Neutron scattering and superconducting order parameter in YBa$_2$Cu$_3$O$_7$

I. I. Mazin
Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road, NW, Washington, DC 20015

Victor M. Yakovenko
Department of Physics and Center for Superconductivity, University of Maryland, College Park, MD 20742-4111

(E-print cond-mat/9502025v4 Phys. Rev. Lett. 75, 4134 (1995); Erratum 76, 1984 (1996).

We discuss the origin of the neutron scattering peak at 41 meV observed in YBa$_2$Cu$_3$O$_7$ below $T_c$. The peak may occur due to spin-flip electron excitations across the superconducting gap which are enhanced by the antiferromagnetic interaction between Cu spins. In this picture, the experiment is most naturally explained if the superconducting order parameter has $s$-wave symmetry and opposite signs in the bonding and antibonding electron bands formed within a CuO$_2$ bilayer.

PACS numbers: 74.72.Bk, 61.12.Bt, 74.20.Mn

Neutron scattering is an important tool in the study of high-$T_c$ superconductors. A sharp magnetic neutron scattering peak was observed in the superconducting state of YBa$_2$Cu$_3$O$_x$ at a 2D wave vector $Q = (\pi/a, \pi/b)$ ($a$ and $b$ are the lattice spacings of the CuO$_2$ plane) and energy $\omega$ equal to 41 meV at $x \approx 7$ [1]. This effect was confirmed by several groups for $T < T_c$ of high-$T_c$ superconductors. A sharp magnetic neutron scattering peak was observed in the superconducting state of YBa$_2$Cu$_3$O$_7$. The peak may occur due to spin-flip electron excitations across the superconducting gap which are enhanced by the antiferromagnetic interaction between Cu spins. In this picture, the experiment is most naturally explained if the superconducting order parameter has $s$-wave symmetry and opposite signs in the bonding and antibonding bands. We show below that this state (unlike the $d$-wave state) provides the best explanation of the neutron scattering experiments, particularly, of feature (c).

The neutron scattering cross-section is proportional to the imaginary part of the electron spin susceptibility $\chi(q, q_z, \omega)$. In a bilayer system, it is given by the following expression [20]:

$$\chi(q, q_z, \omega) = \chi^{(+)} \cos^2(q_z d/2) + \chi^{(-)} \sin^2(q_z d/2),$$

(2)

where $d$ is the distance between the CuO$_2$ planes in the bilayer, and

$$\chi^{(+)}(q, \omega) = \chi^{(aa)}(q, \omega) + \chi^{(bb)}(q, \omega),$$

$$\chi^{(-)}(q, \omega) = \chi^{(ab)}(q, \omega) + \chi^{(ba)}(q, \omega).$$

(3)

(4)

Here, $b$ and $a$ refer to the bonding and antibonding electron bands of the bilayer. The susceptibilities $\chi^{(ij)}$ account for the transitions between the respective bands.

In experiments [1], only the second term in Eq. (2) was observed (feature (c)). According to Eq. (3), the coefficient $\chi^{(+)}$, which appears in the first term of Eq. (2), involves transitions within the same band. Following the coherence factor arguments, we conclude that condition (b) is not satisfied within the same band, that is, the gap has $s$-symmetry. On the other hand, the coefficient $\chi^{(-)}$ of the second term of Eq. (2), which involves transitions between the different bands (4), is not suppressed. Thus, the order parameters of the different bands, $\Delta^{(a)}$ and $\Delta^{(b)}$, have the opposite signs. This means that the state is the $s^\pm$ state described above. In this picture, the neutron scattering peak is due to the excitation of electrons, say, from the bonding band below the superconducting gap to the antibonding band above the superconducting gap, and the gaps have opposite signs.

In order to illustrate the above discussion, we performed explicit calculations for a well-known realistic
tight binding model of YBa$_2$Cu$_3$O$_7$, which has the following electron dispersion law: 
\[ \xi_k = -2t(\cos(k_x a) + \cos(k_y a)) - 4t' \cos(k_x a) \cos(k_y a) - \mu, \]
where \( t = 250 \text{ meV}, \) and \( t'/t = -0.45 \). We have chosen the Fermi energy \( \mu = -440 \text{ meV}, \) so that the van Hove singularity lies at an energy \( \xi_{vH} = 10 \text{ meV} \) below the Fermi level \([22,23]\). The corresponding Fermi surface is shown in the inset to Fig. 1. To simplify the calculations, we set the hopping amplitude between the layers, \( t_\perp \), equal to zero. This assumption does not quantitatively change our conclusions.

In BCS theory, at zero temperature, the susceptibilities are given by the following formula \([24]\):
\[
\chi_0^{(ij)}(q, \omega) = \frac{1}{2} \sum_k \left( 1 - \frac{\xi_{k+q} \xi_k + \Delta_k^{(i)} \Delta_{k+q}^{(j)}}{\omega - E_{k+q} - E_k + i\Gamma} \right),
\]
where \( E_k = \sqrt{\xi_k^2 + \Delta_k^2} \) is the quasiparticle dispersion in the superconducting state, \( \Gamma \) is the damping constant, and the indices \( i \) and \( j \) label the bonding and antibonding electron bands. Because of the simplifying assumption \( t_\perp = 0 \), the dispersion laws of the bonding and antibonding bands are identical and do not need to be distinguished in Eq. (5). Only the signs of the order parameters \( \Delta^{(i)} \) may depend on the index \( i \). Note that only when \( \Gamma = 0 \) is satisfied, does the coherence factor (the first line of Eq. (5)) not vanish at small energies \( \xi \ll \Delta \).

We have calculated the spin susceptibility \( \chi_0^{(\sigma)} \) directly from Eqs. (3) and (4) using \( \Gamma = 1 \text{ meV} \) and the \( s^\pm \) gap computed in Ref. \([14]\) for \( T_c = 90 \text{ K} \). The gap attains its maximal value \( \Delta_0 = 17.5 \text{ meV} \) near the points X and Y in the Brillouin zone (see the inset to Fig. 1). Imaginary \( \chi_0^{(\sigma)}(Q, \omega) \) and real \( \chi_0^{(\sigma)}(Q, \omega) \) parts of the susceptibilities are shown in Fig. 1 for the superconducting and normal states for two values of the Fermi energy \( \mu \). We observe that in the superconducting state, for the energies \( \omega \) lower than the absorption threshold \( E_{\text{th}} \approx 35 \text{ meV} \) (“spin gap”), \( \chi_0^{(\sigma)}(\omega) \) is zero. Furthermore, for the realistic \( \mu = -440 \text{ meV} \) both real and imaginary parts (solid curves) have sharp peaks, at 35 meV and 38 meV, respectively. In order to clarify the origin of these features, we repeated the calculations (dashed curves) with an unrealistic choice of the Fermi energy \( \mu = -370 \text{ meV} \), which moves the van Hove singularity much deeper below the Fermi level: \( \xi_{vH} = 80 \text{ meV} \). In this case, the peak in \( \chi_0^{(\sigma)}(\omega) \) stays at the same energy \( E_{\text{th}} \), and \( \chi_0^{(\sigma)}(\omega) \) develops a step at the same energy. On the other hand, the peak in \( \chi_0^{(\sigma)}(\omega) \) shifts to much higher energy of about 100 meV, which is close to \( \Delta_0 + \xi_{vH} \). \( \chi_0^{(\sigma)}(\omega) \) develops a negative step at the same energy. Similar results were obtained in Ref. \([14]\) for the \( d_{x^2-y^2} \) state.

To gain a qualitative understanding of this behavior, we set \( \Gamma \to 0 \) and set the coherence factor in Eq. (5) to 1. In this approximation, \( \chi_0^{(\sigma)}(q, \omega) \) is proportional to the joint density of states \( A(q, \omega) = \sum_k \delta(\omega - E_{k+q} - E_k) \). The two-particle energy \( E_2(k, q) = E_{k+q} + E_k \), considered as a function of the 2D wave vector \( k \) for a fixed \( q \), has a minimum and several saddle points. The minimum defines the threshold energy \( E_{\text{th}} \). In a 2D case, the joint density of states has a step at the threshold and logarithmic divergences at the saddle point energies. Correspondingly, the real part, \( \chi_0^{(\sigma)}(\omega) \), which is related with \( \chi_0^{(\sigma)}(\omega) \) by the Kramers-Kronig relations, has a logarithmic singularity at the threshold. Exactly that behavior is observed in Fig. 1. The minimum of \( E_2(k, Q) \) is achieved at a vector \( k \) such that both \( k \) and \( k+Q \) belong to the Fermi surface (see the inset to Fig. 1), where both \( E_k \) and \( E_{k+q} \) attain their minimal values approximately equal to \( \Delta_0 \). Thus, \( E_{\text{th}} = 2\Delta_0 = 38 \text{ meV} \).

The logarithmic peak in \( \chi_0^{(\sigma)}(\omega) \) occurs because of transitions between the occupied states located near X and Y points and empty quasiparticle states above the superconducting gap. The points X and Y are the saddle points of the normal-state dispersion law \( \xi_k \). They produce the van Hove singularity in the single-particle density of states in the normal state at the energy \( \xi_{vH} \). The logarithmic divergence in the joint density of states in the superconducting state is located, then, at the energy \( E^* \approx \Delta_0 + \sqrt{\Delta_0^2 + \xi_{vH}^2} \). The value of \( \xi_{vH} \) depends on the Fermi energy \( \mu \). For the two choices of \( \mu \) in Fig. 1, the values of \( \xi_{vH} \) are equal, respectively, to 10 and 80 meV, which gives values of \( E^* \approx 38 \text{ meV} \) and \( E^* \approx 100 \text{ meV} \), respectively, in agreement with the positions of the peaks in \( \chi_0^{(\sigma)}(\omega) \) in Fig. 1. Note that both LDA calculations \([22]\) and photoemission experiments \([23]\) place the van Hove singularity very close to the Fermi level, which corresponds to the first choice.
temperature (dotted curve in Fig. 1) and in the superconducting state (dashed line) shows that the logarithmic peak due to the van Hove singularity is absent in the normal state. Instead, we see a cusp at an energy close to $\xi_{\text{th}} = 80$ meV, which marks the threshold where transitions from the saddle points to the Fermi level become allowed. The reason that, instead of a cusp in the normal state, a divergence develops in the superconducting state is that in the latter case, roughly speaking, the transitions take place between the van Hove singularity and the coherence peak in the quasiparticle density of states. Since there is no threshold of absorption in the normal state, $\chi_0^\prime\prime(\omega)$ has no divergence at a finite $\omega$ in this state (dotted line in Fig. 1).

Summarizing, we conclude that the peaks in $\chi_0^\prime\prime(\mathbf{Q}, \omega)$ appear to manifest two different physical mechanisms. The peak in $\chi_0^\prime(\mathbf{Q}, \omega)$ is due to the transitions between the states just below the gap to the states right above it at the energy $E_{\text{th}} \approx 2\Delta_0$ which depends only on the superconducting gap. On the other hand, the peak in $\chi_0^{s\pm}(\mathbf{Q}, \omega)$ is due to the transitions from an occupied saddle point to the empty states just above the superconducting gap. The energy of this peak depends on the van Hove energy of the normal state $\xi_{\text{th}}$. For a realistic Fermi energy $\mu = 440$ meV, $\xi_{\text{th}} = 10$ meV is small compared to $\Delta_0 = 17.5$ meV, therefore the peaks in $\chi_0^\prime(\mathbf{Q}, \omega)$ approach each other, which is shown below to have a major effect on neutron scattering. None of these peaks appear in the normal state.

Curves in Fig. 2 are reminiscent of the experimental curves [3,4], where $\chi''(\mathbf{Q}, \omega)$ was found to exhibit a spin gap and a peak at different energies in underdoped samples with $x < 7$. It is tempting [3] to identify the logarithmic peak in $\chi_0^\prime(\mathbf{Q}, \omega)$ with the peak observed in the experiment. However, the plot of $\chi_0^\prime(\mathbf{Q}, \omega)$ reveals a structure quite different from that found experimentally. While there is a local maximum at $\mathbf{q} = \mathbf{Q}$ and $\omega \approx 2\Delta_0$ in Fig. 2, the corresponding peaks, although weaker, exist at other values of $\mathbf{q}$, in contradiction with feature (b). Even worse, when $\mathbf{q} \rightarrow 0$, $\chi_0^{s\pm}(\mathbf{q}, \omega)$ increases to much higher values than at $\mathbf{q} = \mathbf{Q}$. We conclude that $\chi_0^{s\pm}(\mathbf{q}, \omega)$ does not provide a satisfactory explanation of the experimentally observed neutron scattering.

Thus far, we have neglected the interaction between quasiparticles in the superconducting state. If we take into account a weak antiferromagnetic interaction between Cu spins in the plane, $J(\mathbf{q})$, and between the planes, $J_\perp$, the bare spin susceptibilities $\chi_0^{\pm\pm}$, discussed above, should be renormalized in an RPA manner [11,13]:

$$\chi^{\pm\pm}(\mathbf{q}, \omega) = \chi_0^{\pm\pm}(\mathbf{q}, \omega)/[1 + J^{\pm\pm}(\mathbf{q})\chi_0^{\pm\pm}(\mathbf{q}, \omega)/2], \quad (6)$$

$$J^{\pm\pm}(\mathbf{q}) = J(\mathbf{q}) \pm J_\perp. \quad (7)$$

Since the real part, $\chi_0^{s\pm}(\mathbf{q}, \omega)$, diverges as $\omega \rightarrow E_{\text{th}}$, as discussed above, the renormalized susceptibility $\chi^{s\pm}(\mathbf{q}, \omega)$ [3] has a pole at $\omega$ close to $E_{\text{th}}$ with singularities in both real and imaginary parts of $\chi^{s\pm}$. Physically, the pole in $\chi^{s\pm}(\mathbf{q}, \omega)$ describes a triplet electron-hole collective mode (an “antiparamagnon” or a “triplet exciton”) with the energy slightly below $E_{\text{th}}$. In this picture, the peak in the neutron scattering rate occurs due to inelastic excitation of this collective mode by neutrons.

Since the singularity in $\chi_0^{s\pm}(\mathbf{q}, \omega)$ exists, generally speaking, for any $\mathbf{q}$, the exciton state (and, thus, a peak in neutron scattering) should exist for any $\mathbf{q}$ in contradiction with feature (b). However, if we take into account a finite lifetime of quasiparticles $\Gamma$ in Eq. (5), the excitons also acquire a finite lifetime. For the antiferromagnetic interaction between the nearest neighbors, $\chi^{(\gamma)}(\mathbf{q}, \omega)$ acquires a peak at $\mathbf{q} = \mathbf{Q}$, where $J(\mathbf{q}) = J[\cos(q_x a) + \cos(q_y b)]$ reaches its maximal negative value. Thus, the position of the neutron peak in $\mathbf{q}$-space is set by $J(\mathbf{q})$ and in $\omega$ by $\chi_0^{s\pm}(\mathbf{q}, \omega)$. This statement is illustrated in Fig. 3, where we show $\chi''(\mathbf{q}, \omega)$ calculated according to Eq. (5) with $J^{\pm\pm} = 150$ meV and $\Gamma = 1$ meV for the $s^\pm$ state. In agreement with experiment, a single peak in $\chi''(\mathbf{q}, \omega)$, localized both in $\mathbf{q}$ and $\omega$, is observed, which is now more than twice higher than that at $\mathbf{q} \rightarrow 0$. The magnitude of the peak depends on the chosen value of $J$ and $\Gamma$, but the qualitatively the picture remains the same for a reasonable range of these parameters. Similar results were obtained in Ref. [11] for the $d_{x^2-y^2}$ state. It is worth noting that the peak in $\chi^{s\pm}(\omega)$ is due to the peak in the real part of $\chi^{s\pm}(\mathbf{q}, \omega)$. When the van Hove singularity is close to the Fermi level, the peak in $\chi_0^{s\pm}(\mathbf{Q}, \omega)$ gets stronger and enhances the peak in the renormalized susceptibility $\chi^{s\pm}(\mathbf{q}, \omega)$.

The crucial difference between the $s^\pm$ and $d_{x^2-y^2}$ states is due to the following: In the $s^\pm$ state, the divergence occurs only in $\chi_0^{s\pm}$, but not in $\chi_0^{s\pm}$, where it is suppressed by the coherence factor [3]. This suppression, unlike the
case of logarithmic divergence in $\chi^{(+)}_0$, is exact, because the divergence in the real part of $\chi^{(+)}_0$ would occur precisely at the threshold energy where the coherence factor vanishes. As a consequence, among the renormalized susceptibilities, only $\chi^{(-)}$ diverges, but not $\chi^{(+)}$. Taking in account Eq. (8), this naturally explains feature (c) of the experiment.

In the case of the $d$-wave, the coherence factor allows divergences in both $\chi^{(+)}_0$ and $\chi^{(+)}_0$, which, in turn, produce divergences in both $\chi^{(-)}$ and $\chi^{(+)}$. The only way to reconcile this with the experiment is to assume that $J^{(+)}$ is small: $|J^{(+)}| \ll |J^{(-)}|$, or even has a wrong (positive) sign. According to Eq. (7), this would require that the antiferromagnetic interaction between the layers be stronger than within a layer: $J_\perp \gtrsim 2J_\parallel$, which is unrealistic [20].

A number of theoretical papers consider the special case when $t' = 0$ in the dispersion law. This assumption results in nesting at the Fermi energy or at another energy (“dynamic nesting”), which produces a peak in $\chi^{(0)}_0(Q, \omega)$. However, this case is not relevant for YBa$_2$Cu$_3$O$_7$ where $Q$ is not a nesting vector.

In conclusion, we considered a scenario where the peak at 41 meV observed in neutron scattering experiments occurs due to spin-flip interband electron excitations across the superconducting gap which are enhanced by the antiferromagnetic interaction between Cu spins. We found that the experiment can be explained most naturally if the superconducting order parameter is of the $s^\pm$ type, that is, the order parameter which has the $s$-wave symmetry and the opposite signs in the bonding and antibonding bands. This state easily explains the observed dependence of the scattering intensity on the momentum perpendicular to the CuO$_2$ planes. On the other hand, the $d_{x^2-y^2}$ case can be reconciled with the observed dependence only if the antiferromagnetic interaction between the CuO$_2$ planes is stronger than the interaction within the plane, which seems to be unrealistic.

We thank D. Reznik and B. Keimer for making their results available to us prior to publication and for useful discussions. The work of V.M.Y. was supported in part by NSF under Grant DMR-9417451 and by the A. P. Sloan Foundation.

[1] J. Rossat-Mignod et al., Physica C 185-189, 86 (1991).
[2] H. A. Mook et al., Phys. Rev. Lett. 70, 3490 (1994).
[3] Hung Fai Fong et al., Phys. Rev. Lett., 75, 316 (1995).
[4] L. P. Regnault et al., Physica C 235-240, 59 (1994) and references therein.
[5] J. M. Tranquada et al., Phys. Rev. B 46, 5561 (1992).
[6] In Ref. 4, the peak was found to persist above $T_c$, albeit with greatly reduced intensity.
[7] N. Bulut, D. J. Scalapino, and R. T. Scalettar, Phys. Rev. B 45, 5577 (1992).
[8] S. Charfi-Kaddour, R. J. Tarento, and M. Héritier, J. Physique I 2, 1853 (1992).
[9] N. Bulut and D. J. Scalapino, Phys. Rev. B 47, 3419 (1993).
[10] P. Monthoux and D. J. Scalapino, Phys. Rev. Lett. 72, 1874 (1994).
[11] K. Maki and H. Won, Phys. Rev. Lett. 72, 1758 (1994); Phys. Rev. B 49, 15305 (1994).
[12] G. Stemmann, C. Pépin, and M. Lavagna, Phys. Rev. B 50, 4075 (1994).
[13] H. Fukuyama, H. Kohno, and T. Tanamoto, J. Low Temp. Phys. 95, 309 (1994).
[14] M. Lavagna and G. Stemmann, Phys. Rev. B 49, 4235 (1994).
[15] F. Onufrieva and J. Rossat-Mignod, Physica C 235-240, 1687 (1994).
[16] E. Demler and Shou-Cheng Zhang, Phys. Rev. Lett. 75, 4126 (1995) (e-print cond-mat/9502060).
[17] A. I. Liechtenstein, I. I. Mazin, and O. K. Andersen, Phys. Rev. Lett. 74, 2303 (1995).
[18] D. Z. Liu, K. Levin, and J. Maly, Phys. Rev. B 51, 8680 (1995).
[19] L. B. Ioffe et al., JETP Lett. 59, 65 (1994).
[20] M. U. Ubbens and P. A. Lee, Phys. Rev. B 50, 438 (1994).
[21] K. Kuboki and P. A. Lee, e-print cond-mat/9501031.
[22] O. K. Andersen et al., Phys. Rev. B 49, 4145 (1994).
[23] K. Goftor et al., J. Phys. Chem. Solids 54, 1193 (1993).
[24] J. R. Schrieffer, Theory of Superconductivity (Addison-Wesley, New York, 1983).
[25] Q. Si et al., Phys. Rev. B 47, 9055 (1993); Y. Zha, Q. Si, and K. Levin, Physica C 212, 413 (1993).
[26] After submission of the manuscript we became aware of two preprints considering neutron scattering in a bilayer with $d$-pairing. B. Normand, H. Kohno, and H. Fukuyama (e-print cond-mat/9505001), in agreement with our conclusion about $d$-symmetry, were not able to produce the required $q_z$ modulation. At the same time, D. Z. Liu, K. Levin, and Y. Zha, Phys. Rev. Lett. 75, 4130 (1995) (e-print cond-mat/9504092), argued that a
small $J_\perp = 10$ meV can account for the observed dependence on $q_z$. Since Liu et al. did not report the value of $J_\parallel$ that they used, we were not able to trace the origin of the discrepancy in the conclusions.