UCC Library and UCC researchers have made this item openly available. Please [let us know](#) how this has helped you. Thanks!

Title	DFT calculations of the structure and stability of copper clusters on MoS2
Author(s)	Nies, Cara-Lena; Nolan, Michael
Publication date	2020-02-26
Original citation	Nies, C.-L. and Nolan, M. (2020) 'DFT calculations of the structure and stability of copper clusters on MoS2', Beilstein Journal of Nanotechnology, 11, pp. 391-406. doi: 10.3762/bjnano.11.30
Type of publication	Article (peer-reviewed)
Link to publisher's version	https://www.beilstein-journals.org/bjnano/articles/11/30
http://dx.doi.org/10.3762/bjnano.11.30	
Rights	© 2020 Nies and Nolan; licensee Beilstein-Institut. This is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano) The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjnano.11.30
Item downloaded from	http://hdl.handle.net/10468/9709

Downloaded on 2021-06-02T14:14:53Z
Supporting Information

for

DFT calculations of the structure and stability of copper clusters on MoS$_2$

Cara-Lena Nies and Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406. doi:10.3762/bjnano.11.30

Additional computational data
DOS Plots

Density of state plots for all Cu$_n$ adsorption configurations are given below.
Figure S1: DOS plots of Cu₁ and Cu₂ adsorption structures. Black = total DOS, blue = DOS projected onto Mo d orbitals, red = DOS projected onto S p orbitals, cyan = DOS projected onto Cu d orbitals. The contribution of the Cu d orbitals has been increased by a factor of 5 for the ease of comparison.
Figure S2: DOS plots of Cu$_3$ adsorption structures. Black = total DOS, blue = DOS projected onto Mo d orbitals, red = DOS projected onto S p orbitals, cyan = DOS projected onto Cu d orbitals. The contribution of the Cu d orbitals has been increased by a factor of five for the ease of comparison.
Figure S3: DOS plots of Cu\textsubscript{4} adsorption structures. Black = total DOS, blue = DOS projected onto Mo d orbitals, red = DOS projected onto S p orbitals, cyan = DOS projected onto Cu d orbitals. The contribution of the Cu d orbitals has been increased by a factor of five for the ease of comparison.
Figure S4: DOS plots of Cu$_1$ and Cu$_4$ adsorption structures on defective MoS$_2$. Black = total DOS, blue = DOS projected onto Mo d orbitals, red = DOS projected onto S p orbitals, cyan = DOS projected onto Cu d orbitals. The contribution of the Cu d orbitals has been increased by a factor of five for the ease of comparison.
Charge Density Distribution after adsorption of Cu$_n$

The charge density difference after adsorption of the most favourable Cu$_n$ is shown below.

![Charge density distribution](image)

Figure S5: Charge density difference after adsorption of the most favourable Cu$_n$ on pristine (A–G) and defective (H, I) MoS$_2$.

S7
Cu atom repelled from ML

An example of a Cu atom that is repelled from the MoS$_2$ ML is shown in Figure S6. This occurred during the relaxation of several Cu$_4$ structures on the MoS$_2$ monolayer with an S vacancy.

Figure S6: A Cu atom is repelled from the surface during the geometry relaxation.