Estimation of Zero Intelligence Models by L1 Data

MARTIN ŠMÍD

April 25, 2016

Abstract

A unit volume zero intelligence (ZI) model is defined and the distribution of its L1 process is recursively described. Further, a generalized ZI (GZI) model allowing non-unit market orders, shifts of quotes and general in-spread events is proposed and a formula for the conditional distribution of its quotes is given, together with a formula for price impact. For both the models, MLE estimators are formulated and shown to be consistent and asymptotically normal. Consequently, the estimators are applied to data of six US stocks from nine electronic markets. It is found that more complex variants of the models, despite being significant, do not give considerably better predictions than their simple versions with constant intensities.

Keywords: Limit Order Market, Stochastic Models, Econometric Methods,
1 Introduction

With the recent wide expansion of trading according to continuous double auction (CDA), the importance of mathematical modelling of this trading mechanism grows.

A number of models of CDA exist which assume a rational behaviour of agents involved (see, e.g., Parlour and Seppi (2008) and the references therein); these models are, however, dependent on many arbitrary assumptions and do not give much better empirical results than models assuming a purely random behaviour of agents (see Gode and Sunder (1993) for a discussion). Thus, as an alternative to the “rational” approach, zero intelligence (ZI) models of the CDA started to be studied: out of a number of similar models of that kind, let us name Stigler (1964); Maslov (2000); Challet and Stinchcombe (2001); Luckock (2003); Smith et al. (2003); Mike and Farmer (2008) or Cont et al. (2010). All these models assume unit order sizes, Poisson arrivals of market and limit orders and locally constant cancellation rates depending on the distance to the quotes. For a survey of the ZI models and their characteristics, see Chakraborti et al. (2011a) and Chakraborti et al. (2011b), especially Section II of the latter paper. For the recent developments, see Abergel et al. (2011).

Although, according to their advocates, the ZI models are able to mimic many stylised empirical facts such as fat tails or non-Gaussianity (Slanina (2001, 2008); Šmíd (2008); Cont (2011)), no rigorous statistical evidence in that respect has been presented yet due to intractability of these models. In Šmíd (2012), a conditional distribution given L1 data is described; however, the model considered in this paper is too general to ensure consistency of statistical estimators.

The present paper simplifies the approach of Šmíd (2012) by assuming only a finite number of prices so that it is possible to construct consistent asymptotically normal estimators of the models’ parameters.

The exposition is started by introducing a sufficiently general setting covering a wide range of existing zero intelligence (ZI) models, e.g., an early work of Stigler (1964), the model by Cont et al. (2010), a discretised version of Luckock (2003) and a slightly modified version of Smith et al. (2003). After demonstrating ergodicity of the covered models, a conditional density of jumps of the L1 process (i.e., the bid, the ask, and the corresponding offered volumes) given its history is formulated.

Further, in order to treat the most obvious discrepancies between the ZI models and reality, a generalised (GZI) setting is proposed, which allows shifts of the quotes, non-unit market orders and general distributions of inside-the-spread events. A formula for a conditional density of the out-of-spread jumps of the quotes, later used in estimating the in-book parameters, is given.

Subsequently, Maximum Likelihood estimators are formulated and several variants of both the ZI and GZI models are estimated by means of L1 data for six stocks on nine US electronic markets. Further, for each stock-market pair, the variants of the models are compared by their

1The only exceptions are Maslov (2000) and Challet and Stinchcombe (2001) with a discrete time (which could, however, be regarded as Poisson events’ time) and Mike and Farmer (2008), in which the cancellation rate also depends on the order books’ size and imbalance.

2Although order book (L2) data might seem more natural to be used for the estimation, the better availability and lower price of L1 data speak for using them. This approach, in addition, allows us to avoid a problem of hidden limit orders, which are invisible in the books but affect sizes of quotes’ jumps.
ability to forecast magnitudes of the quotes’ jumps. It is found that more complicated variants of the models do not bring significant improvements in comparison with the simple variant with constant intensities, which itself, however, nearly always performs significantly better than a naive prediction of the jumps. It is also found that GZI variants of the models do not perform significantly better than their ZI counterparts.

This paper is organised as follows: First, the ZI setting is defined (Section 2) and the distribution of the L1 process given its history is derived. Consequently, the GZI setting is introduced and a formula for the density of the out-of-spread jumps and volume changes is given (Section 3). Finally, the empirical evidence is discussed (Section 4) and the paper is concluded (Section 5). The Appendix includes a proof of Theorem 2.2 (Appendix A), a proof of asymptotic properties of the MLE estimator (Appendix B), and detailed results on the estimation (Appendix C).

2 Zero Intelligence Model

2.1 Definition

Consider a general discrete-price continuous-time zero intelligence model with unit order sizes described by a pure jump type process

\[\Xi_t = (A_t, B_t), \quad t \geq 0, \]

where

\[A_t = (A^1_t, A^2_t, \ldots, A^n_t) \in \mathbb{N}_0^n, \]

and

\[B_t = (B^1_t, B^2_t, \ldots, B^n_t) \in \mathbb{N}_0^n, \]

are the sell limit order book and buy limit order book, respectively; here, \(n \) is a number of possible prices (ticks) and, for any \(p \), \(A^p_t (B^p_t) \) stands for the number of the sell (buy) limit orders with price \(p \) waiting at time \(t \). Further, denote by

\[a_t := \inf \{ p : A_t(p) > 0 \} \lor 0, \quad b_t := \sup \{ p : B_t(p) > 0 \} \land n + 1, \]

the (best) ask and bid respectively. The list of possible events causing jumps of \(\Xi \) together with the notation for their intensities is given in the following table:
code - e	intensity - $I_t(e)$	description
BMO	$\theta_t = \theta(a_t, b_t)$	An arrival of a buy market order, causing A^a_t to decrease by one (if the sell limit order book is empty then the arrival of the market order has no effect).
SLO(p)	$\kappa_{t,p} = \kappa(a_t, b_t, p)$	An arrival of a sell limit order with limit price $p > b_t$ causing an increase of A^p by one.
CA(p)	$\rho_{t,p} = A^p_t \rho(a_t, b_t, p)$	A cancellation of a pending sell limit order with a limit price p causing a decrease of A^p by one.
SMO	$\vartheta_t = \vartheta(a_t, b_t)$	An arrival of a sell market order, causing B^b_t to decrease by one (if the buy limit order book is empty then the arrival of a market order has no effect).
BLO(p)	$\lambda_{t,p} = \lambda(a_t, b_t, p)$	An arrival of a buy limit order with limit price $p < a_t$ causing an increase of B^p by one.
CB(p)	$\sigma_{t,p} = B^p_t \sigma(a_t, b_t, p)$	A cancellation of a pending buy limit order with a limit price p causing a decrease of B^p by one.

Here, all $\theta, \kappa, \rho, \vartheta, \lambda, \sigma$ are measurable functions.

It is assumed that all the flows of the market orders, and the flows of limit orders as well as their cancellations are mutually independent in the sense that the conditional distribution of the relative time of the first event following $t \in \mathbb{R}_0^+$ given the history of Ξ up to t is exponential with parameter

$$
\Lambda_t = \theta_t + \vartheta_t + \sum_{p=b_t+1}^{n} \kappa_{p,t} + \sum_{p=0}^{a_t-1} \lambda_{p,t} + \sum_{p=a_t}^{n} A^p_t \rho_{p,t} + \sum_{p=0}^{b_t} B^p_t \sigma_{p,t} \quad (1)
$$

and that

the probability that the next event will be of type e equals to $I_t(e)/\Lambda_t \quad (2)$

where $I_t(e)$ is the intensity of event e at t. It is obvious that Ξ is then a Markov chain in a countable state space.

Finally, it is assumed that a_0, b_0 are deterministic and

$$
A_{0}^{a_0+1}, A_{0}^{a_0+2}, \ldots \text{ are Poisson with parameters } \iota_{a_0+1}, \iota_{a_0+2}, \ldots,
$$

mutually independent and independent of $B_0 \quad (3)$

where $\iota_* \geq 0$ are constants, and that a symmetric assumption holds for B.

2.2 Relation to Existing Models

The following table shows how some of the models mentioned in the Introduction comply with our setting. When speaking about [Luckock (2003)](#), we have its discretised version (see [Smíd](#))
(2012), Sec 3.3) in mind. When speaking about Smith et al. (2003), we are considering its bounded version (i.e., contrary to Smith et al. (2003) we assume zero arrival intensities for prices smaller than one and greater than n).

model	θ	ϑ	κ	ρ	λ	σ
Luckock (2003)	$K(b_t)$	$1 - L(a_t - 1)$	$κ^L_p$	0	$λ^L_p$	0
Smith et al. (2003)	$θ^s$	$θ^s$	$κ^s$	$ρ^s$	$λ^s$	$ρ^s$
Cont et al. (2010)	$θ^c$	$θ^c$	$κ^c(p - b_t)$	$ρ^c(p - b_t)$	$κ^c(a_t - p)$	$ρ^c(a_t - p)$

Here, $κ^L_p = K(p) - K(p - 1)$, $λ^L_p = L(p) - L(p - 1)$ where K, L are (continuous) cumulative distribution functions, $κ^c$, $ρ^c$ are measurable functions and the rest of the symbols are constants.

Some of the models from the Introduction were not mentioned in the table: We did not include either Maslov (2000) or Challet and Stinchcombe (2001) because they both consider discrete time and are very similar to Smith et al. (2003) with $ρ = σ = 0$, Cont et al. (2010), respectively. The model by Mike and Farmer (2008) was not included because of its complicated cancellation sub-model and because, apart from the cancellations, it is similar to that of Cont et al. (2010). Finally, we did not include Stigler (1964) because it is a special version of Luckock (2003) (with $K(x) = L(x) = x$).

2.3 Distribution

Let us start with a result which will guarantee that sampling from the model will give enough information to a statistician.

Proposition 2.1. If $ρ(•) > 0$, $σ(•) > 0$, $θ(•) > 0$ and $ϑ(•) > 0$, then $Ξ_t$ is ergodic.

Proof. The Proposition may be proved analogously to Cont et al. (2010), Proposition 2, where the ergodicity is verified by finding a Markov chain in N_0 dominating the total number of orders with a recurrent zero state. In particular, it suffices to replace the definition of $λ$ and $μ_i$ from Cont et al. (2010) by

$$λ = \sum_{p=1}^{n} [\max_{a,b,p} κ(a,b,p) + \max_{a,b,p} λ(a,b,p)],$$

and

$$μ_i = \min_{a,b} θ(a,b) + \min_{a,b} ϑ(a,b) + i \min_{a,b,p} [\min(ρ(a,b,p), σ(a,b,p))].$$

□

Our next goal is to derive a recursive analytic expression of the distribution of $x_τ = (a_τ, b_τ, q_τ, r_τ)_{τ ≥ 0}$, $q_τ = A^\tau_{τ^r}$, $r_τ = B^b_{τ^r}$, $τ ≥ 0$ (the L1 process). To do so, let us denote by t_1, t_2, \ldots the jumps of x and, in order to avoid frequent double indexing, let us write $y[i]$ instead of y_{t_i} and $y[i−]$ instead of $y_{t_{i−}}$ for any process y. For each i, we want to evaluate

$$P[\Delta t_i, x[i] ∈ •|x[0]], \quad ξ[k] = (x[k], Δt_k, x[k-1], \ldots, x_0), \quad k ≥ 0,$$
To this end, note that

\[P[(\Delta t_i, a[i], q[i]) \in \bullet | \xi[i-1]] \]

To this end, note that

- \(a \) jumps down if and only if a limit order arrives into the spread, in which case a limit price of the new order becomes a new value of \(a \).
- \(a \) jumps up if and only if the offered volume of the ask decreases to zero due to either a market order arrival or a cancellation, in which case the closest occupied tick becomes a new value of \(a \).

Formally,

\[
(a[i], q[i]) = \begin{cases}
(b[i-1] + 1, 1) & e_i = \text{SLO}(b[i-1] + 1) \\
(b[i-1] + 2, 1) & e_i = \text{SLO}(b[i-1] + 2) \\
\vdots & e_i = \text{SLO}(a[i-1] - 1) \\
(a[i-1], q[i-1] + 1) & e_i = \text{SLO}(a[i-1]) \\
(a[i-1], q[i-1] - 1) & e_i \in \{\text{BMO}, \text{CA}(a[i-1])\}, q[i-1] > 1 \\
(d_i, A_{[i-1]}^\delta) & e_i \in \{\text{BMO, CA}(a[i-1])\}, q[i-1] = 1 \\
(a[i-1], q[i-1]) & \text{otherwise}
\end{cases}
\]

\(d_i = \inf\{\pi: \pi > a[i-1], A_{[i-1]}^\delta > 0\} \land n + 1 \)

where \(e_i \) is the type of an event happening at \(t_i \) and where \(A_n^\delta \equiv 0 \) by definition. Thus, to determine the conditional distribution of \((\Delta t_i, a[i], q[i])\), it suffices to know a joint distribution of \((\Delta t_i, e_i, A_{[i-1]}^\delta)\) which is described by the following Theorem in three steps:

Theorem 2.2. (i) For any \(\tau \) and \(e \),

\[P[\Delta t_i > \tau, e_i = e | \xi[i-1]] = \exp\{-\gamma[i-1] \tau\} \pi_i(e), \]

where

\[\pi_i(e) = \gamma[i-1]^{-1} \times \begin{cases}
\kappa_{p,i-1}, & e = \text{SLO}(p), b[i-1] < p \leq a[i-1], \\
\theta[i-1], & e = \text{BMO}, \\
\rho[i-1], & e = \text{CA}(a[i-1]), \\
\lambda_{p,i-1}, & e = \text{BLO}(p), b[i-1] \leq p < a[i-1], \\
\vartheta[i-1], & e = \text{SMO}, \\
\sigma[i-1], & e = \text{CB}(b[i-1]),
\end{cases} \]

and, for any \(k \),

\[\gamma_k = \theta[k] + \vartheta[k] + \rho[k] + \sigma[k] + \sum_{p=b[k]+1}^{a[k]} \kappa_{p,k} + \sum_{p=b[k]}^{a[k]-1} \lambda_{p,k}. \]
(ii) Denote by δ, the Dirac measure concentrated in c (i.e., the distribution of constant c) and write \circ for convolution (i.e., summation of two independent variables). For any i and p,

$$A^p_{[i-1]} \xi_{[i-1]} \sim \begin{cases} 0 & \text{on } [1 \leq p < a_{i-1}] \\ \delta_{q_{i-1}} & \text{on } [p = a_{i-1}] \\ \text{Bi}(\nu_{p,i}, \varpi_{p,i}) \circ \text{Po}(\epsilon_{p,i} + \iota_{p,i}) & \text{on } [a_{i-1} < p \leq n] \end{cases}$$

where

$$\xi_{[i-1]} = (\epsilon_i, \Delta_i, \xi_{[i-1]}), \quad \nu_{p,i} = \begin{cases} A^p_{[k_i(p)-]} & k_i(p) > 0, \\ 0 & k_i(p) = 0 \end{cases}, \quad \varpi_{p,i} = \begin{cases} \prod_{j=k_i(p)}^{i-1} \delta_{p,j} & k_i(p) < i \\ 1 & k_i(p) = i \end{cases}$$

$$\epsilon_{p,i} = \sum_{j=k_i(p)}^{i-1} \phi_{p,j}(1 - \delta_{p,j}) \prod_{m=j+1}^{i-1} \delta_{p,m}, \quad \iota_{p,i} = \begin{cases} 0 & k_i(p) > 0, \\ \iota_p \prod_{j=0}^{i-1} \delta_{p,j} & k_i(p) = 0 \end{cases}$$

and, for any k,

$$\phi_{p,k} = \frac{\kappa_{p,k}}{\rho_{p,k}}, \quad \delta_{p,k} = \exp\{-\rho_{p,k} \Delta t_{k+1}\}$$

(iii) $A^1_{[i-1]}, A^2_{[i-1]}, \ldots, A^n_{[i-1]}$ are mutually conditionally independent given $\xi_{[i-1]}$.

\textbf{Proof.} See Appendix A \hfill \Box

Before proceeding further, let us illustrate point (ii) of the Theorem, which is somewhat opaque, by an example.

\textbf{Example 2.3.} Consider model by Smith et al. (2003) with $\iota_* \equiv 0$ (implying $\iota_{*,3} \equiv 0$). Let $i = 3$, $a_0 = 2$, $q_0 = 1$, $a_{[1]} = 3$, $q_{[1]} = 2$, $a_{[2]} = 1$, $q_{[2]} = 3$ (see Figure 1 for an illustration).

Let us start with $p = 2$: as no orders could be present in tick 2 before t_2 (the ask was above 2 that time), all the in-book orders present in the tick t_2 are those having arrived between t_2 and t_3 and not being cancelled. According to Appendix A, number of those orders is $\text{Po}(\epsilon_{i,3})$ (to check it, note that $k_i(3) = 2$ so $\nu_{i,2} = A^2_{[2]} = 0$ and $\epsilon_{i,3} = \frac{2}{\rho}[1 - \exp\{-\rho \Delta t_3\}]$ which, according to Appendix A, is actually the distribution of the immigration and death process of length Δt_3).

For $p = 3$, the situation is the same with the difference that number of initial orders having survived until t_3, which is distributed according to $\text{Bi}(2, \exp\{-\rho \Delta t_3\}) = \text{Bi}(A^3_{[2]}, \delta_{i,3})$, has to be added to $A^p_{[i-1]}$.

Further, as the orders present in tick 4 at t_3 are exactly those having arrived from the start and not being cancelled, $A^4_{[i-1]} | \xi_{[i-1]} \sim \text{Po}\left(\frac{\xi}{\rho}[1 - \exp\{-\rho t_3\}\right)$ - it is easy to check that (ii) gives the same result.

Finally, because $k_i(1) = 3$, we have $\epsilon_{1,i} = 0$, $\omega_{1,i} = 1$ and $\nu_{1,i} = 3$ so, according to (ii), $A^1_{[i-1]} \sim \text{Bi}(3, 1) = \delta_3$.

From the Theorem and (i), we get that
Corollary 2.4. (i) Conditional density of \((e_i, \Delta t_i | \xi_{i-1})\) is given by
\[f_i(\tau, e | \xi_{i-1}) = \gamma_{i-1}^{-1} \exp\{-\gamma_{i-1} \tau\} \pi_i(e), \]

(ii) conditional density of \((a[i], q[i]) | \xi_{i-1}\) is given by
\[
\begin{cases}
1[q = A^p_{i-1}, a = a_{i-1}] & \text{on } [b_{i-1} < a \leq a_{i-1}, e_i = \text{SLO}(a)] \\
1[q = q_{i-1} - 1] & \text{on } [a = a_{i-1}, e_i \in \{\text{CA}(a_{i-1}), \text{BMO}\}, q_{i-1} > 1] \\
\omega_{a,q,i} \prod_{\pi = a_{i-1} + 1}^{a_i - 1} (1 - \varphi_{\pi,i})^{e_{\pi,i}} e^{-\epsilon_{\pi,i}} & \text{on } [a_{i-1} < a, e_i \in \{\text{CA}(a_{i-1}), \text{BMO}\}, q_{i-1} = 1] \\
1[q = q_{i-1}, a = a_{i-1}] & \text{otherwise,}
\end{cases}
\]
where \(1\) denotes indicator function and
\[
\omega_{p,q,i} = \begin{cases}
\mathbb{P}[\text{Bi}(\nu_{p,i}, \varphi_{p,i}) \circ \text{Po}(\tau_{p,i} + \epsilon_{p,i}) = q] & a_{i-1} < p \leq n, \\
1[q = 0] & a = n + 1.
\end{cases}
\]

(iii) conditional density of \((a[i], q[i], e_i, \Delta t_i)\) given \(\xi_{i-1}\) is given by
\[
h_i(a, q, e, t | \xi_{i-1}) = g_i(a, q | e, t, \xi_{i-1}) f_i(e, t | \xi_{i-1}).
\]

Remark 1. As the definitions of \(B\) and \(A\) are symmetric, formulas for the (conditional) distribution of \((b, r)\) are symmetric to those for \((a, q)\). Moreover, as changes of \((a, q)\) and \((b, r)\) are mutually exclusive almost sure, i.e.,
\[
[(a, q) \text{ changes at } t] \Rightarrow [(b, r) \text{ does not change at } t]
\]
almost sure and vice versa, \((b, r)\) is conditionally constant given events which cause changes of \((a, q)\) (and vice versa) so the conditional distribution of \(x[i] | \xi_{i-1}\) is uniquely determined by Corollary 2.4 and a formula for \((b, r)\).
In the rest of the paper, we shall deal only with the ask side, i.e., with \((A, a, q)\), leaving \((B, b, q)\) aside due to the symmetry.

Because density \(h_i\) depends on all the parameters related to \(A\) (i.e., \(\kappa, \rho, \theta, \iota\)), it is straightforward to estimate these parameters by Maximum Likelihood based on \(h_i\) and a sample from \((\Delta t_i, e_i[a_i], a_i[q_i])\). Moreover, if we put

\[\iota \equiv 0 \]

and, quite realistically, assume that \(\kappa\) and \(\rho\) depend only on a distance to the ask, i.e.,

\[\kappa(a, b, p) = \tilde{\kappa}(a - p), \quad \rho(a, b, p) = \tilde{\rho}(a - p) \]

for some \(\tilde{\kappa}\) and \(\tilde{\rho}\), and that the “inside-the-book” intensities

\[\tilde{\kappa}_{\{1, 2, \ldots\}}, \quad \tilde{\rho}_{\{1, 2, \ldots\}}, \]

depend on different parameters than the “spread” intensities

\[\theta, \quad \tilde{\kappa}_{\{0, -1, -2, \ldots\}}, \quad \tilde{\rho}_{\{0, -1, -2, \ldots\}}, \]

then the estimation of the “ask-side” parameters could be split into the estimation of the parameters underlying (8), based on \(f_i(\Delta t_i, e_i)_{i \in \mathbb{N}}\), and that of the parameters underlying (?), based on \(g_i(a_i[q_i])_{i \in \mathbb{N}}\). In the present paper, only the latter case of an estimation is discussed.

3 Generalised Model

Despite the popularity of the ZI models, there is no doubt that they are too rough and neglect many aspects of real-life trading. The most obvious issues in this respect are two:

(i) the volumes are non-unit in reality,

(ii) agents, at least sometimes, act strategically rather than in a random way.

To deal with (i), authors of ZI models usually argue that the sizes of a majority of orders are one-lot and, when an order is larger, it may be imagined that several subsequent one-lot orders have been issued. However, this simplification may be tolerable only in the case of limit orders (if the order book is observed only at certain time instants then larger orders are indeed interchangeable with several subsequent unit ones) but it is unacceptable for non-unit market orders which could not be imaginatively split without a serious violation of the assumption that their arrival intensity is constant.

To justify the ZI models against (ii), it is usually argued that the strategic reasoning is so complex that taking it as random is less evil than constructing wrong models. This argument, however, has a drawback, too: no matter how reasonable it may sound, one still has to deal with empirical phenomena stemming from (bounded) rationality, such as shifts and rapid insertions and cancellations of orders (especially quotes) in response to changes of the book.

To meet those issues, the setting defined in Section 2.1 might be generalised by assuming that
M volumes of market orders are possibly non-unit,

S1 once a (unit) limit order stops to be a quote due to an in-spread sell limit order, it is, with probability $1 - \eta$, immediately cancelled or shifted to the position of the new quote,

S2 once a quote jumps out of the spread, there is a non-zero probability that the move was caused not by a market order or cancellation but by a shift of the quote.

Moreover, to give more freedom to modelling of (possibly complex) behaviour of the quotes, it is allowed that

D the distribution of $\Delta t_i, e_i|\xi_{i-1}$ is arbitrary and, moreover, q and r may jump by more than one unit.

The list of events potentially changing x at t_i is newly as follows:

code	description
BMO(z)	a buy market order of volume z
SLO(p, z)	a sell limit order with price $b_{i-1} < p \leq a_{i-1}$ and size z put into the spread
CA(a_{i-1}, z)	a cancellation of z orders of the ask
SAL(z, a)	a shift of z orders with price a_{i-1} to tick $a_{i-1} - a$, $a > 0$
SAR(z, a)	a shift of z orders with price a_{i-1} to tick $a_{i-1} + a$, $a > 0$

plus symmetric events concerning b.

Even though, given this generalisation, (i) of Theorem 2.2 ceases to be true, its Assertions (ii) and (iii) would keep holding with $\eta P_{p,i}$ instead of $P_{p,i}$ if it is additionally assumed that

- the volumes of market orders are i.i.d. random, independent of all the past and the present events on the market
- the (Bernoulli) variables indicating the shifts are mutually independent, independent of the past and the present events on the market

What does change, however, is the distribution of quote jumps outside of the spread after the ask is depleted, which are now non-zero if and only if

$$[e_i \in \{\text{BMO}(z), \text{CA}(q_{i-1}), \text{SAR}(z, a)\}, z \geq q_{i-1}, a > 0],$$

in which case

$$(a_{[i]}, q_{[i]}) = (a, q) \iff \begin{cases} M_{a,i} \leq s_i, M_{a,i} + A_{a_{[i-1]}}^a = s_i + q, & a \leq n, \\ M_{n+1,i} \leq s_i & a = n + 1, q = 0, \end{cases}$$

where

$$M_{a,i} = \sum_{j=a_{[i-1]+1}}^{a-1} A_i^j$$

\footnote{To see it, note that the proof continues to be valid with $P(\text{Bi}(q_{i-1}, \eta) = a)$ instead of $1[a = q_{i-1}]$ in [A].}
is the total number of the orders in the book between the former and the present value of the ask and

$$s_i = \begin{cases}
 z - q_{i[-1]} & \text{if } e_i = \text{BMO}(z), \\
 -z & \text{if } e_i = \text{SAR}(z, a) \text{ for some } a, \\
 0 & \text{if } e_i = \text{CA}(a_{i[-1]}).
\end{cases}$$

is the number of the orders the particular change would like to “eat” from the inside of the book.

As, by (ii) and (iii) of (the modified version of) Theorem \ref{thm:2.2},

$$M_{a,i} | \xi_{i[-]} | \sim \text{Bi}(\nu_{a_{i[-1]}+1,i}, \eta \varpi_{a_{i[-1]}+1,i}) \circ \cdots \circ \text{Bi}(\nu_{a_{i-1},i}, \eta \varpi_{a_{i-1},i}) \circ \text{Po} \left(\sum_{j=a_{i[-1]}+1}^{a_{i[-1]}} [\epsilon_{j,i} + t_{j,i}] \right)$$

and, by (iii) of the Theorem, $A_{a_{i[-1]}}^a$ is conditionally independent of $M_{a,i}$ given $\xi_{i[-]},$ we are getting

Corollary 3.1. On set \(\mathcal{J}\), the distribution of \((a_{i[i]}, q_{i[i]}) | \xi_{i[-]}\) is given by density

$$\tilde{g}_i(a, q | \xi_{i[-]}) = \begin{cases}
 \sum_{j=0}^{s_i} \mathbb{P}[M_i = j | \xi_{i[-]}] \mathbb{P}[A_{a_{i[-1]}}^a = s_i + q - j | \xi_{i[-]}] & a_{i[-1]} < a \leq n, \\
 \mathbb{P}[M_i \leq s_i | \xi_{i[-]}] & a = n + 1, q = 0.
\end{cases}$$

Remark 2. As both the value of the ask and its volume are uniquely determined by $\xi_{i[-]}$ outside set \(\mathcal{J}\), the distribution of \((a_{i[i]}, q_{i[i]}) | \xi_{i[-]}\) is Dirac outside set \(\mathcal{J}\).

Thus, if we keep assuming \(\mathcal{J}\) and \(\mathcal{I}\), we may estimate parameters underlying $\tilde{\kappa}|_{\{1,2,\ldots\}}$ and $\tilde{\varpi}|_{\{1,2,\ldots\}}$ together with η by means of MLE based on \tilde{g}_i; as it could be checked in Appendix \(\mathcal{B}\) the asymptotic properties of the estimator are not harmed by the generalisation provided that the generalised process is ergodic, which may be guaranteed, e.g., by requiring that $E q_i + r_i$ is stochastically dominated by a Markov chain with a zero recurrent state.

Under this assumption, Proposition \ref{prop:2.1} keeps holding because none of the generalisations, except for D, which is treated by E, increase the total number of orders in Ξ in comparison with the ZI.

Remark 3. Unlike in the unit-volume ZI model, price impact may be predicted in the GZI model: denoting m_i the impact of a trade with volume z at time t, we have

$$\mathbb{P}[m_i(z) = m | \xi_{i[-1]} = \xi, t_i = t, e_i = \text{BMO}(z)] = \mathbb{P}[\Delta a_i = m | \xi_{i[-1]} = \xi, t_i = t, e_i = \text{BMO}(z)] = \sum_{q=0}^{\infty} \tilde{g}_i(a_{i[-1]} + m, q | \xi_{i[-]} = \xi, t_i = t, e_i = \text{BMO}(z)).$$

4 Empirical Evidence

4.1 Data

For our empirical analysis, tick-by-tick trade and quote data was used, i.e., values $(x_{i[i]}, q_{i[i]})_{i \in \mathbb{N}}$
where \(\tau_i \) is an amount traded at \(t_i \), defined by

\[
\tau_i = \begin{cases}
 z & e_i = \text{SMO}(z) \\
 -z & e_i = \text{BMO}(z) \\
 0 & \text{otherwise}.
\end{cases}
\]

In particular, data of six stocks

- Exxon Mobile (XOM)
- Microsoft (MSFT),
- General Electric (GE)
- MarketAxess Holdings (MKTX)
- J2 Global (JCOM)
- American Realty Investors (ARL)

from nine US electronic markets

- NASDAQ OMX BX
- NSE
- Chicago
- NYSE
- ARCA
- NASDAQ T
- CBOE
- BATS
- ISE

from ten months starting from March 2009 were analysed.

Our choice of the titles was done so as to cover both “large” and the “smaller” stocks. The first three ones - XOM, MSFT and GE - belong to the top ten companies by market capitalization and usually exhibit large trading volumes. MKTX and JCOM, on the other hand, are usually ranked as “small caps” (having market capitalization around $1 billion) with moderate trading volumes. Company ARL, belonging to the category of “micro caps” (capitalisation around $100 million), could be counted among illiquid stocks.

As to the markets, we did not pre-select which of them to analyse; contrarily, all the markets were included on which the examined stocks were traded and for which at least some data were
available, the only exception is NASDAQ ADF, which is a platform for recording trades rather than a limit order market (see FINRA (2015)).

As the trade data (process τ) came from a different data source than the quote data (process x), it was necessary to algorithmically match individual trades with the L1 data changes in which our algorithm, designed for that purpose, succeeded in about 70 percent of trades (the rest could not be uniquely attributed to any L1 change). This fact, however, did not harm the estimation other way than by decreasing the sample size.

4.2 Estimation

For the actual estimation, only records originating between 9:40 a.m. and 3:30 p.m. were used when the process could be assumed to be near its stationary distribution; the inclusion of the ten-minute “warm-up” period following the opening at 9:30 also partially justifies our assumption (5).

When estimating within the ZI models, all the jumps of a could serve as a sample while, in the case of the GZI models, only the jumps of a matched with trades were included; the reason for this restriction is that the jumps of a caused by unpaired trades, shifts and cancellations could not be distinguished from each other in the L1 data, so the corresponding values of s_i could not be determined. For each paired trade record, on the other hand, the value of s_i may be obtained from the volume of the trade and from the (known) volume of the former ask.

For both the ZI and the GZI settings, and for each stock-market pair, the following estimation procedure was run: as its first step, a simple version of the model with $\tilde{\kappa}(\bullet) \equiv \kappa_0$, $\tilde{\rho}(\bullet) \equiv \rho_0$, $\kappa_0 > 0$, $\rho_0 > 0$ (S) (Smith et al. (2003) in its ZI variant), which we later call basic model, was estimated. Subsequently, three power tail models with $\tilde{\kappa}$ and $\tilde{\rho}$, defined by

$$
\begin{align*}
\tilde{\kappa}(i) &= \begin{cases}
\kappa_{i-1} & i \leq n \\
\kappa_{n-1}(i - n)^{\alpha_{\kappa}} & i > n
\end{cases} \\
\tilde{\rho}(i) &= \begin{cases}
\rho_{i-1} & i \leq n \\
\rho_{n-1}(i - n)^{\alpha_{\rho}} & i > n
\end{cases}
\end{align*}
$$

(T_n) $n = 1, 2, 3,$

were estimated gradually. As a “true” model, the one was chosen in which all the parameters came out significant while the likelihood ratio comparing this model with the subsequent one came out insignificant.

Each estimation procedure was run on a sample of at most 5,000 observations; even though there were many more observations available for a majority of the stock-market pairs, a restriction had to be made due to the large time requirement of the estimation, caused by complex formulas for conditional densities involved. In case that the optimisation algorithm could not find maximum of the ML function within a time limit of 2,500 sec (approx. 42 min) for none

4Our dataset came from Tickdata, Inc.

5To be absolutely rigorous, we should assume that the success in matching is stochastically independent of the quote process to claim this.

6The jumps of a down and the changes of (x, τ) preserving a could be omitted without any loss of information because the corresponding these changes are conditionally constant hence not depending on any parameter.
of the four variants of the model, the procedure was repeated once more with a sample of size 1,000.

The prediction power of each model \(m \) was evaluated by

\[
P_m = 1 - \frac{\sum_{i=N}^{N+M} |a^+_i| - \mathbb{E}(a^+_i|\xi_{i-1})|}{\sum_{i=N}^{N+M} |a^+_i - \bar{a}^+_N|}
\]

where \(N \) is a sample size, \(M = N/10 \) is the number of out-of-sample observations, \(a^+_1, \ldots, a^+_{M+N} \) are the magnitudes of the jumps of \(a \) up, \(\bar{a}^+_N \) is their average and where the conditional expectation in the numerator was computed by means of the estimated parameters. By its construction, \(P_m \) can be understood as a percentage improvement in comparison with a naive prediction of the out-of-spread jumps by their mean. In the GZI setting, \(P_m \) may also be seen as a measure of accuracy of the market impact prediction.

For automation of the whole procedure including matching of trades, and the model selection, a C++ package has been developed by the author, using the NLOPT library, namely LBFGS and BOBYQUA optimisation algorithms, to compute maxima of the ML functions. A source code of the package is available at https://github.com/cyberklezmer/fepp under branch qf15.

4.3 Results

Results of the estimation procedure of the ZI models for the “big-cap” stocks XOM, MSFT and GE are summarised in Table 1. It may be seen that 21 out of all the 27 estimations were successful in the sense that a significant model was found, which exhibits a positive improvement (measured by \(P_m \)). Out of the “failed” cases, four times a significant model was found giving a negative \(P_m \) once the time limit was reached even with a reduced sample, and once no data was available.

Out of all the 21 successful instances, the basic model \((S) \) was chosen nine times, the simplest tail model \((T_1) \) six times and model \((T_2) \) six times; model \((T_3) \) never came out significant within the time limit. Higher \(P_m \)’s values in comparison with a basic model were reached in only seven out of the 12 cases when a tail model was selected, while the basic model came out better in two cases; in the three remaining cases, the \(P_m \) was identical up to two decimal digits. Even though, on average, the tail model performed better, the difference was not found statistically significant according to a Wilcoxon test. Detailed results of this estimation can be found in Appendix C.1.

Summary results for the GZI model for big-caps may be found in Table 2. Here, the estimation was successful in 21 out of 25 cases with at least some data, three times the timeout was reached; \(P_m \) came out negative in one case.

In order to answer the question whether it is worth using the more complicated GZI model rather than the ZI one, the estimation procedure was run for ZI models once more using the

7 As a default choice LBFGS has been used, the BOBYQUA was employed only in instances in which it could not find a maximum within the time limit). For more on these algorithms and the NLOPT library, see Johnson (2012).

8 In two of these instances, all the jump increments were exactly one; hence their average predicted the jumps with zero error, which lead to minus infinity for \(P_m \).
same samples as those used for the GZI ones (i.e., only the changes with trades matched); the corresponding results are displayed in the second column below each stock. Out of the 20 cases when both estimations were successful, eight times the GZI model reached a higher P_m while three times P_m was higher for the ZI model; nine times P_m was the same up to two decimal digits. Again, it could not be statistically proved that the GZI model performs significantly better.

Detailed results of the GZI estimation may be found in Appendix C.2 (the GZI models) and Appendix C.3 (their ZI counterparts).

Tables 3 and 4 summarise estimates of tail exponents of $\tilde{\kappa}$ and $\tilde{\rho}$. It may be seen that a dispersion of the values of α_κ is great; however, their average $-2.3(0.41)$ is not far from present empirical evidence (see, e.g., Chakraborti et al. (2011a), III.C). The results for tail exponents of $\tilde{\rho}$, which have never been statistically estimated yet to the best of the author’s knowledge, are similar to the case of α_κ, with average value $-2.48(0.42)$.

Results of the estimation of the small caps MKTX, JCOM and the micro-cap ARL may be found in Table 5 and Table 6. For the small caps, the ZI model was successful for 10 of 13 pairs with sample size at least $N > 20$, once a negative P_m was reached, two times the optimization failed. For ARL, the procedure was successful only once (with a disappointing prediction power) with all of the failures due to failed optimizations. A closer look to the results suggests two possible causes of the failures: small sample sizes and/or large average jumps of a, causing large evaluation times of the densities (see Appendix C for detailed values). The situation is not much better in the case of GZI models either: small caps are successful in 7 out of 9 cases, ARL is only once half-way successful out of three cases. Results of a comparison of more complex ZI models with their basic variant are similar to those of the big-caps: out of 8 cases when the comparison is possible, more complex models won three times, four times the basic model was more successful, once the results were the same. Similarly, from 8 comparisons of GZI and ZI variants of the model, the GZI variant was more successful four times, the ZI one three times, once the results were equal.

5 Conclusions

A setting covering many of the existing zero intelligence (ZI) models and its generalisation allowing for non-unit market orders and shifts of quotes (GZI) were introduced. Several variants of both the ZI and GZI settings, differing in their complexity, were tested on trade and quote data for 54 real-life stock-market pairs. It was found that, especially for liquid stocks, both the ZI and GZI models came out significant with a substantial prediction power; however, their more complicated variants did not produce significantly better predictions in comparison with a simple model with constant intensities. Finally, as the results of the ZI and the GZI variants are comparable, our suggestion is to use the GZI models which are more realistic and are capable of predictions of market impact.

9It should be noted, however, that only the first several values of $\tilde{\kappa}$ and $\tilde{\rho}$ played a role in the estimation, especially when the average jump out of the spread was small, so the results say very little about the actual power law behaviour.

10In particular, the solver stopped the optimization without changing the initial parameters reporting that its tolerance criterion was reached which suggest that the MLE function is too flat to be optimized.
Table 1: Results for ZI. Notation: $m(p, p_0)$ - model m was selected with $P_m = p$ and $P_s = p_0$, minus sign - sample less than 5000 was available, \star - a reduced sample used, t - time limit reached when without finding a result, \times - less than 20 observations were available.

	XOM	MSFT	GE
NASDAQ OB	$T_1(<0)$	$T_1(0.70, 0.70)$	$S(0.48)$
NSE	$T_2(0.91, 0.90)$	$T_2(0.89, 0.87)$	$T_1(0.76, 0.76)$
Chicago	$T_2(0.47, n/a)^-$	$S(0.93)$	$T_1(0.76, 0.71)$
NYSE	$S(0.33)$	\times	$S(0.53)$
ARCA	$T_1(0.92, 0.91)$	$S(-\infty)^*$	t
NASDAQ T	$T_1(0.53, 0.53)$	$S(1.00)^*$	$S(-\infty)^*$
CBOE	$S(<0)$	$T_2(0.35, 0.36)$	$S(0.67)$
BATS	$T_2(0.86, 0.83)$	$S(1.00)$	$S(0.00)^*$
ISE	$T_2(0.66, 0.67)$	$S(0.66)$	$T_1(0.94, 0.93)^*$

Table 2: Results for GZI. Notation: $m(p)$ model m was used with $P_m = p$, minus sign - sample with less than 5,000 available, \star - a reduced sample used, t - time limit reached without finding a result, \times - less than 20 observations were available.

	XOM	MSFT	GE
NASDAQ OB	$T_2(0.19)$	$T_2(0.17)$	
NSE	$T_1(0.70)^*$	$T_1(0.68)$	$T_1(0.74)$
Chicago	$T_2(0.35)^-$	$T_2(0.34)^-$	$T_1(0.79)$
NYSE	$S(0.17)$	$S(0.13)$	$S(1.00)^*$
ARCA	$T_2(0.84)$	$T_2(0.84)$	$T(0.00)^*$
NASDAQ T	$S(0.74)$	$T_1(0.74)$	$T(0.00)^*$
CBOE	$T_2(<0)^-$	$T_2(<0)^-$	$T_2(0.23)$
BATS	$T_1(0.31)$	$T_1(0.60)$	$T(0.00)^*$
ISE	$T_1(0.44)^*$	$S(0.42)^*$	$T_1(0.96)^*$

16
Table 3: Estimated values of α_k. Notation: n/a - only model S came out significant, t - time limit reached, × - no data available.

	XOM	MSFT	GE			
	ZI	GZI	ZI	GZI	ZI	GZI
NASDAQ OB	-5.49	-2.60	-0.38	-0.48	n/a	-4.15
NSE	-1.11	-2.83	-1.30	-2.64	-0.12	n/a
Chicago	-2.31	-2.28	n/a	-0.75	-9.72	-1.47
NYSE	n/a	n/a	×	×	n/a	n/a
ARCA	-2.18	-1.75	n/a	t	t	t
NASDAQ T	-0.84	n/a	n/a	×	n/a	t
CBOE	n/a	-1.70	-0.97	-0.34	n/a	-2.12
BATS	-1.15	-4.84	n/a	n/a	n/a	n/a
ISE	-1.18	-2.76	n/a	-6.76	-0.26	n/a

Table 4: Estimated values of α_p. Notation: n/a - only model S came out significant, t - time limit reached, × - no data available.

	XOM	MSFT	GE			
	ZI	GZI	ZI	GZI	ZI	GZI
NASDAQ OB	-5.37	-2.60	-0.26	-0.60	n/a	-4.22
NSE	-1.84	-2.89	-0.89	-2.31	-0.61	n/a
Chicago	-2.13	-3.22	n/a	-1.94	-8.28	-1.77
NYSE	n/a	n/a	×	×	n/a	n/a
ARCA	-1.77	-0.77	n/a	t	t	t
NASDAQ T	-0.67	n/a	n/a	×	n/a	t
CBOE	n/a	-2.21	-0.03	-9.24	n/a	-3.39
BATS	-0.38	-4.59	n/a	n/a	n/a	n/a
ISE	-0.94	-2.43	n/a	-3.56	-0.66	n/a

Table 5: Results for ZI of the small caps. Notation: f - optimization failed, for the rest, see Table 1.

	MKTX	JCOM	ARL			
NASDAQ OB	f*	$T_1(0.06, 0.06)$	×			
NSE	×	f*	×			
Chicago	×	×	×			
NYSE	×	×	f			
ARCA	$T_2(0.40, 0.45)$	$T_2(0.18, 0.17)$	f*			
NASDAQ T	$T_2(0.44, 0.46)$	$T_2(0.38, 0.37)$	$S(0.08)^a$			
CBOE	$S(0.92)^*$	$T_2(< 0, < 0)$	f$^−$			
BATS	$T_2(0.13, 0.35)$	$T_2(0.60, 0.52)$	f$^−$			
ISE	$S(0.31)^*$	$T_2(0.39, 0.49)$	f$^−$			
	MKTX		JCOM		ARL	
-------	------	-------	------	-------	-----	-------
	GZI	ZI	GZI	ZI	GZI	ZI
NASDAQ OB	×	×	T₂(0.78)⁻	T₁(0.79)⁻	×	×
NSE	×	×	×	×	×	×
Chicago	×	×	×	×	×	×
NYSE	×	×	×	×	S(0<0)⁻	T₂(0<0)⁻
ARCA	T₂(0.31)⁻	T₂(0.25)⁻	S(0.08)⁻	T₂(0.04)⁻	f⁻	f⁻
NASDAQ T	×	×	×	×	S(0<0)⁻	T₁(0.49)⁻
CBOE	S(1.00)⁻	S(1.00)⁻	T₁(0.29)⁻	T₁(0.25)⁻	×	×
BATS	S(0.41)⁻	S(0.39)⁻	T₂(0.65)⁻	S(0.66)⁻	×	×
ISE	S(0<0)⁻	S(0<0)⁻	S(0<0)⁻	S(0<0)⁻	×	×

Table 6: Results for GZI of the small caps. Notation: f⁻ - optimization failed, for the rest, see Table 2

References

Abergel, F., Chakrabarti, B.K., Chakraborti, A. and Mitra, M., *Econophysics of order-driven markets*, 2011, Springer Science & Business Media.

Bradley, R.C., Basic properties of strong mixing conditions. A survey and some open questions. *Probability surveys*, 2005, 2, 37.

Chakraborti, A., Toke, I.M., Patriarca, M. and Abergel, F., Econophysics review: I. Empirical facts. *Quantitative Finance*, 2011a, 11, 991–1012.

Chakraborti, A., Toke, I.M., Patriarca, M. and Abergel, F., Econophysics review: II. Agent-based models. *Quantitative Finance*, 2011b, 11, 1013–1041.

Challet, D. and Stinchcombe, R., Analyzing and modeling 1+ 1/₁ di/₁ₖ markets. *Physica A: Statistical Mechanics and its Applications*, 2001, 300, 285–299.

Cont, R., Statistical modeling of high-frequency financial data. *Signal Processing Magazine, IEEE*, 2011, 28, 16–25.

Cont, R., Stoikov, S. and Taleprea, R., A Stochastic Model for Order Book Dynamics. *Operations Research*, 2010, 56, 549–563.

Cornfeld, I.P., Fomin, S.V. and Sinai, Y.G., *Ergodic theory*, 1982 (Springer: New York).

Crowder, M.J., Maximum likelihood estimation for dependent observations. *Journal of the Royal Statistical Society. Series B (Methodological)*, 1976, pp. 45–53.

Daley, D.J. and Vere-Jones, D., *An Introduction to the Theory of Point Processes*, second , 2003 (Springer: New York).
FINRA, Alternative Display Facility (ADF). \url{http://www.finra.org/industry/ADF} Accessed: 2015-04-17, 2015.

Gode, D.K. and Sunder, S., Allocative efficiency of markets with zero-intelligence traders: Market as a partial substitute for individual rationality. *Journal of political economy*, 1993, pp. 119–137.

Hoffmann-Jørgenson, J., *Probability with a View Towards to Statistics I.*, 1994 (Chapman and Hall: New York).

Johnson, S.G., The NLopt nonlinear-optimization package (Version 2.3). *URL http://ab-initio.mit.edu/nlopt*, 2012.

Kallenberg, O., *Foundations of Modern Probability*, second, 2002 (Springer: New York).

Luckock, H., A Steady-State Model of the Continuous Double Auction. *Quantitative Finance*, 2003, 3, 385–404.

Mandjes, M. and Žuraniewski, P., M/G/ transience, and its applications to overload detection. *Performance Evaluation*, 2011, 68, 507–527.

Maslov, S., Simple Model of a Limit Order Driven Market. *Physica A*, 2000, 278, 571–578.

Mike, S. and Farmer, J.D., An empirical behavioral model of liquidity and volatility. *Journal of Economic Dynamics & Control*, 2008, 32, 200–234.

Parlour, C.A. and Seppi, D.J., Limit order markets: A survey. *Handbook of financial intermediation and banking*, 2008, 5, 63–95.

Slanina, F., Mean-Field Approximation for a Limit Order Driven Market. *Phys. Rev.*, 2001, 64, 056136 Preprint at \url{http://xxx.sissa.it/abs/cond-mat/0104547}.

Slanina, F., Critical comparison of several order-book models for stock-market fluctuations. *The European Physical Journal B-Condensed Matter and Complex Systems*, 2008, 61, 225–240.

Šmíd, M., Price Tails in the Smith and Farmer’s Model. *Bulletin of the Czech Econometric Society*, 2008, 25.

Šmíd, M., Probabilistic Properties of the Continuous Double Auction. *Kybernetika*, 2012, 48, 50–82 Available at: http://www.kybernetika.cz/content/2012/1/50/paper.pdf.

Smith, E., Farmer, J.D., Gillemot, L. and Krishnamurthy, S., Statistical Theory of the Continuous Double Auction. *Quantitative finance*, 2003, 3, 481–514.

Stigler, G., Public regulation of the securities markets. *Journal of Business*, 1964, pp. 117–142.
A Proof of Theorem 2.2

Before starting the proof, recall that that a Markov chain X on \mathbb{R}^+ is called immigration and death process with immigration intensity κ and death intensity ρ and with initial population A (we abbreviate this by $\mathcal{I}(\kappa, \rho, A)$) if its transition matrix $\Lambda = (\lambda_{i,j})$ has zero components except of $\lambda_{jj+1} = \kappa$, $\lambda_{jj-1} = j \rho$, $j > 0$ and if $X_0 = A$. Notice also that number of customers in an $M/M/\infty$ in queuing theory model follows an \mathcal{I} process. It is well known (see, e.g., Mandjes and Żuraniowski (2011), Section 2) that, for any positive t,

$$\mathcal{I}(\kappa, \rho, A)_t \sim \text{Po}\left(\frac{\kappa}{\rho}[1 - \exp(-\rho t)]\right) \circ \text{Bi}(A, \exp\{-\rho s\}).$$

(10)

Further, let us introduce the following (re)formulation of process Ξ restricted to time interval $(0, t_1)$, which will be used repeatedly in the subsequent proof: Let $u^1, v^1, u^2, v^2, \ldots, u^n, v^n$ be independent uniform variables, independent of Ξ_0. By Kallenberg (2002), Theorem 6.10, there exist mappings $U^1, V^1, \ldots, U^n, V^n$ from $\mathbb{N}_0 \times [0, 1]$ to the space of stochastic processes on \mathbb{R}^+ such that, for each π, $U^n(A_0, u^n)|\Xi_0 \sim \mathcal{I}(\kappa_{\pi,0}, \rho_{\pi,0}, A^n_0)$ and $V^n(B_0, v^n)|\Xi_0 \sim \mathcal{I}(\kappa_{\pi,0}, \rho_{\pi,0}, B^n_0)$. By Kallenberg (2002), Proposition 6.13., $U^1, V^1, U^2, V^2, \ldots, U^n, V^n$ are mutually conditionally independent given Ξ_0, so we may assume, without a change of distributions,

$$A_t = (U^1_t, \ldots, U^n_t), \quad B = (V^1_t, \ldots, V^n_t) \quad \text{on } [t \leq t_1].$$

(11)

(to see it, check definitions (1) and (2)).

Using this reformulation and noting that both $e_1, \Delta t_1$ are functions of $(U^n, V^n)_{\pi \leq a_0}$, we see that

$$(t_1, e_1) \perp_{\Xi_0} (U^n)_{\pi > a_i}$$

(12)

where $A \perp_B C$ denotes conditional indepence of A and B given C.

Because, by the definition of the ask, $A^n_{[i-]} = A^n_{[0]} = \cdots = A^n_{[i-1]} = 0$ and $A^n_{[i]} = q$, i.e., $A^n_{[i-]}, \ldots, A^n_{[i]}$ are conditionally constant, we have, for any s_1, s_2, \ldots, s_n,

$$\mathbb{P}[A^n_{[i-]} = s_1, A^n_{[i-]} = s_2, \ldots, A^n_{[i-]} = s_n | e_1, t_1, \Xi_0]$$

$$= 1[s_1 = s_2 = \cdots = s_{a_0-1} = 0, s_{a_0} = q_0] \cdot \mathbb{P}[U^n_{t_{i-1}+1} = s_{a_0+1}, \ldots, U^n_{t_i} = s_n | e_1, t_1, \Xi_0]$$

$$= 1[s_1 = s_2 = \cdots = s_{a_0-1} = 0, s_{a_0} = q_0] \cdot \prod_{\pi = a_0 + 1}^{a_0} \mathbb{P}[U^n_{t_{i_1}} = s_\pi]$$

(13)

where the last “$=$” follows from Hoffmann-Jørgenson (1994), (6.8.14) (with $R = (u^{a_0+1}, u^{a_0+2}, \ldots, u^n)$ and $S = (e_1, t_1, \Xi_0)$) and from the fact that the jumps of U’s do not coincide with probability one (which guarantees that $U^n_{t_i} = U^n_{t_{i-1}}, \pi > a_0$, almost sure).

As a first step of proving the assertions of the Theorem, let us deal with one-step-ahead distribution $\mathbb{P}[(\Delta t_i, e_i, A_{[i-1]}) \in \bullet | \Xi_{[i-1]}]$:

Proposition A.1. (i) For any τ and e,

$$\mathbb{P}[\Delta t_i > \tau, e_i = e | \Xi_{[i-1]}] = \exp\{-\gamma_{i-1} \tau\} \pi_i(e).$$
(ii) For any p,
\[
A^p_{[i-1]}|e_i, \Delta t_i, \Xi_{[i-1]} \sim \begin{cases}
\delta_0 & \text{on } [1 \leq p < a_{[i-1]}] \\
\delta_{q_{[i-1]}} & \text{on } [p = a_{[i-1]}] \\
\text{Po}(\phi_{p,i-1}(1 - \delta_{p,i-1})) \circ \text{Bi}(A^p_{[i-1]}, \delta_{p,i-1}) & \text{on } [a_{[i-1]} < p \leq n].
\end{cases}
\]

(iii) For any p,
\[
A^p_{[i]}|e_{i+1}, \Delta t_{i+1}, x_i, \Delta t_i, \Xi_{[i-1]} \sim \begin{cases}
\delta_{\lambda_{[i]}} & \text{on } [1 \leq p \leq \max(a_{[i]}, a_{[i-1]})] \\
\text{Po}(\phi_{p,i-1}(1 - \delta_{p,i-1})) \circ \text{Bi}(A^p_{[i-1]}, \delta_{p,i-1}) & \text{on } [\max(a_{[i]}, a_{[i-1]}) < p \leq n].
\end{cases}
\]

Proof. Thanks to the homogeneity of the process, we may assume $i = 1$.
(i) It follows from textbook knowledge that Δt_1, being the first jump time of Markov chain $(V^{b_0}, U^{b_0+1}, V^{a_0+1}, \ldots, U^{a_0})$, is exponential with rate γ_0, while e_i, coding a type of the chain’s first jump, is (conditionally w.r.t. Ξ_0) independent of Δt_1 with probabilities of particular events being equal to the rates of the events’ intensities to γ_0, which is formally expressed by (i).
(ii) The formula follows from (13) and (10).
(iii) Let $1 \leq j, k \leq n$ and put $S_{j,k} = [a_{[1]} = j, a_0 = k]$. Clearly,
\[
x_{[1]} = \bar{x}_{[1]} \quad \text{on } S_{j,k},
\]
where
\[
\bar{x}_{[1]} = (j, A^i_{[1]}, \tilde{b}, B_{[1]}^\gamma), \quad \tilde{b} = \max\{\pi < j : B_{[1]}^\pi > 0\}.
\]
Further, it follows from the dynamics of the process and from the almost sure exclusivity of jumps of Ξ that
\[
A_{[1]} = \bar{A} \quad \text{on } S_{j,k}, \quad \bar{A} = (r_{j,k}, A_{[1-1]}^{j\wedge k+1}, \ldots, A_{[1-1]}^n),
\]
\[
r_{j,k} = \begin{cases}
(0, \ldots, 0, q_{[1]}j) & j \geq k \\
(0, \ldots, 0, q_{[1]}j, 0, \ldots, 0, q_{0}) & j < k.
\end{cases}
\]
Now, because $(\Delta t_1, \bar{x}_{[1]})$ are functions of $U^1, V^1, \ldots, U^j, V^j, \Xi_0$, we have $(\Delta t_1, \bar{x}_{[1]}) \in \sigma(U^1, V^1, \ldots, U^j, V^j, \Xi_0)$, so we may use the Law of Iterated Expectation to get
\[
\mathbb{P}[\bar{A} \in \cdot | \bar{x}_{[1]}, \Delta t_1, \Xi_0] = \mathbb{E}(\mathbb{P}[\bar{A} \in \cdot | U^1, V^1, \ldots, U^j, V^j, \Xi_0] | \bar{x}_{[1]}, \Delta t_1, \Xi_0)
\]
\[
= \mathbb{E}(\mathbb{P}[\bar{A} \in \cdot | \Xi_0] | \bar{x}_{[1]}, \Delta t_1, \Xi_0) = \mathbb{P}[\bar{A} \in \cdot | \Xi_0] = p_{j,k}(\cdot, t_1, \Xi_0, r_{j,k}) \quad \text{on } S_{j,k},
\]
\[
p_{j,k}(s_1, \ldots, s_n; t, \Xi, r) = 1[r_1 = s_1, \ldots, r_{j\wedge k} = s_{j\wedge k}] \prod_{\pi = j\wedge k+1}^n \mathbb{P}[U^\pi(\Xi_t = s_{\pi})].
\]

(at the third “=” we have used Proposition 6.6 of Kallenberg (2002), the fourth one is due to measurability of the inner term w.r.t. the condition of the expectation, the fifth one is due to (13)).

Now, by Local Property (Kallenberg (2002), Lemma 6.2) applied to (14), (15) and (16), we are getting that

\[P[A_{[1]} \in \bullet|x_{[1]}, \Delta t_1, \Xi_0] = p_{a_{[1]};a_0}(\bullet; t_1, \Xi_0, (A_{[1]}^{1}, A_{[1]}^{2}, \ldots, A_{[1]}^{a_{[1]}\vee a_0})) \]

(17)
on each \(S_{j,k} \) and, as the \(S_{j,k} \)'s cover all the underlying probability space, the relation holds universally.

Finally, by the strong Markov property of \(\Xi \) (guaranteed, e.g., by Kallenberg (2002), Theorem 12.14.), we get

\[P[\Delta t_2 > \tau, e_2 = e|x_{[1]}, \Delta t_1, \Xi_0] = P[\Delta t_2 > \tau, e_2 = e|\Xi_{[1]}] \]

which is, by Proposition 6.6. of Kallenberg (2002), equivalent to

\[\Delta t_2, e_2 \perp x_{[1]}, \Delta t_1, \Xi_0, \Xi_{[1]} \]

implying, by the same Proposition with switched variables,

\[P[\Xi_{[1]} \in \bullet|e_2, \Delta t_2, x_{[1]}, \Delta t_1, \Xi_0] = P[\Xi_{[1]} \in \bullet|x_{[1]}, \Delta t_1, \Xi_0] \]

which, together with (17), proves (iii).

\[\square \]

Proof of the Theorem

Ad (i)

By the Law of Iterated Expectation, the strong Markov property of \(\Xi \), and Proposition A.1 (i), it follows

\[P[\Delta t_i > \tau, e_i = e|\xi_{[i-1]}] = \mathbb{E}[P[\Delta t_i > \tau, e_i = e|\Xi_{[i-1]}, \xi_{[i-1]}]|\xi_{[i-1]}] \]

\[= \mathbb{E}[P[\Delta t_i > \tau, e_1 = e|\Xi_{[i-1]}]|\xi_{[i-1]}] = \mathbb{E}(\exp\{-\gamma_{i-1} \tau\} \pi_i(e)|\xi_{[i-1]}) = \exp\{-\gamma_{i-1} \tau\} \pi_i(e) \]

(18)

(we could get rid of the outer conditional expectation at the last equality because its integrand is measurable with respect to its condition).

Ad (ii)

Before deriving the distribution of \(A_{[i-1]} \), let us formulate an auxiliary result:

Lemma A.2. Let \(A, B \) be random variables, let \(\mathcal{F} \) be as \(\sigma \)-algebra and let \(S \in \mathcal{F} \). If \(B|\mathcal{F} \sim \text{Po}(\epsilon) \circ \text{Bi}(\nu, \varpi) \) on \(S \) and \(A|B, \mathcal{F} \sim \text{Po}(\zeta) \circ \text{Bi}(B, \delta) \) on \(S \) for some \(\mathcal{F} \)-measurable variables \(\epsilon, \nu, \varpi, \zeta, \delta \) then \(A|\mathcal{F} \sim \text{Po}(\zeta + \delta \epsilon) \circ \text{Bi}(\nu, \delta \varpi) \) on \(S \).
Proof. Let $A_0, B_0, C_1, D_1, E_1, C_2, D_2, E_2 \ldots$ be variables mutually conditionally independent given \mathcal{F}, such that, on S, $A_0, B_0 \sim \text{Po}(\zeta)$, $B_0, \mathcal{F} \sim \text{Po}(\epsilon)$, and, for each $i \in \mathbb{N}$, $C_i, \mathcal{F} \sim \text{Bernoulli}(\delta)$, $D_i, \mathcal{F} \sim \text{Bernoulli}(\varpi)$ (outside S, all the variables could be, e.g., zero). Assume, without a change of the examined distributions, that $B = B_0 + E_1 + E_2 + \cdots + E_\nu$ and $A = A_0 + A_1 + A_2$ where $A_1 = \sum_{i=1}^{B_0} C_i$, $A_2 = \sum_{i>1} D_i E_i$. Clearly, A_2 is (conditionally) Binomial with parameters ν and $\delta \varpi$. Further, by Daley and Vere-Jones (2003), 2.3.4, $A_1, \mathcal{F} \sim \text{Po}(\delta \epsilon)$. As A_0, A_1, A_2 are mutually conditionally independent given \mathcal{F} (which is because each of them depends on independent variables) we get that $A = \text{Po}(\zeta) \circ \text{Po}(\delta \epsilon) \circ \text{Bi}(\nu, \delta \varpi)$. The Lemma now follows from the fact that a convolution of two Poisson variables is again Poisson.

Let $1 \leq p \leq n$. First we prove, by induction, that, for any k,

$$A_p^k|\xi_{[(k+1)-]} \sim \text{Po}(\epsilon_{p,k} + \tau_{p,k}) \circ \text{Bi}(\nu_{p,k}, \varpi_{p,k}), \quad \text{on } [a[k] < p \leq n].$$

(19)

First, we show that (19) holds for $k = 0$: indeed, by Proposition A.1 (i) and Kallenberg (2002), Proposition 6.6., we get that $(t_1, e_1) \sim \text{Po}(\zeta_{-1})$ (recall that $\xi_{[-1]} = x_0$), which, by the Proposition 6.6. and by (20), gives (19) for $k = 0$.

Now, assume (19) to hold for $k - 1$. Similarly as in (18), we get, by Proposition A.1 (iii), that

$$\mathbb{P}[A_p^k| \in \bullet|A_{p-1}^k, \xi_{[(k+1)-]}] = \mathbb{E}(\mathbb{P}[A_p^k| \in \bullet|A_{p-1}^k, \xi_{[(k+1)-]}]) = \mathbb{E}(\mathbb{P}[A_p^k| \in \bullet|\xi_{[k-1]}, \epsilon_k, \Delta t_k]|A_{p-1}^k, \xi_{[k-1]})$$

$$= \mathbb{P} \left[\text{Po}(\phi_{p,k-1}(1 - \delta_{p,k-1})) \circ \text{Bi} \left(A_{p-1}^k, \delta_{p,k-1} \right) \in \bullet \right] \quad (20)$$

giving, by Lemma A.2 applied to the induction hypothesis and (20), validity of (19) on $[a[k-1] < p \leq n]$. As, on $[a[k-1] = p]$, $A_p^k = q[k]$ is conditionally constant, i.e.,

$$\mathbb{P}[A_p^k = \alpha|\xi_{[(k+1)-]}] = 1[\alpha = q[k]] = \mathbb{P}[\text{Bi}(A_p^k, 1) \circ \text{Po}(0) = \alpha]$$

(19) is proved on $[a[k-1] = p]$ because $k_p(p) = k$ on the set so $\epsilon_{p,k} = \tau_{p,k} = 0$, $\varpi_{p,k} = 1$ and $\nu_{p,k} = A_p^k$ on the set. As (19) on $[a[k-1] > p]$ follows similarly (here, $A_p^k = 0$), (19) is proved for k.

Having proved (19) for any k, we may proceed to (ii) of the Theorem: Let $1 \leq p \leq n$. Similarly as above we get, using Proposition A.1 (ii),

$$\mathbb{P}[A_p^k| \in \bullet|A_{p-1}^k, \xi_{[-]}| = \mathbb{E}(\mathbb{P}[A_p^k| \in \bullet|\xi_{[-]}, \Delta t_i, e_i]|A_{p-1}^k, \xi_{[-]}$$

$$= \mathbb{P} \left[\text{Po}(\phi_{p,i-1}(1 - \delta_{p,i-1})) \circ \text{Bi} \left(A_{p-1}^k, \delta_{p,i-1} \right) \in \bullet \right] \quad \text{on } [a[k-1] < p \leq n]$$

which implies (ii) on $[a[k-1] < p \leq n]$ by Lemma A.2 Validity of (ii) on set $[p < a[k-1]]$ on which A_p^k is conditionally constant, follows similarly as in the proof of (19).
Ad (iii)

Let $i \in \mathbb{N}$, $1 \leq p \leq n$, denote $A^{-p} = (A^\pi)_{\pi \neq p}$, and assume that $A^p_{[i-1]}$, $A^{-p}_{[i-1]}$ are conditionally independent given $\xi_{[i-]}$, i.e., that

$$
P[A^p_{[k-1]} = r, A^{-p}_{[k-1]} = R | \xi_{[k-]} = \xi] = P[A^p_{[k-1]} = r | \xi_{[k-]} = \xi] P[A^{-p}_{[k-1]} = R | \xi_{[k-]} = \xi]$$

(21)

holds for any r, R, ξ and for $k = i$.

Let $I \subseteq \mathbb{N}_n^0$ and put

$$q(s, \tau, \Xi) = P[A_{[i-]} \in I | e_1 = e, \Delta t_1 = \tau, \Xi_0 = \Xi].$$

From (13), we have that

$$q(I, e, \tau, \Xi_0) = \prod_{\{1 \leq \pi \leq n, I_\pi \neq \Xi_0\}} q_\pi(I_\pi, e, \tau, A^p_\pi)$$

for some q_1, \ldots, q_n. So, by the Law of Iterated Expectation, strong Markov property and the homogeneity, applied gradually,

$$P[A_{[i-]} \in I | \xi_{[i-]}, A_{[i-1]}] = \mathbb{E}(P[A_{[i-]} \in I | \xi_{[i-]}, \Xi_{[i-1]}] | \xi_{[i-]}, A_{[i-1]}) = \mathbb{E}(P[A_{[i-]} \in I | e_i, \Delta t_i, \Xi_{[i-1]}] | \xi_{[i-]}, A_{[i-1]}) = \mathbb{E}(q(I, e_i, \Delta t_i, \Xi_{[i-1]} | \xi_{[i-]}, A_{[i-1]}) = \prod_{\{1 \leq \pi \leq n, I_\pi \neq \Xi_0\}} q_\pi(I_\pi, e_i, \Delta t_1, A^p_{[i-1]})$$

(22)

(we could get rid of the expectation on the RHS because its integrand is measurable).

Let $1 \leq p \leq n$, let $J \subseteq \mathbb{N}_0$ and $K \subseteq \mathbb{N}_n^{n-1}$. By evaluating (22) with $I = \mathbb{N}_0 \times \cdots \times J \times \cdots \times \mathbb{N}_0$ and with $I = K_0 \times \cdots \times \mathbb{N}_0 \times \cdots \times K_p$, we get

$$P[A^p_{[i-]} \in J, A^{-p}_{[i-]} \in K | \xi_{[i-]}, A_{[i-1]}] = P[A^p_{[i-]} \in J | \xi_{[i-]}, A_{[i-1]}] P[A^{-p}_{[i-]} \in K | \xi_{[i-]}, A_{[i-1]}] = P[A^p_{[i-]} \in J | \xi_{[i-]}, A_{[i-1]}] P[A^{-p}_{[i-]} \in K | \xi_{[i-]}, A_{[i-1]}]$$

(we could write the last “=” because the right-hand side of (22) does not depend on no A^π with $I_\pi = \mathbb{N}_0$). Thus, by the Complete Probability Theorem,

$$P[A^p_{[i-]} \in J, A^{-p}_{[i-]} \in K | \xi_{[i-]} = \xi]$$

$$= \sum_{r} \sum_{R} P[A^p_{[i-]} \in J, A^{-p}_{[i-]} \in K | A^p_{[i-1]} = r, A^{-p}_{[i-1]} = R, \xi_{[i-]} = \xi] \times P[A^p_{[i-1]} = r, A^{-p}_{[i-1]} = R | \xi_{[i-]} = \xi]$$

$$= \left(\sum_{r} P[A^p_{[i-]} \in J | A^p_{[i-1]} = r, \xi_{[i-]} = \xi] P[A^p_{[i-1]} = r | \xi_{[i-]} = \xi]\right) \times \left(\sum_{R} P[A^{-p}_{[i-]} \in K | A^{-p}_{[i-1]} = R, \xi_{[i-]} = \xi] P[A^{-p}_{[i-1]} = R | \xi_{[i-]} = \xi]\right)$$

$$= P[A^p_{[i-]} \in J | \xi_{[i-]} = \xi] P[A^{-p}_{[i-]} \in K | \xi_{[i-]} = \xi]$$

(23)
proving conditional independence of A^p_{i-} of A^{p-}_{i-} given $\xi_{[i-]}$ for any p, which implies mutual conditional independence of $A^1_{i-}, A^2_{i-}, \ldots, A^n_{i-}$ given $\xi_{[i-]}$ (see Kallenberg (2002), p. 109 below).

It remains to prove (21) for $k = i + 1$. To this end, put $S_{j,k,r,s} = [a_{i} = j, a_{i-1} = k, q_{[i]} = r, q_{[i-]} = s]$ for any j, k, and observe that, on each $S_{j,k,r,s}$, $A^1_{i-}, \ldots, A^n_{i-}$ are conditionally constant while $A^\pi_{[i]} = A^\pi_{[i-]}$, for $\pi > j \vee k$. As $A^{j \vee k}_{i-}, \ldots, A^n_{i-}$ are mutually conditionally independent given $\xi_{[i]}$ by (23) and as (conditional) constants are trivially (conditionally) independent of any random element, we get that $A^1_{i-}, \ldots, A^n_{i-}$ are mutually conditionally independent given $\xi_{[i]}$ on $S_{j,k,r,s}$ by Local Property (Kallenberg (2002), Lemma 6.2), and, as S’s cover all the underlying space, the conditional independence holds universally. Relation (21) now follows from (i) of Proposition A.1 (the same way as in proof of (iii) of the Proposition).

Finally, as (21) holds for $k = 1$ by (3), we have just proved (iii) by induction.

B MLE Estimation

In the present Section, asymptotic properties of the MLE estimator are proved both for the ZI and the GZI model.

Before starting, let us formulate an auxiliary result:

Lemma B.1. If X is a continuous time stationary ergodic Markov chain in countable space S then $Y = (\Delta \tau_1, X_{\tau_1})_{i \in \mathbb{N}}$, where τ_1, τ_2, \ldots are the jump times of X, is a stationary ergodic stochastic process.

Proof. Denote $\Lambda(x)$ the intensity of the first jump of X given that $X_0 = x$. From the strong Markov property (Theorem 12.14 of Kallenberg (2002), from Lemma 12.16 of Kallenberg (2002) and from the scalability of exponential distribution we have that U_1, U_2, \ldots, where $U_i = \Delta \tau_i / \Lambda(X_{\tau_{i-}})$, $i \in \mathbb{N}$, is a sequence of i.i.d. (unit exponentially) distributed variables, independent of X_0, X_{τ_1}, \ldots. As U_n - being an i.i.d. sequence - is a strong mixing and X_{τ_n} is a strong mixing by Bradley (2005), process $Z_n := (X_{\tau_n}, U_n)$ is a strong mixing (note that, for any $A = A^1 \times A^2, B = B^1 \times B^2, A^1, B^1 \in S^2, A^2, B^2 \in \mathbb{R}^2$, it holds that $\mathbb{P}(Z \in A \cap T_nB) = \mathbb{P}(Z^1 \in (A^1 \cap T_nB^1))\mathbb{P}(Z^2 \in (A^2 \cap T_nB^2)) \to \mathbb{P}(Z^1 \in A^1)\mathbb{P}(Z^1 \in T_nB^1)\mathbb{P}(Z^2 \in A^2)\mathbb{P}(Z^2 \in T_nB^2) = \mathbb{P}(Z \in A)\mathbb{P}(Z \in T_nB)$) where T_n is a shift operator; the case of general A, B follows from their approximation by rectangles) we get the ergodicity of Z by the well known fact that strong mixing implies ergodicity. Finally, as Y_n is a function of Z_n, the Lemma is proved.\Box

It follows from the Lemma that, once Ξ_t is understood as a process with $t \in (-\infty, \infty)$ then, thanks to its ergodicity (see Proposition 2.1) process $\xi_{[i-]}, i \in \mathbb{Z}$, is also ergodic. Hence by Birkhoff-Khinchin theorem (Cornfeld et al. (1982), Appendix 3), for any measurable function f,

$$\frac{1}{n} \sum_{i=1}^{n} f(\xi_{[i-]}) \rightarrow \mathbb{E}f(\xi_{[0-]}) \quad (24)$$

in probability given that the expression written on the RHS exists.
Now, let $\theta_0 \in \mathbb{R}^k$ be a vector of true parameters. Denote

$$B_N = \mathbb{E} [L_N(\theta_0)] , \quad L_N(\theta) = \sum_{i=1}^{N} \left(\frac{g_i^{(m)}(\theta)g_i^{(n)}(\theta)}{g_i^2(\theta)} \right)_{m=1,\ldots,k,n=1,\ldots,k} ,$$

(B_N being called Fischer information matrix) where $g^{(m)}$ stands for $\frac{\partial^m}{\partial \theta^m} g$. Substituting mappings assigning $\xi_{[i-]} \rightarrow g_i$ and $\xi_{[i-]} \rightarrow \nabla g_i$ for f in (24), we get, by (24), that

$$\frac{1}{N} L_N = M(\theta_0) \quad (25)$$

for some non-random matrix M which, being a limit of positive semidefinite matrices, is also positive semidefinite. By taking expectations on both sides of (25), we further get

$$\frac{1}{N} B_N = M(\theta_0) . \quad (26)$$

Now put

$$I_N(\theta) = \sum_{i=1}^{N} \nabla_\theta^2 \log(g_i(\theta))$$

and observe that

$$I_N(\theta) = K_N(\theta) - L_N(\theta) , \quad K_N = \sum_{i=1}^{N} \frac{1}{g_i(\theta)} \nabla^2 g_i(\theta)$$

As $\int g_i(\theta) = 1$ by the definition of density, any of the integral’s first or second derivatives has to be zero, and, in particular, $\nabla^2 \int g(\theta) = \int \nabla^2 g(\theta) = 0$ (we may interchange the integral and derivative in our discrete case) so

$$\mathbb{E} K_N(\theta_0) = \int \frac{1}{g_i(\theta_0)} \nabla^2 g_i(\theta_0) g_i(\theta_0) = \int \nabla^2 g_i(\theta_0) = 0$$

implying

$$-\frac{1}{N} I_N(\theta_0) \rightarrow M(\theta_0) . \quad (27)$$

If we now, as usual, assume $M(\theta_0)$ to be regular, then, by (26) and (27),

$$-N^{-1/2} B_N^{-1/2} I_N(\theta_0) = [(N^{-1}B_N)^{-1}(-N^{-1}I_N(\theta_0))]^{1/2}[N^{-1}(-I_N(\theta_0))]^{1/2} \rightarrow M(\theta_0)^{-1/2} . \quad (28)$$

Let $\|\theta - \theta_0\| = \delta$ for some δ and, for any matrix J, denote $F_N(J) = - (\theta - \theta_0)^T [N^{-1/2}B_N^{-1/2}J](\theta - \theta_0)$. By (28) and basic linear algebra,

$$\lim_N F_N(I_N(\theta_0)) = (\theta - \theta_0)^T M(\theta_0)^{-1/2}(\theta - \theta_0) \geq \delta^2 \lambda_{\min}$$

where λ_{\min} is the smallest eigenvalue of $M(\theta_0)^{1/2}$. If, in addition, the parameter space is open and both κ and ρ are twice continuously differentiable with respect to all the parameters (which
is true for all the versions of the model we use), then \(\frac{1}{N} I_N(\theta) \) is asymptotically Lipschitz on \(\{ \theta : \| \theta - \theta_0 \| \leq \delta \} \) so

\[
\lim_{N} \big| F_N(I_N(\theta) - I_N(\theta_0)) \big| \\
\leq \lim_{N} \| \theta - \theta_0 \| \| N^{-1/2} B_N^{1/2} \| I_N(\theta) - I_N(\theta_0) \| \| \theta - \theta_0 \| \leq K_\delta \| M(\theta_0) \|^{-1/2} \| \delta^3 \quad (30)
\]

where \(\| \cdot \| \) is a suitable norm and \(K_\delta \) is a Lipschitz constant, further implying, by using the fact that \(|a + b| > |a| - |b| \) together with (29) and (29), we get

\[
\lim_{N} F_N(I_N(\theta)) \geq \lim_{N} F_N(I_N(\theta_0)) - \lim_{N} \big| F_N(I_N(\theta) - I_N(\theta_0)) \big| \geq \delta^2 g(\delta).
\]

where \(g(\delta) = (\lambda_{\min} - K_\delta \| M(\theta_0) \|^{-1/2} \| \delta \|) \). From the differentiability it follows that \(K_\delta \to K \) as \(\delta \to 0 \) for some \(K \) so there has to exist \(\Delta \) and \(g_0 > 0 \) such that \(g(\delta) \geq g_0 \) for all \(\delta \leq \Delta \). Weak consistency now follows from (2.3) of Crowder (1976) with \(c_n = n^\beta \) for suitable \(\beta < 1 \).

For the asymptotic normality it suffices, by Crowder (1976), (4.13) and the considerations explained below, that the absolute k-th moments of the observations are bounded for a certain \(k > 2 \). This, however, can be easily achieved by determining a large enough constant \(L \) and excluding from the sample any observation \((x_{i}, \tau_{i}) \) with \(\mathbb{E}(\| (x_{i}, \tau_{i}) \|^k | \xi_{i-1} |) > L \).

C Detailed Results

Notation

\(N \) - sample size, \(\overline{\Delta a^+} \) - average jump of \(a \) up, \(q \) - average market order volume. The number of stars stands for significaton on levels 0.05, 0.01 and 0.001, respectively.

C.1 ZI Model

XOM on NASDAQ OB	XOM on NSE	XOM on Chicago
\(N = 5000, \overline{\tau^+} = 1.308000, \overline{s} = 1.000009 \)	\(N = 5000, \overline{\tau^+} = 48.6565 \)	\(N = 119, \overline{\tau^+} = 6.9466 \)
\(\rho_g = -0.150, \rho_m = -0.147 \)	\(\rho_g = 0.897, \rho_m = 0.910 \)	\(\rho_m = 0.466 \)
\(\kappa_0 = 568.7488(149.9081)*** \)	\(\kappa_0 = 0.5002(0.0227)*** \)	\(\kappa_0 = 0.0187(0.0018)*** \)
\(\alpha_0 = -5.4933(0.3325)*** \)	\(\alpha_1 = 0.0029(0.0007)*** \)	\(\alpha_1 = 0.0800(0.0093)*** \)
\(\rho_0 = 510.4026(126.1866)*** \)	\(\rho_1 = 6.8241(0.1139)*** \)	\(\rho_0 = 0.0128(0.0013)*** \)
\(\rho_0 = -5.3680(0.3256)*** \)	\(\rho_1 = 0.4923(0.0244)*** \)	\(\rho_1 = 0.1151(0.031)*** \)
\(\alpha_0 = -1.1057(0.0741)*** \)	\(\alpha_1 = -1.8369(0.0464)*** \)	\(\alpha_0 = -2.1322(0.0710)*** \)

XOM on NYSE	XOM on ARCA	XOM on NASDAQ T									
\(N = 5000, \overline{\tau^+} = 1.6307 \)	\(N = 5000, \overline{\tau^+} = 1.1156 \)	\(N = 5000, \overline{\tau^+} = 1.0544 \)									
\(\rho_g = 0.332 \)	\(\rho_g = 0.915, \rho_m = 0.917 \)	\(\rho_g = 0.532, \rho_m = 0.532 \)									
\(\kappa_0 = 4.6981(0.0163)*** \)	\(\kappa_0 = 50.8499(0.4649)*** \)	\(\kappa_0 = 339.0192(6.6030)*** \)									
\(\rho_0 = 0.9183(0.0029)*** \)	\(\alpha_0 = -2.1805(0.0213)*** \)	\(\alpha_0 = -0.8425(0.1939)*** \)									
\(\rho_0 = 8.1381(0.0686)*** \)	\(\rho_0 = 1.7708(0.0192)*** \)	\(\rho_0 = 52.1695(0.9973)*** \)									
\(\rho_0 = -1.7708(0.0192)*** \)	\(\rho_0 = -0.8425(0.1939)*** \)	\(\rho_0 = -0.6747(0.1931)*** \)									
Stock	Exchange	\(N\)	\(\pi^+\)	\(P_S\)	\(\rho_0\)	\(\kappa_0\)	\(\alpha_0\)	\(\rho_1\)	\(\alpha_1\)	\(\alpha_\rho\)	\(\rho_\rho\)
-------	----------	-----	-------	-----	------	-------	------	------	------	------	------
XOM	CBOE	5000	64.8869	-0.019	0.00000(0.00000)***	64.95258(12.7981)***	-1.15290(0.1952)***	97.1699(1.8800)***	1.28750(0.1017)***	-0.37550(0.2070)*	
MSFT	NASDAQ OB	5000	1.0820	0.703	4.7416(0.0174)***	-0.3883(0.0035)***	-1.3047(0.0966)***	0.0094(0.0032)***	0.00550(0.0004)***	-0.88590(0.0655)***	
MSFT	NYSE	5000	0.0000	0.0000	1.2963(0.0034)***	0.0105(0.0000)***					
MSFT	ISE	5000	19.3225	0.359	0.2417(0.0026)***	0.0066(0.0006)***	-0.9796(0.0050)***	0.0825(0.0003)***	0.0168(0.0002)***	-0.0336(0.0055)***	
GE	NASDAQ OB	5000	1.0411	0.481	1.3310(0.0064)***	0.08720(0.0003)***					
GE	NSE	5000	1.0415	0.763	0.5888(0.0024)***	-0.1178(0.0061)***	0.0425(0.0001)***	-0.6079(0.0051)***			
GE	NYSE	5000	1.0289	0.534	1.4353(0.0019)***	0.0432(0.0000)***					
MSFT	ARCA	1000	1.0000	-inf	1.2963(0.0034)***						
MSFT	NASDAQ T	1000	1.0000	-inf	1.1965(0.0028)***						
GE	Chicago	5000	1.3325	0.656	1.9125(0.0027)***						
GE	Chicago	5000	2.8520	0.714	7.0015(0.1864)***	-9.7247(0.0177)***	1.4404(0.0035)***	-8.2762(0.0164)***			
GE	Chicago	1000	1.0000	-inf	1.4767(0.0050)***	0.0475(0.0000)***					
Stock	Exchange	\(N \), \(\pi^+ \)	\(P_S \)	\(\kappa_0 \)	\(\rho_0 \)						
-------	----------	----------------	--------	-------------	--------						
GE on CBOE	\(N = 5000 \), \(\pi^+ = 5.2058 \)	\(P_S = 0.672 \)	\(\kappa_0 = 0.2249(0.0007)^{**} \)	\(\rho_0 = 0.1067(0.0005)^{**} \)							
GE on BATS	\(N = 1000^* \), \(\pi^+ = 1.000000 \)	\(P_S = 1.00 \)	\(\kappa_0 = 1.3141(0.0028)^{**} \)	\(\rho_0 = 0.0343(0.0060)^{**} \)							
GE on ISE	\(N = 1000^* \), \(\pi^+ = 3.272727 \)	\(P_S = 0.930 \) \(P_m = 0.943 \)	\(\kappa_0 = 32.9135(0.0937)^{**} \)	\(\rho_0 = 0.2761(0.0007)^{**} \)	\(\alpha = -0.6564(0.0156)^{**} \)						
JCOM on NASDAQ OB	\(N = 1303 \), \(\pi^+ = 16.015342 \)	Optimization failed									
MKTX on NASDAQ OB	\(N = 16 \), \(\pi^+ = 7.4444 \)	No data									
JCOM on Chicago	\(N = 0 \), \(\pi^+ = 0.0000 \)	No data									
MKTX on NYSE	\(N = 0 \), \(\pi^+ = 0.0000 \)	No data									
MKTX on ARCA	\(N = 5000 \), \(\pi^+ = 5.0324 \)	\(P_S = 0.450 \) \(P_m = 0.403 \)	\(\kappa_0 = 0.2366(0.0018)^{**} \)	\(\kappa_1 = 0.0393(0.0007)^{**} \)							
MKTX on ISE	\(N = 5000 \), \(\pi^+ = 3.3373 \)	\(P_S = 0.457 \) \(P_m = 0.442 \)	\(\kappa_0 = 0.0307(0.0008)^{**} \)	\(\kappa_1 = 0.0340(0.0012)^{**} \)							
JCOM on NASDAQ OB	\(N = 5000 \), \(\pi^+ = 208.296364 \)	\(P_S = 0.928 \)	\(\kappa_0 = 0.0000(0.0000)^{**} \)	\(\rho_0 = 0.0000(0.0000)^{**} \)							
JCOM on NSE	\(N = 5000 \), \(\pi^+ = 14.3535 \)	\(P_S = 0.352 \) \(P_m = 0.134 \)	\(\kappa_0 = 1.4282(0.0185)^{**} \)	\(\kappa_1 = 0.0056(0.0001)^{**} \)							
MKTX on NASDAQ T	\(N = 5000 \), \(\pi^+ = 12.6251 \)	\(P_S = 0.308 \)	\(\kappa_0 = 0.0050(0.0000)^{**} \)	\(\rho_0 = 0.0048(0.0000)^{**} \)							
JCOM on NASDAQ OB	\(N = 5000 \), \(\pi^+ = 2.7002 \)	Optimization failed									
JCOM on NSE	\(N = 40 \), \(\pi^+ = 9.1136 \)	No data									
MKTX on Chicago	\(N = 0 \), \(\pi^+ = 0.0000 \)	No data									
JCOM on NYSE	\(N = 0 \), \(\pi^+ = 0.0000 \)	No data									
JCOM on NASDAQ T	\(N = 5000 \), \(\pi^+ = 2.0356 \)	\(P_S = 0.376 \) \(P_m = 0.382 \)	\(\kappa_0 = 0.4405(0.0081)^{**} \)	\(\kappa_1 = 0.3113(0.0067)^{**} \)							

\(= \) optimization failed.
\(\alpha \) and \(\rho \) are in parentheses.
C.2 GZI Model

Stock	Expiration	\(\pi^+ \)	\(P_S \)	\(P_m \)				
JCOM on CBOE	\(N = 5000 \)	\(\pi^+ = 113.4504 \)	\(-0.196 \)	\(-0.221 \)				
JCOM on BATS	\(N = 5000 \)	\(\pi^+ = 2.4843 \)	\(0.526 \)	\(0.665 \)				
JCOM on ISE	\(N = 5000 \)	\(\pi^+ = 23.2402 \)	\(0.487 \)	\(0.390 \)				
ARL on NASDAQ OB	\(N = 0 \)	\(\pi^+ = 0.0000 \)	\(\text{No data} \)	\(\text{No data} \)				
ARL on NSE	\(N = 0 \)	\(\pi^+ = 0.0000 \)	\(\text{No data} \)	\(\text{No data} \)				
ARL on NYSE	\(N = 5000 \)	\(\pi^+ = 7.3767 \)	Optimization failed	Optimization failed				
ARL on ARCA	\(N = 1000 \)	\(\pi^+ = 38.241818 \)	Optimization failed	Optimization failed				
ARL on NASDAQ T	\(N = 3639 \)	\(\pi^+ = 5051.364227 \)	\(0.083 \)	\(\text{No data} \)				
XOM on NASDAQ OB	\(N = 5000 \)	\(\pi^+ = 1.929609 \)	\(0.225 \)	\(0.194 \)				
XOM on NSE	\(N = 1000 \)	\(\pi^+ = 36.201818 \)	\(1.433895 \)	\(0.704 \)				
XOM on Chicago	\(N = 46 \)	\(\pi^+ = 7.4118 \)	\(2.3594 \)	\(0.346 \)				
XOM on NYSE	\(N = 5000 \)	\(\pi^+ = 1.8062 \)	\(0.168 \)	\(\text{No data} \)				
XOM on ARCA	\(N = 5000 \)	\(\pi^+ = 1.0658 \)	\(0.838 \)	\(0.837 \)				
XOM on NASDAQ T	\(N = 5000 \)	\(\pi^+ = 1.0445 \)	\(0.738 \)	\(\text{No data} \)				
Stock	Exchange/Market	Data Availability	Parameters					
-------------	-----------------	-------------------	------------					
XOM	CBOE	No data						
MSFT	NASDAQ OB	P = 6.71, P_m = 0.679						
MSFT	NSE	P = 0.433, P_m = 0.381						
MSFT	Chicago	P = 0.543, P_m = 0.490						
MSFT	NYSE	No data						
MSFT	ARCA	Timeout reached						
MSFT	NASDAQ T	No data						
GE	NASDAQ OB	P = 10.3450(0.0536)**						
GE	NSE	P = 0.329						
GE	Chicago	P = 0.790						
Stock	Market	N	π^+	$\bar{\pi}$	PG	κ_0	ρ_0	η
-------	--------	-----	---------	---------	------	----------	--------	---
GE on NYSE	$N = 1000^*, \quad \pi^+ = 1.009091, \quad \bar{\pi} = 12.854730$				$PG = 1.000$	$\kappa_0 = 40.2572(0.1865)^{**}$	$\rho_0 = 0.6672(0.0030)^{**}$	$\eta = 0.9157(0.0006)^{**}$
GE on ARCA	$N = 5000^*, \quad \pi^+ = 1.0024, \quad \bar{\pi} = 4.7237$							
GE on NASDAQ T	$N = 5000^*, \quad \pi^+ = 1.0007, \quad \bar{\pi} = 6.1216$							
GE on CBOE	$N = 413, \quad \pi^+ = 2.9824, \quad \bar{\pi} = 11.6940$				$PG = 0.218$	$P_m = 0.227$		
GE on BATS	$N = 1000^*, \quad \pi^+ = 1.000000, \quad \bar{\pi} = 2.263397$				$PG = 1.00$	$\kappa_0 = 4.1414(0.2566)^{**}$	$\rho_0 = 0.0373(0.0000)^{**}$	$\eta = 0.9770(0.0003)^{**}$
GE on ISE	$N = 1000^*, \quad \pi^+ = 1.456364, \quad \bar{\pi} = 6.700976$				$PG = 0.360$	$\kappa_0 = 0.4013(0.0011)^{**}$	$\rho_0 = 0.0018(0.0000)^{**}$	$\eta = 0.6216(0.0003)^{**}$
MKTX on NASDAQ OMX BX	$N = 1, \quad \pi^+ = 61.500000, \quad \bar{\pi} = 1.000000$							
MKTX on NSE	$N = 4, \quad \pi^+ = 6.0000, \quad \bar{\pi} = 1.0000$						No data	
MKTX on Chicago	$N = 0, \quad \pi^+ = 0.0000, \quad \bar{\pi} = 0.0000$						No data	
MKTX on NYSE	$N = 4379, \quad \pi^+ = 5.5327, \quad \bar{\pi} = 1.2060$				$PG = 0.314$	$P_m = 0.311$		
MKTX on ARCA	$N = 6, \quad \pi^+ = 0.0000, \quad \bar{\pi} = 0.0000$						No data	
MKTX on NASDAQ T	$N = 0, \quad \pi^+ = 0.0000, \quad \bar{\pi} = 0.0000$						No data	
MKTX on CBOE	$N = 100, \quad \pi^+ = 1049.7568, \quad \bar{\pi} = 1.3153$				$PG = 0.998$			
MKTX on BATS	$N = 1623, \quad \pi^+ = 18.0118, \quad \bar{\pi} = 1.1758$				$PG = 0.411$	$\kappa_0 = 0.0004(0.0000)^{**}$	$\eta = 0.8852(0.0017)^{**}$	
MKTX on ISE	$N = 590, \quad \pi^+ = 26.6271, \quad \bar{\pi} = 1.2500$				$PG = 1.121$	$\kappa_0 = 0.0010(0.0000)^{**}$	$\eta = 0.3867(0.0031)^{**}$	
Stock on Exchange	N	Π^+	Π	No Data				
------------------	---	----	----	---------				
JCOM on NASDAQ OMX BX	1900	51.474163	1.203567	No data				
JCOM on NSE	13	8.2667	1.0769	No data				
JCOM on Chicago	0	0.0000	0.0000	No data				
JCOM on NYSE	0	0.0000	0.0000	No data				
JCOM on ARCA	5000	3.0464	1.1506	No data				
JCOM on NASDAQ T	0	0.0000	0.0000	No data				
JCOM on CBOE	118	42.8000	1.1923	No data				
JCOM on BATS	5000	15.0924	1.1036	No data				
JCOM on ISE	2224	46.0266	1.1379	No data				
ARL on NASDAQ OMX BX	0	0.000000	0.000000	No data				
ARL on NSE	0	0.000000	0.000000	No data				
ARL on Chicago	0	0.000000	0.000000	No data				
ARL on NYSE	299	7.793313	1.310448	Optimization failed				
ARL on ARCA	78	16204.7558	1.5889	No data				
ARL on NASDAQ T	90	17.1500	1.1569	No data				
ARL on CBOE	ARL on BATS	ARL on ISE						
----------------	----------------	---------------						
$N = 0$, $\pi^+ = 150.0000$, $\varphi = 1.0000$	$N = 7$, $\pi^+ = 78.8750$, $\varphi = 1.1250$	$N = 6$, $\pi^+ = 28469.4286$, $\varphi = 1.8571$						
No data	$P_S = 0.997$	$P_S = 0.994$						
	$\kappa = 0.0219(0.0019)^{***}$	$\kappa = 2.0000(nan)$						
	$\rho = 0.1378(0.0279)^{***}$	$\rho = 2.0000(nan)$						
	$\eta = 1.0000(0.0789)^{***}$	$\eta = 1.0000(nan)$						

ARL on NASDAQ OMX BX	ARL on NSE	ARL on Chicago
$N = 0$, $\pi^+ = 0.000000$, $\varphi = 0.000000$	$N = 0$, $\pi^+ = 0.000000$, $\varphi = 0.000000$	$N = 0$, $\pi^+ = 0.000000$, $\varphi = 0.000000$
No data	No data	No data

ARL on NYSE	ARL on ARCA	ARL on NASDAQ T
$N = 299$, $\pi^+ = 7.793313$, $\varphi = 1.310448$	$N = 78$, $\pi^+ = 16204.7558$, $\varphi = 1.5889$	$N = 90$, $\pi^+ = 17.1500$, $\varphi = 1.1569$
$P_S = -7.992$	$P_S = 0.998$	$P_S = -0.246$
$\kappa = 0.0000(0.0000)^{***}$	$\kappa = 2.0000(nan)$	$\kappa = 0.0000(0.0000)^{***}$
$\rho = 0.0001(0.0000)^{***}$	$\rho = 2.0000(nan)$	$\rho = 4.8238(0.4067)^{***}$
$\eta = 0.8843(0.0000)^{***}$	$\eta = 1.0000(nan)$	$\eta = 1.0000(0.0494)^{***}$

ARL on CBOE	ARL on BATS	ARL on ISE
$N = 0$, $\pi^+ = 150.0000$, $\varphi = 1.0000$	$N = 7$, $\pi^+ = 78.8750$, $\varphi = 1.1250$	$N = 6$, $\pi^+ = 28469.4286$, $\varphi = 1.8571$
No data	$P_S = 0.997$	$P_S = 0.994$
	$\kappa = 0.0219(0.0019)^{***}$	$\kappa = 2.0000(nan)$
	$\rho = 0.1378(0.0279)^{***}$	$\rho = 2.0000(nan)$
	$\eta = 1.0000(0.0789)^{***}$	$\eta = 1.0000(nan)$
C.3 ZI Model with Trades

Stock	NASDAQ OB	NSE	Chicago
XOM	$N = 5000$, $\pi^+ = 1.928909$	$N = 1000^*$, $\pi^+ = 36.201818$	$N = 46$, $\pi^+ = 7.4118$
P_S	0.183	0.649	0.340
P_m	0.170	0.695	0.340
κ_0	42.3316(4.0871)***	0.3855(0.0167)***	0.0265(0.0048)***
κ_1	1.3307(0.1302)***	-2.7543(0.0340)***	0.0188(0.0079)***
α_0	-2.8164(0.1107)***	3.0505(0.0657)***	-2.2116(0.2067)***
ρ_0	44.2052(4.2340)***	-2.6481(0.0156)***	0.0084(0.0015)***
ρ_1	1.8553(0.1773)***	0.0823(0.0037)***	0.2206(0.0529)***
α_ρ	-2.6764(0.1054)***	-3.0384(0.1210)***	-3.0384(0.1210)***

Stock	NYSE	ARCA	NASDAQ T
XOM	$N = 5000$, $\pi^+ = 1.8062$	$N = 5000$, $\pi^+ = 1.0658$	$N = 5000$, $\pi^+ = 1.0445$
P_S	0.133	0.835	0.739
P_m	0.635	0.836	0.739
κ_0	3.5635(0.0135)***	122.6212(1.3671)***	328.9379(5.7143)***
ρ_0	0.9331(0.0030)***	48.9988(3.6449)***	4.1492(0.2231)***
α_0	-1.5287(0.0914)***	-1.0492(0.2231)***	47.4101(0.8032)***
ρ_1	17.0146(0.1812)***	9.6314(0.7146)***	-1.0763(0.2234)***
α_ρ	-0.5917(0.0802)***	-2.9657(0.3183)***	-0.5917(0.0802)***

Stock	CBOE	BATS	ISE
XOM	$N = 662$, $\pi^+ = 65.5720$	$N = 5000$, $\pi^+ = 1.0104$	$N = 1000^*$, $\pi^+ = 17.153636$
P_S	-0.335	0.599	0.417
P_m	-0.669	0.598	0.417
κ_0	0.2892(0.0431)***	4547.3608(195.8280)***	0.0529(0.0006)***
κ_1	0.0098(0.0109)***	-3.3412(0.3168)***	0.3351(0.0020)***
α_0	-1.6006(0.0429)***	584.8992(25.1806)***	0.0529(0.0006)***
ρ_0	4.6186(0.5197)***	-2.9657(0.3183)***	-2.9657(0.3183)***
ρ_1	6.4110(0.8990)***	9.6314(0.7146)***	-2.9657(0.3183)***
α_ρ	-1.9299(0.0365)***	-3.3412(0.3168)***	-2.9657(0.3183)***

Stock	NASDAQ OB	NSE	Chicago
MSFT	$N = 5000$, $\pi^+ = 1.0331$	$N = 5000$, $\pi^+ = 1.0675$	$N = 1092$, $\pi^+ = 7.4010$
P_S	0.665	0.303	0.463
P_m	0.664	0.288	0.512
κ_0	3.2470(0.0128)***	0.0467(0.0005)***	0.0012(0.0000)***
κ_1	0.0098(0.0246)***	-2.4091(0.0680)***	-0.3006(0.0072)***
α_0	0.2541(0.0008)***	0.0135(0.0001)***	0.0024(0.0000)***
ρ_0	-0.3001(0.0270)***	0.0823(0.0037)***	-0.9152(0.0049)***
α_ρ	-0.2423(0.0669)***	-2.4091(0.0680)***	-2.4091(0.0680)***

Stock	NYSE	ARCA	NASDAQ T
MSFT	$N = 0$, $\pi^+ = 0.0000$	$N = 1000^*$, $\pi^+ = 1.000000$	$N = 0$, $\pi^+ = 0.0000$
P_S	1.000	1.000	1.000
P_m	No data	No data	No data
κ_0	1.4199(0.0037)***	0.0124(0.0000)***	0.0124(0.0000)***
ρ_0	0.0124(0.0000)***	0.0124(0.0000)***	0.0124(0.0000)***
Stock on Exchange	Stock on Exchange	Stock on Exchange	
------------------	------------------	------------------	
MSFT on CBOE	**MSFT on BATS**	**MSFT on ISE**	
\(N = 296, \pi^+ = 315.9969\)	\(N = 1000, \pi^+ = 1.000000\)	\(N = 1000^*, \pi^+ = 1.503636\)	
\(P_S = 0.680\)	\(P_S = 1.0\)	\(P_S = 0.959\) \(P_m = 0.959\)	
\(\epsilon_0 = 0.0146(0.0004)^{***}\) \(\rho_0 = 0.0199(0.0006)^{***}\)	\(\epsilon_0 = 1664.8294(16.2923)^{***}\) \(\rho_0 = 16.1257(0.1567)^{***}\)	\(\epsilon_0 = 899.9914(6.1338)^{***}\) \(\alpha_m = -6.7585(0.0389)^{***}\) \(\rho_0 = 17.2797(0.1171)^{***}\) \(\alpha_p = -3.5550(0.0267)^{***}\)	
GE on NASDAQ OB	**GE on NSE**	**GE on Chicago**	
\(N = 5000, \pi^+ = 1.0480\)	\(N = 5000, \pi^+ = 1.0847\)	Timeout reached	
\(P_S = 0.742\)	Timeout reached	\(P_S = 0.790\) \(P_m = 0.790\)	
\(\epsilon_0 = 68.1041(0.2727)^{***}\) \(\rho_0 = 5.0341(0.0483)^{***}\)	\(\epsilon_0 = 3.4210(0.0154)^{***}\) \(\alpha_m = -2.5544(0.0051)^{***}\) \(\rho_0 = 0.1435(0.0006)^{***}\) \(\alpha_p = -2.9388(0.0073)^{***}\)		
GE on NYSE	**GE on ARCA**	**GE on NASDAQ T**	
\(N = 1000^*, \pi^+ = 1.000991\)	\(N = 5000, \pi^+ = 1.0024\)	Timeout reached	
\(P_S = 1.000\)	Timeout reached	Timeout reached	
\(\epsilon_0 = 67.4131(0.2748)^{***}\) \(\rho_0 = 1.1715(0.0046)^{***}\)			
GE on CBOE	**GE on BATS**	**GE on ISE**	
\(N = 413, \pi^+ = 2.9824\)	\(N = 1000^*, \pi^+ = 1.000000\)	\(N = 1000^*, \pi^+ = 1.456364\)	
\(P_S = 0.222\) \(P_m = 0.233\)	\(P_S = 1.0\)	\(P_S = 0.417\)	
\(\epsilon_0 = 1.9455(0.0178)^{***}\) \(\epsilon_1 = 4.4616(0.2844)^{***}\) \(\alpha_m = -1.8417(0.0465)^{***}\) \(\rho_0 = 0.1828(0.0017)^{***}\) \(\rho_1 = 8.6946(0.5419)^{***}\) \(\alpha_p = -2.8376(0.0460)^{***}\)	\(\epsilon_0 = 1.4835(0.0031)^{***}\) \(\rho_0 = 0.0392(0.0006)^{***}\)	\(\epsilon_0 = 1.1043(0.0026)^{***}\) \(\rho_0 = 0.0093(0.0006)^{***}\)	
MKTX on NASDAQ OB	**MKTX on NSE**	**MKTX on Chicago**	
\(N = 1, \pi^+ = 61.500000\)	Timeout reached	No data	
No data	No data	No data	
MKTX on NYSE	**MKTX on ARCA**	**MKTX on NASDAQ T**	
\(N = 0, \pi^+ = 0.0000\)	\(N = 4379, \pi^+ = 5.5327\)	\(N = 0, \pi^+ = 0.0000\)	
No data	No data	No data	

\(\pi^+\) is the volume-weighted average price, \(P_S\) is the volume-weighted average price, \(P_m\) is the volume-weighted average price, \(\epsilon_0\) is the intercept, \(\epsilon_1\) is the slope, \(\alpha_m\) is the market alpha, \(\rho_0\) is the residual variance, \(\rho_1\) is the market beta, \(\alpha_p\) is the premium alpha.
Symbol	Exchange	\(N \)	\(\bar{\tau}^+ \)	\(P_S \)	\(\kappa_0 \)	\(\rho_0 \)
MKTX	CBOE	100.0	1049.7568	0.996	0.0000(0.0000)***	0.0018(0.0002)***
MKTX	BATS	1623.0	18.0118	0.394	0.0005(0.0000)***	0.0012(0.0000)***
MKTX	ISE	500.0	26.6271	-1.942	8.576(0.2158)***	27.166(0.6893)***
JCOM	NASDAQ OB	1900.0	51.4742	0.903	0.0054(0.0004)***	-2.5172(0.0804)***
JCOM	NSE	13.0	8.2667	No data	No data	No data
JCOM	Chicago	0.0	0.0000	No data	No data	No data
JCOM	NYSE	0.0	0.0000	No data	No data	No data
JCOM	ARCA	5000.0	3.0464	0.024	0.9528(0.0247)***	-1.1111(0.0271)***
JCOM	NASDAQ T	0.0	0.0000	No data	No data	No data
JCOM	CBOE	118.0	42.8000	0.270	0.0525(0.0221)***	-0.3670(0.0301)***
JCOM	BATS	5000.0	15.0924	0.662	0.0027(0.0000)***	0.0138(0.0001)***
JCOM	ISE	2224.0	46.0266	-1.287	0.0007(0.0000)***	0.0048(0.0000)***
ARL	NASDAQ OB	0.0	0.0000	No data	No data	No data
ARL	NSE	0.0	0.0000	No data	No data	No data
ARL	Chicago	0.0	0.0000	No data	No data	No data
ARL	NYSE	299.0	7.7933	-6.946	0.0001(0.0000)***	-1.1784(0.0465)***
ARL	ARCA	78.0	16204.7558	Optimization failed	Optimization failed	Optimization failed
ARL	NASDAQ T	90.0	17.1500	0.426	0.0037(0.0014)***	-1.7762(0.1290)***

\(\alpha \)s and \(\rho \)s are significant at the 0.001 level.

- ******* indicates significance at the 0.001 level.
| ARL on CBOE | ARL on BATS | ARL on ISE |
|-------------------|--------------------|--------------------|
| $N = 0$, $r^+ = 0.0000$ | $N = 7$, $r^+ = 78.8750$ | $N = 6$, $r^+ = 28469.4286$ |
| No data | No data | No data |

38