Search for B^0 Decays to Invisible Final States and to $\nu\nu\gamma$

B. Aubert, R. Barate, D. Boutigny, F. Couderc, J.-M. Gaillard, A. Hicheur, Y. Karyotakis, J. P. Lees, V. Tisserand, A. Zghiche, A. Palano, A. Pompli, J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu, G. Eigen, I. Ofte, B. Stugu, G. S. Abrams, A. W. Bordland, A. B. Breon, D. N. Brown, J. Button-Shaffer, R. N. Cahn, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, Y. Groyzman, R. G. Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, V. G. Shelkov, W. A. Wenzel, M. Barrett, K. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson, M. Fritsch, K. Goetzen, T. Held, H. Koch, B. Lewandowski, M. Pelizaeus, M. Steinke, J. T. Boyd, N. Chevalier, W. N. Cottingham, M. P. Kelly, E. T. Latham, F. F. Wilson, T. Cuhadar-Donszelmann, C. Hearty, N. S. Knecht, T. S. Mattison, J. A. McKenna, D. Thiessens, A. Khan, P. Kyberd, L. Teodorescu, V. E. Blinov, V. P. Druzhinin, V. B. Golubev, V. N. Ivanchenko, E. A. Kravchenko, A. P. Omuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, A. N. Yushkov, D. Best, M. Bruinsma, M. Chao, I. Eschrich, D. Kirkby, A. J. Lankford, M. Mandelkern, R. K. Mommsen, W. Roethel, D. P. Stoker, C. Buchanan, B. L. Hartfield, S. D. Foulkes, J. W. Gary, B. C. Shen, K. Wang, D. del Re, H. K. Hadavand, E. J. Hill, D. B. MacFarlane, H. P. Paar, Sh. Rahatlou, V. Sharma, J. W. Berryhill, C. Campagnari, B. Dahmes, S. L. Levy, O. Long, A. Lu, M. A. Mazur, J. D. Richman, W. Verkerke, T. W. Beck, A. M. Eiser, C. A. Heusch, W. S. Lockman, T. Schalk, R. E. Schmitz, B. A. Schumm, A. Seiden, P. Pradlin, D. C. Williams, M. G. Wilson, J. Albert, E. Chen, G. P. Dubois-Felsmann, A. Dvoretski, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, A. Ryd, A. Samuel, S. Yang, S. Jayatilleke, G. Mancinelli, B. T. Meadows, M. D. Sokoloff, T. Abe, F. Blanc, P. Bloom, S. Chen, W. T. Ford, U. Naemen, A. Olivas, P. Rankin, J. G. Smith, J. Zhang, L. Zhang, A. Chen, J. L. Harton, A. Soffer, W. H. Toki, R. J. Wilson, Q. L. Zeng, D. Altenburg, T. Brandt, J. Brose, M. Dickopp, E. Feltresi, A. Hauke, H. M. Lackner, M. Muller-Pfieferkorn, R. Nogowski, S. Otto, A. Petzold, J. Schubert, K. R. Schubert, R. Schwerz, B. Spaan, J. E. Sundermann, D. Bernard, G. R. Bonneau, F. Brochard, P. Grenier, S. Schrenk, Ch. Thiebaux, G. Vasileiadis, M. Verderi, D. J. Bard, P. J. Clark, D. Lavin, F. Muheim, S. Playfer, Y. Xie, M. Andreotti, V. Azzolini, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, E. Luppi, M. Negri, L. Piemontese, A. Sarti, E. Treadwell, R. Baldini-Ferroli, A. Calcetta, R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, A. Zallo, A. Buzzo, R. Capra, R. Contri, G. Crosetti, M. Lo Vetere, M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santoni, S. Tosi, S. Bailey, G. Brandenburg, M. Morii, E. Won, R. S. Dubitzky, U. Langenegger, W. Bhimji, A. Bowerman, P. D. Dauncey, U. Egede, J. R. Gaillard, G. W. Morton, J. A. Nash, G. P. Taylor, M. J. Charles, G. J. Grenier, M. Mallik, J. Cochran, H. B. Crawley, J. Lamsa, W. T. Meyer, S. Prell, E. I. Rosenberg, J. Yi, M. Davier, G. Grosdidier, A. Höcker, S. Laplace, F. Le Diberder, V. Lepeltier, A. M. Lutz, T. C. Petersen, S. Plaszczynski, M. H. Schune, L. Tantot, G. Wormser, C. H. Cheng, D. J. Lange, M. C. Simani, M. W. Wright, A. J. Bevan, C. A. Chaves, J. P. Coleman, J. I. Forster, J. R. Fry, E. Gabathuler, R. Gamet, R. J. Parry, D. J. Payne, R. J. Sloane, C. Touramanis, J. J. Back, C. M. Cormack, P. F. Harrison, D. Di Lodovico, G. B. Mohanty, C. L. Brown, G. Cowan, R. L. Flack, H. U. Fleaecher, M. G. Green, P. S. Jackson, T. R. McMahon, S. Ricciardi, F. Salvatore, M. A. Winter, D. Brown, C. L. Davis, J. Allison, N. R. Barlow, R. J. Barlow, P. A. Hart, M. C. Hodgkinson, G. D. Lafferty, A. J. Lyon, J. C. Williams, F. Farlin, W. D. Hulsbergen, J. A. Jawahery, D. Kovalskiy, C. K. Lae, V. Lillard, D. A. Roberts, G. Blaylock, C. Dallapiccola, K. T. Flood, S. S. Hertzbach, R. Koller, V. B. Koptchev, T. B. Moore, S. Saremi, H. Staengle, S. Willocq, R. Cowan, G. Sciolla, F. Taylor, R. K. Yamamoto, D. J. J. Mangeol, P. M. Patel, S. H. Robertson, A. Lazzaro, F. Palombo, J. M. Bauer, L. Creemaldi, V. Eschenburg, R. Godang, R. Kroeger, J. Reidy, D. A. Sanders, D. J. Summers, H. W. Zhao, S. Brunet, D. Côté, P. Taras, H. Nicholson, N. Cavallo, F. Fabozzi, C. Gatto, L. Lista, D. Monorchio, P. Paolucci, D. Piccolo, C. Sciacca, M. Baak, H. Bulten.
We establish upper limits on branching fractions for B^0 decays to final states where the decay products are purely invisible (i.e., no observable final state particles) and for B^0 decays to $\nu \bar{\nu} \gamma$.

(Dated: March 25, 2022)
Within the Standard Model, these decays have branching fractions that are below current experimental sensitivity, but various models of physics beyond the Standard Model predict significant contributions from these channels. Using 88.5 million $B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance by the BABAR experiment at the PEP-II e^+e^- storage ring at the Stanford Linear Accelerator Center, we establish upper limits at the 90% confidence level of 22×10^{-5} for the branching fraction of $B^0 \to$ invisible and 4.7×10^{-5} for the branching fraction of $B^0 \to \nu\bar{\nu}\gamma$.

PACS numbers: 13.20.He,12.15.Hh,12.60.Jv

This paper describes a novel search for “disappearance decays” of B^0 mesons \bar{A}, where the B^0 decay contains no observable final state particles, or such “invisible” decay products plus a single photon. Invisible decay products are particles that are neither charged nor would generate a signal in an electromagnetic calorimeter. These include neutrinos, as well as exotic, hypothetical particles (such as neutralinos). The rate for invisible B decays is negligibly small within the Standard Model (SM) of particle physics, but can be larger in several models of new physics. The SM decay $B^0 \to \nu\bar{\nu}$, which would give such an invisible experimental signature, is strongly helicity-suppressed by a factor of order $(m_\nu/m_{B^0})^2$ $\bar{2}$. When combined with the weak coupling constant G_F^2, the resulting branching fraction is necessarily well below the range of present experimental observability. The SM expectation for the $B^0 \to \nu\bar{\nu}\gamma$ branching fraction is predicted to be of order 10^{-9}, with very little hadronic uncertainty $\bar{2}$. An experimental observation of an invisible $(+\gamma)$ decay of a B^0 with current experimental sensitivity would thus be a clear sign of beyond-SM physics, as it could not be accommodated within SM theoretical uncertainty. No quantitative experimental bounds on B^0 to invisible or $\nu\bar{\nu}\gamma$ have been previously established; however, a reinterpretation of data used for previous constraints on $b \to s\nu\bar{\nu}$ and other modes could potentially imply upper limits on the quark-level process of this decay $\bar{1}$.

Several models of new physics can give significant branching fractions for invisible decays of the B^0. A phenomenological model motivated by the observation of an anomalous number of dimuon events by the NuTeV experiment allows for an invisible B^0 decay to a $\nu\chi^0$ final state, where χ^0 is a neutralino, with a branching fraction in the 10^{-7} to 10^{-6} range $\bar{2},\bar{6}$. Also, models with large extra dimensions, which would provide a possible solution to the hierarchy problem, can also have the effect of producing significant, although small, rates for invisible B^0 decays $\bar{5},\bar{8},\bar{4}$.

The data used in this analysis were collected with the BABAR detector at the PEP-II e^+e^- collider. The data sample consists of an integrated luminosity of 81.5 fb$^{-1}$ accumulated at the $\Upsilon(4S)$ resonance, containing (88.5 ± 1.0) million $B\bar{B}$ pair events, and 9.6 fb$^{-1}$ accumulated at a center-of-mass (CM) energy about 30 MeV below $B\bar{B}$ threshold. The asymmetric energies of the PEP-II e^+ and e^- beams result in a Lorentz boost $\beta\gamma \approx 0.55$ of the $B\bar{B}$ pairs.

A detailed description of the BABAR detector is presented in Ref. $\bar{10}$. Charged particle momenta are measured in a tracking system consisting of a 5-layer double-sided silicon vertex tracker (SVT) and a 40-layer hexagonal-cell wire drift chamber (DCH). The SVT and DCH operate within a 1.5 T solenoidal field, and have a combined solid angle coverage in the CM frame of 90.5%. Photons and long-lived neutral hadrons are detected and their energies are measured in a CsI(Tl) electromagnetic calorimeter (EMC), which has a solid angle coverage in the CM frame of 90.9%. Muons are identified in the instrumented flux return (IFR), composed of resistive plate chambers and layers of iron that return the magnetic flux of the solenoid. A detector of internally reflected Cherenkov light (DIRC) is used for identification of charged kaons and pions. A GEANT4 $\bar{11}$ based Monte Carlo simulation of the BABAR detector response was used to optimize the signal selection criteria and evaluate the signal detection efficiency.

The detection of invisible B decays uses the fact that B mesons are created in pairs, due to flavor conservation in e^+e^- interactions. If one B is reconstructed in an event, one can thus infer that another B has been produced. This technique has been exploited in several BABAR analyses $\bar{12},\bar{13},\bar{14}$. We reconstruct events in which a B^0 decays to $D^{(*)-}\ell^+\nu$, then look for consistency with an invisible decay of the other neutral B (no observable final state particles) in the rest of the event. In order to help reject non-$B\bar{B}$ background, R2, the ratio of the second and zeroth Fox-Wolfram moments, is required to be less than 0.5 $\bar{15}$.

We reconstruct $D^{(*)-}$ in the decay modes $D^- \to K^+\pi^-\pi^-$ and $D^{*-} \to \bar{D}^{0}\pi^-$. In the latter case, \bar{D}^{0} is reconstructed in the decay modes $K^+\pi^-$, $K^+\pi^-\pi^0$, or $K^+\pi^-\pi^+\pi^-$. To form $D^{(*)-}$ candidates in these decay modes, K^+ candidates are combined with other tracks and π^0 candidates in the event. We identify K^+ candidates using Cherenkov-light information from the DIRC and energy-loss information (dE/dx) from the DCH and SVT. The π^0 candidates are composed of pairs of photons in the EMC. Each photon must have a reconstructed energy above 30 MeV in the laboratory frame, and the sum of their energies must be greater than 200 MeV. The π^0 candidates must have an invariant mass between 115 and 150 MeV/c2. A mass-constrained fit is imposed on π^0 candidates in order to improve the resolution on the
reconstructed invariant mass of the parent D meson.

We require the D^0 and $D^−$ candidates to have recon-
structed invariant masses within 20 MeV/c^2 of their re-
spective nominal masses [16], except for D^0 decays with
a $π^0$ daughter, which must be within 35 MeV/c^2 of the
nominal D^0 mass. Mass-constrained fits are applied to
D^0 and $D^−$ candidates in order to improve the measure-
ment of the momentum of each D. The difference in
reconstructed mass between $D^{(*)−}$ decay candidates and
their D^0 daughters must be less than 150 MeV/c^2. All
$D^{(*)−}$ candidates must have a total momentum between
0.5 and 2.5 GeV/c in the CM frame.

Tracks selected as lepton candidates must pass either
electron or muon selection criteria. We identify electron
candidates using energy and cluster shape information
from the EMC, and Cherenkov angle information from
the DIRC. Muon candidates are identified using informa-
tion from the IFR and EMC. Both electrons and muons
must also have a momentum of at least 1 GeV/c, and a
minimum of 20 DCH measurements.

To select $B^0 \to D^{(*)−}ℓ^+ν$ candidates, we require a
$D^{(*)−}$ candidate and a lepton candidate to be consistent
with production at a common point in space. We then
calculate the cosine of the angle between the $D^{(*)−}ℓ^+$
and the hypothesized B^0 candidate, under the assumption
that the only particle missing is a neutrino:

$$\cos θ_{B,D^{(*)−}ℓ^+} = \frac{(2 E_B E_{D^{(*)−}ℓ^+} - m_B^2 - m_{D^{(*)−}ℓ^+}^2)}{2 |\vec{p}_B||\vec{p}_{D^{(*)−}ℓ^+}|}. \quad (1)$$

The energy $E_{D^{(*)−}ℓ^+}$ and mass $m_{D^{(*)−}ℓ^+}$ of the
$D^{(*)−}ℓ^+$ combination are determined from reconstructed
momentum information, and m_B is the nominal B^0 mass. The
B^0 momentum $|\vec{p}_B|$ and energy E_B are determined
from beam parameters. When the assumption that a
neutrino is the only missing particle is incorrect, $\cos θ_{B,D^{(*)−}ℓ^+}$
can fall outside the region $[-1,1]$. We thus require the
$D^{(*)−}ℓ^+$ combination to satisfy $-2.5 < \cos θ_{B,D^{(*)−}ℓ^+} < 1.1$.
The asymmetric cut admits higher mass D^* states
where the additional decay products are lost, and al-

dows for detector energy and momentum resolution.
When more than one such $D^{(*)−}ℓ^+$ candidate is recon-
structed in an event, the one with the smallest value of
$|\cos θ_{B,D^{(*)−}ℓ^+}|$ is taken. We reconstruct a total of
126108 $B^0 \to D^{(*)−}ℓ^+ν$ candidate events in the data
sample, with a purity of approximately 66%.

We consider events with no charged tracks besides
those of a $B^0 \to D^{(*)−}ℓ^+ν$ candidate. Removing all
decay products of the $D^{(*)−}ℓ^+ν$ candidate from consid-
eration, we count the number of remaining EMC clusters
consistent with a K^0_L hypothesis, $N^{extra}_{K^0_L}$, and with a
photon hypothesis, $N^{extra}_γ$. Due to accelerator-induced
background and detector noise, the optimal requirements on
$N^{extra}_{K^0_L}$ and $N^{extra}_γ$ are loose. For $B^0 \to invisible$ candidates,
we require that $N^{extra}_{K^0_L} < 3$ and $N^{extra}_γ < 3$. For
$B^0 \to ννγ$ candidates, we require only that there be one
remaining photon candidate with energy greater than 1.2
GeV in the CM frame.

The total energy in the EMC, in the CM frame, of photon
clusters that remain after the decay products of
the $D^{(*)−}ℓ^+ν$ candidate are removed, is denoted by E_{extra}. For
$B^0 \to ννγ$, the energy of the highest-energy photon
remaining in the event (the hypothesized signal photon)
is also removed from E_{extra}. In both $B^0 \to invisible$ and
$B^0 \to ννγ$, this variable is strongly peaked near zero
for signal, whereas for the background it is less strongly
peaked, as seen in Fig. 1. The background can peak near
zero due to events in which all charged and neutral par-
icle from the signal B^0 are either outside the fiducial
volume of the detector, or are unreconstructed. For $B^0 \to ννγ$,
the background shape increases at large E_{extra} due to photons
arising from misreconstructed $π^0$ decays, and the best-fit
amount of signal is slightly (but not signi-

cantly) negative. We construct probability density
functions (PDFs) for the E_{extra} distribution for signal
(F_{sig}) and background (F_{bkgd}) using detailed simulation
of signal and background data. The background from acc-

elerator and detector noise is modelled using randomly-
triggered events in data. The two PDFs are combined
into an extended maximum likelihood function L, defined

FIG. 1: Distributions of E_{extra} for (a) $B^0 \to invisible$ and
(b) $B^0 \to ννγ$. The points with error bars correspond to
data. The curves represent maximum likelihood fits to a sum
of distributions modelling signal and background.
The photon momentum distribution predicted by the con-

as a function of the free parameters N_{sig} and N_{bkgd}

$$
\mathcal{L}(N_{\text{sig}}, N_{\text{bkgd}}) = \frac{e^{-N_{\text{sig}}+N_{\text{bkgd}}}}{N!} \times
\prod_{i=1}^{N} (N_{\text{sig}} N_{\text{bkgd}})^{-1} (F_{\text{sig}}(E_i) + F_{\text{bkgd}}(E_i)),
$$

where N_{sig} and N_{bkgd} are the number of signal and background events, respectively. The fixed parameters N and E_i are the total number of events in the data sample and the value of E_{extra} for the ith event, respectively. The negative log-likelihood ($-\ln \mathcal{L}$) is then minimized with respect to N_{sig} and N_{bkgd} in the data sample. The resulting fitted values of N_{sig} and N_{bkgd} are 17 ± 9 and 19 ± 10 for $B^0 \rightarrow \text{invisible}$ and $-1.1^{+2.4}_{-1.9}$ and 28^{+6}_{-5} for $B^0 \rightarrow \nu \bar{\nu} \gamma$, where the errors are statistical. Figure 2 shows the E_{extra} distributions for $B^0 \rightarrow \text{invisible}$ and $B^0 \rightarrow \nu \bar{\nu} \gamma$.

Using detailed Monte Carlo simulation of $B^0 \rightarrow \text{invisible}$ and $\nu \bar{\nu} \gamma$ events, we determine our signal efficiency to be $(16.7 \pm 1.0) \times 10^{-4}$ for $B^0 \rightarrow \text{invisible}$ and $(14.4 \pm 1.0) \times 10^{-4}$ for $B^0 \rightarrow \nu \bar{\nu} \gamma$, where the errors are again statistical. For the $B^0 \rightarrow \nu \bar{\nu} \gamma$ channel, we assume a photon momentum distribution predicted by the constituent quark model for $B^0 \rightarrow \nu \bar{\nu} \gamma$ decay, as given in Ref. [8].

For signal events that contain a reconstructed $B^0 \rightarrow D^{(*)} \ell^+ \ell^-$, approximately 46% (30%) of $B^0 \rightarrow \text{invisible}$ ($B^0 \rightarrow \nu \bar{\nu} \gamma$) events pass the signal selection.

We consider systematic uncertainties on the signal reconstruction efficiency, and also the uncertainty on the ratio of background to signal determined in the fit. Systematic uncertainties on the signal efficiency are dominated by the statistical size of the signal Monte Carlo sample (resulting in relative uncertainties of 6.5% and 6.8% for $B^0 \rightarrow \text{invisible}$ and $B^0 \rightarrow \nu \bar{\nu} \gamma$, respectively) and by uncertainty on the efficiency for determining the particle type of charged tracks (5.4% for both channels).

To determine 90% confidence level (C.L.) upper limits on the branching fractions of $B^0 \rightarrow \text{invisible}$ and $B^0 \rightarrow \nu \bar{\nu} \gamma$, we generate 8000 Monte Carlo experiments, each parametrized by the fitted numbers of signal and background events, the efficiency, and the number of $B\bar{B}$ events in the data sample. Errors are incorporated into the simulated experiments via a convolution of the systematic effects (treated as Gaussian distributions) and the systematic error (taken from the non-Gaussian likelihood function from the fit).

The resulting upper limits on the branching fractions are

$$
B(B^0 \rightarrow \text{invisible}) < 22 \times 10^{-5} \text{ and } B(B^0 \rightarrow \nu \bar{\nu} \gamma) < 4.7 \times 10^{-5} \text{ at 90% C.L.}
$$

If the $B^0 \rightarrow \text{invisible}$ branching fraction were zero, the probability of observing an equal or larger signal yield would be 6%.
We perform validation cross-checks on the results of this analysis. To check the measurement of the efficiency for reconstructing $B^0 \rightarrow D^{(*)-} \ell^+ \nu$ decays (which was determined using Monte Carlo simulation), we select a data sample in which a B^0 and a \bar{B}^0 are both reconstructed as decays to $D^{(*)-} \ell^+ \nu$ in the same event. Using the ratio of such “double tag” data events to events where just a single $D^{(*)-} \ell^+ \nu$ is reconstructed, and the number of $B^0\bar{B}^0$ events in the full data sample, we determine the efficiency for $B^0 \rightarrow D^{(*)-} \ell^+ \nu$ reconstruction in data. The result is consistent with that obtained from Monte Carlo simulation.

We also search for the unphysical modes $B^\pm \rightarrow \text{invisible}$ and $B^\pm \rightarrow \nu \bar{\nu} \gamma$ (which would violate charge conservation), to check that their resulting signal is consistent with zero. For these modes, we reconstruct $B^\pm \rightarrow D^0 \ell \nu X^0$, where X^0 can be a photon, π^0, or nothing. The D^0 is reconstructed in the same three decay modes as in $B^0 \rightarrow D^{(*)-} \ell^+ \nu$, and similar criteria are enforced for the reconstructed B^\pm as for the neutral B modes. All systematic errors are considered, and the “double tags” validation above is also performed for B^\pm reconstruction. The resulting fitted values of N_{sig} are $-6.9^{+10\text{(stat.)}}_{-9\text{(syst.)}}$ for $B^\pm \rightarrow \text{invisible}$ and $8^{+2}_{-3}\text{(stat.)} \pm 4\text{(syst.)}$ for $B^\pm \rightarrow \nu \bar{\nu} \gamma$, which are both consistent with zero. Figure 3 shows the E_{extra} distributions for the two validation modes.

In summary, we obtain limits on branching fractions for B^0 decays to an invisible final state and for B^0 decays to $\nu \bar{\nu} \gamma$. The upper limits at 90\% confidence level are 22×10^{-5} and 4.7×10^{-5} for the $B^0 \rightarrow \text{invisible}$ and $B^0 \rightarrow \nu \bar{\nu} \gamma$ branching fractions, respectively. The latter limit assumes a photon momentum distribution predicted by the constituent quark model for $B^0 \rightarrow \nu \bar{\nu} \gamma$ decay [3], whereas the $B^0 \rightarrow \text{invisible}$ limit is not decay-model dependent.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[1] Charge-conjugate decay modes are implied throughout this paper.
[2] G. Buchalla and A.J. Buras, Nucl. Phys. B 400, 225 (1993).
[3] C.D. Lu and D.X. Zhang, Phys. Lett. B 381, 348 (1996).
[4] ALEPH Collaboration, R. Barate et al., Eur. Phys. Jour. C 19, 213 (2001).
[5] NuTeV Collaboration, T. Adams et al., Phys. Rev. Lett. 87, 041801 (2001).
[6] A. Dedes, H. Dreiner, and P. Richardson, Phys. Rev. D 65, 015001 (2002).
[7] K. Agashe, N.G. Deshpande, and G.-H. Wu, Phys. Lett. B 489, 367 (2000).
[8] K. Agashe and G.-H. Wu, Phys. Lett. B 498, 230 (2001).
[9] H. Davoudi, P. Langacker, and M. Perelstein, Phys. Rev. D 65, 105015 (2002).
[10] BABAR Collaboration, B. Aubert et al., Nucl. Instr. and Methods A 479, 1 (2002).
[11] GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instr. and Methods A 506, 250 (2003).
[12] BABAR Collaboration, B. Aubert et al., BABAR-CONF-03/006, hep-ex/0304020.
[13] BABAR Collaboration, B. Aubert et al., BABAR-CONF-03/005, hep-ex/0303034.
[14] BABAR Collaboration, B. Aubert et al., BABAR-CONF-03/004, hep-ex/0304030.
[15] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[16] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).