Betti Numbers and Degree Bounds for Some Linked Zero-Schemes

Leah Gold
Cleveland State University, L.Gold33@csuohio.edu

Hal Schenck
Texas A&M University

Hema Srinivasan
University of Missouri

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scimath_facpub

Part of the *Mathematics Commons*

How does access to this work benefit you? Let us know!

Repository Citation
Gold, Leah; Schenck, Hal; and Srinivasan, Hema, "Betti Numbers and Degree Bounds for Some Linked Zero-Schemes" (2007). *Mathematics Faculty Publications*. 165.
https://engagedscholarship.csuohio.edu/scimath_facpub/165

This Article is brought to you for free and open access by the Mathematics and Statistics Department at EngagedScholarship@CSU. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Introduction

Let R be a polynomial ring over a field K, and let I be a homogeneous ideal. Then the module R/I admits a finite minimal graded free resolution over R:

$$F : \cdots \rightarrow \bigoplus_{j \in J_2} R(-d_{2,j}) \rightarrow \bigoplus_{j \in J_1} R(-d_{1,j}) \rightarrow R \rightarrow R/I \rightarrow 0.$$

Many important numerical invariants of I and the associated scheme can be read off from the free resolution. For example, the \textit{Hilbert polynomial} is the polynomial $f(t) \in \mathbb{Q}[t]$ such that for all $m \gg 0$, $\dim_K(R/I)_m = f(m)$; if $f(t)$ has degree n and lead coefficient d, then the \textit{degree} of I is $n!d$. When one has an explicit free resolution in hand, then it is possible to write down the Hilbert polynomial, and hence the degree, in terms of the shifts $d_{i,j}$ which appear in the free resolution.

If R/I is Cohen–Macaulay and has a \textit{pure resolution}

$$0 \rightarrow R^{e_p}(-d_p) \cdots \rightarrow R^{e_2}(-d_2) \rightarrow R^{e_1}(-d_1) \rightarrow R \rightarrow R/I \rightarrow 0,$$

then Huneke and Miller show in [9] that $\deg(I) = (\prod_{i=1}^{p} d_i)/p!$. Their result points to a more general possibility:
Conjecture 1.1 (Huneke & Srinivasan). Let R/I be a Cohen–Macaulay algebra with minimal free resolution of the form

$$0 \to \bigoplus_{j \in J_0} R(-d_{p,j}) \to \cdots \to \bigoplus_{j \in J_1} R(-d_{1,j}) \to R \to R/I \to 0.$$

Let $m_i = \min\{d_{i,j} \mid j \in J_i\}$ be the minimum degree shift at the ith step and let $M_i = \max\{d_{i,j} \mid j \in J_i\}$ be the maximum degree shift at the ith step. Then

$$\frac{\prod_{i=1}^p m_i}{p!} \leq \deg(I) \leq \frac{\prod_{i=1}^p M_i}{p!}.$$

When R/I is not Cohen–Macaulay, it is easy to see that the lower bound fails; for example if $I = (x^2, y) \subset k[x,y]$, then $\deg(I) = 1$, $m_1 = 2$ and $m_2 = 3$, but $\frac{(2)(3)}{2!} \geq 1$. However, in [8], Herzog and Srinivasan conjecture that even if R/I is not Cohen–Macaulay, the upper bound is still valid if one takes $p = \text{codim}(I)$. Conjecture 1.1 is verified in [8] in a number of situations: when I is codimension two; for codimension three Gorenstein ideals with five generators (in fact, the upper bound holds for codimension three Gorenstein with no restriction on the number of generators); when I is a complete intersection, and also for certain classes of monomial ideals. Additional cases where Conjecture 1.1 has been verified appear in [5–7]. In the non-Cohen–Macaulay case, [8] proves the bound for stable monomial ideals [4], squarefree strongly stable monomial ideals [1], and ideals with a pure resolution; [14] proves it for codimension two. In fact, in the codimension two Cohen–Macaulay and codimension three Gorenstein cases, a stronger version of the conjecture holds, see [11].

Most of the situations where the conjecture is known to be true are when the entire minimal free resolution is known; the work in proving the conjecture generally involves a complicated analysis translating the numbers $d_{i,j}$ to the actual degree. In this paper we take a different approach. Our goal is to obtain only the information germane to the conjecture; in particular we need the smallest and biggest shift at each step. When I is Cohen–Macaulay we can always slice with hyperplanes without changing the degree or free resolution, hence the study of the conjecture, in the Cohen–Macaulay case, always reduces to the study of zero-schemes.

Suppose Y is a zero-scheme, and Z is a zero-scheme residual to Y inside a complete intersection X. The resolution for I_X is known, so if one has some control over Z, (for example, when Z consists of a small number of points, or points in special position), then linkage allows us to say something about the resolution for I_Y. Central to this are the results of Peskine and Szpiro [13] connecting resolutions and linkage.

1.1. Resolutions and linkage

Two codimension r subschemes Y and Z of \mathbb{P}^n are linked in a complete intersection X if $I_Y = I_X : I_Z$ and $I_Z = I_X : I_Y$. The most familiar form of linkage is the Cayley–Bacharach theorem [2], which was our original motivation. For more on liaison, see [10].

Theorem 1.2 (See [13] or [12]). Let $X \subset \mathbb{P}^n$ be an arithmetically Gorenstein scheme of codimension n, with minimal free resolution

$$0 \to R(-\alpha) \to F_{n-1} \to F_{n-2} \to \cdots \to F_1 \to R \to R/I_X \to 0.$$

Suppose that Z and Y are linked in X, and that the minimal free resolution of R/I_Z is given by

$$0 \to G_n \to G_{n-1} \to \cdots \to G_1 \to R \to R/I_Z \to 0.$$

Then there is a free resolution for R/I_Y given by

$$0 \to G_1^\vee(-\alpha) \to \bigoplus_{i=1}^{n-1} F_1^\vee(-\alpha) \to \bigoplus_{i=1}^{n-2} F_2^\vee(-\alpha) \to \cdots \to \bigoplus_{i=1}^{n-1} F_{n-1}^\vee(-\alpha) \to R \to R/I_Y \to 0.$$

It turns out that in certain situations the shifts in the mapping cone resolution for Y given by the theorem above are such that no cancellation of the relevant shifts can occur.
Ideals linked to a collinear subscheme

We assume for the remainder of the paper that \(n \geq 3 \) and that \(X \) is a non-degenerate (all the \(d_i > 1 \)) complete intersection zero-scheme of type \((d_1, d_2, \ldots, d_n) \); let \(d_X \) denote the degree of \(X \), and \(\alpha_X = \sum_{i=1}^{n} d_i \). Suppose \(Z \) is a complete intersection subscheme of \(X \), of type \((e_1, \ldots, e_n) \); with \(d_Z \) and \(\alpha_Z \) as above. A minimal free resolution for \(R/I_X \) is given by \(F_i = \bigwedge^i (\bigoplus_{j=1}^{d} R(-d_j)) \), and a minimal free resolution for \(R/I_Z \) is given by \(G_i = \bigwedge^i (\bigoplus_{j=1}^{n} R(-e_j)) \). In this case it is easy to see that Theorem 1.2 implies that there exists \(f \) of degree \(a = \alpha_X - \alpha_Z \) such that \(I_Y = I_X : I_Z = (I_X + f) \) and \(I_Z = I_X : f \); in particular, \(I_Y \) is an almost complete intersection. Since \(I_X \subseteq I_Z, R/I_X \rightarrow R/I_Z \); the mapping cone of Theorem 1.2 comes from a map of complexes which begins:

\[
\begin{align*}
&\to \bigwedge^2 \left(\bigoplus_{i=1}^{n} R(-d_i) \right) \to \bigoplus_{i=1}^{n} R(-d_i) \to R \to R/I_X \to 0 \\
&\to \bigwedge^2 \left(\bigoplus_{i=1}^{n} R(-e_i) \right) \to \bigoplus_{i=1}^{n} R(-e_i) \to R \to R/I_Z \to 0
\end{align*}
\]

The comparison map \(\phi \) which makes the diagram commute is simply an expression of the generators of \(I_X \) in terms of the generators of \(I_Z \) (e.g. [3], Exercise 21.23). If \(I_X \subseteq I_Z \) then \(\phi \) has entries in \(m \); in the construction of Theorem 1.2 the map \(G_{n-1}^\vee \rightarrow F_{n-1}^\vee \) is the transpose of \(\phi \). Since the comparison maps further back in the resolution are simply exterior powers of \(\phi \), we have:

Lemma 2.1. If \(I_X \subseteq I_Z \), then the mapping cone resolution is in fact a minimal free resolution for \(I_Y \).

So if \(I_X \subseteq I_Z \), then the minimal free resolution \(H_* \) for \(R/I_Y \) has \(H_n = \bigoplus_{i=1}^{n} R(e_i - \alpha_X) \), and for \(i \in \{1, \ldots, n-1\} \),

\[
H_i = \bigwedge^{n-i} \left(\bigoplus_{i=1}^{n} R(d_i) \right) \bigoplus \bigwedge^{n-i+1} \left(\bigoplus_{i=1}^{n} R(e_i) \right) (-\alpha_X).
\]

If \(I_X \not\subseteq I_Z \), then \(I_X \) and \(I_Z \) share some minimal generators; in this case, there can be cancellation in the mapping cone resolution:

Example 2.2. Let \(I_X = \langle x^2, y^2 \rangle \subseteq k[x, y, z, w] \), and let \(I_Z = \langle x, y, z^6 \rangle \). Then we find that \(I_Y = I_X + \langle xy \rangle \). In Betti diagram notation the mapping cone resolution of \(R/I_Y \) is

degree	1	4	6	3
0	1			
1	-	3	2	1
2	-	-	1	-
3	-	-	-	-
4	-	-	-	-
5	-	1	-	-
6	-	3	2	

This is not a minimal resolution; the \(R(-4) \) summand can be pruned off. The degree of \(I_Y \) is 18. Checking, we obtain \(\prod_{i=1}^{3} m_i = 54, \prod_{i=1}^{3} M_i = 432 \), and indeed \(9 \leq 18 \leq 72 \). Notice that the upper bound was not affected when we pruned the resolution, and the value of \(\prod_{i=1}^{3} m_i \) increased after pruning.

Example 2.3. Let \(Z \) be a single point. For \(Y \), Lemma 2.1 implies that \(M_n = m_n = \alpha_X - 1 \), and for \(i < n \),

\[
M_i = \alpha_X - n + i - 1 \quad \text{and} \quad m_i = \sum_{j=1}^{i} d_j \quad \text{(where } d_i \leq d_j \text{ if } i \leq j). \]

We want to show that

\[
\prod_{j=1}^{n-1} \left(\sum_{i=1}^{n} d_i - 1 \right) \leq n! (d_X - 1) \leq \prod_{i=1}^{n} (\alpha_X - i).
\]
For the upper bound there are two cases. If \(d_1 < d_n \), then we have the following inequalities:

\[
nd_1 \leq d_1 + d_2 + \cdots + d_{n-1} + d_n - 1 = \alpha_X - 1 \\
(n-1)d_2 \leq (d_2 + \cdots + d_n) + (d_1 - 2) = \alpha_X - 2 \\
\vdots \\
2d_{n-1} \leq (d_{n-1} + d_n) + (d_1 + d_2 + \cdots + d_{n-2} - (n-1)) = \alpha_X - (n-1) \\
d_n \leq (d_n) + (d_1 + d_2 + \cdots + d_{n-1} - n) = \alpha_X - n.
\]

So it follows that \(n! (d_X - 1) \leq n! d_1 d_2 \cdots d_n \leq \prod_{i=1}^{n} (\alpha_X - i) \). If \(d_1 = d_n = \delta \), then

\[
n\delta \leq n\delta = \alpha_X \\
(n-1)\delta \leq (n-1)\delta + (\delta - 2) = \alpha_X - 2(1) \leq \alpha_X - 2 \\
(n-2)\delta \leq (n-2)\delta + (2)(\delta - 2) = \alpha_X - 2(2) \leq \alpha_X - 3 \\
\vdots \\
2\delta \leq 2\delta + (n-2)(\delta - 2) = \alpha_X - 2(n-2) \leq \alpha_X - (n-1) \\
\delta \leq (n-1)(\delta - 2) = \alpha_X - 2(n-1).
\]

So \(n!(\delta^n - 1) \leq n! \delta^n \leq (\alpha_X)(\prod_{i=2}^{n-1} (\alpha_X - i))(\alpha_X - 2n + 2) \). To finish the upper bound, we must verify that

\[
\alpha_X(\alpha_X - 2n - 2) \leq (\alpha_X - 1)(\alpha_X - n); \text{ this follows since } n \geq 3.
\]

The lower bound is easier: it holds for a complete intersection, and by assumption \(d_j \geq 2 \) for all \(j \), so we have

\[
\prod_{j=1}^{n} \sum_{i=1}^{j} d_i \leq n! d_X \quad \text{and} \quad j + 1 \leq 2j \leq \sum_{i=1}^{n} d_i.
\]

Thus

\[
n! = \prod_{j=1}^{n-1} (j + 1) \leq \prod_{j=1}^{n-1} 2j \leq \prod_{j=1}^{n-1} \sum_{i=1}^{j} d_i.
\]

Combining these two inequalities yields the lower bound.

Lemma 2.4. If \(X \) is a non-degenerate zero-dimensional complete intersection in \(\mathbb{P}^n \), with \(n \geq 3 \), then \(d_X \leq \left(\frac{\alpha_X - 1}{n} \right) \), i.e. \(d_X n! \leq (\alpha_X - 1)(\alpha_X - 2) \cdots (\alpha_X - n) \).

Proof. The bounds in **Conjecture 1.1** hold for a \((d_1, d_2, \ldots, d_n)\) complete intersection, so \(d_X n! \leq \alpha_X(\sum_{i=2}^{n} d_i)(\sum_{i=3}^{n} d_i) \cdots d_n \). If \(d_1 < d_n \), then as in the first case of **Example 2.3**, \(d_X n! \leq (\alpha_X - 1)(\sum_{i=2}^{n} d_i)(\sum_{i=3}^{n} d_i) \cdots d_n \). Hence it suffices to show

\[
\alpha_X \left(\sum_{i=2}^{n} d_i \right) \left(\sum_{i=3}^{n} d_i \right) \cdots \left(\sum_{i=n}^{n} d_i \right) \leq \prod_{j=1}^{n} (\alpha_X - j).
\]

Case 1: \(d_1 > 2 \). Then \(\sum_{i=2}^{n} d_i \leq (\alpha_X - 3) \) and \(\sum_{i=j}^{n} d_i \leq (\alpha_X - j) \) for all \(j \geq 3 \). So since \(\alpha_X(\alpha_X - 3) \leq (\alpha_X - 1)(\alpha_X - 2) \), we obtain:

\[
\alpha_X \left(\sum_{i=2}^{n} d_i \right) \left(\sum_{i=3}^{n} d_i \right) \cdots \left(\sum_{i=n}^{n} d_i \right) \leq \alpha_X(\alpha_X - 3)(\alpha_X - 3)(\alpha_X - 4) \cdots (\alpha_X - n) \\
\leq \prod_{j=1}^{n} (\alpha_X - j).
\]

Case 2: \(d_1 = 2 \). Then \(\sum_{i=3}^{n} d_i \leq (\alpha_X - 4) \) and \(\sum_{i=j}^{n} d_i \leq (\alpha_X - j) \) for all \(j \geq 2 \), so

\[
\alpha_X \left(\sum_{i=2}^{n} d_i \right) \left(\sum_{i=3}^{n} d_i \right) \cdots \left(\sum_{i=n}^{n} d_i \right) \leq \alpha_X(\alpha_X - 2)(\alpha_X - 4)(\alpha_X - 4) \cdots (\alpha_X - n).
\]
Since $\alpha X(\alpha X - 4) \leq (\alpha X - 1)(\alpha X - 3)$, we obtain $\alpha X(\alpha X - 2)(\alpha X - 4)(\alpha X - 4) \cdots (\alpha X - n) \leq \prod_{j=1}^{n}(\alpha X - j)$. \[\square\]

The proof of the next lemma is similar so we omit it.

Lemma 2.5. With the same hypothesis as Lemma 2.4, $d_X n! \leq \alpha X(\alpha X - 2)(\alpha X - 4)(\alpha X - 6) \cdots (\alpha X - 2(n - 1))$.

Definition 2.6. A subscheme $Z \subseteq \mathbb{P}^n$ is collinear if $I_Z = \langle l_1, \ldots, l_{n-1}, f \rangle$, where the l_i are linearly independent linear forms and $\deg f = t$.

We now use linkage to study the case where Y is linked in X to a collinear subscheme Z. While we expect our methods to work more generally, this case is already complicated enough to be interesting. Since the line $V(l_1, \ldots, l_{n-1})$ cannot be contained in each of the hypersurfaces defining X (or X would contain the whole line), the line on which Z is supported must intersect one of the hypersurfaces defining X in a zero-scheme. Thus, Z is of degree at most d_n. Henceforth we write α for αX.

Theorem 2.7. Let X be a zero-dimensional complete intersection of type d_1, d_2, \ldots, d_n in \mathbb{P}^n. Let $Z \subset X$ be a collinear subscheme of degree t, and let Y be residual to Z. Then Conjecture 1.1 holds for $R/1Y$.

Proof. Upper bound. Because $d_j \geq 2$ for all j, even if cancellation occurs we have $M_i = \alpha - n + i - 1$ for $i \in \{2, \ldots, n\}$, as in Example 2.3. For $i = 1$, we have two cases. If $t \leq \sum_{i=1}^{n-1}(d_i - 1)$, then $\alpha - n - t + 1 \geq d_n$, and so $M_1 \geq d_n$ (Case 1 below). If $\sum_{i=1}^{n-1}(d_i - 1) < t$, then cancellation may occur, and so either $M_1 = d_n$ (included in Case 1 below) or the d_n term cancels, leaving $M_1 < d_n$ (Case 2 below).

Case 1: $M_1 \geq d_n$. In this case, since

$$n!(d - t) \leq n!(d_1)(\alpha - d_1 - d_2) \cdots (d_n),$$

it suffices to show that

$$\alpha(\alpha - d_1)(\alpha - d_1 - d_2) \cdots (d_n - 1 + d_n)(d_n) \leq (\alpha - 1)(\alpha - 2)(\alpha - 3) \cdots (\alpha - (n - 1))M_1.$$

Since $d_j \geq 2$ for all j, $\alpha(\alpha - d_1 - d_2) \leq (\alpha - 1)(\alpha - 3)$, and

$$(\alpha - d_1) \leq (\alpha - 2),$$

$$(\alpha - d_1 - d_2 - d_3) \leq (\alpha - 4),$$

$$(\alpha - d_1 - d_2 - d_3 - d_4) \leq (\alpha - 5)$$

$$\vdots,$$

the result follows if $n \geq 5$. If $n = 4$, then we must replace the $\alpha - 4$ above with M_1. The result holds since $M_1 \geq d_4 = \alpha - d_1 - d_2 - d_3$.

For $n = 3$, there are four cases to analyze. If $d_1 \geq 3$, then $\alpha(\alpha - d_1) \leq (\alpha - 1)(\alpha - 2)$. If $d_1 = 2$, then if $d_2 \geq 3$ we find that $6d \leq (\alpha - 1)(\alpha - 2)d_3$ because $11d_2 \leq d_2^2 + 2d_2d_3 + d_3^2 + d_3$. If $d_1 = 2$ and $d_2 = 2$, but $d_3 \geq 3$, then we find that $24d_3 \leq d_3^2 + 5d_3^2 + 6d_3$. Since $d_3 \geq 3$, $18 \leq d_3^2 + 5d_3$ so the inequality is true.

Finally, if $d_1 = d_2 = d_3 = 2$, then as long as $t > 1$ we have $6(8 - t) \leq (5)(4)(2)$, so the bound holds when $t > 1$.

The case $t = 1$ is covered by Example 2.3, which concludes Case 1.

Case 2: $d_n > M_1$. Then $\alpha - t - n + 1 = d_n - 1$. If $d_1 = d_n$, then since at most $n - 1$ of the d_i’s can cancel, this forces $M_1 = d_1 = d_n$ and the inequalities from the previous case apply. So henceforth we assume $d_1 < d_n$, which as noted in Lemma 2.4 implies $d_n! \leq (\alpha - 1)(\sum_{i=2}^{n} d_i)(\sum_{i=3}^{n} d_i) \cdots d_n$. This assumption also implies $M_1 = d_n - 1$. We wish to show

$$n!(d - t) \leq (\alpha - t - n + 1) \prod_{i=2}^{n}(\alpha - n + i - 1) = (\alpha - t - n + 1) \prod_{i=1}^{n-1}(\alpha - i).$$

Suppose $n \geq 5$. We claim that $d_n(d_n + d_{n-1}) \leq (d_n - 1)(\alpha - n + 2) = (d_n - 1)(d_n + t)$. This follows from the inequalities

$$(d_n - 1)(d_n + t) - d_n(d_n + d_{n-1}) = -d_n + t(d_n - 1) - d_{n-1}d_n$$

$$\geq -d_n + (d_n - 1)(d_n + n - 2) - d_{n-1}d_n$$

$$\geq -d_n + (d_n - 1)(d_n + n - 2) - d_{n-1}d_n.$$
because $t = \alpha - d_n - n + 2 = d_{n-1} + \sum_{i=1}^{n-2} (d_i - 1) \geq d_{n-1} + n - 2$. Then
\[-d_n + (d_n - 1)(d_{n-1} + n - 2) - d_{n-1}d_n = -d_n + (n - 2)d_n - d_{n-1} - (n - 2)\]
\[= (n - 4)d_n + (d_n - d_{n-1}) - (n - 2)\]
\[\geq (n - 4)d_n - (n - 2)\]
\[= (n - 4)(d_n - 1) - 2.
\]
Finally $(n - 4)(d_n - 1) \geq 2$ because $n \geq 5$ and $d_n > d_1 \geq 2$, so we obtain
\[
n!d \leq d_0(d_n + d_{n-1})(d_n + d_{n-1} + d_{n-2}) \cdots (\alpha - d_1)(\alpha - 1)\]
\[\leq (d_n - 1)(\alpha - n + 2)(d_n + d_{n-1} + d_{n-2}) \cdots (\alpha - d_1)(\alpha - 1)\]
\[\leq (d_n - 1)(\alpha - n + 2)(\alpha - n + 1)(d_n + d_{n-1} + d_{n-2} + d_{n-3}) \cdots (\alpha - d_1)(\alpha - 1)\]
\[\leq (d_n - 1)(\alpha - n + 2)(\alpha - n + 1)(\alpha - (n - 3))(\alpha - (n - 4)) \cdots (\alpha - 2)(\alpha - 1).
\]
Hence, the upper bound holds if $n \geq 5$.

If $n = 4$ and $d_2 < d_4$, then $3d_2 \leq d_2 + d_3 + d_4 - 1 + d_1 - 2 = \alpha - 3$. If $d_4 = d_3$, then since $d_1 < d_4$, we also have $4d_1 \leq \alpha - 2$. So, $12d_1d_2 \leq (\alpha - 2)(\alpha - 3)$. On the other hand, if $d_2 = d_4$, then $3d_2 \leq \alpha - 2$ and $4d_1 \leq \alpha - 3$ so we also find that $12d_1d_2 \leq (\alpha - 2)(\alpha - 3)$. It just remains to show that $2d_3d_4 \leq (\alpha - 1)(d_4 - 1)$. But $(d_4 - 1)(\alpha - 1) - 2d_3d_4 \geq (d_4 - 1)(2d_3 + 3) - 2d_4^2 = d_4 - 3 \geq 0$. Thus the upper bound holds when $d_4 = d_3$. If $d_3 < d_4$, we may only have $4d_1 \leq (\alpha - 1)$. Nevertheless,
\[
(\alpha - 2)(d_4 - 1) - 2d_3d_4 = (d_1 + d_2 + d_4 - d_3 - 2)(d_4 - 1) - 2d_3
\]
\[\geq (d_1 + d_2 + d_4 - d_3 - 2)(d_4 - 1) - 2(d_4 - 1)
\]
\[= (d_1 + d_2 + d_4 - d_3 - 4)(d_4 - 1)
\]
\[= (d_1 + d_2 - 4 + d_4 - d_3)(d_4 - 1) \geq 0.
\]
Thus, the upper bound holds when $n = 4$.

If $n = 3$, then since $M_1 = d_3 - 1$, $d_2 \neq d_3$. If $3d_1 \leq (\alpha - 2)$ then as before, $(\alpha - 1)(d_1 - 1) - 2d_2d_3 \geq (d_1 - d_2 + d_3 - 3)(d_3 - 1) \geq 0$. If $3d_1 = \alpha - 1$, we must have $d_1 = d_2 = d_3 - 1$. In this case, using the fact that $t = 2d_1 - 1$, we calculate the inequality directly: $6(d_1^2(d_1 + 1) - (2d_1 - 1)) \leq (d_1)(3d_1 + 1 - 2)(3d_1 + 1 - 1)$ simplifies to the true statement $0 \leq 3(d_1 - 1)(d_1 - 2d_1 + 2)$.

Lower bound. If there is no cancellation, then $m_n = \alpha - t$ and for $i < n$ we have $m_i = \min(\alpha - n - t + i, \sum_{j=1}^{i} d_j)$. In particular, $m_i \leq \sum_{j=1}^{i} d_j$, for $i \in \{1, \ldots, n - 1\}$, and so
\[
\prod_{i=1}^{n} m_i = \left(\prod_{i=1}^{n-1} m_i \right) m_n \leq \left(\prod_{i=1}^{n-1} \sum_{j=1}^{i} d_j \right) m_n.
\]
Hence it is sufficient to prove that
\[
\left(\prod_{i=1}^{n-1} \sum_{j=1}^{i} d_j \right) (\alpha - t) \leq n!(d - t).
\]

Exactly as in Example 2.3, we have
\[
\prod_{i=1}^{n-1} \sum_{j=1}^{i} d_j \alpha \leq n!d \quad \text{and} \quad i + 1 \leq 2i \leq \sum_{j=1}^{i} d_j.
\]
So $n!(\alpha - t) = \prod_{i=1}^{n-1} (i + 1) \leq \prod_{i=1}^{n-1} \sum_{j=1}^{i} d_j$. Subtracting this inequality from the left hand inequality above yields the desired inequality, so the lower bound holds for R/I if there is no cancellation.

Now let us look at where cancellation can occur. We only care about cancellation when a term of some degree that shows up in the set of minimums disappears. We can break it up into two cases:
Case 1: $t < d_n$. Then $\alpha - t > \alpha - d_n$, and so $\alpha - t - 1 \geq \alpha - d_n$, hence $m_{n-1} \leq \alpha - d_n$. Also $\alpha - t - 1 \geq \alpha - d_n$ implies $\alpha - t - 1 > \alpha - d_n - d_{n-1}$, so that $m_{n-2} \leq \alpha - d_n - d_{n-1}$, and in general $m_{n-i} \leq \alpha - d_n - \cdots - d_{n-i+1}$. So if $m_n = \alpha - t$, then the argument from the previous case holds.

However, if $t = d_l$ for some $l < n$, then it is possible that $m_n = \alpha - 1$. So in this case, we need to show that

$$\prod_{i=1}^{n-1} \left(\sum_{j=1}^{i} d_j\right) (\alpha - 1) \leq n!(d - d_l).$$

We have the inequalities

$$d_1 \leq d_1$$
$$d_1 + d_2 \leq 2d_2$$
$$\vdots$$
$$d_1 + d_2 + \cdots + d_{n-2} + d_{n-1} \leq (n-1)d_{n-1}$$
$$\alpha + 1 \leq nd_n,$$

where the last row follows since $d_l < d_n$. Subtracting $2\prod_{i=1}^{n-1} \sum_{j=1}^{i} d_j$ from the product of the left hand column and $n!d_l$ from the product of the right hand column would yield the desired inequality, so it suffices to show that

$$n!d_l \leq 2\prod_{i=1}^{n-1} \sum_{j=1}^{i} d_j \cdot d_{n-1} + \sum_{j=1}^{n-2} d_j \cdot \beta.$$

Since $d_l \leq d_{n-1}$, it is enough to show that $n! \leq 2\beta$. Since the d_i are at least two,

$$2^{n-1}(n-2)! \leq 2\beta,$$

and the inequality holds if $n \geq 6$. For $n \in \{3, 4, 5\}$, a case analysis shows we have to verify the bound directly for

$$n = 3 \quad d_1 = 2$$
$$n = 4 \quad (d_1, d_2) = (2, 2) \text{ or } (2, 3)$$
$$n = 5 \quad (d_1, d_2, d_3) = (2, 2, 2) \text{ or } (2, 2, 3).$$

For example, if $n = 3$ and $d_1 = 2$, we must verify that

$$2(2+d_2)(2 + d_2 + d_3 - 1) \leq 6(2d_2d_3 - d_2).$$

This follows by summing the inequalities:

$$(2 + d_2)d_3 \leq (2d_2)d_3$$
$$(2 + d_2)(d_2 + 1) \leq (2d_2)d_3,$$

and observing that $2d_2d_3 - 3d_2 = d_2(2d_3 - 3) \geq 0$. The other cases are similar so we omit them.

Case 2: $t = d_n$. The $\alpha - d_n$ term cancels with $\alpha - t$, and so $m_n = \alpha - 1$. Also $m_{n-1} = \min(\alpha - d_{n-1}, \alpha - t - 1) \leq \alpha - t - 1 = \alpha - d_n - 1$. Since all the $d_i \geq 2$, we cannot have $\alpha - d_n - \cdots - d_k + 1 = \alpha - n - t + k + 1$ for any $k \leq n - 2$, and hence we always have $m_i \leq \sum_{j=1}^{i} d_j$ for $i \leq n - 2$. In order to prove the lower bound, we need to show

$$(\alpha - 1)(\alpha - d_n - 1) \prod_{i=1}^{n-2} \sum_{j=1}^{i} d_j \leq n!(d - d_n).$$

We can write

$$n!(d - d_n) = d_n n(n - 1)! (d' - 1)$$
where \(d' = \prod_{j=1}^{n-1} d_j \). By the bound on the complete intersection of type \(d_1, d_2, \ldots, d_{n-1} \), we know that

\[
(n-1)!d' \geq \prod_{i=1}^{n-1} \sum_{j=1}^{i} d_j = (\alpha - d_n) \prod_{i=1}^{n-2} \sum_{j=1}^{i} d_j.
\]

It is also true that \(n - 1 \leq 2^{n-2} \) for all \(n \geq 2 \), so

\[
(n-1)! \leq 2^{n-2}(n-2)! \leq \prod_{i=1}^{n-2} \sum_{j=1}^{i} d_j, \quad \text{since } d_i \geq 2.
\]

Therefore

\[
(n-1)!(d' - 1) = (n-1)!d' - (n-1)! \geq (\alpha - d_n) \prod_{i=1}^{n-2} \sum_{j=1}^{i} d_j - \prod_{i=1}^{n-2} \sum_{j=1}^{i} d_j = (\alpha - d_n - 1) \prod_{i=1}^{n-2} \sum_{j=1}^{i} d_j.
\]

But since \(nd_n \geq \alpha \geq \alpha - 1 \), this gives

\[
n!(d - d_n) = d_n(n-1)!(d' - 1) \geq (\alpha - 1)(\alpha - d_n - 1) \prod_{i=1}^{n-2} \sum_{j=1}^{i} d_j. \quad \square
\]

\textbf{Y is linked to 3 general points}

In this section, we study the simplest \(Z \) which is not a collinear scheme: three general points. While we are able to carry out the degree analysis in this case, it also serves to illustrate that this type of argument will become increasingly complex.

\textbf{Theorem 3.1.} Let \(X \) be a zero-dimensional complete intersection of type \(d_1, d_2, \ldots, d_n \) in \(\mathbb{P}^n, n > 2 \). Let \(Z \subset X \) be a set of \(3 \) non-collinear points, and suppose \(Y \) is linked to \(Z \) in \(X \). Then Conjecture 1.1 holds for \(R/I_Y \).

By Theorem 1.2, the mapping cone resolution of \(I_Y = I_X : I_Z \) is

\[
0 \to \bigoplus_{R^{n-2}(-(\alpha - 1))} R^{n-i+1}(-(\alpha - n - 1 + i)) \oplus \bigoplus_{R^1(-(\alpha - 2))} R^{n-i}(-(\alpha - n - 2 + i)) \to \cdots
\]

\[
\oplus R \left(- \left(\sum_{j \in \Lambda} d_j \right) \right)
\]

\[
\bigoplus_{R^{n-2}(-(\alpha - n + 2))} R^{n-2}(-(\alpha - n + 1)) \oplus \bigoplus_{R^{n-2}(-(\alpha - n + 3))} R^{n-2}(-(\alpha - n)) \to R^{n-2}(-(\alpha - n - 1)) \to I_Y.
\]

\textbf{Proof.} \textit{Upper bound.} We begin with the upper bound. If \(n \geq 4 \), then there is no cancellation of terms which affect the upper bound, and for \(i \in \{3, \ldots, n-1\} \), \(M_i = \max \{\sum_{j=n-i+1}^{n} d_j, \alpha - n + i - 1\} = \alpha - n + i - 1 \), while

\[
M_1 = \max\{d_n, \alpha - n - 1\} = \alpha - n - 1
\]

\[
M_2 = \max\{d_{n-1} + d_n, \alpha - n\} = \alpha - n
\]

\[
M_n = \alpha - 1.
\]
So we want to show that
\[n!(d - 3) \leq (\alpha - n)(\alpha - (n + 1)) \prod_{i=1}^{n-2} (\alpha - i). \]

Since we know that
\[n!(d - 3) \leq n!d \leq \alpha \prod_{i=2}^{n} \sum_{j=i}^{n} d_j, \]
it is enough to show that
\[\alpha \prod_{i=2}^{n} \sum_{j=i}^{n} d_j \leq (\alpha - n)(\alpha - (n + 1)) \prod_{i=1}^{n-2} (\alpha - i). \]

By Lemma 2.5, we know that
\[\alpha \prod_{i=2}^{n} \sum_{j=i}^{n} d_j \leq \alpha(\alpha - 2)(\alpha - 4)(\alpha - 6) \cdots (\alpha - 2(n - 1)), \]
so it is enough to show that
\[\alpha(\alpha - 2)(\alpha - 4)(\alpha - 6) \cdots (\alpha - 2(n - 1)) \leq (\alpha - n)(\alpha - (n + 1)) \prod_{i=1}^{n-2} (\alpha - i). \]

If \(n > 4, \) then
\[\alpha - 2 \leq \alpha - 2 \]
\[\alpha - 2(3) \leq \alpha - 4 \]
\[\alpha - 2(4) \leq \alpha - 5 \]
\[\vdots \]
\[\alpha - 2(n - 3) \leq \alpha - (n - 2) \]
\[\alpha - 2(n - 2) \leq \alpha - n \]
\[\alpha - 2(n - 1) \leq \alpha - (n + 1) \]
and
\[\alpha(\alpha - 4) \leq (\alpha - 1)(\alpha - 3). \]

Taking the product, we see that the bound holds if \(n > 4. \) If \(n = 4, \) then we must show that
\[\alpha(\alpha - 2)(\alpha - 4)(\alpha - 6) \leq (\alpha - 1)(\alpha - 2)(\alpha - 4)(\alpha - 5); \]
which is true since \(\alpha(\alpha - 6) \leq (\alpha - 1)(\alpha - 5) \) for all \(\alpha. \)

Finally, if \(n = 3, \) then we have to be a bit more careful. It is always true that \(M_1 = \alpha - 4 \) and \(M_3 = \alpha - 1. \) The value of \(M_2 \) is either \(\alpha - 2 \) or \(\alpha - 3 \) depending on cancellation.

Case 1: \(d_1 = d_2 = d_3 = 2. \) We check directly that
\[30 = 3!(8 - 3) = (2)(6 - 3)(5) = (\alpha - 4)(\alpha - 3)(\alpha - 1) \leq M_1M_2M_3. \]

Case 2: \(d_1 = d_2 = 2, d_3 > 2. \) In this case \(\alpha = d_3 + 4, \) and so \(M_2 \geq d_3 + 1. \) Again we plug in values, and check to see that the resulting inequality is true. Is \(6(d - 3) = 6(4d_3 - 3) \leq (d_3)(d_3 + 1)(d_3 + 3) ? \) This is equivalent to
\[0 \leq d_3^3 + 4d_3^2 - 21d_3 + 18 = (d_3 - 2)(d_3^2 + 6d_3 - 9), \]
which is true for \(d_3 \geq 3. \)

Case 3: \(d_1 = 2, d_2 > 2. \) Here \(\alpha = d_2 + d_3 + 2 \) and \(M_2 \geq d_2 + d_3 - 1, \) so we need to check that \(6(2d_2d_3 - 3) \leq (d_2 + d_3 - 2)(d_2 + d_3 - 1)(d_2 + d_3 + 1). \) This inequality reduces to checking that \(d_2^2 + 3d_2d_3 + 3d_2^2d_3 + d_3^3 - 2d_2^2 - \)
16d_2d_3 - 2d_3^2 - d_2 - d_3 + 20 \geq 0, \text{ which is true since for } 3 \leq d_2 \leq d_3,
\begin{align*}
d_2^3 + 3d_2^2d_3 + 3d_2d_3^2 + d_3^3 & \geq 3d_2^2 + 9d_2d_3 + 9d_3^2 + 3d_3^2 \\
& = 2d_2^2 + 2d_2^2 + d_2^2 + d_2^2 + 8d_2^2 \\
& \geq 2d_2^2 + 2d_3^2 + d_2^2 + d_2^2 + d_2^2 + 2d_2^2 + d_2^2 + d_2^2 + d_2^2 \\
& \geq 2d_2^2 + 2d_3^2 + 16d_2d_3 + d_2^2 + d_2^2.
\end{align*}

Case n = 4: We see directly that
\begin{align*}
\alpha(\alpha - d_1)(\alpha - d_1 - d_2) & \leq (\alpha - 1)(\alpha - d_1)(\alpha - 4) \leq M_1M_2M_3.
\end{align*}
The left expression is the familiar product from \(I_X \), so it is bigger than \(3!d \), and hence also \(3!(d - 3) \). So the upper bound holds.

Lower bound. Now we will prove the lower bound. Notice that the only cancellation that is numerically feasible is at the last step because \(d_j \geq 2 \) for all \(j \). So cancellation can only happen if \(d_1, d_2, \) and possibly \(d_3 \) are all 2. Such a cancellation will affect \(m_n \) only if all three terms of degree \(\alpha - 2 \) cancel, that is, if \(d_1 = d_2 = d_3 = 2 \) and all possible cancellations occur, and \(d_4 \geq 3 \) when \(n \geq 4 \). Therefore for \(i < n \) we have \(m_i = \min\{\sum_{j=1}^i d_j, \alpha - n + i - 2\} \), and \(m_n \) is either \(\alpha - 1 \) or \(\alpha - 2 \). If we assume \(m_n = \alpha - 2 \), then there are four cases to consider.

Case n \geq 4: We know that
\begin{align*}
(\alpha - 2)\prod_{i=1}^{n-1} m_i & \leq (\alpha - 2)\prod_{i=1}^{n-1} \sum_{j=1}^i d_j,
\end{align*}
so we need to show that the rightmost expression is less than or equal to \(n!(d - 3) \). Since \(d_j \geq 2, 2i \leq \sum_{j=1}^i d_j \), so \(n!3 \leq 2^n(n - 1)! \leq 2\prod_{i=1}^{n-1} \sum_{j=1}^i d_j. \) Thus
\begin{align*}
(\alpha - 2)\prod_{i=1}^{n-1} \sum_{j=1}^i d_j & \leq n!d - 2\prod_{i=1}^{n-1} \sum_{j=1}^i d_j \leq n!d - n!3 = n!(d - 3).
\end{align*}

Case n = 3, d_1 = d_2 = d_3 = 2: In this case \(m_1 = 2, m_2 = 3, \) and \(m_3 = 4 \), so we check directly that
\begin{align*}
24 & = (2)(3)(4) \leq 3!(2^3 - 3) = 30.
\end{align*}

Case n = 3, d_1 = d_2 = 2, d_3 > 2: In this case we check directly that \((2)(4)(\alpha - 2) \leq 3!(d - 3). \) Since \(\alpha = d_3 + 4, \) this inequality holds as long as \(d_3 \geq \frac{d_2}{2} \), which it is.

Case n = 3, d_2 > 2: In this case \(m_1 \leq d_1, m_2 \leq d_1 + d_2, \) and \(m_3 = \alpha = 2 \). Using the bound for the complete intersection of type \(d_1, d_2, d_3, \) we have that
\begin{align*}
d_1(d_1 + d_2)(\alpha - 2) = d_1(d_1 + d_2)\alpha - 2d_1(d_1 + d_2) & \leq 3!d - 18,
\end{align*}
which is true if \(2d_1(d_1 + d_2) \geq 18 \). But \(2d_1(d_1 + d_2) \geq 2(2)(5) = 20 \), so the bound holds.

If on the other hand \(m_n = \alpha - 1, \) then it must be true that \(d_1 = d_2 = d_3 = 2, \) We know
\begin{align*}
\prod_{i=1}^n m_i & \leq (\alpha - 1)\prod_{i=1}^{n-1} \sum_{j=1}^i d_j,
\end{align*}
and so it suffices to show
\begin{align*}
\alpha \prod_{i=1}^{n-1} \sum_{j=1}^i d_j - \prod_{i=1}^{n-1} \sum_{j=1}^i d_j & \leq n!d - 3n!,
\end{align*}
which would follow from
\begin{align*}
3n! & \leq \prod_{i=1}^{n-1} \sum_{j=1}^i d_j.
\end{align*}
Since $d_4 \geq 2$, we have that

$$5!3 = 3 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \leq 2 \cdot 4 \cdot 6 \cdot 8 \leq 2 \cdot 4 \cdot 6 \cdot (6 + d_4) = \prod_{i=1}^{4} \sum_{j=1}^{i} d_j,$$

and once n is at least 6, $\prod_{i=5}^{n} i \leq \prod_{i=1}^{n-1} \sum_{j=1}^{i} d_j$; hence the desired inequality follows if $n \geq 5$.

If $n = 4$, then we check directly. We have that $m_1 = 2$, $m_2 = 4$, $m_3 = 6$ and $m_4 = d_4 + 5$. A simple calculation shows that in fact $4!(8d_4 - 3) \geq (2)(4)(6)(d_4 + 5)$ since $d_4 \geq 2$.

If $n = 3$, then again we may check directly. We have that $m_1 = 2$, $m_2 = 3$, and $m_3 = 5$. So we see that $30 = 3!(8 - 3) \geq (2)(3)(5) = 30$. □

Acknowledgements

Macaulay 2 computations provided evidence for the results in this paper. The first author thanks the University of Missouri for supporting her visit during the fall of 2003, when portions of this work were performed. Gold is supported by an NSF-VIGRE postdoctoral fellowship. Schenck is supported by NSF Grant DMS 03-11142 and NSA Grant MDA 904-03-1-0006.

References

[1] A. Aramova, J. Herzog, T. Hibi, Squarefree lexsegment ideals, Math. Zeitschrift 228 (1998) 353–378.
[2] D. Eisenbud, M. Green, J. Harris, Cayley–Bacharach theorems and conjectures, Bull. Amer. Math. Soc. (N.S.) 33 (3) (1996) 295–324.
[3] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Springer, New York, 1995.
[4] S. Eliahou, M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990) 11–25.
[5] V. Gasharov, T. Hibi, I. Peeva, Resolutions of a-stable ideals, J. Algebra 254 (2002) 375–394.
[6] L. Gold, A degree bound for codimension two lattice ideals, J. Pure Appl. Algebra 182 (2003) 201–207.
[7] E. Guardo, A. Van Tuyl, Powers of complete intersections: Graded Betti numbers and applications, Illinois J. Math. 49 (1) (2005) 265–279.
[8] J. Herzog, H. Srinivasan, Bounds for multiplicities, Trans. Amer. Math. Soc. 350 (1998) 2879–2902.
[9] C. Huneke, M. Miller, A note on the multiplicity of Cohen–Macaulay algebras with pure resolutions, Canad. J. Math. 37 (1985) 1149–1162.
[10] J. Migliore, Introduction to Liaison Theory and Deficiency Modules, Birkhäuser, Boston, 1998.
[11] J. Migliore, U. Nagel, T. Römer, The multiplicity conjecture in low codimensions, Math. Res. Lett. 12 (5–6) (2005) 731–747.
[12] U. Nagel, Even Liaison classes generated by Gorenstein linkage, J. Algebra 209 (1998) 543–584.
[13] C. Peskine, L. Szpiro, Liaison des variétés algébriques I, Invent. Math. 26 (1974) 271–302.
[14] T. Römer, Note on bounds for multiplicities, J. Pure Appl. Algebra 95 (2005) 113–123.