Calculations of canonical averages from the grand canonical ensemble

D. S. Kosov1, M. F. Gelin1, and A.I. Vdovin2

1Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA and
2Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

Grand canonical and canonical ensembles become equivalent in the thermodynamic limit, but when the system size is finite the results obtained in the two ensembles deviate from each other. In many important cases, the canonical ensemble provides an appropriate physical description but it is often much easier to perform the calculations in the corresponding grand canonical ensemble. We present a method to compute averages in canonical ensemble based on calculations of the expectation values in grand canonical ensemble. The number of particles, which is fixed in the canonical ensemble, is not necessarily the same as the average number of particles in the grand canonical ensemble.

PACS numbers: 05.30.-d, 05.30.Ch, 05.30.Fk, 05.30.Jp

\section{I. INTRODUCTION}

Whenever we need to work with a system of many quantum particles it is much easier to perform the calculation in the grand canonical ensemble than the corresponding calculations in the canonical ensemble. For example, the calculations of the grand canonical partition function for ideal gas of fermions or bosons is trivial, whereas the computation of the canonical partition function for the the same system becomes a formidable task even for a small number of particles. Provided that the system is thermodynamically large, the canonical and grand canonical descriptions agree with each other. There are many quantum systems where the canonical description is more appropriate, these include hot nuclei1, 6, 7, 8, Bose-Einstein condensation3, 4, 9 and atoms in plasmas5. Therefore, it is important to have a practical theoretical and computational method which enables us to extract canonical averages from corresponding grand canonical calculations.

The problem, which we would like to solve in this paper is the following. Suppose that we can perform calculations (or measurements) in grand canonical ensemble which is characterized by temperature T and chemical potential μ. We would like to compute expectation values of an arbitrary quantity O in the canonical ensemble with temperature T and the number of particles n by using only the averages in the grand canonical ensemble. The number of particles n, which is fixed in canonical ensemble, is not necessarily the same as the average number of particles $\langle N \rangle$ in the grand canonical ensemble.

Earlier works on particle number projection in grand canonical ensembles have been performed to treat hot nuclei1, 6, 8, 10, Bose-Einstein condensation3, 4, 11 and to formulate canonical statistical mean field approximation for mesoscopic systems10. Our approach is very different. First, we do not rely on projection operators but extract information from the grand canonical averages by inverting fluctuation matrix. Second, $\langle N \rangle$ does not necessarily equal to n although it can be.

\section{II. THEORY}

A quantum mechanical system has the Hamiltonian H. The Hamiltonian H commutes with the number of particle operator N

$$[H, N] = 0. $$

\begin{equation}
\label{eq:1}
\end{equation}

Therefore the Hamiltonian and the number of particles operator have the same set of eigenvectors:

$$ N|n\alpha\rangle = n|n\alpha\rangle, $$

\begin{equation}
\label{eq:2}
\end{equation}

$$ H|n\alpha\rangle = E_{n\alpha}|n\alpha\rangle. $$

\begin{equation}
\label{eq:3}
\end{equation}

Let O be an arbitrary operator. The average in the grand canonical ensemble is

$$ \langle O \rangle = \frac{1}{Z} \sum_{n\alpha} e^{-\beta(E_{n\alpha}-\mu n)} \langle n\alpha|O|n\alpha\rangle, $$

\begin{equation}
\label{eq:4}
\end{equation}

with Z being the grand canonical partition function

$$ Z = \sum_{n\alpha} e^{-\beta(E_{n\alpha}-\mu n)}, $$

\begin{equation}
\label{eq:5}
\end{equation}

and $\beta = 1/kT$. The average in canonical ensemble is

$$ \langle O \rangle_n = \frac{1}{Z_n} \sum_{\alpha} e^{-\beta E_{n\alpha}} \langle n\alpha|O|n\alpha\rangle, $$

\begin{equation}
\label{eq:6}
\end{equation}

with Z_n being the canonical partition function

$$ Z_n = \sum_{\alpha} e^{-\beta E_{n\alpha}}. $$

\begin{equation}
\label{eq:7}
\end{equation}

We can consider $\langle O \rangle_n$ as a function of n and expand it as the power series:

$$ \langle O \rangle_n = \sum_{k=0}^{\infty} q_k n^k. $$

\begin{equation}
\label{eq:8}
\end{equation}
With this expansion the grand canonical average \(\langle O \rangle \) becomes (appendix A):

\[
\langle O \rangle = \sum_{k=0}^{\infty} q_k N^k. \tag{9}
\]

Next, we take canonical expectation value and add/subtract the grand canonical expectation average

\[
\langle O \rangle_n = \sum_{k=0}^{\infty} q_k n^k + \langle O \rangle - \sum_{k=0}^{\infty} q_k N^k. \tag{10}
\]

Then we cancel \(k = 0 \) terms in the both sums and the canonical expectation value becomes

\[
\langle O \rangle_n = \langle O \rangle - \sum_{k=1}^{\infty} q_k (\langle N^k \rangle - n^k). \tag{11}
\]

This expression for canonical average of the operator \(O \) involves only grand canonical expectation values. The coefficients \(q_k \) are yet to be calculated. To determine them we introduce the operator

\[
\hat{O} = O - \sum_{k=1}^{\infty} q_k N^k \tag{12}
\]

and compute the expectation value \(\langle \hat{O} f(N) \rangle \), where \(f(N) \) is an arbitrary function of \(N \). We show in appendix A that this expectation value can be split:

\[
\langle \hat{O} f(N) \rangle = \langle O \rangle \langle f(N) \rangle. \tag{13}
\]

Since \(f(N) \) is an arbitrary function of \(N \), Eq. (13) is equivalent to the following system of equations

\[
\begin{align*}
\langle \hat{O} \rangle N & = \langle O \rangle N \\
\langle \hat{O} \rangle N^2 & = \langle O \rangle \langle N^2 \rangle \\
\vdots & \quad \\
\langle \hat{O} \rangle N^k & = \langle O \rangle \langle N^k \rangle \\
\vdots &
\end{align*} \tag{14}
\]

If we use the explicit form for operator \(\hat{O} \) (12), the system of equations (14) becomes:

\[
\sum_{k=1}^{\infty} q_k A_{km} = \langle ON^m \rangle - \langle O \rangle \langle N^m \rangle, \tag{15}
\]

where the matrix \(A_{km} \) is built from the fluctuations

\[
A_{km} = \langle N^{k+m} \rangle - \langle N^k \rangle \langle N^m \rangle. \tag{16}
\]

It can be readily shown by the direct differentiation of the partition function (9) that

\[
A_{km} = \frac{1}{Z^2} \frac{\partial^{k+m+1} Z}{\partial \mu^{k+m+1}} \left(\frac{\partial^k Z}{\partial \mu^k} - \frac{\partial^m Z}{\partial \mu^m} \right). \tag{17}
\]

Now we prove the convergence of the expansion (11). It is possible to demonstrate based on simple consideration that the difference between canonical and grand canonical averages is

\[
\langle O \rangle - \langle O \rangle_n \sim \frac{1}{\langle N \rangle}. \tag{18}
\]

The calculation in appendix C shows that for \(k > 1 \)

\[
q_k \sim 1/\langle N \rangle^k. \tag{19}
\]

Suppose that \(n = \langle N \rangle \). Then \(\langle (N^k) - n^k \rangle \sim \langle N \rangle^{k-1} \) for large \(\langle N \rangle \). Therefore, the corrections to the grand canonical average in Eq. (11) become in this case

\[
\sum_{k=1}^{\infty} q_k (\langle N^k \rangle - n^k) \sim \frac{1}{\langle N \rangle} \sum_{k=1}^{\infty} c_k, \tag{20}
\]

where \(c_k \) are some coefficients. Comparing (18) and (20) we see that \(\sum_{k=1}^{\infty} c_k \) is finite. It means that the expansion (11) converges when \(\langle N \rangle = n \). We would like to note at this point that each term in the sum (11) is \(\sim 1/\langle N \rangle \). It means that the method becomes computationally efficient when it is applied to the large systems, since one needs to include less terms in the expansion to achieve the same accuracy in this case. Let us consider the corrections to the grand canonical average in Eq. (11) for the case \(n = \langle N \rangle + j \) where \(j \) is some integral number

\[
\langle O \rangle - \langle O \rangle_n = \sum_{k=1}^{\infty} q_k (\langle N^k \rangle - (\langle N \rangle + j)^k). \tag{21}
\]

We assume that \(j/\langle N \rangle \ll 1 \). If we substitute the expression for \(\langle N^k \rangle \) (17) into (21) and use the binomial expansion up to the first order in \(j/\langle N \rangle \) for \((\langle N \rangle + j)^k \), we obtain

\[
\langle O \rangle - \langle O \rangle_n = \sum_{k=1}^{\infty} q_k (\langle N^k \rangle - (\langle N \rangle + j)^k) \sim \frac{1}{\langle N \rangle} \sum_{k=1}^{\infty} \frac{c_k (k-1)}{2} \left[1 - \frac{2j}{c(k-1)} \right]. \tag{22}
\]

The series (22) always converges for \(j = 0 \) as we just demonstrated. To prove the convergence for \(j \neq 0 \) we split the sum (22) into two parts: the first part is for \(0 < k \leq K \) and the second part is for \(K < k < \infty \), where \(K \) is some positive integer. The first part is always finite and \(\sim 1/\langle N \rangle \). By choosing \(K \), we can always make \(\left[1 - \frac{2j}{c(k-1)} \right] \leq 1 \) for \(k > K \). Therefore, the convergence of the expansion (11) for \(n = \langle N \rangle \) case implies the convergence for any finite difference \(|\langle N \rangle - n| \) for which \(|(\langle N \rangle - n)/\langle N \rangle| \leq 1 \). We note that these arguments may not
where \(\eta \) is the grand canonical partition function \(\langle N \rangle = 4 \). The number of particles in the canonical ensemble is 2. \(k_{\text{max}} \) is the number of terms included in expansion (11).

TABLE I: Occupation numbers and total energy for fermions.

FD refers to the Fermi-Dirac statistics in grand canonical ensemble \(\langle N \rangle = 4 \). The number of particles in the canonical ensemble is 2. \(k_{\text{max}} \) is the number of terms included in expansion (11).

\(k_{\text{max}} \)	\(\varepsilon_l \)	FD	1	2	3	4	5	exact
1	1.0	0.98	0.92	0.87	0.86	0.87	0.87	0.87
2	2.0	0.95	0.80	0.69	0.67	0.68	0.68	0.68
3	3.0	0.87	0.52	0.34	0.30	0.30	0.30	0.30
4	4.0	0.72	0.07	0.01	0.06	0.11	0.12	0.12
5	5.0	0.48	-0.31	0.10	0.06	0.04	0.04	0.04
total energy	10.77	2.82	3.77	3.78	3.79	3.79	3.79	3.79

TABLE II: Occupation numbers and total energy for bosons.

BE refers to the Bose-Einstein statistics in grand canonical ensemble \(\langle N \rangle = 2 \). The number of particles in the grand canonical ensemble is 2. The number of particles in the canonical ensemble is 4. \(k_{\text{max}} \) is the number of terms included in expansion (11).

\(k_{\text{max}} \)	\(\varepsilon_l \)	BE	1	3	5	7	11	exact
1	1.0	3.43	1.52	1.52	1.47	1.44	1.42	1.42
2	2.0	0.40	0.33	0.33	0.37	0.39	0.39	0.39
3	3.0	0.12	0.10	0.10	0.11	0.12	0.13	0.13
4	4.0	0.04	0.04	0.04	0.04	0.04	0.05	0.05
5	5.0	0.01	0.01	0.01	0.01	0.02	0.02	0.02
total energy	4.81	2.68	2.69	2.77	2.82	2.84	2.85	

work when the matrix \(A_{nm} \) is singular. For example, in the case of low temperature Fermi gas, all matrix elements \(A_{nm} \) tend to zero, therefore canonical and grand canonical descriptions may deviate from each other in the thermodynamic limit due to the persistent existence of a few-particle fluctuations in the grand canonical ensemble [14].

III. EXAMPLE CALCULATIONS

As an example we consider the system of noninteracting quantum particles distributed on \(n_{\text{levels}} \) single particle energy levels with energies \(\varepsilon_l \). The logarithm of the grand canonical partition function is

\[
\ln Z = \eta \sum_{l=1}^{n_{\text{levels}}} \ln \left(1 + \eta e^{\beta (\mu - \varepsilon_l)} \right),
\]

where \(\eta = +1 \) is for fermions and \(\eta = -1 \) is for bosons. We set \(\beta = 1, \varepsilon_l = l, \) and \(n_{\text{levels}} = 5 \) in all our calculations.

First, we extract averages in canonical ensemble for the smaller system from grand canonical ensemble for the larger system. We select the chemical potential \(\mu \) in such a way that the average number of particles \(\langle N \rangle \) in the grand canonical ensemble is 4. We would like to extract the information about the canonical ensemble with \(n = 2 \) particles from this grand canonical ensemble. We compute the occupation numbers and then all physical quantities like total energy can be calculated with the use of these occupation numbers. To start our calculations we set \(O = n_l \), where \(n_l \) is the operator of the number of particles on level \(l \). Then we solve the linear system of linear equations \(\mathbf{A} \mathbf{q} = \mathbf{b} \) to find the coefficients \(q_k \) and use these \(q_k \)s to calculate the grand canonical occupation numbers by Eq. (11). The matrix elements \(A_{nm} \) are computed by Eq. (17) and with the help of recurrent relation from appendix B. The matrix element in the right hand side of Eq. (15) is computed as the following derivative of the grand canonical partition function (23):

\[
\langle n_l N^m \rangle = -\frac{1}{Z} \frac{\partial^{m+1} Z}{\partial \varepsilon_l \partial \mu^m}.
\]

The results of these calculations are shown in Table I (fermions) and Table II (bosons). The fermionic and bosonic systems both show the convergence to the exact results as we include more terms in expansion (11). The convergence for bosons is slower than that for fermions. It is due to the fact that the fluctuations of the occupation numbers \(\langle \Delta n_l^2 \rangle \) tend to be larger for bosons \(\langle \mu \rangle = 1 \) than for fermions \(\langle \mu \rangle = -1 \). The method also works in the opposite direction, therefore we can compute averages in canonical ensemble for the larger system using grand canonical averages for the smaller system. We select the grand canonical ensemble with \(\langle N \rangle = 2 \) and we compute the occupation numbers in the canonical ensemble of \(n = 4 \) particles. Table III shows the results of these calculations for noninteracting fermions. The convergence to the exact values is as good as in the previous case, thereby it demonstrates that the method can be also used to extract the canonical ensemble information for the larger system from the grand canonical calculations of the smaller system. The very similar results were obtained for bosons and we do not show it here.
IV. CONCLUSIONS

We formulated the method to compute averages in canonical ensemble based on calculations in grand canonical ensemble. The number of particles n, which is fixed in the canonical ensemble, is not necessarily the same as the average number of particles $\langle N \rangle$ in the grand canonical ensemble. Expansion (11) and system of linear algebraic equations (15) for coefficients of the expansion are the main result of the paper. We performed the test calculations for ideal Fermi and Bose gases, compared our calculations with the exact results and demonstrated convergence properties of expansion (11).

Proof that if $\langle O \rangle_n = \sum_{k=0}^{\infty} q_k n^k$ then $\langle O \rangle = \sum_{k=0}^{\infty} q_k N^k$.

$$\langle O \rangle = \frac{1}{Z} \sum_{n} e^{-\beta(E_{n\alpha} - \mu \eta)} \langle n\alpha | O | n\alpha \rangle = \frac{1}{Z} \sum_{n} e^{\beta \mu n} \sum_{\alpha} e^{-\beta E_{n\alpha}} \langle n\alpha | O | n\alpha \rangle = \frac{1}{Z} \sum_{n} e^{\beta \mu n} Z_n \langle O \rangle_n$$

$$= \frac{1}{Z} \sum_{n} e^{\beta \mu n} Z_n \sum_{k=0}^{\infty} q_k n^k = \frac{1}{Z} \sum_{n} e^{-\beta(E_{n\alpha} - \mu \eta)} \sum_{k=0}^{\infty} q_k n^k = \frac{1}{Z} \sum_{n} e^{-\beta(E_{n\alpha} - \mu \eta)} \langle n\alpha | \sum_{k=0}^{\infty} q_k N^k | n\alpha \rangle = \langle \sum_{k=0}^{\infty} q_k N^k \rangle$$

Proof that $\langle O f(N) \rangle = \langle \bar{O} \rangle \langle f(N) \rangle$.

$$\langle O f(N) \rangle = \frac{1}{Z} \sum_{n} e^{-\beta(E_{n\alpha} - \mu \eta)} \langle n\alpha | O f(N) | n\alpha \rangle = \frac{1}{Z} \sum_{n} e^{\beta \mu n} \sum_{\alpha} e^{-\beta E_{n\alpha}} \langle n\alpha | O | n\alpha \rangle f(n)$$

$$= \frac{1}{Z} \sum_{n} e^{\beta \mu n} f(n) \sum_{\alpha} e^{-\beta E_{n\alpha}} \langle n\alpha | \bar{O} | n\alpha \rangle = \frac{1}{Z} \sum_{n} e^{\beta \mu n} f(n) \sum_{\alpha} e^{-\beta E_{n\alpha}} \langle n\alpha | O - \sum_{k=1}^{\infty} k q_k N^k | n\alpha \rangle$$

$$= \frac{1}{Z} \sum_{n} e^{\beta \mu n} f(n) Z_n \left(\langle O \rangle_n - \sum_{k=1}^{\infty} q_k n^k \right) = \frac{1}{Z} \sum_{n} e^{\beta \mu n} f(n) Z_n q_0 = \langle f(N) \rangle q_0 = \langle f(N) \langle \bar{O} \rangle \rangle$$

APPENDIX B: RECURRENT RELATION FOR THE CALCULATIONS OF THE DERIVATIVES

We define $\partial^m = \partial^m / (\partial \mu)^m$.

Let

$$\Psi = \ln Z, \ Z_m = \partial^m Z.$$ \hspace{1cm} (B1)

Then

$$Z_m = \partial^m (e^\Psi).$$ \hspace{1cm} (B2)

Therefore

$$Z_{m+1} = \partial^m (e^\Psi) = \partial^m (\Psi' e^\Psi)$$

$$= \sum_{k=0}^{m} \frac{m!}{k!(m-k)!} Z_k \Psi^{(m-k+1)},$$ \hspace{1cm} (B3)

where

$$\Psi^{(k)} = \partial^k \Psi.$$ \hspace{1cm} (B4)

Explicitly,

$$\Psi^{(0)} = \Psi = \eta \sum_{l=1}^{n_{\text{levels}}} \ln B_l, \ B_l = (1 + \eta \exp{\beta(\mu - \varepsilon_l)}) \hspace{1cm} (B5)$$

$\eta = 1$ for fermions and $=-1$ for bosons.

Assume that

$$\Psi^{(k)} = \sum_{l=1}^{n_{\text{levels}}} \sum_{\sigma=0}^{k} \alpha^{(k)}_\sigma (B_l)^{-\sigma}.$$ \hspace{1cm} (B6)

Since

$$\partial (B_l)^{-\sigma} = -\sigma \beta \{(B_l)^{-\sigma} - (B_l)^{-\sigma-1}\},$$ \hspace{1cm} (B7)

we get then

$$\Psi^{(k+1)} = \partial^k \Psi^{(k)} = \sum_{l=1}^{n_{\text{levels}}} \sum_{\sigma=0}^{k} -\sigma \beta a^{(k)}_\sigma \{(B_l)^{-\sigma} - (B_l)^{-\sigma-1}\}.$$ \hspace{1cm} (B8)

Acknowledgments

This work has been supported by NSF-MRSEC DMR0520471 at the University of Maryland and by the American Chemical Society Petroleum Research Fund (44481-G6).

APPENDIX A: USEFUL IDENTITIES
we get

\[\psi^{(k+1)} = \sum_{l=1}^{n_{k+1}} \sum_{\sigma=0}^{k+1} a^l_{\sigma} (B_l)^{\sigma} \]

we find that

\[a^{k+1}_{\sigma} = -\beta (a^k_{\sigma} - (\sigma - 1)a^k_{\sigma-1}). \]

Evidently,

\[a^1_0 = \beta, \quad a^1_1 = -\beta. \]

APPENDIX C: SCALING WITH THE NUMBER OF PARTICLES

We use notations (B1)-(B5) from appendix B. In these notations

\[\langle N^m \rangle = \frac{Z_m}{Z^{\beta m}}. \]

Plugging this into Eq.\((B3)\) we get:

\[\langle N^{m+1} \rangle = \sum_{k=0}^{m} \frac{m!}{k! (m-k)!} \langle N^k \rangle \frac{\psi^{(m-k+1)}}{\beta^{m-k+1}}. \]

In the thermodynamic limit, the sum over \(l\) in \((B3)\) can be replaced by the integral. Since the corresponding density of states is proportional to the system volume \(V\), e.g. in three dimensional space it becomes (\(\mu\) is the mass of the particle)

\[\rho(\varepsilon) = \frac{V}{\sqrt{2\pi} \hbar^2} \left(\frac{\sqrt{\mu}}{\hbar} \right)^3 \sqrt{\varepsilon}, \]

we see that \(\psi^{(m)} \sim V\). Since \(\langle N^m \rangle\) must be proportional to \(V^m\), the term with \(k = m\) in Eq.\((C2)\) gives the leading contribution. Retaining in \((C2)\) the two leading terms, we get:

\[\langle N^{m+1} \rangle \approx \langle N^m \rangle \langle N \rangle + m \frac{\psi^{(2)}}{\beta^2} \langle N^{m-1} \rangle \]

with

\[\frac{\psi^{(2)}}{\beta^2} \equiv \langle N^2 \rangle - \langle N \rangle^2 = \sum_l \left(\langle n_l \rangle - \eta \langle n_l \rangle^2 \right) . \]

Here \(\langle n_l \rangle\) are the BE or FD occupation numbers. Since \(\langle N \rangle \gg 1\), we assume in Eq.\((C4)\) that

\[\langle N^m \rangle = \langle N \rangle^m + \frac{\psi^{(2)}}{\beta^2} \alpha_m \langle N \rangle^{m-2} + O(\langle N \rangle^{m-4}). \]

Inserting \((C6)\) into \((C4)\) and retaining the leading terms, we get

\[\alpha_{m+1} = \alpha_m + m, \quad \alpha_m = m(m-1)/2. \]

Thus

\[\langle N^m \rangle \approx \langle N \rangle^m + \frac{\psi^{(2)}}{\beta^2} \frac{m(m-1)}{2} \langle N \rangle^{m-2}. \]

Now, we consider the terms \(\langle n_l \rangle^m \). Following Eq.\((B4)\) we differentiate Eq.\((B3)\) over \(\varepsilon_l\), and retaining only the leading terms in \(V\), we get:

\[\langle n_l \rangle^{m+1} = \langle n_l \rangle \langle N \rangle^m + \langle n_l \rangle - \eta \langle n_l \rangle^2. \]

We shall look for the solution in the form

\[\langle n_l \rangle^{m+1} \approx \langle n_l \rangle \langle N \rangle^m + \gamma_{m+1} \langle N \rangle^m + O(\langle N \rangle^{m-1}). \]

Inserting this equation into \((C9)\), we obtain \(\gamma_{m+1} = \gamma_m + (m+1)(\langle n_l \rangle - \eta \langle n_l \rangle^2) \langle N \rangle^m\) and

\[\langle n_l \rangle^{m+1} \approx \langle n_l \rangle \langle N \rangle^m + (m+1)(\langle n_l \rangle - \eta \langle n_l \rangle^2) \langle N \rangle^m \]

Next, we consider the system of linear equations \((B6)\). In the thermodynamic limit, we retain only the first terms in Eqs.\((C11)\) and \((C8)\). If we apply a “weak” thermodynamic limit and retain the next-order terms in Eqs.\((C11)\) and \((C8)\), then

\[A_{km} \approx km \frac{\psi^{(2)}}{\beta^2} \langle N \rangle^{k+m-2}, \]

\[\langle n_l \rangle^m - \langle n_l \rangle \langle N \rangle^m \approx m(\langle n_l \rangle - \eta \langle n_l \rangle^2) \langle N \rangle^{m-1} \]

Therefore, assuming that \(\psi^{(m)} \sim V \sim \langle N \rangle\) we get

\[q_k A_{km} \sim \langle N \rangle^{m-1}, \]

\[q_k \langle N \rangle^{k+m-1} \sim \langle N \rangle^{m-1}, \]

therefore

\[q_k \sim 1/\langle N \rangle^k. \]

The same \(\langle N \rangle\) dependence can be also obtained if we express the particle number operator \(N\) in terms of creation/annihilation operators and apply Wick’s theorem to matrix elements \(\langle N^m \rangle\) and \(\langle n_l N^m \rangle\).

Using the fact that \(\psi^{(2)} \sim \langle N \rangle\) we transform Eq.\((C8)\) to the form

\[\langle N^m \rangle \approx \langle N \rangle^m + c \frac{m(m-1)}{2} \langle N \rangle^{m-1}. \]

Here \(c\) is some constant which does not depend on \(m\) and \(\langle N \rangle\).

It has not escaped our notice that Eqs.\((C4)\) and \((C9)\) break down for bosons at critical and lower temperatures, since, due to the Bose condensation, \(\psi^{(m)}\) becomes proportional to \(V^m\).
[1] R. Rossignoli and P. Ring, Ann. Phys. 235, 350 (1994).
[2] J. von Delft and D. C. Ralph, Phys. Rep. 345, 61 (2001).
[3] H. D. Politzer, Phys. Rev. A 54, 5048 (1996).
[4] C. Herzog and M. Olshanii, Phys. Rev. A 55, 3254 (1997).
[5] F. Gilleron and J.-C. Pain, Phys. Rev. E 69, 056117 (2004).
[6] Tomas R. Rodriguez, J. L. Egido, and L. M. Robledo, Phys. Rev. C 72, 064303 (2005).
[7] K. Tanabe and H. Nakada, Phys. Rev. C 71, 024314 (2005).
[8] H. Nakada and K. Tanabe, Phys. Rev. C 74, 061301(R) (2006).
[9] I. Fujiwara, D. ter Haar and H. Wergeland, J. Stat. Phys. 2, 329 (1970).
[10] S. A. Ponomarenko, M. E. Sherrill, D. P. Kilcrease and G. Csanak, J. Phys. A: Math. Gen. 39, L499 (2006).
[11] D. S. Kosov and A. I. Vdovin, Z. Phys. A 355, 17 (1996).
[12] D. S. Kosov and A. I. Vdovin, Izv. RAN (ser. fiz.) 60, 94 (1996).
[13] D. A McQuarrie, Statistical Mechanics, University Science Books, (2000).
[14] S. P. Bowen, Y. Zhou, and J. D. Mancini, Phys. Rev. B 46, 1338 (1992).
[15] G. C. Wick, Phys. Rev. 80, 268 (1950).