BULGARIAN ACADEMY OF SCIENCES
Institute for Nuclear Research and Nuclear Energy

P-Branes Dynamics, AdS/CFT and Correlation Functions

Plamen Bozhilov

Thesis
presented for obtaining the scientific degree
"Doctor of sciences"

SOFIA, 2015
Contents

1 Introduction

1.1 Brief Overview of String Theory

1.1.1 Massless States of Bosonic Strings

1.1.2 Massless States of Type II Superstrings

1.1.3 Open Superstring: Type I String

1.1.4 Heterotic Strings

1.1.5 Summary

1.2 String Compactifications

1.2.1 Toroidal Compactifications

1.2.2 Compactifications on $K3$

1.2.3 Calabi-Yau Threefolds

1.3 Solitons in String Theory

1.3.1 Magnetically Charged States

1.3.2 String Solitons

1.3.3 D-Branes

2 P-branes dynamics in general backgrounds

2.1 P-brane actions

2.2 Dp-brane actions

2.3 Exact solutions in general backgrounds

2.3.1 Static gauge dynamics

2.3.2 Branes dynamics in linear gauges

2.3.3 Branes dynamics in the whole space-time

2.3.4 Explicit solutions of the equations of motion
2.4 Particular cases

2.4.1 Tensionless string in Demianski-Newman background

2.4.2 Tensionless p-branes in a solitonic background

2.4.3 String and D-string solutions in other backgrounds

3 AdS/CFT

3.1 Classical string solutions and string/field theory duality

3.1.1 Rotating strings in type IIA reduction of M-theory on G_2 manifold and their semiclassical limits

3.1.2 Strings in $AdS_5 \times S^5$, integrable systems and finite-size effects for single spikes

3.1.3 Finite-size effect of the dyonic giant magnons in $\mathcal{N} = 6$ super Chern-Simons-matter theory

3.1.4 Finite-size dyonic giant magnons in TsT-transformed $AdS_5 \times S^5$

3.1.5 Finite-size giant magnons on $AdS_4 \times CP^3$

3.1.6 String solutions in $AdS_3 \times S^3 \times T^4$ with NS-NS B-field

3.1.7 Finite-size giant magnons on η-deformed $AdS_5 \times S^5$

3.2 Membrane results

3.2.1 M2-brane solutions in $AdS_7 \times S^4$

3.2.2 M2-brane solutions in $AdS_4 \times S^7$

3.2.3 Exact rotating membrane solutions on a G_2 manifold and their semiclassical limits

3.2.4 Rotating D2-branes in type IIA reduction of M-theory on G_2 manifold and their semiclassical limits

3.2.5 Two-spin magnon-like energy-charge relations from M-theory viewpoint

3.2.6 Integrable systems from membranes on $AdS_4 \times S^7$
3.2.7 M2-brane perspective on $\mathcal{N} = 6$ super Chern-Simons-matter theory at level k .. 146

4 Three-point correlation functions 154

4.1 Semiclassical three-point correlation functions in $AdS_5 \times S^5$ 155

4.1.1 Two GM states and dilaton with zero momentum 155

4.1.2 Two GM states and dilaton with non-zero momentum 161

4.1.3 Two GM states and primary scalar operators 165

4.1.4 Two GM states and singlet scalar operators on higher string levels .. 168

4.2 Semiclassical three-point correlation functions in TsT-deformed $AdS_5 \times S^5$ 171

4.2.1 Two GM states and dilaton with zero momentum 171

4.2.2 Two GM states and dilaton with non-zero momentum 174

4.2.3 Two GM states and primary scalar operators 175

4.2.4 Two GM states and singlet scalar operators on higher string levels .. 178

4.3 Semiclassical three-point correlation functions in η-deformed $AdS_5 \times S^5$ 180

4.3.1 Two GM states and dilaton with zero momentum 180

4.3.2 Two GM states and dilaton with non-zero momentum 184

4.3.3 Two GM states and primary scalar operators 185

4.3.4 Two GM states and singlet scalar operators on higher string levels .. 187

5 Contributions .. 189

A Notations for the special functions 193

B Relation between the NR system and CSG 194

B.1 Explicit Relations between the Parameters 194

B.2 On $R_t \times S^2$... 195
B.2.1 The Giant Magnon .. 195
B.2.2 The Single Spike .. 196
B.3 On $R_t \times S^3$.. 196
 B.3.1 The Giant Magnon ... 196
 B.3.2 The Single Spike ... 197

C Explicit exact solutions in $AdS_3 \times S^3 \times T^4$ with NS-NS B-field ... 198

D M2-brane GM and SS .. 204
 D.1 Finite-Size Effects ... 204
 D.1.1 The M2-brane GM .. 205
 D.1.2 The M2-brane SS .. 206
1 Introduction

In the attempt to unify all the forces present in Nature, which entails having a consistent quantum theory of gravity, superstring theories seem promising candidates. The evidence that string theories could be unified theories is provided by the presence in their massless spectrum of enough particles to account for those present at low energies, including the graviton [1].

String theory is by now a vast subject with more than four decades of active research contributing to its development. During the last years, our understanding of string theory has undergone a dramatic change. One of the keys to this development is the discovery of duality symmetries, which relate the strong and weak coupling limits of different string theories (S-duality). This led to the appearance of M-theory supposed to be the strong coupling limit of all superstring theories.

Now, we will give a brief introduction to the related notions in string theory following mainly [2].

1.1 Brief Overview of String Theory

String theory is a description of dynamics of objects with one spatial direction, which we parameterize by σ, propagating in a space parameterized by x^μ. The world-sheet of the string is parameterized by coordinates (τ, σ) where each $\tau = \text{constant}$ denotes the string at a given time. The amplitude for propagation of a string from an initial configuration to a final one is given by sum over world-sheets which interpolate between the two string configurations weighed by $\exp(iS)$, where

$$S \propto \int d\tau d\sigma \partial_j x^\mu \partial^j x^\nu g_{\mu\nu}(x)$$

(1.1)

where $g_{\mu\nu}$ is the metric on space-time and J runs over the τ and σ directions. Note that by slicing the world-sheet we will get configurations where a single string splits to a pair or vice versa, and combinations thereof.

If we consider propagation in flat space-time where $g_{\mu\nu} = \eta_{\mu\nu}$ the fields x^μ on the world-sheet, which describe the position in space-time of each bit of string, are free fields and satisfy the 2 dimensional equation

$$\partial_j \partial^j x^\mu = (\partial_\tau^2 - \partial_\sigma^2)x^\mu = 0.$$

The solution of which is given by

$$x^\mu(\tau, \sigma) = x^\mu_L(\tau + \sigma) + x^\mu_R(\tau - \sigma).$$

In particular notice that the left- and right-moving degrees of freedom are essentially independent. There are two basic types of strings: Closed strings and Open strings depending on
whether the string is a closed circle or an open interval respectively. If we are dealing with closed strings the left- and right-moving degrees of freedom remain essentially independent but if are dealing with open strings the left-moving modes reflecting off the left boundary become the right-moving modes—thus the left- and right-moving modes are essentially identical in this case. In this sense an open string has ‘half’ the degrees of freedom of a closed string and can be viewed as a ‘folding’ of a closed string so that it looks like an interval.

There are two basic types of string theories, bosonic and fermionic. What distinguishes bosonic and fermionic strings is the existence of supersymmetry on the world-sheet. This means that in addition to the coordinates \(x^\mu \) we also have anti-commuting fermionic coordinates \(\psi^\mu_L, R \) which are space-time vectors but fermionic spinors on the worldsheet whose chirality is denoted by subscript \(L, R \). The action for superstrings takes the form

\[
S = \int \partial_L x^\mu \partial_R x^\mu + \psi^\mu_R \partial_L \psi^\mu_R + \psi^\mu_L \partial_R \psi^\mu_R.
\]

There are two consistent boundary conditions on each of the fermions, periodic (Ramond sector) or anti-periodic (Neveu-Schwarz sector) (note that the coordinate \(\sigma \) is periodic).

A natural question arises as to what metric we should put on the world-sheet. In the above we have taken it to be flat. However in principle there is one degree of freedom that a metric can have in two dimensions. This is because it is a \(2 \times 2 \) symmetric matrix (3 degrees of freedom) which is defined up to arbitrary reparametrization of 2 dimensional space-time (2 degrees of freedom) leaving us with one function. Locally we can take the 2 dimensional metric \(g_{JK} \) to be conformally flat

\[
g_{JK} = \exp(\phi) \eta_{JK}.
\]

Classically the action \(S \) does not depend on \(\phi \). This is easily seen by noting that the properly coordinate invariant action density goes as \(\sqrt{|g|} g^{JK} \partial_J x^\mu \partial_K x^\nu \eta_{\mu\nu} \) and is independent of \(\phi \) only in \(D = 2 \). This is rather nice and means that we can ignore all the local dynamics associated with gravity on the world-sheet. This case is what is known as the critical string case which is the case of most interest. It turns out that this independence from the local dynamics of the world-sheet metric survives quantum corrections only when the dimension of space is 26 in the case of bosonic strings and 10 for fermionic or superstrings. Each string can be in a specific vibrational mode which gives rise to a particle. To describe the totality of such particles it is convenient to go to ‘light-cone’ gauge. Roughly speaking this means that we take into account that string vibration along their world-sheet is not physical. In particular for bosonic strings the vibrational modes exist only in 24 transverse directions and for superstrings they exist in 8 transverse directions.

Solving the free field equations for \(x, \psi \) we have

\[
\partial_L x^\mu = \sum_n \alpha_{-n}^\mu e^{-in(\tau + \sigma)}
\]

\[
\psi^\mu_L = \sum_n \psi^\mu_{-n} e^{-in(\tau + \sigma)}
\]

(1.2)
and similarly for right-moving oscillator modes $\tilde{\alpha}_{-n}$ and $\tilde{\psi}_{-n}$. The sum over n in the above runs over integers for the α_{-n}. For fermions depending on whether we are in the R sector or NS sector it runs over integers or integers shifted by $1/2$ respectively. Many things decouple between the left- and right-movers in the construction of a single string Hilbert space and we sometimes talk only about one of them. For the open string Fock space the left- and right-movers mix as mentioned before, and we simply get one copy of the above oscillators.

A special role is played by the zero modes of the oscillators. For the x-fields they correspond to the center of mass motion and thus α_0 gets identified with the left-moving momentum of the center of mass. In particular we have for the center of mass

$$x = \alpha_0(\tau + \sigma) + \tilde{\alpha}_0(\tau - \sigma),$$

where we identify

$$(\alpha_0, \tilde{\alpha}_0) = (P_L, P_R).$$

Note that for closed string, periodicity of x in σ requires that $P_L = P_R = P$ which we identify with the center of mass momentum of the string.

In quantizing the fields on the strings we use the usual (anti)commutation relations

$$[\alpha^\mu_n, \alpha^\nu_m] = n\delta_{m+n,0}\eta^{\mu\nu},$$

$$\{\psi^\mu_n, \psi^\nu_m\} = \eta^{\mu\nu}\delta_{m+n,0}.$$}

We choose the negative moded oscillators as creation operators. In constructing the Fock space we have to pay special attention to the zero modes. The zero modes of α should be diagonal in the Fock space and we identify their eigenvalue with momentum. For ψ in the NS sector there is no zero mode so there is no subtlety in construction of the Hilbert space. For the R sector, we have zero modes. In this case the zero modes form a Clifford algebra

$$\{\psi^\mu_0, \psi^\nu_0\} = \eta^{\mu\nu}.$$

This implies that in these cases the ground state is a spinor representation of the Lorentz group. Thus a typical element in the Fock space looks like

$$\alpha^L_{-n_1}, \ldots, \psi^L_{-n_k}, |P_L, a\rangle \otimes \alpha^R_{-m_1}, \ldots, \psi^R_{-m_r}, |P_R, b\rangle,$$

where a, b label spinor states for R sectors and are absent in the NS case; moreover for the bosonic string we only have the left and right bosonic oscillators.

It is convenient to define the total oscillator number as sum of the negative oscillator numbers, for left- and right- movers separately. $N_L = n_1 + \ldots + n_k + \ldots$, $N_R = m_1 + \ldots + m_r + \ldots$. The condition that the two dimensional gravity decouple implies that the energy momentum tensor annihilate the physical states. The trace of the energy momentum tensor is zero here (and in all compactifications of string theory) and so we have two independent components
which can be identified with the left- and right- moving hamiltonians $H_{L,R}$ and the physical states condition requires that

$$H_L = N_L + (1/2)P_L^2 - \delta_L = 0 = H_R = N_R + (1/2)P_R^2 - \delta_R,$$

(1.3)

where $\delta_{L,R}$ are normal ordering constants which depend on which string theory and which sector we are dealing with. For bosonic string $\delta = 1$, for superstrings we have two cases: For NS sector $\delta = 1/2$ and for the R sector $\delta = 0$. The equations (1.3) give the spectrum of particles in the string perturbation theory. Note that $P_L^2 = P_R^2 = -m^2$ and so we see that m^2 grows linearly with the oscillator number N, up to a shift:

$$(1/2)m^2 = N_L - \delta_L = N_R - \delta_R.$$

(1.4)

1.1.1 Massless States of Bosonic Strings

Let us consider the left-mover excitations. Since $\delta = 1$ for bosonic string, (1.4) implies that if we do not use any string oscillations, the ground state is tachyonic $1/2m^2 = -1$. This clearly implies that bosonic string by itself is not a good starting point for perturbation theory. Nevertheless in anticipation of a modified appearance of bosonic strings in the context of heterotic strings, let us continue to the next state.

If we consider oscillator number $N_L = 1$, from (1.4) we learn that excitation is massless. Putting the right-movers together with it, we find that it is given by

$$\alpha^\mu_{-1} \tilde{\alpha}^\nu_{-1} |P\rangle.$$

What is the physical interpretation of these massless states? The most reliable method is to find how they transform under the little group for massless states which in this case is $SO(24)$. If we go to the light cone gauge, and count the physical states, which roughly speaking means taking the indices μ to go over spatial directions transverse to a null vector, we can easily deduce the content of states. By decomposing the above massless state under the little group of $SO(24)$, we find that we have symmetric traceless tensor, anti-symmetric 2-tensor, and the trace, which we identify as arising from 26 dimensional fields

$$g_{\mu\nu}, B_{\mu\nu}, \phi$$

(1.5)

the metric, the anti-symmetric field B and the dilaton. This triple of fields should be viewed as the stringy multiplet for gravity. The quantity $\exp[-\phi]$ is identified with the string coupling constant. What this means is that a world-sheet configuration of a string which sweeps a genus g curve, which should be viewed as g-th loop correction for string theory, will be weighed by $\exp(-2(g - 1)\phi)$. The existence of the field B can also be understood (and in some sense predicted) rather easily. If we have a point particle it is natural to have it charged under a gauge field, which introduces a term $\exp(i \int A)$ along the world-line. For strings the natural generalization of this requires an anti-symmetric 2-form to integrate over
the world-sheet, and so we say that the strings are charged under $B_{\mu\nu}$ and that the amplitude for a world-sheet configuration will have an extra factor of $\exp(i \int B)$.

Since bosonic string has tachyons we do not know how to make sense of that theory by itself.

1.1.2 Massless States of Type II Superstrings

Let us now consider the light particle states for superstrings. We recall from the above discussion that there are two sectors to consider, NS and R, separately for the left- and the right-movers. As usual we will first treat the left- and right-moving sectors separately and then combine them at the end. Let us consider the NS sector for left-movers. Then the formula for masses (1.3) implies that the ground state is tachyonic with $1/2m^2 = -1/2$. The first excited states from the left-movers are massless and corresponds to $\psi_{-1/2}^\mu |0\rangle$, and so is a vector in space-time. How do we deal with the tachyons? It turns out that summing over the boundary conditions of fermions on the world-sheet amounts to keeping the states with a fixed fermion number $(-1)^F$ on the world-sheet. Since in the NS sector the number of fermionic oscillator correlates with the integrality/half-integrality of N, it turns out that the consistent choice involves keeping only the $N=$half-integral states. This is known as the GSO projection. Thus the tachyon is projected out and the lightest left-moving state is a massless vector.

For the R-sector using (1.3) we see that the ground states are massless. As discussed above, quantizing the zero modes of fermions implies that they are spinors. Moreover GSO projection, which is projection on a definite $(-1)^F$ state, amounts to projecting to spinors of a given chirality. So after GSO projection we get a massless spinor of a definite chirality. Let us denote the spinor of one chirality by s and the other one by s'.

Now let us combine the left- and right-moving sectors together. Here we run into two distinct possibilities: A) The GSO projections on the left- and right-movers are different and lead in the R sector to ground states with different chirality. B) The GSO projections on the left- and right-movers are the same and lead in the R sector to ground states with the same chirality. The first case is known as type IIA superstring and the second one as type IIB. Let us see what kind of massless modes we get for either of them. From $\text{NS} \otimes \text{NS}$ we find for both type IIA,B

$$\text{NS} \otimes \text{NS} \rightarrow v \otimes v \rightarrow (g_{\mu\nu}, B_{\mu\nu}, \phi)$$

From the $\text{NS} \otimes \text{R}$ and $\text{R} \otimes \text{NS}$ we get the fermions of the theory (including the gravitinos). However the IIA and IIB differ in that the gravitinos of IIB are of the same chirality, whereas for IIA they are of the opposite chirality. This implies that IIB is a chiral theory whereas IIA is non-chiral. Let us move to the $\text{R} \otimes \text{R}$ sector. We find

$$\text{IIA} : R \otimes R = s \otimes s' \rightarrow (A_\mu, C_{\mu\nu\rho})$$
$$\text{IIB} : R \otimes R = s \otimes s \rightarrow (\chi, B'_{\mu\nu}, D_{\mu\nu\rho\lambda}),$$

(1.6)
where all the tensors appearing above are fully antisymmetric. Moreover $D_{\mu\nu\rho\lambda}$ has a self-dual field strength $F = dD = *F$. It turns out that to write the equations of motion in a unified way it is convenient to consider a generalized gauge fields A and B in the IIA and IIB case respectively by adding all the fields in the RR sector together with the following properties: i) $A(B)$ involve all the odd (even) dimensional antisymmetric fields. ii) the equation of motion is $dA = *dA$. In the case of all fields (except $D_{\mu\nu\rho\lambda}$) this equation allows us to solve for the forms with degrees bigger than 4 in terms of the lower ones and moreover it implies the field equation $d * dA = 0$ which is the familiar field equation for the gauge fields. In the case of the D-field it simply gives that its field strength is self-dual.

1.1.3 Open Superstring: Type I String

In the case of type IIB theory in 10 dimensions, we note that the left- and right-moving degrees of freedom on the worldsheet are the same. In this case we can ‘mod out’ by a reflection symmetry on the string; this means keeping only the states in the full Hilbert space which are invariant under the left-/right-moving exchange of quantum numbers. This is simply projecting the Hilbert space onto the invariant subspace of the projection operator $P = \frac{1}{2}(1 + \Omega)$ where Ω exchanges left- and right-movers. Ω is known as the orientifold operation as it reverses the orientation on the world-sheet. Note that this symmetry only exists for IIB and not for IIA theory (unless we accompany it with a parity reflection in spacetime). Let us see which bosonic states we will be left with after this projection. From the NS-NS sector $B_{\mu\nu}$ is odd and projected out and thus we are left with the symmetric parts of the tensor product

$$NS - NS \rightarrow (v \otimes v)_{symm.} = (g_{\mu\nu}, \phi).$$

From the R-R sector since the degrees of freedom are fermionic from each sector we get, when exchanging left- and right-movers an extra minus sign which thus means we have to keep anti-symmetric parts of the tensor product

$$R - R \rightarrow (s \otimes s)_{anti-symm.} = \tilde{B}_{\mu\nu}.$$

This is not the end of the story, however. In order to make the theory consistent we need to introduce a new sector in this theory involving open strings. This comes about from the fact that in the R-R sector there actually is a 10 form gauge potential which has no propagating degree of freedom, but acquires a tadpole. Introduction of a suitable open string sector cancels this tadpole.

As noted before the construction of open string sector Hilbert space proceeds as in the closed string case, but now, the left-moving and right-moving modes become indistinguishable due to reflection off the boundaries of open string. We thus get only one copy of the oscillators. Moreover we can associate ‘Chan-Paton’ factors to the boundaries of open string. To cancel the tadpole it turns out that we need 32 Chan-Paton labels on each end. We still have two sectors corresponding to the NS and R sectors. The NS sector gives a vector field
A_\mu \) and the R sector gives the gaugino. The gauge field \(A_\mu \) has two additional labels coming from the end points of the open string and it turns out that the left-right exchange projection of the type IIB theory translates to keeping the antisymmetric component of \(A_\mu = -A^T_\mu \), which means we have an adjoint of \(SO(32) \). Thus all put together, the bosonic degrees of freedom are

\[
(g_{\mu\nu}, \tilde{B}_{\mu\nu}, \phi) + (A_\mu)_{SO(32)}.
\]

We should keep in mind here that \(\tilde{B} \) came not from the NS-NS sector, but from the R-R sector.

1.1.4 Heterotic Strings

Heterotic string is a combination of bosonic string and superstring, where roughly speaking the left-moving degrees of freedom are as in the bosonic string and the right-moving degrees of freedom are as in the superstring. It is clear that this makes sense for the construction of the states because the left- and right-moving sectors hardly talk with each other. This is almost true, however they are linked together by the zero modes of the bosonic oscillators which give rise to momenta \((P_L, P_R)\). Previously we had \(P_L = P_R \) but now this cannot be the case because \(P_L \) is 26 dimensional but \(P_R \) is 10 dimensional. It is natural to decompose \(P_L \) to a 10+16 dimensional vectors, where we identify the 10 dimensional part of it with \(P_R \). It turns out that for the consistency of the theory the extra 16 dimensional component should belong to the root lattice of \(E_8 \times E_8 \) or a \(\mathbb{Z}_2 \) sublattice of \(SO(32) \) weight lattice. In either of these two cases the vectors in the lattice with \((\text{length})^2 = 2\) are in one to one correspondence with non-zero weights in the adjoint of \(E_8 \times E_8 \) and \(SO(32) \) respectively. These can also be conveniently represented (through bosonization) by 32 fermions: In the case of \(E_8 \times E_8 \) we group them to two groups of 16 and consider independent NS, R sectors for each group. In the case of \(SO(32) \) we only have one group of 32 fermions with either NS or R boundary conditions.

Let us tabulate the massless modes using (1.4). The right-movers can be either NS or R. The left-moving degrees of freedom start out with a tachyonic mode. But (1.4) implies that this is not satisfying the level-matching condition because the right-moving ground state is at zero energy. Thus we should search on the left-moving side for states with \(L_0 = 0 \) which means from (1.4) that we have either \(N_L = 1 \) or \((1/2)P^2_L = 1\), where \(P_L \) is an internal 16 dimensional vector in one of the two lattices noted above. The states with \(N_L = 1 \) are

\[
16 \oplus v,
\]

where 16 corresponds to the oscillation direction in the extra 16 dimensions and \(v \) corresponds to vector in 10 dimensional spacetime. States with \((1/2)P^2_L = 1\) correspond to the non-zero weights of the adjoint of \(E_8 \times E_8 \) or \(SO(32) \) which altogether correspond to 480 states in both cases. The extra 16 \(N_L = 1 \) modes combine with these 480 states to form the adjoints of \(E_8 \times E_8 \) or \(SO(32) \) respectively. The right-movers give, as before, a \(v \oplus s \) from the NS
and R sectors respectively. So putting the left- and right-movers together we finally get for the massless modes

\[(v \oplus \text{Adj}) \otimes (v \oplus s).\]

Thus the bosonic states are \((v \oplus \text{Adj}) \otimes v\) which gives

\[(g_{\mu \nu}, B_{\mu \nu}, \phi; A_\mu),\]

where the \(A_\mu\) is in the adjoint of \(E_8 \times E_8\) or \(SO(32)\). Note that in the \(SO(32)\) case this is an \textit{identical} spectrum to that of type I strings.

1.1.5 Summary

To summarize, we have found 5 consistent strings in 10 dimensions: Type IIA with \(N = 2\) non-chiral supersymmetry, type IIB with \(N = 2\) chiral supersymmetry, type I with \(N = 1\) supersymmetry and gauge symmetry \(SO(32)\) and heterotic strings with \(N = 1\) supersymmetry with \(SO(32)\) or \(E_8 \times E_8\) gauge symmetry. Note that as far as the massless modes are concerned we only have four inequivalent theories, because heterotic \(SO(32)\) theory and Type I theory have the same light degrees of freedom. In discussing compactifications it is sometimes natural to divide the discussion between two cases depending on how many supersymmetries we start with. In this context we will refer to the type IIA and B as \(N = 2\) theories and Type I and heterotic strings as \(N = 1\) theories.

1.2 String Compactifications

So far we have only talked about superstrings propagating in 10 dimensional Minkowski spacetime. If we wish to connect string theory to the observed four dimensional spacetime, somehow we have to get rid of the extra 6 directions. One way to do this is by assuming that the extra 6 dimensions are tiny and thus unobservable in the present day experiments. In such scenarios we have to understand strings propagating not on ten dimensional Minkowski spacetime but on four dimensional Minkowski spacetime times a compact 6 dimensional manifold \(K\). In order to gain more insight it is convenient to consider compactifications not just to 4 dimensions but to arbitrary dimensional spacetimes, in which case the dimension of \(K\) is variable.

The choice of \(K\) and the string theory we choose to start in 10 dimensions will lead to a large number of theories in diverse dimensions, which have different number of supersymmetries and different low energy effective degrees of freedom. In order to get a handle on such compactifications it is useful to first classify them according to how much supersymmetry they preserve. This is useful because the higher the number of supersymmetry the less the quantum corrections there are.
If we consider a general manifold K we find that the supersymmetry is completely broken. This is the case we would really like to understand, but it turns out that string perturbation theory always breaks down in such a situation; this is intimately connected with the fact that typically cosmological constant is generated by perturbation theory and this destabilizes the Minkowski solution. For this reason we do not even have a single example of such a class whose dynamics we understand. Instead if we choose K to be of a special type we can preserve a number of supersymmetries.

For this to be the case, we need K to admit some number of covariantly constant spinors. This is the case because the number of supercharges which are ‘unbroken’ by compactification is related to how many covariantly constant spinors we have. To see this note that if we wish to define a constant supersymmetry transformation, since a space-time spinor, is also a spinor of internal space, we need in addition a constant spinor in the internal compact directions. The basic choices are manifolds with trivial holonomy (flat tori are the only example), $SU(n)$ holonomy (Calabi-Yau n-folds), $Sp(n)$ holonomy (4n dimensional manifolds), 7-manifolds of G_2 holonomy and 8-manifolds of $Spin(7)$ holonomy.

1.2.1 Toroidal Compactifications

The space with maximal number of covariantly constant spinors is the flat torus T^d. This is also the easiest to describe the string propagation in. The main modification to the construction of the Hilbert space from flat non-compact space in this case involves relaxing the condition $P_L = P_R$ because the string can wrap around the internal space and so X does not need to come back to itself as we go around σ. In particular if we consider compactification on a circle of radius R we can have

$$(P_L, P_R) = \left(\frac{n}{2R} + mR, \frac{n}{2R} - mR \right).$$

Here n labels the center of mass momentum of the string along the circle and m labels how many times the string is winding around the circle. Note that the spectrum of allowed (P_L, P_R) is invariant under $R \rightarrow 1/2R$. All that we have to do is to exchange the momentum and winding modes ($n \leftrightarrow m$). This symmetry is a consequence of what is known as T-duality.

If we compactify on a d-dimensional torus T^d it can be shown that (P_L, P_R) belong to a 2d dimensional lattice with signature (d, d). Moreover this lattice is integral, self-dual and even. Evenness means, $P_L^2 - P_R^2$ is even for each lattice vector. Self-duality means that any vector which has integral product with all the vectors in the lattice sits in the lattice as well. It is an easy exercise to check these condition in the one dimensional circle example given above. Note that we can change the radii of the torus and this will clearly affect the (P_L, P_R). Given any choice of a d-dimensional torus compactifications, all the other ones can be obtained by doing an $SO(d, d)$ Lorentz boost on (P_L, P_R) vectors. Of course rotating (P_L, P_R) by an $O(d) \times O(d)$ transformation does not change the spectrum of the string states,
so the totality of such vectors is given by

\[
\frac{SO(d,d)}{SO(d) \times SO(d)}.
\]

Some Lorentz boosts will not change the lattice and amount to relabeling the states. These are the boosts that sit in \(O(d,d;\mathbb{Z})\) (i.e. boosts with integer coefficients), because they can be undone by choosing a new basis for the lattice by taking an integral linear combination of lattice vectors. So the space of inequivalent choices are actually given by

\[
\frac{SO(d,d)}{SO(d) \times SO(d) \times O(d,d;\mathbb{Z})}.
\]

The \(O(d,d;\mathbb{Z})\) generalizes the T-duality considered in the 1-dimensional case.

1.2.2 Compactifications on \(K3\)

The four dimensional manifold \(K3\) is the only compact four dimensional manifold, besides \(T^4\), which admits covariantly constant spinors. In fact it has exactly half the number of covariantly constant spinors as on \(T^4\) and thus preserves half of the supersymmetry that would have been preserved upon toroidal compactification. More precisely the holonomy of a generic four manifold is \(SO(4)\). If the holonomy resides in an \(SU(2)\) subgroup of \(SO(4)\) which leaves an \(SU(2)\) part of \(SO(4)\) untouched, we end up with one chirality of \(SO(4)\) spinor being unaffected by the curvature of \(K3\), which allows us to define supersymmetry transformations as if \(K3\) were flat (note a spinor of \(SO(4)\) decomposes as \((\mathbf{2}, 1) \oplus (1, \mathbf{2})\) of \(SU(2) \times SU(2)\)).

There are a number of realizations of \(K3\), which are useful depending on which question one is interested in. Perhaps the simplest description of it is in terms of orbifolds. This description of \(K3\) is very close to toroidal compactification and differs from it by certain discrete isometries of the \(T^4\) which are used to (generically) identify points which are in the same orbit of the discrete group. Another description is as a 19 complex parameter family of \(K3\) defined by an algebraic equation.

Consider a \(T^4\) which for simplicity we take to be parametrized by four real coordinates \(x_i\) with \(i = 1, \ldots, 4\), subject to the identifications \(x_i \sim x_i + 1\). It is sometimes convenient to think of this as two complex coordinates \(z_1 = x_1 + ix_2\) and \(z_2 = x_3 + ix_4\) with the obvious identifications. Now we identify the points on the torus which are mapped to each other under the \(Z_2\) action (involution) given by reflection in the coordinates \(x_i \rightarrow -x_i\), which is equivalent to

\[
z_i \rightarrow -z_i.
\]

Note that this action has \(2^4 = 16\) fixed points given by the choice of midpoints or the origin in any of the four \(x_i\). The resulting space is singular at any of these 16 fixed points because
the angular degree of freedom around each of these points is cut by half. Put differently, if we consider any primitive loop going ‘around’ any of these 16 fixed point, it corresponds to an open curve on T^4 which connects pairs of points related by the Z_2 involution. Moreover the parallel transport of vectors along this path, after using the Z_2 identification, results in a flip of the sign of the vector. This is true no matter how small the curve is. This shows that we cannot have a smooth manifold at the fixed points.

When we move away from the orbifold points of $K3$ the description of the geometry of $K3$ in terms of the properties of the T^4 and the Z_2 twist become less relevant, and it is natural to ask about other ways to think about $K3$. In general a simple way to define complex manifolds is by imposing complex equations in a compact space known as the projective n-space \mathbb{CP}^n. This is the space of complex variables (z_1,\ldots,z_{n+1}) excluding the origin and subject to the identification

$$(z_1,\ldots,z_{n+1}) \sim \lambda (z_1,\ldots,z_{n+1}) \quad \lambda \neq 0.$$

One then considers the vanishing locus of a homogeneous polynomial of degree d, $W_d(z_i) = 0$ to obtain an $n - 1$ dimensional subspace of \mathbb{CP}^n. An interesting special case is when the degree is $d = n + 1$. In this case one obtains an $n - 1$ complex dimensional manifold which admits a Ricci-flat metric. This is the case known as Calabi-Yau. For example, if we take the case $n = 2$, by considering cubics in it

$$z_1^3 + z_2^3 + z_3^3 + az_1z_2z_3 = 0$$

we obtain an elliptic curve, i.e. a torus of complex dimension 1 or real dimension 2. The next case would be $n = 3$ in which case, if we consider a quartic polynomial in \mathbb{CP}^3 we obtain the 2 complex dimensional $K3$ manifold:

$$W = z_1^4 + z_2^4 + z_3^4 + z_4^4 + \text{deformations} = 0.$$

There are 19 inequivalent quartic terms we can add. This gives us a 19 dimensional complex subspace of 20 dimensional complex moduli of the $K3$ manifold. Clearly this way of representing $K3$ makes the complex structure description of it very manifest, and makes the Kahler structure description implicit.

Note that for a generic quartic polynomial the $K3$ we obtain is non-singular. This is in sharp contrast with the orbifold construction which led us to 16 singular points. It is possible to choose parameters of deformation which lead to singular points for $K3$. For example if we consider

$$z_1^4 + z_2^4 + z_3^4 + z_4^4 + 4z_1z_2z_3z_4 = 0$$

it is easy to see that the resulting $K3$ will have a singularity (one simply looks for non-trivial solutions to $dW = 0$).

There are other ways to construct Calabi-Yau manifolds and in particular $K3$’s. One natural generalization to the above construction is to consider weighted projective spaces where the z_i are identified under different rescalings. In this case one considers quasi-homogeneous polynomials to construct submanifolds.
1.2.3 Calabi-Yau Threefolds

Calabi-Yau threefolds are manifolds with $SU(3)$ holonomy. The compactification on manifolds of $SU(3)$ holonomy preserves $1/4$ of the supersymmetry. In particular if we compactify $N = 2$ theories on Calabi-Yau threefolds we obtain $N = 2$ theories in $d = 4$, whereas if we consider $N = 1$ theories we obtain $N = 1$ theories in $d = 4$.

If we wish to construct the Calabi-Yau threefolds as toroidal orbifolds we need to consider six dimensional tori, three complex dimensional, which have discrete isometries residing in $SU(3)$ subgroup of the $O(6) = SU(4)$ holonomy group. A simple example is if we consider the product of three copies of T^2 corresponding to the Hexagonal lattice and mod out by a simultaneous Z_3 rotation on each torus (this is known as the ‘Z-orbifold’). This Z_3 transformation has 27 fixed points which can be blown up to give rise to a smooth Calabi-Yau.

We can also consider description of Calabi-Yau threefolds in algebraic geometry terms for which the complex deformations of the manifold can be typically realized as changes of coefficients of defining equations, as in the $K3$ case. For instance we can consider the projective 4-space \mathbb{CP}^4 defined by 5 complex not all vanishing coordinates z_i up to overall rescaling, and consider the vanishing locus of a homogeneous degree 5 polynomial

$$P_5(z_1, \ldots, z_5) = 0.$$

This defines a Calabi-Yau threefold, known as the quintic three-fold. This can be generalized to the case of product of several projective spaces with more equations. Or it can be generalized by taking the coordinates to have different homogeneity weights. This will give a huge number of Calabi-Yau manifolds.

1.3 Solitons in String Theory

Solitons arise in field theories when the vacuum configuration of the field has a non-trivial topology which allows non-trivial wrapping of the field configuration at spatial infinity around the vacuum manifold. These will carry certain topological charge related to the ‘winding’ of the field configuration around the vacuum configuration. Examples of solitons include magnetic monopoles in four dimensional non-abelian gauge theories with unbroken $U(1)$, cosmic strings and domain walls. The solitons naively play a less fundamental role than the fundamental fields which describe the quantum field theory. In some sense we can think of the solitons as ‘composites’ of more fundamental elementary excitations. However as is well known, at least in certain cases, this is just an illusion. In certain cases it turns out that we can reverse the role of what is fundamental and what is composite by considering a different regime of parameter. In such regimes the soliton may be viewed as the elementary excitation and the previously viewed elementary excitation can be viewed as a soliton. A well known example of this phenomenon happens in 2 dimensional field theories. Most notably the
boson/fermion equivalence in the two dimensional sine-Gordon model, where the fermions may be viewed as solitons of the sine-Gordon model and the boson can be viewed as a composite of fermion-anti-fermion excitation. Another example is the T-duality we have already discussed in the context of 2 dimensional world sheet of strings which exchanges the radius of the target space with its inverse. In this case the winding modes may be viewed as the solitons of the more elementary excitations corresponding to the momentum modes. As discussed before \(R \to 1/R \) exchanges momentum and winding modes. In anticipation of generalization of such dualities to string theory, it is thus important to study various types of solitons that may appear in string theory.

As already mentioned solitons typically carry some conserved topological charge. However in string theory every conserved charge is a gauge symmetry. In fact this is to be expected from a theory which includes quantum gravity. This is because the global charges of a black hole will have no influence on the outside and by the time the black hole disappears due to Hawking radiation, so does the global charges it may carry. So the process of formation and evaporation of black hole leads to a non-conservation of global charges. Thus for any soliton, its conserved topological charge must be a gauge charge. This may appear to be somewhat puzzling in view of the fact that solitons may be point-like as well as string-like, sheet-like etc. We can understand how to put a charge on a point-like object and gauge it. But how about the higher dimensional extended solitonic states? Note that if we view the higher dimensional solitons as made of point-like structures the soliton has no stability criterion as the charge can disintegrate into little bits.

Let us review how it works for point particles (or point solitons): We have a 1-form gauge potential \(A_\mu \) and the coupling of the particle to the gauge potential involves weighing the world-line propagating in the space-time with background \(A_\mu \) by

\[
Z \to Z \exp(i \int_\gamma A),
\]

where \(\gamma \) is the world line of the particle. The gauge principle follows from defining an action in terms of \(F = dA \):

\[
S = \int F \wedge *F,
\]

where \(*F \) is the dual of the \(F \), where we note that shifting \(A \to d\epsilon \) for arbitrary function \(\epsilon \) will not modify the action.

Suppose we now consider instead of a point particle a \(p \)-dimensional extended object. In this convention \(p = 0 \) corresponds to the case of point particles and \(p = 1 \) corresponds to strings and \(p = 2 \) corresponds to membranes, etc. We shall refer to \(p \)-dimensional extended objects as \(p \)-branes (generalizing ‘membrane’). Note that the world-volume of a \(p \)-brane is a \(p + 1 \) dimensional subspace \(\gamma_{p+1} \) of space-time. To generalize what we did for the case of point particles we introduce a gauge potential which is a \(p + 1 \) form \(A_{p+1} \) and couple it to
the charged $p + 1$ dimensional state by

$$ Z \rightarrow Z \exp(i \int_{\gamma_{p+1}} A_{p+1}). $$

Just as for the case of the point particles we introduce the field strength $F = dA$ which is now a totally antisymmetric $p + 2$ tensor. Moreover we define the action as in (1.7), which possesses the gauge symmetry $A \rightarrow d\epsilon$ where ϵ is a totally antisymmetric tensor of rank p.

1.3.1 Magnetically Charged States

The above charge defines the generalization of electrical charges for extended objects. Can we generalize the notion of magnetic charge? Suppose we have an electrically charged particle in a theory with space-time dimension D. Then we measure the electrical charge by surrounding the point by an S^{D-2} sphere and integrating $\ast F$ (which is a $D - 2$ form) on it, i.e.

$$ Q_E = \int_{S^{D-2}} \ast F. $$

Similarly it is natural to define the magnetic charge. In the case of $D = 4$, i.e. four dimensional space-time, the magnetically charged point particle can be surrounded also by a sphere and the magnetic charge is simply given by

$$ Q_M = \int_{S^2} F. $$

Now let us generalize the notion of magnetic charged states for arbitrary dimensions D of space-time and arbitrary electrically charged p-branes. From the above description it is clear that the role that $\ast F$ plays in measuring the electric charge is played by F in measuring the magnetic charge. Note that for a p-brane F is $p + 2$ dimensional, and $\ast F$ is $D - p - 2$ dimensional. Moreover, note that a sphere surrounding a p-brane is a sphere of dimension $D - p - 2$. Note also that for $p = 0$ this is the usual situation. For higher p, a p-dimensional subspace of the space-time is occupied by the extended object and so the position of the object is denoted by a point in the transverse $(D - 1) - p$ dimensional space which is surrounded by an S^{D-p-2} dimensional sphere.

Now for the magnetic states the role of F and $\ast F$ are exchanged:

$$ F \leftrightarrow \ast F. $$

To be perfectly democratic we can also define a magnetic gauge potential \tilde{A} with the property that

$$ d\tilde{A} = \ast F = \ast dA. $$
In particular noting that F is a $p+2$ form, we learn that $\ast F$ is an $D-p-2$ form and thus \tilde{A} is an $D-p-3$ form. We thus deduce that the magnetic state will be an $D-p-4$-brane (i.e. one dimension lower than the degree of the magnetic gauge potential \tilde{A}). Note that this means that if we have an electrically charged p-brane, with a magnetically charged dual q-brane then we have

$$p + q = D - 4.$$ \hfill (1.8)

This is an easy sum rule to remember. Note in particular that for a 4-dimensional space-time an electric point charge ($p = 0$) will have a dual magnetic point charge ($q = 0$). Moreover this is the only space-time dimension where both the electric and magnetic dual can be point-like.

Note that a p-brane wrapped around an r-dimensional compact object will appear as a $p-r$-brane for the non-compact space-time. This is in accord with the fact that if we decompose the $p+1$ gauge potential into an $(p+1-r)+r$ form consisting of an r-form in the compact direction we will end up with an $p+1-r$ form in the non-compact directions. Thus the resulting state is charged under the left-over part of the gauge potential. A particular case of this is when $r = p$ in which case we are wrapping a p-dimensional extended object about a p-dimensional closed cycle in the compact directions. This will leave us with point particles in the non-compact directions carrying ordinary electric charge under the reduced gauge potential which now is a 1-form.

1.3.2 String Solitons

From the above discussion it follows that the charged states will in principle exist if there are suitable gauge potentials given by $p+1$-forms. Let us first consider type II strings. Recall that from the NS-NS sector we obtained an anti-symmetric 2-form $B_{\mu\nu}$. This suggests that there is a 1-dimensional extended object which couples to it by

$$\exp(i \int B).$$

But that is precisely how B couples to the world-sheet of the fundamental string. We thus conclude that the fundamental string carries electric charge under the antisymmetric field B. What about the magnetic dual to the fundamental string? According to (1.8) and setting $d = 10$ and $p = 1$ we learn that the dual magnetic state will be a 5-brane. Note that as in the field theories, we expect that in the perturbative regime for the fundamental fields, the solitons be very massive. This is indeed the case and the 5-brane magnetic dual can be constructed as a solitonic state of type II strings with a mass per unit 5-volume going as $1/g_s^2$ where g_s is the string coupling. Conversely, in the strong coupling regime these 5-branes are light and at infinite coupling they become massless, i.e. tensionless 5-branes [?].

Let us also recall that type II strings also have anti-symmetric fields coming from the R-R sector. In particular for type IIA strings we have 1-form A_{μ} and 3-form $C_{\mu\nu\rho}$ gauge
potentials. Note that the corresponding magnetic dual gauge fields will be 7-forms and 5-forms respectively (which are not independent degrees of freedom). We can also include a 9-form potential which will have trivial dynamics in 10 dimensions. Thus it is natural to define a generalized gauge field A by taking the sum over all odd forms and consider the equation $F = \ast \mathcal{F}$ where $\mathcal{F} = dA$. A similar statement applies to the type IIB strings where from the R-R sector we obtain all the even-degree gauge potentials (the case with degree zero can couple to a “−1-brane” which can be identified with an instanton, i.e. a point in space-time). We are thus led to look for p-branes with even p for type IIA and odd p for type IIB which carry charge under the corresponding RR gauge field. It turns out that surprisingly enough the states in the elementary excitations of string all are neutral under the RR fields. We are thus led to look for solitonic states which carry RR charge. Indeed there are such p-branes and they are known as D-branes, as we will now review.

1.3.3 D-Branes

In the context of field theories constructing solitons is equivalent to solving classical field equations with appropriate boundary conditions. For string theory the condition that we have a classical solution is equivalent to the statement that propagation of strings in the corresponding background would still lead to a conformal theory on the worldsheet of strings, as is the case for free theories.

In search of such stringy p-branes, we are thus led to consider how could a p-brane modify the string propagation. Consider an $p + 1$ dimensional plane, to be identified with the world-volume of the p-brane. Consider string propagating in this background. How could we modify the rules of closed string propagation given this $p + 1$ dimensional sheet? The simplest way turns out to allow closed strings to open up and end on the $p + 1$ dimensional world-volume. In other words we allow to have a new sector in the theory corresponding to open string with ends lying on this $p + 1$ dimensional subspace. This will put Dirichlet boundary conditions on $10 - p - 1$ coordinates of string endpoints. Such p-branes are called D-branes, with D reminding us of Dirichlet boundary conditions. In the context of type IIA,B we also have to specify what boundary conditions are satisfied by fermions. This turns out to lead to consistent boundary conditions only for p even for type IIA string and p odd for type IIB. This is a consequence of the fact that for type IIA(B), left-right exchange is a symmetry only when accompanied by a Z_2 spatial reflection with determinant -1(+1). Moreover, it turns out that they do carry the corresponding RR charge $[?].$

Quantizing the new sector of type II strings in the presence of D-branes is rather straightforward. We simply consider the set of oscillators as before, but now remember that due to the Dirichlet boundary conditions on some of the components of string coordinates, the momentum of the open string lies on the $p + 1$ dimensional world-volume of the D-brane. It is thus straightforward to deduce that the massless excitations propagating on the D-brane will lead to the dimensional reduction of $N = 1, U(1)$ Yang-Mills from $d = 10$ to $p + 1$ dimensions. In particular the $10 - (p + 1)$ scalar fields living on the D-brane, signify the D-brane
excitations in the $10 - (p + 1)$ transverse dimensions. This tells us that the significance of the new open string subsector is to quantize the D-brane excitations.

An important property of D-branes is that when N of them coincide we get a $U(N)$ gauge theory on their world-volume. This follows because we have N^2 open string subsectors going from one D-brane to another and in the limit they are on top of each other all will have massless modes and we thus obtain the reduction of $N = 1 U(N)$ Yang-Mills from $d = 10$ to $d = p + 1$.

Another important property of D-branes is that they are BPS states. A BPS state is a state which preserves a certain number of supersymmetries and as a consequence of which one can show that their mass (per unit volume) and charge are equal. This in particular guarantees their absolute stability against decay.

If we consider the tension of D-branes, it is proportional to $1/g_s$, where g_s is the string coupling constant. Note that as expected at weak coupling they have a huge tension. At strong coupling their tension goes to zero and they become tensionless.

We have already discussed that in $K3$ compactification of string theory we end up with singular limits of manifolds when some cycles shrink to zero size. What is the physical interpretation of this singularity?

Suppose we consider for concreteness an n-dimensional sphere S^n with volume $\epsilon \to 0$. Then the string perturbation theory breaks down when $\epsilon \ll g_s$, where g_s is the string coupling constant. If we have n-brane solitonic states such as D-branes then we can consider a particular solitonic state corresponding to wrapping the n-brane on the vanishing S^n. The mass of this state is proportional to ϵ, which implies that in the limit $\epsilon \to 0$ we obtain a massless soliton. An example of this is when we consider type IIA compactification on $K3$ where we develop a singularity. Then by wrapping D2-branes around vanishing S^2's of the singularity we obtain massless states, which are vectors. This in fact implies that in this limit we obtain enhanced gauge symmetry. Had we been considering type IIB on $K3$ near the singularity, the lightest mode would be obtained by wrapping a D3-brane around vanishing S^2's, which leaves us with a string state with tension of the order of ϵ. This kind of regime which exists in other examples of compactifications as well is called the phase with tensionless strings.

This thesis is based on [3]-[32].

Our notations for the special functions we use are summarized in Appendix A.
2 P-branes dynamics in general backgrounds

The probe branes approach for studying issues in the string/M-theory uses an approximation, in which one neglects the back-reaction of the branes on the background. In this sense, the probe branes are multidimensional dynamical systems, evolving in given, variable in general, external fields.

The probe branes method is widely used in the string/M-theory to investigate many different problems at a classical, semiclassical and quantum levels. The literature in this field of research can be conditionally divided into several parts. One of them is devoted to the properties of the probe branes themselves, e.g., [33]. The subject of another part of the papers is to probe the geometries of the string/M-theory backgrounds, e.g., [34]. One another part can be described as connected with the investigation of the correspondence between the string/M-theory geometries and their field theory duals, e.g., [35], [36]. Let us also mention the application of the probe branes technique in the 'Mirage cosmology'- an approach to the brane world scenario, e.g., [37].

In view of the wide implementation of the probe branes as a tool for investigation of different problems in the string/M-theory, it will be useful to have a method describing their dynamics, which is general enough to include as many cases of interest as possible, and on the other hand, to give the possibility for obtaining explicit exact solutions.

Here, we propose such an approach, which is appropriate for p-branes and Dp-branes, for arbitrary worldvolume and space-time dimensions, for tensile and tensionless branes, for different variable background fields with minimal restrictions on them, and finally, for different space-time and worldvolume gauges (embeddings).

Now, we are going to consider probe p-branes and Dp-branes dynamics in D-dimensional string/M-theory backgrounds of general type. Unified description for the tensile and tensionless branes is used. We obtain exact solutions of their equations of motion and constraints in static gauge as well as in more general gauges. Their dynamics in the whole space-time is also analyzed and exact solutions are found [6].

Before considering the problem for obtaining exact brane solutions in general string theory backgrounds, it will be useful first to choose appropriate actions, which will facilitate our task. Generally speaking, there are two types of brane actions - with and without square roots 1. The former ones are not well suited to our purposes, because the square root introduces additional nonlinearities in the equations of motion. Nevertheless, they have been used when searching for exact brane solutions in fixed backgrounds, because there are no constraints in the Lagrangian description and one has to solve only the equations of motion. The other type of actions contain additional worldvolume fields (Lagrange multipliers). Varying with respect to them, one obtains constraints, which, in general, are not independent. Starting with an action without square root, one escapes the nonlinearities connected with the square

1 Examples of these two type of actions are the Nambu-Goto and Polyakov actions for the string.
root, but has to solve the equations of motion and the (dependent) constraints.

Independently of their type, all actions proportional to the brane tension cannot describe the tensionless branes. The latter appear in many important cases in the string theory, and it is preferable to have a unified description for tensile and tensionless branes.

Our aim now is to find brane actions, which do not contain square roots, generate only independent constraints and give a unified description for tensile and tensionless branes.

2.1 P-brane actions

The Polyakov type action for the bosonic p-brane in a D-dimensional curved space-time with metric tensor $g_{MN}(x)$, interacting with a background $(p+1)$-form gauge field b_{p+1} via Wess-Zumino term, can be written as

$$S_P = -\int d^{p+1}\xi \left\{ \frac{T_p}{2} \sqrt{-\gamma} \left[\gamma^{mn} \partial_m X^M \partial_n X^N g_{MN}(X) - (p - 1) \right] \right.$$

$$- Q_p \frac{\varepsilon^{m_1...m_{p+1}}}{(p + 1)!} \partial_{m_1} X^{M_1} ... \partial_{m_{p+1}} X^{M_{p+1}} b_{M_1...M_{p+1}}(X) \right\} ,$$

where $\partial_m = \partial/\partial \xi^m$, $m, n = 0, 1, \ldots, p$; $M, N = 0, 1, \ldots, D - 1$,

$$\gamma^{kl} \gamma_{mn} \gamma^{mn} = (p - 1) \gamma^{kl},$$

where $G_{mn} = \partial_m X^M \partial_n X^N g_{MN}(X)$ is the metric induced on the p-brane worldvolume. Taking the trace of the above equality, one obtains

$$\gamma^{mn} G_{mn} = p + 1,$$

i.e., γ^{mn} is the inverse of G_{mn}: $\gamma^{mn} = G^{mn}$. If one inserts this back into (2.1), the result will be the corresponding Nambu-Goto type action ($G \equiv \det(G_{mn})$):

$$S_{NG}^p = \int d^{p+1}\xi L_{NG}$$

$$= -T_p \int d^{p+1}\xi \left[\sqrt{-G} \frac{\varepsilon^{m_1...m_{p+1}}}{(p + 1)!} \partial_{m_1} X^{M_1} ... \partial_{m_{p+1}} X^{M_{p+1}} b_{M_1...M_{p+1}}(X) \right].$$

This means that the two actions, (2.1) and (2.3), are classically equivalent.
As already discussed, the action (2.3) contains a square root, the constraints (2.2), following from (2.1), are not independent and none of these actions is appropriate for description of the tensionless branes. To find an action of the type we are looking for, we first compute the explicit expressions for the generalized momenta, following from (2.3):

\[P_M(\xi) = -T_p \left(\sqrt{-G} G^{0n} \partial_n X^N g_{MN} - \partial_1 X^{M_1} \ldots \partial_p X^{M_p} b_{M_1 \ldots M_p} \right). \]

It can be checked that \(P_M(\xi) \) satisfy the constraints

\[
\begin{align*}
C_0 &\equiv g^{MN} P_M P_N - 2T_p g^{MN} D_{M_1 \ldots p} P_N + T_p^2 \left[G G^{00} + (-1)^p D_{1 \ldots p M} g^{MN} D_{N_1 \ldots p} \right] = 0, \\
C_i &\equiv P_M \partial_i X^M = 0, \quad (i = 1, \ldots, p),
\end{align*}
\]

where we have introduced the notation

\[D_{M_1 \ldots p} \equiv b_{M_1 \ldots M_p} \partial_1 X^{M_1} \ldots \partial_p X^{M_p}. \]

Let us now find the canonical Hamiltonian for this dynamical system. The result is:

\[H_{\text{canon}} = \int d^p \xi \left(P_M \partial_0 X^M - \mathcal{L}^{NG} \right) = 0. \]

Therefore, according to Dirac [38], we have to take as a Hamiltonian the linear combination of the first class primary constraints \(C_n \):

\[H = \int d^p \xi \mathcal{H} = \int d^p \xi \left(\lambda^0 C_0 + \lambda^i C_i \right). \]

The corresponding Hamiltonian equations of motion for \(X^M \) are

\[\left(\partial_0 - \lambda^i \partial_i \right) X^M = 2\lambda^0 g^{MN} \left(P_N - T_p D_{N_1 \ldots p} \right), \]

from where one obtains the explicit expressions for \(P_M \)

\[P_M = \frac{1}{2\lambda^0} g_{MN} \left(\partial_0 - \lambda^i \partial_i \right) X^N + T_p D_{M_1 \ldots p}. \quad (2.4) \]

With the help of (2.4), one arrives at the following configuration space action

\[
S_p = \int d^{p+1} \xi \mathcal{L}_p = \int d^{p+1} \xi \left(P_M \partial_0 X^M - \mathcal{H} \right) \quad (2.5)
\]

\[= \int d^{p+1} \xi \left\{ \frac{1}{4\lambda^0} \left[g_{MN} (X) \left(\partial_0 - \lambda^i \partial_i \right) X^M \left(\partial_0 - \lambda^j \partial_j \right) X^N - \left(2\lambda^0 T_p \right)^2 G G^{00} \right] + T_p b_{M_0 \ldots M_p} (X) \partial_0 X^{M_0} \ldots \partial_p X^{M_p} \right\}
\[+ \int d^{p+1} \xi \left\{ \frac{1}{4\lambda^0} \left[G_{00} - 2\lambda^j G_{0j} + \lambda^i \lambda^j G_{ij} - \left(2\lambda^0 T_p \right)^2 G G^{00} \right] + T_p b_{M_0 \ldots M_p} (X) \partial_0 X^{M_0} \ldots \partial_p X^{M_p} \right\},
\]

\(2\)In the case under consideration, secondary constraints do not appear. The first class property of \(C_n \) follows from their Poisson bracket algebra.
which does not contain square root, generates the independent \((p + 1)\) constraints, as we will show below, and in which the limit \(T_p \to 0\) may be taken.

It can be proven that this action is classically equivalent to the previous two actions. It is enough to show that (2.3) and (2.5) are equivalent, because we already saw that this is true for (2.1) and (2.3).

Varying the action \(S_p\) with respect to Lagrange multipliers \(\lambda^m\) and requiring these variations to vanish, one obtains the constraints

\[
G_{00} - 2\lambda^i G_{0j} + \lambda^i \lambda^j G_{ij} + \left(2\lambda^0 T_p\right)^2 GG^{00} = 0, \tag{2.6}
\]
\[
G_{0j} - \lambda^i G_{ij} = 0. \tag{2.7}
\]

By using them, the Lagrangian density \(L_p\) from (2.5) can be rewritten in the form

\[
L_p = -T_p \sqrt{-GG^{00} \left[G_{00} - G_{0i} (G^{-1})^{ij} G_{j0}\right] + T_p b_{M_0 \ldots M_p}(X) \partial_0 X^{M_0} \ldots \partial_p X^{M_p}}. \tag{2.8}
\]

Now, applying the equalities

\[
GG^{00} = \det (G_{ij}), \quad G = \left[G_{00} - G_{0i} (G^{-1})^{ij} G_{j0}\right] G, \tag{2.9}
\]

one finds that

\[
G^{00} \left[G_{00} - G_{0i} (G^{-1})^{ij} G_{j0}\right] = 1.
\]

Inserting this in (2.8), one obtains the Nambu-Goto type Lagrangian density \(L^{NG}\) from (2.3). Thus, the classical equivalence of the actions (2.3) and (2.5) is established.

We will work further in the gauge \(\lambda^m = \text{constants}\), in which the equations of motion for \(X^M\), following from (2.5), are given by

\[
g_{LN} \left[\left(\partial_0 - \lambda^i \partial_i\right) \left(\partial_0 - \lambda^j \partial_j\right) X^N - \left(2\lambda^0 T_p\right)^2 \partial_i \left(G G^{ij} \partial_j X^N\right)\right] \tag{2.10}
\]
\[
+ \Gamma_{L,MN} \left[\left(\partial_0 - \lambda^i \partial_i\right) X^M \left(\partial_0 - \lambda^j \partial_j\right) X^N - \left(2\lambda^0 T_p\right)^2 G G^{ij} \partial_i X^M \partial_j X^N\right]
\]
\[
= 2\lambda^0 T_p H^b_{LM_0 \ldots M_p} \partial_0 X^{M_0} \ldots \partial_p X^{M_p},
\]

where \(G\) is defined in (2.9),

\[
\Gamma_{L,MN} = g_{LK} \Gamma^K_{MN} = \frac{1}{2} (\partial_M g_{NL} + \partial_N g_{ML} - \partial_L g_{MN})
\]

are the components of the symmetric connection compatible with the metric \(g_{MN}\) and \(H^b_{p+2} = db_{p+1}\) is the field strength of the \((p + 1)\)-form gauge potential \(b_{p+1}\).
2.2 D_p-brane actions

The Dirac-Born-Infeld type action for the bosonic part of the super- D_p-brane in a D-dimensional space-time with metric tensor $g_{MN}(x)$, interacting with a background $(p+1)$-form Ramond-Ramond gauge field c_{p+1} via Wess-Zumino term, can be written as

$$S^{DBI} = -T_{D_p} \int d^{p+1}\xi \left\{ e^{-a(p,D)\Phi} \sqrt{-\det (G_{mn} + B_{mn} + 2\pi\alpha'F_{mn})} \right\} \quad (2.11)$$

$$T_{D_p} = (2\pi)^{-(p-1)/2} g_s^{-1} T_p$$

is the D-brane tension, $g_s = \exp\langle \Phi \rangle$ is the string coupling expressed by the dilaton vacuum expectation value $\langle \Phi \rangle$ and $2\pi\alpha'$ is the inverse string tension. $G_{mn} = \partial_m X^M \partial_n X^N g_{MN}(X)$, $B_{mn} = \partial_m X^M \partial_n X^N b_{MN}(X)$ and $\Phi(X)$ are the pullbacks of the background metric, antisymmetric tensor and dilaton to the D_p-brane worldvolume, while $F_{mn}(\xi)$ is the field strength of the worldvolume $U(1)$ gauge field $A_m(\xi)$: $F_{mn} = 2\partial_{[m} A_{n]}$. The parameter $a(p,D)$ depends on the brane and space-time dimensions p and D, respectively.

A D_p-brane action, which generalizes the Polyakov type p-brane action, has been introduced in [39]. Namely, the action, classically equivalent to (2.11), is given by

$$S^{AZH} = -\frac{T_{D_p}}{2} \int d^{p+1}\xi \left\{ e^{-a(p,D)\Phi} \sqrt{-K} [K^{mn} (G_{mn} + B_{mn} + 2\pi\alpha'F_{mn})] - (p - 1) \right\}$$

$$- \frac{2\varepsilon^{m_1...m_{p+1}}}{(p + 1)!} \partial_{m_1} X^{M_1} \cdots \partial_{m_{p+1}} X^{M_{p+1}} c_{M_1...M_{p+1}} \right\},$$

where K is the determinant of the matrix K_{mn}, K^{mn} is its inverse, and these matrices have symmetric as well as antisymmetric part

$$K^{mn} = K^{(mn)} + K^{[mn]},$$

where the symmetric part $K^{(mn)}$ is the analogue of the auxiliary metric γ^{mn} in the p-brane action (2.1).

Again, none of these actions satisfy all our requirements. In the same way as in the p-brane case, just considered, one can prove that the action

$$S_{D_p} = \int d^{p+1}\xi \mathcal{L}_{D_p} = \int d^{p+1}\xi e^{-a(p,D)\Phi} \left[G_{00} - 2\lambda^i G_{0i} + (\lambda^i \lambda^j - \kappa^i \kappa^j) G_{ij} \right] \quad (2.12)$$

$$- (2\lambda^0 T_{D_p})^2 G + 2\kappa^0 (\mathcal{F}_{0i} - \lambda^i \mathcal{F}_{ji}) + 4\lambda^0 T_{D_p} e^{a\Phi} c_{M_0...M_p} \partial_0 X^{M_0} \cdots \partial_p X^{M_p} \right]\mathcal{F}_{mn} = B_{mn} + 2\pi\alpha' F_{mn},$$

which possesses the necessary properties, is classically equivalent to the action (2.11). Here additional Lagrange multipliers κ^i are introduced, in order to linearize the quadratic term

$$(\mathcal{F}_{0i} - \lambda^k \mathcal{F}_{ki}) (G^{-1})^{ij} (\mathcal{F}_{0j} - \lambda^l \mathcal{F}_{lj})$$

in the action.
arising in the action. For other actions of this type, see [40] - [42].

Varying the action S_{Dp} with respect to Lagrange multipliers λ^m, κ^i, and requiring these variations to vanish, one obtains the constraints

\begin{align}
G_{00} - 2\lambda^j G_{0j} + (\lambda^i \lambda^j - \kappa^i \kappa^j) G_{ij} + (2\lambda^0 T_{Dp})^2 G + 2\kappa^i (F_{0i} - \lambda^j F_{ji}) &= 0, \quad (2.13) \\
G_{0j} - \lambda^i G_{ij} &= \kappa^i F_{ij}, \quad (2.14) \\
F_{0j} - \lambda^i F_{ij} &= \kappa^i G_{ij}. \quad (2.15)
\end{align}

Instead with the constraint (2.13), we will work with the simpler one

\begin{align}
G_{00} - 2\lambda^j G_{0j} + (\lambda^i \lambda^j + \kappa^i \kappa^j) G_{ij} + (2\lambda^0 T_{Dp})^2 G &= 0, \quad (2.16)
\end{align}

which is obtained by inserting (2.15) into (2.13).

We will use the gauge $(\lambda^m, \kappa^i) = \text{constants}$ and for simplicity, we will restrict our considerations to constant dilaton $\Phi = \Phi_0$ and constant electro-magnetic field $F_{mn} = F_{mn}^0$ on the Dp-brane worldvolume. In this case, the equations of motion for X^M, following from (2.12), are

\begin{align}
g_{LN} \left[(\partial_0 - \lambda^i \partial_i) (\partial_0 - \lambda^j \partial_j) X^N - (2\lambda^0 T_{Dp})^2 \partial_i \left(G G^{ij} \partial_j X^N \right) - \kappa^i \kappa^j \partial_i \partial_j X^N \right] &+ \Gamma_{LMN} \left[(\partial_0 - \lambda^i \partial_i) X^M (\partial_0 - \lambda^j \partial_j) X^N \\
- (2\lambda^0 T_{Dp})^2 G G^{ij} \partial_i X^M \partial_j X^N - \kappa^i \kappa^j \partial_i X^M \partial_j X^N \right] &= 2\lambda^0 T_{Dp} e^{\phi_0} H_{LMN}^{c} \partial_0 X^M \partial_0 X^N + H_{LMN}^{ji} \partial_i X^M \partial_j X^N, \quad (2.17)
\end{align}

where $H_{p+2}^c = dc_{p+1}$ and $H_3 = db_2$ are the corresponding field strengths.

2.3 Exact solutions in general backgrounds

The main idea in the mostly used approach for obtaining exact solutions of the probe branes equations of motion in variable external fields is to reduce the problem to a particle-like one, and even more - to solving one dimensional dynamical problem, if possible. To achieve this, one must get rid of the dependence on the spatial worldvolume coordinates ξ^i. To this end, since the brane actions contain the first derivatives $\partial_i X^M$, the brane coordinates $X^M(\xi^m)$ have to depend on ξ^i at most linearly:

$$X^M(\xi^0, \xi^i) = \Lambda^M_i \xi^i + Y^M(\xi^0), \quad \Lambda^M_i \text{ are arbitrary constants.} \quad (2.18)$$

Besides, the background fields entering the action depend implicitly on ξ^i through their dependence on X^M. If we choose $\Lambda^M_i = 0$ in (2.18), the connection with the p-brane setting will be lost. If we suppose that the background fields do not depend on X^M, the result will be constant background, which is not interesting in the case under consideration. The
compromise is to accept that the external fields depend only on part of the coordinates, say \(X^a \), and to set namely for this coordinates \(\Lambda^a_i = 0 \). In other words, we propose the ansatz \((X^M = (X^\mu, X^a)):\)

\[
X^\mu(\xi^0, \xi^i) = \Lambda^\mu_j \xi^j + Y^\mu(\xi^0), \quad X^a(\xi^0, \xi^i) = Y^a(\xi^0),
\]

\[
\partial_\mu g_{MN} = 0, \quad \partial_\mu b_{MN} = 0, \quad \partial_\mu b_{M_0...M_p} = 0, \quad \partial_\mu c_{M_0...M_p} = 0.
\]

The resulting reduced Lagrangian density will depend only on \(\xi^0 = \tau \) if the Lagrange multipliers \(\lambda^m, \kappa^i \) do not depend on \(\xi^i \). Actually, this property follows from their equations of motion, from where they can be expressed through quantities depending only on the temporal worldvolume parameter \(\tau \).

Thus, we have obtained the general conditions, under which the probe branes dynamics reduces to the particle-like one. However, we will not start our considerations relaying on the generic ansatz (2.19). Instead, we will begin in the framework of the commonly used in ten space-time dimensions static gauge: \(X^m(\xi^0) = \xi^m \). The latter is a particular case of (2.19), obtained under the following restrictions:

\[
(1): \mu = i = 1, \ldots, p; \quad (2): \Lambda^\mu_j = \Lambda^i_j = \delta^i_j; \quad (3): Y^\mu(\tau) = Y^i(\tau) = 0; \quad (4): Y^0(\tau) = \tau \in \{Y^a\}.
\]

Therefore, the static gauge is appropriate for backgrounds which may depend on \(X^0 = Y^0(\tau) \), but must be independent on \(X^i \), \((i = 1, \ldots, p) \). Such properties are not satisfactory in the lower dimensions. For instance, in four dimensional black hole backgrounds, the metric depends on \(X^1, X^2 \) and the static gauge ansatz does not work. That is why, our next step is to consider the probe branes dynamics in the framework of the ansatz

\[
X^\mu(\tau, \xi^i) = \Lambda^\mu_0 \xi^0 + \Lambda^\mu_i \tau + \Lambda^\mu_i \xi^i, \quad X^a(\tau, \xi^i) = Y^a(\tau),
\]

which is obtained from (2.19) under the restriction \(Y^\mu(\tau) = \Lambda^\mu_0 \tau \). Here, for the sake of symmetry between the worldvolume coordinates \(\xi^0 = \tau \) and \(\xi^i \), we have included in \(X^\mu \) a term linear in \(\tau \). At any time, one can put \(\Lambda^\mu_0 = 0 \) and the corresponding terms in the formulas will disappear. Further, we will refer to the ansatz (2.22) as linear gauges, as far as \(X^\mu \) are linear combinations of \(\xi^m \) with arbitrary constant coefficients.

Finally, we will investigate the classical branes dynamics by using the general ansatz (2.19), rewritten in the form

\[
X^\mu(\tau, \xi^i) = \Lambda^\mu_0 \tau + \Lambda^\mu_i \xi^i + Y^\mu(\tau), \quad X^a(\tau, \xi^i) = Y^a(\tau).
\]

Compared with (2.19), here we have separated the linear part of \(Y^\mu \) as in the previous ansatz (2.22). This will allow us to compare the role of the term \(\Lambda^\mu_0 \tau \) in these two cases.

2.3.1 Static gauge dynamics

Here we begin our analysis of the probe branes dynamics in the framework of the static gauge ansatz. In order not to introduce too many type of indices, we will denote with \(Y^a \),
that by definition, \(Y^b\), etc., the coordinates, which are not fixed by the gauge. However, one have not to forget that by definition, \(Y^a\) are the coordinates on which the background fields can depend. In static gauge, according to (2.21), one of this coordinates, the temporal one \(Y^0(\tau)\), is fixed to coincide with \(\tau\). Therefore, in this gauge, the remaining coordinates \(Y^a\) are spatial ones in space-times with signature \((- , + , \ldots, +)\).

Let us start with the \(p\)-branes case.

In static gauge, and under the conditions (2.20), the action (2.5) reduces to (the over-dot is used for \(d/d\tau\))

\[
S_p^{SG} = \int d\tau L_p^{SG}(\tau), \quad V_p = \int d^p \xi , \tag{2.24}
\]

\[
L_p^{SG}(\tau) = \frac{V_p}{4\lambda^0} \left\{ g_{ab}(Y^a)\dot{Y}^a\dot{Y}^b + 2 \left[g_{0a}(Y^a) - \lambda^i g_{ia}(Y^a) + 2\lambda^0 T_p b_{a_1...p}(Y^a) \right] \dot{Y}^a + g_{00}(Y^a) - 2\lambda^i g_{0i}(Y^a) + \lambda^i \lambda^j g_{ij}(Y^a) - (2\lambda^0 T_p)^2 \det(g_{ij}(Y^a)) + 4\lambda^0 T_p b_{01...p}(Y^a) \right\}.
\]

To have finite action, we require the fraction \(V_p/\lambda^0\) to be finite one. For example, in the string case \((p = 1)\) and in conformal gauge \((\lambda^1 = 0, (2\lambda^0 T_1)^2 = 1)\), this means that the quantity \(V_1/\alpha' = 2\pi V_1 T_1\) must be finite.

The constraints derived from the action (2.23) are:

\[
g_{ab}\dot{Y}^a\dot{Y}^b + 2 \left(g_{0a} - \lambda^i g_{ia} \right) \dot{Y}^a + g_{00} - 2\lambda^i g_{0i} + \lambda^i \lambda^j g_{ij} + (2\lambda^0 T_p)^2 \det(g_{ij}) = 0, \tag{2.25}
\]

\[
g_{ia}\dot{Y}^a + g_{i0} - \lambda^i g_{i0} = 0. \tag{2.26}
\]

The Lagrangian \(L_p^{SG}\) does not depend on \(\tau\) explicitly, so the energy \(E_p = p_a^{SG} \dot{Y}^a - L_p^{SG}\) is conserved:

\[
g_{ab}\dot{Y}^a\dot{Y}^b - g_{00} + 2\lambda^i g_{0i} - \lambda^i \lambda^j g_{ij} + (2\lambda^0 T_p)^2 \det(g_{ij}) - 4\lambda^0 T_p b_{01...p} = \frac{4\lambda^0 E_p}{V_p} = \text{constant}.
\]

With the help of the constraints, we can replace this equality by the following one

\[
g_{0a}\dot{Y}^a + g_{00} - \lambda^i g_{i0} + 2\lambda^0 T_p b_{01...p} = -\frac{2\lambda^0 E_p}{V_p}. \tag{2.27}
\]

To clarify the physical meaning of the equalities (2.26) and (2.27), we compute the momenta (2.4) in static gauge

\[
2\lambda^0 P_i^{SG} = g_{Ma} \dot{Y}^a + g_{M0} - \lambda^i g_{Mi} + 2\lambda^0 T_p b_{M1...p}. \tag{2.28}
\]

The comparison of (2.28) with (2.27) and (2.26) shows that \(P_0^{SG} = -E_p/V_p = \text{const}\) and \(P_i^{SG} = \text{const} = 0\). Inserting these conserved momenta into (2.25), we obtain the effective constraint

\[
g_{ab}\dot{Y}^a\dot{Y}^b = U^S, \tag{2.29}
\]
where

\[U^S = -\left(2\lambda^0 T_p\right)^2 \det(g_{ij}) + g_{00} - 2\lambda^i g_{0i} + \lambda^i \lambda^j g_{ij} + 4\lambda^0 \left(T_p b_{01...p} + E_p/V_p\right). \]

In the gauge \(\lambda^a = \text{constants} \), the equations of motion following from \(S^S_p \) (or from \((2.10) \) after imposing the static gauge) take the form:

\[g_{ab} \dot{Y}^b + \Gamma_{a,ca} \dot{Y}^c \dot{Y}^a = \frac{1}{2} \partial_a U^S + 2\partial[a] \mathcal{A}_b^S \dot{Y}^b, \quad (2.30) \]

where

\[\mathcal{A}_a^S = g_{a0} - \lambda^i g_{ai} + 2\lambda^0 T_p b_{a1...p}. \]

Thus, in general, the time evolution of the reduced dynamical system does not correspond to a geodesic motion. The deviation from the geodesic trajectory is due to the appearance of the effective scalar potential \(U^S \) and of the field strength \(2\partial[a] \mathcal{A}_b^S \) of the effective \(U(1) \)-gauge potential \(\mathcal{A}_a^S \). In addition, our dynamical system is subject to the effective constraint \((2.29) \).

Next, we proceed with the \(Dp \)-branes case.

In static gauge, and for background fields independent of the coordinates \(X^i \) (conditions \((2.20) \)), the reduced Lagrangian, obtained from \((2.12) \), is given by

\[L^S_{Dp}(\tau) = \frac{V_{Dp} e^{-\alpha \phi_0}}{4\lambda^0} \left[g_{ab} \dot{Y}^a \dot{Y}^b + g_{00} - 2\lambda^i g_{0i} + (\lambda^i \lambda^j - \kappa^i \kappa^j) g_{ij} \right. \]

\[+ \left. 2 \left(g_{0a} - \lambda^i g_{ia} + 2\lambda^0 T_{Dp} e^{\alpha \phi_0} c_{a1...p} + \kappa^i b_{ai} \right) \dot{Y}^a \right. \]

\[- \left. (2\lambda^0 T_{Dp})^2 \det(g_{ij}) + 4\lambda^0 T_{Dp} e^{\alpha \phi_0} c_{01...p} \right. \]

\[+ \left. 2\kappa^i \left(b_{0i} - \lambda^j b_{ij} \right) + 4\pi \alpha' \kappa^i \left(F_0^o - \lambda^j F_{j0}^o \right) \right]. \]

As we already mentioned at the end of Section 2, we restrict our considerations to the case of constant dilaton \(\Phi = \Phi_0 \) and constant electro-magnetic field \(F_{mn}^o \) on the \(Dp \)-brane worldvolume.

Now, the constraints \((2.16) \), \((2.14) \) and \((2.15) \) take the form

\[g_{ab} \dot{Y}^a \dot{Y}^b + 2 \left(g_{0a} - \lambda^i g_{ia} \right) \dot{Y}^a + g_{00} - 2\lambda^i g_{0i} \]

\[+ (\lambda^i \lambda^j + \kappa^i \kappa^j) g_{ij} + (2\lambda^0 T_{Dp})^2 \det(g_{ij}) = 0, \]

\[g_{ja} \dot{Y}^a + g_{0j} - \lambda^i g_{ij} - \kappa^i b_{ij} = 2\pi \alpha' \kappa^i F_{ij}^o \]

\[b_{aj} \dot{Y}^a + b_{0j} - \lambda^i b_{ij} - \kappa^i g_{ij} = -2\pi \alpha' \left(F_{0j}^o - \lambda^i F_{ij}^o \right). \]

The reduced Lagrangian \(L^S_{Dp} \) does not depend on \(\tau \) explicitly. As a consequence, the energy \(E_{Dp} \) is conserved:

\[g_{ab} \dot{Y}^a \dot{Y}^b - g_{00} + 2\lambda^i g_{0i} - (\lambda^i \lambda^j - \kappa^i \kappa^j) g_{ij} + (2\lambda^0 T_{Dp})^2 \det(g_{ij}) - 4\lambda^0 T_{Dp} e^{\alpha \phi_0} c_{01...p} \]

\[-2\kappa^i \left(b_{0i} - \lambda^j b_{ij} \right) - 4\pi \alpha' \kappa^i \left(F_{0i}^o - \lambda^j F_{ij}^o \right) = \frac{4\lambda^0 E_{Dp} e^{\alpha \phi_0}}{V_{Dp}} = \text{constant}. \]
By using the constraints (2.31) and (2.32), the above equality can be replaced by the following one
\[
g_{0a}\dot{Y}^a + g_{00} - \lambda^i g_{i0} + 2\lambda^0 T_{Dp} e^{a\Phi_0} c_{01...p} + \kappa^i (b_{0i} + 2\pi\alpha' F_{0i}^o) = -\frac{2\lambda^0 E_{Dp}}{V_{Dp}} e^{a\Phi_0}.
\] (2.33)

Now, we compute the momenta, obtained from the initial action (2.12), in static gauge
\[
2\lambda^0 e^{a\Phi_0} P_M^{SG} = g_{Ma} \dot{Y}^a + g_{M0} - \lambda^j g_{Mj} + 2\lambda^0 T_{Dp} e^{a\Phi_0} c_{M1...p} + \kappa^j b_{Mj}.
\] (2.34)

Comparing (2.34) with (2.33) and (2.32), one finds that
\[
P_0^{SG} = -\frac{E_{Dp}}{V_{Dp}} + \frac{\pi\alpha'}{\lambda^0} e^{-a\Phi_0} \kappa^j F_{0j}^o = \text{constant},
\]
\[
P_i^{SG} = -\frac{\pi\alpha'}{\lambda^0} e^{-a\Phi_0} \kappa^j F_{ij}^o = \text{constants}.
\]

As in the p-brane case, not only the energy, but also the spatial components of the momenta P_i^{SG}, along the X^i coordinates, are conserved. In the Dp-brane case however, P_i^{SG} are not identically zero due the existence of a constant worldvolume magnetic field F_{ij}^o.

Inserting (2.32) and (2.33) into (2.31), one obtains the effective constraint
\[
g_{ab} \dot{Y}^a \dot{Y}^b = U^{DS},
\] (2.35)

where
\[
U^{DS} = -\left(2\lambda^0 T_{Dp}\right)^2 \det(g_{ij}) + g_{00} - 2\lambda^i g_{0i} + (\lambda^i \lambda^j - \kappa^i \kappa^j) g_{ij}
+ 4\lambda^0 e^{a\Phi_0} \left(T_{Dp} c_{01...p} + \frac{E_{Dp}}{V_{Dp}}\right) + 2\kappa^i \left(b_{0i} - \lambda^i b_j\right) + 4\pi\alpha' \kappa^i \left(F_{0i}^o - \lambda^i F_{ji}^o\right).
\]

In the gauge $(\lambda^m, \kappa^i) = \text{constants}$, the equations of motion following from L_{DS}^{SG} (or from (2.17) after using the static gauge ansatz) take the form:
\[
g_{ab} \ddot{Y}^b + \Gamma_{a,bc} \dot{Y}^b \dot{Y}^c = \frac{1}{2} \partial_a U^{DS} + 2\partial_{[a} A_{b]}^{DS} \dot{Y}^b,
\] (2.36)

where
\[
A_a^{DS} = g_{a0} - \lambda^i g_{ai} + 2\lambda^0 T_{Dp} e^{a\Phi_0} c_{a1...p} + \kappa^i b_{ai}.
\]

It is obvious that the equations of motion (2.30), (2.36) and the effective constraints (2.29), (2.35) have the same form for p-branes and for Dp-branes. The difference is in the explicit expressions for the effective scalar and 1-form gauge potentials.
2.3.2 Branes dynamics in linear gauges

Now we will repeat our analysis of the probe branes dynamics in the framework of the more general linear gauges, given by the ansatz (2.22). The static gauge is a particular case of the linear gauges, corresponding to the following restrictions:

$$\begin{align*}
(1): & \, \pi = i = 1, \ldots, p; \\
(2): & \, \Lambda^\mu_0 = \Lambda^i_0 = 0; \\
(3): & \, \Lambda^\mu_j = \Lambda^i_j = \delta^i_j; \\
(4): & \, Y^0(\tau) = \tau \in \{Y^a\}.
\end{align*}$$

P-branes case

In linear gauges, and under the conditions (2.20), one obtains the following reduced Lagrangian, arising from the action (2.5):

$$L^L_p(\tau) = \frac{V_p}{4\lambda^0} \left\{ g_{ab} \dot{Y}^a \dot{Y}^b + 2 \left[(\Lambda^\mu_0 - \lambda^i \Lambda^\mu_i) g_{\mu a} + 2 \lambda^0 T_p B_{\mu 1 \ldots p} \right] \dot{Y}^a
ight\} + \left(\Lambda^\mu_0 - \lambda^i \Lambda^\mu_i \right) \left(\Lambda^\nu_0 - \lambda^j \Lambda^\nu_j \right) g_{\mu \nu} - \left(2 \lambda^0 T_p \right)^2 \det(\Lambda^\mu_i \Lambda^\nu_j g_{\mu \nu}) + 4 \lambda^0 T_p \Lambda^\mu_0 B_{\mu 1 \ldots p}, \quad B_{M 1 \ldots p} \equiv b_{M \mu_1 \ldots \mu_p} \Lambda^\mu_1 \ldots \Lambda^\mu_p.$$

The constraints derived from the Lagrangian (2.37) are:

$$\begin{align*}
ge_{ab} \dot{Y}^a \dot{Y}^b & + 2 \left(\Lambda^\mu_0 - \lambda^i \Lambda^\mu_i \right) g_{\mu a} \dot{Y}^a + \left(\Lambda^\nu_0 - \lambda^j \Lambda^\nu_j \right) g_{\mu \nu} - \left(2 \lambda^0 T_p \right)^2 \det(\Lambda^\mu_i \Lambda^\nu_j g_{\mu \nu}) = 0, \\
\Lambda^\mu_i \left[g_{\mu a} \dot{Y}^a + \left(\Lambda^\nu_0 - \lambda^j \Lambda^\nu_j \right) g_{\mu \nu} \right] & = 0.
\end{align*}$$

The Lagrangian L^L_p does not depend on τ explicitly, so the energy $E_p = p^L_p \dot{Y}^a - L^L_p$ is conserved:

$$\begin{align*}
ge_{ab} \dot{Y}^a \dot{Y}^b & - \left(\Lambda^\mu_0 - \lambda^i \Lambda^\mu_i \right) \left(\Lambda^\nu_0 - \lambda^j \Lambda^\nu_j \right) g_{\mu \nu} + \left(2 \lambda^0 T_p \right)^2 \det(\Lambda^\mu_i \Lambda^\nu_j g_{\mu \nu}) + 4 \lambda^0 T_p \Lambda^\mu_0 B_{\mu 1 \ldots p} = \frac{4 \lambda^0 E_p}{V_p} = \text{constant}.
\end{align*}$$

With the help of the constraints (2.38) and (2.39), one can replace this equality by the following one

$$\Lambda^\mu_0 \left[g_{\mu a} \dot{Y}^a + \left(\Lambda^\nu_0 - \lambda^j \Lambda^\nu_j \right) g_{\mu \nu} + 2 \lambda^0 T_p B_{\mu 1 \ldots p} \right] = - \frac{2 \lambda^0 E_p}{V_p}.$$

In linear gauges, the momenta (2.3) take the form

$$2 \lambda^0 P^L_M = g_{Ma} \dot{Y}^a + \left(\Lambda^\nu_0 - \lambda^j \Lambda^\nu_j \right) g_{Mu} + 2 \lambda^0 T_p B_{M 1 \ldots p}.$$
The comparison of (2.41) with (2.40) and (2.39) gives

\[\Lambda_\mu P^\mu_L = -\frac{E_p}{V_p} = \text{constant}, \quad \Lambda_\mu P^\mu_L = \text{constants} = 0. \]

Therefore, in the linear gauges, the projections of the momenta \(P^\mu_L \) onto \(\Lambda_\mu \) are conserved. Moreover, as far as the Lagrangian (2.37) does not depend on the coordinates \(X^\mu \), the corresponding conjugated momenta \(P^\mu_L \) are also conserved.

Inserting (2.40) and (2.39) into (2.38), we obtain the effective constraint

\[g_{ab}\dot{Y}^a\dot{Y}^b = U^L, \]

where the effective scalar potential is given by

\[U^L = -\left(2\lambda^0 T_p\right)^2 \text{det}(\Lambda^\mu_0\Lambda^\nu_j g_{\mu\nu}) + \left(\Lambda^\nu_0 - \lambda^i \Lambda^\nu_i\right)\left(\Lambda^\nu_0 - \lambda^j \Lambda^\nu_j\right) g_{\mu\nu} \]
\[+ 4\lambda^0 \left(T_p \Lambda^\mu_0 B_{\mu\nu} + \frac{E_p}{V_p}\right). \]

In the gauge \(\lambda^m = \text{constants} \), the equations of motion following from \(L^L_{Dp} \) take the form:

\[g_{ab}\ddot{Y}^b + \Gamma_{a,bc}\dot{Y}^b\dot{Y}^c = \frac{1}{2} \partial_a U^L + 2\partial_{\mu a}\mathcal{A}^L_{\mu}\dot{Y}^b, \]

where

\[\mathcal{A}^L_a = (\Lambda^\mu_0 - \lambda^i \Lambda^\mu_i) g_{a\mu} + 2\lambda^0 T_p B_{a\mu\nu\rho}, \]

is the effective 1-form gauge potential, generated by the non-diagonal components \(g_{a\mu} \) of the background metric and by the components \(b_{a\mu\nu\rho} \) of the background \((p + 1)\)-form gauge field.

Dp-branes case

In linear gauges, and for background fields independent of the coordinates \(X^\mu \) (conditions (2.20)), the reduced Lagrangian, obtained from (2.12), is given by

\[L^L_{Dp}(\tau) = \frac{V_{Dp} e^{-\alpha \Phi_0}}{4\lambda^0} \left\{ g_{ab}\dot{Y}^a\dot{Y}^b + \left[\left(\Lambda^\mu_0 - \lambda^i \Lambda^\mu_i\right)\left(\Lambda^\nu_0 - \lambda^j \Lambda^\nu_j\right) - \kappa^i \kappa^j \Lambda^\mu_i \Lambda^\nu_j\right] g_{\mu\nu} \right. \]
\[+ 2 \left[\left(\Lambda^\mu_0 - \lambda^i \Lambda^\mu_i\right) g_{\mu a} + 2\lambda^0 T_p e^{\alpha \Phi_0} C_{a1...p} + \kappa^i \Lambda^\mu_i b_{a\mu}\right] \dot{Y}^a \]
\[- \left(2\lambda^0 T_p\right)^2 \text{det}(\Lambda^\mu_i \Lambda^\nu_j g_{\mu\nu}) + 4\lambda^0 T_p e^{\alpha \Phi_0} \Lambda^\mu_i C_{\mu1...p} \]
\[- 2\kappa^i \Lambda^\mu_i \left(\Lambda^\nu_0 - \lambda^j \Lambda^\nu_j\right) b_{\mu\sigma} + 4\pi \alpha' \kappa^i \left(\alpha^0 - \lambda^j \alpha^0\right) \right\}, \]

where the following shorthand notation has been introduced

\[C_{M1...p} \equiv c_{M\mu_1...\mu_p} \Lambda^\mu_1 ... \Lambda^\mu_p. \]
Comparing (2.45) with (2.44) and (2.43), one finds that the following equalities hold:

\[g_{ab} Y^a \dot{Y}^b + 2 (\Lambda_0^\mu - \lambda^i \Lambda_i^\mu) g_{\mu \nu} Y^a + (2 \lambda^0 T_D)^2 \det(\Lambda_0^\mu \Lambda_0^\nu g_{\mu \nu}) \]
\[+ \left[(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu) \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) + \kappa^i \kappa^j \Lambda_i^\mu \Lambda_j^\nu \right] g_{\mu \nu} = 0, \]
\[\Lambda_i^\mu \left[g_{\mu \nu} \dot{Y}^a + (\Lambda_0^\nu - \lambda^j \Lambda_j^\nu) g_{\mu \nu} + \kappa^j \Lambda_j^\nu b_{\mu \nu} \right] = 2 \pi \alpha' \kappa^j F^o_{ji} \]
\[\Lambda_i^\mu \left[b_{\mu \nu} \dot{Y}^a + (\Lambda_0^\nu - \lambda^j \Lambda_j^\nu) b_{\mu \nu} + \kappa^j \Lambda_j^\nu g_{\mu \nu} \right] = 2 \pi \alpha' \left(F^o_{0i} - \lambda^j F^o_{ji} \right). \]

The reduced Lagrangian L_{DP}^{LG} does not depend on τ explicitly. As a consequence, the energy E_{DP} is conserved:

\[g_{ab} Y^a \dot{Y}^b - \left[(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu) \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) - \kappa^i \kappa^j \Lambda_i^\mu \Lambda_j^\nu \right] g_{\mu \nu} \]
\[+ (2 \lambda^0 T_D)^2 \det(\Lambda_0^\mu \Lambda_0^\nu g_{\mu \nu}) - 4 \lambda^0 T_D e^{\alpha \Phi_0} \Lambda_0^\mu C_{\mu 1 \ldots p} \]
\[- 2 \kappa^i \Lambda_i^\mu \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) b_{\mu \nu} + 4 \pi \alpha' \kappa^i \left(F^o_{0i} - \lambda^j F^o_{ji} \right) = \frac{4 \lambda^0 E_{DP}}{V_D} e^{\alpha \Phi_0} = \text{constant}. \]

By using the constraints (2.42) and (2.43), the above equality can be replaced by the following one:

\[\Lambda_0^\mu \left[g_{\mu \nu} \dot{Y}^a + (\Lambda_0^\nu - \lambda^j \Lambda_j^\nu) g_{\mu \nu} + 2 \lambda^0 T_D e^{\alpha \Phi_0} C_{\mu 1 \ldots p} + \kappa^j \Lambda_j^\nu b_{\mu \nu} \right] \]
\[+ 2 \pi \alpha' \lambda^j F^o_{0i} = - \frac{2 \lambda^0 E_{DP}}{V_D} e^{\alpha \Phi_0}. \]

In linear gauges, the momenta obtained from the initial action (2.12), are:

\[2 \lambda^0 e^{\alpha \Phi_0} P_{M}^{LG} = g_{Ma} Y^a + (\Lambda_0^\nu - \lambda^j \Lambda_j^\nu) g_{M\nu} + 2 \lambda^0 T_D e^{\alpha \Phi_0} C_{M 1 \ldots p} + \kappa^j \Lambda_j^\nu b_{M \nu}. \]

Comparing (2.45) with (2.44) and (2.43), one finds that the following equalities hold:

\[\Lambda_0^\mu P_{\mu}^{LG} = - \left(\frac{E_D}{V_D} + \frac{\pi \alpha'}{\lambda^0} e^{-\alpha \Phi_0} \kappa^j F^o_{0j} \right) = \text{constant}, \]
\[\Lambda_i^\mu P_{\mu}^{LG} = - \frac{\pi \alpha'}{\lambda^0} e^{-\alpha \Phi_0} \kappa^j F^o_{ij} = \text{constants}. \]

They may be viewed as restrictions on the number of the arbitrary parameters, presented in the theory.

As in the p-brane case, the momenta P_{μ}^{LG} are conserved quantities, due to the independence of the Lagrangian on the coordinates X^μ.

Inserting (2.43) and (2.44) into (2.42), one obtains the effective constraint

\[g_{ab} Y^a \dot{Y}^b = U^{DL}, \]

34
where
\[U^{DL} = \left[(\Lambda_0^\mu - \lambda^i \Lambda_0^\mu) (\Lambda_0^\nu - \lambda^j \Lambda_0^\nu) - \kappa^i \kappa^j \Lambda_i^\mu \Lambda_j^\nu \right] g_{\mu\nu} \]
\[- (2\lambda^0 T_{dp})^2 \text{det}(\Lambda_0^\mu \Lambda_0^\nu g_{\mu\nu}) + 4\lambda^0 e^{a\Phi_0} \left(T_{dp} \Lambda_0^\mu C_{\mu1...p} + \frac{E_{dp}}{V_{dp}} \right) \]
\[+ 2\kappa^i \Lambda_i^\mu (\Lambda_0^\nu - \lambda^j \Lambda_0^\nu) b_{\mu\nu} + 4\pi\alpha' \kappa^i (F_0^a - \lambda^j F_j^a). \]

In the gauge \((\lambda^m, \kappa^i) = \text{constants}\), the equations of motion following from \(L_{DG}^{DL}\) take the form:
\[g_{ab} \ddot{Y}^b + \Gamma_{a,bc} \dot{Y}^b \dot{Y}^c = \frac{1}{2} \partial_a U^{DL} + 2 \partial^i a_{ij} \dot{Y}^b, \]
where
\[A_{a}^{DL} = (\Lambda_0^\mu - \lambda^i \Lambda_0^\mu) g_{a\mu} + 2\lambda^0 T_{dp} e^{a\Phi_0} C_{a1...p} + \kappa^i \Lambda_i^\mu b_{a\mu}. \]

It is clear that the equations of motion and the effective constraints have the \textit{same form} for \(p\)-branes and for \(Dp\)-branes in linear gauges, as well as in static gauge. The only difference is in the explicit expressions for the \textit{effective} scalar and 1-form gauge potentials.

\section*{2.3.3 Branes dynamics in the whole space-time}

Working in \textit{static gauge} \(X^m(\xi^a) = \xi^m\), we actually imply that the probe branes have no dynamics along the background coordinates \(x^m\). The (proper) time evolution is possible only in the transverse directions, described by the coordinates \(x^a\).

Using the \textit{linear gauges}, we have the possibility to place the probe branes in general position with respect to the coordinates \(x^\mu\), on which the background fields do not depend. However, the real dynamics is again in the transverse directions only.

Actually, in the framework of our approach, the probe branes can have 'full' dynamical freedom only when the ansatz \((2.23)\) is used, because only then all of the brane coordinates \(X^M\) are allowed to vary \textit{nonlinearly} with the proper time \(\tau\). Therefore, with the help of \((2.23)\), we can probe the \textit{whole} space-time.

We will use the superscript \(A\) to denote that the corresponding quantity is taken on the ansatz \((2.23)\). It is understood that the conditions \((2.20)\) are also fulfilled.

\section*{P-branes}
Now, the reduced Lagrangian obtained from the action (2.5) is given by

\[L^A_p(\tau) = \frac{V_p}{4\lambda^0} \left\{ g_{MN} \dot{Y}^M \dot{Y}^N + 2 \left[(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu) g_{\mu N} + 2\lambda^0 T_p B_{N1...p} \right] \dot{Y}^N \right. \]
\[+ \left. \left(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu \right) \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) g_{\mu \nu} - (2\lambda^0 T_p)^2 \det(\Lambda_i^\mu \Lambda_j^\nu g_{\mu \nu}) \right. \]
\[+ \left. 4\lambda^0 T_p \lambda_0^\mu B_{\mu 1...p} \right\}. \]

The constraints, derived from the above Lagrangian, are:

\[g_{MN} \dot{Y}^M \dot{Y}^N + 2 \left(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu \right) g_{\mu N} \dot{Y}^N + \left(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu \right) \times \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) g_{\mu \nu} + (2\lambda^0 T_p)^2 \det(\Lambda_i^\mu \Lambda_j^\nu g_{\mu \nu}) = 0, \]
\[\Lambda_i^\mu \left[g_{\mu N} \dot{Y}^N + \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) g_{\mu \nu} \right] = 0. \] (2.47)

The corresponding momenta are \((P_M = P_M^A/V_p)\)

\[2\lambda^0 P_M = g_{MN} \dot{Y}^N + \left(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu \right) g_{M \mu} + 2\lambda^0 T_p B_{M1...p}, \]

and part of them, \(P_\mu\), are conserved

\[g_{\mu N} \dot{Y}^N + \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) g_{\mu \nu} + 2\lambda^0 T_p B_{\mu 1...p} = 2\lambda^0 P_\mu = \text{constants}, \] (2.48)

because \(L^A_p\) does not depend on \(X^{\mu}\). From (2.47) and (2.48), the compatibility conditions follow

\[\Lambda_i^\mu P_\mu = 0. \] (2.49)

We will regard on (2.49) as a solution of the constraints (2.47), which restricts the number of the arbitrary parameters \(\Lambda_i^\mu\) and \(P_\mu\). That is why from now on, we will deal only with the constraint (2.46).

In the gauge \(\lambda^m = \text{constants}\), the equations of motion for \(Y^N\), following from \(L^A_p\), have the form

\[g_{LN} \ddot{Y}^N + \Gamma_{L,MN} \dot{Y}^M \dot{Y}^N = \frac{1}{2} \partial_L \mathcal{U}^{in} + 2 \partial_{[L} \mathcal{A}^{in}_{MN]} \dot{Y}^N, \] (2.50)

where

\[\mathcal{U}^{in} = -\left(2\lambda^0 T_p\right)^2 \det(\Lambda_i^\mu \Lambda_j^\nu g_{\mu \nu}) + \left(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu \right) \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) g_{\mu \nu} \]
\[+ 4\lambda^0 T_p \lambda_0^\mu B_{\mu 1...p}, \]
\[\mathcal{A}^{in}_{MN} = \left(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu \right) g_{N \mu} + 2\lambda^0 T_p B_{N1...p} \]

Let us first consider this part of the equations of motion (2.50), which corresponds to \(L = \lambda\). It follows from (2.20) that the connection coefficients \(\Gamma_{\lambda,MN}\), involved in these equations, are

\[\Gamma_{\lambda,ab} = \frac{1}{2} \left(\partial_a g_{b \lambda} + \partial_b g_{a \lambda} \right), \quad \Gamma_{\lambda,\mu a} = \frac{1}{2} \partial_a g_{\mu \lambda}, \quad \Gamma_{\lambda,\mu \nu} = 0. \]
Inserting these expressions in the part of the differential equations (2.50) corresponding to $L = \lambda$ and using that $g_{MN} = \dot{Y}^a \partial_a g_{MN}$, $\dot{B}_{M1...p} = \dot{Y}^a \partial_a B_{M1...p}$, one receives

$$
\frac{d}{d\tau} \left[g_{\mu N} \dot{Y}^N + \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) g_{\mu \nu} + 2 \lambda^0 T_p B_{\mu 1...p} \right] = 0.
$$

These equalities express the fact that the momenta P_μ are conserved (compare with (2.48)). Therefore, we have to deal only with the other part of the equations of motion, corresponding to $L = a$

$$
g_{aN} \ddot{Y}^N + \Gamma_{a,MN} \dot{Y}^M \dot{Y}^N = \frac{1}{2} \partial_a U^m + 2 \partial [a A_{aN}^m] \dot{Y}^N. \quad (2.51)
$$

Our next task is to separate the variables \dot{Y}^μ and \dot{Y}^a in these equations and in the constraint (2.46). To this end, we will use the conservation laws (2.48) to express \dot{Y}^μ through \dot{Y}^a. The result is

$$
\dot{Y}^\mu = \left(g^{-1} \right)^{\mu \nu} \left[2 \lambda^0 (P_\nu - T_p B_{\nu 1...p}) - g_{\nu a} \dot{Y}^a \right] - (\Lambda_0^\mu - \lambda^i \Lambda_i^\mu).
$$

We will need also the explicit expressions for the connection coefficients $\Gamma_{a,ab}$ and $\Gamma_{a,\mu \nu}$, which under the conditions (2.20) reduce to

$$
\Gamma_{a,ab} = -\frac{1}{2} (\partial_a g_{b\mu} - \partial_b g_{a\mu}) = -\partial_{[a} g_{b]\mu}, \quad \Gamma_{a,\mu \nu} = -\frac{1}{2} \partial_a g_{\mu \nu}. \quad (2.53)
$$

By using (2.52) and (2.53), after some calculations, one rewrites the equations of motion (2.51) and the constraint (2.46) in the form

$$
\begin{align*}
\dot{h}_{ab} &+ \Gamma_{a,bc}^h \dot{Y}^b \dot{Y}^c = \frac{1}{2} \partial_a U^A + 2 \partial [a A_{b}^A] \dot{Y}^b, \quad (2.54) \\
\dot{h}_{ab} \dot{Y}^a \dot{Y}^b & = U^A, \quad (2.55)
\end{align*}
$$

where a new, effective metric appeared

$$
h_{ab} = g_{ab} - g_{a\mu} (g^{-1})^{\mu \nu} g_{\nu b}.
$$

$\Gamma_{a,bc}^h$ is the connection compatible with this metric

$$
\Gamma_{a,bc}^h = \frac{1}{2} (\partial_b h_{ca} + \partial_c h_{ba} - \partial_a h_{bc}).
$$

The new, effective scalar and gauge potentials are given by

$$
U^A = - (2 \lambda^0 T_p)^2 \text{det} (\Lambda_0^\mu \Lambda_j^\nu g_{\mu \nu}) - (2 \lambda^0)^2 (P_\mu - T_p B_{\mu 1...p}) (g^{-1})^{\mu \nu} (P_\nu - T_p B_{\nu 1...p}),
$$

$$
A_{a}^A = 2 \lambda^0 \left[g_{a\mu} (g^{-1})^{\mu \nu} (P_\nu - T_p B_{\nu 1...p}) + T_p B_{a 1...p} \right].
$$

We note that Eqs. (2.54), (2.55), and therefore their solutions, do not depend on the parameters Λ_0^μ and λ^i in contrast to the previously considered cases. However, they have the same form as before.
Dp-branes

The reduced Lagrangian, obtained from (2.12), is given by

\[
L^A_{Dp}(\tau) = \frac{V_{Dp} e^{-\sigma \Phi_0}}{4\lambda^0} \left\{ g_{MN} \dot{Y}^M \dot{Y}^N + \left[(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu) \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) - \kappa^i \kappa^j \Lambda_i^\mu \Lambda_j^\nu \right] g_{\mu\nu} + 2 \left[(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu) g_{\mu\nu} + 2 \lambda^0 T_{Dp} e^{\sigma \Phi_0} C_{N1...p} + \kappa^i \Lambda_i^\mu b_{N\mu} \right] \dot{Y}^N \right. \\
- \left. (2\lambda^0 T_{Dp})^2 \det(\Lambda_0^\mu \Lambda_0^\nu) + 4\lambda^0 T_{Dp} e^{\sigma \Phi_0} \Lambda_0^\mu C_{\mu1...p} - 2\kappa^i \Lambda_i^\mu \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) b_{\mu\nu} + 4\pi \alpha' \kappa^i \left(F_{0i}^0 - \lambda^j F_{ji}^o \right) \right\},
\]

As in the p-brane case, this part of the equations of motion (2.60), which corresponds to \(\dot{L} = \lambda \), expresses the conservation of the momenta \(P_\mu^D = P_{\mu D} = P_{\mu D}^A / V_{Dp} \) are conserved

\[
2\lambda^0 e^{\sigma \Phi_0} P_\mu^D = g_{MN} \dot{Y}^M \dot{Y}^N + \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) g_{\mu\nu} + 2\lambda^0 T_{Dp} e^{\sigma \Phi_0} C_{\mu1...p} + \kappa^j \Lambda_j^\nu b_{\mu\nu} = \text{constants}. \tag{2.59}
\]

From (2.57) and (2.59), one obtains the following compatibility conditions

\[
\Lambda_j^\mu P_\mu^D = \frac{\pi \alpha'}{\lambda^0} e^{-\sigma \Phi_0} \kappa^i F_{ij}^o,
\]

which we interpret as a solution of the constraints (2.57).

In the gauge \((\lambda^m, \kappa^i) = \text{constants} \), the equations of motion for \(Y^N \), following from \(L^A_{Dp} \), take the form

\[
g_{aN} \dot{Y}^N + \Gamma_{a, MN} \dot{Y}^M \dot{Y}^N = \frac{1}{2} \partial_a U^{D_{\text{in}}} + 2 \partial_a A^{D_{\text{in}}} \dot{Y}^N, \tag{2.60}
\]

where

\[
U^{D_{\text{in}}} = - (2\lambda^0 T_{Dp})^2 \det(\Lambda_0^\mu \Lambda_0^\nu) g_{\mu\nu} + \left[(\Lambda_0^\mu - \lambda^i \Lambda_i^\mu) \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) - \kappa^i \kappa^j \Lambda_i^\mu \Lambda_j^\nu \right] g_{\mu\nu} + 4\lambda^0 T_{Dp} e^{\sigma \Phi_0} \Lambda_0^\mu C_{\mu1...p} - 2\kappa^i \Lambda_i^\mu \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) b_{\mu\nu},
\]

\[
A^{D_{\text{in}}} = \left(\Lambda_0^\nu - \lambda^j \Lambda_j^\nu \right) g_{N\nu} + 2\lambda^0 T_{Dp} e^{\sigma \Phi_0} C_{N1...p} + \kappa^j \Lambda_j^\nu b_{N\nu}.
\]

As in the p-brane case, this part of the equations of motion (2.60), which corresponds to \(\dot{L} = \lambda \), expresses the conservation of the momenta \(P_\mu^D \), in accordance with (2.59). The remaining equations of motion, which we have to deal with, are

\[
g_{aN} \dot{Y}^N + \Gamma_{a, MN} \dot{Y}^M \dot{Y}^N = \frac{1}{2} \partial_a U^{D_{\text{in}}} + 2 \partial_a A^{D_{\text{in}}} \dot{Y}^N. \tag{2.61}
\]

38
To exclude the dependence on \dot{Y}^μ in the Eqs. (2.61) and in the constraints (2.56), (2.58), we use the conservation laws (2.59) to express \dot{Y}^μ through Y_a:

$$\dot{Y}^\mu = (g^{-1})^{\mu\nu} \left[2\lambda^0 e^{\alpha\Phi_0} (P^D_\nu - T_{DpC_{\mu1\ldots p}}) - g_{\nu a} \dot{Y}^a - \kappa^i \Lambda^\rho_j b_{\nu\rho} \right] - (\Lambda^\mu_0 - \lambda^i \Lambda^\nu_i). \quad (2.62)$$

By using (2.62) and (2.53), one can rewrite the equations of motion (2.61) and the constraint (2.56) as

$$h_{ab} \dot{Y}^b + \Gamma_{a,bc}^h \dot{Y}^b \dot{Y}^c = \frac{1}{2} \partial_a U^{DA} + 2 \partial_{[a} A_{b]}^{DA} \dot{Y}^b, \quad (2.63)$$

$$h_{ab} \dot{Y}^a \dot{Y}^b = U^{DA}. \quad (2.64)$$

Now, the effective scalar and 1-form gauge potentials are given by

$$U^{DA} = -(2\lambda^0 T_\mu)^2 \left[\partial \Lambda^\mu_i \Lambda^\nu_j g_{\mu\nu} \right] - \kappa^i \kappa^j \Lambda^\mu_i \Lambda^\nu_j g_{\mu\nu}$$

$$\times \left[2\lambda^0 e^{\alpha\Phi_0} (P^D_\nu - T_{DpC_{\mu1\ldots p}}) - \kappa^i \Lambda^\nu_i \Lambda^\mu_j b_{\nu\rho} \right] \left(g^{-1} \right)^{\mu\nu}$$

$$\Lambda_{a}^{DA} = g_{aa} \left(g^{-1} \right)^{\mu\nu} \left[2\lambda^0 e^{\alpha\Phi_0} (P^D_\nu - T_{DpC_{\mu1\ldots p}}) - \kappa^j \Lambda^\nu_j b_{\nu\rho} \right]$$

$$+ 2\lambda^0 T_{Dp} e^{\alpha\Phi_0} C_{a1\ldots p} + \kappa^i \Lambda^\mu_i b_{aa}.$$

Eqs. (2.63), (2.64), have the same form as in static and linear gauges, but now they do not depend on the parameters Λ^μ_0 and λ_i. Another difference is the appearance of a new, effective background metric h_{ab} and the corresponding connection $\Gamma_{a,bc}^h$.

In the D-brane case, we have another set of constraints (2.58), generated by the Lagrange multipliers κ^i. With the help of (2.62), they acquire the form

$$\left\{ \left[b_{a\nu} - g_{a\rho} \left(g^{-1} \right)^{\mu\nu} b_{\mu\rho} \right] \dot{Y}^a + b_{\mu\nu} \left(g^{-1} \right)^{\mu\rho} \left[2\lambda^0 e^{\alpha\Phi_0} (P^D_\rho - T_{DpC_{\rho1\ldots p}}) - \kappa^j \Lambda^\nu_j b_{\nu\rho} \right] \right\} \Lambda^\nu_i = -2\pi \alpha' \left(F^s_0_0^{ij} - \lambda^i F^s_0_{ij} \right).$$

2.3.4 Explicit solutions of the equations of motion

All cases considered so far, have one common feature. The dynamics of the corresponding reduced particle-like system is described by effective equations of motion and one effective constraint, which have the same form, independently of the ansatz used to reduce the p-branes or Dp-branes dynamics. Our aim here is to find explicit exact solutions to them. ❧

To be able to describe all cases simultaneously, let us first introduce some general notations.

3The additional restrictions on the solutions, depending on the ansatz and on the type of the branes, will be discussed in the next section.
We will search for solutions of the following system of nonlinear differential equations

\[
G_{ab} \dddot{Y}^b + \Gamma^g_{a,bc} \dddot{Y}^b \dot{Y}^c = \frac{1}{2} \partial_a U + 2 \partial_a A_b \dot{Y}^b, \\
G_{ab} \dot{Y}^a \dot{Y}^b = U,
\]

where \(G_{ab}, \Gamma^g_{a,bc}, U,\) and \(A_a\) can be as follows

\[
G_{ab} = (g_{ab}, h_{ab}), \quad \Gamma^g_{a,bc} = (\Gamma_{a,bc}, \Gamma^h_{a,bc}), \\
U = (U^S, U^{DS}, U^L, U^{DL}, U^A, U^{DA}), \\
A_a = (A_a^S, A_a^{DS}, A_a^L, A_a^{DL}, A_a^A, A_a^{DA}),
\]

depending on the ansatz and on the type of the brane (p-brane or Dp-brane).

Let us start with the simplest case, when the background fields depend on only one coordinate \(X^a = Y^a(\tau)\). In this case the Eqs. (2.65), (2.66) simplify to \((d_a \equiv d/dY^a)\)

\[
\frac{d}{d\tau} \left(G_{aa} \dot{Y}^a \right) - \frac{1}{2} d_a G_{aa} \left(\dot{Y}^a \right)^2 = \frac{1}{2} d_a U, \\
G_{aa} \left(\dot{Y}^a \right)^2 = U,
\]

where we have used that

\[
G_{ab} \dddot{Y}^b + \Gamma^g_{a,bc} \dddot{Y}^b \dot{Y}^c = \frac{d}{d\tau} \left(G_{ab} \dot{Y}^b \right) - \frac{1}{2} \partial_a G_{bc} \dddot{Y}^b \dot{Y}^c.
\]

After multiplying with \(2G_{aa} \dot{Y}^a\) and after using the constraint (2.68), the Eq. (2.67) reduces to

\[
\frac{d}{d\tau} \left[\left(G_{aa} \dot{Y}^a \right)^2 - G_{aa} U \right] = 0.
\]

The solution of (2.69), compatible with (2.68), is just the constraint (2.68). In other words, (2.68) is first integral of the equation of motion for the coordinate \(Y^a\). By integrating (2.68), one obtains the following exact probe branes solution

\[
\tau (X^a) = \tau_0 \pm \int_{X_0^a}^{X^a} \left(\frac{U}{G_{aa}} \right)^{-1/2} \, dx,
\]

where \(\tau_0\) and \(X_0^a\) are arbitrary constants.

When one works in the framework of the general ansatz (2.23), one has to also write down the solution for the remaining coordinates \(X^\mu\). It can be obtained as follows. One represents \(\dot{Y}^\mu\) as

\[
\dot{Y}^\mu = \frac{dY^\mu}{dY^a} \dot{Y}^a,
\]

\[\text{An example of such background is the generalized Kasner type metric, arising in the superstring cosmology}\ [43] \text{ (see also} \ [44], \ [45].\]
and use this and (2.68) in (2.52) for the \(p \)-brane, and in (2.62) for the \(Dp \)-brane. The result is a system of ordinary differential equations of first order with separated variables, which integration is straightforward. Replacing the obtained solution for \(Y^{\mu}(X^{a}) \) in the ansatz (2.23), one finally arrives at

\[
X^{\mu}(X^{a}, \xi^{i}) = X^{\mu}_{0} + \Lambda^{\mu}_{i} \left[\lambda^{i} \tau(X^{a}) + \xi^{i} \right]
\]

for the \(p \)-brane case, and at

\[
X^{\mu}(X^{a}, \xi^{i}) = X^{\mu}_{0} + \Lambda^{\mu}_{i} \left[\lambda^{i} \tau(X^{a}) + \xi^{i} \right]
\]

\[
- \int_{X^{a}_{0}}^{X^{a}} (g^{-1})^{\mu \nu} \left[g_{\nu a} \Rightarrow 2 \lambda^{0}(P_{\nu} - T_{p}B_{\nu1...p}) \left(\frac{U^{A}}{h_{aa}} \right)^{1/2} \right] dx
\]

for the \(Dp \)-brane case correspondingly. In the above two exact branes solutions, \(X^{\mu}_{0} \) are arbitrary constants, and \(\tau(X^{a}) \) is given in (2.70). We note that the comparison of the solutions \(X^{\mu}(X^{a}, \xi^{i}) \) with the initial ansatz (2.23) for \(X^{\mu} \) shows, that the dependence on \(\Lambda^{\mu}_{0} \) has disappeared. We will comment on this later on.

Let us turn to the more complicated case, when the background fields depend on more than one coordinate \(X^{a} = Y^{a}(\tau) \). We would like to apply the same procedure for solving the system of differential equations (2.65), (2.66), as in the simplest case just considered. To be able to do this, we need to suppose that the metric \(G^{ab} \) is a diagonal one. Then one can rewrite the effective equations of motion (2.65) and the effective constraint (2.66) in the form

\[
\frac{d}{d\tau} \left(g_{aa} Y^{a} \right)^{2} - \dot{Y}^{a} \partial_{a} (g_{aa} U) + \dot{Y}^{a} \sum_{b \neq a} \left[\partial_{a} \left(\frac{g_{aa}}{g_{bb}} \right) \left(g_{bb} \dot{Y}^{b} \right)^{2} - 4 \partial_{[a} A_{b]} g_{aa} \dot{Y}^{b} \right] = 0,
\]

\[
g_{aa} \left(\dot{Y}^{a} \right)^{2} + \sum_{b \neq a} g_{bb} \left(\dot{Y}^{b} \right)^{2} = U.
\]

To find solutions of the above equations without choosing particular background, we fix all coordinates \(X^{a} \) except one. Then the exact probe brane solution of the equations of motion is given again by the same expression (2.70) for \(\tau(X^{a}) \). In the case when one is using the general ansatz (2.23), the solutions (2.71) and (2.72) still also hold.

To find solutions depending on more than one coordinate, we have to impose further conditions on the background fields. Let us show, how a number of sufficient conditions, which allow us to reduce the order of the equations of motion by one, can be obtained.
First of all, we split the index a in such a way that Y^r is one of the coordinates Y^a, and Y^α are the others. Then we assume that the effective 1-form gauge field \mathcal{A}_a can be represented in the form

$$\mathcal{A}_a = (\mathcal{A}_r, \mathcal{A}_\alpha) = (\mathcal{A}_r, \partial_\alpha f),$$ \hfill (2.75)

i.e., it is oriented along the coordinate Y^r, and the remaining components \mathcal{A}_α are pure gauges. Now, the Eq. (2.73) read

$$\begin{aligned}
\frac{d}{d\tau} \left(G_{aa} \dot{Y}^\alpha \right)^2 &- \dot{Y}^\alpha \partial_\alpha (G_{aa} U) \\
+ \dot{Y}^\alpha \left[\partial_\alpha \left(\frac{G_{aa}}{G_{rr}} \right) \left(G_{rr} \dot{Y}^r \right)^2 - 2G_{aa} \partial_\alpha (\mathcal{A}_r - \partial_r f) \dot{Y}^r \right] \\
+ \dot{Y}^\alpha \sum_{\beta \neq \alpha} \partial_\alpha \left(\frac{G_{aa}}{G_{\beta\beta}} \right) \left(G_{\beta\beta} \dot{Y}^\beta \right)^2 &= 0,
\end{aligned}$$ \hfill (2.76)

After imposing the conditions

$$\partial_\alpha \left(\frac{G_{aa}}{G_{aa}} \right) = 0, \quad \partial_\alpha \left(\frac{G_{rr} \dot{Y}^r}{G_{aa}} \right)^2 = 0,$$ \hfill (2.78)

the Eq. (2.76) reduce to

$$\begin{aligned}
\frac{d}{d\tau} \left(G_{aa} \dot{Y}^\alpha \right)^2 &- \dot{Y}^\alpha \partial_\alpha \left(G_{aa} U + 2 (\mathcal{A}_r - \partial_r f) \dot{Y}^r \right) \\
+ \dot{Y}^\alpha \sum_{\beta \neq \alpha} \partial_\alpha \left(\frac{G_{aa}}{G_{\beta\beta}} \right) \left(G_{aa} \dot{Y}^\alpha \right)^2 + 2G_{rr} \partial_\alpha (\mathcal{A}_r - \partial_r f) \dot{Y}^\alpha &= 0.
\end{aligned}$$ \hfill (2.77)

After using the second of the conditions (2.78), the condition (2.80), and the already obtained solution (2.79), the Eq. (2.77) can be recast in the form

$$\begin{aligned}
\frac{d}{d\tau} \left(G_{rr} \dot{Y}^r \right)^2 &- \dot{Y}^r \partial_r \left(G_{rr} \dot{Y}^r \right)^2 + 2G_{rr} \partial_r (\mathcal{A}_r - \partial_r f) \dot{Y}^r \left(1 - n_\alpha \right) \left(U + 2 (\mathcal{A}_r - \partial_r f) \dot{Y}^r \right) - \sum_\alpha \frac{D_\alpha (Y^{a\neq\alpha})}{G_{aa}} \right) &= 0.
\end{aligned}$$ \hfill (2.80)
where \(n_\alpha \) is the number of the coordinates \(Y^\alpha \). The solution of this equation, compatible with (2.79) and with the effective constraint (2.74), is

\[
\left(G_{rr} \dot{Y}^r \right)^2 = G_{rr} \left[(1 - n_\alpha) \mathcal{U} - 2n_\alpha (A_r - \partial_r f) \dot{Y}^r - \sum_\alpha D_\alpha (Y^{\alpha \neq \alpha}) \frac{\mathcal{U} \dot{Y}^r}{G_{aa}} \right] = E_r (Y^r) \geq 0, \quad (2.81)
\]

where \(E_r \) is again an arbitrary function.

Thus, we succeeded to separate the variables \(\dot{Y}^a \) and to obtain the first integrals (2.79), (2.81) for the equations of motion (2.73), when the conditions (2.75), (2.78), (2.80) on the background are fulfilled. \(^5\) Further progress is possible, when working with particular background configurations, having additional symmetries (see for instance, [37]).

To summarize, we addressed here the problem of obtaining *explicit exact* solutions for probe branes moving in general string theory backgrounds. We concentrated our attention to the *common* properties of the \(p \)-branes and \(Dp \)-branes dynamics and tried to formulate an approach, which is effective for different embeddings, for arbitrary worldvolume and spacetime dimensions, for different variable background fields, for tensile and tensionless branes. To achieve this, we first performed an analysis with the aim to choose brane actions, which are most appropriate for our purposes.

Next, we formulated the frameworks in which to search for exact probe branes solutions. The guiding idea is the reduction of the brane dynamics to a particle-like one. In view of the existing practice, we first consider the case of *static gauge* embedding, which is the mostly used one in higher dimensions. Then we turn to the more general case of *linear embeddings*, which are appropriate for lower dimensions too. After that, we consider the branes dynamics by using a more general ansatz, allowing for its reduction to particle-like one. The obtained results reveal one common property in all the cases considered. The *effective* equations of motion and one of the constraints, the *effective* constraint, have the *same form* independently of the ansatz used to reduce the \(p \)-branes or \(Dp \)-branes dynamics. In general, the effective equations of motion do not coincide with the geodesic ones. The deviation from the geodesic motion is due to the appearance of *effective scalar* and 1-form gauge potentials. The same scalar potential arises in the effective constraint.

Also, we considered the problem of obtaining *explicit exact* solutions of the effective equations of motion and the effective constraint, without using the explicit structure of the effective potentials.

In the case when the background fields depend on only one coordinate \(x^a = X^a (\tau) \), we showed that these equations can always be integrated and give the probe brane solution in the form \(\tau = \tau (X^a) \), where \(\tau \) is the worldvolume temporal parameter. We also give the explicit solutions for the brane coordinates \(X^\mu \) in the form \(X^\mu = X^\mu (X^a, \xi^i) \). They are nontrivial when one uses the more general ansatz (2.23). Let us remind that \(x^\mu \) are the coordinates, on which the background fields do not depend.

\(^5\) An example, when the obtained sufficient conditions are satisfied, is given by the evolution of a tensionless brane in Kerr space-time. Moreover, in this case, one is able to find the orbit \(r = r (\theta) \) [16].
In the case when the background fields depend on more than one coordinate, and we fix all brane coordinates X^a except one, the exact solutions are given by the same expressions as in the case considered before, if the metric G_{ab} is a diagonal one. In this way, we have realized the possibility to obtain probe brane solutions as functions of every single one coordinate, on which the background depends. In the case when none of the brane coordinates is kept fixed, we were able to find sufficient conditions, which ensure the separation of the variables $\dot{X}^a = \dot{Y}^a(\tau)$. As a result, we have found the manifest expressions for n_a first integrals of the equations of motion, where n_a is the number of the brane coordinates Y^a.

In obtaining the solutions described above, it was not taken into account that some restrictions on them can arise, depending on the ansatz used and on the type of the branes considered. As far as we are interested here in the common properties of the probe branes dynamics, we will not make an exhaustive investigation of all possible peculiarities, which can arise in different particular cases. Nevertheless, we will point out some specific properties, characterizing the dynamics of the different type of branes for different embeddings.

We note that in static gauge, the brane coordinates X^a figuring in our solutions, are spatial ones. This is so, because in this gauge the background temporal coordinate, on which the background fields can depend, is identified with the worldvolume time τ.

The solutions $X^\mu(X^a, \xi^i)$, given by (2.71) for the p-brane and by (2.72) for the Dp-brane, depend on the worldvolume parameters (τ, ξ^i) through the specific combination $\Lambda^\mu_i (\lambda^i \tau + \xi^i)$. It is interesting to understand if its origin has some physical meaning. To this end, let us consider the p-branes equations of motion (2.10) and constraints (2.6), (2.7) in the tensionless limit $T_p \to 0$, when they take the form

$$
\begin{align*}
g_{LN} \left(\partial_0 - \lambda^i \partial_i \right) \left(\partial_0 - \lambda^j \partial_j \right) X^N + \Gamma_{LMN} \left(\partial_0 - \lambda^i \partial_i \right) X^M \left(\partial_0 - \lambda^j \partial_j \right) X^N &= 0, \\
g_{MN} \left(\partial_0 - \lambda^i \partial_i \right) X^M \left(\partial_0 - \lambda^j \partial_j \right) X^N &= 0, \\
g_{MN} \left(\partial_0 - \lambda^i \partial_i \right) X^M \partial_j X^N &= 0.
\end{align*}
$$

(2.82)

It is easy to check that in D-dimensional space-time, any D arbitrary functions of the type $F^M = F^M (\lambda^i \tau + \xi^i)$ solve this system of partial differential equations. Hence, the linear part of the tensile p-brane and Dp-brane solutions (2.71) and (2.72), is a background independent solution of the tensionless p-brane equations of motion and constraints.

Let us also point out here that by construction, the actions used in our considerations allow for taking the tensionless limit $T_p \to 0$ ($T_{Dp} \to 0$). Moreover, from the explicit form of the obtained exact probe branes solutions it is clear that the opposite limit $T_p \to \infty$ ($T_{Dp} \to \infty$) can be also taken.

We have obtained solutions of the probe branes equations of motion and one of the constrains, which have the same form for all of the considered cases. Now, let us see how we can satisfy the other constraints present in the theory. These are p constraints, obtained by varying the corresponding actions with respect to the Lagrange multipliers λ^i. For the Dp-brane, we have p additional constraints, obtained by varying the action with respect
to the Lagrange multipliers κ^i. Actually, the constraints generated by the λ^i-multipliers are satisfied. Due to the conservation of the corresponding momenta, they just restrict the number of the independent parameters present in the solutions. The only exception is the p-brane in static gauge case, where the momenta P^SG_i must be zero. Let us give an example how the problem can be resolved in a particular situation, which is nevertheless general enough. Let the background metric along the probe p-brane be a diagonal one. Then from (2.26) and (2.28) it follows that the momenta P^SG_i will be identically zero, if we work in the gauge $\lambda^i = 0$. In the general case, and this is also valid for the κ^i-generated constraints, we have to insert the obtained solution of the equations of motion into the unresolved constraints. The result will be a number of algebraic relations between the background fields. If they are not satisfied (on the solution) at least for some particular values of the free parameters in the solution, it would be fair to say that our approach does not work properly in this case, and some modification is needed.

Finally, let us say a few words about some possible generalizations of the obtained results.

As is known, the branes charges are restricted up to a sign to be equal to the branes tensions from the condition for space-time supersymmetry of the corresponding actions. In our computations, however, the coefficients in front of the background antisymmetric fields do not play any special role. That is why, to account for nonsupersymmetric probe branes, it is enough to make the replacements

$$T_p b_{p+1} \rightarrow Q_p b_{p+1}, \quad T_D p c_{p+1} \rightarrow Q_D p c_{p+1}.$$

In our Dp-brane action (2.12), we have included only the leading Wess-Zumino term of the possible Dp-brane couplings. It is easy to see that our results can be generalized to include other interaction terms just by the replacement

$$c_{p+1} \rightarrow c_{p+1} + c_{p-1} \wedge b_2 + \ldots.$$

This is a consequence of the fact that we do not used the explicit form of the background field $c_{M_0 \ldots M_p}$. We have used only its antisymmetry and its independence on part of the background coordinates.

2.4 Particular cases

2.4.1 Tensionless string in Demianski-Newman background

The metric for Demianski-Newman space-time is of the following type:

$$ds^2 = g_{00}(dx^0)^2 + 2g_{01}dx^0dx^1 + 2g_{03}dx^0dx^3 + 2g_{13}dx^1dx^3 + g_{22}(dx^2)^2 + g_{33}(dx^3)^2.$$
It can be put in a form in which the manifest expressions for \(g_{\mu\nu} \) are given by the equalities (all other components are zero):

\[
\begin{align*}
 g_{00} &= -\exp(+2U), \\
 g_{11} &= \left(1 - \frac{a^2 \sin^2 \theta}{R^2}\right) \exp(-2U), \\
 g_{22} &= (R^2 - a^2 \sin^2 \theta) \exp(-2U), \\
 g_{33} &= R^2 \sin^2 \theta \exp(-2U) \left[\frac{2(Mr + l) a \sin^2 \theta + 2R^2 l \cos \theta}{R^2 - a^2 \sin^2 \theta}\right]^2 \exp(+2U), \\
 g_{03} &= -\frac{2(Mr + l) a \sin^2 \theta + 2R^2 l \cos \theta}{R^2 - a^2 \sin^2 \theta} \exp(+2U),
\end{align*}
\]

(2.83)

where

\[
\exp(\pm 2U) = \left[1 - \frac{2Mr + l (a \cos \theta + l)}{r^2 + (a \cos \theta + l)^2}\right]^{\pm 1}, \quad R^2 = r^2 - 2Mr + a^2 - l^2,
\]

\(M \) is a mass parameter, \(a \) is an angular momentum per unit mass and \(l \) is the NUT parameter. The metric (2.83) is a stationary axisymmetric metric. It belongs to the vacuum solutions of the Einstein field equations, which are of type D under Petrov’s classification. The Kerr and NUT space-times are particular cases of the considered metric and can be obtained by putting \(l = 0 \) or \(a = 0 \) in (2.83). The case \(l = 0, a = 0 \) obviously corresponds to the Schwarzschild solution.

Solving the equations of motion and constraints (2.82) for the string case \((p = 1)\) in Demianski-Newman background, one can find the following solution [3]

\[
\begin{align*}
 t - t_0 &= \pm \int_{r_0}^{r} dr \left(\frac{r^0 + C^0 A_0}{R^2 \sin^2 \theta_0}\right) \exp(2U_0) - C^3 \exp(-2U_0) \right] W^{-1/2}, \\
 \varphi - \varphi_0 &= \pm \int_{r_0}^{r} dr C^0 + C^3 A_0 \left(\frac{R^2 - a^2 \sin^2 \theta_0}{R^2 \sin^2 \theta_0}\right) \exp(2U_0) W^{-1/2}, \\
 C_1(\tau - \tau_0) &= \pm \int_{r_0}^{r} dr W^{-1/2}, \\
 W &= \left(R^2 - a^2 \sin^2 \theta_0\right)^{-1} \left[(C^3)^2 R^2 - \frac{(C^0 + C^3 A_0)}{\sin^2 \theta_0}\right] \exp(+4U_0), \\
 A_0 &= \frac{2(Mr + l) a \sin^2 \theta_0 + 2R^2 l \cos \theta_0}{R^2 - a^2 \sin^2 \theta_0}, \quad U_0 = U_{\theta = \theta_0}, \\
 t_0, r_0, \varphi_0, \tau_0 &= \text{constants}.
\end{align*}
\]
2.4.2 Tensionless \(p \)-branes in a solitonic background

The solitonic \((\tilde{d} - 1)\)-brane background is given by

\[
ds^2 = g_{MN} dx^M dx^N = \exp (2A) \eta_{\mu\nu} dx^\mu dx^\nu + \exp (2B) \left(dr^2 + r^2 d\Omega_{D-\tilde{d}-1}^2 \right),
\]

\[
\exp (2A) = \left(1 + \frac{k_{\tilde{d}}}{r^{d+\tilde{d}}} \right)^{-\frac{d}{d+\tilde{d}}}, \quad \exp (2B) = \left(1 + \frac{k_{\tilde{d}}}{r^{d+\tilde{d}}} \right)^{+\frac{d}{d+\tilde{d}}}, \quad k_{\tilde{d}} = \text{const},
\]

\[
d + \tilde{d} = D - 2, \quad \eta_{\mu\nu} = \text{diag}(-, +, \ldots, +), \quad \mu, \nu = 0, 1, \ldots, \tilde{d} - 1.
\]

The \((D - \tilde{d} - 1)\)-dimensional sphere \(S^{D-\tilde{d}-1} \) is supposed to be parameterized so that

\[
g_{kk} = \exp (2B) r^2 \prod_{n=1}^{D-k-1} \sin^2 \theta_n, \quad D - k - 1 = 1, 2, \ldots, D - \tilde{d} - 2,
\]

\[
g_{D-1,D-1} = \exp (2B) r^2.
\]

In this background the following tensionless \(p \)-brane solutions of the equations of motion and constraints (2.82) do exist [4]

\[
y^\mu = y_0^\mu \pm E^\mu \int_{r_0}^r du \left(1 + \frac{k_{\tilde{d}}}{u^2} \right) \left(\mathcal{E} - \frac{(C^{D-1})^2}{u^2} + \frac{\mathcal{E} k_{\tilde{d}}}{u^{d+\tilde{d}}} \right)^{-1/2}, \quad r \equiv y^{\tilde{d}},
\]

\[
E^\mu = \left(E^0, E^1, \ldots, E^{D-1} \right) = \left(C^{d-1}, C^1, \ldots, C^{0} \right);
\]

\[
\varphi = \varphi_0 \pm C^{D-1} \int_{r_0}^r du \left(\mathcal{E} - \frac{(C^{D-1})^2}{u^2} + \frac{\mathcal{E} k_{\tilde{d}}}{u^{d+\tilde{d}}} \right)^{-1/2}, \quad \varphi \equiv y^{D-1}; \quad (2.85)
\]

\[
\tau = \tau_0 \pm \int_{r_0}^r du \left(1 + \frac{k_{\tilde{d}}}{u^2} \right)^{\frac{d}{d+\tilde{d}}} \left(\mathcal{E} - \frac{(C^{D-1})^2}{u^2} + \frac{\mathcal{E} k_{\tilde{d}}}{u^{d+\tilde{d}}} \right)^{-1/2},
\]

\[
\mathcal{E} \equiv -E^\mu E^\nu \eta_{\mu\nu} = \left(C^{d-1} \right)^2 - \left(C^{0} \right)^2 - \sum_{\alpha=1}^{d-2} (C^\alpha)^2 \geq 0.
\]

Let us restrict ourselves to the particular case of ten dimensional solitonic 5-brane background. The corresponding values of the parameters \(D, \tilde{d} \) and \(d \) are \(D = 10, \tilde{d} = 6, d = 2 \). Taking this into account and performing the integration in (2.85), one obtains the following explicit exact solution of the equations of motion and constraints for a tensionless \(p \)-brane
living in such curved space-time \((C = k_6 - (C^9)^2 / \mathcal{E} > 0)\)

\[
y^\mu = y_0^\mu \pm \frac{k_6 E^\mu}{(C \mathcal{E})^{1/2}} \ln \left(\frac{c^{1/2}}{c^{1/2}} + \left(1 + \frac{C}{C^9}\right)^{1/2} \right)
\]

\[
\pm \frac{E^\mu}{\mathcal{E}^{1/2}} \left[(C + r^2)^{1/2} - (C + r_0^2)^{1/2} \right],
\]

\[
\varphi = \varphi_0 \pm \frac{C^9}{(C \mathcal{E})^{1/2}} \ln \left(\frac{c^{1/2}}{c^{1/2}} + \left(1 + \frac{C}{C^9}\right)^{1/2} \right),
\]

\[
\tau = \tau_0 \mp \left(\frac{k_6^3}{C^3 \mathcal{E}^2} \right)^{1/4} r^{3/2} \left(1 + \frac{C}{r^2}\right)^{1/2} F_2 \left(\frac{3}{4}, 1, -\frac{3}{4}; 3/2, 3/4; 1 + \frac{r^2}{C}, -\frac{r^2}{k_6} \right) \tag{2.86}
\]

\[
\mp 2 \left(\frac{k_6^3 r_0^2}{C^3 \mathcal{E}^2} \right)^{1/4} F_1 \left(\frac{1}{4}, 1/2, -\frac{3}{4}; 5/4; -\frac{r_0^2}{C}, -\frac{r_0^2}{k_6} \right)
\]

\[
\pm \frac{\Gamma(1/4)k_6}{2 \Gamma(3/4)} \sqrt{\frac{\pi}{C \mathcal{E}}} 2 F_1 \left(1/4, 1/2; -1/4; 1 - \frac{k_6}{C} \right)
\]

\[
\pm \frac{\Gamma(1/4)k_6}{2 \Gamma(3/4)} \sqrt{\frac{\pi}{C \mathcal{E}}} \left(1 - \frac{k_6}{C}\right)^{-1/4} 2 F_1 \left(1/4, 3/2, 3/4; 1 - \frac{k_6}{C} \right)^{-1}.
\]

2.4.3 String and D-string solutions in other backgrounds

Let us first give an explicit example of exact solution for a string moving in four dimensional cosmological Kasner type background. Namely, the line element is \((x^0 \equiv t)\)

\[
ds^2 = g_{MN} dx^M dx^N = -(dt)^2 + \sum_{\mu=1}^3 t^{2q_\mu} (dx^\mu)^2, \tag{2.87}
\]

\[
\sum_{\mu=1}^3 q_\mu = 1, \quad \sum_{\mu=1}^3 q_\mu^2 = 1. \tag{2.88}
\]

For definiteness, we choose \(q_\mu = (2/3, 2/3, -1/3)\). Then, one can obtain the following exact solution of the equations of motion and constraints in the considered particular metric \([5]\)

\[
X^\mu(t, \sigma) = X_0^\mu + C_\pm^\mu \left(\lambda^1 \tau + \sigma \right) \pm A_\pm^\mu I^\mu(t), \quad \tau(t) = \tau_0 \pm I^0(t), \tag{2.89}
\]

\[
I^M(t) \equiv \int_{t_0}^t du u^{-2q_M} (V^\pm)^{-1/2}, \quad q_M = (0, 2/3, 2/3, -1/3),
\]

and \(V^\pm\) is the corresponding effective scalar potential.

Although we have chosen relatively simple background metric, the expressions for \(I^M\) are too complicated. Because of that, we shall write down here only the formulas for the two
limiting cases $T = 0$ and $T \to \infty$ for $t > t_0 \geq 0$. The former corresponds to considering tensionless strings (high energy string limit).

When $T = 0$, I^M reads

$$I^M = \frac{1}{2} \left[(A_1^\pm)^2 + (A_2^\pm)^2 \right]^{1/2} \left[\frac{\Gamma(q_2/2 - q_3/2)}{(q_3 - 1/3) A} \right] \left(1/2, q_M - 1/3; q_M + 2/3; -\frac{1}{A_2 t^2} \right) 2F_1 \left(1/2, q_M - 1/3; q_M + 2/3; -\frac{1}{A_2 t^2} \right) + \frac{t_0^{5/3 - 2q_M}}{2} 2F_1 \left(1/2, 5/6 - q_M; 11/6 - q_M; -A_2^2 t_0^2 \right) + \frac{\Gamma(q_M - 1/3) \Gamma(5/6 - q_M)}{\sqrt{\pi} A_2^{5/3 - 2q_M}} \right],$$

where

$$A^2 \equiv \left(\frac{(A_3^\pm)^2}{(A_1^\pm)^2 + (A_2^\pm)^2} \right).$$

When $T \to \infty$, I^M are given by the equalities

$$I^0 = \pm \frac{1}{4\lambda_0 T C_3^3} \left[6 \frac{\Gamma(1/3)}{C t^2} \left(1/2, -1/6; 5/6; -\frac{1}{C t^2} \right) \right. - \frac{3}{2} t_0^{4/3} \left. \left(1/2, 2/3; 5/3; -C^2 t_0^2 \right) + \frac{\Gamma(-1/6) \Gamma(2/3)}{\sqrt{\pi} C t^4/3} \right],$$

$$I^{1,2} = \pm \frac{1}{4\lambda_0 T C_3^3} \left[\ln \left(\frac{1 + C^2 t^2}{1 + C^2 t^2} \right) - \ln \left(\frac{1 + C^2 t^2}{1 + C^2 t^2} \right) \right],$$

$$I^3 = \pm \frac{1}{2\lambda_0 T C_3^3} \left[\ln \left(\frac{1 + C^2 t^2}{1 + C^2 t^2} \right) - \ln \left(\frac{1 + C^2 t^2}{1 + C^2 t^2} \right) \right],$$

where

$$C^2 \equiv \left(\frac{(C_1^\pm)^2 + (C_2^\pm)^2}{(C_3^\pm)^2} \right).$$

Our choice of the scale factors $(t^{2/3}, t^{2/3}, t^{-1/3})$ was dictated only by the simplicity of the solution. However, this is a very special case of a Kasner type metric. Actually, this is one of the two solutions of the constraints (2.88) (up to renaming of the coordinates x^μ) for which two of the exponents q_μ are equal. The other such solution is $q_\mu = (0, 0, 1)$ and it corresponds to flat space-time. Now, we will write down the exact tensionless string solution ($T = 0$) for a gravity background with arbitrary, but different q_μ. It is given by (2.89), where

$$I^M(t) = \text{constant} - \frac{\sqrt{\pi}}{A_2^\pm} \sum_{k=0}^{\infty} \frac{\Gamma(1/2 - k)}{k! \Gamma(1/2 - k)} \frac{(A_3^\pm / A_2^\pm)^{2k}}{2^{2q_2 - q_2}} \left(\frac{2(q_2 - q_3)k + 3q_2 - 2q_1 + 1 - 2q_M}{2(q_2 - q_1)} \right),$$

$$\mathcal{P} \equiv 2(q_2 - q_3)k + q_2 + 1 - 2q_M, \quad q_M = (0, q_1, q_2, q_3), \quad \text{for } q_1 > q_2,$$
and

\[I^M(t) = \text{constant} + \frac{\sqrt{\pi}}{A_1^\pm} \sum_{k=0}^\infty \frac{(A_3^\pm / A_1^\pm)^{2k}}{k! \Gamma (1/2 - k)} \frac{t^Q}{Q} \times
\]

\[2F_1 \left(\frac{1}{2} + k, \frac{Q}{2(q_1 - q_2)}; \frac{2(q_1 - q_3)k + 3q_1 - 2q_2 + 1 - 2q_M}{2(q_1 - q_2)}; -\left(\frac{A_2^\pm}{A_1^\pm} \right)^2 t^{2(q_1 - q_2)} \right), \]

\[Q \equiv 2(q_1 - q_3)k + q_1 + 1 - 2q_M, \quad \text{for } q_1 < q_2. \]

Because there are no restrictions on \(q_\mu \), except \(q_1 \neq q_2 \neq q_3 \), the above probe string solution is also valid in generalized Kasner type backgrounds arising in superstring cosmology. In string frame, the effective Kasner constraints for the four dimensional dilaton-moduli-vacuum solution are

\[\sum_{\mu=1}^3 q_\mu = 1 + K, \quad \sum_{\mu=1}^3 q_\mu^2 = 1 - B^2, \]

\[-1 - \sqrt{3(1 - B^2)} \leq K \leq -1 + \sqrt{3(1 - B^2)}, \quad B^2 \in [0, 1]. \]

In Einstein frame, the metric has the same form, but in new, rescaled coordinates and with new powers \(\tilde{q}_\mu \) of the scale factors. The generalized Kasner constraints are also modified as follows

\[\sum_{\mu=1}^3 \tilde{q}_\mu = 1, \quad \sum_{\mu=1}^3 \tilde{q}_\mu^2 = 1 - \tilde{B}^2 - \frac{1}{2} \tilde{K}^2, \quad \tilde{B}^2 + \frac{1}{2} \tilde{K}^2 \in [0, 1]. \]

Actually, the obtained tensionless string solution is also relevant to considerations within a pre-big bang context, because there exist a class of models for pre-big bang cosmology, which is a particular case of the given generalized Kasner backgrounds.

Our next example is for a string moving in the following ten dimensional supergravity background given in Einstein frame

\[ds^2 = g_{MN}^E dx^M dx^N = \exp(2A) \eta_{mn} dx^m dx^n + \exp(2B) \left(dr^2 + r^2 d\Omega_7^2 \right), \]

\[\exp \left[-2(\phi - \phi_0) \right] = 1 + \frac{k}{r^6}, \quad \phi_0, k = \text{constants}, \]

\[A = \frac{3}{4}(\phi - \phi_0), \quad B = -\frac{1}{4}(\phi - \phi_0), \quad B_{01} = -\exp \left[-2 \left(\phi - \frac{3}{4} \phi_0 \right) \right]. \]

All other components of \(B_{MN} \) as well as all components of the gravitino \(\psi_M \) and dilatino \(\lambda \) are zero. If we parameterize the sphere \(S^7 \) so that

\[g_{10-j,10-j}^E = \exp(2B)r^2 \prod_{l=1}^{j-1} \sin^2 x^{10-l}, \quad j = 2, 3, \ldots, 7, \quad g_{99}^E = \exp(2B)r^2, \]
the metric γ_{MN} does not depend on x^0, x^1, and x^3, i.e. $\mu = 0, 1, 3$. Then we set $y^\alpha = y_0^\alpha = \text{constants}$ for $\alpha = 4, \ldots, 9$ and obtain a solution of the equations of motion and constraints as a function of the radial coordinate r:

$$X^\mu (r, \sigma) = X_0^\mu + C_\pm^\mu (\lambda^1 \tau + \sigma) \pm I^\mu (r), \quad \tau (r) = \tau_0 \pm I (r),$$

$$I^m (r) = \eta^{m n} \int_{r_0}^r dr \left[B_n^\pm + 2 \lambda^0 T \varepsilon_{nk} C_n^k \exp (-\phi_0 / 2) \left(1 + \frac{k}{u^6} \right) \right] \left(1 + \frac{k}{u^6} \right) W_\pm^{1/2},$$

$$I^3 (r) = \frac{B_3^\pm}{s^2} \int_{r_0}^r \frac{dr}{u^2} W_{\pm 1/2}, \quad s = \prod_{I=1}^{6} \sin y_I^{10-1}, \quad I (r) = \exp (\phi_0 / 2) \int_{r_0}^r du W_{\pm 1/2},$$

where

$$W_\pm = \left\{ \left[B_0^\pm + 2 \lambda^0 T C_\pm^1 \exp (-\phi_0 / 2) \left(1 + \frac{k}{u^6} \right) \right] \right\} \left(1 + \frac{k}{u^6} \right) - \left(\frac{B_3^\pm}{s} \right)^2 \frac{1}{u^2} + (2 \lambda^0 T)^2 \exp (\phi_0) \left\{ \left(C_\pm^0 \right)^2 - \left(C_\pm^1 \right)^2 \right\} \left(1 + \frac{k}{u^6} \right)^{-1} - (C_\pm^3 s)^2 u^2 \right\}.$$

This is the solution also in the string frame, because we have one and the same metric in the action expressed in two different ways.

The above solution extremely simplifies in the tensionless limit $T \to 0$. Let us give the manifest expressions for this case. For $r_0 < r$, they are:

$$\lim_{T \to 0} I^m (r) = \eta^{m n} B_n^\pm \left(J_0^0 + k J_0^0 \right), \quad \lim_{T \to 0} I^3 (r) = \frac{B_3^\pm}{s^2} J^2, \quad \lim_{T \to 0} I (r) = J_0^0,$$

where

$$J^\beta (r) = \sqrt{\frac{\pi}{(B_0^\pm)^2 - (B_3^\pm)^2} \times \left\{ \frac{1}{r^{\beta-1}} \sum_{n=0}^{\infty} \frac{\Gamma \left(-\frac{6n+\beta-5}{4} \right) (k/r^6)^n}{(6n + \beta - 1) \Gamma \left(\frac{12n+3}{2} \right) \Gamma \left(\frac{6n+\beta-3}{4} \right)} P_n^{\left(\frac{6n+\beta-1}{4},-n-1 \right)} \left(1 - 2 \frac{\delta}{k} r^4 \right) \right\} \right\} \times \left\{ \frac{1}{r^{\beta-1}} \sum_{n=0}^{\infty} \frac{\Gamma \left(\frac{2n+\beta+3}{4} \right) (-\delta/r_0^2)^n}{(2n + \beta - 1) \Gamma \left(\frac{12n+3}{2} \right) \Gamma \left(\frac{6n+\beta+3}{4} \right)} P_n^{\left(\frac{2n+\beta-1}{4},-n-1 \right)} \left(1 - 2 \frac{k}{\delta} r_0^4 \right) \right\} \right\},$$

$$\delta \equiv \frac{(B_3^\pm/s)^2}{(B_0^\pm)^2 - (B_3^\pm)^2},$$

and $P_n^{(\alpha,\beta)}(z)$ are the Jacobi polynomials. To obtain the solution for $r_0 > r$, one has to exchange r and r_0 in the expression for J^β.

51
Now let us turn to the case of a D-string living in five dimensional anti de Sitter space-time. The corresponding metric may be written as

$$
g_{00} = -\left(1 + \frac{r^2}{R^2}\right), \quad g_{11} = \left(1 + \frac{r^2}{R^2}\right)^{-1},$$

$$g_{22} = r^2 \sin^2 x^3 \sin^2 x^4, \quad g_{33} = r^2 \sin^2 x^4, \quad g_{44} = r^2,$$

where $K = -1/R^2$ is the constant curvature.

The exact string solution as a function of r found in [5] is

$$X^0 (r, \sigma) = X_0^0 + C_{\pm}^0 \left(\lambda^1 \tau + \sigma\right) \mp B_0^\pm \int_{r_0}^{r} du \left(1 + \frac{u^2}{R^2}\right)^{-1} \left(g_{00} V_D^{\pm 0}\right)^{-1/2},$$

$$X^2 (r, \sigma) = X_0^2 + C_{\pm}^2 \left(\lambda^1 \tau + \sigma\right) \pm \frac{B_2^\pm}{c^2} \int_{r_0}^{r} \frac{du}{u^2} \left(g_{00} V_D^{\pm 0}\right)^{-1/2},$$

$$\tau (r) = \tau_0 \pm \int_{r_0}^{r} du \left(g_{00} V_D^{\pm 0}\right)^{-1/2}, \quad \varphi \equiv \sin x^3 \sin x^4,$$

$$F_{01} (r) = -g_s T_D \lambda^2 \left[\left(C_{\pm}^0 \right)^2 - \left(c C_{\pm}^2 \right)^2\right] r^2 + \left(C_{\pm}^0 \right)^2\right],$$

where

$$g_{00} V_D^{\pm 0} = \left[(B_0^\pm)^2 - (B_2^\pm)^2 + (A_\pm C_{\pm}^0)^2\right] - \left(B_2^\pm / c\right)^2 \frac{1}{u^2}$$

$$+ A_{\pm}^2 \left[2 \left(\frac{C_{\pm}^0}{R}\right)^2 - \left(c C_{\pm}^2 \right)^2\right] u^2 + \left(A_{\pm}^2 / R\right)^2 \left[\left(C_{\pm}^0 \right)^2 - \left(c C_{\pm}^2 \right)^2\right] u^4.$$

This solution describes a D-string evolving in the subspace (x^0, x^1, x^2).

Alternatively, we could fix the coordinates $r = r_0$, $x^4 = x^4_0 = \psi_0$ and obtain a solution as a function of the coordinate $x^3 \equiv \theta$. In this case, the result is the following [5]

$$X^0 (\theta, \sigma) = X_0^0 + C_{\pm}^0 \left(\lambda^1 \tau + \sigma\right) \mp \frac{B_0^\pm / \varrho}{g_{00}} \int_{\theta_0}^{\vartheta} du \left(-V_D^{\mp 0}\right)^{-1/2},$$

$$X^2 (\theta, \sigma) = X_0^2 + C_{\pm}^2 \left(\lambda^1 \tau + \sigma\right) \pm \frac{B_2^\pm}{\varrho} \int_{\theta_0}^{\vartheta} \frac{du}{\sin^2 u} \left(-V_D^{\mp 0}\right)^{-1/2},$$

$$\tau (\theta) = \tau_0 \pm \varrho \int_{\theta_0}^{\vartheta} du \left(-V_D^{\mp 0}\right)^{-1/2}, \quad \varrho \equiv r_0 \sin \psi_0,$$

$$F_{01} (\theta) = g_s T_D \lambda^2 \left[\left(C_{\pm}^0 \right)^2 g_{00}^0 + \left(c C_{\pm}^2 \right)^2 \sin^2 \theta\right],$$

where

$$-V_D^{\mp 0} = \left[(B_0^\pm)^2 g_{11}^0 - (A_\pm C_{\pm}^0)^2 g_{00}^0\right] - \left(A_\pm C_{\pm}^2 \varrho\right)^2 \sin^2 u - \left(B_2^\pm / \varrho\right)^2 \sin^2 u.$$
This is a solution for D-string placed in the subspace described by the coordinates (x^0, x^2, x^3).

Finally, we will give an example of exact solution for a D-string moving in a non-diagonal metric. To this end, let us consider the ten dimensional black hole solution of [47]. In string frame metric, it can be written as [48]

\[
ds^2 = \left(1 + \frac{r_0^2 \sinh^2 \alpha}{r^2}\right)^{-1/2} \left(1 + \frac{r_0^2 \sinh^2 \gamma}{r^2}\right)^{-1/2} \\
\times \left\{ -dt^2 + (dx^9)^2 + \frac{r_0^2}{r^2} \left(\cosh \chi dt + \sinh \chi dx^9\right)^2 \\
+ \left(1 + \frac{r_0^2 \sinh^2 \alpha}{r^2}\right) \left[(dx^5)^2 + (dx^6)^2 + (dx^7)^2 + (dx^8)^2 \right] \right\} \\
+ \left(1 + \frac{r_0^2 \sinh^2 \alpha}{r^2}\right)^{1/2} \left(1 + \frac{r_0^2 \sinh^2 \gamma}{r^2}\right)^{1/2} \left[\left(1 - \frac{r_0^2}{r^2}\right)^{-1} - 1 + \frac{r_0^2 \sinh^2 \gamma}{r^2} \right], \\
\exp[-2(\phi - \phi_\infty)] = \left(1 + \frac{r_0^2 \sinh^2 \alpha}{r^2}\right)^{-1} \left(1 + \frac{r_0^2 \sinh^2 \gamma}{r^2}\right). \tag{2.90}
\]

The equalities (2.90) define a solution of type IIB string theory, which low energy action in Einstein frame contains the terms

\[
\int d^{10}x \sqrt{-g} \left[R - \frac{1}{2} (\nabla \phi)^2 - \frac{1}{12} \exp(\phi) H^2 \right], \tag{2.91}
\]

where H' is the Ramond-Ramond three-form field strength. The Neveu-Schwarz 3-form field strength, the selfdual 5-form field strength and the second scalar are set to zero. After some simplifications [5], the exact D-string solution as a function of the radial coordinate r reads

\[
X^\mu(r, \sigma) = X_0^\mu + C_\pm^\mu \left(\lambda_1^\mu \tau + \sigma\right) \pm I^\mu(r), \quad \mu = 0, 2, 5, 6, 7, 8, 9, \\
X^{3,4} = X_0^{3,4} = \text{constants}, \quad \tau(r) = \tau_0 \pm I(r),
\]
where
\[
I^0 = - \int_{r_0}^{r} du \left[B_0^\pm g_{09} - B_9^\pm g_{00} \right] g_{11} W^{-1/2},
\]
\[
I^0 = \int_{r_0}^{r} du \left[B_0^\pm g_{09} - B_9^\pm g_{00} \right] g_{11} W^{-1/2},
\]
\[
I^l = B^l_i \int_{r_0}^{r} \frac{du}{g^l_0} W^{-1/2}, \quad l = 2, 5, 6, 7, 8, \quad I = \int_{r_0}^{r} du W^{-1/2},
\]
\[
F_{01} = g_s T D_\lambda^2 C_{\pm}^{\mu} C_{\pm}^{\nu} g_{\mu\nu}(r),
\]
\[
W = \left[(B_0^\pm)^2 - \left(\frac{A_0^\pm C_0^0}{g_{11}} \right)^2 \right] g_{00} + \left[(B_9^\pm)^2 - \left(\frac{A_9^\pm C_9^0}{g_{11}} \right)^2 \right] g_{99}
\]
\[
- 2 \left(B_0^\pm B_9^\pm + \frac{A_0^\pm C_0^0 C_9^0}{g_{11}} \right) g_{09}
\]
\[
- \frac{1}{g_{11}} \left\{ \sum_{i=5}^{8} \left[(A_0^\pm C_0^i)^2 + (B_9^\pm)^2 \right] + \left(\frac{B_9^2}{c} \right)^2 \left(\frac{1}{u^2} + (A_0^\pm C_0^0)^2 \right) u^2 \right\}.\]

All previous considerations are based on the ansatz (2.19). However, there exist other embeddings which allow for simplification of the dynamics and as a consequence for obtaining exact solutions of the equations of motion and constraints. An example is the following one
\[
X^\mu(\xi^m) = \Lambda^\mu_m \xi^m + Z^\mu(\alpha \sigma + \beta \tau), \quad X^a(\xi^m) = Z^a(\alpha \sigma + \beta \tau), \quad \alpha, \beta = \text{constants}, (2.92)
\]
where \(\tau = \xi^0, \sigma \) is one of the worldvolume spatial coordinates \(\xi^i \), and \(Z^\mu, Z^a \) are arbitrary functions. This ansatz will be used further on.

3 AdS/CFT

The AdS/CFT duality [35] between string/M-theory on curved space-times with Anti-de Sitter subspaces and conformal field theories in different dimensions has been actively investigated in the last years. A lot of impressive progresses have been made in this field of research based mainly on the integrability structures discovered on both sides of the correspondence. The most studied example is the duality between type IIB string theory on \(\text{AdS}_5 \times S^5 \) target space and the \(\mathcal{N} = 4 \) super Yang-Mills theory (SYM) in four space-time dimensions. However, many other cases are also of interest, and have been investigated intensively (for recent review on the AdS/CFT duality, see [49]).

Different classical string/M-theory solutions play important role in checking and understanding the AdS/CFT correspondence [50]. To establish relations with the dual gauge theory, one has to take the semiclassical limit of large conserved charges [51].

An interesting issue to solve is to find the finite-size effects, related to the wrapping interactions in the dual field theory [52].
3.1 Classical string solutions and string/field theory duality

In \[7\] and \[8\] the string dynamics in general string theory target space-times is considered by using the Polyakov action (2.1) (for strings \(p=1\)). Exact solutions of the equations of motion and Virasoro constraints are found. This is done in the covariant worldsheet gauge \(\gamma^{mn} = \text{constants}\). The considerations in \[7\] are based on the ansatz (2.19), while in \[8\] a particular case of the ansatz (2.92) is used, corresponding to \(\alpha = 1, \beta = 0\). Then, the general results are applied for several string backgrounds having dual field theory description. Namely, \(\text{AdS}_5 \times S^5\) with field theory dual \(\mathcal{N} = 4\) SYM, \(\text{AdS}_5\) black hole with field theory dual \textit{finite temperature} \(\mathcal{N} = 4\) SYM, and \(\text{AdS}_3 \times S^3 \times \mathcal{M}\), with NS-NS 2-form gauge field. In accordance with the \(\text{AdS/CFT}\) duality, the string theory on \(\text{AdS}_3 \times S^3 \times \mathcal{M}\) is dual to a superconformal field theory on a cylinder, which is the boundary of \(\text{AdS}_3\) in global coordinates.

Analogous considerations have been made in \[29\]. The difference is that the most general form of the embedding (2.92) is applied for strings. Let us describe the general results obtained there.

In what follow we will use \textit{conformal gauge} \(\gamma^{mn} = \eta^{mn} = \text{diag}(-1, 1)\) in which the string Lagrangian, the Virasoro constraints and the equations of motion take the following form:

\[
\mathcal{L} = \frac{T}{2} (G_{00} - G_{11} + 2B_{01}),
\]

\[
G_{00} + G_{11} = 0, \quad G_{01} = 0,
\]

\[
g_{LK} \left[(\partial_0^2 - \partial_1^2) X^K + \Gamma^K_{MN} (\partial_0 X^M \partial_0 X^N - \partial_1 X^M \partial_1 X^N) \right] = H_{LMN} \partial_0 X^M \partial_1 X^N.
\]

Now, let us \textit{suppose} that there exist some number of commuting Killing vector fields along part of \(X^M\) coordinates and split \(X^M\) into two parts

\[
X^M = (X^\mu, X^a),
\]

where \(X^\mu\) are the isometric coordinates, while \(X^a\) are the non-isometric ones. The existence of isometric coordinates leads to the following conditions on the background fields:

\[
\partial_\mu g_{MN} = 0, \quad \partial_\mu b_{MN} = 0.
\]

Then from the string action, we can compute the conserved charges

\[
Q_\mu = \int d\sigma \frac{\partial \mathcal{L}}{\partial (\partial_0 X^\mu)}
\]

under the above conditions.

Next, we introduce the following ansatz for the string embedding

\[
X^\mu(\tau, \sigma) = \Lambda^\mu \tau + \tilde{X}^\mu (\alpha \sigma + \beta \tau), \quad X^a(\tau, \sigma) = \tilde{X}^a (\alpha \sigma + \beta \tau),
\]
where Λ^μ, α, β are arbitrary parameters. Further on, we will use the notation $\xi = \alpha \sigma + \beta \tau$. Applying this ansatz, one can find that the equalities (3.1), (3.3) become

$$ L = \frac{T}{2} \left[- (\alpha^2 - \beta^2) g_{MN} \frac{d\tilde{X}^M}{d\xi} \frac{d\tilde{X}^N}{d\xi} + 2\Lambda^\mu (\beta g_{\mu N} + \alpha b_{\mu N}) \frac{d\tilde{X}^N}{d\xi} + \Lambda^\mu \Lambda^\nu g_{\mu \nu} \right], \quad (3.5) $$

$$ G_{00} + G_{11} = (\alpha^2 + \beta^2) g_{MN} \frac{d\tilde{X}^M}{d\xi} \frac{d\tilde{X}^N}{d\xi} + 2\beta \Lambda^\mu g_{\mu N} \frac{d\tilde{X}^N}{d\xi} + \Lambda^\mu \Lambda^\nu g_{\mu \nu} = 0, \quad (3.6) $$

$$ G_{01} = \alpha \beta g_{MN} \frac{d\tilde{X}^M}{d\xi} \frac{d\tilde{X}^N}{d\xi} + \alpha \Lambda^\mu g_{\mu N} \frac{d\tilde{X}^N}{d\xi} = 0, \quad (3.7) $$

$$ Q_\mu = \frac{T}{\alpha} \int d\xi \left[(\beta g_{\mu N} + \alpha b_{\mu N}) \frac{d\tilde{X}^N}{d\xi} + \Lambda^\nu g_{\mu \nu} \right]. \quad (3.9) $$

Our next task is to try to solve the equations of motion (3.8) for the isometric coordinates, i.e. for $L = \lambda$. Due to the conditions (3.2) imposed on the background fields, we obtain that

$$ \Gamma_{\lambda,ab} = \frac{1}{2} (\partial_a g_{b\lambda} + \partial_b g_{a\lambda}), \quad \Gamma_{\lambda,\mu a} = \frac{1}{2} \partial_a g_{\mu \lambda}, \quad \Gamma_{\lambda,\mu \nu} = 0, $$

$$ H_{\lambda ab} = \partial_a b_{b\lambda} + \partial_b b_{a\lambda}, \quad H_{\lambda \mu a} = \partial_a b_{\lambda \mu}, \quad H_{\lambda \mu \nu} = 0. $$

By using this, one can find the following first integrals for \tilde{X}^μ:

$$ \frac{d\tilde{X}^\mu}{d\xi} = \frac{1}{\alpha^2 - \beta^2} \left[g^{\mu \nu} (C_\nu - \alpha \Lambda^\rho b_{\nu \rho}) + \beta \Lambda^\mu \right] - g^{\mu \nu} g_{\nu a} \frac{d\tilde{X}^a}{d\xi}, \quad (3.10) $$

where C_ν are arbitrary integration constants. Therefore, according to our ansatz (3.4), the solutions for the string coordinates X^μ can be written as

$$ X^\mu(\tau, \sigma) = \Lambda^\mu \tau + \frac{1}{\alpha^2 - \beta^2} \int d\xi \left[g^{\mu \nu} (C_\nu - \alpha \Lambda^\rho b_{\nu \rho}) + \beta \Lambda^\mu \right] - \int g^{\mu \nu} g_{\nu a} d\tilde{X}^a(\xi). \quad (3.11) $$
Now, let us turn to the remaining equations of motion corresponding to \(L = a \), where

\[
\Gamma_{a,ib} = -\frac{1}{2}(\partial_ag_{bi} - \partial_bg_{ai}), \quad \Gamma_{a,\mu
u} = -\frac{1}{2}\partial_ag_{\mu\nu},
\]

\[
H_{\mu
u} = \partial_a b_{\mu\nu}, \quad H_{a,\mu
u} = -\partial_a b_{\mu\nu} + \partial_b b_{a\mu
u}.
\]

Taking this into account and replacing the first integrals for \(\tilde{X}^\mu \) already found, one can write these equations in the form (prime is used for \(d/d\xi \))

\[
(\alpha^2 - \beta^2) \left[h_{ab} \tilde{X}^{b'} + \Gamma_{a,be}^h \tilde{X}^b \tilde{X}^e \right] = 2\partial_a A_b \tilde{X}^{b'} - \partial_a U,
\]

where

\[
h_{ab} = g_{ab} - g_{a\mu} g^{\mu\nu} g_{b\nu}, \quad \Gamma_{a,be}^h = \frac{1}{2} (\partial_b h_{ca} + \partial_c h_{ba} - \partial_a h_{bc})
\]

\[
A_a = g_{a\mu} g^{\mu\nu} (C_\nu - \alpha\Lambda^\rho b_{\nu\rho}) + \alpha\Lambda^\mu b_{a\mu},
\]

\[
U = \frac{1}{\alpha^2 - \beta^2} \left[(C_\mu - \alpha\Lambda^\rho b_{\mu\rho}) g^{\mu\nu} (C_\nu - \alpha\Lambda^\lambda b_{\nu\lambda}) + \alpha^2 \Lambda^\mu \Lambda^\nu g_{\mu\nu} \right].
\]

One can show that the above equations for \(\tilde{X}^a \) can be derived from the effective Lagrangian

\[
\mathcal{L}^{\text{eff}}(\xi) = \frac{1}{2}(\alpha^2 - \beta^2) h_{ab} \tilde{X}^{a'} \tilde{X}^{b'} + A_a \tilde{X}^{a'} - U.
\]

The corresponding effective Hamiltonian is

\[
\mathcal{H}^{\text{eff}}(\xi) = \frac{1}{2}(\alpha^2 - \beta^2) h_{ab} \tilde{X}^{a'} \tilde{X}^{b'} + U,
\]

or in terms of the momenta \(p_a \) conjugated to \(\tilde{X}^a \)

\[
\mathcal{H}^{\text{eff}}(\xi) = \frac{1}{2}(\alpha^2 - \beta^2) h_{ab} (p_a - A_a) (p_b - A_b) + U.
\]

The Virasoro constraints (3.6), (3.7) become:

\[
\frac{1}{2}(\alpha^2 - \beta^2) h_{ab} \tilde{X}^{a'} \tilde{X}^{b'} + U = 0, \quad \alpha\Lambda^\mu C_\mu = 0.
\]

Finally, let us write down the expressions for the conserved charges (3.9)

\[
Q_\mu = \frac{T}{\alpha^2 - \beta^2} \int d\xi \left[\frac{\beta}{\alpha} C_\mu + \alpha\Lambda^\nu g_{\mu\nu} + b_{\mu\nu} g^{\nu\rho} (C_\rho - \alpha\Lambda^\lambda b_{\rho\lambda}) + (\alpha^2 - \beta^2) (b_{\mu a} - b_{\mu\nu} g^{\nu\rho} g_{\rho a}) \tilde{X}^{a'} \right].
\]
3.1.1 Rotating strings in type IIA reduction of M-theory on G_2 manifold and their semiclassical limits

The type IIA background, in which we will search for rotating string solutions, has the form

$$ds_{10}^2 = r_0^{1/2}C \left\{- (dx^0)^2 + \delta_{IJ}dx^I dx^J + A^2 \left[(g^1)^2 + (g^2)^2 \right] + B^2 \left[(g^3)^2 + (g^4)^2 \right] + D^2 (g^5)^2 \right\} + r_0^{1/2} \frac{dr^2}{C}, \quad (I, J = 1, 2, 3), \quad r_0 = \text{const},$$

$$e^\Phi = r_0^{3/4} C^{3/2}, \quad F_2 = \sin \theta_1 d\phi_1 \wedge d\theta_1 - \sin \theta_2 d\phi_2 \wedge d\theta_2. \quad (3.18)$$

Here, $g^1, ..., g^5$ are given by

$$g^1 = - \sin \theta_1 d\phi_1 - \cos \psi_1 \sin \theta_2 d\phi_2 + \sin \psi_1 d\theta_2,$$
$$g^2 = d\theta_1 - \sin \psi_1 \sin \theta_2 d\phi_2 - \cos \psi_1 d\theta_2,$$
$$g^3 = - \sin \theta_1 d\phi_1 + \cos \psi_1 \sin \theta_2 d\phi_2 - \sin \psi_1 d\theta_2,$$
$$g^4 = d\theta_1 + \sin \psi_1 \sin \theta_2 d\phi_2 + \cos \psi_1 d\theta_2,$$
$$g^5 = d\psi_1 + \cos \theta_1 d\phi_1 + \cos \theta_2 d\phi_2,$$

and the functions A, B, C and D depend on the radial coordinate r only:

$$A = \frac{1}{\sqrt{12}} \sqrt{(r - 3 r_0/2)(r + 9 r_0/2)}, \quad B = \frac{1}{\sqrt{12}} \sqrt{(r + 3 r_0/2)(r - 9 r_0/2)},$$
$$C = \sqrt{\frac{(r - 9 r_0/2)(r + 9 r_0/2)}{(r - 3 r_0/2)(r + 9 r_0/2)}}, \quad D = r/3. \quad (3.19)$$

In (3.18), Φ and F_2 are the Type IIA dilaton and the field strength of the Ramond-Ramond one-form gauge field respectively.

The above ten dimensional background arises as dimensional reduction of M-theory on a G_2 manifold with field theory dual four dimensional $\mathcal{N} = 1$ SYM.

The type IIA solution (3.18) describes a D6-brane wrapping the S^3 in the deformed conifold geometry. For $r \to \infty$, the metric becomes that of a singular conifold, the dilaton is constant, and the flux is through the S^3 surrounding the wrapped D6-brane. For $r - 9 r_0/2 = \epsilon \to 0$, the string coupling e^Φ goes to zero like $\epsilon^{-3/2}$, whereas the curvature blows up as $\epsilon^{-3/2}$ just like in the near horizon region of a flat D6-brane. This means that classical supergravity is valid for sufficiently large radius. However, the singularity in the interior is the same as the one of flat D6 branes, as expected. On the other hand, the dilaton continuously decreases from a finite value at infinity to zero, so that for small r_0 classical string theory is valid everywhere. As explained in [55], the global geometry is that of a warped product of flat Minkowski space and a non-compact space, Y_6, which for large radius is simply the conifold since the backreaction of the wrapped D6-brane becomes less and less important. However, in the interior, the backreaction induces changes on Y_6 away from the conifold geometry. For
$r \to 9r_0/2$, the S^2 shrinks to zero size, whereas an S^3 of finite size remains. This behavior is similar to that of the deformed conifold but the two metrics are different.

Three types of rotating string solutions have been found in \[12\].

The first one is given by ($\Delta r = r - 3l$, $\Delta r_1 = r_1 - 3l$)

$$
\xi^1(r) = \frac{8}{(\Lambda^2_- + \Lambda^2_+)^{1/2}} \left[\frac{l \Delta r}{(3l - r_2) \Delta r_1} \right]^{1/2} \times
\nonumber
\left(\begin{array}{l}
F_{D}^{(5)}(1/2; -1/2, -1/2, 1/2, 1/2, 1/2; 3/2; -\Delta r \frac{\Delta r}{2l}, -\Delta r \frac{\Delta r}{4l}, -\Delta r \frac{\Delta r}{6l}, -\Delta r \frac{\Delta r}{3l - r_2}, \Delta r_1) \nonumber
\end{array} \right).
$$

Now, we can compute the conserved momenta on the obtained solution. They are:

$$
\frac{E}{\Lambda_0^2} = \frac{P_I}{\Lambda_0^2} = T \left[\frac{2^7 l^5 \Delta r_1}{(\Lambda^2_- + \Lambda^2_+)(3l - r_2)} \right]^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
\nonumber
F_{D}^{(1)}(1/2; 1/2, 1/2; 1/2; \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}) \nonumber
$$

$$
P_{\theta_1} = (\Lambda^0_0 - \Lambda^0_0 \cos \psi^0_1) I_A + (\Lambda^0_0 + \Lambda^0_0 \cos \psi^0_1) I_B, \nonumber
$$

$$
P_{\theta_2} = (\Lambda^0_0 - \Lambda^0_0 \cos \psi^0_1) I_A + (\Lambda^0_0 + \Lambda^0_0 \cos \psi^0_1) I_B, \nonumber
$$

where

$$
I_A = T \left[\frac{2^7 l^5 \Delta r_1}{(\Lambda^2_- + \Lambda^2_+)(3l - r_2)} \right]^{1/2} \left(1 + \frac{\Delta r_1}{2l} \right) \left(1 + \frac{\Delta r_1}{6l} \right) \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
\nonumber
F_{D}^{(3)}(1/2; -1, -1, 1/2, 3/2; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}), \nonumber
$$

$$
I_B = \frac{T}{9} \left[\frac{2^9 (l \Delta r_1)^3}{(\Lambda^2_- + \Lambda^2_+)(3l - r_2)} \right]^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right) \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
\nonumber
F_{D}^{(2)}(1/2; -1, 1/2, 5/2; \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}). \nonumber
$$

Our next task is to find the relation between the energy E and the other conserved quantities P_I, P_{θ_1}, P_{θ_2}, in the semiclassical limit (large conserved charges), which corresponds to $r_1 \to \infty$. In this limit,

$$
\frac{E}{\Lambda_0^2} = \frac{P_I}{\Lambda_0^2} = \frac{\pi T (2^3 t)^{1/2}}{(\Lambda^2_- + \Lambda^2_+)^{1/2}}, \quad I_A = I_B = \frac{\pi T (2 l)^{1/2} \psi^0_0}{(\Lambda^2_- + \Lambda^2_+)^{3/2}}, \nonumber
$$

59
which leads to the following energy-charge relation
\[E^2 = P^2 + 2\pi T (6r_0)^{1/2} \left(P_{\theta_1}^2 + P_{\theta_2}^2 \right)^{1/2}, \quad P^2 = \delta_{lJ} P_l P_J. \] (3.25)

The second type of rotating string solution can be written as
\[F_D^{(5)} \left(1/2; -1/2, 1/2, 1/2, 1/2; 3/2; -\frac{\Delta r}{2l}, -\frac{\Delta r}{4l}, -\frac{\Delta r}{6l}, -\frac{\Delta r}{3l - r_2}, \frac{\Delta r}{\Delta r_1} \right). \]

For \(E \) and \(P_l \) we have
\[\frac{E}{\Lambda_0} = \frac{P_l}{\Lambda_0} = 8T \left[\frac{2l\Delta r_1}{(\Lambda_+^2 + \Lambda_-^2 + 4\Lambda_D^2/3) (3l - r_2)} \right]^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \]
\[\times F_D^{(1)} \left(1/2; 1/2; 3/2; \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}} \right). \] (3.27)

For the conserved angular momenta \(P_\theta \) and \(P_\phi \) one finds
\[P_\theta = \left(\Lambda_0^\phi - \Lambda_0^\phi \sin \psi_1 \sin \theta_2 \right) J_A + \left(\Lambda_0^\phi + \Lambda_0^\phi \sin \psi_0 \sin \theta_2 \right) J_B, \] (3.28)
\[P_\phi = \Lambda_0^\phi \sin \theta_0 \sin \psi_1 \sin \theta_2 J_A + \left(\Lambda_0^\phi \sin \theta_2 + \Lambda_0^\phi \sin \psi_0 \right) \sin \theta_2 J_B + \Lambda_0^\phi \cos^2 \theta_2 J_D, \]
where
\[J_A = 8T \left[\frac{2l^5 \Delta r_1}{(\Lambda_+^2 + \Lambda_-^2 + 4\Lambda_D^2/3) (3l - r_2)} \right]^{1/2} \left(1 + \frac{\Delta r_1}{2l} \right) \left(1 + \frac{\Delta r_1}{6l} \right) \]
\[\times \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} F_D^{(3)} \left(1/2; -1, -1, 1/2; 3/2; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}} \right), \] (3.29)
\[J_B = \frac{16}{9} T \left[\frac{2l\Delta r_1^3}{(\Lambda_+^2 + \Lambda_-^2 + 4\Lambda_D^2/3) (3l - r_2)} \right]^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right) \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \]
\[\times F_D^{(2)} \left(1/2; -1, 1/2, 5/2; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}} \right); \] (3.30)
\[J_D = 8T \left[\frac{2l^5 \Delta r_1}{(\Lambda_+^2 + \Lambda_-^2 + 4\Lambda_D^2/3) (3l - r_2)} \right]^{1/2} \left(1 + \frac{\Delta r_1}{3l} \right) \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \]
\[\times F_D^{(2)} \left(1/2; -2, 1/2; 3/2; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}} \right). \] (3.31)
In the semiclassical limit $r_1 \to \infty$, one gets the following dependence of the energy on the charges P_I, P_θ and P_ϕ

$$E^2 = \mathbf{P}^2 + 2\pi T (6r_0)^{1/2} \left(P_\theta^2 + \frac{3P_\phi^2}{3 - \cos^2 \theta_2^0} \right)^{1/2}.$$

(3.32)

The third solution and the conserved charges can be computed in the same way. These computations lead to the following energy-charge relation after taking the semiclassical limit

$$E^2 = \mathbf{P}^2 + 2\pi T \left(\frac{6r_0}{\Delta} \right)^{1/2} \times \left[(3 - \cos^2 \theta_2^0) P_{\phi_1}^2 + (3 - \cos^2 \theta_1^0) P_{\phi_2}^2 - 4P_{\phi_1}P_{\phi_2} \cos \theta_1^0 \cos \theta_2^0 \right]^{1/2},$$

(3.33)

where

$$\Delta = 3 - \cos^2 \theta_1^0 - \cos^2 \theta_2^0 - \cos^2 \theta_1^0 \cos^2 \theta_2^0.$$

3.1.2 Strings in $AdS_5 \times S^5$, integrable systems and finite-size effects for single spikes

We use the reduction of the string dynamics on $R_t \times S^3$ subspace of $AdS_5 \times S^5$ to the Neumann-Rosochatius (NR) integrable system to map all string solutions described by this dynamical system onto solutions of the complex sine-Gordon (CSG) integrable model. This mapping relates the parameters in the solutions on both sides of the correspondence. Then, we find finite-size string solutions, their images in the (complex) sine-Gordon (SG) system, and the leading finite-size effects of the single spike “$E - \Delta \varphi$” relation for both $R_t \times S^2$ and $R_t \times S^3$ cases [16].

Strings on $R_t \times S^3$ and the NR integrable system

We choose to work in *conformal gauge* in which the string Lagrangian and the Virasoro constraints take the form (3.31) (in $AdS_5 \times S^5$ the 2-form B-field is zero)

$$\mathcal{L}_s = \frac{T}{2} (G_{00} - G_{11})$$

(3.34)

$$G_{00} + G_{11} = 0, \quad G_{01} = 0.$$

(3.35)

We embed the string in $R_t \times S^3$ subspace of $AdS_5 \times S^5$ as follows

$$Z_0 = Re^{i(t, \sigma)}, \quad W_j = Rr_j(\tau, \sigma)e^{i\varphi_j(\tau, \sigma)}, \quad \sum_{j=1}^{2} W_j \bar{W}_j = R^2,$$
where R is the common radius of AdS_5 and S^5, and t is the AdS time. For this embedding, the metric induced on the string worldsheet is given by

$$G_{ab} = -\partial(aZ_0\partial b\bar{Z}_0) + \sum_{j=1}^{2} \partial(aW_j\partial b\bar{W}_j) = R^2 \left[-\partial_a t \partial_b t + \sum_{j=1}^{2} (\partial_a r_j \partial_b r_j + r_j^2 \partial_a \varphi_j \partial_b \varphi_j) \right].$$

The corresponding string Lagrangian becomes

$$\mathcal{L} = \mathcal{L}_s + \Lambda_s \left(\sum_{j=1}^{2} r_j^2 - 1 \right),$$

where Λ_s is a Lagrange multiplier. In the case at hand, the background metric does not depend on t and φ_j. Therefore, the conserved quantities are the string energy E_s and two angular momenta J_j, given by

$$E_s = -\int d\sigma \partial(\partial_0 t) \mathcal{L}_s, \quad J_j = \int d\sigma \partial(\partial_0 \varphi_j) \mathcal{L}_s.$$

It is known that restricting ourselves to the case

$$t(\tau, \sigma) = \kappa \tau, \quad r_j(\tau, \sigma) = r_j(\xi), \quad \varphi_j(\tau, \sigma) = \omega_j \tau + f_j(\xi),$$

$$\xi = \alpha \sigma + \beta \tau, \quad \kappa, \omega_j, \alpha, \beta = \text{constants},$$

reduces the problem to solving the NR integrable system [58]. For the case under consideration, the NR Lagrangian reads (prime is used for $d/d\xi$)

$$L_{NR} = (\alpha^2 - \beta^2) \sum_{j=1}^{2} \left[r_j^2 \left(\frac{1}{\alpha^2 - \beta^2} \right) \left(\frac{C_j^2}{r_j^2} + \alpha^2 \omega_j^2 r_j^2 \right) \right] + \Lambda_s \left(\sum_{j=1}^{2} r_j^2 - 1 \right).$$

where the parameters C_j are integration constants after single time integration of the equations of motion for $f_j(\xi)$:

$$f_j' = \frac{1}{\alpha^2 - \beta^2} \left(\frac{C_j}{r_j^2} + \beta \omega_j \right).$$

The constraints (3.35) give the conserved Hamiltonian H_{NR} and a relation between the embedding parameters and the arbitrary constants C_j:

$$H_{NR} = (\alpha^2 - \beta^2) \sum_{j=1}^{2} \left[r_j^2 \left(\frac{1}{\alpha^2 - \beta^2} \right) \left(\frac{C_j^2}{r_j^2} + \alpha^2 \omega_j^2 r_j^2 \right) \right] = \frac{2}{\alpha^2 - \beta^2} \kappa^2,$$

$$\sum_{j=1}^{2} C_j \omega_j + \beta \kappa^2 = 0.$$
For closed strings, \(r_j \) and \(f_j \) satisfy the following periodicity conditions
\[
r_j(\xi + 2\pi \alpha) = r_j(\xi), \quad f_j(\xi + 2\pi \alpha) = f_j(\xi) + 2\pi n_\alpha, \tag{3.42}
\]
where \(n_\alpha \) are integer winding numbers. On the ansatz (3.37), \(E_s \) and \(J_j \) introduced in (3.36) take the form
\[
E_s = \frac{\sqrt{\lambda} \kappa}{2\pi \alpha} \int d\xi, \quad J_j = \frac{\sqrt{\lambda}}{2\pi} \frac{1}{\alpha^2 - \beta^2} \int d\xi \left(\frac{\beta}{\alpha} C_j + \alpha \omega_j r_j^2 \right), \tag{3.43}
\]
where we have used that the string tension and the 't Hooft coupling constant \(\lambda \) are related by \(TR^2 = \frac{\sqrt{\lambda}}{2\pi} \).

In order to identically satisfy the embedding condition
\[
\sum_{j=1}^{2} r_j^2 - 1 = 0,
\]
we introduce a new variable \(\theta(\xi) \) by
\[
r_1(\xi) = \sin \theta(\xi), \quad r_2(\xi) = \cos \theta(\xi). \tag{3.44}
\]
Then, Eq. (3.40) leads to
\[
\theta'(\xi) = \pm \frac{1}{\alpha^2 - \beta^2} \left[(\alpha^2 + \beta^2) \kappa^2 - \frac{C_1^2}{\sin^2 \theta} - \frac{C_2^2}{\cos^2 \theta} - \alpha^2 \left(\omega_1^2 \sin^2 \theta + \omega_2^2 \cos^2 \theta \right) \right]^{1/2} \tag{3.45}
\]
which can be integrated to give
\[
\xi(\theta) = \pm (\alpha^2 - \beta^2) \int \frac{d\theta}{\Theta(\theta)}. \tag{3.46}
\]
From Eqs. (3.39) and (3.44), we can obtain
\[
f_1 = \frac{\beta \omega_1 \xi}{\alpha^2 - \beta^2} \pm C_1 \int \frac{d\theta}{\sin^2 \theta \Theta(\theta)}, \tag{3.47}
\]
\[
f_2 = \frac{\beta \omega_2 \xi}{\alpha^2 - \beta^2} \pm C_2 \int \frac{d\theta}{\cos^2 \theta \Theta(\theta)}. \tag{3.48}
\]
Let us also point out that the solutions for \(\xi(\theta) \) and \(f_j \) must satisfy the conditions (3.41) and (3.42). All these solve formally the NR system for the present case.

Relationship between the NR and CSG integrable systems

Due to Pohlmeyer [59], we know that the string dynamics on \(R_t \times S^3 \) can be described by the CSG equation. Here, we derive the relation between the solutions of the two integrable systems - NR and CSG.
The CSG system is defined by the Lagrangian
\[\mathcal{L}(\psi) = \frac{\eta^{ab}\partial_a\bar{\psi}\partial_b\psi}{1 - \psi\bar{\psi}} + M^2\bar{\psi}\psi \]
which give the equation of motion
\[\partial_a\partial^a\psi + \bar{\psi}\frac{\partial_a\psi\partial^a\psi}{1 - \psi\bar{\psi}} - M^2(1 - \bar{\psi}\psi)\psi = 0. \]
If we represent \(\psi \) in the form
\[\psi = \sin(\phi/2)\exp(i\chi/2), \]
the Lagrangian can be expressed as
\[\mathcal{L}(\phi, \chi) = \frac{1}{4}\left[\partial_a\phi\partial^a\phi + \tan^2(\phi/2)\partial_a\chi\partial^a\chi + (2M)^2\sin^2(\phi/2) \right], \]
along with the equations of motion
\[\partial_a\partial^a\phi - \frac{1}{2}\frac{\sin(\phi/2)}{\cos^3(\phi/2)}\partial_a\chi\partial^a\chi - M^2\sin\phi = 0, \quad (3.49) \]
\[\partial_a\partial^a\chi + \frac{2}{\sin\phi}\partial_a\phi\partial^a\chi = 0. \quad (3.50) \]
The SG system corresponds to a particular case of \(\chi = 0 \).

To relate the NR system with the CSG integrable system, we consider the case
\[\phi = \phi(\xi), \quad \chi = A\sigma + B\tau + \tilde{\chi}(\xi), \]
where \(\phi \) and \(\tilde{\chi} \) depend on only one variable \(\xi = \alpha\sigma + \beta\tau \) in the same way as in our NR ansatz (3.37). Then the equations of motion (3.49), (3.50) reduce to
\[\phi'' - \frac{1}{2}\frac{\sin(\phi/2)}{\cos^3(\phi/2)}\left[\tilde{\chi}'^2 + 2\frac{A\alpha - B\beta}{\alpha^2 - \beta^2}\tilde{\chi}' + \frac{A^2 - B^2}{\alpha^2 - \beta^2} \right] - \frac{M^2\sin\phi}{\alpha^2 - \beta^2} = 0, \quad (3.51) \]
\[\tilde{\chi}'' + \frac{2\phi'}{\sin\phi}\left(\tilde{\chi}' + \frac{A\alpha - B\beta}{\alpha^2 - \beta^2} \right) = 0. \quad (3.52) \]

We further restrict ourselves to the case of \(A\alpha = B\beta \). A trivial solution of Eq.(3.52) is \(\tilde{\chi} = \text{constant} \), which corresponds to the solutions of the CSG equations considered in [60, 61] for a GM string on \(R_t \times S^3 \). More nontrivial solution of (3.52) is
\[\tilde{\chi} = C_\chi\int \frac{d\xi}{\tan^2(\phi/2)}. \quad (3.53) \]
The replacement of the above into (3.51) gives
\[\phi'' = \frac{M^2 \sin \phi}{\alpha^2 - \beta^2} + \frac{1}{2} \left[C^2 \frac{\cos(\phi/2)}{\sin^2(\phi/2)} - \frac{A^2 \sin(\phi/2)}{\beta^2 \cos^3(\phi/2)} \right]. \] (3.54)

Integrating once, we obtain
\[\phi' = \pm \left[\left(C_\phi - \frac{2M^2}{\alpha^2 - \beta^2} \right) + \frac{4M^2}{\alpha^2 - \beta^2} \sin(\phi/2) - \frac{A^2/\beta^2}{1 - \sin^2(\phi/2)} - \frac{C^2_\chi}{\sin^2(\phi/2)} \right]^{1/2} \] (3.55)
from which we get
\[\xi(\phi) = \pm \int \frac{d\phi}{\Phi(\phi)}, \quad \chi(\phi) = A \beta (\beta \sigma + \alpha \tau) \pm C_{\chi} \int \frac{d\phi}{\tan^2(\phi/2)\Phi(\phi)}. \]

All these solve the CSG system for the considered particular case. It is clear from (3.55) that the expression inside the square root must be positive.

Now we are ready to establish a correspondence between the NR and CSG integrable systems described above. To this end, we make the following identification
\[\sin^2(\phi/2) \equiv \sqrt{-G} \] (3.56)
where \(G \) is the determinant of the induced metric \(G_{ab} \) computed on the constraints (3.35) and \(K^2 \) is a parameter which will be fixed later.\(^6\) For our NR system, \(\sqrt{-G} \) is given by
\[\sqrt{-G} = \frac{R^2 \alpha^2}{(\alpha^2 - \beta^2)} \left[(\kappa^2 - \omega^2_1) + (\omega^2_1 - \omega^2_2) \cos^2 \theta \right]. \] (3.57)

We want the field \(\phi \), defined in (3.56) through NR quantities, to identically satisfy (3.55) derived from the CSG equations. This imposes relations between the parameters involved, which are given in appendix A. In this way, we mapped all string solutions on \(R_t \times S^3 \) (in particular on \(R_t \times S^2 \)) described by the NR integrable system onto solutions of the CSG (in particular SG) equations. From (A.1) one can see that the parameters \(A \) and \(C_{\chi} \) are nonzero in general on \(R_t \times S^2 \) where \(\omega_2 = C_2 = 0 \). This means that there exist string solutions on \(R_t \times S^2 \) which correspond to solutions of the CSG system. Only when \(M^2 = \kappa^2 \), all string solutions on \(R_t \times S^2 \) are represented by solutions of the SG equation.

For the GM and SS solutions, which we are interested in, the relations between the NR and CSG parameters simplify a lot. Let us write them explicitly. The GM solutions correspond to \(C_2 = 0, \kappa^2 = \omega^2_2 \). This leads to
\[C_{\phi} = \frac{2}{\alpha^2 - \beta^2} \left[3M^2 - 2 \left(\omega^2_1 - \frac{\omega^2_2}{1 - \beta^2/\alpha^2} \right) \right], \quad K^2 = R^2 M^2, \] (3.58)
\[A^2 = \frac{4}{\alpha^2/\beta^2 - 1} \left(M^2 - \omega^2_1 + \frac{\omega^2_2}{1 - \beta^2/\alpha^2} \right), \quad C_{\chi} = 0. \]

\(^6\)For \(K^2 = \kappa^2 \), this definition of the angle \(\phi \) coincides with the one used in [60], which is based on the Pohlmeyer’s reduction procedure [59].
Therefore, for all GM strings the field χ is linear function at most. Since $A = C_\chi = 0$ implies $\chi = 0$, it follows from here that there exist GM string solutions on $R_t \times S^3$, which are mapped not on CSG solutions but on SG solutions instead. This happens exactly when

$$M^2 = \omega_1^2 - \frac{\omega_2^2}{1 - \beta^2/\alpha^2}.$$

In that case the nonzero parameters are

$$K^2 = R^2 \left(\omega_1^2 - \frac{\omega_2^2}{1 - \beta^2/\alpha^2} \right), \quad C_\phi = \frac{2}{\alpha^2 - \beta^2} \left(\omega_1^2 - \frac{\omega_2^2}{1 - \beta^2/\alpha^2} \right),$$

and the corresponding solution of the SG equation can be found from (3.55) to be

$$\sin(\phi/2) = \frac{1}{\cosh \left[\sqrt{\frac{\omega_1^2 - \omega_2^2/(1 - \beta^2/\alpha^2)}{1 - \beta^2/\alpha^2}} (\sigma + \frac{\beta \eta}{\alpha}) - \eta_0 \right]}, \quad \eta_0 = \text{const.} \quad (3.59)$$

Replacing (3.59) in (3.56), (3.57), one obtains the GM solution (A.3) as it should be.

For the SS solutions $C_2 = 0$, $\kappa^2 = \omega_1^2 \alpha^2/\beta^2$. This results in

$$C_\phi = \frac{2}{\beta^2 - \alpha^2} \left[2 \left(\frac{2 \omega_1^2 \alpha^2/\beta^2}{\beta^2/\alpha^2 - 1} \right) - 3M^2 \right],$$

$$A^2 = \frac{4}{M^4(1 - \alpha^2/\beta^2)} \left(\omega_2^2 \alpha^2/\beta^2 - M^2 \right)^2 \left(\frac{\omega_2^2}{\beta^2/\alpha^2 - 1} - M^2 \right),$$

$$C_\chi = \frac{2 \omega_2^2 \omega_1 \alpha^3}{M^2(\beta^2 - \alpha^2)^2}, \quad K^2 = R^2 M^2. \quad (3.60)$$

We want to point out that C_χ is always nonzero on S^3 contrary to the GM case, which makes χ also non-vanishing. To our knowledge, the CSG solutions corresponding to the SS on $R_t \times S^3$ are not given in the literature. To study this problem, we will consider the case when $A = 0$. A can be zero when

$$M^2 = \kappa^2 = \omega_1^2 \alpha^2/\beta^2 \quad \text{or} \quad M^2 = \frac{\omega_2^2}{\beta^2/\alpha^2 - 1}. \quad (3.61)$$

As is seen from (3.61), we have two options, and we restrict ourselves to the first one. Replacing $M^2 = \omega_1^2 \alpha^2/\beta^2$ in (3.60) and using the resulting expressions for C_ϕ and C_χ in (3.55), one obtains the simplified equation

$$\phi' = \frac{4}{\beta^2 - \alpha^2} \left[\frac{\omega_2^2}{\beta^2/\alpha^2} \cos^2(\phi/2) - \frac{\omega_2^2}{\beta^2/\alpha^2 - 1} \cot^2(\phi/2) \right]$$

with solution

$$\sin^2(\phi/2) = \tanh^2(C\xi) + \frac{\omega_2^2}{\omega_1^2 (1 - \alpha^2/\beta^2) \cosh^2(C\xi)}, \quad (3.62)$$

\footnote{It turns out that the second option does not allow real solutions.}
where
\[C = \frac{\alpha \omega_1 \sqrt{1 - \alpha^2 / \beta^2 - \omega_1^2 / \omega_2^2}}{\beta^2 (1 - \alpha^2 / \beta^2)}. \]

This agrees with Eqs. (3.56) and (3.57). By inserting (3.62) into (3.53) one can find
\[\chi = \tilde{\chi} = 2 \arctan \left[\frac{\omega_1}{\omega_2} \sqrt{1 - \alpha^2 / \beta^2 - \omega_2^2 / \omega_1^2} \tanh (C \xi) \right]. \]

Hence, the CSG field \(\psi \) for the case at hand is given by
\[\psi = \sqrt{\tanh^2 (C \xi) + \frac{\omega_2^2}{\omega_1^2 (1 - \alpha^2 / \beta^2) \cosh^2 (C \xi)}} \times \exp \left\{ i \arctan \left[\frac{\omega_1}{\omega_2} \sqrt{1 - \alpha^2 / \beta^2 - \omega_2^2 / \omega_1^2} \tanh (C \xi) \right] \right\}. \]

Here we have set the integration constants \(\phi_0, \chi_0 \) equal to zero. Several examples, which illustrate the established NR - CSG correspondence, are considered in an Appendix.

Finite-size effects for single spike string

Here, we will give finite-size single spike string solutions, the corresponding conserved quantities, and the leading corrections to the SS “\(E - \Delta \varphi \)” relation: first for the \(R_t \times S^2 \) case, then for the SS string with two angular momenta.

The solution for the SS on \(R_t \times S^2 \) can be written as \(\alpha^2 < \beta^2 \)
\[W_1 = R \sqrt{1 - (1 - \kappa^2 / \omega_1^2) \, dn^2 (C \xi | m)} \times \exp \left\{ -i \omega_1 \frac{\alpha / \beta}{1 - \alpha^2 / \beta^2} \left(\sigma + \frac{\alpha}{\beta} \tau \right) \pm i \frac{\beta / \alpha}{\sqrt{1 - \kappa^2 / \omega_1^2}} \Pi (a m(C \xi), \beta^2 / \alpha^2 - 1 | m) \right\}, \]
\[W_2 = R \sqrt{1 - \kappa^2 / \omega_1^2} \, dn \, (C \xi | m), \quad Z_0 = R \exp(i \kappa \tau) \]
\[C = \pm \frac{\alpha \omega_1 \sqrt{1 - \kappa^2 / \omega_1^2}}{\beta^2 (1 - \alpha^2 / \beta^2)}, \quad m \equiv \frac{\beta^2 / \alpha^2 - 1}{\omega_1^2 / \kappa^2 - 1}. \]

The conserved quantities for the present string solution are given by
\[E_s = 2 \kappa \alpha \int_{\theta_{\min}}^{\theta_{\max}} \frac{d \theta}{\theta'} = 2 \frac{\kappa (\beta^2 / \alpha^2 - 1)}{\omega_1 \sqrt{1 - \kappa^2 / \omega_1^2}} K(m), \]
\[J = 2 \frac{\alpha}{\alpha} \int_{\theta_{\min}}^{\theta_{\max}} \frac{d \theta}{\theta'} \sin^2 \theta \left(\beta f_1' + \omega_1 \right) = 2 \sqrt{1 - \kappa^2 / \omega_1^2} \left[E(m) - 1 - \beta^2 \kappa^2 / \alpha^2 \omega_2^2 K(m) \right]. \]

In addition, we compute \(\Delta \varphi_1 \)
\[\Delta \varphi \equiv \Delta \varphi_1 = 2 \int_{\theta_{\min}}^{\theta_{\max}} \frac{d \theta}{\theta'} f_1' = -2 \frac{\beta / \alpha}{\sqrt{1 - \kappa^2 / \omega_1^2}} \left[\Pi \left(\frac{1 - \beta^2}{\alpha^2 | m} \right) - K(m) \right]. \]
Defining parameters

\[\epsilon \equiv 1 - m, \quad v \equiv \beta/\alpha, \]

we can rewrite these as

\[E_s = 2\sqrt{(v^2 - 1)(1 - \epsilon)}K(1 - \epsilon), \quad J = 2\sqrt{\frac{v^2 - 1}{v^2 - \epsilon}}[E(1 - \epsilon) - \epsilon K(1 - \epsilon)], \]

\[\Delta \varphi = -2v\sqrt{\frac{v^2 - \epsilon}{v^2 - 1}}\left[\Pi(1 - v^2|1 - \epsilon) - K(1 - \epsilon)\right] \]

\[E_s - \Delta \varphi = 2v\sqrt{\frac{v^2 - \epsilon}{v^2 - 1}}\left[\Pi(1 - v^2|1 - \epsilon) - \left(1 - \frac{(v^2 - 1)\sqrt{1 - \epsilon}}{v\sqrt{v^2 - \epsilon}}\right)K(1 - \epsilon)\right]. \]

Now we make small \(\epsilon \) expansion of the above expressions by using the following representation for \(v \)

\[v(\epsilon) = v_0(p) + v_1(p)\epsilon + v_2(p)\epsilon \log(\epsilon) \]

and obtain

\[J = 2\sqrt{1 - \frac{1}{v_0^2}}, \quad v_1 = \frac{(v_0^2 - 1)[v_0^2(1 + \log(16)) - 2]}{4v_0}, \quad v_2 = -\frac{v_0(v_0^2 - 1)}{4}. \]

From the expansion for \(\Delta \varphi \), we obtain \(\epsilon \) as a function of \(\Delta \varphi \) and \(J \)

\[\epsilon = 16 \exp\left(-\frac{\sqrt{4 - J^2}}{J}\left[\Delta \varphi + \arcsin\left(\frac{J}{2}\sqrt{4 - J^2}\right)\right]\right). \]

Using these results in the expansion for \(E_s - \Delta \varphi \), one can see that the divergent terms cancel each other for \(J^2 < 2 \) and the finite result is

\[E_s - \frac{\sqrt{\lambda}}{2\pi}\Delta \varphi = \frac{\sqrt{\lambda}}{\pi}\left[\frac{1}{2}\arcsin\left(\frac{J}{2}\sqrt{4 - J^2}\right) + \frac{J^3}{16\sqrt{4 - J^2}} \epsilon\right] \]

\[= \frac{\sqrt{\lambda}}{\pi}\left[p_2 + 4 \sin^2\frac{p}{2} \tan\frac{p}{2} \exp\left(-\frac{\Delta \varphi + p}{\tan\frac{p}{2}}\right)\right], \quad \text{(3.64)} \]

where we used the identification

\[\arcsin\left(\frac{J}{2}\right) = \frac{p}{2} = \bar{\theta} = \pi/2 - \arcsin\frac{\kappa}{\omega_1}. \]

This includes the leading finite-size correction to the SS "\(E - \Delta \varphi \)" relation (the term proportional to \(\epsilon \)). Let us also note that to the leading order, the length \(L \) of this SS string can be computed to be

\[L = \frac{\alpha}{\kappa}(\Delta \varphi + p). \]
The full string solution on $R_t \times S^3$ is given by

$$Z_0 = R \exp(ik\tau),$$

$$W_1 = R \sqrt{1 - z_2^2 \sin^2(C\xi|m)} \exp \left\{ i\omega_1 \tau + \frac{2i\beta/\alpha}{z_+ \sqrt{1 - \omega_2^2/\omega_1^2}} \right\},$$

$$\times \left[F(\alpha m(C\xi)|m) - \frac{\kappa^2/\omega_1^2}{1 - z_+^2} \Pi \left(\frac{z_+^2 - z_-^2}{1 - z_+^2} \right) \right],$$

$$W_2 = Rz_+ \sin(C\xi|m) \exp \left\{ i\omega_2 \tau + \frac{2i\beta\omega_2/\alpha_1}{z_+ \sqrt{1 - \omega_2^2/\omega_1^2}} F(\alpha m(C\xi)|m) \right\}. \tag{3.65}$$

The CSG solution related to (3.65) can be written as

$$\sin^2(\phi/2) = \frac{\omega_2^2/M^2}{\beta^2/\alpha^2 - 1} \left[(1 - \kappa^2/\omega_1^2) - (1 - \omega_2^2/\omega_1^2) \left(z_+^2 \sin^2(C\xi|m) + z_+^2 \sin^2(C\xi|m) \right) \right] \tag{3.66}$$

After that, we use (3.66) in (3.53) and integrate. The result is

$$\chi = \frac{A}{\beta}(\beta \sigma + \alpha \tau) - C_\chi(\alpha \sigma + \beta \tau) + \frac{C_\chi}{CD} \Pi(\alpha m(C\xi), n|m), \tag{3.67}$$

where A/β and C_χ are given in (A.1), $C_2 = 0$, and

$$D = \frac{\omega_1^2/M^2}{\beta^2/\alpha^2 - 1} \left[(1 - \kappa^2/\omega_1^2) - (1 - \omega_2^2/\omega_1^2) \right] z_+^2, \quad n = \frac{(1 - \omega_2^2/\omega_1^2)(z_+^2 - z_-^2)}{(1 - \kappa^2/\omega_1^2) - (1 - \omega_2^2/\omega_1^2) z_+^2}.$$

Hence for the present case, the CSG field $\psi = \sin(\phi/2) \exp(i\chi/2)$ is defined by (3.66) and (3.67).

The computation of the conserved quantities (3.43) and $\Delta \varphi_1$ now gives

$$\mathcal{E}_s = \frac{2\kappa(\beta^2/\alpha^2 - 1)}{\omega_1 \sqrt{1 - \omega_2^2/\omega_1^2}} K \left(1 - z_-^2/z_+^2 \right),$$

$$\mathcal{J}_1 = \frac{2z_+}{\sqrt{1 - \omega_2^2/\omega_1^2}} \left[\mathcal{E} \left(1 - z_-^2/z_+^2 \right) - \frac{1 - \beta^2\kappa^2/\alpha^2\omega_1^2}{z_+^2} K \left(1 - z_-^2/z_+^2 \right) \right],$$

$$\mathcal{J}_2 = -\frac{2z_+ \omega_2/\omega_1}{\sqrt{1 - \omega_2^2/\omega_1^2}} \mathcal{E} \left(1 - z_-^2/z_+^2 \right),$$

$$\Delta \varphi = -\frac{2\beta/\alpha}{\sqrt{1 - \omega_2^2/\omega_1^2}} \left[\frac{\kappa^2/\omega_1^2}{1 - z_+^2} \Pi \left(-\frac{z_+^2 - z_-^2}{1 - z_+^2} \left(1 - z_-^2/z_+^2 \right) \right) - K \left(1 - z_-^2/z_+^2 \right) \right].$$

Our next step is to introduce the new parameters

$$\epsilon \equiv z_-^2/z_+^2, \quad v \equiv \beta/\alpha, \quad u \equiv \omega_2^2/\omega_1^2,$$
and to expand the above conserved quantities about $\epsilon = 0$. We also need to consider the ϵ-expansion for u and v as follows:

$$v(\epsilon) = v_0 + v_1 \epsilon + v_2 \epsilon \log(\epsilon), \quad u(\epsilon) = u_0 + u_1 \epsilon + u_2 \epsilon \log(\epsilon).$$

The coefficients can be determined by the condition that J_1 and J_2 should be finite,

$$v_0 = \frac{2J_1}{\sqrt{(J_1^2 - J_2^2)(4 - (J_1^2 - J_2^2))}}, \quad u_0 = \frac{J_2^2}{J_1^2},$$

$$v_1 = \frac{(1 - u_0)v_0^2 - 1}{4(u_0 - 1)(v_0^2 - 1)v_0} \left\{ (u_0 - 1)v_0^4(1 + \log(16)) - 2 + v_0^2[3 + \log(16) + u_0(\log(4096) - 5)] \right\},$$

$$v_2 = -\frac{v_0[1 - (1 - u_0)v_0^2][1 + 3u_0 - (1 - u_0)v_0^2]}{4(1 - u_0)(v_0^2 - 1)},$$

$$u_1 = \frac{u_0[1 - (1 - u_0)v_0^2] \log(16)}{v_0^2 - 1}, \quad u_2 = -\frac{u_0[1 - (1 - u_0)v_0^2]}{v_0^2 - 1}.$$

The parameter ϵ can be obtained from $\Delta \varphi$ and to the leading order one finds:

$$\epsilon = 16 \exp \left(-\frac{\sqrt{(1 - u_0)v_0^2 - 1}}{v_0^2 - 1} \left[\Delta \varphi + \arcsin \left(\frac{2\sqrt{(1 - u_0)v_0^2 - 1}}{(1 - u_0)v_0^2} \right) \right] \right).$$

From Eqs. (3.68), (3.69) and (3.70), $E_s - \Delta \varphi$ can be derived to be

$$E_s - \Delta \varphi = \arcsin N(J_1, J_2) + 2\left(J_1^2 - J_2^2 \right) \frac{4}{4 - (J_1^2 - J_2^2)} - 1 \quad (3.71)$$

$$\times \exp \left[-2 \frac{\left(J_1^2 - J_2^2 \right) N(J_1, J_2)}{(J_1^2 - J_2^2)^2 + 4J_2^2} \left[\Delta \varphi + \arcsin N(J_1, J_2) \right] \right], \quad (3.72)$$

$$N(J_1, J_2) \equiv \frac{1}{2} \left[4 - (J_1^2 - J_2^2) \right] \sqrt{\frac{4}{4 - (J_1^2 - J_2^2)}} - 1. \quad (3.73)$$

Here $J_1^2 - J_2^2 < 2$ is assumed. Finally, by using the SS relation between the angular momenta

$$J_1 = \sqrt{J_2^2 + 4 \sin^2(p/2)},$$

we obtain $(-\pi/2 \leq p \leq \pi/2)$

$$E_s - \frac{\sqrt{\lambda}}{2\pi} \Delta \varphi = \frac{\sqrt{\lambda}}{\pi} \left[\frac{p}{2} + 4 \sin^2 \frac{p}{2} \tan \frac{p}{2} \exp \left(-\frac{\tan \frac{p}{2}(\Delta \varphi + p)}{\tan^2 \frac{p}{2} + J_2^2 \csc^2 \frac{p}{2}} \right) \right].$$

(3.74)

This is our final result including the leading finite-size correction to the “$E - \Delta \varphi$” relation for the SS string with two angular momenta. It is obvious that for $J_2 = 0$ (3.74) reduces to (3.64) as it should be.
3.1.3 Finite-size effect of the dyonic giant magnons
in $\mathcal{N} = 6$ super Chern-Simons-matter theory

The AdS/CFT correspondence between type IIB string theory on $AdS_5 \times S^5$ and $\mathcal{N} = 4$ SYM theory led to many exciting developments and to understanding non-perturbative structures of the string and gauge theories. Another exciting possibility is that the same type of duality does exist. The promising candidate for the three-dimensional conformal field theory is $\mathcal{N} = 6$ super Chern-Simons (CS) theory with $SU(N) \times SU(N)$ gauge symmetry and level k [68]. In the planar limit of $N, k \to \infty$ with a fixed value of 't Hooft coupling $\lambda = N/k$, the $\mathcal{N} = 6$ CS is believed to be dual to type IIA superstring theory on $AdS_4 \times \mathbb{C}P^3$.

In [19] we consider finite-size effects for the dyonic giant magnon of the type IIA string theory on $AdS_4 \times \mathbb{C}P^3$ by applying Lüscher μ-term formula which is derived from a proposed S-matrix for the $\mathcal{N} = 6$ super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric configuration where the two external bound states, each of A and B particles, have the same momentum p and spin J_2. We compare this with the classical string theory result which we computed by reducing it to the Neumann-Rosochatius integrable system. The two results match perfectly.

Classical string analysis

Let us consider a classical string moving in $R_t \times \mathbb{C}P^3$. Using the complex coordinates

$$z = y^0 + iy^4, \quad w_1 = x^1 + ix^2, \quad w_2 = x^3 + ix^4, \quad w_3 = x^5 + ix^6, \quad w_4 = x^7 + ix^8,$$

we embed the string as follows [69]

$$z = Z(\tau, \sigma) = \frac{R}{2} e^{i t(\tau, \sigma)}, \quad w_a = W_a(\tau, \sigma) = R r_a(\tau, \sigma) e^{i \varphi_a(\tau, \sigma)}.$$

Here t is the AdS time. These complex coordinates should satisfy

$$\sum_{a=1}^{4} W_a\bar{W}_a = R^2, \quad \sum_{a=1}^{4} (W_a \partial_m \bar{W}_a - \bar{W}_a \partial_m W_a) = 0,$$

or

$$\sum_{a=1}^{4} r_a^2 = 1, \quad \sum_{a=1}^{4} r_a^2 \partial_m \varphi_a = 0, \quad m = 0, 1. \quad (3.75)$$

NR reduction

In order to reduce the string dynamics on $R_t \times \mathbb{C}P^3$ to the NR integrable system, we use the ansatz

$$t(\tau, \sigma) = \kappa \tau, \quad r_a(\tau, \sigma) = r_a(\xi), \quad \varphi_a(\tau, \sigma) = \omega_a \tau + f_a(\xi), \quad \xi = \alpha \sigma + \beta \tau, \quad \kappa, \omega_a, \alpha, \beta = \text{constants}. \quad (3.76)$$
It can be shown [69] that after integration of the equations of motion for \(f_a \), which gives

\[
f'_a = \frac{1}{\alpha^2 - \beta^2} \left(\frac{C_a}{r_a^2} + \beta \omega_a \right), \quad C_a = \text{constants},
\]

one ends up with the following effective Lagrangian for the coordinates \(r_a \)

\[
L_{NR} = (\alpha^2 - \beta^2) \sum_{a=1}^{4} \left[r_a'^2 - \frac{1}{(\alpha^2 - \beta^2)^2} \left(\frac{C_a^2}{r_a^2} + \alpha^2 \omega_a^2 r_a^2 \right) \right]
\]

\[-\Lambda \left(\sum_{a=1}^{4} r_a^2 \right).
\]

This is the Lagrangian for the NR integrable system [58]. In addition, the \(\mathbb{C}P^3 \) embedding conditions in (3.75) lead to

\[
\sum_{a=1}^{4} \omega_a r_a^2 = 0, \quad \sum_{a=1}^{4} C_a = 0.
\]

The Virasoro constraints give the conserved Hamiltonian \(H_{NR} \) and a relation between the embedding parameters and the arbitrary constants \(C_a \):

\[
H_{NR} = (\alpha^2 - \beta^2) \sum_{a=1}^{4} \left[r_a'^2 + \frac{1}{(\alpha^2 - \beta^2)^2} \left(\frac{C_a^2}{r_a^2} + \alpha^2 \omega_a^2 r_a^2 \right) \right] = \frac{\alpha^2 + \beta^2 \kappa^2}{\alpha^2 - \beta^2} 4,
\]

\[
\sum_{a=1}^{4} C_a \omega_a + \beta(\kappa/2)^2 = 0.
\]

The conserved charges can be defined by

\[
E_s = -\int d\sigma \frac{\partial L}{\partial (\partial_0 t)} , \quad J_a = \int d\sigma \frac{\partial L}{\partial (\partial_0 \varphi_a)} , \quad a = 1, 2, 3, 4,
\]

where \(L \) is the Polyakov string Lagrangian taken in conformal gauge. Using the ansatz (3.76) and (3.77), we can find

\[
E_s = \frac{\kappa \sqrt{2\lambda}}{2\alpha} \int d\xi, \quad J_a = \frac{\sqrt{2\lambda}}{\alpha^2 - \beta^2} \int d\xi \left(\frac{\beta}{\alpha} C_a + \alpha \omega_a r_a^2 \right).
\]

In view of (3.79), one obtains

\[
\sum_{a=1}^{4} J_a = 0.
\]

Dyonic giant magnon solution
We are interested in finding string configurations corresponding to the following particular solution of (3.79)

\[r_1 = r_3 = \frac{1}{\sqrt{2}} \sin \theta, \quad r_2 = r_4 = \frac{1}{\sqrt{2}} \cos \theta, \quad \omega_1 = -\omega_3, \quad \omega_2 = -\omega_4. \]

The two frequencies \(\omega_1, \omega_2 \) are independent and lead to strings moving in \(\mathbb{CP}^3 \) with two angular momenta. From the NR Hamiltonian (3.40) one finds

\[
\theta''(\xi) = \frac{1}{(\alpha^2 - \beta^2)^2} \left[\kappa^2 (\alpha^2 + \beta^2) - 2 \left(\frac{C_1 + C_3}{\sin^2 \theta} + \frac{C_2 + C_4}{\cos^2 \theta} \right) \right] - \alpha^2 (\omega_1^2 \sin^2 \theta + \omega_2^2 \cos^2 \theta).
\]

We further restrict ourselves to \(C_2 = C_4 = 0 \) to search for GM string configurations. Eqs. (3.79) and (3.81) give

\[C_1 = -C_3 = -\frac{\beta \kappa^2}{8 \omega_1^1}. \]

In this case, the above equation for \(\theta' \) can be rewritten in the form

\[
(\cos \theta)' = \pm \frac{\alpha \sqrt{\omega_1^2 - \omega_2^2}}{\alpha^2 - \beta^2} \sqrt{(z_+^2 - \cos^2 \theta)(\cos^2 \theta - z_-^2)}, \quad (3.84)
\]

where

\[
z_{\pm}^2 = \frac{1}{2(1 - \omega_1^2/\omega_1^2)} \left\{ y_1 + y_2 - \frac{\omega_2^2}{\omega_1^2} \pm \sqrt{(y_1 - y_2)^2 - \left[2(y_1 + y_2 - 2y_1y_2) - \frac{\omega_2^2}{\omega_1^2} \right] \frac{\omega_2^2}{\omega_1^2}} \right\},
\]

\[y_1 = 1 - \frac{\kappa^2}{4 \omega_1^2}, \quad y_2 = 1 - \frac{\beta^2}{\alpha^2 4 \omega_1^2}. \]

The solution of (3.84) is given by

\[\cos \theta = z_+ \text{dn} (C \xi | m), \quad C = \mp \frac{\alpha \sqrt{\omega_1^2 - \omega_2^2}}{\alpha^2 - \beta^2} z_+, \quad m \equiv 1 - z_+^2/z_+^2. \quad (3.85) \]

To find the full string solution, we also need to obtain the explicit expressions for the functions \(f_a \) from (3.77)

\[f_a = \frac{1}{\alpha^2 - \beta^2} \int d\xi \left(\frac{C_a}{r_a^2} + \beta \omega_a \right). \]

Using the solution (3.85) for \(\theta(\xi) \), we can find

\[f_1 = -f_3 = \frac{\beta / \alpha}{z_+ \sqrt{1 - \omega_2^2/\omega_1^2}} \left[C \xi - \frac{2(\kappa/2)^2/\omega_1^2}{1 - z_+^2} \Pi \left(am(C \xi), -\frac{z_+^2 - z_-^2}{1 - z_+^2} \right) \right], \]

\[f_2 = -f_4 = \frac{\beta \omega_2}{\alpha^2 - \beta^2} \xi. \]
As a consequence, the string solution can be written as

\[
W_1 = \frac{R}{\sqrt{2}} \sqrt{1 - z_+^2} \text{dn}(C\xi | m) \ e^{i(\omega_1 \tau + f_1)},
\]

\[
W_2 = \frac{R}{\sqrt{2}} z_+ \text{dn}(C\xi | m) \ e^{i(\omega_2 \tau + f_2)},
\] (3.86)

\[
W_3 = \frac{R}{\sqrt{2}} \sqrt{1 - z_+^2} \text{dn}(C\xi | m) \ e^{-i(\omega_1 \tau + f_1)},
\]

\[
W_4 = \frac{R}{\sqrt{2}} z_+ \text{dn}(C\xi | m) \ e^{-i(\omega_2 \tau + f_2)}.
\]

The GM in infinite volume can be obtained by taking \(z_- \to 0\). In this limit, the solution for \(\theta\) reduces to

\[
\cos \theta = \frac{\sin \frac{p}{2}}{\cosh(C\xi)},
\]

where the constant \(z_+ \equiv \sin p/2\) is given by

\[
z_+^2 = \frac{y_2 - \omega_2^2/\omega_1^2}{1 - \omega_2^2/\omega_1^2}.
\]

One spin solution corresponds \(\omega_2 = 0\). Inserting this into (3.82), one can find the energy-charge dispersion relation. For the single DGM, the energy and angular momentum \(J_1\) become infinite but their difference remains finite:

\[
E_s - J_1 = \sqrt{\frac{J_2^2}{4} + 2\lambda \sin^2 \frac{p}{2}}.
\] (3.87)

Finite-size effects

Using the most general solutions (3.86), we can calculate the finite-size corrections to the energy-charge relation (3.87) in the limit when the string energy \(E_s \to \infty\). Here we consider the case of \(\alpha^2 > \beta^2\) only since it corresponds to the GM case. We obtain from (3.82) the following expressions for the conserved string energy \(E_s\) and the angular momenta \(J_a\)

\[
\mathcal{E} = \frac{2\kappa (1 - \beta^2/\alpha^2)}{\omega_1 z_+ \sqrt{1 - \omega_2^2/\omega_1^2}} \mathbf{K} \left(1 - z_-^2/z_+^2\right),
\]

\[
\mathcal{J}_1 = \frac{2z_+}{\sqrt{1 - \omega_2^2/\omega_1^2}} \left[1 - \beta^2(\kappa/2)^2/\alpha^2\omega_1^2 \frac{z_+^2}{z_-^2} \frac{1}{z_-^2/z_+^2} \mathbf{K} \left(1 - z_-^2/z_+^2\right) - \mathbf{E} \left(1 - z_-^2/z_+^2\right)\right],
\] (3.88)

\[
\mathcal{J}_2 = \frac{2z_+ \omega_2/\omega_1}{\sqrt{1 - \omega_2^2/\omega_1^2}} \mathbf{E} \left(1 - z_-^2/z_+^2\right), \quad \mathcal{J}_3 = -\mathcal{J}_1, \quad \mathcal{J}_4 = -\mathcal{J}_2.
\]

As a result, the condition (3.83) is identically satisfied. Here, we introduced the notations

\[
\mathcal{E} = \frac{E_s}{\sqrt{2\lambda}}, \quad \mathcal{J}_a = \frac{J_a}{\sqrt{2\lambda}}.
\] (3.89)
The computation of $\Delta \varphi_1$ gives

$$p \equiv \Delta \varphi_1 = 2 \int_{\theta_{min}}^{\theta_{max}} \frac{d\theta}{\theta} f_1' =$$

\[
- \frac{2\beta/\alpha}{z_+ \sqrt{1 - \omega_2^2/\omega_1^2}} \left[\frac{(\kappa/2)^2/\omega_1^2}{1 - z_+^2} \Pi \left(-\frac{z_+^2 - z_-^2}{1 - z_+^2} \right) \right] .
\]

Expanding the elliptic integrals, we obtain

$$E - J_1 = 2\sqrt{J_2^2/4 + 2\lambda \sin^2 \frac{p}{2}}$$

\[
- \frac{32\lambda \sin^4 \frac{p}{2}}{\sqrt{J_2^2 + 8\lambda \sin^2 \frac{p}{2}}} \exp \left[-\frac{2\sin^2 \frac{p}{2} \left(J_1 + \sqrt{J_2^2 + 8\lambda \sin^2 \frac{p}{2}} \right)}{J_2^2 + 8\lambda \sin^4 \frac{p}{2}} \right] .
\]

This also gives the finite-size effect for ordinary GM by taking $J_2 \to 0$

$$E - J_1 = 2\sqrt{2\lambda \sin \frac{p}{2}} - 16\sqrt{\frac{\lambda}{2}} \sin \frac{p}{2} \exp \left[-\frac{J_1}{\sqrt{2\lambda \sin \frac{p}{2}}} - 2 \right] .$$

Finite-size effects from the S-matrix

The $\mathcal{N} = 6$ CS theory has two sets of excitations, namely A-particles and B-particles, each of which form a four-dimensional representation of $SU(2|2)$ \[70, 71\]. We propose an S-matrix with the following structure:

$$S^{AA}(p_1, p_2) = S^{BB}(p_1, p_2) = S_0(p_1, p_2) \tilde{S}(p_1, p_2)$$

$$S^{AB}(p_1, p_2) = S^{BA}(p_1, p_2) = \tilde{S}_0(p_1, p_2) \tilde{S}(p_1, p_2),$$

where \tilde{S} is the matrix part determined by the $SU(2|2)$ symmetry, and is essentially the same as that found for $\mathcal{N} = 4$ SYM in \[72, 73\]. An important difference arises in the dressing phases S_0, \tilde{S}_0 due to the fact that the A- and B-particles are related by complex conjugation.

Lüscher μ-term formula

Here we want to generalize multi-particle Lüscher formula \[74, 75\] to the case of the bound states. Consider M_A number of A-type DGMs, $|Q_1, \ldots, Q_{M_A}\rangle$, and M_B number of B-type DGMs, $|\tilde{Q}_1, \ldots, \tilde{Q}_{M_B}\rangle$. We use α_k for the $SU(2|2)$ quantum numbers carried by the DGMs and C_k for A or B, the two types of particles. Then we propose the multi-particle Lüscher
formula for generic DGM states as follows:

\[
\begin{align*}
\delta E_{\mu} = & -i \sum_{l=1}^{M_A+M_B} \left\{ \sum_{b=1}^{4} \left. \right(-1 \right)^b \right. \\
& \times \left. \left(1 - \frac{\epsilon_{Q_l}(p_l)}{\epsilon_{1}^{*}(q^{*})} \right) \right. \\
& \left. \times \frac{1}{\epsilon_{1}^{*}(q^{*})} \right. \\
& \left. \times e^{-i\eta^{*}L} \left[R_{s_{\mu}=q}^{AA_{\mu}(q^{*},p_l)} S^{AA_{\mu}b_{\alpha}(q^{*},p_l)} \right] \right. \\
& \left. \times \prod_{k \neq l} S^{AB_{\mu}b_{\alpha}(q^{*},p_k)} \right. \\
& \left. \times \prod_{k \neq l} S^{BC_{\mu}b_{\alpha}(q^{*},p_k)} \right. \\
& \left. \right\}.
\end{align*}
\]

Here, the energy dispersion relation for the DGM is given by

\[
\epsilon_{Q}(p) = \sqrt{\frac{Q^2}{4} + 4g^2 \sin^2 \frac{p^2}{2}}.
\]

The coupling constant \(g = h(\lambda) \) is still unknown function of \(\lambda \) which behaves as \(h(\lambda) \sim \lambda \) for small \(\lambda \), and \(h(\lambda) \sim \sqrt{\lambda/2} \) for large \(\lambda \).

S-matrix elements for the dyonic GM

The \(S \)-matrix elements for the DGM are in general complicated. However, we can consider a simplest case of the DGMs composed of only A-type \(\phi_1 \)'s which are the first bosonic particle in the fundamental representation of \(SU(2|2) \). It is obvious that these bound states do exist since the elementary \(S \)-matrix element \(S^{AA_{11}} \) does have a pole. The same holds for the B-type DGMs. However, the hybrid type DGMs are not possible because the \(S^{AB} \) \(S \)-matrix does not have any bound-state pole.

The Lüscher correction needs only those \(S \)-matrix elements which have the same incoming and outgoing \(SU(2|2) \) quantum numbers after scattering with a virtual particle. In particular, we can easily compute the matrix elements between an elementary magnon and a the bound-state made of only \(\phi_1 \)'s (\(Q \) of them) denoted by \(1_{Q} \). \[76\]

\[
S^{AA_{11}b_{k}}_{1_{Q}}(y, X^{(Q)}) = \prod_{k=1}^{Q} S^{AA_{11}b_{k}}(y, x_k) = \prod_{k=1}^{Q} \left[\frac{1 - \frac{1}{y^+ x_k}}{1 - \frac{1}{y^- x_k}} \sigma_{\text{BES}}(y, x_k) \tilde{a}_b(y, x_k) \right],
\]

where \(\tilde{a}_b \) are given by \[72, 73\]

\[
\begin{align*}
\tilde{a}_1(y, x) &= a_1(y, x), \quad \tilde{a}_2(y, x) = a_1(y, x) + a_2(y, x), \\
\tilde{a}_3(y, x) &= \tilde{a}_4(y, x) = a_6(y, x) \\
a_1(y, x) &= \frac{x^- - y^+ \eta(x) \eta(y)}{x^+ - y^- \tilde{\eta}(x) \tilde{\eta}(y)} \\
a_2(y, x) &= \frac{(y^- - y^+)(x^- - x^+)(x^- - y^+)}{(y^- - x^+)(x^- y^- - x^+ y^+)} \tilde{\eta}(x) \tilde{\eta}(y) \\
a_6(y, x) &= \frac{y^- - x^+ \eta(y)}{y^- - x^+ \tilde{\eta}(y)}.
\end{align*}
\]
As noticed in [76], \(a_2/a_1 \) and \(a_6/a_1 \) are negligible \(\mathcal{O}(1/g) \) corrections in the classical limit \(g >> 1 \). Therefore, the \(S \)-matrix with \(b = 1 \) is a most important factor for our computation which can be written as

\[
S_{11Q}^{AB}(y, X^{(Q)}) = \sigma_{\text{BES}}(y, X^{(Q)}) \prod_{k=1}^{Q} \left[\frac{1 - \frac{1}{y^+_x}}{1 - \frac{1}{y^-_x}} \cdot \frac{x_k^- - y_k^+ \eta(x_k)\eta(y)}{x_k^+ - y_k^- \eta(x_k)\tilde{\eta}(y)} \right]
\]

\[(3.97) \]

where the BDS \(S \)-matrix is defined by

\[
S_{\text{BDS}}(y, x) \equiv \frac{1 - \frac{1}{y^+_x}}{1 - \frac{1}{y^-_x}} \cdot \frac{x^- - y^+}{x^+ - y^-}.
\]

The spectral parameter \(X^{(Q)} \) for the DGM is defined by

\[
X^{(Q)}_\pm = \frac{e^{\pm ip/2}}{4g \sin \frac{Q}{2}} \left(Q + \sqrt{Q^2 + 16g^2 \sin^2 \frac{p}{2}} \right) \equiv e^{(\theta \pm ip)/2},
\]

\[(3.100) \]

where we introduce \(\theta \) defined by

\[
\sinh \frac{\theta}{2} \equiv \frac{Q}{4g \sin \frac{Q}{2}}.
\]

\[(3.101) \]

The frame factors \(\eta \) and \(\tilde{\eta} \) are given by [73]

\[
\frac{\eta(x_1)}{\tilde{\eta}(x_1)} = \frac{\eta(x_2)}{\tilde{\eta}(x_2)} = 1
\]

\[(3.102) \]

for the spin-chain frame and

\[
\frac{\eta(x_1)}{\tilde{\eta}(x_1)} = \sqrt{\frac{x_1^-}{x_2^-}}, \quad \frac{\eta(x_2)}{\tilde{\eta}(x_2)} = \sqrt{\frac{x_1^-}{x_2^-}}
\]

\[(3.103) \]

for the string frame.

Symmetric DGM state

The classical two spins solution is a symmetric DGM configuration for both of \(S^2 \) subspaces. Corresponding Lüscher formula is given by Eq.(3.94) with \(M_A = M_B = 1 \), which can be much simplified as

\[
\delta E_{\mu} = -i \sum_{b=1}^{4} (-1)^{F_b} e^{-i\tau L} \left\{ \left(1 - \frac{\epsilon'_Q(p_1)}{\epsilon'_1(q^*)} \right) \left[\text{Res}_{q^* = q_1^*} S_{b_1Q}^{AA_Q}(q^*, p_1) \right] S_{b_1Q}^{AB_Q}(q^*, p_2) + \left(1 - \frac{\epsilon'_Q(p_2)}{\epsilon'_1(q^*)} \right) \left[\text{Res}_{q^* = q_2^*} S_{b_1Q}^{AA_Q}(q^*, p_2) \right] S_{b_1Q}^{AB_Q}(q^*, p_1) \right\}.
\]

\[(3.104) \]
As mentioned earlier, only the two cases of $b = 1, 2$ contributes equally in the sum of Eq. (3.104) since these elements contain a_1. Instead of the summation, we can multiply a factor 2 for the case of $b = 1$. In that case, we can compute easily each term using the S-matrix elements (3.97) and (3.98). Furthermore, we restrict ourselves for the case where the two DGMs are symmetric in both spheres, namely, $p_1 = p_2$ and $Q = \bar{Q}$. This leads to

$$\delta E_\mu = -4ie^{-iq^*L} \left(1 - \frac{e_1'(p)}{e_1'(q^*)}\right) \left[\text{Res}_{q^* = q^*} S^{AA_{11}}_{11Q}(q^*, p)\right] S^{AB_{11}}_{11Q}(q^*, p). \tag{3.105}$$

Explicit computations of each factor in (3.105) are exactly the same as those in [76]. There are two types of poles of $S_{\text{BDS}}(y, X(Q))$. The s-channel pole which describe $(Q + 1)$-DGM arises at $y^- = X(Q)^+$ while the t-channel pole for $(Q - 1)$-DGM (for $Q \geq 2$) at $y^+ = X(Q)^+$. We consider the s-channel pole first. Using the location of the pole, we can find

$$\tilde{q}^* = -\frac{i}{2g \sin \left(\frac{\pi - i\theta}{2}\right)} \rightarrow e^{-iq^*L} \approx \exp \left[-\frac{L}{2g \sin \left(\frac{\pi - i\theta}{2}\right)}\right]. \tag{3.106}$$

From Eq. (3.94), one can also obtain

$$1 - \frac{e_1'(p)}{e_1'(q^*)} \approx \frac{\sin \frac{\pi}{2} \sin \frac{\pi - i\theta}{2}}{\cosh \frac{\pi}{2}}. \tag{3.107}$$

Furthermore, one can notice from Eqs. (3.97) and (3.98)

$$\left[\text{Res}_{q^* = q^*} S^{AA_{11}}_{11Q}(q^*, p)\right] S^{AB_{11}}_{11Q}(q^*, p) = \text{Res}_{q^* = q^*} S_{\text{SYM}_{11Q}}(q^*, p) \tag{3.108}$$

where S_{SYM} is the S-matrix of the $\mathcal{N} = 4$ SYM theory. Explicit evaluation of the residue term becomes in the leading order

$$-\frac{8ige^{-ip} \sin^2 \frac{\pi}{2}}{\sin \frac{\pi - i\theta}{2}} \exp \left[-\frac{2e^{-\theta/2} \sin \frac{\pi}{2}}{\sin \frac{\pi - i\theta}{2}}\right] \left(\eta(X(Q))\right)^2 \left(\frac{\eta(y)}{\bar{\eta}(y)}\right)^{2Q}. \tag{3.109}$$

Combining all these together, we get

$$\delta E_\mu = -\frac{8ge^{-ip} \sin^3 \frac{\pi}{2}}{\cosh \frac{\pi}{2}} \exp \left[-\frac{2e^{-\theta/2} \sin \frac{\pi}{2}}{\sin \frac{\pi - i\theta}{2}} - \frac{L}{2g \sin \left(\frac{\pi - i\theta}{2}\right)}\right] \left(\eta(X(Q))\right)^2 \left(\frac{\eta(y)}{\bar{\eta}(y)}\right)^{2Q} \tag{3.110}$$

$$= -\frac{32g^2 \sin^3 \frac{\pi}{2} e^{i\alpha}}{\cosh \frac{\pi}{2}} \exp \left[-\frac{2 \sin^2 \frac{\pi}{2} \cosh \frac{\pi}{2}}{\sin^2 \frac{\pi}{2} + \sinh^2 \frac{\pi}{2}} \left(\frac{L - Q}{2g \sin \frac{\pi}{2} \cosh \frac{\pi}{2} + 1}\right)\right]$$

$$= -\frac{32g^2 \sin^4 \frac{\pi}{2} e^{i\alpha}}{\sqrt{Q^2 + 16g^2 \sin^2 \frac{\pi}{2}}} \exp \left[-\frac{2 \sin^2 \frac{\pi}{2} \left(L + \sqrt{Q^2 + 16g^2 \sin^2 \frac{\pi}{2}}\right) \sqrt{Q^2 + 16g^2 \sin^2 \frac{\pi}{2}}}{Q^2 + 16g^2 \sin^4 \frac{\pi}{2}}\right]. \tag{3.110}$$
The phase factor $e^{i\alpha}$ includes various phases arising in the computation as well as the frame dependence of η. As argued in [76], we will drop this phase assuming that this cancels out with appropriate prescription for the Lüscher formula.

The t-channel pole at $y^+ = X^{(Q)^+}$ gives exactly the same contribution up to a phase factor. Therefore, combining together, we finally obtain the finite-size effect of the two symmetric DGM configuration as follows:

$$
\delta E_\mu = -\frac{64g^2 \sin^4 \frac{p}{2}}{\sqrt{Q^2 + 16g^2 \sin^2 \frac{p}{2}}} \exp \left[-\frac{2 \sin^2 \frac{p}{2} \left(L + \sqrt{Q^2 + 16g^2 \sin^2 \frac{p}{2}} \right) \sqrt{Q^2 + 16g^2 \sin^2 \frac{p}{2}}}{Q^2 + 16g^2 \sin^4 \frac{p}{2}} \right].
$$

This is exactly what we have derived in Eq. (3.91) if we identify $J_1 = L$, $J_2 = Q$ and $g = \sqrt{\lambda/2}$.

3.1.4 Finite-size dyonic giant magnons in TsT-transformed $AdS_5 \times S^5$

Investigations on AdS/CFT duality for the cases with reduced or without supersymmetry is of obvious interest and importance. An interesting example of such correspondence between gauge and string theory models with reduced supersymmetry is provided by an exactly marginal deformation of $\mathcal{N} = 4$ SYM theory [77] and string theory on a β-deformed $AdS_5 \times S^5$ background suggested in [78]. When $\beta \equiv \gamma$ is real, the deformed background can be obtained from $AdS_5 \times S^5$ by the so-called TsT transformation. It includes T-duality on one angle variable, a shift of another isometry variable, then a second T-duality on the first angle [78, 79]. Taking into account that the five-sphere has three isometric coordinates, one can consider generalization of the above procedure, consisting of chain of three TsT transformations. The result is a regular three-parameter deformation of $AdS_5 \times S^5$ string background, dual to a non-supersymmetric deformation of $\mathcal{N} = 4$ SYM [79], which is conformal in the planar limit to any order of perturbation theory [80]. The action for this γ_i-deformed ($i = 1, 2, 3$) gauge theory can be obtained from the initial one after replacement of the usual product with associative $*$-product [78, 79, 81].

An essential property of the TsT transformation is that it preserves the classical integrability of string theory on $AdS_5 \times S^5$ [79]. The γ-dependence enters only through the twisted boundary conditions and the level-matching condition. The last one is modified since a closed string in the deformed background corresponds to an open string on $AdS_5 \times S^5$ in general.

The finite-size correction to the GM energy-charge relation, in the γ-deformed background, has been found in [82], by using conformal gauge and the string sigma model reduced to $R_4 \times S^3$. For the deformed case, this is the smallest consistent reduction due to the twisted boundary conditions. It turns out that even for the three-parameter deformation, the reduced model depends only on one of them - γ_3. As far as there are two isometry angles ϕ_1, ϕ_2 on S^3, the solution can carry two non-vanishing angular momenta J_1, J_2. Then, the GM is an open
string solution with only one charge \(J_1 \neq 0 \). The momentum \(p \) of the magnon excitation in the corresponding spin chain is identified with the angular difference \(\Delta \phi_1 \) between the end-points of the string. The other angle satisfies the following twisted boundary conditions \[82\]

\[
\Delta \phi_2 = 2\pi(n_2 - \gamma_3 J_1),
\]

where \(n_2 \) is an integer winding number of the string in the second isometry direction of the deformed sphere \(S^3_\gamma \).

An interesting extension of this study is the dyonic giant magnon. This state corresponds to bound states of the fundamental magnons and stable even in the deformed theory. Understanding its string theory analog in the strong coupling limit can be helpful to extend the AdS/CFT duality to the deformed theories.

In [20] we investigated dyonic giant magnons propagating on \(\gamma \)-deformed \(AdS_5 \times S^5 \) by Neumann-Rosochatius reduction method with twisted boundary conditions. We compute finite-size effect of the dispersion relations of dyonic giant magnons, which generalizes the previously known case of the giant magnons with one angular momentum found by Bykov and Frolov.

The bosonic part of the Green-Schwarz action for strings on the \(\gamma \)-deformed \(AdS_5 \times S^5 \) reduced to \(R_i \times S^5_\gamma \) can be written as (the common radius \(R \) of \(AdS_5 \) and \(S^5_\gamma \) is set to 1) \[83\]

\[
S = -\frac{T}{2} \int d\tau d\sigma \left\{ \sqrt{-\gamma_{ab}} \left[-\partial_a t \partial_b t + \partial_a r_i \partial_b r_i + Gr_i^2 \partial_a \varphi_i \partial_b \varphi_i
\right.
ight.
\]

\[
+ G r_i^2 r_j^2 (\hat{\gamma}_i \partial_a \varphi_i) (\hat{\gamma}_j \partial_b \varphi_j) \right]
\]

\[
- 2G e^{ab} (\hat{\gamma}_3 r_1^2 r_2^2 \partial_a \varphi_1 \partial_b \varphi_2 + \hat{\gamma}_1 r_1^2 r_3^2 \partial_a \varphi_1 \partial_b \varphi_3 + \hat{\gamma}_2 r_2^2 r_3^2 \partial_a \varphi_2 \partial_b \varphi_3) \right),
\]

where \(\varphi_i \) are the three isometry angles of the deformed \(S^5_\gamma \), and

\[
\sum_{i=1}^{3} r_i^2 = 1, \quad G^{-1} = 1 + \hat{\gamma}_3 r_1^2 r_2^2 + \hat{\gamma}_1 r_1^2 r_3^2 + \hat{\gamma}_2 r_2^2 r_3^2.
\]

The deformation parameters \(\hat{\gamma}_i \) are related to \(\gamma_i \) which appear in the dual gauge theory as follows

\[
\hat{\gamma}_i = 2\pi T \gamma_i = \sqrt{\lambda} \gamma_i.
\]

When \(\hat{\gamma}_i = \hat{\gamma} \) this becomes the supersymmetric background of [78], and the deformation parameter \(\gamma \) enters the \(\mathcal{N} = 1 \) SYM superpotential in the following way

\[
W \propto tr \left(e^{i\pi \gamma} \Phi_1 \Phi_2 \Phi_3 - e^{-i\pi \gamma} \Phi_1 \Phi_3 \Phi_2 \right).
\]

By using the TsT transformations which map the string theory on \(AdS_5 \times S^5 \) to the \(\gamma_i \)-deformed theory, one can relate the angle variables \(\phi_i \) on \(S^5 \) to the angles \(\varphi_i \) of the \(\gamma_i \)-deformed geometry [79]:

\[
p_i = \pi_i, \quad r_i^2 \phi_i = r_i^2 (\varphi_i - 2\pi \epsilon_{ijk} \gamma_{jk} p_k), \quad i = 1, 2, 3,
\]
where p_i, π_i are the momenta conjugated to ϕ_i, φ_i respectively, and the summation is over j, k. The equality $p_i = \pi_i$ implies that the charges

$$
J_i = \int d\sigma p_i
$$

are invariant under the TsT transformation.

If none of the variables r_i is vanishing on a given string solution, from (3.113) one gets

$$
\phi'_i = \varphi'_i - 2\pi \epsilon_{ijk} \gamma_j p_k.
$$

Integrating the above equations and taking into account that for a closed string in the γ-deformed background

$$
\Delta \varphi_i = \varphi_i(r) - \varphi_i(-r) = 2\pi n_i, \quad n_i \in \mathbb{Z},
$$

one finds the twisted boundary conditions for the angles ϕ_i on the original S^5 space

$$
\Delta \phi_i = \phi_i(r) - \phi_i(-r) = 2\pi (n_i - \nu_i), \quad \nu_i = \epsilon_{ijk} \gamma_j J_k.
$$

It is obvious that if the twists ν_i are not integer, then a closed string on the deformed background is mapped to an open string on $AdS_5 \times S^5$.

As we already explained, instead of considering strings on the γ-deformed background $AdS_5 \times S_5^\gamma$, we can consider strings on the original $AdS_5 \times S^5$ space, but with twisted boundary conditions. Actually, here we are interested in string configurations living in the $R_t \times S^3$ subspace, which can be described by the NR integrable system. After the NR reduction one obtains the following expressions for the conserved charges

$$
\mathcal{E} = \frac{\kappa}{\alpha} \int_{-r}^{r} d\xi = \frac{(1 - v^2)w}{\sqrt{1 - u^2}} \int_{\chi_{min}}^{\chi_{max}} \frac{d\chi}{\sqrt{(\chi_{max} - \chi)(\chi - \chi_{min})(\chi - \chi_n)}},
$$

$$
\mathcal{J}_1 = \frac{1}{\sqrt{1 - u^2}} \int_{\chi_{min}}^{\chi_{max}} \frac{[1 - v^2 (u^2 - u^2 j) - \chi]}{\sqrt{(\chi_{max} - \chi)(\chi - \chi_{min})(\chi - \chi_n)}} d\chi
$$

$$
\mathcal{J}_2 = \frac{u}{\sqrt{1 - u^2}} \int_{\chi_{min}}^{\chi_{max}} \frac{(\chi - v^2 j)}{\sqrt{(\chi_{max} - \chi)(\chi - \chi_{min})(\chi - \chi_n)}} d\chi
$$

and for the angular differences

$$
p = \Delta \phi_1 = \phi_1(r) - \phi_1(-r), \quad \delta = \Delta \phi_2 = \phi_2(r) - \phi_2(-r) = 2\pi (n_2 - \gamma_3 J_1).
$$

$$
p = \int_{-r}^{r} d\xi f_1' = \frac{\beta \omega_1}{\alpha^2 (1 - v^2)} \int_{-r}^{r} \left(1 - \frac{w^2 - u^2 j}{r_1^2}\right) d\xi
$$

$$
= \frac{v}{\sqrt{1 - u^2}} \int_{\chi_{min}}^{\chi_{max}} \left(\frac{w^2 - u^2 j}{1 - \chi} - 1\right) \frac{d\chi}{\sqrt{(\chi_{max} - \chi)(\chi - \chi_{min})(\chi - \chi_n)}},
$$
\[
\delta = \int_{-r}^{r} d\xi f'_{2} = \frac{\beta \omega}{\alpha^{2}(1-v^{2})} \int_{-r}^{r} \left(1 - \frac{j}{r^{2}}\right) d\xi
\]
\[
= \frac{uv}{\sqrt{1-u^{2}}} \int_{\chi_{max}}^{\chi_{min}} \frac{\left(j - 1\right)}{\sqrt{(\chi_{max} - \chi)(\chi - \chi_{min})(\chi - \chi_{n})}} \ d\chi.
\]

By using that
\[
\int_{\chi_{max}}^{\chi_{min}} \frac{d\chi}{\sqrt{(\chi_{max} - \chi)(\chi - \chi_{min})(\chi - \chi_{n})}} = \frac{2}{\sqrt{\chi_{max} - \chi_{n}}} \ K(1 - \epsilon),
\]
\[
\int_{\chi_{max}}^{\chi_{min}} \chi d\chi = \frac{2 \chi_{n}}{\sqrt{\chi_{max} - \chi_{n}}} \ K(1 - \epsilon) + 2 \sqrt{\chi_{max} - \chi_{n}} \ E(1 - \epsilon),
\]
\[
\int_{\chi_{max}}^{\chi_{min}} \frac{d\chi}{\chi \sqrt{(\chi_{max} - \chi)(\chi - \chi_{min})(\chi - \chi_{n})}} = \frac{2}{\chi_{max} \sqrt{\chi_{max} - \chi_{n}}} \Pi \left(1 - \frac{\chi_{min}}{\chi_{max}} \right) \left(1 - \epsilon\right),
\]
\[
\int_{\chi_{min}}^{\chi_{max}} \frac{d\chi}{(1 - \chi) \sqrt{(\chi_{max} - \chi)(\chi - \chi_{min})(\chi - \chi_{n})}} = \frac{4 \kappa}{(1 - v^{2}) \sqrt{(1 - \chi_{n})(1 - \tilde{v}^{2})}} \ K(1 - \epsilon),
\]
\[
E = \frac{4 \kappa v}{(1 - v^{2}) \sqrt{(1 - \chi_{n})(1 - \tilde{v}^{2})}} \left(\left(1 - \chi_{n}\right) - \frac{v^{2}}{\omega} \left(1 + \nu A_{2}\right)\right) K(1 - \epsilon),
\]
\[
J_{1} = \frac{4 \kappa}{(1 - v^{2}) \sqrt{(1 - \chi_{n})(1 - \tilde{v}^{2})}} \left[\left(\omega (1 - \chi_{n}) - \frac{v^{2}}{\omega} (1 + \nu A_{2})\right) K(1 - \epsilon)
\right.
\]
\[
\left. - \omega (1 - \chi_{n})(1 - \tilde{v}^{2}) E(1 - \epsilon)\right],
\]
\[
J_{2} = \frac{4 \kappa}{(1 - v^{2}) \sqrt{(1 - \chi_{n})(1 - \tilde{v}^{2})}} \left[\left(v^{2} A_{2} + \nu \chi_{n}\right) K(1 - \epsilon)
\right.
\]
\[
\left. + \nu (1 - \chi_{n})(1 - \tilde{v}^{2}) E(1 - \epsilon)\right],
\]
\[
p = \frac{4 \kappa v}{(1 - v^{2}) \sqrt{(1 - \chi_{n})(1 - \tilde{v}^{2})}} \left[\frac{1 + \nu A_{2}}{\omega (1 - \chi_{n}) \tilde{v}^{2}} \Pi \left(\frac{\tilde{v}^{2} - 1}{\tilde{v}^{2}} (1 - \epsilon) | 1 - \epsilon\right) - \omega K(1 - \epsilon)\right],
\]
\[
\delta = -\frac{2 \kappa}{(1 - v^{2}) \sqrt{(1 - \chi_{n})(1 - \tilde{v}^{2})}} \left[\frac{A_{2}}{(1 - \tilde{v}^{2}) \left(1 + \chi_{n} \tilde{v}^{2}\right)} \Pi \left(\frac{1 - \chi_{n}}{1 + \chi_{n} \tilde{v}^{2}} (1 - \epsilon) | 1 - \epsilon\right)
\right.
\]
\[
+ \nu K(1 - \epsilon)\right],
\]
\[
\kappa = \frac{1 - v^{2}}{2 \sqrt{\omega^{2} - \nu^{2}}}.
\]
In the above equalities we introduced the new parameters

\[\tilde{v}^2 = \frac{1 - \chi_{\text{max}}}{1 - \chi_n}, \quad \epsilon = \frac{\chi_{\text{min}} - \chi_n}{\chi_{\text{max}} - \chi_n} \]

instead of \(\chi_{\text{max}} \) and \(\chi_{\text{min}} \).

In order to obtain the finite-size correction to the energy-charge relation, we have to consider the limit \(\epsilon \to 0 \) in (3.117). For the parameters in (3.117), we make the following ansatz

\[
\begin{align*}
v &= v_0 + v_1 \epsilon + v_2 \epsilon \log(\epsilon), \\
\tilde{v} &= \tilde{v}_0 + \tilde{v}_1 \epsilon + \tilde{v}_2 \epsilon \log(\epsilon), \\
\omega &= 1 + \omega_1 \epsilon, \\
\nu &= \nu_0 + \nu_1 \epsilon + \nu_2 \epsilon \log(\epsilon), \\
A_2 &= A_{21} \epsilon, \\
\chi_n &= \chi_{n1} \epsilon.
\end{align*}
\]
(3.118)

We insert all these expansions into (3.117) and impose the conditions:

1. \(p \) - finite
2. \(J_2 \) - finite
3. \(E - J_1 = 2 \sqrt{1 - v_0^2 - \nu_0^2} - \frac{(1 - v_0^2 - \nu_0^2)^{3/2}}{2(1 - \nu_0^2)} \cos(\Phi) \epsilon \)

From the first two conditions, we obtain the relations

\[p = \arcsin\left(\frac{2v_0 \sqrt{1 - v_0^2 - \nu_0^2}}{1 - \nu_0^2} \right), \quad \tilde{v}_0 = \frac{v_0}{\sqrt{1 - \nu_0^2}}, \quad J_2 = \frac{2v_0 \sqrt{1 - v_0^2 - \nu_0^2}}{1 - \nu_0^2}, \]
(3.119)

as well as six more equations. The third condition gives another two equations for the coefficients in (3.118). Thus, we have a system of eight equations, from which we can find all remaining coefficients in (3.118), except \(A_{21} \). \(A_{21} \) can be found from the equation for \(\delta \) to be

\[A_{21} = -\Lambda \frac{(1 - v_0^2 - \nu_0^2)^{3/2}}{v_0(1 - \nu_0^2)} \sin(\Phi), \]

where \(\Lambda \) is constant with respect to \(\Phi \) (actually, \(\Lambda \) can be fixed to 1). The equations (3.119) are solved by

\[v_0 = \frac{\sin(p)}{\sqrt{J_2^2 + 4 \sin^2(p/2)}}, \quad \tilde{v}_0 = \cos(p/2), \quad \nu_0 = \frac{J_2}{\sqrt{J_2^2 + 4 \sin^2(p/2)}}. \]
(3.120)

Replacing (3.120) into the solutions for the other coefficients, one can obtain the expressions for the remaining parameters in terms of physical quantities.

To the leading order, the equation for \(J_1 \) gives

\[\epsilon = 16 \exp \left[-2 \left(\frac{J_1 + \sqrt{J_2^2 + 4 \sin^2(p/2)}}{J_2^2 + 4 \sin^2(p/2) \sin^2(p/2)} \right) \frac{\sqrt{J_2^2 + 4 \sin^2(p/2) \sin^2(p/2)}}{J_2^2 + 4 \sin^2(p/2)} \right]. \]
Accordingly, to the leading order again, the equation for δ reads
\[
2\pi \left(n_2 - \gamma_3 \frac{\sqrt{\lambda}}{2\pi} J_1 \right) + J_2 \frac{J_1 + \sqrt{J_2^2 + 4\sin^2(p/2)}}{J_2^2 + 4\sin^4(p/2)} \sin(p) = \Lambda \Phi. \tag{3.121}
\]
Finally, the dispersion relation, including the leading finite-size correction, takes the form
\[
E - J_1 = \sqrt{J_2^2 + 4\sin^2(p/2)} - \frac{16\sin^4(p/2)}{\sqrt{J_2^2 + 4\sin^2(p/2)}} \cos(\Phi) \tag{3.122}
\]
\[
\exp \left[-\frac{2 \left(J_1 + \sqrt{J_2^2 + 4\sin^2(p/2)} \right) \sqrt{J_2^2 + 4\sin^2(p/2)} \sin^2(p/2)}{J_2^2 + 4\sin^4(p/2)} \right].
\]
For $J_2 = 0$, (3.122) reduces to the result found in \cite{82}.

3.1.5 Finite-size giant magnons on $AdS_4 \times CP^3_{\gamma}$

In \cite{23} we investigated finite-size giant magnons propagating on γ-deformed $AdS_4 \times CP^3_{\gamma}$ type IIA string theory background, dual to one parameter deformation of the $N = 6$ super Chern-Simons-matter theory (ABJM theory) \cite{68}. The resulting theory has $N = 2$ supersymmetry and the modified superpotential is \cite{84}
\[
W_{\gamma} \propto \text{Tr} \left(e^{-i\pi\gamma/2} A_1 B_1 A_2 B_2 - e^{i\pi\gamma/2} A_1 B_2 A_2 B_1 \right). \tag{3.123}
\]
Here the chiral superfields $A_i, \ B_i, \ (i = 1, 2)$ represent the matter part of the theory. As in the $N = 4$ SYM case, the marginality of the deformation translates into the fact that AdS_4 part of the background is untouched. Taking into account that CP^3 has three isometric coordinates, one can consider a chain of three TsT transformations. The result is a regular three-parameter deformation of $AdS_4 \times CP^3$ string background, dual to a non-supersymmetric deformation of ABJM theory, which reduces to the supersymmetric one by putting $\gamma_1 = \gamma_2 = 0$ and $\gamma_3 = \gamma$ \cite{84}.

The dispersion relation for the GM in the γ-deformed $AdS_4 \times CP^3_{\gamma}$ background, carrying two nonzero angular momenta, has been found in \cite{85}. Here we are interested in obtaining the finite-size correction to it. Analyzing the finite-size effect on the dispersion relation, we found that it is modified compared to the undeformed case, acquiring γ dependence.

\footnote{We want to point out that our result is different from \cite{82} which has extra $\cos^3(p/4)$ in the denominator of the phase Φ.}
Let us first write down the deformed background. It is given by

\[ds_{11A}^2 = R^2 \left(\frac{1}{4} ds_{AdS_4}^2 + ds_{CP^3}^2 \right), \]

\[ds_{CP^3}^2 = d\psi^2 + G \sin^2 \psi \cos^2 \psi \left(\frac{1}{2} \cos \theta_1 d\phi_1 - \frac{1}{2} \cos \theta_2 d\phi_2 + d\phi_3 \right)^2 \]

\[+ \frac{1}{4} \cos^2 \psi \left(d\theta_1^2 + G \sin^2 \theta_1 d\phi_1^2 \right) + \frac{1}{4} \sin^2 \psi \left(d\theta_2^2 + G \sin^2 \theta_2 d\phi_2^2 \right) \]

\[+ \tilde{\gamma} G \sin^4 \psi \cos^4 \sin^2 \theta_1 \sin^2 \theta_2 d\phi_3^2, \]

\[B_2 = -R^2 \tilde{\gamma} G \sin^2 \psi \cos^2 \psi \]

\[\times \left[\frac{1}{2} \cos^2 \psi \sin^2 \theta_1 \cos \theta_2 d\phi_3 \wedge d\phi_1 + \frac{1}{2} \sin^2 \psi \sin^2 \theta_2 \cos \theta_1 d\phi_3 \wedge d\phi_2 \right. \]

\[+ \left. \frac{1}{4} \left(\sin^2 \theta_1 \sin^2 \theta_2 + \cos^2 \psi \sin^2 \theta_1 \cos^2 \theta_2 + \sin^2 \psi \sin^2 \theta_2 \cos^2 \theta_1 \right) d\phi_1 \wedge d\phi_2 \right], \]

where

\[G^{-1} = 1 + \tilde{\gamma}^2 \sin^2 \psi \cos^2 \psi \left(\sin^2 \theta_1 \sin^2 \theta_2 + \cos^2 \psi \sin^2 \theta_1 \cos^2 \theta_2 + \sin^2 \psi \sin^2 \theta_2 \cos^2 \theta_1 \right). \]

The deformation parameter \(\tilde{\gamma} \) above is given by \(\tilde{\gamma} = \frac{R^2}{\gamma}, \) where \(\gamma \) appears in the dual field theory superpotential (3.123).

Further on, we restrict our attention to the \(R_1 \times RP^3_\gamma \) subspace of \(AdS_4 \times CP^3_\gamma \), where \(\theta_1 = \theta_2 = \pi/2, \phi_3 = 0 \), and

\[ds^2 = R^2 \left(-\frac{1}{4} dt^2 + d\psi^2 + G \frac{1}{4} \cos^2 \psi d\phi_1^2 + G \frac{1}{4} \sin^2 \psi d\phi_2^2 \right), \]

\[B_2 = b_{\psi\phi_2} d\phi_1 \wedge d\phi_2 = -\frac{R^2}{4} \tilde{\gamma} G \sin^2 \psi \cos^2 \psi d\phi_1 \wedge d\phi_2, \]

\[G^{-1} = 1 + \tilde{\gamma}^2 \sin^2 \psi \cos^2 \psi. \]

To find the string solutions we are interested in, we use the ansatz \((j = 1, 2)\)

\[t(\tau, \sigma) = \kappa \tau, \quad \psi(\tau, \sigma) = \psi(\xi), \quad \phi_j(\tau, \sigma) = \omega_j \tau + f_j(\xi), \quad (3.124) \]

\[\xi = \alpha \sigma + \beta \tau, \quad \kappa, \omega_j, \alpha, \beta = \text{constants}. \]

It leads to reduction of the string dynamics to the one of the \(\gamma \)-deformed NR system. The string Lagrangian becomes (prime is used for \(d/d\xi \))

\[\mathcal{L}_s = -\frac{TR^2}{2} (\alpha^2 - \beta^2) \left[\psi'^2 + \frac{G}{4} \cos^2 \psi \left(f'_1 - \frac{\beta \omega_1}{\alpha^2 - \beta^2} \right)^2 + \frac{G}{4} \sin^2 \psi \left(f'_2 - \frac{\beta \omega_2}{\alpha^2 - \beta^2} \right)^2 \right] \]

\[- \frac{G \alpha^2}{4(\alpha^2 - \beta^2)^2} \left(\omega_1^2 \cos^2 \psi + \omega_2^2 \sin^2 \psi \right) + \frac{\alpha \tilde{\gamma} G}{2} \sin^2 \psi \cos^2 \psi \left(\frac{\omega_1 f'_2 - \omega_2 f'_1}{\alpha^2 - \beta^2} \right), \quad (3.125) \]

\(^9\)There are also nontrivial dilaton and fluxes \(F_2, F_4 \), but since the fundamental string does not interact with them at the classical level, we do not need to know the corresponding expressions.
while the Virasoro constraints acquire the form

\[
\psi'^2 + \frac{G}{4} \cos^2 \psi \left(f_1'^2 + \frac{2\beta \omega_1}{\alpha^2 + \beta^2} f_1' + \frac{\omega_1}{\alpha^2 + \beta^2} \right) \\
+ \frac{G}{4} \sin^2 \psi \left(f_2'^2 + \frac{2\beta \omega_2}{\alpha^2 + \beta^2} f_2' + \frac{\omega_2}{\alpha^2 + \beta^2} \right) = \frac{\kappa^2}{4 \alpha^2 + \beta^2},
\]

(3.126)

\[
\psi'^2 + \frac{G}{4} \cos^2 \psi \left(f_1'^2 + \frac{\omega_1}{\beta} f_1' \right) + \frac{G}{4} \sin^2 \psi \left(f_2'^2 + \frac{\omega_2}{\beta} f_2' \right) = 0.
\]

The equations of motion for \(f_j(\xi) \) following from (3.125) can be integrated once to give

\[
f_1' = \frac{1}{\alpha^2 - \beta^2} \left[\frac{C_1}{\cos^2 \psi} + \beta \omega_1 + \gamma (\alpha \omega_2 + \gamma C_1) \sin^2 \psi \right],
\]

(3.127)

\[
f_2' = \frac{1}{\alpha^2 - \beta^2} \left[\frac{C_2}{\sin^2 \psi} + \beta \omega_2 - \gamma (\alpha \omega_1 - \gamma C_2) \cos^2 \psi \right],
\]

where \(C_j \) are constants. Replacing (3.127) into (3.126), one can rewrite the Virasoro constraints as

\[
\psi'^2 = \frac{1}{4(\alpha^2 - \beta^2)^2} \left[(\alpha^2 + \beta^2) \kappa^2 - \frac{C_1^2}{\cos^2 \psi} - \frac{C_2^2}{\sin^2 \psi} \right.
\]

(3.128)

\[
- (\alpha \omega_1 - \gamma C_2)^2 \cos^2 \psi - (\alpha \omega_2 + \gamma C_1)^2 \sin^2 \psi \right],
\]

\[
\omega_1 C_1 + \omega_2 C_2 + \beta \kappa^2 = 0.
\]

(3.129)

Let us point out that (3.128) is the first integral of the equation of motion for \(\psi \). Integrating (3.127) and (3.128), one can find string solutions with very different properties. Particular examples are (dyonic) giant magnons and single-spike strings.

In the case at hand, the background metric does not depend on \(t \) and \(\phi_j \). The corresponding conserved quantities are the string energy \(E_s \) and two angular momenta \(J_j \), given by

\[
E_s = \frac{TR^2 \kappa}{4} \frac{\kappa}{\alpha} \int d\xi,
\]

(3.130)

\[
J_1 = \frac{TR^2}{4} \frac{1}{\alpha^2 - \beta^2} \int d\xi \left[\frac{\beta}{\alpha} C_1 + (\alpha \omega_1 - \gamma C_2) \cos^2 \psi \right],
\]

\[
J_2 = \frac{TR^2}{4} \frac{1}{\alpha^2 - \beta^2} \int d\xi \left[\frac{\beta}{\alpha} C_2 + (\alpha \omega_2 + \gamma C_1) \sin^2 \psi \right].
\]

Let us remind that the relation between the string tension \(T \) and the t’Hooft coupling constant \(\lambda \) for the \(\mathcal{N} = 6 \) super Chern-Simons-matter theory is given by

\[
TR^2 = 2\sqrt{2}\lambda.
\]

86
If we introduce the variable

\[\chi = \cos^2 \psi, \]

and use (3.129), the first integral (3.128) can be rewritten as

\[\chi'^2 = \Omega_2^2 \frac{(1 - u^2)}{\alpha^2(1 - \nu^2)^2} (\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n), \]

where

\[
\begin{align*}
\chi_p + \chi_m + \chi_n &= \frac{2 - (1 + \nu^2)W - u^2}{1 - u^2}, \\
\chi_p \chi_m + \chi_p \chi_n + \chi_m \chi_n &= \frac{1 - (1 + \nu^2)W + (\nu W - uK)^2 - K^2}{1 - u^2}, \\
\chi_p \chi_m \chi_n &= -\frac{K^2}{1 - u^2},
\end{align*}
\]

and

\[
\begin{align*}
v &= -\frac{\beta}{\alpha}, \\
u &= \frac{\Omega_1}{\Omega_2}, \\
W &= \left(\frac{\kappa}{\Omega_2}\right)^2, \\
K &= C_1 \frac{\alpha \Omega_2}{\Omega_1}, \\
\Omega_1 &= \omega_1 \left(1 - \frac{\gamma C_2}{\alpha \omega_1}\right), \\
\Omega_2 &= \omega_2 \left(1 + \frac{\gamma C_1}{\alpha \omega_2}\right).
\end{align*}
\]

We are interested in the case

\[0 < \chi_m < \chi < \chi_p < 1, \quad \chi_n < 0, \]

which corresponds to the finite-size giant magnons.

In terms of the newly introduced variables, the conserved quantities (3.130) and the angular differences

\[p_1 \equiv \Delta \phi_1 = \phi_1(r) - \phi_1(-r), \quad p_2 \equiv \Delta \phi_2 = \phi_2(r) - \phi_2(-r), \]

transform to

\[
\begin{align*}
E &\equiv \frac{E_s}{TR^2} = \frac{(1 - \nu^2)\sqrt{W}}{\sqrt{1 - u^2}} \frac{K(1 - \epsilon)}{\sqrt{\chi_p - \chi_n}}, \\
J_1 &\equiv \frac{J_1}{TR^2} = \frac{1}{\sqrt{1 - u^2}} \left[\frac{u \chi_n - \nu K}{\sqrt{\chi_p - \chi_n}} K(1 - \epsilon) + u \sqrt{\chi_p - \chi_n} E(1 - \epsilon) \right], \\
J_2 &\equiv \frac{J_2}{TR^2} = \frac{1}{\sqrt{1 - u^2}} \left[\frac{1 - \chi_n - \nu (\nu W - uK)}{\sqrt{\chi_p - \chi_n}} K(1 - \epsilon) \right. \\
&\quad \left. - \sqrt{\chi_p - \chi_n} E(1 - \epsilon) \right],
\end{align*}
\]

87
\[
p_1 = \frac{4}{\sqrt{1-u^2}} \left\{ K \frac{\Pi}{\sqrt{\chi_p - \chi_n}} \left(1 - \frac{\chi_m}{\chi_p} |1 - \epsilon| \right) - [uv + \tilde{\gamma}v (vW - uK) - \tilde{\gamma} (1 - \epsilon)] \frac{K(1-\epsilon)}{\sqrt{\chi_p - \chi_n}} \right\}
- \tilde{\gamma} \sqrt{\chi_p - \chi_n} E (1 - \epsilon),
\]

\[
p_2 = \frac{4}{\sqrt{1-u^2}} \left\{ \frac{vW - uK}{(1-\chi_p) \sqrt{\chi_p - \chi_n}} \Pi \left(\frac{-\chi_p - \chi_m}{1-\chi_p} |1 - \epsilon| \right) - [v (1 - \tilde{\gamma}K) + \tilde{\gamma} u \chi_n] \frac{K(1-\epsilon)}{\sqrt{\chi_p - \chi_n}} \right\}
- \tilde{\gamma} u \sqrt{\chi_p - \chi_n} E (1 - \epsilon),
\]

where \(\epsilon \) is given by

\[
\epsilon = \frac{\chi_m - \chi_n}{\chi_p - \chi_n}.
\]

From (3.133)-(3.135) one can see that the conserved charges are not affected by the \(\gamma \)-deformation as it should be. Only the angular differences are shifted.

Further on, we will consider the case when \(\mathcal{E}, J_2 \) and \(p_1 \) are large, while \(\mathcal{E} - J_2, J_1 \) and \(p_2 \) are finite. To this end, we will introduce appropriate expansions.

Expansions

In order to find the leading finite-size correction to the energy-charge relation, we have to consider the limit \(\epsilon \to 0 \) in (3.133)-(3.135). We will use the following ansatz for the parameters \((\chi_p, \chi_m, \chi_n, v, u, W, K)\)

\[
\begin{align*}
\chi_p &= \chi_{p0} + (\chi_{p1} + \chi_{p2} \log(\epsilon)) \epsilon, \\
\chi_m &= \chi_{m0} + (\chi_{m1} + \chi_{m2} \log(\epsilon)) \epsilon, \\
\chi_n &= \chi_{n0} + (\chi_{n1} + \chi_{n2} \log(\epsilon)) \epsilon, \\
v &= v_0 + (v_1 + v_2 \log(\epsilon)) \epsilon, \\
u &= u_0 + (u_1 + u_2 \log(\epsilon)) \epsilon, \\
W &= W_0 + (W_1 + W_2 \log(\epsilon)) \epsilon, \\
K &= K_0 + (K_1 + K_2 \log(\epsilon)) \epsilon.
\end{align*}
\]

A few comments are in order. To be able to reproduce the dispersion relation for the infinite-size giant magnons, we set

\[
\chi_{m0} = \chi_{n0} = K_0 = 0, \quad W_0 = 1.
\]
Also to reproduce the undeformed case \[69\] in the \(\dot{\gamma} \to 0\) limit, we need to fix
\[
\chi_{m2} = \chi_{n2} = W_2 = K_2 = 0. \tag{3.141}
\]

Replacing (3.139) into (3.131) and (3.138), one finds six equations for the coefficients in the expansions of \(\chi_p, \chi_m, \chi_n\) and \(W\). They are solved by
\[
\chi_{p1} = \frac{v_0}{(1 - v_0^2)(1 - v_0^2 - u_0^2)} \left\{ -2v_0u_0(1 - v_0^2)(1 - v_0^2 - u_0^2)u_1 + 2(1 - u_0^2)(1 - v_0^2 - u_0^2)[K_1u_0(1 + v_0^2) - (1 - v_0^2)v_1] + v_0(1 - v_0^2 - 2u_0^2)(1 - v_0^2) - 2u_0^2v_0(1 - v_0^2)^4 - 4K_1^2(1 - u_0^2)^2(1 - u_0^2 - v_0^2) \right\},
\]
\[
\chi_{p2} = -2v_0\frac{v_2 + (v_0u_2 - u_0v_2)u_0}{(1 - u_0^2)^2}, \tag{3.142}
\]
\[
\chi_{m1} = \frac{u_0^4 - 2u_0^2(1 - v_0^2) + (1 - v_0^2)^2 + (1 - u_0^2 - v_0^2)^4 - 4K_1^2(1 - u_0^2)^2(1 - u_0^2 - v_0^2)}{2(1 - u_0^2)(1 - v_0^2 - u_0^2)},
\]
\[
\chi_{n1} = \frac{u_0^4 - 2u_0^2(1 - v_0^2) + (1 - v_0^2)^2 - (1 - u_0^2 - v_0^2)^4 - 4K_1^2(1 - u_0^2)^2(1 - u_0^2 - v_0^2)}{2(1 - u_0^2)(1 - v_0^2 - u_0^2)},
\]
\[
W_1 = \frac{-2K_1u_0v_0(1 - u_0^2) + v_0(1 - u_0^2 - v_0^2)^4 - 4K_1^2(1 - u_0^2)^2(1 - u_0^2 - v_0^2)}{(1 - u_0^2)(1 - v_0^2)}.
\]

As a next step, we impose the conditions for \(J_1, p_2\) to be independent of \(\epsilon\). By expanding r.h.s. of (3.134), (3.266) in \(\epsilon\), one gets
\[
J_1 = u_0 \sqrt{1 - v_0^2 - u_0^2}, \tag{3.143}
\]
\[
p_2 = 2 \arcsin \left(\frac{2v_0 \sqrt{1 - v_0^2 - u_0^2}}{1 - u_0^2} \right) - 4\dot{\gamma}u_0 \frac{\sqrt{1 - v_0^2 - u_0^2}}{1 - u_0^2}, \tag{3.144}
\]
along with four more equations from the coefficients of \(\epsilon\) and \(\epsilon \log \epsilon\). The equalities (3.143), (3.144) lead to
\[
v_0 = \frac{\sin \Psi}{2 \sqrt{J_1^2 + \sin^2(\Psi/2)}}, \quad u_0 = \frac{J_1}{\sqrt{J_1^2 + \sin^2(\Psi/2)}}, \quad p_2 = 2 (\Psi - 2\dot{\gamma}J_1), \tag{3.145}
\]
where the angle \(\Psi\) is defined as
\[
\Psi = \arcsin \left(\frac{2v_0 \sqrt{1 - v_0^2 - u_0^2}}{1 - u_0^2} \right).
\]

89
After the replacement of (3.142) into the remaining four equations, they can be solved with respect to v_1, v_2, u_1, u_2, leading to the following form of the dispersion relation in the considered approximation

$$
\mathcal{E} - J_2 = \frac{\sqrt{1 - v_0^2 - u_0^2}}{1 - u_0^2} - \frac{1}{4} \sqrt{\frac{(1 - v_0^2 - u_0^2)^3}{1 - u_0^2}} - 4K_1^2(1 - u_0^2)^2 \epsilon.
$$

To the leading order, the expansion for J_2 gives

$$
\epsilon = 16 \exp \left[-\frac{2}{1 - v_0^2} \left(1 - \frac{v_0^2}{1 - u_0^2} + J_2 \sqrt{1 - v_0^2 - u_0^2} \right) \right].
$$

By using (3.145) and (3.147), (3.146) can be rewritten as

$$
\mathcal{E} - J_2 = \sqrt{J_1^2 + \sin^2(\Psi/2)} - 4 \sqrt{\frac{\sin^8(\Psi/2)}{J_1^2 + \sin^2(\Psi/2)}} - 4K_1^2
$$

$$
\exp \left[-\frac{2 \left(J_2 + \sqrt{J_1^2 + \sin^2(\Psi/2)} \right) \sqrt{J_1^2 + \sin^2(\Psi/2)} \sin^2(\Psi/2)}{J_1^2 + \sin^2(\Psi/2)} \right].
$$

The parameter K_1 in (3.148) can be related to the angular difference p_1. To see that, let us consider the leading order in the ϵ-expansion for it:

$$
p_1 = \frac{4K_1}{\sqrt{2(1 - u_0^2)\chi_{p0}\chi_{m1}(\chi_{p0} - \chi_{m1})}} \arctan \sqrt{\frac{\chi_{p0}}{\chi_{m1}} - 1}
$$

$$
- \frac{2}{\sqrt{2(1 - u_0^2)\chi_{p0}}} \left[u_0 v_0 \log(16) + \tilde{\gamma} \left(2\chi_{p0} - (1 - v_0^2) \log(16) \right) \right]
$$

$$
+ \frac{2}{\sqrt{2(1 - u_0^2)\chi_{p0}}} \left[u_0 v_0 - \tilde{\gamma}(1 - u_0^2) \right] \log(\epsilon).
$$

So, it is natural to introduce the angle Φ as

$$
\frac{\Phi}{2} = \arctan \sqrt{\frac{\chi_{p0}}{\chi_{m1}} - 1}.
$$

On the solution for the other parameters this gives

$$
K_1 = \frac{(1 - v_0^2 - u_0^2)^{3/2}}{2(1 - u_0^2)} \sin(\Phi) = \frac{\sin^4(\Psi/2)}{2\sqrt{J_1^2 + \sin^2(\Psi/2)}} \sin(\Phi).
$$

As a result, the relation (3.149) between the angles p_1 and Φ becomes

$$
\Phi = \frac{p_1}{2} - \left(2\tilde{\gamma} - J_1 \frac{\sin \Psi}{J_1^2 + \sin^4(\Psi/2)} \right) J_2 + J_1 \frac{\sin \Psi \sqrt{J_1^2 + \sin^2(\Psi/2)}}{J_1^2 + \sin^4(\Psi/2)}.
$$
where due to the periodicity condition we should set
\[p_1 = 2\pi n_1, \quad n_1 \in \mathbb{Z}. \]

Finally, in view of (3.151), the dispersion relation (3.148) for the dyonic giant magnons acquires the form
\[
E - J_2 = \sqrt{J_1^2 + \sin^2(\Psi/2)} - \frac{4 \sin^4(\Psi/2)}{\sqrt{J_1^2 + \sin^2(\Psi/2)}} \cos \Phi \\
\exp \left[-2 \left(J_2 + \sqrt{J_1^2 + \sin^2(\Psi/2)} \right) \frac{\sqrt{J_1^2 + \sin^2(\Psi/2)} \sin^2(\Psi/2)}{J_1^2 + \sin^4(\Psi/2)} \right].
\]

Based on the Lüscher \(\mu \)-term formula for the undeformed case [19], we propose to identify the angle \(\Psi \) \(= \frac{p_2}{2} + 2\tilde{\gamma} J_1 \) with the momentum \(p \) of the magnon excitations in the dual spin chain.

Let us point out that (3.153) has the same form as the dispersion relation for dyonic giant magnons on \(R_t \times S^3 \) subspace of the \(\gamma \)-deformed \(AdS_5 \times S^5 \) [19]. Actually, the two energy-charge relations coincide after appropriate normalization of the charges and after exchange of the indices 1 and 2. The only remaining difference is in the first terms in the expressions for the angle \(\Phi \):
\[
R_t \times RP^3_{\gamma} : \Phi = \frac{p_1}{2} + \ldots \\
R_t \times S^3_{\gamma} : \Phi = p_2 + \ldots
\]

All of the above results simplify a lot when one consider giant magnons with one angular momentum, i.e. \(J_1 = 0 \). In particular, the energy-charge relation (3.153) reduces to
\[
E - J_2 = \sin \frac{p_2}{2} \left[1 - 4 \sin^2 \frac{p_2}{2} \cos (\pi n_1 - 2\tilde{\gamma} J_2) e^{-2J_2 \csc \frac{p_2}{2}} \right].
\]

3.1.6 String solutions in \(AdS_3 \times S^3 \times T^4 \) with NS-NS B-field

In [29] we developed an approach for solving the string equations of motion and Virasoro constraints in any background which has some (unfixed) number of commuting Killing vector fields (see the beginning of Section 3.1). It is based on a specific ansatz for the string embedding, which is the one given in (3.4).

Here, we apply the above mentioned approach for strings moving in \(AdS_3 \times S^3 \times T^4 \) with 2-form NS-NS B-field. We succeeded to find solutions for a large class of string configurations on this background. In particular, we derive dyonic giant magnon solutions in the \(R_t \times S^3 \) subspace, and obtain the leading finite-size correction to the dispersion relation.
Strings in $AdS_3 \times S^3 \times T^4$ with NS-NS B-field

The background geometry of this target space can be written in the following form\(^\text{10}\):

$$
\begin{align*}
&ds^2_{AdS_3} = -(1 + r^2) dt^2 + (1 + r^2)^{-1} dr^2 + r^2 d\phi^2, \quad b_{t\phi} = qr^2; \\
&ds^2_{S^3} = d\theta^2 + \sin^2 \theta d\phi_1^2 + \cos^2 \theta d\phi_2^2, \quad b_{\phi_1\phi_2} = -q \cos^2 \theta, \\
&ds^2_{T^4} = (d\varphi^i)^2, \quad i = 1, 2, 3, 4.
\end{align*}
$$

According to our notations

$$
\begin{align*}
X^\mu &= (t, \phi, \phi_1, \phi_2, \varphi^i), \quad X^a = (r, \theta), \\
g_{\mu\nu} &= (g_{tt}, g_{\phi\phi}, g_{\phi_1\phi_1}, g_{\phi_2\phi_2}, g_{ij}), \quad g_{ab} = (g_{rr}, g_{\theta\theta}), \quad g_{a\mu} = 0, \quad h_{ab} = g_{ab}, \\
b_{\mu\nu} &= (b_{t\phi}, b_{\phi_1\phi_2}), \quad b_{a\nu} = 0, \\
A_a &= 0,
\end{align*}
$$

where

$$
\begin{align*}
g_{tt} &= (g^{tt})^{-1} = -(1 + r^2), \quad g_{\phi\phi} = (g^{\phi\phi})^{-1} = r^2, \quad g_{\phi_1\phi_1} = (g^{\phi_1\phi_1})^{-1} = \sin^2 \theta, \\
g_{\phi_2\phi_2} &= (g^{\phi_2\phi_2})^{-1} = \cos^2 \theta, \quad g_{ij} = (g^{ij})^{-1} = \delta_{ij}, \\
g_{rr} &= (g^{rr})^{-1} = (1 + r^2)^{-1}, \quad g_{\theta\theta} = 1, \\
b_{t\phi} &= qr^2, \quad b_{\phi_1\phi_2} = -q \cos^2 \theta.
\end{align*}
$$

Since $g_{a\mu} = 0$, the solutions (3.11) for the coordinates X^μ are simplified to

$$
X^\mu(\tau, \sigma) = \Lambda^\nu\tau + \tilde{X}^\mu(\xi) = \Lambda^\nu\tau + \frac{1}{\alpha^2 - \beta^2} \int d\xi \left[g^{\mu\nu} (C_\nu - \alpha \Lambda^\rho b_{\nu\rho}) + \beta \Lambda^\nu \right],
$$

(3.157)

where $g^{\mu\nu}$ and $b_{\nu\rho}$ must be replaced from above.

Now, we want to find the solutions for the non-isometric string coordinates X^a. To this end we have to solve the equations (3.12), which in the case at hand reduce to

$$
(\alpha^2 - \beta^2) \left[g_{ab} \tilde{X}^{b\nu} + \Gamma_{a,bc} \tilde{X}^b \tilde{X}^c \right] + \partial_a \sum_{b=r,\theta} U_b = 0,
$$

(3.158)

where the scalar potential U in (3.15) is represented as a sum of two parts: $U_r = U_r(r)$ for the AdS_3 subspace and $U_\theta = U_\theta(\theta)$ for the S^3 subspace of the background.

Taking into account that the metric g_{ab} is diagonal, one can find the following two first integrals of (3.158)

$$
\tilde{X}^{a'} = \sqrt{\frac{C_\alpha - 2U_\alpha}{(\alpha^2 - \beta^2) g_{aa}}},
$$

(3.159)

\(^\text{10}\)The common radius R of the three subspaces is set to 1, and q is the parameter used in [86].
It follows from here that
\[d\xi = \frac{d\tilde{X}^a}{\sqrt{\frac{C^a - 2U^a}{(\alpha^2 - \beta^2)g_{aa}}}}. \] (3.160)

So, we have two different expressions for \(d\xi \), which obviously must coincide. This is a
condition for self-consistency. It leads to
\[\int \frac{dr}{\sqrt{\frac{C^r - 2U^r}{g_{rr}}}} = \int \frac{d\theta}{\sqrt{\frac{C^\theta - 2U^\theta}{g_{\theta\theta}}}}, \] (3.161)
which actually gives implicitly the “orbit” \(r(\theta) \), i.e. how the radial coordinate \(r \) on \(AdS_3 \)
depends on the angle \(\theta \) in \(S^3 \).

Now, we have to check if the first integrals for \(\tilde{X}^a(\xi) \) are compatible with the Virasoro
constraints (3.16). Replacing \(\tilde{X}^a' \) in the first of them, one finds
\[C_r + C_\theta = 0. \]

Thus, we found all first integrals of the string equations of motion, compatible with the
Virasoro constraints, which reduce to algebraic relations between the embedding parameters
and the integration constants.

Now, let us give the expressions for the conserved charges (3.17), corresponding to the
isometric coordinates.

\[-Q_t \equiv E_s = \frac{T}{\alpha^2 - \beta^2} \left[\left(\frac{\beta}{\alpha} C_t + q C_\phi \right) \int d\xi + \alpha (1 - q^2) \Lambda^t \int d\xi r^2 \right](3.162) \]
\[Q_\phi \equiv S = \frac{T}{\alpha^2 - \beta^2} \left[\left(\frac{C_\phi}{\alpha} + q C_t + q^2 \alpha \Lambda^\phi \right) \int d\xi + \left(1 - q^2 \right) \Lambda^\phi \int d\xi r^2 \right. \]
\[\left. - (q C_t + q^2 \alpha \Lambda^\phi) \int \frac{d\xi}{1 + r^2} \right], \] (3.163)
\[Q_{\phi_1} \equiv J_1 = \frac{T}{\alpha^2 - \beta^2} \left[\left(\frac{\beta}{\alpha} C_{\phi_1} + \Lambda^{\phi_1} - q \Lambda^{\phi_2} \right) \int d\xi \right. \]
\[\left. - (1 - q^2) \Lambda^{\phi_1} \int \cos^2 \theta \frac{d\xi}{d\xi} \right], \] (3.164)
\[Q_{\phi_2} \equiv J_2 = \frac{T}{\alpha^2 - \beta^2} \left[\left(\frac{\beta}{\alpha} C_{\phi_2} - q \left(C_{\phi_1} + q \Lambda^{\phi_2} \right) \right) \int d\xi \right. \]
\[\left. + (1 - q^2) \Lambda^{\phi_2} \int \cos^2 \theta d\xi + q \left(C_{\phi_1} + q \Lambda^{\phi_2} \right) \int \frac{d\xi}{1 - \cos^2 \theta} \right]. \]
\[Q_i \equiv J_i^T = \frac{T}{\alpha^2 - \beta^2} \left(\frac{\beta}{\alpha} C_i + \alpha \Lambda^i \delta_{ij} \right) \int d\xi. \]
(3.165)

Here we used the following notations: \(E_s \) is the string energy, \(S \) is the spin in \(AdS_3 \), \(J_1 \) and \(J_2 \) are the two angular momenta in \(S^3 \), while \(J_i^T \) are the four angular momenta on \(T^4 \).

The explicit expressions for the string coordinates, the “orbit” \(r(\theta) \), and the conserved charges in this background are given in Appendix C.

Giant magnon solutions

The giant magnon string solution was found in [62]. It is a specific string configuration, living in the \(R_t \times S^2 \) subspace of \(AdS_5 \times S^5 \) with an angular momentum \(J_1 \) which goes to \(\infty \). A similar configuration, dyonic giant magnon, has been obtained in [60] which moves in \(R_t \times S^3 \) subspace with two angular momenta \(J_1, J_2 \) with \(J_1 \to \infty \). These classical configurations have played an important role in understanding exact, quantum aspects of the AdS/CFT correspondence. In particular, corrections due to a large but finite \(J_1 \) obtained in [66] and [67] can provide a nontrivial check for the exact worldsheet \(S \)-matrix.

Here we provide similar string solutions in \(AdS_3 \times S^3 \times T^4 \) with NS-NS B-field for a large but finite \(J_1 \). Dyonic giant magnon solution with infinite angular momentum \(J_1 \) has been constructed in [86] with the following dispersion relation\(^\text{11}\)

\[E_s - J_1 = \sqrt{(J_2 - qT\Delta\phi_1)^2 + 4T^2(1 - q^2) \sin^2 \frac{\Delta\phi_1}{2}}. \]
(3.166)

This relation is already quite different from those for the ordinary (dyonic) giant magnons. We will show that there exist even bigger differences for the finite-size corrections.

Exact results

In order to consider dyonic giant magnon solutions, we restrict our general ansatz (3.4) in the following way:

- \(X^t \equiv t = \kappa \tau, \text{ i.e. } \Lambda^t = \kappa, \quad \tilde{X}^t(\xi) = 0 \),
- \(X^\phi \equiv \phi = 0, \text{ i.e. } \Lambda^\phi = 0, \quad \tilde{X}^\phi(\xi) = 0 \),
- \(X^r \equiv r = \tilde{X}^r(\xi) = 0 \),
- \(X^{\phi_1} \equiv \phi_1 = \omega_1 \tau + \tilde{X}^{\phi_1}(\xi), \text{ i.e. } \Lambda^{\phi_1} = \omega_1 \),
- \(X^{\phi_2} \equiv \phi_2 = \omega_2 \tau + \tilde{X}^{\phi_2}(\xi), \text{ i.e. } \Lambda^{\phi_2} = \omega_2 \),
- \(X^\theta \equiv \theta = \tilde{X}^\theta(\xi), \quad X^{\varphi^i} \equiv \varphi^i = 0 \).

As a result, we can claim that

\[C_t = \beta \kappa, \]

\(^{11}\)The terms proportional to \(q \) are due to the nonzero B-field on \(S^3 \).
which comes from \(\frac{d\tilde{X}}{d\xi} = 0 \).

Now, we can rewrite the first integrals for \(\tilde{X}^\mu \) on \(S^3 \) as

\[
\frac{d\tilde{X}^{\phi_1}}{d\xi} = \frac{1}{\alpha^2 - \beta^2} \left[(C_{\phi_1} + q\alpha\omega_2) \frac{1}{1 - \chi} + \beta\omega_1 - q\alpha\omega_2 \right],
\]

\[
\frac{d\tilde{X}^{\phi_2}}{d\xi} = \frac{1}{\alpha^2 - \beta^2} \left(\frac{C_{\phi_2}}{\chi} + \beta\omega_2 - q\alpha\omega_1 \right),
\]

where \(\chi = \cos^2 \theta \).

The first Virasoro constraint, which in the case under consideration is the first integral of the equation of motion for \(\theta \), reduces to

\[
\left(\frac{d\chi}{d\xi} \right)^2 = \frac{4}{\alpha^2 - \beta^2} \chi(1 - \chi) \left[(\alpha^2 + \beta^2)\kappa^2 - \frac{(C_{\phi_1} + q\alpha\omega_2\chi)^2}{1 - \chi} \right.
\]

\[
\left. - \frac{(C_{\phi_2} - q\alpha\omega_1\chi)^2}{\chi} - \alpha^2(\omega_2^2 - \omega_1^2)\chi - \alpha^2\omega_1^2 \right].
\]

Also, the second Virasoro constraint becomes

\[
\omega_1 C_{\phi_1} + \omega_2 C_{\phi_2} + \beta\kappa^2 = 0.
\]

Taking (3.169) into account, we can rewrite (3.168) as

\[
\left(\frac{d\chi}{d\xi} \right)^2 = 4(1 - q^2) \frac{\omega_1^2}{\alpha^2} \frac{1 - u^2}{(1 - u^2)^2} (\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n),
\]

where

\[
\chi_p + \chi_m + \chi_n = -\frac{(v^2 W + (W + u^2 - 2 + q^2)) + 2q(uvW + K(1 - u^2))}{(1 - q^2)(1 - u^2)},
\]

\[
\chi_p \chi_m + \chi_p \chi_n + \chi_m \chi_n = -\frac{(1 + v^2) W + K^2 - (vW - uK)^2 - 1 + 2qK}{(1 - q^2)(1 - u^2)},
\]

\[
\chi_p \chi_m \chi_n = -\frac{K^2}{(1 - q^2)(1 - u^2)},
\]

and we introduced the notations

\[
v = -\frac{\beta}{\alpha}, \quad u = \frac{\omega_2}{\omega_1}, \quad W = \left(\frac{\kappa}{\omega_1} \right)^2, \quad K = \frac{C_{\phi_2}}{\alpha\omega_1}.
\]

This leads to

\[
\frac{d\xi}{\alpha} = \frac{1 - v^2}{2\omega_1 \sqrt{(1 - q^2)(1 - u^2)}} \frac{d\chi}{\sqrt{(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n)}}.
\]

95
Integrating (3.172) and inverting $\xi(\chi)$ to $\chi(\xi) \equiv \cos^2[\theta(\xi)]$, one finds the following explicit solution

$$\chi = (\chi_p - \chi_n) \, dn^2 \left[\frac{\sqrt{(1-q^2)(1-u^2)(\chi_p - \chi_n)}}{1 - v^2} \, \omega_1(\sigma - v\tau), \frac{\chi_p - \chi_m}{\chi_p - \chi_n} \right] + \chi_n. \tag{3.173}$$

Next, we integrate (3.167), and according to our ansatz, obtain that the solutions for the isometric angles on S^3 are given by

$$\phi_1 = \omega_1 \tau + \frac{2}{\sqrt{(1-q^2)(1-u^2)(\chi_p - \chi_n)}} \left[\frac{vw - Ku + qu}{1 - \chi_p} \right] \left[\arcsin \left(\sqrt{1 - q^2}, \frac{\chi_p - \chi_m}{\chi_p - \chi_n} \right) \right]$$

$$-(v + qu)F \left(\arcsin \left(\frac{\chi_p - \chi_m}{\chi_p - \chi_n} \right) \right). \tag{3.174}$$

$$\phi_2 = \omega_2 \tau + \frac{2}{\sqrt{(1-q^2)(1-u^2)(\chi_p - \chi_n)}} \left[\frac{K}{\chi_p} \right] \left[\arcsin \left(\sqrt{1 - q^2}, \frac{\chi_p - \chi_m}{\chi_p - \chi_n} \right) \right]$$

$$-(uv + q)F \left(\arcsin \left(\frac{\chi_p - \chi_m}{\chi_p - \chi_n} \right) \right). \tag{3.175}$$

By using (3.172), one can find also the conserved quantities, namely, the string energy E_s and the two angular momenta J_1, J_2:

$$E_s = 2T \frac{(1 - v^2)\sqrt{W}}{\sqrt{(1-q^2)(1-u^2)(\chi_p - \chi_n)}} \, K(1 - \epsilon), \tag{3.176}$$

$$J_1 = \frac{2T}{\sqrt{(1-q^2)(1-u^2)(\chi_p - \chi_n)}} \left\{ [1 - v^2W + K(\epsilon v - q)] \, K(1 - \epsilon) \right. - (1 - q^2) [\chi_n \, K(1 - \epsilon) + (\chi_p - \chi_n) \, E(1 - \epsilon)] \left\}, \tag{3.177}$$

$$J_2 = \frac{2T}{\sqrt{(1-q^2)(1-u^2)(\chi_p - \chi_n)}} \left\{ (1 - q^2)u \left[\chi_n \, K(1 - \epsilon) + (\chi_p - \chi_n) \, E(1 - \epsilon) \right] \right. - \left[Kv + q (vW - Ku) + q^2 u \right] \, K(1 - \epsilon)$$

$$+ \frac{qW - Ku + qu}{1 - \chi_p} \left[\arcsin \left(\frac{\chi_p - \chi_n}{\chi_p - \chi_m} \right) \right] \right\}. \tag{3.178}$$
where ϵ is defined as

$$\epsilon = \frac{\chi_m - \chi_n}{\chi_p - \chi_n}.$$ \hfill (3.179)

We will need also the expression for the angular difference $\Delta \phi_1$. It can be found to be

$$\Delta \phi_1 = \frac{2}{\sqrt{(1 - q^2)(1 - u^2)(\chi_p - \chi_n)}} \left[\frac{vW - Ku + qu}{1 - \chi_p} \Pi \left(\frac{-\chi_p - \chi_n}{1 - \chi_p}, 1 - \epsilon \right) - (v + qu) K \left(1 - \epsilon\right) \right].$$ \hfill (3.180)

The expressions (3.176), (3.177), (3.178), (3.180) are for the finite-size dyonic strings living in the $R_t \times S^3$ subspace of $AdS_3 \times S^3 \times T^4$.

Leading finite-size effect on the dispersion relation

In order to find the leading finite-size effect on the dispersion relation, we have to consider the limit $\epsilon \to 0$, since $\epsilon = 0$ corresponds to the infinite-size case. In this subsection we restrict ourselves to the particular case when $\chi_n = K = 12$. Then the third equation in (3.171) is satisfied identically, while the other two simplify to

$$\chi_p + \chi_m = \frac{2 - (1 + v^2)W - u^2 - 2q(uvW + \frac{q}{2})}{(1 - q^2)(1 - u^2)},$$ \hfill (3.181)

$$\chi_p \chi_m = \frac{(1 - W)(1 - v^2W)}{(1 - q^2)(1 - u^2)},$$

and ϵ becomes

$$\epsilon = \frac{\chi_m}{\chi_p}.$$ \hfill (3.182)

The relevant expansions of the parameters are

$$\chi_p = \chi_{p0} + (\chi_{p1} + \chi_{p2} \log(\epsilon)) \epsilon, \quad W = 1 + W_1 \epsilon,$$

$$v = v_0 + (v_1 + v_2 \log(\epsilon)) \epsilon, \quad u = u_0 + (u_1 + u_2 \log(\epsilon)) \epsilon.$$ \hfill (3.183)

As we will see later on, this choice allow us to reproduce the dispersion relation in the infinite volume limit.

97
Replacing (3.182), (3.183) into (3.181), one finds the following solutions in the small ϵ limit

$$\chi_{p0} = \frac{1 - v_0^2 - u_0^2 - 2q(u_0v_0 + \frac{q}{2})}{(1 - q^2)(1 - u_0^2)},$$

(3.184)

$$\chi_{p1} = -\frac{v_0 + qu_0}{(1 - q^2)^2(1 - u_0^2)^2} \times \left[(1 - v_0^2 - u_0^2 - 2q(u_0v_0 + \frac{q}{2})) \left(v_0^3 + qu_0(1 + 3v_0^2) - v_0(1 - 2u_0^2 - 2q^2) \right) \right. + 2(1 - q^2)(1 - v_0^2) (1 - u_0^2) v_1 + (u_0v_0 + q)u_1 \left. \right]$$

$$\chi_{p2} = \frac{2(v_0 + qu_0)((1 - u_0^2)v_2 + (u_0v_0 + q)u_2)}{(1 - q^2)(1 - u_0^2)^2}$$

$$W_1 = \frac{- (1 - v_0^2 - u_0^2 - 2q(u_0v_0 + \frac{q}{2})^2}{(1 - q^2)(1 - u_0^2)(1 - v_0^2)}.$$

The coefficients in the expansions of v and u, will be obtained by imposing the conditions that J_2 and $\Delta \phi_1$ do not depend on ϵ, as in the cases without B-field ($AdS_5 \times S^5$ and $AdS_4 \times CP^3$) and their TsT-deformations, where the B-field is nonzero, but its contribution is different.

Expanding (3.178) and (3.180) to the leading order in ϵ (now $\chi_n = K = 0$), one finds that on the solutions (3.184)

$$J_2 = 2T \left(u_0 \sqrt{1 - u_0^2 - v_0^2 - 2q(u_0v_0 + \frac{q}{2}) \over 1 - u_0^2} \right) \left(1 - q^2\right) + q \arcsin \sqrt{1 - u_0^2 - v_0^2 - 2q(u_0v_0 + \frac{q}{2}) \over (1 - q^2)(1 - u_0^2)},$$

(3.185)

$$\Delta \phi_1 = 2 \arcsin \sqrt{1 - u_0^2 - v_0^2 - 2q(u_0v_0 + \frac{q}{2}) \over (1 - q^2)(1 - u_0^2)},$$

(3.186)

$$u_1 = \frac{1 - u_0^2 - v_0^2 - 2q(u_0v_0 + \frac{q}{2})}{4(1 - q^2)(1 - u_0^2)} \times \left[u_0 \left(1 - \log 16 - v_0^2(1 + \log 16) \right) - 2qv_0 \log 16 \right]$$

(3.187)

$$v_1 = \frac{1 - u_0^2 - v_0^2 - 2q(u_0v_0 + \frac{q}{2})}{4(1 - q^2)(1 - u_0^2)(1 - v_0^2)} \times \left[v_0 \left(1 - 4q^2 \right) \left(1 - \log 16 \right) - u_0^2(5 - \log 4096) \right. - v_0^3 \left(1 - \log 16 - u_0^2(1 + \log 16) \right) - 4qu_0 \left(1 - \log 4 + v_0^2(1 - \log 64) \right]$$

(3.188)
\[u_2 = \frac{(u_0(1 + v_0^2) + 2q v_0) (1 - u_0^2 - v_0^2 - 2q(u_0 v_0 + \frac{q}{2}))}{4(1 - q^2)(1 - v_0^2)}, \] (3.189)

\[v_2 = \frac{1 - u_0^2 - v_0^2 - 2q(u_0 v_0 + \frac{q}{2})}{4(1 - q^2)(1 - u_0^2)(1 - v_0^2)} \times [v_0 \left(1 - v_0^2 - u_0^2(3 + v_0^2)\right) - 2q \left(u_0(1 + 3v_0^2) + 2q v_0\right)]. \] (3.190)

Now, let us turn to the energy-charge relation. Expanding (3.176) and (3.177) in \(\epsilon \) and taking into account the solutions (3.184), (3.187) - (3.190), we obtain

\[E_s - J_1 = 2T \frac{\sqrt{1 - u_0^2 - v_0^2 - 2q(u_0 v_0 + \frac{q}{2})}}{1 - u_0^2} \left(1 - \frac{1 - u_0^2 - v_0^2 - 2q(u_0 v_0 + \frac{q}{2})}{4(1 - q^2)} \epsilon \right). \] (3.191)

The expression for \(\epsilon \) can be found from the expansion of \(J_1 \). To the leading order, it is given by

\[\epsilon = 16 \exp \left[-\frac{J_1}{T} \sqrt{1 - u_0^2 - v_0^2 - 2q(u_0 v_0 + \frac{q}{2})} - 2 \frac{1 - u_0^2 - v_0^2 - 2q(u_0 v_0 + \frac{q}{2})}{(1 - v_0^2)(1 - u_0^2)} \right]. \] (3.192)

Next, we would like to express the right hand side of (3.191) in terms of \(J_2 \) and \(\Delta \phi_1 \). To this end, we solve (3.185), (3.186) with respect to \(u_0, v_0 \). The result is

\[u_0 = \frac{J_2 - qT \Delta \phi_1}{\sqrt{(J_2 - qT \Delta \phi_1)^2 + 4(1 - q^2)T^2 \sin^2 \frac{\Delta \phi_1}{2}}}. \] (3.193)

\[v_0 = \frac{T(1 - q^2) \sin \Delta \phi_1 - q(J - qT \Delta \phi_1)}{\sqrt{(J_2 - qT \Delta \phi_1)^2 + 4(1 - q^2)T^2 \sin^2 \frac{\Delta \phi_1}{2}}}. \] (3.194)

Replacing (3.193), (3.194) into (3.191), (3.192), one finds

\[E_s - J_1 = \sqrt{(J_2 - qT \Delta \phi_1)^2 + 4(1 - q^2)T^2 \sin^2 \frac{\Delta \phi_1}{2}} \left(1 - \frac{(1 - q^2)T^2 \sin^4 \frac{\Delta \phi_1}{2}}{(J_2 - qT \Delta \phi_1)^2 + 4(1 - q^2)T^2 \sin^2 \frac{\Delta \phi_1}{2}} \epsilon \right), \] (3.195)

where

\[\epsilon = 16 e^{-\frac{2(J_1 + \sqrt{(J_2 - qT \Delta \phi_1)^2 + 4(1 - q^2)T^2 \sin^2 \frac{\Delta \phi_1}{2}} \sqrt{(J_2 - qT \Delta \phi_1)^2 + 4(1 - q^2)T^2 \sin^2 \frac{\Delta \phi_1}{2}} \sin^2 \frac{\Delta \phi_1}{2}}{(J_2 - qT \Delta \phi_1)^2 + 4T^2 \sin^4 \frac{\Delta \phi_1}{2} + 2qT \sin \Delta \phi_1 (J_2 - qT \Delta \phi_1) + \frac{1}{2} T \sin \Delta \phi_1)}}. \] (3.196)
Our result \(^{13}\) matches with that of \(^{86}\) in (3.166) when we take \(\epsilon \to 0\) limit by sending \(J_1 \to \infty\). This dispersion relation is different from the ordinary giant magnon’s one.

The dispersion relation for the ordinary giant magnon with one nonzero angular momentum can be obtained by setting \(J_2 = 1\) and taking the limit \(T \to \infty\). To take into account the \textit{leading} finite-size effect only, we restrict ourselves to the case when \(\frac{J}{T} >> 1\). The result is the following:

\[
E_s - J_1 = T \sqrt{p^2 q^2 + 4(1 - q^2) \sin^2 \frac{P}{2}} \left(1 - \frac{(1 - q^2) \sin^2 \frac{P}{2}}{p^2 q^2 + 4(1 - q^2) \sin^2 \frac{P}{2}} \epsilon \right),
\]

(3.197)

where

\[
\epsilon = 16 \exp \left[\frac{-2}{q^2(p - \sin p)^2 + 4 \sin^4 \frac{P}{2}} \left(\frac{J_1}{T} + \sqrt{p^2 q^2 + 4(1 - q^2) \sin^2 \frac{P}{2}} \right) \right].
\]

Our results on the leading finite-size correction to the dispersion relation can provide an important check for the exact integrability conjecture and \(S\)-matrix elements based on it.

\subsection*{3.1.7 Finite-size giant magnons on \(\eta\)-deformed \(AdS_5 \times S^5\)}

A new integrable deformation of the type IIB \(AdS_5 \times S^5\) superstring action, depending on one real parameter \(\eta\), has been found recently in \(^{88}\). The bosonic part of the superstring sigma model Lagrangian on this \(\eta\)-deformed background was determined in \(^{89}\). Then the authors of \(^{89}\) used it to compute the perturbative \(S\)-matrix of bosonic particles in the model.

Interesting new developments were made in \(^{90}\). There the spectrum of a string moving on \(\eta\)-deformed \(AdS_5 \times S^5\) is considered. This is done by treating the corresponding worldsheet theory as integrable field theory. In particular, it was found that the dispersion relation for the infinite-size giant magnons \(^{62}\) on this background, in the large string tension limit \(g \to \infty\) is given by

\[
E = \frac{2g}{\tilde{\eta}} \sqrt{1 + \tilde{\eta}^2} \text{arcsinh} \left(\frac{\epsilon^2}{2} \right),
\]

(3.198)

where \(\tilde{\eta}\) is related to the deformation parameter \(\eta\) according to

\[
\tilde{\eta} = \frac{2\eta}{1 - \eta^2}.
\]

\(^{13}\)Eqs. (3.195) and (3.196) have been confirmed by an independent analysis based on algebraic curve method \(^{87}\) after our result has been appeared in the arXiv.
Here, we are going to extend the result \((3.198)\) to the case of finite-size giant magnons \([30]\).

String Lagrangian and background fields

The bosonic part of the string Lagrangian \(L\) on the \(\eta\)-deformed \(AdS_5 \times S^5\) found in \([89]\) is given by a sum of the Lagrangians \(L_a\) and \(L_s\), for the \(AdS\) and sphere subspaces. Since there is nonzero \(B\)-field on both subspaces, which leads to the appearance of Wess-Zumino terms, these Lagrangians can be further decomposed as

\[
L_a = L_a^g + L_a^{WZ}, \quad L_s = L_s^g + L_s^{WZ},
\]

where the superscript “\(g\)” is related to the dependence on the background metric. The explicit expressions for the Lagrangians in (3.200) are as follows \([89]\)

\[
L_a^g = -\frac{T}{2} \gamma^{\alpha\beta} \left[\frac{(1 + \rho^2)\partial_\alpha t \partial_\beta t}{1 - \bar{\eta}^2 \rho^2} + \frac{\partial_\alpha \rho \partial_\beta \rho}{(1 + \rho^2)(1 - \bar{\eta}^2 \rho^2)} + \frac{\rho^2 \partial_\alpha \zeta \partial_\beta \zeta}{1 + \bar{\eta}^2 \rho^4 \sin^2 \zeta} \right] + \frac{\rho^2 \cos^2 \zeta \partial_\alpha \psi_1 \partial_\beta \psi_1}{1 + \bar{\eta}^2 \rho^4 \sin^2 \zeta} + \frac{\rho^2 \sin^2 \zeta \partial_\alpha \psi_2 \partial_\beta \psi_2}{1 + \bar{\eta}^2 \rho^4 \sin^2 \zeta},
\]

\[
L_a^{WZ} = \frac{T}{2} \bar{\eta} \epsilon^{\alpha\beta} \frac{\rho^4 \sin 2\zeta}{1 + \bar{\eta}^2 \rho^4 \sin^2 \zeta} \partial_\alpha \psi_1 \partial_\beta \zeta,
\]

\[
L_s^g = -\frac{T}{2} \gamma^{\alpha\beta} \left[\frac{(1 - r^2)\partial_\alpha \phi \partial_\beta \phi}{1 - \bar{\eta}^2 r^2} + \frac{\partial_\alpha r \partial_\beta r}{(1 - r^2)(1 - \bar{\eta}^2 r^2)} + \frac{r^2 \partial_\alpha \xi \partial_\beta \xi}{1 + \bar{\eta}^2 r^4 \sin^2 \xi} \right] + \frac{r^2 \cos^2 \xi \partial_\alpha \phi_1 \partial_\beta \phi_1}{1 + \bar{\eta}^2 r^4 \sin^2 \xi} + \frac{r^2 \sin^2 \xi \partial_\alpha \phi_2 \partial_\beta \phi_2}{1 + \bar{\eta}^2 r^4 \sin^2 \xi},
\]

\[
L_s^{WZ} = -\frac{T}{2} \bar{\eta} \epsilon^{\alpha\beta} \frac{r^4 \sin 2\xi}{1 + \bar{\eta}^2 r^4 \sin^2 \xi} \partial_\alpha \phi_1 \partial_\beta \xi,
\]

where we introduced the notation

\[
T = g \sqrt{1 - \bar{\eta}^2}. \quad \text{(3.205)}
\]

Comparing (3.201)-(3.204) with the Polyakov string Lagrangian, one can extract the components of the background fields. They are given by

\[
\begin{align*}
g_{tt} &= -\frac{1 + \rho^2}{1 - \bar{\eta}^2 \rho^2}, \quad g_{\rho\rho} = \frac{1}{(1 + \rho^2)(1 - \bar{\eta}^2 \rho^2)}, \quad g_{\zeta\zeta} = \frac{\rho^2}{1 + \bar{\eta}^2 \rho^4 \sin^2 \zeta}, \\
g_{\psi_1\psi_1} &= \frac{\rho^2 \cos^2 \zeta}{1 + \bar{\eta}^2 \rho^4 \sin^2 \zeta}, \quad g_{\psi_2\psi_2} = \rho^2 \sin^2 \zeta, \quad b_{\psi_1} = \bar{\eta} \frac{\rho^4 \sin 2\zeta}{1 + \bar{\eta}^2 \rho^4 \sin^2 \zeta}.
\end{align*}
\]
\[g_{\phi\phi} = \frac{1 - r^2}{1 + \eta^2 r^2}, \quad g_{rr} = \frac{1}{(1 - r^2)(1 + \eta^2 r^2)}, \quad g_{\xi\xi} = \frac{r^2}{1 + \eta^2 r^2 \sin^2 \xi} \] (3.207)

\[g_{\phi_1\phi_1} = \frac{r^2 \cos^2 \xi}{1 + \eta^2 r^2 \sin^2 \xi}, \quad g_{\phi_2\phi_2} = r^2 \sin^2 \xi, \quad b_{\phi_1\xi} = -\frac{\eta}{1 + \eta^2 r^2 \sin^2 \xi}. \]

GM solutions

Since we are going to consider giant magnon solutions, we restrict ourselves to the \(R_t \times S^3_\eta \) subspace, which corresponds to the following choice in \(AdS_\eta \)

\[\rho = 0, \quad \zeta = 0, \quad \psi_1 = \psi_2 = 0 \Rightarrow b_{\psi_1\xi} = 0. \]

On \(S^5_\eta \) we first introduce the angle \(\tilde{\theta} \) in the following way

\[r = \sin \tilde{\theta}, \]

which leads to

\[ds^2_{S^5_\eta} = \frac{\cos^2 \tilde{\theta}}{1 + \eta^2 \sin^2 \tilde{\theta}} \, d\phi^2 + \frac{d\tilde{\theta}^2}{1 + \eta^2 \sin^2 \tilde{\theta}} + \frac{\sin^2 \tilde{\theta}}{1 + \eta^2 \sin^2 \tilde{\theta} \sin^2 \xi} \, d\xi^2 \\
+ \frac{\sin^2 \tilde{\theta} \cos^2 \xi}{1 + \eta^2 \sin^2 \tilde{\theta} \sin^2 \xi} \, d\phi_1^2 + \sin^2 \tilde{\theta} \sin^2 \xi \, d\phi_2^2, \]

\[b_{\phi_1\xi} = -\tilde{\eta} \frac{\sin^4 \tilde{\theta} \sin 2\xi}{1 + \eta^2 \sin^4 \tilde{\theta} \sin^2 \xi}. \]

Now, to go to \(S^3_\eta \), we can safely set \(\phi = 0, \tilde{\theta} = \frac{\pi}{2} \) (we also exchange \(\phi_1 \) and \(\phi_2 \) and replace \(\xi \) with \(\theta \)). Thus, the background seen by the string moving in the \(R_t \times S^3_\eta \) subspace can be written as

\[g_{tt} = -1, \quad g_{\phi_1\phi_1} = \sin^2 \theta, \quad g_{\phi_2\phi_2} = \frac{\cos^2 \theta}{1 + \eta^2 \sin^2 \theta}, \]

\[g_{\theta\theta} = \frac{1}{1 + \eta^2 \sin^2 \theta}, \quad b_{\phi_2\theta} = -\tilde{\eta} \frac{\sin 2\theta}{1 + \eta^2 \sin^2 \theta}. \] (3.208)

Working in conformal wordsheet gauge, we impose the following ansatz for the string embedding

\[t(\tau, \sigma) = \kappa \tau, \quad \phi_i(\tau, \sigma) = \omega_i \tau + F_i(\xi), \quad \theta(\tau, \sigma) = \theta(\xi), \quad \xi = \alpha \sigma + \beta \tau, \quad i = 1, 2, \] (3.209)

where \(\tau \) and \(\sigma \) are the string world-sheet coordinates, \(F_i(\xi), \theta(\xi) \) are arbitrary functions of \(\xi \), and \(\kappa, \omega_i, \alpha, \beta \) are parameters.
Then one can find the following solutions of the equations of motion for $\phi_i(\tau, \sigma)$ (we introduced the notation $\chi \equiv \cos^2 \theta$)

$$
\phi_1(\tau, \sigma) = \omega_1 \tau + \frac{1}{\alpha^2 - \beta^2} \int d\xi \left(\frac{C_1}{1 - \chi} + \beta \omega_1 \right),
$$
(3.210)

$$
\phi_2(\tau, \sigma) = \omega_2 \tau + \frac{1}{\alpha^2 - \beta^2} \int d\xi \left[\frac{(1 + \eta^2)C_2}{\chi} + \beta \omega_2 - \eta^2 C_2 \right],
$$
(3.211)

where C_1, C_2 are integration constants.

By using (3.210), (3.211), one can show that the Virasoro constraints take the form

$$
\left(\frac{d\chi}{d\xi} \right)^2 = \frac{4\chi(1 - \chi) [1 + \eta^2(1 - \chi)]}{(\alpha^2 - \beta^2)^2} \left[(\alpha^2 + \beta^2)\kappa^2 - \frac{C_1^2}{1 - \chi} - C_2^2 \frac{1 + \eta^2(1 - \chi)}{\chi} \right. \\
- \left. \alpha^2 \omega_1^2(1 - \chi) - \alpha^2 \omega_2^2 \frac{\chi}{1 + \eta^2(1 - \chi)} \right],
$$
(3.212)

$$
\omega_1 C_1 + \omega_2 C_2 + \beta \kappa^2 = 0.
$$
(3.213)

Next, we solve (3.213) with respect to C_1 and replace the solution into (3.212). The result is

$$
\left(\frac{d\chi}{d\xi} \right)^2 = \frac{4}{(\alpha^2 - \beta^2)^2} \alpha^2 \eta^2 \omega_1^2 (\chi_\eta - \chi)(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n),
$$
(3.214)

where

$$
\chi_\eta + \chi_p + \chi_m + \chi_n = -\frac{\alpha^2 [\omega_2^2 - \omega_1^2 + \eta^2(\kappa^2 - 3\omega_1^2)] + \eta^2 \beta^2 \kappa^2 + \eta^4 C_2^2}{\alpha^2 \eta^2 \omega_1^2},
$$
(3.215)

$$
\chi_p \chi_\eta + (\chi_p + \chi_\eta) \chi_n + \chi_m (\chi_p + \chi_\eta + \chi_n) = \\
\frac{1}{\eta^2 \alpha^2 \omega_1^4} \left\{ \beta^2 \kappa^2 \left[\eta^2 (\kappa^2 - 2\omega_1^2) - \omega_2^2 \right] + 2C_2 \beta \eta^2 \kappa^2 \omega_2 \\
+ \alpha^2 \omega_1^2 \left[(2 + 3\eta^2) \omega_2^2 - \omega_2^2 - (1 + 2\eta^2) \kappa^2 \right] \\
+ C_2^2 \eta^2 \left(\omega_2^2 - (2 + 3\eta^2) \omega_1^2 \right) \right\},
$$
(3.216)

$$
\chi_m \chi_n \chi_p + \chi_m \chi_n \chi_\eta + \chi_m \chi_p \chi_\eta + \chi_n \chi_p \chi_n = \\
-\frac{1 + \eta^2}{\eta^2 \alpha^2 \omega_1^4} \left[C_2^2 (1 + 3\eta^2) \omega_1^2 - 2C_2 \beta \kappa^2 \omega_2 - C_2^2 \omega_2^2 - (\kappa^2 - \omega_1^2)(\beta^2 \kappa^2 - \alpha^2 \omega_1^2) \right],
$$
(3.217)

$$
\chi_m \chi_n \chi_p \chi_\eta = -\frac{C_2^2 (1 + \eta^2)^2}{\eta^2 \alpha^2 \omega_1^4}.
$$
(3.218)
The solution \(\xi(\chi) \) of (3.214) is
\[
\xi(\chi) = \frac{\alpha^2 - \beta^2}{\sqrt[\eta\alpha\omega_1}{\sqrt{(\chi_\eta - \chi_m)(\chi_\eta - \chi_n)}}} \times
F \left(\arcsin \sqrt{\frac{(\chi_\eta - \chi_m)(\chi_\eta - \chi_n)(\chi_\eta - \chi_n)}{(\chi_\eta - \chi_m)(\chi_\eta - \chi_n)}} \right),
\]

where
\[
\chi_\eta > \chi_\eta > \chi > \chi_m > \chi_n.
\]

Inverting \(\xi(\chi) \) to \(\chi(\xi) \), one finds
\[
\chi(\xi) = \frac{\chi_\eta(\chi_\eta - \chi_\eta_\eta)}{(\chi_\eta - \chi_\eta_\eta)} \times
\text{dn}^2(x|m) + (\chi_\eta - \chi_\eta_\eta) \times
(\chi_\eta - \chi_\eta_\eta) \times
\text{dn}^2(x|m) + \chi_\eta - \chi_\eta,
\]

where
\[
x = \frac{\eta\omega_1 \sqrt{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}}{\sqrt{(\chi_\eta - \chi_\eta_\eta)}} \times
\chi_\eta,
\]
\[
m = \frac{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}.
\]

By using (3.214) we can find the explicit solutions for the isometric angles \(\phi_1, \phi_2 \). They are given by
\[
\phi_1(\tau, \sigma) = \omega_1 \tau + \frac{1}{\eta\omega_1 \sqrt{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}} \times
\left\{ \left[\beta \left(k^2 + \omega_\tau^2(\chi_\eta - 1) + C_2 \omega_2 \right) \right] F \left(\arcsin \sqrt{\frac{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}}, m \right) \right.
- \left. \frac{(\chi_\eta - \chi_\eta_\eta)(\beta k^2 + C_2 \omega_2)}{1 - \chi_\eta} \right\}
\]
\[
\phi_2(\tau, \sigma) = \omega_2 \tau + \frac{1}{\eta\omega_1 \sqrt{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}} \times
\left\{ \left[C_2 \left(1 - \eta^2(\chi_\eta - 1) \right) + \beta \omega_2 \chi_\eta \right] F \left(\arcsin \sqrt{\frac{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}}, m \right)
+ \frac{C_2(1 + \eta^2)(\chi_\eta - \chi_\eta_\eta)}{\chi_\eta_\eta} \right\} \times
\left\{ \arcsin \sqrt{\frac{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}{(\chi_\eta - \chi_\eta_\eta)(\chi_\eta - \chi_\eta_\eta)}}, m \right\}.
\]
Now, let us go to the computations of the conserved charges Q_μ, i.e. the string energy E_s and the two angular momenta J_1, J_2. Starting with

$$Q_\mu = \int d\sigma \frac{\partial L}{\partial (\partial_\tau X^\mu)}, \quad X^\mu = (t, \phi_1, \phi_2),$$

and applying the ansatz (3.4), one finds

$$E_s = \frac{T}{\eta} \left(1 - \frac{\beta^2}{\alpha^2}\right) \frac{\kappa}{\omega_1} \int_{\chi_m}^{\chi_p} \frac{d\chi}{\sqrt{(\chi_\eta - \chi)(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n)}}, \quad (3.223)$$

$$J_1 = \frac{T}{\eta} \left[\left(1 - \frac{\beta(\beta \kappa^2 + C_2 \omega_2)}{\alpha^2 \omega_1^2}\right) \int_{\chi_m}^{\chi_p} \frac{d\chi}{\sqrt{(\chi_\eta - \chi)(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n)}} \right.$$

$$- \left. \int_{\chi_m}^{\chi_p} \chi d\chi \sqrt{(\chi_\eta - \chi)(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n)} \right], \quad (3.224)$$

$$J_2 = \frac{T}{\eta^3} \left[\left(1 + \frac{1}{\eta^2}\right) \frac{\omega_2}{\omega_1} \int_{\chi_m}^{\chi_p} \frac{d\chi}{\sqrt{(1 + \frac{1}{\eta^2} - \chi)(\chi_\eta - \chi)(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n)}} \right.$$

$$- \left. \frac{(\omega_2}{\omega_1} \frac{\beta C_2}{\alpha^2 \omega_1^2} \int_{\chi_m}^{\chi_p} \frac{d\chi}{\sqrt{(\chi_\eta - \chi)(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n)}} \right]. \quad (3.225)$$

We will need also the expression for the angular difference $\Delta \phi_1$. The computations give the following result

$$\Delta \phi_1 = \frac{1}{\eta} \left[\frac{\beta}{\alpha} \int_{\chi_m}^{\chi_p} \frac{d\chi}{\sqrt{(\chi_\eta - \chi)(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n)}} \right.$$

$$- \left. \frac{(\beta \kappa^2}{\alpha \omega_1^2} + \frac{\omega_2 C_2}{\alpha \omega_1^2} \int_{\chi_m}^{\chi_p} \frac{d\chi}{(1 - \chi)(\chi_\eta - \chi)(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n)} \right]. \quad (3.226)$$

Solving the integrals in (3.223)-(3.226) and introducing the notations

$$v = -\frac{\beta}{\alpha}, \quad u = \frac{\omega_2}{\omega_1}, \quad W = \frac{\kappa^2}{\omega_1^2}, \quad K_2 = \frac{C_2}{\alpha \omega_1}, \quad \epsilon = \frac{(\chi_\eta - \chi_p)(\chi_m - \chi_n)}{(\chi_\eta - \chi_m)(\chi_p - \chi_n)}, \quad (3.227)$$

we finally obtain

$$E_s = \frac{2T}{\eta} \frac{(1 - v^2)\sqrt{W}}{\sqrt{(\chi_\eta - \chi_m)(\chi_p - \chi_n)}} K (1 - \epsilon), \quad (3.228)$$
\[J_1 = \frac{2T}{\tilde{\eta} \sqrt{(\chi_\eta - \chi_m)(\chi_p - \chi_n)}} \left[(1 - v^2 W + K_2 uv - \chi_\eta) K(1 - \epsilon) \right. \]
\[+ (\chi_\eta - \chi_p) \Pi \left(\frac{\chi_p - \chi_m}{\chi_\eta - \chi_m}, 1 - \epsilon \right) \],
\[J_2 = \frac{2T}{\tilde{\eta}^3 \sqrt{(\chi_\eta - \chi_m)(\chi_p - \chi_n)}} \left\{ \frac{(1 + \frac{1}{\tilde{\eta}^2}) u}{(1 + \frac{1}{\tilde{\eta}^2} - \chi_p)} \times \right. \]
\[\left\{ (\chi_\eta - \chi_p) \Pi \left(\frac{(\chi_p - \chi_m)}{(\chi_\eta - \chi_m)(1 - \chi_p)}, 1 - \epsilon \right) \right\} \]
\[- \left(u + \tilde{\eta}^2 K_2 v \right) K(1 - \epsilon) \}, \]
\[\Delta \phi_1 = \frac{2}{\tilde{\eta} \sqrt{(\chi_\eta - \chi_m)(\chi_p - \chi_n)}} \times \]
\[\left\{ \frac{v W - K_2 u}{(\chi_\eta - 1)(1 - \chi_p)} \left[(\chi_\eta - \chi_p) \Pi \left(\frac{(\chi_\eta - 1)(\chi_p - \chi_m)}{(\chi_\eta - \chi_m)(1 - \chi_p)}, 1 - \epsilon \right) \right. \right. \]
\[\left. \left. - (1 - \chi_p) K(1 - \epsilon) \right] - v K(1 - \epsilon) \right\}. \]

Small \(\epsilon \)-expansions and dispersion relation

In this section we restrict ourselves to the simpler case of giant magnons with one nonzero angular momentum. To this end, we set the second isometric angle \(\phi_2 = 0 \). From the solution (3.222) it is clear that \(\phi_2 \) is zero when
\[\omega_2 = C_2 = 0, \]
or equivalently (see (3.227))
\[u = K_2 = 0. \]
Then it follows from (3.218) that \(\chi_n = 0 \) because \(\chi_n > \chi_p > \chi_m > 0 \) for the finite-size case. In addition, we express \(\chi_m \) through the other parameters
\[\chi_m = \frac{\chi_\eta \chi_p}{\chi_\eta - (1 - \epsilon) \chi_p} \epsilon. \]
As a consequence (3.215)-(3.217) take the form
\[\frac{(1 - \epsilon) \chi_p^2 - 2 \epsilon \chi_p \chi_\eta - \chi_\eta^2}{\chi_\eta - (1 - \epsilon) \chi_p} + 3 - (1 + v^2) W + \frac{1}{\tilde{\eta}^2} = 0, \]
(3.232)
\[\chi_p \chi_\eta + \frac{\epsilon \chi_p \chi_\eta (\chi_p + \chi_\eta)}{\chi_\eta - (1 - \epsilon) \chi_p} - 2 - (1 + v^2) W + (3 - (2 + v^2(2 - W)) W) \tilde{\eta}^2 = 0, \quad (3.233) \]

\[\frac{\epsilon \chi_p^2 \chi_\eta^2}{\chi_\eta - (1 - \epsilon) \chi_p} - \frac{(1 + \tilde{\eta}^2)(1 - W)(1 - v^2 W)}{\tilde{\eta}^2} = 0. \quad (3.234) \]

In order to obtain the leading finite-size effect on the dispersion relation, we consider the limit \(\epsilon \to 0 \) in (3.232)-(3.234) first. We will use the following small \(\epsilon \)-expansions for the remaining parameters

\[\chi_\eta = \chi_{\eta 0} + (\chi_{\eta 1} + \chi_{\eta 2} \log \epsilon) \epsilon \quad (3.235) \]
\[\chi_p = \chi_{p 0} + (\chi_{p 1} + \chi_{p 2} \log \epsilon) \epsilon, \]
\[v = v_0 + (v_1 + v_2 \log \epsilon) \epsilon, \]
\[W = 1 + W_1 \epsilon. \]

Replacing (3.235) into (3.232)-(3.234) and expanding in \(\epsilon \) one finds the following solution of the resulting equations

\[\chi_{p 0} = 1 - v_0^2, \quad \chi_{p 1} = 1 - v_0^2 - 2v_0 v_1 - \frac{(1 - v_0^2)^2}{1 + \tilde{\eta}^2 v_0^2}, \quad \chi_{p 2} = -2v_0 v_2, \quad (3.236) \]
\[\chi_{\eta 0} = 1 + \frac{1}{\tilde{\eta}^2}, \quad \chi_{\eta 1} = \chi_{\eta 2} = 0, \]
\[W_1 = -\frac{(1 + \tilde{\eta}^2)(1 - v_0^2)}{1 + \tilde{\eta}^2 v_0^2}. \]

Next, we expand \(\Delta \phi_1 \) in \(\epsilon \) and impose the condition that the resulting expression does not depend on \(\epsilon \). After using (3.236) this gives

\[\Delta \phi_1 = 2 \arccot \left(v_0 \sqrt{\frac{1 + \tilde{\eta}^2}{1 - v_0^2}} \right) \quad (3.237) \]

and two equations with solution

\[v_1 = \frac{v_0 (1 - v_0^2) [1 - \log 16 + \tilde{\eta}^2 (2 - v_0^2(1 + \log 16))]}{4(1 + \tilde{\eta}^2 v_0^2)}, \quad v_2 = \frac{1}{4} v_0 (1 - v_0^2). \quad (3.238) \]

Solving (3.237) with respect to \(v_0 \) one finds

\[v_0 = \frac{\cot \frac{\Delta \phi_1}{2}}{\sqrt{\tilde{\eta}^2 + \csc^2 \frac{\Delta \phi_1}{2}}}. \quad (3.239) \]
Now let us go to the ε-expansion of the difference $E_s - J_1$. Taking into account the solutions for the parameters, it can be written as

$$E_s - J_1 = 2g \sqrt{1 + \tilde{\eta}^2} \left[\frac{1}{\tilde{\eta}} \text{arcsinh} \left(\frac{\tilde{\eta} \sin \frac{p}{2}}{2} \right) - \frac{(1 + \tilde{\eta}^2) \sin^3 \frac{p}{2}}{4 \sqrt{1 + \tilde{\eta}^2} \sin^2 \frac{p}{2}} \epsilon \right]. \quad (3.240)$$

where the expression for ε can be found from the expansion of J_1. To the leading order, the result is

$$\epsilon = 16 \exp \left[- \left(\frac{J_1}{g} + \frac{2 \sqrt{1 + \tilde{\eta}^2}}{\tilde{\eta}} \text{arcsinh} \left(\frac{\tilde{\eta} \sin \frac{p}{2}}{2} \right) \right) \sqrt{1 + \tilde{\eta}^2 \sin^2 \frac{p}{2}} \right]. \quad (3.241)$$

In writing (3.240), (3.241), we used (3.205) and identified the angular difference $\Delta \phi_1$ with the magnon momentum p in the dual spin chain.

For $\epsilon = 0$, (3.240) reduces to the dispersion relation for the infinite-size giant magnon obtained in [90] for the large g case. In the limit $\tilde{\eta} \to 0$, (3.240) gives the correct result for the undeformed case found in [66].

3.2 Membrane results

3.2.1 M2-brane solutions in $AdS_7 \times S^4$

In [9] different M2-brane configurations in the M-theory $AdS_7 \times S^4$ background with field theory dual $A_{N-1}(2,0)$ SCFT have been considered. New membrane solutions are found and compared with the known ones. Here we will give an example of such solution chosen among the ones obtained there.

We use the following coordinates for the $AdS_7 \times S^4$ metric

$$l_p^{-2} ds^2_{AdS_7 \times S^4} = 4R^2 \left\{ - \cosh^2 \rho d\tau^2 + d\rho^2 + \sinh^2 \rho \left(d\psi_1^2 + \cos^2 \psi_1 d\psi_2^2 + \sin^2 \psi_1 d\Omega_3^2 \right) \right\},$$

$$d\Omega_3^2 = d\psi_3^2 + \cos^2 \psi_3 d\psi_4^2 + \cos^2 \psi_3 \sin^2 \psi_4 d\psi_5^2,$$

and embed the membrane according to the ansatz

$$X^0(\tau, \delta, \sigma) \equiv t(\tau, \delta, \sigma) = \Lambda_0^0 \delta + \Lambda_0^0 \sigma + Y^0(\tau),$$

$$X^1(\tau, \delta, \sigma) = Y^1(\tau) = \rho(\tau),$$

$$X^2(\tau, \delta, \sigma) \equiv \psi_1(\tau, \delta, \sigma) = \Lambda_0^2 \delta + \Lambda_0^2 \sigma + Y^2(\tau),$$

$$X^3(\tau, \delta, \sigma) \equiv \psi_3(\tau, \delta, \sigma) = \Lambda_0^3 \delta + \Lambda_0^3 \sigma + Y^3(\tau),$$

$$X^4(\tau, \delta, \sigma) = Y^4(\tau) = \alpha(\tau),$$

$$X^5(\tau, \delta, \sigma) \equiv \theta(\tau, \delta, \sigma) = \Lambda_0^5 \delta + \Lambda_0^5 \sigma + Y^5(\tau),$$

$$X^\mu = X^{0,2,3,5}, X^a = X^{1,4}. \quad (3.243)$$
Then the background seen by the membrane is \((\psi_1 = \pi/4)\)
\[
ds^2 = (2l_p R)^2 \left[-\cosh^2 p dt^2 + (d \rho)^2 + \frac{1}{2} \sinh^2 \rho \left(d \psi_2^2 + d \psi_3^2 \right) + \frac{1}{4} \left(d \alpha^2 + \cos^2 \alpha d \theta^2 \right) \right]
\]
and in our notations \(X^\mu = X^{0,2,3,5}, X^a = X^{1,4}\).

Performing the necessary computations, one finds the following two first integrals of the equations of motion for \(\rho(\tau)\) and \(\alpha(\tau)\)
\[
(g_{11} \dot{\rho})^2 = \frac{(2 \Lambda_0)^2}{(2\pi)^4} \left[\frac{E^2}{\cosh^2 \rho} + \frac{2(p_2^2 + p_3^2)}{\sinh^2 \rho} \right] + (2l_p R)^6 (\Lambda_0 T_2)^2
\]
\[
	imes [2 (\Delta_{02}^2 + \Delta_{03}^2) \cosh^2 \rho - \Delta_{23}^2 \sinh^2 \rho] \sinh^2 \rho - 4d = F_1(\rho) \geq 0,
\]
\[
(g_{44} \dot{\alpha})^2 = d + (l_p R)^6 (4 \Lambda_0^2 T_2 \Delta_{05})^2 \cos^2 \alpha - \frac{(2 \Lambda_0 p_5)^2}{(2\pi)^4 \cos^2 \alpha} = F_4(\alpha) \geq 0 .
\]

The general solutions of the above two equations are
\[
\tau(\rho) = (2l_p R)^2 \int \frac{d\rho}{\sqrt{F_1(\rho)}}, \quad \tau(\alpha) = (l_p R)^2 \int \frac{d\alpha}{\sqrt{F_4(\alpha)}}.
\]
One can also find the orbit \(\rho = \rho(\alpha)\):
\[
4 \int \frac{d\rho}{\sqrt{F_1(\rho)}} = \int \frac{d\alpha}{\sqrt{F_4(\alpha)}} .
\]

The solutions for the M2-brane coordinates \(X^\mu\) are given by
\[
X^0(\rho, \alpha; \delta, \sigma) = t(\rho, \alpha; \delta, \sigma) = \Lambda_1^0 \left[\lambda^1 \tau(\rho) + \delta \right] + \Lambda_0^0 \left[\lambda^2 \tau(\rho) + \sigma \right]
\]
\[
+ \frac{2 \Lambda_0 E}{(2\pi)^2} \int \frac{d\rho}{\cosh^2 \rho \sqrt{F_1(\rho)}} + f^0[C(\rho, \alpha)],
\]
\[
X^2(\rho, \alpha; \delta, \sigma) = \psi_2(\rho, \alpha; \delta, \sigma) = \Lambda_1^2 \left[\lambda^1 \tau(\rho) + \delta \right] + \Lambda_0^2 \left[\lambda^2 \tau(\rho) + \sigma \right]
\]
\[
+ \frac{4 \Lambda_0 p_2}{(2\pi)^2} \int \frac{d\rho}{\sinh^2 \rho \sqrt{F_1(\rho)}} + f^2[C(\rho, \alpha)],
\]
\[
X^3(\rho, \alpha; \delta, \sigma) = \psi_3(\rho, \alpha; \delta, \sigma) = \Lambda_1^3 \left[\lambda^1 \tau(\rho) + \delta \right] + \Lambda_0^3 \left[\lambda^2 \tau(\rho) + \sigma \right]
\]
\[
+ \frac{4 \Lambda_0 p_3}{(2\pi)^2} \int \frac{d\rho}{\sinh^2 \rho \sqrt{F_1(\rho)}} + f^3[C(\rho, \alpha)],
\]
\[
X^5(\rho, \alpha; \delta, \sigma) = \theta(\rho, \alpha; \delta, \sigma) = \frac{1}{p_5} \left\{ (\Lambda_1^0 E - \Lambda_0^2 p_2 - \Lambda_0^3 p_3) \left[\Lambda^1 \tau(\rho) + \delta \right]
\]
\[
+ (\Lambda_0^0 E - \Lambda_0^2 p_2 - \Lambda_0^3 p_3) \left[\Lambda^2 \tau(\rho) + \sigma \right] \}
\]
\[
+ 2 \Lambda_0^0 p_5 \int \frac{d\alpha}{\cos^2 \alpha \sqrt{F_4(\alpha)}} + f^5[C(\rho, \alpha)],
\]
where \(f^\mu[C(\rho, \alpha)]\) are arbitrary functions of \(C(\rho, \alpha)\). In turn, \(C(\rho, \alpha)\) is the first integral of the equation \((3.247)\).
3.2.2 M2-brane solutions in $AdS_4 \times S^7$

The metric and the three-form gauge field are given by

$$\begin{align*}
\text{ds}^2_{AdS_4 \times S^7} &= l_{11}^2 \left[-\cosh^2 \rho \text{d}t^2 + d\rho^2 + \sinh^2 \rho \left(d\alpha^2 + \sin^2 \alpha d\beta^2 \right) + B^2 \text{ds}_7^2 \right], \\
b_3 &= -\frac{k}{3} \sin^3 \rho \sin \alpha \text{d}t \wedge \text{d}\alpha \wedge d\beta, \quad k = \text{const},
\end{align*}$$

where B is the relative radius of AdS_4 with respect to the seven-sphere. We choose to parameterize S^7 as

$$\begin{align*}
\text{ds}_7^2 &= 4d\xi^2 + \cos^2 \xi \left(d\theta^2 + d\phi^2 + d\psi^2 + 2\cos \theta d\phi d\psi \right) \\
&+ \sin^2 \xi \left(d\theta_1^2 + d\phi_1^2 + d\psi_1^2 + 2\cos \theta_1 d\phi_1 d\psi_1 \right).
\end{align*}$$

Now, consider the following membrane embedding \cite{10}

$$\begin{align*}
X^0(\tau, \delta, \sigma) \equiv t(\tau, \delta, \sigma) &= \Lambda_0^0 \tau, \\
X^1(\tau, \delta, \sigma) &= Z^1(\sigma) = \rho(\sigma), \\
X^2(\tau, \delta, \sigma) &= Z^2(\sigma) = \alpha(\sigma), \\
X^3(\tau, \delta, \sigma) \equiv \beta(\tau, \delta, \sigma) &= \Lambda_0^3 \tau + \Lambda_1^3 \delta + \Lambda_2^3 \sigma, \\
X^4(\tau, \delta, \sigma) \equiv \phi(\tau, \delta, \sigma) &= \Lambda_0^4 \tau + \Lambda_1^4 \delta + \Lambda_2^4 \sigma, \\
X^5(\tau, \delta, \sigma) \equiv \psi(\tau, \delta, \sigma) &= \Lambda_0^5 \tau + \Lambda_1^5 \delta + \Lambda_2^5 \sigma,
\end{align*}$$

where in our notations $\mu = 0, 3, 4, 5, a = 1, 2$. The relevant background seen by the membrane is

$$\begin{align*}
\text{ds}^2 &= l_{11}^2 \left[-\cosh^2 \rho \text{d}t^2 + d\rho^2 + \sinh^2 \rho \left(d\alpha^2 + \sin^2 \alpha d\beta^2 \right) \\
&+ B^2 \left(d\phi^2 + d\psi^2 + 2d\phi d\psi \right) \right] \\
b_{023} &= -\frac{k}{3} \sin^3 \rho \sin \alpha.
\end{align*}$$

For simplicity, we choose to work in diagonal worldvolume gauge $\lambda^i = 0$ in which we must have $G_{0i} = 0$. There exist four types of solutions for these constraints, for the membrane embedding used:

$$\begin{align*}
\Lambda_3^3 &= 0, \quad \Lambda_3^5 = -\Lambda_4^4, \\
\Lambda_3^4 &= 0, \quad \Lambda_0^5 = -\Lambda_0^4, \\
\Lambda_0^3 &= 0, \quad \Lambda_0^5 = -\Lambda_4^4, \\
\Lambda_0^3 &= 0, \quad \Lambda_5^0 = -\Lambda_0^4.
\end{align*}$$

Let us note that in the first two cases, which will be considered here, the induced B-field is zero, while for the last two, it is not.
Working in the framework of ansatz (3.248), one obtains that \(\det G_{mn} = G = 0 \), i.e. this case corresponds to tensionless membrane. Then one finds that the membrane trajectory \(\rho = \rho(\alpha) \) is given by

\[
\sinh \rho(\alpha) = \left[\frac{(B/\Lambda_0^0)^2 (\Lambda_0^4 + \Lambda_0^5)^2 - 1}{1 - (\Lambda_0^3/\Lambda_0^0)^2 \sin^2 \alpha} \right]^{1/2}.
\]

In the case under consideration the conserved charges are connected with each other by the equality

\[
\Lambda_0^0 E = \Lambda_0^3 S + \frac{2\lambda_0}{l_{11}^2 B^2} J^2,
\]

where \(E, S \) and \(J \) are the membrane energy, spin and angular momentum respectively.

In the framework of ansatz (3.249), one obtains that the conserved quantities read

\[
E = \frac{l_{11}^2}{2\lambda_0^0} \Lambda_0^0 \int d^2 \xi \cosh^2 \rho,
\]
\[
S = \frac{l_{11}^2}{2\lambda_0^0} \Lambda_0^3 \int d^2 \xi \sinh^2 \rho \sin^2 \alpha,
\]
\[
J = 0.
\]

Taking \(\alpha = 0 \), we find the solution

\[
\rho(\sigma) = \ln \tan \left(\frac{\sigma}{2A_\rho} \right), \quad A_\rho = 2\lambda_0^0 T_2 l_{11} B \frac{\Lambda_1^4 + \Lambda_1^5}{\Lambda_0^0}.
\]

For \(\alpha = \alpha_0 \neq 0, \pi \), there exist two different solutions:

\[
\rho(\sigma) = \frac{1}{2} \ln \frac{1 + \text{sn}(\sigma/A_\rho)}{1 - \text{sn}(\sigma/A_\rho)}, \quad k^2 = 1 - \left(\Lambda_0^3/\Lambda_0^0 \right)^2 \sin^2 \alpha_0 \in (0, 1);
\]
\[
\tanh \rho(\sigma) = \frac{1}{\sqrt{1 + k^2}} \text{sn} \left(\frac{\sqrt{1 + k^2}}{A_\rho} \sigma \right), \quad k^2 = \left(\Lambda_0^3/\Lambda_0^0 \right)^2 \sin^2 \alpha_0 - 1 \in (0, 1),
\]

Fixing \(\rho = \rho_0 \neq 0 \), one obtains

\[
\alpha(\sigma) = \arcsin \left[\text{sn} \left(\sigma/A_{\alpha} \right) \right], \quad \alpha \in (-\pi/2, \pi/2),
\]
\[
A_{\alpha} = A_\rho \tanh \rho_0, \quad k^2 = \left(\Lambda_0^3/\Lambda_0^0 \right)^2 \tanh^2 \rho_0 \in (0, 1).
\]

Now, let us turn to the general case, when none of the coordinates \(\rho \) and \(\alpha \) are kept fixed. In order to be able to give explicit solution, we set \(\Lambda_0^3 = 0 \) and find

\[
\cosh \rho(\sigma) = \frac{A}{\text{cn}(C\sigma)}.
\]
\[A = \sqrt{\frac{1}{2} \left[1 + \sqrt{1 + \left(\frac{2d}{l_{11} \Lambda_0 K} \right)^2} \right]} , \quad C = \frac{l_{11} \Lambda_0}{K} \left[1 + \left(\frac{2d}{l_{11} \Lambda_0 K} \right)^2 \right]^{1/4} , \]

and \(d \) is an arbitrary constant. The solution for the membrane trajectory is the following

\[\alpha(\rho) = \frac{d}{(A^2 - 1) CK^2} \left[A^2 \Pi \left(\varphi, \frac{-1}{A^2 - 1}, k \right) - (A^2 - 1) F(\varphi, k) \right] , \]

where

\[\varphi = \arccos \left(\frac{A}{\cosh \rho} \right) , \quad k = \frac{1}{2} \left[1 + \left(\frac{2d}{l_{11} \Lambda_0 K} \right)^2 \right]^{-1/4} \sqrt{ \frac{1}{2} \left[1 + \left(\frac{2d}{l_{11} \Lambda_0 K} \right)^2 \right] - 1} . \]

The condition \(\Lambda_3^0 = 0 \) leads to \(S = 0 \), and the membrane energy \(E \) remains the only nontrivial conserved quantity. On the obtained solution, it is given by

\[E = A^2 E_0 + \frac{\pi CK^2}{2 \lambda_0 \Lambda_0} \left[\frac{\text{sn}(2\pi C) \text{dn}(2\pi C)}{\text{cn}(2\pi C)} - E(k) \right] , \quad E_0 = E_{\rho=0} . \]

3.2.3 Exact rotating membrane solutions on a \(G_2 \) manifold

and their semiclassical limits

We obtain exact rotating membrane solutions and explicit expressions for the conserved charges on a manifold with exactly known metric of \(G_2 \) holonomy in M-theory, with four dimensional \(\mathcal{N} = 1 \) gauge theory dual. After that, we investigate their semiclassical limits and derive different relations between the energy and the other conserved quantities, which is a step towards M-theory lift of the semiclassical string/gauge theory correspondence for \(\mathcal{N} = 1 \) field theories [11].

To our knowledge, the only paper devoted to rotating membranes on \(G_2 \) manifolds at that time is [54], where various membrane configurations on different \(G_2 \) holonomy backgrounds have been studied systematically, but not exactly. In the semiclassical limit (large conserved charges), the following relations between the energy and the corresponding conserved charge \(K \) have been obtained: \(E \sim K^{1/2} \), \(E \sim K^{2/3} \), \(E - K \sim K^{1/3} \), \(E - K \sim \ln K \).

Here, our approach will be different. Taking into account that only a small number of \(G_2 \) holonomy metrics are known exactly, we choose to search for rotating membrane solutions on one of these metrics. Namely, the one discovered in [55]. First, we describe the \(G_2 \) holonomy background of [55]. Second, we obtain a number of exact rotating membrane solutions and the explicit expressions for the corresponding conserved charges. Then, we take the semiclassical limit and derive different energy-charge relations. They reproduce
and generalize part of the results obtained in [54], for the case of more than two conserved quantities.

The background we are interested in is a one-parameter family of G_2 holonomy metrics (parameterized by r_0), which play an important role as supergravity dual of the large N limit of four dimensional $\mathcal{N} = 1$ SYM. These metrics describe the M theory lift of the supergravity solution corresponding to a collection of D6-branes wrapping the supersymmetric three-cycle of the deformed conifold geometry for any value of the string coupling constant. The explicit expression for the metric with $SU(2) \times SU(2) \times U(1) \times Z_2$ symmetry is given by [55]

$$ds_7^2 = \sum_{a=1}^{7} e^a \otimes e^a,$$

(3.250)

with the following vielbeins

$$e^1 = A(r)(\sigma_1 - \Sigma_1), \quad e^2 = A(r)(\sigma_2 - \Sigma_2),$$
$$e^3 = D(r)(\sigma_3 - \Sigma_3), \quad e^4 = B(r)(\sigma_1 + \Sigma_1),$$
$$e^5 = B(r)(\sigma_2 + \Sigma_2), \quad e^6 = r_0C(r)(\sigma_3 + \Sigma_3),$$
$$e^7 = dr/C(r),$$

(3.251)

where

$$A = \frac{1}{\sqrt{12}} \sqrt{(r - 3r_0/2)(r + 9r_0/2)}, \quad B = \frac{1}{\sqrt{12}} \sqrt{(r + 3r_0/2)(r - 9r_0/2)},$$
$$C = \frac{1}{\sqrt{(r - 9r_0/2)(r + 9r_0/2)(r + 3r_0/2)}}, \quad D = r/3,$$

(3.252)

and

$$\sigma_1 = \sin \psi \sin \theta d\phi + \cos \psi d\theta, \quad \Sigma_1 = \sin \tilde{\psi} \sin \tilde{\theta} d\tilde{\phi} + \cos \tilde{\psi} d\tilde{\theta},$$
$$\sigma_2 = \cos \psi \sin \theta d\phi - \sin \psi d\theta, \quad \Sigma_2 = \cos \tilde{\psi} \sin \tilde{\theta} d\tilde{\phi} - \sin \tilde{\psi} d\tilde{\theta},$$
$$\sigma_3 = \cos \theta d\phi + d\psi, \quad \Sigma_3 = \cos \tilde{\theta} d\tilde{\phi} + d\tilde{\psi}.$$

(3.253)

This metric is Ricci flat and complete for $r \geq 9r_0/2$. It has a G_2-structure given by the following covariantly constant three-form

$$\Phi = \frac{9r_0^3}{16} \epsilon_{abc} (\sigma_a \land \sigma_b \land \sigma_c - \Sigma_a \land \Sigma_b \land \Sigma_c)$$
$$+ \frac{1}{18} \left[r - \frac{27r_0^2}{4} \right] (\sigma_1 \land \Sigma_1 + \sigma_2 \land \Sigma_2) + \frac{r_0}{3} \left[r^2 - \frac{81r_0^2}{8} \right] \sigma_3 \land \Sigma_3,$$

which guarantees the existence of a unique covariantly constant spinor [55].

The M-theory background for our case can be written as

$$l_{11}^2 ds_{11}^2 = -dt^2 + \delta_{IJ} dx^I dx^J + ds_7^2,$$

(3.254)

113
where \(l_{11} \) is the eleven dimensional Planck length, \((I,J=1,2,3)\) and \(ds_7^2 \) is given in (3.251)-(3.253). In other words, the background is direct product of flat, four dimensional space-time, and a seven dimensional \(G_2 \) manifold.

We will search for solutions, for which the background felt by the membrane depends on only one coordinate. This will be the radial coordinate \(r \), i.e. the rotating membrane embedding along this coordinate has the form \(r = r(\sigma) \). Then, the remaining membrane coordinates, which are not fixed, will depend linearly on the worldvolume coordinates \(\tau, \delta \) and \(\sigma \). The membrane configurations considered below are all for which, we were able to obtain exact solutions under the described conditions.

First type of membrane embedding [11]

Let us consider the following membrane configuration:

\[
X^0 \equiv t = \Lambda_0^0 \tau + \frac{1}{\Lambda_0^0} \left[(\Lambda_0^0 \Lambda_1) \delta + (\Lambda_0^0 \Lambda_2) \sigma \right], \quad X^I = \Lambda_0^I \tau + \Lambda_1^I \delta + \Lambda_2^I \sigma,
\]

\[
X^4 \equiv r(\sigma), \quad X^6 \equiv \theta = \Lambda_0^6 \tau, \quad X^9 \equiv \tilde{\theta} = \Lambda_0^9 \tau; \quad (\Lambda_0^0, \Lambda_i) = \delta_{IJ} \Lambda_0^I \Lambda_i^J. \tag{3.255}
\]

It corresponds to membrane extended in the radial direction \(r \), and rotating in the planes given by the angles \(\theta \) and \(\tilde{\theta} \). In addition, it is nontrivially spanned along \(X^0 \) and \(X^I \). The relations between the parameters in \(X^0 \) and \(X^I \) guarantee that the constraints are identically satisfied. At the same time, the membrane moves along \(t \)-coordinate with constant energy \(E \), and along \(X^I \) with constant momenta \(P_I \). In this case, the target space metric seen by the membrane becomes

\[
\begin{align*}
g_{00} & = g_{tt} = -l_{11}^2, \quad g_{11} = l_{11}^2 \delta_{11}, \quad g_{44} \equiv g_{rr} = \frac{l_{11}^2}{C^2(r)}, \\
g_{66} & = g_{\theta\theta} = l_{11}^2 \left[A^2(r) + B^2(r) \right], \quad g_{99} \equiv g_{\tilde{\theta}\tilde{\theta}} = l_{11}^2 \left[A^2(r) + B^2(r) \right], \\
g_{96} & = g_{\theta\tilde{\theta}} = -l_{11}^2 \left[A^2(r) - B^2(r) \right]. \tag{3.256}
\end{align*}
\]

Therefore, in our notations, we have \(\mu = (0, 1, 6, 9) \equiv (t, I, \theta, \tilde{\theta}), \ a = 4 \equiv r \). The metric induced on the membrane worldvolume is

\[
\begin{align*}
G_{00} & = -l_{11}^2 \left[(\Lambda_0^0)^2 - \Lambda_0^2 - (\Lambda_0^0)^2 A^2 - (\Lambda_0^0)^2 B^2 \right], \\
G_{11} & = l_{11}^2 M_{11}, \quad G_{12} = l_{11}^2 M_{12}, \quad G_{22} = l_{11}^2 \left[M_{22} + \frac{r^2}{C^2} \right],
\end{align*}
\]

where

\[
M_{ij} = (\Lambda_i \Lambda_j) - \frac{(\Lambda_0^0 \Lambda_i) (\Lambda_0^0 \Lambda_j)}{(\Lambda_0^0)^2}, \quad \Lambda_0^0 = \Lambda_0^6 \pm \Lambda_0^9. \tag{3.257}
\]

The constants of the motion \(\mathcal{P}_\mu^2 \), introduced in [10], are given by

\[
\begin{align*}
\mathcal{P}_0^2 & = -\frac{2\Lambda_0^0 T_{11}^2}{\Lambda_0^0} \left[(\Lambda_0 \Lambda_1) M_{12} - (\Lambda_0 \Lambda_2) M_{11} \right], \quad \tag{3.258} \\
\mathcal{P}_I^2 & = 2\Lambda_0^0 T_{11}^2 (\Lambda_1^I M_{12} - \Lambda_2^I M_{11}), \quad \mathcal{P}_6^2 = \mathcal{P}_9^2 = 0.
\end{align*}
\]
The membrane Lagrangian takes the form
\[
\mathcal{L}^A(\sigma) = \frac{1}{4\lambda^0} (K_{rr} r'^2 - V), \quad K_{rr} = -(2\lambda^0 T_{211}^2)^2 \frac{M_{11}}{C^2},
\]
\[
V = (2\lambda^0 T_{211}^2)^2 \det M_{ij} + l_{11}^2 \left[(\Lambda_0^0)^2 - \Lambda_0^2 - (\Lambda_0^-)^2 A^2 - (\Lambda_0^+)^2 B^2 \right].
\]

Let us first consider the particular case when \(\Lambda_0^- = 0 \), i.e. \(\theta = \bar{\theta} \). From the first integral of the equation of motion for \(r(\sigma) \)
\[
K_{rr} r'^2 + U = 0, \quad U = V + 4\lambda^0 \Lambda_2^e \varepsilon^2 \mu^2,
\]
one obtains the turning points of the effective one-dimensional periodic motion by solving the equation \(r' = 0 \). In the case under consideration, the result is
\[
r_{\text{min}} = 3l, \quad r_{\text{max}} = r_1 = l \left(2 \sqrt{1 + \frac{3u_0^2}{l^2(\Lambda_0^0)^2}} + 1 \right) > 3l,
\]
\[
r_2 = -l \left(2 \sqrt{1 + \frac{3u_0^2}{l^2(\Lambda_0^+)^2}} - 1 \right) < 0, \quad l = 3r_0/2,
\]
where we have introduced the notation
\[
u_0^2 = \left(2\lambda^0 T_{211}^2 \right)^2 \det M_{ij} + (\Lambda_0^0)^2 - \Lambda_0^2 + 4\lambda^0 \Lambda_2^e \varepsilon^2 / l_{11}^2 = (\Lambda_0^0)^2 - \Lambda_0^2 - (2\lambda^0 T_{211}^2)^2 \det M_{ij}.
\]

Now, we can write down the following expression for the membrane solution (\(\Delta r = r - 3l \))
\[
\sigma(r) = \int_{3l}^r \left[-\frac{K_{rr}(t)}{U(t)} \right]^{1/2} dt = \frac{16\lambda^0 T_{211}^2}{\Lambda_0^+} \left[\frac{M_{11} l \Delta r}{(r_1 - 3l)(3l - r_2)} \right]^{1/2} \times
\]
\[
F_D^{(5)} \left(\frac{1}{2}; -1/2, -1/2, 1/2, 1/2, 1/2, 1/2; \frac{\Delta r_1}{2l}, -\frac{\Delta r_1}{4l}, -\frac{\Delta r_1}{6l}, -\frac{\Delta r_1}{3l - r_2}, \frac{\Delta r_1}{r_1 - 3l} \right),
\]
where the following normalization condition must be satisfied (\(\Delta r_1 = r_1 - 3l \)) [11]
\[
2\pi = 2 \int_{3l}^{r_1} \left[-\frac{K_{rr}(t)}{U(t)} \right]^{1/2} dt = \frac{32\lambda^0 T_{211}^2 \left(M_{11} l \right)^{1/2}}{\Lambda_0^+ (3l - r_2)^{1/2}} \times
\]
\[
F_D^{(5)} \left(\frac{1}{2}; -1/2, -1/2, 1/2, 1/2, 1/2, 1/2; \frac{\Delta r_1}{2l}, -\frac{\Delta r_1}{4l}, -\frac{\Delta r_1}{6l}, -\frac{\Delta r_1}{3l - r_2}, 1 \right) =
\]
\[
\frac{16\pi \lambda^0 T_{211}^2 \left(M_{11} l \right)^{1/2}}{\Lambda_0^+ (3l - r_2)^{1/2}} \times \left[1 + \frac{\Delta r_1}{2l} \right]^{1/2} \left[1 + \frac{\Delta r_1}{4l} \right]^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2}
\]
\[
\times F_D^{(4)} \left(\frac{1}{2}; -1/2, -1/2, 1/2, 1/2, 1/2; \frac{1}{1 + \frac{2l}{2\Delta r_1}}, \frac{1}{1 + \frac{4l}{2\Delta r_1}}, \frac{1}{1 + \frac{6l}{2\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{2\Delta r_1}} \right).
\]
Now, we can compute the conserved charges on the obtained solution. They are:

\[
E = -P_0 = \frac{\pi^2 t_{11}^2}{\lambda_0^4} \Lambda^+_0,
\]
\[
P_\theta = P_\theta = \frac{\pi t_{11}^2}{\lambda_0^4} \Lambda^+_0 \int_0^{r_1} \frac{B^2(t)dt}{-K_{rr}(t) + U(t)} \left[\frac{1}{2} \right]^{1/2} 3 \frac{(M_{11})^{3/2}}{(3l - r_2)^{1/2}} \times \frac{4 \pi^2 T_2 l_{11}^3}{3 \frac{(M_{11})^{3/2}}{(3l - r_2)^{1/2}} \Delta r_1 \left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{1/2} \times T_{D}^{(4)} \left(1/2; -1/2, -3/2, 1/2, 1/2; 2: \frac{1}{1 + \frac{2}{\Delta r_1}}, \frac{1}{1 + \frac{2}{\Delta r_1}}, \frac{1}{1 + \frac{2}{\Delta r_1}}, \frac{1}{1 + \frac{2}{\Delta r_1}} \right). \tag{3.263}
\]

Our next task is to find the relation between the energy \(E \) and the other conserved quantities \(P \), \(P_\theta = P_\theta \) in the semiclassical limit (large conserved charges). This corresponds to \(r_1 \to \infty \), which in the present case leads to \(3u_0^2/|l|^2(\Lambda^+_0)^2| \to \infty \). In this limit, the condition \((3.261) \) reduces to

\[
\Lambda^+_0 = 2\sqrt{3} \lambda_0^0 T_2 l_{11} M_{11}^{1/2},
\]

while the expression \((3.263) \) for the momentum \(P_\theta \), takes the form

\[
P_\theta = P_\theta = \sqrt{3} \frac{\lambda_0^0 T_2 l_{11}^3}{M_{11}^{1/2}} \frac{u_0^2}{(\Lambda^+_0)^2}.
\]

Combining these results with \((3.21) \), one obtains

\[
\left\{ E^2 (E^2 - P^2) - (2\pi^2 T_2 l_{11}^3)^2 \left\{ (A_1 \times A_2)^2 E^2 - [(A_1 \times A_2)^2] \right\} \right\}^2 - (4\sqrt{3} \pi^2 T_2 l_{11}^3)^2 E^2 \left[A_1^2 E^2 - (A_1 P)^2 \right] P_\theta^2 = 0, \quad (A_1 \times A_2) = \varepsilon_{ijk} A_1^j A_2^k.
\tag{3.264}
\]

This is fourth order algebraic equation for \(E^2 \). Its positive solutions give the explicit dependence of the energy on \(P \) and \(P_\theta \): \(E^2 = E^2(P, P_\theta) \).

Let us consider a few particular cases. In the simplest case, when \(\Lambda^+_0 = 0 \), i.e. \(P = 0 \), and \(\Lambda^+_2 = c \Lambda^+_1 \), which corresponds to the membrane embedding (see \((3.255) \))

\[
X^0 \equiv t = \Lambda^+_0 \tau, \quad X^1 = \Lambda^+_1 (\delta + c \sigma), \quad X^4 \equiv r(\sigma), \quad X^6 \equiv \theta = \Lambda^+_0 \tau = X^9 \equiv \theta = \Lambda^+_0 \tau,
\]

\((3.263) \) simplifies to

\[
E^2 = 4\sqrt{3} \pi^2 T_2 l_{11}^3 \left| A_1 \right| P_\theta.
\tag{3.265}
\]

This is the relation \(E \sim K^{1/2} \) obtained for \(G_2 \)-manifolds in \([29] \). If we impose only the conditions \(\Lambda^+_0 = 0 \), and \(\Lambda^+_1 \) remain independent, \((3.264) \) gives

\[
E^2 = (2\pi^2 T_2 l_{11}^3)^2 (A_1 \times A_2)^2 + 4\sqrt{3} \pi^2 T_2 l_{11}^3 \left| A_1 \right| P_\theta.
\tag{3.266}
\]
Now, let us take $\Lambda_1 \neq 0$, $\Lambda_2 = c\Lambda_1$. Then, (5.264) reduces to

$$E^2 \left[(E^2 - \mathbf{P}^2)^2 - (4\sqrt{3}\pi^2 T_2 l_{11}^3)^2 \Lambda_1^2 P_0^2 \right] + (4\sqrt{3}\pi^2 T_2 l_{11}^3)^2 (\Lambda_1 \mathbf{P})^2 P_0^2 = 0,$$

which is third order algebraic equation for E^2. If the three-dimensional vectors \mathbf{A}_1 and \mathbf{P} are orthogonal to each other, i.e. $(\mathbf{A}_1 \cdot \mathbf{P}) = 0$, the above relation simplifies to

$$E^2 = \mathbf{P}^2 + 4\sqrt{3}\pi^2 T_2 l_{11}^3 | \mathbf{A}_1 | P_0.$$ (3.267)

The obvious conclusion is that in the framework of a given embedding, one can obtain different relations between the energy and the other conserved charges, depending on the choice of the embedding parameters.

Now, we will consider the general case, when $\Lambda_\nu \neq 0$, i.e. $\theta \neq \tilde{\theta}$. The turning points are given by

$$r_{\min} = 3l, \quad r_{\max} = r_1 = l \left[2 \sqrt{\frac{k^2 + 3}{4} + \frac{3u_0^2}{l^2 ((\Lambda_0^+)^2 + (\Lambda_0^-)^2)} + k} \right],$$

$$r_2 = -l \left[2 \sqrt{\frac{k^2 + 3}{4} + \frac{3u_0^2}{l^2 ((\Lambda_0^+)^2 + (\Lambda_0^-)^2)} - k} \right], \quad k = \frac{(\Lambda_0^+)^2 - (\Lambda_0^-)^2}{(\Lambda_0^+)^2 + (\Lambda_0^-)^2} \in [0, 1].$$

Now the solution for $\sigma(r)$ is

$$\sigma(r) = \int_{3l}^{r} \left[-\frac{K_{rr}(t)}{U(t)} \right]^{1/2} dt = \frac{16\lambda^0 T_2 l_{11}}{[(\Lambda_0^+)^2 + (\Lambda_0^-)^2]^{1/2}} \left[\frac{M_{11} l \Delta r}{(r_1 - 3l)(3l - r_2)} \right]^{1/2} \times F_D^{(5)} \left(1/2; -1/2, -1/2, 1/2, 1/2, 1/2; 3/2; -\frac{\Delta r}{2l}, -\frac{\Delta r}{4l}, -\frac{\Delta r}{6l}, -\frac{\Delta r}{3l}, -\frac{\Delta r}{r_1 - 3l} \right). \quad (3.268)$$

The normalization condition reads

$$\frac{8\lambda^0 T_2 l_{11} (M_{11} l)^{1/2}}{[(\Lambda_0^+)^2 + (\Lambda_0^-)^2]^{1/2} (3l - r_2)^{1/2}} \times F_D^{(4)} \left(1/2; -1/2, -1/2, 1/2, 1/2, 1/2; 1; -\frac{\Delta r_1}{2l}, -\frac{\Delta r_1}{4l}, -\frac{\Delta r_1}{6l}, -\frac{\Delta r_1}{3l - r_2} \right) = \frac{8\lambda^0 T_2 l_{11} (M_{11} l)^{1/2}}{[(\Lambda_0^+)^2 + (\Lambda_0^-)^2]^{1/2} (3l - r_2)^{1/2}} \times \left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times F_D^{(4)} \left(1/2; -1/2, -1/2, 1/2, 1/2, 1/2; 1; \frac{1}{1 + \frac{2\Delta r_1}{\Delta_1}}, \frac{1}{1 + \frac{4\Delta r_1}{\Delta_1}}, \frac{1}{1 + \frac{6\Delta r_1}{\Delta_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta_1}} \right) = 1. \quad (3.269)$$

Computing the conserved momenta, one obtains the same expressions for E and \mathbf{P} as in (3.21)14.
and

\[
\frac{1}{2} (P_\theta + P_\theta) = \frac{4\pi^2 T_2 l_1^3 \Lambda_0^+ (M_1 l^3)^{1/2}}{3 [(\Lambda_0^+)^2 + (\Lambda_0^-)^2]^{1/2}} \times \\
\Delta r_1 F_D^{(4)} \left(\frac{3}{2}; -1/2, -1/2, 1/2, 1/2; \frac{\Delta r_1}{2l}, \frac{\Delta r_1}{4l}, -\frac{\Delta r_1}{6l}, -\frac{\Delta r_1}{3l - r_2} \right) \\
= \frac{4\pi^2 T_2 l_1^3 \Lambda_0^+ (M_1 l^3)^{1/2}}{3 [(\Lambda_0^+)^2 + (\Lambda_0^-)^2]^{1/2}} \times \\
\Delta r_1 \left(1 + \frac{\Delta r_1}{2l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{4l} \right) \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times \\
F_D^{(4)} \left(1/2; -1/2, -1/2, 1/2, 1/2; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}} \right), \quad (3.270)
\]

\[
\frac{1}{2} (P_\theta - P_\theta) = \frac{8\pi^2 T_2 l_1^3 \Lambda_0^- (M_1 l^5)^{1/2}}{3 [(\Lambda_0^+)^2 + (\Lambda_0^-)^2]^{1/2}} \times \\
F_D^{(4)} \left(1/2; -1/2, -1/2, -1/2, 1/2; 1/2, \frac{-\Delta r_1}{2l}, \frac{-\Delta r_1}{4l}, \frac{-\Delta r_1}{6l}, \frac{-\Delta r_1}{3l - r_2} \right) \\
= \frac{8\pi^2 T_2 l_1^3 \Lambda_0^- (M_1 l^5)^{1/2}}{3 [(\Lambda_0^+)^2 + (\Lambda_0^-)^2]^{1/2}} \times \\
\left(1 + \frac{\Delta r_1}{2l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times \\
F_D^{(4)} \left(1/2; -1/2, -1/2, -1/2, 1/2; 1/2, \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}} \right). \quad (3.271)
\]

Now, we go to the semiclassical limit \(r_1 \to \infty \). The normalization condition gives

\[
[(\Lambda_0^+)^2 + (\Lambda_0^-)^2]^{1/2} = 2\sqrt{3} \lambda^0 T_2 l_1^3 M_1^{1/2},
\]

whereas (3.270) and (3.271) take the form

\[
\frac{1}{2} (P_\theta \pm P_\theta) = \sqrt{3} \pi^2 T_2 l_1^3 \Lambda_0^\pm M_1^{1/2} u_0^2 \\
\left[(\Lambda_0^+)^2 + (\Lambda_0^-)^2 \right]^{3/2}.
\]

The above expressions, together with (3.21), lead to the following connection between the energy and the conserved momenta

\[
\left\{ E^2 (E^2 - P^2) - (2\pi^2 T_2 l_1^3)^2 \left\{ (\Lambda_1 \times \Lambda_2)^2 E^2 - [(\Lambda_1 \times \Lambda_2) \times P]^2 \right\} \right\}^2 \\
-6 (2\pi^2 T_2 l_1^3)^2 E^2 \left[\Lambda_1^2 E^2 - (\Lambda_1 \cdot P)^2 \right] \left(P_\theta^2 + P_\theta^2 \right) = 0. \quad (3.272)
\]
Obviously, (3.272) is the generalization of (3.264) for the case $P_\theta \neq P_\theta$ and for $P_\theta = P_\theta$ coincides with it, as it should be. The particular cases (3.265), (3.266) and (3.267) now generalize to

$$
E^2 = 2\sqrt{6}\pi^2 T_2 l_{11}^3 | \Lambda_1 | \left(P_\theta^2 + P_\theta^2 \right)^{1/2},
$$

$$
E^2 = (2\pi^2 T_2 l_{11}^3)^2 (\Lambda_1 \times \Lambda_2)^2 + 2\sqrt{6}\pi^2 T_2 l_{11}^3 | \Lambda_1 | \left(P_\theta^2 + P_\theta^2 \right)^{1/2},
$$

$$
E^2 = P^2 + 2\sqrt{6}\pi^2 T_2 l_{11}^3 | \Lambda_1 | \left(P_\theta^2 + P_\theta^2 \right)^{1/2}.
$$

(3.273)

Finally, let us give the semiclassical limit of the membrane solution (3.268), which is

$$
\sigma_{sc}(r) = \left\{ \frac{32(4\pi^2 T_2 l_{11}^3)^2 \left[\Lambda_1^2 E^2 - (\Lambda_1 \cdot P)^2 \right]}{27E^2 \left(P_\theta^2 + P_\theta^2 \right)} \right\}^{1/4} (\Delta r)^{1/2}
$$

$$
\times F_D^{(3)} \left(1/2; -1/2, -1/2, 1/2; 3/2; -\frac{\Delta r}{2l}, -\frac{\Delta r}{4l}, \frac{\Delta r}{6l} \right)
$$

$$
= \left\{ \frac{32(4\pi^2 T_2 l_{11}^3)^2 \left[\Lambda_1^2 E^2 - (\Lambda_1 \cdot P)^2 \right]}{27E^2 \left(P_\theta^2 + P_\theta^2 \right)} \right\}^{1/4} (\Delta r)^{1/2}
$$

$$
\times \left(1 + \frac{\Delta r}{2l} \right)^{1/2} \left(1 + \frac{\Delta r}{4l} \right)^{1/2} \left(1 + \frac{\Delta r}{6l} \right)^{-1/2}
$$

$$
\times F_D^{(3)} \left(1; -1/2, -1/2, 1/2; 3/2; \frac{1}{1 + \frac{\Delta r}{2l}}, \frac{1}{1 + \frac{\Delta r}{4l}}, \frac{1}{1 + \frac{\Delta r}{6l}} \right).
$$

(3.274)

Second type of membrane embedding [11]

Let us consider membrane, which is extended along the radial direction r and rotates in the planes defined by the angles θ and θ, with angular momenta P_θ and P_θ. Now we want to have nontrivial wrapping along X^6 and X^9. The embedding parameters in X^6 and X^9 have to be chosen in such a way that the constraints are satisfied identically. It turns out that the angular momenta P_θ and P_θ must be equal, and the constants of the motion P_μ^2 are identically zero for this case. In addition, we want the membrane to move along X^0 and X^I with constant energy E and constant momenta P_I respectively. All this leads to the following ansatz:

$$
X^0 \equiv t = \Lambda_0^0 t, \quad X^I = \Lambda_0^0 t, \quad X^4 \equiv r(\sigma),
$$

$$
X^6 \equiv \theta = \Lambda_0^6 \theta + \Lambda_0^6 \delta + \Lambda_0^6 \sigma, \quad X^9 \equiv \theta = \Lambda_0^6 \theta - (\Lambda_0^6 \delta + \Lambda_0^6 \sigma).
$$

(3.275)

The background felt by the membrane is the same as in (3.256), but the metric induced on the membrane worldvolume is different and is given by

$$
G_{00} = -l_{11}^2 \left((\Lambda_0^6)^2 - \Lambda_0^6 - (\Lambda_0^6)^2 B^2 \right), \quad G_{11} = 4l_{11}^2 (\Lambda_1^6)^2 A^2,
$$

$$
G_{12} = 4l_{11}^2 \Lambda_1^6 \Lambda_2^6 A^2, \quad G_{22} = l_{11}^2 \left[\frac{r^2}{C^2} + 4(\Lambda_2^6)^2 A^2 \right].
$$
For the present case, the membrane Lagrangian reduces to
\[\mathcal{L}^4(\sigma) = \frac{1}{4\lambda_0} (K_{rr}r^2 - V), \quad K_{rr} = -(4\lambda^0 T_2l_{11}^2)(\Lambda_1^6)^2 A_1^2 / C^2, \]
\[V = U = l_{11}^2 \left[(\Lambda_0^6)^2 - \Lambda_0^2 - (\Lambda_0^1)^2 B^2 \right]. \]
The turning points of the effective one-dimensional periodic motion
\[K_{rr}r^2 + V = 0, \]
are given by
\[r_{\text{min}} = 3l, \quad r_{\text{max}} = r_1 = l \left(2\sqrt{1 + \frac{3v_0^2}{l^2(\Lambda_0^1)^2}} + 1 \right) > 3l, \]
\[r_2 = -l \left(2\sqrt{1 + \frac{3v_0^2}{l^2(\Lambda_0^1)^2}} - 1 \right) < 0, \quad v_0^2 = (\Lambda_0^6)^2 - \Lambda_0^2. \quad (3.276) \]

Now, the membrane solution reads:
\[\sigma(r) = \int_{3l}^r \left[-\frac{K_{rr}(t)}{V(t)} \right]^{1/2} dt = \frac{32\lambda^0 T_2l_{11}^2 l_0^4}{\Lambda_0^1 (3l - r_2)^{1/2}} \frac{l^3 \Delta r}{(r_1 - 3l)(3l - r_2)}^{1/2} \times \]
\[F_D^{(4)} \left(1/2; -1, -1/2, 1/2, 3/2; -l \Delta r / 2l, -l \Delta r / 4l, -l \Delta r / (3l - r_2), -l \Delta r / r_1 \right). \quad (3.277) \]

The normalization condition leads to the following relation between the parameters
\[\frac{16\lambda^0 T_2l_{11}^2 \Lambda_1^6 l_0^4}{\Lambda_0^1 (3l - r_2)^{1/2}} F_D^{(3)} \left(1/2; -1, -1/2, 1/2; 1; -l \Delta r / 2l, -l \Delta r / 4l, -l \Delta r / (3l - r_2) \right) \]
\[= \frac{16\lambda^0 T_2l_{11}^2 \Lambda_1^6 l_0^4}{\Lambda_0^1 (3l - r_2)^{1/2}} \left(1 + \frac{l \Delta r_1}{2l} \right) \left(1 + \frac{l \Delta r_1}{4l} \right) \left(1 + \frac{l \Delta r_1}{3l - r_2} \right)^{-1/2} \]
\[\times F_D^{(3)} \left(1/2; -1, -1/2, 1/2, 1; -l \frac{1 + \frac{2l}{l \Delta r_1}}{1 + \frac{4l}{l \Delta r_1}}, -l \frac{1 + \frac{3l - r_2}{l \Delta r_1}}{1 + \frac{4l}{l \Delta r_1}} \right) = 1. \quad (3.278) \]

In the case under consideration, the conserved quantities are \(E, P \) and \(P_\theta = P_{\bar{\theta}} \). We derive the following result for \(P_\theta = P_{\bar{\theta}} \)
\[P_\theta = P_{\bar{\theta}} = \frac{8\pi^2 T_2l_{11}^2 \Lambda_1^6 l_0^4}{3 (3l - r_2)^{1/2}} \Delta r_1 F_D^{(3)} \left(3/2; -1, -3/2, 1/2, 2; -l \frac{\Delta r_1}{2l}, -l \frac{\Delta r_1}{4l}, -l \frac{\Delta r_1}{3l - r_2} \right) \]
\[= \frac{8\pi^2 T_2l_{11}^2 \Lambda_1^6 l_0^4}{3 (3l - r_2)^{1/2}} \Delta r_1 \left(1 + \frac{l \Delta r_1}{2l} \right) \left(1 + \frac{l \Delta r_1}{4l} \right)^{3/2} \left(1 + \frac{l \Delta r_1}{3l - r_2} \right)^{-1/2} \]
\[\times F_D^{(3)} \left(1/2; -1, -3/2, 1/2, 1/2; -l \frac{1 + \frac{2l}{l \Delta r_1}}{1 + \frac{4l}{l \Delta r_1}}, -l \frac{1 + \frac{3l - r_2}{l \Delta r_1}}{1 + \frac{4l}{l \Delta r_1}} \right). \quad (3.279) \]

In the semiclassical limit, (3.278) and (3.279) reduce to
\[(\Lambda_0^1)^2 = \frac{8\sqrt{3}}{\pi} \lambda^0 T_2l_{11}^2 \Lambda_1^6 \left[(\Lambda_0^6)^2 - \Lambda_0^2 \right]^{1/2}, \quad P_\theta = P_{\bar{\theta}} = \frac{16\pi T_2l_{11}^2 \Lambda_1^6}{\sqrt{3}(\Lambda_0^1)^3} \left[(\Lambda_0^6)^2 - \Lambda_0^2 \right]^{3/2}. \]
From here and (3.262), one obtains the relation
\[E^2 = P^2 + 3^5/3(2\pi T^2 l_1^3 \Lambda_1^4)^{2/3} P_0^{4/3}. \] (3.280)
In the particular case when \(P = 0 \), (3.280) coincides with the energy-charge relation \(E \sim K^{2/3} \), first obtained for \(G_2 \)-manifolds in \[29\]. For the given embedding (3.275), the semiclassical limit of the membrane solution (3.343) is as follows
\[
\sigma_{scf}(r) = 8n1/3 \left(\frac{2\pi^2 T^2 l_1^3 \Lambda_1^4}{9P_\theta} \right)^{2/3} \left(\int_0^\infty \right)^{1/2} F_D^{(2)} \left(1/2; -1, -1/2; 3/2; \frac{\Delta r}{2l}, \frac{\Delta r}{4l} \right) \\
= 8n1/3 \left(\frac{2\pi^2 T^2 l_1^3 \Lambda_1^4}{9P_\theta} \right)^{2/3} \left(\int_0^\infty \right)^{1/2} \left(1 + \frac{\Delta r}{2l} \right) \left(1 + \frac{\Delta r}{4l} \right)^{1/2} \\
\times F_D^{(2)} \left(1; -1, -1/2; 3/2; \frac{1}{1 + \frac{2l}{\Delta r}}, \frac{1}{1 + \frac{4l}{\Delta r}} \right). \] (3.281)

Third type of membrane embedding \[11\]

Again, we want the membrane to move in the flat, four dimensional part of the eleven dimensional background metric (3.254), with constant energy \(E \) and constant momenta \(P_1 \). On the curved part of the metric, the membrane is extended along the radial coordinate \(r \), rotates in the plane given by the angle \(\psi_+ = \psi + \tilde{\psi} \), and is wrapped along the angular coordinate \(\psi_- = \psi - \tilde{\psi} \). This membrane configuration is given by
\[
X^0 \equiv t = \Lambda_0^0 \tau, \quad X^I = \Lambda_0^I \tau, \quad X^4 \equiv r(\sigma), \\
\psi_+ = \Lambda_0^+ \tau, \quad \psi_- = \Lambda_0^- \sigma + \Lambda_2^\sigma, \quad \psi_\pm = \psi \pm \tilde{\psi}. \] (3.282)

In this case, the target space metric seen by the membrane is
\[
g_{00} \equiv g_{tt} = -l_1^2, \quad g_{1J} = l_1^2 \delta_{1J}, \quad g_{44} \equiv g_{rr} = \frac{l_1^2}{C^2(r)}, \\
g_{++} = l_1^2 \left(\frac{2l}{3} \right)^2 C^2(r), \quad g_{--} = l_1^2 D^2(r). \] (3.283)

Hence, in our notations, we have \(\mu = (0, I, +, -), \ a = 4 \equiv r \). Now, the metric induced on the membrane worldvolume is
\[
G_{00} = -l_1^2 \left[(\Lambda_0^0)^2 - \Lambda_0^2 - (\Lambda_0^+)^2 \left(\frac{2l}{3} \right)^2 C^2 \right], \\
G_{11} = l_1^2 (\Lambda_1^-)^2 D^2, \quad G_{12} = l_1^2 \Lambda_1^- \Lambda_2^- D^2, \quad G_{22} = l_1^2 \left((\Lambda_2^-)^2 D^2 + \frac{r^2}{C^2} \right). \]

The constraints are satisfied identically, and \(P_\mu^2 \equiv 0 \). The Lagrangian takes the form
\[
\mathcal{L}^A(\sigma) = \frac{1}{4\Lambda^0 \left(K_{rr} r^2 - V \right),} \quad K_{rr} = -\left(2\Lambda^0 T^2 l_1^3 \Lambda_1^- \right) D^2 \frac{r^2}{C^2}, \\
V = U = l_1^2 \left[(\Lambda_0^0)^2 - \Lambda_0^2 - (\Lambda_0^+)^2 \left(\frac{2l}{3} \right)^2 C^2 \right]. \]
The turning points read

\[r_{\text{min}} = 3l, \quad r_{\text{max}} = r_1 = l \left(1 + \frac{8}{1 - \frac{9v_0^2}{4l^2(\Lambda_0^+)^2}} \right) > 3l, \]

\[r_2 = -l \left(1 + \frac{8}{1 - \frac{9v_0^2}{4l^2(\Lambda_0^+)^2}} \right) < 0, \quad v_0^2 = (\Lambda_0^0)^2 - \Lambda_0^2. \]

For the present embedding, we derive the following membrane solution

\[\sigma(r) = \int_{3l}^r \left[-\frac{K_{rr}(t)}{V(t)} \right]^{1/2} dt = \frac{2\lambda^0T_2l_1l_1\Lambda_1^-}{(\Lambda_0^+)^2 (\frac{2r}{3})^2 - v_0^2} \left[\frac{27r^5}{3(3l - r_2)} \right]^{1/2} \times (3.284) \]

\[F_D^{(5)} \left(1/2; -1, -1, -1, 1/2, 1/2; 3/2; -\frac{\Delta r}{2l}, -\frac{\Delta r}{3l}, -\frac{\Delta r}{4l}, -\frac{\Delta r}{6l}, -\frac{\Delta r}{3l - r_2}, \frac{\Delta r}{r_1 - 3l} \right). \]

The normalization condition leads to

\[\left[\frac{\lambda^0T_2l_1l_1\Lambda_1^-}{(\Lambda_0^+)^2 (\frac{2r}{3})^2 - v_0^2} \right]^{1/2} \times (3.285) \]

\[F_D^{(5)} \left(1/2; -1, -1, -1, 1/2, 1/2; 1; -\frac{\Delta r_1}{2l}, -\frac{\Delta r_1}{3l}, -\frac{\Delta r_1}{4l}, -\frac{\Delta r_1}{6l}, -\frac{\Delta r_1}{3l - r_2} \right) = \]

\[\frac{\lambda^0T_2l_1l_1\Lambda_1^-}{(\Lambda_0^+)^2 (\frac{2r}{3})^2 - v_0^2} \left[\frac{27r^5}{3(3l - r_2)} \right]^{1/2} \times (3.286) \]

\[F_D^{(5)} \left(1/2; -1, -1, -1, 1/2, 1/2; ; 1; \frac{1}{1 + \frac{\Delta r_1}{2l}}, \frac{1}{1 + \frac{\Delta r_1}{3l}}, \frac{1}{1 + \frac{\Delta r_1}{4l}}, \frac{1}{1 + \frac{\Delta r_1}{6l}}, \frac{1}{1 + \frac{\Delta r_1}{3l - r_2}} \right) = 1. \]

The computation of the conserved momentum \(P_+ \equiv P_{\psi^+} \) gives

\[P_+ = \frac{\pi^2T_2l_1l_1(\Lambda_0^+)^2}{(\Lambda_0^+)^2 (\frac{2r}{3})^2 - v_0^2} \left[\frac{25r^7}{3^3(3l - r_2)} \right]^{1/2} \times (3.286) \]

\[\Delta r_1 F_D^{(3)} \left(3/2; -1, -1/2, 1/2, 2; -\frac{\Delta r_1}{3l}, -\frac{\Delta r_1}{6l}, -\frac{\Delta r_1}{3l - r_2} \right) = \]

\[\frac{\pi^2T_2l_1l_1(\Lambda_0^+)^2}{(\Lambda_0^+)^2 (\frac{2r}{3})^2 - v_0^2} \left[\frac{25r^7}{3^3(3l - r_2)} \right]^{1/2} \times (3.286) \]

\[\Delta r_1 \left(1 + \frac{\Delta r_1}{3l} \right) \left(1 + \frac{\Delta r_1}{6l} \right) \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times (3.286) \]

\[F_D^{(3)} \left(1/2; -1, -1/2, 1/2, 2; \frac{1}{1 + \frac{3l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l-r_2}{\Delta r_1}} \right). \]
Let us note that for the embedding (3.282), the momentum P_ψ is zero.

Going to the semiclassical limit $r_1 \to \infty$, which in the case under consideration leads to $9v_0^2/[4l^2(\Lambda^+_0)^2] \to 1$, one obtains that (3.285) and (3.286) reduce to

$$\Lambda^+_0 \left[1 - \frac{9v_0^2}{4l^2(\Lambda^+_0)^2} \right]^{3/2} = 2\lambda^0 T_{2l_{11}} \Lambda^- l, \quad P_+ = \frac{2^{5/2}\pi^2 T_{2l_{11}}^3 \Lambda^- l^3}{9 \left[1 - \frac{9v_0^2}{4l^2(\Lambda^+_0)^2} \right]^{3/2}}.$$

These two equalities, together with (3.262), give the following relation between the energy and the conserved momenta

$$E^2 = P^2 + \frac{9}{2l^2} P_+^2 - (6\pi^2 T_{2l_{11}}^3 \Lambda^- l^3)^{2/3} P_+^{4/3}. \quad (3.287)$$

In the particular case when $P = 0$, (3.287) can be rewritten as

$$E = \frac{3}{\sqrt{2l}} P_+ \sqrt{1 - \left(\frac{4\sqrt{2}\pi^2 T_{2l_{11}}^3 \Lambda^- l^3}{9P_+} \right)^{2/3}}.$$

Expanding the square root and neglecting the higher order terms, one derives energy-charge relation of the type $E - K \sim K^{1/3}$, first found for backgrounds of G_2-holonomy in [29].

Now, let us write down the semiclassical limit of our membrane solution (3.284):

$$\sigma_{scl}(r) = \frac{\pi^2 T_{2l_{11}}^3 \Lambda^-}{P_+} \left(\frac{2^7 l_5}{3^3} \right)^{1/2} \times \quad (3.288)$$

$$\Delta r^{1/2} F_{D}^{(4)} \left(1/2; -1, -1, -1, 1/2; 3/2; -\frac{\Delta r}{2l}, -\frac{\Delta r}{3l}, -\frac{\Delta r}{4l}, -\frac{\Delta r}{6l} \right) = \frac{\pi^2 T_{2l_{11}}^3 \Lambda^-}{P_+} \left(\frac{2^7 l_5}{3^3} \right)^{1/2} \Delta r^{1/2} \left(1 + \frac{\Delta r}{2l} \right) \left(1 + \frac{\Delta r}{3l} \right) \left(1 + \frac{\Delta r}{4l} \right) \left(1 + \frac{\Delta r}{6l} \right)^{-1/2} \times$$

$$F_{D}^{(4)} \left(1; -1, -1, -1, 1/2; 3/2; \frac{1}{1 + \frac{2r}{3l}}, \frac{1}{1 + \frac{2r}{3l}}, \frac{1}{1 + \frac{2r}{3l}}, \frac{1}{1 + \frac{6r}{3l}} \right).$$

Forth type of membrane embedding [11]

Let us consider membrane configuration given by the following ansatz:

$$X^0 \equiv t = \Lambda_0^0 \tau + \frac{1}{\Lambda_0^0} [(\Lambda_0 \Lambda_1) \delta + (\Lambda_0 \Lambda_2) \sigma], \quad X^I = \Lambda_0^I \tau + \Lambda_1^I \delta + \Lambda_2^I \sigma,$$

$$X^4 \equiv r(\sigma), \quad \psi_+ = \Lambda_0^+ \tau, \quad \psi_- = \Lambda_0^- \tau, \quad \psi_\pm = \psi \pm \bar{\psi}. \quad (3.289)$$

It is analogous to (3.255), but now the rotations are in the planes defined by the angles $\psi_\pm = \psi \pm \bar{\psi}$ instead of θ and $\bar{\theta}$.

123
The background felt by the membrane is as given in (3.288). However, the metric induced on the membrane worldvolume is different and it is the following

\[
G_{00} = -l_{11}^2 \left[(\Lambda_0^0)^2 - \Lambda_0^2 - (\Lambda_0^+)^2 \left(\frac{2l}{3} \right)^2 C^2 - (\Lambda_0^-)^2 D^2 \right],
\]

\[
G_{11} = l_{11}^2 M_{11}, \quad G_{12} = l_{11}^2 M_{12}, \quad G_{22} = l_{11}^2 \left[M_{22} + \frac{r'^2}{C^2} \right],
\]

where \(M_{ij} \) are defined in (3.257). The constraints are identically satisfied, and the constants of the motion \(P^2_\mu \) are given by (3.258). The membrane Lagrangian now takes the form

\[
\mathcal{L}^A(\sigma) = \frac{1}{4\lambda_0} \left(K_{rr} r'^2 - V \right), \quad K_{rr} = -(2\lambda^0 T_{2l_{11}})^2 \frac{M_{11}}{C^2},
\]

\[
V = (2\lambda^0 T_{2l_{11}})^2 \det M_{ij} + l_{11}^2 \left[(\Lambda_0^0)^2 - \Lambda_0^2 - (\Lambda_0^+)^2 \left(\frac{2l}{3} \right)^2 C^2 - (\Lambda_0^-)^2 D^2 \right].
\]

Let us first consider the particular case when \(\Lambda_0^- = 0 \), i.e. \(\psi = \tilde{\psi} \). The turning points now are

\[
r_{\min} = 3l, \quad r_{\max} = r_1 = l \left[1 + \frac{8}{1 - \frac{9u_0^2}{4(l^2 \lambda_0^2)}} \right] > 3l, \quad r_2 = -l \left[1 + \frac{8}{1 - \frac{9u_0^2}{4(l^2 \lambda_0^2)}} \right] < 0,
\]

where \(u_0^2 \) is introduced in (3.259). Now one arrives at the following membrane solution

\[
\sigma(r) = \frac{2\lambda^0 T_{2l_{11}}}{(\Lambda_0^0)^2 \left(\frac{2l}{3} \right)^2 - u_0^2}^{1/2} \left[\frac{2^7 l^3 M_{11} \Delta r}{3 (r_1 - 3l) (3l - r_2)} \right]^{1/2}
\times F_D^{(5)} \left(1/2; -1, -1, 1/2, 1/2, 1/2, 1/2; 3/2; -\frac{\Delta r}{2l}, -\frac{\Delta r}{4l}, -\frac{\Delta r}{6l}, -\frac{\Delta r}{3l}, -\frac{\Delta r}{r_1 - 3l} \right).
\]

The normalization condition gives

\[
\frac{\lambda^0 T_{2l_{11}}}{(\Lambda_0^0)^2 \left(\frac{2l}{3} \right)^2 - u_0^2}^{1/2} \left[\frac{2^7 l^3 M_{11}}{3 (3l - r_2)} \right]^{1/2} \times
F_D^{(4)} \left(1/2; -1, -1, 1/2, 1/2, 1/2, 1; -\frac{\Delta r_1}{2l}, -\frac{\Delta r_1}{4l}, -\frac{\Delta r_1}{6l}, -\frac{\Delta r_1}{3l}, -\frac{\Delta r_1}{r_1 - 3l} \right) =
\]

\[
\frac{\lambda^0 T_{2l_{11}}}{(\Lambda_0^0)^2 \left(\frac{2l}{3} \right)^2 - u_0^2}^{1/2} \left[\frac{2^7 l^3 M_{11}}{3 (3l - r_2)} \right]^{1/2} \times
\left(1 + \frac{\Delta r_1}{2l} \right) \left(1 + \frac{\Delta r_1}{4l} \right) \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
\]

\[
F_D^{(4)} \left(1/2; -1, -1, 1/2, 1/2, 1; -\frac{1}{1 + \frac{2l}{\Delta r_1}}, -\frac{1}{1 + \frac{4l}{\Delta r_1}}, -\frac{1}{1 + \frac{6l}{\Delta r_1}}, -\frac{1}{1 + \frac{3l - r_2}{\Delta r_1}} \right) = 1.
\]

124
We derive for the conserved momentum $P_+ = P_{\psi_+}$ the following expression ($P_- = P_{\psi_-} = 0$ as a consequence of $\Lambda_0^- = 0$):

$$P_+ = \frac{\pi^2 T_2 l_{11}^3 \Lambda_0^+}{\left(\Lambda_0^+ \right)^2 \left(\frac{2}{3} - u_0^2\right)^{1/2}} \left[\frac{25 \delta M_{11}}{3^3 (3l - r_2)}\right]^{1/2} \times$$

$$\Delta r_1 F_D^{(2)} \left(\frac{3}{2}; -1/2, 1/2; 2; \frac{\Delta r_1}{6l}, \frac{\Delta r_1}{3l - r_2}\right) = \frac{\pi^2 T_2 l_{11}^3 \Lambda_0^+}{\left(\Lambda_0^+ \right)^2 \left(\frac{2}{3} - u_0^2\right)^{1/2}} \left[\frac{25 \delta M_{11}}{3^3 (3l - r_2)}\right]^{1/2} \Delta r_1 \left(1 + \frac{\Delta r_1}{6l}\right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2}\right)^{-1/2} \times$$

$$F_D^{(2)} \left(1/2; -1/2, 1/2; 2; 1 + \frac{\Delta r_1}{6l}, 1 + \frac{3l - r_2}{\Delta r_1}\right).$$

(3.292)

In the semiclassical limit, (3.291) and (3.292) simplify to

$$\pi \Lambda_0^+ \left[1 - \frac{9 u_0^2}{4 l^2 (\Lambda_0^+)^2}\right] = 2^{3/2} 3^0 T_2 l_{11}^3 M_1^{1/2}, \quad P_+ = \frac{2^{7/2} \pi T_2 l_{11}^3 l^2 M_1^{1/2}}{3 \left[1 - \frac{9 u_0^2}{4 l^2 (\Lambda_0^+)^2}\right]}.$$

Taking also into account (3.262), we obtain the following fourth order algebraic equation for E^2 as a function of P and P_+:

$$\left\{ E^2 \left[E^2 - P^2 - (3/l)^2 P_+^2 \right] - (2^{7/2} T_2 l_{11}^3)^2 \left((\Lambda_1 \times \Lambda_2)^2 E^2 - ((\Lambda_1 \times \Lambda_2) \times P)^2 \right) \right\}^2$$

$$- 2^{7/2} (3 \pi T_2 l_{11}^3)^2 E^2 \left[\Lambda_1^2 E^2 - (\Lambda_1 \cdot P)^2 \right] P_+^2 = 0.$$

(3.293)

Let us consider a few simple cases. When $\Lambda_0^+ = 0$ and $\Lambda_2^+ = c \Lambda_1^+$, (3.293) reduces to

$$E^2 = (3/l)^2 P_+^2 + 2^{7/2} 3 \pi T_2 l_{11}^3 | \Lambda_1 | P_+,$$

(3.294)

or

$$E = \frac{3}{l} P_+ \sqrt{1 + \frac{2^{7/2} T_2 l_{11}^3 l^2 | \Lambda_1 |}{3 P_+}}.$$

Expanding the square root and neglecting the higher order terms, one derives energy-charge relation of the type $E - K \sim const$. If we impose only the conditions $\Lambda_0^+ = 0$, (3.293) gives

$$E^2 = (2^{7/2} T_2 l_{11}^3)^2 \left((\Lambda_1 \times \Lambda_2)^2 + (3/l)^2 P_+^2 + 2^{7/2} 3 \pi T_2 l_{11}^3 | \Lambda_1 | P_+ \right).$$

(3.295)

If we take $\Lambda_0^+ \neq 0$, $\Lambda_2^+ = c \Lambda_1^+$, (3.293) simplifies to

$$E^2 \left[\left(E^2 - P^2 - (3/l)^2 P_+^2 \right)^2 - 2^{7/2} (3 \pi T_2 l_{11}^3)^2 \Lambda_1^2 P_+^2 \right] + 2^{7/2} (3 \pi T_2 l_{11}^3)^2 (\Lambda_1 \cdot P)^2 P_+^2 = 0,$$

which is third order algebraic equation for E^2. Suppose that Λ_1 and P are orthogonal to each other, i.e. $(\Lambda_1 \cdot P) = 0$. Then, the above relation becomes

$$E^2 = P^2 + (3/l)^2 P_+^2 + 2^{7/2} 3 \pi T_2 l_{11}^3 | \Lambda_1 | P_+.$$

(3.296)
Finally, we give the semiclassical limit of the membrane solution \((3.290) \):

\[
\sigma_{\text{scI}}(r) = 2\pi^2 T_2 l_{11}^3 \left(\frac{4l}{3}\right)^{3/2} \left[\Lambda_1^2 - \frac{1}{E^2} (A_1 P)^2\right]^{1/2} \frac{\Delta r_{1/2}}{P_+} \times F_D^{(3)} \left(1/2, -1, -1, 1/2, 3/2; -\frac{\Delta r}{2l}, -\frac{\Delta r}{4l}, -\frac{\Delta r}{6l}\right)
\]

\[
= 2\pi^2 T_2 l_{11}^3 \left(\frac{4l}{3}\right)^{3/2} \left[\Lambda_1^2 - \frac{1}{E^2} (A_1 P)^2\right]^{1/2} \frac{\Delta r_{1/2}}{P_+} \left(1 + \frac{\Delta r}{2l}\right) \left(1 + \frac{\Delta r}{4l}\right) \left(1 + \frac{\Delta r}{6l}\right)^{-1/2} \times F_D^{(3)} \left(1, -1, -1, 1/2, 3/2; \frac{1}{1 + \frac{2l}{\Delta r}}, \frac{1}{1 + \frac{4l}{\Delta r}}, \frac{1}{1 + \frac{6l}{\Delta r}}\right).
\]

Now, we turn to the case \(\Lambda_0^+ \neq 0 \), when the solutions of the equation \(r' = 0 \) are:

\[
\begin{align*}
r_{\text{min}} &= 3l, & r_{\text{max}} &= r_1 = \frac{l}{\sqrt{2}} \sqrt{1 + u^2 - \Lambda^2} \sqrt{1 + 1 - \frac{4(u^2 - 9\Lambda^2)}{(1 + u^2 - \Lambda^2)^2}}, \\
r_2 &= \frac{l}{\sqrt{2}} \sqrt{1 + u^2 - \Lambda^2} \sqrt{1 - 1 - \frac{4(u^2 - 9\Lambda^2)}{(1 + u^2 - \Lambda^2)^2}}, \\
r_3 &= -\frac{l}{\sqrt{2}} \sqrt{1 + u^2 - \Lambda^2} \sqrt{1 + 1 - \frac{4(u^2 - 9\Lambda^2)}{(1 + u^2 - \Lambda^2)^2}}, \\
r_4 &= -\frac{l}{\sqrt{2}} \sqrt{1 + u^2 - \Lambda^2} \sqrt{1 - 1 - \frac{4(u^2 - 9\Lambda^2)}{(1 + u^2 - \Lambda^2)^2}}, \\
u^2 &= \left(\frac{3u_0}{l\Lambda_0^-}\right)^2, & \Lambda^2 &= \left(\frac{2\Lambda_0^+}{\Lambda_0^-}\right)^2.
\end{align*}
\]

Correspondingly, we obtain the following solution for \(\sigma(r) \):

\[
\sigma(r) = \frac{\lambda_{\text{scI}}}{\Lambda_0^-} \left[\frac{2^9 3^3 M_{11} \Delta r}{(r_1 - 3l) (3l - r_2) (3l - r_3) (3l - r_4)}\right]^{1/2} \times F_D^{(7)} \left(1/2, -1, -1, 1/2, 1/2, 1/2, 1/2, 1/2, 3/2; -\frac{\Delta r}{2l}, \frac{\Delta r}{4l}, -\frac{\Delta r}{6l}, -\frac{\Delta r}{3l - r_2}, -\frac{\Delta r}{3l - r_3}, -\frac{\Delta r}{3l - r_4}, -\frac{\Delta r}{r_1 - 3l}\right).
\]

(3.297)
For the normalization condition, we derive the result

\[
\frac{\lambda^0 T^{l_{11}}_{\Delta l}}{\Lambda_0^{-}} \left[\frac{2^{7} 3^{l} M_{l_{11}}}{(3l - r_2)(3l - r_3)(3l - r_4)} \right]^{1/2} \times \]

\[
F^{(6)}_D (1/2; -1, -1, 1/2, 1/2, 1/2, 1/2; 1; \)
\[
- \frac{\Delta r_1}{2l}, \frac{\Delta r_1}{4l}, \frac{\Delta r_1}{6l}, \frac{\Delta r_1}{3l - r_2}, \frac{\Delta r_1}{3l - r_3}, \frac{\Delta r_1}{3l - r_4} =
\]

\[
\frac{\lambda^0 T^{l_{11}}_{\Delta l}}{\Lambda_0^{-}} \left[\frac{2^{7} 3^{l} M_{l_{11}}}{(3l - r_2)(3l - r_3)(3l - r_4)} \right]^{1/2} \left(1 + \frac{\Delta r}{2l} \right) \left(1 + \frac{\Delta r}{4l} \right) \left(1 + \frac{\Delta r}{6l} \right)^{-1/2} \times \]

\[
\left(1 + \frac{\Delta r}{3l - r_2} \right)^{-1/2} \left(1 + \frac{\Delta r}{3l - r_3} \right)^{-1/2} \left(1 + \frac{\Delta r}{3l - r_4} \right)^{-1/2} \]

\[
P^{(4)}_D (1/2; -1, -1/2, 1/2, 1/2, 1/2, 1/2; 1; \)
\[
\frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_3}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_4}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_5}{\Delta r_1}} = 1.
\]

The computation of the conserved quantities \(P_+ \) and \(P_- \) gives

\[
P_+ = \pi^2 T^{l_{11}} \left[\frac{2^{5} 3^{l} M_{l_{11}}}{3 (3l - r_2)(3l - r_3)(3l - r_4)} \right]^{1/2} \Delta r_1 \times
\]

\[
F^{(4)}_D (3/2; -1/2, 1/2, 1/2, 1/2, 1/2, 1/2; \)
\[
- \frac{\Delta r_1}{6l}, \frac{\Delta r_1}{3l - r_2}, \frac{\Delta r_1}{3l - r_3}, \frac{\Delta r_1}{3l - r_4} =
\]

\[
\pi^2 T^{l_{11}} \left[\frac{2^{5} 3^{l} M_{l_{11}}}{3 (3l - r_2)(3l - r_3)(3l - r_4)} \right]^{1/2} \times \]

\[
\Delta r_1 \left(1 + \frac{\Delta r_1}{6l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_3} \right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_4} \right)^{-1/2} \times \]

\[
P^{(4)}_D (1/2; -1/2, 1/2, 1/2, 1/2, 1/2, 1/2; \)
\[
\frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_3}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_4}{\Delta r_1}}.
\]
which can be rewritten as

\[P_+ = \frac{\pi^2 T_l^3 l_M^1}{\left(3l - r_2\right)\left(3l - r_3\right)\left(3l - r_4\right)} \times (3.300) \]

\[F_D^{(7)}(1/2; -1, -2, -1, 1/2, 1/2, 1/2, 1; 1; \cdots) = \frac{\pi^2 T_l^3 l_M^1}{\left(3l - r_2\right)\left(3l - r_3\right)\left(3l - r_4\right)} \times \]

\[\left(1 + \frac{\Delta r_1}{2l}\right) \left(1 + \frac{\Delta r_1}{3l}\right)^2 \left(1 + \frac{\Delta r_1}{4l}\right) \left(1 + \frac{\Delta r_1}{6l}\right)^{-1/2} \times \]

\[\left(1 + \frac{\Delta r_1}{3l - r_2}\right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_3}\right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_4}\right)^{-1/2} \times \]

\[F_D^{(7)}(1/2; -1, -2, -1, 1/2, 1/2, 1/2, 1; 1; \cdots) \]

Let us now take the semiclassical limit \(r_1 \to \infty \). In this limit, \(3.298\), \(3.299\) and \(3.300\) reduce correspondingly to

\[\Lambda_0^- = 3\lambda^0 T_2 l_{11} M_1^{1/2}, \quad P_+ = 4 \frac{\pi^2 T_2 l_{11}^3 l^2 M_1^{1/2} \Lambda_0^+}{\Lambda_0^-}, \]

\[P_- = 6 \frac{\pi^2 T_2 l_{11}^3 l^2 M_1^{1/2}}{\left\{ \left(\frac{3u_0}{\Lambda_0^-}\right)^2 - \left(2 \frac{\Lambda_0^+}{\Lambda_0^-}\right)^2 \right\}^2}. \]

These equalities, together with \(3.262\), lead to the following relation between the energy \(E\) and the conserved charges \(P_+\) and \(P_-\):

\[\left\{ E^2 \left[E^2 - \mathbf{P}^2 - (3/2l)P_+^2 \right] - (2\pi^2 T_2 l_{11}^3)\left\{ (\mathbf{A}_1 \times \mathbf{A}_2)^2 E^2 - ([\mathbf{A}_1 \times \mathbf{A}_2] \times \mathbf{P})^2 \right\} \right\}^2 \]

\[- (6\pi^2 T_2 l_{11}^3)^2 E^2 \left[\mathbf{A}_1^2 E^2 - (\mathbf{A}_1 \cdot \mathbf{P})^2 \right] P_-^2 = 0. \]

(3.301)

Let us point out that the above relation is only valid for \(P_- \neq 0\), whereas we can always set \(\mathbf{P}\) or \(P_+\) equal to zero. Below, we give a few simple solutions of \(3.301\).

Choosing \(\Lambda_0^l = 0\) and \(\Lambda_0^l = c\Lambda_0^l\), one obtains

\[E^2 = (3/2l)^2 P_+^2 + 6\pi^2 T_2 l_{11}^3 \left| \mathbf{A}_1 \right| P_- \]

(3.302)

which can be rewritten as

\[E = \frac{3}{2l} P_+ \sqrt{1 + \frac{8\pi^2 T_2 l_{11}^3 l^2 \left| \mathbf{A}_1 \right| P_-}{3P_+^2}}. \]

128
Expanding the square root and neglecting the higher order terms, one arrives at

$$E = \frac{3}{2l}P_+ + 2\pi^2 T_2^3 l^3 | \Lambda_1 | \frac{P_-}{P_+}.$$

If only the conditions $\Lambda_0^I = 0$ are imposed, \(3.301\) gives

$$E^2 = (2\pi^2 T_2^3)^2 (\Lambda_1 \times \Lambda_2)^2 + (3/2l)^2 P_-^2 + 6\pi^2 T_2^3 | \Lambda_1 | P_-.$$

If we choose $\Lambda_0^I \neq 0$, $\Lambda_2^I = c\Lambda_1^I$, then \(3.301\) simplifies to a third order algebraic equation for E^2

$$E^2 \left\{ (E^2 - P^2 - (3/2l)^2 P_-^2)^2 - (6\pi^2 T_2^3)^2 \Lambda_1^2 P_-^2 \right\} + (6\pi^2 T_2^3)^2 (\Lambda_1 P)^2 P_- = 0.$$

If $(\Lambda_1 P) = 0$, the above relation reduces to

$$E^2 = P^2 + (3/2l)^2 P_-^2 + 6\pi^2 T_2^3 | \Lambda_1 | P_-.$$

Finally, let us write down the semiclassical limit of the membrane solution \(3.307\):

$$\sigma_{\text{sc}}(r) = \left(\frac{2^8\pi^2 T_2^3 l^3}{3^4 P_-} \right)^{1/2} \left[\Lambda_1^2 - \frac{1}{E^2} (\Lambda_1 P)^2 \right]^{1/4} \Delta r^{1/2} \times F_D^{(4)} \left(\frac{1}{2}; -1, 1, -1, 1/2; 3/2; -\Delta r/2l, -\Delta r/3l, -\Delta r/4l, -\Delta r/6l \right)$$

$$= \left(\frac{2^8\pi^2 T_2^3 l^3}{3^4 P_-} \right)^{1/2} \left[\Lambda_1^2 - \frac{1}{E^2} (\Lambda_1 P)^2 \right]^{1/4} \times \Delta r^{1/2} \left(1 + \frac{\Delta r}{2l} \right) \left(1 + \frac{\Delta r}{3l} \right)^{-1} \left(1 + \frac{\Delta r}{4l} \right) \left(1 + \frac{\Delta r}{6l} \right)^{-1/2} \times F_D^{(4)} \left(1; -1, 1, -1, 1/2; 3/2; \frac{1}{1 + \frac{2l}{\Delta r}}, \frac{1}{1 + \frac{3l}{\Delta r}}, \frac{1}{1 + \frac{4l}{\Delta r}}, \frac{1}{1 + \frac{6l}{\Delta r}} \right).$$

More rotating membrane solutions in this eleven dimensional supergravity background can be found in Appendix B of 11.

Some mathematical results

It is known that the Lauricella hypergeometric functions of n variables $F_D^{(n)}$ are defined as \(53\)

$$F_D^{(n)}(a; b_1, \ldots, b_n; c; z_1, \ldots, z_n) = \sum_{k_1, \ldots, k_n=0}^{\infty} \frac{(a)_{k_1+\ldots+k_n} (b_1)_{k_1} \ldots (b_n)_{k_n}}{(c)_{k_1+\ldots+k_n} k_1! \ldots k_n!} z_1^{k_1} \ldots z_n^{k_n}, \quad |z_j| < 1, \quad (a)_k = \frac{\Gamma(a+k)}{\Gamma(a)},$$

and have the following integral representation \(53\)

$$F_D^{(n)}(a, b_1, \ldots, b_n; c; z_1, \ldots, z_n) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_0^1 x^{a-1}(1-x)^{c-a-1}(1-z_1x)^{-b_1} \ldots (1-z_nx)^{-b_n} dx, \quad \text{Re}(a) > 0, \quad \text{Re}(c-a) > 0.$$
However, in order to perform our calculations, we need to know more about the properties of these functions. That is why, we proved in [11] that the following equalities hold

1. \[F_D^{(n)}(a; b_1, \ldots, b_i, \ldots, b_j, \ldots, b_n; c; z_1, \ldots, z_i, \ldots, z_j, \ldots, z_n) = F_D^{(n)}(a; b_1, \ldots, b_j, \ldots, b_i, \ldots, b_n; c; z_1, \ldots, z_j, \ldots, z_i, \ldots, z_n). \]

2. \[F_D^{(n)}(a; b_1, \ldots, b_n; c; z_1, \ldots, z_n) = \prod_{i=1}^{n} (1 - z_i)^{-b_i} F_D^{(n)} \left(c - a; b_1, \ldots, b_n; c; \frac{z_1}{z_1 - 1}, \ldots, \frac{z_n}{z_n - 1} \right). \]

3. \[F_D^{(n)}(a; b_1, \ldots, b_i-1, b_i, b_i+1, \ldots, b_n; c; z_1, \ldots, z_i-1, 1, z_i+1, \ldots, z_n) = \frac{\Gamma(c)\Gamma(c - a - b_i)}{\Gamma(c - a)\Gamma(c - b_i)} F_D^{(n-1)}(a; b_1, \ldots, b_i-1, b_i+1, \ldots, b_n; c - b_i; z_1, \ldots, z_i-1, z_i+1, \ldots, z_n). \]

4. \[F_D^{(n)}(a; b_1, \ldots, b_i-1, b_i, b_i+1, \ldots, b_n; c; z_1, \ldots, z_i-1, 0, z_i+1, \ldots, z_n) = F_D^{(n-1)}(a; b_1, \ldots, b_i-1, b_i+1, \ldots, b_n; c; z_1, \ldots, z_i-1, z_i+1, \ldots, z_n). \]

5. \[F_D^{(n)}(a; b_1, \ldots, b_i-1, 0, b_i+1, \ldots, b_n; c; z_1, \ldots, z_i-1, z_i, z_i+1, \ldots, z_n) = F_D^{(n-1)}(a; b_1, \ldots, b_i-1, b_i+1, \ldots, b_n; c; z_1, \ldots, z_i-1, z_i+1, \ldots, z_n). \]

6. \[F_D^{(n)}(a; b_1, \ldots, b_i, \ldots, b_j, \ldots, b_n; c; z_1, \ldots, z_i, \ldots, z_j, \ldots, z_n) = F_D^{(n-1)}(a; b_1, \ldots, b_i, \ldots, b_j, \ldots, b_n; c; z_1, \ldots, z_i, \ldots, z_j, \ldots, z_n). \]

7. \[F_D^{(2n+1)}(a; a-c+1, b_2, b_2, \ldots, b_{2n}, b_{2n}; c; -1, z_2, -z_2, \ldots, z_{2n}, -z_{2n}) = \frac{\Gamma(a/2)\Gamma(a)}{2\Gamma(a)\Gamma(c - a/2)} F_D^{(n)}(a/2; b_2, b_2, \ldots, b_{2n}, b_{2n}; c - a/2; z_2^2, \ldots, z_{2n}^2). \]

8. \[F_D^{(2n+1)}(c; a-c+1, b_2, b_2, \ldots, b_{2n}, b_{2n}; c; 1/2, \ldots, 1/2, -z_2^2, \ldots, -z_{2n}^2, \ldots, -z_2^2) = \frac{\Gamma(a/2)\Gamma(a)}{2^{n-a}\Gamma(a)\Gamma(c - a/2)} F_D^{(n)}(c - a; b_2, b_2, \ldots, b_{2n}; c - a/2; -z_2^2, \ldots, -z_{2n}^2, \ldots, -z_{2n}^2). \]

3.2.4 Rotating D2-branes in type IIA reduction of M-theory on G_2 manifold and their semiclassical limits

Here, we will consider D2-branes rotating in the background \([3.18]\).

We begin with the following D2-brane embedding in the target space:

\[
X^0 = \Lambda^0_0 \xi^0 + \frac{(\Lambda^0_0 \Lambda^1_1)}{\Lambda^0_0} (\xi^1 + c \xi^2), \quad X^I = \Lambda^I_0 \xi^0 + \Lambda^I_1 (\xi^1 + c \xi^2), \tag{3.307}
\]

\[r = r(\xi^2), \quad \theta_1 = \Lambda^0_0 \xi^0, \quad \theta_2 = \Lambda^0_0 \xi^0; \quad (\Lambda^0_0 \Lambda^1_1) = \delta_{IJ} \Lambda^I_0 \Lambda^J_1, \quad c = \text{constant}. \]

It corresponds to D2-brane extended in the radial direction r, and rotating in the planes given by the angles θ_1 and θ_2 with constant angular momenta P_{θ_1} and P_{θ_2}. It is nontrivially spanned along x^0 and x^I and moves with constant energy E, and constant momenta P_I.

130
The expression for the D2-brane solution found in [12] for this case is given by
\[
\xi^2(r) = \frac{16}{3} \lambda^0 T_{D2} \left[\frac{Ml}{(\Lambda_+^2 + \Lambda_-^2) (3l - r_2)} \right]^{1/2} (2\Delta r)^{3/4} \times (3.308)
\]
\[
F_D^{(5)} \left(3/4; -1/4, -1/4, 1, 1, 1, 2; 7/4; -\frac{\Delta r}{2l}, -\frac{\Delta r}{4l}, -\frac{\Delta r}{6l}, -\frac{\Delta r}{3l - r_2}, \frac{\Delta r}{\Delta r_1} \right).
\]

Now, we compute the conserved momenta on the obtained solution:
\[
\frac{E}{\Lambda_0^0} = \frac{P_I}{\Lambda_I^0} = 8\pi^2 T_{D2} \left[\frac{Ml}{(\Lambda_+^2 + \Lambda_-^2) (3l - r_2)} \right]^{1/2} \times (3.309)
\]
\[
\left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
\]
\[
F_D^{(4)} \left(1/2; -1/2, -1/2, 1/2, 2; 6; \frac{2l}{\Delta r_1}, \frac{4l}{\Delta r_1}, \frac{6l}{\Delta r_1}, \frac{3l - r_2}{\Delta r_1} \right),
\]
\[
P_{\theta_1} = \left(\Lambda_0^0 + \Lambda_0^0 \cos \psi_1^0 \right) I_{A1}^{D} + \left(\Lambda_0^0 + \Lambda_0^2 \cos \psi_1^0 \right) I_{B1}^{D},
\]
\[
P_{\theta_2} = \left(\Lambda_0^2 + \Lambda_0^2 \cos \psi_1^0 \right) I_{A1}^{D} + \left(\Lambda_0^0 + \Lambda_0^2 \cos \psi_1^0 \right) I_{B1}^{D},
\]

where
\[
I_{A1}^{D} = 8\pi^2 T_{D2} \left[\frac{Ml^5}{(\Lambda_+^2 + \Lambda_-^2) (3l - r_2)} \right]^{1/2} \times (3.311)
\]
\[
\left(1 + \frac{\Delta r_1}{2l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
\]
\[
F_D^{(4)} \left(1/2; -3/2, -1/2, -1/2, 1/2; 1; \frac{2l}{\Delta r_1}, \frac{4l}{\Delta r_1}, \frac{6l}{\Delta r_1}, \frac{3l - r_2}{\Delta r_1} \right),
\]
\[
I_{B1}^{D} = \frac{4}{3} \pi^2 T_{D2} \left[\frac{Ml^3}{(\Lambda_+^2 + \Lambda_-^2) (3l - r_2)} \right]^{1/2} \times (3.312)
\]
\[
\left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
\]
\[
F_D^{(4)} \left(1/2; -1/2, -3/2, 1/2, 2; \frac{2l}{\Delta r_1}, \frac{4l}{\Delta r_1}, \frac{6l}{\Delta r_1}, \frac{3l - r_2}{\Delta r_1} \right).
\]

In the semiclassical limit, (3.309) - (3.312) simplify to
\[
\frac{E}{\Lambda_0^0} = \frac{P_I}{\Lambda_I^0} = \frac{2}{3} \pi^2 T_{D2} \left(\frac{M}{\Lambda_+^2 + \Lambda_-^2} \right)^{1/2},
\]
\[
P_{\theta_1} = 2\Lambda_0^0 I_{A1}^{D}, \quad P_{\theta_2} = 2\Lambda_0^2 I_{A1}^{D}, \quad I_{A1}^{D} = I_{B1}^{D} = \frac{\sqrt{3} \pi^2 T_{D2} M^{1/2}}{(\Lambda_+^2 + \Lambda_-^2)^{3/2}} \psi_0^0.
\]
From here, one obtains the following relation between the energy and the conserved charges

\[
E^2 (E^2 - P^2)^2 - \frac{2}{3^5} (\pi^2 T_{D2})^2 \left[A_1^2 E^2 - (A_1 \cdot P)^2 \right] \left(P_{\theta_1}^2 + P_{\theta_2}^2 \right) = 0,
\]

which is third order algebraic equation for \(E^2 \).

For \((A_1 \cdot P) = 0 \), (3.313) reduces to

\[
E^2 = P^2 + \frac{2^{3/2}}{3^{5/2}} \pi^2 T_{D2} \left| A_1 \right| \left(P_{\theta_1}^2 + P_{\theta_2}^2 \right)^{1/2}.
\]

This is the same type energy-charge relation as the one obtained for the string in (3.25).

Let us now consider the other possible D2-brane embedding for the same background metric. It is given by

\[
X^0 = \Lambda_0^0 \xi^0, \quad X^I = \Lambda_0^I \xi^0, \quad r = r(\xi^2),
\]

\[
\theta_1 = \Lambda_0^0 \xi^1 + \Lambda_1^0 \xi^0 + \Lambda_2^0 \xi^2, \quad \theta_2 = \Lambda_0^0 \xi^1 - \Lambda_1^0 \xi^0 - \Lambda_2^0 \xi^2.
\]

This ansatz describes D2-brane, which is extended along the radial direction \(r \) and rotates in the planes defined by the angles \(\theta_1 \) and \(\theta_2 \), with equal angular momenta \(P_{\theta_1} = P_{\theta_2} = P_\theta \). Now we have nontrivial wrapping along \(\theta_1 \) and \(\theta_2 \). In addition, the D2-brane moves along \(x^0 \) and \(x^I \) with constant energy \(E \) and constant momenta \(P_I \) respectively.

Now, one finds the following D2-brane solution [12]:

\[
\xi^2(r) = \frac{8}{3} \Lambda_0^0 T_{D2} \left[\frac{l (\Lambda_1^2 + \Lambda_2^2) (3l - v_+) (3l - v_-)}{3(\Lambda_1^2 + \Lambda_2^2) (3l - r_2) \Delta r_1} \right]^{1/2} (2\Delta r)^{3/4} \times \frac{\partial}{\partial r} \frac{\Delta r_{D7}}{2l} + \frac{\Delta r}{2l} + \frac{\Delta r_{D7}}{6l} - \frac{\Delta r}{3l - v_+} - \frac{\Delta r}{3l - v_-} - \frac{\Delta r}{3l - r_1} \frac{\Delta r}{\Delta r_1},
\]

\[
F_{D7}^{(7)}(3/4; -1/4, -1/4, 1/4, -1/2, -1/2, 1/2, 1/2, 3/2, 1/2; 7/4);
\]

where \(v_\pm \) are the zeros of the polynomial

\[
t^2 - 2l \frac{\Lambda_1^2 + \Lambda_2^2 - \Delta t}{\Lambda_1^2 + \Lambda_2^2} - 3l^2 = (t - v_+)(t - v_-).
\]

In the case under consideration, the conserved quantities are \(E, P_I \) and \(P_\theta \). We derive the following result for them [12]

\[
\frac{E}{\Lambda_0^0} = \frac{P_I}{\Lambda_0^I} = 4 \pi^2 T_{D2} \left[\frac{l (\Lambda_1^2 + \Lambda_2^2) (3l - v_+) (3l - v_-)}{3(\Lambda_1^2 + \Lambda_2^2) (3l - r_2)} \right]^{1/2} \times \left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \times \left(1 + \frac{\Delta r_1}{3l - v_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - v_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times F_{D7}^{(7)}(1/2; -1/2, -1/2, 1/2, -1/2, -1/2, 1/2, 1/2; 1);
\]

\[
\frac{1}{1 + \frac{2l}{\Delta r_1} + \frac{1}{\Delta r_1}).
\]
\[P_\theta = \Lambda_0^\theta \left[(1 - \cos \psi^0) I^D_{A2} + (1 + \cos \psi^0) I^D_{B2} \right], \]

where

\[
I^D_{A2} = 4\pi^2 T_{D2} \left[\frac{l^5 \left(\Lambda_+^2 + \Lambda_-^2 \right) (3l - v_+)(3l - v_-)}{3 \left(\Lambda_+^2 + \Lambda_-^2 \right) (3l - r_2)} \right]^{1/2} \times \left(1 + \frac{\Delta r_1}{2l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{1/2} \times \left(1 + \frac{\Delta r_1}{3l - v_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - v_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times P_D^{(6)}(1/2; -3/2, -1/2, -1/2, -1/2, 1/2, 1; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - v_+}{\Delta r_1}}, \frac{1}{1 + \frac{3l - v_-}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}), \right.
\]

\[
I^D_{B2} = 2\pi^2 T_{D2} \left[\frac{l^3 \left(\Lambda_+^2 + \Lambda_-^2 \right) (3l - v_+)(3l - v_-)}{3 \left(\Lambda_+^2 + \Lambda_-^2 \right) (3l - r_2)} \right]^{1/2} \times \Delta r_1 \left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \times \left(1 + \frac{\Delta r_1}{3l - v_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - v_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times P_D^{(6)}(1/2; -1/2, -3/2, 1/2, -1/2, -1/2, 1/2; 2; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - v_+}{\Delta r_1}}, \frac{1}{1 + \frac{3l - v_-}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}). \right.
\]

Taking the semiclassical limit in the above expressions,15 we obtain the following dependence of the energy on \(P_t \) and \(P_\theta \):

\[
E^2 = P^2 + 3^{5/3} (2\pi T_{D2} \Lambda_0^\theta)^{2/3} P_\theta^{4/3}. \tag{3.317}
\]

Now, we turn to the case of D2-brane embedded in the following way

\[
X^0 = \Lambda_0^0 \xi^0 + \frac{\Lambda_0 \cdot \Lambda_1}{\Lambda_0^0} \left(\xi^1 + c \xi^2 \right), \quad X^I = \Lambda_0^I \xi^0 + \Lambda_1^I \left(\xi^1 + c \xi^2 \right), \tag{3.318}
\]

\[
r = r(\xi^2), \quad \theta_1 = \Lambda_0^0 \xi^0, \quad \phi_2 = \Lambda_0^0 \xi^0. \tag{3.319}
\]

(3.315) is analogous to (3.309), but now the rotations are in the planes defined by the angles \(\theta_1 \) and \(\phi_2 \) instead of \(\theta_1 \) and \(\theta_2 \).

The solution \(\xi^2(r) \) can be obtained from (3.308) by the replacement

\[
\Lambda_+^2 + \Lambda_-^2 \rightarrow \tilde{\Lambda}_+^2 + \tilde{\Lambda}_-^2 + 4\Lambda_0^2/3. \tag{3.319}
\]

15In this limit \(v_\pm \) remain finite.
The explicit expressions for E and P_I can be obtained in the same way from (3.309). The computation of the conserved angular momenta P_θ and P_ϕ gives

$$P_\theta = \left(\Lambda_0^\theta - \Lambda_0^\phi \sin \psi \sin \theta_2^0 \right) J_{A1}^D + \left(\Lambda_0^\theta + \Lambda_0^\phi \sin \psi \sin \theta_2^0 \right) J_{B1}^D,$$

$$P_\phi = \left(\Lambda_0^\phi \sin \theta_2^0 - \Lambda_0^\phi \sin \psi \sin \theta_2^0 \right) \sin \theta_2^0 J_{A1}^D + \left(\Lambda_0^\phi \sin \theta_2^0 + \Lambda_0^\phi \sin \psi \sin \theta_2^0 \right) \sin \theta_2^0 J_{B1}^D + \Lambda_0^\phi \cos^2 \theta_2^0 J_{D1}^D,$$

where one obtains J_{A1}^D, J_{B1}^D from (3.311), (3.312) by the replacement (3.319), and

$$J_{D1}^D = 8\pi^2 T_{D2} \left[\frac{M^5}{(\Lambda_0^2 + \Lambda_0^2 + 4\Lambda_0^2 / 3) (3l - r_2)} \right]^{1/2} \times
(1 + \frac{\Delta r_1}{2l})^{1/2} \left(1 + \frac{\Delta r_1}{3l} \right)^2 \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
\left[\frac{1}{1 + \frac{r_1}{2l}} \cdot \frac{1}{1 + \frac{3r_1}{2l}} \cdot \frac{1}{1 + \frac{4r_1}{2l}} \cdot \frac{1}{1 + \frac{6r_1}{2l}} \cdot \frac{1}{1 + \frac{3l - r_1}{2l}} \right].$$

Taking $r_1 \to \infty$ in the above expressions, one obtains that in the semiclassical limit the following energy-charge relation holds

$$\frac{E^2 (E^2 - P^2)^2}{\Lambda_1^2 E^2 - (\Lambda_1 P)^2} = \frac{2^3}{3^5 (\pi^2 T_{D2})^2} \left(P_\theta^2 + \frac{3P_\phi^2}{3 - \cos^2 \theta_2^0} \right).$$

Obviously, this is a generalization of the relation (3.313) and for $\theta_2^0 = \pi/2$ has the same form.

Another possible ansatz for the D2-brane embedding is

$$X^0 = \Lambda_0^0 \xi^0, \quad X^I = \Lambda_0^I \xi^0, \quad r = r(\xi^2), \quad \theta_1 = \Lambda_1^0 \xi^1 + \Lambda_2^0 \xi^2, \quad \phi_2 = \Lambda_0^\phi \xi^0,$$

i.e., we have D2-brane extended in the radial direction r, wrapped along the angular coordinate θ_1 and rotating in the plane given by the angle ϕ_2.

Then one obtains the solution:

$$\xi^2(r) = \frac{8}{3} \Lambda_0^0 T_{D2} \Lambda_1^0 \left[\frac{l(3l - w_+)(3l - w_-)}{(3l - w_+) (3l - w_-) \Delta r_1} \right]^{1/2} (2\Delta r)^{3/4} \times
\left[\frac{-\Delta r}{2l}, -\frac{\Delta r}{4l}, -\frac{\Delta r}{6l}, -\frac{\Delta r}{3l - w_+}, -\frac{\Delta r}{3l - w_-}, -\frac{\Delta r}{3l - r_2}, \frac{\Delta r}{\Delta r_1} \right], \quad w_\pm = \pm \sqrt{3l}.$$
The computation of the conserved quantities E, P_I and $P_{\phi_2} \equiv P_{\phi}$, gives

$$
\frac{E}{\Lambda_0^2} = \frac{P_I}{\Lambda_0^2} = 4\pi^2 T_{D2} \Lambda_0^6 \left[\frac{l(3l - w_+)(3l - w_-)}{(3\Lambda^2 + 2\Lambda_D^2)(3l - r_2)} \right]^{1/2} \times (3.322)
$$

$$
\left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \times
$$

$$
\left(1 + \frac{\Delta r_1}{3l - w_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - w_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
$$

$$
F_D^{(6)} (1/2; -1/2, -1/2, 1/2, 1/2, -1/2, 1/2; 1; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - w_+}{\Delta r_1}}, \frac{1}{1 + \frac{3l - w_-}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}})
$$

$$
P_{\phi} = \sin^2 \theta_2^0 (J_{A2}^D + J_{B2}^D) + \cos^2 \theta_2^0 J_{D2}^D,
$$

where

$$
J_{A2}^D = 4\pi^2 T_{D2} \Lambda_0^6 \Lambda_0^6 \left[\frac{l^3 (3l - w_+)(3l - w_-)}{(3\Lambda^2 + 2\Lambda_D^2)(3l - r_2)} \right]^{1/2} \times
$$

$$
\left(1 + \frac{\Delta r_1}{2l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{1/2} \times
$$

$$
\left(1 + \frac{\Delta r_1}{3l - w_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - w_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
$$

$$
F_D^{(6)} (1/2; -3/2, -1/2, -1/2, -1/2, -1/2, 1/2; 1; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - w_+}{\Delta r_1}}, \frac{1}{1 + \frac{3l - w_-}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}})
$$

$$
J_{B2}^D = \frac{2}{3} \pi^2 T_{D2} \Lambda_0^6 \Lambda_0^6 \left[\frac{l^3 (3l - w_+)(3l - w_-)}{(3\Lambda^2 + 2\Lambda_D^2)(3l - r_2)} \right]^{1/2} \times
$$

$$
\Delta r_1 \left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \times
$$

$$
\left(1 + \frac{\Delta r_1}{3l - w_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - w_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times
$$

$$
F_D^{(6)} (1/2; -1/2, -3/2, 1/2, -1/2, -1/2, 1/2; 2; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - w_+}{\Delta r_1}}, \frac{1}{1 + \frac{3l - w_-}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}})
$$

135
\[J_{D2}^D = 4\pi^2 T_{D2} \Lambda_0^\theta \Lambda_0^\phi \left[\frac{I^5(3l - w_+)(3l - w_-)}{(3\Lambda^2 + 2\Lambda_D^2)(3l - r_2)} \right]^{1/2} \times \]
\[\left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l} \right)^2 \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \times \]
\[\left(1 + \frac{\Delta r_1}{3l - w_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - w_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times \]
\[F_{D}^{(7)} (1/2; -1/2, -1/2, 1/2, -1/2, -1/2,) \times \]
\[\frac{1}{1 + \frac{2l}{\Delta r_1}}, 1 + \frac{3l}{\Delta r_1}, 1 + \frac{4l}{\Delta r_1}, 1 + \frac{6l}{\Delta r_1}, 1 + \frac{3l - w_+}{\Delta r_1}, 1 + \frac{3l - w_-}{\Delta r_1}, 1 + \frac{3l - r_2}{\Delta r_1} \right). \]

Going to the semiclassical limit \(r_1 \to \infty \) in the above expressions for the conserved quantities, one obtains the following relation between them

\[E^2 = p^2 + \frac{3^{7/3}}{2^{1/3}} \left(\frac{\pi T_{D2} \Lambda_1^\theta}{3 - \cos^2 \theta_1^2} \right)^{2/3} p_{\phi}^{4/3}. \]

This is a generalization of the energy-charge relation received in (3.317).

Another admissible embedding is

\[X^0 = \Lambda_0^0 \xi^0 + \frac{\Lambda_0^0 \Lambda_1^0}{\Lambda_0^0} (\xi^1 + c \xi^2), \quad X^1 = \Lambda_1^0 \xi^0 + \Lambda_1^1 (\xi^1 + c \xi^2), \]

\[r = r(\xi^2), \quad \phi_1 = \Lambda_0^{\phi_1} \xi^0, \quad \phi_2 = \Lambda_0^{\phi_2} \xi^0. \]

It is analogous to (3.307) and (3.318), but now the rotations are in the planes given by the angles \(\phi_1 \) and \(\phi_2 \).

The solution \(\xi^2(r) \), and the expressions for \(E, P_I \), may be obtained from the corresponding quantities for the embedding (3.318) by the replacements \(\bar{\Lambda}_D^2 \rightarrow \bar{\lambda}_D^2, \Lambda_0^0 \rightarrow \Lambda_0^0 \). For the conserved angular momenta \(P_{\phi_1} \) and \(P_{\phi_2} \) one finds

\[P_{\phi_1} = \left(\Lambda_0^{\phi_1} \sin \theta_1^0 + \Lambda_0^{\phi_2} \cos \psi_1^0 \sin \theta_2^0 \right) \sin \theta_1^0 K_{A1}^D \]

\[+ \left(\Lambda_0^{\phi_1} \sin \theta_1^0 - \Lambda_0^{\phi_2} \cos \psi_1^0 \sin \theta_2^0 \right) \sin \theta_1^0 K_{B1}^D \]

\[+ \left(\Lambda_0^{\phi_1} \cos \theta_1^0 + \Lambda_0^{\phi_2} \cos \theta_2^0 \right) \cos \theta_1^0 K_{D1}^D, \]

\[P_{\phi_2} = \left(\Lambda_0^{\phi_2} \sin \theta_2^0 + \Lambda_0^{\phi_1} \cos \psi_1^0 \sin \theta_1^0 \right) \sin \theta_2^0 K_{A1}^D \]

\[+ \left(\Lambda_0^{\phi_2} \sin \theta_2^0 - \Lambda_0^{\phi_1} \cos \psi_1^0 \sin \theta_1^0 \right) \sin \theta_2^0 K_{B1}^D \]

\[+ \left(\Lambda_0^{\phi_1} \cos \theta_1^0 + \Lambda_0^{\phi_2} \cos \theta_2^0 \right) \cos \theta_2^0 K_{D1}^D, \]

where \(K_{A1}^D, K_{B1}^D \) and \(K_{D1}^D \) can be obtained from \(J_{A1}^D, J_{B1}^D \) and \(J_{D1}^D \) through the above mentioned replacements.
The calculations show that in the semiclassical limit, the dependence of the energy on the conserved charges, for the present case, is given by the equality:

\[
\frac{E^2 (E^2 - P^2)^2}{\Lambda_1^2 E^2 - (\Lambda_1 P)^2} = \frac{2^3}{3^5 (\pi^2 T_{D2})^2} \frac{(3 - \cos^2 \theta_1^0) P^2_{\phi_1} + (3 - \cos^2 \theta_2^0) P^2_{\phi_2} - 4 P_{\phi_1} P_{\phi_2} \cos \theta_1^0 \cos \theta_2^0}{3 - \cos^2 \theta_1^0 - \cos^2 \theta_2^0 - \cos^2 \theta_1^0 \cos \theta_2^0}.
\]

Finally, let us consider the following possible D2-brane embedding

\[
X^0 = \Lambda_0^0 \xi^0, \quad X^I = \Lambda_0^I \xi^0, \quad r = r(\xi^2), \quad \phi_1 = \Lambda_0^\phi \xi^0 + \Lambda_1^\phi \xi^1 + \Lambda_2^\phi \xi^2, \quad \phi_2 = \Lambda_0^\phi \xi^0 - \Lambda_1^\phi \xi^1 - \Lambda_2^\phi \xi^2.
\]

It describes D2-brane configuration, which is analogous to the one in (3.314), but now the rotations are in the planes defined by the angles \(\phi_1\) and \(\phi_2\) instead of \(\theta_1\) and \(\theta_2\).

For this embedding, one obtains

\[
F_{D_2}^{(7)} (3/4; -1/4, -1/4, 1/4, -1/2, -1/2, 1/2, 1/2; 7/4; \frac{\Delta r}{2l}, -\frac{\Delta r}{4l}, -\frac{\Delta r}{6l}, \frac{\Delta r}{3l - u_+}, -\frac{\Delta r}{3l - u_+}, -\frac{\Delta r}{3l - r_2}, -\frac{\Delta r}{\Delta r_1}),
\]

where

\[
u_\pm = l \left[\frac{\Lambda_{1+}^2 - \Lambda_{1-}^2}{\Lambda_{1+}^2 + \Lambda_{1-}^2} \pm \sqrt{3 + \left(\frac{\Lambda_{1+}^2 - \Lambda_{1-}^2}{\Lambda_{1+}^2 + \Lambda_{1-}^2} \right)^2} \right].
\]

The computation of the conserved charges results in

\[
\frac{E}{\Lambda_0^0} = \frac{P_I}{\Lambda_0^I} = 4\pi^2 T_{D2} \left[\frac{l \left(\hat{\Lambda}_{1+}^2 + \hat{\Lambda}_{1-}^2 \right) (3l - u_+) (3l - u_-)}{3 \left(\hat{\Lambda}_{1+}^2 + \hat{\Lambda}_{1-}^2 + 4 \hat{\Lambda}_D^2 / 3 \right) (3l - r_2)} \right]^{1/2} \times \left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \times \left(1 + \frac{\Delta r_1}{3l - u_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - u_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times F_{D_2}^{(6)} (1/2; -1/2, -1/2, 1/2, -1/2, -1/2, 1/2; 1; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - u_+}{\Delta r_1}}, \frac{1}{1 + \frac{3l - u_-}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}),
\]

137
\[P_\phi \equiv P_{\phi_1} = P_{\phi_2} = \Lambda_0^\phi \left[\sin^2 \theta^0 \left[(1 + \cos \psi^0) K_{A2}^D + (1 - \cos \psi^0) K_{B2}^D \right] + 2 \cos^2 \theta^0 K_{B2}^D \right], \]

where

\[
K_{A2}^D = 4\pi^2 T_{D2} \left[\frac{l^5 \left(\hat{A}_{1+}^2 + \hat{A}_{1-}^2 \right) (3l - u_+)(3l - u_-)}{3 \left(\hat{\Lambda}_{l+}^2 + \hat{\Lambda}_{l-}^2 + 4\hat{\Lambda}_D^2/3 \right) (3l - r_2)} \right]^{1/2} \times \left(1 + \frac{\Delta r_1}{2l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{1/2} \times \left(1 + \frac{\Delta r_1}{3l - u_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - u_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times F_D^{(6)} (1/2; -3/2, -1/2, -1/2, -1/2, -1/2, -1/2, 1/2; 1; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - u_+}{\Delta r_1}}, \frac{1}{1 + \frac{3l - u_-}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}), \right]
\]

\[
K_{B2}^D = 2\pi^2 T_{D2} \left[\frac{l^3 \left(\hat{A}_{1+}^2 + \hat{A}_{1-}^2 \right) (3l - u_+)(3l - u_-)}{3 \left(\hat{\Lambda}_{l+}^2 + \hat{\Lambda}_{l-}^2 + 4\hat{\Lambda}_D^2/3 \right) (3l - r_2)} \right]^{1/2} \times \Delta r_1 \left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{4l} \right)^{3/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \times \left(1 + \frac{\Delta r_1}{3l - u_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - u_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times F_D^{(6)} (1/2; -1/2, -3/2, 1/2, -1/2, -1/2, 1/2, 2; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - u_+}{\Delta r_1}}, \frac{1}{1 + \frac{3l - u_-}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}), \right]
\]

\[
K_{B2}^D = 4\pi^2 T_{D2} \left[\frac{l^5 \left(\hat{A}_{1+}^2 + \hat{A}_{1-}^2 \right) (3l - u_+)(3l - u_-)}{3 \left(\hat{\Lambda}_{l+}^2 + \hat{\Lambda}_{l-}^2 + 4\hat{\Lambda}_D^2/3 \right) (3l - r_2)} \right]^{1/2} \times \left(1 + \frac{\Delta r_1}{2l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l} \right)^{2} \left(1 + \frac{\Delta r_1}{4l} \right)^{1/2} \left(1 + \frac{\Delta r_1}{6l} \right)^{-1/2} \times \left(1 + \frac{\Delta r_1}{3l - u_+} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - u_-} \right)^{1/2} \left(1 + \frac{\Delta r_1}{3l - r_2} \right)^{-1/2} \times F_D^{(7)} (1/2; -1/2, -2, -1/2, 1/2, -1/2, -1/2, 1/2, 1; \frac{1}{1 + \frac{2l}{\Delta r_1}}, \frac{1}{1 + \frac{3l}{\Delta r_1}}, \frac{1}{1 + \frac{4l}{\Delta r_1}}, \frac{1}{1 + \frac{6l}{\Delta r_1}}, \frac{1}{1 + \frac{3l - u_+}{\Delta r_1}}, \frac{1}{1 + \frac{3l - u_-}{\Delta r_1}}, \frac{1}{1 + \frac{3l - r_2}{\Delta r_1}}), \right]
\]

Taking the semiclassical limit in the above expressions for \(E, P_I \) and \(P_\phi \), which in the case under
consideration corresponds to
\[
r_{1,2} \rightarrow \pm 2 \sqrt{\frac{3v_0^2}{\Lambda^2_+ + \Lambda^2_+ + 4\Lambda^2_B/3}} \rightarrow \infty,
\]
we receive that the energy depends on \(P_I \) and \(P_\phi \) as follows
\[
E^2 = P^2 + 3^{7/3}\left(\frac{2\pi T_{D2}\Lambda^\phi \sin \theta^0}{4 - \sin^2 \theta^0}\right)^{2/3} P_\phi^{4/3}.
\]
This is another generalization of the energy-charge relation given in (3.317).

3.2.5 Two-spin magnon-like energy-charge relations from M-theory viewpoint

We showed in [13] that for each M-theory background, having subspaces with metrics of given type, there exist M2-brane configurations, which in appropriate limit lead to two-spin magnon-like energy-charge relations, established for strings on \(AdS_5 \times S^5 \), its \(\beta \)-deformation, and for membrane in \(AdS_4 \times S^7 \).

If we split the target space coordinates as \(x^{M} = (x^\mu, x^a) \), where \(x^\mu \) are those on which the background does not depend, the conserved charges are given by the expression [6]
\[
Q_\mu = \frac{1}{2\lambda^0} \int d\xi^1 d\xi^2 g_{\mu N} \partial_0 X^N.
\]

Now, let us turn to our particular tasks. Consider backgrounds of the type
\[
ds^2 = c^2 \left[-dt^2 + c_1^2 d\theta^2 + c_2^2 \cos^2 \theta d\varphi_1^2 + c_3^2 \sin^2 \theta d\varphi_2^2 + c_4^2 f(\theta) d\varphi_3^2 \right],
\]
where \(c, c_1, c_2, c_3, c_4 \) are arbitrary constants, and \(f(\theta) \) takes two values: \(f(\theta) = 1 \) and \(f(\theta) = \sin^2 \theta \).

We embed the membrane into (3.332) in the following way
\[
X^0(\xi^m) \equiv t(\xi^m) = \Lambda^0_0 \xi^0,
X^1(\xi^m) = \theta(\xi^2),
X^2(\xi^m) \equiv \varphi_1(\xi^m) = \Lambda^2_0 \xi^0,
X^3(\xi^m) \equiv \varphi_2(\xi^m) = \Lambda^3_0 \xi^0,
X^4(\xi^m) = \varphi_3(\xi^m) = \Lambda^4_0 \xi^4,
\mu = 0, 2, 3, 4, \quad a = 1, \quad \Lambda^0_0, \ldots, \Lambda^4_0 = \text{constants}.
\]
This ansatz corresponds to M2-brane extended in the \(\theta \)-direction, moving with constant energy \(E \) along the \(t \)-coordinate, rotating in the planes defined by the angles \(\varphi_1, \varphi_2 \), with constant angular momenta \(J_1, J_2 \), and \textit{wrapped} along \(\varphi_3 \).

We begin with the case \(f(\theta) = 1 \), when we have [13]
\[
\begin{align*}
K \theta^2 + V(\theta) &= 0, \\
K &= -(2\lambda^0 T_{D2} c_1^2 c_4 \Lambda^4_0)^2, \\
V(\theta) &= c^2 \left\{ (\Lambda^0_0)^2 - (\Lambda^2_0 c_3)^2 - [(\Lambda^3_0 c_3)^2 - (\Lambda^2_0 c_2)^2] \sin^2 \theta \right\}.
\end{align*}
\]

139
From (3.334) one obtains the turning point \((\theta' = 0)\) for the effective one dimensional motion
\[
M^2 = \frac{(\Lambda_0^0)^2 - (\Lambda_0^2 c_2)^2}{(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2}. \tag{3.335}
\]
The solution of (3.334) is
\[
\xi^2(\theta) = \frac{2\lambda^0 T_2 c_1 c_4 \Lambda_4^1 \sin \theta}{M \left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2\right]^{1/2} F_1(1/2, 1/2, 1/2; 3/2; \sin^2 \theta, \frac{\sin^2 \theta}{M^2})}. \tag{3.336}
\]
On this solution, the conserved charges (3.331) take the form \((Q_0 \equiv -E, Q_2 \equiv J_1, Q_3 \equiv J_2, Q_4 = 0)\)
\[
\begin{align*}
\frac{E}{\Lambda_0^0} &= \frac{2\pi^2 T_2 c_3 c_1 c_4 \Lambda_4^1}{\left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2\right]^{1/2}} 2F_1(1/2, 1/2; 1; M^2), \tag{3.337} \\
\frac{J_1}{\Lambda_0^2} &= \frac{2\pi^2 T_2 c^3 c_1 c_2^2 c_4 \Lambda_4^1}{\left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2\right]^{1/2}} 2F_1(-1/2, 1/2; 1; M^2), \tag{3.338} \\
\frac{J_2}{\Lambda_0^3} &= \frac{2\pi^2 T_2 c^3 c_1 c_2^2 c_4 \Lambda_4^1}{\left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2\right]^{1/2}} \left[2F_1(1/2, 1/2; 1; M^2) - 2F_1(-1/2, 1/2; 1; M^2)\right]. \tag{3.339}
\end{align*}
\]

Our next aim is to consider the limit, in which \(M\) tends to its maximum value: \(M \to 1\). In this case, by using (3.335) and (3.337)-(3.339), one arrives at the energy-charge relation
\[
E - \frac{J_2}{c_3} = \sqrt{\left(\frac{J_1}{c_2}\right)^2 + \left(4\pi T_2 c^3 c_1 c_4 \Lambda_4^1\right)^2}, \tag{3.340}
\]
for
\[
E, J_2/c_3 \to \infty, \quad E - J_2/c_3, J_1/c_2 - \text{finite}. \tag{3.341}
\]

Now, we are going to consider the case \(f(\theta) = \sin^2 \theta\) (see (3.332)), when we have [13]
\[
\tilde{K} \theta^2 + V(\theta) = 0, \tag{3.342}
\]
\[
\tilde{K} = -(2\lambda^0 T_2 c^2 c_1 c_4 \Lambda_4^1)^2 \sin^2 \theta = K \sin^2 \theta,
\]
where \(V(\theta)\) and correspondingly \(M^2\) are the same as in (3.331) and (3.335). The solution of (3.342) is given by the equality
\[
\xi^2(\theta) = \frac{\lambda^0 T_2 c_1 c_4 \Lambda_4^1 \sin^2 \theta}{M \left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2\right]^{1/2} F_1(1, 1/2, 1/2; 2; \sin^2 \theta, \frac{\sin^2 \theta}{M^2}), \tag{3.343}
\]
and is obviously different from the previously obtained one. The computations show that on the conserved charges (3.331) are as follows
\[
\begin{align*}
\frac{E}{\Lambda_0^0} &= \frac{2\pi^2 T_2 c^3 c_1 c_4 \Lambda_4^1}{\left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2\right]^{1/2}} \ln \left(\frac{1 + M}{1 - M}\right), \tag{3.344} \\
\frac{J_1}{\Lambda_0^2} &= \frac{2\pi^2 T_2 c^3 c_1 c_2^2 c_4 \Lambda_4^1}{\left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2\right]^{1/2}} \left[\frac{1 - M^2}{2} \ln \left(\frac{1 + M}{1 - M}\right) + M\right], \tag{3.345} \\
\frac{J_2}{\Lambda_0^3} &= \frac{2\pi^2 T_2 c^3 c_1 c_2^2 c_4 \Lambda_4^1}{\left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2\right]^{1/2}} \left[\frac{1 + M^2}{2} \ln \left(\frac{1 + M}{1 - M}\right) - M\right]. \tag{3.346}
\end{align*}
\]
Taking \(M \to 1_- \), one sees that it corresponds again to the limit (3.341), and the two-spin energy-charge relation is

\[
E - \frac{J_2}{c_3} = \sqrt{\left(\frac{J_1}{c_2}\right)^2 + \left(2\pi T_2 c^3 c_1 c_4 A_4^2\right)^2},
\]

which differs from (3.340) only by a factor of 4 in the second term on the right hand side.

Discussion

We have shown here that for each M-theory background, having subspaces with metrics of the type (3.332), there exist M2-brane configurations given by (3.333), which in the limit (3.341) lead to the two-spin, magnon-like, energy-charge relations (3.340) and (3.347).

Examples for target space metrics of the type (3.332) are several subspaces of \(R \times S^7 \), contained in the \(AdS_4 \times S^7 \) solution of M-theory.

More examples for target space metrics of the type (3.332), for which there exist the membrane configurations (3.333) giving rise to two-spin magnon-like energy-charge relations, can be found for instance in different subspaces of the \(AdS_7 \times S^4 \) solution of M-theory and not only there.

3.2.6 Integrable systems from membranes on \(AdS_4 \times S^7 \)

It is known that large class of classical string solutions in the type IIB \(AdS_5 \times S^5 \) background is related to the Neumann and Neumann-Rosochatius integrable systems, including spiky strings and giant magnons [56]. It is also interesting if these integrable systems can be associated with some membrane configurations in M-theory. We explain here how this can be achieved by considering membrane embedding in \(AdS_4 \times S^7 \) solution of M-theory, with the desired properties [13].

On the other hand, we will show the existence of membrane configurations in \(AdS_4 \times S^7 \) [14], which correspond to the continuous limit of the \(SU(2) \) integrable spin chain, arising in \(\mathcal{N} = 4 \) SYM in four dimensions, dual to strings in \(AdS_5 \times S^5 \) [57].

Here we will work with the action (2.5) written for membranes \((p = 2) \) in diagonal worldvolume gauge \(\lambda^i = 0 \), in which the action and the constraints simplify to

\[
S_M = \int d^3\xi L_M = \int d^3\xi \left\{ \frac{1}{4\lambda^0} \left[G_{00} - (2\lambda^0 T_2)^2 \right] G_{ij} + T_2 C_{012} \right\},
\]

\[
G_{00} + (2\lambda^0 T_2)^2 \det G_{ij} = 0,
\]

\[
G_{0i} = 0.
\]

Searching for membrane configurations in \(AdS_4 \times S^7 \), which correspond to the Neumann or Neumann-Rosochatius integrable systems, we should first eliminate the membrane interaction with the background 3-form field on \(AdS_4 \), to ensure more close analogy with the strings on \(AdS_5 \times S^5 \).
To make our choice, let us write down the background. It can be parameterized as follows

\[
\begin{align*}
 ds^2 &= (2l_p R)^2 \left[-\cosh^2 \rho dt^2 + d\rho^2 + \sinh^2 \rho \left(d\alpha^2 + \sin^2 \alpha d\beta^2 \right) + 4d\Omega_2^2 \right], \\
 d\Omega_2^2 &= d\psi_1^2 + \cos^2 \psi_1 d\varphi_1^2 \\
 + \sin^2 \psi_1 \left[d\psi_2^2 + \cos^2 \psi_2 d\varphi_2^2 + \sin^2 \psi_2 \left(d\psi_3^2 + \cos^2 \psi_3 d\varphi_3^2 + \sin^2 \psi_3 d\varphi_3^2 \right) \right],
\end{align*}
\]

\[
c_{(3)} = (2l_p R)^3 \sinh^3 \rho \sin \alpha dt \wedge d\alpha \wedge d\beta.
\]

Since we want the membrane to have nonzero conserved energy and spin on AdS, one possible choice, for which the interaction with the \(c_{(3)} \) field disappears, is to fix the angle \(\alpha \): \(\alpha = \alpha_0 = \text{const.} \)

The metric of the corresponding subspace of \(AdS_4 \) is

\[
d^{2}_{\text{sub}} = (2l_p R)^2 \left[-\cosh^2 \rho dt^2 + d\rho^2 + \sinh^2 \rho d(\beta \sin \alpha_0)^2 \right].
\]

The appropriate membrane embedding into \(d^{2}_{\text{sub}} \) and \(S^7 \) is

\[
\begin{align*}
 Z_\mu &= 2l_p R r_\mu (\xi^m) e^{i\phi_\mu (\xi^m)}, \quad \mu = (0, 1), \quad \phi_\mu = (\phi_0, \phi_1) = (t, \beta \sin \alpha_0), \\
 W_a &= 4l_p R r_a (\xi^m) e^{i\varphi_a (\xi^m)}, \quad a = (1, 2, 3, 4),
\end{align*}
\]

where \(r_\mu \) and \(r_a \) are real functions of \(\xi^m \), while \(\phi_\mu \) and \(\varphi_a \) are the isometric coordinates on which the background metric does not depend. The six complex coordinates \(Z_\mu, W_a \) are restricted by the two real embedding constraints

\[
\begin{align*}
 \eta^{\mu\nu} Z_\mu Z_\nu + (2l_p R)^2 &= 0, \\
 \eta^{\mu\nu} &= (-1, 1), \\
 \delta_{ab} W_a W_b - (4l_p R)^2 &= 0,
\end{align*}
\]

or equivalently

\[
\eta^{\mu\nu} r_\mu r_\nu + 1 = 0, \quad \delta_{ab} r_a r_b - 1 = 0.
\]

The coordinates \(r_\mu, r_a \) are connected to the initial coordinates, on which the background depends, through the equalities

\[
\begin{align*}
 r_0 &= \cosh \rho, \quad r_1 = \sinh \rho, \\
 r_1 &= \cos \psi_1, \quad r_2 = \sin \psi_1 \cos \psi_2, \\
 r_3 &= \sin \psi_1 \sin \psi_2 \cos \psi_3, \quad r_4 = \sin \psi_1 \sin \psi_2 \sin \psi_3.
\end{align*}
\]

For the embedding described above, the induced metric is given by

\[
G_{mn} = \eta^{\mu\nu} \partial_{(m} Z_\mu \partial_{n)} Z_\nu + \delta_{ab} \partial_{(m} W_a \partial_{n)} W_b = (3.351)
\]

\[
(2l_p R)^2 \left[\sum_{\mu, \nu=0}^{1} \eta^{\mu\nu} \left(\partial_m r_\mu \partial_n r_\nu + \partial_\mu r_\nu \partial_\mu r_\nu + \partial_\nu r_\mu \partial_\nu r_\nu + \partial_\nu r_\mu \partial_\nu r_\nu \right) + 4 \sum_{a=1}^{4} \partial_m r_a \partial_n r_a + \partial_a r_a \partial_n r_a \right].
\]

Correspondingly, the membrane Lagrangian becomes

\[
\mathcal{L} = \mathcal{L}_M + \Lambda_A (\eta^{\mu\nu} r_\mu r_\nu + 1) + \Lambda_S (\delta_{ab} r_a r_b - 1),
\]

where \(\Lambda_A \) and \(\Lambda_S \) are Lagrange multipliers.

\textbf{Neumann and Neumann-Rosochatius integrable systems from membranes}
Let us consider the following particular case of the above membrane embedding
\[Z_0 = 2l_p R e^{i \kappa \tau}, \quad Z_1 = 0, \quad W_a = 4l_p R r_a(\xi, \eta) e^{i(\omega_\alpha \tau + \mu_a(\xi, \eta))}, \quad (3.352) \]
\[\xi = \alpha \sigma_1 + \beta \tau, \eta = \gamma \sigma_2 + \delta \tau, \]
which implies
\[r_0 = 1, \quad r_1 = 0, \quad \phi_0 = t = \kappa \tau, \quad \varphi_a(\xi''') = \varphi_a(\tau, \sigma_1, \sigma_2) = \omega_a \tau + \mu_a(\xi, \eta). \quad (3.353) \]
Here $\kappa, \omega_a, \alpha, \beta, \gamma, \delta$ are parameters, whereas $r_a(\xi, \eta), \mu_a(\xi, \eta)$ are arbitrary functions. As a consequence, the embedding constraint $\eta^\mu r_\mu + 1 = 0$ is satisfied identically. For this ansatz, the membrane Lagrangian takes the form $(\partial_\xi = \partial / \partial \xi, \partial_\eta = \partial / \partial \eta)$
\[
\mathcal{L} = -\frac{(4l_p R)^2}{4\lambda^0} \left\{ (8\lambda^0 T_2 l_p R \alpha \gamma)^2 \sum_{a<b=1}^4 \left[(\partial_\xi r_a \partial_\eta r_b - \partial_\eta r_a \partial_\xi r_b)^2 + (\partial_\xi \mu_a \partial_\eta \mu_b - \partial_\eta \mu_a \partial_\xi \mu_b)^2 r_a^2 + \right. \right. \\
+ \left[(8\lambda^0 T_2 l_p R \alpha \gamma)^2 \right. \left. \sum_{a=1}^4 \left((\partial_\xi r_a \partial_\eta \mu_a - \partial_\eta r_a \partial_\xi \mu_a)^2 - (\beta \partial_\xi \mu_a + \delta \partial_\eta \mu_a + \omega_a)^2 \right) r_a^2 + \\
- \sum_{a=1}^4 (\beta \partial_\xi r_a + \delta \partial_\eta r_a)^2 + (\kappa / 2)^2 \right) \right\} + \Lambda_S \left(\sum_{a=1}^4 r_a^2 - 1 \right).
\]
Now, we make the choice
\[
\begin{align*}
& r_1 = r_1(\xi), \quad r_2 = r_2(\xi), \quad \omega_3 = \pm \omega_4 = \omega, \\
& r_3 = r_3(\eta) = \epsilon \sin(b \eta + c), \quad r_4 = r_4(\eta) = \epsilon \cos(b \eta + c), \\
& \mu_1 = \mu_1(\xi), \quad \mu_2 = \mu_2(\xi), \quad \mu_3, \mu_4 = \text{constants},
\end{align*}
\]
and receive (prime is used for $d/d\xi$)
\[
\mathcal{L} = -\frac{(4l_p R)^2}{4\lambda^0} \left\{ \sum_{a=1}^2 \left[(A^2 - \beta^2) r_a^2 + (A^2 - \beta^2) r_a^2 \left(\mu'_a - \frac{\beta \omega_a}{A^2 - \beta^2} \right)^2 \right. \right. \\
+ \left[(8\lambda^0 T_2 l_p R e \alpha \gamma)^2 \right. \left. \sum_{a=1}^2 \left((\beta \partial_\xi \mu_a + \delta \partial_\eta \mu_a + \omega_a)^2 \right) r_a^2 + \\
- \sum_{a=1}^2 (\beta \partial_\xi r_a + \delta \partial_\eta r_a)^2 + (\kappa / 2)^2 \right) \right\} + \Lambda_S \left(\sum_{a=1}^2 r_a^2 - (1 - \epsilon^2) \right),
\]
where $A^2 \equiv (8\lambda^0 T_2 l_p R e \alpha \gamma)^2$. A single time integration of the equations of motion for μ_a following from the above Lagrangian gives
\[
\mu'_a = \frac{1}{A^2 - \beta^2} \left(\frac{C_a}{r_a^2} + \beta \omega_a \right),
\]
where C_a are arbitrary constants. Taking this into account, one obtains the following effective Lagrangian for the coordinates $r_a(\xi)$
\[
L = \frac{(4l_p R)^2}{4\lambda^0} \sum_{a=1}^2 \left[(A^2 - \beta^2) r_a^2 - \frac{1}{A^2 - \beta^2} \frac{C_a^2}{r_a^2} - \frac{A^2}{A^2 - \beta^2} \omega_a r_a^2 \right] \\
+ \Lambda_S \left(\sum_{a=1}^2 r_a^2 - (1 - \epsilon^2) \right),
\]
143
This Lagrangian in full analogy with the string considerations corresponds to particular case of the \(n \)-dimensional Neumann-Rosochatius integrable system. For \(C_a = 0 \) one obtains \textit{Neumann integrable system}, which describes two-dimensional harmonic oscillator, constrained to remain on a circle of radius \(\sqrt{1 - \epsilon^2} \).

Let us write down the three constraints (3.349), (3.350) for the present case. To achieve more close correspondence with the string on \(\text{AdS}_5 \times S^5 \), we want the third one, \(\mathcal{G}_{02} = 0 \), to be satisfied identically. To this end, since \(\mathcal{G}_{02} \sim (ab)^2 \gamma \delta \), we set \(\delta = 0 \), i.e. \(\eta = \gamma \sigma_2 \). Then, the first two constraints give

\[
\sum_{a=1}^{2} \left[(A^2 - \beta^2)r_a^2 + \frac{1}{A^2 - \beta^2} C_a^2 r_a^2 + \frac{A^2}{A^2 - \beta^2} \omega_a^2 r_a^2 \right] = \frac{A^2 + \beta^2}{A^2 - \beta^2} \left[(\kappa/2)^2 - (\epsilon \omega)^2\right],
\]

\[
\sum_{a=1}^{2} \omega_a C_a + \beta \left[(\kappa/2)^2 - (\epsilon \omega)^2\right] = 0.
\]

Now, let us compute the energy and angular momenta for the membrane configuration we are considering. Due to the background isometries, there exist global conserved charges. In our case, the background does not depend on \(\phi_0 = t \) and \(\varphi_a \). Therefore, the corresponding conserved quantities are the membrane energy \(E \) and four angular momenta \(J_a \), given as spatial integrals of the conjugated to these coordinates momentum densities

\[
E = - \int d^2 \sigma \frac{\partial L}{\partial (\partial_t)}, \quad J_a = \int d^2 \sigma \frac{\partial L}{\partial (\partial_a \varphi)}, \quad a = 1, 2, 3, 4.
\]

\(E \) and \(J_a \) can be computed by using the expression (3.351) for the induced metric and the ansats (3.352), (3.353).

In order to reproduce the string case, we can set \(\omega = 0 \), and thus \(J_3 = J_4 = 0 \). The energy and the other two angular momenta are given by

\[
E = \frac{4\pi (l_p R)^2}{\lambda^0} \int d\xi, \quad J_a = \frac{\pi (4l_p R)^2}{\lambda^0 (A^2 - \beta^2)} \int d\xi \left(\beta C_a + A^2 \omega_a r_a^2\right), \quad a = 1, 2.
\]

From here, by using the constraints (3.351), one obtains the energy-charge relation

\[
\frac{4}{A^2 - \beta^2} \left[A^2 (1 - \epsilon^2) + \beta \sum_{a=1}^{2} \frac{C_a}{\omega_a} \right] E = \sum_{a=1}^{2} \frac{J_a}{\omega_a},
\]

in full analogy with the string case. Namely, for strings on \(\text{AdS}_5 \times S^5 \), the result in conformal gauge is \[56\]

\[
\frac{1}{\alpha^2 - \beta^2} \left(\alpha^2 + \beta \sum_{a} \frac{C_a}{\omega_a}\right) E = \sum_{a} \frac{J_a}{\omega_a}.
\]

\textit{SU(2) spin chain from membrane}

One of the predictions of AdS/CFT duality is that the string theory on \(\text{AdS}_5 \times S^5 \) should be dual to \(\mathcal{N} = 4 \) SYM theory in four dimensions. The spectrum of the string states and of the
operators in SYM should be the same. The first checks of this conjecture beyond the supergravity approximation revealed that there exist string configurations, whose energies in the semiclassical limit are related to the anomalous dimensions of certain gauge invariant operators in the planar SYM. On the field theory side, it was found that the corresponding dilatation operator is connected to the Hamiltonian of integrable Heisenberg spin chain. On the other hand, it was established that there is agreement at the level of actions between the continuous limit of the SU(2) spin chain arising in $\mathcal{N} = 4$ SYM theory and a certain limit of the string action in $AdS_5 \times S^5$ background. Shortly after, it was shown that such equivalence also holds for the $SU(3)$ and $SL(2)$ cases.

Here, we are interested in answering the question: is it possible to reproduce this type of string/spin chain correspondence from membranes on eleven dimensional curved backgrounds? It turns out that the answer is positive at least for the case of M2-branes on $AdS_4 \times S^7$, as we will show below.

We will use our initial membrane embedding and fix

$$Z_0 = 2l_p R e^{i\kappa \tau}, \quad Z_1 = 0,$$

which implies $r_0 = 1$, $r_1 = 0$, $\phi_0 = t = \kappa \tau$. Let us now introduce new coordinates by setting

$$(\varphi_1, \varphi_2, \varphi_3, \varphi_4) = \left(\frac{\kappa}{2} \tau + \alpha + \varphi, \frac{\kappa}{2} \tau + \alpha - \varphi, \frac{\kappa}{2} \tau + \alpha + \phi, \frac{\kappa}{2} \tau + \alpha - \phi\right)$$

and take the limit $\kappa \to \infty$, $\partial_0 \to 0$, $\kappa \partial_0$ - finite. In this limit, we obtain the following expression for the membrane Lagrangian

$$\mathcal{L} = \frac{(2l_p R)^2}{\lambda_0} \kappa \left(\partial_0 \alpha + \sum_{k=1}^3 \nu_k \partial_0 \rho_k \right) - \lambda^0 T^2_2 (4l_p R)^4 \left\{ \sum_{a=1}^4 \left(\partial_1 r_a \partial_2 r_b - \partial_2 r_a \partial_1 r_b \right) \right. + \sum_{a=1}^4 \sum_{k=1}^3 \mu_k \left(\partial_1 r_a \partial_2 \rho_k - \partial_2 r_a \partial_1 \rho_k \right) \right. \right.$$

$$\left. + \sum_{k<n=1}^3 \mu_k \mu_n \left(\partial_1 \rho_k \partial_2 \rho_n - \partial_2 \rho_k \partial_1 \rho_n \right) \right. \right.$$

$$\left. - \sum_{k=1}^3 \mu_k \left(\partial_1 \rho_k \sum_{n=1}^3 \nu_n \partial_2 \rho_n - \partial_2 \rho_k \sum_{n=1}^3 \nu_n \partial_1 \rho_n \right) \right\} + \Lambda_S \left(\sum_{a=1}^4 r_a^2 - 1 \right),$$

where

$$(\mu_1, \mu_2, \mu_3) = (r_1^2 + r_2^2, r_3^2, r_4^2), (\nu_1, \nu_2, \nu_3) = (r_1^2 - r_2^2, r_3^2, -r_4^2), (r_1, r_2, r_3) = (\varphi, \phi, \tilde{\phi}).$$

Now, we are ready to face our main problem: how to reduce this Lagrangian to the one corresponding to the thermodynamic limit of spin chain, without shrinking the membrane to string? We propose the following solution of this task:

$$\alpha = \alpha(\tau, \sigma_1), \quad r_1 = r_1(\tau, \sigma_1), \quad r_2 = r_2(\tau, \sigma_1),$$

$$r_3 = r_3(\tau, \sigma_2) = \epsilon \sin[b \sigma_2 + c(\tau)], \quad r_4 = r_4(\tau, \sigma_2) = \epsilon \cos[b \sigma_2 + c(\tau)],$$

$$\varphi = \varphi(\tau, \sigma_1), \quad \epsilon, b, \phi, \tilde{\phi} = \text{constants}, \quad \epsilon^2 < 1.$$
These restrictions lead to
\[
\mathcal{L} = \frac{(2l_0 R)^2}{\lambda^0} \kappa \left[\partial_0 \alpha + (r_1^2 - r_2^2) \partial_0 \varphi \right] - \lambda^0 (ebT_2)^2 (4l_0 R)^4 \left\{ \sum_{a=1}^{2} (\partial_1 r_a)^2 \right. \\
+ \left[(r_1^2 + r_2^2) - (r_1^2 - r_2^2)^2 \right] (\partial_1 \varphi)^2 \right\} + \Lambda s \left[\sum_{a=1}^{2} r_a^2 - (1 - \epsilon^2) \right].
\]

If we introduce the parametrization
\[
\begin{align*}
 r_1 &= (1 - \epsilon^2)^{1/2} \cos \psi, \\
 r_2 &= (1 - \epsilon^2)^{1/2} \sin \psi,
\end{align*}
\]
the new variable \(\tilde{\alpha} = \alpha / (1 - \epsilon^2) \), and take the limit \(\epsilon^2 \to 0 \) neglecting the terms of order higher than \(\epsilon^2 \), we will receive
\[
\mathcal{L} = \frac{(2l_0 R)^2}{\lambda^0} \kappa \left[\partial_0 \tilde{\alpha} + \cos(2\psi) \partial_0 \varphi \right] - \lambda^0 (ebT_2)^2 (4l_0 R)^4 \left[(\partial_1 \psi)^2 + \sin^2(2\psi)(\partial_1 \varphi)^2 \right].
\]

As for the membrane action corresponding to the above Lagrangian, it can be represented in the form
\[
S_M = \frac{\mathcal{J}}{2\pi} \int dt d\sigma \left[\partial_0 \tilde{\alpha} + \cos(2\psi) \partial_0 \varphi \right] - \frac{\tilde{\lambda}}{4\pi}\mathcal{J} \int dt d\sigma \left[(\partial_0 \psi)^2 + \sin^2(2\psi)(\partial_0 \varphi)^2 \right],
\]
where \(\mathcal{J} \) is the angular momentum conjugated to \(\tilde{\alpha} \), \(\tau = \kappa \tau \) and
\[
\tilde{\lambda} = 2^{15}(\pi^2 ebT_2)^2 (l_0 R)^6.
\]
This action corresponds to the thermodynamic limit of \(SU(2) \) integrable spin chain \([57]\).

3.2.7 M2-brane perspective on \(\mathcal{N} = 6 \) super Chern-Simons-matter theory at level \(k \)

In 2008, O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena (ABJM) proposed three-dimensional super Chern-Simons-matter theory, which at level \(k \) is supposed to describe the low energy limit of \(N \) M2-branes \([68]\). For large \(N \) and \(k \), but fixed 't Hooft coupling \(\lambda = N/k \), it is dual to type IIA string theory on \(AdS_4 \times \mathbb{C}P^3 \). For large \(N \) but finite \(k \), it is dual to M theory on \(AdS_4 \times S^7/Z_k \). Here, relying on the second duality, we find exact giant magnon and single spike solutions of membrane configurations on \(AdS_4 \times S^7/Z_k \) by reducing the system to the Neumann-Rosochatius integrable model. We derive the dispersion relations and their finite-size corrections with explicit dependence on the level \(k \) \([15]\).

Let us introduce the following complex coordinates on the \(S^7/Z_k \) subspace
\[
\begin{align*}
 z_1 &= \cos \psi \cos \frac{\theta_1}{2} e^{i\left[\frac{\pi}{8} + \frac{1}{2}(\phi_1 + \phi_2) \right]}, \\
 z_2 &= \cos \psi \sin \frac{\theta_1}{2} e^{i\left[\frac{\pi}{8} - \frac{1}{2}(\phi_1 - \phi_3) \right]}, \\
 z_3 &= \sin \psi \cos \frac{\theta_2}{2} e^{i\left[\frac{\pi}{8} - \frac{1}{2}(\phi_3 - \phi_2) \right]}, \\
 z_4 &= \sin \psi \sin \frac{\theta_2}{2} e^{i\left[\frac{\pi}{8} - \frac{1}{2}(\phi_2 + \phi_3) \right]}.
\end{align*}
\]
Obviously, they satisfy the relation

\[\sum_{a=1}^{4} z_a \bar{z}_a \equiv 1. \]

Next, we compute the metric

\[ds_{S^7/Z_k}^2 = \sum_{a=1}^{4} dz_a d\bar{z}_a = \frac{1}{k^2} (d\varphi + kA_1)^2 + ds_{\text{CP}^3}^2, \]

where

\[A_1 = \frac{1}{2} \left[\cos^2 \psi \cos \theta_1 d\phi_1 + \sin^2 \psi \cos \theta_2 d\phi_2 + (\cos^2 \psi - \sin^2 \psi) d\phi_3 \right], \]

\[ds_{\text{CP}^3}^2 = d\psi^2 + \sin^2 \psi \cos^2 \psi \left(\frac{1}{2} \cos \theta_1 d\phi_1 - \frac{1}{2} \cos \theta_2 d\phi_2 + d\phi_3 \right)^2 \]

\[+ \frac{1}{4} \cos^2 \psi \left(d\theta_1^2 + \sin^2 \theta_1 d\phi_1^2 \right) + \frac{1}{4} \sin^2 \psi \left(d\theta_2^2 + \sin^2 \theta_2 d\phi_2^2 \right). \] (3.355)

The membrane embedding into \(R_t \times S^7/Z_k \), appropriate for our purposes, is

\[X_0 = \frac{R}{2} t(\xi^m), \quad W_a = R r_a(\xi^m) e^{i\varphi_a(\xi^m)}, \quad a = (1, 2, 3, 4), \]

where \(t \) is the AdS time, \(r_a \) are real functions of \(\xi^m \), while \(\varphi_a \) are the isometric coordinates on which the background metric does not depend. The four complex coordinates \(W_a \) are restricted by the real embedding condition

\[\sum_{a=1}^{4} W_a W_a = R^2, \quad \text{or} \quad \sum_{a=1}^{4} r_a^2 = 1. \]

The coordinates \(r_a \) are connected to the initial coordinates, on which the background depends, in an obvious way.

For the embedding described above, the metric induced on the M2-brane worldvolume is given by

\[G_{mn} = \frac{R^2}{4} \left[-\partial_m t \partial_n t + 4 \sum_{a=1}^{4} \left(\partial_m r_a \partial_n r_a + r_a^2 \partial_m \varphi_a \partial_n \varphi_a \right) \right]. \] (3.356)

Correspondingly, the membrane Lagrangian becomes

\[\mathcal{L} = \mathcal{L}_M + \Lambda \left(\sum_{a=1}^{4} r_a^2 - 1 \right), \]

where \(\Lambda \) is a Lagrange multiplier.

NR integrable system for M2-branes on \(R_t \times S^7/Z_k \)
Let us consider the following particular case of the above membrane embedding \[13\]

\[
X_0 = \frac{R}{2} \kappa \tau, \quad W_a = R r_a(\xi, \eta)e^{i(\omega_a \tau + \mu_a(\xi, \eta))},
\]

(3.357)

\[\xi = \alpha \sigma_1 + \beta \tau, \quad \eta = \gamma \sigma_2 + \delta \tau,\]

which implies

\[t = \kappa \tau, \quad \varphi_a(\xi) = \varphi_a(\tau, \sigma_1, \sigma_2) = \omega_a \tau + \mu_a(\xi, \eta).\]

(3.358)

Here \(\kappa, \omega_a, \alpha, \beta, \gamma, \delta\) are parameters. For this ansatz, the membrane Lagrangian takes the form

\[
\mathcal{L} = -\frac{R^2}{4\lambda^0} \left\{ (2\lambda^0 T_2 R \alpha \gamma)^2 \sum_{a<b=1}^4 \left[(\partial_\xi r_a \partial_\eta r_b - \partial_\eta r_a \partial_\xi r_b)^2 \\
+ (\partial_\xi r_a \partial_\eta \mu_b - \partial_\eta r_a \partial_\xi \mu_b)^2 r_b^2 \\
+ (\partial_\xi \mu_a \partial_\eta r_b - \partial_\eta \mu_a \partial_\xi r_b)^2 r_a^2 \\
+ \left(\sum_{a=1}^4 (2\lambda^0 T_2 R \alpha \gamma)^2 (\partial_\xi r_a \partial_\eta \mu_a - \partial_\eta r_a \partial_\xi \mu_a)^2 - (\beta \partial_\xi \mu_a + \delta \partial_\eta \mu_a + \omega_a)^2 \right) r_a^2 \\
- \sum_{a=1}^4 (\beta \partial_\xi r_a + \delta \partial_\eta r_a)^2 \right] \right\} + \Lambda \sum_{a=1}^4 r_a^2 - 1.
\]

We have found a set of sufficient conditions, which reduce the above Lagrangian to the NR one. First of all, two of the angles \(\varphi_a\) should be set to zero. The corresponding \(r_a\) coordinates must depend only on \(\eta\) in a specific way. The remaining variables \(r_a\) and \(\mu_a\) can depend only on \(\xi\). In principle, there are six such possibilities. How they are realized for the \(R_t \times S^7/Z_k\) background, we will discuss in the next section. Here, we will work out the following example

\[
r_1 = r_1(\xi), \quad r_2 = r_2(\xi), \quad \mu_1 = \mu_1(\xi), \quad \mu_2 = \mu_2(\xi), \\
r_3 = r_3(\eta) = r_0 \sin \eta, \quad r_4 = r_4(\eta) = r_0 \cos \eta, \quad r_0 < 1,
\]

(3.359)

\[
\varphi_3 = \varphi_4 = 0.
\]

For this choice, we receive (prime is used for \(d/d\xi\))

\[
\mathcal{L} = -\frac{R^2}{4\lambda^0} \left\{ \sum_{a=1}^2 \left[(\tilde{A}^2 - \beta^2) r_a^2 + (\tilde{A}^2 - \beta^2) \left(\mu'_a - \frac{\beta \omega_a}{\tilde{A}^2 - \beta^2} \right)^2 - \frac{\tilde{A}^2}{\tilde{A}^2 - \beta^2} \omega_a r_a^2 \right] \\
+ (\kappa/2)^2 - r_0^2 \delta^2 \right\} + \Lambda \sum_{a=1}^2 r_a^2 - (1 - r_0^2),
\]

where \(\tilde{A}^2 \equiv (2\lambda^0 T_2 R \alpha \gamma r_0)^2\). Now we can integrate once the equations of motion for \(\mu_a\) following from the above Lagrangian to get

\[
\mu'_a = \frac{1}{\tilde{A}^2 - \beta^2} \left(\frac{C_a}{r_a^2} + \beta \omega_a \right),
\]

(3.360)

\(^{16}\)Of course, the roles of \(\xi\) and \(\eta\) can be interchanged in this context.
where \(C_a \) are arbitrary constants. By using (3.360) in the equations of motion for \(r_a(\xi) \), one finds that they can be obtained from the effective Lagrangian
\[
L_{NR} = 2 \sum_{a=1}^{2} \left[(\tilde{A}_a^2 - \beta^2) r_a'^2 - \frac{1}{A^2 - \beta^2} \left(\frac{C_a}{r_a^2} + \tilde{A}_a^2 \omega_a^2 r_a^2 \right) \right] + \Lambda_M \left[\sum_{a=1}^{2} r_a^2 - (1 - r_0^2) \right].
\]

This Lagrangian, in full analogy with the string considerations, corresponds to particular case of the NR integrable system. For \(C_a = 0 \) one obtains the Neumann integrable model, which in the case at hand describes two-dimensional harmonic oscillator, constrained to a circle of radius \(\sqrt{1 - r_0^2} \).

Let us consider the three constraints (3.349), (3.350) for the present case. For more close correspondence with the string case, we want the third one, \(G_{02} = 0 \), to be identically satisfied. To this end, since \(G_{02} \sim r_0^2 \gamma \delta \), we set \(\delta = 0 \), i.e. \(\eta = \gamma \sigma \gamma \). Then, the first two constraints give the conserved Hamiltonian \(H_{NR} \) and a relation between the parameters involved:
\[
H_{NR} = 2 \sum_{a=1}^{2} \left[(\tilde{A}_a^2 - \beta^2) r_a'^2 + \frac{1}{A^2 - \beta^2} \left(\frac{C_a}{r_a^2} + \tilde{A}_a^2 \omega_a^2 r_a^2 \right) \right] = \tilde{A}_a^2 + \beta^2 \left(\frac{\kappa}{2} / r_a^2 \right)^2,
\]
\[
\sum_{a=1}^{2} \omega_a C_a + \beta (\kappa / 2)^2 = 0.
\]

(3.361)

For closed membranes, \(r_a \) and \(\mu_a \) must satisfy the following periodicity conditions
\[
r_a(\xi + 2\pi \alpha, \eta + 2\pi \gamma) = r_a(\xi, \eta), \quad \mu_a(\xi + 2\pi \alpha, \eta + 2\pi \gamma) = \mu_a(\xi, \eta) + 2\pi n_a,
\]
where \(n_a \) are integer winding numbers. In particular, \(\gamma \) is a non-zero integer.

Since the background metric does not depend on \(t \) and \(\varphi_a \), the corresponding conserved quantities are the membrane energy \(E \) and four angular momenta \(J_a \), defined by
\[
E = - \int d^2\sigma \frac{\partial L}{\partial (\partial_\xi t)}, \quad J_a = \int d^2\sigma \frac{\partial L}{\partial (\partial_\varphi \varphi_a)}, \quad a = 1, 2, 3, 4.
\]
For our ansatz (3.359) \(J_3 = J_4 = 0 \). The energy and the other two angular momenta are given by
\[
E = \frac{\pi R^2 \kappa}{4\Lambda^0 \alpha} \int d\xi, \quad J_a = \frac{\pi R^2}{\lambda^0 \alpha (A^2 - \beta^2)} \int d\xi \left(\beta C_a + \tilde{A}_a^2 \omega_a r_a^2 \right), \quad a = 1, 2.
\]

(3.363)

From here, by using the constraints (3.361), one obtains the energy-charge relation
\[
\frac{4}{A^2 - \beta^2} \left[\tilde{A}_a^2 (1 - r_0^2) + \beta \sum_{a=1}^{2} C_a \omega_a \right] \frac{E}{\kappa} = \sum_{a=1}^{2} \frac{J_a}{\omega_a}.
\]

As usual, it is linear with respect to \(E \) and \(J_a \) before taking the semiclassical limit.

To identically satisfy the embedding condition
\[
\sum_{a=1}^{2} r_a^2 - (1 - r_0^2) = 0,
\]

149
we set
\[r_1(\xi) = \sqrt{1 - r_0^2 \sin \theta(\xi)}, \quad r_2(\xi) = \sqrt{1 - r_0^2 \cos \theta(\xi)}. \]

Then from the conservation of the NR Hamiltonian (3.361) one finds
\[\dot{\theta} = \begin{pmatrix} \pm 1 \\frac{A^2}{A^2 - \beta^2} \left(-\frac{\dot{\phi}_1^2}{\sin^2 \theta} - \frac{\dot{\phi}_2}{\cos^2 \theta} - \frac{\dot{\phi}_3}{\cos^2 \theta} - \frac{\dot{\phi}_4}{\sin^2 \theta} \right) + \beta \right)^{1/2}, \]
\[\sum_{a=1}^{2} \omega_a \dot{C}_a + \beta \dot{\kappa}^2 = 0, \quad \kappa^2 = (\kappa/2)^2 \left(1 - r_0^2 \right)^2, \quad \tilde{C}_a^2 = \frac{C_a^2}{(1 - r_0^2)^2}. \]

By replacing the solution for \(\theta(\xi) \) received from (3.364) into (3.360), one obtains the solutions for \(\mu_a \):
\[\mu_1 = \frac{1}{A^2 - \beta^2} \left(\tilde{C}_1 \int \frac{d\xi}{\sin^2 \theta} + \beta \omega_1 \xi \right), \quad \mu_2 = \frac{1}{A^2 - \beta^2} \left(\tilde{C}_2 \int \frac{d\xi}{\cos^2 \theta} + \beta \omega_2 \xi \right). \]

The above analysis shows that the NR integrable models for membranes on \(R_t \times S^7 \) and \(R_t \times S^7/Z_k \) are the same [17]. Therefore, we can use the results obtained in [17] for the present case. For convenience, the corresponding solutions and dispersion relations are given in Appendix.

M2-brane solutions on \(R_t \times S^7/Z_k \) and dispersion relations

For our membrane embedding in \(R_t \times S^7/Z_k \), the angular variables \(\varphi_a \) are related to the corresponding background coordinates as follows
\[\varphi_1 = \frac{\varphi}{k} + \frac{1}{2} (\phi_1 + \phi_3), \quad \varphi_2 = \frac{\varphi}{k} - \frac{1}{2} (\phi_1 - \phi_3), \]
\[\varphi_3 = \frac{\varphi}{k} + \frac{1}{2} (\phi_2 - \phi_3), \quad \varphi_4 = \frac{\varphi}{k} - \frac{1}{2} (\phi_2 + \phi_3). \]

As a consequence, for the angular momenta we have
\[J_{\varphi_1} = \frac{J_{\varphi}}{k} + \frac{1}{2} (J_{\phi_1} + J_{\phi_3}), \quad J_{\varphi_2} = \frac{J_{\varphi}}{k} - \frac{1}{2} (J_{\phi_1} - J_{\phi_3}), \]
\[J_{\varphi_3} = \frac{J_{\varphi}}{k} + \frac{1}{2} (J_{\phi_2} - J_{\phi_3}), \quad J_{\varphi_4} = \frac{J_{\varphi}}{k} - \frac{1}{2} (J_{\phi_2} + J_{\phi_3}). \]

\(\varphi_a \) and \(J_{\varphi_a} \) satisfy the equalities
\[\sum_{a=1}^{4} \varphi_a = \frac{4}{k} \varphi, \quad \sum_{a=1}^{4} J_{\varphi_a} = \frac{4}{k} J_{\varphi}. \]

One of the conditions for the existence of NR description of the M2-brane dynamics is that two of the angles \(\varphi_a \) must be zero, which means that two of the four angular momenta \(J_{\varphi_a} \) vanish. The
six possible cases are

- \(\varphi_1 = \phi_3 + \frac{\phi_1}{2} = \frac{2}{k} \varphi + \frac{\phi_1}{2}, \quad \varphi_2 = \phi_3 - \frac{\phi_1}{2} = \frac{2}{k} \varphi - \frac{\phi_1}{2}, \quad \varphi_3 = 0, \quad \varphi_4 = 0; \)
- \(\varphi_1 = \phi_1 = \frac{2}{k} \varphi + \phi_3, \quad \varphi_3 = \phi_2 = \frac{2}{k} \varphi - \phi_3, \quad \varphi_2 = 0, \quad \varphi_4 = 0; \)
- \(\varphi_1 = \phi_1 = \frac{2}{k} \varphi + \phi_3, \quad \varphi_4 = -\phi_2 = \frac{2}{k} \varphi - \phi_3, \quad \varphi_2 = 0, \quad \varphi_3 = 0; \)
- \(\varphi_2 = -\phi_1 = \frac{2}{k} \varphi + \phi_3, \quad \varphi_3 = \phi_2 = \frac{2}{k} \varphi - \phi_3, \quad \varphi_1 = 0, \quad \varphi_4 = 0; \)
- \(\varphi_2 = -\phi_1 = \frac{2}{k} \varphi + \phi_3, \quad \varphi_4 = -\phi_2 = \frac{2}{k} \varphi - \phi_3, \quad \varphi_1 = 0, \quad \varphi_3 = 0; \)
- \(\varphi_3 = -\phi_3 + \frac{\phi_2}{2} = \frac{2}{k} \varphi + \frac{\phi_2}{2}, \quad \varphi_4 = -\phi_3 - \frac{\phi_2}{2} = \frac{2}{k} \varphi - \frac{\phi_2}{2}, \quad \varphi_1 = 0, \quad \varphi_2 = 0. \)

Here, \(\phi_1 \) and \(\phi_2 \) are the isometry angles on the two two-spheres inside \(\mathbb{CP}^3 \), while \(\phi_3 \) is isometry angle on the \(U(1) \) fiber over \(S^2 \times S^2 \), as can be seen from (3.355).

From (3.366), it is clear that we have two alternative descriptions for \(\varphi_4 \). One is only in terms of the isometry angles on \(\mathbb{CP}^3 \), and the other includes the eleventh coordinate \(\varphi \). This is a consequence of our restriction to M2-brane configurations, which can be described by the NR integrable system.

The six cases above can be divided into two classes. The first one contains the first and last possibilities, and the other one - the remaining ones. The cases belonging to the first class are related to each other by the exchange of \(\phi_1 \) and \(\phi_2 \). This corresponds to exchanging the two \(S^2 \) inside \(\mathbb{CP}^3 \). Since these spheres enter symmetrically, the two cases are equivalent. In terms of \((\varphi, \phi_3) \), the four cases from the second class are actually identical. That is why, all of them can be described simultaneously by choosing one representative from the class.

Let us first give the M2-brane solutions for cases in the first class. Since they correspond to our example in the previous section, the membrane configuration reads

\[
W_1 = R r_1(\xi) \exp \{i\varphi_1(\tau, \xi)\} = R \sqrt{1 - r_0^2} \sin \theta(\xi) \exp \left\{ i \left[\frac{2}{k} \varphi(\tau, \xi) + \frac{\phi(\tau, \xi)}{2} \right] \right\},
\]

\[
W_2 = R r_2(\xi) \exp \{i\varphi_2(\tau, \xi)\} = R \sqrt{1 - r_0^2} \cos \theta(\xi) \exp \left\{ i \left[\frac{2}{k} \varphi(\tau, \xi) - \frac{\phi(\tau, \xi)}{2} \right] \right\},
\]

\[
W_3 = R r_0 \sin(\gamma \sigma_2), \quad W_4 = R r_0 \cos(\gamma \sigma_2),
\]

where \(\phi \) is equal to \(\phi_1 \) or \(\phi_2 \).

From the NR system viewpoint, the membrane solutions for the second class configurations differ from the ones just given by the exchange of \(W_2, W_3 \), and by the replacement \(\phi/2 \to \phi_3 \). In other words, we have

\[
W_1 = R r_1(\xi) \exp \{i\varphi_1(\tau, \xi)\} = R \sqrt{1 - r_0^2} \sin \theta(\xi) \exp \left\{ i \left[\frac{2}{k} \varphi(\tau, \xi) + \phi_3(\tau, \xi) \right] \right\},
\]

\[
W_2 = R r_0 \sin(\gamma \sigma_2),
\]

\[
W_3 = R r_3(\xi) \exp \{i\varphi_3(\tau, \xi)\} = R \sqrt{1 - r_0^2} \cos \theta(\xi) \exp \left\{ i \left[\frac{2}{k} \varphi(\tau, \xi) - \phi_3(\tau, \xi) \right] \right\},
\]

\[
W_4 = R r_0 \cos(\gamma \sigma_2),
\]

151
The explicit solutions for \(\theta(\xi) \) and \(\varphi_{1,2,3}(\tau,\xi) \), of the M2-brane GM and SS, along with the energy-charge relations for the infinite and finite sizes are given in the Appendix E (see [18]). Here, we will present them in terms of \(\varphi \) and \(\phi_{1,2,3} \).

In accordance with (A.27), we have for the M2-brane GM with two angular momenta the following dispersion relation

\[
\sqrt{1 - r_0^2 E - \frac{1}{2} \left(\frac{2}{k} J_\varphi + J_\phi \right)^2} = \sqrt{\frac{1}{4} \left(\frac{2}{k} J_\varphi - J_\phi \right)^2 + 8\lambda k^2 \left[r_0(1 - r_0^2)\gamma \right]^2 \sin^2 \frac{p}{2}}, \tag{3.367}
\]

where \(J_\phi \) can be equal to \(J_{\phi_1}/2 \), \(J_{\phi_2}/2 \) or \(J_{\phi_3} \). In writing (3.367), we have used that

\[
R = l_p \left(\frac{2\pi}{2k} \right)^{1/6}, \quad T_2 = \frac{1}{(2\pi)^2 l_p^3},
\]

and the 't Hooft coupling is defined by \(\lambda = N/k \).

If we introduce the notations

\[
E = a \sqrt{1 - r_0^2 E}, \quad J_\varphi = a J_\varphi, \quad J_\phi = a J_\phi, \quad a = \frac{1}{\sqrt{2\lambda k r_0(1 - r_0^2)\gamma}}, \tag{3.368}
\]

the above energy-charge relation takes the form

\[
E - J_1(k) = \sqrt{J_2^2(k) + 4\sin^2 \frac{p}{2}},
\]

where

\[
J_1(k) = \frac{2}{k} J_\varphi + J_\phi, \quad J_2(k) = \frac{2}{k} J_\varphi - J_\phi. \tag{3.369}
\]

By using (3.368), (3.369) and (A.35), we can write down the dispersion relation for the dyonic GM, including the leading finite-size correction as

\[
E - J_1(k) = \sqrt{J_2^2(k) + 4\sin^2 \frac{p}{2}} - \frac{16 \sin^4 \frac{p}{2}}{\sqrt{J_2^2(k) + 4\sin^2 \frac{p}{2}}} \exp \left[-\frac{2\sin^2 \frac{p}{2} \left(J_1(k) + \sqrt{J_2^2(k) + 4\sin^2 \frac{p}{2}} \right) \sqrt{J_2^2(k) + 4\sin^2 \frac{p}{2}}}{J_2^2(k) + 4\sin^4 \frac{p}{2}} \right].
\]

The reason to introduce \(E \), \(J_\varphi \) and \(J_\phi \) namely in this way is the following. For GM on the \(R_t \times S^3 \) subspace of \(AdS_5 \times S^5 \), in terms of

\[
E = \frac{2\pi}{\sqrt{\lambda}} E, \quad J_1 = \frac{2\pi}{\sqrt{\lambda}} J_1, \quad J_2 = \frac{2\pi}{\sqrt{\lambda}} J_2,
\]

we have

\[
E - J_1 = \sqrt{J_2^2 + 4\sin^2 \frac{p}{2}}.
\]
The same result can be obtained for the GM on the $R_t \times \mathbb{CP}^3$ subspace of $AdS_4 \times \mathbb{CP}^3$, if we use the identification \[E = \frac{E}{\sqrt{2\lambda}}, \quad J_1 = \frac{J_1}{\sqrt{2\lambda}}, \quad J_2 = \frac{J_2}{\sqrt{2\lambda}}. \]

In the all three cases, the second term under the square root is the same. In this description it is universal - for different backgrounds and for different extended objects.

Analogously, for the SS case one can find (see (A.37))

\[
E - \Delta \varphi_1 = p + 8 \sin^2 \frac{p}{2} \tan \frac{p}{2} \exp \left(- \frac{(\Delta \varphi_1 + p) \tan \frac{p}{2}}{J_2^2(k) \csc^2 p + \tan^2 \frac{p}{2}} \right),
\]

\[
J_1(k) = \sqrt{J_2^2(k) + 4 \sin^2 \frac{p}{2}}.
\]

Let us point out that for $k = 1$ the above dispersion relations coincide with the ones obtained earlier in [17]. We can also reproduce the energy-charge relations for dyonic GM and SS strings on $R_t \times \mathbb{CP}^3$ by taking an appropriate limit. To show this, let us consider the second case in (3.366), for which

\[
J_{\phi_1} = \frac{2}{k} J_{\phi} + J_{\phi_3}, \quad J_{\phi_2} = \frac{2}{k} J_{\phi} - J_{\phi_3}.
\]

In accordance with our membrane embedding, the following identification should be made

\[
J_{1}^{str} = \frac{J_{\phi_3}}{2}, \quad J_{2}^{str} = \frac{J_{\phi_2}}{2}.
\]

Then in the limit $k \to \infty$, $r_0 \to 0$, such that $kr_0^2 \gamma = 1$, we obtain from (3.367)

\[
E - J_{1}^{str} = \sqrt{(J_{2}^{str})^2 + 8 \lambda \sin^2 \frac{p}{2}}.
\]

This is exactly what we have derived in [69] for dyonic GM strings on $R_t \times \mathbb{CP}^3$. Obviously, this also applies for the leading finite-size correction. In the same way, the SS string dispersion relation for $R_t \times \mathbb{CP}^3$ background can be reproduced.
4 Three-point correlation functions

The AdS/CFT conjecture [35] implies that the correlation functions in the dual (boundary) quantum field theory can be computed alternatively in string theory, i.e., essentially by the methods of a two-dimensional theory. The first computations however were mostly performed in the supergravity approximation, representing the correlators in terms of integrals over the target (bulk) coordinates [92, 93].

On the string side one may start with a semiclassical approach, when the string path integral for the correlation functions is evaluated in the saddle-point approximation with large 't Hooft coupling \(\lambda >> 1 \). In this calculation one has to identify the correct vertex operators [94, 95] and to find the corresponding classical solutions, which provide the appropriate saddle-point approximation.

It is known that the correlation functions of any conformal field theory can be determined in principle in terms of the basic conformal data \(\{ \Delta_i, C_{ijk} \} \), where \(\Delta_i \) are the conformal dimensions defined by the two-point correlation functions

\[
\langle O_i(x_1)O_j(x_2) \rangle = \frac{C_{12}\delta_{ij}}{|x_1 - x_2|^{2\Delta}}.
\]

and \(C_{ijk} \) are the structure constants in the operator product expansion

\[
\langle O_i(x_1)O_j(x_2)O_k(x_3) \rangle = \frac{C_{ijk}}{|x_1 - x_2|^{\Delta_1 + \Delta_2 - \Delta_3}|x_1 - x_3|^{\Delta_1 + \Delta_3 - \Delta_2}|x_2 - x_3|^{\Delta_2 + \Delta_3 - \Delta_1}}.
\]

Therefore, the determination of the initial conformal data for a given conformal field theory is the most important step in the conformal bootstrap approach.

The three-point functions of two “heavy” operators and a “light” operator can be approximated by a supergravity vertex operator evaluated at the “heavy” classical string configuration [96, 97]:

\[
\langle V_H(x_1)V_H(x_2)V_L(0) \rangle = \frac{C_{123}}{|x_1 - x_2|^{2\Delta_H}}.
\]

For \(|x_1| = |x_2| = 1, x_3 = 0 \), the correlation function reduces to

\[
\langle V_H(x_1)V_H(x_2)V_L(0) \rangle = \frac{C_{123}}{|x_1 - x_2|^{2\Delta_H}}.
\]

Then, the normalized structure constants

\[
\mathcal{C} = \frac{C_{123}}{C_{12}}
\]

can be found from

\[
\mathcal{C} = c_\Delta V_L(0)_{\text{classical}}, \quad (4.1)
\]

were \(c_\Delta \) is the normalized constant of the corresponding “light” vertex operator.
4.1 Semiclassical three-point correlation functions in $AdS_5 \times S^5$

In [21] we computed holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two $su(2)$ magnon single trace operators with finite size and the Lagrangian in the large ’t Hooft coupling constant limit. A special limit $J \gg \sqrt{\lambda}$ of our result is compared with the relevant result based on the Lüscher corrections.

[21] is the first paper where the finite-size effects on the semiclassical three-point correlation functions have been taken into account.

In [24, 25, 27] we extended the results found in [21] to the following three cases:

1. Dilaton operator with non-zero momentum: $V_L = V^d_j$
2. Primary scalar operators: $V_L = V^{pr}_j$
3. Singlet scalar operators on higher string levels: $V_L = V^q$

4.1.1 Two GM states and dilaton with zero momentum

Let us start with the case of two GM and the zero-momentum dilaton operator, namely the Lagrangian whose vertex operator is given by

$$V^d = (Y_4 + Y_5)^{-1} \left[z^{-2} (\partial_+ x_m \partial_- x^m + \partial_+ z \partial_- z) + \partial_+ X_k \partial_- X_k \right],$$

where

$$Y_4 = \frac{1}{2z} (x^m x_m + z^2 - 1), \quad Y_5 = \frac{1}{2z} (x^m x_m + z^2 + 1),$$

and x_m, z are coordinates on AdS_5, while X_k are the coordinates on S^5.

Giant magnons with finite size

The finite-size giant magnon solution can be represented as $(i \tau = \tau_e)$

$$x_{0e} = \tanh(\kappa \tau_e), \quad x_i = 0, \quad z = \frac{1}{\cosh(\kappa \tau_e)},$$

$$\cos \theta = \sqrt{1 - v^2 \kappa^2} \ \text{dn} \left(\frac{\sqrt{1 - v^2 \kappa^2}}{1 - v^2} (\sigma - v \tau) \right| 1 - \epsilon \right),$$

$$\phi = \frac{\tau - v \sigma}{1 - v^2} + \frac{1}{v \sqrt{1 - v^2 \kappa^2}} \times$$

$$\Pi \left(\frac{1 - v^2 \kappa^2}{1 - v^2} (\sigma - v \tau), \frac{1 - v^2 \kappa^2}{v^2 \kappa^2} (1 - \epsilon), 1 - \epsilon \right),$$
where
\[\epsilon = \frac{1 - \kappa^2}{1 - v^2 \kappa^2}. \]

To find the finite-size effect on the three-point correlator, we will use (4.1) and (4.2), which computed on (4.3) gives
\[C^d = c^d_\Delta \int_{-\infty}^{\infty} \frac{d \tau_e}{\cosh^4(\kappa \tau_e)} \int_{-L}^{L} d \sigma \left[\kappa^2 + \partial_+ X_k \partial_- X_k \right], \] (4.4)

where
\[\partial_+ X_k \partial_- X_k = -\frac{1}{(1 - v^2) \sin^2 \theta} \left\{ 2 - (1 + v^2) \kappa^2 \right. \\
- \cos^2 \theta \left[4 - (1 + v^2) \kappa^2 - 2 \cos^2 \theta \right] \} . \]

Performing the integrations in (4.4), one finds
\[C^d = \frac{16}{3} c^d_\Delta \sqrt{\frac{1 - v^2}{1 - \epsilon}} [E(1 - \epsilon) - \epsilon K(1 - \epsilon)]. \] (4.5)

Let us point out that the parameter \(L \) in (4.5) is given by
\[L = \frac{1 - v^2}{\sqrt{1 - v^2 \kappa^2}} K(1 - \epsilon). \]

This is our exact result for the normalized coefficient \(C^d \) in the semiclassical three-point correlation function, corresponding to the case when the "heavy" vertex operators are finite-size giant magnons, and the light vertex is taken to be the zero-momentum dilaton operator.

For the case of this dilaton operator, the three-point function of the SYM can be easily related to the conformal dimension of the heavy operators. This corresponds to shift 't Hooft coupling constant which is the overall coefficient of the Lagrangian [88]. This gives an important relation between the structure constant and the conformal dimension as follows:
\[C^d_3 = \frac{32 \pi}{3} c^d_\Delta \sqrt{\lambda \partial_\lambda \Delta}. \] (4.6)

We want to show that this relation is correct for the case of the giant magnons with arbitrary finite size.

In the context of the AdS/CFT correspondence, it is now well-established that the conformal dimension of a single trace operator with one magnon state is the same as \(E - J \) in the strong coupling limit. For an exact relation from the gauge theory side, one should solve the thermodynamic Bethe equations. It has been shown that finite-size corrections to the conformal dimensions of the SYM (dyonic) giant magnon operators computed by the Lüscher formula for \(J \gg \sqrt{\lambda} \) match exactly with \(E - J \) of corresponding string state configurations. Based on these results, we can assume that the conformal dimensions \(\Delta \) of the SYM operators are the same as \(E - J \) of corresponding string states.
The exact classical expression for finite-size giant magnon energy-charge relation is given by

\[E - J = \Delta = \sqrt{\frac{1 - v^2}{1 - \epsilon^2}} \left[E(1 - \epsilon) - \left(1 - \sqrt{1 - \epsilon^2} \right) K(1 - \epsilon) \right]. \tag{4.7} \]

The corresponding expressions for \(J \) and \(p \) are

\[J = \sqrt{\frac{1 - v^2}{1 - \epsilon^2}} \left(K(1 - \epsilon) - E(1 - \epsilon) \right), \]
\[p = 2v \sqrt{\frac{1 - v^2}{1 - \epsilon^2}} \left(1 - \sqrt{1 - \epsilon^2} \right) - K(1 - \epsilon), \]

where \(J \) is the angular momentum of the string, and \(p \) is the magnon momentum. One can obtain \(E - J \) in terms of \(J \) and \(p \) by eliminating \(v, \epsilon \) from these expressions.

To take \(\lambda \)-derivative on \(\Delta \), we need know \(\lambda \) dependence of \(v \) and \(\epsilon \). Our strategy is to find \(v' (\lambda) \) and \(\epsilon' (\lambda) \) from the conditions that \(J \) and \(p \) are independent variables of \(\lambda \), namely,

\[\frac{dJ}{d\lambda} = \frac{dp}{d\lambda} = 0. \tag{4.8} \]

Solving these conditions, we find the derivatives of the functions \(v(\lambda) \) and \(\epsilon(\lambda) \)

\[\frac{dv}{d\lambda} = -\frac{v(1 - v^2)\epsilon \left[E(1 - \epsilon) - K(1 - \epsilon) \right]^2}{2\lambda(1 - \epsilon) \left[E(1 - \epsilon)^2 - v^2 \epsilon K(1 - \epsilon)^2 \right]}, \tag{4.9} \]
\[\frac{d\epsilon}{d\lambda} = -\frac{\epsilon \left[E(1 - \epsilon) - K(1 - \epsilon) \right] \left[E(1 - \epsilon) - v^2 \epsilon K(1 - \epsilon) \right]}{\lambda \left[E(1 - \epsilon)^2 - v^2 \epsilon K(1 - \epsilon)^2 \right]}. \]

Replacing (4.9) into the derivative of (4.7), one finds

\[\lambda \partial_\lambda \Delta = \sqrt{\frac{1 - v^2}{2\pi}} \sqrt{\frac{1 - \epsilon^2}{1 - \epsilon}} \left[E(1 - \epsilon) - \epsilon K(1 - \epsilon) \right]. \tag{4.10} \]

Comparing (4.5) and (4.10), we conclude that the equality (4.6) holds.

Next, we would like to compare (4.5) with the known leading finite-size correction to the giant magnon dispersion relation [66]. To this end, we have to consider the limit \(\epsilon \to 0 \) in (4.5). Taking into account the behavior of the elliptic integrals in the \(\epsilon \to 0 \) limit, we can use the ansatz

\[v(\epsilon) = v_0 + v_1 \epsilon + v_2 \epsilon \log(\epsilon). \tag{4.11} \]

Actually, all parameters in (4.11) are already known and are given by

\[v_0 = \cos(p/2), \quad v_1 = \frac{1}{4} \sin^2(p/2) \cos(p/2)(1 - \log(16)), \tag{4.12} \]
\[v_2 = \frac{1}{4} \sin^2(p/2) \cos(p/2), \quad \epsilon = 16 \exp \left(-\frac{2\pi J}{\sqrt{\lambda} \sin(p/2)} - 2 \right). \]

Expanding (4.5) in \(\epsilon \) and using (4.11), (4.12), we obtain

\[C^d = \frac{16}{3} c^d \Delta \sin(p/2) \left[1 - 4 \sin(p/2) \left(\sin(p/2) + \frac{2\pi J}{\sqrt{\lambda}} \right) \exp \left(-\frac{2\pi J}{\sqrt{\lambda} \sin(p/2)} - 2 \right) \right]. \tag{4.13} \]
On the other hand, from the giant magnon dispersion relation, including the leading finite-size effect,

$$\Delta = \frac{\sqrt{\lambda}}{\pi} \sin(p/2) \left[1 - 4 \sin^2(p/2) \exp\left(-\frac{2\pi J}{\sqrt{\lambda} \sin(p/2)} - 2 \right) \right],$$

one finds

$$\lambda \partial_\lambda \Delta = \frac{\sqrt{\lambda}}{2\pi} \sin(p/2) \left[1 - 4 \sin(p/2) \left(\sin(p/2) + \frac{2\pi J}{\sqrt{\lambda}} \right) \exp\left(-\frac{2\pi J}{\sqrt{\lambda} \sin(p/2)} - 2 \right) \right]. \quad (4.14)$$

This confirms explicitly that the relation (4.6) holds in the small ϵ i.e. $J \gg \sqrt{\lambda}$ limit.

Dyonic giant magnons with finite size

The dyonic finite-size giant magnon solution is given by

$$x_0 e = \tanh(\kappa \tau), \quad x_i = 0, \quad z = \frac{1}{\cosh(\kappa \tau)},$$

$$\cos \theta = z_+ \text{dn} \left(\sqrt{1 - u^2} \frac{1}{1 - v^2} z_+ (\sigma - v \tau) \left| 1 - \epsilon \right\rangle \right), \quad (4.15)$$

$$\phi_1 = \frac{\tau - v \sigma}{1 - v^2} + \frac{vW}{\sqrt{1 - u^2 z_+ (1 - z_+^2)}} \times$$

$$\Pi \left(\text{am} \left(\sqrt{1 - u^2} \frac{1}{1 - v^2} z_+ (\sigma - v \tau) \right), -\frac{z_+^2}{1 - z_+^2} (1 - \epsilon), \left| 1 - \epsilon \right\rangle \right)$$

$$\phi_2 = \frac{u}{1 - v^2},$$

where

$$\epsilon = \frac{z_+^2}{z_+^2}, \quad W = \kappa^2.$$

z_\pm^2 can be written as

$$z_\pm^2 = \frac{1}{2(1 - u^2)} \left\{ q_1 + q_2 - u^2 \pm \sqrt{(q_1 - q_2)^2 - \left[2(q_1 + q_2 - 2q_1q_2) - u^2 \right] u^2} \right\},$$

$$q_1 = 1 - W, \quad q_2 = 1 - v^2 W.$$

Now, we have to replace into (4.4) the following expression obtained from the above solution

$$\partial_+ X_k \partial_- X_k = -\frac{1}{(1 - u^2) \sin^2 \theta} \left\{ 1 - v^2 W^2 + (1 - u^2) z_+^4 \epsilon + 2(1 - u^2) \cos^4 \theta \right.$$

$$- \cos^2 \theta \left[2 + z_+^2 (1 + \epsilon) - u^2 (1 + z_+^2 (1 + \epsilon)) \right] \right\}.$$

158
Computing the integrals in (4.4), we find
\[
C^d = \frac{8}{3} \frac{1}{\Delta (1 - u^2) W \chi_p (1 - \chi_p)} \left\{ (1 - \chi_p) \left[2(1 - u^2) \chi_p E (1 - \epsilon) \right] - (u^2 - (1 - v^2) W + (1 - u^2)(1 + \epsilon) \chi_p) K (1 - \epsilon) \right\} - (1 - v^2 W^2 - \chi_p - (1 - \chi_p) (\epsilon \chi_p + u^2(1 - \epsilon \chi_p))) \times \\
\Pi \left(-\frac{\chi_p}{1 - \chi_p} (1 - \epsilon) \right) \right\},
\]
where we introduced the notations
\[
\chi_p = z_+^2, \quad \chi_m = z_-^2, \quad \Rightarrow \epsilon = \frac{\chi_m}{\chi_p}.
\]
This is our exact result for the normalized coefficient C^d in the three-point correlation function, corresponding to the case when the "heavy" vertex operators are finite-size dyonic giant magnons.

To check the relation (4.6), we need to know Δ. As GM case, we claim that this is given by $E - J_1$. The explicit results are given by [17]
\[
E = 2 \sqrt{W (1 - v^2) K (1 - \epsilon)}, \\
J_1 = 2 \sqrt{\chi_p} \left[\frac{1 - v^2 W}{\chi_p} K (1 - \epsilon) - E (1 - \epsilon) \right], \\
J_2 = 2 \sqrt{\chi_p} \left[E (1 - \epsilon) \right] - \chi_p \left(\frac{W}{1 - \chi_p} \Pi \left(-\frac{\chi_p}{1 - \chi_p} (1 - \epsilon) \right) - K (1 - \epsilon) \right),
\]
and
\[
E = \frac{2 \pi E}{\sqrt{\lambda}}, \quad J_{1,2} = \frac{2 \pi J_{1,2}}{\sqrt{\lambda}}.
\]

In this case, we need to obtain $v'(\lambda), e'(\lambda), u'(\lambda)$ from the condition that J_1, J_2, p be independent of λ. It turns out that the exact calculations for these are too complicated. Instead, we will just focus on the $\epsilon \to 0$ limit of (4.16) and λ derivative of Δ from the Lüscher formula to check (4.6). To this end, we will use the expansions
\[
\chi_p = \chi_{p0} + (\chi_{p1} + \chi_{p2} \log(\epsilon)) \epsilon, \quad \chi_m = \chi_{m1} \epsilon, \\
v = v_0 + (v_1 + v_2 \log(\epsilon)) \epsilon, \quad u = u_0 + (u_1 + u_2 \log(\epsilon)) \epsilon, \\
W = 1 + W_1 \epsilon.
\]

First note that χ_p and χ_m satisfy the following relations
\[
\chi_p + \chi_m = \frac{2 - (1 + v^2) W - u^2}{1 - u^2}, \\
\chi_p \chi_m = \frac{1 - (1 + v^2) W - v^2 W^2}{1 - u^2}.
\]
Expanding (4.20) and using the definition of ϵ, we arrive at

$$\chi_{p0} = 1 - \frac{v_0^2}{1 - u_0^2},$$

$$\chi_{p1} = \frac{v_0}{(1 - v_0^2)(1 - u_0^2)^2} \left\{ v_0 \left[(1 - v_0^2)^2 - 3(1 - v_0^2)u_0^2 + 2u_0^4 - 2(1 - v_0^2)u_0u_1 \right]
- 2(1 - v_0^2)(1 - u_0^2)v_1 \right\},$$

$$\chi_{p2} = -2v_0v_2 + (v_0u_2 - u_0v_2)u_0 \left(\frac{1}{1 - u_0^2} \right)^2,$$

$$\chi_{m1} = 1 - \frac{v_0^2}{1 - u_0^2},$$

$$W_1 = -\frac{(1 - u_0^2 - v_0^2)^2}{(1 - u_0^2)(1 - v_0^2)}.$$

The coefficients in the expansions of v and u, we take from [99], where for the case under consideration we have to set $K_1 = \chi_{n1} = 0$, or equivalently $\Phi = 0$. This gives

$$v_0 = \frac{\sin(p)}{\sqrt{J_2^2 + 4\sin^2(p/2)}}, \quad u_0 = \frac{J_2}{\sqrt{J_2^2 + 4\sin^2(p/2)}}$$

$$v_1 = \frac{v_0(1 - v_0^2 - u_0^2)}{4(1 - u_0^2)(1 - v_0^2)} \left[(1 - v_0^2)(1 - \log(16)) - u_0^2(5 - v_0^2(1 + \log(16)) - \log(4096)) \right]$$

$$v_2 = \frac{v_0(1 - v_0^2 - u_0^2)}{4(1 - u_0^2)(1 - v_0^2)} \left[1 - v_0^2 - u_0^2(3 + v_0^2) \right]$$

$$u_1 = \frac{u_0(1 - v_0^2 - u_0^2)}{4(1 - v_0^2)} \left[1 - \log(16) - v_0^2(1 + \log(16)) \right]$$

$$u_2 = \frac{u_0(1 - v_0^2 - u_0^2)}{4(1 - v_0^2)}(1 + v_0^2).$$

We need also the expression for ϵ. To the leading order, it can be written as [99]

$$\epsilon = 16 \exp \left(-\frac{2 - \frac{2v_0^2}{1 - u_0^2} + J_1 \sqrt{1 - v_0^2 - u_0^2}}{1 - v_0^2} \right).$$

(4.23)
By using (4.21), (4.22) and (4.23) in the ϵ-expansion of (4.16), we derive
\begin{align}
\mathcal{C}^d = & \frac{16}{3} c^d \left\{ \frac{\mathcal{J}_2^2 + 4\sin^2(p/2) - 16\sin^4(p/2)\exp(f)}{2\sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)}} \right. \\
& + \frac{1}{(\mathcal{J}_2^2 + 4\sin^2(p/2)) (\mathcal{J}_2^2 + 4\sin^4(p/2))} \left[32\exp(f) \left(2\sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)} - 3\mathcal{J}_1 \\
& + 2 \left(\mathcal{J}_1 (2 + \mathcal{J}_2^2) + \mathcal{J}_2^2 \sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)} \cos(p) - \mathcal{J}_1 \cos(2p) \right) \sin^8(p/2) \right] \\
& - \frac{\mathcal{J}_2^2}{2\sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)}} = \frac{8\mathcal{J}_2^2 \sin^4(p/2)}{(\mathcal{J}_2^2 + 4\sin^2(p/2))^{3/2}} \exp(f) \right\},
\end{align}
(4.24)

where
\begin{align}
f = - \frac{2 \left(\mathcal{J}_1 + \sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)} \right) \sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)} \sin^2(p/2)}{\mathcal{J}_2^2 + 4\sin^4(p/2)}.
\end{align}

On the other hand, from the dyonic giant magnon dispersion relation, including the leading finite-size correction,
\begin{align}
\Delta_{dyonic} = \frac{\sqrt{\lambda}}{2\pi} \left[\sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)} - \frac{16\sin^4(p/2)}{\sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)}} \exp(f) \right],
\end{align}
(4.25)

one obtains
\begin{align}
\lambda \partial_\lambda \Delta_{dyonic} = & \frac{\sqrt{\lambda}}{2\pi} \left\{ \frac{\mathcal{J}_2^2 + 4\sin^2(p/2) - 16\sin^4(p/2)\exp(f)}{2\sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)}} \right. \\
& + \frac{1}{(\mathcal{J}_2^2 + 4\sin^2(p/2)) (\mathcal{J}_2^2 + 4\sin^4(p/2))} \left[32\exp(f) \left(2\sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)} - 3\mathcal{J}_1 \\
& + 2 \left(\mathcal{J}_1 (2 + \mathcal{J}_2^2) + \mathcal{J}_2^2 \sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)} \cos(p) - \mathcal{J}_1 \cos(2p) \right) \sin^8(p/2) \right] \\
& - \frac{\mathcal{J}_2^2}{2\sqrt{\mathcal{J}_2^2 + 4\sin^2(p/2)}} = \frac{8\mathcal{J}_2^2 \sin^4(p/2)}{(\mathcal{J}_2^2 + 4\sin^2(p/2))^{3/2}} \exp(f) \right\}.
\end{align}

Comparing (4.24) and (4.26), we see that the relation (4.6) is also valid for finite-size dyonic giant magnons, as it should be.

4.1.2 Two GM states and dilaton with non-zero momentum

For the dilaton vertex we have [96]
\begin{align}
V^d = (Y_4 + Y_5)^{-\Delta_d} (X_1 + iX_2)^j \left[\widetilde{z}^{-2} (\partial_+ x_m \partial_- x^m + \partial_+ z \partial_- z) + \partial_+ X_k \partial_- X_k \right],
\end{align}
(4.27)
where the scaling dimension $\Delta_d = 4 + j$ to the leading order in the large $\sqrt{\lambda}$ expansion. The corresponding operator in the dual gauge theory is proportional to $Tr (F_{\mu \nu}^2 \; Z^j + \ldots)$, or for $j = 0$, just to the SYM Lagrangian.

The normalized structure constant (4.1) can be computed by using (4.27), applied for the case of giant magnons, to be [24]

$$
\mathcal{C}_d^j = 2 \pi^{3/2} c_d^d \frac{\Gamma \left(\frac{4+j}{2} \right)}{\Gamma \left(\frac{5+j}{2} \right) \sqrt{(1-u^2)W}} \left[(1-u^2) \chi_p \; _2F_1 \left(\frac{1}{2}, \frac{1}{2} - \frac{j}{2}; 1; 1 - \frac{\chi_m}{\chi_p} \right)
- (1-W) \; _2F_1 \left(\frac{1}{2}, \frac{1}{2} - \frac{j}{2}; 1; 1 - \frac{\chi_m}{\chi_p} \right) \right] .
$$

A few comments are in order. The structure constant in (4.28) corresponds to finite-size dyonic giant magnons, i.e. with two angular momenta. The case of finite-size giant magnons with one angular momentum nonzero can be obtained by setting $u = 0$ (χ_p, χ_m also depend on u according to (4.20)). The infinite size case [97] is reproduced for $W = 1, \chi_m = 0$. For $j = 0$, (4.28) reduces to the result of [21].

Leading finite-size effect

Expanding (4.28) in ϵ one finds [27]

\(j = 1: \)

\[
\mathcal{C}_1^d \approx \frac{3}{4} \pi^2 c_d^d \sin^3(p/2) \left\{ \begin{array}{c} 1 \\ \sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2)} \\ - \frac{1}{128} \left(\mathcal{J}_2^2 + 4 \sin^2(p/2) \right)^{3/2} \left(\mathcal{J}_2^2 + 4 \sin^4(p/2) \right) \\ - 2 \left(744 + 707 \mathcal{J}_2^2 + 244 \mathcal{J}_2^4 + 72 \mathcal{J}_2^6 \right) \cos(p) \\ + 4 \left(255 + 218 \mathcal{J}_2^2 + 62 \mathcal{J}_2^4 - 6 \mathcal{J}_2^6 \right) \cos(2p) - \left(520 + 367 \mathcal{J}_2^2 + 24 \mathcal{J}_2^4 \right) \cos(3p) \\ + 2 \left(92 + 47 \mathcal{J}_2^2 + 3 \mathcal{J}_2^4 \right) \cos(4p) - \left(40 + 11 \mathcal{J}_2^2 \right) \cos(5p) + 4 \cos(6p) \right) \\
+ 8 \mathcal{J}_1 \sin^2(p/2) \sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2)} \left((8 + 19 \mathcal{J}_2^2 + 12 \mathcal{J}_2^4) \cos(p) + (8 - 16 \mathcal{J}_2^2) \cos(2p) \\ - (8 + 3 \mathcal{J}_2^2) \cos(3p) - 2 \left(5 + 5 \mathcal{J}_2^2 - 2 \mathcal{J}_2^4 - \cos(4p) \right) \right) \frac{\epsilon}{162} \right\} .
\]
\(j = 2: \)

\[
C_2^d \approx \frac{2^8}{3^4 5^2} c_6^d \sin^4(p/2) \left\{ \frac{1}{\sqrt{J_2^2 + 4 \sin^2(p/2)}}
ight. \\
- \frac{1}{128 (J_2^2 + 4 \sin^2(p/2))^{3/2}} \left(J_2^2 + 4 \sin^2(p/2) \right)^2 \left[\left(210 + 8J_2^2 \left(6 - J_2^2 \right) \left(7 + 4J_2^2 \right) \\
- 8 \left(63 + 84J_2^2 + 38J_2^4 + 16J_2^6 \right) \cos(p) \\
+ \left(585 + 576J_2^2 + 176J_2^4 - 32J_2^6 \right) \cos(2p) - 4 \left(115 + 84J_2^2 + 4J_2^4 \right) \cos(3p) \\
+ 2 \left(111 + 56J_2^2 + 4J_2^4 \right) \cos(4p) - 4 \left(15 + 4J_2^2 \right) \cos(5p) + 7 \cos(6p) \right) \\
- 8J_1 \sin^2(p/2) \sqrt{J_2^2 + 4 \sin^2(p/2)} \left[\left(15 + 8J_2^2 - 8J_4^2 - 4 \left(3 + 5J_2^2 + 4J_2^4 \right) \cos(p) \\
- \left(12 - 8J_2^2 \right) \cos(2p) + 4 \left(3 + J_2^2 \right) \cos(3p) - 3 \cos(4p) \right] \varepsilon \right\},
\]

\(j = 3: \)

\[
C_3^d \approx \frac{3.5 \pi^2}{2^6} c_7^d \sin^5(p/2) \left\{ \frac{1}{\sqrt{J_2^2 + 4 \sin^2(p/2)}}
ight. \\
+ \frac{1}{960 (J_2^2 + 4 \sin^2(p/2))^{3/2}} \left(J_2^2 + 4 \sin^2(p/2) \right)^2 \left[20 \left(256 \left(13 + 15 \cos(p) \right) \sin^{10}(p/2) \\
+ 288J_2^2 \left(5 + 7 \cos(p) \right) \sin^8(p/2) + J_2^4 \left(54 + 241 \cos(p) + 10 \cos(2p) \\
+ 15 \cos(3p) \right) \sin^2(p/2) + 16J_2^4 \cos(3p) \left(5 + 3 \cos(p) \right) \right) \\
+ 60J_1 \sin^2(p/2) \sqrt{J_2^2 + 4 \sin^2(p/2)} \left[20 + 6J_2^2 - 12J_2^4 \\
- \left(16 + 21J_2^2 + 20J_2^4 \right) \cos(p) - 2 \left(8 - 5J_2^2 \right) \cos(2p) \\
+ \left(16 + 5J_2^2 \right) \cos(3p) - 4 \cos(4p) \right] \varepsilon \right\}.
\]
In the four formulas above \(\epsilon \) is first seen from the formulas above. However, since the expressions for them are too complicated, we give here only the results for the same structure for any \(j \) with one (large) angular momentum \(J \) with one (large) angular momentum.

Now, let us restrict ourselves to the simpler case when \(\mathcal{J}_2 = 0 \), i.e. giant magnon string states with one (large) angular momentum \(\mathcal{J}_1 \neq 0 \). Knowing the above results for \(1 \leq j \leq 10 \), one can conclude that the normalized structure constants in the three-point correlators for any \(j \geq 1 \) in the small \(\epsilon \) limit. Namely

\[
C^d_j \approx A_j c^d_j + 4 \sin^2(p/2) \left\{ \frac{1}{\sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2)}} + \frac{a_j}{\left(\mathcal{J}_2^2 + 4 \sin^2(p/2) \right)^{3/2}} \right\}
\]

where \(\epsilon \) is given in \(1.29 \), \(A_j \) and \(a_j \) are numerical coefficients, while \(P_j^3(\mathcal{J}_2^2) \) and \(Q_j^2(\mathcal{J}_2^2) \) are polynomials of third and second order respectively, with coefficients depending on \(p \) in a trigonometric way.

Actually, we computed the normalized coefficients in the three-point correlators up to \(j = 10 \). However, since the expressions for them are too complicated, we give here only the results for the first two odd and two even values of \(j \). Knowing these expressions, the conclusion is that they have the same structure for any \(j \) in the small \(\epsilon \) limit

\[
\epsilon = 16 \exp \left[-\frac{2 \left(\mathcal{J}_1 + \sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2)} \right) \sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2) \sin^2(p/2)}}{\mathcal{J}_2^2 + 4 \sin^4(p/2)} \right]. \tag{4.29}
\]

\(j = 4 \):

\[
C^d_4 \approx \frac{2^{11}}{3.5^2 7} c^d_8 \sin^6(p/2) \left\{ \frac{1}{\sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2)}} \right. + \frac{a_j}{\left(\mathcal{J}_2^2 + 4 \sin^2(p/2) \right)^{3/2}} \left. \right\}
\]

\[
\left[P_j^3(\mathcal{J}_2^2) + \mathcal{J}_1 \sin^2(p/2) \sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2)} Q_j^2(\mathcal{J}_2^2) \right] \epsilon.
\tag{4.30}
\]
small ϵ limit look like18

\[
C_{j0}^d \approx \frac{A_j}{2} c_{j+4}^d \sin^2 \left(\frac{p}{2} \right) \left[\sin \left(\frac{p}{2} \right) + \left(B_{j0} \sin \left(\frac{p}{2} \right) + C_{j0} \sin \left(\frac{3p}{2} \right) + D_{j0} \left(1 + \cos(p) \right) J_1 \right) e^{-2 \frac{p}{2 \sin^2 \frac{p}{2}}} \right],
\]

(4.31)

where

\[
B_{j0} = (-2^2, 3, \frac{2.11}{3}, 11, \frac{2.3^2}{5}, \frac{53}{3}, \frac{2.73}{3}, 2.3, \ldots) \quad \text{for} \quad j = (1, \ldots, 8, \ldots),
\]

\[
C_{j0} = 1 + 3j, \quad D_{j0} = 2(j + 1).
\]

4.1.3 Two GM states and primary scalar operators

The primary scalar vertex is \textcolor{blue}{[100] [101] [96]}

\[
V^{pr} = (Y_4 + Y_5)^{-\Delta^{pr}} (X_1 + iX_2)^j \left[z^{-2} (\partial_+ x_m \partial_- x^m - \partial_+ z \partial_- z) - \partial_+ X_k \partial_- X_k \right],
\]

(4.32)

where now the scaling dimension is $\Delta^{pr} = j$. The corresponding operator in the dual gauge theory is $\text{Tr} \left(Z_j \right)$.

For giant magnons we have \textcolor{blue}{[97]}

\[
z^{-2} (\partial_+ x_m \partial_- x^m - \partial_+ z \partial_- z) = \kappa^2 \left(\frac{2}{\cosh^2(\kappa \tau_e)} - 1 \right).
\]

Then the light vertex operator becomes

\[
V^{pr} = \frac{\cos^j \theta}{\cosh^j(\kappa \tau_e)} \left[\kappa^2 \left(\frac{2}{\cosh^2(\kappa \tau_e)} - 1 \right) - \mathcal{L}_{S^3}^{gm} \right],
\]

where the infinite-size case was considered in \textcolor{blue}{[97]}, while for the finite-size giant magnons $\mathcal{L}_{S^3}^{gm}$ should be taken from

\[
\mathcal{L}_{S^3}^{gm} = -\frac{1}{1 - v^2} \left[2 - (1 + v^2)W - 2 \left(1 - u^2 \right) \chi \right].
\]

(4.33)

Let us also note that the first integral for χ is given by

\[
\chi' = \frac{2\sqrt{1 - u^2}}{1 - v^2} \sqrt{\chi(\chi_p - \chi)(\chi - \chi_m)}.
\]

(4.34)

As a consequence, the normalized structure constant in the corresponding three-point function, for the case under consideration, takes the form:

\[
\mathcal{C}_j^{pr} = \frac{\mathcal{C}_j^{pr}}{2} \left[\int_{-\infty}^{\infty} d\tau_e \frac{W}{\cosh^j(\sqrt{W} \tau_e)} \left(\frac{2}{\cosh^2(\sqrt{W} \tau_e)} - 1 \right) \int_{-L}^{L} d\sigma \chi^{\frac{1}{2}} \right]
\]

\[
- \int_{-\infty}^{\infty} d\tau_e \frac{d\tau_e}{\cosh^j(\sqrt{W} \tau_e)} \int_{-L}^{L} d\sigma \chi^{\frac{1}{2}} \mathcal{L}_{S^3}^{gm} \right].
\]

18 C_{j0}^d is used for C_j^d computed for $J_2 = 0$ case.
Performing the integrations in (4.35) one finally finds

\[C_{pr}^j = \pi^{3/2} C_{\Delta} \frac{\Gamma\left(\frac{j}{2}\right) \Gamma\left(\frac{3+j}{2}\right)}{(1-u^2)W} \chi_p \left[(1 - W + j(1 - v^2W)) \binom{1}{2} \binom{1}{2} \binom{j}{2}; 1; 1 - \epsilon \right] - (1 + j)(1 - u^2) \chi_p \binom{1}{2} \binom{1}{2} \binom{j}{2}; 1; 1 - \epsilon \right]. \]

Leading finite-size effect

Let us start with the simpler case when \(J_2 = 0 \), or equivalently \(u = 0 \). Expanding (4.36) in \(\epsilon \) one finds

\[C_{pr}^{10} \approx 0, \quad C_{pr}^{20} \approx \frac{4}{3} C_{pr}^{10} J_1 \sin^2(p/2) \epsilon, \]

\[C_{pr}^{j0} \approx e^{pr} a_j \sin(p/2)^{j+1} \epsilon, \quad j = 3, \ldots, 10, \]

where

\[\epsilon = 16 \exp[-2 - J_1 \csc(p/2)], \]

for the case under consideration. The numerical coefficients \(a_j \) are given by

\[a_j = \left(\frac{1}{4}, \frac{2^4}{3.5}, \frac{1}{16}, \frac{1}{5}, \frac{2^7}{3^25.7}, \frac{3.5}{2^9}, \frac{2^{10}}{3^35.27}, \frac{5.7}{2^{11}r^2}, \frac{2^{14}}{3^25.7^2.11} \right). \]

A few comments are in order. From (4.37) one can conclude that the \(C_{pr}^{10} \) and \(C_{pr}^{20} \) cases are exceptional, while \(C_{pr}^{j0} \) have the same structure for \(j \geq 3 \). \(C_{pr}^{10} \approx 0 \) means that the small \(\epsilon \)-contribution to the three point correlator is zero to the leading order in \(\epsilon \). \(C_{pr}^{20} \) is the only one normalized structure constant of this type proportional to \(J_1 \). It is still exponentially suppressed by \(\epsilon \). The common feature of \(C_{pr}^{j0} \) in (4.37) is that they all vanish in the infinite size case, i.e., for \(\epsilon = 0 \). This property was established in [97]. Here, we obtained the leading finite-size corrections to it.

Now, let us turn to the dyonic case, i.e. \(J_2 \neq 0 \). Working in the same way, but with \(u \neq 0 \), we derive
\(j = 1: \)

\[
\begin{align*}
 C_1^{pr} & \approx c_1^{pr} \frac{\pi^2}{16} \frac{J_2^2 \csc(p/2)}{[J_2^2 + 4 \sin^2(p/2)]^{3/2}} \times \\
 \{ 8[J_2^2 + 4 \sin^2(p/2)]^2[J_2^2 + 4 \sin^4(p/2)] & + \sin^2(p/2) [40 + 17J_2^2 + 2J_2^4 - 20(3 + J_2^2) \cos(p) \\
 + 3(8 + J_2^2) \cos(2p) - 4 \cos(3p) - 4J_2^2 + 8 \sin^2(p/2) & \times \\
 (J_1 \sqrt{J_2^2 + 4 \sin^2(p/2)} + J_2^2 + 4 \sin^2(p/2)) \times \\
 (J_2^2 + 4 \sin^4(p/2) + 2 \sin^2(p)) \sin^2(p/2) \} \epsilon, \tag{4.39}
\end{align*}
\]

\(j = 2: \)

\[
\begin{align*}
 C_2^{pr} & \approx \frac{4}{3} c_2^{pr} \frac{1}{[J_2^2 + 4 \sin^2(p/2)]^{3/2}[J_2^2 + 4 \sin^4(p/2)]} \times \\
 \{ 2J_2^2[J_2^2 + 4 \sin^2(p/2)]^2[J_2^2 + 4 \sin^4(p/2)] & - \sin^4(p/2) \times \\
 [20 + 3J_2^2 - 2J_2^4 - 2(15 + 2J_2^2) \cos(p) + (12 + J_2^2) \cos(2p) - 2 \cos(3p) \\
 + \frac{8}{J_2^2 + 4 \sin^4(p/2)} (J_1 \sqrt{J_2^2 + 4 \sin^2(p/2)} + J_2^2 + 4 \sin^2(p/2)) \times \\
 (-3 + 2(2 + J_2^2) \cos(p) - \cos(2p)) \sin^4(p/2) \} \epsilon, \tag{4.40}
\end{align*}
\]

\(j = 3: \)

\[
\begin{align*}
 C_3^{pr} & \approx c_3^{pr} \frac{\pi^2}{256} \csc(p/2) \frac{[J_2^2 + 4 \sin^2(p/2)]^{5/2}}{J_2^2 + 4 \sin^4(p/2)} \times \\
 \{ 48J_2^2 \sin^2(p/2) \frac{J_2^2 + 4 \sin^4(p/2)}{[J_2^2 + 4 \sin^2(p/2)]^3} & - \left[\frac{25J_2^4}{[J_2^2 + 4 \sin^2(p/2)]^2} \\
 - \frac{J_2^2}{[J_2^2 + 4 \sin^2(p/2)]^3} (21 - 16 \cos(p) - 5 \cos(2p) + 8J_2^2) & \\
 - \frac{1}{2} \frac{11 - 12 \cos(p) + \cos(2p) + 6J_2^2}{[J_2^2 + 4 \sin^4(p/2)]^4} \times \\
 (80 & + 42J_2^2 + 12J_2^4 - (120 + 47J_2^2 - 4J_2^4) \cos(p) \\
 + \frac{(8 + J_2^2) (6 \cos(2p) - \cos(3p)) \sin^4(p/2)}{[J_2^2 + 4 \sin^2(p/2)]^2 \sin^2(p/2)} & \times \\
 \frac{1}{[J_2^2 + 4 \sin^2(p/2)]^3} & + \frac{3J_2^2 \sin^4(p)}{[J_2^2 + 4 \sin^2(p/2)]^4} - 8 \left(\frac{J_2^2 + 4 \sin^4(p/2)}{J_2^2 + 4 \sin^2(p/2)} \right)^2 \} \epsilon \}, \tag{4.41}
\end{align*}
\]
The marginality condition for this operator is \[\Delta = 2(\lambda^1 + 1) + \frac{0}{\lambda^{1/4}} + \mathcal{O}\left(\frac{1}{\lambda^{3/4}}\right) \, . \]

In the four formulas above \(\epsilon \) is given by (4.29).

4.1.4 Two GM states and singlet scalar operators on higher string levels

As explained in [96], there exist special massive string states vertex operators with finite quantum numbers for which the leading-order bosonic part is known explicitly and thus they can be used as candidates for “light” vertex operators in the semiclassical computation of the correlation functions. These are singlet operators which do not mix with other operators to leading nontrivial order in the parameter \(\lambda \). An example of such scalar operator carrying no spins is [96]

\[V^q = (Y_4 + Y_5) - \Delta \left[\partial X_k \bar{\partial} \bar{X}_k \right]^q + \ldots . \] (4.43)

The marginality condition for this operator is [96]:

\[2(1 - q) + \frac{1}{2\sqrt{\lambda}} \left[\Delta(\Delta - 4) + 2q(q - 1) \right] + \frac{1}{(\sqrt{\lambda})^2} \left[\frac{3}{4}q(q - 1)(q - 7) + 4q \right] + \mathcal{O}\left(\frac{1}{\sqrt{\lambda^{3/4}}}\right) = 0 . \]

This operator corresponds to a scalar string state at level \(n = q - 1 \) so that the fermionic contributions should make the \(q = 1 \) state massless (BPS), with \(\Delta = 4 \) following from the marginality condition. The \(q = 2 \) choice corresponds to a scalar state on the first excited string level. In that case, we have [104]

\[\Delta(\Delta - 4) = 4(\sqrt{\lambda} - 1) + \mathcal{O}\left(\frac{1}{\sqrt{\lambda}}\right) , \]

with solution

\[\Delta = 2(\lambda^{1/4} + 1) + \frac{0}{\lambda^{1/4}} + \mathcal{O}\left(\frac{1}{\lambda^{3/4}}\right) . \]
However, the subleading terms here should not be trusted as far as the fermions are expected to change the Δ-independent terms in the 1-loop anomalous dimension. For arbitrary string level n, the solution of the marginality condition with respect to Δ, to leading order in $1/\sqrt{\lambda}$, is given by

$$\Delta_q = 2 \left(\sqrt{(q - 1)\sqrt{\lambda} + 1} - \frac{1}{2} q(q - 1) + 1 \right).$$ \hspace{1cm} (4.44)$$

Let us also point out that the number q of $\partial X_k \bar{\partial} X_k$ factors in an operator never increases due to renormalization [95]. That is why, it can be used as a quantum number to characterize the leading term in the corresponding operator [102].

The normalized structure constant can be computed by using (4.43), applied for the case of giant magnons, to be [25]

$$C^q = c_{\Delta_q} \pi^{3/2} \frac{\Gamma\left(\frac{\Delta_q}{2}\right)}{\Gamma\left(\frac{\Delta_q+1}{2}\right)} \frac{(-1)^q \left[2 - (1 + v^2)W\right]^q}{(1 - v^2)^{q-1} \sqrt{(1 - u^2)} W} \Gamma_q \left(\frac{1}{2} - k; 1 - \frac{\chi_m}{\chi_p}\right),$$

$$\sum_{k=0}^{q} \frac{q!}{k!(q-k)!} \left[- \frac{1 - u^2}{1 - \frac{1}{2}(1 + v^2)W} \frac{1}{\chi_p} \right]^{k} 2F_{1}\left(1 - k; 1 - \frac{\chi_m}{\chi_p}\right).$$ \hspace{1cm} (4.45)$$

where

$$\chi_p = \frac{1}{2(1 - u^2)} \left\{ q_1 + q_2 - u^2 + \sqrt{(q_1 - q_2)^2 - [2 (q_1 + q_2 - 2q_1q_2) - u^2] u^2} \right\},$$

$$\chi_m = \frac{1}{2(1 - u^2)} \left\{ q_1 + q_2 - u^2 - \sqrt{(q_1 - q_2)^2 - [2 (q_1 + q_2 - 2q_1q_2) - u^2] u^2} \right\},$$

$$q_1 = 1 - W, \quad q_2 = 1 - v^2 W.$$ \hspace{1cm} (4.46)$$

This is our general result corresponding to finite-size giant magnons with two angular momenta and to arbitrary string level $n = q - 1 = 0, 1, 2, ...$. Now, let us give some particular examples contained in (4.45).

Giant magnons with one angular momentum

The case of finite-size giant magnons with one angular momentum $J_1 \neq 0$ corresponds to $u = 0$. This can be seen from the explicit expression for the second angular momentum J_2:

$$J_2 = \frac{2\pi J_2}{\sqrt{\lambda}} = \frac{2u \sqrt{\chi_p}}{\sqrt{1 - u^2}} \left(1 - \frac{\chi_m}{\chi_p} \right).$$

Then from (4.46) one obtains the following simplified expressions for χ_p, χ_m:

$$\chi_p = 1 - v^2 W, \quad \chi_m = 1 - W.$$ \hspace{1cm} (4.47)$$

Taking this into account, and using (4.45), one can find that the normalized structure constants for the first three string levels, for the case at hand, are given by:
\[q = 1 \text{ (level } n = 0) \]
\[
C^1 = 2c_{\Delta_1}\pi^{1/2} \frac{\Gamma \left(\frac{\Delta_1}{2} \right) \Gamma \left(\frac{\Delta_1+1}{2} \right)}{\Gamma \left(\frac{\Delta_1+1}{2} \right)} \frac{1}{\sqrt{W(1-v^2W)}} \left[(1 - \frac{1}{1-v^2W}) - (2 - (1 + v^2)W) K \left(\frac{1}{1-v^2W} \right) \right].
\]

\[q = 2 \text{ (level } n = 1) \]
\[
C^2 = 2c_{\Delta_2}\pi^{1/2} \frac{\Gamma \left(\frac{\Delta_2}{2} \right) \Gamma \left(\frac{\Delta_2+1}{2} \right)}{\Gamma \left(\frac{\Delta_2+1}{2} \right)} \frac{1}{(1-v^2)\sqrt{W(1-v^2W)}} \left[(1 - \frac{1}{1-v^2W}) - 4(2 - (1 + v^2)W) \frac{1}{1-v^2W} \right] K \left(\frac{1}{1-v^2W} \right)
\]
\[+ 2\pi(1 - v^2W)^2 2F_1 \left(\frac{1}{2}, \frac{3}{2}; 1; 1 - \frac{1}{1-v^2W} \right) \right].
\]

\[q = 3 \text{ (level } n = 2) \]
\[
C^3 = -2c_{\Delta_3}\pi^{1/2} \frac{\Gamma \left(\frac{\Delta_3}{2} \right) \Gamma \left(\frac{\Delta_3+1}{2} \right)}{\Gamma \left(\frac{\Delta_3+1}{2} \right)} \frac{1}{(1-v^2)^2\sqrt{W(1-v^2W)}} \left[K \left(\frac{1}{1-v^2W} \right) - \frac{6(1-v^2W)}{2 - (1 + v^2)W} E \left(\frac{1}{1-v^2W} \right) \right]
\]
\[- 4\pi(1 - v^2W)^3 \frac{1}{(2 - (1 + v^2)W)^3} 2F_1 \left(\frac{1}{2}, \frac{5}{2}; 1; 1 - \frac{1}{1-v^2W} \right) \right].
\]

Giant magnons with two angular momenta

\[q = 1 \text{ (level } n = 0): \]
\[
C^1 = 2c_{\Delta_1}\pi^{1/2} \frac{\Gamma \left(\frac{\Delta_1}{2} \right) \Gamma \left(\frac{\Delta_1+1}{2} \right)}{\Gamma \left(\frac{\Delta_1+1}{2} \right)} \frac{1}{\sqrt{(1-u^2)W\chi_p}} \left[(1 - \frac{1}{\chi_p}) - (2 - (1 + v^2)W) K \left(\frac{1}{\chi_p} \right) \right].
\]

\[q = 2 \text{ (level } n = 1): \]
\[
C^2 = 2c_{\Delta_2}\pi^{1/2} \frac{\Gamma \left(\frac{\Delta_2}{2} \right) \Gamma \left(\frac{\Delta_2+1}{2} \right)}{\Gamma \left(\frac{\Delta_2+1}{2} \right)} \frac{1}{(1-v^2)\sqrt{(1-u^2)W\chi_p}} \left[(1 - \frac{1}{\chi_p}) - 4(1 - u^2) (2 - (1 + v^2)W) \frac{1}{\chi_p} E \left(\frac{1}{\chi_p} \right) \right]
\]
\[+ 2\pi(1 - u^2)^2 \frac{1}{\chi_p^2} 2F_1 \left(\frac{1}{2}, \frac{3}{2}; 1; 1 - \frac{1}{\chi_p} \right) \right].
\]
\[q = 3 \text{ (level } n = 2): \]
\[
C^3 = -2c_{\Delta_3} \pi^{1/2} \frac{\Gamma \left(\frac{\Delta_3}{2} \right)}{\Gamma \left(\frac{\Delta_3 + 1}{2} \right)} \frac{(2 - (1 + v^2)W)^3}{(1 - v^2)^2 \sqrt{(1 - u^2)W} \chi_p} \]
\[
\left[K \left(1 - \frac{\chi_m}{\chi_p} \right) - \frac{6(1 - u^2)\chi_p}{2 - (1 + v^2)W} E \left(1 - \frac{\chi_m}{\chi_p} \right) \right.
+ \frac{6\pi(1 - u^2)^2\chi_p^2}{(2 - (1 + v^2)W)^2} 2F_1 \left(\frac{1}{2}, \frac{3}{2}; 1; 1 - \frac{\chi_m}{\chi_p} \right) \]
\[
- \frac{4\pi(1 - u^2)^3\chi_p^3}{(2 - (1 + v^2)W)^3} 2F_1 \left(\frac{1}{2}, \frac{5}{2}; 1; 1 - \frac{\chi_m}{\chi_p} \right) \]
\]

4.2 Semiclassical three-point correlation functions in TsT-deformed \(AdS_5 \times S^5 \)

4.2.1 Two GM states and dilaton with zero momentum

Working as in the undeformed case and taking into account the deformation of the sphere, one finds that the normalized structure constant is given by [22]

\[
C^d_\gamma = \frac{16}{3} c^d_\gamma \frac{1}{\sqrt{(1 - u^2)W} \chi_p - \chi_n} \times \]
\[
\left[\left((1 - u^2)(1 - \tilde{\gamma} K) - \tilde{\gamma} uuW \right) \sqrt{\chi_p - \chi_n} E(1 - \epsilon) \right.
+ \left((W(1 - \tilde{\gamma} uu\chi_n) - (1 - \tilde{\gamma} K)(1 - (1 - u^2)\chi_n)) \right) K(1 - \epsilon) \right] \]

where

\[
\epsilon = \frac{\chi_m - \chi_n}{\chi_p - \chi_n},
\] (4.48)

and

\[
\chi_p + \chi_m + \chi_n = \frac{2 - (1 + v^2)W - u^2}{1 - u^2},
\]
\[
\chi_p\chi_m + \chi_p\chi_n + \chi_m\chi_n = \frac{1 - (1 + v^2)W + (vW - uK)^2 - K^2}{1 - u^2},
\] (4.49)
\[
\chi_p\chi_m\chi_n = -\frac{K^2}{1 - u^2}.
\]

The case of dyonic finite-size giant magnons we are interested in, corresponds to

\[0 < u < 1, \quad 0 < v < 1, \quad 0 < W < 1, \quad 0 < \chi_m < \chi < \chi_p < 1, \quad \chi_n < 0. \]

This is our exact semiclassical result for the normalized coefficient \(C^d_\gamma \) in the three-point correlation function, corresponding to the case when the heavy vertex operators are finite-size dyonic giant magnons living on the \(\gamma \)-deformed three-sphere.
Leading finite-size effect

For the case of the dilaton operator, the three-point function of the SYM can be easily related to the conformal dimension of the heavy operators. This corresponds to shift 't Hooft coupling constant which is the overall coefficient of the Lagrangian \[9 8\]. This gives an important relation between the structure constant and the conformal dimension as follows:

\[
C_\Delta^d = \frac{32\pi^3}{3} c_d \sqrt{\lambda} \partial \Delta. \tag{4.50}
\]

We want to show here that this relation holds for the case of finite-size giant magnons \((J_2 = 0)\), assuming that \(\Delta = E - J_1\), and considering the limit \(\epsilon \to 0\). To this end, we introduce the expansions

\[
\chi_p = \chi_{p0} + (\chi_{p1} + \chi_{p2} \log(\epsilon)) \epsilon,
\chi_m = \chi_{m0} + (\chi_{m1} + \chi_{m2} \log(\epsilon)) \epsilon,
\chi_n = \chi_{n0} + (\chi_{n1} + \chi_{n2} \log(\epsilon)) \epsilon,
v = v_0 + (v_1 + v_2 \log(\epsilon)) \epsilon,
u = u_0 + (u_1 + u_2 \log(\epsilon)) \epsilon,
W = W_0 + (W_1 + W_2 \log(\epsilon)) \epsilon,
K = K_0 + (K_1 + K_2 \log(\epsilon)) \epsilon. \tag{4.51}
\]

A few comments are in order. To be able to reproduce the dispersion relation for the infinite-size giant magnons, we set

\[
\chi_{m0} = \chi_{n0} = K_0 = 0, \quad W_0 = 1. \tag{4.52}
\]

In addition, one can check that if we keep the coefficients \(\chi_{m2}, \chi_{n2}, W_2\) and \(K_2\) nonzero, the known leading correction to the giant magnon energy-charge relation \[67\] will be modified by a term proportional to \(J_1^2\). That is why we choose

\[
\chi_{m2} = \chi_{n2} = W_2 = K_2 = 0. \tag{4.53}
\]

Finally, since we are considering for simplicity giant magnons with one angular momentum, we also set

\[
u_0 = 0, \tag{4.54}
\]

because the leading term in the \(\epsilon\)-expansion of \(J_2\) is proportional to \(u_0\).

By replacing (4.51) in (4.48) and (4.49), and taking into account (4.52), (4.53), (4.54), we obtain

\[
\chi_{p0} = 1 - v_0^2, \tag{4.55}
\]

\[
\chi_{p1} = \frac{v_0}{1 - v_0^2} \left[v_0 \sqrt{(1 - v_0^2)^4 - 4K_1^2(1 - v_0^2)} - 2(1 - v_0^2)v_1 \right],
\chi_{p2} = -2v_0v_2,
\chi_{m1} = \frac{(1 - v_0^2)^2 + \sqrt{(1 - v_0^2)^4 - 4K_1^2(1 - v_0^2)}}{2(1 - v_0^2)},
\chi_{n1} = -\frac{(1 - v_0^2)^2 - \sqrt{(1 - v_0^2)^4 - 4K_1^2(1 - v_0^2)}}{2(1 - v_0^2)},
W_1 = -\frac{\sqrt{(1 - v_0^2)^4 - 4K_1^2(1 - v_0^2)}}{1 - v_0^2}.
\]
The other parameters in (4.51) and (4.55) can be found in the following way. First, we impose the conditions $J_2 = 0$ and p_1 to be independent of ϵ. This leads to four equations with solution

\begin{align*}
v_1 &= \frac{\sqrt{1 - v_0^2}}{4(1 - v_0^2)} (1 - \log 16), \\
v_2 &= \frac{\sqrt{1 - v_0^2}}{4(1 - v_0^2)} (1 - \log 256), \\
u_1 &= \frac{K_1 v_0 \log 4}{1 - v_0^2}, \\
u_2 &= -\frac{K_1 v_0}{2(1 - v_0^2)},
\end{align*}

where

$v_0 = \cos \frac{p_1}{2}$. (4.57)

Next, to the leading order, the expansions for J_1 and $p_2 = 2\pi n_2$ ($n_2 \in \mathbb{Z}$) give

\[\epsilon = 16 \exp \left(-2 - \frac{J_1}{\sin \frac{p_1}{2}} \right), \quad K_1 = \frac{1}{2} \sin^3 \frac{p_1}{2} \sin \Phi, \quad \Phi = 2\pi \left(n_2 - \tilde{\gamma} J_1 \right). \] (4.58)

Now, we consider the limit $\epsilon \to 0$ in the expression (4.47) for the structure constant in the 3-point correlation function, by using (4.51), (4.52), (4.53), (4.54), (4.55), (4.56), and obtain

\begin{align*}
\mathcal{C}_d^f &\approx \frac{4}{3} \epsilon \Delta \frac{1}{(1 - v_0^2)^{3/2}} \left[4 + 4v_0^2 \left(1 - \tilde{\gamma} K_1 (1 - \log 4) \epsilon \right) \\
&\quad - v_0^2 \left(8 + \left(\frac{1 - v_0^2}{4 - 4K_1^2(1 - v_0^2)} (1 - \log 16) - 8\tilde{\gamma} K_1 (1 - \log 4) \right) \epsilon \right) \\
&\quad - \left(4\tilde{\gamma} K_1 (1 - \log 4) - \left(\frac{1 - v_0^2}{4 - 4K_1^2(1 - v_0^2)} (1 - \log 256) \right) \epsilon \right) \\
&\quad - v_0^2 \sqrt{1 - v_0^2} - 4K_1^2(1 - v_0^2) + 2\tilde{\gamma} K_1 (1 - v_0^2) \right) \epsilon \log \epsilon \\
&\quad + \sqrt{1 - v_0^2} - 4K_1^2(1 - v_0^2) \epsilon \log(16 \epsilon) \right].
\end{align*}

According to (4.57), (4.58), the above expression for \mathcal{C}_d^f can be rewritten in terms of p_1, J_1, as

\[\mathcal{C}_d^f \approx \frac{16}{3} \epsilon \Delta \sin \frac{p_1}{2} \left[1 - 4 \sin^2 \frac{p_1}{2} \left(\cos \Phi + J_1 \csc \frac{p_1}{2} \cos \Phi - \tilde{\gamma} J_1 \sin \Phi \right) e^{-2 - \frac{2p_1}{\sqrt{\lambda} \sin(p/2)}} \right]. \] (4.60)

In order to check if the equality (4.50) holds for the present case, let us now consider the dispersion relation of giant magnons on $T_s T$-transformed $AdS_5 \times S^5$, including the leading finite-size correction, which is known to be [82, 20]

\[E - J_1 = \frac{\sqrt{\lambda}}{\pi} \sin(p/2) \left[1 - 4 \sin^2 (p/2) \cos \Phi \exp \left(-2 - \frac{2\pi J_1}{\sqrt{\lambda} \sin(p/2)} \right) \right]. \] (4.61)
Taking the λ derivative of (4.61), one finds

$$
\lambda \partial_\lambda \Delta = \frac{\sqrt{\lambda}}{2\pi} \sin \frac{p}{2} \left[1 - 4 \sin^2 \frac{p}{2} \left(\cos \Phi + J_1 \csc \frac{p}{2} \cos \Phi - J_1 \sin \Phi \right) e^{-2 \frac{\tilde{\gamma}}{\sin \frac{p}{2}}} \right].
$$

(4.62)

Identifying $p \equiv p_1$, and comparing (4.60) with (4.62), we see that the equality (4.50) is also valid for the γ-deformed case.

4.2.2 Two GM states and dilaton with non-zero momentum

The normalized structure constant for the case at hand is given by [24]

$$
C_{j, \tilde{\gamma}}^d \approx \frac{2 \pi^{3/2}}{\sqrt{\lambda}} \frac{\Gamma \left(\frac{4+j}{2} \right)}{\Gamma \left(\frac{5+j}{2} \right)} \frac{\chi_p^{j/2}}{(1-u^2)W(\chi_p - \chi_n)}
$$

(4.63)

\[
\left\{ [1 - \tilde{\gamma}K - u(u + \tilde{\gamma}(vW - uK))] \chi_p F_1 \left(1/2, 1/2, -1 - j/2; 1 - \epsilon, 1 - \frac{\chi_m}{\chi_p} \right)
\right.
\]

\[
- (1 - W - \tilde{\gamma}K) F_1 \left(1/2, 1/2, -j/2; 1 - \epsilon, 1 - \frac{\chi_m}{\chi_p} \right) \}

.\]

The small ϵ limit corresponds to considering the leading finite-size effect, while $\epsilon = 0$, $\chi_m = 0$, $\chi_n = 0$, $K = 0$, $W = 1$, describes the infinite-size case.

Leading finite-size effect

Here, we restrict ourselves to the case $J_2 = 0$, $J_1 \equiv J$ large but finite, i.e. $J_1 \equiv J \gg \sqrt{\lambda}$.

Expanding (4.63) for this case to the leading order in ϵ, one finds [28] ($j \geq 1$)

$$
C_{j, \tilde{\gamma}}^d \approx c_{4+j}^d \sqrt{\pi} \frac{\Gamma \left(\frac{4+j}{2} \right)}{\Gamma \left(\frac{5+j}{2} \right)} \frac{\chi_p^{j/2}}{(1-u^2)W(\chi_p - \chi_n)} \left\{ \epsilon [4W_1 + (2 + j)(2\chi_{m1} - \chi_{p0}) + 4\tilde{\gamma}K_1]\right.

\times \log \frac{16}{\epsilon} 1F_0 \left(-\frac{j}{2}, 1 \right)

\right.

\left. + \frac{\sqrt{\pi}}{\Gamma \left(\frac{3+j}{2} \right)} \left[2j\chi_{p0} + (2\chi_{m1} - \chi_{p0} + W_1(2 + j(2 - \chi_{p0}))
\right.

\left. + j(\chi_{m1} + \chi_{n1} + (1 + j)\chi_{p1}) + 2\tilde{\gamma}(K_1 + j(K_1 - (K_1 + v_0u_1)\chi_{p0})) \right] \epsilon
\right.

\left. + (j(1 + j)\chi_{p2} - 2\tilde{\gamma}jv_0u_2\chi_{p0}) \epsilon \log \epsilon \right\}.

(4.64)

This can be rewritten as

$$
C_{j, \tilde{\gamma}}^d \approx c_{4+j}^d \sqrt{\pi} \frac{\Gamma \left(\frac{j}{2} \right) \Gamma \left(\frac{4+j}{2} \right)}{\Gamma \left(\frac{3+j}{2} \right) \Gamma \left(\frac{5+j}{2} \right)} \sin^{1+j}(p/2) \left\{ j - \frac{1}{8} \left[4 - j(1 + 3j)(1 + \cos p)
\right.

\left. - j(1 + j)(1 + \cos p) \csc(p/2)) J \cos \Phi
\right.

\left. - \tilde{\gamma} (4 \sin(p/2) - j(1 + \cos p)J) \sin \Phi \right\} \epsilon .
$$

174
4.2.3 Two GM states and primary scalar operators

According to [24] the normalized structure constant for this case is given by

\[C_{j\tilde{\gamma}}^{pr} = \frac{\pi^{3/2} c^{pr}}{\Gamma \left(\frac{j}{2} \right)} \frac{\Gamma \left(\frac{1+j}{2} \right)}{\Gamma \left(\frac{1}{2} \right)} \frac{(1-v^2)^{j/2}}{c^{pr} \Delta \Gamma \left(j^2 \right) \Gamma \left(1 + j^2 \right) \Gamma \left(1 - v^2 \right)} \]

(4.65)

\[
\left\{ \left[\sqrt{W} \frac{1}{j+1} + \frac{1}{\sqrt{W(1-v^2)}} (2-(1+v^2)W-2\tilde{\gamma}K) \right]
\times F_1 \left(1/2, 1/2, -j/2; 1; 1 - \epsilon, 1 - \frac{\chi_m}{\chi_p} \right)
\right.
\left. - \frac{2}{\sqrt{W(1-v^2)}} \left[1 - \tilde{\gamma}K - u \left(u - \tilde{\gamma}uK + \tilde{\gamma}vW \right) \right] \chi_p
\times F_1 \left(1/2, 1/2, -1 - j/2; 1; 1 - \epsilon, 1 - \frac{\chi_m}{\chi_p} \right) \right\}.
\]

It can be shown that (4.65) reduces to the undeformed case if we fix

\[\tilde{\gamma} = K = \chi_n = 0 \Rightarrow \epsilon = \frac{\chi_m}{\chi_p}. \]

This can be done by using the following property of the hypergeometric function \(F_1 \)

\[F_1 (a, b_1, b_2; c; z) = 2F_1 (a, b_1 + b_2; c; z). \]

For the infinite-size case, (4.65) gives

\[C_{j\tilde{\gamma}}^{pr} = \pi c^{pr} \frac{\Gamma \left(\frac{j}{2} \right)}{\Gamma \left(\frac{3+j}{2} \right)} \frac{\Gamma \left(\frac{1+j}{2} \right)}{\Gamma \left(\frac{1}{2} \right)} \frac{\sin j^2(p/2)}{\sqrt{J^2 + 4\sin^2(p/2)}} \frac{J_2}{\sqrt{J^2 + 4\sin^2(p/2)}} \left[J_2 + \tilde{\gamma} \sin^2(p/2) \sin(p) \right]. \]

(4.66)

Leading finite-size effect

Again, we will consider here the particular case \(J_2 = 0, J_1 \equiv J \) large but finite, i.e. \(J_1 \equiv J \gg \sqrt{\lambda} \).

As was pointed out in [27], where the undeformed case has been considered, \(j = 1 \) and \(j = 2 \) are special values. That is why we will start with these two cases first.

*The case \(j = 1 \)
Expanding the coefficients in C_{17}^{pr}, one can rewrite it in the following form

$$
C_{17}^{pr} \approx c_1^{pr} \frac{\pi^2}{4} \sin^2(p/2) \left\{ 8F_1 \left(1/2, 1/2, -3/2, 1; 1 - \epsilon, 1 - \frac{1}{2} (1 + \cos \Phi) \right) \\
-4F_1 \left(1/2, 1/2, -1/2, 1; 1 - \epsilon, 1 - \frac{1}{2} (1 + \cos \Phi) \right) \\
+ \left[F_1 \left(1/2, 1/2, -1/2, 1; 1 - \epsilon, 1 - \frac{1}{2} (1 + \cos \Phi) \right) \\
\times (1 - \cos \Phi) (9 + 2 \cos p + J (1 + \cos p) \csc(p/2) + 4\gamma \sin(p/2) \sin \Phi) \\
- F_1 \left(1/2, 1/2, -3/2, 1; 1 - \epsilon, 1 - \frac{1}{2} (1 + \cos \Phi) \right) \\
\times (2 - 2 \cos \Phi) (5 + 2 \cos p + J (1 + \cos p) \csc(p/2)) \\
+ \gamma (J (1 + \cos p) + 4 \sin(p/2) \sin \Phi) \right] \epsilon \right\}.
$$

(4.68)

For the undeformed case, when $\gamma = 0, \Phi = 0$, (4.68) simplifies to

$$
C_{17}^{pr} \approx -c_1^{pr} \frac{\pi^2}{4} \sin(p/2) [3 \sin(p/2) + \sin(3p/2) + J (1 + \cos p)] \epsilon^2.
$$

(4.69)

This is in accordance with the result $C_{17}^{pr} \approx 0$ found in [27], where only the leading order in ϵ was taken into account.

The case $j = 2$

Now we have

$$
C_{27}^{pr} = -\frac{8}{3} c_2^{pr} \frac{\pi^2}{(1 - \epsilon)^2} \frac{1}{\sqrt{(1 - u^2) W (\chi_p - \chi_m)}} \left\{ 3 - (1 + 2v^2) W - 3\gamma K \right\} (1 - \epsilon)
$$

(4.70)

$$
\times \left[(\chi_m - \chi_p) E(1 - \epsilon) - (\chi_m - \chi_p) \epsilon K(1 - \epsilon) + (1 - u(u - \gamma(Ku - vW)) - \gamma K) \\
\times (2(\chi_p - \chi_m)((2 - \epsilon)\chi_m + (1 - 2\epsilon)\chi_p) E(1 - \epsilon) + ((3 - \epsilon)\chi_m^2 - 4\chi_m\chi_p \epsilon \\
- \chi_p^2(1 - 3\epsilon) \epsilon) K(1 - \epsilon) \right] \right\}.
$$
Expanding (4.70) in ϵ, one finds

$$C_{pr}^2 \approx \frac{2}{3} \epsilon \frac{\sin^2(p/2)}{2J \cos \Phi - \tilde{\gamma} (2 \sin(p/2) - J(1 + \cos p)) \sin(p/2) \sin \Phi} \epsilon. \quad (4.71)$$

Obviously, the result for the undeformed case is properly reproduced by the above formula.

Now, we will deal with $j \geq 3$, when we can use the following representation of $F_1(a, b_1, b_2; c; z_1, z_2)$:

$$F_1(a, b_1, b_2; c; z_1, z_2) = \sum_{k=0}^{\infty} \frac{(a)_k(b_2)_k}{(e)_k} \frac{2F_1(a + k, b_1; c + k; z_1) \frac{z}{k!}}{k}, \quad (4.72)$$

Then, expanding $2F_1 \left(\frac{1}{2} + k, \frac{1}{2}; 1 + k; 1 - \epsilon\right) \left(1 - \frac{\chi_m}{\chi_p}\right)^k$ around $\epsilon = 0$, one finds

$$2F_1 \left(\frac{1}{2} + k, \frac{1}{2}; 1 + k; 1 - \epsilon\right) \left(1 - \frac{\chi_m}{\chi_p}\right)^k \approx \frac{\Gamma(1+k)}{\sqrt{\pi} \Gamma(1/2 + k)} \left\{ \log(4) - H_{k-1/2} \right. - \frac{1}{4} \left\{ 2\chi_{p0} + (4k\chi_m - (1 + 2k)\chi_{p0}) \left(\log(4) - H_{k-1/2} \right) \right\} \epsilon - \log(\epsilon)$$

$$- \frac{\chi_{p0} + 2k(\chi_{p0} - 2\chi_m)}{4\chi_{p0}} \epsilon \log(\epsilon), \quad (4.73)$$

where H_z is defined as

$$H_z = \psi(z + 1) + \gamma.$$

The replacement of (4.73) in (4.72), taking into account that

$$a = \frac{1}{2}, \quad b_1 = \frac{1}{2}, \quad c = 1, \quad z_1 = 1 - \epsilon, \quad z_2 = 1 - \frac{\chi_m}{\chi_p},$$

gives

$$F_1 \left(\frac{1}{2}, \frac{1}{2}, 1 - \epsilon, 1 - \frac{\chi_m}{\chi_p}\right) \approx C_0 + C_1 \epsilon + C_2 \epsilon \log(\epsilon) + C_3 \log(\epsilon), \quad (4.74)$$

where

$$C_0 = \frac{\Gamma(-b_2)}{\sqrt{\pi} \Gamma(1/2 - b_2)} + \frac{\log(16)}{\pi} \frac{1}{1F_0(b_2, 1)}, \quad (4.75)$$

$$C_1 = \frac{1}{4\pi} \left\{ \frac{1}{\chi_{p0}} \left[- \frac{\sqrt{\pi} \Gamma(-1 - b_2)}{\Gamma(1/2 - b_2)} (\chi_{p0} + 2b_2\chi_m) \right. \right.$$

$$\left. + 8 \log(2) b_2(\chi_{p0} - 2\chi_m) \right\} - \log(4) \right\} \frac{1}{1F_0(b_2, 1)}$$

$$C_2 = - \frac{1}{4\pi \chi_{p0}} \left[\chi_{p0} \frac{1}{1F_0(b_2, 1)} + 2b_2(\chi_{p0} - 2\chi_m) \right] \frac{1}{1F_0(b_2, 1)},$$

$$C_3 = - \frac{1}{\pi} \frac{1}{1F_0(b_2, 1)}.$$

177
In the normalized structure constants (4.65), there are two hypergeometric functions $F_1\left(\frac{1}{2}, \frac{1}{2}, b_2; 1; 1 - \epsilon, 1 - \frac{\Delta m}{\chi_p}\right)$ with $b_2 = -j/2$ and $b_2 = -1 - j/2$.

By using (4.74), (4.75) in (4.65) and expanding it about $\epsilon = 0$, we can write down the following approximate equality for $j \geq 3$

$$C_{j\gamma}^{pr} \approx A_0 + A_1 \epsilon + A_2 \epsilon \log(\epsilon),$$

where the coefficients are given by

$$A_0 = c_{j}^{pr} \frac{\Gamma\left(\frac{j}{2}\right)^2}{\Gamma\left(\frac{j}{2} + 1\right) \Gamma\left(\frac{j}{2} + 1\right)} \gamma \frac{1}{\chi_p^0}(1 - v_0^2 - \chi_p^0),$$

$$A_1 = c_{j}^{pr} \frac{\Gamma\left(\frac{j}{2}\right) \Gamma\left(\frac{j}{2} - 1\right)}{4 \Gamma\left(\frac{j}{2} + 1\right) \Gamma\left(\frac{j}{2} + 1\right)} \gamma^3 \frac{1}{\chi_p^0}(j-3) \left[4(W_1 + \chi_m)\chi_p^0 - 2\chi_p^0
ight.$$

$$- [2\chi_m(1 - v_0^2 + \chi_p^0) + \chi_p^0(1 - v_0(8v_1 + 2v_0W_1) - \chi_p^0(1 - 2W_1) - 2(1 - v_0^2 + \chi_p^0)\chi_p^1]
ight] j$$

$$+ \left[\chi_n - 4v_0v_1\chi_p^0 + \chi_m(1 - v_0^2 - \chi_p^0) - v_0^2(\chi_n + W_1\chi_p^0 - 3\chi_p^1) - 3\chi_p^1 + \chi_p^0(\chi_n + W_1(-1 + \chi_p^0) + \chi_p^1)]j^2$$

$$+ (1 - v_0^2 - \chi_p^0)\chi_p^1 j^3$$

$$+ 7\left[4K_1\chi_p^0 + (2\chi_p^0(K_1 - 2(K_1 + v_0u_1)\chi_p^0))j + (2\chi_p^0(v_0u_1\chi_p^0 - K_1(1 - \chi_p^0)))j^2\right]\right\},$$

$$A_2 = -c_{j}^{pr} \frac{\Gamma\left(\frac{j}{2}\right)^2}{2 \Gamma\left(\frac{j}{2} + 1\right) \Gamma\left(\frac{j}{2} + 1\right)} \gamma \frac{1}{\chi_p^0}\left[4v_0v_2\chi_p^0 + (1 - v_0^2 + \chi_p^0)\chi_p^2
ight.$$

$$- (1 - v_0^2 - \chi_p^0)\chi_p^2 j - 2\gamma v_0v_2\chi_p^2 j\right].$$

Now, our goal is to express (4.76) in terms of J, p, Φ. The result is given by [28]

$$C_{j\gamma}^{pr} \approx c_{j}^{pr} \frac{\Gamma\left(\frac{j}{2}\right)}{8 \Gamma\left(\frac{j}{2} + 1\right)} \sin\left(\frac{p}{2}\right)^{1+j} \left[4(j-1)\Gamma\left(\frac{j}{2} - 1\right) \cos(\Phi)\right.$$

$$- \gamma \Gamma\left(\frac{j}{2}\right) \left(4 \sin\left(\frac{p}{2}\right) - j (1 + \cos(p)) J\right) \sin(\Phi)\right] \epsilon.$$

Let us point out that (4.78) reduces exactly to the result found for the undeformed case in [27], when $\gamma = 0, \Phi = 0$. Moreover, it generalizes it for any $j \geq 3$.

4.2.4 Two GM states and singlet scalar operators on higher string levels

According to [25], the normalized structure constant for the present case is given by

$$C_{j}^{2} = c_{\triangle s}^2 \pi^{3/2} \frac{\Gamma\left(\frac{\Delta s}{2}\right)}{\Gamma\left(\frac{\Delta s + 1}{2}\right)} \frac{(-2A)^q}{\sqrt{(1 - u^2)(1 - u^2)W(\chi_p - \chi_n)}}$$

$$\sum_{k=0}^{q} \frac{q!}{k!(q - k)!} \frac{B_k}{A} \chi_p^k F_1\left(\frac{1}{2}, \frac{1}{2}, -k; 1; 1 - \epsilon, 1 - \frac{\chi_m}{\chi_p}\right),$$

178
where

\[A = 1 - \frac{1}{2}(1 + v^2)W - \gamma K, \quad B = 1 - \gamma K - u [u - \tilde{\gamma}(Ku - vW)], \]

\[\epsilon = \frac{\chi_m - \chi_n}{\chi_p - \chi_n}, \]

Now, let us write down what the general formula (4.79) for the normalized structure constant \(q = 1 \) (level \(n = 0 \)):

\[
C_1^q = 2c_{\Delta_1} \pi^{3/2} \frac{\Gamma \left(\frac{\Delta_1}{2} \right)}{\Gamma \left(\Delta_1/2 + 1 \right)} \frac{1 - \frac{1}{2}(1 + v^2)W - \tilde{\gamma}K}{\sqrt{(1 - u^2)W(\chi_p - \chi_n)}} \left[1 - u^2 - \tilde{\gamma} (uvW + (1 - u^2)K) \right] \\
\frac{1}{1 - \frac{1}{2}(1 + v^2)W - \tilde{\gamma}K} \chi_p \ _2F_1 \left(1/2, 1/2, -1; 1 - \epsilon, 1 - \chi_m/\chi_p \right) \\
- \frac{2}{\pi} K (1 - \epsilon).
\]

\[
C_2^q = 4c_{\Delta_1} \pi^{3/2} \frac{\Gamma \left(\frac{\Delta_1}{2} \right)}{\Gamma \left(\Delta_1/2 + 1 \right)} \frac{(1 - \frac{1}{2}(1 + v^2)W - \tilde{\gamma}K)^2}{(1 - u^2)W(\chi_p - \chi_n)} \left[\frac{2}{\pi} K (1 - \epsilon) - 2 \frac{1 - u^2 - \tilde{\gamma} (uvW + (1 - u^2)K)}{1 - \frac{1}{2}(1 + v^2)W - \tilde{\gamma}K} \chi_p \ _2F_1 \left(1/2, 1/2, -1; 1 - \epsilon, 1 - \chi_m/\chi_p \right) \\
+ \left(\frac{1 - u^2 - \tilde{\gamma} (uvW + (1 - u^2)K)}{1 - \frac{1}{2}(1 + v^2)W - \tilde{\gamma}K} \right)^2 \chi_p^2 \ _2F_1 \left(1/2, 1/2, -2; 1 - \epsilon, 1 - \chi_m/\chi_p \right) \right].
\]

Leading finite-size effect

Here, we restrict ourselves to the case \(J_2 = 0, J_1 = J \) large but finite, i.e. \(J_1 \gg \sqrt{\chi} \).

For this case, we were not able to obtain a general formula for the leading finite-size corrections to the three-point correlation functions in terms of \(J, p, \) and \(\Phi \), for any \(q \geq 1 \). That is why, we are going to present here the results for \(q = 1, \ldots, 5 \) (string levels \(n = 0, 1, 2, 3, 4 \)).

Here, we are interested in the case of small \(\epsilon \) (or, equivalently, large \(J \)) limit. So, we will expand everything in \(\epsilon \). Since the computations are similar to the previously considered cases, we will write down the final results only. They are given by the following approximate equalities:

\[
C_1^q \approx c_{\Delta_1} \frac{\sqrt{\pi}}{8} \frac{\Gamma \left(\frac{\Delta_1}{2} \right)}{\Gamma \left(\Delta_1/2 + 1 \right)} \sin(p/2) \left\{ 16 - 8J \csc(p/2) + \left[4 - (2 (1 - \cos p + J^2 \cot^2(p/2)) \right. \\
+ J (5 - \cos p) \csc(p/2)) \cos \Phi + 8\tilde{\gamma} J \sin^2(p/2) \sin \Phi \right\} \epsilon,
\]

179
\[C_2^1 \approx -c_{\Delta_2} \frac{\sqrt{\pi}}{24} \frac{\Gamma \left(\frac{\Delta_2}{2} \right)}{\Gamma \left(\frac{1+\Delta_2}{2} \right)} \left\{ 8(2 \sin(p/2) - 3\mathcal{J}) + \left[12 \sin(p/2) \\
+ (2(27 + 5 \cos p) \sin(p/2) - \mathcal{J}(31 + 13 \cos p + 3\mathcal{J}(1 + \cos p) \csc(p/2))) \cos \Phi \\
-8\tilde{\gamma} \sin(p/2)(8 \sin(p/2) - \mathcal{J}(7 + \cos p)) \sin \Phi \right] \epsilon \right\} , \]

\[C_3^2 \approx c_{\Delta_3} \frac{\sqrt{\pi}}{120} \frac{\Gamma \left(\frac{\Delta_3}{2} \right)}{\Gamma \left(\frac{1+\Delta_3}{2} \right)} \left\{ 8(38 \sin(p/2) - 15\mathcal{J}) + \left[60 \sin(p/2) \\
+ (18(13 + 19 \cos p) \sin(p/2) - \mathcal{J}(187 + 97 \cos p + 15\mathcal{J}(1 + \cos p) \csc(p/2))) \cos \Phi \\
-12\tilde{\gamma} \sin(p/2)(48 \sin(p/2) - \mathcal{J}(23 - 7 \cos p)) \sin \Phi \right] \epsilon \right\} , \]

\[C_4^3 \approx -c_{\Delta_4} \frac{\sqrt{\pi}}{840} \frac{\Gamma \left(\frac{\Delta_4}{2} \right)}{\Gamma \left(\frac{1+\Delta_4}{2} \right)} \left\{ 1264 \sin(p/2) - 840\mathcal{J} + \left[\sin(p/2) (420 \\
+ (4730 + 2054 \cos p - \mathcal{J}(1837 + 1207 \cos p) \csc(p/2) - 210\mathcal{J}^2 \cot^2(p/2)) \cos \Phi \\
-16 \tilde{\gamma} (424 \sin(p/2) - 3\mathcal{J}(79 + 9 \cos p)) \sin \Phi \right] \epsilon \right\} , \]

\[C_5^4 \approx c_{\Delta_5} \frac{\sqrt{\pi}}{2520} \frac{\Gamma \left(\frac{\Delta_5}{2} \right)}{\Gamma \left(\frac{1+\Delta_5}{2} \right)} \left\{ 8(902 \sin(p/2) - 315\mathcal{J}) + \left[1260 \sin(p/2) \\
+ (2(6093 + 7667 \cos p) \sin(p/2) - \mathcal{J}(6343 + 4453 \cos p \\
+ 315\mathcal{J}(1 + \cos p) \csc(p/2))) \cos \Phi \\
-20\tilde{\gamma} \sin(p/2)(1376 \sin(p/2) - \mathcal{J}(523 - 107 \cos p)) \sin \Phi \right] \epsilon \right\} . \]

4.3 Semiclassical three-point correlation functions in \(\eta\)-deformed \(AdS_5 \times S^5\)

4.3.1 Two GM states and dilaton with zero momentum

We derive the 3-point correlation function between two giant magnons heavy string states and the light dilaton operator with zero momentum in the \(\eta\)-deformed \(AdS_5 \times S^5\) valid for any \(J_1\) and \(\eta\) in the semiclassical limit. We show that this result satisfies a consistency relation between the 3-point correlation function and the conformal dimension of the giant magnon. We also provide a leading finite \(J_1\) correction explicitly [31].
The normalized structure constant in the 3-point correlation function for the case under consideration can be written as follows

\[C_{\tilde{\eta}}^d = \frac{16c_d^d}{3\tilde{\eta}} \frac{\chi_m}{\sqrt{\chi_p(1-\chi_m)(\chi_\eta - \chi_m)}} \left[\Pi \left(1 - \frac{\chi_m}{\chi_p}, 1 - \epsilon \right) - K(1 - \epsilon) \right], \quad (4.81) \]

where

\[\epsilon = \frac{\chi_m(\chi_\eta - \chi_p)}{\chi_p(\chi_\eta - \chi_m)} \quad (4.82) \]

Eq. (4.81) is the main result of this paper, which is an exact semiclassical result for the normalized structure constant \(C_{\tilde{\eta}}^d \) valid for any value of \(\tilde{\eta} \) and \(J_1 \). Here, \(\chi_p \) and \(\chi_m \) are determined by the angular momentum \(J_1 \) and world-sheet momentum \(p \) from the following equations:

\[J_1 = \frac{2T}{\eta} \frac{1}{\sqrt{\chi_p(\chi_\eta - \chi_m)}} \left[\chi_p K(1 - \epsilon) - \chi_m \Pi \left(1 - \frac{\chi_m}{\chi_p}, 1 - \epsilon \right) \right], \quad (4.83) \]

\[p = \frac{2\chi_m}{\tilde{\eta}} \frac{1 - \chi_p}{\chi_p(1-\chi_m)(\chi_\eta - \chi_m)} \left[K(1 - \epsilon) - \Pi \left(\frac{\chi_m}{\chi_p(1-\chi_m)}, 1 - \epsilon \right) \right]. \quad (4.84) \]

The world-sheet energy of the giant magnon is given by

\[E = \frac{2T}{\eta} \frac{\chi_p - \chi_m}{\sqrt{\chi_p(1-\chi_m)(\chi_\eta - \chi_m)}} K(1 - \epsilon). \quad (4.85) \]

One of nontrivial check is that the \(g \) derivative of \(\Delta = E - J_1 \) should be proportional to the normalized structure constant \(C_{\tilde{\eta}}^d \) since the \(g \) derivative of the two-point function inserts the dilaton (Lagrangian) operator into the two-point function of the heavy operators \[98\]. This can be expressed by

\[C_{\tilde{\eta}}^d \propto \frac{8c_d^d}{3\sqrt{1 + \tilde{\eta}^2}} \frac{\partial \Delta}{\partial g}. \quad (4.86) \]

To check that Eqs. (4.81), (4.83)-(4.85) satisfy Eq. (4.86), we use the fact that

\[\frac{\partial J_1}{\partial g} = \frac{\partial p}{\partial g} = 0 \quad (4.87) \]

as noticed in \[21\] for the case of undeformed giant magnon. From these, we can obtain the expressions for \(\partial \chi_p/\partial g \) and \(\partial \chi_m/\partial g \) which can be inserted to \(\partial \Delta/\partial g \). The \(\eta \)-deformed case involves much more complicated expressions which can be dealt with the Mathematica. In the Appendix of \[31\], we provided our Mathematica code which confirms that the structure constant \(C_{\tilde{\eta}}^d \) in Eq. (4.81) do satisfy the consistency condition (4.86) exactly.

In the limit \(\tilde{\eta} \to 0 \) with \(\tilde{\eta}^2 \chi_\eta \to 1 \), Eq. (4.81) becomes

\[C_0^d = \frac{16c_d^d}{3} \sqrt{\frac{\chi_p}{1 - \chi_m}} \left[E(1 - \epsilon) - \epsilon K(1 - \epsilon) \right], \quad \epsilon = \frac{\chi_m}{\chi_p} \quad (4.88) \]

\[^{19}\text{We express } J_1 \text{ and } p \text{ in terms of different but equivalent combinations of elliptic functions compared with Eqs. (3.23) and (3.25) in [30].} \]
where we used the identity \((1 - a)\Pi(a, a) = E(a)\). This is the structure constant of the undeformed theory derived in [21].

Leading finite-size effect

It is straightforward to compute the leading finite-size effect on \(C_{\tilde{\eta}}^{d}\) for \(J_1 \gg g\) by taking the limit \(\epsilon \to 0\) in (4.81).

First we expand the parameters \(\chi_p\), \(W\) and \(v\) for small \(\epsilon\) as follows:

\[
\begin{align*}
\chi_p &= \chi_{p0} + (\chi_{p1} + \chi_{p2} \log \epsilon) \epsilon, \\
W &= 1 + W_1 \epsilon, \\
v &= v_0 + (v_1 + v_2 \log \epsilon) \epsilon.
\end{align*}
\]

Inserting into Eq. (4.81), we obtain

\[
C_{\tilde{\eta}}^{d} \approx \frac{16c_d^d}{3\tilde{\eta}^2 \sqrt{1 + \tilde{\eta}^2}} \chi_{p0} \left\{ \sqrt{(1 + \tilde{\eta}^2)\chi_{p0}} \arctanh \frac{\tilde{\eta} \sqrt{\chi_{p0}}}{\sqrt{1 + \eta^2}} \\
- \left[\frac{W_1}{2} \sqrt{(1 + \tilde{\eta}^2)\chi_{p0}} \arctanh \frac{\tilde{\eta} \sqrt{\chi_{p0}}}{\sqrt{1 + \eta^2}} + \frac{\tilde{\eta}}{4(1 + \tilde{\eta}^2(1 - \chi_{p0}))} \times \\
(1 + \tilde{\eta}^2)\chi_{p0} - 2\chi_{p1}) - 4((1 + \tilde{\eta}^2)\chi_{p0} + 2W_1 (1 + \tilde{\eta}^2(1 - \chi_{p0}))) \log 2 \right] \epsilon \\
- \frac{\tilde{\eta}}{4(1 + \tilde{\eta}^2(1 - \chi_{p0}))} \left((1 + \tilde{\eta}^2(1 - 2\chi_{p2}) + 2W_1 (1 + \tilde{\eta}^2(1 - \chi_{p0}))) \right) \epsilon \log \epsilon \right\}.
\]

In view of the equations

\[
\begin{align*}
\chi_m &= 1 - W, \\
\chi_p &= 1 - v^2 W, \\
\chi_{\eta} &= 1 + \frac{1}{\tilde{\eta}^2}
\end{align*}
\]

and (4.82), we can express all the auxiliary parameters in terms of \(v\) (or its coefficients \(v_0\), \(v_1\), and \(v_2\)):

\[
\begin{align*}
\chi_{p0} &= 1 - v_0^2, \\
\chi_{p1} &= 1 - v_0^2 - 2v_0v_1 - \frac{(1 - v_0^2)^2}{1 + \tilde{\eta}^2v_0^2}, \\
\chi_{p2} &= -2v_0v_2, \\
W_1 &= -\frac{(1 + \tilde{\eta}^2)(1 - v_0^2)}{1 + \tilde{\eta}^2v_0^2}.
\end{align*}
\]
This leads to
\[
C^d_{\bar{\eta}} \approx \frac{16c^d}{3\bar{\eta}} \left\{ \frac{\tanh \frac{\eta}{2} \sqrt{1 - \frac{v_0^2}{\eta^2}}}{\sqrt{1 + \eta^2}} + \frac{1}{4\sqrt{(1 + \eta^2)(1 - v_0^2)^3}} \times \right. \\
\left[(1 + \eta^2) \left((1 - v_0^2) (1 + \eta^2 v_0^2) \left(2\sqrt{(1 + \eta^2)(1 - v_0^2)} \right) \left(\frac{\eta}{2} \sqrt{1 - \frac{v_0^2}{\eta^2}} - \eta \log 16 \right) \right. \\
\left. - \eta \left(1 - v_0 (3v_0 - 2v_1^2 - 4v_0 + v_0 (1 - v_0^2 - 4v_0 v_1)^2) \right) \right] \epsilon \\
+ \frac{\eta (1 + \eta^2) (1 - v_0 - 4v_0 v_2)}{4\sqrt{(1 + \eta^2)(1 - v_0^2)(1 + \eta^2 v_0^2)}} \epsilon \log \epsilon \right\}.
\] (4.93)

To fix \(v_0, v_1, \) and \(v_2, \) one can use the small \(\epsilon \) expansion of the angular difference
\[
\Delta \phi = \phi_1(\tau, L) - \phi_1(\tau, -L) \equiv p,
\]
where we identified the angular difference \(\Delta \phi_1 \) with the magnon momentum \(p \) on the dual spin chain. The result is [30]
\[
v_0 = \frac{\cot \frac{p}{2}}{\sqrt{\eta^2 + \csc^2 \frac{p}{2}}},
\] (4.94) and
\[
v_1 = \frac{v_0 (1 - v_0^2)}{4 (1 + \eta^2 v_0^2)} \left[1 - \log 16 + \frac{\eta^2 (2 - v_0^2 (1 + \log 16))}{1 + \eta^2 v_0^2} \right], \quad v_2 = \frac{1}{4} v_0 (1 - v_0^2).
\] (4.95)

By using (4.94), (4.95) in (4.93), one finds
\[
C^d_{\bar{\eta}} \approx \frac{16c^d}{3\bar{\eta}} \left\{ \frac{\arcsinh \left(\frac{\eta}{2} \sin \frac{p}{2} \right) + \frac{(1 + \eta^2) \sin^2 \frac{p}{2}}{2 \sqrt{\eta^2 + \csc^2 \frac{p}{2}}} \times \right. \\
\left[2 \sqrt{\eta^2 + \csc^2 \frac{p}{2}} \arcsinh \left(\frac{\eta}{2} \sin \frac{p}{2} \right) - \eta (1 + \log 16) \right] \epsilon + \eta \epsilon \log \epsilon \right\}.
\] (4.96)

The expansion parameter \(\epsilon \) in the leading order is given by [30]
\[
\epsilon = 16 \exp \left[- \left(\frac{J_1}{g} + \frac{2 \sqrt{1 + \eta^2}}{\eta} \right) \arcsinh \left(\frac{\eta}{2} \sin \frac{p}{2} \right) \sqrt{\frac{1 + \eta^2 \sin^2 \frac{p}{2}}{(1 + \eta^2) \sin^2 \frac{p}{2}}} \right] .
\] (4.97)

Here we used Eq.(3.205) for the string tension \(T. \)

The final expression for the normalized structure constant is given by
\[
C^d_{\bar{\eta}} \approx \frac{16c^d}{3\bar{\eta}} \left\{ \arcsinh \left(\frac{\eta}{2} \sin \frac{p}{2} \right) - 4 \frac{\eta (1 + \eta^2) \sin^3 \frac{p}{2}}{\sqrt{1 + \eta^2 \sin^2 \frac{p}{2}}} \left[1 + \frac{J_1}{g} \sqrt{\frac{1 + \eta^2 \sin^2 \frac{p}{2}}{1 + \eta^2}} \right] \times \right. \\
\left. \left[- \left(\frac{J_1}{g} + \frac{2 \sqrt{1 + \eta^2}}{\eta} \right) \arcsinh \left(\frac{\eta}{2} \sin \frac{p}{2} \right) \sqrt{\frac{1 + \eta^2 \sin^2 \frac{p}{2}}{(1 + \eta^2) \sin^2 \frac{p}{2}}} \right \} .
\] (4.98)
Let us point out that in the limit $\tilde{\eta} \to 0$, (4.98) reduces to

$$C_3 \approx \frac{16}{3} c^\Delta \sin \frac{p}{2} \left[1 - 4 \sin \frac{p}{2} \left(\sin \frac{p}{2} + \frac{J_1}{g} \right) \exp \left(- \frac{J_1}{g \sin \frac{p}{2}} - 2 \right) \right],$$

which reproduces the result for the undeformed case found in [21]. Another check is that this satisfies Eq. (4.86) with Δ computed in [30]

$$\Delta \equiv E - J_1 \approx 2g \sqrt{1 + \tilde{\eta}^2} \left\{ \frac{1}{\tilde{\eta}} \arcsinh \left(\tilde{\eta} \sin \frac{p}{2} \right) - 4 \frac{(1 + \tilde{\eta}^2) \sin^3 \frac{p}{2}}{\sqrt{1 + \tilde{\eta}^2 \sin^2 \frac{p}{2}}} \times \exp \left[- \left(\frac{J_1}{g} + \frac{2 \sqrt{1 + \tilde{\eta}^2}}{\tilde{\eta}} \arcsinh \left(\tilde{\eta} \sin \frac{p}{2} \right) \right) \sqrt{1 + \tilde{\eta}^2 (1 + \tilde{\eta}^2 \sin^2 \frac{p}{2})} \right].$$

4.3.2 Two GM states and dilaton with non-zero momentum

Here we will be interested in the case when the dilaton momentum $j > 0$. According to [32] the semiclassical normalized structure constants for the case under consideration is given by

$$C^{d,j}_{\tilde{\eta}} = \frac{2\pi^2 c^\Delta_{d,j} \Gamma \left(\frac{2 + \frac{j}{2}}{2} \right) \left(1 - \nu^2 \kappa^2 \right)^{\frac{j-1}{2}}}{\kappa \Gamma \left(\frac{5 + j}{2} \right) \sqrt{\kappa^2 (1 + \tilde{\eta}^2 \kappa^2)}} \times \left[(1 - \nu^2 \kappa^2) F_1 \left(\frac{1}{2}, \frac{2 + j}{2}; \frac{1 + j}{2}; 1; \frac{\tilde{\eta}^2 (1 - \nu^2) \kappa^2}{1 + \tilde{\eta}^2 \kappa^2}, \frac{(1 + \tilde{\eta}^2)(1 - \nu^2) \kappa^2}{(1 + \tilde{\eta}^2 \kappa^2)(1 - \nu^2 \kappa^2)} \right)
- (1 - \kappa^2) F_1 \left(\frac{1}{2}, \frac{1 - j}{2}; \frac{1}{2}; 1; \frac{\tilde{\eta}^2 (1 - \nu^2) \kappa^2}{1 + \tilde{\eta}^2 \kappa^2}, \frac{(1 + \tilde{\eta}^2)(1 - \nu^2) \kappa^2}{(1 + \tilde{\eta}^2 \kappa^2)(1 - \nu^2 \kappa^2)} \right) \right].$$

Now we take the limit $\tilde{\eta} \to 0$ in (4.100) and obtain

$$C^{d,j} = \frac{2\pi^2 c^\Delta_{d,j} \Gamma \left(\frac{2 + \frac{j}{2}}{2} \right) \left(1 - \nu^2 \kappa^2 \right)^{\frac{j-1}{2}}}{\kappa \Gamma \left(\frac{5 + j}{2} \right)} \times \left[(1 - \nu^2 \kappa^2) F_1 \left(\frac{1}{2}, \frac{2 + j}{2}; \frac{1 + j}{2}; 1; \frac{(1 - \nu^2) \kappa^2}{1 - \nu^2 \kappa^2} \right)
- (1 - \kappa^2) F_1 \left(\frac{1}{2}, \frac{1 - j}{2}; \frac{1}{2}; 1; \frac{(1 - \nu^2) \kappa^2}{1 - \nu^2 \kappa^2} \right) \right].$$

This is exactly what was found in [24] for $u = 0$, as it should be.

Let us also say that in the particular case when $j = 1$, (4.100) simplifies to

$$C^{d,1} = \frac{3\pi c^\Delta_{d,1} \sqrt{\kappa^2 (1 + \tilde{\eta}^2 \kappa^2)}}{2\tilde{\eta}^2 \kappa^2} \left[\mathbf{K} \left(\tilde{\eta}^2 (1 - \nu^2) \kappa^2 \right) \right.
- \left. \mathbf{E} \left(\frac{\tilde{\eta}^2 (1 - \nu^2) \kappa^2}{1 + \tilde{\eta}^2 \kappa^2} \right) \right].$$
In the limit $\tilde{\eta} \to 0$, C^d_η becomes

$$C^d = \frac{3}{8\pi^2} C^d_\eta \kappa (1 - v^2).$$

4.3.3 Two GM states and primary scalar operators

It was proven in [32] that the normalized structure constant for this case can be represented as

$$C^{pr,j}_\eta = \frac{2c^{pr,j}_\eta}{\tilde{\eta}^\kappa \Gamma(\frac{j}{2}) \Gamma(\frac{1+j}{2})} \left[\frac{1 - \kappa^2 + j(1 - v^2\kappa^2)}{1 + j} \right] J_j - J_{jp}, \quad (4.102)$$

where

$$J_j = \int_{x_m}^{x_p} \frac{\chi^{\frac{j}{2}}}{\sqrt{(\chi - \chi_m)(\chi - \chi_p)\chi}} d\chi, \quad (4.103)$$

$$J_{jp} = \int_{x_m}^{x_p} \frac{\chi^{\frac{j+1}{2}}}{\sqrt{(\chi - \chi_m)(\chi - \chi_p)\chi}} d\chi. \quad (4.104)$$

To compute the above two integrals, we introduce the variable

$$x = \frac{\chi - \chi_m}{\chi_p - \chi_m} \in (0, 1).$$

Then J_j becomes

$$J_j = \pi \chi_m^{\frac{j-1}{2}} (\chi - \chi_m)^{-\frac{j}{2}} \int_0^1 x^{-\frac{j}{2}} (1 - x)^{-\frac{j}{2}} \left(1 - \frac{\chi_p - \chi_m}{\chi - \chi_m} x \right)^{-\frac{j}{2}} \left(1 + \frac{\chi_p - \chi_m}{\chi - \chi_m} x \right)^{\frac{j+1}{2}} dx. \quad (4.105)$$

Comparing the above expression with the integral representation for the hypergeometric function of two variables $F_1(a,b_1,b_2;c;z_1,z_2)$ [53]

$$F_1(a,b_1,b_2;c;z_1,z_2) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_0^1 x^{a-1}(1-x)^{c-a-1}(1-z_1 x)^{-b_1}(1-z_2 x)^{-b_2},$$

$$Re(a) > 0, \quad Re(c-a) > 0,$$

one finds

$$J_j = \pi \chi_m^{\frac{j-1}{2}} (\chi - \chi_m)^{-\frac{j}{2}} F_1 \left(\frac{1}{2}; \frac{j-1}{2}; 1; \frac{\chi_p - \chi_m}{\chi - \chi_m}, -\frac{\chi_p - \chi_m}{\chi_m} \right). \quad (4.106)$$

In order to compute J_{jp}, we have to replace j with $j + 2$. Doing this, we obtain

$$J_{jp} = \pi \chi_m^{\frac{j+1}{2}} (\chi - \chi_m)^{-\frac{j}{2}} F_1 \left(\frac{1}{2}; \frac{j+1}{2}; 1; \frac{\chi_p - \chi_m}{\chi - \chi_m}, -\frac{\chi_p - \chi_m}{\chi_m} \right). \quad (4.107)$$
The replacement of (4.105) and (4.107) into (4.102) gives

\[
C^{pr,j}_{\eta} = \frac{2\pi^3 \epsilon_{d}^{pr,j} \Gamma(\frac{d}{2})}{\eta \kappa \Gamma(\frac{d+2}{2}) \sqrt{\chi_{\eta} - \chi_{m}}} \left\{ \left[1 - \frac{(1 + j \nu^2)\kappa^2}{1 + j} \right] \times \right.
\]

\[
F_1 \left(\frac{1}{2}, \frac{1}{2}, \frac{1-j}{2}; 1; \frac{\chi_{p} - \chi_{m}}{\chi_{\eta} - \chi_{m}}, -\frac{\chi_{p} - \chi_{m}}{\chi_{m}} \right)
\]

\[-\chi_{m} F_1 \left(\frac{1}{2}, \frac{1}{2}, \frac{1+j}{2}; 1; \frac{\chi_{p} - \chi_{m}}{\chi_{\eta} - \chi_{m}}, -\frac{\chi_{p} - \chi_{m}}{\chi_{m}} \right) \right\}.
\]

Knowing that

\[
\chi_{\eta} = 1 + \frac{1}{\eta^2} \quad \chi_{p} = 1 - \nu^2 \kappa^2, \quad \chi_{m} = 1 - \kappa^2,
\]

and using the relation [53]

\[
F_1 (a, b_1, b_2; c; z_1, z_2) = (1 - z_1)^{c - a - b_1} (1 - z_2)^{-b_2} F_1 \left(c - a, c - b_1 - b_2; b_2; z_1, \frac{z_1 - z_2}{1 - z_2} \right),
\]

we can rewrite (4.108) in the following form

\[
C^{pr,j}_{\eta} = \frac{2\pi^3 \epsilon_{d}^{pr,j} \Gamma(\frac{d}{2})(1 - \nu^2 \kappa^2)^{\frac{d-1}{2}}}{\kappa \Gamma(\frac{d+2}{2}) \sqrt{1 + \eta^2 \kappa^2}} \left\{ \left[1 - \frac{(1 + j \nu^2)\kappa^2}{1 + j} \right] \times \right.
\]

\[
F_1 \left(\frac{1}{2}, \frac{1}{2}, \frac{1-j}{2}; 1; \frac{\tilde{\eta}^2 (1 - \nu^2 \kappa^2)}{1 + \tilde{\eta}^2 \kappa^2}, \frac{(1 + \tilde{\eta}^2)(1 - \nu^2 \kappa^2)}{(1 + \tilde{\eta}^2 \kappa^2)} \right)
\]

\[-(1 - \nu^2 \kappa^2) F_1 \left(\frac{1}{2}, \frac{1+j}{2}; \frac{1-j}{2}; 1; \frac{\tilde{\eta}^2 (1 - \nu^2 \kappa^2)}{1 + \tilde{\eta}^2 \kappa^2}, \frac{(1 + \tilde{\eta}^2)(1 - \nu^2 \kappa^2)}{(1 + \tilde{\eta}^2 \kappa^2)} \right) \right\}.
\]

This is our final exact semiclassical result for this type of three-point correlation functions.

Next, we would like to compare (4.109) with the known expression for the undeformed case [24]. To this end, we take the limit \(\tilde{\eta} \rightarrow 0 \) and by using that [53]

\[
F_1 (a, b_1, b_2; c; 0, z_2) = \, _2 F_1 (a, b_2; c; z_2),
\]

we find

\[
C^{pr,j} = \frac{2\pi^3 \epsilon_{d}^{pr,j} \Gamma(2 + \frac{j}{2}) (1 - \nu^2 \kappa^2)^{\frac{j-1}{2}}}{\kappa \Gamma(\frac{j+2}{2})} \left[(1 - \nu^2 \kappa^2) F_1 \left(\frac{1}{2}, \frac{1+j}{2}; 1; \frac{(1 - \nu^2 \kappa^2)}{1 - \nu^2 \kappa^2} \right)
\]

\[-(1 - \kappa^2) F_1 \left(\frac{1}{2}, \frac{1-j}{2}; 1; \frac{(1 - \nu^2 \kappa^2)}{1 - \nu^2 \kappa^2} \right) \right].
\]

This is exactly the same result found in [24] for \(u = 0 \) (finite-size giant magnons with one nonzero angular momentum) as it should be.
Let us also give an example for the simplest case when \(j = 1 \). In that case (4.109) reduces to

\[
C^\|_{\eta}^{pr,1} = \frac{2\pi C^\| \Delta_{\eta}^{pr,1}}{\tilde{\eta}^2 \sqrt{\kappa^2 (1 + \tilde{\eta}^2 \kappa^2)}} \left[2 (1 + \tilde{\eta}^2 \kappa^2) E \left(\tilde{\eta}^2 \frac{(1 - v^2) \kappa^2}{1 + \tilde{\eta}^2 \kappa^2} \right)
- (2 + (1 + v^2) \tilde{\eta}^2 \kappa^2) K \left(\tilde{\eta}^2 \frac{(1 - v^2) \kappa^2}{1 + \tilde{\eta}^2 \kappa^2} \right) \right].
\]

In the limit \(\tilde{\eta} \to 0 \), \(C^\|_{\eta}^{pr,1} \to 0 \).

4.3.4 Two GM states and singlet scalar operators on higher string levels

It was found in \cite{32} that the normalized structure constants for the case at hand are given by

\[
C^q_{\eta} = e^q \sqrt{\frac{\pi}{\kappa}} \frac{\Gamma \left(\frac{\Delta^q}{2} \right)}{\Gamma \left(\frac{\Delta^q + 1}{2} \right)} (-1)^q \frac{(2 - (1 + v^2) \kappa^2)^q}{\tilde{\eta}(1 - v^2)q^{-1} \sqrt{\chi_\eta - \chi}(\chi_p - \chi)(\chi - \chi_m) \chi} \int_{\chi_m}^{\chi_p} d\chi \frac{\Gamma \left(\frac{\Delta^q + 1}{2} \right)}{\Gamma \left(\frac{\Delta^q}{2} \right)} (1 - v^2)^{q-1} \sqrt{\kappa^2 (1 + \tilde{\eta}^2 \kappa^2)(1 - v^2 \kappa^2)}
\sum_{k=0}^{q} \frac{q!}{k!(q-k)!} \left[- \frac{1}{1 + \tilde{\eta}^2 (1 + v^2) \kappa^2} \right]^k F_1 \left(\frac{1}{2}, 1 - k; 1; \frac{\chi_p - \chi_m}{\chi_\eta - \chi_m}, \frac{\chi_p - \chi_m}{\chi_\eta - \chi_m} \right).
\]

where

\[
\Delta^q = 2 \left(1 + \sqrt{2\pi g \sqrt{1 + \tilde{\eta}^2 (q - 1) + 1 - \frac{1}{2} q(q - 1)}} \right).
\]

In order to compare with the undeformed case, we take the limit \(\tilde{\eta} \to 0 \) in (4.110) and obtain

\[
C^q = e^q \frac{\Gamma \left(\frac{\Delta^q}{2} \right)}{\Gamma \left(\frac{\Delta^q + 1}{2} \right)} (-1)^q \frac{(2 - (1 + v^2) \kappa^2)^q}{(1 - v^2)q^{-1} \sqrt{\kappa^2 (1 - v^2 \kappa^2)}} \sum_{k=0}^{q} \frac{q!}{k!(q-k)!}
\sum_{k=0}^{q} \frac{q!}{k!(q-k)!} \left[- \frac{1}{1 + \tilde{\eta}^2 (1 + v^2) \kappa^2} \right]^k 2F_1 \left(\frac{1}{2}, 1 - k; 1; \frac{1 - v^2 \kappa^2}{1 + \tilde{\eta}^2 \kappa^2} \right).
\]

This is exactly what was found in \cite{25} for finite-size giant magnons with one nonzero angular momentum.
Let us consider two particular cases. From (4.110) it follows that the normalized structure constants for the first two string levels, for the case at hand, are given by

\[q = 1 \text{ (level } n = 0) \]

\[
C^1_{\tilde{\eta}} = 2c_\Delta \pi^{3/2} \Gamma \left(\frac{\Delta}{2} \right) \frac{1}{\Gamma \left(\frac{\Delta+1}{2} \right)} \frac{1}{\sqrt{\kappa^2(1 + \tilde{\eta}^2\kappa^2)(1 - v^2\kappa^2)}} \times
\]

\[
\left[\pi(1 - v^2\kappa^2) F_1 \left(\frac{1}{2}, 1, -\frac{1}{2}; 1; \frac{\tilde{\eta}^2(1 - v^2)\kappa^2}{1 + \tilde{\eta}^2\kappa^2}, \frac{(1 + \tilde{\eta}^2)(1 - v^2)\kappa^2}{(1 + \tilde{\eta}^2\kappa^2)(1 - v^2\kappa^2)} \right)
\right]
\]

\[- (2 - (1 + v^2)\kappa^2) K \left(\frac{(1 + \tilde{\eta}^2)(1 - v^2)\kappa^2}{(1 + \tilde{\eta}^2\kappa^2)(1 - v^2\kappa^2)} \right) \].

\[q = 2 \text{ (level } n = 1) \]

\[
C^2_{\tilde{\eta}} = 2c_\Delta \pi^{3/2} \Gamma \left(\frac{\Delta}{2} \right) \frac{1}{\Gamma \left(\frac{\Delta+1}{2} \right)} \frac{2(1 + v^2)\kappa^2}{(1 - v^2\kappa^2)(1 + \tilde{\eta}^2\kappa^2)(1 - v^2\kappa^2)} \times
\]

\[
\left\{ \frac{1}{\pi} K \left(\frac{(1 + \tilde{\eta}^2)(1 - v^2)\kappa^2}{(1 + \tilde{\eta}^2\kappa^2)(1 - v^2\kappa^2)} \right) - \frac{2(1 - v^2\kappa^2)}{(2 - (1 + v^2)\kappa^2)^2} \times
\right\}
\]

\[
\left[(2 - (1 + v^2)\kappa^2) F_1 \left(\frac{1}{2}, 1, -\frac{1}{2}; 1; \frac{\tilde{\eta}^2(1 - v^2)\kappa^2}{1 + \tilde{\eta}^2\kappa^2}, \frac{(1 + \tilde{\eta}^2)(1 - v^2)\kappa^2}{(1 + \tilde{\eta}^2\kappa^2)(1 - v^2\kappa^2)} \right)
\right]
\]

\[- (1 - v^2\kappa^2) F_1 \left(\frac{1}{2}, 2, -\frac{3}{2}; 1; \frac{\tilde{\eta}^2(1 - v^2)\kappa^2}{1 + \tilde{\eta}^2\kappa^2}, \frac{(1 + \tilde{\eta}^2)(1 - v^2)\kappa^2}{(1 + \tilde{\eta}^2\kappa^2)(1 - v^2\kappa^2)} \right) \}
\]

In the limit \(\tilde{\eta} \to 0 \), the above two expressions simplify to

\[
C^1 = 2c_\Delta \pi^{3/2} \Gamma \left(\frac{\Delta}{2} \right) \frac{1}{\Gamma \left(\frac{\Delta+1}{2} \right)} \frac{1}{\sqrt{\kappa^2(1 - v^2\kappa^2)}} \times
\]

\[
\left[2(1 - v^2\kappa^2) E \left(\frac{(1 - v^2)\kappa^2}{1 - v^2\kappa^2} \right)
\right]
\]

\[- (2 - (1 + v^2)\kappa^2) K \left(\frac{(1 - v^2)\kappa^2}{(1 - v^2\kappa^2)} \right) \].
and

\[C^2 = 2 c^2 \pi \frac{\Gamma \left(\frac{\Delta}{2} \right)}{\Gamma \left(\frac{\Delta + 1}{2} \right)} \frac{1}{(1 - v^2) \sqrt{\kappa^2 (1 - v^2 \kappa^2)}} \times \]

\[
\left[(2 - (1 + v^2) \kappa^2)^2 K \left(\frac{1 - v^2 \kappa^2}{1 - v^2 \kappa^2} \right) \right.

\[-4 (2 - (1 + v^2) \kappa^2) (1 - v^2 \kappa^2) E \left(\frac{1 - v^2 \kappa^2}{1 - v^2 \kappa^2} \right) \]

\[+2 \pi (1 - v^2 \kappa^2)^2 F_1 \left(\frac{1}{2}, -\frac{3}{2}; 1; \frac{1 - v^2 \kappa^2}{1 - v^2 \kappa^2} \right) \]

respectively.

5 Contributions

1. In [3] we consider null bosonic p-branes moving in curved space-times. Some exact solutions of the classical equations of motion and of the constraints for the null string and the null membrane in Demianski-Newman background are found.

2. In [4] we consider null bosonic p-branes moving in curved space-times and develop a method for solving their equations of motion and constraints, which is suitable for string theory backgrounds. As an application, we give an exact solution for such background in ten dimensions.

3. In [5] we show how the classical string dynamics in D-dimensional gravity background can be reduced to the dynamics of a massless particle constrained on a certain surface whenever there exists at least one Killing vector for the background metric. We obtain a number of sufficient conditions, which ensure the existence of exact solutions to the equations of motion and constraints. These results are extended to include the Kalb-Ramond background. The D1-brane dynamics is also analyzed and exact solutions are found. Finally, we illustrate our considerations with several examples in different dimensions. All this also applies to the tensionless strings.

4. In [6] we consider probe p-branes and Dp-branes dynamics in D-dimensional string theory backgrounds of general type. Unified description for the tensile and tensionless branes is used. We obtain exact solutions of their equations of motion and constraints in static gauge as well as in more general gauges. Their dynamics in the whole space-time is also analyzed and exact solutions are found.

5. In [7] we classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.

6. In [8], based on the recently considered classical string configurations, in the framework of the semi-classical limit of the string/gauge theory correspondence, we describe a procedure
for obtaining exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet spatial parameter. The tensionless limit, corresponding to small 't'Hooft coupling on the field theory side, is also considered. Applying the developed approach, we find new string solutions - with two spins in $AdS_5 \times S^5$ and in AdS_5-black hole background.

7. In [9] we consider different M2-brane configurations in the M-theory $AdS_7 \times S^4$ background, with field theory dual $A_{N-1}(2,0)$ SCFT. New membrane solutions are found and compared with the recently obtained ones.

8. In [10] motivated by the recent achievements in the framework of the semiclassical limit of the M-theory/field theory correspondence, we propose an approach for obtaining exact membrane solutions in general enough M-theory backgrounds, having field theory dual description. As an application of the derived general results, we obtain several types of membrane solutions in $AdS_4 \times S^7$ M-theory background.

9. In [11] we obtain exact rotating membrane solutions and explicit expressions for the conserved charges on a manifold with exactly known metric of G_2 holonomy in M-theory, with four dimensional N=1 field theory dual. After that, we investigate their semiclassical limits and derive different relations between the energy and the other conserved quantities, which is a step towards M-theory lift of the semiclassical string/gauge theory correspondence for N=1 field theories.

10. In [12] we consider rotating strings and D2-branes on type IIA background, which arises as dimensional reduction of M-theory on manifold of G_2 holonomy, dual to N=1 gauge theory in four dimensions. We obtain exact solutions and explicit expressions for the conserved charges. By taking the semiclassical limit, we show that the rotating strings can reproduce only one type of semiclassical behavior, exhibited by rotating M2-branes on G_2 manifolds. Our further investigation leads to the conclusion that the rotating D2-branes reproduce two types of the semiclassical energy-charge relations known for membranes in eleven dimensions.

11. In [13] we show that for each M-theory background, having subspaces with metrics of given type, there exist M2-brane configurations, which in appropriate limit lead to two-spin magnon-like energy-charge relations, established for strings on $AdS_5 \times S^5$, its β-deformation, and for membrane in $AdS_4 \times S^7$.

12. It is known that large class of classical string solutions in the type IIB $AdS_5 \times S^6$ background is related to the Neumann and Neumann-Rosochatius integrable systems, including spiky strings and giant magnons. It is also interesting if these integrable systems can be associated with some membrane configurations in M-theory. We show in [14] that this is indeed the case by presenting explicitly several types of membrane embedding in $AdS_4 \times S^7$ with the searched properties.

13. In [15] we find membrane configurations in $AdS_4 \times S^7$, which correspond to the continuous limit of the SU(2) integrable spin chain, considered as a limit of the SU(3) spin chain, arising in N=4 SYM in four dimensions, dual to strings in $AdS_5 \times S^5$. We also discuss the relationship with the Neumann-Rosochatius integrable system at the level of Lagrangians, comparing the string and membrane cases.
14. In [16] we describe how Neumann and Neumann-Rosochatius type integrable systems, as well as the continuous limit of the SU(2) integrable spin chain, can be obtained from M2-branes in the framework of AdS/CFT correspondence.

15. In [17] we use the reduction of the string dynamics on $R^t \times S^3$ to the Neumann-Rosochatius integrable system to map all string solutions described by this dynamical system onto solutions of the complex sine-Gordon integrable model. This mapping relates the parameters in the solutions on both sides of the correspondence. In the framework of this approach, we find finite-size string solutions, their images in the (complex) sine-Gordon system, and the leading finite-size effects of the single spike "$E - \Delta \phi$" relation for both $R^t \times S^2$ and $R^t \times S^3$ cases.

16. In [18] we consider semi-classical solution of membranes on the $AdS_4 \times S^7$. This is supposed to be dual to the $\mathcal{N} = 6$ super Chern-Simons theory with level $k = 1$ in a planar limit recently proposed by Aharony, Bergmann, Jafferis, and Maldacena (ABJM). We have identified giant magnon and single spike states on the membrane by reducing them to the Neumann-Rosochatius integrable system. We also connect these to the complex sine-Gordon integrable model. Based on this approach, we find finite-size membrane solutions and obtain their images in the complex sine-Gordon system along with the leading finite-size corrections to the energy-charge relations.

17. Recently, O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena (ABJM) proposed three-dimensional super Chern-Simons-matter theory, which at level k is supposed to describe the low energy limit of N M2-branes. For large N and k, but fixed 't Hooft coupling $\lambda = N/k$, it is dual to type IIA string theory on $AdS_4 \times CP^3$. For large N but finite k, it is dual to M-theory on $AdS_4 \times S^7/Z_k$. In [19], relying on the second duality, we find exact giant magnon and single spike solutions of membrane configurations on $AdS_4 \times S^7/Z_k$ by reducing the system to the Neumann-Rosochatius integrable model. We derive the dispersion relations and their finite-size corrections with explicit dependence on the level k.

18. In [20] we consider finite-size effects for the dyonic giant magnon of the type IIA string theory on $AdS_4 \times CP^3$ by applying Luscher μ-term formula which is derived from a recently proposed S-matrix for the $\mathcal{N} = 6$ super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric configuration where the two external bound states, each of A and B particles, have the same momentum p and spin J_2. We compare this with the classical string theory result which we computed by reducing it to the Neumann-Rosochatius system. The two results match perfectly.

19. In [21] we investigate dyonic giant magnons propagating on γ-deformed $AdS_5 \times S^5$ by Neumann-Rosochatius reduction method with a twisted boundary condition. We compute finite-size effect of the dispersion relations of dyonic giant magnons which generalizes the previously known case of the giant magnons with one angular momentum found by Bykov and Frolov.

20. In [22] we compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two $su(2)$ magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant.
limit. A special limit $J \gg \sqrt{\lambda}$ of our result is compared with the relevant result based on the Lüscher corrections.

21. In [23] we compute semiclassical three-point correlation function, or structure constant, of two finite-size (dyonic) giant magnon string states and a light dilaton mode in the Lunin-Maldacena background, which is the γ-deformed, or TsT-transformed $AdS_5 \times S^5_\gamma$, dual to $\mathcal{N} = 1$ super Yang-Mills theory. We also prove that an important relation between the structure constant and the conformal dimension, checked for the $\mathcal{N} = 4$ super Yang-Mills case, still holds for the γ-deformed string background.

22. In [24] we investigate finite-size giant magnons propagating on γ-deformed $AdS_4 \times CP^3$ type IIA string theory background, dual to one parameter deformation of the $\mathcal{N} = 6$ super Chern-Simons-matter theory. Analyzing the finite-size effect on the dispersion relation, we find that it is modified compared to the undeformed case, acquiring γ dependence.

23. In [25], in the framework of the semiclassical approach, we compute the normalized structure constants in three-point correlation functions, when two of the vertex operators correspond to heavy string states, while the third vertex corresponds to a light state. This is done for the case when the heavy string states are finite-size giant magnons with one or two angular momenta, and for two different choices of the light state, corresponding to dilaton operator and primary scalar operator. The relevant operators in the dual gauge theory are $Tr (F_{\mu \nu}^2 Z^j + \ldots)$ and $Tr (Z^j)$. We first consider the case of $AdS_5 \times S^5$ and $\mathcal{N} = 4$ super Yang-Mills. Then we extend the obtained results to the γ-deformed $AdS_5 \times S^5_\gamma$, dual to $\mathcal{N} = 1$ super Yang-Mills theory, arising as an exactly marginal deformation of $\mathcal{N} = 4$ super Yang-Mills.

24. In [26], in the framework of the semiclassical approach, we compute the normalized structure constants in three-point correlation functions, when two of the vertex operators correspond to "heavy" string states, while the third vertex corresponds to a "light" state. This is done for the case when the "heavy" string states are finite-size giant magnons, carrying one or two angular momenta. The "light" states are taken to be singlet scalar operators on higher string levels. We consider two cases: string theory on $AdS_5 \times S^5$ and its γ-deformation.

25. In [27] in the framework of the semiclassical approach, we find the leading finite-size effects on the normalized structure constants in some three-point correlation functions in $AdS_5 \times S^5$, expressed in terms of the conserved string angular momenta J_1, J_2, and the worldsheet momentum p_w, identified with the momentum p of the magnon excitations in the dual spin-chain arising in $\mathcal{N} = 4$ SYM in four dimensions.

26. In [28] we compute the leading finite-size effects on the normalized structure constants in semiclassical three-point correlation functions of two finite-size giant magnon string states and three different types of "light" states - primary scalar operators, dilaton operator with nonzero momentum and singlet scalar operators on higher string levels. This is done for the case of TsT-transformed, or γ-deformed, $AdS_5 \times S^5$ string theory background.

27. In [29] we develop an approach for solving the string equations of motion and Virasoro constraints in any background which has some (unfixed) number of commuting Killing vector fields. It is based on a specific ansatz for the string embedding. We apply the above mentioned approach for strings moving in $AdS_3 \times S^3 \times T^4$ with 2-form NS-NS B-field. We succeeded
to find solutions for a large class of string configurations on this background. In particular, we derive dyonic giant magnon solutions in the $R_t \times S^3$ subspace, and obtain the leading finite-size correction to the dispersion relation.

28. In [30] we consider strings moving in the $R_t \times S^3$ subspace of the η-deformed $AdS_5 \times S^5$ and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.

29. In [31] we derive the 3-point correlation function between two giant magnons heavy string states and the light dilaton operator with zero momentum in the η-deformed $AdS_5 \times S^5$ valid for any J_1 and η in the semiclassical limit. We show that this result satisfies a consistency relation between the 3-point correlation function and the conformal dimension of the giant magnon. We also provide a leading finite J_1 correction explicitly.

30. In [32] we compute some normalized structure constants in the η-deformed $AdS_5 \times S^5$ in the framework of the semiclassical approach. This is done for the cases when the “heavy” string states are finite-size giant magnons carrying one angular momentum and for three different choices of the “light” state: primary scalar operators, dilaton operator with nonzero momentum, singlet scalar operators on higher string levels.

The above contributions can be described as investigations in the following three areas:

1. P-branes and Dp-branes dynamics in general string/M-theory backgrounds. As applications of the proposed approach, some particular cases have been considered [3]-[6].

2. AdS/CFT: string and membrane results: [7, 8, 12, 17, 20, 21, 24, 29, 30] and [9, 10, 11, 12, 13, 14, 15, 16, 18, 19] correspondingly.

3. Semiclassical three-point correlation functions in which the finite-size effect on the “heavy” giant magnon string states are taken into account: [22, 23, 25, 26, 27, 28, 31, 32].

Acknowledgements

This work is partially supported by the NSFB grant DFNI T02/6.

Appendices

A Notations for the special functions

Euler gamma function - $\Gamma(z)$
Pochhammer symbol - \((a)_n\)

Jacobi elliptic functions - \(sn(z|m), cn(z|m), dn(z|m)\)
Jacobi amplitude - \(am(z)\)

Incomplete elliptic integrals of the first, second and third kind - \(F(z|m), E(z|m), \Pi(n, z|m)\)
Complete elliptic integrals of the first, second and third kind - \(K(m), E(m), \Pi(n|m)\)

Hypergeometric functions of one variable - \(_1F_0(a; z), _2F_1(a, b; c; z)\)
Hypergeometric functions of two variables - \(_1F_1(a, b_1, b_2; c; z_1, z_2), _2F_2(a, b_1, b_2; c_1, c_2; z_1, z_2)\)
Hypergeometric functions of \(n\) variables - \(_{194}F_D^{(n)}(a, b_1, ..., b_n; c; z_1, ..., z_n)\)

B Relation between the NR system and CSG

B.1 Explicit Relations between the Parameters

In the general case, the relation between the parameters in the solutions of the NR and CSG integrable systems is given by

\[
K^2 = R^2 M^2, \quad C_\phi = \frac{2}{\alpha^2 - \beta^2} \left\{ 3M^2 - 2 \left[\kappa^2 + \frac{(\kappa^2 - \omega_1^2) - \omega_2^2}{1 - \beta^2/\alpha^2} \right] \right\},
\]

\[
\frac{1}{4} M^4 (\alpha^2 - \beta^2) A^2 = M^4 \left(M^2 - \frac{2}{\alpha^2 - \beta^2} \right) - \left(\frac{\kappa^2 - \omega_1^2}{1 - \beta^2/\alpha^2} \right) \left[M^2 - \frac{\kappa^2 - \omega_1^2}{1 - \beta^2/\alpha^2} \right] \left(\kappa^2 - \frac{\omega_2^2}{1 - \beta^2/\alpha^2} \right) - 2M^2 - \left(\frac{\kappa^2 - \omega_1^2}{1 - \beta^2/\alpha^2} \right) \left(\kappa^2 - \frac{\omega_2^2}{1 - \beta^2/\alpha^2} \right) \right\} - \frac{(\omega_1^2 - \omega_2^2)}{\omega_1^2 (1 - \beta^2/\alpha^2)^2} \left[M^2 (1 - \beta^2/\alpha^2) - \kappa^2 \right] (\omega_1^2 - \omega_2^2) \hat{C}_2
\]

\[
\frac{1}{4} M^4 (\alpha^2 - \beta^2) C^2_\chi = - \left(\frac{\kappa^2 - \omega_1^2}{1 - \beta^2/\alpha^2} \right)^2 \left[\kappa^2 - \frac{(\kappa^2 - \omega_1^2) + \omega_2^2}{1 - \beta^2/\alpha^2} \right] + \frac{(\omega_1^2 - \omega_2^2)}{\omega_1^2 (1 - \beta^2/\alpha^2)^2} \left\{ \kappa^2 (\omega_1^2 - \omega_2^2) \hat{C}_2 - (\kappa^2 - \omega_1^2) \left[2\frac{\beta}{\alpha} \omega_2 \kappa^2 \hat{C}_2 + (\kappa^2 - \omega_1^2) \left(\frac{\beta^2}{\alpha^2} \kappa^2 - \omega_1^2 \right) \right] \right\},
\]

where \(\hat{C}_2 = C_2/\alpha\). Thus, we have expressed the CSG parameters \(C_\phi, A\) and \(C_\chi\) through the NR parameters \(\alpha, \beta, \kappa, \omega_1, \omega_2, C_2\). The mass parameter \(M\) remains free.
Let us consider several examples, which illustrate the established NR - CSG correspondence. We are interested in the GM and SS configurations on $R_t \times S^2$ and $R_t \times S^3$. From the NR-system viewpoint, we have to set $C_2 = 0$ in (3.45), (3.47) and (3.48) for the GM and SS string solutions. This condition is to require one of the turning points, where $\theta' = 0$, to lay on the equator of the sphere, i.e. $\theta = \pi/2$ [58].

B.2 On $R_t \times S^2$

We begin with the $R_t \times S^2$ case, when $C_2 = \omega_2 = 0$ and θ' in (3.45) takes the form

$$\theta' = \frac{\pm \alpha_1}{(\alpha^2 - \beta^2) \sin \theta} \sqrt{\frac{\alpha^2 \kappa^2}{\alpha^2 \omega_1^2 - \sin^2 \theta}} \left(\sin^2 \theta - \frac{\kappa^2}{\omega_1^2} \right).$$

(A.2)

B.2.1 The Giant Magnon

The GM solution corresponds to $\kappa^2 = \omega_1^2$ with $\alpha^2 > \beta^2$, which is given by

$$\cos \theta = \frac{\sqrt{1 - \beta^2/\alpha^2}}{\cosh \left(\frac{\omega_1\sigma + \tau \beta/\alpha}{\sqrt{1 - \beta^2/\alpha^2}} \right)}.$$

From (3.47), one finds $f_2 = 0$ and

$$f_1 = \arctan \left[\frac{\alpha}{\beta} \sqrt{1 - \beta^2/\alpha^2} \tanh \left(\omega_1 \frac{\sigma + \tau \beta/\alpha}{\sqrt{1 - \beta^2/\alpha^2}} \right) \right].$$

For $R^2 = M^2 = \omega_1^2 = 1$, $\beta/\alpha = -\sin \theta_0$, this string solution coincides with the Hofman-Maldacena solution [62], and is equivalent to the solution in [60] for $R_t \times S^2$ after the identification $W_1 = Z_1 \exp(i\pi/2)$, $W_2 = Z_2$. Now, the parameters in (3.58) take the values

$$K^2 = R^2 \omega_1^2 = 1, \quad M^2 = \omega_1^2 = 1,$$

$$C_\phi = \frac{2\omega_1^2}{\alpha^2 - \beta^2} = \frac{2}{\alpha^2 \cos^2 \theta_0}, \quad A = C_\chi = 0,$$

and from Eqs. (3.55), (3.56) and (3.57) the corresponding SG solution becomes

$$\sin(\phi/2) = \frac{1}{\cosh \left(\frac{\sigma - \tau \sin \theta_0}{\cos \theta_0} - \eta_0 \right)}.$$

This can be also obtained from (3.59) by setting $\omega_2 = 0$.

However, for $M^2 > \omega_1^2 = \kappa^2$, we have

$$A = 2\beta \sqrt{\frac{M^2 - \omega_1^2}{\alpha^2 - \beta^2}} \neq 0.$$
This case is related to the CSG system instead of the SG one. It is interesting to find the CSG solution associated with it. Using (3.55) again, we find

\[
\sin(\phi/2) = \frac{\omega_1}{M \cosh \left(\omega_1 \frac{\sigma + \tau \beta / \alpha}{\sqrt{1 - \beta^2 / \alpha^2}} \right)}, \quad \chi = 2 \sqrt{\frac{M^2 - \omega_1^2}{1 - \beta^2 / \alpha^2}} \left(\frac{\beta \sigma + \tau}{\alpha} \right).
\]

B.2.2 The Single Spike

The SS solution corresponds to \(\beta^2 \kappa^2 = \alpha^2 \omega_1^2 \). In this case, the expressions for \(\theta \) and \(f_1 \) are

\[
\cos \theta = \frac{1 - \alpha^2 / \beta^2}{\cosh (C\xi)}, \quad f_1 = -\omega_1 (\sigma \alpha / \beta + \tau) + \arctan \left[\frac{\beta}{\alpha} \sqrt{1 - \alpha^2 / \beta^2} \tanh (C\xi) \right],
\]

and the corresponding string solution is

\[
W_1 = R \sqrt{1 - \frac{1 - \alpha^2 / \beta^2}{\cosh^2 (C\xi)}} \exp \left\{ -i \omega_1 \sigma \alpha / \beta + i \arctan \left[\frac{\beta}{\alpha} \sqrt{1 - \alpha^2 / \beta^2} \tanh (C\xi) \right] \right\},
\]

\[
W_2 = \frac{R \sqrt{1 - \alpha^2 / \beta^2}}{\cosh (C\xi)}, \quad Z_0 = R \exp \left(\frac{i \alpha}{\beta} \omega_1 \tau \right),
\]

where we used a short notation

\[
C\xi \equiv \frac{\omega_1}{\beta} \frac{\alpha \sigma / \beta + \tau}{\sqrt{1 - \alpha^2 / \beta^2}}.
\]

The “dual” SG solution can be obtained from (3.62) by setting \(\omega_1 = 0 \). If we choose \(R = 1 \), \(\alpha / \beta = \sin \theta_1 \), \(\omega_1 = -\cot \theta_1 \), \(\beta = 1 \), the SS solution on \(R_t \times S^2 \) in [63] is reproduced.

B.3 On \(R_t \times S^3 \)

B.3.1 The Giant Magnon

Let us continue with the \(R_t \times S^3 \) case, when \(C_2 = 0 \), \(\omega_2 \neq 0 \). First, we would like to establish the correspondence between the dyonic GM string solution [58] (\(\kappa^2 = \omega_1^2 \)) to those found in [60]

\[
Z_1 = \frac{1}{\sqrt{1 + k^2}} \left\{ \tanh \left[\cos \alpha^D \left(\sigma \sqrt{1 + k^2 \cos^2 \alpha^D} - k \sigma \cos \alpha^D \right) \right] - i k \right\} \exp(i \tau),
\]

\[
Z_2 = \frac{1}{\sqrt{1 + k^2}} \exp \left[i \sin \alpha^D \left(\tau \sqrt{1 + k^2 \cos^2 \alpha^D} - k \sigma \cos \alpha^D \right) \right],
\]

where the parameter \(k \) is related to the soliton rapidity \(\hat{\theta} \) through the equality

\[
k = \frac{\sin \hat{\theta}}{\cos \alpha^D}.
\]
and α^D determines the $U(1)$ charge carried by the CSG soliton \[60\].

The solutions of Eqs. (3.45), (3.47) and (3.48) are given by

$$\cos \theta = \frac{\cos \theta_0}{\cosh (C\xi)}$$
$$f_1 = \arctan [\cot \theta_0 \tanh (C\xi)]$$
$$f_2 = \frac{\beta \omega_2}{\alpha^2 - \beta^2}$$

Then, the comparison shows that the two solutions are equivalent if

$$Z_1 \exp (i\pi/2) = W_1 = R \sin \theta \exp [i (\omega \tau + f_1)]$$
$$Z_2 = W_2 = R \cos \theta \exp [i (\omega \tau + f_2)]$$
$$R = \kappa = \omega_1 = 1, \quad \alpha = \cos \alpha^D \sqrt{1 + k^2 \cos^2 \alpha^D}$$
$$\beta = -k \cos^2 \alpha^D, \quad \omega_2 = \frac{\sin \alpha^D}{\sqrt{1 + k^2 \cos^2 \alpha^D}}$$

As a consequence, the CSG parameters in (3.58) reduce to

$$C_\phi = \frac{2}{\cos^2 \alpha^D} (1 + 2 \sin^2 \alpha^D) \quad A = k \sin (2\alpha^D) \quad C_\chi = 0 \quad K^2 = 1$$

B.3.2 The Single Spike

Now, let us turn to the SS solutions on $R_t \times S^3$ as described by the NR integrable system \[64\]. By using the SS-condition $\beta^2 \kappa^2 = \alpha^2 \omega_1^2$ in (3.45) one derives

$$\theta' = \alpha \sqrt{\frac{\omega_1^2 - \omega_2^2}{\alpha^2 - \beta^2}} \cos \theta \sqrt{\frac{\sin^2 \theta}{\beta^2(\omega_1^2 - \omega_2^2)}}$$

whose solution is given by

$$\cos \theta = \sqrt{\frac{(1 - \alpha^2/\beta^2) \omega_1^2 - \omega_2^2}{\omega_1^2 - \omega_2^2 \cosh (C\xi)}}, \quad C\xi \equiv \sqrt{\omega_1^2 - \frac{\omega_2^2}{\alpha^2 - \beta^2} \frac{\alpha (\sigma / \beta + \tau)}{\sqrt{\beta^2 - \alpha^2}}.\}

By using (3.47), (3.48), one finds the following expressions for the string embedding coordinates $\varphi_j = \omega_j \tau + f_j$

$$\varphi_1 = -\omega_1 \sigma / \beta + \arctan \left\{ \frac{\beta}{\alpha \omega_1} \sqrt{\left(1 - \frac{\alpha^2}{\beta^2} \right) \left(\omega_1^2 - \frac{\omega_2^2}{1 - \alpha^2/\beta^2} \right) \tanh (C\xi)} \right\}$$
$$\varphi_2 = -\omega_2 \frac{\alpha (\sigma + \tau \alpha / \beta)}{\beta (1 - \alpha^2/\beta^2)}$$

Comparing the above results with the SS string solution given in (4.1) - (4.7) of \[65\], we see that the two solutions coincide for

$$R = 1, \quad \sin \theta_1 = -\frac{1}{\omega_1^2 - \omega_2^2}, \quad \sin \gamma_1 = \frac{\omega_2}{\omega_1}, \quad \omega_1 = -\frac{\beta}{\alpha}. \quad (A.3)$$
From (3.60), the CSG parameters are
\[
C_\phi = \frac{2}{\beta^2 (1 - \sin^2 \theta_1 \cos^2 \gamma_1)} \left[4 - 3M^2 + \frac{2 \cos^4 \gamma_1}{\sin^2 \gamma_1 (1 - \sin^2 \theta_1 \cos^2 \gamma_1)} \right], \quad K^2 = M^2,
\]
\[
A = \frac{M^2 - 1}{M^2 \sqrt{1 - \sin^2 \theta_1 \cos^2 \gamma_1}} \sqrt{\frac{\cos^4 \gamma_1}{\sin^2 \gamma_1 (1 - \sin^2 \theta_1 \cos^2 \gamma_1)}} - M^2,
\]
\[
C_\chi = -\frac{2 \sin \gamma_1}{M^2 \beta (1 - \sin^2 \theta_1 \cos^2 \gamma_1)}.
\]
Comparing (A.3) with (3.61), one sees that the solution found in [65] corresponds actually to \(M^2 = 1\) which leads to \(A_{SS} = 0\). Hence, the “dual” CSG solution is of the type (3.63).

C Explicit exact solutions in \(AdS_3 \times S^3 \times T^4\) with NS-NS B-field

Let start with the solutions for the string coordinates in \(AdS_3\) subspace. By using (3.15), (3.155) and (3.156), one can find that the scalar potential \(U_r\) in (3.158) is given by
\[
U_r(r) = \frac{1}{2(\alpha^2 - \beta^2)} \left[\left(\alpha \Lambda^\phi \right)^2 r^2 - \left(\alpha \Lambda^t \right)^2 (1 + r^2) + \left(C_\phi + q \alpha \Lambda^t r^2 \right)^2 - \left(C_t - q \alpha \Lambda^\phi r^2 \right)^2 \right] \left(\Lambda^\phi \right)^2 - \left(\Lambda^t \right)^2 \frac{1 + r^2}{1 + r^2} \right].
\]
(A.4)

After introducing the variable
\[
y = r^2,
\]
and replacing (A.4) into (3.160) one can rewrite it in the following form
\[
d\xi = \frac{\alpha^2 - \beta^2}{2\alpha \sqrt{(1 - q^2) \left(\Lambda^\phi \right)^2 - \left(\Lambda^t \right)^2}} \frac{dy}{\sqrt{(y_p - y)(y - y_m)(y - y_n)}},
\]
(A.6)
where
\[
0 \leq y_m < y < y_p, \quad y_n < 0,
\]
and y_p, y_m, y_n satisfy the relations

$$y_p + y_m + y_n = \frac{1}{\alpha^2(1-q^2) \left[(\Lambda\phi)^2 - (\Lambda t)^2 \right]} \left[C_r (\alpha^2 - \beta^2) - \alpha \left(\alpha (\Lambda\phi)^2 - 2\alpha (\Lambda t)^2 \right) + 2q \left(C_\phi \Lambda t + C_t \Lambda\phi \right) + q^2 \alpha (\Lambda t)^2 \right],$$

$$y_p y_m + y_p y_n + y_m y_n = -\frac{1}{\alpha^2(1-q^2) \left[(\Lambda\phi)^2 - (\Lambda t)^2 \right]} \left[C_r (\alpha^2 - \beta^2) + C_t^2 - C_\phi^2 + C_t^2 (\Lambda\phi)^2 - 2q\alpha C_\phi \Lambda t \right],$$

$$y_p y_m y_n = -\frac{C_\phi^2}{\alpha^2(1-q^2) \left[(\Lambda\phi)^2 - (\Lambda t)^2 \right]}.$$

Integrating (A.6) and inverting

$$\xi(y) = -\frac{\alpha^2 - \beta^2}{\alpha \sqrt{(1-q^2) \left[(\Lambda\phi)^2 - (\Lambda t)^2 \right]} (y_p - y_n)} \arcsin \left(\frac{y_p - y_n}{y_p - y m} \right)$$

to $y(\xi)$, one finds the following solution

$$y(\xi) = (y_p - y_n) \, d^n \left[\frac{\alpha \sqrt{(1-q^2) \left[(\Lambda\phi)^2 - (\Lambda t)^2 \right]} (y_p - y_n)}{\alpha^2 - \beta^2} \xi, \frac{y_p - y_m}{y_p - y_n} \right] + y_n. \quad (A.8)$$

Next, we will compute $\tilde{X}^t(\xi)$ and $\tilde{X}^\phi(\xi)$ entering (3.157). Integrating

$$\frac{d\tilde{X}^t}{d\xi} = \frac{1}{\alpha^2 - \beta^2} \left[\beta \Lambda t + q\alpha \Lambda\phi - \left(C_t + q\alpha \Lambda\phi \right) \frac{1}{1+y} \right],$$

$$\frac{d\tilde{X}^\phi}{d\xi} = \frac{1}{\alpha^2 - \beta^2} \left(\beta \Lambda\phi + q\alpha \Lambda t + \frac{C_\phi}{y} \right),$$

and using (A.8), we obtain the following solutions for the string coordinates t, ϕ, in accordance
with our ansatz

\[t(\tau, \sigma) = \Lambda t + \frac{1}{\alpha \sqrt{(1 - q^2) \left[(\Lambda \phi)^2 - (\Lambda t)^2 \right]} (y_p - y_n)} \]

(A.9)

\[\left[(\beta \Lambda t + q \alpha \Lambda \phi) F \left(\arcsin \sqrt{\frac{y_p - y}{y_p - y_m}, \frac{y_p - y_m}{y_p - y_n}} \right) \right. \]

\[\left. - \frac{C_t + q \alpha \Lambda \phi}{1 + y_p} \Pi \left(\arcsin \sqrt{\frac{y_p - y}{y_p - y_m}, \frac{y_p - y_m}{1 + y_p}, \frac{y_p - y_m}{y_p - y_n}} \right) \right] \]

(A.10)

\[\phi(\tau, \sigma) = \Lambda \phi + \frac{1}{\alpha \sqrt{(1 - q^2) \left[(\Lambda \phi)^2 - (\Lambda t)^2 \right]} (y_p - y_n)} \]

Let us compute now the string energy and spin on the solutions found. Starting from (3.162), (3.163), we obtain

\[E_s = \frac{2T}{\sqrt{(1 - q^2) \left[(\Lambda \phi)^2 - (\Lambda t)^2 \right]} (y_p - y_n)} \]

(A.11)

\[\left[\left(\Lambda t - \frac{\beta}{\alpha^2} C_t - \frac{C_\phi}{\alpha} \right) K \left(1 - \frac{y_m - y_n}{y_p - y_n} \right) + \right. \]

\[(1 - q^2) \Lambda t \left(y_n K \left(1 - \frac{y_m - y_n}{y_p - y_n} \right) + (y_p - y_n) E \left(1 - \frac{y_m - y_n}{y_p - y_n} \right) \right) \]

\[S = \frac{2T}{\sqrt{(1 - q^2) \left[(\Lambda \phi)^2 - (\Lambda t)^2 \right]} (y_p - y_n)} \]

(A.12)

\[\left[\left(\frac{\beta}{\alpha^2} C_\phi + \frac{C_t}{\alpha} + \frac{\Lambda \phi q^2}{\alpha} \right) K \left(1 - \frac{y_m - y_n}{y_p - y_n} \right) + \right. \]

\[(1 - q^2) \Lambda \phi \left(y_n K \left(1 - \frac{y_m - y_n}{y_p - y_n} \right) + (y_p - y_n) E \left(1 - \frac{y_m - y_n}{y_p - y_n} \right) \right) \]

\[- \frac{q \alpha^2 C_\phi + \Lambda \phi q^2}{1 + y_p} \Pi \left(\frac{y_p - y_m}{1 + y_p}, 1 - \frac{y_m - y_n}{y_p - y_n} \right) \]

Now we turn to the \(S^3 \) subspace. By using (3.15), (3.155) and (3.156), one can show that the
scalar potential U_θ in (3.160) can be written as

$$U_\theta(\theta) = \frac{1}{2(\alpha^2 - \beta^2)} \left[\frac{(C_{\phi_2} - q\alpha\Lambda^{\phi_1}) \chi}{\chi} \right]^2 + \frac{(C_{\phi_1} + q\alpha\Lambda^{\phi_2})}{1 - \chi} \right]^2 + \alpha^2 \left(\Lambda^{\phi_2} \right)^2 \chi + \alpha^2 \left(\Lambda^{\phi_1} \right)^2 (1 - \chi),$$

(A.13)

where we introduced the notation

$$\chi \equiv \cos^2 \theta.$$

(A.14)

Replacing (A.13) in (3.160), one can see that it can be written in the form

$$d\xi = \frac{\alpha^2 - \beta^2}{2\alpha \sqrt{(1 - q^2) \left((\Lambda^{\phi_1})^2 - (\Lambda^{\phi_2})^2 \right)}} \frac{d\chi}{\sqrt{(\chi_p - \chi)(\chi - \chi_m)(\chi - \chi_n)}},$$

(A.15)

where

$$0 \leq \chi_m < \chi < \chi_p \leq 1, \quad \chi_n \leq 0,$$

and

$$\chi_p + \chi_m + \chi_n = \frac{1}{\alpha^2(1 - q^2) \left((\Lambda^{\phi_1})^2 - (\Lambda^{\phi_2})^2 \right)}$$

$$\left[-C_\theta(\alpha^2 - \beta^2) - \left(\alpha\Lambda^{\phi_2} \right)^2 + (2 - q^2) \left(\alpha\Lambda^{\phi_1} \right)^2 - 2q\alpha \left(C_{\phi_2}\Lambda^{\phi_1} + C_{\phi_1}\Lambda^{\phi_2} \right) \right],$$

$$\chi_p \chi_m + \chi_p \chi_n + \chi_m \chi_n = \frac{1}{\alpha^2(1 - q^2) \left((\Lambda^{\phi_1})^2 - (\Lambda^{\phi_2})^2 \right)}$$

$$\left[\left(\alpha\Lambda^{\phi_1} \right)^2 + C_{\phi_2}^2 - C_{\phi_2}^2 - C_\theta(\alpha^2 - \beta^2) - 2q\alpha C_{\phi_2}\Lambda^{\phi_1} \right],$$

$$\chi_p \chi_m \chi_n = -\frac{(C_{\phi_2})^2}{\alpha^2(1 - q^2) \left((\Lambda^{\phi_1})^2 - (\Lambda^{\phi_2})^2 \right)}.$$

Integrating (A.15), one finds the following solution for χ

$$\chi(\xi) = (\chi_p - \chi_n) \frac{d\eta^2}{\alpha^2 - \beta^2} \left[\frac{\alpha \sqrt{(1 - q^2) \left((\Lambda^{\phi_1})^2 - (\Lambda^{\phi_2})^2 \right)}}{\alpha^2(1 - q^2) \left((\Lambda^{\phi_1})^2 - (\Lambda^{\phi_2})^2 \right)} (\chi_p - \chi_m) \right] + \chi_n.$$

(A.16)
Now we are ready to find the “orbit” $r = r(x)$. Written in terms of y and χ, it is given by

$$
y = (y_p - y_n) \, \frac{1}{\sqrt{(1 - q^2)(\Lambda^2 - (\Lambda^2)^2)} (\chi_p - \chi_n)} \sqrt{\left(\frac{\chi_p - \chi}{\chi_p - \chi_n} \frac{y_p - y_n}{y_p - y_n}\right)} + y_n.
$$

(A.17)

Next, we compute $\tilde{X}_{\phi_1}(\xi)$ and $\tilde{X}_{\phi_2}(\xi)$. Replacing the results in our ansatz, we derive the following solutions for the isometric coordinates on S^3

$$
\phi_1 = \Lambda^1 \tau + \frac{1}{\alpha \sqrt{(1 - q^2)(\Lambda^2 - (\Lambda^2)^2)} (\chi_p - \chi_n)} \left[\beta \Lambda^1 - q \alpha \Lambda^2 \right] F \left(\arcsin \sqrt{\frac{\chi_p - \chi}{\chi_p - \chi_n}, \frac{\chi_p - \chi_m}{\chi_p - \chi_n}} \right) \\
+ \frac{C_{\phi_1} + q \alpha \Lambda^2}{\chi_p} \Pi \left(\arcsin \sqrt{\frac{\chi_p - \chi}{\chi_p - \chi_n}, 1 - \chi_m, \chi_p - \chi_n} \right).
$$

(A.18)

$$
\phi_2 = \Lambda^2 \tau + \frac{1}{\alpha \sqrt{(1 - q^2)(\Lambda^2 - (\Lambda^2)^2)} (\chi_p - \chi_n)} \left[\beta \Lambda^2 - q \alpha \Lambda^1 \right] F \left(\arcsin \sqrt{\frac{\chi_p - \chi}{\chi_p - \chi_n}, \frac{\chi_p - \chi_m}{\chi_p - \chi_n}} \right) \\
+ \frac{C_{\phi_1}}{\chi_p} \Pi \left(\arcsin \sqrt{\frac{\chi_p - \chi}{\chi_p - \chi_n}, 1 - \chi_m, \chi_p - \chi_n} \right).
$$

(A.19)

Based on (3.164) and the solutions for the string coordinates on S^3 we found, we can write down the explicit expressions for the conserved angular momenta J_1 and J_2 computed on the solutions. The result is

$$
J_1 = \frac{2T}{\sqrt{(1 - q^2)(\Lambda^2 - (\Lambda^2)^2)} (\chi_p - \chi_n)} \left[\frac{\beta}{\alpha^2} C_{\phi_1} + \Lambda^1 \right] K \left(1 - \frac{\chi_m - \chi_n}{\chi_p - \chi_n} \right) \\
-(1 - q^2) \Lambda^1 \left(\chi_n K \left(1 - \frac{\chi_m - \chi_n}{\chi_p - \chi_n} \right) + (\chi_p - \chi_n) \right) E \left(1 - \frac{\chi_m - \chi_n}{\chi_p - \chi_n} \right) \right].
$$

(A.20)
Now, let us go to the T^4 subspace. Since in terms of φ^i coordinates the metric is flat and there is no B-field, the solutions for the string coordinates are simple and given by

$$
\varphi^i(\tau, \sigma) = \Lambda^i \tau + \frac{1}{\alpha^2 - \beta^2} \left(C_i + \beta \Lambda^i \right) \xi.
$$

The conserved charges (3.165) can be computed to be

$$
J^T_i = \frac{2\pi\alpha T}{\alpha^2 - \beta^2} \left(\frac{\beta}{\alpha} C_i + \alpha \Lambda^i \right).
$$

If we impose the periodicity conditions

$$
\varphi^i(\tau, \sigma) = \varphi^i(\tau, \sigma + 2L) + 2\pi n_i, \quad n_i \in \mathbb{Z},
$$

the integration constants C_i are fixed in terms of the embedding parameters. Namely,

$$
C_i = \frac{\pi n_i}{L \alpha} (\alpha^2 - \beta^2) - \beta \Lambda^i.
$$

Replacing (A.24) into (A.22) and (A.23), one finally finds

$$
\varphi^i = \left(\Lambda^i + \frac{\beta}{\alpha} \frac{\pi n_i}{L} \right) \tau + \frac{\pi n_i}{L} \sigma,
$$

$$
J^T_i = 2\pi T \left(\Lambda^i + \frac{\beta}{\alpha} \frac{\pi n_i}{L} \right).
$$

Let us finally point out that the Virasoro constraints impose the following two conditions on the embedding parameters and integrations constants in the solutions found

$$
C_r + C_\theta = 0, \quad \Lambda^i C_i + \Lambda^\phi C_\phi + \Lambda^{\phi_1} C_{\phi_1} + \Lambda^{\phi_2} C_{\phi_2} - \Lambda^i \left(\beta \Lambda^i - (\alpha^2 - \beta^2) \frac{\pi n_i}{\alpha L} \right) = 0.
$$
D M2-brane GM and SS

For the GM-like case by using that $\tilde{C}_2 = 0$, $\tilde{\kappa}^2 = \omega_1^2$ in (3.364), (3.365), one finds

$$
\cos \theta(\xi) = \frac{\cos \tilde{\theta}_0}{\cosh(D_0 \xi)}, \quad \sin^2 \tilde{\theta}_0 = \frac{\beta^2 \omega_1^2}{A^2(\omega_1^2 - \omega_2^2)}, \quad D_0 = \frac{\tilde{A} \sqrt{\omega_1^2 - \omega_2^2}}{A^2 - \beta^2} \cos \tilde{\theta}_0,
$$

$$
\varphi_1(\tau, \xi) = \omega_1 \tau + \arctan \left[\cot \tilde{\theta}_0 \tanh(D_0 \xi) \right], \quad \varphi_2(\tau, \xi) = \omega_2 \left(\tau + \frac{\beta A^2}{A^2 - \beta^2} \xi \right).
$$

For the SS-like solutions when $\tilde{C}_2 = 0$, $\tilde{\kappa}^2 = \omega_1^2 \tilde{A}^2 / \beta^2$, by solving the equations (3.364), (3.365), one arrives at

$$
\cos \theta(\xi) = \frac{\cos \tilde{\theta}_1}{\cosh(D_1 \xi)}, \quad \sin^2 \tilde{\theta}_1 = \frac{\tilde{A}^2 \omega_1^2}{\beta^2(\omega_1^2 - \omega_2^2)}, \quad D_1 = \frac{\tilde{A} \sqrt{\omega_1^2 - \omega_2^2}}{A^2 - \beta^2} \cos \tilde{\theta}_1,
$$

$$
\varphi_1(\tau, \xi) = \omega_1 \left(\tau - \frac{\xi}{\beta} \right) - \arctan \left[\cot \tilde{\theta}_1 \tanh(D_1 \xi) \right], \quad \varphi_2(\tau, \xi) = \omega_2 \left(\tau + \frac{\beta}{A^2 - \beta^2} \xi \right).
$$

The energy-charge relations computed on the above membrane solutions were found in [91], and in our notations read

$$
\sqrt{1 - r_0^2} E - \frac{J_1}{2} = \sqrt{\left(\frac{J_2}{2} \right)^2 + \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2}}, \quad \frac{p}{2} = \frac{\pi}{2} - \tilde{\theta}_0,
$$

(A.27)

for the GM-like case, and

$$
\sqrt{1 - r_0^2} E - \frac{\sqrt{\lambda}}{2\pi} \Delta \varphi_1 = \frac{\lambda}{\pi} \frac{p}{2}, \quad \frac{J_1}{2} = \sqrt{\left(\frac{J_2}{2} \right)^2 + \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2}}, \quad \frac{p}{2} = \frac{\pi}{2} - \tilde{\theta}_1,
$$

(A.28)

for the SS-like solution, where

$$
\lambda = \left[2\pi^2 T_2 R^2 r_0 (1 - r_0^2) \right]^2.
$$

(A.29)

D.1 Finite-Size Effects

For $\tilde{C}_2 = 0$, Eq. (3.361) can be written as

$$
(cos \theta)' = \pm \frac{\tilde{A} \sqrt{\omega_1^2 - \omega_2^2}}{A^2 - \beta^2} \sqrt{(z_+^2 - \cos^2 \theta)(\cos^2 \theta - z_-^2)},
$$

(A.30)

where

$$
z_\pm^2 = \frac{1}{2(1 - \frac{\omega_2^2}{\omega_1^2})} \left\{ q_1 + q_2 - \frac{\omega_2^2}{\omega_1^2} \pm \sqrt{(q_1 - q_2)^2 - 2(q_1 + q_2 - 2q_1 q_2 - \frac{\omega_2^2}{\omega_1^2}) \frac{\omega_2^2}{\omega_1^2}} \right\},
$$

$$
q_1 = 1 - \tilde{\kappa}^2 / \omega_1^2, \quad q_2 = 1 - \beta^2 \tilde{\kappa}^2 / \tilde{A}^2 \omega_1^2.
$$

204
The solution of (A.30) is
\[
\cos \theta = z_+ \text{dn}(C\xi|m), \quad C = \frac{A\sqrt{\omega_1^2 - \omega_2^2}}{A^2 - \beta^2} z_+, \quad m \equiv 1 - z_-^2/z_+^2. \tag{A.31}
\]

The solutions of Eqs. (3.365) now read
\[
\mu_1 = 2 \frac{\beta/A}{z_+ \sqrt{1 - \omega_2^2/\omega_1^2}} \left[C\xi - \frac{\tilde{\kappa}^2/\omega_1^2}{1 - z_+^2} \Pi\left(\frac{z_+^2 - z_-^2}{1 - z_+^2} \bigg| m \right) \right],
\]
\[
\mu_2 = 2 \frac{\beta \omega_2/A_1}{z_+ \sqrt{1 - \omega_2^2/\omega_1^2}} C\xi.
\]

Our next task is to find out what kind of energy-charge relations can appear for the M2-brane solution in the limit when the energy \(E \to \infty \). It turns out that the semiclassical behavior depends crucially on the sign of the difference \(\tilde{A}^2 - \beta^2 \).

D.1.1 The M2-brane GM

We begin with the M2-brane GM, i.e. \(\tilde{A}^2 > \beta^2 \). In this case, one obtains from (3.363) the following expressions for the conserved energy \(E \) and the angular momenta \(J_1, J_2 \)
\[
E = 2 \frac{\tilde{\kappa}(1 - \beta^2/\tilde{A}^2)}{\omega_1 z_+ \sqrt{1 - \omega_2^2/\omega_1^2}} K\left(1 - z_-^2/z_+^2 \right),
\]
\[
J_1 = 2 \frac{z_+}{\sqrt{1 - \omega_2^2/\omega_1^2}} \left[\frac{1 - \beta^2 \tilde{\kappa}^2/\tilde{A}^2}{z_+^2} \omega_1^2 \omega_2 \right] K\left(1 - z_-^2/z_+^2 \right) - E\left(1 - z_-^2/z_+^2 \right), \tag{A.32}
\]
\[
J_2 = 2 \frac{z_+ \omega_2/\omega_1}{\sqrt{1 - \omega_2^2/\omega_1^2}} E\left(1 - z_-^2/z_+^2 \right).
\]

Here, we have used the notations
\[
E = \frac{2\pi}{\sqrt{\lambda}} \sqrt{1 - \tilde{r}_0^2 E}, \quad J_1 = \frac{2\pi}{\sqrt{\lambda}} \frac{J_1}{2}, \quad J_2 = \frac{2\pi}{\sqrt{\lambda}} \frac{J_2}{2}, \tag{A.33}
\]
where \(\lambda \) is defined in (A.29). The computation of \(\Delta \varphi_1 \) gives
\[
p \equiv \Delta \varphi_1 = 2 \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\theta} \mu_1' = \frac{2\beta/\tilde{A}}{z_+ \sqrt{1 - \omega_2^2/\omega_1^2}} \left[\frac{\tilde{\kappa}^2/\omega_1^2}{1 - z_+^2} \Pi\left(\frac{z_+^2 - z_-^2}{1 - z_+^2} \bigg| 1 - z_-^2/z_+^2 \right) - K\left(1 - z_-^2/z_+^2 \right) \right]. \tag{A.34}
\]
Expanding the elliptic integrals about $z^2 = 0$, one arrives at
\[E - J_1 = \sqrt{J_2^2 + 4 \sin^2(p/2)} - \frac{16 \sin^4(p/2)}{\sqrt{J_2^2 + 4 \sin^2(p/2)}} \] (A.35)

\[\exp \left[-\frac{2 \left(J_1 + \sqrt{J_2^2 + 4 \sin^2(p/2)} \right) \sqrt{J_2^2 + 4 \sin^2(p/2) \sin^2(p/2)}}{J_2^2 + 4 \sin^4(p/2)} \right]. \]

It is easy to check that the energy-charge relation (A.35) coincides with the one found in [67], describing the finite-size effects for dyonic GM. The difference is that in the string case the relations between E, J_1, J_2 and E, J_1, J_2 are given by
\[E = \frac{2\pi}{\sqrt{\lambda}} E, \quad J_1 = \frac{2\pi}{\sqrt{\lambda}} J_1, \quad J_2 = \frac{2\pi}{\sqrt{\lambda}} J_2, \]

while for the M2-brane they are written in (A.33).

D.1.2 The M2-brane SS

Let us turn our attention to the M2-brane SS, when $\tilde{A}^2 < \beta^2$. The computation of the conserved quantities (3.363) and $\Delta \varphi_1$ now gives
\[E = \frac{2\kappa (\beta^2 / \tilde{A}^2 - 1)}{\omega_1 \sqrt{1 - \omega_2^2 / \omega_1^2} z_+} K(1 - z_-^2 / z_+^2), \]
\[J_1 = \frac{2z_+}{\sqrt{1 - \omega_2^2 / \omega_1^2}} \left[E \left(1 - z_-^2 / z_+^2 \right) - \frac{1 - \beta^2 \kappa^2 / \tilde{A}^2 \omega_2^2}{z_+^2} K \left(1 - z_-^2 / z_+^2 \right) \right], \]
\[J_2 = -\frac{2z_+ \omega_2 / \omega_1}{\sqrt{1 - \omega_2^2 / \omega_1^2}} E \left(1 - z_-^2 / z_+^2 \right), \]
\[\Delta \varphi_1 = -\frac{2\beta / \tilde{A}}{\sqrt{1 - \omega_2^2 / \omega_1^2}} \left[K \left(\frac{\kappa^2 / \omega_1^2}{1 - z_+^2} \Pi \left(\frac{z_-^2 - z_+^2}{1 - z_+^2} \right) \right) - \frac{z_-^2 - z_+^2}{1 - z_+^2} \right]. \]

$E - \Delta \varphi_1$ can be derived as
\[E - \Delta \varphi_1 = \arcsin N(J_1, J_2) + 2 \left(J_1^2 - J_2^2 \right) \sqrt{\frac{4}{4 - \left(J_1^2 - J_2^2 \right)^2}} - 1 \] (A.36)

\[\times \exp \left[-\frac{2 \left(J_1^2 - J_2^2 \right) N(J_1, J_2)}{\left(J_1^2 - J_2^2 \right)^2 + 4 J_2^2} \left[\Delta \varphi + \arcsin N(J_1, J_2) \right] \right], \]
\[N(J_1, J_2) = \frac{1}{2} \left[4 - \left(J_1^2 - J_2^2 \right) \right] \sqrt{\frac{4}{4 - \left(J_1^2 - J_2^2 \right)^2}} - 1. \]

Finally, by using the SS relation between the angular momenta
\[J_1 = \sqrt{J_2^2 + 4 \sin^2(p/2)}, \]

206
we obtain
\[E - \Delta \phi_1 = p + 8 \sin^2 \frac{p}{2} \tan \frac{p}{2} \exp \left(-\frac{\tan \frac{p}{2} (\Delta \phi_1 + p)}{\tan^2 \frac{p}{2} + J_2^2 \csc^2 p} \right). \] (A.37)

This result coincides with the string result found in \[16\]. As in the GM case, the difference is in the identification (A.33).

References

[1] M. Green, J. Schwarz, E. Witten, *Superstring Theory*, vol.1,2, Cambridge Univ. Press, 1987.
[2] C. Vafa, *Lectures on Strings and Dualities*, hep-th/9702201.
[3] P. Bozhilov, B. Dimitrov, *Null strings and membranes in Demianski-Newman background*, Phys.Lett.B472:54-58,2000, e-Print: hep-th/9909092.
[4] P. Bozhilov, *Null branes in string theory backgrounds*, Phys.Rev.D62:105001,2000, e-Print: hep-th/9911210.
[5] P. Bozhilov, *Exact string solutions in nontrivial backgrounds*, Phys.Rev.D65:026004,2001, e-Print: hep-th/0103154.
[6] P. Bozhilov, *Probe branes dynamics: Exact solutions in general backgrounds*, Nucl.Phys.B656:199-225,2003, e-Print: hep-th/0211181.
[7] D. Aleksandrova, P. Bozhilov, *On the classical string solutions and string/field theory duality*, JHEP 0308:018,2003, e-Print: hep-th/0307113.
[8] D. Aleksandrova, P. Bozhilov, *On the classical string solutions and string/field theory duality 2*, Int.J.Mod.Phys.A19:4475-4502,2004, e-Print: hep-th/0308087.
[9] P. Bozhilov, *M2-brane solutions in AdS(7) x S**4*, JHEP 0310:032,2003, e-Print: hep-th/0309215.
[10] P. Bozhilov, *Membrane solutions in M-theory*, JHEP 0508:087,2005, e-Print: hep-th/0507149.
[11] P. Bozhilov, *Exact rotating membrane solutions on a G(2) manifold and their semiclassical limits*, JHEP 0603:001,2006, e-Print: hep-th/0511253.
[12] P. Bozhilov, *Rotating strings and D2-branes in type IIA reduction of M-theory on G(2) manifold and their semiclassical limits*, JHEP 0608:029,2006, e-Print: hep-th/0605157.
[13] P. Bozhilov, *A note on two-spin magnon-like energy-charge relations from M-theory viewpoint*, arXiv:hep-th/0612175.
[14] P. Bozhilov, *Neumann and Neumann-Rosochatius integrable systems from membranes on AdS(4) x S**7*, JHEP 0708:073,2007, e-Print: arXiv:0704.3082 [hep-th].
[15] P. Bozhilov, *Spin chain from membrane and the Neumann-Rosochatius integrable system*, Phys.Rev.D76:106003,2007, e-Print: arXiv:0706.1443 [hep-th].
[33] C. G. Callan, Jr., J. M. Maldacena, *Brane Dynamics From the Born-Infeld Action*, Nucl.Phys. B 513 (1998) 198 [hep-th/9708147]

[34] M. J. Duff, R. R. Khuri, J. X. Lu, *String Solitons*, Phys.Rept. 259 (1995) 213 [hep-th/9412184]

[35] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998) [arXiv:hep-th/9711200];
S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B428, 105 (1998) [arXiv:hep-th/9802109];
E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

[36] E. Kiritsis, *Supergravity, D-brane Probes and Thermal Super Yang-Mills: a Comparison*, JHEP 10 (1999) 010 [hep-th/9906206]

[37] A. Kehagias and E. Kiritsis, *Mirage Cosmology*, JHEP 11 (1999) 022 [hep-th/9910174]

[38] P. A. M. Dirac, *Lectures on Quantum Mechanics* (Yeshiva University, New York, 1964).

[39] M. A. Zeid and C. Hull, *Intrinsic geometry of D-branes*, Phys. Lett. B 404 (1997) 264 [hep-th/9704021]

[40] U. Lindstrom and R. von Unge, *A picture of D-branes at strong coupling*, Phys. Lett. B 403 (1997) 233 [hep-th/9704051].

[41] E. Bergshoeff and P. Townsend, *Super D-branes revisited*, Nucl. Phys. B 531 (1998) 226 [hep-th/9804011].

[42] H. Gustafsson and U. Lindstrom, *A picture of D-branes at strong coupling II. Spinning partons*, Phys. Lett. B 440 (1998) 43 [hep-th/9807064].

[43] J. Lidsey, D. Wands and E. Copeland, *Superstring cosmology*, Phys. Rep. 337 (2000) 343 [hep-th/9909061].

[44] B. Craps, D. Kutasov and G. Rajesh, *String propagation in the presence of cosmological singularities*, JHEP 06 (2002) 053 [hep-th/0205101].

[45] R. Easther, B. Greene, M. Jackson and D. Kabat, *Brane gas cosmology in M-theory: late time behavior*, [hep-th/0211124].

[46] P. Bozhilov, *Exact brane solutions in curved backgrounds*, in Proceedings of the Third International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 14-23 June 2001 [hep-th/0108162].

[47] G. Horowitz, J. Maldacena, and A. Strominger, Phys. Lett. B 383, 151 (1996). [hep-th/9603109]

[48] J. Maldacena, *Black Holes and D-branes*, in *1997 Summer School in High Energy Physics and Cosmology*, (Word Scientific, Singapore, 1998)

[49] N. Beisert et al., “Review of AdS/CFT Integrability: An Overview”, Lett. Math. Phys. 99 3 (2012), [arXiv:1012.3982v5[hep-th]].
A.A. Tseytlin, “Review of AdS/CFT Integrability, Chapter II.1: Classical $AdS_5 \times S^5$ string solutions”, Lett. Math. Phys. 99 103-125 (2012) [arXiv:hep-th/1012.3986]

S. S. Gubser, I. R. Klebanov, A. M. Polyakov, “A semi-classical limit of the gauge/string correspondence”, Nucl. Phys. B636 99-114 (2002) [arXiv:hep-th/0204051]

J. Ambjorn, R.A. Janik, and C. Kristjansen, “Wrapping interactions and a new source of corrections to the spin-chain / string duality”, Nucl. Phys. B736, 288 (2006) [arXiv:hep-th/0510171]; R.A. Janik and T. Lukowski, “Wrapping interactions at strong coupling - the giant magnon”, Phys. Rev. D76, 126008 (2007) [arXiv:hep-th/0708.2208]

A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and series. v.3: More special functions, NY, Gordon and Breach, 1990.

S. A. Hartnoll and C. Nunez, Rotating membranes on G_2 manifolds, logarithmic anomalous dimensions and $\mathcal{N}=1$ duality, JHEP 02 (2003) 049 [hep-th/0210218]

Andreas Brandhuber, Jaume Gomis, Steven S. Gubser, Sergei Gukov, Gauge Theory at Large N and New G_2 Holonomy Metrics, Nucl. Phys. B 611 (2001) 179-204 [hep-th/0106034]

M. Kruczenski, J. Russo and A.A. Tseytlin, JHEP 0610 002 (2006).

M. Kruczenski, Phys. Rev. Lett. 93 161602 (2004)

M. Kruczenski, J. Russo, A.A. Tseytlin, “Spiky strings and giant magnons on S5”, JHEP 0610 002 (2006) [arXiv:hep-th/0607044v3]

K. Pohlmeyer, “Integrable Hamiltonian Systems and Interactions Through Quadratic Constraints”, Commun. Math. Phys. 46 207 (1976)

H-Yu Chen, N. Dorey and K. Okamura, “Dyonic Giant Magnons”, JHEP 0609 024 (2006) [arXiv:hep-th/0605155v2]

K. Okamura, R. Suzuki, “A Perspective on Classical Strings from Complex Sine-Gordon Solitons”, Phys.Rev. D 75 046001 (2007) [arXiv:hep-th/0609026v4]

D.M. Hofman and J. Maldacena, “Giant magnons”, J. Phys. A 39 13095-13118 (2006), [arXiv:hep-th/0604135v2]

R. Ishizeki, M. Kruczenski, “Single spike solutions for strings on S^2 and S^3”, Phys. Rev. D 76 126006 (2007) [arXiv:hep-th/0705.2429v2]

N.P. Bobev, R.C. Rashkov, “Spiky Strings, Giant Magnons and beta-deformations”, Phys. Rev. D 76 046008 (2007) [arXiv:hep-th/0706.0442v2]

R. Ishizeki, M. Kruczenski, M. Spradlin, A. Volovich, “Scattering of single spikes” JHEP 0802 009 (2008) [arXiv:hep-th/0710.2300v2]

G. Arutyunov, S. Frolov, M. Zamaklar, “Finite-size Effects from Giant Magnons”, Nucl. Phys. B 778 1 (2007) [arXiv:hep-th/0606126v2]

Y. Hatsuda, R. Suzuki, “Finite-Size Effects for Dyonic Giant Magnons”, [arXiv:hep-th/0801.0747v4]
[68] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “$\mathcal{N} = 6$ superconformal Chern-Simons-matter theories, M2-branes and their gravity duals”, JHEP 810:091,2008, [arXiv:hep-th/0806.1218v3]

[69] C. Ahn, P. Bozhilov and R. C. Rashkov, “Neumann-Roschachius integrable system for strings on $AdS_4 \times \mathbb{CP}^3$,” JHEP 0809 017 (2008), [arXiv:hep-th/0807.3134v2]

[70] D. Gaiotto, S. Giombi and X. Yin, “Spin Chains in $\mathcal{N} = 6$ Superconformal Chern-Simons-Matter Theory,” [arXiv:hep-th/0806.4589v1]

[71] C. Ahn and R. I. Nepomechie, “$\mathcal{N} = 6$ super Chern-Simons theory S-matrix and all-loop Bethe ansatz equations,” JHEP 0809 010 (2008), [arXiv:hep-th/0807.1924v2].

[72] N. Beisert, “The $su(2|2)$ dynamic S-matrix,” [arXiv:hep-th/0511082];
N. Beisert, “The Analytic Bethe Ansatz for a Chain with Centrally Extended $su(2|2)$ Symmetry,” J. Stat. Mech. 0701, P017 (2007) [arXiv:nlin/0610017]

[73] G. Arutyunov, S. Frolov and M. Zamaklar, ‘The Zamolodchikov-Faddeev algebra for $AdS_5 \times S^5$ superstring,” JHEP 0704, 002 (2007) [arXiv:hep-th/0612229]

[74] Z. Bajnok and R. A. Janik, “Four-loop perturbative Konishi from strings and finite size effects for multiparticle states”, [arXiv:hep-th/0807.0399]

[75] Y. Hatsuda and R. Suzuki, “Finite-Size Effects for multi-magnon states”, [arXiv:0807.0643]

[76] Y. Hatsuda and R. Suzuki, “Finite-Size Effects for Dyonic Giant Magnons,” Nucl. Phys. B 800 (2008) 349, [arXiv:0801.0747]

[77] R. G. Leigh and M. J. Strassler, “Exactly marginal operators and duality in four-dimensional $\mathcal{N} = 1$ supersymmetric gauge theory”, Nucl. Phys. B 447 95 (1995), [arXiv:hep-th/9503121].

[78] O. Lunin and J. Maldacena, “Deforming field theories with $U(1) \times U(1)$ global symmetry and their gravity duals”, JHEP 0505 033 (2005), [arXiv:hep-th/0502086]

[79] S. Frolov, “Lax pair for strings in Lunin-Maldacena background”, JHEP 0505 069 (2005), [arXiv:hep-th/0503201]

[80] S. Ananth, S. Kovacs, H. Shimada, “Proof of all-order finitness for planar beta-deformed Yang-Mills”, JHEP 0701 046 (2007), [arXiv:hep-th/0609149]

[81] N. Beisert and R. Roiban, “Beauty and the twist: the Bethe ansatz for twisted $\mathcal{N} = 4$ SYM”, JHEP 0508 039 (2005), [arXiv:hep-th/0505187]

[82] D. Bykov and S. Frolov, “Giant magnons in TsT-transformed $AdS_5 \times S^5$”, JHEP 0807 071 (2008), [arXiv:hep-th/0805.1070v2]

[83] L. F. Alday, G. Arutyunov, S. Frolov, “Green-Schwarz strings in TsT-transformed backgrounds”, JHEP 0606 018 (2006), [arXiv:hep-th/0512253]

[84] E. Imeroni, “On deformed gauge theories and their string/M-theory duals”, JHEP 0810 026 (2008), [arXiv:hep-th/0808.1271v4]
[85] M. Schimpf and R. C. Rashkov, “A note on strings in deformed $AdS_4 \times CP^3$: giant magnon and single spike solutions”, Mod. Phys. Lett. A24 3227 (2009), [arXiv:hep-th/0908.2246v3]

[86] B. Hoare, A. Stepanchuk, A.A. Tseytlin, “Giant magnon solution and dispersion relation in string theory in $AdS_3 \times S^3 \times \mathbb{T}^4$ with mixed flux”, [arXiv:hep-th/1311.1794]

[87] A. Babichenko, A. Dekel, O. Ohlsson Sax, “Finite-gap equations for strings on $AdS_3 \times S^3 \times T^4$ with mixed 3-form flux”, [arXiv:hep-th/1306.6918v1]

[88] F. Delduc, M. Magro, B. Vicedo, “An integrable deformation of the $AdS_5 \times S^5$ superstring action”, Phys. Rev. Lett. 112, 051601 (2014), [arXiv:1309.5850 [hep-th]]

[89] G. Arutyunov, R. Borsato, S. Frolov, “S-matrix for strings on η-deformed $AdS_5 \times S^5$”, JHEP 1404 (2014) 002, [arXiv:1312.3542 [hep-th]]

[90] G. Arutyunov, M. de Leeuw, S. van Tongeren “On the exact spectrum and mirror duality of the $(AdS_5 \times S^5)_\eta$ superstring”, [arXiv:1403.6104] [hep-th]

[91] P. Bozhilov, R. C. Rashkov, “On the multi-spin magnon and spike solutions from membranes”, Nucl.Phys.B794:429-441,2008, [arXiv:0708.0325] [hep-th]

[92] D. Freedman, S. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT$_d$/AdS$_{d+1}$ correspondence, Nucl.Phys. B546 1999 96, [hep-th/9804058]

[93] S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in $D = 4, \mathcal{N} = 4$ SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697, [hep-th/9806074]

[94] A.M. Polyakov, Gauge Fields and Space-Time, Int. J. Mod. Phys. A17 S1 (2002) 119, [hep-th/0110196]

[95] A. A. Tseytlin, On semiclassical approximation and spinning string vertex operators in $AdS_5 \times S^5$, Nucl.Phys. B664 (2003) 247, [hep-th/0304139]

[96] R. Roiban and A. A. Tseytlin, “On semiclassical computation of 3-point functions of closed string vertex operators in $AdS_5 \times S^5$” Phys. Rev. D82 106011 (2010) [arXiv:hep-th/1008.4921]

[97] R. Hernández, “Three-point correlators for giant magnons”, JHEP 1105 123 (2011) [arXiv:hep-th/1104.1160]

[98] Miguel S. Costa, Ricardo Monteiro, Jorge E. Santos, Dimitrios Zoakos, “On three-point correlation functions in the gauge/gravity duality ”, JHEP 1011 141 (2010), [arXiv:hep-th/1008.1070v2]

[99] P. Bozhilov, “Close to the Giant Magnons” [arXiv:hep-th/1010.5465v1]

[100] D. Berenstein, R. Corrado, W. Fischler, J. Maldacena, “The Operator Product Expansion for Wilson Loops and Surfaces in the Large N Limit”, Phys. Rev. D59 105023 (1999) [arXiv:hep-th/9809188v1]

[101] K. Zarembo, “Holographic three-point functions of semiclassical states”, JHEP 1009 030 (2010) [arXiv:hep-th/1008.1059]
[102] F. Wegner, “Anomalous dimensions of high-gradient operators in the n-vector model in $2 + \epsilon$ dimensions”, Z. Phys. B 78 33 (1990)

[103] A. A. Tseytlin, “On semiclassical approximation and spinning string vertex operators in $AdS_5 \times S^5$, Nucl. Phys. B 664, 247 (2003), [hep-th/0304139]

[104] R. Roiban and A. A. Tseytlin, “Quantum strings in $AdS_5 \times S^5$: strong-coupling corrections to dimension of Konishi operator”, JHEP 0911, 013 (2009), [arXiv:0906.4294]

[105] http://functions.wolfram.com