MELATONIN AND MONOAMINERGIC SYSTEM – BEHAVIOURAL ASPECTS

S.E. Voiculescu¹*, A. Rosca¹,²*, C.M.D. Zahiu¹, C. Badiu³, A.M. Zagrean¹

¹Department of Functional Sciences, Discipline of Physiology and Fundamental Neuroscience, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
²“Victor Babes” National Institute of Research-Development in the Pathology Domain, Bucharest, Romania
³Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, “C.I. Parhon” National Institute of Endocrinology, Bucharest, Romania

ABSTRACT

Melatonin, the hormone synthesized mainly by the pineal gland, is a key member of the complex monoaminergic signaling system, and a circadian regulator with pleiotropic functions. This ubiquitous lipophilic and hydrophilic molecule acts both at cellular and subcellular level, exerting anti-inflammatory, anti-oxidative and anti-apoptotic activities, extremely important in the nervous system, given its high vulnerability to oxidative injury. Melatonin deprivation and the consecutive chronodisruption are associated with multiple behavioural abnormalities, psychiatric disorders and neurodegenerative diseases. The present review summarizes the available information concerning the link between melatonin, monoaminergic neurotransmission and the pathophysiological bases of these conditions.

Keywords: melatonin, serotonin, norepinephrine, dopamine, neuroprotection, anxiety, depression, memory, aggression

INTRODUCTION

Melatonin is an endogenous indoleamine mainly produced by the pineal gland with a circadian rhythmicity. In the past years, this hormone has been found in the highlight of medical research, due to its multiple roles in human and animal physiology: circadian regulator (1-6), antioxidant (7-17), sleep inducer (18-24), anti-carcinogenic (25-27), immune-modulator (28-36), neuroprotection (37-40).

Melatonin has an extensive role in the physiology and physiopathology of the nervous system, both by its remarkable antioxidant properties and functional networking with the monoaminergic neurotransmission system.

Most of melatonin is of pineal origin, but there seem to be also other central nervous system sources. These sources are not known, but mRNA for arylalkylamine N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT), key enzymes in the melatonin synthesis, have been identified in the brain tissue of rats (41). The astrocytes of rats and the human glioma C6 cell line have been found to produce melatonin under in vitro conditions (42). Melatonin level in the cerebrospinal fluid is much higher than its maximum plasmatic one, and studies in sheep sustain a direct release of melatonin in the cerebrospinal fluid of the third ventricle (43). Several studies point the role of melatonin in different behaviours such as learning, anxiety behaviour, depression, stress response (41-52), memory (53) and pain perception (55-57). Abnormalities of melatonin secretion are associated with different psychiatric disorders in humans (bipolar disorder, depression, bulimia, an-
orexia, schizophrenia, panic attack, and obsessive compulsive disorder), but its involvement in the pathophysiology of these diseases has not being clearly established (54).

Melatonin was shown to be neuroprotective to both fetal and adult brain (70-77), especially by its powerful antioxidant action. By this effect, melatonin seems to be involved in aging, aging-related nervous system pathology, neurodegenerative disorders and neuropsychiatric diseases.

Melatonin and neuroprotection

A common pathophysiological mechanism of neuropsychiatric diseases is increased brain inflammatory response caused by exposure to proinflammatory agents and accumulation of degenerated neurons, oxidized proteins, lipid peroxidation or glycated products in the adult brain (58). These oxidative stress processes are also involved in the pathophysiology of neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, lateral amyotrophic sclerosis, Huntington corea and tardive dyskinesia) (59). Nervous system cells produce a high quantity of free radicals mainly due to the biochemical composition of the neurons that contain unsaturated lipids, with a very intense sensitivity to peroxidation and other oxidative processes (60). Recent research has shown a particular sensitivity of nervous system cells to oxidative stress, free ROS triggering apoptosis in both glial cells and neurons (61).

Melatonin, by melatonin radicals, exerts its antioxidant properties by direct scavenging of hydroxyl radical (HO.), superoxide anion radical (O$_2^-$), hydrogen peroxide (H$_2$O$_2$), nitric oxide (NO.) and peroxynitrite anion (ONOO-) (62). Moreover, melatonin metabolites which result during ROS neutralisation processes are even more powerful antioxidant agents (63,64). Except for this direct role, melatonin exerts an indirect one through enhancing antioxidant enzymes activity (gluthathione peroxidase, superoxide dismutase, catalase) and glutathione synthesis in the cells (65,66). Melatonin also contributes to mitochondrial homeostasis, lowers free radicals generation at this level and enhances ATP production, by direct stimulation of I and IV enzymatic complexes. This is referred as the free radical avoidance effect of melatonin (67).

A comprehensive body of evidence suggests the neuroprotective effect of melatonin, by virtue of its anti-inflammatory, anti-oxidant and anti-apoptotic effects. Fetal and neonatal brain neuroprotection efficacy of melatonin has been reported in several studies conducted in animals. Its administration after 10 minutes following a hypoxic-acidemic episode, lowered apoptosis, inflammation and gliosis in the brain of sheep fetuses (70). Melatonin treatment before and during temporary fetal asphyxia stabilized blood-brain barrier and reduced free hydroxyl radicals, lipid peroxidation and apoptosis in the fetal brain (71).

Maternal melatonin administration reduced fetal asphyxia, enhanced neurodevelopment and lowered cerebral damage and oxidative stress in an animal model of intrauterine growth restriction in newborn lambs (72). Melatonin was also proven to augment neuroprotection, when combined with therapeutic hypothermia against transient hypoxic-ischemic brain injury in a piglet model of perinatal asphyxia (73). Systemic melatonin administration in newborn rats with intracerebral haemorrhage showed a positive effect on the consecutive cerebral atrophy, cognitive and sensorimotor dysfunctions (74). In asphyxiated human newborns melatonin showed a significant decrease in plasma levels of nitric oxide metabolism end products (nitrate/nitrite) and lipid peroxidation (75).

As an effective antioxidant and neuroprotective molecule, melatonin synthesis may be induced by a negative feedback loop triggered by high oxidative stress or other stresses. Stress-induced melatonin production has been observed in rat pancreas (76) and in human cerebrospinal fluid after brain trauma (77).

Functional relationship between melatonin and central monoaminergic system

Melatonin influences normal function of the central nervous system, through a fine interaction with central neurotransmitters, especially the monoaminergic ones: serotonin, norepinephrine and dopamine.

Melatonin and serotonin

First, serotonin has a biosynthetic relationship with melatonin, as the latter is a tryptophan derivative (N-acetyl-5-methoxytryptamine), in a pathway that has serotonin as an intermediate product. Melatonin synthesis is regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus that receives serotonergic afferent fibers from the median nucleus of the mesencephalon (78,79). It appears that serotonin modulates the manner in which light influences the suprachiasmatic nucleus, by controlling glutamate release at the level of the retinohypothalamic tract (80). The administration of a serotonin agonist determines variations in the su-
prachiasmatic nucleus rhythm (81). The molecular mechanism by which serotonin influences SCN is not known, but an interesting theory points that serotonin raises K+ influx at postsynaptic level in a population of neurons in the nucleus (82). Another study shows a presynaptic influence of serotonin (83).

It seems that serotonin synchronises circadian rhythms, as similarly the light does, but it works only under light conditions, in the dark/night its administration having no action on Clock genes expression (84). This effect may be explained by a circadian manner of expression of the serotonergic receptors (85). Interestingly, melatonin has an inhibitory role on the serotonin secreting raphe nuclei, via the melatonin type 1 receptor (MT₁) (86).

Melatonin and norepinephrine

SCN is regulating melatonin secretion via a multisynaptic pathway. First of all, it sends fibers to the superior thoracic segments of the spinal cord that in turn sends fibers to the C₁ ganglion of the paravertebral sympathetic chain. Postganglionic fibers reach the pinealocytes and influence them through a noradrenergic synapse (87). In darkness, noradrenaline release in the synaptic cleft is enhanced and determines a raise in intracellular cAMP levels by acting on beta1 receptors, leading to AANAT synthesis and melatonin secretion (88,89). Melatonin pineal synthesis depends on this rate-limited enzyme that catalyses serotonin N-acetylation (90).

There are other mechanisms by which noradrenaline controls melatonin secretion: insulin enhances melatonin synthesis and AANAT expression, whilst substance P (for which pinealocytes have receptors) inhibits AANAT synthesis (91,92).

Melatonin and dopamine

Dopamine is the precursor of norepinephrine. Secretory cells of the pineal gland have a high expression of D₄ dopaminergic receptors, and their expression seems to be modulated by light (93).

Melatonin controls dopamine synthesis in certain brain regions like the hypothalamus, tubuloinfundibular region and the ventral hippocampus (94). Some studies show that melatonin might have a direct effect on dopaminergic receptors producing a raise in D₁ receptor expression in the striated nucleus of the rat (95). Localisation of the MT₁ and MT₂ receptors at the level of the SCN overlaps with dopaminergic receptors in the hippocampus, cortex and hypothalamus (96-98). It has been demonstrat-ed that dopaminergic receptors have a circadian manner of expression, being low during light conditions (99). Melatonin shows a protective role in medication induced dopaminergic motor dysfunctions in rats (100,101).

Monoaminergic system involvement in neurodegenerative diseases

There are several studies pointing the involvement of the monoaminergic system and associated areas (raphe nuclei, hippocampus and locus coeruleus) in the pathophysiology of neurodegenerative diseases, including Alzheimer’s disease (AD) (102,103), supporting the association of depression in these diseases (104,111,112).

A low melatonin level in the cerebrospinal fluid has been found in AD patients (68), correlated negatively with the disease severity (69). Also, brain and cerebrospinal levels of norepinephrine and its metabolite (3-metoxy-4-hydroxyphenylglycol) have been found low in patients with AD compared to healthy controls (105,106).

Post-mortem determinations of serotonin in Alzheimer’s patients have shown its low levels in both cerebral tissue and cerebrospinal fluid (107,108), negatively correlated with the severity of the disease (109). A significant loss of 5-HT neurons in the raphe nuclei has been found (113,114) and 5-HT is decreased in the brain of depressed AD patients (115). Extrapyramidal symptoms are present in up to 30% of AD patients, and also when Parkinson’s and Alzheimer’s diseases overlap (110), sustaining the coexistence of dopaminergic dysfunction.

Parkinson’s disease degeneration targets the nigrostriatal dopaminergic system (116), but serotonin and noradrenaline systems have also been shown to be involved (117). Thus, Parkinsonian tremor is accompanied with serotonergic impairment (118) and the Parkinson’s disease associated psychiatric disorders (dementia and depression) have a direct relationship to the monoaminergic dysfunction, supported by the therapeutic use of monoamine oxidase inhibitors (MAOI) in Parkinson’s associated depression (119).

Melatonin and the pathophysiological basis of depressive disorders

Pathophysiological mechanisms of depressive disorders are not entirely known but there is enough evidence that points the contribution of genetic, environmental, anatomic and functional dysregulations of the central nervous system. There are two
neuroanatomical pathways involved: the first one includes the amygdala, mediodorsal nucleus of the thalamus, and prefrontal cortex, and the second one includes strium and globus pallidus (120).

The neurobiological hypothesis of depression shows an abnormal interaction between the three monoaminergic systems (serotonin, norepinephrine and dopamine). The noradrenergic neurons have a functional intermediate position between the serotonergic and dopaminergic ones, controlling the amplitude and rate of action potentials of the dopaminergic neurons in the ventral tegmental area, an area crucially involved in mood (120).

Serotonin deficiency seems to be the most important pathophysiological mechanism, this idea being supported by the intensive use of selective serotonin reuptake inhibitors (SSRI) in depression treatment. There are 14 subtypes of serotonin receptors (121), from which 5-HT1a, highly expressed in the cortex, limbic system and hippocampus, being the most important one in depression pathogenesis (122).

Nocturnal melatonin levels are low in subjects with major depressive disorder (123,124) and also in people with seasonal (125) and melancholic depression (126). Major depressive disorder is associated with circadian rhythm abnormalities. Li et al. have shown dysregulations in the synchronisation activity of the internal biological clocks, day/light succession and abnormal clock genes expression in major depressive disorder (MDD) (127).

MT₁ receptors knock-out mice show a low mobility in forced swim and tail suspension despair tests that in depressive behaviour test in lab animals. These results may be related to neurobiological and behavioural abnormalities, corresponding to human melancholic depression (128). Melatonin’s involvement in depression is supported by the fact that agomelatin, a non-selective MT₁ MT₂ receptors agonist and 5-HT2c serotonin receptors selective agonist, has a high efficacy in depressive disorders treatment, measured by clinical psychiatric scores (129-132).

Shahnaz et al. (2012) monitored morning and nocturnal melatonin levels in patients with MDD. Their data showed that nocturnal serum melatonin levels in depressed patients were lower than in controls. Also, the peak melatonin phase in the depressed patients was reached with a delay, compared with controls. All these data sustain that melatonin deficiency may be among the factors involved in depression incidence in patients with MDD (133). Also, a study on acute multiple sclerosis patients with concomitant MDD showed that the nocturnal melatonin peak occurred 77 minutes later than in patients without depression (134).

The relation between serotonergic neurotransmission and melatonin, other than the biosynthetic pathway connection, is shown by the rise in cerebral serotonin levels after melatonin administration (135).

Regarding the genetic factors involved in depression, it is hard to point one specific gene but some studies have identified 5-HTT and brain-derived neurotrophic factor (BDNF) as candidates. 5-HTT gene codes the serotonin reuptake inhibition at presynaptic level. Caspi et al. have identified the presence of a mutated allele of this gene to have a higher risk of depression following stressful events (136).

BDNF is mainly expressed in the nervous system, especially in the cortex and hippocampus. Egan et al. (2003) identify a single nucleotide polymorphism of the BDNF gene in which a valine-methionine substitution at codon 66 leads to depression in stressful circumstances (137). There are also studies in rats that associate depression with low BDNF expression in the hippocampus, and anti-depressive medication determines normalization of BDNF levels (138). BDNF expression in the adult brain is highest at the level of the hippocampus, amygdala and hypothalamus (139), areas involved in depression and anxiety disorders.

Kaufman et al. (2006) identify an interaction between three factors concurring to depression pathophysiology, the same short allele of 5-HTT gene as in the previously mentioned study, BDNF gene polymorphism and a stressful event (140). Melatonin positively modulates BDNF expression in the hippocampus and the cerebellum. This effect was investigated in a chronic sleep deprivation model in rats that follows the level of cognitive deficit (139). There are no studies showing the direct connection between melatonin levels and 5-HTT gene expression, but investigations in this direction are surely needed, considering the important functional link between melatonin and serotonin.

Melatonin deprivation in pregnant rats, in the second part of their pregnancy leads to depressive-like behaviour when assessed by the forced swim test, but with a normal appearance of the tail suspension test in adult male offspring (141). Because forced swim test is dependent on dopamine signaling solely, while tail suspension test on both dopamine and serotonin, the authors concluded that melatonin deprivation in dams leads to abnormalities in serotonin secretion and/or signaling in adult offspring. This study points a probable prenatal
cause for depression, that may concur with the previously mentioned pathophysiological cues.

Increasing amounts of data suggest that chronic inflammation is an important factor in the pathogenesis of depression (142). Proinflammatory cytokines activate indolamine 2, 3-dioxygenase (IDO), an enzyme that catabolizes tryptophan, the precursor of serotonin, impairing peripheral and cerebral serotonin synthesis (143) and producing neurotoxic metabolites. 3-hydroxykynurenine (3-OH-KYN) is one of these neurotoxic metabolites that initiate neuronal apoptosis by inducing reactive oxygen species production (144).

Melatonin and memory

Areas of the central nervous system involved in memory are the prefrontal cortex and amygdala for the long-term memory and hippocampus, entorhinal and parietal cortex for both of them (146). Short-term and long-term memories have different physiological mechanisms, involving specific monoaminergic neurotransmitters. Rat studies developed by Vianna et al. (2015) show that an infusion of a D1 receptor antagonist substance stimulates short-term memory. Administration of a D1 receptor agonist or a 5-HT1A one inhibits short-term memory without affecting long-term memory. Noradrenaline facilitates long-term memory, having no influence on the short-term one (145).

Clock gene expression seems to be important in memory. Disturbation of the SCN or induced abnormalities of the circadian system by inappropriate light exposure, determine long-term memory impairment (147). Mice with clock genes mutations have abnormal hippocampus-dependent memory function (148,149). Melatonin itself has been shown to have a role in short-term memory. Argyrou et al. have investigated rats’ response to social olfaction memory, before and after intraventricular melatonin administration. Recognition time was shorter in the melatonin treated group than in the luzindol (selective MT1 receptor antagonist) treated one (53). However, studies regarding melatonin involvement in memory are contradictory, as one shows that intra-amygdaloid injection of melatonin in rats leads to alterations in spatial memory (147). Amir et al. (1999) have used c-Fos gene product determination for cellular activity measurement, showing that cortical areas involved in olfactory expression the protein in a circadian manner. Also, olfactory stimulation leads to an enhanced c-Fos expression in the SCN (151). Granados-Fuentes et al. (2006) identified an intrinsic regulation system at olfactory bulb level and showed that circadian expression is modulated by GABA central release. A positive correlation between brain melatonin levels and anxiety-related genes: BCL-2, DRD-2 and PAWR are linked with anxiety. Mutant Clock gene mice show higher anxiety levels, when behaviourally assessed in vivo and in vitro (159,160).

Clock circadian genes malexpression has been linked with anxiety. Mutant Clock gene mice show a higher anxiety level, when behaviourally assessed using open field test and elevated plus maze test (161). There is only one study regarding anxiety disorders in humans, in which 13 genes mutations were investigated. The study included 321 patients and 653 healthy controls and identified 3 possible anxiety-related genes: BCL-2, DRD-2 and PAWR (162). BCL-2 (B-cell CLL/Lymphoma 2) codes for a protein that has key functions in the central nervous system, its most important one being apoptosis regulation. Melatonin modulates BCL-2 expression in different organs (liver, B cells), but there are no studies using nervous system cells (163,164).
BCL-2 expression is low in anxiety disorders (165). DRD2 gene (dopamine receptor gene 2) has been shown to be induced by light in the retina and its mutations are strongly associated with anxiety disorders. There is no study showing a direct relationship between melatonin and DRD2 gene expression, but signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK/BMAL1 (166). Clock protein is the central molecule of the circadian system, a transcription activator regulated by melatonin (167). Clock gene abnormalities have been associated with mood disorders and anxiety in several studies (168,169).

Melatonin and aggressive behaviour

Aggressive behaviour is a primitive, but highly conserved on phylogenetic scale, including humans. It can be regulated by nervous and humoral mechanisms. Humoral regulation has been studied intensively, and there are several possible involved molecules: testosterone (170), progesterone (171), estrogens (172), melatonin (173), vasopressin (174), cortisol (175) and ghrelin (176).

Aggression is abolished in castrated males, this pointing a higher importance of sex hormones in its physiology (177). There are also studies showing that both central serotonin depletion (170) and high melatonin level enhances aggression (178,179). It was recently suggested that melatonin could mediate adrenal gland regulation of aggressive behaviour, by increasing adrenal dehydroepiandrosterone release (180).

CONCLUSIONS

Melatonin is an important neuromodulator in central nervous system, which acts on any of the three monoaminergic systems and on complex interconnected pathways by which it depends upon each other. Regulation of the melatonin secretion is rather simple, being enhanced by darkness and lowered by light, blue light having the most powerful inhibitory effect. This makes it very sensitive to external environment conditions in the era of blue light emitting electronic devices, depression and anxiety.

The hormone is involved in many types of behaviours such as depression, aggression, memory and anxiety. Its importance is crucial for the normal functioning of the central nervous system. The association of melatonin deprivation with behavioral abnormalities might be caused by the direct lack of modulation and abnormal functioning of the central monoaminergic circuits, but also by the resulted oxidative stress, confusing circadian inputs and gene expression abnormalities in the brain. Melatonin provides important antioxidant activity, inhibition of apoptotic processes and immunomodulatory effect. The effects of circadian system disruption have not been studied enough compared with their outcome in central nervous system physiology and pathology. Melatonin seems to be involved in the pathophysiology of both neuropsychiatric and neurodegenerative diseases, and the prevalence and/or severity of these diseases may have a direct link with unhealthy general chronodisrupting behaviours that modern society adopts.

Acknowledgments

This paper is partly supported by the Sectorial Operational Programme Human Resources Development (SOPHRD), financed by the European Social Fund and the Romanian Government under the contract number POSDRU 141531.
10. Reiter R.J., Tan D.X., Ousa C., Gittto E. (2000c) Actions of melatonin in the reduction of oxidative stress: A review. J Biomed Sci.; 7: 444–58.

11. Rodriguez C., Mayo J.C., Sainz R.M., Antolinil, Herrera F., Martin V., Reiter R.J. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 38 :1-9

12. Urita Y., Honna S., Goto S., Todoroki S., Iida T., Cho S., Honma K., Kondo T. Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Bio Med 1999; 27:838-847

13. Gittto E., Tan D.X., Reiter R.J., Karbowinn M., Manchester L.C., Cuzzoarea S., Furia F., Barberi I. (2001a) Individual and synergistic actions of melatonin: Studies with vitamin e, vitamin C, glutathione and desferoxamine in liver homogenates. J Pharm Pharmacol.; 53: 1393-401.

14. Mayo J.C., Sainz R.M., Antolin I., Herrera F., Martin V., Rodríguez C. (2002) Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci.; 59: 1706-13

15. Mayo J.C., Tan D.X., Sainz R.M., Lopez-Burillo S., Reiter R.J. (2003) Oxidative damage to catalase induced by peroxyl radicals: Functional protection by melatonin and other antioxidants. Free Radic Res.; 37: 543-53

16. Acuna-Castroviejo D., Escames G., Carozo A., Leon J., Khaldy H., Reiter R.J. (2002) Melatonin, mitochondrial homeostasis and mitochondrial-related diseases. Curr Top Med Chem.; 2: 133-52

17. Okatani Y., Wakatsuki A., Reiter R.J., Miyahara Y. (2003a). Acutely administered melatonin restores hepatic mitochondrial physiology in old mice. Int J Biochem Cell Biol.; 35: 367-75

18. Petrie K., Conaglen J.V., Thompson L., Chamberlain K. Effect of melatonin on jet lag after long haul flights. Br Med J. 1989; 298:705-707.

19. Herzheimer A., Petrie K.J. Melatonin for prevention and treatment of jet lag. Cochrane Database Syst Rev. 2002; 2: CD001520.

20. Riemann D., Klein T., Rodenbeck A., et al. Nocturnal cortisol and melatonin secretion in primary insomnia. Psychiatry Res. 2002; 113:17-27.

21. Pavel S., Goldstein R., Petruscu M. Vasoconstriction, melatonin and narcolepsy: possible involvement of the pineal gland in its patho-physiological mechanism. Peptides. 1980; 1:281-284.

22. Jan J.E., Espezel H., Appleton R.E. Treatment of sleep disorders with melatonin. Dev Med Child Neurol 1994; 36:97-107

23. Smits M.G., Nategaal E.E., van der Heijden J., et al. Melatonin for chronic sleep onset insomnia in children: a randomized placebo-control trial. J Child Neurol 2001; 16:86-92.

24. Dodge N.N., Wilson G.A. Melatonin for prevention and treatment of sleep disorders in children with developmental disabilities. J Child Neurol 2001; 16:581-4.

25. Karasek M., Fraschini F. Are there a role for the pineal gland in neoplastic growth? In: Fraschini, F, Reiter, RJ, ed. Role of Melatonin in the pineal gland in neoplastic development in HER-2/neu transgenic mice. New York, NY: Plenum; 1991:243-251.

26. Blask D.E., Cos S., Hill S.M., Burns D.M., Lemus-Wilson A., Proctor S., Hill S.M., Burns D.M., Lemus-Wilson A., Is there a role for the pineal gland in inflammatory and immune responses of adjuvant arthritis rat. Int Immunopharmacol. 2002; 2:1443-1449

27. Li X.J., Zhang L.M., Gu J., Zhang A.Z., Sun F.Y. Melatonin decreases production of hydroxyl radical during cerebral ischaemia-reperfusion. Zhongguo Yao Li XueBao. 1997; 18:394-396.

28. Cho S., Joh T.H., Baik H.H., Dibínés C., Volpe B.T. Melatonin administration protects CA1 hippocampal neurons after transient forebrain ischaemia in rats. Brain Res. 1997; 755:335-338.

29. Kilic E., Ozdemir Y.G., Bolay H., Kelestimur H., Dalkara T. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischaemia. J. Cereb. Blood Flow Metabol. 1999; 19:511-516.

30. Stefüli J., Hörtner M., Ghosh M., Schauenstein K., Rinner I., Wöffler A., Semmler J., Liebmann P.M. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J Pineal Res. 2001 May; 30(4):243-7

31. Liu Y.J., Zhuang J., Zhu H.Y., Shen Y.X., Tan Z.L., Zhou J.N. Cultured rat cortical astrocytes synthesize melatonin: absence of a diurnal rhythm. J Pineal Res. 2007 Oct; 43(3):232-8

32. Longatti P., Perin A., Rizzo V., Comai S., Giusti P., Costa C.V. Ventricular cerebrospinal fluid melatonin concentrations investigated with an endoscopic technique. J Pineal Res. 2007 Mar; 42(2):113-8

33. Arendt J., Melatonin, circadian rhythms and sleep. New England J Med. 2000; 343:1114-1116

34. Wirz-Justice. Treatment tools in chronobiology. Rev Med Interne. 2001 Jun; 22 Suppl 1: S75-S85

35. Borjigin J., Li X., Snyder S. H., 1999. The pineal gland and melatonin: molecular and pharmacologic regulation. Annu Rev Pharmacol 395365

36. Brezinski A., 1997 Melatonin in humans. New Engl J Med 336186195

37. Masana M.I., Dubocovich M.L., 20, 2001 Melatonin receptor signaling: finding the path through the dark. Science STKE pe39.

38. Vanecik J., 1999 Inhibitory effect of melatonin on GHRH induced LH release. Rev Reprod 46772

39. Krause D.N., Dubocovich M.L., 1990. Regulatory sites in the melatonin system of mammals. Trends Neurosci 13464470;

40. Naranjo-Rodriguez E.B., Orsornio A., Ortiz, E., Hernandez-Avita, V., Mendoza-Fernandez, A., Escobar, 2000. Anxiolytic-like actions of melatonin, 5-methoxytryptophan, 5-hydroxytryptophol and benzodiazepines on a conflict procedure. Prog Neuropsychopharmacol Biol Psychiatry 24117129

41. Loiseau F., Bihan C.L., Hamon M., Thiebot M.H., 1986. Effects of melatonin and agmatine in anxiety-related procedures in rats: Interaction with diazepam. Eur Neuropsychopharmac 16417428

42. Argyriou A., Prast H., Philippu A., 1998. Melatonin facilitates short-term memory. Eur J Pharmacol 349159162

43. Pacchierotti C., Iapichino S., Bossini L., Pieraccini F., Castrogiovanni P., Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Front Neuroendocrinol. 2001 Jan; 22(1):18-32
55. Kurtuncu M., Arslan A.D., Akhisaroglu M., Manev H., Uz T., Involvement of the pineal gland in diurnal cocaine reward in mice, Eur. J. Pharmacol. 489 (2004) 203–205

56. Lakin M.L., Miller C.H., Stott M.L., Winters W.D., Involvement of the pineal gland and melatonin in murine anaglesia, Life Sci. 29 (1981) 2543-2551

57. Mantovani M., R. Pertile, J.B. Calixto, A.R. Santos, A.L. Rodrigues, Melatonin exerts an antidepressant-like effect in the tail suspension test in mice: evidence for involvement of N-methyl-d-aspartate receptors and the i-arginin-nitric oxide pathway, Neurosci. Lett. 343 (2003) 1–4.

58. Longatlı P., Perin A., Rizzo V., Comai S., Giusti P., Costa C.V., Involvement of the pineal gland in diurnal cocaine reward in mice, Neurobiol. Aging. 2007 Jan; 42(2):113-8

59. Nunomura A., Moreira P.I., Lee H.G., Zhu X., Castellani R.J., Robertson N.J., Faulkner S., Fleiss B., Bainbridge A., Andorka

60. Butterfield D.A., Castagna A., Launderback C.M., Drake J. Evidence that amyloid β-peptide induced lipid peroxidation and its sequela in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging. 2002; 23:655-664

61. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979; 59:527-605

62. Tan D.X., Reiter R.J., Manchester L.C., Yan M.T., El-Sawi M., Hardeland R. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med. Chem. 2002; Feb; 2(2):181-97

63. Tan D.X., Manchester L.C., Terron M.P., Flores L.J., Reiter R.J., Prosser R.A., Heller H.C., Miller J.D., Rial R. Chronic melatonin treatment and its precursor 5-hydroxytryptophan improve the monoaminergic neurotransmission and related behavior in the aged rat brain. J. Pineal Res. 2010; 48:170

64. Harde l R., Tan D.X., Reite R.J., Kynuramines, metabolites of melatonin and other indoles: he resurrection of an almost forgotten class of biogenic amines. J Pineal Res 2012; 52:139-166

65. Zlotos D.P., Jockers R., Cecon E., Rivara S., Witt-Enderby P.A. Melatonin-induced protection in the brain of late gestation fetal sheep following umbilical cord occlusion. J. Pineal Res. 2003, 25, 4,

66. Reiter R.J., Paredes S.D., Korkmaz A., Manchester L.C., Tan D.X. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging. Alzheimer’s disease, and apolipoprotein E-epsilon4 genotype. J C lin Endocrinol Metab. 1999; Jan; 84(1):327-3

67. Zhou J.N., Liu R.Y., Kamphorst W., Hofman M.A., Swaab D.F. Melatonin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland. Life Sci. 2003; 82:108-114.
levels in patients with major depressive disorder: an analytical cross-sectional study. Sao Paulo Med. J. [Internet]. 2012 [cited 2015 Nov 24]; 130(3): 167-172

132. Akpınar Z., Tokgöz S., Gökbil H., et al. The association of nocturnal serum melatonin levels with major depression in patients with acute multiple sclerosis. Psychiatry Res. 2008; 161(2):253-7

133. Anton-Tay F. Pinea-lbrain relationships. In: Wolstenholme, GEW, Knight, J, eds. The Pineal Gland. London, England: Churchill Livingstone; 1971:213-227

134. Caspi A., Sugden K., Moffitt T.E., Taylor A., Craig I.W., Harrington H., McClay J., Mill J., Martin J., Braithwaite A., Poulton R. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003 Jul 18; 301(5631):386-9.

135. Egan M.F., et al. The DBNF val66met polymorphism affects activity-dependent secretion of DBNF and human memory and hippocampal function. Cell. 2003; 112:257–269

136. Ming G., Wong S.T., Henley J., Yuan X., Song H., Spitzer N.C., Poo M. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417: 411-418, 2002.

137. Andero R., Ressler K.J. Fear extinction and DBNF: Translating animal models of PTSD to the clinic. Genes, Brain, and Behavior. 2012; 11(5):503-512.

138. Kaufman J., Yang B.Z., Douglas-Palumberi H., Grasso D., Stone T.W.

139. Zepf F.D., Sánchez C.L., Biskup C.S. et al.

140. Raison C.L., Capuron L., Miller A.

141. Voiculescu S.E., Rosca A.E., Zeca V. et al. Impact of maternal melatonin suppression on forced swim and tail suspension behavioral despair tests in adult offspring. Journal of medicine and life 2015; 8:202-6

142. Breslau N., Kessler R.C., Chilcoat H.D., Schultz L.R., Davis G.C., Andreski P. Trauma and posttraumatic stress disorder in the community: the 1996 Detroit Area Survey of Trauma. Arch Gen Psychiatry. 1998; 55:626-632.

143. Naranjo-Rodriguez E.B., Orsornio A. Ortiz, E. Hernandez-Avtilia, V. Mendoza-Fernandez, A. Escobar, 2000. Anxiolytic-like actions of melatonin, 5-methoxytryptophan, 5-hydroxytryptophol and benzodiazepines in a conflict procedure. Prog Neuropsychopharmacol Biol Psychiatry 24117129

144. El Mrabet F.Z., Ouakki S., Mesfouri A., El Hessai A., Ouichou A., Pinealectomy and Exogenous Melatonin Regulate Anxiety-Like and Depressive-Like Behaviors in Male and Female Wistar Rats, Neurosci & Medicine, Vol. 3, 2012, pp. 394-403.

145. Guadriola-Lemaitre C., A. Lenegre, R.D. Porsolt, Combined effects of diazepam and melatonin in two tests for anxiety-like activity in the mouse, Pharmacol. Biochem. Behav. 41 (1992) 405-408.

146. Brotto L.A., Barr A.M., Gorzalka B.B., Sex differences in forced-swim and open-field test behaviours after chronic administration of melatonin. Eur. J. Pharmacol. 402 (2000) 87-93.

147. Coloma F.M., Niles L.P., 1988 Melatonin enhancement of [3H]-gamma-aminobutyric acid and [3H]muscimol binding in rat brain. Biochem Pharmacol 371271274

148. Karakas A., Coskun H., Kaya A., Kucuk A., Gunduz B.

149. Anton-Tay F.

150. Daniel Granados-Fuentes, Alan Tseng, Erik D. A Circadian Clock in the Offactory Bulb Controls Offactory Responsivity Herzog + Show Affiliations The Journal of Neuroscience, 22 November 2006, 26(47): 12219-12225;

151. Hyman S.E. Diagnosing disorders. Sci Am. 2003; 289:96-103

152. Egan M.F., et al. The BDNF val66met polymorphism affects activity-dependent secretion of DBNF and human memory and hippocampal function. Cell. 2003; 112:257–269

153. Ming G., Wong S.T., Henley J., Yuan X., Song H., Spitzer N.C., Poo M. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417: 411-418, 2002.

154. Raison C.L., Capuron L., Miller A.

155. Voiculescu S.E., Rosca A.E., Zeca V. et al. Impact of maternal melatonin suppression on forced swim and tail suspension behavioral despair tests in adult offspring. Journal of medicine and life 2015; 8:202-6

156. Zepf F.D., Sánchez C.L., Biskup C.S. et al. Acute tryptophan depletion - converging evidence for decreasing central nervous serotonin synthesis in rodents and humans. Acta Psychiatr Scand 2014; 129:157-9

157. Stone T.W. Endogenous neurotoxins from tryptophan. Toxicon 2001; 39:61-73 si articulo Okuda S., Nishiyama N., Saito H et al Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc Natl Acad Sci USA 1996; 93:12553-12558

158. Vianna Monica R.M., Izquierdo Luciana A., Barros Daniela M., Walz Roger, Medina Jorge H., Izquierdo Ivan. Short- and long-term memory: differential involvement of neurotransmitter systems and signal transduction cascades. An. Acad. Bras. Ciênc., 72(3): 353-364

159. Izquierdo L., Medina J.H., Vianna M.R., Izquierdo L.A., Barros D.M. Separate mechanisms for short- and long-term memory. Behav Brain Res. 1999 Aug; 103(1):1-11.

160. Devan B.D., Goad E.H., Petri H.L., Antoniadis E.A., Hong N.S., Ko C.H., Leblanc L., Lebovic S.S., Lo Q., Ralph M.R., Mcdonald R.J. (2001). Circadian phase- shifted rats show normal acquisition but impaired long-term retention of place information in the water task. Neurobiol. Learn. Mem. 75, 51-62.

161. Jilg A., Lesny S., Peruzzi N., Schwenger H., Selbach O., Dehghani F., Stehle J.H. (2010). Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 20, 377-388.

162. Kondratova A.A., Dubovsky Y.V., Antoch M.P., Kondratov R.V. (2010). Circadian clock proteins control adaptation to novel environment and memory formation. Aging (Albany NY) 2, 285-297.

163. Karakas A., Coskun H., Kaya A., Kucuk A., Gunduz B. The effects of the intraamygdalar melatonin injections on the anxiety like behavior and the spatial memory performance in male Wistar rats. Behav Brain Res 2011, 222 (1):141 – 150.

164. Amir S., Cain S., Sullivan J., Robinson B., Stewart J. (1999a) In rats, odor-induced fos in the olfactory pathways depends on the phase of the circadian clock. Neurosci Lett 272:175-178
170. Rubenstein D.R., Wikelski M., 2005. Steroid hormones and aggression in female Galapagos marine iguanas. *Horm. Behav.* 48, 329-341

171. Jasnow A.M., Huhman K.L., Bartness T.J., 2002. Short days and exogenous melatonin increase aggression of male Syrian hamsters (*Mesocricetus auratus*). *Horm. Behav.* 42, 13-20

172. Gammie S.C., D’Anna K.L., Gernstein H., Stevenson S.A., 2009. Neurotensin inversely modulates maternal aggression. *Neuroscience.* 158, 1215-1223

173. Yu Y., Shi J., 2009. Relationship between levels of testosterone and cortisol in saliva and aggressive behaviors of adolescents. *Biomed. Environ. Sci.* 22, 44-49

174. Shah S.N., Nyby J.G., 2010. Ghrelin’s quick inhibition of androgen-dependent behaviors of male house mice (*Mus musculus*). *Horm. Behav.* 57, 291-296

175. Hume J.M., Wyn N.E., Edwards K.E., 2005. Castration reduces male testosterone, estradiol, and territorial aggression, but not paternal behavior in biparental dwarf hamsters (*Phodopus campbelli*). *Horm. Behav.* 48, 303-310

176. Laredo S.A., Orr V.N., McMackin M.Z., Trainor B.C., 2014. The effects of exogenous melatonin and melatonin receptor blockade on aggression and estrogen-dependent gene expression in male California mice (*Peromyscus californicus*). *Physiol Behav.* 128: 86-91

177. Demas G.E., Polacek K.M., Durazzo A., Jasnow A.M., 2004. Adrenal hormones mediate melatonin-induced increases in aggression in male Siberian hamsters (*Phodopus sungorus*). *Horm. Behav.* 46, 582-591

178. Rendon N.M., Rudolph L.M., Sengelaub D.R., Demas G.E., 2015. The agonistic adrenal: melatonin elicits female aggression via regulation of adrenal androgens. *Proceedings of the Royal Society B* 282 (1819): 20152080