Remarks on Haar meager sets and Haar null sets in spaces of sequences

Eliza Jabłońska

Department of Mathematics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, POLAND

Abstract

In the paper we will show how to construct a Haar meager set (consequently meager) which is not Haar null, and conversely, a meager Haar null set which is not Haar meager in spaces of sequences: l^p with $p \geq 1$, c_0 or c. It refers to the paper [2].

Keywords: Haar meager set, Haar null set, meager set

2000 MSC: 28A05, 54E52, 58A05.

1. Introduction

In 1972 J.P.R. Christensen defined "Haar null" sets in an abelian Polish group (a topological abelian group with a complete separable metric) in such a way that in a locally compact group it is equivalent to the notion of Haar measure zero set. More precisely, in a fixed abelian Polish group X a set $A \subset X$ is called Haar null if there is a Borel probability measure μ on X and a Borel set $B \subset X$ such that $A \subset B$ and $\mu(x + B) = 0$ for all $x \in X$. These definition has been extended further to nonabelian groups by J. Mycielski [7]. Unaware of the result of Christensen, B.R. Hunt, T. Sauer and J.A. Yorke [3]-[4] found this notation again, but in a topological abelian group with a complete metric (not necessary separable).

In 2013 U.B. Darji introduced another family of "small" sets in an abelian Polish group, which is equivalent to the notion of meager sets in a locally compact group. In an abelian Polish group X he called a set $A \subset X$ Haar meager if there is a Borel set $B \subset X$ with $A \subset B$, a compact metric space K and a continuous function $f : K \rightarrow X$ such that $f^{-1}(B + x)$ is meager in K for all $x \in X$.

The main aim of the paper is to show easy constructions of a Haar meager, but not Haar null set and, conversely, a meager Haar null set which is not Haar meager in spaces of sequences: l^p with $p \geq 1$, c_0 or c.
2. The main results

Definition 1. Let X be an abelian Polish group, $\mathcal{B}(X)$ be the Borel σ–algebra on X and denote by $\mathcal{F}(X)$ the family of all sets $A \subset X$ such that

$$\forall_{K \subset X\text{-compact}} \exists_{x_K \in X} K + x_K \subset A.$$

In fact $\mathcal{F}(X)$ is a proper linearly invariant σ–filter. What is interesting, each set $A \in \mathcal{F}(X) \cap \mathcal{B}(X)$ is neither Haar null (in view of the Ulam theorem), nor Haar meager.

S. Solecki [8], and also E. Matoušková and M. Zelený [5], showed how to find a closed nowhere dense set from the family \mathcal{F} in any abelian non-locally compact Polish group. We use this fact to construct a Haar meager, but not Haar null set, as well as a meager Haar null set which is not Haar meager in spaces of sequences: l_p with $p \geq 1$, c_0 or c.

First we prove two theorems, which we will use in further considerations.

Theorem 1. Let X, Y be an abelian Polish group. If $A \subset X$ is Haar meager and $B \subset B_0$ for some $B_0 \in \mathcal{B}(Y)$, then the set $A \times B \subset X \times Y$ is Haar meager.

Proof. Assume that $A \subset X$ is Haar meager in X, i.e. there are a set $A_0 \in \mathcal{B}(X)$ with $A \subset A_0$, a compact metric space K and a continuous function $f : K \rightarrow X$ such that $f^{-1}(A_0 + x)$ is meager in K for each $x \in X$. Take any compact set $L \subset Y$ and define a continuous function $g : K \times L \rightarrow X \times Y$ in the following way:

$$g(k, l) = (f(k), l) \text{ for every } (k, l) \in K \times L.$$

Then,

$$g^{-1}((A_0 \times B_0) + (x, y)) = g^{-1}((A_0 + x) \times (B_0 + y))$$

$$= f^{-1}(A_0 + x) \times [(B_0 + y) \cap L]$$

for each $(x, y) \in X \times Y$. Since the set $f^{-1}(A_0 + x)$ is meager in K, by the Kuratowski-Ulam theorem the set $g^{-1}((A_0 \times B_0) + (x, y))$ is meager in $K \times L$. Clearly, $A \times B \subset A_0 \times B_0$ and $A_0 \times B_0 \in \mathcal{B}(X \times Y)$, what ends the proof.

Theorem 2. Let X, Y be an abelian Polish group. For every set $A \in \mathcal{B}(X) \cap \mathcal{F}(X)$ and non-Haar meager $B \in \mathcal{B}(Y)$ the set $A \times B \subset X \times Y$ is not Haar meager.

Proof. Clearly, $A \times B \in \mathcal{B}(X \times Y)$. Take a compact metric space K and a continuous function $f : K \rightarrow X \times Y$. Then there are continuous functions $f_X : K \rightarrow X$ and $f_Y : K \rightarrow Y$ such that

$$f(z) = (f_X(z), f_Y(z)) \text{ for each } z \in K.$$
The set $f_X(K)$ is compact in X and $A \in \mathcal{F}(X)$, so $A \supset f_X(K) + x_K$ for some $x_K \in X$. Hence $f_X^{-1}(A - x_K) \supset K$. Since B is not Haar meager in Y, $f_Y^{-1}(B + y_K)$ is comeager in K for some $y_K \in Y$. Moreover:

$$f^{-1}((A \times B) + (-x_K, y_K)) = f^{-1}((A - x_K) \times (B + y_K)) = f_X^{-1}(A - x_K) \cap f_Y^{-1}(B + y_K) \supset K \cap f_Y^{-1}(B + y_K).$$

Thus $f^{-1}((A \times B) + (-x_K, y_K))$ is comeager in K and, consequently, the set $A \times B$ is not Haar meager in $X \times Y$.

The above theorem suggest the following

Problem 1. Let X, Y be an abelian Polish group. Is it rue or false that for every non-Haar meager sets $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y)$ the set $A \times B \subset X \times Y$ is not Haar meager?

A negative answer implies the same question under additional assumption that one of abelian Polish group X, Y is locally compact.

3. Applications

Now, consider the space X as one of the following spaces of sequences: c_0, c or l_p with $p \geq 1$. Such spaces have a very nice property: $X = \mathbb{R} \times X$.

Fix $A \in \mathcal{B}(X) \cap \mathcal{F}(X)$. Let $S := B \times A \subset \mathbb{R} \times X$, where $B \subset \mathbb{R}$ is a meager set of positive Lebesgue measure.

By the analogue of the Fubini theorem [1, Theorem 6] it is easy to observe that S is not Haar null, since $S(a) = B$ is the set of the positive Lebesgue measure for each $a \in A$ and A is not Haar null. Moreover, in view of Theorem [1] the set S is Haar meager. In this way we constructed the set S, which is Haar meager (consequently meager), but not Haar null in X.

Now, fix $A \in \mathcal{B}(X) \cap \mathcal{F}(X)$ once again. Let $T := C \times A \subset \mathbb{R} \times X$, where $C \subset \mathbb{R}$ is a comeager set of the Lebesgue measure zero.

By an analogue of the Fubini theorem [1, Theorem 6] we can easy deduce that T is Haar null in X, because $T(a) = C$ is the set of the Lebesgue measure zero for each $a \in A$ and $T(a) = \emptyset$ for each $a \in X \setminus A$. Moreover, by Theorem [2] the set T is not Haar meager in $\mathbb{R} \times X = X$. Finally, T is meager according to the Kuratowski-Ulam theorem, because the set A is meager. In this way we constructed the set T, which is Haar null, meager, but not Haar meager in X.

Example 1. Define the set $A = \left\{(x_n)_{n \in \mathbb{N}} \in c_0 : \forall n \in \mathbb{N} \; x_n \geq 0\right\}$. Such set is a closed nowhere dense set (see [6, Example 6.2]), which belongs to the filter $\mathcal{F}(c_0)$.

Let $S := B \times A \subset c_0$, where $B \subset \mathbb{R}$ is a meager set of the positive Lebesgue measure. Then the set S is Haar meager, but not Haar null in c_0.

3
Let $T := C \times A \subset c_0$, where $C \subset \mathbb{R}$ is a comeager set of the Lebesgue measure zero. Such set T is Haar null, meager, but not Haar meager in c_0.

Problem 2. Let X be any abelian Polish group, which is not locally compact. How to find a Haar meager but not Haar null set and, conversely, how to construct a Haar null, meager but not Haar meager set in X?

References

[1] J.P.R. Christensen, *On sets of Haar measure zero in abelian Polish groups*, Israel J. Math. **13** (1972), 255-260.

[2] U.B. Darji, *On Haar meager sets*, Topology and its Applications **160** (2013), 2396-2400.

[3] B.R. Hunt, T. Sauer, J.A. Yorke, *Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces*, Bull. Amer. Math. Soc. **27** (1992), 217-238.

[4] B.R. Hunt, T. Sauer, J.A. Yorke, *Prevalence: an addendum*, Bull. Amer. Math. Soc. **28** (1993), 306-307.

[5] E. Matoušková, M. Zelený, *A note on intersections of non–Haar null sets*, Colloq. Math. **96** (2003), 1-4.

[6] E. Matoušková, L. Zajíček, *Second order differentiability and Lipschitz smooth points of convex functionals*, Czechoslovak Mathematical Journal **48** (1998), 617-640.

[7] J. Mycielski, *Unsolved problems on the prevalence of ergodicity, instability and algebraic independence*, Ulam Quarterly **1** (1992), 30-37.

[8] S. Solecki, *On Haar null sets*, Fund. Math. **149** (1996), 205-210.