Synthesis and biological evaluation of thiosemicarbazone derivatives

Murat Doğan1 · Ümit M. Koçyiğit2 · Meliha Burcu Gürdere3 · Mustafa Ceylan3 · Yakup Budak3

Received: 8 June 2022 / Accepted: 22 June 2022 / Published online: 21 July 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this study, firstly, 22 thiosemicarbazone derivatives (3a-y) were synthesized. Then, ADME parameters, pharmacokinetic properties, drug-like structures, and suitability for medicinal chemistry of these molecules were studied theoretically by using SwissADME and admetSAR programs. According to the results of these theoretical studies, it can be said that the bioavailability and bioactivity of these compounds may be high. In silico molecular docking between ligands (thiosemicarbazone derivatives) and targeted proteins (protein-78 (GRP78) for C6 and quinone reductase-2 (4ZVM for MCF 7) was analyzed using Hex 8.0.0 docking software. According to the docking data, almost all molecules had higher negative E values than Imatinib (already used as a drug). For this, in vitro anticancer studies of these molecules were done. The cytotoxic activities of thiosemicarbazone derivatives (3a-y) were evaluated on C6 glioma and MCF7 breast cancer cell lines at 24 h, and Imatinib was used as the positive control. According to the results of the cytotoxicity assay, it can be said that the five compounds (3b, c, f, g, and m with IC50 = 10.59–9.08 μg/mL; Imatinib IC50 = 11.68 μg/mL) showed more potent cytotoxic activity than Imatinib on C6 cell line. Together with these results, ten compounds (3b, d, f, g, I, k, l, m, n, and r with IC50 = 7.02–9.08 μg/mL; Imatinib IC50 = 9.24 μg/mL) had a more effective cytotoxic activity against MCF7 cell line than Imatinib. Compound 3m showed the highest antiproliferative effect against C6 and MCF7 cell lines.

Keywords Thiosemicarbazone · C6 · MCF 7 · SwissADME · Anticancer · Molecular docking

Introduction
Thiosemicarbazones are compounds obtained by the reaction of thiosemicarbazide with aldehydes and ketones. Due to their biological activities and pharmacological properties, they have been the subject of many studies in recent years. Thiosemicarbazones have important pharmacological properties such as anti-cancer [1, 2], anti-microbial [3], antibacterial [4, 5], anti-fungal [6], enzyme inhibition [7]. Thiosemicarbazones, many of whose compounds have medicinal features, show activity against tuberculosis, leprosy, cancer, bacterial and viral infections, psoriasis, rheumatoid arthritis [8, 9], and malaria. Also, the functional groups and aromatic rings in their structures are very effective in showing the pharmacological effects of thiosemicarbazones [10]. In addition, they have a wide range of physical and electrochemical properties such as potentiometric sensor against many metals. [11–14] Cancer is one of the most difficult diseases in the world and in our country in terms of response to treatment [15]. Cancer is defined as the uncontrolled division, proliferation, and spread of cells in an organism. It can affect a single organ as well as spread to distant organs. Due to the problems experienced in the effectiveness of existing drugs and treatment methods used in cancer treatment and the side-effect profiles that may arise, studies on the synthesis of new molecules that can be effective in treatment have intensified [16, 17].

The aim of this study includes the synthesis, theoretical, and in vitro studies of thiosemicarbazone derivatives that we think have anticancer activity potential in the literature studies. For this purpose, firstly, 22 thiosemicarbazone derivatives were synthesized. Then, ADME parameters, pharmacokinetic properties, drug-like structure, and suitability for medicinal chemistry of these compounds were tried to be explained theoretically by using SwissADME
and admetSAR programs. Also, Hex 8.0.0 docking software was used to examine in silico molecular docking between ligands (thiosemicarbazone derivatives) and targeted proteins (protein-78 (GRP78) for C6 and quinone reductase-2 (4ZVM for MCF 7). Finally, the cytotoxicity of thiosemicarbazone derivatives (3a-y) was tested on C6 and MCF 7 cell lines for 24 h, with Imatinib serving as a positive control. The purpose of cytotoxicity tests is to evaluate and calculate the antiproliferative effects of the synthesized derivatives against cancer cells and compare their effectiveness compared to Imatinib. In addition, it is aimed to determine thiosemicarbazone derivatives that show higher cytotoxic activity than Imatinib in cancer cell lines with cell viability test, and to be beneficial for more comprehensive studies and scientific literature that can be performed in the future. According to the results obtained, compounds with high cytotoxic effects against cancer cells will benefit scientific resources and will be instrumental in the development of new ideas and projects.

Material and methods

General synthetic procedure for thiosemicarbazones (3a-y)

To a solution of benzaldehyde derivatives (1a-y) (0.01 mol) in warm ethanol (30 mL) was added two drops of acetic acid and thiosemicarbazide (2) (0.01 mol) in warm water (30 mL). The reaction mixture was stirred at room temperature for 4 h and monitored by TLC. The precipitate was filtered off and recrystallized from ethanol to afford the target compounds 3a-y.

Determination of drug similarity properties of compounds using Swiss ADME and Admet SAR programs

Today, computer-based calculation methods are used to reduce or eliminate the harm and undesirable effects of chemicals. Before starting preclinical studies, it is possible to make predictions about the pharmacokinetic properties, bioactivity, and drug similarity of the compounds by conducting theoretical studies. While designing a drug molecule, preliminary information about many properties such as water solubility, water carrying capacity, absorption in the gastrointestinal tract, protein affinity, and toxicity can be obtained. As a result of many years of studies on drugs, various drug similarity rules such as Lipinski, MDDR-like, Veber, Ghose filter, BBB, CMC-50-like rules, and Quantification of Drug Similarity (QED) have been established. In this study, the properties of the compounds synthesized using the Swiss ADME and Admet SAR programs will be evaluated by investigating their similarities and superiorities with the standard drug [18–21].

Molecular docking

Hexe 8.0.0 Docking program was used in the calculations [19–22]. The molecular formulas of each of the 22 thiosemicarbazone derivatives (3a-y) selected as Ligands in the program were drawn with the MarvinSketch 21.20 program and stored as a pdb (Protein Date Bank/PDB) file. The pdb file of the receptor proteins (carbonic anhydrase I–II isoenzymes and acetylcholinesterase) was obtained from RCSB PDB (http://www.rcsb.org/pdb). To compare the data obtained, standards currently used as market drugs were used ligands (thiosemicarbazone derivatives) and targeted proteins (protein-78 (GRP78) for C6 and quinone reductase-2 (4ZVM for MCF 7). Receptor and Ligand files were imported in the Hex 8.0 software. Energy of docking (E value) was calculated using Hex 8.0. [22–26].

Cell culture studies

The C6 glioma (ATCC® CCL-107) cell line and the MCF 7 breast cancer (ATCC® HTB-22) cell lines were obtained from ATCC. Penicillin/streptomycin (10,000 U/mL), DMEM, Fetal Bovine Serum (FBS), Trypsin–EDTA solution, and various consumables required for cell culture were used.

Cell culture study and consumables

Cells proliferated in DMEM cell culture medium containing 1% l-glutamine, 1% penicillin–streptomycin, and 10% fetal bovine serum in 25 cm² flasks in an oven at 37 °C and 5% CO₂. Cells were passaged when they reached 80% density and studies were started after a certain passage.

XTT cell viability assay

The effects of the synthesized compounds on the cell viability of C6 and MCF 7 cells were evaluated by applying the XTT (2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) test. This study was carried out by using the method applied by Wolf et al. [27]. Synthesized (thiosemicarbazone derivatives) compounds (3a-y) at determined concentrations were treated in each cell line, and the XTT cell viability test was performed for each cell line. Imatinib was considered a positive control group. XTT method is based on the principle that metabolically active cells convert XTT, a tetrazolium salt, into orange-colored formazan crystals. The resulting dye is water-soluble, and the dye density can be read at certain wavelengths (450 nm) using an ELISA
reading device. The dye intensity in orange is proportional to the number of metabolically active cells. For cytotoxicity experiments, cells were seeded into a 96-well microplate with 10 × 10^3 cells per well in 100 µL of DMEM (containing 10% FBS + 1% antibiotic) medium and incubated overnight for cells to attach. The following day, after removing the medium on the cells and washing the wells with PBS, fresh medium was added to the cells. Samples of compounds (3a-y) at concentrations of 2, 5, 10, 25, and 50 µg/mL were treated with cells and incubated for 24 h. At the end of this period, the medium was removed, and the cells were washed three times with PBS. Then, 100 µL of colorless DMEM and 50 µL of XTT solution were added to each well and incubated for 4 h in a CO2 incubator. After the incubation, the optical density value was read at 450 nm in the microplate reader, the cell viability rate of the control group was accepted as 100% and it was calculated using the formula:

\[
\% \text{ Cell viability} = \left(\frac{\text{Concentration O.D.}}{\text{Control O.D.}} \right) \times 100
\]

According to the results obtained, IC_{50} values of compounds (3a-y) and imatinib were calculated.

Result and discussion

Synthesis thiosemicarbazone derivatives (3a-y)

A series of thiosemicarbazones (3a-y) was reprepared from the reaction of benzaldehydes (1a-y) with thiosemicarbazide (2) in ethanol/water, as a solvent, and a few drops of CH₃COOH at room temperature within 4 h, according to literature, [28–30] as shown in the Scheme 1 (Table 1).

Evaluation of drug similarity properties of compounds

Selected compounds (3a-y) have high gastrointestinal absorption values. Compounds with high absorption also have high bioavailability. According to the results obtained, it was observed that the mentioned compounds cannot cross the blood–brain barrier. In our hypothesis and application, which we determined within the scope of our study, a feature such as the compounds’ crossing the blood–brain barrier was not sought. The compounds are therefore suitable in this respect. In addition, the fact that the compounds do not cross the blood–brain barrier would prevent possible neurotoxicity. PGP substrate properties were not observed in almost any compound (except 3d).

Evaluation of molecular docking results of thiosemicarbazone derivatives (3a-y)

Table 2 shows the binding affinity between the molecules and targeted proteins using Hex 8.0.0 docking software. When the data are examined, it is seen that many molecules have higher negative E values against MCF7 and C6 than standard substance. Also, the highest negative E value against MCF 7 is −339.46 kcal mol⁻¹ with 3i and (E = −308.16 kcalmol⁻¹ for standard substance Imatinib). The highest negative E value against C6 was -352.52 kcal mol⁻¹.
Table 1 Synthesized thiosemicarbazone derivatives (3a-y)

3a	3b	3c	3d	
3e	3f	3g	3h	
3i	3j	3k	3l	
3m	3n	3o	3p	
3r	3s	3t	3u	
3v	3y			

Scheme 2 Radar views of bioactivity for selected molecules

Drug (Imatinib)
Evaluation of antiproliferative activity results of thiosemicarbazone derivatives (3a-y)

The cytotoxic activities of thiosemicarbazone derivatives (3a-y) were evaluated on C6 and MCF 7 cell lines at 24 h and Imatinib was used as a positive control. Antiproliferative activities and IC$_{50}$ values of compounds (3a-y) differ depending on the functional groups they contain and the differences in ring structures. The results clearly show that some compounds show more potent cytotoxic activity than Imatinib in both C6 and MCF 7 cell lines. The IC$_{50}$ values of the positive control Imatinib against C6 and MCF 7 cell lines were calculated as 11.68 ± 0.18 µg/mL and 9.24 ± 0.21 µg/mL, respectively. The IC$_{50}$ values of the compounds (3a-y) on the C6 cell line ranged from 10.59 ± 0.15 µg/mL to 17.65 ± 0.22 µg/mL. When the results were evaluated, we can say that the IC$_{50}$ values of five compounds were lower than Imatinib, so they showed a more effective antiproliferative effect than Imatinib. In addition, the IC$_{50}$ values of the compounds (3a-y) on the MCF 7 cell line were between 7.02 ± 0.14 µg/mL and 10.76 ± 0.22 µg/mL. The thiosemicarbazone derivatives were observed to have significant cytotoxic activity in C6 and MCF 7 cells. Thiophene ring in the structure of 3m and the methoxy group attached to the aromatic ring in the structure of 3b were effective in the high antiproliferative effect of these derivatives. Also, the compounds with the greatest cytotoxic activity in the MCF 7 cell line were 3m (IC$_{50}$: 7.02 ± 0.14 µg/mL) and 3r (IC$_{50}$: 7.08 ± 0.28 µg/mL), respectively. The thiophene ring in the structure of 3m and the pyridine aromatic ring in the structure of 3r ensured that these derivatives showed significant antiproliferative effects. It was observed that the antiproliferative activity of the mentioned derivatives on cell lines was significantly higher than Imatinib. When the results were evaluated in detail, the IC$_{50}$ values of thiosemicarbazone derivatives (3a-y) in the MCF 7 cell line were generally calculated to be lower than the IC$_{50}$ values in the C6 cell line. In this case, it can be said that the synthesized

Table 2

Compounds	E total (kcal mol$^{-1}$)	Compounds	E total (kcal mol$^{-1}$)		
	MCF 7	C6	MCF 7	C6	
3a	−308.15	−311.94	−331.13	−308.97	
3b	−322.48	−341.84	−329.22	−294.47	
3c	−262.91	−308.16	−275.51	−258.07	
3d	−277.99	−247.89	−305.38	−246.84	
3e	−302.69	−209.03	−226.39	−249.58	
3f	−295.73	−211.96	−254.09	−221.86	
3g	−333.88	−352.52	−190.78	−180.71	
3h	−323.76	−242.40	−314.89	−258.07	
3i	−339.46	−303.51	−252.43	−242.89	
3j	−254.15	−221.78	−231.01	−238.97	
3k	−235.80	−233.37	Drug (Imatinib) 3g	−308.16	−349.86
3l	−279.34	−252.74			

with 3g ($E = −349.86$ kcal mol$^{-1}$ for standard substance Imatinib) (Table 2).

Table 3

Samples	C6 IC$_{50}$ (µg/mL)	MCF 7 IC$_{50}$ (µg/mL)
3a	12.02 ± 0.21	9.34 ± 0.16
3b	10.76 ± 0.32	8.88 ± 0.19
3c	11.62 ± 0.21	9.76 ± 0.09
3d	12.84 ± 0.16	9.08 ± 0.24
3e	13.05 ± 0.07	10.22 ± 0.19
3f	11.68 ± 0.17	8.64 ± 0.24
3g	10.98 ± 0.13	8.28 ± 0.14
3h	13.65 ± 0.22	9.94 ± 0.27
3i	11.73 ± 0.14	7.96 ± 0.09
3j	13.56 ± 0.21	9.32 ± 0.15
3k	12.25 ± 0.12	8.64 ± 0.24
3l	14.84 ± 0.32	7.78 ± 0.18
3m	10.59 ± 0.15	7.02 ± 0.14
3n	12.22 ± 0.19	7.32 ± 0.31
3o	14.36 ± 0.13	10.57 ± 0.14
3p	14.78 ± 0.27	10.75 ± 0.44
3r	15.65 ± 0.23	7.08 ± 0.28
3s	12.65 ± 0.13	9.75 ± 0.21
3t	17.65 ± 0.22	10.76 ± 0.26
3u	13.65 ± 0.22	10.22 ± 0.25
3v	13.65 ± 0.22	11.38 ± 0.08
3y	12.64 ± 0.18	9.96 ± 0.15
Imatinib	11.68 ± 0.18	9.24 ± 0.21
compounds (3a−y) are more effective in MCF 7 cells and show better cytotoxic activity, and inhibit the proliferation of the cells more.

Conclusions

In this study, firstly, 22 thiosemicarbazone derivatives (3a−y) were synthesized. It was observed that the compounds fit Lipinski, Ghose, Veber, Egan, Muagge quarals in the calculations made with the SwissADME program. Thanks to the generally good water-soluble properties of the compounds, their dissolution, absorption, and distribution in tissue fluids and blood will be more effective and higher. Thus, it can be said that the bioavailability and bioactivity of the compounds may be high. In the in vitro culture study, the effects of derivatives and imatinib synthesized in C6 and MCF 7 cell lines on cell proliferation were investigated and calculated. When the results were evaluated, it was observed that the synthesized derivatives showed a cytotoxic effect on cancer cells and decreased cell viability as desired. Especially 3m, 3b and 3r thiosemicarbazone derivatives showed the highest cytotoxic activity in C6 and MCF 7 cells. It can be said that the chemical groups or rings in the structures of these synthesized derivatives have positive effects on their antiproliferative effects. As a result, it can be said that thiosemicarbazone derivatives can be effective compounds in terms of their stated properties, according to the data obtained from both SwissADME evaluations and in vitro cell culture studies.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12032-022-01784-y.

Acknowledgements This work is supported by the Scientific Research Project Fund of Sivas Cumhuriyet University under the project number SHMYO-013 and Scientific Research Projects Commission of Tokat Gaziosmanpasa University (Project Number: 2019/54).

Declarations

Conflict of interest The authors declare that there are no conflicts of interest.

References

1. Hu K, Yang Z, Pan S-S, et al. Synthesis and antitumor activity of liquiritigenin thiosemicarbazone derivatives. Eur J Med Chem. 2010;45:3453−8.
2. Gürdere MB, Kamo E, Budak Y, et al. Synthesis and anticancer and cytotoxic effects of novel 1,4-phenylene-bis-N-thiosemicarbazoylpyrazole and 1,4-phenylene-bis-pyrazolylthiazole derivatives. Turk J Chem. 2017;41:179−89.
3. Joseph M, Kuriakose M, Kurup MRP, et al. Structural, antimicrobial, and spectral studies of copper (II) complexes of 2-benzoylpyridine N (4)-phenyl thiosemicarbazone. Polyhedron. 2006;25:61−70.
4. Gupta RP, Narayana NL. Synthesis of some Mannich bases of 1-cyclohexylidene-N(1,2-dihydro-2-oxo-3H-indol-3- ylidene) thiosemicarbazones and their antibacterial activity. Pharm Acta Helv. 1997;72:43−5.
5. Budak Y, Koçyiğit UM, Gürderee MB, et al. Synthesis and investigation of antibacterial activities and carbonic anhydrase and acetyl cholinesterase inhibition profiles of novel 4,5-dihydro-pyrazol and pyrazolyl-thiazole derivatives containing metha-noisindol-1,3-dion unit. Synth Commun. 2017;47:2313−23.
6. Khan SA, Asiri AMAA, Khan KA, et al. Synthesis of novel Schiff bases by microwave irradiation and their in vitro antibacterial activity. Asian J Chem. 2013;25:8643−6.
7. Hashmi S, Khan S, Shafig Z, et al. Probing 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones as multi-target directed ligands against cholinesterases, carbonic anhydrases and α-glycosidase enzymes. Bioorg Chem. 2021;107:104554.
8. Zamble AP, Kulkarni VM, Padhye S, et al. Novel curcumin analogs targeting TNF-α induced NF-κB activation and proliferation in human leukemic KBM-5 cells. Bioorg Med Chem. 2006;14:7196−204.
9. Pavan FR, da Maia SP, Leite SRA, et al. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti—mycobacterium tuberculosis activity and cytotoxicity. Eur J Med Chem. 2010;45:1898−905.
10. Denny WA. Prodrug strategies in cancer therapy. Eur J Med Chem. 2001;36:577−95.
11. Huseynova M, Taslimi P, Medjidov A, et al. Synthesis, characterization, crystal structure, electrochemical studies and biological evaluation of metal complexes with thiosemicarbazone of glyoxylic acid. Polyhedron. 2018;2018(155):25−33.
12. Ozbek O, Isildak O, Gürderee MB, et al. Cadmium (II)-selective potentiometric sensor based on synthesised (E)-2-benzylidene-hydrazinecarbothioamide for the determination of Cd2+ in different environmental samples. Int J Environ Anal Chem. 2020. https://doi.org/10.1080/03067319.2020.1817427.
13. Isildak Ö, Özbek O, Gürderee MB. Development of chromium(III)-selective potentiometric sensor by using synthesized pyrazole derivative as an ionophore in PVC matrix and its applications. J Anal Test. 2020;4:273−80.
14. Özbek O. A novel potentiometric sensor for the determination of Pb(II) ions based on a carbothioamide derivative in PVC matrix. J Turk Chem Soc Sect A. 2022;9(3):651−62.
15. DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics. CA Cancer J Clin. 2014;64:252−71.
16. Fitzmaurice C, Dicker D, Pain A, et al. The global burden of cancer 2013. JAMA Oncol. 2015;1(4):505−27.
17. Pavlopoulou A, Spandidos DA, Michalopoulos I. Human cancer databases (review). Oncol Rep. 2015;33(1):3−18.
18. Ritchie DW. Evaluation of protein docking predictions using Hex 3.1 in CAPRI Rounds 1 and 2. Proteins Struct Funct Genet. 2003;52(1):98−106.
19. Ghoorah AW, Smail-Tabbone M, Devignes MD, et al. Protein docking using case-based reasoning. Proteins Struct Funct Genet. 2015;81:2150−8.
20. Ritchie DW. Recent progress and future directions in protein−protein docking. Curr Prot Pep Sci. 2008;9(1):1−15.
21. Macindoe G, Mavridis L, Venkatraman V, et al. HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res. 2010;38:W445−9.
22. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
23. Yang H, Lou C, Sun L, et al. AdmetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2018;35(6):1067–9.
24. Yang H, Lou C, Sun L, et al. AdmetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067–9.
25. Cheng F, Li W, Zhou Y, et al. AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52(11):3099–105.
26. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.
27. Wolf NB, Kuchler S, Radowski MR, et al. Influences of opioids and nanoparticles on in vitro wound healing models. Eur J Pharm Biopharm. 2009;73:34–42.
28. da Silva SJ, de Melos LRJ, Lima GS, et al. Synthesis, anti-Trypanosoma cruzi activity and quantitative structure relationships of some fluorinated thiosemicarbazones. J Fluor Chem. 2017;195:31–6.
29. Matsaa R, Makamb P, Kaushikc M, et al. Thiosemicarbazone derivatives: Design, synthesis and in vitro antimalarial activity studies. Eur J Pharm Sci. 2019;137:104986.
30. Sardari S, Feizi S, Rezayan AH, et al. Synthesis and biological evaluation of thiosemicarbazide derivatives endowed with high activity toward Mycobacterium Bovis. Iran J Pharm Sci. 2017;16(3):1128–40.
31. Yakan H, Koçyiğit UM, Muğlu H, et al. Potential thiosemicarbazone-based enzyme inhibitors: assessment of antiproliferative activity, metabolic enzyme inhibition properties, and molecular docking calculations. J Biochem Mol Toxicol. 2022;36(5):e23018.
32. Koçyiğit UM, Doğan M, Muğlu H, et al. Determination of biological studies and molecular docking calculations of isatin-thiosemicarbazone hybrid compounds. J Mol Struct. 2022;1264:133249.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.