The CEBPE rs2239633 genetic polymorphism on susceptibility to childhood acute lymphoblastic leukemia: An updated meta-analysis

Jin Liu
Jiaxing Center for Disease Control and Prevention
Gu Weiling
Jiaxing Center for Disease Control and Prevention
Li Xueqin
Jiaxing Center for Disease Control and Prevention
Xie Liang
Jiaxing Center for Disease Control and Prevention
Wang Linhong
Jiaxing Centers for Disease Control and Prevention
Zhongwen Chen (✉ chenzhongww21@163.com)
Jiaxing Center for Disease Control and Prevention

Research article

Keywords: CEBPE rs2239633, Polymorphism, childhood acute lymphoblastic leukemia, Meta-analysis

DOI: https://doi.org/10.21203/rs.3.rs-39812/v1

License: © ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: We performed an updated meta-analysis to clarify the relationship between the CEBPE rs2239633 polymorphism and the CALL susceptibility.

Methods: All the case-control studies updated on July 31, 2019 through Web of Science, Pubmed, Cochrane Library, Embase, China Nationa Knowledge Infrastructure (CNKI) electronic database. The heterogeneity in the study was tested by the Q-test and I^2, and then the random ratio or fixed effect was utilized to merge the odds ratios (OR) and 95% confidence interval (CI). To estimate the impact of individual studies on aggregate estimates, we performed sensitivity analysis. Using funnel plot and Begger's regression test investigated the publication bias. All data Statistical analyses were performed using Stata 12.0.

Results: A total of 23442 participants (7014 patients; 16428 controls) were included in twenty case-control studies selected. There was no association of *CEBPE* rs2239633 polymorphism with CALL (CC vs CT + TT: OR = 1.08, 95% CI = 0.94 –1.26; CC + CT vs TT: OR = 1.10, 95% CI = 0.94–1.30; C vs T: OR =1.02, 95% CI = 0.92–1.13). In the subgroup analysis by ethnicity, no significant association of this polymorphism and CALL risks among Asia and Caucasian populations for the comparison of CC vs CT + TT, CC + CT vs TT and C vs T genetic models.

Conclusion: This meta-analysis did not find the CEBPE rs2239633 polymorphism can increase and decrease the risk of susceptibility to CALL.

Background

Acute lymphoblastic leukemia (ALL) was a malignant disease of the blood system. It occur mostly in children under 15 years of age, The peak age of onset was 2-5 years old [1, 2], accounting for about 1/3 of childhood malignant tumors [3]. Although the etiology and pathogenesis were not yet clear, previous studies had shown that ALL was the result of multiple factors such as genetic variation and exposure to carcinogens in the environment [4, 5]. In recent years, genome-wide association studies (GWAS) had shown that single nucleotide polymorphism (SNP) variation was an important risk factor for CALL [6-9].

The CEBPE gene was located on the human chromosome 14q11.2, which was a member of the CCAAT enhancer binding protein family, and its encoded protein belongs to the basic leucine transcription factor. The CEBPE gene-encoded protein was essential for terminal differentiation and functional maturation of myeloid committed progenitor cells, especially for the maturation of neutrophils and giant wahl cells [10]. Mutations in CEBPE would cause loss of neutrophil granules [11]. Akasaka had reported that CEBPE mutations can cause translocation of immunoglobulin heavy chain chromosomes, which often occurred in children with B-precursor E-cell leukemia [12]. This indicated that the CEBPE gene played an important role in the occurrence and development of ALL.

Two meta-analytic studies in 2014 [13] and 2015 [14] found the association of *CEBPE* rs2239633 polymorphism with the risk of CALL, but the two conclusions were reversed. In addition, since 2015, many studies had reported *CEBPE* rs2239633 polymorphisms and the risk of CALL [11, 15-19]. Therefore, the purpose of this meta-analysis was to update previous meta-analyses to elucidate the relationship between *CEBPE* rs2239633 polymorphism and the risk of CALL.

Methods

Search strategies

We conducted a systematic online search of the literature in the Web of Science, Pubmed, Cochrane Library, Embase, China Nationa Knowledge Infrastructure (CNKI) electronic database, covering relevant studies published until June 5, 2020. The keywords for the search were as follows: ("rs2239633" OR "CEBPE") AND ("polymorphism" OR "variant" OR "mutation") AND ("acute lymphoblastic leukemia" or "ALL"). The literature on relevant data was searched in English and Chinese respectively. In addition, the retrieved articles and references were performed manual searches. Referring to the Preferred Reporting Project (PRISMA) Guide for Systematic Evaluation and Meta-Analysis [20], an information flow diagram related to the final eligibility data was constructed by screening all retrieved literatures.
Inclusion and Exclusion Criteria

Screening for the studies of the relationship between CEBPE rs2239633 polymorphism and the risk of ALL according to the following inclusion criteria: (1) the design of study was case-control; (2) The full text can be found; (3) the genotype information of the CEBPE rs2239633 polymorphism were available; (4) the relationship of the CEBPE rs2239633 polymorphism and the risk of ALL was evaluated; The major exclusion criteria were: (1) not a case–control study; (2) repeating early publications (studies used in different publications for the same sample data, including only the most complete samples after careful review); (3) Unpublished articles, conference papers, meta-analysis and systematic reviews; (4) family-based pedigree research. This meta-analysis strictly followed the requirements of the preferred reporting project for the systematic review and meta-analysis guidelines. [20].

Data Extraction

The analysis data of the selected studies were independently extracted by two researchers using standard data-collection forms. Studies related information extracted from each literature were as follows: First author, Year of publication, Country of origin, Mean age and Gender in cases and controls, Numbers of cases and controls, Hardy-Weinberg equilibrium, Genotyping method, Source of controls, and available genotype frequency information for CEBPE rs2239633. If the same sample data appeared in multiple publications, only the publication with the largest sample size was included in the study. The differences between the two investigators were resolved through discussion. If the discussion could not resolve the objection between the two, the objection would be judged by the third investigator. All data were obtained from the full text of the published research and the author was not contacted for further information.

Study Quality Assessment

Two evaluators evaluated the quality of the included studies according to the Newcastle-Ottawa Scale (NOS) [21], which was applicable to the quality assessment of observational studies. The difference between the two evaluators was reported and resolved by the third evaluator. The scores of research quality mainly included the following three aspects: (1) Selection of the case groups and control groups (4 stars); (2) Quality of confounding factors correction in case and control population (2 stars); and (3) determination of the exposure of interest in the studies (3 stars). For each item numbered in the selection and exposure categories, one study can be rated as up to one star, and comparability can be assigned up to two stars. Higher scores indicate an increase in the quality of the research method. Studies with scores equal to or higher than 6 are considered high quality studies.

Data Analysis

The heterogeneity in the study was tested by the Q-test and I² [22, 23], and then the random ratio or fixed effect was utilized to merge the odds ratios (OR) and 95% confidence interval (CI)[24]. The significance of the pooled OR was analyzed by Z-test (P< 0.05 Judged statistically significant).To estimate the impact of individual studies on aggregate estimates, we also performed Sensitivity analysis[25]. Using funnel plot and Begger's regression test investigated the publication bias [26, 27]. All data Statistical analyses were performed using Stata 12.0 (Stata Corp, College Station, TX, United States).

Results

Literature Search and Study Characteristics

The flow chart of the literature search was shown in Figure 1. 165 potentially relevant articles were selected in the preliminary online search. After verifying and deleting 80 duplicate articles, 85 articles entered the final review. Through the review of the title and abstract, 26 articles were included for full-text review. Finally, 16 articles were included in the final study. These studies were published between 2009 and 2017, and 20 studies included 7014 ALL patients and 16428 controls. The distribution of genotypes in controls in all studies followed HWE. In addition, the NOS scores for all studies ranged from 6 to 8 points, so that the selected articles were considered to be good in methodological quality. The relevant feature information of the included articles was in Tables 1 and Table 2.

Meta-analysis results
The heterogeneity of the three genetic models was determined by Q test and I squared statistics. As shown in Figure 2, these were serious heterogeneity in the three models (CC vs CT + TT: $P<0.001$, $I^2 = 63.6$%; CC + CT vs TT: $P=0.002$, $I^2 = 70.2$%; C vs T: $P<0.001$, $I^2 = 79.2$%), thus we used the random-effect model to analyze of the three models. Our results did not find significant associations between $CEBPE$ rs2239633 polymorphism and the risk of ALL under the model of CC vs CT + TT (OR = 1.08, 95% CI = 0.94 –1.26, $P=0.280$), CC + CT vs TT (OR = 1.10, 95% CI = 0.94–1.30, $P=0.228$), C vs T (OR =1.02, 95% CI = 0.92–1.13, $P=0.752$). In subgroup analysis by Ethnicity, no significant association was found in three models in both Caucasian and Asian populations (Table 3).

Sensitivity analysis was used to assess the impact of each individual study on the pooled OR by sequentially removing each eligible study. Our results suggest that none of the studies affected the overall outcome of the pooled OR (Figure 3). Begg’s funnel plot was used to assess publication bias, and the results showed that publication bias was not reflected in the three genetic models (CC vs CT + TT: $P=0.742$; CC + CT vs TT: $P=0.285$; C vs T: $P=0.560$) (Figure 4).

Discussion

As a transcription factor specifically expressed in myeloid cells, CCAAT/ enhancer binding protein-ε ($CEBPE$) played an important role in the proliferation, growth, differentiation and apoptosis of myeloid cells, and participates in the transcriptional regulation of a series of myeloid-specific genes. Loss of activity was an important factor leading to the onset of bone marrow disease [28]. In recent years, A growing number of published studies had investigated the relationship between $CEBPE$rs2239633 polymorphism and ALL risk [29-37]. It also included some meta-analysis, but even the correlation results of meta-analysis were contradictory and conflicting. To further assess the relationship between $CEBPE$rs2239633 polymorphism and ALL risk, we performed an upgraded meta-analysis of the relationship between the two in conjunction with previous literature in the meta-analysis and the most recent published study.

Although GWAS study by Papaemmanuil et al [6] proved that the 5’ SNP rs2239633 located in $CEBPE$ has strong correlation with children's ALL in European population. However, this meta-analysis showed that no significant association was found in the three selected genetic models. In the subgroup analysis of ethnicity, no correlation was found between the three genetic models. On the one hand, this difference may be the linkage disequilibrium between these populations in different populations. There are also some differences between the population samples. On the other hand, the exact pathogenesis of $CEBPE$ in the etiology of leukemia was still unclear. The $CEBPE$ mutation may have different effects on the immune system of different children.

Previously, a meta-analysis was applied for 11 case-control studies with 5,639 cases and 10,036 controls by Wang et al [13], the results shown no association of the $CEBPE$rs2239633 polymorphism and childhood ALL risk, Subgroup analysis stratified by ethnicity found a significant association of this polymorphism with childhood ALL in the Caucasian subgroup and Hispanic subgroup, but not in the Asian subgroup. Sun et al [14]also conducted a meta-analysis of 22 published studies involving 6152 patients and 11739 healthy controls, the results also showed $CEBPE$rs2239633 variant was associated with decreased risk of childhood B-cell ALL in Europeans, but not among T-cell ALL, Asian and mixed populations. The results of the two meta-analyses are diametrically opposed, and this difference may be due to the difference in the number of samples included and the sample size. This study combines the latest research literature with the first two meta-analyses to more fully describe the relationship between $CEBPE$rs2239633 and CALL. In terms of statistical power, it is significantly better than the previous meta-analysis of Sun et al [14] and Wang et al [13].

However, there are certain limitations in our research. First, databases that include only published research in both Chinese and English are selected for analysis, and other language or unpublished potential research may be missed. Second, due to the lack of raw data, we were unable to assess potential interactions of gene-genes and genes-environments. Third, the meta-analysis includes data from Europeans and Asians, so the results of this item apply only to these two ethnic groups. Fourth, among the three models, heterogeneity may greatly influence the conclusion of the meta-analysis.

Conclusions

Our study showed that the $CEBPE$rs2239633 gene polymorphism did not increase or decrease the risk of susceptibility to CALL. Although the specific causes of childhood leukemia were still unclear, a large number of existing researches tended to suggest that the occurrence of childhood ALL was the result of a combination of factors, especially the genetic and environmental factors.
Therefore, in the future, when studying the relationship between CEBPE rs2239633 polymorphism and childhood ALL, the influence of environmental factors on the relationship between the two should be removed.

Abbreviations

CNKI: China National Knowledge Infrastructure; IARC: International Agency for Research on Cancer; WHO: World Health Organization; NOS: Newcastle-Ottawa Scale; OR: odds ratio; CI: confidence interval. ALL: Acute lymphoblastic leukemia; GWAS: genome-wide association studies; SNP: Single nucleotide polymorphism;

Declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable

Competing interests: The authors declare that they have no competing interests

Funding: Not applicable.

Authors’ contributions: Manuscript writing, editing and review were conducted by JL; GW and LX participated in the articles search; WL and CZ performed data analysis and evaluation the quality of the selected studies. All authors have read and approved the manuscript

Availability of data and materials section: All data generated or analyzed during this study are included in this published article

Acknowledgements

We appreciate the cooperation of the partners and staffs cooperated in this study.

References

1. Eden T. Aetiology of childhood leukaemia. Cancer treatment reviews 2010; 36(4):286-297.
2. Terracini B. Epidemiology of childhood cancer. Environmental Health 2011; 10 Suppl 1(Suppl 1):S8.
3. Karathanasis NV, Choumerianou DM, Kalmanti M. Gene polymorphisms in childhood ALL. Pediatric Blood & Cancer 2008; 52(3):318-323.
4. Bhojwani D, Yang JJ, Pui CH. Biology of childhood acute lymphoblastic leukemia. Pediatric clinics of North America 2015; 62(1):47-60.
5. Schuz J, Erdmann F. Environmental Exposure and Risk of Childhood Leukemia: An Overview. Archives of medical research 2016; 47(8):607-614.
6. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, Kinsey SE, Lightfoot T, Roman E, Irving JA, Allan JM, Tomlinson IR, Taylor M, Greaves M, Houlston RS. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nature genetics 2009; 41(9):1006-1010.
7. TrevnO LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, Willman C, Neale G, Downing J, Raimondi SC. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009; 41(9):1001-1005.
8. Orsi L, Rudant J, Bonaventure A, Goujon-Bellec S, Corda E, Evans TJ, Petit A, Bertrand Y, Nelken B, Robert A, Michel G, Sirvent N, Chastagner P, Ducassou S, Rialland X, Hémond X, Milne E, Scott RJ, Baruchel A, Clavel J. Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE). Leukemia 2012; 26(12):2561-2564.
9. Walsh KM, Chokkalingam AP, Hsu LI, Metayer C, de Smith AJ, Jacobs DI, Dahl GV, Loh ML, Smirnov IV, Bartley K, Ma X, Wiencke JK, Barcellos LF, Wiemels JL, Buffler PA. Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia 2013; 27(12):2416-2419.
10. Akagi T, Thoennissen NH, George A, Crooks G, Song JH, Okamoto R, Nowak D, Gombart AF, Koeffler HP. In vivo deficiency of both C/EBPbeta and C/EBPepsilon results in highly defective myeloid differentiation and lack of cytokine response. Plos one 2010; 5(11):e15419.

11. Gharbi H, Ben Hassine I, Soltani I, Safra I, Ouerhani S, Bel Haj Othmen H, Teber M, Farah A, Amouri H, Toumi NH, Abdennebi S, Abbes S, S Menif I. Association of genetic variation in IKZF1, ARID5B, CDKN2A, and CEBPE with the risk of acute lymphoblastic leukemia in Tunisian children and their contribution to racial differences in leukemia incidence. Pediatric hematology and oncology 2016; 33(3):157-167.

12. Akasaka T, Balasas T, Russell LJ, Sugimoto KJ, Majid A, Walewska R, Karran EL, Brown DG, Cain K, Harder L et al. Five members of the CEbp transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 2007; 109(8):3451-3461.

13. Wang C, Chen J, Sun H, Sun L, Liu Y. CEBPE polymorphism confers an increased risk of childhood acute lymphoblastic leukemia: a meta-analysis of 11 case-control studies with 5,639 cases and 10,036 controls. Annals of hematology 2015; 94(2):181-185.

14. Sun J, Zheng J, Tang L, Healy J, Sinnett D, Dai YE. Association between CEBPE Variant and Childhood Acute Leukemia Risk: Evidence from a Meta-Analysis of 22 Studies. Plos one 2015; 10(5):e0125657.

15. Al-Absi B, Razif MFM, Noor SM, Saif-Ali R, Aqlan M, Salem SD, Ahmed RH, Muniandy S. Contributions of IKZF1, DDC, CDKN2A, CEBPE, and LMO1 Gene Polymorphisms to Acute Lymphoblastic Leukemia in a Yemeni Population. Genetic testing and molecular biomarkers 2017; 21(10):592-599.

16. Bekker-Mendez VC, Nunez-Enriquez JC, Torres Escalante JL, Alvarez-Olmos E, Gonzalez-Montalvoc PM, Jimenez-Hernandez E, Sanson AM, Leal YA, Ramos-Cervantes MT, Guerra-Castillo FX et al. ARID5B, CEBPE and PIP4K2A Germline Genetic Polymorphisms and Risk of Childhood Acute Lymphoblastic Leukemia in Mexican Patients: A MIGICCL Study. Archives of medical research 2016; 47(8):623-628.

17. Bhandari P, Ahmad F, Mandava S, Das BR. Association of Genetic Variants in ARID5B, IKZF1 and CEBPE with Risk of Childhood de novo B-Lineage Acute Lymphoblastic Leukemia in India. Asian Pacific journal of cancer prevention : APJCP 2016; 17(8):3989-3995.

18. Urayama KY, Takagi M, Kawaguchi T, Matsuo K, Tanaka Y, Ayukawa Y, Arakawa Y, Hasegawa D, Yuza Y, Kaneko T et al. Regional evaluation of childhood acute lymphoblastic leukemia genetic susceptibility loci among Japanese. Scientific reports 2018; 8(1):789.

19. Kreile M, Piekuse L, Rotz D, Dobele Z, Kovalova Z, Lace B. Analysis of possible genetic risk factors contributing to development of childhood acute lymphoblastic leukaemia in the Latvian population. Archives of medical science : AMS 2016; 12(3):479-485.

20. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine 2009; 151(4):264-269, w264.

21. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology 2010; 25(9):603-605.

22. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 2002; 21(11):1539-1558.

23. Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. Journal of clinical epidemiology 2008; 61(7):634-645.

24. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemporary clinical trials 2015; 45(Pt A):139-145.

25. Copas J. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics 2000; 1(3):247-262.

26. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 1997; 315(7109):629-634.

27. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50(4):1088-1101.

28. Wada T, Akagi T. Role of the Leucine Zipper Domain of CCAAT/ Enhancer Binding Protein-Epsilon (C/EBPepsilon) in Neutrophil-Specific Granule Deficiency. Critical reviews in immunology 2016; 36(4):349-358.
29. Ellinghaus E, Stanulla M, Richter G, Ellinghaus D, te Kronnie G, Cario G, Cazzaniga G, Horstmann M, Panzer Grumayer R, Cave H et al. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. *Leukemia* 2012; 26(5):902-909.

30. Prasad RB, Hosking FJ, Jayaram V, Ellis P, Rolf K, Mel G, Eamonn S, Andreas G, Kinsey SE, Tracy L. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. 2010; 115(9):1765-1767.

31. Vijayakrishnan J, Sherborne AL, Sawangpanich R, Hongeng S, Houlston RS, Pakakasama S. Variation at 7p12.2 and 10q21.2 influences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence. *Leukemia & Lymphoma* 2010; 51(10):1870-1874.

32. Pastorczak A, Górniaik P, Sherborne A, Hosking F, Trelińska J, Lejman M, Szczepański T, Borowiec M, Fendler W, Kowalczyk J. Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population. Leuk Res 2011; 35(11):1534-1536.

33. Lautner-Csorba Q, Gezsi A, Sensei AF, Antal P, Erdelyi DJ, Schermann G, Kutszegi N, Csordas K, Hegyi M, Kovacs G et al. Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance. *BMC medical genomics* 2012; 5:42.

34. Chokkalingam AP, Hsu LI, Metayer C, Hansen HM, Month SR, Barcellos LF, Wiemels JL, Buffler PA. Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics. *Cancer causes & control : CCC* 2013; 24(10):1789-1795.

35. Ross JA, Linabery AM, Blommer CN, Langer EK, Spector LG, Hilden JM, Heerema NA, Radloff GA, Tower RL, Davies SM. Genetic variants modify susceptibility to leukemia in infants: a Children’s Oncology Group report. *Pediatr Blood Cancer* 2013; 60(1):31-34.

36. Wang Y, Chen J, Li J, Deng J, Rui Y, Lu Q, Wang M, Tong N, Zhang Z, Fang Y. Association of three polymorphisms in ARID5B, IKZF1 and CEBPE with the risk of childhood acute lymphoblastic leukemia in a Chinese population. *Gene* 2013; 524(2):203-207.

37. Emerenciano M, Barbosa TC, Lopes BA, Blunck CB, Faro A, Andrade C, Meyer C, Marschalek R, Pombo-de-Oliveira MS. ARID5B polymorphism confers an increased risk to acquire specific MLL rearrangements in early childhood leukemia. *BMC cancer* 2014; 14:127.

Tables

Table 1 Characteristic of studies included in the meta-analysis
Author	year	country	Ethnicity	Genotype Methods	Source of control	NOS score	HWE
Ellinghaus et al	2011	Germany	Caucasian	SNPlex and TaqMan	HB	7	Not Know
Ellinghaus et al	2011	Germany	Caucasian	SNPlex and TaqMan	HB	7	Not Know
Ellinghaus et al	2011	Italy	Caucasian	SNPlex and TaqMan	HB	7	Not Know
Papaemmanuil et al (GWAS-1)	2009	UK	Caucasian	Illumina arrays	PB	8	0.778
Papaemmanuil et al (GWAS-2)	2009	UK	Caucasian	Illumina arrays	HB	7	0.517
Prasad et al	2010	Germany	Caucasian	Kaspar allele-specific PCR	PB	8	0.233
Prasad et al	2010	UK	Caucasian	Kaspar allele-specific PCR	HB	7	0.310
Vijayakrishnan et al	2010	Thailand	Asian	Kaspar allele-specific PCR	PB	8	0.162
Pastorczak et al	2011	Poland	Caucasian	PCR	HB	7	0.454
Lautner-Csorba et al	2012	Hungary	Caucasian	Sequenom iPLEX Gold MassARRAY technology	HB	7	0.508
Orsi et al	2012	France	Caucasian	Principal component analyses(PCA)	PB	8	0.472
Ross et al	2012	USA	Caucasian	Taqman	PB	6	0.091
Wang et al	2013	China	Asian	Taqman	HB	7	0.147
Emerenciano et al	2014	Brazil	Mixed	Taqman	HB	7	0.135
Al-absi et al	2017	Yemen	Asian	Fluidigm 192.24 Dynamic Array	PB	6	0.149
Gharbi et al	2016	Tunisia	Caucasian	PCR	PB	7	0.700
Bekker-Mendez et al	2016	Mexico	Mexican	Taqman	HB	6	0.081
Bhandari et al	2016	India	Asian	Taqman Illumina	PB	7	0.085
Urayama et al	2017	Japan	Asian	HumanCoreExome BeadChip	HB	6	Not Know
Kreile et al	2016	Latvia	Caucasian	PCR-RFLP	PB	6	0.234

Table 2 The genotype distribution of *CEBPE* rs2239633
Author	Sample size (case/control)	Female (%) (case/control)	Case	Control
Ellinghaus et al	419/474	45.8/-	-	-
Ellinghaus et al	406/1682	45.3/-	-	-
Ellinghaus et al	287/579	49.5/-	-	-
Papaemmanuil et al (GWAS-1)	503/1435	-/-	78	244
Papaemmanuil et al (GWAS-2)	404/960	-/-	74	188
Prasad et al	1193/1510	44.4/49.9	197	559
Prasad et al	183/352	49.2/69.3	26	95
Vijayakrishnan et al	190/182	42.6/54.9	103	76
Pastorczak et al	388/711	41.2/56.1	119	176
Lautner-Csorba et al	543/529	56.2/42.3	173	278
Orsi et al	441/1542	46.9/61.0	141	225
Ross et al	85/363	-/-	19	43
Wang et al	568/672	38.6/34.4	245	253
Emerenciano et al	160/505	-/48.1	21	68
Al-absi et al	136/153	63.2/53.6	10	46
Gharbi et al	58/150	44.8/-	15	33
Bekker-Mendez et al	285/476	-/52.7	122	128
Bhandari et al	162/150	32.7/40.7	21	65
Urayama et al	527/3882	-/-	578	476
Kreile et al	76/121	46.1/-	25	38

Table 3 Summary of pooled OR in different ethnicities
Genetic model	group	Pooled OR (95% CI)	Heterogeneity	Test for overall effect		
		P	I^2	Z	P	
CC VS CT+TT	Caucasians	1.17(0.97-1.41)	<0.01	68.9%	1.68	0.092
	Asia	1.04(0.87-1.25)	0.701	0.0%	0.43	0.666
CC+CT VS TT	Caucasians	1.09(0.89-1.35)	<0.01	78.7%	0.85	0.393
	Asia	1.17(0.94-1.47)	0.583	0.0%	1.38	0.168
C VS T	Caucasians	1.03(0.89-1.18)	<0.01	84.3%	0.36	0.718
	Asia	1.00(0.92-1.10)	0.538	0.0%	0.10	0.917

Figures

Figure 1

The flow sheet of identification of eligible studies
Figure 2

Forest plots of the CEBPE rs2239633 polymorphism under different genetic models. a is the model of CC VS CT+TT; b is the model of CC+CT VS TT; c is the model of C VS T.
Figure 3

Sensitivity analysis examining the association between the CEBPE rs2239633 polymorphism and risk of childhood ALL under these model (CC VS CT+TT, CC+CT VS TT, C VS T).
Figure 4

Begg's funnel plot for publication bias analysis. a is the model of CC VS CT+TT; b is the model of CC+CT VS TT; c is the model of C VS T

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- PRISMA2009ChecklistMSWord.doc