ACCUMULATION OF 125I-LABELLED THIOURACIL AND PROPYLTHIOURACIL IN MURINE MELANOTIC MELANOMAS

B. LARSSON, K. OLANDER, L. DENCKER AND L. HOLMQVIST*

From the Department of Toxicology, University of Uppsala, Biomedical Centre, Box 573, S-751 23, and *AB Portia, Virdinglaboriet, Box 604, S-751 25 Uppsala, Sweden

Received 5 May 1982 Accepted 25 May 1982

Summary.—We have shown that thioamides are incorporated as false precursors into melanin during its synthesis. To be clinically useful in the diagnosis or therapy of melanotic melanomas, they would have to be tagged with an appropriate isotope or possibly a cytotoxic molety. 125I-Thiouracil (125I-TU) is here shown to be accumulated in the melanin of melanotic melanomas transplanted into mice in a similar way as is 14C-thiouracil (14C-TU). 125I-TU gives tumour/liver and tumour/muscle ratios up to 22 and 778 respectively, at 4 days after administration. 125I-TU is accumulated by melanoma cells in vitro more effectively than 14C-TU (125I-TU/14C-TU, 2.7), while the in vivo accumulation into melanomas is slightly lower for 125I-TU as compared to 14C-TU (125I-TU/14C-TU, 0.35). This appears to be due to a partial deiodination (~14% of the dose within 4 days) and probably a more rapid excretion of 125I-TU or its metabolite(s). The accumulation of radioactivity in the thyroid can essentially be eliminated by pretreatment with potassium iodide and/or thyroxine. 125I-Propylthiouracil is also accumulated in melanotic melanoma cells in vivo and in vitro, but at a lower level than in 125I-TU and 14C-TU.

In earlier studies it was shown that thiouracil and related thioamides, in addition to their accumulation in the thyroid, are also incorporated into melanin when this is synthesized, e.g. in the eyes of foetuses or young animals and in melanin-producing tumours (Whittaker, 1971; Dencker et al., 1979, 1981, 1982). Unlike drugs such as chloroquine and chlorpromazine (Lindquist & Ullberg, 1972), thiouracil does not bind to preformed melanin. If one is interested in finding drugs that might be clinically useful in localizing malignant melanomas, which usually have a high rate of melanin synthesis, then thioamides may be the drugs of choice.

To be clinically useful in this respect, the thioamides would have to be tagged with a gamma-emitting isotope with a relatively short half-life. Even if a number of different isotopes may prove useful, we have so far considered it most relevant to work with iodine, for which a number of isotopes are available.

The aim of this paper is to determine whether thiouracil labelled with iodine-125 is incorporated into melanotic melanoma cells in vitro and in vivo similarly to thiouracil. In addition we have studied the effects of potassium iodide and thyroxine on the uptake of radioactivity in the thyroid after 125I-thiouracil dosing. We have been able to determine approximately the extent of deiodination of 125I-thiouracil in vivo. Finally we have also studied the distribution of 125I-labelled propylthiouracil.

MATERIALS AND METHODS

Chemicals

2-Thiouracil (TU) was purchased from Aldrich-Europe, Belgium, and 6-n-propyl-2thiouracil (PTU) from Sigma, St Louis, MO, U.S.A. Na125I (approx. 15-6 mCi/µg/I$^{-}$) was
obtained from the Radiochemical Centre, Amersham, U.K. Other chemicals used in the study were of analytical grade and purchased from regular commercial sources.

Radioiodination

5-125I-2-Thiouracil (125I-TU).—Two batches were prepared independently by the chloramine-T method:

- Batch A: To 1-7 mCi 125I- (6 \mu l) was added 0-2 \mu g TU in 20 \mu l 0-2M phosphate buffer (pH 7.0) and 5 \mu l 0-5M sodium acetate buffer (pH 7.4), to which was then added 10 \mu l 0-5M sodium metabisulphite, 50 \mu l 0-1M carrier KI and 200 \mu l 0-05M phosphate buffer (pH 7.4). The mixture was thoroughly shaken. The reaction was allowed to proceed for 1 h after which 20 \mu l 0-1M sodium acetate, 50 \mu l 0-1M carrier KI and 400 \mu l 0-05M phosphate buffer (pH 7.4) were added. The mixture was transferred to a small column of Sephadex G25 and eluted with 0-05M phosphate buffer (pH 7.4). Four different peaks were obtained (for further analysis see Results).

- Batch B: This radioiodination was performed essentially as described by Visser & Klootwijk (1981). The main deviation was that the labelling was made at pH 7-5 (instead of 3-3), in order to increase the yield. To 1 mCi 125I- (10 \mu l) was added 10 \mu l 0-5M sodium acetate (pH 8-8), 2 \mu g TU in 10 \mu l ethanol and 20 \mu g chloramine-T in 10 \mu l 0-01M phosphate buffer (pH 7-4). The final pH of the mixture was 7-5. After 10 min, the reaction was stopped by the addition of 100 \mu g sodium metabisulphite in 50 \mu l 0-1M acetic acid. The separation of 125I-TU from the mixture was made on Sephadex G10 in a small Pasteur pipette. Twenty-mm acetic acid containing 0-1M dithiothreitol was used for elution and storage. Two peaks were obtained: unreacted 125I- and 125I-TU (60\%). This is in agreement with the results of Visser & Klootwijk (1981).

The specific activity of the 125I-TU was calculated to be higher than 108 Ci/mmol.

5-125I-6-n-Propyl-2-thiouracil (125I-PTU).—PTU was radioiodinated in the same way as Batch B of TU.

Animals

Melanotic Harding-Passey tumours (obtained from AB Leo, Helsingborg, Sweden), were transplanted into DBA mice. Thus small pieces of the melanomas from non-necrotic areas were passed through a mesh into balanced salt solution (BSS). The cell suspension was then injected s.c. into the dorsum. When the tumours reached \(\frac{1}{2} \) in in diameter, the mice were used for the different experiments. They were then administered single i.p. doses of the drugs to be studied and were killed at different intervals after the injection (usually at 1, 4 and 7 days), by inhalation of carbon dioxide.

Whole-body autoradiography

After killing, the animals were mounted in a gel of carboxymethyl cellulose and frozen in hexane, cooled with dry ice. Sections attached to tape (No. 810, Minnesota Mining and Manufacturing Co., U.S.A.) were taken at different levels of the body (Ullberg, 1954, 1977). The sections were then freeze-dried and opposed against X-ray film for autoradiography (section thickness; 20 and 60 \(\mu m \)).

Scintillation-counting experiments

Quantitative measurements were performed in different ways. Either tissues were scraped off from thick (200\(\mu m \)) tape-fastened sections or were dissected out at necropsy directly after killing. For 125I, the tissues were measured in a Packard Auto-Gamma scintillation spectrometer. For 14C, melanin-containing tissues were dissolved in Solvone-100 (Packard), bleached by the addition of 0-2 ml isopropanol and 0-2 ml of 35\% \(H_2O_2 \) and incubated at 40°C for 30 min, after which 15 ml of Instagel was added. To the serum samples was added 1 ml of water and 10 ml of Instagel. Remaining tissues were dissolved in Solvone-350 (Packard), after which 10 ml of scintillation fluid (4-9 g PPO, 0-1 g dimethyl POPOP per 1 toluene) was added. The specimens were counted in a Packard Tricarb 460CD liquid scintillation spectrometer with the use of an external standard.

Experimental groups

Distribution studies of 125I-TU.—Tumour-bearing mice, 3–12 animals in each group, received single i.p. injections of varying radiodoses of 125I-TU (Batch A) and were killed after 1, 4 and 7 days. Pieces of tissues from a number of organs and 2–3 tumour pieces were excised from each animal. The radioactivity was measured and calculated as the percentage of the given dose recovered per g of tissue (\(\%\) g dose per g tissue; Table IA). Eight melanoma-bearing mice received single i.p. injections of 125I-TU (1,170,000 ct/min/g body wt. Batch B) and were killed after 1, 4, 7
Table IA.—Distribution of radioactivity after administration of 125I-TU* to melanoma-bearing mice. Radioactivity is given as percentage of original dose (per g body wt) recovered in the tissues (% g dose per g tissue). The mean ratio tumour/liver and tumour/muscle is also given. Figures within brackets = s.d. Each value is based on 1 (for tumours on 2–3) measurement from 3–12 animals.

Time between injection and necropsy (days)	% g dose/g tissue	Ratio
Liver	Kidney	Lung
1	8.4 (±1.9)	8.3 (±1.2)
4	1.8 (±0.7)	2.1 (±0.5)
7	1.2 (±0.2)	0.5 (±0.1)

* The dose varied between 23,000 and 400,000 ct/min/g body wt according to access of labelled compound at the time these experiments were performed. The tissue distribution of 14C-TU is not dose-dependent (Dencker et al., 1982). The dose of iodothiouracil is very low irrespective of radioactive dose.

Table IB.—Distribution of radioactivity after administration of 125I-TU (1,170,000 ct/min/g body wt) to melanoma-bearing mice. At killing the animals were frozen and 200 μm-thick sections were taken on tape and used for autoradiography. Tissue pieces from different organs were then collected from the sections. From tumours, areas with high concentration according to the autoradiograms were chosen. Radioactivity is given as % g dose per g tissue after correction of wet wt. The mean ratio tumour/liver and tumour/muscle is also given. Figures within brackets = range. Each value is based on one measurement from 2 animals.

Time between injection and necropsy (days)	% g dose per g tissue	Ratios
Liver	Kidney	Lung
1	12 (12–13)	4.6 (4.4–4.8)
4	2.1 (2.1–2.1)	0.8 (0.7–1.0)
7	0.9 (0.8–1.0)	0.3 (0.3–0.3)
Table II.

Distribution of radioactivity after administration of 125I-PTU, 125I-TU or Na125I (≈ 400,000 ct/min/g body wt) to melanoma bearing male mice (4 in each group). Figures are given as % g dose per g tissue, and represent means of one (for tumours 3) sample(s) from each animal. Figures in brackets = s.d.

Substance	Time between injection and necropsy (days)	Liver	Kidney	Lung	Muscle	Eye	Serum	Thyroid	Tumour
125I-PTU	1	1·8 (± 0·1)	2·8 (± 0·7)	2·3 (± 0·4)	0·8 (± 0·3)	0·4 (± 0·1)	6·3 (± 0·8)	866 (± 200)	6·0 (± 0·9)
125I-PTU	4	1·6 (± 0·1)	1·8 (± 0·3)	0·3 (± 0·1)	0·1 (± 0·0)	0·2 (± 0·0)	0·2 (± 0·2)	1997 (± 1157)	7·7 (± 1·6)
125I-PTU	4	0·7 (± 0·1)	1·8 (± 0·8)	1·0 (± 0·2)	0·7 (± 0·1)	3·5 (± 0·6)	0·5 (± 0·2)	47442 (± 33884)	1·1 (± 0·8)
Na125I	7	0·1 (± 0·0)	0·1 (± 0·0)	0·2 (± 0·0)	0·1 (± 0·0)	0·1 (± 0·0)	0·4 (± 0·1)	406 (± 143)	1·5 (± 0·6)
and 14 days, 2 animals in each group. They were immediately frozen and sectioned for autoradiography. From the sections (1, 4 and 7 days) tumour areas with high radioactivity were selected as judged by the autoradiograms, plus liver, kidney, lung, muscle, blood and thyroid for impulse counting (Table IV).

Comparison between \(^{125}\text{I}\)-TU, \(^{125}\text{I}\)-PTU and \(\text{Na}^{125}\text{I}\).—\(^{125}\text{I}\)-TU (Batch B), \(^{125}\text{I}\)-PTU and Na\(^{125}\text{I}\) were given i.p. in single doses at 400,000 ct/min/g body wt. The \(^{125}\text{I}\)-PTU animals were killed after 1, 4 and 7 days and the \(^{125}\text{I}\)-TU and Na\(^{125}\text{I}\) animals were killed after 4 days. Each group consisted of 3–5 animals (Table II).

Studies on deiodination of \(^{125}\text{I}\)-TU in vivo.—The in vivo loss of \(^{125}\text{I}\) from the \(^{125}\text{I}\)-TU was studied by comparing the thyroidal accumulation of radioactivity after \(^{125}\text{I}\)-TU and Na\(^{125}\text{I}\) administration respectively. Five animals were injected i.p. with Na\(^{125}\text{I}\) or \(^{125}\text{I}\)-TU (400,000 ct/min/g body wt., Batch B) and killed after 4 days for necropsy and gamma scintillation counting.

The thyroid uptake (in % g dose per g tissue) of radioactivity after \(^{125}\text{I}\)-TU injection (Table II) was then reduced by our earlier value after \(^{14}\text{C}\)-thiouracil injection (Dencker et al., 1982). This gives the approximate contribution of free \(^{125}\text{I}\) to the thyroid radioactivity concentration after \(^{125}\text{I}\)-TU administration.

This accumulation of free \(^{125}\text{I}\) can then be compared to that obtained after \(^{125}\text{I}\) injection as described above. The percentage deiodination can thus be easily calculated. As the amounts of iodine and thiouracil administered are very low, it is reasonable to assume that we have not interfered with thyroid function by these treatments.

Double isotope studies: comparison between the distribution of \(^{125}\text{I}\)-TU and \(^{14}\text{C}\)-TU.—Three animals were injected i.p. with a mixture of \(^{125}\text{I}\)-TU (1-4 × 10\(^5\) ct/min/g, Batch B) and \(^{14}\text{C}\)-TU (1-8 × 10\(^5\) disintegrations/min/g). After 4 days they were killed and necropsied. Tissue specimens were first used for gamma scintillation counting (\(^{125}\text{I}\)) and then for liquid scintillation counting (\(^{14}\text{C}\)) after dissolution of the tissues, as described earlier. Careful measures (specific quenching measurements with windows for the discrimination of \(^{125}\text{I}\) electron radiation) were taken to avoid spill-over into the \(^{14}\text{C}\) channel at the liquid scintillation counting. For the spill-over that could still not be avoided, a correction factor was used. The ratio \(^{125}\text{I}/^{14}\text{C}\) was then calculated for different tissues of each individual animal (Table IV).

Uptake of \(^{125}\text{I}\)-TU and \(^{125}\text{I}\)-PTU vs \(^{14}\text{C}\)-TU in Harding-Passey melanoma cells in vitro.—Harding-Passey melanotic melanoma cells were grown in a medium containing 50 ml fetal calf serum, 450 ml RPMI 1640 (Flow Laboratories) 5 ml glutamine (0-2M) with streptomycin and penicillin added. The medium was exchanged every 2 days. After the cells had grown till confluency, \(^{125}\text{I}\)-TU (10\(^5\) ct/min/ml, Batch B) or \(^{125}\text{I}\)-PTU (10\(^5\) ct/min/ml) plus \(^{14}\text{C}\)-TU (10\(^5\) disintegrations/min/ml) was added to the medium (5 cultures each). The cultures were discontinued after 24 h. One ml of the growth medium from each culture was taken for gamma (\(^{125}\text{I}\)) and liquid scintillation counting (\(^{14}\text{C}\)) after addition of 10 ml of Instagel. The cultures were washed 4 times in fresh culture medium and then incubated with 0-25% trypsin and 0-02% NaEDTA in PBS for 20 min to loosen the cells. The cells were counted in a Bürker chamber. After centrifugation (4000 rev/min for 10 min), the radioactivity of the cells was measured, first the gamma activity (\(^{125}\text{I}\)) and then, after dissolution of the cells in Soluene-100 (Packard), the beta-activity (\(^{14}\text{C}\)). Specific quenching measurements were performed as described under Double isotope studies (above). The results are given in Table V.

Incorporation into melanin in vitro.—The simultaneous incorporation of \(^{125}\text{I}\)-TU and \(^{14}\text{C}\)-TU into melanin synthesized in vitro was studied both enzymatically (1) and by auto-oxidation (2):

1. Fifty \(\mu\text{mol}\) L-DOPA, \(10^6\) disinte-
Table IV.—Distribution of radioactivity 4 days after simultaneous administration of 125I-TU (140,000 ct/min/g) and 14C-TU (180,000 disintegrations/min/g) to female melanoma-bearing mice (3 animals in each group). Values are given as % g dose per g tissue and below is the ratio 125I-TU/14C-TU. Figures in brackets = s.d.

Substance	Liver	Kidney	Lung	Muscle	Eye	Thyroid	Serum	Tumour
125I-TU	1.79 (±0.19)	0.48 (±0.08)	0.13 (±0.06)	0.05 (±0.03)	0.13 (±0.05)	1863 (±2182)	0.03 (±0.04)	0.36 (±2.45)
14C-TU	2.72 (±0.14)	0.93 (±0.10)	2.48 (±0.38)	0.20 (±0.03)	0.93 (±0.17)	312 (±312)	0.03 (±0.03)	24.8 (±6.0)

Substance	Liver	Kidney	Lung	Muscle	Eye	Thyroid	Serum	Tumour
125I-TU/14C-TU	0.66 (±0.08)	0.51 (±0.05)	0.05 (±0.02)	0.33 (±0.05)	0.15 (±0.06)	5.23 (±1.15)	—	0.35 (±0.05)
TABLE V.—The in vitro uptake of radioactivity in Harding-Passey melanoma cells after a 24h culture period in a medium containing a mixture of 125I-TU and 14C-TU or 125I-PTU and 14C-TU (100,000 ct/min 125I and 100,000 disintegrations/min 14C respectively). The calculated ratios 125I-TU/14C-TU and 125I-PTU/14C-TU in the cells as compared to those of the medium (called 1) are given, together with the estimated 125I-TU/125I-PTU based on their mutual relation to 14C-TU. Each value is the mean of 5 cultures. Figures in brackets = s.d.

Substances	Radioactivity ratio in melanoma cells
125I-TU/14C-TU	2.7 (± 0.2)
125I-PTU/14C-TU	0.7 (± 0.5)
125I-TU/125I-PTU	5.6

As the combined treatment with KI and thyroxine indicated an effect not only on thyroid uptake of radioactivity but also on its distribution in other organs, it was decided to study the separate effects of the 2 treatments in non-tumour-bearing mice. Five animals were pretreated with KI (4 mg/ml) and 5 animals with thyroxine (40 µg/ml). Four animals had no pretreatment. All the mice were then injected with 400,000 ct/min/g body wt of 125I-TU (Batch B), killed after 4 days and necropsied for gamma-scintillation counting (Table VIII).

RESULTS

As can be seen in the Figure and in Table IA, the 125I-TU was accumulated and retained in melanotic melanomas of mice in a similar way to thiouracil. Thus, at long survival intervals, when most of the drug was eliminated from the body, the tumour tissues had considerably higher concentrations of radioactivity than any other tissue except the thyroid. In the autoradiograms, the tumours showed a mottled pattern, indicating regional differences in the rate of incorporation. When tumour tissues were scraped off from whole-body sections where the autoradiograms had shown the highest accumulation, and the concentration in these areas was compared to that of liver and muscle of the same section, ratios of up to 22 and 778 respectively were obtained (Table IB).

Table II shows that 125I-PTU as well was accumulated in melanotic melanomas, although less so than 125I-TU. One reason for this could be a more rapid metabolic transformation or clearance from the body of 125I-PTU than was observed for 125I-
Table VII.—Effect of combined treatment with KI and thyroxine on the tissue distribution of 125I-TU. Melanotic melanoma-bearing mice (3 animals in each group) were given thyroxine (20 μg/ml in 14 days) and KI (2 mg/ml in 3 days) in the drinking water before they were injected i.p. with 125I-TU (23,000 c/min/g body wt). Controls were given normal tap water. Tissue pieces (1 per organ, 3 for tumour) were collected at necropsy for radioactive measurements. The results are expressed as % g dose/g tissue. Figures in brackets = s.d.

Survival time (days)	Animals	Liver (± s.e.)	Kidney (± s.e.)	Lung (± s.e.)	Muscle (± s.e.)	Eye (± s.e.)	Thyroid (± s.e.)	Serum (± s.e.)	Tumour (± s.e.)
1	Treated	5.6 (1.6)	4.2 (1.1)	1.3 (0.3)	1.4 (0.3)	0.6 (0.3)	80 (15)	2.5 (1.6)	14 (5.6)
	Controls	8.4 (1.9)	8.3 (1.2)	1.4 (0.6)	1.3 (0.3)	0.2 (0.3)	688 (155)	2.3 (0.5)	17 (5.4)
4	Treated	0.6 (0.0)	0.7 (0.2)	0.4 (0.0)	0.2 (0.0)	0.4 (0.0)	60 (5.7)	0.4 (0.1)	8.6 (1.6)
	Controls	1.7 (0.5)	2.1 (0.4)	0.2 (0.0)	0.3 (0.1)	0.3 (0.3)	1206 (724)	0.1 (0.1)	10 (2.8)
7	Treated	0.1 (0.0)	0.2 (0.1)	0.1 (0.0)	0.2 (0.1)	0.4 (0.0)	85 (59)	0.1 (0.1)	4.5 (2.4)
	Controls	0.6 (0.1)	0.6 (0.2)	0.2 (0.1)	0.2 (0.1)	0.1 (0.1)	793 (401)	0.1 (0.1)	3.7 (1.5)
TU. However, as shown in Table V, 125I-PTU was accumulated less in melanoma cells in vitro as compared to 125I-TU, and this most likely occurs in vivo also.

Table II includes a group of mice that received Na125I. As can be seen, the radioactivity of most organs of these animals differed from those of the animals that received 125I-TU or 125I-PTU at the same survival interval, and in particular there was no apparent accumulation of 125I in melanomas compared with other tissues. This indicates that most of the radioactivity after 125I-TU or 125I-PTU administration probably did not represent free 125I.

Administration of 125I-TU gave higher radioactivity concentrations in the thyroid than would have been expected if 125I-TU would accumulate in the thyroid to the same extent as we had earlier observed for 14C-labelled thiouracil (Dencker et al., 1982). This could be due to partial deiodination of 125I-TU. In order to roughly calculate the percentage of the total 125I-TU dose that had been deiodinated after 4 days, we injected Na125I or 123I-TU to groups of non-tumour-bearing mice (Table III). The thyroid radioactivity after 125I-TU dosing was considered to be due partly to free 125I, and partly to unchanged 125I-TU. We then subtracted from the total thyroidal radioactivity the expected 125I-TU activity (as calculated from our previous 14C-TU values). The rest should mainly represent free 125I.* This activity was approximately 14% of what was obtained after Na125I administration and we may therefore assume that around 14% of the 125I-TU dose had been deiodinated within 4 days.

The somewhat lower organ and tumour radioactivity concentrations after 125I-TU administration in comparison with our previous 14C-thiouracil results and the partial deiodination in vivo prompted us to study 125I-TU and 14C-TU in the same animals (double-isotope study; Table IV). There were considerable variations in the 125I/14C ratios when different organs were compared. With the exception of the thyroid, where the fraction of free 125I specifically accumulated, all organs had a lower 125I than 14C radioactivity. In this respect, tumour and muscle have an intermediate position with a ratio of 0.35, the liver and kidney somewhat higher (ratios of 0.66 and 0.51 respectively) and lung and eye lower (0.05 and 0.15 respectively). The serum concentrations were too low to give reliable ratios. A comparison with Table II

* % free iodine = \(\frac{(125I-TU) - (14C-TU)}{(Na^{125I})} \times 100 \)

() = concentration of radioactivity in thyroid.
Fig.—Whole-body autoradiograms of melanoma-bearing mice 24 h (A) and 14 days (B) respectively after i.p. injection of 125I-TU. (C) is the section corresponding to the autoradiogram in (B). Note the accumulation in the melanomas. At 24 h, some radioactivity is still seen in other organs (especially liver). In (B), only restricted tumour areas show high concentrations. These areas are probably the older parts of the tumour, while the areas with a low concentration were formed between injection and sacrifice.
does not indicate that free 125I essentially contributed to the differences in the ratios of the various organs.

Due to the variability of different organs in their uptake of 125I-TU and 14C-TU, the \textit{in vivo} results could not unambiguously determine whether 125I-TU was incorporated into melanin to the same extent as 14C-TU. When melanoma cells were grown \textit{in vitro} for 24 h in a medium containing both 125I-TU and 14C-TU, the resulting 125I/14C ratio was more than doubled in the cells as compared to growing medium (Table V). The 125I-PTU concentration was only two-thirds of the 14C-TU when compared under the same conditions. The calculated ratio 125I-TU/125I-PTU in the cells was 5-6.

Table VI shows that 125I-TU and 14C-TU, when present together in a cell-free medium where melanin is synthesized from DOPA, are incorporated approximately to the same extent. This is true both when the melanin is formed by auto-oxidation and enzymatically through tyrosinase activity.

In a clinical perspective it is essential to bring down the accumulation of 125I-TU and free 125I in the thyroid. Pretreatment of melanoma-bearing mice with thyroxine and KI essentially decreased the thyroidal accumulation of radioactivity after 125I-TU administration, without changing the concentration of radioactivity in the tumours compared with non-treated animals (Table VII). In the autoradiograms from pretreated animals, the thyroid concentration was usually at the level of the tumour areas with highest concentration. A considerable decrease in radioactivity was observed also in livers and kidneys, especially at 4 and 7 days, and this effect was studied in more detail in non-tumour-bearing mice (Table VIII). The results show that KI but especially thyroxine, when preadministered separately, decreased liver and kidney concentrations of radioactivity as measured 4 days after administration of 125I-TU. KI pretreatment was much more effective in decreasing the thyroid accumulation of radioactivity (probably mainly free 125I) than was thyroxine.

DISCUSSION

Our results indicate that iodo-thiouracil and -propylthiouracil, when present in the medium during formation of synthetic melanin (using DOPA as the main precursor), are incorporated into the melanin formed. This is also true for melanoma cells grown \textit{in vitro}. 125I-TU, 14C-TU and 125I-PTU are taken up in such cells in this order. In a cell system, factors such as membrane passage of the compounds and their uptake into the cells are important in relation to the extent of the final incorporation, and it is possible that this explains the differences in uptake of these 3 compounds in our study.

If we consider the \textit{in vivo} situation, a large number of additional factors are involved. The availability of the compound in the extracellular space around the tumour is then an additional important factor for the rate of incorporation. This is dependent on the serum concentration and the degree of protein-binding in the plasma, which in turn depends on the metabolic transformation and excretion.

The \textit{in vivo} double-isotope studies indicate that 125I-TU leaves the body more quickly than 14C-TU. This is partly due to deiodination of the 125I-TU, but most probably the intact molecule or metabolite(s) of it is excreted more rapidly. Consequently, the uptake in the melanomas, as a percentage of the dose given to the animal, was lower than that of 14C-TU, although the tumour/liver and tumour/muscle ratios were in the same range for the two analogues.

The \textit{in vivo} results of the experiments with 125I-PTU support the \textit{in vitro} studies which indicated that less 125I-PTU accumulates in melanoma cells.

The use of a false precursor of melanin instead of the physiological ones (mainly tyrosine and DOPA) may appear circuitous. Both these show a relatively
low specificity for melanin. Tyrosine, being an amino acid, is utilized in protein synthesis in all parts of the body, and in our studies (unpublished) very little iodo-
tyrosine was incorporated into melanin in vivo. Meier et al. (1967) also failed to
demonstrate an incorporation of radio-
activity into melanomas after adminis-
tration of ^{125}I-labelled melanin precursors
(5,6-diacetoxyindole). DOPA is taken up
in endocrine organs like the adrenal
medulla, in the pancreas and in gastric
mucosa (Rosell et al., 1963).

The localization in melanomas of poly-
cyclic amines (mainly radioiodine-labelled
quinolines) which are known to bind to
preformed melanin, has been attempted
with varying results (Potts, 1964; Beier-
waltes et al., 1968; Blois, 1968; Walsh &
Packer, 1971; Safi & Blanquet, 1973;
Packer et al., 1975). The most obvious dis-
advantage with this type of compound is
that they bind strongly to the melanin of
normal tissues, especially the eye. This
may cause ocular damage at higher doses,
or interfere with the radioactivity of an
ocular melanoma if they are used to detect
such tumours (Walsh & Packer, 1971).
Quinoline derivatives also accumulate in
a number of endocrine cell systems, as well
as in the kidney and bone marrow, and
show a long-term retention in the body
(Dencker et al., 1975, 1976).

The main advantage of ^{125}I-TU is thus
that it is not accumulated in the preformed melanin (especially in the eye),
and will not be accumulated and retained
in any other tissue of the body. The only
exception is the thyroid, where the ^{125}I-TU
as well as free ^{125}I- (formed after the
partial deiodination of the ^{125}I-TU) will be
markedly concentrated.

However, as shown here, this accumu-
lation was essentially eliminated by
proper pretreatment either with KI,
thyroxine or the combination of the two.
As there is adequate clinical experience in
the problem of radiiodine uptake in the
thyroid, we feel that iodothiouracil, label-
led with ^{131}I or ^{123}I, may be ready for
clinical evaluation in the detection of
melanotic melanomas. If it turns out to be
as selective for melanomas in man as it is
in experimental animals, it may be tested
also as a therapeutic agent provided high
enough doses can be given to patients.

This study was supported by a grant (No. 1514)
from the Swedish Cancer Society.

REFERENCES

BEIERWALTES, W. H., LIEBERMAN, L. M., VARMA, V.
M. & COUNSELL, R. E. (1968) Visualizing human
malignant melanoma and metastases. Use of
chloroquine analog tagged with iodine 125. J. Am.
Med. Ass., 206, 97.

BLOIS, M. S. (1968) Melanoma detection with radio-
iodoquine J. Nucl. Med., 9, 492.

DENCKER, L., LARSSON, B., OLANDER, K., ULLBERG,
S. & YOKOTA, M. (1979) False precursors of
melanin as selective melanoma seekers. Br. J.
Cancer, 39, 449.

DENCKER, L., LARSSON, B., OLANDER, K., ULLBERG,
S. & YOKOTA, M. (1981) Incorporation of
thiouracil and some related compounds into
growing melanin. Acta Pharmacol. Toxicol., 49,
141.

DENCKER, L., LARSSON, B., OLANDER, K. &
ULLBERG, S. (1982) A new melanoma seeker for
possible clinical use: selective accumulation of
radiolabelled thiouracil. Br. J. Cancer, 45, 95.

DENCKER, L., LINQUIST, N.-G. & TJÄLVE, H. (1976)
Uptake of ^{14}C-labelled chloroquine and an ^{125}I-
labelled chloroquine analogue in some polypeptide
hormone producing cell systems. Med. Biol., 54,
62.

DENCKER, L., LINQUIST, N.-G. & ULLBERG, S.
(1975) Distribution of an ^{125}I-labelled chloroquine
analogue in a pregnant Macaca monkey. Toxi-
cology, 5, 255.

LINQUIST, N.-G. & ULLBERG, S. (1972) The melanin
affinity of chloroquine and chlorpromazine studied
by whole body autoradiography. Acta Pharmacol.
Toxicol., 31, (Suppl. 2), 1.

MEIER, D. A., BEIERWALTES, W. H. & COUNSELL, R.
E. (1967) Radioactivity from labeled precursors of
melanin in mice and hamsters with melanomas.
Cancer Res., 27, 1354.

PACKER, S., REDVANLY, C., LAMBRICHT, R. M.,
WOLF, A. P. & ATKINS, H. L. (1975) Quinoline
analog labeled with iodine 123 in melanoma
detection. Arch. Ophthalmol., 94, 504.

POTTS, A. M. (1964) Tracer studies on a trans-
plantable hamster melanoma. Arch. Ophthalmol.,
72, 359.

ROSSELL, S., SEIVALL, G. & ULLBERG, S. (1963)
Distribution and fate of dihydroxyphenylalanine-
2-^{14}C (DOPA) in mice, Biochem. Pharmacol., 12,
265.

SAFI, N. & BLANQUET, P. (1973) Apport des
molécules marquées au diagnostic et à la
surveillance des tumeurs mélaniques. Biomed.
Exptl., 19, 122.

ULLBERG, S. (1954) Studies on the distribution and
fate of S^{3}S-labelled benzylpenicillin in the body.
Acta Radiol (Stockh.), 118 (Suppl. 1), 1.

ULLBERG, S. (1977) The technique of whole body
autoradiography. Cryosectioning of large specimens. Science Tools (LKB Instrument J.) Special issue on Whole-Body Autoradiography.

Visser, T. J. & Klootwijk, W. (1981) Preparation of radioiodine labelled thiouracil derivatives. Int. J. Appl. Radiat. Isotopes, 32, 271.

Walsh, T. J. & Packer, S. (1971) Radioisotope detection of ocular melanomas. N. Engl. J. Med., 284, 317.

Whittaker, J. R. (1971) Biosynthesis of a thiouracil pheomelanin in embryonic pigment cells exposed to thiouracil. J. Biol. Chem., 246, 6217.