SOME RESULTS ON UNBOUNDED ABSOLUTE WEAK DUNFORD-PETTIS OPERATORS

HUI LI AND ZILI CHEN

ABSTRACT. In this paper, we characterize Banach lattices on which each Dunford-Pettis operator (or weak Dunford-Pettis) is unbounded absolute weak Dunford-Pettis operator and the converse.

1. Introduction

The notion of unbounded order convergence (uo-convergence, for short) was firstly introduced by Nakano in [14], then it was used and systematically investigated in [8, 9, 10, 12, 17]. After that, A. Bahramnezhad et al. proposed the definition of unbounded order continuous operators in [3]. A closely related notion of unbounded norm convergence (un-convergence, for short) was introduced and systematically studied in [5, 11, 15]. In [11 Section 9], M. Kandić et al. gave the definition of (sequentially) un-compact operators and obtained the relationships between weakly compact operators and sequentially un-compact operators. Recently, O. Zabeti in [19] proposed a new so-called unbounded version convergence (uaw-convergence). And, uaw-Dunford-Pettis operators were introduced and investigated in [6].

In this paper, we will establish some results on uaw-Dunford-Pettis operators. We first present some necessary and sufficient conditions for positive Dunford-Pettis operators being uaw-Dunford-Pettis. More precisely, we will prove that each positive Dunford-Pettis operator from a Banach lattice E into arbitrary Banach lattice F is uaw-Dunford-Pettis if and only if the norm of E' is order continuous or $F = \{0\}$ (Theorem 3.1). We will also give a characterization of Banach lattice E on which each positive operator $T : E \to \ell_1$ is uaw-Dunford-Pettis (Theorem 3.3). After that, we will investigate Banach lattices under which each uaw-Dunford-Pettis operator is Dunford-Pettis. And we
will show that if Banach lattice E is an AM-space, then every operator T from E into arbitrary Banach space is uaw-Dunford-Pettis if and only if T is Dunford-Pettis (Corollary 3.7). Finally, we will present the relationships between weak Dunford-Pettis operators and uaw-Dunford-Pettis operators. Whenever Banach lattice E is Dedekind σ-complete, we will establish that E is reflexive if and only if each positive weak Dunford-Pettis operator from E into E is an uaw-Dunford-Pettis operator (Theorem 4.1). We will also give some sufficient conditions under which each positive uaw-Dunford-Pettis operator is weak Dunford-Pettis (Theorem 4.4).

2. Preliminaries

To state our results, we need to recall some definitions. Recall that a Riesz space E is an ordered vector space in which sup(x, y) exists for every x, $y \in E$. A sequence (u_n) of a Riesz space is called disjoint whenever $n \neq m$ implies $u_n \perp u_m$. A Banach lattice is a Banach space $(E, \|\cdot\|)$ such that E is a Riesz lattice and its norm satisfies the following property: for each $x, y \in E$ with $|x| \leq |y|$, we have $\|x\| \leq \|y\|$. By Theorem 4.1 of [1], if E is a Banach lattice, then its norm dual E' is also a Banach lattice.

A norm $\|\cdot\|$ of a Banach lattice E is order continuous if for each net (x_α) in E with $x_\alpha \downarrow 0$, one has $\|x_\alpha\| \downarrow 0$. A Banach lattice E is said to be a KB-space whenever every increasing norm bounded sequence of E_+ is norm convergent. Every KB-space has an order continuous norm. A Banach space is said to have the Schur property whenever every weak convergent sequence is norm convergent, i.e., whenever $x_n \overset{w}{\to} 0$ implies $\|x_n\| \to 0$.

Recall that an operator T from a Banach space X to a Banach space Y is Dunford-Pettis if it maps weakly null sequences of X to norm null sequences of Y, and is weak Dunford-Pettis if $f_n(T(x_n)) \to 0$ for any weakly null sequence (x_n) in X and any weakly null sequence (f_n) in Y'.

Recall that a net (x_α) in a Banach lattice E is said to be unbounded absolutely weakly convergent to $x \in E$, written as $x_\alpha \overset{uaw}{\longrightarrow} x$, if for any $u \in E_+, |x_\alpha - x| \wedge u \overset{w}{\to} 0$ holds.

Definition 2.1. [6] An operator T from a Banach lattice E into a Banach space X is said to be an unbounded absolute weak Dunford-Pettis (uaw-Dunford-Pettis, for short) if for every norm bounded sequence (x_n) in E, $x_n \overset{uaw}{\longrightarrow} 0$ implies $\|Tx_n\| \to 0$.

Every uaw-Dunford-Pettis operator is continuous. In fact, if $T : E \to X$ is a uaw-Dunford-Pettis operator and $\|x_n\| \to 0$, then for each $u \in E^+$, $\|\|x_n\| \wedge u\| \leq \|x_n\|$, i.e., $\|\|x_n\| \wedge u\| \to 0$. That is, $x_n \xrightarrow{uaw} 0$, and so $\|Tx_n\| \to 0$.

All operators in this paper are assumed to be continuous. We refer to [1, 13] for all unexplained terminology and standard facts on vector and Banach lattices. All vector lattices in this paper are assumed to be Archimedean.

3. The relationships with Dunford-Pettis operators

There exist operators which are Dunford-Pettis but not uaw-Dunford-Pettis. For example, the identity operator $Id_{\ell_1} : \ell_1 \to \ell_1$ is Dunford-Pettis since ℓ_1 has the Schur property, but it is not a uaw-Dunford-Pettis operator. In fact, for the standard basis (e_n) of ℓ_1, (e_n) is disjoint, so by Lemma 5 of [19], $e_n \xrightarrow{uaw} 0$. However, $\|Id_{\ell_1}(e_n)\| = \|e_n\| = 1$.

The following theorem gives a characterization of Banach lattices E and F under which each positive Dunford-Pettis operator $T : E \to F$ is uaw-Dunford-Pettis.

Theorem 3.1. Let E and F be Banach lattices. Then the following assertions are equivalent:

1. Each positive Dunford-Pettis operator $T : E \to F$ is uaw-Dunford-Pettis.
2. Each positive compact operator $T : E \to F$ is uaw-Dunford-Pettis.
3. One of the following conditions is valid:
 (i) The norm of E' is order continuous.
 (ii) $F = \{0\}$.

Proof. (1) \Rightarrow (2) It is obvious, since each compact operator is Dunford-Pettis.

(2) \Rightarrow (3) Assume by way of contradiction that the norm of E' is not order continuous and $F \neq \{0\}$. We have to construct a compact operator which is not uaw-Dunford-Pettis.

Since the norm of E' is not order continuous, it follows from Theorem 2.4.14 and Proposition 2.3.11 of [13] that ℓ_1 is a closed sublattice of E and there exists a positive projection $P : E \to \ell_1$. On the other hand, since $F \neq \{0\}$, there exists a vector $0 < y \in F_+$. Define the operator $S : \ell_1 \to F$ as follows:

$$S(\lambda_n) = \left(\sum_{n=1}^{\infty} \lambda_n \right)y$$
for each \((\lambda_n) \in \ell_1\). Obviously, the operator \(S\) is well defined. Let
\[
T = S \circ P : E \to \ell_1 \to F,
\]
then \(T\) is a compact operator since \(S\) is a finite rank operator (rank is 1). But \(T\) is not an uaw-Dunford-Pettis operator. Let \((e_n)\) be the canonical basis of \(\ell_1\). Obviously, \((e_n)\) is disjoint, by Lemma 5 of [19], we know that \(e_n \xrightarrow{uaw} 0\). However, \(\|T(e_n)\| = \|y\| > 0\). Hence, \(T\) is not an uaw-Dunford-Pettis operator.

(3)(i) ⇒ (1) Follows from Proposition 1 of [6].
(3)(ii) ⇒ (1) Obvious. □

Whenever \(E = F\) in the Theorem 3.1, we get the following characterization:

Corollary 3.2. Let \(E\) be a Banach lattice. Then the following assertions are equivalent:

1. Each positive Dunford-Pettis operator \(T : E \to E\) is uaw-Dunford-Pettis.
2. Each positive compact operator \(T : E \to E\) is uaw-Dunford-Pettis.
3. The norm of \(E'\) is order continuous.

The following theorem gives a characterization of Banach lattice \(E\) for which each positive operator \(T : E \to \ell_1\) is uaw-Dunford-Pettis.

Theorem 3.3. Let \(E\) be a Banach lattice, then the following assertions are equivalent:

1. Each positive operator from \(E\) into \(\ell_1\) is uaw-Dunford-Pettis.
2. The norm of \(E'\) is order continuous.

*Proof. (1) ⇒ (2) Assume by way of contradiction that the norm of \(E'\) is not order continuous. Then it follows from Theorem 116.1 of [18] that there exists a norm bounded disjoint sequence \((u_n)\) of positive elements in \(E\) which does not weakly convergence to zero. Without loss of generality, we may assume that \(\|u_n\| \leq 1\) for any \(n\). And there exist \(\epsilon > 0\) and \(0 \leq \phi \in E'\) such that \(\phi(u_n) > \epsilon\) for all \(n\). Then by Theorem 116.3 of [18], we know that the components \(\phi_n\) of \(\phi\) in the carriers \(C_{u_n}\) form an order bounded disjoint sequence in \((E')_+\) such that
\[
\phi_n(u_n) = \phi(u_n) \quad \text{for all } n \quad \text{and} \quad \phi_n(u_m) = 0 \quad \text{if} \quad n \neq m.
\]
Define the positive operator \(T : E \to \ell_1\) as follows:
\[
T(x) = \left(\frac{\phi_n(x)}{\phi(u_n)} \right)_{n=1}^{\infty}
\]
for all \(x \in E\). Since
\[
\sum_{n=1}^{\infty} \frac{\phi_n(x)}{\phi(u_n)} \leq \frac{1}{\varepsilon} \sum_{n=1}^{\infty} \phi_n(|x|) \leq \frac{1}{\varepsilon} \phi(|x|)
\]

holds for all \(x \in E \), the operator \(T \) is well defined and it is also easy to see that \(T \) is a positive operator. Hence \(T \) is an uaw-Dunford-Pettis operator. For the norm bounded disjoint sequence \((u_n)\), by Lemma 5 of \[19\], we know that \(u_n \xrightarrow{uaw} 0 \). However, let \((e_n)\) be the standard basis of \(\ell_1 \), then \(\|T(u_n)\| = \|e_n\| = 1 \), which is a contradiction. Therefore, the norm of \(E' \) is order continuous.

(2) \(\Rightarrow\) (1) Since \(\ell_1 \) has the Schur property, each positive operator \(T \) from \(E \) into \(\ell_1 \) is Dunford-Pettis. And since the norm of \(E' \) is order continuous, by Theorem 3.1 we obtain that \(T \) is uaw-Dunford-Pettis. \(\square \)

Based on Theorem 5.29 of \[1\] and Theorem 2.9 of \[7\], we get the following conclusion.

Corollary 3.4. Let \(E \) be a Banach lattice, then the following assertions are equivalent:

1. The norm of \(E' \) is order continuous.
2. Each positive operator from \(E \) into \(\ell_1 \) is uaw-Dunford-Pettis.
3. Each positive operator from \(E \) into \(\ell_1 \) is weakly compact, and hence compact.
4. Each positive operator from \(E \) into \(\ell_1 \) is semi-compact.

A Banach lattice is said to have **weakly sequentially continuous lattice operations** whenever \(x_n \xrightarrow{w} 0 \) implies \(|x_n| \xrightarrow{w} 0 \). Every AM-space has this property.

The following theorem gives a characterization of Banach lattices \(E \) and \(F \) for which each uaw-Dunford-Pettis operator \(T : E \to F \) is Dunford-Pettis.

Theorem 3.5. Let \(E \) and \(F \) be Banach lattices. Each uaw-Dunford-Pettis operator \(T : E \to F \) is Dunford-Pettis if one of the following assertions is valid:

1. The lattice operations in \(E \) are weakly sequentially continuous.
2. \(E \) is discrete with an order continuous norm.
3. \(T \) is positive and \(F \) is discrete with an order continuous norm.

Proof. (1) Let \((x_n)\) be a weakly null sequence in \(E \). Since the lattice operations in \(E \) are weakly sequentially continuous, we have \(|x_n| \xrightarrow{w} 0 \). Then for each \(u \in E_+ \), \(|x_n| \wedge u \xrightarrow{w} 0 \), i.e., \(x_n \xrightarrow{uaw} 0 \). Since \(T \) is an uaw-Dunford-Pettis operator, we get \(\|T(x_n)\| \to 0 \). Hence, the operator \(T \) is Dunford-Pettis.
(2) Suppose that E is discrete with an order continuous norm, then by Corollary 2.3 of [1], the lattice operations in E are weakly sequentially continuous. Hence, following from (1), we get the result.

(3) Let $T : E \to F$ be a positive uaw-Dunford-Pettis operator and W be a relatively weakly compact set in E. Let A be the solid hull of W in E. For every disjoint sequence (x_n) in A, by Lemma 5 of [19], we know that $x_n \stackrel{\text{uaw}}{\longrightarrow} 0$. Since T is uaw-Dunford-Pettis, we get that $\|T(x_n)\| \to 0$. Then by Theorem 4.36 of [1], for each $\varepsilon > 0$, there exists some $u \in E_+$ lying in the ideal generated by A such that $\|T(|x| - u)^+\| < \varepsilon$ holds for all $x \in A$. Following from the equality $|x| = |x| \wedge u + (|x| - u)^+$, we have

$$T(|x|) = T(|x| \wedge u) + T[(|x| - u)^+] + u.$$

Let V be the closed unit ball of F. Then

$$T(|x|) \in [-T(u), T(u)] + \varepsilon \cdot V$$

for all $x \in A$. Since T is a positive operator, $|T(x)| \leq T(|x|)$. It is easy to see that the set $[-T(u), T(u)] + \varepsilon \cdot V$ is a solid set in F. Hence,

$$T(x) \in [-T(u), T(u)] + \varepsilon \cdot V$$

for all $x \in A$, and then

$$T(W) \subset [-T(u), T(u)] + \varepsilon \cdot V.$$

Since F is discrete with an order continuous norm, $[-T(u), T(u)]$ is norm compact. Hence, $T(W)$ is a relatively compact set in F. Thus T is a Dunford-Pettis operator. \hfill \Box

Corollary 3.6. Let E and F be Banach lattices such that the norm of E' is order continuous and F is discrete or its lattice operations are weakly sequentially continuous. Then the following assertions are equivalent:

1. Each positive uaw-Dunford-Pettis operator $T : E \to F$ is Dunford-Pettis.

2. One of the following assertions is valid:
 (i) The lattice operations in E are weakly sequentially continuous.
 (ii) The norm of F is order continuous.

Proof. (2)(i) \Rightarrow (1) Follows from Theorem 3.5(1).

(2)(ii) \Rightarrow (1) Based on Corollary 2.3 of [4], if F has an order continuous norm and the lattice operations of it are weakly sequentially continuous, then F is also discrete. Therefore, following from Theorem 3.5(3), we get the result.
(1) ⇒ (2) Let $S : E \to F$ be a operator which satisfies $0 \leq S \leq T$ and $T : E \to F$ is a Dunford-Pettis operator. Since the norm of E' is order continuous, by Theorem 3.1 we get that the operator T is uaw-Dunford-Pettis. Now we claim that S is also uaw-Dunford-Pettis, i.e., uaw-Dunford-Pettis operators satisfy domination. In fact, if $x_n \overset{\text{uaw}}{\to} 0$ holds in E, then it is easy to see that $|x_n| \overset{\text{uaw}}{\to} 0$. And so $\|T(|x_n|)\| \to 0$ holds in F. By using the inequalities $|S(x_n)| \leq S(|x_n|) \leq T(|x_n|)$, we get that $\|S(x_n)\| \leq \|T(|x_n|)\|$ for all n. That is, S is an uaw-Dunford-Pettis operator. Then S is a Dunford-Pettis operator. Following from Theorem 2 of [16], the lattice operations in E are weakly sequentially continuous or the norm of F is order continuous. □

Corollary 3.7. Let E be an AM-space. Then every operator T from E into arbitrary Banach space is uaw-Dunford-Pettis if and only if T is Dunford-Pettis.

Proof. Let X be an arbitrary Banach space and $T : E \to X$ be a continuous operator.

Assume T is an uaw-Dunford-Pettis operator. Since E is an AM-space, by Theorem 4.23 of [1], the dual of E is an AL-space. So the norm of E' is order continuous. Then by Theorem 3.1 we obtain that T is Dunford-Pettis.

Conversely, assume T is a Dunford-Pettis operator. Since E is an AM-space, by Theorem 4.31 of [1], the lattice operations in E are weakly sequentially continuous. Then by Theorem 3.5(1), we obtain that T is uaw-Dunford-Pettis. □

4. The relationships with weak Dunford-Pettis operators

Recall that a Banach space X is said to have the \textbf{Dunford-Pettis property} whenever $x_n \overset{\text{w}}{\to} 0$ in X and $x'_n \overset{\text{w}}{\to} 0$ in X' imply $x'_n(x_n) \to 0$. AL-space and AM-space have the Dunford-Pettis property ([1, Theorem 5.85]). Obviously, if X has the Dunford-Pettis property, then every continuous operator from X to a Banach space Y is weak Dunford-Pettis.

Since each Dunford-Pettis operator is weak Dunford-Pettis, the identity operator $Id_{\ell_1} : \ell_1 \to \ell_1$ is also the example which is weak Dunford-Pettis but not uaw-Dunford-Pettis. Next, we give a characterization of reflexive Banach lattice for which each positive weak Dunford-Pettis operator from E into E is uaw-Dunford-Pettis operator.

\textbf{Theorem 4.1.} Let E be a Dedekind σ-complete Banach lattice. Then the following assertions are equivalent:

1. E is reflexive.
(2) Each positive weak Dunford-Pettis operator from E into E is uaw-Dunford-Pettis.

Proof. (1) \Rightarrow (2) Since E is reflexive, each weak Dunford-Pettis operator T from E into E is Dunford-Pettis. Based on Theorem 4.70 of [1], the norm of E' is order continuous. Then by Theorem 3.1, we know T is uaw-Dunford-Pettis.

(2) \Rightarrow (1) We first claim that the norm of E is order continuous. Otherwise, it follows from Corollary 2.4.3 of [13] that E contains a sublattice which is isomorphic to ℓ_∞ and there exists a positive projection $P : E \to \ell_\infty$. Let $S : \ell_\infty \to E$ be the canonical injection of ℓ_∞ into E. Define the operator T as follows:

$$T = S \circ P : E \to \ell_\infty \to E.$$

Since ℓ_∞ has the Dunford-Pettis property, T is weak Dunford-Pettis operator. Hence, T is uaw-Dunford-Pettis. Let (e_n) be the standard basis of ℓ_∞. Similarly to the proof of Theorem 3.1, $e_n \overset{uaw}{\longrightarrow} 0$. However, $\|T(e_n)\| = \|e_n\| = 1 > 0$, which is a contradiction. Therefore, E has an order continuous norm.

Next, we prove E is a KB-space. If not, it follows from Theorem 2.4.12 of [13] that E contains a sublattice which is isomorphic to c_0 and there exists a positive projection $P : E \to c_0$. Let $S : c_0 \to E$ be the canonical injection of c_0 into E. Define the operator T as follows:

$$T = S \circ P : E \to c_0 \to E.$$

Since c_0 has the Dunford-Pettis property, T is a weak Dunford-Pettis operator. Let (e_n) be the standard basis of c_0. Similarly, $e_n \overset{uaw}{\longrightarrow} 0$. However, $\|T(e_n)\| = \|e_n\| = 1 > 0$, we get that T is not an uaw-Dunford-Pettis operator, which is a contradiction. Hence, E is KB-space.

At last, we show that the norm of E' is order continuous. If not, it follows from Theorem 2.4.14 and Proposition 2.3.11 of [13] that E contains a sublattice which is isomorphic to ℓ_1 and there exists a positive projection $P : E \to \ell_1$. Define the operator T as follows:

$$T = S \circ P : E \to \ell_1 \to E.$$

Since ℓ_1 has the Dunford-Pettis property, T is a weak Dunford-Pettis operator. Let (e_n) be the standard basis of ℓ_1. Similarly, $e_n \overset{uaw}{\longrightarrow} 0$. However, $\|T(e_n)\| = \|e_n\| = 1 > 0$, we obtain T is not an uaw-Dunford-Pettis operator, which is a contradiction. Hence, E' has an order continuous norm.
Following from Theorem 4.70 of [1], we obtain that E is reflexive. □

Whenever $E \neq F$ in Theorem 4.1, we get the following conclusions.

Corollary 4.2. Let E and F be Banach lattices. If the norm of E' is order continuous and F is reflexive, then each weak Dunford-Pettis operator from E into F is uaw-Dunford-Pettis operator.

Proof. Similarly to the proof of (1) \Rightarrow (2) of the Theorem 4.1. Since F is reflexive, each weak Dunford-Pettis operator T from E into F is Dunford-Pettis. By Theorem 3.1, we get that T is uaw-Dunford-Pettis. □

Theorem 4.3. Let E and F be Banach lattices. If each weak Dunford-Pettis operator is uaw-Dunford-Pettis operator, then one of the following assertion is valid:

1. The norm of E' is order continuous.
2. The norm of F is order continuous.

Proof. It suffices to establish that if the norm of E' is not order continuous, then F has an order continuous norm.

Since the norm of E' is not order continuous, it follows from Theorem 2.4.14 and Proposition 2.3.11 of [13] that ℓ_1 is a closed sublattice of E and there exists a positive projection $P : E \rightarrow \ell_1$. We need to show that F has an order continuous norm. By Theorem 4.14 of [1], it suffices to show that each order bounded disjoint sequence (y_n) is norm convergent to 0 in F.

Define the operator $S : \ell_1 \rightarrow F$ as follows:

$$S(\lambda_n) = \sum_{n=1}^{\infty} \lambda_n y_n$$

for each $(\lambda_n) \in \ell_1$. Obviously, it is well defined. Let

$$T = S \circ P : E \rightarrow \ell_1 \rightarrow F.$$

Since ℓ_1 has the Dunford-Pettis property, T is a weak Dunford-Pettis operator. Then T is uaw-Dunford-Pettis. Let (e_n) be the standard basis of ℓ_1, $e_n \xrightarrow{uaw} 0$, so, $\|T(e_n)\| = \|y_n\| \rightarrow 0$. Hence, F has an order continuous norm. □

At last, we give a characterization of Banach lattices for which each positive uaw-Dunford-Pettis operator from E into F is weak Dunford-Pettis operator.

Recall that a Banach lattice is said to have **AM-compactness property** if every weakly compact operator from E to an arbitrary
Banach space is AM-compact. The Banach lattices c_0, ℓ_1, c, and c' have AM-compactness property. We have the following conclusion.

Theorem 4.4. Let E and F be Banach lattices. Each positive uaw-Dunford-Pettis operator $T : E \to F$ is weak Dunford-Pettis if one of the following assertions is valid:

1. The lattice operations in E are weakly sequentially continuous.
2. F is discrete with an order continuous norm.
3. F has AM-compact property.

Proof. Since each Dunford-Pettis operator is weak Dunford-Pettis, it follows from Theorem 3.5, if the lattice operations in E are weakly sequentially continuous or F is discrete with an order continuous norm, every positive uaw-Dunford-Pettis operator $T : E \to F$ is weak Dunford-Pettis.

Next, we only need to show if F has AM-compact property, the assertion is valid. Let $T : E \to F$ be a positive uaw-Dunford-Pettis operator and W be a relatively weakly compact set in E, we have to show $T(W)$ is a Dunford-Pettis set in F. Let A be the solid hull of W in E and V be the closed unit ball of F. It follows from the proof of Theorem 3.5(3), for each $\varepsilon > 0$, there exists some $u \in E_+$ lying in the ideal generated by A such that

$$T(W) \subset [-T(u), T(u)] + \varepsilon \cdot V.$$

Since F has AM-compact property, based on Proposition 3.1 and Lemma 4.1 of [2], we get that $T(W)$ is a Dunford-Pettis set in F. Therefore, following from Theorem 5.99 of [11], T is a weak Dunford-Pettis operator.

References

[1] C. D. Aliprantis and O. Burkinshaw, *Positive Operators*, Springer, 2006.
[2] B. Aqzzouz and K. Bouras, Weak and almost Dunford-Pettis operators on Banach lattices, *Demonstratio Math.* 1, 2013, 166-179.
[3] A. Bahramnezhad and K. H. Azar, Unbounded order continuous operators on Riesz spaces, *Positivity*, 22(3), 2018, 837-843.
[4] Z. L. Chen and A. W. Wickstead, Relative weak compactness of solid hulls in Banach lattices, *Indag. Math.* (N. S.), 9(2), 1998, 187-196.
[5] Y. Deng, M. O'Brien and V. G. Troitsky, Unbounded norm convergence in Banach lattices, *Positivity*, 21(3), 2017, 963-974.
[6] N. Erkursun-Ozcan, N. A. Gezer, and O. Zabeti, Unbounded absolute weak Dunford-Pettis and unbounded absolute weak compact operators, preprint, arXiv:1708.0397v1 [math.FA]
[7] K. El Fahri, A. El Kaddouri and M. Moussa, the relationship between weak Dunford-Pettis operators and semi-compact operators, *Afr. Mat.*, 28(5-6), 2017, 991-997.
[8] N. Gao, Unbounded order convergence in dual spaces, *J. Math. Anal. Appl.*, 419(1), 2014, 931-947.

[9] N. Gao, V. G. Troitsky and F. Xanthos, Uo-convergence and its applications to Cesàro means in Banach lattices, to appear in *Israel J. Math.*, 220, 2017, 649-689.

[10] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, *J. Math. Anal. Appl.*, 415(2), 2014, 931-947.

[11] M. Kandić, M. A. A. Marabeh and V. G. Troitsky, Unbounded norm topology in Banach lattices, *J. Math. Anal. Appl.*, 451(1), 2017, 259-279.

[12] H. Li and Z. L. Chen, Some loose ends on unbounded order convergence, *Positivity*, 22, 2018, 83-90.

[13] P. Meyer-Nieberg, *Banach lattices*, Universitext, Springer-Verlag, Berlin, 1991.

[14] H. Nakano, Ergodic theorems in semi-ordered linear spaces, *Ann. of Math.*, 49(2), 1948, 538-556.

[15] V. G. Troitsky, Measures of non-compactness of operators on Banach lattices, *Positivity*, 8(2), 2004, 165-178.

[16] A. W. Wickstead, Converses for the Dodds-Fremlin and Kalton-Saab theorems, *Math. Proc. Camb. Phil. Soc.*, 29(3), 1996, 175-179.

[17] A. W. Wickstead, Weak and unbounded order convergence in Banach lattices, *J. Austral. Math. Soc. Ser. A*, 24(3), 1977, 312-319.

[18] A. C. Zaanen, *Riesz spaces II*, North Holland Publishing Company, Amsterdam, 1983.

[19] O. Zabeti, Unbounded absolute weak convergence in Banach lattice, *Positivity*, 22(2), 2018, 501-505.

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan, China, 610000.

E-mail address: lihuiqc@my.swjtu.edu.cn

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan, China, 610000.

E-mail address: zlchen@home.swjtu.edu.cn