Characterization of Ubrogepant: A Potent and Selective Antagonist of the Human Calcitonin Gene–Related Peptide Receptor

Eric Moore, Mark E. Fraley, Ian M. Bell, Christopher S. Burgey, Rebecca B. White, Chi-Chung Li, Christopher P. Regan, Andrew Danziger, María Stranieri Michener, Eric Hostetler, Pradeep Banerjee, and Christopher Salvatore

Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, New Jersey (E.M., M.E.F., I.M.B., R.B.W., C.-C.L., C.P.R., A.D., M.S.M., E.H., C.S.) and Allergan plc, Madison, New Jersey (P.B.)

Received August 12, 2019; accepted November 18, 2019

ABSTRACT

A growing body of evidence has implicated the calcitonin gene–related peptide (CGRP) receptors in migraine pathophysiology. With the approval of monoclonal antibodies targeting CGRP or the CGRP receptor, the inhibition of CGRP-mediated signaling emerged as a promising approach for preventive treatments of migraine in adults. Recently, small-molecule anti-CGRP treatments have shown efficacy for treating migraine. The current studies aimed to characterize the pharmacologic properties of ubrogepant, an orally bioavailable CGRP receptor antagonist for the acute treatment of migraine. In a series of ligand-binding assays, ubrogepant exhibited a high binding affinity for native (Ki = 0.067 nM) and cloned human (Ki = 0.070 nM) and rhesus CGRP receptors (Ki = 0.079 nM), with relatively lower affinities for CGRP receptors from rat, mouse, rabbit, and dog. In functional assays, ubrogepant potently blocked human α-CGRP–stimulated cAMP response (IC50 of 0.80 nM) and exhibited highly selective antagonist activity for the CGRP receptor compared with other members of the human calcitonin receptor family. Furthermore, the in vivo CGRP receptor antagonist activity of ubrogepant was evaluated in a pharmacodynamic model of capsaicin-induced dermal vasodilation (CIDV) in rhesus monkeys and humans. Results demonstrated that ubrogepant produced concentration-dependent inhibition of CIDV with a mean EC50 of 3.2 and 2.6 nM in rhesus monkeys and humans, respectively. Brain penetration studies with ubrogepant in monkeys showed a cerebrospinal fluid/plasma ratio of 0.03 and low CGRP receptor occupancy. In summary, ubrogepant is a competitive antagonist with high affinity, potency, and selectivity for the human CGRP receptor.

SIGNIFICANCE STATEMENT

Ubrogepant is a potent, selective, orally delivered, small-molecule competitive antagonist of the human CGRP. In vivo studies using a pharmacodynamic model of CIDV in rhesus monkeys and humans demonstrated that ubrogepant produced concentration-dependent inhibition of CIDV, indicating a predictable pharmacokinetic-pharmacodynamic relationship.

Introduction

Migraine is a highly prevalent, chronic neurologic disease and the leading cause of disability in people aged 15–49 years (Burch et al., 2018; Steiner et al., 2018). Commonly used acute treatments for migraine attacks include triptans, opioids, nonsteroidal anti-inflammatory drugs, ergotamine derivatives, barbiturates, and combination analgesics (Holland et al., 2013; Martelletti, 2017). However, the utility of these treatments is limited by low levels of adherence and patient satisfaction stemming largely from inadequate efficacy and poor tolerability (Holland et al., 2013; Lipton et al., 2013; Messali et al., 2014; Serrano et al., 2015; Martelletti, 2017). As a result, many people with migraine discontinue acute treatments and may experience uncontrolled attacks or migraine disease progression (Holland et al., 2013; May and Schulte, 2016; Thorlund et al., 2016). Theories explaining the pathophysiology of migraine have shifted away from a purely vascular disease model toward a neurogenic theory focusing on the neuropeptide calcitonin gene–related peptide (CGRP) (Humphrey, 2007; Eftekhari...
and Edvinsson, 2010; Moore and Salvatore, 2012; Gonzalez-Hernandez et al., 2018). CGRP is a 37–amino acid peptide and potent vasodilator present at elevated levels in the trigemino-vascular system during migraine attacks (Goadsby et al., 1990; Russell et al., 2014). The calcitonin family of peptides includes calcitonin (CT), amylin (AMY), adrenomedullin (AM), and CGRP (Poyner et al., 2002). The CGRP receptor is made up of a CT receptor (CTR)–like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) (Eftekhari and Edvinsson, 2010; Kiriyama and Nochi, 2018). Distribution of CLR and RAMP1 has been mapped to the cytoplasm of trigeminal neurons, at peripheral sites on the intracranial vasculature (in the smooth muscle cells), in the dura matter (both vascular and avascular localization), and in the brainstem (Edvinsson and Warfvinge, 2019). The AMY receptors are a complex of the CTR and RAMP1 (i.e., AMY1), RAMP2 (i.e., AMY2), or RAMP3 (i.e., AMY3) that have a high affinity for AMY. The AMY1 receptor also binds CGRP, is found in the trigeminal ganglion, and has been implicated in animal models of pain signaling; however, its role in migraine pathophysiology remains to be determined (Gebre-Medhin et al., 1998; Poyner et al., 2002; Walker et al., 2015; Kiriyama and Nochi, 2018; Edvinsson and Warfvinge, 2019). The AM receptors are a complex of the CLR and RAMP2 (AM1) and RAMP3 (AM3), which have a high affinity for AM (Kiriyama and Nochi, 2018). The function of AM receptors in migraine is unknown, and, unlike with CGRP, intravenous infusion of AM was not found to precipitate migraine pain (Petersen et al., 2009).

A substantial amount of scientific data implicates the CGRP pathway in the underlying physiologic mechanisms associated with migraine (Goadsby et al., 1990; Lassen et al., 2002; Edvinsson, 2015). Furthermore, previously investigated small-molecule CGRP receptor antagonists have demonstrated efficacy in the treatment of migraine, although development was eventually halted because of safety concerns (Hewitt et al., 2011; Ho et al., 2014; Hargreaves and Olesen, 2019). The clinical success of monoclonal antibodies targeting CGRP also provides support for the CGRP receptors as a promising therapeutic target for migraine (Dodick, 2019).

Ubrogepant is an orally bioavailable, potent, and specific CGRP receptor antagonist that was approved in December 2019 for the acute treatment of migraine in adults with or without aura. Ubrogepant is chemically distinct from previous small-molecule CGRP receptor antagonists (Ubrelvy, 2019) (Yasuda et al., 2017). In clinical trials, ubrogepant provided substantial pain relief and return to function, and was generally well tolerated. The objective of the present communication is to describe and characterize the pharmacologic profile of ubrogepant.

Materials and Methods

In Vitro Pharmacology

Binding Affinity. To assess ubrogepant’s affinity and selectivity for CGRP and AM receptors, cloned CGRP and AM receptors were stably expressed in human embryonic kidney–derived (HEK293) cells. To assess ubrogepant’s affinity for AMY1 receptors, cloned AMY1 receptors were transiently expressed in monkey kidney–derived cells by transfection with equal amounts of CTR and RAMP1 to monitor selectivity of ubrogepant for this receptor.

For receptor binding assays, membrane fractions were isolated from cell homogenates from the HEK293 or monkey kidney–derived cells or homogenates of cerebellum isolated from rhesus, rat, mouse, rabbit, and dog. Human[125I]CGRP and [125I]AM and rat [125I]AMY were used as radioligands for the binding assays. Nonspecific binding was determined by 10 nM MK-3207 (Salvatore et al., 2010), a structurally distinct CGRP receptor antagonist. The tests were conducted in 1 ml of binding buffer (10 mM HEPES, pH 7.4, 5 mM MgCl2, and 0.2% bovine serum albumin) for 3 hours at room temperature containing 10 pM human [125I]CGRP, 10 pM human [125I]AM, or 40 pM rat [125I]AMY in the presence of several concentrations of ubrogepant. The assays were terminated by filtration through 0.5% polyethyleneimine-treated GF/B glass fiber filters with ice-cold wash buffer (10 mM HEPES, pH 7.4 and 5 mM MgCl2). Scintillation fluid was added to the plates and radioactivity quantitated using a Packard TopCount NXT scintillation counter (PerkinElmer, Shelton, CT). Dose-response curves were plotted to determine half-maximal inhibitory concentration (IC50) values and converted to Ki values using the equation Ki = IC50/(1 + ([ligand]/Kd)). Data are presented descriptively using group means and S.E.M.s, unless otherwise noted.

Functional Potency. The effect of ubrogepant on CGRP-, AM-, or CT-induced increases in cyclic adenosine monophosphate (cAMP) was assessed in HEK293 cells expressing human CGRP receptors, rhesus CGRP receptors, cloned human AM1 (CLR/RAMP2), AM2 (CLR/RAMP3), cloned human AMY1 (CTR/RAMP1) or AMY3 (CTR/RAMP3), or human CTR alone.

Cells were pre-incubated at 2000 cells/well in 384-well plates with various concentrations of ubrogepant for 30 minutes at 37°C. In the human CGRP receptor functional assays, potency was assessed with and without 50% human or rhesus serum. The cyclic nucleotide inhibitor isobutyl-methylxanthine was added to the cells at a concentration of 300 μM for 30 minutes at 37°C followed by stimulation with 1.0 nM human α-CGRP (human and rhesus CGRP receptor assays), 1.0 nM human AM (human AM1 and AM2 receptor assays), 0.5 nM rat AMY (cloned human AMY1 and AMY3 receptor assays), or 0.2 nM human CT (human CTR assay) for 20 minutes at 37°C. After agonist stimulation, cAMP concentration was measured with the homogeneous time-resolved fluorescence cAMP Dynamic Assay (Cisbio, Bedford, MA).

Dose-response curves were plotted and IC50 values determined from a four-parameter logistic fit as defined by the equation y = {a – d(y1 + x/c0)} + d, where y = response, x = dose, a = maximum response, d = minimum response, c = inflection point, and b = slope. For the CGRP assays, Schild analysis was used as a measure of competitive antagonism by plotting log (DR-1) versus log [B], where DR is the ratio of α-CGRP half-maximal effective concentration (EC50) values in the presence and absence of ubrogepant and [B] is the antagonist concentration. The X-intercept is equal to the pA2 and the pA2 calculated using the formula pA2 = – log[2b].

Specificity/Off-Target Profiling. The specificity of ubrogepant was assessed in ligand binding or functional assays across 116 targets (Supplemental Table 1; Olon Ricerca Bioscience, Concord, OH) and against the human ether-a-go–related gene (hERG), which encodes the inward-rectifying voltage-gated potassium channel in the heart and is involved in cardiac repolarization. Ubrogepant was tested at a concentration of 10 μM in conventional radioligand binding and enzyme assays, and a concentration dose-response curve was generated when significant activity was observed.

The hERG ligand-binding assay was conducted using membrane fractions isolated from HEK293 cells stably expressing cloned hERG.

Downloaded from jpet.aspetjournals.org at ASPECT Journals on October 6, 2022
Binding Kinetics. Saturation binding assays were performed by combining increasing concentrations of \(^{3} \text{H} \)-ubrogepant, 10 \(\mu \)M CGRP receptor antagonist MK-3207 for nonspecific binding, and 50 \(\mu \)M SK-N-MC membranes per well. The mixtures were incubated overnight (18 hours) at room temperature in binding buffer (10 mM HEPES, pH 7.4, 5 mM MgCl\(_2\), and 0.2% bovine serum albumin) in a total volume of 1 ml.

Association kinetic assays were performed by combining 40 pM \(^{3} \text{H} \)-ubrogepant with 50 \(\mu \)g SK-N-MC membranes per well in binding buffer and incubating at room temperature for various times (1–90 minutes). Dissociation kinetic assays were performed by combining 40 pM \(^{3} \text{H} \)-ubrogepant with 50 \(\mu \)g SK-N-MC membranes per well in binding buffer and incubating at room temperature for 3 hours. At that point, 10 \(\mu \)M of the CGRP receptor antagonist MK-3207 was added and dissociation was monitored for various intervals (1–300 minutes). All assays were terminated by filtration through 0.5% polyethyleneimine-treated GF/B glass fiber plates with ice-cold wash buffer (10 mM HEPES, pH 7.4, and 5 mM MgCl\(_2\)). Plates were dried under vacuum at 37°C for 1 hour, scintillation fluid was added, and radioactivity quantitated using a Packard TopCount NXT scintillation counter.

In Vivo Pharmacology: Assessment of Pharmacodynamic Effect

The pharmacodynamic (PD) activity of CGRP receptor antagonists in vivo has been established and validated using the capsaicin-induced dermal vasodilatation (CIDV) model in both rhesus monkeys (Salvatore et al., 2008, 2010) and human clinical trials (Li et al., 2015). Therefore, the in vivo PD activity of ubrogepant was assessed using CIDV assay in rhesus monkeys and humans in this study. The protocol for the human CIDV study was reviewed and approved by the Independent Ethics Committee of the University Hospitals of Leuven, Belgium. Before enrollment, all participants gave informed consent in writing after a full verbal and written explanation of the study. The study was conducted in accordance with local law, the ethical principles of the Declaration of Helsinki, and Good Clinical Practice guidelines.

Rhesus Monkey CIDV. Twenty-one adult rhesus monkeys (≤10 per individual study) were used across six studies to determine the effect of vehicle and active test agent on CIDV. Animals were provided at least 5-7 procedure-free days between studies. For the CIDV test, animals were maintained on isoflurane anesthesia, and four O-rings (8 mm internal diameter) were placed on the ventral forearm. After equilibration, the baseline response 20 minutes after application of 2 mg capsaicin (dissolved in 30% ethanol, 30% Tween20, and 40% water) in one ring was measured using a laser Doppler imager (Moor Instruments, Wilmington, DE).

Next, three successive intravenous bolus + intravenous infusions of vehicle or one to three rising doses of ubrogepant were administered. Five minutes after the start of each infusion, 2 mg capsaicin was applied to one of the remaining rings. Scans were completed for each ring before the start of each infusion and 20 minutes after capsaicin application (i.e., 25 minutes after start of infusion). Study A targeted ubrogepant plasma levels of 0.5, 5, and 50 nM in five male and two female rhesus monkeys; Study B targeted plasma levels of 5, 50, and 150 nM in six male and one female rhesus monkeys; Study C targeted plasma levels of 1, 5, and 10 nM in three female rhesus monkeys; Study D targeted plasma levels of 150, 500, and 500 nM in seven male rhesus monkeys; Study E targeted plasma levels of 1, 10, and 10 nM in two male and two female rhesus monkeys; and Study F targeted plasma levels of 400 nM in 10 male rhesus monkeys. Dosages were calibrated to achieve specified target plasma levels and to provide adequate coverage of the dynamic range of the pharmacokinetic (PK)/PD curve.

Blood samples to determine plasma ubrogepant concentrations, response curves, and inhibitory concentrations were obtained at 20 minutes after application during each test period. An empirical maximal effect (\(E_{\text{max}} \)) model was used to describe the PK/PD relationship of ubrogepant for inhibition of CIDV in rhesus monkeys. Blood flow was described as a baseline blood flow plus an incremental blood flow as a result of CIDV and blockade of CIDV by ubrogepant through an \(E_{\text{max}} \) relationship. The model was represented as \(F = F_0 + F_{\text{caps}} \cdot (1 - E_{\text{max}} \cdot C/(EC_{50} + C)) \), where \(F \) is the observed blood flow (mean perfusion values) measured by laser Doppler imaging, \(F_0 \) the baseline blood flow, \(F_{\text{caps}} \) the incremental blood flow due to application of capsaicin, \(E_{\text{max}} \) the maximal percentage inhibition of ubrogepant, \(C \) the plasma concentration of ubrogepant, and \(EC_{50} \) the plasma concentration of ubrogepant corresponding to 50% inhibition of CIDV. Data were pooled across six rhesus CIDV studies (intravenous dose range from 0.06 to 100 \(\mu \)g/kg) (see Supplemental Table 2 for doses for each study). Interindividual variability parameters were selected using forward substitution (significance level of 0.05) for \(F_0 \), \(F_{\text{caps}} \), \(E_{\text{max}} \), and \(EC_{50} \). Covariate analyses focused on looking for study-to-study differences in \(F_0 \) and response to capsaicin (\(F_{\text{caps}} \)). Model fitting was performed using NONMEM VII (ICON plc, Dublin, Ireland) using first-order conditional estimation with interaction.

Human CIDV. Healthy young males aged 18–50 years were administered oral ubrogepant during a randomized, double-blind, placebo-controlled, four-period crossover study (EudraCT Number: 2011-002359-32). Participants were required to fast for 8 hours before their ubrogepant dosing and pretreatment procedures. Inhibition of CIDV was measured by laser Doppler scan at 1 and 5 hours after a single oral dose of ubrogepant (0.5 mg, 5 mg, and 40 mg). The doses were selected to capture the expected dynamic range of exposure-response curve based on the estimated \(EC_{50} \) of 3.2 nM from rhesus CIDV experiments. Doppler scans were also conducted before the study (for inclusion purposes) and before study drug administration (predose). Capsaicin was applied 30 minutes before each postdose laser Doppler scan at 0.5 and 4.5 hours after study drug administration. Capsaicin was applied as single topical doses of 300 \(\mu \)g/20 \(\mu \)L and 1000 \(\mu \)g/20 \(\mu \)L capsaicin in 10-mm rubber O-rings at two sites on the volar surface of the participant’s left and right forearms. The data were used to determine the concentration of drug necessary to achieve the \(EC_{50} \) using PK/PD modeling and using two doses of capsaicin, with an approach similar to the primate studies outlined above.

Brain Penetration Studies

CGRP Receptor Occupancy by Ubrogepant in Rhesus Monkey Brain by Positron Emission Tomography. All animal studies were conducted in accord with the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, 2011) and approved by the Institutional Animal Care and Use Committee at Merck & Co., Inc. (West Point, PA). The quantification of CGRP receptor occupancy by ubrogepant was conducted in four anesthetized adult male rhesus monkeys by positron emission tomography (PET), using the PET tracer for the CGRP receptor \([^{11}C]MK-4232\) (Hostetler et al., 2013). A baseline PET scan was performed with \([^{11}C]MK-4232\) in the absence of ubrogepant. To establish steady plasma levels of study drug, an intravenous bolus plus constant infusion of ubrogepant

![Fig. 1. Chemical structure of ubrogepant.](image-url)
was started 60 minutes before intravenous bolus injection of ~5 mCi $[^{11}C]$MK-4232 and continuing for the duration of the scan. PET studies were acquired for 120 minutes after $[^{11}C]$MK-4232 administration.

Plasma concentrations of $[^{125}I]$AM-2 receptor was significantly lower ($K_i = 8.2$ nM) than that for the human CGRP receptor, but ubrogepant did not display moderate affinity for the recombinant human AMY1 receptor by inhibiting $[^{125}I]$-rAMY binding with a K_i of 8.2 nM (individual $K_i = 6.5, 9.8$).

Results

Ubrogepant is an orally bioavailable CGRP receptor antagonist developed for the acute treatment of migraine. The chemical structure of ubrogepant is presented in Fig. 1.

Receptor Binding and Functional Potency of Ubrogepant. Ubrogepant was a potent inhibitor of $[^{125}I]$ICGRP binding to the cloned and native human CGRP receptors with a mean K_i (\pm S.E.M.) of 0.07 ± 0.006 nM and 0.067 ± 0.004 nM, respectively (Table 1). Comparable affinity for ubrogepant was observed with the rhesus CGRP receptor 0.079 ± 0.005 nM; however, markedly lower affinity was found for rat, mouse, and dog receptors ($K_i > 9.5$ nM). Affinity for the human AM2 receptor was significantly lower ($K_i = 1959 \pm 122$ nM) than that for the human CGRP receptor, but ubrogepant did not display moderate affinity for the recombinant human AMY1 receptor by inhibiting $[^{125}I]$-rAMY binding with a K_i of 8.2 nM (individual $K_i = 6.5, 9.8$).

Ubrogepant potently blocked human α-CGRP–stimulated cAMP responses with a mean (\pm S.E.M.) IC_{50} of 0.081 nM (0.005 nM) in human CGRP receptor-expressing HEK293 cells and 0.07 nM (0.02 nM) in rhesus CGRP receptor–expressing HEK293 cells (Table 2). The addition of 50% human or 50% rhesus serum reduced the apparent potency of ubrogepant by approximately 2.4- and 4.0-fold for human (0.19 \pm 0.01 nM) and rhesus (0.30 \pm 0.01 nM) CGRP receptors, respectively. Using Schild regression, ubrogepant caused potent, dose-dependent rightward shifts (data not shown) in the agonist dose-response curves, $K_B = 0.017$ nM, with no reduction in the maximal agonist response.

Specificity and Selectivity of Ubrogepant. In a specificity assessment against 116 enzyme, receptor, and ion channel binding assays (Supplemental Table 1), ubrogepant showed weak affinity for the dopamine transporter ($K_i = 4440$ nM), which is significantly lower than its affinity for the CGRP receptor. Saturation binding studies using $[^{3}H]$-ubrogepant demonstrated that specific binding was saturable to SK-N-MC membranes, with a K_B of 0.041 nM.

Ubrogepant displayed no significant antagonism of AM-induced cAMP stimulation of the human AM1 or the human CTR at concentrations greater than 20,000 nM, whereas potency was somewhat greater at the AM2 receptor and consistent with binding data for that receptor (Table 3). Similarly, in blockade of AMY-stimulated cAMP responses, ubrogepant demonstrated antagonist activity on the human AMY1 and AMY3 receptors at potencies comparable to its affinity for those receptors based on $[^{125}I]$-rAMY binding (Table 3).

Pharmacodynamic Assessment. Dermal vasodilation response to capsaicin was found to be concentration- and time-dependent. Application of vehicle alone did not significantly inhibit resulting blood flow increases. The PK/PD relationship for inhibition of CIDV by ubrogepant was estimated based on data from six rhesus CIDV studies (Study A–F, with intravenous doses ranging from 0.06 to 100 μ/kg) using a population E_{max} model (Supplemental Table 2). Studies E (0.3 and 3 μ/kg) and F (50 μ/kg) were found to be significant covariates for baseline blood flow before administration of capsaicin or ubrogepant (i.e., F_0) (Fig. 2). Ubrogepant has a mean EC_{50} of 3.19 nM (S.E.M., 3.65 nM; Supplemental Table 3), corresponding to an estimated EC_{90} of 29 nM. The E_{max} for inhibition of CIDV by ubrogepant is 0.732 (\pm 0.0859).

In the human PD study of CIDV, a dose-dependent decrease was observed with a single dose of ubrogepant compared with placebo at 1 and 5 hours postdose, regardless of capsaicin concentration used (Table 4). The estimated EC_{50} and EC_{90} values for ubrogepant for inhibition of CIDV in humans were 2.56 and 23 nM, respectively.

Brain Penetration. In assessments of CGRP receptor occupancy in adult male rhesus monkey brain by PET, ubrogepant achieved receptor occupancy (0%–16%) at plasma levels of 53–203 nM, which are higher than the rhesus monkey CIDV EC_{90} of 29 nM. Tests of central nervous system (CNS) penetration of ubrogepant in cisterna magna-ported conscious adult male rhesus monkeys found a CSF-to-plasma concentration ratio of 0.03 (Table 5).

Table 1

Mean (S.E.M.) binding affinities (K_i, nM) of ubrogepant for human and nonhuman CGRP receptors

Species	Human Cloned	Human SK-N-MC	Rhesus	Rat	Mouse	Rabbit	Dog
Binding affinity	0.07 ± 0.006	0.067 ± 0.004	0.079 ± 0.005	9.6 ± 1.1	11.6 ± 1.1	11.0 ± 0.5	47.0 ± 4.0

*SK-N-MC, human neuroblastoma cell line.

* $n = 3–19$.

Table 2

Mean (S.E.M.) functional potency (IC_{50}, nM) of ubrogepant for cloned CGRP receptors in HEK293 cells

Cloned Human CGRP Receptor	Cloned Rhesus CGRP Receptor		
No Serum	+ 50% Human Serum	No Serum	+ 50% Rhesus Serum
IC_{50}	IC_{50}	IC_{50}	
0.081 ± 0.005	0.19 ± 0.01	0.07 ± 0.02	0.30 ± 0.01

* IC_{50} half-maximal inhibitory concentration.

* $n = 3–21$.
Ubrogepant is a potent CGRP receptor antagonist developed for use in the acute treatment of migraine. In the present study, ubrogepant exhibited a high affinity for the human CGRP receptor (K_i, 0.07 nM). Additionally, ubrogepant exhibited species specificity, showing high affinity for the human and rhesus CGRP receptor and reduced affinity for other nonhuman receptors.

Ubrogepant displayed high selectivity for the human CGRP receptor versus the human AM1, AM2, CT, and AMY3 receptors but selectivity was reduced against the AMY1 receptor. This observation is consistent with the RAMP1-dependence of other small-molecule CGRP receptor antagonists (Moore and Salvatore, 2012; Walker et al., 2015). Incubation of HEK293 cells expressing the human CGRP receptor with ubrogepant blocked the α-CGRP–stimulated cAMP response, with an IC50 of 0.08 nM. Increasing concentrations of ubrogepant caused parallel rightward shifts in the α-CGRP dose-response curves in the cAMP functional assay, and the dose-ratio plot displayed a straight line. Additionally, screenings of 116 off targets showed that ubrogepant was highly selective for the CGRP receptor, with weak binding affinity for dopamine transporter (K_i of 4440 nM). This dopamine activity is likely to be pharmacologically irrelevant at the plasma concentrations projected shown to be efficacious doses in humans.

In the CIDV model in the rhesus monkey, capsaicin activates vanilloid receptor 1, producing neurogenic inflammation and vasodilation via activation of dorsal root reflexes and the release of vasoactive mediators, which is driven primarily by CGRP. This response can be blocked by CGRP receptor antagonists, thus permitting the assessment of ubrogepant potency in vivo against endogenously released CGRP (Dux et al., 2003; Hershey et al., 2005). Based on the PK/PD relationship for inhibition of CIDV by ubrogepant, the estimated mean EC50 and EC90 values were 3.19 and 29 nM, respectively. Population PK/PD CIDV modeling in the present rhesus in vivo study showed that the E_{max} for inhibition of CIDV by ubrogepant, the estimated mean EC50 and EC90 values were 3.19 and 29 nM, respectively. Population PK/PD relationship for inhibition of CIDV by ubrogepant, the estimated mean EC50 and EC90 values were 3.19 and 29 nM, respectively. Based on the PK/PD relationship for inhibition of CIDV by ubrogepant, the estimated mean EC50 and EC90 values were 3.19 and 29 nM, respectively. Taken together, these rapid assessments of CGRP receptor antagonism activity in non-human primates and human participants indicate a predictable PK-PD relationship for ubrogepant across species.

In the CNS penetration study, the CSF:plasma ratio was 0.03. Limited penetration into the CNS suggests that ubrogepant does not readily cross the blood-brain barrier, which was supported by the present receptor occupancy data that showed low central CGRP receptor occupancy (0%–16%) at plasma levels of 53–203 nM. Although the exact site of action of CGRP receptor antagonists is not known, the limited penetration of ubrogepant across species.

Table 3

Target Receptor	Selectivity Potency Difference Over CGRP Receptorb (IC50 = 0.08 nM)
AM1	>10,000
AM2	>10,000
Calcitonin (CTR)	>10,000
AMY1	105
AMY3	2737

aIC50, half-maximal inhibitory concentration.

bn = 3–19.

cCalculated as (target receptor IC50 – CGRP receptor IC50)/CGRP receptor IC50.

Fig. 2. Ubrogepant dose-dependent inhibition of capsaicin-induced dermal vasodilation in the rhesus forearm: population model-predicted vs. observed blood flow after 2 mg capsaicin application at different plasma concentrations of ubrogepant. Data pooled from six rhesus CIDV studies (Studies A to F with intravenous dose range from 0.06 to 100 μg/kg) represented by symbols. Solid lines represent model-predicted population mean values. Studies E and F were found to have statistically significant differences in the baseline blood flow (i.e., before administration of capsaicin or ubrogepant) and thus the model-predicted population means are shown separately.
to the CNS is consistent with the concept that during a neurovascular headache, sensitization and activation of the trigeminovascular system results in perivascular release of neuropeptides such as CGRP (Goadsby et al., 1988; Ho et al., 2010). The trigeminal ganglion is located outside of the blood-brain barrier and thus can be readily impacted by CGRP-focused treatments (Effekhar et al., 2015). The limited CNS activity of ubrogepant may be beneficial in avoiding potential side effects of central CGRP antagonism, and the potential clinical benefit of this limited CNS activity is unknown.

In addition to high affinity for the CGRP receptor, ubrogepant displays affinity for the AMY1 receptor and, to a lesser degree, the AMY3 receptor. The 100-fold difference in ubrogepant potency between the CGRP receptor and AMY1 receptor could be representative of the difference in α-CGRP binding between the two receptors, suggesting that ubrogepant may have a binding site similar to that of CGRP. The identification of CGRP-responsive AMY1 receptors in the trigeminal ganglia neurons and the expression of CTR and RAMP1 proteins in the spinal trigeminal complex suggests a role for these receptors in the central processing of CGRP signaling (Walker et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015). Furthermore, animal knockout studies have identified a pro-nociceptive role for AMY1 (Gebre-Medhin et al., 2015).

Inhibition of the CGRP receptor has emerged as a promising target for the acute and preventive treatment of migraine (Edvinsson, 2018). Previously investigated small-molecule CGRP antagonists have demonstrated efficacy in the treatment of migraine; however, clinical studies involving telcagepant and MK-3207 revealed potential concerns regarding drug-induced elevation of liver enzymes, and clinical development of these compounds was discontinued (Hewitt et al., 2011; Ho et al., 2014; Hargreaves and Olesen, 2019). Although the exact mechanism of this hepatotoxicity is unknown, it was hypothesized to be partly attributable to the formation of reactive metabolites and not specific to CGRP receptor antagonism (Hargreaves and Olesen, 2019). The absence of any ubrogepant-associated hepatotoxicity has been supported by safety data from recent clinical studies (Goadsby et al., 2019; Hutchinson et al., 2019).

Monoclonal antibodies to CGRP and the CGRP receptor have demonstrated efficacy in people with migraine; however, these medications are injectable medications approved for the preventive treatment of migraine (Tepper et al., 2017; Ajovy [package insert] 2018; Aimovig [package insert] 2018; Emgality [package insert] 2018; 2018a,b,c; Dodick et al., 2018; Stauffer et al., 2018). Efficacy for preventive treatment is generally measured at 1-month intervals and thus treatment options for migraine attacks are still needed for rapid relief (Tepper et al., 2017; Ajovy [package insert] 2018; Aimovig [package insert] 2018; Emgality [package insert] 2018; 2018a,b,c; Dodick et al., 2018; Stauffer et al., 2018). Ubrogepant is an oral CGRP receptor antagonist approved for the acute treatment of migraine that is capable of providing freedom from pain at 2 hours (Dodick et al., 2018a; Lipton et al., 2018; Voss et al., 2016). Acute treatments are a mainstay of migraine attack management and may complement preventive treatments in some patients based on factors such as headache frequency, acute treatment response, and migraine-related disability (Goadsby and Sprenger, 2010). Furthermore, the oral route of administration for ubrogepant may be preferred by patients who require multiple acute treatments for migraine attacks, compared with the injection or infusion route of administration that is offered for sumatriptan and dihydroergotamine (O’Quinn et al., 1999, D.H.E. 45 [package insert] 2002.). Ubrogepant thus represents a new class of medication for the acute treatment of migraine attacks.

In conclusion, ubrogepant is a potent, selective, orally delivered, small-molecule competitive inhibitor of the human CGRP receptor that shows a predictable PK-PD relationship and limited penetration across the blood-brain barrier at clinically effective exposures.

Acknowledgments

The authors would like to acknowledge Jan N. de Huon, Marleen Dupré (both from Center for Clinical Pharmacology, University Hospitals Leuven and the Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium), Tom Reynolds (MSD Europe, Inc., Brussels, Belgium), and Eugene Marcantonio (Merck & Co., Inc. Kenilworth, NJ) for the human capsaicin-induced dermal vasodilation assay model design and conduct, and John Plaza (Merck & Co., Inc., Kenilworth, NJ) for the human capsaicin-induced dermal vasodilation assay data analysis. Writing and editorial assistance were provided to the authors by Peloton Advantage, LLC, Parsippany, NJ, and was funded by Allergan plc. The opinions expressed in this article are those of the authors. The authors received no honorarium/fee or other form of financial support related to the development of this article. The authors would like to acknowledge Mona Purell for conducting the monkey PET studies, Mangey Williams for analytical assistance writing the manuscript.

Authorship Contributions

Participated in research design: Moore, Bell, Burgey, Li, Hostetler, Salvatore.

Conducted experiments: Moore, Fraley, White, Regan, Danziger, Michener.

TABLE 4
Summary of capsaicin-induced dermal blood flow (mean perfusion) after single oral administration of ubrogepant or placebo with capsaicin 300 or 1000 μg/20 μl.

Capsaicin Conc. (μg/20 μl)	Treatment	N	1 h	5 h
	Placebo	16	22.6 (27.8, 38.4)	15.5 (0.5, 29.1)
0.5 mg	14	53.4 (40.8, 63.3)	65.2 (58.3, 70.9)	
10 mg	16	63.4 (54.0, 70.9)	65.1 (58.4, 70.8)	

Percentage inhibition (90% CI) calculated as (1 – GMR) × 100 percent. Root mean square error on log scale from model: 0.384 at 1 h and 300 μg/20 μl, 0.290 at 5 h and 300 μg/20 μl, 0.345 at 1 h and 1000 μg/20 μl, 0.284 at 5 h and 1000 μg/20 μl.

TABLE 5
In vivo central nervous system penetration properties of ubrogepant.

Compound	Cmax (nM)	tmax (h)
CSF	40.9 ± 21.2	4
Plasma	1345.4 ± 537.8	4
CSF/plasma ratio	0.03	—

Cmax: maximum plasma drug concentration; tmax: time to Cmax.
Contributed new reagents or analytic tools: Hostetter.

Performed data analysis: Li.

Wrote or contributed to the writing of the manuscript: Moore, Fraley, Bell, Burgey, White, Li, Regin, Danziger, Michener, Hostetter, Banerjee, Salvatore.

References

Hostetler ED, Joshi AD, Sanabria-Bohórquez S, Fan H, Zeng Z, Purcell M, Gantert L, Ho TW, Connor KM, Zhang Y, Pearlman E, Koppenhaver J, Fan X, Lines C, Hewitt DJ, Aurora SK, Dodick DW, Goadsby PJ, Ge YJ, Bachman R, Taraborelli D, Fan Eftekhari S and Edvinsson L (2010) Possible sites of action of the new calcitonin gene-related peptide receptor antagonist. Br J Clin Pharmacol 70:831–837.

Lipton RB, Buse DC, Serrano D, Holland S, and Reed ML (2013) Examination of unmet treatment needs among persons with episodic migraine: results from a single attack phase III study. ACHIEVE II Randomized Clinical Trial. JAMA 322 (19), doi: 10.1001/jama.2019.17171 31742631.

Martelletti P (2017) Actual treatment of migraine: quo vadis? Expert Opin Pharmacother 18:1041–1049.

May A and Schulte LH (2016) Chronic migraine: risk factors, mechanisms and treatment. Nat Rev Neurol 12:455–464.

Messali AJ, Yang M, Gillard P, Tsai K, Tepper SJ, Bloudek LM, and Kori SH (2014) Treatment persistence and switching in triptan users: a systematic literature review. Headache 54:1120–1130.

Moore EL and Salvatore CA (2012) Targeting a family B GPCR/RAMP receptor 1 randomized clinical trial published (edited manuscript). Br J Pharmacol 166:66–78.

Poyner DR, Sexton FM, Marshall I, Smith DM, Quirion R, Muff R, Fischer JA and Michelson D (2009) Possible sites of action of the new calcitonin gene-related peptide receptor antagonists. Ther Adv Neurol Disord 3:369–378.

Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, and Edvinsson L (2015) Localisation of CGRP, CGRP receptor, PACAP and glatiramer in trigeminal ganglia. Relation to the blood-brain barrier. Brain Res 1600:93–109.

Gebre-Medhin S, Mulder H, Zhang Y, Sundler F, and Betsholtz C (1998) Reduced nociceptive behavior in islet amyloid polypeptide (amylin) knockout mice. Contemp Top Lab Anim Sci 42:52–59.

Hostetter ED, Banerjee, Salvatore. Fraley, Bell, Burgey, White, Li, Regin, Danziger, Michener, Hostetter, Banerjee, Salvatore.

Li CC, Vermeersch S, Denney WS, Kennedy WP, Palca J, Gispon A, Han TH, Blanchard R, De Lepeleire I, Deprert M, et al. (2015) Characterizing the F2K/F7D re- lationship for inhibition of capsaicin-induced dermal vasodilatation by 5(2H)- pyrazolo[4,3-b]pyridine and a related calcitonin gene related peptide receptor antagonist. Br J Clin Pharmacol 79:831–837.

Lipton RB, Buse DC, Serrano D, Holland S, and Reed ML (2013) Examination of unmet treatment needs among persons with episodic migraine: results from a single attack phase III study. ACHIEVE II Randomized Clinical Trial. JAMA 322 (19), doi: 10.1001/jama.2019.17171 31742631.

Moore EL and Salvatore CA (2012) Targeting a family B GPCR/RAMP receptor 1 randomized clinical trial published (edited manuscript). Br J Pharmacol 166:66–78.

Poyner DR, Sexton FM, Marshall I, Smith DM, Quirion R, Muff R, Fischer JA and Michelson D (2009) Possible sites of action of the new calcitonin gene-related peptide receptor antagonists. Ther Adv Neurol Disord 3:369–378.

Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, and Edvinsson L (2015) Localisation of CGRP, CGRP receptor, PACAP and glatiramer in trigeminal ganglia. Relation to the blood-brain barrier. Brain Res 1600:93–109.

Petersen KA, Birk S, Kitamura K, and Olesen J (2009) Effect of adrenomedullin on the treatment of migraine. Cephalalgia 33:25–34.

Russell PA, King R, Smillie SJ, and Edvinsson L (2014) Calcitonin gene-related peptide receptor: physiology and pathology. Physiol Rev 94:1099–1142.

Salvatore CA, Hershey JC, Corcoran HA, Fay JF, Johnston VK, Moore EL, Mosser SD, Burch FC, Buse DC, Straus SE, Panue KE, Wang J, AW, et al. (2008) Pharmacological characterization of MK-0974 [N-(3S,3S)-3-(2-((3-2-fluorothiophen-2-yl)-1-carboxy-2-hydroxy-1H-imidazol-4-yl)propionyl-1-y1-kynurenine-1-carboxamido], a potent and orally active calcitonin gene-related peptide receptor antagonist: Preclinical characterization for the treatment of migraine. J Pharmacol Exp Ther 328:416–421.

Salvatore CA, Moore EL, Calamari A, Cook JJ, Michener M, O'Sullivan M, Miller PJ, Sur C, Williams DL Jr, Zeng Z, et al. (2010) Pharmacological properties of MK-3204, an orally active calcitonin gene-related peptide receptor antagonist. J Pharmacol Exp Ther 333:152–160.

Serrano D, Buse DC, Manack Adams A, Reed ML, and Lipton RB (2015) Actual treatment optimization in episodic and chronic migraine: results of the American Migraine Prevalence and Prevention (AMPP) Study. Headache 55:592–598.

Staufler VL, Dodick DW, Zhang Q, Carter JN, Alavi YL, and Conley RR (2018) Evaluation of galanin antagonists for the prevention of episodic migraine: the EVOlVE III randomized controlled trial (published online). JAMA Neurol 75:1080–1088.

Steiner TJ, Stromer LV, Yos T, Jensen R, and Katsarava Z (2018) Migraine is first cause of disability in under 50s: will health politicians now take notice? FEBS Lett 583:77–80.

Tepper SJ, Roland M, Nageotte M, Ajemian SA, Burgey CS, Paone DV, et al. (2018) Efficacy, safety, and tolerability of ubrogepant for the acute treatment of migraine. Cephalalgia 38:887–889.

Vermeersch S, Denney WS, Kennedy WP, Palca J, Gispon A, Han TH, Blanchard R, De Lepeleire I, Deprert M, et al. (2015) Characterizing the F2K/F7D relationship for inhibition of capsaicin-induced dermal vasodilatation by 5(2H)-pyrazolo[4,3-b]pyridine and a related calcitonin gene related peptide receptor antagonist. Br J Clin Pharmacol 79:831–837.

Walker MS, Blomberg M, Daube J, and Lenz R (2017) Safety and efficacy of erenumab for prevention and acute management of chronic migraine. Cephalalgia 37:668–679.

Wang J, Della Penna K, Wang H, Karczewski J, Connolly TM, Koblan KS, Bennett NL, Yu S, Guo H, and Trugman JM (2018) Efficacy, safety, and tolerability of ubrogepant for the acute treatment of migraine: results from a single attack phase III study. ACHIEVE II Randomized Clinical Trial. JAMA 322 (19), doi: 10.1001/jama.2019.17171 31742631.

Wrote or contributed to the writing of the manuscript: Moore, Fraley, Bell, Burgey, White, Li, Regin, Danziger, Michener, Hostetter, Banerjee, Salvatore.
Supplementary Data

Characterization of Ubrogepant: A Potent and Selective Antagonist of the Human Calcitonin Gene–Related Peptide Receptor

Eric Moore, MS; Mark E. Fraley, PhD; Ian M. Bell, PhD; Christopher S. Burgey, PhD; Rebecca B. White, BS; Chi-Chung Li, PhD; Christopher P. Regan, PhD; Andrew Danziger, BA; Maria Stranieri Michener, BS; Eric Hostetler, PhD; Pradeep Banerjee, PhD; Christopher Salvatore, BS
Supplemental Table 1. Ubrogepant Enzyme and Radioligand Binding Assays

Assay Name	Species	Tissue
PPAR gamma	Human	Recombinant
PPAR alpha	Human	Recombinant
Prostanoid IP	Human	Recombinant
Prostanoid FP	Human	Recombinant
Prostanoid EP3	Human	Recombinant
Prostanoid EP1	Human	Recombinant
Vasopressin V2	Human	Recombinant
Vasopressin V1B	Human	Recombinant
Vasopressin V1A	Human	Recombinant
Vasoactive intestinal peptide VIP1	Human	HT29 colon carcinoma cells
Thyrotropin releasing hormone (TRH)	Rat	Brain
Prostanoid, thromboxane A2 (TP)	Human	Recombinant
Androgen (testosterone) AR	Rat	Recombinant
Somatostatin SST2	Human	Recombinant
Transporter, serotonin (5-hydroxytryptamine) (SERT)	Human	Recombinant
Serotonin (5-hydroxytryptamine) 5-HT6	Human	Recombinant
Serotonin (5-hydroxytryptamine) 5-HT3	Human	Recombinant
Serotonin (5-hydroxytryptamine) 5-HT2C	Human	Recombinant
Serotonin (5-hydroxytryptamine) 5-HT2B	Human	Recombinant
Serotonin (5-hydroxytryptamine) 5-HT2A	Human	Recombinant
Serotonin (5-hydroxytryptamine) 5-HT1B	Rat	Cerebral cortex
Serotonin (5-hydroxytryptamine) 5-HT1A	Human	Recombinant
Retinoid X receptor RXR alpha	Human	Recombinant
Receptor	Species	Tissue/Model
----------------------------------	----------	-----------------------------------
Purinergic P2Y	Rat	Brain
Progesterone PR-B	Human	Recombinant
Potassium channel (KATP)	Hamster	Pancreatic HIT-T15 beta cells
Platelet activating factor (PAF)	Human	Platelets
Orphanin ORL1	Human	Recombinant
Opiate mu (OP3, MOP)	Human	Recombinant
Opiate kappa (OP2, KOP)	Human	Recombinant
Nicotinic acetylcholine alpha 1, bungarotoxin	Human	RD cells
Nicotinic acetylcholine	Human	IMR-32 cells
Neurotensin NT1	Human	Recombinant
Neuropeptide Y Y2	Human	KAN-TS cells
Neuropeptide Y Y1	Human	SK-N-MC cells
Tachykinin NK2	Human	Recombinant
Tachykinin NK1	Human	Recombinant
Muscarinic M5	Human	Recombinant
Muscarinic M4	Human	Recombinant
Muscarinic M3	Human	Recombinant
Muscarinic M2	Human	Recombinant
Muscarinic M1	Human	Recombinant
Melanocortin MC5	Human	Recombinant
Melanocortin MC4	Human	Recombinant
Melanocortin MC3	Human	Recombinant
Melanocortin MC1	Human	Recombinant
Melanin-concentrating hormone MCH1 (SLC1)	Human	Recombinant
Leukotriene, Cysteinyl CYSLT2	Human	Recombinant
Chemical	Species	Source
--------------------------	----------------	-------------------
Chemokine CXCR4	Human	Recombinant
Chemokine CXCR2 (IL-8RB)	Human	Recombinant
Histamine H4	Human	Recombinant
Histamine H3	Human	Recombinant
Histamine H2	Human	Recombinant
Histamine H1	Human	Recombinant
Glycine, strychnine-sensitive	Rat	Spinal cord
Glutamate, metabotropic, mGlu5	Human	Recombinant
Glutamate, NMDA, polyamine	Rat	Cerebral cortex
Glutamate, NMDA, phencyclidine	Rat	Cerebral cortex
Glutamate, NMDA, glycine	Rat	Cerebral cortex
Glutamate, NMDA, agonism	Rat	Cerebral cortex
Glutamate, kainite	Rat	Brain (minus cerebellum)
Glutamate, AMPA	Rat	Cerebral cortex
Glucocorticoid	Human	HELA S3 cells
GABA_B, nonselective	Rat	Brain
GABA_A, chloride channel, TBOB	Rat	Cerebral cortex
GABA_A, RO-15-1788, hippocampus	Rat	Hippocampus
Transporter, GABA	Rat	Cerebral cortex
Estrogen ER alpha	Human	Recombinant
Endothelin ETB	Human	Recombinant
Endothelin ETA	Human	Recombinant
Transporter, dopamine (DAT)	Human	Recombinant
Dopamine D2S	Human	Recombinant
Dopamine D1	Human	Recombinant
Molecule	Species	Source/Location
--	----------------	---------------------------------
Corticotropin releasing factor CRF1	Human	Recombinant
Transporter, choline	Rat	Brain striatum
Cholecystokinin CCK2 (CCKB)	Human	FGS-7 Jurkat cells
Cholecystokinin CCK1 (CCKA)	Human	Recombinant
Chemokine CCR1	Human	Recombinant
Cannabinoid CB2	Human	Recombinant
Cannabinoid CB1	Human	Recombinant
Bradykinin B2	Human	Recombinant
Bradykinin B1	Human	IMR-90 cells
Atrial natriuretic factor (ANF)	Guinea pig	Adrenal gland
Angiotensin AT1	Human	Recombinant
Adrenomedullin AM1	Human	Recombinant
Transporter, norepinephrine (NET)	Human	Recombinant
Adrenergic beta3	Human	Recombinant
Adrenergic beta2	Human	Recombinant
Adrenergic beta1	Human	Recombinant
Adrenergic alpha2C	Human	Recombinant
Adrenergic alpha2B	Human	Recombinant
Adrenergic alpha2A	Human	Recombinant
Adrenergic alpha1D	Human	Recombinant
Adrenergic alpha1B	Rat	Liver
Adrenergic alpha1A	Rat	Submaxillary gland
Transporter, adenosine	Guinea pig	Cerebral cortex
Adenosine A2A	Human	Recombinant
Adenosine A1	Human	Recombinant
Protein Name	Species	Tissue/Source
---	---------	---------------
Tyrosine hydroxylase	Rat	Brain
Protein serine/threonine kinase, PKC, nonselective	Rat	Brain
Protein serine/threonine kinase, PKA, nonselective	Bovine	Heart
Protein serine/threonine kinase, MAPK14 (p38 alpha)	Human	Recombinant
Protein tyrosine kinase, insulin receptor	Human	Recombinant
Protein serine/threonine kinase, MARK3	Human	Recombinant
Protein serine/threonine kinase, MAPK3 (ERK1)	Human	Recombinant
Protein tyrosine kinase, EGF receptor	Human	Recombinant
Peptidase, CASP9 (CASPASE 9)	Human	Recombinant
Peptidase, CASP8 (CASPASE 8)	Human	Recombinant
Peptidase, CASP3 (CASPASE 3)	Human	Recombinant
Phosphodiesterase PDE3	Human	Platelets
Monoamine oxidase MAO-B	Human	Recombinant
Monoamine oxidase MAO-A	Human	Recombinant
Cyclo-oxygenase COX-2	Human	Recombinant
Cyclo-oxygenase COX-1	Human	Platelets
Peptidase, CTSG (cathepsin G)	Human	Neutrophils
Cholinesterase, acetyl, ACES	Human	Recombinant
Supplemental Table 2. List of Ubrogepant Rhesus CIDV Studies

Study	Study A (µg/kg : µg/kg/min)	Study B (µg/kg : µg/kg/min)	Study C (µg/kg : µg/kg/min)	Study D (µg/kg : µg/kg/min)	Study E (µg/kg : µg/kg/min)	Study F (µg/kg : µg/kg/min)
Baseline	—	—	—	—	—	—
Active period 1	0.06 : 0.005	0.6 : 0.05	0.3 : 0.03	30 : 3.0	0.3 : 0.03	50 : 5
Active period 2	0.6 : 0.05	6.0 : 0.5	1.0 : 0.1	100 : 9.0	3.0 : 0.3	NA
Active period 3	6.0 : 0.5	17.0 : 1.4	3.0 : 0.3	100 : 9.0	3.0 : 0.3	NA
Plasma target (nM)	0.5, 5, 50	5, 50, 150	1, 5, 10	150, 500, 500	1, 10, 10	400
Supplemental Table 3. Model-Estimated Parameter Values for Ubrogepant Inhibition of CIDV Following 2 mg Capsaicin Application

Parameter	Estimate	%RSE^a	IIV^b	%RSE for IIV
F_{caps}	105	8.17	0.104	60.8
F₀	115	3.02	0.0134	58.6
EC₅₀	3.19	114	1.09	178
E_{max}	0.732	11.7	—	—

Covariates for F₀

| Study E | 47.7 | 21.2 | — | — |
| Study F | 20 | 50.0 | — | — |

Residual Error

| Proportional | 0.0567^c | 13.17 | — | — |

CIDV, capsaicin-induced dermal vasodilation; E_{max}, maximal % inhibition by ubrogepant; EC₅₀, plasma concentration of ubrogepant corresponding to 50% inhibition of CIDV; F₀, baseline blood flow; F_{caps}, incremental blood flow due to application of capsaicin; IIV, inter-individual variability; RSE, relative standard error.

^a%RSE = standard error/parameter estimate • 100.

^bVariance of parameter distribution.

^cVariance of the residual error.