Glomerular IgA Deposition and Serum Antineutrophil Cytoplasmic Antibody Positivity in a Child With Dystrophic Epidermolysis Bullosa: Case Report and Literature Review

Ling Yu†, Guoping Huang†, Zhihong Lu†, Jingjing Wang†, Weizhong Gu‡, Junping Li‡ and Jianhua Mao*†

† Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
‡ Department of Pathology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China

INTRODUCTION

Dystrophic epidermolysis bullosa (DEB) is a monogenetic disease with clinical manifestations of painful and easy-blistering skin and mucous membranes secondary to friction or minor trauma (1). The lesions leave erosions and scars that, in turn, can cause stenosis of tracheal, esophageal, and genitourinary tract mucosae (2). DEB is caused by mutations in COL7A1, the gene encoding type VII collagen, a major protein component of the anchoring fibrils that play a critical role in securing the attachment of the dermal-epidermal basement membrane to the underlying dermis (3). A proportion of patients with DEB had urological complications, such as hydrourereteronephrosis, renal amyloidosis, and IgA nephropathy (IgAN) (1, 4, 5).
IgAN is the most common form of glomerulonephritis and is characterized by the predominance of IgA deposits either alone or with other immune deposits in the glomerular mesangium. To date, the pathogenesis of IgAN remains undefined (6). ANCA-associated vasculitis (AAV) is an autoimmune disorder involving severe, systemic and small-vessel vasculitis in multiple organs. In kidneys affected by AAV, the characteristic lesion is segmental necrosis of glomerular capillary loops, with little or no deposition of immunoglobulin or complement, and termed as "pauci-immune" focal necrotizing glomerulonephritis (7).ANCAs are autoantibodies directed against cytoplasmic constituents of neutrophils. Based on their appearance on indirect immunofluorescence microscopy, ANCAs are classified as perinuclear (P-ANCA) or cytoplasmic (C-ANCA) (8). Their most common antigens have been identified as myeloperoxidase (MPO) and proteinase 3 (PR3), respectively (9, 10). Antibody against MPO (anti-MPO) and PR3 (anti-PR3) are used as diagnostic markers for AAV (7). Interestingly, a number of clinical observations showed ANCAs are not only exclusively for AAV, but can also be detected in other diseases, such as systemic lupus erythematosus (SLE), inflammatory bowel disease, malignancy, drug-induced AAV, infections, and IgAN (11–13). The significance of serum ANCA positivity in patients without AAV remains largely undefined.

Concomitant presentation of IgAN and AAV is rarely reported (12). Here we describe for the first time a case of pediatric DEB with serum anti-MPO and anti-PR3 positivity, accompanied by histological evidence of IgA nephropathy.

CASE REPORT

A 12-year-old boy was diagnosed at birth with EB characterized by recurrent blisters and erosions on skin and oral mucosa. The patient had limited mouth opening, irregular dentition, nail dystrophy, pseudo-syndactyly, and flexion deformities of interphalangeal joints due to progressive scarring of the extremities (Figure 1A). Besides, he suffered from gross hematuria and proteinuria. He had previously normal urinalysis result when he was young, but it was not monitored regularly. He visited the outpatient clinic of our hospital immediately after the appearance of gross hematuria in January 2021, and urine routine test also revealed massive proteinuria. But the patient had no significant hypoproteinemia, edema, and hyperlipidemia. More information is shown in Table 1.

The autoimmune serology demonstrated positive results for P-ANCA, C-ANCA, anti-MPO, and anti-PR3 (Table 1). Serum protein electrophoresis showed elevated levels of IgG, IgA, IgM, and IgE. Renal ultrasound suggested mild hydronephrosis of left kidney. Neurological, respiratory, cardiovascular, and hearing examinations were normal. Computed tomography (CT) imaging of chest and paranasal sinuses indicated no significant abnormality. In light of the above description, our patient lacked systemic manifestations of AAV, such as paranasal sinusitis, hemorrhagic alveolitis, and other granulomatous lesions.

The patient had no relevant family history. During the first hospitalization, whole-exon sequencing (WES) disclosed he carried the COL7A1 mutation of c.2992 + 2 (T>G) in exon IVS22 (also present in his mother) and c.8038G > A (p. Gly2680Ser) in exon 108 (also present in his father). His half-sister is healthy, but she has the same heterozygous mutation as his mother. Combined with clinical manifestation, he was diagnosed with autosomal recessive DEB (OMIM: 226600).

Pathological examination of renal biopsy showed glomeruli with mesangial hypercellularity and a diffuse increase of mesangial matrix. It revealed vacuolar and granular degeneration of tubular cells, partial atrophy of tubule, interstitial edema, and

FIGURE 1 | Clinical image of the dystrophic epidermolysis bullosa patient and histology from renal biopsy. (A) Skin scarring on feet, pseudo-syndactyly and nail dystrophy. (B) H&E staining. (C) Electron micrography image. (D) IgA immunofluorescence staining. (E) C3 immunofluorescence staining.
mild interstitial fibrosis with scattered clusters of lymphocyte and mononuclear cell infiltration in interstitium accompanied by vascular wall thickening of interstitial vessels (Figure 1B). Congo red staining was negative. The depositions of IgA, C3, and fibrinogen were observed in mesangial area upon immunofluorescence (IF) staining (Figures 1D,E). Staining for IgG, IgM, C4, and C1q were all negative. Electron micrography (EM) showed proliferation of endothelial cells and segmental fusion of foot processes. There was no obvious thickening of glomerular basement membranes. High density electron dense deposits were observed in mesangium, and occasionally found in subepithelium and subendothelial lesions (Figure 1C). No abnormal deposition of monoclonal light chain was detected by immunoelectron microscopy.

In addition, the culture of pharyngeal swab, urine, and blood were all negative. Bacterial culture of fresh skin bullae from his left lower limb was positive for methicillin-resistant Staphylococcus aureus (MRSA). After previous oral cefixime, he changed to oral cotrimoxazole for anti-infection based on the result of wound culture susceptibility.

The patient was initially treated with oral prednisone (1 mg/kg-d), followed by a reducing course over subsequent months. From the third month after oral prednisone, oral Mycophenolate mofetil (MMF, 20 mg/kg-d) was added. As his renal function was preserved, we opted for non-specific antiproteinuric therapy with an oral inhibitor of renin-angiotensin-aldosterone system (enalapril) throughout the treatment course. Besides, the patient had moderate normocytic hypochromic anemia at initial presentation. The severe forms of EB are usually complicated by anemia which is caused by the combination of iron deficiency and chronic inflammation. Therefore, we gave him oral iron supplementation (iron succinylate) and three doses of intravenous bolus of iron dextran. Therefore, we gave him oral iron supplementation (iron succinylate) and three doses of intravenous bolus of iron dextran (Figure 2).

Twelve months after oral prednisone, and 1 month after it, proteinuria decreased to about one-half of that at admission. Therefore, we gave him oral iron supplementation (iron succinylate) and three doses of intravenous bolus of iron dextran (Figure 2). Staining for IgG, IgM, C4, and C1q were all negative. Electron micrography (EM) showed proliferation of endothelial cells and segmental fusion of foot processes. There was no obvious thickening of glomerular basement membranes. High density electron dense deposits were observed in mesangium, and occasionally found in subepithelium and subendothelial lesions (Figure 1C). No abnormal deposition of monoclonal light chain was detected by immunoelectron microscopy.

DISCUSSION

The coexistence of IgAN with serum ANCA positivity was rarely reported. Notably, ANCA-positive IgAN all in a child with DEB has never been described. The causal relationship between the two entities is unclear. If IgAN overlaps with AAV, most patients present with rapidly progressive glomerulonephritis and necrotizing crescentic lesions (12, 14). They also exhibit systemic symptoms of vasculitis, including fever, hemoptysis, and arthralgia. But our case preserved renal function without these findings. It is possible that the patient had pre-existing IgAN, and positive anti-MPO and anti-PR3 results were an early finding of subsequent AAV. These ANCA titers would decrease to normal levels after immunosuppressive therapy. On the other hand, it could be mere incidental and non-pathogenic. Huang et al. reported a series of 14 patients from a total of 787 biopsied cases diagnosed of IgAN with ANCA seropositivity (15). Only three had crescentic glomerulonephritis. Of the remaining 11 patients without crescents, six had improved renal function. This finding

Table 1 | Laboratory data on first admission.

	Results	Reference range
Urine		
Occult blood	3 +	Negative
Protein/creatinine ratio	3.49	<0.20
24-h urinary protein	1273.3	<150
Blood		
WBC (thousand/mm³)	5.69	4.00–12.00
Hemoglobin (g/L)	75	110–155
Platelet (thousand/mm³)	328	100–400
hsCRP (mg/L)	13.25	0.00–8.00
Albumin (g/L)	28.1	32.0–52.0
Cholesterol (mmol/L)	4.01	3.00–5.70
Urea nitrogen (mmol/L)	2.10	2.80–7.60
Creatinine (µmol/L)	25	21–65
ESR (mm/h)	> 110	0–20
ANA	1:100	<1:100
Anti-dsDNA (IU/mL)	<1:100	<1:100
P-ANCA	1:100	<1:20
C-ANCA	1:100	<1:20
Anti-MPO (RU/mL)	132.20	0–20
Anti-PR3 (RU/mL)	71.11	0–20
Immunoglobulin G (g/L)	23.8	6.36–13.24
Immunoglobulin A (g/L)	9.10	0.49–2.29
Immunoglobulin M (g/L)	1.99	0.42–1.46
Immunoglobulin E (IU/mL)	315.0	0.0–100.0
C3 (g/L)	1.602	0.900–1.800
C4 (g/L)	0.347	0.100–0.400
Viral hepatitis panel	Negative	
HIV, syphilis and TB screening	Negative	
RBCs, red blood cells; WBC, white blood cells; hsCRP, hypersensitive C-reactive protein; SAA, serum amyloid A; ESR, erythrocyte sedimentation rate; ANA, anti-nuclear antibody; Anti-dsDNA, anti-double-stranded DNA antibody; P-ANCA, perinuclear antineutrophil cytoplasmic antibody; C-ANCA, cytoplasmic antineutrophil cytoplasmic antibody; Anti-MPO, antibody against myeloperoxidase; Anti-PR3, antibody against proteinase 3; C3, complement 3; C4, complement 4; TB, tuberculosis.		
may suggest that ANCA is not directly linked to crescent formation in IgAN.

Staphylococcus infection-associated glomerulonephritis (SAGN) develops in patients with chronic infection including superficial infection. Blood cultures might be negative (16). SAGN is common in the elderly, diabetic or immunodeficient patients, but rarely reported among children. Most cases were secondary to methicillin-resistant Staphylococcus aureus (MRSA) (17). The correlation between MRSA infection and glomerulonephritis has been well documented (6, 17). SAGN is characterized by glomerular IgA deposits, and it has also been termed IgA-dominant infection-associated glomerulonephritis (IAGN) (17, 18). Staphylococcal enterotoxins may act as superantigens which during inflammatory cascades promote proliferation and massive activation of T cells, production of proinflammatory cytokines and secretion of IgA, with circulating immune complexes formation and deposition in glomeruli. Codominant staining of glomerular IgA and Complement 3 (C3) is an important diagnostic feature of IAGN. Interestingly, some IAGN cases tested positive for ANCAs (16, 17). It is possible that infections may trigger ANCA formation through autoantigen complementarity, molecular mimicry, epigenetics, neutrophil extracellular traps (NETs) or Toll-like receptors (TLRs) (7).

As the incidence of MRSA infection increases globally, it could have emerged as the common cause of infection-associated glomerulonephritis in EB patients. Thus, we speculate that DEB patients may be diagnosed with SAGN or SAGN may superimpose on IgAN. However, EB cases with SAGN have rarely been reported. Due to complexity of DEB, differential diagnosis and accurate treatment seems to be a clinical problem. SAGN would improve after resolution of infection, but it may be reasonable to reserve immunosuppressive therapy for patients with severe clinical and histological risk factors, also considering the risk of poorly controllable infections. Hughley et al. reported five DEB patients who developed glomerulonephritis (5). All suffered from chronic SA cutaneous infections with similar renal pathology findings to that of our patient. Three of them were treated with steroids, MMF or angiotensin-converting enzyme inhibitor (ACEi). Their renal disease might be due to IAGN. While antibiotics contributed in part to their improvement, the correlation of antibiotic use with renal improvement did not prove causation. Additionally, a randomized controlled trial showed MMF emerged as a possible treatment option in DEB patients (19). However, it is critical to reduce infectious complications without compromising therapeutic efficacy.

In conclusion, we presented a rare case of DEB with anti-MPO and anti-PR3 seropositivity, accompanied by glomerular IgA deposits. It is uncertain whether this condition was an incidental finding or a novel clinical entity. We even propose that this case may be diagnosed with SAGN, or that SAGN may have superimposed on IgAN. Lastly, the patient showed efficient attenuation of hemato-proteinuria and ANCA turning negative with glucocorticoid, immunosuppressant, ACEi, and anti-infection treatment.

DATA AVAILABILITY STATEMENT

The datasets for this article are not publicly available due to concerns regarding participant/patient anonymity. Requests to access the datasets should be directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Children's Hospital, Zhejiang University School of Medicine. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin. Written informed consent was obtained from the minor(s)’
LY and GH drafted the manuscript. ZL was in charge to collect and interpret the data. WG and JL performed and interpreted histological investigations. JM and JW critically revised the submitted version.

ACKNOWLEDGMENTS

We were grateful to the patient and his families for participation in this study, as well as the help of all the physicians in the course of the medical treatment.

REFERENCES

1. Bardhan A, Bruckner-Tuderman L, Chapple ILC, Fine J-D, Harper N, Has C, et al. Epidermolysis bullosa. Nat Rev Dis Primers. (2020) 6:78. doi: 10.1038/s41572-020-0210-9

2. Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part I. Epithelial associated tissues. Br J Dermatol. (2007) 156:143–7. doi: 10.1111/j.1365-2133.2006.07516.x

3. Hughley E, Nehus EJ, VandenHeuvel K, Augsburger BD, Jain NG, Lucky AW. Glomerulonephritis in youth with dystrophic epidermolysis bullosa. Kidney Int Rep. (2021) 6:538–43. doi: 10.1016/j.ekir.2020.10.038

4. Rollino C, Vischini G, Coppo R. IgA nephropathy and infections. J Nephrol. (2016) 29:463–8. doi: 10.1007/s40620-016-0265-x

5. Kitching AR, Anders H-J, Basu N, Brouwer E, Gordon J, Jayne DR, et al. ANCA-associated vasculitis. Nat Rev Dis Primers. (2020) 6:71. doi: 10.1038/s41572-020-0204-y

6. Jaffee EE, Vlasova A, Feltz J,2008:02.016

7. Chiambaretta C, Adebamowo C, Witsch RF, et al. Inherited epidermolysis bullosa: part I. Epithelial associated tissues. Int J Rheum Dis. (2019) 22:940–5. doi: 10.1111/1756-185X.13483

8. Savige J, Trevisin M, Pollock W. Testing and reporting antineutrophil cytoplasmic antibodies in ANCA-positive vasculitis and non-vasculitic disease. J Immunol Methods. (2018) 458:1–7. doi: 10.1016/j.jim.2018.02.016

9. Moiseev S, Cohen Tervaert JW, Azimura Y, Bogdanos DP, Csernak G, Damoiseaux J, et al. 2020 international consensus on ANCA testing beyond systemic vasculitis. Autoimmun Rev. (2020) 19:102618. doi: 10.1016/j.autrev.2020.102618

10. Bantis C, Stangou M, Schlaugt C, Alexopoulos E, Pantzaki A, Memmos D, et al. Is presence of ANCA in crescentic IgA nephropathy a coincidence or novel clinical entity? A case series. Am J Kidney Dis. (2010) 55:259–68. doi: 10.1053/j.ajkd.2009.09.031

11. Stefan G, Terinte-Balcon G, Stancu S, Zugravu A, Gherghiceanu M, Mircescu G. IgA nephropathy with serum ANCA positivity: case series and literature review. Rheumatol Int. (2021) 41:1347–55. doi: 10.1007/s00296-021-04888-2

12. Bornstein G, Ben-Zvi I, Furie N, Grossman C. Clinical significance of positive anti-neutrophil cytoplasmic antibody seropositivity. Clin Rheumatol. (2017) 37:1953–61. doi: 10.1007/s10067-017-3931-z

13. Huang X, Wang Y, Xie L, Zhang Y, Tang S, Yin S, et al. IgA nephropathy with anti-neutrophil cytoplasmic antibody seropositivity. Clin Nephrol. (2015) 84:156–64. doi: 10.5414/cn108571

14. Savige J, Trevisin M, Pollock W. Testing and reporting antineutrophil cytoplasmic antibodies (ANCA) in treated vasculitis and non-vasculitic cytoplasmic antibodies-associated vasculitis. Nat Rev Dis Primers. (2015) 6:71. doi: 10.1038/s41572-015-0204-y

15. Chan SM, Dillon MJ, Duffy PG, Atherton DJ. Nephro-urological symptoms in IgA nephropathy with ANCA positivity. Clin J Am Soc Nephrol. (2020) 15:1953–61. doi: 10.1007/s10067-017-3931-z

16. Satoskar AA, Parikh SV, Nadasy T. Epidemiology, pathogenesis, treatment and outcomes of infection-associated glomerulonephritis. Nat Rev Nephrol. (2015) 11:37–50. doi: 10.1038/nrneph.2014.107

17. Satoskar AA, Suleiman S, Ayoub I, Hemminger J, Parikh S, Brodsky SV, et al. Staphylococcus infection–associated GN – spectrum of IgA staining and prevalence of ANCA in a single-center cohort. Clin J Am Soc Nephrol. (2017) 12:39–49. doi: 10.2215/cjn.05070516

18. El-Darouti MA, Fawzy MM, Amin IM, Abdel Hay RM, Hegazy RA, Abdel Halim DM. Mycophenolate mofetil: a novel immunosuppressant in the treatment of dystrophic epidermolysis bullosa, a randomized controlled trial. J Derma nut TREAT. (2013) 24:422–6. doi: 10.3109/09566634.2013.768327

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.