Fingerprint Image Quality Estimation and its Application to Multi-Algorithm Verification

Hartwig Fronthaler*, Klaus Kollreider, Josef Bigun, Fellow, IEEE, Julian Fierrez, Student Member, IEEE, Fernando Alonso-Fernandez, Student Member, IEEE, Javier Ortega-Garcia, Member, IEEE and Joaquin Gonzalez-Rodriguez, Member, IEEE

Abstract—Signal quality awareness has been found to increase recognition rates and to support decisions in multi-sensor environments significantly. Nevertheless, automatic quality assessment is still an open issue. Here we study the orientation tensor of fingerprint images to quantify signal impairments like noise, lack of structure, blur, with the help of symmetry descriptors. Especially favorable in Biometrics, strongly reduced reference, but not less information is sufficient for the approach. This is also supported by numerous experiments involving a simpler quality estimator, a trained method (NFIQ) as well as human perception of fingerprint quality on several public databases. Furthermore, quality measurements are extensively reused to adapt fusion parameters in a monomodal multi-algorithm fingerprint recognition environment. In this study, several trained and non-trained score level fusion schemes are investigated. A Bayes-based strategy for incorporating experts’ past performances and current quality conditions, a novel cascaded scheme for computational efficiency, besides simple fusion rules, are presented. The quantitative results favor quality awareness under all aspects, boosting recognition rates and fusing differently skilled experts efficiently as well as effectively (by training).

Index Terms—Quality assessment, structure tensor, symmetry features, fingerprint, monomodal fusion, adaptive fusion, Bayesian statistics, cascaded fusion, training

I. INTRODUCTION

A

TOMATIC assessment of image quality by a machine expert is challenging, but useful for a number of tasks: Monitor and adjust image quality, optimize algorithms and parameter settings or benchmark image processing systems [1]. Image quality assessment methods can be divided into full/reduced/no-reference approaches, depending on how much prior information is available on how a perfect candidate image should look like. Here we study quality assessment of the second kind, where images come from a specific application. There exist general quality metrics originally suggested in image compression studies [2], e.g. mean square error (MSE) or peak signal to noise ratio (PSNR). These earlier approaches are excluded here because of their notorious poor performance in recognition applications, which do not have the same objectives as compression applications.

In this study symmetry features [3] are exploited in a local model for generic image quality, applied to fingerprints. We are forced to use models when trying to estimate the quality of biometric images, since a high-quality reference image of the same individual is usually not available, i.e. the link to the individual is not established in advance (e.g. by identification). Once available, the benefits of having an automatic image quality estimate include the following: i) Assuring quality for all acquired samples and stored templates [4], ii) adjusting multimodal fusion schemes depending on the quality of the presented samples (e.g. face and fingerprint) [5], [6]. iii) taking into account the local quality when matching samples [7], [8]. As a result of recent fingerprint verification competitions involving particularly low quality impressions, even state-of-the-art systems’ performance decreases remarkably [9]. Recent advances in fingerprint quality assessment include [4], [8], [10], [11]. A taxonomy of fingerprint quality assessment methods is given in [12]. The novelties of the presented approach are listed further below.

Furthermore, we are combining fingerprint recognition systems at score level, and refer to it as multi-algorithm fusion (in contrast to multimodal fusion). To avoid confusion, we will use “system” or “expert” to address a fingerprint matcher, whereas we refer to a quality assessment method as “method” or “approach”. Considering fusion within a modality, in particular fingerprint recognition, [13], [14] showed that combining systems with heterogeneous matching strategies is most desirable, leading to recognition rates even higher than when combining the best systems relying on common features. When trying to fuse several experts with unknown skills and matching strategies, some sort of training is advisable to improve the combined performance [15], [16]. The performance can be increased even more, if the trained fusion scheme is adaptive as well, meaning that it takes into account current signal conditions trial by trial. This was also confirmed in [5], although unlike here, for a multimodal configuration and employing quality estimates by humans. In [17] the additional information through automatic quality labels was exploited to weight experts, because their individual weaknesses were known a priori. Recent studies of fixed and trained fusion strategies include [18], [19].

This paper improves the state-of-the-art in the following ways:

- The proposed quality estimation method achieves a continuous modeling of the reference structure. Applied to fingerprints, the benefit is that no misinterpretation of singularities occurs.
- The proposed cascaded fusion scheme is original and saves computation time.
- A trained Bayesian scheme is proven to systematically increase recognition rates of differently skilled experts in quality-adaptive monomodal fusion.

We report quantitative and comparative experimental results of our quality assessment with respect to two existing automatic fingerprint quality estimation methods [4], [11], and a set of manually assigned quality labels [20], [21]. The QMCYT database and two databases of the FVC2004 [9] were employed in this evaluation. Additionally, three fingerprint recognition systems [4], [7], [20] are employed to i) benchmark the quality labels, and ii) carry out the quality-adaptive multi-algorithm fusion.

II. QUALITY ESTIMATION

In the first part of this section a more general description of the suggested automatic quality assessment method is given. The ideas are then adapted to fingerprint quality estimation. Its applicability to other biometric modalities was indicated by means of face images in [22].
A. Quality Assessment Features

The orientation tensor holds edge and texture information, which is exploited in this study to assess the quality of an image. We wish to determine whether this information is structured and generic in some sense, i.e. to distinguish noisy content from relevant non-trivial structures (see figure 1). The latter are among others essential for many recognition algorithms, representing the individuality of a biometric signal, but also have significance in low-level human vision models enabling object recognition and tracking [23]. Our method decomposes the orientation tensor of an image into symmetry representations, where the included symmetries are related to the particular definition of quality and encode the a priori content-knowledge about the application (e.g. fingerprints, face images, ...). The resulting quality metric mirrors how well a test image comprises a particular definition of quality and encodes the a priori content-representations, where the included symmetries are related to the symmetry features of order N and scales (σ) used for the reference model. Furthermore, we demand $\{s_n\}$ to be well separated over the image plane, in which we look for a high and dominant symmetry at each point. Equation 4 denotes an inhibition scheme [23]

$$ s_n = s_n \cdot \prod_{k \in N \setminus n} (1 - |s_k|); $$

where k refers to the remaining applied orders, to sharpen the spatial extension of filter responses, and I is a label that stands for inhibition. Consequently, a high certainty of one symmetry type requires a reduction of the other types. We calculate the covariance among $\{|s_n|\}$ in blocks of size $b \times b$ in order to test if the filter responses have been mutually exclusive. A large negative covariance supports that this is the case and the neighborhood behaves as a high quality local image. On the other hand, positive covariance implies the co-occurrence of mutually exclusive symmetry types in the vicinity of a point, which is an indication of noise or blur. We incorporate this information by weighting the symmetry certainty. We sum $\{|s_n|\}$ over n at each pixel resulting in a total symmetry image

$$ s = \sum_{n \in N} |s_n| $$

where \tilde{s} is further averaged within blocks (tiles) of size $b \times b$ yielding \bar{s} (we use $\bar{\cdot}$ to denote block-wise operating variables). The quality measure \bar{q} for each block is then computed as follows

$$ \bar{q} = m(\bar{r}) \cdot \bar{s}, $$

where \bar{r} denotes the block-wise correlation coefficient, and m is a monotonically decreasing function, so that $m : [-1, 1] \rightarrow [0, 1]$. The quantity \bar{r} is calculated as an average of the correlation coefficients among $\{|s_n|\}_{n \in N}$, that is, between any two involved orders $\tilde{r}_{k,l}$, as defined by

$$ \bar{r}_{k,l} = \frac{\text{Cov}(|s_k|, |s_l|)}{\sqrt{\text{Var}(|s_k|)\text{Var}(|s_l|)}}, $$

Note that $\tilde{r}_{k,l} = \tilde{r}_{l,k}$, and that in case of employing only two orders for the decomposition, e.g. $N = \{0, 1\}$, \tilde{r} equals \tilde{r}_{01}. An overall quality metric is established by averaging \bar{q} over the “interesting” blocks \tilde{i}, which are represented by blocks where $\bar{s} > r_\tau$, thus having a minimum total symmetry response. The proposed technique is implemented and tested by means of automatic fingerprint image quality estimation.

B. Fingerprint Quality Estimation

By human opinion, the quality of a fingerprint image is usually expressed in terms of the clarity of ridge and valley structures, as well as the extractability of certain points (minutiae, singular points) [8]. In our approach, we concentrate on medium to global-scale features of a fingerprint, represented by the orientation, singular points, scratches.
and low-contrast areas. The purpose is to identify and grade “bad” blocks, so that any subsequent analysis of the fingerprint is alleviated. It is, for example, a main problem for minutiae detection methods to distinguish genuine minutia points from similar patterns stemming from scratches. However, in our approach these neighborhoods will already be marked because we act on a higher level and shall detect only the scratches. Another important point is to include both highly and lowly curved structures in the quality definition, because otherwise it can not model the global ridge-valley flow. We employ large filters for two symmetry types, \(n = 0 \) and \(n = 1 \). The former is known to model well the typical ridge-valley flow, whereas the latter has been shown to model the flow about the singular regions of a fingerprint (compare figure 1) [7], [26].

Previously methods for (local) fingerprint quality assessment have been exploiting the spatial coherence of the ridge flow only, by essentially determining or approximating \(s_0 \) [12]. Additionally the latter has commonly been partitioned into blocks \(s_0 \). Inspecting, figure 4 reveals that this strategy may not be enough, because important regions such as singular points (e.g. core, delta) are per definition incoherent to the ridge flow, and their strong presence therefore automatically impairs the estimated quality. Focusing on the second row, we see how severely the single core and two delta points distort the quality map \(s_0 \). Note the different shape of the singular point regions not leading to different results for \(q \). Though, this is due to the \(h_1 \)-filter’s response to both prominent singular point types “core” \((n = 1) \) and “delta” \((n = -1) \), because the former is implicitly contained in subpatterns of the latter. Therefore, when estimating an overall quality metric by averaging the quality map, \(q \) is expected to be more suitable than \(s_0 \). Quantitative results with comparisons will be presented further below. To the best of our knowledge, there is no other reported method that measures the quality of both typical and high curvature ridge-valley structure.
III. FUSION

In this section, we will derive different multi-algorithm fusion schemes. The quality-adaptive strategies weight several recognition experts according to their confidence measures. This is done in a continuous way in a Bayes-based training fusion (section III-A), and in a more aggressive fashion in a cascaded type of fusion (section III-B). Confidence measures are modeled by the fingerprints’ overall quality in both cases. A listing of simple (non-adaptive) fusion schemes closes the section.

A. Bayesian Supervisor

This section is devoted to an adaptive fusion scheme using Bayes theory [27]. For a more profound description of the employed model we refer to [15]. Its probabilistic background is further detailed in [28], [29]. As indicated in figure 5 we combine independent fingerprint recognition systems yielding a monomodal multi-algorithm environment. An input fingerprint is referred to as a shot. For every shot we have several different experts’ opinions delivered to the Bayesian supervisor. The following notation is used when describing the statistical model and the supervisor within this paper:

- i: Index of the experts, $i \in 1 \ldots m$
- j: Index of shots, $j \in 1 \ldots n, n + 1.$
- x_{ij}: The authenticity score computed by expert i based on shot j
- s_{ij}: The variance of x_{ij} (estimated by expert i).
- y_j: The true authenticity score of shot j
- $z_{ij} = y_j - x_{ij}$

The true authenticity score y_j can only take two numerical values, namely “True” or “False”. So if the values of x_{ij} are between 0 and 1, the values of y_j are chosen to be 0 and 1 respectively. The training of the supervisor is performed on the shots $j \in 1 \ldots n$, where x_{ij} and y_j are known. When the supervisor is operational, we consider the shot $j = n + 1$ as a test shot. In this case only $x_{i,n+1}$ is known and the task of the supervisor is to estimate $y_i,n+1$. It is assumed that the single experts and the supervisor are trained on different sets. Note that the experts provide a quality estimate in addition to each score which is modeled to be inversely proportional to s_{ij}. This variance is then used by the supervisor for evaluation.

1) Statistical Model: The employed adaptive fusion strategy uses Bayesian statistics and assumes the errors of the single experts to be normally distributed, i.e. z_{ij} is considered to be a sample of the random variable $Z_{ij} \sim N(b_i, \sigma_i^2)$. This does not strictly hold for common audio- and video-based biomedical machine experts [15]. Nevertheless it was shown that this problem can be addressed by considering client and impostor distributions separately. Thus, the following two supervisors representing the expert opinions $y_j = 1$ and $y_j = 0$ are constructed:

$$C = \{x_{ij}, s_{ij} | y_j = 1 \text{ and } 1 \leq j \leq n \}$$

$$I = \{x_{ij}, s_{ij} | y_j = 0 \text{ and } 1 \leq j \leq n \}$$

The two supervisors will be referred to as client supervisor and impostor supervisor, respectively.

The task of the client supervisor is to estimate the expected true authenticity score y_j based on its knowledge of client data i.e. computing $M'_C = E[Y_{n+1} | C, x_{i,n+1}]$. The prime notation is used to distinguish the 3 different supervisor states. No prime means training, one denotes calibration and two indicate the authentication (operational) phase. The impostor supervisor estimates y_j by computing $M'_I = E[Y_{n+1} | l, x_{i,n+1}]$.

The supervisor which comes closer to the ideal case (1 for the client supervisor, 0 for the impostor supervisor) is considered as the final conciliated overall score M'':

$$M'' = \begin{cases} M'_C & \text{if } |1 - M'_C| - |0 - M'_I| < 0 \\ M'_I & \text{otherwise} \end{cases}$$

2) Supervisor: Having the experts scores and the quality estimates, the Bayesian supervisor can be summarized as follows:

i) Training Phase: In case of the client supervisor, the bias parameters for all experts are estimated as follows:

$$M_{Cl} = \frac{\sum_j z_{ij}^2}{\sum_j \frac{1}{\sigma_j^2}} \text{ and } V_{Cl} = \frac{1}{\sum_j \frac{1}{\sigma_j^2}}$$

$$\alpha_{Cl} = \frac{\sum_j z_{ij}^2 - \left(\sum_j \frac{z_{ij}}{\sigma_j} \right)^2 \left(\sum_j \frac{1}{\sigma_j^2} \right)^{-1}}{n_C - 3}$$

r_n denotes the number of shots in C. If one or more experts do not provide any quality estimates s_{ij} is set to 1. The bias parameters M_{Cl} and V_{Cl} for the impostor supervisor can be estimated similarly.

![Fig. 5. Multi-algorithm system model: Schematics including all components of the proposed Bayesian supervisor. All experts deliver a certainty in addition to their score, which is estimated as the image quality here.](image-url)
ii) Operational Phase: At this stage authentication on “live” data is performed i.e. the time instant is $n+1$ and the trained supervisors can access the expert opinions $x_{i,n+1}$ but not the true authenticity score y_{n+1}. In a first step, the client and impostor supervisors have to be calibrated regarding to their past performance. In case of the client supervisor this calibration is denoted by

$$M_{Ci}^I = x_{i,n+1} + W_{Ci}$$

and $V_{Ci}^I = s_{i,n+1} \cdot \alpha_{Ci} + V_{Ci}$ (13)

Having the calibrated experts, they are combined as follows:

$$M_{Ci}^C = \frac{\sum_{i=1}^{m} M_{Ci}^I}{\sum_{i=1}^{m} 1/V_{Ci}^I}$$

(14)

The computations for the impostor case (M_{Ci}^I, V_{Ci}^I and M_{Ci}^C) follow the same pattern. The final supervisor decision is made according to equation 10.

3) Quality adaptive strategy: As indicated in figure 5, each expert provides a score x_{ij} and a variance s_{ij} for every single authentication assessment. The variance is not an estimation of the general reliability of the expert itself. It is considered as a certainty measure for the assessment. The variance is not an estimation of the general reliability employed in the input signal quality. We define quality index q_{ij} of the score x_{ij} as follows:

$$q_{ij} = \min \{Q_{ij}, Q_{i,claim}\}$$

(15)

where Q_{ij} is the quality estimate produced by expert i in shot j and $Q_{i,claim}$ is the average quality of the biometric samples used by expert i for modeling the claimed identity. All quality values are in the range $[0,q_{max}]$ where $q_{max} > 1$. In this scale 0 is the poorest quality, 1 is considered as normal quality and q_{max} corresponds to the highest quality. The final variance parameter s_{ij} of the score x_{ij} is obtained by

$$s_{ij} = \frac{1}{q_{ij}}$$

(16)

Training is the key point of the Bayes-based fusion approach. The biases M_{Ci}/M_{Ci}^I and V_{Ci}/V_{Ci}^I of expert i evaluated during training are used to weight the experts’ scores in the joint accept/reject decision. This is done in non-adaptive fusion without considering any experts’ confidences into their scores. In adaptive fusion, these confidences are involved with s_{ij} for the current claim decreases the expert’s say in the joint decision. Since the confidences are modeled by signal qualities, a dependency between quality and the expert’s recognition performance has been estimated during training. This is exploited in the operational phase to continuously shift decision power among experts. The usage of the procedure described above in multi-algorithm fusion as well as with automatically derived quality signals is novel.

B. Cascaded Fusion

One can argue that the computation time is problematic if several systems have to be executed for every single match, i.e. for identification within a large database e.g. U.S.-VISIT. A reasonable way to address this issue is to dynamically include further experts if a single one cannot come up with a clear decision. In such a configuration a minimal number of experts is active most of the time, while still getting the benefits of fusion (improved recognition rates). This is also visualized in figure 6, where we see a series of systems - primary, secondary, etc. system in the following - triggered by certainty thresholds, meaning that system i is utilized if and only if c_{i-1} is below a certain threshold. Afterwards all available scores x_{i} are fused according to a fusion rule f, which can be chosen simple. This configuration is inspired by cascaded classifiers [30], i.e. degenerate decision trees [31]. Using scores themselves as certainty thresholds is not recommendable since they are naturally low in most of the cases for identification, and they might be wrong as well. In contrast, image quality is practicable, since the probability of a false acceptance or rejection is higher if the quality of the involved impressions is lower, while fusion should essentially oppose this fact. The image quality used as certainty threshold is relatively independent of the single experts, such that c_{i} can be shortened to c (compare figure 6). So the number of experts included into the current decision is determined by a single certainty. A trickier question is how to decide on the “trigger” thresholds $\tau_{1}, \ldots, \tau_{m-1}$. Intuitively, one chooses $\tau_{1} > \tau_{i} > \tau_{m-1}$, since more and more experts shall be utilized with decreasing signal quality. We suggest to set τ_{1} to half the expected best fingerprint quality, τ_{2} to half of the remaining quality interval, etc., such that $\tau_{i} = 0.5 \cdot \tau_{i-1}$. Assuming a uniform distribution of the fingerprints’ quality, the number of expert executions for m cascaded systems is expected to be $\sum_{i=0}^{m-1} N \cdot \tau_{i}$, where N is the total number of trials (the primary system has to be executed N times). This yields $2^{1/m} \cdot 100$ percent expert executions. As to the expected error rate, we can not easily derive a similar prediction, because it depends on the employed fusion rule as well as on the ordering of systems. Being an initial study of the novel fusion scheme, we do not formalize this here. However, no loss of recognition accuracy should be possible for certain thresholds, and reasonable loss is expected for the ones suggested above. While this is a guideline, we will reflect its applicability when we find optimal thresholds by a systematic search in the next section. It would be further desirable, if the quality assessment method and the primary system shared computational steps to save resources.

C. Simple Schemes

Past experiments indicated that combining systems in simple ways could already lead to relatively good results. Such fusion schemes include, for example, SUM and MAX rules, meaning that the average respectively the maximum of all experts’ scores is taken as the final score. Because they are non-adaptive we also refer to them as global MAX, global SUM, etc. It has been claimed in several studies that simple schemes are not clearly outperformed by trained (non-adaptive) strategies, for example, support vector machines, in neither monomodal fusion [14] nor multimodal fusion [18]. Simple, yet adaptive schemes have been successfully applied in quality-based multi-algorithm fusion [17]. In our study, only non-adaptive simple schemes are used to facilitate comparison.
IV. EXPERIMENTS

An approach to measure the impact of signal quality on the recognition performance is to divide the database into several quality groups and to run recognition tests within them. Inversely, given a correct quality division one expects monotonously decreasing error rates for groups of increasing quality. To benchmark the proposed quality assessment method we compare it to i) human grading, ii) NFIQ\(^1\) [4] and iii) the local orientation quality score (LOQ) [11]. The latter analyses a fingerprint’s quality in blocks by computing the average absolute difference in orientation angle between the surrounding blocks. A smooth change in orientation is interpreted as high quality. It is therefore clear that singular points, where the orientation changes per definition abruptly, are downgraded, which is unfavorable as elaborated in section II-B. NFIQ is an intensely trained quality assessment method, which is part of NIST\(^2\) FIS2\(^3\) [32]. The NFIQ implementation is based on 5244 impressions for training.

In this study, all experiments are conducted on the QMCYT fingerprint database [21], and some on two databases employed in FVC2004 [9]. The former is defining 75 \(\times\) 10 fingerprints \(\times\) 12 impressions, whereas the latter contain 100 fingerprints \(\times\) 8 impressions per database. For each impression in the QMCYT database a manually annotated quality label is available [21]. We employ a recently developed fingerprint recognition system [7], called system A in the following to validate the quality estimates. To investigate feature independency, we also employ the NIST FIS2 - referred to as system B - in a similar test. Note, that system B is entirely minutiae-based whereas system A is exploiting both minutia and texture features for fingerprint alignment and matching respectively. As a third expert, system C represents a non-minutia based recognition system utilizing Gabor features, as described in [20]. The 750 fingerprints of the QMCYT database are split into 5 equally sized partitions of increasing quality. The criteria for a fingerprint to be part of a certain group I-V is the average quality index for its genuine trials (impressions). The latter are chosen to be 150 \(\times\) 9 per group, while 150 \(\times\) 74 impostor trials are performed, considering fingers of the same type only as impostors (one impression). We show the EER of system A, B and C for all quality groups, which have been established according to the different quality assessment methods (see figure 7). According to the EER curves we can observe that the proposed method shows most similar behavior to the manual estimates (human opinion). It is worth mentioning that the grading by the proposed method and LOQ is continuous in \([0..1]\), whereas it is discrete for NFIQ and the human opinion being in \([1..5]\) and \([0..9]\) respectively. When applicable, the latter two output ranges are normalized into \([0..1]\). The same experiment is repeated for databases DB2 and DB3 employed in FVC2004. The 100 fingerprints of each database are split into partitions following the rules from above. For each database and per quality group, 20 \(\times\) 28 genuine trials and 20 \(\times\) 99 impostor trials are performed. We show the EER of systems A and B for all quality groups in the top row (DB2) and bottom row (DB3) in figure 8. System C and LOQ are left out due to the undesirable findings in the previous experiment. When looking at figure 8 we can observe a generally higher EER level and variance. The correct estimation of the different quality categories has more impact on recognition rates (compare figure 7) due to the increased difficulty of the FVC2004 databases. The severe image quality impairments were obviously detected well by both quality estimators. In particular the proposed method leads to monotonically decreasing EER curves for all involved recognition systems and databases. This strengthens our claim that including all fingerprint regions in the assessment yields the most reliable quality labels. Furthermore, the results confirm the usefulness of the employed symmetry features and their energy-independent usage in our algorithm (using normalized filter answers), without especially adapting it to the different databases. In table I we state the EER for each recognition system (A, B and C) over the whole QMCYT database, i.e. when the quality division is dissolved again.

In the following, the three systems A-C are combined (at least two
is approached from above with a small remainder, considering higher
to the former arrows through the dotted lines.

experts at a time) using the fusion schemes explained in section III.
A jackknife (leave-one-out) strategy is employed whenever training
is involved, meaning that the training set consists of all users but one
(who together with the impostors forms the test set), and all users are
tested on some point, giving an averaged EER rate. A number of 4
impressions is used for both client and impostor supervisor training,
whereas 9 respectively 74 impressions not belonging to the training
set are being tested on. Note that each fingerprint is effectively treated
as user and that we take impostors of the same finger type only. When
employing non-trained fusion schemes, the test set comprises all users
at once, giving 750 × 9 genuine and 750 × 74 impostor trials again.

A	B	C	SUM	A/B	A/C	B/C	A/B/C
EER %	1.22	1.9	6.37	1.06	1.22	1.36	1.56

EER OF SINGLE EXPERTS AND SIMPLE FUSION SCHEMES (MAX/SUM)

The performance (EER) of expert combinations using simple,
non-adaptive schemes is given in table I. We can observe, that
combinations involving the best expert (system A) deliver the best
results, actually outperforming the best expert almost every time.
In this test, fusion applying the MAX rule is superior to using SUM,
although, the former was favored by shifting the experts to a common
operating point. The overall best result using simple schemes involves
the first two systems and enables a drop in EER of ≈38% with
respect to the best expert’s performance in isolation. It is worth noting
that combining all three experts can worsen the joint performance
in comparison to selecting only two of them (which need not even be
the leading ones). This lies with “simply” fusing experts, which are
severely differently skilled, without training.

The left hand side in figure 9 shows the performance of cascaded
fusion of systems A and B as a function of certainty τ, chosen as
the thresholded quality index. Manual quality estimates are taken in
case of the dotted gray line to illustrate a best case, while estimates
by our method are considered along the path of the dotted black
line. Recognition performance of the single systems, furthermore
fused by simple schemes - independent of quality though - are
indicated as well, with the MAX rule giving the best result (EER
of 0.75%, compare table I). Employing a cascade with systems A
and B as primary and secondary system respectively, the 0.75% line
is approached from above with a small remainder, considering higher
and higher trigger thresholds (image quality). A first minimum, with
a difference in EER of 0/0.11% when employing manual/automatic
quality indices respectively, is reached at the threshold marked by
the leftmost arrow. The big difference is that in ≈84% of all trials
only system A is utilized at this threshold, its “efficiency impact”
being marked by the corresponding topmost arrow to the right in
figure 9. As illustrated, we (almost) maintain the best error rate for
simple fusion of the two systems, but actually need to run system
B every sixth time only. Another interesting “operating point” is
indicated by the second arrow in the left-hand part of figure 9, at
which the minimum is reached (EER of 0.75%) while only half of the
time both systems are utilized. For these experiments, the MAX rule
was employed as cascaded fusion function f. The suggested ad-hoc
threshold according to section III-B would be 0.5. Looking at figure
9, it lies in-between the previously mentioned “operating points”,
and leads to an EER of 0.75/0.8%. The efficiency at this point is measured
to be approx. 72%, which is even above the theoretical value of 50%.

For the Bayesian-based fusion scheme, indices derived from a
quality assessment method are assigned to either one of the systems
A-C. This is because we wish to quantify the impact of the image
quality on the Bayesian supervisor fusion coupled with a certain
expert’s ability. The remaining two experts are assigned a quality of
1 (normal) for each trial. The best results in terms of EER are shown
in figure 10. It turned out that system A was most suitable to attach
certainties based on image quality, which is indicated by qA instead
of A in figure 10. Worth noting, we can observe a drop in EER of
≈97/95% when adaptively fusing all experts (qA-B-C) comparing to
system A in isolation. Adaptive fusion is able to significantly increase
recognition performance independently of the quality assessment
method employed, while the improvement using three experts as
compared to two is relatively small. Nevertheless, including system
C in non-adaptive Bayesian supervisor fusion (darkest bars in figure
10) leads to an EER drop by ≈35%. This improvement is remarkably
better than in case of the simple fusion schemes where the EER even
increases when systems A and B are complemented by system C. This
is obviously another effect of training. Previous work has shown that
the training of these supervisors is relatively soon satisfied (20 out
of 75 users [5]).

Note that both training and non-training supervisors are important
to different applications as demands on computational efficiencies
versus/and decision performance vary. However, in both cases the
automatic quality estimates delivered significant benefits as the above
experiments indicate. While there have been some studies on how
to incorporate quality into training supervisors, the corresponding
strategies were largely unstudied for non-training schemes. The cascade strategy presented above intends to contribute to the latter.

V. CONCLUSION

We showed how a priori content knowledge can be encoded and used in quality estimation. The decomposition of the structure tensor by symmetry features was analyzed for this purpose. Applied to fingerprints, the practical benefit is avoidance of training and adjustment efforts. The experiments show that all fingerprint regions must be treated equally in quality assessment. The proposed method compares well with another, yet heavily trained automatic method (NFIQ) on several databases (verified by correct quality group division). When exploited to adapt fusion parameters, levels of agreement studies between human and machine quality assessments have not been reported before, to the best of our knowledge.

We elaborated on the benefits of adapting multi-algorithm fusion schemes as a reaction to the signal quality. Experiments with simple schemes (0.75% EER using MAX rule) showed that careless fusion can also increase the EER. As to adaptive fusion, we introduced a non-trained cascade scheme to dynamically switch on experts in case of uncertainty (low quality), assuming time is the most limited resource. We experimented on two experts in this case, and we could approach the best possible EER, for example, up to a remainder of 0.11% with the help of our automatic quality indices while saving to run the second expert 5 out of 6 times. This also shown for the first time that under certain quality conditions, fusion is expendable. To point out another aspect of multi-algorithm fusion, we implemented Bayes-based supervisors for continuous fusion. Taking advantage of training and additionally the quality estimates by the proposed method, (absolute) EERs of 0.17% and 0.07% were achieved, respectively. This proofed by experiment that quality adaptive fusion and training yields the best recognition rates when combining differently skilled experts.

REFERENCES

[1] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. Image Processing, vol. 13, 2004.
[2] A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. Communications, vol. 43, pp. 2999–2965, December 1995.
[3] J. Bigun, T. Bigun, and K. Nilsson, “Recognition by symmetry derivatives and the generalized structure tensor,” IEEE-PAMI, vol. 26, pp. 1590–1605, 2004.
[4] E. Tabassi, C. Wilson, and C. Watson, “Fingerprint Image Quality,” Nist, Tech. Rep. NISTIR7151, 2004.
[5] J. Bigun, J. Fierrez-Aguilar, J. Ortega-Garcia, and J. Gonzalez-Rodriguez, “Multimodal biometric authentication using quality signals in mobile communications,” in Proc. 12’th Int. conf. on image analysis and processing, Mantova, Italy. IEEE Computer Society Press, Piscataway, NJ, september 17-19 2003, pp. 2–11.
[6] J. Fierrez-Aguilar, J. Ortega-Garcia, J. Gonzalez-Rodriguez, and J. Bigun, “Discriminative multimodal biometric authentication based on quality measures,” Pattern Recognition, vol. 38, pp. 777–779, 2005.
[7] H. Fronthaler, K. Kollreider, and J. Bigun, “Local Feature Extraction in Fingerprints by Complex Filtering,” in International Workshop on Biometric Recognition Systems IWBR 2005, Beijing, China, vol. 3781. Springer, 22–23 October 2005, pp. 77–84.
[8] X. Chen, S. Dass, and A. Jain, “Fingerprint Quality Indices for Predicting Authentication Performance,” in Audio- and Video-based Biometric Person Authentication (AVBPA) 2005, Rye Brook, New York, July 2005, pp. 160–170.
[9] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, and A. Jain, “FVC2004: Third Fingerprint Verification Competition,” in International Conference on Biometric Authentication (ICBA04), Hong Kong, July 2004, pp. 1–7.
[10] E. Lim, X. Jiang, and W. Yau, “Fingerprint quality and validity analysis,” in IEEE International Conference on Image Processing, vol. 1. IEEE, 2002, pp. 469–472.

[11] T. P. Chen, X. Jiang, and W. Yau, “Fingerprint image quality analysis,” in International Conference on Image Processing, vol. 2. IEEE, 2004, pp. 1253–1256.
[12] F. Alonso-Fernandez, J. Fierrez-Aguilar, and J. Ortega-Garcia, “A review of schemes for fingerprint image quality computation,” in 3rd COST-275 Workshop on Biometrics on the Internet, Hatfield,UK. Official Publisher of the European Communities, October 2005, pp. 3–6.
[13] A. Ross, A. K. Jain, and J. Reisman, “A hybrid fingerprint matcher,” Pattern Recognition, vol. 36, pp. 1661–1673, 2003.
[14] J. Fierrez-Aguilar, L. Nann, J. Ortega-Garcia, R. Cappelli, and D. Maltoni, “Combining multiple matchers for fingerprint verification: a case study in FVC2004,” in Proc. of 13th IAPR Int'l Conf. on Image Analysis and Processing, Cagliari, Italy, vol. LNCS-3617. Springer, September 2005, pp. 1035–1042.
[15] E. S. Bigun, J. Bigun, B. Duc, and S. Fischer, “Expert conciliation for multi modal person authentication systems by Bayesian statistics,” in Audio and Video based Person Authentication - AVBPA07, J. Bigun, G. Chollet, and G. Borgetefors, Eds. Springer, 1997, pp. 291–300.
[16] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,” IEEE-PAMI, vol. 20, pp. 226–239, 1998.
[17] J. Fierrez-Aguilar, Y. Chen, J. Ortega-Garcia, and A. Jain, “Incorporating Image Quality in Multi-Algorithm Fingerprint Verification,” in Proc. of IAPR Int'l Conf. on Biometrics, ICB, Hong Kong, China, vol. LNCS-3832. Springer, January 2006, pp. 215–220.
[18] A. Ross and A. K. Jain, “Information fusion in Biometrics,” Pattern Recognition Letters, vol. 24, pp. 2115–2125, 2003.
[19] J. Kittler and K. Messer, “Fusion of multiple experts in multimodal biometric personal identity verification systems,” in Proc. of the 12th IEEE Workshop on Neural Networks for Signal Processing, 2002, pp. 3–12.
[20] J. Fierrez-Aguilar, L.-M. Munoz-Serrano, F. Alonso-Fernandez, and J. Ortega-Garcia, “On the effects of image quality degradation on minutiae- and ridge-based automatic fingerprint recognition,” in IEEE Intl. Carnahan Conf. on Security Technology ICCST, Las Palmas de Gran Canaria, Spain. IEEE Press, October 2005.
[21] D. Simon-Zorita, J. Ortega-Garcia, J. Fierrez-Aguilar, and J. Gonzalez-Rodriguez, “Image quality and position variability assessment in minutiae-based fingerprint verification,” IEEE Proceedings Vision, Image and Signal Processing, Special Issue on Biometrics on the Internet, vol. 150, no. 6, pp. 402–408, December 2003.
[22] H. Fronthaler, K. Kollreider, and J. Bigun, “Automatic Image Quality Assessment with Application in Biometrics,” in IEEE Workshop on Biometrics, in Association with CVPR'06, New York, June 2006, pp. 30–35.
[23] B. Johansson, “Low Level Operations and Learning in Computer Vision,” Ph.D. dissertation, Linköping University, Sweden, Linköping University SE-581 83 Linköping, Sweden, December 2004, dissertation No. 912, ISBN 91-85295-93-0.
[24] J. Bigun, “Recognition of Local Symmetries in Gray Value Images by Harmonic Functions,” in Ninth International Conference on Pattern Recognition, Rome. IEEE Computer Society Press, November 14–17 1988, pp. 345–347.
[25] H. Knutsson, M. Hedlund, and G. H. Granlund, “Apparatus for Determining the Degree of Consistency of a Feature in a Region of an Image that is Divided into Discrete Picture Elements,” in U.S. patent, 4,747,152, 1988.
[26] H. Nilsson and J. Bigun, “Localization of corresponding points in fingerprints by complex filtering,” Pattern Recognition Letters, vol. 24, pp. 2135–2144, 2003.
[27] J. M. Bernardo and M. F. A. Smith, Bayesian Theory. Chichester: John Wiley and Son, 1994.
[28] E. S. Bigun, “Risk analysis of catastrophes using experts’ judgment: An empirical study on risk analysis of major civil aircraft accidents in europe,” European J. Operational Research, vol. 87, pp. 599–612, 1995.
[29] J. Bigun, B. Duc, S. Fischer, A. Makarov, and P. Smeraldi, “Multi modal person authentication,” in Nato-Asi advanced study on face recognition, H. W. et. al., Ed., vol. F-163. Springer, 1997, pp. 26–50.
[30] P. S. K. Chellapilla, M. Shilman, “Optimally combining a cascade of classifiers,” in Document Recognition and Retrieval XIII, 15–19 January 2006.
[31] R. J. Quinlan, Programs for machine learning. Morgan Kaufmann Publishers, 1992.
[32] C. I. Watson, M. D. Garris, E. Tabassi, C. L. Wilson, R. M. McCabe, and S. Janet, “Users Guide to Fingerprint Image Software 2 - NFIS2,” NIST, 2004.