Arthropod Community Associated with Tropical Soda Apple and Natural Enemies of Gratiana boliviana (Coleoptera: Chrysomelidae) in Florida

Authors: Diaz, R., Hibbard, K., Samayoa, A., and Overholt, W. A.

Source: Florida Entomologist, 95(1) : 228-232

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.095.0141
Tropical soda apple, *Solanum viarum* Dunal (Solanaceae), is a 1.5-m-tall perennial shrub native to tropical regions of South America. First reported in Florida in 1988, tropical soda apple rapidly became a major weed in pastures and conservation areas across the southeastern United States (Mullahey 1996). In pastures, tropical soda apple competes with forages resulting in reduced stocking rates (Mullahey et al. 1998). Florida ranchers spent an average of $844 per acre on chemical and mechanical control costs on tropical soda apple in 2006 (Thomas 2007). Additionally, this plant is an alternate host of several diseases of solanaceous crops (McGovern et al. 1994; Adkins et al. 2007).

A biological control program of tropical soda apple was initiated in 1994, and several natural enemies were collected in Brazil, Argentina and Paraguay (Medal et al. 1996), including *Gratiana boliviana* Spaeth (Coleoptera: Chrysomelidae). This host specific beetle was first released into Florida in May 2003, and by 2008 approximately 180,000 beetles had been released (Overholt et al. 2009). Experiments conducted in central Florida demonstrated that beetle populations increased during the summer and remained very low during the coldest months of the year from Dec to mid-Mar (Overholt et al. 2010). Beetle populations were more abundant on plants located in open pastures compared to those in shaded hammocks (Diaz et al. 2011). In a four-year study, Overholt et al. (2010) demonstrated that tropical soda apple densities decreased by 90% two yr after beetle release. Survival from egg to adult in closed cages was 51% compared to 15% in open cages (Manrique et al. 2011), thus revealing the impact of biotic factors on *G. boliviana* populations. Because of the presence in Florida of many solanaceous plants, we inventoried the herbivores associated with tropical soda apple with the hypothesis that many would expand their host ranges to include the novel resource. Additionally, because of the importance of *G. boliviana* as a biological control agent of tropical soda apple, we inventoried its natural enemies in Florida.

Arthropods were collected from 2004 to 2011 at two *G. boliviana* mass rearing facilities in Fort Pierce, Florida and from several natural infestations on ranches or conservation areas in central and south Florida. Collection methods for insect herbivores and predators included hand catching, aspiration, rearing, and the use of beating cloths. Lepidopteran larvae found feeding on tropical soda apple were reared in the laboratory until adult emergence and then identified. Parasitoids were reared from *G. boliviana* pupae, and field observations of predation were made. Entomopathogens of *G. boliviana* were identified using light microscopy by Dr. Drion Boucias at the University of Florida, and arthropods were identified by personnel at the Florida Department of Agriculture and Consumer Services, Division of Plant Industry (DPI), Gainesville, Florida, and the Systematic Entomology Laboratory, United States Department of Agriculture, Beltsville, Maryland. All arthropods collected from tropical soda apple from 1994 to 2011 are included in the DPI database.

A total of seven mite species and 75 species of insect herbivores were collected from tropical soda apple in Florida (Table 1). The host specificity of these species ranged from *Solanum* specialists to generalists and included major pests of agricultural crops as well as ornamental plants. The high diversity of insect herbivores found in this study is explained in part by the presence of close tropical soda apple relatives in Florida, including 27 species in the genus *Solanum* and 31 species in other genera of Solanaceae (Wunderlin & Hansen 2008). Based on field observations, tropical soda apple is an attractive host for many agriculturally important insect pests such as *Leptinotarsa decemlineata* (Say) and *L. juncta* (Germar) (Chrysomelidae), *Manduca sexta* L. (Sphingidae), *Bemisia tabaci* (Gennadius) (Aleyrodidae), *Aphis gossypii* Glover (Aphididae) and *Lineodes integra* Zeller (Pyralidae) (Table 1), and therefore may serve as a reservoir on which pest populations may increase before moving into crops.

A total of one mite species, 19 species of spiders and 30 species of predatory insects were found on tropical soda apple (Table 2). Predators observed feeding on *G. boliviana* larvae and pupae included *Geocoris punctipes* (Say) (Lygaeidae), *Sinea* sp. (Reduviidae), *Perillus bioculatus* (Fabricius), *Stiretrus anchorage* (Fabricius) (Pentatomidae), *Tupiocoris notatus* (Distant) (Miridae), *Solenopsis invicta* Buren (Formicidae), and the spider *Peucetia viridans* (Hentz) (Oxyopidae). The mirid species found in this study are facultative predators,
TABLE 1. HERBIVOROUS ARTHROPODS ASSOCIATED WITH TROPICAL SODA APPLE, *SOLANUM VIARUM*, IN FLORIDA.

Order: Family	Species	Importance
Acari: Acaridae	Undetermined	
Acari: Eriophyidae	*Aceria* sp.	pest of tomato
Acari: Tarsonemidae	*Tarsenemus* sp.	pest of crops
Acari: Tenuipalpidae	*Aceria* sp.*Aculops lycopersici* (Massee)	pest of tomato
Acari: Tenuipalpidae	*Brevipalpus californicus* (Banks)	pest of citrus
Acari: Winterschmidtiidae	*Tetranychus evansi* Baker and Pritchard	pest of crops
Coleoptera: Anthicidae	*Acanthinetus argentinu* (Pic)	pest of crops
Coleoptera: Cerambycidae	*Styloleptus biustus* (LeConte)	pest of crops
Coleoptera: Chrysomelidae	*Diabrotica undecimpunctata* Barber	pest of crops
Coleoptera: Curculionidae	*Faustinus cubae* (Boheman)	pest of Solanum spp.
Coleoptera: Elateridae	*Conoderus rudis* Brown	pest of sweet potato
Coleoptera: Languridae	*Loberus* sp.	pest of crops
Coleoptera: Latridiidae	Undetermined	
Coleoptera: Phalacridae	Undetermined	
Coleoptera: Tenebrionidae	*Bothrotes canaliculatus* (Say)	pest of crops
Diptera: Agromyzidae	*Liriomyza trifolii* (Burgess)	pest of crops
Diptera: Cecidomyiidae	Undetermined	
Diptera: Chloropidae	Undetermined	
Diptera: Ephydridae	*Leptopsilopa similis* (Coquillett)	pest of Solanum spp.
Diptera: Lauxaniidae	*Camptoprosopella verticalis* (Loew)	pest of crops
Diptera: Muscidae	*Atherigona orientalis* Schiner	fruit fly
Hemiptera: Aleyrodidae	*Bemisia tabaci* (Gennadius)	pest of crops
Hemiptera: Alydidae	*Trialeurodes abutilonea* (Haldeman)	pest of crops
Hemiptera: Anthocoridae	*Aphis gossypii* Glover	pest of crops
Hemiptera: Aphididae	*Prospia bicincta* (Say)	pest of grasses
Hemiptera: Cercopidae	*Clastoptera xanthocephala* Germar	pest of crops
Hemiptera: Coccidae	*Prosapia bicuspidata* (Say)	pest of grasses
Hemiptera: Coreidae	*Phthia picta* (Drury)	pest of grasses
Hemiptera: Delphacidae	*Delphacodes* sp.	
Hemiptera: Dictyopharidae	Undetermined	
Hemiptera: Lygaeidae	*Isshodermus brunipennis* (Germar)	pest of crops
Hemiptera: Membracidae	*Paromius longulus* (Dallas)	pest of tomato
Hemiptera: Miridae	*Collaria oculata* (Reuter)	pest of tomato
Hemiptera: Pentatomidae	*Dicyphus minimus* Quaintance	pest of tomato
Hemiptera: Pseudococcidae	*Macconellicoccus hirsutus* (Green)	pest of crops
Hemiptera: Pyrrhocoridae	*Planococcus citri* (Risso)	pest of crops
Hymenoptera: Halictidae	*Niesthrea sidea* (Fabricius)	pest of crops
Lepidoptera: Arctiidae	*Augochloropsis metallica* (Fabricius)	pest of crops
Lepidoptera: Gelechiidae	*Enigmogramma basigera* (Walker)	pest of crops

1Field observations in Florida suggested that insect populations could increase rapidly on tropical soda apple.
TABLE 1. (CONTINUED) HERBIVOROUS ARTHROPODS ASSOCIATED WITH TROPICAL SODA APPLE, *Solanum viarum*, IN FLORIDA.

Order: Family	Species	Importance
Lepidoptera: Nymphalidae	Heliconius charithonia (L.)	pest of tomato
Lepidoptera: Pyralidae	Lineodes integras Zeller1	pest of Solanaceae
Lepidoptera: Sphingidae	Manduca sexta L.1	
Lepidoptera: Tortricidae	Platynota flavedana Clemens	
Orthoptera: Tettingoniidae	Undetermined	

1Field observations in Florida suggested that insect populations could increase rapidly on tropical soda apple.

TABLE 2. PREDATORS, PARASITIDS AND ENTOMOPATHOGENS FOUND ON TROPICAL SODA APPLE PLANTS, *Solanum viarum*, OR RECOVERED FROM *Gratiana boliviana* IN FLORIDA.

Order: Family	Species	Functional Group
Acari: Ascidae	Undetermined	predator
Araneae: Anyphaenidae	Undetermined	predator
Araneae: Araneidae	Acanthhepeira sp.	predator
Araneae: Salticidae	Peucetia viridans (Hentz)	predator
Araneae: Theridiidae	Thiodina sp.	predator
Coleoptera: Carabidae	Celleida decora (Fabricius)	predator
Dictyotera: Mantidae	Leucauge argyra (Walckenaer)	predator
Hemiptera: Anthocoridae	Xylocoris vicarius (Reuter)	predator
Hemiptera: Lygaeidae	Geocoris punctipes (Say)1	predator
Hemiptera: Miridae	Engytagus modestus (Distant)1	facultative predator
Hemiptera: Pentatomidae	Podisus macronatus Uhler	predator
Hemiptera: Reduviidae	Stiretrus anchorago (Fabricius)1	predator
Hymenoptera: Braconidae	Undetermined	parasitoid
Hymenoptera: Ceraphronidae	Undetermined	parasitoid
Hymenoptera: Chalcidae	Conura side (Walker)2	parasitoid
Hymenoptera: Eulophidae	Aprostocetus nr. cassidis2	parasitoid
Hymenoptera: Eupelmidae	Brasema sp.2	parasitoid
Hymenoptera: Formicidae	Camponotus tortuatus Emery	predator
Hymenoptera: Formicidae	Cremaflagaster sp.	predator
Hymenoptera: Formicidae	Cyphomyrmex sp.	predator
Hymenoptera: Formicidae	Dolichoderus pustulatus Mayr	predator
Hymenoptera: Formicidae	Pseudomyrmex cubaensis (Forel)	predator

1Predator observed feeding on *G. boliviana*.
2Parasitoid reared from *G. boliviana* pupae.
3Disease recovered from infected *G. boliviana*.
and they comprised up to 95% of the predators found on tropical soda apple in central Florida (Manrique et al. 2011). Pupal parasitoids of *G. boliviana* included *Conura side* (Walker) (Chalcididae), *Brasema sp.* (Eupelmidae), and *Aprostocetus nr. cassidis* (Eulophidae). Because *C. side* also attacks lepidopteran larvae (Mitchell et al. 1997) and because of the taxonomic uncertainty of *Brasema sp.* and *Aprostocetus nr. cassidis*, we cannot conclude that any specialist natural enemies attack *G. boliviana* in Florida. The exploitation of *G. boliviana* by these parasitoids was reported three yr after its release in Florida (K. Hibbard, unpublished data). This relatively short time to host exploitation is similar to that which has been documented in other weed biological control programs (Hill & Hulley 1995; Kula et al. 2010, but see Christensen et al. 2011). Two parasitoids have been reported attacking the native *Gratiana pallidula* (Boheman) in Arkansas, i.e., a eulophid, *Tetrastichus*, and a chalcid, *Conura sanguineiventris* (Cresson) (Rolston et al. 1965). However, these were not found attacking *G. boliviana* in Florida. Entomopathogens recovered from *G. boliviana* included *Nosema* sp. (Microspora: Nosematidae), *Matties oryzaeophili* (Ormières, Loubes, and Kuhl) (Phyllum: Bacteria), and *short gram-negative bacteria* (Orthoptera: Gryllidae) in open and shaded habitats. Environmental control agent of tropical soda apple.

REFERENCES CITED

ADKINS, S., KAMENOVA, I., ROSSKOFF, E. N., AND LEWANDOWSKI, D. J. 2007. Identification And Characterization Of A Novel tobanovirus from tropical soda apple in Florida. Plant Dis. 91: 287-293.

CHRISTENSEN, R. M., PRATT, P. D., COSTELLO, S. L., RAYAMA-JHI, M. B., AND CENTER, T. D. 2011. Host-range extension by native parasitoids to weed biocontrol agents introduced to South Africa. Biol. Con. 5: 297-302.

DIAZ, R., AGUIRRE, C., WHEELER, G. S., LAPONTE, S. L., ROSSKOFF, E., AND OVERHOLT, W. A. 2011. Acquired biological control of Gratiana boliviana (Coleoptera: Cychromelidae) in open and shaded habitats. Environ. Entomol. 40: 1937-1447.

HILL, M. P., AND HULLEY, P. E. 1995. Host-range extension by native parasitoids to weed biocontrol agents. Int. J. Pest Manag. 40: 270-273.

KULA, R. R., BOUGHTON, A. J., AND PEMBERTON, R. W. 2010. Stantonia pallida (Ashmead) (Hymenoptera: Braconidae) reared from Neomusotina conspurcatis Warren (Lepidoptera: Cambridae), a classical biological control agent of Lygodium microphyllum (Cav.) R. Br. (Polypodiales: Lygodiaceae). Proc. Entomol. Soc. Washington. 112: 61-68.

MANRIQUE, V., DIAZ, R., HIGHT, S. D., AND OVERHOLT, W. A. 2011. Evaluation of mortality factors using life table analysis of Gratiana boliviana, a biological control agent of tropical soda apple in Florida. Biol. Control. 59: 354-360.

MCGOVERN, R. J., POLSTON, J. E., AND MULLAHY, J. J. 1994. Solanum viarum: Weed reservoir of plant viruses in Florida. Int. J. Pest Manag. 40: 270-273.

MEDAL, J. C., CHARUDATTAN, R., MULLAHY, J. J., AND PITELLI, R. A. 1996. An exploratory insect survey of tropical soda apple in Brazil and Paraguay. Florida Entomol. 79: 70-73.

MITCHELL, E. R., HE, G. Y., AND OKINE, J. S. 1997. Diamondback moth (Lepidoptera: Plutellidae) infestation and parasitism by Diadegma insulare (Hyme-
noptera: Ichneumonidae) in collards and adjacent cabbage fields. Florida Entomol. 80: 54-62

MULLAHEY, J. J. 1996. Tropical soda apple (Solanum viarum Dunal), a biological pollutant threatening Florida. Castanea 61: 255-260.

MULLAHEY, J. J., SHILLING, D. G., MISLEVY, P., AND AKANDA, R. A. 1998. Invasion of tropical soda apple (Solanum viarum) into the U.S.: Lessons learned. Weed Tech. 12: 733-736.

OVERHOLT, W. A., DIAZ, R., HIBBARD, K. L., RODA, A. L., AMALIN, D., FOX, A. J., HIGHT, S. D., MEDAL, J. C., STANSLEY, P. A., CARLISLE, B., WALTER, J. H., HOQUE, P. J., GARY, L. A., WIGGINS, L. F., KIRBY, C. L., AND CRAWFORD, S. C. 2009. Releases, distribution and abundance of Gratiana boliviana (Coleoptera: Chrysomelidae), a biological control agent of tropical soda apple (Solanum viarum, Solanaceae) in Florida. Florida Entomol. 92: 450-457.

OVERHOLT, W. A., DIAZ, R., MARKE, L., AND MEDAL, J. C. 2010. The effect of Gratiana boliviana (Coleoptera: Chrysomelidae) herbivory on growth and population density of tropical soda apple (Solanum viarum) in Florida. Biocontrol Sci. Techn. 20: 791-807.

ROLSTON, L. H., MAVES, R., EDWARDS, P., AND WINGFIELD, M. 1965. Biology of the eggplant tortoise beetle (Coleoptera: Chrysomelidae). J. Kans. Entomol. Soc. 38: 362-366.

THOMAS, M. 2007. Impact of tropical soda apple on Florida’s grazing land. The Florida Cattleman's and Livestock J. 71: 33.

WUNDERLIN, R. P., AND HANSEN, B. F. 2008. Atlas of Florida Vascular Plants (http://www.plantatlas.usf.edu/).[S. M. Landry and K. N. Campbell (application development), Florida Center for Community Design and Research.] Institute for Systematic Botany, Univ. South Florida, Tampa, Florida.