Density Functional Theory with Spatial-Symmetry Breaking and Configuration Mixing

Thomas Lesinski
Department of Physics and Institute for Nuclear Theory,
University of Washington, Box 351550, Seattle, WA 98195, USA and
University of Warsaw, Institute of Theoretical Physics, ul. Hoża 69, 00-681 Warsaw, Poland

(Dated: December 11, 2013)

This article generalizes the notion of the local density of a many-body system to introduce collective coordinates as explicit degrees of freedom. It is shown that the energy of the system can be expressed as a functional of this object. The latter can in turn be factorized as the product of the square of a collective wave function and a normalized collective-coordinate-dependent density. Energy minimization translates into a set of coupled equations, i.e., a local Schrödinger equation for the collective wave function and a set of Kohn-Sham equations for optimizing the normalized density at each point in the collective space. These equations reformulate the many-body problem exactly provided one is able to determine density- and collective-wave-function-dependent terms of the collective mass and potential which play a similar role to the exchange-correlation term in electronic Kohn-Sham density functional theory.

PACS numbers: 21.60.De, 21.60.Jz

I. INTRODUCTION

Density-functional-based models, being the only microscopic, fully quantum-mechanical tool currently available to provide insight on the structure of nuclei up to the heaviest ones, are the focus of intense investigation to improve their accuracy and precision. For example, recent developments in effective field theory methods and the theoretical foundations of nuclear DFT have triggered attempts to bridge ab-initio many-body methods, based on chiral effective field theory and high-precision two- and three-nucleon interactions, and DFT, using the former to build parts of the latter [1–7]. Another current line of work consists in enriching the form of empirical energy functionals in a systematic way [8,11].

One puzzling fact about nuclear DFT is that it owes much of its power to the use of symmetry-breaking density configurations. The method thus deviates from the symmetry-conserving Hohenberg-Kohn (HK) [12] and Kohn-Sham (KS) [13] framework. The most basic example of a broken symmetry is the translational invariance of the Hamiltonian, which is troublesome for self-bound finite systems best described by a localized density. KS frameworks have recently been built for a trapped system [14] and for a functional of the internal density, i.e., expressed in the reference frame of the nuclear center-of-mass [15,16]. A density-functional framework allowing to break arbitrary symmetries was put forward in Ref. [17], relying however on an unspecified restriction of the variational space for a trial wave function. Another example of a broken symmetry is the non-conservation of particle number in the BCS treatment of pairing. As an alternative, exact solutions of the pairing Hamiltonian and symmetry-restored Hartree-Fock-Bogolyubov equations have been formulated as a functional (function, in fact) of occupation numbers in a given single-particle basis [18–20], and functions of occupation numbers have been studied as an alternate route to building mass tables [21]. These works keep the HK/KS formalism unchanged except for a variation in its basic degree of freedom: the system’s single-particle density.

However, formally integrating into DFT the breaking of rotational invariance, as well as the violation of particle-number conservation, remains to be done. Although effort is currently being put into building functionals of the scalar, symmetry-conserving density [22], it is likely that breaking these symmetries is essential to describe what is understood as nuclear deformation, and treat pairing in finite systems, while keeping computational complexity to a minimum.

The cost-efficiency of KS-like schemes comes from the idea of using a Slater determinant to reproduce the local density ρ of a given correlated wave function, thereby capturing essential quantum effects, and encode the missing correlations into a functional $E_{xc}[\rho]$ [23,24]. Thus, no explicit mention is made of a many-body wave function. Nonetheless, current expectations about nuclear DFT were mostly raised by the success encountered during its first life as mean-field theory performed with effective density-dependent interactions, together with beyond-mean-field extensions such as the Generator Coordinate Method (GCM) performed on top of symmetry-restored mean-field states [25–28]. This was commonly understood as an approximate wave function method, which requires the restoration of broken symmetries for consistency with the underlying Hamiltonian, and allows multiple symmetry-restored configurations to be mixed to describe zero-point collective motion, or shape coexistence, and make extensive spectroscopic predictions in nuclei where these degrees of freedom are important. The
somewhat ad-hoc extension from a Hamiltonian picture to a density-functional-based one leads to pathologies in the theory [29], which can be formally addressed [30, 31] at the expense of additional complexity and constraints on the form of the functional, such as forbidding terms other than polynomials of the density [32–34]. This is referred to as the Multi-Reference Energy Density Functional (MR-EDF) model.

An alternate formalism uses a collective “Bohr” Hamiltonian [35–37], initially developed as a model for a quantum vibrating liquid droplet, as an alternative or approximation to the Hill-Wheeler equations of the GCM. The mean-field energy landscape in the space of deformation parameters is then used as a potential (with or without zero-point energy corrections) and mass parameters determined from the Slater determinants enter a corresponding kinetic operator.

MR-EDF and collective Hamiltonians are powerful tools, well adapted to the idiosyncrasies of the nuclear many-body problem, yet they do not have a clear connection to the first-principles formulation thereof, which may limit their future development. Here, I attempt to improve on this situation.

The present article aims to formulate a density functional theory allowing to break spatial symmetries (e.g. translation, rotation) and treat collective motion in a spirit similar to the GCM, MR-EDF, or collective Hamiltonian-based methods, while keeping the theory exact in the DFT sense, i.e. provided we can determine the exact functional. First, the relevant mathematical objects are defined, then the existence of a functional is summarily proven in Section [II]. A useful form of the latter is given in Section [III]. The example of translational motion is used as an illustration in Section [IV]. Finally, a minimal Kohn-Sham-like scheme for introducing auxiliary Slater determinants is presented in Section [V]. Results are discussed throughout and summarized in Section [VI].

II. DEFINITIONS AND EXISTENCE OF A FUNCTIONAL

Consider a system of N fermions with Hamiltonian $\hat{H} = \hat{T} + \hat{U} + \hat{V}$, where \hat{T}, \hat{U} and \hat{V} are respectively kinetic, interaction and external potential terms. Trial N-body antisymmetric wave functions Ψ depend on N coordinate 3-vectors \vec{r}_i, $i = 1 \ldots N$ (omitting, in this first presentation, internal degrees of freedom of the particles for the sake of clarity). Let us write

$$\mathbf{R} \equiv (\vec{r}_1, \ldots, \vec{r}_N),$$

$$d^{3N} \mathbf{R} \equiv d^3 \vec{r}_1 \ldots d^3 \vec{r}_N.$$

The kinetic and external-potential terms of \hat{H} can be written as (in units where $\hbar = m = 1$)

$$\hat{T} = -\frac{i}{2} \hat{\Delta} = -\frac{i}{2} \sum_i \Delta_i,$$

$$\hat{V}(\mathbf{R}) = \sum_i v_{\text{ext}}(\vec{r}_i),$$

while, for now, we shall keep \hat{U} as an arbitrary interaction term.

Now consider a set of differentiable real functions $Q_\mu(\vec{r})$ indexed by $\mu = 1 \ldots n$. We will use these as potential operators,

$$\hat{Q}_\mu(\mathbf{R}) \equiv \sum_i Q_\mu(\vec{r}_i),$$

their expectation values q_μ in a many-body wave function $\Psi(\vec{r})$ indexed by $\mu = 1 \ldots n$, each q_μ being taken in the interval of possible values of $Q_\mu(\mathbf{R})$. We can define the operator

$$\hat{P}(\vec{q}, \mathbf{R}) \equiv \prod_\mu \delta(\hat{Q}_\mu(\mathbf{R}) - q_\mu).$$

This operator selects configurations of the N particles for which the collective coordinates defined by the functions Q_μ correspond exactly to the given values (q_μ). It effectively projects Ψ onto an eigenspace of the \hat{Q}_μ. Using the definition above, it is trivial to prove the projector-like property

$$\hat{P}(\vec{q}, \mathbf{R}) \hat{P}(\vec{q}', \mathbf{R}) = \delta^{(n)}(\vec{q} - \vec{q}') \hat{P}(\vec{q}, \mathbf{R}),$$

as well as the closure relation

$$\int d^n \vec{q} \hat{P}(\vec{q}, \mathbf{R}) = 1,$$

where the q_μ-integral runs, as in the following, over the interval of possible values of $\hat{Q}_\mu(\mathbf{R})$. We can now use \hat{P} to define the generalized density,

$$D(\vec{q}, \vec{r}) \equiv N \int d^{3N} \mathbf{R} \, \delta^{(3)}(\vec{r} - \vec{r}_1) \hat{P}(\vec{q}, \mathbf{R}) \times \Psi^*(\mathbf{R}) \Psi(\mathbf{R}).$$

Comparing with the usual density,

$$\rho(\vec{r}) = N \int d^{3N} \mathbf{R} \, \delta^{(3)}(\vec{r} - \vec{r}_1) \Psi^*(\mathbf{R}) \Psi(\mathbf{R}),$$

we see that $D(\vec{q}, \vec{r})$ is, up to a factor N, the probability density of finding one particle at \vec{r} and the collective configuration of the N particles at \vec{q}. As \hat{P} is an
N-body operator, D contains information from up to N-body components of the density matrix associated with $\\Psi$.

It is possible to split this information by defining, first, a collective wave function (cwf)

$$f(q) \equiv e^{i\theta(q)} \left[\frac{1}{N} \int d^3r D(q, \vec{r}) \right]^{1/2}, \quad (11)$$

$$= e^{i\theta(q)} \left[\int d^3NR \Psi^*(R) \hat{P}(q, R) \Psi(R) \right]^{1/2}.

(12)$$

where $\theta(q)$ is a chosen phase depending on the problem at hand. We shall assume there exists a natural and unambiguous choice. For ground states, $\theta(q) = 0$ seems appropriate; otherwise, an irreducible representation of a symmetry group in q-space may provide the dependence of $\theta(q)$ on some or all coordinates (this will be further discussed Sections [11] and [12]).

Second, we can define the q-dependent density (defined first almost everywhere, then elsewhere by continuity),

$$d(q, \vec{r}) \equiv |f(q)|^{-2} D(q, \vec{r}), \quad (13)$$

which captures the conditional probability density of finding a particle at \vec{r} if the collective configuration is q. The meaning of $d(q, \vec{r})$ can be made more explicit by introducing the “slice” wave function

$$\Psi(q, R) \equiv f^{-1}(q) \hat{P}(q, R) \Psi(R), \quad (14)$$

which satisfies, using Eqs. (3) and (4)

$$\int d^3NR \Psi^*(q, R) \Psi(q', R) = \delta^{(n)}(q - q'), \quad (15)$$

$$\int d^3R f(q) \Psi(q, R) = \Psi(R). \quad (16)$$

This wave function is non-zero on a manifold of dimension $3N - n$ determined by the values of the collective coordinates. Then, $d(q, \vec{r})$ is the density of this state (using Eq. (17) again),

$$\delta^{(n)}(q - q') d(q, \vec{r}) = N \int d^3NR \delta^{(3)}(\vec{r} - \vec{r}_1) \times \Psi^*(q, R) \Psi(q', R). \quad (17)$$

Moreover, the quantities defined above satisfy the normalization relations, obtained from their respective definitions and the closure relation, Eq. (5),

$$\int d^3R \int d^3r D(q, \vec{r}) = N, \quad (18)$$

$$\int d^3q f^*(q) f(q) = 1, \quad (19)$$

$$\forall q, \int d^3r d(q, \vec{r}) = N. \quad (20)$$

and the following relations,

$$\int d^3q D(q, \vec{r}) = \rho(\vec{r}), \quad (21)$$

$$\int d^3r D(q, \vec{r}) = N |f(q)|^2, \quad (22)$$

which exhibit the role of D as a joint probability distribution and those of ρ and $|f|^2$ as the corresponding marginal distributions. Finally, we can see that the value of q is encoded in $d(q, \vec{r})$ through

$$\int d^3r Q(q, \vec{r}) d(q, \vec{r}) =$$

$$|f(q)|^{-2} \int d^3R \hat{Q}_\mu(R) \hat{P}(q, R) \times \Psi^*(R) \Psi(R) = q_\mu. \quad (24)$$

thus reducing the variational domain for d. We could have used a two-body or higher operator for \hat{Q}, but this would prevent us from obtaining a simple expression like Eq. (21) for this purpose.

Now, let us see how the energy of the system can be expressed as a functional of D. Let $w(q, \vec{r})$ be a real function bounded from below and

$$\tilde{w}(q, R) = \sum_i w(q, \vec{r}_i), \quad (25)$$

$$\tilde{W}(R) = \int d^3q \tilde{w}(q, R) \hat{P}(q, R). \quad (26)$$

This N-body operator applies on each slice of a wave function a different, q-dependent, local, single-particle potential $w(q, \vec{r})$:

$$\tilde{W}(R) \Psi(R) = \int d^3q f(q) \tilde{w}(q, R) \Psi(q, R). \quad (27)$$

Its expectation value is, using Eqs. (13), (17) and (27),

$$\langle \Psi | \tilde{W} | \Psi \rangle = \int d^3q d^3q' f^*(q) f(q') \times \int d^3R \Psi^*(q, R) \tilde{w}(q', R) \Psi(q', R), \quad (28)$$

$$= \int d^3q \int d^3r w(q, \vec{r}) D(q, \vec{r}), \quad (29)$$

i.e. this potential is purely multiplicative with respect to the generalized density D, just as a local one-body potential $v(\vec{r})$ is with respect to $\rho(\vec{r})$. In fact, such a one-body potential is a special case of \tilde{W} with no dependence on q ($w(q, \vec{r}) = v(\vec{r})$ in Eq. (25)).

Let us add such a potential to the Hamiltonian and define the following functional, which implies solving for the ground state of $H + \tilde{W}$:
we recover here as a limit case.

To obtain a physically useful theory, we first need to ensure that \(w \) and \(\Psi \), hence all physical observables, are functionals of \(D \). The proof is identical to the usual case 12, 13, 44 and shall not be repeated here.

Using the Hellmann-Feynman theorem and Eq. (29), we have

\[
\frac{\delta F[w]}{\delta w(q, \vec{r})} = D(q, \vec{r}).
\]

We can thus use a Legendre transform to write a functional of \(D \),

\[
E[D] = \min_w \left[F[w] - \int d^n q \int d^3 \vec{r} \ w(q, \vec{r}) D(q, \vec{r}) \right] \tag{32}
\]

\[
= \min_{\Psi \rightarrow D} \langle \Psi | \hat{H} | \Psi \rangle \tag{33}
\]

where \(\Psi \rightarrow D \) means that the variational domain for \(\Psi \) is restricted to wave functions having the generalized density \(D \). It thus appears that the energy of the system can be written as a functional of \(D \), in a similar fashion to the HK result. The ground-state energy of the system can then be found by minimizing the functional \(E[D] \).

Since \(D \) depends on more variables than just the coordinates of one particle, it introduces additional degrees of freedom compared to standard DFT. Moreover, as seen in Section II given a phase choice, \(D \) can be unambiguously decomposed into a CWF \(f \) and a \(q \)-dependent normalized density \(d \). We can thus also write

\[
E[D] = E[f, d].
\]

This alternate formulation will become useful when deriving the formal basis for a practical many-body method in the next few sections. For now, let me give a few examples of collective coordinates that can be usefully incorporated.

For instance, assuming a vanishing external potential \(\hat{V} = 0 \), using \(x/N, \ y/N \) and \(z/N \) for \(Q_{\mu}(\vec{r}) \) \((x, y, z) \) being the Cartesian components of \(\vec{r} \), the collective coordinates \(q_{\mu} \) are the components of the center-of-mass (CoM) coordinate vector \(\vec{R} \). The generalized density is then \(D(\vec{R}, \vec{r}) = |f(\vec{R})|^2 d(\vec{R}, \vec{r}) \), where, provided \(U \) is translation-invariant, \(f = \Omega^{-1/2} \) with \(\Omega \) a normalization volume, \(d(\vec{R}, \vec{r}) = \rho_{\text{int}}(\vec{r} - \vec{R}) \), and \(\rho_{\text{int}} \) is the internal density of the system, non-vanishing if the system is self-bound. In this case, \(\rho_{\text{int}} \) is the only physically relevant degree of freedom present in \(D \); the energy is a functional of the internal density, which is the result of Ref. 10 that we recover here as a limit case.

More generally, when the cwf \(f(q) \) is known from symmetry arguments and the coordinate-dependent density for one value of the coordinates, \(d(q, \vec{r}) \), can be deduced from its value at some natural reference point \(d(\vec{0}, \vec{r}) \) by a symmetry transformation, the latter is obviously a sufficient degree of freedom.

Suppose we now add the functions \((y^2 + z^2, x^2 + z^2, x^2 + y^2, -xy, -yz, -zx)\) to the set of \(Q_{\mu}(\vec{r}) \). We can now use as coordinates the components of the inertia tensor of the nucleus in the laboratory frame,

\[
\mathbb{J} = \int d^3 \vec{r} \begin{pmatrix} y^2 + z^2 & -xy & -xz \\ -yx & x^2 + z^2 & -yz \\ -zx & -yz & x^2 + y^2 \end{pmatrix} d(\vec{R}, \vec{r}).
\]

From this and the CoM position, using the Huygens-Steiner theorem from solid mechanics, we can recover the inertia tensor in the CoM frame \(\mathbb{J}_0 \),

\[
\mathbb{J}_0 \equiv \mathbb{J} - N (R^2 \mathbb{I} - \vec{R} \otimes \vec{R}^\text{t}),
\]

where \(\mathbb{I} \) is the identity matrix and \(\otimes \) is the tensor (outer) product of vectors. In turn, \(\mathbb{J}_0 \) can be translated into a root-mean-square matter radius \(r_{\text{rms}} \equiv \text{Tr}(\mathbb{J}_0)/2N \) and a quintuplet of quadrupole deformation parameters and Euler angles \((\beta, \gamma, \varphi, \theta, \psi)\) 36, 41. We can thus treat deformation and rotation degrees of freedom dynamically.

At this point we might find that the number of collective coordinates in our theory, i.e. eight independent components of \((\vec{R}, \mathbb{J}_0) \) is actually too large for practical applications. For example, fluctuations of the radius are not usually considered an essential dynamical degree of freedom. We can define a functional with coordinates removed as follows. Consider a reduced set \(\vec{q} \) of \(\tilde{n} < n \) coordinates, and the generalized density \(\tilde{D}(\vec{q}, \vec{r}) \) depending on this reduced set. The energy can be written as

\[
E[D] = \min_{D \rightarrow \tilde{D}} E[D],
\]

where \(D \rightarrow \tilde{D} \) means that for all \(\vec{r} \),

\[
\int dq_{n+1} \ldots dq_n \ D(q, \vec{r}) = \tilde{D}(\vec{q}, \vec{r}).
\]

This operation can be performed after a nonlinear transformation among the coordinates \(q \), such as the one mentioned above to obtain the canonical Bohr coordinates from the inertia tensor. Using this, we can remove in succession \(r_{\text{rms}} \), then, if desired, \(\gamma \) and \(\psi \) (to obtain a functional describing only axially-symmetric deformation). Alternatively, we may remove \(\beta \) and \(\gamma \) and keep only Euler angles as coordinates. In this case, again, the cwf as well as the transformations of the density \(d(\vec{R}, \varphi, \theta, \psi; \vec{r}) \) are known analytically, and we can express the energy as a function of a single, deformed intrinsic density.
Note that Eq. (38) has a similar form to Eq. (21). We could, in principle, use this procedure starting with the full N-body local density $\Psi'(R)\Psi(R)$ and, integrating out collective coordinates, yield a succession of generalized-density functionals, all the way down to the Hohenberg-Kohn functional of $\rho(\vec{r})$ if we remove all of them. This formalism thus appears very general and flexible. In particular, it gives us a choice between a “single-reference” description of many-body systems in terms of a single density (if symmetries define the dependence on q of the relevant quantities), of a “multi-reference” description explicitly coupling single-particle and collective motion.

Another important point to stress is that this theory is symmetry-conserving. Let $\vec{S}(\vec{r})$ be an orthogonal transformation of the coordinates. Then, define

$$S(R) = (\vec{S}(r_1), \vec{S}(r_2), \ldots, \vec{S}(r_N)),$$ \hspace{1cm} (39)

and suppose the set of collective coordinates is chosen so that we can define

$$\vec{S}(Q(R)) \equiv Q(S(R)).$$ \hspace{1cm} (40)

Then, the projector $\hat{P}(q, R)$ is invariant under the simultaneous transformation of single-particle and collective coordinates,

$$\hat{P}(S(R), S(R)) = \delta^{(n)} \left(\hat{Q}(S(R)) - Q(q) \right),$$ \hspace{1cm} (41)

$$= \delta^{(n)} \left(\hat{Q}(R) - q \right).$$ \hspace{1cm} (42)

If, furthermore, the transformation leaves the many-body wave function invariant up to a phase η,

$$\Psi(S(R)) = \eta \Psi(R),$$ \hspace{1cm} (43)

we have, from the definition of D,

$$D(S(q), S(\vec{r})) = D(q, \vec{r}).$$ \hspace{1cm} (44)

This simultaneous transformation thus leaves \vec{D} invariant as well, the same property being obtained for d if f is invariant under S. Of course, for a given, fixed value of q, $D(q, \vec{r})$ and $d(q, \vec{r})$, understood as functions of \vec{r} alone, do not have to be symmetry-invariant. This brings a solution to the usual conundrum around using the symmetry-conserving HK framework to justify nuclear DFT.

For completeness, the case of a wave function transforming as a non-trivial representation of a symmetry group should be mentioned. In general, D is not invariant in this case. Ideally, the collective coordinates should be chosen so as to replicate the group structure in the transformations of f and d. This deserves a more detailed discussion, which involves the phase choice entering the definition of f and needs to be done on a case-by-case basis.

One remaining hurdle, is pairing; treating superfluid systems by breaking the conservation of particle number to yield a non-zero pair density would require an operator $\hat{P}(q)$ projecting on the associated $U(1)$ gauge angle (yielding a particle-number breaking slice $|\Psi(q)\rangle$). This, in turn, requires the definition of a gauge-angle operator; technicalities of such phase operators have been worked out in the field of quantum optics [45] starting from a particle-number representation. In our case, this would entail a switch to a Fock-space representation, which is envisionable yet cumbersome (the present derivation is pervaded with N-body operators), and, moreover, the definition of a particle-number basis corresponding to each point (or state) in the N-body Hilbert space, i.e. choosing one definite particle-addition operator. Such a procedure relies on an arbitrary choice (what is the $N + 2$-body component of the N-particle system’s correlated wave function Ψ?) that has to be studied in detail, and is beyond the scope of the present work, the remainder of which shall be concerned with normal systems. Let me simply suggest that pairing should probably be treated with a different, simpler scheme, which shall be described in a future paper.

III. COLLECTIVE SCHRÖDINGER EQUATION

The rest of this article shall be devoted to deriving the formal basis for a practical many-body method based on the result from the previous section. Here I focus on the dependence of the energy on the cwf f and derive a form of the functional that allows to optimize the latter. Let us define a trial wave function

$$\Psi' = \int d^nq \ g(q) |\Psi(q)\rangle,$$ \hspace{1cm} (45)

where g is a trial cwf, whereas in the following f, d and $\Psi(q, R)$ are defined through Eqs. (12), (13) and (14) from a starting wave function $\Psi(R)$. This will allow us to examine the dependence of the energy on the cwf and put $E[q, d]$ in a convenient form, then set $g = f$ at the end. The trial energy is

$$E = \langle \Psi' | \hat{T} + \hat{U} + \hat{V} | \Psi' \rangle,$$ \hspace{1cm} (46)

$$= \int d^nq \ d^nq' \ g^*(q) g(q') \langle \Psi(q) | \hat{T} + \hat{U} + \hat{V} | \Psi(q') \rangle,$$ \hspace{1cm} (47)

Let us first give the interaction matrix element. Here we assume a local interaction (which can nevertheless contain three-body or higher operators),
\[
\langle \Psi(q|\hat{U}|\Psi(q')\rangle = \frac{\delta(q-q')}{\langle \hat{P}(q) \rangle} \int d^3N R \\
\times \hat{P}(q, R) \hat{U}(R) \Psi^*(R) \Psi(R), \quad (48)
\]

with a similar expression for \(\hat{V}\), where we define

\[
\langle \hat{P}(q) \rangle = \int d^3N R \hat{P}(q,R) \Psi^*(R)\Psi(R) = |f(q)|^2. \quad (49)
\]

The kinetic matrix element, in turn, is (after integrating by parts; here and below we assume Dirichlet boundary conditions or an infinite integration domain, allowing to drop boundary terms)

\[
\langle \Psi(q) | \hat{T} | \Psi(q') \rangle = \frac{1}{2} \int d^3N R \\
\times \hat{\nabla} \Psi^*(q, R) \cdot \hat{\nabla} \Psi(q', R), \quad (51)
\]

\[
= \frac{1}{2 f^*(q) f(q')} \int d^3N R \\
\times \left\{ \hat{\nabla} \hat{P}(q, R) \cdot \hat{\nabla} \hat{P}(q', R) \\
\times \Psi^*(R) \Psi(R) \\
+ \hat{P}(q, R) \hat{\nabla} \hat{P}(q', R) \\
\cdot \left[\Psi^*(R) \hat{\nabla} \Psi(R) \\
- \Psi^*(R) \hat{\nabla} \Psi(R) \right] \\
- \delta^{(m)}(q-q') \hat{P}(q, R) \\
\times \Psi^*(R) \hat{\nabla} \Psi(R) \right\}. \quad (52)
\]

The gradient of \(\hat{P}\) can be derived using Eq. (50) and the chain rule,

\[
\nabla \hat{P}(q, R) = - \sum_{\mu} \nabla Q_{\mu}(R) \partial_{\mu} \hat{P}(q, R), \quad (53)
\]

where \(\partial_{\mu}\) indicates differentiation with respect to \(q_{\mu}\). Applying the result of Eq. (53) in Eq. (47), using integration by parts to transfer \(\partial_{\mu}\) on the cwf, and reducing the double integral with Eq. (7), we can write the kinetic energy as

\[
\langle \Psi' \hat{T} \Psi' \rangle = \frac{1}{2} \int d^n q \\
\times \left\{ \sum_{\mu\nu} F_{\mu\nu}(q) \partial_{\mu} \left(f^{-1}(q) g^*(q) \right) \\
\times \partial_{\nu} \left(f^{-1}(q) g(q) \right) \\
- i \sum_{\mu} J_{\mu} f^{-1}(q) g^*(q) \\
\times \partial_{\mu} \left(f^{-1}(q) g(q) \right) \\
- \int d^3N R \hat{P}(q, R) \Psi^*(R) \hat{\nabla} \Psi(R) \\
\times f^{-1}(q) g^*(q) f^{-1}(q) g(q) \right\}. \quad (54)
\]

where we introduce

\[
F_{\mu\nu}(q) = \int d^3N R \hat{P}(q, R) \\
\times \hat{\nabla} \hat{Q}_{\mu}(R) \cdot \hat{\nabla} \hat{Q}_{\nu}(R) \Psi^*(R) \Psi(R), \\
J_{\mu}(q) = \frac{i}{2} \int d^3N R \hat{P}(q, R) \hat{\nabla} \hat{Q}_{\mu}(R) \\
\cdot \left[\Psi^*(R) \hat{\nabla} \Psi(R) - \Psi^*(R) \hat{\nabla} \Psi(R) \right]. \quad (55)
\]

Using Eq. (53) and the steady-state continuity equation for the probability current of \(\Psi(R)\), we can easily check that \(J_{\mu}\) itself satisfies

\[
\sum_{\mu} \partial_{\mu} J_{\mu}(q) = 0. \quad (57)
\]

Its definition and this property suggests its role as a collective current.

Finally, replacing \(f\) everywhere by its expression involving \(\theta(q)\) and \(\langle \hat{P}(q) \rangle\), using integration by parts again, then setting \(g = f\), we have

\[
E[f, d] = \int d^n q f^*(q) \left[-\frac{1}{2} \sum_{\mu\nu} \partial_{\mu} A_{\mu\nu}(q) \partial_{\nu} + U(q) \\
- \frac{i}{2} \sum_{\mu} \left(\partial_{\mu} V_{\mu}(q) + V_{\mu}(q) \partial_{\mu} \right) \right] f(q). \quad (58)
\]

where we made \(\partial_{\mu}\) act on all factors to its right. The potentials entering Eq. (58) are defined as follows. First, the collective mass term is

\[
A_{\mu\nu}(q) = \frac{F_{\mu\nu}(q)}{\langle \hat{P}(q) \rangle}. \quad (59)
\]

This collective-mass term does not explicitly involve the interaction; it consists of a part of the kinetic energy.
This is expected since a local potential does not couple slices with different q, the latter being non-zero on different, non-overlapping manifolds in the many-body coordinate space: a local operator only contributes to the local collective potential. The dependence of $A_{\mu\nu}$ on the interaction is thus implicit, due to dependence on the wave function itself in $\langle \hat{P}(q) \rangle$ and $F_{\mu\nu}(q)$.

To the contrary, the GCM and its collective-Hamiltonian based approximations typically use, as building blocks, Slater determinants which are not localized in collective coordinate space (hence their non-orthogonality and, in the GCM, the need to remove zero-norm states when solving the Hill-Wheeler equations). Our collective mass and the one found in collective-Hamiltonian models may thus have slightly different meanings.

Second, the collective potential is

$$\mathcal{U}(\mathbf{q}) \equiv \sum_{\mu\nu} \mathcal{F}_{\mu\nu}(q) \left[\frac{1}{2} \frac{\partial_\mu \theta(q) \partial_\nu \theta(q)}{\langle \hat{P}(q) \rangle} + \frac{1}{8} \frac{\partial_\mu \langle \hat{P}(q) \rangle \partial_\nu \langle \hat{P}(q) \rangle}{\langle \hat{P}(q) \rangle^3} \right]$$

$$+ \frac{1}{4} \sum_{\mu\nu} \frac{\mathcal{F}_{\mu\nu}(q)}{\langle \hat{P}(q) \rangle^2} \partial_\mu \langle \hat{P}(q) \rangle$$

$$- \frac{1}{2} \sum_\mu \frac{J_\mu(q) \partial_\mu \theta(q)}{\langle \hat{P}(q) \rangle}$$

$$+ \frac{1}{\langle \hat{P}(q) \rangle} \int d^3 N \mathbf{R} \hat{P}(q, \mathbf{R})$$

$$\times \Psi^\dagger(\mathbf{R}) \left[- \frac{1}{2} \hat{\Delta} + \hat{U}(\mathbf{R}) \right] \Psi(\mathbf{R})$$

$$+ \int d^3 \mathbf{r} v_{\text{ext}}(\mathbf{r}) d(q, \mathbf{r}).$$ \hspace{1cm} (60)

If Ψ is an eigenstate of \hat{H}, the last two terms of Eq. (60) boil down to the energy E. In fact, all terms proportional to $F_{\mu\nu}$ and J_μ entering Eq. (58) cancel each other, as is made obvious by setting $\beta = g$ prematurely in Eq. (54), and these expressions could be simplified to a trivial form. However this particular separation of the energy is useful in isolating the dynamics of the system with respect to the chosen coordinates, while integrating out uninteresting ones. We shall see below, with an example, that it yields a meaningful physical value for the collective mass and potential.

This potential contains a piece of the kinetic energy, as well as all interaction and external-potential terms of the Hamiltonian (the latter being contained in the last line). Here, we assumed a local interaction term. A non-local one would simply make the potential itself non-local in the collective space, i.e. $\mathcal{U}(q, q')$. Such a non-local interaction is commonly found as the result of a renormalization-group (RG) evolution \cite{46,48} of a starting, local model of the nucleon-nucleon interaction. This suggests that our collective Hamiltonian

is not renormalization-scale-invariant. Since $D(q, \mathbf{r})$ involves components of many-body density matrices of the system, it is sensitive to details of the wave function and should not be considered an observable in the RG sense, or at best a scheme-dependent one \cite{49}, and the same has to be deduced for quantities entering Eq. (68). However, the main purpose of the present formalism is the description of low-energy collective states and observables which should not be sensitive to such details. The generalized density, as the cwf, should thus be largely scale-invariant in practice, for appropriate choices of the collective coordinates. We are thus presented with a scale-dependent collective Hamiltonian with largely scale-independent solutions, indicating that scale-dependence mainly occurs through reshuffling of contributions to the energy between non-locality in \mathcal{U} and the collective mass term. In practice, it should be safe to limit ourselves to parameterizations of a local collective potential.

Finally, the potential multiplying the current operator is

$$\mathcal{V}_\mu(q) \equiv \sum_\nu \mathcal{F}_{\mu\nu}(q) \frac{\partial_\nu \theta(q)}{\langle \hat{P}(q) \rangle} + \frac{J_\mu(q)}{\langle \hat{P}(q) \rangle}. \hspace{1cm} (61)$$

Here, the first term in the definition of \mathcal{V}, as well as the term involving J_μ in Eq. (60) are proportional to the derivative of the phase introduced in Eq. (11) and ensure the invariance of the energy with respect to gauge transformations of f. The notion that the energy (especially the kinetic energy) should not depend on the complex phase of the wave function may be counter-intuitive. It is worth reminding here that we are dealing with a functional of a generalized density, and that the cwf f, if useful for formulating a theory of collective motion, has been introduced somewhat artificially. Thinking in terms of the correlated many-body wave function of the system, the functional $E[D] = E[f, d]$ yields the lowest energy of all states having D as their generalized density; the state which minimizes this energy is unique and we can access no other. For example, in the case of translational motion examined above, plane waves with non-zero momentum are excluded from the theory, as they have the same density, in terms of the CoM coordinate vector, as the zero-momentum state.

The second term in Eq. (61) involves the current $J_\mu(q)$. We can use the freedom of choosing the phase $\theta(q)$ mentioned above to cancel it with the first term if we can make the phase satisfy

$$\sum_\nu \mathcal{F}_{\mu\nu}(q) \partial_\nu \theta(q) = -J_\mu(q), \hspace{1cm} (62)$$

which amounts to introducing in the cwf the current which is present in the underlying many-body wave function. Cancelling this term is useful to simplify the functional into a form that is more convenient to later derive a Schrödinger equation for f.

\[E[f,d] = \int d^q f^*(q) \left[-\frac{1}{2} \sum_{\mu\nu} \partial_\mu A_{\mu\nu}(q) \partial_\nu + \mathcal{U}(q) \right] f(q). \]

(63)

The phase will then simply come out from the solution to that equation.

The collective inverse mass \(A_{\mu\nu}(q) \) and the collective potential \(\mathcal{U}(q) \) depend on the wave function \(\Psi \); they are, for each \(q \), functionals of \(f \) and \(d \). A collective Schrödinger equation can be obtained by minimizing \(E \) with respect to \(f \), with a constraint on the norm, Eq. (19), viz.

\[
\frac{\delta (E[f,d] - E'[f]|f|^2)}{\delta f^*} = 0 = \left[-\frac{1}{2} \sum_{\mu\nu} \partial_\mu A_{\mu\nu}(q) \partial_\nu \left. \mathcal{U}(q) + \mathcal{U}_{\alpha}(q) - E' \right] f(q),
\]

where \(\partial_\mu \) acts on all factors to its right, with a rearrangement potential that appears because of the functional derivation of \(A \) and \(\mathcal{U} \),

\[
\mathcal{U}_{\alpha}(q) = \int d^{q'} f^*(q') \left[-\frac{1}{2} \sum_{\mu\nu} \partial'_\mu \frac{\delta A_{\mu\nu}(q')}{\delta |f|^2(q')} \partial'_\nu
+ \frac{\partial U(q')}{\delta |f|^2(q')} \right] f(q').
\]

(64)

where \(\partial'_\mu \) differentiates with respect to \(q'_\mu \). Note that in general, a distinction has to be made between \(E \) \((\text{energy}) \) and \(E' \) \((\text{eigenvalue of the collective Hamiltonian}) \) due to the rearrangement energy.

The remaining issue is then to optimise the \(q \)-dependent density \(d(q,\vec{r}) \). This will be dealt with in Section IV.

IV. EXAMPLE: TRANSLATIONAL MOTION

An illustrative example is useful at this point. Consider the case, already mentioned above, of a translationally-invariant Hamiltonian, where we use the components of the CoM coordinate vector \(\vec{R} \) as collective coordinates: \(Q_1(\vec{r}) = x/N \), \(Q_2(\vec{r}) = y/N \), \(Q_3(\vec{r}) = z/N \). As mentioned above, translational symmetry allows to write the energy as a functional of the internal density without further consideration for collective motion. However, applying the formalism of the previous section to this case is useful, since all quantities entering the collective Hamiltonian can be derived analytically.

Using these definitions,

\[
\nabla \hat{Q}_\mu(\vec{R}) \cdot \nabla \hat{Q}_\nu(\vec{R}) = \frac{\delta_{\mu\nu}}{N},
\]

(66)

\[
F_{\mu\nu}(q) = \frac{\delta_{\mu\nu}}{N} \langle P(q) \rangle,
\]

(67)

\[
A_{\mu\nu}(q) = \frac{\delta_{\mu\nu}}{N}.
\]

(68)

The mass of the system entering the kinetic term is thus \(N \) times the mass of the constituent particle itself, as expected.

Assuming \(\nu_{\text{ext}}(\vec{r}) = 0 \) and \(\hat{U} \) invariant under translations and Galilei transformations, we can write the Hamiltonian as

\[
\hat{H} = \hat{T}_{\text{cm}} + \hat{T}_{\text{int}} + \hat{U},
\]

(69)

\[
\hat{T}_{\text{cm}} = \frac{1}{2N} \left(\sum_i \nabla_i \right)^2,
\]

(70)

and eigenstate wave function of the system as

\[
\Psi(\vec{R}) = \Psi_{\text{cm}}(\vec{R}) \Psi_{\text{int}}(\vec{\Xi}),
\]

(71)

where \(\vec{\Xi} \) is a vector of Jacobi coordinates allowing to describe internal motion of the particles.

For \(D(\vec{R},\vec{r}) \) independent of \(\vec{R} \), the value of \(\Psi_{\text{cm}}(\vec{R}) \) that minimizes the c.m. kinetic energy is \(\Psi_{\text{cm}}(\vec{R}) = \Omega^{-1/2} \). To access a state with non-vanishing c.m.kinetic energy, we need to choose a trial \(f(\vec{R}) \) such that the c.m.-coordinate density \(|f|^2(\vec{R}) \) is inhomogeneous. One such choice is

\[
f(\vec{R}) = \sqrt{\frac{2}{\Omega}} \sin(\vec{K} \cdot \vec{R}).
\]

(72)

For \(d \), let us set \(d(\vec{R},\vec{r}) = \rho_{\text{int}}(\vec{r}) \), where \(\rho_{\text{int}} \) is the internal density of an eigenstate of the internal Hamiltonian \(\hat{T}_{\text{int}} + \hat{U} \) with eigenvalue \(E_{\text{int}} \). We have

\[
|f(\vec{R})|^2 = \langle P(\vec{R}) \rangle = \frac{2}{\Omega} \sin^2(\vec{K} \cdot \vec{R}),
\]

(73)

with the phase

\[
\theta(\vec{R}) = \begin{cases} 0 & \text{for } 0 \leq \vec{K} \cdot \vec{R} - 2m\pi < \pi \\ \pi & \text{for } \pi \leq \vec{K} \cdot \vec{R} - 2m\pi < 2\pi \end{cases}
\]

(74)

for integer \(m \). The wave function minimizing the energy for this choice of \(f \) has \(\Psi_{\text{cm}}(\vec{R}) = f(\vec{R}) \). Note that \(J_{\mu} \), Eq. (57) is, in this case, the average momentum of the system. This quantity is zero for this state, thus

\[
J_{\mu}(\vec{R}) = 0.
\]

(75)
We can derive the collective potential by using the above and Eqs. (73) and (74) in Eq. (60); after some trigonometry and much cancellation,

$$U(q) = \frac{\pi^2 K^2}{2N} \sum_{m} \delta^2(\vec{K} \cdot \vec{R} - m\pi) - \frac{K^2}{2N} + E. \quad (76)$$

Here, $\delta^2(x)$ refers to the pseudo-distribution which yields zero for functions having a node at $x = 0$, and infinity otherwise (which is the result obtained by making $\theta(\vec{R})$ vary smoothly from 0 to π on an interval whose width is then taken to zero). The expectation value of U is thus

$$\int d^3 q f^*(q) U(q) f(q) = E - \frac{K^2}{2N} = E_{\text{int}}. \quad (77)$$

In the Schrödinger equation, this term will constrain the cwf to have nodes at $\vec{K} \cdot \vec{R} = m\pi$, i.e. the same as our original choice for f. Since the phase $\theta(\vec{R})$ which introduces this term is indissociable from the choice of f (the only reasonable phase choices are ones that make f continuous), the expectation value of this operator, in fact, vanishes for any trial cwf. It can thus be dropped from the collective Schrödinger equation. Similarly, V_μ vanishes except for a similar singularity at the nodes of the wave function, and the same observation applies.

Finally, U_{na} is in this case proportional to $1/\Omega$ and thus negligible. The collective Schrödinger equation we obtain thus involves a kinetic term with the mass of the nucleus and a constant potential equal to the internal energy. The cwf f chosen initially is a trivial solution from the collective Schrödinger equation. Similarly, vanishing CoM kinetic energy, and do not need to remove the latter. The Slater determinant formed by the KS orbitals has a non-vanishing CoM energy, and it is only a theoretical auxiliary. Moreover, since its explicit particle-number dependence breaks size consistency, such a correction is undesirable in applications to reactions or fission, hence its omission here.

The term U^{ext} captures the contribution from the external potential,

$$U^{\text{ext}}[\rho_\mu] = \int d^3 r v^{\text{ext}}(\vec{r}) \rho_\mu(\vec{r}), \quad (81)$$

while U^{ic} is the interaction and correlation contribution not accounted for by the previous terms. In canonical electronic DFT, interaction and correlation terms in the functional are further split into Hartree and exchange-correlation terms. We shall keep the formalism more compact and general with respect to the form of the interaction by omitting this step.

The density $d(\vec{q}, \vec{r})$ can be optimized by minimizing the energy with respect to the orbitals with a normalization constraint, as well as a constraint on the average value of the collective coordinates to satisfy Eq. (24),

$$\delta \left[E - e_k(q)(\vec{k}|q\rangle \langle q|\vec{k}) - \sum_\mu l_\mu(Q_\mu|\rho_\mu) \right] = 0, \quad (82)$$

$$l_\mu = \frac{\partial E}{\partial (Q_\mu|\rho_\mu)}, \quad (83)$$

which, per Eqs. (63), (78) and (79), yields

$$\left[-\frac{1}{2} \Delta + v^{\text{ext}}(\vec{r}) + v_b(\vec{q}; \vec{r}) - \lambda_\mu Q_\mu(\vec{r}) - \varepsilon_i(\vec{q}) \right] \phi_i(\vec{q}; \vec{r}) = 0. \quad (84)$$
where we have redefined the single-partite energy as
\[\varepsilon_k(q) \equiv |f(q)|^{-2} \varepsilon_k(q) \] and the Legendre multiplier as
\[\lambda^v_k \equiv |f(q)|^{-\frac{3}{2}} l_k. \]

The auxiliary potential \(v_s(q, \vec{r}) \) is

\[
v_s(q, \vec{r}) = |f(q)|^{-2} \int d^3 q' f^*(q') \left[\frac{\partial E[f, d]}{\partial d(q, \vec{r})} \right] (\delta A_{\mu\nu}^{(q)}(\vec{r}) \delta_{\mu'} + \frac{\partial U^{ic}(q')}{\partial d(q, \vec{r})}) f(q').
\]

This formulation raises the usual problem of non-interacting \(v \)-representability \[44\], i.e. of the existence of a map between \(v(q, \vec{r}) \) and \(d(q, \vec{r}) \) subject to Eq. \[83\] at each \(q \), which presents itself in the same way in the present formalism as we use the KS kinetic-energy functional \(T \).

Per the Hohenberg-Kohn Theorem applied to the non-interacting system, Eqs. \[90\] and \[93\] unambiguously define a unique potential \(v_s(q, \vec{r}) \) and a unique set of orbitals and associated energies which, for each value of \(q \), are functionals of \(p_\mu(\vec{r}) \). These orbitals are labelled by an index \(k \) which can be smaller or greater than \(N \). In the following we use \(i \) as an index on the first \(N \) (occupied) orbitals, \(a \) as an index on unoccupied (or virtual) orbitals, while \(k \) indexes the whole basis. This in turn allows to introduce orbital-dependent terms in the functional. Let us use this possibility by expressing the collective mass as

\[
A_{\mu\nu}[f, d](q) = A_{\mu\nu}^{in}[d](q) + A_{\mu\nu}^{ic}[f, d](q).
\]

In the last expression, \(A_{\mu\nu}^{in}(q) \) is the Ingls cranking-formula collective mass \[27\] \[54\], while \(A_{\mu\nu}^{ic} \) is the remaining interaction-correlation component.

\[
A_{\mu\nu}^{in}(q) \equiv \left[B_{\mu\nu}^{in}(q) \right]^{-1},
\]

\[
B_{\mu\nu}^{in}[f, d](q) = 2 \sum_{ai} \frac{(q|v_{ia}^{(\mu)}|q_a)(q_a|v_{i\mu}^{(\nu)}|q)}{(\varepsilon_a(q) - \varepsilon_i(q))^3},
\]

where

\[
v_{ia}^{(\mu)}(\vec{r}) = \frac{\partial v(q, \vec{r})}{\partial d_{\mu}}.
\]

Orbital-dependent terms have been extensively used in quantum-chemistry applications of DFT, first as a way of replacing non-local exchange terms \[52\] \[56\], see also \[57\], then as a tool for introducing explicit correlations in the functional through perturbation theory \[58\] \[59\]. Let me refer to the reviews in Refs. \[8\] \[60\] \[61\] and simply use a straightforward generalization of their main result (make all quantities depend on \(q \) and add a factor \(|f(q)|^{-2} \) to the definition of \(v_s \) to derive the contribution \(v_{\mu\nu}(q, \vec{r}) \) of \(A_{\mu\nu}^{in} \) to the auxiliary potential. This can be obtained by inverting the optimized effective potential (OEP) equation,

\[
|f(q)|^{-2} \int d\vec{r}' \chi_s(q, \vec{r}, \vec{r}') v_{\mu\nu}(q, \vec{r}) = \Lambda_{\mu\nu}(q, \vec{r}),
\]

where

\[
\Lambda_{\mu\nu}(q, \vec{r}) = \sum_k \left\{ -\int d\vec{r}' \left[\phi_k^*(q, \vec{r}) G_k(q, \vec{r}, \vec{r}') \right] \frac{\delta E^{in}}{\delta \phi_k(q, \vec{r})} + c.c. \right\} + |\phi_k(q, \vec{r}')|^2 \frac{\delta E^{in}}{\delta \varepsilon_k(q)} \right\},
\]

and \(E^{in} \) is the cranking contribution to the energy,

\[
E^{in}[f, d] = -\frac{1}{2} \int d^3 q f^*(q) \sum_{\mu\nu} \partial_\mu \left(A_{\mu\nu}^{in}(d)(q) \partial_\nu f(q) \right),
\]

\(\chi_s \) being the static KS response function and \(G_k \) the KS Green’s function,

\[
\chi_s(q, \vec{r}, \vec{r}') = -\sum_k \phi_k^*(q, \vec{r}) G_k(q, \vec{r}, \vec{r}') \phi_k(q, \vec{r}') + c.c.,
\]

\[
G_k(q, \vec{r}, \vec{r}') = \sum_{\lambda \neq k} \frac{\phi(\vec{r}, \vec{r}') \phi_\lambda(\vec{r})}{\varepsilon_\lambda(q) - \varepsilon_k(q)}.
\]

The functional derivatives of the orbital-dependent energy with respect to \(\phi_k^* \) and \(\varepsilon_k \), using \(t \) as a shorthand for either, are

\[
\frac{\delta E^{in}}{\delta t} = \frac{1}{2} \int d^3 q f^*(q) \partial \left(B^{in}(q) \right)^{-1}(q) \frac{\delta B^{in}(q)}{\delta t} \times \left(B^{in}(q) \right)^{-1}(q) \partial f(q),
\]

where the derivatives of \(B^{in} \) are given by

\[
\frac{\delta B^{in}_{\mu\nu}}{\delta \phi_k(q, \vec{r})} = 2 \begin{cases}
\sum_a v_{ia}^{(\mu)}(\vec{r}) \phi_a(q, \vec{r}) \\
\times \frac{(q_a | v_{i\mu}^{(\nu)} | q_k)}{(\varepsilon_a(q) - \varepsilon_k(q))^3} & (k \leq N),
\end{cases}
\]

\[
\sum_i \frac{(q_k | v_{i\mu}^{(\nu)} | q_i)}{(\varepsilon_k(q) - \varepsilon_i(q))^3} \times v_{i\mu}^{(\nu)}(\vec{r}) \phi_i(q, \vec{r}') & (k > N),
\]

\[
\delta B^{in}_{\mu\nu} = 2 \begin{cases}
\sum_a v_{ia}^{(\mu)}(\vec{r}) \phi_a(q, \vec{r}) \\
\times \frac{(q_a | v_{i\mu}^{(\nu)} | q_k)}{(\varepsilon_a(q) - \varepsilon_k(q))^3} & (k \leq N),
\end{cases}
\]

\[
\sum_i \frac{(q_k | v_{i\mu}^{(\nu)} | q_i)}{(\varepsilon_k(q) - \varepsilon_i(q))^3} \times v_{i\mu}^{(\nu)}(\vec{r}) \phi_i(q, \vec{r}') & (k > N),
\]
is encoded in Eq. (lack of dependence of boring points, as well as densities unless one assumes a cwf and fields have to be communicated between neighboring easy to treat with parallel processing, as only the relies on the assumptions above.

or relativistic functional, which can be used in the standard form. Assuming the motion, the formalism can be put into a more convenient, the dynamics of fission processes [64]. rotational bands in collective nuclei [62, 63], as well as that this coupling is weak, we can reduce the dependence the fact that the value of \(\rho \) generally depends on \(\rho \) \([q] \) plays the role of the usual Skyrme, Gogny potential contains a functional derivative of \(\rho \), due to the coupling between different slices \(\Psi(\sigma) \) to be negligible, the latter then only \(\rho \) for all \(q \), due to the coupling between different slices \(\Psi(\sigma) \) in the many-body Schrödinger equation. If we further assume that this weak dependence can be weakened, the functional can be written into a form that allows to write a Schrödinger equation for the cwf. When the collective coordinates are chosen to be the components of the inertia tensor of the system, the collective Hamiltonian takes the form of a generalized Bohr Hamiltonian. Single-particle quantum effects can be reintroduced with s.p. orbitals determined from a s.p. potential deduced by no means assumed correct by itself. It could be replaced by a term derived using adiabatic time-dependent Hartree-Fock (ATDHF) or the Gaussian overlap approximation to the GCM (GCM-GOA). Even then, such terms rely entirely on the single-particle orbitals at each point in the collective space and cannot be expected to correctly reproduce the physics of the underlying correlated many-body state. The collective mass \(A_{\mu \nu} \) is an integral part of the functional, and, in the absence of a rigorous ab-initio derivation, it is perfectly reasonable to parameterize it and adjust the parameters to experimental data.

VI. SUMMARY AND OUTLOOK

The energy of a many-body system is expressible as a functional of a generalized density, which extends the concept of the local particle density to include a dependence on coordinates describing collective motion of the particles. The generalized density can be decomposed as the product of the square of a cwf and a density parameterized by the collective coordinates, which is allowed to break spatial symmetries of the Hamiltonian. By decomposing the kinetic contribution to the energy, the functional can be written into a form that allows to write a Schrödinger equation for the cwf. When the collective coordinates are chosen to be the components of the inertia tensor of the system, the collective Hamiltonian takes the form of a generalized Bohr Hamiltonian. Single-particle quantum effects can be reintroduced with s.p. orbitals determined from a s.p. potential deduced from the parameterizations of the collective mass and potential. With the assumption of weak coupling between single-particle degrees of freedom at different points in the collective space, the functional can be reduced to a form similar to current nuclear Energy Density Functionals augmented by a collective Hamiltonian; equations have been derived for going beyond this scheme and optimizing s.p. and collective degrees of freedom simultaneously.

Extending the formalism to superfluid systems presents a significant challenge, and it is likely that a simpler scheme can be found for this particular case. Derivations have been carried out ignoring spin and isospin degrees of freedom; reintroducing these as well as introducing spin and kinetic densities seems to pose no major obstacle. Developing a time-dependent version of the theory presented here in the vein of Refs. could prove useful for the treatment of excitations of deformed and highly collective nuclei, as well as nuclear reactions. Finally, it would be interesting to derive from first principles, for a few nuclei, the collective Hamiltonian proposed here. This is made difficult by the N-body operators involved, but probably feasible using
ACKNOWLEDGEMENTS

I wish to thank J. Dobaczewski, K. Bennaceur, G. Coló and J. Toivanen for helpful discussions, as well as T. Duguet for comments on the manuscript. This work was supported by the U.S. Department of Energy through grant DE-FG02-00ER41132 (INT) and the U.S. National Science Foundation, grant PHY-0835543, as well as the Polish National Center for Research and Development within the SARFEN-NUPNET grant.

[1] R. J. Furnstahl, in Proceedings of the ECT* school on “Renormalization Group and Effective Field Theory Approaches to Many-Body Systems”, Springer Lecture Notes in Physics (2007) arXiv:nucl-th/0702040.
[2] T. Duguet and T. Lesinski, Eur. Phys. J. ST 156, 207 (2008).
[3] T. Lesinski, T. Duguet, K. Bennaceur, and J. Meyer, Eur. Phys. J. A 40, 121 (2009).
[4] T. Lesinski, K. Hebeler, T. Duguet, and A. Schwenk, J. Phys. G 39, 015108 (2012).
[5] J. W. Holt, N. Kaiser, and W. Weise, Eur. Phys. J. A 47, 1 (2011).
[6] B. Gebremariam, S. K. Bogner, and T. Duguet, Nucl. Phys. A851, 17 (2011).
[7] M. Stoitsov, M. Kortelainen, S. K. Bogner, T. Duguet, R. J. Furnstahl, B. Gebremariam, and N. Schunck, Phys. Rev. C 82, 054307 (2010).
[8] E. Drut, R. J. Furnstahl, and L. Platter, Prog. Part. Nucl. Phys. 64, 120 (2010).
[9] B. G. Carlsson, J. Dobaczewski, and M. Kortelainen, Phys. Rev. C 78, 044326 (2008).
[10] F. Raimondi, B. G. Carlsson, J. Dobaczewski, and J. Toivanen, Phys. Rev. C 84, 064303 (2011).
[11] J. Dobaczewski, K. Bennaceur, and F. Raimondi, J. Phys. G 39, 125103 (2012).
[12] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[13] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[14] B. G. Giraud, Phys. Rev. C 77, 014311 (2008).
[15] J. Engel, Phys. Rev. C 75, 014306 (2007).
[16] J. Messud, M. Bender, and E. Suraud, Phys. Rev. C 80, 054314 (2009).
[17] B. G. Giraud, B. K. Jennings, and B. R. Barrett, Phys. Rev. A 78, 032507 (2008).
[18] T. Papenbrock and A. Bhattacharya, Phys. Rev. C 75, 043304 (2007).
[19] G. Hupin and D. Lacroix, Phys. Rev. C 83, 024317 (2011).
[20] G. Hupin, D. Lacroix, and M. Bender, Phys. Rev. C 84, 014309 (2011).
[21] M. Bertolli, T. Papenbrock, and S. M. Wild, Phys. Rev. C 85, 014322 (2012).
[22] B. G. Giraud, Phys. Rev. C 78, 014307 (2008).
[23] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
[24] C. Fiolhais, F. Nogueira, and M. A. L. Marques, eds., Density Functional Theory (Springer, Berlin, 2003).
[25] D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
[26] J. J. Griffin and J. A. Wheeler, Phys. Rev. 108, 311 (1957).
[27] F. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 2005).
[28] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).
[29] J. Dobaczewski, M. V. Stoitsov, W. Nazarewicz, and P.-G. Reinhard, Phys. Rev. C 76, 054315 (2007).
[30] D. Lacroix, T. Duguet, and M. Bender, Phys. Rev. C 79, 044318 (2009).
[31] M. Bender, T. Duguet, and D. Lacroix, Phys. Rev. C 79, 044319 (2009).
[32] T. Duguet, M. Bender, K. Bennaceur, D. Lacroix, and T. Lesinski, Phys. Rev. C 79, 044320 (2009).
[33] T. Duguet and J. Sadoudi, J. Phys. G 37, 064009 (2010).
[34] T. Duguet and J. Sadoudi, Int. J. Mod. Phys. E 20, 270 (2011).
[35] A. Bohr and B. R. Mottelson, Danske Vidensk. Selsk., Mat.-Fys. Midd. 27, 16 (1953).
[36] A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, Reading, 1975).
[37] M. Baranger and M. Véroni, Ann. Phys. (NY) 114, 123 (1978).
[38] D. M. Brink and A. Weiguny, Nucl. Phys. A120, 59 (1968).
[39] T. Une, A. Ikeda, and N. Onishi, Prog. Theor. Phys. 55, 498 (1976).
[40] A. Gózdź, K. Pomorski, M. Brack, and E. Werner, Nucl. Phys. A442, 26 (1985).
[41] L. Próchniak and S. G. Rołożński, J. Phys. G 36, 123101 (2009).
[42] J. P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Pérus, N. Pillet, and G. F. Bertsch, Phys. Rev. C 81, 014303 (2010).
[43] M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).
[44] E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
[45] S. M. Barnett and J. A. Vaccaro, eds., The Quantum Phase Operator: A Review (Taylor & Francis, New York, 2007).
[46] S. K. Bogner, T. T. Kuo, and A. Schwenk, Phys. Rep. 386, 1 (2003).
[47] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75, 061001 (2007).
[48] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys. Rev. C 83, 034301 (2011).
[49] R. J. Furnstahl and A. Schwenk, J. Phys. G 37, 064005 (2010).
[50] J. Messud, Phys. Rev. A 84, 052113 (2011).
[51] K.-H. Kim, T. Otsuka, and P. Bonche, J. Phys. G 23, 1267 (1997).
[52] J. Skalski, Int. J. Mod. Phys. E 17, 151 (2008).
[53] M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M. V. Stoitsov, and S. M. Wild, Phys. Rev. C 85, 024304 (2012).
[54] D. R. Inglis, Phys. Rev. 96, 1059 (1954).
[55] R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).
[56] J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).
[57] J. E. Drut and L. Platter, Phys. Rev. C 84, 014318 (2011).
[58] I. Grabowski, S. Hirata, S. Ivanov, and R. J. Bartlett, J. Chem. Phys. 116, 4415 (2002).
[59] S. Grimme, J. Chem. Phys. 124, 034108 (2006).
[60] A. Göring, J. Chem. Phys. 123, 062203 (2005).
[61] S. Kümmer and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
[59] T. Duguet, M. Bender, P. Bonche, and P.-H. Heenen, Phys. Lett. B559, 201 (2003).
[62] M. Bender, P. Bonche, T. Duguet, and P.-H. Heenen, Phys. Rev. C 69, 064303 (2004).
[63] A. Staszczyk, A. Baran, and W. Nazarewicz, (2012), arXiv:1208.1215 [nucl-th].
[64] S. T. Belyaev, Nucl. Phys. 64, 17 (1965).
[65] A. Baran, J. A. Sheikh, J. Dobaczewski, W. Nazarewicz, and A. Staszczyk, Phys. Rev. C 84, 054321 (2011).
[66] U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
[67] M. Valiev and G. W. Fernando, (1997), arXiv:cond-mat/9702247.
[68] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
[69] J. Messud, Phys. Rev. C 80, 054614 (2009).
[70] C. Simenel, M. Bender, P. Chomaz, T. Duguet, and G. de France, AIP Conf. Proc. 853, 303 (2006).
[71] S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001).
[72] R. B. Wiringa, S. C. Pieper, J. Carlson, and V. R. Pandharipande, Phys. Rev. C 62, 014001 (2000).