Star formation in H\textsc{i} tails: HCG 92, HCG 100 and 6 interacting systems

D. F. de Mello1,2, F. Urrutia-Viscarra3, C. Mendes de Oliveira3, S. Torres-Flores4, E. R. Carrasco5, E. Cypriano3

1The Catholic University of America, Physics Department, Washington, DC 20064, USA
2Observational Cosmology Laboratory, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771, USA
3Departamento de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas da USP, Rua do Matão 1196, Cidade Universitária, 05508-090, São Paulo, Brazil
4Departamento de Física, Universidad de La Serena, Av. Cisternas 1600 Norte, La Serena, Chile
5Gemini Observatory/AURA, Southern Operations Center, Casilla 608, La Serena, Chile

ABSTRACT

We present new Gemini spectra of 14 new objects found within the \textsc{h}i tails of Hickson Compact Groups 92 and 100. Nine of them are GALEX Far-UV (FUV) and Near-UV (NUV) sources. The spectra confirm that these objects are members of the compact groups and have metallicities close to solar, with an average value of $\log(O/H)\sim8.5$. They have average FUV luminosities 7×10^{40} erg s$^{-1}$, very young ages ($<100 \text{ Myr}$) and two of them resemble tidal dwarf galaxies (TDGs) candidates. We suggest that they were created within gas clouds that were ejected during galaxy-galaxy interactions into the intergalactic medium, which would explain the high metallicities of the objects, inherited from the parent galaxies from which the gas originated. We conduct a search for similar objects in 6 interacting systems with extended \textsc{hi} tails, NGC 2623, NGC 3079, NGC 3359, NGC 3627, NGC 3718, NGC 4656. We found 35 UV sources with ages $<100 \text{ Myr}$, however most of them are on average less luminous/massive than the UV sources found around HCG 92 and 100. We speculate that this might be an environmental effect and that compact groups of galaxies are more favorable to TDG formation than other interacting systems.

Key words: galaxies: interactions – galaxies: star formation – (galaxies:) intergalactic medium – galaxies: star clusters

1 INTRODUCTION

Interacting galaxies are ideal laboratories to probe galaxy evolution since tidal interaction is an important mechanism in shaping galaxies properties as we measure today. The \textsc{hi} gas, which is both the reservoir for star formation and an excellent tracer of the large-scale galaxy dynamics, is affected by tidal interaction and is often found in tails outside interacting galaxies. One of the key questions regarding the encounters of disk galaxies is the fate of the stripped \textsc{hi} gas. Do these \textsc{hi} intergalactic clouds form new stellar systems and/or dwarf galaxies known as tidal dwarf galaxies (TDGs)? And if they do, is there any difference in the types of objects that could be formed based on the type of environment where they are located? We have embarked in a series of papers trying to answer these questions. In Torres-Flores et al. (2009), de Mello et al. (2008a) and Mendes de Oliveira et al. (2004, 2006) we showed a few Hickson Compact Groups (HCGs) contain TDGs and intragroup star-forming regions. Other authors have also found TDGs and many young globular cluster candidates in compact groups (e.g., Iglesias-Páramo & Vílchez 2001 and Gallagher et al. 2001). Other cases of intergalactic star-forming regions have also been reported outside interacting galaxies (e.g. Ryan-Weber et al. 2004, Mullan et al. 2011, Oosterloo et al. 2004, Werk et al. 2011), including young ($<10 \text{ Myr}$) small stellar clusters in the \textsc{hi} bridge between M81 and M82 (de Mello...
located in the vicinity of the intergalactic HI clouds of the NUV.

Mello et al. (2008a) presented HI data (HeG) on (HCG 100) located more than 25 kpc from the nearest galaxy. The targets analyzed here are newly identified members of the HI tails of HCG 92 and HCG 100, and derived their radial velocities. We also determined metallicities for those which turned out to be at the same redshift of the groups. Observations were performed with the Gemini Multiobject Spectrograph (GMOS) at Gemini North in June 2008 (HCG 92) and in October and November 2007 (HCG 100). We centered GMOS slits on members of the groups and on sources which were identified in Mendes de Oliveira et al. (2004) and de Mello et al. (2008a). Other objects in the field were also observed when there was space left in the multifiber mask. The spectra were acquired using the B600 and R400 gratings.

Exposure times for HCG 92 were 3 x 1500 sec for the B600 grating and 3 x 1000 sec for the R400 grating, covering from 3700 to 8000 Å. For HCG 100 data, the total exposure times were 3 x 600 sec and 3 x 1200 sec for the B600 and R400 gratings, respectively, and the final spectra covered a wavelength interval of 3700 to 7000 Å. Position angles were 20 and 300 degrees, from the usual orientation of GMOS, values for the airmass were 1.22 (R400) and 1.08 (B600) for HCG 92 and 1.03 for HCG 100, respectively. The seeing of 1 arcsec matched well the slit size of 1 arcsec in both cases.

All spectra were biased, trimmed, flat fielded, and wavelength calibrated with the Gemini IRAF package version 1.8 inside IRAF.1 The final spectra have typical resolutions of 3.2 and 7.0 Å for B600 and R400 gratings, respectively. The spectra of the regions in HCG 92 were not flux calibrated given that there were no standard calibrators observed around the time the data were taken. While the regions of HCG 100 had their flux calibrated using the spectrum of the stars BD+284211 (R400) and Hiltner 600 (B 600), observed in December 11, 2007. For reddening correction we used the intrinsic Hα/Hβ ratio, with an intrinsic value taken by Osterbrock (2006) for an effective temperature of 10000K and N_e=10^7.

We found 12 and 2 sources at the same redshift of HCG 92 and HCG 100, respectively. Four of the 12 sources had already been confirmed as members of HCG 92 by Mendes de Oliveira et al. (2004).

2.1 Spectroscopy with Gemini/GMOS

We have obtained new spectra of dozens of UV sources identified within the HI tails of HCG 92 and HCG 100 and derived their radial velocities. We also determined metallicities for those which turned out to be at the same redshift of the groups. Observations were performed with the Gemini Multiobject Spectrograph (GMOS) at Gemini North in June 2008 (HCG 92) and in October and November 2007 (HCG 100). We centered GMOS slits on members of the groups and on sources which were identified in Mendes de Oliveira et al. (2004) and de Mello et al. (2008a). Other objects in the field were also observed when there was space left in the multifiber mask. The spectra were acquired using the B600 and R400 gratings.

Exposure times for HCG 92 were 3 x 1500 sec for the B600 grating and 3 x 1000 sec for the R400 grating, covering from 3700 to 8000 Å. For HCG 100 data, the total exposure times were 3 x 600 sec and 3 x 1200 sec for the B600 and R400 gratings, respectively, and the final spectra covered a wavelength interval of 3700 to 7000 Å. Position angles were 20 and 300 degrees, from the usual orientation of GMOS, values for the airmass were 1.22 (R400) and 1.08 (B600) for HCG 92 and 1.03 for HCG 100, respectively. The seeing of 1 arcsec matched well the slit size of 1 arcsec in both cases.

All spectra were biased, trimmed, flat fielded, and wavelength calibrated with the Gemini IRAF package version 1.8 inside IRAF. The final spectra have typical resolutions of 3.2 and 7.0 Å for B600 and R400 gratings, respectively. The spectra of the regions in HCG 92 were not flux calibrated given that there were no standard calibrators observed around the time the data were taken. While the regions of HCG 100 had their flux calibrated using the spectrum of the stars BD+284211 (R400) and Hiltner 600 (B 600), observed in December 11, 2007. For reddening correction we used the intrinsic Hα/Hβ ratio, with an intrinsic value taken by Osterbrock (2006) for an effective temperature of 10000K and N_e=10^7.

We found 12 and 2 sources at the same redshift of HCG 92 and HCG 100, respectively. Four of the 12 sources had already been confirmed as members of HCG 92 by Mendes de Oliveira et al. (2004).

2.2 GALEX data

We obtained GALEX FUV and NUV background subtracted images from the Multimission Archive at the Space Telescope Science Institute (MAST) and followed the method by de Mello et al. (2008a) to select UV sources within the HI tail or in the outskirts of the HI map. FUV and NUV fluxes were calculated using Morrissey et al. (2005) FUV fluxes multiplied by the effective filter bandpass (F_UV= 1528 ± 269 Å and N_UV = 2271 ± 616 Å) to give units of erg s^{-1} cm^{-2}.

The GALEX fields of view are 1°.28 and 1°.24 in FUV and NUV, respectively, and the pixel scale is 1.5 arcsec pixel^{-1}. The images have a resolution (FWHM) of 4.2''and

1 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
Figure 1. NUV image of HCG 92. Seven UV sources detected in the GALEX images are marked. North is up and East is to the left. Bar length is 1'.

5.3'' in FUV and NUV, respectively. Despite the broad FWHM, GALEX is able to detect faint UV sources. The medium imaging survey, for instance, reaches m=24 and 24.5 in FUV and NUV with typical exposures of 1,500s (Bianchi et al. 2007). GALEX images have also been used extensively to search for very low surface brightness objects (e.g. Thilker et al. 2007) such as the ones we are interested in detecting. We chose the parameters to detect the UV with Source Extractor and perform photometry (version 2.4.3, Bertin & Arnouts 1996, hereafter SE) following the prescription of de Mello et al. (2008a, 2008b) which was fine tuned for detecting low surface brightness objects and clumpy systems. We matched both catalogs, FUV and NUV, within 3''-4'' radius. The SE's UV magnitudes (Mag_auto, AB system) were corrected for foreground Galactic extinction using E(B - V) obtained from Schlegel et al. (1998) and $A_{FUV} = E(B - V) \times 8.29$, and $A_{NUV} = E(B - V) \times 8.18$ (Seibert et al. 2005). We used the Cortese et al. (2008) method for computing the internal extinction for each object in the FUV band. For each A_{FUV}, we used Seibert et al.
2 The values we find for E(B-V) obtained from spectroscopy for regions 3 and 5, which are similar to the four objects described in Mendes de Oliveira et al. (2004).

Metallicities of the regions were calculated using the empirical methods O3N2 and N2, proposed and calibrated by Pettini and Pagel (2004). These methods use line ratios [OII] λ5007/Hβ plus [NII] λ6584/Hα and [NII] λ6584/Hα, respectively, to estimate oxygen abundances. These estimators are adequate for faint extragalactic sources, such as the ones we are dealing with, because they are based only on very bright lines. The uncertainties on the calibration of these methods are 0.14 dex for O3N2 and 0.18 for N2 when 68% of the points are included. Table 1 shows the estimated metallicities for the regions in HCG 92 and 100, plus our new results on velocities (measured from the emission lines), masses, and ages. As it can be noted in Table 1, the metallicities derived from the O3N2 and the N2 methods are in close agreement. For one of the regions of HCG 92 (region 6), we used only the N2 method due to the lack of Hβ.

We calculated line ratios and verified that all sources are starforming regions as shown in the BPT diagnostic diagram (Baldwin, Phillips & Terlevich 1981) in Fig.7. We plotted all Sloan sources from Kauffmann et al. (2003) for comparison.

In Fig.8 we show our new data plotted on the metallicity-luminosity diagram (adapted from Fig. 3 of Weibacher et al. 2003). We estimated oxygen abundances using the method O3N2 described above. We also added new data from Croxall et al. (2009) to this figure. As expected, HCG 100 main members occupy the left side of the diagram where luminous and metal-rich objects are located. Nearby dwarf irregular galaxies (Richer & McCall 1995) follow the well-known correlation indicated by the linear fit. Based on Fig.8, all star-forming regions in the HI tail of HCG 92 and 100 have metallicities similar to those of knots in tidal features, i.e. they have metallicities higher than those of local dwarf galaxies. Lisensfeld et al. (2008) and Mendes de Oliveira et al. (2004) found similar results for star-forming regions in the intergalactic medium of the systems Arp 94 and HCG 92, respectively.

Thus we conclude that the metallicity measurements obtained here allowed us to distinguish between "classical" dwarf galaxies and objects from tidal origin. We conclude that objects found within the HI tails of HCG 92 and HCG 100 were formed by pre-enriched material, and their metallicities are similar or higher to that of their progenitor galaxies. It is also possible that their higher metallicities are due to a phenomenon called Infant Mortality (Fall et al. 2006) which destroys clusters by internal processes. In this way, the continuous star formation and destruction of stellar clusters could increase the metallicity of a given region after a few million years.

We have compared the coordinates of our targets with the ones identified in Trancho et al. (2012) using Hubble Space Telescope images and Gemini spectroscopy of HCG 92 and found no common sources. However, a close inspection of the HST images indicate that object T124 in Trancho et al. is the same as our object #6, but had wrong coordinates quoted in their paper. The HI tail is twice as long and has a different curvature than the optical tail, therefore HST small field of view did not cover the entire HI tail. The work by
Figure 2. NUV image of HCG 100 where galaxy members a, b, c and d are labeled. Two TDG candidates, #3 and #4, are marked. They fall within the HI tail as shown in de Mello et al. (2008a). North is up and East is to the left. Bar length is 2'. VLA NHI contours are 0.6, 1.2, 2.1, 3.6, 4.4, 5.1, 5.9, 6.6, 7.4 x 10^{20} cm^{-2}.

Trancho et al. (see also Fedotov et al. 2012) focused only on the optical tail, missing most of the targets we discovered. The age reported by those authors for T124 is in relative good agreement with the values we found for object #6 using the Gemini spectra (1.5 Myr and 6 Myr, respectively). However, the age we found using the UV data, ~100 Myr, is significantly higher. This disagreement can be explained, as pointed out in Trancho et al., by the fact that the slit did not cover the entire complex and is missing the other components of the clump. The UV data on the other hand covers the entire region and is more representative of the cluster. The UV is also known for detecting older stellar population than Hα and is a good age indicator for this type of stellar clusters. Therefore, our results suggest that T124 (or #6) is ~100 Myr and 10^{8.5} M_☉, making it the most massive TDG candidate in the outskirts of HCG 92. We have also inspected the location of this object with respect to the HI map (Mendes de Oliveira et al. 2004) and verified that it is located within one of density peaks which supports the idea that T124 (or #6) is a TDG candidate. According to Tran-
Table 1. Star-forming regions in the HI tail of HCG 92 and HCG 100

ID	ID, region	R.A.	Dec.	V	M_H^a	12-$\log(O/H)$	12-$\log(O/H)$	$\log(L_{FUV})^b$	Agec	L_{FUV}
				km s$^{-1}$	(mag)	O3N2	N2	(erg s$^{-1}$ / Å)	yr	(erg s$^{-1}$)
HCG 92	1d	339.04583	33.98687	6615 ± 16	-12.30	8.44 ± 0.14	8.48 ± 0.18	4.2	2.14 [5.4]	40.74
	2d	339.06230	33.98417	6613 ± 59	-11.93	8.35 ± 0.14	8.45 ± 0.18	4.3	2.22 [4.1]	40.71
	3	339.05833	33.97576	6677 ± 69	-11.58	8.45 ± 0.14	8.55 ± 0.18	4.1	2.44 [5.5]	40.52
	4d	339.05833	33.97309	6639 ± 55	-12.10	8.48 ± 0.14	8.57 ± 0.18	5.7	12.92 [5.5]	40.50
	5	339.05833	33.98417	6639 ± 19	-11.94	8.46 ± 0.14	8.44 ± 0.18	7.6	36.11 [4.4]	41.30
	6	339.04583	33.95833	6548 ± 36	-12.57	8.92 ± 0.18	8.92 ± 0.18	8.5	100.6 [6.4]	41.57
	7d	339.04583	33.98361	6613 ± 59	-12.59	8.32 ± 0.14	8.38 ± 0.18	7.9	100.6 [4.4]	41.06
	3	339.07560	33.99333	5628 ± 17	-13.23	8.50 ± 0.14	8.60 ± 0.18	40.10
	9	338.97000	33.95369	3570 ± 12	-14.10	8.36 ± 0.14	8.46 ± 0.18	40.10
	10	338.97000	33.95369	3570 ± 12	-14.10	8.36 ± 0.14	8.46 ± 0.18	40.10
	11	339.04583	33.96278	5553 ± 52	-13.07	8.36 ± 0.14	8.47 ± 0.18	40.10
	12	339.04583	33.97589	5651 ± 71	-9.88	8.46 ± 0.14	8.55 ± 0.18	40.10
HCG 100	3e	0.29167	13.08583	6020 ± 81	-15.25	8.62 ± 0.14	8.67 ± 0.18	40.10
	4e	0.29167	13.08583	5387 ± 27	-13.42	8.42 ± 0.14	8.55 ± 0.18	4.7	1.08 [6.1]	40.46

a Calculated using magnitudes from Mendes de Oliveira et al. (2004) and de Mello et al. (2008a).

b Stellar mass (M_\odot) obtained from Starburst99 monochromatic luminosity, L_{1550} (erg s$^{-1}$ / Å), for the ages given in column 9. Stellar mass (M_\odot) for H100-$#3$ and H100-$#4$ are from de Mello et al. (2008).

c Age (Myr) estimated from FUV-NVY color. Values given in brackets: ages estimated from Hα equivalent width and SB99 models.

d The respective ID's in Mendes de Oliveira et al. (2004) for regions 1, 2, 4, and 7 in this table are d, a, b, and c.

e ID from de Mello et al. (2008a).

Figure 3. Gemini image (filter r) of the two TDG candidates in the HI tail of HCG 100 as originally identified in de Mello et al. (2008a) as objects #3 (top) and #4 (bottom). North is up and East is to the left.

Figure 4. Spectra of HCG 100's regions 3 (top) and 4 (bottom) identified in do Mello et al. (2008a). These spectra were taken with B600 and R400 gratings. The marked lines were used to estimate the oxygen abundance (12-$\log(O/H)$). A zoom into the Hα line region is shown on the right side of the top figure.

cho et al., two other stellar clusters close to T124, T117 and T122, are 7 and 50 Myr but are not resolved in the GALEX image and therefore are not part of our analysis. Another object, T118, is 125 Myr and has not passed our selection criteria (more details are given in the discussion Section 3). These 4 stellar clusters are within the optical tail which is estimated to have formed due to a close interaction between NGC 7318A and NGC 7319 ~ 200 Myr ago (Renaud et al. 2010). Therefore, our data show that HI tails in these two compact groups, HCG 92 and HCG 100, are laboratories of star formation.
Figure 5. Spectra of HCG 92's region 3. Spectra taken with B600 grating is in the top panel and R400 is in the bottom one. The marked lines were used to estimate the metallicities (12+log(O/H)). These spectra were not flux calibrated, given that no calibration star was available.

Figure 6. Spectra of HCG 92's region 5. Spectra taken with B600 grating is in the top panel and R400 are in the bottom one. The marked lines were used to estimate the metallicities (12+log(O/H)). These spectra were not flux calibrated, given that no calibration star was available.

3 DISCUSSION

In order to explore whether the environment where the newly discovered stellar clusters and TDG candidates plays a significant role in their formation, we have analyzed other interacting systems with extended HI tails using a sample of galaxies from the Rogues gallery of HI maps of peculiar and interacting galaxies compiled by J. Hibbard et al. (2001)3. We identified 25 interacting systems with GALEX data with exposure times > 1 ksec which have also been observed by the Sloan Digital Sky Survey (SDSS). We followed the same method to identify UV sources and to obtain their ages as we did for the compact groups. Since we are looking for young regions predominately composed by the luminosity of O, B, and A stars, we defined a conservative cut in age at 100 Myr. We note that all new objects reported in the previous session for HCG 92 and HCG 100 are within this age range. We have also adopted a cut in luminosity equivalent to 100 O 8V stars (100 × L\textsubscript{FUV} = 100 × 2 × 1039 erg s-1) or 4.2 × 1039 erg s-1. This limit was set based on the luminosities of stellar clusters found in the HI bridge of M81 and M82 (a.k.a. “blue blobs”) from de Mello et al. (2008b).

Six of the 25 interacting systems originally selected have 35 UV sources with ages < 100 Myr and luminosity higher than 4.2 × 1039 erg s-1 inside the HI contours. A description of each these six interacting systems is given in the

3 http://www.nrao.edu/astrores/HIrogues/RoguesLiving.shtml
Appendix. In Table 2 we list the regions, their colors, ages, and luminosities, assuming that they are at the distance of the parent galaxies. Figs. 10 to 15 show the different systems with their HII contours and the marked UV sources. We cannot exclude the possibility that a few or various of the UV sources we selected might be unrelated to the interacting galaxies, i.e. might be chance alignments. However, this method, when applied to HCG 100 by de Mello et al. (2008a), selected two TDG candidates within the HII tail and several stellar clusters in M81/M82 (blue blob, de Mello et al. 2008b). As shown in the previous session, our Gemini MOS data reveal that these two TDG candidates are at the same redshift as the galaxy group. Therefore, these two multi-wavelength studies show that this approach is successful in identifying UV sources which are either star-forming regions or TDGs related to the interacting systems with stripped HI gas.

In order to compare the properties of the 35 UV sources found outside interacting galaxies with ones in HCG 92 and HCG 100 we have calculated their luminosities and searched for similarities in the two populations. In Fig. 9 we show the distribution of luminosities versus ages for the 35 regions and we verify that the population of intergalactic regions contains objects with luminosities as high as 10^{42} erg s$^{-1}$ and as low as 10^{39} erg s$^{-1}$, our lower limit. It is possible that the large range in luminosities indicates that we are dealing with different families of objects, as suggested in Mendes de Oliveira et al. (2004). As seen in Fig. 9 most of the regions in our sample are not as luminous as TDG candidates found in compact groups (filled symbols), except for object 2 around NGC 3079 and object 1 around NGC 3719. If that is the case, interacting galaxies are more likely to host star clusters while compact groups are more likely to host TDGs, as can be seen in Fig. 9. The low mass objects might be similar to the M81-M82 “blue blobs” described above. The high mass objects would then be the TDG candidates. The Kolmogorov-Smirnov probability test confirms that luminosities of stellar clusters in interacting systems are significantly different from the ones from compact groups (KS = 0.00013), i.e. luminosities are lower in the former than in the latter. We have also calculated masses using Starburst99 (Column 8 in Table 2) and the same trend is verified.

Further spectroscopic observations of these regions, as we did for HCG 92 and HCG 100, are needed in order to confirm their membership and establish their metallicities. It is possible that the group environment is more conducive to TDG formation (or better said, TDG survival) than pairs and mergers. This is in agreement with the simulations by Bournaud & Duc (2006) where specific conditions such as low impact velocity ($v < 250$ km s$^{-1}$), prograde encounters and mass ratio up to 4:1 may lead to TDG formation. HCGs might harbor these conditions besides the possibility that group potential may be able to drive TDGs away from the nearby proximity of their progenitor galaxies.

4 SUMMARY

We presented new Gemini spectroscopy of fourteen star-forming regions within the HII tails of HCG 92 and in HCG 100 confirming that they are at same redshifts of the groups. We estimated their metallicity and verified that they are metal-rich with respect to typical dwarf galaxies. This is possibly due to the fact that they were formed from pre-enriched material found in the intragroup medium.

We analyzed GALEX FUV and NUV data of a comparison sample of 6 interacting galaxies containing a total of 35 UV sources in the HII tails. These star-forming regions span a wide range of ages (<100 Myr) and luminosity (10^{39} – 10^{42} erg s$^{-1}$). We compared their properties with those of the star-forming regions in the HII tails of HCG 92 and HCG 100. We concluded that they have on average lower luminosity than the ones in the HII tails of compact groups.

We suggest that this maybe is an environmental effect, i.e. that compact groups of galaxies with tidal tails of HII are more likely to host more massive star-forming regions or TDGs than other interacting galaxies. Spectroscopy of these sources are needed in order to confirm that they are at the same redshift as the interacting galaxies and to establish their metallicities.

4.1 Appendix

We present the GALEX/FUV images of the 6 interacting systems with extended HI gas. The FUV sources with ages <100 Myr and $L > 10^{39}$ erg s$^{-1}$ are marked. The HI contours are adapted from Hibbard et al. (2001).

4.1.1 NGC 2623

NGC 2623, also known as Arp 243, is located at 76.1 Mpc (Hattori et al. 2004). Bournaud et al. (2004) and Hattori et al. (2004) classified this object as a merger in an advanced stage. Hibbard & Yun (1996) found that a large part of the HI gas is located far away from the stellar component of NGC 2623.

In our analysis we detected two young UV sources in the western tail of NGC 2623, as shown in Fig. 10. One of them (region #1 in Figure 5) seems to be associated with the giant HII region (which could be a TDG candidate)
Figure 10. FUV image of NGC 2623, regions with ages < 100 Myr are marked with circles of 6" radius. HI contours=4 \times 10^{19} \text{cm}^{-2} \times 2'' are from VLA C+D-array and provided by Hibbard et al. (2001).

detected by Bournaud et al. (2004) in their Fabry–Perot study. The age of this region is only 3 Myr. Its mass is about five times the mean mass of the intergalactic HI regions of Mendes de Oliveira et al. (2004). We detect another young region, #2 (Figure 10), within the HI contours of NGC 2623. Interestingly, this region is also detected in the Hα map shown in Bournaud et al. (2004). The detection in the narrow band image confirms that these two regions belong to the NGC 2623 system. In Table 2 we list the main physical parameters for each object.

4.1.2 NGC 3079

NGC 3079 is a giant spiral galaxy with two companions, MCG 9-17-9 (northeast) and NGC 3073 (southeast). NGC 3079 is located at 15 Mpc (de Vaucouleurs et al. 1991) and it is a Seyfert 2/LINER with X-ray emission (Irwin & Saikia 2003; Kondratko et al. 2005). This galaxy is one of the brightest observed mergers (Henkel et al. 1984). NGC 3073 is a dwarf galaxy with an elongated HI tail aligned with the core of NGC 3079.

We found six UV sources (Fig. 11) in this system. One of them seems to be associated with the HI contours of NGC 3073. In Table 2 we list the main physical parameters for each object. HI contours

4.1.3 NGC 3359

NGC 3359 is a barred spiral galaxy with several spiral arms and an irregular morphology in the outer parts of the disk. NGC 3359 is at 13.4 Mpc (Roques 2008) and it shows strong arms in the UV which are not observed in the optical. We detected 7 UV sources (Fig. 12) in this peculiar spiral, plus one UV source in the isolated HI cloud far from the disk (region 5).

4.1.4 NGC 3627

NGC 3627 is part of the Leo Triplet together with NGC 3623 and NGC 3628. The system is located at 6.7 Mpc (de Vaucouleurs 1978) and contain a remarkable HI bridge and tail which can be due to an encounter between the galaxies in the past.

Here we present the results (Table 2) only for NGC 3627 (Fig. 13) since the other members are outside the GALEX field of view. We find only one UV source within the HI contour, located close to where HI seems to peak.

4.1.5 NGC 3718

NGC 3718 is part of the Great Bear group and it is at 17 Mpc (Tully 1998). This galaxy has a peculiar morphology, showing strong dust lanes and diffuse/peculiar spiral arms. It has a large extension of HI gas, far from the optical disk (Allasopp 1979).

NGC 3718 has 11 UV sources within the HI contour in both arms of the galaxy and outside the R_{25} optical radius (Fig. 14, Table 2).
Table 2. UV sources (ages < 100 Myr) in Ht tails of 6 interacting galaxies

ID	ID-region	R.A.2000	D.B.C.2000	FUV-NUV	Age Myr	L_{FUV} (erg s^{-1})	Log(M_{UV})
NGC602C	1	198.5346808	25.7586567	-0.14 ± 0.16	3.6 ± 3	40.14 ± 0.14	4.7 ± 0.14
NGC602C	2	198.6030554	25.7511082	0.03 ± 0.11	32.7 ± 3	40.63 ± 0.14	6.6 ± 0.14
NGC3071	1	198.5346808	25.7586567	-0.14 ± 0.16	3.6 ± 3	40.14 ± 0.14	4.7 ± 0.14
NGC3071	2	198.6030554	25.7511082	0.03 ± 0.11	32.7 ± 3	40.63 ± 0.14	6.6 ± 0.14
NGC3071	3	198.5346808	25.7586567	-0.14 ± 0.16	3.6 ± 3	40.14 ± 0.14	4.7 ± 0.14
NGC3071	4	198.6030554	25.7511082	0.03 ± 0.11	32.7 ± 3	40.63 ± 0.14	6.6 ± 0.14
NGC3071	5	198.5346808	25.7586567	-0.14 ± 0.16	3.6 ± 3	40.14 ± 0.14	4.7 ± 0.14
NGC3071	6	198.6030554	25.7511082	0.03 ± 0.11	32.7 ± 3	40.63 ± 0.14	6.6 ± 0.14
NGC3071	7	198.5346808	25.7586567	-0.14 ± 0.16	3.6 ± 3	40.14 ± 0.14	4.7 ± 0.14
NGC3071	8	198.6030554	25.7511082	0.03 ± 0.11	32.7 ± 3	40.63 ± 0.14	6.6 ± 0.14

\(a\) FUV and NUV magnitudes and errors were obtained using IRAF task phot (Poisson). The errors in the colors were calculated using the magnitude errors added in quadrature.

\(b\) Age (Myr) estimated from FUV-NUV color.

\(c\) Stellar mass \(M_{\odot}\) obtained from Starburst99 monochromatic luminosity, \(L_{1530}\) (erg/s/Å), for the ages given in column 6.

4.1.6 NGC 4656

NGC 4656 is a spiral galaxy (Sc) interacting with NGC 4631 (Roberts 1968). They are linked by an Ht bridge and are at 7.5 Mpc (Hummel et al. 1984). The bright region to the North of NGC 4656 resembles a TDG in the process of formation. We detected 8 UV sources in this area (Fig. 15 and Table 2).

ACKNOWLEDGEMENTS

We are grateful to an anonymous referee for helpful comments and suggestions. DFdM was funded by NASA Research Grants NNG06GG45G and NNG06GG59G. P. U-V. acknowledges the financial support of FAPESP through an M. Sc. Fellowship, under contract 2007/06438-4. C. M. d. O. acknowledges support from Brazilian agencies FAPESP (projeto temático 2006/06213-9), CNPq and CAPES. S. TF. acknowledges the financial support of FONDECYT (Chile) through a post-doctoral position, under contract 3116087 and FAPESP through the Doctoral position, under contract 2007/07933-3. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts.

REFERENCES

Allopp, N. J. 1979, MNras, 186, 343
Baldwin, J. A., Phillips, M. M., & Terlevich, R., 1981, PASP, 93, 5
Bertin, E., & Arnouts, S. 1996, A&A S.S., 117, 393
Bianchi, L. 2007, ApJS, 173, 509
Bournaud F., Duc P.-A., Amram P, Combes F., Gach J.-L. 2004, A&A, 425, 613
Bournaud, F. & Duc, P.-A., 2006, A&A, 456, 481
Charbrier, G. 2003, PASP, 115, 763
Cortese, L., Boselli, A., Franzetti, P., et al. 2004, MNRAS, 356, 1157
Crocker, K., van Zee, L., Lee, H., et al. 2009, AJ, 705, 72
de Mello, D. F., Torres-Flores, S. & Mendes de Oliveira, C. 2008a, AJ, 135, 319
de Mello, D. F., Smith, L. J., Sabbi, E., Gallagher, J. S., Mountain, M. & Harbeck, D. R. 2008b, AJ, 135, 548
de Vaucouleurs, G. 1975, ApJ, 202, 319
de Vaucouleurs, G., et al. 1991, Third Reference Catalogue of Bright Galaxies (New York : Springer)
Fedotov et al. 2012, AJ accepted (arXiv:1105.5840:1)
Fall, S. M., Chandar, R., & Whitmore, B. C. 2005, ApJ, 631, L133
Gil de Paz, A., Boissier, S., Madore, B., et al. 2007, ApJS, 173, 185
Gallagher, S. C., Charlton, J. C., & Hunsberger, S. D. et al., 2001, AJ, 122, 163
Hattori T., Yoshida M., et al. 2004, AJ, 127, 736
Henkel C., Guenst R., Downes D., Thum C., Wilson T. L., Bien­mann P., 1984, A&A, 141, L1
Hibbard J., van Gorkom, J.H., Rupen, M.P, et al. 2001, ASP Conference Series, Vol. 240
Hibbard, J., Bianchi, L., Thilker, D., et al. 2005, ApJ, 619, L87
Hibbard, J., & Yun, M. 1996, Conference Cold Gas at High Redshift. eds. M.N. Bremer.
Hickson, P. 1982, AJ, 255, 382
Hickson, P. 1993, Astrophys.Lett. Commun. 29, 1
Hummel, E., Sancisi, R., & Elers, R. 1984, A&A, 133
Iglesias-Pramo, J. & Viknez, J. M. 2001, 550, 204
Irwin J. A. & Saikia D. J. 2003, MNRAS, 346, 977
Kaufrmann, G., Heckman, T.M., White, S.D.M., Charlot, S., Tremonti, C., et al. 2003, MNRAS 341, 54
Kondratko P., Greenhill L., Moran J. 2005, ApJ, 618, 618
Leitherer, C., Schaerer, D., Goldader, J., et al. 1999, ApJS, 123, 3
Lisenfeld, U. Mundell, C. G., Schinnerer, E., et al. 2008, AJ, 685, 181
Mendes de Oliveira, C., Cyprian E.S., & Sodré, L. Jr. Balkowski, C. 2004, ApJ, L17
Mendes de Oliveira, C., Temporin S., Cyprian, E.S., Pison, H., Amram, P., & Sodré, Jr. Balkowski, C. 2006, AJ, 132, 370
Moles, M., Sulecic, J. W., & Marquez, I. 1997, ApJ, 485, L69
Morrissey, P., Schiminovich, D., Burlow, T., et al. 2005, ApJ, 619, L7
Mullan, B., et al. 2011, ApJ 731, 93
Neff, S.G., Thilker, D., Sibert, M., et al. 2005, ApJ, 619, L91
Pettini, M. & Pagel, B. E. J., 2004, MNRAS, 348, L59
Oosterloo, R., et al. 2004 in 'Recycling intergalactic and Interstellar Materia' IAU 217. Eds., F-A Duc, J. Braine, & E. Brinks, 488, 492
Osterbrock, D., Perlard, G. 2006, "Astrophysics of Galactic Nebulae and Active Galactic Nuclei"
Renaud, F., Appleton, P. N., & Xu, C. K. 2010, ApJ 724, 80
Richer, M. & McCall, M. 1995, ApJ 445, 642
Robert, M.S. 1968, ApJ, 151, 117
Ryan-Weber, E.V., Meurer, G.R., Freeman, K.C., et al. 2004, AJ, 127, 1481
Schlegel, D.J., Finkbeiner, D.P., & Davis, M. 1998, ApJ 500, 525
Seibert, M., Martin, D., Heckman, T., et al. 2005, ApJ, 619, L55
Sulentic, J. W., Rosado, M., Dubois-Hacym, D., Verdes-Montenegro, L., Trinchieri, G., Xu. C., & Pietash, W., 2001, AJ, 122, 293
Thilker, D., Donovan, J., Schiminovich, D., & et al. 2009, Nature, 457, 990
Thilker et al. 2007, ApJS, 173, 538
Torres-Flores, S., Mendes de Oliveira, C., de Melo, D., et al. 2009, A&A 507, 733
Torres-Flores, Mendes de Oliveira, C., de Melo, D., et al. 2012, MNRAS, 421, 3612
Trancho, G., et al. 2012, submitted (arXiv:1201.5149v1)
Tully R. B. 1988, Nearby Galaxies Catalog (Cambridge: Cambridge Univ. Press)
Weilbacher, P. M., Fritz-v. A., Duc, P., et al. 2002, ApJ 579, L79
Weilbacher, P. H., Duc, P.-A., & Alvensleben, U. F-v. 2003, A&A 397, 545
Werk, J.K., et al. 2011, ApJ 678, 888