Weight at birth and adolescence and premenopausal breast cancer risk in a low-risk population

M Sanderson*1, XO Shu2, F Jin1, Q Dai1,2, Z Ruan3, Y-T Gao3 and W Zheng2

1University of Texas School of Public Health at Brownsville, University of Texas Brownsville, 80 Fort Brown, Brownsville, Texas, TX 78520, USA; 2Center for Health Services Research and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, TN 37232-8300, USA; 3Department of Epidemiology, Shanghai Cancer Institute, Shanghai, People’s Republic of China

We assessed breast cancer risk in relation to weight at birth and adolescence. In-person interviews were completed with the biological mothers of women aged 45 years and younger who participated in the Shanghai Breast Cancer Study in 1996–98 (288 cases, 350 controls). After adjustment for confounding, women who were 4000 g or more at birth were not at increased risk of breast cancer (odds ratio=0.7; 95% confidence interval 0.4–1.4) relative to women whose birth weight was 2500–2999 g. Compared with women of average perceived weight at age 15 years, no relation was apparent for heavier than average weight based on maternal report (odds ratio=0.7; 95% confidence interval 0.5–1.2) or self-report (odds ratio=1.0; 95% confidence interval 0.7–1.6). Perceived adolescent weight and height did not modify the association of birth weight with breast cancer risk. These results suggest that weight early in life is not related to premenopausal breast cancer risk in this low-risk population.

British Journal of Cancer (2002) 86, 84–88. DOI: 10.1038/sj/bjc/6600009 www.bjcancer.com

Keywords: breast cancer; birth weight; adolescent weight; adult body size

MATERIALS AND METHODS

Detailed methods of this population-based case–control study appear elsewhere (Gao et al., 2000). Briefly, all women aged 25–64 years who were permanent residents of urban Shanghai at the time of diagnosis of first primary invasive breast cancer (August 1996 through March 1998) were eligible for the study. Two senior pathologists histologically confirmed all diagnoses. We used rapid case ascertainment supplemented by the Shanghai Cancer Registry to identify breast cancer cases who had no prior history of cancer. A total of 1459 breast cancer cases (91.1% of eligible cases) completed a standardized in-person interview. Of potentially eligible cases, 109 refused (6.8%), 17 died prior to the interview (1.1%), and 17 were not located (1.1%).

The Shanghai Resident Registry, a listing of all permanent adult residents of urban Shanghai, was used to randomly select controls. Controls were frequency matched to cases on age (5-year interval) based on the number of incident breast cancer cases by age group reported to the Shanghai Cancer Registry from 1990 through 1993. Women who did not reside at the registered address at the time of the study were ineligible. A total of 1556 controls (90.4% of eligible controls) completed a standardized in-person interview. The remaining 166 potentially eligible controls (9.6%) refused to participate. Two women died prior to the interview and were excluded.

The study was approved by relevant institutional review boards in Shanghai and the United States. Women were interviewed at hospitals (cases) or at home (cases and controls) by trained interviewers. The subject questionnaire collected information on demographic factors, reproductive and medical histories, family history of cancer, use of oral contraceptives and hormone replacement therapy, diet, physical activity, lifestyle factors, and adolescent and adult body size. Women were asked how their perceived weight and height compared with their peers at the ages of 10,
15 and 20. After completing the interview, women were weighed and had their standing and sitting height, and waist and hip circumferences measured. Information on exposures pertained to the period before an assigned reference date, the diagnosis date for breast cancer cases and a similar date for controls.

The biological mothers of women the age of 45 and younger who resided in Shanghai provided detailed information about the subject’s adolescent diet and body size, and about her pregnancy with the subject. In-person interviews were completed with the mothers of 296 cases and 359 controls (with respective response rates of 79.6 and 81.8%). Eight cases and nine controls were subsequently excluded because they were postmenopausal, resulting in 288 cases and 350 controls for this analysis.

We used unconditional logistic regression to estimate the relative risk of breast cancer associated with weight at birth and adolescence while controlling for confounders (Breslow and Day, 1980). All variables were entered into models as dummy variables. In multiple logistic regression models, we assessed linear trend by treating categorical variables as continuous variables.

RESULTS

Table 1 compares known breast cancer risk factors of cases and controls. Compared to controls breast cancer cases were slightly older, had a lower income, and were more likely to have a history of fibroadenoma, a higher waist-to-hip ratio, and a later age at first birth. For consistency with most previous studies, subsequent analyses were adjusted for family history of breast cancer, menarcheal age, parity, and all of the preceding variables, except waist-to-hip ratio. Since adult waist-to-hip ratio may be in the causal pathway between birth and adolescent weight and breast cancer, it and adult body mass index were assessed as effect modifiers rather than as confounders. Further adjustment of birth weight for other perinatal factors did not materially change the odds ratios. Perceived weight is adjusted for perceived height at specific ages and vice versa.

Table 2 presents the odds ratios (ORs) and 95% confidence intervals (CIs) for breast cancer associated with maternal report of birth weight. After adjustment for confounding factors, women who were 4000 g or more at birth were not at increased risk of breast cancer (OR=0.7; 95% CI 0.4 – 1.4) relative to women whose birth weight was 2500 – 2999 g. When we dichotomized birth weight an identical odds ratio for women whose birth weight was 3500 g or more (OR=0.7, 95% CI 0.5 – 1.1) was found, compared with women who were less than 3500 g.

Table 1 Comparison of cases and controls for selected risk factors

	Cases* (n=288)	Controls* (n=350)	P-value
Age	39.6 ± 3.4	38.6 ± 3.9	<0.01
Education (%)			
Elementary education	1.0	0.0	
Middle+high school	91.7	90.9	
Profession, college and above	7.3	9.1	0.12
Per capita income (Yuan) (%)			
<4000	17.0	15.7	
4000–5999	48.6	37.7	
6000–7999	6.9	10.9	
8000–8999	14.6	24.6	
≥9000	12.9	11.1	<0.01
Breast cancer in first degree relatives (%)	1.7	2.6	0.47
Ever had breast fibroadenoma (%)	11.5	5.4	<0.01
Regular alcohol drinker (%)	3.5	3.1	0.82
Ever used oral contraceptives (%)	6.6	7.4	0.68
Exercised regularly (%)	11.1	14.3	0.23
Body mass index	22.5 ± 3.1	22.3 ± 3.1	0.36
Waist-to-hip ratio (%)	0.80 ± 0.06	0.78 ± 0.06	<0.01
Nulliparous (%)	6.6	5.1	0.43
Number of live births(%)	1.0 ± 0.19	1.0 ± 0.17	0.98
Age at first live birth(%) years	28.0 ± 3.3	27.5 ± 2.8	0.03
Months of breast feeding(%)	5.3 ± 4.9	5.4 ± 4.9	0.79
Menarcheal age (years)	14.3 ± 1.5	14.4 ± 1.6	0.45
Height (cm)	160.0 ± 5.1	159.9 ± 5.3	0.76
Weight (kg)	57.7 ± 8.8	56.9 ± 8.5	0.30

Subjects with missing values were excluded from the analysis. *Unless otherwise specified, mean±s.d. are presented. †Among women who had live births. ‡Among women who ever breast fed.
The risks for breast cancer associated with maternal and subject perceptions of subjects’ weight and height at the age of 15 separately and combined are shown in Table 3. For mothers and subjects whose perceptions differed we created a fourth category. Compared with women of average perceived weight at the age of 15, no relation was apparent for heavier than average weight based on maternal report (OR=0.7; 95% CI 0.4 – 1.1) or self-report/combined maternal and subject report (OR=1.1; 95% CI 0.6 – 2.2). Elevated risks of breast cancer were seen for women whose mothers perceived they were shorter than average at age 15 (OR=2.1, 95% CI 1.3 – 3.5), which was reflected in the combined maternal and subject estimate (OR=1.9, 95% CI 1.0 – 3.7). We calculated Spearman correlation coefficients to assess the reliability of maternal and subject estimate (OR=1.9, 95% CI 1.0 – 3.7). We calculated Spearman correlation coefficients to assess the reliability of maternal and subject perceptions. The correlations comparing maternal and subject perceptions were reasonably consistent (weight r=0.46, height r=0.59).

Table 3 shows the joint effect of birth weight, adolescent weight, and adolescent height on breast cancer risk. The referent group is women who were less than 3500 g at birth, and who at the age of 15 were of average weight and average height. Perceived adolescent weight and height did not modify the effect of birth weight on breast cancer risk or vice versa. Women whose birth weight was 3500 g or more and who perceived themselves to be of low or average adolescent weight and low or average adolescent height were at reduced risk of breast cancer (OR=0.4, 95% CI 0.2 – 0.8). Neither adult body mass index nor waist-to-hip ratio modified the effect of birth weight on breast cancer risk (data not shown).

Table 3

Cases (n=288)	Controls (n=350)	OR* (95% CI)	
Maternal perceptions			
Perceived weight at age 15 years			
<Average	67	75	1.2 (0.8 – 1.7)
Average	186	219	1.0 (Referent)
>Average	34	56	0.7 (0.4 – 1.1)
Perceived height at age 15 years			
<Average	46	34	2.1 (1.3 – 3.5)
Average	164	236	1.0 (Referent)
>Average	77	80	1.4 (0.9 – 2.0)
Subject perceptions			
Perceived weight at age 15 years			
<Average	101	132	1.0 (0.7 – 1.4)
Average	144	169	1.0 (Referent)
>Average	42	49	1.1 (0.7 – 1.7)
Perceived height at age 15 years			
<Average	47	61	1.1 (0.7 – 1.7)
Average	156	194	1.0 (Referent)
>Average	85	95	1.2 (0.8 – 1.7)
Maternal and subject perceptions combined			
Perceived weight at age 15 years			
<Average	51	55	1.1 (0.7 – 1.8)
Average	118	128	1.0 (Referent)
>Average	20	22	1.1 (0.6 – 2.2)
Did not agree	98	145	0.8 (0.5 – 1.1)
Perceived height at age 15 years			
<Average	25	21	1.9 (1.0 – 3.7)
Average	120	161	1.0 (Referent)
>Average	58	58	1.4 (0.9 – 2.2)
Did not agree	85	110	0.9 (0.7 – 1.5)

*Adjusted for age, income, family history of breast cancer in first-degree relative, history of fibroadenoma, age at menarche, parity, and age at first live birth. Additionally adjusted for perceived height at specific age. Additionally adjusted for perceived weight at specific age.
was more pronounced among women who were heavier than average during adolescence and whose adult body mass index was at or above the median (OR=0.31, 95% CI 0.16 – 0.60). In the present analysis, no relation was apparent for breast cancer associated with heavier than average perceived weight at the age of 15 based on maternal report or self-report. Neither adult body mass index nor waist-to-hip ratio modified the effect of perceived adolescent weight on breast cancer risk.

The biological mechanism that Stoll (1998) proposed to help explain the reduced risk of premenopausal breast cancer associated with adolescent obesity in some studies was that obesity triggered a hyperinsulinemic insulin resistance at puberty that could lead to abnormal ovarian steroidogenesis and anovulation. Most of the women in this study grew up during a period when food and meat were rationed and adolescent obesity was rare, thus perceived weight at the age of 15 may not reflect adolescent obesity as defined among Western women. Spearman correlation coefficients were calculated to assess whether age at menarche, used as a marker of adolescent aging, was correlated with perceived weight or height at the age of 15. Whether reported by the subject or her mother, these correlations were negative and clustered around zero. In a previous analysis of this study, premenopausal breast cancer was unrelated to early adult and adult weight, but was associated with a high adult waist-to-hip ratio, even after adjustment for body mass index (Shu et al., 2001). These findings differ from the majority of studies of this topic conducted among Western women. As was the case for early adult and adult weight, an alternative explanation for the null associations found for weight at birth and adolescence and breast cancer risk is the paucity of women at the extremes of these measures.

Our findings of increased risks of premenopausal breast cancer associated with maternal report and combined maternal and subject report of perceived height as shorter than average at the age of 15 differs from all previous studies. Coates et al. (1999) reported reduced risks for women who were much shorter than average at the ages of 15 to 16, Brinton and Swanson (1992) reported an increased premenopausal breast cancer risk associated with taller than average perceived height at the age of 15. An earlier adolescent growth spurt and tallness through childhood growth. Height at the age of 7 was chosen to reflect pre-pubertal growth, but there was no significant interaction for the height at the age of 15. In the present analysis, perceived height at the age of 10 (data not shown) and the age of 15 did not modify the effect of birth weight on breast cancer risk. De Stavola et al. (2000) recently examined the effects of birth weight and childhood growth on subsequent breast cancer risk in a cohort study in the UK. They reported a borderline increase in risk of premenopausal breast cancer associated with a birth weight of 3500 g or more (relative risk [RR]=2.31, 95% CI 0.93 – 5.74). This risk was modified by height at the age of 7, with no association among women who were short or average (RR=1.23, 95% CI 0.31 – 4.91) and a pronounced elevation in risk among women who were tall (RR=5.86, 95% CI 1.97 – 17.44). They concluded that the birth weight and breast cancer relation might be mediated through childhood growth. Height at the age of 7 was chosen to reflect pre-pubertal growth, but there was no significant interaction for the height at the age of 15. In the present analysis, perceived height at the age of 10 (data not shown) and the age of 15 did not modify the effect of birth weight on breast cancer risk. However, women who were 3500 g or more and short or average height at the age of 15 were at decreased risk of breast cancer.

There were several limitations of this study. Data on birth weight and maternal perception of adolescent body size analyses were available only in a subgroup of premenopausal women, reducing statistical power to detect effect modification. The narrow distribution of weights at birth and adolescence in China (Eveleth and Tanner, 1976; Fung et al., 1989) may have further limited the statistical power to evaluate the association of these variables with breast cancer risk. Reporting of birth weight and perceptions of weight and height during adolescence are prone to misclassification. However, in a study conducted in Washington State, we found very high correlations between maternal reporting and birth certificate recording of birth weight (case mothers r=0.89, control mothers r=0.84) (Sanderson et al., 1998b). To our knowledge, no validation studies of maternal reporting of adolescent body size have been conducted.

This study has many strengths. The population-based nature of the study and its high response rates among subjects (cases: 91%; controls: 90%) and their mothers (case mothers: 80%; control mothers: 82%) minimizes selection bias. We adjusted for known breast cancer risk factors, and evaluated the weight at birth and adolescence and breast cancer associations in conjunction with

Table 4 Odds ratios of breast cancer associated with joint effects of birth weight, adolescent weight and adolescent height

Birth weight	Case/Control OR* (95% CI)	Case/Control OR* (95% CI)			
<3500 g					
Maternal perceptions					
Weight at 15 years	Height at 15 years				
<= Average	<= Average	141/150	1.0 (Referent)	28/45	0.7 (0.4 – 1.1)
> Average	<= Average	32/38	0.8 (0.5 – 1.4)	18/21	1.0 (0.5 – 1.9)
Subject perceptions					
Weight at 15 years	Height at 15 years				
<= Average	<= Average	14/27	0.6 (0.3 – 1.1)	3/9	0.3 (0.1 – 1.2)
> Average	<= Average	7/8	0.9 (0.3 – 2.5)	4/7	0.6 (0.2 – 2.1)
Height at 15 years	Height at 15 years				
<= Average	<= Average	7/17	0.9 (0.3 – 2.3)	2/3	0.7 (0.2 – 2.2)
> Average	<= Average	8/37	0.8 (0.3 – 2.1)	6/10	0.9 (0.3 – 2.3)
Height at 15 years	Height at 15 years				
<= Average	<= Average	14/27	0.6 (0.3 – 1.1)	3/9	0.3 (0.1 – 1.2)
> Average	<= Average	7/8	0.9 (0.3 – 2.5)	4/7	0.6 (0.2 – 2.1)
Height at 15 years	Height at 15 years				
<= Average	<= Average	7/17	0.9 (0.3 – 2.3)	2/3	0.7 (0.2 – 2.2)
> Average	<= Average	8/37	0.8 (0.3 – 2.1)	6/10	0.9 (0.3 – 2.3)
Height at 15 years	Height at 15 years				
<= Average	<= Average	7/17	0.9 (0.3 – 2.3)	2/3	0.7 (0.2 – 2.2)
> Average	<= Average	8/37	0.8 (0.3 – 2.1)	6/10	0.9 (0.3 – 2.3)

*aAdjusted for age, income, family history breast cancer in first-degree relative, history of fibroadenoma, age at menarche, parity, and age at first live birth.

China meant that some of the women in the present analysis had not undergone their adolescent growth spurt by the age of 15, which may partially explain the lack of a positive association observed in this study with taller adolescent height.

One previous study has investigated the joint effect of birth weight and adolescent weight or adolescent height on breast cancer risk. De Stavola et al. (2000) recently examined the effects of birth weight and childhood growth on subsequent breast cancer risk in a cohort study in the UK. They reported a borderline increase in risk of premenopausal breast cancer associated with a birth weight of 3500 g or more (relative risk [RR]=2.31, 95% CI 0.93 – 5.74). This risk was modified by height at the age of 7, with no association among women who were short or average (RR=1.23, 95% CI 0.31 – 4.91) and a pronounced elevation in risk among women who were tall (RR=5.86, 95% CI 1.97 – 17.44). They concluded that the birth weight and breast cancer relation might be mediated through childhood growth. Height at the age of 7 was chosen to reflect pre-pubertal growth, but there was no significant interaction for the height at the age of 15. In the present analysis, perceived height at the age of 10 (data not shown) and the age of 15 did not modify the effect of birth weight on breast cancer risk. However, women who were 3500 g or more and short or average height at the age of 15 were at decreased risk of breast cancer.

There were several limitations of this study. Data on birth weight and maternal perception of adolescent body size analyses were available only in a subgroup of premenopausal women, reducing statistical power to detect effect modification. The narrow distribution of weights at birth and adolescence in China (Eveleth and Tanner, 1976; Fung et al., 1989) may have further limited the statistical power to evaluate the association of these variables with breast cancer risk. Reporting of birth weight and perceptions of weight and height during adolescence are prone to misclassification. However, in a study conducted in Washington State, we found very high correlations between maternal reporting and birth certificate recording of birth weight (case mothers r=0.89, control mothers r=0.84) (Sanderson et al., 1998b). To our knowledge, no validation studies of maternal reporting of adolescent body size have been conducted.

This study has many strengths. The population-based nature of the study and its high response rates among subjects (cases: 91%; controls: 90%) and their mothers (case mothers: 80%; control mothers: 82%) minimizes selection bias. We adjusted for known breast cancer risk factors, and evaluated the weight at birth and adolescence and breast cancer associations in conjunction with
suspected effect modifiers of these relations. An additional strength of the study was the good agreement between maternal and subject reporting of adolescent body size. There are, however, some measurement errors, which may have attenuated the estimated odds ratios is this study.

In summary, our study indicates that weight at birth and adolescence has little influence on breast cancer risk in Chinese women. These results suggest that weight early in life is not related to premenopausal breast cancer risk in this low-risk population. Future studies should assess these relations to clarify the role that weight early in life may play in breast cancer risk.

REFERENCES

Armstrong BK, White E, Saracci R (1992) Principles of Exposure Measurement. pp 78–114 Oxford University Press: Oxford
Breslow NE, Day NE (1980) The analysis of case-control studies, IARC Sci. Publ. 32. In Statistical Methods in Cancer Research Vol. I, pp 192–247 Lyon: IARC
Brinton LA, Swanson CA (1992) Height and weight at various ages and risk of breast cancer. Am Epidemiol 2: 597–609
Choi NW, Howe GR, Miller AB, Matthews V, Morgan RW, Munan L, Burch JD, Feather J, Jain M, Kelly A (1978) An epidemiologic study of breast cancer. Am J Epidemiol 107: 510–521
Coates RJ, Uhler RJ, Hall HI, Potischman N, Brinton LA, Ballard-Barbash R, Gammon MD, Brogan DR, Daling JR, Malone KE, Schoenberg JB, Swanson CA (1999) Risk of breast cancer in young women in relation to body size and weight gain in adolescence and early adulthood. Br J Cancer 81: 167–174
De Stavola BL, Hardy R, Kuh D, dos Santos Silva I, Wadsworth M, Swerdlov AJ (2000) Birthweight, childhood growth and risk of breast cancer in a British cohort. Br J Cancer 83: 964–968 doi:10.1054/bjoc.2000.1370
Ekborg A, Hsieh C-C, Lipworth L, Adami H-O, Trichopoulos D (1997) Intrauterine environment and breast cancer risk in women: a population-based study. J Natl Cancer Inst 88: 71–76
Ekborg A, Trichopoulos D, Adami H-O, Hsieh C-C, Lan S-J (1992) Evidence of prenatal influences on breast cancer risk. Lancet 340: 1015–1018
Eveleth PB, Tanner JM (1976) Cambridge: Cambridge University Press
Fawcett S, Favero A, La Vecchia C, Baron AE, Negri E, Dal Maso L, Giacco A, Montella M, Conti E, Amadori D (1986) Body size indices and breast cancer risk before and after menopause. Int J Cancer 67: 181–186
Fung KP, Wong TW, Lau SP (1989) Ethnic determinants of perinatal statistics of Chinese: demography of China, Hong Kong and Singapore. Int J Epidemiol 18: 127–131
Gao Y-T, Shu X-O, Dai Q, Potter JD, Brinton LA, Wen W, Sellers TA, Kushi LH, Ruan Z, Bostick RM, Jin F, Zheng W (2000) Association of menstrual and reproductive factors with breast cancer risk: results from the Shanghai Breast Cancer Study. Int J Epidemiol 87: 295–300
Hislop TG, Coldman AJ, Elwood JM, Brauer G, Kan L (1986) Childhood and recent eating patterns and risk of breast cancer. Cancer Detect Prev 9: 47–58
Huang Z, Hankinson SE, Colditz GA, Stampfer MJ, Hunter DJ, Manson JE, Henekens CH, Rosner B, Speizer FE, Willett WC (1997) Dual effects of weight and weight gain on breast cancer risk. JAMA 278: 1407–1411
Innes K, Byers T, Schymura M (2000) Birth characteristics and subsequent risk for breast cancer in very young women. Am J Epidemiol 152: 1121–1128
Le Marchand L, Kolonel LN, Earle ME, Mi M-P (1988a) Body size at different periods of life and breast cancer risk. Am J Epidemiol 128: 137–152
Le Marchand L, Kolonel LN, Myers BC, Mi M-P (1988b) Birth characteristics of premenopausal women with breast cancer. Br J Cancer 57: 437–439
Le Marchand L, Hsieh C-C, Wide L, Ekborg A, Yu S-Z, Yu G-P, Xu B, Hellerstein S, Carlstrom K, Trichopoulos D (1999) Maternal pregnancy hormone levels in an area with a high incidence (Boston, USA) and in an area with a low incidence (Shanghai, China) of breast cancer. Br J Cancer 79: 7–12
Michels KB, Trichopoulos D, Robins JM, Rosner BA, Manson JE, Hunter DJ, Colditz GA, Hankinson SE, Speizer FE, Willett WC (1996) Birthweight as a risk factor for breast cancer. Lancet 348: 1542–1546
Petridou E, Panagiotopoulou K, Katsouyanni K, Spanos E, Trichopoulos D (1999) Tobacco smoking, pregnancy estrogen, and birth weight. Epidemiology 1: 247–250
Preece MA (1989) The trend to greater height and earlier maturation. Growth Matters 1: 3–4
Pryor M, Slattery ML, Robison LM, Egger M (1989) Adolescent diet and breast cancer in Utah. Cancer Res 49: 2161–2167
Sanderson M, Williams MA, Malone KE, Stanford JL, Emanuel I, White E, Daling JR (1996) Perinatal factors and risk of breast cancer. Epidemiology 7: 34–37
Sanderson M, Williams MA, Daling JR, Holt VL, Malone KE, Self SG, Moore DE (1998a) Maternal factors and breast cancer risk among young women. Paediatr Perinat Epidemiol 12: 397–407
Sanderson M, Williams MA, White E, Daling JR, Holt VL, Malone KE, Self SG, Moore DE (1998b) Validity and reliability of subject and mother reporting of perinatal factors. Am J Epidemiol 147: 136–140
Shu XO, Jin F, Dai Q, Shi JR, Potter JD, Brinton LA, Hebert J, Ruan ZX, Gao YT, Zheng W (2001) Association of body size and fat distribution with risk of breast cancer among Chinese women. Int J Cancer 94: 449–455
Stoll BA (1998) Teenage obesity in relation to breast cancer risk. Int J Obes Relat Metab Disord 22: 1035–1040
Swanson CA, Coates RJ, Schoenberg JB, Malone KE, Gammon MD, Stanford JL, Shorr JJ, Potischman NA, Brinton LA (1996) Body size and breast cancer risk among women under age 45 years. Am J Epidemiol 143: 698–706
Trentin-Dietz A, Newcomb PA, Storer BE, Longnecker MP, Baron J, Greenberg ER, Willett WC (1997) Body size and risk of breast cancer. Am J Epidemiol 145: 1011–1019
Trichopoulos D (1990) Hypothesis: does breast cancer originate in utero? Lancet 335: 939–940
Ursin G, Longnecker MP, Haile RW, Greenland S (1995) A meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiology 6: 137–141
van den Brandt PA, Spiegelman D, Yuan S-S, Adami H-O, Beeson L, Folsom AR, Fraser G, Goldbohm RA, Graham S, Kushi L, Marshall JR, Miller AB, Rohan T, Smith-Warner SA, Speizer FE, Willett WC, Wolk A, Hunter DJ (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152: 514–527
Zacharias L, Rand WM, Wurtman RJ (1976) A prospective study of sexual development and growth in American girls: the statistics of menarche. Obstet Gynecol Surv 31: 325–337

ACKNOWLEDGEMENTS

This research was supported by grant number R01-CAN64277 from the National Cancer Institute to Dr Wei Zheng. Maureen Sanderson was supported by grant number DAMD-17-00-1-0340 from the Department of Defense, US Army Medical Research and Materiel Command.