A coloring of the square of the 8-cube with 13 colors

Janne I. Kokkala* and Patric R. J. Östergård

Department of Communications and Networking
Aalto University School of Electrical Engineering
P.O. Box 13000, 00076 Aalto, Finland

Abstract

Let $\chi_k(n)$ be the number of colors required to color the n-dimensional hypercube such that no two vertices with the same color are at a distance at most k. In other words, $\chi_k(n)$ is the minimum number of binary codes with minimum distance at least $k+1$ required to partition the n-dimensional Hamming space. By giving an explicit coloring, it is shown that $\chi_2(8) = 13$.

1 Introduction

For any pair $u, v \in \{0, 1\}^n$, the Hamming distance between u and v, denoted by $d_H(u, v)$, is the number of positions in which u and v differ. A binary (n, M, d) code C is a subset of $\{0, 1\}^n$ for which $|C| = M$ and the minimum Hamming distance between any two distinct elements of C is d. The parameters n, M, and d are called the length, the size, and the minimum distance of C, respectively.

The n-dimensional hypercube, also called the n-cube, denoted by Q_n, is the graph with vertex set $V = \{0, 1\}^n$ such that two vertices are adjacent if and only if their Hamming distance is exactly 1. Given a graph G, the kth power of G, denoted by G^k, is the graph obtained from G by adding edges between all pairs of vertices that have distance at most k in G. In particular, G^2 is called the square of G.

*Supported by the Aalto ELEC Doctoral School, by the Nokia Foundation, and by the Emil Aaltonen Foundation.
A proper vertex coloring of Q_k^n corresponds to a partition of $\{0, 1\}^n$ into binary codes of minimum distance at least $k + 1$. The chromatic number of Q_k^n is denoted by $\chi_k(n)$. The problem of finding bounds and exact values for $\chi_k(n)$ arises from the problem of scalability of certain optical networks and has attracted wide interest in coding theory and combinatorics; see for example [1-5].

2 Determining $\chi_2(8)$

The size of a binary code of length 8 and minimum distance 3 is at most 20 [6]. Therefore, at least $\left\lceil \frac{2^8}{20} \right\rceil = 13$ colors are needed to color the square of the 8-cube. Colorings with 14 colors were first obtained by Hougardy in 1991 [3] and Royle in 1993 [7, Section 9.7], but it has been an open problem whether 13 colors suffice.

We give a partition of $\{0, 1\}^8$ into 13 codes of minimum distance at least 3 in Table 1 which shows that $\chi_2(8) = 13$. To save space, the elements of $\{0, 1\}^8$ are given as integers from 0 to 255. Twelve of the codes are $(8, 20, 3)$ codes and the remaining code is an $(8, 16, 4)$ code.

The listed coloring is one of many colorings found with a computer-aided approach. The computational techniques will be discussed in detail in a full paper. It will further be checked whether these colorings can be used as substructures to obtain colorings of the square of the 9-cube with 13 colors.

References

[1] P.-J. Wan. Near-optimal conflict-free channel set assignments for an optical cluster-based hypercube network. *Journal of Combinatorial Optimization*, 1(2):179–186, 1997.

[2] D. S. Kim, D.-Z. Du, and P. M. Pardalos. A coloring problem on the n-cube. *Discrete Applied Mathematics*, 103(13):307–311, 2000.

[3] G. M. Ziegler. Coloring Hamming graphs, optimal binary codes, and the 0/1-Borsuk problem in low dimensions. In H. Alt, editor, *Computational Discrete Mathematics*, volume 2122 of Lecture Notes in Computer Science, pages 159–171. Springer Berlin Heidelberg, 2001.

[4] H. Q. Ngo, D.-Z. Du, and R. L. Graham. New bounds on a hypercube coloring problem. *Information Processing Letters*, 84(5):265–269, 2002.
Table 1: A partition of \(\{0,1\}^8 \) into 13 codes of minimum distance at least 3

\(C_1 \)	\(C_2 \)	\(C_3 \)	\(C_4 \)	\(C_5 \)	\(C_6 \)	\(C_7 \)	\(C_8 \)	\(C_9 \)	\(C_{10} \)	\(C_{11} \)	\(C_{12} \)	\(C_{13} \)
9	3	23	8	10	2	14	1	4	6	7	5	0
18	29	24	20	21	13	25	15	11	19	12	16	30
37	38	33	31	35	39	36	22	17	28	26	27	45
56	40	47	46	44	52	55	42	54	32	41	34	51
63	59	50	49	48	57	58	60	61	43	53	62	75
71	68	66	65	70	81	67	76	78	69	64	72	85
92	90	77	82	73	94	84	80	87	74	83	79	102
96	109	100	103	95	107	104	91	88	89	93	86	120
110	112	121	123	101	108	111	99	98	116	106	97	135
115	119	126	124	122	114	113	117	105	127	118	125	153
134	133	139	131	132	142	128	136	130	137	129	138	170
149	150	140	154	143	144	141	157	158	159	148	156	180
155	152	145	160	146	151	147	167	165	174	162	164	204
163	175	166	173	185	161	171	176	168	178	184	169	210
172	177	189	182	190	186	188	187	179	181	191	183	225
202	201	199	196	209	197	198	194	193	192	203	195	255
205	206	212	207	220	200	216	215	221	214	222	213	
208	211	218	217	224	219	223	228	239	227	231	238	
246	226	232	234	235	230	229	233	244	237	236	240	
249	252	243	245	247	253	242	254	250	248	241	251	

[5] P. R. J. Östergård. On a hypercube coloring problem. *Journal of Combinatorial Theory, Series A*, 108(2):199–204, 2004.

[6] M. Best, A. Brouwer, F. J. MacWilliams, A. M. Odlyzko, and N. J. A. Sloane. Bounds for binary codes of length less than 25. *IEEE Transactions on Information Theory*, 24(1):81–93, 1978.

[7] T. R. Jensen and B. Toft. *Graph Coloring Problems*. Wiley, New York, 1995.