The technique for separation and purification of gondorukem (gum rosin) from pine gum (pinus merkusii) with a simple distillation method

M Natsir¹, M Nurdin¹, A Ansharullah², M Z Muzakkar¹, E Trimutia¹, I Irwan¹, L O A Salim¹, S Salmah¹ and M Maulidiyah¹

¹ Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Southeast Sulawesi, Indonesia
² Department of Food Science & Technology, Faculty of Agriculture, Universitas Halu Oleo, Kendari 93232, Southeast Sulawesi, Indonesia

maulid06@yahoo.com (corresponding author)

Abstract. This study reports the processing and separation of gum rosin from pine gum (Pinus merkusii). The research method was carried out with several stages, namely the process of tapping pine gum, the process of separation and purification. After the refining process, the gum rosin and turpentine oil are separated using a simple distillation technique. The results of gum rosin separation obtained from the distillation process were 86.67 with a soft point of 78.8°C, a vaporizing component of 0.976%, an acid number of 175.3125 and a saponification number of 178.81875. In addition to knowing the components of the gum rosin samples obtained, the identification of compounds was carried out using Fourier Transform Infrared Spectrophotometer (FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS). The results of FTIR identification showed the presence of sp²C-H, -OH, sp³C-H, C=O, -CH₂ and -CH₃ groups, while GC-MS identification showed the presence components of Caryophyllene, Pimaric acid, Dehydroabietic acid, Abietic acid, and α-Pinene. The identification results indicate that the residue from the simple distillation is gum rosin.

1. Introduction

Forest is natural resources with many benefits contained in them. Forests can also improve carbon from the atmosphere, provide food and cover wildlife [1]. In Indonesia, the utilization of forests is widely used to produce forest products both wood and non-wood. However, the existence of forests in Indonesia is currently more widely used for wood production. While the potential of forests that have high value is not only wood but non-wood forest products (NTFPs) and forest product services [2-4]. NTFPs can be calculated and high-value commodities if it can be managed well. NTFPs have an important contribution to sustainable development and forest sustainability for future generations [5,6]. In this case, NTFPs in Indonesia can support sustainable forests and conservation strategies, as well as provide alternative sources of income for the rural poor [7,8].

P. merkusii is included in a multipurpose tree species that is continuously being developed and be one of the large species enough to produce wood, resin gum production, reforestation and land conservation [9]. Almost all parts of the tree can be utilized, including the trunk that can be tapped for the sap taken. The gum is further processed to be gum rosin and turpentine oil. Pine gum can be used as the main ingredient for varnishes[10], as a raw material for soap[11], an ink material and as a raw material in the paint industry [12,13]. The results of the wood can be used as lightweight building materials, crates, matches and paper raw materials [14,15]. The gum produced by P. merkusii is
classified as oleoresin [16,17]. Oleoresin is a liquid resinous acid in turpentine which drips out when
the resin duct in the bark is cut. Oleoresin is synthesized from specialized epithelial cells in the xylem
and stored in vertical resin duct in the stems, roots, needles, and cones [18]. This type of sap mainly
contains compounds terpenoid and hydrocarbons [19,20]. P.merkusiisap in NTFPs has a high
economic value when processed by gum rosin and turpentine oil.

Gum rosin is one of the NTFPs products that have promising prospects in the present and the future
developed in Indonesia. Prospective exports from Gum rosin in Indonesia can contribute to the US $ 50
million/year [21]. The opportunity to develop the gum rosin industry is quite large, given the
potential of a large pine forest that has wide-open market opportunities, both for domestic and export
needs. During the last 2014, Indonesia exported a total of 13.6 /ton rosin (gum rosin) to India each
year, of which nearly 10% of rosin was traded on international markets throughout the world. The
processing of pine resin into gum rosin and turpentine oil is very potential and reliable as a source of
foreign exchange. Nearly 60% of total Indonesia's pine gum production is exported abroad and is able
to contribute around 67% of total non-wood forest product exports[22,23].

Gum rosin based on the source of raw materials is divided into three types, namely gum rosin
obtained from the distillation residue of the sap of pine trees, wood gum rosin (wood rosin) obtained
from the extraction of wood trunks with organic solvents then the solution is distilled and gum rosin
tall oil (tall oil rosin) which is a by-product of the pulp industry made from pine wood [24,25]. Gum
rosin can be produced by heating pine tree liquid to evaporate volatile components (terpene
components). The main components are diphenic acid, mainly abietic acid, isopimaric acid,
laevoabietat acid and pimaric acid [26,27].

During the last 10 years, research has been carried out to aim at optimizing the production of pine
gum to produce gum rosin including using paraquat, N, N-dimethyl-4,4; bipyridinum dichloride to
produce reactive oxygen species and maximize the wound effect on pine merkusii[28,29]. Using the
provision of 2-chloroethyl phosphonic acid stimulants (ethylene precursor) to obtain an additional
response to the tapping process [30,31]. However, the use of the two materials is limited in large scale
operations due to high costs. Some chemicals have been validated experimentally in the field to
increase pine gum production. One of the ways to improve the tapping method is by applying
stimulant substances to increase the productivity of the gum. The stimulants used in this study were a
mixture of sulfuric acid (H\textsubscript{2}SO\textsubscript{4}) and nitric acid (HNO\textsubscript{3}).

In this study gum of the tapping, results will be processed into gum rosin by using a simple
distillation technique. The residual product from the distillation process of Pinus gum is known as pine
rosin and is locally referred to as Gum rosin in Indonesia. The distillation process usually produces 15-
25% turpentine oil, which is the main commercial interest and leaves 70-80% rosin. Therefore, it is
necessary to strive for a simple method in obtaining gum rosin optimally by preserving wood and
forest ecosystems through pine gum tapping activities and pine resin processing into high economic
value gum rosin.

2. Experimental Methods

2.1. Reagents and apparatus
The materials used in this study were pine sap, aquades, acetone (C\textsubscript{3}H\textsubscript{6}O) (Merck), chloroform
(CHCl\textsubscript{3}), p.a (Merck), acid chloride (HCl) 0.5N p.a (Merck), Potassium hydroxide (KOH) 0.5 N,
indicator pp, alcohol 96% (Merck), sulfuric acid (H\textsubscript{2}SO\textsubscript{4}) (Merck), and nitric acid (HNO\textsubscript{3}) (Merck).

2.2. Tapping pine gum
Tapping pine gum is done by scraping the bark of a pine tree then the wood was cut as deep as 1 cm
and wide 10 cm U-shaped upside down using a scoop. Then sprayed a mixture of sulfuric acid
(H\textsubscript{2}SO\textsubscript{4}) and nitric acid (HNO\textsubscript{3}) 2-3 times spray using a sprayer on the injured pine tree trunk. The
final stage is to installation a plastic bag at the bottom of the wiretapping wound so that the gum can
flow and be accommodated into the plastic. On the 4th day after tapping, a tapping wound was renewed with a thickness/tapping distance of 5 mm and then spraying was carried out again.

2.3. Pine gum processing

Pine gum processing was carried out with a simple distillation technique. Pine gum was weighed as much as 1.5 kg then put into a distillation container and heated at 165 °C using a gas stove for 60 minutes. Furthermore, pine gum vapor from heating results was channeled through condenser pipes and accommodated into turpentine oil, while the residue of the heating becomes gum rosin. Finally, it was characterized by Fourier-transform infrared (FTIR) and using gas chromatography-mass spectroscopy (GC-MS).

3. Results and Discussion

3.1. Characterization of Gum rosin using Fourier Transform Infra-Red (FTIR)

FTIR analysis was intended to see the functional group characteristics of a compound. In general, the FTIR spectrum can be divided into four regions and functional groups can be determined based on the location of the spectrum. The four areas include the X-H strain area (4000-2500 cm⁻¹), the triple bonding area (2500-1500 cm⁻¹), and the fingerprint area (1500-600 cm⁻¹).

![Figure 1. FTIR spectrum of gum rosin](image)

No	Peak (cm⁻¹)	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Compound
1	1384.89	5.428	9.254	1421.54	1348.24	74.462	13.396	CH₃
2	1463.97	4.447	19.437	1527.62	1423.47	90.45	24.756	CH₂
3	1693.5	0.146	35.346	1855.52	1571.99	295.607	167.419	C=O
4	2650.19	9.426	4.972	2702.27	2382.09	259.235	24.921	sp³C-H
5	2870.08	0.966	0.797	2881.65	2704.2	234.362	2.048	sp³C-H
6	3412.08	5.978	0.249	3639.68	3408.22	234.203	13.065	-OH
The FTIR spectra (Figure 1) and the corresponding signal analysis presented in Table 1, show the characteristics of the infrared absorption band of the rosin used (Pinus merkusii). The FTIR spectrum shown in Figure 1 shows the characteristic absorption for -CH\textsubscript{3}, -CH\textsubscript{2}, C=O, sp3C-H, -OH and sp2C-H. Uptake of -CH\textsubscript{3} is shown by the wavelength of 1384.89 cm-1[32]. Uptake of -CH\textsubscript{2} is shown at a wavelength of 1463.97 cm-1. Uptake of C=O is shown at a wavelength of 1693.5 cm-1. Uptake of sp3C-H is shown by peaks of 2650.19 cm-1. Uptake of sp2C-H is shown by peaks of 2870.08 cm-1 and Uptake of -OH is shown by peaks of 3412.08 cm-1.

3.2. Gas Chromatography Mass Spectroscopy (GC-MS) Characterization

Gum rosin results of distillation are identified using the GC-MS component. The identification is done by comparing the fragmentation patterns of reference compounds. Data from the results of the gum rosin compound distillation results were adjusted using the WILEY229 data bank. LiIB can be seen in Table 2.

Table 2. Gum rosin component analysis results using GC-MS

No.	Compound	RT	Area (%)	SI	Molecular weight	Molecular formula	Structure
1	Caryophyllene	15.07	1.39	929	204	C\textsubscript{15}H\textsubscript{24}	![Structure](image)
2	Pimaric acid	35.43	0.27	816	302	C\textsubscript{20}H\textsubscript{30}O\textsubscript{2}	![Structure](image)
3	Dehydroabietic acid	36.12	7.80	822	300	C\textsubscript{20}H\textsubscript{28}O\textsubscript{2}	![Structure](image)
4	Abietic acid	36.49	4.41	900	302	C\textsubscript{20}H\textsubscript{30}O\textsubscript{2}	![Structure](image)
5	á-Pinene	3.86	0.12	859	136	C\textsubscript{10}H\textsubscript{16}	![Structure](image)

Based on the GC-MS analysis of the components of the gum rosin compounds distilled shown in Table 2, it was found that the main components of these results were Dehydroabietic acid with a content of 7.80% and abietic acid with a content of 4.41%. The two main components are abietic type resin acids. This result is supported by research conducted by Yadav[33] that the main ingredients of
gum rosin are abietic acid and dehydroabietic acid (diterpenoid containing 20 carbon) with a typical hydrofenantrene ring.

Figure 2. (A) Compound chromatogram RT 15.07; (B) mass spectrum of RT 15.07 compounds

Based on GC-MS analysis showed that compounds with RT 15.07 minutes and SI 929 similar to Caryophyllene compound with the molecular formula $\text{C}_{15}\text{H}_{24}$. So that it can be said Compound with RT 15.07 minutes is a compound of Caryophyllene. Caryophyllene is a constituent of many essential oils. Usually found as a mixture with isocaryophyllene (cis double bond isomer) and α-humulene (α-caryophyllene), an open ring isomer. Caryophyllene is famous for having a cyclobutane ring, as well as a trans-double bond in a 9-membered ring.
Figure 3. (A) Compound chromatogram RT 35.43; (B) mass spectrum of RT 35.43 compounds

Based on GC-MS analysis the compound with RT 35.43 minutes and SI 816 is similar to the Pimaric acid compound with the molecular formula $\text{C}_{20}\text{H}_{30}\text{O}_2$. So that it can be said Compound with RT 35.43 minutes is a compound Pimaric acid. Pimaric acid is a carboxylic acid from the resin acid group, often found in pine oleoresin. Pimaric acid is a type of pimarane and isopimaric acid and sandaracopimaric acid of the theisopimarane types[21].
Figure 4. (A) Compound chromatogram RT 36.12; (B) mass spectrum of RT 36.12 compounds

Based on GC-MS data analysis of compounds with RT 36.12 minutes and SI 822 similar to Dehydroabietic acid compounds with the molecular formula \(\text{C}_{20}\text{H}_{30}\text{O}_{2} \). Compounds with RT 36.12 minutes are Dehydroabietic acid compounds. Dehydroabietic acid is an acid compound that is classified as an abietic acid type resin.
Figure 5. (A) Compound chromatogram RT 36.49; (B) mass spectrum of RT 36.49 compounds

Based on GC-MS analysis it shows that compounds with RT 36.49 minutes and Si 900 are similar to abietic acid compounds with the molecular formula C_{20}H_{28}O_{2}. So it can be said that compounds with RT 36.49 minutes are abietic acid compounds. Abietic acid is an acid compound that is classified in the type of abietic acid resin, also known as abietinic acid or Sylvi acid. Abietic acid is the most abundant resin acid of several organic acids contained in the oleoresin solids of pine trees. Esters or their salts are called abietates.

4. Conclusion
Separation and purification of the gum rosin from pine gum have been successfully carried out using a simple distillation method. The gum rosin yield obtained from the distillation results is 86.67%. The results of FTIR identification showed the presence of sp²C-H, -OH, sp³C-H, C=O, -CH₂ and -CH₃ while GC-MS identification showed the presence of caryophyllene, pimaric acid, dehydroabietic acid,
abietic acid and á-pinene components. The identification results indicate that the residue from the simple distillation results ingum rosin.

Acknowledgment
We acknowledge the financial support from the DRPM-Ministry of Research, Technology and Higher Education of the Republic of Indonesia.

References

[1] Burger J A and Zipper C E 2018
[2] Mugido W and Shackleton C M 2018 Ecological Economics146 597-606
[3] Ticktin T 2004 Journal of Applied Ecology41 11-21
[4] Martinez F and Beneficiario C 2004 University of Queensland, Brisbane
[5] Harbi J, Erbaugh J T, Sidiq M, Haasler B, and Nurrochmat D R2018 Forest Policy and Economics94 1-10
[6] Tahril, Taba P, Nafie N L, Noor A, Ratna, and Muzakkar M Z. Fatty acid map of various species seagrasses on the Donggala Beach. in IOP Conference Series: Earth and Environmental Science. 2019. Kolaka Indonesia: IOP Publishing.
[7] Dash M and Behera B2016 Forest Policy and Economics73 215-28
[8] Kar S P and Jacobson M G2012 Forest Policy and Economics14 136-42
[9] Susilowati A, Rachmat H, and Siregar I. Genetic diversity of resin yielder Pinus merkusii from West Java-Indonesia revealed by microsatellites marker. in IOP Conference Series: Earth and Environmental Science. 2018. IOP Publishing.
[10] Perez S O, Garcia-Robredo F, Tellez E A, and Belda C F2013 Forest systems22 39-46
[11] Kaith B, Jindal R, and Sharma R2015 RSC Advances5 43092-104
[12] Della Prasetya C, Syaufina L, and Santosa G2017 Biodiversitas Journal of Biological Diversity18 476-82
[13] Muzakkar M Z, Ahmad S H, Yarmo M A, Jalar A, and Bijarimi M. The effect of PE-g-MAH plus γ-GPS on shear strength of the aluminium/LLDPE/aluminium (APEA) laminate composite. in Advanced Materials Research. 2012. Trans Tech Publ.
[14] Sukarno A, Hardiyanto E, Marsoem S, and Na`iem M2015 Journal of Tropical Forest Science136-41
[15] Muzakkar M, Ahmad S, Yarmo M A, Jalar A, and Bijarimi M, Shear strength of single lap joint aluminium-thermoplastic natural rubber (Al-TPNR) laminated composite, in Recent Trends in Physics of Material Science and Technology. 2015, Springer. p. 159-71.
[16] Rodríguez-Garcia A, López R, Martín J A, Pinillos F, and Gil L2014 Forest Ecology and Management313 47-54
[17] Lappi H E and Alén R2011 BioResources6 5121-38
[18] Cabaret T, Gardere Y, Frances M, Leroyer L, and Charrier B2019 Industrial Crops and Products130 325-31
[19] Lundborg L, Sampedro L, Borg-Karlson A-K, and Zas R2019 Trees33 53-62
[20] Semeniuc C A, Rotar A, Stan L, Pop C R, Socaci S, Mireșan V, and Muste S2016 CyTA-Journal of Food14 213-8
[21] Iswanto A S, Supriyanto S, Siregar I Z, Wahyudi I, and Corryanti C2014 BIOTROPIA-The Southeast Asian Journal of Tropical Biology20
[22] Hadiyane A, Sulistiyawati E, Asharina W, and Dungani R2015 Asian Journal of Plant Sciences14 89-93
[23] Maulidiyah M, Azis T, Sabarwati S H, and Nurdin M2015 Jurnal Ilmu Kefarmasian Indonesia13 40-4
[24] Wang L, Huang C, Chen J, Wei X, Chen X, and Liang J2018 Waste and Biomass Valorization9 1191-8
[25] Karlberg A-T and Hagvall L2020 *Kanerva’s occupational dermatology* 607-24

[26] Kaavessina M, Distantina S, Chafidz A, Utama A, and Anggraeni V M P. *Blends of low molecular weight of poly lactic acid (PLA) with gondorukem (gum rosin)*, in *AIP Conference Proceedings*. 2018. AIP Publishing LLC.

[27] Nurdin M, Fatma F, Natsir M, and Wibowo D2017 *Analytical chemistry research*12 1-9

[28] Füller T N, De Lima J C, De Costa F, Rodrigues-Corrêa K C, and Fett-Neto A G, *Stimulant paste preparation and bark streak tapping technique for pine oleoresin extraction*, in *Biotechnology of Plant Secondary Metabolism*. 2016, Springer. p. 19-26.

[29] Da Silva Rodrigues-Corrêa K C, De Lima J C, and Fett-Neto A G2013 *Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Berlin, Heidelberg: Springer Berlin Heidelberg* 4037-60

[30] De Oliveira Junkes C F, De Araújo Júnior A T, De Lima J C, De Costa F, Füller T, De Almeida M R, Neis F A, Da Silva Rodrigues-Corrêa K C, Fett J P, and Fett-Neto A G2019 *Industrial Crops and Products*139 111545

[31] Rademacher W2015 *Journal of plant growth regulation*34 845-72

[32] Sifontes Á B, Gutierrez B, Mónaco A, Yanez A, Díaz Y, Méndez F J, Llovera L, Cañizales E, and Brito J L2014 *Biotechnology Reports*4 21-9

[33] Yadav B K, Gidwani B, and Vyas A2016 *Journal of Bioactive and Compatible Polymers*31 111-26