Abstract. Nitric oxide (NO) is a ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.

Correspondence to: Professor Fang Huang, Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road, Guangzhou, Guangdong 510055, P.R. China
E-mail: hfang@mail.sysu.edu.cn
Dr Wenguo Fan, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong 510080, P.R. China
E-mail: fanweng@mail.sysu.edu.cn

Abbreviations: NO, nitric oxide; cGMP, cyclic guanosine monophosphate; NOS, nitric oxide synthase; L-arg, L-arginine; nNOS, neuronal NOS; eNOS, endothelial NOS; iNOS, inducible NOS; sGC, soluble guanylyl cyclase; PKG, cGMP-dependent protein kinases; PDE, phosphodiesterase; PDL, periodontal ligament; CGRP, calcitonin gene-related peptide; M-CSF, monocyte/macrophage colony-stimulating factor; RANKL, receptor activator of nuclear factor-κB ligand; OPG, osteoprotegerin; IL, interleukin; TNF, tumor necrosis factor; PGE2, prostaglandin E2; cAMP, cyclic adenosine monophosphate; MMPs, matrix metalloproteinases; Runx2, transcription factor runt-related transcription factor 2; BMP, bone morphogenetic protein; TGF, transforming growth factor; MAPK, mitogen-activated protein kinase; HIF, hypoxia-inducible factor; VEGF, vascular endothelial growth factor; FSS, fluid shear stress; ECM, extracellular matrix; Cx, connexin; FAK, focal adhesion kinase; ODQ, 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one; ERK, extracellular signal-regulated kinase; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; PFF, pulsed fluid flow; GCF, gingival crevicular fluid; L-NAME, N(G)-nitro-L-arginine methyl ester

Key words: NO, cGMP, orthodontic tooth movement, bone remodeling, osteoblast, osteoclast
inflammation, causing a relatively slow yet increased-output NO production (2,3). The most common target of NO is soluble guanylate cyclase (sGC), which generates the second messenger cyclic guanosine monophosphate (cGMP) from guanosine-5'-triphosphate within the cell (4,5). cGMP mainly acts on protein kinase G (PKG) and can be degraded by phosphodiesterase (PDE), such as PDE5, 6 and 9 (2,6). The effect of NO on bone mass regulation and bone metabolism has been well investigated and reviewed elsewhere; however, studies on the involvement of NO in orthodontic tooth movement are limited (7-9).

Tooth movement induced by orthodontic force is achieved through bone remodeling, as a result of the sequential transduction of molecular signals and changes in cellular behaviors (10,11). It is of utmost significance to determine the underlying mechanism of orthodontic tooth movement, in order to reduce possible side-effects and shorten the duration of therapy. NO is extensively involved in orthodontic-related biological events, such as aseptic inflammation, mechanical signal transduction and bone remodeling. Furthermore, the regulatory effect of NO on bone remodeling has been demonstrated to be cGMP-related (12,13). In the present review, the regulatory effects of NO on the functional states of related cells and tissues during orthodontic tooth movement, as well as the possible mechanisms involved are discussed, with the aim of providing helpful insight towards the application of effective therapeutic interventions in orthodontics.

2. Orthodontic tooth movement overview

Orthodontic tooth movement relies upon periodontal ligament (PDL) and alveolar bone remodeling. The PDL is a dense connective tissue that plucks the tooth to the adjacent alveolar bone (14,15). It contains collagen fiber bundle, blood vessel, nerves, interstitial fluids and multiple cell types, including fibroblasts, osteoclasts, osteoblasts and macrophages (10,14). The alveolar bone consists of bone cells (osteoclasts, osteoblasts and osteocytes) and the mineralized matrix (14,16). The force applied to the tooth triggers cell-signaling cascades in the PDL and the alveolar bone, leading to tissue remodeling and tooth movement (11,17).

Orthodontic tooth movement can be organized into three phases: i) The initial phase; ii) lag phase; and iii) post-lag phase (18). In the initial phase, tooth movement occurs due to the deformation of PDL and tooth displacement within the alveolar socket 24 to 48 h after the application of force to the teeth. The lag phase follows the initial phase, during which little or no tooth movement is observed due to PDL hyalinization in the compression region. This phase lasts 20-30 days. Following the removal of necrotic tissue by macrophages, tooth movement resumes in the post-lag phase (19,20). This phase usually occurs 40 days after the initial application of force.

Cellular and molecular mechanisms of orthodontic tooth movement

Pressure side: Osteoclasts and bone resorption. The pressure-tension theory describes orthodontic tooth movement as an outcome of bone resorption in the compression region and bone formation in the tension region (21). On the pressure side, the reduction of blood flow and the distortion of nerve endings in PDL may cause hypoxia and the release of vasoactive neurotransmitters, including substance P, calcitonin gene-related peptide (CGRP), and vasoactive intestinal polypeptide. As a result, vasodilatation and the aggregation of circulating leukocytes, monocytes, macrophages, lymphocytes and mast cells has been observed (22-26). Growth factors, chemokines and other cytokines also contribute to these processes (23,27,28).

Osteoclasts are multinucleated cells, that initially differentiate from multipotential hematopoietic precursors in the monocyte/macrophage lineage, upon macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) stimulation, which are secreted primarily by cells of the osteoblast lineage (29-35). M-CSF promotes the proliferation, adhesion and migration of osteoclast precursor cells (36-38). RANKL promotes the fusion, differentiation and bone resorptive function of osteoclasts through the activation of RANK on the surface of osteoclast precursors (33,39,40). OPG, a decoy receptor for RANKL, suppresses osteoclastogenesis through the blockage of the RANK/RANKL signaling pathway (41,42).

The aseptic inflammatory response caused by orthodontic forces is indispensable for tooth movement (11,43). Interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2) can induce the release of RANKL and MCS-F to stimulate osteoclast precursor differentiation (41,44-47). In addition to the enhancement of osteoclastogenic factor expression, TNF-α also activates osteoclast precursors directly through it binding to TNF receptor (32,48,49). PGE2 enhances the bone-resorbing activity of osteoclasts through the increase of intracellular cyclic adenosine monophosphate (cAMP) levels or the partial mediation of TNF-α (50). Mature osteoclasts occupy small cavities termed Howship's lacunae, in which hydrogen ions and proteolytic enzymes are released, including cathepsin K and matrix metalloproteinases (MMPs), in order to degrade the bone matrix (39,51,52). When the magnitude of the force decreases, osteoclasts become inactive and detach from the bone (53).

Tension side: Osteoblasts and bone formation. Bone depo-
mitogen-activated protein kinase (MAPK) pathways (59-62). In addition, TGF-β also suppresses bone resorption activity through the upregulation of the tissue inhibitor of metalloproteinases expression (43,63). IL-10 induces an overall reduction in RANK signaling, through the facilitation of OPG expression and the reduction of RANKL production (43,64,65).

Regional hypoxia caused by orthodontic force induces hypoxia-inducible factor (HIF)-1 expression and upregulates the transcription of vascular endothelial growth factor (VEGF) in PDL fibroblasts and osteoblasts. VEGF is associated with osteogenic differentiation and matrix mineralization under the regulation of BMP, corroborating the concept that angio- genesis and osteogenesis are combined (66,67). Furthermore, HIF-1 and VEGF also stimulate osteoclast differentiation via the upregulation of RANKL, contributing to the combination of bone resorption and bone formation (68-70).

Some molecules that regulate the response of PDL fibroblasts to the orthodontic forces have been identified in previous studies, such as CC chemokine receptor 5 (CCR5) and CCR5 ligands axis (71), relaxin (Rln) and Rln family peptides (Rxfps) axis (72), and secretory leucocyte peptidase inhibitor (73). The expression levels of these molecules were upregulated in the PDL, due to compression and tension force; however, their downstream effects were different. Another consequence was the upregulation of the osteoclastogenesis-relating factors, including RANKL, MCSF and MMPs, on the compression side, and osteoclast activity inhibiting factors, including Runx2, IL-6, and IL-12, that may induce osteoblast differentiation on the tension side.

Mechanotransduction: Osteocytes and fibroblasts. Osteocytes are critical for the transduction of mechanical stimuli into biochemical signals (74-76). When a force is exerted on the tooth, the squeeze of the interstitial fluid causes fluid shear stress (FSS) in the extracellular matrix (ECM) (77). The fluid flow hypothesis describes the response of osteocytes to FSS as an essential mechanism during orthodontic treatment. FSS stimulates an increase in the intracellular calcium concentration and the release of intercellular molecules in osteocytes through the activation of integrin, a transmembrane protein that connects ECM macromolecules to the internal cytoskeleton (78-80). The FSS-related up-regulation of NO, PGE2, TFG-β, and insulin-like growth factor alters the osteocyte metabolic state and osteoblast/osteoclast functions (81,82). Gap junctions formed by connexin (Cx) also participate in the osteocyte-osteoblast communication (83,84). For example, Cx is involved in the release of PGE2, which enhances Runx2 DNA binding activity through the simultaneous activation of the cAMP/cAMP-dependent protein kinase and MAPK pathways and the subsequent stimulation of RANKL expression in osteoblasts (85-88).

The inhibitory effect of osteocytes on osteoblastic activity can be induced by the secretion of sclerostin, which antagonizes BMP effect and blocks canonical Wnt signaling (89-91). Osteocytes regulate osteoclastic differentiation via the alternation of major osteoclast regulators, namely RANKL and M-CSF (92-94). Moreover, osteocyte apoptosis induction is an important event in the recruitment and differentiation of osteoclasts (95-97). These findings confirm that osteocytes play a key role in the response to biomechanical stimuli and controlling bone remodeling by coordinating the activity of osteoblasts and osteoclasts.

Fibroblasts are involved in mechanosensation and mechanotransduction in connective tissues. The application of mechanical stretching activates integrin and causes conformational changes in focal adhesion kinase (FAK), inducing a signaling cascade that modulates cytoskeletal dynamics and gene transcription in fibroblasts (98,99).

3. Effects of NO on orthodontic tooth movement

Expression of NO in bone tissue. Three NOS isoforms in total are expressed in osteoblasts, osteoclasts and osteocytes (100-102). iNOS and eNOS are expressed in human PDL stem cells (103,104). Previous studies revealed the presence of sGC and cGMP in mouse bone marrow macrophages (105), osteoclasts (105-107), and osteocytes (108). Davidovitch et al (109,110) performed immunohistochemistry (IHC) on alveolar bone sections obtained from cats and revealed that cGMP expression was increased in the PDL fibroblast cells stained intensely for; however, most cGMP expression was not detected through IHC staining in osteoblasts. However, cGMP expression increased due to the subjection of the alveolar bone to mechanical force (111,112). The application of electric currents to the bone, also led to the upregulation of cGMP in osteoblast and PDL fibroblast cells, accompanied by bone deposition near the cathode (113-115). Since a piezoelectric current can be generated by mechanical stress, the above findings suggest that NO/cGMP is an important signaling pathway, which mediates bone cell response to mechanical force (116).

Role of NO in cells associated with orthodontic tooth movement. Mounting evidence indicates that NO regulates multiple cellular behaviors related to orthodontic movement (Fig. 1 and Table I).

Osteoclasts. A number of studies have demonstrated that NO exerts biphasic effects on osteoclast formation and function. In several cases, NO promotes osteoclastogenesis and bone resorption. NO mediates pre-osteoclasts fusion through the upregulation of actin cytoskeleton remodeling (117). Histopathological studies have demonstrated that osteoclasts, Howship's lacunae and new capillaries were increased in rats that received an injection of the NO precursor L-arg during tooth movement (118-120).

iNOS is an important regulator of osteoclast differentiation under bacterial infection-induced inflammatory conditions (121-123). iNOS was previously found to mediate alveolar bone loss and periapical infectious bone resorption following the oral administration of Porphyromonas gingivalis (124) or lipopolysaccharide (122). In another study, histochemical analysis revealed that the osteoclast number in iNOS(-/-) mice in comparison to wild-type mice was considerably decreased (123). Tooth eruptions are similar to tooth movement in terms of monocyte recruitment and osteoclast differentiation. Evidence indicates that increased levels of iNOS are associated with a greater number of osteoclasts in mice with accelerated tooth eruption, indicating that iNOS may be a bone resorption modulator candidate (125).
As previously demonstrated, M1-like macrophage polarization and an enhanced M1/M2 macrophage ratio increase the number of osteoclasts in rats or mice, accompanied by an increase in M1 macrophage marker expression (TNF-α and iNOS) on the compression side, during tooth movement (126,127). TNF-α stimulates the survival of differentiated osteoclasts through the induction of iNOS-dependent NO generation (128). In the rheumatism inflammatory environment, the TNF-α promoting effect on alveolar bone resorption is partly mediated through the activation of iNOS and the resulting production of NO (129).

It has been observed that the promoting effect of iNOS on osteoclasts is mediated through the NO/cGMP pathway. Kaneko et al (105) revealed that 8-nitro-cGMP, a NO-dependent derivative of cGMP in mammals, increased RANKL mRNA expression, and enhanced osteoclast differentiation. The reduction in cGMP levels due to the inhibition of NOS caused RANKL-induced osteoclast differentiation suppression.

By contrast, evidence has revealed an inhibitory effect of NO on osteoclasts at low concentrations. NO has been reported to increase osteoclast and osteoclast precursor cell apoptosis (101,130-132). A novel NO donor, nitrosyl-cobinamide (NO-Cbi), has been found to reduce the RANKL/OPG gene expression ratio or directly inhibit osteoclast differentiation in vitro and in vivo (133). Nicorandil, an agent that can increase NO production in osteoclasts, was previously shown to suppress osteoclast differentiation via activating sGC (134). NO causes osteoclast detachment and downregulates osteoclast bone-resorbing activity via the NO/cGMP/PKG pathway in vitro (101,107,135-137). Of note, the selective inhibition of iNOS was previously found to markedly promote bone resorption in vivo. In an iNOS(-/-) mouse model of apical periodontitis, enhanced osteoclast differentiation and increased bone resorption were observed in comparison with the control group, accompanied by increased IL-1β, TNF-α, RANK, RANKL and monocyte chemoattractant protein-1 (MCP-1) levels (138,139). These results suggest that NO deficiency is associated with an imbalance in the host inflammatory response, resulting in severe bone loss.

Moreover, iNOS exerts an inhibitory effect on osteoclast differentiation through other pathways. Zheng et al (140) demonstrated that iNOS was a RANKL-induced autocrine negative feedback inhibitor of RANKL-mediated osteoclastogenesis. RANKL triggered iNOS expression and NO release, and subsequently inhibited RANKL-induced osteoclast formation in a cGMP-independent manner.

The inconsistent effects of NO on osteoclastogenesis may be attributed to the differences in NO synthesis quantity, cell types and development states. NO action is also affected by the cytokines in the microenvironment. Multiple factors influence the downstream signaling of NO, and further studies are required to elucidate the specific mechanism of NO regulation.

Osteoblasts. NO is also involved in the bidirectional regulation of osteoblasts. Decreased NO concentrations promote osteoblast proliferation, differentiation and survival (133,141-143). Mineralized nodule formations and mRNA expression levels of osteoblastic genes, such as alkaline phosphatase, osteocalcin and collagen-1 genes, have been shown to be enhanced by NO donors and 8-Br-cGMP, an analog of cGMP (141-143). This effect was blocked by 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ), a competitive blocker that prevents sGC
Cell type	Agent (concentration)	Regulation	Downstream pathways
Murine osteoclasts	8-Nitro-cGMP (30 µM)	Promoted osteoclast formation	Enhances the mRNA expression of RANK via PKG
RAW264.7 murine osteoclasts	NOC-12 (15 µM), NOC-18 (5 µM)	Promoted osteoclast formation	Regulated actin cytoskeleton remodeling and pre-osteoclast fusion
	NOC-12 (>25 µM), NOC-18 (>10 µM)	Decreased osteoclast survival	RANKL/IFN-β-induced iNOS/NO as a negative feedback signal during osteoclastogenesis
RAW264.7 murine osteoclasts	AG (2-500 µM)	Promoted osteoclast formation	Augmented the TNF-α-stimulated MMP-1 mRNA
UMR-106 and MC3T3-E1	SNAP (0-1000 µM)	Promoted osteoclast formation	Mediated the TNF-α-induced osteoclast survival by reducing the activity of caspase 3
Murine osteoclasts	NOC-18 (10-500 nM)	Increased osteoclast survival	Activated caspase-3/caspase-8 activity and inhibited Src activity
Rat osteoclasts	YC-1 (100 nM)	Decreased osteoclast survival	Mediated apoptosis of osteoclast progenitors induced by TNF-α and IFN-γ
Murine osteoclasts	SNAP (30 µM)	Decreased osteoclast survival	Reduced cell apoptosis of osteoclast progenitors induced by IL-12 and IL-18
Murine osteoclasts	L-NMMA (0.1-10 mM)	Increased osteoclast survival	Reduced the RANKL/OPG gene expression ratio
Murine osteoclasts	NO-Cbi (3-30 µM)	Inhibited osteoclast formation	Downmodulated acid secretion and inhibited integrin attachments via cGMP/PKG I/VASP/IP3R1/IRAG
Human osteoclasts	Nicorandil (1-100 µM)	Inhibited osteoclast formation	Mediated cell apoptosis of osteoclast progenitors induced by IL-12 and IL-18
FLG 29.1 human preosteoclast cell line	SNAP (unknown)	Decreased cell proliferation	Reduced osteoclast membrane HCl transport activity via PKG
Murine osteoblasts	NO-Cbi (3-30 µM)	Promoted osteoblast proliferation and differentiation	Stimulated ERK/Akt and Wnt/β-catenin signaling via cGMP/PKG
Rat osteoblasts	NOC-18 (10 µM)	Promoted osteoblast differentiation	Mediated osteoblast survival and differentiation
Murine osteoblasts	SNP (0.01 µM -1 mM)	Promoted osteoblast differentiation	Increased the expression of VEGF and VEGFR2
Rat osteoblasts	DEA-NO (0.1-100 nM)	Promoted osteoblast differentiation	Mediated osteoblast survival and differentiation, decreased osteoblast survival
Murine osteoblasts	8-Br-cGMP (10-100 µM)	Promoted osteoblast differentiation	Regulated MMP-13 expression via cGMP/PKG/Runx2
Murine osteoblasts	Sildenafil and vardenafil (10 nM-1 mM)	Promoted osteoblast differentiation	Increased expression levels of p62, ATG7, Beclin-1 and LC3-II via AMPK
Rat osteoblasts	NOC-18 (10-50 µM), SNP (100 µM)	Promoted osteoblast survival and differentiation, decreased osteoblast survival	Regulated MMP-13 expression via cGMP/PKG/Runx2
MC3T3-E1 osteoblasts	DEA-NO (100 µM)	Promoted osteoblast differentiation	Increased expression levels of p62, ATG7, Beclin-1 and LC3-II via AMPK
MC3T3-E1 osteoblasts	SNP (1.5-3 mM)	Decreased osteoblast survival	Regulated MMP-13 expression via cGMP/PKG/Runx2
YAN et al: ITNITRIC OXIDE IN ORTHODONTIC TOOTH MOVEMENT

6

activation and lowers cGMP/PKG activity. It has been recently stated that PDE5 inhibitors, which can significantly increase intracellular cGMP levels, induce osteoblast differentiation and enhance bone regeneration in osteopenic mice via the cGMP/VEGF pathway (144). These findings further support the involvement of NO/cGMP/PKG pathway in the regulation of osteoblast activity (133,143,145).

Increased iNOS expression and NO levels have been observed during osteoblast differentiation in vitro. iNOS has been reported to mediate the regulation of Runx2 translocation and downstream events (146). In eNOS knockout mice, osteoblast growth has been shown to be inhibited (147). Evidence suggests that eNOS activation promotes cell survival and enhances osteoblastic bone expression in osteoblasts via pathway cascades involving Src/extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and Wnt/β-catenin (148,149).

NO mediates the action of several local and systemic factors, including mechanical stimulation, hormones and other signaling molecules in osteoblasts (13,150). It has also been revealed that 1,25-dihydroxyvitamin D3 regulates bone mass via the upregulation of iNOS expression and NO production (151). CGRP has been found to promote mandibular bone fracture healing in vivo and stimulate the eNOS activity through the increase of intracellular calcium concentrations in osteoblasts in vitro (152,153). Furthermore, it has been observed that 17β-estradiol, a major endogenous estrogen, may promote eNOS expression and osteoblast differentiation through Akt phosphorylation in a dose-dependent manner (154). It has been previously demonstrated that the bone-protective effects of estrogen rely upon the NO/cGMP pathway (147,150). High concentrations of NO negatively impact osteoblast proliferation and survival (145). NO simultaneously induces cell death and autophagy in osteoblasts (155).

Osteocytes and PDL fibroblasts. The effect of NO on osteocytes is similar to that of osteoblasts. Parathyroid hormone and 17β-estradiol levels increase the expression of cGMP in osteocytes (108). Cinaciguat, an activator of SGC that has been declared as a potential drug target for osteoporosis, was previously found to reverse osteocyte apoptosis and enhance bone formation in mice subjected to ovariec-tomy (156). NO/cGMP/PKG signaling mediated 17β-estradiol anti-apoptotic effect on osteocytes through either the activation of the pro-survival kinases, ERK and Akt, mediated by type II PKG, or direct phosphorylation of protein related to cell death by type I (PKG) (157,158). However, inflammation-induced iNOS activation and elevated concentrations of NO can lead to osteocyte apoptosis (132).

NO/cGMP/PKG signaling has been shown to regulate human PDL fibroblast proliferation and differentiation, with the involvement of MAPK and nuclear factor-κ-light-chain-enhancer of activated B cells pathways (103,159-161). However, the effect of NO on cell proliferation in PDL has not yet been fully clarified. A previous study revealed that NO did not influence PDL stem cell proliferation (103). In other studies, it has been revealed that endogenous NO inhibits proliferation and induces apoptosis of PDL fibroblasts (159,162). This discrepancy could be attributed to differences in the cellular differentiation levels and varying applied agent concentrations.
The PDL and the alveolar bone are developed from the dental follicle during tooth development. The literature was reviewed and it was observed that studies of NO regulation impact upon the dental follicle during tooth development has not been reported yet, to the best of our knowledge. It was surmised that the exploration of the underlying mechanism of NO on the development of the PDL and alveolar bone may provide novel insights into the role of NO in the tissue remodeling observed during orthodontic tooth movement.

NO signaling in bone mechanotransduction NO is a factor that mediates early cellular response to applied mechanical forces in the PDL and bone (Fig. 2) (13,163,164). NO synthesis in osteoclasts (165), osteoblast (116,151,163,165–167), osteocytes (164,168), PDL fibroblasts (169), fibroblasts (170), and dental pulp cells (171,172) increased following the application of mechanical loading, pulsed fluid flow (PFF), electrical stimulation, or pulsed electromagnetic field stimulation.

The mechanical loading-induced activation of the Wnt/β-catenin pathway is an important signaling event in osteoblasts, osteocytes, and PDL fibroblasts, and is mediated by a NO-dependent mechanism involving the FAK, Src/ERK and PI3K/Akt signaling pathways (169,173,174). PFF increases NO synthesis in osteoblasts, resulting in PKG II-dependent activation of Src and PI3K-dependent phosphorylation of Akt. The nuclear translocation of β-catenin is induced and the gene expression of c-fos is upregulated, initiating a proliferative response in mechanically stimulated osteoblasts (175–177). When the osteoblast and osteocyte cytoskeleton system of disrupted, PFF-induced NO production is affected (178).

PFF induces the release of multiple soluble factors that promote osteogenesis and inhibits bone resorption. This process is partially dependent on the generation of NO (74,179–181). PFF-induced NO inhibited osteocyte apoptosis through the downregulation of B-cell lymphoma-2 (Bcl-2) and caspase-3 (182). NO also modulates mechanically induced VEGF expression, contributing to angiogenesis during bone remodeling (183,184).

The main NOS isoform that produces NO in osteoblasts and osteocytes under the mechanical force action has not yet been elucidated. The activation of eNOS is associated with the phosphorylation or dephosphorylation at several functional sites on eNOS, which may be induced by FSS, estrogens, VEGF and insulin (185–187). Several studies have revealed that FSS-induced NO production is attributed to the calcium-dependent eNOS activation in bone cells (13,185,188,189). It has been revealed that the occlusal force led to iNOS and eNOS increased expression in hypofunctional and normal PDL fibroblasts (100,104).

Additionally, it has been suggested that eNOS may be not indispensable for mechanically-induced NO synthesis in cultured osteoblasts or eNOS (-/-) mice (190,191). It has also been mentioned that ultrasound-induced bone formation may be mediated through nNOS and iNOS upregulation in osteoblasts (82,163,192,193). Furthermore, osteopontin has been shown to suppress the osteoblast response to ultrasound by inhibiting the expression of nNOS and iNOS through FAK downregulation (194). This inconsistency may be explained in view of the possibility of an alternative way of NO production induction by other NOS isoforms and through a non-enzymatic NO production manner (including reduction of nitrite and denitrosylation of some proteins), in case a specific NOS isoform is absent (195-197). The aforementioned ultrasound results can only prove the role of nNOS or iNOS in ultrasound-induced promotion on osteoblasts; however, those results do not contradict the involvement of eNOS.

These findings suggest that NO plays a complex role in mechanotransduction under stress in the periodontal tissue, and further research on this topic is required.

Effects of NO in orthodontic tooth movement. Many studies have focused on the differential expression of NOS isoforms between areas of compression and tension during orthodontic tooth movement. Experiments in rats revealed that the changes in NOS activity in the PDL could be detected as soon as 1 h after teeth were subjected to orthodontic force (198). The increased expression of iNOS on the pressure side and eNOS on the tension side was observed 24 h after initiating mechanical loading, while increased nNOS expression mainly occurred after 3 h (199). An increase of iNOS-positive osteocytes in the compression area was detected 6 h after force application, while eNOS-positive osteocytes in the tension area increased after 24 h (200). As indicated above, it is generally accepted that iNOS dominates bone resorption at the compression site while eNOS mediates the osteogenic effect in the tension area (200,201).

The availability of studies related to the changes in NO levels in human periodontal tissues before and after orthodontic treatment is limited. Analysis of gingival tissue collected from orthodontic patients revealed that eNOS and iNOS levels increased dramatically 2 weeks after the appliance placement (202). A variety of biomarkers in gingival crevicular fluid (GCF) are often analyzed, in order to facilitate the improvement of clinical treatment. In various studies, many of which recent, it has been mentioned that NO expression levels in GCF is related to orthodontic treatment (203-206). Ford et al. (203) revealed that NO concentration in GCF on the compression side of the central incisor increased significantly 1 h after the application of fixed orthodontic appliances. In patients who received rapid maxillary expansion therapy, the NO levels in GCF were elevated on day 1 and 10 and were still elevated after 3 months of retention (204,205). However, no significant difference was detected in NO levels in GCF on the tension side, during the above treatment. These results further support the different regulatory effects of NO on the tension and pressure side, which are related to the presence of different NOS isoforms on different sides.

The role of NO in orthodontic treatment has also been confirmed in animal experiments. Tooth movement was markedly promoted in rats that received L-arg injection, whereas a significant reduction of tooth movement was observed in the L-NNAME (eNOS inhibitor) group. Histological results also revealed a greater number of osteoclasts in the group with greater tooth movement (119,120,207). Notably, decreased force-induced root resorption was noted in this group in comparison with the control group, although the number of osteoclasts increased in the L-arg injection group (119).

Influences of NO and oral microbiota on the orthodontic tooth movement are also notable. In addition to being synthesized by the body, NO can be produced by oral...
bacteria under hypoxic conditions through the transformation of saliva nitrate into nitrite (208-210). It has been observed that NO production is upregulated during the deposition of dental plaque (211). In diseases related to plaque accumulation, including periodontitis, an increase in NO levels in both blood and saliva was reported (212-214). Additionally, apart from the oral bacteria-originating NO production, this has also been ascribed to the inflammatory response of the body. It has been previously demonstrated that an enhanced osteoclast formation and accelerated orthodontic tooth movement may be observed in patients with periodontitis (215). It is reasonable to speculate that NO may be involved in this process, but more direct evidence is necessary in order to confirm this (203-207).

4. Conclusions and future perspectives

NO is widely involved in the biomechanical response of the periodontium to orthodontic forces. NO exerts dose-dependent and biphasic effects on the functional status and cell fate determination of osteoblasts, osteoclasts, osteocytes, and PDL fibroblasts, and has been shown to promote the proliferation, differentiation, or inhibition of survival and function of cells. As an inflammatory factor and a key second messenger in mechanical transduction, NO is differentially expressed on the tension and compression side during tooth movement, suggesting its complex involvement in bone remodeling. The facilitation of NO precursor and the inhibition of NOS inhibitor in orthodontic tooth movement have also been confirmed in animal experiments. Additional studies are required, in order to evaluate the role and impact of NO on tooth movement in clinical practice. As NO exerts complex effects on both osteoblastic and osteoclastic activities, the spatiotemporal generation of NO may determine its specific biological effect on bone remodeling. The precise and controlled delivery of NO to periodontal tissue via NO-releasing polymeric nano-materials may be a promising approach for the acceleration of orthodontic tooth movement.

Acknowledgements

Not applicable.
Funding

The present study was funded by the National Natural Science Foundation of China (nos. 81870737 and 81771098), the Natural Science Foundation of Guangdong Province (no. 2021A1515011779) and Guangdong Financial Fund for High-Caliber Hospital Construction (no. 174-2018-XMZC-001-03-0125/D-02).

Availability of data and materials

Not applicable.

Authors’ contributions

TY, YX and FH conceived the review. TY performed literature search and manuscript writing. YX contributed to the manuscript writing and the preparation of figures and tables. HH, WF and FH revised the manuscript. TY and FH confirm the authenticity of all the raw data. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Loscalzo J: Nitric oxide and vascular disease. N Engl J Med 333: 251-253, 1995.
2. Förstermann U and Sessa WC: Nitric oxide synthases: Regulation and function. Eur Heart J 33: 829-837, 837a-837d, 2012.
3. Snyder SH: Nitric oxide. No endothelial NO. Nature 377: 196-197, 1995.
4. Moncada S and Higgs A: The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002-2012, 1993.
5. Sawa T, Ibara H, Ida T, Fuji S, Nishida M and Akaike T: Formation, signaling functions, and metabolisms of nitrated cyclic nucleotide. Nitric Oxide 34: 10-18, 2013.
6. Francis SH, Busch JL, Corbin JD and Sibley D: cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62: 525-563, 2010.
7. van't Hof RJ andRalston SH: Nitric oxide and bone. Immunology 103: 255-261, 2001.
8. Wimalawansa SJ: Nitric oxide and bone. Ann NY Acad Sci 1192: 391-403, 2010.
9. Evans DM and Ralston SH: Nitric oxide and bone. J Bone Miner Res 11: 300-305, 1996.
10. Li Y, Jacox LA, Little SH and Ko CC: Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci 34: 207-214, 2018.
11. Krishnan V and Davidovich Z: On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88: 597-608, 2009.
12. Kalyanaraman H, Schall N and Pilz RB: Nitric oxide and cyclic GMP functions in bone. Nitric Oxide 76: 62-70, 2018.
13. Klein-Nulend J, van Oers RF, Bakker AD and Bacabac RG: Nitric oxide signaling in mechanical adaptation of bone. Osteoporos Int 25: 1427-1437, 2014.
14. Nanci A and Bossardt DD: Structure of periodontal tissues in health and disease. Periodontol 40: 11-28, 2006.
15. Hassell TM: Tissues and cells of the periodontium. Periodontol 3: 9-38, 1993.
16. Bartold PM and McKeon CA: Information generation and processing systems that regulate periodontal structure and function. Periodontol 63: 7-13, 2013.
17. Antoun JS, Mei L, Gibbs K and Farella M: Effect of orthodontic treatment on the periodontal tissues. Periodontol 74: 140-157, 2017.
18. Burnette C: The biomechanics of tooth movement. In: Kraus BS, Riedel BA (eds): Vistas in orthodontics. Lea, Febiger, Philadelphia 197-213, 1962.
19. Dhenain T, Côté F and Coman T: Serotonin and orthodontic tooth movement. Biochimie 161: 73-79, 2019.
20. Asiry MA: Biological aspects of orthodontic tooth movement: A review of literature. Saudi J Biol Sci 25: 1027-1032, 2018.
21. Martin Schwarz A: Tissue changes incident to orthodontic tooth movement. Int J Orthodontia Oral Surg Radiography 18: 331-352, 1932.
22. Norevall LI, Forsgren S and Matsson L: Expression of neuropeptides (CGRP, substance P) during and after orthodontic tooth movement in the rat. Eur J Orthod 17: 311-325, 1995.
23. Middleton J, Patterson AM, Gardner L, Schmutz C and Ashton BA: Leukocyte extravasation: Chemokine transport and presentation by the endothelium. Blood 100: 3853-3860, 2002.
24. Lee SK, Pi SH, Kim SH, Min KS, Lee HJ, Chang HS, Kang KH, Kim HR, Shin HI, Lee SK and Kim EC: Substance P regulates macrophage inflammatory protein 3alpha/chemokine C-C ligand 20 (CCL20) with heme oxygenase-1 in human periodontal ligament cells. Clin Exp Immunol 150: 567-575, 2007.
25. Yamaguchi M, Kojima T, Kanekawa M, Aihara N, Nomugura A and Kasai K: Neuropeptides stimulate production of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha in human dental pulp cells. Inflamm Res 53: 199-204, 2004.
26. Kvinsland and Kvinsland: Changes in CGRP-immunoreactive nerve fibres during experimental tooth movement in rats. Eur J Orthod 12: 320-329, 1990.
27. Ren Y, Hazemeijer H, de Haan B, Qu N and de Vos P: Cytokine profiles in crevicular fluid during orthodontic tooth movement of short and long durations. J Periodontol 78: 453-458, 2007.
28. Kapoor P, Kharbanda OP, Monga N, Miglani R and Kapila S: Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: A systematic review. Prog Orthod 15: 65, 2014.
29. Teitelbaum SL and Ross FP: Genetic regulation of osteoclast differentiation and function. Nat Rev Genet 4: 638-649, 2003.
30. Xie R, Kuijpers-Jagtman AM and Malda JC: Osteoclast differentiation during experimental tooth movement by a short-term force application: An immunohistochemical study in rats. Acta Odontol Scand 66: 314-320, 2008.
31. Wada T, Nakashima T, Hiroshi N and Penninger JM: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12: 17-25, 2006.
32. Azuma Y, Kaji K, Katogi R, Takeshita S and Kudo A: Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 273: 4858-4864, 2000.
33. Udagawa N, Takahashi N, Jimi E, Matsuuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, et al: Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: Receptor activator of NF-kappa B ligand. Bone 25: 517-523, 1999.
34. Katagiri T and Takahashi N: Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 8: 147-159, 2002.
35. Thirunavukkarasu K, Halliday DL, Miles RR, Yang X, Galvin RJ, Chandrasekhar S, Martin TJ and Onyia JE: The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem 275: 25163-25172, 2000.
36. Suda T, Takahashi N and Martin TJ: Modulation of osteoclast differentiation. Endocr Rev 13: 66-80, 1992.
37. Takahashi N, Udagawa N, Akatsu T, Tsurukai T, Shiono M and Suda T: Role of colony-stimulating factors in osteoclast development. J Bone Miner Res 6: 977-985, 1991.
38. Liggett W Jr, Sheyde N, Anklesaria P, Sohoni S, Greenberger J and Glowacki J: Effects of macrophage colony stimulating factor and granulocyte-macrophage colony stimulating factor on osteoclastic differentiation of hematopoietic progenitor cells. Stem Cells 11: 398-411, 1993.
39. Boyle WJ, Simonet WS and Lacey DL: Osteoclast differentiation and activation. Nature 423: 337-342, 2003.
40. Tanaka S, Nakamura K, Takahashi N and Suda T: Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 208: 30-49, 2005.
41. Aubin JE and Bonneye E: Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. Medscape Womens Health 11: 905-913, 2000.
42. Matsuura N, Inada M, Miyaura C, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K and Suda T: Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141: 3478-3484, 2000.
43. Garlet TP, Coelho U, Silva JS and Garlet GP: Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115: 356-362, 2007.
44. Liu XH, Kirschbaum A, Yao S and Levine AC: Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-(kappa B) (RANK) ligand/RANK system. Endocrinology 146: 1991-1998, 2005.
45. Zhang YH, Heulsman A, Tondravi MM, Mukherjee A and Abu-Amer Y: Tumor necrosis factor-alpha (TNF) stimulates RANKL-regulated osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biochem 276: 563-566, 2007.
46. Tani-Ishi N, Tsunoda A, Teranaka T and Unemoto T: Autocrine regulation of osteoclast formation and bone resorption by IL-1 alpha and TNF alpha. J Dent Res 78: 1617-1623, 1999.
47. Miyaura N, Inada M, Matsumoto C, Ohshima T, Uozumi N, Shimizu T and Ito A: An essential role of cystosolic phospholipase A2alpha in proinflammatory signaling via TNF-alpha. J Immunol 167: 1303-1310, 2003.
48. Kitaura H, Yoshimatsu M, Fujimura Y, Yamasaki T, Yamasaki M, Yamaguchi S and Ohshiba T: OPG inhibits osteoclastogenesis through the receptor activator of nuclear factor-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J Immunol 183: 2444-2455, 2009.
49. Zhang L, Ding Y, Rao GZ and Miao D: Effects of IL-10 and glucocorticoids on expression of OPG and RANKL in human periodontal ligament fibroblasts. Braz J Med Biol Res 49: e4324, 2016.
50. Yuneson AP, Ramasamy SK and Adams RH: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507: 323-328, 2014.
51. Sivaraj KK and Adams RM: Blood vessel formation and function in bone. Development 143: 2070-2075, 2016.
52. Park HJ, Baek KH, Lee JH, Kwon YH, Hwang HR, Qadir AS, Woo KM, Ryou HM and Baek JH: Hypoxia-inducible factor-1alpha directly induces the expression of receptor activator of nuclear factor-kappa B ligand in periodontal ligament fibroblasts. Mol Cells 31: 573-578, 2011.
53. D’Ambrosia TC, Ihnat MA, Disch B, Thorpe J and Currier GF: Hypoxia triggers a HIF-mediated differentiation of peripheral blood mononuclear cells into osteoclasts. Orthod Craniofac Res 15: 1-9, 2012.
54. Knowles HJ and Ahtanasou NA: Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J Pathol 215: 56-66, 2008.
55. Lee SY, Yoo HI and Kim SH: CCR5-CCL Axis in PDL during orthodontic biophysical force application. J Dent Res 94: 1715-1723, 2015.
56. Yang SY, Kim JW, Lee SY, Kang JH, Ulzisaikhan U, Yoo HI, Moon YH, Moon JS, Ko HM, Kim MS and Kim SH: Upregulation of relaxin receptors in the PDL by biophysical force. Clin Oral Investig 19: 657-665, 2015.
57. Lee SY, Moon JS, Yang DW, Yoo JH, Jung JY, Kim OS, Kim MS, Koh JT, Chung HJ and Kim SH: SLPI in periodontal ligament is not sleepy during biophysical force-induced tooth movement. J Clin Periodontol 48: 526-540, 2021.
58. Dallas SL, Prideaux M and Bonewaldt LF: The osteocyte: An endocrine cell and more. Endocr Rev 34: 658-690, 2013.
59. Luque Acevedo GF, Torres-Gonzalez A, Lopez-Lopez MM and Tresguerres IF: The osteocyte: A multifunctional cell within the bone. Ann Anat 227: 1524-222, 2020.
60. Matsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S and Ikeda K. Targeted ablation of osteocytes induces osteoporosis with defective mechnotransduction. Cell Metab 5: 464-475, 2007.
61. Goulet GC, Cooper DM, Coombe D and Zerwicke RF: Influence of cortical canal architecture on lacunocanicular pore pressure and fluid flow. Comput Methods Biomech Biomed Engin 11: 379-387, 2008.
62. Wang Y, McMamara LM, Schaflcher MB and Weinbaum S: A model for the role of integrins in flow induced mechnotransduction in osteocytes. Proc Natl Acad Sci USA 104: 15941-15946, 2007.
63. Phillips JA, Almeida EA, Hill EL, Aguirre JJ, Rivera MF, Nachbandi I, Wronski TJ, van der Meulen MC and Globus RK: Role for beta1 integrins in cortical osteocytes during acute muscle-skeletal disuse. Matrix Biol 27: 609-618, 2008.
64. Liedert A, Kaspar D, Blaknyt R, Claes L and Ignatius A: Signal transduction pathways involved in mechnotransduction in bone cells. Biochem Biophys Res Commun 349: 1-5, 2006.
65. Heino TJ, Hentunen TA and Väinänen HK: Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res 294: 458-468, 2004.
66. Li L, Yang Z, Zhang H, Chen W, Chen M and Zhu Z: Ultrasound intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes. Biochem Biophys Res Commun 418: 296-300, 2012.
Inhibition of osteocyte function by nitric oxide balances osteoblast and adipocyte lineage differentiation. J Bone Miner Res 15: 209-217, 2000.

Taylor AM, Shimizu S, Sawai N, Simbula JM, Zhou Z and Donahue HJ: Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am J Physiol Cell Physiol 292: C545-C552, 2007.

Cherin PP, Cheng B, Gu S, Sprague E, Bonewal LF and Jiang JX: Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem 278: 43146-43156, 2003.

Cheng B, Kato Y, Zhao S, Luo J, Sprague E, Bonewal LF and Jiang JX: PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology 142: 3464-3473, 2001.

Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W and Nishihara T: Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem 101: 1266-1277, 2007.

Francesci RT and Xiao G: Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. J Cell Biochem 88: 446-454, 2003.

Sapir-Koren R and Livshits G: Osteocyte control of bone remodeling: Is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles? Osteoporus Int 25: 2659-2705, 2014.

ten Dijke P, Krause C, de Gorter DJ, Liwijk CW and van Bezooinjen RL: Osteocyte-derived sclerostin inhibits bone formation: Its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am 90 (Suppl 1): S33-S35, 2008.

Galli C, Pasquali G and Macaluso GM: Osteocytes and WNT: The mechanical control of bone formation. J Dent Res 89: 331-343, 2010.

Kitaura H, Marahileh A, Ohori F, Noguchi T, Shen WR, Qi J, Nara Y, Pramusita A, Kinjo R and Mizoguchi I: Sclerostin is increased by occlusal force in rat periodontal ligament. J Cell Biochem 121: 120-126, 2020.

Plotkin L, Gortazar AR, Davis HM, Condon KW, Gabilondo H, Maycas M, Allen MR and Bellido T: Inhibition of osteohcyte apoptosis reduces the rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod Dentofacial Orthop 152: 1651-1661, 2007.

Cheng WY, Simmons CA and You L: Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone 50: 104-110, 2012.

Al-Dujaili SA, Lau E, Al-Dujaili H, Tsang K, Guenther A and You L: Apoptosis induction of osteocytes regulates osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem 112: 2412-2423, 2011.

Jilka RL, Noble B and Weinstein RS: Osteocyte apoptosis. Bone 54: 264-271, 2013.

Wang JH, Thampatty BP, Lin JS and Im H: Mechanoregulation of gene expression in fibroblasts. Gene 391: 1-15, 2007.

Wang HB, Dembo M, Hanks SK and Wang Y: Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 98: 11295-11300, 2001.

Wang JH, Thampatty BP, Lin JS and Im H: Mechanoregulation of gene expression in fibroblasts. Gene 391: 1-15, 2007.

Wang HB, Dembo M, Hanks SK and Wang Y: Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 98: 11295-11300, 2001.

101. Brandi ML, Hukkanen M, Umeda T, Nakashima T, Tsuchiya K, Akin E, Gurton AU and Olmez H: Effects of nitric oxide in inflammation-induced osteoporosis. J Bone Miner Res 25: 321-327, 2009.

102. Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y, Garg HK, Li L, Mian A, Bertin TK, et al: Requirement of argininosuccinate lyase for systemic nitric oxide production. J Bone Miner Res 14: 2137-2142, 1999.

103. Lin SK, Kok SH, Kuo MY, Lee MS, Wang CC, Lan WH, Hsiao M, Goldring SR and Hong CY: Nitric oxide promotes infectious bone resorption by enhancing cytokine-stimulated interstitial collagenase synthesis in osteoblasts. J Bone Miner Res 18: 39-46, 2003.

104. Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di Paola R, Ruggeri Z, Varese E, Caputi AP, Van De Loo FA, Puzzolo D and Maggi A: Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 144: 1098-1107, 2003.

105. Gyrurko R, Shoji H, Battaglini RA, Boustanly G, Gibson FC III, Genca CA, Slavkowska and Van Dijken TJ: Inducible nitric oxide synthase mediates bone development and P gingivalis-induced alveolar bone loss. Bone 36: 472-479, 2005.
iNOS-derived nitric oxide modulates YC-1 alleviates osteoblasts' apoptosis and differentiation in vitro. J Bone Miner Res 32: 1328‑1334, 2017.

145. Mancini L, Moradi-Bidhendi N, Becherini L, Martineti V and MacIntyre I: The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun 277: 480‑485, 2000.

146. Zaragoza C, López-Rivera E, García-Rama C, Saura M, Martinez-Ruiz A, Lizarbe TR, Martín-de-Lara F and Lamas S: Cbfa-1 mediates nitric oxide regulation of MMP-13 in osteoblasts. J Cell Sci. 119: 1896‑1902, 2006.

147. Armstrong KE, Armour KJ, Gallagher ME, Gödecke A, Helfrich MH, Reid DM and Ralston SH: Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology 142: 760‑766, 2001.

148. Ma P, Gu B, Xiong W, Tan B, Geng W, Li J and Liu H: Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PDK3/Akt/eNOS pathway in a high glucose microenvironment. PLoS One 9: e112243, 2014.

149. Almeida M, Han L, Bellido T, Manolagas SC and Kousteni S: Wt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 280: 41432‑41431, 2005.

150. Wimalawansa SJ: Rationale for using nitric oxide donor therapy for prevention of bone loss and treatment of osteoporosis in postmenopausal women. Ann N Y Acad Sci 215: 1104‑1110, 1995.

151. Willems HM, van den Heuvel EG, Carmeliet G, Schaufaas M, Klein-Nulend J and Bakker AD: VDR dependent and independent effects of 1,25-dihydroxyvitamin D3 on nitric oxide production by osteoblasts. Steroids 77: 126‑131, 2012.

152. Yan L, Yinghu T, Xian X and Lu Z: Effect of calcitonin gene-related peptide on nitric oxide production in osteoblasts: An experimental study. Cell Biol Int 35: 757‑765, 2011.

153. Li Y, Tan Y, Zhang G, Yang B and Zhang J: Effects of calcitonin gene-related peptide on the expression and activity of nitric oxide synthase during mandibular bone healing in rabbits: An experimental study. J Oral Maxillofac Surg 67: 273‑279, 2009.

154. O’Shaughnessy MC, Polak JM, Azfal F, Hukkanen MV, Huang P, MacIntyre L and Butterly LD: Nitric oxide mediates l’-beta-estradiol-stimulated human and rodent osteoblast proliferation and differentiation. Biochem Biophys Res Commun 277: 604‑610, 2000.

155. Yang YJ, Park MY, Park SY, Yoo HI, Kim MS, Kim JH, Kim WJ and Jung YJ: Nitric oxide-induced autophagy in MC3T3-E1 cells is associated with cytoprotection via ampk activation. Korean J Physiol Pharmacol 19: 507‑514, 2015.

156. Joshua J, Schwaerzer GK, Kalyanaraman H, Cory E, Sah RL, Vaida F, Boss GR and Pilz RB: Soluble guanylate cyclase as a novel treatment target for osteoporosis. Endocrinology 155: 472‑4730, 2014.

157. Marathe N, Rangaswami H, Zhuang S, Boss GR and Pilz RB: Pro-survival effects of 17β-estradiol on osteocytes are mediated by nitric oxide/cGMP via differential actions of cGMP-dependent protein kinases I and II. J Biol Chem 287: 978‑988, 2012.

158. Joshua J, Kalyanaraman H, Marathe N and Pilz RB: Nitric oxide as a mediator of estrogen effects in osteocytes. Vitam Horm 96: 247‑263, 2014.

159. Lee SK, Choi HI, Yang YS, Jeong GS, Hwang JH, Lee SI, Kang KH, Cho JH, Chae JM, Lee SK, et al: Nitric oxide modulates osteoblastic differentiation with heme oxygenase-1 via the mitogen activated protein kinase and nuclear factor-kappaB pathways in huxley osteoblastic rat ligament cells. Biof Pharm Bull 32: 1328‑1334, 2009.

160. d’Alessandro L, Petrimi M, Ferrante M, Di Marco S, Trubiani O and Spoto G: Cyclic nucleotide phosphodiesterase activity in stem cells of human periodontal ligament (PDL-MSCs) before and after osteogenic induction. Oral Surg Oral Med Oral Pathol Oral Radiol 116: e317‑e323, 2013.

161. Tang J, Wu T, Xiong J, Su Y, Zhang C, Wang S, Tang Z and Liu Y: Porphyromonas gingivalis lipopolysaccharides regulate functions of bone marrow mesenchymal stem cells. Cell Prolif 48: 239‑248, 2015.

162. Seo T, Cha S, Woo KM, Park YS, Cho YM, Lee JS and Kim TI: Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist. J Periodontal Implant Sci 41: 17‑22, 2011.

163. Reher P, Harris K, Freeman M, Hai HK and Megbti S: Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone 31: 236‑241, 2002.
Mechanical loading reduces β‑protein kinase G and focal adhesion "interplay in osteoblasts. Sci Signal 3: ra91, 2010.

Cyclic GMP and protein kinase G control a Src‑containing kinase converge on Src/Akt/β‑catenin signaling module in osteo... 9: 1487‑1489, 2009.

Hogervorst JM and Klein‑Nulend J: Early activation of the Wnt signaling pathways in osteocytes. J Bone Miner Res 43: 487‑492, 2013.

Santos A, Bakker AD, Zandieh‑Doulabi B, de Blieck ‑et al: Levels of cytokines in gingival crevicular fluid during rapid maxillary expansion. J Periodontal Res 50: 1256‑1263, 2015.

Nilforoushan D and Manolson MF: Expression of nitric oxide synthase isoforms in orthodontic tooth movement. J Dent Res 88: 255‑260, 2009.

Yoo SK, Warita H and Soma K: Duration of orthodontic force affecting initial response of nitric oxide synthase in rat periodontal ligaments. J Med Dent Sci 51: 83‑88, 2004.

Nilforoushan D and Manolson MF: Expression of nitric oxide synthases in orthodontic tooth movement. Angle Orthod 79: 502‑508, 2009.

Tan SD, Xie R, Klein‑Nulend J, van Rhenen RE, Bronckers AL, Kuipers‑Jagtman AM, Von den Hoff JW and Maltha JC: Orthodontic force stimulates eNOS and iNOS in rat osteocytes. J Dent Res 88: 255‑260, 2009.

Baloul SS: Osteoclastogenesis and osteogenesis during tooth movement. Front Oral Bio 18: 75‑79, 2016.

D’Attillio M, Di Maio F, D’Arcangelo C, Filippi MR, Felaco M, Lohinai Z, Festa F and Perinetti G: Levels of cytokines in gingival crevicular fluid during rapid maxillary expansion and the subsequent retention period. J Clin Pediatr Dent 43: 137‑143, 2019.

Ozel N, Aksoy A, Kızırkoğlu FY, Doguc DK and Aksoy TA: Evaluation of interleukin 6 (IL‑6) level and oxidative status in gingival crevicular fluid during rapid maxillary expansion. Arch Oral Biol 90: 74‑79, 2018.
206. Atuğ Özcan SS, Ceylan I, Ozcan E, Kurt N, Dağsuyu IM and Canakçi CF: Evaluation of oxidative stress biomarkers in patients with fixed orthodontic appliances. Dis Markers 2014: 597892, 2014.

207. Hayashi K, Igarashi K, Miyoshi K, Shinoda H and Mitani H: Involvement of nitric oxide in orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 122: 306-309, 2002.

208. Rausch-Fan X and Matejka M: From plaque formation to periodontal disease, is there a role for nitric oxide? Eur J Clin Invest 31: 833-835, 2001.

209. de Farias JO, de Freitas Lima SM and Rezende TMB: Physiopathology of nitric oxide in the oral environment and its biotechnological potential for new oral treatments: A literature review. Clin Oral Investig 24: 4197-212, 2020.

210. Qu XM, Wu ZF, Pang BX, Jin LY, Qin LZ and Wang SL: From Nitrate to Nitric Oxide: The role of salivary glands and oral bacteria. J Dent Res 95: 1452-1456, 2016.

211. Carossa S, Pera P, Doglio P, Lombardo S, Colagrande P, Brussino L, Rolla G and Bucca C: Oral nitric oxide during plaque deposition. Eur J Clin Invest 31: 876-879, 2001.

212. Khodaii Z, Mehrabani M, Rafieian N, Najafi-Parizi GA, Mirzaei A and Akbarzadeh R: Altered levels of salivary biochemical markers in periodontitis. Am J Dent 32: 183-186, 2019.

213. Sundar NM, Krishnan V, Krishnaraj S, Hemalatha VT and Alam MN: Comparison of the salivary and the serum nitric oxide levels in chronic and aggressive periodontitis: A biochemical study. J Clin Diagn Res 7: 1223-1227, 2013.

214. Parwani SR, Chitnis PJ and Parwani RN: Salivary nitric oxide levels in inflammatory periodontal disease—a case-control and interventional study. Int J Dent Hyg 10: 67-73, 2012.

215. Sokos D, Everts V and de Vries TJ: Role of periodontal ligament fibroblasts in osteoclastogenesis: A review. J Periodontal Res 50: 152-159, 2015.