New Inequalities of Cusa–Huygens Type

Ling Zhu

Department of Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China; zhuling@zjgsu.edu.cn

Abstract: Using the power series expansions of the functions \(\cot x, 1/\sin x \) and \(1/\sin^2 x \), and the estimate of the ratio of two adjacent even-indexed Bernoulli numbers, we improve Cusa–Huygens inequality in two directions on \((0, \pi/2)\). Our results are much better than those in the existing literature.

Keywords: sharp the double inequalities of Cusa–Huygens type; circular functions; Bernoulli numbers

1. Introduction

For \(x \in (0, \pi/2) \), we know that the functions \(\cos x \) and \((\sin x)/x \) are less than 1. In order to confirm the relationship between \((\sin x)/x\) and the weighted arithmetic mean of \(\cos x \) and 1, we can examine the Taylor expansion of the following function:

\[
\frac{\sin x}{x} - [(1 - \beta) + \beta \cos x] = \sum_{n=1}^{\infty} (-1)^n \frac{1 - \beta(2n + 1)}{(2n + 1)!} x^{2n}
\]

\[
= x^2 \left(\frac{\beta}{2} - \frac{1}{6} \right) - x^4 \left(\frac{1}{24} \beta - \frac{1}{120} \right) + \sum_{n=3}^{\infty} (-1)^n \frac{1 - \beta(2n + 1)}{(2n + 1)!} x^{2n}.
\]

Obviously, when choosing \(\beta = 1/3 \) we can get the following fact:

\[
\frac{\sin x}{x} - \left(\frac{2}{3} + \frac{1}{3} \cos x \right) = -\frac{1}{180} x^4 + \frac{1}{3780} x^6 + O(x^8),
\]

which inspires us to prove that for \(0 < x < \pi/2 \),

\[
\frac{\sin x}{x} < \frac{2}{3} + \frac{1}{3} \cos x \tag{1}
\]

or

\[
\frac{3 \sin x}{2 + \cos x} < x. \tag{2}
\]

The existing mathematical historical data (see [1–8]) show that the above inequality (2) was discovered by Nicolaus De Cusa (1401–1464) using a geometrical method in 1451 and was later in 1664 confirmed by Christian Huygens (1629–1695) when considering the estimation of \(\pi \). Because of the contribution of Nicolaus De Cusa and Christian Huygens to this inequality (1), we call it Cusa–Huygens inequality. Recently, Zhu [9] provided two improvements of (2) as follows.

Proposition 1 ([9]). The inequalities,

\[
180 x^5 < x - \frac{3 \sin x}{2 + \cos x} \tag{3}
\]

and

\[
2100 x^7 < x - \frac{3 \sin x}{2 + \cos x} \left[1 + \frac{(1 - \cos x)^2}{9(3 + 2 \cos x)} \right] \tag{4}
\]

hold for all \(x \in (0, \pi] \), where \(1/180 \) and \(1/2100 \) are the best constants in previous inequalities, respectively.
The results of the previous proposition are corrections of Theorem 3.4.20 from monograph Mitrović [7]. Malešević et al. made a bilateral supplement to the above two inequalities.

This paper focuses on the improvement of (1). Chen and Cheung [10] gave the bounds for \((\sin x)/x\) in terms of \(((2 + \cos x)/3)^{1/5}\) as follows:

\[
(2 + \cos x / 3)^{\theta_0} < \frac{\sin x}{x} < (2 + \cos x / 3)^{\theta_0}
\]

holds for all \(0 < x < \pi/2\), where \(\theta_0 = 1\) and \(\theta_0 = (\ln \pi - \ln 2)/(\ln 3 - \ln 2)\) are the best possible constants in (5). The double inequality (5) was proved by Bagul [11] and Zhu [12] in different ways. In Zhu [12] the inequality (1) was found to be true for the broader interval \((0, \infty)\). There are many useful discussions in the literature about the above inequality (1) and its related topics; for interested readers, please refer to [13–46].

In Zhu [12], we can find three new improvements to inequality (1):

\[
\left(1 - \frac{x^3}{\pi^3}\right) \frac{2 + \cos x}{3} < \frac{\sin x}{x} < \left(1 - \frac{x^4}{180}\right) \frac{\cos x + 2}{3},
\]

\[
\left[1 + \frac{8}{\pi^3} x^2\right] \frac{2 + \cos x}{3} - \frac{8}{\pi^3} x^2 \frac{\sin x}{x} < \left(1 + \frac{1}{30} x^2\right) \frac{2 + \cos x}{3} - \frac{1}{30} x^2,
\]

and

\[
\left[1 + \frac{1}{30} x^2 + \frac{2(240\pi - \pi^3 - 720)}{15\pi^5} x^4\right] \frac{2 + \cos x}{3} - \left[\frac{1}{30} x^2 + \frac{2(240\pi - \pi^3 - 720)}{15\pi^5} x^4\right] \frac{\sin x}{x} < \left(1 + \frac{1}{30} x^2 + \frac{1}{840} x^4\right) \frac{2 + \cos x}{3} - \left(\frac{1}{30} x^2 + \frac{1}{840} x^4\right),
\]

hold for \(0 < x < \pi/2\).

Bercu [47] used the truncations of the Fourier cosine series to the inequality (1) and obtained an enhanced form of (1):

\[
\frac{\sin x}{x} - \frac{2 + \cos x}{3} < -\frac{1}{45} (1 - \cos x)^2, \quad 0 < x < \frac{\pi}{2}.
\]

Recently, Bagul et al. [48] drew two conclusions about the improvement of inequality (1):

\[
-\left(\frac{2}{3} - \frac{2}{\pi}\right) \frac{1}{(\pi/2 - 1)} (x - \sin x) < \frac{\sin x}{x} - \frac{2 + \cos x}{3} < -\left(\frac{2}{3} - \frac{2}{\pi}\right) \frac{1}{(\pi/2 - 1)^2} (x - \sin x)^2
\]

and

\[
-\left(\frac{2}{3} - \frac{2}{\pi}\right) (\sin x - x \cos x) < \frac{\sin x}{x} - \frac{2 + \cos x}{3} < -\left(\frac{2}{3} - \frac{2}{\pi}\right) (\sin x - x \cos x)^2
\]

hold for \(0 < x < \pi/2\).

Inspired by inequalities (9)–(11), this paper intends to improve the famous inequality (1) from two different directions and to draw two results as follows.

Theorem 1. Let \(0 < x < \pi/2\). Then

\[
\frac{\sin x}{x} - \frac{2 + \cos x}{3} < -\frac{1}{180} x^4 \left(\frac{\sin x}{x}\right)^{2/7}
\]

holds with the best constant \(-1/180\).
Theorem 2. Let $0 < x < \pi/2$. Then

$$\frac{\sin x}{x} - \frac{2 + \cos x}{3} < -\left(\frac{2}{3} - \frac{2}{\pi}\right)(\sin x - x \cos x)^{(\pi^2 - 12)/(3\pi^2 - \pi^3)} \tag{13}$$

holds with the best constant $(2/3 - 2/\pi)$.

In this paper, we use the power series expansions of two functions cot x and $1/\sin x$ and their derivative functions to prove the main conclusions. We know that the Taylor coefficients of these power series expansions are closely related to the Bernoulli number, which is related to the Riemann zeta function through the following identity:

$$\zeta(2n) = \frac{(2\pi)^{2n}}{2(2n)!}|B_{2n}|, \quad n \in \mathbb{N}.$$

The latest research information on the Riemann zeta function can be found in Milovanović and Rassias [46].

2. Lemmas

Lemma 1. Let B_{2n} be the even-indexed Bernoulli numbers. Then (see [49–51])

\[
\begin{align*}
\cot x &= \frac{1}{x} - \sum_{n=1}^{\infty} \frac{2^{2n}}{(2n)!} |B_{2n}| x^{2n-1}, \\
\frac{1}{\sin^2 x} &= \frac{1}{x^2} + \sum_{n=1}^{\infty} \frac{(2n-1)2^{2n}}{(2n)!} |B_{2n}| x^{2n-2}, \\
\frac{1}{\sin x} &= \frac{1}{x} + \sum_{n=1}^{\infty} \frac{2^{2n} - 2}{(2n)!} |B_{2n}| x^{2n-1}, \\
\cos x &= \frac{1}{x^2} - \sum_{n=1}^{\infty} \frac{(2n-1)(2^{2n}-2)}{(2n)!} |B_{2n}| x^{2n-2}.
\end{align*}
\]

hold for all $x \in (0, \pi)$.

Proof. From

\[
\frac{1}{\sin^2 x} = \csc^2 x = -(\cot x)' \quad \text{and} \quad \frac{\cos x}{\sin^2 x} = \frac{1}{\left(\frac{1}{\sin x}\right)'},
\]

the power series expansions (15) and (17) follow. \qed

Lemma 2 ([52–54]). Let B_{2n} be the even-indexed Bernoulli numbers, $n = 1, 2, \cdots$. Then

\[
\frac{2^{2n-1} - 1}{2^{2n+1} - 1} \frac{(2n+2)(2n+1)}{\pi^2} < \frac{|B_{2n+2}|}{|B_{2n}|} < \frac{2^{2n-1} - 1}{2^{2n+1} - 1} \frac{(2n+2)(2n+1)}{\pi^2}. \tag{18}
\]

To prove our results, we also need the monotone form of the L’Hospital rule shown in [55–57] and the criterion for the monotonicity of the quotient of power series shown in [58].

Lemma 3 ([55–57]). Let $f, g : [a, b] \rightarrow \mathbb{R}$ be two continuous functions, which are differentiable on (a, b). Further, let $g' \neq 0$ on (a, b). If f'/g' is increasing (or decreasing) on (a, b), then the functions $(f(x) - f(b^-)) / (g(x) - g(b^-))$ and $(f(x) - f(a^+)) / (g(x) - g(a^+))$ are also increasing (or decreasing) on (a, b).

Lemma 4 ([58]). Let a_n and b_n $(n = 0, 1, 2, \cdots)$ be real numbers, and let the power series $A(x) = \sum_{n=0}^{\infty} a_n x^n$ and $B(x) = \sum_{n=0}^{\infty} b_n x^n$ be convergent for $|x| < R$ $(R \leq +\infty)$. If $b_n > 0$ for
Let \(n = 0, 1, 2, \cdots \), and if \(e_n = a_n/b_n \) is strictly increasing (or decreasing) for \(n = 0, 1, 2, \cdots \), then the function \(A(x)/B(x) \) is strictly increasing (or decreasing) on \((0, R)\) \((R \leq +\infty)\).

Lemma 5. Let \(0 < x < \pi/2 \), and

\[
\varphi = \frac{\ln(2/\pi)}{\ln(2^{3/2}/\pi)} = 4.3004 \ldots, \varphi = 4.
\]

Then

\[
\left(\frac{\sin(x/2)}{(x/2)} \right)^\varphi < \frac{\sin x}{x} < \left(\frac{\sin(x/2)}{(x/2)} \right)^\varphi
\]

holds with the optimal exponents \(\varphi \) and \(\varphi \).

Proof. Let

\[
Q(x) = \frac{\ln(\sin x/2)}{\ln x} = a(x)/b(x), \ 0 < x < \pi/2.
\]

Then

\[
a'(x) = -\frac{1}{x \sin x} (\sin x - x \cos x),
\]

\[
b'(x) = -\frac{1}{2x \sin x} \left(2 \sin \frac{x}{2} - x \cos \frac{x}{2} \right) = -\frac{1}{2x \sin x} \left(2 \sin \frac{x}{2} \cos \frac{x}{2} - x \cos^2 \frac{x}{2} \right)
\]

\[
= -\frac{1}{x \sin x} \left(\sin x - x \cos^2 \frac{x}{2} \right) = -\frac{1}{2x \sin x} \left(2 \sin x - 2x \cos^2 \frac{x}{2} \right)
\]

\[
= -\frac{1}{2x \sin x} [2 \sin x - (x \cos x + 1)],
\]

and

\[
\frac{a'(x)}{b'(x)} = \frac{-\frac{1}{x \sin x} (\sin x - x \cos x)}{-\frac{1}{2x \sin x} [2 \sin x - (x \cos x + 1)]} = 2 \frac{\sin x - x \cos x}{2 \sin x - x (\cos x + 1)} = \frac{a(x)}{b(x)},
\]

where

\[
A(x) = \frac{\sin x - x \cos x}{\sin x} = 1 - x \cot x = 1 - x \left[1 - \sum_{n=1}^{\infty} \frac{2^{2n}}{(2n)!} B_{2n} |x|^{2n-1} \right]
\]

\[
= \sum_{n=1}^{\infty} \frac{2^{2n}}{(2n)!} |B_{2n}| x^{2n},
\]

\[
B(x) = \frac{2 \sin x - x (\cos x + 1)}{\sin x} = 2 - x \cot x - \frac{x}{\sin x}
\]

\[
= 2 - x \left[1 - \sum_{n=1}^{\infty} \frac{2^{2n}}{(2n)!} |B_{2n}| x^{2n-1} \right] - x \left[1 + \sum_{n=1}^{\infty} \frac{2^{2n}-2}{(2n)!} |B_{2n}| x^{2n-1} \right]
\]

\[
= \sum_{n=1}^{\infty} \frac{2^{2n}}{(2n)!} |B_{2n}| x^{2n} - \sum_{n=1}^{\infty} \frac{2^{2n}-2}{(2n)!} |B_{2n}| x^{2n} = \sum_{n=1}^{\infty} \frac{2}{(2n)!} |B_{2n}| x^{2n}.
\]

Since

\[
\frac{\frac{2^{2n}}{(2n)!} |B_{2n}|}{\frac{2^{2n}}{(2n)!} |B_{2n}|} = \frac{2^{2n}}{(2n)!} x^{2n-1} = 2^{2n-1}
\]
is increasing for \(n \geq 1 \), by Lemma 4 we have that \(a'(x)/b'(x) \) is increasing on \((0, \pi/2)\). By Lemma 3 we get that the function \(Q(x) = a(x)/b(x) = [a(x) - a(0^+)]/[b(x) - b(0^+)] \) is increasing on \((0, \pi/2)\). At the same time, we find that

\[
\lim_{x \to 0^+} Q(x) = 4, \quad \lim_{x \to (\pi/2)^-} Q(x) = \frac{\ln \frac{7}{\pi}}{\ln \frac{23}{\pi}} = 4.3004 \ldots
\]

This completes the proof of Lemma 5. \(\square \)

Lemma 6 ([59,60]). Let \(\{a_k\}_{k=0}^{\infty} \) be a nonnegative real sequence with \(a_m > 0 \) and \(\sum_{k=m+1}^{\infty} a_k > 0 \), and

\[
S(t) = -\sum_{k=0}^{m} a_k t^k + \sum_{k=m+1}^{\infty} a_k t^k
\]

be a convergent power series on the interval \((0, r)\) \((r > 0)\). Then the following statements are true:

1. If \(S(r^-) \leq 0 \), then \(S(t) < 0 \) for all \(t \in (0, r) \);
2. If \(S(r^-) > 0 \), then there exists \(t_0 \in (0, r) \) such that \(S(t) < 0 \) for \(t \in (0, t_0) \) and \(S(t) > 0 \) for \(t \in (t_0, r) \).

3. Proofs of Main Results

3.1. Proof of Theorem 1

The desired conclusion is equivalent to

\[
\frac{2 + \cos x}{3} - \frac{\sin x}{x} > \frac{1}{180} x^4 \left(\frac{\sin x}{x} \right)^{2/7}
\]

\[
\iff \left(\frac{2 + \cos x}{3} - \frac{\sin x}{x} \right)^7 > \left(\frac{1}{180} x^4 \left(\frac{\sin x}{x} \right)^{2/7} \right)^7 = \frac{x^{26} \sin^2 x}{6122 \times 1200300000000}
\]

\[
\iff 7 \ln \left(\frac{2 + \cos x}{3} - \frac{\sin x}{x} \right) > \ln \left(\frac{x^{26} \sin^2 x}{6122 \times 1200300000000} \right).
\]

Let

\[
F(x) = 7 \ln \left(\frac{2 + \cos x}{3} - \frac{\sin x}{x} \right) - \ln \left(\frac{x^{26} \sin^2 x}{6122 \times 1200300000000} \right),
\]

where \(0 < x < \pi/2 \). Then

\[
F'(x) = \frac{\sin x}{3x^2 \left(\frac{2 + \cos x}{3} - \frac{\sin x}{x} \right)} f(x),
\]

where

\[
f(x) = \frac{(99 - 7x^2) \sin^2 x - 2x^2 \cos^2 x - 41x \cos x \sin x - 4x^2 \cos x - 52x \sin x}{\sin^2 x}
\]

\[
= 99 - 5x^2 - 2x^2 \frac{1}{\sin^2 x} - 41x \frac{\cos x}{\sin x} - 4x^2 \frac{\cos x}{\sin^2 x} - 52 \frac{x}{\sin x}.
\]

By substituting the power series expansions of all functions involved in Lemma 1 into \(f(x) \), we obtain that

\[
f(x) = \sum_{n=4}^{\infty} \frac{(4n - 13)2^{2n} - (16n - 112)}{(2n)!} B_{2n} x^{2n} > 0
\]
due to \((4n - 13)2^{2n} - (16n - 112) > 0\) for \(n \geq 4\), which can be proved by mathematical induction. So \(F'(x) > 0\) for all \(x \in (0, \pi/2)\). Then \(F(x)\) increases on \((0, \pi/2)\). Therefore, \(F(x) > F(0^+) = 0\). At the same time, we find that

\[
\lim_{x \to 0^+} \frac{2 + \cos x}{x} - \sin x = \frac{1}{180},
\]

Then the proof of Theorem 1 is complete.

3.2. Proof of Theorem 2

The desired conclusion is equivalent to

\[
\frac{2 + \cos x}{3} - \sin x > \left(\frac{2}{3} - \frac{2}{\pi}\right)\left(x - \frac{\pi}{2}\right), \quad 0 < x < \frac{\pi}{2}.
\]

Let

\[
G(x) = \ln\left(\frac{2 + \cos x}{3} - \sin x\right) - \ln\left(\frac{2}{3} - \frac{2}{\pi}\right) - \frac{\pi - 2}{3\pi - \pi^2} \ln(x - \cos x), \quad 0 < x < \frac{\pi}{2}.
\]

Then

\[
G(0^+) = \infty, \quad G\left(\frac{\pi}{2}\right) = 0,
\]

and

\[
G'(x) = -\frac{(\sin^2 x)g(x)}{\pi^2 x(2x - 3\sin x + x\cos x)(\sin x - x\cos x)(\pi - 3)},
\]

where

\[
(\sin^2 x)g(x) = (12 - \pi^2)\left(\sin x\right)^3 + x(\sin x\cos x)\left(2\pi^2 - \pi^3 + 12\right)x^2 - 18\pi^2 + 6\pi^3
\]

\[
+ (9\pi^2 - 3\pi^3)x^2 + (\sin x)\left(4\pi^3 - 9\pi^2 - 36\right)x^2 + 9\pi^2 - 3\pi^3.
\]

The proof of \(G'(x) < 0\) on \((0, \pi/2)\) is complete when proving \(g(x) > 0\) on \((0, \pi/2)\). In fact, by Lemma 1 we have

\[
g(x) = 2\left(12 - \pi^2\right)x^3 \frac{1}{\sin x} + x(\cot x)\left(\frac{1}{\pi^2 - \pi^3 + 12}\right)x^2 - 18\pi^2 + 6\pi^3
\]

\[
+ (9\pi^2 - 3\pi^3)\left(\frac{1}{\sin^2 x}\right) + \left(\frac{1}{\pi^2 - \pi^3 + 12}\right)x^2 + 9\pi^2 - 3\pi^3
\]

\[
= 2\left(12 - \pi^2\right)x^3 \frac{1}{\sin x} + \sum_{n=1}^{\infty} \frac{2n}{(2n)!} B_{2n} \left|x^{2n-1}\right|
\]

\[
+ \left(\frac{1}{\pi^2 - \pi^3 + 12}\right)x^2 + \sum_{n=1}^{\infty} \frac{2n-1}{(2n)!} B_{2n-1} \left|x^{2n-2}\right|
\]

\[
+ (9\pi^2 - 3\pi^3)x^2 + \sum_{n=1}^{\infty} \frac{2n-1}{(2n)!} B_{2n-1} \left|x^{2n-2}\right|
\]

\[
+ \left(4\pi^3 - 9\pi^2 - 36\right)x^2 + 9\pi^2 - 3\pi^3.
\]
\[
2 \pi^2 (12 - \pi^2) + 2 \pi^3 (12 - \pi^2) \sum_{n=1}^{\infty} \frac{22n - 2}{(2n)!} B_{2n} |x^{2n-1} \\
+ \left[6 \pi^3 - 18 \pi^2 + (2 \pi^2 - \pi^3 + 12) x^2 \right] \left[1 - \sum_{n=1}^{\infty} \frac{22n}{(2n)!} B_{2n} |x^{2n} \right] \\
- 3 \pi^2 (\pi - 3) \left[1 + \sum_{n=1}^{\infty} \frac{22n(2n - 1)}{(2n)!} B_{2n} |x^{2n} \right] \\
+ (4 \pi^3 - 9 \pi^2 - 36) x^2 + 9 \pi^2 - 3 \pi^3 \\
= 2 \pi^2 (12 - \pi^2) + 2 \pi^3 (12 - \pi^2) \sum_{n=1}^{\infty} \frac{22n - 2}{(2n)!} B_{2n} |x^{2n+2} + \left(6 \pi^3 - 18 \pi^2 + (2 \pi^2 - \pi^3 + 12) x^2 \right) \\
- (6 \pi^3 - 18 \pi^2) \sum_{n=1}^{\infty} \frac{22n}{(2n)!} B_{2n} |x^{2n} - (2 \pi^2 - \pi^3 + 12) \sum_{n=1}^{\infty} \frac{22n}{(2n)!} B_{2n} |x^{2n+2} - 3 \pi^2 (\pi - 3) \\
- 3 \pi^2 (\pi - 3) \sum_{n=1}^{\infty} \frac{22n(2n - 1)}{(2n)!} B_{2n} |x^{2n} + (4 \pi^3 - 9 \pi^2 - 36) x^2 + 9 \pi^2 - 3 \pi^3 \\
= 2 \left(12 - \pi^2 \right) \sum_{n=2}^{\infty} \frac{22n - 2}{(2n)!} B_{2n} |x^{2n+2} - (6 \pi^3 - 18 \pi^2) \sum_{n=3}^{\infty} \frac{22n}{(2n)!} B_{2n} |x^{2n} \\
- (2 \pi^2 - \pi^3 + 12) \sum_{n=2}^{\infty} \frac{22n}{(2n)!} B_{2n} |x^{2n+2} - 3 \pi^2 (\pi - 3) \sum_{n=3}^{\infty} \frac{22n(2n - 1)}{(2n)!} B_{2n} |x^{2n} \\
= 2 \left(12 - \pi^2 \right) \sum_{n=2}^{\infty} \frac{22n - 2}{(2n)!} B_{2n} |x^{2n+2} - (2 \pi^2 - \pi^3 + 12) \sum_{n=2}^{\infty} \frac{22n}{(2n)!} B_{2n} |x^{2n+2} \\
- 3 \pi^2 (\pi - 3) \sum_{n=3}^{\infty} \frac{22n(2n - 1)}{(2n)!} B_{2n} |x^{2n} + (6 \pi^3 - 18 \pi^2) \sum_{n=3}^{\infty} \frac{22n}{(2n)!} B_{2n} |x^{2n} \\
= 2 \left(12 - \pi^2 \right) \sum_{n=2}^{\infty} \frac{22n - 2}{(2n - 2)!} B_{2n-2} |x^{2n} - (2 \pi^2 - \pi^3 + 12) \sum_{n=3}^{\infty} \frac{22n - 2}{(2n - 2)!} B_{2n-2} |x^{2n} \\
- 3 \pi^2 (\pi - 3) \sum_{n=3}^{\infty} \frac{22n(2n - 1)}{(2n)!} B_{2n} |x^{2n} - (6 \pi^3 - 18 \pi^2) \sum_{n=3}^{\infty} \frac{22n}{(2n)!} B_{2n} |x^{2n} \\
= \sum_{n=3}^{\infty} a_n x^{2n},
\]
where
\[
\begin{align*}
a_n &= 2(12 - \pi^2) \frac{2^{2n-2} - 2}{(2n - 2)!} \left| B_{2n-2} \right| - \left(2\pi^2 - \pi^3 + 12\right) \frac{2^{2n-2}}{(2n - 2)!} \left| B_{2n-2} \right| \\
&\quad - 3\pi^2(\pi - 3) \frac{2^{2n}(2n - 1)}{(2n)!} \left| B_{2n} \right| - \left(6\pi^3 - 18\pi^2\right) \frac{2^{2n}}{(2n)!} \left| B_{2n} \right| \\
&= \frac{(\pi^3 + 12 - 4\pi^2)2^{2n} + 16\pi^2 - 192}{4(2n - 2)!} \left| B_{2n-2} \right| - \frac{3(\pi - 3)\pi(2n + 1)2^{2n}}{(2n)!} \left| B_{2n} \right|.
\end{align*}
\]

We can compute to get
\[
a_3 = \frac{1}{20} \pi^2 - \frac{1}{45} \pi^3 + \frac{1}{5} \approx 4.4518 \times 10^{-3} > 0,
\]
and prove \(a_n < 0\) for \(n \geq 4\). The latter is equivalent to
\[
\frac{|B_{2n}|}{|B_{2n-2}|} > \frac{((\pi^3 + 12 - 4\pi^2)2^{2n} + 16\pi^2 - 192)(2n)(2n - 1)}{12(\pi - 3)\pi^2 2^{2n}(2n + 1)}. \tag{19}
\]

By Lemma 2, we have
\[
\frac{|B_{2n}|}{|B_{2n-2}|} > \frac{2^{2n-3} - 1}{2^{2n-1} - 1},
\]
so the proof of (19) is complete when proving that for \(n \geq 4\),
\[
\frac{2^{2n-3} - 1}{2^{2n-1} - 1} > \frac{((\pi^3 + 12 - 4\pi^2)2^{2n} + 16\pi^2 - 192)(2n)(2n - 1)}{12(\pi - 3)\pi^2 2^{2n}(2n + 1)},
\]
that is,
\[
\frac{2^{2n-3} - 1}{2^{2n-1} - 1} > \frac{(\pi^3 + 12 - 4\pi^2)2^{2n} + 16\pi^2 - 192}{12(\pi - 3)(2n + 1)^2 2^{2n}}
\]
or
\[
(2^{2n-3} - 1)12(\pi - 3)(2n + 1)2^{2n} - \left(2^{2n-1} - 1\right) \left[(\pi^3 + 12 - 4\pi^2)2^{2n} + 16\pi^2 - 192 \right] = \frac{1}{2} h(n) > 0,
\]
where
\[
h(n) = 2^{4n} - 2^{2n} \left[\frac{32n(\pi - 3) + 12\pi + 12\pi^2 - \pi^3 - 144}{6n(\pi - 3) + 3\pi + 4\pi^2 - \pi^3 - 21} \right. \\
&\quad - \frac{2(192 - 16\pi^2)}{6n(\pi - 3) + 3\pi + 4\pi^2 - \pi^3 - 21} \tag{20}
\]
with
\[
h(4) = \frac{32(-53.568\pi - 8001\pi^2 + 2032\pi^3 + 183.564)}{-2\pi - 4\pi^2 + \pi^3 + 93} \approx 74463 > 0,
\]
\[
h(5) = \frac{32(-1072.896\pi - 130305\pi^2 + 32704\pi^3 + 3605044)}{-33\pi - 4\pi^2 + \pi^3 + 111} \approx 1.0519 \times 10^6 > 0,
\]
\[
h(6) = \frac{32(-20407.296\pi - 2094081\pi^2 + 524032\pi^3 + 67485708)}{-39\pi - 4\pi^2 + \pi^3 + 129} \approx 1.6771 \times 10^7 > 0.
\]
Since
\[2^{2n} \frac{24n(\pi - 3) + 12\pi + 12\pi^2 - \pi^3 - 144}{6n(\pi - 3) + 3\pi + 4\pi^2 - \pi^3 - 21} > \frac{2(192 - 16\pi^2)}{6n(\pi - 3) + 3\pi + 4\pi^2 - \pi^3 - 21}, \]
we complete the proof of \(h(n) > 0 \) when proving
\[2^{2n} > \frac{4[24n(\pi - 3) + 12\pi + 12\pi^2 - \pi^3 - 144]}{6n(\pi - 3) + 3\pi + 4\pi^2 - \pi^3 - 21} \]
for \(n \geq 6 \). We proved \((21)\) by mathematical induction. When \(n = 6 \), this inequality \((21)\) is obviously true. Now let us say that
\[2^{2m} \]
and
\[(21) \]
we just proved that \(h(n) x \) decreases on \(\pi/2 \). Therefore, \(g(x) > 0 \) on \((0, \pi/2) \). So \(G'(x) < 0 \) for all \(x \in (0, \pi/2) \). Then \(G(x) \) decreases on \((0, \pi/2) \). Then \(G(x) > G((\pi/2)^-) = 0 \) for all \(x \in (0, \pi/2) \). At the same time, we find that
\[\lim_{x \to 0^+} \frac{\frac{2 + \cos x}{3} - \frac{\sin x}{x}}{(\sin x - x \cos x)(\pi^2 - 12)/(3\pi^2 - \pi^3)} = \frac{2}{3} - \frac{2}{\pi}. \]
Then the proof of Theorem 2 is complete.

4. Remarks

In this section, we compare new conclusions (12) and (13) with (9)–(11).

Remark 1. The inequality (12) is better than the one (9) because

\[
- \frac{1}{180} \frac{x^4}{(\sin x / x)^{2/7}} < - \frac{1}{45} (1 - \cos x)^2
\]

\[\iff x^4 \left(\frac{\sin x}{x} \right)^{2/7} > 4(1 - \cos x)^2 = |2(1 - \cos x)|^2 \]

\[\iff x^2 \left(\frac{\sin x}{x} \right)^{1/7} > 2(1 - \cos x) = \left(2 \sin \frac{x}{2}\right)^2 \]

\[\iff \left(\frac{\sin x}{x} \right)^{1/7} > \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^2 \]

\[\iff \left(\frac{\sin x}{x} \right) > \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^{14}. \]

The last inequality follows from Lemma 5 due to

\[\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^{2/7} > \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^{14} \iff \frac{\sin \frac{x}{2}}{\frac{x}{2}} < 1, \]

where

\[\varphi = \frac{\ln(2/\pi)}{\ln(23/2/\pi)} = 4.3004\ldots\]

Remark 2. It is pointed out in [48] that

\[
\frac{\sin x}{x} - \frac{2 + \cos x}{3} < - \left(\frac{2}{3} - \frac{2}{\pi} \right) (\sin x - x \cos x)^2
\]

\[\iff - \left(\frac{2}{3} - \frac{2}{\pi} \right) \frac{1}{(\pi/2 - 1)^2} (x - \sin x)^2. \]

Now we can obtain that the inequality (13) is better than the right-hand side ones of (10) and (11), that is,

\[
\frac{\sin x}{x} - \frac{2 + \cos x}{3} < - \left(\frac{2}{3} - \frac{2}{\pi} \right) (\sin x - x \cos x)^2
\]

\[\iff - \left(\frac{2}{3} - \frac{2}{\pi} \right) (\sin x - x \cos x)^2 \]

holds for all \(x \in (0, \pi/2)\) due to

\[\iff \left(\frac{2}{3} - \frac{2}{\pi} \right) (\sin x - x \cos x)^2 > (\sin x - x \cos x)^2 \]

\[\iff 0 < \sin x - x \cos x < 1. \]
Remark 3. We can find that the inequality (12) is better than the right-hand side one of (13) on $(0, 1.4117)$ while (13) is better than the one (12) on $(1.4117, \pi/2)$. So the inequality (12) has the advantage on the left-hand side of the interval $(0, \pi/2)$ and the advantage of the inequality (13) lies near this point $\pi/2$.

Remark 4. We also note that the following inequality conclusion appears in [29]:

$$\frac{\sin x}{x} < \frac{2 + \cos(x/2^n)}{3} \prod_{k=1}^{n} \cos\left(\frac{x}{2^k}\right), \quad n = 0, 1, \ldots \quad (23)$$

holds for all $x \in (0, \pi/2)$. From (23) we have that the inequality

$$\frac{\sin x}{x} - \frac{2 + \cos x}{3} < \frac{2 + \cos(x/2^n)}{3} \prod_{k=1}^{n} \cos\left(\frac{x}{2^k}\right) - \frac{2 + \cos x}{3}, \quad n = 0, 1, \ldots \quad (24)$$

holds for all $x \in (0, \pi/2)$. In particular, letting $n = 3$ in the above inequality gives that for all $x \in (0, \pi/2)$,

$$\frac{\sin x}{x} - \frac{2 + \cos x}{3} < \frac{2 + \cos(x/2^3)}{3} \cos\left(\frac{x}{2^3}\right) \cos\left(\frac{x}{2^2}\right) \cos(x/2) - \frac{2 + \cos x}{3}. \quad (25)$$

It is not hard to find that the inequality (25) is better than the one (13) on $(0, 1.5446)$ but the inequality (13) is stronger than the one (25) on $(1.5446, \pi/2)$. In other words, the advantage of (25) even (24) is on the left-hand side of the interval $(0, \pi/2)$ while the advantage of (13) is near the right endpoint $\pi/2$.

5. Conclusions

In this paper, using the power series expansions of the functions $\cot x$, $1/ \sin x$, and $1/ \sin^2 x$, and the estimate of the ratio of two adjacent even-indexed Bernoulli numbers, we obtained some new Cusa–Huygens type inequalities, which greatly improve known results.

Funding: This paper will be supported by the natural science foundation of China (61772025).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author is thankful to reviewers for reviewers’ careful corrections to and valuable comments on the original version of this paper. This paper is supported by the Natural Science Foundation of China (No. 61772025).

Conflicts of Interest: The author declares that he has no conflict of interest.

References
1. Campan, F.T. The Story of Number π; Editura Albatros: Bucuresti, Romania, 1977.
2. Iuskevici, A.P. History of mathematics in 16th and 16th centuries, Moskva. 1961.
3. Cajori, F. A History of Mathematics; MacMillan and Co.: New York, NY, USA; London, UK, 1894.
4. Huygens, C. Oeuvres Completes, Publiées par la Société Hollandaise des Sciences; M. Nijhoff: Haga, Sweden, 1988; Volume 20. Available online: https://books.google.co.jp/books?hl=zh-CN&lr=&id=_ITOdIOjB9QC&oi=fnd&pg=PR1&dq=4.+Huygens,+C.+Oeuvres+Completes,+Publiees+par+la+Societe+Hollandaise+des+Science%3B+Haga,+1988%3B+Volume+20.&ots=DcmWrgXUgZ&sig=ykCrdomKWoaRNP0FbQMcvXYgCg&redir_esc=y#v=onepage&q&f=false (accessed on 17 July 2021).
5. Queries-Replies. Math. Comput. 1949, 3, 561–563. [CrossRef]
6. Vahlen, K.T. Konstruktionen und Approximationen in Systematischer Darstellung; BG Teubner: Leipzig, Germany, 1911; pp. 188–190. Available online: https://archive.org/details/konstruktionenun00vahluoft/ (accessed on 17 July 2021).
7. Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970.
8. Sándor, J.; Bencze, M. On Huygens’ trigonometric inequality. RGMIA Res. Rep. Collect. 2005, 8, 1–4. Available online: https://rgmia.org/papers/v8n3/Huygens.pdf (accessed on 17 July 2021).
9. Zhu, L. On Frame’s Inequalities. J. Inequal. Appl. 2018, 94, 1–14. [CrossRef]
10. Chen, C.-P.; Cheung, W.-S. Sharp Cusa and Becker-Stark inequalities. J. Inequal. Appl. 2011, 2011, 1–6. [CrossRef]
11. Bagul, Y.J. Remark on the paper of Zheng Jie Sun and Ling Zhu. J. Math. Inequal. 2019, 13, 801–803. [CrossRef]
12. Zhu, L. New Cusa–Huygens type inequalities. AIMS Math. 2020, 5, 4874–4888. [CrossRef]
13. Zhu, L. A source of inequalities for circular functions. Comput. Math. Appl. 2009, 58, 1998–2004. [CrossRef]
14. Mortici, C. The natural approach of Wilker-Cusa–Huygens inequalities. Math. Inequal. Appl. 2011, 14, 535–541. [CrossRef]
15. Chen, X.-D.; Shi, J.; Wang, Y.; Xiang, P. A New Method for Sharpening the Bounds of Several Special Functions. Results Math. 2017, 72, 695–702. [CrossRef]
16. Chen, X.-D.; Ma, J.; Jin, J.; Wang, Y. A two-point-Pade-approximant-based method for bounding some trigonometric functions. J. Inequal. Appl. 2018, 140, 1–15. [CrossRef]
17. Chen, X.-D.; Ma, J.; Li, Y. Approximating trigonometric functions by using exponential inequalities. J. Inequal. Appl. 2019, 53, 1–14. [CrossRef]
18. Banjac, B. System for Automatic Proving of Some Classes of Analytic Inequalities. Ph.D. Thesis, School of Electrical Engineering, Belgrade, Serbia, May 2019. Available online: http://nardus.mpn.gov.rs/ (accessed on 17 July 2021).
19. Wang, M.-K.; Wang, Z.-K.; Chu, Y.-M. An optimal double inequality between geometric and identric means. Appl. Math. Lett. 2012, 25, 471–475. [CrossRef]
20. Qiu, Y.-F; Wang, M.-K.; Chu, Y.-M.; Wang, G.-D. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean. J. Math. Inequal. 2011, 5, 301–306. [CrossRef]
21. Chu, Y.-M.; Long, B.-Y. Sharp inequalities between means. Math. Inequal. Appl. 2011, 14, 647–655. [CrossRef]
22. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [CrossRef]
23. Lv, Y.-P.; Wang, G.-D.; Chu, Y.-M. A note on Jordan type inequalities for hyperbolic functions. Appl. Math. Lett. 2012, 25, 505–508. [CrossRef]
24. Yang, Z.-H.; Chu, Y.-M.; Song, Y.-Q.; Li, Y.-M. A sharp double inequality for trigonometric functions and its applications. Abstr. Appl. Anal. 2014, 2014, 592085. [CrossRef]
25. Yang, Z.-H.; Chu, Y.-M.; Wang, M.-K. Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 2015, 428, 587–604. [CrossRef]
26. Yang, Z.H.; Chu, Y.-M. Sharp Wilker-type inequalities with applications. J. Inequal. Appl. 2014, 2014, 166. [CrossRef]
27. Chu, H.-H.; Yang, Z.-H.; Chu, Y.-M.; Zhang, W. Generalized Wilker-type inequalities with two parameters. J. Inequal. Appl. 2016, 2016, 187. [CrossRef]
28. Sun, H.; Yang, Z.-H.; Chu, Y.-M. Necessary and sufficient conditions for the two parameter generalized Wilker-type inequalities. J. Inequal. Appl. 2016, 2016, 322. [CrossRef]
29. Neuman, E.; Sandor, J. On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa–Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 2010, 13, 715–723. [CrossRef]
30. Zhu, L. Some new inequalities of the Huygens type. Comput. Math. Appl. 2009, 58, 1180–1182. [CrossRef]
31. Bercu, G. Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016, 2016, 99. [CrossRef]
32. Bercu, G. The natural approach of trigonometric inequalities-Padé approximant. J. Math. Inequal. 2017, 11, 181–191. [CrossRef]
33. Bercu, G. Sharp bounds on the sinc function via the Fourier series method. J. Math. Inequal. 2019, 13, 495–504. [CrossRef]
34. Wu, Y.T.; Bercu, G. New refinements of Becker-Stark and Cusa–Huygens inequalities via trigonometric polynomials method. RACSAM 2021, 115, 87. [CrossRef]
35. Bagul, Y.J.; Chesneau, C.; Kostić, M. On the Cusa–Huygens inequality. RACSAM 2021, 115, 29. [CrossRef]
36. Malešević, B. One method for proving inequalities by computer. J. Inequal. Appl. 2007, 2007, 78691. [CrossRef]
37. Malešević, B.; Makragić, M.; A Method for Proving Some Inequalities on Mixed Trigonometric Polynomial Functions. J. Math. Inequal. 2016, 10, 849–876. [CrossRef]
38. Malešević, B.; Nenecic, M.; Zhu, L.; Banjac, B.; Petrovic, M. Some new estimates of precision of Cusa–Huygens and Huygens approximations. Appl. Anal. Discrete Math. 2021, 15, 243–259. [CrossRef]
39. Malešević, B.; Lutovac, T.; Banjac, B. One method for proving some classes of exponential analytical inequalities. Filomat 2018, 32, 6921–6925. [CrossRef]
40. Malešević, B.; Lutovac, T.; Rašajski, M.; Mortici, C. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. Adv. Differ. Equ. 2018, 2018, 90. [CrossRef] [PubMed]
41. Lutovac, T.; Malešević, B.; Mortici, C. The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 2017, 116. [CrossRef]
42. Lutovac, T.; Malešević, B.; Rašajski, M. A new method for proving some inequalities related to several special functions. Results Math. 2018, 73, 100. [CrossRef]
43. Rašajski, M.; Lutovac, T.; Malešević, B. About some exponential inequalities related to the sinc function. J. Inequal. Appl. 2018, 2018, 150. [CrossRef]
44. Banjac, B.; Makragić, M.; Malešević, B. Some notes on a method for proving inequalities by computer. Results Math. 2016, 69, 161–176. [CrossRef]
45. Malešević, B.; Rašajski, M.; Lutovac, T. Double-sided Taylor’s approximations and their applications in Theory of analytic inequalities. In Differential and Integral Inequalities; Rassias, T.M., Andrica, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 151, pp. 569–582. [CrossRef]
46. Anderson, D.G.; Vuorinen, M.; Zhang, X.H. Topics in Special Functions III. In Analytic Number Theory, Approximation Theory and Special Functions; Milovanović, G.V., Rassias, M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 297–345.
47. Bercu, G. Fourier series method related to Wilker–Cusa–Huygens inequalities. Math. Inequal. Appl. 2019, 22, 1091–1098. [CrossRef]
48. Bagul, Y.J.; Banjac, B.; Chesneau, C.; Kostić, M.; Malešević, B. New refinements of Cusa–Huygens inequality. Results Math. 2021, 76, 107. [CrossRef]
49. Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series 55; Ninth printing; National Bureau of Standards: Washington, DC, USA, 1972.
50. Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004.
51. Li, J.-L. An identity related to Jordan’s inequality. Int. J. Math. Math. Sci. 2006, 2006, 76782. [CrossRef]
52. Zhu, L. New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. RACSAM 2020, 114, 83. [CrossRef]
53. Yang, Z.H.; Tian, J.F. Sharp bounds for the ratio of two zeta functions. J. Comput. Appl. Math. 2020, 364. [CrossRef]
54. Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [CrossRef]
55. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Inequalities for quasiconformal mappings in space. Pac. J. Math. 1993, 160, 1–18. [CrossRef]
56. Anderson, G.D.; Qiu, S.L.; Vamanamurthy, M.K.; Vuorinen, M. Generalized elliptic integrals and modular equations. Pac. J. Math. 2000, 192, 1–37. [CrossRef]
57. Pinelis, I. L’Hospital type results for monotonicity, with applications. J. Inequal. Pure Appl. Math. 2002, 3, 5.
58. Biernacki, M.; Krzyż, J. On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. M. Curie–Skłodowska 1955, 2, 134–145.
59. Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018, 462, 1714–1726. [CrossRef]
60. Yang, Z.-H.; Tian, J.-F.; Zhu, Y.-R. A Rational Approximation for the Complete Elliptic Integral of the First Kind. Mathematics 2020, 8, 635. [CrossRef]