An explicit description of (1, 1) L-space knots, and non-left-orderable surgeries

Zipei Nie
February 23, 2021

Abstract
Greene, Lewallen and Vafaee characterized (1, 1) L-space knots in S^3 and lens space in the notation of coherent reduced (1, 1)-diagrams. We analyze these diagrams, and deduce an explicit description of these knots. With the new description, we prove that any L-space obtained by Dehn surgery on a (1, 1)-knot in S^3 has non-left-orderable fundamental group.

1 Introduction
An L-space is a rational homology 3-sphere with minimal Heegaard Floer homology, that is, $\dim \hat{HF} = |H_1(Y)|$. A nice topological property of L-spaces is that [18], they do not admit co-orientable taut foliations, and its converse statement is only partially verified. Another conjectural property of L-spaces is the non-left-orderability of fundamental groups [2], that is, there does not exist a total order \leq on the fundamental group such that $g \leq h$ implies $fg \leq fh$. Although we have multiple computational tools, the Heegaard Floer data is not easy to utilize. Therefore, a better characterization of L-spaces would be helpful.

One way to construct L-spaces is via Dehn surgeries. A knot K is called an L-space knot, if it admits an L-space surgery. It is a positive (resp. negative) L-space knot if it admits a positive (resp. negative) L-space surgery. The Dehn surgery along a nontrivial positive L-space knot K in S^3 with slope $\frac{p}{q}$ yields an L-space if and only if $\frac{p}{q} \geq 2g(K) − 1$ [19]. Similar results also hold for knots in other L-spaces [21].

For a closed orientable 3-manifold Y, we say that a knot K in Y is a (g, b)-knot, if there exists a Heegaard splitting $Y = U_0 \cup U_1$ of genus g, such that each of $K \cap U_0$ and $K \cap U_1$ consists of b trivial arcs. The family of $(1, 1)$-knots (also called 1-bridge torus knot in the literature) in the 3-sphere and lens spaces is widely studied. The knot Floer invariants arises diagrammatically [8, 10, 20] if we can find a $(1, 1)$-decomposition.

A $(1, 1)$-diagram for a $(1, 1)$-knot K in the three-sphere or lens space Y a doubly-pointed Heegaard diagram $(\Sigma, \alpha, \beta, w, z)$, which consists of two simple closed curves α and β on the torus Σ and two basepoints w and z in $\Sigma − \alpha − \beta$. The diagram $(\Sigma, \alpha, \beta, w, z)$ is called reduced if each bigon contains a basepoint. In this case, the diagram can be specified [20] by four parameters p, q, r, s. Via successive isotopies to removing empty bigons, every $(1, 1)$-knot has a reduced $(1, 1)$-diagram. In [9], Greene, Lewallen and Vafaee established the following criterion to determine whether a reduced $(1, 1)$-diagram represents an L-space knot.
Previous Work. [9, Theorem 1.2] A reduced \((1,1)\)-diagram represents an L-space knot if and only if it is coherent, that is, there exist orientations on \(\alpha\) and \(\beta\) that induce coherent orientations on the boundary of every embedded bigon \((D, \partial D) \subseteq (\Sigma, \alpha \cup \beta)\). It represents a positive or negative L-space knot according to the sign of \(\alpha \cdot \beta\) with coherent orientation.

Building on their work, we describe the family of \((1,1)\) L-space knots explicitly as follows.

Theorem 1. Let \(Y = U_0 \cup_\Sigma U_1\) be a genus one Heegaard splitting of a three-sphere or lens space, with standard geometry. A knot in \(Y\) is a \((1,1)\) L-space knot if and only if it is isotopic to a union of three arcs \(\rho \cup \tau_0 \cup \tau_1\), such that

(a) \(\rho\) is a geodesic of \(\Sigma\);
(b) \(\tau_0\) is properly embedded in some meridional disk of \(U_0\);
(c) \(\tau_1\) is properly embedded in some meridional disk of \(U_1\).

Note that, if \(\tau_0\) or \(\tau_1\) is of length zero, then by definition, the knot is a 1-bridge braid in \(Y\). The study of 1-bridge braids originates from the classification of knots in a solid torus with nontrivial solid torus surgeries [1, 6, 7], where it is shown that every such knot is a torus knot or a 1-bridge braid. If we put solid torus in the standard position in \(S^3\), these knots has nontrivial lens space surgeries. And as its name suggests, any lens space is an L-space. It is also proved that any 1-bridge braid in the three-sphere or lens space is an L-space knot [9], and the L-spaces obtained by surgeries along 1-bridge braids in \(S^3\) has non-left-orderable fundamental groups [17]. In line with these researches, we deduce similar properties of \((1,1)\) L-space knots in \(S^3\).

Theorem 2. A nontrivial positive \((1,1)\) L-space knot in \(S^3\) can be represented as the closure of the braid

\[
(\sigma_{\omega} \sigma_{\omega-1} \cdots \sigma_{\omega-b_0+1}) (\sigma_{\omega} \sigma_{\omega-1} \cdots \sigma_1)^{b_1} (\sigma_{\omega-1} \sigma_{\omega-2} \cdots \sigma_1)^{t-b_1}
\]

in the braid group \(B_{\omega+1}\) on \(\omega + 1\) strands, where \(1 \leq b_0 \leq \omega\) and \(1 \leq b_1 \leq t\).

An example is shown in Figure 1 below.

![Figure 1: The braid when \((\omega, t, b_0, b_1) = (6, 7, 4, 3)\).](image)

In [17], the author introduced the property (D) as follows.

Definition 3. For a nontrivial knot \(K\) in \(S^3\) with \(\mu\) and \(\lambda\) representing a meridian and a longitude in the knot group, we say \(K\) has property (D) if

1. for any homomorphism \(\rho\) from \(\pi_1(S^3 - K)\) to \(\text{Homeo}_+(\mathbb{R})\), if \(s \in \mathbb{R}\) is a common fixed point of \(\rho(\mu)\) and \(\rho(\lambda)\), then \(s\) is a fixed point of every element in \(\pi_1(S^3 - K)\);
2. \(\mu\) is in the root-closed, conjugacy-closed submonoid generated by \(\mu^{2^{g(K)-1}}\lambda\) and \(\mu^{-1}\).
The author proved that [17, Theorem 1.3] nontrivial knots which are closures of positive 1-bridge braids have property (D). And by [17, Theorem 4.1], it implies the non-left-orderability of the fundamental groups of the L-spaces obtained by Dehn surgeries on closures of 1-bridge braids. In this paper, we prove the following result in a similar way. Thanks to the additional symmetry, our proof is simplified compared to the proof of [17, Theorem 1.3].

Theorem 4. Nontrivial positive \((1,1)\) L-space knots in \(S^3\) have property (D).

Therefore, by [17, Theorem 4.1], we have the following conclusion.

Theorem 5. The fundamental group of an L-space obtained by Dehn surgery on a \((1,1)\)-knot in \(S^3\) is not left orderable.

Because a \((1,1)\)-decomposition eases the computation of knot Floer homology, many examples of L-space knots which were studied in the literature are \((1,1)\)-knots. Theorem 5 serves as the generalization of relevant non-left-orderability results [3, 4, 11, 12, 13, 14, 15, 16, 17, 22, 23].

Acknowledgement

The author thanks Fan Ye for helpful discussions.

2 Description of \((1,1)\) L-space knots

This section is dedicated to prove Theorem 4.

Let \((\Sigma, \alpha, \beta, w, z)\) denote a reduced \((1,1)\)-diagram representing an L-space knot in the three-sphere or lens space \(Y\). Since the \(\alpha\) curve is simple, it represents a primitive element in \(H_1(\Sigma)\). We can straighten out the \(\alpha\) curve via a self-homeomorphism of \(\Sigma\). Assume that \(\alpha\) curve is horizontal, with an orientation from left to right. The \(\beta\) curve is cut into strands of two bands and two rainbows by the \(\alpha\) curve. By [9, Theorem 1.2], we can choose an orientation of \(\beta\) which induces an orientation from left to right on every rainbow strand, which is the opposite of the coherent orientation. Assume that \(w\) is on the left side of \(\alpha\), and \(z\) is on the right side of \(\alpha\).

2.1 The first step

We define the positive curves on the torus \(\Sigma\) as follows.

Definition 6. An oriented curve \(\gamma\) on \(\Sigma\) is called positive, if at each inner intersection point of \(\gamma\) and \(\alpha \cup \beta\), the \(\gamma\) curve goes from the right side of the \(\alpha\) or \(\beta\) curve to the left side transversally.

Our first step is to construct a positive curve \(\gamma_0\) connecting \(w\) to \(z\).

Let \(S\) be the set of endpoints of all positive curves originating from \(w\). If \(z \in S\), our first step is completed. Otherwise, we assume \(z \not\in S\). Let \(S_w\) be the connected component of \(S - \alpha\) containing \(w\). Since \(w \in S_w\), each point on a rainbow strand around \(w\) is an interior point of \(S_w\). Since \(z \not\in S\), each point on a rainbow strand around \(z\) is in the exterior of \(S_w\). Therefore, the shape of \(S_w\) is a rectangle. Let the vertices of \(S_w\) be \(P_1, P_2, P_3, P_4\) counterclockwise, with \(P_1P_2, P_1P_3\) being parts of the \(\alpha\) curve, \(P_2P_3, P_3P_4\) being parts of
the β curve, and the basepoint w being close to the edge P_1P_2. From the definition of S_w, we can derive the orientation of P_4P_1 and P_2P_3 as shown in Figure 2.

![Figure 2: The rectangle S_w.](image)

If there exists another embedded open rectangle $P_4P_3P_5P_6$ on the left of P_4P_3 which does not contain any basepoints, then we replace $P_1P_2P_3P_4$ by the immersed rectangle $P_1P_2P_3P_6$ and try the same extension again. Because the β curve is connected, the edge P_2P_3 extends to the right strand of the basepoint z in finite steps. Hence, we assume that the sequence of extensions ends at an immersed rectangle $P_1P_2Q_2Q_1$, as shown in Figure 3.

![Figure 3: The immersed rectangle $P_1P_2Q_2Q_1$.](image)

There are two possibilities for not able to extend the immersed rectangle: one of the edge P_1Q_1 and P_2Q_2 extends to a rainbow strand, or the embedded rectangle on the left of Q_1Q_2 contains at least one basepoint. If the embedded rectangle on the left of Q_1Q_2 contains the basepoint z. Then by the definition of S, we have $z \in S$. Otherwise, the edge Q_1Q_2 intersects with the edge P_1P_2 on the torus Σ.

By the definition of S_w, the strands P_4P_1 and P_2P_3 are on the boundary of S, so we have $Q_1Q_2 \subseteq P_1P_2$. If $P_1 = Q_1$ or $P_2 = Q_2$, then the edge Q_1P_1 or the edge P_2Q_2 covers the β curve. In that case, Q_1P_1 or P_2Q_2 contains the left and right strand of the basepoint z, which is a contradiction. Therefore, the edge Q_1Q_2 lies in the interior of the edge P_1P_2.

Suppose that there are q rainbow strands in the middle, $r_1 \geq 1$ band strands on the left (including Q_1P_1) and $r_2 \geq 1$ band strands on the right (including P_2Q_2) in the immersed rectangle $P_1P_2Q_2Q_1$. Suppose that the i-th intersection point on Q_1Q_2 is the $(i + k)$-th intersection point on P_1P_2 for $1 \leq i \leq r_1 + r_2$. Then we have $1 \leq k \leq 2q - 1$.

For $1 \leq i \leq 2q + r_1 + r_2$, let $\varepsilon_i = 1$ if the β curve goes from the right side of the α curve to the left side at the i-th intersection point on P_1P_2. Otherwise, let $\varepsilon_i = -1$. Then
we have
\[\varepsilon_i = \begin{cases}
\varepsilon_{i+k} & \text{if } 1 \leq i \leq r_1; \\
1 & \text{if } r_1 + 1 \leq i \leq r_1 + q; \\
-1 & \text{if } r_1 + q + 1 \leq i \leq r_1 + 2q; \\
\varepsilon_{i-2q+k} & \text{if } 2q + r_1 + 1 \leq i \leq 2q + r_1 + r_2.
\end{cases} \]

If \(1 \leq k \leq q \), then we have \(\varepsilon_1 = 1 \) by induction. If \(q + 1 \leq k \leq 2q - 1 \), then we have \(\varepsilon_{2q+r_1+r_2} = -1 \) by induction. Either case leads to a contradiction.

2.2 The second step

We have constructed a positive curve \(\gamma_0 \) connecting \(w \) to \(z \). By eliminating self-loops, we assume that \(\gamma_0 \) is simple and intersects each connected component of \(\Sigma - \alpha - \beta \) at most once. Our second step is to construct a positive simple closed curve \(\gamma \) passing through \(w \) and \(z \).

Let \(T_1, T_2, \ldots, T_p \) be all intersection points between the \(\alpha \) curve and the \(\beta \) curve, ordered along the orientation of \(\alpha \). Via a self-homeomorphism of \(\Sigma \), we assume the following condition: for \(1 \leq i \leq p \), if the \(\alpha \)-segment \(T_iT_{i+1} \) does not intersect with the \(\gamma_0 \) curve, then it has unit length; otherwise, it has length \(2q + 1 \), where \(q \) is the number of strands in each rainbow.

For a downward-oriented band strand \(e_1 \) and an upward-oriented band strand \(e_2 \) on the \(\beta \) curve, there exists an embedded open rectangle \(R \) with two edges being \(e_1 \) and \(e_2 \) and the other two edges \(e_3, e_4 \) on the \(\alpha \) curve. We can further assume that the rectangle is on the left of \(e_1, e_2, e_3 \) and on the right of \(e_4 \).

Let \(l_i \) denote the length of \(e_i \) for \(i = 3, 4 \), then
\[l_i = |e_i \cap \beta| + 2q |e_i \cap \gamma_0| - 1. \]

The difference \(|e_4 \cap \beta| - |e_3 \cap \beta| \) depends on whether each basepoint lies in \(R \), that is,
\[|e_4 \cap \beta| - |e_3 \cap \beta| = 2q |\{z\} \cap R| - 2q |\{w\} \cap R|. \]

The difference \(|e_4 \cap \gamma_0| - |e_3 \cap \gamma_0| \) depends on how \(\gamma_0 \) intersects \(R \). Since \(\gamma_0 \) is positive, if it intersects \(e_1, e_2 \) or \(e_3 \) at a point, then it enters \(R \) there; if it intersects \(e_4 \) at a point, then it exits \(R \) there. Hence we have
\[|e_4 \cap \gamma_0| - |e_3 \cap \gamma_0| = |e_1 \cap \gamma_0| + |e_2 \cap \gamma_0| + |\{w\} \cap R| - |\{z\} \cap R|. \]

By combining these equations, we get \(l_3 \leq l_4 \).

Therefore, there exists a linear foliation \(F \) of the torus \(\Sigma \), such that, up to isotopy, each strand of the \(\beta \) curve is contained in a leaf of \(F \) or transverse to \(F \) in a fixed direction.

Via another isotopy, we can assume that the entire \(\beta \) curve is either contained in a leaf of \(F \) or transverse to \(F \). In either case, we can assume that the slope of \(F \) is irrational under a perturbation of the foliation, so the leaves of \(F \) are dense. We extend the curve in both directions from the basepoint \(w \) along a leaf of \(F \) until the endpoints reach the connected component of \(\Sigma - \alpha - \beta \) containing the basepoint \(z \). After closing the curve by connecting two endpoints within the connected component, we get the positive simple closed curve \(\gamma \) passing through \(w \) and \(z \).
2.3 The third and the last steps

Our third step is to complete the proof of the “only if” part of Theorem 1. Via a self-homeomorphism of Σ, we abandon the horizontality of the α curve, and assume that the γ curve is horizontal instead. Since γ is positive, we can either assume α is a geodesic or assume β is a geodesic, but not simultaneously. In fact, there exists an isotopy $f : (\alpha \cup \beta \cup \gamma) \times [0, 1] \to \Sigma$, such that $f(z, t), f(\gamma, t)$ are independent of t, and $f(\alpha, 0), f(\beta, 1), f(\gamma, 0)$ are geodesics. Let ρ be the curve in $\Sigma \times [0, 1]$ defined by $\rho(t) = (f(w, t), t)$. Let τ_0 (resp. τ_1) be a geodesic in $(\Sigma, 0)$ (resp. $(\Sigma, 1)$) which does not intersect with $(f(\alpha, 0), 0)$ (resp. $(f(\beta, 1), 1)$). After attaching the solid tori U_0 and U_1 to the boundary components of $\Sigma \times [0, 1]$, such that $(f(\alpha, 0), 0)$ (resp. $(f(\beta, 1), 1)$) is a meridional disk of U_0 (resp. U_1), we recover the knot $\rho \cup \tau_0 \cup \tau_1$ from the $(1, 1)$-diagram.

At last, the “if” part of Theorem 1 can be proved in a way similar to the 1-bridge braid case. In [9, Section 3], a coherent reduced $(1, 1)$-diagram was constructed for each 1-bridge braid in S^3 and lens space to utilize [9, Theorem 1.2], as shown in Figure 4. We make a tiny change in the construction here: the basepoint z is no longer restricted to be the starting point of the γ', but can be any point in $\Sigma - \alpha - \beta$. The topological meaning of the diagram is as explained in the previous paragraph: if we move the basepoint w along a geodesic γ', we can untwist the β curve at the expense of twisting the α curve. With this change, a $(1, 1)$-diagram as the middle one in Figure 4 can represent the knot described in Theorem 1. This $(1, 1)$-diagram is coherent in the sense that certain orientations on the α and β curves induce coherent orientations on the boundary of every embedded bigon $(D, \partial D) \subseteq (\Sigma, \alpha \cup \beta)$. Each isotopy to remove an empty bigon preserves the coherence, so we get a reduced $(1, 1)$-diagram in finite steps. By [9, Theorem 1.2], we proved the “if” part of Theorem 1.

![Figure 4: The construction of a coherent diagram of the 1-bridge braid $K(-2, 3, 7)$ in S^3, modified from [9, Figure 3].](image)

3 Non-left-orderable surgeries

3.1 A positive braid representation

In this subsection, we prove Theorem 2 and derive the genus formula.

Let K be a nontrivial positive $(1, 1)$ L-space knot in S^3. Let $S^3 = U_0 \cup_S U_1$ be a genus one Heegaard splitting with standard geometry. By Theorem 1, K is isotopic to $\rho \cup \tau_0 \cup \tau_1$, we get the knot $\rho \cup \tau_0 \cup \tau_1$ from the $(1, 1)$-diagram.
where ρ is a geodesic of Σ, and τ_0 (resp. τ_1) is properly embedded in some meridional disk of U_0 (resp. U_1).

An orientation on the geodesic ρ induces orientations on the cores of U_0 and U_1. If the cores of U_0 and U_1 are negatively linked, then the construction in Subsection 2.3 yields a negative coherent reduced $(1, 1)$-diagram. By [9, Theorem 1.2], K is a negative $(1, 1)$ L-space knot, which contradicts the assumption that K is a nontrivial positive $(1, 1)$ L-space knot in S^3. Thus, the cores of U_0 and U_1 with induced orientations are positively linked. So ρ can be realized as a part of a positive braid. After appending the arcs τ_0 and τ_1, we get a positive braid as shown in Figure 4.

Let K be the closure of the positive braid represented by

$$(\sigma_\omega \sigma_{\omega-1} \cdots \sigma_{\omega-b_0+1}) (\sigma_\omega \sigma_{\omega-1} \cdots \sigma_1)^{b_1} (\sigma_{\omega-1} \sigma_{\omega-2} \cdots \sigma_1)^{t-b_1}.$$

If $b_0 = b_1 = 0$, then K has an unknot component, which is not allowed. If $b_0 = 0$, we can decrease t and b_1 by one and set b_0 to ω. If $b_1 = 0$, we can decrease ω and b_0 by one and set b_1 to t. For the representation with minimal $t + \omega$, we have $1 \leq b_0 \leq \omega$ and $1 \leq b_1 \leq t$. Therefore, Theorem 2 holds.

A minimal genus Seifert surface is obtained [5] by applying Seifert’s algorithm to a positive diagram, so the genus of K is

$$g(K) = \frac{1}{2}(\#\text{crossings} - \#\text{strands} + 1)$$
$$= \frac{1}{2}(b_0 + b_1 \omega + (t - b_1)(\omega - 1) - (\omega + 1) + 1)$$
$$= \frac{1}{2}(t \omega - t - \omega + b_0 + b_1).$$

3.2 The knot group

In this subsection, we investigate the knot group $\pi_1(S^3 - K)$. As a $(1, 1)$-knot, the knot group has a 2-generator presentation. However, to keep the symmetry, we specify four elements x_0, y_0, x_1, y_1 in the knot group instead.

Let D_0 (resp. D_1) be the meridional disk of U_0 (resp. U_1) containing τ_0 (resp. τ_1). Then D_0 (resp. D_1) is divided by τ_0 (resp. τ_1) into two disks $D_{x,0}$ and $D_{y,0}$ (resp. $D_{x,1}$ and $D_{y,1}$). Let the points P, Q, R on Σ be $\rho \cap \tau_0, \tau_0 \cap \tau_1, \tau_1 \cap \rho$, respectively. Orient the knot K so that P, Q, R appears in order. Orient the cores of U_0, U_1 and the disks $D_0, D_1, D_{x,0}, D_{y,0}, D_{x,1}, D_{y,1}$ accordingly. Let Q' be a point near Q in $\Sigma - \rho - D_0 - D_1$, so that Q' is on the negative side of D_0 and on the positive side of D_1. Let Q'' be a point in ρ on the boundary of the connected component of $\Sigma - \rho - D_0 - D_1$ containing Q', as shown in Figure 4.

The fundamental group of $U_0 - \tau_0$ (resp. $U_1 - \tau_1$) is freely generated by two elements x_0, y_0 (resp. x_1, y_1), where x_0 (resp. y_0, x_1, y_1) is represented by a loop based at Q' intersecting $D_{x,0}$ (resp. $D_{y,0}, D_{x,1}, D_{y,1}$) once positively and not intersecting other disks. Then $\pi_1(S^3 - K)$ based at Q' is generated by x_0, y_0, x_1, y_1.

Without loss of generality, we assume x_0 (resp. x_1) has larger norm than y_0 (resp. y_1) in $H_1(S^3 - K)$. Then

$$\mu = x_0y_0^{-1} = y_1^{-1}x_1$$

represents a meridian of K around Q.

7
The boundary of D_1 (resp. D_0) intersects ρ in t (resp. w) points, not counting P, Q and R. Starting from Q along positive direction, let the points be R_1, R_1-1, \ldots, R_1 (resp. $P_\omega, P_{\omega-1}, \ldots, P_1$) in order. For each i with $1 \leq i \leq t$ (resp. $1 \leq i \leq \omega$), let g_i (resp. h_i^{-1}) represent the loop based at Q' in $U_0 - \tau_0$ (resp. $U_1 - \tau_1$) which first travels to R_i (resp. P_i) without intersecting D_0 (resp. D_1), then follows ρ in positive (resp. negative) direction to P (resp. R) but not past it, lastly travels back to Q' without intersecting D_0 (resp. D_1). Then each g_i (resp. h_i) represented by a word in x_0 and y_0 (resp. x_1 and y_1), and we have

$$
y_0 = (g_1 \mu g_1^{-1}) (g_2 \mu g_2^{-1}) \cdots (g_t \mu g_t^{-1}),
$$

$$
y_1 = (h_1^{-1} \mu h_1) (h_2^{-1} \mu h_2) \cdots (h_\omega^{-1} \mu h_\omega).
$$

Since $b_0, b_1 \neq 0$, the point Q'' is on the arc $R_1 P_\omega \subset \rho$ which is a part of boundary of the connected component of $\Sigma - \rho - D_0 - D_1$ containing Q'. The longitude λ of K starting from Q is determined by

$$
\mu^{b_0} \lambda = h_\omega g_1.
$$

The integer k_0 can be found by counting the crossings between K and a loop represented by $h_\omega g_1$ on a planar diagram. The loop represented by $h_\omega g_1$ differs from the blackboard framing of K as shown in Figure 1 by $2t$ additional positive crossings, so we have

$$
k_0 = \# \text{crossings} + t
$$

$$
= b_0 + b_1 \omega + (t - b_1)(\omega - 1) + t
$$

$$
= t \omega + b_0 + b_1.
$$

Therefore we have

$$
\mu^{t \omega + b_0 + b_1} \lambda = h_\omega g_1,
$$

and

$$
\mu^{2g(K) - 1} \lambda = h_\omega g_1 \mu^{-t - \omega - 1}.
$$

Furthermore, the word representing g_1 starts with an x_0, and the word representing h_ω ends with an x_1.

3.3 The property (D)

In this subsection, we prove that K has property (D).

The first part of the property (D) is the following.

Lemma 7. For any homomorphism ρ from $\pi_1(S^3 - K)$ to $\text{Homeo}^+(R)$, if $s \in R$ is a common fixed point of $\rho(\mu)$ and $\rho(\lambda)$, then s is a fixed point of every element in $\pi_1(S^3 - K)$.

Proof. Since s is a common fixed point of $\rho(\mu)$ and $\rho(\lambda)$, it is a common fixed point of $\rho(x_0 y_0^{-1})$, $\rho(y_1^{-1} x_1)$ and $\rho(h_\omega g_1)$. Without loss of generality, we assume $\rho(x_0)s \geq s$, then we have $\rho(y_0)s \geq s$. We also have $\rho(x_1)s \geq s$ (resp. $\rho(x_1)s \leq s$) if and only if $\rho(y_1)s \geq s$ (resp. $\rho(y_1)s \leq s$).

Starting from the base point Q', we construct a geodesic γ on $\Sigma - \rho$ parallel to ρ. Because K is nontrivial, the arc ρ is not parallel to ∂D_0 or ∂D_1. Extend γ until it crosses each disk D_0, D_1 at least once and reaches the connected component of $\Sigma - \rho - D_0 - D_1$ containing Q' again. Then we close up the curve to obtain the knot group element g_0, which can be represented by a nontrivial word in x_0 and y_0, and also by a nontrivial word.
Remark. By symmetry, we have \(\rho(y_0)s \geq s \). By the second condition, we have \(\rho(x_0)s \geq s \). Because \(h_\omega g_1 \) is represented by a word in \(x_0, y_0, x_1, y_1 \) with at least one \(x_0 \) and one \(x_1 \), we have \(\rho(x_0)s = \rho(y_0)s = \rho(x_1)s = \rho(y_1)s = s \). Therefore \(s \) is a fixed point of every element in \(\pi_1(S^3 - K) \).

\[\square \]

Lemma 8. The element \(\mu \) is in the root-closed, conjugacy-closed submonoid generated by \(\mu^{2g(K) - 1} \lambda \) and \(\mu^{-1} \).

Proof. As in [17 Section 3], we define the preorder \(\leq_k \) generated by \(\mu \) and \((\mu^{2g(K) - 1} \lambda)^{-1} \) on \(\pi_1(S^3 - K) \). Since \(\mu = x_0 y_0^{-1} = y_1^{-1} x_1 \), we have \(x_0 \geq_k y_0 \) and \(x_1 \geq_k y_1 \). Since \(\mu^{2g(K) - 1} \lambda = h_\omega g_1 \mu^{-t} \omega \), we have \(h_\omega g_1 \leq_k \mu t^\omega + 1 \).

Let \(\tilde{g_0} = 1, \tilde{g_1}, \ldots, \tilde{g_\nu} = g_1 \) be all suffixes of \(g_1 \), and \(\tilde{h_0}, \tilde{h_1}, \ldots, \tilde{h_\omega} = h_\omega \) be all prefixes of \(h_\omega \), ordered by length. Suppose that \(\tilde{g_i} \) appears \(m_i \) times in \(g_1, g_2, \ldots, g_t \) for each \(0 \leq i < t' \), and \(\tilde{h_i} \) appears \(n_i \) times in \(h_1, h_2, \ldots, h_\omega \) for each \(0 \leq i < \omega' \). Then we have

\[
y_0 = (g_1 \mu g_1^{-1}) (g_2 \mu g_2^{-1}) \cdots (g_t \mu g_t^{-1}) \geq_k (g_1 \mu g_1^{-1}) (\tilde{g_i} \mu \tilde{g_i}^{-1})^{m_i},
\]

and

\[
y_1 = (h_1^{-1} \mu h_1) (h_2^{-1} \mu h_2) \cdots (h_\omega^{-1} \mu h_\omega) \geq_k (h_1^{-1} \mu h_1)^{n_i} (h_\omega^{-1} \mu h_\omega).
\]

For each \(0 \leq i < t' \), we have either \(\tilde{g_{i+1}} = y_0 \tilde{g_i} \) or \(\tilde{g_{i+1}} = x_0 \tilde{g_i} = \mu y_0 \tilde{g_i} \). And for \(i = t' - 1 \), it is necessarily the latter case. So we have

\[\tilde{g_{i+1}} \geq_k y_0 \tilde{g_i} \geq_k (g_1 \mu g_1^{-1}) \tilde{g_i} \mu^{m_i}. \]

By induction, we have

\[\tilde{g_1} = \tilde{g_\nu} = \mu y_0 \tilde{g_\nu - 1} \geq_k \mu g_1 \mu^{t' - 1} \mu^{\sum_{i=0}^{t'-1} m_i}. \]

By symmetry, we have

\[h_\omega \geq_k \mu^{\sum_{i=0}^{t'-1} m_i} h_\omega^{-1} \mu^{\omega'} \mu. \]

Here \(t' \) (resp. \(\omega' \)) is the number of intersection points between \(Q''P \subset \rho \) and \(D_0 \) (resp. \(RQ'' \subset \rho \) and \(D_1 \)), not counting \(P \) and \(R \). And \(\sum_{i=0}^{t'-1} m_i \) (resp. \(\sum_{i=0}^{\omega'-1} n_i \)) is the number of intersection points between \(Q''P \subset \rho \) and \(D_1 \) (resp. \(RQ'' \subset \rho \) and \(D_0 \)). So we have

\[\sum_{i=0}^{t'-1} m_i = \omega - \omega'. \]
and

$$\sum_{i=0}^{\omega'-1} n_i = t - t'. $$

Then we have

$$h_\omega \geq k \mu^{t-t'} h_\omega^{-1} \mu^{\omega'} h_\omega \mu$$

$$\geq k \mu^{t-t'} h_\omega^{-1} \mu^{\omega'} h_\omega.$$

So $h_\omega \geq k \mu^{t-t'+\omega'}$. Because $h_\omega g_1 \leq k \mu^{t+\omega+1}$, we have $g_1 \leq k \mu^{t+\omega'-\omega+1}$. Then we have

$$g_1 \geq k \mu g_1 \mu' g_1^{-1} \mu^{\omega'-\omega'}$$

$$\geq k \mu g_1 \mu^{-1}.$$

Since $g_1 \geq k \mu g_1 \mu^{-1}$, we get $g_1 \mu' g_1^{-1} \geq k \mu'$. So we have

$$g_1 \geq k \mu g_1 \mu' g_1^{-1} \mu^{\omega'-\omega'}$$

$$\geq k \mu^{\omega+t'-\omega'+1}. $$

By symmetry, we have $h_\omega \geq k \mu^{t-t'+\omega'+1}$. By $h_\omega g_1 \leq k \mu^{t+\omega+1}$, we have $\mu \leq k 1$. In other words, the meridian μ is in the root-closed, conjugacy-closed submonoid generated by $\mu^{2g(K)}-1 \lambda$ and μ^{-1}.

Combining Lemma 7 and Lemma 8 we proved Theorem 4. By [17 Theorem 4.1], we proved Theorem 5.

References

[1] John Berge. "The knots in $D^2 \times S^1$ which have nontrivial Dehn surgeries that yield $D^2 \times S^1$.” Topology and its Applications 38.1 (1991): 1-19.

[2] Steven Boyer, Cameron McA Gordon, and Liam Watson. "On L-spaces and left-orderable fundamental groups." Mathematische Annalen 356.4 (2013): 1213-1245.

[3] Katherine Christianson, Justin Goluboff, Linus Hamann, and Srikar Varadaraj. "Non-left-orderable surgeries on twisted torus knots.” Proceedings of the American Mathematical Society 144.6 (2016): 2683-2696.

[4] Adam Clay, and Liam Watson. "Left-orderable fundamental groups and Dehn surgery.” International Mathematics Research Notices 2013.12 (2013): 2862-2890.

[5] Peter R Cromwell. "Homogeneous links.” Journal of the London Mathematical Society 2.3 (1989): 535-552.

[6] David Gabai. "Surgery on knots in solid tori.” Topology 28.1 (1989): 1-6.

[7] David Gabai. "1-bridge braids in solid tori.” Topology and its Applications 37.3 (1990): 221-235.

[8] Hiroshi Goda, Hiroshi Matsuda, and Takayuki Morifuji. "Knot Floer homology of (1,1)-knots.” Geometriae Dedicata 112.1 (2005): 197-214.
[9] Joshua Evan Greene, Sam Lewallen, and Faramarz Vafaee. "(1,1) L-space knots." Compositio Mathematica 154.5 (2018): 918-933.

[10] Matthew Hedden. "On Floer homology and the Berge conjecture on knots admitting lens space surgeries." Transactions of the American Mathematical Society 363.2 (2011): 949-968.

[11] Kazuhiro Ichihara, and Yuki Temma. "Non-left-orderable surgeries and generalized Baumslag-Solitar relators." Journal of Knot Theory and Its Ramifications 24.01 (2015): 1550003.

[12] Kazuhiro Ichihara, and Yuki Temma. "Non-left-orderable surgeries on negatively twisted torus knots." Japan Academy Proceedings Series A: Mathematical Sciences 94.5 (2018): 49-53.

[13] Jinhua Jun. "(-2,3,7)-pretzel knot and Reebless foliation." Topology and its Applications 145.1-3 (2004): 209-232.

[14] Shiyu Liang. "Non-left-orderable surgeries on 1-bridge braids." Journal of Knot Theory and Its Ramifications 29.12 (2020): 2050086.

[15] Yasuharu Nakae. "A good presentation of (-2,3,2s + 1)-type pretzel knot group and R-covered foliation." Journal of Knot Theory and Its Ramifications 22.01 (2013): 1250143.

[16] Zipei Nie. "Left-orderability for surgeries on (-2,3,2s + 1)-pretzel knots." Topology and its Applications 261 (2019): 1-6.

[17] Zipei Nie. "On 1-bridge braids, satellite knots, the manifold v2503 and non-left-orderable surgeries and fillings." arXiv preprint arXiv:2003.14296 (2020).

[18] Peter Ozsváth, and Zoltán Szabó. "Holomorphic disks and genus bounds." Geometry & Topology 8.1 (2004): 311-334.

[19] Peter Ozsváth, and Zoltán Szabó. "Knot Floer homology and rational surgeries." Algebraic & Geometric Topology 11.1 (2010): 1-68.

[20] Jacob Rasmussen. "Knot polynomials and knot homologies." Geometry and topology of manifolds 47 (2005): 261-280.

[21] Jacob Rasmussen, and Sarah Dean Rasmussen. "Floer simple manifolds and L-space intervals." Advances in Mathematics 322 (2017): 738-805.

[22] Anh Tuan Tran. "Left-orderability for surgeries on twisted torus knots." Proceedings of the Japan Academy, Series A, Mathematical Sciences 95.1 (2019): 6-10.

[23] Anh Tuan Tran. "Non-left-orderable surgeries on L-space twisted torus knots." Proceedings of the American Mathematical Society 148.1 (2020): 447-456.

Nine-Chapter Lab, Huawei
E-mail address: nieziipei@huawei.com