Sustained Intracellular Acidosis Triggers the Na\(^+\)/H\(^+\) Exchanger-1 Activation in Glutamate Excitotoxicity

Bo Kyung Lee\(^1,\)* and Yi-Sook Jung\(^1,2,\)*

\(^1\)College of Pharmacy, Ajou University, Suwon 16499; \(^2\)Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea

Abstract

The Na\(^+\)/H\(^+\) exchanger-1 (NHE-1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the brain, heart, and other organs. It is increased by intracellular acidosis through the interaction of intracellular H\(^+\) with an allosteric modifier site in the transport domain. In the previous study, we reported that glutamate-induced NHE-1 phosphorylation mediated by activation of protein kinase C-β (PKC-β) in cultured neuron cells via extracellular signal-regulated kinases (ERK) and p90 ribosomal s6 kinases (p90RSK) pathway results in NHE-1 activation. However, whether glutamate stimulates NHE-1 activity solely by the allosteric mechanism remains elusive. Cultured primary cortical neuronal cells were subjected to intracellular acidosis by exposure to 100 μM glutamate or 20 mM NH\(_4\)Cl. After the desired duration of intracellular acidosis, the phosphorylation and activation of PKC-β, ERK1/2, and p90RSK were determined by Western blotting. We investigated whether the duration of intracellular acidosis is controlled by glutamate exposure time. The NHE-1 activation increased while intracellular acidosis sustained for >3 min. To determine if sustained intracellular acidosis induced NHE-1 phosphorylation, we examined phosphorylation of NHE-1 induced by intracellular acidosis by transient exposure to NH\(_4\)Cl. Sustained intracellular acidosis led to activation and phosphorylation of NHE-1. In addition, sustained intracellular acidosis also activated the PKC-β, ERK1/2, and p90RSK in neuronal cells. We conclude that glutamate stimulates NHE-1 activity through sustained intracellular acidosis, which mediates NHE-1 phosphorylation regulated by PKC-β/ERK1/2/p90RSK pathway in neuronal cells.

Key Words: Glutamate, Na\(^+\)/H\(^+\) exchanger-1, Sustained acidosis, Cortical neurons, Protein kinase C-β, Extracellular signal-regulated kinases 1/2

INTRODUCTION

Neuronal excitability and neurotransmission are metabolically powerful activities that induce excessive changes in intracellular pH (Chesler and Kaila, 1992). These pH alterations further regulate electrical activity by regulating the conductance of various pH-sensitive neurotransmitters-, voltage-, and proton-gated ion channels (Jinadasa et al., 2014). The influence of intracellular and extracellular pH oscillation on neuronal excitability is well established and partly attributed to H\(^+\) sensitivity of neurotransmitter receptors and voltage-gated ion channels (Tang et al., 1990; Rocha et al., 2008). These pH changes have feedback mechanism associated with a physiological role for controlling of the neuronal function (DeVries, 2001). On the contrary, excessive intracellular acidosis has been postulated to contribute to ischemic neuronal cell death (Hartley and Dubinsky, 1993). Previous studies suggested that ischemia-induced shifts in brain pH could be accounted for by the neurotransmitter-induced pH change within the neuronal cells. Moreover, physiological levels of glutamate have been reported to produce parallel increase in H\(^+\) and Ca\(^{2+}\) concentrations; extended periods of elevated H\(^+\) concentration results in in vitro neurotoxicity, contributing synergistic excitotoxic neuronal cell death (Hartley and Dubinsky, 1993). In a recent study, Rathje et al. (2013) reported that N-methyl-D-aspartate (NMDA) receptor activation-induced intracellular acidification modulates Na\(^+\)/H\(^+\) exchanger-1 (NHE-1) activity through PDZ domain (presented in PSD-95, DlgA and ZO-1)-containing protein, which interacts with C kinase 1 (PICK-1) regulation in hippocampal cells. In-
deed, it has been reported that various NHE inhibitors such as cariporide, zoniporide, and SM20220 prevent glutamate-induced neuronal cell death (Matsumoto et al., 2004; Lee et al., 2009; Lee and Jung, 2012). Furthermore, we recently investigated that glutamate-induced Na+/H+ exchanger-1 (NHE-1) phosphorylation mediated by activation of protein kinase C-β (PKC-β) in cultured neuron cells via extracellular-signal-regulated kinase 1/2 (ERK1/2)/ribosomal s6 kinase (p90RSK) pathways result in NHE-1 activation in cortical neurons (Lee et al., 2014). However, the mechanism underlying mediation of regulatory function of glutamate in initiating the step of NHE-1 phosphorylation remains elusive. We therefore examined how glutamate leads to some aspects of intracellular acidosis and whether neuronal acidosis controls NHE-1 phosphorylation in cortical neuronal cells.

MATERIALS AND METHODS

Chemicals reagents

Cariporide was synthesized at the Bio-organic Division of the Korea Research Institute of Chemical Technology (Daejeon, Korea). Glutamate was purchased from Sigma (St. Louis, MO, USA). U0126 (1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene) was from Tocris (Ballwin, MO, USA) and PKC-β inhibitor (3-1-(3-imidazol-1-yl)propyl)-1H-indol-3-yl)-4-anilino-1H-pyrrole-2,5-dione) and SL0101 (Kaeppferol-3-O-(3',4'-di-O-acetyl-L-rhamnopyranoside)) were purchased from Calbiochem (Darmstadt, Germany).

Primary cultures of cortical neurons

All experimental procedures were performed in accordance with the guidelines on the use and care of laboratory animals issued by the Animal Care Committee at Ajou University (Suwon, Korea). Primary mouse cortical neurons were cultured as described previously (Lee and Jung, 2012). Briefly, cerebral cortices were removed from the brains of fetal ICR mice on gestation day 14, gently triturated 3–4 times using a large-bore Pasteur pipette, dissociated into individual cells using a small-bore Pasteur pipette, and plated on 6- or 24-well plates in 5% CO2 in culture media, consisting of Eagle’s Minimum Essential Medium (PAMM), supplemented with 10 % fetal bovine serum (Gibco-BRL, Gaithersburg, MD, USA). Cells (approximately 2.5×10^5 cells/10 ml) were maintained in culture media, consisting of Eagle’s Minimum Essential Medium (MEM) (Earle’s salts, Welgene, Daegu, Korea) supplemented with 21 mM glucose, 5% fetal bovine serum (Gibco-BRL), 5% horse serum (Gibco-BRL), and 2 mM L-glutamine. Cytosine arabinofuranoside (10 µg/ml Ara-C, Sigma) was added to cultures on culture days 3-4 in vitro (DIV 3-4) to prevent glial cell overgrowth. Cells were maintained in 5% CO2 atmosphere at 37°C for 7-8 days, and then used for experiments. More than 80% of the cell population at this stage was neuronal cells, as determined by NeuN (neuronal nuclei, specific neuronal markers, Chemicon, Temecula, CA, USA) and GFAP (glial fibrillary acidic protein, glial cell markers, Sigma) staining (data not shown).

Measurements of pH, and NHE activity

NHE activity was measured following a previously described method with a few modifications (Kim et al., 2007). Briefly, cells were loaded with a pH-sensitive fluorescent dye - BOCERF-AM (acetoxymethyl esters of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein, Invitrogen, Carlsbad, CA, USA) and pH changes were measured. For primary cultured neuronal cells, cells grown on poly-D-lysine-coated glass cover slips were loaded with 5 µM BCECF-AM by incubation for 15 min at room temperature in standard HEPES-buffered solution. The standard HEPES-buffered solution contained in mM: 140 NaCl, 5 KCl, 1 MgCl, 1 CaCl2, 10 glucose, and 10 HEPES (pH 7.4 with NaOH). Cells were then washed with standard HEPES-buffered solution, and assembled in the bottom of a perfusion chamber. The chamber was placed on an inverted microscope and intralobular ducts were identified based on morphological examination. BOCERF-AM fluorescence was recorded at excitation wavelengths of 440 and 490 nm using a recording setup (Deltamea; PTI Inc., Brunswick, NJ, USA). NHE activities were measured by estimating Na+-dependent pH recovery in acidified cells as follows: cells were first acidified by a NH4Cl (20 mM) pulse, and then perfused with Na+-free solution prepared by replacing Na+ in the standard HEPES-buffered solution. Maximal Na+-dependent pH recovery was measured in cells acidified to a pH of 6.3-6.4. Buffer capacity was calculated by measuring pH in response to 5-20 mM NaCl pulses. During the experiment, the intrinsic buffer capacity was found to show a negative linear relationship with pH between pH values of 6.2 and 7.6.

Subcellular fractionation for the isolation of PKC and immunoblotting

Subcellular fractionation for PKC was performed as described previously (Jung et al., 2004). Briefly, cells were harvested in homogenization buffer (20 mM Tris-HCl, 2 mM ethylenediaminetetraacetic acid (EDTA), 5 mM ethyleneglycoltetraacetic acid (EGTA), 5 mM Dithiothreitol (DTT), 6 mM β-mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride (PMSF), 20 µM leupeptin, and 10 µg/ml aprotinin, pH 7.4) and centrifuged at 100,000 g for 1 h at 4°C. Supernatants were retained as cytosolic fractions. Pellets were resuspended in 1% Triton X-100-containing homogenization buffer and centrifuged at 10,000 g for 10 min at 4°C. Supernatants are referred to as membrane fractions. Protein content was determined using the Bradford protein assay (Biorad, Hercules, CA, USA). The samples were resolved on 8% SDS-polyacrylamide gel and transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA, USA). Blots were incubated in 5% non-fat dry milk for 1 h at room temperature, and then incubated overnight at 4°C with a polyclonal antibody against PKC isoform (Santa Cruz, CA, USA). The blots were then rinsed with Tris-buffered saline and incubated with horse-radish peroxidase-conjugated secondary IgG (Cell Signaling Technologies, Beverly, MA, USA) for 1 h. Bound antibody was detected with an ECL kit (Intron) and bands analyzed using a LAS1000 (Fuji Photo Film, Tokyo, Japan).

Isolation of ERK1/2 and p90RSK from cell lysates

Isolation of ERK1/2 and p90RSK was performed as described previously (Lee et al., 2014). Briefly, cells were harvested in RIPA buffer (150 mM NaCl, 20 mM Tris-HCl, 1% NP-40, 1% Na-deoxycholate, 1 mM EDTA, and protease inhibitors at pH 7.4), homogenized, and nuclei and cell debris were removed by centrifugation at 10,000 g for 15 min at 4°C. Supernatants were collected for immunoblotting. Protein content was determined using the BCA™ protein assay (Pierce, Rockford, IL, USA). Protein samples were denatured in Laemli
buffer (1:4 by volume) and total ERK1/2 and p-ERK1/2 levels were quantitated by immunoblotting using polyclonal antibody against ERK1/2 and monoclonal antibody against p-ERK1/2, respectively (both from Cell Signaling Technologies). Polyclonal antibodies against RSK and phosphorylated p90RSK (both from Cell Signaling Technologies) were used to detect total p90RSK and p-p90RSK, respectively.

Analysis of NHE-1 phosphorylation by immunoprecipitation

Phosphorylation level of NHE-1 was measured as described by Snabaitis et al. (2008). Cells were lysed in ice-cold RIPA buffer as described above and centrifuged at 10,000 g for 15 min at 4°C. Supernatants containing proteins were collected and incubated overnight at 4°C with mouse monoclonal antibody against the phosphor-Ser 14-3-3β protein binding motif (Cell Signaling Technologies) or with goat monoclonal NHE-1 antibody (Santa Cruz). The immunocomplexes obtained were mixed with protein A and G (Merck, Germany) for 4 h at 4°C and then washed three times with ice-cold modified RIPA buffer. Immunocomplexes were dissociated from beads by heating at 100°C for 5 min. Protein samples from immunocomplexes were resolved on 8% SDS-PAGE and analyzed by immunoblotting using goat polyclonal NHE-1 antibody (BD Bioscience, San Jose, CA, USA) or rabbit monoclonal phospho-serine antibody (Invitrogen).

Statistical analysis

All data are presented as the means ± SEM of at least three separate determinations in each group. Numerical data were compared using Student’s t-test or one-way ANOVA post hoc test for the unpaired observations between the two groups. A p-value <0.05 was considered statistically significant.

RESULTS

Changes in intracellular pH in neuronal cells following exposure to glutamate

There was a rapid and significant decrease in pH following the application of 100 µM glutamate. After about 4 min of glutamate treatment, pH decreased from 7.20 ± 0.05 to 6.95 ± 0.03 in neurons. PKC-βi (PKC-βi/2 inhibitor) and U0126 (MEK1/2 inhibitor) as inhibitors of NHE-1 phosphorylation (Lee et al., 2014) and cariporide, a potent and selective pharmacological inhibitor of NHE-1 (Lee and Jung, 2012) did not affect intracellular acidosis following glutamate exposure, suggesting that glutamate-induced intracellular acidosis is not mediated by activation or phosphorylation of NHE-1 in neuronal cells (Fig. 1). To elucidate the relationship between acidification and NHE-1 phosphorylation and activation in neurons following glutamate exposure, we measured the NHE activity. We previously investigated that intrinsic buffer capacity of neurons is altered by glutamate and confirmed it in present study. As shown in Fig. 2A, changes in pH were induced by applying progressively lower concentrations of NH4Cl. In response to 100 µM glutamate, NHE-1 activity increased about 2-fold in neuronal cells (from 0.17 ± 0.03 to 0.32 ± 0.04 pH/min), and this was decreased by PKC-βi (to 0.19 ± 0.02 pH/min), U0126 (0.13 ± 0.04 pH/min) and by cariporide (to 0.04 ± 0.02 pH/min), respectively (Fig. 2B). Interestingly, neurons treated by glutamate sustained acidosis for about 3 min (Fig. 2A, dotted bar) and then increase in NHE-1 activity was noted. However, the glutamate-induced sustained acidosis (168.4 ± 36.2 sec) was significantly extinguished by PKC-βi (67.2 ± 38.6 sec) and...
also involved in the phosphorylation of NHE-1 in neuronal cells. We investigated whether PKC-β activity in neuronal cells (Lee et al., 2003) showed to phosphorylate the regulatory domain of NHE-1 and the protein band representing the phosphorylation level of the protein was increased in neurons following sustained acidosis condition in glutamate-induced neuronal cells (Fig. 2B, 2C). These result suggests the possibility of occurrence of NHE-1 activation mediated by sustained acidosis in neurons induced by glutamate.

Changes in NHE-1 activity following sustained acidosis
To investigate NHE-1 activity stimulated by sustained intracellular acidosis, we established sustained acidosis condition by extending the duration of intracellular acidosis by 3 min through initial washout of NH₄Cl with Na⁺-free solution and subsequent reintroduction of normal extracellular Na⁺ (Haworth et al., 2003). As shown in Fig. 3, sustained intracellular acidosis increased NHE-1 activity (from 0.09 ± 0.015 to 0.15 ± 0.023 μmol·H⁺/min) and the activity was decreased by PKC-βi (to 0.08 ± 0.03 μmol·H⁺/min), U0126 (to 0.102 ± 0.01 μmol·H⁺/min), and cariporide (to 0.015 ± 0.016 μmol·H⁺/min), respectively.

Changes in NHE-1 phosphorylation following sustained acidosis
We subsequently investigated whether sustained acidosis leads to phosphorylation of NHE-1 in neurons. To determine the effect of the duration of intracellular acidosis on NHE-1 phosphorylation, neurons were exposed for ~3 min to 20 mM NH₄Cl, which was washed out in the presence of cariporide, thus lowering pH to ~6.6 (Haworth et al., 2006). Immunoprecipitation of NHE-1 followed by immunoblotting for phosphoserine (p-Ser) was performed to examine their interaction. NHE-1 binding to p-Ser was found to increase in neurons following NH₄Cl exposure. As illustrated in Fig. 4A, the intensity of the protein band representing the phosphorylation level of NHE-1 was significantly increased in neurons exposed to NH₄Cl (~3 min). A PKC-β/ERK1/2-p90RSK pathway has been shown to phosphorylate the regulatory domain of NHE-1 and possibly mediate the glutamate-induced stimulations of NHE-1 activity in neuronal cells (Lee et al., 2014). Therefore, we investigated whether PKC-β/ERK1/2-p90RSK pathways is also involved in the phosphorylation of NHE-1 in neuronal cells treated with NH₄Cl for 3 min. As shown in Fig. 4B, NH₄Cl-induced phosphorylation of NHE-1 was abolished by PKC-βi, U0126 or SL0101 (a p90RSK specific inhibitor) (from 10.2 ± 3.4 folds to 2.6 ± 1.0, 3.06 ± 1.2 or 2.3 ± 0.2 folds), respectively.

Sustained acidosis mediated the stimulation of NHE-1 activity through PKC-β/ERK1/2-p90RSK pathway in neurons treated with NH₄Cl
We investigated whether NH₄Cl-mediated sustained acidosis induces phosphorylation of NHE-1 through PKC-β/ERK1/2-p90RSK pathway, which was involved in glutamate-induced stimulation of NHE-1 activity in neuronal cells (Lee et al., 2014). As shown in Fig. 5, NH₄Cl treatment increased the activation of PKC-βi and −βj and phosphorylation of ERK1/2 and p90RSK. NH₄Cl-induced phosphorylation of ERK1/2 was significantly abolished by U0126 or PKC-βi, but U0126 did not inhibit the activation of PKC-βi and −βj, whereas all inhibitors including PKC-βi inhibitor, U0126 and SL0101, dramatically prevented NH₄Cl-induced phosphorylation of p90RSK. These finding suggests that the stimulation of NHE-1 activity after sustained acidosis exposure occurs via PKC-β/ERK1/2-p90RSK signaling pathway in neuronal cells.

DISCUSSION
In neuronal disease states, acidification is a phenomenon which forms part of attenuating excessive neuronal excitability (Chesler and Kaila, 1992). In addition, decrease in pH in the brain appears due to various problems that occur outside the brain such as metabolic acidosis, also several neurodegenerative disorders represent a close relationship between the pH and the nervous system (Ruffin et al., 2014). The regulation of intracellular pH in neuronal cells takes place through an active process, because H⁺ ions do not passively pass through the cell membrane (Roos and Boron, 1981). Intracellular acidois due to the activation of cell surface receptors that may be
an internal allosteric H+ excluding the neurons. This activation is due to the presence of excitotoxicity. Acidification activates NHE in various cells in order to increase the Ca2+ concentration in a Ca2+-dependent manner. The reason for increase in H+ concentration in a Ca2+-dependent manner is diverse. Of the most convincing hypothesis is that the glutamate-induced sustained acidosis stimulates NHE-1 activity solely by the allosteric mechanism, cultured cortical neuronal cells were subjected to intracellular acidosis by transient exposure to NH4Cl. Apparently, NH4Cl-induced intracellular acidosis increased phosphorylation and activation of NHE-1 through PKC-β, ERK1/2, and p90RSK pathways, which is a proven mechanism involving activation of NHE-1 activity by glutamate in neuronal cells (Lee et al., 2014). Furthermore, inhibition of PKC-β, ERK1/2, and p90RSK by pretreatment of neuronal cells with PKC-β inhibitor, U0126 and SL0101, respectively abolished the activation of NHE-1 by sustained NH4Cl-induced intracellular acidosis.

During excitotoxic condition, over-release of glutamate that increase Ca2+ influx through their receptor and activates various protein kinases such as PKCs and mitogen-activated protein kinases (MAPKs). Synergistic effects of various kinase activation and increase in Ca2+ concentration following glutamate could lead to achievement of the mode of stimulation of NHE-1 activity by sustained intracellular acidosis in neuronal cells. Although future research may elucidate clear mechanism and possibly even different mechanisms for glutamate-induced intracellular acidosis in relation to intracellular Ca2+ level, existing data cannot support such conclusions. Therefore, future research is needed to assess accurately the role of increase in intracellular Ca2+ concentration in glutamate treatment that leads to acidification. However, it is apparent that the protein kinases may cause potential activation of NHE-1 in response to sustained intracellular acidosis. In addition, activation of PKC-β/ERK1/2/RSK pathway is necessary for the stimulation of NHE-1 activity by sustained intracellular acidosis in glutamate excitotoxicity.

ACKNOWLEDGMENTS

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01059515), Republic of Korea.

REFERENCES

Chesler, M. and Kaila K. (1992) Modulation of pH by neuronal activity. Trends Neurosci. 15, 396-402.
DeVries, S. H. (2001) Excytotoxicity in mammalian cells. J. Neurosci. 21, 250-257.
Dixon, D. B., Takahashi, K. I., and Copenhagen, D. R. (1993) Long-term improvement in intracellular pH and excitotoxicity. J. Neurosci. 13, 4690-4699.
Haworth, R. S., McCann, C., Snabaitis, A. K., Roberts, N. A. and Avkiran, M. (2003) Stimulation of the plasma membrane Na+/H+ exchanger NHE1 by sustained intracellular acidosis. Evidence for a novel mechanism mediated by the ERK pathway. J. Biol. Chem. 278, 31676-31684.
Haworth, R. S., Dashnyam, Y., and Avkiran, M. (2006) Ras triggers acidosis-induced activation of the extracellular-signal-regulated kinase pathway in cardiac myocytes. Biochem. J. 399, 493-501.
Irwin, R. P., Lin, S. Z., Long, R. T. and Paul, S. M. (1994) N-methyl-D-aspartate induces a rapid, reversible, and calcium-dependent intracellular acidosis in cultured rat hippocampal neurons. J. Neurosci. 14, 1352-1357.
Itch, S., Ding, B., Bains, C. P., Wang, N., Takeishi, Y., Jaliah, T., King, G. L., Walsh, R. A., Yan, C. and Abe, J. (2005) Role of p90 ribosomal S6 kinase (p90RSK) in reactive oxygen species and protein kinase Cβ (PKC-β)-mediated cardiac troponin I phosphorylation. J. Biol. Chem. 280, 24135-24142.
Jinadasa, T., Szabo, E. Z., Numat, M. and Orlowski, J. (2014) Activa Itoh, S., Ding, B., Bains, C. P., Wang, N., Takeishi, Y., Jalili, T., King, G. L., Walsh, R. A., Yan, C. and Abe, J. (2005) Role of p90 ribosomal S6 kinase (p90RSK) in reactive oxygen species and protein kinase Cβ (PKC-β)-mediated cardiac troponin I phosphorylation. J. Biol. Chem. 280, 24135-24142.
Kersh, A. E., Hartley, L. K., Havlin, K., Hubbell, B. B., Nanagas, V., Kalra, A., Chua, J., Whitesell, R., Ritucci, N. A., Dean, J. B. and Putnam, R. W. (2009) pH-regulating transporters in neurons from various chemosensitive brainstem regions in neonatal rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1409-R1420.
Kim, J., Jung, Y. S., Han, W., Kim, M. Y., Namkung, W., Lee, B. H., Yi, K. Y., Yoo, S. E., Lee, M. G. and Kim, K. H. (2007) Pharmacodynamic characteristics and cardioprotective effects of new NHE1 inhibitors. Eur. J. Pharmacol. 567, 131-138.
Lee, B. K., Lee, D. H., Park, S., Park, S. L., Yoon, J. S., Lee, M. G., Lee, S., Yi, K. Y., Yoo, S. E., Lee, K. H., Kim, Y. S., Lee, S. H., Baik, E. J., Moon, C. H. and Jung, Y. S. (2004) Role for PKC-epsilon in neuronal death and ischemia-induced cerebral infarct. Brain Res. 1248, 22-30.
Lee, B. K., and Jung, Y. S. (2012) The Na+/H+ exchanger-1 inhibitor cariporide prevents glutamate-induced necrotic neuronal death by inhibiting mitochondrial Ca2+ overload. J. Neurosci. Res. 90, 860-869.
Lee, B. K., Yoon, J. S., Lee, M. G. and Jung, Y. S. (2014) Protein kinase C-β mediates neuronal activation of Na+/H+ exchanger-1 during glutamate excitotoxicity. Cell. Signal. 26, 697-704.
Lipp, P. and Reither, G. (2011) Protein kinase C. The “Masters” of calcium and lipid. Cold Spring Harb. Perspect. Biol. 3, a004556.
Matsumoto, Y., Yamamoto, S., Suzuki, Y., Tsuboi, T., Terakawa, S., Ohashi, N. and Umemura, K. (2004) Na+/H+ exchanger inhibitor, SM-20220, is protective against excitotoxicity in cultured cortical neurons. Stroke 35, 185-190.
Ratheje, M., Fang, H., Bachman, J. L., Anggono, V., Gether, U., Huganir, R. L. and Madsen, K. L. (2013) AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification into hippocampal neurons. Proc. Natl. Acad. Sci. U.S.A. 110, 14426-14431.
Rocha, M. A., Crockett, D. P., Wong, L. Y., Richardson, J. R. and Sonnalla, P. K. (2008) Na+/H+ exchanger inhibition modifies dopamine neurotransmission during normal and metabolic stress conditions. J. Neurochem. 106, 231-243.
Roos, A. and Boron, W. F. (1981) Intracellular pH. Physiol. Rev. 61, 296-434.
Ruffin, V. A., Salameh, A. I., Boron, W. F. and Parker, M. D. (2014) Intracellular pH regulation by acid-base transporters in mammalian neurons. Front. Physiol. 5, 43.
Snabaitis, A. K., Cuello, F. and Avkiran, M. (2008) Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1. Circ. Res. 103, 881-890.
Takahashi, E., Abe, J., Gallis, B., Aebersold, R., Spring, D. J., Krebs, E. G. and Berk, B. C. (1999) p90RSK is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. J. Biol. Chem. 274, 20206-20214.
Tang, C. M., Richter, M. and Morad, M. (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+ 3. Proc. Natl. Acad. Sci. U.S.A. 87, 6445-6449.
Thomas, R. C. (1989) Proton channels in snail neurons. Does calcium entry mimic the effects of proton influx? Ann. N. Y. Acad. Sci. 574, 287-293.
Wang, G. J., Randall, R. D. and Thayer, S. A. (1994) Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J. Neurophysiol. 72, 2563-2569.
Yamamoto, T., Swierach, P., Rossini, A., Loh, S. H., Vaughan-Jones, R. D. and Spitzer, K. W. (2005) Functional diversity of electrogenic Na+/HCO3− cotransport in ventricular myocytes from rat, rabbit and guinea pig. J. Physiol. 562, 455-475.