Majorization under constraints and bounds of the second Zagreb index

Monica Bianchi α * Alessandra Cornaro α †
Anna Torrieroα ‡

Abstract

In this paper we present a theoretical analysis in order to establish maximal and minimal vectors with respect to the majorization order of particular subsets of \mathbb{R}^n. Afterwards we apply these issues to the calculation of bounds for a topological descriptor of a graph known as the second Zagreb index. Finally, we show how our bounds may improve the results obtained in the literature, providing some theoretical and numerical examples.

AMS Classification: 05C35, 05C05, 05C50

Keywords: Majorization; Schur-convex functions; Graphs; Second Zagreb index.

α Department of Mathematics and Econometrics, Catholic University, Milan, Italy.

1 Introduction

The notion of majorization ordering was introduced by Hardy, Littlewood and Polya ([11]) and is closely connected with the economic theory of disparity indices ([2]). But this concept can first be found in Schur ([19]) who investigated functions which preserve the majorization order, the so-called Schur-convex functions. Using this property and characterizing maximal and minimal vectors with respect to majorization order under suitable constraints, many inequalities involving such functions can be derived ([16]). A significant application of this approach concerns the localization of ordered sequences of real numbers as they occur in the problem of finding estimates of eigenvalues of a matrix ([3], [18], [20] and [21]). Another field of interest concerns the network analysis, where the same methodology can be useful applied in order to provide bounds for some topological indicators of graphs which can be usefully expressed
as a Schur-convex function, in terms of the degree sequence of the graph (see [6]).

In this paper, after some preliminary definitions and notations, we perform a theoretical analysis aimed at determining maximal and minimal vectors with respect to the majorization order of suitable subsets of \(\mathbb{R}^n \). In Section 3 and 4 we extend the results, obtained by Marshall and Olkin [16] into more specific sets of constraints determining their extremal elements. In Section 5, we provide an application of these results, dealing with the problem of computing bounds for the second Zagreb index, \(M_2(G) \) of a particular class of graphs with a given number of pendant vertices. This index is extensively studied in graph theory, as a chemical molecular structure descriptor ([7], [8], [9], [17] and [22]) and, more generally, in network analysis, as a measure of degree-assortativity, quantifying how well a network is connected, ([1], [12] and [13]). In the latter context the Zagreb index \(M_2(G) \) is renamed \(S(G) \). Since determining \(S(G) \) requires a specific algorithm ([12]), many bounds have been proposed in the literature ([4], [5], [15], [23] and [24]). Recently Grassi et al. in [6] obtained different bounds through a majorization technique. Using this approach, we derive new bounds in terms of graph degree sequence and present some theoretical and numerical examples comparing our results with the literature. Our conclusions are presented in Section 6.

2 Notations and preliminaries

Let \(e^j, j = 1, \ldots, n \), be the fundamental vectors of \(\mathbb{R}^n \) and set:

\[
\begin{align*}
 s^0 &= 0, \quad s^j = \sum_{i=1}^{j} e^i, \quad j = 1, \ldots, n, \\
 v^n &= 0, \quad v^j = \sum_{i=j+1}^{n} e^i, \quad j = 0, \ldots, (n-1).
\end{align*}
\]

Recalling that the Hadamard product of two vectors \(x, y \in \mathbb{R}^n \) is defined as follows:

\[
x \circ y = [x_1 y_1, x_2 y_2, \ldots, x_n y_n]^T
\]

it is easy to verify the following properties, where \(\langle \cdot, \cdot \rangle \) denotes the inner product in \(\mathbb{R}^n \):

i) \(\langle x \circ y, z \rangle = \langle x, y \circ z \rangle \)

ii) \(\langle s^h, v^k \rangle = h - \min \{h, k\} \)

iii) \(s^k \circ s^j = s^h, \quad h = \min \{k, j\} \)

iv) \(v^k \circ s^j = s^j - s^h = v^h - v^j, \quad h = \min \{k, j\} \)
Definition 1 Assuming that the components of the vectors $x, y \in \mathbb{R}^n$ are arranged in nonincreasing order, the majorization order $x \preceq y$ means:

$$\langle x, s^k \rangle \leq \langle y, s^k \rangle, \ k = 1, \ldots, (n-1)$$

and

$$\langle x, s^n \rangle = \langle y, s^n \rangle.$$

In the sequel $x^*(S)$ and $x_*(S)$ will denote the maximal and the minimal elements of a subset $S \subseteq \mathbb{R}^n$ with respect to the majorization order.

Given a positive real number a, it is well known [16] that the maximal and the minimal elements of the set

$$\Sigma_a = \{ x \in \mathbb{R}^n : x_1 \geq x_2 \geq \ldots \geq x_n \geq 0, \langle x, s^n \rangle = a \}$$

with respect to the majorization order are respectively

$$x^*(\Sigma_a) = ae^1 \quad \text{and} \quad x_*(\Sigma_a) = \frac{a}{n}s^n.$$

Next sections are dedicated to the study of the maximal and the minimal elements, with respect to the majorization order, of the particular subset of Σ_a given by

$$S_a = \Sigma_a \cap \{ x \in \mathbb{R}^n : M_i \geq x_i \geq m_i, \ i = 1, \ldots, n \}, \quad (1)$$

where $m = [m_1, m_2, \ldots, m_n]^T$ and $M = [M_1, M_2, \ldots, M_n]^T$ are two assigned vectors arranged in nonincreasing order with $0 \leq m_i \leq M_i$ for all $i = 1, \ldots, n$, and a is a positive real number such that $\langle m, s^n \rangle \leq a \leq \langle M, s^n \rangle$. Notice that the intervals $[m_i, M_i]$ are not necessarily disjointed unless the additional assumption $M_{i+1} < m_i, i = 1, \ldots, (n-1)$ is required. The existence of maximal and minimal elements of S_a are ensured by the compactness of the set S_a and by the closure of the upper and level sets:

$$U(x) = \{ z \in S_a : x \preceq z \}, \quad L(x) = \{ z \in S_a : z \preceq x \}$$

3 The maximal element of S_a

We start computing the maximal element, with respect to the majorization order, of the set S_a.

Theorem 2 Let $k \geq 0$ be the smallest integer such that

$$\langle M, s^k \rangle + \langle m, v^k \rangle \leq a < \langle M, s^{k+1} \rangle + \langle m, v^{k+1} \rangle, \quad (2)$$

and $\theta = a - \langle M, s^k \rangle - \langle m, v^{k+1} \rangle$. Then

$$x^*(S_a) = M \circ s^k + \theta e^{k+1} + m \circ v^{k+1} \quad (3)$$
Proof. First of all we verify that $x^*(S_a) \in S_a$. It easy to see that $\langle x^*(S_a), s^n \rangle = a$ and that $m_i \leq x^*(S_a) \leq M_i$ for $i \neq k+1$. To prove that $m_{k+1} \leq x^*(S_a) \leq M_{k+1}$, notice that from (2)

$$m_{k+1} = \langle m, e^{k+1} \rangle \leq a - \langle M, s^k \rangle - \langle m, v^{k+1} \rangle = \theta < \langle M, e^{k+1} \rangle = M_{k+1}.$$

Now we show that $x \not\leq x^*(S_a)$ for all $x \in S_a$. By property i) follows

$$\langle x^*(S_a), s^j \rangle = \langle M, s^k \circ s^j \rangle + \theta \langle e^{k+1}, s^j \rangle + \langle m, v^{k+1} \circ s^j \rangle, \quad j = 1, \ldots, (n-1)$$

and by iii) and iv)

$$\langle x^*(S_a), s^j \rangle = \left\{ \begin{array}{ll}
\langle M, s^j \rangle & 1 \leq j \leq k \\
\langle M, s^j \rangle + \theta + \langle m, s^j - s^{k+1} \rangle & (k+1) \leq j \leq (n-1)
\end{array} \right.$$.

Thus, given a vector $x \in S_a$, for $1 \leq j \leq k$ we obtain

$$\langle x, s^j \rangle \leq \langle M, s^j \rangle = \langle x^*(S_a), s^j \rangle,$$

while for $(k+1) \leq j \leq (n-1)$, by iii),

$$\langle x, s^j \rangle = \langle x, s^n \rangle - \langle x, v^j \rangle \leq a - \langle m, v^j \rangle = \langle M, s^k \rangle + \theta + \langle m, s^j - s^{k+1} \rangle = \langle x^*(S_a), s^j \rangle$$

and the result follows. \[\Box \]

From this general result, the maximal element of particular subsets of S_a can be deduced. We then focus on a specific case which will be useful in the application we deal with in Section 5. We denote by $\lfloor x \rfloor$ the integer part of the real number x.

Corollary 3 Given $1 \leq h \leq n$, let us consider the set

$$S_a^{[h]} = \Sigma_a \cap \{ x \in \mathbb{R}^n : M_1 \geq x_1 \geq \ldots \geq x_h \geq m_1, \quad M_2 \geq x_{h+1} \geq \ldots \geq x_n \geq m_2 \},$$

where

$$0 \leq m_2 \leq m_1, 0 \leq M_2 \leq M_1, m_i < M_i, i = 1, 2$$

and

$$hm_1 + (n-h)m_2 \leq a \leq hM_1 + (n-h)M_2.$$

Let $a^* = hM_1 + (n-h)m_2$ and

$$k = \left\{ \begin{array}{ll}
\frac{a - h(m_1 - m_2) - nm_2}{M_1 - m_1} & \quad \text{if } a < a^* \\
\frac{a - h(M_1 - M_2) - nm_2}{M_2 - m_2} & \quad \text{if } a \geq a^*
\end{array} \right.$$

4
Then

\[
x^* (S_a^{[h]}) = \begin{cases}
 \left[M_1, \ldots, M_1, \theta, m_1, \ldots, m_1, m_2, \ldots, m_2 \right] & \text{if } a < a^* \\
 \left[M_1, \ldots, M_1, M_2, \ldots, M_2, \theta, m_2, \ldots, m_2 \right] & \text{if } a \geq a^*
\end{cases}
\]

where \(M = M_1 s^h + M_2 v^h \), \(m = m_1 s^h + m_2 v^h \) and \(\theta = a - \langle M, s^k \rangle - \langle m, v^{k+1} \rangle \).

Proof. Easy computations give:

\[
\langle M, s^k \rangle = \begin{cases}
 hM_1 + M_2 (k - h) & \text{if } k \geq h \\
 kM_1 & \text{if } k < h
\end{cases}
\]

\[
\langle m, v^k \rangle = \begin{cases}
 (n - k) m_2 & \text{if } k \geq h \\
 (n - h) m_2 + m_1 (h - k) & \text{if } k < h
\end{cases}
\]

and the values are linked for continuity when \(k = h \). We distinguish two cases:

i) \(k \geq h \): from (2) we have

\[
k = \left\lfloor \frac{a - h(M_1 - M_2) - nm_2}{M_2 - m_2} \right\rfloor
\]

that is acceptable only if \(a \geq hM_1 + (n - h)m_2 = a^* \). Then, from (3)

\[
x^* (S_a^{[h]}) = \left[M_1, \ldots, M_1, M_2, \ldots, M_2, \theta, m_2, \ldots, m_2 \right].
\]

ii) \(k < h \): from (2) we get

\[
k = \left\lfloor \frac{a - h(m_1 - m_2) - nm_2}{M_1 - m_1} \right\rfloor
\]

that is acceptable only if \(a < hM_1 + (n - h)m_2 = a^* \). Then, from (3)

\[
x^* (S_a^{[h]}) = \left[M_1, \ldots, M_1, \theta, m_1, \ldots, m_1, m_2, \ldots, m_2 \right].
\]
Remark 4 When \(a = a^* \) it is worthwhile to note that \(k = h \) and \(\theta = m_2 \) so that

\[
x^*\left(S_a^{[h]}\right) = \begin{bmatrix} M_1, \ldots, M_1, m_2, \ldots, m_2 \end{bmatrix}_{h-n}.
\]

Remark 5 The assumption \(m_i < M_i \) in Corollary 3 can be relaxed to \(m_i \leq M_i \). Indeed if \(m_1 = M_1, i = 1, 2 \), the set \(S_a^{[h]} \) reduces to the singleton \(\{ m_1 s^h + m_2 v^h \} \), while if \(m_1 = M_1, m_2 < M_2 \) the first \(h \) components of any \(x \in S_a^{[h]} \) are fixed and equal to \(m_1 \) and the maximal element of \(S_a^{[h]} \) can be computed by the maximal element of \(S_a \in \mathbb{R}^{n-h} \) (see Corollary 6 below). The case \(m_2 = M_2, m_1 < M_1 \) is similar.

The next proposition is proved in [16] and it immediately follows from Corollary 3 when \(m_1 = m_2 = m \) and \(M_1 = M_2 = M \).

Corollary 6 Let \(0 \leq m < M \) and \(m \leq \frac{a}{n} \leq M \). Given the subset

\[S_a^1 = S_a \cap \{ x \in \mathbb{R}^n : M \geq x_1 \geq x_2 \geq \ldots \geq x_n \geq m \} \]

we have

\[
x^*\left(S_a^1\right) = Ms^k + \theta e^{k+1} + m v^{k+1},
\]

where \(k = \left\lfloor \frac{a - nm}{M - m} \right\rfloor \) and \(\theta = a - M k - m (n - k - 1) \).

In particular when \(m = 0 \) we obtain

\[
x^*\left(S_a^1\right) = Ms^k + \theta e^{k+1},
\]

where \(k = \left\lfloor \frac{a}{M} \right\rfloor \) and \(\theta = a - M k \).

It is worthwhile to notice that \(S_a \) is a subset of \(S_a^1 \) where \(m = m_n \) and \(M = M_1 \). Thus the following inequality holds:

\[
x^*(S_a) \preceq x^*(S_a^1).
\]

Finally we recall the following result (see [3]).

Corollary 7 Let \(1 \leq h \leq n \) and \(0 < \alpha \leq a/h \). Given the subset

\[S_a^2 = S_a \cap \{ x \in \mathbb{R}^n : x_i \geq \alpha, \; i = 1, \ldots, h \}, \]

we have \(x^*(S_a^2) = (a - ha) e^1 + \alpha s^h \).

Proof. The set \(S_a^2 \) can be obtained by [1] for \(m_1 = \alpha, m_2 = 0, M_1 = M_2 = a \). Since \(a^* = ha \geq a \), two cases can be distinguished:
i) $h = 1$: we have $a^* = a$ and from Remark 4 it immediately follows that $k = 1$ and $\theta = 0$ so that $x^*(S_a^2) = ae^1$.

ii) $h > 1$: we have $a^* > a$ and Corollary 3 implies that $k = \left\lfloor \frac{a - h\alpha}{a - \alpha} \right\rfloor = 0$.

Thus

$$x^*(S_a^2) = \begin{bmatrix} \theta, \alpha, \ldots, \alpha, 0, \ldots, 0 \\ \frac{h - 1}{n-h} \end{bmatrix}$$

where $\theta = a - (h-1)\alpha$, which leads to

$$x^*(S_a^2) = \theta e^1 + \alpha s^h - \alpha e^1 = (a - h\alpha) e^1 + \alpha s^h.$$

\rightline{\blacksquare}

4 The minimal element of S_a

In this section we study the structure of the minimal element, with respect to the majorization order, of the set S_a.

Theorem 8 Let $k \geq 0$ and $d \geq 0$ be the smallest integers such that

1) $k + d < n$

2) $m_{k+1} \leq \rho \leq M_{n-d}$ where $\rho = \frac{a - (m, s^k) - (M, \nu^{n-d})}{n - k - d}$.

Then

$$x_*(S_a) = m \circ s^k + \rho(s^{n-d} - s^k) + M \circ \nu^{n-d}.$$

Proof. The minimal element of the set Σ_a is $x_*(\Sigma_a) = \frac{a}{n}s^n$. If $m_1 \leq x_*(\Sigma_a) \leq M_n$, then $x_*(\Sigma_a) \in S_a$ and $x_*(S_a) = x_*(\Sigma_a)$ (notice that in this case $k = d = 0$). If $x_*(\Sigma_a) \notin S_a$, let k and d the smallest integers satisfying conditions 1) and 2) above. It is easy to verify that $x_*(S_a) \in S_a$. In order to prove that it is the minimal element, we must show that for all $x \in S_a$

$$\langle x_*(S_a), s^h \rangle \leq \langle x, s^h \rangle \text{ , } h = 1, \ldots, (n - 1). \quad (6)$$

We distinguish three cases:

i) $1 \leq h \leq k$. Since $\langle x_*(S_a), s^h \rangle = \langle m, s^h \rangle$, the inequality (6) is straightforward.
ii) \(k + 1 \leq h \leq n - d \). We prove the inequality (6) for \(h = k + 1 \). By induction, similar arguments can be applied to prove the inequality for \(h = k + 2, \cdots (n - d) \).

By contradiction, let us assume that there exists \(x \in S_a \) such that

\[
\langle x, (S_a)_h \rangle = \langle m, s^k \rangle + \rho > \langle x, s^k \rangle + x_{k+1}.
\]

Then \(x_j \leq x_{k+1} \) for \(j = k + 2, \cdots n \) and thus

\[
\langle x, s^{n-d} \rangle = \langle x, s^k \rangle + \langle x, s^{n-d} - s^k \rangle < \langle x, s^k \rangle + (n - d - k)(\langle m, s^k \rangle + \rho - \langle x, s^k \rangle).
\]

Taking into account that

\[
\langle x, s^{n-d} \rangle = a - \langle x, v^{n-d} \rangle \geq a - \langle M, v^{n-d} \rangle,
\]

we get

\[
a - \langle M, v^{n-d} \rangle < (1 - n + d + k)\langle x, s^k \rangle + (n - d - k)(\langle m, s^k \rangle + \rho).
\]

Using the expression of \(\rho \), we obtain

\[
0 < (1 - n + d + k)(\langle x, s^k \rangle - \langle m, s^k \rangle).
\]

Since \((1 - n + d + k) \leq 0 \) and \(\langle x, s^k \rangle \geq \langle m, s^k \rangle \), the inequality above is false, and we have got the contradiction.

iii) \(n - d + 1 \leq h < n \). For any \(x \in S_a \) we have

\[
\langle x, (S_a)_h \rangle = \langle x, (S_a)_{s^{n-d}} \rangle + \langle x, (S_a)_{s^h - s^{n-d}} \rangle = \langle m, s^k \rangle + (n - d - k)\rho + \langle M, s^h - s^{n-d} \rangle = a - \langle M, v^{n-d} \rangle + \langle M, s^h - s^{n-d} \rangle = a - \langle M, s^n - s^h \rangle = \langle x, s^h \rangle + \langle x, s^n - s^h \rangle - \langle M, s^n - s^h \rangle \leq \langle x, s^h \rangle.
\]

\[\blacksquare\]

Now we analyze the minimal element of particular subsets of \(S_a \). We start considering the intervals \([m_i, M_i], i = 1, \cdots, n\) disjointed. Notice that this additional assumption does not modify the choice of the maximal element, while it simplifies the choice of the minimal element.

Corollary 9 Let us consider the set \(S_a \) and assume

\[
M_{i+1} < m_i \text{ for } i = 1, \cdots (n - 1).
\]
Let \(k \geq 0 \) be the smallest integer such that
\[
\langle m, s^{k+1} \rangle + \langle M, v^{k+1} \rangle \leq a < \langle m, s^k \rangle + \langle M, v^k \rangle
\] (8)
and \(\rho = a - \langle m, s^k \rangle - \langle M, v^{k+1} \rangle \). Then
\[
x_*(S_a) = m \circ s^k + \rho e^{k+1} + M \circ v^{k+1}
\]

Proof. By condition 2) in Theorem 8 and assumption (7), we get
\[
M_{k+2} < m_{k+1} \leq \rho \leq M_{n-d}.
\]
Thus \(k > n-d-2 \). Since \(k \) is an integer such that \(k < n-d \), we have necessarily \(k = n-d-1 \) and the thesis follows. \(\blacksquare \)

Another case of practical interest regards the set studied in Corollary 3.

Corollary 10 Given \(1 \leq h \leq n \), let us consider the set
\[
S^{[h]}_a = \Sigma_a \cap \{ x \in \mathbb{R}^n : M_1 \geq x_1 \geq ... \geq x_h \geq m_1, \]
\[
M_2 \geq x_{h+1} \geq ... \geq x_n \geq m_2 \}
\]
where \(0 \leq m_2 \leq m_1, 0 \leq M_2 \leq M_1, m_i < M_i, i = 1, 2 \) and
\[
hm_1 + (n-h)m_2 \leq a \leq hM_1 + (n-h)M_2.
\]
If \(m_1 \leq \frac{a}{n} \leq M_2 \) we have \(x_*(S^{[h]}_a) = \frac{a}{n}s^n \). Otherwise, let \(\bar{a} = hm_1 + (n-h)M_2 \).
If \(\left\{ \begin{array}{l} a < m_1n \\ a \leq \bar{a} \end{array} \right. \), given \(\rho = \frac{a - hm_1}{n-h} \), we have
\[
x_*(S^{[h]}_a) = m_1s^h + \rho v^h = \left[\begin{array}{c} m_1, ..., m_1 \end{array} \right] \frac{\rho, ..., \rho}{h} \frac{n-h}{n}.
\]
If \(\left\{ \begin{array}{l} a > M_2n \\ a \geq \bar{a} \end{array} \right. \), given \(\rho = \frac{a - M_2(n-h)}{h} \), we have
\[
x_*(S^{[h]}_a) = ps^h + M_2v^h = \left[\begin{array}{c} \rho, ..., \rho \end{array} \right] \frac{M_2, ..., M_2}{h} \frac{n-h}{n}.
\]

Proof. Let us investigate when the best choice \(k = d = 0 \) is admissible. Under this assumption, from condition 2) in Theorem 8 we have
\[
m_1 \leq \rho = \frac{a}{n} \leq M_n = M_2.
\] (9)
If the condition above holds, the minimal element is \(x_*(S^{[h]}_a) = \frac{a}{n}s^n \).
Otherwise if condition (9) does not hold, we begin with the case \(k = 0 \). We have
\[
\rho = \frac{a - < M, v^{n-d} >}{n-d}
\]
and
\[
x_+(S^{[h]}_a) = \rho s^{n-d} + M \circ v^{n-d}.
\]
From condition 2) in Theorem 8, we have \(m_1 \leq \rho \leq M_{n-d} \) and, taking into account that the elements in \(x_+(S^{[h]}_a) \) are in nonincreasing order, \(\rho \geq M_{n-d+1} \).

We distinguish three cases:

i) if \(n - d > h \) then necessarily \(\rho = M_2 \), but this contradicts (9).

ii) if \(n - d < h \) then \(\rho = M_1 \) and this is admissible only if \(a = M_1 h + M_2 (n-h) \), so that
\[
x_+(S^{[h]}_a) = \left[M_1, \ldots, M_1, M_2, \ldots, M_2 \right].
\]

iii) if \(n - d = h \), then \(\rho = \frac{a - M_2 d}{n-d} \) and
\[
x_+(S^{[h]}_a) = \left[\rho, \ldots, \rho, M_2, \ldots, M_2 \right].
\]

This result is admissible only if \(\rho > M_2 \) and \(m_1 \leq \rho \leq M_1 \), i.e. if
\[
\begin{cases}
a > M_2 n \\
a \geq \bar{a}
\end{cases}
\]

A symmetric case occurs when \(d = 0 \), so we have
\[
\rho = \frac{a - < m, s^{k} >}{n-k}
\]
and
\[
x_+(S^{[h]}_a) = m \circ s^{k} + \rho v^{k}.
\]
From condition 2) in Theorem 8, we have that \(m_{k+1} \leq \rho \leq M_2 \) and, taking into account that the elements in \(x_+(S^{[h]}_a) \) are in nonincreasing order, \(\rho \leq m_k \). We distinguish three cases:

i) if \(k < h \) then necessarily \(\rho = m_1 \), but this contradicts (9).

ii) if \(k > h \), then \(\rho = m_2 \) and this is possible only if \(a = h m_1 + M_2 (n-h) \), so that
\[
x_+(S^{[h]}_a) = \left[m_1, \ldots, m_1, m_2, \ldots, m_2 \right].
\]
iii) if \(k = h \), then \(\rho = \frac{a - hm_1}{n - h} \) and
\[
\mathbf{x}_*(S_a^{[h]}) = \begin{bmatrix}
m_1, \ldots, m_1, \rho, \ldots, \rho \\
n - h
\end{bmatrix}.
\]

This result is admissible only if \(m_2 \leq \rho \leq M_2 \) and \(\rho < m_1 \), i.e. only if
\[
\begin{cases}
a < m_1 n \\
a \leq \tilde{a}
\end{cases}
\]

Corollary 10 distinguishes the minimal element of \(S_a^{[h]} \) whether
\[
\begin{cases}
a < m_1 n \\
a \leq \tilde{a}
\end{cases}
\quad \text{or} \quad
\begin{cases}
a > M_2 n \\
a \geq \tilde{a}
\end{cases}
\]

We note that if \(m_1 \leq M_2 \) the first inequality in the systems above is always stronger than the second one, while if \(M_2 < m_1 \) the second one is stronger than the first. Thus we can summarize the minimal element of \(S_a^{[h]} \) in a more accessible way according to the following scheme:

i) If \(m_1 \leq M_2 \) then
\[
x_*(S_a^{[h]}) = \begin{cases}
a \frac{a^h}{n} & \text{if } \frac{a}{n} \leq M_2 \\
m_1 a^h + a - \frac{a}{n} h a^h & \text{if } \frac{a}{n} < m_1 \\
\frac{a - M_2(n - h)}{h} a^h + M_2 a^h & \text{if } \frac{a}{n} > M_2
\end{cases}
\]

(10)
and the vectors are linked for continuity.

ii) If \(M_2 < m_1 \) then
\[
x_*(S_a^{[h]}) = \begin{cases}
m_1 a^h + a - \frac{a}{n} h a^h & \text{if } a < \tilde{a} \\
\frac{a}{n - h} a^h + M_2 a^h & \text{if } a \geq \tilde{a}.
\end{cases}
\]

(11)

Remark 11 When \(a = \tilde{a} \) it is worthwhile to note that
\[
\mathbf{x}_*(S_a^{[h]}) = m_1 a^h + M_2 a^h = \begin{bmatrix}
m_1, \ldots, m_1, M_2, \ldots, M_2 \\
n - h
\end{bmatrix}.
\]
Remark 12 We note that the minimal element of the set $S_a^{[h]}$ does not necessarily have integer components, while this is not the case for the maximal element. For some applications, it is meaningful to find the minimal vector in $S_a^{[h]}$ with integer components. We illustrate below the procedure to follow. Let us consider, for instance, the vector $x^\ast(S_a^{[h]}) = \frac{a}{n}s^n$ which corresponds to the case $m_1 \leq \frac{a}{n} \leq M_2$ (see (10)). If $\frac{a}{n}$ is not an integer, let us find the index k, $1 \leq k \leq n$, such that
\[
(\left\lfloor \frac{a}{n} \right\rfloor + 1)k + \left\lfloor \frac{a}{n} \right\rfloor(n - k) = a
\]
i.e. $k = a - \left\lfloor \frac{a}{n} \right\rfloor n$. The vector
\[
x^1 = \left(\frac{a}{n} + 1\right)s^k + \left\lfloor \frac{a}{n} \right\rfloor v^k
\]
is the minimal element of $S_a^{[h]}$ with integer components.

With slight modification, the same procedure can be applied also in the other cases illustrated in (10) or (11), where only some of the components of $x^\ast(S_a^{[h]})$ can be non integer.

To complete our analysis, we show how from Corollary 10 particular cases can be deduced. More precisely, assuming in Corollary 10 $m_1 = m_2$, $M_1 = M_2$ or $h = n$ we obtain the results proved in [16].

Corollary 13 Let $0 \leq m < M$ and $m < \frac{a}{n} \leq M$. Given the subset
\[
S_a^{[1]} = \Sigma_a \cap \{x \in \mathbb{R}^n : M \geq x_1 \geq \ldots \geq x_{n-1} \geq x_n \geq m\}
\]
we have $x^\ast(S_a^{[1]}) = \frac{a}{n}s^n$.

As we did with the maximal element, it is clear that the vector provided by Corollary 10 majorizes the vector in Corollary 13, i.e. the following inequality holds:
\[
x^\ast(S_a^{[1]}) \preceq x^\ast(S_a).
\]

Assuming $m_1 = \alpha$, $m_2 = 0$, $M_1 = M_2 = a$ or $m_1 = m_2 = 0$ and $M_2 = a$, $M_1 = a$ we easily obtain the following two corollaries (see [3]).

Corollary 14 Let $1 \leq h \leq n$ and $0 < \alpha \leq a/h$. Given the subset
\[
S_a^{[2]} = \Sigma_a \cap \{x \in \mathbb{R}^n : x_i \geq \alpha, \ i = 1, \ldots h\},
\]
we have
\[
x^\ast(S_a^{[2]}) = \begin{cases}
\frac{a}{n}s^n & \text{if } \alpha \leq \frac{a}{n} \\
\alpha s^h + \rho v^h & \text{with } \rho = \frac{a - \alpha h}{n - h} \text{ if } \alpha > \frac{a}{n}
\end{cases}
\]
Corollary 15 Let \(1 \leq h \leq (n - 1) \) and \(0 < \alpha < a \). Given the subset
\[
S_a^3 = \Sigma_a \cap \{x \in \mathbb{R}^n : x_i \leq \alpha, \ i = h + 1, \ldots, n\},
\]
we have
\[
x_*(S_a^3) = \begin{cases}
\frac{a}{n} s_a & \text{if } \alpha \geq \frac{a}{n} \\
\rho s^h + a \nu^h \text{ with } \rho = \frac{a - (n - h)\alpha}{h} & \text{if } \alpha < \frac{a}{n}
\end{cases}
\]

5 New bounds for the second Zagreb index

Let \(G = (V, E) \) a simple, connected, undirected graph with fixed order \(|V| = n\) and fixed size \(|E| = m\). Denote by \(\pi = (d_1, d_2, \ldots, d_n) \) the degree sequence of \(G \), being \(d_i \) the degree of vertex \(v_i \), arranged in nonincreasing order \(d_1 \geq d_2 \geq \cdots \geq d_n \). We recall that the sequences of integers which are degree sequences of a simple graph were characterized by Erdős and Gallay (see [10]). The second Zagreb index is defined as
\[
S(G) = \sum_{(v_i, v_j) \in E} d_i d_j
\]
or equivalently ([6])
\[
S(G) = \frac{\sum_{(v_i, v_j) \in E} (d_i + d_j)^2 - \sum_{i=1}^{n} d_i^3}{2}.
\]

In order to compute upper and lower bounds for \(S(G) \) we refer to [6], where a methodology based on majorization order was proposed. Before presenting our results, we briefly describe the procedure we will follow.

Let \(\pi \) be a fixed degree sequence and \(x \in \mathbb{R}^m \) the vector whose components are \(d_i + d_j, (v_i, v_j) \in E \). In [13] it is shown that
\[
\sum_{(v_i, v_j) \in E} (d_i + d_j) = \sum_{i=1}^{n} d_i^2
\]
and thus \(\sum_{i=1}^{m} x_i = \sum_{i=1}^{n} d_i^2 \) is a constant. Given a suitable subset \(S \) of
\[
\Sigma_a = \left\{ x \in \mathbb{R}^m : x_1 \geq x_2 \geq \ldots \geq x_m \geq 0, \sum_{i=1}^{m} x_i = a \right\},
\]
where \(a = \sum_{i=1}^{n} d_i^2 \), the Schur-convex function \(f(x) = \sum_{i=1}^{m} x_i^2 \) attains its minimum and maximum on \(S \) at \(f(x_*(S)) \) and \(f(x^*(S)) \) respectively, being \(x_*(S) \) and \(x^*(S) \) the extremal vectors of \(S \) with respect to the majorization order (see [16]). Hence from [13] the maximum and the minimum of \(S(G) \) can be easily deduced.
Let \(C_\pi \) be the class of graphs \(G = (V,E) \) with \(h \) pendant vertices and degree sequence
\[
\pi = (d_1, d_2, \ldots, d_{n-h-1}, d_{n-h}, 1, \ldots, 1), \quad n \geq 4, n - h \geq 2, h \geq 1
\]
and let us consider graphs \(G \in C_\pi \) with maximum vertex degree upper bounded by \(d_{n-h} + d_{n-h-1} \), i.e. \(d_1 < d_{n-h} + d_{n-h-1} \), or equivalently
\[
1 + d_1 \leq d_{n-h} + d_{n-h-1}.
\] (14)

For \(G \in C_\pi \), we note that this constraint is always satisfied, for example, if the maximum vertex degree is at most three, as for some graphs of chemical interest where the maximum degree is four.

We observe that for \(i, j = 1, \ldots, n-h \) and \((v_i, v_j) \in E:\)
\[
d_{n-h} + d_{n-h-1} \leq d_i + d_j \leq d_1 + d_2,
\]
while for \(i = n-h+1, \ldots, n; \quad j = 1, \ldots, n-h \) and \((v_i, v_j) \in E:\)
\[
1 + d_{n-h} \leq d_i + d_j \leq 1 + d_1.
\]

Furthermore, inequality (14) assures that the above intervals are concatenated so that the vector \(x \in \mathbb{R}^m \) can be arranged in nonincreasing order with the \(h \) pendant vertices in the last \(h \) positions.

Setting \(m_1 = d_{n-h} + d_{n-h-1}, \quad m_2 = 1 + d_{n-h}, \quad M_1 = d_1 + d_2, \quad M_2 = 1 + d_1, \) let us consider the set
\[
S_{a}^{m-h} = \Sigma_a \cap \{ x \in \mathbb{R}^n : M_1 \geq x_1 \geq \ldots \geq x_{m-h} \geq m_1, \quad M_2 \geq x_{m-h+1} \geq \ldots \geq x_m \geq m_2 \}.
\]

Applying Corollaries \(3\) and \(10\) we can compute maximal and minimal elements of \(S_{a}^{m-h} \) with respect to the majorization order and from (13) we obtain:
\[
\frac{\|x^*(S_{a}^{m-h})\|_2^2 - \sum_{i=1}^n d_i^3}{2} \leq S(G) \leq \frac{\|x^*(S_{a}^{m-h})\|_2^2 - \sum_{i=1}^n d_i^3}{2},
\] (15)
where \(\|\cdot\|_2 \) stands for the euclidean norm.

In spite of inequalities (5) and (12), these bounds can’t be worse than those in [6], and they are often sharper.

It is noteworthy that both equalities in (15) are attained if and only if the set \(S_{a}^{(b)} \) reduces to a singleton, that is, by Remark [5], \(m_i = M_i, i = 1, 2 \).

The condition \(m_2 = 1 + d_{n-h} = M_2 = 1 + d_1 \) implies that in \(G(V,E) \) all non-pendant vertices have the same degree. Some examples of this kind of graphs are:

i) all trees with degree sequence
\[
\pi = \left(k, \ldots, k, \frac{1}{r}, \ldots, \frac{1}{r} \right),
\] (16)
including, as particular case, for $k = 2$, the path.

ii) graphs obtained by adding the same number s of pendant vertices to each vertex of a k–regular graph on r vertices, being kr even, $2 \leq k \leq r - 1$, i.e.

$$\pi = \left(\frac{k + s, \ldots, k + s, 1, \ldots, 1}{r}, \frac{s}{t(r - 1)}\right).$$

Computing $S(G)$, from Remark 5 and (15), we get $k \left(2kr - 2r - k + 2\right)$ and $\frac{1}{2}r \left(2s + ks + k^2\right) \left(k + s\right)$ respectively.

In the following we provide some significant examples, computing bounds for graphs belonging to $C\pi$ and satisfying (14). Furthermore, a comparison with some other known bounds (see [4], [5], [15], [23] and [24]) are provided.

Example 1. Let us consider the classes of trees $T_{t,s}$ with degree sequences π_i ($i = 1, 2, 3$) given by:

i) $\pi_1 = \left(\frac{t, s, \ldots, s, 1, \ldots, 1}{t}, \frac{s}{t(s - 1)}\right)$, $2 \leq s < t < 2s$

ii) $\pi_2 = \left(\frac{s, \ldots, s, t, 1, \ldots, 1}{t}, \frac{s}{t(s - 1)}\right)$, $s > t \geq 2$

iii) $\pi_3 = \left(\frac{t-1, \ldots, t, 1, \ldots, 1}{t+1}, \frac{s-1}{t(s-1)}\right)$, $t \geq 2$

Case i).

$M_1 = t + s$	$m_1 = 2s$
$M_2 = t + 1$	$m_2 = s + 1$
$m = ts$	$h = t(s - 1)$

Applying Corollary 3 and Remark 4 it follows that:

$$x^* (T_{t,s}) = \left[\frac{(t + s), \ldots, (t + s), (s + 1), \ldots, (s + 1)}{t}, \frac{s}{t(s-1)}\right]$$
while from (10), (11) and Remark 12 we get

\[x^* (T_{t,s}) = \begin{cases}
2s, ..., 2s + 2, ..., s + 2, s + 1, ..., s + 1 \\
t \\
t (t-s) \\
t (2s-t-1)
\end{cases} \]

if \(t < 2s - 1 \)

\[x^* (T_{t,s}) = \begin{cases}
2s, ..., 2s + 2, ..., 2 \\
t \\
st-t
\end{cases} \]

if \(t = 2s - 1 \)

Taking into account (15), the following inequalities hold:

\[\{ \quad \frac{1}{2} t (3t - t^2 - 5s + 2st + 3s^2) \leq S(T_{t,s}) \leq ts(s + t - 1) \quad \text{if} \quad t < 2s - 1 \\
\frac{1}{2} (2s - 1) (3s + 3s^2 - 4) \leq S(T_{t,s}) \leq s(2s - 1)(3s - 2) \quad \text{if} \quad t = 2s - 1
\} \]

(17)

We note that in (17) the right-hand equality holds if \(T_{t,s} \) is the tree obtained by the union of \(t \) stars, each one of order (see Figure 1).

Figure 1: Example illustrating tree \(T_{t,s} \) for \(2 \leq s < t < 2s \).

Case \(ii) \).

\[
\begin{array}{|c|c|}
\hline
M_1 & 2s \\
M_2 & s + 1 \\
m & ts \\
\hline
m_1 & t + s \\
m_2 & t + 1 \\
h & t(s - 1) \\
\hline
\end{array}
\]

By Corollary 3 follows

\[x^* (T_{t,s}) = \begin{cases}
2s, ..., 2s(s + 1), ..., (s + 1), (t + 1), ..., (t + 1) \\
t \\
st - 2t \\
t
\end{cases} \]
while from Remark 11 we get
\[
x_s(T_{t,s}) = \left[s + t, ..., s + t, (s + 1), ..., (s + 1) \right]_{st-t}.
\]

Taking into account (15), the following inequalities hold:
\[
ts s(s + t - 1) \leq S(T_{t,s}) \leq t(t - 2s + 2s^2) \tag{19}
\]

We note that the left-hand equality holds if \(T_{t,s}\) is the tree obtained by the union of \(t\) stars each one of order \(s\) (see Figure 2).

![Figure 2: Example illustrating tree \(T_{t,s}\) for \(s > t \geq 2\).](image)

Case iii). This is a particular case of (16), for \(k = t\) and \(r = t + 1\), such that
\[
S(T_{t,s}) = 2t^3 - t^2. \tag{20}
\]

Finally we observe that for the class of trees with degree sequence \(\pi_1, \pi_2\) or \(\pi_3\), our upper bounds always perform better than those in [5]. Indeed, in the presence of pendant vertices and with \(m = ts\) and \(n = ts + 1\), the bound in [5] becomes:
\[
S(G) \leq 2m^2 - (n - 1)m = t^2 s^2 \tag{21}
\]
which is always greater than the upper bound in [18], [19], [20].
Example 2. Let us consider a unicyclic graph G, i.e. a graph with $n = m$ having the following degree sequence

$$
\pi = (3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1).
$$

Being (14) satisfied, by Remark 12 (15) gives

$$
64 \leq S(G) \leq 74.
$$

The comparison (see Table 1) with bounds in [4], [5], [6], [15] and [23] shows that our bounds always perform better. Indeed we obtain:

Bounds	Lower	Upper
ours	64	74
[4]	x	277.9
[5]	x	182
[6]	61.462	77
[15]	-28	76
[23]	64	92

Table 1: Lower and upper bounds for $S(G)$

Example 3. Consider the graphs G and H with degree sequences $\pi_1 = (3, 2, 2, 1)$ and $\pi_2 = (3, 3, 3, 2, 1, 1)$ respectively, as in Examples 2.2 and 2.3 in [6]. Besides the bounds discussed in [6], we add the comparison with those in [4], [23] and [24]. Observing that G is a unicyclic graph ($m = n$) and H is a bicyclic graph ($m = n + 1$), both with pendant vertices, bounds in [23] and [24] can also be respectively properly applied. Computing bounds for $S(G)$, we have:

Ref.	Lower	Upper
ours	19	20
[4]	x	22.511
[5]	x	20
[6]	18.5	20
[15]	18	22
[23]	19	19

Table 2: Lower and upper bounds for $S(G)$.
Our bounds are sharper than [4], [6] and [15]. The best one is provided by [23] and has been specifically constructed for this class of graph.

Computing bounds for $S(H)$, we have:

ref.	lower	upper
our	54	58
[4]	x	99.75
[5]	x	80
[6]	51.25	58
[15]	40	59
[24]	50	68

Table 3: Lower and upper bounds for $S(H)$.

Note that our bounds perform better than all the others and in particular better than [24] which is properly designed for bicyclic graphs as H is.

6 Conclusion

The purpose of this paper is to establish maximal and minimal vectors with respect to the majorization order under sharper constraints than those presented by Marshall and Olkin in [16]. We have shown how these results can provide a simple methodology for localizing the second Zagreb index of a particular class of graphs. Some numerical examples have been discussed, showing that our bounds often provide sharper bounds than those in the literature. Moreover, in network analysis, there are a variety of potential applications for this kind of approach, considering other topological indices which can be defined by a suitable Schur-convex function.
References

[1] Alderson D. L. and Li L. (2007), Diversity of graphs with highly variable connectivity, Physical Review E, 75(046102), 1–11.

[2] Atkinson A. B. (1970), On the Measurement of Inequality, Journal of Economic Theory 2, 224-263.

[3] Bianchi M. and Torriero A. (2000), Some localization theorems using a majorization technique, Journal of Inequalities and Applications, 5, 433-446.

[4] Bollobas B. and Erdős P. (1998), Graphs of extremal weights, Ars Combinatoria, 50, 225-233.

[5] Das K.Ch., Gutman I. and Zhou B. (2009), New upper bounds on Zagreb indices, J. Math. Chem., 46, 514-521.

[6] Grassi R., Stefani S. and Torriero A. (2010), Extremal Properties of Graphs and Eigencentrality in Trees with a Given Degree Sequence, The Journal of Mathematical Sociology, 34-2, 115-135.

[7] Gutman I. and Furtula B. (2008), Recent Results in the Theory of Randic, Mathematical Chemistry, Monograph No. 6, University of Kragujevac, Serbia.

[8] Gutman I., Ruščić B., Trinajstić N. and Wilcox C. F. (1975), Graph Theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys 62, 3399-3405.

[9] Gutman I. and Trinajstić N. (1972), Graph Theory and molecular orbitals. Total π–electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535-538.

[10] Erdős P. and Gallai T. (1960), Graphs with prescribed degrees of nodes Hungarian Matematikai Lapok 11, 264–274.

[11] Hardy G. H., Littlewood E. and Polya G. (1929), Some simple inequalities satisfied by convex functions, Messanger of Math., 58, 145-152.

[12] Li L., Alderson D., Doyle J. C. and Willinger W. (2005a), Supplemental material: the $S(G)$ metric and assortativity, Internet Mathematics, 2(4), 1-6.

[13] Li L., Alderson D., Doyle J. C. and Willinger W. (2005b), Toward a theory of scalefree graphs: definitions, properties and implications, Internet Mathematics, 2(4), 431-523.

[14] Lovász L. (1993), Combinatorial Problems and Exercises (2nd ed.). Amsterdam: North-Holland.
[15] Lu M., Liu H. and Tian F. (2004), The connectivity index. MATCH Communications in Mathematical and Computer Chemistry 51, 149–154.

[16] Marshall A. W. and Olkin I. (1979), Inequalities: Theory of Majorization and Its Applications, Academic Press, London.

[17] Nikolić S., Kovačević G., Miličević A. and Trinajstić N. (2003), The Zagreb indices 30 years after, Croat. Chem. Acta. 76, 113-124.

[18] Pan C.T. (1989), A Vector Majorization Method for Solving a Nonlinear Programming Problem, Linear Algebra and its Applications 119, 129-139.

[19] Schur I. (1923), Über ein Klass von Mittelbindungen mit Anwendungen auf Determinantentheorie, Sitzer. Berl. Math. Ges., 22, 9-20.
useful in real spectrum location, Journal of Statistics and Management Systems 4-2, 189-200.

[20] Tarazaga P. (1990), Eigenvalue Estimate for Symmetric Matrices, Linear Algebra and its Applications 135, 171-179.

[21] Tarazaga P. (1991), More Estimate for Eigenvalues and Singular Values, Linear Algebra and its Applications 149, 97-110.

[22] Todeschini R. and Consonni V. (2000), Handbook of Molecular Descriptor, Wiley-VHC, Weinheim.

[23] Yan Z., Liu H. and Liu H. (2007), Sharp bound for the second Zagreb index of unicyclic graphs, Journal of Mathematical Chemistry 42-3, 565-574.

[24] Zhao Q., Li S. (2010), Sharp bounds for the Zagreb indices of bicyclic graphs with k- pendant nodes. Discrete Applied Mathematics 158-17, 1953-1962.
Mathematical and Computer Chemistry 52, 113-118.