The complete chloroplast genome of *Chrysanthemum zawadskii* Herbich (Asteraceae) isolated in Korea

Jinwook Baek**, Suhyeon Park⁴**, Junho Lee⁴, Juhyeon Min⁴, Jongsun Park⁴ and Gun Woong Lee⁴

Jeonju AgroBio-Materials Institute, Jeonju-si, Republic of Korea; bInfoBoss Inc., Seoul, Republic of Korea; cInfoBoss Research Center, Seoul, Republic of Korea; dFromBio Co. Ltd, Suwon-si, Republic of Korea

**These authors are co-first authors.

CONTACT Jongsun Park starflr@infoboss.co.kr, InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea; InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea; Gun Woong Lee gwlee@jami.re.kr, Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea

ABSTRACT

We have determined the complete chloroplast genome of *Chrysanthemum zawadskii* Herbich isolated in Korea. The circular chloroplast genome of *C. zawadskii* is 151,137 bp long and has four subregions: 83,041 bp of large single copy and 18,350 bp of small single copy regions are separated by 24,873 bp of inverted repeat regions including 133 genes. We used BWA v0.7.17 (Li et al. 2009), and SAMtools v1.9 (Li 2013) for alignment, and later used GapCloser v1.12 (Zhao et al. 2011) for the closure. The chloroplast genome of *C. zawadskii* is clustered as a paraphyletic group with *C. zawadskii* subsp. *coreanum*, displaying incongruency between species and clades.

CONTACT Jongsun Park starflr@infoboss.co.kr, InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea; InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea; Gun Woong Lee gwlee@jami.re.kr, Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea

Accepted 19 May 2021

KEYWORDS Chloroplast genome; *Chrysanthemum zawadskii*; Asteraceae; intraspecific variations; Korea

Chrysanthemum zawadskii Herbich (Asteraceae: Asteroideae), is a native plant in Korea (Park et al. 2020) and has economic values as traditional medicinal resources (Shin et al. 2010) and ornamental plants (Kim et al. 2014). There was controversy over its scientific name; *Chrysanthemum* L. and *Dendranthema* (DC.) Des Moul. were treated as two independent genera for a while due to morphological diversity (Bremer and Humphries 1993; Bremer 1994). However, *Dendranthema* was finally treated as a synonym of *Chrysanthemum* by a decision of the International Botanical Congress in 1999 (Trehane 1995; Nicolson 1999). *Chrysanthemum* including *C. zawadskii* has considerable variations in morphology and ploidy within species and is still unresolved based on a few chloroplast and nuclear markers (Liu et al. 2012). We completed *C. zawadskii* chloroplast genome to understand the phylogenetic position of *C. zawadskii* based on multiple complete chloroplast genomes.

We sequenced DNA extracted from fresh leaves of *C. zawadskii* (N35°34′10″, E127°1′18″; Jeongeup-si, Jeollabuk-do, Korea; InfoBoss Cyber Herbarium (IN); IB-01081; Contact: Suhyeon Park, shpark817@infoboss.co.kr) using DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). Raw sequences obtained from Illumina NovaSeq6000 (Macrogen Inc., Korea) were filtered by Trimmomatic v0.33 (Bolger et al. 2014), and then assembled by Velvet v1.2.10 (Zerbino and Birney 2008). Gaps were closed with GapCloser v1.12 (Zhao et al. 2011), BWA v0.7.17 (Li et al. 2009), and SAMtools v1.9 (Li 2013) under the Genome Information System (GeIS™; http://geis.infoboss.co.kr/). Geneious Prime® 2020.2.4 (Biomatters Ltd., Auckland, New Zealand) was used to annotate chloroplast genome based on *C. indicum* chloroplast (NC_020320.1; Xia et al. 2016). *C. zawadskii* chloroplast genome (MW539687) is 151,137 bp (GC ratio is 37.5%) with four subregions: 83,041 bp of large single-copy (35.5%), 18,350 bp of small single-copy (30.8%) regions, and 24,873 bp of a pair of inverted repeats (IR; 43.1%). It contains 133 genes (87 protein-coding genes, eight rRNAs, 37 tRNAs, and one pseudogene in an IR region); 18 genes (seven protein-coding genes, four rRNAs, and seven tRNAs) are duplicated in IR regions.

In comparison to Chinese *C. zawadskii* chloroplast (MG799556), 110 single nucleotide polymorphisms (SNPs) and 45 insertion and deletion (INDEL) regions (251 bp in length) were identified. Interestingly, 28 of 45 SNPs in 20 PCGs (62.2%) are non-synonymous SNPs (nsSNPs), similar to *Chenopodium album* (Park et al. 2021), suggesting that these variations can be used for developing molecular markers. Numbers of intraspecific variations of *C. zawadskii* are fewer than those identified between Korea and China samples (Heo, Kim, et al. 2019; Heo et al. 2020; Oh and Park 2020; Park et al. 2020), suggesting weak effects of geographical distribution. Additionally, numbers of intraspecific variations between our chloroplast and those of two varieties are 65 SNPs and 33 INDEL regions (178 bp in length) and 152 SNPs and 64 INDEL regions (372 bp in length), and 110 SNPs and
45 INDEL regions (251 bp in length), respectively. These variations are greater than those identified among different varieties, including *Potentilla freyniana* (Heo, Park, et al. 2019; Park, Heo, et al. 2019) and *Aconitum barbatum* (Chen et al. 2015), supporting that paraphyletic manner of *C. zawadskii* (Figure 1) together with larger amount of intraspecific variations than those identified from the Korean samples (Kim et al. 2019; Min et al. 2019; Park, Kim, and Xi 2019; Park, Kim, Xi, Oh, et al. 2019a, 2019b; Kim et al. 2020; Park and Oh 2020; Park et al. 2021).

Sixteen Asteraceae complete chloroplast genomes including four *C. zawadskii* chloroplast genomes were aligned by MAFFT v7.450 (Katoh and Standley 2013) for constructing Maximum-Likelihood (ML) and Bayesian inference (BI) phylogenetic trees after adjusting SSC direction. A heuristic search was used with nearest-neighbor interchange branch swapping, the Tamura-Nei model, and uniform rates among sites to construct ML tree with 1,000 pseudo-replicates bootstrap option and default values of other options using MEGA X (Kumar et al. 2018). BI tree was constructed by MrBayes v3.2.6. (Ronquist et al. 2012). The GTR model with gamma rates was used. A Markov-chain Monte Carlo algorithm was employed for 1,100,000 generations, sampling trees every 200 generations, with four chains running simultaneously. Both trees show that two *C. zawadskii* chloroplast genomes are clustered with *C. zawadskii* subsp. *coreanum* and four *Chrysanthemum* chloroplast genomes by high supportive values (Figure 1). Moreover, phylogenetic trees display three incongruencies: i) *C. zawadskii* (MW539687) forms a paraphyletic group with *C. zawadskii* subsp. *coreanum* and *C. zawadskii* (MG799556), ii) *C. zawadskii* var. *latilobum* (MF034026) is placed separately from two *C. zawadskii* and *C. zawadskii* subsp. *coreanum*, and iii) *C. zawadskii*, *C. indicum*, and *C. boreale* do not form a monophyletic group (Figure 1), which is congruent to the previous phylogenetic study using chloroplast and nuclear regions (Liu et al. 2012). Our results present that the multiple times of evolutionary events, such as hybridization and introgression, have been occurred in *Chrysanthemum* genus once morphological classification is enough clear.

Disclosure statement

The authors declare that they have no competing interests.

Funding

This study was carried out with the support of the Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea, under the “Regional Specialized Industry Development Plus Program [R&D, S2913418]” supervised by the Korea Institute for Advancement of Technology (KIAT).
Chloroplast genome sequence can be accessed via accession number of MW539687 in GenBank of NCBI at https://www.ncbi.nlm.nih.gov. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA688416, SAMN17175002, and SRR13320595, respectively.

References

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120.

Bremer K. 1994. Asteraceae: cladistics and classification. Portland (OR): Timber Press.

Bremer K, Humphries CJ. 1993. Generic monograph of the Asteraceae-Athamendiaeae. Bull Nat Hist Mus Bot Ser. 23(2):71–177.

Chen X, Li Q, Li Y, Qian J, Han J. 2015. Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform. Front Plant Sci. 6:42.

Heo K-I, Kim Y, Maki M, Park J. 2019. The complete chloroplast genome of mock strawberry, Duchesnea indica (Andrews) Th. Wolf (Rosoideae). Mitochondrial DNA Part B. 4(1):560–562.

Heo K-I, Park J, Kim Y. 2019. The complete chloroplast genome of new variety candidate in Korea, Potentilla freyniana var. chejuensis (Rosoideae). Mitochondrial DNA Part B. 4(1):1354–1356.

Heo K-I, Park J, Xi H, Min J. 2020. The complete chloroplast genome of Agrimonia pilosa Ledeb. isolated in Korea (Rosoideae): investigation of intraspecific variations on its chloroplast genomes. Mitochondrial DNA B Resour. 5(3):2264–2266.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kim SJ, Lee CH, Kim J, Kim KS. 2014. Phylogenetic analysis of Korean native Chrysanthemum species based on morphological characteristics. Sci Hortic. 175:278–289.

Kim Y, Heo K-I, Park J. 2019. The second complete chloroplast genome of male individual of Korean endemic willow, Salix koryangii Kimura ex Goerg (Salicaceae). Mitochondrial DNA Part B. 4(1):1619–1621.

Park J, Kim Y, Xi H, Oh YJ, Hahm KM, Ko J. 2019a. The complete chloroplast genome of common camellia tree in Jeju island, Korea, Camellia japonica L.(Theaceae): intraspecies variations on common camellia chloroplast genomes. Mitochondrial DNA B Resour. 4(1):1292–1293.

Park J, Kim Y, Xi H, Oh YJ, Hahm KM, Ko J. 2019b. The complete chloroplast genome of common camellia tree, Camellia japonica L. (Theaceae), adapted to cold environment in Korea. Mitochondrial DNA Part B. 4(1):1038–1040.

Park J, Min J, Kim Y, Chung Y. 2021. The comparative analyses of six complete chloroplast genomes of morphologically diverse Chenopodium album L. collected in Korea (Amaranthaceae). Int J Genomics. 2021:6643415–6643444.

Park J, Oh S-H. 2020. A second complete chloroplast genome sequence of Fagus multineris Nakai (Fagaceae): intraspecific variations on chloroplast genome. Mitochondrial DNA Part B. 5(2):1868–1869.

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.

Shin S, Lee Y, Moon SR, Koo IH, Hong H, Shin E, Lee M, Park J, Chung HS. 2010. Identification of secondary metabolites with antioxidant and antimicrobial activities from Artemisia iwayomogi and Chrysanthemum zawadskii. JKASBC. 53(6):716–723.

Trehane P. 1995. Proposal to conserve Chrysanthemum L. with a conserved type (Compositae). Taxon. 44(4):439–441.

Xia Y, Hu Z, Li X, Wang P, Zhang X, Li Q, Lu C. 2016. The complete chloroplast genome sequence of Chrysanthemum indicum. Mitochondrial DNA A DNA Mapp Seq Anal. 27(6):4668–4669.

Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18(5):821–829.