Direct and Indirect Methods to Optimize the Muscular Force Response to a Pulse Train of Electrical Stimulation

Toufik Bakir, Bernard Bonnard, Loïc Bourdin, Jérémy Rouot

To cite this version:

Toufik Bakir, Bernard Bonnard, Loïc Bourdin, Jérémy Rouot. Direct and Indirect Methods to Optimize the Muscular Force Response to a Pulse Train of Electrical Stimulation. 2020. hal-02053566

HAL Id: hal-02053566
https://hal.inria.fr/hal-02053566
Submitted on 6 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DIRECT AND INDIRECT METHODS TO OPTIMIZE THE MUSCULAR FORCE RESPONSE TO A PULSE TRAIN OF ELECTRICAL STIMULATION

T. Bakir1, B. Bonnard2, L. Bourdin3 and J. Rouot4

Abstract. Recent force-fatigue mathematical models in biomechanics \cite{7} allow to predict the muscular force response to functional electrical stimulation (FES) and leads to the optimal control problem of maximizing the force. The stimulations are Dirac pulses and the control parameters are the pulses amplitudes and times of application, the number of pulses is physically limited and the model leads to a sampled data control problem. The aim of this article is to present and compare two methods. The first method is a direct optimization scheme where a further refined numerical discretization is applied on the dynamics. The second method is an indirect scheme: first-order Pontryagin type necessary conditions are derived and used to compute the optimal sampling times.

Résumé. En biomécanique les modèles mathématiques de force-fatigue de la réponse musculaire aux impulsions électriques \cite{7} permettent de prédire et de contrôler la réponse à un train de stimulations électriques et donc de maximiser la force produite à la fin du train. Mathématiquement les stimulations sont des impulsions de Dirac dont on peut moduler les temps d’applications et les amplitudes, le nombre d’impulsions étant physiquement limité sur le train et le modèle conduit à un problème où le contrôle est de dimension fini. L’objectif de ce travail est de présenter deux méthodes d’optimisation en vue de les comparer. La première méthode est dite directe et l’on utilise une discrétisation numérique de la dynamique pour transformer le problème d’optimisation en un problème en dimension finie. La seconde méthode dite indirecte utilise le principe du maximum de Pontriaguine dans le contexte où le contrôle est de dimension finie et on établit des conditions nécessaires d’optimalité qui peuvent être implémentées numériquement pour calculer les temps d’impulsions optimaux.

1 Univ. Bourgogne Franche-Comté, ImViA Laboratory EA 7535, Dijon, France (e-mail: toufik.bakir@u-bourgogne.fr)
2 Univ. Bourgogne Franche-Comté, IMB Laboratory UMR CNRS 5584, Dijon, and INRIA team Mc TAO, Sophia Antipolis, France (e-mail: Bernard.Bonnard@u-bourgogne.fr)
3 XLIM Research Institute, UMR CNRS 7252, University of Limoges, Limoges, France (e-mail: loic.bourdin@unilim.fr)
4 (email: jeremy.rouot@tutanota.com)

Acknowledgements This research paper benefited from the support of the FMJH Program PGMO and from the support of EDF, Thales, Orange. T. Bakir, B. Bonnard and J. Rouot are partially supported by the Labex AMIES ©
Optimized force response to FES is an important problem for muscular reeducation and in case of paralysis. An historical model is known as the Hill model \[8\] and more refined models are taking into account the muscular fatigue (\[3\], \[7\], \[9\]). See \[12\] for a comparison of the models. In this article, we shall consider the Ding et al. force-fatigue model. The physical control amounts to apply on \([0,T]\) a finite sequence of Dirac pulses at times \(0 = t_1 < t_2 < \ldots < t_n < T\), with amplitudes \(\eta_i \in [0,1], \ i = 1, \ldots, n\) and in the model they are integrated using a linear dynamics to produce the so-called \(E_s\) input (see Fig.1), which drives the force response. This fits in the sampled-data control frame since between each interpulse \(t_i - t_{i-1}\), \(i = 1, \ldots, n\) the control is constant. Our aim is to optimize a cost function to maximize the force response. The control parameters are the interpulse \(t_i - t_{i-1}\), \(i = 2, \ldots, n\) and the Dirac amplitudes \(\eta_i, i = 1, \ldots, n\). There is a minimal interpulse due to the digital control but the dynamics can be discretized over a refined interval and this led to a so-called direct optimization problem which can be handled with an optimization routine. Another method is an indirect optimal control scheme. The optimal problem fits in the frame of sampled-data control problem and some Pontryagin type necessary optimality conditions were obtained in \[6\] and they were refined to be applied to our specific problem \[2\]. This leads to numerical methods to compute the optimal control in which we can distinguish between control by interpulses and control by amplitudes. The objective of this article is to present and to give preliminary numerical simulations.

1. The mathematical model and the direct scheme

1.1. Force-fatigue model

Let us briefly recall the Ding et al. force-fatigue model \[7\]. The control associated to electrical pulses is described by

\[
v(t) = \sum_{i=1}^{n} \eta_i \delta(t - t_i)
\]

applied at times \(t_1 = 0 < t_2 < \ldots < t_n < T\) with train \(T := \text{train duration}\) (fixed) and \(\eta_i \in [0,1]\) are the amplitudes of each pulse. The FES signal denoted by \(E_s(t)\) is the solution of the linear
dynamics
\[\dot{E}_s(t) + \frac{E_s(t)}{\tau_c} = \frac{1}{\tau_c} \sum_{i=1}^{n} \eta_i \delta(t-t_i) R_i \]
(2)

with \(E_s(0) = 0 \) and \(R_i \) is the parameter describing the phenomenon of tetania defined by
\[R_i = \begin{cases}
1 & \text{for } i = 1 \\
1 + (R_0 - 1) \exp\left(-\frac{t_i-t_{i-1}}{\tau_c}\right) & \text{for } i > 1,
\end{cases} \]
(3)

and \(\tau_c \) is a parameter. In the model, the input \(E_s(t) \) is the control to drive the force response using the dynamics
\[\begin{cases}
\frac{dC_N(t)}{dt} + \frac{C_N(t)}{\tau_c} = E_s(t) \\
\frac{dF(t)}{dt} = -\gamma(t) F(t) + A \beta(t)
\end{cases} \]
(4)

where \(C_N \) is the concentration of \(Ca^{2+} \), \(F \) is the force, \(A, K_m, \tau_1, \tau_2 \) are parameters and
\[\beta(t) = \frac{C_N(t)}{K_m + C_N(t)}, \quad \gamma(t) = \frac{F(t)}{\tau_1 + \tau_2, \beta(t)} \]
(5)

are the Hill functions. The triplet \((A, K_m, \tau_1) \) contain the fatigue variables following the linear dynamics:
\[\begin{cases}
\frac{dA}{dt} = -A - A_{rest} + \alpha_A F \\
\frac{dK_m}{dt} = -\frac{K_m - K_{m,rest}}{\tau_{fat}} + \alpha_{K_m} F \\
\frac{d\tau_{1}}{dt} = -\frac{\tau_1 - \tau_{1,rest}}{\tau_{fat}} + \alpha_{\tau_1} F
\end{cases} \]
(6)

with \((A_{rest}, K_{m,rest}, \tau_{1,rest}) \) being the equilibrium, while \(\tau_{fat}, \alpha_A, \alpha_{K_m} \) and \(\alpha_{\tau_1} \) are parameters. The force-fatigue model can be written shortly as:
\[\dot{x}(t) = g(x(t)) + B(t) \sum_{i=1}^{n} \eta_i H(t-t_i) G(t_{i-1}, t_i), \]
(7)

with \(x = (C_N, F, A, K_m, \tau_1) \), and
\[\begin{cases}
G(t_{i-1}, t_i) = (R_0 - 1) e^{\frac{t_i-t_{i-1}}{\tau_c}} + e^{\frac{t_{i-1}}{\tau_c}} \\
B(t) = (b(t), 0, \ldots, 0)^T, \quad b(t) = \frac{1}{\tau_c} e^{\frac{t}{\tau_c}}
\end{cases} \]
(8)

We use the convention \(t_0 = -\infty \), \(t_{n+1} = T \) and \(g(x) \) is defined by Eq. (4) and Eq. (6). Note that once the sampling times are fixed, the control is constant on each \([t_{i-1}, t_i]\) and we get a sampled control system. The optimal sampled-data control problem that we want to study is the Mayer problem of the form: \(\min_{u(.)} \varphi(x(T)) \) where \(\varphi : \mathbb{R}^3 \to \mathbb{R} \) is the cost function and the minimum is taken over the set \((\eta_1, \eta_2, \ldots, \eta_n, t_2, \ldots, t_n) \in \mathbb{R}^{2n-1}\) with the constraints \(\eta_i \in [0,1], 0 = t_1 < t_2 < \cdots < t_n < T = t_{n+1} \) and the interpulse constraints \(t_{i+1} - t_i \geq I_i, i = 1, \ldots, n \).

1.2. Direct method

Direct methods can solve efficiently optimal control problems in the permanent control case and for the sampled-data control case. In the permanent control case, the optimal control problem
is transformed as a non-linear finite dimensional optimization problem and this is done by a discretization in time of the state and control variables in the dynamics. For the sampled-data control problems, the dynamics is discretized in time.

1.2.1. Direct method using Matlab

We present the general frame (stimulation time and amplitude as control variables). To control the force and/or the fatigue levels, three cases are considered ($t_1 = 0$ and $T = t_{n+1}$ being fixed):

- Stimulation times t_i as control variables (with fixed amplitudes η_i):

 $$u_t = [t_2 \ldots t_n]^T.$$
 \hfill (9)

- Stimulation amplitudes ($\eta_i = \eta(t_i)$) as control variables (with fixed stimulation times t_i):

 $$u_\eta = [\eta_1 \eta_2 \ldots \eta_n]^T,$$
 \hfill (10)

 with $\eta_1 = \eta(t_1)$ and $t_1 = 0$.

- Stimulations times and amplitudes as control variables: $u_{(t,\eta)} = \begin{bmatrix} u_t \\ u_\eta \end{bmatrix}$.

In the third case (stimulations times and amplitudes as control variables), and from (7) and (8), we define ζ_n:

\[\begin{cases}
\zeta_1 = u_\eta(1)G(t_0, t_1), t_0 = -\infty, \\
\vdots \\
\zeta_l = \zeta_{l-1} + u_\eta(l)G(u_t(l-2), u_t(l-1)), \\
\quad t \in [(t_l = u_t(l-1)), (t_{l+1} = u_t(l))] \\
\vdots \\
\zeta_n = \zeta_{n-1} + u_\eta(n)G(u_t(n-2), u_t(n-1)), \\
\quad t \in [(t_n = u_t(n-1)), (t_{n+1} = T)]
\end{cases} \]
\hfill (11)

Note that ζ_i is constant for $t \in [t_i, t_{i+1}]$ and $\zeta_i \leq \zeta_{i+1}$.

Eq. (7) is of the form

$$\dot{x}(t) = f(x(t), E_s(t)),$$
\hfill (12)

which, using Euler discretizing scheme, becomes

$$x_{k+1} = x_k + dt_i \times f(x_k, \zeta_k)$$
\hfill (13)

where dt_i is the discretizing step: $dt_i = (t_i - t_{i-1})/\alpha_i$, $i = 2, \ldots, (n + 1)$, and $\alpha_i \in \mathbb{N}^*$. The numerical discretizing step dt_i is a submultiple of each interpulse $I_i = t_i - t_{i-1}$ (see fig (2)).
To maximize the force level, the problem is written as:

\[
\min_{u(.)} \varphi(T) \quad \text{subject to equality constraints (13) and linear inequality constraints } Au \leq B.
\]

In the case stimulation times as control variables, stimulation amplitudes are fixed for \(i = 1, 2, \ldots, N\). Stimulation times constraints are:
\[t_1 < (t_2 = u_t(1)) < \ldots < (t_N = u_t(n - 1)) < T \text{ and } t_i - t_{i-1} \geq I_m, I_m > 0.\]

In the case of stimulation amplitudes as control variables, \(t_1, T\) and \(t_i\) for \(i = 2, \ldots, N\) are fixed. Stimulation amplitudes constraints are:
\[0 \leq \eta_i \leq 1.\]

Simulations results following different optimization methods are presented in Table 1 (Note: the amplitudes can be fixed to 1).

\(F(T) \) (KN)	\(t_i \) optimal vector (ms)	Final state vector \(x(T) \)	Optimization method	Simulation time (s)
0.303	[0.328834 88.6003 139.0000 183.8992 265.6509 337.7939 370.0000 400]	[0.4931 303.2002 2.9743] 0.1046 52.7804	Interior-point	34.964578
0.315	[0.450000 90.0000 135.0000 180.0000 268.7500 313.7500 341.2500 400]	[0.2295 315.6880 2.9738] 0.1047 52.8037	Active-set	8.451400
0.315	[0.27470 46.705 135.8821 181.1762 270.5878 315.8818 343.52 400]	[0.2476 315.6504 2.9739] 0.1047 52.7986	SQP	7.157023

Table 1. Optimization methods (Matlab toolbox) comparison in the case of maximizing \(F(T) \): initial stimulation times \([0 50 100 150 200 300 350 380 400]\) (ms) and initial state vector \(x(T) = [Cn(T) F(T) A(T) T_1(T) Km(T)]^T = [0 0 3.0090 0.1030 50.9570]^T (\eta_i = 1).\)
1.2.2. Direct method using Bocop

We use the Bocop software [4] to implement a direct approach, where the NLP is solved using a primal-dual interior point algorithm and the derivatives required for the optimization are computed by automatic differentiation with CppAD, this is crucial when dealing with the singularity of the Heaviside function appearing in the FES signal E_s.

We give in Fig.4 the results with Bocop for $n = 8$, $I_m = 10$ms and $T = 400$ms. Matlab toolbox gives 315.6N as a maximum force versus Bocop result 339.3N.

2. Pontryagin maximum principle with sampled-data control and necessary optimality conditions, indirect method

In this section we propose a first brief recap on the Pontryagin maximum principle for optimal control problems and we compare two situations: the permanent control case versus the sampled-data control case. We consider in this section a very simple framework (smooth dynamics and Mayer cost, fixed initial condition and no final state constraint) and we give some recalls on the main techniques (related to the classical calculus of variations) leading to each version of the Pontryagin maximum principle. Let $T > 0$ and let $d, m \in \mathbb{N}^*$ be fixed positive integers. Let us consider a general nonlinear control system of the form

$$\dot{x}(t) = f(t, x(t), u(t)), \quad \text{a.e. } t \in [0, T],$$

where $f : [0, T] \times \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d$ is of class C^1, together with the fixed initial condition $x(0) = x_0 \in \mathbb{R}^d$ and the control constraint $u(t) \in \Omega \subset \mathbb{R}^m$. We focus in this section on the Mayer optimal control problem given by

$$\min_{u \in \mathcal{U}} \phi(x(T)),$$
where $\varphi : \mathbb{R}^d \to \mathbb{R}$ is of class C^1 and where \mathcal{U} stands for the set of admissible controls (see details in each subsection below). Recall that the Hamiltonian function $H : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}$ associated to Problem (15) is defined by $H(t, x, p, u) = \langle p, f(t, x, u) \rangle$.

2.1. Permanent control case

If the set \mathcal{U} of admissible controls in Problem (15) is the set of all bounded measurable functions $u : [0, T] \to \Omega$, then there is no restriction on the modification of the value of the control and thus it can occur at any time in $[0, T]$. In such case, Problem (15) is said to be with permanent control. This situation corresponds to the very well-known framework deeply studied and developed in the literature (see, e.g., [10] and references therein). From now on our aim is to briefly recall the derivation of the Pontryagin maximum principle for Problem (15) in the case of permanent control. Let x^* be a reference optimal curve associated to the control u^*. Take a L^1-perturbation (or needle-variation) defined by $u_\varepsilon(t) = v \in \Omega$ on $[s, s+\varepsilon)$, where s is a Lebesgue time of the function $t \mapsto f(t, x^*(t), u^*(t))$, and $u_\varepsilon(t) = u^*(t)$ elsewhere. The corresponding variation vector satisfies the linear equation

$$\dot{w}(t) = \partial f / \partial x(t, x^*(t), u^*(t)) \times w(t), \quad \text{a.e. } t \in [s, T],$$

with the initial condition $w(s) = f(s, x^*(s), v) - f(s, x^*(s), u^*(s))$. From optimality, it holds that $\varphi(x_\varepsilon(T)) - \varphi(x^*(T)) \geq 0$, where x_ε denotes the response to u_ε. Taking the limit $\varepsilon \to 0^+$, one gets

$$\langle \nabla \varphi(x^*(T)), w(T) \rangle \geq 0. \quad (16)$$
Write the co-state equation as
\[\dot{p}(t) = -\frac{\partial f}{\partial x}(t, x^*(t), u^*(t))^T \times p(t) \]
with the final condition \(p(T) = -\nabla \varphi(x^*(T)) \). Using in (16) the equalities \(w(T) = \Phi(T, s) \times w(s) \) and \(p(s) = \Phi(T, s)^T \times p(T) \), where \(\Phi(\cdot, \cdot) \) stands for the state-transition matrix associated to the matrix function \(t \mapsto \frac{\partial f}{\partial x}(t, x^*(t), u^*(t)) \), one gets the inequality \(\langle p(s), f(s, x^*(s), v) - f(s, x^*(s), u^*(s)) \rangle \leq 0 \) which corresponds exactly to the standard Hamiltonian maximization condition of the Pontryagin maximum principle given by
\[H(t, x^*(s), p(s), u^*(s)) = \max_{v \in \Omega} H(s, x^*(s), p(s), v), \quad \text{a.e. } s \in [0, T]. \] (17)

We conclude this section by recalling that the maximized Hamiltonian function \(\mathcal{H} : [0, T] \to \mathbb{R} \) defined by \(\mathcal{H}(t) = H(t, x^*(t), p(t), u^*(t)) \), can be shown to be absolutely continuous on \([0, T]\) with
\[\dot{\mathcal{H}}(t) = \frac{\partial H}{\partial t}(t, x^*(t), p(t), u^*(t)), \quad \text{a.e. } t \in [0, T]. \]

In particular, if the control system (14) is autonomous, then \(\mathcal{H}(\cdot) \) is constant over \([0, T]\).

2.2. Sampled-data control case

At the opposite of the permanent control case, if the set \(\mathcal{U} \) of admissible controls authorizes the value of the control \(u : [0, T] \to \Omega \) to be modified at most \(n - 1 \) times, where \(n \in \mathbb{N}^* \) is fixed, the problem (15) is said to be with sampled-data control. In such case, for any \(u \in \mathcal{U} \), there exists a finite set of \(n \) times \(0 = t_1 < t_2 < \ldots < t_n < T \) (called sampling times) such that \(u(t) = u_i \in \Omega \) on each interval \([t_i, t_{i+1})\). We refer to \([5, 6]\) for the statement of Pontryagin maximum principle handling sampled-data controls. From now we assume that \(\Omega \) is convex and our aim is to briefly recall the derivation of the Pontryagin maximum principle for Problem (15) in the case of sampled-data controls. Let \(x^* \) be a reference optimal curve associated to the control \(u^* \) and let us denote by \(t^*_i \) the corresponding sampling times. Consider the convex \(L^\infty \)-perturbation \(u_\epsilon = u^* + \epsilon(u - u^*) \), where \(u \in \mathcal{U} \) has the same sampling times than \(u^* \). The corresponding variation vector satisfies the affine equation
\[\dot{w}(t) = A(t) \times w(t) + B(t) \times (u(t) - u^*(t)), \quad \text{a.e. } t \in [0, T], \]
with the initial condition \(w(0) = 0_{\mathbb{R}^s} \), where \(A(t) = \frac{\partial f}{\partial u}(t, x^*(t), u^*(t)) \) and \(B(t) = \frac{\partial f}{\partial u}(t, x^*(t), u^*(t)) \). Introducing the co-state vector \(p \) as in the previous section and using the equality
\[w(T) = \int_0^T \Phi(T, s) \times \frac{\partial f}{\partial u}(s, x^*(s), u^*(s)) \times (u(s) - u^*(s)) \, ds, \]
in the inequality (16) give
\[\int_0^T \left\langle p(s), \frac{\partial f}{\partial u}(s, x^*(s), u^*(s)) \times (u(s) - u^*(s)) \right\rangle \, ds \leq 0. \]
Taking \(u(t) = v \in \Omega \) over \([t_i, t_{i+1})\) and \(u(t) = u^*(t) \) elsewhere, we exactly recover the nonpositive averaged Hamiltonian gradient conditions derived in \([5, 6]\) given by
\[\left\langle \int_{t_i}^{t_{i+1}} \frac{\partial H}{\partial u}(s, x^*(s), p(s), u^*_i) \, ds, v - u^*_i \right\rangle \leq 0, \] (18)
for all \(i = 1, \ldots, n - 1 \) and all \(v \in \Omega \).

2.3. New necessary optimality conditions applicable to the Ding et al. model, indirect method

The previous frame is not completely adapted to the force-fatigue model and we briefly recall the necessary conditions, see [2] for more details. Let us introduce the notion of admissible perturbations.

Definition 2.1. Let \(j \in \{1, \ldots, n\} \). We say that \(\bar{\eta}_j \in \mathbb{R} \) is an admissible perturbation of \(\eta_j^* \) if there exists \(\alpha_0 > 0 \) such that \(\eta_j^* + \alpha \bar{\eta}_j \in [0, 1] \) for all \(0 \leq \alpha \leq \alpha_0 \).

Definition 2.2. Let \(j \in \{2, \ldots, n-1\} \). We say that \(\bar{t}_j \in \mathbb{R} \) is an admissible perturbation of \(t_j^* \) if there exists \(\alpha_0 > 0 \) such that \((t_j^* + \alpha \bar{t}_j) - t_{j-1}^* \geq I_m \) and \(t_{j+1}^* - (t_j^* + \alpha \bar{t}_j) \geq I_m \), for all \(0 \leq \alpha \leq \alpha_0 \).

Definition 2.3. Let \(j = n \). We say that \(\bar{t}_n \in \mathbb{R} \) is an admissible perturbation of \(t_n^* \) if there exists \(\alpha_0 > 0 \) such that \((t_n^* + \alpha \bar{t}_n) - t_{n-1}^* \geq I_m \), for all \(0 \leq \alpha \leq \alpha_0 \).

The main result is stated as follows.

Theorem 2.4. Let \(\delta^* = (\eta_1^*, \ldots, \eta_n^*, t_2^*, \ldots, t_n^*) \in \mathbb{R}^{2n-1} \) be an optimal solution and let \(\eta^* \) stand for the corresponding optimal state. Then, the co-state vector \(p \) defined as the unique solution to the backward linear Cauchy problem given by

\[
\dot{p}(t) = -\nabla f(x^*(t))^\top \times p(t), \quad \text{a.e. } t \in [0, T], \quad p(T) = p_T,
\]

(19)
is such that:

1. the inequality
\[
\left(\int_{t_j^*}^{T} p_1(s)b(s)ds \right) \bar{\eta}_j \leq 0,
\]
holds true for all \(j = 1, \ldots, n \) and for all admissible perturbation \(\bar{\eta}_j \) of \(\eta_j^* \);

2. the inequality
\[
\left((R_0 - 1) \int_{t_{j+1}^*}^{T} p_1(s)b(s)ds b(-t_j^*)\eta_{j+1}^* + \int_{t_j^*}^{T} p_1(s)b(s)ds b(-t_j^*)\eta_j^* - p_1(t_j^*)b(t_j^*)G(t_{j-1}^*, t_j^*)\eta_j^* \right) \dot{\bar{t}}_j \leq 0,
\]
(20)
holds true for all \(j = 2, \ldots, n \) and for all admissible perturbation \(\dot{\bar{t}}_j \) of \(t_j^* \).

2.4. Numerical results for the indirect method

We consider the problem of maximizing the force at the final time, the amplitudes being fixed to \(\eta_i = 1, \ i = 1, \ldots, n \), and we take into account the constraints \(t_{i+1} - t_i \geq I_m = 10\text{ms}, \ i = 1, \ldots, n \).

An extremal \((x, p, \sigma)\), where the state \(x \) satisfies the dynamics (14) with a given initial condition, the co-state \(p \) satisfies the Cauchy problem (19), both being parameterized by \(\sigma = (t_i)_{i=2, \ldots, n} \) such that the inequalities (20) are fulfilled, is solution of a differential variational inequality problem. We solve this problem by discretizing the problem with respect to the state \(x \) and the problem becomes a finite-dimensional problem, where the unknowns are the sampling times \(\sigma \) (once \(\sigma \) is fixed, so is
the initial co-state vector $p(0)$ because $p(T)$ can be fixed to $(0, 1, 0, 0, 0)^T$. Note that this method is indirect since we do not optimize any cost: the computations of the optimal sampling times rely on the necessary conditions (20). It differs from the direct method presented in Section 1.2.2. The inequalities (20) are handled easily introducing new state variables, e.g., to compute the integral $\mathcal{I} := \int_{t_i}^{T} p_1(s)b(s) \, ds$, we can consider the variable y such that $\dot{y}(t) = H(t \geq t_i) p_1(t)b(t)$ and we have $y(T) = \mathcal{I}$.

The finite-dimensional problem is solved using an interior point method or a stable trust-region method (without any cost to minimize) coupled with an auto-differentiation method to compute the derivatives. We represent in Fig.5 the solution obtained in the case where $n = 8$ and $T = 400$ms. The final force $F(T) = 337.8$ N is close to the one computed by the direct method ($F(T) = 339.3$ N) and the optimal sampling times for both methods are given in Table 2.

This is a different indirect method than the one presented in [2], where the indirect method was based on a shooting algorithm and was not able to handle constraints on the sampling times.

3. Conclusion

In this article we present and compare two methods (direct and indirect schemes) to optimize the FES-input in the Ding et al. force-fatigue model to maximize the force response at the end of the train. We gave preliminary numerical simulations proving the ability in both cases to implement the two methods. The same techniques can be used to consider Mayer problems where the cost takes into account the fatigue variables. This approach fits in the frame of openloop optimal controls problems. For the application since only the force is observed one must use an adaptive algorithm.
Table 2. Numerical values for the optimal sampling times obtained by the direct approach (Bocop) and the indirect approach and for the necessary conditions Θ_i, $i=2, \ldots, n$ in the case: $n=8$, $T=400$ms and $I_m=10$ms.

i	t_i (direct)	t_i (indirect)	Θ_i (necessary conditions)
2	0.079	0.080	-0.11
3	0.144	0.144	-5.45
4	0.197	0.196	-62.9
5	0.243	0.242	-725
6	0.284	0.278	-1779
7	0.320	0.315	-26550
8	0.350	0.357	-76763

like MPC method [1] where we optimize over a larger time with several pulses trains and rest periods and where the fatigue variables are online estimated using an observer. The challenge is to couple an optimization technique with on-line estimation. Our study in this frame allows to compute the maximal response to a train. In the direct case, BOCOP leads to better results than Matlab toolbox. In the indirect case, a nice contribution is to handle the inequalities (20), which is important to investigate, in the future, first and second order optimality conditions.

REFERENCES

[1] Bakir T., Bonnard B. and Rouot J.: A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model. Networks & Heterogeneous Media, 14(1) (2019) 79–100.

[2] Bakir T., Bonnard B., Bourdin L., Rouot J.: Pontryagin-Type Conditions for Optimal Muscular Force Response to Functional Electrical Stimulations. J. Optim. Theory Appl., 184 (2020) 581–602.

[3] Bobet, J. and Stein, R.B.: A simple model of force generation by skeletal muscle during dynamic isometric contractions, IEEE Transactions on Biomedical Engineering, 45 (1998) 1010–1016.

[4] Bonnans, F., Giorgi, D., Maindrault, S., Martinon, P., Gréard, V.: Bocop—a collection of examples, Inria Research Report, Project-Team Commands, 8053 (2014).

[5] Bourdin L. and Trélat E.: Pontryagin Maximum Principle for optimal sampled-data control problems. In proceedings of 16th IFAC workshop on control applications of optimization CAO’2015, 2015.

[6] Bourdin L. and Trélat E.: Optimal sampled-data control, and generalizations on time scales, Math. Cont. Related Fields, 6 (2016) 53–94.

[7] Ding J., Wexler A.S. and Binder-Macleod S.A.: Mathematical models for fatigue minimization during functional electrical stimulation, J. Electromyogr. Kinesiol., 13 (2003) 575–588.

[8] Csetelyi R., Zsuga J., Kemeny-Beke A., Varga B., Juhasz B. and Tosaki A.: The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66(4) (2012), 427–438.

[9] Law L.F. and Shields R.: Mathematical models of human paralyzed muscle after long-term training, Journal of biomechanics, 40 (2007) 2587–2595.

[10] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., and Mishchenko E.F.: The mathematical theory of optimal processes, John Wiley & Sons, Inc., 1962.

[11] Rackauckas C., Nie Q.: DifferentialEquations.jl - A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. J. Open Res. Softw. 5, p.15 (2017)

[12] Wilson E.: Force response of locust skeletal muscle, Southampton University, Ph.D. thesis (2011).