Preparation and studying Structural and Electrical properties of nano Co$_3$O$_4$

Nawar Thamer Mohammed , Wasfi Mohammed Kadem
Science Department, College Of Basic Education , Diyala University, Diyala , Iraq

ABSTRACT

In this study (Cobalt oxide) nano powder prepared using sol-gel method with a crystallite size 22 nm By testing XRD and by matching with card (JCPDS) files No.(00-042-1467). Electrical and dielectric properties like (Dielectric constant, resistivity, electrical conductivity) are studied by LCR meter with frequency range from (50 Hz) to (5 MHz). It was noted that the resistivity and dielectric constant was decreasing while electrical conductivity increased with increased frequency .

Experimental details
cobalt nitrate (25gm) was dissolved in (25 ml) of deionized water at (24°C) in a beaker and then placed on a magnetic stirrer . Urea (10gm) was added to the solution. The solution was filtered to remove any insoluble impurities .The solution was heated at (100°C) for (1hrs) to produce transparent gel The gel of (Co$_3$O$_4$) was heated at (250°C) for (1hrs) to produce a powder of (Co$_3$O$_4$) with particle size 22 nano by using Debye-Scherrer formula, then the powder designed as a mold of pellet in diameter (1cm) and thickness (5mm).

Introduction

Nanotechnology is science of the production, industry, and used of sub-atomic materials to synthesis new materials and processes [1]. A year ago nanoparticles of noble metals oxides have been the subject of concentrated research because of their optical, electronic, mechanical, and magnetic properties [2].

Nanomaterials have been extensively studied for fundamental scientific and technological interests in reaching new categories of materials with unprecedented properties and applications [3-5]. The Co$_3$O$_4$ is important material used in electrochromic films, gas sensors, battery cathodes and magnetic catalysts and heterogeneous [6,7]. Co$_3$O$_4$ nanoparticles were manufactured in various ways such as sol-gel, polymerization [8-9] Co$_3$O$_4$ is a semiconductor type p important anti-viral magnetic with excellent properties such as gas sensing, electrochemical properties, and has been widely studied for applications in solid sensors, electromechanical devices as well as lithium batteries [10-12]. Thus tremendous efforts have been directed in recent years to manufacture and investigate the properties of the Co3O4 nanostructures.

Among the many methods developed for the formation of micro-powders of metal oxides, the method of metallic organic precursor precursors has been considered one of the most appropriate methods, because it only avoids complex tools and processes and extreme preparation and also provides good control over the purity, composition, homogeneity, phase and microscopic structure of the resulting products [13].

Co3O4 nanotubes were prepared by decomposition of carbon dioxide, while semi-spherical nanoparticles with an average volume of about (15-25) nm were manufactured by bis (2-hydroxyacetophenato) (cobalt II) [14]. The study suggests that primers can be very important to synthesize nano materials in different sizes and shapes, For the main interest at present in the development of organic or inorganic compounds for the preparation of nanoparticles. Using a composite can be useful And opened a new way to prepare nanomaterials to control the size and distribution of nanostructures.

Keywords: nano Co$_3$O$_4$, electrical properties, sol-gel, Dielectric constant , Structural properties.

Article history:
-Received: 18 / 3 / 2019
-Accepted: 30 / 7 / 2019
-Available online: / / 2019

Name: Nawar,3000@yahoo.com

Tel:
Result and discussion

X – ray diffraction

X-ray test is very important characterization it used in materials science. XRD is an easy method to compute the size and state the shape of the unit cell for any compound. The results of X-ray diffraction show that the material prepared at (250°C) is cobalt oxide after comparison with international card (JCPDS) files No.(00-042-1467) by matching with the planes (111) , (220) , (311) , (222), (400), (422), (511), (440), (531), (622). the XRD of Co3O4 prepared at(250°C) is shown in fig (1).

The crystal size of Cobalt Oxide was calculated using the Debye–Sherrer equation using the the angle of highest peak and taking the width of middle the highest peak , as the equation (1)

\[D = \frac{K\lambda}{\beta \cos(\theta)} \]

Where : \(D \) is the crystal size
\(\lambda \) is wave length of Cu = 1.54059 Å
\(K \) is constant =0.9
\(2\theta \) is the angle of highest peak =36.8
\(\beta \) is width of middle the highest peak in radian.

And by apply this information in the Debye – sherrer equation show the crystal size is 22 nm.

Electrical properties of Co3O4

The dielectric constant of (cobalt oxide)

The dielectric constant was determined by LCR meter for a wide range of frequency reaches 5x10^6 Hz and it is high at low frequencies and it decrease with increasing of frequency as shown in the figure (2).

Electrical resistivity

The electrical resistivity of the sample is very high at low frequency and decrease gradually with increasing the frequency and it taken for a wide range of frequency as shown in the figure (4).

Conclusions

1- Sol–gel is a good and cheap method for preparation (cobalt oxide) with nano size particle.
2- The dielectric constant and electrical resistivity of cobalt oxide decreases with the increase of frequency, While The electrical conductivity increases with the increases of frequency.
Electrocatalytic Activity towards Nitrobenzene. Nanoparticles: Characterization and its Application. (2012). Nanostructured NiO. Spectroelectrochemistry of Nanostructured NiO. Chemical Physics Letters, 380(5):521-525.

[4] Manigandan, R.; Suresh, R.; Giribabu, K.; Vijayalakshmi, L.; Stephen A. and Narayanan, V. (2012). Cobalt Oxide Nanoparticles: Characterization and its Electrocatalytic Activity towards Nitrobenzene. Advance Material Research, 584:263-266.

[5] Amekura, H.; Umeda, N.; Takeda, Y.; Lu, J. and Kishimoto, N. (2004). Embeded of ZnO nanoparticles in SiO2 by ion implantation and low-temperature oxidation. Applied Physics Letters, 85.

[6] Shiloms, M. I.; Pshenichnikov, A. F.; Morozov, K. I. and Shurubor, I. Y. (1990). Cobalt Oxide Nanoparticles: Characterization and its Electrocatalytic Activity towards Nitrobenzene. Journal Magnetic Materials, 85:40-46.

[7] Bergemann, C. Muller, D.; Oster, J. and Brassard, L. A. S. (1999). Ferrofluids. Journal Magnetic Materials, 194:45-52.

[8] Gruttner, C. and Teller, J. (1999). Experimental investigations into Sarcomas. Journal Magnetic Materials, 194:8-15.

[9] Guo, L.; Huang, J.; Li, X. Y. and Yang, S. H. (2003). Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. Physical Chemistry, 16(12-18).

[10] Ando, T.; Kobayashi, S.; Iijima, M. and Haruta, J. (1997). Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films. Material Chemistry, 7(17-19).

[11] Zhang, H.R.; Feng, L.S. and Zheng, B. D. J. (2005). chemistry of polymeric metal chelates. Alloys Compd, 392:31-37.

[12] Li, L.N. and Xu, J. (2005). Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Functional Material, 15(85-87).

[13] Davar, Z.; Fereshteh, M. and Salavati, N. J. (2009). Preparation of Co3O4 nanoparticles by nonhydrolytic thermolysis of [Co (Pht)(H2O)] n polymers. Alloys Compd, 476:7-9.

[14] Salavati, Z.; Fereshteh, F. and Davar, (2009). Nanomaterials Preparation by Thermolysis of Metal Chelates. Polyhedron, 28:10-16.