Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections

C. Prudhomme\(^1\) and J. Williamson\(^1\,*\)

Supplementary material

Sect. 1: PET methods and associated equations (for daily estimates)

PET method	Equation
FAO56 (Allen et al., 1998)	\[
PE_{\text{mm day}^{-1}} = \frac{\lambda^{-1}\Delta(R_n - G) + \gamma \frac{900}{T + 273} U_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34U_2)}	
\]	
Penman-Monteith (modified) (Kay et al., 2003)	\[
PE_{\text{mm day}^{-1}} = \frac{1}{\lambda} \frac{\Delta R_n}{\Delta + \gamma(1 + r_v/r_a)}	
\]	
Priestley-Taylor (Priestley and Taylor, 1972)	\[
PE_{\text{mm day}^{-1}} = \frac{1}{\lambda} \frac{\Delta}{\Delta + \gamma} (R_n - G)	
\]	
Turc (Turc, 1961)	\[
PE_{\text{mm day}^{-1}} = 0.31 \frac{T}{T + 15} (R_m + 2.09) \left(1 + \frac{50 - RH}{70}\right)	
\] for RH < 50%	
\[
PE_{\text{mm day}^{-1}} = 0.31 \frac{T}{T + 15} (R_m + 2.09)	
\] for RH > 50%	
Jensen-Haise (Jensen et al., 1990)	\[
PE_{\text{mm day}^{-1}} = \frac{1}{\lambda} 0.025(T + 3)R_{e}	
\]	
Makkink (Jacobs et al., 2009)	\[
PE_{\text{mm day}^{-1}} = \frac{1}{\lambda} \frac{R_n}{R_{e}} \frac{\Delta}{\Delta + \gamma} R_{e}	
\]	
Priestley-Taylor Idso-Jackson (Shuttleworth, 1993)	\[
PE_{\text{mm day}^{-1}} = \frac{1}{\lambda} \frac{\Delta}{\Delta + \gamma} \left(1 - \alpha\right) \left(0.25 + 0.5 \frac{n}{N} S_0 - \left(0.9 \frac{n}{N} + 0.1\right)(-0.02 + 0.26 \exp(-7.7 \times 10^{-4}T^2)) \sigma T^4\right)
\] |
Hamon

\(\text{PE}[\text{mm day}^{-1}] = \left(\frac{N}{12} \right)^2 \exp \left(\frac{T}{16} \right) \)

McGuinness-Bordne

\(\text{PE}[\text{mm day}^{-1}] = \frac{1}{\lambda} S_0 \left(\frac{T + 5}{68} \right) \)

Oudin

\[
\begin{align*}
\text{PE}[\text{mm day}^{-1}] &= \frac{1}{\lambda} S_0 \left(\frac{T + 5}{100} \right) \quad \text{if } T > -5^\circ \text{C} \\
\text{PE}[\text{mm day}^{-1}] &= 0 \quad \text{if } T \leq -5^\circ \text{C}
\end{align*}
\]

Blaney-Criddle

\(\text{PE}[\text{mm day}^{-1}] = k T p_d \) with \(p_d = 100 \frac{N_d}{\sum_{i=1}^{N} n_i} \)

Thornthwaite

\(\text{PE}' = 16 \left(\frac{10T}{1} \right)^2 \)

\[
a = 0.49239 + 0.01792 I - 7.71 \times 10^{-5} I^2 + 6.75 \times 10^{-7} I^3
\]

\(\text{PE}[\text{mm month}^{-1}] = \text{PE}' \frac{N_m D_m}{12 \times 30} \)
Sect. 2: Notations and used values of meteorological variables

Values used in the PET calculations calculated from meteorological inputs and the equations used to calculate them

Symbol	Variable name	Units	Description	Formula
δ	Solar declination	radians	Angle between rays of the sun and the plane of the earth’s equator.	$\delta = 0.4093 \sin \left(\frac{2\pi}{365} (J - 1.405) \right)$
				With J Julian day number
				Note that MORECS uses a different equation: $\delta = 0.41 \cos \left(\frac{2\pi(J-172)}{365} \right)$
C_p	Specific heat at constant	MJ kg$^{-1}$°C$^{-1}$	Amount of heat required to change a unit mass of a substance by one degree in temperature.	
	pressure (for water)			$C_p = \gamma \epsilon \lambda$
				With γ in KPa$^{-1}$ λ in MJ kg$^{-1}$ P in KPa
				Note this is a re-arrangement of the equation of the Psychrometric constant
d_r	Relative earth-sun distance		Distance between earth and sun varies through the year due to the ellipse orbit of the earth around the sun.	
				$d_r = 1 + 0.033 \cos \left(\frac{2\pi}{365} J \right)$
ω_s	Sunset hour angle	radians	Angle by which the ray of the sun reaches the earth’s surface.	$\omega_s = \arccos \left(-\tan \Phi \tan \delta \right)$
				With Φ latitude (+ is north, - is south)
N	Maximum possible daylight	hours	Length of the period when the rays of the sun reach the earth’s surface.	$N = \frac{24 \omega_s}{\pi}$
	length			Note that MORECS uses a different equation: $N = 24 - 2 \frac{12}{\pi} \arccos \left(\tan \delta \tan \phi + 0.0145 \cos \phi \sin \phi \right)$
e_s	Saturated water vapour	kPa	Equilibrium of rates of vapourisation and condensation for a given temperature that occurs at particular vapour pressure, the saturated vapour pressure.	
	pressure			$e_s = 0.6108 e \left(\frac{17.27}{T} \right)$
				With T temperature in °C
e_s	Actual water vapour pressure	kPa	Actual water vapour pressure at dew point.	$e_s = 0.6108 e \left(\frac{17.27}{T_d} \right)$
				With T_d temperature at dew point, °C
Δ	Gradient of vapour	kPa°C$^{-1}$	Gradient of vapour pressure curve is the slope of the non linear relationship between pressure and temperature.	
	pressure curve			$\Delta = \frac{4098 e_s}{\left(237.3 + T \right)^2}$
λ	Latent heat of	MJ kg$^{-1}$	Amount of energy needed for water to be	$\lambda = 2.501 - 0.002361 T$
Symbol	Variable name	Units	Description	Formula
--------	------------------------	----------------	--	---
v	vaporisation		transformed from a liquid to a gas, approximated as $\lambda=2.45 \text{ MJkg}^{-1}$.	With T as 20°C
P	Atmospheric pressure	kPa	The change of pressure due to altitude	$P = 101.3 \left(\frac{293 - 0.0065z}{293}\right)^{5.26}$ With z elevation above sea level
ρ_a	Mean air density	Kgm$^{-3}$	The mass of air per unit volume. It depends on the atmospheric pressure P and temperature T	$\rho_a = \frac{P}{T_v R}$ With T_v the virtual temperature: $T_v = 1.01(T + 273) \text{ °K (T in °C)}$ and R specific gas constant for dry air ($=0.287 \text{ kJkg}^{-1}\text{ °K}^{-1}$)
RH	Relative humidity	%	Amount of water the air can hold at a certain temperature. In other words the percentage ratio of actual vapour pressure to saturated vapour pressure.	$\text{RH} = 100 \frac{e_a}{e_s}$
f	Cloudiness factor	[-]	Amount of cloud cover in the atmosphere, related to number of bright sunshine hours in a day. Different coefficients can be used for humid and arid areas. Using the longwave coefficients for arid areas a simplified version of the formula can be derived. A second expression is given by Jensen 1990. In this formula the cloudiness factor is expressed as the effect of clouds on short-wave global radiation. The simplified version is the one used in this paper.	Shuttleworth, 1993 $f = \left(\frac{a_c b_s}{a_s + b_s}\right) \frac{n}{N} + \left(\frac{b_c}{a_s + b_s}\right) a_s$ With: n as bright sunshine hours (h), a_s is fraction of extraterrestrial radiation (S_0) for $n=0$, $a_s + b_s$ is fraction of extraterrestrial radiation for $n>0$, a_s and b_s are long wave coefficients for clear skies. N is the maximum possible daylight hours Simplified version (Allen et al., 1998) $f = 0.9 \frac{n}{N} + 0.1$ Jensen, 1990 $f = a_s \frac{R_s}{S_0} + b_c$ With R_s solar (short-wave) radiation (MJ m$^{-2}$day$^{-1}$)
G	Soil heat flux	MJm$^{-2}$month$^{-1}$	Energy that moves from the surface to subsurface soil by conduction, depends on	Monthly formulation (Shuttleworth, 1993)
Symbol	Variable name	Units	Description	Formula
--------	---------------	-------	-------------	---------
G	soil temperature fluctuations			$G = 0.14(T_{\text{month2}} - T_{\text{month1}})$
γ	Psychrometric constant (for water)	KPa°C⁻¹	Describes the thermodynamic properties of moist air at a constant pressure. Relates the partial pressure of water in the air to the air temperature	$γ = \frac{c_p P}{ελ}$
With c_p, specific heat of moist air				
$c_p = 1.013 \times 10^{-3}$ MJ/kg°C⁻¹				
P, atmospheric pressure				
$ε$, ratio of molecular weight of water vapour to that of dry air:				
$ε = 0.622$				
S₀	Extraterrestrial radiation	MJmm⁻²day⁻¹	The amount of solar energy that reaches the top of the atmosphere. Depends on angle of sun radiation and length of day.	$S₀ = 37.62d_ω(ω_σ\sin\phi\sinδ + \cosφ\cosδ\sinω_x)$
Shuttleworth, 1993				
Rₛ	Solar radiation	MJm²day⁻¹	Amount of energy measured at the earth’s surface including direct and diffuse short-wave radiation	Generalised form (Jensen et al., 1990)
$R_s = S_0(a_σ + b_σ\frac{n}{N})$				
Here $a_σ = 0.25$ and $b_σ = 0.50$				
Rₙₛ	Net solar radiation	MJm²day⁻¹	That part of the incident short wave radiation that is captured at the ground (reflection losses are taken into account), in other words, the absorbed incoming solar radiation.	Shuttleworth, 1993
$R_{ns} = (1 − α)R_s$				
With $α$, albedo				
Rₙₙ	Net long-wave radiation	MJm²day⁻¹	Incoming (atmosphere to ground) minus outgoing (ground to atmosphere) long-wave radiation	$R_{nl} = ε'αT^4$
With $ε'$, net emissivity between atmosphere and ground (given for average conditions):				
$ε' = 0.34 − 0.139\sqrt{ε_x}$				
$σ$, Stefan-Boltzmann constant:				
$σ = 4.903 \times 10^{-8}$ MJK⁻¹m⁻²day⁻¹				
T, mean air temperature in °K				
Rₙ	Net radiation	MJm²/day	Difference between the net solar radiation and the long-wave radiation	$R_n = R_{ns} − R_{nl}$
Maps of mean MORECS PET and PET derived from HadRM3-Q0 for the 1961-1990 period.
August

Baseline

FAO56
Panman-Monteith (mod)
Priestley-Taylor
Turc

Jensen-Haise
Makkink
Priestley-Taylor / HttpSession
Hann

McGuinness-Bodine
Cudini
Blaney-Criddle
Thornthwaite

MORECS

Potential evapotranspiration (mm/month)
Potential evapotranspiration (mm/month)
PET percentage change between averages values calculated for the 1961-1990 and 2040-2069 time slices from HadRM3-Q0
Potential evapotranspiration changes (%)
