**Hibiscus trionum** Linnaeus 1753 is an annual herbaceous plant belonging to the family Malvaceae. *H. trionum*, originally native to Central Africa, is now considered naturalized in Europe and Asia including Korea. Here, we report the complete chloroplast genome assembly of *H. trionum*. The complete chloroplast genome comprises 160,530 bp and is divided into four typical regions: a large single-copy region of 89,272 bp, a pair of inverse repeats of 26,152 bp each, and a small single-copy region of 18,954 bp. A total of 131 genes were identified in this chloroplast, of which 86 were protein-coding, 37 were tRNA, and 8 were rRNA genes. The results of this study will serve as a key reference for further research on *Hibiscus* speciation.
olution of this species and the relationships between its closely related species.

**Author contributions statement**

Soon-Ho Kwon contributed to the conceptualization, design, data analysis and interpretation, and drafting of the manuscript. You Lim Jang contributed to sample collection and drafting of the manuscript. Hae-Yun Kwon contributed to the design of the study, and drafting, and revising the final version of the manuscript. All authors approved the final version and agreed to be accountable for all aspects of the work.

**Ethics statement**

Based on Article 15: Exceptions to the Breeder’s Right to the International Convention for the Protection of New Varieties of Plants (UPOV Publication. No. 221(E) Article 15: (1)-ii) of the International Union for the Protection of New Varieties of Plants (UPOV) in 1991, this study can be conducted without ethical approval or permission.

**Disclosure statement**

The authors have no relevant financial or non-financial competing interests to declare.

**Funding**

This work was supported by the National Institute of Forest Science under grant project number [FG0403-2018-01-2021].

**ORCID**

Soon-Ho Kwon http://orcid.org/0000-0003-4142-9973

**Data availability statement**

The genome sequence data that support the findings of this study are openly available in GenBank at https://www.ncbi.nlm.nih.gov/ under accession no. OL628829. The associated BioProject, BioSample, and SRA numbers are PRJNA798560, SAMN25084885, and SRR17686673, respectively.

**References**

Craven LA, de Lange PJ, Lally TR, Murray BG, Johnson SB. 2011. A taxonomic re-evaluation of *Hibiscus trionum* (Malvaceae) in Australasia. NZ J Bot. 49(1):27–40.

Dierckx N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39(4):783–791.

Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 8(3):275–282.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7(539):539.

Walker S, Wu H, Bell K. 2010. Emergence and seed persistence of *Echinochloa colona, Urochloa panicoides* and *Hibiscus trionum* in the sub-tropical environment of north-eastern Australia. Plant Prot. Q. 25:127–132.

Zhou SX, Zhu ZX, Wei CX, Shi K, Han CX, Zhang C, Shao H. 2021. Chemical profile and phytotoxic action of *Hibiscus trionum* essential oil. Chem Biodivers. 18(2):e2000897.