Weight Matrix-Based Least Mean Square Algorithm for Target Detection in Passive Radars

Venu Dunde, Koteshwara Rao NV

Abstract Ambiguity function analysis is the most expensive process for target detection in passive radars. The computational cost is attributed to the extensive range-Doppler field required to evaluate the cross-correlation function. Some tools like fast Fourier transform or batching algorithm are employed to partially reduce the computational effort. In this paper a different generalization of least mean square algorithm is utilized for target detection. The basic idea is to employ the properties of the computed weight matrix to extract target coordinates. The algorithm performance is investigated by computer simulation using some practical simulated FM stereo signal. The results reveal the lower computational complexity of the presented procedure compared to existing methods.

Keywords : Least mean square, Passive radar, Target detection, Weight matrix.

I. INTRODUCTION

By exploiting available transmitters as illuminators of opportunity, passive bistatic radars (PBR) have a very high chance of staying unidentified and unlocalized in space. One efficient high performance, low implementation-cost waveform exploited by PBRs is the commercial FM radio frequency ranging from 88 to 108 MHz band[1]. For evaluation of the range-Doppler coordinates a cross correlation function (CCF) of the surveillance and reference signals is exploited. However, target's peaks are masked by the side lobes of direct signal and clutter echoes due to their much higher power. Different clutter cancellation techniques are suggested in the literature[2–4]. One simple pure block scheme is the extensive cancellation algorithm (ECA)[3]. In this case, limited bins of clutter Doppler shifts are included in the pre-constructed clutter space which leads to an increased complexity. Bathes version of ECA is experimentally inspected for clutter attenuation of slow moving targets in[5]. In contrast to pure block algorithms, the recursive least square (LSR) and least mean square (LMS) algorithms are iterative methods applicable of cancelling non-stationary clutters[2]. The FBLMS scheme is a fast Fourier block version of LMS which dominates LMS in terms of cost. It is shown in [6] that FBLMS provides faster convergence, shorter processing time and more qualified cross ambiguity function (CAF) for DVB-T passive radars. After cleaning the received signal from disturbances, the costly CCF analysis is performed in an extensive range-Doppler field to detect targets. The target detection capability of FM radio and HDTV is investigated in [7] in terms of range, Doppler resolution and peak side-lobe level ratio. Also, different aspects of AF is compared for FM and DVB-T signals in[8]. Since the computed CAF matrix contains important data of limited targets, it has an ideal sparse structure. Hence, multiple studies have employed the compressed sensing technique to reduce the complexity required for solving CAF problem[9]. Furthermore, CAF is analyzed by employing other techniques like correlation FFT, direct FFT, and batches algorithm (BA)[10,11]. Although LMS scheme is exploited for disturbance cancellation in the literature, a target detection weight matrix-based LMS algorithm is innovated in this paper and it is demonstrated that this matrix contains valuable information revealing targets range-Doppler. The new approach dominates the conventional CCF analysis in terms of computational cost.

II. SIGNAL MODELING AND DETECTION FUNDAMENTALS

Reference and surveillance signals are collected in dedicated channels in a PBR. Assume that the reference channel receives an acceptable copy of the direct signal. Then, they are modeled as:

\[S_{\text{ref}}[n] = A_{\text{ref}} \cdot d[n] + n_{\text{ref}}[n] \]

\[S_{\text{surv}}[n] = A_{\text{surv}} \cdot d[n] + \sum_{n=0}^{N-1} a_{n} \cdot \exp \left(\frac{2j\pi n p_{n} c_{n} / N}{N} \right) \cdot \delta[n - l_{c}] + \sum_{n=0}^{N-1} a_{n} \cdot \exp \left(\frac{2j\pi n p_{n} c_{n} / N}{N} \right) \cdot \delta[n - l_{c} - N] + n_{\text{surv}}[n] \]

in discrete domain, where \(d \) is the complex envelope of the direct signal as a fragment of a FM signal, \(A_{\text{ref}} \) and \(A_{\text{surv}} \) are complex amplitudes and \(n_{\text{ref}} \) and \(n_{\text{surv}} \) are the thermal noises of the reference and surveillance antennas. Furthermore, \(c_{n} \), \(p_{n} \), \(l_{c} \), \(a_{n} \), \(p_{n} \), \(l_{c} \) are complex amplitude, Doppler shift and delay of the \(n \)-th clutter from \(N \) clutters and \(a_{n} \), \(p_{n} \), \(l_{c} \), \(a_{n} \) are complex amplitude, Doppler shift and delay of i-th target from \(N \) targets.

The detection process in passive radars is based on the evaluation of a delay-Doppler CCF of the

Revised Manuscript Received on August 05, 2019.

Venu D*, department of electronics and communication engineering, university college of engineering, Osmania university, Hyderabad, Telangana, India. Email: dunde.venu@gmail.com

Dr NV Koteshwara Rao, department of electronics and communication engineering, chaitanya bharati institute of technology, Gandipet, Hyderabad, Telangana, India. Email: nvkoteswararao@gmail.com

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

DOI: 10.35940/ijeat.F8166.088619
surveillance and reference signals as:
\[
x(l, p) = \sum_{n=1}^{N} S_{\text{surv}}[n] R_{\text{ref}}[n - l] \exp(-2j\pi np/N)
\]
where \(p \) denotes conjugate, \(l_{\text{max}} \) is maximum delay bin, \(p_{\text{max}} \) and \(p_{\text{min}} \) are minimum and maximum Doppler bins. An extensive Doppler-range map is typically required to cover the desired region. Therefore, evaluation of (3) takes a high computational burden. The simplest way to observe (3) is considering it as a FFT of \(S_{\text{surv}}[n] \) and \(R_{\text{ref}}[n - l] \), resulting
\[
in\mathbb{N}_i(N + N_{\log_2 N}) \text{ required complex products. Another observation is to compute the CCF between } S_{\text{surv}}[n] \text{ and a Doppler-shifted version of } S_{\text{surv}}[n] \text{ which needs } 2N\log_2 N + N_f(N + N_{\log_2 N}) \text{ products}[10,11].
\]

A. Target detection employing LMS approach

The main idea of this paper is to employ the LMS method as an efficient target detection tool. To this end first, denote a target signal as:
\[
S_{\text{targ}}[n] = A_{t'} \exp(2j\pi np_t/N) \cdot S_{\text{ref}}[n - l_{t'}]
\]
where, \(A_{t'}, p_{t'} \) and \(l_{t'} \) are respectively target’s amplitude, Doppler and delay. Also, define the cost and error functions as:
\[
\begin{align*}
\text{cost}(n) &= |e(n)|^2 \\
e(n) &= S_{\text{clean}}[n] - W^*(n)S_{\text{r}}^T(n) \\
\end{align*}
\]
where, \(S_{\text{clean}} \) is the clean signal, and \(W(n) \) and \(S_{\text{r}}(n) \) are denoted as:
\[
W(n) = [w_{M_{t}}(n) \quad w_{M_{t} + 1}(n) \quad ... \quad w_{M_{t} - 1}(n)],
\]
\[
S_{\text{r}}(n) = [S_{\text{ref}}[n - M_{t}] \quad ... \quad S_{\text{ref}}[n - M_{t} + 1]],
\]
\[n = 0, ..., N - 1.\]

where, \(M_{1} \) and \(M_{2} \) define the target range interval. By applying the LMS technique, a weight sequence is sought such that the difference between the clean signal and a linear combination of \(M_{1} \) to \(M_{2} \) previous samples of \(S_{\text{ref}} \) is minimized. In other words, the length of the filter is \(M_{2} - M_{1} \), while the filter starts from \(M_{1} \)-th delayed sample. A target generator space is also defined using \(M_{1} \)-th to \(M_{2} \)-th delayed replicas of \(S_{\text{ref}} \) as the columns of:
\[
H_{t} = [S_{\text{ref}}(M_{1}) \quad ... \quad S_{\text{ref}}(M_{2} - 1)],
\]
\[
S_{\text{r}}(n) = [S_{\text{ref}}[-n] \quad ... \quad S_{\text{ref}}[N - 1 - n]]^T,
\]
for \(n = M_{1}, ..., M_{2} - 1 \). An important point is that \(S_{\text{r}}(n) \) in (7) constructs the row space of target generator matrix \(H_{t} \). The LMS algorithm is implemented by applying the rule:
\[
W(n) = W(n - 1) + \mu S_{\text{r}}(n - 1)e^*(n - 1)/2
\]
where \(\mu \) is the convergence factor. Then, rows of the following \(N \times (M_{2} - M_{1}) \) weight matrix are updated in sequence:
\[
W_t = [w_{M_{t}}(0) \quad ... \quad w_{M_{t} - 1}(0) \quad w_{M_{t}}(N - 1) \quad ... \quad w_{M_{t} - 1}(N - 1)].
\]
Consider the target signal (4) with a range and Doppler \(l_{t'} \) and \(p_{t} \). Since the \(l_{t'} \)-th delayed replica of \(S_{\text{ref}} \) is \((l_{t'} - M_{1} + 1) \)-th column of \(H_{t} \), the element-wise product of \((l_{t'} - M_{1} + 1) \)-th column of \(W_{t} \) and \((l_{t'} - M_{1} + 1) \)-th column of \(H_{t} \) reproduces the target signal only if
\[
W_{t}(n, l_{t'} - M_{1} + 1) = A_{t'}, \exp(2j\pi np_{t}/N), n = 0, ..., N - 1
\]
holds. Then, the target signal is evaluated as the element-wise product of \((l_{t'} - M_{1} + 1) \)-th column of \(W_{t} \) and \((l_{t'} - M_{1} + 1) \)-th column of \(H_{t} \). Since limited number of targets are available, the computed weight matrix has sparse properties. The sparsity of this matrix is also mentioned in [12]. Columns of \(W_{t} \) with nontrivial average of its entries indicate the targets range bins. This can be simply checked by plotting the average of each column of \(W_{t} \) as:
\[
\sum_{n=1}^{N-1} W_{t}(i, n))/N, n = 1, ..., M_{2} - M_{1}
\]
The corresponding target Doppler can be approximated by setting two sides of (11) equal in phase for \(n = N - 1 \) as:
\[
p_{t} \approx [\angle W_{t}(N, l_{t'} - M_{1} + 1)]/2[\pi(N - 1)/N].
\]
The last step value of the weight vector (in last row of \(W_{t} \)) is employed in (13), for a more precise approximation. Plotting a small fragment of 2D-CCF for computed delay \(l_{t'} \) while sweeping the Doppler in \([p_{t} - s, p_{t} + s]\), reveals the exact target Doppler.

B. Weak target detection

The mostly applied procedure in the literature for weak target detection, is the clean technique [13]. In this technique, a complex amplitude is computed for the strong signal as a partial correlation between the received signal and estimated normalized strong echo. A new procedure is innovated in this section for weak target detection. After evaluation of strong target’s range and Doppler from (12) and (13), a real amplitude \(A_{t'} \) as in (4) is still required to precisely reconstruct the target signal. Rewrite \(S_{\text{targ}}(n) \) in (4) as:
\[
S_{\text{targ}} = A_{t}S_{\text{targ}},
\]
\[
S_{\text{targ}} [n] = \exp(2j\pi np_{t}/N)S_{\text{ref}}[n - l_{t'}],
\]
\[n = 0, ..., N - 1.
\]

The main idea is based on minimization of the similarity between \(S_{\text{clean}} - A_{t}S_{\text{targ}} \) and \(S_{\text{targ}} \) at the known range and Doppler as:
\[
\min_{A_{t}} F(A_{t})
\]
\[
F(A_{t}) = \left| \sum_{i, p_{t}} \left(S_{\text{clean}} - A_{t}S_{\text{targ}} \right) S_{\text{targ}}^* \right|_{l_{t'}, p_{t}}
\]
(15) Define
\[
\left(\sum S_{\text{clean}} S_{\text{targ}}^* \right)_{l_{t'}, p_{t}} = x_{1} + y_{1}
\]
and
\[(\sum s_{\text{terg}}s_{\text{terg}}^*) |_{t=p} = x_2 + y_2 j \text{.} \]

Then, by setting \(\partial F(A_z)/\partial A_z \) equal to zero, the amplitude is computed as

\[A_z = -(x_1 x_2 + y_1 y_2)/(s_{\text{terg}}s_{\text{terg}}^*)^2. \]

III. RESULTS AND DISCUSSION

To evaluate the presented processing scheme, an FM signal (88 to 108 MHz) is exploited as the waveform source of opportunity[1]. A scenario of clutters and targets is defined in Tab. Error! Reference source not found..The diverse interval assumed for clutter Doppler shifts represents a more realistic scenario. The ECA scheme requires a high computational cost to cancel the clutters in such a scenario, while assuming a pre-knowledge of Doppler shifts is irrational. In comparison, the only drawback of LMS is the slightly slow convergence speed which leads to a misalignment at the beginning steps and an inefficient disturbance cancellation. To overcome the initial convergence error, the filter is repeated for the initial steps, while the initial weight value is set equal to the computed last step (i.e. \(N \)-th step) weight vector. In this scenario, a repeat of LMS for \(p = 4 \times 10^3 \) initial steps which is \(1/25 \) of the total steps \(N = 10^5 \), covers the initial mismatch acceptably.

Number of complex products of the improved-LMS is then \((N + p)(2M + 1) \). \(M = M_2 - M_4 \) which is still much lower than \((NK^2 + K^3) \) complex products required in ECA scheme[3]. Note that \(K \) is the column dimension of the augmented matrix \(H_e \), which contains the Doppler shifted replicas of its columns. Nine Doppler shifts along with the zero Doppler of direct signal result in \(K = 10M \). The clutter attenuation (CA), which is the power ratio of input and output signals of the filter, as well as the number of complex products are tabulated for three algorithms LMS, improved-LMS and ECA at Tab. 1. The improved-LMS clutter attenuation is closely tracking ECA, while much lower cost is maintained. Next, the weight matrix-based target detection algorithm presented in Section 2, is

\[
\begin{array}{cccccccc}
\text{Clutters} & \#1 & \#2 & \#3 & \#4 & \#5 & \#6 & \#7 & \#8 \\
\text{Delay (ms)} & 0.05 & 0.1 & 0.15 & 0.2 & 0.25 & 0.07 & 0.17 & 0.22 & 0.13 \\
\text{Doppler (Hz)} & 4 & 3 & 2 & 1 & -1 & -2 & -3 & -4 & -5 \\
\text{CNR} & 40 & 30 & 20 & 10 & 5 & 27 & 18 & 8 & 5 \\
\end{array}
\]

implemented on the clean signal. After construction of the weight matrix \(W_f \), average of its columns is plotted from (12) as in Fig. 1. Two targets ranges are observable at \(l_{t1} = 60 \) and \(l_{t2} = 100 \) which correspond to delays 0.3ms and 0.5ms. A similar phenomenon to side lobe effect is observed at the neighbor bins. The corresponding Doppler shifts are evaluated from (13) at \(p_{t1} = -52 \) and \(p_{t2} = 96 \). The precise Doppler shifts -50 and 100 are then computed by plotting a 2D-CCF fragment for \(l_{t1} \) and \(p_t \in [p_{ti} - s, p_{ti} + s] \), \(i = 1,2 \) where \(s = 10 \) is assumed (Fig. 2). The weak target cancellation algorithm is exploited to cancel two stronger targets. Then, the weak target range is ascertained at \(l_{t3} = 120 \) (Fig. 3) and its corresponding Doppler is evaluated roughly at \(p_{t3} = 28 \). A larger guaranteeing sweeping parameter \(s = 25 \) is chosen to plot the 2D-CCF fragment as in Fig. 3 and the precise Doppler is eventually evaluated at \(p_{t2} = 50 \).

Table 1 Comparison of three algorithms

Algorithm	LMS	Improved-LMS	ECA
CA(dB)	32.4884	49.6275	57.7170
Complex multiplications	16,100,000	16,744,000	6.4512

![Fig.1 Target detection by plotting average of columns of the weight matrix \(W_f \).](image1)

![Fig.2 Strong targets Doppler evaluation.](image2)
Weight Matrix-Based Least Mean Square Algorithm for Target Detection in Passive Radars

IV. CONCLUSION

A novel target detection algorithm is presented based on the least mean square difference between the clean signal and a linear combination of delayed samples of reference signal. While the traditional AF analysis, employed for target detection, has many challenges in terms of reducing the computational cost, in the presented algorithm a considerably lower computational burden is required. The key idea is to utilize the properties of computed weight matrix in LMS algorithm for target detection. The targets ranges are detected by evaluation of the weight matrix columns which have nontrivial averages. However, targets Doppler shifts are just approximated and their precise values are computed by plotting a small fragment of 2D-CCF. Weak target detection problem is also dealt by strong target removal. To this end, the strong target amplitude is computed based on minimizing the similarity between the strong target and its difference with the clean signal at the computed Doppler and range. Furthermore, LMS response in disturbance cancellation is improved by repeating limited primary steps (improved-LMS). Then the computational effort is shown to be way lower than conventional approaches, while the clutter attenuation is improved to a much higher level. Since RLS technique is also capable of considering Doppler effects on computed weights, its target detection capability might be inspected in further investigations.

REFERENCES

1. Lauri A, Colone F, Cardinali R, Bongioanni C, Lombardo P. Analysis and emulation of FM radio signals for passive radar. 2007 IEEE Aerosp. Conf., 2007, p. 2170–2179.
2. Chiglarha MM, Radmar M, Majd MN, Nayebi MM. Adaptive filtering techniques in passive radar. Radar Symp. (IRS), 2013 14th Int., vol. 2, 2013, p. 1067–72.
3. Colone F, O’hagan DW, Lombardo P, Baker CJ. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar. IEEE Trans Aerosp Electron Syst 2009;45:698–722.
4. Garry JL, Smith GE, Baker CJ. Direct signal suppression schemes for passive radar. Signal Process. Symp. (SPSympo), 2015; Poland: 2015, p. 1–5.
5. Colone F, Palmarini C, Martelli T, Tili E. Sliding extensive cancellation algorithm for disturbance removal in passive radar. IEEE Trans Aerosp Electron Syst 2016;52:1309–26.
6. Attalah MA, Laroussi T, Gini F, Greco MS. Fast block LMS algorithm for interference cancellation in DVB-T based passive bistatic radar. 2017 5th Int. Conf. Electr. Eng., Algeria: 2017, p. 1–5.
7. Johnson N, Chergui M, Sternberg O, Rockway JD, Jones WL. Ambiguity function analysis for passive radar system performance. 2016 IEEE Mil. Commun. Conf., USA: 2016.
8. Venu D, Rao NVK. Ambiguity function analysis of broadcast signals for passive radar. 2017 2nd IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol., IEEE; 2017, p. 2026–9.
9. Hadi MA, Alshebeli S, Jamali K, El-Samie FEA. Compressive sensing applied to radar systems: an overview. Signal, Image Video Process 2015;9:25–39.
10. Moscardini C, Petri D, Capria A, Conti M, Martorella M, Berizzi F. Batches algorithm for passive radar: a theoretical analysis. IEEE Trans Aerosp Electron Syst 2015;51:1475–87.
11. Lombardo P, Colone F. Advanced processing methods for passive bistatic radar systems. Proc Mod Radar Radar Tech Melvin, WL, Scheer, JA, Eds 2012.
12. Ma Y, Shan T, Zhang YD, Amin MG, Tao R, Feng Y. A novel two-dimensional sparse-weight NLMS filtering scheme for passive bistatic radar. IEEE Geosci Remote Sens Soc 2016;13:676–80.
13. Kulpa KS, Czekala Sonar Z. Masking effect and its removal in PCL radar. IEEE Proceedings-Radar Navig 2005;152:174–8.

AUTHORS PROFILE

D. Venu has born in INDIA in 1982. He has a total experience of 14 years in teaching electronics related courses and is currently working in Kakatiya Institute of Technology and Science, Warangal, India. He is pursuing a Ph.D. from Osmania University in the area of Radar Signal Processing. He did his M.Tech in Embedded Systems and B.Tech in electronics and communication engineering from Jawaharlal Nehru Technological University(INTU), Hyderabad. He is a life member of IAENG (International Association of Engineers), a life member of ISTE (Indian Society for Technical Education). He has five technical publications in various journals/conferences.

N V Koteswara Rao has born in INDIA in 1966. He has a vast experience of 28 years and has been working in Chaitanya Bharathi Institute of Technology(A), Hyderabad, India, since 1992. He did his Ph.D. from Osmania University in the area of “Microstrip Antennas”, M.Tech of Microwave Electronics from University of Delhi and B.Tech in field of electricity and communication engineering from Nagarjuna University. He is a Fellow of IETE, life member of IEEE and IEEE. Presently, he is the Professor and ‘Director-Academics’. Under his supervision, two scholars have been awarded Ph.D. and nine Ph.D. research scholars are pursuing. He has been awarded the ‘Best Teacher’ of the institute and ‘Distinguished Teacher’ of the department. He has published sixty four technical publications in various journals/conferences and has filed one patent to his credit. He has successfully completed two R&D projects, one MODROB project and two FDP programs which are sponsored by AICTE. He has completed one in-house project and two consultancy projects from RCI/ISRO. Presently, he is associated with two R&D projects.