Interfacial modification of perovskite solar cells via Cs$_2$CO$_3$: Computational and experimental approach

Yassine Raoui$^{1,*}$, Meenakshi Pegu$^{1,*}$, Samrana Kazim$^{1,2}$, Shahzada Ahmad$^{1,2,*}$

$^1$BCMaterials, Basque Center for Materials, Applications, and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain

$^2$IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.

Email: yassine.raoui@um5s.net.ma, shahzada.ahmad@bcmaterials.net

†Equal contributions

$^*$Current Address: Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of Sciences, Mohammed V University in Rabat, Morocco

Abstract

Interfacial materials in perovskite solar cells (PSCs) between the absorber layer and charge selective layers are stimulants to boost performance and long-term stability. Incorporation of a low-temperature processed passivating agent at electron selective layer/perovskite interface can enhance the performance of PSCs, however, the interface at SnO$_2$/(FAPbI$_3$)$_{0.85}$(MAPbBr$_3$)$_{0.15}$ suffers from surface phenomena that retard the overall performance of the PSCs. By adopting a synergistic approach, drift-diffusion simulation, and experimental validation we unravel the interaction of the passivation layer at electron selective layer/perovskite. Firstly, we elucidated the impact of defect density ($N_d$) at electron selective layer/perovskite and the conduction band of SnO$_2$ using drift-diffusion simulation to yield a power conversion efficiency of 23.18 %. Secondly, we validate the simulation trend experimentally, by depositing the Cs$_2$CO$_3$ passivation layer on the top of the electron selective layer. The impact of Cs$_2$CO$_3$ on electro-optical properties, charge collection, and recombination rate at the interfaces of PSCs was unraveled. The PSC fabricated with Cs$_2$CO$_3$ treatment achieves a higher open-circuit voltage, $V_{oc}$ $\sim$1090 mV. Our findings put
forward a combinatorial protocol of drift-diffusion simulation and experimental studies to address the interfacial issues in PSCs.

**Keywords:** Perovskite Solar Cell, Interface engineering, SnO$_2$, Cs$_2$CO$_3$, Drift-diffusion Simulation

**Introduction**

The simplicity and versatility of perovskite solar cells (PSCs) have attracted interest in the photovoltaic community and reached an efficiency of 25.5 % (NREL, 2021). PSCs display excellent electro-optical properties (Herz, 2016; Leijtens et al., 2020; Miyata et al., n.d.; Wang et al., 2016), however, the interface recombination remains as a barrier in PSCs to attain Shockley Queisser limit and long-term stability enhancement. Typically, a PSC structure consists of; perovskite as light absorber sandwiched between electron transport layer (ETL) and hole transport layer (HTL) creating two main interfaces, regardless of $n$-$i$-$p$ or $p$-$i$-$n$ type architect. Until now the $n$-$i$-$p$ type structure shows high device performance, and the role of ETL is efficient transport of charges to the electrodes. SnO$_2$ is being investigated as a promising ETL for PSCs not only due to its low-temperature process and UV light stability as compared with TiO$_2$ or ZnO (Zhou et al., 2019) but also higher mobility. Diverse strategies have been applied at SnO$_2$/perovskite interface using additives (graphene quantum dots, (GQDs), EDTA), dopants (Li$^+$, K$^+$, Mg$^{2+}$, and Al$^{3+}$, etc.) as well as bilayer strategies (SnO$_2$/TiO$_2$, SnO$_2$/ZnO or SnO$_2$/QD-SnO$_2$) to optimize the performance of PSCs by decreasing the interface recombination and to boost the optoelectronic properties of SnO$_2$ (Nair et al., 2020; Park et al., 2016; Thomas and Skariah, 2015; Yang et al., 2018; Zhu et al., 2019, 2014). Unraveling a synergetic approach that enhances the interface charges and, quality of the perovskite layer will be paramount. The incorporation of Cesium salts (CsX, here X is halide) is an effective methodology, as CsX can enhance the surface quality of SnO$_2$ and a trivial amount of CsX can diffuse into the perovskite layer (Pang et al., 2021; Saliba et al., 2016a).
The Cesium carbonate, \( \text{Cs}_2\text{CO}_3 \) was reported to reduce the work function of SnO\(_2\) in an organic solar cells (Shen et al., 2020; Yoon et al., 2019; Zong et al., 2019). Recently, \( \text{Cs}_2\text{CO}_3 \) was used as a source of Cs element for the perovskite layer to enhance the performance and stability of PSCs (Yavari et al., 2021). Theoretical simulations allow a faster analysis of conditions and combinations, considerably reducing the amount of effort required to identify potential candidates in terms of materials and methods, and increasing the analysis capabilities. Device model simulation is a macroscopic computer-assisted technique used to simulate thin-film solar cells (short-circuit current density, open-circuit voltage, fill factor, and efficiency). The device kinetics can be explained by charge carrier generation, transportation, recombination, and collection related to the electrical characterization that is governed by the semiconductor equations (including Poisson, drift-diffusion, and continuity equations) (Li et al., 2020; Raoui et al., 2021b). Thus, the modeling and simulation studies are attractive for the PSCs community to accelerate the development. By employing drift-diffusion simulation, we have detailed the behavior of SnO\(_2\)/\((\text{FAPbI}_3)_{0.85}(\text{MAPbBr}_3)_{0.15}\) interface; and noted that a spike structure at ETL/perovskite can boost the performance. To experimentally validate this hypothesis, we placed \( \text{Cs}_2\text{CO}_3 \) thin layer in between SnO\(_2\)/\((\text{FAPbI}_3)_{0.85}\text{MAPbBr}_3)_{0.15}\) to form spike structure (Raoui et al., 2021a). 

\( \text{Cs}_2\text{CO}_3 \) as an interlayer between SnO\(_2\) and the perovskite layer was deposited through the spin-coating method. To elucidate the impact of \( \text{Cs}_2\text{CO}_3 \) on the performance of PSCs, we run drift-diffusion simulation in the configuration of, FTO/SnO\(_2\)/interface layer 1 (IL1)/\((\text{FAPbI}_3)_{0.85}\text{MAPbBr}_3)_{0.15}/\)interface layer2(IL2)/Spiro-OMeTAD/Au to illustrate the trap density reduction at IL1 and the energy level of SnO\(_2\). Firstly, we noted that reducing the defect density at IL1 can boost the PSCs performance, while the drift-diffusion simulation suggests optimization of the electron affinity of SnO\(_2\) for efficient extraction of free charges. Secondly,
experimental results using Cs₂CO₃ as an interlayer ratify the drift-diffusion simulation results and validate performance and stability enhancement.

**Computational Studies**

The simulations were performed using the one-dimensional Solar cell capacitance simulator SCAPS 3.3.07 software (Raoui et al., 2019) based on the Poisson equation and the continuity equations for electrons and holes (supporting info).

**Results and discussion**

**Control devices: Experimental & drift-diffusion simulation**

The simulated model and experiment with the configuration of FTO/SnO₂/(IL1)/(FAPbI₃)₀.₈₅MAPbBr₃₀.₁₅/(IL2)/Spiro-OMeTAD/Au pave way for further optimization as illustrated in Fig. 1a-b. The input parameters used to perform the simulation are summarized in Table S1.

![Fig. 1: a) Schematic diagram for the device structure adapted to experimental investigation, b) the energy level of different layers used in drift-diffusion simulation c) \( J-V \) curves, and d) theoretical and experimental EQE with integrated \( J_{sc} \).](image-url)
As illustrated in Fig. 1c, the simulated device is quite close to the experimental results, which suggests the suitability of our model device for further optimization. From the simulated EQE (Fig. 1d) we can observe that the absorption and excitation of free charges inside the PSC are fine, but we speculate that the low defect density at the ETL/perovskite leads to poor extraction of electrons, which maximize the possibility of recombination. To confirm our hypothesis, in the next section we focused on the effect of defect density at ETL/perovskite.

**Interface recombination**

To shed light on the interfaces recombination, a modified Shockley-Red-Hall model that describes the effect of defect density is adapted as following (Kemp et al., 2013; Wilhelm et al., 2011):

\[
R_{IL} = \frac{n_{IL} p_{IL} - n_i^2}{S_n^2 (n_{IL} + n) + S_p^2 (p_{IL} + p)} \tag{1}
\]

\(R_{IL}\) is the total interface recombination, where \((n_{IL}, p_{IL})\) are the electron and hole concentration at interfaces. The terms \(n\) and \(p\) are related to the emission rate from the defect energy state to the corresponding band edges \((E_c, E_v)\) at interfaces. \(S_n, S_p\) are the hole and electron interface recombination velocities which are related to the defect density \((N_i)\), capture cross-area of trap for electron as well as hole and the thermal velocity following the equation (1):

\[
S_{n,p} = N_e \sigma_{n,p} v_{th} \tag{2}
\]

For highly doped selective layers, the interface recombination rate reduces to \(R_{IL} = S_p\)

The interface quality is sensitive to the trap density between the perovskite and selective layers, which can undermine the performance and stability of PSCs. Thus, the effect of defect density at the ETL/perovskite (IL1) on the performance of PSCs was investigated, for this, we kept thermal velocity and capture cross-area of trap for electron and holes constant (Fig. 2).
Expectedly, the defect density at IL1 has a significant effect to boost the performance of PSCs, as the $N_t$ decreased below $1 \times 10^{17}$ cm$^{-3}$, the photovoltaic parameters increase firstly, and then saturated when the $N_t$ reaches a value of $1 \times 10^{13}$ cm$^{-3}$. Compared to the controlled PSC, upgraded performances yielded a PCE~23.18 %, with a $V_{oc}$ ~1190 mV, $J_{sc}$ ~24.90 mA/cm$^2$ and FF~77.71 %. The improvement can be ascribed due to the reduction of trap density at ETL/perovskite, which will allow efficient collection of free charges by reducing the recombination rate (Fig. 2d).

![Fig. 2: The theoretical impact of defect density on a) photovoltaic parameters, b) $J$–$V$ curves, c) EQE, and d) total recombination rate at ETL/perovskite.](image)

Experimentally, the Cs$_2$CO$_3$ has been deposited as an interlayer to imitate the behavior of simulation results. The addition of Cs$_x$ would add a beneficial effect on improving the efficiency, reproducibility, and stability of PSCs (Saliba et al., 2016b). We optimized the performance of PSCs by varying the concentrations of Cs$_2$CO$_3$ and noted 0.5 mg/ml as an optimum value. Thus, all characterization will be based on this optimum concentration. Crystallography data of perovskite are investigated using X-ray diffraction (XRD) patterns (Fig. 3a), which display perovskite without/with Cs$_2$CO$_3$ showed significant changes. The intensity of the peak at 12.7° is
decreased with Cs$_2$CO$_3$ treatment, this peak is characteristic of residual PbI$_2$ as well as a slight decrease of the peak at 11.5° which corresponds to the $\delta$-phase of FAPbI$_3$ (Cho et al., 2017). The photoactive black phase of the perovskite layer is likely to be present by the addition of Cs (Erazo et al., 2020; Saliba et al., 2016b; Yavari et al., 2021). The absorption spectra are similar in both cases as illustrated in (Fig. 3b). The microstructure of SnO$_2$ and perovskite layer without/with Cs$_2$CO$_3$ were investigated using scanning electron microscopy (SEM) images (Fig. 3f). SEM image shows that SnO$_2$ grown on c-TiO$_2$ displays poor surface quality, the presence of pinholes can increase the recombination at the interfaces, in contrast to the microstructure achieved by the surface of Cs$_2$CO$_3$ display its ability to fill the surface pinholes of SnO$_2$. The perovskite grown on SnO$_2$/Cs$_2$CO$_3$ has large and smoother grains, which minimize the defect density and improve the charges transfer, suggesting its role in perovskite crystallization (Akin, 2019).

**Fig. 3:** a) X-ray diffraction patterns of control perovskite film (black) and perovskite growth on Cs$_2$CO$_3$, b) UV-vis absorption spectra of perovskite without and with 0.5 mg/ml of Cs$_2$CO$_3$. SEM images of c) FTO, d) FTO/c-TiO$_2$/SnO$_2$, e) FTO/c-TiO$_2$/SnO$_2$/perovskite, f) FTO/c-TiO$_2$/SnO$_2$/perovskite/0.5 mg/ml of Cs$_2$CO$_3$.

**Photovoltaic performance**
Fig. 4: Photovoltaic characteristics with 0.5 mg/ml of Cs$_2$CO$_3$ (CsC) and without treatment, a) $J$-$V$ curves, b) EQE, c) the Mott-Schottky plot, d) Nyquist plot, e) $C$-$V$ curves spectra, and f) steady-state power output.

Fig. 4a depicts the $J$-$V$ curves with different concentrations of Cs$_2$CO$_3$, the performance of the device is improved to a PCE~17.83 %, $V_{oc}$~1090 mV, $J_{sc}$~23.31 mA/cm$^2$, and FF~69.67 % by varying the rate of Cs$_2$CO$_3$ from 0 – 1 mg/mL yielding an optimal concentration of 0.5 mg/mL.
Furthermore, the Cs$_2$CO$_3$ reduces the trap state of SnO$_2$ in organic solar cells (Yoon et al., 2019). Cs$_2$CO$_3$ can reduce the recombination rate at SnO$_2$/perovskite, significantly affecting the PSCs performance with a stagnation point that declines the performance thereafter.

To quantify the impact of Cs$_2$CO$_3$ on the performance of PSCs, we carried out the space charge limited current (SCLC) measurements for electron-only devices with the structure of FTO/c-TiO$_2$/SnO$_2$ (with and without Cs$_2$CO$_3$) / (FAPbI$_3$)$_{0.85}$MAPbBr$_{0.15}$ / PCBM / Au. The trap density ($N_T$) was calculated using the equation $$N_T = \frac{2\varepsilon \varepsilon_0 V_{TFL} q L^2}{\kappa A^2}.$$ The trap-filled limit voltage ($V_{TFL}$) is 0.07 V and 0.09 V for perovskite with and without Cs$_2$CO$_3$, respectively. The $N_T$ calculated are 1.41E+16 cm$^{-3}$ and 1.10E+16 cm$^{-3}$ for the controlled device and with Cs$_2$CO$_3$. The PSCs with Cs$_2$CO$_3$ show low defect density, which we ascribe to the passivation of interfacial defects at the ETL/perovskite.

To estimate the improvement of PCE with Cs$_2$CO$_3$, the built-in potential ($V_{bi}$) and depletion layer width (W) at perovskite/ETL are performed using Mott-Schottky analysis. The Mott-Schottky plot (Fig. 4d) of the control PSC and with Cs$_2$CO$_3$ at 10KHz is presented; the response of forward bias voltage near or above the built-in voltage corresponds to the capacitance (C) caused by electrode polarization and charge accumulation at the interfaces (Almora et al., 2016). The following equation describes the C related to previous parameters (Gelderman et al., 2007; Hemasiri et al., 2020; Khan et al., 2019):

$$\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 A^2 q N} \left[ V - V_{bi} - \frac{K_b T}{q} \right]$$

Where $\varepsilon$ is the relative dielectric constant of the perovskite layer, $\varepsilon_0$ is the vacuum permittivity, and $A$ is the active area. The other parameters are described in the previous sections. The built-in potential was found to be similar in both PSCs, ~910mV. Thus, using the slope value, the depletion
width \( W = \sqrt{\frac{2eE_0qN}{q^2}} \) of the modified PSC (0.5 mg/ml Cs\(_2\)CO\(_3\)) showed 249 nm compared to 247 nm for the control PSC, suggesting the charge separation improvement and reduction in recombination at perovskite/ETL interface. In the Nyquist plot (Fig. 4e) of with and without Cs\(_2\)CO\(_3\), the arc at the low-frequency region is associated with the recombination resistance \( R_{\text{rec}} \), higher \( R_{\text{rec}} \) values indicate less recombination and efficient separation of free charges at the interfaces (Wang et al., 2017), this is following the above results.

**The effect of conduction band offset**

The conduction band offset (CBO) is the difference between the electron affinity of ETL and perovskite, \( \text{CBO}=\chi_{\text{ETL}}-\chi_{\text{perovskite}} \). Theoretically, the energy level between ETL and perovskite is a crucial parameter that can control the collection of free charges toward the back contact (FTO) in terms of spike and cliff structure as we demonstrated in our previous work. The optimized spike structure, i.e., +CBO has a positive effect on improving the performance of PSCs by minimizing the recombination rate at the ETL/perovskite (Raoui et al., 2021a). (Fig. S2) shows the range of electron affinity adopted to study the effect of CBO on the PSCs performance. We can speculate that the decline of the performance at an optimal concentration of Cs\(_2\)CO\(_3\) (0.5 mg/ml) is a result of the energy level tuning at ETL/perovskite. Thus, starting from the concept of drift-diffusion simulation, we varied the electron affinity of SnO\(_2\) from 3.75 to 4.15 eV (i.e, CBO from 0 to 0.4 eV), in parallel with the variation of defect density at IL1 (Fig. 5). From the previous results, the \( N_{\text{i}}=1\times10^{13} \text{ cm}^{-3} \) was found to be the optimal value at IL1. However, on decreasing the electron affinity of SnO\(_2\) the improved performance was noted till an optimum value (CBO = 0.35 eV) which corresponds to \( \chi_{\text{ETL}}=3.8 \text{ eV} \) and then depending on the value of \( N_{\text{i}} \), it saturates or decreases.

Which can simulate the behavior of experiment results with optimal concentration (0.5 mg/mL).
This signals the synergetic role of Cs$_2$CO$_3$ as a passivating layer at ETL/perovskite and to tune the ETL energy level. Unraveling the impact of interfacial modification at ETL/perovskite is key to optimize the optoelectronic proprieties of perovskite and on the energy level of ETL to decipher interface issues in PSCs to push its performance.

\[ \text{Fig. 5: (a-a') The effect of the electron affinity of SnO}_2 \text{ on the performance of PSC using drift-diffusion simulation.} \]

\textbf{Conclusion}

To conclude, interface engineering is a key to improve the performance of perovskite solar cells. The synergy between experimental and theoretical investigation is vital to understand different phenomena behind the device fabrication. We demonstrated the benefits of Cs$_2$CO$_3$ as an interfacial passivating layer at ETL/perovskite to boost the efficiency of perovskite solar cells by reducing the recombination rate at the interface. Further, the drift-diffusion simulation is introduced to unravel the impact of reducing the defect density at ETL/perovskite. Experimentally, we noted that 0.5 mg/ml of Cs$_2$CO$_3$ is the optimum concentration and it yielded an efficiency of
17.83 %, while we simulated efficiency of 23.18 % by optimizing the defect density at ETL/perovskite. These results help to provide a useful strategy to fabricate and model efficient perovskite solar cells.

Acknowledgments
This work has received funding from the European Union Seventh H2020 Programme under the European Research Council Consolidator grant MOLEMAT (726360) and PARASOL and ARISE (RTI2018-102292-B-I00, PID2019-111774RB-100) from the Spanish Ministry of Science and Innovation. The authors would like to thank Professor Marc Burgelman, Department of Electronics and Information Systems, the University of Gent for the development of the SCAPS software package and for allowing its use.

References
Almora, O., Aranda, C., Mas-Marzá, E., Garcia-Belmonte, G., 2016. On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Cite as Appl. Phys. Lett 109, 173903. https://doi.org/10.1063/1.4966127

Cho, K.T., Paek, S., Grancini, G., Roldá N-Carmona, C., Gao, P., Lee, Y., Nazeeruddin, M.K., 2017. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface †. Energy Environ. Sci 10, 621. https://doi.org/10.1039/c6ee03182j

Erazo, E.A., Sánchez-Godoy, H.E., Gualdrón-Reyes, A.F., Masi, S., Mora-Seró, I., 2020. Photo-induced black phase stabilization of CsPbI3 QDs films. Nanomaterials 10, 1–14. https://doi.org/10.3390/nano10081586

Gelderman, K., Lee, L., Donne, S.W., 2007. Flat-band potential of a semiconductor: Using the Mott-Schottky equation. J. Chem. Educ. 84, 685–688. https://doi.org/10.1021/ed084p685

Hemasiri, N.H., Kazim, S., Ahmad, S., 2020. Reduced trap density and mitigating the interfacial losses by placing 2D dichalcogenide material at perovskite/HTM interface in a dopant free perovskite solar cells. Nano Energy 77, 105292. https://doi.org/10.1016/j.nanoen.2020.105292

Herz, L.M., 2016. Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. annualreviews.org 67, 65–89. https://doi.org/10.1146/annurev-physchem-040215-112222
Kemp, K.W., Labelle, A.J., Thon, S.M., Ip, A.H., Kramer, I.J., Hoogland, S., Sargent, E.H., 2013. Interface Recombination in Depleted Heterojunction Photovoltaics based on Colloidal Quantum Dots. Adv. Energy Mater. 3, 917–922. https://doi.org/10.1002/aenm.201201083

Khan, M.T., Almohammedi, A., Kazim, S., Ahmad, S., 2020. Electrical Methods to Elucidate Charge Transport in Hybrid Perovskites Thin Films and Devices. Chem. Record. 20, 452-465. https://doi.org/10.1002/tcr.201900055

Leijtens, T., Stranks, S.D., Eperon, G.E., Lindblad, R., J Johansson, E.M., McPherson, I.J., kan Rensmo, H., Ball, J.M., Lee, M.M., Snaith, H.J., 2020. Electronic Properties of Meso-Superstructured and Planar Organometal Halide Perovskite Films: Charge Trapping, Photodoping, and Carrier Mobility. ACS Publ. 8, 7147–7155. https://doi.org/10.1021/nn502115k

Li, D., Song, L., Chen, Y., Huang, W., 2020. Modeling Thin Film Solar Cells: From Organic to Perovskite. Adv. Sci. 7, 1901397. https://doi.org/10.1002/advs.201901397

Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Tse, J., Wang, W., Stranks, S.D., Snaith, H.J., Nicholas, R.J., n.d. Direct Measurement of the Exciton Binding Energy and Effective Masses for Charge carriers in an Organic-Inorganic Tri-halide Perovskite, nature.com.

Nair, V.S., Yan, F., Vijayaraghavan, S.N., Wall, J., Li, L., Xing, G., Zhang, Q., 2020. Low Temperature Processed Highly Efficient Hole-Transport-Layer Free Carbon-based Planar Perovskite Solar Cells with SnO$_2$ Quantum Dot Electron-Transport-Layer Thin film perovskite solar cells View project Low-temperature processed highly efficient hole transport layer free carbon-based planar perovskite solar cells with SnO$_2$ quantum dot electron transport layer. https://doi.org/10.1016/j.mtphys.2020.100204

NREL,2021. Solar Cell Efficiency Chart. <https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-01-04-2021>.

Pang, S., Zhang, C., Dong, H., Zhang, Z., Chen, D., Zhu, W., Chang, J., Lin, Z., Zhang, J., Hao, Y., 2021. Synchronous Interface Modification and Bulk Passivation via a One-Step Cesium Bromide Diffusion Process for Highly Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces acsami.1c00066. https://doi.org/10.1021/acsami.1c00066

Park, M., Kim, J.Y., Son, H.J., Lee, C.H., Jang, S.S., Ko, M.J., 2016. Low-temperature solution-processed Li-doped SnO$_2$ as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 26, 208–215. https://doi.org/10.1016/j.nanoen.2016.04.060

Raoui, Y., Ez-Zahraouy, H., Kazim, S., Ahmad, S., 2021a. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. J. Energy Chem. 54, 822–829. https://doi.org/10.1016/j.jechem.2020.06.030

Raoui, Y., Ez-Zahraouy, H., Tahir, N., El Bounagui, O., Ahmad, S., Kazim, S., 2019. Performance analysis of MAPbI$_3$ based perovskite solar cells employing diverse charge selective contacts: Simulation study. Sol. Energy 193, 948–955. https://doi.org/10.1016/j.solener.2019.10.009

Raoui, Y., Kazim, S., Galagan, Y., Ez-Zahraouy, H., Ahmad, S., 2021b. Harnessing the potential of lead-free Sn–Ge based perovskite solar cells by unlocking the recombination channels.
Saliba, M., Matsui, T., Seo, J.Y., Domanski, K., Correa-Baena, J.P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M., 2016a. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997. https://doi.org/10.1039/c5ee03874j

Saliba, M., Matsui, T., Seo, J.Y., Domanski, K., Correa-Baena, J.P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M., 2016b. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997. https://doi.org/10.1039/c5ee03874j

Shen, E., Chen, J., Tian, Y., Luo, Y., Shen, Y., Sun, Q., Jin, T., Shi, G., Li, Y., Tang, J., 2020. Interfacial Energy Level Tuning for Efficient and Thermostable CsPbI$_2$Br Perovskite Solar Cells. Adv. Sci. 7, 1901952. https://doi.org/10.1002/advs.201901952

Thomas, B., Skariah, B., 2015. Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J. Alloys Compd. 625, 231–240. https://doi.org/10.1016/j.jallcom.2014.11.092

US National Renewable Energy Laboratory, 2020. . Catal. from A to Z. https://doi.org/10.1002/9783527809080.cataz17703

Wang, C., Hao, H., Chen, S., Cao, K., Yu, H., Zhang, Q., Wan, G., Shang, W., Huang, W., 2017. Inverse-architecture perovskite solar cells with 5,6,11,12-tetraphenylnapthacene as a hole conductor. RSC Adv. 7, 29944–29952. https://doi.org/10.1039/c7ra02496g

Wang, Y.M., Bai, S., Cheng, L., Wang, N.N., Wang, J.P., Gao, F., Huang, W., 2016. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Adv. Mater. 28, 4532–4540. https://doi.org/10.1002/adma.201504260

Wilhelm, H., Schock, H.W., Scheer, R., 2011. Interface recombination in heterojunction solar cells: Influence of buffer layer thickness. J. Appl. Phys. 109, 084514. https://doi.org/10.1063/1.3554409

Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya, S., Liu, S. (Frank), 2018. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO$_2$. Nat. Commun. 9. https://doi.org/10.1038/s41467-018-05760-x

Yavari, M., Liu, X., Webb, T., Jayawardena, K.D.G.I., Xiang, Y., Kern, S., Hinder, S., MacDonald, T.J., Silva, S.R.P., Sweeney, S.J., Zhang, W., 2021. A synergistic Cs2CO3ETL treatment to incorporate Cs cation into perovskite solar cells: Via two-step scalable fabrication. J. Mater. Chem. C 9, 4367–4377. https://doi.org/10.1039/d0tc05877g

Yoon, S.C., Eom, S.H., Lee, S.-H., Tran, V.-H., Kim, S.-K., 2019. Enhancing device performance of inverted organic solar cells with SnO2/Cs2CO3 as dual electron transport layers. Org. Electron. 68, 85–95. https://doi.org/10.1016/j.orgel.2019.02.006

Zhou, Y., Li, X., Lin, H., 2019. To Be Higher and Stronger—Metal Oxide Electron Transport Materials for Perovskite Solar Cells. Small. https://doi.org/10.1002/smll.201902579
Zhu, P., Gu, S., Luo, X., Gao, Y., Li, S., Zhu, J., Tan, H., 2019. Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite Solar Cells Using SnO2-KCl Composite Electron Transport Layer. Adv. Energy Mater. n/a, 1903083. https://doi.org/10.1002/aenm.201903083

Zhu, Z., Ma, J., Wang, Z., Mu, C., Fan, Z., Du, L., Bai, Y., Fan, L., Yan, H., Phillips, D.L., Yang, S., 2014. Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots. J. Am. Chem. Soc. 136, 3760–3763. https://doi.org/10.1021/ja4132246

Zong, H., Lou, Y.-H., Li, M., Wang, K.-L., Jain, S.M., Wang, Z.-K., 2019. Improved open-circuit voltage via Cs2CO3-Doped TiO2 for high-performance and stable perovskite solar cells. Org. Electron. 105495. https://doi.org/10.1016/j.orgel.2019.105495