Degree Based Multiplicative Connectivity Indices of Nanostructures

S Sunantha¹ and P Gayathri²

¹Department of Mathematics, Vivekananda College of Arts and Science (w), Sirkali, 637 305, Tamilnadu, India.
²Department of Mathematics, A.V.C.College (Autonomous), Mannampandal, Mayiladuthurai, 609 305 Tamilnadu, India

*Email: sgsunantha@gmail.com

ARTICLE INFORMATION

Received: 13 October, 2018
Revised: 25 December, 2018
Accepted: 16 February, 2019
Published online: March 6, 2019

ABSTRACT

The Multiplicative topological indices of Phenylene, Naphthalene, Anthracene and Tetracene Nanotubes are calculated. The indices like Multiplicative Zagreb, Multiplicative Hyper-Zagreb, Multiplicative Sum connectivity, Multiplicative product connectivity, General multiplicative Zagreb, Multiplicative ABC and Multiplicative GA indices are expressed as a closed formula for the known values of s, t. The proposed formulae will be very useful for the study of nanostructure in the field of nanotechnology.

Keywords:
Topological indices, Molecular graphs, degree based topological index, Phenylene, multiplicative indices, Naphthalene, Anthracene and Tetracene nanotubes

DOI: https://doi.org/1015415/mjis.2019.72019

1. Introduction

A molecular graph is defined as a simple graph in which the vertices represent the atoms and the edges represent the bonds between the atoms. Graph theory is a developing branch of Mathematics. From the Mathematical modeling of the chemical compound, we can apply the graph theory concepts to the graphs of chemical structure. The application of graph theory is a powerful tool for studying in QSPR and QSAR. Topological indices are invariant values given by the structure of chemical compounds, which correlates with their physico-chemical properties. Phenylene nanotubes have cycles of length 4, 6 and 8. The cycles are arranged in the alternating manner. The structure of nanotubes is either a cylinder or in the form of a torus. Naphthalene nanotubes have cycles of length 4, 6 and 8. The first row of the Naphthalene nanotubes contains only \(C_4 \) and \(C_6 \). Similarly, the second row contains the sequences of cycles of length 6 and 8. So we can say that it is a lattice containing the cycles of length 4, 6 and 8, and it is a plane. The entire structure can cover either a cylinder or torus. Anthracene is denoted by the formula \(C_{14}H_{10} \) which is a solid polycyclic aromatic hydrocarbon. It consists of 3 benzene rings which are fused. It is also known as cool tar. It is used in the production of dyes like red alizarin. Tetracene is also a polycyclic aromatic hydrocarbon. It appeared to be orange powder light in color. The chemical graphs of Phenylene, Naphthalene, Anthracene and Tetracene Nanotubes are shown in the Figures 1, 2, 3 and 4.

Let \(H \) denotes the given graph. The set of vertices represented by \(V(H) \) and the set of edges represented by \(E(H) \). Also \(d_H(v) \) be the degree of vertex \(v \) which is the number of vertices adjacent to \(v \). The indices formulas are listed below as a ready reckoned for the calculation of multiplicative invariants.

Name of the Multiplicative indices	Formula	Reference Number
First multiplicative Zagreb index	\(H_1(H) = \prod_{u \in E(H)} d_H(u)^2 \)	Todeshine et. al. (2010), Gutman (2011)
Second multiplicative Zagreb index	\(H_2(H) = \prod_{u \in E(H)} d_H(u)d_H(v) \)	Todeshine et. al. (2010), Gutman (2011)
New multiplicative version of the first Zagreb index
\(II'_1(H) = \prod_{uv \in E(H)} [d_H(u) + d_H(v)] \)
Eliasi et. al. (2012)

First multiplicative hyper-Zagreb index
\(HII_1(H) = \prod_{uv \in E(H)} [d_H(u) + d_H(v)]^2 \)
Kulli (2016a)

Second multiplicative hyper-Zagreb index
\(HII_2(H) = \prod_{uv \in E(H)} [d_H(u)d_H(v)]^2. \)
Kulli (2016a)

General first multiplicative Zagreb index
\(MZ'_1(H) = \prod_{uv \in E(H)} [d_H(u) + d_H(v)]^\alpha \)
Kulli

General second multiplicative Zagreb index
\(MZ'_2(H) = \prod_{uv \in E(H)} [d_H(u)d_H(v)]^\alpha \)
Kulli

Randic index
\(\chi(H) = \sum_{uv \in E(H)} \frac{1}{\sqrt{d_H(u)d_H(v)}} \)
Randic (1975)

Multiplicative sum connectivity index
\(XII(H) = \prod_{uv \in E(H)} \frac{1}{\sqrt{d_H(u) + d_H(v)}} \)
Kulli (2016b)

Multiplicative product connectivity index
\(\chi_H(H) = \prod_{uv \in E(H)} \frac{1}{\sqrt{d_H(u)d_H(v)}} \)
Kulli (2016b)

Multiplicative atom bond connectivity index
\(ABCII(H) = \prod_{uv \in E(H)} \sqrt{d_H(u) + d_H(v) - 2} \)
Kulli (2016b)

Multiplicative geometric-arithmetic index
\(GAI(H) = \prod_{uv \in E(H)} \frac{2\sqrt{d_H(u)d_H(v)}}{d_H(u) + d_H(v)} \)
Kulli (2016b)

General multiplicative geometric-arithmetic index
\(GA^\alpha II(H) = \prod_{uv \in E(H)} \left[\frac{2\sqrt{d_H(u)d_H(v)}}{d_H(u) + d_H(v)} \right]^\alpha \)
Kulli (2016b)

Many literatures (Veylaki et al. 2015), (Wei Gao 2017), (Farahani 2015), (Kulli 2018), (Imran Nadeem et al. 2016), (Liu et al. 2016), (Wei Geo et al. 2017) are available in the study of topological indices based on additive and multiplicative indices. Recently these topological invariants of nanotubes correlates perfectly with the properties of nanotubes (Doslic et al. 2011), (Vukicevic et al. 2011), (Diudea 2010), (Diudea 2006). Therefore, the studies of four different types of nanotubes are selected and their topological invariants are computed and explained with their structures to the field of nanotechnology.

2. Results and Discussion

2.1 Results for V-Phenylenic nanotubes \((V_p)\)
This type of nanotubes is defined as \(VPHX[s, t]\). Here \(s\)- number of joining hexagons in row first and \(t\)-number of another hexagons in column first. These nanotubes are defined in figure 1.

![Figure 1](image-url)
Lemma 2.1. Let $VPHX[s,t]$ is the V-Phenylenic nanotubes, the vertex cardinality is $|V(P)| = 6st$. $(s,t \geq 1)$.

Lemma 2.2. Let $VPHX[s,t]$ is the V-Phenylenic nanotubes, the edge cardinality is $|E(P)| = 9st - s$. $(s,t \geq 1)$.

Table 1: The following table shows the edges partitions by degrees of every edge in Phenylenic nanotubes.

| $d(a), d(b)$ where $ab \in E(P)$ | $|E_1|$ | $|E_3|$ |
|---------------------------------|-------|-------|
| Total edges | 4s | 9st - 5s |

2.2 Results for V-Naphatalenic Nanotubes (V_N)

This type of nanotubes is defined as $NPHX[s,t]$. Here s-number of joining hexagons in row first and t-number of another hexagons in column first. These nanotubes are defined in figure 2.

Lemma 2.3. Let $VPHX[s,t]$ is the N-Naphatalenic nanotubes, the vertex cardinality is $|V(N)| = 10st$. $(s,t \geq 1)$

Lemma 2.4. Let $VPHX[s,t]$ is the N-Naphatalenic nanotubes, the edge cardinality is $|E(N)| = 15st - 2s$. $(s,t \geq 1)$.

Table 2: The following table shows the edges partitions by degrees of every edge in Naphatalenic nanotubes.

| $d(a), d(b)$ where $ab \in E(N)$ | $|E_1|$ | $|E_3|$ |
|---------------------------------|-------|-------|
| Total edges | 8s | 15st - 10s |

2.3 Results for V-Anthracene Nanotubes (V_A)

This type is defined as Anthracene $[s,t]$. Here s-number of joining hexagons in row first and t-number of another hexagons in column first. These nanotubes are defined in figure 3.

Lemma 2.5. Let $V-Anthracene$ nanotubes, the vertex cardinality is $|V(A)| = 14st$. $(s,t \geq 1)$.

Lemma 2.6. Let $V-Anthracene$ nanotubes, the edge cardinality is $|E(A)| = 21st - 3s$. $(s,t \geq 1)$.

Table 3: The following table shows the edges partitions by degrees of every edge in Anthracene nanotubes.

| $d(a), d(b)$ where $ab \in E(A)$ | $|E_1|$ | $|E_3|$ |
|---------------------------------|-------|-------|
| Total edges | 12s | 12st - 15s |

2.4 Results for V-Tetracenic (V_T)

This type is defined Tetracenic $[s,t]$. Here s-number of joining hexagons in row first and t-number of another hexagons in column first. These nanotubes are defined in figure 4.

Lemma 2.7. Let $V-Tetracenic$ nanotubes, the vertex cardinality is $|V(T)| = 18st$. $(s,t \geq 1)$.

Lemma 2.8. Let $V-Tetracenic$ nanotubes, the edge cardinality is $|E(T)| = 27st - 4s$. $(s,t \geq 1)$.

Table 4: The following table shows the edges partitions by degrees of every edge in Tetracenic nanotubes.

| $d(a), d(b)$ where $ab \in E(T)$ | $|E_1|$ | $|E_3|$ |
|---------------------------------|-------|-------|
| Total edges | 16s | 27st - 20s |
Table 5: Computing number of edges and vertices based on Hexagons:

| Nanostructure | R | \(|V|\) | \(|E|\) | \(|E_2|\) | \(|E_3|\) |
|---------------------|---|--------|------|-------|-------|
| V-Phenylenic | 1 | 6st | 9st - s | 4s | 9st - 5s |
| V-Naphatalenic | 2 | 10st | 15st - 2s | 8s | 15st - 10s |
| V-Anthracene | 3 | 14st | 21st - 3s | 12s | 21st - 15t |
| V-Tetracen | 4 | 18st | 27st - 4s | 16s | 27st - 20s |

Generalizing the results by using an algebraic method, we obtain \(|V| = (4R + 2)st, |E| = (6R + 3)st - sR, |E_1| = 4stR\) and \(|E_2| = (6R + 3)st - 5sR\). Here R denotes the Number of Hexagons in the corresponding rows also columns in the nanotubes mentioned above.

Theorem 2.9. Let H be 2-dimensional lattice of any of the nanostructure (Phenylenic, Naphatalenic, Anthracene and Tetracen). Then,

1. \(II'(H) = 5^{4R} \times 6^{(6R + 3)st - 5sR}\)
2. \(II_s(H) = 2^{4R} \times 3^{(6R + 3)2st - 6sR}\)
3. \(III_s(H) = 5^{4R} \times 6^{(6R + 3)2st - 10sR}\)
4. \(III_s(H) = 2^{4R} \times 3^{(6R + 3)4st - 12sR}\)
5. \(\chi II(H) = \left(\frac{1}{5}\right)^{2^{4R}} \times \left(\frac{1}{\sqrt{6}}\right)^{(6R + 3)st - 5sR}\)
6. \(\chi II(H) = 2^{-2^{4R}} \times 3^{(6R + 3)st - 6sR}\)

Proof. By using the definitions of multiplicative indices and the proposed results from the table, we get the following results:

1. \(II'(H) = \prod_{u\in E(H)} [d_H(u) + d_H(v)]\)
 \[= \prod_{u\in E_1} 5 \times \prod_{v\in E_2} 6 = 5^{4R} \times 6^{(6R + 3)st - 5sR}\]

Inference 1

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracen
\(II'(H)\)	\(5^{4R} \times 6^{9st - 5s}\)	\(5^{4R} \times 6^{15st - 10s}\)	\(5^{12s} \times 6^{21st - 15t}\)	\(5^{16s} \times 6^{27st - 20s}\)

2. \(II_s(H) = \prod_{u\in E(H)} d_H(u)d_H(v)\)
 \[= \prod_{u\in E_1} 6 \times \prod_{v\in E_2} 9\]

Inference 2

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracen
\(II_s(H)\)	\(2^{4R} \times 3^{18st - 6s}\)	\(2^{4R} \times 3^{30st - 12s}\)	\(2^{12s} \times 3^{42st - 18s}\)	\(2^{16s} \times 3^{48st - 24s}\)

3. \(III_s(H) = \prod_{u\in E(H)} [d_H(u) + d_H(v)]^2\)
 \[= \prod_{u\in E_1} 5^2 \times \prod_{v\in E_2} 6^2\]
$$= 5^{3(4\Delta R)} \times 6^{2(6R + 3)\Delta - 5\Delta R}$$

Inference 3

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracenic
$HII_3(H)$	$5^{4r} \times 6^{10(\Delta - 10r)}$	$5^{6r} \times 6^{30(\Delta - 20r)}$	$5^{24r} \times 6^{42(\Delta - 30r)}$	$5^{32r} \times 6^{34(\Delta - 40r)}$

(4). $HII_3(H) = \prod_{uv \in E(H)} \left(d_H(u)d_H(v) \right)^2$

$$= \prod_{uv \in E_1} 6^2 \times \prod_{uv \in E_2} 9^2$$

Inference 4

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracenic
$HII_4(H)$	$2^{4r} \times 3^{60(\Delta - 12r)}$	$2^{6r} \times 3^{60(\Delta - 24r)}$	$2^{24r} \times 3^{48(\Delta - 36r)}$	$2^{32r} \times 3^{108(\Delta - 48r)}$

(5). $XIII(H) = \prod_{uv \in E(H)} \frac{1}{\sqrt{d_H(u) + d_H(v)}}$

$$= \prod_{uv \in E_1} \frac{1}{\sqrt{6}} \times \prod_{uv \in E_2} \frac{1}{\sqrt{9}} \times \prod_{uv \in E_3} \frac{1}{\sqrt{6}}$$

Inference 5

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracenic
$XII(H)$	$\left(\frac{1}{5} \right)^{2r} \times \left(\frac{1}{\sqrt{6}} \right)^{9r - 5r}$	$\left(\frac{1}{5} \right)^{4r} \times \left(\frac{1}{\sqrt{6}} \right)^{15r - 10r}$	$\left(\frac{1}{5} \right)^{6r} \times \left(\frac{1}{\sqrt{6}} \right)^{21r - 15r}$	$\left(\frac{1}{5} \right)^{8r} \times \left(\frac{1}{\sqrt{6}} \right)^{27r - 20r}$

(6). $\chi II(H) = \prod_{uv \in E(H)} \frac{1}{\sqrt{d_H(u) + d_H(v)}}$

$$= \prod_{uv \in E_1} \frac{1}{\sqrt{6}} \times \prod_{uv \in E_2} \frac{1}{\sqrt{9}}$$

Inference 6

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracenic
$\chi II(H)$	$2^{-2r} \times 3^{3(\Delta - 9r)}$	$2^{-4r} \times 3^{6(\Delta - 15r)}$	$2^{-6r} \times 3^{9(\Delta - 21r)}$	$2^{-8r} \times 3^{12(\Delta - 27r)}$

(7). $MZ^*_1(H) = \prod_{uv \in E(H)} \left(d_H(u) + d_H(v) \right)^4$

$$= \prod_{uv \in E_1} 5^4 \times \prod_{uv \in E_2} 5^6$$

Inference 7

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracenic
$MZ^*_1(H)$	$5^{4r} \times 6^{15(\Delta - 5r)}$	$5^{8r} \times 6^{30(\Delta - 10r)}$	$5^{12r} \times 6^{45(\Delta - 15r)}$	$5^{16r} \times 6^{75(\Delta - 20r)}$
(8) \[\text{MZ}_s^2(H) = \prod_{uv \in E(H)} \left[d_H(u) \cdot d_H(v) \right]^s, \]
\[= \prod_{uv \in E(H)} 6^s \times 9^s \]
\[= 6^{s(4R)} \times 9^{s[6(R+3) \sigma - 5R]}, \]
\[= 2^{4sR} \times 3^{s[6(R+3)2 \sigma - 6R]} \]

Inference 8

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracenic
\text{MZ}_s^2(H)	$2^{4s} \times 3^{38\sigma - 6s}$	$2^{6s} \times 3^{30\sigma - 12s}$	$2^{12s} \times 3^{32\sigma - 18s}$	$2^{16s} \times 3^{34\sigma - 24s}$

(9) \[\text{ABCII}(H) = \prod_{uv \in E(H)} \frac{d_H(u) + d_H(v) - 2}{d_H(u) \cdot d_H(v)}. \]
\[= \prod_{uv \in E(H)} \sqrt{\frac{3 + 2 - 2}{3} \times \prod_{uv \in E(H)} \sqrt{\frac{3 + 3 - 2}{3}}}, \]
\[= \frac{1}{\sqrt{2}} \times \left(\frac{2}{3} \right)^{6(R+3)\sigma - 5R}. \]
\[= 2^{6(R+3)\sigma - 7R} \times 3^{3R - (6R+3)\sigma}. \]

Inference 9

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracenic
\text{ABCII}(H)	$2^{9\sigma - 7s} \times 3^{3\sigma - 9s}$	$2^{13\sigma - 14s} \times 3^{3\sigma - 15s}$	$2^{21\sigma - 21s} \times 3^{3\sigma - 21s}$	$2^{27\sigma - 28s} \times 3^{3\sigma - 27s}$

(10) \[\text{GAI}(H) = \prod_{uv \in E(H)} \sqrt{\frac{2d_H(u) \cdot d_H(v)}{d_H(u) + d_H(v)}}. \]
\[= \prod_{uv \in E(H)} \sqrt{\frac{2 \times 3 \times 2}{3 + 2} \times \prod_{uv \in E(H)} \sqrt{\frac{2 \times 3 \times 3}{3 + 3}}}, \]
\[= \left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R} \times \left(1 \right)^{(6R+3)\sigma - 5R}. \]
\[= \left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R} \times \left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R}. \]

Inference 10

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracenic
\text{GAI}(H)	$\left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R}$	$\left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R}$	$\left(\frac{2\sqrt{6}}{5} \right)^{12\sigma R}$	$\left(\frac{2\sqrt{6}}{5} \right)^{16\sigma R}$

(11) \[\text{GAII}(H) = \prod_{uv \in E(H)} \sqrt{\frac{2d_H(u) \cdot d_H(v)}{d_H(u) + d_H(v)}}. \]
\[= \prod_{uv \in E(H)} \left(\frac{2 \times 3 \times 2}{3 + 2} \times \prod_{uv \in E(H)} \frac{2 \times 3 \times 3}{3 + 3} \right)^{\sigma}, \]
\[= \left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R} \times \left(1 \right)^{(6R+3)\sigma - 5R}. \]
\[= \left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R} \times \left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R}. \]

Inference 11

Nanostructure	V-Phenylenic	V-Naphatalenic	V-Anthracene	V-Tetracenic
\text{GAII}(H)	$\left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R}$	$\left(\frac{2\sqrt{6}}{5} \right)^{4\sigma R}$	$\left(\frac{2\sqrt{6}}{5} \right)^{12\sigma R}$	$\left(\frac{2\sqrt{6}}{5} \right)^{16\sigma R}$
Conclusion
In this article, we have studied the Multiplicative indices of some nanostructures. The analytical expression for the topological invariants is presented by using edge set dividing method. Also, we expressed the generalized form for the computational formulas. These proposed results will be useful for the study of nanostructures. The results obtained in this study have a wide application prospect in nanoscience, biology, pharmacy and other fields.

References
Diudea, M. V., Florescu, M. S., Khadikar, P. V. (2006). Molecular Topology and its Applications, Eficon, Bucarest.
Diudea, M. V. (2010). Nanomolecules and Nanostructures–Polynomials and Indices, Univ. Kragujevac, Kragujevac.
Doslic, T., Furtula, B., Graovac, A., Gutman, I., Moradi, S., Yarahmadi, Z. (2011). On vertex – degree – based molecular structure descriptors, MATCH Commun. Math. Comput. Chem., 66, 613–626.
Eliasi, M., Iranmanesh, A., Gutman, I. (2012). Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68, 217–23.
Farahani, M. R. (2015). Computing Some Connectivity Indices of V-Phenylenic Nanotubes and Nanotori, IJAMML, 3(1), 79–87.
https://doi.org/10.18642/ijamml_7100121551
Farahani, M. R., Rajesh Kanna, M. R. (2015). Computing the Atom Bond Connectivity and Geometric-Arithmetic Indices of V-Phenylenic Nanotubes and Nanotori, American Journal of Computational and Applied Mathematics, 5(6), 174–17.
https://doi.org/10.5923/j.ajcam.20150506.03
Gao, W., Jamil, M. K., Nazeer, W., Amin, M. (2017). Degree-Based Multiplicative Atom-bond Connectivity Index of Nanostructures, IAENG International Journal of Applied Mathematics, 47(4).
Gao, W., Rajesh Kanna, M. R., Suresh, E., Farahani, M. R. (2017). Calculating of Degree Based Topological Indices of Nanostructures, Geology, Ecology and Landscapes, 1(3), 173–183. https://doi.org/10.1080/24749508.2017.1361143
Gutman, I. (2011). Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka, 18, 17–23.
Kulli, V. R., Stone, B., Wang, S., Wei, B. Multiplicative Zagreb and Multiplicative hyper-Zagreb indices of polycyclic aromatic hydrocarbons, Benzenoidsystems, Preprint.
Kulli, V. R. (2016a). Multiplicative hyper-Zagreb indices and coindices of graphs, International Journal of Pure Algebra, 67, 342–347.
Kulli, V. R. (2016b). Multiplicative connectivity indices of certain nanotubes, Annals of Pure and Applied Mathematics, 12(2), 169–176. https://doi.org/10.22457/apam.v12n2a8
Kulli, V. R. (2018). Edge Version of Multiplicative Atom Bond Connectivity Index of Certain Nanotubes and Nanotorus, International Journal of Mathematics And Its Applications, 6(1-E), 977–982.
Liu, J. B., Gao, W., Siddiqui, M. K., Farahani, M. R. (2016). Computing three Topological Indices for Titania Nanotubes TiO_2[m,n], AKCE International Journal of Graphs and Combinatorics, 13, 255–260. https://doi.org/10.1016/j.ijacm.2016.07.001
Nadeem, I., Shaker, H. (2016). On Eccentric Connectivity Index of TiO_2 Nanotubes, Acta Chim. Slov., 63, 363–368. https://doi.org/10.17344/acsi.2016.2337
Randic, M. (1975): On characterization of molecular branching, Journal of the American Chemical Society, 97(23), 6609–661. https://doi.org/10.1021/ja00856a001
Todeshine, R., Consonni, V. (2010). New vertex invariants and descriptors based on functions of vertex degrees, MATCH Commun. Math. Comput. Chem., 64, 359–372.
Veylaki, M., Nikmehr, M. J. (2015). Some degree based connectivity indices of Nano-structures, Bulgarian Chemical Communications, 47(3), 872–875.
Vukicevic, D., Gutman, I., Furtula, B., Andova, V., Dimitrov, D. (2011). Some observations on comparing Zagreb indices, MATCH Communications in Mathematical and in Computer Chemistry, 66, 627–645.