Gene expression of oxidative stress markers and lung function: A CARDIA lung study

Ramya Ramasubramanian1 | Ravi Kalhan2,3 | David R. Jacobs Jr.1 | George R. Washko4,5 | Lifang Hou2 | Myron D. Gross6 | Weihua Guan7 | Bharat Thyagarajan6

1Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
2Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
3Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
4Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
5Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA
6Department of Pathology and Laboratory Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
7Department of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA

Abstract

Background: Circulating markers of oxidative stress have been associated with lower lung function. Our objective was to study the association of gene expression levels of oxidative stress pathway genes (ALOX12, ALOX15, ARG2, GSTT1, LPO, MPO, NDUFB3, PLA2G7, and SOD3) and lung function forced expiratory volume in one second (FEV1), forced vital capacity (FVC) in Coronary Artery Risk Development in Young Adults study.

Methods: Lung function was measured using spirometry and the Nanostring platform was used to estimate gene expression levels. Linear regression models were used to study association of lung function measured at year 30, 10-year decline in lung function and gene expression after adjustment for center, smoking, and BMI, measured at year 25.

Results: The 10-year decline of FEV1 was faster in highest NDUFB3 quartile compared to the lowest (difference = −2.09%; p = 0.001) after adjustment for multiple comparisons. The 10-year decline in FEV1 and FVC was nominally slower in highest versus lowest quartile of PLA2G7 (difference = 1.14%; p = 0.02, and difference = 1.06%; p = 0.005, respectively). The other genes in the study were not associated with FEV1 or FVC.

Conclusion: Higher gene expression levels in oxidative stress pathway genes are associated with faster 10-year FEV1 decline.
INTRODUCTION

Oxidative stress, the imbalance between oxidant and antioxidant effects in the body, is associated with asthma and chronic pulmonary obstructive disease (COPD; Ahmad et al., 2012; Hecker, 2018; Holguin, 2013; Montuschi et al., 2000; Ochs-Balcom et al., 2006; Park et al., 2009). Specifically, pro-oxidants such as p-TBARS have been associated with lower lung function (Mannino et al., 2003; Sircar et al., 2007) and antioxidants such as carotenoids were positively associated with forced expiratory volume in one second (FEV₁) and forced vital capacity (FVC) in cross-sectional studies (Ochs-Balcom et al., 2005; Schunemann et al., 1997).

Though oxidative stress is determined by a regulation of complex biological processes, the release of reactive oxygen species (ROS) is an important mechanism for increasing oxidative damage while the activities of various antioxidant enzymes are important defenses against oxidative damage. Increased ROS production can occur through several mechanisms that include the electron transport chain (ETC) in mitochondria, (Droge, 2002; Papaharalambus & Griendling, 2007) increased production of superoxides (e.g., ARG2, short-lived oxidized intermediates such as hypochlorous acid from myeloperoxidase (MPO) and hypothiocyanite from lactoperoxidase (LPO) or from intermediates in lipid metabolism such as lipid peroxidation catalyzed by lipoxygenases such as ALOX12 and ALOX15 or lipid hydrolysis catalyzed by platelet-activating factor acetohydrolase (PAF-ASH; Gago-Dominguez et al., 2007; Pierini & Bryan, 2015). In addition to increased ROS production, lower activity of antioxidant defenses such as inadequate antioxidant enzyme concentrations such as glutathione transferases (GSTs) and superoxide dismutases (SODs) that metabolize products derived from oxidative stress such as superoxides, lipids, and DNA products can also result in increased oxidative stress (Kruse et al., 2000; Singh & Bhat, 2012; Suwanpradid et al., 2014; Wang et al., 2018). Thus, measurement of gene expression levels of enzymes involved in both increasing oxidative stress as well as maintaining antioxidant defenses can help us better understand the influence of these pathways on pulmonary function and disorders. Thus, we specifically evaluated expression of candidate genes in major pathways contributing to oxidative stress. We evaluated seven genes that increase ROS production and two genes involved in antioxidant defenses. The seven genes involved in increased ROS production include NDUFB3, a subunit of complex I and the largest complex in ETC (Calvo et al., 2012; Haack et al., 2012; Leman et al., 2015), ALOX12, and ALOX15 that are involved in lipid peroxidation (Brash, 1999; Mashima & Okuyama, 2015; Pallast et al., 2009; Praticò et al., 2004; Seiler et al., 2008; Suzuki et al., 2015), PLAG2G7 that is involved in lipid hydrolysis (Miwa et al., 1988; Stafforini, 2009; Stafforini et al., 1999, 2006), and ARG2 (Suwanpradid et al., 2014; Yang & Ming, 2014), MPO and LPO (Anatoliotakis et al., 2013; Aratani, 2018; Stamp et al., 2012) that form short-lived intermediate free radicals.

In this article, we will study the associations between gene expression of the nine oxidative stress markers and pulmonary function defined by FEV₁ and FVC in the Coronary Artery Risk Development in Young Adults (CARDIA) study. We hypothesized that higher expression levels of genes that increase oxidative stress and lower expression of antioxidant genes would be associated with a lower lung function measurement, and with a faster decline in lung function.

METHODS

2.1 Study population

2.1.1 Ethical compliance

All study methods were carried out in accordance with relevant guidelines and regulations. All CARDIA participants provided a signed informed consent before study participation and sign a new informed consent form at every examination.

CARDIA is a cohort study with 5115 participants who were recruited at baseline examination during the year 1985–1986 at four field centers (Birmingham, AL; Chicago, IL; Minneapolis, MN; and Oakland, CA). The study included approximately equal number of Blacks and Whites; men and women, respectively. The follow-up rates in CARDIA are 72% at year 20 (2005–2006) and year 25 (2010–2011), and 71% at year 30 (2015–2016). The detailed methods, instruments, and quality control procedures for the CARDIA study have been previously described (Friedman et al., 1988; Hughes et al., 1987). All study methods were carried out in accordance with relevant guidelines and regulations. All CARDIA participants
provided a signed informed consent before study participation and sign a new informed consent form at every examination.

The cross-sectional analyses performed to study associations between year 25 gene expression levels and year 30 lung function measurements included 2527 participants. The longitudinal analyses performed to study associations between 10-year decline in lung function from year 20 to year 30 and year 25 gene expression levels included 2271 participants. Participants with missing lung function data, missing gene expression measurements, and missing covariates were removed prior to analysis (Ramasubramanian et al., 2020). We performed the sensitivity analysis by removing participants with COPD and asthma when evaluating the association between year 25 gene expression levels and year 30 lung function. For sensitivity analyses, 55 participants with COPD and 476 participants with asthma were removed for the cross-sectional analysis while 47 participants with COPD and 442 participants with asthma were removed from the longitudinal analysis.

2.2 | Spirometry

Spirometry was performed using a dry rolling-seal OMI spirometer (Viasys Corp, Loma Linda, CA) at year 20 examination and a portable spirometer EasyOne Diagnostic, NDD Medical Technologiettes, Andover, MA) at year 30 following the American Thoracic Society Guidelines (Miller et al., 2005).

2.3 | Gene expression analysis

Whole blood was collected in the PAXgene Blood RNA tubes (Qiagen Inc.) at the year 25 examination. mRNA was isolated using the PAXgene Blood RNA kit (Qiagen Inc.) at the Molecular Epidemiology and Biomarker Research Laboratory (MEBRL) according to the manufacturer’s instructions. The detailed methods for measurement and normalization of gene expression using the nCounter analysis system (Nanostring Inc.). The raw counts of the gene expression of sample were first multiplied by the sample-specific positive control normalization factor, then by the housekeeping gene normalization factor, and the CodeSet normalization factor to obtain the final gene expression counts.

2.4 | Measurement of covariates

The covariates used for this analysis are smoking and BMI. Smoking was determined using a pack-years variable which was measured by cigarette pack-years (cigarette packs smoked per day × number of years smoking). BMI was defined as a continuous variable and was calculated as weight (kg) divided by height (meters) squared. Year 25 measurements of BMI and smoking status were used in this analysis.

2.5 | Statistical methods

Characteristics of participants at year 25 among five levels of the nine genes were assessed by using Chi-square tests for categorical variables and one-way ANOVA for continuous variables. The lower limit of detection for the gene expression counts was set at 16 and all counts lower than the lower limit of detection was set 16 prior to analysis. The gene expression of ALOX12, ALOX15, ARG2, GSTT1, LPO, MPO, NDUFB3, PLA2G7, and SOD3 were divided into quartiles. Linear regression models were used to evaluate the association of predicted lung function at exam year 30 and 10-year decline in lung function (from year 20 to year 30) with year 25 gene expression levels of the nine oxidative stress genes. Percent predicted lung function was defined as the ratio of observed lung function over predicted lung function and predicted lung function was calculated using the Hankinson equation for the corresponding age, sex, race, and height of the participants (Hankinson et al., 1999). Multivariable linear regression models were used to assess the association of lung function at CARDIA exam year 30 and 10-year decline in lung function with year 25 gene expression levels after adjustment for center, cigarette pack-years, and BMI. Sensitivity analysis was performed by removing participants with asthma and COPD at years 20 and 30, and evaluation of the association of lung function at CARDIA exam year 30 and 10-year decline in lung function with year 25 gene expression levels of the nine oxidative stress genes in the subset of participants without COPD/asthma. All the p-values ≤0.05 were considered statistically significant. Statistical analyses were carried out using SAS software version 9.4 (SAS Institute).
3 | RESULTS

3.1 | Characteristics at year 25 examination

The participants in the highest quartile of NDUFB3 were more likely to be female (69.37% vs. 51.94%; p-value <0.0001), younger (49.11 vs 50.32; p-value = 0.005), current smokers (16.37% vs. 10.07%; p-value = 0.03), have higher BMI (31.87 vs. 28.88; p-value <0.0001), and higher C-reactive protein (4.35 vs. 2.14; p-value <0.0001). Current smokers had higher pack-years in the fourth quartile of NDUFB3 (21.21 vs. 16.58; p-value = 0.02). Participants in the highest quartile of MPO were more likely to be male, participants in the highest quartile of ALOX12 were more likely to be male and have lower C-reactive protein, participants in the highest quartile of PLA2G7 were more likely to be White, have lower BMI and C-reactive protein (data in Tables S1a–1h, Table 1).

3.2 | Association between year 30 lung function and year 25 gene expression profiles

Year 30 predicted FVC was nominally lower in the highest quartile of NDUFB3 as compared to the lowest level of NDUFB3, with a difference of 2.30% (95% CI: 0.83%–3.93%; p-value = 0.04; Table 2). None of the other genes were associated with year 30 FEV₁ or FVC (Table S2). A p-value of 0.003 (nine markers with two outcomes = 0.05/18 = 0.003) to determine statistical significance using Bonferroni correction for multiple comparisons indicates that the associations are not statistically significant.

3.3 | Association between 10-year decline in lung function and year 25 gene expression profiles

Decline in FEV₁ from year 20 to year 30 was higher in the highest quartile of NDUFB3 as compared to the lowest quartile of NDUFB3 (3.73% vs. 1.64%; p-value = 0.001). Decline in FVC from year 20 to year 30 was nominally higher in the highest quartile of ARG2 as compared to the lowest level of ARG2 (3.79% vs. 2.48%; p-value = 0.02). Decline in FEV₁ and FVC was nominally lower in the highest quartile of PLA2G7 as compared to the lowest quartile (2.21% vs. 3.35%; p-value = 0.02 for FEV₁ and 2.62% vs. 3.86%; p-value = 0.005; Table 3). None of the other genes were associated with 10-year decline in lung function from year 20 to year 30 (Table S3). After adjustment for multiple comparisons using Bonferroni correction (a corrected p-value of 0.003) only the association between NDUFB3 and 10-year decline in FEV₁ remained statistically significant.

TABLE 1	Participant characteristics at year 25 with respect to NDUFB3 gene expression levels				
Characteristics	0–25 percentile (n = 566)	>25 to 50 percentile (n = 570)	>50 to 75 percentile (n = 567)	>75 to 100 percentile (n = 568)	p-value
Age (years)	50.32 (3.56)	50.29 (3.48)	50.24 (3.60)	49.73 (3.62)	0.02
Race					0.05
%Blacks	42.76	40.53	40.56	47.71	<0.0001
Sex					0.03
% Female	51.94	53.16	59.26	69.37	0.02
Smoking					0.03
% Never	63.78	67.02	64.55	63.91	0.03
% Former	26.15	21.40	22.05	19.72	0.03
Smoking pack-years among former smokers	7.16 ± 7.97	7.39 ± 8.86	7.48 ± 8.16	7.74 ± 8.64	0.06
% Current	10.07	11.58	13.40	16.37	0.02
Smoking pack-years among current smokers	16.58 ± 11.81	16.89 ± 11.56	20.18 ± 11.48	21.21 ± 13.63	0.02
BMI	28.89 (6.12)	29.22 (6.53)	29.36 (6.77)	32.19 (8.10)	<0.0001
Alcohol consumption (ml/day)	11.95 (24.76)	10.66 (16.81)	11.06 (17.19)	9.40 (20.38)	0.40
C-reactive protein (µG/ML)	2.14 (3.15)	2.56 (4.25)	2.78 (5.07)	4.35 (5.80)	<0.0001
3.4 Sensitivity analysis after exclusion of asthma and COPD patients

All **ARG2** and **NDUFB3** quartiles had a similar distribution of asthma and COPD patients (**ARG2**: 19.37% vs. 19.18%; \(p = 0.64 \) and 1.90% vs. 2.54%; \(p = 0.81 \) and 1.90% vs. 2.54%; \(p = 0.81 \) and 1.90% vs. 2.54%; \(p = 0.81 \)) and distribution of COPD across quartiles of **PLA2G7** was similar (21.11% vs. 15.9% vs. 2.70%; \(p = 0.58 \)). The distribution of asthma across **PLA2G7** quartiles was different (22.19% vs. 14.13%; \(p = 0.001 \)) and distribution of COPD across quartiles of **PLA2G7** was similar (22.19% vs. 14.13%; \(p = 0.001 \)). Eliminating asthma and COPD patients from the analysis did not substantially change the observed associations. Year 30 FVC was lower in the fourth **NDUFB3** quartile versus the first **NDUFB3** quartile (difference: 2.69% [95% CI: 0.94, 4.45]; \(p = 0.01 \)). The 10-year decline of FEV\(_1\) was higher in the highest **NDUFB3** level versus the first **NDUFB3** quartile (difference: −1.69% [95% CI: −2.89, −0.50]; \(p = 0.02 \)) and the 10-year decline of FVC was lower in the highest **PLA2G7** level versus the first **PLA2G7** quartile (difference: 1.03% [95% CI: −0.14, 2.21]; \(p = 0.01 \)).

4 DISCUSSION

This study found that faster 10-year decline in FEV\(_1\) was associated with higher **NDUFB3** gene expression levels after adjusting for multiple comparisons using Bonferroni correction. Faster 10-year decline in FVC was nominally associated with higher expression of **ARG2** and faster 10-year decline in FEV\(_1\) and FVC were nominally associated with lower **PLA2G7** though both these associations were no longer significant after adjustment for multiple comparisons. For most part, the results for **NDUFB3**, **ARG2**, and **PLA2G7** are consistent with our hypothesis that higher gene expression levels are associated with lower lung function. The other six genes, which were included in these analyses were not associated with FEV\(_1\) and FVC.

Previous studies on oxidative stress and lung function have measured markers such as p-TBARS in LDL cholesterol and Glutathione (GSH) in blood and plasma to study associations with FEV\(_1\) and FVC. A study done in 137 nonsmokers found that p-TBARS was negatively associated with %FEV\(_1\) (\(p \)-value = 0.02), indicating the role
of lipid peroxidation in lung health (Schunemann et al., 1997). Another study also reported an inverse association between TBARS and %FVC (p-value = 0.02; Ochs-Balcom et al., 2005). In addition, dietary antioxidants such as Vitamin C, Vitamin E, and Lutein/zeaxanthin were positively associated with %FEV₁ and %FVC (Ochs-Balcom et al., 2005). However, gene expression levels of enzymes that affect oxidative stress have not been evaluated previously.

Our findings suggest that higher levels of expression of NDUFB3 was associated with 10-year decline in FEV₁ and nominally associated with lower year 30 percent predicted FVC. NDUFB3 is one of the genes involved in the oxidoreductase genes involved in the NADH dehydrogenase: ubiquinone complex I, which is a mitochondrial subunit needed for electron transfer. Consistent with our findings, a previous study has found an upregulation in these cluster of oxidoreductase genes, involved in complex I, among individuals with severe cystic fibrosis (CF) lung disease compared with mild CF disease and non-CF control subjects (Wright et al., 2006). Upregulated levels of arginase have been found to be associated with pulmonary diseases like asthma, COPD, and cystic fibrosis (Bratt et al., 2011 Sep; Maarsingh et al., 2008,). Although cystic fibrosis, asthma, and COPD have different pathophysiology, lower lung function, and accelerated decline in lung function has been observed in these three diseases (James et al., 2005; Peat et al., 1987; Tantucci & Modina, 2012; Vandenbranden et al., 2012). In a childhood asthma study done among 433 case-parent triads, genetic variation in ARG2 had an increased risk of childhood asthma (Li et al., 2006). Consistent with these findings, we found that faster 10-year decline of percent predicted FVC was associated with higher level of ARG2. Previous studies have found that deficiency of PLA2G7, which occurred due to a missense mutation that resulted in complete loss of activity, was found to be higher among asthmatics in a Japanese population (Stafforini et al., 1999). Two other variants in PAF-AH were also associated with asthma in Caucasian population, and deficiency in serum PAF-AH was higher among asthmatic children (Kruse et al., 2000; Miwa et al., 1988). Consistent with these findings, we found that 10-year decline of FEV₁ and FVC was slower in the highest levels of PLA2G7. However, increased expression of PAF-AH is also associated with release of components such as free F2-isoprostanes which increase oxidative stress. We hypothesize that the action of PAF-AH is dependent on the local environment and the specific biological effect of PLA2G7 on lung health will need to be clarified in future studies.

Long-term follow-up of participants and representative sample with inclusion of men and women, and Black and White participants are some of the strengths of the study. Gene expression measurements of biomarkers are useful when protein measurements of biomarkers are not available. Our study has several limitations such as lung function measurements and gene expression measurements being performed in different years, restricting our understanding of the temporal relationship between gene expression of biomarkers and lung function and gene expression measurements are available at a single time point, limiting our ability to study the longitudinal relationship with lung function. In addition, different methods used for measuring FEV₁ and FVC at year 20 (a dry rolling-seal OMI spirometer) and year 30 (portable spirometer) could have influenced the measurements. However, measurements at both time points were performed following the ATS guidelines reducing the variation across both measurements. Gene expression levels of these oxidative stress markers could be correlated with differences in cell composition such as the proportion of monocytes, T-lymphocytes. Since complete blood counts are not available in CARDIA at year 25, differences in cell composition may be a potential confounder in the observed association. The observed results indicate an association between higher gene expression levels of NDUFB3 and faster decline in FEV₁ and possible associations between ARG2, PLA2G7, and lung function. These findings need to be confirmed in independent studies.

In conclusion, these results suggest that high levels of gene expression of these markers are associated with lower lung function, independent of cigarette smoking, and BMI. Hence, measuring gene expression levels of other markers in mitochondrial dysfunction pathways and arginine pathways at multiple time points in independent datasets may help us identify the genes involved in lung function decline and understand how these pathways affect lung health.

ACKNOWLEDGMENTS

The CARDIA study is supported by contracts HHSN268 201300025C, HHSN268201300026C, HHSN268201300028C, HHSN268201300029C, and HHSN268200900041C from the National Heart, Lung, and Blood Institute (NHLBI); the Intramural Research Program of the National Institute on Aging (NIA); and an intra-agency agreement between the NIA and NHLBI (AG0005) and grant R01HL122477 (to Kalhan). This manuscript has been reviewed by CARDIA for scientific content.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS

R.R. worked on the data analysis and drafted the manuscript; R.K., D.J., L.H., G.W., and B.T. helped with the
critical review of the analysis and manuscript; M.G. conducted the gene expression measurement experiments; W.G. conducted the data analysis for the gene expression measurements.

DATA AVAILABILITY STATEMENT
Research data are not shared.

ORCID
Bharat Thyagarajan 🐘 https://orcid.org/0000-0001-6968-6985

REFERENCES
Ahmad, A., Shameem, M., & Husain, Q. (2012). Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Annals of Thoracic Medicine, 7(4), 226–232. https://doi.org/10.4103/1817-1737.102182. https://www.ncbi.nlm.nih.gov/pubmed/23189100

Anatoliotakis, N., Defereos, S., Bouras, G., Giannopoulos, G., Tsounis, D., Angelidis, C., Kaoukis, A., & Stefanidis, C. (2013). Myeloperoxidase: Expressing inflammation and oxidative stress in cardiovascular disease. Current Topics in Medicinal Chemistry, 13(2), 115–138.

Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Archives of Biochemistry and Biophysics, 640, 47–52. http://www.sciencedirect.com/science/article/pii/S0003986117307725 https://doi.org/10.1016/j.abb.2018.01.004.

Brash, A. R. (1999). Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274(34), 23679–23682. https://doi.org/10.1074/jbc.274.34.23679

Bratt, J. M., Zeki, A. A., Last, J. A., & Kenyon, N. J. (2011). Competitive metabolism of L-arginine: Arginase as a therapeutic target in asthma. Journal of Biomedical Research, 25(5), 299–308. https://doi.org/10.1016/S1674-8301(11)60041-9. https://www.ncbi.nlm.nih.gov/pubmed/23554705

Calvo, S. E., Compton, A. G., Hershman, S. G., Lim, S. C., Lieber, D. S., Tucker, E. J., Laskowski, A., Garone, C., Liu, S., Jaffe, D. B., Christodoulou, J., Fletcher, J. M., Bruno, D. L., Goldblatt, J., DiMauro, S., Thorburn, D. R., & Mootha, V. K. (2012). Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Science Translational Medicine, 4, 118ra10. https://doi.org/10.1126/scitranslmed.3003310

Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47–95. https://doi.org/10.1152/physrev.00018.2001

Friedman, G. D., Cutter, G. R., Donahue, R. P., Hughes, G. H., Hulley, S. B., Jacobs, D. R. J., Liu, K., & Savage, P. J. (1988). CARDIA: Study design, recruitment, and some characteristics of the examined subjects. Journal of Clinical Epidemiology, 41(11), 1105–1116. https://doi.org/10.1016/0895-4356(88)90080-7

Gago-Dominguez, M., Jiang, X., & Castelao, J. E. (2007). Lipid peroxidation, oxidative stress genes and dietary factors in breast cancer protection: A hypothesis. Breast Cancer Research, 9(1), 201. https://doi.org/10.1186/bcr1628

Haack, T. B., Haberberger, B., Frisch, E.-M., Wieland, T., Iuso, A., Gorza, M., Strecke, V., Graf, E., Mayr, J. A., Herberg, U., Hennерmann, J. B., Klopstock, T., Kuhn, K. A., Ahting, U., Sperl, W., Wilichowski, E., Hoffmann, G. F., Tesarova, M., Hansikova, H., ... Proksich, H. (2012). Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing. Journal of Medical Genetics, 49(4), 277–283. https://doi.org/10.1136/jmedgenet-2012-100846. http://jmg.bmj.com/content/49/4/277.abstract

Hankinson, J. L., Odencrantz, J. R., & Fedan, K. B. (1999). Spirometric reference values from a sample of the general U.S. population. American Journal of Respiratory and Critical Care Medicine, 159(1), 179–187. https://doi.org/10.1164/ajrccm.159.1.9712108

Hecker, L. (2018). Mechanisms and consequences of oxidative stress in lung disease: Therapeutic implications for an aging populace. American Journal of Physiology-Lung Cellular and Molecular Physiology, 314(4), L642–L653. https://doi.org/10.1152/ajplung.00275.2017

Holguin, F. (2013). Oxidative stress in airway diseases. Annals of the American Thoracic Society, 10(Supplement), S150–S157. https://doi.org/10.1513/AnnalsATS.201305-116AW

Hughes, G. H., Cutter, G., Donahue, R., Friedman, G. D., Hulley, S., Hunkele, E., Jacobs, D. R., Liu, K., Orden, S., Pirie, P., Tucker, B., & Wagenknecht, L. (1987). Recruitment in the coronary artery disease risk development in young adults (cardia) study. Controlled Clinical Trials, 8(4 Suppl), 68S–73S. https://doi.org/10.1016/0197-2456(87)90008-0

James, A. L., Palmer, L. J., Kicic, E., Maxwell, P. S., Lagan, S. E., Ryan, G. F., & Musk, A. W. (2005). Decline in lung function in the Busselton Health Study. American Journal of Respiratory and Critical Care Medicine, 171(2), 109–114. https://doi.org/10.1164/rccm.200402-230OC

Kruse, S., Mao, X. Q., Heinzmann, A., Blattmann, S., Roberts, M. H., Braun, S., Gao, P.-S., Forster, J., Kuehr, J., Hopkin, J. M., Shirakawa, T., & Deichmann, K. A. (2000). The Il1e198Thr and Ala379Val variants of plasmatic PAF-acetylhydrolase impair catalytic activities and are associated with atopy and asthma. The American Journal of Human Genetics, 66(5), 1522–1530. https://doi.org/10.1086/302901. https://www.ncbi.nlm.nih.gov/pubmed/10733466

Leman, G., Gueguen, N., Desquiret-Dumas, V., Kane, M. S., Wetterwald, C., Chupin, S., Chevrillion, A., Lebre, A.-S., Bonnefont, J.-P., Barth, M., Amati-Bonneau, P., Verny, C., Henrion, D., Bonneau, D., Reynier, P., & Proccacio, V. (2015). Assembly defects induce oxidative stress in inherited mitochondrial complex I deficiency. The International Journal of Biochemistry & Cell Biology, 65, 91–103. https://doi.org/10.1016/j.biocel.2015.05.017

Li, H., Romieu, I., Siena-Monge, J.-J., Ramirez-Aguilar, M., Estela Del Rio-Navarro, B., Kistner, E. O., Gjessing, H. K., del Carmen Lara-Sanchez, I., Chiu, G. Y., & London, S. J. (2006). Genetic polymorphisms in arginase I and II and childhood asthma and atopy. The Journal of Allergy and Clinical Immunology, 117(1), 119–126. https://www.ncbi.nlm.nih.gov/pubmed/16387594

Maarsingsh, H., Pera, T., & Meurs, H. (2008). Arginase and pulmonary diseases. Naunyn-Schmiedeberg’s Archives of Pharmacology, 378(2), 171–184. https://doi.org/10.1007/s00210-008-0286-7. https://www.ncbi.nlm.nih.gov/pubmed/18437360

Mannino, D. M., Buist, A. S., Petty, T. L., Enright, P. L., & Redd, S. C. (2003). Lung function and mortality in the United States: Data from the First National Health and Nutrition Examination Survey follow up study. Thorax, 58(5), 388–393. https://doi.org/10.1136/thorax.58.5.388
Praticò,	D.,	Zhukareva,	V.,	Yao,	Y.,	Uryu,	K.,	Funk,	C.	D.,	Lawson,	J.	A.,
Park,	 H.	 S.,	 Kim,	 S.	 R.,	 &	 Lee,	 Y.	 C.	 (2009).	 Impact	 of	 oxidative
stress	 on	 lung	diseases.

Miller,	 M.	 R.,	 Hankinson,	 J.,	 Brusasco,	 V.,	 Burgos,	 F.,	 Casaburi,
R.,	 Coates,	 A.,	 Crapo,	 R.,	 Enright,	 P.,	 Van Der	 Grinten,	 C.	 P.,	 Gustafsson,	 P.,	 &	 Jensen,	 R.	 (2005).	 Standardisation	of	 spirometry. European Respiratory Journal, 26(2),	319–338. https://doi.org/10.1183/09031936.05.00034805. http://erj.ersjournals.com/content/26/2/319.abstract

Miwa,	 Miya,	 T.,	 Yamanaka,	 T.,	 Sugatani,	 J.,	 Suzuki,	 Y.,	 Sakata,
S.,	 Araki,	 Y.,	 &	 Matsumoto,	 M.	 (1988). Characterization of serum platelet-activating factor (PAF) acetylhydrolase. Correlation between deficiency of serum PAF acetylhydrolase and respiratory symptoms in asthmatic children. Journal of Clinical Investigation, 82(6),	1983–1991. https://doi.org/10.1172/JCI113818

Montuschi,	 P.,	 Collins,	 J.	 V.,	 Ciabattoni,	 G.,	 Lazzari,	 N.,	 Corradi,
M.,	 Kharitonov,	 S.	 A.,	 &	 Barnes,	 P.	 J.	 (2000). Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. American Journal of Respiratory and Critical Care Medicine, 162(3),	1175–1177. https://doi.org/10.1164/ajrccm.162.3.2001063

Ochs-Balcom,	 H.	 M.,	 Grant,	 B.	 B.	 J.,	 Muti,	 P.,	 Sempos,	 C.	 T.,
Freudenheim,	 J.	 L.,	 Browne,	 R.	 W.,	 McCann,	 S.
E.,	 48–54. https://doi.org/10.1016/j.tcm.2006.11.005. https://www.ncbi.nlm.nih.gov/pubmed/15111312

Ramasubramanian,	 R.,	 Kalhan,	 R.,	 Jacob,	 D.
S.,	 Washko,	 G.
R.,	 Hou,
L.,	 Gross,	 M.
D.,	 &	 Thayagarajan,	 B.	 (2020). Lung function and gene expression of pathogen recognition pathway receptors: The cardia lung study. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-65923-z

Singh,	 B.,	 &	 Bhat,	 H.	 K.	 (2012). Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen-induced breast cancer. Carcinogenesis, 33(12),	2601–2610. https://doi.org/10.1093/carcin/bgs300

Sircar,	 K.,	 Hnizdo,	 E.,	 Petsonk,	 E.,	 &	 Atfield,	 M.	 (2007). Decline in lung function and mortality: Implications for medical monitoring. Occupational and Environmental Medicine, 64(7),	461–466. https://doi.org/10.1136/oem.2006.031419. https://www.ncbi.nlm.nih.gov/pubmed/17332137

Stafforini,	 D.	 M.	 (2009). Biology of Platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2). Cardiovascular Drugs and Therapy, 23(1),	73–83. https://doi.org/10.1007/s10557-008-6133-8

Stafforini,	 D.	 M.,	 Numao,	 T.,	 Tsodikov,	 A.,	 Vaitkus,	 D.,	 Fukuda,
T,
Watanabe,
N.,
Fueki,
N.,
McIntyre,
T.
M.,
Zimmerman,
G.
A.,
Makinso,
S.,
&
Prescott,
S.
M.
(1999). Deficiency of platelet-
activating factor acetylhydrolase is a severity factor for asthma. Journal of Clinical Investigation, 103(7),	989–997. https://doi.org/10.1172/JCI13574

Stafforini,	 D.	 M.,	 Sheller,	 J.	 R.,	 Blackwell,	 T.
S.,
Sapirstein,
A.,
Yull,
F.
E.,
McIntyre,
T.
M.,
Bonventre,
J.
V.,
Prescott,
S.
M.,
&
Roberts,
L.
J.
(2006). Release of Free F2-isoprostanes from Esterified Phospholipids Is Catalyzed by Intracellular and Plasma Platelet-
activating Factor Acetylhydrolases. Journal of Biological Chemistry, 281(8),	4616–4623. https://doi.org/10.1074/jbc.M507340200. http://www.jbc.org/content/281/8/4616.abstract

Stamp,	 L.	 K.,	 Khalilova,	 L.,	 Tarr,	 J.	 M.
Senthilmohan,
R.,
Turner,
R.,
Haigh,
R.
C.,
Winyard,
P.
G.,
&
Kettle,
A.
J.
(2012). Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology, 51(10),	1796–1803. https://doi.org/10.1093/rheumatology/kes193

Suwanpradid,	 J.,	 Rojas,	 M.,	 Behzadian,	 M.
A.,
Caldwell,
R.
W.,
&
Caldwell,
R.
B.
(2014). Arginase 2 deficiency prevents oxidative stress and limits hyperoxia-induced retinal vascular degeneration. PLoS One, 9(11),	e110604. https://doi.org/10.1371/journal.pone.0110604. https://www.ncbi.nlm.nih.gov/pubmed/25375125

Suzuki,	 H.,	 Kayama,	 Y.,	 Sakamoto,	 M.,	 Iuchi,	 H.,	 Shimizu,
I.,
Yoshino,
T.,
Katoh,
D.,
Nagoshi,
T.,
Tojo,
K.,
Minamino,
T.,
Yoshimura,
M.,
&
Utsunomiya,
K.
(2015). Arachidonate
12/15-lipoxygenase–induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. *Diabetes*, 64(2), 618–630. https://doi.org/10.2337/db13-1896. http://diabetes.diabetesjournals.org/content/64/2/618.abstract

Tantucci, C., & Modina, D. (2012). Lung function decline in COPD. *International Journal of Chronic Obstructive Pulmonary Disease*, 7, 95–99. https://doi.org/10.2147/COPD.S27480

Vandenbranden, S. L., McMullen, A., Schechter, M. S., Pasta, D. J., Michaelis, R. L., Konstan, M. W., Wagener, J. S., Morgan, W. J., & McColley, S. A. (2012). Lung function decline from adolescence to young adulthood in cystic fibrosis. *Pediatric Pulmonology*, 47(2), 135–143. https://doi.org/10.1002/ppul.21526. https://pubmed.ncbi.nlm.nih.gov/22241571

Wang, Y., Branicky, R., Noe, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. *Journal of Cell Biology*, 217(6), 1915–1928. https://doi.org/10.1083/jcb.201708007

Wright, J. M., Merlo, C. A., Reynolds, J. B., Zeitlin, P. L., Garcia, J. G. N., Guggino, W. B., & Boyle, M. P. (2006). Respiratory epithelial gene expression in patients with mild and severe cystic fibrosis lung disease. *American Journal of Respiratory Cell and Molecular Biology*, 35(3), 327–336. https://doi.org/10.1165/rcmb.2005-0359OC

Yang, Z., & Ming, X.-F. (2014). Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. *Frontiers in Immunology*, 27(5), 533. https://doi.org/10.3389/fimmu.2014.00533. https://www.ncbi.nlm.nih.gov/pubmed/25386179

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Ramasubramanian, R., Kalhan, R., Jacobs, D. R. Jr., Washko, G. R., Hou, L., Gross, M. D., Guan, W., & Thyagarajan, B. (2021). Gene expression of oxidative stress markers and lung function: A CARDIA lung study. *Molecular Genetics & Genomic Medicine*, 9, e1832. https://doi.org/10.1002/mgg3.1832