Supplementary Figure 1: Density-preserving methods preserve density robustly at different scales on lung cancer data based on neighborhood count. We compared the local radius of each point in the original lung cancer dataset to its neighborhood count in the visualizations (a measure of visual density; see Methods) for (a) densMAP and UMAP; and (b) den-SNE and t-SNE. We chose for each embedding, a length-scale ℓ_{ave} and multiples of that length-scale for which to compute the neighborhood counts (Methods): $\{1/2\ell_{ave}, \ell_{ave}, 2\ell_{ave}\}$ for densMAP and UMAP, and $\{\ell_{ave}, 2\ell_{ave}, 4\ell_{ave}\}$ for den-SNE and t-SNE. Since neighborhood count represents the density around a given point, a visualization that preserves density information will have higher neighborhood counts for points with smaller local radii in the original space. Note that this negative correlation is significantly stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern holds across the different length-scales.
Supplementary Figure 2: Visualizing lung cancer using densMAP recapitulates den-SNE results. We repeat the analysis presented in Figure 3 using densMAP and UMAP.

a. Top is a densMAP embedding and bottom is a UMAP embedding; points are colored by cell type. Note that the relative heterogeneity of neutrophils, plasma cells, and T cells are misleadingly portrayed in the UMAP visualization.

b. densMAP (left) and UMAP (right) plots, now colored by tissue type (blood or tumor).

c. Scatter plots comparing the local radii, our measure of local density (Methods), in the original space and in the visualization (embedding). Points are colored by cell type, and the R^2 value of the correlation is shown for each plot. Higher correlation of densMAP shows that densMAP more accurately conveys the density landscape of the original data than UMAP. Scatter plots based on neighborhood count (another measure of visual density; Methods) are included in Supplementary Figure 1.

d. densMAP (top) and UMAP (bottom) plots restricted to each of four notable cell types (neutrophils, plasma cells, T cells, and B cells) and colored by tissue type (tumor or blood). Neutrophils and plasma cells in tumor considerably expand in size in densMAP, reflecting transcriptomic variability previously hidden in UMAP. T and B cells show a large increase in heterogeneity in tumor compared to blood in densMAP. Although UMAP shows a similar pattern, its lack of density-preservation property precludes reasoning about differences in heterogeneity.
Supplementary Figure 3: Other choices of parameter do not yield density-preservation in tSNE and UMAP. Although changing the perplexity and n_neighbors parameters in t-SNE (a) and UMAP (b), respectively, can yield drastically different embeddings, this does not result in density preservation. We used the lung cancer dataset for this analysis. For t-SNE, we tried perplexity (Perp) values of 10, 25, 75, and 90, all of which resulted in near-zero correlation between the original and the embedded local radius. For UMAP, we chose n_neighbors (NNs) to be 10, 20, 40, and 50, and similarly, none of these choices led to density preservation. These results are consistent with our theoretical understanding of t-SNE and UMAP.
Supplementary Figure 4: **Density-preserving methods achieve competitive performance on existing metrics for visualization quality on lung cancer data.** We computed the classification score (a), the mutual information score (b), and the pairwise distance scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including PCA as a baseline representing traditional dimensionality reduction approach. **a.** Both densMAP and den-SNE perform comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of five subsample, with dots showing each individual measure. **b.** Both densMAP and den-SNE largely retain the superior performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to their sparse nature. We also varied the weight λ of the density preserving methods from its default value to zero. The MIS increases as λ decreases, indicating a tunable tradeoff between clustering performance and density preservation (see Supplementary Figure 20). Each bar is the mean of three subsample, with dots showing each individual measure. **c.** We plot the pairwise distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space) for the bottom $x\%$ of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving algorithms outperform their counterpart on all except the last decile. Each measure is performed on one subsample. **d.** We assign pairwise distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in the embedding space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The whiskers extend to extrema (except outliers, individually marked outside of whiskers, which are defined as those points more than 1.5x the interquartile range (IQR) away from the box boundaries).
Supplementary Figure 5: **Density-preserving methods achieve competitive performance on existing metrics for visualization quality on PBMC data.** We computed the classification score (a), the mutual information score (b), and the pairwise distance scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including PCA as a baseline representing traditional dimensionality reduction approach. **a.** Both densMAP and den-SNE perform comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of five subsample, with dots showing each individual measure. **b.** Both densMAP and den-SNE largely retain the superior performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to their sparse nature. We also varied the weight λ of the density preserving methods from its default value to zero. The MIS increases as λ decreases, indicating a tunable tradeoff between clustering performance and density preservation (see Supplementary Figure 20). Each bar is the mean of three subsample, with dots showing each individual measure. **c.** We plot the pairwise distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space) for the bottom $x\%$ of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving algorithms outperform their counterpart on all deciles. Each measure is performed on one subsample. **d.** We assign pairwise distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in the embedding space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The whiskers extend to extrema (except outliers, individually marked outside of whiskers, which are defined as those points more than 1.5x the interquartile range (IQR) away from the box boundaries).
a Classification score

b Mutual information score

c Pairwise distance score

d

Supplementary Figure 6: Density-preserving methods achieve competitive performance on existing metrics for visualization quality on C. elegans data. We computed the classification score (a), the mutual information score (b), and the pairwise distance scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including PCA as a baseline representing traditional dimensionality reduction approach. a. Both densMAP and den-SNE perform comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of five subsamples, with dots showing each individual measure. b. Both densMAP and den-SNE largely retain the superior performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to their sparse nature. We also varied the weight \(\lambda \) of the density preserving methods from its default value to zero. The MIS increases as \(\lambda \) decreases, indicating a tunable tradeoff between clustering performance and density preservation (see Supplementary Figure 20). Each bar is the mean of three subsamples, with dots showing each individual measure. c. We plot the pairwise distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space) for the bottom \(x\% \) of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving algorithms outperform their counterpart on all deciles. Each measure is performed on one subsample. d. We assign pairwise distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in the embedding space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The whiskers extend to extrema (except outliers, individually marked outside of whiskers, which are defined as those points more than 1.5x the interquartile range (IQR) away from the box boundaries).
Supplementary Figure 7: **Density-preserving methods achieve competitive performance on existing metrics for visualization quality on UK Biobank data.** We computed the classification score (a), the mutual information score (b), and the pairwise distance scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including PCA as a baseline representing traditional dimensionality reduction approach. **a.** Both densMAP and den-SNE perform comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of five subsample, with dots showing each individual measure. **b.** Both densMAP and den-SNE largely retain the superior performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to their sparse nature. We also varied the weight λ of the density preserving methods from its default value to zero. The MIS increases as λ decreases, indicating a tunable tradeoff between clustering performance and density preservation (see Supplementary Figure 20). Each bar is the mean of three subsample, with dots showing each individual measure. **c.** We plot the pairwise distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space) for the bottom $x\%$ of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving algorithms outperform their counterpart on all except the last two deciles. Each measure is performed on one subsample. **d.** We assign pairwise distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in the embedding space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The whiskers extend to extrema (except outliers, individually marked outside of whiskers, which are defined as those points more than 1.5x the interquartile range (IQR) away from the box boundaries).
Supplementary Figure 8: **Density-preserving methods achieve competitive performance on existing metrics for visualization quality on MNIST data.** We computed the classification score (a), the mutual information score (b), and the pairwise distance scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including PCA as a baseline representing traditional dimensionality reduction approach. a. Both densMAP and den-SNE perform comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of five subsample, with dots showing each individual measure. b. Both densMAP and den-SNE largely retain the superior performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to their sparse nature. We also varied the weight λ of the density preserving methods from its default value to zero. The MIS increases as λ decreases, indicating a tunable tradeoff between clustering performance and density preservation (see Supplementary Figure 20). Each bar is the mean of three subsample, with dots showing each individual measure. c. We plot the pairwise distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space) for the bottom $x\%$ of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving algorithms outperform their counterpart on all deciles. Each measure is performed on one subsample. d. We assign pairwise distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in the embedding space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The whiskers extend to extrema (except outliers, individually marked outside of whiskers, which are defined as those points more than 1.5x the interquartile range (IQR) away from the box boundaries).
Supplementary Figure 9: **Traditional dimensionality reduction algorithms struggle to produce informative visualizations of scRNA-seq data.** Traditional dimensionality reduction algorithms, such as principal component analysis (PCA), Isomap, and multidimensional scaling (MDS), do not use an adaptive length-scale to model the data manifold, thus having the potential to preserve density better than t-SNE and UMAP. We tested these methods on the lung cancer dataset, subsampled to 10,000 cells (since Isomap and MDS do not scale to larger datasets). The resulting visualization and a scatter plot comparing local radius in the original space and in the visualization are shown for each method: densMAP (a), Isomap (b), MDS (c), and PCA (d). Isomap struggles to separate the clusters as well as densMAP; while its performance on the local radius correlation is better than that of UMAP (Supplementary Figure 2), it is substantially worse on this metric compared to densMAP. MDS attempts to preserve all pairwise distances and therefore struggles with high dimensional data; no clusters are visible in the embedding and density is not preserved. Similarly, PCA fails to clearly visualize the clustering structure of the dataset. Although PCA performance on local radius correlation is marginally better than UMAP (Supplementary Figure 2), it is significantly worse than densMAP.
Supplementary Figure 10: **Quantitative evaluation of density preservation on simulated datasets.** We computed the local radius for each algorithm on the simulated datasets shown in Figure 2 to show the improvement that den-SNE and densMAP yield upon t-SNE and UMAP, respectively, with respect to density preservation. For each dataset, we include a scatter plot comparing the log local radius in the original space and in the embedding and the R^2 value of correlation between the two. Each dataset illustrates a different pattern of heterogeneity in local density:

- **a.** Gaussian point clouds with increasing variance and the same number of points;
- **b.** Gaussian point clouds with the same variance but increasing number of points;
- **c.** overlapping Gaussian point clouds with increasing variance;
- **d.** A grid of points, where density grows linearly in one direction. Consistent with the visual observation that our visualizations more accurately portray the original density landscape (Figure 2), the correlation in local radius is significantly higher for our methods compared to t-SNE and UMAP for all datasets.
Supplementary Figure 11: **Density-preserving methods preserve density robustly at different scales on PBMC data based on neighborhood count.** We compared the local radius of each point in the original PBMC dataset to its neighborhood count in the visualizations (a measure of visual density; see Methods) for (a) densMAP and UMAP; and (b) den-SNE and t-SNE. We chose for each embedding, a length-scale ℓ_{ave} and multiples of that length-scale for which to compute the neighborhood counts (Methods): $\{\frac{1}{2}\ell_{\text{ave}}, \ell_{\text{ave}}, 2\ell_{\text{ave}}\}$ for densMAP and UMAP, and $\{\ell_{\text{ave}}, 2\ell_{\text{ave}}, 4\ell_{\text{ave}}\}$ for den-SNE and t-SNE. Since neighborhood count represents the density around a given point, a visualization that preserves density information will have higher neighborhood counts for points with smaller local radii in the original space. Note that this negative correlation is significantly stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern holds across the different length-scales.
Supplementary Figure 12: Visualizing PBMC data using den-SNE recapitulates densMAP results. We repeat the analyses presented in Figure 4 using den-SNE and t-SNE. a. den-SNE (left) and t-SNE (right) visualizations of the data, colored by cell-type. The group of clusters corresponding to monocytes (cluster 1) and dendritic cells (DCs; cluster 2) showed the most pronounced difference between the two visualizations. b. For a detailed comparison, we plotted the same visualizations restricted to the monocyte-DC subset, which revealed distinct subtypes of monocytes (CD16 Mono and CD14 Mono) and DCs (DC3, DC4, and DC6) with clear density differences in den-SNE. Each subtype is annotated using the classification from the PBMC2 study (Villani et al., 2017; Methods) based on marker gene expression. Although the same subtypes are visible in t-SNE, their relative density differences are lost. c. Scatter plots comparing the local radii, our measure of local density (Methods), in the original space and in the visualization (embedding). Points are colored by cell type, and the R^2 value of the correlation is shown for each plot. Higher correlation of den-SNE shows that den-SNE more accurately conveys the density landscape of the original data than t-SNE. Scatter plots based on neighborhood count (another measure of visual density; Methods) are included in Supplementary Figure 11. d. Gene expression heatmaps of monocyte marker genes CD14, S100A8, and CD16 in the den-SNE visualization restricted to monocytes. The patterns of expression support our classification of the dense cluster as CD16 Mono and the sparse cluster as CD14 Mono. e. Gene expression heatmaps of DC marker genes from the PBMC2 study (Villani et al., 2017; Methods) for DC3 (top) and DC6 (bottom) in the densMAP visualization restricted to DCs. These support our assignment of DC clusters to DC3 and DC6.
Supplementary Figure 13: Monocyte and dendritic cell subtypes with density differences correspond to distinct clusters in the original dataset. To test whether the monocyte (a) and dendritic cell (b) subtypes with density differences highlighted by our visualizations reflect distinct subpopulations of cells, we performed Louvain clustering of each cell type in the PBMC dataset based on their high-dimensional gene expression profiles. The top plots show the heatmaps of marker gene expression as shown in Figure 3 for reference, and the bottom plot shows the densMAP visualization colored by labels from the high-dimensional clustering. In both cell types, the identified clusters indeed correspond to subtypes with clear density differences.
Supplementary Figure 14: **Density differences among monocytes and dendritic cell subtypes are validated on additional datasets.** Density-preserving visualizations of the (a) PBMC data, zoomed in on the monocytes and DCs (densMAP); (b) PBMC2 data (den-SNE); and (c) PBMC3 data (den-SNE) (Methods). In (a), the labels assigned are hypothesized based on subtypes determined in the PBMC2 dataset (see Supplementary Figure 15). The visualizations of PBMC2 and PBMC3 data recapitulate the density differences between CD14 Mono (which are sparse) and CD16 Mono/DC3 subsets (which are dense) observed in PBMC data. **d.** We further validated these density difference on the PBMC2 and PBMC3 data based on the original local radii computed for each of these datasets. For both PBMC2 (left) and PBMC3 (right), the local radius in the original data is significantly larger in CD14 monocytes than in CD16 monocytes. Similarly, DC3 has significantly smaller local radii than CD14 monocytes in the PBMC2 data; in the PBMC3 dataset, DC subtype labels were not available but the local radii of CD14 monocytes are still larger than that of the DCs. In PBMC2, there are 163 CD14+ monocytes, 122 CD16+ monocytes, and 107 DC3 cells; in PBMC3, there are 1,264 CD14+ monocytes, 398 CD16+ monocytes, and 142 DCs. The * indicates a p-value less than 5×10^{-4} for a one-sided Mann-Whitney U test statistic (see Methods). NK: Natural killer cells; Mem B: Memory B cells
Supplementary Figure 15: Marker gene expressions for dendritic cell subtypes in the PBMC dataset. We plot gene expression heatmaps for the marker genes identified in the original study of PBMC2 for the dendritic cell (DC) subtypes (a) DC3, (b) DC6, and (c) DC4 on our densMAP visualization of the PBMC data, restricted to DCs. d. Violin plots showing the expression of marker genes identified by the PBMC2 study in our putative DC subtypes in the PBMC dataset: DC3 (left), DC6 (middle), and DC4 (right). The higher expression of these genes in our assigned subtypes and the expression patterns in (a) through (c) support our assignment of the DCs in the original PBMC dataset to the known subtypes in the PBMC2 dataset. The asterisk indicates our putative cell type assignment based on marker gene expression. e. Noting the existence of sparse and dense parts of the DC3 cluster in Figure 4, we compare the expression of DC3 and classical monocyte marker genes in the dense DCs (log local radius less than 3.9), sparse DCs (log local radius greater than 3.9), and classical monocytes; the violin plot indicates that sparse DCs are intermediate in expression of these marker genes between dense DCs and classical monocytes, potentially indicating a transition between the two states. The asterisk indicates our putative cell type assignment based on marker gene expression.
Supplementary Figure 16: **Density-preserving methods preserve density robustly at different scales on *C. elegans* embryo development data based on neighborhood count.** We compared the local radius of each point in the original *C. elegans* embryo development dataset to its neighborhood count in the visualizations (a measure of visual density; see Methods) for (a) densMAP and UMAP; and (b) den-SNE and t-SNE. We chose for each embedding, a length-scale ℓ_{ave} and multiples of that length-scale for which to compute the neighborhood counts (Methods): \{$\frac{1}{2}\ell_{ave}, \ell_{ave}, 2\ell_{ave}$\} for densMAP and UMAP, and \{$\ell_{ave}, 2\ell_{ave}, 4\ell_{ave}$\} for den-SNE and t-SNE. Since neighborhood count represents the density around a given point, a visualization that preserves density information will have higher neighborhood counts for points with smaller local radii in the original space. Note that this negative correlation is significantly stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern holds across the different length-scales.
Supplementary Figure 17: Visualizing the C. elegans embryo development data with den-SNE recapitulates densMAP results. We repeat the analysis presented in Figure 5 using t-SNE and den-SNE. a. den-SNE embedding of dataset, colored by cell-type (t-SNE omitted for space). b. Same data, now colored by embryo time, with den-SNE above and UMAP below. The scatter plots on the right compare the local radius, our measure of local density, in the original space, with the local radius in the embedding (Methods). Points are colored by embryo time, and the R^2 value of the correlation is shown for each plot. The higher correlation in den-SNE than in t-SNE supports the increase in transcriptomic variability over time seen in the den-SNE plot. Analogous correlation plots based on neighborhood count, our other measure of local distance (Methods), are included in Supplementary Figure 16. c. To assess lineage-specific patterns, we consider the mean local radius within different time bins for six different cell-types in the original data (top), den-SNE (middle), and t-SNE (bottom). In the original data, the plots illustrate the temporal changes in the underlying local density, while for den-SNE and t-SNE, they illustrate the apparent changes in density based on the visualizations. Time intervals were given in the original dataset, and the y-axis shows the change in average local radius compared to the earliest time interval in log-scale. Note that the trajectories traced out by den-SNE follow those of the original dataset more closely than those from t-SNE, supporting the relative temporal homogeneity seen in the den-SNE plots of semi-clonal cell types (hypodermis [7,746 cells], intestinal [1,732 cells], and BWM [17,520 cells]) compared to the other cell types. d. We show the best linear fit of local radius v. embryo time for the three semi-clonal cell-types against all clonal cells (59,026 cells), again aggregating cells within the time-intervals given in the publication, with error bars showing one standard deviation in local radius for all cells within the interval. The slope of the linear fit for clonal cells is significantly higher than those of the semi-clonal cells: 99% two-sided confidence intervals of the slope coefficients do not overlap. We show densMAP and UMAP plots restricted to the examples of semi-clonal (e) and clonal (f) cell types; circles are centered at the centroid of the points in each time bin, and radius indicates one standard deviation of these coordinates (both based on visualization coordinates). densMAP more accurately portrays that the variability of the semi-clonal cell types (e) is more homogeneous compared to the clonal cell types (f), whereas UMAP produces misleading visualizations.
Supplementary Figure 18: **Density-preserving methods preserve density robustly at different scales on UKBB data based on neighborhood count.** We compared the local radius of each point in the original UKBB dataset (20% subsample) to its neighborhood count in the visualizations (a measure of visual density; see Methods) for (a) densMAP and UMAP; and (b) den-SNE and t-SNE. We chose for each embedding, a length-scale ℓ_{ave} and multiples of that length-scale for which to compute the neighborhood counts (Methods): $\{\frac{1}{2}\ell_{\text{ave}}, \ell_{\text{ave}}, 2\ell_{\text{ave}}\}$ for densMAP and UMAP, and $\{\ell_{\text{ave}}, 2\ell_{\text{ave}}, 4\ell_{\text{ave}}\}$ for den-SNE and t-SNE. Since neighborhood count represents the density around a given point, a visualization that preserves density information will have higher neighborhood counts for points with smaller local radii in the original space. Note that this negative correlation is significantly stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern holds across the different length-scales.
Supplementary Figure 19: Density-preserving methods preserve density robustly at different scales on MNIST data based on neighborhood count. We compared the local radius of each point in the original MNIST dataset to its neighborhood count in the visualizations (a measure of visual density; see Methods) for (a) densMAP and UMAP; and (b) den-SNE, and t-SNE. We chose for each embedding, a length-scale ℓ_{ave} and multiples of that length-scale for which to compute the neighborhood counts (Methods): $\{\ell_{\text{ave}}, 2\ell_{\text{ave}}, 4\ell_{\text{ave}}\}$ for densMAP and UMAP, and $\{\ell_{\text{ave}}, 2\ell_{\text{ave}}, 4\ell_{\text{ave}}\}$ for den-SNE and t-SNE. Since neighborhood count represents the density around a given point, a visualization that preserves density information will have higher neighborhood counts for points with smaller local radii in the original space. Note that this negative correlation is significantly stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern holds across the different length-scales.
Supplementary Figure 20: **Varying the density weight parameter in densMAP and den-SNE controls the trade-off between density preservation and cluster separation.** We demonstrate on the *C. elegans* dataset the effects of varying the weight λ of the density-preservation term in the objective function of (a) densMAP and (b) den-SNE. As λ increases, so does the correlation between the log local radii in the original data and the embedding, but the clusters begin to fade into each other, likely due to lack of space in the visualization. As λ decreases, the correlation becomes worse and the embeddings become closer to those of t-SNE and UMAP. Based on our results from a wide range of datasets, we recommend the default values of $\lambda = 0.1$ for den-SNE and $\lambda = 2.0$ for densMAP.
Gene Expression in Tumor vs. Blood (T Cells CD8)

Rank	Gene	∆(Dispersion)	∆(Mean)	∆(Variance)	Permutation Test p-value (Bonferroni-corrected)
1	DUSP4	1.034	0.492	0.919	<2E-4 <2E-4 <2E-4
2	RGS1	0.995	0.009	0.926	1.0 <2E-4 <2E-4
3	RGCC	0.922	0.045	1.024	1.0 <2E-4 <2E-4
4	TNFAIP3	0.816	-0.173	0.970	1.0 <2E-4 <2E-4
5	NR4A2	0.800	0.023	0.933	1.0 <2E-4 <2E-4
6	ZFP36	0.792	0.128	0.864	0.1346 <2E-4 <2E-4
7	CCL4	0.783	0.619	0.358	<2E-4 <2E-4 <2E-4
8	CREM	0.764	-0.201	0.811	1.0 <2E-4 <2E-4
9	JUNB	0.742	0.116	0.736	0.676 <2E-4 <2E-4
10	HSP90AA1	0.701	0.252	0.605	<2E-4 <2E-4 <2E-4
11	DNAJB1	0.693	0.055	0.616	1.0 <2E-4 <2E-4
12	FOSB	0.678	0.594	0.565	<2E-4 <2E-4 <2E-4
13	RPS26	0.675	0.199	0.516	<2E-4 <2E-4 <2E-4
14	ZNF331	0.670	0.456	0.641	<2E-4 <2E-4 <2E-4
15	JUND	0.656	-0.027	0.906	1.0 <2E-4 <2E-4
16	FTH1	0.588	0.141	0.618	0.0516 <2E-4 <2E-4
17	FOSL2	0.585	0.008	0.599	1.0 <2E-4 <2E-4
18	ICKC	0.579	1.135	0.335	<2E-4 <2E-4 <2E-4
19	YPEL5	0.569	0.193	0.575	0.005 <2E-4 <2E-4
20	TSC22D3	0.560	0.231	0.476	<2E-4 <2E-4 <2E-4

Supplementary Table 1: **Genes with largest difference in variance between blood and tumor CD8 T cells.** The columns Δ {Dispersion, Mean, Variance} show the changes in the corresponding statistic for each listed gene in tumor (1,621 cells) relative to blood (443 cells). We performed one-sided permutation tests (last three columns) to calculate the significance of the change in mean, dispersion, and variance, and those p-values which are significant after Bonferroni correction ($p < 0.01$) are shown in boldface. Zero p-values are shown as <2E-4, which is the smallest possible non-zero p-value we could obtain based on 100k permutation trials after Bonferroni correction.
Gene Expression in Tumor vs. Blood (T Cells CD4 Memory Resting)

Rank	Gene	Δ(Variance)	Δ(Dispersion)	Δ(Mean)	Dispersion	Mean	Variance
1	RGS1	1.013	-0.009	1.069	1.0	<2E-4	<2E-4
2	DUSP4	0.952	0.295	0.753	<2E-4	<2E-4	<2E-4
3	TNFAIP3	0.818	-0.205	1.099	1.0	<2E-4	<2E-4
4	JUNB	0.810	-0.070	1.110	1.0	<2E-4	<2E-4
5	ZFP36	0.809	0.039	1.045	1.0	<2E-4	<2E-4
6	RGCC	0.779	0.101	0.922	0.0124	<2E-4	<2E-4
7	CREM	0.762	0.111	0.937	0.1886	<2E-4	<2E-4
8	HSP90AA1	0.730	0.185	0.795	<2E-4	<2E-4	<2E-4
9	NR4A2	0.669	0.216	0.737	<2E-4	<2E-4	<2E-4
10	HSPA1A	0.664	0.911	0.367	<2E-4	<2E-4	<2E-4
11	LMNA	0.656	0.455	0.556	<2E-4	<2E-4	<2E-4
12	DNAJB1	0.610	0.201	0.566	<2E-4	<2E-4	<2E-4
13	JUND	0.598	-0.049	0.979	1.0	<2E-4	<2E-4
14	FTH1	0.583	0.041	1.067	1.0	<2E-4	<2E-4
15	SLC2A3	0.561	0.091	0.631	0.0196	<2E-4	<2E-4
16	ZNF331	0.560	0.029	0.586	1.0	<2E-4	<2E-4
17	YPEL5	0.557	0.052	0.657	1.0	<2E-4	<2E-4
18	HSPH1	0.553	0.297	0.493	<2E-4	<2E-4	<2E-4
19	TSC22D3	0.549	0.213	0.534	<2E-4	<2E-4	<2E-4
20	FOSL2	0.541	0.211	0.612	<2E-4	<2E-4	<2E-4

Supplementary Table 2: **Genes with largest difference in variance between blood and tumor cells** (memory resting CD4 T cells). The columns Δ {Dispersion, Mean, Variance} show the changes in the corresponding statistic for each listed gene in tumor (9,019 cells) relative to blood (1,036 cells). We performed one-sided permutation tests (last three columns) to calculate the significance of the change in mean, dispersion, and variance, and those p-values which are significant after Bonferroni correction (p < 0.01) are shown in boldface. Zero p-values are shown as <2E-4, which is the smallest possible non-zero p-value we could obtain based on 100k permutation trials after Bonferroni correction.
Gene Expression in Tumor vs. Blood (T Cells Naïve CD4)

Rank	Gene	∆(Variance)	∆(Dispersion)	∆(Mean)	Dispersion	Mean (Bonferroni-corrected)	Variance
1	MT-ATP6	1.143	0.416	-0.331	<2E-4	0.0078	<2E-4
2	RPS26	1.114	0.047	0.97	1.0	<2E-4	<2E-4
3	FTH1	1.052	0.432	0.787	<2E-4	<2E-4	<2E-4
4	RPS14	0.899	0.404	-0.048	<2E-4	1.0	<2E-4
5	CREM	0.888	0.628	0.66	1.0	<2E-4	<2E-4
6	MT-RNR2	0.887	0.253	0.82	0.0128	<2E-4	<2E-4
7	RPLP1	0.833	0.372	0.007	<2E-4	1.0	<2E-4
8	RPS27	0.832	0.299	-0.097	0.0046	1.0	<2E-4
9	RPS3	0.828	0.457	-0.198	<2E-4	0.497	<2E-4
10	MTRNR2L12	0.82	0.274	0.797	0.0194	<2E-4	<2E-4
11	CXCR4	0.814	0.366	0.661	0.166	<2E-4	<2E-4
12	SRGN	0.81	0.377	0.678	0.129	<2E-4	<2E-4
13	MT-ND1	0.762	0.315	-0.155	0.0042	1.0	<2E-4
14	RPL34	0.754	0.361	-0.426	<2E-4	<2E-4	<2E-4
15	TTC19	0.753	0.414	0.026	<2E-4	1.0	<2E-4
16	PABPC1	0.744	0.481	-0.099	<2E-4	1.0	<2E-4
17	MT-CO2	0.733	0.307	0.407	0.0084	<2E-4	<2E-4
18	RPL11	0.721	0.469	-0.601	<2E-4	<2E-4	<2E-4
19	MT-CO1	0.719	0.391	-0.118	<2E-4	1.0	<2E-4
20	RPL27A	0.716	0.387	-0.289	<2E-4	0.0138	<2E-4

Supplementary Table 3: **Genes with largest difference in variance between blood and tumor CD4 naïve T cells.** The columns ∆ {Dispersion, Mean, Variance} show the changes in the corresponding statistic for each listed gene in tumor (61 cells) relative to blood (437 cells). We performed one-sided permutation tests (last three columns) to calculate the significance of the change in mean, dispersion, and variance, and those p-values which are significant after Bonferroni correction (p < 0.01) are shown in boldface. Zero p-values are shown as <2E-4, which is the smallest possible non-zero p-value we could obtain based on 100k permutation trials after Bonferroni correction.
Supplementary Table 4: **Genes with largest difference in variance between blood and tumor memory B cells.** The columns Δ \{Dispersion, Mean, Variance\} show the changes in the corresponding statistic for each listed gene in tumor (4,811 cells) relative to blood (67 cells). N/A values in the Δ(Dispersion) and Dispersion p-value columns indicate that the gene had zero mean-expression in blood, and so dispersion is undefined. We performed one-sided permutation tests (last three columns) to calculate the significance of the change in mean, dispersion, and variance, and those p-values which are significant after Bonferroni correction ($p < 0.01$) are shown in boldface. Zero p-values are shown as $<2E-4$, which is the smallest possible non-zero p-value we could obtain based on 100k permutation trials after Bonferroni correction.
Gene Expression in Tumor vs. Blood (B Cells Naïve)

Rank	Gene	∆(Variance)	∆(Dispersion)	∆(Mean)	Dispersion	Mean	Variance
1	JUNB	0.967	0.264	1.094	0.322	<2E-4	<2E-4
2	CD83	0.852	-0.013	0.937	1.0	<2E-4	<2E-4
3	RPS27	0.827	0.329	-0.239	<2E-4	0.6354	<2E-4
4	NR4A2	0.811	N/A	0.876	N/A	<2E-4	<2E-4
5	JUND	0.681	-0.087	1.025	1.0	<2E-4	<2E-4
6	FOS	0.660	N/A	0.515	N/A	<2E-4	<2E-4
7	FOSB	0.652	0.320	0.573	0.4072	<2E-4	<2E-4
8	RPL13A	0.634	0.287	-0.362	<2E-4	0.008	<2E-4
9	DUSP1	0.629	-0.188	0.632	1.0	<2E-4	<2E-4
10	IGHM	0.625	0.506	-0.928	<2E-4	<2E-4	<2E-4
11	RGS1	0.620	N/A	0.416	N/A	<2E-4	<2E-4
12	ZNF331	0.616	-0.140	0.584	1.0	<2E-4	<2E-4
13	TSC22D3	0.609	0.048	0.715	1.0	<2E-4	<2E-4
14	JUN	0.590	-0.875	0.498	1.0	<2E-4	<2E-4
15	HERPUD1	0.581	-0.033	0.583	1.0	<2E-4	<2E-4
16	RPS15A	0.578	0.394	-0.490	<2E-4	<2E-4	<2E-4
17	LY9	0.575	0.474	0.548	<2E-4	<2E-4	<2E-4
18	RPS12	0.567	0.292	-0.434	0.0052	<2E-4	<2E-4
19	SLC2A3	0.552	0.070	0.560	1.0	<2E-4	<2E-4
20	RPS19	0.549	0.374	-0.403	<2E-4	<2E-4	<2E-4

Supplementary Table 5: Genes with largest difference variance between blood and tumor naïve B cells. The columns ∆{Dispersion, Mean, Variance} show the changes in the corresponding statistic for each listed gene in tumor (396 cells) relative to blood (83 cells). N/A values in the ∆(Dispersion) and Dispersion p-value columns indicate that the gene had zero mean-expression in blood, and so dispersion is undefined. We performed one-sided permutation tests (last three columns) to calculate the significance of the change in mean, dispersion, and variance, and those p-values which are significant after Bonferroni correction (p < 0.01) are shown in boldface. Zero p-values are shown as <2E-4, which is the smallest possible non-zero p-value we could obtain based on 100k permutation trials after Bonferroni correction.
T Cells CD8 (GO Enrichment)

GO Biological Process Complete	Bgnd	Count	Expected	+/-	Fold Enrich	P-value
negative regulation of interleukin-2 production (GO:0032703)	24	3	0.03	+	>100	2.55E-02
response to bacterium (GO:0009617)	691	7	0.72	+	9.68	4.06E-02
negative regulation of transcription by RNA polymerase II (GO:0000122)	886	8	0.93	+	8.03	1.63E-02
regulation of transcription by RNA polymerase II (GO:0051253)	1371	9	1.43	+	6.27	4.13E-02
regulation of nucleosome-containing compound metabolic process (GO:0019219)	4019	15	4.21	+	3.57	4.81E-03
regulation of RNA metabolic process (GO:0051252)	3768	14	3.94	+	3.35	1.88E-02
regulation of cellular macromolecule biosynthetic process (GO:2000112)	3894	14	4.08	+	3.44	2.84E-02
negative regulation of cellular process (GO:0048523)	4768	15	4.99	+	3.01	4.78E-02
negative regulation of biological process (GO:0048519)	5355	16	5.6	+	2.86	2.91E-02
regulation of nitrogen compound metabolic process (GO:0051171)	5821	17	6.09	+	2.79	1.11E-02
regulation of primary metabolic process (GO:00080900)	6004	17	6.28	+	2.71	1.79E-02
regulation of macromolecule metabolic process (GO:0060255)	6140	17	6.43	+	2.65	2.53E-02
regulation of cellular metabolic process (GO:0031323)	6212	17	6.5	+	2.62	3.03E-02

Analysis Type: PANTHER Overrepresentation Test (Released 20190711)

Annotation Version and Release Date: GO Ontology database Released 2020-02-21

Supplementary Table 6: GO enrichment analysis of differentially variable genes between tumor and blood for CD8 T cells in the lung cancer dataset. We obtained the gene ontology (GO) terms significantly enriched in the top twenty genes ranked by increase in variance in tumor v. blood for CD8 T cells (shown in Supplementary Table 1). The analysis was performed using the web service available at: http://geneontology.org/. Significance is calculated using Fisher’s exact test, and p-values are Bonferroni corrected. Bgnd: Background count

T Cells CD4 Memory Resting (GO Enrichment)

GO Biological Process Complete	Bgnd	Count	Expected	+/-	Fold Enrich	P-value
negative regulation of interleukin-2 production (GO:0032703)	24	3	0.03	+	>100	2.55E-02
chaperone cofactor-dependent protein refolding (GO:0051085)	30	3	0.03	+	95.56	4.74E-02
regulation of cellular response to heat (GO:1990034)	79	4	0.08	+	48.38	1.38E-02
response to unfolded protein (GO:0006986)	166	5	0.17	+	28.78	6.92E-03
response to topologically incorrect protein (GO:0035966)	188	5	0.2	+	25.41	1.26E-02
negative regulation of transcription by RNA polymerase II (GO:0000122)	886	8	0.93	+	8.03	1.63E-02
cellular response to stress (GO:0033554)	1744	11	1.83	+	6.03	3.05E-03
regulation of transcription by RNA polymerase II (GO:0006357)	2255	11	2.36	+	4.66	3.96E-02
positive regulation of macromolecule metabolic process (GO:0010604)	3388	13	3.55	+	3.67	4.34E-02
regulation of nucleosome-containing compound metabolic process (GO:0019219)	4019	15	4.21	+	3.57	4.81E-03
regulation of macromolecule biosynthetic process (GO:0010556)	4033	15	4.22	+	3.55	5.04E-03
regulation of cellular macromolecule biosynthetic process (GO:2000112)	3894	14	4.08	+	3.44	2.84E-02
regulation of biosynthetic process (GO:00098889)	4258	15	4.46	+	3.37	1.05E-02
negative regulation of cellular process (GO:0048523)	4768	15	4.99	+	3.01	4.78E-02
regulation of macromolecule metabolic process (GO:0060255)	6140	17	6.43	+	2.65	2.53E-02

Analysis Type: PANTHER Overrepresentation Test (Released 20190711)

Annotation Version and Release Date: GO Ontology database Released 2020-02-21

Supplementary Table 7: GO enrichment analysis of differentially variable genes between tumor and blood for CD4 memory resting T cells in the lung cancer dataset. We obtained the gene ontology (GO) terms significantly enriched in the top twenty genes ranked by increase in variance in tumor v. blood for CD4 memory resting T cells (shown in Supplementary Table 2). The analysis was performed using the web service available at: http://geneontology.org/. Significance is calculated using Fisher’s exact test, and p-values are Bonferroni corrected. Bgnd: Background count
CD4 T Cells Naïve

GO biological process complete	Bgnd	Count	Expected	+/-	Fold Enrich	P-value
SRP-dependent cotranslational protein targeting to membrane (GO:0006614)	96	8	0.1	+	81.55	4.25E-10
cotranslational protein targeting to membrane (GO:0006613)	101	8	0.1	+	79.41	6.26E-10
nuclear-transcribed mRNA catabolic process, nonsense-mediated decay (GO:000184)	120	9	0.12	+	75.19	2.01E-11
protein targeting to ER (GO:0045947)	110	8	0.11	+	72.92	1.25E-09
establishment of protein localization to endoplasmic reticulum (GO:0072599)	114	8	0.11	+	70.36	1.58E-09
viral transcription (GO:0019083)	115	8	0.11	+	69.75	1.81E-09
translocation initiation (GO:0006413)	114	8	0.13	+	60.76	4.84E-09
viral gene expression (GO:0019080)	115	8	0.13	+	60.76	4.84E-09
protein localization to endoplasmic reticulum (GO:0070972)	138	8	0.14	+	58.12	6.8E-09
nuclear-transcribed mRNA catabolic process (GO:0000956)	194	9	0.19	+	46.51	1.27E-09
protein targeting to membrane (GO:0006612)	177	8	0.18	+	45.32	4.62E-08
mRNA catabolic process (GO:0006402)	213	9	0.19	+	36.79	0.0388
oxidative phosphorylation (GO:0006119)	247	9	0.25	+	36.53	1.04E-08
establishment of protein localization to membrane (GO:0090150)	289	8	0.29	+	27.75	0.0000203
nucleobase-containing compound catabolic process (GO:0034655)	372	9	0.37	+	24.26	0.00000366
translation (GO:0006412)	378	9	0.38	+	23.87	0.00000421
peptide biosynthetic process (GO:00430413)	403	9	0.41	+	22.39	0.00000374
protein targeting (GO:0006605)	371	8	0.37	+	21.62	0.000014
heterocycle catabolic process (GO:0046700)	429	9	0.43	+	21.03	0.0000126
cellular nitrogen compound catabolic process (GO:0044270)	430	9	0.43	+	20.98	0.0000129
aromatic compound catabolic process (GO:0019439)	444	9	0.44	+	20.32	0.0000017
organic cyclic compound catabolic process (GO:1901361)	478	9	0.48	+	18.88	0.00000323
establishment of protein localization to organelle (GO:0072594)	448	8	0.51	+	15.66	0.0000171
metabolic process (GO:0006518)	526	9	0.52	+	13.06	0.00000274
protein localization to organelle (GO:0072657)	514	8	0.51	+	13.06	0.00000274
mRNA metabolic process (GO:0016071)	690	9	0.60	+	13.08	0.00000767
protein localization to organelle (GO:0033360)	761	9	0.76	+	11.86	0.0000178
cellular amino metabolic process (GO:0043603)	777	9	0.77	+	11.61	0.0000212
viral process (GO:0016032)	784	9	0.78	+	11.51	0.0000229
symbiotic process (GO:0044403)	876	9	0.87	+	10.34	0.0000559
cellular macromolecular catabolic process (GO:0044265)	907	9	0.90	+	9.95	0.0007933
macromolecule catabolic process (GO:0000957)	1048	9	1.05	+	8.61	0.00209
intracellular protein transport (GO:0006866)	967	8	0.99	+	8.04	0.00254
organonitrogen compound biosynthetic process (GO:1901566)	1382	10	1.38	+	7.25	0.00218
cellular nitrogen compound biosynthetic process (GO:0044271)	1638	10	1.63	+	6.12	0.0105
negative regulation of gene expression (GO:0010629)	1757	10	1.75	+	5.71	0.0199
cellular localization (GO:0051641)	2393	11	2.39	+	4.61	0.0382

Analysis Type: PANTHER Overrepresentation Test (Released 20200407)
Annotation Version and Release Date: GO Ontology database Released 2020-02-21

Supplementary Table 8: GO enrichment analysis of differentially variable genes between tumor and blood for CD4 naïve T cells in the lung cancer dataset. We obtained the gene ontology (GO) terms significantly enriched in the top twenty genes ranked by increase in variance in tumor v. blood for CD4 naïve T cells (shown in Supplementary Table 3). The analysis was performed using the web service available at: http://geneontology.org/. Significance is calculated using Fisher's exact test, and p-values are Bonferroni corrected. Bgnd: Background count

B Cells Memory

GO Biological Process Complete	Bgnd	Count	Expected	+/-	Fold Enrich	P-value
chaperone-mediated protein complex assembly (GO:0051131)	18	3	0.02	+	>100	1.0E-02
regulation of cellular response to heat (GO:1900034)	79	4	0.08	+	50.8	1.12E-02
leukocyte activation involved in immune response (GO:0003266)	615	7	0.61	+	11.42	1.30E-02
cell activation involved in immune response (GO:0002263)	619	7	0.62	+	11.35	1.35E-02
response to organic substance (GO:0010033)	3009	12	3	+	4	4.55E-02

Analysis Type: PANTHER Overrepresentation Test (Released 20190711)
Annotation Version and Release Date: GO Ontology database Released 2020-02-21

Supplementary Table 9: GO enrichment analysis of differentially variable genes between tumor and blood for memory B cells in the lung cancer dataset. We obtained the gene ontology (GO) terms significantly enriched in the top twenty genes ranked by increase in variance in tumor v. blood for memory B cells (shown in Supplementary Table 4). The analysis was performed using the web service available at: http://geneontology.org/. Significance is calculated using Fisher's exact test, and p-values are Bonferroni corrected. Bgnd: Background count
GO Biological Process Complete	Bgnd	Count	Expected	+/-	Fold Enrich	P-value
response to cAMP (GO:0051591)	101	6	0.1	+	59.6	6.52E-06
cellular response to calcium ion (GO:0071277)	85	5	0.08	+	59.02	2.14E-04
SRF-dependent cotranslational protein targeting to membrane (GO:0006614)	96	5	0.1	+	52.26	3.83E-04
cotranslational protein targeting to membrane (GO:0006613)	101	5	0.1	+	49.67	4.88E-04
protein targeting to ER (GO:00045047)	110	5	0.11	+	45.61	7.45E-04
establishment of protein localization to endoplasmic reticulum (GO:0072599)	114	5	0.11	+	44.01	8.72E-04
viral transcription (GO:0019083)	115	5	0.11	+	43.62	9.10E-04
response to organophosphorus (GO:0046683)	142	6	0.14	+	42.4	4.63E-05
nuc.-transc. mRNA catab. proc., nonsense-med. decay (GO:0000184)	120	5	0.12	+	41.81	1.12E-03
response to calcium ion (GO:0051592)	151	6	0.15	+	39.87	6.61E-05
response to purine-containing compound (GO:0014074)	157	6	0.16	+	38.34	8.27E-05
viral gene expression (GO:0019080)	132	5	0.13	+	38.01	1.76E-03
protein localization to endoplasmic reticulum (GO:0070972)	138	5	0.14	+	36.35	2.18E-03
translational initiation (GO:0006413)	142	5	0.14	+	35.33	2.51E-03
protein targeting to membrane (GO:0006612)	177	5	0.18	+	28.34	7.23E-03
cellular response to metal ion (GO:0071248)	193	5	0.19	+	25.99	1.10E-02
nuclear-transcribed mRNA catabolic process (GO:0000956)	194	5	0.19	+	25.86	1.12E-02
mRNA catabolic process (GO:0006402)	213	5	0.21	+	23.55	1.76E-02
response to mechanical stimulus (GO:0009612)	218	5	0.22	+	22.7	2.10E-02
cellular response to inorganic substance (GO:0071241)	221	5	0.22	+	22.7	2.10E-02
RNA catabolic process (GO:0006401)	247	5	0.25	+	20.31	3.58E-02
response to metal ion (GO:0003038)	370	6	0.37	+	16.27	1.16E-02
cellular response to hormone stimulus (GO:0032870)	612	7	0.61	+	11.48	1.26E-02
response to bacterium (GO:0009617)	691	7	0.69	+	10.16	2.79E-02
response to organic cyclic compound (GO:0014070)	926	8	0.92	+	8.67	1.46E-02
response to organonitrogen compound (GO:0010243)	1006	8	1	+	7.98	2.79E-02
response to other organism (GO:00511707)	1322	10	1.32	+	7.59	1.43E-03
response to external biotic stimulus (GO:0043207)	1324	10	1.32	+	7.58	1.45E-03
response to biotic stimulus (GO:0009607)	1356	10	1.35	+	7.4	1.81E-03
response to nitrogen compound (GO:1901098)	1089	8	1.09	+	7.37	4.85E-02
interspecies interaction between organisms (GO:0041419)	1964	12	1.96	+	6.13	4.25E-04
cellular nitrogen compound biosynthetic process (GO:0044271)	1638	10	1.63	+	6.13	1.04E-02
RNA metabolic process (GO:0016070)	1679	10	1.67	+	5.98	1.90E-02
cellular macromolecule biosynthetic process (GO:0034645)	1694	10	1.69	+	5.92	1.41E-02
macromolecule biosynthetic process (GO:0000929)	1753	10	1.75	+	5.72	1.93E-02
negative regulation of gene expression (GO:0010629)	1757	10	1.75	+	5.71	1.97E-02
response to external stimulus (GO:0009605)	2443	12	2.43	+	4.93	4.76E-03
negative regulation of macromolecule metabolic process (GO:0010605)	2682	12	2.67	+	4.49	1.32E-02
negative regulation of metabolic process (GO:0008929)	2942	12	2.93	+	4.09	3.58E-02
response to stress (GO:0006950)	3572	13	3.56	+	3.65	3.63E-02

Analysis Type: PANTHER Overrepresentation Test (Released 20190711)
Annotation Version and Release Date: GO Ontology database Released 2020-02-21

Supplementary Table 10: GO enrichment analysis of differentially variable genes between tumor and blood for naive B cells in the lung cancer dataset. We obtained the gene ontology (GO) terms significantly enriched in the top twenty genes ranked by increase in variance in tumor v. blood for naive B cells (shown in Supplementary Table 5). The analysis was performed using the web service available at: http://geneontology.org/. Significance is calculated using Fisher’s exact test, and p-values are Bonferroni corrected. Bgnd: Background count
Supplementary Table 11: Validation of top differentially variable genes between tumor and blood in CD8 T cells on a secondary dataset. We repeat the tests for difference in mean, variance, and dispersion index of 19 of the top 20 genes from Supplementary Table 1 for CD8 T cells in blood (1,250 cells) and lung cancer (2,123 cells) on a secondary dataset from Guo et al. (2018) (IGKC was not found in the dataset). Other cell types we analyzed did not have a close match in this dataset and were omitted from the analysis. The columns $\Delta \{\text{Dispersion, Mean, Variance}\}$ show the changes in the corresponding statistic for each listed gene in tumor relative to blood. We performed one-sided permutation tests (last three columns) to calculate the significance of the change in dispersion, mean, and variance, and those p-values which are significant after Bonferroni correction ($p < 0.01$) are shown in boldface. We see that 9 of the 19 genes are significant in differential variance in this dataset as well and TSC22D3 is also significantly overdispersed in tumor in this dataset. Zero p-values are shown as $<2E-4$, which is the smallest possible non-zero p-value we could obtain based on 100k permutation trials after Bonferroni correction.

Rank	Gene	Δ(Variance)	Δ(Dispersion)	Δ(Mean)	Dispersion	Mean	Variance	Permutation Test p-value (Bonferroni-corrected)
1	RGS1	8.099	-0.782	4.155	1.0			$<2E-4$
2	DUSP4	4.170	0.522	1.238	1.0			$<2E-4$
3	FOSB	4.143	0.126	1.182	1.0			$<2E-4$
4	RGCC	3.299	-0.697	0.941	1.0			$<2E-4$
5	NR4A2	2.788	0.496	0.631	0.1368			$<2E-4$
6	TSC22D3	2.517	0.585	-0.766	1.0			$<2E-4$
7	CREM	2.475	-0.437	0.765	1.0			$<2E-4$
8	TNFAIP3	1.747	-1.071	1.789	1.0			$<2E-4$
9	JUND	0.785	-0.334	0.335	1.0			$<2E-4$
10	ZNF331	0.433	-0.115	0.127	1.0	0.687	0.8736	
11	DNAJB1	0.397	0.077	0.058	1.0	1.0	0.6108	
12	JUNB	0.350	-0.666	0.805	1.0			$<2E-4$
13	YPEL5	0.249	-0.586	0.504	1.0			$<2E-4$
14	FOSL2	0.007	-0.161	0.018	1.0	1.0	1.0	
15	FTH1	-0.051	-0.011	0.086	1.0	1.0	1.0	
16	ZFP36	-0.286	-0.287	0.687	1.0			$<2E-4$
17	HSP90AA1	-0.435	-0.191	0.395	1.0			$<2E-4$
18	RPS26	-0.452	-0.330	-0.045	1.0	1.0	1.0	
19	CCL4	-2.924	-1.309	2.323	1.0			$<2E-4$
Supplementary Note 1

Motivating the power-law relationship between embedded and original local radii

We motivate the connection between density-preservation and a power-law relationship between the original and embedding local radii with an example. Suppose for a point \(x \in \mathbb{R}^d \) in the original \(d \)-dimensional dataset, the \(K \) points in its neighborhood are uniformly distributed in a ball of radius \(\gamma_d \) and volume \(V \propto \gamma_d^d \).

Now, suppose we want to embed the dataset into \(s < d \) dimensions while preserving structure and density. This means we want \(x \) and its neighbors to be mapped to an \(s \)-dimensional ball of uniform density with radius \(\gamma_s \), and, to preserve the density of the \(K \)-neighborhood of \(x \), the volume of the \(s \)-dimensional ball should still be \(V \). Since \(V \propto \gamma_s^s \), this suggests a power law relationship between \(\gamma_s \) and \(\gamma_d \), i.e. \(\gamma_s \propto \gamma_d^{d-s} \).

Taking logarithms, \(\log \gamma_s = (d-s) \log \gamma_d + \beta \) for some \(\beta \).

Drawing the analogy between the local radius we introduced in Methods and \(\gamma \) above, density preservation thus corresponds to a power law relationship between the local radii in the original and the embedded datasets.

Supplementary Note 2

Gradient derivation for den-SNE and densMAP

The core of our density-preserving tools lies in the optimization of the Pearson correlation between the log local radius of points in the original dataset and in the embedding (see Methods). Here we compute the gradient of this correlation with respect to the embedding coordinates for optimization. Let \(X = \{ x_i \}_{i=1}^{N} \) be our original dataset and \(y_i = s(x_i) \) be our embedding, where \(s \in \{ \text{den-SNE}, \text{densMAP} \} \) is our algorithm of choice.

Let \(\{ R^e_i \}_{i=1}^{N} \) and \(\{ R^o_i \}_{i=1}^{N} \) be measures of pointwise density in the original and embedded spaces respectively. We discuss specific density functions at the end, but allow full generality here. Let \(r^e_i = \log R^e_i \). We center the original densities, so we let \(r^o_i = \log R^o_i - N^{-1} \sum_{k=1}^{N} \log R^o_k \).

Since we want the densities in the embedded and original dataset to have a power-law relationship, (Supplementary Note 1) we maximize the correlation between \(r^o = \{ r^o_i \}_{i=1}^{N} \) and \(r^e = \{ r^e_i \}_{i=1}^{N} \), denoted \(\rho_{r^o,r^e} \). We write:

\[
\rho_{r^o,r^e} = \frac{\text{Cov}(r^o,r^e)}{\sigma^o \sigma^e} = \frac{\sum_{k=1}^{N} (r_k^o - \mu^o)(r_k^e - \mu^e)}{s^o(N-1)^{\frac{1}{2}} \left[\sigma^2 + \sum_{k=1}^{N} (r_k - \mu)^2 \right]^{\frac{1}{2}}} \tag{1} \]

where \(\mu^e \) is the average of \(r^e \); \(\sigma^o \) and \(\sigma^e \) are the sample standard deviations of \(r^o \) and \(r^e \) respectively, and \(\sigma^2 \) is a user-specified constant for regularization (this ensures that the standard deviation of the embedded local radii does not go to zero).

Now, we compute the gradient of the correlation with respect to pairwise squared distances of the embedded datapoints, \(d_{ij}^2 = \| y_i - y_j \|^2 \):

\[
\frac{\partial \rho_{r^o,r^e}}{\partial d_{ij}^2} = (s^o)^{-1} (N-1)^{-\frac{1}{2}} \left[\text{Var}(r^e)^{-\frac{1}{2}} \frac{\partial \text{Cov}(r^e,r^o)}{\partial d_{ij}^2} - \frac{1}{2} \text{Cov}(r^e,r^o) \text{Var}(r^e)^{-\frac{1}{2}} \frac{\partial \text{Var}(r^e)}{\partial d_{ij}^2} \right],
\]

where \(\text{Var}(r^e) = (N-1) \left[\sigma^2/(N-1) + \text{Var}(r^e) \right] \) and \(\text{Cov}(r^e,r^o) = (N-1) \text{Cov}(r^e,r^o) \) (these are sample variances and covariances, hence the normalization by \(N - 1 \) instead of \(N \)).
Now consider the component parts:

\[
\frac{\partial \tilde{\text{Cov}}(r^e, r^o)}{\partial d_{ij}^2} = \sum_{k=1}^{N} r_k^o \left(\frac{\partial r_k^e}{\partial d_{ij}^2} - \frac{\partial \mu^e}{\partial d_{ij}^2} \right) \\
= \sum_{k=1}^{N} r_k^o \frac{\partial r_k^e}{\partial d_{ij}^2} - \frac{\partial \mu^e}{\partial d_{ij}^2} \sum_{k=1}^{N} r_k^o \\
= \sum_{k=1}^{N} r_k^o \frac{\partial r_k^e}{\partial d_{ij}^2},
\]

where the second term in (2) is zero since \(r^o \) is centered. Similarly,

\[
\frac{\partial \tilde{\text{Var}}(r^e)}{\partial d_{ij}^2} = 2 \sum_{k=1}^{N} \left(r_k^e - \mu^e \right) \left(\frac{\partial r_k^e}{\partial d_{ij}^2} - \frac{\partial \mu^e}{\partial d_{ij}^2} \right) \\
= 2 \sum_{k=1}^{N} \left(r_k^e - \mu^e \right) \frac{\partial r_k^e}{\partial d_{ij}^2} - 2 \frac{\partial \mu^e}{\partial d_{ij}^2} \sum_{k=1}^{N} \left(r_k^e - \mu^e \right) \\
= 2 \sum_{k=1}^{N} \left(r_k^e - \mu^e \right) \frac{\partial r_k^e}{\partial d_{ij}^2},
\]

where, similar to before, the second sum in (3) is zero.

For many density functions (and certainly the one we use), \(r_i \) will only depend on \(\{d_{ik}, d_{ki}\}_{k=1}^{N} \), so we can further simplify the above expressions to:

\[
\frac{\partial \tilde{\text{Cov}}(r^e, r^o)}{\partial d_{ij}^2} = r_i^o \frac{\partial r_i^e}{\partial d_{ij}^2} + r_j^o \frac{\partial r_j^e}{\partial d_{ij}^2} \\
\frac{\partial \tilde{\text{Var}}(r^e)}{\partial d_{ij}^2} = 2 \left((r_i^e - \mu^e) \frac{\partial r_i^e}{\partial d_{ij}^2} + (r_j^e - \mu^e) \frac{\partial r_j^e}{\partial d_{ij}^2} \right).
\]

Under this scenario, putting this all together, we get:

\[
\frac{\partial \rho_{e,o}}{\partial d_{ij}^2} = \frac{\tilde{\text{Var}}(r^e) \left(r_i^o \frac{\partial r_i^e}{\partial d_{ij}^2} + r_j^o \frac{\partial r_j^e}{\partial d_{ij}^2} \right) - \tilde{\text{Cov}}(r^e, r^o) \left((r_i^e - \mu^e) \frac{\partial r_i^e}{\partial d_{ij}^2} + (r_j^e - \mu^e) \frac{\partial r_j^e}{\partial d_{ij}^2} \right)}{s^o(N - 1/2) \text{Var}(r^e)^{3/2}}.
\]

The measure of local density for the embedded points we have used is the squared distance, weighted by the embedding distribution \(Q \) for either t-SNE or UMAP:

\[
R_k^e = \left(\sum_{\ell=1}^{N} (1 + ad_{k\ell}^b)^{-1} \right)^{-1} \sum_{m=1}^{N} d_{km}^2 (1 + ad_{km}^b)^{-1} = Z_k^{-1} \sum_{m=1}^{N} d_{km}^2 (1 + ad_{km}^b)^{-1},
\]

where \(Z_k = \sum_{m=1}^{N} (1 + ad_{km}^b)^{-1}. \) We also write \(\bar{Q}_{kk} = Z_k^{-1} (1 + ad_{kk}^b)^{-1}. \) Note that these are related to the \(Q \) matrix and \(Z \) partition functions of t-SNE and UMAP, equations (5) and (6) in Methods, by

\[
Z = \sum Z_i \\
Q_{ij} = \bar{Q}_{ij} \frac{Z_i}{Z}.
\]
To estimate the repulsive term, a set of points λ of the original t-SNE objective function \[1\] (we discuss adaptations needed for the densMAP gradient below):

\[
\frac{\partial r^e_i}{\partial d^2_{ij}} = \frac{\partial}{\partial d^2_{ij}} \log(Z_i R_i^e) - \frac{\partial}{\partial d^2_{ij}} \log Z_i \\
= (R_i^e Z_i)^{-1} \frac{\partial}{\partial d^2_{ij}} (Z_i R_i^e) - Z_i^{-1} \frac{\partial}{\partial d^2_{ij}} Z_i \\
= (R_i^e Z_i)^{-1} \left[(1 + ad_{ij}^{2b} - 1 - abd_{ij}^{2b-2} d_{ij}^2 (1 + ad_{ij}^{2b})^{-2}) \right] + Z_i^{-1} abd_{ij}^{2b-2} (1 + ad_{ij}^{2b})^{-2} \\
= \frac{\bar{Q}_{ij}}{R_i^e} (1 - abd_{ij}^{2b} (1 + ad_{ij}^{2b})^{-1}) + abd_{ij}^{2b-2} \bar{Q}_{ij}^2 Z_i \\
= (1 + ad_{ij}^{2b})^{-1} \bar{Q}_{ij} \left[1 + ad_{ij}^{2b} - ad_{ij}^{2b} \bar{Q}_{ij}^2 \right] + \bar{Q}_{ij}^2 Z_i \\
= \bar{Q}_{ij}^2 Z_i \left[1 + \frac{1 + ad_{ij}^{2b}(1 - b)}{R_i^e} \right]
\]

Note that when $a = b = 1$, as in t-SNE, this simplifies to:

\[
\frac{\partial r^e_i}{\partial d^2_{ij}} = \bar{Q}_{ij}^2 Z_i \left[1 + \frac{1}{R_i^e} \right]. \tag{5}
\]

As discussed in Methods, in both den-SNE and densMAP, for the sake of efficiency, we assume for the local radius computation that, for a point i with embedding y_i and original coordinates x_i, $d_{ij}^2 \neq 0$ only for j such that i and j are in the edge set E of the k-nearest neighbors graph produced by each algorithm. Since the objective functions of each algorithm prioritize preserving local structure, they should encourage i and j to be nearest neighbors in the embedding as well, and so we only need to consider density with respect to those points.

We can now write the full den-SNE gradient by combining the gradient of the correlation with the gradient of the objective functions of each algorithm prioritize preserving local structure, they should encourage i and j to be nearest neighbors in the embedding as well, and so we only need to consider density with respect to those points.

We can now write the full den-SNE gradient by combining the gradient of the correlation with the gradient of the original t-SNE objective function \[1\] (we discuss adaptations needed for the densMAP gradient below):

\[
\nabla_y \mathcal{L}_{\text{den-SNE}} = \sum_{\{i,j\} \in E} P_{ij} Q_{ij} Z(y_i - y_j) - \sum_{j \neq i} Q_{ij}^2 Z(y_i - y_j) - \lambda \sum_{\{i,j\} \in E} \frac{\partial p_{e,o}}{\partial d^2_{ij}} (y_i - y_j),
\]

where λ is a user-provided parameter that determines the weight of the density-preservation objective, and $\frac{\partial p_{e,o}}{\partial d^2_{ij}}$ is given in \[4\] with \[5\] plugged in.

2.1 Stochastic gradient descent for densMAP

Here we detail how densMAP adapts the stochastic gradient descent (SGD) formulation of UMAP. The cross-entropy loss function for UMAP and its gradient with respect to the squared distance d_{ij}^2 between points i, j in the embedding \[2\], given E, the set of edges in the nearest-neighbors graph, is:

\[
\mathcal{L} = \sum_{\{i,j\} \in E} P_{ij} \log Q_{ij} + (1 - P_{ij}) \log (1 - Q_{ij}) \\
\frac{\partial \mathcal{L}}{\partial d^2_{ij}} = P_{ij} \frac{\partial}{\partial d^2_{ij}} \log Q_{ij} + (1 - P_{ij}) \frac{\partial}{\partial d^2_{ij}} \log (1 - Q_{ij}),
\]

where P and Q are the distributions on the original and embedded data respectively. Note that in UMAP, unlike t-SNE, the value Q_{ij} depends only on distance d_{ij}^2 and does not involve a normalization term over all edges.

To optimize the attractive term of the objective function, at each step, UMAP draws an edge $\{i, j\} \in E$ randomly according to the distribution P, and computes the gradient $\frac{\partial}{\partial d^2_{ij}} (\log Q_{ij}) (y_i - y_j)$. This means that, over the course of the optimization, edge $\{i, j\}$ will be chosen with proportion P_{ij}/Z, where $Z = \sum_{i \neq j} P_{ij}$. To estimate the repulsive term, a set of points $S = \{k_s\}_{s=1}^n$ is chosen uniformly at random and the algorithm computes the gradient $\frac{1}{|S|} \sum_{k \in S} \frac{\partial}{\partial d^2_{ik}} \log (1 - Q_{ik}) (y_i - y_j)$. The size of S is a tunable parameter n.

3
Now, incorporating the density-preservation term into this objective function means taking the gradient of the correlation (1) and adding it to the UMAP gradient. The full gradient becomes:

\[
\nabla_y \mathcal{L} = \sum_{\{i,j\} \in E} \left(P_{ij} \frac{\partial}{\partial d_{ij}} \log Q_{ij} + (1 - P_{ij}) \frac{\partial}{\partial d_{ij}} \log(1 - Q_{ij}) + \lambda \frac{\partial \rho_{e,o}}{\partial d_{ij}} \right) (y_i - y_j).
\]

Note that, for the correlation term of the optimization, each edge is given equal weight (i.e. the term is not weighted by \(P_{ij}\)). Since, in the stochastic descent algorithm of UMAP, an edge is actually chosen with proportion \(P_{ij}/Z\), we re-weight the gradient estimate of the correlation term by multiplying by \(Z/(NP_{ij})\) (we divide by the number of points \(N\) for numerical stability, since \(Z\) grows with \(N\)).

The densMAP gradient estimate for an edge \(\{i,j\}\) at each iteration of the SGD is then:

\[
\nabla_y \mathcal{L}_{\{i,j\}} = \left(\frac{\partial}{\partial d_{ij}} \log Q_{ij} + \lambda \frac{Z}{NP_{ij}} \frac{\partial \rho_{e,o}}{\partial d_{ij}} - \frac{1}{|S|} \sum_{k \in S} \frac{\partial}{\partial d_{ik}} \log(1 - Q_{ik}) \right) (y_i - y_j),
\]

where \(S\) is a set of edges adjacent to \(i\) chosen uniformly at random. This ensures that, over the course of the optimization, the edges are weighted equally when optimizing the correlation term.

Next, we consider the \(Q\) distribution. Since, unlike t-SNE, UMAP does not normalize \(Q_{ij}\) over all the edges, it treats the term as a Bernoulli random variable over each edge. For the calculation of the local radius, however, we need a probability distribution over the nearest neighbors of each point. In other words, we need \(Q_{ij}/\sum_{k \in S} Q_{ik} = Q_{ij}/Z_i\). To achieve this, we compute \(Z_i\) at the start of each epoch and take it as fixed for all the edges that are updated in that epoch, which is akin to performing coordinate descent with the update for \(Z_i\) happening once per epoch. Similarly, we compute the local radius \(R_e^2\) and global variance and covariance terms at the start of each epoch. These techniques allow us to use SGD to optimize densMAP in a similar manner as UMAP.

Supplementary Note 3

Theoretical motivation for the local radius

Here, we motivate density-preservation by more rigorously showing that t-SNE does not preserve density due to its use of a constant perplexity for choosing the length-scale. Unfortunately, UMAP’s use of a non-standard distribution for its \(P\) matrix (the re-scaled exponential distribution) precludes this analysis from being extended to UMAP. The setup is as follows.

Assume that for a given point \(X\), we draw its \(n\)-nearest neighbors (which are used in the computation of t-SNE’s \(P\) matrix) as iid random variables \(X = \{X_1, \ldots, X_n\}\) where each \(X_i \in \mathbb{R}^d\) is drawn from a Gaussian distribution with mean \(X\) and covariance matrix \(\Sigma\). Let \(P_X\) be a row of the un-symmetrized probability matrix induced by t-SNE, as in (1) in Methods:

\[
(P_X)_j = Z_X^{-1} \exp \left(-\|X - X_j\|^2 / \sigma_X^2 \right)
\]

\[
Z_X = \sum_{j=1}^n \exp \left(-\|X - X_j\|^2 / \sigma_X^2 \right).
\]

The length-scale term \(\sigma_X\) is chosen to make the perplexity, \(\text{Perp}\), constant as in (7) in Methods:

\[
\log \text{Perp} = \mathcal{H}_X = -Z_X^{-1} \sum_{j=1}^n (P_X)_j \log(P_X)_j + \log Z_X,
\]

where \(\mathcal{H}_X\) is the entropy of \(P_X\).

We showed in Methods that dilating a set of points \(X = \{x_i\}_{i=1}^n\) by multiplying the coordinates by some \(\alpha > 1\) does not change the input probability distribution \(P\) for t-SNE or UMAP. We first observe that one can extend this result to a collection of sets of points \(X_1, X_2, \ldots, X_K\), where, for some \(K\), all the \(K\) nearest
neighbors of a point \(y \in X_\ell \) are also in \(X_\ell \) (in other words, these collections are clusters of points that are well separated from each other). Now, assume that each collection \(X_\ell \) is scaled by some \(\alpha_\ell \), and suppose we choose \(s < K \) nearest neighbors to construct the nearest neighbors graph for the input distribution \(P \) (for either t-SNE or UMAP). Then, \(P \) is a block diagonal matrix: \(P_{ij} = 0 \) whenever \(x_i \) and \(x_j \) are from different collections. Thus, the length-scale terms for t-SNE and UMAP are computed on each block independently, and so each block is invariant to scaling the points in that collection by \(\alpha_\ell \). Since each block of \(P \) does not change, the full matrix \(P \) does not change when each cluster is scaled independently, meaning that the density differences between the clusters after scaling are lost when the dataset is embedded. Thus, for our results below, we analyze the case with one point cloud, and note that the results generalize to well-separated point clouds where each cloud is individually scaled.

3.1 Scaling of \(\sigma \) in t-SNE

We can consider \(\sigma_X \) as a function of the covariance of the generative model for \(X \), i.e. \(\sigma_X = \sigma(\Sigma) \), since it is based on the length-scale, so \(\sigma_X \) itself can be thought of as a random variable. Notably, Vladymyrov and Carreira-Perpiñán (2013) [3] show that \(\sigma \) has a unique value that satisfies (6), so we just need to find any \(\sigma \) that satisfies the equation.

We first show that \(\sigma \) scales as the variance.

Proposition 3.1.1. Suppose, we draw \(X = \{X_1, \ldots, X_n\} \), \(X_i \in \mathbb{R}^d \) from a Gaussian distribution \(\mathcal{N}_X \) with mean \(X \) and covariance \(\Sigma \), and given \(\alpha > 0 \), we now draw \(Y = \{Y_1, \ldots, Y_n\} \), \(Y_i \in \mathbb{R}^d \) from a Gaussian distribution \(\mathcal{N}_Y \) with mean \(Y \) and covariance \(\alpha \Sigma \). Let \(\mathcal{H}_X \) be chosen so that \(\mathcal{H}_X = \log \text{Perp} \) for a constant value of Perp. Then, for any \(\phi, \delta \in (0,1/4) \), with \(n = O(\log(1/\delta) / \phi^2) \), setting \(\sigma_Y = \alpha \sigma_X \) will yield \((1 - \phi) \mathcal{H}_X < \mathcal{H}_Y < (1 + \phi) \mathcal{H}_X \) with probability at least \(1 - \delta \).

Our proof involves approximating the sums on the right-hand side of (6) by expectations over the generating Gaussian distribution. To that end, we define:

\[
G_X(\sigma^2) = \mathbb{E}_{z \sim \mathcal{N}_X} \left[\exp \left(-\|z - X\|^2/\sigma^2 \right) \right] + \log \mathbb{E}_{z \sim \mathcal{N}_X} \left[\exp \left(-\|z - X\|^2/\sigma^2 \right) \right].
\]

We will show that \(\mathcal{H}_X - \log n \to G_X \) in the large-sample limit. We first show the behavior of \(G \) under dilations of the length-scale, i.e. \(G(\alpha \sigma^2) \):

Lemma 3.1.2. Given the distributions \(\mathcal{N}_X \) and \(\mathcal{N}_Y \) defined above, and length-scale term \(\sigma \):

\[
G_Y(\alpha \sigma^2) = G_X(\sigma^2).
\]

That is, scaling \(\sigma \) by the same amount as the covariance results in a constant value for \(G \).

Proof. (Lemma 3.1.2) Introducing the simplifying notations \(d(z) := \|z - X\| \), \(p(z, \sigma) := \exp(-d(z)^2/\sigma^2) \), and \(\mathbb{E}_X[.] := \mathbb{E}_{z \sim \mathcal{N}_X}[.] \), we write:

\[
G_X(\sigma^2) = \frac{\mathbb{E}_X \left[p(z, \sigma) \frac{d^2(z)}{\sigma^2} \right]}{\mathbb{E}_X \left[p(z, \sigma) \right]} + \log \mathbb{E}_X \left[p(z, \sigma) \right].
\]

Letting \(f(z; \mu, \Sigma) \) denote the pdf of the multivariate normal distribution with mean \(\mu \) and covariance \(\Sigma \), we can thus compute the expectations explicitly:

\[
\mathbb{E}_X \left[p(z, \sigma) \frac{d^2(z)}{\sigma^2} \right] = \frac{1}{\sigma^2} \int f(z; X, \Sigma)p(z, \sigma)d^2(z) \, dz \\
= \frac{1}{\sigma^{d+2} \det \Sigma^{1/2}} \int \exp \left(-\frac{1}{2} ((z - X)^T(\Sigma^{-1} + 2\sigma^{-2}I)(z - X)) \right) d^2(z) \, dz.
\]

The factors hidden by the proportionality symbol throughout are constants that depend only on the dimension and not on \(X, \sigma \), or \(\Sigma \).
We show now that we can, without loss of generality, assume that the covariance matrix \(\Sigma \) is diagonal. Intuitively, this is because the calculation of \(\sigma \) relies only on distances, which are invariant under orthogonal transformations, and we can transform to a coordinate system where \(\Sigma \) is diagonal. More formally, assume we have a non-diagonal covariance matrix. Then we can take its singular value decomposition \(\Sigma = U \Lambda U^T \) where \(\Lambda \) is diagonal and \(U \) orthonormal. Then, replacing the integration variable in (9) with \(\theta = Uz \) and \(\Phi = UX \), we see:

\[
\mathbb{E}_X \left[p(z, \sigma) \frac{d^2(z)}{\sigma^2} \right] \propto \frac{1}{\sigma^2 \det \Lambda^{1/2}} \int \exp \left(-\frac{1}{2} \left((\theta - \Phi)^T (\Lambda^{-1} + 2\sigma^{-2}I) (\theta - \Phi) \right) \right) d^2(\theta) \, d\theta,
\]

which is identical to (9).

The exponential term in the integral in (9) is the (unnormalized) pdf of a normal distribution with mean \(X \) and covariance matrix \((\Sigma^{-1} + 2\sigma^{-2}I)^{-1} = \sigma^2\Sigma(\sigma^2I + 2\Sigma)^{-1} \) (by the Woodbury matrix identity). Thus, (9) is:

\[
\propto C(\sigma, \Sigma) \frac{1}{\sigma^2 \det \Sigma^{1/2}} \int f(x; X, \sigma^2\Sigma(\sigma^2I + 2\Sigma)^{-1}) \|x - X\|^2 \, dx,
\]

where we define \(C \) as the normalization factor for the normal distribution \(f \) inside the integral. The integral is thus the expectation of the sum of the variances in each dimension of the distribution, i.e. the total variance, given by the trace of the variance matrix:

\[
\mathbb{E}_X \left[p(x, \sigma) \frac{d^2(x)}{\sigma^2} \right] \propto \frac{1}{\det \Sigma^{1/2}} \int \exp \left(-\frac{1}{2} \left((x - X)^T (\Sigma^{-1} + 2\sigma^{-2}I) (x - X) \right) \right) \, dx,
\]

and thus the integral is just the normalization of \(f(x; X, \sigma^2\Sigma(\sigma^2I + 2\Sigma)^{-1}) \), so:

\[
\mathbb{E}_X \left[p(x, \sigma) \right] \propto \frac{1}{\det \Sigma^{1/2}} \int \exp \left(-\frac{1}{2} \left(x^T \Sigma^{-1} x \right) \right) \, dx.
\]

We thus have the form of \(G_X(\sigma^2) \) by plugging (11) and (12) into (8):

\[
G_X(\sigma^2) = C_1 \operatorname{Tr}\left[\Sigma(\sigma^2I + 2\Sigma)^{-1} \right] + C_2 \log \left(\frac{\det[\sigma^{1/2}(\sigma^2I + 2\Sigma)^{-1/2}]}{\det \Sigma^{1/2}} \right),
\]

where \(C_1 \) and \(C_2 \) are constants that do not depend on \(X, \sigma \), or \(\Sigma \) (and will be used throughout, but can take on different values). Now, we turn to \(Y \), whose neighbors are drawn from a normal distribution with mean \(Y \) and covariance \(\alpha \Sigma \). Repeating the analyses above, it is easy to see then that:

\[
G_Y(\tau^2) = C_1 \operatorname{Tr}\left[\alpha \Sigma(\tau^2I + 2\alpha \Sigma)^{-1} \right] + C_2 \log \left(\frac{\det[\tau(\alpha \Sigma)^{1/2}(\tau^2I + 2\alpha \Sigma)^{-1/2}]}{\det(\alpha \Sigma)^{1/2}} \right).
\]

Plugging in \(\tau = \alpha \sigma \), we see:

\[
G_Y(\alpha \sigma^2) = C_1 \operatorname{Tr}\left[\alpha \Sigma(\alpha \sigma^2I + 2\alpha \Sigma)^{-1} \right] + C_2 \log \left(\frac{\det[\alpha \sigma(\alpha \Sigma)^{1/2}(\alpha \sigma^2I + 2\alpha \Sigma)^{-1/2}]}{\det(\alpha \Sigma)^{1/2}} \right)
\]

\[
= C_1 \operatorname{Tr}\left[\sigma \Sigma^{\alpha^{-2}}(\sigma^2I + 2\Sigma)^{-1} \right] + C_2 \log \left(\frac{\alpha^{2/\alpha^2} \det[\sigma \Sigma^{1/2}(\sigma^2I + 2\Sigma)^{-1/2}]}{\alpha^{2/\alpha^2} \det(\Sigma)^{1/2}} \right)
\]

\[
= G_X(\sigma^2).
\]

\[\square\]
Thus, when the variance of the underlying distribution is scaled by \(\alpha \), the length-scale selection needs to also scale by \(\alpha \) to keep \(G \) constant.

Next, we now show that, for sufficiently large \(n \), the entropy \(H_X \) calculated on a sample and scaled appropriately by \(n \), does not differ much from \(G_X \).

Lemma 3.1.3. Suppose we draw \(X = \{X_1, \ldots, X_n\} \) iid from \(N_X \). Then, for any \(\alpha, \delta \in (0,1/4) \) and \(n > O \left(\frac{\log(1/\delta)}{\epsilon^2} \right) \), we have:

\[
(1 - \alpha)G_X + \log(1 - \alpha) < H_X - \log n < (1 + \alpha)G_X + \log(1 + \alpha)
\]

with probability at least \(1 - \delta \).

Proof. (Lemma 3.1.3) Using our notation from above, we have:

\[
G_X(\sigma^2) = \frac{\mathbb{E}_X[p(z, \sigma)d^2(z)]}{\sigma^2 \mathbb{E}_X[p(z, \sigma)]} + \log \mathbb{E}_X[p(z, \sigma)]
\]

\[
H_X = \frac{\sum_{j=1}^n p(X_j, \sigma)d^2(X_j)}{\sigma^2 \sum_{j=1}^n p(X_j, \sigma)} + \log \left(\sum_{j=1}^n p(X_j, \sigma) \right).
\]

We use Hoeffding’s inequality to show that:

\[
\mathbb{E}_X[p(z, \sigma)d^2(z)] \approx \frac{1}{n} \sum_{j=1}^n p(X_j, \sigma)d^2(X_j)
\]

\[
\mathbb{E}_X[p(z, \sigma)] \approx \frac{1}{n} \sum_{j=1}^n p(X_j, \sigma).
\]

Given \(X_1, \ldots, X_n \) iid random variables drawn from a distribution \(F \), bounded in \([0, s]\), Hoeffding’s inequality quantifies how far the sample mean \(\overline{X} = \frac{1}{n} \sum_i X_i \) deviates from its expectation \(\mu = \mathbb{E}_{X \sim F}[X] \):

\[
\Pr[|\overline{X} - (1 + \epsilon)\mu| < \exp \left(-\frac{\delta^2 n \mu}{2s}\right)]
\]

\[
\Pr[|\overline{X} - (1 - \epsilon)\mu| < \exp \left(-\frac{\delta^2 n \mu}{2s}\right)]
\]

Taking the weaker bound (the first one) and setting the probability to \(\delta \), we can solve for \(n \) to see that \(\overline{X} \) will be between \((1 \pm \epsilon)\mu\) when \(n > \frac{4s \log(1/\delta)}{\epsilon^2} \). Now, we note that the random variable \(p(z, \sigma) \) lies within \([0,1]\), and the random variable \(p(z, \sigma)\frac{d^2(z)}{\sigma^2} \) lies within \([0, 1/\epsilon]\), so we can set the range \(s \) to be 1. Thus, with sufficiently large \(n \), we have that:

\[
(1 - \epsilon)\mathbb{E}_X[p(z, \sigma)d^2(z)] < \frac{1}{n} \sum_{j=1}^n p(X_j, \sigma)d^2(X_j) < (1 + \epsilon)\mathbb{E}_X[p(z, \sigma)d^2(z)], \quad (15)
\]

and

\[
(1 - \epsilon)\mathbb{E}_X[p(z, \sigma)] < \frac{1}{n} \sum_{j=1}^n p(X_j, \sigma) < (1 + \epsilon)\mathbb{E}_X[p(z, \sigma)]. \quad (16)
\]

Now, the above two equations (15) and (16) provide bounds for the numerator and the denominator of the first term of \(G_X(\sigma^2) \), respectively. Thus, in the worst case, we see that:

\[
\frac{(1 - \epsilon)\mathbb{E}_X[p(z, \sigma)d^2(z)/\sigma^2]}{(1 + \epsilon)\mathbb{E}_X[p(z, \sigma)]} + \log(1 - \epsilon) + \log \mathbb{E}[p(z, \sigma)]
\]

\[
< H_X - \log n
\]

\[
< \frac{(1 + \epsilon)\mathbb{E}_X[p(z, \sigma)d^2(z)/\sigma^2]}{(1 - \epsilon)\mathbb{E}_X[p(z, \sigma)]} + \log(1 + \epsilon) + \log \mathbb{E}[p(z, \sigma)].
\]
To write these bounds in terms of G_X, we note that $1 + 2\sqrt{\epsilon} > \frac{1 + \epsilon}{1 - \epsilon}$ and $1 - 2\sqrt{\epsilon} < \frac{1 - \epsilon}{1 + \epsilon}$ for $\epsilon < 1/4$, we can combine the above and compare H_X and G_X:

$$(1 - 2\sqrt{\epsilon})G_X + \log(1 - 2\sqrt{\epsilon}) < H_X(\sigma) - \log n < (1 + 2\sqrt{\epsilon})G_X + \log(1 + 2\sqrt{\epsilon}).$$

Setting $\alpha = 2\sqrt{\epsilon}$ gives us the desired bounds. \[\square\]

With these two results, we can prove Proposition 3.1.1.

Proof. (Proposition 3.1.1) By Lemma 3.1.2, $G_Y(\alpha \sigma_X^2) = G_X(\sigma_X^2)$. By our concentration bounds in Lemma 3.1.3, we take enough samples so that $H_X(\alpha \sigma_X^2)$ is within a $(1 + \beta)$ multiplicative factor of G_X. Similarly, with as many samples, we know that $H_Y(\alpha \sigma_Y^2)$ is within a $(1 + \beta)$ multiplicative factor of G_Y. Thus in the worst case:

$$(1 - \beta)^2 H_X < H_Y < (1 + \beta)^2 H_X$$

Taking $\beta = \frac{1}{3} \phi$ (which allows us to discard the quadratic terms), we see the above can be relaxed to

$$(1 - \phi) H_X < H_Y < (1 + \phi) H_X,$$

as required. \[\square\]

For the remainder of this section we will assume that the quantities calculated can be well approximated by their expectations, as we do above by approximating H_X with G_X. For all the below propositions, Hoeffding’s inequality can be used as in Lemma 3.1.3 to achieve arbitrarily close approximations, logarithmic in the number of samples.

We extend the above analysis to the case of uniformly distributed data.

Proposition 3.1.4. Let X be such that its n-nearest neighbors are distributed uniformly in a ball B_X of radius γ, and Y another point whose neighbors are distributed uniformly in a ball B_Y of radius $\sqrt{\alpha} \gamma$. Then, $G_Y(\alpha \sigma^2) = G_X(\sigma^2)$ where G is as defined analogously to (8):

$$G_X(\sigma^2) = \frac{E_{z \sim B_X} \left[p(z, \sigma) \frac{d^2(z)}{\sigma^2} \right]}{E_{z \sim B_X} \left[p(z, \sigma) \right]} + \log E_{z \sim B_X} \left[p(z, \sigma) \right].$$

Proof. As in Proposition 3.1.1, we then explicitly compute the terms $E_X \left[p(z, \sigma) \frac{d^2(z)}{\sigma^2} \right]$ and $E_X \left[p(z, \sigma) \right]$, assuming a uniform distribution now instead of a Gaussian:

$$E_X \left[p(z, \sigma) \frac{d^2(z)}{\sigma^2} \right] \propto \frac{1}{\gamma^d \sigma^2} \int \exp \left(-\|z - X\|^2/\sigma^2 \right) d^2(z) \, dz$$

\[\text{total variance of (unnormalized) } \mathcal{N}(0,(1/2)\sigma^2 I)\]

\[\propto \frac{\sigma^d}{2d/2d\gamma^d \sigma^2} \frac{d^d}{\gamma^d} \quad (17)\]

$$E_X \left[p(z, \sigma) \right] \propto \frac{1}{\gamma^d} \int \exp \left(-\|z - X\|^2/\sigma^2 \right) \, dz$$

\[\text{normalization factor of } \mathcal{N}(0,(1/2)\sigma^2 I)\]

\[\propto \frac{\sigma^d}{2d/2d\gamma^d} \frac{d^d}{\gamma^d} \quad (18)\]

where the factors of 2 and d are absorbed into the proportionality constant. Similarly:
Repeating the above calculations for Y shows that:

\[
E_Y \left[p(y, \sigma)^2 \frac{d^2(y)}{\sigma^2} \right] \propto E_Y[p(x, \sigma)] \propto \frac{\sigma^d}{\alpha^d \gamma^d}.
\]

Choosing σ^2_Y to achieve target perplexity for X, we see that setting $\sigma^2_Y = \alpha \sigma^2_X$ makes the above terms equal to their corresponding terms in X and thus achieves the target perplexity.

3.2 Scaling of the local radius with variance and length-scale

We now turn to the definition of local radius. Recall from Equation (8) in Methods that our local radius is defined as:

\[
R_{p_X} = Z_X^{-1} \sum_j d^2(X_j)p(X_j, \sigma_X).
\]

So, assuming the samples are drawn from generating distribution F_X, when we approximate this in the large-sample limit by $T_X(\sigma^2)$, as we did for the length-scale, we have:

\[
T_X(\sigma^2) = \frac{\mathbb{E}_{z \sim F_X}[d^2(z)p(z, \sigma)]}{\mathbb{E}_{z \sim F_X}[p(z, \sigma)]}. \tag{19}
\]

For the Gaussian and uniform generating distributions discussed in Propositions 3.1.1 and 3.1.4, it is straightforward to show that the local radius scales with the variance of the underlying distribution.

Proposition 3.2.1. Let F_X and F_Y be a Gaussian or a spherical uniform distribution centered at X and Y respectively. For the Gaussian case, assume X has a covariance matrix Σ, and for the uniform distribution assume a radius γ; Y has covariance $\alpha \Sigma$ or radius $\sqrt{\alpha \gamma}$. Then, given σ^2_X, the length-scale for X, and $\sigma^2_Y = \alpha \sigma^2_X$ as in Propositions 3.1.1 and 3.1.4, $T_Y(\sigma^2_Y) = \alpha T_X(\sigma^2_X)$.

Proof. Note that for a given distribution,

\[
T_X(\sigma^2_X) = \sigma^2_X \mathcal{G}_X(\sigma^2_X) - \log \mathbb{E}_X[p(z, \sigma_X)].
\]

If F is Gaussian, then plugging the value of $\mathcal{G}_X(\sigma^2_X)$ from (13):

\[
T_X(\sigma^2_X) \propto \sigma^2_X \text{Tr}[\Sigma (2\sigma^2_X I + \Sigma)^{-1}],
\]

and if F is uniform, then from (18):

\[
T_X(\sigma^2_X) \propto \sigma^2_X \frac{\sigma^d X}{\sigma^d X \sigma^2 X} \propto \frac{\sigma^d X}{\gamma^d} \sigma^2_X.
\]

Now, plugging in $\sigma^2_Y = \alpha \sigma^2_X$ into corresponding equations for $T_Y(\sigma^2_Y)$, we see, in the Gaussian case:

\[
T_Y(\alpha \sigma^2_X) = C_1 \alpha \sigma^2_X \text{Tr}[\alpha \Sigma (\alpha \sigma^2 I + 2 \alpha \Sigma)^{-1}] = \alpha T_X(\sigma^2_X),
\]

where the proportionality constant is the same for T_X and T_Y (as it does not depend on the covariance). In the uniform case:

\[
T_Y(\alpha \sigma^2_X) = C_1 \left(\frac{\alpha \sigma_X}{\alpha \gamma} \right)^d \alpha \sigma^2_X = \alpha T_X(\sigma^2_X),
\]

as required.

For more general distributions we are unable to show the explicit linear scaling of local radius with the variance of the underlying distribution as above. However, we can still connect the local radius to the length-scale parameter σ chosen by t-SNE, which itself is known to empirically proxy the length scale at each point.
We show that the local radius R_o in the original space is an increasing function of the length-scale parameter σ. Thus, the local radius recaptures the length-scale information lost when normalizing by σ. The proposition below builds off the connection made by Vladymyrov and Carreira-Perpiñáñ (2013) [3] between the t-SNE Gaussian kernel and the partition function from thermodynamics.

Here, we assume again that given a point X, its n-nearest neighbors are given by X_1, \ldots, X_n, but unlike before, we assume no knowledge of the distribution of the X_j. Thus, we cannot use expectations of known distributions for large-sample approximations and instead consider a discrete distribution. To elucidate, define $\beta = \frac{1}{\sqrt{\sigma}}$ and rewrite $R_X(\beta) := R_{P_X}(\sigma^2)$ from above suggestively as:

$$R_X(\beta) = \sum_{j=1}^{n} \frac{\tilde{q}(X_j, \beta)}{Z_X(\beta)} d^2(X_j),$$

where $\tilde{q}(z, \beta) = \exp(-\beta d^2(X_j)) = p(z, \sigma)$, and we make clear the sum Z_X’s dependence on β. Now, we note that since $Z_X(\beta) = \sum_j \tilde{q}(X_j, \beta)$, we can treat $q(X_j, \beta) := \tilde{q}(X_j, \beta) Z_X^{-1}(\beta)$ as probabilities from a discrete distribution, i.e. since $\sum_j q(X_j, \beta) = 1$. Using the moments of this discrete distribution, we can show that the local radius is a decreasing function of β (and so an increasing function of the length-scale σ).

Proposition 3.2.2. Let $R_X(\beta) = \sum_j q(X_j, \beta) d^2(X_j)$, where $\sigma = \beta^{-1/2}$ is chosen as before, to ensure constant entropy. Then $\frac{\partial R_X}{\partial \sigma} > 0$.

Proof. Consider the expectation of d^2, taken over the distribution q:

$$E_{X_j \sim q(\beta)}[d^2] = \sum_{j=1}^{n} q(X_j) d^2(X_j) = R_X(\beta). \quad (20)$$

Thus, R_X is expectation of the variable d^2 over the discrete distribution q.

Now, we aim to understand the derivative of R_X with respect to β. First it is straightforward to verify:

$$R_X(\beta) = Z_X^{-1}(\beta) \sum_j d^2(X_j) \exp(-\beta d^2(X_j)) = -\frac{1}{Z_X} \frac{\partial Z_X}{\partial \beta}. $$

Now, take the derivative:

$$R'_X(\beta) = 1 \frac{\partial Z_X}{\partial \beta} - \frac{1}{Z_X} \frac{\partial^2 Z_X}{\partial \beta^2}$$

$$= R_X^2 - \frac{1}{Z_X} \frac{\partial^2 Z_X}{\partial \beta^2}.$$

By (20), we see that the first term is $(E_{q(\beta)}[d^2])^2$. Expanding the second term we see:

$$\frac{1}{Z_X} \frac{\partial^2 Z_X}{\partial \beta^2} = \frac{1}{Z_X} \sum_j d^4(X_j) \exp(-\beta d^2(X_j))$$

$$= E_{X_j \sim q(\beta)}[(d^2)^2],$$

so this term is the second moment of the variable d^2 over the distribution q.

Thus, we have

$$R'_X(\beta) = (E_{q(\beta)}[d^2])^2 - E_{q(\beta)}[(d^2)^2] = -\text{Var}_q(d^2) < 0.$$

where $\text{Var}_q(d^2)$ is the variance of d^2 calculated over q and is therefore positive.

Since R_X is a decreasing function of β, that means it is an increasing function of σ, since $\sigma = 1/\sqrt{\beta}$ is monotonic.
Supplementary Note 4

Density-preserving visualization largely preserves or improves upon existing notions of visualization quality

To further assess the impact of our density-preservation objective on the properties of existing visualization tools, we evaluated our methods on three previously proposed metrics of visualization quality [4]: classification score (CS), mutual information score (MIS), and pairwise distance score (PDS) (Methods). Intuitively, CS and MIS measure the effectiveness of a visualization in conveying the clustering structure of the original dataset. To this end, CS evaluates the accuracy of classifiers that assign cells to known clusters based on the visualization coordinates, whereas MIS quantifies the agreement between clustering in the original space and in the visualization. Next, PDS measures the preservation of pairwise distances, considering long-range distances that our methods as well as UMAP and t-SNE do not aim to preserve, but might still convey useful information about the global organization of the dataset.

Across all five datasets we analyzed, den-SNE and densMAP consistently obtained CS and MIS close to those of t-SNE and UMAP, respectively, albeit with a slight reduction in performance; on average, CS was 2.3% lower for den-SNE and 1.8% lower for densMAP compared to their corresponding baselines, and MIS was 1.7% lower for den-SNE and 8.9% lower for densMAP (see Supplementary Figures 4 to 8). These results are consistent with the observation that density-preserving visualizations, despite largely recapitulating the properties of the existing algorithms while additionally incorporating density information, occasionally show less clear cluster boundaries due to the sparsity of boundary regions. Overall, however, our algorithms still retain the substantial edge that nonlinear data visualization algorithms have in preserving clustering structure; e.g., a traditional approach to dimension reduction using PCA results in 35.7% (36.7%) lower performance on CS and 63.2% (64.1%) lower on MIS on average compared to t-SNE (UMAP). Moreover, the trade-off between preserving density and capturing the clustering structure can be modulated by the user by changing the weight of the density-preservation objective, and we confirmed that the den-SNE and densMAP scores converge to t-SNE and UMAP scores as that weight decreases (Supplementary Figures 4 to 8).

With respect to PDS, den-SNE and densMAP generally outperformed t-SNE and UMAP, respectively, across a wide range of original distances. For instance, when computing the PDS over the shorter half of sampled pairwise distances, den-SNE obtained 19.9% higher PDS and densMAP obtained 47.2% higher PDS than their counterparts on average, agreeing with the intuition that preserving density is closely related to preserving the original distances between points. An exception is for the PDS on the full range of distances on the UKB and NSCLC datasets, where UMAP outperformed densMAP. We hypothesize that this behavior is due to outlier points from extremely sparse regions of the dataset, which may distort the long-range distances in the visualization (e.g. between different clusters) to a greater extent than the existing tools. Note that the primary focus of nonlinear visualization tools like t-SNE and UMAP is to preserve the local structure of the dataset. Indeed, when the longest distance quantiles are added, a linear dimension reduction by PCA tends to obtain higher PDS than all of the nonlinear methods, despite the overall poor visual clarity of embeddings produced by PCA for complex transcriptomic landscapes (see Supplementary Figure 9). These results demonstrate that our methods achieve density preservation while maintaining competitive performance according to existing notions of visualization quality.

References

[1] van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. Journal of Machine Learning Research 9, 2579–2605 (2008). URL http://www.jmlr.org/papers/v9/vandermaaten08a.html.

[2] McInnes, L. & Healy, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv (2018).

[3] Vladymyrov, M. & Carreira-Perpinan, M. A. Entropic affinities: Properties and efficient numerical computation. In 30th International Conference on Machine Learning (ICML) 2013, PART 2, 1514–1522 (International Machine Learning Society).
[4] Becht, E. *et al.* Dimensionality reduction for visualizing single-cell data using UMAP. *Nature biotechnology* **37**, 38 (2019).