Quercetin: Antiviral Significance and Possible COVID-19 Integrative Considerations

Pawan K. Agrawal¹, Chandan Agrawal¹, and Gerald Blunden²

Abstract
Quercetin, a naturally occurring dietary flavonoid, is well known to ameliorate chronic diseases and aging processes in humans, and its antiviral properties have been investigated in numerous studies. In silico and in vitro studies demonstrated that quercetin can interfere with various stages of the coronavirus entry and replication cycle such as PLpro, 3CLpro, and NTPase/helicase. Due to its pleiotropic activities and lack of systemic toxicity, quercetin and its derivatives may represent target compounds to be tested in future clinical trials to enrich the drug arsenal against coronavirus infections. There is evidence that quercetin in combination with, for example, vitamins C and D, may exert a synergistic antiviral action that may provide either an alternative or additional therapeutic/preventive option due to overlapping antiviral and immunomodulatory properties. This review summarizes the antiviral significance of quercetin and proposes a possible strategy for the effective utilization of natural polyphenols in our daily diet for the prevention of viral infection.

Keywords
Quercetin, flavonoids, antiviral, COVID-19, integrative considerations

Received: October 25th, 2020; Accepted: November 4th, 2020.

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) represents an emergent global threat which is straining worldwide healthcare capacity. A coronavirus such as SARS-CoV-2 can be deadly because of its ability to stimulate a part of the innate immune response called the inflammasome, which can cause the uncontrolled release of proinflammatory cytokines, namely, interleukin (IL)-1β and IL-18, leading to cytokine storm and severe, sometimes irreversible, damage to the respiratory epithelium. The SARS-CoV-2 virus has been shown to activate the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome. Among various polyphenolic natural products, quercetin (3,3′,4′,5,7-pentahydroxyflavone, Figure 1), a flavonoid, found abundantly in fruits and vegetables, including onions, broccoli, buckwheat, capers, peppers, Brassica vegetables, apples, grapes, berries, tea, and wine, as well as many nuts, seeds, barks, flowers, leaves, and spices, has been reported as one of the potent inhibitors of NLRP3 inflammasome-mediated IL-1β production, typically acting at more than one element of the involved pathways. However, it is worthwhile to note that dietary intake of flavonoids ranges from 5 to 100 mg/day (quercetin [Que] and its glycosides account for about 75%), mostly depending on the consumption of fruits and vegetables and the intake of tea. Que is largely metabolized in the intestine and liver so that its plasma level is normally low. However, after consuming Que-rich foods, the plasma level of this flavonoid increases to different ranges.

In nature, Que predominantly occurs in O-glycosidic form, having either a monosaccharide moiety, such as glucose, galactose, and/or rhamnose, or a disaccharide, usually rutinose (3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside), linked to the 3, 7, and 4′-positions. The sugar moiety is usually O-linked to Que, but it can be C-linked as well. The OH at C-3 is the most common position, but O-glycosylation may occur on carbons 4′ and 7. The 4′-O-glucoside is considered the major representative of Que glycosides in onion.

Epidemiological studies suggested tight links between the intake of flavonoid-rich diets and a decreased incidence of various chronic age-related diseases. From a dietary point of view, Que glycosides are mostly found in food with a negligible portion of Que itself, with the exception of some red wine. The excess consumption of flavonoids is possibly toxic as flavonoids act as mutagens, pro-oxidants, and inhibitors of vital enzymes responsible for metabolism. As a dietary
constituent, Que has unique biological properties that may improve mental/physical performance and reduce infection risk. It is worthwhile to note that dietary supplements differ but often contain the free form of Que—under the FDA national drug code numbers 65448-3085, 65448-3005.

Que acts as a free radical scavenger, donating 2 electrons via o-quinone/quinone methide, both in vitro and in vivo. Studies implicate Que as a potent antioxidant. Que has been shown to exert anticancer, anti-inflammatory, antiallergic, antioxidant, antidiabetic, vasoprotective, antihypertensive, hypolipidemic, antithrombotic, and psychostimulant activities, as well as having the ability to inhibit lipid peroxidation, platelet aggregation, capillary permeability, and to stimulate mitochondrial biogenesis.

**Beneficial Effects of Que in Viral Infections**

There is a tremendous amount of literature supporting the antiviral properties of Que, in both in vitro and in vivo experiments. Early in vivo studies showed that oral treatment with Que displayed a beneficial effect in immunocompetent mice infected with the Mengo virus. Que also demonstrated a dose-dependent antiviral activity against herpes simplex virus, HSV-1 and HSV-2, in cell cultures. Que inhibits several respiratory viruses in cultured cells. It inhibits the cytopathic effects provoked by many serotypes of rhinovirus, echovirus, coxsackievirus (type 7, 11, 12, and 19), coxsackievirus (A21 and B1), and poliovirus (type 1 Sabin). Que exhibits antiviral activity against Canine Distemper Virus as it decreases viral expression and improves cellular viability.

In mice infected with rhinovirus, Que treatment decreased viral replication and attenuated virus-induced airway cholinergic hyperresponsiveness. In silico analysis revealed that Que may be a potential inhibitor of the neuraminidase of influenza A H1N1 and H7N9 viruses. Molecular docking analysis also found that Que may interact with HCV NS3 helicase, NS5B polymerase, and p7 proteins. These results correlate with experimental studies showing the anti-HCV activity of Que through inhibition of NS3 helicase and heat-shock proteins.

A phase I trial investigated the potential antiviral effect of Que among patients with hepatitis C virus (HCV). The results showed that the compound was safe in all patients as there were no changes in liver enzymes (aspartate transaminase and alanine transaminase), and about 25% of patients showed a "clinically meaningful" decrease in viral load. An herbal formula containing Que was evaluated for its effects in patients with oral herpes, caused by the HSV.

In an animal study of influenza (H3N2), the onset of infection was associated with a significant decrease in the pulmonary concentrations of catalase, reduced glutathione, and superoxide dismutase (antioxidants); supplementation with Que given at the same time as inoculation with the virus produced significant increases in the pulmonary concentrations of these antioxidants. A similar study showed that Que exerted a mild to moderate protective effect on lung morphology and a significant decrease in the number of infiltrating cells.

A randomized, double-blinded, placebo-controlled trial suggested significantly lower upper respiratory tract infection (URT) severity (36% reduction, P = 0.020) and URT total sick days (31% reduction, P = 0.048) in individuals (>40 years) of the Que 1000 mg group compared with placebo. The use of an herbal formula containing 1000 mg Que and some other natural products in obese individuals reflects upregulation of genes related to interferon-induced antiviral activity.

Que and isoquercitrin (quercetin-3-O-β-d-glucopyranoside) were the bioactive compounds in the ethyl acetate fraction of Elaeocarpus sylvestris that effectively inhibited human herpes virus replication. Que inhibits the infection by HSV-1, HSV-2, and acyclovir-resistant HSV-1 mainly by blocking viral binding and penetration to the host cell, and also suppresses NF-κB activation, which is essential for HSV gene expression.

Epimedium koreanum Nakai, which contains Que as its major active component, has been shown to induce secretion of type I interferon (IFN), reducing the replication of HSV, Newcastle disease virus, and vesicular stomatitis virus in vitro, as well as influenza A subtypes (H1N1, H5N2, H7N3, and H9N2) in vivo. Que inhibits the replication of cytomegalovirus inoculated HeLa cells at a half inhibitory concentration (IC₅₀) of 3.2 ± 0.8 μM and with a selectivity index of 22.7. Dengue virus type 2 (DENV-2) replication in Vero cells is inhibited by Que at an IC₅₀ of 35.7 μg/mL, causing a DENV-2 ribonucleic acid (RNA) reduction of 67%. This is attributed to Que's ability to either block virus entry or inhibit viral replication enzymes such as viral polymerases.

Que and fisetin inhibited DENV-2 and DENV-3 infection in the absence or presence of enhancing antibody (>90%, P < 0.001). Athletes supplemented with Que are protected from stress-induced susceptibility to upper respiratory tract infection, which is not related to immunomodulation.

In vitro data suggest that Que may inhibit viral replication of the influenza virus, via interfering with 3 stages of viral replication: (1) blocks endocytosis (uptake of the virus into the host cell) via inhibition of phosphatidylinositol 3-kinase; (2) blocks transcription of the viral genome by inhibiting RNA polymerase and viral protein translation by promoting cleavage of eukaryotic translation initiation factor 4G, and (3) increases viral clearance by enhancing the mitochondrial antiviral response.
Antiviral activity of Que against a wide spectrum of influenza virus strains has been demonstrated via its interactions with influenza hemagglutinin protein, thereby inhibiting viral cell fusion. Que has been documented for its efficacy against human T-lymphotropic virus 1, as well as the Japanese encephalitis virus (JEV), a mosquito-borne disease. Furthermore, Que has been reported to suppress DENV-2 and HCV by suppressing the nonstructural protein 3 protease activity.

Other Que formulations, such as quercetin-3-O-β-D-glucuronide, Que-enriched lecithin formulations, and quercetin-7-rhamnoside have been reported for their efficacy against the porcine epidemic diarrhea virus (PEDV) and influenza A virus (IAV). Studies on the extracts of *Zanthoxylum armatum* and *Hibiscus sabdariffa* led to the identification of Que as an antiviral constituent against norovirus as it was able to considerably reduce the viral titer. Based on a comparative study of the antiviral activity of flavonoids against murine norovirus and feline calicivirus, Que has been identified as one of the active compounds.

Que has been studied in various types and models of viral infection due to its promising antiviral effects in inhibiting polymerases, proteases, reverse transcriptase, suppressing deoxyribonucleic acid gyrase, and binding viral capsid proteins. Similarly, 25 μM Que blocked IL-1β, IL-6, IFN-γ, and tumor necrosis factor-alpha (TNF-α) secretion in human whole blood induced by lipopolysaccharide (LPS). Que can also inhibit proinflammatory cytokines. A 6-week regimen of 150 mg of Que taken daily by human subjects significantly lowered cytokine TNF-α serum concentrations. In addition, Que uniquely blocked endocytosis by dendritic cells (DCs) and LPS-induced DC migration. Que has been shown clinically to block human mast cell cytokine release, possibly inhibiting the clinical manifestation of cytokine storm.

Among various flavonoids, Que has been found, in vitro, to reduce NLRP3 inflammasome signaling, and consequently nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), TNF-α, IL-6, IL-1β, and IL-18 expression; IL-1β production was inhibited at 10 μM. Thus, studies have shown that Que exhibits antiviral properties against a variety of viruses, including respiratory syncytial virus, polio type 1, parainfluenza type 3, HSV-1, IAV, hepatitis B virus, IAV H1N1, Epstein-Barr virus, enterovirus 71, ADVs, arthropod-borne Mayaro virus, porcine reproductive and respiratory syndrome virus, canine distemper virus, JEV, DENV-2, PEDV, and equid herpesvirus 1.

**Que and SARS-CoV-2**

Que has been investigated for its possible antiviral effect on several members of the Coronaviridae family. To the best of our knowledge, one of the first reports exploring the antiviral effect of Que on coronaviruses appeared in 1990 suggesting that it reduced infectivity of human and bovine coronaviruses, OC43 and NCDCV, respectively, by 50% at a concentration of 60 μg/mL. On a different Coronaviridae of veterinarian interest, PEDV, quercetin 7-O-rhamnoside inhibited PEDV replication in Vero cells with an IC<sub>50</sub> of 0.014 μg/mL and a 50% cytotoxicity concentration (CC<sub>50</sub>) of 100 μg/mL. Luteolin and Que showed the capacity to block the entry of SARS-CoV into host cells. Luteolin inhibited, in a dose-dependent manner, SARS-CoV infection of Vero E6 cells with a half-effective concentration (EC<sub>50</sub>) value of 10.6 μM (CC<sub>50</sub> = 155 μM), while Que antagonized HIV-1 /SARS pseudo-type virus entry with an EC<sub>50</sub> of 83.4 μM. Thus, Que offers great promise as a potential drug in the clinical treatment of SARS.

SARS coronavirus, described in 2003, is a single-stranded RNA virus, which uses ribosome sites to encode 2 replicase glycoproteins, PPIa and PPIb, which mediate viral replication. Once these precursor glycoproteins are synthesized, 3C-like protease (3Cpro) plays a critical role in the lytic release of its replicates.

Que, identified as one of the constituents of *Pichia pastoris* displayed good inhibition toward 3Cpro with an IC<sub>50</sub> value of 73 M. Quercetin-3-O-β-galactoside binds to SARS-CoV 3 C pro and inhibits its proteolytic activity with an IC<sub>50</sub> of 42.79 ± 4.95 μM. This inhibitory action on 3Cpro is dependent on the hydroxyl group of Que which, as shown through molecular modeling and Q189A mutation, recognizes Gln189 as a crucial site on 3Cpro responsible for the binding of Que. Que was also identified as being able to block SARS-coronavirus entry into Vero E6 cells with a half-effective concentration (EC<sub>50</sub>) of 83.4 μM and with low cytotoxicity (CC<sub>50</sub> = 3.32 mM). SARS-CoV-2, the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, belongs to the genus Betacoronavirus and subgenus Sarbecovirus and, due to its similar receptor-binding domain, it is assumed, similarly to SARS-CoV, to infect type II pneumocytes entering via the angiotensin-converting enzyme-2 (ACE2) receptor. SARS-CoV-2 protease 3 C maintains the same Gln189 site of SARS CoV 3CLpro, which previously was identified as the crucial site on 3CLpro responsible for the binding of Que. SARS-CoV-2 protease 3 C maintains the same Gln189 site of SARS-CoV 3CLpro, which previously was identified as the binding site for the hydroxyl groups of Que and its derivatives. Interestingly, an *in vitro* study of ascorbic acid treatment on chick-embryo ciliated tracheal organ cells promoted resistance to coronavirus infection but did not show any effect on either orthomyxovirus or paramyxovirus. Docking studies of Que to 3Cpro, as well as other key targets, suggested that it bound well to each target, with a binding energy of −5.6 kcal/mol to 3Cpro. Surprisingly, it has also been found that Que binds better to Spike protein, ACE2, RdRp, and PLpro, indicating good potential against SARS-CoV-2. SARS-CoV 3Cpro shares some features with SARS-CoV2; therefore, Que might exert some protective or curative role against COVID-19, particularly considering its antioxidant and anti-inflammatory properties, as well as the effects of Que observed against other viruses described above. It also modulates the cellular unfolded protein response (UPR). As coronaviruses can utilize the UPR to complete their entire replication cycle, Que may have anti-coronavirus effects through its modulation of this pathway.

Coronavirus appears to be susceptible to the inhibitory actions of zinc, which may prevent viral entry into cells.
appears to reduce coronavirus virulence. Que also functions as a zinc ionophore and has been shown to facilitate the transport of zinc across lipid membranes. This could, theoretically, enhance the antiviral actions of zinc.

Animal coronavirus models have shown that mast cells residing in the respiratory submucosa may play a mixed role, including the generation of Th2 proinflammatory cytokines under the influence of viral stimulation and immunoglobulin E, an antibody type associated with Th2 style immune reaction. Que has been shown in many human studies to modulate mast cell degranulation. Que is also important as one of the multiple flavonoids shown in vitro to block the activity of MERS-CoV 3CLpro, a critical enzyme for coronavirus replication. Animal studies are limited at this time but support efficacy.

In silico modeling of the interaction between the SARS-CoV-2 Viral Spike Protein and ACE2 protein identified Que, from a database of known drugs, metabolites, and natural products, as one of the top 5 most potent compounds for binding to the interface site and potentially disrupting the initiating infection process. In support of this hypothesis, Que was active against infection in a model of virus cell entry and also inhibited the 3C-like protease of SARS-CoV in vitro. Que modulates NF-kB upregulation, which is useful to counteract the COVID-19 hyperinflammation. Que has a pleiotropic role as an antioxidant and anti-inflammatory, modulating signaling pathways that are associated with post-transcriptional modulators affecting postviral healing. Proteases play essential roles in viral replication, and specifically, 6LU7 was determined to be the main protease (Mpro) found in SARS-CoV-2. In vitro molecular docking studies between Que and viral protease suggest that Que forms H-bonds with the 6LU7 amino acids His164, Glu166, Asp187, Gln192, and Thr190, with all of the H-bonds interacting with amino acids in the virus Mpro active site. The genome of SARS-CoV-2 is approximately 79% identical to that of SARS-CoV-1. It is, therefore, not surprising that Que showed an IC_{50} of 8.6 ± 3.2 µM against SARS-CoV-1 PLpro.

Que has been investigated as a pneumolysin (PLY) inhibitor that protects mice against Streptococcus pneumoniae infection. PLY is the pore-forming cytotoxin and the major virulence determinant that belongs to the cholesterol-dependent cytolysin family (CDC) and is found in infections with S. pneumoniae. Hemolysis tests were used to confirm that Que can inhibit PLY activity. Que significantly reduced PLY-induced hemolytic activity and cytotoxicity suggesting that Que may be a new potential drug candidate in the treatment of clinical pneumococcal infections. The senolytic property of Que has also been considered as one of the important factors for its use for the prevention of coronavirus.

In any case, based on the strong inflammatory cascade and the blood-clotting phenomena triggered during SARS-CoV-2 infection, the multifaceted aspect of Que, which has been well described as exerting both anti-inflammatory (Que dose-dependently decreases the messenger RNA and protein levels of intercellular adhesion molecule-1, IL-6, IL-8, and monocyte chemoattractant protein-1) and thrombin-inhibitory actions, should be taken into consideration.

Synergistic Therapy and Integrative Considerations

There is a high level of interest in integrative strategies to augment public health measures to prevent COVID-19 infection and associated pneumonia. Unfortunately, no integrative measures have been validated in human trials as effective specifically for COVID-19. Using available in vitro evidence and an understanding of the virulence of COVID-19, as well as data from similar, but different, viruses, as mentioned above, the use of Que seems to be appealing.

Que and Vitamin C

Vitamin C is an essential vitamin with known antiviral properties which is under investigation for its beneficial effects during the stress response in sepsis and critically ill patients. Co-administration of Que (12.5 mg/kg/week) and vitamin C and B3 in a murine model of exercise-induced susceptibility to influenza H1N1 prolonged time-to-death (median time to death: placebo 9.0 ± 0.33 vs Que 16.5 ± 1.2) and improved survival (mortality: placebo 74% vs Que 52%) when compared with mice receiving only vitamins B3 and C. An older, small clinical trial identified the combination of flavonoids and ascorbic acid (1:1 ratio) as beneficial for respiratory infection (200 mg thrice a day). There is evidence that vitamin C and Que co-administration exerts a synergistic antiviral action due to overlapping antiviral and immunomodulatory properties and the capacity of ascorbate to recycle Que, increasing its efficacy. Safe, cheap interventions which have a sound biological rationale should be prioritized for experimental use in the current context of a global health pandemic. The use of vitamin C and Que has also been suggested both for prophylaxis in high-risk populations and for the treatment of COVID-19 patients as an adjunct to promising pharmacological agents such as Remdesivir or convalescent plasma.

Que, Vitamin D, and Estradiol

Using Gene Set Enrichment Analyses, vitamin D and Que have been identified as putative COVID-19 mitigation agents. Que alters the expression of 98 of 332 (30%) human genes encoding protein targets of SARS-CoV-2, thus potentially interfering with functions of 23 of 27 (85%) of the SARS-CoV-2 viral proteins in human cells. Similarly, vitamin D may interfere with functions of 19 of 27 (70%) of the SARS-CoV-2 proteins by altering the expression of 84 of the 332 (25%) human genes encoding protein targets of SARS-CoV-2. Significantly, numerous observational studies suggest that age-associated vitamin D insufficiency and/or deficiency may contribute to the high mortality of older adults and elderly individuals during the COVID-19 pandemic. Consequently,
vitamin D supplementation may mitigate the severity of the disease. Considering the potential effects of both Que and vitamin D, the inference could be made that functions of 25 of 27 (93%) SARS-CoV-2 proteins in human cells may be altered. Estradiol also affects the expression of the majority of human genes (203 of 332; 61%) encoding SARS-CoV-2 targets, thus potentially interfering with functions of 26 of 27 SARS-CoV-2 viral proteins. A hypothetical tripartite combination consisting of Que/vitamin D/estradiol may affect the expression of 244 of 332 (73%) human genes encoding SARS-CoV-2 targets.\textsuperscript{150}

**Que, Zinc, Bromelain, and Vitamin C**

A quadruple therapy consisting of zinc, Que, bromelain, and vitamin C has been suggested to show a promising positive therapeutic effect in patients.\textsuperscript{151}

**Others**

However, Que has low bioavailability and, therefore, requires special formulations to achieve clinically effective blood levels. A trial with a phytosomal Que formulation has been started for COVID-19 patients.\textsuperscript{152-154} Considering bioavailability issues, a nasal spray of dilute Que has been suggested to be a suitable vehicle, administered regularly at low doses during the early stages of infection, as it could attenuate entry of the virus into cells and so halt progress of the infection, possibly leading to a reduced need for hospitalization.\textsuperscript{155}

**Concluding Remarks**

Viruses causing respiratory diseases invade their host via the nasopharyngeal, oropharyngeal, and tracheal mucosa. At present, there are no specific antiviral drugs or vaccines against SARS-CoV2 infection for potential therapy of human patients. Identifying methods able to either reduce or prevent colonization, viral adhesion, and promote virus shedding on mucous membranes or have the ability to inactivate pathogens and thus reduce virus dose and/or increase immune response would be useful.\textsuperscript{156} Waiting for the generation of vaccines and for proven, safe, and effective treatments, any therapy shown to be safe and capable of mitigating the effects of the disease on the body should be welcomed. Que displays a broad range of antiviral properties which can interfere at multiple steps of pathogen virulence-virus entry and virus replication. According to researchers at the Montreal Clinical Research Institute “A cell has a lock, and the virus has a key [to enter and infect the cell],” Chrétien said, “But quercetin puts glue in the lock.”\textsuperscript{137}

Therefore, we anticipate that Que could be a therapeutic tool to be assayed against COVID-19, either alone or in combination with other nutritional substances, antivirals, or other drugs. Que may affect medications metabolized by CYP2C8, CYP2D6, CYP3A4, and P-glycoprotein substrates, and this is a concern for its use that has to be taken into consideration.\textsuperscript{152} As Que can inhibit coronavirus enzymes, which are essential for virus replication and infection, therefore it presents a potential key for designing antiviral therapies for inhibiting viral proteases. With well-known pharmacokinetic and absorption, distribution, metabolism and excretion-toxicity (ADMET) properties,\textsuperscript{158} Que can be considered as a good candidate for further optimization and development or repositioned for COVID-19 therapeutic treatment. Furthermore, the known pharmacophore structures of bioactive substances can be useful in the elaboration of new anti-COVID-19 formulations.

**Declaration of Conflicting Interests**

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

**Funding**

The author(s) received no financial support for the research, authorship, and/or publication of this article.

**ORCID ID**

Pawan K. Agrawal \(\text{https://orcid.org/0000-0002-7149-8358}\)

**References**

1. Chen I-Y, Moriyama M, Chang M-F, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3A activates the NLRP3 inflammasome. *Front Microbiol*. 2019;10:50. doi:10.3389/fmicb.2019.00050
2. Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2); anti-inflammatory strategies. *J Biol Regul Homeost Agents*. 2020;34(2):1. doi:10.23812/JBRHA-E
3. Ding S, Xu S, Ma Y, Liu G, Jang H, Fang J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. *Biomolecules*. 2019;9(12):E850. doi:10.3390/biom9120850
4. Chen I-Y, Moriyama M, Chang M-F, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3A activates the NLRP3 inflammasome. *Front Microbiol*. 2019;10:50. doi:10.3389/fmicb.2019.00050
5. Russo M, Spagnoletto C, Tedesco I, Russo GL. Phytochemicals in cancer prevention and therapy: truth or dare? *Toxins*. 2010;2(4):517-551. doi:10.3390/toxins2040517
6. Kyle J, Durie G. Nutritional relevance of flavonoids in disease prevention. *Nutr Prod Commun*. 2006;11(11):1049-1060. doi:10.1177/1934578X0600101121
7. Kawabata K, Mukai R, Ishisaka A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. *Food Funct*. 2015;6(5):1399-1417. doi:10.1039/C4FO01178C
8. Terahara N. Flavonoids in foods: a review. *Nat Prod Commun*. 2015;10(5):521-528. doi:10.1177/1934578X1501000334
9. Tőszér J, Benkő S. Natural compounds as regulators of NLRP3 inflammasome-mediated IL-1β production. *Mediators Inflamm*. 2016;2016(1):1-16. doi:10.1155/2016/5460302
22. Terao J. Dietary flavonoids as antioxidants. 

23. Abdelmoaty MA, Ibrahim MA, Ahmed NS, Abdelaziz MA. Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. 

25. Bondonno NP, Bondonno CP, Hodgson JM, Ward NC, Croft KD, et al. The efficacy of quercetin in cardiovascular health. 

26. Gormaz J, Quintemiel S, Rodrigo R. Cardiovascular disease: a target for the pharmacological effects of quercetin. 

27. Giuliani C, Bucci I, Di Santo S, et al. The flavonoid quercetin inhibits thyroid-restricted genes expression and thyroid function. 

28. Sandhir R, Mehrrota A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropipionic acid: implications in Huntington's disease. 

29. Edo Y, Otaki A, Asano K. Quercetin enhances the thioredoxin production of nasal epithelial cells in vitro and in vivo. 

30. Perez-Vizcaino F, Duarte J, Jimenez R, Santos-Buelga C, et al. Beneficial effects of quercetin intake. 

31. Kinker B, Comstock AT, Sajjan US. Quercetin: a promising treatment for the common cold. 

32. Aguirre L, Arias N, Macarulla MT, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. 

33. Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. 

34. Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Effective in improving mitochondrial dysfunctions induced by 3-nitropipionic acid: implications in Huntington's disease. 

35. Karuppagounder V, Arumugam S, Thandavarayan RA, et al. Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in rats. 

36. Li Y, Yao J, Han C, et al. Quercetin reduces blood pressure in hypertensive subjects. 

37. Jafarinia M, Sadat Hossseini M, Kasiri N, et al. Quercetin with the potential effect on allergic diseases. 

38. Brito AF, Ribeiro M, Abrantes AM, et al. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? 

39. Proshkina E, Lashmanova E, Dobrovolskaya E, et al. Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in drosophila melanogaster. 

40. Edwards RL, Lyon T, Litwin SE, et al. Quercetin reduces blood pressure in hypertensive subjects. 

41. Chun OK, Chung S-J, Claycombe KJ, Song WO. Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults. 

42. Kiviranta J, Huovinen K, Hiltunen R. Variation of phenolic metabolites of (-)-epicatechin and quercetin participate in in vivo conjugated quinone methide-glutathione adducts. 

43. McDonald MS, Hughes M, Burns J, et al. Survey of the free radical quinone methide-glutathione adducts. 

44. Wang W, Sun C, Mao L, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. 

45. Kawai Y. Understanding metabolic conversions and molecular actions of flavonoids in vivo: toward new strategies for effective utilization of natural polyphenols in human health. 

46. Davis JM, Murphy EA, Carmichael MD. Effects of the dietary flavonoid quercetin upon performance and health. 

47. Skibola CF, Smith MT. Potential health impacts of excessive flavonoid intake. 

48. Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. 

49. Awad HM, Boersma MG, Vervoort J, Rietjens JM, Vervoort Rietjens JIM. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. 

50. Terao J. Dietary flavonoids as antioxidants in vivo: conjugated metabolites of (-)-epicatechin and quercetin participate in antioxidative defense in blood plasma. 

51. Abdelmoaty MA, Ibrahim MA, Ahmed NS, Abdelaziz MA. Confirmatory studies on the antioxidant and anti diabetic effect of quercetin in rats. 

52. Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. 

53. Bondonno NP, Bondonno CP, Hodgson JM, Ward NC, Croft KD, et al. The efficacy of quercetin in cardiovascular health. 

54. Gormaz J, Quintemiel S, Rodrigo R. Cardiovascular disease: a target for the pharmacological effects of quercetin. 

55. Giuliani C, Bucci I, Di Santo S, et al. The flavonoid quercetin inhibits thyroid-restricted genes expression and thyroid function. 

56. Sandhir R, Mehrrota A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropipionic acid: implications in Huntington's disease. 

57. Edo Y, Otaki A, Asano K. Quercetin enhances the thioredoxin production of nasal epithelial cells in vitro and in vivo. 

58. Wang W, Sun C, Mao L, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. 

59. Kawai Y. Understanding metabolic conversions and molecular actions of flavonoids in vivo: toward new strategies for effective utilization of natural polyphenols in human health. 

60. Davis JM, Murphy EA, Carmichael MD. Effects of the dietary flavonoid quercetin upon performance and health. 

61. Skibola CF, Smith MT. Potential health impacts of excessive flavonoid intake. 

62. Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. 

63. Awad HM, Boersma MG, Vervoort J, Rietjens JM, Vervoort Rietjens JIM. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. 

64. Terao J. Dietary flavonoids as antioxidants in vivo: conjugated metabolites of (-)-epicatechin and quercetin participate in antioxidative defense in blood plasma. 

65. Abdelmoaty MA, Ibrahim MA, Ahmed NS, Abdelaziz MA. Confirmatory studies on the antioxidant and anti diabetic effect of quercetin in rats. 

66. Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans.
41. Dhiman P, Malik N, Sobarzo-Sánchez E, Uriarte E, Khatkar A. Quercetin and related chromone derivatives as monoamine oxidase inhibitors: targeting neurological and mental disorders. *Molecules*. 2019;24(3):418. doi:10.3390/molecules2403418

42. Redford KE, Abbott GW. The ubiquitous flavonoid quercetin is an atypical KCNQ potassium channel activator. *Commun Biol*. 2020;3(1):356. doi:10.1038/s42003-020-1089-8

43. D’Andrea G. Quercetin: a flavonol with multifaceted therapeutic applications? *Fitoterapia*. 2015;106:256-271. doi:10.1016/j.jfitote.2015.09.018

44. Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. *Pharmaceutics*. 2016;10(20):84-89. doi:10.4103/0973-7847.194044

45. Miles SL, McFarland M, Niles RM. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. *Nutr Rev*. 2014;72(11):720-734. doi:10.1111/nure.12152

46. Batisha GE, Beshbishy AM, Ikram M, et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. *Foods*. 2020;9(3):379. doi:10.3390/foods9030379

47. Vafadar A, Shabaniejad Z, Movahedpour A, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. *Cell Biochem*. 2020;10(3):1011. doi:10.1861/s13578-020-00397-0

48. Kawai Y. Understanding metabolic conversions and molecular actions of flavonoids in vivo as a new strategy for effective utilization of natural polyphenols in human health. *J Med Invest*. 2018;65(3-4):162-165. doi:10.2125/jmi.65.162

49. Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo GL. Roles of flavonoids against coronavirus infection. *Chem Biol Interact*. 2020;328:109211. doi:10.1016/j.cbi.2020.109211

50. Salehi B, Machin I, Monzote I, et al. Therapeutic potential of quercetin: new insights and perspectives for human health. *ACS Omega*. 2020;5(20):11849-11872. doi:10.1021/acsomega.0c01918

51. Mondal S, Rahman ST. Flavonoids: a vital resource in healthcare and medicine. *Pharm Pharmacoal Int J*. 2020;8(2):91-104.

52. Gütten J, Veckenstedt A, Heinecke H, Pusztaí R. Effect of quercetin on the course of Mongo virus infection in immunodeficient and normal mice. A histologic study. *Acta Virologica*. 1982;26(3):148-155.

53. Veckenstedt A, Gütten J, Béládi I. Synergic action of quercetin and murine alpha/beta interferon in the treatment of Mongo virus infection in mice. *Antiviral Res*. 1987;7(3):169-178. doi:10.1016/0166-3542(87)90005-2

54. Lyu S-Y, Rhim J-Y, Park W-B. Anthericetic properties of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. *Arch Pharm Res*. 2005;28(11):1293-1301. doi:10.1007/BF02978215

55. Lee S, Lee HH, Shin YS, Kang H, Cho H. The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in RAW 264.7 cells. *Arch Pharm Res*. 2017;40(5):623-630. doi:10.1007/s12272-017-0898-x

56. Debiaggi M, Tateo F, Pagani L, Luini M, Romero E. Effects of propolis flavonoids on virus infection and replication. *Microbiologia*. 1990;13(3):207-213.

57. De Palma AM, Vliegen I, De Clercq E, Neyts J. Selective inhibitors of picornavirus replication. *Med Res Rev*. 2008;28(6):823-884. doi:10.1002/med.20125

58. Ishitsuka H, Ohsawa C, Ohwa T, et al. Antipicornavirus flavone Ro 09-0179. *Antimicrob Agents Chemother*. 1982;22(4):611-616. doi:10.1128/AAC.22.4.611

59. González-Burquez MDJ, González-Díaz FR, García-Tovar CG, et al. Comparison between in vitro antiviral effect of mexican propolis and three commercial flavonoids against canine distemper virus. *Evid Based Complement Alternat Med*. 2018;2018:9. doi:10.1155/2018/792416

60. Ganesan S, Faris AN, Comstock AT, et al. Quercetin inhibits rhinovirus replication in vitro and in vivo. *Antiviral Res*. 2012;94(3):258-271. doi:10.1016/j.antiviral.2012.03.005

61. Liu Z, Zhao J, Li W, et al. Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. *Sci Rep*. 2016;6(1):19095. doi:10.1038/srep19095

62. Liu Z, Zhao J, Li W, et al. Molecular docking of potential inhibitors for influenza H7N9. *Comput Math Methods Med*. 2015;2015:480764. doi:10.1155/2015/480764

63. Fatima K, Mathew S, Suhail M, et al. Docking studies of Pakistani HCV NS3 helicase: a possible antiviral drug target. *PLoS One*. 2014;9(9):e106339. doi:10.1371/journal.pone.0106339

64. Mathew S, Fatima K, Fatmi MQ, et al. Computational docking study of p7 ion channel from HCV genotype 3 and genotype 4 and its interaction with natural compounds. *PLoS One*. 2015;10(6):e0126510. doi:10.1371/journal.pone.0126510

65. Bachmetov I, Gal-Tanamy M, Shapira A, et al. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. *J Viral Hepat*. 2012;19(2):e81-e88. doi:10.1111/j.1365-2893.2011.01507.x

66. Lu N, Khachatourian R, French SW. Quercetin: bioflavonoids as part of interferon-free hepatitis C therapy? *Expert Rev Anti Infect Ther*. 2012;10(6):619-621. doi:10.1586/eri.12.52

67. Rojas Ángela, Del Campo JA, Clement S, et al. Effect of quercetin on hepatitis C virus life cycle: from viral to host targets. *Sci Rep*. 2016;6(1):31777. doi:10.1038/srep31777

68. Lu NT, Crespi CM, Liu NM, et al. A phase I dose escalation study demonstrates quercetin safety and explores potential for bioflavonoid antivirals in patients with chronic hepatitis C. *Phytother Res*. 2016;30(1):160-168. doi:10.1002/ptr.5518

69. Polansky H, Javaherian A, Itzkovitz E. Clinical trial of herbal treatment gene-edn-VIR/Novirin in oral herpes. *J Evid Based Integr Med*. 2018;23(8):6269. doi:10.1177/251590X18806269

70. Kumar P, Khanna M, Srivastava V, et al. Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection. *Exp Lung Res*. 2005;31(5):449-459. doi:10.1080/01902149027008

71. Kumar P, Sharma S, Khanna M, Raj HG. Effect of quercetin on lipid peroxidation and changes in lung morphology in experimental influenza virus infection. *Int J Exp Pathol*. 2003;84(3):127-134. doi:10.1046/j.1365-2613.2003.00344.x

72. Heinz SA, Henson DA, Austin MD, Jin F, Nieman DC. Quercetin supplementation and upper respiratory tract infection:
73. Cialdella-Kam L, Nieman D, Knab A, et al. A mixed Flavonoid-Fish oil supplement induces immune-enhancing and anti-inflammatory transcriptomic changes in adult obese and overweight women—A randomized controlled trial. *PharmacoRes*. 2010;62(3):237-242. doi:10.1016/j.jphr.2010.05.001

74. Kim CH, Kim J-E, Song Y-J. Antiviral activities of quercetin and isoquercitrin against herpes viruses. *Molecules*. 2020;25(10):2379. doi:10.3390/molecules25102379

75. Hung P-Y, Ho B-C, Lee S-Y, et al. *Houttuynia cordata* targets the beginning stage of herpes simplex virus infection. *PLoS One*. 2015;10(2):e0115475. doi:10.1371/journal.pone.0115475

76. El-Toumy SA, Salib JY, El-Kashak WA, et al. Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1. *Food Sci Hum Wellness*. doi:10.1016/j.fshw.2018.01.001

77. Cho W-K, Weeratunga P, Lee B-H, et al. *Epimedium koreanum* Nakai displays broad spectrum of antiviral activity in vitro and in vivo by inducing cellular antiviral state. *Viruses*. 2015;7(1):352-377. doi:10.3390/v70100352

78. Evers DL, Chao C-F, Wang X, et al. Human cytomegalovirus-infected macrophages produce interferon-gamma and antiviral state. *Viruses*. 2015;68(3):124-134. doi:10.1016/j.antiviral.2015.07.004

79. Zandi K, Teoh B-T, Sam S-S, et al. Antiviral activity of four types of bioflavonoid against dengue virus type-2. *Vir J*. 2011;8(1):560. doi:10.1186/1743-422X-8-560

80. Jasso-Miranda C, Herrera-Camacho I, Flores-Mendoza LK, et al. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. *Infet Drug Resist*. 2019;12:1833-1852. doi:10.2147/IDR.S210890

81. Nieman DC, Henson DA, Gross SJ, et al. Quercetin reduces illness but not immune perturbations after induced exercise. *Med Sci Sports Exerc*. 2007;39(9):1561-1569. doi:10.1249/mss.0b013e318076b566

82. Nieman DC, Henson DA, Davis JM, et al. Quercetin’s influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA. *J Appl Physiol*. 2007;103(5):1728-1735. doi:10.1152/japplphysiol.00707.2007

83. Nieman DC, Henson DA, Davis JM, et al. Quercetin ingestion does not alter cytokine changes in athletes competing in the Western states endurance run. *J Interferon Cytokine Res*. 2007;27(12):1003-1012. doi:10.1089/ijr.2007.0050

84. Chaabi M. Antiviral effects of quercetin and related compounds. *Nutraceutical Currents*, Special Edition, April 2020, Antiviral effects of quercetin and related compounds. https://nutraceuticalcurrents.com/sites/default/files/AntiviralEffectsofQuercetinandRelatedCompounds_0.pdf

85. Wu W, Li R, Li X, et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. *Viruses*. 2015;8(1):6. doi:10.3390/v8010006

86. Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. *Int J Med Sci*. 2012;13(12):16785-16795. doi:10.3390/ijms131216785

87. Ramadan MF, Selim MM. Antimicrobial and antiviral impact of novel quercetin-enriched lecithin. *J Food Biochem*. 2009;33(4):557-571. doi:10.1111/j.1745-4514.2009.00237.x

88. Fan D, Zhou X, Zhao C, et al. Anti-inflammatory, antiviral and quantitative study of quercetin-3-O-B-D-glucoroniode in *Polygonum perfoliatum* L. *Fitoterapia*. 2011;82(6):805-810. doi:10.1016/j.fitote.2011.04.007

89. Song JH, Shim J-K, Choi HJ. Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. *Vir J*. 2011;8(1):460. doi:10.1186/1743-422X-8-460

90. Iloghalu U, Holmes B, Khatswada J, Williams LL. Selected plant extracts show antiviral effects against murine norovirus surrogate. *Adv Microb*. 2019;9(04):372-384. doi:10.4236/aim.2019.94022

91. Seo DJ, Jeon SB, Oh H, et al. Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. *Food Control*. 2016;60:25-30. doi:10.1016/j.foodcont.2015.07.023

92. Šánozuka K, Kikuchi Y, Nishino C, Mori A, Tawata S. Inhibitory effect of flavonoids on DNA-dependent RNA and DNA polymerases. *Exp. Clin*. 1988;44(10):882-885. doi:10.1007/BF01941188

93. Spedding G, Ratty A, Middleton E. Inhibition of reverse transcriptases by flavonoids. *Antiviral Res*. 1989;12(2):99-110. doi:10.1016/0166-3542(89)90073-9

94. Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. *Int J Antimicrob Agents*. 2005;26(5):343-356. doi:10.1016/j.ijantimicag.2005.09.002

95. Huang R-Y, Yu Y-L, Cheng W-C, et al. Immunosuppressive effect of quercetin against influenza A virus H1N1 replication by quercetin in human hepatoma cell lines. *Virol Sin*. 2010;62(3):237-242. doi:10.1007/s12250-015-3584-5

96. Weng Z, Zhang B, Asadi S, Bodi Z, Shahrzad A, et al. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. *PLoS One*. 2012;7(3):e33805. doi:10.1371/journal.pone.0033805

97. Lim H, Min DS, Park H, Kim HP. Flavonoids interfere with NLRP3 inflammasome activation. *Toxicol Appl Pharmacol*. 2018;355:93-102. doi:10.1016/j.taap.2018.06.022

98. Kaul TN, Middleton E, Ogura PL. Antiviral effect of flavonoids on human viruses. *J Med Virol*. 1985;184(12):6815-6821. doi:10.1002/jmv.1890150110

99. Cheng Z, Sun G, Guo W, et al. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines. *Virology*. 2015;30(4):261-268. doi:10.1016/s0122-5105(15)-3584-5

100. Chiow KH, Phoon MC, Putti T, Tan BKH, Chow VT. Evaluation of antiviral activities of *Houttuynia cordata* Thunb. extract, quercetin, quercetin and cinanserin on murine coronavirus and dengue virus infection. *Asian Pac J Trop Med*. 2016;9(1):1-7. doi:10.1016/j.apjtm.2015.12.002

101. Vaidya B, Cho S-Y, Oh K-S, et al. Effectiveness of periodic treatment of quercetin against influenza A virus H1N1 through modulation of protein expression. *J Agric Food Chem*. 2016;64(21):4416-4425. doi:10.1021/acs.jafc.6b00148
102. Davis JM, Murphy EA, McClellan JL, Carmichael MD, Gangemi JD. Quercetin reduces susceptibility to influenza infection following stressful exercise. *Am J Physiol Regul Integr Comp Physiol.* 2008;295(2):R505-R509. doi:10.1152/ajpregu.90319.2008

103. Lee M, Son M, Ryu E, et al. Quercetin-induced apoptosis prevents EBV infection. *OncoTarget.* 2015;6(14):12603-12624. doi:10.18632/oncotarget.3687

104. Ji P, Chen C, Hu Y, et al. Antiviral activity of *Paulownia tomentosa* against enterovirus 71 of hand, foot, and mouth disease. *Biol Pharm Bull.* 2015;38(1):1-6. doi:10.1248/bpb.b14-00357

105. Yao C, Xi C, Hu K, et al. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. *Virology.* 2018;15(1):116. doi:10.1186/s12985-018-1023-6

106. Carvalho OV, Botelho CV, Ferreira CGT, et al. In *vitro* inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral inhibition. *Res Vet Sci.* 2013;95(2):717-724. doi:10.1016/j.rvsc.2013.04.013

107. Chiang LC, Chiang W, Liu MC, Lin CC. In *vitro* antiviral activities of *Caesalpinia pulcherrima* and its related flavonoids. *J Antimicrob Chemother.* 2003;52(2):194-198. doi:10.1093/jac/dkg291

108. dos Santos AE, Kuster RM, Yamamoto KA, et al. Quercetin and quercetin 3-O-glycosides from *Bauhinia longifolia* (Bong.) Steud. show anti-Mayaro virus activity. *ParasitVectors.* 2014;7:130. doi:10.1186/1756-3305-7-130

109. Gao J, Xiao S, Liu X, et al. Inhibition of HSP70 reduces porcine reproductive and respiratory syndrome virus replication in *vitro*. *BMC Microbiol.* 2014;14(1):64. doi:10.1186/1471-2180-14-64

110. Gravina HD, Tafuri NF, Silva Júnior A, et al. Antiviral activities of *Bauhinia longifolia* and its related flavonoids. *Molecules.* 2011;16(3):e158-e162. doi:10.1016/j.rvsc.2010.11.010

111. Zakaryan H, Arabayn E, Oo A, Zándi K. Flavonoids: promising natural compounds against viral infections. *Arch Virol.* 2017;162(9):2539-2551. doi:10.1007/s00705-017-3417-y

112. Lalani S, Poh CL. Flavonoids as antiviral agents for enterovirus 71 showing anti- Mayaro virus activity. *Viruses.* 2020;12(2):184. doi:10.3390/v12020184

113. Choi H-J, Kim J-H, Lee C-H, et al. Antiviral activity of quercetin-7-rhamnoside against porcine epidemic diarrhea virus. *Antiviral Res.* 2009;81(1):77-81. doi:10.1016/j.antiviral.2008.10.002

114. Yi L, Li Z, Yuan K, et al. Ascorbic acid, quercetin and α-ketoamide inhibitors. *Science.* 2014;344(6185):354-356. doi:10.1248/viruses.2016;38(6):409-412. doi:10.1126/science.abb3405

115. Atherton JG, Kratzing CC, Fisher A. The effect of ascorbic acid on infection chick-embryo ciliated tracheal organ cultures by coronavirus. *Arch Virol.* 1978;56(3):195-199. doi:10.1007/BF01317848

116. Huang F, Li Y, Leung ELH, et al. A review of therapeutic agents and Chinese herbal medicines against SARS-CoV-2 (COVID-19). *Pharmaceutical Research.* 2020;2020(158):104929.

117. Phillips JM, Gallagher T, Weiss SR. Neurovirulent murine coronavirus jhm.sd uses cellular zinc metalloproteases for virus entry and cell-cell fusion. *J Virol.* 2017;91(8):1564-1576. doi:10.1128/JVI.01564-16

118. Han Y-S, Chang G-G, Joo C-G, et al. Papain-Like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition. *Biochemistry.* 2005;44(30):10349-10359. doi:10.1021/bi0504761

119. Dabbagh-Bazarbachi H, Clergeaud G, Quesada IM, Ortiz M, O’Sullivan CK, Fernández-Larrea JB. Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. *J Agric Food Chem.* 2014;62(32):8085-8093. doi:10.1021/jf5014633

120. Alschuler L, Weil A, Horwitz R, et al. Integrative considerations during the COVID-19 pandemic. *Explore.* 2020;16(6):354-356. doi:10.1016/j.explore.2020.03.007

121. Agrawal et al.
strategy. J Biol Regul Homeost Agents. 2020;34(1):9-14. doi:10.23812/20-Editorial-Kritis

132. Shaik Y, Caraffa A, Ronconi G, Lessiani G, Conti P. Impact of polyphenols on mast cells with special emphasis on the effect of quercetin and luteolin. Cent Eur J Immunol. 2018;43(4):476-481. doi:10.5114/cej.2018.81347

133. Jo S, Kim H, Kim S, Shin DH, Kim M-S. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des. 2019;94(6):2023-2030. doi:10.1111/cbdd.13604

134. Smith M, Smith JC. Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface. ChemRes. 2020.

135. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider Dostal Z, Modriansky M. The effect of quercetin on microRNA expression: a critical review. Biomed Pap Med Fac Univ Palacky Olomouc. 2019;163(2):95-106. doi:10.5507/bp.2019.030

136. Khaerunnisa S, Kurniawan H, Awaluddin R, et al. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. 2020;2020030226.

137. Hui DS, Azhar EI, Madani TA, et al. The continuing 2019 novel coronavirus outbreak in Wuhan, China. International J. of Infect Dis. 2020;2020(91):264-266.

138. Park J-Y, Yuk HJ, Ryu HW, et al. Evaluation of polyphenols from Brunsonia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):504-512. doi:10.1080/14787210.2016.1265519

139. Lv Q, Zhang P, Quan P, et al. Quercetin, a pneumolysin inhibitor, protects mice against Streptococcus pneumoniae infection. Microb Pathog. 2020;140:103934. doi:10.1016/j.micpath.2019.103934

140. Colunga Biancatelli RML, Berrill M, Mark PE. Quercetin inhibits the production of IL-1β-induced cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0

141. Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Vitamin C: an essential “stress hormone” during cytokine storm syndromes and immunosuppression. JFunct Foods. 2020;2020(91):264-266.

142. Chojnacka K, Witek-Krowiak A, Skrzypczak D, Mikula K, Mlynarz P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19 inducing coronavirus. J Funct Foods. 2020;73:104146. doi:10.1016/j.jff.2020.104146

143. Yanuck SF, Pizzorno J, Messier H, Fitzgerald KN. Evidence supporting a phased immuno-physiological approach to COVID-19 from prevention through recovery. Integr Med. 2020;19(1):8-35.

144. Williamson G, Kerimi A. Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction. Biochem Pharmacol. 2020;178:114123. doi:10.1016/j.bcp.2020.114123

145. Evans JM, Luby R, Lukaczer D, et al. The functional medicine approach to COVID-19: virus-specific nutraceutical and botanical agents. Integr Med. 2020;19(Suppl 1):34-42. https://www.wifm.org/news-insights/functional-medicine-approach-covid-19-additional-research-nutraceuticals-botanicals

146. Mehrabian A, Mikaels S. Montreal researchers propose a treatment for covid-19. Accessed March 17, 2020. http://www.mcgilltribune.com/sci-tech/montreal-researchers-propose-a-treatment-for-covid-19-170320/

147. Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, et al. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int J Biol Macromol. 2020;164:1693-1703. doi:10.1016/j.ijbiomac.2020.07.235