Evolution with redshift of the ICM abundances

Agostino Martinelli1, Francesca Matteucci2,3 and Sergio Colafrancesco4

1 Dipartimento di Astronomia, Università La Sapienza, Via Lancisi 29, Roma
2 Dipartimento di Astronomia, Università di Trieste, Via G.B. Tiepolo, 11, 34131 Trieste, Italy
3 SISSA/ISAS, Via Beirut 2-4, 34014 Trieste, Italy
4 Osservatorio Astronomico di Roma, Monte Porzio, Roma, Italy

March 21, 2022

Abstract. We predict the behaviour of the abundances of α-elements and iron in the intracluster medium as a function of redshift in poor and rich clusters. In order to do that we calculate the detailed chemical evolution of elliptical galaxies by means of one-zone and multi-zone models and then we integrate the contributions to the total gas and single elements by ellipticals over the cluster mass function at any given cosmic time which is then transformed into redshift according to the considered cosmological model.

In the case of the multi-zone model for ellipticals the more external regions evolve much faster than the internal ones which maintain a very low level of star formation almost until the present time. In other words, the outermost regions develop a galactic wind, after which the region evolves passively, at much earlier times over the whole galaxy. We refer to the one-zone model as to \textit{burst model} and to the multi-zone model as to \textit{continuous model}. We find that in the case of the burst model the ICM abundances should be quite constant starting from high redshifts ($z > 2$) up to now, whereas in the continuous model the ICM abundances should increase up to $z \sim 1$ and are almost constant from $z \sim 1$ up to $z = 0$.

Particular attention is devoted to the predictions of the $[\alpha/Fe]_{\text{ICM}}$ ratio in the ICM: for the burst model we predict $[\alpha/Fe]_{\text{ICM}} > 0$ over the whole range of redshifts and in particular at $z = 0$, whereas in the case of the continuous model we predict a decreasing $[\alpha/Fe]_{\text{ICM}}$ ratio with decreasing z and $[\alpha/Fe]_{\text{ICM}} \leq 0$ at $z = 0$. In particular, we predict $[O/Fe]_{\text{ICM}}(z = 0) \leq -0.05$ dex and $[Si/Fe]_{\text{ICM}}(z = 0) \leq +0.13$ dex for the continuous models, the precise values depending on the assumed cosmology. Finally, we discuss the influence of different cosmologies on the results.

1. Introduction

The bulk of the observed X-ray emission from galaxy clusters is due to thermal bremsstrahlung in a hot gas ($10^7 - 10^8K$) enriched in heavy elements. In the past two decades a great deal of attention has been devoted to the study of the abundances of heavy elements (mostly iron) in the intracluster medium (hereafter ICM). From the hot X-ray emitting intergalactic gas in clusters of galaxies a universal abundance of iron of roughly 1/3 solar has been derived (Renzini 1997 and references therein; Fukazawa et al. 1998). Attempts to explain this ICM iron abundance can be traced back to the early 1970s, when for the first time the iron-emission line in the X-ray spectra of clusters of galaxies was discovered (Mitchell et al. 1976; Serlemitsos et al. 1977). Some interpreted the presence of iron in the ICM to be due to gas ejected from galaxies, either by means of galactic winds or ram pressure stripping (Gunn and Gott 1972; Larson and Dinerstein 1975; Vigroux 1977; De Young 1978; Sarazin 1979; Himmes and Biernann 1980; Matteucci and Vettolani 1988; Renzini et al. 1993; Matteucci and Gibson 1995; Gibson and Matteucci 1997), while others suggested pregalactic objects such as population III stars as the origin (White and Rees 1978).

Recently, thanks to the results obtained with the ASCA satellite, more detailed observations of iron and
α-element abundances in local galaxy clusters are becoming available. Before the launch of ASCA, spectroscopic measures of elements such as Si and S were known for the Perseus cluster (Mushotzky et al. 1981) and A576 (Rothenflug et al. 1984), indicating that the abundances of these elements as well as that of iron are roughly solar, although their level of accuracy did not allow one to make strong statements about possible differences between the α-elements and iron. Concerning oxygen there were only a few of measures of the O VIII line in Virgo and Perseus (Canizares et al. 1988) indicating a higher than solar [O/Fe]. More recent measurements from ASCA by Mushotzky et al. (1996) implied [α/Fe] ≈ +0.2 - +0.3 dex, thus indicating a general overabundance of α-elements relative to iron in the ICM. We derived from the Mushotzky data an average < (O/Fe)/(O/Fe)⊙ > ≈ 3.05 ± 2.19 dex (we estimated a formal statistical uncertainty and no systematic effect). This value corresponds (by adopting the photospheric abundances of Anders and Grevesse (1989)) to [O/Fe]⊙ ≈ +0.23 dex. This means, by considering the errors, a marginal (if any) overabundance of oxygen relative to iron. The average Si/Fe ratio estimated from Mushotzky data is < (Si/Fe)/(Si/Fe)⊙ > ≈ 2.32 ± 1.30 corresponding to [Si/Fe]⊙ = +0.37 ± 0.17 dex, which agrees with the same ratio obtained by Fukazawa et al. (1998) in their analysis of about 40 nearby poor and rich clusters. In fact, from this latter compilation of data we derived < (Si/Fe)/(Si/Fe)⊙ > ≈ 3.15 ± 1.60 for clusters with T > 3 keV (we consider these clusters as rich according to our definition in Tab. 2) and < (Si/Fe)/(Si/Fe)⊙ > ≈ 1.39 ± 0.90 for clusters with T ≤ 3 keV (poor clusters).

Ishimaru and Arimoto (1997a,b) and Arimoto et al. (1997) claimed that the present uncertainties both on the assumed solar abundances (used to derive the quantity [O/Fe]) and on the derived X-ray abundances are consistent with almost solar values of the [α/Fe] ratios in the ICM. In particular, the use of the meteoritic abundances for the sun (Anders and Grevesse 1989) instead of the photospheric ones used in the previous studies, would reduce the [α/Fe] values quoted above by ≈ 0.16 dex (Ishimaru & Arimoto 1997a,b; Renzini 1977).

Therefore, we consider all of these observational results still preliminary and subject to variation.

Concerning the evolution of the abundances and abundance ratios as a function of redshift very little is known at the moment. However, preliminary results by Mushotzky and Lowenstein (1997) seem to indicate no evolution in the Fe abundance for z ≈ 0.5.

In this paper we study the chemical evolution of the ICM, in particular we predict the evolution of Fe and [α/Fe] ratios as functions of redshift. This is because the value of the [α/Fe] ratio as well as the Fe abundance in the ICM impose strong constraints on the evolution of the galaxies in clusters as well as on the roles of supernovae of different types in the enrichment of the ICM, as discussed by Renzini et al. (1993) and Matteucci and Gibson (1995).

Since the heavy elements in the ICM are likely to come from ellipticals, as shown by Arnaud (1994), it is important to explore different kinds of models for the evolution of ellipticals. In particular, we will use either a one-zone model (Matteucci and Gibson 1995, hereafter referred to as “burst model”) and a multi-zone model (Martinelli et al. 1998, hereafter “continuous model”) for elliptical galaxies. The continuous model, which predicts abundance gradients in ellipticals in very good agreement with the observed ones, assumes that the outermost regions of these galaxies experience early galactic winds whereas the innermost ones keep an active, although low, star formation rate until late times. The physical reason for this resides in the fact that the binding energy of the gas is lower in the outermost galactic regions and this is supported by the observational finding of a correlation between metallicity and escape velocity in ellipticals (Carlolo and Danziger, 1994). The late occurrence of galactic winds in the most internal regions of ellipticals, if true, will have an effect on the chemical evolution of the ICM, certainly at variance with the predictions by models with only early winds (Matteucci and Gibson 1995; Gibson and Matteucci, 1997).

The plan of this paper is the following. In Section 2 we present the models and the computational method. In section 3 the results are discussed and some conclusions are drawn. We use throughout the paper an adimensional Hubble parameter h = H0/([100 km s^{-1} Mpc^{-1}]).

2. Computational method of the heavy element abundances in galaxy clusters

The mass in the form of specific chemical elements as well as the total gas masses ejected by the elliptical galaxies both at early and late galactic lifetimes into the ICM, can be computed in detail once a chemical evolution model is assumed.

Two different models for the evolution of elliptical galaxies have been taken into account:

1. **burst models**, namely those with only one major episode of galactic wind which occurs simultaneously all over the galaxy;

2. **continuous models**, where the galactic wind starts at an early epoch in the most external regions of the galaxies and continues until the present time in the most internal ones.
The burst model is the same as in Matteucci and Gibson (1995), where we direct the reader for details, in the case of the Arimoto & Yoshii (1987) IMF. This is their best model and we refer to it as CWM.

The continuous wind model is described in Martinelli et al. (1998), where we direct the reader for details. The basic difference of this approach, relative to the model of Matteucci and Gibson (1995), is that the elliptical galaxy is divided in several shells not interacting. For each shell the potential energy of the gas is calculated and compared with the thermal energy of the gas due to supernova explosions. A galactic wind develops first in the outermost shells and then progressively in the most inner ones. An improved expression for the cooling time of SN (of both types) remnants as well as a detailed description of the potential energy of the gas are used in this model. The SN remnant cooling time strongly influences the occurrence of a galactic wind as well as the amount of energy that SNe can transfer into the interstellar medium (ISM). In the CWM model, a cooling time not dependent on time was used, whereas in the continuous models the cooling time depends on the gas density ($t_c \sim \frac{1}{\sqrt{\rho_{gas}}}$) which is a function of time.

In both models, after the occurrence of a galactic wind it is assumed that star formation is no longer taking place, and the galaxy or the galactic region evolves passively after that. In the case of the continuous model, the innermost regions (inside 30 pc) never develop a galactic wind and the star formation continues until late times although it is so low that it would be hardly detectable.

The chemical evolution of the ICM is caused by two different processes:

1. In the burst model, galaxies begin to eject the gas only after the time of occurrence of a galactic wind (t_{GW}), and this process lasts only for few 10^8 years. The time t_{GW} is a function of the initial galactic mass which influences the potential well. Therefore, when the time of the first occurrence of the galactic wind increases, namely when more and more massive galaxies achieve the conditions to develop a wind, the number of galaxies contributing to the enrichment of the ICM also increases, as shown in figure 1. This type of evolution stops at the time $t_{GW_{\text{Max}}}$, corresponding to the onset of the galactic wind for the galaxy with the highest mass considered.

2. In the continuous models, the ICM evolution is caused by the gas ejected continuously by each galaxy after the time t_{GW}. This continuous ejection process, not present in the burst models, has the characteristic of acting also at low redshift and, in particular, now. The assumed IMF is the same as in the burst model.

We now elucidate, in some detail, how we have calculated the chemical abundances in the ICM for several values of redshift, according to the two elliptical galaxy models described above.

2.1. Burst models

We computed the ejected masses of each element (Fe, Si, O, and total gas) as functions of several initial galactic masses (the procedure we describe here can be also found in Matteucci and Vettolani, 1988). We found that the relation between the generic chemical element i and the initial galactic mass can be approximated by a power law:

$$M_i = E_i M_G^{\beta_i}$$

(1)

where M_i represents the mass ejected in the form of the chemical species i by a galaxy of initial mass M_G, and E_i and β_i are two constants (that can be fixed by a least squares fit). We have normalized the relations (1) to a galaxy at the break of the luminosity function of a cluster (Schechter 1976) having a blue luminosity L_*, absolute blue magnitude M_* and total mass M_{G*}.

In particular:

$$\frac{M_i}{M_{i*}} = \left(\frac{M_G}{M_{G*}} \right)^{\beta_i} \left(\frac{L}{L_*} \right)^{\beta_i}$$

(2)

where M_{i*} represents the mass ejected in the form of an element i by the galaxy with mass M_{G*}.

For each redshift z we evaluated, for the cosmological model considered, the corresponding age t of the elliptical

![Fig. 1. Mass $M_{gw}(t)$ (in solar masses) of the most massive galaxy which develops a galactic wind at the time t, in the case of the burst model.](image-url)
galaxies (Table 1). Then, for each \(t \) we determined from figure 1 the mass \(M_{\text{up}}(t) \) of the most massive galaxy which develops a galactic wind just at the time \(t \). The maximum mass considered is \(M_{\text{up}}(t) = M_{\text{up}} = 2 \times 10^{12} M_\odot \). Let \(M_{\text{low}} \) be the smallest mass for elliptical galaxies in our models. Let finally \(L_{\text{up}}(t) \) and \(L_{\text{low}} \) be the luminosities related to the previous mass bounds. Therefore by integrating over all the galaxies with luminosity between \(L_{\text{low}} \) and \(L_{\text{up}}(t) \), we show that the total mass in the form of an element \(i \), ejected into the ICM is:

\[
M_i^T = \int_{L_{\text{low}}}^{L_{\text{up}}(t)} \Phi(L/L_\star)(L/L_\star)^\beta d(L/L_\star) \tag{3}
\]

where \(\Phi(L/L_\star)(L/L_\star)^\beta d(L/L_\star) \) represents the mass of an element \(i \) per interval of \(d(L/L_\star) \). The masses computed by eq. (3) are therefore expressed in units of an element \(i \), ejected by a galaxy of luminosity \(L_\star \), namely of mass \(M_\star \) (the luminosity and the mass at the break of the luminosity function). The luminosity function \(\Phi(L/L_\star) \) is taken to be Schechter (1976), namely:

\[
\Phi(L/L_\star) = n^\star (L/L_\star)^\alpha \exp(-L/L_\star) \tag{4}
\]

where \(n^\star \) is a measure of the cluster richness and \(\alpha = 1.3 \).

Integrating the previous eq. (3) one obtains:

\[
M_i^T = n^\star f \frac{\Gamma(\alpha + 1 + \beta, L_{\text{low}}/L_\star) - \Gamma(\alpha + 1 + \beta, L_{\text{up}}(t)/L_\star)}{\Gamma(\alpha + 1 + \beta, L_{\text{up}}(t)/L_\star)} \tag{5}
\]

where \(\Gamma(a,b) \) is the incomplete \(\Gamma \) function and \(f \) represents the fraction by number of ellipticals in a cluster. The parameters \(f, n^\star, \alpha \) and \(M_\star \) are fixed for each individual cluster. We consider here the evolution of the ICM chemical abundances for two galactic systems: a rich cluster (RC) and a poor cluster (PC). In Table 2 the values of the parameters related to these prototype clusters are given.

At this point we need to express eq. (5) as a function of the galactic mass instead of the luminosity. We obtain:

\[
M_i^T = E_i n^\star f (h^2 K)^\beta \frac{10^{-0.4\beta}(M_\star - 5.48)}{\Gamma(\alpha + 1 + \beta, (M_{\text{low}} h^2 K)^{10^{-0.4(M_\star - 5.48)}}) - \Gamma(\alpha + 1 + \beta, (M_{\text{up}}(t) h^2 K)^{10^{-0.4(M_\star - 5.48)}})} \tag{6}
\]

where \(K = M_G/L_\text{tot} \) is the mass to luminosity ratio, with \(M_G \) expressed in solar masses and \(L \) in solar luminosities, \(h^{-1} = H_0/100 \) with \(H_0 \) the Hubble constant. The mass to luminosity ratio is computed as a function of the assumed IMF, as described in Matteucci and Gibson (1995).

2.2. Continuous models

In the case of continuous models the computation is different from the previous case because now the quantities \(E_i \) and \(\beta_i \) are time dependent. For each value of \(t \) we calculate the mass of gas in the form of a specific chemical element ejected from each galaxy. Again we can find the corresponding values of \(E_i(t) \) and \(\beta_i(t) \) by using a least squares fit. By substituting these quantities in eq. (6) we then can calculate the total mass of the chemical element \(i \) ejected into the ICM at the time \(t \).

Mod.	Cluster	Cosmology
1	RC	\(\Omega_0 = 1, h = 0.5 \)
2	RC	\(\Omega_0 = 0.4, \Omega_\Lambda = 0.6, h = 0.6 \)
3	PC	\(\Omega_0 = 1, h = 0.5 \)
4	PC	\(\Omega_0 = 0.4, \Omega_\Lambda = 0.6, h = 0.6 \)

Table 1. Age of the elliptical galaxies for several values of the redshift \(z \) in the two cosmological models examined

\(z \)	\(\Omega_0 = 1, h = 0.5 \)	\(\Omega_0 = 0.4, \Omega_\Lambda = 0.6, h = 0.6 \)
0.0	13	13
0.3	8.5	9.4
0.5	6.8	7.6
1.0	4.4	5.0
2.0	2.1	2.6
3.0	1.3	1.6
4.0	0.82	0.98
5.0	0.53	0.64

Table 2. Input ingredients for rich and poor cluster models.

Cluster	\(\alpha \)	\(n^\star \)	\(M_\star \)
RC	-1.3	0.8	115
PC	-1.3	0.3	20

Table 3. Models considered.

The evolution of the elliptical galaxies is considered in the framework of different cosmological models: a flat, scale invariant CDM cosmology with \(\Omega_0 = 1, h = 0.5 \) and a vacuum dominated CDM model with \(\Omega_0 = 0.4, \Omega_\Lambda = 0.6 \) and \(h = 0.6 \).

In all the models considered we set the galaxy formation epoch, \(z_f = 10 \), and their age = 13 Gyr (we consider the same age for all the galaxies in our code).
The models are defined in Table 3.

In this paper we have computed the evolution of the abundances of Fe and α-elements in the ICM of poor and rich clusters as a function of redshift under different cosmologies. To do that we have used two different models for the chemical evolution of elliptical galaxies, which are the main contributors to the ICM enrichment. In particular, we used a model where the galactic wind develops at the same time all over the galaxy (the burst model) and after that the galaxy evolves only passively not contributing any longer to the ICM enrichment, and a model where galactic winds develop first at large galactocentric distances and then progressively later in the innermost zones (continuous model).

Our results are shown in Figures 2-7, where the behaviour of the $[\text{Fe}/\text{H}]$, $[\alpha/\text{H}]$ and $[\text{Si}/\text{Fe}]$ as functions of the redshift z in the cases of burst models (Fig. 2, 3, 6) and continuous models (Fig. 4, 5, 7) is indicated. It should be noted that the $[\text{Fe}/\text{H}]$ and the $[\alpha/\text{H}]$ abundances refer to the abundances expected in the total gas ejected by ellipticals and not mixed with the pristine gas in the cluster. Previous calculations (Matteucci and Vettolani, 1988; Matteucci and Gibson, 1995; Gibson and Matteucci 1997) have shown that while the predicted total iron mass ejected by ellipticals agrees with the observed iron mass in clusters the total mass of gas ejected from ellipticals is much lower than the observed total gas mass in clusters. This is interpreted as due to the fact that most of the gas in clusters should be pristine gas.

The models presented here also predict a too small amount of ejected total gas as compared to the observed one. A larger production of total gas from galaxies can be obtained by adopting a steep faint end slope of the luminosity function. However, Gibson and Matteucci (1997) showed that in this case the contribution of the dwarf ellipticals is at most 15% of the total ICM gas, so that the conclusion about most of the ICM gas being pristine gas remains unaffected. In order to obtain the abundances in the ICM we should rescale the abundances shown in figures 2 and 4 to the total observed mass of gas in a typical poor and a rich cluster by assuming that most of it is pristine gas. In order to compute the evolution of the abundances as a function of redshift we also assumed that the amount of pristine gas in the clusters did not change during the cluster lifetime, in agreement with the results of White et al. (1993) which found that the baryon fraction in clusters should have been constant.

After doing that by taking $M_{\text{gasICM}, R} = 4.4 \cdot 10^{14} M_\odot$ as representative of the total gas of a rich cluster (Coma) and $M_{\text{gasICM}, P} = 2 \cdot 10^{13} M_\odot$ as representative of a poor cluster (Virgo) we found that, in order to represent the $[\text{Fe}/\text{H}]_{\text{ICM}}$, the curves of figure 2 should be lowered by

3. Results and Conclusions

Fig. 2. $[\text{Fe}/\text{H}] = \log(Fe/H) - \log(Fe/H)_{\odot}$ in the total gas ejected from the ellipticals as a function of the redshift in the case of burst models. The curves refer to a poor and a rich clusters and to different cosmologies as shown in Table 3. The adopted solar abundances are the meteoritic abundances from Anders and Grevesse (1989).

Fig. 3. $[\alpha/\text{Fe}]$ in the total gas ejected from ellipticals and in the ICM as a function of the redshift in the case of burst models. The curves refer to a poor and a rich cluster and different cosmologies as shown in Table 3.
The effect of a change in the cosmological parameters is a simple translation of the abundance ratios (namely the \([\alpha/Fe]_{\text{ICM}}\) ratios are lower by at most \(\sim 0.1\) dex when \(\Omega_0 = 0.4\) than when \(\Omega_0 = 1\)). A change in the cosmology produces also a delay in the chemical evolution, in the sense that when \(\Omega_0 = 1\) the chemical evolution of the ICM stops a little later than when \(\Omega_0 = 0.4\). This is a consequence of the different correspondence between the redshift \(z\) and the galactic age \(t\) as shown in Table 1.

From the previous results we can conclude that if we want to see an evolution in the ICM we have to be able to perform observations of abundances in very high redshift clusters (at least \(z \geq 1\)). Preliminary results from ASCA (Mushotsky and Lowenstein, 1997) seem to indicate no evolution in the abundance of Fe for \(z \leq 0.5\) in agreement with our results related to all models here considered. Therefore, on this basis alone we cannot distinguish among the two models. Concerning our predictions on the \([\alpha/Fe]_{\text{ICM}}\) ratios, recent studies (Ishimaru and Arimoto, 1997a,b) adopting the meteoritic solar abundances of Anders and Grevesse (1989) as in this work, seem to favor a
A low value of this ratio in very good agreement with our continuous wind model predictions.

Acknowledgements. A. M. would like to thank SISSA for the kind hospitality during the development of this work.

References
Anders, E., Grevesse, N., 1989 Geochim.Cosmochem. Acta 53, 197
Arimoto N., Yoshi Y., 1987, A&A, 173, 23
Arimoto N., Matsushita, K., Ishimaru, Y., Ohashi, T., Renzini, A., 1997, ApJ., 477, 128
Arnold, M., 1994, in “Clusters of Galaxies”, eds. F. Durret et al., Editions Frontieres, Gif-sur-Yvette, p.211
Canizares, C.R., Markert, T.H., Donahue, M.E., 1988, Cooling Floes in Clusters and Galaxies, ed. A.C. Fabian, Kluwer: Dordrecht p.63
Carollo, M., Danziger, I.J., 1994, MNRAS, 270, 523
De Young, D.S., 1978, ApJ, 223, 47
Fukazawa, Y., Makishima, K., Tamura, T. et al., 1998, PASJ, 50, 187
Gibson B.K., Matteucci, F., 1997, ApJ, 457, 47
Gunn, J.E. and Gott, J.R., 1972, ApJ, 176, 1
Himmes, A. and Biermann, P., 1980, A&A, 86, 11
Ishimaru, Y. and Arimoto, N., 1997a, PASJ, 49, 11
Ishimaru, Y. and Arimoto, N., 1997b, IAUS 187, Cosmic Chemical Evolution, Kyoto, Japan
Larson R. B. and Dinerstein, H.L., 1975, PASP, 87, 911
Martinelli A., Matteucci F. and Colafrancesco S., 1998 MNRAS 298, 42
Matteucci, F. and Vettolani, G., 1988, A&A, 202, 21
Matteucci F. and Gibson B., 1995, A&A, 304, 11
Mitchell, R.J., Culhane, J.L., Davison, P.J.N., Ives, J.C., 1976, MNRAS, 176, 29
Mushotzky R.F., Holt, S.S., Smith, B.W., Boldt, E.A., 1981, ApJ, 225, 21
Mushotzky R.F., Loewenstein, M., Arnaud, M., Tamura, T.
Fukazawa, Y. et al. 1996, ApJ., 466, 686
Mushotzky R.F., Loewenstein M., 1997, ApJ, 481, L63
Renzini, A., Cioffi, L., d’Ercole, A., Pellegrini, S., 1993, ApJ., 419, 52
Renzini, A., 1997, ApJ., 488, 35
Rothenflug, R., Vigroux, L., Mushotsky R.F., Holt, S.S., 1984, ApJ., 279, 53
Schechter, P, 1976, ApJ., 203, 297
Selermitsos, P.J., Smith, B.W., Boldt, E.A., Holt, S.S., Swank, J.H., 1977, ApJ., 211, L63
Sarazin, C.L., 1979, Astrophys. Lett., 20, 93
Vigroux, L., 1977, A&A, 56, 473
White, S.D.M. and Rees, M.J., 1978, MNRAS, 183, 341
White, S.D.M., Navarro, J.F., Evrard, A.E., Frenk, C.S. 1993, Nature, 366, 429

This article was processed by the author using Springer-Verlag \LaTeX A&A style file L-AA version 3.

Fig. 4. $\frac{Fe}{H}$ in the total gas ejected from ellipticals and in the ICM as a function of the redshift in the case of continuous models.

Fig. 5. $\frac{O}{Fe}$ in the total gas ejected from ellipticals as a function of the redshift in the case of continuous models.
Fig. 6. $\frac{[Si]}{[Fe]}$ in the total gas ejected from ellipticals and in the ICM as a function of the redshift in the case of burst models. The curves refer to a poor and a rich cluster and different cosmologies as shown in Table 3.

Fig. 7. $\frac{[Si]}{[Fe]}$ in the total gas ejected from ellipticals and in the ICM as a function of the redshift in the case of burst models. The curves refer to a poor and a rich cluster and different cosmologies as shown in Table 3.