Multi-Inflammatory Syndrome in Children related to SARS-CoV-2 in Spain

Cinta Moraleda (MD, PhD)1,2, Miquel Serna-Pascual2, Antoni Soriano-Arandes3 (MD, PhD), Silvia Simó4 (MD), Cristina Epalza1 (PhD, MD), Mar Santos5 (PhD, MD), Carlos Grasa6 (MD), Maria Rodríguez7 (MD), Beatriz Soto8 (MD, PhD), Nerea Gallego9 (MD), Yolanda Ruiz10 (MD), María Urretavizcaya-Martínez11 (MD), Marta Pareja12 (MD), Francisco José Sanz-Santaeufemia13 (PhD, MD), Victoria Fumadó4 (MD, PhD), Miguel Lanaspa4 (MD, PhD), Iolanda Jordan14 (MD, PhD), Luis Prieto1 (MD, PhD), Sylvia Belda15 (MD), Belén Toral-Vázquez16 (MD), Elena Rincón5 (MD), Nuria Gil-Villanueva17 (MD), Ana Méndez-Echevarría6 (MD, PhD), Ana Castillo-Serrano12 (MD), Jacques G Rivière3 (MD), Pere Soler-Palacín3 (MD, PhD), Pablo Rojo1,2 (MD, PhD), Alfredo Tagarro2,18 (MD, PhD), on behalf of EPICO-AEP Working Group.

1. Pediatric Infectious Diseases Unit. Department of Pediatrics, Hospital Universitario 12 de Octubre. Madrid, Spain
2. Pediatric Research and Clinical Trials Unit (UPIC). Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain. Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Madrid, Spain. RITIP (Traslational Research Network in Pediatric Infectious Diseases).
3. Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d’Hebron Research Institute, Barcelona, Spain

4. Infectious and Imported Diseases Unit, Department of Pediatrics, Sant Joan de Déu Universitary Hospital Research Foundation, Barcelona, Spain.

5. Pediatric Infectious Diseases Unit, Hospital Universitario Gregorio Marañón, Madrid, Spain.

6. Pediatrics and Infectious Disease Unit. Pediatrics Department, Hospital Universitario La Paz. Fundación IdiPaz. Madrid. España. Red de Investigación Traslacional en Infectología Pediátrica (RITIP).

7. Pediatrics Department. Hospital Universitario Infanta Cristina. Parla, Madrid, Spain.

8. Pediatrics Department. Hospital Universitario de Getafe. Getafe, Madrid, Spain.

9. Pediatrics Department. Hospital Universitario Son Espases. Palma de Mallorca, Illles Balears, Spain.

10. Pediatrics Department. Hospital Universitario San Pedro. Logroño, La Rioja, Spain.

11. Pediatrics Department. Complejo Hospitalario de Navarra. Pamplona, Navarra, Spain.

12. Complejo Hospitalario Universitario de Albacete. Albacete, Castilla-La Mancha, Spain.

13. Pediatrics Department. Hospital Universitario Niño Jesús, Madrid, Spain.

14. Pediatric Intensive Care Unit, Sant Joan de Deu Universitary Hospital, Barcelona, Spain. CIBERES.

15. Pediatric Intensive Care Unit. Department of Pediatrics, Hospital Universitario 12 de Octubre, School of Medicine, Complutense University of Madrid, Mother-Child Health and Development Network (Red SAMID) of Carlos III Health Institute, Madrid, Spain.

16. Pediatric Cardiology Unit. Department of Pediatrics, Hospital Universitario 12 de Octubre, Madrid, Spain.
17. Department of Paediatric Cardiology, H.G.U Gregorio Marañón, Madrid, Spain.

18. Pediatrics Department. Hospital Universitario Infanta Sofía. Pediatrics Research Group.

Universidad Europea de Madrid. Madrid, Spain.

Contact author: Alfredo Tagarro García. Servicio de Pediatría, Hospital Infanta Sofía de San Sebastián de los Reyes, Madrid. Spain. E-mail: alfredotagarro@gmail.com
Abstract

Some clusters of children with a multisystem inflammatory syndrome associated with SARS-CoV-2 infection (MIS-C) have been reported. We describe the epidemiological and clinical features of children with MIS-C in Spain. MIS-C is a potentially severe condition that presents in children with recent SARS-CoV-2 infection.

Keywords: Multisystem inflammatory syndrome, Pediatric inflammatory multisystemic syndrome, COVID-19, SARS-CoV-2, Kawasaki disease.
Introduction

In the last weeks, some clusters of children with a multisystem inflammatory syndrome (MIS-C) linked to SARS-CoV-2 infection have been described in the United Kingdom, France, Italy and USA, among other countries.1,2 This syndrome shares features of Kawasaki disease, toxic shock syndrome and macrophage activation syndrome.3 Some of these children tested positive for SARS-CoV-2 real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and/or had a positive serological response for this infection. The specific link with SARS-CoV-2 remains unclear.

In Spain, this phenomenon has also been observed.

Objective

In this case series, we intended to describe the epidemiological and clinical features of children with MIS-C in Spain.

Methods

This is a case series of children with MIS-C associated with SARS-CoV-2 enrolled in the Epidemiological Study of COVID-19 in Children of the Spanish Society of Pediatrics (EPICO-AEP), from March 1st to June 1st, 2020. EPICO-AEP is a multicenter national study aiming to describe the COVID-19 in Spanish children. Children younger than 18 years with infection due to SARS-CoV-2 and attended at 49 hospitals were included in this registry. Inclusion criteria included positivity in real-time polymerase chain reaction (RT-PCR) positive, IgM or IgG in lateral-flow rapid test, ELISA or immuno chemiluminescence serology (see Table 1), or severe disease suggestive of MIS-C and recent household contact with a confirmed patient with COVID-19.
Results

By June 1st, 312 patients had been attended in the 49 hospitals, and 252 participants were hospitalized. Of them, 181 (72%) were admitted due to causes directly or likely related to SARS-CoV-2. The remaining 71 (28%) were admitted due to causes not related with SARS-CoV-2, but were screened and found to be infected with SARS-CoV-2. A total of 31/252 (12%) children were diagnosed as MIS-C and/or Kawasaki disease by their physicians.

Weekly admissions of children with MIS-C and children with other clinical presentations associated with COVID-19 were recorded (Figure 1). The peak of MIS-C cases was one month after the peak of admissions for other COVID-19 related reasons and decreased afterward.

Median age and interquartile range were 7.6 [4.5;11.5] years. A total of 30 (97%) children had microbiological or serological evidence of SARS-CoV-2 infection, and the remaining patient, an 11-year old boy with incomplete Kawasaki disease and pericardial effusion, had epidemiological household contact with a COVID-19 adult patient (his father, who is a health worker). Seventeen children (17/31; 55%) had positive SARS-CoV-2 RT-PCR in any of up to 2 respiratory samples (nasopharyngeal/oropharyngeal swab or bronchial aspirate), IgM was positive in 10/17 (59%) and IgG in 19/21 (90%). All patients with IgM positive had also IgG positive. Seven out of 21 (33%) patients had both RT-PCR and IgG positive, and 16/29 (52%) had a household contact with a confirmed COVID-19 patient (see supplementary table S1 for details on microbiological and serological results).

The World Health Organization recently released diagnostic criteria for this condition. All the described patients fulfilled the WHO case definition for MIS-C, except for 1/31 patients (3%).
Rash or bilateral non-purulent conjunctivitis, or muco-cutaneous inflammation signs were found in 21/31 (67%) patients; hypotension or shock in 15/31 (48%), features of myocardial dysfunction 25/31 (80%) consisting of pericarditis, valvulitis, arrhythmias or coronary abnormalities in 19/31 (61%); 6 (19%) additional children had only an elevation of a biochemical marker of heart dysfunction (NT-proBNP); evidence of coagulopathy (specifically, elevated D-dimers) was found in 29/30 (97%), and acute gastrointestinal problems (diarrhea, vomiting, or abdominal pain), in 27/31 (87%). No other apparent microbial cause of inflammation as sepsis or staphylococcal or streptococcal shock syndrome was found.

The patient who does not include WHO criteria was a 12-month old girl. The criterion she did not meet was the elevation of inflammatory markers. She was cohousing with a COVID-19 patient. She was on chronic oral treatment with steroids due to a chronic idiopathic interstitial lung disease. She presented with 6 days of fever, shortness of breath and cardiogenic shock (pH=7.2). She had lymphopenia (1,100 cells/mm3). She was diagnosed with cardiogenic shock. Echocardiography showed left ventricle dilatation above +2.6 Z-score for age and sex, and ejection fraction of 55%. Enterovirus infection was ruled out with PCR in nasopharyngeal aspirate. She received 10 days of remdesivir. Although she had low inflammatory markers, this fact was attributed to the long-term immunosuppressive therapy with steroids. She had a coinfection with human metapneumovirus (hMPV). She was treated for MISC with intravenous immunoglobulin (IVIG) and steroids. She was on long-term oral steroids due to pulmonary interstitial disease, which may avoid the rising of acute-phase reactants.

Thirteen children (45%) fulfilled the criteria of complete or incomplete Kawasaki disease. Other clinical features and laboratory values are summarized in Table 1.
Twenty (65%) patients needed admission to the Pediatric Intensive Care Unit, and 6/31 (19%) invasive mechanical ventilation. Cardiac complications consisted of myocardial dysfunction (15/31; 48%), pericardial effusion (6/31; 19%); valvular dysfunction (9/31; 29%), arrhythmias (7/31; 23%) and coronary abnormalities (3/31; 10%, among them 1 aneurysm). Four patients (13%) had renal failure.

Two (6%) patients received remdesivir and 7/31 (23%) lopinavir/ritonavir. A total of 21/31 (68%) children received corticosteroids: 19 of these received methylprednisolone (13 patients received doses of 1 to 2.5 mg/kg/day; 2 patients boluses of 8 and 30 mg/kg/day for 3 days; 4 had dosing not available), 20/31 (65%) patients received 2 gr/kg of intravenous immunoglobulin (IVIG) and 13/31 (42%) patients received both IVIG and corticosteroids. All but three patients received broad-spectrum antibiotics.

One patient with acute leukemia and bone marrow transplant died, and one 6-month-old patient developed anterior-descendant coronary aneurysm (z-score +9). This patient was an infant with Down syndrome, who presented with 5 days of fever, shortness of breath and shock due to myocardial dysfunction. He had a a positive RT-PCR for SARS-CoV-2 at diagnosis and coinfection with hMPV, proBNP=9,968 pg/mL and troponin I=34.1 ngr/mL. He developed valve insufficiency, renal failure, coronary aneurysm, and eventually had 50 days of fever despite treatment for infection (antiviral treatment with 2 days with lopinavir/ritonavir, hydroxychloroquine, cefotaxime, vancomycin and meropenem, micafungine) and for Kawasaki disease (IGIV and steroids). The rest of the patients recovered without sequels.
Discussion

In this registry, entry criteria was COVID-19 disease, differently from the previous reports that include patient without SARS-CoV-2. Previous reports raised discussion as some children with MIS-C or Kawasaki disease lacked evidence of infection with SARS-CoV-2. Disease triggered by other causes may have been included within those reports. Our data strongly support the idea that not only there is a temporal association with SARS-CoV-2, but also a microbiological association.

In this report, only 1 patient without microbiological or serological evidence of SARS-CoV-2 was included, but he had a strong epidemiological link. There is a possibility that not all MIS-C cases are microbiologically related to SARS-CoV-2, because RT-PCR and serology do not have 100% sensitivity and specificity. That is why we have included a patient with negative tests and with recent contact with a patient with COVID-19, according to WHO definition of MIS-C.

Some children included may present other viral infection matching criteria of MIS-C and a positive test for SARS-CoV-2 reflecting only past or asymptomatic infection. Also, some children with acute COVID-19 might fulfil WHO criteria. On the other hand, children with Kawasaki disease may fit the WHO case definition and could have positive tests for SARS-CoV-2 simply because the virus is so widely circulating. This may happen with the 6-months infant reported, but given the cardiogenic shock, the proBNP figures and additional features, we considered the disease as MIS-C. With all their limitations, only consensus criteria are currently available. According them, our data points to a microbiological relationship between SARS-CoV-2 and MIS-C.

Limitations of this study include that some cases without microbiological, serological or epidemiological link may not have been included in this registry.
SARS-CoV-2 could be a relevant trigger for a delayed cytokine storm and an inflammatory condition, with potentially severe consequences. Coinfections as hMPV may be present and might play a role in triggering the immune response. It is possible that some particular patients with special features – as chronic immunosuppressive treatment influencing inflammatory markers - may have MISC but not fulfill all WHO criteria.

Conclusions

MIS-C is a potentially severe condition that presents in some children after SARS-CoV-2 infection. Until herd immunity or a vaccine are available, physicians should be aware of this severe condition in children during COVID-19 epidemics. More studies are necessary to clarify the physiopathology of this syndrome and its adequate treatment.
NOTES

Author Contributions:

AT, and CM conceptualized and designed the study. MS performed data management and statistical analysis. CM and AT drafted the manuscript. All co-authors enrolled participants and participated in the collection of data. All co-authors participated and were involved in the critical review of the final manuscript.

Acknowledgments:

We thank all the patients and families for their participation in this cohort, the staff members who cared for them at their personal risk in this time of epidemic and gathered data from them in the Pediatrics wards, Pediatric Intensive Care Units, Cardiology Units, and all the involved Units. We acknowledge the rest of the EPICO Team: Rut del Valle, Ana Barrios (Hospital Infanta Sofia), Sara Villanueva, Jesús R. Contreras, Lourdes Gutiérrez (Hospital 12 de Octubre), Cristina Calvo, Paula R Molino, María José Mellado, María de Ceano (Hospital La Paz), María Penin (Hospital Príncipe de Asturias), Serena Villaverde, María José Pérez Hospital Puerta de Hierro), Enrique Otheo (Hospital Ramón y Cajal), María Dolores Falcón, Olaf Neth, Peter Olbrich, Walter Goycochea (Hospital Universitario Virgen del Rocío), Laura Martín (Hospital Regional Universitario de Málaga), María Isabel Iglesias, José Antonio Alonso Cadenas, Blanca Herrero (Hospital Universitario Niño Jesús), Elvira Cobo (Hospital Fundación Alcorcón) Mariam Tovizi (Hospital del Tajo), Pilar Galán (Hospital Fundación Fuenlabrada), Sara Guillén (Hospital de Getafe), Adriana Navas (Hospital Infanta Leonor) M. Luz García-García (Hospital Severo Ochoa), Marta Llorente (Hospital del Sureste), Sara Pérez (Hospital de Torrejón), Lucía Figueroa (Hospital de Villalba), Amanda Bermejo, Pablo Mendoza (Hospital de Móstoles), Gema Sabrido (Hospital Rey Juan Carlos) María José Hernández (Hospital Central de la Defensa), Ana Belén Jiménez (Fundación Jiménez Díaz), Arantxa Berzosa, Marta Illán (Hospital Clínico San Carlos), Maria Bernardino (Universidad Europea), Julia Jensen (Hospital Infanta Cristina), Paula Vidal (Hospital Infanta Elena), Sara Domínguez, Lourdes Gutiérrez (Fundación Hospital 12 de Octubre), Angustias Ocaña (Hospital La Moraleja), Isabel Romero, María Fernanda Guzmán (Hospitales Madrid), M.J.
Pascual (Hospital Nisa), Ana López Machín (Hospital Universitari Son Espases), Beatriz Ruiz (Hospital Universitario Reina Sofía), Ana Menasalvas (Hospital Universitario Virgen de la Arrixaca), María Méndez (Institut d’Investigació en Ciencies de la Salut Germans Trias i Pujol), Ángela Hurtado (Instituto Hispalense de Pediatría), Fátima Ara, Fernando Cabañas (Hospital Universitario Quironsalud Madrid, Manuel Oltra, Álvaro Villarroya (Hospital Universitari i Politècnic La Fe), María Sánchez-Códez (Hospital Universitario Puerta del Mar), Elena Montesinos (Consorti Hospital General Universitari de Valencia, Mercedes Herranz Aguirre (Complejo Hospitalario de Navarra), Neus Rius, Alba Gómez (Hospital Universitario Sant Joan de Reus), Rafael Bretón (Hospital Clínico Universitario de Valencia, Margarita Rodríguez-Benjumea (Hospital Universitario Virgen de las Nieves), Ana Campos (Hospital Universitario Sanitas La Zarzuela), Mercedes García Reymundo (Hospital de Mérida).

Funding: This work is not funded.

Potential conflicts of interest: C.E. reports grants, scientific meeting and advisory board fees from Viiv, and grants and scientific meeting fees from Gilead, outside the submitted work. J.G.R. reports personal fees from CSL Behring, Takeda and Grifols, outside the submitted work. All other authors have no conflicts of interest.
REFERENCES

1. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. The Lancet. Published online May 2020:S0140673620310941. doi:10.1016/S0140-6736(20)31094-1

2. European Centre for Disease Prevention and Control. Paediatric inflammatory multisystem syndrome and SARS-CoV-2 infection in children system syndrome ECDC: Stockholm; 2020.

3. Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. The Lancet. Published online May 2020:S014067362031103X. doi:10.1016/S0140-6736(20)31103-X

4. WHO/2019-nCoV/Sci_Brief/Multisystem_Syndrome_Children/2020.1. In: https://www.who.int/publications-detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19. Accessed, May 30th, 2020.

5. Estudio ENE-COVID19: Primera ronda estudio nacional de seroprevalencia COVID-19. In: https://www.mscbs.gob.es/ciudadanos/ene-covid/home.htm. Accessed June 1st 2020.

6. Cheng MH, Zhang S, Porritt RA, Arditi M, Bahar I. An insertion unique to SARS-CoV-2 exhibits superantigenic character strengthened by recent mutations. bioRxiv. Published online January 1, 2020:2020.05.21.109272. doi:10.1101/2020.05.21.109272
Table 1. Clinical, microbiological and laboratory features of children with multisystemic inflammatory syndrome associated with SARS-CoV-2 in Spain.

Footnote:

*All patients with IgM positive had also IgG positive.

**Test used and performance according manufacturers: Immunochemoluminescence Abbot™ SARS-CoV-2, (S=96% at 14 days, Sp=99.6%), n=15; Euroimmun™ (Sensitivity [S]=94%, Specificity [Sp]=100%), n=4; Immunochemoluminescence Diasorin™ SARS-CoV-2 S1/S2 IgG, S=97%, E=98%, n=1; ELISA in-house total antibody test, included within Solidarity II trial, ongoing and results pending, n=6; Rapid Test BioZek™, IgM (S=85%, Sp=96%), IgG (S=99.9%, Sp=88%), n=3; Immunoassays Elecsys SARS-CoV-2 Cobas™, total antibodies, S=84%, Sp=100%, n=2.

Categorical Features	Observed Cases / Patients
Demographic	
Male	18/31 (58%)
Comorbidities	
Condition	Count (Percentage)
---------------------------------------	--------------------
Asthma	4/31 (13%)
Obesity	3/31 (10%)
Chronic cardiac disease	1/31 (3%)
Chronic hematologic disease	1/31 (3%)
Neoplasm	1/31 (3%)
SARS-CoV-2 evidence	
Reverse-transcriptase PCR positive	17/31 (55%)
IgM for SARS-CoV-2 positive*, **	10/17 (59%)
IgG for SARS-CoV-2 positive**	19/21 (91%)
Reverse-transcriptase PCR positive and IgG for SARS-CoV-2 positive	7/21 (33%)
Any microbiological test positive	30/31 (97%)
Close contact with a COVID-19 patient	16/31 (52%)
Co-detections	6/21 (29%)
SARS-CoV-2 and metapneumovirus	2/21 (10%)
SARS-CoV-2 and IgM positive for *M. pneumoniae*	1/21 (5%)
Clinical features	
Fever ≥3 days	30/31 (97%)
Symptom	Frequency
--	-------------
Rash or bilateral conjunctivitis	23/31 (74%)
Hypotension or shock	15/31 (48%)
Gastrointestinal problems (abdominal pain, vomits, diarrhea)	27/31 (87%)
Fatigue / Malaise	15/29 (51%)
Cough	11/31 (36%)
Shortness of breath	8/30 (27%)
Sore throat	8/31 (26%)
Myalgia	5/28 (18%)
Headache	6/29 (21%)
Altered consciousness / confusion	4/31 (13%)
Lymphadenopathy	4/31 (13%)

Outcome

Outcome	Frequency	
Died	1/31 (3%)	
Cardiological complications	19/31 (61%)	
Myocardial dysfunction	15/31 (48%)	
Pericardial effusion	6/31 (19%)	
Valvular dysfunction	9/31 (29%)	
Continuous Features	Observations	Median [IQR]
---------------------	--------------	--------------
Age (years)	31/31 (100%)	7.6 [4.5;11.5]
Total days of fever	30/31 (97%)	6.00 [5.00;8.00]
Days of fever at admission	30/31 (97%)	5 [3.00; 6.00]
Heart rate at admission for (beats per minute)	30/31 (97%)	127 [118;148]
Respiratory rate at admission (breaths per minute)	18/31 (58%)	30.0 [27.0;34.8]
Oxygen saturation at admission (room air)	29/31 (93%)	98.0 [96.0;99.0]
C-reactive protein (mg/L), worst value	31/31 (100%)	166 [83.7;233]
Procalcitonin (ng/mL), worst value	29/31 (94%)	6.74 [1.65;10.8]
D-Dimer (ng/mL), worst value	30/31 (97%)	2896 [2059;5355]
IL-6 (pg/mL), worst value	23/31 (74%)	133 [41.3;324]
Ferritin (ng/mL), worst value	29/31 (94%)	627 [365;1278]
NT-proBNP (pg/mL), worst value	22/31 (71%)	8918 [4136;14255]
Hemoglobin (g/dL), worst value	31/31 (100%)	10.3 [9.00;11.2]
Leukocytes (cells/mm3), worst value	31/31 (100%)	9560 [7365;17850]
	30/31 (97%)	6810 [5725;14355]
--------------------------------	-------------	------------------
Neutrophils (cells/mm³), worst value	31/31 (100%)	910 [500;1700]
FIGURE LEGEND

Figure 1. Weekly number of admissions of children due to multisystem inflammatory syndrome associated with SARS-CoV-2 (green) and due to other presentations of COVID-19 (orange).
