Beta Decays in Investigations and Searches for Rare Effects

V.I. Tretyak

1Institute for Nuclear Research, 03028 Kyiv, Ukraine

Corresponding author: tretyak@kinr.kiev.ua

Abstract. Current status of experimental investigations of rare single β decays (48Ca, 50V, 96Zr, 113Cd, 115In, 123Te, 180mTa, 22Rn) is reviewed. Nuclei which decay through single β decay very often constitute backgrounds in studies of rare effects like double beta decay, solar neutrinos or dark matter. Summary of correction factors used in description of forbidden β decays is also briefly given.

INTRODUCTION

Beta radiation was observed long ago [1] but our knowledge of this phenomenon still can be and should be improved. Some rare β decays ($T_{1/2} > 10^{10}$ y) are poorly investigated (spectrum shape is not measured, e.g. 50V) and even not observed (e.g. 123Te, 180mTa). Interest to β decays increased during last time because sometimes they create significant backgrounds in searches for and investigations of rare effects, like solar neutrinos (e.g. 14C in Borexino [2]), double beta (2β) decay (e.g. 39Ar, 42Ar/42K in GERDA [3]) or dark matter experiments, especially based on Ar (e.g. 39Ar, 42Ar/42K in DarkSide [4]). While in the above-mentioned cases β decays constitute one of the main features in the measured spectra, other single β decayers create not so big but noticeable backgrounds in many experiments: 40K, 90Sr, 90Y, 137Cs, 214Bi and others. Quite often their energy spectra have not allowed shape but are classified as forbidden (unique or non-unique) of some level of forbiddenness, and sometimes they are not well studied. For example, 214Bi is one of the main backgrounds in all 2β experiments due to its high energy release, $Q_\beta = 3270$ keV. In 19.1% it decays to the ground state of 214Po with change in spin and parity $1^- \rightarrow 0^+$, $\Delta J^{\pi} = 1^-$, classified as 1-forbidden non-unique (1 FNU); however, to our knowledge, theoretical calculations of its shape are absent in the literature; also, it was not well measured experimentally1. It is clear that good knowledge of shapes of single β decays is very important for a proper fitting of experimental spectra and correct estimation of little effects possibly present in these spectra.

Below, after a summary on classification of single β decays and shapes of their energy spectra, we review recent achievements in studies and searches for rare β processes.

SHAPES OF BETA SPECTRA

Beta decays are classified as allowed or forbidden of some level of forbiddenness in dependence on change in spin J and parity π between mother and daughter nuclei:

$$\Delta J^{\pi} = 0^+, 1^+$$

$0^-, 1^-, 2^-, 3^-, 4^-, \ldots$ \hspace{1cm} $\Delta \pi = (-1)^J$ \hspace{1cm} - allowed;

$2^-, 3^-, 4^-, \ldots$ \hspace{1cm} $\Delta \pi = (-1)^{J-1}$ \hspace{1cm} - forbidden unique (FU); forbiddenness = $\Delta J - 1$.

For unique decays, rate of decay and shape of spectrum are defined by only one nuclear matrix element. Shape of β spectrum in general is described as: $\rho(E) = \rho_{allowed}(E) \times C(E)$, where $\rho_{allowed}(E) = F(Z, E)WP(Q_\beta - E)^2$ is the distribution for the allowed spectrum; $W(P)$ is the total energy (momentum) of β particle; $F(Z, E)$ is the Fermi function: $F(Z, E) = const \cdot P^{2y-2} \exp(\pi s) | \Gamma (\gamma + is) |^2$, where $\gamma = \sqrt{1 - (aZ)^2}$, $s = aZWP$, $a = 1/137.036$ is the fine

1Its shape in graphical form can be found only in old papers (see [5, 6, 7]), from which it could be concluded that it is not far from the allowed.
structure constant, \(Z \) is the atomic number of the daughter nucleus \((Z > 0 \text{ for } \beta^- \text{ and } Z < 0 \text{ for } \beta^+ \text{ decay})\), and \(\Gamma \) is the gamma function; \(C \) is the (empirical) correction factor; \(W \) is in \(m_c^2 \text{ units} \) and \(P, Q \) below – in \(m_c \text{ units} \).

For FNU decays correction factors very often have the following general forms: \(C_1(E) = 1 + a_1/W + a_2/W^2 + a_3W^3 \) or \(C_1(E) = 1 + b_1P^2 + b_2Q^2 \), where \(Q \) is the momentum of (anti)neutrino.

For FU decays correction factors often are given as: \(C = C_1C_2 \), where \(C_2 \) is: 1 FU – \(C_2 = P^2 + c_1Q^2 \); 2 FU – \(C_2 = P^4 + c_1P^2Q^2 + c_2Q^4 \); 3 FU – \(C_2 = P^6 + c_1P^4Q^2 + c_2P^2Q^4 + c_3Q^6 \); 4 FU – \(C_2 = P^8 + c_1P^6Q^2 + c_2P^4Q^4 + c_3P^2Q^6 + c_4Q^8 \). Sometimes alternative forms are used: 1 FU – \(C_2 = Q^2 + \lambda_2P^2 \), 2 FU – analogous expression with \(\lambda_2, \lambda_4 \), and so on, where \(\lambda_i \) are the Coulomb functions calculated in \([8]\).

Coefficients \(a, b, c \) above should be calculated theoretically (they are mixture of products of phase space factors with different nuclear matrix elements) or extracted from experimental measurements. Compilations of the experimental \(a, b, c \) can be found in \([9, 10, 11, 12]\).

As examples, Fig. 1 (left panel) shows \(\beta \) spectra for \({ }^{39}\text{Ar} \) and \({ }^{42}\text{Ar} \) in comparison with the allowed shapes. In both cases \(\Delta J^{\text{fin}} = 2^- \), so decays are classified as 1 FU; correction factor is given as \(C(E) = Q^2 + \lambda_2P^2 \).

The middle panel of Fig. 1 shows \(\beta \) spectra of \({ }^{82}\text{K} \) (daughter of long-living \({ }^{42}\text{Ar} \)), measured in few works. For transition \({ }^{42}\text{K} \rightarrow { }^{42}\text{Ca} \) (ground state, probability 81.90%), which is also 1 FU, correction factor is \(C(E) = \Delta J^{\text{fin}} = 0^- \), and \(C(E) = 1 + a_1/W + a_2W + a_3W^2 \). Values of \(a, a_i \), and references to original works can be found in \([11]\).

The right panel shows spectra of \({ }^{40}\text{K} \) and \({ }^{137}\text{Cs} \). For \({ }^{40}\text{K} \rightarrow { }^{40}\text{Ca} \) (g.s., 89.28%, \(\Delta J^{\text{fin}} = 4^- \), 3 FU) corection factor is \(C(E) = P^6 + c_1P^4Q^2 + c_2P^2Q^4 + c_3Q^6 \) with \(c_1 = c_2 = 1, c_3 = 7 \) measured in \([13]\). For \({ }^{137}\text{Cs} \rightarrow { }^{137}\text{Ba} \) (g.s., 5.33%, \(\Delta J^{\text{fin}} = 2^- \), 2 FNU) corection factor is \(C(E) = 1 + a_1/W + a_2W^2 + a_3W^3 \) with \(a_1 = 0, a_2 = -0.6060315, a_3 = 0.0921520 \) measured in \([14]\).

This is a demonstration that forbidden \(\beta \) spectra can significantly deviate from the allowed shapes, and it is necessary to take this into account in simulations of corresponding backgrounds. It should be also noted that sometimes even decays which are classified as allowed have deviations from the allowed shape, e.g. \({ }^{14}\text{C} \), where in theoretical description the first order terms mutually compensate each other and the second order terms determine the \(T_{1/2} \) and the shape.

![Figure 1](image1.png)

FIGURE 1. Shapes of \(\beta \) spectra of \({ }^{39,42}\text{Ar} \), \({ }^{42}\text{K} \), \({ }^{40}\text{K} \) and \({ }^{137}\text{Cs} \).

INVESTIGATIONS OF RARE BETA DECAYS

\(^{48}\text{Ca} \). \(^{48}\text{Ca} \) can decay through single \(\beta^- \) decay populating few levels in \(^{48}\text{Sc} \), however, transition to the 131 keV level is estimated as the most probable with \(T_{1/2} = (2.6 - 7.0) \times 10^{20} \) y \([15]\). The process is not observed yet, and the best experimental limit \(T_{1/2} > 2.5 \times 10^{20} \) y \([16]\) is not far from the above theoretical estimations. It should be noted that the second order process – two neutrino \(2\beta \) decay to \(^{48}\text{Ti} \) – is faster in this case; it is already observed with \(T_{1/2} = 6.4 \times 10^{19} \) y \([17]\).

\(^{50}\text{V} \). \(^{50}\text{V} \) is one of only 3 nuclei where \(\beta \) processes with \(\Delta J^{\text{fin}} = 4^- \) were observed (other two are \(^{113}\text{Cd} \) and \(^{115}\text{In} \)). Low natural abundance (\(\delta = 0.250\% \)) and big \(T_{1/2} \) make its investigations difficult. In the most sensitive to-date
experiment [18], only limit for β decay to 50Cr was found as: $T_{1/2} > 1.7 \times 10^{18}$ y (not confirming some earlier observations), while electron capture (EC) to 50Ti was measured with $T_{1/2} = (2.3 \pm 0.3) \times 10^{17}$ y.

96Zr. Situation with 96Zr is analogous to 48Ca: single β decay to 96Nb is possible but not yet observed ($T_{1/2} > 3.8 \times 10^{19}$ y [19] for the most probable transition to the 44 keV excited level), while 2β decay is already measured with $T_{1/2} = (2.3 \pm 0.2) \times 10^{19}$ y [20].

113Cd. In the last work the half-life and shape of 113Cd β spectrum ($\Delta J^\pi = 4^-$, 4 FNU) was precisely measured [21], coefficients c_i in correction factor $C(E) = P^0 + c_1 P^1 Q^2 + c_2 P^2 Q^4 + c_3 Q^6$ were determined. While the experimental spectrum was perfectly described with this $C(E)$, it is interesting to note that, in fact, this factor usually is used for decays with $\Delta J^\pi = 4^-$ (3 FNU). Recently it was noted [22, 23, 24] that, because for non-unique forbidden β decays shape of energy spectrum depends on sum of different nuclear matrix elements with different phase space factors which include also the weak interaction coupling constants g_A and g_V, it is possible to find the g_A and g_V values by comparing theoretical shape with the experimental spectrum. This observation is very important for predictions of $T_{1/2}$’s for 2β decays because $T_{1/2}(2\beta) \sim g_A^2$ and known uncertainties in the g_A value could result in 1 – 2 orders of magnitude uncertainty in $T_{1/2}$.

130mCd. The excited state of 113Cd ($E_{exc} = 263.5$ keV) has a quite long half-life of ≈ 14 y. It decays to the ground state of 113In ($\Delta J^\pi = 1^-$, 1 FNU). Its shape is under measurements by the DAMA-KINR collaboration at the Gran Sasso National Laboratories with the help of 106CdWO$_4$ crystal scintillator contaminated with 130mCd; some deviations from the allowed shape are found [25].

115In. While for 113Cd shape of β spectrum was measured in quite big number of works, shape of 115In was measured only in one old work [26]. This experiment, done with liquid scintillator (LS) loaded by In at 51.2 g/L, had a number of drawbacks: measurements were performed at the sea level (thus background was quite high); quenching of low energy electrons, which is strong for LS, was not taken into account; energy resolution was not known exactly; and energy threshold was quite high (around 50 keV). Remeasuring of this decay in low background conditions would be very interesting. Such a possibility appeared recently with LiInS$_2$ scintillating bolometer (8 \times 15 \times 19 mm, 10.2 g) which is under measurements now at the Modane underground laboratory [27].

115In \rightarrow 115Sn*. Decay of 115In to the first excited level of 115Sn ($E_{exc} = 497.334(22)$ keV) was at the first time observed in [28] and further confirmed in [29, 30]. Precise measurements of the atomic mass difference between 115In and 115Sn, $\Delta M_A = 497.489 \pm 0.010$ keV [31], allowed to conclude that 115In \rightarrow 115Sn* is the β decay with the lowest known Q_β^* value of only 155 ± 24 eV. Very recently also the energy of the excited 115Sn level was remeasured more precisely as: 497.316(7) keV [32] (that results in $Q_\beta^* = 173 \pm 12$ eV) and 497.341(3) keV [33] ($Q_\beta^* = 148 \pm 10$ eV).

123Te. Electron capture of 123Te was registered in old work [34] with $T_{1/2} = (1.24 \pm 0.10) \times 10^{13}$ y. However, in [35] it was found that the real value is 6 orders of magnitude higher: $T_{1/2} = (2.4 \pm 0.9) \times 10^{19}$ y. Later, also this result was found incorrect, and only limit was set as $T_{1/2} > 5.0 \times 10^{19}$ y [36]. Observation of [35] was explained by the electron capture in 123Te; this unstable isotope was created in TeO$_2$ crystals used in the measurements through neutron capture by 120Te while the crystals were at the Earth level. Natural abundance of 120Te is very small, $\delta = 0.09\%$, and this is a good demonstration how tiny effect can mimic another rare effect.

180mTa. It is interesting to note that in the natural mixture of elements 180mTa is present ($\delta = 0.012\%$) not in the ground state (it quickly decays with $T_{1/2} = 8$ h) but in an excited state ($E_{exc} = 77$ keV). Its decay (through EC and β^+) is still not found; the best limits were set in the recent work [37] as: $T_{1/2}(EC) > 2.0 \times 10^{17}$ y and $T_{1/2}(\beta^+) > 5.8 \times 10^{18}$ y.

222Rn. 222Rn is known as 100% α decaying ($Q_\alpha = 5590$ keV, $T_{1/2} = 3.82$ d). However, it was noted recently [38] that single β decay (1 FU) is also energetically possible with $Q_\beta = 24 \pm 21$ keV. Half-life was estimated as $6.7 \times 10^4 - 2.4 \times 10^8$ y, in dependence on Q_β. After β decay of 222Rn, one should observe chain of α and β decays which is different from that after its α decay. Looking for this chain in BaF$_2$ crystal scintillator polluted by 226Ra, only the limit for the 222Rn was set as $T_{1/2}(\beta) > 8.0$ y [38].

CONCLUSIONS

There was a little interest in investigations of rare β decays since 1970’s. However, during the last time, development of experimental technique lead to improvement in sensitivity, and new decays were observed with extreme characteristics (e.g. β decay with lowest Q_β of ≈ 155 eV for 115In \rightarrow 115Sn*). Interest to β shapes also is growing, in particular for
nuclides which create background in rare events’ searches. Many theoretical works also appeared last time. New approach to measure the g_A/g_V ratio through non-unique forbidden beta decays (113Cd, 115In) is proposed. It could be concluded that investigations of rare β decays start to revive now, and we could expect new interesting theoretical works and experimental measurements.

ACKNOWLEDGMENTS

I am grateful for partial support by the National Academy of Sciences of Ukraine (grant F8-2017 related with the IDEATE International Associated Laboratory, LIA). Support from the MEDEX’2017 Organizing Committee also is warmly acknowledged.

REFERENCES

[1] E. Rutherford, Philos. Mag. 47, 109 (1899).
[2] G. Bellini et al., Nature 512, 383 (2014).
[3] M. Agostini et al., Nature 544, 47 (2017).
[4] P. Agnes et al., Phys. Rev. D 93, 081101 (2016).
[5] E.E. Berlovich, Izv. AN SSSR, ser. fiz. 16, 314 (1952) (in Russian).
[6] S. Kageyama, J. Phys. Soc. Japan 8, 689 (1953).
[7] R.A. Ricci, G. Trivero, Nuov. Cim. 2, 745 (1955).
[8] H. Behrens, J. Janecke, Numerical Tables for Beta-Decay and Electron Capture, Berlin, Springer-Verlag, 1969.
[9] H. Paul, Nucl. Data Tables A 2, 281 (1966).
[10] H. Daniel, Rev. Mod. Phys. 40, 659 (1968).
[11] H. Behrens, L. Szybisz, Phys. Data 6-1, 1 (1976).
[12] X. Mougeot, Phys. Rev. C 91, 055504 (2015).
[13] W.H. Kelly et al., Nucl. Phys. A 11, 492 (1959).
[14] S.T. Hsue et al., Nucl. Phys. A 86, 47 (1966).
[15] M. Haaranen et al., Phys. Rev. C 89, 034315 (2014).
[16] A. Bakalyarov et al., JETP Lett. 76, 545 (2002).
[17] R. Arnold et al., Phys. Rev. D 93, 112008 (2016).
[18] H. Dombrowski et al., Phys. Rev. C 83, 054322 (2011).
[19] M. Arpesella et al., Europhys. Lett. 27, 29 (1994).
[20] F. Nova et al., AIP Conf. Proc. 1560, 184 (2013).
[21] P. Belli et al., Phys. Rev. C 76, 064603 (2007).
[22] M. Haaranen et al., Phys. Rev. C 93, 034308 (2016).
[23] M. Haaranen et al., Phys. Rev. C 95, 024327 (2017).
[24] J. Kostensalo et al., Phys. Rev. C 95, 044313 (2017).
[25] P. Belli et al., to be published.
[26] L. Pfeiffer et al., Phys. Rev. C 19, 1035 (1979).
[27] L. Winslow et al., to be published.
[28] C.M. Cattadori et al., Nucl. Phys. A 748, 333 (2005).
[29] E. Wieslander et al., Phys. Rev. Lett. 103, 122501 (2009).
[30] E. Andreotti et al., Phys. Rev. C 84, 044605 (2011).
[31] B.J. Mount et al., Phys. Rev. Lett. 103, 122502 (2009).
[32] W. Urban et al., Phys. Rev. C 94, 011302 (2016).
[33] V.A. Zheltonozhsky et al., to be published.
[34] D.N. Watt et al., Philos. Mag. 7, 105 (1962).
[35] A. Alessandrello et al., Phys. Rev. Lett. 77, 3319 (1996).
[36] A. Alessandrello et al., Phys. Rev. C 67, 014323 (2003).
[37] B. Lehnert et al., Phys. Rev. C 95, 044306 (2017).
[38] P. Belli et al., Eur. Phys. J. A 50, 134 (2014).