A necessary condition of incompatibility for observables in probabilistic theories

Sergey Filippov
Institute of Physics and Technology, Russian Academy of Sciences, Moscow, Russia and Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia

Teiko Heinosaari and Leevi Leppäjärvi
Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, 20014, Finland

We quantify the fuzziness of observables in general probabilistic theories and derive a noise content inequality for incompatible observables. We apply the derived inequality to the standard quantum theory, quantum theory of processes, and polytope state spaces. The noise content for positive operator-valued measures takes a particularly simple form and equals the sum of minimal eigenvalues of all the effects. We illustrate our findings by a number of examples including the introduced notion of reverse observables.

I. INTRODUCTION

Quantum theory can be considered as a particular instance within a wide range of probabilistic theories [1],[2]. On the one side, quantum theory inherits general properties of probabilistic theories and, consequently, one may deduce some features already from a general operational framework. For instance, the limitations on broadcastable subsets of states can be derived at this generality [3]. On the other side, particular properties of quantum theory, like specific constraints on nonlocality, partially fix its position with respect to other probabilistic theories [4]. As a result, specification of information-theoretic axioms may be sufficient for quantum theory to be derived [5],[6].

A general probabilistic theory operates with notions of states and observables. The set of states S is convex since any probabilistic mixture of states must be a valid state. Observables are then affine functionals from the set of states S to the set of probability distributions. In the standard quantum theory, states are associated with density operators, whereas observables are mathematically described as positive operator-valued measures (POVMs) [7],[9]. However, when we are testing a quantum process, then quantum channels are the examined objects and they are hence regarded as states, whereas observables can be described as process POVMs [10],[12]. Theories describing Popescu–Rohrlich (PR) box [13] and polytope state spaces serve as other examples of probabilistic theories [14],[15].

A set of observables in a probabilistic theory may possess the property of being incompatible, which means that those observables cannot be seen as components of a single observable [16],[18]. Incompatibility is a nonclassical feature, since in a probabilistic theory with a classical state space all observables are compatible, while every non-classical theory possesses some incompatible observables [19],[20]. It is possible to compare the incompatibility of finite sets of observables in different probabilistic physical theories in a quantitative way [21],[23]. Interestingly, the quantum theory contains maximally incompatible pairs of observables, but only when the underlying Hilbert space is infinite dimensional [24].

This work focuses on incompatibility of observables in general probabilistic theories. The main goal of the present investigation is to quantify the noise content for observables in general probabilistic theories and exploit it in deriving a sufficient condition for compatibility, i.e., a necessary condition for incompatibility for a collection of observables. To demonstrate that the derived condition is noteworthy, we use it to formulate a readily verifiable necessary condition for incompatibility in quantum theory. To anticipate this result, the condition takes the following form for POVMs: If m POVMs are incompatible, then the sum of minimal eigenvalues of all their elements is less than $m-1$. We illustrate our findings by a number of examples including a newly introduced class of reverse observables. Consideration of the standard quantum theory is followed by theories with quantum processes as states, as well as the square bit state space.

We note that in the case of POVMs, noise robustness of incompatibility has been investigated in several recent works [25],[27]. The conditions found in those works are tighter than the condition presented in this work, but this is due to the fact that they are applicable only for POVMs with some specific structure or symmetry. Moreover, in contrast to most of the earlier studies, we do not add noise to given observables but rather look for the intrinsic fuzziness which is already present. We show that a meaningful nontrivial noise inequality can be derived already at the level of a general probabilistic theory.

The paper is organized as follows. In Sec. [I] the incompatibility of observables in general probabilistic theories is reviewed. In Sec. [I] the noise content in observables is defined, and a sufficient condition for compatibility of a set of observables is formulated. The usage of the general condition is then demonstrated in Sec. [IV].
II. INCOMPATIBILITY OF OBSERVABLES IN PROBABILISTIC THEORIES

A. States, effects, and observables

In a probabilistic theory, the set of states \mathcal{S} is a convex subset of a real vector space V. The convexity is a result of the probabilistic character of theory, meaning that the convex sum $p s_1 + (1-p) s_2$ is a state whenever s_1, s_2 are states and $0 \leq p \leq 1$.

We denote by $F(\mathcal{S})$ the linear space of all affine functionals from \mathcal{S} to \mathbb{R}. For two functionals $e, f \in F(\mathcal{S})$, we denote $e \leq f$ if $e(s) \leq f(s)$ for all $s \in \mathcal{S}$. We further denote by $u \in F(\mathcal{S})$ the unit map satisfying $u(s) = 1$ for all $s \in \mathcal{S}$. The set of effects on \mathcal{S} is defined as

$$E(\mathcal{S}) = \{ e \in F(\mathcal{S}) : 0 \leq e \leq u \},$$

i.e., it is the convex subset of those affine functionals e for which $0 \leq e(s) \leq 1$ for all $s \in \mathcal{S}$. The set of effects arising in this way as functionals on states is a particular example of an effect algebra [28]. In particular, $E(\mathcal{S})$ has a partially defined sum $e + f$, which is simply the functional addition of e and f, and defined whenever $e + f \leq u$.

An observable with a finite number of outcomes is a function $A : x \mapsto A_x$ from a finite outcome set $X \subset \mathbb{Z}$ to $E(\mathcal{S})$. The number $A_x(s)$ is interpreted as the probability of getting the outcome x in a measurement of the observable A when the system is in the state s. As we must have $\sum_{x \in X} A_x(s) = 1$ for all $s \in \mathcal{S}$, we have the normalization condition $\sum_{x \in X} A_x = u$. We denote the set of observables with an outcome set X by \mathcal{O}_X, and by \mathcal{O} the set of all observables with finite number of outcomes.

A special type of an observable is a trivial observable T, which is such that for each outcome x, $T_x(s) = T_{x'}(s')$ for all $s, s' \in \mathcal{S}$. We denote the set of trivial observables by \mathcal{T}. Since the outcome probabilities for a trivial observable are the same for all states, it does not provide any information on an input state.

In the following we recall the two most important instances of probabilistic theories, the standard quantum theory and the quantum theory of processes.

Example 1 (Quantum theory). Let \mathcal{S}_p be the convex set of density operators ρ on a Hilbert space \mathcal{H}. Then the set of effects $E(\mathcal{S}_p)$, defined as affine mappings on \mathcal{S}_p, can be represented as $e(\rho) = \text{tr}[\rho E]$ for all states ρ, where E is a selfadjoint operator satisfying the operator inequalities $0 \leq E \leq 1$. This correspondence is one-to-one, so effects can be identified with these effect operators. With this identification, an observable $A : x \mapsto A_x$ with a finite outcome set X is a Povm satisfying $\sum_{x \in X} A_x = 1$. A trivial observable T is of the form $T_x = p_x \mathbb{1}$, where p_x is a probability distribution on X.

Example 2 (Quantum theory of processes). Let \mathcal{S}_p be the set of completely positive and trace preserving maps Φ of density operators ρ. Example 1 theory and the quantum theory of processes.

FIG. 1. (a) Action of the classical copying channel. (b) Example of the relabeling channel.

$\Phi : \mathcal{L}(\mathcal{H}_A) \rightarrow \mathcal{L}(\mathcal{H}_B)$, called quantum channels or processes. Then the set of effects $E(\mathcal{S}_p)$ can be represented as the set of operators M on $\mathcal{H}_A \otimes \mathcal{H}_B$ satisfying $0 \leq M \leq \rho \otimes \mathbb{1}$ for some density operator ρ on \mathcal{H}_A. This representation is given as $e(\Phi) = \text{tr}[\Omega_{\Phi} M]$, where Ω_{Φ} is the Choi operator of Φ, i.e., $\Omega_{\Phi} = (i d \otimes \Phi)[(|\psi_1><\psi_1|)]$, where $\psi_1 = \sum_{i=1}^d \phi_i \otimes \phi_i$ and $(\phi_i)_{i=1}^d$ is an orthonormal basis of \mathcal{H}_A. An important point is that this correspondence between affine maps and operators is not one-to-one; two operators M and M' correspond to the same effect e exactly when $M - M' = \omega \otimes \mathbb{1}$ for some traceless operator ω [29] [30]. In this representation an observable $A : x \mapsto A_x$ with a finite outcome set X satisfies the normalization $\sum_{x \in X} A_x = \rho \otimes \mathbb{1}$ for some density operator ρ on \mathcal{H}_A. This kind of map is called a process Povm, or PPOVM for short [11]. A trivial PPOVM is of the form $\mathcal{T}_x = p_x \xi_x \otimes \mathbb{1}$, where each ξ_x is a density operator on \mathcal{H}_A and (p_x) is a probability distribution. Two trivial PPOVms $\mathcal{T}_x = p_x \xi_x \otimes \mathbb{1}$ and $\mathcal{T}_x' = p'_x \xi'_x \otimes \mathbb{1}$ correspond to the same trivial observable exactly when the probability distributions p_x and p'_x are the same.

B. Post-processing of observables

A classical channel ν between outcome spaces X and Y is a right stochastic matrix with elements ν_{xy}, $x \in X$, $y \in Y$, i.e., $0 \leq \nu_{xy} \leq 1$ and $\sum_{y \in Y} \nu_{xy} = 1$. The number ν_{xy} is the transition probability for an element x to be transformed into y. Classical channels are often used to describe noise, but we can also think of a classical channel as an active transformation that is implemented on outcomes. In the following we recall two classes of classical channels that will be used later.

Example 3 (Copying the measurement outcomes). Measurement outcomes are just classical symbols and thus can be copied. To see copying as a classical channel, let $Y = X \times X$. The stochastic matrix ν_{xy}^c related to copying is defined as $\nu_{xy}^c = 1$ if $y = (x,x)$ and $\nu_{xy}^c = 0$ otherwise. This transforms any x to (x,x). Fig. 1(a) depicts the action of copying channel. Multiple application of a copying channel allows making an arbitrary number of copies of an outcome x. If the number of copies equals m, then we call it an m-copying channel.

Example 4 (Relabeling the measurement outcomes). The copying channels belong to a wider class of classical
channels where measurement outcomes are relabeled deterministically into some other outcome. Let \(f : X \to Y \) be a relabeling function. The derived stochastic matrix \(\nu_{xy}^f \) is defined as \(\nu_{xy}^f = 1 \) if \(f(x) = y \) and \(\nu_{xy}^f = 0 \) otherwise. In contrast to the copying procedure, generally several outcomes can be relabeled into a single new outcome, see Fig. 1(b).

Let \(A \) be an observable with an outcome set \(X \) and let \(\nu \) be a classical channel between \(X \) and some other outcome space \(Y \). We denote by \(\nu \circ A \) the new observable defined as

\[
(\nu \circ A)_y = \sum_{x \in X} \nu_{xy} A_x
\]

for all outcomes \(y \in Y \). Physically, the observable \(\nu \circ A \) is implemented by first measuring \(A \) and then using the classical channel \(\nu \) on each obtained measurement outcome. This way of forming new observables gives rise to a preorder in the set of observables \([31–33]\). Namely, for two observables \(A \) and \(B \), we say that \(B \) is a post-processing of \(A \) if there exists a classical channel \(\nu \) such that

\[B = \nu \circ A. \]

It is natural to interpret \(B \) as a noisy version of \(A \).

Example 5. (Reverse observable.) A reversing channel is a classical channel \(\nu : X \to X \) such that \(\nu_{xy} = 0 \) if \(x = y \) and \(\nu_{xy} = \nu_{yx} = \frac{1}{N-1} \) for all \(x, x' \neq y \). If the outcome set \(X \) contains \(N \) elements, then \(\nu_{xy} = \nu_{yx} = \frac{1}{N-1} \) for all \(x, x' \neq y \). For each observable \(A \), the observable \(A^r = \nu \circ A \) is called the reverse version of \(A \). If \(A \) has \(N \) outcomes, then the reverse observable \(A^r \) takes the form

\[
A^r_x = \frac{1}{N-1} \sum_{y \neq x} A_y.
\]

The physical meaning of \(A^r \) is illustrated in Fig. 2. After \(A \) has been measured and outcome \(x \) has been obtained, we roll a fair dice with \(N-1 \) sides and choose randomly any outcome \(y \) different from \(x \). This is taken to be the outcome of the new observable \(A^r \), which is hence given by formula (4).

\[A(1) \] is the reverse observable with respect to \(A \). Outcome \(y \) of observable \(A \) does not contribute to the outcome \(y \) of observable \(A^r \), so they are illustrated by complementary colors. RNG stands for a random number generator which uniformly chooses outcome \(y \neq x \).

Example 6. (Doubly reverse observable.) Performing the reversing postprocessing two times, we get

\[
A^{rr} = \frac{1}{(N-1)^2} [A_y + (N-2)I],
\]

or, concisely, \(A^{rr} = (1-\lambda)A + \lambda T \), where \(\lambda = \frac{N(N-2)}{(N-1)^2} \) and \(T \) is the trivial observable with uniform distribution of outcomes. In the case of two outcomes \(N = 2 \), the doubly reverse observable coincides with the original one, i.e., \(A^{rr} = A \).

As one would expect, a trivial observable \(T \) is a post-processing of any other observable \(A \). To see this, we define a classical channel \(\nu^T \) as \(\nu_{xy}^T = T_y(s_0) \) for all \(x \), where \(s_0 \) is any state. Then

\[
(\nu^T \circ A)_y(s) = \sum_{x \in X} \nu_{xy}^T A_x(s) = \sum_{x \in X} T_y(s_0) A_x(s) = T_y(s_0) = T_y(s),
\]

showing that \(\nu^T \circ A = T \). The classical channel \(\nu^T \) just erases the outcome obtained in \(A \)-measurement, and then replaces it with a new outcome according to the measurement outcome distribution of \(T \), which is the same for all states.

C. Incompatibility of observables

A collection of observables \(\mathcal{P} \) is compatible if there exists an observable \(C \), with an outcome set \(Y \), such that each observable \(A \in \mathcal{P} \) is a post-processing of \(C \). A compatible collection of observables can thus be implemented simultaneously by first measuring \(C \), then copying the classical outcomes, and finally applying the relevant post-processing to the copied outcomes. This definition is depicted in Fig. 3. If a set of observables is not compatible, then it is called incompatible.

Let \(\{A^{(1)}, \ldots, A^{(m)}\} \) be a compatible set of \(m \) observables, with outcome sets \(X^{(1)}, \ldots, X^{(m)} \), respectively. Thus, there exists an observable \(C \) and classical channels \(\nu^{(1)}, \ldots, \nu^{(m)} \) such that

\[
A^{(j)} = \nu^{(j)} \circ C, \quad j = 1, \ldots, m. \]
To see this definition of compatibility in an equivalent form, we denote
\[G_{x^{(1)} \ldots x^{(m)}} = \sum_{y} \prod_{j=1}^{m} \nu_{y^{(j)}}^{(j)} C_y \]
(7)
for all \(x^{(j)} \in X^{(j)}, j = 1, \ldots, m \). Then \(G \) is an observable, and from (6) it follows that
\[A^{(j)}_{x^{(1)}, \ldots, x^{(m)}} = \sum_{z^{(1)}, \ldots, z^{(m)} \\ x^{(1)}, \ldots, x^{(m)}} G_{x^{(1)} \ldots x^{(m)}}. \]
(8)
Thus, the compatibility of observables \(A^{(1)}, \ldots, A^{(m)} \) implies that there exists a joint observable \(G \) with the outcome space \(X^{(1)} \times \cdots \times X^{(m)} \) such that the observables are marginals of the joint observable. Conversely, starting from \(G \) and taking classical channels corresponding to relabeling functions that are projections, \(pr_t : X^n \to X \), \(pr_t(x_1, \ldots, x_n) = x_t \), we see that (6) is a special case of (8). Thus, as noted in [25] in the case of quantum observables, we conclude that a subset of observables is compatible if and only if they have a joint observable. The latter condition is usually taken as the definition of joint measurability of quantum observables [35].

III. NECESSARY CONDITION FOR INCOMPATIBILITY

A. Noise content of an observable

In order to formulate a necessary condition for incompatibility of observables, we firstly quantify their intrinsic fuzziness, or noise content, and then use the extract of that noise in an explicit construction of a class of joint observables.

In a probabilistic theory, one can introduce a procedure of mixing observables. Suppose \(A : X \to \mathcal{E}(S) \) and \(B : Y \to \mathcal{E}(S) \) are observables with outcome sets \(X \) and \(Y \), respectively. Then a mixture of \(A \) and \(B \) by a mixing parameter \(0 \leq t \leq 1 \), is an observable \(C : X \cup Y \to \mathcal{E}(S) \) such that
\[C_z = tA_z + (1-t)B_z \]
(9)
for all \(z \in X \cup Y \), where \(A \) and \(B \) can be extended to \(X \cup Y \) by defining \(A_z = 0 \) if \(z \notin X \) and \(B_z = 0 \) if \(z \notin Y \).

We are interested in a situation where one of the observables in the right-hand side of mixture (9) is not arbitrary but belongs to some specified subset \(N \subseteq \mathcal{O} \). If the target observable \(C \) is not in \(N \), then this requirement imposes limitations on possible values of the mixing parameter \(t \).

For the following consideration, we fix a nonempty subset \(N \subseteq \mathcal{O} \) which describes noisy observables. Then, the physical meaning of Eq. (9) is to decompose an observable into the noisy part and the rest. A quantitative description of the noise content is attained by maximizing \(t \). Therefore, for each observable \(A \), we denote
\[w(A;N) = \sup\{0 \leq t \leq 1 : tN + (1-t)B = A \} \text{ for some } N \in \mathcal{N} \text{ and } B \in \mathcal{O} \]
(10)
and call this quantity the **noise content of \(A \) with respect to \(N \)**. We note that the observables \(N \) and \(B \) in (10) can be assumed to have the same outcome set as \(A \).

Whenever \(A_z \geq tN_z \), we use the notation \(A \geq tN \). Suppose \(0 \leq t < 1 \) and \(A \geq tN \), then we can write \(A \) as a mixture
\[A = tN + (1-t)\tilde{A}, \]
(11)
where \(\tilde{A} \) is the observable defined as
\[\tilde{A} = (1-t)^{-1}(A - tN). \]
(12)
Vice versa, if there exists some observable \(\tilde{A} \) such that (11) holds, then \(A \geq tN \). Thus, one can reformulate the definition of noise content of \(A \) with respect to \(N \) as follows:
\[w(A;N) = \sup\{0 \leq t \leq 1 : A \geq tN \text{ for some } N \in \mathcal{N} \}. \]
(13)

Specific properties of the map \(A \to w(A;N) \) depend on the choice of the subset \(N \). There are, however, some general features that are valid for any noise set \(N \). In particular, we observe the following:

(a) If \(\nu \) is a classical channel and \(\nu \circ N \subseteq N \), then \(w(\nu \circ A;N) \geq w(A;N) \).

(b) If \(N \) is convex, then \(w(sA + (1-s)B;N) \geq sw(A;N) + (1-s)w(B;N) \) for all \(0 \leq s \leq 1 \).

The first property follows directly from the definition of \(w(A;N) \), while the latter is seen to be valid by first noticing that
\[sA_x + (1-s)B_x \geq sw(A;N)N_x + (1-s)w(B;N)M_x \]
for some observables \(N, M \in \mathcal{N} \) and all outcomes \(x \). We denote
\[pa = sw(A;N)[sw(A;N) + (1-s)w(B;N)], \]
\[pb = (1-s)w(B;N)[sw(A;N) + (1-s)w(B;N)] \]
and then obtain
\[sA_x + (1-s)B_x \geq [sw(A;N) + (1-s)w(B;N)][paN_x + pbM_x], \]
where \(paN_x + pbN_x \in \mathcal{N} \) as the set \(\mathcal{N} \) is convex.

The prototypical choice for \(N \) is to take \(\mathcal{N} = T \), the set of all trivial observables. In this case, we simply say that \(w(A;T) \) is the noise content of \(A \). The set \(T \) is convex and \(\nu \circ T \subseteq T \) for all classical channels.

Proposition 1. Let \(A \) be an observable on a finite outcome set \(X \). Then \(w(A;T) = \sum_{x \in X} \inf_{s \in S} A_x(s) \).
Thus by (13) we have that T_{bound} is attained if we define T_{bound} for distribution defined by some trivial observable T by p_x where $x \leq 0$. Since also $0 < t \leq 1$, we must have $t = 0$, and since this holds for all $T \in T$, by (13) we get that $w(A; T) = a = 0$.

Secondly, assume that $a_x \neq 0$ at least for some $x \in X$. By similar arguments as above, we see that for all $x \in X$ we have $a_x \geq t' p_x$, where $p'_x = T'_x(s)$ is a probability distribution defined by some trivial observable $T' \in T$ for some $0 < t' \leq 1$. Summing over all x we then get an upper bound for t' as $a = \sum_x a_x \geq t'$. We see that the upper bound is attained if we define T' as $T'(s) = p'_x = a_x/a$. Thus by (13) we have that $w(A; T') = a$. \hfill \Box

B. Joint measurement scheme

The joint measurement scheme that we will next discuss is an elaboration of the one presented in \cite{27}. The idea is that we first write the definition of compatibility in a slightly different way, then limit the defining conditions, and in this way we obtain a computable sufficient condition for compatibility.

By the definition, two observables A and B are compatible if there exists a third observable C and classical channels ν_1 and ν_2 such that $A = \nu_1 \circ C$ and $B = \nu_2 \circ C$. Let us consider a seemingly more general scheme, where we are asking for the existence of two observables C and D, classical channels ν_1, ν_2, μ_1, and μ_2, and a mixing parameter t such that

$$A = t \nu_1 \circ C + (1 - t) \mu_1 \circ D$$

$$B = t \nu_2 \circ C + (1 - t) \mu_2 \circ D.$$ \hfill (14), (15)

Thus, A and B are now required to be mixtures of post-processing of C and D; see Fig. 4.

Clearly, the conditions (14)–(15) reduce to the usual compatibility conditions when $t = 1$. Therefore, every compatible pair can be written in this new form. Conversely, if two observables A and B can be written in the form (14)–(15), then they are compatible. In fact, A and B are post-processing of the mixed observable $tC + (1-t)D$, but now the mixture is taken in a way that we keep track of which observable was measured each time. After measuring either C or D, we duplicate the outcome and post-process with either ν_1 and ν_2 or μ_1 and μ_2, depending on the measured observable.

C. Incompatibility inequality

As a special case of the joint measurement scheme described previously, we limit the choice of classical channels μ_1 and ν_2 to those that make observables $\nu_1 \circ D$ and $\nu_2 \circ C$ trivial. Since any trivial observable is a post-processing of any other observable, we get all trivial observables, irrespective of C and D. Hence, the conditions (14)–(15) reduce to

$$A = t \nu_1 \circ C + (1 - t) T_1$$

$$B = t \nu_2 \circ C + (1 - t) \mu_2 \circ D,$$ \hfill (16), (17)

where T_1 and T_2 are arbitrary trivial observables. Since we have added an extra limitation to the conditions (14)–(15), we cannot be sure anymore that a pair of compatible observables have this kind of representation. However, if $w(A; T) \geq 1 - t$ and $w(B; T) \geq t$, then by the definition of noise content we can find suitable observables C and D such that (16)–(17) hold.

As a conclusion, we obtain the following result and its equivalent formulation.

Proposition 2. If A and B are two observables such that $w(A; T) + w(B; T) \geq 1$, then they are compatible.

Proposition 3. If A and B are incompatible observables, then $w(A; T) + w(B; T) < 1$.

The joint measurement scheme has a direct generalization for any finite number of observables. Let us consider m observables $A^{(1)}, \ldots, A^{(m)}$ and $A^{(m)}$. We can then generalize conditions (16)–(17) to

$$A^{(j)} = p_j \nu_j \circ C^{(j)} + (1 - p_j) T^{(j)},$$ \hfill (18)

where $T^{(j)}$ is an arbitrary trivial observable for each $j = 1, \ldots, m$ and p_j is an arbitrary probability distribution. As above, if $w(A^{(j)}; T) \geq 1 - p_j$ for all j we can make (18) hold. By summing over j we conclude the following generalization of Prop. 3.

Proposition 4. If $A^{(1)}, A^{(2)}, \ldots, A^{(m)}$ are incompatible observables, then $w(A^{(1)}; T) + \ldots + w(A^{(m)}; T) < m - 1$. \hfill (19)
IV. APPLICATIONS OF THE INCOMPATIBILITY CONDITION

A. Eigenvalue condition for POVMs

If A is an observable in finite dimensional quantum theory and described as a POVM, we have that

$$\inf_{s \in \mathcal{S}} A_x(s) = \min_{\psi \neq 0} \left\{ \varrho \mid A_x \varrho \right\}.$$ (19)

It follows that $\inf_{s \in \mathcal{S}} A_x(s)$ is the smallest eigenvalue of the effect operator A_x. Hence, by Prop. 1 we conclude that $w(A; T)$ is the sum of the minimal eigenvalues of operators A_x. Combining this with Prop. 3 we reach the following necessary condition for incompatibility.

Corollary 1. If $A^{(1)}, \ldots, A^{(m)}$ is a collection of m incompatible POVMs, then the sum of the minimal eigenvalues of all their effects is smaller than m.

We will next illustrate the use of Cor. 1 in the case of reverse observables. Consider a regular rank-1 POVM A such that the effects of A read $A_x = \frac{1}{d} P_x$, where d is the dimension of the Hilbert space, N is the number of outcomes and P_x is a one-dimensional projection. Examples of regular rank-1 POVMs include all nondegenerate sharp POVMs and symmetric informationally complete POVMs.

As before, we denote by $A' = \nu' \circ A$ the reverse version of A. If A is a regular rank-1 POVM, then the smallest eigenvalue of each operator A'_x is $\frac{1}{N(d-1)}$. Applying Cor. 1 we conclude that the reverse versions of m regular rank-1 POVMs with N outcomes are compatible if

$$N \geq (d-1) \cdot m + 1.$$ (20)

It follows from this observation that, for instance, the reverse versions of two regular rank-1 POVMs in $d = 2$ are compatible for all $N \geq 3$. One can readily find POVMs with two outcomes whose reverse versions are incompatible; this is the case whenever the original ones are incompatible since, in the case of two outcomes, reversing is a reversible classical channel. Since the reversing channel is more and more noisy when the number of outcomes increases, one may wonder if there are any incompatible collections of reverse POVMs when the number of outcomes is more than two. In the following example we present a triplet of regular rank-1 POVMs whose reverse versions are incompatible; the simple compatibility condition (20) is hence not trivial.

Example 7 (Incompatible reverse POVMs). Consider three orthonormal bases $\{\varphi_i\}_{i=1}^3$, $\{\psi_i\}_{i=1}^3$, and $\{\chi_i\}_{i=1}^3$ in a three-dimensional Hilbert space \mathcal{H}_3 such that a set $\{\varphi_i, \psi_j, \chi_k\}$ is linearly independent for all fixed i,j,k. Let A, B and C be the POVMs related to these bases, i.e., $A_i = \varphi_i \langle \varphi_i \rangle$, $B_i = \psi_i \langle \psi_i \rangle$ and $C_i = \chi_i \langle \chi_i \rangle$. The fact that the reverse POVMs A', B', C' are incompatible can be proven by a contradiction. Suppose A', B', C' are compatible, so that there exists a joint POVM G with elements G_{ijk} such that $A'_i = \sum_k G_{ijk} B_j = \sum_k G_{ijk} C_j$, and $C_k = \sum_j G_{ijk}$. As $\langle \varphi_i \mid A'_i \varphi_i \rangle = 0$ and all the operators G_{ijk} are positive, we have $\langle \varphi_i \mid G_{ijk} \varphi_j \rangle = 0$ and this further implies $G_{ijk} \varphi_i = 0$. Similarly, $G_{ijk} \psi_j = 0$ and $G_{ijk} \chi_k = 0$. Hence, the three POVMs A', B', C' are incompatible.

The sufficient condition (20) for compatibility of the reverse versions of regular rank-1 POVMs is not necessary. We will next demonstrate that there are compatible observables that do not satisfy (20).

Example 8 (Two mutually unbiased bases). Consider a d-dimensional Hilbert space \mathcal{H}_d and an orthonormal basis $\{\varphi_i\}_{i=0}^{d-1}$ in it. We denote $\omega = e^{i2\pi/d}$ and define another orthonormal basis $\{\psi_i\}_{i=0}^{d-1}$ by

$$\psi_j = \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} \omega^{jk} \varphi_k.$$ (21)

These two bases are mutually unbiased, meaning that $\langle \varphi_i \mid \psi_j \rangle = \frac{1}{d}$ for all $i,j = 0, \ldots, d-1$. The related POVMs $A_i = |\varphi_i \rangle \langle \varphi_i|$ and $B_j = |\psi_j \rangle \langle \psi_j|$ and $C_i = |\chi_i \rangle \langle \chi_i|$ consists of non-commuting projections and are hence incompatible. The reverse versions A' and B' are incompatible if $d = 2$, since then A' and B' are just relabelings of A and B. However, for any $d \geq 3$, A' and B' are compatible even if the inequality (20) does not hold. To see this, we recall that by Prop. 2 in [36], A' and B' are compatible whenever there exists a quantum state $\sigma \in \mathcal{S}(\mathcal{H})$ such that

$$\text{tr}[A_i \sigma] = \frac{1 - \delta_{i0}}{d-1} \quad \text{and} \quad \text{tr}[B_j \sigma] = \frac{1 - \delta_{j0}}{d-1}.$$ (22)

It is not hard to check that the operator

$$\sigma = \frac{1}{d-1} \sum_{i=0}^{d-1} |\varphi_i \rangle \langle \varphi_i| - \frac{1}{(d-1)(d-2)} \sum_{1 \leq i < j \leq d} (|\varphi_i \rangle \langle \varphi_j| + |\varphi_j \rangle \langle \varphi_i|)$$

is a density operator and satisfies the conditions above. Therefore, A' and B' are compatible.

As explained in Example 6, the reversing channel ν' can be applied also to an already reverse observable A' to obtain doubly reverse observable A''. It is not hard to see from Prop. 1 that two doubly reverse observables are always compatible if their number of outcomes $N \geq 3$. More generally, a sufficient condition for compatibility of m doubly reverse observables with N outcomes each is $m \leq (N = 1)^2$.

B. Eigenvalue condition for PPOVMs

Let A be a PPOVM with an outcome set X and the normalization $\sum_{x \in X} A_x = \varrho \otimes \mathbb{1}$ for some state ϱ. We
denote by m_x the minimal eigenvalue of the PPOVM element A_x for each $x \in X$. The noise content of A satisfies
\[w(A; T) \geq \sum_{x \in X} m_x. \]
(23)
To see this, we define a trivial PPOVM T as
\[T_x = \frac{m_x}{m} \rho \otimes \mathbb{1}, \]
(24)
where $m = \sum_{x \in X} m_x$. Since
\[A_x \geq m_x \mathbb{1} \otimes \mathbb{1} \geq m_x \rho \otimes \mathbb{1}, \]
(25)
we can define
\[A'_x = \frac{1}{1 - m} (A_x - m_x \rho \otimes \mathbb{1}) \]
(26)
and A' is a valid PPOVM. We can then write
\[A = m T + (1 - m) A', \]
(27)
which confirms (23). Prop. 4 thus implies the following result, analogous to Cor. 1.

Corollary 2. If $A^{(1)}, \ldots, A^{(m)}$ is a collection of m incompatible PPOVMs, then the sum of the minimal eigenvalues of all of their effects is smaller than $m - 1$.

We note that in contrast to the case of POVMs, the eigenvalue formula (23) provides only a lower bound for the noise content of a PPOVM. For instance, let
\[A_x = p_x |\psi_x \rangle \langle \psi_x | \otimes \mathbb{1}, \]
(28)
where $(\psi_x | \psi_y \rangle = \delta_{xy}$ and p_x is a probability distribution. Then $m_x = 0$ for all x and the right hand side of (23) equals 0. But the PPOVM A is trivial, so that the left hand side of (23) equals 1.

C. Polytope state spaces

A compact convex subspace P of a finite dimensional vector space V is a polytope if it has a finite number of extreme elements. Let $\text{ext}(P) = \{s_1, \ldots, s_n\}$ be the set of extreme elements of a polytope P. Since every state $s \in P$ can be represented as a convex sum of elements in $\text{ext}(P)$, we have that
\[A_x(s) = A_x \left(\sum_i \lambda_i s_i \right) = \sum_i \lambda_i A_x(s_i) \geq \sum_i \lambda_i \min_k A_x(s_k) = \min_k A_x(s_k) \]
for every $s \in P$, and thus $\inf_{s \in P} A_x(s) = \min_{s \in \text{ext}(P)} A_x(s)$. Combining this with Prop. 4, we get analogous result to the previous eigenvalue conditions for POVMs and PPOVMs.

Corollary 3. If $A^{(1)}, \ldots, A^{(m)}$ is a collection of m incompatible observables on a polytopic state space P, then the sum of minimal values of all of their effects on $\text{ext}(P)$ is smaller than $m - 1$.

In the following, we take S to be a state space that is isomorphic to a square in \mathbb{R}^2, i.e., to the convex hull of four points $s_1, s_2, s_3, s_4 \in \mathbb{R}^2$ satisfying $s_1 + s_3 = s_2 + s_4$ (see Fig. 5). This is called the square bit state space, or squint state space for short.

We consider a class of binary observables A^α and B^β, parametrized by $\alpha, \beta \in [0, 1]$, whose outcomes are labeled by \pm and defined on the extreme points s_1, s_2, s_3, s_4 as
\[A^\alpha(s_1) = A^\alpha(s_2) = \alpha, \quad A^\alpha(s_3) = A^\alpha(s_4) = 1, \]
\[B^\beta(s_1) = B^\beta(s_4) = \beta, \quad B^\beta(s_2) = B^\beta(s_3) = 1. \]
The values of A^α and B^β are depicted in Fig. 6.

\[w(A^\alpha; T) = \min_{s \in \text{ext}(S)} A^\alpha(s) + \min_{s \in \text{ext}(S)} A^\alpha(s) = \alpha, \]

Now we see that
and similarly that \(w(B^3; T) = \beta \). Hence, by Cor. ??, if
\[
\alpha + \beta \geq 1,
\]
then observables \(A^\alpha \) and \(B^\beta \) are compatible. It is easy to find \(A^\alpha \) and \(B^\beta \) as mixtures with maximal noise contents,
\[
A^\alpha = \alpha T + (1 - \alpha)A
\]
\[
B^\beta = \beta T + (1 - \beta)B,
\]
where \(T \) is the trivial binary observable with \(T_+(s) = 1 \) and \(T_-(s) = 0 \) for all \(s \in S \), and \(A \equiv A^0 \) and \(B \equiv B^0 \).

The observables \(A \) and \(B \) are themselves incompatible. Even more, they are maximally incompatible in the sense that the minimum amount of noise one has to mix with them to make their noisy versions compatible is enough to make any other pair of observables compatible. More precisely, it was shown in [21] that the observables \(\lambda A + (1 - \lambda)T_1 \) and \(\mu B + (1 - \mu)T_2 \) are incompatible for all choices of trivial observables \(T_1 \) and \(T_2 \) if and only if \(\lambda + \mu > 1 \). Therefore, we conclude that the inequality (29) derived from Prop. [2] is actually both necessary and sufficient for the compatibility of \(A^\alpha \) and \(B^\beta \).

V. CONCLUSIONS

We have considered general probabilistic theories on an equal footing and quantified the fuzziness of observables in every such theory via the set of trivial observables. In the case of standard quantum theory, the noise content is merely the sum of minimal eigenvalues of the POVM effects. In quantum theory of processes, the noise content is bounded below by the sum of minimal eigenvalues of the corresponding PPOVM effects. In general, the noise content can be quantified with respect to any noisy set, however, physically relevant noisy set is to be composed of compatible elements.

We have derived the noise content inequality for a pair of observables, which is a necessary condition for their incompatibility. Our approach is based on a modification of the adaptive strategy for building a joint observable. Then we have extended this result to the case of \(m \) observables. By examples with reverse regular observables we have demonstrated non-triviality of the derived noise content inequality. Moreover, this inequality turned out to be not only necessary but also sufficient for incompatibility of some observables in the square bit state space.

ACKNOWLEDGMENTS

The authors wish to thank Michal Sedlák and Mário Ziman for clarifying discussions concerning PPOVMs. S.N.F. acknowledges the support of Academy of Finland for a mobility grant to conduct research in the University of Turku, where this article was initiated. S.N.F. is grateful to the University of Turku for kind hospitality. S.N.F. thanks the Russian Foundation for Basic Research for partial support under Project No. 16-37-60070 mol-a-dk.
[18] T. Heinosaari, T. Miyadera, and M. Ziman, An invitation to quantum incompatibility, J. Phys. A: Math. Theor. 49, 123001 (2016).
[19] S. Aravinda, R. Srikanth, A. Pathak, On the origin of nonclassicality in single systems, arXiv:1607.01768 [quant-ph].
[20] M. Plávala, All measurements in a probabilistic theory are compatible if and only if the state space is a simplex, arXiv:1608.05614 [quant-ph].
[21] P. Busch, T. Heinosaari, J. Schultz, and N. Stevens, Comparing the degrees of incompatibility inherent in probabilistic physical theories, EPL 103, 10002 (2013).
[22] S. Gudder, Compatibility for probabilistic theories, arXiv:1303.3647 [quant-ph].
[23] M. Banik, Md. R. Gazi, S. Ghosh, and G. Kar, Degree of complementarity determines the nonlocality in quantum mechanics, Phys. Rev. A 87, 052125 (2013).
[24] T. Heinosaari, J. Schultz, A. Toigo, and M. Ziman, Maximally incompatible quantum observables, Phys. Lett. A 378, 1695 (2014).
[25] E. Haapasalo, Robustness of incompatibility for quantum devices, J. Phys. A: Math. Theor. 48, 255303 (2015).
[26] H. Zhu, Information complementarity: A new paradigm for decoding quantum incompatibility, Sci. Rep. 5, 14317 (2015).
[27] R. Uola, K. Luoma, T. Moroder, and T. Heinosaari, Adaptive strategy for joint measurements, Phys. Rev. A 94, 022109 (2016).
[28] E.G. Beltrametti and S. Bugajski, Effect algebras and statistical physical theories, J. Math. Phys. 38, 3020 (1997).
[29] A. Jenčová, Generalized channels: Channels for convex subsets of the state space, J. Math. Phys. 53, 012201 (2012).
[30] A. Jenčová, Extremal generalized quantum measurements, Linear Algebra Appl. 439, 4070 (2013).
[31] H. Martens and W.M. de Muynck, Nonideal Quantum Measurements, Found. Phys. 20, 255 (1990).
[32] F. Buscemi, M. Keyl, G.M. D’Ariano, P. Perinotti, and R.F. Werner, Clean positive operator valued measures, J. Math. Phys. 46, 082109 (2005).
[33] T. Heinonen, Optimal measurements in quantum mechanics, Phys. Lett. A 346, 77 (2005).
[34] S.T. Ali, C. Carmeli, T. Heinosaari, and A. Toigo, Commutative POVMs and fuzzy observables, Found. Phys. 39, 593 (2009).
[35] P. Lahti, Coexistence and joint measurability in quantum mechanics, Int. J. Theor. Phys. 42, 893 (2003).
[36] C. Carmeli, T. Heinosaari, and A. Toigo, Informationally complete joint measurements on finite quantum systems, Phys. Rev. A 85, 012109 (2012).