In this study, we investigated the stereospecificity of hydride transfer from NADH to flavin mononucleotide (FMN) in reactions catalyzed by the FMN-dependent NADH-indigo reductase expressed by thermophilic *Bacillus smithii*. We performed \(^1\)H-NMR spectroscopy using deuterium-labeled NADH (4\(R\)-\(^2\)H-NADH) and molecular docking simulations to reveal that the pro-\(R\) hydrogen at the C4 position of the nicotinamide moiety in NADH was specifically transferred to the flavin-N5 atom of FMN. Altogether, our findings may aid in the improvement of the indigo dyeing (Aizome) process.

Keywords
H-NMR; cofactor stereospecificity
FMN-dependent NADH-indigo reductase; molecular docking simulation

Correspondence
K. Yoneda, Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto 862-8652, Japan
Tel: +81 96 386 2766
E-mail: kyoneda@agri.u-tokai.ac.jp

(Received 16 April 2021, revised 16 May 2021, accepted 24 May 2021)

doi:10.1002/2211-5463.13200

Edited by Cláudio Soares

Indigo reductase expressed by Bacillus sp. AO1 is a flavin mononucleotide (FMN)-dependent NADH-azoreductase (EC 1.7.1.6) that catalyzes the reductive cleavage of azo groups (\(R\)-\(\text{N}^{-}=\text{N}^{-}=\text{R}\)) in aromatic azo compounds and the reduction of indigo compounds (lacking an azo group) [1]. Three-dimensional structural information and enzymological characteristics of azoreductases from several microbial species have already been reported [2–7]. However, the structure of the NAD (H)-azoreductase complex and the mechanism of transfer of hydrogen from NADH are unknown. Although the crystal structure of *Bacillus* sp. B29 azoreductase with Cibaeron blue as one of the substrates has been reported, the mechanism of NADP binding to the active site cannot be elucidated in that structure [7]. Generally, NAD(P)H-dependent dehydrogenases show either pro-\(R\) or pro-\(S\) stereospecificity for hydrogen transfer from the C4 position of the nicotinamide moiety in NAD(P)H [8,9]. The difference in mechanism of the hydride transfer is known to result in distinct differences in the structure and function of NAD(P)H-dependent enzyme groups [10]. The stereospecificity of azoreductases during electron transfer between NADH and FMN is relatively unknown, except for that of FMN-dependent NAD(P)H-quinone oxidoreductase [11].

Recently, we reported the crystal structure of thermostable FMN-dependent indigo reductase expressed by *Bacillus smithii* DSM 4216\(^T\), which catalyzes the reduction of indigo carmine (water-soluble indigo) and azo compounds [12]. We also determined the structure-based stabilization and substrate recognition mechanism of this enzyme [12]. Although we used co

Abbreviations
FMN, flavin mononucleotide; PDB, Protein Data Bank.
crystallization and soaking methods for the structural analysis of the indigo reductase expressed by B. smithii and NAD(H) complex, we do not know the complex structures of the enzyme with NAD⁺, NADH, and NAD⁺ analogs. In this study, we examined the structure of NAD⁺ bound to the B. smithii indigo reductase by using a molecular docking simulation method, and the stereospecificity of hydride transfer from NADH to FMN using 1H-NMR spectroscopy, with 4R-2H-NADH as a cofactor. To our knowledge, this is the first study to elucidate the molecular mechanism of the catalytic reaction of indigo reductase. Determining the stereospecificity of the hydrogen transfer and the structural basis for the catalytic reaction that mediate thermostable indigo reductase may provide useful information for the improvement of the indigo dyeing (Aizome) process.

Materials and methods

Estimating the stereospecificity of indigo reductase during hydride transfer from NADH to FMN

4R-2H-NADH was prepared as described previously [13], with a slight modification. Briefly, 5 mL of the reaction mixture containing 4% deuterated ethanol-d₆ (CD₃CD₂OD; Tokyo Chemical Industry, Tokyo, Japan) was incubated with 225 U of alcohol dehydrogenase (A-stereospecific; pro-R specific) from Saccharomyces cerevisiae (Oriental Yeast, Tokyo, Japan) and 150 μmol of NAD⁺ prepared in 5 mL of 100 mM NH₄HCO₃ buffer (pH 7.8) for 20 min at 37 °C. The formation of 4R-2H-NADH was validated by monitoring the increase in absorbance of the reaction mixture at 340 nm (Shimadzu UVmini-1240 spectrophotometer, Kyoto, Japan). The mixture was then passed through a centrifugal filter (Amicon Ultra 3000 NMWL; Millipore, Billerica, MA, USA) to remove the residual alcohol dehydrogenase. The filtrate was diluted fivefold with Milli-Q water and injected into a Toyopearl GigaCap DEAE-650M column (bed volume: 6 mL, Tosoh, Yamaguchi, Japan). 4R-2H-NADH was then eluted using a linear gradient of 0–200 mM NH₄HCO₃ buffer (pH 7.8, total 200 mL). Fractions containing 4R-2H-NADH that showed a high absorbance at 340 nm (A₂₆₀/A₃₄₀ ≤ 2.3) were collected and lyophilized (yield: 6.5 mg of 4R-2H-NADH).

The stereospecificity of hydride transfer from NADH to FMN by the B. smithii indigo reductase was analyzed by 1H-NMR spectroscopy using 4R deuterium-labeled NADH. The expression and purification of recombinant FMN-bound indigo reductase were carried out as previously described [12].

To determine the stereospecificity of hydrogen transfer from NADH catalyzed by the indigo reductase, a reaction mixture (1.0 mL) containing 5.5 mg of FMN-bound B. smithii indigo reductase and 2 mg of 4R-2H-NADH in 2 mM Tris-HCl buffer (pH 8.0) was incubated for 1 h at 25 °C. Thereafter, the reaction mixture was passed through a centrifugal filter (Amicon Ultra 3000 NMWL; Millipore) to remove the enzyme and stop the reaction. When NADH was added to the FMN-bound yellowish indigo reductase solution, FMN was rapidly reduced to FMNH₂ and the solution became colorless. When FMNH₂ was rapidly oxidized, the solution turned yellowish again. The filtrate was then lyophilized twice using 99.9% D₂O (Sigma-Aldrich, St. Louis, MO, USA) [14]. As a control experiment, we used unlabeled NADH instead of deuterium-labeled NADH. All samples examined by 1H-NMR spectroscopy were dissolved in 0.6 mL of 99.9% D₂O. Spectroscopic analysis was carried out using a Bruker Avance III 500 MHz spectrometer, with D₂O (4.7 p.p.m.) as the reference. The data were processed using TOPSPIN 3.6.2 software (Bruker, Bremen, Germany).

![Diagram](image-url)

Fig. 1. 1H-NMR spectra of the C4 position on the nicotinamide ring of NADH. (A) Standard unlabeled NADH. (B) 4R-2H-NADH produced from deuterated ethanol-d₆ (CD₃CD₂OD) and NAD⁺ using pro-R stereospecific alcohol dehydrogenase. The arrows indicate the positions of the pro-S and pro-R proton signals.
Docking simulation

Molecular docking simulations and binding energy calculations were performed using the AUTODOCK VINA program [15]. AUTODOCK VINA can produce a maximum of nine binding modes in each docking run. The hydrogen-containing model structure of FMN bound to the indigo reductase dimer (chain B and C) of *B. smithii* and the molecular structure (PDBQT file format) of NAD$^+$ were created using AutoDock tools. The area used to calculate docking was as follows: center $x = -27.53$, center $y = 17.18$, center $z = 76.24$, size $x = 16.78$, size $y = 15.35$, and size $z = 19.40$ Å, for indigo reductase (PDB entry 6JXN). Molecular graphics were created using PYMOL ver. 2.3.4 (https://pymol.org/2/).

Results and Discussion

Stereospecificity of hydrogen transfer from NADH to FMN

The two diastereotopic pro-R and pro-S hydrogen atoms at the C4 position of the nicotinamide ring of NADH were detected at 2.70 and 2.54 p.p.m. in the 1H-NMR spectrum (Fig. 1A). However, in the 1H-NMR spectrum of 4R-2H-NADH, the doublet signal at 2.70 p.p.m. disappeared (Fig. 1B) [16]. We determined the stereospecificity of the hydrogen transfer from NADH to FMN catalyzed by the *B. smithii* indigo reductase using 4R-2H-NADH. When 4R-2H-NADH was oxidized by the indigo reductase, a doublet signal from the C4 proton of NAD$^+$ at around 8.73 p.p.m. was not observed in the 1H-NMR spectrum (Fig. 2A). This indicates that the 4R-2H of NADH remained in NAD$^+$, and the 4S-1H was removed and transferred to FMN. When NADH was used instead of 2H-labeled NADH as the control, a resonance signal at around 8.73 p.p.m., reflecting the C4 proton of NAD$, was observed in the 1H-NMR spectrum (Fig. 2B). Additionally, we confirmed a change in multiplicity of the signal of the H5 proton in the nicotinamide ring. These results indicate that *B. smithii* indigo reductase exhibits pro-S specificity (B-type stereospecificity) for hydrogen transfer from NADH.

![Fig. 2. Position of the 1H-NMR spectra for NAD$^+$ produced by the Bacillus smithii indigo reductase with (A) 4R-2H-NADH and (B) unlabeled NADH. Labelled peaks are relative to the protons of the pyridine ring. Signals at 8.05 and 8.32 p.p.m. correspond to the protons of the adenosine moiety.](https://pymol.org/2/)
Possible NAD$^+$ and FMN binding structure of B. smithii indigo reductase

We performed molecular docking simulation using the AutoDock Vina program and modeled the NAD$^+$ molecule at the active site of B. smithii indigo reductase (Fig. 3). The calculated binding energy between FMN-bound indigo reductase and NAD$^+$ was -7.2 kcal-mol$^{-1}$. In our molecular docking simulation model, the oxygen atom in the amide group of the nicotinamide ring formed a hydrogen bond with a water molecule (3.4 Å). The nicotinamide ribose interacted with the side chain of Tyr127 (2.4 Å), which has been previously suggested to be the binding residue of indigo reductase substrate, and the O$_2$ atom of the flavin ring (3.3 Å) in FMN. The phosphate group of NAD$^+$ interacted with the side chains of Asn187 (3.0–3.4 Å). Further, the adenine ribose formed hydrogen bonds with the OH groups of the ribityl chain (2.7–2.9 Å), the oxygen in the main chain of Gln16 (3.1 Å), and the phosphate group of FMN (2.8–3.2 Å). The N7 atom of the adenine ring was observed to interact with a water molecule (2.7 Å). Moreover, the adenine ring of NAD$^+$ was covered by hydrophobic residues, such as Ile52, Phe57, and Trp60. As shown in Fig. 3, the pro-S hydrogen (si-face) located at the C4 position of the nicotinamide moiety of NAD$^+$ was oriented toward the flavin-N5 atom of FMN (3.6 Å). In addition, the glycosidic bond between the nicotinamide ring of NAD$^+$ and its associated ribose moiety appeared in the syn conformation.
Generally, pro-S-specific enzymes are known to bind to NAD+ in the syn conformation and pro-R-specific enzymes in the anti conformation [8]. These results also support that B. smithii indigo reductase belongs to the group of pro-S-specific hydride transfer (B-type stereospecificity) enzymes. Another example of a stereospecificity of the hydride transfer between NADH and FMN is exhibited by the S. cerevisiae FMN-dependent NAD(P)H-quinone oxidoreductase, which is reported to exhibit pro-S-specific stereospecificity that is the same as that exhibited by B. smithii indigo reductase [11]. In conclusion, to our knowledge, we are the first to report the stereospecificity of the hydride transfer of NADH in a reaction catalyzed by indigo reductase and provide the 3D structure of NAD+-FMN-bound indigo reductase.

Acknowledgements
We wish to thank Dr Yoshiki Oda at the Technology Joint Management Office, Tokai University, for helping us with the 1H-NMR spectroscopy analysis. This study was funded by a grant from the Tokai University Educational System (to KY) and the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA) Innovative Research Program Award (to TO). We would like to thank Editage (www.editage.com) for English language editing.

Conflict of interest
The authors declare no conflict of interest.

Data accessibility
The structural data that support these findings are openly available in the wwPDB at https://doi.org/10.2210/pdb6JXN/pdb.

Author contributions
KY, HS, and TO conceived the study, designed the experiments, and wrote the manuscript. KY performed the experiments and the molecular docking simulation, and analyzed the data. KY, HS, TA, and TO helped with the preparation of the manuscript.

References
1 Suzuki H, Abe T, Doi K and Ohshima T (2018) Azoreductase from alkaliphilic Bacillus sp. AO1 catalyzes indigo reduction. Appl Microbiol Biotechnol 102, 9171–9181.
2 Gao F, Ding H, Shao L, Xu X and Zhao Y (2015) Molecular characterization of a novel thermal stable reductase capable of decoloration of both azo and triphenylmethane dyes. Appl Microbiol Biotechnol 99, 255–267.
3 Matsumoto K, Mukai Y, Ogata D, Shozui F, Ndkuo JM, Taguchi S and Ooi T (2010) Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus steaethermophilus. Appl Microbiol Biotechnol 86, 1431–1438.
4 Ooi T, Shibata T, Matsumoto K, Kinoshita S and Taguchi S (2009) Comparative enzymatic analysis of azoreductases from Bacillus sp. B29. Biosci Biotechnol Biochem 73, 1209–1211.
5 Pricelius S, Held C, Murkovic M, Bozic M, Kokol V, Cavaco-Paulo A and Guebitz GM (2007) Enzymatic reduction of azo and indigoid compounds. Appl Microbiol Biotechnol 77, 321–327.
6 Sugiuara W, Yoda T, Matsuba T, Tanaka Y and Suzuki Y (2006) Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus steaethermophilus. Biosci Biotechnol Biochem 70, 1655–1665.
7 Yu J, Ogata D, Gai Z, Taguchi S, Tanaka I, Ooi T and Yao M (2014) Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism. Acta Crystallogr D Biol Crystallogr 70, 553–564.
8 Benner SA (1982) The stereoselectivity of alcohol dehydrogenases: a stereochemical imperative? Experientia 38, 633–636.
9 Yoneda K, Fukuda J, Sakuraba H and Ohshima T (2010) First crystal structure of L-lysine 6-dehydrogenase as an NAD-dependent amine dehydrogenase. J Biol Chem 285, 8444–8453.
10 Ohshima T, Misono H and Soda K (1978) Properties of crystalline leucine dehydrogenase from Bacillus sphaericus. J Biol Chem 253, 5719–5725.
11 Sollner S, Deller S, Machereux P and Palffy BA (2009) Mechanism of flavin reduction and oxidation in the redox-sensing quinone reductase Lot6p from Saccharomyces cerevisiae. Biochemistry 48, 8636–8643.
12 Yoneda K, Yoshioka M, Sakuraba H, Araki T and Ohshima T (2020) Structural and biochemical characterization of an extremely thermostable FMN-dependent NADH-indigo reductase from Bacillus smithii. Int J Biol Macromol 164, 3259–3267.
13 Ogura R, Wakamatsu T, Mutaguchi Y, Doi K and Ohshima T (2014) Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme. Enzyme Microb Technol 60, 40–46.
14 Arnold LJ Jr, You K, Allison WS and Kaplan NO (1976) Determination of the hydride transfer stereospecificity of nicotinamide adenine dinucleotide
linked oxidoreductases by proton magnetic resonance. *Biochemistry* 15, 4844–4849.

15 Trott O and Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *J Comput Chem* 31, 455–461.

16 Pennacchio A, Giordano A, Esposito L, Langella E, Rossi M and Raia CA (2010) Insight into the stereospecificity of short-chain *Thermus thermophilus* alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity. *Protein Pept Lett* 17, 437–443.