OCENA STANJA I PERSPEKTIVE ODRŽAVANJA MOSTOVSKIH KONSTRUKCIJA
U GRADU NIŠU

CONDITION ASSESSMENT AND MAINTENANCE PERSPECTIVES OF BRIDGE
STRUCTURES IN THE CITY OF NIS

Milan GLIGORIJEVIC

1 INTRODUCTION

People always need bridges. A utilitarian definition of bridges is that they are structures intended to carry a road across some obstacle. This entails meeting of certain human needs, creation of new forms on the face of the earth and an objective aspiration to functionality, stability, rationality, interior harmony and harmony with the environment. In addition, bridge structures should be safe and durable, but often, it is a work of art. A technically impeccably performed design, which means optimum functionality and reliability with the least possible cost, is unlikely to be complete if it has not resulted in a beautiful bridge as well.

Bridges are civil engineering structures which very often dominate the environment or landscape where they are situated by their size, appearance in space and even by symbolism. Therefore, fundamental principles of designing and constructing bridges (objectivity, functionality, stability, rationality and originality), which should be met by any bridge, are accompanied by esthetics. It can be said that bridges are not structures, since bridges contain structures.

Centuries long tradition of bridge-building and its development through various forms of construction of different bridge structures, represents an aspiration to satisfy various human needs and demands. In this process, man used materials and resources at his disposal in specific periods, and the oldest primitive bridges are certainly various forms ranging from felled trees to stone slabs, plant fibers and timber beams. Bridge-building history is a sound basis and instruction...
stabalija ili od kamenih ploča, te od biljnih vlakana i drvećnih greda. Graditeljska istorija mostogradnje dobra je pouka i podloga za stvaranje novih savremenih dela. Industrijska revolucija i njene posledice pred mostogradnju su postavljali nove zadatke, stvarajući preduslove za razvijanje novih konstrukcija i ostvarivanje još većih raspona.

Uspeh u projektovanju i građenju mostova zasniva se na dobroj poznavanju teorije konstrukcija i materijala, mašti i hrabrosti konstruktera u razvijanju novih ideja, kao i volji da se uči na tuđim greškama i sopstvenim iskustvima. Savremene metode analize sve više se primenjuju pri proučavanju i konstruiranju mostovskih konstrukcija, što daje ne samo lakše i ekonomičnije mostove, već se adektnim oblikovanjem konstrukcionih detalja omogućuje mostovskim konstrukcijama pravilniji rad, a samim tim i postizanje većih raspona, te dalje domeće savremenih mostova. Nova saznanja doprinose tome da – uz novu tehnologiju i tehniku – čovekova mašta postaje stvarnost.

Mostovske konstrukcije – zbog svoje individualnosti, složenosti i funkcionalnosti – imaju značajnu ulogu na društvo, ukupnu razvijenost neke zemlje i sveukupni napredak čovečanstva. Mostovi imaju izuzetno veliku značaj – kako u funkcionalnom, tako i u ekonomskom pogledu. Kao specifični objekti u prostoru, koji pre svega „spajaju ljude“, u sastavu saobraćajnog sistema i planiraju se, projektuju, grade i održavaju radi obezbedenja društvene, ekonomije i kulturne čuvanosti. Kao objekti izuzetno velike kapitalne vrednosti, potpuni ili prekličeni prekida saobraćaja usled oštećenja mogu izazvati i smanjenje kvalitete života uopšte. Dakle, održivo funkcionisanje ove infrastrukturne imovine od ključne je važnosti za celokupnu državu i samu društvenu zajednicu.

2 EKSPLOATACIONI VEK MOSTOVA

Mostovske konstrukcije predstavljaju i najosjetljiviji deo saobraćajne mreže. Kao objekti u spoljnoj sredini, direktno i u potpunosti su izloženi agresivnom dejstvu neposredne okoline (npr. uticaj temperature, soli, razna aero zagađenja), kao i sve oštrijim uslovima eksploatacije, kao što su: uticaj temperature, soli, razna aero zagađenja (npr. uticaj temperature, soli, razna aero zagađenja), kao i sve oštrijim uslovima eksploatacije, kao što su: uticaj temperature, soli, razna aero zagađenja, kao i sve oštrijim uslovima eksploatacije, kao što su: uticaj temperature, soli, razna aero zagađenja, kao i sve oštrijim uslovima eksploatacije, kao što su: uticaj temperature, soli, razna aero zagađenja, kao i sve oštrijim uslovima eksploatacije, kao što su: uticaj temperature, soli, razna aero zagađenja, kao i sve oštrijim uslovima eksploatacije, kao što su: uticaj temperature, soli, razna aero zagađenja, kao i sve oštrijim uslovima eksploatacije, kao što su: uticaj temperature, soli, razna aero zagađenja, kao i sve oštrijim uslovima eksploatacije, kao što su: uticaj temperature, soli, razna aero zagađenja. Mostovi obuhvaćaju mostovske konstrukcije i mostovske konstrukcije, a samim tim – i na njihovu sigurnost.

2 SERVICE LIFE OF BRIDGES

Bridge structures represent the most sensitive part of transportation network. As outdoor structures, they are directly and entirely exposed to the aggressive effects of the environment (temperature, salts, air pollution etc.), as well as to the increasingly severe service conditions, such as increasing axle loads, intensity and frequency of traffic. During service, due to the permanent ageing of material and impact of various parameters and processes, there is an inexorable accumulation of damage and progressive deterioration of the structural condition, which increases the dilapidation degree of bridge structures. All these phenomena have a negative impact on bearing capacity, serviceability, durability and safety degree of bridge structures, and therefore on their overall safety.

1 Deterioration: a natural and unavoidable process of losing the initial characteristics in the process of damage development and deterioration of bridge condition, meaning the change of the properties of constitutive materials due to aging, and effects of all impacts during service. Degree of deterioration: is the measure of the progress of processes endangering bridge structures during service life.
Predviđeni period u kome treba da budu obezbeđena navedena potrebna svojstva naziva se projektovani eksplotacioni vek objekta, a u praksi to predstavlja period od puštanja objekta u saobraćaj do njegovog zatvaranja. Osnovni razlozi koji dovode do zatvaranja mosta za saobraćaj [OECD 1992] jesu:

- Konstrukcijska (strukturalna) neadekvatnost – uzrokovana nedostacima koji dovode do opadanja stabilnosti mostovskih konstrukcija, kao i smanjenja sigurnosti objekta – najčešći je razlog zatvaranja starijih mostova. Konstrukcijski vek mosta u ovom slučaju odgovara „životnom“ veku objekta koji može biti veoma dug (duži od 100 godina).

- Funkcionalna neadekvatnost – kada njegova geometrija ili nosivost ne zadovoljavaju aktualne zahtevte, te se most zatvara za saobraćaj, iako su njegove konstrukcije u dobrom stanju.

Funkcionalni vek mosta manji je od konstrukcijskog (25-50 godina), naročito u zemljama sa znatnim porastom saobraćajnog opterećenja. Adekvatnom primenom odgovarajućih mera održavanja, popravki, sanacija i rekonstrukcija, mostovske konstrukcije mogu se održavati u dobrom stanju, sve dok ne dostignu neki optimalni vek, tzv. ekonomski vek, posle koga se stavlja van upotrebe. Ekonomski vek definiše se kao period posle koga intervencije na održavanju, popravkama ili rekonstrukciji nisu isplative u poredenu s cenom novog mosta. Ekonomske vek jesti i cilj kome se teži u toku eksploatacionog veka nekog objekta.

Na slici 1 predstavljene su dužine trajanja pojedinih ciklusa u životu nekog mosta [OECD 1992], gde je:

- F – funkcionalni vek mosta
- E – ekonomski (optimalan) vek
- L – eksplotacioni vek
- S – konstrukcijski vek

Slika 1. Dužine trajanja pojedinih ciklusa eksplotacije mosta

Figure 1. Durations of individual cycles of bridge service

Eksplotacioni vek zavisi od konstrukcijske adekvatnosti (50-100 godina) i funkcionalne adekvatnosti (25-50 godina). To znači da optimalni vek zavisi i od konstrukcijskog i od funkcionalnog veka i najčešće je kraj od prvog a duž od drugog.

Konstrukcijski i funkcionalni vek nisu direktno međusobno zavisni, jer vitkije mostovske konstrukcije imaju brže pogršavanje stanja od masivnih konstrukcija. S druge strane, konstrukcijski vek može se produžiti blagovremenim i kvalitetnim održavanjem i popravkama, a takođe se može privremeno prihvatiti funkcionalna neadekvatnost u određenim situacijama. Isto tako, za

The anticipated time period within the mentioned properties that should be provided is called design service life of the structure, and in practice it is the time span since commissioning of a structure (opening it for traffic) to closing down. The most common reasons necessitating closing down of a bridge for traffic [OECD 1992] are:

- Structural inadequacy of old bridges, caused by the deficiencies which lead to the decline of bridge structure stability, and reduced safety. The structural life of a bridge, which corresponds with the service life of the structure, can be very long (over 100 years).

- Functional inadequacy, when the bridge geometry or bearing capacity fails to meet current requirements, so it is closed down even though its structure is in good condition.

Functional life of bridge is shorter than the structural life (25 - 50 years), especially in the countries with a significant increase of traffic load.

Adequate implementation of appropriate maintenance, repairs, restoration and reconstruction, may keep the bridge structures in good conditions, until they reach an optimum life, the so called, economic life, after which they are decommissioned. The economic life is defined as a period after which the maintenance, repair and reconstruction interventions cease to be cost-effective in comparison with the cost of a new bridge. The economic life is also a goal to be reached during service life of a structure.

In figure 1, durations of certain cycles in the life of the bridge [OECD 1992] are represented, where:

F – funkcionalni vek mosta
E – ekonomski (optimalan) vek
L – eksplotacioni vek
S – konstrukcijski vek

Service life depends on the structural adequacy (50 - 100 years) and functional adequacy (25 - 50 years). This means that optimum life depends both on structural and functional lives and most often it is shorter than the former and longer than the latter.

Structural and functional lives are not directly mutualy dependent, because slender bridge structures deteriorate faster than massive structures. On the other hand, structural life can be prolonged with timely and quality maintenance and repairs, and also, functional inadequacy can be temporarily acceptable in certain situations. Also, for the proposes of normal traffic and
normalno odvijanje saobraćaja i potrebnu sigurnost korisnika, podjednako je značajna adekватnost – kako u konstrukcijskom, tako i u funkcionalnom pogledu. U tom smislu, treba naglasiti njihovu međusobnu povezanost i uslovljenost, te odrediti neophodno potrebne mere za istovremeno obezbeđenje i konstrukcijske i funkcionalne adekватnosti.

Sigurnost i upotrebljivost jesu osnovna svojstva mostovskih konstrukcija da neprekidno očuvaju upotrebljivost, odnosno radnu sposobnost, u toku nekog perioda (eksploatacionog veka). Uz obezbeđenje potrebne trajnosti za odgovarajući nivo pouzdanosti, ona daju osnovni imperativ koreknog oblikovanja i konstruisanja savremene populacije mostova u svetu. Međutim, nemoguće je postići apsolutnu sigurnost, većitu trajnost ili sasvimnu upotrebljivost, ali zato moramo težiti stanju optimuma.

Izuzetno je značajno da se uveđe efikasnije održavanje postojećih mostova – kako bi se izazlo u susret javnom interesu, te je zbog toga razvijen sistem upravljanja mostovima.

3 SISTEM UPRAVLJANJA MOSTOVIMA

Danas širom sveta postoje mnogobrojne mostovske konstrukcije, različitih namena, koje su izgrađene u raznim sredinama, različitim vremenima, od raznorodnih materijala, raznovrsnih oblika, sistema, raspona i dimenzija. S druge strane, preventivnom održavanju ovih objekata – kao optimalnom rešenju iz tehničkog, organizacionog i ekonomskog aspekta – nije se posvećivala neophodna pažnja onoliko koliko je to potrebno, naročito kada je reč o našem području. Uočen je permanentni porast oštećenja na mostovima, uz enormni pad efikasnog upotrebljivosti, duljim vekom održavanja saobraćaja na putevima i razni oboljetnosti, pa su čak i značajni mostovi u svetu [Pakvor, Bajić et al, 2000].

Mostovske konstrukcije dostižu svoj eksploataцион vek kada troškovi njihovog daljeg održavanja u stanju poželjne sigurnosti, upotrebljivosti i trajnosti postanu veći od troškova održavanja koji su smatrani prihvatljivim u toku tog eksploataционog veka.

Sadašnje okolnosti ne omogućavaju neograničena ulaganja s bilo koje tačke gledišta, pa je zajednički problem svih zemalja taj da u svojoj saobraćajnoj infrastrukturi bude adekvatna i sigurna. Međutim, kao i u većinom svijetu, problem koji se javlja u Hrvatskoj odgodno je upozorenje na potrebu za adekватnim, sigurnošću i trajnošću, u svrhu obezbeđenja te je potreba za uspostavom i implementacijom u svrhu obezbeđenja te je potreba za uspostavom i implementacijom naših mostova.

Sa sadašnjeg stanja troškova održavanja postojećih mostova, te očekivanja i očekivanja javnog interesu, treba se posvećivati optimizišanu i adekватno održavanju postojanih infrastrukturalnih objekata. U to su uključeni i mostovi, koji se smatraju posebno posebno važnim posjedom svakog našeg društva i jedinstva.

Danasšnja situacija izaziva veću nezadovoljstvu javnosti, međutim, održavanje postojećih mostova sito se na veću trajnost ili savršenu upotrebljivost, ali zato moramo težiti stanju optimuma.

3 BRIDGE MANAGEMENT SYSTEM

There is a large number of bridge structures worldwide, having various uses, built in most diverse environments, times, materials, forms, systems, spans and dimensions. On the other hand, preventative maintenance of these structures, as an optimum solution from the technical, organizational and economical aspects, was not paid due attention, especially in our parts. A permanent increase of damage on the bridges was detected, followed by the enormous decrease of bearing capacity and safety, and there were even collapses of some very important bridges in the world [Pakvor, Bajić et al, 2000].

Bridge structures reach their service life when the cost of their further maintenance in the condition of required safety, serviceability and durability exceed the maintenance cost considered acceptable in the course of the service life.

Present day circumstances hinder unlimited investments of any kind, so the common problem off all the countries is how to invest in their transportation system in the most useful and efficient way. It was a motivation to take a number of steps in the direction of defining the problem, determining the current condition, setting a goal and finding ways to obtain optimum results using appropriate research and techno-economical analyses. Correct investment results in reduction of total costs and provides preservation of investments for a long period of time. For this reason, it is crucial to introduce a more efficient maintenance of existing bridges, in order to satisfy the public interest.

On one hand, bridges are susceptible to deterioration due to aging of structural elements and constitutive materials, and on the other hand, their long decommision for the purposes of restoration, reconstruction or replacement can cause very adverse disturbances of traffic on the roads and railways. Poor condition of bridges is considerably contributed by very poor organization and efficiency of the existing capacity, as well as the inexperience in management.

Accordingly, it is necessary to possess an efficient bridge management system, and to use it to reach...
sistemom upravljanja mostovima i na osnovu njega doneti razumne i utemeljene odluke o raspodeli sredstava, sa tačne gledišta očuvanja saobraćajnih pravaca i okoline, uz poštovanje postojećih okolnosti. Na značaj primene sistema upravljanja mostovima direktno ukazuju nedostaci i oštećenja mostovskih konstrukcija, što u prvom redu jesu posledice neblagovremenog i neadekvatnog održavanja. Nedostaci nastaju prilikom planiranja, projektovanja i građenja, a oštećenja nastaju tokom upotrebe mostovskih konstrukcija.

Ovakav problem zahtevao je efikasan sistem upravljanja mostovima koji će dati razumne i utemeljene odluke o raspodeli sredstava u uslovima veoma ograničenih fondova i budžeta.

Savremeni procesi planiranja, projektovanja, izgradnje i eksploatacije mostova danas se ne mogu zamisliti bez adekvatnog sistema upravljanja mostovima.

U takvoj situaciji neophodno je primeniti globalni pristup upravljanju mostovima, te planiranjem i koordinacijom relevantnih aktivnosti povećati efikasnost upravljanja tokom celokupnog eksploatacionog veka.

Upravljanje mostovima jeste proces kojim se nadgledaju, prate, održavaju i popravljaju učena pogoršanja stanja mostovskih konstrukcija, s raspoloživim sredstvima u toku proračunskog upotrebnog veka. Proračunski upotrebni vek je pretpostavljen razdoblje korištenja mostovskih konstrukcija, uz redovno održavanje, uz elementi ili nezaposlenost konstruktivnih elemenata mostovskih konstrukcija, kao i oštećenje od strane velikih popravki.

Problematica upravljanja mostovima uključuje celokupni eksploataciono (životni) vek mostovskih konstrukcija, počev od koncepta i osnovnih prethodnih studija, preko procesa projektovanja, građenja, eksploatacije i gazdovanja, tj. održavanja, tokom adaptacije, sanacije, rekonstrukcije i na kraju njihove zamene ili uklanjanja. Stoga, upravljanje kao poslovni proces zahteva multidisciplinarni pristup i poznavanje svih tehničkih i drugih netehničkih disciplina. Krajnji cilj jest optimalno zadovoljenje filozofije trajnosti, tj. postići maksimum učinka s minimumom uloženih sredstava. Upravo zato, upravljanje mostovima i njihovo adekvatno održavanje, jeste perspektivan posao u savremenom građevinarstvu.

Strategija razvoja sistema upravljanja mostovima u svetu bazirana je na metodologiji za razvoj sistema optimizacije i korišćenja resursa u procesu upravljanja i održavanja mostova. To uključuje stanje mostovskih konstrukcija, njihov kapacitet nosivosti, stepen oštećenja odnosno dotrajanost konstitutivnih elemenata mostovskih konstrukcija, saobraćajne efekte, kao i popravke, sanacije i rekonstrukcije.

Koncepcija upravljanja mostovima počeo je da se razvija u svetu ne tako davno, da bi se izaslo u susret svim tim rastućim potrebama. Prvi sistemi upravljanja mostovima u svetu počeli su da se razvijaju od 1970. godine [Gligorijević, 2016].

Jedna od prvih zemalja koja je uvela sistematsko, dobro isplanirano i organizovano istraživanje u sferi upravljanja mostovima jeste Amerika. U SAD, od početka izgradnje sistema mreže međudržavnih autoWRITEerville, sredinom pedesetih godina prošlog veka, federalna sredstva izdvajana su samo za novogradnju, proširenje i jačanje infrastruktura. Shodno tome, aktivnosti na održavanju, revitalizaciji i obnavljanju postojeće infrastrukture bile su prilično ograničene ili odlagane od strane državnih organa. Ovakve zaostale potrebe ulaganja u postojeću infrastrukturu SAD, a koje
nisu dobile dovoljnu pažnju, doprinijele su permanentnom pogoršanju stanja svih konstrukcijskih elemenata objekata postojeće infrastruktura SAD.

Prvi programi za upravljanje mostovima u SAD datiraju još iz ranih sedamdesetih godina XX veka. Posljedice rušenja više mostova u SAD, prvo Silver mosta 1967. godine [15], a potom i drugih kapitalnih mostova, kao i sve veći jaz između raspoloživih sredstava i potreba nacionalne mreže mostova Amerike, uticali su na stimulisanje povećanog obima istraživanja ove problematike i na razvoj sistema upravljanja mostovima sredinom osamdesetih godina. Ubrzo nakon toga, 1991. godine, intermodalni zakon o efikasnosti transporta u SAD nalaže državama potrebu da razviju i implementiraju sisteme upravljanja mostovima. Sistemi upravljanja mostovima u većini država SAD razvijeni su sredinom devedesetih godina XX veka [Small,1999].

Danas, američke državne transportne agencije uspostavile su programe inspekcija mostova i većina njih je implementirana u savremen sistem upravljanja mostovima AASHTOWare Bridge Management (ranije Pontis). U svetu, posljednjih godina znatno se povećava broj država koje su razvile i koje koriste sistem upravljanja mostovima.

Savremen sistem upravljanja mostovima sadrži procenu stanja mostova, modeliranje budućeg pogoršanja stanja i ponašanja, kao i module za donošenje odluka u pogledu toga kako najekonomičnije održavati, popravljati i obnavljati mostovske konstrukcije. Očuvanje bitnih svojstava mostovskih konstrukcija u toku njihovog životnog veka predstavlja permanentalni zadatak sistema upravljanja mostovima. Prema podacima iz bogate prakse upravljanja razvijenih zemalja, plansko održavanje kroz ekspanzacijski (životni) vek konstrukcija mosta zahteva ulaganja približno 2% do 3% investicione vrednosti godišnje.

U Srbiji, generalno posmatrano, usled dugogodišnjeg nedovoljnog ulaganja u održavanje i rekonstrukciju mostova, stanje mostova može se oceniti kao neprihvatljivo, naročito kada je u pitanju njihova starost. Redovno održavanje uglavnom je primitivno, tako da se ubrzava starenje konstrukcijskih elemenata i pogošava stanje mostova, a veće popravke i sanacije gotovo su jedini vid aktivnosti i obavljaju se u bezizlaznim situacijama.

Osnovni savremeni Sistem upravljanja mostovima u Srbiji uveden je 1986. godine, kao originalan i za to vreme izuzetno moderan sistem [Bebić, 1986]. Za potrebe kvalitetnog upravljanja mostovima i primene ovog sistema na teritoriji Republice Srbije formirana je elektronska baza podataka o mostovima (BPM), koja u svakom trenutku pruža sve potrebne informacije o traženim mostovskim konstrukcijama, na osnovu ugrađenih inspekcijskih pregleda. Cilj formiranja baze podataka o mostovima bio je da se prikupi raspoložive informacije o mostovskim konstrukcijama radi ustanovljavanja prioriteta u održavanju mostova i razvoja sistema upravljanja mostova u Srbiji.

Upravljavanje prioriteta u aktivnostima održavanja mostovskih konstrukcija treba shvatiti kao odgovor na neadekvatna finansijska sredstva koja su izdvojena za održavanje mostova u uslovima opšte političke i ekonomske situacije u Srbiji posljednjih decenija. Od 1991. godine, primenjivana je verzija SR - 02, koja sadrži inventarske podatke i podatke o stanju mostova u trenutku pregleda. Da bi se olakšao rad na unošenju existing infrastructure were quite limited or postponed by the state authorities. Such absence of investment into the existing infrastructure of the USA, lacking adequate attention, led to permanent deterioration of all the structural elements of the existing infrastructure in the USA.

The first bridge management programs in the USA date back to the early 1970’s. Collapse of several bridges in the USA, first the “Silver” bridge in 1967 [15], and then of other capital bridges, and the growing gap between the available resources and needs of national network of the USA bridges stimulated increased research of this issue and gave rise to the development of bridge management system by the mid 1980’s. Soon after that, in 1991, the intermodal law on efficiency of transport in the USA obliges the states to develop and implement the bridge management systems. Bridge management systems in the majority of the USA states were developed in the mid 1990’s [Small,1999].

Nowadays, state transport agencies in the USA, established bridge inspection programs, and most of them are implemented into the contemporary bridge management system AASHTOWare Bridge Management (earlier Pontis). In the world, recently, the number of states which developed or are developing bridge management system is increasing considerably.

Contemporary bridge management system contains bridge condition assessment, modelling of the future deterioration and behaviour and modules for decision making about most cost-efficient ways of maintenance, repair and renewal of bridge structures.

Preservation of the important properties of bridge structures during their service life represents a permanent task of bridge management systems. According to the data from the extensive experience of management in the developed countries, planned maintenance during the service life of bridge structures requires investments of approximately 2% to 3% of the investment value annually.

In Serbia, generally speaking, due to the long lasting lack of investment into maintenance and reconstruction of bridges, the bridge condition can be evaluated as unacceptable, especially in terms of their age. Regular maintenance is mostly primitive, which accelerates ageing of structural elements and deteriorates the bridge condition, and large repairs and restorations are almost the only form of activities, and they are performed in the situations when they remain the only alternative to closing down the bridge.

The basic contemporary Bridge management system in Serbia was introduced in 1998 as original, and it was a modern system for the time [Bebić, 1996]. For the needs of quality management of bridges and implementation of this system in the territory of the Republic of Serbia, an electronic database of bridges was formed (BPM), which at any moment provided all necessary information about the researched bridge structures on the basis of performed inspections. Formation of the data base had a goal to collect the available information about bridge structures in order to establish a priority in bridge maintenance and development of bridge management system in Serbia.

Establishing priorities in the bridge structure maintenance activities should be understood as a response to inadequate finances which were allocated for bridge maintenance in the general political and
For the needs of research in the doctoral dissertation, the author of this paper formed a database for bridge structures in the city transport of Niš in 1997, after producing the Analysis of bridge condition [Gligorijević et al., 1997]. Since 1998, he has been monitoring deterioration of the condition of those bridges on the basis of performed periodical control, as well as regular and main inspections of bridge structures in the city of Niš. Importance of these bridges demanded an approach which provided an equally timely and cost-effective maintenance and repair, that was strengthening and/or replacing these structures.

After every inspection, using methodology proposed in the doctoral dissertation [Gligorijević, 2016], condition of all the bridge elements in the data base was assessed, i.e. their rating was made, which was used for making rank-lists of priority activities and necessary interventions. The analysis of the obtained rank-lists of priorities showed that there were no considerable changes between two regular inspections (2 year interval), if there were no maintenance activities in that period. Since restorations and repairs of some affected bridges on the main traffic routes of Niš were performed in the 1999-2002 period, that is, before the second main inspection of 2003 and they were not performed later; this paper shows the rating of the bridges after the main inspections. (6 years interval).

Global condition of bridge structures after inspection of 1997 is presented in figure 2.

The first on the rank list, the “Mramor”, bridge had an extremely high rating, and demanded urgent restoration, because its stability was at risk due to the erosion of the riverbed in the zone of the medium pier S2, which was indicated in the Analysis of 1997. Also, the superstructure elements were badly damaged [Gligorijević et
Most „Mladosti“, nakon NATO agresije 1999. godine i rušenja mostova na autoputu u okolini Niša, primio je celokupni saobraćaj koridora X, što je dodatno pogoršalo stanje mosta [Gligorijević, 2002], pa je zbog ugrožene stabilnosti urgentno rekonstruisan i ojačan prethodno napregnutim karbonskim trakama 2001. godine [Gligorijević, 2007]. Most u ulici „12. Februar“, bombardovan je 1999. godine i obnovljen iste godine [Gligorijević, 2002].

Na taj način, najugroženiji mostovi s vrha ove rang-liste bili su popravljeni do sledećeg glavnog pregleda mostova na gradskim saobraćajnicama Niša. Može se reći da je splet okolnosti značajno uticao na to da se najviše oštećeni mostovi poprave i da se ispoštuje data rang-lista prioriteta.

Most kod Vrežinskog bazena, koji se nalazi na perifernoj gradskoj saobraćajnici s manjim intenzitetom saobraćaja, ostavljen je da čeka svoju popravku u narednom periodu, dok Tvrdavski most – kao četvrti na ovoj rang-listi – svojim rejtingom skreće na sebe pažnju, jer je u samom centru grada, neposredno ispred ulaza u Nišku tvrđavu.

Globalno stanje mostovkih konstrukcija, nakon inspektionskog pregleda 2003. godine, s novoizgrađenim mostovima iz 2005. godine, prikazano je na slici 3.

After NATO aggression of 1999 and destruction of bridges on the highway near Niš, the “Mladosti” bridge received the entire corridor X traffic, which additionally aggravated its condition [Gligorijević, 2002]. Therefore, due to the endangered stability it was urgently reconstructed and strengthened using pre-stressed carbon strips in 2001 [Gligorijević, 2007]. The bridge in “12. Februar” street was bombed in 1999 and renewed in the same year [Gligorijević, 2002].

In this way, the most critical bridges from the top of this rank-list were repaired until the next main inspection of bridges on the main transport routes of Niš. It can be said that owing to a turn in events the bridges that were most damaged were repaired, and the rank-list of priorities was observed.

The bridge next to the Vrežina swimming pool, which is on the peripheral city route with a low intensity of traffic, was left to wait for its repair in the next period, while the Fort bridge, as the fourth on this rank-list draws attention to itself by its rating, since it is located in the centre of the city, immediately in front of the gate of the Fort.

Global condition of bridge structures after inspection of 2003 with newly constructed bridges of 2005 is presented in figure 3.
Napredovanje procesa pogoršanja stanja Tvrdavskog mosta, naročito montažnih adheziono prethodno napregnutih betonskih talpi pešačkih staza, umnogome je povećalo reting čeličnog mosta ispred Tvrdave u Nišu, tako da ovaj most ostaje na prvom mestu rang liste prioriteta 2009. godine. Prvo incidentno urušavanje dela pešačke staze desilo se junu 2008. godine [Gligorijević, 2009], a koje je „sanirano” zamenom oštećene adheziono prethodno napregnute talpe arminobetonskom.

I pored ove iznuđene intervencije, čelični most u centru Niša svojim izuzetno visokim retingom i prvom mestom na rang-listi prioriteta, nakon izvršenog glavnog pregleda mostova 2009. godine, zahtevao je hitnu i ozbiljnu popravku. Nažalost, to se nije desilo, te 2014. godine dolazi do novog, znatno većeg urušavanja uzvodne pešačke staze. Krajem 2014. godine i početkom 2015. montažne talpe zamenjene su živenim betonom armiranim čeličnim vlaknima. Već u proljeće 2015. godine, novoizgrađena pešačka staza pokazala je brojne prsline. Iako su uočena oštećenja, glavnim inspekcijskim pregledom 2015. godine nove pešačke staze ocenjene su najboljom ocenom („dobro”), ali je pogoršanje stanja ostalih nosećih elemenata ovog mosta uticalo da njegov reting 2015. godine bude izuzetno visok i da most ostane na prvom mestu rang liste prioriteta.

U periodu od 2009. godine do 2015. godine, nije bilo nikakvih drugih intervencija koje bi popravile stanje na ostalim mostovskim konstrukcijama iz baze podataka mostova u gradu Nišu. Globalno stanje mostovskih konstrukcija, nakon inspekcijskog pregleda 2015. godine, prikazano je na slici 5.

Advance of deterioration of the Fort bridge, and especially of pre-fabricated pre-stressed concrete structures of pedestrian sidewalks, significantly increased the rating of the steel bridge in front of the Fort in Niš, so this bridge remained on the top of the rank-list of priorities of 2009. The first incidental collapse of a part of pedestrian sidewalk occurred in June 2008. [Gligorijević, 2009], which was “repaired” by replacing the adhesion pre-stressed element with an reinforced-concrete one.

Notwithstanding this forced intervention, the steel bridge in the centre of Niš, with its extremely high rating and the first place on the rank-list of priorities after the main inspection of bridges of 2009 required an urgent and serious repair. Unfortunately this did not happen, and in 2014 there was a new, considerably larger destruction of the upstream pedestrian sidewalk. By the end of 2014 and beginning of 2015, prefabricated elements were replaced with steel fibber reinforced cast concrete. As early as in spring 2015, newly built sidewalk exhibited numerous cracks. Even though the damage was detected, the main inspection of 2015 evaluated the new sidewalks with the best mark – “good”, but the deterioration of other bearing elements of this bridge made its rating of 2015 extremely high, and the bridge remained at the first place of the rank-list of priorities.

In the from 2009 to 2015 there were no other interventions which would improve the condition of the remaining bridge structures listed in the database of bridges in the city of Niš.

Global condition of bridge structures after inspection of 2015 is presented in figure 5.

Notwithstanding the performed works on replacement of concrete slabs of pedestrian sidewalks on the bridge opposite the entrance to the Niš fortress, it remains on the first place of the rank-list of priorities after the inspection of 2015 because it has an extremely high rating (in the class of bridge condition rating 6), which calls for an urgent repair of bearing structural elements, i.e. maintenance type 6.

On top of the rank-list of 2003, there are two extremely important bridges, the already mentioned Fort bridge in the centre of the city and the bridge near the “Skull tower”. However, in the following period, no activities including repair and maintenance of bridges in Niš were undertaken.

Global condition of bridge structures after inspection in 2009 is presented in figure 4.

Slika 4. Broj i procenat mostova za svaki tip održavanja nakon pregleda 2009. godine

Figure 4. Number and percentage of bridges for each type of maintenance after 2009 inspection

Advance of deterioration of the Fort bridge, and especially of pre-fabricated pre-stressed concrete structures of pedestrian sidewalks, significantly increased the rating of the steel bridge in front of the Fort in Niš, so this bridge remained on the top of the rank-list of priorities of 2009. The first incidental collapse of a part of pedestrian sidewalk occurred in June 2008. [Gligorijević, 2009], which was “repaired” by replacing the adhesion pre-stressed element with an reinforced-concrete one.

Notwithstanding this forced intervention, the steel bridge in the centre of Niš, with its extremely high rating and the first place on the rank-list of priorities after the main inspection of bridges of 2009 required an urgent and serious repair. Unfortunately this did not happen, and in 2014 there was a new, considerably larger destruction of the upstream pedestrian sidewalk. By the end of 2014 and beginning of 2015, prefabricated elements were replaced with steel fibber reinforced cast concrete. As early as in spring 2015, newly built sidewalk exhibited numerous cracks. Even though the damage was detected, the main inspection of 2015 evaluated the new sidewalks with the best mark – “good”, but the deterioration of other bearing elements of this bridge made its rating of 2015 extremely high, and the bridge remained at the first place of the rank-list of priorities.

In the from 2009 to 2015 there were no other interventions which would improve the condition of the remaining bridge structures listed in the database of bridges in the city of Niš.

Global condition of bridge structures after inspection of 2015 is presented in figure 5.

Notwithstanding the performed works on replacement of concrete slabs of pedestrian sidewalks on the bridge opposite the entrance to the Niš fortress, it remains on the first place of the rank-list of priorities after the inspection of 2015 because it has an extremely high rating (in the class of bridge condition rating 6), which calls for an urgent repair of bearing structural elements, i.e. maintenance type 6.
Druge strane mostu na rang-listi prioriteta u 2015. godini zadržao je most kod Čele-kule, ali sa znatno većim rešenjem, čime ulazi u klasu rešenja stanja mosta 6 i takođe zahteva „hitnu sanaciju” nesrećnih konstrukcijskih elemenata, odnosno tip održavanja 6. Treba naglasiti i to da je ovaj most na rang-listama prioriteta bio na drugom mestu još nakon pregleda 2009. godine, ali od tada nisu preduzetne nikakve aktivnosti da se most popravi. Na trećem mjestu, na rang-listama prioriteta 1997. godine, 2009. godine i 2015. godine, nalazi se most kod Vrežinskog bazena, koji je sagrađen u Karpoš sistem i ima ugroženu stabilnost zbog velikog oštećenja donjeg stroja mosta. Često se govori da je upravljanje mostovima veština iznalaženja najboljih odgovora na pitanja: šta? (what?), gde? (where?) kada? (when?) i pošto? (how much?). Odgovore na prva dva pitanja daje baza podataka inventara mostova i zapisnik o pregledu mosta, ako je registrovao štete. Odgovor na druga dva pitanja daje sistem upravljanja, primenom inženjerskog prosuđivanja (engineering judgment) i ekonomske analize (economic considerations). Formirane rang-liste prioriteta daju najbolje odgovore na prva tri osnovna pitanja sistema upravljanja mostovima: šta? (what?), gde? (where?) i kada? (when?), jer su pregledi svih mostovskih konstrukcija sa ovih rang-lista vršeni redovno, na osnovu kojih su određene klase rešenja stanja za iste vremenske preseke.

5 MODELI POGORŠANJA STANJA MOSTOVSKIH KONSTRUKCIJA

Pogoršanje stanja elemenata mostovskih konstrukcija jeste proces smanjenja njihovih svojstava pri normalnim uslovima rada. Pogoršanje stanja pokazuje složene fenomene fizičkih i hemijskih promena koje se dešavaju u različitim komponentama mostovskih konstrukcija. Svaki element mosta ima svoju jedinstvenu stopu pogoršanja, što čini problem komplikovanijim. Pouzdanije i precizno prognoziranje brzine napredovanja procesa pogoršanja stanja, za svaki element mostovskih konstrukcija, od presudnog je značaja za uspeh bilo kog sistema upravljanja mostovima.

Za prognoziranje i preduviđanje stanja konstitutivnih elemenata mostova u nekom budućem trenutku, neophodan je teorijski model procesa pogoršanja stanja

The second place on the rank-list of priorities in 2015 was kept by the bridge near the “Skull tower” but with a considerably higher rating which was also bridge condition class 6 and also required “urgent restoration” of bearing structural elements, maintenance type 6. It should be pointed out that this bridge was on the second place after inspection of 2009, but no activities were undertaken since then with the purpose of repairing the bridge.

In the third position, on the rank-lists of priorities of 1997, 2009 and 2015 was the bridge near the Vrežina swimming pool, which was built in Karpoš system and whose stability is endangered because of the extensive damage of the bridge substructure.

It is often said that the bridge management is a skill of finding the best answers to the following questions: what, where, when? and how much? The answers to the first two questions are provided by the database of bridge inventory and the bridge inspection report, if damage was detected. The answer to other two questions is provided by the management system, by implementing engineering judgment and economic considerations.

The formed rank-lists of priorities provide the best answers to three basic questions of the bridge management system: what, where? and when?, because inspections of all bridge structures from these rank-lists were performed regularly, on which basis the condition rating classes for the same time points were determined.
- starenja mosta. Modeli pogoršanja stanja elemenata mostovskih konstrukcija uvedeni su krajem osamdesetih godina XX veka, kako bi se predvidelo buduće stanje infrastrukturne imovine u funkciji očekivanih nivoa usluge. U studiji sprovedenoj u centru transportnih sistema (Transportation Systems Center - TSC) [Busa et al., 1985] u Kembridžu, ispitivani su faktori koji utiču na pogoršanje stanja elemenata jednog mosta. Studija je zaključila da najutjecajniji faktori koji utiču na pogoršanje stanja mostovskih konstrukcija jesu starost, intenzitet saobraćajnog opterećenja, uslovi okoline sredine, parametri korišteni pri projektovanju i proračunu konstrukcijalnih elemenata mosta, kao i kvalitet korišćenih materijala i kvalitet same izgradnje. Prema izveštaju FHWA [USDOT/FHWA, 1989], većina istraživanja ukazala je na to da indeksi pogoršanja stanja pokazuju značajne promene u prvih nekoliko godina eksploatacije, a da kasnije imaju tendenciju da predvide sporiji pad rejtinga stanja mostovskih konstrukcija.

Modeliranje procesa pogoršanja stanja veoma je kompleksno i složeno, jer je mnogo faktora koji utiču na ovu pojavu, zbog čega se u mnogim zemljama posvećuje velika pažnja tom problemu. Različite tehnike prijenos raznih prihoda za prognoziranje pogoršanja stanja mostovskih konstrukcija. U principu, modeli koji se preduzimaju proračunavanja mostovima. Modeli kojima se prognoziraju pogoršanje stanja mostovskih konstrukcija tokom vremena od ključnog su značaja za efikasan proračun i održavanja. To naročito dolazi do izražaja u procesu planiranja i održavanja potrebnih aktivnosti i odgovarajućih finansijskih sredstava. Mogaćnost prognoziranja procesa pogoršanja stanja osnovnih tehničkih i funkcionalnih karakteristika mosta, kao i procena preostalog servisnog veka, izuzetno su važni ulazni podaci za sistem upravljanja mostovima. Modeli kojima se prognozira pogoršanje stanja mostovskih konstrukcija koriste u projektovanju i proračunu konstrukcija, ali i kvalitet korišćenih materijala i kvalitet same izgradnje. Prema FHWA [USDOT/FHWA, 1989], većina istraživanja ukazala je na to da indeksi pogoršanja stanja pokazuju značajne promene u prvih nekoliko godina eksploatacije, a da kasnije imaju tendenciju da predvide sporiji pad rejtinga stanja mostovskih konstrukcija.

Kada postoji ažurna baza podataka sa inspekcijskih pregleda mostovskih konstrukcija, može se definisati vreme zadržavanja mostova u pojedinom stanju. Deterninističkim modelom, na osnovu vremena zadržavanja mostova u određenoj klasiji rejtinga stanja, može se odrediti trajektorija pogoršanja stanja mostovskih konstrukcija i ustanoviti klasa rejtinga stanja mostova u budućnosti. Nove mostove konstrukcije polaze od klase rejtinga stanja „1“ i sukcesivno prolaze kroz svaku narednu klasu rejtinga, dok ne dostigne najgore stanje „6“. Na osnovu redovnih inspekcijskih pregleda promene stanja mostova u Nišu tokom vremena, ustanovljeno je vreme zadržavanja mostova u pojedinoj klasiji rejtinga i dobijena najkraća vreme potrebna da nov most stigne do nedopuštenog rejtinga stanja „6“, koje iza iznosi 42 godine, ukoliko se nikakva intervencija ne predviđa i da ne utiče na održavanje i popravke. Podrazumijeva se da mostove konstrukcije ne smiju da borave u klasiji rejtinga stanja „6“. Postavlja se ključno pitanje: koja društvena zajednica može sebi da dopusti da „zamenjuje“ mostove svakih četrdesetak godina?

Pogoršanje stanja mostovskih konstrukcija na gradskim saobraćajnicama Niša analizirano je i primenjeno na mostu. Modeli pogoršanja stanja mostovskih konstrukcija uvedeni su krajem osamdesetih godina XX veka, kako bi se predvidelo buduće stanje infrastrukturne imovine u funkciji očekivanih nivoa usluge. U studiji sprovedenoj u centru transportnih sistema (Transportation Systems Center - TSC) [Busa et al., 1985] u Kembridžu, ispitivani su faktori koji utiču na pogoršanje stanja elemenata jednog mosta. Studija je zaključila da najutjecajniji faktori koji utiču na pogoršanje stanja mostovskih konstrukcija jesu starost, intenzitet saobraćajnog opterećenja, uslovi okoline sredine, parametri korišteni pri projektovanju i proračunu konstrukcijalnih elemenata mosta, kao i kvalitet korišćenih materijala i kvalitet same izgradnje. Prema izveštaju FHWA [USDOT/FHWA, 1989], većina istraživanja ukazala je na to da indeksi pogoršanja stanja pokazuju značajne promene u prvih nekoliko godina eksploatacije, a da kasnije imaju tendenciju da predvide sporiji pad rejtinga stanja mostovskih konstrukcija.

Mogućnost prognoziranja procesa pogoršanja stanja osnovnih tehničkih i funkcionalnih karakteristika mostova, kao i procena preostalog servisnog veka, izuzetno su važni ulazni podaci za sistem upravljanja mostovima. Modeli kojima se prognoziraju pogoršanje stanja mostovskih konstrukcija tokom vremena od ključnog su značaja za efikasan proračun i održavanja. To naročito dolazi do izražaja u procesu planiranja i održavanja potrebnih aktivnosti i odgovarajućih finansijskih sredstava.
nom stohastičkih modela. Upotreba stohastičkih modela značajno doprinosi na polju modeliranja pogoršanja stanja infrastrukture, zbog izuzetno visoke neizvesnosti i slučajnosti koje karakterisu proces pogoršanja stanja konstrukcija. Najčešće korišćena tehnika za prognoziranje pogoršanja stanja infrastrukture je model Markovljevih lanaca. Markovljevi modeli pogoršanja stanja mostovskih konstrukcija zasnivaju se na konceptu definisanja stanja u smislu ocene stanja konstitutivnih elemenata mosta i dobijanja verovatnoće prelaza iz jednog stanja u drugo stanje. Pomoću Markovljevog lanca računa se verovatnoća da se element mosta ili mostovska konstrukcija u određenom trenutku vremena nade u određenom stanju. Stanja su diskrete kategorije. Broj stanja (stepena dotrajalosti) u kojima se Markovljev proces može naći je konačan (u ovom slučaju 6). Između dva sukcesivna inspekcijska pregleda moguće je prelazak iz boljeg stanja u gore stanje najviše za jedan nivo ocene stanja. Markovljevi procesi bi trebalo da ispunjavaju sledeće uslove [Collines, 1972]:

- sistem je definisan nizom konačnih stanja i može biti u jednom jedinom stanju u datom trenutku;
- poznato je početno stanje sistema i raspodela verovatnoće početnog stanja;
- pretpostavlja se da su verovatnoće prelaza stacionarne tokom vremena i nezavisne od načina kako je samo stanje bilo postignuto.

Verovatnoća prelaza

\[P_{ij} = P[X_t = i, X_{t+1} = j] \]

iz jednog stanja u drugo stanje, predstavljena je matricom \((n \times n)\) koja se naziva matrica verovatnoća prelaza \(P \), gde je \(n \) broj stanja. Oblik matrice verovatnoća prelaza jeste:

\[
P = \begin{bmatrix}
 p_{11} & p_{12} & 0 & 0 \\
 0 & p_{22} & p_{23} & 0 \\
 0 & 0 & p_{33} & p_{34} \\
 0 & 0 & 0 & \ddots
\end{bmatrix}
\]

U ovom slučaju, matrica verovatnoća prelaza \(P \) jeste kvadratna matrica 6. reda sa elementima \(p_{ij} \), gde je:

\[0 \leq p_{ij} \leq 1 \]

Svaki element u ovoj matrici \(p_{ij} \) predstavlja verovatnoću da će komponenta sistema napraviti prelazak iz stanja \(i \) u trenutku \(t \); u stanje \(j \) u trenutku \(t_{n+1} \); (tokom određenog prelaznog perioda).

Pretpostavlja se da tokom jednog diskretnog vremenskog razdoblja (od \(t \), do \(t_{n+1} \)), proces može ili ostati u istom stanju ili preći u prvo naredno više stanja, daje konačan oblik matrice verovatnoća prelaza.

Ako je sadašnje ili početno stanje poznato, tj. \(p(0) = [p_1(0), p_2(0), p_3(0), \ldots, p_n(0)] \), onda se buduće stanje može prevideti u svakom trenutku \(t \).

2 Андрей Андреевич Марков (14. 06. 1856-20. 07. 1922) bio je ruski matematičar i član Ruske akademije nauka. Najpoznatiji je po svojim istraživanjima u teoriji stohastičkih procesa, koja su posle postala poznata kao Markovljevi procesi.
Initial state probability vector is formed during the first series of bridge structures inspections. Future state probability vector is obtained by multiplying the vector of initial state probability \(p(0) \) with the transition probability matrix \(P \) to \(m \)-th power, as provided by the matrix equation (4).

\[
p(t_n) = p(0) \times P^m
\]

Where is:

\[
p(t_n) = [p_1(t_n), p_2(t_n), \ldots, p_n(t_n)]
\]

The obtained number of bridges in the condition rating class 6 is only provisional (it is comprised that bridge structures cannot dwell in the condition rating class "6", because "consistent implementation" of such "cheap" strategy – "do nothing" or "wait", will lead to their certain collapse. Therefore, using such "cheap" maintenance strategy "do nothing" which fails to incur any direct costs, will result in the shortest service life of the bridge. For these reasons, it is imperative to plan the bridge structure maintenance activities, which would extend the service life of the existing bridges with the reasonable costs. For this reason, further research and the activities of the author of this paper are directed towards the program of preventative maintenance, both at the individual and network level, selection and choice
selekciju i izbor strategija i programa za održavanje i rekonstrukciju, odnosno zamenu objekta na osnovu metode analize koštanja životnog ciklusa (life-cycle cost) i optimizacije radova, kao i na selekciju i manipulaciju ogromnog broja neophodnih podataka za sve mostove i mreži. Fokus ovih istraživanja je da se nađe odgovor na niz odgovora, ali i na situaciju u kojoj se može uvažiti bolje?", a u skladu s raspoloživim sredstvima, umesto dosadašnjeg menadžment pristupa „prvi najgori", s obzirom na to što je nivo finansiranja direktno po potreba za rekonstrukcijom i revitalizacijom svih neadekvatnih mostovskih konstrukcija u zemlji, kod kojih su utvrđeni određeni konstrukcijski i funkcionalni nedostaci.

7 ZAVRŠNE NAPOMENE

Sistem upravljanja mostovima obezbeđuje racionalizaciju pristupa svim aktivnostima koje se odnose na upravljanje mostovima kako na individualnom, tako i na mrežnom nivou. Najpkrošćenije obezbeđenje nosivosti, upotrebljivosti i trajnosti, uz zahtevi nivo pouzdanosti i sigurnosti postojećih mostova, veoma je značajna tema savremene projektantke prakse i naučnih istraživanja. U ovaj problem imat će se uvećava kada je reč o velikom broju saobraćajnih pristupa - mreži. Za razliku od tradicionalnog pristupa da se mostovi tretiraju ponaosob, a problemi rešavanja u trenutku kada već nastanu, sistem za upravljanje mostovima baziraju se na bankama podataka i imaju planski i organizovan pristup rešavanju problema na nivou mreže objekata.

Za obezbeđenje planskog i kvalitetnog optimalnog upravljanja mostovima, izuzetno je važno da odgovorna ličnost koja upravlja bazom podataka i rezultatima pregleda mostova, mora biti sertifikovani inženjer sa znanjem i iskustvom u projektovanju i revitalizacijom svih neadekvatnih mostovskih konstrukcija. Upravljanje mostovima i drugim objektima u sklopu saobraćajne mreže, veoma je kompleksan sistem s velikim brojem izuzetno raznovrsnih, ali međusobno uskoro povezanih i zavisnih aktivnosti.

Problematica se povećava shodno veličini mreže, rastu obima saobraćaja, promeni transportnih sredstava, zatim različitoj osetljivosti konstrukcija i okoline, kao i i istorijskom nasledju koje se prenosit će legende u prevazidženim metodama projektovanja i građenja, sanacije, rekonstrukcije i održavanja. Na primer, korišćenje dilatacionih sprava za sprečavanje prekomernih odvajanja ili strošak saobraćaja, udobnosti, kao i troškova održavanja, a veoma je značajna tema savremene projektantke prakse i naučnih istraživanja.

7 CLOSING REMARKS

Bridge management system provides a rational and systematic approach to all activities which relate to bridge management, both on an individual and the network level. The most cost-effective provision of bearing capacity, serviceability and durability, with the required level of reliability and safety of the existing bridges is a very important topic of contemporary designer practice and scientific research. This problem considerably rises the question about the integral transportation system network. As opposed to the traditional approach that bridges are treated individually, and problems are solved when they occur, the bridge management systems are based on databases and have a well planned and organized approach to problem solving at the level of structure network.

For provision of the planned and good quality optimum bridge management, it is very important to have a certified engineer with knowledge and experience in designing and building bridge structures as a responsible person who manages the database and bridge inspection results.

Management of bridges and other structures within a transportation network is very complex system with a high number of extremely diverse but mutually closely connected and dependent activities.

The complexity of the problem increases according to the size of network, rise of traffic frequency, change of transport vehicles, different sensibility of structures and environment and to the historical legacy which primarily means obsolete methods of designing and building, restoration, reconstruction and maintenance. For instance, usage of expansion devices prevention of excessive longitudinal displacements and forces on the long railway bridges is a costly and poor solution in terms of traffic safety, comfort and maintenance cost [16]. For this reason, alternative solutions in accordance with the structural design are implemented. In such cases, the management decisions cannot be based on the intuitive assessment and judgment. They should be necessarily based on the results of the key elements of comprehensive management system able to provide a forecast to the wide social community of all the consequences of delaying and doing nothing regarding the bridge structure maintenance. Current results indicate the need for a new research and adoption of adequate maintenance strategy, that is, a planned and systematic approach in the field of bridge management. The way in which this approach is realized is determined.
by the development of the bridge management system, and the success of management greatly depends on the choice and consistent performance of all the relevant activities comprising this system.

8 LITERATURA
REFERENCES

[1] Gligorijević M.: "Optimizacija sistema upravljanja mostovima", doktorska disertacija, Niš, 2016.
[2] Bebić D.: "Predlog postupka određivanja prioriteti u održavanju mostova", Bilten Instituta za Puteve, Vol. 15, Issue 15, str. 45-56, UDK 625.7/8 Beograd, 1986.
[3] Gligorijević M. et al.: "Elaborat o stanju mostova na gradskim saobraćajnicama Niša", 06 broj 26/2-17, 08.09.1997. Institut za građevinarstvo i arhitekturu, Građevinski fakultet Niš, 1997.
[4] Gligorijević M., Petković D.: "Oštećenja konstrukcija dramskog mosta preko reke Južne Morave kod Niša i njihova sanacija", R - 6, str. 51 - 56, JGDK, 11. Kongres, Vrnjačka Banja, 2002.
[5] Gligorijević M.: "Prikaz oštećenja armiranobetonskih konstrukcija mosta Mladosti u Nišu", str. 349 - 354, JDIIMK, XXII Kongres, Niška Banja, Oktobar 2002.
[6] Gligorijević M.: "Application of the bridge management systems at the example of the »Mladost« bridge in Nis", Jubilee Scientific Conference of UACEG, p. 161-167, Sofia, 2007.
[7] Gligorijević M., Spasojević N.: "Oštećenja, sanacija i rekonstrukcija, armiranobetonskih konstrukcija dramskog mosta u ulici 12. Februar u Nišu", str. 355-360, JDIIMK, XXI, Niška Banja, 2002.
[8] Gligorijević M.: "Sistem upravljanja mostovima na primeru celičnog mosta u centru Niša", str. 123 - 128, Zbornik radova VI savetovanja "Ocena stanja, održavanje i sanacija građevinskih objekata i naselja", Divčibare, 19 - 22. maj 2009.
[9] OECD: "Bridge Management", Road transport research, OECD, Paris, 1992.
[10] Pakvor A., Bajić D., Buđevac D., Darijević Ž., Stojanović N.: "Sistem upravljanja mostovima - Tehnički, organizacioni i ekonomski aspekti održavanja sanacija i ojačanja", Monografija, Građevinski Fakultet, Beograd, 2000.
[11] Busa, G, Cassella, M, Gazadia, W, Horn, R.: "A National Bridge Deterioration Model", Report to the U.S. Department of Transportation, Research and special Programs Administration, Transportation Systems Center Kendall Square, Cambridge, MA, 1985.
[12] Collins, L.: "An introduction to Markov Chain Analysis", CATMOG, Geo Abstracts Ltd. University of East Anglia, Norwich, 1972.
[13] Small E.P., et al.: "Current Status of Bridge Management System Implementation in the United States", in Eighth Transportation Research Board Conference on Bridge Management, TRB Transportation Research Circular 498. 1999: Washington D.C. p. A-1/1-16.
[14] USDOT/FHWA: "Transportation Alternative during highway reconstruction", Report FHWA-HI-89-027, National Level, Federal Highway Administration, U.S. DOT, Washington, D.C. 1989.
[15] West Virginia Historical Society Quarterly: "The Collapse of the Silver Bridge". dostupno na http://www.wvculture.org/history/disasters/silverbridge03.html
[16] Vilotijević M., Popović Z., Lazarević L.: "Metode ispitivanja i tehnički uslovi za sisteme šinskih pričvršćenja za betonske pruge", časopis Građevinski materijali i konstrukcije, br. 2/2017, str. 33-47.
OCENA STANJA I PERSPEKTIVE ODRŽAVANJA MOSTOVSKIH KONSTRUKCIJA U GRADU NIŠU

Milan GLIGORIJEVIĆ

Mostovi su građevinski objekti koji svojom veličinom, izgledom, pojavom u prostoru, pa čak i simbolikom, vrlo često dominiraju ambijentom ili krajolikom u kojem se nalaze. S druge strane, preventivnom održavanju ovih objekata – kao optimalnom rešenju – nije se posvećivala neophodna pažnja koliko je to bilo potrebno, naročito kada je reč o našem području. Uočen je permanentni porast oštećenja na mostovima, uz enormni pad nosivosti i bezbednosti mostova, te su od ogromnog značaja razvoj i uvođenje adekvatnog sistema upravljanja mostovima s ciljem efikasnijeg održavanja i očuvanja postojećih mostovskih konstrukcija.

Sistem upravljanja mostovima u Srbiji uveden je 1986. godine, kao originalan i za to vreme izuzetno moderan. Međutim, njegova praktična primena pokazala je određene nelogičnosti u dobijenim listama prioritetnih aktivnosti.

U svojoj doktorskoj disertaciji, autor ovoga rada dao je novi predlog – na osnovu optimizovanog kriterijuma vrednovanja prioriteta. Time su otklonjene uočene nelogičnosti našeg aktuelnog sistema upravljanja mostovima i ostavljeno je značajno poboljšanje efikasnosti određivanja liste prioriteta.

Predloženom metodologijom, a na osnovu rezultata sopstvenog višedecenijskog monitoringa mostova, urađena je ocena stanja i perspektiva održavanja mostova u gradu Nišu, koja je prezentovana u ovom radu.

Ključne reči: Upravljanje mostovima, vrednovanje prioriteta, analiza, ocena stanja, prognoza.

CONDITION ASSESSMENT AND MAINTENANCE PERSPECTIVES OF BRIDGE STRUCTURES IN THE CITY OF NIS

Milan GLIGORIJEVIC

Bridges are civil engineering structures which very often dominate the environment or landscape where they are situated by their size, appearance in space and even by symbolism. On the other hand, preventive maintenance of these structures, as an optimum solution, is paid insufficient deal of attention, especially in our country. A permanent increase of damage on the bridges is observed, followed by an enormous decrease of bearing capacity and safety, which means that it is critical to develop and introduce an adequate system of bridge management with an aim of maintenance and preservation of existing bridge structures.

Bridge management system in Serbia was introduced in 1986, as an original, and extremely contemporary system for the time. However, its practical application exhibited certain illogical issues in the obtained lists of priority activities.

The author of this paper, in his doctoral dissertation, offered a new proposition based on the optimized criterion of priority evaluation. This removed certain illogical points of the current bridge management system, and achieved a considerable increase of efficiency when making priority lists.

The paper presents the proposed methodology based on the results of bridge monitoring over a period of several decades which was used to provide bridge condition assessment and its maintenance perspectives in the city of Nis.

Key words: Bridge management, priority evaluation, analysis, assessment, forecast.