Despite increased awareness and advances in pain management strategies, poorly controlled postoperative pain continues to be an unresolved issue. Available treatments for postoperative pain relief are limited by varying efficacy and dose-limiting adverse effects, leaving a significant unmet need for patients [5]. Opioids continue to be the mainstay of postoperative pain management despite their well-known side effects and risks of abuse, misuse, and addiction [5]. Known regional anesthetic techniques have been shown to be an effective part of multimodal analgesia for many surgical procedures but are unfortunately limited by their short duration of action [6]. Additionally, continuous peripheral nerve blocks are limited by their infection risk, catheter dislocation, and pump malfunction [7].

A promising alternative postoperative pain treatment option is cryoanalgesia. Treatment with cryoanalgesia involves cooling specific nerves to reversibly inhibit peripheral nerve function, with subsequent pain relief potentially lasting weeks to months [8]. This typically involves the use of a needle or cryoprobe at very low temperatures for contact cooling of a selected peripheral nerve (Fig. 1) [9]. Application...
temperatures vary but must achieve at least \(-20^\circ\text{C}\) and must not exceed \(-100^\circ\text{C}\) to be effective and safe [10]. If a nerve is successfully cooled to a temperature in this range, the duration of analgesia is dependent primarily on the length of the lesion [10]. As with temperature, there is variation in the literature with regard to the preferred number and timing of freeze-thaw cycles. Relative contraindications to cryoanalgesia include diabetes mellitus, cold urticaria, cryoglobulinemia, and Raynaud’s disease [10–14].

Cryoanalgesia has been frequently used to treat a variety of chronic pain conditions using ultrasound-guided cryoprobe insertion [14]. However, as an opioid-sparing therapy with a prolonged duration of action, cryoanalgesia may offer another potential option for postoperative pain management [15]. Thus, we conducted a systematic review and meta-analysis to assess current evidence of efficacy and safety of cryoanalgesia for the management of postoperative pain.

2. Methods

We established a protocol prior to the review process that included the review question, search strategy, study selection and analysis. The review protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (registration number CRD42020195702) and prepared in accordance with recommendations specified in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [16] and AMSTAR (Assessing the methodological quality of systematic reviews) Guidelines. The completed PRISMA and AMSTAR checklist is provided in Appendix A.

2.1. Data sources

We searched MEDLINE, EMBASE and Cochrane databases from their inception until July 2020. The search strategy included terms related to cryoanalgesia, postoperative pain, and surgery, and excluded studies that were not published in English, as we did not have the capability to translate studies from all non-English publications. As an example, the search strategy for MEDLINE is shown in Appendix B. Bibliographies of relevant reviews and selected studies were also examined to identify additional published or unpublished data.

2.2. Study selection

Two reviewers (R.P. and M.C.) independently and in duplicate evaluated studies for eligibility. Screening was performed on titles and abstracts using Covidence software (www.covidence.org). We excluded studies that clearly did not satisfy the inclusion criteria, and full-text screening was performed on citations thought to be potentially eligible. Disagreements between the reviewers were resolved by discussion and consensus. If necessary, a third reviewer (H.S.) was consulted.

2.2.1. Studies

We included randomized controlled trials (RCTs) that evaluated the use of cryoanalgesia for postoperative pain. RCTs form level 1 evidence and with an intervention such as cryoanalgesia, there is a higher potential for performance and observer bias, so we did not consider including observational studies. Studies investigating any type of surgical procedure were eligible for inclusion in this review.

2.2.2. Participants

We included studies with adults (aged 18 years and over) undergoing any type of surgery.

2.2.3. Interventions

We included studies that administered cryoanalgesia during the perioperative period for the management of postoperative pain. We excluded interventions labelled as ‘cryoanalgesia’ that did not use a cryoprobe.

2.3. Data extraction

Data from selected studies were extracted in duplicate in using standardized extraction forms after checking for consistency between two reviewers (R.P. and M.C.). The forms captured information regarding the type of surgeries the participants underwent, details of cryoanalgesia therapy, participant characteristics, risk of bias domains as per Cochrane risk of bias instrument, and our primary and secondary outcome measures.

2.4. Outcomes

2.4.1. Primary outcomes

Our primary outcome was postoperative pain relief in terms of either 1) pain intensity, or 2) the use of postoperative opioids and rescue analgesics. Pain intensity and use of postoperative opioids and rescue analgesics were extracted for all time points.

2.4.2. Secondary outcomes

Secondary outcomes included duration of cryoanalgesia blockade and participants experiencing any adverse event (e.g., opioid-related side effects, postoperative nausea and vomiting, nerve injury, etc.). We also extracted information on whether pain was measured at rest, with movement, or if it was not specified.

2.5. Data analyses

Extracted data were compiled in Microsoft Excel for analysis. Data were pooled if there were two or more studies contributing to an outcome domain. For pooling, we considered the most common duration of follow-up period for acute pain (7 days or less) and persistent pain (1 month and longer). Continuous scores used to express pain relief were converted to 0–10 numerical rating scores, as it is commonly used and easy to interpret [17]. Analysis was performed using Review Manager (RevMan) [Computer Program], Version 5.3, Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration, 2014. If we did not observe much study variance based on study population, interventions, and comparators, a fixed effects model was considered for pooling. Otherwise, we utilized a random effects model for pooling. We calculated the risk ratio for dichotomous outcomes and mean difference (MD) or standardized MD for continuous outcomes, as appropriate, along with the associated 95% confidence intervals (CI). To capture outcomes for which there was a paucity of data or it was inappropriate to combine studies, a narrative synthesis approach in the form of a table was utilized. The findings were organized based on surgical procedure...
and intervention/comparator(s). We assessed statistical heterogeneity using the I^2 statistic.

2.6. Risk of bias assessment

Risk of bias for included RCTs was assessed using criteria outlined in the Cochrane Handbook for Systematic Review of Interventions [18]. We assessed the following for each study: 1) random sequence generation for possible selection bias; 2) allocation concealment for possible selection bias; 3) blinding of participants and personnel for possible performance bias; 4) blinding of outcome assessment for possible detection bias; 5) incomplete outcome data for possible attrition bias; and 6) selective reporting for possible reporting bias.

3. Results

Our search yielded 128 citations and after removal of duplications 53 studies were considered for full-text review. After reading the full articles for these 53 studies, we excluded 29 studies (Appendix C). No additional studies were identified in reference lists of included studies. We show our selection process in Fig. 2. Twenty-four RCTs fulfilled the inclusion criteria and were included in qualitative synthesis. Four studies were included in quantitative synthesis as they were compatible across interventions, comparators, and outcome measures.

3.1. Study characteristics

The characteristics of included studies, including the study population, intervention, and comparator, are reported in Table 1. Of the 24 trials, 20 were for thoracic surgeries, two for herniorrhaphy [19,20], one for nephrectomy [21] and one for tonsillectomy [22]. Interventions included cryoanalgesia alone [23], cryoanalgesia with opioid analgesia [19–22,24–40], or cryoanalgesia with epidural and opioid analgesia [41,42]. These combinations are described for each study in Table 1. Cryoanalgesia was administered intraoperatively in all studies. Comparators included epidural analgesia [33–36,40–42], intercostal nerve blocks [37–39], opioid analgesia only [19–22,25–32], nonopioid analgesia only [23], and non-divided intercostal muscle flap [24]. Only one study reported using a sham cryoanalgesia treatment in the comparator arm [19]. Fourteen studies did not report whether pain scores were at rest or with movement [22–25,27,29–31,33–35,37,39,40]. Narcotic use was reported predominantly in terms of analgesic consumption and frequency of use.

3.2. Risk of bias within studies

The results of each individual risk of bias domain are presented as a risk of bias graph in Fig. 3a, and a risk of bias summary in Fig. 3b. Overall, many studies reported insufficient information to confidently assess risk of bias across multiple domains, which may be a consequence of the relatively older publication dates of many included studies. Eighteen of the 24 studies were published during or before 2010, when CONSORT guidelines were RCTs were first published. Thus, most studies were judged to be at an unclear risk of bias for most domains. Of note, with the exception of one study [19], no study reported whether they used a sham treatment in the comparator arm, or if the personnel administering the cryoprobe and participants were blinded. Therefore, all of these studies were judged to be at a high risk of bias for blinding of participants and personnel.

![Fig. 2. Study flow diagram.](image-url)
3.3. Primary outcome – qualitative synthesis

The main results of pain outcomes from included studies are summarized in Table 2. Thirteen [22,23,25,27–29,31,32,37–41] of the 24 included studies predominantly favored cryoanalgesia with regard to our primary outcome of postoperative pain relief in terms of postoperative pain intensity and opioid use. Among studies with mixed adults and children, Robinson and Purdie (2000) [22] found that acute pain scores were significantly lower in the cryoanalgesia group compared with the opioid analgesia group for participants who underwent tonsillectomy. Graves et al. [40] showed no difference in acute and chronic pain scores between thoracic epidural and cryoanalgesia when used during the Nuss procedure, but showed a significant reduction in oral opioid requirements among the cryoanalgesia group when compared to cryoanalgesia group, and another [36] found that fewer participants reported chronic pain in the epidural group compared to the cryoanalgesia group. The last study [34] showed no significant difference in primary outcomes between patients receiving cryoanalgesia compared with epidural for thoracotomy.

3.3.1. Cryoanalgesia versus intercostal nerve block

All three thoracotomy studies comparing cryoanalgesia to the intercostal nerve block showed a significant reduction in opioid use among the cryoanalgesia group when compared to intercostal nerve block [37–39].

3.3.2. Cryoanalgesia (with or without opioid analgesia) versus opioid analgesia

Six of eight thoracotomy studies comparing cryoanalgesia (with or without opioid analgesia) to opioid analgesia favored the cryoanalgesia group in terms of postoperative pain intensity, opioid use, or both [25, 27–29,31,32]. These six studies [25,27–29,31,32] also demonstrated lower acute pain scores in patients receiving cryoanalgesia compared to those receiving opioid analgesia. Three of these studies [27–29] also demonstrated lower in chronic pain scores in the cryoanalgesia group. Five studies [25,27–29,31] all showed reduced opioid consumption among the cryoanalgesia group. The remaining two thoracotomy studies [26,30], which compared cryoanalgesia to opioid, found no significant difference between treatments with respect to the primary outcomes.

Table 1

Author, Year	Population	Procedure	Procedure Application Location	Cryoanalgesia Concurrent Analgesia	Comparator	Trial Size (Cryoanalgesia, Comparator)
Birchon [33], 1994	Parenchymal disease	Thoracotomy	IC nerves	OA, NOA	TE, OA, NOA	41, 33
Ju [36], 2008	Lung or esophageal disease	Thoracotomy	IC nerves	OA	TE, OA	53, 54
Yang [41], 2004	Malignant disease	Thoracotomy	IC nerves	OA, NOA	TE, OA, NOA	45, 45
Mustola [52], 2011	Infection or tumor	Thoracotomy	IC nerves	NOA	TE, OA, NOA	21, 21
Momennazadeh [23], 2011	Unspecified	Thoracotomy	IC nerves	OA	OA	30, 30
Ma [29], 2009	Unspecified	Thoracotomy	IC nerves	OA	OA	60, 60
Katz [37], 1980	Unspecified	Thoracotomy	IC nerves	OA	OA	15, 9
Keenan [32], 1983	Unspecified	Thoracotomy	IC nerves	OA	OA	15, 15
Muller [30], 2001	Multiple disease	Thoracotomy	IC nerves	OA	OA	30, 30
Miguel [35], 1987	Malignant disease	Thoracotomy	IC nerves	OA	OA	11, 44
Moolani [27], 2001	Unspecified	Thoracotomy	IC nerves	OA	OA	100, 100
Jueck [38], 1987	Lung cancer	Thoracotomy	IC nerves	OA	OA	15, 15
Ba [23], 2014	Lung cancer	Thoracotomy	IC nerves	None	NOA	87, 91
Pastor [31], 1996	Varied	Thoracotomy	IC nerves	OA, NOA	OA, NOA	55, 45
Roberts [39], 1998	Unspecified	Thoracotomy	IC nerves	OA	OA	71, 73
Roxburgh [34], 1987	Unspecified	Thoracotomy	IC nerves	OA, NOA	LE, OA, NOA	23, 30
Gwak [26], 2004	Lung cancer	Thoracotomy	IC nerves	OA	OA	25, 25
Sepas [28], 2013	Lung cancer	Thoracotomy	IC nerves	OA, NOA	OA, NOA	25, 25
Lu [24], 2013	Esophageal disease	Thoracotomy	IC nerves	OA, NOA	NOA	94, 92
Callesen [19], 1998	48 male patients with inguinal hernia	Herniorrhaphy	Iliinguinal and iliobypagmatic nerves	OA, NOA	OA, NOA	24, 24
Khirotya [20], 1986	Inguinal hernia	Herniorrhaphy	Liiinguinal nerve	OA, NOA	OA, NOA	36 total
Ahmadnia [21], 2010	Kidney donors	Nephrectomy	11th IC nerve	OA	OA	15, 15
Robinson [22], 2000	Adults and children with recurrent tonsilitis	Tonsillectomy	Tonsillar fossa after tonsillectomy	OA, NOA	OA, NOA	29, 28
Graves [40], 2019	Adults and children with pectus excavatum	Nuss Procedure	IC nerves	OA, NOA	TE, OA, NOA	10, 10

IC: Intercostal; OA: Opioid analgesia; NOA: Non-opioid analgesia; TE: Thoracic epidural; INB: Intercostal nerve block; LE: Lumbar Epidural; NDIMF: Non-divided intercostal muscle flap.

3.3.3. Cryoanalgesia versus epidural

Four thoracotomy studies that evaluated the efficacy of cryoanalgesia of intercostal nerves versus epidural for postoperative pain relief seemed to generally favor epidural [33–36]. Two studies [33,35] showed significantly lower acute pain scores in the epidural group compared to cryoanalgesia group, and another [36] found that fewer participants reported chronic pain in the epidural group compared to the cryoanalgesia group. The last study [34] showed no significant difference in primary outcomes between patients receiving cryoanalgesia compared with epidural for thoracotomy.
3.3.4. Cryoanalgesia plus epidural versus epidural alone

Two thoracotomy studies that evaluated the efficacy of cryoanalgesia combined with epidural versus epidural alone showed mixed results [41, 42]. Mustola 2011 [42] found significantly lower acute pain scores for epidural alone compared to combination therapy, and found no difference in opioid requirements between groups. Yang 2004 [41] found significantly lower acute pain scores and opioid use in combination therapy compared to epidural alone; however, incidence and severity of post-thoracotomy chronic pain was higher in the combination therapy group.

Fig. 3. Risk of bias. (a) Risk of bias graph: review authors’ judgement about each risk of bias item presented as percentages across all included studies; (b) Risk of bias summary: review authors’ judgement about each risk of bias item for each included study.
Table 2
Main results of pain outcomes from included trials of cryoanalgesia for postoperative pain.

Author, year	Procedure	Comparator	Pain outcome measures	Pain measured at rest, with movement, or not specified?	Follow-up time	Pain outcomes (s)
Brichon [33], 1994	Thoracotomy	TE, OA, NOA (Group B)	VAS	Not specified	Days 1–12	Patients in the epidural group had better pain relief than the cryoanalgesia group on POD 1 and 2.
Ju [36], 2008	Thoracotomy	TE, OA	NRS, chronic pain incidence	Rest and movement	Days 1–3, Months 1, 3, 6, 12	No significant difference for acute pain. Fewer patients in the epidural group reported moderate or severe chronic pain on POM 6. Patients who received cryoanalgesia with epidural had less pain on movement than epidural alone on POD 7. Incidence and severity of post-thoracotomy chronic pain at POM3 was worse at rest in the cryoanalgesia and epidural group than in the epidural alone group.
Yang [41], 2004	Thoracotomy	TE, OA, NOA	VAS, NRS, chronic pain incidence	Rest and movement	Days 1–7, Months 1, 3, 6	No significant difference.
Mustola [42], 2011	Thoracotomy	TE, OA, NOA	VAS, VPS	Rest and movement	Days 1–7, Months 1, 2, 6	No significant difference.
Momenzaadeh [25], 2011	Thoracotomy	OA	VAS	Not specified	Days 1–7	Patients who received cryoanalgesia had significantly less pain than the control group on POD 1–7.
Ma [29], 2009	Thoracotomy	OA	VAS	Not specified	Days 1, 3, 5, 9, Months 1–3, 6	No significant difference.
Katz [37], 1980	Thoracotomy	INB, OA	NRS	Not specified	Days 1, 3, 5	Patients in the cryoanalgesia group had significantly less pain than the comparator group.
Keenan [32], 1983	Thoracotomy	OA (Group 4)	VAS	Rest and movement	Days 1, 2	Crying analgesia reduced pain significantly, compared with comparator at rest and on movement. Combining cryoanalgesia with indomethacin appeared to have an additive effect.
Muller [30], 1989	Thoracotomy	OA, NOA	Non-standard pain scale (0–4)	Not specified	Days 1–3, 5, 7	The combination of indomethacin and cryoanalgesia significantly reduced the need for opioid analgesia compared with comparator.
Miguel [35], 1993	Thoracotomy	OA (Group 4)	VAS, chronic pain incidence	Not specified	Days 1–3, 5, 7, Month 12	No significant difference.
Moorjani [27], 2001	Thoracotomy	OA	Morphine consumption VAS	Not specified	Days 1, 2, 5, Month 1	No significant difference.
Joucken [38], 1987	Thoracotomy	INB, OA (Group 2)	Frequency of piritramide consumption	N/A	Hours 1–36	Patients receiving epidural morphine had significantly less pain than patients receiving conventional analgesia.
Ba [29], 2014	Thoracotomy	NOA	VAS	Not specified	Days 1–3, 7, Months 1, 6	Patients receiving cryoanalgesia had significantly less pain on POD 1–7.

(continued on next page)
3.3.6. Cryoanalgesia versus non-divided intercostal muscle flap

Patients receiving cryoanalgesia had significantly less pain than patients receiving NDIMF on POD 1–3, 7 and POM 1. Patients receiving cryoanalgesia had significantly less pain on POD 1–7. Patients receiving cryoanalgesia used significantly less major analgesia on POD 1–7 than comparator.

3.3.5. Cryoanalgesia versus non-opioid analgesia alone

Ba 2014 [23] was the only study that compared cryoanalgesia to non-opioid pain medication (intravenous parecoxib) for thoracotomy and found acute and chronic pain scores were significantly lower among the cryoanalgesia group.

3.3.4. Primary outcome – quantitative synthesis

Though many included studies assessed our outcomes of interest, most comparisons could not be included for pooling due to the inconsistency within the combinations of analgesic modalities used in intervention and comparator groups. Where multiple timepoints were available, the closest timepoint to postoperative day 1 and month 1 were selected for acute and persistent pain scores, respectively, as these were the most common acute and persistent timepoints that were evaluated within our studies. Two pools of two studies each were deemed appropriate for meta-analysis.
3.4.1. Acute pain

Two studies were pooled with respect to acute pain [28,29]. Pain scores were converted into a common 0–10 NRS scale. Both studies included opioid analgesia with (n = 85) or without cryoanalgesia (n = 85) and were combined using a random effects model. Compared with no cryoanalgesia, cryoanalgesia showed significant improvement in acute pain (MD −2.32 units, 95 % CI −3.35 to −1.30, I² = 77 %) (Fig. 4a).

3.4.2. Persistent pain

The same two studies allowed pooling to assess the effect of cryoanalgesia on persistent pain [28,29]. Compared with no cryoanalgesia, the cryoanalgesia group showed significant improvements in persistent pain intensity (MD 0.81 units, 95 % CI −1.10 to −0.53, I² = 17 %) (Fig. 4b).

3.5. Secondary outcomes

3.5.1. Adverse events

In general, the adverse events reporting was inconsistent and inadequate based on the available knowledge on the pain relief modalities used. All adverse events reported in more than one comparable study are summarized in Supplemental Figures 1 and 2. Nausea was more commonly reported in non-cryoanalgesia groups that received only opioid analgesia compared to groups that also received cryoanalgesia (RR 0.23, 95 % CI 0.06 to 0.95, I² = 66 %) (Supplemental Figure 1). Atelectasis was also reported in multiple studies comparing cryoanalgesia to opioid analgesia; however, there was no difference in atelectasis between these groups (RR 0.38, 95 % CI 0.07 to 2.17, I² = 48 %) (Supplemental Figure 2).

4. Discussion

This systematic review evaluating the efficacy and safety of cryoanalgesia for the management of postoperative pain included 24 RCTs covering thoracic surgery, herniorrhaphy, nephrectomy, and tonsillectomy. Results from the majority of studies (13/24) indicate that cryoanalgesia can potentially provide better pain relief compared to comparator, except in herniorrhaphy and nephrectomy. Specific to thoracotomies, pain relief was associated with decreased opioid use when compared to intercostal nerve blocks, but not when compared to epidural analgesia. Reporting of adverse events was often inconsistent. Existing evidence suggests the potential for decreased nausea with the decrease in opioids.

Cryoanalgesia has been used for decades for chronic nerve pain as well as on surgically exposed nerves to provide postoperative pain relief, most commonly for thoracotomies [8,43]. The mechanism of action is based on the principle that when nerve tissues are cooled to between −20 °C and −100 °C, Wallerian degeneration (axon degeneration) distal to the lesion occurs, inhibiting nerve signalling for weeks to months as the axon regenerates [8]. More recently, the advent of ultrasound-guided percutaneous cryoanalgesia may increase its use in acute and postoperative pain control as it is safer, more precise, and surgically exposing the target nerve is not required [44].

There are distinct advantages with the use of cryoanalgesia compared to existing modalities, such as the administration of loco-regional analgesia or peripheral nerve blocks [10]. The most obvious benefit is the prolonged duration of analgesia ranging from weeks to months, although the duration appears to be variable depending on the length of the nerve distally from where the cryoanalgesia was applied [8]. Surprisingly, none of the included studies specifically assessed the duration of relief in their patients over time. Among available opioid-sparing agents, loco-regional blocks perhaps have the greatest benefits, whenever appropriate. This is because they can be selectively applied to a particular area of the body with no systemic side effects and they also act superiorly on pain with activity, which is functionally more important [45]. However, they are all limited by their duration of effect. Presently, the strategies to overcome this limitation requires the use of either continuous nerve blocks or the use of liposomal bupivacaine. However, both have inherent limitations, may not be available, and in the case of continuous blocks-require resources and trained personnel [46–48].

The potential for prolonged duration of action with cryoanalgesia may reduce readmissions and emergency room visits, apart from decreasing the risk of systemic morbidity [4,49]. Importantly, its opioid-sparing benefit can last after discharge, minimizing the need for opioid prescriptions post-discharge, which seems to be contributing to the opioid crisis. Other advantages of cryoanalgesia include its low cost, limited follow-up requirements, no risk of local anesthetic toxicity, and no need to carry around an infusion pump as one does with continuous peripheral nerve blocks [10]. However, drawbacks include the increased time required for administration, unpredictable duration of action, unclear association between application technique and duration of blockade, and somewhat limited number of surgical procedures during which it can be utilized [10].

![Fig. 4](image1.png)

Fig. 4. Acute (a) and persistent (b) postoperative pain relief as mean differences with cryoanalgesia compared with opioid analgesia. CI, confidence interval; SD, standard deviation.
To draw accurate conclusions about cryoanalgesia’s efficacy and adverse effects in postoperative pain management, future studies should precisely describe the method of application, including the type of cryoprobe used, number of freeze cycles, and degree of nerve involvement and manipulation. Given the increased precision and theoretical safety, future studies should also evaluate ultrasound-guided percutaneous cryoanalgesia for postoperative pain and potentially acute pain in general. Finally, additional direct comparison studies with other postoperative pain management modalities such as regional analgesia would be useful.

Several limitations of this review should be acknowledged. Most studies had fewer than 50 participants per treatment arm, increasing the risk of small study bias [50]. Additionally, many studies were published over two decades ago and suffered from methodological limitations, such as not reporting the number of and reason for dropouts. Furthermore, many studies were heterogeneous and provided only graphical data, often with no standard deviations, for pain-related outcomes. This heterogeneity and lack of useable data made it difficult to compare findings of the studies with each other and therefore, much of our analysis was descriptive in nature. Lastly, 14 of the included studies did not specify whether pain was measured at rest and with movement. It is important to differentiate between pain at rest and pain with movement as many current pain treatments differentially affect the two types of pain, and failure to distinguish the two threatens trial precision [51].

4.1. Conclusions

Cryoanalgesia is a technique of postoperative pain relief that can be potentially long acting, relatively inexpensive, and has minimal contraindications [10]. Existing evidence suggests that in patients having thoracotomies, cryoanalgesia can be associated with better pain relief and opioid reduction than intercostal nerve blocks, but not superior to epidural analgesia. Due to a lack of studies, its potential for other surgical populations is unknown and needs to be evaluated. Future studies should consider a larger sample size with appropriate comparators.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ansu.2021.102689.

Provenance and peer review

Not commissioned, externally peer-reviewed.

Conflict of interest statement

All authors have no relevant conflicts of interest to declare.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical approval

Ethical approval was not obtained as this was a systematic review and meta-analysis of previously published studies.

Consent

N/A.

Author contribution

Rex Park, BHSc: Literature search, data extraction and analysis, drafting the article, final approval. Michael Coomber, BHSc: Literature search, data extraction and analysis, drafting the article, final approval. Ian Gilron, MD, MSc: Conception and study design, interpretation of study results, drafting the article, final approval Harsha Shanthanna, MD, PhD: Study supervision, conception and study design, data analysis, interpretation of study results, drafting the article, final approval.

Registration of research studies

1 Name of the registry: Prospero
2 Unique Identifying number or registration ID: CRD42020195702
3 Hyperlink to your specific registration (must be publicly accessible and will be checked): https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=195702

Guarantor

Harsha Shanthanna.

References

[1] T.J. Gan, A.S. Habib, T.E. Miller, W. White, J.L. Apfelbaum, Incidence, patient satisfaction, and perceptions of post-surgical pain: results from a US national survey, Curr. Med. Res. Opin. 30 (2014) 149–160, https://doi.org/10.1185/03007995.2012.660091.
[2] J.L. Apfelbaum, C. Chen, S.S. Mehta, T.J. Gan, Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged, Anesth. Analg. 97 (2003) 534–540, https://doi.org/10.1213/01.anes.0000090822.10113.9a, table of contents.
[3] C.L. Wu, M. Naqiuddin, A.J. Rowlingston, S.A. Lietman, R.M. Jermyn, L. A. Fleisher, The effect of pain on health-related quality of life in the immediate postoperative period, Anesth. Analg. 97 (2003) 1078–1085, https://doi.org/10.1213/01.ane.0000090822.10113.9a.
[4] H. Breivik, Postoperative pain management: why is it difficult to show that it improves outcome? Eur. J. Anaesthesiol. 15 (1998) 748–751, https://doi.org/10.1097/00004603-199811000-00022.
[5] C.L. Wu, S.N. Raja, Treatment of acute postoperative pain, Lancet 377 (2011) 2215–2225, https://doi.org/10.1016/S0140-6736(11)60245-6.
[6] R. Chou, D.B. Gordon, O.A. de Leon-Casasola, et al., Management of postoperative pain: a clinical practice guideline from the American pain society, the American society of regional anesthesia and pain medicine, and the American society of anesthesiologists’ committee on regional anesthesia, executive committee, and administrative council, J. Pain 17 (2016) 131–157, https://doi.org/10.1016/j.jpain.2015.12.008.
[7] B.M. Bield, Continuous peripheral nerve blocks: a review of the published evidence, Anesth. Analg. 113 (2011) 904–925, https://doi.org/10.1213/ANE.0b013e3182285601.
[8] A.M. Trescot, Cryoanalgesia in interventional pain management, Pain Physician 6 (2003) 345–360, PMID: 16809852.
[9] L. Garibyan, S.M. Tuchayi, Y. Wang, et al., Neural selective cryoneurolysis with ice slurry injection in a rat model, Anesthesiology 133 (2020) 185–194, https://doi.org/10.1097/ALN.0000000000003124.
[10] B.M. Bield, J.J. Finneran, Cryoneurolysis and percutaneous peripheral nerve stimulation to treat acute pain, Anesthesiology 133 (2020) 1127–1149, https://doi.org/10.1097/00000539-0000000000003552.
[11] R.P. Davber, Cryosurgery: complications and contraindications, Clin. Dermatol. 8 (1990) 108–114, https://doi.org/10.1016/0738-081x(90)90073-b.
[12] D.K. Cook, K. Georgouras, Complications of cutaneous cryotherapy, Med. J. Aust. 161 (1994) 210–213, https://doi.org/10.5694/j.1326-5377.1994.tb23785.x.
[13] R.H. Stewart, G.F. Graham, Cryo corner: a complication of cryosurgery in a patient with cryofibrinogenemia, J. Dermatol. Surg. Oncol. 4 (1978) 743–744, https://doi.org/10.1111/j.1524-4725.1978.tb00538.x.
[14] B.M. Bield, R.A. Gabriel, A.M. Trescot, Ultrasound-guided percutaneous cryoneurolysis for treatment of acute pain: could cryoanalgesia replace continuous peripheral nerve blocks? Br. J. Anaesth. 119 (2017) 703–706, https://doi.org/10.1093/bja/axx142.
[15] B.S. Raggio, B.M. Barton, M.C. Grant, E.D. McCoul, Intraoperative cryoanalgesia for reducing post-tonsillectomy pain: a systemic review, Ann. Otol. Rhinol. Laryngol. 127 (2018) 395–401, https://doi.org/10.1177/0003489418772859.
[16] D. Moher, A. Liberati, J.Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, Ann. Intern. Med. 151 (2009) 264–269, https://doi.org/10.1377/journal.Health.100097.
[17] R.H. Dworkin, D.C. Turk, J.T. Farrar, et al., Core outcome measures for chronic pain clinical trials: IMPACT recommendations, Pain 113 (2005) 9–19, https://doi.org/10.1016/j.pain.2004.09.012.
[18] J.P. Higgins, J. Thomas, J. Chandler, et al., Cochrane Handbook for Systematic Reviews of Interventions, John Wiley & Sons, 2019.
[19] T. Callesen, K. Bech, J. Thorup, et al., Cryoanalgesia: effect on post herniorrhaphy pain, Anesth. Analg. 87 (1998) 896–899, https://doi.org/10.1097/00000539-199810000-00026.
E. Sepsas, P. Misthos, M. Anagnostopulu, O. Toparlaki, G. Voyagis, S. Kakaris, The effects of cryoanalgesia on post-thoracotomy pain in kidney donors, Saudi. J. Kidney Dis. Transpl. 21 (2010) 947–948. PMID: 20814390.

S.R. Robinson, G.L. Purdie, Reducing post-tonsillectomy pain with cryoanalgesia: a human prospective randomized trial and a histological study, Eur. J. Cardio. Thorac. Surg. 20 (2001) 502–507. https://doi.org/10.1016/s0950-6286(00)00511-7.

J. Katz, W. Nelson, D.L. Bruce, Cryoanalgesia for post-thoracotomy pain, Lancet 1 (1980) 512–513. https://doi.org/10.1016/s0140-6736(80)92706-x.

J. Pastor, P. Morales, E. Cases, et al., Evaluation of intercostal cryoanalgesia versus intercostal nerve cryoablation during the Nuss procedure reduces length of stay and opioid requirement: a randomized clinical trial, J. Pediatr. Surg. 54 (2019) 2250–2256. https://doi.org/10.1016/j.jpedsurg.2019.02.057.

M.K. Yang, C.H. Cho, Y.C. Kim, The effects of cryoanalgesia combined with thoracic epidural analgesia in patients undergoing thoracotomy, Anesthesia 59 (2004) 1073–1077. https://doi.org/10.1111/j.1365-2044.2004.03896.x.

S.T. Mustola, J. Lempiinen, E. Saimanen, P. Vilko, Efficacy of thoracic epidural analgesia with or without intercostal nerve cryoanalgesia for postthoracotomy pain, Ann. Thorac. Surg. 91 (2011) 869–873. https://doi.org/10.1016/j.athoracsur.2010.11.014.

M. Khanbhai, K.H. Yap, S. Mohamed, J. Dunning, Is cryoanalgesia effective for post-thoracotomy pain? Interact. Cardiovasc. Thorac. Surg. 18 (2014) 202–209. https://doi.org/10.1148/qt.v18i1.3346.

B.M. Ifeld, R.A. Gabriel, A.M. Trescot, Ultrasound-guided percutaneous cryoneurolysis providing postoperative analgesia lasting many weeks following a single administration: a replacement for continuous peripheral nerve blocks?: a case report, Korean. J. Anesthesiol. 70 (2017) 567–570. https://doi.org/10.1007/s12244-017-5567-z.

H. Shanthunna, K.S. Ladha, H. Kehlet, G.P. Joshi, Perioperative opioid administration: a critical review of opioid-free versus opioid-sparing approaches, Anesthesiology 134 (2021) 645–659. https://doi.org/10.1097/AAn.00000000000003572.

G. Joshi, K. Gandhi, N. Shah, J. Gadsden, S.L. Cormack, Peripheral nerve blocks in the management of postoperative pain: challenges and opportunities, J. Clin. Anesth. 35 (2016) 524–529. https://doi.org/10.1016/j.jclinane.2016.08.041.

T.W. Hamilton, V. Athanasoglou, S. Mellon, et al., Liposomal bupivacaine infiltration at the surgical site for the management of postoperative pain, Cochrane Database Syst. Rev. 2 (2017) Cd011419. https://doi.org/10.1002/14651858.CD011419.pub2.

J.T. Abdipgaard, A.S. Chung, J.M. Tokish, S.J. Hattrup, Clinical efficacy of liposomal bupivacaine: a systematic review of prospective, randomized controlled trials in orthopaedic surgery, JBJS. Rev. 7 (2019) e8. https://doi.org/10.2106/JBJS.RVW.18.00192.

H.Y. Ip, A. Abrishami, P.W. Peng, J. Wong, F. Chung, Predictors of postoperative pain and analgesic consumption: a qualitative systematic review, Anesthesiology 111 (2009) 657–677. https://doi.org/10.1097/ALN.0b013e3181aae87a.

G. Rücker, J.R. Carpenter, G. Schwarzer, Detecting and adjusting for small-study effects in meta-analysis, Biom. J. 53 (2011) 351–368. https://doi.org/10.1002/bimj.201000151, 2011.

S. Srikantraijai, I. Gilron, Systematic review of movement-evoked pain versus pain at rest in postsurgical clinical trials and meta-analyses: a fundamental distinction requiring standardized measurement, Pain 152 (2011) 1734–1739. https://doi.org/10.1016/j.pain.2011.02.008.