Abstract

We present GrammarTagger, an open-source grammar profiler which, given an input text, identifies grammatical features useful for language education. The model architecture enables it to learn from a small amount of texts annotated with spans and their labels, which 1) enables easier and more intuitive annotation, 2) supports overlapping spans, and 3) is less prone to error propagation, compared to complex hand-crafted rules defined on constituency/dependency parses. We show that we can bootstrap a grammar profiler model with $F_1 \approx 0.6$ from only a couple hundred sentences both in English and Chinese, which can be further boosted via learning a multilingual model. With GrammarTagger, we also build Octanove Learn, a search engine of language learning materials indexed by their reading difficulty and grammatical features.

1 Introduction

Grammar plays an important role in second language (L2) acquisition and education (Long, 1991), and accurately identifying grammatical features in natural language texts has a wide range of applications, such as highlighting grammatical forms (Meurers et al., 2010) and finding authentic materials that match personal interests and proficiency levels (Heilman et al., 2008) for L2 learners and instructors. Grammatical and syntactic features also play an important role in other educational applications, notably readability assessment for L1 (Vajjala and Meurers, 2012) and L2 (Heilman et al., 2007; Xia et al., 2016) acquisition.

There have been previous efforts to build grammar-related resources such as English Grammar Profile (Harrison, 2015), A Core Inventory for General English (North et al., 2010), and Global Scale of English (GSE) Teacher Toolkit. However, they are static and require expertise to apply in real-word instructional settings. For example, it is not possible for instructors and learners to choose appropriate learning materials solely based on these resources. In this paper, we address grammatical profiling, the task of automatically identifying grammatical features called grammatical items (GIs) contained in a given natural language text.

One complication is that what L2 learners and educators perceive as “grammar” (such as the one explained in language textbooks) is different from what computer scientists define as grammar (such as the ones used in constituency and dependency parsing). Grammatical items range from simple lexical items such as phrasal verbs to syntactic constructs such as subordinate clauses (Figure 2). To find GIs contained in sentences, Ishii and Tono (2018) wrote regular expressions on sentences automatically.
matically tagged with PoS and lemmas. Grammatical templates (Wang and Andersen, 2016) rely on regular expressions applied to dependency parses. These complex, language-dependent handwritten rules require deep knowledge of computational linguistics to produce, and the algorithms are prone to error propagation from upstream tasks (e.g., PoS tagging and parsing).

Instead, we propose grammatical profiling as span prediction by borrowing from recent advances in deep NLP methods. Span prediction, widely used for tasks such as reading comprehension (Yu et al., 2018), semantic role labeling (Ouchi et al., 2018), and constituency parsing (Stern et al., 2017; Joshi et al., 2018) has several benefits when applied to grammatical profiling:

- **Ease of annotation**: annotation does not require linguistic knowledge of any specific tagging or parsing schemes. Annotators only need to mark the start and the end positions of each span and its GI category.

- **Partial annotation**: since predictions are made on a per-span basis, the model can learn from partial annotation. Although our datasets are fully annotated, this opens up a wide range of possibilities for leveraging existing resources such as textbooks as (potentially noisy) training signals.

- **Overlapping items**: spans can nest and overlap with each other. For example, in the sentence “I am looking forward to...” “I am looking” can be tagged as present progressive, and “looking forward to” can be tagged as a set phrase. It is difficult, if not impossible, to model overlapping spans with other schemes such as sequential labeling.

In this paper, we present GrammarTagger, an open-source grammar profiler based on span prediction (see Figure 1 for a screenshot). We build a grammar profiler model with $F_1 \approx 0.6$ from only a couple hundred sentences both in English and Chinese. We also show that this performance can be further boosted via multitask and multilingual learning.

As a straightforward application of GrammarTagger, we also present Octanove Learn, a search engine that indexes authentic learning materials by their difficulty and GIs. We do not claim to be the first to build such a search engine—the WERTi system (Meurers et al., 2010) analyzes authentic materials such as web pages and highlights grammatical features for learners. They focus on a small set of English GIs (e.g., gerunds, to-infinitives, conditionals) defined using the constraint grammar (Karlsson et al., 2011) on top of PoS tagged text. Ott and Meurers (2011) developed a search engine where users can for texts in terms of their reading difficulties and other linguistic properties. However, little attention has been paid to the grammatical aspects of the materials.

In summary, the contribution of this paper is as follows:

- We present a span-based grammatical profiling model and show that a practical grammatical profiler can be built with a small amount of training data, both in English and Chinese.

- We show that multitask and multilingual modeling could further improve the performance of grammatical profiling with the same capacity.

- We build Octanove Learn, a search engine for language learning materials where users can search for materials by GIs and difficulty.

Language	GI	Description	Example
English	PH/V_PART	PHRASAL VERBS (V+PARTICLE)	Things will likely turn out alright.
English	TA.PASTPROG.AFF	TENSE/ASPECT: PAST PROGRESSIVE	We were changing some of our rooms.
English	CL.think	hope/know/think+CLAUSE (questions)	I think the best meal I ever ate was just a hamburger.
Chinese	V_V or A_A	(questions)	我去商店，你会不会？
Chinese	越来越 + A + (7)	more and more A	人与人的联系越来越方便。
Chinese	可是	but	但我坚持自己的选择。

Figure 2: Examples of grammatical items (GIs) in English and Chinese. |
2 Span-based Grammar Tagging

2.1 Model

Since GIs are defined as substrings over sentences, span prediction is a natural choice for modeling grammatical profiling, where spans over the input text are classified into distinct GI tags. Our model is heavily inspired by the constituency parsing model proposed in Joshi et al. (2018), where they used pretrained language models and span-based partial annotations for domain adaptation of constituency parsers. However, a major difference is that GIs do not need to form a well-formed parse tree and we do not apply a structure prediction step.

Concretely, we use $S(x) = \{(i, j, t)|0 \leq i \leq j < L, i \in \mathbb{Z}, j \in \mathbb{Z}, t \in T\}$ to denote the set of all spans for a given sentence x (of length L), where i, j, t are span’s start position, end position (inclusive), and its GI tag (which is a member of T, the set of all possible tags). Note that conceptually a span is defined for every possible substring of the given sentence, and an empty tag $t = \emptyset$ is used for spans that do not correspond to any GIs. The goal of grammatical profiling is to predict the set of non-empty spans and their GI tags \hat{S} for a given sentence.

Our model is a standard span extraction model (Figure 3). It first contextualizes the input token sequence $x = x_1, ..., x_L$ via BERT (Devlin et al., 2019), then extracts span representation via a function f_{span} as follows:

$$h_1, ..., h_L = \text{BERT}(x), h \in \mathbb{R}^d$$
$$h_{i,j}^s = f_{\text{span}}((i, j), \{h_1, \ldots\}), h^s \in \mathbb{R}^{d_s}$$
$$\hat{p}(t|(i, j)) = \text{softmax}(\text{FFN}(h_{i,j}^s))$$

where h is the contextualized representation obtained by BERT of dimension d, h^s is the span representation obtained via f_{span}, d_s is its dimension, FFN is a feedforward network, and $\hat{p}(t|(i, j))$ is the predicted probability of the span (i, j) having GI t. Finally, we optimize the model using the standard cross entropy loss:

$$\mathcal{L}_{\text{span}} = - \sum_{(i, j, t) \in S(x)} \log \hat{p}(t|(i, j)) \quad (1)$$

We use the concatenation of two endpoints and their difference as the span representation function, i.e., $f_{\text{span}}((i, j), \{h_1, ..., h_L\}) = h_i \oplus h_j \oplus (h_i - h_j)$ where \oplus is vector concatenation.

2.2 Datasets

We used an in-house, difficulty-controlled English dataset—it consists of 5 passages per CEFR (the Common European Framework of Reference) (Council of Europe, 2001) level written by a native speaker with ESL background. The Chinese dataset consists of level-balanced reading passages taken from HSK (a standard Chinese proficiency test) sample questions. Both datasets were annotated with GIs by native speakers of each language with linguistics background. For English, we used CEFR-J Grammar Profile (Ishii and Tono, 2018), a list of GIs and their per-level statistics developed by the CEFR-J project (Negishi et al., 2013). For Chinese, we used a list of GIs annotated with HSK levels generously provided by Zero to Hero Education. Both lists are published at Open Language Profiles under a permissive creative commons license. Table 1 shows the statistics of the datasets we used for training and evaluating the model.

Language	# Passages	# Sents	# GIs
English	30	415	3,466
Chinese	—	558	1,730

Table 1: Dataset statistics
We use the following metrics for model evaluation:

- Labeled precision (P_L) and recall (R_L) defined as follows, and their F_1 measure:
 \[
 P_L = \frac{|S_L \cap \tilde{S}_L|}{|S_L|}, \quad R_L = \frac{|S_L \cap \tilde{S}_L|}{|\tilde{S}_L|},
 \]
 where S_L and \tilde{S}_L are the sets of labeled (i.e., (i, j, t)) non-empty spans in the ground truth and the model prediction, respectively.

- Unlabeled precision and recall defined as follows, and their F_1 measure:
 \[
 P_U = \frac{|S_U \cap \tilde{S}_U|}{|S_U|}, \quad R_U = \frac{|S_U \cap \tilde{S}_U|}{|\tilde{S}_U|},
 \]
 where S_U and \tilde{S}_U are the sets of unlabeled (i.e., (i, j)) non-empty spans in the ground truth and the model prediction, respectively.

- Macro-averaged precision (P_M) and recall (R_M) defined as follows, and their F_1 measure:
 \[
 P_t = \frac{|S_t \cap \tilde{S}_t|}{|S_t|}, \quad R_t = \frac{|S_t \cap \tilde{S}_t|}{|\tilde{S}_t|},
 \]
 \[
 P_M = \frac{1}{|T|} \sum_{t \in T} P_t, \quad R_M = \frac{1}{|T|} \sum_{t \in T} R_t,
 \]
 where T is the set of all distinct GI tags, S_t and \tilde{S}_t are the sets of spans for tag t in the ground truth and the model prediction, respectively.

We used the labeled F_1 measure as the main evaluation metric for tuning the model parameters.

2.4 Experiments

The feedforward network is a single linear layer, initialized with Xavier initialization (Glorot and Bengio, 2010). We used bert-base-cased for English and bert-base-chinese for Chinese.

3 Multitask and Multilingual Learning

3.1 Combining with Readability Assessment

Since GIs can be useful features for readability/difficulty assessment, it is natural to ask if grammatical proficiency is future work.

Table 2 shows the main result. The model achieves a decent level of grammatical profiling performance in spite of the small training dataset, suggesting that our method is effective for bootstrapping a practical grammar profiler. Note that the macro-averaged precision, recall, and F_1 measure are low, which is due to the heavily skewed distribution of GI tags. A small number of GI tags such as pronouns and tense markers occur frequently while others do not, which makes it difficult to correctly predict infrequent GIs from small training data. Robustly predicting such rarely occurring GIs is future work.

Lang	Prec	Rec	F_1
Labeled	0.628	0.489	0.549
en	0.694	0.540	0.606
Macro	0.205	0.188	0.187
Labeled	0.731	0.456	0.560
zh	0.748	0.466	0.573
Macro	0.150	0.142	0.141

Table 2: Grammatical profiling performance for English (en) and Chinese (zh)
Table 3: Grammatical profiling performance (labeled F_1, unlabeled F_1, and macro F_1) combined with readability assessment accuracy

Model	Labeled	Unlabeled	Macro	Acc.
en-single	0.549	0.606	0.187	—
en-multi	0.552	0.605	0.179	0.561
zh-single	0.560	0.573	0.141	—
zh-multi	0.556	0.566	0.140	0.557

Table 4: Grammatical profiling performance (labeled F_1, unlabeled F_1, and macro F_1) in a mono- and multi-lingual settings

Lang	Model	Labeled	Unlabeled	Macro
en	en	0.549	0.606	0.187
	en+zh	0.565	0.619	0.211
zh	zh	0.560	0.573	0.141
	en+zh	0.566	0.588	0.147

3.2 Multilingual Grammar Profiling

Little attention has been paid to building multilingual models for educational applications, except for e.g., (Vajjala and Rama, 2018). By definition, grammatical profiling is a language dependent task, and past studies dealt only with individual (usually high-resource) languages. However, being based on a language independent architecture, our model opens up a whole new set of possibilities for training multilingual grammar profilers. To investigate its generalization ability in a multilingual setting, we trained an English+Chinese joint model by combining the two training datasets and by using the bert-base-multilingual-cased model as the contextualizer. The set of target GI tags is extended to the union of all the tags in both languages. To the best of our knowledge, ours is the first model that solves grammatical profiling in multiple languages.

Table 4 shows the comparison between mono- and multi-lingual settings. The performance of the multilingual model is not just changed—it in fact improves grammatical profiling for English and Chinese, even though the model needs to encode the information from both languages with almost the same capacity. This suggests multilingual modeling is a promising venue for this particular task, being potentially beneficial for low-resource, closely related languages, although detailed investigation of multilingual models is future work.

Interestingly, the improvement in unlabeled F_1 measures between the mono- and multi-lingual models is larger than that in labeled measures for Chinese. We posit that, even between vastly different languages such as English and Chinese, where grammatically salient constructs occur in sentences might have a lot more in common across languages than what these constructs look like.

4 Searching Materials by Grammar

For our demo application we present Octanove Learn7 (Figure 4), a search engine which indexes learning materials by the GIs they include and their difficulty, as predicted by GrammarTagger. Here, we define individual materials to each be a document X consisting of a set of sentences x, where the tags associated with a document are the union of the span labels provided by GrammarTagger for all its sentences, and its difficulty is the most common difficulty provided by GrammarTagger among

7http://learn.octanove.com/
Figure 4: Screenshot of Octanove Learn. Language learners and educators can search examples of GIs with specific difficulties.

all its sentences. Let $G(x)$ and $D(x)$ be the set of GIs and the difficulty of sentence x returned by GrammarTagger. The set of GIs and the difficulty of document X are defined as:

$$G(X) = \bigcup_{x \in X} G(x)$$

$$D(X) = \arg\max_{d} \left| \{x \in X \mid D(x) = d \} \right|$$

We can then retrieve the set of documents including a given GI g as $\{X \in X \mid g \in G(X)\}$, and documents for a given difficulty d as $\{X \in X \mid D(X) = d\}$, where X is the collection of all documents. It would also be trivial to implement the ability to search for specific sentences by their GIs and difficulty in a similar fashion.

We imagine the primary application of this technology to be indexing existing data so that it can be searched by language learners and/or educators looking for examples of GIs at specific difficulties. However, we also include interactive profiling functionality which can be used to identify GIs in arbitrary input sentences, both to demonstrate the functionality of GrammarTagger and because it could be helpful to learners attempting to identify GIs in sentences they have difficulty understanding.

5 Conclusion

We presented GrammarTagger, a grammar profiler that identifies grammatical items from text based on simple and flexible span prediction. The experiments showed that the model achieved the grammatical profiling performance of $F_1 \approx 0.6$ from only a couple hundred sentences both in English and Chinese. We also show that this performance can be further boosted via multitask and multilingual learning.

We are planning on extending GrammarTagger to other languages than English and Chinese. Also, as we’ve shown partially, multitask and multilingual learning are a promising venue for building a more robust and better grammatical profiling model and we leave the investigation as future work.

Acknowledgments

The authors would like to thank Prof. Yasutake Ishii at Seijo University and Jon Long at Zero to Hero Education for their permission to use the grammatical resources. We also thank Kathleen Hall, Xiaoyue Peng, and Thomas Stones for their help with annotation.

References

Joan Bybee. 2008. Usage-based grammar and second language acquisition. In Peter Robinson and Nick C. Ellis, editors, Handbook of Cognitive Linguistics and Second Language Acquisition, chapter 10, pages 216–236. Routledge, New York.

Council of Europe. 2001. Common European Framework of Reference for Languages: Learning, Teaching, Assessment. Press Syndicate of the University of Cambridge.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. 2018. AllenNLP: A deep semantic natural language processing platform. In Proceedings of Workshop for NLP Open Source Software (NLP- OSS), pages 1–6, Melbourne, Australia. Association for Computational Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 249–256.

Adele E Goldberg. 2003. Constructions: a new theoretical approach to language. Trends in Cognitive Sciences, 7(5):219–224.
Julia Harrison. 2015. The english grammar profile. *English Profile in Practice, English Profile Studies*, 5:28–45.

Michael Heilman, Kevyn Collins-Thompson, Jamie Callan, and Maxine Eskenazi. 2007. Combining lexical and grammatical features to improve readability measures for first and second language texts. In *Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics: Proceedings of the Main Conference*, pages 460–467.

Michael Heilman, Le Zhao, Juan Pino, and Maxine Eskenazi. 2008. Retrieval of reading materials for vocabulary and reading practice. In *Proceedings of the Third Workshop on Innovative Use of NLP for Building Educational Applications*, pages 80–88.

Yasutake Ishii and Yukio Tono. 2018. Investigating Japanese EFL learners’ overuse/underuse of English grammar categories and their relevance to CEFR levels. In *Proceedings of Asia Pacific Corpus Linguistics Conference 2018*, pages 160–165.

Vidur Joshi, Matthew Peters, and Mark Hopkins. 2018. Extending a parser to distant domains using a few dozen partially annotated examples. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1190–1199, Melbourne, Australia. Association for Computational Linguistics.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and Arto Anttila. 2011. *Constraint Grammar: a language-independent system for parsing unrestricted text*, volume 4. Walter de Gruyter.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In *Proceedings of the International Conference on Learning Representations*.

Michael H Long. 1991. Focus on form: A design feature in language teaching methodology. *Foreign language research in cross-cultural perspective*, 2(1):39–52.

Detmar Meurers, Ramon Ziai, Luiz Amaral, Adrianie Boyd, Aleksandar Dimitrov, Vanessa Metcalf, and Niels Ott. 2010. Enhancing authentic web pages for language learners. In *Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educational Applications*, pages 10–18, Los Angeles, California. Association for Computational Linguistics.

Masashi Negishi, Tomoko Takada, and Yukio Tono. 2013. A progress report on the development of the CEFR-J. In *Exploring language frameworks: Proceedings of the ALTE Kraków Conference*, pages 135–163.

Brian North, Angeles Ortega, and Susan Sheehan. 2010. Eaquals core inventory for general english.

Niels Ott and Detmar Meurers. 2011. Information retrieval for education: Making search engines language aware. *Themes in Science and Technology Education*, 3(1-2):9–30.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto. 2018. A span selection model for semantic role labeling. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 1630–1642, Brussels, Belgium. Association for Computational Linguistics.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A minimal span-based neural constituency parser. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 818–827, Vancouver, Canada. Association for Computational Linguistics.

Sowmya Vajjala and Detmar Meurers. 2012. On improving the accuracy of readability classification using insights from second language acquisition. In *Proceedings of the Seventh Workshop on Building Educational Applications Using NLP*.

Sowmya Vajjala and Taraka Rama. 2018. Experiments with universal CEFR classification. In *Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications*.

Shuhan Wang and Erik Andersen. 2016. Grammatical templates: Improving text difficulty evaluation for language learners. In *Proceedings of International Conference on Computational Linguistics*.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 38–45, Online. Association for Computational Linguistics.

Menglin Xia, Ekaterina Kochmar, and Ted Briscoe. 2016. Text readability assessment for second language learners. In *Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications*.

Adams Wei Yu, David Dohan, Minh-Thang Luong, R. Zhao, Kai Chen, Mohammad Norouzi, and Quoc V. Le. 2018. QANet: Combining local convolution with global self-attention for reading comprehension. *arXiv*, abs/1804.09541.