A Spline-Based Partial Element Equivalent Circuit Method for Electrostatics

Riccardo Torchio®, Member, IEEE, Maximilian Nolte®, Sebastian Schöps®, and Albert E. Ruehli, Life Fellow, IEEE

Abstract—This contribution investigates the connection between isogeometric analysis (IgA) and the partial element equivalent circuit (PEEC) method for electrostatic problems. We demonstrate that using the spline-based geometry concepts from IgA allows for extracting circuit elements without an explicit meshing step. Moreover, the proposed IgA–PEEC method converges for complex geometries up to three times faster than the conventional PEEC approach and, in turn, it requires a significantly lower number of degrees of freedom to solve a problem with comparable accuracy. The resulting method is closely related to the isogeometric boundary element method. However, it uses lowest-order basis functions to allow for straightforward physical and circuit interpretations. The findings are validated by an analytical example with complex geometry, that is, significant curvature, and by a realistic model of a surge arrester.

Index Terms—Electrostatics, isogeometric analysis (IgA), partial element equivalent circuit (PEEC), splines.

I. INTRODUCTION

NUMERICAL simulation tools based on discretizations of Maxwell’s equations are established in academia and industry. They support engineers during the design and analysis of products like electric surge arresters or high-voltage devices [1], [2]. They are particularly popular when designing complex geometries that cannot be analyzed in closed form or by simple electric circuit models.

Most such numerical methods are based on surface or volume meshes that approximate the geometry with low-order elements, for example, triangles. This comes with two drawbacks: First, there is a geometry error that is only acceptable if it does not impede the overall convergence of the method. Second, the meshing step may be time-consuming and error-prone. Its contribution to the overall workflow can be significant, and Sandia Laboratories have analyzed that about 75% of the simulation time is related to modeling, parameterization, mesh generation, and pre- and postprocessing [3]. In contrast, isogeometric analysis (IgA) [4] makes use of the exact representation of a device’s geometry in the language of computer-aided design (CAD) tools. Most common CAD tools use boundary representations (B-reps) of objects based on patches of nonuniform rational B-splines (NURBS). NURBS are popular since they can describe conic sections exactly, enable local smoothness control, and allow defining curves and surfaces intuitively [5].

We propose to formulate the electrostatic problem in terms of integral equations based on the same NURBS geometry descriptions used in IgA. Consequently, there is no geometrical approximation error and no need for a separate meshing step. We follow the well-known partial element equivalent circuit (PEEC) scheme [6]. It allows for an automatic representation of the problem by means of an equivalent electric circuit. Eventually, the circuit can be solved in a SPICE-like solver, possibly combined with other circuits that represent other devices and/or parts of the system. For example, nonlinear models that are popular to describe varistor-based stress control of high-voltage surge arresters [7] can be easily included. Being in the isogeometric setting, we use the term patch instead of the term cell commonly used in PEEC methods. The usage of the two terms is equivalent. In this article, we focus on the electrostatic version of the PEEC method since an accurate representation of curved geometry is particularly important in electrostatic applications and this allows us to highlight the benefit of the proposed approach. Moreover, since in the PEEC method, inductive and capacitative effects are modeled by dedicated matrices, the theory developed in this article can be used to apply IgA to a magneto-quasistatic [8] or a full-wave [9] PEEC method.

The original PEEC method [6], [10] is based on subdividing the computational domain in simple structures, for example, regular hexahedra or rectangular patches, that allow exact and fast quadrature of the involved integrals. During the years, the PEEC method has been extended to the case of more general mesh elements, such as nonorthogonal hexahedral elements [11], tetrahedral elements [9], and so on. However, in the literature, only linear (noncurved) elements and lowest-order basis functions have been used in the context of PEEC. Therefore, geometrical approximation errors are
The basis patch is constructed from two (weighted) B-spline curves.

Our implementation is based on an existing isogeometric boundary element library [13], [14]. It is shown that using this framework with lowest-order basis functions for the expansion of the solution, that is, one degree of freedom (electric charge) per patch and high-order rational basis functions for the geometry, a PEEC method is obtained that fulfills all promises mentioned above. In particular, it is demonstrated using the example of a spherical capacitor that the convergence rate of this new method is optimal while the rate deteriorates when using conventional PEEC implementations. This is explained by the fact that the so-called Aubin–Nitsche trick, for example, [15], is not applicable due to the geometric modeling error.

Consequently, the proposed combination of technologies contributes to bridging the gap between CAD and circuit simulation. IgA combined with PEEC can bridge the gap between CAD and circuit simulation. Indeed, by using a CAD tool where the geometry is constructed in terms of splines/NURBS, the assembly of the PEEC matrices can be performed automatically (without any user intervention since the mesh step is not required in IgA). Then, thanks to the circuit interpretation given by the PEEC framework, it is also possible to automatically generate a circuit netlist of the considered device.

The rest of the article is organized as follows. In Section II, the fundamentals of CAD and NURBS is revisited. Moreover, the specific choice of the shape functions used to apply the PEEC discretization scheme is discussed. In Section III, the PEEC formulation for the electrostatic case is briefly described, as well as the use of patch-wise defined B-splines to discretize the unknowns. Section III-B revises the PEEC stamping techniques for the specific case of electrostatic problems, and therefore it is shown how a net-list can be automatically constructed from the matrix coefficients generated by the IgA-PEEC method. Finally, in Section IV, the findings are validated by considering an analytical example with complex geometry, that is, significant curvature, and a realistic model of a surge arrester.

II. SPLINES AND GEOMETRY

We assume that the CAD geometry is represented by the union of \(N_f \) surface patches given in terms of NURBS. Each patch is constructed from two (weighted) B-spline curves. The basis \(\{ B_{i,p}(\xi) \}_{i=1}^{N_c} \) of a 1-D B-spline space \(\mathbb{S}_p^\alpha \) of degree \(p \) and regularity \(\alpha \) is determined by the knot vector \(\Xi = (\xi, \xi', \ldots, \xi_n) \in [0, 1]^\alpha \), \(\xi \leq \xi' \leq \cdots \leq \xi_n \). The basis is then

\[
\begin{align*}
B_{i,0}(\xi) &= \begin{cases}
1, & \text{if } \xi_i \leq \xi < \xi_{i+1} \\
0, & \text{otherwise}
\end{cases} \\
B_{i,p}(\xi) &= \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} B_{i,p-1}(\xi) + \frac{\xi_{i+p} - \xi}{\xi_{i+p} - \xi_{i+1}} B_{i+1,p-1}(\xi).
\end{align*}
\]

and for \(p > 0 \)

\[
B_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} B_{i,p-1}(\xi) + \frac{\xi_{i+p} - \xi}{\xi_{i+p} - \xi_{i+1}} B_{i+1,p-1}(\xi).
\]

Fig. 1 shows a visualization of the basis functions of degree \(p = 3 \). A corresponding NURBS curve is obtained by

\[
\gamma(\xi) = \sum_{i=1}^{k} B_{i,p}(\xi_i) w_i \mathbf{p}_i
\]

where \(k \) is the number of control points \(\mathbf{p}_i \) and \(w_i \) are the weights. Finally, the \(n \)th patch can be described as a NURBS mapping from the reference space \([0, 1] \times [0, 1] \) to the 3-D physical space as

\[
\Gamma_n(\xi', \xi'') = \sum_{i=1}^{k} \sum_{j=1}^{l} \sum_{q=1}^{k} B_{i,n}(\xi) B_{j,m}(\xi') w_{i,j} \mathbf{q}_{n,q}.
\]

Consequently, each distinct conductive domain in the problem is exactly described by the union of a connected set of such patches. Since we are focusing on electrostatic problems, the connected patches making up a domain will be equipotential. We also refer to them as electrodes.

In contrast to many other approaches, only a few patches are sufficient to describe even complex objects, for example, \(N_f = 6 \) NURBS surfaces determine exactly a sphere [see Fig. 2 (left)]. Now, when computing integrals on such a surface, for example, the area \(\int_{\Gamma} d\Gamma' \), then one can use patch-wise Gaussian quadrature on the reference domain using push-forward [16]. The convergence is only determined by the order of the quadrature rule. In contrast, each element of a low-order surface mesh, for example, shown in Fig. 2 (right), can be exactly evaluated but is limited to low-order convergence. Note that the quadrature in both cases can be easily parallelized.

III. ELECTROSTATIC PEEC METHOD

The electrostatic PEEC formulation [10, eq. (3.52)] starts from the well-known equation

\[
\varphi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\partial \Omega} \frac{\rho(\mathbf{r}')}{||\mathbf{r} - \mathbf{r}'||} d\Gamma'
\]

where \(\mathbf{r} \) is the field point, \(\mathbf{r}' \) is the integration point, \(\varepsilon_0 \) is the vacuum permittivity, \(\rho \) is the charge density, \(\varphi \) is the scalar...
electric potential, and Γ is the boundary of the conductive domains in terms of NURBS.

For the representation of the fields, we may use patchwise defined B-splines from the space

$$ S^p_k(\Gamma) = \{ f : f|_{\Gamma_i} \in S^p_k(\Gamma_k), 1 \leq k \leq N \} $$

with $S^p_k(\Gamma_k) = \{ f : (f \circ \Gamma_k) \in S^p_0 \times S^p_0 \}$ (see [17]). The goal is to find a discrete solution $\rho_h \in S^p_k(\Gamma)$, which yields the applied potential φ when inserted into (4) and evaluated on the electrodes. For this, we choose a basis $\{w_i\}_{1 \leq i \leq n}$, with $n = \dim(S^p_k(\Gamma))$, which fulfills $\text{span}\{w_1, \ldots, w_n\} = S^p_k(\Gamma)$. In the particular case of $p = 0$ and without mesh refinement, that is, $i = k$, we choose w_k such that $\hat{w}_\alpha = (w_\alpha \circ \Gamma_k) = 1/|\Gamma_k|$ holds, where $|\Gamma_k|$ denotes the area of the corresponding patch Γ_k.

Utilizing the Galerkin discretization $\rho_h = \sum_{i=1}^{n} q_i w_i$ yields the discrete variational problem: find $\rho_h \in S^p_k(\Gamma)$ such that

$$ \frac{1}{4\pi \varepsilon_0} \int_{\Gamma} w_j(r) \int_{\Gamma} \frac{\rho_h(r')}{||r-r'||} \, d\Gamma' \, d\Gamma = \int_{\Gamma} \varphi(r) w_j(r) \, d\Gamma $$

for all test functions $w_j \in S^p_k(\Gamma)$.

A. Quadrature and Solution of the Linear System

The discrete variational problem (6) corresponds to a linear equation system

$$ \mathbf{P} \mathbf{q} = \mathbf{\phi} $$

where \mathbf{q} is the coefficient vector describing the charge distribution ρ_h, \mathbf{P} is the potential IgA-PEEC matrix, and $\mathbf{\phi}$ contains the potentials. The general ijth coefficient of such a matrix is given by

$$ P_{ij} = \frac{1}{4\pi \varepsilon_0} \int_{\Gamma} w_j(r) \int_{\Gamma} \frac{w_i(r')}{||r-r'||} \, d\Gamma' \, d\Gamma. $$

For the computation of these coefficients, we need to deal with singular integrals and use the Duffy trick [18]. Additionally, one has to increase the quadrature degree logarithmically with the distance between the evaluated elements [15]. Furthermore, in the utilized implementation Bembel [14], the assembly is performed in parallel.

In contrast to (high-order) isogeometric boundary element methods, we chose elementwise constant basis functions ($p = 0$). In the simplest case, that is, without mesh refinement, the entries of \mathbf{q} can be interpreted as patch-wise charges. Consequently, $\mathbf{C}_M = \mathbf{P}^{-1}$ can be interpreted as the (full) Maxwell capacitance matrix from which the short-circuit capacitance matrix \mathbf{C} can be easily obtained as shown in [10], where \mathbf{C}_{kl}, with $k \neq l$, is a capacitance connecting the patches Γ_k and Γ_l. Finding \mathbf{C} requires the inversion of the matrix \mathbf{P} that can be computationally expensive. Moreover, as discussed in [10], some meshing-related accuracy problems may occur when matrix \mathbf{C} wants to be obtained from \mathbf{P}. For this reason and in the same fashion as the standard PEEC method, with the aim of automatically constructing an equivalent electric circuit of (7) that can be loaded and solved into a SPICE-like solver, the current source-based stamping technique described in Section III-B can be adopted instead.

B. Stamping Technique

The electrostatic IgA-PEEC problem can be solved with any standard technique for solving linear systems (e.g., LU decomposition). Alternatively, by exploiting the circuit interpretation provided by the PEEC scheme, an equivalent circuit and a net-list can be constructed and the problem can be imported into a SPICE-like solver where it can be solved and possibly coupled with other circuits representing other devices or parts of the system. In this section, the stamping technique that allows to automatically construct an equivalent net-list of the problem is changed for the specific case of electrostatic problems.

In some applications, it can be convenient to represent the fully coupled electrostatic problem (7) in terms of an equivalent circuit. Thus, a net-list which represents the electrostatics problem can be generated. Then, such a net-list can be loaded into a SPICE-like solver where it can be coupled with other circuits. This can be particularly useful when one wants to couple the net-list representing the electrostatic problem with complex circuit components that are described by dedicated equivalent circuits provided by the SPICE-like solver but not accessible to the user (e.g., varistor-based stress control of high-voltage surge arresters). In the following, it is described how to automatically construct a net-list equivalent to (7).

For electrostatic problems, the standard PEEC primary circuit cell [19] can be simplified with respect to the one related to full-Maxwell problems. For the sake of clarity, a very simple problem showed in Fig. 3 can be considered, where two thin and curved conductive domains are shown. Each one of the two domains is discretized by two patches. Although very simple, this model allows us to discuss how to automatically construct the net-list for general models. It is worth noting that, although the formulation described in this article has been developed for electrostatic problems only, once the net-list
equivalent to (7) is constructed and loaded into the SPICE-like solver, the net-list can be coupled with other circuits and also frequency or time-domain simulations can be performed. Thus, for the sake of generality, in this section, the discussion is carried on by considering a frequency-domain problem since the extension is straightforward. Fig. 4 shows the equivalent circuit of the model in Fig. 3. All the patches that make up a distinct domain are equipotential, and therefore the equivalent circuit has a number of nodes equal to the number of separate domains plus one node for the ground which is at an infinite distance from the devices. The number of patches is indicated with \(N \), and in this case \(N = 4 \).

Thus, the electric potential value of patch 1 and patch 2 in Fig. 3 is given by the potential of node 1 in Fig. 4. Analogously, the electric potential value of patch 3 and patch 4 in Fig. 3 is given by the potential of node 2 in Fig. 4.

The connections between the patches (circuit nodes) and the ground node are instead modeled with equivalent capacitors and current-controlled current sources (CCCSs). The equivalent capacitances represent the electrostatic interaction between a single patch and the infinity and they are given by

\[
C_{ii} = \frac{1}{P_{ii}}. \tag{9}
\]

Instead, the CCCSs represent the electrostatic interactions between different patches. It is worth noting that each CCCS component at the right part of Fig. 5 is controlled by the current \(i_{\omega q_i} \). At the circuit level, this current can be obtained by summing up the contributions of the current flowing through the \(i \)th capacitance and all currents flowing in the CCCSs connected in parallel to the capacitance. Thus, as described in [20], to make this currently available in the net-list, a voltage source (VS) imposing a zero voltage must be added in series to each capacitance. Thus, by taking Fig. 4 as an example, four VSs imposing zero voltage are added to the net-list and they are connected to the upper terminal of each capacitance and to nodes \(n_1 \) and \(n_2 \) as shown in Fig. 5.

Finally, once the PEEC potential matrix is constructed, it is possible to automatically generate the equivalent net-list.

From the discussion above, it can be inferred that the generated net-list consists of a large number of components since all the mutual couplings between the patches require a circuit component. As discussed in [21], this can become an issue when a large number of unknowns is required since standard SPICE-like solvers may be inefficient when large systems of equations with dense matrix blocks are generated. However, it is worth noting that the high-order curved geometry description allows for keeping small the number of required patches, thus mitigating such issues.

C. Convergence

For sufficiently smooth geometries \(\Gamma \) and solutions \(\varphi \) of (4), the expected convergence order of the approximation \(\rho_h \) is \(O(h^{3/2+p}) \). This is a consequence of the convergence theory for boundary element methods [15, Corollary 4.1.34]. The error of the potential evaluated in (4) by inserting \(\rho_h \) converges even faster, that is, with \(O(h^{3/2+p}) \) due to the Aubin–Nitsche
This trick holds more generally for any linear function of the approximation p_h that can be evaluated with sufficient accuracy. Since we obtain the capacities [see (8)], in the isogeometric approach by surface integration based on the exact geometry, we also profit here from the increased convergence rate.

IV. NUMERICAL RESULTS

In this section, simulation results obtained from numerical experiments are shown. Three test cases are considered. The first two are academic examples consisting of a spherical capacitor, that is, two concentric spheres, and an ellipsoidal capacitor. While being simple, they allow us to show the benefits of the proposed spline-based PEEC approach due to their strong curvature. Moreover, these problems have a closed-form solution and therefore we can test and compare the accuracy of the numerical methods.

The third test case instead consists of the realistic model of a surge arrester. In this model, thanks to the circuit interpretation provided by the PEEC scheme, the surge arrester model is excited by using a lumped voltage source.

The proposed PEEC method has been implemented within the Bembel, the fast isogeometric boundary element C++ library [14]. The implementation provides an interface to the Eigen template library for linear algebra operations [22]. Furthermore, the matrix assembly is openMP parallelized [23]. For comparison, we also use the MATLAB implementation of PEEC introduced in [9] based on low-order surface mesh (i.e., triangular elements) and zero-order shape functions. All codes are executed on a cluster with Intel1 Xeon1 Platinum 8160 CPU @ 2.10 GHz.

A. Academic Example: Two Concentric Spheres

The method has been applied to the electrostatic configuration of two concentric perfect electric conducting spherical shells of radii $r_{\text{in}} = 0.1$ m and $r_{\text{out}} = 0.2$ m. The model consists of 12 NURBS patches. Without further refinement, this leads to 78 partial capacitances with a total capacitance of $C = 21.5$ pF. The reference value is the closed-form solution [24]

\[
C_{\text{ana}} = \frac{4\pi \varepsilon_0}{(1/r_{\text{in}} - 1/r_{\text{out}})} \approx 22.25\text{pF}.
\]

The slopes for the isogeometric method shown in Fig. 6 obtained by mesh1 refinement meet the expected optimal convergence order of $O(h^3)$ for lowest-order basis functions (see Section III-C). On the other hand, Fig. 6 also shows the results obtained from the standard PEEC method based on low-order surface mesh (i.e., triangular elements) and zero-order shape functions. All codes are executed on a cluster with Intel1 Xeon1 Platinum 8160 CPU @ 2.10 GHz.

The results above and in Fig. 6 were obtained by solving (7) with the LU decomposition implemented in Eigen [22]. However, for the sake of completeness, the automatic construction of the net-list as discussed in Section III-B and schematically reported in Fig. 7 is also performed. The generated net-list is loaded into the SPICE-Solver LTspice and solved by executing the circuit simulator. The obtained results are, as expected, identical to the one obtained from LU decomposition up to machine precision. A part of the generated netlist.cir file is shown in Fig. 8 for illustration; the code is available in [25].

B. Academic Example: Ellipsoidal Capacitor

A second academic test case is now considered, that is, an ellipsoidal conductor described by the geometry

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
\]

with $a = 2$ m and $b = c = 1$ m. In this test case, we focus on the evaluation of the capacitance of the ellipsoidal conductor with respect to infinity. The analytical solution is given by

\[
C_{\text{ana}} = \frac{8\pi \varepsilon_0 \alpha \sqrt{1 - c^2/a^2}}{\log \frac{1 + \sqrt{1 - c^2/a^2}}{1 - \sqrt{1 - c^2/a^2}}} \approx 146.2 \text{ pF} \tag{11}
\]

according to [28].

[1]Registered trademark.
In the previous test case, where two concentric spheres are considered, the charge density is uniformly distributed along the spherical surfaces. Instead, in this test case, the charge density distribution is nonuniform. Thus, with this test case, it is possible to further test the accuracy and the convergence order of the proposed approach. The model consists of six NURBS patches and it is represented in Fig. 9.

Again, the slopes for the isogeometric variant are shown in Fig. 10. They are obtained by mesh refinement and meet the expected optimal convergence order of $O(h^3)$ for the lowest-order basis functions. On the other hand, Fig. 10 also shows the results obtained from the standard PEEC method based on low-order surface mesh (i.e., triangular elements) and zero-order shape functions. The two curves in Fig. 10 further confirm the theoretical prediction that the convergence order of the proposed spline-based PEEC method is much higher than (noncurved) triangle-based PEEC approaches.

C. Surge Arrester

In this section, the model of a realistic surge arrester is considered. The model is shown in Fig. 11 and it is derived...
The (axisymmetric) FEM model consists of 883,297 degrees of freedom and cubic elements. The value of equivalent capacitance of the structure obtained from the (axisymmetric) FEM model and the spline- and triangular-based PEEC methods are in very good agreement, that is, 9.2935, 9.2942, and 9.2715 pF, respectively.

Finally, Figs. 14 and 15 show the surface charge density distribution on the structure obtained from the spline- and triangular-based PEEC methods, respectively.

V. CONCLUSION

This article proposes a PEEC method based on the function spaces from IgA. It is applied to electrostatics. Thanks to the use of an integral equation formulation, the adoption of spline-based geometry concepts from IgA and piecewise constant basis functions, it is shown how a fully-coupled capacitance circuit can be extracted bypassing the usual costly meshing step. This saves time and manual effort of a potential user. It is demonstrated that a real problem with curved geometry can be solved with adequate accuracy. Moreover, the proposed IgA-PEEC method converges for curved geometries up to three times faster than a conventional PEEC implementation. The consideration of magnetic and eventually full-wave effects in this new framework is the next natural step.

ACKNOWLEDGMENT

The authors thank Felix Wolf, Jürgen Dölz, Yvonne Späck-Leigsnering, and Stefan Kurz for the fruitful discussions on the topic.

REFERENCES

[1] S. Chakravorti and H. Steinbigler, “Capacitive-resistive field calculation on HV bushings using the boundary-element method,” IEEE Trans. Dielectr. Electr. Insul., vol. 5, no. 2, pp. 237–244, Apr. 1998.
[2] S. Monga, R. Gorur, P. Hansen, and W. Massey, “Design optimization of high voltage bushing using electric field computations,” IEEE Trans. Dielectr. Electr. Insul., vol. 13, no. 6, pp. 1217–1224, Dec. 2006.
[3] P. T. Boggs, A. Althsuiter, A. R. Larzelere, E. J. Walsh, R. L. Clay, and M. F. Hardwick, “DART system analysis,” Sandia Nat. Laboratories, Albuquerque, NM, USA, Tech. Rep., Aug. 2005.
[4] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FE, Hoboken, NJ, USA: Wiley, 2009.
[5] E. Cohen, R. F. Riesenfeld, and G. Elber, Geometric Modeling with Splines: An Introduction. Boca Raton, FL, USA: CRC Press, 2001.
[6] A. E. Ruehl, “Equivalent circuit models for three-dimensional multi-conductor systems,” IEEE Trans. Microw. Theory Techn., vol. MTT-22, no. 3, pp. 216–221, Mar. 1974.
[7] F. Denz, “Modeling and simulation of varistor-related problems,” Ph.D. dissertation, Dept. Elect. Eng. Inf. Technol., Technische Universität Darmstadt, Darmstadt, Germany, Apr. 2014.
[8] R. Torchio, V. Cirimele, P. Alotto, and F. Freschi, “Modelling of road-embedded transmitting coils for wireless power transfer,” Comput. Electr. Eng., vol. 88, Dec. 2020, Art. no. 106850.
[9] R. Torchio, “A volume PEEC formulation based on the cell method for electromagnetic problems from low to high frequency,” IEEE Trans. Antennas Propag., vol. 67, no. 12, pp. 7452–7465, Dec. 2019.
[10] A. E. Ruehl, G. Antonini, and L. Jiang, The Partial Element Equivalent Circuit Method for Electro-Magnetic and Circuit Problems, 1st ed. Hoboken, NJ, USA: Wiley, 2017.
[11] G. Antonini, A. Ruehl, and J. Esch, “Nonorthogonal PEEC formulation for time and frequency domain modeling,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol. I, Aug. 2002, pp. 452–456.
[12] M. Spasovsac and P. L. Levin, “On adaptive refinement for boundary integral methods in electrostatics,” IEEE Trans. Dielectr. Electr. Insul., vol. 1, no. 6, pp. 963–974, Dec. 1994.
[13] J. Dölz, H. Hartrecht, S. Kurz, S. Schöps, and F. Wolf, “A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems,” Comput. Meth. Appl. Mech. Eng., vol. 330, pp. 83–101, Mar. 2018.
[14] J. Dölz, H. Harbrecht, S. Kurz, M. Multerer, S. Schöps, and F. Wolf, “Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation,” SoftwareX, vol. 11, Jan. 2020, Art. no. 100476.

[15] S. A. Sauter and C. Schwab, Boundary Element Methods. Berlin, Germany: Springer, 2011.

[16] A. Buffa, G. Sangalli, and R. Vázquez, “Isogeometric analysis in electromagnetics: B-splines approximation,” Comput. Meth. Appl. Mech. Eng., vol. 199, pp. 1143–1152, Mar. 2010.

[17] A. Buffa, J. Dölz, S. Kurz, S. Schöps, R. Vázquez, and F. Wolf, “Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis,” Numerische Math., vol. 144, no. 1, pp. 201–236, Jan. 2020.

[18] M. G. Duffy, “Quadrature over a pyramid or cube of integrands with a singularity at a vertex,” SIAM J. Numer. Anal., vol. 19, no. 6, pp. 1260–1262, 1982.

[19] F. Freschi, “Fast block-solution of PEEC equations,” IEEE Trans. Magn., vol. 49, no. 5, pp. 1753–1756, May 2013.

[20] C. Wollenberg and A. Gurisch, “Analysis of 3-D interconnect structures with PEEC using SPICE,” IEEE Trans. Electromagn. Comput., vol. 41, no. 4, pp. 412–417, Nov. 1999.

[21] S. Safavi and J. Ekman, “Feasibility analysis of specialized PEEC solvers in comparison to SPICE-like solvers,” J. Comput. Electron., vol. 11, no. 4, pp. 440–452, 2012.

[22] J. Benoit and G. Guennebaud, “Eigen3 C++ linear algebra template library,” Tech. Rep., Jul. 2022. [Online]. Available: https://eigen.tuxfamily.org/index.php?title=Main_Page

[23] O. A. R. Board, “OpenMP application program interface version 3.0,” Tech. Rep., May 2008. [Online]. Available: https://www.openmp.org/wp-content/uploads/spec30.pdf

[24] D. J. Jackson, “Boundary representation modelling with local tolerances,” in Proc. Symp. Solid Model. Appl., 1995, pp. 247–254.

[25] M. Nolte, R. Torchio, and S. Schops. Bembel. Accessed: Nov. 20, 2022. [Online]. Available: http://www.bembel.eu, doi: 10.5281/ZENODO.2671596.

[26] Y. Späck-Leigsner, E. Gjonaj, and H. de Gersem, “Electrothermal optimization of field grading systems of station class surge arresters,” IEEE J. Multiscale Multiphys. Comput. Techn., vol. 4, pp. 29–36, 2019.

[27] M. Gießel, “Elektrothermisches verhalten von hochspannungs-metalloxid-ableitern mit reduzierten steuersystemen in wechselspannungsnetzen,” Ph.D. dissertation, Dept. Elect. Eng. Inf. Technol., Technische Universität Darmstadt, Darmstadt, Germany, 2018.

[28] G. V. Kraniotis and G. K. Leontaris, “Closed form solution for the surface area, the capacitance and the demagnetizing factors of the ellipsoid,” 2013, arXiv:1306.0509.

[29] R. Torchio (Member, IEEE) was born in Padua, Italy, in 1992. He received the M.S. degree in electrical engineering from the University of Padova, Padua, in 2016, and the joint Ph.D. degree in electrical engineering from the University of Padova and the Grenoble Electrical Engineering Laboratory (G2ELab), Université Grenoble Alpes, Grenoble, France, in December 2019.

He is currently working with the University of Padova as an Assistant Professor (RTDa). His research interests include numerical methods, low-rank compression techniques, uncertainty quantifications, wireless power transfer applications, model order reduction, model predictive control, and the development of integral formulations for the study of low- and high-frequency electromagnetic devices.

[30] Maximilian Nolte received the M.Sc. degree in electrical engineering and information technology from the Technische Universität Darmstadt, Darmstadt, Germany, in 2021, where he is currently the Ph.D. degree with the Computational Electromagnetics Group.

After an externally supervised master thesis at the Universität della Svizzera Italiana, Lugano, Switzerland, he works at the Computational Electromagnetics Group, Technische Universität Darmstadt, as a Research Assistant. His current research interests include software engineering methodology and domain decomposition methods in the application of isogeometric boundary element methods.

[31] Sebastian Schöps received the M.Sc. degree in business mathematics and the joint Ph.D. degree in mathematics and physics from Bergische Universität Wuppertal, Wuppertal, Germany, and Katholieke Universiteit Leuven, Leuven, Belgium, in 2008 and 2011.

He was appointed as a Professor of computational electromagnetics at the Interdisciplinary Center of Computational Engineering, Technische Universität Darmstadt, Darmstadt, Germany, in 2012. His current research interests include coupled multiphysical problems, bridging computer-aided design and simulation, parallel algorithms for high-performance computing, digital twins, uncertainty quantification, and machine learning.

[32] Albert E. Ruehli (Life Fellow, IEEE) received the Ph.D. degree in electrical engineering from the University of Vermont, Burlington, VT, USA, in 1972.

He has been a member of various projects with IBM, including interconnect tools and modeling, and the Manager of both the very large-scale integration design and computer-aided design groups. From 1972 to 2009, he was with IBM’s T. J. Watson Research Center. He is currently an Adjunct Professor with the Missouri University of Science and Technology, Rolla, MO, USA. He is an editor of two books and has authored/coauthored another book and more than 250 technical articles.

Dr. Ruehli is a member of the Society for Industrial and Applied Mathematics. He received five IBM awards, the Guillenm-Cauer Prize in 1982 and the Golden Jubilee Medal from the IEEE Circuits and Systems Society in 1999. He also received a Certificate of Achievement from the IEEE Electromagnetic Compatibility Society in 2001, the Richard R. Stoddart Award in 2005, and the Honorary Life Member Award from the IEEE Electromagnetic Compatibility Society in 2007. He received an honorary doctorate from the Luleå University of Technology, Luleå, Sweden, in 2007.