We investigate an unconventional nature of the entropy production (EP) in nonequilibrium systems with odd-parity variables that change signs under time reversal. We consider the Brownian motion of a particle in contact with a heat reservoir, where particle momentum is an odd-parity variable. In the presence of an external momentum-dependent force, the EP transferred to environment is found not equivalent to usual reservoir entropy change due to heat transfer. There appears an additional unconventional contribution to the EP, which is crucial for maintaining the non-negativity of the (average) total EP enforced by the thermodynamic second law. A few examples are considered to elucidate the novel nature of the EP. We also discuss detailed balance conditions with a momentum-dependent force.

I. INTRODUCTION

Recent studies on nonequilibrium (NEQ) fluctuation were motivated by the discovery of the fluctuation theorems (FT’s) [1][3]. The FT’s were at first regarded as new identities or relations governing thermally fluctuating quantities in various NEQ dynamics, deterministic or stochastic. More recent studies, however, have revealed many interesting properties beyond simple relations, which include excess and housekeeping (or nonadiabatic and adiabatic) contributions to the entropy production (EP) [6][11], modifications of FT [12][13], information entropy [16, 17], multiple dynamical transitions [18], and persistent initial-memory effect [19, 20].

Most of the studies so far have dealt with stochastic systems where state variables have even parities (do not change signs) under time reversal. This is mainly due to technical simplicity and might be also to a naive presumption that the generalization to the case including odd-parity variables might be straightforward. However, it has been recently recognized that systems with odd-parity variables exhibit a fundamental difference from those with even-parity variables only. For example, the housekeeping EP does not satisfy the FT any longer and can be divided into two parts characterized by the breakage of detailed balance (DB) and the parity asymmetry of the steady-state probability distribution function [10, 11].

In this study, we report another fundamental difference associated with the nature of the EP in systems with both even- and odd-parity variables from those without odd-parity variables. To be specific, we consider an external momentum-dependent driving force in the underdamped Brownian motion. Typical examples are velocity-dependent forces in active matter systems [21] such as granular particles under vibration [22], interacting molecular motors [23], and active Brownian particles [24, 25]. Simpler examples are the Lorentz force on a charged particle in a uniform magnetic field and an additional dissipative force through a feedback process in a molecular refrigerator (cold damping) [14, 23, 24].

For a system in contact with a single thermal reservoir at temperature $T$, the conventional EP in the NEQ steady state can be characterized by an incessant environmental EP mediated solely by heat dissipation $Q$ into the reservoir such that $\Delta S_{\text{env}} = \Delta S_{\text{res}} = Q/T$. However, we find that this relation should be modified in the presence of external momentum-dependent forces and there appears an extra environmental EP, $\Delta S_{\text{uc}}$ (unconventional EP), yielding $\Delta S_{\text{env}} = \Delta S_{\text{res}} + \Delta S_{\text{uc}}$. In some cases, we can explicitly show that $\Delta S_{\text{res}}$ is negative by itself, and the positivity of $\Delta S_{\text{env}}$ is restored by adding $\Delta S_{\text{uc}}$. Therefore, the existence of $\Delta S_{\text{uc}}$ is crucial for the validity of the thermodynamic second law ($\Delta S_{\text{env}} \geq 0$ in the steady state) [27]. A similar extra contribution to the environmental EP has been considered in Ref. [24] for a one dimensional system with a simple form of the momentum-dependent force.

II. MODEL

Consider the driven Brownian motion of a particle of mass $m$ in state space $\mathbf{q} = (\mathbf{x}, \mathbf{p})$, where $\mathbf{x}$ and $\mathbf{p}$ are the position and momentum vectors in $d$ space dimensions, respectively. The stochastic differential equation reads

$$\frac{d\mathbf{x}}{dt} = \frac{\mathbf{p}}{m}, \quad \frac{d\mathbf{p}}{dt} = \mathbf{f}(\mathbf{q}; \lambda(t)) - \mathbf{G} \cdot \frac{\mathbf{p}}{m} + \mathbf{\xi}(t),$$

where $\mathbf{G}$ is a dissipation matrix and a dot ($) denotes a contraction (inner product). The Gaussian noise vector $\mathbf{\xi}(t)$ satisfies $\langle \mathbf{\xi}(t) \mathbf{\xi}^\dagger(t') \rangle = 2D \delta(t - t')$ with superscript ‘$\dagger$’ denoting ‘transpose’. The diffusion matrix $D$ is positive definite and symmetric. The last two terms of the above equation describe thermal forces exerted by heat reservoirs. With a single heat reservoir at temperature $T$, the Einstein relation holds as $D = T \mathbf{G}$. The most general form of the force $\mathbf{f}$ is considered, which may depend on both position and momentum as well as on a time-dependent protocol $\lambda(t)$. We note that previous studies [24] have only focused on the case...
where $f$ is given by the sum of two terms, one of which depends only on position and the other on momentum.

The corresponding Kramers equation for the probability distribution function (PDF), $\rho(q,t)$, reads

$$\partial_t \rho = -L \rho ,$$

(2)

with the evolution operator $L$ as

$$L(q) = \partial_q \cdot \frac{P}{m} + \partial_p \left( f - G \cdot \frac{P}{m} - D \cdot \partial_p \right) .$$

(3)

The formal solution can be written in terms of a path integral for $0 \leq t \leq \tau$ as

$$\rho(q,\tau) = \int dq_0 \int D[q(t)] \Pi[q(t);\lambda(t)] \rho(q_0) ,$$

(4)

with the initial PDF $\rho(q_0)$. The kernel $\Pi[q(t);\lambda(t)]$ is the conditional path probability density of the system evolving along a given path $\{q(t)\}$ for $0 \leq t \leq \tau$, starting at $q(0) = q_0$. The integration $\int D[q(t)]$ is over all paths for given $q_0$ and $q(\tau)$. The probability density to find a path $\{q(t)\}$ is given by $P[q(t);\lambda(t)] = \Pi[q(t);\lambda(t)] \rho(q_0)$.

### III. IRREVERSIBILITY

Entropy production measures irreversibility of the process. To define irreversibility, we first consider the time-reverse process which should be governed by the equivalent equation of motion to that of the original (time-forward) process in Eq. (1):

$$\frac{d\bar{x}}{dt} = \frac{\bar{p}}{m} , \quad \frac{d\bar{p}}{dt} = f(\bar{q};\bar{\lambda}(\bar{t}))-G \cdot \frac{\bar{p}}{m} + \xi(\bar{t}) ,$$

(5)

where all variables in the time-reverse process are denoted by overbars. The time-dependent protocol function $\bar{\lambda}$ is set by requiring $\bar{\lambda}(\bar{t}) = \lambda(t)$.

For each (time-forward) path $\{q(t)\}$ $(0 \leq t \leq \tau)$, one can consider the corresponding time-reverse path $\{\bar{q}(\bar{t})\}$ for $0 \leq \bar{t} \leq \tau$ with $\bar{t} = \tau - t$ and $\bar{q}(\bar{t}) = \varepsilon q(t)$, where parity $\varepsilon = 1$ for position $x$ (even parity) and $\varepsilon = -1$ for momentum $p$ (odd parity). Note that the odd parity for momentum is automatically enforced by identifying $\bar{x}(\bar{t}) = x(t)$ with $\bar{t} = \tau - t$ in Eq. (5). Irreversibility (or the total EP, $\Delta S_{tot}$) for a given path $\{q(t)\}$ is defined by

$$\Delta S_{tot}[q(t)] = \ln \frac{\Pi[q(t);\lambda(t)] \rho(q_0)}{\Pi[\bar{q}(\bar{t});\bar{\lambda}(\bar{t})] \rho(\bar{q}_0)} = \ln \frac{P[q(t);\lambda(t)]}{\bar{P}[\bar{q}(\bar{t});\bar{\lambda}(\bar{t})]} ,$$

(6)

where $\Pi[\bar{q}(\bar{t});\bar{\lambda}(\bar{t})]$ is the conditional path probability density for the time-reverse path $\{\bar{q}(\bar{t})\}$ and its initial PDF is given as $\rho(\bar{q}_0) = \rho(q(\tau))$.

For a reversible path, path probabilities $P$ and $\bar{P}$ are the same by definition and we expect no EP. Deviation from this accounts for irreversibility of the path. The usual (average) environmental EP, $\langle \Delta S_{env} \rangle$, is obtained by averaging over all possible paths and the initial PDF. The usual (average) total EP, $\langle \Delta S_{tot} \rangle$, is obtained by averaging over all possible paths. A simple probability normalization condition results in the integral FT, expressed as $\langle e^{-\Delta S_{tot}} \rangle = 1 \; \mathbb{R} \; \mathbb{R}$. With the Jensen’s inequality, it leads to $\langle \Delta S_{tot} \rangle \geq 0$, which proves the second law of thermodynamics.

The total EP can be divided into the system entropy change and the environmental EP as $\Delta S_{tot} = \Delta S_{sys} + \Delta S_{env}$, where $\Delta S_{sys} = -\ln \rho(q(\tau)) + \ln \rho(q_0)$ is given by Shannon entropy difference. Thus, from Eq. (4), the environmental EP $\Delta S_{env}[q(t)]$ is simply the logarithm of two conditional path probability density ratio.

It is useful to discretize time such that $t_i = i\Delta t$ for $i = 0, \ldots, N$ with interval $\Delta t = \tau/N$ for large $N$. A path is now represented by a discrete sequence $\{q(t)\} = \{q_0, \ldots, q_i, \ldots, q_N\}$ where $q_i = q(t_i)$. The Markovian property of dynamics allows us to write

$$\Pi[q(t);\lambda(t)] = \prod_{i=1}^{N} \Gamma(q_i|q_{i-1};\lambda_{i-1})$$

(7)

where $\Gamma(q_i|q_{i-1};\lambda_{i-1}) = \langle q_i | e^{-\Delta t \lambda_{i-1}} | q_{i-1} \rangle$ is the conditional probability for the system at $(q_i, t_i)$, starting from $(q_{i-1}, t_{i-1})$ with $\lambda_{i-1} = \lambda(t_{i-1})$. Using a quantum mechanical formalism for the non-Hermitian evolution operator $L$, we find

$$\Gamma(q_i|q_{i-1};\lambda_{i-1}) = \delta(x_i - x_{i-1} - \Delta t p_i^{(\alpha)} / m) / \det(4\pi \Delta t D)^{D/2}$$

(8)

$$\times \exp \left\{ -\frac{\Delta t}{4} h_i^{(\alpha)} \cdot D^{-1} \cdot h_i^{(\alpha)} + \alpha \Delta t \left( \frac{T r G}{m} - \partial p^{(\alpha)} \cdot f_i^{(\alpha)} \right) \right\}$$

where

$$h_i^{(\alpha)} = \frac{p_i - p_{i-1}}{\Delta t} + G \cdot \frac{p_i^{(\alpha)}}{m} - f_i^{(\alpha)} ,$$

(9)

and $p_i^{(\alpha)} = (1 - \alpha)p_{i-1} + \alpha p_i$ for $0 \leq \alpha \leq 1$ represents an intermediate value of $p$ during time interval $[t_{i-1}, t_i]$. In principle, $\alpha$ can be arbitrary, but should not affect on physical observables like EPs for the large $N$ (small $\Delta t$) limit. Force $f_i^{(\alpha)}$ is also defined in the same manner.

It is more convenient to consider the EP during an infinitesimal time interval $[t, t + dt]$ as

$$dS_{env} = \ln \frac{\Gamma(q', t + dt|q_0; t; \lambda(t))}{\Gamma(\varepsilon q', t + dt|\varepsilon q_0'; t; \lambda(t))} ,$$

(10)

where the conditional probability for the time-reverse path $(\varepsilon q' \rightarrow q')$ is expressed in terms of that for the time-forward path $(\varepsilon q' \rightarrow \varepsilon q)$ in the denominator. Then, a straightforward algebra yields

$$\frac{dS_{env}}{dt} = -\left( \frac{dp}{dt} - f^{\text{rev}} \right) \cdot D^{-1} \cdot \left( G \cdot \frac{P}{m} - f^{\text{rev}} \right) - \partial_p \cdot f^{\text{rev}} ,$$

(11)

where the force is divided into the reversible and irreversible parts, $f(q) = f^{\text{rev}}(q) + f^{\text{ir}}(q)$, such that $f^{\text{rev}}(q) = \langle f | \xi \rangle$.
After some algebra, we find the average total EP rate as

$$\langle q' | \ell | q \rangle \rho(q) = \langle \varepsilon q | \ell | \varepsilon q' \rangle \rho(\varepsilon q').$$

Conventionally, the mirror symmetry of the steady-state PDF, \(\rho_{ss}(q) = \rho_{ss}(\varepsilon q)\) is also required for the system to be in equilibrium. Recently, it has been reported for discrete state jumping dynamics \(^{[11]}\) that the DB condition does not necessarily imply the mirror symmetry and that the two conditions are in fact independent.

For the Brownian motion considered here, we analyze the DB equation \(^{[18]}\) without assuming the mirror symmetry beforehand. In terms of the differential operator \(L(q)\) given in Eq. \(^{[3]}\), the DB condition is \(L(q') \delta(q' - q) \rho(q) = L(\varepsilon q') \delta(q' - q) \rho(\varepsilon q')\). Changing \(\rho(q)\) to \(\rho(q')\) on the left-hand side and moving \(\rho(q')\) on the right-hand side to the front, we can rewrite this as

$$L(q') \rho(q') \delta(q' - q) = \rho(\varepsilon q') L(\varepsilon q') \delta(q' - q),$$

where the operator \(L^\dagger\) is defined as

$$L^\dagger(q) = -\frac{P}{m} \cdot \partial_x - \left( f \frac{P}{m} \cdot G + \partial_p \cdot D \right) \cdot \partial_p.$$

Equation \(^{[19]}\) can now be regarded as the equality between the differential operators acting on delta functions. From the part that does not involve any derivatives on the delta function, the steady state condition \(L(q') \rho(q') = 0\) follows, so \(\rho(q') = \rho_{ss}(q')\) and \(\partial_q j_{ss} = 0\). Comparing the terms proportional to \(\partial_{q'} \delta(q' - q)\), we get the mirror symmetry

$$\rho_{ss}(q) = \rho_{ss}(\varepsilon q).$$

Thus, the mirror symmetry is a direct consequence of the DB condition for the Brownian dynamics, in contrast to discrete state jumping dynamics. For a more general continuous stochastic dynamics involving multiplicative noises, however, the situation is not so simple. In that case, the mirror symmetry follows from the DB only after assuming a certain condition for the multiplicative noise strengths. In general the two conditions remain independent \(^{[35]}\). The broken mirror symmetry manifests the existence of nonzero average current \(j_{rev}^p\) in position space, as seen from Eq. \(^{[15]}\).

The terms proportional to \(\partial_{p'} \delta(q' - q)\) gives the vanishing irreversible steady state current

$$j_{rev}^p = \left( f_{ir}^p(q) - G \cdot \frac{P}{m} \cdot D \cdot \partial_p \right) \rho_{ss}(q) = 0.$$

This is consistent with the previous result in Eq. \(^{[17]}\) in that the DB condition characterizing equilibrium guarantees stochastic reversibility even in the presence of momentum-dependent forces. With the broken DB, the total EP should increase incessantly in time in NEQ steady states. Higher-order derivative terms do not provide any additional condition.
VI. UNCONVENTIONAL EP

The definition of the environmental EP, Eqs. (10) and (11), in terms of the irreversibility measure should be checked against its conventional definition in thermodynamics. Without any momentum-dependence force, \( f(q) = f(x) \) and \( f'' = 0 \), it has been already shown in literatures \([8, 9]\) that this definition is consistent with the conventional one. For example, in the case of a single heat reservoir at temperature \( T \) with \( D = T G \), Eq. (11) is simplified as

\[
\frac{dS_{env}}{dt} = -\frac{1}{T} \left( \frac{dp}{dt} - f \right) \cdot p = \frac{1}{T} \frac{dQ}{dt} , \tag{23}
\]

where \( dQ \) is the heat flow into the reservoir (minus work done by the thermal forces) along a given trajectory during an infinitesimal time interval \( dt \). (Note that heat should be evaluated with the midpoint value of \( p/m \) in the above equation to maintain the energy conservation law \([30]\)). Thus, the environmental EP is given solely by the above equation to maintain the energy conservation.

Is present even when the conventional EP has any feature of the conventional entropic dynamics. In fact, we do not know whether the unconventional EP rate which is consistent with the difference between Eqs. (17) and (16).

VII. EXAMPLES

We now demonstrate the novelty and importance of the unconventional EP in a few examples that may be realized in experiments. First, we investigate a cold-damping problem with a dissipative external force, \( f'' = -G'p/m \) with a positive-definite \( G' \). For simplicity, we take \( f^{\text{rev}} = 0 \) and \( G = \gamma I \) in two dimensions with the identity matrix \( I \) and the reservoir temperature \( T = D/\gamma \). The steady-state PDF, \( \rho_{ss}(q) \), can be easily obtained in any linear diffusion system, shown in Refs. \([18] \text{ and [33]}.\)

For given \( G' = \gamma \begin{pmatrix} a & b \\ b & a \end{pmatrix} \) with \( a > 0 \) and \( r^2 > ab \), a straightforward algebra with Eqs. (17) and (25) yields

\[
\langle \frac{dS_{tot}}{dt} \rangle = \frac{\gamma}{m} \left( \frac{a-b^2}{2(1+r)} \right) , \tag{27}
\]

\[
\langle \frac{dS_{res}}{dt} \rangle = -\frac{\gamma}{m} \frac{4(1+r)^2 + (a-b^2)}{2(1+r) \{ (1+r)^2 - ab \} - 2} .
\]

As the average system EP vanishes in the steady state, \( \langle dS_{tot}/dt \rangle \) is simply the difference between the above two EP rates. We can see explicitly that the reservoir EP rate (heat production rate) can be negative for large \( r \), but the total EP rate remains positive (thermodynamic second law) due to the unconventional EP contribution.

In a cold-damping problem, heat should flow into the system at a lower temperature from the higher-temperature reservoir in the steady state, which dissipates by the additional dissipative external force. Thus, the reservoir entropy decreases incessantly, which is compensated and usually overridden by the unconventional EP to maintain the thermodynamic second law. In a practical cold-damping problem, a feedback mechanism through measurement of a particle momentum operates continuously as this additional dissipative force, thus a usual information entropy (mutual information) \([16] \) enters into the total EP in addition, which will be discussed elsewhere \([37]\).

As a second example, we consider the case with \( f'' = -A \cdot p/m \) with an antisymmetric \( A = -A' \). Taking \( f^{\text{rev}} = -\partial_x V \) and \( D = T G \), this can describe a charged particle motion under a confined potential \( V(x) \) with a magnetic field, in contact with a single temperature reservoir. From Eqs. (2) and (3), it is easy to show that \( \rho_{ss}(q) \propto e^{-\frac{1}{2} \left( p^2 / 2m + V(x) \right)} \), which is the same Boltzmann distribution as for the equilibrium case without \( f'' \). We find \( \langle dS_{res}/dt \rangle = 0 \) (no heat production because \( f'' \) does not work) from Eq. (25), but the DB is broken due to a nonzero irreversible current in the momentum space as in Eq. (14), leading to a nonzero total EP in the...
steady state in Eq. [17], as
\[ j_{ss,p}^{ir} = -A \cdot \frac{\mathbf{p} \cdot \rho_{ss}}{m} \cdot \frac{dS_{tot}}{dt} = \frac{1}{m} \text{Tr} \left[ G^{-1} \mathbf{A} \mathbf{A}^T \right]. \] (28)

Note that the unconventional EP is the only source for the total EP in this case.

For a charged particle motion in two dimensions with an external uniform magnetic field \( \mathbf{B} \) applied in the perpendicular direction, the antisymmetric matrix can be written as \( \mathbf{A} = \mathbf{B} \left( \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \). Then, we get \( \langle dS_{tot} / dt \rangle = 2B^2/(\gamma m) \) with \( \Gamma = \gamma l \). Due to the mirror symmetry in the steady state, there is no net current in position space, \( \langle j_{ss}^{rev} \rangle_p = 0 \). For the system in a confined geometry, one can expect a boundary current, which represents irreversibility in position space, even though there is no net bulk current. Irreversibility in momentum space implies the existence of a residual force persistent in thermal fluctuation, which can be observed in this example from the helicity describing the tendency of circulation around the external magnetic field. The helicity can be measured by \( \langle (\mathbf{p}(t + \Delta t) \times \mathbf{p}(t)) / (\Delta t) \rangle \) for \( \Delta t \to 0 \) with the cross product \( \times \), which can be found as \( \int d\mathbf{p} j_{ss,p}^{ir} \times \mathbf{p} = 2TB \).

It signifies a difference from the equilibrium motion in the absence of a magnetic field. We remark that, in the case of an internally current-induced magnetic field which should change its sign under time reversal \[38\], the magnetic force becomes reversible, thus \( j^{ir} = 0 \). Then, the DB is restored and the total EP is zero in the steady state.

In summary, we have considered the EP in a system containing both even and odd variables under time reversal. We have obtained explicit expressions for the EP’s and their average values. In the presence of an external momentum-dependent force, the environmental EP contains not only the usual reservoir EP due to heat transfer, but also the unconventional EP. This additional EP is crucial for the validity of the thermodynamic second law.

ACKNOWLEDGMENTS

This research was supported by the NRF Grant No. 2013R1A1A201017097 (C.K.), 2014R1A1A2053362 (J.Y.), 2014R1A3A2069005 (H.K.L.), and 2013R1A1A2A10009722 (H.P.).

[1] Evans D J, Cohen E G D and Morriss G P 1993 Phys. Rev. Lett. 71 2401
[2] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[3] Crooks G E 1998 J. Stat. Phys. 90 1481
[4] Kurchan J 1998 J. Phys. A 31 3719
[5] Lebowitz J L and Spohn H 1999 J. Stat. Phys. 95 333
[6] Hatano N and Sasa S 2001 Phys. Rev. Lett. 86 3463
[7] Ge H and Qian H 2010 Phys. Rev. E 81 051133
[8] Speck T and Seifert U 2005 J. Phys. A 38 L581; Seifert U. 2005 Phys. Rev. Lett. 95 040602
[9] Esposito M and Van den Broeck C 2010 Phys. Rev. Lett. 104 090601
[10] Spinney R E and Ford I J 2012 Phys. Rev. Lett. 108 170603; Spinney R E and Ford I J 2012 Phys. Rev. E 85 051113; Spinney R E and Ford I J 2012 Phys. Rev. E 86 021127
[11] Lee H K, Kwon C and Park H 2013 Phys. Rev. Lett. 110 050602
[12] van Zon R and Cohen E G D 2003 Phys. Rev. Lett. 91 110601; van Zon R and Cohen E G D 2004 Phys. Rev. E 69 056121
[13] Puglietti A, Rondoni L and Vulpiani A 2006 J. Stat. Mech.: P08010
[14] Noh J D and Park J -M 2012 Phys. Rev. Lett. 108 240603
[15] Kim K, Kwon C and Park H 2014 Phys. Rev. E 90 032117
[16] Sagawa T and Ueda M 2008 Phys. Rev. Lett. 100 080403; Sagawa T and Ueda M 2009 Phys. Rev. Lett. 102 250602; Sagawa T and Ueda M 2010 Phys. Rev. E 82 090602
[17] Ito S and Sano M 2011 Phys. Rev. E 84 021123
[18] Noh J D, Kwon C and Park H 2013 Phys. Rev. Lett. 111 130601; Kwon C, Noh J D and Park H 2011 Phys. Rev. E 83 061145
[19] Farago J 2002 J. Stat. Phys. 107 781; Farago J 2004 Physica A 331 69
[20] Lee J S, Kwon C and Park H 2013 Phys. Rev. E 87 022102(R); Lee J S, Kwon C and Park H 2013 J. Stat. Mech. P11002
[21] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Aditi Simha R 2013 Rev. Mod. Phys. 85 1143
[22] Ramaswamy S, Simha R A and Toner J 2003 Europhys. Lett. 62 196
[23] Kim K H and Qian H 2004 Phys. Rev. Lett. 93 12060; Kim K H and Qian H 2007 Phys. Rev. E 75 022102
[24] Ganguly C and Chaudhuri D 2013 Phys. Rev. E 88 021120; Chaudhuri D 2014 Phys. Rev. E 89 022131
[25] Schweitzer F 2002 Brownian Agents and Active Particles (Berlin: Springer-Verlag); Romanycz P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Eur. Phys. J. Special Topics 202 1
[26] Hirakawa H, Hiramatsu S and Ogawa Y 1977 Phys. Lett. A 63 199; Courty J -M, Heidmann A and Pinard M 2001 Eur. Phys. J. D 17 399; Jourdan G, Torricelli G, Chevrier J and Comin F 2007 Nanotechnology 18 475502
[27] Existence of the unconventional EP was first presented in a talk given by H. Park and C. Kwon at FRIAS Capri fall workshop, Capri, Italy in September 12, 2012 (http://tfpl.physik.uni-freiburg.de/FDT2012/).
[28] Risken H 1989 The Fokker-Planck Equation: methods of solution and applications 2nd Edition (Berlin: Springer-Verlag)
[29] Kwon C 2015 J. Kor. Phys. Soc. 67 785
[30] A similar expression was reported for simpler cases in [10, 31, 32]
[31] Ge H 2014 Phys. Rev. E 89 022127
[32] Tomé T and de Oliveira M J 2010 Phys. Rev. E 82 021120
[33] Kwon C, Ao P and Thouless D 2005 Proc. Natl. Acad. Sci. 102 13029

[34] Gardiner G W 1985 Handbook of Stochastic Methods, 2nd Edition (Berlin: Springer-Verlag)

[35] Yeo J, Kwon C, Lee H K and Park H 2015 Housekeeping Entropy in Continuous Stochastic Dynamics with Odd-Parity Variables arXiv:1511.04353

[36] Kwon C, Noh J D and Park H 2011 Phys. Rev. E 83 061145

[37] Kwon C, Um J, Noh J D and Park H (unpublished)

[38] For more discussions on the time-reversal symmetry with a magnetic field, see e.g. Sakurai J J 1994 Modern Quantum Mechanics, Chap. 4.4 (Boston: Addison-Wesley)