Article

Laccase-Catalyzed Derivatization of Antibiotics with Sulfonamide or Sulfone Structures

Annett Mikolasch 1,2 and Veronika Hahn 1,3,*

1 Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; annett.mikolasch@uni-greifswald.de
2 Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
3 Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
* Correspondence: veronikahahn@gmx.at; Tel.: +49-3834-5543872

Abstract: Trametes spec. laccase (EC 1.10.3.2.) mediates the oxidative coupling of antibiotics with sulfonamide or sulfone structures with 2,5-dihydroxybenzene derivatives to form new heterodimers and heterotrimers. These heteromolecular hybrid products are formed by nuclear amination of the p-hydroquinones with the primary amino group of the sulfonamide or sulfone antibiotics, and they inhibited in vitro the growth of Staphylococcus species, including multidrug-resistant strains.

Keywords: laccase; biotransformation; sulfonamide antibiotics; antibacterial activity; multidrug resistance (MDR); β-lactam antibiotics; methicillin-resistant Staphylococcus aureus (MRSA); antimicrobial resistance (AMR)

1. Introduction

The evolution of antibiotic resistances amongst microorganisms is a global problem [1–3]. Because of this, novel antimicrobial substances and synthesis routes are needed. For this, enzymatic catalysis may be an alternative to conventional chemical synthesis processes [4,5]. The oxidoreductase laccase [E.C. 1.10.3.2, benzenediol:dioxygen oxidoreductase] possesses a number of advantages. The reactions can be performed under mild and environmentally friendly conditions, such as atmospheric pressure and room temperature. Additionally, no cofactors such as a coenzyme or NADPH are needed.

Different laccase-mediated reactions are possible [6–9]. The laccase substrates may be oxidized by the enzyme and can then react to form homomolecular products [10,11], or the oxidized substrate may react with other compounds, such as amines or thiols, resulting in heteromolecular products [12]. These hybrid products are formed by C–C [13,14], C–N [15,16], C–O [17], or C–S [18,19] bonds. In addition, the reactions may also lead to multiple bond formation by ring closure mechanisms [20,21].

These diverse reaction types resulted in the synthesis or derivatization of antitumor [22–24], antioxidative [25–27], or estrogenic [28,29] compounds. Additionally, the synthesis of antibiotics by homomolecular and heteromolecular reactions have also been described. Thus, the laccase-catalyzed dimerizations of different ortho-aminophenol derivatives by C=N and C–O bond formations resulted in phenoazinone pigments proposed as antitumor antibiotics [30–35]. Additionally, the catalytic derivatization of β-lactam antibiotics has been of particular interest. Agematu et al. [36] described the laccase-mediated synthesis of homomolecular dimers from different esters of penicillin X. The dimers of the penicillin X methyl ester showed hardly any antibacterial activity. In contrast, the ortho-ortho coupling product formed from penicillin X pivaloyloxymethyl ester represented a precursor (prodrug) of the penicillin X dimer. However, the minimum inhibitory concentration was lower than that of penicillin X sodium salt [36]. The laccase-catalyzed oxidation of a cephalosporanic acid resulted in the formation of two diastereomers, which differed in
their configuration at C−2′ and their antibacterial efficacy [37]. Nevertheless, both compounds showed lower activity than the parent compound. Furthermore, penicillins and cephalosporines with free amino groups were derivatized with dihydroxylated aromatic compounds resulting in the formation of heteromolecular products [38–40]. The newly synthesized heterodimers had a moderate to high growth inhibitory effect against various bacteria including multidrug-resistant Staphylococcus and Enterococcus species. The products possessed also in vivo efficacy against Staphylococcus aureus in mice. Additionally, the dimers resulting from reactions of 2,5-dihydroxybenzoic acid derivatives and penicillins or cephalosporins showed no cytotoxicity [41,42].

Consequently, 2,5-dihydroxybenzene derivatives were used for the derivatization of sulfanilamide and structurally related substances. Sulfanilamide is a structural part of 4′-sulfonamide-2,4-diaminoazobenzene (trade name: Prontosil), which was the first antibiotic of the sulfanilamide group. This antibiotic was used against Gram-positive cocci such as Streptococcus spp. involved in the induction of sepsis [43]. Because of their structural similarity, sulfanilamide acts as an antagonist for para-aminobenzoic acid. This results in the inhibition of bacterial folic acid synthesis, which is essential for prokaryotes [44,45]. The antibacterial effect of the sulfone dapsone relies on the same antagonistic mechanism [46]. The increasing incidence of antibiotic resistance shows the need for the synthesis of novel compounds. In the present study, the extracellular laccase C of Trametes spec. was employed for the production of heterodimers in reactions of sulfanilamide and its derivatives with para-dihydroxylated aromatic substances. The resulting products were tested for their antibacterial efficacy and cytotoxicity to human cells.

Different Staphylococcus strains were chosen for the determination of the antibacterial efficacy of the products formed. S. aureus ATCC6538/DSM799 (American Type Culture Collection/German Collection of Microorganisms and Cell Cultures) and the patient-derived multidrug-resistant S. epidermidis 99847 were used. Additionally, the northern German epidemic MRSA (mecillin-resistant S. aureus; Norddeutscher Epidemiestamm), which is resistant to penicillin, oxacillin, gentamicin, erythromycin, clindamycin, oxytetracycline, trimethoprim-sulfamethoxazole, rifampicin, and ciprofloxacin was employed [47]. Cytotoxicity was tested in a neutral red uptake assay using FL cells (human amniotic epithelial cell line).

2. Materials and Methods

2.1. Enzyme

Extracellular laccase C of Trametes spec. (EC 1.10.3.2) with an activity of 800 nmol·mL−1·min−1 (substrate: 2,2′-amino-bis-3-ethylbenzthiazoline-6-sulfonic acid) was obtained from ASA Spezialenzyme (Wolfenbüttel, Germany) and used in all experiments.

2.2. Substrates and Conditions of Biotransformation

The antibiotics—sulfanilamide, sulfamerazine and dapsone (2 mM)—were dissolved in 60 mL sodium acetate buffer, 20 mM pH 5.6. After addition of laccase C, the 2,5-dihydroxybenzene derivatives—2,5-dihydroxy-N-(2-hydroxyethyl)benzamide, 2,5-dihydroxybenzoic acid methyl ester, 2,5-dihydroxyacetophenone, 2,5-dihydroxyphenylacetic acid, or 2,5-dihydroxy-1,4-benzenedicarboxylic acid—were added (6 mL of a 20 mM solution in sodium acetate buffer, pH 5.6). The reaction mixtures were incubated for 6 h at room temperature (RT) with agitation at 400 rpm.

Chemicals were purchased from the commercial supplier Sigma-Aldrich (Steinheim, Germany) with the exception of 2,5-dihydroxy-N-(2-hydroxyethyl)benzamide purchased from Midori Kagaku Co (Tokyo, Japan).

2.3. Isolation of Biotransformation Products

The isolation of the coupling products was performed by solid phase extraction described in detail by Mikolasch et al. [38].
2.4. Analytical High-Performance Liquid Chromatography (HPLC)

Samples of the incubation mixture were analyzed by HPLC–UV/Vis detector for routine analyses [38].

2.5. Characterization of Biotransformation Products

Products were analyzed by mass spectrometry (LC/MS with API-ES in negative and positive modes). The nuclear magnetic resonance (NMR) spectra were obtained at 300 MHz (1H) in acetonitrile-d$_3$. Chemical shifts (δ) are given in part per million (ppm) downfield relative to tetramethylsilane (TMS, SiMe$_4$), and spin-spin coupling constants (J) are in Hz. Residual solvent central signal was recorded at δ$_H$ = 1.93 ppm and δ$_C$ = 1.3 ppm.

3,6-Dioxo-2-(4-sulfamoylanilino)cyclohexa-1,4-diene-1-carboxy methyl ester 3a. Yield 88%. 1H NMR (300 MHz, CH$_3$CN-d$_3$): δ (ppm) 3.11 (s, 3H, H−8), 5.77 (s, 2H, H−8′), 6.70 (d, 3J = 10.15 Hz, 1H, H−5), 6.81 (d, 3J = 10.15 Hz, 1H, H−4), 7.25 (d, 3J = 8.75 Hz, 2H, H−2′, H−6′), 7.79 (d, 3J = 8.75 Hz, 2H, H−3′, H−5′), 13.41 (s, 1H, H−7′), 13C NMR (75 MHz, CH$_3$CN-d$_3$): δ 51.6 (C−8), 102.4 (C−1), 125.6 (C−2′, C−6′), 128.3 (C−3′, C−5′), 133.1 (C−5), 139.7 (C−4′), 141.1 (C−4), 145.5 (C−1′), 154.5 (C−2), 162.9 (C−7), 184.5 (C−3), 185.4 (C−6) ppm. LC/MS m/z 337.1 [M + H]$^+$ API-ES pos. mode, 335.1 [M − H]$^−$ API-ES neg. mode.

N-(2-Hydroxyethyl)-3,6-dioxo-2-(4-sulfamoylanilino)cyclohexa-1,4-diene-1-carboxamide 3b. Yield 92%. 1H NMR (300 MHz, CH$_3$CN-d$_3$): δ (ppm) 3.40 (m, 3J = 5.4 Hz, 2H, H−9), 3.59 (t, 3J = 5.4 Hz, 2H, H−10), 5.74 (s, 2H, H−8′), 6.63 (d, 3J = 10.25 Hz, 1H, H−5), 6.71 (d, 3J = 10.25 Hz, 1H, H−4), 7.26 (d, 3J = 8.7 Hz, 2H, H−2′, H−6′), 7.79 (d, 3J = 8.8 Hz, 2H, H−3′, H−5′), 9.49 (s(broad), 1H, H−8), 13.42 (s, 1H, H−7′), 13C NMR (75 MHz, CH$_3$CN-d$_3$): δ 42.3 (C−9), 61.4 (C−10), 101.4 (C−1), 125.2 (C−2′, C−6′), 128.1 (C−3′, C−5′), 133.3 (C−5), 139.9 (C−4′), 141.4 (C−4), 145.3 (C−1′), 153.5 (C−2), 170.2 (C−7), 184.6 (C−3), 185.5 (C−6) ppm. LC/MS m/z 366.1 [M + H]$^+$ API-ES pos. mode, 364.1 [M − H]$^−$ API-ES neg. mode.

4-(2-Acetyl-3,6-dihydroxy-anilino)benzenesulfonamide 3c. Yield 10% (only available in a mixture with trimers), LC/MS m/z 323.1 [M + H]$^+$, 345.1 [M + Na]$^+$ API-ES pos. mode.

3,6-Dihydroxy-2-[4-((4-methylpyrimidin-2-yl)sulfamoyl)anilino]benzoic acid methyl ester 3d. Yield 81%. 1H NMR (300 MHz, CH$_3$CN-d$_3$): δ (ppm) 2.32 (s, 3H, H−13′), 3.10 (s, 3H, H−8), 3.15 (s, 1H, H−8′), 3.15 (s, 1H, H−8′), 3.35 (m, 3J = 5.5 Hz, 2H, H−9), 3.57 (t, 3J = 5.5 Hz, 2H, H−10), 6.63 (d, 3J = 8.9 Hz, 1H, H−5), 6.74 (d, 3J = 8.9 Hz, 1H, H−4), 6.86 (d, 3J = 5.1 Hz, 1H, H−11′), 7.25 (d, 3J = 8.7 Hz, 2H, H−2′, H−6′), 7.95 (d, 3J = 8.7 Hz, 2H, H−2′, H−6′), 8.27 (d, 3J = 5.1 Hz, 1H, H−12′), 13.41 (s, 1H, H−7′), 13C NMR (75 MHz, CH$_3$CN-d$_3$): δ 22.6 (C−13′), 51.7 (C−8), 114.5 (C−2′, C−6′), 115.1 (C−5), 118.3 (C−4), 120.2 (C−1), 120.4 (C−1′), 124.3 (C−2), 128.9 (C−3′, C−5′), 130.7 (C−4′), 146.1 (C−3), 148.3 (C−10′), 150.4 (C−6), 152.2 (C−1′), 156.3 (C−12′), 163.7 (C−9), 167.4 (C−7) ppm. 1H and 13C NMR data resulted in quinoid structure 3d. LC/MS m/z 427.3 [M − H]$^−$ API-ES neg. mode, 855 [2M − H]$^−$ API-ES neg. mode, LC/MS data resulted in quinoid structure 3d.

3,6-Dihydroxy-N-(2-hydroxyethyl)-2-[4-((4-methylpyrimidin-2-yl)sulfamoyl)anilino]benzenesulfonamide 3e. Yield 93%. 1H NMR (300 MHz, CH$_3$CN-d$_3$): δ (ppm) 3.22 (s, 3H, H−13′), 3.15 (s, 1H, H−8′), 3.35 (m, 3J = 5.5 Hz, 2H, H−9), 3.57 (t, 3J = 5.5 Hz, 2H, H−10), 6.63 (d, 3J = 8.9 Hz, 1H, H−5), 6.74 (d, 3J = 8.9 Hz, 1H, H−4), 6.86 (d, 3J = 5.1 Hz, 1H, H−11′), 7.23 (d, 3J = 8.7 Hz, 2H, H−2′, H−6′), 7.95 (d, 3J = 8.7 Hz, 2H, H−2′, H−6′), 8.27 (d, 3J = 5.1 Hz, 1H, H−12′), 9.45 (s, 1H, H−8), 13.30 (s, 1H, H−7′), 13C NMR (75 MHz, CH$_3$CN-d$_3$): δ 22.7 (C−13′), 42.1 (C−9), 61.2 (C−10), 114.3 (C−2′, C−6′), 115.5 (C−5), 118.6 (C−4), 120.5 (C−1), 120.7 (C−1′), 124.8 (C−2), 128.9 (C−3′, C−5′), 130.8 (C−4′), 146.2 (C−3), 148.2 (C−10′), 150.2 (C−6), 152.2 (C−1′), 156.1 (C−12′), 163.8 (C−9), 167.3 (C−7) ppm. 1H and 13C NMR data resulted in quinoid structure 3e. LC/MS m/z 456.3 [M − H]$^−$ API-ES neg. mode, 914 [2M − H]$^−$ API-ES neg. mode, LC/MS data resulted in quinoid structure 3e.
4-[(2-Acetyl-3,6-dioxo-cyclohexa-1,4-dien-1-yl)amino]-N-(4-methylpyrimidin-2-yl)benzenesulfonylamide 3f and 4-(2-acetyl-3,6-dihydroxy-anilino)-N-(4-methylpyrimidin-2-yl)benzenesulfonylamide 3f. No yields of isolated products (only available in a mixture of dimers and trimers), LC/MS m/z 411.1 [M−H]− API-ES neg. mode, 823 [2M−H]− API-ES neg. mode, LC/MS m/z 413.1 [M−H]− API-ES neg. mode, 827 [2M−H]− API-ES neg. mode, LC/MS data resulted in quinoid and hydroquinoid structures.

4-[[5-Acetyl-3,6-dioxo-4-[4-sulfamoylanilino]cyclohexa-1,4-dien-1-yl]amino]benzenesulfonamide 4f. No yields of isolated products (only available in a mixture of dimers and trimers), LC/MS m/z 673.4 [M−H]− API-ES neg. mode, LC/MS m/z 675.4 [M−H]− API-ES neg. mode, LC/MS data resulted in quinoid and hydroquinoid structure.

2-[3,6-Dihydroxy-2-[4-sulfamoylanilino]phenyl]acetic acid 5a. Yield 48%, 1H NMR (300 MHz, CH3CN-d3): δ (ppm) 3.47 (s, 2H, H−7), 5.75 (s, 2H, H−8′), 6.78 (d, 3J = 8.6 Hz, 2H, H−2′, H−6′), 7.53 (d, 3J = 8.7 Hz, 2H, H−2′, H−6′), 7.84 (d, 3J = 8.7 Hz, 2H, H−3′, H−5′), 1H NMR data resulted in hydroquinoid structure 5a. LC/MS m/z 335.1 [M−H]− API-ES neg. mode, 671 [2M−H]− API-ES neg. mode, LC/MS data resulted in quinoid structure 5a.

2-[4-(Carboxymethyl)-3,6-dihydroxy-2-[4-sulfamoylanilino]phenyl]acetic acid 5b. Yield 35%, 1H NMR (300 MHz, CH3CN-d3): δ (ppm) 3.44 (s, 2H, H−7), 3.51 (s, 2H, H−7), 5.77 (s, 2H, H−8′), 6.42 (s, 1H, H−5), 7.52 (d, 3J = 8.7 Hz, 2H, H−2′, H−6′), 7.81 (d, 3J = 8.7 Hz, 2H, H−3′, H−5′), 1H NMR data resulted in hydroquinoid structure 5b. LC/MS m/z 393.1 [M−H]− API-ES neg. mode, 787 [2M−H]− API-ES neg. mode, LC/MS data resulted in quinoid structure 5b.

2-[4-[(4-Methylpyrimidin-2-yl)sulfamoylanilino]-3,6-dioxo-cyclohexa-1,4-dien-1-yl]acetic acid 5c and 2-[3,6-dihydroxy-2-[(4-methylpyrimidin-2-yl)sulfamoylanilino]phenyl]acetic acid 5c. No yields of isolated products. LC/MS m/z 427.1 [M−H]− API-ES neg. mode, LC/MS m/z 429.1 [M−H]− API-ES neg. mode, LC/MS data resulted in quinoid and hydroquinoid structure.

2-[4-[(4-Methylpyrimidin-2-yl)sulfamoylanilino]-3,6-dioxo-cyclohexa-1,4-dien-1-yl]acetic acid 5d and 2-[4-(carboxymethyl)-2,5-dihydroxy-3-[(4-methylpyrimidin-2-yl)sulfamoylanilino]phenyl]acetic acid 5d. No yields of isolated products. LC/MS m/z 485.1 [M−H]− API-ES neg. mode, LC/MS m/z 487.1 [M−H]− API-ES neg. mode, LC/MS data resulted in quinoid and hydroquinoid structure.

2-[4-[(2-Methoxy carbonyl)-3,6-dioxo-cyclohexa-1,4-dien-1-yl]aminophenyl]sulfonylanilino]-3,6-dioxo-cyclohexa-1,4-diene-1-carboxylic acid methyl ester 6a. 1H NMR data resulted in quinoid structure.

N-(2-Hydroxyethyl)-2-[4-[(2-hydroxyethyl)carboxamoyl]-3,6-dioxo-cyclohexa-1,4-dien-1-yl]aminophenyl]sulfonylanilino]-3,6-dioxo-cyclohexa-1,4-diene-1-carboxamide 6b. LC/MS m/z 635.1 [M+H]+ API-ES pos. mode, LC/MS data resulted in a quinoid structure.

3,6-Dihydroxy-2-[4-[(2-methoxy carbonyl)-3,6-dioxo-cyclohexa-1,4-dien-1-yl]aminophenyl]sulfonylanilino]benzoic acid methyl ester 6a. 1H NMR data resulted in a quinoid-hydroquinoid structure.

3,6-Dihydroxy-N-(2-hydroxyethyl)-2-[4-[(2-hydroxyethyl)carboxamoyl]-3,6-dioxo-
Microorganisms 2021, 9, 2199
cyclohexa-1,4-dien-1-ylamino)phenyl)sulfonylanilino]benzamide 6b2. LC/MS m/z 637.1 [M + H]+ API-ES pos. mode, LC/MS data resulted in a quinoid-hydroquinoid structure.

2-[4-[4-(3,6-Dihydroxy-2-methoxy carbonyl-anilino)phenyl)sulfonylanilino]-3,6-
dihydroxy-benzoic acid methyl ester 6a3. Yield 22%, 1H NMR (300 MHz, CH3CN-d3): δ (ppm) 3.14 (s, 6H, H\textsubscript{prediffusion}) and were then incubated for 24 h at 37°C. These couplings were confirmed by the presence of characteristic signals for 1a and 2a.

After separation of 3a1 and 3b1 by solid phase extraction, LC/MS analyses in negative and positive mode showed molecular masses of these products attributed to the formation of heteromolecular hybrid dimers each consisting of a structural part of a 2,5-dihydroxybenzene derivative (1a or 1b) coupled to 2a accompanied by the loss of four hydrogen atoms. These couplings were confirmed by the presence of characteristic signals for 1a or 1b and for 2a in the 1H NMR spectra of 3a1 and 3b1 as well as by the presence of...
all carbons of 1a or 1b and of 2a in the 13C−NMR spectra of the products, but two signals in the range of 180 ppm indicated a quinoid character of these products. The number of CH proton signals of 1a and 1b changed from three in the substrate, to two signals in the products. The multiplicity of the proton signals H−4 and H−5 indicated an additional substituent at the C−2 atom and the loss of a proton. The chemical shift to lower field of the H−4 and H−5 signals confirmed the presence of an electron-withdrawing group. Signals for phenolic hydroxyl groups could not be measured, but instead additional amine protons were detected. All analytical data confirmed the oxidation of the p-hydroquinone structure of 1a and 1b to a quinone. The heteromolecular hybrid dimers 3a1 and 3b1 were formed by nuclear amination of the p-hydroquinones 1a or 1b at the C−6 position with the primary amino group of 2a (Figure 1).

Eeduct 1c reacted with 2a to a heteromolecular hybrid dimer 3c2, which was only analyzed by LC/MS in positive mode in a mixture together with a heteromolecular hybrid trimer 4c1. From the LC/MS data of 3c2 we deduced a dimer with hydroquinoid structure. The product 4c1 was described by LC/MS and 1H NMR analyses. All data showed a heteromolecular hybrid trimer consisting of a structural part of 1c coupled to two molecules of 2a accompanied by the loss of six hydrogen atoms. The number of CH proton signals of 1c changed from three in the substrate, to one singlet in the product. The data of this proton signal H−4 indicated an additional substituent at the C−2 atom and a second substituent at the C−5 atom of the product. The chemical shift of the H−4 signal verified the presence of electron-withdrawing groups. Furthermore, the two amine protons detected confirmed the coupling of two molecules of 2a to one molecule of 1c accompanied by the formation of a heteromolecular hybrid trimer with quinoid structure 4c1.

![Diagram](image)

Figure 1. Laccase-mediated reactions of 2,5-dihydroxybenzene derivatives (1a–1c) with sulfonamides (2a, 2b) for the synthesis of heterodimers and heterotrimers produced as shown in Table 1. (R1=OCH3, NH(CH2)2OH, CH3; R2=H, CNC(CH3)(CH)2N).
Table 1. Heterodimers and heterotrimers produced by laccase-mediated reactions of 2,5-dihydroxybenzene derivatives (1a–1c) and sulfonamides (2a, 2b).

Educts	Products				
	Quinoid Dimers	Hydroquinoid Dimers	Quinoid Trimers	Hydroquinoid Trimers	
1a (R1=OCH3)	2a (R2=H)	3a1 (R1=OCH3 R2=H)	nd	nd	nd
1b (R1=NHCH2CH2OH, 8 9 10)	2a	3b1 (8 9 10 R1=NHCH2CH2OH R2=H)	nd	nd	nd
1c (R1=CH3)	2a	nd	3c1 (R1=CH3 R2=H)	nd	nd
1a (R1=OCH3)	2b	3d1 (R2=H)	3d2 (8 9 10 R1=NHCH2CH2OH R2=H)	nd	nd
1b (R1=NHCH2CH2OH, 8 9 10)	2b	3e1 (8 9 10 R1=NHCH2CH2OH R2=H)	nd	nd	
1c (R1=CH3)	2b	3f1 (R2=H)	3f2 (8 9 10 R1=NHCH2CH2OH R2=H)	nd	nd

1 not detected by the measurements used.

Like the reactions of 1a or 1b with 2a, the reactions of 1a or 1b with sulfamerazine (2b) also showed the same reaction patterns. Whereas 1a or 1b each reacted with 2a to yield a heteromolecular hybrid dimer with clear quinoid structure (3a1 and 3b1), the reaction of 1a or 1b with 2b each resulted in a heteromolecular hybrid dimer, which yielded the hydroquinoid structures 3d2 and 3e2 by 1H NMR and 13C NMR, and as the quinoids 3d1 and 3e1 by LC/MS.

From the reaction of 1c with 2b only a product mixture could be isolated and measured by LC/MS. Data for heteromolecular hybrid dimers with quinoid 3f1 and hydroquinoid 3f2 structure and for heteromolecular hybrid trimers with quinoid 4f1 and hydroquinoid 4f2 structure were detected. In this case, pure substances could not be isolated.

3.2. Biotransformation of Sulfanilamide and Sulfamerazine with 2,5-Dihydroxyphenylacetic Acid or 2,5-Dihydroxy-1,4-Benzenediacetic Acid by Laccase

2,5-Dihydroxyphenylacetic acid (1d) or 2,5-dihydroxy-1,4-benzenediacetic acid (1e) coupled with sulfanilamide (2a) proceeded quite differently from 1a and 1b (Figure 2 and Table 2). Whereas 1a or 1b each reacted with 2a to yield a heteromolecular hybrid dimer with clear quinoid structure (3a1 and 3b1), the reaction of 1d or 1e with 2a each resulted in a heteromolecular hybrid dimer, which were determined to be the hydroquinoids 5a2 and 5b2 by 1H NMR and the quinoids 5a1 and 5b1 by LC/MS.
droxybenzene derivatives (1a) and positive mode showed molecular masses of these products attributed to the formation
the range of 180 ppm indicated a quinoid character of these products. The number of CH

Table 1. Heterodimers and heterotrimers produced by laccase-mediated reactions of 2,5-dihydroxyphenylacetic acid (1d) and 2,5-dihydroxy-1,4-benzenediaic acid (1e) with sulfonamides (2a, 2b).

Edicts	Products	Quinoid Dimers	Hydroquinoid Dimers
1d $R^1=H$	2a	5a_1 $R^1=H$ $R^2=H$	5a_2 $R^1=H$ $R^2=H$
1e $R^1=\text{CH}_2\text{COOH}$	2a	5b_1 $R^1=\text{CH}_2\text{COOH}$ $R^2=H$	5b_2 $R^1=\text{CH}_2\text{COOH}$ $R^2=H$
1d $R^1=H$	2b	5c_1 $R^1=H$ $R^2=$	5c_2 $R^1=H$ $R^2=$
1e $R^1=\text{CH}_2\text{COOH}$	2b	5d_1 $R^1=\text{CH}_2\text{COOH}$ $R^2=$	5d_2 $R^1=\text{CH}_2\text{COOH}$ $R^2=$

In contrast, the product formation of 1d or 1e with sulfamerazine (2b) was comparable to that of 1a or 1b. Thus, the respective heteromolecular hybrid dimers with quinoid and hydroquinoid structures were detected in all four reactions. The only difference is that 1d or 1e reacted with 2b only to a product mixture from which no pure substance could be isolated, and only LC/MS measurements were possible whereas from the reaction of 1a or 1b with 2b products were isolated and analyzed both by LC/MS and by NMR. But all of these four reactions are expected to follow the same reaction mechanism. In general, the reactions of 1d or 1e with 2a or 2b did not lead to isolated pure substances whereas the reactions with 1a or 1b resulted in products, which could be isolated.

3.3. Biotransformation of Dapsone with 2,5-Dihydroxybenzoic Acid Methyl Ester or 2,5-Dihydroxy-N-(2-Hydroxyethyl)Benzamide by Laccase

The 2,5-dihydroxybenzoic acid methyl ester (1a) or 2,5-dihydroxy-N-(2-hydroxyethyl) benzamide (1b) reacted with dapsone (2c) as amino reaction partner by Michael addition.
resulting in heteromolecular products, which were detected by characteristic UV-Vis spectra on HPLC for both substances (Figure 3 and Table 3).

![Figure 3](image-url)

Figure 3. Laccase-mediated reactions of 2,5-dihydroxybenzene derivatives (1a, 1b) with dapsone (2c) for the synthesis of heterotrimers produced as shown in Table 3. (R1 = OCH3, NH(CH2)2OH).

Educts	Products				
	Quinoid Trimmers	Mixed Quinoid-Hydroquinoid Trimmers	Hydroquinoid Trimmers		
1a	8	6a1, 6b1	6a2	6a3	
	R1=OCH3	8	R1=OCH3	8	R1=OCH3
1b	8 9 10	6b1	6b2	6b3	
	R1=NHCH2CH2OH	8 9 10	R1=NHCH2CH2OH	8 9 10	R1=NHCH2CH2OH

After purification of the products by solid phase extraction, mass spectrometric analyses (LC/MS with API-ES in positive modus) of the compounds showed a molecular mass attributed to the coupling of two molecules of the laccase substrate 1a or 1b with one molecule of 2c accompanied by the loss of eight, six or four hydrogen atoms forming quinoid (6a1, 6b1), mixed quinoid-hydroquinoid (6a2, 6b2), and hydroquinoid trimers (6a3, 6b3). 1H NMR analyses of the products also indicated heteromolecular trimers in each reaction. The hydroquinoid trimers (6a3, 6b3) were the most prominent such structures determined.

3.4. Biological Activity of Biotransformation Products

The products 3a1 and 3b1 were those with the best supported structural data, and they were stable over a longer time period. Because of this, they were selected for assays of biological activity. The agar diffusion test was chosen for the determination of the antibacterial activity of the substances. Thereby, the size of the respective inhibition zone is a measure of the antibacterial efficacy.
Both of these products caused low to moderate growth inhibition of *S. aureus* and *S. epidermidis* strains, among them multidrug-resistant staphylococci (Table 4).

Table 4. Antimicrobial activity of products 3a₁ and 3b₁, educts 1a to 1b and 2a against different *Staphylococcus* species; Zones of inhibition are given in diameter [mm] including paper disc (6 mm).

Substance	Amount n [µmol]	*S. aureus* ATCC6538	*S. aureus*-Northern German Epidemic MRSA	*S. epidermidis* 99847
1a (educt)	0.069	r *	r	r
	0.30	r	r	r
	0.74	r	r	r
	1.49	r	r	r
1b (educt)	0.069	r	r	r
	0.30	r	r	r
	0.74	r	r	r
	1.49	10	10	10
2a (educt)	0.058	r	r	r
	0.29	r	r	r
	0.73	r	r	r
	1.45	r	r	r
3a₁ (product of 1a and 2a)	0.030	r	r	r
	0.15	r	r	r
	0.37	r	12	r
	0.74	10	16	12
3b₁ (product of 1b and 2a)	0.030	r	r	r
	0.15	r	18	r
	0.37	20	22	20
	0.74	22	26	26

* resistant (no zone of inhibition).

The educts 1a and 2a were not active against the strains tested, 1b showed only very low activity with the highest concentration used. This indicates that products with antimicrobial activity can be produced by laccase-mediated reactions from two initially very poorly active or inactive compounds.

HPLC measurements demonstrated good product stability for the compounds 3a₁ and 3b₁, which had been stored in solid form at 4 °C for several weeks. However, incubation of the compounds 3a₁ and 3b₁ in aqueous solutions at 30 °C resulted in decomposition within some hours. For these reasons, the survey of their antimicrobial effects was restricted to the agar diffusion test.

3a₁ and 3b₁ as well as 1a, 1b, and 2a showed no cytotoxicity against FL cells at concentrations of 12.5, 25, 50, and 100 µg/mL. The growth of FL-cells was comparable with control culture (100–96% vitality).

4. Discussion

Because of increasing bacterial resistance to therapeutically used drugs, there is an urgent need to develop new antimicrobial agents. The laccase-mediated reaction of penicillin and cephalosporanic acid derivatives resulted in a dimerization by C−C or C−O bond formation and the synthesis of diastereomers, respectively [36,37]. These homomolecular products showed antimicrobial activity. Additionally, the laccase-mediated C−N bond formation between different partners resulted in heteromolecular products with antibacterial efficacy [48,49]. Such aminations are consequently a suitable green method for the synthesis of novel antibiotics. Thus, penicillins [38,40,41], cephalosporins [39,40,42], and its basic structures [46] have been structurally altered to achieve advanced antibacterial activities, especially against multidrug-resistant organisms. Furthermore, derivatives of the isolated
antibacterial agents corollosporine from the marine fungus Corollospora maritima [50] and the ganomycins from Ganoderma pfeifferi [51] were transformed by one pot laccase-mediated reactions to improve their biological activity [38,42,52].

The sulfonamides and sulfones are antibacterial drugs that have been used for a long time [45,46], but whose value has progressively declined due to the emergence of resistant strains [53–55]. We have here derivatized antimicrobial sulfonamides and sulfones by laccase. Heterodimers and heterotrimers were synthesized by laccase-catalyzed reactions of sulfonamide antibiotics or dapsone with 2,5-dihydroxybenzene derivatives via nuclear amination. The formation of dimers (3a–3f, 5a–d) was determined for all reactions of 2a, 2b with 1a–1e. Trimers (4f, 6a, 6b) were only detected in the reactions of 2a, 2b with 1c and for 2c with 1a, 1b. The structure of these trimers differed depending on whether the starting compound possessed one (2a, 2b) or two free amino groups (2c) accessible for a reaction with the p-hydroquinones (1a–c). Thus, the trimers formed with 2a or 2b consisted of one molecule 1c and two molecules of 2a or 2b, respectively, whereas the trimers with 2c were formed from two molecules of 1a or 1b and only one molecule of 2c.

The dimers and trimers were detected in hydroquinoid or quinoid form, as described previously for heterodimers as products of p-hydroquinones with amino compounds such as aminopyrazole carboxamide [56] or aminothiophenol [21]. Interestingly, for the trimers with 2c, also a mixed quinoid-hydroquinoid trimer was formed with one molecule of 1a or 1b as hydroquinone and one quinoid molecule of 1a or 1b.

The results regarding the biological activity showed that, with the exception of compound 1b, the educts showed no inhibiting effect against the tested Staphylococcus species. Compound 1b had low activity only at the highest concentration tested (1.27 µmol). In contrast, the products 3a1 and 3b1 were effective at concentrations between 0.14 to 0.74 µmol. This increase in antimicrobial activity of these products of laccase-catalyzed reactions is remarkable, given that previous attempts to use laccase-mediated transformation of β-lactam antibiotics (such as ampicillin, amoxicillin) did not lead to an increase in antibiotic efficacy [36–38].

The increased antibacterial efficacy for the products 3a1 and 3b1 in comparison to the educts as well as the inhibition of different Staphylococcus species, in particular the multidrug-resistant northern German epidemic MRSA, without toxicity for mammalian cells underlines the high potential of laccase-mediated reactions for the synthesis of novel antibiotics.

Author Contributions: Conceptualization, A.M. and V.H.; Investigation, A.M.; Supervision, A.M.; Writing—original draft, A.M. and V.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank R. Jack for help in preparing the manuscript. We thank M. Kindermann: S. Siegert and B. Witt for NMR data acquisition, and S. Sokolowski for LC/MS data acquisition.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [CrossRef]
2. Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283.
3. Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell Infect. Microbiol. 2020, 10, 107. [CrossRef]
4. Monti, D.; Ottolina, G.; Carrea, G.; Riva, S. Redox reactions catalyzed by isolated enzymes. Chem. Rev. 2011, 111, 4111–4140. [CrossRef]
5. Sheldon, R.A.; Brady, D.; Bode, M.L. The Hitchhiker’s guide to biocatalysis: Recent advances in the use of enzymes in organic synthesis. Chem. Sci. 2020, 11, 2587–2605. [CrossRef]
6. Wityakran, S.; Ragauskas, A.J. Synthetic applications of laccase in green chemistry. Adv. Synth. Catal. 2009, 351, 1187–1209. [CrossRef]
7. Mogharabi, M.; Faramarzi, M.A. Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv. Synth. Catal. 2014, 356, 897–927. [CrossRef]
8. Romero-Guido, C.; Baez, A.; Torres, E. Dioxygen activation by laccases: Green chemistry for fine chemical synthesis. *Catalysts* 2018, 8, 223. [CrossRef]
9. Sousa, A.C.; Martins, L.O.; Robalo, M.P. Laccases: Versatile biocatalysts for the synthesis of heterocyclic cores. *Molecules* 2021, 26, 3719. [CrossRef]
10. Leonowicz, A.; Edgehill, R.U.; Bollag, J.-M. The effect of pH on the transformation of syringic and vanillic acids by the laccases of *Rhizoctonia praticola* and *Trametes versicolor*. *Arch. Microbiol.* 1984, 137, 89–96. [CrossRef]
11. Ciecholewski, S.; Hammer, E.; Manda, K.; Bose, G.; Nguyen, V.T.H.; Langer, P.; Schauer, F. Laccase-catalyzed carbon-carbon bond formation: Oxidative dimerization of salicylic esters by air in aqueous solution. *Tetrahedron* 2005, 61, 4615–4619. [CrossRef]
12. Mikolasch, A.; Schauer, F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. *Appl. Microbiol. Biot.* 2009, 82, 605–624. [CrossRef] [PubMed]
13. Bollag, J.-M.; Sjoblad, R.D.; Minard, R.D. Polymerization of phenolic intermediates of pesticides by a fungal enzyme. *Experientia* 1977, 33, 1564–1566. [CrossRef] [PubMed]
14. Jonas, U.; Hammer, E.; Haupt, E.T.K.; Schauer, F. Characterisation of coupling products formed by biotransformation of biphenyl and diphenyl ether by the white rot fungus *Pycnoporus cinnabarinus*. *Arch. Microbiol.* 2000, 174, 393–398. [CrossRef] [PubMed]
15. Tatsumi, K.; Wada, S.; Ichikawa, H.; Liu, S.Y.; Bollag, J.-M. Cross-coupling of a chloroaniline and phenolic-acids catalyzed by a fungal enzyme. *Water Sci. Technol.* 1992, 26, 2157–2160. [CrossRef]
16. Niedermeyer, T.H.J.; Mikolasch, A.; Lalk, M. Nuclear amination catalyzed by fungal laccases: Reaction products of p-hydroquinones and primary aromatic amines. *J. Org. Chem.* 2005, 70, 2002–2008. [CrossRef] [PubMed]
17. Bollag, J.-M.; Liu, S.-Y. Copolymerization of halogenated phenols and syringic acid. *Pestic. Biochem. Phys.* 1985, 23, 261–272. [CrossRef]
18. Benfield, G.; Bocks, S.M.; Bromley, K.; Brown, B.R. Studies of fungal and plant laccases. *Phytochemistry* 1964, 3, 79–88. [CrossRef]
19. Schlippert, M.; Mikolasch, A.; Hahn, V.; Schauer, F. Enzymatic thiol Michael addition using laccases: Multiple C-S bond formation between p-hydroquinones and aromatic thiols. *J. Mol. Catal. B-Enzym.* 2016, 126, 106–114. [CrossRef]
20. Bhalerao, U.T.; Muralikrishna, C.; Rani, B.R. Laccase enzyme-catalyzed efficient synthesis of 3-substituted-1,2,4-triazolo (4,3-b) (4,1,2) benzothiadiazine-8-ones. *Tetrahedron* 1994, 50, 4019–4024. [CrossRef]
21. Hahn, V.; Mikolasch, A.; Weitemeyer, J.; Petters, S.; Davids, T.; Lalk, M.; Lackmann, J.W.; Schauer, F. Ring-closure mechanisms mediated by laccase to synthesize phenothiazines, phenoxazines, and phenazines. *ACS Omega* 2020, 5, 14324–14339. [CrossRef]
22. Ananywutaku, I.O.; Petroski, R.J.; Rosazza, J.P. Oxidative coupling of mithramycin and hydroquinone catalyzed by copper oxides and benzozquinone. Implications for the mechanism of action of aureolic acid antibiotics. *Bioorg. Med. Chem.* 1994, 2, 543–551. [CrossRef]
23. Wellington, K.W.; Kolesnikova, N.I. A laccase-catalysed one-pot synthesis of aminonaphthoquinones and their anticancer activity. *Bioorg. Med. Chem.* 2012, 20, 4472–4481. [CrossRef]
24. Zhang, Y.; Yao, Q.; Li, Z.; Yang, F.; Wang, F.; Liu, J. A one-pot process for synthesis of mitomycin analogs catalyzed by laccase/lipase optimized by response surface methodology. *Eng. Life Sci.* 2019, 19, 805–814. [CrossRef] [PubMed]
25. Unlü, A.E.; Prasad, B.; Anavekar, K.; Bubenheim, P.; Lise, A. Investigation of a green process for the polymerization of catechin. *Prep. Biochem. Biotech.* 2017, 47, 918–924. [CrossRef]
26. Kurisawa, M.; Chung, J.E.; Uyama, H.; Kobayashi, S. Laccase-catalyzed synthesis and antioxidant property of poly (catechin). *Macromol. Biosci.* 2003, 3, 758–764. [CrossRef]
27. Nicotra, S.; Cramarossa, M.R.; Mucci, A.; Pagnoni, U.M.; Riva, S.; Forti, L. Biotransformation of resveratrol: Synthesis of *trans*-dehydrodimers catalyzed by laccases from *Myceliophthora thermophyla* and from *Trametes pubescens*. *Tetrahedron* 2004, 60, 595–600. [CrossRef]
28. Lugaro, G.; Carrea, G.; Cremonesi, P.; Casellato, M.M.; Antonini, E. Oxidation of steroid hormones by fungal laccase in emulsion of water and organic solvents. *Arch. Biochem. Biophys.* 1973, 159, 1–6. [CrossRef]
29. Nicotra, S.; Intra, A.; Ottolina, G.; Riva, S.; Danieli, B. Laccase-mediated oxidation of the steroid hormone 17β-estradiol in organic solvents. *Tetrahedron Asymmetry* 2004, 15, 2927–2931. [CrossRef]
30. Eggert, C.; Temp, U.; Dean, J.F.D.; Ericksson, K.E.L. Laccase-mediated formation of the phenoxazine derivative, cinnabaric acid. *FEBS Lett.* 1995, 376, 202–206. [CrossRef]
31. Eggert, C. Laccase-catalyzed formation of cinnabaric acid is responsible for antibacterial activity of *Pycnoporus cinnabarinus*. *Microbiol. Res.* 1997, 152, 315–318. [CrossRef]
32. Osiadacz, J.; Al-Adhami, A.J.H.; Bajraszewska, D.; Fischer, P.; Peczynska-Czoch, W. On the use of *Trametes versicolor* laccase for the conversion of 4-methyl-3-hydroxyanthranilic acid to actinocin chromophore. *J. Biotechnol.* 1999, 72, 141–149. [CrossRef]
33. Giurg, M.; Wiech, E.; Piekielska, K.; Gebala, M.; Młochowski, J.; Wolański, M.; Ditkowski, B.; Peczynska-Czoch, W. A new approach to synthesis of questiomycin A: Oxidative cyclocondensation of ortho-aminophenol. *Pol. J. Chem.* 2006, 80, 297–306. [CrossRef]
34. Giurg, M.; Piekielska, K.; Gebala, M.; Ditkowski, B.; Wolański, M.; Peczynska-Czoch, W.; Młochowski, J. Catalytic oxidative cyclocondensation of o-aminophenols to 2-amino-3H-phenoxazin-3-ones. *Synth. Commun.* 2007, 37, 1779–1789. [CrossRef]
35. Bruyneel, F.; Enaud, E.; Billottet, L.; Vanbulle, S.; Marchand-Brynaert, J. Regioselective synthesis of 3-hydroxyxanthanilic acid and its biotransformation into a novel phenoxazine dye by use of laccase. *Eur. J. Org. Chem.* 2008, 70–79. [CrossRef]
36. Agematu, H.; Tsuchida, T.; Kominato, K.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R.; Shin, T.; Murao, S. Enzymatic dimerization of penicillin-X. J. Antibiot. 1993, 46, 141–148. [CrossRef]
37. Agematu, H.; Kominato, K.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R.; Shin, T.; Murao, S. Transformation of 7-(4-hydroxyphenylacetamido) cephalosporanic acid into a new cephalosporin antibiotic, 7-[1-oxaspiro (2.5)octa-6-oxo-4,7-diene-2-carboxamido]cephalosporanic acid, by laccase. BioSci. Biotechnol. Biochem. 1993, 57, 1387–1388. [CrossRef]
38. Mikolasch, A.; Niedermeyer, T.H.J.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Gesell, M.; Hessel, S.; Jülich, W.D.; et al. Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chem. Pharm. Bull. 2006, 54, 632–638. [CrossRef] [PubMed]
39. Mikolasch, A.; Niedermeyer, T.H.J.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Salazar, M.G.; Hessel, S.; Jülich, W.D.; et al. Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem. Pharm. Bull. 2007, 55, 412–416. [CrossRef] [PubMed]
40. Mikolasch, A.; Wurster, M.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Jülich, W.D.; Lindequist, U. Novel beta-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem. Pharm. Bull. 2008, 56, 902–907. [CrossRef] [PubMed]
41. Mikolasch, A.; Manda, K.; Schlüter, R.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Jülich, W.D.; Lindequist, U. Comparative analyses of laccase-catalyzed amination reactions for production of novel beta-lactam antibiotics. Biotechnol. Appl. Biochem. 2012, 59, 295–306. [CrossRef] [PubMed]
42. Mikolasch, A.; Hildebrandt, O.; Schlüter, R.; Hammer, E.; Witt, S.; Lindequist, U. Targeted synthesis of novel beta-lactam antibiotics by laccase-catalyzed reaction of aromatic substrates selected by pre-testing for their antimicrobial and cytotoxic activity. Appl. Microbiol. Biotechnol. 2016, 100, 4885–4899. [CrossRef] [PubMed]
43. Domagk, G. Chemotherapy of bacterial infections. Angew Chem.-Ger. Edit. 1935, 48, 657–667. [CrossRef]
44. Sköld, O. Sulfonamide resistance: Mechanisms and trends. Drug Resist. Update 2000, 3, 155–160. [CrossRef] [PubMed]
45. Wainwright, M.; Kristiansen, J.E. On the 75th anniversary of Prontosil. Dyes Pigments 2011, 88, 231–234. [CrossRef]
46. Zhu, Y.L.; Stiller, M.J. Dapseon and sulfones in dermatology: Overview and update. J. Am. Acad. Dermatol. 2001, 45, 420–434. [CrossRef]
47. Witte, W.; Braulke, C.; Cuny, C.; Heuck, D.; Kresken, M. Changing pattern of antibiotic resistance in methicillin-resistant Staphylococcus aureus from German hospitals. Infect. Cont. Hosp. Ep. 2001, 22, 683–686. [CrossRef]
48. Hahn, V.; Mikolasch, A.; Wende, K.; Bartrow, H.; Lindequist, U.; Schauer, F. Synthesis of model morphine derivatives with biological activities by laccase-catalysed reactions. Biotechnol. Appl. Biochem. 2009, 54, 187–195. [CrossRef]
49. Mikolasch, A. Laccase-mediated synthesis of novel antibiotics and amino acid derivatives. In Pharmaceutical Biocatalysis: Chemoenzymatic Synthesis of Active Pharmaceutical Ingredients; Grunwald, P., Ed.; Jenny Stanford Publishing Pte. Ltd.: Singapore, 2019; pp. 219–268.
50. Liberra, K.; Jansen, R.; Lindequist, U. Corollosporine, a new phthalide derivative from the marine fungus Corollospora maritima. Werderm. 1069. Pharmazie 1998, 53, 578–581. [CrossRef]
51. Mothana, R.A.; Jansen, R.; Jülich, W.D.; Lindequist, U. Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J. Nat. Prod. 2000, 63, 416–418. [CrossRef] [PubMed]
52. Mikolasch, A.; Hessel, S.; Gesell Salazar, M.; Neumann, H.; Manda, K.; Gördes, D.; Schmidt, E.; Thurow, K.; Hammer, E.; Lindequist, U.; et al. New N-analogous corollosporine derivatives with antibacterial activity by laccase-catalyzed amination. Chem. Pharm. Bull. 2008, 56, 781–786. [CrossRef]
53. Wise, E.M.; Abou-Donia, M.M. Sulfonation resistance mechanism in Escherichia coli-R plasmids can determine sulfonamide-resistant dihydroproteorase synthases. Proc. Natl. Acad. Sci. USA 1975, 72, 2621–2625. [CrossRef]
54. Vedantam, G.; Nichols, B.P. Characterization of a mutationally altered dihydroproteorase synthase contributing to sulfathiazole resistance in Escherichia coli. Microb. Drug Resist. 1998, 4, 91–97. [CrossRef] [PubMed]
55. Fiebelkorn, K.R.; Crawford, S.A.; Jorgensen, J.H. Mutations in fopA associated with elevated sulfonamide MICs for Neisseria meningitidis clinical isolates from five continents. Antimicrob. Agents Chemother. 2005, 49, 536–540. [CrossRef] [PubMed]
56. Hahn, V.; Davids, T.; Lalk, M.; Schauer, F.; Mikolasch, A. Enzymatic cyclizations using laccases: Multiple bond formation between dihydroxybenzoic acid derivatives and aromatic amines. Green Chem. 2010, 12, 879–887. [CrossRef]