Arduino and Nagios Integration for Monitoring

Víctor Fernández, Antonio Pazos, Juan Saborido and Marcos Seco

Universidade de Santiago de Compostela

October 14, 2013
1 Introduction
 - Commercial Solutions
 - Open hardware/Software solutions
 - Nagios
 - Arduino

2 Implementation
 - Software
 - Hardware
 - Project Costs

3 Results
Commercial Solutions

Advantages

- Highly integrated environments
- Sensors and controllers nicely packaged
- Support
- Wide range of sensors available

Disadvantages

- Expensive for small Data-Centers (≤ 10 Racks?)
 - APC: $\sim 370€+\text{ sensors (}> 30€ \text{ each})$
 - AVTech: $\sim 110€+\text{ 1 sensor (}> 25€)$
 - ServersChecks: $\sim 180€+\text{ 1 sensor (}> 45€)$
 - Domodesk: $\sim 480€+\text{ sensors}$

- Expanding them requires, some times, to buy from the same vendor
Open hardware/Software solutions

Pros
- They can be highly integrated environments
- Highly customizable by the user
- Affordable.
- Wide range of sensors available
- Can be bought as a full solution

Cons
- Lots of work if DIY:
 - Software: Arduino, sensors and control programs
 - Hardware: some soldering
- Lack of support if DIY
- Could be expensive if bought from a vendor
It is a well known open source monitoring solution
Nagios

- It is a well known open source monitoring solution
- High number of sensors already available

SNMP
Current Load
Current Users
Disk use
HTTP
CVMFS
Ping
SSH
e tc...
Nagios

- It is a well known open source monitoring solution
- High number of sensors already available
- Easy to create new sensors
It is a well known open source monitoring solution

High number of sensors already available

Easy to create new sensors

Plenty of add-ons to extent basic functionality
Nagios

- It is a well known open source monitoring solution
- High number of sensors already available
- Easy to create new sensors
- Plenty of add-ons to extent basic functionality
- It is the monitoring software we have been using for ~10 years
It is a simple microcontroller board and a development environment
It is a simple microcontroller board and a development environment

- Inexpensive
- Cross-platform
- To have a Simple, clear programming environment
- Open source and extensible software
- Open source and extensible hardware
Arduino

- It is a simple microcontroller board and a development environment
- It was designed to be:
 - Inexpensive
 - Cross-platform
 - To have a Simple, clear programming environment
 - Open source and extensible software
 - Open source and extensible hardware
- Its capabilities can be extended with the use of shields, that is, boards that can be plugged on top of the Arduino.
Software

- **Implementation**
 - **Software**
 - Nagios
 - Nagiosgraph
 - Nagios Server
 - Sensor (python)
 - Critical Temp?
 - Query Arduino (python)
 - SNMP Relay (perl)
 - Send SMS
 - Query Sensor
 - Arduino+GSM shield
 - Response
 - Request
 - Information flow

- **Node 1**
 - SNMP Trap Handler (perl)

- **Node 2**
 - SNMP Trap Handler (perl)

- **Node 3**
 - SNMP Trap Handler (perl)

- **Information flow**
 - Server
 - Serial
 - SNMP Trap Handler
 - Node 1
 - Node 2
 - Node 3
 - ...
Arduino and Nagios Integration for Monitoring

Software

Implementation

Nagios
Nagiosgraph
Nagios Server
Sensor
(python)

Sensors

Information flow
Server
SNMP Relay
(perl)
Query Arduino
python

Critical Temp?

Yes

Critical?

Shutdown trap

Query Sensor
Arduino+GSM shield

Send SMS

Node 1
SNMP Trap Handler
(perl)

Node 2
SNMP Trap Handler
(perl)

Node 3
SNMP Trap Handler
(perl)

Arduino

SNMP Trap Handler
(perl)

Serial

SSH

Nagios
Nagiosgraph

Response
Request

October 14, 2013 7 / 11
Software

Implementation

Nagios
Nagiosgraph
Nagios Server
Sensor
(python)
Sensors
Information flow
Server
SNMP Relay
(perl)
Query Arduino
(python)
Query Sensor
Critical Temp?
Critical?
Send SMS
Arduino+GSM shield
Response
Request
Information flow

Node 1
SNMP Trap Handler
(perl)
Node 2
SNMP Trap Handler
(perl)
Node 3
SNMP Trap Handler
(perl)
Node 1
SNMP Trap Handler
(perl)

V. Fernández, A. Pazos, J. Saborido and M. Seco

Arduino and Nagios Integration for Monitoring

October 14, 2013
Hardware

Humidity Sensor

Pressure Sensor

Temperature Sensors

Ground
Voltage
Data
CLK/SCL

Made with Fritzing.org

V. Fernández, A. Pazos, J. Saborido and M. Seco

Arduino and Nagios Integration for Monitoring

October 14, 2013 8 / 11
Hardware

Humidity Sensor

Pressure Sensor

Temperature Sensors

- Ground
- Voltage
- Data
- CLK/SCL

Made with Fritzing.org
Project Costs

Our project:

1. Arduino Mega 2560 46€
2. GSM Shield 97€
3. 24 DS18B20 (Temperature) 198€
4. 1 Sensirion SHT75 (Humidity) 40€
5. 1 Bosch BMP085 (Pressure) 23€
6. 2 Prototype boards with continuous strips 20€

Total 424€

Other vendors (without GSM): APC ~ 1000€, AVTech ~ 1200€, ServerChecks ~ 1300€
Results

- Pressure sensor
- Humidity Sensor
Results

V. Fernández, A. Pazos, J. Saborido and M. Seco

Arduino and Nagios Integration for Monitoring

October 14, 2013
Results

Temperature

Day

Week

Month

Year

Daily Pressure

Daily Humidity

V. Fernández, A. Pazos, J. Saborido and M. Seco

Arduino and Nagios Integration for Monitoring

October 14, 2013