Plant-Soil Interactions of an Invasive Plant Species in its Native Range Help to Explain its Invasion Success Elsewhere

Anna Aldorfová (ancaflor@centrum.cz)
Charles University, Faculty of Science

Věra Hanzelková
Charles University, Faculty of Science

Lucie Drtinová
Charles University, Faculty of Science

Hana Pánková
Institute of Botany of the Czech Academy of Sciences

Tomáš Cajthaml
Institute of Microbiology of the Czech Academy of Sciences

Zuzana Münzbergová
Charles University, Faculty of Science

Research Article

Keywords: arbuscular mycorrhizal fungi (AMF), enemy release hypothesis, mycorrhizal inoculation potential (MIP), phospholipid / neutral fatty acid analysis (PLFA / NLFA), plant invasiveness, structural equation modelling

Posted Date: August 23rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-788590/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose: To compare plant-soil feedback (PSF) of invasive Cirsium vulgare and non-invasive C. oleraceum in their native range to test a hypothesis that the invasive species is more limited by specialized pathogens in the native range and/or able to benefit more from generalist mutualists, and thus may benefit more from loss of specialized soil biota in a secondary range.

Methods: We assessed changes in soil nutrients and biota following soil conditioning by each species and compared performance of plants grown in self-conditioned and control soil, from which all, some or no biota was excluded.

Results: The invasive species depleted more nutrients than the non-invasive species and coped better with altered nutrient levels. The invasive species had higher seedling emergence which benefited from presence of non-specific microbes. The invasive species biomass responded less positively to specialized (self-conditioned) microbiota and more negatively to specialized larger-sized biota compared to the non-specialized control biota, suggesting the species may benefit more from enemy release and suffer less from loss of specialized mutualists when introduced to a secondary range. The invasive species showed greater ability to decrease its root-shoot ratio in presence of harmful biota and thus reduce their negative effects on its performance.

Conclusions: Our study highlights the utility of detailed PSF research in the native range of species for understanding the factors that regulate performance of invasive and non-invasive species in their native range, and for pinpointing the types of biota involved in their regulation and how this changes across the plants life cycle.

Introduction

Understanding the success of invasive species and why some alien plants become invasive while others fail is a fundamental goal in the field of invasion ecology. Despite a high number of hypotheses explaining the success of invasive species, such as the enemy release hypothesis (Enders et al. 2020; Keane and Crawley 2002), we are far from fully comprehending what drives successful invasion. A promising approach to understanding the mechanisms that allow for invasion is to understand the factors that regulate species performance in the native range. For example, in their native range, invasive species might be those that take advantage of resource-rich environments by rapidly uptaking and depleting available resources, but then become limited by specialized enemies once they become abundant. In their secondary range, these species might be less limited by specialized enemies leading to possibly less negative intraspecific plant-soil feedback (Aldorfova et al. 2020; Klironomos 2002; Kulmatiski et al. 2008; Suding et al. 2013).

Plant-soil feedback (PSF) is defined as abiotic and biotic changes of soil by plants that subsequently alter plant growth (Bever et al. 1997). PSF has been suggested to play a role in plant invasions. Invasive species often create more positive (or less negative) PSF compared to native species (Chiuffo et al. 2015;
Engelkes et al. 2008; Klironomos 2002; van der Putten et al. 2007) or non-invasive alien species (Aldorfova et al. 2020). Further, PSF has been shown to be more positive (or less negative) in the introduced compared to the native range of the plant species (Callaway et al. 2011; Reinhart and Callaway 2004; Reinhart et al. 2003). However, more studies in the native range are necessary to determine if plant performance of invasive plants is regulated by natural specialized enemies in their native range. Patterns by which plant species interact with the soil and soil biota in their native ranges might make some of them more prone to benefiting from pathogen release when introduced to the secondary range than others. In support of this hypothesis, Zuppinger-Dingley et al. (2011) showed on a set of 16 grassland species that species that are invasive in some region of the world show more negative PSF in their native ranges than their non-invading relatives.

There are many different taxa involved in the biotic component of PSF, including bacteria, arbuscular mycorrhizal fungi (AMF), non-mycorrhizal fungi, protozoans, nematodes and microarthropods, and these groups can all have positive, negative or net neutral effects on the plants. Bacteria and non-mycorrhizal fungi are primarily associated with negative PSF effects however, they may enhance plant performance as well, either via direct growth promotion in case of plant growth promoting rhizobacteria (Vacheron et al. 2013; van Loon 2007), or via increasing decomposition rates and nutrient availability (Weidner et al. 2015). On the contrary, AMF are usually considered to be beneficial for the plants, however, these may act as pathogens and reduce plant performance, especially in highly productive environments (Johnson et al. 1997). Soil mesofauna, comprising nematodes or various microarthropods, vary in their effects on plant performance, including negative effects of pathogens or root feeding organisms as well as positive effects of detritivores or organisms feeding on harmful microbiota (Bonkowski et al. 2009). Ideally, PSF experiments should identify the individual groups of soil biota that are involved in positive and negative interactions with plants (Dawson and Schrama 2016). In order to assess how specific soil biota affect plant performance, one would need to isolate the biota, prepare pure cultures and inoculate plants with them, which is extremely time consuming (Dawson and Schrama 2016). An easier, yet valuable approach is to take advantage of the fact that soil biota largely varies in size and inoculate the soil with whole or partial soil biota obtained by filtering soil solutions. By doing so, one can for example separate the effects of soil microbiota (fungi and bacteria) and soil mesofauna (van de Voorde et al. 2012; Wang et al. 2019a; Wang et al. 2019b).

Here, we quantified PSF-related mechanisms of invasion of *Cirsium vulgare* (Asteraceae), a species that is native to Europe, but has successfully naturalized on every continent except Antarctica, and is highly invasive in some areas (Julien and Griffiths 1998; Tenhumberg et al. 2008). We compared plant-soil interactions of *C. vulgare* (hereafter the invasive species) in its native range in Europe with plant-soil interactions of its native congener, *C. oleraceum*, that is not known to be naturalized or invasive anywhere in the world (hereafter referred to as the non-invasive species). Specifically, we used structural equation modeling to understand how the abiotic and biotic pathways in PSF influence plant performance. This requires quantifying how the species condition the soil, both in respect to changes in soil nutrient levels and composition of soil biota, how plant performance responds to soil conditioning, and which groups of soil biota (e.g., bacteria, fungi, AMF) are driving these changes in plant performance. Most studies
address PSF solely in terms of aboveground biomass of the plants as it is the easiest measure of plant performance (Kardol et al. 2013). However, it has been shown that PSF can change in intensity and even in direction throughout plant’s life (Aldorfova et al. 2020; Dudenhoffer et al. 2018; Florianova and Munzbergova 2018) and that PSF depends on, and thus probably also affects, the size of the root system and allocation to root biomass (Aldorfova and Munzbergova 2019; Bergmann et al. 2016; Cortois et al. 2016). We therefore used three measures of plant performance: seedling emergence, aboveground biomass, and root-shoot ratio.

Material And Methods

Studied species and seed collection

For this study, we selected a pair of congeneric species, *Cirsium vulgare* (the invasive species) and *Cirsium oleraceum* (the non-invasive species), Asteraceae, Carduoideae. Both species are native to Europe, with one of their ecological optima being in ruderal vegetation. Specifically in the Czech Republic, *C. oleraceum* is more frequent and abundant than *C. vulgare* [occurrence frequency in vegetation plots 4.1% vs 1%, mean percentage cover 7.8% vs. 2.3%, and maximum percentage cover 88% vs. 38% (Wild et al. 2019)]. However, globally, and especially in North America, *C. vulgare* is reported to be a noxious weed and highly invasive species (Julien and Griffiths 1998; Sieg et al. 2003; Tenhumberg et al. 2008), while *C. oleraceum* has never been reported as an invader elsewhere.

Seeds of both species were collected in the field in the Czech Republic in 2017. For each species, we collected mature seeds from at least 10 individuals. Seeds from all individuals were mixed and mother plants were not further distinguished in the experiment. All collected seeds were surface sterilized with a diluted SAVO Originál (a 4.7% sodium chlorite-based disinfectant) prior to the experiment to reduce the chance of soil contamination via seed surface fungi.

Experimental design

Following a commonly used methodology (Bever et al. 1997; Kulmatiski et al. 2008), the plants were grown in a two-phase experiment. In the first (conditioning) phase, conditioned soil was prepared. Soil biotic and abiotic characteristics were assessed after the conditioning phase to compare the effect of the two species on the soil. In the second (feedback) phase, we studied intraspecific PSF by growing the plants in 12 different types of soil, including conditioned and unplanted control soil with full, partial or no soil biota.

Conditioning phase

The aim of the conditioning phase was to prepare the soil, conditioned by the species, for the upcoming feedback phase. The conditioning phase was carried out between April 2018 and July 2018 in the experimental garden of the Institute of Botany of the Czech Academy of Sciences (49°59’38.972”N,
14°33′57.637″E), 320 m above sea level, temperate climate zone, where the mean annual temperature is 8.6 °C and the mean annual precipitation is 610 mm.

To set up the conditioning phase, we used a mixture of topsoil (purchased from JENA company) and sand (AGRO Jesenice) in 1:1 ratio (for chemical characteristics of the soil mixture see Table S1). For each species, we used 150, 1-liter pots (10×10×10 cm) in the conditioning phase. Half of the pots were sown with 10 seeds of one of the species in April 2018, the other half of the pots remained unsown and served as controls. It is important to stress that even though the control pots remained unplanted during the conditioning phase, the soil was still a live soil in which a mixture of plant species was previously grown, and it thus contained species non-specific soil biota. Each pot with conditioned soil was randomly assigned its unplanted control pot. The pairs of pots were always kept in close proximity to each other throughout the experiment so that they were exposed to exactly the same conditions. Both pots with and without plants were kept under the same conditions, regularly watered with tap water, and weeded on a weekly basis to avoid any effects of other species on the soil.

After the seeds germinated and the seedlings emerged, we randomly removed some of the seedlings to keep just one seedling per pot. The soil was conditioned for 12 weeks, similar to a range of previous studies (e.g., Chiuffo et al. 2015; Florianova and Munzbergova 2018; Meijer et al. 2011; van de Voorde et al. 2011; van Grunsven et al. 2007; van Grunsven et al. 2010). After 12 weeks, in July 2018, all plants were harvested, divided into aboveground and belowground parts (all larger roots were carefully taken out from the soil by hand), dried to a constant weight, and weighed.

After the harvest, the pots with each species as well as their paired unplanted control pots were randomly divided into ten groups of 7-8 pots and their soil was mixed. For each species we thus had 10 heaps of conditioned soil and 10 paired heaps of control soil. Heap served as a replicate and was further treated as such. From each heap, one sixth of the soil was collected for analysis of soil chemistry and soil biota, one third was kept untreated to serve as source of specific biota for soil inoculation in the feedback phase, and the rest was sterilized by gamma irradiation (sterilization dose 25 kGy, performed by Bioster a.s. in Veverská Bítýška) and used as a background soil in the feedback phase.

Feedback phase

The feedback phase was carried out between September 2018 and March 2019 in a greenhouse of the Institute of Botany of the Czech Academy of Sciences. The greenhouse was heated to 18°C and daylight was extended by two hours every day.

In the feedback phase, we grew each species in six treatments of conditioned soil and six treatments of unplanted control soil. These treatments included sterilized soil, sterilized soil inoculated with microbial filtrate of conditioned or control soil, sterilized soil inoculated with whole inoculum of conditioned or control soil, and non-sterilized whole soil (Fig. 1). Inoculum and filtrate always originated from the same heap of soil as the background soil or from their paired heap with different soil conditioning. Using these treatments, we can assess the role of individual components in the PSF. By comparing growth in control
and conditioned non-sterilized whole soil we can assess total net PSF. By comparing growth in control and conditioned sterilized soil, we can assess the effect of abiotic PSF [although there are complications with nutrient enrichment due to soil sterilization by gamma irradiation (McNamara et al. 2003; Troelstra et al. 2001), see Discussion for more details]. By comparing growth in sterilized soil with growth in soil with microbial filtrate we can quantify the effect of microbiota (bacteria and non-mycorrhizal fungi). By comparing growth in soil with microbial filtrate with growth in soil with whole inoculum the effect of other groups of soil biota can be assessed. By comparing growth in sterilized soil with growth in soil with whole inoculum total biotic PSF effects can be assessed. By comparing growth in soils with filtrates or inocula from conditioned and control soils, we can assess the effect of soil biota abundance and/or specificity, assuming conditioned soils have higher abundances of soil biota, as well as more specific soil biota compared to control soils.

To set up the feedback phase, we used 10, 1-liter pots (10×10×10 cm) per species, soil conditioning and treatment, resulting in 120 pots per species, 240 pots in total. The bottoms of the pots were covered with keramzit sterilized in autoclave up to the height of 2 cm to compensate for soil lost during the harvest of the conditioning phase, and the rest of the pots was filled with 500 ml of soil mixed depending on the treatment. For non-sterilized whole soil treatments, we used untreated soil from the conditioning phase of the experiment. For whole inoculum treatments, we mixed sterilized soil and untreated soil from the conditioning phase in a 9:1 ratio. For the treatments with microbial filtrate, we filled the pots with sterilized soil and we watered them with the microbial filtrate. The filtrate was created by mixing 50 ml of untreated soil in 500 ml of distilled water, homogenizing the mixture, and filtering it through two filter papers with pore size of 11 μm. Therefore, the microbial filtrate does not contain micro-arthropods, nematodes, or arbuscular mycorrhizal fungi, whereas it should contain soil bacteria and fungi (van de Voorde et al. 2012). For sterilized treatments, we filled the pots with sterilized soil and we watered them with microbial filtrate sterilized in autoclave.

Each pot was sown with 9 seeds of the same species as in the conditioning phase. The pots were kept in the greenhouse, regularly watered, and weeded when needed. All pots originating from one pair of heaps were kept in the same block within the greenhouse. Seedling emergence was followed. Three weeks after the first seedlings emerged in all pots, all seedlings but one were removed from each pot to avoid competition. All seedlings emerging afterwards were recorded and removed as well. Twelve weeks after germination, the plants were harvested, divided into above- and below-ground biomass and weighed. All pots of both species were harvested at the same time.

Soil characteristics

Soil characteristics were analyzed after the conditioning phase for three types of soil: soil conditioned by the invasive species, soil conditioned by the non-invasive species, and the control soil. For each of the soil conditioning types, samples from six out of the ten heaps were randomly selected for the analyses. In addition, the analyses were performed also on soil collected before the conditioning phase (Table S1).
From abiotic soil characteristics, we measured actual and exchangeable pH, total C, N, P and available P, Ca, Mg, and K. From biotic characteristics, we determined soil microbial community composition using phospholipid and neutral fatty acids analysis (PLFA and NLFA) and we assessed the infection potential of arbuscular mycorrhizal fungi (AMF) by commonly used procedures: the most probable number [MPN (Adelman and Morton 1986; Wilson and Trinick 1983)] and mean infection percentage [MIP (Giovannetti and Mosse 1980; Moorman and Reeves 1979)].

Abiotic soil characteristics

Actual and exchangeable pH was measured using deionized water and 0.1M solution of KCl as extracting solutions, respectively (ISO 10390: Soil quality – Determination of pH. International Organization for Standardization, ISO 2000). Total C and N contents were determined by methods of Ehrenberger and Gorbach (1973) using CHN catalyst (Carlo Erba NC 2500), total P was measured according to the method of Olsen and Sommers (1982). Available P was measured in filtrate of 5 g of soil with 50 ml of 0.5M K_2SO_4 solution by flow injection analysis with spectrophotometric detection using the instrument QuikChem FIA + 8000 Series (Ammerman 2001; Egan 2001). Concentrations of available Ca^{2+} and K^+ were measured using atomic emission spectrometry method and available Mg^{2+} using atomic absorption spectrometry according to methods of Moore and Chapman (1986) and Dědina (1987), with solution of 1M ammonium acetate as the extractant. All analyses were performed by the Analytical Laboratory of Institute of Botany of the Czech Academy of Sciences in Průhonice.

Soil microbial community

Soil microbial community composition was assessed using PLFA analysis performed by the Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, following the methodology described in Garcia-Sanchez et al. (2019). The PLFA were extracted from 1 g of freeze-dried soil samples with a mixture of chloroform-methanol-phosphate buffer (1:2:0.8, v/v/v), as previously described by Bligh and Dyer (1959). The lipids were fractionated into neutral lipids (NLFA), glycolipids and polar lipids (PLFAs) using an extraction cartridge (LiChrolut Si-60, Merck, White-house Station, USA), and NLFA and PLFA were subjected to mild alkaline methanolyis as described in Snajdr et al. (2008). The free methyl esters of NLFA and PLFAs were analyzed by gas chromatography-mass spectrometry (450-GC, 240-MS ion trap detector, Varian, Walnut Creek, CA) following the same procedure described by Sampedro et al. (2009).

The soil microbial community composition was characterized using the following PLFAs: fungal biomass was estimated on the basis of 18:2w6,9 content (Snajdr et al. 2008), bacterial biomass was quantified as the sum of i14:0, i15:0, a15:0, 16:1w5, 16:1w7; 16:1w9, 10Me-16:0, i16:0, i17:0, a17:0, cy17:0, 17:0, 10Me-17:0, 18:1w7, 10Me-18:0, and cy19:0. Actinobacterial biomass was determined as the sum of 10Me-16:0, 10Me-17:0, and 10-Me18:0, Gram-positive bacteria (G+) as sum of i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0, and Gram-negative bacteria (G-) as the sum of 16:1w7, 16:1w9, 18:1w7, cy17:0, and cy19:0. The NLFA 16:1w5 was assigned as a marker for the quantification of AMF and total PLFA concentration was
used to estimate the total viable microbial biomass (Olsson et al. 2003). Last, we calculated microbial ratios F:B (fungi : bacteria), G+:G- (Gram-positive bacteria : Gram-negative bacteria), and F:AMF (fungi : AMF).

Infection potential of AMF

Infection potential of AMF was assessed by MIP and MPN methods. In the MIP assay, the colonization intensity of AMF is measured after a certain period of bait plant cultivation and the index of root colonization is the percentage of the number of 1-cm root segments showing detectable AMF colonization (Moorman and Reeves 1979). In MPN method, the test plants are grown in serial dilutions of the inoculum and the propagule density of the original material is statistically calculated from MPN scores (Feldmann and Idczak 1992).

To assess MPN and MIP, we evaluated mycorrhizal colonization of maize roots [standardly used for assessing MPN and MIP as its roots are strongly colonized by AMF (Moorman and Reeves 1979)] that was grown in each of the studied types of soil in 1:0, 1:10, 1:100, 1:1000, 1:10000 dilutions with soil sterilized in autoclave, in five replicates per dilution. Maize seeds (*Zea mays* convar. *saccharata*, var. Ashworth) were purchased from a commercial supplier (ReinSaat KG company, St. Leonhard am Hornerwald, Austria), they were germinated in Petri dishes in sterile conditions, replanted into 100 ml plastic containers (4x14 cm), and left growing in a greenhouse. After six weeks, the plants were harvested, fine roots from the middle part of the root system were collected, placed in 10% KOH for three months to bleach, and stained (left for 12h in 2% lactic acid, 12h in 0.05% trypan blue in lactoglycerol, rinsed in water, and soaked into lactoglycerol prepared from glycerol, 80% lactic acid and distilled water in 3:2:5 ratio).

The stained roots from 1:10, 1:100, 1:1000, and 1:10000 dilutions were observed using a binocular magnifier and presence of AMF propagules was recorded. MPN/ml was calculated using a program MPN Calculator, Build 23 using information on types of dilutions, number of replicates per dilution and number of replicates per dilution in which AMF propagules were recorded. To assess MIP, only the 1:10 dilution was used. Stained roots were placed into a Petri dish with a 1x1 cm grid and presence of AMF propagules at 200 intersections of roots with the grid was recorded using a binocular magnifier. An average value from the five replicates was calculated both for MPN and MIP, resulting in one MPN and one MIP value per soil sample and six replicates per soil conditioning type.

Statistical analyses

Differences in soil biotic and abiotic characteristics between soil conditioned by *C. arvense*, and by *C. oleraceum* were studied using linear direct gradient analysis (Redundancy Analysis, RDA) and Monte-Carlo permutation tests (Ter Braak and Šmilauer 2012) with 499 permutations. Dependent variables used in this analysis were all the studied soil characteristics except for actual pH, K content, total microbial and bacterial biomass, which were excluded due to high correlations with other variables (Table S2). The variables were standardized prior to the analysis. The independent variable was conditioning species. We
repeated the analysis with all three soil conditioning types including the control soil and we present the results in the appendix (Fig. S1). The analyses were performed in Canoco 5 (Ter Braak and Šmilauer 2012). As a supplementary analysis, we also performed ANOVA using R 3.6.1 (R Core Team 2019) always with one of the studied soil characteristics as dependent variable and tested the differences between multiple levels of soil conditioning type using Tukey post hoc tests (Fig. S2).

Differences in plant performance between individual treatments and soil conditioning types in the feedback phase were tested using a linear (square root transformed biomass and root-shoot ratio) or generalized linear (seedling emergence as number of emerged seedlings out of the number of seeds sown, with binomial error distribution) mixed effect models in the R package ‘lmerTest’ (Kuznetsova et al. 2017) with identity of the soil heap as random effect, and species, soil conditioning, treatment (sterilized soil, filtrate from control soil, filtrate from conditioned soil, inoculum from control soil, inoculum from conditioned soil, non-sterilized whole soil), and their interactions as explanatory variables. To estimate p-values, we used F-tests comparing two models with and without a tested term, using a ‘drop1’ function in the ‘lmerTest’ package (Kuznetsova et al. 2017). To assess differences between pairs of group means, we used Tukey post-hoc tests adapted to mixed effect models using ‘glht’ function in ‘multcomp’ R-package (Hothorn et al. 2008).

Afterwards, we used subset of data excluding the sterilized treatment and the non-sterilized whole soil treatment and tested the effect of the type of soil biota (filtrate vs inoculum) and conditioning of soil biota (from control vs from conditioned soil) as explanatory variables instead of the treatment variable, otherwise there were no changes in the analyses. We obtained very similar results when including only the subset of treatments in the analyses and so we only present these results in the Results section. Results of the analyses including all the treatments and not differentiating between type and conditioning of soil biota can be found in the appendix (Table S3). The two treatments which are excluded from the main analyses are, however, visualized in some of the graphs and compared using multiple comparisons with the rest.

Last, we used structural equation modeling [performed in the ‘lavaan’ package (Rosseel 2012) in R] to assess how individual components of soil, i.e. amount of soil nutrients, bacterial, fungal and AMF biomass, affect biomass of the two species. For the analysis, we only used data on plant biomass from the non-sterilized whole soil treatment as detailed soil analyses are only available for this treatment. A separate model was created for each species. The assumed relationships were as follows: (i) plant performance is affected by the amount of soil nutrients and by bacterial, fungal and AMF biomass, (ii) bacterial, fungal and AMF biomass are affected by the amount of soil nutrients, and (iii) bacterial, fungal and AMF biomass are correlated.

Results

Effect of conditioning species on soil characteristics
Soil characteristics significantly differed between soils conditioned by the invasive and the non-invasive species (Pseudo-F = 6.0, p = 0.004, 37.59% of explained variation, Fig. 2). Values of MPN and AMF were higher in soils conditioned by the invasive species (Fig. 2, Fig. S2), and in both cases the values were much higher than in the control soil (Fig. S1, S2). Nutrient levels and both bacterial and fungal biomass were higher in soils conditioned by the non-invasive species (Fig. 2, Fig. S2).

Effect of soil conditioning and treatments on plant performance

The invasive species had significantly higher seedling emergence and lower root-shoot ratio than the non-invasive species (Table 1, Fig. S3). The two species did not differ in total biomass production (Table 1).

Soil conditioning negatively affected plant biomass, with no differences between the two species (Table 1, Fig. S4). Type of soil biota had a significant effect on plant biomass and root-shoot ratio (Table 1). In both cases, the values were the highest in microbial filtrate treatments, lower in whole soil inoculum and the lowest in whole soil (Fig. S5). The effects did not differ between the two species (Table 1).

Effect of conditioning of soil biota, i.e. whether the biota originated from control or conditioned soil, on biomass and root-shoot ratio differed between the two species (Table 1). In both cases, the non-invasive species benefited from growth with conditioned biota compared to biota from control soil, while the invasive species performed similarly with both conditioned and control biota (Fig. 3).

The interaction between species, type of soil biota and soil biota conditioning was not significant for any of the measures of plant performance (Table 1). However, the interaction of species and treatment (comprising type and conditioning of biota) was significant for seedling emergence in the analysis using all treatments (Table S3). For the invasive species, seedling emergence in presence of microbial filtrate from control soil was higher than in microbial filtrate from conditioned soils as well as the sterilized soil, but no differences in seedling emergence among the treatments were found for the non-invasive species (Fig. 4).

The interaction between species, soil conditioning, type of soil biota, and conditioning of soil biota was significant for biomass and root-shoot ratio (Table 1). For the non-invasive species, conditioning of microbial filtrate had a positive effect on biomass in conditioned but not in control soil, while for the invasive species it had a positive effect in control but not conditioned soil (Fig. 5a). Root-shoot ratio was negatively affected by conditioning of soil inoculum in both control and conditioned soil for the invasive species, but for the non-invasive species only in control, not in conditioned soil (Fig. 5b).

Determinants of plant performance

Structural equation models showed that the determinants of plant performance in the non-sterilized whole soil treatment differ between the non-invasive and the invasive species. The non-invasive species responded negatively to bacterial biomass and positively to fungal biomass and soil nutrients levels, while the invasive species responded positively to bacterial biomass and was not significantly affected...
by fungal biomass or soil nutrients. While both species responded negatively to AMF biomass, only the invasive species significantly increased the AMF biomass as it depleted soil nutrients.

Discussion

In the present study, we found differences in plant-soil interactions between *Cirsium vulgare* and *C. oleraceum*, both native to Europe but only *C. vulgare* invasive elsewhere, which suggest a possible role of these interactions in the invasive potential of *C. vulgare*. Compared to its non-invasive congener, the invasive *C. vulgare* more rapidly depleted nutrients from the soil, was less influenced directly by the availability of soil nutrients, and had more negative biotic PSF, particularly PSF caused by larger-sized soil biota. The invasive species also had higher seedling emergence and lower root-shoot ratio compared to non-invasive species and showed greater ability to decrease its root-shoot ratio in the presence of harmful soil biota. These results highlight that experimental studies from the native range on PSF can offer important insight in our understanding of processes that regulate invasive plant populations.

Soils conditioned by the invasive species had lower levels of nutrients, particularly of P, N and Ca (Fig. 2). This is in line with previous research showing invasive species often exploit soil nutrients more efficiently than non-invasive species (Dassonville et al. 2008; Funk and Vitousek 2007; Sardans et al. 2017), allowing them to gain competitive advantage over other species. Importantly, despite lower nutrient levels in soils conditioned by the invasive species, this species did not show more negative abiotic PSF than the non-invasive species, but, on the contrary, responded to soil conditioning in sterilized soil slightly less negatively than the non-invasive species (Fig. 5a). In line with that, the structural equation model showed lower sensitivity of the invasive species to soil nutrients than the non-invasive species (Fig. 6). This means that the invasive species copes better with altered nutrient levels, indicating its higher plasticity in response to nutrients, a common feature of successful invaders (Burns 2004; Daehler 2003; Funk 2008).

Both plant species had lower biomass with increasing amounts of soil biota (Fig S5), showing that the negative effects of soil biota prevail over the positive effects, both for microbiota and larger-sized soil biota, as has been shown in previous research (van de Voorde et al. 2012; Wang et al. 2019b). The invasive species had more negative biotic PSF, particularly PSF driven by the larger-sized biota, than the non-invasive species (Fig. 3, Fig. 5) when defining PSF as a difference in performance of plants grown with biota from self-conditioned (‘home’) and control (‘away’) soil, as recommended when the research question concerns the specificity of soil feedback effects (Brinkman et al. 2010; Cortois et al. 2016). It is unclear in our study if this result is due to the differences in composition of the self-conditioned biota (i.e., more specific enemies) or just their abundance since both are likely to differ from an unplanted control. Our results are in line with the finding of Zuppinger-Dingley et al. (2011) that potentially invasive species in their native range are held in check by more negative PSF compared to native species that do not become invasive elsewhere.

Bacterial biomass had an overall negative effect on the biomass of the non-invasive species, but positive on the invasive species (Fig. 6), suggesting that the invasive species was less affected by bacterial
pathogens and benefited more from bacterial mutualists. There is a large chance that the species benefits from presence of bacterial mutualists in the secondary range as well since most mutualists are quite generalistic (Bronstein 2003) and invasive plants can often form mutualisms as effective or even more effective in the new ranges than in the old range (Parker and Gilbert 2007; Richardson et al. 2000). Interestingly, both species benefited from growth with their self-conditioned microbiota compared to the control microbiota and this was more pronounced for the non-invasive species (Fig. 5a). This result may partially explain the differences in success of the two species when introduced into a secondary range. When moving to secondary range, the plants are supposed to leave their specialized soil biota behind and only be affected by the local generalist biota, which in case of the invasive *C. vulgare* seem to have more positive effects on its performance.

In contrast, the invasive species responded much more negatively to self-conditioned larger-sized soil biota compared to the control biota (Fig. 5), providing more opportunities for the invasive species to benefit from enemy release when introduced to the secondary range than for the non-invasive species. Larger-sized biota in our study refers to mesofauna such as nematodes and microarthropods, but also AMF. Since we only quantified AMF but did not study composition of the mesofauna, we cannot say which groups contributed the most to the negative PSF and the differences between species. AMF had a net harmful effect on both plant species. In the literature, more studies find net positive effects of AMF on plants, however, there are several other studies that report negative effects of AMF (Janos 2007; Johnson et al. 1997), particularly in nutrient-rich soils such as the ones used in our experiment. Only the invasive plant had a PSF in which it increased the biomass of harmful AMF when it depleted soil nutrients (Fig. 6). Even though AMF have relatively low host specificity, host preference in natural ecosystems has been identified (Sanders 2003). Because AMF composition differs between world regions (Sturmer et al. 2018), chances are that the invasive species leaves behind some of the harmful AMF when moving to the secondary range, which would further contribute to its invasion success. However, since we do not have data on AMF species composition or on the effect of AMF on the species in its secondary range, this explanation remains purely hypothetical.

Root-shoot ratio of both species decreased when more soil biota was included (Fig. S5). Since the size of root system determines the intensity of interactions between plants and soil biota (Aldorfova and Munzbergova 2019; Bergmann et al. 2016; Cortois et al. 2016), reducing allocation into root biomass in presence of detrimental soil biota may serve as a protective mechanism for the plants, minimizing the negative effects of soil biota on plant growth. Besides the response to the type of soil biota included, the invasive species also decreased its root-shoot ratio in presence of self-conditioned biota compared to control biota in case of the larger-size biota (Fig. 5b), pointing to its greater sensitivity to specialized biota and possibly greater plasticity in biomass allocation than the non-invasive species.

Seedling emergence was overall higher for the invasive species and did not differ between whole soil inoculum treatment and sterilized soil for either species. Microbial filtrate from control, but not from self-conditioned soil, however, increased seedling emergence of the invasive species. These results suggest that non-specialized microbes, i.e. those the species is relatively more likely to encounter in the secondary range, were more beneficial for seedling emergence.
range, benefit plant performance of the invasive species in early stages of their life. This, combined with the high overall seedling emergence, may be another factor contributing to the invasiveness of *C. vulgare*. Despite the recent recognition that plant-soil interactions shape seedling performance and that these interactions are often positive (Aldorfova et al. 2020; Dudenhoffer et al. 2018; Florianova and Munzbergova 2018), most PSF research focuses solely on PSF of adult plants (Kardol et al. 2013) and the mechanisms involved in PSF of juveniles remain largely unexplored. The positive PSF effects have usually been attributed to AMF, as seedlings are expected to benefit more from associations with AMF than adult plants due to a less developed root system (Aldrich-Wolfe 2007; van der Heijden 2004). Our study in contrast finds an important role of soil microbiota rather than of AMF. It is not clear which specific group of soil microbiota was responsible for the effects. It might have been plant growth-promoting rhizobacteria which positively affect seed germination (Kloepper et al. 1991; Wu et al. 2016) and which may be stimulated by root exudates released by some plants (Hu et al. 2018; Vacheron et al. 2013; van Loon 2007), but more investigation is needed to understand the precise underlying mechanisms of these interactions.

Conclusions

We showed that plant-soil interactions of invasive *Cirsium vulgare* in its native range may help to explain its invasive success elsewhere, by comparing it with plant-soil interactions of *C. oleraceum* which is not known to be invasive anywhere else in the world. This invasive species is able to reduce nutrients to lower levels but maintain its high performance regardless of soil nutrient levels. While soil bacteria in general have more positive effect on the invasive species, the invasive species benefits less from growth with specialized (self-conditioned) microbiota compared to generalist (control) microbiota. On the other hand, it is relatively more harmed by self-specific larger-sized soil biota. Since the specialized biota is less likely to be present in the secondary range than the generalist biota, our results suggest that the invasive species may benefit more from pathogen release and at the same time suffer less from loss of specialized mutualists when transferred to the secondary range than the non-invasive species.

Declarations

Funding – This study was supported by The Czech Science Foundation (project GAČR 20-01813S), and partly also by institutional funding (RVO 67985939 and the Ministry of Education of the Czech Republic).

Acknowledgements – Tiffany Knight and participants in the POPEKOL seminars provided us with many useful comments on the manuscript. We are thankful to I. Jarošíncová, M. Lokvencová, D. Cmíral, M. Chmelař, and several student helpers for help with maintaining and harvesting the experiments.

Author Contributions – AA, VH, LD, HP and ZM designed the study, VH, LD and TC collected data, AA with help of ZM performed the statistical analyses and wrote the first draft of the manuscript. All authors commented on previous versions of the manuscript, read, and approved the final manuscript.
Conlicts of Interest – The authors declare no conlict of interest.

Data Availability – The datasets generated and analyzed during the current study will be available in the Dryad repository after manuscript acceptance.

References

1. Adelman MJ, Morton JB (1986) INFECTION OF VESICULAR ARBUSCULAR MYCORRHIZAL FUNGI - INFLUENCE OF HOST SOIL DILUENT COMBINATIONS ON MPN ESTIMATES AND PERCENTAGE COLONIZATION. Soil Biology & Biochemistry 18: 77-83. doi: 10.1016/0038-0717(86)90106-9.

2. Aldorfova A, Knobova P, Munzbergova Z (2020) Plant-soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. Oikos 129: 1257-1270. doi: 10.1111/oik.07186.

3. Aldorfova A, Munzbergova Z (2019) Conditions of plant cultivation affect the differences in intraspecific plant-soil feedback between invasive and native dominants. Flora 261. doi: 10.1016/j.flora.2019.151492.

4. Aldrich-Wolfe L (2007) Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community. Ecology 88: 559-566. doi: 10.1890/05-1177.

5. Ammerman J (2001) Determination of Nitrate/Nitrite in 0.5 M K$_2$SO$_4$ soil extracts by Flow Injection analysis. QuikChem Method 12-107-04-1-H.

6. Bergmann J, Verbruggen E, Heinze J, Xiang D, Chen BD, Joshi J, Rillig MC (2016) The interplay between soil structure, roots, and microbiota as a determinant of plant-soil feedback. Ecology and Evolution 6: 7633-7644. doi: 10.1002/ece3.2456.

7. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology 85: 561-573. doi: 10.2307/2960528.

8. Bligh EG, Dyer WJ (1959) A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION. Canadian Journal of Biochemistry and Physiology 37: 911-917.

9. Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil 321: 213-233. doi: 10.1007/s11104-009-0013-2.

10. Brinkman EP, Van der Putten WH, Bakker EJ, Verhoeven KJF (2010) Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology 98: 1063-1073. doi: 10.1111/j.1365-2745.2010.01695.x.

11. Bronstein JL (2003) The scope for exploitation within mutualistic interactions. Genetic and Cultural Evolution of Cooperation: 185-202.

12. Burns JH (2004) A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Diversity and Distributions 10: 387-397. doi: 10.1111/j.1366-9516.2004.00105.x.
13. Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011) Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology 92: 1027-1035.

14. Chiuffo MC, Macdougall AS, Hierro JL (2015) Native and non-native ruderals experience similar plant-soil feedbacks and neighbor effects in a system where they coexist. Oecologia 179: 843-852. doi: 10.1007/s00442-015-3399-y.

15. Cortois R, Schroder-Georgi T, Weigelt A, van der Putten WH, De Deyn GB (2016) Plant-soil feedbacks: role of plant functional group and plant traits. Journal of Ecology 104: 1608-1617. doi: 10.1111/1365-2745.12643.

16. Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology Evolution and Systematics 34: 183-211. doi: 10.1146/annurev.ecolsys.34.011802.132403.

17. Dassonville N, Vanderhoeven S, Vanparys V, Hayez M, Gruber W, Meerts P (2008) Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 157: 131-140. doi: 10.1007/s00442-008-1054-6.

18. Dawson W, Schrama M (2016) Identifying the role of soil microbes in plant invasions. Journal of Ecology 104: 1211-1218. doi: 10.1111/1365-2745.12619.

19. Dudenhoffer JH, Ebeling A, Klein AM, Wagg C (2018) Beyond biomass: Soil feedbacks are transient over plant life stages and alter fitness. Journal of Ecology 106: 230-241. doi: 10.1111/1365-2745.12870.

20. Dědina J (1987) Selected methods of analytic atom spectrochemistry. Československá spektroskopická společnost.

21. Egan L (2001) Determination of Amonia by Flow Injection Analysis Colorimetry. QuikChem Metod 10-107-06-5-E.

22. Ehrenberger F, Gorbach S (1973) Methoden der organischen Elementar- und Spurenanalyse. Verlag Chemie Weinheim.

23. Enders M, Havemann F, Ruland F, Bernard-Verdier M, Catford JA, Gomez-Aparicio L, Haider S, Heger T, Kueffer C, Kuhn I, Meyerson LA, Musseau C, Novoa A, Ricciardi A, Sagouis A, Schittko C, Strayer DL, Vila M, Essl F, Hulme PE, van Kleunen M, Kumschick S, Lockwood JL, Mabey AL, McGeoch MA, Palma E, Pysek P, Saul WC, Yannelli FA, Jeschke JM (2020) A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography 29: 978-991. doi: 10.1111/geb.13082.

24. Engelkes T, Morrien E, Verhoeven KJF, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, van der Putten WH (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456: 946-948. doi: 10.1038/nature07474.

25. Feldmann F, Idczak E (1992) INOCULUM PRODUCTION OF VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGI FOR USE IN TROPICAL NURSERIES. Methods in Microbiology 24: 339-357. doi: 10.1016/s0580-9517(08)70101-6.
26. Florianova A, Munzbergova Z (2018) The intensity of intraspecific plant-soil feedbacks in alien Impatiens species depends on the environment. Perspectives in Plant Ecology Evolution and Systematics 32: 56-64. doi: 10.1016/j.ppees.2018.04.004.

27. Funk JL (2008) Differences in plasticity between invasive and native plants from a low resource environment. Journal of Ecology 96: 1162-1173. doi: 10.1111/j.1365-2745.2008.01435.x.

28. Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446: 1079-1081. doi: 10.1038/nature0719.

29. Garcia-Sanchez M, Cajthaml T, Filipova A, Tlustos P, Szakova J, Garcia-Romera I (2019) Implications of mycoremediated dry olive residue application and arbuscular mycorrhizal fungi inoculation on the microbial community composition and functionality in a metal-polluted soil. Journal of Environmental Management 247: 756-765. doi: 10.1016/j.jenvman.2019.05.101.

30. Giovannetti M, Mosse B (1980) AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS. New Phytologist 84: 489-500. doi: 10.1111/j.1469-8137.1980.tb04556.x.

31. Hothorn T, Bretz F, Westfall P (2008) Simultaneous Inference in General Parametric Models. Biometrical Journal 50: 346–363.

32. Hu LF, Robert CAM, Cadot S, Zhang X, Ye M, Li BB, Manzo D, Chervet N, Steinger T, van der Heijden MGA, Schlaeppe K, Erb M (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications 9. doi: 10.1038/s41467-018-05122-7.

33. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17: 75-91. doi: 10.1007/s00572-006-0094-1.

34. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135: 575-586. doi: 10.1046/j.1469-8137.1997.00729.x.

35. Julien MH, Griffiths MW (1998) Biological Control of Weeds. A World Catalogue of Agents and their Target Weeds. CABI Publishing, Wallingford, UK.

36. Kardol P, De Deyn GB, Laliberte E, Mariotte P, Hawkes CV (2013) Biotic plant-soil feedbacks across temporal scales. Journal of Ecology 101: 309-315. doi: 10.1111/1365-2745.12046.

37. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17: 164-170. doi: 10.1016/s0169-5347(02)02499-0.

38. Kliironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417: 67-70. doi: 10.1038/417067a.

39. Kloeper JW, Zablottowicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: KL Keister, PB Cregan (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, The Netherlands.

40. Kulmatski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytical review. Ecology Letters 11: 980-992. doi: 10.1111/j.1461-0248.2008.01209.x.
41. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software 82: 1-26.

42. McNamara NP, Black HIJ, Beresford NA, Parekh NR (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Applied Soil Ecology 24: 117-132. doi: 10.1016/s0929-1393(03)00073-8.

43. Meijer SS, Holmgren M, Van der Putten WH (2011) Effects of plant-soil feedback on tree seedling growth under arid conditions. Journal of Plant Ecology 4: 193-200. doi: 10.1093/jpe/rtr011.

44. Moore PD, Chapman SB (1986) Methods in plant ecology. Blackwell Scientific Publications, Oxford.

45. Moorman T, Reeves FB (1979) ROLE OF ENDOMYCORRHIZAE IN REVEGETATION PRACTICES IN THE SEMI-ARID WEST .2. BIOASSAY TO DETERMINE THE EFFECT OF LAND DISTURBANCE ON ENDOMYCORRHIZAL POPULATIONS. American Journal of Botany 66: 14-18. doi: 10.2307/2442619.

46. Olsen SR, Sommers LE (1982) Phosphorus. In: AL Page, RH Miller, DR Keeney (eds) Methods of soil analysis, part 2, Chemical and microbiological properties. American Society of Agronomy, Madison.

47. Olsson PA, Larsson L, Bago B, Wallander H, van Aarle IM (2003) Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytologist 159: 7-10. doi: 10.1046/j.1469-8137.2003.00810.x.

48. Parker IM, Gilbert GS (2007) When there is no escape: The effects of natural enemies on native, invasive, and noninvasive plants. Ecology 88: 1210-1224. doi: 10.1890/06-1377.

49. R Core Team A (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

50. Reinhart KO, Callaway RM (2004) Soil biota facilitate exotic Acer invasions in Europe and North America. Ecological Applications 14: 1737-1745. doi: 10.1890/03-5204.

51. Reinhart KO, Packer A, Van der Putten WH, Clay K (2003) Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecology Letters 6: 1046-1050. doi: 10.1046/j.1461-0248.2003.00539.x.

52. Richardson DM, Allsopp N, D'Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions - the role of mutualisms. Biological Reviews 75: 65-93. doi: 10.1017/s0006323199005435.

53. Rosseel Y (2012) lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software 48: 1-36. doi: 10.18637/jss.v048.i02.

54. Sampedro I, Giubilei M, Cajthaml T, Federici E, Federici F, Petruccioli M, D'Annibale A (2009) Short-term impact of dry olive mill residue addition to soil on the resident microbiota. Bioresource Technology 100: 6098-6106. doi: 10.1016/j.biortech.2009.06.026.

55. Sanders IR (2003) Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends in Plant Science 8: 143-145. doi: 10.1016/s1360-1385(03)00012-8.

56. Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, Obersteiner M, Sigurdsson BD, Chen HYH, Penuelas J (2017) Plant invasion is associated with higher plant-soil
nutrient concentrations in nutrient-poor environments. Global Change Biology 23: 1282-1291. doi: 10.1111/gcb.13384.

57. Sieg CH, Phillips BG, Moser LP (2003) Exotic invasive plants. In: P Frederici (ed) Ecological Restoration of Southwestern Ponderosa Pine Forests. Island Press, Washington, DC.

58. Snajdr J, Valaskova V, Merhautova V, Cajthaml T, Baldrian P (2008) Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme and Microbial Technology 43: 186-192. doi: 10.1016/j.enzmictec.2007.11.008.

59. Sturmer SL, Bever JD, Morton JB (2018) Biogeography of arbuscular mycorrhizal fungi (Glomeromycota) a phylogenetic perspective on species distribution patterns. Mycorrhiza 28: 587-603. doi: 10.1007/s00572-018-0864-6.

60. Suding KN, Harpole WS, Fukami T, Kulmatiski A, MacDougall AS, Stein C, van der Putten WH (2013) Consequences of plant-soil feedbacks in invasion. Journal of Ecology 101: 298-308. doi: 10.1111/1365-2745.12057.

61. Tenhumberg B, Louda SM, Eckberg JO, Takahashi M (2008) Monte Carlo analysis of parameter uncertainty in matrix models for the weed Cirsium vulgare. Journal of Applied Ecology 45: 438-447. doi: 10.1111/j.1365-2664.2007.01427.x.

62. Ter Braak CJ, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca.

63. Troelstra SR, Wagenaar R, Smant W, Peters BAM (2001) Interpretation of bioassays in the study of interactions between soil organisms and plants: involvement of nutrient factors. New Phytologist 150: 697-706. doi: 10.1046/j.1469-8137.2001.00133.x.

64. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4. doi: 10.3389/fpls.2013.00356.

65. van de Voorde TFJ, van der Putten WH, Bezemer TM (2011) Intra- and interspecific plant-soil interactions, soil legacies and priority effects during old-field succession. Journal of Ecology 99: 945-953. doi: 10.1111/j.1365-2745.2011.01815.x.

66. van de Voorde TFJ, van der Putten WH, Bezemer TM (2012) Soil inoculation method determines the strength of plant-soil interactions. Soil Biology & Biochemistry 55: 1-6. doi: 10.1016/j.soilbio.2012.05.020.

67. van der Heijden MGA (2004) Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology Letters 7: 293-303. doi: 10.1111/j.1461-0248.2004.00577.x.

68. van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. Isme Journal 1: 28-37. doi: 10.1038/ismej.2007.9.

69. van Grunsven RHA, van der Putten WH, Bezemer TM, Tamis WLM, Berendse F, Veenendaal EM (2007) Reduced plant-soil feedback of plant species expanding their range as compared to natives. Journal of Ecology 95: 1050-1057. doi: 10.1111/j.1365-2745.2007.01282.x.
70. van Grunsven RHA, van der Putten WH, Bezemer TM, Veenendaal EM (2010) Plant-soil feedback of native and range-expanding plant species is insensitive to temperature. Oecologia 162: 1059-1069. doi: 10.1007/s00442-009-1526-3.

71. van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology 119: 243-254. doi: 10.1007/s10658-007-9165-1.

72. Wang MG, De Deyn GB, Bezemer TM (2019a) Separating effects of soil microorganisms and nematodes on plant community dynamics. Plant and Soil 441: 455-467. doi: 10.1007/s11104-019-04137-3.

73. Wang MG, Ruan WB, Kostenko O, Carvalho S, Hannula SE, Mulder PPJ, Bu FJ, van der Putten WH, Bezemer TM (2019b) Removal of soil biota alters soil feedback effects on plant growth and defense chemistry. New Phytologist 221: 1478-1491. doi: 10.1111/nph.15485.

74. Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, Scheu S, Jousset A (2015) Bacterial diversity amplifies nutrient-based plant-soil feedbacks. Functional Ecology 29: 1341-1349. doi: 10.1111/1365-2435.12445.

75. Wild J, Kaplan Z, Danihelka J, Petrik P, Chytry M, Novotny P, Rohn M, Sule V, Bruna J, Chobot K, Ekrt L, Holubova D, Knollova I, Kocian P, Stech M, Stepnek J, Zouhar V (2019) Plant distribution data for the Czech Republic integrated in the Pladias database. Preslia 91: 1-24. doi: 10.23855/preslia.2019.001.

76. Wilson JM, Trinick MJ (1983) FACTORS AFFECTING THE ESTIMATION OF NUMBERS OF INFECTIVE PROPAGULES OF VESICULAR ARBUSCULAR MYCORRHIZAL FUNGI BY THE MOST PROBABLE NUMBER METHOD. Australian Journal of Soil Research 21: 73-81. doi: 10.1071/sr9830073.

77. Wu YN, Feng YL, Pare PW, Chen YL, Xu R, Wu S, Wang SM, Zhao Q, Li HR, Wang YQ, Zhang JL (2016) Beneficial soil microbe promotes seed germination, plant growth and photosynthesis in herbal crop Codonopsis pilosula. Crop & Pasture Science 67: 91-98. doi: 10.1071/cp15110.

78. Zuppinger-Dingley D, Schmid B, Chen Y, Brandl H, van der Heijden MGA, Joshi J (2011) In their native range, invasive plants are held in check by negative soil-feedbacks. Ecosphere 2: 12. doi: 10.1890/es11-00061.1.

Tables

Due to technical limitations, table 1 is only available as a download in the Supplemental Files section.

Figures
Figure 1

Schematic diagram of soil conditioning and treatments used in the feedback phase
Differences in soil biotic and abiotic characteristics in soils conditioned by the invasive and the non-invasive species. Results displayed are an ordination plot based on RDA tested using a Monte-Carlo test with 499 permutations. Pseudo-$F = 6.0$, $p = 0.004$, the first two axes explained 37.59% and 17.35% variability in the data, respectively. Results are centered and standardized across soil characteristics. ** indicates characteristics that are significantly ($p < 0.05$) different between the two soil types in individual tests, * indicates marginally significant ($p < 0.1$) differences.
Figure 3

Effect of conditioning of soil biota on (a) biomass and (b) root-shoot ratio of the two study species. Bars and error lines represent mean ± SE. Bars that share the same letter do not significantly (p < 0.05) differ from each other after Tukey post-hoc tests.
Figure 4

Effect of treatment (type and origin of soil biota) on seedling emergence for individual species. Bars and error lines represent mean ± SE. Bars that share the same letter do not significantly (p < 0.05) differ from each other after Tukey post-hoc tests.
Figure 5

Effect of soil conditioning and treatment (type and origin of soil biota) on (a) biomass and (b) root-shoot ratio for individual species. Bars and error lines represent mean ± SE. Bars that share the same letter do not significantly (p < 0.05) differ from each other after Tukey post-hoc tests.
Figure 6

Structural equation model (path analysis) of soil characteristics influencing biomass of the non-invasive (panels on the left-hand side) and the invasive species (panels on the right-hand side). Red arrows indicate negative relationships, blue arrows positive relationships. Solid arrows indicate significant relationships (P < 0.05), and dashed arrows nonsignificant relationships (P > 0.05). Standardized path coefficients are shown.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- PSFCirsiaPLSoilsupplementaryinfo.docx
- table1.xlsx