The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities

Tanja Stratmann1,2,3, Dick van Oevelen1, Pedro Martínez Arbizu4, Chih-Lin Wei5, Jian-Xiang Liao6, Mathieu Cusson6, Ricardo A. Scrosati7, Philippe Archambault8, Paul V. R. Snelgrove9, Patricia A. Ramey-Balci10, Brenda J. Burd11, Ellen Kenchington12, Kent Gilkinson13, Rénaud Belley14 & Karline Soetaert1

Benthic fauna refers to all fauna that live in or on the seafloor, which researchers typically divide into size classes meio-benthos (32/64 µm–0.5/1 mm), macro-benthos (250 µm–1 cm), and megabenthos (>1 cm). Benthic fauna play important roles in bioturbation activity, mineralization of organic matter, and in marine food webs. Evaluating their role in these ecosystem functions requires knowledge of their global distribution and biomass. We therefore established the BenBioDen database, the largest open-access database for marine benthic biomass and density data compiled so far. In total, it includes 11,792 georeferenced benthic biomass and 51,559 benthic density records from 384 and 600 studies, respectively. We selected all references following the procedure for systematic reviews and meta-analyses, and report biomass records as grams of wet mass, dry mass, or ash-free dry mass, or carbon per m² and as abundance records as individuals per m². This database provides a point of reference for future studies on the distribution and biomass of benthic fauna.

Background & Summary

Benthic fauna, the fauna living in (infauna) or on the seafloor (epifauna), includes size classes known as metazoan meio-benthos, metazoan macro-benthos, and megabenthos. Metazoan meio-benthos passes through a 500 µm or 1 mm mesh and is retained on a sieve with a mesh size of 32 µm (deep-sea meio-benthos) or 63 µm (shallower water depth). Frequently, however, no upper sieve is used. Meiobenthos can actively rework sediment particles and build microscale burrows in the sediment. Additionally, it represents a food source for juvenile and small adult fish. Meiobenthos also contributes to organic matter mineralization and nutrient regeneration by stimulating the microbial community. Metazoan macro-benthos passes through a 1 cm mesh and is retained on sieves with a mesh size of 250 or 300 or 500 µm (depending on the study). Macrobenthos is an important bioturbator that reworks the sediment (bioturbation sensu lato), and in doing so alters the texture of the sediment and reduces...
slope failure. It can be ecosystem engineers, i.e., organisms that alter the physical environment to change directly or indirectly the availability of resources to other organisms, and modify hydrodynamics. Megabenthos or fauna larger than 1 cm includes organisms such as scleractinian corals or sponges that form biological structures and
thus provide new habitats for associated fauna. Other examples of megabenthos assemblages are oyster reefs and mussel beds that create biogeochemical hotspots for the burial of organic matter and the recycling of nutrients. Additionally, mussels, cockles, oysters, but also sea cucumbers, are part of the human diet.

Despite their ecological importance, benthic ecosystems face increasing pressures from fishing, pollution and litter disposal, gas and oil exploration, extraction of minerals, development of coastlines, shipping, tourism, invasive species, and wind farms. Sea-level rise can force intertidal habitats, such as salt marshes and tidal flats, to migrate landwards where they may be squeezed against artificial coastal structures. This “coastal squeeze” leads to the loss of intertidal habitats and macrobenthic biomass. Furthermore, ocean acidification will strongly impact tropical and cold-water coral reefs and calcareous fauna such as bivalves, gastropods, bryozoans, echinoderms, and foraminifera. A combination of changes in pH, temperature, and oxygenation will even affect the export flux of particulate organic carbon (POC) to the seafloor and subsequently result in decreased benthic biomass.

Evaluation of the severity of these threats and climate change for the benthic ecosystem on a global scale requires quantifying the role of benthos and its biomass and density in particular. Here, we introduce the open access “BenBioDen database” that, in comparison to previous databases by, e.g., Rex et al. and Wei et al., makes the benthic biomass and abundance records freely available and describes the data selection procedure transparently. Furthermore, this database includes records from the whole globe and not only from specific

Size class	References for biomass conversion to WM, DM, AFDM, and C.
Meiobenthos	38–42, 38–40, 38–58, 38, 39, 59, 1, 38–42, 57, 79–79
Macrobenthos	41, 80, 38, 39, 53, 62, 81–88, 82, 89–93, 82, 83, 80, 81, 91–96
Megabenthos	41, 80, 193, 189, 104, 107–109

Table 1. References of biomass conversion factors to calculate metazoan meiobenthic, macrobenthic, and megabenthic biomasses as wet mass (WM), dry mass (DM), ash-free dry mass (AFDM), and C content (C).
geographic regions, like the MarLIN – The Marine Life Information Network database (https://www.marlin.ac.uk/) or the OSPAR Data & Information Management System (ODIMS) database (https://odims.ospar.org/).

The "BenBioDen database" reports 1,445 benthic biomass and 2,085 benthic density studies and datasets identified following standardized procedures for systematic reviews and meta-analyses. As a result, we extracted 11,792 georeferenced records of benthic biomass (1,240 metazoan meiobenthos records, 9,292 macrobenthos

Fig. 3 Benthic biomass (g m$^{-2}$) of metazoan meiobenthos (upper panel), macrobenthos (middle panel), and invertebrate megabenthos (lower panel) along a latitudinal gradient. Each dot corresponds to a single biomass record and the dashed line indicates the equator. Notice the logarithmic scale on the x-axis. Abbreviations: AFDM = ash-free dry mass, DM = dry mass, C = carbon, WM = wet mass.
records, and 1,260 invertebrate megabenthos records) and 51,559 georeferenced records of benthic densities (4,129 metazoan meiobenthos records, 46,389 macrobenthos records, and 1,041 invertebrate megabenthos records) from 384 and 600 selected studies, respectively. We report benthic biomass as g wet mass (WM) m$^{-2}$, as g dry mass (DM) m$^{-2}$, as g ash-free dry mass (AFDM) m$^{-2}$ or as g carbon (C) m$^{-2}$. All biomass and density data records include further information about the mesh size used to separate meiobenthos from macrobenthos and megabenthos, and macrobenthos from megabenthos, and the sampling gear. In this way, researchers can decide whether they wish to exclude specific studies that do not match organism size criteria or sampling gear criteria. The database provides an important point of reference for future studies on the distribution and biomass of benthos and may also stimulate future sampling campaigns by indicating undersampled locations and water depth.

Methods

In April and May 2019, we compiled the “BenBio” part of the “BenBioDen database” following the “Preferred Reporting Items for Systematic reviews and Meta-Analyses” (PRISMA) Statement for systematic reviews and meta-analyses. In the first PRISMA step, the “Identification” step, we identified 1,373 articles in the Web of Science using the key words “marine meiofauna biomass”, “marine macrofauna biomass”, “marine megafauna biomass”, “marine meiobenthos biomass”, “marine macrobenthos biomass”, “marine megabenthos biomass”, “nematode biomass”, and “benthic ‘standing stock’”. We located an additional 201 publications based on expert knowledge. A search of the PANGAEA Data Publisher (https://www.pangaea.de/) identified 1,488 datasets representing 148 publications using the key words “meiofauna biomass”, “macrofauna biomass” and “megafauna biomass”. Further 30 datasets were found in the EOL data archive (http://data.eol.ucar.edu/), through citations in review papers, and based on expert knowledge. After removing duplicates, we screened the titles and abstracts of 1,445 studies (Online-only Table 1) in PRISMA step 2 (“Screening”; Fig. 1a). This step excluded 951 studies because they did not report biomass values. In the Eligibility step (step 3; Fig. 1a), we assessed full texts of 494 studies for eligibility and excluded 110 studies because they did not report biomass, the publications or data were not accessible, or they did not report benthic biomass in appropriate units (g WW m$^{-2}$, g DW m$^{-2}$, g AFDW m$^{-2}$, g or mol C m$^{-2}$). Further reasons for excluding full texts included combining benthic biomass for several size classes, reporting benthic biomass for particular taxa rather than the whole size class, presenting biomass for faunal assemblages and/or a group of sampling stations rather than for individual stations, not presenting primary research or lacking geographical details about sampling stations. We also excluded studies that estimated benthic biomass using modelling approaches, that conducted manipulative experiments, or did not report benthic biomass as single values, means or median values, but instead as ranges. The final “BenBio” part included 384 studies from which we extracted 11,792 georeferenced benthic biomass entries (Online-only Table 1; Fig. 1a).

The Benthos Density, i.e. “BenDen”, part of the “BenBioDen” database was established in July and August 2019 following the PRISMA Statement for systematic reviews and meta-analyses. In the Identification step, we found 2,515 articles in the Web of Science using the key words “meiofauna abundance”, “meiobenthos abundance”, “macrofauna abundance”, “macrobenthos abundance”, “megafauna abundance”, “megabenthos abundance”, “meiobenthos Arctic Ocean”, “meiobenthos Black Sea”, “meiobenthos Gulf of Mexico”, “meiobenthos Indian Ocean”, “meiobenthos Mediterranean Sea”, “meiobenthos Pacific Ocean”, “meiobenthos Southern Ocean”, “meiobenthos Red Sea”, “megafauna Arctic Ocean”, “megafauna Atlantic Ocean”, “megafauna Black Sea”, “megafauna Gulf of Mexico”, “megafauna Indian Ocean”, “megafauna Mediterranean Sea”, “megafauna Pacific Ocean”, “megafauna Southern Ocean”, “megafauna Arctic Ocean”, “megafauna Atlantic Ocean”, “megafauna Black Sea”, “megafauna Gulf of Mexico”, “megafauna Indian Ocean”, “megafauna Mediterranean Sea”. Expert knowledge identified a further 232 publications. Consulting PANGAEA Data Publisher (https://www.pangaea.de/) identified 1,549 datasets from 172 publications using the key words

![Sampling effort of meiobenthos, macrobenthos, and megabenthos as % samples taken in relation to % surface area of the different oceans.](image-url)
“meiofauna abundance”, “macrofauna abundance” and “megafauna abundance”. Expert knowledge or unpublished datasets added a further 21 datasets. After removal of duplicates, the “Screening” step filtered 2,086 titles and abstracts (Online-only Table 1; Fig. 1b) and excluded 1,133 studies because they did not report benthic densities. The third PRISMA step (“Eligibility”; Fig. 1b) assessed 953 studies and excluded 353 studies because they did not report metazoan meio-benthic, macrobenthic, or invertebrate megabenthic densities or they combined multiple size classes or sampling stations. We excluded other studies in the database that reported experimental studies, were inaccessible, or reported densities in a unit other than ind. m$^{-2}$ or a unit that could be converted to
ind. m$^{-2}$, or reported densities for specific taxa instead of the entire size class. Studies were also excluded when they reported meta-studies or reviews rather than primary research, presented results of models, lacked sufficient geographical detail about sampling locations, or reported fauna associated with whale falls. The final “BenDen” part consisted of 600 studies from which we extracted 51,559 georeferenced benthic density records (Online-only Table 1; Fig. 1b).

For 12% (BioBen part) and 4% (BioDen part) of all data records, no exact sampling location in geographical coordinates (latitude, longitude) was indicated. For these cases, we approximated the coordinates of the sampling locations using Google Maps based on information about sampling area or based on maps presented in the original publications. We labelled these data records as ‘approximated location’.

For studies that presented biomasses in several units, such as WM and DM, we report the data only once (preferred units: WM > DM > AFDM > C). The authors of this study intended to report all data records in the ‘raw’ units in which benthic fauna was measured initially. Whenever unknown conversion factors precluded calculating biomass back to ‘raw’ units, we noted this issue in the database using the label ‘converted data’ and listed references for the individual biomass conversion factors in the database. Furthermore, we prepared Table 1 that reports all literature used by the authors of the original studies to convert their biomasses size-class dependent to WM, DM, AFDM, and C content.

The authors of the various studies compiled in this database sometimes used different lower and upper limits (in mm) for mesh sizes of nets and/or sieves to define the size class. Whenever an original study reported a lower and/or upper limit mesh size, we included this information in the database as ‘sieve mesh size (mm) lower limit’ and ‘sieve mesh size (mm) upper limit’. Studies lacking this information were scored as NA.

For those studies that reported data as mean or median ± error terms, we incorporated only mean or median values into the database. In all cases that did not report benthic biomasses and/or densities in the text or in tables, but presented them in figures, we extracted biomass and/or density values from these figures using ImageJ3.

Data Records

The BenBioDen database is openly accessible in the Dryad Digital Repository27 and includes two txt.files, i.e. the List of studies for BenBio database file and the List of studies for BenDen database file, and two csv.files, i.e., the BenBio database file and the BioDen database file. The List of studies files list all 3,531 studies alphabetically (benthic biomasses: 1,445 studies; benthic densities: 2,086 studies) which we identified in the “Identification”
step of the systematic review after removing all duplicates. Each data entry in the BioBenDen database contains information about the region where the biomasses and/or densities were sampled and the corresponding ocean, the geographical location (latitude, longitude), whether geographic location was exactly known or approximated, water depth (in m), and a depth range following Dunne et al.32. Dunne and co-authors divided the ocean in near-shore areas that stretch to 50 m water depth, continental shelves from > 50 to 200 m water depth, continental slopes from > 200 to 2,000 m water depth, and continental rises/abyssal plains > 2,000 m water depth. The database indicates whether we determined the biomasses as WM, DM, AFDM, or C content; densities are reported as ind. m$^{-2}$.

The database also reports the specific size class (metazoan meiobenthos, macrobenthos, invertebrate megabenthos), the mesh size of the sieves used by the authors of the studies to separate the different size classes and the sampling gear.

Technical Validation

Geographical and water depth bias. In the database, 60% of all meiobenthic biomass records were sampled in the Atlantic Ocean (including the Gulf of Mexico and the Mediterranean Sea), 22% in the Pacific Ocean, and 12% in the Arctic Ocean (Fig. 2). Most macrobenthic samples were collected in the Atlantic Ocean (including the Gulf of Mexico and the Mediterranean Sea; 56%), with additional sampling in the Arctic Ocean (26%), and the Pacific Ocean (15%) (Fig. 2). In contrast, most megafaunal biomass data compiled in the BioBen database originated from the Arctic Ocean (50%) and the Atlantic Ocean (21%) (Fig. 2). All three benthic size classes were predominantly sampled in the northern hemisphere north of 1°N (meiobenthos: 82%, macrobenthos: 95%, megabenthos: 90%), and macrobenthos in particular was seriously undersampled south of 1°S (5% of all samples) (Figs. 3, 4). Almost no biomass samples were taken in the Indian Ocean (meiobenthos: 2%, macrobenthos: 1%, megabenthos: 0%) and the Southern Ocean (meiobenthos: 3%, macrobenthos: 1%, megabenthos: 1%) (Fig. 4).
Additionally, the Pacific Ocean that represents 56% to the global ocean’s area\(^{33}\) is comparatively undersampled for macrobenthos (15% of all macrobenthos) (Fig. 4).

Meiobenthos biomasses were quantified mostly on the continental slope (35%) and on the continental rise and abyssal plains (31%) that collectively encompass 95% of the ocean seafloor\(^{32}\) (Fig. 5). In contrast, near-shore areas (29%) and continental shelves (21%; Fig. 5) dominated macrobenthic biomass samples, although these areas collectively encompass < 5% of the global seafloor\(^{32}\). In 35% of the cases no sampling depth was given in the original publications. Also 47% of all megabenthos biomass records came from areas < 50 m water depth, whereas only 10% of all megabenthos biomass samples were taken in the largest part of the seafloor, the continental rise and abyssal plains (Fig. 5). Hence, not surprisingly the benthic biomass database is biased towards shallow waters (< 200 m) in the northern hemisphere, particularly, in the North Atlantic.

Meiobenthic density samples were mainly taken in the Atlantic Ocean (including the Gulf of Mexico and the Mediterranean Sea; 59%) and in the Pacific Ocean (22%) (Figs. 6, 7), whereas macrobenthic density was dominantly sampled in the Atlantic Ocean (including the Gulf of Mexico and the Mediterranean Sea; 87%) (Figs. 6, 7). Megabenthic densities originated from the Arctic Ocean (53%), the Atlantic Ocean (including the Gulf of Mexico and the Mediterranean Sea; 26%), and the Pacific Ocean (14%) (Figs. 6, 7). More than 83% of all samples were taken in the northern hemisphere (> 1°N), in case of macrobenthos, even 98% of all density samples were taken > 1°N (Fig. 8). Meiobenthic and megabenthic densities were sampled to 65% and 56% at the continental slope and at the continental rise and abyssal plain (Fig. 7), whereas information about sampling depth was missing for 82% of the macrobenthos samples that originated predominantly from the North Atlantic. When these records are not taken into account, most of the macrobenthic density samples were collected in near-shore areas (38%) and at the continental shelf (33%). Hence, benthic density samples are biased towards the northern hemisphere and in particular towards the North Atlantic and the Arctic Ocean (Fig. 4).

Differences in size ranges of meiobenthos, macrobenthos, and megabenthos. Metazoan meiobenthos usually includes organisms that pass through 500 μm to 1 mm mesh size and are retained on sieves with 44 μm mesh size\(^{1}\), though deep-sea biologists often use a lower mesh size limit of 32 μm for metazoan meiobenthos\(^{34}\). In our database, however, the lower mesh size limit for metazoan meiobenthos ranges from 20 μm to 74 μm, and the upper mesh size limit spans from 100 μm to 2 mm because of the different mesh sizes chosen by the authors of the original studies. Hence, some metazoan meiobenthos records include organisms that might be allocated to microbenthos, and other records that group them with macrobenthos.

Macrobenthos refers to organisms retained on a mesh of 0.5 cm, though different studies used mesh sizes between 0.5 mm and 2 mm\(^{35}\). In our database, however, authors of different studies sieved macrobenthos samples with meshes ranging from 0.25 mm to 20 mm in size. This implies, that depending on the size range used for macrobenthos, some macrobenthic records might include also metazoan meiobenthos.

Invertebrate megabenthos are larger than macrobenthos and defined as invertebrates visible in bottom photographs (> 1 cm or > 3 cm\(^{36}\)). Most megabenthic biomass and density records in the BioBenDen database lack specific information about minimum size (82% of all megabenthic biomass records and 79% of all megabenthic density records), but the studies that report a minimum size used a minimum animal length between 0.5 cm and 2 cm. Consequently, part of the megabenthic biomass and density data unavoidably might include some macrobenthos.

Therefore, researchers should consider the lower and upper sieve mesh sizes when using data from this database to ensure that the data coincide with their size requirements.

Fig. 8 Benthic density (ind. m\(^{-2}\)) of meiobenthos (red circle), macrobenthos (yellow circle), and megabenthos (grey circle) along a latitudinal gradient. Note the logarithmic scale on the x-axis.
References

1. Giere, O. Meiobenthology - The Microscopic Motile Fauna of Aquatic Sediment. Springer-Verlag (2009).
2. Schneider, A. C., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis.
3. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Med.* 6, e100097 (2009).
4. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to Imagej: 25 years of image analysis. *Nat. Methods* 9, 671–675 (2012).
5. Dunne, J. P., Sarmiento, J. L. & Grannes, A. Synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. *Global Biogeochem. Cycles* 21, GB4006 (2007).
6. Eicken, B. W. & Sharmar, K. Volumes of the World's Oceans from ETOP01. NOAA National Geophysical Data Center (2010).
7. Solwew, T. Metazoon meiofauna along continental margins: a review. *Prog. Oceanogr.* 46, 59–84 (2000).
8. Eleftheriou, A. & Moore, D. C. Macrofauna Techniques. in Methods for the Study of Marine Benthos (eds. Eleftheriou, A. & McIntrye, A.) vol. 16 160–228 (Blackwell Science Ltd, 1984).
9. Rex, M. A. & Etter, R. J. Deep-sea biodiversity. (Harvard University Press, 2010).
10. Andrus, J. I. Die Rauminhalts- und Gewichtsbestimmung der Fadenwürmer (Nematoden). *Acta Zool.* 2, 1–15 (1956).
11. Feller, R. J. & Warbrick, R. M. Energetics. In Introduction to the Study of Meiofauna 181–196 (Smithsonian Institution Press, 1988).
12. Jensen, P. Measuring carbon content in nematodes. *Helgoländer Meeresuntersuchungen* 38, 83–86 (1984).
13. Wieser, W. Benthic studies in Buzzard Bay. II. The meiofauna. *Linn. Oceanogr.* 5, 121–137 (1960).
14. Wieser, W. Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marin Nematoden. *Ark. für Zool.* 4, 439–484 (1953).
15. Widinbo, B. Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna. *Mar. Biol.* 84, 101–108 (1984).
16. Zeng, Q., Huang, D., Lin, R. & Wang, J. Deep-sea metazoan meiofauna from a polymeletic nodule area in the Central Ocean Basin. *Mar. Biodivers.* 48, 395–405 (2018).
17. Göve, S. J., Probert, P. K., Berkenbusch, K. & Nodder, S. D. Distribution of bathyal meiofauna in the region of the Subtropical Front, Chatham Rise, south-west Pacific. *J. Exp. Mar. Bio. Ecol.* 330, 342–355 (2006).
46. Zhang, Z., Zhou, H., Guo, Y. & Mu, E. Comparative study on the nematode community structure in the submarine delta of Huanghe river estuary and its adjacent waters. *Oceanol. Limnol. Sin.* 32, 436–444 (2001).

47. Nodder, S. D., Pilditch, C. A., Probert, P. K. & Hall, J. A. Variability in benthic biomass and activity beneath the Subtropical Front, Chatham Rise, SW Pacific Ocean. *Deep-Sea Res. I* 50, 959–985 (2003).

48. Pfannkuche, O. The deep-sea meiofauna of the Porcupine Seabight and abyssal plain (NE Atlantic): Population structure, distribution, standing stocks. *Oceanol. Acta* 8, 343–353 (1985).

49. Soetaert, K. An ecological-systematical study of the deep-sea meiofauna and nematode communities in the western Mediterranean Sea. PhD Thesis. (Ghent University, 1989).

50. Vanhove, S., Bégryn, M., Van Gansbeke, D., Bullough, L. & Vinçon, M. A seasonally varying biotope at Signy Island, Antarctic: Implications for meiofaunal structure. *Mar. Ecol. Prog. Ser.* 202, 13–25 (2000).

51. Vanhove, S. et al. Deep-sea meiofauna communities in Antarctica: Structural analysis and relation with the environment. *Mar. Ecol. Prog. Ser.* 127, 65–76 (1995).

52. Xiaoshou, L. et al. Abundance and biomass of meiofaunoth in the spawning ground of anchovy (Engraulis japonicus) in the southern Huanghai Sea. *Acta Oceanol. Sin.* 24, 94–104 (2005).

53. Heip, C. H. R., Vaninc, M. & Vranken, G. The ecology of marine nematodes. *Oceanogr. Mar. Biol. Annu. Rev.* 23, 399–489 (1985).

54. Gray, J. S. The fauna of the polluted river Tees estuary. *Estuar. Coast. Mar. Sci.* 4, 653–676 (1976).

55. Grelet, Y. Peuplements meiobenthiques et structure de la Nématofaune du Golfe d‘Aqaba (Jordanie-Mer Rouge). PhD Thesis. (Université Aix-Marseille II, 1984).

56. Witte, J. & Zijlstra, J. The meiofauna of a tidal flat in the western part of the Wadden Sea and its role in the benthic ecosystem. *Mar. Ecol. Prog. Ser.* 14, 129–138 (1984).

57. Faubel, A. Determination of individual meiofauna dry weight values in relation to definite size classes. *Cah. Biol. Mar.* 23, 339–345 (1982).

58. Lin, R. et al. Abundance and distribution of meiofauna in the Chukchi Sea. *Acta Oceanol. Sin.* 33, 90–94 (2014).

59. Shirayama, Y. Size structure of deep-sea meio- and macrobenthos in the western Pacific. *Int. Rev. der gesamten Hydrobiol. und Hydrogr.* 68, 799–810 (1983).

60. Warwick, R. M. & Gee, J. Community structure of estuarine meiofauna. *Mar. Ecol. Prog. Ser.* 18, 97–111 (1984).

61. Higgins, R. P. & Thiel, H. Introduction to the Study of Meiofauna. (Smithsonian Institution Press, 1988).

62. Rutgers van der Loeff, M. M. & Lavaleye, M. S. S. Sediments, fauna and the dispersal of radiocarbons at the N.E. Atlantic dustpate for low-level radioactive wast. Report of the Dutch DORA program. (1984).

63. Vanaverbeke, J., Soetaert, K., Heip, C. H. R. & Vanreusel, A. The metazoan meiofaunon in the continental slope of the Goban Spur (NE Atlantic). *J. Sea Res.* 38, 93–107 (1997).

64. Dinet, A. Répartition quantitativo et écologie du méiobenthos de la plaine abyssale Atlantique. PhD Thesis. (University Aix-Marseille II, 1980).

65. Baguley, J. G., Hyde, L. J. & Montagna, P. A. A semi-automated digital microphotographic approach to measure meiofaunal biomass. *Linnol. Oceanogr. Methods* 2, 181–190 (2004).

66. Baguley, J. C. Meiofauna community structure and function in the northern Gulf of Mexico deep sea. PhD Thesis. (University of Texas at Austin, 2004).

67. McIntyre, A. D. & Warwick, R. M. Meiofauna techniques. in Methods for the Study of Marine Benthos (Blackwell, 1984).

68. Warwick, R. M. & Price, R. Ecological and metabolic studies on free-living nematodes from an estuarine mud-flat. *Estuar. Coast. Mar. Sci.* 9, 257–271 (1979).

69. Gradinger, R., Friedrich, C. & Spindler, M. Abundance, biomass and composition of the sea ice biota of the Greenland Sea pack ice. *Deep-Sea Res. II* 46, 1457–1472 (1999).

70. Riemann, F., Ernst, W. & Ernst, R. Acetate uptake from ambient water by the free-living marine nematode *Adenochalaisia thalassophylax*. *Mar. Biol. 104*, 453–457 (1990).

71. Rudnick, D. T. Seasonality of community structure and carbon flow in Narragansett Bay sediments. PhD Thesis. (University of Rhode Island, 1984).

72. Olaifsson, E. & Elmgren, R. Seasonal dynamics of sublittoral meioinfbenthos in relation to phytoplankton sedimentation in the Baltic Sea. *Estuar. Coast. Shelf Sci.* 45, 149–164 (1997).

73. Newton, A. C. & Rowe, G. T. The abundance of benthic calcareous foraminifera and other meiofauna at a time series station in the Northeast Water Polynya, Greenland. *J. Geophys. Res.* 100, 4423–4438 (1995).

74. Newton, A. C. The distribution and ecology of benthic Foraminifera and associated meiofauna in the northeast Greenland polynya, Greenland. PhD Thesis (Texas A & M University, 1994).

75. Hughes, D. J. & Gage, J. D. Benthic metazoan biomass, community structure and bioturbation at three contrasting deep-water sites on the northwest European continental margin. *Prog. Oceanogr.* 63, 29–55 (2004).

76. Danovaro, R., Tselepides, A., Otegui, A., Della Croce, N. & Bianche, V. B. Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): Relationships with seasonal changes in food supply. *Prog. Oceanogr.* 46, 367–400 (2000).

77. Danovaro, R. & Fraschetti, S. Meiofaunal vertical zonation on hard-bottoms: Comparison with soft-bottom meiofauna. *Mar. Ecol. Prog. Ser.* 230, 159–166 (2002).

78. Danovaro, R. Methods for the Study of Deep-Sea Sediments, their Functioning and Biodiversity. (CRC Press, 2010).

79. Zeppilli, D., Bongiorni, L., Cattaneo, A., Danovaro, R. & Serrão Santos, R. Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments. *Deep-Sea Res. II* 98, 87–100 (2013).

80. Snyder, L. I., Burnett, B. R. & Hessler, R. R. The composition and distribution of meiofauna and nanobiota in a central North Pacific deep-sea area. *Deep-Sea Res. A* 31, 1225–1249 (1984).

81. Rowe, G. T. Biomass and production of the deep-sea macrobenthos. in Deep-Sea Biology (ed. G. T.) (John Wiley & Sons, Inc., 1983).

82. Tselepides, A. & Eleftheriou, A. South Aegean (Eastern Mediterranean) continental slope benthos: Macrofaunal - Environmental relationships, in Deep-Sea Food Chains and the Global Carbon Cycle 139–156. https://doi.org/10.1007/978-94-011-2452-2_9 (Springer Netherlands). (1992).

83. Brey, T. Population dynamics in benthic invertebrates. A virtual handbook. (2001).

84. Eleftheriou, A. & Basford, D. J. The macrobiotic in fauna of the offshore northern North Sea. *J. Mar. Biol. Assoc. UK* 69, 123–143 (1989).

85. Fradette, P. & Bourget, E. Ecology of benthic ephithaus of the Esatuya and Gulf of St. Lawrence: Factors influencing their distribution and abundance on buoys. *Can. J. Fish. Aquat. Sci.* 37, 979–999 (1980).

86. Bourget, E. & Messier, D. Macrobiotic density, biomass, and fauna of intertidal and subtidal sand in a Magdalen Islands lagoon, Gulf of St. Lawrence. *Can. J. Zool.* 61, 2509–2518 (1983).

87. Gascón, S. Estructura i dinàmica del sistema bentònic en llacunes costaneres del saiguamolls de l’Empordà. PhD Thesis. (University of Girona, 2003).

88. McIntyre, A. D. & Eleftheriou, A. The bottom fauna of a flatfish nursery ground. *J. Mar. Biol. Assoc. UK* 48, 113–142 (1968).

89. Brey, T., Müller-Wiegmann, C., Zittert, Z. M. C. & Hagen, W. Body composition in aquatic organisms - A global data bank of relationships between mass, elemental composition and energy content. *J. Sea Res.* 64, 334–340 (2010).

90. Ellis, D. V. Marine infaunal benthos in arctic North America. vol. 5 (1960).
91. Ricciardi, A. & Bourget, E. Weight-to-weight conversion factors for marine benthic macroinvertebrates. *Mar. Ecol. Prog. Ser.* **163**, 245–251 (1998).
92. Brey, T., Rumohr, H. & Ankar, S. Energy content macrobenthic invertebrates: General conversion factors from weight to energy. *J. Exp. Mar. Bio. Ecol.* **117**, 271–278 (1988).
93. Rumohr, H., Brey, T. & Ankar, S. A compilation of biometric conversion factors for benthic invertebrates of the Baltic Sea. *The Baltic Marine Biologists Publication* vol. 9 (1987).
94. Bluhm, B. Zur Ökologie der regulären Seeigel im nördlichen Barentsmeer. PhD Thesis. (Kiel University, 1997).
95. Gerlach, S., Hahn, A. & Schrage, M. Size spectra of benthic biomass and metabolism. *Mar. Ecol. Prog. Ser.* **26**, 161–173 (1985).
96. Lie, U. A quantitative study of benthic fauna in Puget Sound, Washington, USA, in 1963-1964. *Fisk. Skr. Ser. Havundersøkelse* **14**, 229–556 (1968).
97. Persoon, G. A simple volumeter for small invertebrates. *Helgoländer Meeresuntersuchungen* **22**, 141–143 (1971).
98. Piepenburg, D. & von Juterzenka, K. Distribution, dynamics and productivity of a colonizing (*Polydora quadrilobata*) and an established (*P. Ligni*) polydorid polychaete in lake grevelingen: An enclosed estuary in the SW Netherlands. *Netherlands. J. Sea Res.* **21**, 143–158 (1987).
99. Piepenburg, D. & Schmid, M. K. Distribution, abundance, biomass, and mineralization potential of the epibenthic megafauna of the northeast Greenland shelf. *Mar. Biol.* **125**, 321–332 (1996).
100. Salonen, K., Sarvala, J., Hakala, I. & Viljanen, M. L. The relation of energy and organic carbon in aquatic invertebrates. *Limnol. Oceanogr.* **21**, 724–730 (1976).
101. Wacasey, J. W. & Atkinson, E. G. Energy values of marine benthic invertebrates from the Canadian Arctic. *Mar. Ecol. Prog. Ser.* **39**, 243–250 (1987).
102. Frithsen, J. B., Rudnick, D. T. & Doering, P. H. The determination of fresh organic carbon weight from formaldehyde preserved macrofaunal samples. *Hydrobiologia* **133**, 203–208 (1986).
103. Galiron, J., Sibuet, M., Mahaut, M.-L. & Dinet, A. Variation in structure and biomass of the benthic communities at three contrasting sites in the tropical Northeast Atlantic. *Mar. Ecol. Prog. Ser.* **197**, 121–137 (2000).
104. Rice, A. L., Aldred, R. G., Darlington, E. & Wild, R. A. The quantitative estimation of the deep-sea megabenthos: A new approach to an old problem. *Oceanol. Acta* **5**, 63–72 (1982).
105. Curtis, M. A. Life cycles and population dynamics of marine benthic polychaetes from the Disko Bay area of West Greenland. *Ophelia* **16**, 9–58 (1977).
106. Lambeck, R. H. D. & Valentiin, P. Distribution, dynamics and productivity of a colonizing (*Polydora quadrilobata*) and an established (P. Ligni) polydorid polychaete in lake grevelingen: An enclosed estuary in the SW Netherlands. *Netherlands. J. Sea Res.* **21**, 143–158 (1987).
107. Mahaut, M. L. Modélisation à l’état stable du cycle du carbone dans le réseau trophique profond de la Terrasse de Meriadeck (Goéle de Gascogne). PhD Thesis. (Université de Paris VI, 1991).
108. Vinogradov, A. P. The elementary chemical composition of marine organisms. *J. Am. Chem. Soc.* **77**, 1712–1713 (1953).
109. Sibuet, M. & Lawrence, J. M. Organic content and biomass of abyssal holothuroids (*Echinodermata*) from the Bay of Biscay. *Mar. Biol. 65*, 143–147 (1981).

Acknowledgements

We thank Heike Link (University of Rostock) for her help during the ArcticNet sampling campaigns in Canada. This study received funding by the European Union under EMODnet Thematic Lot n° 5 – BIOLOGY EASME/EMFF/2016/1.3.1.2- Lot 5/S12.750022 – Biology and from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 678760 (ATLAS). It was also funded by the JPI Oceans – Impacts of deep-sea nodule mining project “MiningImpact 2” (NWO-ALW grant 856.18.003). DvO received additional financial support from the Dutch Research Council (NWO-VIDI grant no. 864.13.007) and TS was partly funded by the Dutch Research Council within the research programme NWO-Rubicon with project number 019.182EN.012.

Author contributions

T.S. conceived the idea of the database, performed the literature search, compiled the database, and wrote the manuscript. D.v.O. and K.S. conceived the idea of the database and KS contributed to the compilation of the database. P.M.A., C.-L.W., J.-X.L., M.C., R.A.S., P.A., P.V.R.S., P.A.R.B., B.J.B., E.K., K.G., and R.B. contributed institutional affiliations.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to T.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.

© The Author(s) 2020