Irreducibility of the Punctual Quotient Scheme of a Surface

Geir Ellingsrud Manfred Lehn

January 22, 1997

Let X be a smooth projective surface, E a locally free sheaf of rank $r \geq 1$ on X, and let $\ell \geq 1$ be an integer. $\text{Quot}(E, \ell)$ denotes Grothendieck’s quotient scheme that parametrises all surjections $E \to T$, where T is a zero-dimensional sheaf of length ℓ, modulo automorphisms of T. Sending a quotient $E \to T$ to the point $\sum_{x \in X} \ell(T_x)x$ in the symmetric product $S^\ell(X)$ defines a morphism $\pi : \text{Quot}(E, \ell) \to S^\ell(X)$. It is the purpose of this note to prove the following theorem:

Theorem 1 — $\text{Quot}(E, \ell)$ is an irreducible scheme of dimension $\ell(r + 1)$. The fibre of the morphism $\pi : \text{Quot}(E, \ell) \to S^\ell(X)$ over a point $\sum x \ell_x x$ is irreducible of dimension $\sum x(r\ell_x - 1)$.

If $r = 1$, i.e. if E is a line bundle, then $\text{Quot}(E, \ell)$ is isomorphic to the Hilbert scheme $\text{Hilb}^\ell(X)$. For this case, the first assertion of the theorem is due to Fogarty [4], whereas the second assertion was proved by Briançon [2]. For general $r \geq 2$, the first assertion of the theorem is a result due to J. Li and D. Gieseker [8],[6]. We give a different proof with a more geometric flavour, generalising a technique from Ellingsrud and Størme [4]. The second assertion is a new result for $r \geq 2$.

1 Elementary Modifications

Let X be a smooth projective surface and $x \in X$. If N is a coherent \mathcal{O}_X-sheaf, $e(N_x) = \text{hom}_X(N, k(x))$ denotes the dimension of the fibre $N(x)$, which by Nakayama’s Lemma is the same as the minimal number of generators of the stalk N_x. If T is a coherent sheaf with zero-dimensional support, we denote
by \(i(T_x) = \text{hom}_X(k(x), T) \) the dimension of the socle of \(T_x \), i.e. the submodule
\(\text{Soc}(T_x) \subset T_x \) of all elements that are annihilated by the maximal ideal in
\(\mathcal{O}_{X,x} \).

Lemma 2 — Let \([g : E \to T] \in \text{Quot}(E, \ell)\) be a closed point and let \(N \) be
the kernel of \(q \). Then the socle dimension of \(T \) and the number of generators
of \(N \) at \(x \) are related as follows:

\[e(N_x) = i(T_x) + r. \]

Proof. Write \(e(N_x) = r + i \) for some integer \(i \geq 0 \). Then there is a minimal
free resolution
\[0 \to \mathcal{O}_{X,x}^r \to \mathcal{O}_{X,x}^i \to N_x \to 0, \]
where all coefficients of
the homomorphism \(\alpha \) are contained in the maximal ideal of \(\mathcal{O}_{X,x} \). We have
\(\text{Hom}(k(x), T_x) \cong \text{Ext}^1_X(k(x), N_x) \) and applying the functor \(\text{Hom}(k(x), .) \) one
finds an exact sequence

\[0 \to \text{Ext}^1_X(k(x), N_x) \to \text{Ext}^2_X(k(x), \mathcal{O}_{X,x}^i) \to \text{Ext}^2_X(k(x), \mathcal{O}_{X,x}^{r+i}). \]

But as \(\alpha \) has coefficients in the maximal ideal, the homomorphism \(\alpha' \) is zero.
Thus \(\text{Hom}(k(x), T) \cong \text{Ext}^2_X(k(x), \mathcal{O}_{X,x}^i) \cong k(x)^i \). \[\square \]

The main technique for proving the theorem will be induction on the
length of \(T \). Let \(N \) be the kernel of a surjection \(E \to T \), let \(x \in X \) be a
closed point, and let \(\lambda : N \to k(x) \) be any surjection. Define a quotient
\(E \to T' \) by means of the following push-out diagram:

\[
\begin{array}{ccccccc}
0 & 0 & & & & & \\
\uparrow & \uparrow & & & & & \\
0 & \to & k(x) & \xrightarrow{\mu} & T' & \to & T & \to & 0 \\
\uparrow & \uparrow & \uparrow & \parallel & & & & \\
0 & \to & N & \to & E & \to & T & \to & 0 \\
\uparrow & \uparrow & \uparrow & \parallel & & & & \\
N' & = & N' & & & & & \\
\uparrow & \uparrow & \uparrow & & & & & \\
0 & 0 & & & & &
\end{array}
\]

In this way every element \(\langle \lambda \rangle \in \mathbb{P}(N(x)) \) determines a quotient \(E \to T' \)
together with an element \(\langle \mu \rangle \in \mathbb{P}(\text{Soc}(T_x')) \). (Here \(W^\vee := \text{Hom}_k(W, k) \)
denotes the vector space dual to \(W \).) Conversely, if \(E \to T' \) is given, any
such \(\langle \mu \rangle \) determines \(E \to T \) and a point \(\langle \lambda \rangle \). We will refer to this situation
by saying that \(T' \) is obtained from \(T \) by an elementary modification.
We need to compare the invariants for T and T'. Obviously, $\ell(T') = \ell(T) + 1$. Applying the functor $\text{Hom}(k(x), \cdot)$ to the upper row in the diagram we get an exact sequence

$$0 \rightarrow k(x) \rightarrow \text{Soc}(T'_x) \rightarrow \text{Soc}(T_x) \rightarrow \text{Ext}^1_X(k(x), k(x)) \cong k(x)^2,$$

and therefore $|i(T_x) - i(T'_x)| \leq 1$. Moreover, we have $0 \leq e(T'_x) - e(T_x) \leq 1.$ Two cases deserve more attention:

Lemma 3 — Consider the natural homomorphisms $g : N(x) \rightarrow E(x)$ and $f : \text{Soc}(T'_x) \rightarrow T' \rightarrow T'(x)$. The following assertions are equivalent

1. $e(T') = e(T) + 1$
2. $\langle \mu \rangle \not\in \mathbb{P}(\ker(f)^\vee)$
3. $\langle \lambda \rangle \in \mathbb{P}(\text{im}(g))$.

Moreover, if these conditions are satisfied, then $T' \cong T \oplus k(x)$ and $i(T'_x) = i(T_x) + 1$.

Proof. Clearly, $e(T') = e(T) + 1$ if and only if $\mu(1)$ represents a non-trivial element in $T'(x)$ if and only if μ has a left inverse if and only if λ factors through E. \(\square\)

Lemma 4 — Still keeping the notations above, let $E \rightarrow T'_x$ be the modification of $E \rightarrow T$ determined by the point $\langle \lambda \rangle \in \mathbb{P}(N(x))$. Similarly, for $\langle \mu' \rangle \in \mathbb{P}(\text{Soc}(T_x)^\vee)$ let $T^\vee_{\mu'} = T/\mu'(k(x))$. If $i(T^\vee_{\lambda, x}) = i(T_x) + 1$ for all $\langle \lambda \rangle \in \mathbb{P}(N(x))$, then $i(T_x) = i(T^\vee_{\mu', x}) - 1$ for all $\langle \mu' \rangle \in \mathbb{P}(\text{Soc}(T_x)^\vee)$ as well.

Proof. Let $\Phi : \text{Hom}_X(N, k(x)) \rightarrow \text{Hom}_k(\text{Ext}^1_X(k(x), N), \text{Ext}^1_X(k(x), k(x)))$ be the homomorphism which is adjoint to the natural pairing

$$\text{Hom}_X(N, k(x)) \otimes \text{Ext}^1_X(k(x), N) \rightarrow \text{Ext}^1_X(k(x), k(x)).$$

Identifying $\text{Soc}(T_x) \cong \text{Ext}^1_X(k(x), N)$, we see that $i(T^\vee_{\lambda, x}) = 1 + i(T_x) - \text{rank}(\Phi(\lambda))$. The action of $\Phi(\lambda)$ on a socle element $\mu' : k(x) \rightarrow T$ can be described by the following diagram of pull-backs and push-forwards

$$
\begin{array}{ccccccc}
0 & \rightarrow & N & \rightarrow & E & \rightarrow & T & \rightarrow & 0 \\
\| & & \uparrow & & \uparrow & & \uparrow & & \\
0 & \rightarrow & N & \rightarrow & N^\vee_{\mu'} & \rightarrow & k(x) & \rightarrow & 0 \\
\lambda & \downarrow & & \downarrow & & & \| & & \\
0 & \rightarrow & k(x) & \rightarrow & \xi & \rightarrow & k(x) & \rightarrow & 0
\end{array}
$$
The assumption that $i(T'_{\lambda,x}) = 1 + i(T_x)$ for all λ, is equivalent to $\Phi = 0$. This implies that for every μ' and every λ the extension in the third row splits, which in turn means that every λ factors through $N_{\mu'}^-$, i.e. that $N(x)$ embeds into $N_{\mu'}^-$. Hence, for $T^-_{\mu'} = E/N_{\mu'}^- = \text{coker}(\mu)$ we get $i(T^-_{\mu',x}) = e(N_{\mu',x}) - r = e(N_x) + 1 - r = i(T_x) + 1$. □

2 The Global Case

Let $Y_\ell = \text{Quot}(E, \ell) \times X$, and consider the universal exact sequence of sheaves on Y_ℓ:

$$0 \to N \to \mathcal{O}_{\text{Quot}} \otimes E \to \mathcal{T} \to 0.$$

The function $y = (s, x) \mapsto i(T_{s,x})$ is upper semi-continuous. Let $Y_{\ell,i}$ denote the locally closed subset \{\(y = (s, x) \in Y_\ell | i(T_{s,x}) = i\}\} with the reduced subscheme structure.

Proposition 5 — Y_ℓ is irreducible of dimension $(r + 1)\ell + 2$. For each $i \geq 0$ one has $\text{codim}(Y_{\ell,i}, Y_\ell) \geq 2i$.

Clearly, the first assertion of the theorem follows from this.

Proof. The proposition will be proved by induction on ℓ, the case $\ell = 1$ being trivial: $Y_1 = \mathbb{P}(E) \times X$, the stratum $Y_{1,1}$ is the graph of the projection $\mathbb{P}(E) \to X$ and $Y_{1,i} = \emptyset$ for $i \geq 2$. Hence suppose the proposition has been proved for some $\ell \geq 1$.

We describe the ‘global’ version of the elementary modification discussed above. Let $Z = \mathbb{P}(N)$ be the projectivization of the family \mathcal{N} and let $\varphi = (\varphi_1, \varphi_2) : Z \to Y_\ell = \text{Quot}(E, \ell) \times X$ denote the natural projection morphism. On $Z \times X$ there is canonical epimorphism

$$\Lambda : (\varphi_1 \times \text{id}_X)^*\mathcal{N} \to (\text{id}_Z, \varphi_2)^*\mathcal{N} \to (\text{id}_Z, \varphi_2)_*\mathcal{O}_Z(1) =: \mathcal{K}.$$

As before we define a family \mathcal{T}' of quotients of length $\ell + 1$ by means of Λ:

$$0 \to \mathcal{K} \overset{\Lambda}{\to} \mathcal{T}' \overset{(\varphi_1, \text{id}_X)^*\mathcal{T}}{\to} 0$$

$$0 \to (\varphi_1, \text{id}_X)^*\mathcal{N} \overset{\text{id}_Z \otimes E}{\to} (\varphi_1, \text{id}_X)^*\mathcal{T} \to 0$$

Let $\psi_1 : Z \to \text{Quot}(E, \ell + 1)$ be the classifying morphism for the family \mathcal{T}', and define $\psi := (\psi_1, \psi_2 := \varphi_2) : Z \to Y_{\ell+1}$. The scheme Z together with the
morphisms \(\varphi : Z \to Y \) and \(\psi : Z \to Y_{\ell+1} \) allows us to relate the strata \(Y_{\ell,i} \) and \(Y_{\ell+1,j} \). Note that \(\psi(Z) = \bigcup_{j \geq 1} Y_{\ell+1,j} \).

The fibre of \(\varphi \) over a point \((s, x) \in Y_{\ell,i}\) is given by \(\mathbb{P}(\mathcal{N}_s(x)) \cong \mathbb{P}^{r-1+i} \), since \(\dim(\mathcal{N}_s(x)) = r + i(T_{s,x}) = r + i \) by Lemma 3. Similarly, the fibre of \(\psi \) over a point \((s', x) \in Y_{\ell+1,j}\) is given by \(\mathbb{P}(\text{Soc}(T'_{s',x})) \cong \mathbb{P}^{j-1} \). If \(T' \) is obtained from \(T \) by an elementary modification, then \(|i(T') - i(T)| \leq 1\) as shown above. This can be stated in terms of \(\varphi \) and \(\psi \) as follows: For each \(j \geq 1 \) one has:

\[
\psi^{-1}(Y_{\ell+1,j}) \subset \bigcup_{|i-j| \leq 1} \varphi^{-1}(Y_{\ell,i}).
\]

Using the induction hypothesis on the dimension of \(Y_{\ell,i} \) and the computation of the fibre dimension of \(\varphi \) and \(\psi \), we get

\[
\dim(Y_{\ell+1,j}) + (j - 1) \leq \max_{|i-j| \leq 1} \{(r + 1)\ell + 2 - 2i + (r + 1 - i)\}
\]

and

\[
\dim(Y_{\ell+1,j}) \leq (r + 1)(\ell + 1) + 2 - 2j - \min_{|i-j| \leq 1} \{i - j + 1\}.
\]

As \(\min_{|i-j| \leq 1} \{i - j + 1\} \geq 0 \), this proves the dimension estimates of the proposition.

It suffices to show that \(Z \) is irreducible. Then \(\text{Quot}(E, \ell + 1) = \psi_1(Z) \) and \(Y_{\ell+1} \) are irreducible as well.

Since \(X \) is a smooth surface, the epimorphism \(\mathcal{O}_{\text{Quot}} \otimes E \to T \) can be completed to a finite resolution

\[
0 \to A \to B \to \mathcal{O}_{\text{Quot}} \otimes E \to T \to 0
\]

with locally free sheaves \(A \) and \(B \) on \(Y_\ell \) of rank \(n \) and \(n + r \), respectively, for some positive integer \(n \). It follows that \(Z = \mathbb{P}(\mathcal{N}) \subset \mathbb{P}(\mathcal{B}) \) is the vanishing locus of the composite homomorphism \(\varphi^*A \to \varphi^*B \to \mathcal{O}_{\mathbb{P}(\mathcal{B})}(1) \). In particular, assuming by induction that \(Y_\ell \) is irreducible, \(Z \) is locally cut out from an irreducible variety of dimension \((r + 1)\ell + 2 + (r + n - 1) \) by \(n \) equations. Hence every irreducible component of \(Z \) has dimension at least \((r + 1)(\ell + 1) \).

But the dimension estimates for the stratum \(Y_{\ell,i} \) and the fibres of \(\varphi \) over it yield:

\[
\dim(\varphi^{-1}(Y_{\ell,i})) \leq (r + 1)\ell + 2 - 2i + (r + i - 1) = (r + 1)(\ell + 1) - i,
\]

which is strictly less than the dimension of any possible component of \(Z \), if \(i \geq 1 \). This implies that the irreducible variety \(\varphi^{-1}(Y_{\ell,0}) \) is dense in \(Z \). Moreover, since the fibre of \(\psi \) over \(Y_{\ell+1,1} \) is zero-dimensional, \(\dim(Y_{\ell+1}) = \dim(Y_{\ell+1,1}) + 2 = \dim(Z) + 2 \) has the predicted value. \(\square \)
3 The Local Case

We now concentrate on quotients $E \to T$, where T has support in a single fixed closed point $x \in X$. For those quotients the structure of E is of no importance, and we may assume that $E \cong O_X$. Let Q^r_ℓ denote the closed subset

$$\left\{ [O_X^r \to T] \in \text{Quot}(O_X^r, \ell) \mid \text{Supp}(T) = \{x\} \right\}$$

with the reduced subscheme structure. We may consider Q^r_ℓ as a subscheme of Y^r_ℓ, by sending $[q]$ to $([q], x)$. Then it is easy to see that $\phi^{-1}(Q^r_\ell) = \psi^{-1}(Q^r_{\ell+1})$. Let this scheme be denoted by $Z^{'}_\ell$.

We will use a stratification of Q^r_ℓ both by the socle dimension i and the number of generators e of T and denote the corresponding locally closed subset by $Q^r_{i,e}$. Moreover, let $Q^r_{i,e} = \bigcup Q^r_{i,e,i}$ and define $Q^r_{i,e}$ similarly. Of course, $Q^r_{i,e}$ is empty unless $1 \leq i \leq \ell$ and $1 \leq e \leq \min\{r, \ell\}$.

To prove the second half of the theorem it suffices to show:

Proposition 6 — Q^r_ℓ is an irreducible variety of dimension $r\ell - 1$.

Lemma 7 — $\dim(Q^r_{i,e}) \leq (r\ell - 1) - (2(i - 1) + \binom{e}{2})$.

Proof. By induction on ℓ: if $\ell = 1$, then $Q^r_1 \cong \mathbb{P}^{r-1}$, and $Q^r_{1,i} = \emptyset$ if $e \geq 2$ or $i \geq 2$. Assume that the lemma has been proved for some $\ell \geq 1$.

Let $[q'] : O_X^r \to T'$ be a closed point. Suppose that the map $\mu : k(x) \to T'(x)$ represents a point in $\psi^{-1}([q']) = \mathbb{P}(\text{Soc}(T'_x)^\vee)$ and that $T_\mu = \text{coker}(\mu)$ is the corresponding modification. If $i = i(T_\mu,x)$ and $e = e(T_\mu,x)$, then, according to Section [I], the pair (i, e) can take the following values:

$$\begin{align*}
(i, e) &= (j - 1, e - 1), (j - 1, e), (j, e) \text{ or } (j + 1, e),
\end{align*}$$

in other words:

$$\psi^{-1}(Q^r_{\ell+1,j}) \subset \varphi^{-1}(Q^r_{\ell,j-1}) \cup \bigcup_{|i-j|\leq 1} \varphi^{-1}(Q^r_{i,j}).$$

Subdivide $A = Q^r_{i,j}$ into four locally closed subsets $A_{i,e}$ according to the generic value of (i, e) on the fibres of ψ. Then

$$\dim(A_{i,e}) + (j - 1) \leq \dim(Q^r_{i,j}) + d_{i,e},$$
where \(d_{i,\varepsilon} \) is the fibre dimension of the morphism

\[
\varphi : \psi^{-1}(A_{i,\varepsilon}) \cap \varphi^{-1}(Q_{\ell,i}^{r,\varepsilon}) \longrightarrow Q_{\ell,i}^{r,\varepsilon}.
\]

By the induction hypothesis we have bounds for \(\dim(Q_{\ell,i}^{r,\varepsilon}) \), and we can bound \(d_{i,\varepsilon} \) in the four cases as follows:

A) If \([q : \mathcal{O}_X \to T] \in Q_{\ell,j-1}^{r,e} \) is a closed point with \(N = \ker(q) \), then according to Lemma 3

\[
\varphi^{-1}([q]) \cap \psi^{-1}(A_{e-1,j-1}) \cong \mathbb{P}(\text{im}(g : N(x) \to k(x)^r)) \cong \mathbb{P}(\ker(k(x)^r \to T(x)) \cong \mathbb{P}^{r-e},
\]

since \(\text{im}(k(x)^r \to T(x)) \cong k^{e-1} \). Hence \(d_{j-1,e-1} = r - e \) and

\[
\dim(A_{j-1,e-1}) \leq \dim Q_{\ell,j-1}^{r,e-1} + (r - e) - (j - 1)
\]

\[
\leq \left\{ (r \ell - 1) - 2(j - 2) - \binom{e - 1}{2} \right\} + (r - e) - (j - 1)
\]

\[
= \left\{ (r \ell + 1 - 1) - 2(j - 1) - \binom{e}{2} \right\} - (j - 1).
\]

Note that this case only occurs for \(j \geq 2 \), so that \((j-2) \) is always nonnegative.

B) In the three remaining cases

\(\varepsilon = e \) and \(i = j - 1, j, \) or \(j + 1 \)

we begin with the rough estimate \(d_{i,e} \leq r + i - 1 \) as in Section 2. This yields:

\[
\dim(A_{i,e}) \leq \left\{ (r \ell - 1) - 2(i - 1) - \binom{e}{2} \right\} + (r + i - 1) - (j - 1) \quad (2)
\]

\[
= \left\{ (r \ell + 1 - 1) - 2(j - 1) - \binom{e}{2} \right\} - (i - j). \quad (3)
\]

Thus, if \(i = j \) we get exactly the estimate asserted in the Lemma, if \(i = j + 1 \) the estimate is better than what we need by 1, but if \(i = j - 1 \), the estimate is not good enough and fails by 1. It is this latter case that we must further study: let \([q : \mathcal{O}_X \to T] \) be a point in \(Q_{\ell,j-1}^{r,e} \) with \(N = \ker(q) \). By Lemma 4 there are two possibilities:

— Either the fibre \(\varphi^{-1}([q]) \cap \psi^{-1}(A_{j-1,e}) \) is a proper closed subset of \(\mathbb{P}(N(x)) \) which improves the estimate for the dimension of the fibre \(\varphi^{-1}([q]) \) by 1,
— or this fibre equals with \(\mathbb{P}(N(x)) \), in which case we have \(i(T^-) = i(T) + 1 \) for every modification \(T^- = \text{coker}(\mu^- : k(x) \to T) \). But, as we just saw, calculation (3), applied to the contribution of \(Q_{r,e}^{r,e} \) to \(Q_{r,j}^{r,e} \), shows that the dimension estimate for the locus of such points \([q]\) in \(Q_{r,j}^{r,e} \) can be improved by 1 compared to the dimension estimate for \(Q_{r,j}^{r,e} \) as stated in the lemma.

Hence in either case we can improve estimate (3) by 1 and get

\[
\dim(A_{j-1,e}) \leq (r(\ell + 1) - 1) - 2(j - 1) - \left(\frac{e}{2}\right)
\]

as required. Thus, the lemma holds for \(\ell + 1 \). \(\square \)

Lemma 8 — \(\psi(\varphi^{-1}(Q_{r,e}^{r,e})) \subset Q_{r,e}^{r,e+1} \).

Proof. Let \([q : O_X^r \to T] \in Q_{r,e}^{r,e}\) be a closed point with \(N = \ker(q) \). Then \(\varphi^{-1}([q]) = \mathbb{P}(N(x)) \cong \mathbb{P}^{r+i-1} \) and \(\varphi^{-1}([q]) \cap \psi^{-1}(Q_{r,e}^{r,e+1}) \cong \mathbb{P}(\text{im}(G)) \cong \mathbb{P}^{r-e-1} \). Since we always have \(e \geq 1, i \geq 1 \), a dense open part of \(\varphi^{-1}([q]) \) is mapped to \(Q_{r,e}^{r,e} \). \(\square \)

Lemma 9 — If \(r \geq 2 \) and if \(Q_{r,e}^{r,e} \) is irreducible of dimension \((r - 1)\ell - 1 \), then \(Q_{r,e}^{r,e} := \bigcup_{e < r} Q_{r,e}^{r,e} \) is an irreducible open subset of \(Q_{r,e}^{r,e} \) of dimension \(r\ell - 1 \).

Proof. Let \(M \) be the variety of all \(r \times (r - 1) \) matrices over \(k \) of maximal rank, and let \(0 \to O_M^{r-1} \to O_M^r \to \mathcal{L} \to 0 \) be the corresponding tautological sequence of locally free sheaves on \(M \). Consider the open subset \(U \subset M \times Q_r^e \) of points \((A, [O^r \to T])\) such that the composite homomorphism

\[
O^r-1 \xrightarrow{A} O^r \rightarrow T
\]

is surjective. Clearly, the image of \(U \) under the projection to \(Q_r^e \) is \(Q_{r,e}^{r,e} \). On the other hand, the tautological epimorphism

\[
O_{U \times X}^{r-1} \rightarrow O_{U \times X}^r \rightarrow (O_M \otimes T)|_{U \times X}
\]

induces a classifying morphism \(g' : U \to Q_{r,e}^{r-1} \). The morphism \(g = (pr_1, g') : U \to M \times Q_{r,e}^{r-1} \) is surjective. In fact, it is an affine fibre bundle with fibre

\[
g^{-1}(g(A, [O^r-1 \to T])) \cong \text{Hom}_k(\mathcal{L}(A), T) \cong A_{k}^\ell.
\]

8
Since $Q_{r}^{\ell-1}$ is irreducible of dimension $(r - 1)\ell - 1$ by assumption, U is irreducible of dimension $r\ell - 1 + \dim(M)$, and $Q_{r}^{\ell,<r}$ is irreducible of dimension $r\ell - 1$. □

Proof of Proposition [4]. The irreducibility of Q_{r}^{ℓ} will be proved by induction over r and ℓ: the case ($\ell = 1, r$ arbitrary) is trivial; whereas (ℓ arbitrary, $r = 1$) is the case of the Hilbert scheme, for which there exist several proofs ([2], [4]). Assume therefore that $r \geq 2$ and that the proposition holds for (ℓ, r) and ($\ell + 1, r - 1$). We will show that it holds for ($\ell + 1, r$) as well.

Recall that $Z' := \varphi^{-1}(Q_{r}^{\ell}) = Q_{r}^{\ell} \times_{Y_{r}} Z$. Every irreducible component of Z' has dimension greater than or equal to $\dim(Q_{r}^{\ell}) + r - 1 = r(\ell + 1) - 2$ (compare Section [?]). On the other hand, $\dim(\varphi^{-1}(Q_{r}^{\ell,i})) \leq r\ell - 1 - 2(i - 1) + (r + i - 1) = r(\ell + 1) - i$. Thus an irreducible components of Z' is either the closure of $\varphi^{-1}(Q_{r}^{\ell,1})$ (of dimension $r(\ell + 1) - 1$) or the closure of $\varphi^{-1}(W)$ for an irreducible component $W \subset Q_{r}^{\ell,2}$ of maximal possible dimension $r\ell - 3$. But according to Lemma [8] the image of $\varphi^{-1}(W)$ under ψ will be contained in the closure of $Q_{r}^{\ell,r-1}$, unless W is contained in $Q_{r}^{\ell,2}$. But Lemma [7] says that $Q_{r}^{\ell,2}$ has codimension $\geq 2 + (\ell \choose 2) \geq 3$ if $r \geq 2$, and hence cannot contain W for dimension reasons. Hence any irreducible component of Z' is mapped by ψ into the closure of $Q_{r}^{\ell,r-1}$ which is irreducible by Lemma [8] and the induction hypothesis. This finishes the proof of the proposition. □

References

[1] V. Baranovski, On Punctual Quot Schemes for Algebraic Surfaces. Duke e-prints [alg-geom/9703038].

[2] J. Briançon, Description de $\text{Hilb}^n \mathbb{C}\{x,y\}$. Inventiones math. 41, 45-89 (1977).

[3] A. Iarrobino, Punctual Hilbert Schemes. Memoirs of the AMS, Volume 10, Number 188, 1977.

[4] G. Ellingsrud and S. A. Strømme, An intersection number for the punctual Hilbert Scheme. To appear in Transactions of AMS.

[5] J. Fogarty, Algebraic Families on an Algebraic Surface. Am. J. Math. 90 (1968), 511-521.

[6] David Gieseker and Jun Li, Moduli of high rank vector bundles over surfaces. J. AMS 9 (1996), 107-151.
[7] A. Grothendieck, *Techniques de construction et théorèmes d’existence en géométrie algébrique IV: Les schémas de Hilbert.* Séminaire Bourbaki, 1960/61, no. 221.

[8] Jun Li, *Algebraic Geometric Interpretation of Donaldson’s Polynomial Invariants.* J. Differential Geometry 37 (1993), 417-466.