Two-dimensional gel electrophoresis and immunoblot analysis of
Neospora caninum tachyzoites

Eung-Goo Lee, Jae-Hoon Kim, Yong-Seung Shin, Gee-Wook Shin, Yong-Hwan Kim, Gon-Sup Kim, Dae-Yong Kim, Tae-Sung Jung, Myung-Deuk Suh*

Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 600-701, Korea
1Department of Veterinary Medicine, Cheju National University, Jeju 690-756, Korea
2Department of Pathology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea

Identification of expressed protein profiles and antigenic
determination are some of the most challenging aspects of
proteomics. Two-dimensional gel electrophoresis (2-DE)
combined with immunoblot analysis were employed to study
the *N. caninum* proteome. Protein sample preparation was
carried out by first conducting sonication, followed by
adding lysis buffer containing 7M urea plus 2M thiourea to
the purified tachyzoites in order to complete disruption. A
total of 335 differentially expressed protein spots were
detected using pH 4-7 IPG strip (7 cm) that were run in a 56
kVh isoelectric focusing (IEF) system. Of the spots analyzed,
64 were identified as antigenic spots on immunoblot profile.
Major antigenic spots appeared at 65 kDa (pI 5.2-5.3), 51
kDa (pI 5.5), 38 kDa (pI 5.1), 33 kDa (pI 4.4), 29 kDa (pI 5.6)
and 15.5 kDa (pI 5.0) were observed to be significantly
distinct compared to the rest of the antigenic spots. The
results indicate that combination of 2-DE and immunoblotting
methods were thought as very useful tools in defining both
proteins and antigens of *N. caninum* tachyzoites. Additionally, present 2-DE profiles may be valuable in
further proteomic approaches and study of the pathogen.

Kewords: *Neospora caninum*, two-dimensional gel electrophoresis (2-DE), immunoblot

Introduction

Neospora caninum (*N. caninum*) is an obligate cyst-
forming intracellular protozoan (Apicomplexa) parasite of
animals [10,11]. It was usually misdiagnosed as *Toxoplasma
gondii* (*T. gondii*) because of their morphological and
biological similarities up to the middle of 1980s. But it was
then distinguished due to its distinct morphology of forming
cysts in tissue and their antigenic differences [4,5,10]. In
recent years, *N. caninum* has been identified as a major
causative agent of abortion or stillbirths in both dairy and
beef cattle worldwide, including Korea [1,12,19,22,24]. The
economic losses due to infections it causes have encouraged
a general investigation of the pathogen, and many reports
were published concerning its pathogenicity. However, no
study of the expressed proteins from the whole organism of
N. caninum was performed.

The global analysis of protein expression profiles might
be invaluable for obtaining a more complete understanding
of biological events, such as, development, evolution, and
pathogenicity of this organism [21,36]. Two-dimensional
electrophoresis (2-DE) which is considered as a powerful
and widely used method for analyzing complex protein
mixtures extracted from cells, tissues, or other biological
samples. This technique was originally described by Klose
[27] and O’Farrell [34], which involves separation of
cellular proteins according to their isoelectric points (pI) and
relative molecular masses (Mr). With this method, a protein
can only be visualized and analyzed if it can be brought and
kept in solution during the entire 2-DE separation process.
The cells or tissues must be efficiently disrupted and cells
contents must be solubilized completely [30]. This is one of
the most important points to consider in 2-DE. Over the last
few years, 2-DE with immobilized pH gradients (IPGs) has
been improved to its superior resolution and reproducibility
[14,15,37]. Moreover, its combination with immunoblotting
assay is allowed to find out many and distinct antigens
compared with conventional SDS-PAGE and its
immunoblotting analysis. These approaches prove a highly
successful in characterization of the expressed proteins of
some parasitic organisms such as *T. gondii* [8,9,13],
Fasciola hepatica [20], *Schistosoma japonicum* [25],
Ascaris suum [26], and even comparison of 2-DE profiles
between *N. caninum* and *T. gondii* [17].

In this study, 2-DE profiles were employed for the
analysis of expressed proteins of *N. caninum* tachyzoites.

*Corresponding author
Phone: +82-55-751-5822; Fax: +82-55-751-5803
E-mail: jungts@nongae.gsnu.ac.kr
Proper optimization of sample preparation were known to play a key role in obtaining suitable images of 2-DE. In addition, two-dimensional antigen profiles were observed with the use of rabbit anti-sera specific for *N. caninum* tachyzoites (KBA-2).

Materials and Methods

Maintenance and purification of *N. caninum* tachyzoites

N. caninum tachyzoites, KBA-2 isolate [23], was used at the present study. The tachyzoites were maintained in Vero cell monolayer. For purification, tachyzoites were harvested by scraping the infected Vero cell monolayer into growth medium. Suspension of tachyzoites including cellular debris were done through centrifugation at 1,000 × g for 10 min. Pellet was resuspended in phosphate-buffered saline (PBS, pH 7.4). Tachyzoites were released from infected cells by pulling and pushing a syringe fitted with a 23-gauge and 27-gauge needle, respectively. Subsequently, suspensions were loaded on 30%, 50% and 80% osmotic percoll gradients (Amersham Bioscience, Sweden), and centrifuged at 2,000 × g for 30 min. The viable tachyzoites band formed between 50% and 80% osmotic percoll gradient (Amersham Bioscience, Sweden), and centrifuged at 2,000 × g for 30 min. The viable tachyzoites band formed between 50% and 80% osmotic percoll gradients were collected and washed three times with PBS. Generally, a total of approximately 1 × 10⁹ tachyzoites as counted by the use of hemocytometer were purified from infected monolayer using four pieces of 175 cm² size culture flasks. The purified tachyzoites were stored at −70°C until further use.

Comparison of sample preparation for 2-DE

In order to optimize sample preparation for 2-DE, purified tachyzoites were lysed in three different methods. First, tachyzoites dissolved in 40 mM Tris-base (pH 9.6) were disrupted by rapid freezing and thawing 3 times using liquid nitrogen, and continually disrupted using lysis buffer containing 9.5 M urea, 40 mM Tris-base, 4% (w/v) CHAPS, 1% (w/v) DTT, 1 mM PMSF, and 0.5% (w/v) IPG-buffer pH 3-10 (Amersham Bioscience, Sweden). Second, after successive freezing and thawing, the intact tachyzoites remained were sonicated (XL-2020, Mixonix, USA) at a low power for 1 min in ice slurry and continually disrupted using 9.5 M urea lysis buffer. Finally, the same procedures employed in second method were followed except that the lysis buffer which is composed of 7 M urea and 2 M thiourea. The lysates were maintained for 1 h in ice slurry and then centrifuged at 16,000 × g for 30 min at 4°C. Subsequently, the supernatants were transferred to micro centrifuge tube and stored at −70°C. The total protein concentrations were estimated at approximately 0.5 mg/mL based on the Bradford protein assay method [7] using bovine serum albumin as standard.

2-DE and comparison of two different IEF conditions

Isoelectric focusing (IEF) was carried out by using IPGphor system (Amersham Bioscience, Sweden) according to Görg et al. [15] and utilizing immobilized pI gradient (IPG) strips (Immobiline DryStrip, pH 3-10 and pH 4-7, 0.5 × 3 × 70 mm, Amersham Bioscience, Sweden). The tachyzoite samples separately prepared were mixed with rehydration buffer (8 M urea or 2 M thiourea/6 M urea, 4% (w/v) CHAPS, 65 mM DTT, 0.5% IPG buffer, 0.002% (w/v) bromophenol blue) and then loaded on the ceramic strip holders by in gel rehydration method. The absorbed proteins in strips were focused in an automated run at 20°C. After IEF, IPG strips were equilibrated with 10 mg/mL DTT in equilibration buffer (6 M urea, 2% (w/v) SDS, 30% (v/v) glycerol, 0.002% (w/v) bromophenol blue, 50 mM Tris-HCl, pH 8.8) for 15 min and further incubated in the same buffer for another 15 min replacing DTT by 4 mg/mL iodoacetamide. After equilibration, the IPG strips were placed onto either 12.5% or 10% SDS-polyacrilamide gels (80 × 80 × 1 mm) and sealed with 0.5% (w/v) agarose. SDS-PAGE was run at 5 mA/gel for 15 min as initial migration and increased to 10 mA/gel for separation until front dye reached the bottom of the gel. In order to establish an accurate IEF result, two different conditions were compared using pH 3-10 IPG strip (7 cm). First sample (4 µg/IPG strip) was focused in an automated run by programming 12 hrs in gel rehydration (without current), 1 h at 500 V, 1 h at 1000 V, and 10 hrs at 4500 V, having a total of 46.5 Kilovolt-hour (kVh). On the other hand, same sample conditions were rehydrated at 14 hrs (7 hrs at 0 V and 7 hrs at 30 V), 2 hrs at 200 V, 1 h at 500 V and 1000 V, 2 hrs at 2000 V and 10 hrs at 4500 V reaching a total of 56.1 kVh.

Silver staining

Silver staining was performed according to Mortz et al. [33] with slight modification. Briefly, the gels after 2-DE were fixed in 50% (v/v) methanol, 12% (w/v) acetic acid and 0.05% (v/v) formalin for 2 hrs and then washed 3 times with 50% (v/v) ethanol for 20 min. The gels were then sensitized with 0.01% (w/v) sodium thiosulfate for 1 min and washed with distilled water 3 times for 20 sec. The washed gels were incubated in 0.2% (w/v) silver nitrate containing 0.076% (v/v) formalin for 30 min. After incubation, it was rinsed with distilled water followed by adding the developing solution which contained 3% (w/v) sodium carbonate with 0.05% (v/v) formalin until intensity desired. Development was terminated by adding 50% (v/v) methanol and 12% (v/v) acetic acid.

Production of rabbit anti-sera specific *N. caninum* tachyzoites

Anti-*N. caninum* polyclonal antibodies were raised by immunizing rabbit (New Zealand White, 1.5 kg). Briefly, rabbit was immunized subcutaneously with 1 × 10⁹ live tachyzoites (KBA-2) mixed with Freuds complete (first
Two-dimensional gel electrophoresis and its immunoblot analysis of *Neospora caninum* tachyzoites

immunization) and incomplete adjuvant (second and third immunization) at 2-weeks-interval. Booster dose was given a week after. Sera were collected 7 days after booster injection and stored at −70°C until use.

Immunoblot analysis

The gels containing spots separated with 2-DE were transferred to nitrocellulose membrane (Immobilon-NC, 0.45 µm, Millipore, USA). The blotted membranes were rinsed with TBS-T buffer (20 mM Tris, 500 mM NaCl, 0.05% v/v tween 20, pH 7.4) and then blocked with blocking buffer (5% w/v skim milk in TBS-T buffer) overnight at 4°C. The membranes were incubated with an anti-*N. caninum* rabbit antisera diluted in a ratio of 1 : 200 in blocking buffer for 2 h and then washed 3 times with TBS-T buffer for 20 min. Further incubation were done using the goat anti-rabbit IgG antibody conjugated with horseradish peroxidase (Santa Cruz Biotechnology, USA) with 1 : 2,000 dilution in blocking buffer for 1 h. After washing five times with TBS-T buffer, the membranes were treated with ECL solution (Amersham Bioscience, Sweden) for 1 min and then exposed to X-ray film for 5-30 sec.

Image analysis

Either stained or immunoblotted spots were digitalized by using Agfa Arcus 1200™ image scanner (Agfa-Gevaert, Belgium), and the acquired images were analyzed by using Phoretix™ 2D software (Ver. 5.01, NonLinear Dynamics, UK).

SDS-PAGE and Immunoblot analysis

In order to accurately compare between 2-DE and 1-DE profiles, purified tachyzoites of *N. caninum* were disrupted by freezing and thawing, sonicated as previously described, mixed with the same volume of SDS sample buffer (Sigma, USA) and boiled at 95°C for 5 min. The lysates were centrifuged at 10,000 g for 5 min at 4°C and the supernatants were stored at −70°C. The sample was separated by SDS-PAGE using 12.5% slab gels with a 4% stacking gel. The protein bands were stained with Coomassie brilliant blue (CBB) G-250. The separated proteins were transferred to nitrocellulose membrane and underwent immunoblotting as previously described. Images of stained gel and film were digitalized by using Agfa Arcus 1200™ image scanner. Acquired images were analyzed using Quantity One® software (Ver. 4.2, Bio-Rad, USA).

Results

Comparison between two IEF conditions

2-DE profiles stained with silver nitrate showed a significant differences in spot numbers depending on IEF conditions. The spot numbers were analyzed by automatic spot detection mode using Phoretix 2D software. Approximately 182 spots were observed on silver stained gels. (A) In gel rehydration were done at 0 V for 7 hrs followed by 30 V for 7 hrs, 200 V for 2 hrs, 500 V for 1 h, 1,000 V for 1 h, 2,000 V for 2 hrs and 4,500 V for 10 hrs, having a total of 56,1 kVh. (B) In gel rehydration conditions we got 0 V for 7 hrs followed by 30 V for 7 hrs, 200 V for 2 hrs, 500 V for 1 h, 1,000 V for 1 h, 2,000 V for 2 hrs and 4,500 V for 10 hrs, having a total of 56,1 kVh.

Fig. 1. Comparison of two IEF conditions. IEF was performed using pH 3-10 IPG strips (7 cm) with 8 µg of lysate from *N. caninum* tachyzoites. SDS-PAGE was performed using 12% gels which were then stained with silver nitrate. (A) In gel rehydration were done at 0 V for 12 hrs, 500 V for 1 h, 1,000 V for 1 h and 4,500 V for 10 hrs, having a total of 46.5 kVh. (B) In gel rehydration conditions were before...
Sample preparation using sonication followed by adding lysis buffer containing 9.5 M Urea shows an increase in spot numbers. Based on the data gathered, approximately 194 (B) and 256 spots (E) were identified with pH 3-10 and pH 4-7 IPG strips, respectively. Sonication and utilization of 2 M thiourea plus 7M urea (C and F) were again added. IEF was performed at a total of 56.1 kVh using pH 3-10 and pH 4-7 IPG strips (7 cm). SDS-PAGE was performed in 12% gels which were then stained with silver nitrate. A total of 172 (A), 251 (C) and 256 (E) spots were observed with pH 3-10 IPG strips. On the contrary, approximately 194 (B), 243 (D) and 332 (F) spots were observed with pH 4-7 IPG strips.

Immunoblot analysis

A total of 335 spots were detected on silver stained gel using pH 4-7 IPG strip based on sample preparation utilizing sonication and lysis buffer (7 M urea plus 2 M thiourea). Among them, 64 spots were identified as antigenic spots on immunoblot image with the used of rabbit antisera specific for KBA-2. Most *N. caninum* antigenic spots were located in between 28 kDa and 97 kDa and between pH 4.4 and pH 6.1 except one antigenic spot having 15.5 kDa (spot 64). A number of large antigenic spots (spot 61 and 64) were also observed. Concurrently, a series of antigen spots having similar molecular weight but different pI values (spot 16-19 and 27-34) were also determined in immunoblotting profile. Major antigenic spots were noted as spot 16, 17, 19, 42, 59, 61 and 64 (Fig. 3). Molecular weight and isoelectric point of the respective antigenic spots were shown in Table 1.

Rabbit antiserum specific for *N. caninum* tachyzoites (KBA-2) was able to recognize 20 bands located from 15.5 to 80 kDa, of which thick bands were observed such as 18-15.5, 22-21, 25, 31-30, 39, 44, 49, 65, and 80 kDa. Whereas, minor bands were identified having 28, 33, 35, 37, 55, 74, and 108 kDa. Among them, only few antigenic bands corresponds to antigenic spots on 2-DE profiles using pH 4-7 IPG strips and were determined as 15.5, 28, 33, 35, 37, 39, 44, 55, 65 and 80 kDa antigenic bands (Fig. 4).

Discussion

One of the most important points in proteomic approach is to obtain a reproducible 2-DE gels which primarily depends on sample preparation. The cells or tissue must be efficiently disrupted and solubilized completely in order to obtain a representative protein population through sample lysis methods (sonication, french pressure, grinding and mechanical homogenization) [30]. Three sample preparation methods were compared at the present study. Among them, sonication for disrupting *N. caninum* tachyzoites combined with Urea-thiourea mixture as strong neutral chaotrope were found suitable method since more spots were detected compared with the other methods previously mentioned. It also observed and allowed to detect clear spots. Urea-thiourea mixtures (typically 2 M thiourea and 5-8 M urea) were reported to exhibit superior solubilizing power, especially on membrane proteins [32,37]. Furthermore, the mixtures were able to resolve many high molecular weight proteins [29].

Most *N. caninum* tachyzoites spots were placed at pI values below 7 by using a wide-range of IPG gels (pH 3-10) [17]. At present study, most spots were placed between pH 4 and 8, and between molecular weights of 25 and 87 kDa. In addition, many spots were found over pH 7. A few number of 2-DE profile for *N. caninum* tachyzoites were available, but present results were slightly different from Heckeroth et al. [17] in terms of pH range probably caused by different sample preparation methods, different IEF conditions and IPG gel sizes. However, most spots observed in acidic part have identical result between the two experiments.

Immunodominant antigens of *N. caninum* were detected as groups comprising molecules of 16/17, 29, 37, 46 kDa...
Two-dimensional gel electrophoresis and its immunoblot analysis of *Neospora caninum* tachyzoites

Using hyperimmune rabbit anti-*N. caninum* (NC-1) serum [2]. Similar molecular bands, including 17, 29/30, 37 and 46 kDa, were observed from sera of cattle, dogs, sheep, goats, rabbits and pigs [6]. Bands such as 15.5-18, 30/31 and 37 kDa, were also detected using rabbit sera raised against *N. caninum* tachyzoites (KBA-2). In addition, thick bands, for example 22-21, 25, 39, 44, 49, 65 and 80 kDa, were identified which were thought as main antigens of the parasite.

Most studies were performed based on conventional SDS-PAGE and immunoblotting assay. Although differences of sample preparation were not allowed to compare directly between 2-DE profiles and conventional results, a number of antigen spots on 2-DE using pH 4-7 IPG strip were found and considered as corresponding antigen bands on SDS-PAGE immunoblotting profiles: Spot 9 corresponds to 80 kDa band, spots 15, 16, 17, 18 and 19 to 65 kDa band, spot 37 to 55 kDa band, spot 44 and 46 to 44 kDa band, spot 52 to 39 kDa band, spot 55 and 56 to 37 kDa band, spot 58 to 35 kDa band, spot 59 to 33 kDa band, spot 63 to 28 kDa band, spot 64 to 15.5 kDa band. Spot 42, 54 and 61 exhibited strong signals on 2-DE immunoblotting profile on

Table 1. Isoelectric point and Molecular weight of antigenic spots of Fig. 4

Spot No.	p_I	M_r (kDa)	Spot No.	p_I	M_r (kDa)	Spot No.	p_I	M_r (kDa)
1	5.93	96.5	23	5.51	62.6	45	5.71	44.7
2	5.68	95.0	24	5.58	62.5	46	4.94	44.3
3	5.69	88.2	25	5.67	62.4	47	5.06	44.8
4	5.65	87.3	26	5.12	61.7	48	5.24	42.4
5	5.73	86.9	27	4.61	63.3	49	5.98	41.1
6	4.85	86.6	28	4.65	61.9	50	5.34	40.3
7	5.77	85.5	29	4.69	61.4	51	4.91	39.6
8	5.02	84.6	30	4.73	61.1	52	5.97	39.3
9	5.79	80.1	31	4.78	60.6	53	5.44	37.8
10	5.70	76.3	32	4.85	59.2	54	5.09	37.8
11	5.62	76.0	33	4.90	58.8	55	5.75	37.0
12	5.36	69.4	34	5.01	58.5	56	6.01	36.8
13	5.74	68.0	35	5.06	58.9	57	5.37	36.0
14	5.65	66.4	36	5.55	56.6	58	6.11	35.3
15	5.68	65.4	37	5.91	55.2	59	4.36	32.6
16	5.27	65.0	38	5.88	54.1	60	5.35	29.4
17	5.34	65.0	39	5.84	52.9	61	5.60	28.7

a Isoelectric point
b Molecular weight

![Fig. 3. Analysis of 2-DE and immunoblot profiles of *N. caninum* tachyzoites. (A) A total of 335 spots were detected on the 2-DE profile. Of these, 64 spots were identified as antigenic through comparison with 2-DE immunoblotting profile with the use of Phoretix™ 2D software on (B) 2-DE immunoblotting profile. Separated proteins after 2-DE were transferred to NC membrane and antigenic spots were detected with the use of rabbit anti-serum specific for *N. caninum* tachyzoites.](image-url)
MALD-TOF MS assay.

Both *N. caninum*-specific sheep and rabbit sera were recognized as antigenic spots, at molecular weight range of 11 to 18 kDa and at pI range of 5 to 6. But the two antigenic spots did not react with *T. gondii*-specific anti-sera using 2-DE immunoblotting assay [17]. Spot 64, a large antigenic spot, was detected at 15.5 kDa and at pI value of 5.03 on 2-DE immunoblot profile. The spot was distinguished from the other due to its low molecular weight on 2-DE profiles and was suspected as the same spot pointed by Heckeroth *et al.* [17].

This study was conducted by optimization of sample preparation and IEF condition for 2-DE and analysis of 2-DE profiles. Results collected allowed to manifest the usefulness of 2-DE combined with immunoblotting in defining proteins and antigens of *N. caninum* tachyzoites. In addition, 2-DE profiles of *N. caninum* tachyzoites may be useful in further proteomic approaches.

Acknowledgment

This study was supported by a grant from the Agricultural R & D Promotion Center (ARPC, No. 20010067), Korea.

References

1. Anderson ML, Blanchard PC, Barr BC, Dubey JP, Hoffman RL, Conrad PA. *Neospora*-like protozoan infection as a major cause of abortion in California dairy cattle. J Am Vet Med Assoc 1991, **198**, 241-244.
2. Barta JR, Dubey JP. Characterization of anti-*Neospora caninum* hyperimmune rabbit serum by Western blot analysis and immunoelectron microscopy. Parasitol Res 1992, **78**, 689-694.
3. Baszler TV, Knowles DP, Dubey JP, Gay JM, Mathison BA, McElwain TF. Serological diagnosis of bovine neosporosis by *Neospora caninum* monoclonal antibody-based competitive inhibition enzyme-linked immunosorbent assay. J Clin Microbiol 1996, **34**, 1423-1428.
4. Bjerkaas I, Mohn SF, Presthus J. Unidentified cyst-forming sporozoan causing encephalomyelitis and myositis in dogs. Z Parasitenkd 1984, **70**, 271-274.
5. Bjerkaas I, Presthus J. Immunohistochernical and ultrastructural characteristics of a cyst-forming sporozoan associated with encephalomyelitis and myositis in dogs. Acta Patho Microbiol Immunol Scand 1988, **96**, 445-454.
6. Bjerkaas I, Jenkins MC, Dubey JP. Identification and characterization of *Neospora caninum* tachyzoite antigens useful for diagnosis of neosporosis. Clin Diagn Lab Immunol 1994, **1**, 214-221.
7. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, **72**, 248-254.
8. Cohen AM, Rumpel K, Coombs GH, Wastling JM. Characterization of global protein expression by two-
Two-dimensional gel electrophoresis and its immunoblot analysis of *Neospora caninum* tachyzoites

145

dimensional electrophoresis and mass spectrometry: proteomics of *Toxoplasma gondii*. Int J Parasitol 2002, 32, 39-51.

9. Długonska H, Dytynierska K, Reichmann G, Stachelhaus S, Fischer HG. Towards the *Toxoplasma gondii* proteome: position of 13 parasite excretory antigens on a standardized map of two-dimensionally separated tachyzoite proteins. Parasitol Res 2001, 87, 634-637.

10. Dubey JP, Carpenter JL, Speer CA, Topper MJ, Uggla A. Newly recognized fatal protozoan disease of dogs. J Am Vet Med Assoc 1988, 192, 1269-1285.

11. Dubey JP, Lindsay DS. 22.

12. Dubey JP. A review of *Neospora caninum* and neosporosis. Vet Parasitol 1996, 67, 1-59.

13. Geißler S, Sokolowska-Köhler W, Bollmann R, Jungblut PR, Presher W. *Toxoplasma gondii* infection: analysis of serological response by 2-DE immunoblotting. FEME Immuno Med Microbiol 1999, 25, 299-311.

14. Görg A, Postel W, Günther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 1989, 9, 531-546.

15. Görg A, Obermaier C, Boguth G, Harder A, Dcheibe B, Wildgruber R, Wies S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000, 21, 1037-1053.

16. Harkins D, Clements DN, Maley S, Marks J, Wright S, Esteban I, Innes EA, Buxton D. Western blot analysis of the IgG responses of ruminant infected with *Neospora caninum* and with *Toxoplasma gondii*. J Comp Path 1998, 119, 45-55.

17. Heckeroth AR, Tenter AM, Hemphill A, Innes EA, Buxton D. Evaluation of cross-reactivity between tachyzoites of *Neospora caninum* and *Toxoplasma gondii* by two-dimensional gel electrophoresis. Int J Parasitol 2000, 30, 913-919.

18. Hemphill A, Gajendran N, Sonda S, Fuchs N, Gottstein B, Henrich B, Jenkins M. Identification and characterization of a dense granule-associated protein in *Neospora caninum* tachyzoites. Int J Parasitol 1998, 28, 429-438.

19. Hur K, Kim JH, Hwang WS, Hwang EK, Jeon YH, Lee BC, Bae JS, Kang YB, Yumane I, Kim DY. Seroepidemiological study of *Neospora caninum* in Korean cattle by indirect immunofluorescent antibody assay. Korean J Vet Res 1998, 38, 859-866.

20. Jefferies JR, Brophy PM, Barrett J. Investigation of *Fasciola hepatica* sample preparation for two-dimensional electrophoresis. Electrophoresis 2000, 21, 3724-3729.

21. Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleissner KP, Otto A, Muller EC, Sokolowska-Köhler W, Grabher G, Stoffler G. Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 1999, 20, 2100-2110.

22. Kasari TR, Barling K, McGann JM. Estimated production and economic losses from *Neospora caninum* infection in Texas beef herds. Bovine Pract 1999, 33, 113-120.

23. Kim JH, Sohn HJ, Hwang WS, Hwang EK, Jeon YH, Yamane I, Kim DY. *In vitro* isolation and characterization of bovine *Neospora caninum* in Korea. Vet Parasitol 2000, 90, 147-54.

24. Kim JH, Lee JK, Hwang EK, Kim DY. Prevalence of antibodies to *Neospora caninum* in Korean native beef cattle. J Vet Med Sci 2002, 64, 941-943.

25. Kirinoki M, Yoko H, Kawai S, Chigusa Y, Matuda H. Detection of a *Schistosoma japonicum* specific circulating antigen by two-dimensional gel electrophoresis. Parasitol Int 1998, 47, 21-27.

26. Kasuga-aoki H, Tsuji N, Suzuki K, Isohe T, Yoshihara S. Identification of surface proteins and antigens from larval stages of *Ascaris suum* by two-dimensional electrophoresis. Parasitology 2000, 121, 671-677.

27. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutation in mammals. Humangenetik 1975, 26, 231-243.

28. Lally N, Jenkins M, Liddell S, Dubey JP. A dense granule protein (NCDG1) gene from *Neospora caninum*. Mol Bio Parasitol 1997, 87, 239-243.

29. Lanne B, Potthast F, Hoglund A, Brockenhuus von Lowenheim H, Nystrom AC, Nilsson F, Dahllof B. Thiourea enhances mapping of the proteome from murine white adipose tissue. Proteomics 2001, 1, 819-828.

30. Link AJ. 2-D Proteome Analysis Protocols. pp. 9-94. Humana Press, Totowa, 1999.

31. Luduena RF. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 1998, 178, 207-275.

32. Molloy MP, Herbert BR, Walsh BJ, Tyler MI, Traini M, Sanchez JC, Hochstrasser DF, Williams KL, Gooley AA. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 1998, 19, 837-844.

33. Mortz E, Krogh TN, Vorum H, Görg A. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption / ionization-time of flight analysis. Proteomics 2001, 1, 1359-1363.

34. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250, 4007-4021.

35. Paré J, Hietala SK, Thurmond MC. An enzyme-linked immunosorbent assay (ELISA) for serological diagnosis of *Neospora sp.* infection in cattle. J Vet Diagn Invest 1995, 7, 352-359.

36. Pennington SR, Wilkins MR, Hochstrasser DF, Dunn MJ. Proteome analysis: from protein characterization to biological function. Trends Cell Biol 1997, 7, 168-173.

37. Rabilloud T, Adessi C, Giraudel A, Lunardi J. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 1997, 18, 307-316.