Multi-Attribute Decision Making with VIKOR Method for Any Purpose Decision

Dodi Siregar¹, Heri Nurdiyanto², S Sriadhi³, Diana Suita⁴, Ummul Khair¹, Robbi Rahim⁵, Darmawan Napitupulu⁶, Achmad Fauzi⁷, Abdurrozzaq Hasibuan⁸, M Mesran⁹ and Andysah Putera Utama Siahaan⁴

¹Department of Informatics, Universitas Harapan Medan, Indonesia
²Department of Informatics, STMIK Dharma Wacana, Indonesia
³Department of Electrical Engineering, Universitas Negeri Medan, Indonesia
⁴Department of Civil Engineering, Universitas Harapan Medan, Indonesia
⁵School of Computer and Communication Engineering, Universiti Malaysia Perlis, Malaysia
⁶Research Center for Quality System and Testing Technology, Indonesian Institute of Sciences, Indonesia
⁷Department of Computer Engineering, STMIK Kaputama, Indonesia
⁸Department of Industrial Engineering, Universitas Islam Sumatera Utara, Indonesia
⁹Department of Informatics, STMIK Budi Darma, Indonesia

*usurobbi85@zoho.com

Abstract. Implementation of Decision Support System for various purposes now can facilitate policy makers to get the best alternative from a variety of predefined criteria, one of the methods used in the implementation of Decision Support System is VIKOR (Vise Kriterijumska Optimizacija I Kompromisno Resenje). VIKOR method in this research got the best results with an efficient and easily understood process computationally, it is expected that the results of this study facilitate various parties to develop a model any solutions.

1. Introduction

Decision support systems utilize private resources in a manner with computer skills to improve decision results, so this is a computer-based support system for decision-making that deals with semi-issues structured [1] [2]. Decision-making is always correlated with the uncertainty of the results of decisions taken, to reduce this uncertainty factor, the decision requires valid information about the conditions that have been, and may occur, then processed the information into several alternative problems solving as a material consideration in deciding the steps to be implemented, so that the decision taken is expected to provide maximum benefits [3].

The decision support system that will present in this research uses VIKOR method which aims to gather information about all data related to multiple attributes and multiple-criteria [4]. The use of VIKOR method is used because the method it can choose highly effective and efficient criteria for determining decision outcomes with multiple attributes and multiple-criteria [4] [5] [6]. VIKOR is a multiple attribute decision-making method used to solve problems in discrete space [7]. Therefore, in MADM is usually used to perform assessment or selection of several alternatives in a limited number,
the process of multiple attribute decision making in this paper shows the calculation of VIKOR method gradually with 25 alternatives and five criteria to determine the accuracy of the process of VIKOR.

2. Methodology

Some previous studies which discussed the VIKOR method is Papathanasiou [7], Papathanasiou makes web-based application of TOPSIS and VIKOR MCDM, the policy makers can choose 2 (two) different decision result from application, and also another researcher Nisel [8] analyzed the application of VIKOR method to determine the rank of graduation from business program students, and many other studies discussing experimental results with VIKOR and its combination, from several types of research it was observed that VIKOR could arrange for many alternatives, so it can be assumed that the VIKOR algorithm is still relevant to use and in this research VIKOR method is calculated gradually to facilitate the calculation process for many criteria, many attributes and many alternatives.

The VIKOR method focuses on ranking and chooses from a set of samples with different criteria, which can help decision makers to get a final determination [4].

VIKOR is a method for optimizing multiple criteria in a complex system. VIKOR’s basic concept is to rank the current samples by looking at the results of the corresponding values or regrets (R) of each sample. The VIKOR method has applied by some researchers in the case of MCDM [7].

The formula of the VIKOR method is as follows:

1) Normalization of the matrix

\[R_{ij} = \frac{(x_{ij} - x_j^*)}{(x_j^* - x_{ij}^*)} \]

Information:

- \(x_{ij} \) = Value of sample i data criteria j
- \((I = A, B, C, D, E) \)
- \((J = 5 \text{ criteria}) \)
- \(x_j^* \) = Best value in one criterion
- \(x_j^* \) = the worst value in one criterion

2) Calculating the S and R-Value

\[S_i = \sum_{j=1}^{n} w_j \times (R_{ij}) \]

\(w_j \) = weighting criteria

The value of S is achieved from the sum of the result of the multiplication of the criteria weights by the data in each sample

\[R_i = \max_j \ [w_j \times R_{ij}], \text{ largest value from } [w_j \times R_{ij}] \]

The value of R is the largest value of the multiplication of the weight of the criteria with the normalized data of each sample

3) Calculates the VIKOR index

\[\text{Formula} = \left[\frac{S_i - S_{i'}}{S_{i'} - S_{i}} \right] \times V + \left[\frac{R_i - R_{i'}}{R_{i'} - R_i} \right] \times (1-V) \]

- \(S = \text{smallest } S \text{ value (the best value)} \)
- \(S^* = \text{the largest } S \text{ value} \)
- \(R = \text{the smallest } R \text{ value} \)
- \(R^* = \text{the largest } R \text{ value} \)

3. Result and Discussion

The analysis of the VIKOR method can be seen gradually in the following test process gradually, for the first step is to determine the criteria to be given the weight value for VIKOR calculation process, Table 1 below are the criteria that are used in this paper:
Table 1. Criteria and Weight

No	Criteria	Weight (%)
1	C1	30
2	C2	25
3	C3	17
4	C4	20
5	C5	8

The next process is to determine alternatives with values for each criterion:

Table 2. Alternative and Criteria Value

No	Alternative	Criteria				
		C1	C2	C3	C4	C5
1	A1	0	21	0	15	0
2	A2	11	23	5	13	3
3	A3	12	10	0	12	0
4	A4	10	15	0	12	0
5	A5	5	9	16	8	0
6	A6	9	8	13	5	0
7	A7	15	14	0	7	0
8	A8	24	12	0	18	0
9	A9	17	17	16	20	0
10	A10	5	8	17	5	6
11	A11	9	7	17	12	8
12	A12	10	10	5	20	0
13	A13	17	22	0	11	0
14	A14	0	12	0	11	0
15	A15	5	8	10	6	7
16	A16	5	8	7	4	0
17	A17	0	0	9	4	0
18	A18	10	14	0	11	0
19	A19	7	5	0	8	0
20	A20	11	15	0	5	0
21	A21	13	9	0	4	0
22	A22	17	20	0	4	0
23	A23	23	20	0	5	0
24	A24	0	0	0	0	0
25	A25	0	0	0	0	0

From table value of each criterion will be normalized data, the result can see as below, with example value Criteria C1

\[R(A1), C1 = \frac{(24-0)}{(24-0)} = 1 \]

\[R(A2), C1 = \frac{(24-11)}{(24-0)} = \frac{13}{24} = 0.54 \]

R (A1) and R (A2) are samples of normalization calculation of first criterion matrix with alternative 1 and alternative 2, and matrix normalization process is executed for all criteria and alternatives, the final result of matrix normalization process could be seen in Table 3 below:
Table 3. Normalization Matrix and Weight

No	Alternative	C1	C2	C3	C4	C5
1	A1	1	0.08	1	0.25	1
2	A2	0.54	0	0.71	0.35	0.62
3	A3	0.5	0.56	1	0.4	1
4	A4	0.58	0.35	1	0.4	1
5	A5	0.79	0.61	0.06	0.6	1
6	A6	0.62	0.65	0.23	0.75	1
7	A7	0.37	0.39	1	0.65	1
8	A8	0	0.48	1	0.1	1
9	A9	0.29	0.26	0.06	0	1
10	A10	0.79	0.65	0	0.75	0.25
11	A11	0.62	0.69	0	0.4	0
12	A12	0.58	0.56	0.71	0	1
13	A13	0.29	0.04	1	0.45	1
14	A14	1	0.48	1	0.45	1
15	A15	0.79	0.65	0.41	0.7	0.12
16	A16	0.79	0.65	0.58	0.8	1
17	A17	1	1	0.47	0.8	1
18	A18	0.58	0.39	1	0.45	1
19	A19	0.71	0.78	1	0.6	1
20	A20	0.54	0.35	1	0.75	1
21	A21	0.46	0.61	1	0.8	1
22	A22	0.29	0.13	1	0.8	1
23	A23	0.04	0.13	1	0.75	1
24	A24	1	1	1	1	1
25	A25	1	1	1	1	1

After the results obtained from the normalization of criteria and alternatives, the next is to multiply the value of normalization and weight so that the performance as table 4 below:

Table 4. Result Normalization x Weight

No	Alternative	C1	C2	C3	C4	C5
1	A1	30	2	17	5	8
2	A2	16.2	0	12.07	7	4.96
3	A3	15	14	17	8	8
4	A4	17.4	8.75	17	8	8
5	A5	23.7	15.25	1.02	12	8
6	A6	18.6	16.25	3.91	15	8
7	A7	11.1	9.75	17	13	8
8	A8	0	12	17	2	8
9	A9	8.7	6.5	1.02	0	8
10	A10	23.7	16.25	0	15	2
11	A11	18.6	17.25	0	8	0
12	A12	17.4	14	12.07	0	8
13	A13	8.7	1	17	9	8
14	A14	30	12	17	9	8
15	A15	23.7	9.75	6.97	14	0.96
16	A16	23.7	16.25	9.86	16	8
17	A17	30	25	7.99	16	8
Based on the formula VIKOR method that has been described and from the value of table 3 and table 4 and got the value of Q (VIKOR index) by using formula 3 of VIKOR, the results index value in

No	Alternative	Q Value
1	A1	0.9325
2	A2	0.8135
3	A3	0.4435
4	A4	0.4347
5	A5	0.5879
6	A6	0.4799
7	A7	0.4229
8	A8	0.292
9	A9	0
10	A10	0.78
11	A11	0.3595
12	A12	0.8211
13	A13	0.323
14	A14	0.8416
15	A15	0.5576
16	A16	0.6792
17	A17	0.707
18	A18	0.4478
19	A19	0.6492
20	A20	0.4632
21	A21	0.4968
22	A22	0.384
23	A23	0.3279
24	A24	1
25	A25	1

From the table above obtained the data that the sample (A9) has the smallest index value, and A9 is the best ranking, from the data table 5 above obtained graph of the process of using the VIKOR method for each criterion and alternatives that exist.
Based on the above graph shows the results of calculations VIKOR method meet proper distribution with a uniform process.

4. Conclusion
The experiment of the VIKOR method can help to complete effective decision-making because the concept is straightforward and easy to understand and the computation process is efficient and can measure the relative performance of various decision alternatives.

5. References
[1] Risawandi and R. Rahim, "Study of the Simple Multi-Attribute Rating Technique For Decision Support," International Journal of Scientific Research in Science and Technology (IJSRST), vol. 2, no. 6, pp. 491-494, 2016.
[2] Syamsudin and R. Rahim, "Study Approach Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)," International Journal of Recent Trends in Engineering & Research, vol. 3, no. 3, pp. 268-285, 2017.
[3] Mesran, G. Ginting, R. Rahim and Suginam, "Implementation of Elimination and Choice Expressing Reality (ELECTRE) Method in Selecting the Best Lecturer (Case Study STMIK BUDI DARMA)," International Journal of Engineering Research & Technology (IJERT), vol. 6, no. 2, pp. 141-144, 2017.
[4] C. T. Sasanka and K. Ravindra, "Implementation of VIKOR Method for Selection of Magnesium Alloy to Suit Automotive Applications," International Journal of Advanced Science and Technology, vol. 83, pp. 49-58, 2015.
[5] C.-H. Wang and C.-T. Pang, "Using VIKOR Method for Evaluating Service Quality of Online Auction under Fuzzy Environment," International Journal of Computer Science Engineering and Technology, vol. 1, no. 6, pp. 307-314, 2011.
[6] M. Xue, X. Tang and N. Feng, "An Extended VIKOR Method for Multiple Attribute Decision Analysis with Bidimensional Dual Hesitant Fuzzy Information," Mathematical Problems in Engineering, vol. 2016, pp. 1-16, 2016.
[7] J. Papathanasiou, N. Ploskas, T. Bournaris and B. Manos, "A Decision Support System for Multiple Criteria Alternative Ranking Using TOPSIS and VIKOR: A Case Study on Social Sustainability in Agriculture," in International Conference on Decision Support System Technology, Belgium, 2016.
[8] S. Nisel, "An Extended VIKOR Method for Ranking Online Graduate Business Programs," International Journal of Information and Education Technology, vol. 4, no. 1, pp. 103-107, 2014.

Figure 1. VIKOR Result