Long-range spin transfer in triple quantum dots
Sánchez, R.; Granger, G.; Gaudreau, L.; Kam, A.; Pioro-Ladrière, M.; Studenikin, S.A.; Zawadzki, P.; Sachrajda, A.S.; Platero, G.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.
For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:
https://doi.org/10.1103/PhysRevLett.112.176803
Physical Review Letters, 112, 17, 2014-05-02

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=f58ae6b3-c7cb-407b-a7c6-06cb4e354f10
https://publications-cnrc.canada.ca/fra/voir/objet/?id=f58ae6b3-c7cb-407b-a7c6-06cb4e354f10

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Long-Range Spin Transfer in Triple Quantum Dots

R. Sánchez, 1 G. Granger, 2 L. Gaudreau, 2,3 A. Kam, 2 M. Pioro-Ladrière, 3 S. A. Studenikin, 2 P. Zawadzki, 2 A. S. Sachrajda, 2 and G. Platero1

1Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
2National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
3Département de physique, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada

(Received 20 December 2013; revised manuscript received 25 February 2014; published 2 May 2014)

Tunneling in a quantum coherent structure is not restricted to only nearest neighbors. Hopping between distant sites is possible via the virtual occupation of otherwise avoided intermediate states. Here we report the observation of long-range transitions in the transport through three quantum dots coupled in series. A single electron is delocalized between the left and right quantum dots, while the center one remains always empty. Superpositions are formed, and both charge and spin are exchanged between the outermost dots. The delocalized electron acts as a quantum bus transferring the spin state from one end to the other. Spin selection is enabled by spin correlations. The process is detected via the observation of narrow resonances which are insensitive to Pauli spin blockade.

DOI: 10.1103/PhysRevLett.112.176803

PACS numbers: 73.23.Hk, 73.63.Kv, 85.35.Be

Superpositions of indirectly coupled states are possible in quantum mechanics even when the intermediate states are far apart in energy. This is achieved via higher-order transitions in which the energetically forbidden intermediate states are only virtually occupied. Such long-range transitions lie at the core of the theory of the chemical bond [1] and are present in chemical reactions [2], solid state spin phenomena [3], quantum optics [4], and even biological processes [5]. Interest in such phenomena has increased recently within the context of quantum information processing with the possibility of a low dissipation transfer of quantum states [6] or a coherent manipulation of two distant qubits [7].

Semiconductor quantum dot arrays provide a fully tunable platform for manipulating the coherent coupling of quantum states. Great control has already been demonstrated in the double quantum dot system with the observation of molecularlike superpositions via clear resonances in the current flowing through the system [8]. The spin degree of freedom plays a critical role and has led to various proposals utilizing quantum dots as spin or coded spin qubits [9]. An extension to fully coherent triple quantum dot circuits has recently been achieved [10–16]. In addition to being a first step towards more complex quantum simulation architectures [17], such devices make it possible to investigate phenomena which rely on quantum superpositions of distant states mediated by tunneling [18,19]. Long-range tunneling involves the transfer of states from one side of the three-dot array to the other without the occupation of the center site. A recent experiment reported the observation of such an effect as a transport resonance [20]: If the two edge dots of the triple quantum dot array are coupled to source and drain electron reservoirs, left-right superpositions provide a direct channel for the current. The relevant resonant transitions can be measured by time-resolved charge detection [21]. Similar phenomena can also be invoked for the formation of resonant-hybrid states in triangular quantum dot configurations [22].

In the previous experiments [20,21], long-range charge transfer required transitions of two electrons: The electron in the middle dot was exchanged, and its spin was potentially flipped during the process. In this Letter, we report a remarkably different situation involving the experimental observation of long-range single-electron tunneling resonances for which a simple model confirms that the center dot is only ever virtually occupied. Hence, the spin of the tunneled electron is well defined.

We investigate the resonance between \((N_L, N_C, N_R) = (2, 0, 1)\) and \((1,0,2)\) configurations, where \(N_j\) is the number of electrons in each dot. Because of the conservation of the total spin, the long-range charge tunneling is necessarily accompanied by a long-range transfer of spin: Of the two electrons forming a singlet in one of the dots, one is transferred to the other edge dot, while the one left behind necessarily has the same spin \(\sigma\) as the initially unpaired electron: \(|↑↓, 0, \sigma⟩ ↔ |σ, 0, ↑↓⟩\); cf. Figs. 1(b) and 1(c).

We therefore explore this process where two to four electrons occupy the device and importantly where the center dot remains empty throughout. Two quadruple points (QP1 and 2) appear in the stability diagram at the position where configurations \((2,0,1)\) and \((1,0,2)\) are close to degeneracy with either \((1,0,1)\) or \((2,0,2)\) [13]; cf. Fig. 1(d) [23]. The configuration \((1,1,1)\) serves as an intermediate state for transport. These configurations have been used to demonstrate Landau-Zener-Stückelberg oscillations [15], the exchange-based qubit [24] as well as the resonant-exchange qubit [25]. In transport, this region is affected by the Pauli exclusion principle: Transitions from \((1,1,1)\) into either \((2,0,1)\) or \((1,0,2)\) are forbidden whenever the electrons in
the charge fluctuates: diagram. They are labeled in the figure by the dots in which ing their slope to charge transfer lines in the low bias stability triangular regions. Their origin can be identified by comparing the triple quantum dot (TQD) transconductance from Ref. (1,1,1), and (1,0,2) and in QP2 (2,0,1), (1,1,1), (1,0,2), and (2,0,2) [13]. (e),(f) Schematic description of spin blockade in the forward and backward bias direction, respectively [20].

the center and in the singularly occupied edge dots have the same spin. This effect, known as spin blockade in double quantum dots [26], becomes bipolar in a triple dot [20]: Current is blocked by the occupation of triplet states regardless of the applied bias direction [Figs. 1(e) and 1(f)].

Transport measurements.—The triple quantum dot potential is defined in the two-dimensional electron gas (2DEG) of a GaAs/AlGaAs heterostructure via electrostatic gates. A scanning electron micrograph of the sample is shown in Fig. 1(a). Important parameters such as the tunnel couplings as well as the energy level spectrum can be tuned by applying appropriate voltages to relevant gates. A 0.5 meV bias voltage is applied across the device. This expands the region in the stability diagram where current can flow from the small localized quadruple points [cf. Fig. 2(a)] into larger triangular regions. In Fig. 2, we show the current spectroscopy as a function of the gate voltages, V_L and V_R, applied to the left and right plunger gates, respectively. Resonance lines can be observed in the triangular regions. Their origin can be identified by comparing their slope to charge transfer lines in the low bias stability diagram. They are labeled in the figure by the dots in which the charge fluctuates: L-C and C-R lines correspond to the resonance of (1,1,1) with (2,0,1) and (1,0,2) states, respectively. These processes are affected by spin blockade, as evidenced by their dependence on a weak magnetic field:

At zero magnetic field [Figs. 2(b) and 2(e)], current leaks due to spin relaxation processes mediated by the hyperfine interaction with nuclei of the host material [27]. At 0.2 T [Figs. 2(c) and 2(f)], the finite Zeeman splitting considerably reduces the spin relaxation rate, and hence spin blockade persists in both bias polarities. Most significantly for this work, L-R lines are observed when (2,0,1) and (1,0,2) states have the same energy. These states are only indirectly coupled through transitions with the intermediate (1,1,1) state. In spite of the fact that the latter (1,1,1) state is detuned away from the other states and is therefore energetically forbidden, we do observe a sharp resonance [Figs. 2(b)–2(f)]. We interpret these lines in terms of the delocalization of one electron between the left and right dots mediated via the virtual occupation of the center one [28]. These higher-order transitions depend on the effective hopping $t_{LC}t_{CR}/\Delta E$, where t_{ij} are the interdot couplings [30]. They are modulated by the detuning of states (2,0,1) and (1,0,2) from (1,1,1), $\Delta E(V_L, V_R)$. The expected resonance height depends on detuning as
neglect the influence of the additional quadruple points that tunneling depends on the effective coupling \(U \), and the Zeeman splittings \(\Delta \) are inhomogeneous along the system. This is the case in the presence of the inhomogeneous hyperfine interaction, which results in a different Overhauser field in each dot. We assume a weak device-lead coupling and derive the quantum master equation \(\dot{\rho} = \mathcal{L} \rho \) for the reduced density matrix of the triple quantum dot, \(\rho \) [20]. From its stationary solution, we obtain the current \(I = e \mathcal{J} \rho \), where the current operator is given by the tunneling rates \(\Gamma_2 = 2 e v_i |\gamma_2|^2 / \hbar \), where \(v_i \) is the density of states in the leads. We assume that spin flip transitions are 2 orders of magnitude slower than \(\Gamma \) and introduce them by using phenomenological rates. To account for their magnetic field dependence, we assume a Lorentzian dependence on the Zeeman splitting: Spins relax faster at low magnetic fields [27].

We focus on the dynamics of the quadruple points where the spin flip processes at zero magnetic field reveal the position of the different resonance lines. (b),(d) Under the application of a magnetic field of 0.2 T, spin blockade is enhanced which affects the L-C' and C-R resonances but not the L-R lines. We consider only states participating in QP1 and 2. White dashed lines mark the crossing of the dots and lead chemical potentials. Parameters: \(T = 110 \, \text{mK} \) and (in meV): \(\epsilon_i - \epsilon_0 = 0.33 \), \(J = -0.011 \), \(\tau_{LC} = 0.022 \), \(\tau_{CR} = 0.015 \), \(U_L = 1.72 \), \(U_R = 1.22 \), \(U_{LC} = U_{CR} = 0.28 \), \(U_{LR} = 0.167 \), \(\Gamma_L = 2.8 \times 10^{-3} \), and \(\Gamma_R = 2.1 \times 10^{-3} \).

FIG. 3 (color online). Calculated current through the triple quantum dot for a bias \(|\mu_L - \mu_R| = 0.5 \, \text{meV} \) applied in the (a),(b) forward and (c),(d) backward direction. (a),(c) Leakage currents due to spin flip processes at zero magnetic field reveal the position of the different resonance lines. (b),(d) Under the application of a magnetic field of 0.2 T, spin blockade is enhanced which affects the L-C’ and C-R resonances but not the L-R lines. We consider only states participating in QP1 and 2. White dashed lines mark the crossing of the dots and lead chemical potentials. Parameters: \(T = 110 \, \text{mK} \) and (in meV): \(\epsilon_i - \epsilon_0 = 0.33 \), \(J = -0.011 \), \(\tau_{LC} = 0.022 \), \(\tau_{CR} = 0.015 \), \(U_L = 1.72 \), \(U_R = 1.22 \), \(U_{LC} = U_{CR} = 0.28 \), \(U_{LR} = 0.167 \), \(\Gamma_L = 2.8 \times 10^{-3} \), and \(\Gamma_R = 2.1 \times 10^{-3} \).
counterintuitive but has some additional advantages. On one hand, thanks to the double occupancy of the source dot, spin blockade is avoided. On the other hand, out of the three electrons in the initial state, there is only one that can be transferred across the system. Thus, it is clear that $L-R$ lines consist of the transfer of a single electron with a well-defined spin directly from the left to the right dot. The observation of the sharp resonance lines confirms that the interdot tunneling is coherent and that the sign of the spin is conserved in the transfer process. This is an important observation for the future application of such processes for spin bus applications. This was not the case of previous experiments [20,21] where the transfer of charge from one side to the other could potentially be accompanied by a spin flip (i.e., spin states were mixed).

We gain further insight into the process by looking at the eigenstates of the triple quantum dot system. We identify their role in the process and how to control and optimize it. Let us consider the subspace with three electrons: two with spin σ and one with opposite spin $\bar{\sigma}$. The $L-R$ transition can only connect the states $|L\rangle = |\uparrow\downarrow\downarrow, 0, \sigma\rangle$ and $|R\rangle = |\sigma, 0, \uparrow\downarrow\rangle$, with the intermediate states being $|C_1\rangle = |\sigma, \bar{\sigma}, \sigma\rangle$, $|C_2\rangle = |\bar{\sigma}, \sigma, \sigma\rangle$, and $|C_3\rangle = |\sigma, \sigma, \bar{\sigma}\rangle$. Let us take, for simplicity, the case of symmetric interdot couplings: $\tau_{LC} = \tau_{CR} = \tau$. We can diagonalize the corresponding block of H_{QD}, whose unnormalized eigenstates read $v_1 = \sum |C_i\rangle$, $v_{2,3} = |L\rangle - |R\rangle + \beta_{\pm} (2|C_1\rangle - |C_2\rangle - |C_3\rangle)$, and $v_4 = |L\rangle + |R\rangle - \alpha_{\pm} (|C_2\rangle - |C_3\rangle)$, with $\alpha_{\pm} = 2\tau/(\Delta E \pm \sqrt{\Delta E^2 + 4\Delta^2})$ and $\beta_{\pm} = 2\tau/(\Delta E \pm \sqrt{\Delta E^2 + 12\Delta^2})$. We plot the corresponding eigenvalues in Fig. 4. For the case of interest $\Delta E \gg \tau$, we obtain to leading order in a series expansion $v_2 \rightarrow |LR_+\rangle$ and $v_4 \rightarrow |LR_-\rangle$ [32]

$$\frac{|LR_\pm\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\downarrow, 0, \sigma\rangle \pm |\sigma, 0, \uparrow\downarrow\rangle).$$

(2)

The occupation of these two eigenstates involves the delocalization of an electron between the left and right dots without the participation of the center one. They are thus responsible for the $L-R$ lines. Furthermore, as an electron tunnels from one extreme of the structure to the other, an arbitrary spin σ is transferred in the opposite direction, e.g., $\sum c_{\sigma}|\uparrow\downarrow\downarrow, 0, \sigma\rangle \rightarrow \sum c_{\sigma}|\sigma, 0, \uparrow\downarrow\rangle$; i.e., the tunneling electron acts as a spin bus. Hence, via this mechanism any spin state prepared in one of the dots, $|\psi\rangle = c_{\uparrow}|\uparrow\rangle + c_{\downarrow}|\downarrow\rangle$, can be transferred to the other edge: $|\uparrow\downarrow\downarrow\rangle_L \otimes |0\rangle_C \otimes |\psi\rangle_R \rightarrow |\psi\rangle_L \otimes |0\rangle_C \otimes |\uparrow\downarrow\downarrow\rangle_R$.

Interestingly, at the $L-R$ resonance, v_3 is the ground state of the system; see Fig. 4. Thus, it will constitute the main channel for transport. Far from the multiple resonance, i.e., for $\Delta E \gg \tau$, it becomes almost degenerate with $v_3 \sim 2|C_1\rangle - |C_2\rangle - |C_3\rangle$, which to leading order is not coupled to the leads and therefore does not contribute to transport. Being very weakly connected to the leads, states v_1, v_3, and v_5 are slow channels [37]. Therefore, their occupation will potentially switch off the desired current through v_2. In order to avoid this effect and enhance the observation of the left to right transitions, the splitting between v_2 and v_3 can be increased by introducing inhomogeneous tunnel coupling, $\tau_{LC} \neq \tau_{CR}$, as shown in Fig. 4(b). The inhomogeneity slightly modifies the coefficients in the eigenvectors but does not affect their general properties discussed here.

Conclusions.—We report measurements involving the long-range tunneling of a single electron in a triple quantum dot structure. We observe sharp transport resonances which involve coherent single-electron transport from one edge dot to the other while avoiding the occupation of the center dot. An important difference with previous experiments [20,21] is the fact that the spin of the electron is well defined during the process. Its spin is selected by an electron occupying the other edge dot via the Pauli exclusion principle. The detected process thus enables a protocol for spin bussing, essential for quantum information architectures.

We acknowledge discussions with M. Busl and F. Gallego-Marcos. The high-quality 2DEG material was grown by Z. R. Wasilewski. This work was supported by the Spanish MICINN Juan de la Cierva program (R. S.) and MAT2011-24331, the ITN Grant No. 234970 (EU). G. G. acknowledges funding from the National Research Council Canada—Centre national de la recherche scientifique collaboration and Canadian Institute for Advanced Research. A. S. S. acknowledges funding from Natural Sciences and Engineering Research Council of Canada and Canadian Institute for Advanced Research.
[1] L. Pauling, *The Nature of the Chemical Bond* (Cornell University, Ithaca, 1960).
[2] H. B. Gray and J. R. Winkler, *Proc. Natl. Acad. Sci. U.S.A.* **102**, 3534 (2005).
[3] P. W. Anderson, *Rev. Mod. Phys.* **50**, 191 (1978).
[4] E. Arimondo, in *Progress in Optics*, edited by E. Wolf (Elsevier, Amsterdam, 1996), Vol. 35, p. 257.
[5] N. Lambert, Y. N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, *Nat. Phys.* **9**, 10 (2013).
[6] A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, *Phys. Rev. B* **70**, 235317 (2004).
[7] C. Kloeffel and D. Loss, *Annu. Rev. Condens. Matter Phys.* **4**, 51 (2013).
[8] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, *Rev. Mod. Phys.* **75**, 1 (2002).
[9] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, *Rev. Mod. Phys.* **79**, 1217 (2007).
[10] L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, *Phys. Rev. Lett.* **97**, 036807 (2006).
[11] D. Schröer, A. D. Greentree, L. Gaudreau, K. Eberl, L. C. L. Hollenberg, J. P. Kotthaus, and S. Ludwig, *Phys. Rev. B* **76**, 075306 (2007).
[12] M. C. Rogge and R. J. Haug, *New J. Phys.* **11**, 113037 (2009).
[13] G. Granger, L. Gaudreau, A. Kam, M. Pioro-Ladrière, S. A. Studenikin, Z. R. Wasilewski, P. Zawadzki, and A. S. Sachrajda, *Phys. Rev. B* **82**, 075304 (2010).
[14] S. Amaha, W. Izumida, T. Hatano, S. Teraoka, S. Tarucha, J. A. Gupta, and D. G. Austing, *Phys. Rev. Lett.* **110**, 016803 (2013).
[15] L. Gaudreau, G. Granger, A. Kam, G. C. Aers, S. A. Studenikin, P. Zawadzki, M. Pioro-Ladrière, Z. R. Wasilewski, and A. S. Sachrajda, *Nat. Phys.* **8**, 54 (2012).
[16] E. A. Laird, J. M. Taylor, D. P. DiVincenzo, C. M. Marcus, M. P. Hanson, and A. C. Gossard, *Phys. Rev. B* **82**, 075403 (2010).
[17] P. Barthelemy and L. M. K. Vandersypen, *Ann. Phys. (Berlin)* **525**, 808 (2013).
[18] D. S. Saraga and D. Loss, *Phys. Rev. Lett.* **90**, 166803 (2003).
[19] R. Sánchez, F. Gallego-Marcos, and G. Platero, *Phys. Rev. B* **89**, 161402(R) (2014).
[20] M. Busl, G. Granger, L. Gaudreau, R. Sánchez, A. Kam, M. Pioro-Ladrière, S. A. Studenikin, P. Zawadzki, Z. R. Wasilewski, A. S. Sachrajda, and G. Platero, *Nat. Nanotechnol.* **8**, 261 (2013).
[21] F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, *Nat. Nanotechnol.* **8**, 432 (2013).
[22] S. Amaha, T. Hatano, H. Tamura, S. Teraoka, T. Kubo, Y. Tokura, D. G. Austing, and S. Tarucha, *Phys. Rev. B* **85**, 081301(R) (2012).
[23] The results from this paper were taken during the same configuration and cooldown as the data in Fig. 1(d).
[24] S. A. Studenikin, G. C. Aers, G. Granger, L. Gaudreau, A. Kam, P. Zawadzki, Z. R. Wasilewski, and A. S. Sachrajda, *Phys. Rev. Lett.* **108**, 226802 (2012).
[25] J. Medford, J. Beil, J. M. Taylor, E. I. Rashba, H. Lu, A. C. Gossard, and C. M. Marcus, *Phys. Rev. Lett.* **111**, 050501 (2013).
[26] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, *Science* **297**, 1313 (2002).
[27] F. H. L. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. H. W. van Beveren, I. T. Vink, H. P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, and L. M. K. Vandersypen, *Science* **309**, 1346 (2005).
[28] It is interesting to note the resemblance with cotunneling events [29] but with the important difference that in our case the initial and final states are localized states, not immersed in the lead Fermi seas.
[29] D. V. Averin and Yu. V. Nazarov, *Phys. Rev. Lett.* **65**, 2446 (1990).
[30] M. A. Ratner, *J. Phys. Chem.* **94**, 4877 (1990).
[31] We do not reproduce L^*-R^* lines, as the inclusion of excited states in both dots has a heavy computational cost. Additional features of the experiment such as the enhanced current at the top of the triangles in forward bias [cf. Figs. 2(b) and 2(c)] are attributed to the close proximity of QP3 and 4, not included in the model.
[32] Note the similarity of the superposition $|L R_i\rangle$ with dark states in optical resonances [4] which have been predicted to be measurable in transport through double [33,34] and triple [35,36] quantum dot systems but have so far not been observed.
[33] T. Brandes and F. Renzoni, *Phys. Rev. Lett.* **85**, 4148 (2000).
[34] R. Sánchez and G. Platero, *Phys. Rev. B* **87**, 081305(R) (2013).
[35] B. Michaelis, C. Emary, and C. W. J. Beenakker, *Europhys. Lett.* **73**, 677 (2006).
[36] M. Busl, R. Sánchez, and G. Platero, *Phys. Rev. B* **81**, 121306(R) (2010).
[37] Note that V_s becomes $|\sigma, \sigma, \bar{\sigma}\rangle \rightarrow |\bar{\sigma}, \sigma, \sigma\rangle$; i.e., it involves long-range spin swap transitions between electrons in the left and right quantum dots while at the same time being decoupled from the leads.