\text{End}(N)$, where r_a: $\text{id}_M \to a\bar{a}$ and \tilde{r}_a: $\text{id}_N \to a\bar{a}$ are isometries such that

$$\tilde{R}_a = \sqrt{da} \cdot \tilde{r}_a$$

and $R_a = \sqrt{da} \cdot r_a$ fulfill the conjugate equations \(\{12\}\) for a. In graphical notation:

$$\theta_a = \begin{pmatrix} a \bar{a} \\ a \bar{a} \end{pmatrix}, \quad \sqrt{da} w_a = a \bar{a} \bigcup, \quad \sqrt{da} x = \begin{pmatrix} a \bar{a} a \bar{a} \\ a \bar{a} \end{pmatrix}.$$

We remark that up to this point everything can be defined abstractly for a 2–C^*-category.

Consider now a finite index irreducible subfactor $N \subset M$ with inclusion $\iota: N \to M$ then $\Theta := \Theta_\iota$ gives **dual canonical Q-system** of $N \subset M$ (and $\Gamma = \Theta_\iota$ the canonical Q-system). The endomorphism $\theta \equiv \bar{\iota} \in \text{End}(N)$ is called the **dual canonical endomorphism** of $N \subset M$ ($\gamma \equiv \bar{\iota} \in \text{End}(M)$ is called the canonical endomorphism).

Conversely, starting from an irreducible Q-system Θ in $\text{End}(N)$, there is a subfactor $N_1 \subset N$, where N_1 is defined to be the image $N_1 := E(N)$ of the conditional expectation $E(\cdot) = x^*\theta(\cdot)x$ and there is subfactor (extension) $N \subset M$ defined by the Jones basic construction $N_1 \subset N \subset M$ (cf. \[LR95\]). One can make the construction of M explicit (cf. \[BKL14\]) and obtains this way a dual morphism $\bar{\iota}: M \to N$ of the inclusion $\iota: N \to M$ such that $\Theta = \Theta_\iota$.

The upshot of this discussion is that there is a one-to-one correspondence (cf. \[Lon94\]) of

- Q-systems in $\text{End}(N)$ up to equivalence.
- Irreducible finite index subfactors $N \subset M$ up to conjugation.

Remark 2.2. We note that θ alone does not fix $N \subset M$, which can be seen as a cohomological obstruction, i.e. Izumi and Kosaki \[IK02\] define the second cohomology $H^2(N \subset M)$ to be all equivalence classes of Q-systems $\Theta = (\theta, w, x)$ with θ the dual canonical endomorphism of $N \subset M$ (their definition uses actually the canonical endomorphism). We say the second cohomology of $N \subset M$ vanishes if there up to equivalence is just one Q-system $\Theta = (\theta, x, w)$, where θ is the dual canonical endomorphism of $N \subset M$.

We finally note that the Θ is a Q-system in the full C^*-tensor subcategory with subobjects generated by θ. The Q-system gets “trivial”, i.e. is of the form Θ_ι, in the 2–C^*-category formed of 0-cells $\{N, M\}$ and full and replete subcategories $\mathcal{L}C_P \subset \text{Mor}(P, L)$ with subobjects and direct sums, which is generated by $\{\iota, \bar{\iota}\}$. We remark that this is actually a general feature of Frobenius algebra object in rigid tensor categories, in particular the obtained 2–C^*-category together with the 1-morphisms $\iota: N \to M$ and $\bar{\iota}: M \to N$ appears in \[Müg03\], under the name
Morita context. In the general situation having a special symmetric Frobenius algebra A in a rigid tensor category C one can find a bicategory $\tilde{C} \supset C$ giving a Morita context in which the Frobenius algebra gets trivial, cf. [Müg03a] for details.

2.2. UMTC in $\text{End}(N)$ and braided subfactors. Let us fix a type III factor N and write $\mathcal{C}_N \subset \text{End}(N)$ for a full and replete subcategory \mathcal{C}_N of $\text{End}(N)$, such that each object is a finite direct sum of irreducible objects and \mathcal{C}_N is closed under taking finite direct sums. We use this notation to stress that it is a category of N-N morphisms. We may choose an endomorphism for each irreducible sector and denote the set of these endomorphisms by \mathcal{C}_N. Let us assume the following properties:

1. $\text{id}_N \in \mathcal{C}_N$.
2. There are only finitely many irreducible sectors in \mathcal{C}_N, i.e. $|\mathcal{C}_N| < \infty$.
3. If $\sigma \in \mathcal{C}_N$ then also a conjugate (dual) $\bar{\sigma} \in \mathcal{C}_N$.
4. If $\rho, \sigma \in \mathcal{C}_N$, then $\rho \circ \sigma \in \mathcal{C}_N$, in other words we have that
 \[[\mu \circ \nu] = \bigoplus N^\rho_{\mu\nu} [\rho], \quad N^\rho_{\mu\nu} = \langle \rho, \mu \nu \rangle, \]

where $N^\rho_{\mu\nu}$ are called fusion rule coefficients.

This means that \mathcal{C}_N is a finite rigid C^*-tensor category [LR97], i.e. a unitary fusion category. We associated with \mathcal{C}_N a finite dimensional vector space $K_0(\mathcal{C}_N) \otimes \mathbb{Z} \cong \mathbb{C}^{\left|\mathcal{C}_N\right|}$, where $|\mathcal{C}_N|$ denotes the cardinality of the system \mathcal{C}_N and $K_0(\mathcal{C}_N)$ is the Grothendieck group of the monoidal category \mathcal{C}_N.

We define the global dimension $\dim \mathcal{C}_N$ of \mathcal{C}_N to be
\[\dim \mathcal{C}_N = \sum_{\rho \in \mathcal{C}_N} (d\rho)^2. \]

We remark that for convenience we assume \mathcal{C}_N to be a subcategory of $\text{End}(N)$. But it turns out that this is not a lost of generality, because by every countable generated rigid C^*-tensor can be embedded in $\text{End}(N)$ by the result of [Yam03].

We will need more structure on \mathcal{C}_N, in particular we additionally assume:

5. There is a natural family $\{ \varepsilon(\mu, \nu) \in \text{Hom}(\mu \nu, \nu \mu) : \mu, \nu \in \mathcal{C}_N \}$ fulfilling:
 \[\varepsilon(\lambda, \mu \nu) = (1_\mu \otimes \varepsilon(\lambda, \mu) \otimes 1_\nu) \equiv \mu(\varepsilon(\lambda, \nu)) \cdot \varepsilon(\lambda, \mu)\]
 \[\varepsilon(\lambda \mu, \nu) = (\varepsilon(\lambda, \nu) \otimes 1_\mu) \equiv \varepsilon(\lambda, \nu) \cdot \lambda(\varepsilon(\mu, \nu)).\]

Naturality means, that for $s : \sigma \to \sigma'$ and $t : \tau \to \tau'$
\[(t \otimes s) \cdot \varepsilon(\sigma, \tau) \equiv t \cdot \tau(s) \cdot \varepsilon(\sigma, \tau) = \varepsilon(\sigma', \tau') \cdot (s \otimes t) \equiv s \cdot \sigma'(t). \]

We note that this family is determined by $\{ \varepsilon(\mu, \nu) \in \text{Hom}(\mu \nu, \nu \mu) : \mu, \nu \in \mathcal{C}_N \}$. That means that \mathcal{C}_N is a braided unitary fusion category which has automatically the structure of a unitary ribbon fusion category. We then say that $\mathcal{C}_N \subset \text{End}(N)$ is a URFC. The braiding $\varepsilon^*(\lambda, \mu) := \varepsilon(\lambda, \mu)$ always comes along with an
opposite braiding \(\varepsilon^-(\lambda, \mu) := \varepsilon(\mu, \lambda)^* \) which in general is different from \(\varepsilon^+(\lambda, \mu) \).

We will graphically denote the braiding by:

\[
\varepsilon^+(\lambda, \nu) = \begin{array}{c}
\lambda \\
\nu
\end{array} \quad \varepsilon^-(\lambda, \nu) = \begin{array}{c}
\lambda \\
\nu
\end{array}
\]

We denote by \(\mathcal{C}_N \) the braided category obtained by interchanging the braiding with the opposite braiding.

Finally, most of the time we will also use the following additional assumption:

(6) The braiding is non-degenerate, i.e. \(\varepsilon^+(\lambda, \mu) = \varepsilon^-(\lambda, \mu) \) for all \(\mu \in N \Delta_N \) implies \([\lambda] = [\text{id}_N]\).

We then say \(\mathcal{C}_N \) is modular. In other words \(\mathcal{C}_N \) is a unitary modular tensor category (UMTC).

We define (see [BEK99]) for \(\lambda, \mu \in N \Delta_N \)

\[
Y_{\lambda \mu} = \begin{array}{c}
\lambda \\
\mu
\end{array} ; \quad \omega_\lambda \cdot 1_\lambda = \begin{array}{c}
\lambda
\end{array}
\]

and the following \(|N \Delta_N| \times |N \Delta_N| \)-matrices

\[
S_{\lambda \mu} = (\dim N \mathcal{C}_N)^{-\frac{1}{2}} Y_{\lambda \mu} , \quad T_{\lambda \mu} = e^{-\pi i c / 12} \delta_{\lambda \mu} \omega_\lambda , \quad (3)
\]

where

\[
z = \sum_{\rho \in N \Delta_N} (d^2_\rho)^2 \omega_\rho ; \quad c = 4 \arg(z) / \pi .
\]

They obey the relations of the partial Verlinde modular algebra: \(TSTST = S \), \(CTC = T \), and \(CS \mathcal{C} = S \), where \(C_{\mu \nu} = \delta_{\mu, \bar{\nu}} \) is the charge conjugation matrix.

The property (6) is equivalent to:

(6') \(Z(\mathcal{C}_N) \cong N \mathcal{C}_N \otimes N \mathcal{C}_N \), where \(Z(\mathcal{C}_N) \) is the Drinfeld center of \(\mathcal{C}_N \) [Müg03b, Corollary 7.11] and

(6") the matrix \(S = (S_{\lambda \mu}) \) is unitary.

In particular, in the modular case holds ([BEK99, Prop. 2.5]):

\[
S^* S = T^* T = 1 , \quad (ST)^3 = S^2 = C , \quad CTC = T ,
\]

i.e. \(S \) and \(T \) define a unitary representation of \(SL(2, \mathbb{Z}) \cong \mathbb{Z}_6 * \mathbb{Z}_2 \mathbb{Z}_4 \) on \(\mathbb{C}^{|N \Delta_N|} \) if and only if \(\mathcal{C}_N \) is modular.

2.3. Braided subfactors and \(\alpha \)-induction. Let \(N \) be a type III factor, \(N \mathcal{C}_N \subset \text{End}(N) \) a URFC and let \(\iota(N) \subset M \) be an irreducible subfactor such that \(\theta \equiv \bar{\iota} \in N \mathcal{C}_N \). We call the data \((\iota(N) \subset M, N \mathcal{C}_N) \) a braided subfactor. If \(N \mathcal{C}_N \subset \text{End}(N) \) happens to be a UMTC we call the braided subfactor a non-degenerately braided.

There is an obvious one-to-one correspondence between (the equivalence classes of) braided subfactors in \(N \mathcal{C}_N \) and Q-systems in \(N \mathcal{C}_N \).
For $\rho \in \mathcal{N}_N$ we define its α-induction by

$$\alpha^+_\lambda = \iota^{-1} \circ \text{Ad}(\epsilon^+(\lambda, \theta)) \circ \lambda \circ \iota \in \text{End}(M).$$

We define the module category \mathcal{N}_M to be the full subcategory with subobjects and direct sums of $\text{Mor}(M, N)$, which is generated by $\mathcal{N}_N \iota \equiv \{ \rho \iota : \rho \in \mathcal{N}_N \}$ and choose a set of representatives of irreducible sectors \mathcal{N}_M. In the same way we define \mathcal{M}_N and the dual category \mathcal{M}_M generated by $\iota \mathcal{N}_N$ and $\iota \mathcal{N}_N \iota$, respectively. Finally we define \mathcal{M}^+_M to be generated by $\alpha^+_{\mathcal{N}_M}$, respectively, and the ambichiral category $\mathcal{M}^0_M = \mathcal{M}^+_M \cap \mathcal{M}^-_M$. Again we choose a set of representatives of irreducible sectors $\mathcal{M}_N \Delta M, \mathcal{M}_M \Delta M, \mathcal{M}^+_M, \mathcal{M}^-_M$ in the respective categories.

It turns out that $\mathcal{M}^+_M \subset \mathcal{M}_M$ and that $\mathcal{M}^+_M \cup \mathcal{M}^-_M \subset \mathcal{M}^+_M \cup \mathcal{M}^-_M \subset \mathcal{M}_M$ [BEK99 Thm. 5.10]. It will be convenient to work in the 2-category generated by $\mathcal{N}_N \cup \mathcal{N}_M \cup \mathcal{M}_N \cup \mathcal{M}_M$.

As shown in [BEK99 Prop. 3.1], we have for $a \in \mathcal{N}_M, \lambda \in \mathcal{N}_N$:

$$\epsilon^+(\lambda, a) \in \text{Hom}(\lambda a, a \alpha^+_\lambda) \quad \quad \epsilon^+(\lambda, \tilde{a}) \in \text{Hom}(\alpha^+_\lambda \tilde{a}, \tilde{a} \lambda),$$

where $\epsilon^+(\lambda, \tilde{a}) := T^*(\epsilon^+(\lambda, \tilde{v}))\alpha^+_\lambda(T)$ for $a \in \mathcal{N}_M$ with $\tilde{a} \prec \iota v$ for some $v \in \mathcal{N}_N$ and $T \in (\tilde{a}, \iota v)$ an isometry. The definition does not depend on the choice of v and T. We set $\epsilon^+(\tilde{a}, \lambda) := (\epsilon^+(\lambda, \tilde{a}))^*$. We represent this graphically—where we use thin lines for morphisms in \mathcal{M}_N and \mathcal{N}_M, normal lines for endomorphisms in \mathcal{N}_N and thick lines for endomorphisms in \mathcal{M}_M—as follows:

$$\epsilon^+(\lambda, a) = \begin{array}{c}
\alpha^+_\lambda \\
\lambda \\
a
\end{array} \quad \quad \epsilon^+(\lambda, \tilde{a}) = \begin{array}{c}
\alpha^+_\lambda \\
\tilde{a}
\end{array}.$$

The intertwining braided fusion equations (IBFE’s) [BEK99 Prop. 3.3] hold, namely

$$\rho(t) \epsilon^+(\lambda, \rho) = \epsilon^+(\lambda a, \rho) a(\epsilon^+(\tilde{b}, \rho)) t,$$

$$t \epsilon^+(\rho, \lambda) = a(\epsilon^+(\rho, \tilde{b})) \epsilon^+(\rho, a) \rho(t),$$

$$\rho(y) \epsilon^+(\lambda, a) = \epsilon^+(\lambda, \rho) \lambda(\epsilon^+(\mu, \rho)) y, \quad \quad \rho(y) \epsilon^+(\rho, a) = \lambda(\epsilon^+(\rho, \mu)) \epsilon^+(\rho, \lambda) \rho(y),$$

$$\epsilon^+(Y) \epsilon^+(\tilde{a}, \rho) = \epsilon^+(\tilde{b}, \rho) \overline{b}(\epsilon^+(\lambda, \rho)) Y, \quad \quad Y \epsilon^+(\rho, \tilde{a}) = \overline{b}(\epsilon^+(\rho, \lambda)) \epsilon^+(\rho, \tilde{b}) \alpha^+_\rho \rho(Y),$$

where $\lambda, \rho \in \mathcal{N}_N, a, b \in \mathcal{M}_M$ with conjugates $\tilde{a}, \tilde{b} \in \mathcal{M}_N$; $t \in \text{Hom}(\lambda, a \tilde{b})$, $y \in \text{Hom}(a, \rho \tilde{b})$ and $Y \in \text{Hom}(\tilde{a}, \tilde{b} \lambda)$. The IBFE’s have simple graphical meaning,
e.g. the first and sixth equations are represented by:

\[
\begin{align*}
\lambda \overline{b} a & = \lambda \overline{b} a, \\
\rho \alpha & = \rho \alpha, \\
\rho \alpha & = \rho \alpha,
\end{align*}
\]

For details we refer to [BEK99, Sect. 3.3].

In general for two braided subfactors \(\iota_a(N) \subset M_a \) and \(\iota_b(N) \subset M_b \) in \(\mathcal{N}C_N \) we define \(M_a \mathcal{C} M_b \) as a full subcategory of \(\text{Mor}(M_b, M_a) \) with subobjects and direct sums generated by \(\iota_a N \mathcal{C} \iota_b N \).

3. Morita equivalence for braided subfactors

3.1. Module categories, modules and bimodules.

In this section we give the notion of Morita equivalent non-degenerately braided subfactors.

We adapt the following definitions from [Ost03].

Definition 3.1. A (strict) **module category** over a tensor category \(\mathcal{C} \) is a category \(\mathcal{M} \) together with an exact bifunctor \(\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M} \) such that \((X \otimes Y) \otimes M = X \otimes (Y \otimes M) \) for all \(X, Y \in \mathcal{C} \) and \(M \in \mathcal{M} \).

Let \(\mathcal{M}_1, \mathcal{M}_2 \) be two module categories over \(\mathcal{C} \). A (strict) **module functor** from \(\mathcal{M}_1 \) to \(\mathcal{M}_2 \) is a functor \(F : \mathcal{M}_1 \to \mathcal{M}_2 \) such that \(F(X \otimes M) = X \otimes F(M) \).

Two module categories \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) over \(\mathcal{C} \) are called **isomorphic** if there exist a module functor, which is an isomorphism of categories.

Let \(\mathcal{N}C_N \subset \text{End}(\mathcal{N}) \) be a UFC and let \(\Theta = (\theta, w, x) \) be a Q-system in \(\mathcal{N}C_N \) corresponding to \(\mathcal{N} \subset \mathcal{M} \). A (right) \(\Theta \)-module (cf. [EP03]) is a pair \((\rho, r) \) with \(\rho \in \mathcal{N}C_N \) and \(\tilde{r} \in \text{Hom}(\rho \circ \theta, \rho) \), such that \(r^* \) is an isometry and \(\tilde{r} = \sqrt{\theta} r \) satisfies

\[
\begin{align*}
\tilde{r} \cdot (1_{\rho} \otimes m) & = \tilde{r} \cdot (\tilde{e} \otimes 1_{\theta}) \\
\tilde{r} \cdot (1_{\rho} \otimes r) & = 1_{\rho}
\end{align*}
\]

where \(m = \sqrt{\theta x^*} \) the multiplication and \(e = \sqrt{\theta w} \) the unit of the (Frobenius) algebra object corresponding to \(\Theta \). Graphically this means:

\[
\begin{align*}
\rho & \quad r \quad \rho \\
\rho \theta & \quad \theta & \quad \rho \theta \theta
\end{align*}
\]

A left \(\Theta \)-module can be defined similarly. We note that because we are working in \(\mathcal{C}^* \)-categories and ask \(r^* \) to be an isometry, that a module is also a co-module by the action \(r^* \). The endomorphism \(\rho \theta \) with \(\rho \in \mathcal{N}C_N \) has the structure of a right
\(\Theta\)-module, where the action is given by \(\tilde{r} = 1_p \otimes m \equiv \rho(m) \equiv \sqrt{d\theta} \cdot \rho(x^*) \in \text{Hom}(\rho \theta, \rho \theta)\) in other words \(r = \rho(x^*)\), graphically:

\[
\begin{array}{c}
\rho \theta \\
r \mapsto \theta \\
\rho \theta
\end{array}
\]

It is called the **induced module**. Any irreducible right \(\Theta\)-module is equivalent to a submodule of an induced module cf. [Ost03].

The \(\Theta\)-modules form a category with \(\text{Hom}_\Theta(\rho, \sigma) \equiv \text{Hom}_\Theta((\rho, r), (\sigma, s)) = \{ t \in \text{Hom}(\rho, \sigma) : tr = st \}\), so the arrows are arrows of the objects which intertwine the actions. There is a correspondence between projections \(p \in \text{Hom}_\Theta(\rho, \sigma)\) and submodules, namely we can choose \(\rho_p\) and \(t \in \text{Hom}(\rho_p, \rho)\) with \(t^* t = 1_{\rho_p}\), \(tt^* = p\) and define \(r_p = t^* rt\).

Let \(\Theta_a = (\theta_a, w_a, x_a)\) and \(\Theta_b = (\theta_b, w_b, x_b)\) be two \(Q\)-systems in \(\mathcal{NC}_N\). A \(\Theta_a - \Theta_b\) bimodule is a triple \((\rho, r_a, r_b)\) with \(\rho \in \mathcal{NC}_N\) and \(\rho_a \in \text{Hom}(\theta_a \rho, \rho)\) and \(\rho_b \in \text{Hom}(\theta_b \rho, \rho)\), such that \((\rho, r_a)\) is a left \(\Theta_a\)-module and \((\rho, r_b)\) is a (right) \(\Theta_b\)-module and which commute, i.e.

\[
\rho_a \cdot \theta_a(r_b) = r_b \cdot r_a.
\]

We can define:

\[
\begin{align*}
\tilde{r} &:= r_a \cdot (1_{\theta_a} \otimes 1_{\rho_b}) = r_b \cdot (r_a \otimes 1_{\theta_a} \circ \rho \circ \theta_b, \rho).
\end{align*}
\]

Let \(\rho = (\rho, r_a, r_b)\) and \(\sigma = (\sigma, s_a, s_b)\) be two \(\Theta_a - \Theta_b\) bimodules. An intertwiner \(t: \rho \rightarrow \sigma\) is an \(\Theta_a - \Theta_b\) bimodule intertwiner, if \(t\) intertwines the actions \(r\) and \(s\), i.e.

\[
(1_{\theta_a} \circ t \otimes 1_{\theta_b}) \cdot r = t \cdot \theta_a(t) \cdot r = s \cdot t.
\]

Let us denote by \(\text{Bim}(\Theta_a, \Theta_b)\) the category of bimodules with \(\text{Hom}_{\Theta_a - \Theta_b}(\rho, \sigma)\) \(\Theta_a - \Theta_b\) bimodule intertwiner. We note that one can give \(Q\)-systems, bimodules and intertwiners the structure of a bicategory, by introducing a relative tensor product between bimodules.

We set \(\text{Mod}(\Theta) = \text{Bim}(1, \Theta)\) to be the category of (right) \(\Theta\)-modules.

The category \(\text{Mod}(\Theta)\) has a natural structure of a (strict) left \(\mathcal{NC}_N\) module category, where the functor \(\mathcal{NC}_N \times \text{Mod}(\Theta)\) is given by \((\mu, \rho) \mapsto \mu \rho\) where \(\mu \rho\) is a right-module with \(r_{\mu \rho} = \mu(r_{\rho})\) and \(\text{Hom}_{\text{Mod}(\Theta)}(\rho, \sigma) \ni T \mapsto \mu(T) \in \text{Hom}_{\text{Mod}(\Theta)}(\mu \rho, \mu \sigma)\).

Proposition 3.2 ([EP03 Lemma 3.1.]). Let \(\mathcal{NC}_N\) be a UMTC and \(\Theta_a, \Theta_b\) irreducible \(Q\)-systems in \(\mathcal{NC}_N\). The category of \(\Theta_a - \Theta_b\) bimodules is equivalent to the category \(\mathcal{M}_r \mathcal{C}_{M_b}\). The functor \(\Phi\) maps \(\beta \in \mathcal{M}_r \mathcal{C}_{M_b}\) to \(i_a \circ \beta\) and \(t \in \text{Hom}(\beta, \beta')\) to \(\tilde{t} \in \text{Hom}_{\Theta_a - \Theta_b}(\Phi(\beta), \Phi(\beta'))\).

Proof. In [EP03 Lemma 3.1.] it is shown that the functor \(\Phi\) is fully faithful. It is also shown that it is essentially surjective, so it gives an equivalence of categories. \(\square\)
The functor Φ is graphically given as follows, where $\rho = \Phi(\beta) \tilde{r} \in \text{Hom}(\theta_a \rho \theta_b, \rho)$ the action:

\[
\Phi: \begin{array}{c}
\beta' \\
\beta
\end{array} \mapsto \begin{array}{c}
\tilde{t}_a \beta' \tilde{t}_b \\
\tilde{t}_a \beta \tilde{t}_b
\end{array}
, \quad \tilde{r} = \rho \begin{array}{c}
\theta_a \rho \theta_b \\
\tilde{t}_a \beta \tilde{t}_b \tilde{t}_b \tilde{t}_b
\end{array}.
\]

Remark 3.3. Let $\Theta = (\theta, w, x)$ be a Q-system in a UMTC $N \mathcal{C}_N$ with corresponding subfactor $\iota(N) \subset M$. The bimodule $\Phi(\alpha_+^+) \equiv \alpha_+^+ \iota \equiv \iota \lambda$ is the object $\theta \lambda$ with left action the induced action x^\ast and right action by $x^\ast \epsilon(\lambda, \theta)$, namely for the $+$-case:

\[
\tilde{r} = \begin{array}{c}
\theta \lambda \\
\tilde{t}_a \lambda \theta
\end{array} = \begin{array}{c}
\alpha_+^+ \iota \\
\iota \alpha_+^+ \iota \iota
\end{array},
\]

where equality can be seen easily using $\iota \lambda = \alpha_+^+ \iota$, $\Theta = \Theta_{\iota}$ and the IBFEs by pulling the λ-string between ι and ι. The $-$-case works analogous using the opposite braiding. The obtained bimodules coincide with the notion of α-induction in the categorical literature.

The category $\text{Bim}(\Theta, \Theta)$ gets a tensor category, where $\rho \otimes \Theta \sigma$ is the object associated to the projection in $P_{\rho \otimes \Theta \sigma} \in \text{Hom}(\rho \sigma, \rho \sigma)$ given by:

\[
P_{\rho \otimes \Theta \sigma} = \frac{1}{\sqrt{d\theta}} \rho \begin{array}{c}
\sigma
\end{array}.
\]

and it is easy to check that Φ is a tensor functor. Thus, $\text{Bim}(\Theta, \Theta)$ and $M \mathcal{C}_M$ are equivalent as tensor categories. We note that this category is non-strict. We can define the categories $\text{Bim}^+(-, \Theta)$ to be the image of $M \mathcal{C}_M^+$ under Φ and $\text{Bim}^0(\Theta, \Theta) = \text{Bim}^+(-, \Theta) \cap \text{Bim}^-(\Theta, \Theta)$.

In the special case $M_a = N$ and $M_b = M$ and $\theta_a = \theta$ we have an equivalence of the category $N \mathcal{C}_M$ and the category $\text{Mod}(\Theta)$ of right Θ-modules given by $\tilde{a} \mapsto \iota \iota \tilde{a}$. Namely, $\Phi(\beta) \otimes \Theta \Phi(\gamma) \equiv \iota \beta \gamma = \Phi(\beta \gamma)$. The category of right Θ-modules $\text{Mod}(\Theta)$ gets a module category over $N \mathcal{C}_N$ using the monoidal structure inherent from $\text{End}(N)$. The same is true for $N \mathcal{C}_M$.

In particular it follows the following:

Proposition 3.4. Let $N \mathcal{C}_N \subset \text{End}(N)$ be a UMTC and Θ be a Q-system in $N \mathcal{C}_N$ with corresponding subfactor $N \subset M$. Then $\text{Mod}(\Theta)$ and $N \mathcal{C}_M$ are equivalent as module categories.

Proof. It follows directly from the properties of the monoidal structure, that the functor Φ (in the case of $M_a = N$ and $M_b = M$ and $\theta_a = \theta$) in the proof of Prop. 3.2 is a module functor, so in particular a module isomorphism, between the two module categories $\text{Mod}(\Theta)$ and $N \mathcal{C}_M$ over $N \mathcal{C}_N$. \square
We remark that in general in the definition of module it is not assumed that r is a (multiple) of an isometry, because the existence of a unitary structure is not assumed. But since every module in the general sense is equivalent to a submodule of an induced module and the submodule can chosen to have a multiple of an isometry as action, we can without lost of generality restrict to modules where r is a multiple of an isometry. This can be also shown directly [BKL14].

Let $a \in \mathcal{N} C_M$ be irreducible and consider the subfactor $\mathcal{N} \subset M_a$ given by the Q-system Θ_a (see Def. 3.1). Let M_a be the factor which is given by Jones basic construction $a(M) \subset N \subset M_a$ and denote the inclusion map $\iota_a : N \hookrightarrow M_a$. Because the subfactors $\overline{\iota}_a(M_a) \subset N$ and $a(M) \subset N$ have by definition the same Q-system and thus are conjugated by a unitary in N, we may and do choose $\overline{\iota}_a : M_a \to N$, such that $\overline{\iota}_a(M_a) = a(M)$. This implies that $\alpha = \overline{\iota}_a^{-1} \circ \iota_a : M \to M_a$ is an isomorphism with conjugate $\alpha^{-1} = a^{-1} \circ \overline{\iota}_a : M_a \to M$.

Lemma 3.5 (cf. [LR04][Eva02]). Let $\mathcal{N} C_N \subset \text{End}(N)$ be a UMTC and Θ be a Q-system in $\mathcal{N} C_N$ with corresponding subfactor $N \subset M$.

For $a \in \mathcal{N} C_M$ irreducible and let Θ_a be the canonical Q-system $(\Theta_a = a\hat{a}, \Psi_a, x_a)$ and $N \subset M_a$ the corresponding subfactor. Then $\mathcal{N} C_M$ and $\mathcal{N} C_M_a$ are isomorphic as module categories of $\mathcal{N} C_N$. The isomorphism is given by $\Psi : b \mapsto b \circ a^{-1} \circ \iota_a$ and $\text{Hom}_{\mathcal{N} C_M}(b, c) \ni t \mapsto t \in \text{Hom}_{\mathcal{N} C_{M_a}}(\Psi(b), \Psi(c))$.

Remark 3.6. Given $a \in \mathcal{N} C_M$ we have the Q-system Θ_a with $\theta_a = a\hat{a}$. Let $\beta = \Phi(a) \in \text{Mod}(\Theta)$, then $\tilde{\beta}$ is a Θ left module and there is another way to construct a Q-system [KR08] denoted by $\tilde{\beta} \otimes_{\Theta} \beta$, and it is easy to check that $\tilde{\beta} \otimes_{\Theta} \beta \equiv \tilde{a}a$ and that the obtained Q-systems are equivalent.

3.2. The Morita equivalence class of a braided subfactor

In the following we use the definition of Morita equivalence for module categories as in [Ost03] Def. 3.3. Let $\mathcal{N} C_N \subset \text{End}(N)$ be a UMTC. We remember that we call a pair $(N \subset M, \mathcal{N} C_N)$ where $N \subset M$ is a subfactor whose Q-system Θ is in $\mathcal{N} C_N$ a non-degenerately braided subfactor.

Definition 3.7. Let $\mathcal{N} C_N \subset \text{End}(N)$ be a UMTC. Two irreducible Q-systems Θ_a and Θ_b are called **Morita equivalent** if one of the following equivalent statements hold:

- $\text{Mod}(\Theta_a)$ and $\text{Mod}(\Theta_b)$ are equivalent as module categories over $\mathcal{N} C_N$.
- $\mathcal{N} C_{M_a}$ and $\mathcal{N} C_{M_b}$ are equivalent as module categories over $\mathcal{N} C_N$, where $N \subset M_\bullet$ is corresponding to Θ_\bullet.

We say that the subfactors $N \subset M_a$ and $N \subset M_b$ are Morita equivalent if their Q-systems Θ_a and Θ_b, respectively, are Morita equivalent.

Let $(\iota(N) \subset M, \mathcal{N} C_N)$ be a non-degenerately braided subfactor. It follows directly that for $a, b \in \mathcal{N} C_M$ irreducible Θ_a and Θ_b are Morita equivalent and in particular are Morita equivalent to Θ_ι. But it can also happen that Θ_a and Θ_b are equivalent for $[a] \neq [b]$. If \mathcal{C} is a UTF, we denote by $\text{Pic}(\mathcal{C})$ the full and replete subcategory (2-group) with objects $\{ \rho \in \mathcal{C} : d\rho = 1 \}$ (not completed under direct sums).
Proposition 3.8 ([GS12]). Given two irreducible objects $a, b \in \mathcal{C}_M$. Then the Q-systems Θ_a and Θ_b are equivalent if and only if there is an automorphism $\beta \in \text{Pic}(\mathcal{C}_M)$ such that $b\beta = a$.

Now we can give a characterization of the Morita equivalence class of a non-degenerately braided subfactor.

Proposition 3.9. Let $\mathcal{C}_N \subset \text{End}(N)$ be a UMTC and let Θ be a Q-system in \mathcal{C}_N. Then there is a one-to-one correspondence between

1. equivalence classes $[\Theta_a]$ of irreducible Q-systems Morita equivalent to Θ,
2. irreducible sectors $[a]$ with $a \in \mathcal{C}_M$, such that $[a] = [\beta b]$,
3. elements in $\mathcal{C}_N/\text{Pic}(\mathcal{C}_M)$.

Proof. Statement (3) is just a reformulation of (2). Let $a \in \mathcal{C}_M$ then we get a canonical Q-system Θ_a in \mathcal{C}_N which is Morita equivalent to Θ by Lemma 3.5. Conversely given a Q-system Θ_a Morita equivalent to Θ then \mathcal{C}_M is equivalent to \mathcal{C}_M. The element $a \in \mathcal{C}_M$ corresponding to $\Theta_a \in \mathcal{C}_N$ under this equivalence is the corresponding element in \mathcal{C}_N, cf. [Ost03, Remark 3.5]. The rest follows by Prop. 3.8. □

4. α-INDUCTION CONSTRUCTION AND THE FULL CENTER

4.1. The full center and Rehren’s construction coincide. Let N be a type III factor and $\mathcal{C}_N \subset \text{End}(N)$ a UMTC. As before let $\Delta_N = \{\text{id}_N, \rho_1, \ldots, \rho_n\}$ a set of representatives for each sector.

Given $\nu, \lambda, \mu \in \Delta_N$, we can choose a set of isometries $B(\nu, \lambda \mu) := \{e_1\}$ with $e_1 \in \text{Hom}_{\mathcal{C}_N}(\nu, \lambda \mu)$, such that $\{e_1\}$ form an orthonormal basis with respect to the scalar product $(e, f) = \Phi_\nu(e^* f)$ defined by the left inverse Φ_ν of ν [LR97] or equivalently defined by $(e, f) \cdot 1_\nu = e^* f$. We define for an isometry $e \in \text{Hom}_{\mathcal{C}_N}(\nu, \lambda \mu)$ an isometry $\tilde{e} \in \text{Hom}_{\mathcal{C}_N}(\bar{\nu}, \lambda \bar{\mu})$ by

$$
\begin{array}{c}
\tilde{\lambda} & \tilde{\mu} \\
\tilde{\nu} & \bar{\nu} \end{array}
= e^*
\begin{array}{c}
\lambda & \bar{\lambda} \\
\mu & \bar{\mu} \\
\nu & \bar{\nu} \\
\end{array}.
$$

Definition 4.1 (Longo–Rehren construction). Let $\mathcal{C}_N \subset \text{End}(N)$ a URFC. There is a Q-system $\Theta_{LR} = (\theta_{LR}, w_{LR}, x_{LR})$ in $\mathcal{C}_N \otimes \mathcal{C}_N$ given by:

$$
[\theta_{LR}] = \bigoplus_{\rho \in \mathcal{C}_N} [\rho \otimes \bar{\rho}],
$$

$$
x_{LR} = \bigoplus_{\lambda \mu \nu} \sum_{e \in B(\nu, \lambda \mu)} \sqrt{d\lambda d\mu \theta} e \otimes \tilde{e},
$$

$$
= \bigoplus_{\lambda \mu \nu} \sum_{e \in B(\nu, \lambda \mu)} \lambda \mu \nu \tilde{\lambda} \tilde{\mu} \tilde{\nu} e \otimes \tilde{e}.
$$
More general, for an equivalence of braided categories $\phi: N_C \rightarrow N_{C'}$, we define the Q-system $\Theta_{LR}^\phi = (\theta_{LR}^\phi, w_{LR}^\phi, x_{LR}^\phi)$ in $N_C \boxtimes N_{C'}$ by

$$[\theta_{LR}^\phi] = \bigoplus_{\rho \in N_C} [\rho \boxtimes \phi(\rho)], \quad x_{LR}^\phi = \bigoplus_{\lambda \mu \nu} \sum_{e \in B(\lambda, \mu, \nu)} \sqrt{\frac{d\lambda d\mu d\nu}{d\theta}} e \boxtimes \phi(e).$$

Definition 4.2. Let $N_C \subset \text{End}(N)$ be a URFC. A Q-system $\Theta = (\theta, w, x)$ in N_C is called commutative if $e(\theta, \theta)x = x$. Diagrammatically:

\[
\begin{array}{c}
\theta \theta \\
\theta \\
\theta \\
\theta
\end{array} =
\begin{array}{c}
\theta \theta \\
\theta \\
\theta \\
\theta
\end{array}.
\]

Proposition 4.3 ([LR95]). The Q-system obtained by the Longo–Rehren construction is commutative.

Definition 4.4 (Product Q-system). Let $\Theta_i = (\theta_i, w_i, x_i)$ with $i = 1, 2$ be two Q-systems in a URFC category N_C. Then we define two Q-systems $\Theta_1 \circ^\pm \Theta_2 = (\theta_1 \circ \theta_2, w_1 w_2, x_\pm)$ in N_C, where $x_\pm = \theta_1(e^\pm(\theta_1, \theta_2))x_1 \theta_1(x_2)$, graphically:

\[
\begin{array}{c}
\theta_1 \theta_2 \\
x_+ \\
\theta_1 \theta_2 \\
\theta_1 \theta_2 \\
x_2
\end{array} =
\begin{array}{c}
\theta_1 \theta_2 \\
x_1 \\
\theta_1 \\
\theta_2
\end{array}.
\]

Definition 4.5. For $\Theta = (\theta, w, x)$ a Q-system in N_C and $\rho \in N_C$, we define

$$P^l_\Theta(\rho) = \frac{1}{\sqrt{d\theta}} \cdot \begin{array}{c}
\theta \rho \\
\theta \rho \\
\theta \rho \\
\theta \rho
\end{array} \equiv \begin{array}{c}
\theta \rho \\
\theta \rho \\
\theta \rho
\end{array} \in \text{Hom}(\theta \rho, \theta \rho)$$

and $P^r_\Theta(\rho) = P^l_\Theta(id_N)$. Similarly, we define $P^r_\Theta(\rho)$ and $P^s_\Theta(\rho)$ by interchanging the braiding with the opposite braiding.

Lemma 4.6. $P^l_\Theta(\rho)$ is a projection.

Proof. That $P^l_\Theta(\rho)^2 = P^l_\Theta(\rho)$ is proven as in [FRS02] Lemma 5.2, see also [BKLR14]. We just remark that we have a prefactor due to another normalization and that one can check that $P^l_\Theta(\rho)$ is selfadjoint. \hfill \square

Proposition 4.7 (Sub-Q-system). Let $p \in \text{Hom}(\theta, \theta)$ be an orthogonal projection satisfying $p\theta(p)x = \theta(p)x = pxp = p\theta(p)x$ and $w^* p = w^*$. Let $\theta_p \prec \theta$ corresponding to p, i.e. there a isometry $s \in \text{Hom}(\theta_p, \theta)$, such that $s^* s = 1_{\theta_p}$ and
\[ss^* = p. \] Then \(\Theta_p = (\theta_p, w_p, x_p) \) with
\[
w_p := s^* w, \quad x_p := \sqrt{\frac{d\theta}{d\theta_p}} \cdot s^* \theta(s^*) x s
\]
is a \(Q \)-system.

Graphically, the conditions are given by:

Remark 4.8. The notion of sub-\(Q \)-system \(\Theta_p \) of \(\Theta \) corresponds to the notion of intermediate subfactor \(L \) with \(N \subset L \subset M \) where \(\Theta \) is the dual canonical \(Q \)-system of \(N \subset M \). Namely, the properties of the sub-\(Q \)-system are just a reformulation of [ILP98, Corollary 3.10]. Namely, they consider subspaces \(K_\rho \subset \text{Hom}(\iota, \iota_\rho) \) for each \(\rho \in N \Delta N \), which correspond to a projection \(p \in \text{Hom}(\theta, \theta) \) if we identify the Hilbert spaces \(\text{Hom}(\rho, \theta) \) and \(\text{Hom}(\iota, \iota_\rho) \) by Frobenius reciprocity.

Remark 4.9 (cf. [BKLR14]). If one drops the condition \(w^* p = p \) in Prop. 4.7 then one gets a more general compositions \(\Theta_p = (\theta_p, w_p, x_p) \) with
\[
w_p := \lambda^{-1} \cdot s^* w, \quad x_p := \lambda \cdot \sqrt{\frac{d\theta}{d\theta_p}} \cdot s^* \theta(s^*) x s
\]
is a \(Q \)-system, where \(\lambda = \sqrt{w^* pw} \).

Definition 4.10. We denote by \(C_l(\Theta) = (C_l(\theta), C_l(w), C_l(x)) \) the left center of \(\Theta \), which is defined to be the sub-\(Q \)-system associated with the projection \(P^l_\Theta \in \text{Hom}(\theta, \theta) \). Analogously, the right center \(C_r(\Theta) \) is defined using \(P^r_\Theta \).

Remark 4.11 ([FFRS06, Lem. 2.30]). The \(Q \)-system \(C_{lR}(\Theta) \) is a maximal commutative sub-\(Q \)-system of \(\Theta \).

Remark 4.12. The intermediate factor \(N \subset M_+ \subset M \) defined in [BE00] is given by the \(Q \)-system \(C_l(\Theta) \). Namely, the characterization of \(P^l_\Theta \) in [FFRS06, Lemma 2.30] is the characterization in [BE00] Lemma 4.1] in terms of subspaces \(H_\rho \subset \text{Hom}(\iota, \rho) \) of “charged intertwiners”. Similarly, \(N \subset M_- \subset M \) is given by \(C_r(\Theta) \).

Definition 4.13 (cf. [FFRS08]). Let \(N \mathcal{C}_N \) be a UMTC. The full center of a \(Q \)-system \(\Theta \) is defined to be the \(Q \)-system \(Z(\Theta) \equiv (Z(\theta), Z(w), Z(x)) = C_l((\Theta \boxtimes \text{id}_N) \circ^+ \Theta_{LR}) \) in \(N \mathcal{C}_N \boxtimes N \mathcal{C}_N \).

In particular it is \(Z(\text{id}_N) = \Theta_{LR} \).
Definition 4.14. Let $\mathcal{N}\mathcal{C}_N$ be a URFC and $\Theta = (\theta, w, x)$ a Q-system in $\mathcal{N}\mathcal{C}_N$. We define

$$\text{Hom}_\text{loc}(\theta\rho, \sigma) = \{t \in \text{Hom}(\theta\rho, \sigma) : t \cdot P^l_\theta(\rho) = t\},$$

$$\text{Hom}_\text{loc}(\sigma, \theta\rho) = \{t^* \in \text{Hom}(\sigma, \theta\rho) : P^l_\theta(\rho) \cdot t^* = t^*\}.$$

In particular, the spaces $\text{Hom}_\text{loc}(\theta\rho, \sigma)$ and $\text{Hom}_\text{loc}(\sigma, \theta\rho)$ are anti-isomorphic, due to the self-adjointness of $P^l_\theta(\rho)$.

Lemma 4.15. The isometry $\psi \in \text{Hom}(Z(\theta), (\theta \boxtimes \text{id}_N)\Theta_{\text{LR}})$ with $\psi\psi^* = P^l_{(\Theta\text{id}_N)^\circ\Theta_{\text{LR}}}$ and $\psi^*\psi = 1$ is of the form:

$$\psi = \bigoplus_{\lambda_1, \lambda_2 \in N_{\Delta_N}} \bigoplus_{m \in B(\lambda_2, \lambda_1)_{\text{loc}}} m^* \boxtimes \text{id}_{\lambda_2} \in \text{Hom}(Z(\theta), (\theta \boxtimes \text{id}_N)\Theta_{\text{LR}}),$$

where the sum over m goes over an ONB of $\text{Hom}_\text{loc}(\lambda_2, \lambda_1)$. In particular:

$$[Z(\theta)] = \bigoplus_{\lambda_1, \lambda_2 \in N_{\Delta_N}} (\Theta_{\text{LR}}, \lambda_2, \lambda_1)_{\text{loc}} [\lambda_1 \boxtimes \lambda_2],$$

where $\langle \cdot, \cdot \rangle_{\text{loc}} = \dim \text{Hom}_\text{loc}(\cdot, \cdot)$.

Proof. We first note that $u \in \text{Hom}(R(\theta), (\theta \boxtimes 1)\Theta_{\text{LR}})$ given by

$$u := \bigoplus_{\lambda_1, \lambda_2 \in N_{\Delta_N}} \bigoplus_{m \in B(\lambda_2, \lambda_1)} m^* \boxtimes \text{id}_{\lambda_2} \in \text{Hom}(R(\theta), (\theta \boxtimes \text{id}_N)\Theta_{\text{LR}}),$$

$$R(\theta) := \bigoplus_{\lambda_1, \lambda_2 \in N_{\Delta_N}} \langle \lambda_2, \lambda_1 \rangle_{\text{loc}} \lambda_2 \boxtimes \lambda_2$$

is a unitary interwiner. It can be shown that

$$P^l_{(\Theta\text{id}_N)^\circ\Theta_{\text{LR}}} \cdot u = P^l_{\Theta\text{id}_N}(\Theta_{\text{LR}}) \cdot u \equiv \left(\bigoplus_{\lambda \in N_{\Delta_N}} P^l_\Theta(\lambda) \boxtimes 1_{\lambda} \right) \cdot u.$$

The equality is the statement of [FFRS06 Prop. 3.14(i)], namely it is proven that $C_1((\Theta \boxtimes \text{id}_N)^\circ \Theta_{\text{LR}})$ which is associated with $P^l_{(\Theta\text{id}_N)^\circ\Theta_{\text{LR}}}$ is associated with the projection $P^l_{\Theta\text{id}_N}(C_1(\Theta_{\text{LR}})) \equiv P^l_{\Theta\text{id}_N}(\Theta_{\text{LR}})$. We can conclude by eventually choosing another basis that a maximal isometry invariant w.r.t. $P^l_{(\Theta\text{id}_N)^\circ\Theta_{\text{LR}}}$ is given by summing just over ONB's of $\text{Hom}_\text{loc}(\lambda_2, \lambda_1)$.

Given a Q-system Θ in $\mathcal{N}\mathcal{C}_N$ and $\iota(N) \subset M$ its associated subfactor with the inclusion map $\iota : N \to M$, we will constantly use that the Q-system Θ is of the form Θ_ι as in Def. [2.1] in other words the Q-system Θ gets trivial in the 2–C*-category generated by $\mathcal{N}\mathcal{C}_N, \iota, \iota$. This simplifies many graphical proofs.

Lemma 4.16. Let $\mathcal{N}\mathcal{C}_N \subset \text{End}(N)$ be a UMTC, Θ a Q-system in $\mathcal{N}\mathcal{C}_N$ and $N \subset M$ the corresponding subfactor. Let $\rho, \sigma \in \mathcal{N}\mathcal{C}_N$ be irreducible. The spaces
Hom\textsubscript{loc}(\theta \rho, \sigma) and Hom(\alpha^-_\rho, \alpha^+_{\sigma}) are isomorphic by the map:

\[
\text{Hom}\textsubscript{loc}(\theta \rho, \sigma) \rightarrow \text{Hom}(\alpha^-_\rho, \alpha^+_{\sigma})
\]

\[
\begin{array}{cccc}
\sigma & \rightarrow & \frac{1}{\sqrt{d\theta}} & \alpha^-_\rho \\
\theta & \rho & & \alpha^+_{\sigma}
\end{array}
\]

In the same way Hom\textsubscript{loc}(\rho, \theta \sigma) is isomorphic to Hom(\alpha^+_{\rho}, \alpha^-_{\sigma}). This gives a unitary equivalence between the Hilbert spaces Hom\textsubscript{loc}(\rho, \theta \sigma) with scalar product \((e, f) = \Phi_{\sigma}(e^* f)\) and Hom(\alpha^+_{\rho}, \alpha^-_{\sigma}) with scalar product \((e', f') = \Phi_{\alpha^+_{\rho}}(e'^* f')\), where \(\Phi_{\sigma}\) and \(\Phi_{\alpha^+_{\rho}}\) denote the unique left inverse and unique standard left inverse, respectively.

Proof. We first check that the map is well defined, namely the image is in Hom(\theta \rho, \sigma) and it holds ("=" denotes the trivial intertwiner identifying \(\theta = \bar{\iota}\))

\[
\begin{array}{c}
\frac{1}{\sqrt{d\theta}} \\
\theta & \rho
\end{array} \equiv \begin{array}{c}
\frac{1}{\sqrt{d\theta}} \\
\theta & \rho
\end{array}
\]

where we used in the first equation that \(\Theta\) is of the form \(\Theta_{\bar{\iota}}\) and in the second equation that the closed string can be contracted which cancels the prefactor. So we conclude that the image is actually in Hom\textsubscript{loc}(\theta \rho, \sigma).
We have to show that both maps are inverse to each other:

\[
\begin{align*}
\theta & \mapsto -\rho \\
\sigma & \mapsto \frac{1}{\sqrt{d\theta}} \\
\theta & \mapsto -\rho \\
\sigma & \mapsto \frac{1}{\sqrt{d\theta}}
\end{align*}
\]

where the last equation in the first line is exactly the fact that the intertwiner is in Hom_{loc}(\theta \rho, \sigma), namely the diagram can be deformed to obtain \(P^\dagger_{\Theta}(\rho) \) which can be omitted; in the last equation of the second line the closed string can again be contracted to a dimension cancelling the prefactor.

Finally, unitarity can be seen as follows:

\[
\frac{1}{\sqrt{d\theta}} \begin{vmatrix}
\theta \\
\rho \\
\sigma
\end{vmatrix}^2 = \frac{1}{\sqrt{d\theta} d\sigma} \begin{vmatrix}
\theta \\
\rho \\
\sigma
\end{vmatrix}^2 = \begin{vmatrix}
\alpha_{\rho}^- \\
\alpha_{\sigma}^+
\end{vmatrix}^2,
\]

where in the last equation we use that the string diagram can be deformed to give the standard left inverse for \(\alpha_{\sigma}^+ \) (cf. [Reh00] Lem. 2.2). □
Definition 4.17 (α-induction construction [Reh00]). For a braided subfactor \((N \subset M) \) in \(\mathcal{N} \mathcal{C}_N \) there is a \(Q \)-system \(\Theta_M = (\theta_M, w_M, x_M) \) in \(\mathcal{N} \mathcal{C}_N \otimes \mathcal{N} \mathcal{C}_N \) given by:

\[
[\theta_M] = \bigoplus_{\rho, \sigma \in N \Delta_N} Z_{\rho \sigma}[\mu \otimes \nu],
\]

\[
Z_{\rho \sigma} = \langle \alpha_{\rho, \sigma}^+, \alpha_{\rho, \sigma}^- \rangle
\]

\[
x_M = \bigoplus_{l_{\mu \nu}} \sum_{e_1, e_2} \sqrt{\frac{d\lambda_2 d\mu_2}{d\theta_M dv_2}} \Phi_1^l (\tau(e_1^* \phi_\mu^\prime \phi_\mu) \tau(e_2) \phi_\nu) \cdot e_1 \otimes e_2,
\]

where \(l \) is considered as a multi-index \((\lambda_1 \in N \Delta_N, \lambda_2 \in N \Delta_N, l = 1, \cdots, Z_{\lambda_1, \lambda_2}) \) and \(e_1 \) stands for an ONB in \(\text{Hom}(\nu_1, \lambda_{1\nu_1}) \) and \(\phi_l \) an ONB in \(\text{Hom}(\alpha_{\lambda_1}^+, \alpha_{\lambda_2}^-) \) with respect to the induced left inverse \(\Phi_1^l \).

The following result was conjectured in [KR10]. It can be seen as the main technical result. It allows to apply a lot of results obtained in the categorical literature to the braided subfactor and conformal net setting.

Proposition 4.18. Let \(\mathcal{N} \mathcal{C}_N \) be a UMTC. The \(\alpha \)-induction construction for \((\mathcal{N} \subset M, \mathcal{N} \mathcal{C}_N) \) coincides with the full center \(Z(\Theta) \) of the corresponding \(Q \)-system \(\Theta \).

Proof. It is already clear that the two constructions give equivalent objects, namely

\[
[Z(\theta)] = \bigoplus_{\lambda_1, \lambda_2 \in N \Delta_N} (\theta_{\lambda_2, \lambda_1})_{\text{loc}}[\lambda_1 \otimes \lambda_2] = \bigoplus_{\lambda_1, \lambda_2 \in N \Delta_N} \langle \alpha_{\lambda_1}^+, \alpha_{\lambda_2}^- \rangle[\lambda_1 \otimes \lambda_2] = [\theta_M]
\]

follows from Lem. 4.15 and Lem. 4.16. We have to show that the two intertwiners \(Z(x) \) and \(x_M \) of the two respective constructions are equivalent. We decompose \(Z(x) \) w.r.t. an ONB to show that we get the same coefficients as in the \(\alpha \)-induction construction for \(x_M \). It is by using Lem. 4.15.

\[
\sqrt{d\theta_M} \sqrt{d\theta Z(x)} = \bigoplus_{l_{\mu \nu}} \sum_{e_2} \sqrt{\frac{d\lambda_1 d\mu_1 d\nu_1}{d\lambda_2 d\mu_2 d\nu_2}} \Phi_1^l (\tau(e_1^* \phi_\mu^\prime \phi_\mu) \tau(e_2) \phi_\nu) \cdot e_1 \otimes e_2, \tag{4}
\]

where \(l, m, n \) run over an ONB of \(\text{Hom}_{\text{loc}}(\lambda_1, \theta \lambda_2), \text{Hom}_{\text{loc}}(\mu_1, \theta \mu_2) \) and \(\text{Hom}_{\text{loc}}(\nu_1, \theta \nu_2) \), respectively. We use the following expansion of an arbitrary intertwiner \(t \in \text{Hom}(\nu, \lambda_{1\nu}) \)
with respect to an ONB \(\{ e \} \) of

\[
\lambda^\mu \nu = \sum_e \Phi_e (e^* t) e = \frac{1}{\sqrt{d\lambda d\mu d\nu}} \sum_e e^* e = 1
\]

with respect to an orthonormal basis \(\{ e \} \) of \(\text{Hom}(\nu, \lambda \mu) \). Applying this Eq. (4) gets

\[
\bigoplus_{lmn} \sum_{e_1, e_2} \frac{\sqrt{d\lambda_1 d\mu_1 d\nu_1}}{\sqrt{d\lambda_2 d\mu_2 d\nu_2}} e_1^* e_2
\]

We calculate:

\[
\frac{\sqrt{d\lambda_1 d\mu_1 d\nu_1}}{\sqrt{d\lambda_2 d\mu_2 d\nu_2}} e_1^* e_2 = \frac{\sqrt{d\lambda_1 d\mu_1 d\nu_1}}{\sqrt{d\lambda_2 d\mu_2 d\nu_2}} (d\theta)^{-\frac{3}{2}} e_1^* e_2
\]

\[
= \Phi_{\nu_1}^{-1} [\cdots],
\]

where we first use that the intertwiners \(l, m, n \) are in \(\text{Hom}_{\text{loc}}(\cdots, \cdots) \) and then replace by Lem. 4.16 with an orthonormal basis in \(\text{Hom}(\alpha^+, \alpha^-) \) and in the second step deform the \(\iota \) string to get the left inverse of \(\alpha^+_{\nu_1} \) and \(\Phi_{\nu_1}^{-1} [\cdots] \) is the expression of Def. 4.17. This shows that \(Z(x) \) has the same coefficients as \(x_M \) from the \(\alpha \)-induction construction. \(\square \)

We need the following general result as a main tool in the following sections.
Proposition 4.19 (cf. [KR08]). Let Θ_a and Θ_b be irreducible in a UMTC $\mathcal{N}\mathcal{C}_N$. Then Θ_a and Θ_b are Morita equivalent if and only if $Z(\Theta_a)$ and $Z(\Theta_b)$ are equivalent.

4.2. The adjoint functor of the full center. We get a tensor functor T as follows: the map

$$T\left(\bigoplus_i \lambda_i \otimes \bar{\mu}_i\right) = \bigoplus_i \lambda_i \circ \bar{\mu}_i$$

(5)

is an extension of the monoidal product (which by definition is a bifunctor).

It holds $T(id_N \otimes id_N) = id_N$ and the family of morphisms

$$\mu_{(\rho_1 \otimes \bar{\sigma}_1), (\rho_2 \otimes \bar{\sigma}_2)} : T(\rho_1 \otimes \bar{\sigma}_1) \circ T(\rho_2 \otimes \bar{\sigma}_2) \to T(\rho_1 \rho_2 \otimes \bar{\sigma}_1 \bar{\sigma}_2)$$

$$\mu_{(\rho_1 \otimes \bar{\sigma}_1), (\rho_2 \otimes \bar{\sigma}_2)} := (1_{\rho_1} \otimes \varepsilon(\rho_2, \bar{\sigma}_1)^* \otimes 1_{\bar{\sigma}_2}) \equiv \rho_1(\varepsilon(\rho_2, \bar{\sigma}_1)^*)$$

(6)

extends to a family

$$\mu_{(\beta_1), (\beta_2)} : T(\beta_1) \circ T(\beta_2) \to T(\beta_1 \circ \beta_2), \quad \beta_1, \beta_2 \in \mathcal{N}\mathcal{C}_N \otimes \mathcal{N}\mathcal{C}_N$$

and makes the following diagram commute:

$$\begin{array}{ccc}
T(\beta_1) \circ T(\beta_2) & \to & T(\beta_1 \circ \beta_2) \\
\downarrow & & \downarrow \\
T(\beta_1 \circ \beta_2) & \to & T(\beta_1 \circ \beta_3)
\end{array}$$

This means T is a (strict with respect to the unity but in general non-strict for associativity, i.e. $\mu_{*,*} \not\equiv 1$) strong monoidal functor (tensor functor). It is well known that strong monoidal functors map monoids into monoids, by this we can conclude that for $\Theta_2 = (\theta_2, w_2, x_2)$ a Q-system in $\mathcal{N}\mathcal{C}_N \otimes \mathcal{N}\mathcal{C}_N$ we get a (reducible) Q-system $T(\Theta_2) = (T(\theta_2), w_{T(\Theta_2)}, x_{T(\Theta_2)})$ by

$$w_{T(\Theta_2)} = T(w_2), \quad x_{T(\Theta_2)} = \mu_{\theta_2, \theta_2}^x \cdot T(x_2)$$

or explicitly by ($t_{i,j} \in \text{Hom}(\rho_i \otimes \bar{\sigma}_i, \rho_j \rho_k \otimes \bar{\sigma}_j \bar{\sigma}_k)$)

$$\theta = \bigoplus_i \rho_i \otimes \bar{\sigma}_i \quad \quad x = \bigoplus_{i,j,k} t_{i,j}$$

$$T(\theta_2) = \bigoplus_i \rho_i \bar{\sigma}_i \quad \quad x_{T(\Theta)} = \bigoplus_{i,j,k} \rho_j(\varepsilon(\rho_k, \bar{\sigma}_j)) \cdot t_{i,j}^k \quad \quad \in \text{Hom}(\rho_i \otimes \bar{\sigma}_i, \rho_j \rho_k \otimes \bar{\sigma}_j \bar{\sigma}_k)$$

We note that even if Θ is commutative $T(\Theta)$ is in general not commutative, because the functor is not braided.

We introduce the notion of a direct sum for Q-systems (cf. [EP03, p. 321]). Let $\mathcal{N}\mathcal{C}_N \subset \text{End}(N)$ be a URFC and $\{\Theta_i = (\theta_i, w_i, x_i)\}_{i=1,...,n}$ be Q-systems in $\mathcal{N}\mathcal{C}_N$. The direct sum Q-system $\Theta = (\theta, w, x)$ with $\theta = \bigoplus_{i=1}^n \theta_i$ is defined by

$$\theta = \sum_{i=1}^n \text{Ad} T_i \circ \theta_i, \quad w = \frac{1}{\sqrt{d(\theta)}} \sum_{i=1}^n d_i \cdot T_i \cdot w_i, \quad x = \sum_{i=1}^n \theta(T_i) T_i x T_i^*,$$
where \(d_i = \sqrt{d(\theta_i)} = d(\iota_i) \) and \(T_i \) are generators of the Cuntz algebra with \(n \) elements, i.e. \(T_i^*T_j = \delta_{ij} \cdot 1 \) and \(\sum_i T_iT_i^* = 1 \). If \((\theta_i, \omega_i, x_i)\) corresponds to the subfactor \(N \subset M_i \) with inclusion map \(\iota_i \), then \((\theta, \omega, x)\) corresponds to the inclusion \(N \subset \bigoplus_{i=1}^n M_i \). The \(p_i = T_i T_i^* \) gives a decomposition in the sense of Remark 4.9.

The following identity has been proven on the level of objects in [Eva02, Prop. 3.3.]. We remark that a priori it is not clear that this “curious identity” holds also on the level of Q-systems. It is directly related to the adding the boundary construction in [CKL13] as we discuss in Sect. 6.6.

Proposition 4.20 (cf. [KR08, Prop. 4.3]). Let \(N \subset M \) be a UMTC and \(\Theta \) a Q-system in \(N \subset M \). Then we have an equivalence of Q-systems:

\[
T(Z(\Theta)) \cong \bigoplus_{a \in N \Delta_M} \Theta_a.
\]

Our first aim was to prove this identity directly for the \(\alpha \)-induction construction. We had a graphical proof for the trivial Q-system. Because the \(\alpha \)-induction construction coincides with the full center it follows now easily from the general results of [KR08].

Proof. We note (see Rem. 3.6) that the Q-system \(\Theta_a \) for some \(a \in N \Delta_M \) or equivalently \(\bar{a} \in M \Delta_N \) corresponds on the nose with the Q-system \(\Phi(\bar{a}) = \Phi(\bar{a}) \otimes_\Theta \Phi(\bar{a}) \) constructed in [KR08], where \(\Phi: M \Delta_N \rightarrow \text{Hom}_{\Theta-\text{id}} \) is the functor in Prop. 3.2. Then one can directly apply [KR08, Prop. 4.3]. \(\square \)

As a corollary this implies the “curious identity” which was proven in [Eva02, Prop. 3.3.] and shows that behind this identity indeed sits more structure.

Corollary 4.21 (cf. [Eva02, Prop. 3.3.], see also [BEK99, Cor 6.13.]). Let \(N \subset M \) be a non-degenerately braided type III subfactor and \(Z_{\lambda \mu} = \langle \alpha^*_\lambda, \alpha_\mu \rangle \) for \(\lambda, \mu \in N \Delta_N \). Then it holds

\[
\bigoplus_{a \in N \Delta_M} [a\bar{a}] = \bigoplus_{\rho, \sigma \in N \Delta_N} Z_{\rho \sigma} [\rho \bar{\sigma}]
\]

and in particular the number of elements in \(N \Delta_M \) (or and \(M \Delta_N \) is given by

\[
|N \Delta_M| = |M \Delta_N| = \sum_{\rho \in N \Delta_N} Z_{\rho \rho}.
\]

Remark 4.22. The functor \(T(\cdot) \) gives a (left) adjoint to the full center \(Z(\cdot) \), namely \(\Theta \) is a sub-Q-system of \(T(Z(\Theta)) \).

5. Modular invariance and Q-systems in \(N \subset M \)

5.1. Characterization of modular invariant Q-systems. Let \(N \subset M \) be a UMTC. Given a Q-system \(\Theta \) and the corresponding extension \(\iota(N) \subset M \) let \(Z_{\mu \nu} = \langle \alpha^*_{\mu N}, \alpha_\nu \rangle \) for \(\mu, \nu \in N \Delta_N \). The matrix \(Z = (Z_{\mu \nu})_{\mu, \nu \in N \Delta_N} \) is a **modular invariant** [BEK99], i.e. it commutes with \(S \) and \(T \) from (3). It is called normalized because \(Z_{00} = 1 \) and sufferable because it comes from an inclusion \(\iota(N) \subset M \). The \(\alpha \)-induction construction or equivalently the full center gives a Q-system \(\Theta_2 \) in \(N \subset M \).
\(\mathcal{N} \mathcal{C}_N \) with \([\theta] = \bigoplus_{\mu, \nu \in \Delta_N} Z_{\mu\nu} \). It is sometimes convenient to write the matrix \((Z_{\mu\nu})\) formally in character form as \(Z = \sum_{\mu, \nu \in \Delta_N} Z_{\mu\nu} \chi_{\mu} \bar{\chi}_{\nu} \).

Lemma 5.1 ([BEK00], see also [KO02, Thm 4.5]). Let \(\mathcal{N} \mathcal{C}_N \) be a UMTC. If \(\Theta \) is an irreducible commutative \(Q \)-system in \(\mathcal{N} \mathcal{C}_N \), then \(\dim M_0 = \dim \mathcal{N} \mathcal{C}_N / (d\Theta)^2 \). In particular, \(d\Theta \leq \dim(\mathcal{N} \mathcal{C}_N) \).

Proof. The first statement is a combination of Thm. 4.2 and Prop. 3.1 in [BEK00]. The second statement follows from the first, using \(\dim M_0 = 1 \).

Using Remark 3.3 and 5.6, this also follows from [KO02, Thm 4.5]. \(\square \)

Proposition 5.2 ([KR09, Thm. 3.4, Prop. 3.22]). Let \(\Theta_2 \) be an irreducible commutative \(Q \)-system in \(\mathcal{N} \mathcal{C}_N \), then the following are equivalent:

1. \(d\Theta_2 = \dim(\mathcal{N} \mathcal{C}_N) \)
2. \(Z = (Z_{\mu\nu}) \) is a modular invariant
3. \(\Theta_2 \equiv Z(\Theta) \) for some irreducible \(Q \)-system \(\Theta \) in \(\mathcal{N} \mathcal{C}_N \).

Proof. (3) are equivalent (1) by [KR09, Thm. 3.4, Prop. 3.22] (see also [Müg10, Thm 3.4], [DMNO13]).

The notion of modular invariance in [KR09, Thm. 3.4] is a bit different. But by [LR04, Appendix C] we get that (2) implies (1), namely the argument shows that if \(d\Theta < \dim(\mathcal{N} \mathcal{C}_N) \) then \(Z \) cannot be modular invariant together with Lem. 5.1 this gives the statement.

(3) implies (2) is clear by the fact that \(Z_{\mu\nu} = \langle \alpha_{\mu}^+, \alpha_{\nu}^- \rangle \) defines a modular invariant and that \(Z(\Theta) \) coincides with the \(\alpha \)-induction construction Prop. 4.18. \(\square \)

5.2. Permutation modular invariants

Let \(\mathcal{N} \mathcal{C}_N \subset \text{End}(N) \) be a UMTC. A non-negative integer valued matrix \(Z = (Z_{\mu\nu})_{\mu, \nu \in \Delta_N} \) with \(Z_{\text{id}_N, \text{id}_N} = 1 \) is called a modular invariant if it commutes with the matrices \(S \) and \(T \) constructed in Subsect. 2.2. It is called realizable (sufferable) if there exists a braided subfactor \((\iota(N) \subset M, \mathcal{N} \mathcal{C}_N) \) such that \(Z_{\mu\nu} = \langle \alpha_{\mu}^+, \alpha_{\nu}^- \rangle \).

Proposition 5.3. Let \(\mathcal{N} \mathcal{C}_N \subset \text{End}(N) \) be a UMTC and \(\phi \in \text{Aut}(\Delta_N) \) which only fixes the sector \([\text{id}_N]\) and which extends to a braided automorphism of \(\mathcal{N} \mathcal{C}_N \). Then there is a braided subfactor \(N \subset M_\phi \) in \(\mathcal{N} \mathcal{C}_N \) with \([\theta] = \bigoplus_{\nu} n_\nu, n_\nu = \sum_{\mu} \langle \mu \phi(\bar{\mu}), \nu \rangle \) which realizes the permutation modular invariant \(Z_{\mu\nu} = \delta_{\nu, \phi(\mu)}. \)

Proof. By the Longo–Rehren construction Def. 4.1 there is a \(Q \)-system \(\Theta_{LR}^\phi \) with:

\[[\theta_{LR}^\phi] = \bigoplus_{\mu} \{ \mu \otimes \phi(\bar{\mu}) \} \]

We define the \(Q \)-system \(\Theta_\phi := T(\Theta_{LR}^\phi) \) in \(\mathcal{N} \mathcal{C}_N \) with:

\[[\theta] = \bigoplus_{\mu} \{ \mu \phi(\bar{\mu}) \} = \bigoplus_{\nu} n_\nu, n_\nu = \sum_{\mu} \langle \mu \phi(\bar{\mu}), \nu \rangle \]
as above which is irreducible because 0 = \langle \mu \phi(\bar{\mu}), \text{id}_N \rangle for [\mu] \neq [\text{id}_N]$ by the assumption about ϕ not having non-trivial fixed points. Because $T(\cdot)$ is left-adjoint to $Z(\cdot)$ the subfactor $N \subset M_\phi$ given by the Q-system Θ_ϕ has the modular invariant $Z_{\mu\nu} = \delta_{\nu,\phi(\mu)}$.

A particular case is, if $N C_N$ has no non-trivial self-conjugate sectors besides the trivial sector, in this case the charge conjugation C fulfills the assumption and the obtained subfactor realizes the charge conjugation modular invariant $Z = C$. We therefore can answer a particular case of the question how $Z = C$ is realized, namely the case that there are no non-trivial self-conjugate charges.

Example 5.4. The UMTC $E_{6,1}$ for example obtained by positive energy representation of loop groups, has 3 sectors $\{\rho_0, \rho_1, \rho_2\}$ with Z_3 fusion rules, i.e. $[\rho_i \rho_j] = [\rho_{(i+j) \mod 3}]$ for $0 \leq i, j \leq 2$, and the charge conjugation transposes the two non-trivial charges. Then Prop. 5.1 yields a Q-system with $[\theta] = [\rho_0] \oplus [\rho_1] \oplus [\rho_2]$ which realizes $Z = C$, i.e. $Z = |x_0|^2 + x_1 \tilde{x}_2 + x_2 \tilde{x}_1$.

If there is fixed point in the permutation the same construction as in the proof Prop. 5.1 is possible but we do not know how a dual canonical endomorphism of an irreducible Q-system giving the modular invariant would look, because the “adjoint functor” gives a reducible Q-system. Nevertheless, we can conclude that for a permutation matrix Z of $N \Delta_N$ which gives rise to a braided automorphism, there exists a braided subfactor $\imath(N) \subset M$ in $N C_N$ which has Z as a modular invariant, i.e. such permutation modular invariants are realizable.

The category $N C_N$ is called pointed if all irreducible objects are invertible, i.e. have dimension 1 or in other words $N C_N = \text{Pic}(N C_N)$.

Lemma 5.5. Let $N C_N \in \text{End}(N)$ be a pointed UMTC and let Θ_1 and Θ_2 be Q-systems. If Θ_1 and Θ_2 are Morita equivalent, then they are equivalent.

Proof. Let Θ_1 and Θ_2 be irreducible Q-systems in $N C_N$ which are Morita equivalent. Without loss of generality, we may assume that $\Theta_1 = \Theta_\theta$ comes from a subfactor $\imath(N) \subset M$ and $\Theta_2 = \Theta_a$ with $a \in N C_M$ irreducible.

Because $N C_N$ is pointed the sectors form an abelian (due to the braiding) group denoted G. The multiplication in G is given by the fusion rules, i.e. $N \Delta_N = \{\lambda_g : g \in G\}$ with $[\lambda_g \lambda_h] = [\lambda_{gh}]$ for all $g, h \in G$ and $[\lambda_{g^{-1}}] = [\lambda_g]$. We note that $1 \lambda_g$ is irreducible, namely by Frobenius reciprocity $\langle \lambda_g, \theta \lambda_g \rangle = \langle \theta, \lambda_g \lambda_g \rangle = \langle \theta, \text{id}_N \rangle = 1$. Therefore $N \Delta_M \subset \{\lambda_g : g \in G\}$ (because there can be $[\lambda_g \bar{\lambda}_g] = [\lambda_{g^{-1}}]$). So we may assume that $a = \lambda_g$ and can conclude that $[\theta_a] = [\lambda_g \bar{\lambda}_g] = [\theta \lambda_g \lambda_g] = [\theta]$. It is easy to check that using $\epsilon(\lambda_g, \theta)$ we can construct a unitary intertwiner $\theta_a \rightarrow \theta \lambda_g \lambda_g \rightarrow \theta$, which gives an equivalence of the two Q-systems.

Alternatively, we can use that $\tilde{\alpha}^\pm_{\lambda_g^{-1}}$ is an automorphism satisfying $\alpha^\pm_{\lambda_g^{-1}} = \lambda_g \tilde{\alpha}^\pm_{\lambda_g^{-1}} = \lambda_g \lambda_g^{-1} \tilde{\alpha}^\pm_{\lambda_g^{-1}} = \lambda_g \lambda_g^{-1} \tilde{\alpha}^\pm_{\lambda_g^{-1}}$. Then Prop. 3.8 gives an alternative proof of the statement.

Let $N C_N \subset \text{End}(N)$ be a pointed UMTC and Θ be a Q-system and $Z_{\mu\nu} = \langle \alpha_\mu^{-1}^+, \alpha_\nu^{-1}^- \rangle$. Then Lem. 5.5 shows that $T(Z(\Theta))$ is equivalent to $\bigoplus_{\mu=1}^Z \Theta$. Therefore in this case we get an easy formula for θ in terms of its modular invariant.
matrix $Z = (Z_{\mu\nu})$:

$$\theta = \frac{1}{\text{tr} Z} \bigoplus_{\rho \in N, \mu, \nu \in N} Z_{\mu\nu} N_{\mu\nu}^\rho \rho \theta,$$

see also [Pin07].

5.3. **Maximal chiral subalgebras and second cohomology for modular invariant Q-systems.** Let us assume that Θ is a commutative Q-system in $N C_N$ and $N \subset M$ the associated subfactor.

The category Mod(Θ) forms a (non-strict) tensor category as follows. Let ρ, σ be two right Θ-modules. Because Θ is commutative, we get a left action on ρ and σ using the braiding, which makes them bimodules. Then the tensor product $\rho \otimes \sigma$ is defined to be the object $\rho \otimes_\Theta \sigma$ as in Remark 3.3 which we see as right module by forgetting the left action.

Let $\text{Mod}_0(\Theta)$ the subcategory of dyslectic modules (see [Par95, KO02]), i.e. modules (ρ, r), such that $r \in (\theta, \rho) \in (\rho, \theta) = r$, graphically:

![Diagram](image)

It can be easily seen that if we give the induced right Θ-module $\rho\theta$ the structure of a bimodule via the braiding is equivalent to the induction $\Phi(\alpha^\pm)$ in Remark 3.3 where the sign is depending on the choice of the braiding. We get that $\text{Bim}^+_\Theta(\Theta, \Theta) \cong \text{Mod}(\Theta)$ as tensor categories, but we will just need the following fact.

Remark 5.6. The map obtained by restricting bimodules to right modules

$$\text{Bim}^0(\Theta, \Theta) \rightarrow \text{Mod}_0(\Theta)$$

is an equivalence of categories. Namely, an object in $\text{Bim}^0(\Theta, \Theta)$ gives a dyslectic module, because using the fact that it is contained both, in the image of α^+ and α^-, we can "unwind" the double braid. Conversely, if a module is dyslectic, the left action obtained by the both braidings coincide, so it must come from $\text{Bim}^0(\Theta, \Theta)$.

For $\beta \in M C_M$ we define the σ-restriction $\sigma_\beta = \bar{\iota}_\beta \in N C_N$.

Given Θ_\pm commutative and we get two inclusion $N \subset M_\pm$ and $M_\pm C_{M_\pm}^0$ are again UMTCs. Let us assume there is a braided equivalence $\phi: M_+ C_{M_+}^0 \rightarrow M_- C_{M_-}^0$.

Now we consider the Q-system Θ_{LR}^ϕ in $M C_{M_+}^0 \boxtimes M_- C_{M_-}^0$. By composing ι_{LR} with $\iota_1 \boxtimes \iota_2$ we get a Q-system

$$\Theta_{\Theta_+, \Theta_-, \phi} = \Theta_{\Theta_+ M_+ \boxtimes \Theta_- M_-} \phi_{\iota_{LR}^\phi}.$$
with
\[
[\theta^\phi_{LR}] = \bigoplus_{\alpha \in M, \Delta^\alpha_M, \beta \in M_- \Delta^\beta_M} \tilde{Z}_{\alpha \beta}\langle \alpha \boxtimes \beta \rangle, \quad \tilde{Z}_{\alpha \beta} = \delta_{\alpha, \phi(\beta)}
\]
\[
[\theta(\Theta_+, \Theta_, \phi)] = \bigoplus_{\mu, \nu \in \mathbb{N}} Z_{\mu \nu}\langle \mu \boxtimes \nu \rangle, \quad Z_{\mu \nu} = \sum_{\alpha \beta} Z_{\alpha \beta}\langle \sigma^+_\alpha, \mu, \sigma^-_\beta, \nu \rangle = \sum_{\tau} b^+_{\tau \mu} b^-_{\tau \nu}
\]
where \(b^\pm_{\tau \mu} = \langle \sigma^\pm_\tau, \mu \rangle \) for \(\tau \in M_\pm C^0_{M_\pm} \). All maximal commutative Q-systems in \(\mathcal{N}_C \boxtimes \mathcal{N}_C \) are of this form:

Proposition 5.7 ([DNO13] Prop. 3.7, Cor. 3.8). There is a one-to-one correspondence between

1. Equivalence classes of commutative irreducible Q-systems \(\Theta_2 \) in \(\mathcal{N}_C \boxtimes \mathcal{N}_C \) with \(d\Theta_2 = \dim(\mathcal{N}_C) \) and
2. Isomorphism classes of triple \((\Theta_+, \Theta_-, \phi) \) where \(\Theta_\pm \) are commutative irreducible Q-systems in \(\mathcal{N}_C \) and \(\phi: \| \mu \| C^0_{M_\pm} \to M_- C^0_{M_\pm} \) is an equivalence of braided categories.
3. Indecomposable module categories over \(\mathcal{N}_C \).

Proof. This statement is proven in a more general setting in [DNO13] Prop. 3.7, Cor. 3.8. They call the objects in point 1) Lagrangian algebras. We use that by Remark 3.3 and 5.6 (see also [Mug10] Thm 3.1) the category \(\mathcal{N}_C \boxtimes C^0_{M_\pm} \) is equivalent to the category of dylectic modules.

We note that there can exist inequivalent \(\phi_1, \phi_2 \) giving the same modular invariant \(Z = (Z_{\mu \nu}) \). Namely if \(\langle \sigma_{\phi_1(\tau)}, \mu \rangle = \langle \sigma_{\phi_2(\tau)}, \mu \rangle \) holds for all \(\tau \in M, C^0_{M_\pm} \) and \(\mu \in \mathcal{N}_C \) for which \(\pm b^+_{\tau \mu} \neq 0 \). Because \(\phi_1 \) and \(\phi_2 \) are inequivalent the Q-systems \(\Theta^\phi_{LR} \) and \(\Theta^\phi_{LR} \) are inequivalent. This (or using Prop. 5.7) implies that also \(\Theta(\Theta_+, \Theta_-, \phi_1) \) and \(\Theta(\Theta_+, \Theta_-, \phi_2) \) are inequivalent. This means that the second cohomology (see Rem 2.2) of \(\Theta(\Theta_+, \Theta_-, \phi_1) \) does not vanish in this case.

Example 5.8. Let us consider for \(\mathcal{N}_C \) the UMTC obtained by \(SU(3)_9 \) and \(\Theta_+ \) coming from the conformal inclusion \(SU(3)_9 \subset E_{6,1} \).

As in Ex. 5.4 the UMTC category \(E_{6,1} \) has three sectors \(M_0 \Delta^0_{M_+} = \{ \beta_0, \beta_1, \beta_2 \} \) and we get an extension \(M_+ \subset \tilde{M} \) with \([\tilde{\theta}] = [\beta_0] \oplus [\beta_1] \oplus [\beta_2] \), which gives the permutation modular invariant

\[
\sigma^+_{\beta_1} = \sigma^+_{\beta_2}, \quad \text{so each inclusion} \ N \subset M_+ \text{ and } N \subset \tilde{M} \text{ give by the above discussion the same modular invariant with respect to } SU(3)_9, \text{ which is } Z = |x_{00} + x_{01} + x_{09} + x_{41} + x_{14} + x_{44}|^2 + 2|x_{22} + x_{52} + x_{23}|^2.
\]

This example appeared in [BE01], cf. [EP09],[EP11].

So we can conclude that \(\Theta(\Theta_+, \Theta_+, \text{id}) \) and \(\Theta(\Theta_+, \Theta_-, \phi) \) in \(\mathcal{N}_C \boxtimes \mathcal{N}_C \) have isomorphic endomorphisms \(\theta(\Theta_+, \Theta_+, \text{id}) = \theta(\Theta_+, \Theta_-, \phi) \) but the Q-systems are not equivalent. So we have an example where the second cohomology does not vanish.

The same happens for the inclusion \[G_{2,3} \subset E_{6,1} \] where \(Z = |x_{00} + x_{11}|^2 + 2|x_{02}|^2 \).

1. This was told to us by V. Ostrik via mathoverflow.
6. Conformal nets

We now apply the results to conformal nets.

Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ be the one-point compactification of the real line \mathbb{R}, which we can by the Cayley map $\overline{\mathbb{R}} \ni x \mapsto z = \frac{i+x}{1+ix} \in S^1$ identify with the circle $S^1 \subset \mathbb{C}$. We denote by $\tilde{\text{Möb}}$ the Möbius group which is isomorphic to both:

- $\text{PSL}(2, \mathbb{R})$, which acts naturally on the real line \mathbb{R}, and
- $\text{PSU}(1, 1)$, which acts naturally on the circle $S^1 \subset \mathbb{C}$.

The universal covering group of Möb is denoted by $\tilde{\text{Möb}}$. We denote by $\text{Möb}_\pm = \text{Möb} \rtimes \mathbb{Z}_2$ where the action of \mathbb{Z}_2 is given by the reflection $r : z \mapsto \overline{z}$ on S^1. The rotations $R(\theta)z = e^{i\theta z}$ on S^1, the dilations $\delta(s)x = e^{s}x$ on \mathbb{R}, and the translations $\tau(t)x = x + t$ on \mathbb{R} give three distinguished one-parameter subgroups of Möb which generate Möb.

We denote by $I \in \mathcal{I}$ the set of all proper intervals on S^1, i.e. all open, connected, non-dense, non-empty intervals $I \subset S^1$.

Definition 6.1. A local Möbius covariant net (conformal net) \mathcal{A} on S^1 is a family $\{\mathcal{A}(I)\}_{I \in \mathcal{I}}$ of von Neumann algebras on a Hilbert space \mathcal{H}_A, with the following properties:

A. **Isotony.** $I_1 \subset I_2$ implies $\mathcal{A}(I_1) \subset \mathcal{A}(I_2)$.

B. **Locality.** $I_1 \cap I_2 = \emptyset$ implies $[\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\}$.

C. **Möbius covariance.** There is a unitary representation U of $\tilde{\text{Möb}}$ on \mathcal{H} such that $U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI)$.

D. **Positivity of energy.** U is a positive energy representation, i.e. the generator L_0 (conformal Hamiltonian) of the rotation subgroup $U(R(\theta)) = e^{i\theta L_0}$ has positive spectrum.

E. **Vacuum.** There is a (up to phase) unique rotation invariant unit vector $\Omega \in \mathcal{H}$ which is cyclic for the von Neumann algebra $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I)$.

It holds automatically the **Reeh–Schlieder property** [FJ96], i.e. Ω is cyclic and separating for any $\mathcal{A}(I)$ with $I \in \mathcal{I}$. Further we have the **Bisognano–Wichmann property** [GF93, BGL93] saying the modular operators with respect to Ω have geometric meaning; e.g. the modular operators for the upper circle I_0 are given by the dilation $\Delta^u = U(\delta(-2\pi t))$ and reflection $J = U(r)$, where here U is extended to $\tilde{\text{Möb}}_\pm$. For a general interval $I \in \mathcal{I}$ the modular operators are given by a special conformal transformation δ_I and a reflection r_I both fixing the endpoints of I. The Bisognano–Wichmann property implies **Haag duality**

$$\mathcal{A}(I)’ = \mathcal{A}(I') \quad I \in \mathcal{I}$$

and it can be shown (see e.g. [GF93]) that each $\mathcal{A}(I)$ is a type III$_1$ factor in Connes’ classification [Con73]. A conformal net is **additive** [FJ96], i.e. for intervals $I \in \mathcal{I}$ and $I_1, \ldots, I_n \in \mathcal{I}$ it holds

$$I \subset \bigcup_i I_i \quad \Rightarrow \quad \mathcal{A}(I) \subset \bigvee_i \mathcal{A}(I_i).$$

A local Möbius covariant net on \mathcal{A} on S^1 is called **completely rational** if it
F. fulfills the split property, i.e. for $I_0, I \in \mathcal{I}$ with $I_0 \subset I$ the inclusion $\mathcal{A}(I_0) \subset \mathcal{A}(I)$ is a split inclusion, namely there exists an intermediate type I factor M such that $\mathcal{A}(I_0) \subset M \subset \mathcal{A}(I)$.

G. is strongly additive, i.e. for $I_1, I_2 \in \mathcal{I}$ two adjacent intervals obtained by removing a single point from an interval $I \in \mathcal{I}$ the equality $\mathcal{A}(I_1) \vee \mathcal{A}(I_2) = \mathcal{A}(I)$ holds.

H. for $I_1, I_2, I_3 \in \mathcal{I}$ two intervals with disjoint closure and $I_2, I_4 \in \mathcal{I}$ the two components of $(I_1 \cup I_3)'$, the μ-index of \mathcal{A}

$$\mu(\mathcal{A}) := [(\mathcal{A}(I_2) \vee \mathcal{A}(I_4))' : \mathcal{A}(I_1) \vee \mathcal{A}(I_3)] \tag{8}$$

(which does not depend on the intervals I) is finite.

Example 6.2. Examples of completely rational local Möbius covariant nets are:

- Diffeomorphism covariant nets with central charge $c < 1$ [KL04a].
- The nets \mathcal{A}_L where L is a positive even lattice [DX06] which contain as a special case [Bis12] loop group nets $\mathcal{A}_{G,1}$ at level 1 for G a compact connected, simply connected simply-laced Lie group.
- The loop group nets $\mathcal{A}_{SU(n),1}$ for $SU(n)$ at level ℓ. [Xu00].

Further examples of rational conformal nets can be obtained from these as follows:

- Finite index extensions and subnets of completely rational conformal nets. Namely, let $\mathcal{A} \subset \mathcal{B}$ be a finite subnet i.e. $[\mathcal{B}(I) : \mathcal{A}(I)] < \infty$ for some (then all) $I \in \mathcal{I}$, then \mathcal{A} is completely rational iff \mathcal{B} is completely rational [Lon03], in particular orbifolds \mathcal{A}^O of completely rational nets \mathcal{A} with G a finite group are completely rational.
- Let $\mathcal{A} \subset \mathcal{B}$ be a co-finite subnet, i.e. $[\mathcal{B}(I), \mathcal{A}(I) \vee \mathcal{A}(I)] < \infty$ for some (then all) $I \in \mathcal{I}$, where the coset net \mathcal{A}^c is defined by $\mathcal{A}^c(I) = A(I) \cap \mathcal{B}(I)$ with $\mathcal{A}' = (\cup_{I \in \mathcal{I}} \mathcal{A}(I))'$. Then \mathcal{B} is completely rational iff \mathcal{A} and \mathcal{A}^c are completely rational [Lon03]. This gives many example of completely rational nets coming from the coset construction.

A separable (non-degenerated) representation of a strongly additive local Möbius covariant net is a family $\pi = \{\pi_I : \mathcal{A}(I) \to B(\mathcal{H}_\pi)\}_{I \in \mathcal{I}}$ of unital representations ($*$-homomorphisms) π_I of $\mathcal{A}(I)$ on a common separable Hilbert space \mathcal{H}_π, which are compatible, i.e.

$$\pi_{I_2} \upharpoonright \mathcal{A}(I_1) = \pi_{I_1}, \quad I_1 \subset I_2.$$

Such a representation is automatically normal, i.e. all π_I are strongly continuous. We denote by DHR(\mathcal{A}) the category of separable representations, where morphisms in Hom(π^1, π^2) are given by intertwiners $V \in B(\mathcal{H}_{\pi^1}, \mathcal{H}_{\pi^2})$, such that $V\pi^1_I(a) = \pi^2_I(a)V$ for all $I \in \mathcal{I}$ and $a \in \mathcal{A}(I)$. Let us denote by DHR$^0(\mathcal{A})$ the representations π with finite statistical dimension $d\pi$, which is defined to be

$$d\pi := [\pi_F(\mathcal{A}(I))' : \pi_F(\mathcal{A}(I))]^{\frac{1}{2}}$$

for some $I \in \mathcal{I}$, where $[M : N]$ is the minimal index. The definition of $d\pi$ does not depend on the choice of I.

Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case
Let us from now on fix a completely rational local Möbius covariant net \mathcal{A} on S^1. The category $\text{DHR}^0(\mathcal{A})$ is a (unitary) modular tensor category [KLM01]. Let $I \in \mathcal{I}$. Every $\pi \in \text{DHR}^0(\mathcal{A})$ is equivalent to a representation localized in a given $I_0 \in \mathcal{I}$, i.e. it exists a $\rho \equiv \pi$ such that $\mathcal{H}_\rho = \mathcal{H}_A$ and $\rho_0 = \text{id}_{\mathcal{A}(I_0')}$. Namely, $\pi(I_0')(\mathcal{A}(I_0'))$ on \mathcal{H}_π is spatially isomorphic to $\mathcal{A}(I_0')$ on \mathcal{H}_A, by the type III property.

Let $U: \mathcal{H}_\pi \rightarrow \mathcal{H}_A$ a unitary implementing this isomorphism, then $\rho = \{\rho_I := \text{Ad} \circ \pi_I\}_{I \in \mathcal{I}}$ does the job.

This implies that the category $\text{DHR}^0(\mathcal{A})$ of representations with finite statistical dimensions which are localized in I_0 has the same irreducible sectors as $\text{DHR}^0(\mathcal{A})$.

By Haag duality $\rho \in \text{DHR}^0(\mathcal{A})$ implies $\rho_I(\mathcal{A}(I)) \subset \mathcal{A}(I)$ for every $I \supset I_0$, that means such a representation is an endomorphism and $d\rho = |\mathcal{A}(I_0) : \rho_{I_0}(\mathcal{A}(I_0))|^2$ equals the dimension of the endomorphism. Together with strong additivity it follows that all intertwiners are in $\mathcal{A}(I_0)$. In particular, this means that $\text{DHR}^0(\mathcal{A})$ can naturally be seen as a full subcategory of $\text{End}(\mathcal{A}(I_0))$ and that $\text{DHR}^0(\mathcal{A})$ is equivalent to $\text{DHR}^0(\mathcal{A})$. We note that the family $\{\rho_I\}$ is determined by ρ_{I_0} by using strong additivity and it is really enough to consider $\text{DHR}^0(\mathcal{A})$ as a full and replete subcategory of $\text{End}(\mathcal{A}(I_0))$ and we will drop the index I_0. Repleteness is just the fact that for $U \in \mathcal{A}(I_0)$ also $\text{Ad}_U \circ \rho_{I_0}$ is localized in I_0.

The braiding (also called statistics operator) is given by:

$\epsilon(\rho_1, \rho_2) = \rho_2(U_1^*U_2)\rho_1(\rho_2)$,

where $U_i \in \text{Hom}(\rho_i, \tilde{\rho}_i)$ and $\tilde{\rho}_i \in \{\rho_i\}$ is localized in I_i. Here $I_1, I_2 \subset I_0$ are two disjoint intervals such that $I_1 < I_2$ (I_1 sits clockwise after I_2 inside I_0). We also write ϵ^+ for ϵ and define the opposite braiding by $\epsilon^-(\rho_1, \rho_2) = \epsilon^+(\rho_2, \rho_1)^*$.

We will interpret \mathcal{A} as the chiral observables or as chiral symmetries. For example $\mathcal{A} = \text{Vir}_c$ with $c < 1$ is the net generated by the chiral stress energy tensor $T(x)$. We want to look into CFTs on Minkowski space containing the chiral observables \mathcal{A} and boundary conditions on \mathcal{M}_+ which “preserve” these observables.

6.1. Extensions and Q-systems. Let M be a spacetime, e.g. Minkowski space and \mathcal{K} a set of open spacetime regions in M, e.g. the set of double cones. Let G be a group acting locally on M and let $G(\mathcal{O})$ be the set of all $g \in G$, such that there is a continuous path γ in G from the identity to g such that $\gamma(t)\mathcal{O} \in \mathcal{K}$.

Definition 6.3. A local G-covariant net \mathcal{A} on M is a family $\{\mathcal{A}(\mathcal{O})\}_{\mathcal{O} \in \mathcal{K}}$ of von Neumann algebras on a Hilbert space \mathcal{H}, with the following properties:

A. **Isotony.** $O_1 \subset O_2$ implies $\mathcal{A}(O_1) \subset \mathcal{A}(O_2)$.

B. **Locality.** $[\mathcal{A}(O_1), \mathcal{A}(O_2)] = \{0\}$ for all pairwise spacelike separated $O_1, O_2 \in \mathcal{K}$.

C. **G-covariance.** There is a unitary positive energy representation U of G on \mathcal{H}, such that $U(g)\mathcal{A}(\mathcal{O})U(g)^* = \mathcal{A}(g\mathcal{O})$ for all $g \in G(\mathcal{O})$.

D. **Vacuum.** There is a (up to phase) unique G-invariant unit vector $\Omega \in \mathcal{H}$ which is cyclic and separating for $\mathcal{A}(\mathcal{O})$ for all $\mathcal{O} \in \mathcal{K}$.

A G-covariant DHR representation of \mathcal{A} is a compatibly family $\pi = \{\pi_\mathcal{O}: \mathcal{A}(\mathcal{O}) \rightarrow B(\mathcal{H})\}_{\mathcal{O} \in \mathcal{K}}$ of representations on a Hilbert space $\mathcal{H}_\mathcal{O}$, such that for all $\mathcal{O} \in \mathcal{K}$ there
exists a unitary $V: \mathcal{H}_\pi \to \mathcal{H}$, such that the representation $\rho := \text{Ad} V \circ \pi$ is localized in O, i.e. $\rho_{O_h} = \text{id}_{\mathcal{H}_O(O_h)}$ for O_h spacelike to O, and that there is a unitary projective representation U_π of G, such that $\text{Ad} U_\pi(g) \circ \pi_O = \pi_{gO} \circ \text{Ad} U(g)$ for all $g \in G(O)$.

Given two local G-covariant nets \mathcal{A} and \mathcal{B} on Hilbert spaces \mathcal{H}_A and \mathcal{H}_B, respectively, an arrow $\mathcal{A} \to \mathcal{B}$ is an isometry $V: \mathcal{H}_A \to \mathcal{H}_B$ and a compatible family of embeddings (representation) $\{\pi_O: \mathcal{A}(O) \hookrightarrow \mathcal{B}(O)\}$ such that for all $O \in \mathcal{K}$ we have $V_a = \pi_{O(a)}V$, $VU_a(g) = U_B(g)V$ for all $g \in G$ and $V\Omega_A = \Omega_B$.

\mathcal{A} and \mathcal{B} are called \textbf{unitary equivalent} if V is a unitary and π_O are isomorphisms.

Let us assume that we have a subnet \mathcal{A}_0 of \mathcal{B}, i.e. $\mathcal{A}_0(O) \subset \mathcal{B}(O)$ for all O and $U(g)\mathcal{A}_0(O)U(g)^* = \mathcal{A}_0(gO)$. Then $\mathcal{A} = \mathcal{A}_0 e$ with e the Jones projection on $\sqrt{\mathcal{A}_0(O)\Omega}$ is a G-local net on $\mathcal{H}_A := e\mathcal{H}$, in other words we have an arrow $\mathcal{A} \to \mathcal{B}$ in the above sense. We say that \mathcal{A} is a \textbf{subnet} of \mathcal{B} and \mathcal{B} is a local extension of \mathcal{A}. By abuse of notation we will not distinguish between the net \mathcal{A} and its representation on the bigger Hilbert space \mathcal{H} and and write $\mathcal{A} \subset \mathcal{B}$ or $\mathcal{B} \supset \mathcal{A}$ for an inclusion/extension of nets.

For every connected region we have a subfactor $\mathcal{A}(O) \subset \mathcal{B}(O)$. If the subfactor is irreducible, we call the extension \textbf{irreducible} and if the index is finite we call the extension \textbf{finite}. If we have a finite irreducible extension \mathcal{B} of \mathcal{A} then the corresponding \mathbb{Q}-system of $\mathcal{A}(O) \subset \mathcal{B}(O)$ is a commutative irreducible \mathbb{Q}-system in $\text{DHR}^0(\mathcal{A})$ and conversely if we have a commutative irreducible \mathbb{Q}-system Θ in $\text{DHR}^0(\mathcal{A})$ we get a finite local extension \mathcal{B} of \mathcal{A}. In particular we get a one-to-one correspondence between LR95:

- local finite irreducible extensions $\mathcal{B} \supset \mathcal{A}$ up to unitary equivalence and
- commutative irreducible \mathbb{Q}-systems Θ in $\text{DHR}^0(\mathcal{A})$ up to equivalence.

If we assume Θ to be only irreducible, we still get a relatively local extension, i.e. $[\mathcal{A}(O_1), \mathcal{B}(O_2)] = \{0\}$ for O_1 and O_2 spacelike separated. We call such an extension $\mathcal{B} \supset \mathcal{A}$ also nonlocal extension to stress the fact that we do not assume locality of \mathcal{B}. There is a one-to-one correspondence between LR95:

- finite irreducible extensions $\mathcal{B} \supset \mathcal{A}$ up to unitary equivalence and
- irreducible \mathbb{Q}-systems Θ in $\text{DHR}^0(\mathcal{A})$ up to equivalence.

6.2. \textbf{Representation theory of local extensions.} The following is well-known to experts Müg10.

\textbf{Proposition 6.4.} Let $\mathcal{A} \subset \mathcal{B}$ a finite index inclusion of local Möbius covariant nets on \mathbb{S}^1 and let either net be completely rational. Then \mathcal{A} and \mathcal{B} are both completely rational and the inclusion is irreducible.

Further, let $I \in \mathcal{I}$ be an interval $N := \mathcal{A}(I) \subset \mathcal{B}(I) =: M$ and $N\mathcal{C}_N = \text{DHR}^I(\mathcal{A})$, and Θ be the \mathbb{Q}-system in $N\mathcal{C}_N$ associated with $N \subset M$. Then $\text{DHR}^I(\mathcal{B}) = M\mathcal{C}_M^0$ and in particular $\text{DHR}(\mathcal{B})$ is equivalent to $\text{Mod}^0(\Theta)$ and $\text{Bim}^0(\Theta, \Theta)$.

\textbf{Proof.} Both $M\mathcal{C}_M^0$ and $\text{DHR}^I(\mathcal{B})$ being full and replete subcategories of $\text{End}(M)$, the only thing which needs to be checked is that both have the same irreducible sectors. A sector $[\beta] \in M\mathcal{A}_M$ is a DHR sector if and only it is in $M\mathcal{A}_M^I$ (see LR95[BE98]), which implies $M\mathcal{C}_M^0 \subset \text{DHR}^I(\mathcal{B})$. To see equality, we realize that
global dimensions coincide, namely \(\dim \text{DHR}^I(\mathcal{B}) \equiv \mu(\mathcal{B}) = [M : N]^{-2} \mu(\mathcal{A}) \equiv \dim \mathcal{N}C_N/(d\theta)^2 \) by [KLM01] and \(\dim \mathcal{M}_C^0 = \dim \mathcal{N}C_N/(d\theta)^2 \) by Lem. 5.1.

Remark 6.5. Commutative Q-systems \(\Theta \) in a UMTC \(\mathcal{N}C_N \) are also called **quantum subgroups**, so finding quantum subgroups in a given UMTC \(\mathcal{N}C_N \) and finding finite index local extensions of a local Möbius covariant \(\mathcal{A} \) net with \(\text{DHR}(\mathcal{A}) \equiv \mathcal{N}C_N \) is equivalent. The representation theory of the extensions can be completely understand on a categorical level.

An analogous statement for inclusions of rational VOAs appeared recently in [HKL14].

6.3. **Maximal 2D nets with chiral observables** \(\mathcal{A} \). Let \(\mathcal{A} \) be a local Möbius covariant net on \(S^1 \equiv \mathbb{R} \). By restriction we can and will see \(\mathcal{A} \) as a net on \(\mathbb{R} \). Then Haag duality of \(\mathcal{A} \) on \(\mathbb{R} \) is equivalent to strong additivity of \(\mathcal{A} \). We will assume that \(\mathcal{A} \) is completely rational, therefore this holds automatically.

We denote by \(\mathbb{M} \) the two-dimensional Minkowski space and by \(\mathcal{K} \) the set of double cones \(O \subset \mathbb{M} \). Each double cone is of the form

\[
O = I \times J := \{ (t, x) : t - x \in I, t + x \in J \},
\]

where \(I, J \in \mathcal{I}_0 \) are two intervals on the light-rays \(L_\pm = \{ (t, x) : t \pm x = 0 \} \).

The action of \(\text{Mob} \cong \text{PSL}(2, \mathbb{R}) \) on \(\mathbb{R} \) gives a local action of \(\text{Mob} \) on \(\mathbb{R} \) as in [KL04a]. We define \(G_2 = \text{Mob} \times \text{Mob} \) which acts locally on Minkowski space \(\mathbb{M} \).

For \(O \in \mathcal{K} \) we denote by \(G_2(O) \) all \(g \in G_2 \) such that there is a path \(\gamma : [0, 1] \to G_2 \) from the identity element \(e \) to \(g \) with \(\gamma(t)O \subset \mathbb{M} \) for all \(t \in [0, 1] \).

We denote by \(\mathcal{A}_2 \) the net on \(\mathcal{H}_\mathcal{A} \otimes \mathcal{H}_\mathcal{A} \) given by

\[
\mathcal{A}_2(I \times J) := \mathcal{A}(I) \otimes \mathcal{A}(J).
\]

It is a local Möbius covariant net on \(\mathcal{A} \) as in [KL04a]. Every DHR representation of \(\mathcal{A}_2 \) with finite index is a direct sum of representations of the form \(\rho \otimes \sigma \) where \(\rho \in \text{DHR}(\mathcal{A}) \) and \(\sigma \in \text{DHR}(\mathcal{A}) \). The braiding is given by \(\varepsilon(\rho_1 \otimes \sigma_1, \rho_2 \otimes \sigma_2) = \varepsilon^+(\rho_1, \rho_2) \otimes \varepsilon^-(\sigma_1, \sigma_2) \). Therefore the category of DHR representations of \(\mathcal{A}_2 \) with finite statistical dimensions is equivalent to \(\text{DHR}^I(\mathcal{A}) \cong \text{DHR}^J(\mathcal{A}) \).

Let us write \(\mathcal{B}_2 \supset \mathcal{A}_2 \) for a local, Möbius covariant, irreducible extension of \(\mathcal{A}_2 \), i.e. a local Möbius covariant net \(\mathcal{B}_2 \) on Minkowski space \(\mathbb{M} \) on the Hilbert space \(\mathcal{H}_{\mathcal{B}_2} \) with irreducible vacuum vector \(\Omega \) which is extending \(\mathcal{A}_2 \equiv \mathcal{A} \otimes \mathcal{A} \), more precisely there is a representation \(\pi \) of \(\mathcal{A}_2 \) on \(\mathcal{H}_{\mathcal{B}_2} \), such that \(\pi(\mathcal{A}_2(O)) \subset \mathcal{B}_2(O) \) is an irreducible inclusion of factors and \(U(g)\pi(\mathcal{A}(O))U(\gamma)^* = \pi(\mathcal{A}(gO)) \) for all double cones \(O \in \mathcal{K} \) and all \(g \in G(O) \). By abuse of notation we will omit the \(\pi \).

We remember that there is a one-to-one correspondence between local irreducible extensions \(\mathcal{B}_2 \supset \mathcal{A}_2 \) (up to unitary equivalence) and irreducible commutative Q-systems \(\Theta_2 \) in \(\text{DHR}^I(\mathcal{A}) \cong \text{DHR}^J(\mathcal{A}) \) (up to equivalence).

Proposition 6.6. Let \(\mathcal{B}_2 \supset \mathcal{A}_2 \) be a local extension. Then the following statements are equivalent:

(1) The net \(\mathcal{B}_2 \) is a maximal local irreducible extension, i.e. if \(\mathcal{B}_2 \supset \mathcal{B}_2 \) is a local irreducible extension, then \(\mathcal{B}_2 = \mathcal{B}_2 \).
(2) The index \([B_2 : A_2] = \mu_2(A) \equiv \dim(\text{DHR}(A))\).
(3) The matrix \((Z_{ij})\) is a modular invariant.
(4) The \(\mu\)-index of \(B_2\) is 1.
(5) The net \(B_2\) has no non-trivial superselection sectors.

Proof. To show (2) \(\Rightarrow\) (1) let \(\Theta_2\) be a Q-system in \(\text{DHR}^I(A) \boxtimes \text{DHR}^J(A)\) giving the extension \(A(I) \otimes A(J) \subset B_2(I \times J)\) and let us assume that \([B_2(I \times J) : A(I) \otimes A(J)] = \mu_2(A)\). By Lem. 5.1 we have the following inequality:

\[
d\Theta_2 \equiv [B_2 : A_2] \leq \dim(\text{DHR}(A \otimes A))^\frac{1}{2} \equiv \dim\left(\text{DHR}(A) \boxtimes \text{DHR}(A)\right)^\frac{1}{2} = \dim(\text{DHR}(A)) \equiv \mu_2(A).
\]

This implies maximality.

For showing (1) \(\Rightarrow\) (2), let us assume that \([B_2 : A_2] < \mu_2(A)\). We need to show that there is an extension \(\tilde{B}_2 \supseteq B_2\). This we obtain by adding the boundary [CKL13], i.e. from \(B_2\) we obtain a possible reducible boundary net (see Subsec. 6.6) of which we choose an irreducible subnet \(B_+\). We claim \(B_+\) cannot be Haag dual, but this follows because \([B_+ : A_+] = [B_2 : A_2] < \mu_2(A)\) and then [LR04, Prop. 2.13] implies \([B_+^I : B_+] > 1\). So we have an inclusion \(A_+ \subset B_+ \subset B_2\) as in [LR04], in particular \(B_2\) was not maximal.

The statements (2) and (3) are equivalent by Prop. 5.2 and the implication (5) \(\Rightarrow\) (1) is clear.

(2) \(\Rightarrow\) (4) follows by calculating the \(\mu\) index [KLM01] and likewise the implication (4) \(\Rightarrow\) (5) is [KLM01, Corollary 32].

Proposition 6.7. There is a one-to-one correspondence between:

(1) maximal local irreducible extensions \(B_2 \supset A_2\) up to unitary equivalence.
(2) \(\Theta_2\) commutative irreducible Q-systems in \(\text{DHR}^I(A) \boxtimes \text{DHR}^I(A)\) with \(d\Theta_2 = \mu_2(A)\) up to equivalence.
(3) (Non-local) irreducible extensions \(B \supset A\) up to Morita equivalence.
(4) Irreducible Q-systems \(\Theta\) in \(\text{DHR}^I(A)\) up to Morita equivalence.
(5) Indecomposable \(\mathcal{N}\mathcal{C}_N\) module categories, where \(N = A(I)\) and \(\mathcal{N}\mathcal{C}_N = \text{DHR}^I(A)\).
(6) Local chiral extensions \(A_L \supset A, A_R \supset A\) together with a braided equivalence \(\phi : \text{DHR}(A_L) \to \text{DHR}(A_R)\).

Proof. The correspondence between (1) and (2) is Prop. 6.6, the one between (3) and (4) [LR95]. Starting with (4) we obtain (2) by applying the full center and it is well defined on Morita equivalence classes and injective by Prop. 4.19. It is surjective by Prop. 5.2, so (2) and (4) are equivalent. Equivalently, one can start with \(B_2\) and add the boundary to obtain a Haag dual boundary net (as in the proof before) which correspond to a non-local extension. The \(\alpha\)-induction construction gives back the original net.

The correspondence between (4), (5) and (6) is just Prop. 5.7, where (6) is (2) of Prop. 5.7 reformulated in the language of nets, cf. [Müg10].

\(\square\)
Remark 6.8. Some remarks:

- We also know how the Morita equivalence looks like, see Subsec. 3.2.
- We also get a classification by irreducible module categories.

6.4. Boundary conditions. Let \(\mathcal{A} \) be a completely rational local Möbius covariant net on \(\mathbb{S}^1 \), which we will see as a net on \(\mathbb{R} \) by restriction. Let \(\mathbb{M}_+ = \{(t, x) \in \mathbb{M} : x > 0\} \) be Minkowski half-plane and let \(\mathcal{K}_+ \) be the set of double cones \(O \in \mathbb{M}_+ \). Double cones \(O \in \mathcal{K}_+ \) are in one-to-one correspondence with pairs of proper intervals \(I, J \subset \mathbb{R} \) such that \(I < J \). We write \(O = I \times J \).

Let \(\mathcal{A}_+ \) be the net on \(\mathbb{M}_+ \) given by

\[
\mathcal{A}_+(O) = \mathcal{A}(I) \vee \mathcal{A}(J) \quad O = I \times J
\]

which is locally covariant w.r.t. \(G_+ \) the universal covering of \(\text{Möb} \), namely

\[
U(g)\mathcal{A}_+(O)U(g)^* = \mathcal{A}_+(gO) \quad g \in G_+(O)
\]

where \(G_+ \) acts locally on \(O = I \times J \in \mathcal{K}_+ \) by \(gO = gI \times gJ \) and \(G_+(O) \) is the set of all \(g \in G_+ \) such that there is a continuous path \(\gamma \) from the identity to \(g \) such that \(\gamma(t)O \in \mathcal{K}_+ \).

By the split property it follows that \(\mathcal{A}_+(O) \) is spatially isomorphic to \(\mathcal{A}_2(O) \equiv \mathcal{A}(I) \otimes \mathcal{A}(J) \). This implies that the net \(\mathcal{A}_+ \) is locally isomorphic to the net \(\mathcal{A}_2 \) restricted to \(\mathbb{M}_+ \).

A boundary net \(\mathcal{B}_+ \) associated with \(\mathcal{A} \) is a local, (locally) \(G_+ \)-covariant net \(\mathcal{B}_+ \), which is an irreducible extension \(B_+ \supset \mathcal{A}_+ \).

Starting with \(B_+ \supset \mathcal{A}_+ \), we define the generated net \(B^\text{gen}_+ \supset \mathcal{A} \) on \(\mathbb{R} \) by

\[
B^\text{gen}_+(I) = \vee_{O \in \mathcal{K}_+} B_+(O) \supset \mathcal{A}_+(I),
\]

where \(W_I = \{(t, x) : t \pm x \in I\} \) is the left wedge, such that its intersection on the \(t \)-axis is \(I \).

Conversely, given \(B \supset \mathcal{A} \) a (non-local) extension on \(\mathbb{R} \), we define

\[
B^\text{ind}_+(O) = B(L) \cap B(K)',
\]

where \(O = I \times J \) and \(L \in \mathcal{K}_+ \), such that \(L \cap K' = I \cup J \) or equivalently \(O = W_L \cap W_{K'} \).

The dual net is defined by \(B_+(O) = B_+(O)' \) and \(B_+(O) = B_+ \) if and only if \(B_+ \) is Haag dual.

Then \((B^\text{ind}_+)^\text{gen} = B \) and \((B^\text{gen}_+)^\text{ind} = B_+ = B_+ \) provided \(B_+ \) was already Haag dual.

Together one gets:

Proposition 6.9 ([LR04, LR95]). There is a one-to-one correspondence between the equivalence classes of:

1. boundary nets \(B_+ \) associated with \(\mathcal{A} \), such that \(B_+ \) is Haag dual.
2. boundary nets \(B_+ \) associated with \(\mathcal{A} \), such that \(\mathcal{A}_+ \subset B_+ \) is maximal.
3. (Non-local) extensions \(B \supset \mathcal{A} \) on \(\mathbb{R} \).
4. \(Q \)-systems in \(N_C \), where \(N = \mathcal{A}(I) \) and \(NC = \text{DHR}'(A) \).
Definition 6.10. Let $B_2 \supset A_2$ be local extension, i.e. a CFT on Minkowski space. A (Möbius covariant) boundary condition of $B_2 \supset A_2$ with chiral symmetry A is a unitary equivalence class of boundary nets $B_+ \supset A_+$, where $B_2 \uparrow \mathbb{M}_+$ is locally covariantly isomorphic to B_+, more precisely there is a compatible family of isomorphisms $\Phi_O : B_+ \uparrow \mathbb{M}_+(O) \to B_2 \uparrow \mathbb{M}_+(O)$ such that it restricts to an isomorphism $A_+ \uparrow \mathbb{M}_+(O) \to A_2 \uparrow \mathbb{M}_+(O)$ for all $O \in K_+$ and that Φ is covariant respect to the covariance U_{B_+} of \mathbb{M}_+ and U_{B_2} of $\mathbb{M}_+ \times \mathbb{M}_+$ (where \mathbb{M}_+ is the diagonal subgroup of $\mathbb{M}_+ \times \mathbb{M}_+$).

Proposition 6.11. Let $B_2 \supset A_2$ maximal and let $A \subset B$ given by Prop. 6.7. Then there is a one-to-one correspondence between:

1. Boundary conditions of $B_2 \supset A_2$ with chiral symmetry A.
2. Unitary equivalence classes of $B_+ \supset A_+$ Morita equivalent to $B \supset A$.
3. Sectors in $N_{CM}/Pic(\mathbb{M}_{CM})$,

where $N = A(I)$, $M = B(I)$ and $N_{CM} = DHR^I(A)$

In particular the number of boundary conditions of $B_2 \supset A_2$ with chiral symmetry A is less or equal than

$$|N_{\Delta M}| \equiv \sum_{\lambda \in N_{\Delta N}} \lambda_{\Delta \lambda}.$$

Proof. The following diagram commutes [LR09, Cor. 2]

Given a boundary condition, i.e. a boundary net $B_{a,+} \supset A_+$ and let $B_a \supset A$ be the corresponding chiral extension. We note that $B_{a,+}$ is Haag dual (cf. [LR09, App. C]), because B_2 is modular invariant. If we remove the boundary we obtain $B_2 \supset A_2$, because the extensions are locally isomorphic and therefore isomorphic, see [LR09].

We conclude by commutativity of the above diagram that $B \supset A$ and $B_a \supset A$ are Morita equivalent, namely the α-induction construction gives equivalent two-dimensional extensions, which means the full centers are equivalent, which is equivalent to the Morita equivalence of $B \supset A$ and $B_a \supset A$.

Conversely, if we have given a chiral extension $B_b \supset A$ Morita equivalent to $B \supset A$, then $B_{b,+} \supset A_+$ is locally equivalent to $B_{b,2} \supset A_2 \uparrow \mathbb{M}_+$ obtained by α-induction. But $B_{2,b} \supset A_2$ is isomorphic to $B_2 \supset A_2$ by Morita equivalence, so we get a boundary condition (this follows also from [LR04], realizing that the DHR orbit exhausts the Morita equivalence class).
Choosing \(N = A(I), M = B(I) \) and \(_N \mathcal{C}_N = \text{DHR}^I(\mathcal{A}) \) the \(\mathbb{Q} \)-systems \(\Theta_a \) corresponding to \(B_a \supset A \) which is Morita equivalent to \(B \supset A \) are in one-to-one correspondence with \(_N \mathcal{C}_M \)/\(\text{Pic}(M \mathcal{C}_M) \) by Prop. 3.9. \(\square \)

Example 6.12. We can give several cases as an example.

- If \(A \) is holomorphic, i.e. \(\text{DHR}(A) \) just contains the vacuum sector or equivalently \(\mu(A) = 1 \), then \(B_2 = A_2 \) is maximal and the only 2D net and \(A_+ \) is the only boundary condition. The family of holomorphic nets contains for example the conformal nets \(A_L \) associated with even selfdual lattices \(\text{[DX06]} \) like the \(E_8 \) lattice, Leech lattice etc., the Moonshine net \(A_b \) \(\text{[KL06]} \) and certain framed nets \(\text{[KS14]} \).

- For \(A \) from the family of conformal nets, for which \(\text{DHR}(A) \) is pointed, it follows from Lem. 5.5 that there is always just one boundary condition for each \(B_2 \supset A_2 \). This family for example contains all conformal nets \(A_L \) coming from an even lattice \(L \) \(\text{[DX06]} \), which include all loop group conformal nets \(A_{G,1} \) of compact, connected, simply connected, simply laced Lie groups \(G \) (the simple one being in one-to-one correspondence with A-D-E Dynkin diagrams) at level 1 \(\text{[Bis12]} \).

- If \(A = A_{SU(2),k} \) the two-dimensional extensions are in one-to-one correspondence with Dynkin diagrams of A-D-E type with Coxeter number \(k+2 \). The boundary conditions are given by orbits \([\nu]_i\) of a marked vertex \(\nu \) under the automorphism group of the Dynkin diagram cf. \(\text{[KLPR07]} \).

- For \(A = \text{Vir}_c \) with \(c < 1 \), the only possible values for \(c \) are \(c = 1 - 6/m(m + 1) \) with \(m = 2, 3, 4, \ldots \). The maximal two-dimensional extensions are in one-to-one correspondence with pairs \((G_1, G_2)\) of Dynkin diagrams of A-D-E type with Coxeter number \(m \) and \(m + 1 \), respectively, cf. \(\text{[KL04b]} \). The boundary conditions are given by pairs \(([\nu_1], [\nu_2])\) with \([\nu_i]\) the orbit of a marked vertex on \(G_i \) under the automorphism group of \(G_i \) \((i = 1, 2)\). This result now follows also from \(\text{[KLPR07]} \).

The invertible objects (automorphisms) in \(\mathcal{M}_\mathbb{C}_M \) have to do with invertible defects (see for an interpretation of invertible defects in a different framework \(\text{[DKR11]} \)).

The difference between two inequivalent \(a, b \in \mathcal{N}_\mathbb{C}_M \) related by an invertible \(\beta \in \mathcal{M}_\mathbb{C}_M \) gets important if we also consider also reducible boundary conditions in the next section.

6.5. Non-irreducible boundary conditions. With the notation as before, let us assume \(B_2 \supset A_2 \) is a maximal extension of \(A_2 \). Using Prop. 6.7 we can choose a (non-local) extension \(B \supset A \) such that \(B_2 \) is given by the \(\alpha \)-induction construction of \(B \supset A \).
Let I be an interval, $N = A(I)$, $\mathcal{NC}_N = \text{DHR}^I(\mathcal{A})$, $M = B(I)$ and Θ the Q-system in \mathcal{NC}_N giving $N \subset M$. Then every $a \in \mathcal{NC}_M$ gives a in general reducible Q-system Θ_a and an extension $B_a \supseteq A$.

We can define as before

$$B_a+(O) = B_a(L) \cap B_a(K)^{\prime}.$$

This net fulfills all the properties of a boundary CFT in [LR04], but the uniqueness of the vacuum and the joint irreducibility.

Proposition 6.13. Let $a \in \mathcal{NC}_M$ possibly reducible. Then the (reducible) boundary net $B_{a,+} \supseteq A_+$ is a (reducible) boundary condition for $B_2 \supseteq A_2$, which is given by the Q-system $Z(\Theta_a)$.

Proof: If a is irreducible this is already proven.

Let a be reducible and let $\Theta_a = \check{a}$ be the Q-system with inclusion $\iota(A(I)) \subset B_a(I)$. Let $\{p_i\}_{i=1}^n$ be a set of minimal projections in $\iota(A(I)) \cap B_a(I) = \text{Hom}(\iota, \iota)$ with $\sum_{i=1}^n p_i = 1$ with corresponding morphisms $\check{t}_i \prec \iota$. By the usually Reeh–Schlieder argument, the projection do not depend on the choice of I. The inclusion $\iota(A(I)) \subset B_a(I)$ is conjugated to

$$\begin{cases}
(\check{t}_1(a) \\
\vdots \\
(\check{t}_n(a))
\end{cases} : a \in \mathcal{A}(I) \subset B_a(I) \otimes \mathcal{M}_n(\mathbb{C}) \cong B_a(I).$$

With the same notation $A_+(O) \subset B_{a,+}(O)$ is conjugated to:

$$\begin{cases}
(\check{t}_1(a) \\
\vdots \\
(\check{t}_n(a))
\end{cases} : a \in A_+(O) \subset \begin{cases}
(\check{b} \\
\vdots \\
(\check{b})
\end{cases} : b \in B_{a,+}(O).$$

Because $\Theta_2 := Z(\Theta_a)$ and $Z(\Theta_a)$ are equivalent (by Prop. 4.19) every $B_{i,+} \supseteq A_+$ is a boundary condition for $B_2 \supseteq A_2$. But then also the inclusion $B_2 \supseteq A_2$ is locally isomorphic to $B_{a,+} \supseteq A_+$ by (9) and the isomorphism restricted to A_2 gives a local isomorphism of A_2 restricted to \check{M}_+ and A_+.

Example 6.14. Consider $a, b \in \mathcal{NC}_M$ irreducible and mutually inequivalent but related by an automorphism $\beta \in \mathcal{MC}_M$, or equivalently $\Theta_a \cong \Theta_b$. This means the boundary conditions coming from a and b are the same, but for example the boundary conditions coming from $c := a \oplus a$ and $d := a \oplus b$ are different. This can be seen for example by considering the relative commutants of the subfactors associated with Θ_c and Θ_d, namely $c(N)^{\prime} \cap N \cong \mathbb{C} \oplus \mathbb{C}$, while $d(N)^{\prime} \cap N \cong M_2(\mathbb{C})$.

6.6. Adding the boundary. In [CKL13] a purely operator algebraic construction of all boundary conditions is given. As a result a boundary net is obtained which is the direct sum of all boundary conditions.

Let us consider the inclusion
\[\mathcal{A}(I) \otimes \mathcal{A}(J) \subset B_2(O) \]
for some fixed \(O = I \times J \subset W \) and let \(\Theta_2 \) be the associated Q-system in \(\text{DHR}^I(\mathcal{A}) \otimes \text{DHR}^J(\mathcal{A}) \). Let \(\Omega \) be the vacuum in \(\mathcal{H}_A \) and let us define the state \(\varphi_0(x \otimes y) = (\Omega, xy\Omega) \) for \(x \in \mathcal{A}(I), y \in \mathcal{A}(J) \) and let \(\varepsilon_O : B_2(O) \to \mathcal{A}_2(O) \equiv \mathcal{A}_+(O) \) be the conditional expectation. This gives a state \(\varphi = \varphi_0 \circ \varepsilon_0 \) on \(B_2(O) \) (which can be extended to a state on \(\mathfrak{H}_2(W) \)). Using the GNS representation one get an inclusion \(\mathcal{A}_+(O) \subset B_+(O) \) on a bigger Hilbert space and which is by construction isomorphic to \(\mathcal{A}_2(O) \subset B_2(O) \). This construction extends to \(\mathfrak{H}_2(W) \) and gives a (reducible) boundary net \(\{ B_+(O) \}_{O \in \mathcal{C}_+} \). Let us define \(B(I) = \bigvee_{K, x \subset O \subset W(I)} W(I) \) where \(W(I) \) is the left wedge such that its intersection with the time axis \(x = 0 \) is equals \(I \). This gives a non-local extension \(B \subset \mathcal{A} \). Let us fix \(L \subset I \cup J \), then the Q-system of \(B(L) \subset \mathcal{A}(L) \) can be chosen to be localized in \(I \cap J \) and it can be in particular trivially extended from the inclusion \(\mathcal{A}_+(O) \subset B_+(O) \) using strong additivity. Let’s denote its Q-system by \(\tilde{\Theta} \).

Proposition 6.15. Let \(B_2 \supset A_2 \) be a local irreducible extension with Q-system \(\Theta_2 \). The Q-system of the inclusion \(\mathcal{A}(I) \subset B(I) \), where \(B \equiv B_\text{gen} \) and \(B_\text{gen} \) is obtained by adding the boundary is equivalent to the Q-system \(T_\Theta \).

Proof. We have to show that \(\tilde{\Theta} \) is equivalent to \(T_\Theta \), where we see \(\Theta_2 \) as a Q-system by the equivalence \(\mathcal{N}_C \equiv \mathcal{N}_C \equiv \text{DHR}_Q^2(A_2) \).

An endomorphism \(\rho^I \otimes \bar{\sigma}^J \) gives an endomorphism \(\rho^I \sigma^J \in \text{End}(\mathcal{A}(I) \vee \mathcal{A}(J)) \) and this gives actually an isomorphism of tensor categories
\[\text{End}(\mathcal{A}(I) \otimes \mathcal{A}(J)) \equiv \text{End}(\mathcal{A}(I) \vee \mathcal{A}(J)) \]
Starting from an object in \(\text{DHR}_Q^2(A_2) \) the image is a localized endomorphism of \(\mathcal{A}(I) \vee \mathcal{A}(J) \) which can by strong additivity be extended to a localized endomorphism of \(\text{End}(\mathcal{A}(L)) \), so we get a tensor functor
\[\tilde{T} : \text{DHR}^I(A_2) \to \text{DHR}^I(A) \equiv \mathcal{N}_C \]
where we choose \(N := \mathcal{A}(L) \) and \(\mathcal{N}_C \equiv \text{DHR}^L(A) \). We note that the \(\mu \) from (6) is trivial as is \(\varepsilon(\bar{\rho}_2, \bar{\sigma}_1) \) because of the order of localization.

So the functor
\[\mathcal{N}_C \otimes \mathcal{N}_C \equiv \text{DHR}_Q^2(A_2) \to \text{DHR}_Q^2(A) \equiv \mathcal{N}_C \]
is by construction equivalent to the tensor \(T \) from Subsec. 4.2 and, in particular \(\tilde{\Theta} \) is equivalent to \(T_\Theta \). \(\square \)

This gives as an alternative proof of Prop. 6.11 Let us assume \(B_2 \) was modular invariant/maximal. All boundary conditions are obtained by the adding the boundary construction, and by Prop. 4.20 we can conclude:
Corollary 6.16. All boundary conditions of B_2 come from an $a \in N A \Delta M$, where $N = A(1)$, $M = B(1)$, $\gamma C_N = \text{DHR}^4(A)$ and $B \subset A$ is any (non-local) extension giving B_2 by the α-induction construction.

7. Acknowledgements

The authors would like to thank Karl-Henning Rehren for discussions and remarks on the manuscript. We thank Ingo Runkel and Christoph Schweigert for E-mail correspondence. M.B. would like to thank David E. Evans, Noah Snyder and Chenchang Zhu for discussions.

References

[BDH11] A. Bartels, C. L. Douglas, and A. Henriques, Dualizability and index of subfactors, ArXiv e-prints (2011), available at [arXiv:1110.3617 [math.OA]].

[BE00] J. Böckenhauer and D. E. Evans, Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors, Comm. Math. Phys. 213 (2000), no. 2, 267–289. MR1785458 (2001g:46142).

[BE01] J. Böckenhauer and D. E. Evans, Modular invariants and subfactors, Mathematical physics in mathematics and physics (Siena, 2000), 2001, pp. 11–37. MR1867545 (2002i:46064).

[BE98] J. Böckenhauer and D. E. Evans, Modular invariants, graphs and α-induction for nets of subfactors. I, Comm. Math. Phys. 197 (1998), no. 2, 361–386, available at [arXiv:hep-th/9801171]. MR1652746 (2000c:46121).

[BEK00] J. Böckenhauer, D. E. Evans, and Y. Kawahigashi, Chiral structure of modular invariants for subfactors, Comm. Math. Phys. 210 (2000), no. 3, 733–784. MR1777347 (2001k:46097).

[BEK99] J. Böckenhauer, D. E. Evans, and Y. Kawahigashi, On α-induction, chiral generators and modular invariants for subfactors, Comm. Math. Phys. 208 (1999), no. 2, 429–487. MR1729094 (2001c:81180).

[Bis12] M. Bischoff, Models in Boundary Quantum Field Theory Associated with Lattices and Loop Group Models, Comm. Math. Phys. (2012), 1–32, available at [arXiv:1108.4899v1 [math-ph]].

[BKL14] M. Bischoff, Y. Kawahigashi, R. Longo, and K.-H. Rehren, Tensor categories of endomorphisms and inclusions of von Neumann algebras, (2014), available at [arXiv:1407.4793 [math.OA]].

[CKL13] S. Carpi, Y. Kawahigashi, and R. Longo, How to add a boundary condition, Comm. Math. Phys. 322 (2013), no. 1, 149–166. MR3073161.

[Con73] A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup.(4) 6 (1973), 133–252.

[DKR11] A. Davydov, L. Kong, and I. Runkel, Invertible defects and isomorphisms of rational CFTs, Adv. Theor. Math. Phys. 15 (2011), no. 1, 43–69. MR2888007.

[DMNO13] A. Davydov, M. Müger, D. Nikshych, and V. Ostrick, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013), 135–177. MR3039775.

[DNO13] A. Davydov, D. Nikshych, and V. Ostrick, On the structure of the Witt group of braided fusion categories, Selecta Math. (N.S.) 19 (2013), no. 1, 237–269. MR3022755.

[DX06] C. Dong and F. Xu, Conformal nets associated with lattices and their orbifolds, Adv. Math. 206 (2006), no. 1, 279–306, available at [math/0411499v2].

[EP03] D. E. Evans and P. R. Pinto, Subfactor realisation of modular invariants, Comm. Math. Phys. 237 (2003), no. 1-2, 309–363. Dedicated to Rudolf Haag. MR2007185 (2005k:46166).
[EP09] D. E. Evans and M. Pugh, SU(3)-Goodman-de la Harpe-Jones subfactors and the realization of SU(3) modular invariants, Rev. Math. Phys. 21 (2009), no. 7, 877–928. MR2553429 (2011a:46095)

[EP11] ________, Spectral measures and generating series for nimrep graphs in subfactor theory II: SU(3), Comm. Math. Phys. 301 (2011), no. 3, 771–809. MR2784280 (2012i:46078)

[Eva02] D. E. Evans, Fusion rules of modular invariants, Rev. Math. Phys. 14 (2002), no. 7-8, 709–731. Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday. MR1932663 (2003j:46093)

[EP11], Spectral measures and generating series for nimrep graphs in subfactor theory II: SU(3), Comm. Math. Phys. 301 (2011), no. 3, 771–809. MR2784280 (2012i:46078)

[Eva02] D. E. Evans, Fusion rules of modular invariants, Rev. Math. Phys. 14 (2002), no. 7-8, 709–731. Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday. MR1932663 (2003j:46093)

[FFR06] J. Fröhlich, J. Fuchs, I. Runkel, and C. Schweigert, Correspondences of ribbon categories, Adv. Math. 199 (2006), no. 1, 192–329. MR1940282 (2004c:81244)

[GF93] F. Gabbiani and J. Fröhlich, Operator algebras and conformal field theory, Comm. Math. Phys. 155 (1993), no. 3, 569–640.

[GS12] P. Grossman and N. Snyder, The Brauer-Picard group of the Asaeda-Haagerup fusion categories, 2012.

[HKL14] Y.-Z. Huang, A. Jr. Kirillov, and J. Lepowsky, Braided tensor categories and extensions of vertex operator algebras, 2014.

[IK02] M. Izumi and H. Kosaki, On a subfactor analogue of the second cohomology, Rev. Math. Phys. 14 (2002), no. 7-8, 733–757. Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday. MR1932664 (2004a:46061)

[ILP98] M. Izumi, R. Longo, and S. Popa, A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras, J. Funct. Anal. 155 (1998), no. 1, 25–63. MR1622812 (2000c:46117)

[Jon83] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR696688 (84d:46097)

[JS91] A. Joyal and R. Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no. 1, 55–112. MR1113284 (92d:18011)

[Kaw02] Y. Kawahigashi and R. Longo, Classification of local conformal nets. Case c < 1, Ann. Math. 160 (2004), no. 2, 493–522.

[Kaw04a] Y. Kawahigashi and R. Longo, Classification of local conformal nets with c < 1 and 2-cohomology vanishing for tensor categories, Comm. Math. Phys. 244 (2004), no. 1, 63–97. MR2029950 (2005d:81228)

[Kaw04b] Y. Kawahigashi and R. Longo, Local conformal nets arising from framed vertex operator algebras, Adv. Math. 206 (2006), no. 2, 729–751, available at [math/0411499v2]

[KLM01] Y. Kawahigashi, R. Longo, and M. Müger, Multi-Interval Subfactors and Modularity of Representations in Conformal Field Theory, Comm. Math. Phys. 219 (2001), 631–669, available at [arXiv:math/0003104]

[KLR07] Y. Kawahigashi, R. Longo, U. Pennig, and K.-H. Rehren, The classification of non-local chiral CFT with c < 1, Comm. Math. Phys. 271 (2007), no. 2, 375–385. MR2287908 (2007m:81040)

[KO02] Jr. A. Kirillov and V. Ostrik, On a q-analogue of the McKay correspondence and the ADE classification of sl_2 conformal field theories, Adv. Math. 171 (2002), no. 2, 183–227. MR1936496 (2003j:17019)

[Kos86] H. Kosaki, Extension of Jones’ theory on index to arbitrary factors, J. Funct. Anal. 66 (1986), no. 1, 123–140. MR829381 (87g:46093)
Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case

[KR08] L. Kong and I. Runkel, Morita classes of algebras in modular tensor categories, Adv. Math. 219 (2008), no. 5, 1548–1576. MR2458146 (2009h:18016)

[KR09] ———, Candy algebras and sewing constraints. I, Comm. Math. Phys. 292 (2009), no. 3, 871–912. MR2551797 (2011b:81220)

[KR10] ———, Algebraic structures in Euclidean and Minkowskian two-dimensional conformal field theory, Noncommutative structures in mathematics and physics, 2010, pp. 217–238. MR2742742 (2012g:81191)

[KS14] Y. Kawahigashi and N. Suthichitranont, Construction of holomorphic local conformal framed nets, Internat. Math. Res. Notices 2014 (December 2014), 2924–2943, available at [1212.3771v1]

[Lon03] R. Longo, Conformal Subnets and Intermediate Subfactors, Comm. Math. Phys. 237 (2003), 7–30, available at [arXiv:math/0102196v2 [math.OA]]

[Lon94] ———, A duality for Hopf algebras and for subfactors. I, Comm. Math. Phys. 159 (1994), no. 1, 133–150. MR1257245 (95h:46097)

[LR04] R. Longo and K.-H. Rehren, Local Fields in Boundary Conformal QFT, Rev. Math. Phys. 16 (2004), 909–960, available at [arXiv:math-ph/0405067]

[LR09] ———, How to Remove the Boundary in CFT - An Operator Algebraic Procedure, Comm. Math. Phys. 285 (February 2009), 1165–1182, available at [arXiv:0712.2140 [math-ph]]

[LR95] ———, Nets of Subfactors, Rev. Math. Phys. 7 (1995), 567–597, available at [arXiv:hep-th/9411077]

[LR97] ———, Canonical tensor product subfactors, Comm. Math. Phys. 211 (2000), no. 2, 395–406. MR1754521 (2001d:46093)

[Müg03a] M. Müger, From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra 180 (2003), no. 1-2, 81–157. MR1966524 (2004f:18013)

[Müg03b] ———, From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra 180 (2003), no. 1-2, 159–219. MR1966525 (2004f:18014)

[Müg10] ———, On superselection theory of quantum fields in low dimensions, XVIth International Congress on Mathematical Physics, 2010, pp. 496–503. MR2730815 (2012i:81165)

[Ost03] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), no. 2, 177–206. MR1976459 (2004h:18006)

[Par95] B. Pareigis, On braiding and dyslexia, J. Algebra 171 (1995), no. 2, 413–425. MR1315904 (96a:18005)

[Pin07] P. R. Pinto, Simple current modular invariants from braided subfactors, Chaos Solitons Fractals 33 (2007), no. 1, 135–142. MR2301851 (2007m:81104)

[Reh00] K.-H. Rehren, Canonical tensor product subfactors, Comm. Math. Phys. 211 (2000), no. 2, 395–406. MR1754521 (2001d:46093)

[Sel11] P. Selinger, A survey of graphical languages for monoidal categories, New structures for physics, 2011, pp. 289–355. MR2767048

[Xu00] F. Xu, Jones-Wassermann subfactors for disconnected intervals, Commun. Contemp. Math. 2 (2000), no. 3, 307–347, available at [arXiv:q-alg/9704003] MR1776984 (2001f:46094)

[Yam03] S. Yamagami, C∗-tensor categories and free product bimodules, J. Funct. Anal. 197 (2003), no. 2, 323–346. MR1960417 (2004a:46062)
(M. Bischoff) Institut für Theoretische Physik, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
Current address: Vanderbilt University, Department of Mathematics, 1326 Stevenson Center, Nashville, TN 37240, USA
E-mail address: marcel.bischoff@vanderbilt.edu

(Y. Kawahigashi) Department of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8914, Japan
Kavli IPMU (WPI), The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
E-mail address: yasuyuki@ms.u-tokyo.ac.jp

(R. Longo) Dipartimento di Matematica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Roma, Italy
E-mail address: longo@mat.uniroma2.it