ASSESSMENT OF NUTRITIVE VALUE AND HYGIENIC STATE OF LIVER (KIBDA) AND SLICED MEAT SANDWICHES IN NEW VALLEY GOVERNORATE

SHAIMAA MOHAMMED ABD EL-MOTELB; HESHAM ABDEL-MOEZ AHMED ISMAIL1 AND SHERIEF MOHAMMED SAYED ABD-ALLAH

Department of Food Hygiene "Meat Hygiene", Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt

Received: 21 August 2022; Accepted: 16 September 2022

ABSTRACT

In the present work, 50 samples of each ready-to-eat (RTE) sandwiches of the liver (kibda) and sliced meat were collected at random from the points of sale in El-Kharga city, New Valley Governorate, Egypt. The hygienic (coliforms, fecal coliforms, E. coli, yeast, and mould counts) and nutritional (moisture, protein, fat, ash, gross energy, and cholesterol content) quality were assessed. All samples were sensory accepted. The coliforms were detected in 52 and 50%; fecal coliforms in 10 and 2%; and E. coli in 4 and 2% of the examined RTE sandwiches of kibda and sliced meat, respectively. Pathogenic E. coli strains were identified from the liver (3 strains) and sliced meat (1 strain) samples. The average yeast count was 4.20±0.0.25, and 3.46±0.17; while that of mould was 3.18±0.13 and 2.90±0.07 log₁₀ cfu/g, respectively. The average moisture contents (%) were 55.62±0.43 and 43.50±0.68; protein (%) were 24.29±0.47 and 24.45±0.60; fat (%) were 10.41±0.25 and 16.13±0.43; and ash (%) were 2.75±0.08 and 1.41±0.06, respectively. The average gross energy contents (Kcal/100g) were 190.90±3.30 and 243.0±4.6, respectively. The average total cholesterol contents (mg/100g) were 60.12±6.93 and 50.45±6.02, respectively. In conclusion, although nutritious, RTE sandwiches under investigation may pose public health concerns (pathogenic bacteria and cholesterol), especially those of liver (kibda).

Key Words: Quality, Microbial, Nutritional, Sandwiches, Sliced meat, Liver (Kibda), Ready-to-Eat.

INTRODUCTION

Several modern trends and changes in food consumption and socio-economical patterns lead to an increasing demand consumption of ready-to-eat (RTE) foods, including sandwiches (Ritson and Hutchins, 1995; Hyebin et al., 2014).
price which is not available for many families with limited income (Shaltout et al., 2019).

In Egypt, RTE meat sandwiches may, however, represent a public health hazard because of using raw materials of poor quality, inadequate personnel hygiene and post-cooking long holding that encourages heavy bacterial loads; rendering the food to be of inferior quality or unfit for human consumption (El-Ziqaty et al., 2016). Subsequent to the heat treatment, RTE sandwiches can be contaminated with mesophilic gram-negative rods (e.g., Enterobacteriaceae and E. coli), and yeasts and molds. Many factors such as bad handling, storage and display may increase the microbiological contamination of final RTE meat sandwiches at the point of sale (Angelidis et al., 2006). Flies, insects and rodents are commonly attracted to such sites. The majority of food vendors are uninformed of good hygiene practices (GHP) (Mensah et al., 2002).

The presence of coliforms, fecal coliforms or E. coli in meat meals indicates inadequate processing and/or post-processing contamination (soiled hands, utensils and contaminated water). A large number of coliforms suggests poor product quality and the likelihood of enteric pathogens, posing threats to public health (Trout and Osburn, 1997).

Fecal coliforms and E. coli had been used as an indicator for fecal contamination (Clarence et al., 2009). E. coli is commonly non-virulent, but some strains have adopted pathogenic or toxigenic virulence factors (Gi et al., 2009 and Datta et al., 2012). At present, E. coli was recognized as a serious food-borne pathogen associated with numerous outbreaks of disease (Scotter et al., 2000).

Beside palatability and wholesomeness, today’s consumer expectations are directed toward the nutritional values of the food. The chemical assessment of gross composition (moisture, protein, lipid, ash percentage) has therefore become a necessity (Andree et al., 2010).

Cholesterol is an active metabolite within the cells of organ meats constituting a major component of cell membranes and nerves, its high levels, however, is a leading risk factor for human cardiovascular diseases (Nollet and Toldra, 2011; Tabas, 2002).

Owing to the increasing demand for RTE meat sandwiches and the large population consuming them, it is necessary to assess their hygienic condition and nutritional quality. This work had been planned to secure the hygienic (Coliforms, Fecal coliforms, E. coli, and Yeast & mold), and nutritive quality (protein, fat, ash, caloric value and total cholesterol content) of RTE liver “Kibda” and sliced meat sandwiches obtained from the point of sale at EL-Kharga city, New Valley Governorate, Egypt.

MATERIALS AND METHODS

1. Collection of samples
Samples of ready-to-eat sandwiches of liver and sliced meat (50 of each of them) were randomly collected in sterile polyethylene bags separately from the point of sale at EL-Kharga city, New Valley Governorate, Egypt, and directly transferred to the laboratory of Meat Hygiene, Faculty of Veterinary Medicine, Assiut University under a chilled condition in an insulated ice-box, where samples were subjected to sensory evaluation followed by preparation for bacteriological and chemical analysis.

2. Sensory evaluation of the samples
The evaluation was focused on detection of any faults in appearance, odor or texture with the general acceptability.

3. Preparation of samples (BAM, 1998)
The meat content of the sandwich was collected under aseptic conditions in sterile mortar where they were thoroughly mixed.

4. Microbiological examination of samples
4.1. Preparation of the dilutions
Ten grams of the mixed sample was weighed under aseptic conditions in a sterile polyethylene bag then 90 ml of sterile 0.1% peptone water was added, and the contents were homogenized by Stomacher (Seward 400) for 2 minutes; then ten-fold serial dilutions were prepared in tubes with 9ml sterile peptone water.

4.2. Coliforms, fecal coliforms, and *E. coli* count (MPN/g) (AOAC, 1980).
Coliforms were counted in Lauryl Sulphate Tryptose (LST) broth (35±0.5°C, 48h) followed by Brilliant Green Lactose 2% Bile (BGLB) broth (35±0.5°C, 48h); fecal coliforms in E.C. broth (45±0.5°C, 48h in water bath); and *E. coli* on Eosine Methylene blue (EMB) agar (35±0.5°C, 24h; nucleated colonies with or without metallic sheen). The number /g was calculated from MPN tables for the 3 tubes dilutions.

4.3. Identification of *E. Coli* isolates:
Suspected isolates of *E. coli* were purified and delivered to the Lab of Microbiology, Benha University, Egypt for both biochemical and serological identification. Biochemically identification was according to MacFaddin (2000). IMVC, urease, TSI, and sugars fermentation were among the tests performed. Serological identification was performed by slid agglutination according to Kok *et al.* (1996) using rapid diagnostic *E. coli* antisera sets (DENKA SEIKEN Co., Japan).

4.4. Total yeast and mould count (FAO, 1992)
Sterile melted and tempered (45°C) Malt Extract Agar was used for the count. The plates were incubated at 25°C for up to 5 days; then the colonies were counted. The mould and the yeast count/g were calculated and recorded.

5. Proximate Analysis
Moisture, crude protein, fat, and ash percentages were determined; and gross energy value were mathematically calculated.

5.1: Determination of moisture percentage (AOAC, 2012)
Twenty grams of the well homogenized wet sample was dried at 65°C in Drying Oven (Blue Pard Scientific Instrument Co LTD, Taiwan) for 24 hr then at 105°C for 6 hr.

\[
\text{Moisture } \% = \frac{W_1 - W_2}{W_1} \times 100
\]

\(W_1\) = Weight of the sample before drying
\(W_2\) = Weight of the sample after drying

5.2. Determination of protein percentage “Macro Kjeldahl Method” (AOAC, 2000)
For analysis ½ gram of dried sample was used. The obtained nitrogen percentage was multiplied by the factor of 6.25 to obtain the protein percentage.

\[
\text{Nitrogen } \% = \frac{(50 - R) \times 0.0014 \times 100}{\text{Weight of sample}}
\]

\[
\text{Protein } \% = (\text{Nitrogen } \% \times 6.25)
\]

5.3. Determination of fat percentage “Ether Extract Method” (AOAC, 2012):
Soxhlet method was used with slight modification; briefly, 1 gram of the dried sample was weighed onto dry filter paper of known weight then wrapped. The sample was then extracted with petroleum ether (60/80) for about 16 hrs.

\[
\text{Fat } \% = \frac{W_1 - W_2}{a} \times 100
\]

\(W_1\) = weight of the filter paper with the sample before extraction.
\(W_2\) = weight of the filter paper with the sample after extraction.
\(a\) = weight of the sample.

5.4. Determination of ash percentage (AOAC, 2012):
One gram of the dried sample, in a dry clean porcelain crucible of known weight, was ignited in a muffle furnace at 550-600°C for 6 hours until grayish-white ash was obtained.

\[
\text{Ash } \% = \frac{\text{Weight of ash}}{\text{Weight of sample}} \times 100
\]
N.B. The obtained results on dry weight basis were converted to wet weight basis using the equation of Jurgens and Bregendahl (2007) as following:

$$\text{Nutrient wet basis} \% = \frac{\text{Nutrient dry basis} \% \times \text{Dry matter} \%}{100}$$

5.5. Calculation of gross energy value:
The gross energy value was calculated according to the equation of Merrill and Watt (1973):

$$\text{Gross energy value (kcal/100g)} = (\text{Protein} \% \times 4) + (\text{Fat} \% \times 9) + (\text{Carbohydrate} \% \times 4)$$

with slight modification excluding the carbohydrates percentage.

6. Determination of total cholesterol content:
For total cholesterol determination, 1.25 grams of wet sample was used in three steps including the extraction of fat (Bligh and Dyer, 1959); preparation of the extracted lipid for cholesterol determination (Naeemi et al., 1995); and Enzymatic determination of cholesterol (Pasin et al., 1998) using diagnostic cholesterol reagent (CHOD-PAP, Ref: 230001, Spectrum, S.A.E.). Absorbance was measured using the spectrophotometer (Unico 2100UV, USA) at wavelength 546nm.

Cholesterol “mg/100 g” = \frac{A_{\text{sample}}}{A_{\text{standard}}} \times 200

A sample= absorbance of sample.
A standard= absorbance of standard.

7. Statistical analysis
Statistical analysis was performed using Graph Pad-Prism. The results were expressed as mean ± standard error. One-way ANOVA followed by Duncan's Multiple Range Test was used to compare the obtained data. The mean difference was considered significant at p<0.05.

RESULTS

Table 1: Statistical results of microbial count (MPN/g) of examined RTE sandwiches samples (n=50 each).

Item	Coliforms	Fecal coliforms	E. coli	Yeast	Mould						
	+ve¹ (%)	Count²	+ve¹ (%)	Count²	+ve¹ (%)	Count³	+ve¹ (%)	Count³			
Liver											
(kibda)											
	(52%)	(3.6->1100)	(10%)	(3-43)	(4%)	(3.6-7.3)	(70%)	(0.25⁺)	(84%)	(0.13⁺)	
	26	5	21	2	5.5	35	4.20⁺	42	3.18⁺		
Sliced											
meat											
(50%)	25	1	3.6	1	(2%)	(2%)	3.6	33	3.64⁺	46	2.90⁺
	(3-1100)				(66%)				(92%)		

¹Positive samples; ²Median value (MPN/g); ³Mean value (log₁₀ cfu/g)
In the same column means with different superscripts are significantly different (P<0.05).

Table 2: Prevalence of E. coli isolates from the examined RTE sandwiches samples.

E. coli strain	Liver (kibda)	Sliced meat	Strain characterization		
	No.	%	No.	%	
O91: H21	-	-	1	2	EHEC
O111: H2	1	2	-	-	EHEC
O26: H11	2	4	-	-	EHEC
Table 3: Mean values of proximate composition (%) of examined RTE sandwiches (n= 50 each).

Item	Moisture	Protein	Fat	Ash
Liver (kibda)	55.62±0.43a	24.29±0.47a	10.41±0.25b	2.75±0.08a
Sliced meat	43.50±0.68b	24.45±0.60a	16.13±0.43a	1.41±0.06b

In the same column means with different superscripts are significantly different (P<0.05)

Table 4: Statistical results of the energy content of the examined RTE sandwich samples (n= 50 each).

Item	Gross energy (Kcal/100g)	EP (%)\(^1\)	EF (%)\(^2\)
Liver (kibda)	190.90±3.3b	51.05±0.77a	39.53±1.39b
Sliced meat	243.0±4.6a	40.58±1.02b	59.42±1.02a

\(^1\) Calories percentage derived from protein; \(^2\) Calories percentage derived from fat

In the same column means with different superscripts are significantly different (P<0.05)

Table 5: Mean values of total cholesterol content (mg/100g) of examined RTE sandwich samples (n= 50 each).

Item	Liver (kibda)	Sliced meat
Total cholesterol	60.12±6.93a (8.98-264.2)	50.45±6.02a (13.77-175.9)

In the same row means with different superscripts are significantly different (P<0.05)

DISCUSSION

With the tremendous increase in consumption of RTE meat sandwiches, it is important to know about the hygienic and nutritional quality. Consumers are looking for RTE foods that are fresh, healthy, safe, and nutritious (Fang, 2005). In the current study, the light was spot on the quality of RTE kibda and sliced meat sandwiches collected from the points of sale at El-Kharga city, New Valley Governorate, Egypt.

Hygienic quality:
Cooked meat is excellent media for the growth of bacteria, molds and yeasts. Meat meals can be exposed to several ways of contamination through improper preparation and handling which constitute the most direct and harmful source of microbiological contamination (Ehirl et al., 2001).

Organoleptic assessment of samples revealed all were accepted with no obvious faults detected. The results showed that coliforms were detected in 52 and 50% of the examined RTE kibda and sliced meat sandwiches with a median count of >1100 and 150 MPN/g; Fecal coliforms in 10 and 2% of the samples with a median value of 21 and 3.6 MPN/g; and E. coli in 4 and 2% of the samples with a median count of 5.5 and 3.6 MPN/g, respectively. Liver (kibda) sandwiches revealed a higher incidence and count of coliforms, fecal coliforms and E. coli (Table 1).

No standards for microbiological criteria of RTE sandwiches were released by the Egyptian authorities according to our
knowledge. So, the criteria presented by the Centre for Food Safety (2014) in Hong Kong, showed the permitted level of hygiene indicator organisms in ready-to-eat food (Escherichia coli (cfu/g): “<20 satisfactory”, “20 - ≤10^2 borderline”, “>10^2 unsatisfactory”), was in use. With regard to that, E. coli count recorded in sandwiches under study was satisfactory (<20 cfu/g) for all examined samples with the high count recorded for liver sandwiches.

At New Valley Governorate, Sotohy et al. (2019) found a lower coliform count (2.25±0.13 log_{10} cfu/g) and a lower incidence of E. coli (3.3%). However, El-Ziqaty et al. (2016) at Alexandria and Gaafar et al. (2019) in Qalubiya governorate found a lower count of coliforms (6.8x10^2 and 1.9x10^2 cfu/g, respectively), but a higher incidence of E. coli (32 and 5.8%, respectively) in sandwiches of kibda collected from different vending shops and restaurants. A lower total coliform count was also declared by Abdu-Elaziz et al. (2018) “23.2 MPN/g from liver sandwiches at Ismailia Governorate. A lower incidence of coliforms (26.5%), but a higher of E. coli (49%) was recorded by Ibrahim et al. (2019) in kibda sandwiches obtained from different small restaurants and street vendors at Alexandria Governorate.

El-Fakhry et al. (2019) recorded similar E. coli incidence (4%) in RTE liver sandwiches obtained from different shops and markets in El-Fayoum, Egypt. Meanwhile, El-Shenawy et al. (2016), Shaltout et al. (2016), and Shaltout et al. (2017) declared higher incidence of E. coli (40, 33.3, and 40%, respectively) in liver sandwiches from different fast-food services at Qalubiya Governorate.

The serological identified strains of E. coli were O111:H2 (1 strain “2 %”) and O26:H11 (2 strains “4 %”) from kibda sandwiches; and O91:H21 (1 strain “2%”) from sliced meat sandwiches (Table 2). El-Ziqaty et al. (2016) and Ibrahim et al. (2019) at Alexandria Governorate identified different E. coli serotypes with varied incidences from RTE liver sandwiches.

The presence of E. coli could be referred to post-cooking fecal contamination. Entero-pathogenic E. coli constitute public health hazards as it may give rise to food poisoning and gastroenteritis among adult consumers (Lu et al., 2006).

Contamination of food with fungi is common in the in-contact environment under unsatisfactory hygienic conditions (ICMSF, 2005). Mould contamination was recorded in 84 and 92% of the examined liver and sliced meat sandwich samples, with an average count of 3.18±0.13 and 2.90±0.07 log_{10} cfu/g, respectively. On the other hand, Yeast was found in 70 and 66% of the examined sandwich samples with an average count of 4.2±0.25 and 3.64±0.17 log_{10} cfu/g, respectively (Table 1). A higher incidence but lower count of mould was assumed in sandwiches of sliced meat, while a higher incidence and count of yeast was in kibda sandwich samples.

The obtained results of mould and yeast counts were consistent with Abdu-Elaziz et al. (2018) “3.13 and 3.7 log_{10} cfu/g, respectively” at Ismailia Governorate; but varied from that of El-Ziqaty et al. (2016), found lower count (7.2 x 10^2 and 1.6 x 10^3 cfu/g) but the higher incidence (100%) of mould and yeast, respectively from street vended liver sandwiches at Alexandria Governorate. Elgazzar et al. (2019) recorded a higher incidence of mould (96.2%) and lower of yeast (61.5%) from RTE fried liver sandwiches collected from different supermarkets and restaurants with various sanitation levels in Mansoura city, Egypt.

Morshdy et al. (2018) at Zagazig city and Sotohy et al. (2019) at New Valley Governorate estimated total yeast and mould count of 3.57 and 3.6 log_{10} cfu/g respectively, from RTE liver sandwiches collected from different localities with various sanitation levels.
Nutritional quality:
The nutritive value of ready-to-eat meat sandwiches is generally derived from their high protein content which contains all essential amino acids. As well, fat is an essential component for sensory perception and supplies fatty acids that cannot be synthesized by humans. They also supply consumers with vitamins, minerals, carbohydrates and calories (Vasut and Robeci, 2009).

The results in Table (3) declared that the average moisture content (%) of liver and sliced meat sandwiches were 55.62±0.43 and 43.50±0.68, respectively. Sandwiches of kibda represented higher moisture content (P<0.05). The protein average value (%) was 24.29±0.47 and 24.45±0.60, while the fat average (%) was 10.41±0.25 and 16.13±0.43, respectively (Table 3). Protein content was parallel in both types of samples, however higher fat content was recorded in samples of sliced meat sandwiches (P<0.05). The average value of ash (%) was 2.75±0.08 and 1.41±0.06, respectively (Table 3). Samples of liver showed the higher ash content (P<0.05), which may correlate to additives during preparation.

The average gross energy value (Kcal/100g), based only on protein and fat content, of the kibda sandwich samples was 190.9±3.3; with the highest percentage of energy (51.05±0.77 %) provided from protein. For sliced meat sandwiches the average gross energy value was 243.0±4.6; with the highest percentage of energy provided from fat (59.42±1) (Table 4). Sliced meat samples showed higher gross energy content (P<0.05).

The results of chemical analysis were close to that of El-Dashlouty et al. (2015) for RTE liver sandwiches obtained from street vendors at Behiera Governorate (moisture 57.34 %, protein 23.28 %, fat 7.8 %, ash 2.61 %, and calories 199Kcal/100g).

Average total cholesterol contents (mg/100g) were 60.12±6.93 and 50.45±6.02 in examined kibda and sliced meat sandwich samples, respectively (Table 5). Sliced meat sandwiches are declared lower total cholesterol content. WHO (1990) recommended cholesterol intake should be limited to should not exceed 300 mg/day from various food sources including meat and meat products constitute a major part. These limitations referring to not only to the amount of fat, but also to the fatty acid composition and the cholesterol level in food (Chizzolini et al., 1999).

In conclusion, the obtained results revealed a higher incidence of coliforms, fecal coliforms, E. coli and yeasts in kibda sandwiches. As well, the total cholesterol level was higher in sandwiches of kibda. Sliced meat sandwiches recorded a fairly lower incidence of fecal coliforms and yeasts, as well as a lower count of mould. Protein content was fairly parallel in both types of samples. Ready-to-eat sandwiches under investigation may represent public health issues especially those of kibda. Sandwiches of sliced meat showed somewhat better quality (lower incidence of fecal coliforms and lower total cholesterol content). Food vendors should be informed about good hygienic practices during food preparation and handling at the point of sale. As well, post-cooking holding for a long time should be avoided and plenty of uncontaminated green salad should be supplied with the sandwiches. Consumers should be informed about the hazards and benefits of such meals and Egyptian standards for ready to eat sandwiches need to be set.

REFERENCES

Abd-El-Malek, A.M. (2014): Microbiological quality of ready-to-eat liver sandwiches (kibda). Global Veterinaria, 13 (6): 1097-1102

Abdu-Elaziz, Y.A.A.; Ismail, S.A.S.; Ibrahem, G.I. and Hassnin, A.A.E. (2018): Microbiological Quality of Ready to Eat Meat Meals at Ismailia City. Thesis (M.S.), Suez Canal University, Faculty
of Veterinary Medicine, Department of Food Hygiene and Control.

Andree, S.; Jira, W.; Schwind, K.H.; Wagner, H. and Schwagele, F. (2010): Chemical safety of meat and meat products. Meat Science, 86 (1): 38-48

Angelidis, A.S.; Chronis, E.N.; Papageorgiou, D.K.; Kazakis, I.I.; Arsenoglou, K.C. and Stathopoulos, G.A. (2006): Non-lactic acid contaminating flora in ready-to-eat foods: A potential food-quality index. Food Microbiology, 23: 95–100.

AOAC (1980): Association of Official Analytical Chemists. Official Methods of Analysis of the American of Official Analytical Chemists, 13th ed. Horwitz, W. (Ed). Washington, DC.

AOAC (2000): Official Methods of Analysis of Association of Analytical Chemist. 17th Ed., AOAC International, Gaithersburg, MD. USA.

AOAC (2012): Official Methods of Analysis of AOAC International, 19th Edition. AOAC, Washington, DC.

BAM “Bacteriological Analytical Manual” (1998): Food Sampling and Preparation of Sample Homogenate. In: W.H. Andrews and Th.S. Hammack, FDA Bacteriological Analytical Manual 8th ed, Revision A.

Bligh, E.G. and Dyer, W.J. (1959): A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37(58): 911-917

Centre for Food Safety (2014): Microbiological Guidelines for Food “For ready-to-eat food in general and specific food items”. The Centre for Food Safety, Food and Environmental Hygiene Department, Queensway, Hong Kong.

Chizzolini, R.; Zanardi, E.; Dorigoni V. and Ghidini, S. (1999): Caloric value and cholesterol content of normal and low-fat meat and meat products. Trends in Food Science and Technology, 10 (4): 119-128

Clarence, SY.; Obinna, CN. and Shalom NC. (2009): Assessment of bacteriological quality of ready to eat food (Meat pie) in Benin City metropolis, Nigeria. Afr. J. Microb. Res., 3 (6): 390-395.

Datta, S.; Akter, A.; Shah, I.G.; Fatema, K.; Islam, T.H.; Bandyopadhyay, A.; Khan, Z.U.M. and Biswas, D. (2012): Microbiological quality assessment of raw meat and meat products and antibiotic susceptibility of isolated Staphylococcus aureus. J. Agric. Food Anal. Bacteriol., 2: 187-195.

Ehirl, J.E.J.; Azubuike, M.C.; Ubbaonu, C.N.; Anyanwu, E.G., Lbe, K. and Ogbonna, M.O. (2001): Critical control points of complementary food preparation and handling in eastern Nigeria. Bull World Health Organ,79(5): 423 – 433.

El-Dashlouty, M.S.A.; El-Kholie, E.M. and Shalaby, A.Kh. (2015): Quality of some meat products collected from street vendors in Behiera Governorate Egypt. Journal of Home Economics, 25 (3): 99-115

El-Fakhrany, A.M.A.; Elewa, N.A.H.; Moawad, A.A. and El-Saidi, N.H. (2019): Microbiological evaluation of some fast-food sandwiches in Fayoum. Egypt J. Food. Sci., 47 (1): 27-38.

Elgazzar, M.M.M.; Abdo, A.A.M. and El – Zeny, M.A. (2019): Mycological assessment of cooked beef products. Mansoura Veterinary Medical Journal, 20 (2): 12-19

El-Shenawy, M.A.; Zaghloul, R.A.; Abbass, I.H.; Esmail A.I. and Fouad, M.T. (2016): Incidence of some epidemiologically relevant food-borne pathogens in street-vended sandwiches. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(2): 468-474

El-Ziqaty, A.A.A.E.; Samaha, I.A.E. and Nossair, M.A. (2016): Microbial Evaluation of Some Street Vended Meat Meals. Thesis (M.S.), Alexandria University, Faculty of Veterinary Medicine, Department of Meat Hygiene.

Fang, T.J. (2005): Bacterial contamination of ready-to-eat foods: concern for
human toxicity. Reviews in Food and Nutrition Toxicity 4:143-171.

FAO (Food and Agriculture Organization) (1992): Manual of Food Quality Control. 4 Rev. 1. Microbiological Analysis (Andrews, W. edit.) FAO Food and Nutrition. P. No. 14/4.

Gaafar, R.; Hasanine, F.; Shaltout, F. and Zaghloul, M. (2019): Hygienic profile of some ready to eat meat product sandwiches sold in Benha city, Qalubiya Governorate, Egypt. Benha Veterinary Medical Journal, 37: 16-21

Gi, Y.L.; Hye, I.J.; In, G.H. and Min, S.R. (2009): Prevalence and classification of pathogenic E. coli isolated from fresh beef, poultry and pork in Korea. International J. Food Microbiology, 134(3): 196-200

Hyebin, J.; Seoyoun, L. and Younchan, C.S. (2014): Home Meal Replacement Market Segmentation: A Food-Related Lifestyle. Selected paper prepared for presentation at the Agricultural and Applied Economics Association’s 2014 AAEA Annual Meeting, Min-neapolis, MN, July 27-29, 2014

Ibrahim, M. and Ali, A.H. (2019): Hygienic evaluation of liver sandwiches retailed at restaurants and street vendors. Animal Health Research Journal, 7 (1):13-25

ICMSF “International Commission on Microbiological Specification for Food” (2005): Microorganisms in Foods. Microbial Ecology of Foods Commodities. 2nd Ed. Kluwer Academic /Plenum Publishers, New York. Boston, Dordrecht, London, Moscow.

Jurgens, M.H. and Bregendahl, K. (2007): Animal Feeding and Nutrition, 10th Edition. Kendall/ Hunt Publishing Company, Iowa, USA.

Kok, T.; Worsch, D. and Gowans, E. (1996): Some Serological Techniques for Microbial and Viral Infections. In Practical Medical Microbiology (Collee, J.; Fraser, A.; Marmion, B. and Simmons, A., eds.), 14th ed., Edinburgh, Churchill Livingstone, UK.

Lues, J.; Rasepehi, M.; Venter, P. and Theron, M. (2006): Assessing food safety and associated food-handling practices in street food vending. Int. J. Environ. Heal. Res., 16: 319–328.

MacFaddin, J.F. (2000): Biochemical Tests for Identification Medical Bacteria. Warery Press Inc. Baltimore, Md. 21202 USA.

Mensah, P.; Yeboah –Manu, D.; Owusu –Darko, K. and Ablordey, A. (2002): Street foods in Accra, Ghana: How safe are they? Bulletin of the World Health Organization, 80 (7): 546-554.

Merrill, A.L. and Watt, B.K. (1973): Energy Value of Foods: Basis and Derivation. Agriculture Handbook No. 74, Agriculture Research Service, United States Department of Agriculture, Washington DC.

Morshdy, A.M.; Hussein, M.A.; Tharwat, A.E. and Fakhry B.A. (2018): Microbial profile of Ready to Eat Meat Sandwiches.5th International Food Safety Conference, Damanhour University, 13th October 2018, Page No. 363-374

Naeemi, E.D.; Ahmad, N.; Al-sharrah, T.K. and Bebhabani, M. (1995): Rapid and simple method for determination of cholesterol in processed food. J. of AOAC Int., 78(6): 1522-1524.

Nollet, L.M.L and Toldra, F. (2011): Handbook of Analysis of Edible Animal By-products. CRC Press, New York, USA.

Pasin, G.; Smith, G.M. and Mahony, O.M. (1998): Rapid determination of total cholesterol in egg yolk using commercial diagnostic cholesterol reagent. Food chemistry, 61 (1, 2): 255-259.

Ritson, C. and Hutchins, R. (1995): Food Choice and The Demand for Food: In D. W. Marshall, Food Choice and The Consumer (pp. 43–77). Blackie Academic and Professional: An imprint of Chapman and Hall, ISBN 0-7514–0234–6

Scotter, S.; Aldridge, M. and Capps, K. (2000): validation of method for the
detected E. coli O157:H7 in foods. Food Control, 11: 85-95.
Shaltout, F.A.; Ali A.M. and Rashad, S.M. (2016): Bacterial contamination of fast foods. Benha Journal of Applied Sciences, 12(2):45-51.
Shaltout, F.A.; Farouk, M.; Ibrahim, H.A.A. and Afifi, M.E.M. (2017): Incidence of E. coli and Salmonellae in ready-to-eat fast foods. Benha Veterinary Medical Journal, 32 (1): 18-21.
Shaltout, F.A.; Nassif, M.Z.; Lotfy, L.M. and Gamil, B.T. (2019): Microbiological status of chicken cuts and its products. Benha Vet. Med. J., 37 (1): 57-63.
Sotohy, S.; Mohamed, E. and Abd EL Malek, A. (2019): Assessment of microbiological quality of ready-to-eat meat sandwiches in New Valley governorate. International Journal of Food Science and Nutrition, 4 (3): 186-192.
Tabas, I. (2002): Cholesterol in health and disease. The Journal of Clinical Investigation, 110 (5): 583-590.
Trout, H. and Osburn, B. (1997): Meat from dairy cows’ possible microbiological hazards and risks. Rev. Sci. Technol., 16 (2): 405-414.
Vasut, R.G. and Robeci, D.M. (2009): Food contamination with psychrophilic bacteria. Lucrări Științifice Medicină Veterinară, XII (2): 325-330.
WHO "World Health Organization" (1990): Diet, Nutrition and the Prevention of Chronic Diseases. WHO Technical Report Ser. 797.

Assiut Veterinary Medical Journal Assiut Vet. Med. J. Vol. 68 No. 17 October 2022, 115-124

تقدير القيمة الغذائية والحالة الصحية لساندويتشات الكبدة وساندويتشات شرائح اللحم في محافظة الوادي الجديد

شيماء محمد عبد المطلب، هشام عبد المعز أحمد إسماعيل، شريف محمد سيد عيالله

E-mail: shsayed74@aun.edu.eg Assiut University web-site: www.aun.edu.eg

تم في هذا البحث جمع عدد 50 عينة من كل من ساندوتشات الكبدة (كبدة) وشرائح اللحم، بشكل عشوائي من أماكن البعيد بمدينة القناة - محافظة الوادي الجديد - مصر. تم تقييم الجودة الصحية (عدد البكتيريا الفطرية، البكتيريا البريائية، الإشريكية، الخميرة، والطفيات)، والغذائية (البروتين، الكوليسترول، الدهون، الغلوچيول، كولسترول، الدهون، الدهون). كانت جميع العينات مقبلة من مصادر صحية، وأظهرت النتائج أن البكتيريا في 32.3% من ساندويتشات الكبدة وشريف اللحم، على التوالي. يتم التعرف على سلالات E. coli وـ E. coli O157:H7، والذي تم تقييم الجودة الصحية من عينات الكبدة (3 سلاطات) وشرائح اللحم (سلسلة واحدة) كان متوسط عدد البكتيريا 3.4 ± 3.4، ونسبة الدهون 0.05 ± 0.05، ونسبة الكوليسترول 3.4 ± 3.4، ونسبة الطاقة من البروتين 5.2 ± 5.2، ونسبة الطاقة من البروتين 5.2 ± 5.2، ومتوسط عدد الفطرية 3.18 ± 3.18، ونسبة الطاقة من البروتين 5.2 ± 5.2، ومتوسط عدد الفطرية 3.18 ± 3.18، ومتوسط عدد الفطرية 3.18 ± 3.18.

الكلمات المفتاحية: الجودة، ميكروبية، غذائية، ساندوتشات، شرائح لحم، كبدة، جاهزة للأكل.