Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway

JAE-SUNG KIM¹, MI-RA PARK¹, SOOK-YOUNG LEE¹, DO KYOUNG KIM¹,², SUNG-MIN MOON³, CHUN SUNG KIM³, SEUNG SIK CHO⁵, GOO YOON⁵, HEE-JEONG IM⁶, JAE-SEEK YOU⁴, JI-SU OH¹,⁴ and SU-GWAN KIM¹,⁴

¹Regional Innovation Center for Dental Science and Engineering; Departments of ²Oral Physiology, ³Oral Biochemistry and ⁴Oral and Maxillofacial Surgery, Chosun University, Gwangju 501-759; ⁵Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729, Republic of Korea; ⁶Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA

Received October 7, 2013; Accepted November 25, 2013

DOI: 10.3892/or.2013.2929

Abstract. Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC₅₀ value of Lico-A was determined to be ~50 µM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and -3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer.

Introduction

Licochalcone A [Lico-A; (E)-3-[4-hydroxy-2-methoxy-5-(2-methylbut-3-en-2-yl)phenyl]-1-(4-hydroxyphenyl)prop-2-en-1-one] is a natural phenol licorice compound isolated from licorice root (Radix Glycyrrhizae). Lico-A has been used for thousands of years as a traditional herbal medicine and is known for its multiple bioactivities including anti-inflammatory (1), anti-microbial (2), anti-malarial (3), and osteogenic activity (4), and anti-angiogenic (5) and anticancer effects (6-9). Moreover, Lico-A has also been suggested to be beneficial for common oro-dental disease via its anti-adhesion properties (10). Although the multiple bioactivities of Lico-A have been revealed in various research fields, its anticancer property in oral cancer is still largely unknown.

Oral cancer is a major worldwide public health issue and may affect any region of the oral cavity, including the lips, tongue, mouth and throat (11,12). Although the pathophysiological studies associated with the development of oral cancer have shown that environmental factors, such as smoking, alcohol and betel quid, may act as critical carcinogens, the etiology of oral cancer is still largely unknown (13-15). However, oral cancer is one of the most prevalent cancers with an incidence rate of 3.9 cases per 100,000 individuals worldwide (16). Even though the clinical treatment for oral cancer has shown significant improvement during the past decade, current clinical treatments consisting of surgery and/or radiotherapy are not totally free from various side-effects, including loss of function and disfigurement. As a result, these side-effects reduce the quality of life of patients with oral cancer. Therefore, various studies are underway to develop effective clinical treatment with minimal side-effects for oral cancer. As part of these studies, intensive research is being carried out to develop novel chemotherapeutic agents from edible herbal plants or natural products (17-21).

Apoptosis is generally defined as programmed cell death via a precisely regulated cell suicide process, which is mediated by different intracellular and extracellular biological mechanisms (22). Apoptosis largely occurs through two pathways; one is the mitochondrial apoptotic pathway and...
the second is the death receptor pathway. The mitochondrial pathway, known as intrinsic apoptotic signaling, is triggered by the release of cytochrome c due to the loss of mitochondrial transmembrane potential (23,24). The death receptor pathway, known as extrinsic apoptotic signaling, is mediated by sequential activation of caspase-8 and -3 and poly(ADP-ribose) polymerase (PARP), after interaction with death receptor and its ligands, such as TRAIL and factor associated suicide ligand (FasL) (25). Importantly, apoptosis has emerged as an important mechanism for the anticancer effects of chemotherapeutic agents developed from herbal plants.

Hence, the aim of the present study was to determine whether Lico-A has potential to function as a chemotherapeutic agent for the treatment of KB oral cancer cells without affecting normal cells originating from the oral cavity. Furthermore, the present study aimed to evaluate the potential apoptotic effect of Lico-A and to elucidate the Lico-A-induced apoptotic signaling pathway in KB oral cancer cells.

Materials and methods

Cell culture. Normal human oral keratinocytes (NHOKs) were purchased from ScienCell Research Laboratories (Carlsbad, CA, USA). The NHOKs were maintained in DMEM (Gibco, Grand Island, NY, USA) containing 10% fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA, USA) at 37˚C in an atmosphere containing 5% CO₂. The human oral squamous cell carcinoma cell line, KB, was obtained from the American Type Culture Collection (ATCC; Manassas, VA, USA) and cultured according to the cell culture instructions provided. Briefly, KB cells were grown in MEM containing 10% FBS at 37˚C in an atmosphere containing 5% CO₂.

Cell viability assay. Both KB oral cancer cells and NHOKs were seeded at a density of 5x10⁵ cells/well in 96-well plates and allowed to attach to the well overnight. After incubation, cultured cells were stimulated with various concentrations of Lico-A in triplicate and incubated at 37˚C in a 5% humidified CO₂ incubator for 24 h. Subsequently, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Invitrogen, Carlsbad, CA, USA) was added to each well, and incubation was continued for a further 4 h at 37˚C. To dissolve the formazan formed from MTT, the cells were resuspended in 200 µl dimethyl sulfoxide (DMSO), and the optical density (OD) of the solution was determined using a spectrophotometer at a wavelength of 570 nm. The experiments were repeated 3 times, independently. The mean optical density (OD) ± SD for each group of replicates was calculated. The entire procedure was repeated 3 times. The inhibitory rate of cell growth was calculated using the equation: % Growth inhibition = (1 - OD_extract treated/OD_negative control) x 100.

Live/dead cell viability assay. The live/dead cell viability assay was carried out as previously described (26), using calcein AM to stain the live cells and ethidium bromide homodimer 1 to stain the dead cells. These reagents were obtained from Molecular Probes (Eugene, OR, USA). For the cell survival assay, KB oral cancer cells and NHOKs were plated in a chamber slide, stimulated with berberine for 24 h and stained with green calcein AM and ethidium bromide homodimer 1 according to the manufacturer's protocol. The cells were then observed and photographed by inverted phase-contrast microscopy.

DNA fragmentation assay. KB oral cancer cells were collected after stimulation with Lico-A (0, 25 and 50 µM) for 24 h and were rinsed 3 times in phosphate-buffered saline (PBS) at 4˚C. This was followed by degradation using 100 µl cell lysate buffer (1% NP-40, 20 mM EDTA, 50 mM Tris-HCl, pH 7.5) at 4˚C for 10 min, followed by centrifugation at 12,000 x g for 30 min. RNase A was added to the supernatant and incubated at 37˚C for 1 h. Proteinase K was then added to the supernatant, and incubation was conducted at 37˚C for 8 h. An equal volume of isopropanol was then added and kept at -80˚C for 24 h to precipitate the genomic DNA. The supernatant was removed after centrifugation at 12,000 x g for 15 min at 4˚C. The supernatant was allowed to dry naturally and was dissolved in TE buffer, followed by electrophoresis on 1.5% agarose gels. A gel imaging system was used for observation and capturing images.

4',6-Diamidino-2-phenylindole (DAPI) staining. KB oral cancer cells stimulated with 25 and 50 µM Lico-A for 24 h were fixed with 4% paraformaldehyde prior to washing with PBS. The washed cells were then stained with 1 mg/ml 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) (Roche Diagnostics) for 20 min in the dark. The DAPI-stained images were capturing using fluorescence microscopy (Eclipse TE200; Nikon Instruments, Melville, NY, USA).

Caspase-3/-7 activity assay. The apoptosis executioner caspase-3/-7 activity was determined using the cell-permeable fluorogenic substrate, PhiPhiLux-Gd₃ (Oncoimmunin Inc., Gaithersburg, MD, USA), according to the manufacturer's instructions.

Annexin V-FITC and propidium iodide (PI) staining and flow cytometric analysis. Apoptosis was determined by Annexin V-fluorescein isothiocyanate assay. Cells were washed in PBS twice and resuspended in binding buffer (BD Biosciences, San Diego, CA, USA). Annexin V-fluorescein isothiocyanate and 7-amino-actinomycin D (BD Biosciences) were added to the cells, which were then incubated in the dark for 15 min. Cells were then added and resuspended in 400 µl of binding buffer. Cells were analyzed using a fluorescence activated cell sorting FACScalibur flow cytometer (Becton-Dickinson, San Jose, CA, USA). Data analysis was performed using standard CellQuest software (Becton-Dickinson).

RNA isolation and quantitative PCR analysis. Total RNA was isolated using TRIzol reagent (Life Technologies, Carlsbad, CA, USA), according to the manufacturer's instructions. Total RNA (1 µg) was reverse transcribed into first strand cDNA using ThermoScript™ RT-PCR system (Life Technologies). For quantitative PCR (qPCR), cDNA was amplified using a SureCycler 8800 (Agilent Technologies, Santa Clara, CA, USA) and 2X TOPSimple™ DyeMIX-nTaq (Enzymomics, Seoul, Korea), according to the manufacturer's instructions. Gene expression was determined using agarose gel electrophoresis. GAPDH was used as the internal controls in the reactions for normalization. Primer used for qPCR design is shown in Table 1.
were as follows: for caspase-3, forward primer, 5'-TCTTGG
CGAAATTCAAGGATGGC-3' and reverse primer, 5'-TT
TGTGAGCATGGAACAATACATGG-3'; for caspase-3,
forward primer, 5'-GGCTTGGCACCACGACCTTGAAGA-3'
and reverse primer, 5'-GGAAGGCGACTTCAACACCAGTG
AA-3'; for FasL, forward primer, 5'-GCTGGAGTCACTGACA
CTAAGTCA-3' and reverse primer, 5'-CTCTGCAAGAGT
ACAAAGATTGGC-3'; for GAPDH, forward primer, 5'-AGCC
TCAAGATCATCAGCAATG-3' and reverse primer, 5'-ATG
GACTGTGTCATGAGTCTT-3'.

Immunoblotting. Cell and tissue lysates were prepared
using modified radioimmunoprecipitation assay buffer (1 M
Tris-HCl, 150 mM NaCl, 1% Triton X-100, 2 mM EDTA) with
protease inhibitor and phosphatase inhibitor cocktail (both
from Sigma, USA). Total protein concentrations of the cell
lysates were determined by bicinchoninic acid protein assays
(Pierce). Equal amounts of protein were resolved by 10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred to nitrocellulose membranes for immunoblot-
ting analyses. After blocking with 5% bovine serum albumin
(BSA) in TBS-T at room temperature for 1 h, the membranes
were sequentially blotted with primary antibodies at 4°C over-
night. After rinsing in TBS-T, the membranes were incubated
with HRP-conjugated secondary antibody at room tempera-
ture for 1 h. Immunoreactivity was visualized using the ECL
system (Amersham Biosciences).

Statistical analysis. Data are expressed as the means ± SD of
3 individual experiments performed in triplicate. Statistical
analysis was performed using the Student's t-test, and p<0.05
was considered to indicate a statistically significant result.

Results

Lico-A suppresses the viability of KB oral cancer cells, but
does not affect the viability of NHOKs. The effect of Lico-A
on the viability of KB oral cancer cells and NHOKs was
assessed by the MTT assay. As shown in Fig. 1A, Lico-A did
not have an effect on the NHOKs, which are primary normal
oral keratinocytes originating from the human oral cavity,
when compared to the control. In contrast, KB oral cancer
cells stimulated with different concentrations of Lico-A for
24 h exhibited-significantly decreased cell viability when
compared to the control (Fig. 1B). Particularly, 50 and 100 µM
Lico-A decreased the cell viability by ~50 and 80% when
compared with the control. These data indicate that the IC₅₀
value of Lico-A in KB oral cancer cells was ~50 µM.

Lico-A induces apoptotic phenomena, such as DNA fragmen-
tation, chromatin condensation and activation of caspase-3,
in KB oral cancer cells. Following stimulation of KB oral
cancer cells with Lico-A for 24 h, morphological changes, such
as shrinkage, aggregation and the increase in detachment of
cells from the surface of culture vessels, were observed using
microscopy. As shown in Fig. 1D, genomic DNA isolated from
KB oral cancer cells stimulated with Lico-A clearly showed
the formation of DNA trailing when compared to the control.
These data indicate that DNA breakage or fragmentation, which
only occurs when cell apoptosis takes place, was induced by
Lico-A. To observe the morphological nuclear change in KB
oral cancer cells stimulated with Lico-A, we performed nuclear
staining using DAPI. As shown in Fig. 1E, the population of
KB oral cancer cells that attached to the surface of the culture
vessel was significantly decreased after Lico-A stimulation.
Furthermore, the number of condensed and fragmented nuclei
was significantly increased in KB oral cancer cells following
stimulation with Lico-A (Fig. 1E). Furthermore, to confirm
the Lico-A-induced apoptosis, caspase-3 intracellular activity
assay was performed using caspase-3/7 PhiPhiLux staining.
As shown in Fig. 1F, activated caspase-3 was significantly
detected in the cytosol of KB oral cancer cells stimulated with
Lico-A for 24 h in a dose-dependent manner. In contrast, in
KB oral cancer cells stimulated without Lico-A as the control
activated caspase-3 was not observed. These data suggest that
Lico-A-induced cell death was mediated by apoptosis.

Lico-A increases the number of apoptotic cells in a time-depen-
dent manner. To determine whether Lico-A-induced cell
death is associated with the induction of apoptosis, KB oral
cancer cells were stimulated with 50 µM Lico-A for 12 and
24 h and subsequently co-stained with the apoptotic markers
Annexin V-FITC and necrotic marker PI. As shown in Fig. 2,
the number of apoptotic cells at the early stage of apoptosis
was gradually increased by 14.08 and 28.19% at 12 and 24 h,
respectively, in a time-dependent manner. In addition, as
shown in Fig. 2, the percentage of Annexin V-FITC-positive
cells at both the early and late stage of apoptosis was gradu-
ally increased up to 29.95% at 24 h when compared with the
control.

Lico-A-induced apoptosis is mediated via the FasL/PARP
axis. To verify the mechanism by which Lico-A induces the
apoptosis of KB oral cancer cells, qPCR and immunoblotting
were performed to measure the expression of apoptosis-related
genes at both the mRNA and protein levels. As shown in
Fig. 3A, FasL, which is an apoptotic ligand and triggers the
extrinsic apoptotic pathway, was significantly induced by
Lico-A in KB oral cancer cells. Subsequently, caspase-8 and -3,
which are downstream targets of FasL, were significantly
induced by Lico-A at the mRNA level. However, apoptosis
requires the activation of the caspase cascade and PARP. As
shown in Fig. 3B, FasL was significantly expressed in KB
cells following Lico-A treatment in a dose-dependent manner.
Sequentially, upregulated FasL by LicoA triggered the cleavage
of pro-caspase-8 into cleaved (activated) caspase-8 (43 kDa).
In the next step, cleaved caspase-8 induced the cleavage of
pro-caspase-3 as its downstream target. Activated caspase-3
(17 and 19 kDa) gradually increased in a dose-dependent
manner. Furthermore, cleaved PARP (85 and 25 kDa) was
increased by activated caspase-3 when compared with the
control. β-actin was used as an internal control for normaliza-
tion. Therefore, these data clearly indicate that Lico-A-induced
apoptosis in KB oral cancer cell was mediated by the extrinsic
apoptotic pathway via the FasL/PARP axis.

Lico-A-induced apoptosis is regulated by the activation of
caspases in KB oral cancer cells. Apoptotic signals are
mediated by the activation of the caspase cascade, which
is a key hallmark of apoptosis. We, therefore, determined a
direct involvement of caspase activation in Lico-A-induced KB oral cancer cell apoptosis. As shown in Fig. 4A, 50 µM of Z-VAD-fmk, a pan-caspase inhibitor, had no effect on the cell viability in KB oral cancer cells similar to the non-treated control. In addition, 50 µM Lico-A consistently decreased the cell viability by ~50% (Fig. 1B). However, Lico-A-induced cell cytotoxicity in KB oral cancer cells was partially recovered by treatment with Z-VAD-fmk as compared with Lico-A stimulation only. Furthermore, Z-VAD-fmk treatment led to inhibition of Lico-A-induced caspase-3 and PARP activation (Fig. 4B). These data indicate that the Lico-A-induced apoptosis was regulated by the activation of the caspase cascade in KB oral cancer cells.

ERKMAPK and **p38**MAPK pathways are required for Lico-A-induced FasL upregulation and subsequent apoptosis in KB oral cancer cells. To elucidate the apoptotic signaling pathways involved in the Lico-A-induced FasL expression in KB oral cancer cells, we examined the phosphorylation of MAPK signaling pathways that have previously been linked to Fasl expression in the apoptosis of cancer cells. As shown in Fig. 5A, 50 µM Lico-A activated both ERK and p38, as reflected by phosphorylation within 5 min and sustained activation for 30 min after stimulation with Lico-A. There was no significant activation of JNK MAPK by Lico-A in KB oral cancer cells. To determine which pathway was involved in Lico-A-induced FasL expression, we performed immunoblotting in the presence or absence of pathway-specific inhibitors of either ERK (PD98059) or p38 (SB203580). The presence of each inhibitor suppressed the Lico-A-mediated FasL expression in KB oral cancer cells (Fig. 5B). Collectively, these findings demonstrated that Lico-A-induced apoptosis of KB oral cancer cells was mediated by the upregulation of FasL via the activation of both the **ERK**MAPK and **p38**MAPK signaling pathways.
Discussion

Oral cancers are common malignancies which have emerged as major international health issues. Global cancer statistics has revealed that the annual incidence of oral cancer exceeds 270,000 cases worldwide (27). Although the clinical treatment for oral cancer has improved, the 5-year survival rate for patients with oral cancer is approximately 50% (28). Even though chemotherapy is one of the important therapeutic strategies for oral cancer, it is still limited by various side-effects.
such as high toxicity and drug tolerance. Therefore, there is an urgent demand for the development of effective clinical drugs with fewer side-effects. Based on these requirements, natural therapies, which use the natural compounds derived from medicinal plants and traditional Oriental medicine, are being developed to overcome the side-effects of chemotherapeutic reagents.

Glycyrrhiza uralensis Fischer is one of the representative medicinal herbal plants for the treatment of sore throat, cough, bronchitis, peptic ulcers, arthritis and allergic disease in traditional Oriental medicine (29,30). In addition, Lico-A, the major bioactive compound isolated from Glycyrrhiza sp., has been reported to have various biological activities such as anti-inflammatory (31,32), anti-microbial (33), anti-angiogenic (34), anti-obesity (35) and osteogenic effects (4). In the present study, we demonstrated that Lico-A suppressed the proliferation and induced the apoptosis of KB oral cancer cells via death receptor-mediated caspase activation.

First, we assessed the cell cytotoxicity of Lico-A in both human KB oral cancer cells and primary human oral normal keratinocytes to determine the possibility of its use as a potential chemotherapeutic agent for treating oral cancer. As shown in Fig. 1, the various concentrations of Lico-A did not affect the cell viability in primary human normal oral keratinocytes. In contrast, cell cytotoxicity was significantly increased in human KB oral cancer cells stimulated with Lico-A in a dose-dependent manner. Notably, the cell viability of KB cells was effectively decreased by ~50% at the concentration of 50 µM Lico-A for 24 h. Xiao et al also reported that the cell cytotoxicity of gastric cancer cells including MKN-28, AGS and MKN-45 was significantly increased following treatment with ~50 µM of Lico-A for 24 h (8). In contrast, Lico-A exhibited less cytotoxicity to normal human gastric mucosal cells similar to our demonstrated results. These data clearly suggest that Lico-A enhanced the cancer cell-specific cytotoxicity without affecting normal cells. Next, to investigate the mechanism by which Lico-A induces human KB oral cancer cell death, we analyzed DNA fragmentation, morphological alteration and caspase-3 expression following Lico-A stimulation. As shown in Fig. 1D, Lico-A significantly induced DNA fragmentation in human KB oral cancer cells dose-dependently. Furthermore, the morphological alterations including chromatin condensation and a decrease in the cell population were observed in human KB oral cancer cells stained with DAPI after Lico-A treatment (Fig. 1E). As a key feature of apoptotic cell death, both DNA fragmentation and
chromatin condensation were observed in human KB oral cancer cells stimulated with Lico-A. During apoptotic events, DNA fragmentation is mediated by caspase-activated DNase, which is an endonuclease found in the extrinsic apoptotic pathway and is activated by caspase-3 (36). Therefore, we performed the caspase-3 intracellular activity assay using PhiPhiLux-caspase-3 to detect the activated caspase-3 in human KB oral cancer cells stimulated with Lico-A. As shown in Fig. 1F, activated caspase-3 was significantly detected intracellularly in human KB oral cancer cells stimulated with Lico-A. In addition, the apoptotic population at both the early and late stages of apoptosis was significantly increased in human KB oral cancer cells stimulated with 50 µM of Lico-A in a time-dependent manner (Fig. 2). These data indicate that Lico-A significantly induced the activation of caspase-3. Furthermore, activated caspase-3 induced the cleavage of the inhibitor of caspase-activated DNase for formatting the caspase-activated DNase. Subsequently, caspase-activated DNase fragmented the genomic DNA of human KB oral cancer cells stimulated with Lico-A. However, these data are consistent indicating that Lico-A-induced human KB oral cancer cell death is closely associated with apoptosis via activation of caspases.

The factor associated suicide ligand (FasL), an important regulatory factor of apoptosis, initiates the death receptor-mediated extrinsic apoptotic pathway through the activation of caspase-8 and -9 and PARP, sequentially, after binding with receptor FasR spanned on the surface of target cells (37,38). As shown in Fig. 3, the expression of FasL was significantly upregulated by Lico-A in the KB oral cancer cells. Subsequently, upregulated FasL triggered a caspase cascade and subsequently resulted in the activation of apoptotic factors, including caspase-8 and -9. Finally, activated caspase-3 cleaved its major substrate PARP resulting in consequent apoptosis. These data clearly suggest that caspase-3 is activated in response to Lico-A in KB oral cancer cells. Therefore, to further evaluate the role of caspase-3 in Lico-A-induced apoptosis, KB oral cancer cells were stimulated with Z-VD-fmk, a specific caspase-3 inhibitor, to suppress the cleavage of caspase-3. As shown in Fig. 4A, Z-VD-fmk significantly inhibited the Lico-A-induced apoptosis of KB oral cancer cells. Furthermore, the activation of caspase-3 and its major substrate PARP in KB oral cancer cells stimulated with Lico-A was significantly suppressed by Z-VD-fmk, indicating that Lico-A-induced apoptosis was dependent on caspase-3 activity (Fig. 4B).

To further investigate the signaling pathway involved in Lico-A-induced apoptosis in KB oral cancer cells, we assessed the effect of Lico-A on mitogen-activating protein kinases, which are associated with the apoptotic signaling pathway. As shown in Fig. 5A, Lico-A induced the phosphorylation of ERK and p38 in a time-dependent manner. However, we did not detect any significant phosphorylation of JNK following Lico-A treatment in KB oral cancer cells. Therefore, to confirm the role of ERK and p38 inhibition in Lico-A-induced FasL expression, KB oral cancer cells were pre-stimulated with pharmacological inhibitors (PD98059 for ERK and SB203580 for p38) for 2 h to turn off each MAPK signaling and then Lico-A was administered for 24 h. Lico-A-induced FasL expression was significantly suppressed by the inhibition of ERK and p38 signaling (Fig. 5B). These results indicate that ERK and p38 are required for the Lico-A-induced FasL expression and apoptosis in KB oral cancer cells. Binding of FasL to its receptor FasR has been shown to activate MAPK, and its activation is required for apoptosis of human hepatocellular carcinoma Huh7 cells (39). Therefore, we demonstrated that Lico-A induced the extrinsic apoptotic signaling pathway in KB oral cancer cells via the upregulation of FasL through both ERK and p38 activation. In conclusion, Lico-A may be developed as a chemotherapeutic agent for the management of oral cancer.

References

1. Feldman M and Grenier D: Cranberry proanthocyanidins act in synergy with licochalcone A to reduce Porphyromonas gingivalis growth and virulence properties, and to suppress cytokine secretion by macrophages. J Appl Microbiol 113: 438-447, 2012.
2. Messier C and Grenier D: Effect of licorice compounds licochalcone A, glabridin and glycyrhrzic acid on growth and virulence properties of Candida albicans. Mycoses 54: e801-e806, 2011.
3. Tadigopula N, Northikunta V, Gupta S, et al: Synthesis and insight into the structure-activity relationships of chalcones as antimarial agents. J Med Chem 56: 31-45, 2013.
4. Kim SN, Bae SJ, Kwak HB, et al: In vitro and in vivo osteogenic activity of licochalcone A. Amino Acids 42: 1455-1465, 2013.
5. Kim YH, Shin EK, Kim DH, Lee HH, Park JH and Kim JK: Antiangiogenic effect of licochalcone A. Biochem Pharmacol 80: 1152-1159, 2010.
6. Szslozska E, Jaworska D, Koć M, Czuba ZP and Król W: Targeting death receptor TRAIL-R2 by chalcones for TRAIL-induced apoptosis in cancer cells. Int J Mol Sci 13: 15433-15359, 2012.
7. Lee CS, Kwak SW, Kim YJ, et al: Guanylate cyclase activator YC-1 potentiates apoptotic effect of licochalcone A on human epithelial ovarian carcinoma cells via activation of death receptor and mitochondrial pathways. Eur J Pharmacol 683: 54-62, 2012.
8. Xiao XY, Hao M, Yang XY, et al: Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis. Cancer Lett 302: 69-75, 2011.
9. Kim JK, Shin EK, Park JH, Kim YH and Park JH: Antitumor and antimetastatic effects of licochalcone A in mouse models. J Mol Med 88: 829-838, 2010.
10. Messier C, Epifano F, Genovese S and Grenier D: Licorice and its potential beneficial effects in common oro-dental diseases. Oral Dis 18: 32-39, 2012.
11. Naipier SS and Speight PM: Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med 37: 1-10, 2008.
12. Moreno-López LA, Esparza-Gómez GC, González-Navarro A, Cerero-Lapedra R, González-Hernández MJ and Domínguez-Rojas V: Risk of oral cancer associated with tobacco smoking, alcohol consumption and oral hygiene: a case-control study in Madrid, Spain. Oral Oncol 36: 170-174, 2000.
13. Lin WJ, Jiang RS, Wu SH, Chen FJ and Liu SA: Smoking, alcohol, and betel quid and oral cancer: a prospective cohort study. J Oncol 2011: 525976, 2011.
14. Humphris GM, Freeman R and Clarke HM: Risk perception of oral cancer in smokers attending primary care: a randomised controlled trial. Oral Oncol 40: 916-924, 2004.
15. Shiou MN and Chen TH: Impact of betel quid, tobacco and alcohol on three-stage disease natural history of oral leukoplaia and cancer: implication for prevention of oral cancer. Eur J Cancer Prev 13: 39-45, 2004.
16. Shah FD, Begum R, Vajaria BN, et al: A review on salivary genomics and proteomics biomarkers in oral cancer. Indian J Clin Biochem 26: 326-334, 2011.
17. Yeh CC, Tseng CN, Yang JI, et al: Antiproliferation and induction of apoptosis in Ca9-22 oral cancer cells by ethanol extract of Gracilaria tenuistipitata. Molecules 17: 10916-10927, 2012.
18. Yeh CC, Yang JI, Lee JC, et al: Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress. BMC Complement Altern Med 12: 142, 2012.
19. Kang JW, Kim JH, Song K, Kim SH, Yoon JH and Kim KS: Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase-3-dependent apoptosis in oral cavity cancer cells. Phytother Res 24 (Suppl 1): S77-S82, 2010.
20. Choi ES, Cho SD, Jeon JG and Cho NP: The apoptotic effect of the hexane extract of *Rheum undulatum* L. in oral cancer cells through the down-regulation of specificity protein 1 and survivin. Lab Anim Res 27: 19-24, 2011.

21. Chen YJ, Liao CT, Chen PJ, et al: Downregulation of Ches1 and other novel genes in oral cancer cells chronically exposed to areca nut extract. Head Neck 33: 257-266, 2011.

22. Derradji H and Baatout S: Apoptosis: a mechanism of cell suicide. In Vivo 17: 185-192, 2003.

23. Lin JW, Chen JT, Hong CY, et al: Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro Oncol 14: 302-314, 2012.

24. Oh HL, Lim H, Park Y, et al: HY253, a novel compound isolated from *Aralia continentalis*, induces apoptosis via cytochrome c-mediated intrinsic pathway in HeLa cells. Bioorg Med Chem Lett 19: 797-799, 2009.

25. Nyåkern M, Cappellini A, Mantovani I and Martelli AM: Synergistic induction of apoptosis in human leukemia T cells by the Akt inhibitor perifosine and etoposide through activation of intrinsic and Fas-mediated extrinsic cell death pathways. Mol Cancer Ther 5: 1559-1570, 2006.

26. Kim JS, Ellman MB, An HS, van Wijnen AJ, Borgia JA and Im HJ: Insulin-like growth factor 1 synergizes with bone morphogenetic protein 7-mediated anabolism in bovine intervertebral disc cells. Arthritis Rheum 62: 3706-3715, 2010.

27. Partridge M, Li SR, Pateromichelakis S, et al: Detection of minimal residual cancer to investigate why oral tumors recur despite seemingly adequate treatment. Clin Cancer Res 6: 2718-2725, 2000.

28. Parkin DM, Bray F, Ferlay J and Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 55: 74-108, 2005.

29. Chung WT, Lee SH, Kim JD, et al: Effect of the extracts from *Glycyrrhiza uralensis* Fisch on the growth characteristics of human cell lines: anti-tumor and immune activation activities. Cytotechnology 37: 55-64, 2001.

30. Tang J, Song X, Zhu M and Zhang J: Study on the pharmacokinetics drug-drug interaction potential of *Glycyrrhiza uralensis*, a traditional Chinese medicine, with lidocaine in rats. Phytother Res 23: 603-607, 2009.

31. Franceschelli S, Pesce M, Vinciguerra I, et al: Licocalcone-C extracted from *Glycyrrhiza glabra* inhibits lipopolysaccharide-interferon-γ inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules 16: 5720-5734, 2011.

32. Wu TY, Khor TO, Saw CL, et al: Anti-inflammatory/Antioxidative stress activities and differential regulation of Nrf2-mediated genes by non-polar fractions of tea *Chrysanthemum zawadskii* and licorice *Glycyrrhiza uralensis*. AAPS J 13: 1-13, 2011.

33. Lee JW, Ji YJ, Yu MH, et al: Antimicrobial effect and resistant regulation of *Glycyrrhiza uralensis* on methicillin-resistant *Staphylococcus aureus*. Nat Prod Res 23: 101-111, 2009.

34. Kim JM, Kim KS, Lee YW, et al: Anti-angiogenic effects of water extract of a formula consisting of *Pulsatilla koreana*, *Panax ginseng* and *Glycyrrhiza uralensis*. Zhong Yi Yi Jie He Xue Bao 9: 1005-1013, 2011.

35. Birari RB, Gupta S, Mohan CG and Bhutani KK: Antiobesity and lipid lowering effects of *Glycyrrhiza* chalcones: experimental and computational studies. Phytomedicine 18: 795-801, 2011.

36. Walker PR, Weaver VM, Lach B, LeBlanc J and Sikorska M: Endonuclease activities associated with high molecular weight and internucleosomal DNA fragmentation in apoptosis. Exp Cell Res 213: 100-106, 1994.

37. Huang DC, Hahne M, Schroeter M, et al: Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-xL. Proc Natl Acad Sci USA 96: 14871-14876, 1999.

38. Herrnring C, Reimer T, Jeschke U, et al: Expression of the apoptosis-inducing ligands FasL and TRAIL in malignant and benign human breast tumors. Histochem Cell Biol 113: 189-194, 2000.

39. Wang WZ, Li L, Liu MY, et al: Curcumín induces FasL-related apoptosis through p38 activation in human hepatocellular carcinoma Huh7 cells. Life Sci 92: 352-358, 2013.