INDEX OF TRANSVERSALLY ELLIPTIC OPERATORS

par

Paul-Emile Paradan & Michèle Vergne

Résumé. — In the 70’s, the notion of analytic index has been extended by Atiyah and Singer to the class of transversally elliptic operators. They did not, however, give a general cohomological formula for the index. This was accomplished many years later by Berline and Vergne. The Berline-Vergne formula is an integral of a non-compactly supported equivariant form on the cotangent bundle, and depends on rather subtle growth conditions for these forms.

This paper gives an alternative expression for the index, where the non-compactly supported form is replaced with a compactly supported one, but with generalized coefficients.

Abstract (Indice d’opérateurs transversalement elliptiques). — Dans les années 70, Atiyah et Singer ont étendu la notion d’indice analytique au cadre des opérateurs transversalement elliptiques. Néanmoins, ils ne donnaient pas de formule cohomologique générale pour cet indice. Ce problème a été résolu bien des années après par Berline et Vergne. La formule de Berline-Vergne exprime l’indice comme l’intégrale sur un fibré cotangent d’une forme équivariante à support non-compact: ici une propriété de croissance très particulière de cette forme est requise pour assurer l’existence de l’intégrale.

Le but de ce travail est de donner une autre formulation de cet indice, où la forme équivariante à support non-compact est remplacée par une forme équivariante à support compact, mais avec des coefficients généralisés.

Table des matières

1. Introduction... 2
2. The analytic index... 6
3. The cohomological index.. 12
4. The cohomological index coincides with the analytic one... 28
5. Examples.. 36
Références.. 40

Classification mathématique par sujets (2000). — 19L47,19L10,55N25.
Mots clefs. — index, transversally elliptic, equivariant cohomology, generalized coefficients.
1. Introduction

Let M be a compact manifold. The Atiyah-Singer formula for the index of an elliptic pseudo-differential operator P on M with elliptic symbol σ on T^*M involves integration over the non compact manifold T^*M of the Chern character $\text{Ch}_c(\sigma)$ of σ multiplied by the square of the \hat{A}-genus of M:

$$\text{index}(P) = (2i\pi)^{-\dim M} \int_{T^*M} \hat{A}(M)^2 \text{Ch}_c(\sigma).$$

Here σ, the principal symbol of P, is a morphism of vector bundles on T^*M invertible outside the zero section of T^*M and the Chern character $\text{Ch}_c(\sigma)$ is supported on a compact neighborhood of M embedded in T^*M as the zero section. It is important that the representative of the Chern character $\text{Ch}_c(\sigma)$ is compactly supported to perform integration.

Assume that a compact Lie group K (with Lie algebra \mathfrak{k}) acts on M. If the elliptic operator P is K-invariant, then $\text{index}(P)$ is a smooth function on K. The equivariant index of P can be expressed similarly as the integral of the equivariant Chern character of σ multiplied by the square of the equivariant \hat{A}-genus of M: for $X \in \mathfrak{k}$ small enough,

$$\text{index}(P)(e^X) = (2i\pi)^{-\dim M} \int_{T^*M} \hat{A}(M)^2(X) \text{Ch}_c(\sigma)(X).$$

Here $\text{Ch}_c(\sigma)(X)$ is a compactly supported closed equivariant differential form, that is a differential form on T^*M depending smoothly of $X \in \mathfrak{k}$, and closed for the equivariant differential D. The result of the integration determines a smooth function on a neighborhood of e in K and similar formulae can be given near any point of K. Formula (1) is a “delocalization” of the Atiyah-Bott-Segal-Singer formula, in the sense of Bismut [9].

The delocalized index formula (1) can be adapted to new cases such as:

- Index of transversally elliptic operators.
- L^2-index of some elliptic operators on some non-compact manifolds (Rossmann formula for discrete series [20]).

Indeed, in these two contexts, the index exists in the sense of generalized functions but cannot be always computed in terms of fixed point formulae. A “delocalized” formula will however continue to have a meaning, as we explain now for transversally elliptic operators.

The invariant operator P with symbol $\sigma(x, \xi)$ on T^*M is called transversally elliptic, if it is elliptic in the directions transverse to K-orbits. In this case, the operator P has again an index which is a generalized function on K [1]. A very simple example of transversally elliptic operator is the operator 0 on $L^2(K)$: its index is the trace of the action of K in $L^2(K)$, that is the δ-function on K. At the opposite side, K-invariant elliptic operators are of course transversally elliptic, and index of such operators are
smooth functions on \(K \) given by Formula (1). Thus a cohomological formula must incorporate these two extreme cases. Such a cohomological formula was given in Berline-Vergne [7, 8]. We present here a new point of view, where the equivariant Chern character \(\text{Ch}_c(\sigma)(X) \) entering in Formula (1) is replaced by a Chern character with generalized coefficients, but still \textbf{compactly supported}. Let us briefly explain the construction.

Let \(T^*_K M \subset T^* M \) be the cone formed by the covectors \(\xi \in T^*_x M \) which vanish on tangent vectors to the orbit \(K \cdot x \). Let \(\text{supp}(\sigma) \) be the support of the symbol \(\sigma \) of a transversally elliptic operator \(P \). By definition, the intersection \(\text{supp}(\sigma) \cap T^*_K M \) is compact. By the Quillen super-connection construction, the Chern character \(\text{Ch}(\sigma)(X) \) is a closed equivariant differential form supported near the closed set \(\text{supp}(\sigma) \). Using the Liouville 1-form \(\omega \) of \(T^* M \), we construct a closed equivariant form \(\text{One}(\omega)(X) \) supported near \(T^*_K M \). Outside \(T^*_K M \), one has indeed the equation

\[
1 = D(\omega)D\omega,
\]

where the inverse of the form \(D\omega \) is defined by

\[
-\frac{i}{2\pi} \int_0^\infty e^{itD\omega} dt,
\]

an integral which is well defined in the generalized sense, that is tested against a smooth compactly supported density on \(K \). Thus using a function \(\chi \) equal to 1 on a small neighborhood of \(T^*_K M \), the closed equivariant form \(\text{One}(\omega)(X) = \chi + d\chi \frac{\omega}{D\omega(X)} \), \(X \in \mathfrak{t} \), is well defined, supported near \(T^*_K M \), and represents 1 in cohomology. Remark that

\[
\text{Ch}_c(\sigma, \omega) := \text{Ch}(\sigma)(X)\text{One}(\omega)(X)
\]

is \textbf{compactly supported}. We prove that, for \(X \in \mathfrak{t} \) small enough, we have

\[
(2) \quad \text{index}(P)(e^X) = (2i\pi)^{-\dim M} \int_{T^* M} \hat{A}(M)^2(X) \text{Ch}(\sigma)(X) \text{One}(\omega)(X).
\]

This formula is thus similar to the delocalized version of the Atiyah-Bott-Segal-Singer equivariant index theorem. We have just localized the formula for the index near \(T^*_K M \) with the help of the form \(\text{One}(\omega) \), equal to 1 in cohomology, but supported near \(T^*_K M \).

When \(P \) is elliptic we can furthermore localize on the zeros of \(V X \) (the vector field on \(M \) produced by the action of \(X \)) and we obtain the Atiyah-Bott-Segal-Singer fixed point formulae for the equivariant index of \(P \). However the main difference is that usually we cannot obtain a fixed point formula for the index. For example, the index of a transversally elliptic operator \(P \) where \(K \) acts freely is a generalized function on \(K \) supported at the origin. Thus in this case the use of the form \(\text{One}(\omega) \) is essential. Its role is clearly explained in the example of the 0 operator on \(S^1 \) given at the end of this introduction.

We need also to define the formula for the index at any point \(s \in K \), in terms of integrals over \(T^* M(s) \), where \(M(s) \) is the fixed point submanifold of \(M \) under the action of \(s \). The compatibility properties (descent method) between the formulae at
different points s are easy to prove, thanks to a localization formula adapted to this generalized setting.

In the Berline-Vergne cohomological formula for the index of P, the Chern character $\text{Ch}_c(\sigma)(X)$ in Formula (1) was replaced by a Chern character $\text{Ch}_{BV}(\sigma, \omega)(X)$ depending also of the Liouville 1-form ω. This Chern character $\text{Ch}_{BV}(\sigma, \omega)$ is constructed for “good symbols” σ. It looks like a Gaussian in the transverse directions, and is oscillatory in the directions of the orbits. Our new point of view defines the compactly supported product class $\text{Ch}(\sigma)\text{One}(\omega)$ in a straightforward way. We proved in \[18\] that the classes $\text{Ch}_{BV}(\sigma, \omega)$ and $\text{Ch}(\sigma)\text{One}(\omega)$ are equivalent in an appropriate cohomology space, so that our new cohomological formula gives the analytic index. Nevertheless, we will see in this paper that it is technically simpler to work with the compactly supported equivariant form $\text{Ch}(\sigma)\text{One}(\omega)$ rather than with the equivariant form $\text{Ch}_{BV}(\sigma, \omega)$ which has subtle growth on the cotangent bundle. So we choose to prove directly the equality between the analytic index and the cohomological index, and we show that our formula in terms of the product class $\text{Ch}(\sigma)\text{One}(\omega)$ is natural. We follow the same line as Atiyah-Singer: functoriality with respect to products and free actions. The compatibility with the free action reduces basically to the case of the zero operator on K, and the calculation is straightforward. The typical calculation is shown below. The multiplicativity property is more delicate, but is based on a general principle on multiplicativity of relative Chern characters that we proved in a preceding article \[18\]. Thus, following Atiyah-Singer [1], we are reduced to the case of S^1 acting on a vector space. The basic examples are then the pushed symbol with index $-\sum_{n=1}^{\infty} e^{in\theta}$ and the index of the tangential ∂ operators on odd dimensional spheres. We include at the end a general formula due to Fitzpatrick \[11\] for contact manifolds.

Let us finally point out that there are many examples of transversally elliptic operators of great interest. The index of elliptic operators on orbifolds are best understood as indices of transversally elliptic operators on manifolds where a group K acts with finite stabilizers. The restriction to the maximal compact subgroup K of a representation of the discrete series of a real reductive group are indices of transversally elliptic operators \[16\]. More generally, there is a canonical transversally elliptic operator on any prequantized Hamiltonian manifold with proper moment map (under some mild assumptions) \[16\], \[22\]. Furthermore, as already noticed in Atiyah-Singer, and systematically used in \[15\], transversally elliptic operators associated to symplectic vector spaces with proper moment maps and to cotangent manifolds T^*K are the local building pieces of any K-invariant elliptic operator.

Example 1.1. — Let us check the validity of (2) in the example of the zero operator 0_{S^1} from $S^1 \times \mathbb{C}$ to $S^1 \times \{0\}$. This operator is S^1-transversally elliptic and its index
is equal to
\[\delta_1(e^{iX}) = \sum_{k \in \mathbb{Z}} e^{ikX}, \quad X \in \text{Lie}(S^1) \simeq \mathbb{R}. \]

The principal symbol \(\sigma \) of \(S^1 \) is the zero morphism \(T^*S^1 \times \mathbb{C} \to T^*S^1 \times \{0\} \). Hence \(\text{Ch}(\sigma)(X) = 1 \). The equivariant class \(\hat{A}(S^1)^2(X) \) is also equal to 1. Thus the right hand side of (2) becomes
\[(2i\pi)^{-1} \int_{T^*S^1} \text{One}(\omega)(X). \]

The cotangent bundle \(T^*S^1 \) is parametrized by \((e^{i\theta}, \xi) \in S^1 \times \mathbb{R}\). The Liouville 1-form is \(\omega = -\xi d\theta \) : the symplectic form \(d\omega = d\theta \wedge d\xi \) gives the orientation of \(T^*S^1 \). Since \(V_X = -X \frac{\partial}{\partial \theta} \), we have \(D\omega(X) = d\theta \wedge d\xi - X\xi \).

Let \(g \in C^\infty(\mathbb{R}) \) with compact support and equal to 1 in a neighborhood of 0. Then \(\chi = g(\xi^2) \) is a function on \(T^*S^1 \) which is supported in a neighborhood of \(T^*_S S^1 = \text{zero section} \). We look now at the equivariant form \(\text{One}(\omega)(X) = \chi + d\chi \wedge (-i\omega) \int_0^\infty e^{-itX} dt \). We have
\[\text{One}(\omega)(e^{i\theta}, \xi, X) = \begin{cases} g(\xi^2) + g'(\xi^2)2\xi d\xi & \text{if } \xi \geq 0; \\ g(\xi^2) + g'(\xi^2)2\xi d\xi & \text{if } \xi \leq 0. \end{cases} \]

Finally, since \(-\int_{\xi \geq 0} d(g(\xi^2)) = \int_{\xi \leq 0} d(g(\xi^2)) = 1\), we have
\[(2i\pi)^{-1} \int_{T^*S^1} \text{One}(\omega)(X) = \int_{-\infty}^{\infty} e^{-itX} dt. \]

The generalized function \(\delta_0(X) = \int_{-\infty}^{\infty} e^{-itX} dt \) satisfies
\[\int_{\text{Lie}(S^1)} \delta_0(X) \varphi(X) dX = \text{vol}(S^1, dX) \varphi(0) \]
for any function \(\varphi \in C^\infty(\text{Lie}(S^1)) \) with compact support. Here \(\text{vol}(S^1, dX) = \int_0^{2\pi} dX \) is also the volume of \(S^1 \) with the Haar measure compatible with \(dX \).

Finally, we see that (2) corresponds to the following equality of generalized functions
\[\delta_1(e^{iX}) = \delta_0(X), \]
which holds for \(X \in \text{Lie}(S^1) \) small enough.
2. The analytic index

2.1. Generalized functions. — Let K be a compact Lie group. We denote by \hat{K} the set of equivalence classes of finite dimensional irreducible (complex) representations of K. If $\tau \in \hat{K}$, we denote by V_τ the representation space of τ and by $k \mapsto \text{Tr}(k, \tau)$ its character. Let τ^* be the dual representation of K in V_τ^*.

We denote by $C^\infty(K)$ the space of generalized functions on K and by $C^\infty(K)^K$ the subspace of generalized functions invariant by conjugaison. The space $C^\infty(K)$ of smooth functions on K is naturally a subspace of $C^\infty(K)$. We will often use the notation $\Theta(k)$ to denote a generalized function Θ on K, although (in general) the value of Θ on a particular point k of K does not have a meaning. By definition, Θ is a linear form on the space of smooth densities on K. If dk is a Haar measure on K and $\Phi \in C^\infty(K)$, we denote by $\int_K \Theta(k)\Phi(k)dk$ the value of Θ on the density Φ.

Any invariant generalized function on K is expressed as $\Theta(k) = \sum_{\tau} n_\tau \text{Tr}(k, \tau)$ where the Fourier coefficients n_τ have at most a polynomial growth [21].

2.2. Symbols and pseudo-differential operators. — Let M be a compact manifold with a smooth action of a compact Lie group K. We consider the closed subset $T^*_K M$ of the cotangent bundle T^*M, union of the spaces $(T^*_K M)_x, x \in M$, where $(T^*_K M)_x = T^*_x M$ is the orthogonal of the tangent space at x to the orbit $K \cdot x$. Let \mathcal{E}^\pm be two K-equivariant complex vector bundles over M. We denote by $\Gamma(M, \mathcal{E}^\pm)$ the space of smooth sections of \mathcal{E}^\pm. Let $P : \Gamma(M, \mathcal{E}^+) \to \Gamma(M, \mathcal{E}^-)$ be a K-invariant pseudo-differential operator of order m. Let $p : T^*M \to M$ be the natural projection. The principal symbol $\sigma(P)$ of P is a bundle map $p^*\mathcal{E}^+ \to p^*\mathcal{E}^-$ which is homogeneous of degree m, defined over $T^*M \setminus M$.

The operator P is elliptic if its principal symbol $\sigma(P)(x, \xi)$ is invertible for all $(x, \xi) \in T^*M$ such that $\xi \neq 0$. The operator P is said to be K-transversally elliptic if its principal symbol $\sigma(P)(x, \xi)$ is invertible for all $(x, \xi) \in T^*_K M$ such that $\xi \neq 0$.

Using a K-invariant function χ on T^*M identically equal to 1 in a neighborhood of M and compactly supported, then $\sigma_P(x, \xi) := (1 - \chi(x, \xi))\sigma(P)(x, \xi)$ is a morphism from $p^*\mathcal{E}^+$ to $p^*\mathcal{E}^-$ defined on the whole space T^*M and which is almost homogeneous: $\sigma_P(x, t\xi) = t^m \sigma_P(x, \xi)$ for $t > 1$ and ξ large enough. We consider the support of the morphism σ_P,

$$\text{supp}(\sigma_P) := \{(x, \xi) \in T^*M \mid \sigma_P(x, \xi) \text{ is not invertible}\}$$

which is a closed K-invariant subset of T^*M.

When P is elliptic, then $\text{supp}(\sigma_P)$ is compact, and the morphism σ_P gives rise to a K^0-theory class $[\sigma_P] \in K^*_K(T^*M)$ which does not depend on the choice of χ. Similarly, when P is K-transversally elliptic, then $\text{supp}(\sigma_P) \cap T^*_K M$ is compact and the morphism σ_P gives rise to a K^0-theory class $[\sigma_P|_{T^*_KM}] \in K^*_K(T^*_K M)$ which does not depend on the choice of χ.
Recall the definition of the K-equivariant index of a pseudo-differential operator P which is K-transversally elliptic. Let us choose a K-invariant metric on M and K-invariant Hermitian structures on E^\pm. Then the adjoint P^* of P is also a K-transversally elliptic pseudo-differential operator.

If P is elliptic, its kernel $\ker P := \{ s \in \Gamma(M, E^+) \mid Ps = 0 \}$ is finite dimensional, and the K-equivariant index of P is the invariant function $\text{index}_K^P(k) = \text{Tr}(k, \ker P) - \text{Tr}(k, \ker P^*)$.

If P is K-transversally elliptic, its kernel $\ker P$ is not finite dimensional, but it has finite multiplicities: for any irreducible representation $\tau \in \hat{K}$, the multiplicity $m_\tau(P) := \dim(\text{hom}_K(V_\tau, \ker P))$ is finite, and $\tau \mapsto m_\tau(P)$ has at most a polynomial growth $[1]$. We define then an invariant generalized function on K by setting

$$\text{Tr}(k, \ker P) := \sum_{\tau \in \hat{K}} m_\tau(P) \text{Tr}(k, \tau).$$

Definition 2.1. — The K-equivariant index of a K-transversally elliptic pseudo-differential operator P is the generalized function $\text{index}_K^P(k) = \text{Tr}(k, \ker P) - \text{Tr}(k, \ker P^*)$.

We recall

Theorem 2.2 (Atiyah-Singer). —

- The K-equivariant index of a K-invariant elliptic pseudo-differential operator P depends only of $[\sigma_P] \in K_0^K(T^*M)$.
- The K-equivariant index of a K-transversally elliptic pseudo-differential operator P depends only of $[\sigma_P|_{T_K^*M}] \in K_0^K(T_K^*M)$.
- Each element in $K_0^K(T_K^*M)$ is represented by the class $[\sigma_P|_{T_K^*M}]$ of a K-transversally elliptic pseudo differential operator P of order m. Similarly, each element in $K_0^K(T^*M)$ is represented by the class $[\sigma_P]$ of a K-invariant elliptic pseudo differential operator P of order m.

Thus we can define

$$\text{index}_K^{K, M} : K_0^K(T_K^*M) \to C^{-\infty}(K)^K$$

by setting, for P a K-transversally elliptic pseudo-differential operator of order m,

$$\text{index}_K^{K, M}([\sigma_P|_{T_K^*M}]) = \text{index}_K^P(P).$$

Similarly, we can define in the elliptic setting

$$\text{index}_K^{K, M} : K_0^K(T^*M) \to C^\infty(K)^K.$$

Note that we have a natural restriction map $K_0^K(T^*M) \to K_0^K(T_K^*M)$ which makes the following diagram

$$
\begin{array}{ccc}
K_0^K(T^*M) & \longrightarrow & K_0^K(T_K^*M) \\
\text{index}_K^{K, M} & \downarrow & \text{index}_K^{K, M} \\
C^\infty(K)^K & \longrightarrow & C^{-\infty}(K)^K
\end{array}
$$
commutative.

Let $R(K)$ be the representation ring of K. Using the trace, we will consider $R(K)$ as a sub-ring of $C^\infty(K)^K$. The map (3) and (4) are homomorphisms of $R(K)$-modules and will be called the analytic indices.

Remark 2.3. — In order to simplify the notations we will make no distinction between an element $V \in R(K)$, and its trace function $k \rightarrow \text{Tr}(k, V)$ which belongs to $C^\infty(K)^K$. For example, the constant function 1 on K is identified with the trivial representation of K.

Let H be a compact Lie group acting on M and commuting with the action of K. Then the space $T^*_K M$ is provided with an action of $K \times H$. If $[\sigma] \in K^0_{K \times H}(T^*_K M)$, we can associate to $[\sigma]$ a virtual trace class representation of $K \times H$. Indeed, we can choose as representative of $[\sigma]$ the symbol of a H-invariant and K-transversally elliptic operator P. Then $\ker P - \ker P^*$ is a trace class representation of $K \times H$.

Thus we can define a $R(K \times H)$-homomorphism:

$$\text{index}_{H,M}^{K,H,M} : K^0_{K \times H}(T^*_K M) \rightarrow C^-\infty(K \times H)^{K \times H}.$$

Obviously $T^*_K H(M)$ is contained in $T^*_K M$ so we have a restriction morphism $r : K^0_{K \times H}(T^*_K M) \rightarrow K^0_{K \times H}(T^*_K H M)$. We see that

$$\text{index}_{H,M}^{K,H,M} = \text{index}_{H,M}^{K \times H} \circ r.$$

However, it is easy to see that for a H-invariant and K-transversally elliptic symbol $[\sigma]$, $\text{index}_{H,M}^{K,H,M}([\sigma])(k, h)$ is a generalized function on $K \times H$ which is smooth relative to the variable $h \in H$ (see [1], remark p. 17). In particular we can restrict $\text{index}_{H,M}^{K,H,M}([\sigma])$ to $K \times H'$, for a subgroup H' of H. We can also multiply $\text{index}_{H,M}^{K,H,M}([\sigma])(k, h)$ by generalized functions $\Psi(h)$ on H.

2.3. Functoriality properties of the analytic index.

We have defined for any compact $K \times H$-manifold M a $R(K \times H)$-morphism

$$\text{index}_{H,M}^{K,H,M} : K^0_{K \times H}(T^*_K M) \rightarrow C^-\infty(H, C^-\infty(K))^{K \times H},$$

where $C^-\infty(H, C^-\infty(K))^{K \times H}$ denote the subspace of invariant generalized functions $\Theta(k, h)$ on $K \times H$ which are smooth relative to the variable $h \in H$.

Let us recall some basic properties of the analytic index map:

- **[N1]** If $M = \{\text{point}\}$, then $\text{index}_{K,M}^{K,H,M}$ is the trace map $R(K) \hookrightarrow C^-\infty(K)^K$.
- **[Diff]** Compatibility with diffeomorphisms: if $f : M_1 \rightarrow M_2$ is a $K \times H$-diffeomorphism then $\text{index}_{H,M_1}^{K,H,M_2} \circ f^*$ is equal to $\text{index}_{H,M_2}^{K,H,M_1}$.
- **[Morph]** If $\phi : H' \rightarrow H$ is a Lie group morphism, we have $\phi^* \circ \text{index}_{H,M}^{K,H,M} = \text{index}_{H',M}^{K,H,M}$.

2.3.1. Excision. — Let \(U \) be a non-compact \(K \)-manifold. Lemma 3.6 of [1] tells us that, for any open \(K \)-embedding \(j : U \hookrightarrow M \) into a compact manifold, we have a pushforward map \(j_* : K^0_K(T^*_K U) \to K^0_K(T^*_K M) \).

Let us rephrase Theorem 3.7 of [1].

Theorem 2.4 (Excision property). — The composition

\[
K^0_K(T^*_K U) \xrightarrow{j_*} K^0_K(T^*_K M) \xrightarrow{\text{index}^K_M} C^{-\infty}(K)^K
\]

is independent of the choice of \(j : U \hookrightarrow M \): we denote this map \(\text{index}^K_{U} \).

Note that a relatively compact \(K \)-invariant open subset \(U \) of a \(K \)-manifold admits an open \(K \)-embedding \(j : U \hookrightarrow M \) into a compact \(K \)-manifold. So the index map \(\text{index}^K_{U} \) is defined in this case. An important example is when \(U \to N \) is a \(K \)-equivariant vector bundle over a compact manifold \(N \) : we can imbed \(U \) as an open subset of the real projective bundle \(\mathbb{P}(U \oplus \mathbb{R}) \).

2.3.2. Exterior product. — Let us recall the multiplicative property of the analytic index for the product of manifolds that was proved by Atiyah-Singer in [1]. Consider a compact Lie group \(K_2 \) acting on two manifolds \(M_1 \) and \(M_2 \), and assume that another compact Lie group \(K_1 \) acts on \(M_1 \) commuting with the action of \(K_2 \).

The external product of complexes on \(T^*M_1 \) and \(T^*M_2 \) induces a multiplication (see [1]):

\[
\circ_{\text{ext}} : K^0_{K_1 \times K_2}(T^*_K M_1) \times K^0_{K_2}(T^*_K M_2) \to K^0_{K_1 \times K_2}(T^*_K(M_1 \times M_2)).
\]

Let us recall the definition of this external product. For \(k = 1, 2 \), we consider equivariant morphisms\(^{(1)}\) \(\sigma_k : \mathcal{E}^+_k \to \mathcal{E}^-_k \) on \(T^*M_k \). We consider the equivariant morphism on \(T^*(M_1 \times M_2) \)

\[
\sigma_1 \circ_{\text{ext}} \sigma_2 : \mathcal{E}^+_1 \otimes \mathcal{E}^+_2 \oplus \mathcal{E}^-_1 \otimes \mathcal{E}^-_2 \to \mathcal{E}^+_1 \otimes \mathcal{E}^+_2 \oplus \mathcal{E}^-_1 \otimes \mathcal{E}^-_2
\]
defined by

\[
(6) \quad \sigma_1 \circ_{\text{ext}} \sigma_2 = \begin{pmatrix} \sigma_1 \otimes \text{Id} & -\text{Id} \otimes \sigma^*_2 \\ \text{Id} \otimes \sigma_2 & \sigma^*_1 \otimes \text{Id} \end{pmatrix}
\]

We see that the set \(\text{supp}(\sigma_1 \circ \sigma_2) \subset T^*M_1 \times T^*M_2 \) is equal to \(\text{supp}(\sigma_1) \times \text{supp}(\sigma_2) \).

We suppose now that the morphisms \(\sigma_k \) are respectively \(K_k \)-transversally elliptic. Since \(T^*_K(M_1 \times M_2) \neq T^*_K M_1 \times T^*_K M_2 \), the morphism \(\sigma_1 \circ_{\text{ext}} \sigma_2 \) is not necessarily \(K_1 \times K_2 \)-transversally elliptic. Nevertheless, if \(\sigma_2 \) is taken almost homogeneous of order \(m = 0 \), then the morphism \(\sigma_1 \circ_{\text{ext}} \sigma_2 \) is \(K_1 \times K_2 \)-transversally elliptic (see Lemma 4.9 in [18]). So the exterior product \(a_1 \circ_{\text{ext}} a_2 \) is the \(K^0 \)-theory class defined by \(\sigma_1 \circ_{\text{ext}} \sigma_2 \), where \(a_k = [\sigma_k] \) and \(\sigma_2 \) is taken almost homogeneous of order \(m = 0 \).

\(^{(1)}\)In order to simplify the notation, we do not make the distinctions between vector bundles on \(T^*M \) and on \(M \).
Theorem 2.5 (Multiplicative property). — For any \([\sigma_1] \in K^0_{K_1 \times K_2}(T^*_{K_1}M_1)\) and any \([\sigma_2] \in K^0_{K_2}(T^*_{K_2}M_2)\) we have
\[
\text{index}^{K_1 \times K_2, M_1 \times M_2}_{\alpha}([\sigma_1] \circ_{\text{ext}} [\sigma_2]) = \text{index}^{K_1, K_2, M_1}([\sigma_1]) \text{index}^{K_2, M_2}_{\alpha}([\sigma_2]).
\]

2.3.3. **Free action.** — Let \(K\) and \(G\) be two compact Lie groups. Let \(P\) be a compact manifold provided with an action of \(K \times G\). We assume that the action of \(K\) is free. Then the manifold \(M := P/K\) is provided with an action of \(G\) and the quotient map \(q : P \to M\) is \(G\)-equivariant. Note that we have the natural identification of \(T^*_K P\) with \(q^*T^* M\), hence \((T^*_K P)/K \simeq T^* M\) and more generally
\[
(T^*_K \times_G P)/K \simeq T^*_G M.
\]
This isomorphism induces an isomorphism
\[
Q^* : K^0_{K}((T^*_G M) \to K^0_{K \times G}(T^*_G P).
\]
Let \(\mathcal{E}^\pm\) be two \(G\)-equivariant complex vector bundles on \(M\) and \(\sigma : p^*\mathcal{E}^+ \to p^*\mathcal{E}^-\) be a \(G\)-transversally elliptic symbol. For any finite dimensional irreducible representation \((\tau, V_\tau)\) of \(K\), we form the \(G\)-equivariant complex vector bundle \(V_\tau := P \times_K V_\tau\) on \(M\). We consider the morphism
\[
\sigma_\tau := \sigma \otimes \text{Id}_{V_\tau} : p^*(\mathcal{E}^+ \otimes V_\tau) \to p^*(\mathcal{E}^- \otimes V_\tau)
\]
which is \(G\)-transversally elliptic.

The following theorem was obtained by Atiyah-Singer in [1].

Theorem 2.6 (Free action property). — We have the following equality in \(C^{-\infty}(K \times G)K \times G\): for \((k, g) \in K \times G\)
\[
\text{index}^{K \times G, P}_{\alpha}(Q^*[\sigma])(k, g) = \sum_{\tau \in K} \text{Tr}(k, \tau) \text{index}^{G, M}_{\alpha}([\sigma_\tau])(g).
\]

2.4. **Basic examples.** —

2.4.1. **Bott symbols.** — Let \(W\) be a Hermitian vector space. For any \(v \in W\), we consider on the \(\mathbb{Z}_2\)-graded vector space \(\wedge W\) the following odd operators: the exterior multiplication \(m(v)\) and the contraction \(\iota(v)\). The contraction \(\iota(v)\) is an odd derivation of \(\wedge W\) such that \(\iota(v)w = (w, v)\) for \(w \in \wedge^1 W = W\).

The Clifford action of \(W\) on \(\wedge W\) is defined by the formula
\[
c(v) = m(v) - \iota(v)
\]
(7)
Then \(c(v)\) is an odd operator on \(\wedge W\) such that \(c(v)^2 = -||v||^2 \text{Id}\). So \(c(v)\) is invertible when \(v \neq 0\).

Consider the trivial vector bundles \(\mathcal{E}^\pm := W \times \wedge^\pm W\) over \(W\) with fiber \(\wedge^\pm W\). The Bott morphism \(\text{Bott}(W) : \mathcal{E}^+ \to \mathcal{E}^-\) is defined by
\[
\text{Bott}(W)(v, w) = (v, c(v)w).
\]
(8)
Consider now a Euclidean vector space \(V \). Then its complexification \(V_C \) is an Hermitian vector space. The cotangent bundle \(T^*V \) is identified with \(V_C \); we associate to the covector \(\xi \in T^*_vV \) the element \(v + i\xi \in V_C \), where \(\xi \in V^* \rightarrow \xi \in V \) is the identification given by the Euclidean structure.

Then \(\text{Bott}(V_C) \) defines an elliptic symbol on \(V \) which is equivariant relative to the action of the orthogonal group \(O(V) \). Its analytic index is computed in [2].

Proposition 2.7. — We have [N2]: \(\text{index}^{O(V)}_a(\text{Bott}(V_C)) = 1 \).

Remark 2.8. — If \(V \) and \(W \) are two Euclidean vector spaces we see that the symbol \(\text{Bott}((V \times W)_C) \) is equal to the product \(\text{Bott}(V_C) \circ \text{Bott}(W_C) \). Then for \((g, h) \in O(V) \times O(W) \), the multiplicative property tells us that
\[
\text{index}^{O(V \times W)}_a(\text{Bott}((V \times W)_C))(g, h)
\]
is equal to the product \(\text{index}^{O(V)}_a(\text{Bott}(V_C))(g) \text{index}^{O(W)}_a(\text{Bott}(W_C))(h) \).

For any fixed \(g \in O(V) \), the vector space \(V \) decomposes as an orthogonal sum \(\oplus_i V_i \) of \(g \)-stable subspaces, where either \(\dim V_i = 1 \) and \(g \) acts on \(V_i \) as \(\pm 1 \), or \(\dim V_i = 2 \) and \(g \) acts on \(V_i \) as a rotation.

Hence [N2] is satisfied for any Euclidean vector space if one checks it for the cases:
- \(V = \mathbb{R} \) with the action of the group \(O(V) = \mathbb{Z}_2 \).
- \(V = \mathbb{R}^2 \) with the action of the group \(SO(V) = S^1 \).

2.4.2. Atiyah symbol. — In the following example, we denote, for any integer \(k \), by \(C_{[i]} \) the vector space \(C \) with the action of the circle group \(S^1 \) given by : \(t \cdot z = t^k z \).

The Atiyah symbol is the \(S^1 \)-equivariant morphism on \(N = T^*C_{[1]} \simeq C_{[1]} \times C_{[1]} \)
\[
\sigma_{At} : N \times C_{[0]} \rightarrow N \times C_{[1]}
\]
\[
(\xi, v) \mapsto (\xi, \sigma_{At}(\xi)v)
\]
defined by \(\sigma_{At}(\xi) = \xi_2 + i\xi_1 \) for \(\xi = (\xi_1, \xi_2) \in T^*C_{[1]} \).

The symbol \(\sigma_{At} \) is not elliptic since \(\text{supp}(\sigma_{At}) = \{\xi_1 = i\xi_2\} \subset C^2 \) is not compact. But \(T_{S^1}C_{[1]} = \{\xi_1, \xi_2 \mid \text{Im}(\xi_1\overline{\xi_2}) = 0\} \) and \(\text{supp}(\sigma_{At}) \cap T_{S^1}C_{[1]} = \{(0, 0)\} \) : the symbol \(\sigma_{At} \) is \(S^1 \)-transversally elliptic. Atiyah-Singer compute its analytic index in [1]. Another computation is done in the Appendix of [8].

Proposition 2.9. — We have [N3]: \(\text{index}^{S^1, C}_{a}(\sigma_{At})(t) = -\sum_{k=1}^{\infty} t^k \).

2.5. Unicity of the index. — The next theorem is the crucial point that we use in the next sections to give a cohomological formula for the index of a transversally elliptic operator (see [7, 8]). Note that, in the elliptic case, Atiyah-Segal-Singer used similar strategy to prove that the analytical index coincides with the topological one [2, 3, 4, 5].
Suppose that for any compact Lie groups K and H, and any compact $K \times H$-manifold M, we have a map of $R(K \times H)$-modules:

$$\mathbb{I}^{K,H,M} : \mathbf{K}_{K \times H}^0(T^*_K M) \to C^\infty(H, C^\infty(K))^{K \times H}.$$

Theorem 2.10. — Suppose that the maps \mathbb{I} satisfy

- the normalization conditions [N1], [N2] and [N3],
- the functorial properties Diff and Morph,
- the “excision property”, the “multiplicative property” and the “free action property”.

Then \mathbb{I} coincides with the analytic index map index^-.

3. The cohomological index

Let N be a manifold, and let $\mathcal{A}(N)$ be the algebra of differential forms on N. We denote by $\mathcal{A}_c(N)$ the subalgebra of compactly supported differential forms. We will consider on $\mathcal{A}(N)$ and $\mathcal{A}_c(N)$ the \mathbb{Z}_2-grading in even or odd differential forms.

Let K be a compact Lie group with Lie algebra \mathfrak{k}. We suppose that the manifold N is provided with an action of K. We denote $X \mapsto VX$ the corresponding morphism from \mathfrak{k} into the Lie algebra of vectors fields on N: for $n \in N$,

$$V_n X := \frac{d}{d\epsilon}\exp(-\epsilon X) \cdot n|_{\epsilon=0}.$$

Let $\mathcal{A}^\infty(\mathfrak{k}, N)$ be the \mathbb{Z}_2-graded algebra of equivariant smooth functions $\alpha : \mathfrak{k} \to \mathcal{A}(N)$. Its \mathbb{Z}_2-grading is the grading induced by the exterior degree. Let $D = d - \iota(VX)$ be the equivariant differential: $(D\alpha)(X) = d(\alpha(X)) - \iota(VX)\alpha(X)$. Here the operator $\iota(VX)$ is the contraction of a differential form by the vector field VX. Let $\mathcal{H}^\infty(\mathfrak{k}, N) := \text{Ker} D/\text{Im} D$ be the equivariant cohomology algebra with C^∞-coefficients. It is a module over the algebra $C^\infty(\mathfrak{k})$ of K-invariant C^∞-functions on \mathfrak{k}.

The sub-algebra $\mathcal{A}^\infty_c(\mathfrak{k}, N) \subset \mathcal{A}^\infty(\mathfrak{k}, N)$ of equivariant differential forms with compact support is defined as follows: $\alpha \in \mathcal{A}^\infty_c(\mathfrak{k}, N)$ if there exists a compact subset $K_\alpha \subset N$ such that the differential form $\alpha(X) \in \mathcal{A}(N)$ is supported on K_α for any $X \in \mathfrak{k}$. We denote $\mathcal{H}^\infty_c(\mathfrak{k}, N)$ the corresponding cohomology algebra: it is a \mathbb{Z}_2-graded algebra.

Let $\mathcal{A}^-\infty(\mathfrak{k}, N)$ be the space of generalized equivariant differential forms. An element $\alpha \in \mathcal{A}^-\infty(\mathfrak{k}, N)$ is, by definition, a C^∞ map $\alpha : \mathfrak{k} \to \mathcal{A}(N)$ which is equivariant relative to the actions of K on \mathfrak{k} and $\mathcal{A}(N)$ (see [12]). The value taken by α on a smooth compactly supported density $Q(X) dX$ on \mathfrak{k} is denoted by $\int_\mathfrak{k} \alpha(X) Q(X) dX \in \mathcal{A}(N)$. We have $\mathcal{A}^\infty(\mathfrak{k}, N) \subset \mathcal{A}^-\infty(\mathfrak{k}, N)$ and we can extend the differential D to $\mathcal{A}^-\infty(\mathfrak{k}, N)$ [12]. We denote by $\mathcal{H}^-\infty(\mathfrak{k}, N)$ the corresponding cohomology space. Note that $\mathcal{A}^-\infty(\mathfrak{k}, N)$ is a module over $\mathcal{A}^\infty(\mathfrak{k}, N)$ under the wedge product, hence the cohomology space $\mathcal{H}^-\infty(\mathfrak{k}, N)$ is a module over $\mathcal{H}^\infty(\mathfrak{k}, N)$.
The sub-space \(A_c^{-\infty}(\mathfrak{k}, N) \subset A^{-\infty}(\mathfrak{k}, N) \) of generalized equivariant differential forms with compact support is defined as follows: \(\alpha \in A_c^{-\infty}(\mathfrak{k}, N) \) if there exist a compact subset \(K_\alpha \subset N \) such that the differential form \(\int_k \alpha(X)Q(X)dX \in A(N) \) is supported on \(K_\alpha \) for any compactly supported density \(Q(X)dX \). We denote \(\mathcal{H}_c^{-\infty}(\mathfrak{k}, N) \) the corresponding space of cohomology. The \(\mathbb{Z}_2 \)-grading on \(A(N) \) induces a \(\mathbb{Z}_2 \)-grading on the cohomology spaces \(\mathcal{H}_c^{-\infty}(\mathfrak{k}, N) \) and \(\mathcal{H}_c^{-\infty}(\mathfrak{k}, N) \).

If \(\mathcal{U} \) is a \(K \)-invariant open subset of \(\mathfrak{k} \), one defines also \(\mathcal{H}_c^{-\infty}(\mathcal{U}, N) \) and \(\mathcal{H}_c^{-\infty}(\mathcal{U}, N) \). If \(N \) is equipped with a \(K \)-invariant orientation, the integration over \(N \) defines a morphism
\[
\int_N : \mathcal{H}_c^{-\infty}(\mathcal{U}, N) \rightarrow \mathcal{C}^{-\infty}(\mathcal{U})^K.
\]

3.1. Restrictions of generalized functions

Let \(K \) be a compact Lie group with Lie algebra \(\mathfrak{k} \). In this section, we recall the notions of restriction of invariant generalized functions defined on the Lie group \(K \) or on the Lie algebra \(\mathfrak{k} \). For more details, see [10].

For any \(s \in K \) (resp. \(S \in \mathfrak{k} \)), we denote \(K(s) \) (resp. \(K(S) \)) the stabilizer subgroup: the corresponding Lie algebra is denoted \(\mathfrak{k}(s) \) (resp. \(\mathfrak{k}(S) \)).

For any \(s \in K \), we consider a (small) open \(K(s) \)-invariant neighborhood \(U_s \) of \(0 \) in \(\mathfrak{k}(s) \) such that the map \([k,Y] \mapsto ks e^Y k^{-1}\) is an open embedding of \(K \times K(s) \) on an open neighborhood of the conjugacy class \(K \cdot s := \{ksk^{-1}, k \in K \} \simeq K/K(s) \).

Similarly, for any \(S \in \mathfrak{k} \), we consider a (small) open \(K(S) \)-invariant neighborhood \(U_S \) of \(0 \) in \(\mathfrak{k}(S) \) such that the map \([k,Y] \mapsto \text{Ad}(k)(S + Y)\) is an open embedding of \(K \times K(S) \) on an open neighborhood of the adjoint orbit \(K \cdot S \simeq K/K(S) \).

Note that the map \(Y \mapsto [e,Y] \) realizes \(U_s \) (resp. \(U_S \)) as a \(K(s) \)-invariant submanifold of \(K \times K(s) \) (resp. \(K \times K(S) \)).

Let \(\Theta \) be a generalized function on \(K \) invariant by conjugation. For any \(s \in K \), \(\Theta \) defines a \(K \)-invariant generalized function on \(K \times K(s) \) \(U_s \hookrightarrow K \) which admits a restriction to the submanifold \(U_s \) that we denote
\[
\Theta|_{U_s} \in \mathcal{C}^{-\infty}(U_s)^{K(s)}.
\]

This notation means that we restrict \(\Theta \) to the slice \(U_s \). If \(\Theta \) is smooth, we have \(\Theta|_{U_s}(Y) = \Theta(s e^Y) \) for any \(Y \in U_s \).

Similarly, let \(\theta \) be a \(K \)-invariant generalized function on \(\mathfrak{k} \). For any \(S \in \mathfrak{k} \), \(\theta \) defines a \(K \)-invariant generalized function on \(K \times K(S) \) \(U_S \hookrightarrow \mathfrak{k} \) which admits a restriction to the submanifold \(U_S \) that we denote
\[
\theta|_{U_S} \in \mathcal{C}^{-\infty}(U_S)^{K(S)}.
\]

If \(\theta \) is smooth, we have \(\theta|_{U_S}(Y) = \theta(S + Y) \) for any \(Y \in U_S \).

We have \(K(se^S) = K(s) \cap K(S) \) for any \(S \in U_s \). Let \(\Theta|_{U_s} \in \mathcal{C}^{-\infty}(U_s)^{K(s)} \) be the restriction of a generalized function \(\Theta \in \mathcal{C}^{-\infty}(K)^K \). For any \(S \in U_s \), the generalized
function $\Theta|_s$ admits a restriction $(\Theta|_s)|_S$ which is a $K(\ast e^S)$-invariant generalized function defined in a neighborhood of 0 in $\mathfrak{t}(s \cap \mathfrak{t})(\ast e^S)$.

Lemma 3.1 ([10]). — Let $\Theta \in C^\infty(K)^K$.

- For $s \in K$, and $S \in U_s$, we have the following equality of generalized functions defined in a neighborhood of 0 in $\mathfrak{t}(s e^S)$

$$ (\Theta|_s)|_S = \Theta|_{s e^S}. $$

- Let $s, k \in K$. We have the following equality of generalized functions defined in a neighborhood of 0 in $\mathfrak{t}(s)$

$$ \Theta|_s = \Theta|_{k s k^{-1}} \circ \text{Ad}(k). $$

When $\Theta \in C^\infty(K)^K$ is smooth, condition (9) is easy to check: for $Y \in \mathfrak{t}(s e^S)$, we have

$$ (\Theta|_s)|_S(Y) = \Theta|_s(S + Y) = \Theta(s e^S) = \Theta(s e^S e^Y) = \Theta|_{s e^S}(Y). $$

We have the following

Theorem 3.2 ([10]). — Let K be a compact Lie group. Consider a family of generalized function $\theta_s \in C^\infty(U_s)^K(s)$. We assume that the following conditions are verified.

- **Invariance:** for any k and $s \in K$, we have the following equality of generalized functions defined in a neighborhood of 0 in $\mathfrak{t}(s)$

$$ \theta_s = \theta_{k s k^{-1}} \circ \text{Ad}(k). $$

- **Compatibility:** for every $s \in K$ and $S \in U_s$, we have the following equality of generalized functions defined in a neighborhood of 0 in $\mathfrak{t}(s e^S)$

$$ \theta_s|_S = \theta_{s e^S}. $$

Then there exists a unique generalized function $\Theta \in C^\infty(K)^K$ such that, for any $s \in K$, the equality $\Theta|_s = \theta_s$ holds in $C^\infty(U_s)^K(s)$.

3.2. Integration of bouquet of equivariant forms. — Let K be a compact Lie group acting on a compact manifold M. We are interested in the invariant functions on K that can be defined by integrating equivariant forms on T^*M.

Let ω be the Liouville 1-form on T^*M. For any $s \in K$, we denote $M(s)$ the fixed points set $\{x \in M \mid sx = x\}$. Similarly, for any $S \in \mathfrak{t}$, we denote $M(S) \subseteq M$ the subset fixed by the 1-parameter subgroup $\exp(\mathfrak{r} S)$. As K is compact, $M(s)$ and $M(S)$ are submanifolds of M, and $T^*(M(s)) = (T^*M)(s)$. The cotangent bundle $T^*M(s)$ is a symplectic submanifold of T^*M and the restriction $\omega|_{T^*M(s)}$ is equal to the Liouville 1-form ω_s on $T^*M(s)$. The manifolds $T^*M(s)$ are oriented by their symplectic form $d\omega_s$.

For any $s \in K$, the tangent bundle TM, when restricted to $M(s)$, decomposes as

$$ TM|_{M(s)} = TM(s) \oplus \mathcal{N}. $$
Let \mathfrak{g} be the linear action induced by s on the bundle $TM|_{M(s)}$: here $TM(s)$ is the kernel of $\mathfrak{g} - \text{Id}$, and the normal bundle \mathcal{N} is equal to the image of $\mathfrak{g} - \text{Id}$.

Let ∇ be a K-equivariant connection on the tangent bundle TM. It induces $K(s)$-equivariant connections: $\nabla^{0,s}$ on the bundle $TM(s)$ and $\nabla^{1,s}$ on the bundle \mathcal{N}. For $i = 0, 1$, we consider the equivariant curvature $R_i(Y), Y \in \mathfrak{t}(s)$ of the connections $\nabla^{i,s}$. We will use the following equivariant forms

Definition 3.3. — We consider the following smooth closed $K(s)$-equivariant forms on $M(s)$: the equivariant \hat{A}-genus of the manifold $M(s)$

$$\hat{A}(M(s))(Y) = \det^{1/2} \left(\frac{R_0(Y)}{e^{R_0(Y)/2} - e^{-R_0(Y)/2}} \right)$$

which is defined for Y in a (small) neighborhood U_s of $0 \in \mathfrak{t}(s)$, and

$$D_s(\mathcal{N})(Y) = \det \left(1 - \mathfrak{g} e^{R_1(Y)} \right).$$

In the previous definition, the equivariant form $\hat{A}(M(s))$ may be understood as the exponential of the characteristic form associated to the power series $\frac{1}{2} \log \left(\frac{x}{e^{-z/2} - e^{z/2}} \right)$ (see [6], Section 1).

The manifold $M(s)$ may have several connected components C_i. We denote by $\dim M(s)$ the locally constant function on $M(s)$ equal to $\dim C_i$ on C_i. In the formulas of the cohomological index, we will use the following closed equivariant form on $M(s)$.

Definition 3.4. — We consider the smooth closed equivariant form on $M(s)$

$$A_s(Y) := (2\pi i)^{-\dim M(s)} \frac{\hat{A}(M(s))^2(Y)}{D_s(\mathcal{N})(Y)}$$

which is defined for Y in a (small) neighborhood U_s of $0 \in \mathfrak{t}(s)$.

Here U_s is a small $K(s)$-invariant neighborhood of 0 in $\mathfrak{t}(s)$. It is chosen so that: $\text{ad}(k)U_s = U_{sk^{-1}}$, and $M(s) \cap M(S) = M(s e^S)$ for any $s \in K$ and any $S \in U_s$. For any $s \in K$ and any $S \in U_s$, let $\mathcal{N}_{(s,S)}$ be the normal bundle of $M(s e^S) = M(s) \cap M(S)$ in $M(s)$. Let $Z \in \mathfrak{t}(se^S)$. Let $R(Z)$ be the $K(s e^S)$-equivariant curvature of an invariant Euclidean connection on $\mathcal{N}_{(s,S)}$. Let

$$\text{Eul} \left(\mathcal{N}_{(s,S)} \right)(Z) := (-2\pi)^{-\text{rank} \mathcal{N}_{(s,S)} / 2} \det^{1/2} \left(R(Z) \right)$$

be its $K(s e^S)$-equivariant Euler form. Recall that S induces a complex structure J_S on the bundle $\mathcal{N}_{(s,S)}$: the action of S is linear on the fibers of $\mathcal{N}_{(s,S)}$ and we take $J_S = S(-S^2)^{-1/2}$. The square root $\det^{1/2}$ is computed using the orientation o defined by this complex structure. Remark that $\text{Eul} \left(\mathcal{N}_{(s,S)} \right)(Z)$ is invertible near $Z = S$, as S acts by an invertible map on the bundle $\mathcal{N}_{(s,S)}$.

Note that the diffeomorphism $k: T^* M(s) \to T^* M(ksk^{-1})$ induces a map $k: A^\infty_\mathfrak{g}(U_s, T^* M(s)) \to A^\infty_\mathfrak{g}(U_{ksk^{-1}}, T^* M(ksk^{-1}))$. It is easy to check that the family
Λ_s \in \mathcal{A}^\infty(U_s, M(s)) satisfies:

(11) \quad k \cdot \Lambda_s = \Lambda_{sk^s} \quad in \quad \mathcal{H}^\infty(U_s, M(s))

(12) \quad \Lambda_s e^Z = (-1)^r \frac{\Lambda_s|_{M(s) e^Z}}{\text{Eul}(\mathcal{N}(s,s))} (S + Z) \quad in \quad \mathcal{H}^\infty(U', M(s e^S))

where U' \subset \mathfrak{t}(s e^S) is a small invariant neighborhood of 0, and r = \frac{1}{2} \text{rank}_\mathbb{R} \mathcal{N}(s,s).

Let γ_s \in \mathcal{A}^\infty_c(U(s), T^* M(s)) be a family of closed equivariant forms with compact support. We look now at the family of smooth invariant functions

θ(γ_s)(Y) = \int_{T^* M(s)} \Lambda_s(Y) \gamma_s(Y), \quad Y \in U_s.

Lemma 3.5. — The family θ(γ_s) defines an invariant function Θ(γ) \in \mathcal{C}^\infty(K)K if

k \cdot γ_s = γ_{sk^s} \quad in \quad \mathcal{H}^\infty_c(U_s, T^* M(s))

and

γ_s e^Z = γ_s|_{T^* M(s) e^Z} (S + Z) \quad in \quad \mathcal{H}_c^\infty(U', T^* M(s e^S))

where U' \subset \mathfrak{t}(s e^S) is a small invariant neighborhood of 0.

Démonstration. — The proof, that can be found in [10] and [7, 8], follows directly from the localization formula in equivariant cohomology. Note that the square Eul(\mathcal{N}(s,s))^2 is equal to the equivariant Euler form of the normal bundle of T^* M(s e^S) in T^* M(s).

In this article, the equivariant forms γ_s that we use are the Chern forms attached to a transversally elliptic symbol. Since they have generalized coefficients, we give an extension of Lemma 3.5 to this setting in Section 3.5 (see Theorem 3.18).

3.3. The Chern character with support. — In this subsection, we recall some constructions and some results of [17].

Let M be a K-manifold. Let p : T^* M → M be the projection.

Let \mathcal{E} = \mathcal{E}^+ \oplus \mathcal{E}^- be a Hermitian K-equivariant super-vector bundle over M. Let σ : p^* \mathcal{E}^+ → p^* \mathcal{E}^- be a K-equivariant symbol. Recall that supp(σ) ⊂ T^* M is the set where σ is not invertible. In this section, we do not assume that supp(σ) is compact.

Choose a K-invariant super-connection A on p^* \mathcal{E}, without 0 exterior degree term. As in [19, 17], we deform A with the help of σ : we consider the family of super-connections

\tilde{A}^\sigma(t) = A + it v_\sigma, \quad t \in \mathbb{R},

on \mathcal{E} where v_\sigma = \begin{pmatrix} 0 & \sigma^* \\ \sigma & 0 \end{pmatrix} is an odd endomorphism of \mathcal{E} defined with the help of the Hermitian structure. Let F(σ, A, t)(X), X ∈ \mathfrak{k}, be the equivariant curvature of \tilde{A}^\sigma(t).
We denote by $F(X), X \in \mathfrak{k}$, the equivariant curvature of \mathfrak{a}: we have $F(X) = h^2 + \mu^A(X)$ where $\mu^A(X) \in \mathcal{A}(\mathfrak{a'}, \text{End}(p^*E))$ is the moment of \mathfrak{a} [6]. Then $F(\sigma, \mathfrak{a}, t)(X) \in \mathcal{A}(\mathfrak{a'}, \text{End}(p^*E))^+_{\mathfrak{a}}$ is given by:

$$F(\sigma, \mathfrak{a}, t)(X) = -t^2 v_\sigma + it[\mathfrak{a}, v_\sigma] + F(X).$$

Let $\text{Str} : \mathcal{A}(\mathfrak{a'}, \text{End}(p^*E)) \to \mathcal{A}(\mathfrak{a'}, \text{End}(p^*E))$ be the super-trace. Let $t \in \mathbb{R}$. Consider the K-equivariant forms on $\mathfrak{a'}$:

$$\text{Ch}(\mathfrak{a})(X) = \text{Str}(e^{F(X)}),$$

$$\text{Ch}(\mathfrak{a}, t)(X) = \text{Str}(e^{F(\sigma, \mathfrak{a}, t)(X)}),$$

$$\eta(\sigma, \mathfrak{a}, t)(X) = -i \text{Str}(v_\sigma e^{F(\sigma, \mathfrak{a}, t)(X)}),$$

$$\beta(\sigma, \mathfrak{a}, t)(X) = \int_0^t \eta(\sigma, \mathfrak{a}, r)(X) dr.$$

The forms $\text{Ch}(\mathfrak{a}), \text{Ch}(\mathfrak{a}, t)$ and $\beta(\sigma, \mathfrak{a}, t)$ are equivariant forms on $\mathfrak{a'}$ with C^∞-coefficients. We have on $\mathfrak{a'}$ the relation $D(\beta(\sigma, \mathfrak{a}, t)) = \text{Ch}(\mathfrak{a}) - \text{Ch}(\mathfrak{a}, t)$.

We show in [17] that the equivariant forms $\text{Ch}(\mathfrak{a}, t)$ and $\eta(\sigma, \mathfrak{a}, t)$ tend to zero exponentially fast on the open subset $\mathfrak{a'} \backslash \text{supp}(\sigma)$, when t goes to infinity. Hence the integral

$$\beta(\sigma, \mathfrak{a}, t)(X) = \int_0^\infty \eta(\sigma, \mathfrak{a}, t)(X) dt$$

defines an equivariant form with C^∞-coefficients on $\mathfrak{a'} \backslash \text{supp}(\sigma)$, and we have $D(\beta(\sigma, \mathfrak{a})) = \text{Ch}(\mathfrak{a})$ on $\mathfrak{a'} \backslash \text{supp}(\sigma)$.

We will now define the Chern character with support of σ. For any invariant open neighborhood U of $\text{supp}(\sigma)$, we consider the algebra $\mathcal{A}_U(\mathfrak{a'}, \mathfrak{a'})$ of differential forms on $\mathfrak{a'}$ which are supported in U. Let $\mathcal{A}^\infty_U(\mathfrak{a'}, \mathfrak{a'}M)$ be the vector space of equivariant differential forms $\sigma : \mathfrak{a} \to \mathcal{A}_U(\mathfrak{a'}, \mathfrak{a'})$ which are supported in U : $\mathcal{A}^\infty_U(\mathfrak{a'}, \mathfrak{a'}M)$ is a subspace of $\mathcal{A}^\infty_U(\mathfrak{a'}, \mathfrak{a'}M)$ which is stable under the derivative D. Let $\mathcal{H}^\infty_U(\mathfrak{a'}, \mathfrak{a'}M)$ be the corresponding cohomology space.

The following proposition follows easily:

Proposition 3.6 ([17]). — Let U be a K-invariant open neighborhood of $\text{supp}(\sigma)$. Let $\chi \in C^\infty(\mathfrak{a'}, \mathfrak{a'})$ be a K-invariant function, with support contained in U and equal to 1 in a neighborhood of $\text{supp}(\sigma)$. The equivariant differential form on $\mathfrak{a'}$ $c(\sigma, \mathfrak{a}, \chi) = \chi \text{Ch}(\mathfrak{a}) + d_\chi \beta(\sigma, \mathfrak{a})$ is equivariantly closed and supported in U. Its cohomology class $\text{Ch}_U(\sigma)$ in $\mathcal{H}^\infty_U(\mathfrak{a'}, \mathfrak{a'}M)$ does not depend on the choice of (\mathfrak{a}, χ), nor on the Hermitian structure on E.

Definition 3.7. — We define the “Chern character with support” $\text{Ch}_{\text{supp}}(\sigma)$ as the collection $(\text{Ch}_U(\sigma))_U$, where U runs over K-invariant open neighborhood of $\text{supp}(\sigma)$.
In practice, the Chern character with support $\text{Ch}_{\text{supp}}(\sigma)$ will be identified with a class $\text{Ch}_U(\sigma) \in \mathcal{H}^\infty_c(\mathfrak{t}, T^*M)$, where U is a "sufficiently" small neighborhood of $\text{supp}(\sigma)$.

When σ is elliptic, that is when $\text{supp}(\sigma)$ is compact, we can choose $\chi \in C^\infty(T^*M)^K$ with compact support, and we denote

\begin{equation}
\text{Ch}_c(\sigma) \in \mathcal{H}^\infty_c(\mathfrak{t}, T^*M)
\end{equation}

the class defined by the equivariant form with compact support $c(\sigma,\mathbb{A},\chi)$.

We introduce now the bouquet of Chern characters with support.

Let $s \in K$. Then the action of s on $\mathcal{E}|_{M(s)}$ is given by $s^\mathbb{F}$, an even endomorphism of $\mathcal{E}|_{M(s)}$. The restriction of ω to $T^*M(s)$ is the canonical 1-form ω_s of $T^*M(s)$.

The super-connection $\mathbb{A} + it\nu_s$ restricts to a super-connection on $p^*\mathcal{E}|T^*M(s)$. Its curvature $F(\sigma, \mathbb{A}, t)$ restricted to $T^*M(s)$ is the restriction of $\mathcal{A}(N(s), \text{End}(p^*\mathcal{E}|N(s)))$.

To avoid further notations, if χ is a function on M, we still denote by χ its restriction to $M(s)$, by σ the restriction of σ to $T^*M(s)$, by $F(\sigma, \mathbb{A}, t)$ the restriction of $F(\sigma, \mathbb{A}, t)$ to $T^*M(s)$, etc....

For $Y \in \mathfrak{t}(s)$, we introduce the following $K(s)$-equivariant forms on $T^*M(s)$:

\begin{align*}
\text{Ch}_s(\mathbb{A})(Y) &= \text{Str}(s^\mathbb{F} e^{F(Y)}), \\
\eta_s(\sigma, \mathbb{A}, t)(Y) &= -i \text{Str}(v_s s^\mathbb{F} e^{F(\sigma, \mathbb{A}, t)(Y)}), \\
\beta_s(\sigma, \mathbb{A})(Y) &= \int_0^\infty \eta_s(\sigma, \mathbb{A}, t)(Y) dt.
\end{align*}

Then $\beta_s(\sigma, \mathbb{A})$ is a well defined $K(s)$-equivariant form with C^∞-coefficients on $T^*M(s) \setminus \text{supp}(\sigma) \cap T^*M(s)$. We have similarly $d\beta_s(\sigma, \mathbb{A}) = \text{Ch}_s(\mathbb{A})$ outside $\text{supp}(\sigma) \cap T^*M(s)$.

The bouquet of Chern characters $(\text{Ch}_{\text{supp}}(\sigma, s))_{s \in K}$ can be constructed as follows.

Proposition 3.8. — Let U be a $K(s)$-invariant open neighborhood of $\text{supp}(\sigma) \cap T^*M(s)$ in $T^*M(s)$. Let $\chi \in C^\infty(T^*M(s))$ be a $K(s)$-invariant function, with support contained in U and equal to 1 in a neighborhood of $\text{supp}(\sigma) \cap T^*M(s)$. The equivariant differential form on $T^*M(s)$

\[
c_s(\sigma, \mathbb{A}, \chi)(Y) = \chi \text{Ch}_s(\mathbb{A})(Y) + d\chi \beta_s(\sigma, \mathbb{A})(Y), \quad Y \in \mathfrak{t}(s),
\]

is equivariantly closed and supported in U. Its cohomology class $\text{Ch}_U(\sigma, s)$ in $\mathcal{H}^\infty_c(\mathfrak{t}, T^*M(s))$ does not depend on the choice of (\mathbb{A}, χ), nor on the Hermitian structure on \mathcal{E}.

The proof of this proposition is entirely similar to the proof of Proposition 3.6.
Definition 3.9. — We define the “Chern character with support” $\text{Ch}_{\text{supp}}(\sigma, s)$ as the collection $(\text{Ch}_U(\sigma, s))_U$, where U runs over the $K(s)$-invariant open neighborhood of $\text{supp}(\sigma) \cap T^*M(s)$ in $T^*M(s)$.

Lemma 3.10. — Let $s \in K$ and $S \in K(s)$. Then for all $Y \in \mathfrak{t}(s) \cap \mathfrak{t}(S)$, one has

$$c_s e^s(\sigma, \mathfrak{a}, \chi)(Y) = c_s(\sigma, \mathfrak{a}, \chi)(S + Y)|_{N(s) \cap N(S)}.$$

Déémonstration. — Let $N = T^*M$. We have to compare the following forms on $N(s) \cap N(S)$

$$\begin{align*}
\text{Ch}_{s e^s}(\mathfrak{a})(Y) &= \text{Str}(s e^s e^{F(Y)}), \\
\text{Ch}_s(\mathfrak{a})(S + Y) &= \text{Str}(s e^{F(S + Y)}),
\end{align*}$$

as well as the following forms

$$\begin{align*}
\eta_{s e^s}(\sigma, \omega, \mathfrak{a}, t)(Y) &= -i \text{Str} \left(e^{F(\sigma, \mathfrak{a}, t)(Y)} \right), \\
\eta_s(\sigma, \mathfrak{a}, t)(S + Y) &= -i \text{Str} \left(e^{F(\sigma, \mathfrak{a}, t)(S + Y)} \right).
\end{align*}$$

For $S \in \mathfrak{f}$, the equivariant curvature $F(\sigma, \mathfrak{a}, t)(S + Y)$ on $N(S)$ is equal to $S^E + F(\sigma, \mathfrak{a}, t)(Y)$ as the vector field VS vanishes on $N(S)$. Furthermore, above $N(s) \cap N(S)$, the endomorphism $F(\sigma, \mathfrak{a}, t)(Y)$ commutes with S^E, for $Y \in \mathfrak{t}(S) \cap \mathfrak{t}(s)$. Thus the result follows.

Then, for any open neighborhood U of $\text{supp}(\sigma)$, the family $(\text{Ch}_U(\sigma, s))_{s \in K}$ forms a bouquet of cohomology classes in the sense of [10].

3.4. The Chern character of a transversally elliptic symbol. — We keep the same notations than in the previous sections. We will use definition and results of [18] specialized to the case where N is T^*M.

We denote by ω the Liouville form on T^*M. In local coordinates (q, p) then $\omega = -\sum p_a dq_a$. The two-form $\Omega = dq \wedge dp$ gives a symplectic structure to T^*M. The orientation of T^*M is the orientation determined by the symplectic structure (our convention for the canonical 1-form ω differs from [7], but the symplectic form Ω is the same).

The moment map for the action of K on (T^*M, Ω) is the map $f_\omega : T^*M \to \mathfrak{t}^*$ defined by $(f_\omega(x, \xi), X) = (\xi, V_\omega X)$: we have $D_\omega(X) = \Omega + (f_\omega, X)$.

Remark that $T^*_K M$ is the set of zeroes of f_ω. Recall [14, 18] how to associate to the 1-form ω a K-equivariant form $\text{One}(\omega)$ with generalized coefficients supported near $T^*_K M$.

On the complement of $T^*_K M$, the K-equivariant form

\[\beta(\omega) = -i \omega \int_0^\infty e^{itD\omega} \, dt \]

is well defined as a K-equivariant form with generalized coefficients, and it is obvious to check that $D\beta(\omega) = 1$ outside $T^*_K M$.

Proposition 3.11 ([14, 18]). — Let U' be a K-invariant open neighborhood of $T^*_K M$. Let $\chi' \in C^\infty(T^*M)$ be a K-invariant function, with support contained in U' and equal to 1 in a neighborhood of $T^*_K M$. The equivariant differential form on T^*M

\[\text{One}(\omega, \chi') = \chi' + d\chi' \beta(\omega) \]

is closed, with generalized coefficients, and supported in U'. Its cohomology class $\text{One}_{U'}(\omega)$ in $H_{-\infty}(\mathfrak{t}, T^*M)$ does not depend on the choice of χ'.

This proposition allows us to make the following definition.

Definition 3.12. — We will denote $\text{One}(\omega)$ the collection $(\text{One}_{U'}(\omega))_{U'}$.

It is immediate to verify that

\[\text{One}(\omega, \chi') = 1 + D\left((\chi' - 1)\beta(\omega) \right). \]

Thus, if we do not impose support conditions, the K-equivariant form $\text{One}(\omega, \chi')$ represents 1 in $H_{-\infty}(\mathfrak{t}, T^*M)$. The notation One is suggestive of this fact.

We consider now a K-transversally elliptic symbol σ on M. We have the Chern character $\text{Ch}_{\sup}(\sigma)$ which is an equivariant form with C^∞-coefficients supported near $\text{supp}(\sigma)$, and the equivariant form $\text{One}(\omega)$ with $C^{-\infty}$-coefficients supported near $T^*_K M$. Since $\text{supp}(\sigma) \cap T^*_K M$ is compact, the product

\[\text{Ch}_{\sup}(\sigma) \wedge \text{One}(\omega) \]

defines an equivariant form with compact support with $C^{-\infty}$-coefficients. We summarize the preceding discussion by the

Theorem 3.13 ([18]). — Let σ be a K-transversally elliptic symbol. Let U, U' be respectively K-invariant open neighborhoods of $\text{supp}(\sigma)$ and $T^*_K M$ such that $U \cap U'$ is compact. The product

\[\text{Ch}_U(\sigma) \wedge \text{One}_{U'}(\omega) \]

defines a compactly supported class in $H_{-\infty}(\mathfrak{t}, T^*M)$ which depends uniquely of $[\sigma|_{T_K M}] \in K_0^R(T^*_K M)$.

Definition 3.14. — We define $\text{Ch}_c(\sigma, \omega) \in H_{-\infty}(\mathfrak{t}, T^*M)$ to be the equivariant class of $\text{Ch}_U(\sigma) \wedge \text{One}_{U'}(\omega)$.
We will use the notation
\[\text{Ch}_c(\sigma, \omega) = \text{Ch}_{\text{supp}}(\sigma) \wedge \text{One}(\omega) \]
which summarizes the fact that the class with compact support \(\text{Ch}_c(\sigma, \omega) \) is represented by the product
\[(17) \quad c(\sigma, A, \chi) \wedge \text{One}(\omega, \chi') \]
where \(\chi, \chi' \in C^\infty(T^*M) \) are equal to 1 respectively in a neighborhood of \(\text{supp}(\sigma) \) and \(T^*_K M \), and furthermore the product \(\chi \chi' \) is compactly supported.

Remark 3.15. — If \(\sigma \) is elliptic, one can take \(\chi \) with compact support, and \(\chi' = 1 \) on \(T^* M \) in Equation (17). We see then that
\[\text{Ch}_c(\sigma, \omega) = \text{Ch}_c(\sigma) \quad \text{in} \quad \mathcal{H}_c^{-\infty}(t, T^* M). \]

Let \(s \in K \). Similarly, we denote by \(\text{One}(\omega_s, \chi') \) the closed \(K(s) \)-equivariant form on \(T^* M(s) \) associated to the canonical 1-form \(\omega_s = \omega|T^* M(s) \) and a function \(\chi' \in C^\infty(T^* M(s)) \) equal to 1 in a neighborhood of \(T^*_K M(s) \). For any \(K(s) \)-invariant neighborhood \(U' \subset T^* M(s) \) of \(T^*_K M(s) \), we denote
\[\text{One}_{U'}(\omega_s) \in \mathcal{H}_c^{-\infty}(t(s), T^* M(s)) \]
the class defined by \(\text{One}(\omega_s, \chi') \) when \(\chi' \) is supported in \(U' \). We denote \(\text{One}(\omega_s) \) the collection \(\{ \text{One}_{U'}(\omega_s) \} \).

We defined, in Section 3.3, the family of Chern classes \((\text{Ch}_{\text{supp}}(\sigma, s))_{s \in K} \) for any \(K \)-invariant symbol. We now define a family \((\text{Ch}_c(\sigma, \omega, s))_{s \in K} \) with compact support and \(C^\infty \)-coefficients when \(\sigma \) is a \(K \)-transversally elliptic symbol on \(M \). Note that the restriction \(\sigma|T^* M(s) \) of a \(K \)-transversally elliptic symbol on \(M \) is a \(K(s) \)-transversally elliptical symbol on the submanifold \(M(s) \).

The following proposition is proved in an entirely similar way than Theorem 3.13.

Proposition 3.16. — Let \(\sigma \) be a \(K \)-transversally elliptic symbol. Let \(s \in K \).
Let \(U, U' \subset T^* M(s) \) be respectively \(K(s) \)-invariant open neighborhoods of \(\text{supp}(\sigma|T^* M(s)) \) and \(T^*_K M(s) \) such that \(U \cap U' \) is compact. The product
\[\text{Ch}_U(\sigma, s) \wedge \text{One}_{U'}(\omega_s) \]
defines a compactly supported class in \(\mathcal{H}_c^{-\infty}(t(s), T^* M(s)) \) which depends uniquely of \([\sigma|T^*_K M(s)]. \)

Definition 3.17. — We define \(\text{Ch}_c(\sigma, \omega, s) \in \mathcal{H}_c^{-\infty}(t(s), T^* M(s)) \) to be the equivariant class of \(\text{Ch}_U(\sigma) \wedge \text{One}_{U'}(\omega) \)
The notation
\[\text{Ch}_c(\sigma, \omega, s) = \text{Ch}_{\text{sup}}(\sigma, s) \wedge \text{One}(\omega_s) \]
summarizes the fact that the class with compact support \(\text{Ch}_c(\sigma, \omega, s) \) is represented by \(c_s(\sigma, \chi) \wedge \text{One}(\omega_s, \chi') \) where \(\chi, \chi' \in C^\infty(T^*M(s))^K(s) \) are chosen so that \(\chi \chi' \) is compactly supported.

3.5. Definition of the cohomological index. — Let \(K \) be a compact Lie group and let \(M \) be a compact \(K \)-manifold. The aim of this section is to define the cohomological index

\[\text{index}^{K,M}_c : K_0^0(T^*_KM) \to \mathcal{C}^{-\infty}(K)^K. \]

For any \([\sigma] \in K_0^0(T^*_KM)\), the generalized function \(\text{index}^{K,M}_c([\sigma]) \) will be described through their restrictions \(\text{index}^{K,M}_c([\sigma])|_s, s \in K \) (see Section 3.1).

In Subsection 3.2, we have introduced for any \(s \in K \), the closed equivariant form

\[\Lambda_s(Y) := (2i\pi)^{-\dim M(s)} \frac{\hat{A}(M(s))^2(Y)}{D_s(N)(Y)}. \]

We wish to prove first the following theorem.

Theorem 3.18. — Let \(\sigma \) be a \(K \)-transversally elliptic symbol. There exists a unique invariant generalized function \(\text{index}^{K,M}_c([\sigma]) \) on \(K \) satisfying the following equations. Let \(s \in K \). For every \(Y \in \mathfrak{k}(s) \) sufficiently small,

\[\text{index}^{K,M}_c([\sigma])_s(Y) = \int_{T^*_s M(s)} \Lambda_s(Y) \text{Ch}_{\text{sup}}(\sigma, s)(Y) \text{One}(\omega_s)(Y). \]

As \(\text{Ch}_c(\sigma, \omega, s) = \text{Ch}_{\text{sup}}(\sigma, s)(Y) \text{One}(\omega_s)(Y) \) is compactly supported, the integral (18) of equivariant differential forms with generalized coefficients defines a generalized function on a neighborhood of zero in \(\mathfrak{k}(s) \). However, we need to prove that the different local formulae patch together (see Theorem 3.2). The proof of this theorem occupies the rest of this subsection. Once this theorem is proved, we can make the following definition.

Definition 3.19. — Let \(\sigma \) be a \(K \)-transversally elliptic symbol. The cohomological index of \(\sigma \) is the invariant generalized function \(\text{index}^{K,M}_c([\sigma]) \) on \(K \) satisfying Equation (18). We also rewrite the formula for the cohomological index as

\[\text{index}^{K,M}_c([\sigma])_s(Y) = \int_{T^*_s M(s)} \Lambda_s(Y) \text{Ch}_c(\sigma, \omega, s)(Y). \]

In particular, when \(s = e \) is the identity of the group \(K \), Equation (18) becomes

\[\text{index}^{K,M}_c([\sigma])(s^X) = (2i\pi)^{-\dim M} \int_{T^*_s M} \hat{A}(M)^2(X) \text{Ch}_{\text{sup}}(\sigma)(X) \text{One}(\omega)(X). \]

Remark 3.20. — In (18), (20) and (19) we take for the integration the symplectic orientation on the cotangent bundles.
Let us now prove Theorem 3.18.

Démonstration. — The right hand side of (18) defines a \(K(s) \)-invariant generalized function \(\theta_s(Y) \) on a neighborhood \(U_s \) of 0 in \(\mathfrak{t}_e \). Following Theorem 3.2, the family \((\theta_s)_{s \in K} \) defines an invariant generalized function on \(K \), if the invariance condition and the compatibility condition are satisfied. The invariance condition is easy to check. We will now prove the compatibility condition.

Let \(s \in K \), and \(S \in U_e \). We have to check that the restriction \(\theta_s \mid_S \) coincides with \(\theta_s \mid_S \) in a neighborhood of 0 in \(\mathfrak{t}(s) \cap \mathfrak{t}(S) = \mathfrak{t}(s \cdot S) \). We conduct the proof only for \(s \) equal to the identity \(e \), as the proof for \(s \) general is entirely similar.

For a differential form \(\eta(X) \) on a manifold \(N \), we denote by \(\text{support}(\eta) \subset N \) its support. For a smooth equivariant form \(X \to \eta(X) \), its support \(\text{support}(\eta(X)) \) is defined as the smallest closed subset containing \(\text{support}(\eta(X)) \) for all \(X \in \mathfrak{t} \).

We have to compute the restriction at \(\theta_s \mid_S \) of the generalized invariant function

\[
\theta_s(X) := \int_{T^* M} \Lambda_s(X) \text{Ch}_{\supp}(\sigma)(X) \text{One}(\omega)(X), \quad X \in U_e.
\]

For this purpose, we choose a particular representative of the class \(\text{Ch}_{\supp}(\sigma)\text{One}(\omega) \) in \(\mathcal{H}^{\infty}(\mathfrak{t}, T^* M) \). Since this class only depends of \([\sigma]_{T^*_K M} \in K_0^0(T^*_K M) \), we choose a transversally elliptic symbol \(\sigma_h \) which is almost homogeneous of degree 0 and such that \([\sigma_h]_{T^*_K M} = [\sigma]_{T^*_K M} \).

One can show [18] that the moment map \(f_\omega : T^* M \to \mathfrak{t}^* \) is proper when restricted to the support \(\supp(\sigma_h) \). We represent \(\text{Ch}_{\supp}(\sigma_h) \) by the form \(c(\sigma_h, A, \chi_\sigma) \) where \(\chi_\sigma \) is a function on \(T^* M \) such that \(\text{support}(\chi_\sigma) \cap \{ \| f_\omega \|^2 \leq 1 \} \) is compact. For this choice of \(\chi_\sigma \), the equivariant form \(\alpha(X) = \Lambda_s(X) c(\sigma_h, A, \chi_\sigma)(X) \) is thus such that \(\text{support}(\alpha) \cap \{ \| f_\omega \|^2 \leq 1 \} \) is compact. It is defined for \(X \) small enough. Multiplying by a smooth invariant function of \(X \) with small compact support and equal to 1 in a neighborhood of 0, we may find \(\alpha(X) \) defined for all \(X \in \mathfrak{t} \) and which coincides with \(\Lambda_s(X) c(\sigma_h, A, \chi_\sigma)(X) \) for \(X \) small enough.

We choose \(\chi \) supported in \(\{ \| f_\omega \|^2 < 1 \} \) and equal to 1 on \(\{ \| f_\omega \|^2 \leq \epsilon \} \), and define \(\text{One}(\omega) \) with this choice of \(\chi \). Then \(\alpha(X) \text{One}(\omega)(X) \) is compactly supported.

We will now prove the following result:

Proposition 3.21. — Let \(\alpha(X) \) be a closed equivariant form with \(C^\infty \)-coefficients on \(N := T^* M \) such that \(\{ \| f_\omega \|^2 \leq 1 \} \cap \text{support}(\alpha) \) is compact. Define the generalized function \(\theta \in C^\infty(\mathfrak{t})^K \) by

\[
\theta(X) := \int_N \alpha(X) \text{One}(\omega)(X).
\]

Then, the restriction \(\theta \mid_S \) is given, for \(Y = Z - S \) sufficiently close to 0 by

\[
\theta \mid_S(Y) = (-1)^s \int_{N(S)} \frac{\alpha \mid_{N(S)}(Z)}{\text{Enl}(N_S)^2(Z)} \text{One}(\omega_S)(Z).
\]
Here N_S denotes the normal bundle of $M(S)$ in M, and $r = \frac{1}{2}(\dim M - \dim M(S))$.

Remark 3.22. — The integral (22) is defined using the symplectic orientation $o(\omega_S)$ on $N(S) = T^*M(S)$. The linear action of S on the normal bundle N'_S of $N(S)$ in N induces a complex structure N_S : let $o(J_S)$ be corresponding orientation of the fibers of N'_S. We have then on $N(S)$ the orientation $o(S)$ such that $o(\omega) = o(S)o(J_S)$. One can check that $(-1)^r$ is the quotient between $o(S)$ and $o(\omega_S)$.

Let us apply the last proposition to the form $\alpha(X) = \Lambda_e(X)\text{Ch}_{nup}(\sigma_h)(X)$. If we use (12) and Lemma 3.10, we see that χ induces a complex structure on N. We have then on $N(S)$ the orientation $o(S)$ such that $o(\omega) = o(S)o(J_S)$. One can check that $(-1)^r$ is the quotient between $o(S)$ and $o(\omega_S)$.

Démonstration. — We now concentrate on the proof of Proposition 3.21.

Remark that if α is compactly supported, we can get rid of the forms $\text{One}(\omega)$ and $\text{One}(\omega_S)$ in the integrals (21) and (22), since they are equal to 1 in cohomology. In this case, the proposition is just the localisation formula, as $\text{Eul}(N_S)^2$ is the Euler class of the normal bundle of $T^*M(S)$ in T^*M.

The proof will follow the same scheme as the usual localization formula (see [6]) and will use the fact that $\alpha|_{t(S)}$ is exact outside the set of zeroes of S. To extend the proof of the localization formula in our setting, we have to bypass the fact that the restriction of $\text{One}(\omega)$ to $\mathfrak{t}(S)$ has no meaning, since $\text{One}(\omega)$ is an equivariant form with generalized coefficients. However, we will use in a crucial way the fact that the closed equivariant form $\text{One}(\omega)$ is the limit of smooth equivariant forms

$$\text{One}^T(\omega)(X) = \chi + d\chi \int_0^T (-i_\omega e^{itD\omega}(X))dt.$$

Here $D \{\text{One}^T(\omega)\} = d\chi e^{iD\omega}$ tends to zero as T goes to infinity.

Let $\text{One}^T(\omega)(Z)$ be the restriction of $\text{One}^T(\omega)(X)$ to $\mathfrak{t}(S)$. We write $f_\omega = f^S_\omega + f^S_\omega$ relative to the $K(S)$-invariant decomposition $\mathfrak{k} = \mathfrak{t}(S)^* \oplus \mathfrak{q}$. Then the family of $K(S)$-equivariant forms

$$e^{itD\omega}(Z) = e^{it\omega} e^{i(f^S_\omega, Z)}$$

tends to 0 outside $\{f^S = 0\}$, as t goes to ∞. Since $d\chi$ can be non-zero on the subset $\{f^S_\omega = 0\}$, the family of $\mathfrak{t}(S)$-equivariant forms $\text{One}^T(\omega)(Z)$ does not have a limit when $T \to \infty$ in general.

Consider the sub-manifold $N(S) := T^*M(S)$ of $N := T^*M$. Note that f^S_ω vanishes on $N(S)$. Let V be an invariant tubular neighborhood of $N(S)$ which is contained in $\{||f^S_\omega||^2 \leq \frac{\varepsilon}{2}\}$. We are interested in the restriction $\text{One}^T(\omega)|_V(Z)$ to V. Since the function χ is equal to 1 on $\{||f_\omega||^2 \leq \varepsilon\}$, we see that $d\chi|_V$ is equal to zero in the neighborhood $V \cap \{||f^S_\omega||^2 \leq \frac{\varepsilon}{2}\}$ of $V \cap \{f^S_\omega = 0\}$. Hence the limit

$$\text{One}(\omega)|_V(Z) = \lim_{T \to \infty} \text{One}^T(\omega)|_V(Z), \quad Z \in \mathfrak{t}(S),$$

(23)
defines a $K(S)$-equivariant form with generalized coefficients on \mathcal{V}. Note that the restriction of $\text{One}(\omega)|_{\mathcal{V}}$ to $N(S) \subset \mathcal{V}$ is the $K(S)$-equivariant form $\text{One}(\omega_S)$ associated to the Liouville 1-form ω_S on $T^*M(S)$.

The generalized function $\theta \in C^{-\infty}(\mathfrak{k})^K$ is the limit, as T goes to infinity, of the family of smooth functions

$$\theta^T(X) := \int_N \alpha(X) \text{One}^T(\omega)(X).$$

Here the equivariant forms $\alpha^T = \alpha \text{One}^T(\omega)$ stay supported in the fixed compact set $K := \{\|f\omega\|^2 \leq 1\} \cap \text{support}(\alpha)$.

The proof will be completed if we show that the family of smooth functions $\theta^T(Z), Z \in \mathfrak{k}(S)$, converge to the generalized function $\theta'(Z) := (-1)^r \int_{N(S)} \frac{\alpha(Z)}{\text{Eul}(N_S)^2} \text{One}(\omega_S)(Z)$, as T goes to infinity, and when Z varies in a small neighborhood of S in $\mathfrak{k}(S)$.

Let U be a relatively compact invariant neighborhood of K in N. Let $\chi' \in C^\infty(U)^K(S)$ be such that χ' is supported in $\mathcal{V} \cap U$, and $\chi' = 1$ in a neighborhood of $U(S) = N(S) \cap U$. Here \mathcal{V} is a tubular neighborhood of $N(S)$ satisfying the conditions for the existence of the limit (23).

Choose a K-invariant metric $(-,-)$ on TN. Let λ be the $K(S)$-invariant 1-form on N defined by $\lambda = (VS, -)$. Note that $D(\lambda)(S) = d\lambda - \|VS\|^2$ is invertible outside $N(S)$. One sees that

$$P_{\chi'}(Z) = \chi' + d\chi' \frac{\lambda}{D\lambda(Z)}$$

is a $K(S)$-equivariant form on U for Z in a small neighborhood of S. The following equation of $K(S)$-equivariant forms on U is immediate to verify:

$$(24) \quad 1 = P_{\chi'} + D \left((1 - \chi') \frac{\lambda}{D\lambda} \right).$$

Since the $K(S)$-equivariant forms

$$\alpha^T(Z) := \alpha(Z) \text{One}^T(\omega)(Z)$$

are supported in U, one can multiply (24) by α^T. We have then the following relations between compactly supported $K(S)$-equivariant forms on N:

$$\alpha^T = P_{\chi'} \alpha^T + D \left((1 - \chi') \frac{\lambda}{D\lambda} \right) \alpha^T.$$

According to this equation, we divide the function $\theta^T(Z)$ in two parts

$$\theta^T(Z) = A^T(Z) + B^T(Z), \quad \text{for } Z - S \text{ small}$$
with
\[A^T(Z) = \int_N P_{X'}(Z)\alpha^T(Z) \]
and
\[B^T(Z) = \int_N \left(1 - \chi'\right) \frac{\lambda}{D\lambda(Z)} D\alpha^T(Z) = \int_N \left(1 - \chi'\right) \frac{\lambda}{D\lambda(Z)} \alpha(Z) d\chi e^{iT_D\omega(Z)}. \]

Let \(p : \mathcal{V} \to N(S) \) be the projection, and let \(i : N(S) \to \mathcal{V} \) be the inclusion. Since the form \(P_{X'}(Z) \) is supported in \(\mathcal{V} \), the family of smooth equivariant forms \(P_{X'}(Z)\alpha(Z)One^T_\mathcal{V}(\omega)(Z) \) converges to
\[P_{X'}(Z)\alpha(Z)One(\omega)\mid_\mathcal{V}(Z) \]
as \(T \) goes to \(\infty \), by our previous computation of the limit (23). Hence the functions \(A^T(Z) \) converge to
\[\int_\mathcal{V} P_{X'}(Z)\alpha(Z)One(\omega)\mid_\mathcal{V}(Z) = \int_\mathcal{V} P_{X'}(Z) p^*i^*(\alpha One(\omega)\mid_\mathcal{V})(Z) \quad [1] \\
= \int_{N(S),o(S)} p_*(P_{X'})(Z) \alpha\mid_{N(S)}(Z) One(\omega_S)(Z) \quad [2] \\
= \int_{N(S),o(S)} \alpha\mid_{N(S)}(Z) \text{Eul}(N_S)^2(Z) One(\omega_S)(Z) \quad [3] \\
= (-1)^r \int_{N(S)} \alpha\mid_{N(S)}(Z) \text{Eul}(N_S)^2(Z) One(\omega_S)(Z). \quad [4] \]

Points [1] and [2] are due to the fact that \(\alpha(Z)One(\omega)\mid_\mathcal{V}(Z) \) is equal to \(p^* \circ i^*(\alpha One(\omega)\mid_\mathcal{V})(Z) \) in \(\mathcal{H}^\infty(\mathfrak{t}(S), \mathcal{V}) \) and that \(P_{X'} \) has a compact support relative to the fibers of \(p \) (here \(p_* \) denotes the integration along the fibers). For point [3], we use then that \(p_*(P_{X'}) \) multiplied by the Euler class (2) of \(\mathcal{V} \) is equal to the restriction of \(P_{X'} \) to \(N(S) \), which is identically equal to 1. In [4], we use the symplectic orientation for the integration.

Let us show that the integral \(\int_{t(S)} B^T(Z) \varphi(Z) dZ \) tends to 0, as \(T \) goes to infinity, for any \(\varphi \in C^\infty(\mathfrak{t}(S))^K(S) \) supported in a small neighborhood of \(S \). As \(\text{det}_{t(S)}(Z) \) does not vanish when \(Z - S \) remains small enough, it is enough to show that
\[I(T) := \int_{N \times t(S)} \frac{1 - \chi'}{D\lambda(Z)} D\alpha^T(Z) \varphi(Z) \text{det}_{t(S)}(Z) dZ \]
tends to 0, as \(T \) goes to infinity. We have
\[I(T) := \int_{N \times t(S)} e^{iT_D\omega(Z)} \eta(Z) \text{det}_{t(S)}(Z) dZ \]

(2) The Euler form of the vector bundle \(\mathcal{V} \to N(S) \) is equal to the square of the Euler form of the normal bundle \(N_S \) of \(M(S) \) in \(M \).
where $\eta(Z) = (\chi' - 1)\nabla_s r^a(Z) d\chi \varphi(Z)$ is a compactly supported $K(S)$-equivariant form on N with C^∞-coefficients, which is defined for all $Z \in \mathfrak{s}(S)$. Furthermore we have $\eta(Z) = 0$ for Z outside a small neighborhood of S and

$$support(\eta) \cap \{ f_\omega = 0 \} = \emptyset.$$

There exists a K-equivariant form $\Gamma : \mathfrak{k} \to \mathcal{A}(N)$ such that $\Gamma(Z) = \eta(Z)$ for any $Z \in S$ small in $\mathfrak{s}(S)$. Indeed we define $\Gamma(X) = k_\cdot \eta(Z)$ for any choice of $k_\cdot Z = X$. Here X varies in a (small) neighborhood of $K \cdot S$. As $\eta(Z)$ is zero when Z is not near S, the map $X \mapsto \Gamma(X)$ is supported on a compact neighborhood of $K \cdot S$ in \mathfrak{k}. We see also that

$$support(\Gamma) \cap \{ f_\omega = 0 \} = \emptyset.$$

Condition (25) implies that the integral $J(T) := \int_{H} e^{iTD_\omega(X)} \Gamma(X) dX$ goes to 0, as T goes to infinity. But $J(T) = \hat J(T)$. Indeed, write $X = k_\cdot Z$ and apply the Weyl integration formula. We obtain

$$J(T) = \int_{H} \left(\int_{K} e^{iTD_\omega(k_\cdot Z)} \Gamma(k_\cdot Z) dk \right) \det \chi_{\mathfrak{t}/H}(Z) dZ = \int_{H} \int_{K} k_\cdot \left(e^{iTD_\omega(Z)} \eta(Z) \right) dk \det \chi_{\mathfrak{t}/H}(Z) dZ.$$

Integration on the K-manifold N is invariant under diffeomorphisms, thus

$$J(T) = \int_{H} \int_{K} e^{iTD_\omega(Z)} \eta(Z) \det \chi_{\mathfrak{t}/H}(Z) dZ = I(T).$$

We have shown that the family of smooth function $B^T(Z)$ goes to 0, as T goes to infinity. The proof of Proposition 3.21 is then completed.

Let H be a compact Lie group acting on M and commuting with the action of K. Then the space $T^0_K M$ is provided with an action of $K \times H$.

Lemma 3.23. — If $[\sigma] \in K^0_{K \times H}(T^0_K M)$, then the cohomological index $\text{index}^{K, H, M}_c([\sigma])(k, h) \in C^{-\infty}(K \times H)^{K \times H}$ is smooth relative to the variable $h \in H$.

Démonstration. — We have to prove that for any $s = (s_1, s_2) \in K \times H$, the generalized function

$$\text{index}_{c}^{K, H, M}([\sigma])|_{s}(Y_1, Y_2)$$

which is defined for (Y_1, Y_2) in a neighborhood of 0 in $\mathfrak{s}(s_1) \times \mathfrak{h}(s_2)$, is smooth relative to the variable $Y_2 \in \mathfrak{h}(s_2)$. We check it for $s = e$.

We have

$$\text{index}_{c}^{K, H, M}([\sigma]|_e(X, Y) = \int_{T^0_M} \Lambda_c(X, Y) \text{Ch}_{\sup}(\sigma)(X, Y) \text{One}(\omega)(X, Y)$$

(26)
for \((X, Y) \in \mathfrak{k} \times \mathfrak{h}\) in a neighborhood of 0. The equivariant class with compact support \(\text{Ch}_{\sup}(\sigma)\text{One}(\omega)\) is represented by the product \(c(\sigma, \mathbb{A}, \chi)\text{One}(\omega, \chi')\) where \((\chi, \chi')\) is chosen so that \(\chi = 1\) in a neighborhood of \(\text{supp}(\sigma)\), \(\chi' = 1\) in a neighborhood of \(T_{\mathbb{K} \times \mathbb{H}} M\), and \(\chi \chi'\) is compactly supported.

Since \(\sigma\) is \(\mathbb{K}\)-transversally elliptic, the set \(\text{supp}(\sigma) \cap T^*_\mathbb{K} M\) is compact. Hence we can choose \((\chi, \chi')\) so that \(\chi' = 1\) in a neighborhood of \(T^*_\mathbb{K} M\) and \(\chi \chi'\) is compactly supported. It easy to check that the equivariant form \(\text{One}(\omega, \chi')(X, Y)\) is then smooth relative to the variable \(Y \in \mathfrak{h}\). This show that the right hand side of (26) is smooth relative to the variable \(Y \in \mathfrak{h}\).

\[\square\]

Remark 3.24. — We will denote \(\text{Ch}_c^1(\sigma, \omega)(X, Y)\) the \(\mathbb{K} \times \mathbb{H}\)-equivariant form defined by the product \(c(\sigma, \mathbb{A}, \chi)\text{One}(\omega, \chi')\) where \((\chi, \chi')\) is chosen so that \(\chi = 1\) in a neighborhood of \(\text{supp}(\sigma)\), \(\chi' = 1\) in a neighborhood of \(T^*_\mathbb{K} M\), and \(\chi \chi'\) is compactly supported. The equivariant form \(\text{Ch}_c^1(\sigma, \omega)(X, Y)\) is compactly supported and is smooth relative to the variable \(Y \in \mathfrak{h}\).

4. The cohomological index coincides with the analytic one

In this section, we now prove that the cohomological index is equal to the analytical index. The main difficulty in the proof of this result in Berline-Vergne [7, 8] was to prove that their formulae were defining generalized functions which, moreover, were compatible with each other. The heart of this new proof is the fact the Chern character with compact support is multiplicative. Thus we rely heavily here on the results of [18], so that the proof is now easy.

Theorem 4.1. — The analytic index of a transversally elliptic operator \(P\) on a \(\mathbb{K}\)-manifold \(M\) is equal to \(\text{index}^{K, M}_c([\sigma_P])\).

To prove that the cohomological index is equal to the analytic index, following the Atiyah-Singer algorithm, we need only to verify that the cohomological index satisfies the properties that we listed of the analytic index:

- Invariance by diffeomorphism : \textbf{Diff},
- Functorial with respect to subgroups : \textbf{Morph},
- Excision property,
- Free action properties,
- Multiplicative properties,
- Normalization conditions \([N1]\), \([N2]\) and \([N3]\).

The invariance by diffeomorphism, the functoriality with respect to subgroups and the excision property are obviously satisfied by \(\text{index}^{K, M}_c\).
4.1. Free action. — We now prove that the cohomological index satisfies the free action property. We consider the setting of Subsection 2.3.3. The action of K on the bundle $T^*_K P$ is free and the quotient $T^*_K P/K$ admit a canonical identification with $T^* M$. Then we still denote by

$$q : T^*_K P \to T^* M$$

the quotient map by K: it is a G-equivariant map such that $q^{-1}(T^*_G M) = T^*_{K \times G} P$.

We choose a G-invariant connection θ for the principal fibration $q : P \to M$ of group K. With the help of this connection, we have a direct sum decomposition

$$T^* P = T^*_K P \oplus P \times t^*.$$

Let $\pi_1 : T^*_P \to T^*_K P$ and $\pi_2 : T^*_P \to P \times t^*$ be the projections on each factors. Let

$$Q : T^*_P \to T^*_M$$

be the map $q \circ \pi_1$.

Let σ be a G-transversally elliptic morphism on T^*_M. Its pull-back $Q^* \sigma$ is then a $K \times G$-transversally elliptic morphism on T^*_P : we have $\text{supp}(Q^* \sigma) = Q^{-1}(\text{supp}(\sigma))$ and then $\text{supp}(Q^* \sigma) \cap T^*_{K \times G} P = q^{-1}(\text{supp}(\sigma) \cap T^*_G M)$ is compact.

Theorem 4.2. — Let $P \to M$ be a principal fibration with a free right action of K, provided with a left action of G. Consider a class $[\sigma] \in K^0_G(T^*_G M)$ and its pull-back by $Q : [Q^* \sigma] \in K^0_{K \times G}(T^*_{K \times G} P)$. Then we have the equality of generalized functions: for $(k, g) \in K \times G$

$$\text{index}^K_{\text{c}} \left([Q^* \sigma]\right)(k, g) = \sum_{\tau \in K} \text{Tr}(k, \tau) \text{index}^G_M \left([\sigma_{\tau\tau}]\right)(g).$$

The rest of this section is devoted to the proof. We have to check that for any $(s, s') \in K \times G$ we have the following equality of generalized functions defined in a neighborhood of $t(s) \times g(s')$

$$\text{index}^K_{\text{c}} \left([Q^* \sigma]\right)_{(s, s')}(X, Y) = \sum_{\tau \in K} \text{Tr}(se^{X}, \tau) \text{index}^G_M \left([\sigma_{\tau\tau}]\right)_{s'}(Y).$$

(27)

We conduct the proof of (27) only for $(s, s') = (e, e)$ the identity of $K \times G$. This proof can be adapted to the general case by using the same arguments as Berline-Vergne [8].

First, we analyze the left hand side of (27) at $(s, s') = (e, e)$.

We consider the $K \times G$-invariant 1-form $\nu = [\xi, \theta]$ on $P \times t^*$: here $\theta \in \mathcal{A}^1(P) \otimes t$ is our connection form, and ξ is the variable in t^*. We have

$$D \nu(X, Y) = d\nu + [\xi, \mu(Y) - X], \quad X \in t, \quad Y \in g.$$

where $\mu(Y) = -\theta(YY) \in C^\infty(P) \otimes t$.

We associate to ν the $K \times G$-equivariant form with generalized coefficients $\beta(-\nu)(X, Y) = i \nu \int_0^\infty e^{-iY} \text{d}t, (X, Y) \in \mathfrak{t} \times g$, which is defined on the open
subset $P \times \mathfrak{t}^* \setminus \{0\}$. One checks that $\beta(-\nu)(X,Y)$ is smooth relative to the variable $Y \in \mathfrak{g}$. Let $\chi_{\mathfrak{t}^*} \in C^\infty(\mathfrak{t}^*)^A$ be a function with compact support and equal to 1 near 0. Then

$$\text{One}(-\nu)(X,Y) := \chi_{\mathfrak{t}^*} + d\chi_{\mathfrak{t}^*} \beta(-\nu)(X,Y)$$

is a closed equivariant form on $P \times \mathfrak{t}^*$, with compact support, and which is smooth relative to the variable $Y \in \mathfrak{g}$.

Let σ be a G-transversally elliptic morphism on T^*M. Its pull-back $Q^*\sigma$ is then a $K \times G$-transversally elliptic morphism on T^*P. Let ω_P and ω_M be the Liouville 1-forms on T^*P and T^*M respectively. We have defined the equivariant Chern classes with compact support $\text{Ch}_c(\sigma, \omega_M) \in \mathcal{H}_{c}^{-\infty}(\mathfrak{g}, T^*M)$ and $\text{Ch}_c(Q^*\sigma, \omega_P) \in \mathcal{H}_{c}^{-\infty}(\mathfrak{t} \times \mathfrak{g}, T^*P)$.

Proposition 4.3. We have the following equality

$$\text{Ch}_c(Q^*\sigma, \omega_P)(X,Y) = Q^* \left(\text{Ch}_c(\sigma, \omega_M)(Y) \wedge \pi_2^* \left(\text{One}(-\nu)(X,Y) \right) \right)$$

in $\mathcal{H}_{c}^{-\infty}(\mathfrak{t} \times \mathfrak{g}, T^*P)$. Note that the product on the right hand side is well defined since $\text{One}(-\nu)(X,Y)$ is smooth relative to the variable $Y \in \mathfrak{g}$.

Démonstration. The proof which is done in [18] follows from the relation

$$\omega_P = Q^* (\omega_M) - \pi_2^*(\nu).$$

We now analyze the term

$$\text{index}_{c}^{K \times G, P}([Q^*\sigma]|_{(e,e)})(X,Y) = (2i\pi)^{-\dim P} \int_{T^*P} \hat{A}(P)^2 \text{Ch}_c(Q^*\sigma, \omega_P)(X,Y).$$

An easy computation gives that $\hat{A}(P)^2(X,Y) = j_\xi(X)^{-1} q^* \hat{A}(M)^2(Y)$, with $j_\xi(X) = \text{det}_\mathfrak{t} \left(\frac{\omega_{\mathfrak{t}^*}(X)/2}{\text{ad}(X)/2} \right)$. If we use Proposition 4.3, we see that

$$\text{index}_{c}^{K \times G, P}([Q^*\sigma]|_{(e,e)})(X,Y) = (2i\pi)^{-\dim P} \frac{\pi_2^* q^* \left(\hat{A}(M)^2 \text{Ch}_c(\sigma, \omega_M) \right)(Y) \wedge \pi_2^*(\text{One}(-\nu)(X,Y))}{j_\xi(X)} \int_{T^*P} \text{One}(-\nu)(X,Y).$$

Let us compute the integral $\int_{T^*} \text{One}(-\nu)(X,Y)$.

We choose a K-invariant scalar product on \mathfrak{t} and an orthonormal basis E^1, \ldots, E^r of \mathfrak{t}, with dual basis E_1, \ldots, E^r : we write $X = \sum_k X_k E_k$ for $X \in \mathfrak{t}$, and $\xi = \sum_k \xi_k E_k$ for $\xi \in \mathfrak{t}^*$. Let $\theta_k = \langle E_k, \theta \rangle$ be the 1-forms on P associated to the connection 1-form. Let $\text{vol}(K, dX^\omega)$ be the volume of K computed with the Haar measure compatible with the volume form $dX^\omega = dX_1 \ldots dX_r$.

We have \(d\nu = \sum_k \xi_k d\theta_k + d\xi_k \theta_k \), and (30) gives that

\[
(d\omega_P)^{\dim P} = q^* (d\omega_M)^{\dim M} \wedge \theta_r \cdots \theta_1 \wedge \pi_2^* (d\xi_1 \cdots d\xi_r).
\]

So, in the integral (31), the vector space \(k^* \) is oriented by the volume form \(d\xi_1 \cdots d\xi_r \), and \(T_K^* P \) is oriented by \(q^* (d\omega_M)^{\dim M} \wedge \theta_r \cdots \theta_1 \).

Let \(\Theta = d\theta + \frac{1}{2} [\theta, \theta] \in A^2(P) \otimes \mathfrak{f} \) be the curvature of \(\theta \). The equivariant curvature of \(\theta \) is

\[
\Theta(Y) = \mu(Y) + \Theta.
\]

Then \(\Theta(Y) \in A(P) \otimes \mathfrak{f} \) is horizontal, and the element \(\Theta \in A^2(P) \otimes \mathfrak{f} \) is nilpotent. If \(\varphi \) is a \(C^\infty \) function on \(\mathfrak{f} \), then \(\varphi(\Theta(Y)) \) is computed via the Taylor series expansion at \(\mu(Y)(p) \) and \(\varphi(\Theta(Y)) \) is a horizontal form on \(P \) which depends smoothly and \(G \)-equivariantly of \(Y \in g \). When \(\varphi \in C^\infty_0(\mathfrak{f}) \) is \(K \)-invariant, the form \(\varphi(\Theta(Y)) \) is basic, hence we can look at it as a differential form on \(M \) which depends smoothly and \(G \)-equivariantly of \(Y \in g \).

Definition 4.4. — Let \(\delta(X - \Theta(Y)) \) be the \(K \times G \)-equivariant form on \(P \) defined by the relation

\[
\int_{\mathfrak{f} \times g} \delta(X - \Theta(Y)) \varphi(X,Y) dX dY := \text{vol}(K,dX) \int_g \varphi(\Theta(Y),Y) dY,
\]

for any \(\varphi \in C^\infty(\mathfrak{f} \times g) \) with compact support. Here \(\text{vol}(K,dX) \) is the volume of \(K \) computed with the Haar measure compatible with \(dX \).

One sees that \(\delta(X - \Theta(Y)) \) is a \(K \times G \)-equivariant form on \(P \) which depends smoothly of the variable \(Y \in g \).

Lemma 4.5. — Let \(\mathfrak{f}^* \) be oriented by the volume form \(d\xi^o = d\xi_1 \cdots d\xi_r \). Then

\[
\int_{\mathfrak{f}^*} \text{One}(-\nu)(X,Y) = (2i\pi)^{\dim K} \delta(X - \Theta(Y)) \frac{\theta_r \cdots \theta_1}{\text{vol}(K,dX^o)}.
\]

Démonstration. — Take \(\chi_{\mathfrak{f}^*}(\xi) = g(||\xi||^2) \) where \(g \in C^\infty_0(\mathbb{R}) \) is equal to 1 in a neighborhood of 0. Let \(\varphi \in C^\infty(\mathfrak{f}) \) and let \(\hat{\varphi}(\xi) = \int_{\mathfrak{f}} e^{i\langle \xi,X \rangle} \varphi(X) dX^o \) be its Fourier transform relative to \(dX^o \).

To compute the integral over the fiber \(\mathfrak{f}^* \) of \(\text{One}(-\nu)(X,Y) \), only the highest exterior degree term in \(d\xi \) will contribute to the integral. This term comes only from the term \(d\chi_{\mathfrak{f}^*} \beta(-\nu)(X,Y) \) in \(\text{One}(-\nu)(X,Y) := \chi_{\mathfrak{f}^*} + d\chi_{\mathfrak{f}^*} \beta(-\nu)(X,Y) \). We compute
\[
\int_t \left(\int_{t'} \text{One}(-\nu)(X,Y) \right) \varphi(X) dX^o = \int_{t'} \left(\int_t \text{One}(-\nu)(X,Y) \varphi(X) dX^o \right)
\]
\[
= \int_{t'} d\chi_{t'}(i\nu) \left(\int_0^\infty e^{-it(\nu + (\xi,\mu(Y)))} \tilde{\varphi}(t\xi) dt \right)
\]
\[
= \int_0^\infty \left(\int_{t'} d\chi_{t'}(i\nu) e^{-it(\nu + (\xi,\mu(Y)))} \tilde{\varphi}(t\xi) \right) dt.
\]

Since \(dv = \sum_k \xi_k d\theta_k + d\xi_k \theta_k \), the differential form \(d\chi_{t'}(i\nu) e^{-itdv} \) is equal to

\[
2i g'((\|\xi\|^2)(\sum_j \xi_j d\xi_j)(\sum_k \xi_k \theta_k) \prod_l (1 - itd\xi_l) e^{-it(\xi,\theta)}
\]

and its component \([d\chi_{t'}(i\nu) e^{-itdv}]_{\text{max}}\) of highest exterior degree in \(d\xi \) is

\[
2(-i)^t r^{t-1} g'((\|\xi\|^2)\|\xi\|^2 \sum_j (\xi_l \wedge \theta_l) e^{-it(\xi,\theta)}
\]

So for \(t > 0 \) we have

\[
I(t) = -2(i)^t r^{t-1} \theta_1 \cdot \theta_1 \left(\int_{t'} g'((\|\xi\|^2)) \|\xi\|^2 e^{-it(\xi,\theta + \mu(Y))} \tilde{\varphi}(t\xi) d\xi^o \right)
\]

\[
= (i)^t \theta_1 \cdot \theta_1 \left(\int_{t'} \left[-2g'((\|\xi\|^2)) \|\xi\|^2 \right] e^{-i(\xi,\theta + \mu(Y))} \tilde{\varphi}(t\xi) d\xi^o \right)
\]

\[
= (i)^t \theta_1 \cdot \theta_1 \frac{d}{dt} \left(\int_{t'} g'((\|\xi\|^2)) e^{-i(\xi,\theta + \mu(Y))} \tilde{\varphi}(t\xi) d\xi^o \right).
\]

Finally \(\int_t \left(\int_{t'} \text{One}(-\nu)(X,Y) \right) \varphi(X) dX^o \) is equal to

\[
\int_0^\infty I(t) dt = (i)^t \theta_1 \cdot \theta_1 \left(\int_{t'} e^{-i(\xi,\theta + \mu(Y))} \tilde{\varphi}(t\xi) d\xi^o \right)
\]

\[
= (2i\pi)^t \theta_1 \cdot \theta_1 \varphi(\theta + \mu(Y))
\]

\[
= (2i\pi)^t \theta_1 \cdot \theta_1 \varphi(\Theta + \mu(Y))
\]

\[
= (2i\pi)^t \left(\int_{t'} \delta(X - \Theta(Y)) \varphi(X) dX^o \right) \frac{\theta_1 \cdot \theta_1}{\text{vol}(K,dX^o)}.
\]

The last lemma shows that index^K_x \chi_x([Q^*\sigma])_{(e,o)}(X,Y) is equal to

\[
\frac{(2i\pi)^{-\dim M}}{\lambda_t(X)} \int_{T^*_R \lambda^*} \tilde{\Lambda}(M)^2 \chi_{e_\sigma}(\sigma,\omega_M) \left((Y) \delta(X - \Theta(Y)) \frac{\theta_1 \cdot \theta_1}{\text{vol}(K,dX^o)} \right)
\]

\[
= \frac{(2i\pi)^{-\dim M}}{\lambda_t(X)} \int_{T^*_M} \tilde{\Lambda}(M)^2(Y) \chi_{e_\sigma}(\sigma,\omega_M)(Y) \delta_o(X - \Theta(Y)).
\]
Here \(\delta_o(X - \Theta(Y)) \) denotes the closed \(K \times G \)-equivariant form \(M \) defined by the relation
\[
\int \delta_o(X - \Theta(Y)) \varphi(X) dX = \text{vol}(K, dX) \sigma(\Theta(Y))
\]
for any \(\varphi \in \mathcal{C}_c^{\infty}(t) \). Here \(\sigma(\Theta(Y)) := \text{vol}(K, dk)^{-1} \int_K \varphi(kX) dk \) is the \(K \)-invariant function obtained by averaging \(\varphi \).

Now we analyze the right hand side of (27) at \((s, \ell) = (e, e)\). Here the Chern class \(\text{Ch}_{\sup} (\sigma_{\tau^*})(Y) \) is equal to \(\text{Ch}_{\sup} (\sigma)(Y) \text{Ch}(V_{\tau^*})(Y) \) where the equivariant Chern character \(\text{Ch}(V_{\tau^*})(Y) \) is represented by \(\text{Tr}(e^{\Theta(Y)}, \tau^*) \). Hence \(\text{Ch}_{c}(\sigma_{\tau^*}, \omega_M)(Y) = \text{Ch}_{c}(\sigma, \omega_M)(Y) \text{Tr}(e^{\Theta(Y)}, \tau^*) \). So the generalized function
\[
\sum_{\tau \in \mathfrak{k}} \text{Tr}(e^{X}, \tau) \text{index}_{c, M}^G ([\sigma_{\tau^*}]) (\tau)(Y) = \text{index}_{c}^G (\sigma)(Y)
\]
(see Theorem 3.23).

The Schur orthogonality relation shows that \(\Xi(X, \cdot \cdot) \) is a generalized function on a neighborhood of 0 in \(t \times \mathfrak{t} \) defined by the relation \(\Xi(X, X') = \sum_{\tau \in \mathfrak{k}} \text{Tr}(e^{X}, \tau) \text{Tr}(e^{X'}, \tau^*) \).

The proof of (27) is then completed for \((s, \ell) = (e, e)\).

4.2. Multiplicative property.

We consider the setting of Subsection 2.3.2.

We will check that the cohomological index satisfies the Multiplicative property (see Theorem 2.5).

Let \(M_1 \) be a compact \(K_1 \times K_2 \)-manifold, and let \(M_2 \) be a \(K_2 \)-manifold. We consider the product \(M := M_1 \times M_2 \) with the action of \(K := K_1 \times K_2 \).

Theorem 4.6 (Multiplicative property). — For any \([\sigma_1] \in \mathbf{K}^0_{K_1 \times K_2} (\mathbf{T}_{K_1}^* M_1)\) and any \([\sigma_2] \in \mathbf{K}^0_{K_2} (\mathbf{T}_{K_2} M_2)\) we have
\[
(34) \quad \text{index}_{c, M}^{K_1 \times K_2, \mathbf{T}_{K_1}^* M_1} (\sigma_1 \circ \text{ext} \sigma_2) = \text{index}_{c}^{K_1, K_2, M_1} ([\sigma_1]) \text{index}_{c}^{K_2, M_2} ([\sigma_2]).
\]

The product on the right hand side of (34) is well defined since \(\text{index}_{c}^{K_1, K_2, M_1} ([\sigma_1]) (k_1, k_2) \) is a generalized function on \(K_1 \times K_2 \) which is smooth relative to the variable \(k_2 \in K_2 \) (see Lemma 3.23).

Démonstration. — Let \(\sigma_1 \) be a morphism on \(\mathbf{T}^* M_1 \), which is \(K_1 \times K_2 \)-equivariant and \(K_1 \)-transversally elliptic. Let \(\sigma_2 \) be a morphism on \(\mathbf{T}^* M_2 \), which is \(K_2 \)-transversally elliptic. The morphism \(\sigma_2 \) can be chosen so that it is almost homogeneous of degree
0. Then the product \(\sigma := \sigma_1 \circ \text{ext} \sigma_2 \) is a \(K \)-transversally elliptic morphism on \(T^* M \), and \([\sigma] = [\sigma_1] \circ \text{ext} [\sigma_2] \) in \(K^*_K(T^*_K M) \).

We have to show that for any \(s = (s_1, s_2) \in K_1 \times K_2 \), we have

\[
\text{index}_{c, M}^K([\sigma_1])|_{s} (Y_1, Y_2) = \text{index}_{c_1, K_1}^M([\sigma_1])|_{s_1}(Y_1, Y_2) \text{index}_{c_2, M_2}^{K_2}([\sigma_2])|_{s_2}(Y_2)
\]

for \((Y_1, Y_2) \) in a neighborhood of 0 in \(\mathfrak{t}_1(s_1) \times \mathfrak{t}_2(s_2) \). We conduct the proof only for \(s \) equal to the identity \(e \), as the proof for a general is entirely similar.

For \(k = 1, 2 \), let \(\pi_k : T^* M \to T^* M_k \) be the projection. The Liouville 1-form \(\omega \) on \(T^* (M_1 \times M_2) \) is equal to \(\pi_1^* \omega_1 + \pi_2^* \omega_2 \), where \(\omega_k \) is the Liouville 1-form on \(T^* M_k \).

We have three index formulas:

\[
\begin{align*}
\text{index}_{c, M}^K([\sigma])|_{c}(X_1, X_2) & := (2i\pi)^{-\text{dim} M} \int_{T^*_M} \hat{\Lambda}(M)^2 \text{Ch}_c(\sigma, \omega)(X_1, X_2), \\
\text{index}_{c}^{K, M_1}([\sigma_1])|_{c}(X_1, X_2) & := (2i\pi)^{-\text{dim} M_1} \int_{T^*_M} \hat{\Lambda}(M_1)^2 \text{Ch}_c^1(\sigma_1, \omega_1)(X_1, X_2), \\
\text{index}_{c}^{K_2, M_2}([\sigma_2])|_{c}(X_2) & := (2i\pi)^{-\text{dim} M_2} \int_{T^*_M} \hat{\Lambda}(M_2)^2 \text{Ch}_c(\sigma_2, \omega_2)(X_2).
\end{align*}
\]

Following Remark 3.24, \(\text{Ch}_c^1(\sigma_1, \omega_1)(X_1, X_2) \) denotes a closed equivariant form with compact support which represents the class \(\text{Ch}_c(\sigma_1, \omega_1) \), and which is smooth relative to \(X_2 \in \mathfrak{t}_2 \).

It is immediate to check that \(\hat{\Lambda}(M)^2(X_1, X_2) = \hat{\Lambda}(M_1)^2(X_1, X_2) \hat{\Lambda}(M_2)^2(X_2) \).

Hence Equality (35) follows from the following identity in \(\mathcal{H}_c^{-\infty}(\mathfrak{t}_1 \times \mathfrak{t}_2, T^* M) \) that we proved in [18]:

\[
\pi_1^* \text{Ch}_c^1(\sigma_1, \omega_1)(X_1, X_2) \wedge \pi_2^* \text{Ch}_c(\sigma_2, \omega_2)(X_2) = \text{Ch}_c(\sigma, \omega)(X_1, X_2).
\]

\[\square\]

4.3. Normalization conditions. —

4.3.1. Atiyah symbol. — Let \(V := \mathbb{C}[1] \) be equipped with the canonical action of \(S^1 \). The Atiyah symbol \(\sigma_{At} \) was introduced in Subsection 2.4.2 : it is a \(S^1 \)-transversally elliptic symbol on \(V \). It is the first basic example of a “pushed” symbol (see Subsection 5.1).

We consider on \(V \) the Euclidean metric \((v, w) = \Re(v \overline{w}) \) : it gives at any \(v \in V \) identifications \(T_v V \cong T^*_v V \cong \mathbb{C}[1] \). So in this example we will make no distinction between vectors fields and 1-forms on \(V \). Let \(\kappa(\xi_1) = i\xi_1 \) be the vector field on \(V \) associated to the action of \(S^1 \) : \(\kappa = -V X \) where \(X = \xi \in \text{Lie}(S^1) \).

Let \(\sigma_V \) be the symbol on the complex vector space \(V \) : at any \((\xi_1, \xi_2) \in T^* V \), \(\sigma_V(\xi_1, \xi_2) : \Lambda^0 V \to \Lambda^1 V \) acts by multiplication by \(\xi_2 \). We see then that

\[
\sigma_{At}(\xi_1, \xi_2) = \sigma_V(\xi_1, \xi_2 \pm \kappa(\xi_1)).
\]

The symbol \(\sigma_{At} \) is obtained by “pushing” the symbol \(\sigma \) by the vector field \(\kappa \).
We can attached to the 1-form κ, the equivariant form $\text{One}(\kappa)$ which is defined on V, and localized near $\{\kappa = 0\} = \{0\} \subset V$. Since the support of σ_V is the zero section, the equivariant Chern character $\text{Ch}_{\text{sup}}(\sigma_V)$ is an equivariant form on T^*V which is compactly supported in the fibers of $p : T^*V \to V$. Then the product $\text{Ch}_{\text{sup}}(\sigma_V) p^* \text{One}(\kappa)$ defines an equivariant form with compact support on T^*V.

Here we will use the relation (see Proposition 5.5)

$$(36) \quad \text{Ch}_{\text{sup}}(\sigma_{At}) \text{One}(\omega) = \text{Ch}_{\text{sup}}(\sigma_V) p^* \text{One}(\kappa) \quad \text{in} \quad \mathcal{H}^{-\infty}_c(t, T^*V).$$

Using (36), we now compute the cohomological index of the Atiyah symbol.

Proposition 4.7. — We have

$$[\text{N3}] \quad \text{index}_{S^1}^{S^1, V}(\sigma_{At})(e^{i\theta}) = -\sum_{n=1}^{\infty} e^{in\theta}.$$

Démonstration. — We first prove the equality above when $s = e^{i\theta}$ is not equal to 1. Then, near s, the generalized function $-\sum_{n=1}^{\infty} e^{in\theta}$ is analytic and given by $-\frac{s}{1-s}$.

Now, at a point $s \in S^1$ different from 1, the fixed point set $V(s)$ is $\{0\}$. The character $\text{Ch}_s(E)$ is $(1-s)$, and the form $D_s(N)$ is $(1-s)(1-s^{-1})$. Thus

$$\text{index}_{S^1}^{S^1, V}(s) = \frac{(1-s)}{(1-s)(1-s^{-1})} = -\frac{s}{1-s}.$$

This shows the equality of both members in Proposition 4.7 on the open set $s \neq 1$ of S^1.

We now compute near $s = 1$. Thanks to Formula (36) we have

$$\text{index}_{S^1}^{S^1, V}(\sigma_{At})|_1(\theta) = (2i\pi)^{-2} \int_{T^*V} \hat{A}(V)^2(\theta) \text{Ch}_{\text{sup}}(\sigma_V)(\theta) p^* \text{One}(\kappa)(\theta).$$

The Chern character with support $\text{Ch}_{\text{sup}}(\sigma_V)(\theta)$ is proportional to the S^1-equivariant Thom form of the real vector bundle $T^*V \to V$. More precisely, calculation already done in [17] shows that

$$\text{Ch}_{\text{sup}}(\sigma_V)(\theta) = (2i\pi) \frac{e^{i\theta} - 1}{i\theta} \text{Thom}(T^*V)(\theta).$$

However the symplectic orientation on $T^*V \simeq C^2$ is the opposite of the orientation given by its complex structure. Now

$$\hat{A}(V)^2(\theta) = \frac{(i\theta)(-i\theta)}{(1-e^{i\theta})(1-e^{-i\theta})}.$$

Thus we obtain

$$\text{index}_{S^1}^{S^1, V}(\sigma_{At})|_1(\theta) = \frac{-i\theta}{(1-e^{-i\theta})} \frac{1}{2i\pi} \int_V \text{One}(\kappa)(\theta).$$
As \(\frac{1-e^{-i\theta}}{-i\theta} = - \int_{-1}^{0} e^{i\pi \theta} \, dx \), we see that \(\frac{1-e^{-i\theta}}{-i\theta} \left(- \sum_{n=1}^{\infty} e^{i n \theta} \right) = \int_{0}^{\infty} e^{i \theta} \, dx \). It remains to show

\[
\frac{1}{2i\pi} \int_{V} \text{One}(\kappa)(\theta) = \int_{0}^{\infty} e^{i \theta} \, d\theta.
\]

We have \(\text{Dx}(\theta) = \theta(x^2 + y^2) + 2dx \wedge dy \). Take a function \(g \) on \(\mathbb{R} \) with compact support and equal to 1 on a neighborhood of 0. Let \(\chi = g(x^2 + y^2) \). Then

\[
\text{One}(\kappa)(\theta) = \chi - i d\chi \wedge \kappa \int_{0}^{\infty} e^{i D\kappa(\theta)} \, dt
\]

\[
= g(x^2 + y^2) - 2ig'(x^2 + y^2)dx \wedge dy \int_{0}^{\infty} (x^2 + y^2) e^{i\theta t(x^2 + y^2)} \, dt
\]

\[
= g(x^2 + y^2) - 2ig'(x^2 + y^2)dx \wedge dy \int_{0}^{\infty} e^{i\theta t} \, dt.
\]

Finally we obtain (37) since \(\int_{V} -2ig'(x^2 + y^2)dx \wedge dy = 2i\pi \). This completes the proof.

\[\square \]

4.3.2. **Bott symbols.** — We will check here that the cohomological index satisfies the condition [N2]: \(\text{index}_{O(V),V}^{c} \text{(Bott}(V)) = 1 \), for any Euclidean vector space \(V \).

We have explain in Remark 2.8 that it is sufficient to prove [N2] for the cases:

\begin{itemize}
 \item \(V = \mathbb{R} \) with the action of the group \(O(V) = \mathbb{Z}$/2\mathbb{Z}$, \n \item \(V = \mathbb{R}^2 \) with the action of the group \(SO(V) = S^1 \).
\end{itemize}

Let \(V = \mathbb{R} \) with the multiplicative action of \(\mathbb{Z}_2 \). We have to check that \(\text{index}_{c,\mathbb{Z}_2}^{c} \text{(Bott}(\mathbb{C}))(\epsilon) = 1 \) for \(\epsilon \in \mathbb{Z}_2 \). When \(\epsilon = 1 \), we have

\[
\text{index}_{c,\mathbb{Z}_2}^{c} \text{(Bott}(\mathbb{C}))(1) = (2i\pi)^{-1} \int_{\mathbb{T}^{*}\mathbb{R}} \hat{A}(\mathbb{R})^2 \text{Ch}_c \text{(Bott}(\mathbb{C})).
\]

Here \(\hat{A}(\mathbb{R})^2 = 1 \). We have proved in [17] that the class \(\text{Ch}_c \text{(Bott}(\mathbb{C})) \in H^2_c(\mathbb{T}^{*}\mathbb{R}) \) is equal to \(2i\pi \) times the Thom form of the oriented vector space of \(\mathbb{R}^2 \cong \mathbb{T}^{*}\mathbb{R} \). Hence \(\text{index}_{c,\mathbb{Z}_2}^{c} \text{(Bott}(\mathbb{C}))(1) = 1 \). When \(\epsilon = -1 \), the space \(\mathbb{T}^{*}\mathbb{R}(\epsilon) \) is reduced to a point. We see that \(\text{Ch}_c \text{(Bott}(\mathbb{C}), \epsilon) = 2, D_c(N) = \det(1 - \epsilon) = 2 \). Then \(\text{index}_{c,\mathbb{Z}_2}^{c} \text{(Bott}(\mathbb{C}))(1) = \text{Ch}_c \text{(Bott}(\mathbb{C}), \epsilon) = 1 \).

Let \(V = \mathbb{R}^2 \) with the rotation action of \(S^1 \). Like before \(\text{index}_{c}^{\mathbb{Z}_2,S^1} \text{(Bott}(\mathbb{C}^2))(1) \) is equal to 1 since the Chern class \(\text{Ch}_c \text{(Bott}(\mathbb{C}^2)) \) is equal to \((2i\pi)^2 \) times the Thom form of the oriented vector space of \(\mathbb{R}^4 \cong \mathbb{T}^{*}\mathbb{R}^2 \). When \(\epsilon \neq 1 \), the space \(\mathbb{T}^{*}\mathbb{R}^2(\epsilon \theta) \) is reduced to a point. We see that \(\text{Ch}_c \text{(Bott}(\mathbb{C}), \epsilon \theta) = D_{\epsilon \theta}(N) = 2(1 - \cos(\theta)) \). Then \(\text{index}_{c}^{\mathbb{Z}_2,S^1} \text{(Bott}(\mathbb{C}^2))(\epsilon \theta) = 1 \).

5. **Examples**
5.1. Pushed symbols. — Let M be a K-manifold and $N = T^*M$. Let $\mathcal{E}^\pm \to M$ be two K-equivariant complex vector bundles on M and $\sigma : p^*\mathcal{E}^+ \to p^*\mathcal{E}^-$ be a K-equivariant symbol which is supposed to be invertible exactly outside the zero section: the set $\text{supp}(\sigma)$ coincides with the zero section of T^*M.

If M is compact, σ defines an elliptic symbol on T^*M, thus a fortiori a transversally elliptic symbol.

Here we assume M non compact. Following Atiyah’s strategy [1], we can “push” the symbol σ outside the zero section, by means of a K-invariant real 1-form κ on M. This construction provides new transversally elliptic symbols. We recall some definitions of [18]:

Definition 5.1. — Let κ be a real K-invariant 1-form on M. Define $f_\kappa : M \to \mathfrak{k}$ by $\langle f_\kappa(x), X \rangle = \langle \kappa(x), V_X \rangle$. We define the subset C_κ of M by $C_\kappa = f_\kappa^{-1}(0)$. We call C_κ the critical set of κ.

We define the symbol $\sigma(\kappa)$ on M by $\sigma(\kappa)(x, \xi) = \sigma(x, \xi + \kappa(x))$, for $(x, \xi) \in T^*M$.

Thus $\sigma(\kappa)$ is not invertible at (x, ξ) if and only if $\xi = -\kappa(x)$, and then $(x, \xi) \in \text{supp}(\sigma(\kappa)) \cap T^*_K M$ if $\xi = -\kappa(x)$ and $\langle \kappa(x), V_X \rangle = 0$ for all $X \in \mathfrak{k}$. Thus

$$\text{supp}(\sigma(\kappa)) \cap T^*_K M = \{(x, -\kappa(x)) \mid x \in C_\kappa\}.$$

If C_κ is compact, then the morphism $\sigma(\kappa)$ is transversally elliptic.

Using a K-invariant metric on TM, we can associate to a K-invariant vector field K on M a K-invariant real 1-form.

Example 5.2. — Let $S \in \mathfrak{k}$ be a central element of \mathfrak{k} such that the set of zeroes of VS is compact. Then the associated form $\kappa_S(\bullet) = \langle VS, \bullet \rangle$ is a K-invariant real 1-form such that C_{κ_S} is compact. Indeed the value of f_{κ_S} on S is $\|VS\|^2$, so that the set C_{κ_S} coincides with the fixed point set $M(S)$.

Definition 5.3. — If κ is a K-invariant real 1-form on M such that C_κ is compact, the transversally elliptic symbol $\sigma(\kappa)(x, \xi) = \sigma(x, \xi + \kappa(x))$

is called the pushed symbol of σ by κ.

Example 5.4. — The Atiyah symbol is a pushed symbol defined on $M = \mathbb{R}^2$ (see Subsection 4.3.1).

We construct as in (15) the K-equivariant differential form

$$\beta(\kappa)(X) = -i\kappa \wedge \int_0^\infty e^{it\Delta}(X) \, dt$$
which is defined on $M \setminus C_\kappa$. We choose a compactly supported function χ_κ on M identically 1 near C_κ. Then the K-equivariant form

$$\text{One}(\kappa)(X) = \chi_\kappa + d\chi_\kappa \beta(\kappa)(X)$$

defined a class in $\mathcal{H}_c^{-\infty}(\mathfrak{t}, M)$.

The K-equivariant form $\text{One}(\kappa)$ is congruent to 1 in cohomology without support conditions. Indeed one verify that $\text{One}(\kappa) = 1 + D((\chi_\kappa - 1)\beta(\kappa))$.

Let $p : T^*M \to M$ be the projection. We can multiply the K-equivariant form $p^*\text{One}(\kappa)(X)$ with C^{∞}-coefficients by the K-equivariant form $\text{Ch}_{sup}(\sigma)(X)$. In this way, we obtain a K-equivariant form with compact support on T^*M.

Proposition 5.5. — The K-equivariant form $\text{Ch}_{sup}(\sigma)p^*\text{One}(\kappa)$ represents the class $\text{Ch}_c(\sigma(\kappa), \omega)$ in $\mathcal{H}_c^{-\infty}(\mathfrak{t}, T^*M)$.

Démonstration. — By definition the class $\text{Ch}_c(\sigma(\kappa), \omega)$ is represented by the product $\text{Ch}_{sup}(\sigma(\kappa))\text{One}(\omega)$. We first prove $\text{Ch}_{sup}(\sigma(\kappa))\text{One}(\omega) = \text{Ch}_{sup}(\sigma(\kappa))\text{One}(p^*\kappa)$ in $\mathcal{H}_c^{-\infty}(\mathfrak{t}, T^*M)$.

Indeed if $(x, \xi) \in \supp(\sigma(\kappa))$, then $\xi = -\kappa(x)$. Thus $\langle \omega(x, \xi), v \rangle = -\langle \xi, p_\ast v \rangle = (\kappa(x), p_\ast v)$ where v is any tangent vector at $(x, \xi) \in T^*M$. So the 1-forms ω and $p^*\kappa$ coincides on the support of $\sigma(\kappa)$. Thus $\text{Ch}_{sup}(\sigma(\kappa))\text{One}(\omega) = \text{Ch}_{sup}(\sigma(\kappa))p^*\text{One}(\kappa)$ as consequence of ([18], Corollary 3.12).

Let us prove now that $\text{Ch}_{sup}(\sigma(\kappa))p^*\text{One}(\kappa) = \text{Ch}_{sup}(\sigma)p^*\text{One}(\kappa)$. Consider the family of symbols on M defined by $\sigma_t(x, \xi) = \sigma(x, \xi + t\kappa(x))$ for $t \in [0, 1]$: we have $\sigma_0 = \sigma$ and $\sigma_1 = \sigma(\kappa)$.

On a compact neighborhood U of C_κ, the support of σ_t stays in the compact set $\{(x, \xi) : x \in U, \xi = -t\kappa(x)\}$ when t varies between 0 and 1. It follows from ([18], Theorem 3.11) that all the classes $\text{Ch}_{sup}(\sigma_t)p^*\text{One}(\kappa)$, $t \in [0, 1]$ coincides in $\mathcal{H}_c^{-\infty}(\mathfrak{t}, T^*M)$. \hfill \square

Similarly for any $s \in K$, we consider the restriction κ_s of the form κ to $M(s)$. We finally obtain the following formula:

Theorem 5.6. — For any $s \in K$ and $X \in \mathfrak{t}(s)$ small, the cohomological index

$$\text{index}_{C}^{K, M}(\sigma(\kappa))\|s(Y)$$

is given by the integral formula:

$$\int_{T^*M(s)} \Lambda_s(Y) \text{Ch}_{sup}(\sigma, s)(Y) \text{One}(\kappa_s)(Y).$$

In particular, when $s = e$ we get

$$\text{index}_{C}^{K, M}(\sigma(\kappa))\|e(X) = (2i\pi)^{-\dim M} \int_{T^*M} \hat{A}(M)^2(X) \text{Ch}_{sup}(\sigma)(X) \text{One}(\kappa)(X).$$

An interesting situation is when the manifold M is oriented, and is equipped with a K-invariant Spin structure. Let $S_M \to M$ be the corresponding spinor bundle. We associate to any K-equivariant complex vector bundle $E \to M$ the K-invariant
symbol \(\sigma_{\text{spin}}^{E} : p^{*}(S_{M}^{+} \otimes E) \to p^{*}(S_{M}^{-} \otimes E) \) : its support is exactly the zero section of the cotangent bundle. For any invariant 1-form \(\kappa \) on \(M \) such that \(C_{\kappa} \) is compact we consider the transversally elliptic symbol \(\sigma_{\text{spin}}^{E}(\kappa) \).

We have proved in [17] that

\[
\text{Ch}_{\sup}(\sigma_{\text{spin}}^{E}(\kappa))(X) = (2\pi)^{\dim_{\mathbb{R}} M} \hat{A}(M)^{-1}(X) \text{Ch}(E)(X) \text{Thom}(T^{*}M)(X).
\]

Hence Theorem 5.6 tells us that

\[
\text{index}_{\kappa}^{K,M}([\sigma_{\text{spin}}^{E}(\kappa)])|_{c}(X) = \int_{M} \hat{A}(M)(X) \text{Ch}(E)(X) \text{One}(\kappa)(X).
\]

5.2. Contact manifolds. — The following geometric example is taken from [11].

Let \(M \) be a compact manifold of dimension \(2n + 1 \). Suppose that \(M \) carries a contact 1-form \(\alpha \); that is, \(E = \ker(\alpha) \) is a hyperplane distribution of \(TM \), and the restriction of the 2-form \(d\alpha \) to \(E \) is symplectic. In this context, the Reeb vector field \(Y \) is uniquely determined by the conditions \(\alpha(Y) = 1 \) and \(\mathcal{L}(Y)\alpha = 0 \). We have then canonical decompositions \(TM = E \oplus \mathbb{R}Y \) and \(T^{*}M = E^{*} \oplus E^{0} \) with \(E^{0} = \mathbb{R}\alpha \).

Let \(J \) be a \(K \)-invariant complex structure on the bundle \(E \) which is compatible with the symplectic structure \(d\alpha \). We equipped the bundle \(E^{*} \) with the complex structure \(J^{*} \) defined by \(J^{*}(\xi) := \xi \circ J \) for any cotangent vector \(\xi \). We note that the complex bundle \((E^{*}, J^{*}) \) is the complex dual of the vector bundle \((E, J) \).

We consider the \(\mathbb{Z}_{2} \)-graded complex vector bundle \(\mathcal{E} := \wedge_{J} E^{*} \). The Clifford action defines a bundle map \(c : E^{*} \to \text{End}_{\mathbb{C}}(\mathcal{E}) \). We consider now the symbol on \(M \)

\[
\sigma_{b} : p^{*}(E^{+}) \to p^{*}(E^{-})
\]
defined by \(\sigma_{b}(x, \xi) = c(\xi') \) where \(\xi' \) is the projection of \(\xi \in T^{*}M \) on \(E^{*} \).

We see that the support of \(\sigma_{b} \) is equal to \(E^{0} \subset T^{*}M : \sigma_{b} \) is not an elliptic symbol.

Let \(K \) be a compact Lie group acting on \(M \), which leaves \(\alpha \) invariant. Then \(E, E^{*} \) are \(K \)-equivariant complex vector bundles, and the complex structure \(J \) can be chosen \(K \)-invariant. The morphism \(\sigma_{b} \) is then \(K \)-equivariant.

We suppose for the rest of this section that

\[
E^{0} \cap T_{K}^{*}M = \text{ zero section of } T^{*}M.
\]

It means that for any \(x \in M \), the map \(f_{\alpha}(x) : X \mapsto \alpha_{x}(V_{x}X) \) is not the zero map. Under this hypothesis the symbol \(\sigma_{b} \) is transversally elliptic.

Under the hypothesis (38), we can define the following closed equivariant form on \(M \) with \(\mathcal{C}^{-\infty} \)-coefficients

\[
\mathcal{J}_{\alpha}(X) := \alpha \int_{\mathbb{R}} e^{itd\alpha(X)} dt.
\]

For any \(\varphi \in \mathcal{C}_{c}^{\infty}(\mathfrak{t}) \), the expression \(\int_{t} \mathcal{J}_{\alpha}(X)\varphi(X)dX := \alpha \int_{\mathbb{R}} e^{itd\alpha} \hat{\varphi}(tf_{\alpha})dt \) is a well defined differential form on \(M \) since the map \(f_{\alpha} : M \to \mathfrak{t}^{*} \) as an empty 0-level set.
Let \(\text{Todd}(E)(X) \) be the equivariant Todd class of the complex vector bundle \((E, J)\).

We have the following

Theorem 5.7 ([11]). — For any \(X \in \mathfrak{k} \) sufficiently small,

\[
\text{index}_c^{K,M}(\{\sigma_b\})_e(X) = (2i\pi)^{-n} \int_M \text{Todd}(E)(X) J_\alpha(X).
\]

Démonstration. — Consider the equivariant form with compact support \(\text{Ch}^{\text{sup}}(\sigma_b)\)\(\text{One}(\omega)\).

The Chern form \(\text{Ch}^{\text{sup}}(\sigma_b)\) attached to the complex vector bundle \(E^* \) is computed in [18] as follows. Let \(\text{Thom}(E^*)(X) \) be the equivariant Thom form, and let \(\text{Todd}(E^*)(X) \) be the equivariant Todd form. We have proved in [18], that

\[
(39) \quad \text{Ch}^{\text{sup}}(\sigma_b) = (2i\pi)^n \text{Todd}(E^*)(X)^{-1} \text{Thom}(E^*)(X).
\]

Let \([\mathbb{R}]\) be the trivial vector bundle over \(M \). We work with the isomorphism \(E^* \oplus [\mathbb{R}] \cong T^*M \) who sends \((x, \xi, t)\) to \((x, \xi + t\alpha(x))\). We consider the invariant 1-form \(\lambda \) on \(E^* \oplus [\mathbb{R}] \cong T^*M \) defined by

\[
\lambda = -t p^*(\alpha)
\]

Here \(p : E^* \oplus [\mathbb{R}] \rightarrow M \) is the projection, and \(p \) denotes the function that sends \((x, \xi, t)\) to \(t \).

It is easy to check that the form \(\lambda \) and the Liouville 1-form \(\omega \) are equal on the support of \(\sigma_b \).

Thus

\[
\text{Ch}^{\text{sup}}(\sigma_b)\text{One}(\omega) = \text{Ch}^{\text{sup}}(\sigma_b)\text{One}(\lambda) \quad \text{in} \quad \mathcal{H}^{-\infty}(\mathfrak{k}, T^*M),
\]

as consequence of [18], Corollary 3.12. We have then

\[
\text{index}_c^{K,M}(\{\sigma_b\})_e(X) = (2i\pi)^{-\dim M} \int_{T^*M} \tilde{A}(M)^2(X) \text{Ch}^{\text{sup}}(\sigma_b)(X)\text{One}(\lambda)(X).
\]

The integral of \(\text{Ch}^{\text{sup}}(\sigma_b)(X)\text{One}(\lambda)(X) \) on the fibers of \(T^*M \) is then equal to the product

\[
\left(\int_{E^* \text{fiber}} \text{Ch}^{\text{sup}}(\sigma_b)(X) \right) \left(\int_{\mathbb{R}} \text{One}(\lambda)(X) \right)
\]

If we uses (39), we see that the integral \(\int_{E^* \text{fiber}} \text{Ch}^{\text{sup}}(\sigma_b)(X) \) is equal to \((2i\pi)^n\text{Todd}(E^*)(X)^{-1}\). A small computation gives that \(\int_{\mathbb{R}} \text{One}(\lambda)(X) \) is equal to \((2i\pi)^n J_\alpha(X)\). The proof is now completed since \(\tilde{A}(M)^2(X)\text{Todd}(E^*)(X)^{-1} = \text{Todd}(E)(X) \).

\(\square \)

Références

[1] M.F. Atiyah, Elliptic operators and compact groups, Springer, 1974. Lecture notes in Mathematics, 401.

[2] M.F. Atiyah, I.M. Singer, The index of elliptic operators I, Ann. Math. 87. 1968, p. 484-530.
[3] M.F. Atiyah, G.B. Segal, The index of elliptic operators II, *Ann. Math.* 87, 1968, p. 531-545.

[4] M.F. Atiyah, I.M. Singer, The index of elliptic operators III, *Ann. Math.* 87, 1968, p. 546-604.

[5] M.F. Atiyah, I.M. Singer, The index of elliptic operators IV, *Ann. Math.* 93, 1971, p. 139-141.

[6] N. Berline, E. Getzler and M. Vergne, *Heat kernels and Dirac operators*, Grundlehren, vol. 298, Springer, Berlin, 1991.

[7] N. Berline and M. Vergne, The Chern character of a transversally elliptic symbol and the equivariant index, *Invent. Math.* 124, 1996, p. 11-49.

[8] N. Berline and M. Vergne, L’indice équivariant des opérateurs transversalement elliptiques, *Invent. Math.* 124, 1996, p. 51-101.

[9] J.-M. Bismut, Localization formulas, superconnections, and the index theorem for families, *Comm. Math. Phys.* 103, 1986, p. 127-166.

[10] M. Duflo and M. Vergne, Cohomologie équivariante et descente, *Astérisque*, 215, 1993, p. 5-108.

[11] S. Fitzpatrick, An equivariant index formula for elliptic actions on contact manifolds, arXiv:0712.2431, math.SG.

[12] S. Kumar and M. Vergne, Equivariant cohomology with generalized coefficients, *Astérisque*, 215, 1993, p. 109-204.

[13] V. Mathai and D. Quillen, Superconnections, Thom classes and equivariant differential forms, *Topology* 25, 1986, p. 85-110.

[14] P.-E. Paradan, The moment map and equivariant cohomology with generalized coefficient, *Topology*, 39, 2000, p. 401-444.

[15] P.-E. Paradan, Localization of the Riemann-Roch character, *J. Funct. Anal.* 187, 2001, p. 442-509.

[16] P.-E. Paradan, Spinc-quantization and the K-multiplicities of the discrete series, *Annales Scientifiques de l’E.N.S.*, 36, 2003, p. 805-845.

[17] P.-E. Paradan and M. Vergne, Equivariant relative Thom forms and Chern characters, arXiv:0711.3898, math.DG.

[18] P.-E. Paradan and M. Vergne, Equivariant Chern characters with generalized coefficients, arXiv:0801.2822, math.DG.

[19] D. Quillen, Superconnections and the Chern Character, *Topology* 24, 1985, p. 37-41.

[20] W. Rossman, Kirillov’s character formula for reductive groups, *Invent. Math.* 48, 1978, p. 207-220.

[21] R.T. Seeley, Eigenfunction expansions of analytic functions, *Proc. A. M. S.* 21, 1969, p. 734-738.

[22] M. Vergne, Applications of Equivariant Cohomology, *Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006*. 2007 European Mathematical Society. Volume 1, pp 635-664.

Paradan, Institut de Mathématiques et de Modélisation de Montpellier (I3M), CNRS : UMR5149
Université Montpellier II - Sciences et Techniques du Languedoc
E-mail : paradan@math.univ-montp2.fr

Vergne, Centre de Mathématiques Laurent Schwartz (CMLS-EcolePolytechnique), CNRS :
UMR7640 Polytechnique - X • E-mail : vergne@math.polytechnique.fr