High expression of PARD3 predicts poor prognosis in hepatocellular carcinoma

Songwei Li1, Jian Huang2, Fan Yang1, Haiping Zeng3, Yuyun Tong1 & Kejia Li2*

Hepatocellular carcinoma (HCC) is one of the most commonly cancers with poor prognosis and drug response. Identifying accurate therapeutic targets would facilitate precision treatment and prolong survival for HCC. In this study, we analyzed liver hepatocellular carcinoma (LIHC) RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), and identified PARD3 as one of the most significantly differentially expressed genes (DEGs). Then, we investigated the relationship between PARD3 and outcomes of HCC, and assessed predictive capacity. Moreover, we performed functional enrichment and immune infiltration analysis to evaluate functional networks related to PARD3 in HCC and explore its role in tumor immunity. PARD3 expression levels in 371 HCC tissues were dramatically higher than those in 50 paired adjacent liver tissues (p < 0.001). High PARD3 expression was associated with poor clinicopathologic features, such as advanced pathologic stage (p = 0.002), vascular invasion (p = 0.012) and TP53 mutation (p = 0.009). Elevated PARD3 expression also correlated with lower overall survival (OS, HR = 2.08, 95% CI = 1.45–2.98, p < 0.001) and disease-specific survival (DSS, HR = 2.00, 95% CI = 1.27–3.16, p = 0.003). 242 up-regulated and 71 down-regulated genes showed significant association with PARD3 expression, which were involved in genomic instability, response to metal ions, and metabolisms. PARD3 is involved in diverse immune infiltration levels in HCC, especially negatively related to dendritic cells (DCs), cytotoxic cells, and plasmacytoid dendritic cells (pDCs). Altogether, PARD3 could be a potential prognostic biomarker and therapeutic target of HCC.

Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed cancer, accounting for 7% of all cancers worldwide1, and furthermore, the incidence of HCC continues increasing by 2–3% annually2,3. With a 5-year overall survival of 12–18%, HCC ranks second in terms of cancer-related death4,5. In the past decades, substantial progress has been made in prevention, diagnosis, and treatment for HCC6–8. However, due to insidious onset, rapid progression and a lack of effective screening strategies, less than 30% of HCC patients can be diagnosed at an early stage, and have the opportunity to undergo radical treatments4. Transarterial chemoembolization or systemic therapies are widely recommended for patients with advanced disease4,5, but unfortunately, the improvement in prognosis is not satisfactory enough even with the latest targeted drugs or immune-based therapies9–13. Therefore, identifying more accurate prognostic biomarkers and therapeutic targets would facilitate precision treatment and prolong survival for HCC patients.

Cell polarity is essential for epithelial cells to maintain normal morphology and perform physiological functions14. Aberrant cell polarity, a hallmark of cancers, is implicated in tumor formation, growth, invasion, and metastasis15. Cell polarity is regulated by sets of evolutionarily conserved polarity proteins including the partitioning-defective (Par) complex, Scribble complexes, and Crumbs complexes16. The Par complex, which has the most ubiquitous function among these proteins, consists of Par3, Par6, and atypical protein kinase C (aPKC)17. Par3 serves as an adaptor protein for the assembly of Par complex and multiple proteins, such as the Rac-GEF, Tiam1 or Rho GTPases, thereby activating polarity signaling18,19. PARD3, encoding Par3 protein, is a single-copy gene with 26 exons, and located on chromosome 10p11.22-p11.2117. Deleterious variants of PARD3 were first detected in neural tube defects, coeliac disease and ulcerative colitis19–21, and subsequently, a series of studies identified the dual function of PARD3 in different malignant tumors of epithelial origin14–18,22–27. However, the specific role and detailed mechanism of PARD3 in HCC has not been fully elucidated17.
To screen a biomarker closely related to the formation and progression of HCC, we analyzed the differential expression of PARD3 and its clinicopathological relevance, using liver hepatocellular carcinoma (LIHC) RNA sequencing (RNA-seq) data of HCC patients from The Cancer Genome Atlas (TCGA). Then, we put PARD3 into a prognosis analysis in order to evaluate predictive capacity. Moreover, we performed comparative transcriptome analysis, functional enrichment analysis and correlation analysis between PARD3 and immune cell infiltration to evaluate functional networks related to PARD3 in HCC and explore its role in tumor immunity.

Results

Overexpression of PARD3 in HCC. We initially compared PARD3 expression between tumor and normal tissues in multiple cancer types using the UCSC Xena database. As shown in Fig. 1A, PARD3 expression was significantly higher in cholangiocarcinoma (CHOL), Diffuse large B-cell lymphoma (DLBC), glioblastoma (GBM), kidney renal papillary cell carcinoma (KIRP), low-grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancreatic adenocarcinoma...
Co-expression genes and biological functions related to PARD3 in HCC. To overview the biological roles of PARD3 in HCC, we conducted gene ontology (GO) enrichment analysis of PARD3 and its associated identify differentially expressed genes (DEGs), including biological processes (BPs), molecular functions (MFs) and cellular components (CCs). As illustrated in the volcano plot (Fig. 4A), 242 up-regulated and 71 down-regulated genes were significantly related with PARD3 expression, top 10 of which were presented in the heatmap map (Fig. 4E). As the Par complex consists of Par3, Par6, and aPKC, we specifically analyzed the differentially regulated genes were significantly related with PARD3 expression, top 10 of which were presented in the heatmap map (Fig. 4A). Then, we made calibration curve of the nomogram, and calculated concordance index (C-index) to assess the predictive ability of PARD3 as a biomarker for HCC. As shown in Fig. 3D, the bias-corrected line in the calibration curve was close to the ideal line, and the C-index was 0.702 (95% CI = 0.668–0.736). In all, the nomogram was available to predict the prognosis of HCC patients, and PARD3 exhibited stable predictive ability.

Correlation of PARD3 overexpression with poor clinicopathologic features. To investigate over-expression of PARD3 and its clinicopathological relevance, 371 HCC samples with detailed patient information (retrieved from TCGA in June 2020) were divided into two groups by the median value of PARD3 expression. As shown in Table 1, high PARD3 expression was associated with advanced T stage, pathologic stage, residual tumor, histologic grade, vascular invasion and higher alpha fetoprotein (AFP). Otherwise, high PARD3 expression group also carried more TP53 mutation (Mut) than low PARD3 expression group. Whereas, the distributions of other clinicopathologic features showed no difference between high and low PARD3 expression group. Univariate logistic regression further confirmed the association between high PARD3 expression and poor clinicopathologic characteristics in HCC patients (Fig. 2A,B). In addition, the area under receiver operation characteristic (ROC) curve (AUC, AUC = 0.835, 95% CI = 0.792–0.877) indicated that PARD3 had a good diagnostic power, and was expected to be a potential biomarker for HCC (Fig. 2C).
Association of PARD3 with immune infiltration in HCC. Immune infiltration, which influences tumor purity, is one of the major risk factors in cancers, hence we quantified the enrichment scores (ECs)

Table 1. Clinicopathologic characteristics in LIHC cohort according to PARD3 expression. Mut mutant, WT wild type, BMI body mass index, AFP alpha fetoprotein, Alp albumin, TB total bilirubin, PT prothrombin time. †Statistically significant. ‡Fisher exact test.

Characteristics	level	Low expression of PARD3	High expression of PARD3	p-value	
n		186	185	0.356	
Gender (%)		Female	56 (30.1%)	65 (35.1%)	0.983
		Male	130 (69.9%)	120 (64.9%)	
Race (%)		Asian	78 (44.3%)	80 (43.7%)	
		Black or African	8 (4.5%)	9 (4.9%)	
		White	90 (51.1%)	94 (51.4%)	
T stage (%)		T1	105 (57.4%)	76 (41.1%)	0.006
		T2	43 (23.5%)	51 (27.6%)	
		T3	32 (17.5%)	48 (25.9%)	
		T4	3 (1.6%)	10 (5.4%)	
N stage (%)		N0	125 (99.2%)	127 (97.7%)	0.622
		N1	1 (0.8%)	3 (2.3%)	
M stage (%)		M0	132 (99.2%)	134 (97.8%)	0.622
		M1	1 (0.8%)	3 (2.2%)	
Pathologic stage (%)		Stage I	100 (57.5%)	71 (41.0%)	0.006
		Stage II	41 (23.6%)	45 (26.0%)	
		Stage III	31 (17.8%)	54 (31.2%)	
		Stage IV	2 (1.1%)	3 (1.7%)	
Tumor status (%)		Tumor free	108 (61.4%)	93 (52.8%)	0.132
		With tumor	68 (38.6%)	83 (47.2%)	
Residual tumor (%)		R0	172 (97.2%)	152 (92.1%)	0.023
		R1	4 (2.3%)	13 (7.9%)	
		R2	1 (0.6%)	0 (0.0%)	
Histologic grade (%)		G1	36 (19.6%)	19 (10.4%)	0.023
		G2	92 (50.0%)	85 (46.7%)	
		G3	52 (28.3%)	70 (38.5%)	
		G4	4 (2.2%)	8 (4.4%)	
Adjacent hepatic tissue inflammation (%)		Mild	46 (37.4%)	53 (47.7%)	0.144
		None	69 (56.1%)	48 (43.2%)	
		Severe	8 (6.5%)	10 (9.0%)	
Child–Pugh grade (%)		A	118 (91.5%)	99 (90.0%)	0.810
		B	10 (7.8%)	11 (10.0%)	
		C	1 (0.8%)	0 (0.0%)	
Fibrosis Ishak score (%)		0	47 (39.8%)	27 (28.7%)	0.405
		1–2	16 (13.6%)	15 (16.0%)	
		3–4	15 (12.7%)	13 (13.8%)	
		5–6	40 (33.9%)	39 (41.5%)	
Vascular invasion (%)		No	116 (72.0%)	90 (58.4%)	0.016
		Yes	45 (28.0%)	64 (41.6%)	
TP53 status (%)		Mut	40 (22.2%)	62 (34.8%)	0.012
		WT	140 (77.8%)	116 (65.2%)	
Age (median [IQR])		61.50 [53.00, 69.00]	60.50 [51.00, 69.00]	0.329	
Height (median [IQR])		168.00 [161.50, 174.00]	168.00 [161.00, 173.00]	0.590	
Weight (median [IQR])		72.00 [60.00, 84.00]	68.00 [59.00, 81.00]	0.210	
BMI (median [IQR])		24.84 [22.14, 28.88]	24.19 [21.24, 28.43]	0.256	
AFP (ng/ml) (median [IQR])		10.00 [3.00, 52.00]	28.00 [5.00, 1456.00]	0.001	
Alb (g/dl) (median [IQR])		4.00 [3.42, 4.40]	4.00 [3.55, 4.30]	0.520	
PT (s) (median [IQR])		1.10 [1.00, 8.93]	1.10 [1.00, 9.57]	0.538	
of 24 types of tumor-infiltrating immune cells (TIICs), in order to evaluate the association between PARD3 and immune infiltration levels in HCC. As illustrated in Fig. 6, PARD3 was involved in infiltration of T helper cells, Th2 cells, and T central memory (Tcm); but negatively related to infiltration of dendritic cells (DCs), cytotoxic cells, plasmacytoid dendritic cells (pDCs), neutrophils, immature DCs (iDCs), and regulatory T cells (Treg). Furthermore, we replicated immune infiltration analysis using another tumor-immune system interaction database (TISIDB), and obtained consistent results (Fig. S2).

Discussion
PARD3 plays a crucial role in establishment and maintenance of epithelial cell polarity23. So far, at least five PARD3 variants have been identified in human liver cDNA library32. PARD3 largely engages in cancer cell proliferation, apoptosis, invasion, migration and epithelial-mesenchymal transition (EMT)18,24,33,34. The modulation of PARD3 in tumorigenesis and progression among different cancers seems to be controversial. For instance, PARD3 acts as a tumor suppressor in lung, bladder, breast, cervical, esophageal and pancreatic cancers and malignant melanoma15,21,24,27,35–38, but it is found to be activated in ovarian cancer and clear-cell renal carcinoma18,25,38. In skin cancers, PARD3 shows dual effects depending on the tumor type16. In terms of HCC, a study reported the association between overexpression of PARD3 and extrahepatic metastasis, and suggested one of its possible mechanisms. However, the specific role and detailed mechanism of PARD3 in HCC has not been fully elucidated17. Hence, we performed the bioinformatic analysis using several independent databases
to explore the potential functions of PARD3 in HCC, including pathway interactions, immune infiltration, and long-term survival.

Based on TCGA database, PARD3 expressed differentially in 24 types of cancers (Fig. 1A). Thereinto, the expression levels in two types of cancers were inconsistent with previous studies, including lung cancer and pancreatic cancer22,27, which may derive in part from data collection approaches and patients' biological properties. More specifically, our study provided direct evidences that PARD3 was an independent risk factor for HCC development. Firstly, PARD3 expression was dramatically higher in HCC than in normal liver tissues (Fig. 1B–I). Secondly, high PARD3 expression group contained more patients with advanced pathologic stages, vascular invasion, and TP53 Mut, suggesting that overexpression of PARD3 was significantly associated with poor clinicopathologic features with a good predictive power (AUC = 0.835, Fig. 2 and Table 1). Thirdly, elevated PARD3 expression led to shorter OS and DSS in both whites and Asians regardless of gender, age and Child–Pugh grade (Fig. 3A,B). All these results proved PARD3 as a potential prognostic biomarker of HCC.

Thus, we further explored the possible mechanism by which high PARD3 expression worsens the outcomes of HCC patients. As an adverse prognostic indicator of HCC, PARD3 was involved in many pivotal mechanisms in cancer, including cell cycle40, DNA damage and repair41, and cell motility42 (Table 2). It is well known that genomic instability and mutagenesis, which caused by erroneous DNA repair, are closely correlated with poor prognosis and drug resistance in HCC41. TP53 is universally recognized as a hub gene in responding to DNA damage and guarding the genome, and its mutation is observed in about half of all solid tumors, including HCC43,44. Furthermore, p38MAPK is able to control p53 activation via direct phosphorylation. Based on our result of enrichment analysis that PARD3 was associated with MAPK pathway and TP53 regulation (Table 2), we hypothesized PARD3 may affect the formation and progression of HCC by regulating TP53 via MAPK pathway.
However, the hypothesis requires further investigation. Rho Family GTPases, which is closely interact with PARD3, were widely reported to regulate cell cycle and cell motility across human cancer of different origins. PARD3 directly activates Rac1, promoting proliferation and motility of cancer cells, and leads to tumorigenesis, angiogenesis, invasion and metastasis. Likewise, Par complex also links Rho small GTPases to regulate asymmetrical cell division and cell polarization, which manipulate EMT and mesenchymal-epithelial transition (MET). Our findings that PARD3 was significantly implicated in Rho pathway also provided evidences to confirm this theory (Table 2). In addition, some lncRNAs showed significant correlations with PARD3 expression, such as FAM83A-AS1, which is involved in HCC (Table 2).

Remarkably, we found that PARD3 and its associated DEGs mainly participated in cellular response to metal ions (Fig. 4C,D, and Table 2). Previous studies have provided a possible relationship between metal ion homeostasis and vascular invasion in HCC, which may be mediated by p53. Disturbance in Cu and Zn homeostasis has been reported as a significant factor associated with tumor proliferation, angiogenesis and invasion in HCC, and furthermore, cellular response to Cu and Zn is probably involved in mitochondrial accumulation and stability of p53, so as to influence proliferation and apoptosis of hepatoma cell.

In the past decades, reprogramming of energy metabolism was added into the list of cancer hallmarks. Interestingly, we found many co-expression genes and pathways related to PARD3 were involved in deregulation of metabolisms, covering types of metabolic processes like fat acids, amino acids and pyrimidines (Table 2). In order to sustain prodigious proliferation, tumors exert a specialized metabolism that differs from normal tissues. During the period, tumors recruit abundant nucleotides to maintain unlimited replicative potential, and uptake more nutrients to support unchecked cell growth. In particular, alterations in metabolism fatty acid and glycine, serine and threonine have been investigated as a promoter of HCC initiation and progression. Moreover, SLC22A1, a DEG inversely related to PARD3 (Fig. 4E), is a key regulator of metabolism, which is extensively considered as a suppressor of HCC development.

Besides, PPI enrichment analysis screened SAA1-related cluster and CYP-related cluster as the two most crucial MCODE subnetworks, both of which were involved in metabolism and homeostasis (Fig. 5). Recent study showed that downregulated SAA1 was closely associated with progression of HCC and low anti-tumor immune infiltrating, and CYP families might impact HCC cell viability via modulating biotransformation. The results provided supporting evidence that PARD3 might promote HCC via regulating metabolism and homeostasis.

Recently, cellular metabolism has emerged as a determinant of the viability and function of both tumor cells and immune cells. Meanwhile, tumor metabolism is reported as an immune checkpoint. As discussed above, PARD3 was linked to some important metabolic processes, and meanwhile, several enriched pathways were also associated with immune response (Table 5). Thus, we hypothesized that there may be an association between PARD3 and immune infiltration. As expected, PARD3 is correlated with diverse immune infiltration levels in HCC, especially DCs, cytotoxic cells and pDCs (Fig. 6). DCs are a heterogeneous population of professional antigen-presenting cells central to the induction and maintenance of adaptive immunity within tumor microenvironment. In particular, two subsets of DCs exert the most potent antitumor functions, including conventional DCs type 1 (cDC1s) that stimulate T cell proliferation, and pDCs that produce interferon-α (IFN-α) and interferon-β (IFN-β). cDC1s not only take up and present foreign antigens via major histocompatibility complex (MHC) class I to activate naive CD8+ T cells; but also support the cytotoxicity of CD8+ T cells by secreting large amounts of interleukin-12 (IL-12). Then, activated cytotoxic CD8+ T cells migrate to tumors and kill them. pDCs play two opposite roles in tumor immunity depending on their subsets via inducing Treg or activating cytotoxic T cells respectively. Based on our result that PARD3 negatively correlated with DCs and cytotoxic T cells, we speculate that immune infiltration related to PARD3 may contribute to the unfavorable outcomes for HCC, yet the specific regulation mechanism needed to further elucidate.

In summary, our study reveals that overexpression of PARD3 correlates with poor clinicopathologic features and adverse outcomes in HCC. Moreover, the crosstalk of cellular response of metal ion, metabolism and immune infiltration within tumor microenvironment may partly explain the function of PARD3 in HCC development. However, bioinformatic analysis based on TCGA also has some limitations. First, the sample sizes of blacks and stage IV in LIHC may be too small to show a significant difference between groups. Additionally, transcriptome sequencing cannot directly reflect the protein activity and expression level. Therefore, our results should be verified by further research using sufficient HCC clinical samples, and detailed mechanisms of PARD3 need investigating more intensively. Despite the limitations, our findings provide multilevel evidence for the value of PARD3 as a potential prognostic biomarker and therapeutic target of HCC.

Materials and methods

RNA sequencing data and processing. RNA-Seq data (Workflow Type: HTSeq-FPKM) and corresponding clinical information were retrieved from TCGA-LIHC project, among which 371 HCC patients with complete survival information were retained. Then, level 3 HTseq-FPKM data were transformed to transcripts per million reads (TPM) for further analysis. Unavailable or unknown clinical data were treated as missing values. RNA-Seq data of multiple cancer types were downloaded from the online database UCSC Xena (https://xenabrowser.net/datapages/), and analyzed using Toil. This study complied with the publication guidelines provided by TCGA.

Differentially expressed gene analysis. DESeq2 package was used to identify DEGs. The cut-off value of PARD3 expression was determined by its median value, and the thresholds were defined as [log fold change (log FC)] > 2 and adjusted p-value < 0.05.
The differential expression of PARD3 was simultaneously validated using Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo), including three independent cohorts (GSE14520, GSE76427 and GSE121248)70–72.

Functional enrichment analysis. Metascape analysis. Metascape (http://metascape.org) was used as a gene list analysis tool to conduct GO enrichment analysis of DEGs73, including BPs, MFs and CCs. P-value < 0.05, minimum count > 3 and enrichment factor > 1.5 were considered to be significant. The Cytoscape plug-in MCODE was used to screen crucial clustering subnetworks in PPI network.

Gene set enrichment analysis. GSEA was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, which was performed with 1000 permutations for each analysis using curated gene sets (C2.cp.v7.0.symbols.gmt) as the reference gene set74. Visualization and statistics were carried out by R package clusterProfiler75. Adjusted p-value < 0.05, false discovery rate (FDR) q-value < 0.25 and |normalized enrichment score (NES)| > 1 were considered to be significant.

Immune infiltration analysis. The relative abundance of each immunocyte type was described with EC in single-sample Gene Set Enrichment Analysis (ssGSEA). ECs for 24 types of TIICs were quantified using GSVA package in R as reported previously76.

The immune infiltration analysis of PARD3 was replicated using TISIDB database (http://cis.hku.hk/TISIDB)77.

Prognostic model generation and statistical analysis. All statistics were performed using R (v.3.6.2). The PARD3 expression levels between tumor and normal tissues in paired or non-paired samples were compared using Wilcoxon signed-rank test and Wilcoxon rank sum test, respectively. The discrimination ability of PARD3 in HCC was evaluated using the AUC in ROC78. The correlation between PARD3 expression and screened DEGs were analyzed using Spearman's correlation. The correlation between PARD3 expression and immune infiltration were analyzed using Spearman's correlation, while ECs of the two groups with different expression level were compared using Pearson χ² test, Fisher exact test or univariate logistic regression. A survival curve was plotted using Kaplan–Meier method, and analyzed by Cox regression. Baseline variables with a p-value < 0.1 on univariate analysis were included in multivariate Cox regression model79,80. A nomogram was generated to predict the prognosis of HCC based on the result of multivariate Cox regression analysis, including significant clinical characteristics and PARD3 expression. C-index was used to validate the predictive power of the model81. Statistical results were displayed with p-value, and hazard ratio (HR) at a 95% confidence interval (95% CI). p-value < 0.05 were considered to be statistically significant.
Table 2. Pathways enriched in high expression groups using GSEA. FDR false discovery rate, NES normalized enrichment score.

Name	NES	Adjusted p-value	FDR q-value
REACTOME_CELL_CYCLE_MITOTIC	2.718	0.019	0.013
REACTOME_RHO_GTPASES_ACTIVATE Formins	2.653	0.019	0.013
REACTOME_FCERI_MEDIATED_MAPK_ACTIVATION	2.468	0.019	0.013
REACTOME_DNADOUBLE_STRAND_BREAK_REPAIR	2.399	0.019	0.013
REACTOME_MET_PROMOTES_CELL_MOTILITY	2.314	0.019	0.013
REACTOME_REGULATION_OF_TP53_ACTIVITY	2.111	0.019	0.013
REACTOME_PYRIMIDINE_CATABOLISM	-2.090	0.019	0.013
REACTOME_RESPONSE_TO_METAL_IONS	-2.608	0.019	0.013
KEGG_FATTY_ACID_METABOLISM	-2.575	0.019	0.013
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM	-2.727	0.019	0.013

Figure 5. Protein–protein interaction (PPI) network of PARD3-associated pathways.
Figure 6. Association of PARD3 with immune infiltration. (A) Association of PARD3 with immune infiltration (DCs dendritic cells, pDCs plasmacytoid DCs, iDCs immature DCs, aDCs activated DCs, Treg regulatory T cells, Tgd T gamma delta, Th helper T cells, Tfh T follicular helper, NK natural killer, Tem T effector memory, Tcm T central memory). (B–G) PARD3 was negatively related to infiltration of DCs, cytotoxic cells, pDCs, neutrophils, iDCs, and Treg (p < 0.01). (H–J) PARD3 was positively related to infiltration of Th helper cells, Th2 cells, and Tcm (p < 0.01).
Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Received: 23 January 2021; Accepted: 12 May 2021
Published online: 26 May 2021

References
1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424. https://doi.org/10.3332/caac.21492 (2018).
2. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462. https://doi.org/10.1056/NEJMra1713263 (2019).
3. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30. https://doi.org/10.3332/caac.21590 (2020).
4. Zhou, J. Sequential circulating tumor cell counts in patients with locally advanced or metastatic hepatocellular carcinoma: Monitoring the treatment response. J. Clin. Med. https://doi.org/10.3390/jcm9010188 (2020).
5. Xiong, Y. et al. Evaluative expression of Par3 promotes prostate cancer metastasis by forming a Par3/apPKC/KIBRA complex and inactivating the hippo pathway. J. Exp. Clin. Cancer Res. 36, 139. https://doi.org/10.1186/s13046-016-0609-7 (2017).
6. Kang, D., Shim, S., Cho, J. & Lim, H. K. Systematic review of studies assessing the health-related quality of life of hepatocellular carcinoma patients from 2009 to 2018. Korean J. Radiol. 21, 633–646. https://doi.org/10.3348/kjr.2019.0808 (2020).
7. Rau, K. M. et al. Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Expressing of Par3 polarity protein correlates with poor prognosis in ovarian cancer. BMC Cancer 16, 897. https://doi.org/10.1186/s12885-016-2929-2 (2016).
8. Kondoh, H. et al. Rare deleterious PARD3 variants in the aPKC-binding region are implicated in the pathogenesis of human cranial neural tube defects via disrupting apical tight junction formation. Hum. Mutat. 38, 378–389. https://doi.org/10.1002/humu.23153 (2017).
9. Wapenaar, M. C. et al. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coloic disease and ulcerative colitis. Gut 57, 463–467. https://doi.org/10.1136/gut.2007.133132 (2008).
10. Bonastre, E. et al. PARD3 inactivation in lung squamous cell carcinomas impairs STAT3 and promotes malignant invasion. Cancer Res. 75, 1287–1297. https://doi.org/10.1158/0008-5472.can-14-2444 (2015).
11. Iha, H. C. et al. KSHV-mediated regulation of Par3 and SNAIL contributes to B-cell proliferation. PLoS Pathog. 12, e1005801. https://doi.org/10.1371/journal.ppat.1005801 (2016).
12. McCaffrey, L. M., Montalbano, J., Mihi, C. & Macara, I. G. Loss of the Par3 polarity protein promotes breast tumorigenesis and survival. Cancer Cell 22, 601–614. https://doi.org/10.1016/j.crc.2012.10.003 (2012).
13. Dugay, E. et al. Overexpression of the polarity protein PAR-3 in clear cell renal cell carcinoma is associated with poor prognosis. Int. J. Cancer 134, 2051–2060. https://doi.org/10.1002/ijc.28548 (2014).
14. Zen, K. et al. Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Oncogene 28, 2910–2918. https://doi.org/10.1038/onc.2009.148 (2009).
15. Guo, X. et al. Par3 regulates invasion of pancreatic cancer cells via interaction with Tiam1. J. Clin. Exp. Med. 16, 357–365. https://doi.org/10.1016/j.jchem.2018.02.052 (2018).
16. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674. https://doi.org/10.1016/j.cell.2011.02.013 (2011).
17. Zhang, C. et al. Tumor purity as an underlying key factor in glioma. Clin. Cancer Res. 23, 6279–6291. https://doi.org/10.1158/1078-0452.ccr-16-2598 (2017).
18. Wang, Y. et al. Loss tumor purity is associated with poor prognosis, heavy mutation burden, and intense immune phenotype in colon cancer. Cancer Manag. Res. 10, 3569–3577. https://doi.org/10.2147/crma.s17855 (2018).
19. Fang, C. M. & Xu, Y. H. Down-regulated expression of atypical PKC-binding domain deleted asif isoforms in human hepatocellular carcinomas. Cell Res. 11, 223–229. https://doi.org/10.1038/sj.cr.7290091 (2001).
20. Song, T. et al. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ξ protein. Oncotarget 7, 64260–64273. https://doi.org/10.18632/oncotarget.11728 (2016).
21. Xue, R. et al. Krishnamurthy, K. Allred, D. C. & Mathuswamy, S. K. Loss of Par3 promotes breast cancer metastasis by compromising cell-cell cohesion. Nat. Cell Biol. 15, 189–200. https://doi.org/10.1038/ncl12663 (2013).
22. Zhou, Q. et al. Downregulation of PKC/Par3/Pard6β is responsible for lung adenocarcinoma cell EMT and invasion. Cell. Signal. 38, 49–59. https://doi.org/10.1016/j.cellsig.2017.06.016 (2017).
76. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. *Immunity* **39**, 782–795. https://doi.org/10.1016/j.immuni.2013.10.003 (2013).

77. Ru, B. et al. TISIDB: An integrated repository portal for tumor-immune system interactions. *Bioinformatics (Oxford, England)* **35**, 4200–4202. https://doi.org/10.1093/bioinformatics/btz210 (2019).

78. Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. *BMC Bioinform.*** **12**, 77. https://doi.org/10.1186/1471-2105-12-77 (2011).

79. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. *N. Engl. J. Med.* **364**, 226–235. https://doi.org/10.1056/NEJMoa1002358 (2011).

80. Kang, S. J. et al. Predictors for functionally significant in-stent restenosis: An integrated analysis using coronary angiography, IVUS, and myocardial perfusion imaging. *JACC Cardiovasc. Imaging* **6**, 1183–1190. https://doi.org/10.1016/j.jcmg.2013.09.006 (2013).

81. Iasonos, A., Schrag, D., Raj, G. V. & Panageas, K. S. How to build and interpret a nomogram for cancer prognosis. *J. Clin. Oncol.* **26**, 1364–1370. https://doi.org/10.1200/jco.2007.12.9791 (2008).

Author contributions

F.Y. and H.Z. and S.L. analysis; J.H. and K.L. data curation; J.H. and Y.T. visualization; K.L. design of the work and original draft revision; S.L. original draft preparation. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-90507-w.

Correspondence and requests for materials should be addressed to K.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.