Telomerase activity and cell apoptosis in colon cancer cell by human telomerase reverse transcriptase gene antisense oligodeoxynucleotide

Ying-An Jiang, He-Sheng Luo, You-Yuan Zhang, Li-Fang Fan, Chong-Qing Jiang, Wei-Jin Chen

AIM: To evaluate the effect of human telomerase reverse transcriptase (hTERT) gene antisense oligodeoxynucleotide (As-ODN) on telomerase activity and cell apoptosis in colon cancer cell line SW480.

METHODS: As-ODN was transfected into cells SW480 by liposomal transfection. Cultured cells were divided into three groups: ASODN (5'-GGAGCGCGCGGCATCGCGGG-3'), sense oligodeoxynucleotides (5'-CCCGCGATGCCGCGCTCC-3'; S-ODN) and control. The concentration of oligodeoxynucleotides and liposome was 10 µmol/L and 16 mg/L, respectively. The activity of telomerase was examined by telomeric repeat amplification protocol (TRAP)-enzyme-linked immunosorbent assay (ELISA), and cell apoptosis was observed by morphology and flow cytometry in each group.

RESULTS: Telomerase activity began to be down-regulated or inhibited when cells SW480 were treated with As-ODN for 72 h, and cell apoptosis was induced.

CONCLUSION: It is suggested that hTERT As-ODN might specially inhibit the activity of telomerase in colon cancer cells and it is further proved that the hTERT gene has a significant correlation with telomerase activity. Further evidence is needed to prove whether hTERT As-ODN is a potential tool for the treatment of colon cancer.

INTRODUCTION
Telomeres, the distal ends of human chromosomes, are comprised of simple, repetitive and G-rich hexameric sequences (TTAGGG) and are vital for chromosomal stability and replication. Telomerase is a ribonucleoprotein polymerase which adds telomeric sequences onto the ends of chromosomes to compensate for DNA end replication[1-2]. Telomerase activity in humans was detected in germline and tumor tissues as well as in established cultured cell lines[3]. In normal somatic cells, the absence or low expression of telomerase was thought to result in progressive telomeric shortening with each cell division[4-5]. Therefore, it has been suggested that reactivation of telomerase is a critical step in tumorigenesis and that interference with the regulation of telomerase activity may serve as a basis for cancer therapy[6-7]. Here we report the effect of SW480, a human colon cancer line, after transfected with antisense hTERT and investigated the potential value of telomerase as a target for antisense gene therapy in colon cancer.

MATERIALS AND METHODS
Cell culture
SW480 cells, a human colon cancer cell line, generously supplied by Department of Biology, Wuhan University, Wuhan, China, were maintained in RPMI 1640-10 % fetal bovine serum, supplemented with 1 mmol/L L-glutamine, 100 U/ml penicillin plus 100 µg/ml of streptomycin at 37 °C under 5 % CO2.

Cell counting
Cells were counted with 5 g/L of trypan blue staining.

Oligodeoxynucleotides synthesis
Oligodeoxynucleotides synthesis was designed as described by Feng L[8-9]. Antisense oligodeoxynucleotides (As-ODN) with sequence 5'-GGAGCGCGCGGCATCGCGGG-3', which can recognize the RNA template region of telomerase, and sense oligodeoxynucleotides (S-ODN), with 5'-CCCGCGATGCCGCGCTCC-3', were prepared on the 391 DNA synthesizer, synthesized by SBS Bio-technology Engineering Company of Beijing. The synthesized oligodeoxynucleotides were subjected to electrophoresis (PAGE) and purified (300 V, 1.5 h).

Transfection of oligodeoxynucleotides
The phosphorothiate oligodeoxynucleotides (ODNs) transfection was performed with liposomal transfection reagent DOPSER (Roche Diagnostic GmbH) according to the manufacturer’s protocol. Briefly, cells were plated onto 6-well plates and incubated until the cells reached 70-80 % confluency. Before the transfection, DOPSER was diluted with serum-free medium. Then, the desired amount of ODNs was incubated for 15 minutes with diluted DOPSER. The ODNs/DOPSER mixture (100 µl) was added dropwise in 900 µl serum-free RPMI 1640. After incubation for 6 hours at 37 °C, 1 ml RPMI 1640 containing 20 % FBS was added into each well. Cells were harvested and analysed after 48, 72, 96 and 120 hours, respectively.
Telomerase assay
Polymerase chain reaction enzyme linked immunosorbent assay (PCR-ELISA) was performed following the instructions from Roche Diagnostics GmbH of Germany. Briefly, 2×10^6 cells were isolated, mixed with 200 μl protein extraction buffer, and left on ice for 30 minutes. 175 μl supernatant was collected after centrifugation (16,000 rpm, 20 minutes, 4 °C). PCR was performed in 50 μl supernatant containing 25 μl transfer reaction mixture, 2 μl protein extract and 2 μl primers, and added to 23 μl nuclease-free water. The PCR condition was as follows: at 25 °C for 30 minutes for primer elongation, and at 94 °C for 5 minutes for telomerase inactivation. Amplification for 30 cycles under the condition at 94 °C for 30 s for denaturation, at 50 °C for 30 s for annealing, and at 72 °C for 90 s for polymerization. Five μl of amplified product and 20 μl denatured reagent were incubated at room temperature, 225 μl hybridization buffer was then added and mixed, and 100 μl of them was distributed in the wells of a microtitering plate. After 2 hours of incubation (37 °C, 300 rpm), the anti-DIG-POD 100 μl working solution was added and incubated for another 30 minutes followed by adding 100 μl TMB substrate solution, and 100 μl stop reagent was added at last. The OD value in each well was read at the wave length of 450 nm and 655 nm on a microtiter plate reader (Bio-RAD Model 550 microplate reader). The results OD_{450} minus OD_{655} >1.5 unit using a protein extract from immortalized telomerase-positive human embryonic kidney cell (293 cells) were judged as a positive control. The negative control was considered as OD_{450} minus OD_{655} ≤0.2 unit by reading the protein extract pretreated with RNase A at 65 °C for 10 minutes. Telomerase activity was considered positive when the value of OD_{450} minus OD_{655} of a sample was at least 0.2 units higher than that of the negative control, otherwise it would be negative. Each sample was examined for more than twice. The final value was presented as ±SD after a statistical treatment by using t test.

Cytologic morphology
Cytologic morphological changes were observed under the Olympus optical microscope and Hitachi transmission electron microscope.

Detection of apoptotic cells by flow cytometry
Cells were fixed and stained with propidium iodide (PI, Sigma product). The DNA content of each cell was analyzed by a FACSORT flow cytometry (Becton Dickinson). Briefly, cells were trypsinized, washed once in ice-cold PBS, and incubated with annexin-V- fluorescein/PI, and then analyzed immediately with FACSORT flow cytometry. All data were analyzed using Cell Quest software.

Statistical analysis
Results were expressed as the means ±SD. Statistical analyses were carried out with the software package SPSS10.0. A P value <0.05 was considered statistically significant.

RESULTS

Effect of telomerase activity in SW480 cells by antisense hTERT ODNs
As-ODN (10 μmol/L) and S-ODN (10 μmol/L) were transfected into SW480 cells, and the cells were collected at 24, 48, 72, 96 and 120 hours after transfection, respectively. Telomerase activities were measured by TRAP-ELISA. Results were as the followings. (1) Telomerase activity of SW480, transferred with As-ODN, was greatly inhibited when compared with that in the S-ODN. (2) Telomerase activity of SW480, transferred with As-ODN, at 72 and 96 hours after transfection was significantly lower than that at 24 hours, respectively. (3) Telomerase activity of SW480, transferred with As-ODN, was significantly lower than that in the positive control, as shown in Table 1. These findings suggested that this inhibitory action was sequence specific and in a time-dependent manner.

Table 1 Effect of telomerase activity in SW480 cells by ODNs (x±s)

Groups	24 h	48 h	72 h	96 h	120 h
As-ODN 10 μmol/L	0.648±0.057	0.324±0.029	0.283±0.072	0.189±0.093	0.172±0.114
S-ODN 10 μmol/L	1.082±0.249	1.272±0.372	1.204±0.190	0.902±0.193	0.990±0.146
Positive control	1.336±0.231	1.376±0.238	1.354±0.186	1.298±0.172	1.246±0.169
Negative control	0.339±0.181	0.312±0.139	0.283±0.086	0.072±0.039	0.057±0.028

Detection of apoptotic cells by flow cytometry
Cells were isolated, mixed with 200 μl protein extraction buffer, and left on ice for 30 minutes. 175 μl supernatant was collected after centrifugation (16 000 rpm, 20 minutes, 4 °C). PCR was performed in 50 μl supernatant containing 25 μl transfer reaction mixture, 2 μl protein extract and 2 μl primers, and added to 23 μl nuclease-free water. The PCR condition was as follows: at 25 °C for 30 minutes for primer elongation, and at 94 °C for 5 minutes for telomerase inactivation. Amplification for 30 cycles under the condition at 94 °C for 30 s for denaturation, at 50 °C for 30 s for annealing, and at 72 °C for 90 s for polymerization. Five μl of amplified product and 20 μl denatured reagent were incubated at room temperature, 225 μl hybridization buffer was then added and mixed, and 100 μl of them was distributed in the wells of a microtitering plate. After 2 hours of incubation (37 °C, 300 rpm), the anti-DIG-POD 100 μl working solution was added and incubated for another 30 minutes followed by adding 100 μl TMB substrate solution, and 100 μl stop reagent was added at last. The OD value in each well was read at the wave length of 450 nm and 655 nm on a microtiter plate reader (Bio-RAD Model 550 microplate reader). The results OD_{450} minus OD_{655} >1.5 unit using a protein extract from immortalized telomerase-positive human embryonic kidney cell (293 cells) were judged as a positive control. The negative control was considered as OD_{450} minus OD_{655} ≤0.2 unit by reading the protein extract pretreated with RNase A at 65 °C for 10 minutes. Telomerase activity was considered positive when the value of OD_{450} minus OD_{655} of a sample was at least 0.2 units higher than that of the negative control, otherwise it would be negative. Each sample was examined for more than twice. The final value was presented as ±SD after a statistical treatment by using t test.

Cytologic morphology
Cytologic morphological changes were observed under the Olympus optical microscope and Hitachi transmission electron microscope.

Effect of antisense hTERT ODNs on induction of SW480 cells apoptosis
Cytologic morphological changes Cytologic morphology of SW480, transferred with 10 μmol/L As-ODN for 3 days was observed under the Olympus optical microscope and Hitachi transmission electron microscope.
transmission electron microscope. It was found that cells rounded up off the plate, exhibiting cytoplasmic blebbing, fragmentation and chromatin condensation, and features of apoptosis. No apoptotic features (normal morphology) were observed in SW480 transfected with 10 μmol/L S-ODN (Figure 1).

Detection of apoptotic cells To determine the apoptotic rate, SW480 was treated with 10 μmol/L As-ODN and S-ODN for 2 days. After permeabilization, cells were stained with propidium iodide and analysed with flow cytometry. The apoptotic rate of SW480 cells transfected with As-ODN increased (at 48 hours, 4.82±0.39; 72 hours, 8.76±0.14; and 96 hours, 9.25±0.37, respectively, P<0.001), but no significant changes of apoptosis were observed in SW480 cells transfected with 10 μmol/L S-ODN as shown in Table 2, which indicated that this apoptotic induction was sequence specific and in a time-dependent manner.

Table 2 Effect of ODNs on induction of SW480 cells apoptosis (R±s)

Groups	Active duration	48 h	72 h	96 h
As-ODN 10 μmol/L	4.82±0.39	8.76±0.14	9.25±0.37	
S-ODN 10 μmol/L	2.08±0.38	2.96±0.47	2.19±0.29	
hTERT blank	1.47±0.14	1.49±0.21	1.44±0.19	

DISCUSSION

Three major components of telomerase, i.e. human telomerase RNA component (hTR), human telomerase-associated protein (TEP1), and human telomerase catalytic subunit (hTERT), have been identified[8,10-14]. hTR, functioning as a template for telomere elongation by telomerase, has been cloned from humans and mice[15,16] and expressed both in cancer and normal tissues, although its level was inclined to increase with tumor progression[17]. Human telomerase-associated protein (TEP1), as a human homolog of the Tetrahymena telomerase p80, was expressed ubiquitously and did not correlate with levels of telomerase activity[10,12]. hTERT, the catalytic protein subunit of human telomerase, contained the reverse transcriptase motif[17,18]. High levels of hTERT expression were observed in telomerase positive cell lines but not in telomerase negative primary fibroblasts[12]. hTERT was the limiting component necessary for the restoration of telomerase activity in normal diploid cells which was expressed transiently[17,18]. Recent studies have demonstrated telomerase activity was significantly associated with hTERT mRNA expression but not with hTR or TEP1 mRNA expression. These findings provide strong evidences that the expression of hTERT was a rate-limiting determinant of the enzymatic activity of human telomerase and that the up-regulation of hTERT expression might play a critical role in human carcinogenesis[18].

In our study, we found that transfection of SW480 with antisense-hTERT ODNs at a concentration of 10 μmol/L significantly inhibited the telomerase activity and induce apoptosis, when compared with positive control cells. The S-ODN with sense sequence did not affect the telomerase activity and induce apoptosis of transfected cells, indicating that this inhibitory and inducing action was sequence specific and in a time-dependent manner.

Recently, it has been shown that telomerase activity was the dominant mechanism providing telomere maintenance to human immortalized cells. The findings that the ability of cells with long telomeres to proliferate in the absence of telomerase demonstrated that telomerase activity did not require basic replicative functions of these cells, instead, telomerase activity appeared to be required to maintain a minimum telomere length[24]. However, the exact mechanisms of how telomerase activity is regulated in tumor cells remains poorly understood. Some researchers have shown that telomerase activity was correlated with the growth rate of immortal cells[25-27], whereas others found no significant association between telomerase activity and proliferative index in the tissue specimens from breast carcinoma[28], gastric carcinoma[29], and Wilms’ tumor[30]. Based on the recent findings, we did not observe any correlation between telomerase activity and proliferative index.

Some other studies, have shown that cells expressing high telomerase activity were more resistant to apoptosis than those with low telomerase expression[20-23], and that treatment with antisense telomerase inhibited the telomerase activity and subsequently induced either apoptosis or differentiation, and that regulation of these two distinct pathways might depend on the expression of ICE (Interleukin-1β-converting enzyme) or CDKIs (Cyclin-dependent kinase inhibitors)[31]. Interestingly, inhibition of telomerase with an antisense telomerase expression vector not only decreased telomerase activity but also increased the susceptibility to cisplatin-induced apoptotic cell death in cisplatin-resistant U251-L-MG cells[32].

Inhibition of telomerase activity has been proposed as a potential approach to the treatment of human malignancy. It is suggested that telomerase inhibition may serve as an effective tool for eliminating tumor cells that have short telomeres. Such tumors may provide reasonable targets for the agents that inhibit telomerase. These experiments await the development of specific inhibitors for the components of the telomerase complex.

REFERENCES

1. Blackburn EH. Structure and function of telomeres. Nature 1993; 350: 569-573
2. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277: 995-999
3. Holt SE, Shay JW, Wright WE. Refining the telomere-telomerase hypothesis of aging and cancer. Nat Biotechnol 1996; 14: 836-839
4. Hoos A, Hepp HH, Kaul S, Ahlert T, Bastert G, Wallwiener D. Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int J Cancer 1998; 79: 8-12
5. Kyo S, Takakura M, Tanaka M, Kanaya T, Inoue M. Telomerase activity in cervical cancer is quantitatively distinct from that in its precursor lesions. Int J Cancer 1998; 79: 66-70
6. Dahrs R, Ficdler W, Ernst G. Telomeres and telomerase: biological and clinical importance. Clin Chem 1997; 43: 708-714
7. Yan P, Coindre JM, Benhatter J, Bosman FT, Guilhou L. Telomerase activity and human telomerase reverse transcriptase mRNA expression in soft tissue tumors: correlation with grade, histology, and proliferative activity. Cancer Res 1999; 59: 3166-3170
8. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J. The RNA component of human telomerase. Science 1995; 269: 1236-1241
9. Norton JC, Platyszek MA, Wright WE, Shay JW, Corey DR. Inhibition of human telomerase activity by peptide nucleic acids. Nat Biotechnol 1996; 14: 615-619
10. Harrington L, Mcphail T, Mar V, Zhou W, Oulton R, Bass MB, Arruda I, Robinson MO. A mammalian telomerase-associated protein. Science 1997; 275: 973-977
11. Nakayama J, Saiko M, Nakamura H, Matsuura A, Ishikawa F. TPL3: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 1997; 88: 875-884
12. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277: 955-959
Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, Bacchetti S, Haber DA, Weinberg RA. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997; 90: 785-795

Kilian A, Bowtell DD, Abud HE, Hime GR, Venter DJ, Keese PK, Duncan EL, Reddel RR, Jefferson RA. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing pattern in different cell types. Hum Mol Genet 1997; 6: 2011-2019

Blasco MA, Funk W, Villeponteau B, Greider CW. Functional characterization and developmental regulation of mouse telomerase RNA. Science 1995; 269: 1267-1270

Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bacchetti S, Greider CW. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res 1996; 56: 645-650

Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt S, Bodnar AC, Lichtsteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 1997; 17: 498-502

Counter CM, Meyerson M, Eaton EN, Ellisen LW, Haber DA, Weinberg RA. Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 1998; 16: 1217-1222

Itô H, Kyo S, Kanaya T, Takakura M, Inoue M, Namiki M. Expression of human telomerase subunits and correlation with telomerase activity in urothelial cancer. Clin Cancer Res 1998; 4: 1603-1608

Kondo S, Tanaka Y, Kondo Y, Hitomi M, Barnett GH, Ishizaka Liu J, Haqqi T, Nishiyama A, Villeponteau B, Cowell JK, Bai BP. Antisense telomerase treatment: induction of two distinct pathways, apoptosis and differentiation. FASEB J 1998; 12: 801-811

Kondo S, Kondo Y, Li G, Silverman RH, Cowell JK. Targeted therapy of human malignant glioma in a mouse model by 2-5A antisense directed against telomerase RNA. Oncogene 1998; 16: 3323-3330

Kondo Y, Kondo S, Tanaka Y, Haqqi T, Barna BP, Cowell JK. Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene 1998; 16: 2243-2248

Kondo Y, Koga S, Komata T, Kondo S. Treatment of prostate cancer in vitro and in vivo with 2-5A-antitelomerase RNA component. Oncogene 2000; 19: 2205-2211

Zhang X, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Gene Dev 1999; 13: 2388-2399

Belair CD, Yeager TR, Lopez PM, Reznikoff CA. Telomerase activity: a biomarker of cell proliferation, not malignant transformation. Proc Natl Acad Sci U S A 1997; 94: 13677-13682

Holt SE, GilmiskyVV, Ivanova AB, Glinsky GV. Resistance to apoptosis in human cells conferred by telomerase function and telomere stability. Mol Carcinog 1999; 25: 241-248

Greider WC. Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci U S A 1998; 95: 90-92

Bednarek AK, Sahin A, Brenner AJ, Johnston DA, Aldaz CM. Analysis of telomerase activity levels in breast cancer: positive detection at the in situ breast carcinoma stage. Clin Cancer Res 1997; 3: 11-16

Okusa Y, Shinomiya N, Ichikura T, Mochizuki H. Correlation between telomerase activity and DNA ploidy in gastric cancer. Oncology 1998; 55: 258-264

Dome JS, Chung S, Bergmann T, Umbricht CB, Saji M, Carey LA, Grundy PE, Perlman EJ, Breslow NE, Sukumar S. High telomerase reverse transcriptase (hTERT) messenger RNA level correlates with tumor recurrence in patients with favorable histology Wilms’ tumor. Cancer Res 1999; 59: 4301-4307

Fu W, Begley JG, Killen MW, Matson MP. Anti-apoptotic role of telomerase in phaeochromocytoma cells. J Biol Chem 1999; 274: 7264-7271

Holt SE, Shay JW. Role of telomerase in cellular proliferation and cancer. J Cell Physiol 1999; 180: 10-18

Edited by MajY