Comparative Genomic Analysis of N2-Fixing and Non-N2-Fixing *Paenibacillus* spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes

Jian-Bo Xie1, Zhenglin Du2, Lanqing Bai1, Changfu Tian1, Yunzhi Zhang1, Jiu-Yan Xie1, Tianshu Wang1, Xiaomeng Liu1, Xi Chen1, Qi Cheng3, Sanfeng Chen1, Jilun Li1

1 Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China, 2 Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China, 3 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China

Abstract

We provide here a comparative genome analysis of 31 strains within the genus *Paenibacillus* including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing *Paenibacillus* strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifV, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ32-dependent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding (Fe–S) cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled *Escherichia coli* JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that *Paenibacillus* and *Frankia* are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral *Paenibacillus* did not fix nitrogen. The N2-fixing *Paenibacillus* strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to *Frankia*. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and anf-like genes which may result from gene duplications. The evolution of nitrogen fixation in *Paenibacillus* involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in *Paenibacillus*, but also provides insight into the complex evolutionary history of nitrogen fixation.

Introduction

Biological nitrogen fixation, the conversion of atmospheric N2 to NH3, plays an important role in the global nitrogen cycle and in world agriculture [1]. Nitrogen fixation is mainly catalyzed by the Mo-nitrogenase. The ability to fix nitrogen is widely used to understand the evolution of nitrogen fixation genes. Phylogenetic inference based on the sequences of nitrogenase genes is generally used to understand the evolution of nitrogen fixation. For example, genome sequences of several diazotrophs, such as *Pseudomonas stutzeri* A1501 [12], *Herbaspirillum seropedicae* Smr1 [13] and *Wolinella succinogenes* [14], revealed that the Mo-nitrogenase genes constitute a nitrogen fixation cluster or island. The nif genes of *P. stutzeri*, including nifQ, nifA, nifL, nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifS, nifU, nifW, nifZ, nifM and nifF are distributed in a 49-kb region. The nif genes of *H. seropedicae*, including nifA, nifB, nifZ, nifZ1, nifH, nifD, nifK, nifE, nifN, nifX, nifQ, and Mo-nitrogenase protein sequences (NifHDK) [8–11]. One is the last common ancestor (LCA) hypothesis which implies that the Mo-nitrogenase had its origin in a common ancestor of the bacterial and archaeal domains. According to the LCA model gene loss has been extensive and accounts for the fact that nitrogenase is found neither in eukaryotes nor in many entire phylogeny of prokaryotes. The other is the methanogen origin hypothesis which implies that nitrogen fixation was originated in methanogenic archaea and subsequently was transferred into a primitive bacterium via horizontal gene transfer (HGT).

Remarkable progress in sequencing technology has advanced in understanding genetics and phylogenetic history of nitrogen fixation. For example, genome sequences of several diazotrophs, such as *Pseudomonas stutzeri* A1501 [12], *Herbaspirillum seropedicae* Smr1 [13] and *Wolinella succinogenes* [14], revealed that the Mo-nitrogenase genes constitute a nitrogen fixation cluster or island. The nif genes of *P. stutzeri*, including nifQ, nifA, nifL, nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifS, nifU, nifW, nifZ, nifM and nifF are distributed in a 49-kb region. The nif genes of *H. seropedicae*, including nifA, nifB, nifZ, nifZ1, nifH, nifD, nifK, nifE, nifN, nifX, nifQ, and nif...
Author Summary

We sequenced the genomes of 11 N2-fixing Paenibacillus strains and demonstrated the genomic diversity of the genus Paenibacillus by comparing these strains to each other and to 20 other strains (4 N2-fixing and 16 non-N2-fixing strains) that were sequenced previously. Phylogenetic analysis of the concatenated 275 single-copy core genes suggests that ancestral Paenibacillus did not fix nitrogen and the N2-fixing strains fall into two sub-groups, which were likely originated from a N2-fixing common ancestor. A minimal and compact nif cluster comprising nine nif genes encoding Mo-nitrogenase is highly conserved in the 15 N2-fixing strains. Variations in the nif cluster and in the chromosomal regions surrounding the nif cluster between two sub-groups imply at least two independent acquisitions with insertion of distinct nif cluster variants in different genomic sites of Paenibacillus in early evolutionary history. Phylogeny of the concatenated NifHDK sequences suggests that Paenibacillus and Frankia are sister groups. The nif cluster, a functional unit for nitrogen fixation, was lost, producing some non-N2-fixing strains. There were recent events of acquisition of vnf and anf genes, causing further diversification of some strains. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes.

nifW, nifV, nifU and nifS are in a region spanning 37 kb interspersed with fix, mod, hes, fks, hsc and other genes. Variation of G+C content between the nif cluster and the genome average in P. stutzeri A1501 and existence of transposase near the nif cluster in H. seropedicae Smr1 are indicative of HGT of nif gene clusters [13]. However, since nitrogen fixation is an ancient complex process and is widely, but sporadically distributed among prokaryote families, further extensive genome sequences are needed to completely resolve the evolutionary history of nitrogenase.

Mo-nitrogenase is composed of two proteins, dinitrogenase (MoFe protein) and dinitrogenase reductase (Fe protein). The MoFe protein is a α₂β₂ heterotetramer (encoded by nifDK) that contains the iron-molybdenum cofactors (FeMo-co) and P clusters. The FeMo-co is a [Mo-7Fe-9S-homocitrate] cluster which serves as the active site of substrate binding and reduction. The P-cluster is a [8Fe-7S] cluster which shuttles electrons to the FeMo-co. The Fe protein is a γ₂ homodimer (encoded by nifE) bridged by an intersubunit [4Fe-4S] cluster that serves as the obligate electron donor to the MoFe protein. In addition to the structural genes nifHDK, other genes nifE nifN, nifX nifB, nifQ, nifV, nifT, nifU, nifS, nifZ and nifM contribute to the synthesis of FeMo-co and maturation of nitrogenase [15–17]. Although the majority of present-day biological N₂ reduction is catalyzed by the Mo-nitrogenase, two homologous alternative nitrogenases: V- and Fe-nitrogenase are important biological sources of fixed nitrogen in environments where Mo is limiting [18]. V- and Fe-nitrogenase are encoded by the vnf and anf genes. The Mo-, V- and Fe-nitrogenases are not equally distributed in nature. Most of diazotrophs, such as K. pneumoniae, possesses only the Mo-nitrogenase [19]. While some organisms, like J. flagellaris, possess all three types of nitrogenases [20] and other organisms, like Rhodobacter capsulatus and Rhodospiroplasm rubrum, carry the Mo- and Fe-nitrogenases [21,22].

Paenibacillus is a large genus of Gram-positive, facultative anaerobic, endospore-forming bacteria. Members of this genus are biochemically and morphologically diverse and are found in various environments, such as soil, rhizosphere, insect larvae, and clinical samples [23–26]. Originally Paenibacillus was included within the genus Bacillus, however in 1993 it was reclassified as a separate genus [27]. At that time, the genus Paenibacillus encompassed 11 species including the three N2-fixing species Paenibacillus polymyxa, Paenibacillus ntaerus and Paenibacillus azofixans [27]. The genus Paenibacillus currently comprises more than 120 named species, more than 20 of which have nitrogen fixation ability, including the following 8 novel species described by our laboratory: Paenibacillus saharae, Paenibacillus zandaoxi, Paenibacillus forsythiae, Paenibacillus sonchi, Paenibacillus sophorae, Paenibacillus julindi, P. laohuasunense and P. beijingensis [28–35]. Although diazotrophic Paenibacillus strains have potential uses as a bacterial fertilizer in agriculture, genomic information to date is limited and the genetics and evolution of nitrogen fixation of these diazotrophs are unknown.

Here we sequenced 11 N2-fixing Paenibacillus strains and compared these strains to each other and to 20 other strains (4 N2-fixing and 16 non-N2-fixing strains) that were sequenced previously. These strains were obtained from plant rhizospheres, hot spring and human body and from Brazil, China, Korea, Israel, France, Belgium, United States of America, etc. (Table 1). Our study revealed that a nif gene cluster comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is highly conserved in the 15 N2-fixing strains. Also, two homologous alternative nitrogenases: V- and Fe-nitrogenase encoded by the vnf and anf genes, respectively, are found in some Paenibacillus species. HGT, gene loss and gene duplication of nif, vnf and anf genes have contributed to evolution of nitrogen fixation in Paenibacillus. This study not only reveals the organization and distribution of nif/anf/vnf genes and the evolutionary patterns of nitrogen fixation in Paenibacillus, but also provides support for the methanogen origin hypothesis for nif evolution [10,11].

Results

Genomic features

A summary of the features of each of the 11 newly-sequenced genomes of N2-fixing Paenibacillus strains and 20 previously-sequenced genomes of Paenibacillus strains (4 N2-fixers and 16 non-N2-fixers) is shown in Table 2. The characteristics (size, GC content, predicted number of coding sequences, and number of tRNA genes) of the 11 newly-sequenced genomes are within the range of previously-sequenced genomes of Paenibacillus strains (Table 2, Table S1). The 31 genomes vary in size by approximately three megabases (ranging from 4.90–8.77 Mb) with the number of CDSs ranging from 4460–9087, indicating substantial strain-to-strain variation. The G+C contents of the 31 genomes range from 44.2–58.4. The genome of Paenibacillus sophorae S27 has a larger size than those of the newly-sequenced strains.

Core and pan-genome analysis

Our analysis of the total 31 genomes reveals that a pan genome contains 55504 putative protein-coding genes in the genus Paenibacillus. Of the 55504 putative protein-coding genes, 37105, which made up 66.9% of the genes in the pan genome, were represented in only one genome of Paenibacillus spp., suggesting a high frequency of horizontal gene acquisition from other taxa. In contrast to the pan-genome, the genus Paenibacillus had the core genome of 680 putative protein-coding genes, which represents only 9% to 15% of the repertoire of protein coding genes of each strain, illustrating a large degree of genomic diversity in this group of bacteria (Figure 1). The genomic data are consistent with the fact that Paenibacillus strains are morphologically and physiologically diverse.
We further comparatively analyze the core genome of 15 N₂-fixing and 16 non-N₂-fixing Paenibacillus strains. We found that non-N₂-fixing strains had the core genome of 908 putative protein-coding genes, which made up 12–20% of protein-coding genes in each strain. N₂-fixing strains had the core genome of 1264 putative protein-coding genes, which made up 14–24% of the protein pool in each strain. Further, we use Cluster of Orthologous Groups (COG) assignments to determine whether there were differences in the proportion of the core genome attributable to a particular cellular process (Figure 2 and Table S2). Interestingly, core genome of N₂-fixing strains was found to be disproportionately enriched in cell motility and chemotaxis genes (Fisher’s exact test; P value<0.01). Since these N₂-fixing strains were isolated from plant rhizospheres, cell motility and chemotaxis are of importance for bacterial adaptation to the ever-changing rhizosphere environment [47].

Transposable elements

In this study, transposons were identified using the ISfinder database (http://www-is.biotoul.fr/) and only expectation values of 10⁻⁵ and below were considered as significant matches during searches. Each Paenibacillus genome in this study contains a unique set of transposons (Table S3). The number of transposon copies per genome ranges from 3 (P. polymyxa SC2) to 118 (P. sophorae S27). Members of the IS3, IS4, IS5, IS1182 and IS200/IS605 families are most common. However, there is not a large difference in numbers of transposable elements between other N₂-fixing and non-N₂-fixing strains.

Prophage

Here prophages were identified using PHAST. Each genome of the 31 strains contains 1–10 prophages and/or prophage remnants, ranging in size from 14.4 to 59.1 kb. Collectively, the 31 genomes have 16 intact prophages and 69 prophage remnants. The newly-sequenced genomes have 38 prophages, most of which have a set of cargo genes that encode putative bacteriocins, DNA replication protein DnaD, ABC transporter ATP-binding protein, Non-ribosomal peptide synthase module containing protein, Non-ribosomal peptide synthase module containing protein ade- and cytosine-specific DNA methyltransferases, and DNA/RNA helicase (Table S4). However, there is not a large

Table 1. Paenibacillus strains used in study.
Strains

Paenibacillus sp. JDR2
Paenibacillus sp. Y412MC10
P. mucilaginosus KNP414
P. mucilaginosus K02
P. mucilaginosus 3016
P. polymyxa E681
P. polymyxa SC2
P. curtanolycicus YK9
Paenibacillus sp. HGF5
Paenibacillus sp. HGF7
P. dendritiformis C454
P. elgii B69
P. lactis 154
P. peoriae KCTC3763
Paenibacillus sp. oral taxon786D14
P. vortex V453
P. polymyxa WLY78
P. polymyxa TD94
P. polymyxa 1–43
P. beijingensis 1–18
Paenibacillus sp. 1–49
Paenibacillus sp. Aloe-11
P. terrae HPL-003
P. azotofixans ATCC35681
P. graminis RSA19
P. sonchi X19-5
P. sophorae S27
P. massiliensis T7
P. zanthoxyli JH29
P. forsythia T98
P. sabinae T27

doi:10.1371/journal.pgen.1004231.t001
Table 2. Genomic features of Paenibacillus strains.

Species	Status	GenBank accession number	Genome size (Mb)	G+C content	tRNA genes	Protein-coding sequences (CDSs)
Paenibacillus sp. JDR 2	Complete	CP001656	7.18	50.3	87	6213
Paenibacillus sp. Y412MC10	Complete	CP001793	7.12	51.2	73	6238
P. mucilaginosus KNP414	Complete	CP002869	8.66	58.4	108	7811
P. mucilaginosus K02	Complete	CP003422	8.77	58.2	189	7252
P. mucilaginosus 3016	Complete	CP003235	8.74	58.3	170	7057
P. polymyxa E681	Complete	CP000154	5.39	45.8	91	4805
P. polymyxa SC2	Complete	CP002213	6.24	44.6	91	6032
P. curdianalyticus YK9	Complete	AED0000000000	5.45	51.9	101	4824
Paenibacillus sp. HGF5	Draft	AEX5000000000	6.95	51.0	71	6496
Paenibacillus sp. HGF7	Draft	AFDH0000000000	6.28	52.8	72	5992
P. denitroferrum C454	Draft	AHK0000000000	6.38	54.0	31	5660
P. eligi B69	Draft	AFH0000000000	7.96	52.4	51	7777
P. lactis 154	Draft	AGP0000000000	6.81	51.8	74	6149
P. peoriae KCTC 3763	Draft	AGFX0000000000	5.77	46.4	81	5073
Paenibacillus sp. oral taxon786 str. D14	Draft	ACHI0000000000	4.90	51.8	69	4460
P. vortex V453	Draft	ADH0000000000	6.39	48.8	57	5928
P. polymyxa WLY78	Draft	ALJ0000000000	5.92	45.1	54	5729
P. polymyxa TD94	Draft	ASS0000000000	6.10	45.0	50	5697
P. polymyxa 1–43	Draft	ASR0000000000	6.00	44.2	69	5731
P. beijerinensis 1–18	Draft	ASSB0000000000	5.44	46.0	59	5599
Paenibacillus sp. 1–49	Draft	ASRY0000000000	5.65	46.4	56	5628
Paenibacillus sp. Aloe-11	Draft	AGF0000000000	5.79	46.6	73	5275
P. terrae HPL-003	Complete	CP003107	6.08	46.8	89	5525
P. massiliensis T7	Draft	ASSE0000000000	6.32	48.4	63	5722
P. graminis RSA19	Draft	ASSG0000000000	7.08	50.4	61	7081
P. sonchi X19-5	Draft	AJT0000000000	7.61	50.4	46	7705
P. azatofaxans ATCC335681	Draft	ASQ0000000000	5.44	50.8	37	5924
P. sophorae S27	Draft	ASSF0000000000	8.52	47.9	83	9087
P. zanthoxyli JH29	Draft	ASSD0000000000	5.12	50.9	50	5622
P. forsythia T98	Draft	ASSC0000000000	5.19	53.0	37	5552
P. sabinae T27	Complete	CP004078	5.27	52.6	82	5250

doi:10.1371/journal.pgen.1004231.t002

difference in numbers of prophages between other N₂-fixing and non-N₂-fixing strains.

The *nif* gene cluster is highly conserved in *Paenibacillus*

Comparison of COG assignments between non-N₂-fixing and N₂-fixing *Paenibacillus* strains (Table S2) revealed that 9 core genes in the N₂-fixing strains: *nifB*, *nifH*, *nifD*, *nifK*, *nifE*, *nifN*, *nifX*, *hesA* and *nifV*, which are organized as a *nif* gene cluster arranged within an 10.5–12 kb genomic region, are conserved in all of the 15 N₂-fixing strains (Figure 3, Table S5). The *nifH*, *nifD* and *nifK* are structural genes for Mo-nitrogenase, and the *nifB*, *nifE*, *nifN*, *nifX* and *nifV* are involved in synthesis of FeMo-cofactor. The gene *hesA*, which is located between *nifX* and *nifV*, is also found in the *nif* clusters of *Frankia* [48] and cyanobacteria [49]. HesA (also being called NAD/FAD-binding protein) is a member of the Thi-FMoB-HesA family, which is involved in molybdopterin and thiamine biosynthesis. Our recent studies demonstrated that HesA is required for efficient nitrogen fixation in *Paenibacillus* [50]. As shown in Figure S1, the numbers of *nif* genes and size of the *nif* cluster of *Paenibacillus* are much smaller than those of *Frankia*, cyanobacteria, *Chlorobia* (green sulfur) and Proteobacteria.

Although the *nif* gene cluster composed of *nifB*, *nifH*, *nifD*, *nifK*, *nifE*, *nifN*, *nifX*, *hesA* and *nifV* is highly conserved among the 15 N₂-fixing *Paenibacillus* strains, there are some variations in DNA sequences of the *nif* clusters, which can be divided into two subgroups: Sub-group I and Sub-group II. The 9 genes *nifBHD-*, *hesA*, *nifV*, *nifX* and *nifW* are organized as a *nif* gene cluster arranged within an 10.5–12 kb genomic region, are conserved in all of the 15 N₂-fixing *Paenibacillus* strains. The G+C contents of the *nif* clusters are higher than those of the *nif* clusters of *Frankia* and cyanobacteria, although the *nif* gene cluster within Sub-group I is contiguous, while there is anorf of 261–561 bp, whose predicted product is unknown, between *nifX* and *hesA* within Sub-group II. Except those of *P. massiliensis* T7 within Sub-group I, and *P. sonchi* X19-5 and *P. graminis* RSA19 within Sub-group II, the *nif* gene clusters generally exhibited more than 90% identity among each Sub-group and about 80% identity between two Sub-groups.

The G+C contents of the *nif* clusters are higher than those of the average of the entire genomes in other 14 N₂-fixing *Paenibacillus* strains (52–55 vs. 44–54) except that the *nif* cluster of *P. sabinae* T27...
has the same G+C with the genome (Figure 4). There is a transposase gene, an indicative of HGT, near the nif clusters of Paenibacillus sp. Aloe-11 and P. sabinae T27 (Figure S2). These data suggest that the nif clusters were acquired in Paenibacillus strains by HGT.

Evolution of the nif gene cluster in Paenibacillus

To elucidate the evolution of the nif gene cluster in Paenibacillus strains, we further compared the chromosomal regions flanking the nif gene clusters to each other among the 15 N₂-fixing Paenibacillus strains and to the corresponding chromosomal regions of the non-N₂-fixing Paenibacillus strains. We found that ABC transporter ATP-binding protein gene and beta-fructosidase gene/fg-gap repeat protein gene were conserved in the downstream and upstream, respectively, of the nif clusters in the 7 N₂-fixing Paenibacillus strains (P. polymyxa 1–43, P. polymyxa WLY78, P. polymyxa TD-94, P. heijingensis 1–18, Paenibacillus. sp. Aloe-11, Paenibacillus sp. 1–49 and P. terrae HPL-003) within Sub-group I (Figure 5A). Unlike in Sub-group I, integral membrane protein gene and FAD/FMN-containing dehydrogenase gene/methyltransferase gene were conserved in the downstream and upstream, respectively, of the nif clusters in all of the 7 N₂-fixing Paenibacillus species (P. sonchi X19-5, P. graminis RSA19, P. azotofoxans ATCC 35681, P. sophorae S27, P. zanthoxyli JH29, P. forsythia T98 and P. sabinae T27) within Sub-group II (Figure 5C). Combination of the findings that nif clusters fall into two sub-groups according to their identities, these data imply at least two independent acquisitions with insertion of distinct nif variants in different genomic sites of Paenibacillus.

Notably, the chromosomal regions flanking the nif gene clusters within Sub-group I are homologous to the corresponding regions of the non-N₂-fixing P. polymyxa SC2, P. polymyxa E681 and P. peoriae.
KCTC 3763, suggesting that the nif cluster was lost in these strains (Figure 5B). Our results are consistent with the report that nif gene cluster was lost in cyanobacteria [49].

Sporadic occurrence of alternative nitrogenase

As shown in Figure 3, in addition to the nif cluster encoding Mo-nitrogenase, 2 strains have vnfH/D/G/K/E/N/X encoding V-nitrogenase and 2 strains have anfH/D/G/K encoding Fe-nitrogenase. In *P. sophorae* S27 and *P. forsytia* T98, *nifH/D/G/K* are linked with *nifBENX*, forming a 9.1–9.7 kb cluster. In *P. zanthoxyli* SJH29 and *P. azotofixans* ATCC 35681, *vnfH/D/G/K* are linked with *nifBENX*, *fepBCD* (encoding iron-enterobactin transporter subunits), *levA* and other unknown genes, forming a 20.4–20.9 kb cluster. These *anf/ vnf* clusters are flanked by genes coding for hypothetical proteins. Each alternative nitrogenase cluster contains, as a minimum, *vnf/ anfH, D, G, and K*. The organizations of *vnf* or *anf* are largely consistent, but distinct with those of *A. vinelandii* and *Methanococcus maripaludis* [4,51]. It is most likely that *anf* or *vnf* gene cluster was recently horizontally transferred to *N*₂-fixing strains which have already had a *nif* cluster, producing the *P. sophorae* S27, *P. forsytia* T98, *P. zanthoxyli* SJH29 and *P. azotofixans*.

The origin of nif/vnf/anf in Paenibacillus

To gain insights into the origin of *nif/vnf/anf* genes in *Paenibacillus*, a Bayesian inferred phylogenetic tree was constructed based on the concatenated NiHDK proteins. Results shown in Figure 6 indicate that NiHDK proteins of *Paenibacillus* strains fall into three distinct lineages. This phylogeny exhibits that NiHDK protein homologs formed two distinct clades, one of which was comprised of proteins from hydrogenotrophic methanogens and the other was comprised of proteins from both bacterial and methanogen genomes, in agreement with methanogen origin hypothesis of nitrogen fixation proposed by Boyd et al [10]. Our phylogenetic analysis of the concatenated NifHDK derived from the *nifHDK* of the *nif* clusters reveals that all of the 15 *N*₂-fixing *Paenibacillus* strains form a coherent cluster consisting of two sub-groups, in agreement with the two sub-groups of *nif* clusters (Figure 7). Notably, the phylogeny reveals that *Paenibacillus* and *Frankia* are sister groups to the exclusion of the Firmicute *Clostridium*, implying that *Paenibacillus* and *Frankia* have a common *nif* gene ancestor. Phylogenies derived from each of the individual NiB, H, D, K, E, N and V and X are congruent with the phylogeny of the concatenated NiHDK (Figure S3, S4, S5, S6, S7, S8, S9, S10).

This phylogeny shows that Vnf/Anf proteins of *Paenibacillus* strains fall into the corresponding homologous lineages. Phylogeny derived from each of the individual VnfH/AnfH, D, G, K, E, N and X is congruent with the phylogeny of the concatenated Vnf/AnfHDK (Figure S3, S4, S5, S6, S7, S8, S9, S10). *anf* and *vnf* of *Paenibacillus* are nested with those of archaeon *M. acetivorans*, supporting that the ancestor of *anf* and *vnf* may originate from archaea.

Phylogenetic analysis

We reconstructed the phylogeny of the 31 genomes based on the concatenation of the 275 core genes that are present in single copy in a genome. The 18 strains including 15 *N*₂-fixing strains and 3 non-*N*₂-fixing strains form a large group including two sub-groups and the other 13 non-*N*₂-fixing strains fall into a large group (Figure 7). The clustering resulting from phylogenetic analysis corresponds well with the species assignments based on average nucleotide identity (ANI) using MUMmer (ANIm) (Table S6) [52]. For examples, *P. mucilaginosus* K02, *P. mucilaginosus* 3016 and *P. mucilaginosus* KNP414 have higher ANIm (98%). *N*₂-fixing strains *P. polymyxa* 1–43, *P. polymyxa* WLY78 and *P. polymyxa* TD94 isolated from China, and non-*N*₂-fixing strains *P. polymyxa* SC2...
Comparative Genomic Analysis of *Paenibacillus* spp.

Sub-group I

- *P. polymyx*a 1-43
- *P. polymyx*a WLY78
- *P. polymyx*a TD94
- *P. beijingensis* 1-18
- *Paenibacillus* sp. Aloe-11
- *Paenibacillus* sp. 1-49
- *P. terrae* HPL-003
- *P. massiliensis* T7
- *P. sonchi* X19-5
- *P. graminis* RSA19

Sub-group II

- *P. zanthoxyli* JH29
- *P. azotofixans* ATCC 35681
- *P. sophorae* S27
- *P. forsythia* T98
- *P. sabinae* T27
and P. polymyxa E681 isolated from China and South Korea, respectively, have higher ANIm (≥95%). It is noteworthy that the other 2 unnamed strains Aloe-11 (ANIm≤87%) and 1–49 (ANIm<95%) may represent a novel species, respectively. This phylogeny suggests that the Paenibacillus ancestor was probably non-fixing and the N₂-fixing Paenibacillus strains appeared to occur much later than non-N₂-fixing strains. Combination of the data that the nif cluster is conserved in the 15 N₂-fixing Paenibacillus strains and the G+C contents of the nif clusters are higher than those of the average of the entire genomes, we proposed that N₂-fixing Paenibacillus strains were generated by acquiring the nif cluster via HGT.

The N₂-fixing strains of Paenibacillus fall into a large group composed of 2 distinct sub-groups (Sub-group I and Sub-group II), which were likely originated from a N₂-fixing common ancestor. This species phylogeny is congruent with the phylogeny of nif genes. The phylogeny suggests that the 8 N₂-fixing strains and the 3 non-N₂-fixing strains within Sub-group I are most closely related. Nitrogen fixation may have been present in the ancestor of the 8 N₂-fixing strains (P. polymyxa 1–43, P. polymyxa WLY78, P. polymyxa TD-94, P. beijerinckii 18, Paenibacillus sp. Aloe-11, Paenibacillus sp. 1–49, P. terrae HPL-003 and P. massiliensis T7) and the 3 non-N₂-fixing strains (P. polymyxa SC2, P. polymyxa E681 and P. poenae KCTC 3763), and was later lost in the 3 non-N₂-fixing strains. This phylogeny also shows that the 7 N₂-fixing strains within Sub-group II (P. solchi X19-5, P. gaminis RSA19, P. azotofoxans ATCC 35681, P. spor DRIVE S27, P. zambosii JH29, P. furthii T98 and P. sabinae T27) are sister group with the 4 non-N₂-fixing strains P. lactis 154, P. vortex V453, Paenibacillus sp. Y112MC10 and Paenibacillus sp. HGF5. Nitrogen fixation may have been present in the ancestor of the 7 N₂-fixing and 4 non-N₂-fixing strains and the nif genes were lost, producing the non-N₂-fixing P. lactis 154 lineage.

Taken together, the Paenibacillus ancestor was probably non-fixing and the N₂-fixing strains of Paenibacillus can be classified into 2 distinct sub-groups, which were likely originated from a N₂-fixing common ancestor with minor variation in nif sequences. N₂-fixing Paenibacillus strains were generated by acquiring the nif cluster in early evolutionary history via HGT from a source related to Frankia. After these initial acquisitions of the nif gene clusters, the strains that have them now have inherited them by vertical transmission. However, during the process of evolution, the nif cluster was lost, producing the 3 non-N₂-fixing strains P. polymyxa SC2, P. polymyxa E681 and P. poenae KCTC 3763 and the non-N₂-fixing lineage P. lactis 154. There were recent events of acquisition of nif and anf genes, causing further diversification of strains within Sub-group II. The most likely pathways of nitrogen fixation evolution are summarized in Figure 7.

The nif gene cluster is a functional unit for nitrogen fixation

To investigate that the nif gene cluster is a functional unit for nitrogen fixation, the contiguous nine genes nifBHDKENXhesAnifIV of the nif cluster and the nifB promoter from P. beijerinckii 1–18, a representative of N₂-fixing Paenibacillus strains, was PCR amplified and then constructed to vector pHY300PLK and further transferred to E. coli JM109. This yielded the recombinant E. coli strain 1–18. Nitrogenase activity was determined using the acetylene reduction assay (expressed as nmol C₂H₂/hr/mg protein) [53] and a ¹⁵N₂ enrichment assay (expressed as δ¹⁵N) [34]. As shown in Figure S11, the nine genes nifBHDKENXhesAnifIV within the nif cluster enabled E. coli to fix nitrogen, in agreement with our recent report obtained in P. polymyxa WLY78 [50]. The results indicate that the nif cluster is a functional unit for nitrogen fixation, and also a unit of HGT.

The nif gene cluster possesses a 𝜎⁰−dependent promoter and a GlnR/TnrA-binding site

We recently determined that the nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV within the nif gene cluster in P. polymyxa WLY78 were organized as an operon and that the nifB promoter of the nif cluster is a 𝜎⁰−dependent promoter −35 (TTGACT) and −10 (TAAGAT) [50]. Here we revealed using bioinformatics analysis that the nif genes within the nif gene clusters among the other 14 N₂-fixing Paenibacillus strains are organized as an operon and each of the nif clusters has a 𝜎⁰−dependent promoter (Figure S12). The 𝜎⁰−dependent promoter is very distinct from the typical 𝜎−dependent −24/−12 promoters found upstream of nif genes in Gram-negative N₂-fixing bacteria, such as K. pneumoniae and A. vinelandii, whose nif gene expression requires the activation of the transcriptional activator NifA according to the concentration of ammonium and oxygen [55]. Although the 𝜎⁰−dependent promoter is highly conserved among the 15 N₂-fixing Paenibacillus strains, there are some variations in length of interval sequence between the putative transcriptional start site (TSS) and translation start codon (ATG) of nifB (Figure S12).

Unlike in Gram-negative diazotrophs, there is neither nifA gene encoding transcriptional activator NifA, nor NifA-binding site in the promoter region of the nif gene cluster. However, the genomes
of the 15 N₂-fixing Paenibacillus strains have glnR gene. In the Gram-positive model organism Bacillus subtilis, two transcriptional factors, TnrA and GlnR, control gene expression in response to nitrogen availability [56,57]. TnrA activates and represses gene transcription when nitrogen is limiting for growth, while GlnR represses gene expression during growth with excess nitrogen. The two proteins bind to DNA sequences (GlnR/TnrA-sites) with a common consensus sequence (TGTNAN7TNACA) [56,57]. Here we found that the GlnR/TnrA-binding sites exist in the nif promoter regions of the 15 N₂-fixing Paenibacillus genomes (Figure S12). The GlnR/TnrA-binding sites are located upstream of the σ⁷⁰-dependent promoter (~35 and ~10) region in Sub-group I strains and some Sub-group II strains, while they are located downstream of the ~35 and ~10 regions in some Sub-group II strains. The existence of GlnR/TnrA-sites in nif promoter region suggests that regulation mechanisms of nitrogen fixation in Paenibacillus may be different from those of Gram-negative N₂-fixing organisms.

Suf system encoding [Fe–S] cluster is highly conserved in N₂-fixing and non-N₂-fixing Paenibacillus strains

Mo-nitrogenase is a complex [Fe–S] enzyme and the [Fe–S] clusters of nitrogenase play a critical function in electron transfer and in the reduction of substrates driven by the free energy liberated from Mg-ATP hydrolysis [19]. NifU and NifS are generally thought to be specialized for the nitrogenase [Fe–S] cluster assembly of nitrogen-fixing bacteria [58]. However, the genomes of the 15 N₂-fixing Paenibacillus strains involved in this study do not possess homologues of nifU and nifS. Here we discovered that a Suf system (sufCDSUB operon) responsible for the

Figure 5. Synteny of the chromosomal regions flanking the nif gene cluster among each sub-group. (A) nif clusters of Sub-group I. (B) The chromosomal regions of non-N₂-fixing strains corresponding to those flanking the nif gene cluster of Sub-group I. (C) nif clusters of Sub-group II. doi:10.1371/journal.pgen.1004231.g005
Figure 6. Bayesian inferred phylogenetic tree of concatenated NifHDK homologs. The interior node values of the tree are clade credibility values, values lower than 100% are indicated. Branches are colored blue (Mo-nitrogenase, Nif), green (V-nitrogenase, Vnf), purple (Fe-nitrogenase, Anf), light blue (uncharacterized homolog), dark yellow (uncharacterized nitrogenase). The text colored red was *Paenibacillus*. doi:10.1371/journal.pgen.1004231.g006
formation of [Fe-S] clusters is highly conserved in N₂-fixing and non-N₂-fixing *Paenibacillus* strains. Suf system has been reported in *E. coli* (sufABCDSE) and some other organisms [59]. We deduce that sufCDSUB operon in N₂-fixing *Paenibacillus* strains are involved in synthesis of the [Fe-S] clusters of nitrogenase and other FeS proteins. Perhaps it is because there is a sufCDSUB operon in non-N₂-fixing *Paenibacillus* strain, a single event of HGT of the *nif* gene cluster will transfer a non-N₂-fixing *Paenibacillus* strain to a N₂-fixing *Paenibacillus* strain.

Multiple *nif* genes in *Paenibacillus*

In addition to *nifBHDKEXheCNifV* within the *nif* gene cluster, there is a set of additional *nifBEN* which are linked together with *vnf* or *anf* in the 4 species: *P. zanthoxyli* JH29 and *P. azotofixans* ATCC 35681, *P. sophorae* S27 and *P. forsythia* T98. Since the additional *nifBEN* form a cluster with *vnf* or *anf*, it is likely that they were horizontally transferred to the 4 species with *vnf* or *anf*. There are a cluster of *nifBHDEN*, 2 *nifB* and 1 *nifH* located at different sites outside of the *nif* gene cluster in *P. sabinae* T27. The phylogenetic trees based on each of the individual NiB, NiH, NiF and NiN protein sequences (Figure S3, S4, S5, S6, S7, S8, S9, S10) show that each of them is clustered with its homolog derived from the *nif* gene clusters of *Paenibacillus*, suggesting that these genes derived from gene duplication. Transposases near the *nifBHEN* and *nifB* in *P. sabinae* T27 suggest that these genes may originate from gene duplication (Figure S2). Our previous results demonstrated that the 3 *nifH* genes from *P. sabinae* T27 could complement the *K. pneumoniae* *nifH* mutant [60], suggesting that these *nifH* genes are functional in nitrogen fixation. However, we are not sure that the multiple *nifBHEN* are positively related to high nitrogenase activity.

Multiple nitrogenase-like genes in *Paenibacillus*

Our studies revealed that there are nitrogenase-like genes including 1–2 *nifH*-like and 4–6 pairs of *nifDX*-like genes in the 5 species within Sub-group II: *P. azotofixans* ATCC 35681, *P. sophorae*
S27, P. zanthoxyli JH29, P. forsythia T98 and P. sabinae T27 (Figure 3). Alignments of NifH-like sequences with NifH sequences show that 4Fe-4S iron sulfur cluster ligating cysteines (Cys97 and Cys132), ADP-ribose binding arginine (Arg101) and the P-loop/MgATP binding motif are invariant, suggesting that NifH-like proteins may function analogously to NifH (γ subunit of nitrogenase) (Figure S13). Conversely, NifD/NifK-like sequences are highly diverged from both α and β subunits of nitrogenase. For example, FeMoco-ligating residues at αCys275 and αHis442, and P-cluster-ligating residues at Cys62, Cys88 and Cys154 of NifD, are not conserved in NifD-like sequences (Figure S14). The residues ligating P-cluster at Cys70, Cys95 and Cys153 of NifK are not conserved in NifK-like sequences (Figure S15). Our results are in agreement with previous reports obtained in studies with Archaea and Firmicutes Clostridium [4,9]. Further, phylogenetic analysis reveals that the NifH/NifD/NifK-like sequences form distinct groups which are clearly divergent from conventional nitrogenase (Figure 8).

Discussion

In this study, we sequenced the genomes of 11 N_{2}-fixing *Paenibacillus* strains and made a comparative genomic analysis with 20 other strains (4 N_{2}-fixing and 16 non-N_{2}-fixing strains) that were sequenced previously. Our analysis of the total 31 genomes revealed that of the 55504 putative protein-coding genes, 37105, which made up 66.9% of the genes in the pan genome, were represented in only one genome of *Paenibacillus* spp., suggesting a remarkable degree of HGT in shaping the genomes of each of the genus. It is generally accepted that abundance of mobile genetic elements correlates positively with the frequency of HGT. We discovered that each genome of all of the 31 strains contains 1–10
prophages and/or prophage remnants and 3–118 IS elements, supporting that these strains are rich in mobile genetic elements. The existence of transposable elements and prophage near the nif gene and nif gene cluster suggest that they may be involved in HGT and loss of nif genes. Our demonstration that the nif cluster from *P. beijerinckii* 1–10 enabled E. coli to have nitrogen fixation ability supports that the nif cluster is a functional unit for nitrogen fixation and also a unit of HGT.

Genomic islands are known to have contributed to the evolution of microbial genomes by HGT in many bacteria, influencing traits such as antibiotic resistance, symbiosis and fitness, and adaptation in general [61]. The evolutionary advantage of genomic islands is that a large number of genes (e.g. operon, gene clusters encoding related functions) may be horizontally transferred and incorporated en bloc into the recipient genome in a single step [62].

Phylogeny of the concatenated 275 single-copy core genes (Figure 7) suggests that the ancestor *Paenibacillus* did not fix nitrogen. Genome sequencing revealed that the nif cluster is highly conserved in all of the 15 N₂-fixing strains and the G+C contents of the nif clusters are higher than those of the average of the genomes in 14 N₂-fixing strains except *P. sabiniae* T27. Also, phylogeny of the concatenated NifHDK proteins (Figure 6) revealed that *Paenibacillus* and *Frankia* are sister groups. All of these facts and evidences indicate that N₂-fixing *Paenibacillus* strains may be generated by acquiring the nif cluster via HGT from one source related to *Frankia* in early evolutionary history. Strain phylogeny (Figure 7) also shows that the 15 N₂-fixing strains of *Paenibacillus* fall into 2 distinct sub-groups, consistent with phylogeny of nif genes (Figure 6). The nif clusters show some variation at least between two sub-groups, and the genes surrounding the nif clusters from two sub-groups are conserved and distinct. These data imply at least two independent acquisitions with insertion of distinct nif variants in different genomic sites of *Paenibacillus*.

Furthermore, strain phylogeny suggests that nitrogen fixation may have been present in the ancestor of the 8 N₂-fixing strains (*P. polymyxa* 1–43, *P. polymyxa* WLY73, *P. polymyxa* TD94, *P. beijerinckii* 1–18, *Paenibacillus* sp. Aloe-11, *Paenibacillus* sp. 1–49, *P. terreae* HPL-003 and *P. massiliensis* T7) and the 3 non-N₂-fixing strains (*P. polymyxa* SC2, *P. polymyxa* E681 and *P. poioaceticum* KCTC 3763) within Sub-group I, and was later lost in the 3 non-N₂-fixing strains (*P. polymyxa* SC2, *P. polymyxa* E681 and *P. poioaceticum* KCTC 3763). Notably, the model *P. polymyxa* is a N₂-fixing species, and now this species includes both N₂-fixing and non-N₂-fixing strains. These closely related strains of this group were isolated from plant rhizospheres and from different geographical locations of China, South Korea and Republic of Korea. Likewise, it is likely that nitrogen fixation may have been present and was later lost in the non-N₂-fixing lineage *P. lactis* 154. The members of this lineage were isolated from complex locations. For example, *P. lactis* 154 was isolated from milk, *Paenibacillus* sp. HGF5 from human intestinal microflora and *Paenibacillus* sp. Y412MC10 from hot spring, and *P. vortex* V453 is known to develop complex colonies with intricate architectures.

The newly sequenced genomes revealed that the 4 *Paenibacillus* species *p. spoharum* S27, *P. forsythia* T98, *P. azotofixans* JH29 and *P. azotofixans* have the second nif cluster which carrying vnf or anf, in addition to the nif cluster. anf/HDGK are clustered with nif/BEVK/V in a 9.1–9.7 kb region in *P. spoharum* S27 and *P. forsythia* T98, vnf/HDGK/EN are clustered with nif/BENV, fepBCD, and other unknown genes in a 20.4–20.9 kb region in *P. azotofixans* JH29 and *P. azotofixans* ATCC 35681. Phylogeny of the concatenated Nif/Vnf/HDGK proteins indicates that anf/HDGK and vnf/HDGK of *Paenibacillus* originate differently from nif/HDGK, and may be not duplicated from their nif/HDGK. It is most likely that the nif cluster carrying anf/vnf genes was horizontally transferred to N₂-fixing strains which have already had the nif cluster, producing *P. spoharum* S27, *P. forsythia* T98, *P. azotofixans* JH29 and *P. azotofixans*. These species were isolated from plant rhizosphere from China and Brazil. Our results are consistent with the recent reports that both Nif and Anf evolved in the methanogenic archaea, and anf or vnf derived from duplication of nif [8]. As described above, phylogenies of the concatenated Anf/Vnf/HDGK and each of individual Anf/Vnf/H, D and K show that *Paenibacillus* strains fall into Anf and Vnf clusters, respectively. However, we found that
the conserved residues in the P-loop binding motif of AnfH do not exist in *P. sophorae* S27, and the residues ligating P-cluster at Cys70 and Cys95 of VnfK do not exist in *P. zanthoxyli* JH29. Perhaps the residues ligating P-cluster or in P-loop binding motif are located on the other sites in VnfK and AnfH, respectively.

This study reveals that HGT of *nif/anf/vnf* gene cluster contributed to evolution of nitrogen fixation in *Paenibacillus*. Usually, a vehicle is needed to transfer genes efficiently between different species. It is thought that foreign DNAs are mainly transferred by means of plasmids or bacteriophages, as well as being carried over by host transfer [58,66,67]. The best studied example of HGT of *nif* genes is symbiosis island of *Mesorhizobium loti*. The symbiosis island, a 502-kb chromosomally integrated element containing *nif* genes, was integrated into a phenylalanine tRNA gene mediated by a P4-type integrase encoded at the left end of the symbiosis island [68–70]. However, a phenylalanine tRNA gene near the *nif* cluster is not found, suggesting that it may not be transferred by P4-type integrase. But we found that there is a transposase gene, an indicative of HGT, near the *nif* clusters of *Paenibacillus* sp. Aloe-11 and *P. sabinae* T27 and near the *nif* cluster of *P. sophorae* S27. Also, a transcriptional regulator gene of *anfC* type, which is known to be involved primarily in regulating pathogenicity islands in some bacteria but is also present in nonpathogenic organisms [62], neighbors the *nif* clusters of *P. polynya* TD94 and *Paenibacillus* sp. 1–11.

The deviant G+C content is one of the indicative used to detect HGT [67]. The G+C contents of the *nif* clusters are higher than those of the average of the entire genomes (52–55 vs. 44–53) in the 14 *N₂*-fixing *Paenibacillus* strains except *P. sabinae* T27, supporting that the *nif* gene clusters in these strains are acquired by HGT. The similar G+C contents and high identities of *nif* genes among the 15 *nif* clusters suggest that these *nif* clusters originated from a common ancestor with minor variation. The G+C contents of the *anf* cluster is higher than the average of the genome in *P. sophorae* S27 (51% vs. 40%), and is lower than the average of the genome in *P. forsythia* T98 (51% vs. 53%). The G+C contents of the *vnf* cluster is the same (51% vs. 51%) as the average of the chromosomal genome in *P. azotofixans* ATCC 35681 and *P. zanthoxyli* JH29. A higher G+C contents of the *nif* cluster were found in some *N₂*-fixing bacteria, such as *P. stutzeri* A1501 (66.8% vs. 63.8%) [12]. In rhizobia, the *nif* genes are located on either plasmids or genomic islands, which are prone to transfer between related bacteria [71]. However, the G+C contents of these plasmids and genomic islands are generally lower than the average of the chromosomal genome [72–74]. However, the G+C contents of the *nif* clusters are similar with those of the average of the entire genomes in the sequenced *Frankia* strains (69% vs. 70% in *Frankia* sp. HPFCc13, 70% vs. 71% in *Frankia* sp. EAN1pec and 71% vs. 72% in *Frankia* sp. ACN14a). It is generally accepted that although the deviant G+C content can be used to detect HGT, detection of HGT depends on a combination of several methods. This is because it is hard to detect HGT via deviant G+C content, if HGT occurred between the organisms with the same G+C contents [67].

Our genome sequencing revealed that there are nitrogenase-like genes including 1–2 *nifH*-like and 4–6 pairs of *nifDK*-like genes in the 5 species within Sub-group II: *P. azotofixans* ATCC 35681, *P. sophorae* S27, *P. zanthoxyli* JH29, *P. forsythia* T98 and *P. sabinae* T27 (Figure 3 and Table S3). Alignment of conserved residues ligating 4Fe–4S in NiFH and ligating P-cluster and FeMoco and phylogenetic analysis in in NiFD/K revealed that the *nif*-like and *nifDK*-like genes are clustered with those of *archaea* and *firmicutes* such as *Clostridia* [4]. The data that NiFH/NiFD/NiK-like sequences fall into distinct groups by phylogenetic analysis suggest that multiple *nifH*-like and *nifDK*-like genes may result from gene duplication. The existence of transposases near the *nifDK*-like genes also suggested that multiple *nifDK*-like genes may result from gene duplication. It was proposed that *Nif* emerged from a nitrogenase-like ancestor approximately 1.5–2.2 Ga [10]. We wonder why there are so many *nifDK*-like genes in these *Paenibacillus* species. The determination of the function of nitrogenase-like genes will clarify their relation with nitrogen fixation.

Materials and Methods

Genome sequencing, assembly, and annotation

The draft sequences of 11 test *Paenibacillus* strains were produced by using Illumina paired-end sequencing technology at the BGI-Shenzhen (Table 2). Assembly was conducted by using SOAPdenovo v. 1.04 assembler [75]. Gene prediction was made using Glimmer v3.0 [76]. Annotation of protein coding sequence was performed by using the Basic Local Alignment Search Tool (BLAST) against the COG, Kyoto Encyclopedia of Genes and Genomes (KEGG) databases and NCBI nr protein database. The draft genomes of the 11 test *Paenibacillus* strains have been deposited in GenBank and the project accession numbers are listed in Table 2. Prophage was identified using PHAST [77].

Comparative genomics

Pan Genome Analysis Pipeline of PGAP [78] was used to identify all of the orthologous pairs between test *Paenibacillus* genomes. The common dataset of shared genes among test strains was defined as their core genome. The total set of genes within test genomes was defined as the pan genome. The set of genes in each strain not shared with other strains was defined as unique genes. The average nucleotide identity (ANI) between strains of the 31 sequenced genomes were calculated using MUMmer [52]. Multiple alignment of conserved genomic sequence was using Mauve [79]. The genomes sequenced in this study are listed in Table S1.

Phylogenetic analysis

Single gene alignments were aligned with molecular evolutionary analysis (MEGA) [80]. The neighbor-joining trees were constructed by using the same software, and 1,000 bootstraps were done. Bayesian inferred phylogenetic tree of concatenated HDK homologs was generated using the MrBayes package [81]. A maximum-likelihood phylogenetic tree of *Paenibacillus* species was constructed based on 275 single-copy core proteins shared by 31 *Paenibacillus* genomes and the genome of *Bacillus subtilis* 168 according to the following methods: (i) multiple alignment of amino acid sequences were carried out by ClustalW (version 2.1) [82] (ii) conserved blocks from multiple alignment of test protein were selected by using GBLOCKS [83] (iii) ML tree were constructed using PhyML (version 3.0) [84] software (iv) CONSEL program [85] was used to select the best model of the trees.

Construction of the recombinant plasmid and *E. coli* strain

Genomic DNA of diazotrophic *P. beijerincki* 1–18 was used as a template for cloning *nif* genes. A 10.7 kb Xba I-BamH I DNA fragment containing the *nif* cluster (a 300 bp promoter region and the contiguous nine genes *nifBHDKENXhesAnifV*) and the contiguous nine genes *nifBHDKENXhesAnifV* and 184 bp downstream of the stop codon TAA of *nifV* was PCR amplified with primers *nif* cluster-up (5’-TGGCTCTAGGAAATATAACGTGGAGAGG-3’) and *nif* cluster-down (5’-CGCGGATCGCATTATACGACTATATGGT-3’) and then ligated to Xba I and BamH I sites of pHY300PLK, yielding plasmid pHY300-18.
Acetylene reduction assays

For acetylene reduction assays, *P. beijingensis* 1–18 and the recombinant *E. coli* strain 18 were grown overnight in LD medium, then diluted into nitrogen-deficient medium and grown for 15–18 h. Following this stage, the cultures were collected and resuspended in an N-free medium to an OD_{600} of 0.2–0.4 in a serum bottle for nitrogenase derepression. The serum bottle was evacuated and charged with argon gas. After 5–6 h, C_2H_2 (10% of the headspace volume) was injected into the serum bottle. After 30 min to 1 h, C_2H_4 was analyzed by Gas Chromatography [53].

^{15}N_2 incorporation assay

Paenibacillus sp. 1–18 and the recombinant *E. coli* strain 18 were grown overnight in LD medium. The cultures were collected and resuspended in 70 ml N-free medium to an OD_{600} of 0.4 in the 120 ml serum bottle. The serum bottles were filled with N_2 gas, and then 8-ml gas was removed and 5 ml ^{15}N_2 (99%, Shanghai Engineering Research Center for Stable Isotope) gas was injected. After 72 hours of incubation at 30°C, the cultures were collected, freeze dried, ground, weighed and sealed into tin capsules. Isotope ratios are expressed as ^{8}_{15}N whose values are a linear transform of the isotope ratios ^{13}_{15}N/^{14}_{15}N, representing the per mille difference between the isotope ratios in a sample and in the atmospheric N_2 [54].

Data access

The genome sequences used in this study were submitted to the GenBank, the accession number was shown in Table 2.

Supporting Information

Figure S1 Comparison of the *nif* gene cluster of *Paenibacillus* with those of the representative N_2-fixing bacteria and archaea. (A) *Paenibacillus polymyxa* 1–43, (B) *Azobacter vinelandii*, (C) *Klebsiella oxytoca* M5al, (D) *Nostoc punctiforme* PCC 73102, (E) *Francisella* sp. EAN1pec, (F) *Clostridium acetobutylicum*, (G) *Methanococcus maripaludis*. (TIF)

Figure S2 IS elements or prophages linked with the *nif* gene, *nif* cluster and *nif*-like genes. (TIF)

Figure S3 Neighbor joining phylogenetic tree of the *NifB* sequences derived from *Paenibacillus* and other representative species. A total of 1,000 bootstrap replicates were made, and bootstrap values are indicated at each node. (TIF)

Figure S4 Neighbor joining phylogenetic tree of the *NifH*, VnH, AnH and *NifH*-like protein sequences derived from *Paenibacillus* and other representative species. A total of 1,000 bootstrap replicates were made, and bootstrap values are indicated at each node. (TIF)

Figure S5 Neighbor joining phylogenetic tree of the *NifD*, VnD, AnD and *NifD*-like protein sequences derived from *Paenibacillus* and other representative species. A total of 1,000 bootstrap replicates were made, and bootstrap values are indicated at each node. (TIF)

Figure S6 Neighbor joining phylogenetic tree of the *NifK*, VnK, AnK and *NifK*-like protein sequences derived from *Paenibacillus* and other representative species. A total of 1,000 bootstrap replicates were made, and bootstrap values are indicated at each node. (TIF)

Figure S7 Neighbor joining phylogenetic tree of the *NifE*, VnE and *NifE*-like protein sequences derived from *Paenibacillus* and other representative species. A total of 1,000 bootstrap replicates were made, and bootstrap values are indicated at each node. (TIF)

Figure S8 Neighbor joining phylogenetic tree of the *NifN*, VnN and *NifN*-like protein sequences derived from *Paenibacillus* and other representative species. A total of 1,000 bootstrap replicates were made, and bootstrap values are indicated at each node. (TIF)

Figure S9 Neighbor joining phylogenetic tree of the *NifX* protein sequences derived from *Paenibacillus* and other representative species. A total of 1,000 bootstrap replicates were made, and bootstrap values are indicated at each node. (TIF)

Figure S10 Neighbor joining phylogenetic tree of the *NifV* protein sequences derived from *Paenibacillus* and other representative species. A total of 1,000 bootstrap replicates were made, and bootstrap values are indicated at each node. (TIF)

Figure S11 Nitrogen fixation abilities of *P. beijingensis* 1–18 (WT) and recombinant *E. coli* 1–18 strain. (A) Nitrogenase activities determined by using acetylene reduction assay. (B) Nitrogen fixation ability determined by using for ^{15}_{15}N_2 incorporation. Error bars indicate the standard deviation observed from at least two independent experiments. (TIF)

Figure S12 The σ^70^-dependent promoters of the *nif* clusters and the GlnK/TnrA-binding sites in the *nif* promoter regions in *Paenibacillus* strains. (TIF)

Figure S13 Alignments of crucial residues surrounding the P-loop/MgATP binding motif, cysteine ligating 4Fe-4S and arginine ligating ADP-ribose in *NifH* and *NifH*-like protein sequences from *Paenibacillus* and other organisms. (TIF)

Figure S14 Alignments of crucial residues ligating FeMo-co or P-cluster in *NifD* and *NifD*-like protein sequences from *Paenibacillus* and other organisms. (TIF)

Figure S15 Alignments of crucial residues ligating FeMo-co or P-cluster in in *NifK* and *NifK*-like protein sequences from *Paenibacillus* and other organisms. (TIF)

Table S1 The genomes sequenced in this study. (DOCX)

Table S2 Comparison of COG assignments between non-N_2-fixing and N_2-fixing *Paenibacillus* strains. (DOCX)

Table S3 Transposons present in the genomes of 31 *Paenibacillus* strains. The following information is provided for each putative transposon in genomes: transposon family, transposases, and numbers of copies of intact or remnant transposons in each genome. (DOCX)
Table S4: Prophages present in the genomes of 31 Paenibacillus strains. The following information is provided for each prophage: insertion site, size, locus tags, and selected cargo genes. (DOCX)

Table S5: The nitrogen fixation genes and nitrogenase-like genes in the nitrogen-fixing Paenibacillus strains. (DOCX)

Table S6: Average Nucleotide Identity (%) based on whole genome alignments. (XLSX)

References
1. Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature. 387: 272–277.
2. Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences among microbial genomes. BMC Genomics 13: 162.
3. Arnold W, Rump A, Klipp W, Pfierer UB, Pühler A (1988) Nucleotide sequence of a 24.206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 201: 715–738.
4. Setubal JC, dos Santos P, Goldman BS, Ertesvåg H, Espin G, et al. (2009) Genomic sequence of Azobacter vinelandii, an obligate acrobacter specialized to support diverse anaerobic metabolic processes. J Bacteriol 191: 4534–4545.
5. Normand P, Bouquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Biol 20: 436–447.
6. Normand P, Gous M, Courmoyer B, Simonet P (1992) Nucleotide sequence of nifD from Frankia abii strain AE5: phylogenetic inferences. Mol Biol Ecol 9: 459–506.
7. Hartmann LS, Barnum SR (2010) Inferring the evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifG and nifE. J Mol Biol 401: 71–85.
8. Raymon C, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Ecol 21: 541–554.
9. Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Crit Rev Microbiol 26: 125–131.
10. Boyd E, Hamilton T, Peters J (2011) An alternative path for the evolution of nitrogen fixation genes and nitrogenase-like genes in the nitrogen-fixing endophyte of tropical grasses. PLoS Genet 7: e1002064.
11. Loman NJJ, Stapleton CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Ecol 21: 541–554.
12. Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Crit Rev Microbiol 26: 125–131.
13. Pedroso FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, et al. (2011) Nitrogen fixation in the nitrogen-fixing Frankia strain A1501. Proc Natl Acad Sci U S A 108: 7564–7569.
14. Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, et al. (2003) Complete genome sequence of Frankia strain A1501. Proc Natl Acad Sci U S A 103: 7564–7569.
15. Hu Y, Fay AW, Lee CC, Yoshizawa J, Ribbe MW (2008) Assembly of the nitrogenase MoFe protein. Biochemistry 47: 3973–3981.
16. Kaiser JT, Hu Y, Wiig JA, Rees DC, Ribbe MW (2011) Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331: 91–94.
17. Jeong H, Choi S, Park S, Kim S, Park S (2012) Draft genome sequence of Paenibacillus polymyxa strain KCTC 3763 T. J Bacteriol 194: 1237–1238.
18. Ding R, Li Y, Qian C, Wu X (2011) Draft Genome sequence of Paenibacillus sonchii sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. BMC Genomics 13: 162.

Acknowledgments
We thank Dr. Peter Young for valuable comments on the phylogenetic analysis, Dr. Ray Dixon for thoughtful comments on the nitrogenase-like genes and Dr. Xu-Xian Zhang for reading the manuscript.

Author Contributions
Conceived and designed the experiments: SC. Performed the experiments: JBX LB YZ JYX TW XL XC. Analyzed the data: JBX SC JL. Contributed reagents/materials/analysis tools: ZD QC CT. Wrote the paper: SC.

PLOS Genetics | www.plosgenetics.org 16 March 2014 | Volume 10 | Issue 3 | e1004231
52. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the
51. Leigh J (2005) Genomics of diazotrophic archaea. Genomes and genomics of
50. Wang L, Zhang L, Liu Z, Zhao D, Liu X, et al. (2013) A minimal nitrogen
55. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat
53. Xie JB, Bai LQ, Wang LY, Chen SF (2012) Phylogeny of 16S rRNA and
54. Montoya JP, Voss M, Kahler P, Capone DG (1996) A simple, high-precision,
57. Doroshchuk N, Gelfand M, Rodionov D (2006) Regulation of nitrogen
58. Zhao D, Curatti L, Rubio LM (2007) Evidence for
63. Young JPW, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, et al.
62. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes.
61. Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial
60. Hong Y, Ma Y, Wu L, Maki M, Qin W, et al. (2012) Characterization and
59. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and
57. Doroshchuk N, Gelfand M, Rodionov D (2006) Regulation of nitrogen
58. Zhao D, Curatti L, Rubio LM (2007) Evidence for
63. Young JPW, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, et al.
62. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes.
61. Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial
60. Hong Y, Ma Y, Wu L, Maki M, Qin W, et al. (2012) Characterization and
59. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and
57. Doroshchuk N, Gelfand M, Rodionov D (2006) Regulation of nitrogen
58. Zhao D, Curatti L, Rubio LM (2007) Evidence for
63. Young JPW, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, et al.
62. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes.
61. Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial
60. Hong Y, Ma Y, Wu L, Maki M, Qin W, et al. (2012) Characterization and
59. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and
57. Doroshchuk N, Gelfand M, Rodionov D (2006) Regulation of nitrogen
58. Zhao D, Curatti L, Rubio LM (2007) Evidence for