Weighted Mean Temperature Modelling Using Regional Radiosonde Observations for the Yangtze River Delta Region in China

Li Li, Yuan Li, Qimin He and Xiaoming Wang

Abstract: Precipitable water vapor can be estimated from the Global Navigation Satellite System (GNSS) signal’s zenith wet delay (ZWD) by multiplying a conversion factor, which is a function of weighted mean temperature \(T_m \) over the GNSS station. Obtaining \(T_m \) is an important step in GNSS precipitable water vapor (PWV) conversion. In this study, aiming at the problem that \(T_m \) is affected by space and time, observations from seven radiosonde stations in the Yangtze River Delta region of China during 2015–2016 were used to establish both linear and nonlinear multifactor regional \(T_m \) model (RTM). Compared with the Bevis model, the results showed that the bias of yearly one-factor RTM, two-factor RTM and three-factor RTM was reduced by 0.55 K, 0.68 K and 0.69 K, respectively. Meanwhile, the RMSE of yearly one-factor, two-factor and three-factor RTM was reduced by 0.56 K, 0.80 K and 0.83 K, respectively. Compared with the yearly three-factor linear RTM, the mean bias and RMSE of the linear seasonal three-factor RTMs decreased by 0.06 K and 0.10 K, respectively. The precision of nonlinear seasonal three-factor RTMs is comparable to linear seasonal three-factor RTMs, but the expressions of the linear RTMs are easier to use. Therefore, linear seasonal three-factor RTMs are more suitable for calculating \(T_m \) and are recommended to use for PWV conversion in the Yangtze River Delta region.

Keywords: weighted mean temperature \((T_m) \); multifactor; regional \(T_m \) model; precipitable water vapor (PWV); ground-based GNSS meteorology; Yangtze River Delta

1. Introduction

Atmospheric water vapor is one of the significant driving forces to atmospheric circulation and climate changes [1]. The dynamical variation of water vapor is a significant factor in forecasting thunderstorms and other weather disasters [2]. However, the traditional sensors (e.g., radiosondes and water vapor radiometers) are not practical to monitor atmospheric vapor at a higher spatio-temporal resolution, predominantly due to their higher operational expense [3].

Contemporarily, the Global Navigation Satellite System (GNSS) has been a new technology to retrieve the atmospheric precipitable water vapor (PWV), due to its lower cost, higher precision, higher spatio-temporal resolution, 24 h availability and global coverage [4–7]. Zenith tropospheric delay (ZTD) could be readily determined from GNSS observations. ZTD is composed of zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD). GNSS-PWV is derived from the ZWD and has the potential to predict severe weather [8–10] and studying climate [11,12]. Previous studies [9,13–16] have shown that serious rainstorms occur in the descending trends of GNSS-PWV after ascending.
Benevides et al. [17] suggested that the reliability and precision of weather forecast could be improved after analyzing 3D distribution variations of PWV [17–22].

GNSS-PWV can be obtained by multiplying a conversion factor, which is a function of weighted mean temperature \(T_m \) [4,23]. Therefore, the precision of GNSS-PWV relates to the precision of \(T_m \) [23,24]. The most precise method for obtaining \(T_m \) is to use radiosondes [4,25]. However, GNSS stations seldom have co-located radiosondes due to their higher expense. The global \(T_m \) model, established using the ground surface temperature \(T_s \) by Bevis in 1992 \((T_m = 0.72T_s + 70.2) \), was commonly used for real-time applications. The Bevis model was derived from the profiles of vapor partial pressure and dewpoint temperature of North American radiosondes over a 2-year period. However, the relationship of \(T_m - T_s \) varies at different locations and seasons, due to the rapid atmospheric variations. It is found that the global performance of the Bevis model is uneven. For example, the systematic deviations of the Bevis model are mostly above 4 K, even exceeding 8 K in some regions [26,27]. Under severe weather conditions, the bias of the Bevis model can cause a significant deviation in GNSS PWV [23,24].

Many researchers have tried to use the linear relationship between \(T_m \) and \(T_s \) to establish regional \(T_m \) models (RTM) based on local radiosondes [27–31]. This one-factor model is easy to use and has only one independent variable \(T_s \). Several RTMs using a one-factor (\(T_s \)) have been established in China [32–36]. The RTM used in Hong Kong outperformed the Bevis model [32], which controls the bias within 4 K. Li and Mao [33] studied monthly coefficients of the RTM in eastern China. Yu and Liu [34] found that the \(T_m \) was correlated with altitude as well. Chen et al. [37] established a global \(T_m \) model based on the NCEP reanalysis data of 650 radiosondes from 2007 to 2011. Guo et al. [38] established a better yearly one-factor \(T_m \) model based on the profiles from seven radiosonde stations in the Yangtze River Delta region.

Different from the abovementioned one-factor (\(T_s \)) RTM, some researchers established multifactor RTMs by adding pressure (\(P_s \)) and vapor pressure (\(e_s \)) into the RTM [36,39,40]. Gong [39] analyzed the relationships between \(T_m \) and its factors over the 123 radiosonde stations during 2008–2011, and the linear multifactor RTMs were established for different climate regions in China. He found that the multifactor RTMs were slightly better than the one-factor RTM. However, Wang et al. [40] claimed no significant differences between one-factor and multifactor RTMs results in Hong Kong.

In addition, some researchers believe that traditional linear regression models cannot well express the relationships between \(T_m \) and meteorological factors. Yao et al. [41] suggested a nonlinear relationship between \(T_m \) and \(T_s \), and the precision of the established nonlinear RTM is slightly better than linear unary RTM. Zou et al. [42] proposed a nonlinear \(T_m \) model suitable for Jilin province, and its precision is better than the commonly used one-factor linear regression model in Jilin province.

This paper aims to utilize the data profiles from seven radiosondes in the Yangtze River Delta region, during 2015–2016, to develop yearly and seasonal multifactor RTMs based on the least square principle. The correlation between RTMs and meteorological factors is analyzed. In addition, the collinearity of the meteorological factors is also presented. Their precisions were evaluated using 2016–2017 radiosonde-derived \(T_m \) as the reference value.

The outline of this paper is as follows. The methodology for the evaluation of \(T_m \) and PWV from radiosonde and GNSS data will be shown in the second section. The data sources and their relationships between \(T_m \) and other factors will be given in the third section. The establishment of yearly and seasonal linear/nonlinear multifactor RTMs and their performance are shown in the fourth section. Discussions and conclusions are given in the fifth and sixth section.
2. Materials and Methods

2.1. Obtaining PWV

The relationship between GNSS-PWV and ZWD is

\[\pi = \frac{10^6 \rho_w R_v \left(k_3 T_m + k'_2 \right)}{k_2} \]

(1)

\[\text{PWV} = \pi \cdot \text{ZWD} \]

(2)

where \(\pi \) is the conversion factor, \(R_v \) is the specific gas constant for water vapor, satisfying \(R_v = 461 \text{ (J·kg}^{-1}·\text{K}^{-1}) \) and \(\rho_w \) is the density of liquid water. \(k'_2 \) is given by the following expression:

\[k'_2 = k_2 - m k_1, \]

in which \(m \) is the ratio of molar masses of water vapor and dry air \(\left(\frac{m_v}{m_d} = 0.622 \right) \), \(k_1 = 77.6 \text{ (K·hPa}^{-1}) \) and \(k_2 = 71.98 \text{ (K·hPa}^{-1}) \). \(k_3 = 3.754 \times 10^5 \text{ (K}^2\cdot\text{hPa}^{-1}) \).

\[\text{ZWD} = \text{ZTD} - \text{ZHD}. \]

ZTD can usually be estimated by using undifferenced precise point positioning. ZHD can be calculated with Saastamoinen model \([43,44]\), and this can be taken as

\[\text{ZHD} = 0.0022768 \times \frac{P_c}{1 - 0.00266 \cos 2 \phi_c - 0.00028 H_c} \]

(3)

where \(P_c \) is the air pressure (in hPa) measured at the station, \(\phi_c \) is the geographic latitude (in radian), and \(H_c \) is the altitude of the stations (in km). When calculating \(\pi \), the values of parameters other than \(T_m \) are already known. Since \(\pi \) is an important step in calculating PWV, it results that \(T_m \) is an important parameter that affects the precision of \(\pi \) and PWV.

2.2. Obtaining \(T_m \)

There are four methods to determine \(T_m \) in GNSS water vapor inversion: constant method, approximate integral method, numerical integral method, and linear regression analysis. The constant method is the simplest method among these, but it has the lowest precision. Linear regression analysis is the method most commonly used for real-time GNSS meteorological applications. Additionally, the Bevis model is derived from this method, but its precision may vary at different locations. The approximate integral method requires the lapse rate of temperature and vapor pressure decline rate, which is hard to calculate and has low precision. Comparatively, since the numerical integration is not easy to calculate, but it can achieve the highest precision among the four methods \([45]\).

In this paper, RTMs are established by curve fitting, and the \(T_m \) calculated by numerical integration is used as the reference value to verify the precision of RTM. Its mathematical expression is

\[T_m = \frac{\int (e/T) dZ}{\int (e/T^2) dZ} \]

(4)

where \(e \) is the vapor pressure (in hPa) over the station, \(T \) is the absolute temperature (in K), and \(Z \) is the stratified height (in km) along the zenith.

Since the distribution of \(e \) and \(T \) varies in space at any time, the calculated \(T_m \) should also have time-varying characteristics, which can be obtained by

\[T_m = \frac{\sum_i \left(\sigma_i / T_i \right) \Delta h_i}{\sum_i \left(\sigma_i / T_i^2 \right) \Delta h_i} \]

(5)

\[\frac{\sigma_i}{T_i^2} = \frac{e_i / T_i + e_{i-1} / T_{i-1}}{2} \]

(6)

\[\frac{\sigma_i}{T_i} = \frac{e_i / T_i^2 + e_{i-1} / T_{i-1}^2}{2} \]

(7)
where e_i is the average vapor pressure in ith layer (in hPa), T_i is the average temperature (in K), Δh_i is the thickness of the ith atmosphere (in km), $e_i, e_{i-1}, T_i, T_{i-1}$ are the vapor pressure and temperature at the upper and lower boundary of the atmosphere, respectively.

The vapor pressure e cannot be directly observed. As recommended by World Meteorological Organization (WMO) [46], it can only be calculated through the saturated vapor pressure formula. When the air is saturated, the air temperature is the same as the dew point temperature (t_d), and e is calculated by:

$$e = 6.112 \exp\left[17.62 t_d / (243.12 + t_d)\right]$$

where t_d can be obtained directly from radiosonde data.

2.3. Precision Statistics

The precision of the RTMs established in this paper is measured by the root mean square error (RMSE) and bias. If the precision of the RTMs is higher than that of the commonly used Bevis model, RTMs are worth establishing. The expressions of RMSE and bias are as follows:

$$\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - X_{ref})^2}{n}}$$ \hspace{1cm} (9)

$$\text{Bias} = X_i - X_{ref}$$ \hspace{1cm} (10)

where X_{ref} represents the reference value and X_i is the predicted value from new RTMs.

3. Materials and Analysis

3.1. Data Sources

Data profiles from radiosonde stations all over the world are available on the website of the University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html, accessed on 2 March 2018). Figure 1 shows the distribution of the 7 radiosonde stations. The locations of the 7 radiosonde stations are shown in Table 1. Radiosondes data collected twice a day from 7 stations in the Yangtze River Delta region of China, during 2015–2017, were selected as the experimental data.

![Figure 1. Distribution map of radiosondes in the Yangtze River Delta region.](image)
Table 1. Location information of 7 radiosondes in the Yangtze River Delta region.

Station	ID	Locations (N, E)	Elevation (m)
Anqing	58424	(30.53°N, 117.05°E)	20
Fuyang	58203	(32.86°N, 115.73°E)	33
Hangzhou	58457	(30.23°N, 120.16°E)	43
Quzhou	58633	(28.96°N, 118.86°E)	71
Shanghai	58362	(31.40°N, 121.46°E)	4
Sheyang	58150	(33.76°N, 120.25°E)	7
Nanjing	58238	(32.00°N, 118.80°E)	7

3.2. Regression Analysis

The analysis was performed using data from seven radiosonde stations during 2015–2016, and the sample size is 5110. The SPSS (Statistical Product and Service Solutions) software was used to analyze the relationship between T_m and T_s, e_s, and P_s. Table 2 shows the fitting indexes (R^2) of T_m and T_s, e_s, P_s. X represents the independent variable. Meanwhile, the R^2 was used to evaluate the fitting effect. The higher the value of the R^2, the better the fitting effect.

Table 2. The fitting indexes (R^2) of $T_m - T_s$, $T_m - e_s$ and $T_m - P_s$.

Function	Expression	X=Ts	X=es	X=Ps
Linear	$T_m = aX + b$	0.854	0.772	0.705
Power	$T_m = aX^b$	0.853	0.832	0.705
Logarithmic	$T_m = a\ln X + b$	0.855	0.830	0.705

It can be seen from Table 2 that the R^2 of all the T_m to T_s is almost the same, so the simple linear function can well express the relationship between T_m and T_s. The relationship between T_m and e_s is equally fitted by logarithmic function and power function, which are both better than the linear function. Therefore, $\ln e_s$ will be selected as the independent variable to establish linear RTM. It is better to use power function to express the nonlinear relationship between T_m and e_s. The fitting indexes between T_m and P_s are exactly the same for the three functions. The correlation between T_m and P_s is lower than that between T_m and T_s, $\ln e_s$, but the effect of P_s on T_m cannot be ignored.

3.3. Linear/Nonlinear Correlation and Collinearity

We performed correlation and collinearity analysis using the same data as regression analysis. Correlation and collinearity analysis were carried out as follows. Figure 2 shows the correlation analysis between T_m and T_s, $p_s(b)$, $\ln e_s(c)$, $e_s(d)$, where R is the correlation coefficient. R can both show positive correlation and negative correlation between meteorological factors. It shows that T_m has a strong positive linear correlation with the T_s and $\ln e_s$, while T_m has a negative linear correlation to P_s. Meanwhile, T_m and e_s have a nonlinear correlation.

Table 3 contains the statistics of linear correlation analysis. It can be seen that there is a strong correlation between factors, so a collinear relationship may exist between them. Collinearity is usually referring to the non-independence of the two or more predicting factors in a regression analysis. A high degree of multi-collinearity will have an impact on regression modeling, resulting in a reduction in modeling precision. Therefore, it is necessary to verify the collinearity before modeling. If collinearity exists, corresponding solutions should be taken first [47].
There exist coefficients \((a_1, \ldots, a_m)\) for factors \((X_1, \ldots, X_m)\) to make the following equation hold [48]

\[
a_1X_1 + a_2X_2 + \ldots + a_mX_m = a_0
\]

(11)

Supposing there exists a factor \(X_k\) can be expressed by other factors as follows

\[
X_k = \left(\frac{a_0 - \sum_{j \neq k} a_jX_j}{a_k}\right)
\]

(12)

and then \(X_1, \ldots, X_m\) show collinearity. Otherwise, there is no collinearity among \(X_1, \ldots, X_m\).

The tolerance (\(Tol\)) is used to verify collinearity in this paper and expressed as

\[
Tol = 1 - R^2
\]

(13)

where \(R^2\) is the square of correlation coefficients between two factors. As a matter of fact, a threshold value of \(Tol\) larger than 0.1 is often accepted [48]. If the value of \(Tol\) exceeds 0.1, then there is no collinearity. The statistical tolerances among the variables are shown in Table 4. It is observed that there is no collinearity among \(\ln e_s, e_s, T_s\) and \(P_s\), since the \(Tol\) values are much larger than 0.1. Therefore, these variables can be used to establish the RTMs.
Table 4. Statistical tolerances among independent variables.

Factor	R^2	Tol
$T_s - P_s$	0.60	0.40
$e_s - P_s$	0.54	0.46
$T_s - e_s$	0.60	0.34
$\ln e_s - T_s$	0.71	0.29
$\ln e_s - P_s$	0.58	0.42
$\ln e_s - e_s$	0.64	0.36

4. Results

In this section, firstly, yearly and seasonal linear RTMs will be established based on the linear correlations of T_m to T_s, $\ln e_s$ and P_s, and their precision comparison with previous RTMs will be performed. Then, based on the nonlinear correlation between T_m and e_s, nonlinear RTMs will also be established. Finally, the precision of these RTMs will be compared.

4.1. Yearly Linear RTM

4.1.1. Establishing RTM

1. One-factor RTM

According to the correlation analysis of T_m and T_s, the linear fitting method is used to set as following

$$T_m = a_1 + b_1 T_s$$ \hspace{1cm} (14)

The residual vector V is expressed in matrix as [49]

$$V = [1 \ T_s] \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} - T_m$$ \hspace{1cm} (15)

where V is the residual error vector. After the T_m and T_s from all the aforementioned 7 radiosonde stations during 2015–2016 were taken into Equation (15), the coefficients of a_1, b_1 can be calculated based on the least square principle ($V^T PV = \min$), then the yearly one-factor RTM in the Yangtze River Delta region can be obtained as

$$T_m = 44.5054 + 0.8148 T_s$$ \hspace{1cm} (16)

2. Two-Factor RTM

According to the correlation analysis of T_m (as reference value), T_s and $\ln e_s$, the multiple linear fitting method is used as follows

$$T_m = a_2 + b_2 T_s + c_2 \ln e_s$$ \hspace{1cm} (17)

The residual vector V is expressed in matrix as

$$V = [1 \ T_s \ \ln e_s] \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix} - T_m$$ \hspace{1cm} (18)

After the T_m, T_s, and e_s from all the aforementioned 7 radiosonde stations during 2015–2016 were taken into Equation (18), the coefficients a_2, b_2, c_2 can be calculated based on the least square principle, then the yearly two-factor RTM of the Yangtze River Delta region can be obtained as

$$T_m = 124.9910 + 0.4922 T_s + 4.9104 \ln e_s$$ \hspace{1cm} (19)
3. Three-Factor RTM

According to the correlation analysis of T_m (as reference value), T_s, e_s and P_s, the multiple linear fitting method is used as follows

$$T_m = a_3 + b_3 T_s + c_3 ln e_s + d_3 P_s$$ (20)

The residual vector V is expressed in matrix as

$$V = [1 \ T_s \ ln e_s \ P_s] \begin{bmatrix} a_3 \\ b_3 \\ c_3 \\ d_3 \end{bmatrix} - T_m$$ (21)

After the T_m, T_s, e_s and P_s from all the aforementioned 7 radiosonde stations during 2015–2016 were taken into Equation (21), the coefficients a_3, b_3, c_3 and d_3 can be calculated based on the least square principle, then the yearly three-factor RTM of the Yangtze River Delta region can be obtained as

$$T_m = 247.0598 + 0.4372 T_s + 4.2812 ln e_s - 0.1032 P_s$$ (22)

4.1.2. Precision of RTMs

To test the precision of yearly multifactor RTMs, the reference values of T_m from 2016 to 2017 were used to compare with the T_m derived from the Bevis model, yearly one-factor RTM, yearly two-factor RTM and yearly three-factor RTM in the Yangtze River Delta region. Figure 3 shows the bias statistical histograms of the Bevis model and one-factor, two-factor and three-factor yearly RTMs. The bias of each RTM is normally distributed (Figure 3). The bias of the Bevis model is mainly distributed in the range of -8 K–4 K, and the symmetry axis of the bias distribution of the Bevis model applied in the Yangtze River Delta is not 0 but -2. The biases of the one-factor, two-factor and three-factor RTMs are mainly distributed in the range of -6 K–6 K, and the symmetry axis of the bias distribution is closer to the theoretical value of 0. There is no bias less than -8 K or greater than 8 K for the two-factor and three-factor models, so the multifactor models are much better than the one-factor model in the Yangtze River Delta region.

![Bias statistical histograms of Bevis model and yearly one-factor, two-factor and three-factor RTMs.](image)

Figure 3. Bias statistical histograms of Bevis model and yearly one-factor, two-factor and three-factor RTMs.

Figures 4 and 5 list the time series variation of T_m and their biases of the Bevis model, the one-factor, two-factor and three-factor yearly RTMs to the radiosonde-derived T_m at Anqing and Sheyang stations during 2016–2017. It can also be seen from Figure 4a to Figure 5a that the T_m shows seasonal changes all through a year. The highest T_m value is recorded in summer, whilst the lowest is in winter. The bias of the three-factor RTM is relatively concentrated towards 0, which is relatively small compared to the other models,
as shown in Figures 4b and 5b. The reason may be that using the three factors to establish RTMs can reflect the changes in T_m throughout the year in a relatively more accurate way.

Figure 4. Comparison of the time series of T_m (a) and the biases (b) of Bevis, the one-factor, two-factor and three-factor RTMs to the radiosonde-derived T_m at Anqing station during 2016–2017.

Figure 5. Time series of T_m (a) and the biases (b) of Bevis, one-factor, two-factor and three-factor RTMs to the radiosonde-derived T_m at Sheyang station during 2016–2017.

Table 5 shows the previous RTMs in the Yangtze River Delta [50]. Table 6 shows the precision statistics of previous RTMs and new proposed RTMs in 2016 and 2017, respectively. It can be seen that the Bevis model has the lowest precision among all the models. The precision of one-factor, two-factor and three-factor RTM increases in turn. Based on the average of the bias and RMSE of the two years, precision analysis was performed. Compared to the Bevis model, the bias of newly established one-factor, two-factor and three-factor yearly RTM was reduced by 0.55 K, 0.68 K and 0.69 K, respectively, and the RMSEs improved by 0.56 K, 0.80 K and 0.83 K, respectively. The precision of the newly established three-factor RTM was slightly better than that of the two-factor RTM.

Compared to the previous two-factor RTM, the bias and the RMSE of the newly established two-factor RTM improved by 0.08 K and 0.15 K, respectively. Compared to the previous three-factor RTM, the bias of the newly established three-factor RTM improved by 0.07 K, and the RMSE improved by 0.14 K. The newly established yearly three-factor RTM has the highest precision, and it was chosen to establish the seasonal linear three-factor RTMs in the following section.

Table 5. Previous RTMs in the Yangtze River Delta [50].

Model	Previous RTMs
One-factor	$T_m = 44.5054 + 0.8148T_s$
Two-factor	$T_m = 255.1953 + 0.6614T_s - 0.1643P$
Three-factor	$T_m = 257.4974 + 0.5548T_s - 0.1384P + 0.1447c_s$
Table 6. Precision statistics of yearly multifactor RTMs (K).

Year	Previous RTMs	Bias	RMSE	New RTMs	Bias	RMSE
2016	Bevis	3.06	3.71	Bevis	3.06	3.71
	One-factor	2.41	3.08	One-factor	2.41	3.08
	Two-factor	2.33	2.94	Two-factor	2.25	2.80
	Three-factor	2.25	2.80	Three-factor	2.22	2.74
2017	Bevis	2.77	3.46	Bevis	2.77	3.46
	One-factor	2.32	2.98	One-factor	2.32	2.98
	Two-factor	2.30	2.94	Two-factor	2.23	2.78
	Three-factor	2.28	2.90	Three-factor	2.24	2.78

4.2. Seasonal Multifactor Linear RTMs

4.2.1. Establishing RTMs

T_m shows seasonal dynamic regularity all through a year. Therefore, the T_m, T_s, e_s and P_s from the 7 radiosonde stations during 2015–2016 were divided on a seasonal basis to establish the seasonal three-factor linear RTMs. The seasonal three-factor linear RTMs are shown in Table 7.

Table 7. Seasonal three-factor linear RTMs during 2015–2016.

Seasons	Seasonal RTMs
Spring	$T_m = 253.7193 + 0.4272 T_s + 5.0205 \ln e_s - 0.1090 P_s$
Summer	$T_m = 79.5517 + 0.7115 T_s + 2.3678 \ln e_s - 0.0121 P_s$
Autumn	$T_m = 380.0851 + 0.3516 T_s + 3.3502 \ln e_s - 0.2068 P_s$
Winter	$T_m = 380.0981 + 0.3293 T_s + 4.4980 \ln e_s - 0.2045 P_s$

4.2.2. Precision of RTMs

In order to test the precision of the seasonal three-factor RTMs, the T_m predicted from the Bevis model, yearly and seasonal three-factor RTMs in the Yangtze River Delta region from 2016 to 2017 were compared to the radiosonde-derived T_m. Figure 6 shows the statistical histograms of the biases of the Bevis model, yearly and seasonal three-factor RTM-derived T_m in spring (a), summer (b), autumn (c) and winter (d).

It can be seen that the biases of all RTMs are distributed normally, while the symmetric axis of the bias of the Bevis model deviates from 0. In spring, autumn and winter, the bias distribution of the seasonal three-factor RTMs is nearly equivalent to yearly RTMs. In summer, the bias distribution of the seasonal three-factor RTMs is better than that of the yearly three-factor RTM. Table 8 shows the deviation statistics of the Bevis model, yearly and seasonal three-factor RTMs. It can be seen from the number of deviations that the seasonal three-factor RTM has the best improvement.

Table 8. Deviation distribution of Bevis model, yearly and seasonal three-factor RTMs (K).

Model	(< −8)	(−8, −6)	(−6, −4)	(−4, −2)	(−2, 0)	(0, 2)	(2, 4)	(4, 6)	(6, 8)	(>8)
Bevis	148	668	1548	2515	2629	1452	763	301	143	32
Yearly	10	153	705	1535	2503	2741	1912	535	93	12
Seasonal	10	139	694	1539	2544	2939	1741	510	67	16

Figures 7 and 8 list the time series of T_m and their biases of the Bevis model, the yearly and seasonal three-factor RTMs to the radiosonde-derived T_m at Nanjing and Hangzhou during 2016–2017. Similar to the yearly RTM, the T_m calculated by seasonal RTMs have similar changes over time. The T_m calculated by the seasonal RTMs is much closer to the reference value, while the deviations of the Bevis model are larger.
Figure 6. The statistical histograms of the biases of Bevis model, yearly and seasonal three-factor RTMs in spring (a), summer (b), autumn (c) and winter (d).

Figure 7. Time series of T_m (a) and biases (b) of Bevis, the yearly and seasonal three-factor RTMs to the radiosonde-derived T_m at Nanjing station during 2016–2017.

Figure 8. Time series of T_m (a) and the biases (b) of Bevis, the yearly and seasonal three-factor RTMs to the radiosonde-derived T_m at Hangzhou station during 2016–2017.
The statistics of the T_m are listed in Table 9. It can be seen that biases and RMSE of seasonal three-factor RTMs are smaller than that of the yearly three-factor RTMs, especially in summer. Based on the average of the bias and RMSE of four seasons, a precision analysis was performed. Compared to the Bevis model, the mean biases of yearly and seasonal three-factor RTMs improved by 0.70 K and 0.76 K, and the mean RMSE of them improved by 0.86 K and 0.96 K, respectively. The mean biases and RMSE of the seasonal three-factor RTMs decreased by 0.06 K and 0.10 K compared to the yearly three-factor RTM. It means that the seasonal three-factor RTMs can reflect the seasonal characteristics of T_m and their precisions are better than that of yearly three-factor RTM.

Table 9. The biases and RMSE of the Bevis model, seasonal and yearly three-factor RTM-derived T_m in the Yangtze River Delta region during 2016–2017 (K).

Season	Model	Seasonal RTM	Yearly RTM		
		Bias	RMSE	Bias	RMSE
Spring	Bevis	3.07	3.76	3.07	3.76
	Three-factor	2.53	2.88	2.53	3.03
Summer	Bevis	2.86	3.46	2.86	3.46
	Three-factor	1.77	2.20	1.99	2.39
Autumn	Bevis	3.09	3.77	3.09	3.77
	Three-factor	2.18	2.70	2.19	2.74
Winter	Bevis	2.68	3.35	2.68	3.35
	Three-factor	2.19	2.73	2.20	2.75

4.3. Nonlinear Three-Factor Seasonal RTMs

4.3.1. Establishing RTMs

Since the seasonal RTMs can reflect the seasonal characteristics, and the three-factor RTM has more advantages compared to the two-factor RTM, the nonlinear seasonal three-factor RTMs are established using the data of 7 radiosondes in the Yangtze River Delta region from 2015 to 2016 based on the nonlinear correlation between T_m and e_s. Table 10 shows the established nonlinear seasonal three-factor RTMs during 2015–2016.

Table 10. The nonlinear seasonal three-factor RTMs in the Yangtze River Delta region during 2015–2016.

Season	RTM
Spring	$T_m = -47.601 + 0.55473T_s + 203.60e_s^{0.02083} - 0.04712P_s$
Summer	$T_m = 81.713 + 0.70566T_s + 1.6097e_s^{0.41430} - 0.01098P_s$
Autumn	$T_m = 117.25 + 0.44669T_s + 178.35e_s^{0.01623} - 0.14967P_s$
Winter	$T_m = -107.63 + 0.40852T_s + 420.59e_s^{0.01002} - 0.15991P_s$

4.3.2. Precision of RTMs

In order to test the precision of nonlinear seasonal multifactor RTMs, the reference values of T_m from 2016 to 2017 were used to compare with the T_m derived from Bevis model, linear and nonlinear seasonal three-factor RTMs in the Yangtze River Delta region. Figure 9 shows the statistical histograms of the biases of Bevis model, linear and nonlinear seasonal three-factor RTM-derived T_m in spring (a), summer (b), autumn (c) and winter (d).

It can be seen the biases of all RTMs are distributed normally. The best improvement of bias distributions is recorded in summer. The biases of the linear and nonlinear seasonal three-factor RTMs are concentrated in the range -6 K to 6 K, while the biases of the Bevis model are in the range -10 K to 6 K in summer. Table 11 shows the deviation statistics of the Bevis model, linear and nonlinear seasonal three-factor RTMs. It can be seen from the number distribution of the deviations that the precision of the nonlinear seasonal three-factor RTMs is approximately equivalent to the linear seasonal three-factor RTMs.
Table 11. Deviation statistics of Bevis model, linear and nonlinear seasonal three-factor RTMs in the Yangtze River Delta region during 2016–2017 (K).

Range	Bevis	Linear	Nonlinear
\((-\infty, -8)\)	148	10	12
\((-8, -6)\)	668	139	122
\((-6, -4)\)	1548	694	660
\((-4, -2)\)	2515	1539	1561
\((-2, 0)\)	2629	2544	2567
\((0, 2)\)	1452	2939	2886
\((2, 4)\)	763	1741	1769
\((4, 6)\)	301	510	514
\((6, 8)\)	143	67	87
\((8, +\infty)\)	32	16	17

Figures 10 and 11 shows the time series of T_m and the biases of the Bevis model and the linear and nonlinear seasonal three-factor RTMs compared to the radiosonde-derived T_m at Nanjing and Shanghai during the period 2016–2017.

Figure 10. Time series of T_m (a) and the biases (b) of Bevis, linear and nonlinear seasonal three-factor RTMs to the radiosonde-derived T_m at Nanjing station during 2016–2017.
Table 12. The biases and RMSE of the linear and nonlinear seasonal multifactor RTMs-derived
T_m in the Yangtze River Delta region during 2016–2017 (K).

Models	Spring	Summer	Autumn	Winter	
Linear	Bias	2.53	1.77	2.18	2.19
	RMSE	3.09	2.20	2.70	2.73
Nonlinear	Bias	2.49	1.77	2.18	2.18
	RMSE	3.07	2.19	2.71	2.73

5. Discussions

Yearly RTMs are universal for all seasons and are easy to use in the Yangtze River Delta region. Different from the previous studies on the linear relationship between T_m and T_e, e_s, P_e, this study modified the linear expression through collinearity and correlation analysis by replacing the coefficient e_s with $\ln e_s$, which improved the precision to a certain extent. It indicates that these coefficients are statistically significant. Additionally, it makes sense to find a more statistical expression.

However, from the time series analysis of T_m, it can be seen that T_m exhibits regular dynamic changes throughout the year. The Yangtze River Delta region has four distinctive seasons, and the seasonal changes in T_m are in line with the climate. Establishing RTMs on a seasonal basis may better reflect the seasonal characteristics of T_m. The results show that the seasonal three-factor linear RTMs have the best precision among the Bevis model and RTMs, especially in summer. The reason may be that the T_m shows a high peak in summer due to the higher temperature than the other three seasons, and seasonal three-factor RTMs can exhibit their superiority in predicting T_m in summer.

Moreover, we established multifactor RTMs based on the nonlinear relationship between T_m and e_s. Although its modeling is more complex than linear RTMs, it is also meaningful if the precision has further improved. However, the results show that it is equivalent to express the relationship between T_m and e_s by using a power function or a logarithmic function. Therefore, the linear seasonal three-factor RTMs can be chosen to calculate the T_m in the Yangtze River Delta Region, serving the prediction and research of GNSS-PWV due to their simple expressions and higher precision compared to existing RTMs.
6. Conclusions

In this study, several one-factor and multifactor RTMs were established by using 7 radiosondes during 2015–2016 in the Yangtze River Delta region. The numerical integration and least squares principle were adopted to obtain T_m time series and RTMs, respectively. The newly established linear RTMs include yearly and seasonal one-factor, two-factor and three-factor RTMs. The new nonlinear RTMs include seasonal three-factor RTMs. These RTMs were validated by comparing to the radiosonde-derived T_m (as the reference value) during 2016–2017.

Results showed that the yearly three-factor RTM performs much better than the Bevis model, with improvements of 0.69 K and 0.83 K in bias and RMSE, respectively. The precisions of the seasonal three-factor RTMs are better than that of the yearly three-factor RTM, and it can better reflect the seasonal changes in T_m, especially in summer. Compared to the linear seasonal three-factor RTMs, the mean bias of nonlinear seasonal three-factor RTMs improved by 0.01 K. Using a power function or a logarithmic function to express the relationship between T_m and e_s has the same effect. Therefore, due to the complicated expressions of nonlinear RTMs and the limitation of its precision improvement compared to the linear RTMs, the linear seasonal three-factor RTMs are recommended to calculate the T_m and GNSS-PWV in the Yangtze River Delta region.

Author Contributions: Conceptualization, L.L. and Y.L.; methodology, L.L.; software, Y.L.; validation, L.L. and Y.L.; formal analysis, Q.H.; investigation, Y.L.; resources, L.L.; data curation, Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, L.L.; visualization, Q.H.; supervision, X.W.; project administration, X.W.; funding acquisition, X.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) under Grant XDA17010304, the China Natural Science Funds under Grant 41904033, the CAS Pioneer Hundred Talents Program, the Natural Science Foundation of Hunan Province under Grant 2016JJ3061.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their sincere gratitude to the University of Wyoming and Jiangsu Institute of Meteorological Sciences for the provision of radiosondes and GNSS observations. We also thank the reviewers for their constructive comments and suggestions, which resulted in a significant improvement in the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, A.R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. *J. Geophys. Res.*, 1992, 97, 15787–15801. [CrossRef]
2. Chung, E.-S.; Soden, B.; Sohn, B.; Shi, L. Upper-tropospheric moistening in response to anthropogenic warming. *Proc. Natl. Acad. Sci. USA* 2014, 111, 11636–11641. [CrossRef] [PubMed]
3. Bock, O.; Bosser, P.; Bourcy, T.; David, L.; Goutail, F.; Hoareau, C.; Keckhut, P.; Legain, D.; Pazmino, A.; Pelon, J. Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP. *Atmos. Meas. Tech.* 2013, 6, 2777–2802. [CrossRef]
4. Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. *J. Appl. Meteorol.* 1994, 33, 379–386. [CrossRef]
5. Yeh, T.-K.; Hong, J.-S.; Wang, C.-S.; Chen, C.-H.; Chen, K.-H.; Fong, C.-T. Determining the precipitable water vapor with ground-based GPS and comparing its yearly variation to rainfall over Taiwan. *Adv. Space Res.* 2016, 57, 2496–2507. [CrossRef]
6. Yu, K.; Rizos, C.; Burrage, D.; Dempster, A.; Zhang, K.; Markgraf, M. An Overview of GNSS Remote Sensing. *EURASIP J. Adv. Signal Process.* 2014, 2014, 134. [CrossRef]
7. Guerova, G.; Jones, J.; Douša, J.; Dick, G.; de Haan, S.; Pottiaux, E.; Bock, O.; Pacione, R.; Elgered, G.; Vedel, H.; et al. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. *Atmos. Meas. Tech.* 2016, 9, 5385–5406. [CrossRef]
8. Iwabuchi, T.; Rocken, C.; Lukez, Z.; Mervart, L.; Johnson, J.; Kanzaki, M. PPP and Network True Real-time 30 sec Estimation of ZTD in Dense and Giant Regional GPS Network and the Application of ZTD for Nowcasting of Heavy Rainfall. In Proceedings of the ION GNSS 19th International Technical Meeting of the Satellite Division, Fort Worth, TX, USA, 26–29 September 2006; pp. 1902–1909.
9. Li, L.; Kuang, C.-L.; Zhu, J.-J.; Chen, W.; Chen, Y.-Q.; Long, S.-C.; Li, H.-Y. Rainstorm nowcasting based on GPS real-time precise point positioning technology. Chin. J. Geophys. 2012, 55, 1129–1136.

10. Li, H.; Wang, X.; Wu, S.; Zhang, K.; Chen, X.; Qi, C.; Zhang, J.; Xie, M.; Li, L. Development of an Improved Model for Prediction of Short-Term Heavy Precipitation Based on GNSS-Derived PWV. Remote Sens. 2020, 12, 4101. [CrossRef]

11. Bianchi, C.E.; Mendoza, L.P.O.; Fernández, L.I.; Natali, M.P.; Meza, A.M.; Moirano, J.F. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies. Ann. Geophys. 2016, 34, 623–639. [CrossRef]

12. Kruczyk, M. Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator. Rep. Geod. Geoinform. 2015, 99, 1–18. [CrossRef]

13. Wang, B.; Zhao, L.; Bai, X. The Characteristics Investigation of Ground-Based GPS/PWV During the “7.21” Extreme Rainfall Event in Beijing. In China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II; Sun, J., Liu, J., Fan, S., Lu, X., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2015; Volume 341, pp. 563–574.

14. Simeonov, T.; Sidorov, D.; Tefelre, F.N.; Milev, G.; Guerova, G. Evaluation of IWV from the numerical weather prediction WRF model with PPP GNSS processing for Bulgaria. Atmos. Meas. Tech. Discuss. 2016, 1–15. [CrossRef]

15. Li, H.; Wang, X.; Choy, S.; Wu, S.; Jiang, C.; Zhang, J.; Qi, C.; Li, L.; Zhang, K. A New Cumulative Anomaly-based Model for the Detection of Heavy Precipitation Using GNSS-derived Tropospheric Products. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [CrossRef]

16. Li, H.; Wang, X.; Choy, S.; Jiang, C.; Wu, S.; Zhang, J.; Qi, C.; Zhou, K.; Li, L.; Fu, E.; et al. Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV. Atmos. Res. 2022, 265, 105912. [CrossRef]

17. Benevides, P.; Catalao, J.; Miranda, P.M.A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci. 2015, 15, 2605–2616. [CrossRef]

18. Jiang, P.; Ye, S.; Chen, D.; Liu, Y.; Xia, P. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China. Remote Sens. 2016, 8, 389. [CrossRef]

19. Wang, H.; He, J.; Wei, M.; Zhang, Z. Synthesis Analysis of One Severe Convection Precipitation Event in Jiangsu Using Ground-Based GPS Technology. Atmosphere 2015, 6, 908–927. [CrossRef]

20. Song, D.-S.; Grejner-Brzezinska, D.A. Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event. Earth Planets Space 2009, 61, 1117–1125. [CrossRef]

21. Manning, T.; Zhang, K.; Rohm, W.; Choy, S.; Hurter, F. Detecting Severe Weather using GPS Tomography: An Australian Case Study. J. Glob. Position. Syst. 2012, 11, 58–70. [CrossRef]

22. Zhang, K.; Manning, T.; Wu, Q.; Rohm, W.; Silcock, D.; Choy, S. Capturing the Signature of Severe Weather Events in Australia Using GPS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1839–1847. [CrossRef]

23. Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J. Geophys. Res. Atmos. 2016, 121, 833–852. [CrossRef]

24. Basili, P.; Bonafoni, S.; Ferrara, R.; Ciotti, P.; Fionda, E.; Arnabosini, R. Atmospheric water vapor retrieval by means of both a GPS network and a microwave radiometer during an experimental campaign in Cagliari, Italy, in 1999. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2436–2443. [CrossRef]

25. Hagemann, S.; Bengtsson, L.; Gendt, G. On the determination of atmospheric water vapor from GPS measurements. J. Geophys. Res. Atmos. 2003, 108, 4678. [CrossRef]

26. Lan, Z.; Zhang, B.; Geng, Y. Establishment and analysis of global gridded Tm–Ts relationship model. Geod. Geodyn. 2016, 7, 101–107. [CrossRef]

27. Mircheva, B.R. Terrestrial Water Storage Anomaly during the 2007 Heat Wave in Bulgaria; Sofia University: Palo Alto, CA, USA, 2016.

28. Jiang, P.; Ye, S.R.; Liu, Y.Y.; Zhang, J.J.; Xia, P.F. Near real-time water vapor tomography using ground-based GPS and meteorological data: Long-term experiment in Hong Kong. Atmos. Meas. Tech. 2014, 7, 911–923. [CrossRef]

29. Song, D.-S.; Boutiouta, S. Determination of Algerian Weighted Mean Temperature Model for forthcoming GNSS Meteorology Application in Algeria. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2012, 8, 615–622. [CrossRef]

30. Isioye, O.A.; Combrinck, L.; Botai, J. Modelling weighted mean temperature in the West African region: Implications for GNSS meteorology. Meteorol. Appl. 2016, 23, 614–632. [CrossRef]

31. Melik, C.; Deniz, I. Modelling and validation of the weighted mean temperature for Turkey. Meteorol. Appl. 2016, 24, 92–100. [CrossRef]

32. Liu, Y.; Chen, Y.; Liu, J. Determination of weighted mean tropospheric temperature using ground meteorological measurements. Geo-Spat. Inf. Sci. 2001, 4, 14–18. [CrossRef]

33. Li, J.; Mao, J. The approach to remote sensing of water vapor based on GPS and linear regression Tm in eastern region of China. J. Meteorol. Res. 1998, 12, 450–458. [CrossRef]

34. Yu, S.; Liu, L. Validation and Analysis of the Water-Vapor-Weighted Mean Temperature from Tm–Ts Relationship. Geomat. Inf. Sci. Wuhan Univ. 2009, 34, 741–744.

35. Wang, Y.; Liu, L.; Hao, X.; Xiao, J.; Wang, H.; Xu, H. The application study of the GPS meteorology network in Wuhan region. Acta Geod. Et Cartogr. Sin. 2007, 36, 142–145.

36. Yao, Y.; Zhang, B.; Xu, C.; Yan, F. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology. J. Geod. 2013, 88, 273–282. [CrossRef]

37. Peng, C.; Jiajun, C. Establishment of Global Atmospheric Weighted Average Temperature Model Using NCEP Reanalysis Data. J. Geod. Geodyn. 2014, 34, 133–136.
38. Guo, B.; Li, L.; Xie, W. Modelling of weighted mean temperature using radiosonde data in Yangtze River Delta region. *J. Navig. Position.* 2019, 7, 61–67.

39. Gong, S. The Spatial and Temporal Variations of Weighted Mean Atmospheric Temperature and Its Models in China. *J. Appl. Meteorol. Sci.* 2013, 24, 332–334.

40. Wang, X.; Song, L.; Dai, Z.; Cao, Y. Feature analysis of weighted mean temperature Tm in Hong Kong. *J. Nanjing Univ. Inf. Sci. Technol. Nat. Sci. Edn.* 2011, 3, 47–52.

41. Yibin, Y.; Jinghong, L.; Bao, Z.; Changyong, H. Nonlinear Relationships Between the Surface Temperature and the Weighted Mean Temperature. *Geomat. Inf. Sci. Wuhan Univ.* 2015, 40, 112–116.

42. Zou, Y.; Yue, Y.; Ye, T.; Li, Z. Nonlinear weighted mean atmospheric temperature mode in Jilin region. *J. Navig. Position.* 2020, 8, 74–79.

43. Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In *The Use of Artificial Satellites for Geodesy;* Henriksen, S., Mancini, A., Chovitz, B., Eds.; AGU: Washington, DC, USA, 1972; Volume 15, pp. 247–251.

44. Wang, X.M.; Zhang, K.F.; Wu, S.Q.; He, C.Y.; Cheng, Y.Y.; Li, X.X. Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor. *Atmos. Meas. Tech.* 2017, 10, 2807–2820. [CrossRef]

45. Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. *Radio Sci.* 1987, 22, 379–386. [CrossRef]

46. Jarraud, M. *Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8);* World Meteorological Organisation: Geneva, Switzerland, 2008.

47. Huang, W. *Diagnosis and Solution of Colinearity in Multiple Regression Modeling;* Harbin Institute of Technology: Harbin, China, 2012.

48. Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. *Ecography* 2013, 36, 27–46. [CrossRef]

49. Abdi, H. The method of least squares. *Encycl. Meas. Stat.* 2007, 1, 530–532.

50. Yuan, L.; Li, L.; Zhen, Z. Research on Seasonal and Multifactor Model of Weighted Average Temperature in Yangtze River Delta. *J. Geod. Geodyn.* 2020, 40, 140–145.