Effects of dietary L-carnitine on puberty indices in the young breeder rooster

Vahid Mohammadi-a, Seyed Davood Sharifi-a,*, Mohsen Sharafi-b, Abdollah Mohammadi-Sangcheshmeh-a

a Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, P.O.Box: 11365/7117, Pakdasht, Tehran, Iran
b Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

ABSTRACT

The aim of current study was to investigate the effect of dietary L-Carnitine (LC) in immature roosters on reproductive hormones, lipid profile and testicular histology at the time of maturity. Eighteen 12-wk-old breeder roosters (Ross 308) of similar weights were randomly allocated into 3 dietary treatments (LC-0: basic diet, LC-250: basic diet + 250 mg LC/kg of diet, LC-500: basic diet + 500 mg of LC/kg of diet) in 6 replicates. The feeding program and photoperiod regimen were performed based on ROSS 308 management handbook. Dietary LC supplementation markedly improved testicle weight and testicle index (p < 0.05). Comb height was also affected by LC supplementation (p < 0.05). The testicle weight and index, comb height, and shank lengths improved linearly with increasing levels of dietary LC (p < 0.05). The LC-250 and LC-500 diets significantly improved the number of sertoli cells (NSC), height epithelium seminiferous tubules (HEST), seminiferous tubules diameter (STD), spermiogenesis index (SI) and tubular differentiation index (TDI) of rooster's testis tissue (p < 0.05). The roosters on the LC-250 mg/kg diet had longer HEST compared to roosters that received the LC-500 mg/kg diet (p < 0.05). Testicular histology parameters increased in a linear and quadratic manner in response to increasing levels of LC (p < 0.05). Dietary LC significantly increased (p < 0.05) plasma concentrations of testosterone, GnRH, LH, FSH and High-Density Lipoprotein (HDL), but reduced the plasma concentration of Low-Density Lipoprotein (LDL). However, no significant differences were observed between LC-250 and LC-500 groups in these parameters. Plasma testosterone, GnRH, LH, LDL and HDL were affected in a linear and quadratic manner in response to increasing levels of LC (p < 0.05). Similarly, FSH increased linearly with increasing dietary LC (p < 0.05). Thus, adding up to 250g of LC per kg of the rooster chicken can improve reproductive hormones, blood lipids and testicular histology parameters at the time of maturity.

1. Introduction

Production of fertile hatching eggs is considered one of the key goals of broiler breeders. From an economic perspective, the fertility of the roosters in a breeder flock is of greater importance than that of the hens, because the male is responsible for fertilizing the eggs from a number of females. In general, in commercial flocks, some males have high fertility whereas others have low fertility (sub-fertile), the latter leading to a reduction in overall flock fertility.

Birds with low body weight often have underdeveloped testes, which can result in subfertility [1,2]. During testis development in chicken (from 2 to 15 weeks of age), although there is no significant increase in testicular weight in the early stage [3], it is the most important period for testicular development [4]. A mature testis has seminiferous tubules with a multilayered epithelium representing the different stages of spermatogenesis [5].

Sexual maturity is associated with the highest testis weight and consequently with the highest plasma concentration of reproductive hormones [6,7]. The main effects of luteinizing hormone (LH) and follicle stimulating hormone (FSH) are on the Leydig cells and Sertoli cells, respectively. FSH stimulates testicular growth and development by increasing seminiferous tubule diameter and stimulating Sertoli cells proliferation and differentiation [8]. The Leydig cells contain the steroidogenic enzymes needed for the generation of testosterone hormone (TH) [9].

In birds, TH is necessary for spermatogenesis, keeping the excurrent ducts and secondary sexual characteristics, reproductive behavior, and modifying the template of gonadotropin-releasing hormone (GnRH)
A graduated tube containing water was used for testes volume evaluation. To determine the testis index \(\frac{\text{testis weight (g)}}{\text{body weight (kg)}} \) [22]. A bird, testes were quickly dissected out and their weights were measured. Then the birds were killed by cervical dislocation. From each euthanized bird, weighed and blood samples were taken from their brachial vein.

2.2. Body weight and testes index

At 24 W of age, four roosters from each treatment were randomly selected, weighed and blood samples were taken from their brachial vein. Then the birds were killed by cervical dislocation. From each euthanized bird, testes were quickly dissected out and their weights were measured to determine the testis index \(\frac{\text{testis weight (g)}}{\text{body weight (kg)}} \) [22]. A graduated tube containing water was used for testes volume evaluation.

2.3. Testicular histology

Before histological examination, the left testicles of four birds per treatment were fixed in 10% neutral buffered formalin for three days. Afterward, the samples were imbedded in paraffin, sectioned to a thickness of 5 μm, affixed to a microscope slide and stained with hematoxylin and eosin [2]. Then, the samples were used for evaluation of Number of Seminiferous Tubules (NST), Number of Sertoli Cells (NSC), Height of Epithelium Seminiferous Tubules (HEST), Seminiferous Tubules Diameter (STD), Spermatogenesis Index (SI), and Tubular Differentiation Index (TDI) [23].

The number of active maturated tubules (adult) in a circle with a radius of 500 μm was considered as NST. Tubular differentiation index was calculated as the percentage of seminiferous tubules containing more than three layers of germ cells derived from type A of spermatogonia. To find the spermiogenesis indices, the ratios of the number of seminiferous tubules with spermatozoids to the empty tubules, were computed. Sertoli cells were counted based on the accumulation of spermatids at triangular points in seminiferous tubules (Figure 1).

Table 1. Ingredients and nutrient composition of basal diet.

Ingredients	g/kg
Corn	690
Soybean meal	85
Wheat bran	191.9
Di-calcium phosphate	14.4
Sodium chloride	3.25
Calcium carbonate	8.45
D-L-Methionine	1.14
L-Lys Hcl	0.86
Mineral premix	2.5
Vitamin premix	2.5

Calculated Composition

	kcal/kg
Metabolism energy	2754

Actual Composition(measured)

	kcal/kg

1. Supplied per kilogram of diet: Fe, 60 mg; Mn, 6 mg; Zn, 100 mg; Cu, 10 mg; and Se, 0.2 mg.
2. Supplied per kilogram of diet: vitamin A, 12000 IU; vitamin E, 100 IU; vitamin K3, 5 mg, B1, 3 mg; riboflavin, 12 mg; niacin, 15 mg; vitamin B12, 0.04 mg; vitamin D, 3,000 IU; pantothenic acid, 55 mg; pyridoxine, 4 mg; biotin, 0.25 mg and Choline chloride, 1 gr.
manufacturer’s instruction. As the same way, the concentrations of tri-
glyceride (TG), Low-density lipoprotein (LDL) and High-density lipo-
protein (HDL), Very Low-density lipoprotein (VLDL) and total cholesterol
(CHOL) were analyzed with commercial enzyme kits (Pars Azmoon Co.,
Tehran-Iran).

2.5. Statistical analysis

The data were assessed for normality using the Shapiro-Wilk test. All
data were analyzed by the GLM procedure of SAS software [24] and
statistical differences among the treatments was conducted using Tukey
Test, when the p value was less than 0.05.

3. Results

Data related to the body weight, testicle weight, testicle index,
testicular volume, comb height and shank lengths are presented in
Table 2. Dietary LC supplementation markedly improved testicle weight
and testicle index (p < 0.05). In line with testicle weight and testicle
index, comb height also increased with dietary LC. However, there were
no significant differences in these parameters between the LC-250 and
LC-500 groups. Linear and quadratic analysis in testis index, testis weight
and comb height were significant (p < 0.05). However, no differences
were found in body weight and testicular volume between linear and
quadratic analysis. As shown in Table 2, the best results in relation to
testicular characteristics (weight and index) and comb height were
observed in birds fed with 250 mg of LC.

Nevertheless, on increasing the dose of LC, the shank lengths
continued to increase linearly. Orthogonal contrasts between LC groups
(LC-250 and LC-500) vs control indicated the effect of LC on body weight,
testicle weight, testicle index, comb height and shank lengths (p < 0.05).

The effects of dietary LC supplementation on the testicular histology
of roosters are shown in Table 3. LC significantly improved NSC, HEST,
STD, SI, and TDI in the testis tissue of the roosters (p < 0.05). Birds fed
with LC-250 mg/kg had higher NST than control birds (LC-0) (p < 0.05).
The roosters fed with LC-250 mg/kg diet had longer HEST compared to
roosters that received the LC-500 mg/kg diet (p < 0.05). Also, roosters
that were fed the LC-500 mg/kg diet had larger STD. There were no significant differences between the LC-250 and LC-500 treat-
ments in terms of NST, NSC, SI, TDI. Although the quadratic analyses
results of STD, SI and TDI were significant (p < 0.05), these parameters
improved linearly, so that, the best average was observed in birds fed 500
mg/kg LC. Response curves in HEST, NST, NSC were altered with
increasing dosage of LC. This means that more responses have seen in
birds fed with LC-250 mg/kg diet. Orthogonal contrasts between C-250
and LC-500 groups vs control demonstrated the effect of LC on all of the
testis histology parameters (p < 0.05).

The effects of dietary LC supplementation on plasma concentration of
testosterone, GnRH, LH and FSH are shown in Table 4. Dietary LC
significantly increased plasma concentrations of testosterone, GnRH, LH,
and FSH (p < 0.05). However, no significant differences were observed between LC-250 and LC-500 groups on these parameters. The results of linear and quadratic analyses of testosterone were significant (p < 0.05), which shows that testosterone response to the various doses of LC increases linearly and then decreases. This study indicated that the LC-250 mg/kg of diet resulted in highest levels of reproductive hormones.

The plasma concentrations of HDL and LDL were significantly (p < 0.05) affected by dietary supplementation with LC (Table 5). Plasma LDL decreased and plasma HDL increased significantly in birds fed diets supplemented with LC (p < 0.05). However, no significant differences were observed between LC-250 and LC-500 groups on these parameters. Supplementing the diets with LC had no significant effects on the plasma concentration TG, CHOL and VLDL. LDL concentration decreased as LC was added to the diet. Thus, the highest HDL and the lowest LDL concentrations were observed in response to the LC-250 mg/kg diet. However, no difference was found in CHO, TG, and VLDL in both linear and quadratic analyses. Orthogonal contrasts between LC-250 and LC-500 groups VS control showed the effects of LC on the plasma concentration of TRG, HDL and LDL (p < 0.05).

4. Discussion

This research aimed to investigate the effect of dietary LC supplementation in growing broiler breeder roosters, on the reproductive hormones, lipid profile and testicular histology parameters at the time of maturity. In the present study, testis weight and testis index were found to be respectively ~25 % and ~21% higher in the groups fed with LC supplemented diet than in the control group. In contrast to the results of this study, it was earlier reported that the LC has no effects on weight and index of testis in mature White Leghorn roosters [25]. A trend to increase (P = 0.07) in body weight (~3.5 %) was observed on increasing LC. The same results have been reported for pigeons [26], native Turkish geese [27], pheasant [28], broiler chickens and laying hens [29,30], in all of which, growth performance improved when fed with LC. The results obtained from the current study show that LC has a positive effect on the growth performance of roosters at the time of maturity. Birds receiving LC-250 mg/kg of LC in their diet showed the highest increase in body weight, testis weight and testis index. It has been found that LC to be present in high concentrations in the male genital system, including Sertoli cells, epididymis, and spermatozoa [31]. Spermatozoa use several substrates as energy sources during epididymal transit, but fatty-acid oxidation involving the carnitine dependent system seems to be a major energy supplying process [32]. The improvements in body weight, testis weight and testis index of roosters observed in this study in response to dietary LC may be attributed, at least partly, to improved utilization of dietary nitrogen, achieved through more efficient fat oxidation by LC [33]. It has been reported that testicular growth and development are delayed in underweight chicken [34]. The development of the testis is important for estimating the growth rate in birds because bird’s testes are located within the body cavity [35].

In most birds, comb height and shank lengths have been used as external indicators of sexual maturity [36]. It has been shown that secondary characteristics like comb height are reliable indicators of fertility in roosters [37]. In this study, birds fed with LC (LC-250 or LC-500) had higher comb heights (~16 %) and shank lengths (~6 %) than birds of the control group. Regarding the fact that growth of combs is stimulated by TH [38], it seems that increasing concentration of testosterone in this study would be a reason for taller combs observed when fed with LC.

The growth and development of Gonads depend on the level of reproductive hormones in the blood; there is a positive correlation between the concentration of testosterone and the size of the testicles coefficient [39]. Our findings showed that the highest reproductive hormones were in response to LC-250 or LC-500 mg/kg of LC in diet. In this agreement with earlier studies that have shown that LC increased blood FSH, LH, and TH levels in male rats [40].

There are various mechanisms explaining the effect of LC on improving reproductive hormones. Increasing the production of free radicals and reducing the antioxidants enzymes leads to oxidative stress, which subsequently decreases LH, FSH, and TH levels [41]. LC can act as an antioxidant by inhibiting free radicals and increasing expression of antioxidant enzymes such as GSH and CAT, leading to reduced oxidative stress [42]. It has been reported that pulsatile GnRH secretion from perfused hypothalamic cells and GT1-1 neuronal cells significantly increased after culture in medium containing 100 µM acetyl-l-carnitine (ALC). This action of ALC can be attributed to an increase in the spike amplitude of GnRH release [43]. It has been reported that among the neural centers, the highest LC concentration is seen in the hypothalamus [44]; this suggests a possible role of LC in brain as a regulator of neurotransmitters. LC acts indirectly by affecting the HPG axis to regulate reproductive hormone secretion [45]. The highest LC concentration in neuronal cells is in the hypothalamus where it decreases neuronal cell death [46].

Data related to the histology showed that LC highly affects testicular tissue development. The results of this study showed that the birds on the LC-250 or LC-500 diets had more complete testicles than control groups (see Figure 2).

Different metabolic processes happen in the testis before the onset of maturity; these include proliferation of functional cells and increase in testicular volume; lack of development can be a sign of infertility in adulthood [47]. LC acts as a cytoprotective agent with antioxidant, anti-apoptotic, and anti-inflammatory properties [48] and it protects germ cells from apoptosis involving the Sertoli cell metabolism [49]. It seems that the improvement of testicular histology with dietary LC was not unexpected in the present study.

More than 90% of the variation on testicular development in roosters has been reported by altering in FSH, and 35% of the variation in testicular development has been brought about by altering in LH concentrations [4]. FSH stimulates testicular growth and development by increasing seminiferous tubule diameter and stimulating Sertoli cells proliferation and differentiation [8]. It has been suggested that increased

Item	Treatment †	LC-0 (Cont)	LC-250	LC-500	SEM	P-value			
Body weight(g)		3515	3628	3613	68.28	0.08	0.07	0.15	0.03
Testicle weight(g)		19.75a	24.75a	23.5a	1.33	0.001	0.003	0.004	0.0005
Testicle index (g/kg)		5.62a	6.82a	6.50a	0.42	0.008	0.01	0.01	0.003
Testicular volume(cm³)		15.50	17.75	18.00	1.75	0.14	0.07	0.36	0.06
Comb height (cm)		5.67b	6.62a	6.32ab	0.38	0.02	0.04	0.02	0.008
Shank lengths (cm)		8.67	9.12	9.20	0.29	0.07	0.03	0.43	0.02

ab Means within the same row with different superscripts are significantly different (p < 0.05).

SEM: standard error of mean.

† Treatment: LC-0 (0 mg L-Carnitine per kg of diet) (Control), LC-250 (250 mg L-Carnitine per kg of diet), LC-500 (500 mg L-Carnitine per kg of diet).
Table 3. Effect of l-carnitine on histology of rooster’s testis.

Item	Treatment*	SEM	P-value					
	LC-0 (Cont)	LC-250	LC-500	Treat.	Linear	Quadratic	Cont vs. LC	
NST (n)	9^b	15^a	12^{ab}	2.00	0.002	0.03	0.002	0.002
NSC (n)	15^a	23^a	20^a	2.29	0.003	0.01	0.005	0.001
HEST (µm)	22.7^a	67.7^a	56.8^b	3.09	<0.001	<0.001	<0.001	<0.001
STD (µm)	85.3^a	163.8^a	198.4^a	9.49	<0.001	<0.001	0.004	<0.001
SI (%)	52^a	84.4^a	85.1^a	1.52	<0.001	<0.001	<0.001	<0.001
TDI (%)	73.9^b	80.9^a	81.7^a	1.74	0.0008	0.0001	0.01	<0.001

^{abc}Means within the same row with different superscripts are significantly different (p < 0.05).

*SEM: standard error of mean.

* Treatment: LC-0 (0 mg L-Carnitine per kg of diet) (Control), LC-250 (250 mg L-Carnitine per kg of diet), LC-500 (500 mg L-Carnitine per kg of diet).

** NST: Number of Seminiferous Tubules, NSC: Number of Sertoli Cells, HEST: Height of Epithelium Seminiferous Tubules, STD: Seminiferous Tubules Diameter, SI: Spermiogenesis Index, TDI: Tubular Differentiation Index.

Table 4. Effect of l-carnitine on sex hormones profile of plasma.

Item	Treatment*	SEM	P-value					
	LC-0 (Cont)	LC-250	LC-500	Treat.	Linear	Quadratic	Cont vs. LC	
Testosterone (nmol/l)	5.34^b	8.75^a	7.72^{ab}	1.23	0.01	0.02	0.01	0.004
GnRH (ng/l)	132.75^b	155.25^a	153.25^a	7.39	0.002	0.003	0.02	0.001
LH (mIU/ml)	2.52^b	3.49^a	3.30^a	0.30	0.001	0.005	0.01	0.001
FSH (IU/l)	3.74^b	5.71^a	5.33^{ab}	0.95	0.04	0.04	0.07	0.015

^{abc}Means within the same row with different superscripts are significantly different (p < 0.05).

*SEM: standard error of mean.

* Treatment: LC-0 (0 mg L-Carnitine per kg of diet) (Control), LC-250 (250 mg L-Carnitine per kg of diet), LC-500 (500 mg L-Carnitine per kg of diet).

Table 5. The effect of l-carnitine on triglycerides, cholesterol and lipoproteins.

Item (mg/dl)	Treatment*	SEM	P-value					
	LC-0 (Cont)	LC-250	LC-500	Treat.	Linear	Quadratic	Cont vs. LC	
CHOL	123.50	119.75	121.50	2.32	0.12	0.26	0.08	0.07
TRG	42.00	37.50	38.50	2.58	0.08	0.07	0.12	0.03
HDL	90.50^b	101.25^a	100.00^a	3.01	0.001	0.001	0.01	0.0004
LDL	21.50^a	10.25^b	12.25^b	3.42	0.002	0.004	0.01	0.0009
VLDL	11.50	7.43	9.25	2.50	0.11	0.23	0.07	0.06

^{abc}Means within the same row with different superscripts are significantly different (p < 0.05).

*SEM: standard error of mean.

* Treatment: LC-0 (0 mg L-Carnitine per kg of diet) (Control), LC-250 (250 mg L-Carnitine per kg of diet), LC-500 (500 mg L-Carnitine per kg of diet).

** CHOL: Cholesterol, TRG: Triglyceride, HDL: High-density lipoprotein, LDL: Low-density lipoprotein, VLDL: Very Low-density lipoprotein.

Figure 2. Effects of l-carnitine on testis histology of young broiler breeder roosters. A. Control; B. 250 mg l-carnitine, and C. 500 mg l-carnitine. Histological parameters of the testis were affected by the treatments (p < 0.01). So that, the least development of testicular tissue observed in control group birds, Magnification, × 400; Bar = 50 µm.
V. Mohammadi et al. Heliyon 7 (2021) e06753

References

[1] J.P. Brillard, Natural mating in broiler breeders: present and future concerns, World Poultry Sci. J. 60 (2004) 43945.
[2] J. Sarabia Fragoso, M. Pizarro Díaz, J. Abad Moreno, P. Casanovas Infesta, A. Rodríguez-Bertos, K. Barger, Relationships between fertility and some parameters in male broiler breeders (body and testicular weight, histology and immunohistochemistry of testes, spermatogenesis and hormonal levels), Reprod. Domest. Anim. 48 (2013) 345–352.
[3] M. Anastasiadou, A. Theodoridis, M. Avdi, G. Michailidis, Changes in the expression of Toll-like receptors in the chicken testis during sexual maturation and Salmonella infection, Anim. Reprod. Sci. 129 (2011) 93–99.
[4] J.A. Vizcarra, J.D. Kirby, D.L. Kreider, Testis development and gonadotropin secretion in broiler breeder males, Poultry Sci. 89 (2010) 328–334.
[5] D.P. Fosman, J.D. Kirby, J.A. Proudman, Reproduction in poultry: male and female, Reprod. Nutr. Farm Anim. (2000) 237–237.
[6] D.A.C. Tadendonfu, F. Ngoula, J.R. Kana, H.K. Mube, A. Tegua, Characterization of reproduction of local barreled male chicken of the western highlands of Cameroon: sexual maturity, fertility and sperm storage term in female, J. Physiol. Pharmacol. 64 (2014) 253–331.

[7] B. Blaszczyk, Z. Tarasewicz, J. Udala, D. Gaczarzewicz, T. Stankiewicz, D. Szaferbnicka, J. Jasienieczk, Changes in the blood plasma testosterone and cholesterol concentrations during sexual maturation of Peking quails, Anim. Sci. Pap. Rep. 24 (3) (2006) 259–266.
[8] P. Deviche, L.L. Hurley, H.B. Fokidis, Avian testicular structure, function, and regulation, in: Hormones and Reproduction of Vertebrates, Academic Press, 2011, pp. 277–307.
[9] J. Vizcarra, R. Alan, J. Kirby, Reproduction in male birds, in: Sturkie’s Avian Physiology, Academic Press, 2015, pp. 667–693.
[10] P.J. Sharp, C.B. Gow, Neuroendocrine control of reproduction in the cockerel, Poultry Sci. 62 (8) (1983) 1671–1675.
[11] P. Ingkasuwon, F.X. Ogasawara, The effect of light and temperature and their interaction on the semen production of White Leghorns males, Poultry Sci. 45 (6) (1966) 1199–1206.
[12] N.C. Tyler, R.M. Gous, The effect of constant photoperiod on testis weight and the use of comb area to predict testis weights in broiler breeder males, S. Afr. J. Anim. Sci. 38 (2) (2008) 153–158.
[13] X. Zhang, W.D. Berry, G.R. McDaniel, D.A. Roland, P. Liu, C. Calvert, R. Willhite, Body weight and semen production of broiler breeder males as influenced by crude protein levels and feeding regimens during rearing, Poultry Sci. 78 (2) (1999) 190–196.
[14] J.D. Kirby, M.V. Mankar, D. Hardesty, D.L. Kreider, Effects of transient prepubertal 6-N-propyl-2-thiouracil treatment on testis development and function in the domestic fowl, Biol. Reprod. 55 (4) (1996) 910–916.
[15] I. Rozenboim, G. Gvaryahu, N. Sayag, N. Snapir, Induction of precocious development of reproductive function in cockerels by tamoxifen administration, Poultry Sci. 65 (10) (1986) 1980–1983.
[16] Luis C. Roesio, Carlos Santos, Carnitines (including l-carnitine, acetyl-carnitine, and propionyl-carnitine), in: Nonvitamin and Nonmineral Nutritional Supplements, Academic Press, 2019, pp. 45–52.
[17] J.C. Souffr, J. Marion, P. Jouannot, Free l-carnitine in human seminal plasma, Int. J. Androl. 4 (1981) 388–397.
[18] A. Lenz, F. Lombardo, L. Gandini, F. Dondero, Metabolism and action of L-carnitine: its possible role in sperm tail function. Archivio italiano di urologia, nefrologia, andrologia: organo ufficiale dell’Associazione per la ricerca in urologia, Urol., Nephrol. Androl. Sci. 64 (1992) 187–196.
[19] A.A. Elokil, A.A. Bhuiyan, H.Z. Liu, M.N. Hussein, H.I. Ahmed, S.A. Azmal, S. Li, The capability of l-carnitine-mediated antioxidant on cock during aging: evidence for the improved semen quality and enhanced testicular expression of GnRH1, GnRH2, and melatonin receptors MT 1/2, Poultry Sci. 98 (2019) 4172–4181.
[20] T. Ishiz, N. Matsu, S. Sato, T. Ogata, S. Tanami, M. Anzo, N. Amano, Human chorionic gonadotropin stimulation test in prepubertal children with micrognosia can accurately predict Leydig cell function in pubertal or postpubertal adolescents, Horm. Res. Paediatr. 84 (5) (2015) 305–310.
[21] W. Zhai, S.L. Neuman, M.A. Latour, P.Y. Hester, The effect of male and female supplementation of l-carnitine on reproductive traits of white leghorns, Poultry Sci. 87 (6) (2008) 1171–1181.
[22] D. Heng, T. Zhang, Y. Tian, S.L. Neuman, M.A. Latour, P.Y. Hester, Effects of dietary soybean protein levels and feeding regimens during rearing, Poultry Sci. 78 (2) (1999) 190–196.
[23] M.L. Meistrich, G. Shetty, Inhibition of spermatogonial differentiation by GnRHR, and melatonin receptors MT 1/2, Poultry Sci. 98 (2019) 4172–4181.
[24] G.P. Janssens, M. Hesta, V. Debal, J. Debrabaltere, R.O. De Wild, L-carnitine metabolism, Reprod. Nutr. Dev. 40 (6) (2000) 535-548.
[25] C. Arslan, M. Citl, M. Sastc, Effect of L-Carnitine administration on growth performance, carcass traits, serum lipids and abdominal fatty acid compositions of geese, Rev. Med. Vet. 155 (2004) 315–320.
[26] A. Rodriguez-Bertos, K. Barger, Relationships between fertility and some parameters in male broiler breeders (body and testicular weight, histology and immunohistochemistry of testes, spermatogenesis and hormonal levels), Reprod. Domest. Anim. 48 (2013) 345–352.
[27] A. Rodriguez-Bertos, K. Barger, Relationships between fertility and some parameters in male broiler breeders (body and testicular weight, histology and immunohistochemistry of testes, spermatogenesis and hormonal levels), Reprod. Domest. Anim. 48 (2013) 345–352.
[29] A. Gerg, B. Li, Y. Guo, Effects of dietary L-carnitine and coenzyme Q10 at different supplemental ages on growth performance and some immune response in susceptible broilers, Arch. Anim. Nutr. 61 (1) (2007) 50–60.

[30] K.E. Nouboukpo, K. Tona, A. Agbonon, M. Gbeassor, J. Buyse, E. Decuyper, Effects of L-carnitine supplementation in drinking water on layer-type chick juvenile performance, Archiv Geflügelkunde 74 (2) (2010) 116–120.

[31] F.K. Okada, T. Stumpf, S.M. Miraglia, Carnitine diminishes etoposide toxic action on spermatogonial self-renewal and sperm production in adult rats treated in the prepubertal phase, J. Histochem. Cytochem. 68 (5) (2020) 327–342.

[32] S.D.H. Ahmed, K.A. Karira, S. Ahsan, Role of L-carnitine in male infertility, J. Pak. Med. Assoc. 61 (8) (2011) 732.

[33] S.G. Ahmed, K.A. Karira, S. Ahsan, Role of L-carnitine in male infertility, J. Pak. Med. Assoc. 61 (8) (2011) 732.

[34] J.E. Jones, H.R. Wilson, R.H. Harm, C.F. Simpson, P.W. Waldroup, Reproductive performance in male chickens fed protein deficient diets during the growing period, Poultry Sci. 46 (1967) 1569–1577.

[35] J. Noirault, J.P. Brillard, M.R. Bakst, Effect of various photoperiods on testicular weight, weekly sperm output and plasma levels of LH and testosterone over the reproductive season in male turkeys, Theriogenology 66 (2006) 851–859.

[36] A. Biswas, J. Mohan, K.V.H. Saxty, Age-dependent variation in hormonal concentration and biochemical constituents in blood plasma of Indian native fowl, Vet. Med. Int. (2010) 1–5. Article ID 737292.

[37] S. McGary, I. Estevez, M.R. Bakst, Potential relationships between physical traits and male broiler breeder fertility, Poultry Sci. 82 (2) (2003) 328–337.

[38] B. Sauveur, M.D. Reviers, Reproduction and Egg Production in Poultry. Reproduction and Egg Production in Poultry, INRA, Paris, 1988.

[39] A. Biswas, O.S. Ranganatha, J. Mohan, K.V.H. Sastry, Carnitine and its functional effects in poultry nutrition, World Poultry Sci. J. 67 (2) (2011) 277–296.

[40] J.E. Jones, H.R. Wilson, R.H. Harm, C.F. Simpson, P.W. Waldroup, Reproductive performance in male chickens fed protein deficient diets during the growing period, Poultry Sci. 46 (1967) 1569–1577.

[41] H. Chen, R.S. Ge, B.R. Zirkin, Leydig cells: from stem cells to aging, Mol. Cell. Endocrinol. 306 (2009) 9–16.

[42] S. Zambrano, A.J. Blanco, M.V. Ruiz-Armenta, J.L. Miguel-Carrasco, M. Arévalo, A. Mate, C.M. Vázquez, L-carnitine attenuates the development of ischemic fibrosis in hypertensive rats by upregulating PPARY, Am. J. Hypertens. 27 (2014) 460–476.

[43] L.Z. Krsmanovic, M.A. Virmani, S.S. Stojsilovic, K.J. Catt, Stimulation of gonadotropin-releasing hormone secretion by acetyl-L-carnitine in hypothalamic neurons and GT1 neuronal cells, Neurosci. Lett. 165 (1994) 33–36.

[44] N. Bresolin, L. Freddo, L. Vergani, C. Angelini, Carnitine, carnitine acyltransferases, and rat brain function, Exp. Neurol. 78 (1982) 285–292.

[45] A.D. Genazzani, A. Lanzoni, F. Ricchieri, S. Santagni, E. Rattighieri, E. Chierchia, V.M. Jasonni, Acetyl-L-carnitine (ALC) administration positively affects reproductive axis in hypogonadotropic women with functional hypothalamic amenorrhea, J. Endocrinol. Invest. 34 (2011) 287–291.

[46] H.E. Nasser, W.F. Gharib, The effect of L-carnitine on adolescent polycystic ovary syndrome patients with irregular cycles, Egypt. J. Pert. Ster. 24 (1) (2020) 43–48.

[47] S. La Vignera, R. Cannarella, R.A. Condorelli, A.E. Calogero, Disorders of Puberty: Endocrinology of the Pre-pubertal Testis, 2020, p. 780.

[48] R.E.L. Cabral, F.K. Okada, T. Stumpf, V. Vendramini, S.M. Miraglia, Carnitine partially protects the rat testis against the late damage produced by doxorubicin administered during pre-puberty, Andrology 2 (6) (2014) 931–942.

[49] Y. Cao, X. Wang, S. Li, H. Wang, L. Yu, P. Wang, The effects of l-carnitine against cyclophosphamide-induced injuries in mouse testis, Basic Clin. Pharmacol. Toxicol. 120 (2) (2017) 152–158.

[50] P. Mondola, M. Santillo, R.M. De, F. Santangelo, The effect of L-carnitine on cholesterol metabolism in rat (Rattus bubalus) hepatocyte cells, Int. J. Biochem. 24 (1992) 1047–1050.

[51] R.W. Tureck, J.P. Strauss, Progesterone synthesis by luteinized human granulosa cells in culture: the role of de novo steroid synthesis and lipoprotein-carried sterol, J. Clin. Endocrinol. Metab. 54 (1982) 367–373.

[52] A.L. Monfared, Correlation of serum lipid profile with histological and seminal parameters of testis in the Goit, Int. J. Fert. Ster. 7 (2013) 122.

[53] J.C. Maboundou, M. Fofana, J. Fresnel, J. Bocquet, D.L. Goff, Effect of lipoproteins on cholesterol synthesis in rat Sertoli cells, Biochem. Cell. Biol. 73 (1995) 67–72.