In Vitro and In Vivo Trypanocidal Activity of H$_2$bdtc-Loaded Solid Lipid Nanoparticles

Zumira A. Carneiro1, Pedro I. da S. Maia2, Renata Sesti-Costa3, Carla D. Lopes3, Tatiana A. Pereira1, Cristiane M. Milanezi3, Marcelo A. Pereira da Silva4,5, Renata F. V. Lopez1, João S. Silva3, Victor M. Deflon2*

1 Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 2 Instituto de Química de São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil, 3 Departamento de Bioquímica e Imunologia, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil, 4 Instituto de Física de São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil, 5 Centro Universitário Central Paulista - UNICEP, São Carlos, São Paulo, Brazil

Abstract

The parasite Trypanosoma cruzi causes Chagas disease, which remains a serious public health concern and continues to victimize thousands of people, primarily in the poorest regions of Latin America. In the search for new therapeutic drugs against T. cruzi, here we have evaluated both the in vitro and the in vivo activity of 5-hydroxy-3-methyl-5-phenyl-pyrazoline-1-(S-benzyl dithiocarbazate) (H$_2$bdtc) as a free compound or encapsulated into solid lipid nanoparticles (SLN); we compared the results with those achieved by using the currently employed drug, benznidazole. H$_2$bdtc encapsulated into solid lipid nanoparticles (a) effectively reduced parasitemia in mice at concentrations 100 times lower than that normally employed for benznidazole (clinically applied at a concentration of 400$^{\mu}$mol kg$^{-1}$ day$^{-1}$); (b) diminished inflammation and lesions of the liver and heart; and (c) resulted in 100% survival of mice infected with T. cruzi. Therefore, H$_2$bdtc is a potent trypanocidal agent.

Introduction

T. cruzi parasites are transmitted by insect vectors (triatomine bugs). T. cruzi is the causative agent of Chagas disease, which is silent and can remain asymptomatic for years [1], [2], [3]. A century after its discovery, this disease remains a serious public health issue—it is closely associated with human poverty and political instability as well as with little investment in drug development. According to the World Health Organization (WHO), between seven and eight million people are infected with T. cruzi worldwide, primarily in Latin America [4], [5], [6]. One in every four Chagas patients develops a fatal symptom of the disease due to lack of adequate diagnosis and treatment.

Nifurtimox and benznidazole (BZN) are currently available to treat the disease [7], [8], [9], [10]. However, neurological side effects have led commercial nifurtimox production to be discontinued [11]. As for BZN, although it is mainly effective during the acute phase of the infection, it presents undesirable side effects such as rash and gastrointestinal symptoms [12], so patients often fail to comply with the treatment [8]. Long treatment periods (30, 60, or 90 days) and appropriate pediatric formulations not available [administration of the medication to children often requires tablet fractionation] also limit BZN use [9], [11], [13]. A further concern is that no effective treatment for the symptomatic chronic phase of Chagas disease exists, so the patients usually receive palliative drugs at this stage [14], [15]. Therefore, a number of researchers are making considerable efforts to find new drugs to combat this disease.

Dithiocarbazates display notable biological and pharmacological properties, including anticancer [16], [17], antimicrobial [17], [18], [19], and insecticidal activities [20]. A recent study has shown that cyclic compounds derived from S-dithiocarbazate and 1,3-diketones exhibit significant trypanocidal activity [21]; in particular, 5-hydroxy-3-methyl-5-phenyl-pyrazoline-1-(S-benzyl-dithiocarbazate) (previously referred to as H$_2$L$_2$) which was renamed H$_2$bdtc in this reference in this work (Figure 1) constitutes a potential drug lead to develop a new agent against the trypomastigote form of Tulahuen strains of T. cruzi [21]. Nevertheless, the lipophilic character of H$_2$bdtc may limit its administration and result in low oral bioavailability [22].

Drug delivery systems can help to circumvent this problem. Because lipids have excellent physiological acceptability and can promote drug absorption as well as selective lymphatic uptake, researchers have focused on lipid-based drug release systems [23]. In particular, solid lipids constitute solid lipid nanoparticles (SLNs) at room and body temperature. Since SLNs consist of biocompatible and biodegradable lipids with low or no human toxicity, they can function as drug delivery systems [24], [25]. SLNs offer many advantages: they protect the drug against degradation, enable controlled drug release, and dismiss the use of organic solvents. Moreover, SLNs can be produced on a large scale, meeting industrial requirements [24], [26].
Our group has used H$_2$bdtc in vitro experiments involving the Tulahuen strain (group I) [21]. The resistances of this group and of the Y strain (group II) have been reported to be different, based on phosphatase activities in T. cruzi homogenates [27]. Tulahuen had an optimum phosphatase activity at pH 4.0 and the Y strain was 100 times more active than benznidazole (BNZ), the drug that is commercially available to treat Chagas disease. Surprisingly, this compound has no side effects on the T. cruzi acute phase. Hence, we propose that H$_2$bdtc-SLNs possesses interesting anti-Chagas properties.

Materials and Methods

General

BNZ, a product manufactured by Lafepe, Brazil, was used as a reference drug. The synthesis of H$_2$bdtc has been described previously [21]. RPMI Medium 1640 supplemented with 5% bovine fetal serum (GIBCO, Grand Island, NY, USA), 100 IU mL$^{-1}$ penicillin G, and 100 mg mL$^{-1}$ streptomycin (Gibco-BRL, Grand Island, NY, USA) was employed. Dimethyl sulfoxide (DMSO) and propidium iodide (PI) were obtained from Sigma-Aldrich Chemicals Co. (St. Louis, MO, USA); Searic acid and sodium taurodeoxycholate were purchased from Sigma-Aldrich (St. Louis, MO, USA); Lipoïd S 100 (soya lecithin) was acquired from Lipoïd (Ludwigshafen, KOLN, Germany), and Amicon Ultra 15, MWCO 100 K, was provided by Millipore (Billerica, MA, USA).

Preparation of H$_2$bdtc-loaded solid lipid nanoparticles (H$_2$bdtc-SLNs)

SLNs were prepared using a microemulsion method [31]. Briefly, the desired amount of sodium taurodeoxycholate (0.12% w/v) was dissolved in hot aqueous phase, and a mixture was added to melted stearic acid (0.95% w/v) containing soya lecithin (0.48% w/v) and H$_2$bdtc (0.02% w/v). The mixture was emulsified via magnetic stirring at 90.0±2.0°C, until a thermodynamically stable microemulsion formed. The SLNs dispersion was obtained by cooling the hot microemulsion in cold water (2–5°C) under vigorous stirring at 20,000 rpm for 10 min (IKA-T25 Ultra-turrax, Germany) at 1:20 ratio (microemulsion/cold water). Next, the SLNs aqueous dispersion was subjected to high-pressure homogenization (EmulsiFlex – C3, Germany) at 500 bars for 10 min.

Particle size, dispersity index (D-stroke), and zeta potential determination

The particle size and dispersity of the H$_2$bdtc-SLNs dispersion were measured via photon correlation spectroscopy (PCS) [32]; the zeta potential was determined on the basis of the electrophoresis mobility of the nanoparticles using the Zetasizer ZS Nano 90 (Malvern Instruments, UK). The samples were diluted (1:10) with distilled water at 25.0°C.

Atomic Force Microscopy (AFM)

The morphology of H$_2$bdtc-SLNs was assessed using an atomic force microscope (ICON Bruker, USA). The samples were prepared by immersing freshly cleaved mica (Muscovite Mica Substrates Sheets, SPI Supplies, China) in SLNs aqueous dispersion and stored overnight, at room temperature, to complete the drying process. The samples were evaluated by AFM in the intermittent contact mode (tapping mode) by scanning the surface of mica (2 μm×2 μm in area) using a rectangular silicon cantilever with a spring constant of 30 N m$^{-1}$ vibrating at a frequency of 320 kHz. Imaging was performed at room temperature, and the topology image was used to determine the morphology of H$_2$bdtc-SLNs [33].

Drug entrapment efficiency (EE%) determination

The total H$_2$bdtc content in the H$_2$bdtc-SLNs was determined by UV-vis spectroscopy at 400 nm (UV Spectrophotometer UV 1800, Shimadzu, Japan). First, a defined amount of H$_2$bdtc-SLNs was dissolved in dimethyl sulfoxide. The amount of encapsulated drug was indirectly measured after centrifuging the H$_2$bdtc-loaded SLNs for 40 min at 6000 rpm (1605 G), at 25°C in a centrifuge (Heraeus Megafuge 16 R Thermo Scientific, USA) equipped with a membrane concentrator (Amicon Ultra 15, MWCO 100 K, Millipore Corporation, USA). The filtrate was diluted with dimethyl sulfoxide (1:1), and the concentration of free H$_2$bdtc in...
the diluted filtrate was determined using the same conditions employed to measure the total H$_2$bdtc content used during the loading procedure (section 2.2). The amount of H$_2$bdtc loaded into SLNs was calculated by subtracting the amount of free H$_2$bdtc in the filtrate from the total amount of H$_2$bdtc used during loading (26). EE (%) was determined using the following equation [26], [34].

$$EE = \frac{\text{drug loading}}{\text{theoretical drug loading}} \times 100$$

Partition coefficient of H$_2$bdtc (K octanol/water)

Partition coefficients for the H$_2$bdtc were determined in triplicate in an n-octanol/water system following a published procedure [35]. Measurements of H$_2$bdtc n-octanol/water partition coefficients were carried out using the shake-flask method. H$_2$bdtc was dissolved in aqueous solution previously saturated with n-octanol at a concentration of 1 mg/mL and mixed with the same volume of octanol also previously saturated with water. Samples were stirred for 30 min, separate in two phases, and centrifugated for 10 min at 2000 rpm. The amount of H$_2$bdtc in the aqueous phase was quantified by UV-visible spectroscopy.

Mice

Female Swiss mice (6 to 8 weeks old) were bred and maintained at the Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil. The mice were maintained in microisolator cages under standard conditions; they were fed with food and water ad libitum.

Ethics statement

All the in vivo procedures were performed in accordance with the guidelines issued by the Brazilian College of Animal experimentation (COBEA) and received prior approval by the Ethics Committee on Animal Experimentation – CETEA (n° 006/2011) of the School of Medicine of Ribeirão Preto.

Parasites and experimental infection

All the experiments were conducted using the trypanomastigate form of the Y strain of T. cruzi (Lineage type II). For the in vitro experiments, parasites were grown in a fibroblast cell line (LLC-MK2). For the in vivo experiments, mice were intraperitoneally inoculated with 2.0×105 bloodstream trypanomastigote forms, which had been derived from previously infected Swiss mice.

In vitro evaluation of the trypanocidal activity and cytotoxicity of free H$_2$bdtc and H$_2$bdtc-loaded SLNs

The trypanocidal activities of free H$_2$bdtc, H$_2$bdtc-SLNs, and BZN against the trypanomastigate form of the T. cruzi Y strains were evaluated as described previously [36]. To this end, the trypanomastigate culture at a concentration of 6.5×105 parasites mL$^{-1}$ was re-suspended in RPMI 1640 medium with 5% FBS. Triplicate cultures were treated with one of the investigated drugs and maintained at 37.0±0.1°C in a humidified atmosphere of 5% CO$_2$. To test parasite viability, the number of motile forms was determined using a previously described method [37]. The concentration of compound corresponding to 50% trypanocidal activity after 24 h of incubation was expressed as the IC$_{50}$try (inhibitory concentration for the trypanomastigate form).

Spleen cells isolated from C57BL/6 mice, macerated in RPMI 1640 medium (Gibco), and filtered using a 100-μm pore filter were used to evaluate the cytotoxicity in vitro. The isolated cells were centrifugated at 1500 rpm for 10 min, and erythrocytes were lysed in lysis buffer for 5 min, at room temperature. Cells were washed, counted, and resuspended at 6.5×106 mL$^{-1}$ in RPMI medium containing 5% fetal bovine serum. The spleen cells were seeded to a 96-well microplate (n = 2) and incubated for 24 h with H$_2$bdtc diluted in dimethyl sulfoxide (DMSO). Final H$_2$bdtc concentration not exceeding 0.5%) or H$_2$bdtc-SLNs (concentrations ranging from 125 μM to 0.24 μM in serial dilutions). BZN (Roche) was used as the reference drug. Tween 20 was employed as positive control for cell death. After the incubation period, the cells were washed and incubated with propidium iodide at a final concentration of 10 μg mL$^{-1}$. Cell cytotoxicity was measured on a flow cytometer (FACS Canto II - BD), and the data were analyzed using the FlowJo program (Tree Star).

In vivo evaluation of the cytotoxicity and trypanocidal activity of free H$_2$bdtc and H$_2$bdtc-SLNs

Female Swiss mice aged between 6 and 8 weeks, weighing between 20 and 25 g, were infected with 2.0×106 blood trypanomastigotes per animal. A total of four experimental groups consisting of seven Swiss mice each were included in the study. Treatment started at day 5 post-inoculation (p.i.). BZN, free H$_2$bdtc and H$_2$bdtc-SLNs were orally administered at 4 μmol kg$^{-1}$ (BZN 1.0 mg kg$^{-1}$ day$^{-1}$/free H$_2$bdtc and H$_2$bdtc-SLNs 1.4 mg kg$^{-1}$ day$^{-1}$) per day for 10 consecutive days. The following treatments were applied: Group 1 = PBS control group, infected and not treated, Group 2 = infected and treated with BZN, Group 3 = infected and treated with free H$_2$bdtc, and Group 4 = infected and treated with H$_2$bdtc-SLNs. To evaluate parasitaemia and mortality, seven animals from each group were used. Seven animals were killed at day 22 p.i. (early mortality), to quantify inflammation of the heart and liver and to measure creatine kinase-MB (CK-MB) and glutamic-pyruvic transaminase (GPT) production.

Parasitemia and mortality

Parasitemia was analyzed on alternate days from day 7 p.i.; to this end, 5 μL of fresh blood was collected from the animal tail. The count of 100 fields was performed via direct observation under a light microscope [38]. Mortality was inspected on a daily basis until day 60.

Histological analysis

Groups of seven mice were euthanized at day 20 p.i., and portions of the heart and liver were fixed in paraform for histological analysis. To assess inflammatory infiltration via light microscopy DP71 (Olympus Optical Co., Japan), tissues were sectioned at a 5-μm thickness and stained with hematoxylin-eosin (H&E). Each tissue section was imaged 25 times, and the percentage of the area occupied by cellular infiltrates was determined using the Image J program.

Quantitative real-time PCR (qPCR)

Quantitative PCR was used to determine the amount of parasitic DNA in heart tissues. Briefly, DNA was purified from 25 mg of heart tissue using a QIAamp DNA Mini Kit (Qiagen), according to the manufacturer’s instructions. Each PCR reaction comprised 40 ng of genomic DNA; 0.3 μM of the T. cruzi-specific primers TCZ-F 5’-GCTTTTGGCCACAGGTTG-3’ (M = A or C) TCZ-R 5’-CCAAGCAGGATAGTCCAGG-3’ [39],
which amplify a 182-bp product; 7.65 μL of GoTaq qPCR Master Mix; and H₂O (final total volume of 15 μL).

The reactions were performed using the Real-Time PCR System. The cycling program involved a denaturation cycle of 95.0°C for 10 min, followed by 40 cycles of the three steps of the amplification phase: 95.0°C for 15 s, 55.0°C for 30 s, and 72.0°C for 15 s. The melting phase was performed at 95.0°C for 15 s and at 60.0°C for 1 min, followed by a 0.3°C ramp and then 95.0°C for 15 s. During the melting phase, the acquisition setting was set at step. The data were analyzed with StepOne Software version 2.2.2.

Serum activity of creatine kinase isoform MB (CK-MB) and glutamic-pyruvic transaminase (GPT)

The cardiac and hepatic lesions of mice infected with T. cruzi, treated or not, were assessed by measuring the creatine kinase-MB (CK-MB) and glutamic-pyruvic transaminase (GPT) levels, respectively, in the serum at day 22 p.i. The CK-MB levels were measured using a CK-MB kit (Liquiform, Brazil), as previously described [40]. Absorbance was measured on a microplate spectrophotometer (EMAX Molecular Devices Corporation, California, EUA). The color produced from this reaction was measured at a wavelength of 505 nm. The color produced by this reaction was measured at a wavelength of 340 nm; the results are expressed in U/I. GPT was analyzed using an ALT/GPT kit (Liquiform, Brazil), according to the manufacturer’s instructions. The colorimetric assay determines the amount of pyruvate produced according to the Reitman and Frankel method, from the formation of 2,4-dinitrophenylhydrazine [41]. The color produced by this reaction was measured at a wavelength of 505 nm.

Statistical analyses

Data are expressed as the mean SEM. Student’s t-test was used to analyze the statistical significance of the variation between the infected and control assays. Differences were considered statistically significant when P<0.05. The differences in droplet size, dispersity, zeta potential, and entrapment efficiency values achieved during the stability test were evaluated via a one-way ANOVA analysis of variance followed by Tukey post-test analysis. The differences were considered statistically significant when P<0.05. All the analyses were performed using PRISM 5.0 software (Graph Pad, San Diego, CA, US).

Results

Preparation and characterization of H₂bdtc-SLNs

The H₂bdtc showed a lipophilic character (Log P (o/w) = 2.69±0.03) and were efficiently encapsulated in this manner in SLNs. On the basis of Photon Correlation Spectroscopy (PCS), H₂bdtc-SLNs had diameter of 127.4±10.2 nm and dispersity lower than 0.3; the zeta potential revealed a negative surface charge (−56.1±4.4 mV). The entrapment efficiency was 98.16±1.12, showing that the drug dispersed well within the lipid matrix. Atomic force microscopy images revealed that

Table 1. Particle size, zeta potential, dispersity index and entrapment efficiency of SLNs (mean ± SD, n = 3).

Formulation	Mean Particle (nm)	D-Stroke	Zeta Potential (mV)	Entrapment Efficiency (%)
SLN	132.3±10.2	0.260±0.0098	−60.20±2.30	98.16±1.12
H₂bdtc-SLN	127.4±1.30	0.229±0.130	−56.10±4.40	

*Dispersion (D-stroke). SLNs: SLNs without drug loaded and H₂bdtc loaded in SLNs: H₂bdtc loaded in SLNs.

doi:10.1371/journal.pntd.0002847.t001

Figure 2. Atomic Force Microscopy micrographs of H₂bdtc loaded in SLNs (A) 2 μm × 2 μm three-dimensional image. (B) 2 μm × 2 μm planar image.

doi:10.1371/journal.pntd.0002847.g002
H$_2$bdtc-SLNs particles were spherical, with an average diameter of approximately 180 nm (Figure 2), agreeing with the PCS results.

In vitro evaluation of the trypanocidal activity and cytotoxicity of free H$_2$bdtc and H$_2$bdtc-SLNs

We assessed the **in vitro** trypanocidal activity of free H$_2$bdtc, H$_2$bdtc-SLNs and BZN after 24 h of incubation with T. cruzi trypomastigotes forms. Free H$_2$bdtc presents IC$_{50}$try (inhibitory concentrations against bloodstream trypomastigote) as 0.50 ± 0.12, H$_2$bdtc-SLNs as 1.83 ± 0.18 and BZN 0.50 ± 0.39 μM (Figure 3A). We also measured the cytotoxicity of free H$_2$bdtc and H$_2$bdtc-SLNs in spleen cells derived from mice after 24 h via propidium iodide treatment and FACS analysis. The mean ± SEM is shown and is representative of three independent experiments (n = 2). Statistically significant differences compared with the control (BZN). Anova, Bonferroni post - test: ***p < 0.001 doi:10.1371/journal.pntd.0002847.g003

Figure 3. In vitro evaluation of the trypanocidal activity and cytotoxicity of H$_2$bdtc - (concentrations range from 125 μM to 0.24 μM in serial dilutions). (A) Percentage of trypanocidal activity of free H$_2$bdtc and H$_2$bdtc loaded in SLNs against the Y strain of T. cruzi analyzed by quantifying viable parasites via microscopy after 24 h post-treatment. (B) Percentage of cytotoxicity of free H$_2$bdtc and H$_2$bdtc loaded in SLNs in spleen cells derived from mice after 24 h via propidium iodide treatment and FACS analysis. The mean ± SEM is shown and is representative of three independent experiments (n = 2). Statistically significant differences compared with the control (BZN). Anova, Bonferroni post - test: ***p < 0.001 doi:10.1371/journal.pntd.0002847.g003

H$_2$bdtc-SLNs particles were spherical, with an average diameter of approximately 180 nm (Figure 2), agreeing with the PCS results.

In vitro evaluation of the trypanocidal activity and cytotoxicity of free H$_2$bdtc and H$_2$bdtc-SLNs

We assessed the **in vitro** trypanocidal activity of free H$_2$bdtc, H$_2$bdtc-SLNs and BZN after 24 h of incubation with T. cruzi trypomastigotes forms. Free H$_2$bdtc presents IC$_{50}$try (inhibitory concentrations against bloodstream trypomastigote) as 0.50 ± 0.12, H$_2$bdtc-SLNs as 1.83 ± 0.18 and BZN 0.50 ± 0.39 μM (Figure 3A). We also measured the cytotoxicity of free H$_2$bdtc and H$_2$bdtc-SLNs in spleen cells derived from mice; none of the tested drugs was significantly cytotoxic (Figure 3B). Hence, both free H$_2$bdtc and H$_2$bdtc-SLNs displayed similar **in vitro** trypanocidal activity to BZN; this activity was not associated with general cytotoxicity but rather with specific activity against the parasite.

In vivo activity of free H$_2$bdtc and H$_2$bdtc-SLNs

We performed **in vivo** experiments to investigate the controlled release behavior of H$_2$bdtc from H$_2$bdtc-SLNs; we also compared the activities of free H$_2$bdtc and H$_2$bdtc-SLNs against T. cruzi. We decided to use an H$_2$bdtc-SLNs concentration of 4 μmol kg$^{-1}$ day$^{-1}$. During the **in vivo** treatments on the basis of preliminary **in vivo** results obtained for the Y strain of T. cruzi, which revealed that H$_2$bdtc had low level of parasitemia (Supporting Information: Figure S1). In all the infected groups, parasitemia peaked at day 9 p.i., with gradual parasite elimination from the bloodstream after day 11 p.i. It is worth noting that we employed BZN concentrations 100 times lower than that used for Chagas patients. H$_2$bdtc-SLNs eliminated 70% of the circulating parasites at the peak of infection, whereas free H$_2$bdtc and the positive control BZN eliminated 48 and 15% of the parasites, respectively, as compared with the control group treated with PBS (Figure 4A). In agreement with the data revealing reduced parasitemia, mice treated with H$_2$bdtc-SLNs presented 100% survival rate (Figure 4B), similar to the result achieved with BZN administered at a clinical dose of 400 μmol kg$^{-1}$ day$^{-1}$ (100 times more concentrated than the concentration used herein). Compared with the control group (PBS), groups treated with free H$_2$bdtc and BZN exhibited a survival rate of 57%.

Cardiac and liver lesions

Encouraged by the **in vivo** results, we evaluated how free H$_2$bdtc, H$_2$bdtc-SLNs, and BZN affected the cardiac and hepatic tissues of the surviving animals. Infected mice treated with H$_2$bdtc-SLNs presented reduced cardiac inflammation (Figure 5A) and heart lesions were absent (Figure 5B), as established by the absence of CK-MB, the enzyme released into plasma during cardiac lesion.
Treatment with free H₂bdtc diminished cardiac damage by 50% as compared with therapies with BZN or PBS. Concerning the ability of the tested compounds to reduce the liver damage caused by the parasite, H₂bdtc-SLNs decreased inflammatory infiltration in the liver and hepatic toxicity more effectively, as assessed by measuring the glutamic-pyruvic transaminase (GPT) levels in the liver.

Figure 4. Parasitaemia and survival rates of mice infected with T. cruzi and treated with free H₂bdtc, H₂bdtc encapsulated in SLNs and BZN. (A) Parasitaemia was monitored on days 7, 9, 11 and 13 after infection. (B) Survival was monitored daily for 60 consecutive days. The mean + SEM is shown and is representative of three independent experiments (n = 7). Statistically significant differences compared with the control (BZN). T student test: ***p<0.001
doi:10.1371/journal.pntd.0002847.g004

Figure 5. Cardiac and liver lesions of T. cruzi-infected animals after treatment with H₂bdtc encapsulated in solid lipid nanoparticles. (A) Quantification of cellular nuclei per 50 μm² of heart tissues derived from non-treated and treated animals. (B) Quantification of CK-MB in the serum of infected and treated mice. (C) Quantification of cellular nuclei per 50 μm² of liver tissues derived from non-treated and treated animals. (D) Quantification of glutamic-pyruvic transaminase (GPT) levels. The mean + statistically significant differences compared with the control are denoted by: *p<0.05, **p<0.01 e ***p<0.001, T student test.
doi:10.1371/journal.pntd.0002847.g005
serum (Figure 5C, 5D). Considering all these results, it is possible to infer that treatment with H2bdtc per se reduced the inflammatory response on T. cruzi target organs and, consequently, tissue damage. Loading of H2bdtc into nanoparticles afforded even better results, producing no lesion in the heart tissue.

Because it is well established that parasites play an important role in cardiac damage during T. cruzi infection [42], [43], we quantified T. cruzi DNA derived from the heart tissues of mice treated with the tested compounds via real-time PCR. Treatment with H2bdtc-SLNs reduced the parasite burden significantly more effectively as compared with the other tested drugs (Figure 6), indicating that killing the parasites is most likely the mechanism through which H2bdtc-SLNs acts to diminish tissue lesions and enhance mice survival.

Discussion

Chagas disease has often been pointed out as being a major neglected disease; the drugs that are currently available to treat this disease are little effective [5], [12]. Efforts have been made to provide the affected populations with new compounds to treat the disease. In the past few years, researchers have tested many substances against T. cruzi [44], [45], [46], [47], [48]. The zeta potential measurement allowed us to predict the stability of the colloidal dispersion. Charged particles have high zeta potential-negative or positive—and usually do not aggregate [49]. The zeta potential results revealed that the SNPs prepared here had a negative surface charge (−36.1±4.4 mV), indicating that the system was physically stable. Loaded and unloaded SNPs had similar zeta potentials, attesting that the tested drug was completely and uniformly dispersed inside the lipid matrix [50].

Encapsulation did not change the in vitro trypanocidal activity of H2bdtc, which was higher than the activity of BZN at the same concentration used here. The IC50 values obtained for H2bdtc against the trypomastigote form of the Y strain of T. cruzi were comparable with or superior to those of previously reported active compounds [51], [52]. Other papers have also described the use of colloidal drug carriers such as liposomes and nanoparticles to treat Chagas diseases [53], [54]. Treatment of T. cruzi infection with a BZN-loaded liposome increased BZN levels in the liver and blood. Intravenous administration of free BZN and BZN-encapsulated liposome at 0.2 mg of BZN per kilogram of body weight revealed three-fold higher BZN accumulation in the liver in the second case. Nevertheless, encapsulation failed to improve the in vivo BZN efficacy [55].

Liposome instability prevents their use as drug delivery systems [56]. Fortunately, we verified that free H2bdtc and H2bdtc-SLNs were not toxic to the spleen cells of Swiss mice, which encouraged us to directly test the effect of H2bdtc formulations in vivo using a murine model of acute Chagas disease.

Treatment started with a relatively low oral dose of free H2bdtc and H2bdtc-SLNs (4 μmol kg⁻¹ day⁻¹) as compared with currently employed doses of the commercially available BZN and compounds tested in the literature [57], [58]. H2bdtc-SLNs, Free H2bdtc and BZN reduced the presence of parasites in the blood of infected mice in 70, 48 and 15% respectively. H2bdtc-SLNs maintained 100% survival rate of infected mice, whereas 43% of the mice treated with free H2bdtc or BZN at the same concentration succumbed to the disease. It is noteworthy that free SLN and PBS elicited similar levels of parasitemia (Supporting Information: Figure S2). Therefore, the use of SLNs as a drug delivery system increased the oral bioavailability of the target drug, as previously described [59], [60], [61], [62], [63]. H2bdtc loading into SLNs overcome the problems inherent to the poor water solubility of the compound and may be could make it more accessible to the parasite (however, detailed pharmacokinetic data will be presented in a separate forthcoming paper). Additionally, some authors have proposed that drugs loaded into SLNs measuring 20–500 nm are absorbed by lymphatic transport, which reduces the first-pass metabolism [62], [63].

Analysis of histological sections of liver and heart tissues (Supporting Information: Figure: Figure S3 and Figure S4) revealed that the inflammatory infiltrate decreased in all the treated groups as compared with the control. The reduction was more pronounced in mice treated with H2bdtc-SLNs, possibly because parasitemia was lower in this case. This corroborated with findings from previous studies [64], [65] and confirmed that the parasite elicited intense inflammation especially in the cardiac tissues. The fact that the heart tissues of mice treated with H2bdtc-SLNs were perfectly preserved agreed with the notion that the presence of inflammatory infiltrates is associated with cardiac tissue damage [66], [67] and also with parasitic load [42], [43]. Indeed, mice treated with H2bdtc-SLNs exhibited significantly lower parasite burden as compared with the other groups. Hence, the reduced parasitism elicited by H2bdtc-SLNs helps to preserve the heart tissues of mice infected with T. cruzi, allowing us to conclude that H2bdtc is a potent trypanocidal agent.
Investigation into how H$_2$bdtc interacts with possible targets represents a theme for future studies. For the time being, we must bear in mind that triazoles and thiosemicarbazones are well known for inhibiting cruzain, a protein belonging to the family of cysteine proteases and which is the most abundant protein in T. cruzi proteases and which is the most abundant protein in T. cruzi parasites; however, the lack of redundancy with respect to their electrophilic metabolites that could affect other systems, especially host systems, contributing to the cytotoxic effects observed in BZN-treated patients [69].

It is worth noting that cysteine proteases are very important for parasites; however, the lack of redundancy with respect to their mammalian host makes these proteases interesting targets for the development of new therapeutic agents [70]. Altogether, our findings show that H$_2$bdtc-SLNs are a possible drug candidate to treat Chagas disease: it is more efficient against T. cruzi than the drugs used in current therapies.

Supporting Information

Figure S1 In vivo evaluations of the trypanocidal activity free-H$_2$bdtc and H$_2$bdtc-SLNs – (concentrations 4 μM, 40 μM and 80 μM) (---) Parasitaemia rate of mice infected with T. cruzi and treated with free-H$_2$bdtc. (—) Parasitaemia rate of mice infected with T. cruzi and treated with H$_2$bdtc encapsulated in solid lipid nanoparticles. Parasitaemia was monitored on days 7, 9, 11 and 13 after infection. The mean ± SEM is shown and is representative of three independent experiments (n = 7). Statistically significant differences compared with the free-H$_2$bdtc. T test student: *p<0.01 and **p<0.001. (TIF)

Figure S2 Parasitaemia of mice infected with T. cruzi and treated with free SLNs and PBS. Parasitaemia was monitored on days 7, 9, 11 and 13 after infection. (TIF)

Figure S3 Cardiac lesions of T. cruzi-infected animals after treatment with H$_2$bdtc encapsulated in SLNs. The sections represent of heart tissues inflammatory process composed of various cell types (21 days after infection). (TIF)

Figure S4 Liver lesions of T. cruzi-infected animals after treatment with H$_2$bdtc encapsulated in SLNs. The sections represent of liver tissues inflammatory process composed of various cell types (21 days after infection). (TIF)

Acknowledgments

We give special thanks to Dr. Denise Brufato Ferraz and Professor Roberto S. da Silva for their technical support.

Author Contributions

Conceived and designed the experiments: ZAC PldSM RSC CDL TAP CMM MAPdS RFVL VMD. Performed the experiments: ZAC PldSM RSC CDL TAP CMM MAPdS. Analyzed the data: ZAC PldSM RSC CDL TAP CMM MAPdS RFVL VMD. Contributed reagents/materials/analysis tools: ZAC PldSM TAP MAPdS RFVL JSS. Wrote the paper: ZAC PldSM TAP CMM MAPdS RFVL VMD. JSS.

References

1. Lountos GT, Tropea JE, Waugh DS (2013) Structure of the Trypanosoma cruzi protein tyrosine phosphatase TrPTP1, a potential therapeutic target for Chagas’ disease. Molecular and Chemical Neuropharmacology 167: 1–8. doi:10.1016/j.mcn.2012.10.006.
2. Courea JR, Vinas PA (2010) Chagas disease: a new worldwide challenge. Nature 465: 56–57.
3. Clayton J (2010) Chagas disease 101. Nature 465: 84–85.
4. Pedernick A, Ventura-Garcia L, Roura M, Poll C, Posada E (2013) Socio-Cultural Aspects of Chagas Disease: A Systematic Review of Qualitative Research. PLoS Negl Trop Dis 7: e2410. doi:10.1371/journal.pntd.0002410.
5. Redpath J, Allotey P, Polkhe S (2011) Social sciences research in neglected tropical diseases: A bibliographic analysis. Health Res Policy and Systems 9: 1. doi:10.1186/1478-4505-9-1.
6. World Health Organization (2010) First WHO report on neglected tropical diseases. Available: http://www.who.int/neglected_diseases/2010report/en/. Accessed in 23 August 2013.
7. Guedes PM, Silva GK, Gutierrez FR, Silva JS (2011) Current status of Chagas disease chemotherapy. Expert Rev Anti-infective Therapy 9: 609–620. doi:10.1586/eri.11.31.
8. Urbina JA (2010) Specific chemotherapeutics of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115: 55–68. doi:10.1016/j.actatropica.2009.10.029.
9. Murcia L, Carrero B, Segovia M (2012) Limitations of currently available Chagas disease chemotherapy. Rev Espolana de Quimioterapia 25:1–3.
10. Viotti R, Alarcón de Noya B, Araujo-Jorge T, Grijalva MJ, Guhl F, López MC, Selzer PM (2013) Trypanosomatid Diseases: Molecular Routes to Drug Discovery, Characterization, Reactivity, and Antiamoebic Activity. J Inorg Chem 45: 1260–1269. doi:10.1016/j.jinorgbio.2010.08.009.
11. Tarafder MTH, Jin KT, Crouse KA, Ali AM, Yamin BM, et al. (2002) Coordination chemistry and bioactivity of Ni$_2^+$, Cu$_2^+$, Cd$_2^+$ and Zn$_2^+$ complexes containing bidentate Schiff bases derived from S-benzylidithiocarboxylate and the X-ray crystal structure of bis[S-benzyl-N-2-carboxymethylthiolene]dithiocarboxylate] cadmium(II). Polyhedron 21: 2547–2554.
12. Pavan FR, Maia PIN, Leite SRA, Defont VM, Batista AA, et al. (2010) Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazine/ hydrazides: Anti – Mycobacterium tuberculosis activity and cytotoxicity. Eur J Med Chem 45: 1996–1995. doi:10.1016/j.ejmech.2010.01.026.
13. Maurya MR, Kumar A, Bhat AR, Azam B, Bader C, et al. (2006) Dioxo- and Ossovanadum(V) Complexes of Thiadiazolone ONS Donor Ligands: Synthesis, Characterization, Reactivity, and Antiamoebic Activity. J Inorg Chem 45: 1260–1269. doi:10.1016/j.inorgchem.2005.10.001.
14. Abad-Franch F, Distain L, Gurgel-Gonçalves R, Gurtler R E (2013) Certifying the interruption of Chagas disease transmission by native vectors: cui bono? Mem Inst Oswaldo Cruz 108: 251–254.
15. Guedes PAM, Gutierrez FRS, Nascimento MSL, Do-Valle-Matta MA, Silva JS (2012) Antiparasitical chemotherapy in Chagas’ disease cardiology: current evidence. Trop Med and Int Health 17: 1057–1065. doi:10.1111/j.1365-3162.2012.03263.x.
16. Besur AR, Guhahai SR, Gascon JA, Frenaney G (2008) Synthesis and structure/activity relationships of metal-ligand complexes that potentially inhibit cell migration. Bioorg Med Chem Lett 18: 491–504. doi:10.1016/j.bmcl.2007.11.099.
17. Tampouris K, Coco S, Yannopoulos A, Koinis S (2007) Palladium(II) complexes containing bidentate Schiff bases derived from S-benzylidithiocarboxylate and the X-ray crystal structure of bis[S-benzyl-N-2-carboxymethylthiolene] dithiocarboxylate] cadmium(II). Polyhedron 26: 471–479. doi:10.1016/j.poly.2007.05.039.
18. Maia PIS, Fernandes AGA, Silva JN, Andrichopoulou AD, Lemos SS, et al. (2010) Dithiocarbamate complexes with S-benzyl dithiocarbamate and S-benzyl-N-isopropylidenedithiocarbamate: Synthesis, spectroscopic properties and X-ray crystal structures. Polyhedron 26: 1429–1475. doi:10.1016/j.poly.2007.05.039.
19. Silva AC, Kumar A, Wild W, Ferreira D, Santos D, et al. (2012) Long-term stability, biocompatibility and oral delivery potential of Risperidone-loaded solid nanoparticles. Int J Pharm 398: 751–757. doi:10.1016/j.ijpharm.2012.07.036.
20. Chakraborty S, Shukla D, Mishra B, Singh S (2009) Lipid: an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm and Biopharm 75: 1–13. doi:10.1016/j.ejpb.2009.06.001.
Physicochemical characterization and pharmacokinetics. Eur J Pharm and Biopharm 74: 474–482. doi:10.1016/j.ejpb.2009.12.008.

49. Monshi A, Salehi R, Fathi MH, Karbasi S, Pieles U, Daniels AU (2012) Preparation, chemistry and physical properties of bone-derived hyaluronic acid nanoparticles having a negative charge and with a potential for long-term aqueous stability. Mater Chem Phys 132: 446–452. doi:10.1016/j.matchemphys.2011.11.051.

50. Varshosaz J, Eskandari S, Tabbakhian M (2012) Freeze-drying of nanostructured lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr Polym 88: 1137–1163. doi:10.1016/j.carbpol.2012.01.051.

51. Moreira DRM, Costa SPM, Hernandez MZ, Rabello MM, Filho GBO (2012) Structural Investigation of Anti-Trypanosoma Cruzi 2-Iminothiazolidin-4-ones Allosteric Inhibition of the ATPase Activity. Antimicrob agents and chemother 56: 2079-2088. doi:10.1128/AAC.07603-12.

52. Coura JR (2009) Present situation and new strategies for Chagas disease chemotherapy - a proposal. Mem Inst Oswaldo Cruz 104: 549–554. doi:10.1590/S0070-428X2009000300002.

53. Zanin G, Cesaroni F, Iacobizzoli S, Gajardo M, Gonzalez-Martín G (2002) Cytotoxicity and trypanocidal activity of nifurtimox-encapsulated in ethylcellulose nanoparticles. Biotechnol Lett 24: 39–45.

54. Varshosaz J, Eskandari S, Tabbakhian M (2012) Freeze-drying of nanostructured lipid carriers by different carbohydrate polymers used as cryoprotectants. Bioorg Med Chem 20: 6503-6511. doi:10.1016/j.bmc.2012.07.012.

55. González-Martín G, Merino I, Rodríguez-Cabanas M, Torres M, Ruiz R (2012) Characterization and tripanocidal activity of nifurtimox-containing and empty nanoparticles of poly(ethylene)oxide. J Pharm and Pharmacol 64: 29–35.

56. Sánchez G, Cuellar D, Zulueta I, Gajarzó M, Gonzalez-Martín G (2002) Cytotoxicity and trypanocidal activity of nifurtimox encapsulated in ethylcellulose nanoparticles. Br J Pharmacol 135: 39–45.

57. Murilla MJ, Montanari JA, Prieto MJ, Lopez MO, Peyrat PB (2004) Intravenous liposomal BZN as trypanocidal agent: increasing drug delivery to liver is not enough. J Pharm: 1-13. doi:10.1016/j.jpharm.2004.03.025.

58. Dau AA, Joshi MD, Patravale VB (2007) Parasitic diseases: Liposomes and polymer nanoparticles versus lipid nanoparticles. Advanced drug delivery reviews 59: 505–521. doi:10.1016/j.addr.2007.04.009.

59. Coura JR (2009) Present situation and new strategies for Chagas disease chemotherapy - a proposal. Mem Inst Oswaldo Cruz 104: 549–554. doi:10.1590/S0070-428X2009000300002.

60. Zhu X, Liu Q, Yang S, Parmar T, Green CE (2012) Evaluation of Aryl halomelamine DB1955 and DB1960 as Candidates Against Visceral Leishman- maniasis and Chagas’ Disease: In Vivo Efficacy, Acute Toxicity, Pharmacokinetics, and Toxicology Studies. Antimicrob agents and chemother 56: 3690–3699. doi:10.1128/AAC.01640-11.

61. Baur A, Mukendi Z, Jungo KY, Sankaveli S, Velpula A (2013) Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv powder technol 24: 293–302. doi:10.1016/j.apt.2012.09.002.

62. Singh A, Ahmad I, Akhtar S, Jain GK, Iqbal Z (2013) Nanoencapsulators based formulation of Thymoquinone improves oral delivery: stability assessment, in vivo and in vitro studies. Colloids and Surfaces B: Biointerfaces 102: 822–832. doi:10.1016/j.colsurfb.2012.08.030.

63. Chakravarthy SS, Belgamwar VS, Talele VR, Surana SJ, Patil MU (2012) Formulation and evaluation of Nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids and Surfaces B: Biointerfaces 97: 109–116. doi:10.1016/j.colsurfb.2012.04.027.

64. Venkatesh VK, Chede R, Komuravelli R, Adepu L, Sintla R (2012) Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids and Surfaces B: Biointerfaces 95: 1–9. doi:10.1016/j.colsurfb.2012.01.001.

65. Tiwari R, Pathak K (2011) Nanostructured lipid carriers versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm 415: 232–243. doi:10.1016/j.ijpharm.2011.05.044.

66. Machado MPR, Rocha AM, Oliveira LF, Cubia MB, Lou LO (2012) Autonomic nervous system modulation affects the inflammatory immune response in mice with acute Chagas disease. Exp Physiol 97: 1186–1202. doi:10.1113/expphysiol.2012.066431.

67. Torrecillas ACT, Tonelli RR, Pavaneli RR, Silva JS, Schonacher RI (2009) Trypanosoma Cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Infect Immun 77: 4934–4941. doi:10.1128/IAI.00656-08.

68. Bonney KM, Gifford KM, Taylor JM, Chen CJ, Engmann DM (2013) Cardiac damage induced by immunization with heat-killed Trypanosoma cruzi is not antibody mediated. Parasite Immunol 35: 1–10. doi:10.1111/pai.2012.00036.

69. Berrios AM, Estrada CC, Lafuente M, Dave J, Komuravelli R (2013) BZN prevents endothelial damage in experimental model of Chagas disease. Acta Trop 127: 6–13. doi:10.1016/j.actatropica.2013.03.006.

70. Dios LG, Dressy MA, Silva JN, Thiennimeth OH, Olive G (2007) Chemotherapy of Chagas’ disease: state of the art and perspectives for the development of new drugs. Quim Nova 30: 2444–2457. doi:10.1590/S0100-40422007000900038.

71. Castro JA, Mecca MM, Bartel LC (2006) Toxic side effects of drugs used to treat Chagas disease [América tropicalis]. Minas Esquenta 5: 47–51. doi:10.1113/expphysiol.2012.066431.