PtpA, a secreted tyrosine phosphatase from Staphylococcus aureus, contributes to virulence and interacts with coronin-1A during infection

Laila Gannoun-Zaki†1,2, Linda Pätzold‡1, Sylvaine Huc-Brandt‡, Grégory Baronian‡, Mohamed Ibrahim Elhawy§3, Rosmarie Gaupp§, Marianne Martin§, Anne-Béatrice Blanc-Potard†, François Letourneur§, Markus Bischoff‡, and Virginie Molle‡4

From the †1Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and the ‡2Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany

Edited by Ursula Jakob

Secretion of bacterial signaling proteins and adaptation to the host, especially during infection, are processes that are often linked in pathogenic bacteria. The human pathogen Staphylococcus aureus is equipped with a large arsenal of immune-modulating factors, allowing it to either subvert the host immune response or to create permissive niches for its survival. Recently, we showed that one of the low-molecular-weight protein tyrosine phosphatases produced by S. aureus, PtpA, is secreted during growth. Here, we report that deletion of ptpA in S. aureus affects intramacrophage survival and infectivity. We also observed that PtpA is secreted during macrophage infection. Immunoprecipitation assays identified several host proteins as putative intracellular binding partners for PtpA, including coronin-1A, a cytoskeleton-associated protein that is implicated in a variety of cellular processes. Of note, we demonstrated that coronin-1A is phosphorylated on tyrosine residues upon S. aureus infection and that its phosphorylation profile is linked to PtpA expression. Our results confirm that PtpA has a critical role during infection as a bacterial effector protein that counteracts host defenses.

The success of Staphylococcus aureus as a pathogen and its ability to cause a wide range of disease patterns are the result of its large arsenal of virulence factors that is controlled by a sophisticated network of regulatory molecules (reviewed in Refs. 1 and 2). A number of experiments assessing the invasion and the intracellular survival of S. aureus in endothelial and epithelial cells as well as osteoblasts suggest that such events may contribute to the persistence of S. aureus during infections such as endocarditis, bovine mastitis, and osteomyelitis (3).

This work was supported by grants from the ATIP/AVENIR Program (to V. M. and L. G.-Z.). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S3.
1 Both authors contributed equally to this manuscript.
2 To whom correspondence may be addressed. Tel.: 33-4-67-14-47-26; E-mail: laila.gannoun@umontpellier.fr.
3 Supported by the German Egyptian Research Long-term Scholarship (GERLS) program.
4 To whom correspondence may be addressed. Tel.: 33-4-67-14-47-25; E-mail: virginie.molle@univ-montp2.fr.

Other work demonstrated that S. aureus bacteria possess a high level resistance to neutrophil (4) and macrophage (5) mediated killing, and it has been proposed that professional phagocytes may serve as intracellular reservoirs of S. aureus (5, 6). It is nowadays well accepted that the facultative intracellular lifestyle of S. aureus contributes to recurrent infections that are frequently observed with this species (7). The pathogen is able to replicate in the phagosome or freely in the cytoplasm of its host cells, and may escape the phagolysosome of professional and nonprofessional phagocytes, subvert autophagy, induce cell death mechanisms, such as apoptosis and pyroptosis, or may induce anti-apoptotic programs in phagocytes (reviewed in Ref. 8). Earlier work demonstrated that a subpopulation of ingested S. aureus bacteria can survive for up to 7 days within macrophages (5, 9), and a number of S. aureus global regulators and secreted virulence factors have been identified that contribute to this ability (5, 6, 10–13). However, one strategy utilized by a number of pathogenic bacteria, the secretion of bacterial signaling proteins into target host cells (14, 15), thereby directly modulating host signaling networks, has not yet been studied with S. aureus.

Recently, numerous host-pathogen interactions were found to be dependent on pathogen-secreted phosphatases (16–20). Bacterial tyrosine phosphatases catalyze the dephosphorylation of tyrosyl-phosphorylated proteins, which in turn can result in either the propagation or inhibition of phospho-dependent signaling. Whereas bacterial tyrosine phosphatases can be intimately involved in a number of cellular processes, one major theme has become apparent with the involvement of tyrosine phosphatases as secreted effectors with the potential for manipulation of host cell signal transduction pathways (18). Although a detailed picture is yet unavailable, a role of secreted bacterial protein-tyrosine phosphatases during host infection has been identified in different facultative and obligate intracellular pathogens, and the strategies employed by them are currently being elucidated. For instance, the protein-tyrosine phosphatase YopH is a major virulence factor of Yersinia spp. that is injected into epithelial cells by the type III secretion machinery of the pathogen. YopH can uncouple multiple signal transduction pathways (21), and in human epithelial cells, YopH dephosphorylates several focal adhesion pro-
teins, including p130Cas (Cas), focal adhesion kinase, and paxillin (22–24). Similarly, Salmonella typhimurium translocates the low-molecular-weight (LMW) \(^5\) protein-tyrosine phosphatase (PTP) SptP into epithelial cells to reverse mitogen-activated protein kinase activation (25). Moreover, SptP is required for full virulence in murine models of disease (26). Mycobacterium tuberculosis (MtB) secretes two LMW-PTPs, termed PtpA and PtpB (27). Expression of PtpA in MtB is up-regulated within monocytes, and PtpA is secreted from MtB into the host macrophage cytosol and disrupts key components of the endocytic pathway, resulting in the arrest of phagosome maturation (20, 28). Human vacuolar protein sorting 33B (VPS33B), a regulator of membrane fusion, was identified as the cognate substrate of PtpA, and it is assumed that PtpA impairs phagolysosomal fusion in MtB-infected macrophages by dephosphorylation of VPS33B (20). A MtB ptpB mutant was shown to be impaired in its ability to grow in human macrophages (20), and to display a decreased survival rate in a guinea pig model (29).

A wealth of information has been gained from studies aimed at deciphering the pathophysiological events during S. aureus-macrophage infection (reviewed in Ref. 30), but the signaling pathways leading to these adaptations are still poorly understood. The Gram-positive pathogen is known to produce two pathways leading to these adaptations are still poorly understood. The Gram-positive pathogen is known to produce two LMW-PTPs, PtpA and PtpB (31). Earlier work demonstrated that the S. aureus PtpA phosphatase not only protein tyrosine phosphatases, but also protein ribulosamine 5-phosphates as well as free ribuloselysine 5-phosphate and erythruloselysine 4-phosphate (32). However, deletion of ptpA and/or ptpB in S. aureus did neither affect the in vitro growth kinetics nor the cell wall integrity of the mutants, which led to the assumption that the S. aureus Ptp homologs might have some specialized functions during infection (33). Support for this hypothesis is given by our recent observations, indicating that PtpA is secreted during growth of S. aureus, albeit of the fact that the protein lacks a clear export pathway signal sequence (34).

Here we demonstrate that PtpA contributes to the intracellular survival capacity of S. aureus within macrophages, and participates in the infectivity of this pathogen. Additionally, we show that PtpA is secreted by S. aureus upon ingestion by macrophages, and identify potential PtpA interaction partners within this host cell type.

Results

S. aureus PtpA is required for intramacrophage survival

Given the impact of the MtB PtpA homolog on the persistence capacity of this pathogen within macrophages (35, 36) and the findings that S. aureus persists readily within this host immune cell type we wondered whether the PtpA homolog of S. aureus might fulfill similar functions. For this purpose, ptpA deletion mutants in S. aureus strains Newman, a frequently used laboratory strain, and SA564, a low passage clinical isolate, were generated. First, we determined the survival rates of S. aureus WT and ptpA mutants within RAW 264.7 cells at 45 min post-gentamicin treatment (pGt) (Fig. 1A). Already after this short period of time, a significantly smaller proportion of intracellular surviving cells were observed in RAW 264.7 cells infected with the ptpA mutants of Newman and SA564, respectively. Cis-complementation of the ptpA mutants with a functional ptpA locus reverted in both cases the intracellular survival rates to levels comparable with WT strains (Fig. 1A). Notably, ingested SA564 bacteria were killed much faster by RAW 264.7 cells than Newman cells. After 45 min pGt, about 80% of the ingested Newman bacteria were still viable and cultivable, whereas this was only the case for 16% of the ingested SA564 bacteria (Fig. 1A). Next, the effect of PtpA on intracellular survival of S. aureus Newman in macrophages was determined at a later infection stage (Fig. 1B). Similar to the situation seen at 45 min pGt, significantly reduced survival rates were observed in macrophages infected with the Newman \(\Delta ptPA\) mutant at 22 h pGt when compared with the WT and the cis-complemented derivative, respectively, indicating that the survival defect of the ptpA mutant in macrophages is maintained over time. In vitro growth curves performed with WT and mutant Newman strains excluded that deletion of ptpA in S. aureus might affect the bacterial growth in suspension (Fig. 1C).

S. aureus PtpA contributes to infectivity of S. aureus in a murine abscess model

Because PtpA enhances the survival capacity of S. aureus within macrophages (Fig. 1, A and B), we hypothesized that PtpA may affect the infectivity of S. aureus in vivo. To address this hypothesis, we next assessed the ability of the strain triplet SA564/SA564 \(\Delta ptPA\)/SA564 \(\Delta ptPA::ptpA\) to cause disease in a murine abscess model (37). Consistent with our intramacrophage survival findings (Fig. 1), a significant decrease (about 2-log) in the bacterial loads in liver was detected in mice infected with the \(\Delta ptPA\) mutant as compared with mice challenged with the WT strain (Fig. 2). Mice infected with the cis-complemented \(ptpA^+\) derivative SA564 \(\Delta ptPA::ptpA\) displayed significantly higher bacterial loads in liver than in \(\Delta ptPA\) mutant-challenged mice, although the levels remained lower as seen in WT-challenged animals, however, this effect was not statistically significant (\(p = 0.215\)). These data suggest that PtpA positively contributes to the infectivity of S. aureus in mice.

PtpA is secreted intracellularly upon S. aureus macrophage infection

We recently demonstrated that PtpA was secreted into the extracellular milieu by S. aureus under in vitro growth conditions (34). To test whether PtpA might be also secreted by S. aureus into the host macrophage, we used the cis-complemented S. aureus derivative Newman \(\Delta ptPA::ptpA_FLAG\) (34), which facilitates detection of the expressed PtpA by anti-FLAG immunoblotting. Macrophages were infected with the Newman \(\Delta ptPA\) mutant or the cis-complemented Newman \(\Delta ptPA::ptpA_Flag\) derivative expressing PtpA_FLAG lysed at different time points pGt, separated from the intracellular bac-

\(^5\) The abbreviations used are: LMW, low-molecular-weight; PTP, protein-tyrosine phosphatase; VPS, vacuolar protein sorting; pGt, post-gentamicin treatment; GFP, green fluorescent protein; GST, glutathione S-transferase; CorA, coriisin-A; Ni-NTA, nickel-nitritroacetic acid; TSB, tryptic soy broth; CFU, colony forming unit; m.o.i., multiplicity of infection.
teria and processed for anti-FLAG immunoprecipitation and Western blot analysis. PtpA_FLAG could be detected in increasing amounts in macrophage lysates over time upon cell infection with the *ptpA* complemented Newman strain /H9004*ptpA::ptpA* _FLAG, whereas no such signal was observed in Newman /H9004*ptpA* -infected macrophages (Fig. 3A).

To exclude that the PtpA_FLAG signal might originate from lysed bacteria, we transformed the Newman /H9004*ptpA* mutant and the cis-complemented Newman /H9004*ptpA::ptpA* _FLAG derivative with the green fluorescent protein (GFP) expressing vector pMK4_GFP. Following macrophage infection with these pMK4_GFP harboring derivatives, no GFP signal could be detected in the cleared macrophage lysates after concentration by GFP immunoprecipitation (GFP-trap, Chrommoteck), whereas strong GFP signals were detected in the bacterial pellets that were obtained from the macrophage lysates by centrifugation (Fig. 3B). In the same samples, PtpA_FLAG was detected in the bacterial pellet and after FLAG-immunoprecipitation from the cleared lysates of the Newman /ptpA::ptpA* _FLAG + pMK4_GFP-infected macrophages, whereas this signal was not seen in the cleared lysates of macrophages that were challenged with the pMK4_GFP-transformed /ptpA* mutant (Fig. 3C). Taken together, these findings indicate that the PtpA_FLAG signal detected in the lysate fractions of macrophages infected with the Newman /ptpA::ptpA* Flag derivative was not substantially caused by intracellular bacterial lysis, suggesting a secretion of PtpA into macrophages.

PtpA interacts with several host cell proteins in pulldown experiments

Because PtpA is most likely secreted into host cells, we next assessed whether this bacterial derived phosphatase might interfere with host cell signal transduction pathways. To identify host cell proteins that might interact with PtpA, we...
developed a strategy combining the use of the slime mold Dictyostelium discoideum, and our PtpA functional mutants. D. discoideum is a eukaryotic professional phagocyte amenable to genetic and biochemical studies, and in our case allowing the ectopic expression of PtpA in large culture volumes. In a second approach, we used a “substrate trapping” strategy, based on a methodology used to identify substrates for the Yersinia phosphatase YopH in HeLa cells (38), or Mtb PtpA host interactants (20). The latter mechanism-based approach utilized a catalytically defective mutant of PtpA to trap substrate complexes. PTPs contain a cysteine nucleophile (Cys-8 within the highly conserved sequence C-X_8-R) that forms a phosphocysteinyll intermediate during catalysis (39). We hypothesized that a cysteine to serine mutation at position 8 of the S. aureus Newman PtpA ORF (PtpA_C8S) would result in a catalytically defective PtpA variant that, like other similar PTP family mutants, might “trap” host substrate proteins by stabilizing the covalent enzyme-substrate complexes. To confirm that the C8S mutation in S. aureus PtpA affects its activity, we first tested the recombinant His-tagged versions of PtpA and PtpA-C8S with the substrate p-nitrophenylphosphate. Our results demonstrate that phosphatase activity of the S. aureus C8S mutant was indeed abrogated (Fig. S1).

Lysates from D. discoideum overexpressing PtpA_C8S_FLAG, or expressing the FLAG alone as a control, were next incubated with beads coupled to an anti-FLAG antibody. Afterward, beads were extensively washed, and bound proteins were subsequently stripped off and separated by SDS-PAGE before MS analysis. The proteins identified under each condition were compared and purged of those interacting with FLAG alone (Table 1).

The putative interactants of PtpA identified by this approach are involved in different cellular pathways involving cell adherence or endosomal trafficking. Two of them, lysosomal-α-mannosidase ManA and Arf-GTPase–activating protein DDB0167328, likely play a role in cell adherence (40, 41). Lysosomal-α-mannosidases are members of the glycoside hydrolase family 38. They are involved in the catabolism of Asn-linked glycans of glycoproteins and play a vital role in

Figure 2. Effect of ptpA deletion on infectivity of S. aureus SA564 in a murine abscess model. C57BL/6N mice were infected via retroorbital injection with 1 × 10^7 cells of S. aureus strain SA564 (black symbols), SA564 ΔptpA (white symbols), and the cis-complemented derivative SA564 ΔptpA::ptpA (gray symbols), respectively (n = 10 per group). Mice were euthanized 4 days post-infection, the livers were removed and homogenized in PBS to determine the bacterial loads. Each symbol represents an individual mouse. Horizontal bars indicate the median of all observations. *, p < 0.05; **, p < 0.01; NS, not significant (Mann-Whitney-U test).

Figure 3. PtpA is secreted in macrophages during infection. A, PtpA secretion in macrophage lysates. RAW 264.7 macrophages (5 × 10^5 cells/ml) were incubated for 2 h with either S. aureus Newman ΔptpA cells or S. aureus ΔptpA cells complemented with a FLAG-tagged ptpA (Newman ΔptpA::ptpA_FLAG) at a m.o.i. of 20, and nonphagocytosed bacteria were subsequently removed by gentamicin/lysozymin treatment. Macrophages were lysed at the time points indicated, centrifuged to eliminate intracellular bacteria, and macrophage lysates were subjected to immunoprecipitation and Western blotting analyses using anti-FLAG antibodies. B and C, control immunoprecipitations to rule out bacterial proteins leaking in macrophage lysates. RAW 264.7 macrophages (5 × 10^5 cells/ml) were infected with Newman ΔptpA::ptpA_FLAG harboring plasmid pMK4_GFP and Newman ΔptpA harboring plasmid pMK4_GFP at a m.o.i. of 20, respectively. At 3 h pGt, infected macrophages were lysed in 0.1% Triton X-100, and centrifuged at 14,000 × g. The obtained supernatants corresponding to macrophage lysates were immunoprecipitated with GAP-trap beads (Chromotek) (B) or with anti-FLAG antibodies coated on agarose-beads (C), whereas the pellets containing intracellular bacteria were resuspended in an equal amount of PBS with protease inhibitor mixture and lysed in a bead-beater (Retsch, MM400). Immunoprecipitated proteins and bacterial pellets were resolved on SDS-PAGE and detected with an anti-GFP (B) or anti-FLAG (C) antibody. M kDa, molecular markers.
maintaining cellular homeostasis, cell adhesion during development, viral infection, or immune response (40). Among several functions, Arf-GTPase activating proteins are notably regulators of specialized membrane surfaces implicated in cell migration involving adhesive structures in which the cell membrane is integrated with the actin cytoskeleton (41). Additionally, proteins related to endosome function and trafficking have been co-immunoprecipitated with PtpA: Vacuolin A, Cathepsin D, and Phox domain-containing protein Vps5. Vacuolin A is a flotillin/reggie-related protein from Dictyostelium that oligomerizes for endosome association (42), and Cathepsin D is an aspartic endopeptidase that is ubiquitously distributed in lysosomes to degrade proteins and activate precursors of bioactive proteins in pre-lysosomal compartments (43). Vps5 belongs to the family of sorting nexins containing a Phox homology domain and might be a component of the retromer complex. These proteins are involved in regulating membrane traffic and protein sorting in the endosomal system (44). Interestingly, V-ATPase, previously identified as an interactant of *M. tuberculosis* PtpA (28), was captured also in our substrate-trapping assay, suggesting that in *S. aureus* a similar interaction might occur. Moreover, the host protein coronin-A (CorA) was identified as putative PtpA interactant (Table 1). Interestingly, the mammalian homologue coronin-1A (Coro-1A) was reported as being retained on phagosomes containing living *Mtb*, while being rapidly released from phagosomes containing inactive mycobacteria (45). Furthermore, genetic depletion or RNAi-mediated gene silencing of Coro-1A were later reported to inhibit the survival of mycobacteria within macrophages (46–48).

PtpA interacts with coronin in vitro

As Coro-1A was shown to be important for the survival of mycobacteria in infected macrophages (45–49), we decided to investigate the putative interaction of *S. aureus* PtpA and Coro-1A in more detail. First, we performed GST pulldown assays to verify the interaction between PtpA and *D. discoideum* CorA (Dd_Coro-A) (Fig. 4A). Fusion proteins combining GST and PtpA (PtpA_GST) were immobilized onto GSH-agarose beads and incubated with *D. discoideum* cell lysates expressing a myc-tagged-Dd_Coro-A (myc-Dd_Coro-A). Bound proteins were stripped off the beads and subjected to Western blotting analyses with an anti-myc antibody. As displayed in Fig. 4A, myc-Dd_Coro-A was pulled down with the PtpA_GST fusion, but not with GST alone. This observation strongly suggests that PtpA interacts with CorA from *D. discoideum*, thus supporting our MS findings.

Next, we assayed the interaction of the *S. aureus* PtpA with human Coro-1A (Hs_Coro-1A) by using a pulldown assay (Fig. 4B). His-tagged versions of PtpA (PtpA_His) and the catalytically inactive PtpA_CBS (PtpA_CBS_His) were overexpressed and purified as previously described (34), bound on Ni-NTA-agarose beads and incubated with BL21 lysates expressing the recombinant Hs_Coro-1A protein harboring a GST tag (Hs_Coro-1A_GST). As control, PtpA_His beads were incubated with BL21 lysates expressing GST alone. Ni-NTA-agarose beads without PtpA were additionally incubated with GST or Hs_Coro-1A_GST to confirm that beads alone could not interact with GST fusion proteins (Fig. 4B, upper panel). Protein complexes were pulled down, separated by SDS-PAGE, and transferred onto a nitrocellulose membrane before detection by anti-GST and anti-coronin-1A antibodies, respectively. In this assay, Hs_Coro-1A_GST was retained on beads when PtpA_CBS_His was present, whereas no signal was seen with the PtpA_His version (Fig. 4B, lower panel). Additionally, GST alone did neither in absence nor presence of the His-tagged PtpA fusion proteins bind to the beads (Fig. 4B). Taken together, these data suggest that specific complexes were formed between *S. aureus* PtpA and Coro-1A either with the *D. discoideum* CorA or the human homologue Hs_Coro-1A.

Coronin-1A is phosphorylated on tyrosine residues upon infection

To test whether Coro-1A might serve as a tyrosine-phosphorylated substrate for PtpA in vivo, we infected RAW 264.7 cells with *S. aureus* Newman and its isogenic ΔptpA mutant, respectively, and lysed the macrophages for 30 min and 3 h pGt. The murine macrophage Coro-1A homolog (Mm_Coro-1A) was subsequently immunoprecipitated with an anti-Coro-1A antibody, and the tyrosine phosphorylation status of Mm_Coro-1A was determined by Western blotting analyses using anti-phosphotyrosine antibodies. We observed that phosphorylation of Mm_Coro-1A on tyrosine residues was increased upon infection, and this effect seemed to be influenced by PtpA (Fig. 5A). Infection of RAW 264.7 cells with *S. aureus* clearly enhanced the tyrosine phosphorylation signal of Mm_Coro-1A at both time points analyzed. Interestingly, in lysates of Newman

Table 1

Protein name	Accession number	Sum PEP score	Coverage	Number of peptides	Mass
V-type proton ATPase subunit A	P54647	3216	65	30	68.16
V-type proton ATPase subunit B	Q76NU1	454	35	12	54.84
Coro-1A	P27133	435	33	10	49.18
Cathepsin D	Q76856	421	19	6	41.09
Vacuolin A	O15706	196	13	6	66.25
Lyosomal α-mannosidase	P34098	131	7	4	113.36
Arf GTPase-activating protein	Q9Y2X7	110	10	3	64.89
Phox domain-containing protein vps5	Q86IF6	26	9	2	61.92

* Sum PEP score: sum of –log(PEP) (PEP: posterior error probability), which is a probability that a Peptide Spectra Matches (PSM) is incorrect. The lower the PEP, the higher the sum PEP score.
* A peptide is identified by one or more PSM corresponding to relevant MS-MS mass spectra leading to the identification of a peptide. A protein is identified by several peptides (# Peptides).
* The cut-off is validated by the SEQUEST HT algorithm and corresponds to at least two peptides to identify the protein.

J. Biol. Chem. (2018) 293(40) 15569 –15580
PtpA affects survival of S. aureus during infection

ΔptpA-infected macrophages, about 2-fold higher phosphotyrosine signals (2.2 ± 0.7; n = 6) were observed at 3 h pGt than in lysates of RAW 264.7 cells that were challenged with the parental strain Newman. Therefore, our results reveal for the first time a tyrosine phosphorylation of Coro-1A, as previous records of phosphorylation for this protein were related only to Ser-Thr residues (50–52), as well as its PtpA-mediated dephosphorylation.

Coronin-1A is not dephosphorylated in vitro by recombinant PtpA

The observation that Coro-1A can be Tyr-phosphorylated, and that its Tyr-phosphorylation status seemed to be influenced by PtpA, prompted us to assess whether Coro-1A might be directly dephosphorylated by PtpA, as previously reported for some Mtb PtpA substrates (20). Thus we tested the ability of PtpA and of the catalytically inactive PtpA_C8S (C8S) to dephosphorylate the murine variant of Coro-1A. PtpA_D120A was chosen for this dephosphorylation assay as it corresponds to the commonly used phosphatase-defective PtpA mutant PtpA_D126A in Mtb (20, 28, 53, 54). First, Mm_Coro-1A was purified by immunoprecipitation from S. aureus Newman-infected macrophages. Equal amounts of the immunoprecipitated Mm_Coro-1A were then incubated with recombinant PtpA derivatives for 30 min and 1 h, respec-

Figure 4. PtpA interacts with Coro-1A in vitro. A, the interaction between PtpA and D. discoideum CorA was confirmed by GST pulldown assay. The indicated GST fusion proteins were expressed in E. coli, bound to GSH beads, and then incubated with D. discoideum cell lysates expressing myc-tagged-Dd_Coro-1 (Dd_Coro-A_myc). Beads were washed, eluted by boiling, and bound proteins were revealed by Western blot analysis with an anti-myc antibody. B, the interaction between PtpA and human Coro-1A was tested by pulldown analysis. His-tagged versions of PtpA (WT) and the catalytically inactive PtpA_C8S (C8S) were constructed, produced, and purified as described under “Experimental procedures.” BL21 lysates expressing Hs_Coro-1A_GST or GST alone were prepared and incubated with the PtpA_His derivatives immobilized on Ni-NTA-agarose beads. The bound proteins were eluted and resolved by SDS-PAGE followed by immunoblotting using anti-GST and anti-Coro-1A antibodies. Empty Ni-NTA-agarose beads were used as a control. *, nonspecific signals co-precipitated with PtpA_C8S_His. M kDa, molecular markers.
Figure 5. Coro-1A is phosphorylated on tyrosines in vivo but is not dephosphorylated by PtpA in vitro. A, immunoblot analysis with anti-Coro-1A (upper panel) or anti-phosphotyrosine antibodies (bottom panel) of immunoprecipitated (IP) endogenous Coro-1A (Mm_Coro-1A) from lysates of RAW 264.7 macrophages infected with cells of S. aureus Newman (WT) or the isogenic ΔptpA mutant. Noninfected macrophages and infected macrophages were treated with gentamicin for 30 min and subsequently incubated with lysostaphin to kill extracellular bacteria that might be released from lysed macrophages during the successive incubation time. Noninfected and infected macrophages were lysed 30 min (NI T30 min and T30 min) and 3 h (NI T3 h and T3 h) pGt treatment. B, immunoprecipitated Mm_Coro-1A from lysates of macrophages infected with strain Newman for 30 min pGt were incubated in the absence (−) or presence (+) of 2 μg of PtpAΔHis or PtpA-D120AΔHis at 37 °C for the time points indicated (T0, 30 and 60 min). Proteins were resolved by SDS-PAGE and probed with anti-Coro-1A (upper panel) or anti-phosphotyrosine (bottom panel) antibodies on the same blot. Contents of Mm_Coro-1A and Tyr-phosphorylated Mm_Coro-1A in lysates of S. aureus-infected macrophages prior to concentration by IP are indicated in the input lane (input). M kDa, molecular markers.

Discussion

Our results provide the first interactor candidate identification of host partners of the secreted phosphatase PtpA, and its involvement in the process of infection and intracellular survival of S. aureus. The macrophage survival and infection data suggest an important role for PtpA during infection. Our co-immunoprecipitation studies indicate PtpA interacts with a number of host factors including Coro-1A, and revealed that this actin-binding protein can be phosphorylated at tyrosine residues. Together, these findings suggest a role for PtpA as modulator of the host immune response, particularly after uptake of S. aureus by macrophages. As the impact of Tyr-phosphorylation on Coro-1A function/activity was not studied yet, we can only hypothesize that phosphorylation of the Coro-1A Tyr residue(s) might affect the intracellular distribution of this actin-binding protein within macrophages, as it has been suggested for serine/threonine-mediated phosphorylation of coronin-1. Indeed, protein kinase C-dependent coronin-1 phosphorylation on Ser and Thr residues was identified as an important mechanism to modulate the intracellular distribution of this protein during phagolysosome maturation. Earlier work studying the phagocytosis of opsonized zymosan particles by HL-60 leukemia cells demonstrated that phosphorylation of coronin-1 by protein kinase C triggered the dissociation of the actin-binding protein from nascent phagosomes (51). Another study performed with mycobacteria-infected macrophages showed that coronin-1 accumulated on bacteria-loaded phagosomes, and the V-ATPase subunit H without using this protein as a catalytic substrate (28).
that this protein was actively retained by viable mycobacteria residing inside phagosomes (45) suggesting that the retention of coronin-1 on mycobacteria-loaded phagosomes is responsible for suppressing phagosome-lysosome formation (58). More recent work demonstrated that trimeration of coronin-1 was essential for mycobacterial survival, and that the transition from the trimero to the monomer form was regulated by serine phosphorylation (59). In the light of the latter findings one may speculate that Tyr-phosphorylation of Coro-1A might also affect the spatial distribution of this protein in S. aureus-infected macrophages, and that the bacterium attempts to modulate this process via PtpA. However, it is unclear yet whether Tyr-phosphorylation of Coro-1A affects the trimeration of this protein, and further work is required to understand how PtpA recognizes Coro-1A and/or other putative interactors identified by our co-immunoprecipitation studies, and whether and how they participate in the establishment of S. aureus survival and virulence.

Experimental procedures

Bacterial strains and culture conditions

The bacterial strains and plasmids used in this study are listed in Table 2. *Escherichia coli* strain was grown at 37 °C in LB medium supplemented with antibiotic when required. *S. aureus* isolates were plated on tryptic soy agar (BD Bioscience) supplemented with antibiotic when required, or grown in tryptic soy broth (TSB) (BD Bioscience) medium at 37 °C and 150 rpm. The Newman Δ*ptpA* mutant derivatives were previously constructed (34). The SA564 Δ*ptpA* mutant was obtained by phage transducing the *aphAIII-lox*-tagged *ΔptpA* mutation from Newman Δ*ptpA* into the low passage clinical isolate SA564 (60).

Construction of the *S. aureus* ptpA cis-complementation strain SA564 Δ*ptpA::ptpA*

For cis-complementation of the *ptpA* mutation in strain SA564 Δ*ptpA*, a 0.8-kb fragment containing the C-terminal part of ORF RT87_RS09705 located downstream of *ptpA* (RT87_RS09695) was amplified by PCR from chromosomal DNA of *S. aureus* strain SA564 using the primer pair MBH425/MBH426 (Table 2). The resulting PCR product was digested with KpnI/EcoRI, and subsequently cloned into KpnI/EcoRI-digested vector pEC1 (61) to generate the suicide plasmid pEC1_Δ*ptpAc*. *E. coli* IM08B (62)-derived plasmid pEC1_Δ*ptpAc* was directly electroporated into *S. aureus* strain SA564. A SA564 derivative that integrated pEC1_Δ*ptpAc* was subsequently used as a donor for transducing the cis-integrated pEC1_Δ*ptpAc* into SA564 Δ*ptpA*, thereby replacing the *aphA*-tagged *ptpA* deletion with the WT *ptpA* genome region.

Animal studies statement

Animal experiments were approved by the local State Review Boards of Saarland and conducted according to the regulations of German veterinary law.
Murine abscess model

Preparation of the bacterial inoculum and infection of the animals were carried out as described (37), with minor modifications. Briefly, 100-μl bacterial suspensions containing ~10^7 colony forming unit (cfu) were administered intravenously by retro-orbital injection into female, 8–10-week-old C57/BL6N mice that were anesthetized by isoflurane inhalation (5%; Baxter). Immediately after infection, mice were treated with a dose of caprofen (5 mg/kg; Pfizer), and at 4 days post-infection, mice were sacrificed, and livers were removed. The organs were weight adjusted and homogenized in PBS, and serial dilutions of the homogenates were plated on blood agar plates to enumerate the cfu.

Cloning and expression of PtpA in D. discoideum

For *S. aureus* PtpA-C8S overexpression in *D. discoideum*, the coding sequence of PtpA-C8S was amplified by PCR using the set of primer Nter_PtpA_flag_C8S_IF_Bam and Cter_PtpAflag_Xho_pDXA (Table 2). The amplified product was digested with BamHI and XhoI restriction enzymes and cloned into *D. discoideum* expression vector pDXA vector (63). The pDXA_PtpA-C8S-Flag plasmid was transfected in *D. discoideum* cells as described (64).

Cloning, expression, and purification of recombinant PtpA derivatives

GST-PtpA recombinant protein was obtained by cloning the *ptpA* fragment generated by PCR using *S. aureus* N315 genomic DNA as a template with the primers Nterm PtpA Bam_pGEX and Cterm PtpA Hind_pGEX (Table 2) into the BamHI-HindIII-digested pGEX vector. PtpA_C8S_His harboring cysteine to serine substitution was generated by using the QuikChange Site-directed Mutagenesis Kit (Agilent Technologies) on pETPhos_PtpA template (34) using the primer Nterm PtpA_C8S (Table 2) thus generating pETPhos_PtpA_C8S. PtpA-His and PtpA-GST derivatives were purified as previously described (34, 65).

Cloning, expression, and purification of coronin derivatives

The coding sequence of the *D. discoideum* CorA homolog was amplified by PCR from *D. discoideum* genomic DNA using the appropriate primers introducing BamHI and Xhol restriction sites, respectively (Table 2). The PCR product was digested with BamHI and Xhol, and ligated into the *D. discoideum* expression vector pDXA that was digested with the same restriction enzymes. The pDXA 3xmyc-CorA plasmid (pFL1290) was linearized with Scal and transfected in *D. discoideum* strain DH1–10. Cells were grown at 22 °C in HL5 medium as previously described (64). Human coronin-1A (Hs-Coro-1A) (gi: 300934762, NP_001180262.1) was synthesized, codon optimized for bacterial production with GenScript, and cloned into pUC57 vector. The coding sequence was amplified by PCR from pUC57 vector, digested by NcoI-HindIII restriction enzymes, and ligated into pCDFDuet-GSTCter-up1 expression vector, thus generating pCDFDuet-Coro-1A-GST. The construct was verified by DNA sequencing. For pulldown assays, lysates of BL21 Star expressing GST-Hs-coronin-1A or GST

PtpA affects survival of *S. aureus* during infection

The murine macrophage cell line RAW 264.7 (mouse leukemic monocyte macrophage, ATCC TIB-71) was cultured in Dulbecco’s modified Eagle’s medium (ThermoFisher Scientific, France) supplemented with 10% fetal calf serum (ThermoFisher Scientific, France) in a humidified atmosphere at 5% CO₂ at 37 °C. For macrophage infection, *S. aureus* Newman and SA564 strains were grown to the midexponential growth phase (A_490 = 0.7–0.9) in TSB medium. The bacteria were then collected by centrifugation at 10,000 rpm for 5 min and resuspended in sterile PBS. The RAW 264.7 cells (5 × 10^5 cells/ml, in 24-well plates) were inoculated with *S. aureus* at the m.o.i. of 20:1 (bacteriaccells) and incubated at 37 °C and 5% CO₂ for the indicated time. Subsequently, cells were washed once with PBS and the remaining extracellular bacteria were killed by incubation with gentamicin (100 μg/ml) for 30 min. After gentamicin treatment, macrophages were rinsed twice with PBS (T0), and then further incubated in Dulbecco’s modified Eagle’s medium containing 5 μg/ml of lysostaphin for 45 min and 22 h, respectively. Enumeration of intracellular bacteria was performed by lysing infected macrophages with 0.1% Triton X-100 in PBS. Macrophage lysates were serially diluted and plated on TSB agar plates that were subsequently cultivated at 37 °C for 16 h. The survival rate of bacteria was defined as follows: number of bacterial colonies at time post gentamicin/number of bacterial colonies at T0 × 100%.

Immunoprecipitation of PtpA from *D. discoideum*

For immunoprecipitations, 2 × 10^7 *D. discoideum* cells expressing flagged PtpA (PtpA--FLAG) or PtpA-C8S were lysed in lysis buffer (50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 0.5% Nonidet P-40, protease inhibitors (Roche Applied Science), and cleared by centrifugation for 15 min at 14,000 rpm. Lysate supernatants were incubated overnight at 4 °C with a monoclonal anti-FLAG antibody coated on agarose beads (Genscript). The beads were then washed five times in wash buffer (50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 0.1% Nonidet P-40) and once in PBS. Bound proteins were migrated on SDS-PAGE and analyzed by immunoblotting or MS when required.

PtpA phosphatase activity assay

Phosphatase activity of PtpA-wt and -C8S His-tagged recombinant proteins was determined using p-nitrophenyl-phosphate as chromogenic substrate as previously published (34).

Immunoprecipitation of Coro-1A from infected macrophages

Murine macrophage coronin-1A (Mm_Coro-1A) was obtained from *S. aureus*-infected RAW 264.7 macrophage extracts.
by immunoprecipitation with anti-Coro-1A antibody (5 μg, rabbit anti-coronin-1A; SAB4200078, Sigma). Briefly, the anti-Coro-1A antibody was first coupled to 50 μl of Dynabeads-Protein G (10003D, Life Technologies) in a rotator for 10 min at room temperature and then covalently cross-linked using 5 mM Protein G (10003D, Life Technologies) in a rotator for 30 min at room temperature. Infected macrophages (m.o.i. = 20) were lysed at different time points pGT in 0.1% Triton X-100 in PBS containing a protease inhibitor mixture (complete EDTA-free protease inhibitor mixture, Roche). Antibody-coupled beads were added to these lysates and incubated in a rotator for 1 h at room temperature. Thereafter, the beads were washed twice in PBS, 0.02% Tween 20 and 3 times in phosphate buffer (Tris-HCl 20 mM, pH 7.5, MgCl₂ 5 mM, DTT 5 mM). Immunoprecipitated samples were washed 3 times in PBS, 0.02% Tween 20 followed by elution in Laemmli sample buffer and analyzed by SDS-PAGE and immunoblotting using the mouse anti-phosphotyrosine (clone 4G10, Millipore) or the rabbit anti-coronin-1A antibodies.

In vitro dephosphorylation of Mm_Coro-1A

Immunoprecipitated Mm_Coro-1A from infected macrophages was obtained as described above. To examine if phosphorylated Mm_Coro-1A is a suitable substrate of PtpA, equal amounts of beads were incubated with 2 μg of purified PtpA. After 30 min and 1 h at 37 °C at 650 rpm, respectively, the reaction was stopped by the addition of sample buffer and proteins bound to the beads were resolved in a 4–20% SDS-PAGE. Mm_Coro-1A contents and its phosphorylation status were revealed by immunoblotting using anti-Coro-1A and anti-phosphotyrosine antibodies on the same blot.

Pulldown assays

For GST pulldown assays, GST-PtpA fusion proteins were produced as described above and bound to GSH-Sepharose 4B beads according to manufacturer’s instructions (GE Heath-care). To prepare cell lysates, D. discoideum cells, expressing 3xmyc-Dd_Coro-A (2 × 10⁷) were incubated 15 min in lysis buffer (20 mM HEPES buffer, pH 7.0, 100 mM NaCl, 5 mM MgCl₂, 1% Triton X-100; complete protease inhibitor mixture, Roche) and centrifuged for 15 min at 14,000 rpm in a refrigerated microcentrifuge. GST beads were then incubated with cell lysates (800 μg) overnight at 4 °C on a wheel. After three washes in lysis buffer, beads were heated at 95 °C for 10 min. Bound proteins were separated by SDS-PAGE and transferred to nitrocellulose before incubation with an anti-myc antibody (clone 9E10, Sigma). Blots were revealed with the Odyssey Western Detection System (Bio-Rad).

For His-pulldown assays, His-tagged PtpA fusion proteins were produced as described (34). Equal amounts of PtpA-His Ni-NTA beads were incubated with BL21 Star lysates expressing GST-Hs Coro-1A or GST alone for 30 min at 4 °C with gentle agitation in coupling buffer (HEPES 20 mM, NaCl 100 mM, MgCl₂ 5 mM, Nonidet P-40 0.5%, glycerol 10%, imidazole 10 mM, pH 7.4). In parallel, as a control for unspecified binding, the same amount of Ni-NTA without immobilized PtpA was incubated in the same buffer with both lysates. For each Coro-1A assay, 100 μl of the matrix with or without immobilized PtpA was incubated with 5 mg of BL21 Star lysates diluted to 1 mg/ml. The matrix was collected by low speed centrifugation and then washed three times with the coupling buffer containing 50 mM imidazole. Proteins bound to the beads were recovered by the treatment with 40 μl of Laemmli sample buffer at 95 °C for 5 min. Samples were then resolved on SDS-PAGE gel and subjected to immunoblotting with anti-GST and anti-Coro-1A antibodies, respectively.

Statistical analyses

Statistical significance was assessed using the Mann-Whitney U test. p values <0.05 were considered significant.

References

1. Bischoff, M. R., and Romby, P. (2016) Genetic regulation in Staphylococcus: Genetics and Physiology (Somerville, G. A. S., ed) pp. 301–334, Caister Academic Press, Wymondham, United Kingdom
2. Schlievert, P. M. (2016) Staphylococcal virulence factors in Staphylococcus: Genetics and Physiology (Somerville, G. A. S., ed) pp. 81–106, Caister Academic Press, Wymondham, United Kingdom
3. Lowy, F. D. (2000) Is Staphylococcus aureus an intracellular pathogen? Trends Microbiol. 8, 341–343 CrossRef Medline
4. Vojvich, J. M., Braughton, K. R., Sturdevant, D. E., Whitney, A. R., Said-Salim, B., Porcella, S. F., Long, R. D., Dorward, D. W., Gardner, D. J., Kreiswirth, B. N., Musser, J. M., and DeLeo, F. R. (2005) Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175, 3907–3919 CrossRef Medline
5. Kubica, M., Gузik, K., Koziel, J., Zarebski, M., Richter, W., Gajkowska, B., Golda, A., Maciag-Gudowska, A., Brix, K., Shaw, L., Foster, T., and Potempa, J. (2008) A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS ONE 3, e1409 CrossRef Medline
6. Koziel, J., Maciag-Gudowska, A., Mikolajczyk, T., Bzowska, M., Sturdevant, D. E., Whitney, A. R., Shaw, L. N., DeLeo, F. R., and Potempa, J. (2009) Phagocytosis of Staphylococcus aureus by macrophages exerts cytotoxic effects manifested by the upregulation of antiapoptotic factors. PLoS ONE 4, e5210 CrossRef Medline
7. Horn, J., Stelzner, K., Rudel, T., and Fraunholz, M. (2018) Inside job: Staphylococcus aureus host-pathogen interactions. Int. J. Med. Microbiol. 308, 607–624 Medline
8. Fraunholz, M., and Sinha, B. (2012) Intracellular Staphylococcus aureus: live-in and let die. Front. Cell. Infect. Microbiol. 2, 43 Medline
9. Hamza, T., and Li, B. (2014) Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiol. 14, 207 CrossRef Medline
10. Surewaard, B. G., Deniset, J. F., Zemp, F. J., Amrein, M., Otto, M., Conly, J., Omri, A., Yates, R. M., and Kubes, P. (2016) Identification and treatment of the Staphylococcus aureus reservoir in vivo. J. Exp. Med. 213, 1141–1151 CrossRef
27. Koul, A., Choidas, A., Treder, M., Tyagi, A. K., Drlica, K., Singh, Y., and Cozzone, A. J. (2002) \textit{Staphylococcus aureus} contains two low-molecular-mass phosphotyrosine protein phosphatases. \textit{J. Bacteriol.} \textbf{184}, 5194–5199 \textbf{CrossRef Medline}

26. Kaniga, K., Uralil, J., Bliska, J. B., and Galan, J. E. (1996) A secreted protein predisposes to bacterial persistence in macrophages. \textit{Cell Microbiol.} \textbf{18}, 80–96 \textbf{CrossRef Medline}

25. Lin, S. L., Le, T. X., and Cowen, D. S. (2003) SptP, a protein tyrosine phosphatase with modular effector domains in the bacterial pathogen \textit{Mycobacterium tuberculosis}. \textit{EMBO J.} \textbf{22}, 633–641 \textbf{CrossRef Medline}

24. Brelle, S., Baronian, G., Huc-Brandt, S., Zaki, L. G., Cohen-Gonsaud, M., Bischoff, M., and Molle, V. (2016) Phosphorylation-mediated regulation of the \textit{Staphylococcus aureus} secreted tyrosine phosphatase \textit{PtpA}. \textit{Biochem. Biophys. Res. Commun.} \textbf{469}, 619–625 \textbf{CrossRef Medline}

23. Persson, C., Nordfelth, R., Andersson, K., Forsberg, A., Wolf-Watz, H., and Fällman, M. (1999) Localization of the \textit{Yersinia} \textit{PTPase YopH} inhibits uptake of \textit{Yersinia} tyrosine phosphatase that is required for efficient recognition of focal adhesion targets. \textit{Mol. Microbiol.} \textbf{29}, 1263–1274 \textbf{CrossRef Medline}

22. Bliska, J. B. (1998) Identiﬁcation of an amino-terminal substrate-binding domain in the \textit{Yersinia} tyrosine phosphatase that is required for efficient recognition of focal adhesion. \textit{Cell Microbiol.} \textbf{1}, 198–213 \textbf{CrossRef Medline}

21. Bliska, J. B. (2000) Yop effectors of \textit{Yersinia spp.}, and actin rearrangements. \textit{Trends Microbiol.} \textbf{8}, 205–208 \textbf{CrossRef Medline}

20. Lin, S. L., Le, T. X., and Cowen, D. S. (2003) SptP, a \textit{Salmonella typhimurium} type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. \textit{Cell Microbiol.} \textbf{5}, 267–275 \textbf{CrossRef Medline}

19. Anagnostopoulos, S. H., Miller, J. C., Berube, P., and Smith, C. E. (2000) The presence of \textit{Yersinia} tyrosine phosphatase in the \textit{YptPase} complex regulates \textit{YptPase} activity. \textit{Mol. Microbiol.} \textbf{33}, 828–838 \textbf{CrossRef Medline}

18. Lin, S. L., Le, T. X., and Cowen, D. S. (2003) \textit{S. typhimurium} is an important virulence mechanism. \textit{Mol. Microbiol.} \textbf{9}, 193–213 \textbf{CrossRef Medline}

17. Jung, S. K., Grifﬁths, J. J., and Bliska, J. B. (2000) \textit{YopY} inhibits uptake of \textit{YopH} tyrosine phosphatase in the \textit{YptPase} complex. \textit{J. Exp. Med.} \textbf{191}, 1307–1318 \textbf{CrossRef Medline}

16. Heneberg, P. (2012) Finding the smoking gun: protein tyrosine phosphatases as tools and targets of unicellular microorganisms and viruses. \textit{Curr. Med. Chem.} \textbf{19}, 1530–1566 \textbf{CrossRef Medline}

15. Cornejo, E., Schlaermann, P., and Mukherjee, S. (2017) How to rewire the \textit{Yersinia} gen, a006114, 4, 100–109 \textbf{Medline}

14. Alto, N. M., and Orth, K. (2012) Subversion of cell signaling by pathogens. \textit{Mol. Microbiol.} \textbf{85}, 133–164 \textbf{CrossRef Medline}

13. Koziel, J., Chmiest, D., Bryzek, D., Kmiecik, K., Miziak-Gudowska, A., Shaw, L. N., and Potempa, J. (2015) The Janus face of \textit{Yersinia} tyrosine phosphatase (PtpA) excludes host \textit{Mycobacterium tuberculosis} from macrophages. \textit{J. In innate Immun.} \textbf{7}, 187–198 \textbf{CrossRef Medline}

12. Jubrail, J., Morris, P., Bewley, M. A., Stoneham, S., Johnston, S. A., Foster, S. J., Peden, A. A., Read, R. C., Marriott, H. M., and Dockrell, D. H. (2016) Inability to sustain intraphagolysosomal killing of \textit{Staphylococcus aureus} predisposes to bacterial persistence in macrophages. \textit{Cell Microbiol.} \textbf{18}, 80–96 \textbf{CrossRef Medline}

11. Tranchemontagne, Z. R., Camire, R. B., O’Donnell, V. J., Baugh, J., and Burkholder, K. M. (2016) \textit{Staphylococcus aureus} strain USA300 perturbs acquisition of lysosomal enzymes and requires phosphoglycidation for survival inside macrophages. \textit{Infect. Immun.} \textbf{84}, 241–253 \textbf{Medline}

10. Jungral, J., Morris, P., Bewley, M. A., Stoneham, S., Johnston, S. A., Foster, S. J., Peden, A. A., Read, R. C., Marriott, H. M., and Dockrell, D. H. (2016) Inability to sustain intraphagolysosomal killing of \textit{Staphylococcus aureus} predisposes to bacterial persistence in macrophages. \textit{Cell Microbiol.} \textbf{18}, 80–96 \textbf{CrossRef Medline}

9. Koziel, J., Chmiest, D., Bryzek, D., Kmiecik, K., Miziak-Gudowska, A., Shaw, L. N., and Potempa, J. (2015) The Janus face of \textit{Yersinia} tyrosine phosphatase (PtpA) excludes host \textit{Mycobacterium tuberculosis} from macrophages. \textit{J. In innate Immun.} \textbf{7}, 187–198 \textbf{CrossRef Medline}

8. Alt, N. M., and Orth, K. (2012) Subversion of cell signaling by pathogens. \textit{Mol. Microbiol.} \textbf{85}, 133–164 \textbf{CrossRef Medline}

7. Lin, S. L., Le, T. X., and Cowen, D. S. (2003) \textit{SptP}, a \textit{Salmonella typhimurium} type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. \textit{Cell Microbiol.} \textbf{5}, 267–275 \textbf{CrossRef Medline}

6. Brelle, S., Baronian, G., Huc-Brandt, S., Zaki, L. G., Cohen-Gonsaud, M., Bischoff, M., and Molle, V. (2016) Phosphorylation-mediated regulation of the \textit{Staphylococcus aureus} secreted tyrosine phosphatase \textit{PtpA}. \textit{Biochem. Biophys. Res. Commun.} \textbf{469}, 619–625 \textbf{CrossRef Medline}

5. Hingley-Wilson, S. J., Peden, A. A., Read, R. C., Marriott, H. M., and Dockrell, D. H. (2016) Inability to sustain intraphagolysosomal killing of \textit{Staphylococcus aureus} predisposes to bacterial persistence in macrophages. \textit{Cell Microbiol.} \textbf{18}, 80–96 \textbf{CrossRef Medline}

4. Seaman, M. N., and Williams, H. P. (2002) Identification of the functional domains of yeast sorting nexins \textit{Yshp5} and \textit{Yshp7p}. \textit{Mol. Biol. Cell} \textbf{13}, 2826–2840 \textbf{CrossRef Medline}

3. Diment, S., Martin, K. J., and Stahl, P. D. (1989) Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins. \textit{J. Biol. Chem.} \textbf{264}, 13403–13406 \textbf{Medline}

2. Seaman, M. N., and Williams, H. P. (2002) Identification of the functional domains of yeast sorting nexins \textit{Yshp5} and \textit{Yshp7p}. \textit{Mol. Biol. Cell} \textbf{13}, 2826–2840 \textbf{CrossRef Medline}

1. Ferrari, G., Langen, H., Naito, M., and Pieters, J. (1999) A coat protein on \textit{Dictyostelium} oligomerizes for endosome association. \textit{Eur. J. Cell Biol.} \textbf{85}, 991–1000 \textbf{CrossRef Medline}
gosomes and assists mycobacterial survival in macrophages. *Cell Microbiol.* **14**, 710–727 CrossRef Medline
50. BoseDasgupta, S., and Pieters, J. (2014) Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. *PLoS Pathog.* **10**, e1003879 CrossRef Medline
51. Itoh, S., Suzuki, K., Nishihata, J., Iwasa, M., Oku, T., Nakajin, S., Nauseef, W. M., and Toyoshima, S. (2002) The role of protein kinase C in the transient association of p57, a coronin family actin-binding protein, with phagosomes. *Biol. Pharmaceut. Bull.* **25**, 837–844 Medline
52. Oku, T., Nakano, M., Kaneko, Y., Ando, Y., Kenmotsu, H., Itoh, S., Tsuiji, M., Seyama, Y., Toyoshima, S., and Tsuji, T. (2012) Constitutive turnover of phosphorylation at Thr-412 of human p57/coronin-1 regulates the interaction with actin. *J. Biol. Chem.* **287**, 42910–42920 CrossRef Medline
53. Wang, J., Ge, P., Qiang, L., Tian, F., Zhao, D., Chai, Q., Zhu, M., Zhou, R., Meng, G., Iwakura, Y., Gao, G. F., and Liu, C. H. (2017) The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. *Nat. Commun.* **8**, 244 CrossRef Medline
54. Wang, J., Teng, J. L., Zhao, D., Ge, P., Li, B., Woo, P. C., and Liu, C. H. (2016) The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by *Mycobacterium tuberculosis* PtpA during mycobacterial infection. *Sci. Rep.* **6**, 34827 CrossRef Medline
55. Lee, Y. G., Chain, B. M., and Cho, J. Y. (2009) Distinct role of spleen tyrosine kinase in the early phosphorylation of inhibitor of kappaBalpha via activation of the phosphoinositide-3-kinase and Akt pathways. *Int. J. Biochem. Cell Biol.* **41**, 811–821 CrossRef Medline
56. Yi, Y. S., Son, Y. J., Ryou, C., Sung, G. H., Kim, J. H., and Cho, J. Y. (2014) Functional roles of Syk in macrophage-mediated inflammatory responses. *Mediators Inflamm.* **2014**, 270302 Medline
57. Bohnenberger, H., Oellerich, T., Engelke, M., Hsiao, H. H., Urlaub, H., and Wienands, J. (2011) Complex phosphorylation dynamics control the composition of the Syk interactome in B cells. *Eur. J. Immunol.* **41**, 1550–1562 CrossRef Medline
58. Nguyen, L., and Pieters, J. (2005) The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. *Trends Cell Biol.* **15**, 269–276 CrossRef Medline
59. BoseDasgupta, S., and Pieters, J. (2014) Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. *FEBS Lett.* **588**, 3898–3905 CrossRef Medline
60. Somerville, G. A., Beres, S. B., Fitzgerald, J. R., DeLeo, F. R., Cole, R. L., Hoff, J. S., and Musser, J. M. (2002) In vitro serial passage of *Staphylococcus aureus*: changes in physiology, virulence factor production, and agr nucleotide sequence. *J. Bacteriol.* **184**, 1430–1437 CrossRef Medline
61. Bruckner, R. (1997) Gene replacement in *Staphylococcus carnosus* and *Staphylococcus xylosus*. *FEMS Microbiol. Lett.* **151**, 1–8 CrossRef
62. Monk, I. R., Tree, J. J., Howden, B. P., Stinear, T. P., and Foster, T. J. (2015) Complete bypass of restriction systems for major *Staphylococcus aureus* lineages. *mBio* **6**, e00308-00315 Medline
63. Manstein, D. J., Schuster, H. P., Morandini, P., and Hunt, D. M. (1995) Cloning vectors for the production of proteins in *Dictyostelium discoideum*. *Gene* **162**, 129–134 Medline
64. Alibaud, L., Cosson, P., and Benghezal, M. (2003) Dictyostelium discoideum transformation by oscillating electric field electroporation. *BioTechniques* **35**, 78–80 Medline
65. Molle, V., Kremer, L., Girard-Blanc, C., Besra, G. S., Cozzone, A. J., and Prost, J. F. (2003) An FHA phosphoprotein recognition domain mediates protein Embr phosphorylation by PknH, a Ser/Thr protein kinase from *Mycobacterium tuberculosis*. *Biochemistry* **42**, 15300–15309 Medline