Generalizations of The Chung-Feller Theorem II

Jun Maa,* Yeong-Nan Yeh b,†

a,b Institute of Mathematics, Academia Sinica, Taipei, Taiwan

Abstract

The classical Chung-Feller theorem [2] tells us that the number of Dyck paths of length \(n \) with \(m \) flaws is the \(n \)-th Catalan number and independent on \(m \). L. Shapiro [9] found the Chung-Feller properties for the Motzkin paths. Mohanty’s book [5] devotes an entire section to exploring Chung-Feller theorem. Many Chung-Feller theorems are consequences of the results in [5]. In this paper, we consider the \((n, m)\)-lattice paths. We study two parameters for an \((n, m)\)-lattice path: the non-positive length and the rightmost minimum length. We obtain the Chung-Feller theorems of the \((n, m)\)-lattice path on these two parameters by bijection methods. We are more interested in the pointed \((n, m)\)-lattice paths. We investigate two parameters for an pointed \((n, m)\)-lattice path: the pointed non-positive length and the pointed rightmost minimum length. We generalize the results in [5]. Using the main results in this paper, we may find the Chung-Feller theorems of many different lattice paths.

Keywords: Chung-Feller Theorem; Dyck path; Motzkin path

1 Introduction

Let \(Z \) denote the set of the integers and \([n] := \{1, 2, \ldots, n\}\). We consider \(n \)-Dyck paths in the plane \(Z \times Z \) using \textit{up} \((1, 1)\) and \textit{down} \((1, -1)\) steps that go from the origin to the point \((2n, 0)\). We say \(n \) the \textit{semilength} because there are \(2n\) steps. An \textit{n-flawed} path is an \(n \)-Dyck path that contains some steps under the \(x \)-axis. The number of \(n \)-Dyck path that never pass below the \(x \)-axis is the \(n \)-th Catalan number \(c_n = \frac{1}{n+1}\binom{2n}{n} \). Such paths are called the \textit{Catalan paths of length} \(n \). A Dyck path is called a \textit{(n, r)-flawed} path if it contains \(r \) up steps under the \(x \)-axis and its semilength is \(n \). Clearly, \(0 \leq r \leq n \). The classical Chung-Feller theorem [2] says that the number of the \((n, r)\)-flawed paths is equal to \(c_n \) and independent on \(r \).

The classical Chung-Feller Theorem were proved by MacMahon [7]. Chung and Feller reproved this theorem by using analytic method in [2]. T.V.Narayana [8] showed the Chung-Feller Theorem

*Email address of the corresponding author: majun@math.sinica.edu.tw

†Partially supported by NSC 96-2115-M-001-005
by combinatorial methods. S. P. Eu et al. [3] proved the Chung-Feller Theorem by using the Taylor expansions of generating functions and gave a refinement of this theorem. In [4], they gave a strengthening of the Chung-Feller Theorem and a weighted version for Schröder paths. Y.M. Chen [1] revisited the Chung-Feller Theorem by establishing a bijection.

Mohanty’s book [5] devotes an entire section to exploring Chung-Feller theorem. We state the result from [5] as the following lemma.

Lemma 1.1 [5] Given a positive integer \(n \), let \(Y = (y_1, \ldots, y_{n+1}) \) be a sequence of integers with \(1 - n \leq y_i \leq 1 \) for all \(i \in [n+1] \) such that \(\sum_{i=1}^{n+1} y_i = 1 \). Furthermore, let \(E(Y) = |\{ i \mid \sum_{j=1}^{i} y_j \leq 0 \}| \).

Let \(Y_i \) be the \(i \)-th cyclic permutation of \(Y \) (i.e., \(Y_i = (y_i, y_{i+1}, \ldots, y_{n+i+1}) \) with \(y_{n+r+1} = y_r \)). Then there exists a permutation \(i_1, \ldots, i_{n+1} \) on the set \([n+1]\) such that \(E(Y_{i_1}) > E(Y_{i_2}) > \cdots > E(Y_{i_{n+1}}) \).

Many Chung-Feller theorems are consequences of lemma 1.1. First, let \(\phi \) be a mapping from \(\mathbb{Z} \) to \(\mathbb{P} \), where \(\mathbb{P} \) is a set of all the positive integers. Let the sequence \(Y = (y_1, \ldots, y_{n+1}) \) satisfy the conditions in Lemma 1.1. Using \((\phi(y_i), y_i) \) steps, we can obtain a lattice path \(P(Y) = (\phi(y_1), y_1)(\phi(y_2), y_2) \cdots (\phi(y_{n+1}), y_{n+1}) \) in the plane \(\mathbb{Z} \times \mathbb{Z} \) that go from the origin to the point \(\sum_{i=1}^{n+1}(\phi(y_i), 1) \). Using Lemma 1.1, we will derive the classical Chung-Feller theorem for Dyck paths if we let \(y_i \in \{1, -1\} \) and set \(\phi(y) = 1 \) for all \(y \in \mathbb{Z} \); we will derive the Chung-Feller theorem for Schröder paths if we let \(y_i \in \{1, 0, -1\} \) and set \(\phi(0) = 2 \) and \(\phi(y) = 1 \) for \(y \neq 0 \); we will derive the Chung-Feller theorem for Motzkin paths if we let \(y_i \in \{1, 0, -1\} \) and set \(\phi(0) = 1 \) and \(\phi(y) = 1 \) for \(y \neq 0 \) and so on.

How to derive the Chung-Feller theorem for lattice paths in the plane \(\mathbb{Z} \times \mathbb{Z} \) using \((1, -1), (1, 1), (1, 0), (2, 0)\) steps? For answering this problem, the authors of this paper [6] proved the Chung-Feller theorems for three classes of lattice paths by using the method of the generating functions. It is interesting that these Chung-Feller theorems can’t be derivable as a special case from lemma 1.1. This implies that we may generalize the results of Lemma 1.1.

In this paper, first we give the definition of the \((n, m)\)-lattice paths. We consider two parameters for an \((n, m)\)-lattice path: the non-positive length and the rightmost minimum length. Using bijection methods, we obtain the Chung-Feller theorems of the \((n, m)\)-lattice path on these two parameters. Then we study the pointed \((n, m)\)-lattice paths. We investigate two parameters for an pointed \((n, m)\)-lattice path: the pointed non-positive length and the pointed rightmost minimum length. We give generalizations of the results in [5] and prove the Chung-Feller theorems of the pointed \((n, m)\)-lattice path on these two parameters. Finally, using the main theorems of this paper, we may find the Chung-Feller theorems of many different \((n, m)\)-lattice paths.

This paper is organized as follows. In Section 2, we focus on the \((n, m)\)-lattice paths. Using bijection methods, we obtain the Chung-Feller theorems of the \((n, m)\)-lattice path. In Section 3,
we study the pointed \((n, m)\)-lattice paths and give generalizations of the results in [5]. In Section 4, using the main theorems of this paper, we find the Chung-Feller theorems of many different \((n, m)\)-lattice paths.

2 The \((n, m)\)-lattice paths

Throughout the paper, we always let \(n\) and \(m\) be two positive integers with \(m \geq n + 1\). In this section, we will consider the \((n, m)\)-lattice paths. We will define two parameters for an \((n, m)\)-lattice path: the non-positive length and the rightmost minimum length. Using bijection methods, we will obtain the Chung-Feller theorems of the \((n, m)\)-lattice path on these two parameters. First, we give the definition of the \((n, m)\)-lattice paths as follows.

Definition 2.1 An \((n, m)\)-lattice paths \(P\) is a sequence of the vectors \((x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1})\) in \(\mathbb{Z}^2\) such that:

1. \(1 - n \leq y_i \leq 1\) and \(\sum_{i=1}^{n+1} y_i = 1\)
2. \(1 \leq x_i \leq m - 1\) and \(\sum_{i=1}^{n+1} x_i = m\).

\((x_i, y_i)\) is called the steps of \(P\) for any \(i \in [n + 1]\). Since \(P\) can be viewed as a path from the origin to \((m, 1)\) in the plane \(\mathbb{Z} \times \mathbb{Z}\) and has \(n + 1\) steps, we say that \(P\) is of order \(n + 1\) and length \(m\).

2.1 The non-positive length of an \((n, m)\)-lattice paths

Given an \((n, m)\)-lattice path \(P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1})\), we let \(NP(P) = \{i \mid \sum_{j=1}^{i} y_j \leq 0\}\) and \(NPL(P) = \sum_{i \in NP(P)} x_i\). Clearly, \(0 \leq NPL(P) \leq m - x_{n+1} \leq m - 1\) since \(n + 1 \neq NP(P)\).

We say that \(NPL(P)\) is the non-positive length of the \((n, m)\)-lattice path \(P\). Moreover, we define a linear order \(<_P\) on the set \([n + 1]\) by the following rules:

- for any \(i, j \in [n + 1]\), \(i <_P j\) if either (1) \(\sum_{k=1}^{i} y_k < \sum_{k=1}^{j} y_k\) or (2) \(\sum_{k=1}^{i} y_k = \sum_{k=1}^{j} y_k\) and \(i > j\).

The sequence formed by writing \([n + 1]\) in the increasing order with respect to \(<_P\) is denoted by \(\pi_P = (\pi_P(1), \pi_P(2), \ldots, \pi_P(n + 1))\).

Example 2.2 Let \(n = 8\) and \(m = 11\). We draw an \((8, 11)\)-lattice path

\[P = (1, 1)(1, -2)(2, 1)(1, 1)(1, -1)(1, -1)(1, 1)(1, 1)(2, 0)\]

as follows.
Then $NP(P) = \{2, 3, 5, 6, 7\}$, $NPL(P) = 6$ and $\pi_P = (6, 2, 7, 5, 3, 9, 8, 4, 1)$.

We use $\mathcal{L}_{n,m,r}$ to denote the set of all the (n,m)-lattice paths P such that $NPL(P) = r$. In particular, we use $\tilde{\mathcal{L}}_{n,m,0}$ to denote the set of all the lattice paths $P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1})$ in the set $\mathcal{L}_{n,m,0}$ such that $x_{n+1} = 1$. Clearly, $\tilde{\mathcal{L}}_{n,m,0} \subset \mathcal{L}_{n,m,0}$.

Lemma 2.3

1. The number of the (n,m)-lattice paths P such that $NP(P) = 0$ is equal to $\binom{m-1}{n}c_n$;
2. The number of the (n,m)-lattice paths $P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1})$ such that $NPL(P) = 0$ and $x_{n+1} = 1$ is equal to $\binom{m-2}{n-1}c_n$.

Proof. (1) It is well known that the number of the solutions of the equation $\sum_{i=1}^{n+1} y_i = 1$ such that $1 - n \leq y_i \leq 1$ and $NP(P) = \emptyset$ is c_n and the number of the solutions of the equation $\sum_{i=1}^{n+1} x_i = m$ in positive integers is $\binom{m-1}{n}$. Hence, The number of the (n,m)-lattice paths P such that $NPL(P) = 0$ is equal to $\binom{m-1}{n}c_n$.

(2) Note that the number of the solutions of the equation $\sum_{i=1}^{n} x_i = m - 1$ in positive integers is $\binom{m-2}{n-1}$. We immediately obtain that the number of the (n,m)-lattice paths P such that $NPL(P) = 0$ and $x_{n+1} = 1$ is equal to $\binom{m-2}{n-1}c_n$.

Lemma 2.4 There is a bijection Φ from $\mathcal{L}_{n,m,r}$ to $\mathcal{L}_{n,m,r+1}$ for any $1 \leq r \leq m - 2$.

Proof. Let $P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1}) \in \mathcal{L}_{n,m,r}$. Consider the sequence π_P. Suppose $\pi_P(k) = n + 1$ for some k. Since $r \geq 1$, we have $k \geq 2$. We discuss the following two cases.

Case I. $k \leq n$

If $x_{n+1} = 1$, then let $i = \pi_P(k + 1)$ and

$$\Phi(P) = (x_{i+1}, y_{i+1})\ldots(x_{n+1}, y_{n+1})(x_1, y_1)\ldots(x_i, y_i).$$

If $x_{n+1} \geq 2$, then let $i = \pi_P(k - 1)$ and

$$\Phi(P) = (x_1, y_1)\ldots(x_i + 1, y_i)\ldots(x_{n+1} - 1, y_{n+1}).$$

Case II. $k = n + 1$
Note that \(x_{n+1} \geq 2 \) since \(r \leq m - 2 \). We let \(i = \pi_p(n) \) and

\[
\Phi(P) = (x_1, y_1) \ldots (x_i + 1, y_i) \ldots (x_{n+1} - 1, y_{n+1}).
\]

It is easy to see that \(\Phi(P) \in L_{n,m} \) for Cases I and II.

For proving that \(\Phi \) is a bijection, we describe the inverse of \(\Phi \) as follows.

Let \(P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1}) \in L_{n,m} \), where \(1 \leq r \leq m - 2 \). Suppose \(\pi_p(k) = n+1 \) for some \(k \). Let \(i = \pi_p(k-1) \). If \(x_i = 1 \), then let

\[
\Phi^{-1}(P) = (x_{i+1}, y_{i+1}) \ldots (x_{n+2}, y_{n+2}) (x_1, y_1) \ldots (x_i, y_i);
\]

otherwise, let

\[
\Phi^{-1}(P) = (x_1, y_1) \ldots (x_i - 1, y_i) \ldots (x_{n+1} + 1, y_{n+1}).
\]

This complete the proof.

Example 2.5 Let \(n = 3 \) and \(m = 5 \). We draw \((3,5)\)-lattice paths

\[
P_1 = (1,1)(1,1)(1,-2)(2,1) \quad P_2 = (1,1)(1,1)(2,-2)(1,1)
\]

\[
P_3 = (1,1)(2,-2)(1,1)(1,1) \quad P_4 = (2,-2)(1,1)(1,1)(1,1)
\]

as follows.

![Lattice Paths](image)

We have \(\Phi(P_i) = P_{i+1} \) and \(NPL(P_i) = i \).

Lemma 2.6 There is a bijection from \(\tilde{L}_{n,m,0} \) to \(L_{n,m,1} \).

Proof. Let \(P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1}) \in \tilde{L}_{n,m,0} \). Consider the sequence \(\pi_p \). Note that \(\pi_p(1) = n+1 \) for any \(P \in \tilde{L}_{n,m,0} \). So, let \(i = \pi_p(2) \). Let the mapping \(\Phi \) be defined as that in Lemma 2.4, i.e., \(\Phi(P) = (x_{i+1}, y_{i+1}) \ldots (x_{n+1}, y_{n+1})(x_1, y_1) \ldots (x_i, y_i) \). Then \(\Phi(P) \in L_{n,m,1} \). Conversely, for any \(P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1}) \in L_{n,m,1} \), we have \(\pi_p(2) = n+1 \). Suppose \(\pi_p(1) = i \), then \(x_i = 1 \). This tells us that \(\Phi \) is a bijection from \(\tilde{L}_{n,m,0} \) to \(L_{n,m,1} \).

Theorem 2.7 For any \(1 \leq r \leq m - 1 \), the number of the \((n,m)\)-lattice paths \(P \) such that \(NPL(P) = r \) is equal to the number of the \((n,m)\)-lattice paths \(P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1}) \) such that \(NPL(P) = 0 \) and \(x_{n+1} = 1 \) and independent on \(r \).

Proof. Combining Lemmas 2.4 and 2.6, we immediately obtain the results as desired.
2.2 The rightmost minimum length of an \((n,m)\)-lattice paths

Given a \((n,m)\)-lattice path

\[P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1}) \]

we let

\[a_0 = 0, \quad b_0 = 0, \quad a_i = \sum_{j=1}^{i} y_j \]

and

\[b_i = \sum_{j=1}^{i} x_j \]

for \(i \geq 1\). Then the \((n,m)\)-lattice path \(P\) can be viewed as a sequence of the points in the plane \(\mathbb{Z} \times \mathbb{Z}\)

\[(b_0, a_0), (b_1, a_1), \ldots, (b_{n+1}, a_{n+1}). \]

A minimum point of the path \(P\) is a point \((b_i, a_i)\) such that \(a_i \leq a_j\) for all \(j \neq i\). A rightmost minimum point is a minimum point \((b_i, a_i)\) such that the point is the rightmost one among all the minimum points. If \((b_i, a_i)\) is the minimum point of the path \(P\), we call \(b_i\) the rightmost minimum length of the \((n,m)\)-lattice paths \(P\), denoted by \(\text{RML}(P)\).

Example 2.8 We consider the path \(P\) in Example 2.2. The point \((7, -1)\) is the rightmost minimum point and \(\text{RML}(P) = 7\).

We use \(\mathcal{M}_{n,m,r}\) to denote the set of all the \((n,m)\)-lattice paths \(P\) such that \(\text{RML}(P) = r\).

Lemma 2.9 There is a bijection \(\Psi\) from \(\mathcal{M}_{n,m,r}\) to \(\mathcal{M}_{n,m,r+1}\) for any \(1 \leq r \leq m - 2\).

Proof. Let \(P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1}) \in \mathcal{M}_{n,m,r}\). If \(x_{n+1} = 1\), we let

\[\Psi(P) = (x_{n+1}, y_{n+1})(x_1, y_1) \ldots (x_n, y_n); \]

otherwise let

\[\Psi(P) = (x_1 + 1, y_1)(x_2, y_2) \ldots (x_n, y_n)(x_{n+1} - 1, y_{n+1}). \]

It is easy to see that \(\Psi(P) \in \mathcal{M}_{n,m,r+1}\).

For proving that \(\Phi\) is a bijection, we describe the inverse of \(\Phi\) as follows.

If \(x_1 = 1\), we let

\[\Psi(P) = (x_2, y_2)(x_3, y_3) \ldots (x_{n+1}, y_{n+1})(x_1, y_1); \]

otherwise let

\[\Psi(P) = (x_1 - 1, y_1)(x_2, y_2) \ldots (x_n, y_n)(x_{n+1} + 1, y_{n+1}). \]

This complete the proof.

Example 2.10 Let \(n = 3\) and \(m = 5\). We draw \((3,5)\)-lattice paths

\[
\begin{align*}
P_1 & = (1, -2)(2, 1)(1, 1)(1, 1) \quad P_2 = (1, 1)(1, -2)(2, 1)(1, 1) \\
P_3 & = (1, 1)(1, 1)(1, -2)(2, 1) \quad P_4 = (2, 1)(1, 1)(1, -2)(1, 1)
\end{align*}
\]

as follows.
We have $\Psi(P) = P_{i+1}$ and $RML(P) = i$.

Note that $NPL(P) = 0$ if and only if $RML(P) = 0$ for any (n, m)-lattice path. Recall that $\tilde{L}_{n,m,0}$ is the set of all the lattice paths $P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1})$ in the set $L_{n,m,0}$ such that $x_{n+1} = 1$. Hence, also $\tilde{L}_{n,m,0}$ is the set of all the lattice paths $P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1})$ in the set $M_{n,m,0}$ such that $x_{n+1} = 1$.

Lemma 2.11 There is a bijection from $\tilde{L}_{n,m,0}$ to $M_{n,m,1}$.

Proof. Let $P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1}) \in \tilde{L}_{n,m,0}$. Then $x_{n+1} = 1$ and $y_{n+1} \leq 0$. We let

$$
\Psi(P) = (x_{n+1}, y_{n+1})(x_1, y_1)\ldots(x_n, y_n).
$$

Clearly, $\Psi(P) \in M_{n,m,1}$.

Conversely, let $P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1}) \in \tilde{L}_{n,m,1}$. Then $x_1 = 1$ and $y_1 \leq 0$. We let

$$
\Psi(P) = (x_2, y_2)(x_3, y_3)\ldots(x_{n+1}, y_{n+1})(x_1, y_1).
$$

This complete the proof.

Theorem 2.12 For any $1 \leq r \leq m - 1$, the number of the (n, m)-lattice paths P such that $RML(P) = r$ is equal to the number of the (n, m)-lattice paths $P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1})$ such that $RML(P) = 0$ and $x_{n+1} = 1$ and independent on r.

Proof. Combining Lemmas 2.9 and 2.11, we immediately obtain the results as desired.

3 The pointed (n, m)-lattice path

In this section, we will consider the pointed (n, m)-lattice paths. We will define two parameters for an pointed (n, m)-lattice path: the pointed non-positive length and the pointed rightmost minimum length. We will give generalizations of the results in [5]. We will prove the Chung-Feller theorems of the pointed (n, m)-lattice path on these two parameters. First, we give the definition of the pointed (n, m)-lattice paths as follows.
Definition 3.1 A pointed \((n, m)\)-lattice paths \(\hat{P}\) is a pair \([P; j]\) such that:

1. \(P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1})\) is an \((n, m)\)-lattice paths;
2. \(0 \leq j \leq x_{n+1} - 1\).

We call the point \((m - j, 0)\) the root of \(P\). We use \(\mathcal{L}_{n,m}\) to denote the set of the pointed \((n, m)\)-lattice paths.

Lemma 3.2 The number of the pointed \((n, m)\)-lattice paths is \(\binom{2n}{n}\binom{m}{n+1}\).

Proof. Note that the number of the solutions of the equation \(\sum_{i=1}^{n+1} y_i = 1\) such that \(1 - n \leq y_i \leq 1\) is \(\binom{2n}{n}\). On the other hand, we let \(z_i = x_i\) for all \(i \in [n]\), \(z_{n+1} = x_{n+1} - j\) and \(z_{n+2} = j\). Since \(\sum_{i=1}^{n+2} x_i = m, x_i \geq 1\) and \(0 \leq j \leq x_{n+1} - 1\), we have \(\sum_{i=1}^{n+2} z_i = m\), \(z_i \geq 1\) for all \(i \in [n+1]\) and \(z_{n+2} \geq 0\). It is easy to see that the number of the solutions of the equation \(\sum_{i=1}^{n+2} z_i = m\) such that \(z_i \geq 1\) for all \(i \in [n+1]\) and \(z_{n+2} \geq 0\) is \(\binom{m}{n+1}\). Hence, the number of the pointed \((n, m)\)-lattice paths is \(\binom{2n}{n}\binom{m}{n+1}\).

3.1 The pointed non-positive length of an pointed \((n, m)\)-lattice paths

Given a pointed \((n, m)\)-lattice path \(\hat{P} = [P; j]\), where \(P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1})\) and \(0 \leq j \leq x_{n+1} - 1\), we let \(PNPL(\hat{P}) = NPL(P) + j\). Clearly, \(0 \leq PNPL(\hat{P}) \leq m - 1\). We say that \(PNPL(\hat{P})\) is the pointed non-positive length of the path \(\hat{P}\).

By Lemma 2.3 (1), we have the following lemma.

Lemma 3.3 The number of the pointed \((n, m)\)-lattice paths with pointed non-positive length 0 is \(\binom{m-1}{n}\).

Given an \((n, m)\)-lattice path \(P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1})\), we let

\[
P_i = (x_{i+1}, y_{i+1}) \ldots (x_{n+1}, y_{n+1})(x_1, y_1) \ldots (x_i, y_i).
\]

\(P_i\) is called the \(i\)th cyclic permutation of \(P\). Furthermore, setting the point \((m - j, 0)\) to be the root of \(P_i\), where \(0 \leq j \leq x_i - 1\), we get a pointed \((n, m)\)-lattice paths \([P_i; j]\), denoted by \(\hat{P}(i; j)\). Finally, we define a set \(\mathcal{PL}(P)\) as follows:

\[
\mathcal{PL}(P) = \{\hat{P}(i; j) \mid i \in [n + 1] \text{ and } 0 \leq j \leq x_i - 1\}.
\]

Clearly, we have the following lemma.

Lemma 3.4 \(|\mathcal{PL}(P)| = m\).
Recall that $<_P$ is the linear order on the set $[n+1]$. We define a linear order $<_P$ on the set $\mathcal{PL}(P)$ by the following rules:

for any $\hat{P}(i_1; j_1), \hat{P}(i_2; j_2) \in \mathcal{PL}(P)$, $\hat{P}(i_1; j_1) <_P \hat{P}(i_2; j_2)$ if either (1) $i_1 <_P i_2$ or (2) $i_1 = i_2$ and $j_1 < j_2$.

The sequence, which is formed by the elements in the set $\mathcal{PL}(P)$ in the increasing order with respect to $<_P$, reduce a bijection from the sets $[m]$ to $\mathcal{PL}(P)$, denoted by $\Theta = \Theta_P$.

Example 3.5 Let $n = 3$ and $m = 5$. Let $P = (1,1)(1,-2)(1,1)(2,1)$. We draw the pointed $(3,5)$-lattice path $\hat{P} = [P; 1]$ as follows.

![Diagram of a pointed lattice path]

where the root is the point $(4,0)$ denoted by \bullet. Then $PNPL(\hat{P}) = 3$. We write the bijection Θ_P as the following 2×5 matrix.

$$
\Theta_P = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
\hat{P}(2; 0) & \hat{P}(3; 0) & \hat{P}(4; 0) & \hat{P}(4; 1) & \hat{P}(1; 0)
\end{pmatrix}
$$

Theorem 3.6 Let P be an (n,m)-lattice path, $\mathcal{PL}(P)$ and Θ_P defined as above. Then

$$
PNPL(\Theta(r)) = r - 1
$$

for any $r \in [m]$.

Proof. Note that $0 \leq PNPL(\Theta(r)) \leq m - 1$ for any $r \in [m]$. It is sufficient to prove that $PNPL(\Theta(r + 1)) = PNPL(\Theta(r)) + 1$ for any $r \in [m-2]$. Suppose

$$
P = (x_1, y_1)(x_2, y_2) \ldots (x_{n+1}, y_{n+1})
$$

and $\Theta(r) = \hat{P}(s; t) \in \mathcal{PL}(P)$. Let π_P be the sequence formed by writing $[n+1]$ in the increasing order with respect to $<_P$ and $\pi_P^{-1}(s) = k$. Then $PNPL(\Theta(r)) = \sum_{j=1}^{k-1} x_{\pi_P(j)} + t$. Now, suppose $\Theta(r + 1) = \hat{P}(\tilde{s}; \tilde{t})$. We discuss the following two cases:

Case I. $s = \tilde{s}$

Then $\tilde{t} = t + 1$. This implies $PNPL(\Theta(r + 1)) = PNPL(\Theta(r)) + 1$.

Case II. $s <_P \tilde{s}$

Then $\pi_P(k + 1) = \tilde{s}$, $t = x_s - 1$ and $\tilde{t} = 0$. Thus,

$$
PNPL(\Theta(r + 1)) = \sum_{j=1}^{k} x_{\pi_P(j)} = \sum_{j=1}^{k-1} x_{\pi_P(j)} + x_s = PNPL(\Theta(r)) + 1.
$$

This complete the proof. □
Example 3.7 We consider the path P in Example 3.5. We draw the pointed lattice path $\Theta(r)$ as follows:

![Lattice paths](image)

Remark 3.8 Let $\hat{P} = [P; j]$ be a pointed (n, m)-lattice path, where $P = (x_1, y_1) \ldots (x_{n+1}, y_{n+1})$ and $0 \leq j \leq x_{n+1} - 1$. Setting $m = n + 1$, we have $x_i = 1$ for all i and $j = 0$. Let $Y = (y_1, \ldots, y_{n+1})$. Then $E(Y) = \text{PNPL}(\hat{P})$. This tells us that Lemma 1.1 can be viewed as a corollary of Theorem 3.6.

We use $\mathcal{L}_{n,m,r}$ to denote the set of the pointed (n, m)-lattice paths with pointed non-positive length r. Clearly, $\mathcal{L}_{n,m} = \bigcup_{r=0}^{m-1} \mathcal{L}_{n,m,r}$. Let $l_{n,m,r} = |\mathcal{L}_{n,m,r}|$.

Corollary 3.9 For any $0 \leq r \leq m - 1$, the number of the pointed (n, m)-lattice paths with pointed non-positive length r is equal to the number of the pointed (n, m)-lattice paths with pointed non-positive length 0 and independent on r, i.e., $l_{n,m,r} = \frac{1}{m} \binom{2n}{n} \binom{m}{n+1}$.

Proof. First, we define an equivalent relation on the set $\mathcal{L}_{n,m}$. Let $\hat{P} = [P; i]$ and $\hat{Q} = [Q; j]$ be two pointed (n, m)-lattice paths. Suppose $P = (x_1, y_1) \ldots (x_{n+1}, y_{n+1})$. Recall P_k denote the kth cyclic permutation of P, i.e., $P_k = (x_{k+1}, y_{k+1}) \ldots (x_{n+1}, y_{n+1})(x_1, y_1) \ldots (x_k, y_k)$. We say \hat{Q} and \hat{P} is equivalent, denoted by $\hat{Q} \sim \hat{P}$, if $Q = P_k$ for some $k \in [n+1]$. Hence, given a pointed lattice path $\hat{P} \in \mathcal{L}_{n,m}$, we define a set $EQ(\hat{P})$ as $EQ(\hat{P}) = \{ \hat{Q} \in \mathcal{L}_{n,m} \mid \hat{Q} \sim \hat{P} \}$. We say that the set $EQ(\hat{P})$ is an equivalent class of the set $\mathcal{L}_{n,m}$. Clearly, $|EQ(\hat{P})| = m$. Now, we may suppose that the set $\mathcal{L}_{n,m}$ has t equivalent class. Then $t = \frac{1}{m} \binom{2n}{n} \binom{m}{n+1}$. For any $0 \leq r \leq m - 1$, from Theorem 3.6, every equivalent class contains exactly one element with pointed non-positive length r. Hence, $l_{n,m,r} = t = \frac{1}{m} \binom{2n}{n} \binom{m}{n+1}$.
3.2 The pointed rightmost minimum length of an pointed \((n, m)\)-lattice paths

Let \(\hat{P} = [P; j]\) be a pointed \((n, m)\)-lattice path, where \(P = (x_1, y_1)(x_2, y_2)\ldots(x_{n+1}, y_{n+1})\) is a \((n, m)\)-lattice path and \(0 \leq j \leq x_{n+1} - 1\). Recall that \(RML(P)\) is the rightmost minimum length of \(P\). We let \(PRML(\hat{P}) = RML(P) + j\) and call \(PRML(\hat{P})\) the pointed rightmost minimum length of \(\hat{P}\).

Note that \(PNPL(P) = 0\) if and only if \(PRML(\hat{P}) = 0\) for any pointed \((n, m)\)-lattice path. We immediately obtain the following lemma.

Lemma 3.10 The number of the pointed \((n, m)\)-lattice paths with pointed rightmost minimum length 0 is \(\binom{m-1}{n}\).

First, given a \((n, m)\)-lattice path \(P\), we recall that \(\pi_P\) is the sequence formed by writing \([n+1]\) in the increasing order with respect to \(<_P\). Suppose \(\pi_P(1) = i\). Let \(\sigma_P = (\sigma_P(1), \sigma_P(2), \ldots, \sigma_P(n+1)) = (i, i-1, \ldots, 1, n+1, n, \ldots, i+1)\).

Using \(\sigma_P\), we define a new linear order \(<^*_P\) on the set \(\mathcal{P}L(P) = \{\hat{P}(i; j)\mid i \in [n+1] \text{ and } 0 \leq j \leq x_i - 1\}\) by the following rules:

- for any \(\hat{P}(i_1; j_1), \hat{P}(i_2; j_2) \in \mathcal{P}L(P)\), \(\hat{P}(i_1; j_1) <^*_P \hat{P}(i_2; j_2)\) if either (1) \(\sigma_P^{-1}(i_1) < \sigma_P^{-1}(i_2)\) or (2) \(i_1 = i_2\) and \(j_1 < j_2\).

The sequence, which is formed by the elements in the set \(\mathcal{P}L(P)\) in the increasing order with respect to \(<^*_P\), reduce a bijection from the sets \([m]\) to \(\mathcal{P}L(P)\), denoted by \(\Gamma = \Gamma_P\).

Example 3.11 Consider the path \(P\) and the pointed path \(\hat{P}\) in Example 3.5. we have \(PRML(\hat{P}) = 3\). It is easy to see \(\sigma_P = (2, 1, 4, 3)\). We write the bijection \(\Gamma_P\) as the following \(2 \times 5\) matrix.

\[
\Gamma_P = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
\hat{P}(2; 0) & \hat{P}(1; 0) & \hat{P}(4; 0) & \hat{P}(4; 1) & \hat{P}(3; 0)
\end{pmatrix}
\]

Theorem 3.12 Let \(P\) be an \((n, m)\)-lattice path and \(\Gamma\) defined as above. Then

\[PRML(\Gamma(r)) = r - 1\]

for any \(r \in [m]\).

Proof. It is sufficient to prove that \(PRML(\Gamma(r+1)) = PRML(\Gamma(r)) + 1\). Suppose \(\Gamma(r) = \hat{P}(i_1; j_1)\) and \(\Gamma(r+1) = \hat{P}(i_2; j_2)\). If \(i_1 = i_2\), then \(j_1 + 1 = j_2\). Clearly, \(PRML(\Gamma(r+1)) = PRML(\Gamma(r)) + 1\).

We consider the case with \(\sigma_P^{-1}(i_1) < \sigma_P^{-1}(i_2)\). Let \(k = \sigma_P^{-1}(i_1)\). Then \(\sigma_P^{-1}(i_2) = k + 1, j_1 = x_{i_1} - 1\) and \(j_2 = 0\). We have \(PRML(\hat{P}(i_2; j_2)) = \sum_{j=1}^{k} x_{\sigma_P(j)} = \sum_{j=1}^{k-1} x_{\sigma_P(j)} + x_{i_1} = PRML(\hat{P}(i_1; j_1)) + 1\). \(\blacksquare\)
Example 3.13 We consider the path P in Example 3.5. We draw the pointed lattice path $\Gamma(r)$ as follows:

We use $\mathcal{M}_{n,m,r}$ to denote the set of the pointed (n,m)-lattice paths with pointed rightmost minimum length r. Clearly, $\mathcal{L}_{n,m} = \bigcup_{r=0}^{m-1} \mathcal{M}_{n,m,r}$. Let $d_{n,m,r} = |\mathcal{M}_{n,m,r}|$.

Corollary 3.14 For any $0 \leq r \leq m - 1$, the number of the pointed (n,m)-lattice paths with pointed rightmost minimum length r is equal to the number of the pointed (n,m)-lattice paths with pointed rightmost minimum length 0 and independent on r, i.e., $d_{n,m,r} = \frac{1}{m} \binom{2n}{n} \binom{m}{n+1}$.

Proof. Similar to the proof of Corollary 3.9, we can obtain the results as desired.

4 The application of the main theorem

In fact, by Theorems 3.6 and 3.12, we may find the Chung-Feller theorems of many different (n,m)-lattice paths on the parameter: the pointed non-positive length and the pointed rightmost minimum length. For example, we let A and B be two finite subsets of the set \mathbb{P}. Let $\mathcal{S} = \mathcal{S}_A \cup \mathcal{S}_B \cup \{(1,1)\}$, where $\mathcal{S}_A = \{(2i-1,-1) \mid i \in A\}$ and $\mathcal{S}_B = \{(2i,0) \mid i \in B\}$. In [6], we have proved the following corollary by the generating function methods. Using Theorems 3.6 and 3.12, we can reobtain the corollary.

Corollary 4.1 Let $\mathcal{P}_{n,m}$ be the set of the pointed lattice paths in the plane $\mathbb{Z} \times \mathbb{Z}$ which (1) only use steps in the set \mathcal{S}; (2) have $n+1$ steps; (3) go from the origin to the point $(m,1)$. Then in $\mathcal{P}_{n,m}$,
(1) the number of the pointed lattice paths with pointed non-positive length \(r \) is equal to the number of the pointed lattice paths with pointed non-positive length 0 and independent on \(r \);
(2) the number of the pointed lattice paths with pointed rightmost minimum length \(r \) is equal to the number of the pointed lattice paths with pointed rightmost minimum length 0 and independent on \(r \).

Proof. (1) It is easy to see that a pointed lattice path \(P \) in \(\mathcal{P}_{n,m} \) can be viewed as a pointed \((n,m)\)-lattice path \((x_1,y_1) \ldots (x_{n+1},y_{n+1})\) such that \((x_i,y_i) \in \mathcal{S}\) for all \(i \in [n+1] \). By Theorem 3.6, using a similar method as Corollary 3.9, we get the results as desired.
(2) The proof is omitted.

Acknowledgements

The authors would like to thank Professor Christian Krattenthaler for his valuable suggestions.

References

[1] Y.M. Chen, The Chung-Feller theorem revisited, *Discrete Math.* 308 (2008) 1328-1329
[2] K.L. Chung, W. Feller, On fluctuations in coin tossing, *Proc. Natl. Acad. Sci. USA* 35 (1949) 605-608
[3] S. P. Eu, T.S.Fu, Y.N. Yeh, Taylor expansions for Catalan and Motzkin numbers, *Adv. Appl. Math.* 29 (2002) 345-357
[4] S. P. Eu, T.S.Fu, Y.N. Yeh, Refined Chung-Feller theorems for lattice paths, *J. Combin. Theory Ser. A* 112 (2005) 143-162
[5] Sri Gopal Mohanty, Lattice path counting and applications, *New York : Academic Press, 1979*
[6] Jun Ma, Yeong-nan Yeh, Generalizations of The Chung-Feller Theorem, submitted.
[7] P.A. MacMahon, Memoir on the theory of the partitions of numbers, *Philos. Trans. Roy. Soc. London, Ser. A, 209 (1909), 153-175; Also G.E. Andrews (Ed.), Collected Works, vol. 1, MIT Press, Cambridge, MA, 1978, 1292-1314.*
[8] T.V.Narayana, Cyclic permutation of lattice paths and the Chung-Feller theorem, *Skand. Aktuariedskr.* (1967) 23-30
[9] L. Shapiro, Some open questions about random walks, involutions, limiting distributions, and generating functions, *Advances in Applied Math.* 27 (2001), 585-596.