Usage of Artificial Intelligence to Prevent and Regulate COVID-19

Rukmani P, Vergin Raja Sarobin M, Graceline Jasmine S, L. Jani Anbarasi, Priya Mishra

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India.

ABSTRACT

Introduction: In this current situation where COVID-19 pandemic has affected the whole world, it is high time to take a step to check the expansion of COVID-19. WHO declared it conversely a pandemic and as an emergency. The clinicians and scientists in medical industries are observing for the technologies with which they can perform screening on the medical images to detect the COVID-19 virus in a person.

Objectives: Early identification, screening, acquaintance tracing, prediction, drug/vaccine development and detection with the application of assorted models and algorithms of AI and ML for COVID-19.

Methods: Different analyses performed by various researchers using machine learning algorithms and Deep Learning Models using Chest X-rays, Blood Tests have been presented. Different techniques and devices used for acquiring the data through various experiments are also presented.

Results: This paper presented a few techniques followed by various researchers; accuracy, sensitivity, recall achieved by the methodologies have been presented.

Conclusion: Data collection plays a major role in analyzing the COVID-19 where most of the researches find it very difficult, and early diagnosis also plays a major role in the early detection and control of the widespread of COVID-19.

Key Words: COVID-19, Convolutional Neural Network, Transfer Learning Models, KNN, ARIMA

INTRODUCTION

In this current situation where COVID-19 pandemic has affected the whole world, it is high time to take a step to check the expansion of COVID-19. WHO declared it conversely as a pandemic and as an emergency. The clinicians and scientists in medical industries are observing for the technologies with which they can perform screening on the medical images to detect the COVID-19 virus in a person by applying several models to perform screening on the chest images of infected patients and normal people. The symptoms of coronavirus and pneumonia are almost the same so a specific model has to be applied to differentiate between coronavirus and pneumonia. AI and ML are also used to predict the COVID-19 by using several techniques. With the help of AI, drug and vaccine development is possible as there are a large number of molecules and with physical docking, it takes a lot of time to even discover only a few molecules at a time. So AI and ML were used for the development of many antiviral drugs that would help in the prevention of coronavirus to some extent as these drugs are only for immunity and they are not vaccines that can stop the spread of the virus. AI and ML are also used to predict the spread of coronavirus. For this ARIMA time series is used which is the best till now as compared to other time series model. Many case studies are done like coronavirus cases in Spain, Saudi Arabia, Japan, Italy, South Korea, and France where ARIMA is the best time series model. Using the current scenario the future prediction is also done. As screening is done on the X-rays of various patients it is very difficult to classify the images as there are a lot of X-rays, so AI techniques are used to classify these medical images. Figure 1A shows a sample COVID-19 image where the arrow in the image highlights the infected part. Figure 1B shows the non-COVID-19 normal images.
CONTACT TRACING MOBILE APPLICATIONS

Artificial intelligence is used on 1020 CT images of 108 COVID-19 patients forth with 86 patients suffering from pneumonia and the results suggest the usage of convolutional neural arrangement (Resnet-101). The accuracy of the COVID-19 analysis tool was proposed with the advice of a new prototype called Automatic COVID-19 apprehensions that are based on an abysmal learning algorithm. A random forest algorithm was used for classification. Various countries that are adulterated have their acquaintance tracing applications that use GPS, network-based API, Bluetooth, agenda transaction data, Social graph acquaintance details, adaptable tracking data, and arrangement physical address. All these apps aggregate the advice of the infected and this advice is again processed using the application of AI and ML to trace a being who is accessible or is an acquaintance with a COVID-19 absolute patient. Table 1 shows the various apps used by different counties for controlling and identifying the pandemic.

Table 1: Various apps used by different counties

Country	Apps Used by various countries
Australia	COVIDSafe
Austria	Stop corona
Bahrain	BeWare Bahrain
China	Conjunction with Alipay
Cyprus	CovTracer
Finland	Ketju
Germany	CoronaApp
Israel	HaMagen

RELATED WORK

A novel adjustment was proposed which consists of pre-processing, characteristic extraction with characteristic selection with Iterative ReliefF (IRF), Residual Exemplar Local Binary Pattern (ResExLBP), and allocation phases. The called IRF characteristics are activated as the classifiers. LBP and LBP were acclimated for characteristic extraction and a ten-fold CV, LOOCV, and adjudicator authentication are used. In this abstraction characteristic, extraction models were proposed to abstract the appearance from the patient’s X-ray images and abounding algorithms were used. The allocation of pneumonia aches with the advice of AI systems and ML, Togacar et al. analyzed X-ray images of the chest using Deep learning which shows VGG-19, and AlexNet showed improved accuracy. The accuracy of the above model in the given set of data has resulted in 99%. Sousa et al. provided automated pneumonia analysis through computer-aided systems from radiographic images. The classifier used is K-Nearest Neighbor, Naive Bayes and Support Vector Machines. It identified that the best classifier is the Support Vector Machine. ARIMA time series model is the best model till now for the forecasting and anticipation of COVID-19.

ARIMA model is analyzed for the COVID-19 cases in south Korea from Wind Database. This case abstraction also shows that the ARIMA time series archetypal is the best archetypal for forecasting and prediction. In this COVID-19 is detected with the help of X-rays application nCOVnet algorithm. The after-effects that were acquired have been evaluated by parameters called as- AUC of ROC, confusion matrix, and Training Accuracy. The Methodology was as follows: Data collection, Data pre-processing, Data leakage, Convolutional Neural Network (CNN).

The algorithm ‘Covent is based on deep learning model. A three-fold adjustment was proposed focused to ascertain whether an X-ray of chest area healthy or COVID-19 and all-encompassing pulmonary diseases and, already disclose the COVID-19 ache and to accentuate the chest X-ray areas that indicate the affections of COVID-19. A deep neural network this is based on VGG-16 base transfer learning was proposed to accomplish on the ImageNet database. Fine-tuning was employed. The layer of VGG-16 is Flatten, AveragePooling2D, Dense, Dropout, Dense. The Grad-CAM algorithm explores in this study, to alter the models visually and accept where the suggested arrangement investigate images of chest X-ray.

A deep network technique was proposed to discriminate from COVID-19 from non-COVID-19. Ten convolutional networks have been involved in this where SqueezeNet, AlexNet, VGG-19, VGG-16, MobileNet- V2, GoogleNet, ResNet-a hundred and one, ResNet- eighteen, ResNet-fifty, and Xception. The precision achieved is with the aid of Xception models and ResNet-101. The dataset used here composed of 1020 CT slices that are received from 108 patients who had been affected by COVID-19 and 86 from Pneumonia or different peculiar diseases. With the help of this dataset, networks were evaluated. The autoregressive included transferring average (ARIMA) version was used for forecasting the daily quantity of the latest COVID-19 cases in Saudi Arabia. ARIMA model becomes an excellent version for forecasting. MA (transferring average) model has a less commonplace version shape compared to AR. The facts

Figure 1: A. COVID-19 image sample and B. Non-COVID-19 image sample
that become gathered turned into examined for desk-bound with the assist of Augmented Dickey-Fuller (ADF) check.13,14 For the prediction of the upcoming cases in a correct and timely way a PDR- NML technique became designed for this purpose.15 To examine the effects on the prediction performance of different hyperparameters putting, a support vector regression is carried out. The maximum commonly used capabilities in system gaining knowledge of fashions are polynomial and Gaussian kernels.

VARIOUS MODELS USED

Different Methodologies used for analyzing, predicting and classifying the COVID-19 pandemic is shown in table 2.

Table 2: Various Models used in various research work

Sr. No	Models Used for Predictions
1	ARIMA model: ARIMA models are used for forecasting and prediction and is used in various case studies performed.
2	VGG-19
3	LOOCV
4	CNN
5	SUPPORT VECTOR MACHINE
6	LBP
7	ResExLBP
8	Box-Jenkins method
9	KNN
10	Random Forest Algorithm

CONCLUSION

Distinct AI and ML methods and functions can be used for the prediction, detection, forecasting and improvement of medicine and vaccine for COVID-19. CNN (convolutional neural networks) had been used for extracting the primary signs and symptoms of COVID-19 from the X-Ray and CT scans. Methods that was based on transfer learning has been exploring. Mainly two forms of assessments had been executed to predict COVID-19, the first one is the RT-PCR test and another one is an antibody test. The antibody testing detects whether the immune machine is wholesome or is encountered with corona viruses. It’s far oblique testing. A PDR-NML version became delivered for a unique and timely prediction of COVID-19. Two specific models had been used that have been the first one the PDLFR for correct predictions and robustness and some other the PPDLR for well-timed predictions. By integrating all the gaining knowledge of models, ML has completed better for data evaluation. Different analyses performed by various researchers using machine learning algorithms using the images have been presented. Different techniques and devices used for acquiring the data through various experiments are also presented.

ACKNOWLEDGEMENT

The authors acknowledge the immense help received from the scholars whose articles are cited and included in references to this manuscript. The authors are also grateful to authors/editors/publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Conflict of Interest: The Author(s) declare(s) that there is no conflict of interest

Source of Funding: Nil

REFERENCES

1. Centres for Disease Control and Prevention. Coronavirus (COVID-19). 2020. Available at: cdc.gov/coronavirus/2019-nCoV/index.html. Accessed October 16, 2020.
2. Lalmuanauma S, Hussain J, Chhakechhuak L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos Solitons Fractals 2020;110059.
3. Tuncer T, Dogan S, Ozurt F. An automated Residual Exemplar Local Binary Pattern and iterative ReliefF based COVID-19 detection method using chest X-ray image. Chem Intell Lab Syst 2020;203:104054.
4. Jawahar M, Anbarasi LJ, Jasmine SG, Narendra M. Diabetic Foot Ulcer Segmentation using Color Space Models. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) 2020 Jun 10:742-747.
5. Pushparani S, Vallinayagam V, Chandra Sekar A, Anbarasi JL. Automated Classification of Tuberculosis by PSO based Machine Learning using Chest Radiographs. Int J Engg Res Tech 2016;5(10):405-411.
6. Toğaçar M, Ergen B, Cömert Z, Özyurt F. A deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning models. Int J Engg Res Tech 2020;41(4):212-222.
7. Sousa RT, Marques O, Soares FA, Sene Jr II, de Oliveira LL, Spoto ES. Comparative performance analysis of machine learning classifiers in the detection of childhood pneumonia using chest radiographs. Proc Comp Sci 2013;18:2579-2582.
8. Ceylan Z. Estimation of COVID-19 prevalence in Italy, Spain, and France. Sci Total Envt 2020;729:138817.
9. Duan X, Zhang X. ARIMA modelling and forecasting of irregularly patterned COVID-19 outbreaks using Japanese and South Korean data. Data Brief 2020;31:105779.
10. Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, Singh V. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos Solitons Fractals 2020;138:109944.
11. Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput Meth Prog Biomed 2020;196:105608.
12. Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Compt Bio-Med 2020;121:103795.

13. Alzahrani SI, Aljamaan IA, Al-Fakih EA. Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using the ARIMA prediction model under current public health interventions. J Inf Public health 2020;13(7):914-919.

14. Kavadi DP, Patan R, Ramachandran M, Gandomi AH. Partial derivative nonlinear global pandemic machine learning prediction of covid 19. Chaos Solitons Fractals 2020;139:110056.

15. Peng Y, Nagata MH. An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data. Chaos Solitons Fractals 2020;139:110055.