BOMBIERI-TYPE THEOREM FOR CONVOLUTION OF ARITHMETIC FUNCTIONS ON NUMBER FIELD

PRANENDU DARBAR AND ANIRBAN MUKHOPADHYAY

Abstract. Let K be an imaginary quadratic number field of class number one and O_K be its ring of integers. We show that, if the arithmetic functions $f, g : O_K \rightarrow \mathbb{C}$ both have level of distribution ϑ for some $0 < \vartheta \leq 1/2$ then the Dirichlet convolution $f \ast g$ also have level of distribution ϑ.

1. Introduction and statements of results

Let $\Lambda(n)$ be the usual Van-Mangoldt function. For $x > 1$ Siegel-Walfisz theorem states that for any $D > 0$

$$\sum_{n \leq x} \chi(n) \Lambda(n) = O\left(\frac{x}{(\log x)^D} \right)$$

for any non-principal character $\chi \pmod{q}$ if $q \ll (\log x)^{3D}$.

An arithmetic function f is said to have level of distribution ϑ for $0 < \vartheta \leq 1$ if for any $A > 0$ there exists a constant $B = B(A)$ such that

$$\sum_{q \leq N^{\vartheta}} \max_{M \leq N} \max_{a \equiv \chi(q)} \left| \sum_{n \leq M} f(n) - \frac{1}{\varphi(q)} \sum_{n \leq M} f(n) \right| \leq A \frac{N}{(\log N)^A}.$$ (1.1)

The Bombieri-Vinogradov theorem states indicator function of primes have level of distribution ϑ for any $\vartheta \leq 1/2$ and the Elliott-Halberstam conjecture predicts the level of distribution to be 1.

A complex valued arithmetic function f is said to satisfy Siegel-Walfisz condition if there exist positive constants C, D such that

$$f(n) = O\left(\tau(n)^C \right) \quad \text{and} \quad \sum_{n \leq x} f(n) \chi(n) = O\left(\frac{x}{(\log x)^D} \right),$$ (1.2)

for any non-principal Dirichlet character $\chi \pmod{q}$ where q is an ideal of O_K of norm $q \ll (\log x)^{3D}$.

If arithmetic function f and g both satisfies (1.2) condition and have level of distribution 1/2 then Motohashi [8] obtained that the Dirichlet convolution $f \ast g$ does so.

In this article, we extend Motohashi’s [8] result to arithmetic functions on imaginary quadratic number fields of class number one.

Let K be a number field of degree d, class number one with r_1 real and r_2 non-conjugate complex embeddings and O_K be its ring of integers. An element $w \in O_K$ is said to be a prime number in K, if the principal ideal wO_K is a prime ideal. Let \mathcal{P} be the set of prime numbers in K.

1
Now we first introduce the notion of Siegel-Walfisz condition and level of distribution in number field.

For $Y' \geq 1, Y \geq 0$ and $N > 1$, let $A_0^0(Y', Y, N)$ be the set of $\xi \in \mathcal{O}_K$ which satisfies $Y' \leq \sigma(\xi) \leq Y + N^b$ for all real embeddings and $Y' \leq |\sigma(\xi)| \leq Y + N^b$ for all complex embeddings of K. We also define $A^0(Y', N + Y') = A_0^0(Y', Y, N)$ and $A^0(N) = A_0^0(1, 0, N)$.

A complex valued arithmetic function $f : \mathcal{O}_K \to \mathbb{C}$ is said to satisfy Siegel-Walfisz condition if there exist positive constants C, D such that

\[(S-W) \quad f(a) = O \left(\tau(a)^C \right) \quad \text{and} \quad \sum_{a \in A^0(N)} f(a)\chi(a) = O \left(\frac{|A^0(N)|}{(\log N)^{3D}} \right), \]

for any non-principal Dirichlet character $\chi \mod q$ with $|q| \ll (\log N)^D$.

An arithmetic function $f : \mathcal{O}_K \to \mathbb{C}$ is said to have level of distribution ϑ for $0 < \vartheta \leq 1$ if for any $A > 0$ there exists a constant $B = B(A)$ such that if $Q = \frac{|A^0(N)|^\vartheta}{(\log N)^A}$ then

\[(1.3) \quad \sum_{|q| \leq Q} \max_{M \leq N} \max_{\gamma, a=1} |\varepsilon(M; q, a; f)| \ll_{A,K} |A^0(N)|^{1-\vartheta}, \]

where

\[\varepsilon(M; q, a; f) = \sum_{\substack{\alpha \in A^0(M) \\ \alpha \equiv \gamma \mod q}} f(a) - \frac{1}{\varphi(q)} \sum_{\substack{\alpha \in A^0(M) \\ \alpha \equiv \gamma \mod q}} f(a).\]

An analogue of Elliott-Halberstam conjecture for number fields predicts that the prime element in \mathcal{O}_K have level of distribution ϑ with any ϑ in $0 < \vartheta \leq 1$. Hinz [6] showed that primes have level of distribution $1/2$ in totally real algebraic number fields and have level of distribution $2/5$ in imaginary quadratic fields. Huxley [7] obtained level of distribution $1/2$ for an weighted version of (1.3).

Remark. Method applied in this paper relies on the equality $|\sigma(w)| = |w|^{1/2}$ for each $w \in \mathcal{O}_K$ and embeddings $\sigma : K \to \mathbb{C}$ where $|w|$ denoted the norm of w. In general for a number field of degree $d > 1$, a lemma of Siegel [10] gives the existence of two positive constants c_1 and c_2 depending only on K with $c_1c_2 = 1$ and a unit ϵ of K such that the inequalities

\[c_1|\alpha|^{1/d} \leq |\sigma(\alpha)\sigma(\epsilon)| \leq c_2|\alpha|^{1/d}\]

holds for all $\alpha \in \mathcal{O}_K$ and all embeddings σ of K. Now $c_1 = c_2 = 1$ implies that all embeddings give equivalent norms. This is possible only in imaginary quadratic number fields.

The following theorem is a number field version of a general result by Motohashi [8].

The main theorems of this paper are as follows.

Theorem 1.1. Let K be an imaginary quadratic field of class number one and ζ_0 be a generator of the group of roots of unity. Let f and g be complex valued arithmetic functions on \mathcal{O}_K satisfying $f(\zeta_0^r a) = f(a), g(\zeta_0^r a) = g(a)$ for all $a \in \mathcal{O}_K$ and positive integer r. If f and g both satisfies $(S-W)$ and have common level of distribution $1/2$ then their Dirichlet convolution $f * g$ also satisfies $(S-W)$ and have common level of distribution $1/2$.

The following corollary is an iterative version of the above Theorem 1.1.

Corollary 1.2. Let K be an imaginary quadratic field of class number one. Let $f_i (i = 1, \ldots, n)$ be complex valued arithmetic functions on ring of integers \mathcal{O}_K having common level
BOMBERI-TYPE THEOREM FOR CONVOLUTION OF ARITHMETIC FUNCTIONS ON NUMBER FIELD

of distribution 1/2 such that \(f_1(\zeta^r_0 a) = f_1(a) \) for all \(r \) and satisfies (S-W). Then the Dirichlet convolution \(f_1 \ast \ldots \ast f_n \) also satisfies (S-W) and have common level of distribution 1/2.

Another application of Theorem 1.1 is with \(f = \mathbb{1}_w \) the indicator function which takes value 1 if \(w \) is a prime element in \(A^0(N) \) otherwise it is 0.

Corollary 1.3. Let \(K \) be an imaginary quadratic field of class number one. If primes in \(A^0(N) \) have level of distribution 1/2 then product of two primes in \(A^0(N) \) also have level of distribution 1/2.

Remark. If \(f \) and \(g \) have level of distribution \(\vartheta \) for \(0 < \vartheta < 1/2 \) then it is clear from the proof of the Theorem 1.1 that \(f \ast g \) also have level of distribution \(\vartheta \).

Hinz [6] showed that primes have level of distribution 2/5 in imaginary quadratic number field. Using this result, an application of Corollary 1.3 we get the following.

Corollary 1.4. Let \(K \) be an imaginary quadratic field of class number one. Then product of two primes in \(A^0(N) \) have level of distribution 2/5.

2. Preliminary Lemmas

The following lemma is Perron summation formula in imaginary quadratic number field.

Lemma 2.1. Let \(K \) be an imaginary quadratic number field. Let \(\tilde{f} \) be complex valued arithmetic functions on ring of integers \(\mathcal{O}_K \) such that \(\tilde{f}(\zeta^r_0 a) = \tilde{f}(a) \) and satisfy \(\tilde{f}(a) = O(\tau(a)^C) \). Then for \(k \geq 1 \) we have,

\[
\sum_{w \in A^0(N)} \tilde{f}(w) \log^k \left(\frac{N^2}{|w|} \right) = \frac{w_K k!}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \tilde{F}(s) \frac{(N^2)^s}{s^{k+1}} ds + O \left(\frac{N^2}{T^k} \right)
\]

where \(w_K \) is the number of roots of unity of \(K \), \(\sigma = \Re(s) > 1 \) and

\[
\tilde{F}(s) = \sum_{w \in \mathcal{O}_K} \frac{\tilde{f}(w)}{|w|^s}.
\]

Proof. We know that the number of roots of unity in imaginary quadratic field is 2, 4 or 6. Using this and a Theorem from Tenenbaum [page 134, [11]] we have

\[
\sum_{w \in A^0(N)} \tilde{f}(w) \log^k \left(\frac{N^2}{|w|} \right) = w_K \sum_{|w| \leq N^2} \tilde{f}(w) \log^k \left(\frac{N^2}{|w|} \right)
\]

\[
= \frac{w_K k!}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \tilde{F}(s) \frac{(N^2)^s}{s^{k+1}} ds + O \left(\frac{N^2}{T^k} \right).
\]

We next state the large sieve inequality for number field \(K \) of degree \(d > 1 \). Let, \(\theta_1, \ldots, \theta_d \) be an integral basis of \(K \) so that every integer \(\xi \) of \(K \) is representable uniquely as

\[
\xi = n_1 \theta_1 + \cdots + n_d \theta_d
\]

where \(n_1, \ldots, n_d \) are rational integers.

If we take an element say \(\xi \in A^0(Y', N + Y') \) then as we take a fixed integral basis \(\theta_1, \ldots, \theta_d \) of \(K \) so the element \(\xi \) can be written as

\[
\xi = n_1 \theta_1 + \cdots + n_d \theta_d
\]
where \(C_2 Y' < |n_i| < C_1 (Y' + N) \), \(i = 1, 2, \ldots, d \) and \(C_1, C_2 \) are depending on \(K \).

Lemma 2.2 ([5]). Let, \(f(x) \) be a positive decreasing continuous function on \(Q_1 < x \leq Q_2 \). Then we have,

\[
\sum_{Q_1 < |q| \leq Q_2} f(|q|) \frac{|q|}{\varphi(q)} \sum_{\chi(q)} \sum_{\xi \in A^0(Y', N+y')} c(\xi) \chi(\xi) \leq \left(f(Q_1^2 + |A^0(N)|) + \int_{Q_1}^{Q_2} xf(x)dx \right) \sum_{\xi \in A^0(Y', N+y')} |c(\xi)|^2
\]

where \(\sum^* \) denotes summation over primitive multiplicative characters \(\chi \) (mod \(q \)).

As an application of the Lemma 2.2 with \(f(x) = 1/x \) we get the following lemma.

Lemma 2.3. For any positive numbers \(Q_1 \) and \(Q_2 \) with \(Q_1 < Q_2 \) we have,

\[
\sum_{Q_1 < |q| \leq Q_2} \frac{1}{\varphi(q)} \sum_{\chi(q)} \sum_{\xi \in A^0(Y', N+y')} c(\xi) \chi(\xi) \leq \left(\frac{|A^0(N)|}{Q_1} + Q_2 \right) \sum_{\xi \in A^0(Y', N+y')} |c(\xi)|^2
\]

where \(\sum^* \) denotes summation over primitive multiplicative characters \(\chi \) (mod \(q \)).

The following lemma is a consequence of Minkowski’s lattice point theorem (see [2, page 12]).

Lemma 2.4. Let \(A^0(N) \) be defined as above. We have,

\[
|A^0(N)| = (1 + o(1))(2\pi)^{r_2} N^d \frac{1}{|D_K|}
\]

where \(D_K \) is the discriminant of number field \(K \) of degree \(d \).

Lemma 2.5. Let \(K \) be an algebraic number field. For any natural number \(R \), we have

\[
\sum_{u \subset \mathcal{O}_K \atop |u| < R} \frac{1}{|u|} \ll_K \log R,
\]

and

\[
\sum_{p \in \mathcal{P} \atop |p| \leq R} \frac{1}{|p|} \ll_K \log \log R
\]

where first sum is over all non-zero integral ideals of \(\mathcal{O}_K \) whose norm is less than or equal to \(R \).

3. Proof of Theorem 1.1

Proof. We assume that \(M > N^{1/2} \). For \(M \leq N \) and \((\gamma, a) = 1\) we have

\[
\varepsilon(M; q, a; f \ast g) = \sum_{\xi, \eta \in A^0(M) \atop \xi \equiv a(q)} f(\xi)g(\eta) - \frac{1}{\varphi(q)} \sum_{\xi \equiv a(q)} f(\xi)g(\eta).
\]

Now, since \(\xi, \eta \in A^0(M) \), we can divide the range of summation over \(\xi \) and \(\eta \) as follows: \(|\xi| \leq (\log N)^{A'}, (\log N)^{A'} < |\xi| \leq |A^0(M)|(\log N)^{-B'}, |\eta| \leq (\log N)^{B'}\).
Therefore using \(|A^0\left(\frac{M}{|\eta|^{1/2}}\right) | = (1 + o(1))\frac{1}{|\eta|} |A^0(M)| \) the term \(\varepsilon(M; q, a; f \ast g) \) can be written as

\[
\varepsilon(M; q, a; f \ast g) = \sum_{|\xi| < |\log N| A'} f(\xi) \varepsilon\left(\frac{M}{|\xi|^{1/2}}; q, \xi^{-1} a; g \right)
\]

\[
+ \sum_{(\log N)^{A'} < |\xi| \leq |A^0(M)| (\log N)^{A'}} f(\xi) \varepsilon\left(\frac{M}{|\xi|^{1/2}}; q, \xi^{-1} a; g \right)
\]

\[
+ \sum_{|\eta| \leq (\log N)^{B'}} g(\eta) \left\{ \varepsilon\left(\frac{M}{|\eta|^{1/2}}; q, \eta^{-1} a; f \right) - \varepsilon\left(\min\left(\frac{M}{|\eta|^{1/2}}; \frac{N}{(\log N)^{A'/2}} \right); q, \eta^{-1} a; f \right) \right\}
\]

=: \Sigma_1 + \Sigma_2 + \Sigma_3.

Since \(|\xi| \leq (\log N)^{A'} \), using (1.3) and \(|A^0\left(\frac{N}{|\xi|^{1/2}}\right) | = (1 + o(1))\frac{1}{|\xi|} |A^0(N)| \), by taking summation over norm of \(q \) of the sum \(\Sigma_1 \) we have,

\[
\sum_{|q| \leq Q} \max_{M \leq N} \sum_{(\gamma, q) = 1} \Sigma_1 \ll \sum_{|\xi| < (\log N)^{A'}} |f(\xi)| \sum_{|q| \leq |A^0(N)| (\log N)^{A'}} \max_{M \leq N} \varepsilon\left(\frac{M}{|\xi|^{1/2}}; q, \xi^{-1} a; g \right)
\]

\[
\ll \sum_{|\xi| < (\log N)^{A'}} \tau(\xi)^C \frac{|A^0(N)|}{|\xi| \log^A (N/|\xi|^{1/2})} \ll \frac{|A^0(N)|}{(\log N)^D'}
\]

where \(D' \) is a constant depending on \(A' \) and \(C \).

Similarly as above we have,

\[
\sum_{|q| \leq Q} \max_{M \leq N} \sum_{(\gamma, q) = 1} \Sigma_3 \ll \frac{|A^0(N)|}{(\log N)^D'}.
\]

Therefore finally we have to estimate the following sum:

\[
\Sigma_4 = \sum_{|q| \leq Q} \max_{M \leq N} \sum_{(\gamma, q) = 1} \sum_{(\log N)^{A'} < |\xi| \leq |A^0(M)| (\log N)^{A'}} f(\xi) \varepsilon\left(\frac{M}{|\xi|^{1/2}}; q, \xi^{-1} a; g \right).
\]

Now using the orthogonality of characters in algebraic number field the innermost sum of \(\Sigma_4 \) can be written as

\[
\sum_{A_2 < |\xi| \leq A_2} f(\xi) \varepsilon\left(\frac{M}{|\xi|^{1/2}}; q, \xi^{-1} a; g \right) = \sum_{\chi \neq \chi_0} \frac{1}{\varphi(q)} \sum_{\chi \neq \chi_0} \chi(a) \sum_{A_2 < |\xi| \leq A_2} f(\xi) \chi(\xi) \sum_{w \in A^0\left(\frac{M}{|\xi|^{1/2}}\right)} \chi(w) g(w)
\]
where \(\chi_o \) be the principal character \((\text{mod } q)\) and \(A_1 := (\log N)^{A'}, A_2 := \frac{|A^0(M)|}{(\log N)^{B'}}. \) Therefore, using this estimation, the sum \(\Sigma_4 \) can be written as

\[
\Sigma_4 = \sum_{|q| \leq D_1} \max_{M \leq N} \frac{1}{\varphi(q)} \sum_{\chi \neq \chi_o} \sum_{\xi(q)} \bar{\chi}(a) A_1 < |\xi| \leq A_2 f(\xi)\chi(\xi) \sum_{w \in A^0} \chi(w)g(w)
\]

\[
+ \sum_{D_1 < \xi \leq Q} \max_{M \leq N} \frac{1}{\varphi(q)} \sum_{\chi \neq \chi_o} \sum_{\xi(q)} \bar{\chi}(a) A_1 < |\xi| \leq A_2 f(\xi)\chi(\xi) \sum_{w \in A^0} \chi(w)g(w) =: \Sigma_5 + \Sigma_6.
\]

where \(D_1 := (\log N)^B. \)

To calculate the sum \(\Sigma_5 \) we will use (S-W) condition and (1.3) directly for each arithmetic functions \(f \) and \(g \) and for calculating sum \(\Sigma_6 \) we will use Lemma 2.1 together with large sieve inequality for algebraic number field by extracting primitive characters from the sum over all non-principal characters \((\text{mod } q)\).

Estimation of \(\Sigma_5 \). Using (S-W) condition and (1.3) we have

\[
\Sigma_5 \leq \sum_{|q| \leq D_1} \frac{1}{\varphi(q)} \sum_{\chi \neq \chi_o} \sum_{|\xi| \leq A_2} f(\xi)\chi(\xi) \sum_{w \in A^0} \sum_{|\xi| \leq A_2} g(w)\chi(\xi) |\xi| \log B^r (N/|\xi|^{1/2})
\]

\[
+ \sum_{|q| \leq D_1} \frac{1}{\varphi(q)} \sum_{\chi \neq \chi_o} \sum_{|\xi| \leq A_2} f(\xi)\chi(\xi) \sum_{w \in A^0} \sum_{|\xi| \leq A_2} g(w)\chi(\xi) |\xi| \log B^r (N/|\xi|^{1/2})
\]

\[
\ll D_1 \sum_{A_1 < |\xi| \leq A_2} \tau(\xi)^C \frac{|A^0(N)|}{|\xi| \log B^r (N/|\xi|^{1/2})} + (\log N)^{d'} \ll \frac{|A^0(N)|}{\log B^r N}
\]

for some sufficiently large constant \(B' \) depending on \(B \) and \(C. \)

Estimation of \(\Sigma_6 \). To calculate sum \(\Sigma_6 \) we have to calculate the following sum.

\[
\Sigma_6' := \sum_{D_1 < |q| \leq Q} \max_{M \leq N} \frac{1}{\varphi(q)} \sum_{\chi \neq \chi_o} \sum_{\xi(q)} \bar{\chi}(a) A_1 < |\xi| \leq A_2 f(\xi)\chi(\xi) \sum_{w \in A^0} \chi(w) \log^2 \left(\frac{|A^0(M)|}{|\xi||w|} \right).
\]

First we will show that \(\Sigma_6' = O \left(\frac{|A^0(N)|}{(\log N)^{B''}} \right) \) for some large \(D' > 2 \) and then by using partial summation formula we have, \(\Sigma_6 = O \left(\frac{|A^0(N)|}{(\log N)^{B''}} \right). \)
Each character \(\chi \neq \chi_0 \) occurring here is induced by a primitive character \(\chi^*(q_1) \) with \(q_1 | q \). So \(\Sigma_6 \) can be written as \(\Sigma'_6 = \sum_{D_1 < |q| \leq Q} \max_{\varphi(q) \leq N} \left\{ \frac{1}{d(q)} \sum_{\chi \in \chi(q_1)} \sum_{A_1 < |\xi| \leq A_2} f(\xi) \chi(\xi) \sum_{w \in A^0 \left(\frac{M}{|\xi|^1/2} \right)} g(\xi) \chi(w) \log^2 \left(\frac{|A^0(M)|}{|\xi||w|} \right) \right\} \)

Writing \(q_1 q_2 = q \) and using Lemma 2.5 we have

\[\Sigma'_6 \ll \log N \max_{M \leq N} \max_{|q_2| \leq Q} I_{M,q_2} \]

where

\[I_{M,q_2} := \sum_{D_1 < |q_1| \leq Q} \left\{ \frac{1}{\varphi(q_1)} \sum_{\chi \in \chi(q_1)} \int_{|\sigma-iT|}^{\sigma+iT} \tilde{f}(\chi, s) \tilde{g}(\chi, s) \frac{|A^0(M)|^s}{s^3} ds + O \left(\frac{|A^0(M)|^2}{T^2} \right) \right\} \]

and \(\tilde{f}(\xi) = f(\xi), \tilde{g}(\xi) = g(\xi), \) if \((\xi, q_2) = 1 \), \(\tilde{f}(\xi) = \tilde{g}(\xi) = 0 \) otherwise.

By using \(|A^0 \left(\frac{M}{|\xi|^1/2} \right)| = (1 + o(1)) \frac{1}{|\xi|} |A^0(M)| \), Lemma 2.4 and Lemma 2.1 to the innermost sum of \(I_{M,q_2} \) we have,

\[I_{M,q_2} = \frac{w_K}{\pi} \sum_{D_1 < |q_1| \leq Q} \left\{ \frac{1}{\varphi(q_1)} \sum_{\chi \in \chi(q_1)} \left| I_1 + I_2 + I_3 \right| + O \left(\frac{|A^0(M)|^2}{T^2} \right) \right\} = I_{M,q_2}^1 + I_{M,q_2}^2 + I_{M,q_2}^3 + E, \]

where

\[I_1 := \int_{|\sigma-iT|}^{\sigma+iT} \tilde{f}(\chi, s) \tilde{g}(\chi, s) \frac{|A^0(M)|^s}{s^3} ds, \quad \tilde{f}(\chi, s) = \sum_{A_1 < |\xi| \leq A_2} \frac{\tilde{f}(\xi) \chi(\xi)}{|\xi|^s} \]

and

\[\tilde{g}(\chi, s) = \sum_{w \in \mathcal{O}_K} \frac{\tilde{g}(w) \chi(w)}{|w|^s}, \quad \sigma = 1 + \frac{1}{2 \log N}. \]

For the above choice of \(\sigma \) it is easy to see that for some \(Y < T \),

\[\tilde{g}(\chi, s) \ll (1 + |s|)|Y|^{1-\sigma}(\log Y)^d \] and \(\tilde{g}(\chi, s) \ll A_2^{1-\sigma}(\log A_2)^d + A_1^{1-\sigma}(\log A_1)^d. \)

Therefore integrals \(I_2 \) and \(I_3 \) are bounded above by

\[\ll Y^{1-\sigma}(\log Y)^d (\log N)^d \frac{|A^0(N)|}{T}. \]

Write, \(I_1 = \int_{|\sigma-iT|}^{\sigma+iT} \tilde{f}(\chi, s) (\tilde{g}_1(\chi, s) + \tilde{g}_2(\chi, s) + \tilde{g}_3(\chi, s)) \frac{|A^0(M)|^s}{s^3} ds =: I_4 + I_5 + I_6, \)

where

\[\tilde{g}_1(\chi, s) := \sum_{|w| \leq Y} \frac{\tilde{g}(w) \chi(w)}{|w|^s}, \quad \tilde{g}_2(\chi, s) := \sum_{w; Y < |w| \leq T} \frac{\tilde{g}(w) \chi(w)}{|w|^s} \]

and

\[\tilde{g}_3(\chi, s) := \sum_{w; |w| > T} \frac{\tilde{g}(w) \chi(w)}{|w|^s}. \]
By using calculations of integrals I_2 and I_3 we can say that the integral I_6 also bonded above by

$$\ll T^{1-σ}(\log T)^{d'}(\log N)^d|A^0(N)|.$$

By splitting intervals $[D_1, Q]$ and $[A_1, A_2]$ into Dyadic intervals we have,

$$I_{M,q_2}^k \ll \sum_{j=0}^J \sum_{i=0}^I I_{M,q_2}^k(j, i),$$

where $2^JD_1 < Q \leq 2^{J+1}D_1, 2^IA_1 < A_2 \leq 2^{I+1}A_1,$

$$I_{M,q_2}^k(j, i) = \int_{σ-iT}^{σ+iT} S_{j,i}(s)|A^0(M)|^s \frac{ds}{|s|^3}$$

and,

$$S_{j,i}(s) = \sum_{2^jD_1<|q|\leq 2^{j+1}D_1} \frac{1}{\varphi(q)} \sum_{\chi \neq \chi_0} \left| \tilde{f}_i(\chi, s) \tilde{g}_k(\chi, s) \right| (k = 1, 2).$$

Observe that,

$$\int_{σ-iT}^{σ+iT} \tilde{f}_i(\chi, s) \tilde{g}_1(\chi, s) \frac{|A^0(M)|^s}{s^3} ds - \int_{1/2-iT}^{1/2+iT} \tilde{f}_i(\chi, s) \tilde{g}_1(\chi, s) \frac{|A^0(M)|^s}{s^3} ds = O\left(\frac{|A^0(M)|}{T^3} \left(\sum_{|w|t|w| \leq Y} \tau(w)C \right) \left(\sum_{\xi|\xi| \leq A_2} \frac{\tau(\xi)C}{|\xi|^{1/2}} \right) \right) = O\left(\frac{|A^0(M)|^{3/2} \sqrt{Y} (\log Y)^{d'} (\log N)^{d'}}{T^3} \right).$$

Therefore using above observations we have

$$I_{M,q_2}(j, i) \ll \int_{1/2-iT}^{1/2+iT} S_{j,i}(s) \frac{|A^0(M)|^s}{|s|^3} ds + \int_{1/2-iT}^{1/2+iT} S_{j,i}(s) \frac{|A^0(M)|^s}{|s|^3} ds$$

$$+ O\left(\frac{|A^0(M)|^{2} \sqrt{Y} (\log Y)^{d'} (\log N)^{d'}}{T^2 (\log N)^{B'}} \right).$$

Now using Cauchy-Schwarz inequality on χ sum and then again on q sum we have

$$S_{j,i}(s) \leq \left(\sum_{2^jD_1<|q|\leq 2^{j+1}D_1} \frac{1}{\varphi(q)} \sum_{\chi \neq \chi_0} \left| \tilde{g}_k(\chi, s) \right|^2 \right)^{1/2} \left(\sum_{2^jD_1<|q|\leq 2^{j+1}D_1} \frac{1}{\varphi(q)} \sum_{\chi \neq \chi_0} \left| \tilde{f}_i(\chi, s) \right|^2 \right)^{1/2}.$$

Therefore, using Lemma 2.3 we have for $s = 1/2 + it (-T \leq t \leq T)$,

$$S_{j,i}(s) \ll \left(\frac{2^{j+1}D_1 + 2^{j}A_1}{2^jD_1} \right) \sum_{\xi|\xi| \leq A_2} \frac{\tau(\xi)C}{|\xi|} \left(\frac{2^{j+1}D_1 + Y}{2^jD_1} \right) \sum_{|w|\leq A_2} \frac{\tau(w)C}{|w|}^{1/2} \ll (Y + 2^jA_1)^{1/2} (\log N)^{d'}.$$

Let us choose

$$Y := (2^jD_1)^2 \quad \text{and} \quad T := e^{2(\log |A^0(N)|)^4}. $$
BOMBIERI-TYPE THEOREM FOR CONVOLUTION OF ARITHMETIC FUNCTIONS ON NUMBER FIELD

Using the above choice of Y and T we have

$$S_{j,i}^1(s) \ll |A^0(N)|^{1/2} (\log N)^{-B'}.$$

Let $2^R Y < T \leq 2^{R+1} Y$ and for $0 \leq r \leq R$

$$\tilde{g}_2^{(r)}(\chi, s) = \sum_{2^r Y < |w| \leq 2^{r+1} Y} \tilde{g}(w) \chi(w) |w|^s.$$

Therefore we have,

$$R \ll (\log N)^2 \quad \text{and} \quad \tilde{g}_2(\chi, s) = \sum_{r=0}^R \tilde{g}_2^{(r)}(\chi, s).$$

Now using Lemma 2.3 we have for $s = \sigma + it (-T \leq t \leq T)$,

$$S_{j,i}^2(s) \ll \max_{0 \leq r \leq R} \left(\left(2^{j+1} D_1 + \frac{2^j A_1}{2^j D_1} \right) \sum_{\xi : |\xi| \geq 2^r A_1} \frac{\tau(\xi)^C}{|\xi|^2} \right)^{1/2} \times \left(\left(2^{j+1} D_1 + \frac{2^r Y}{2^j D_1} \right) \sum_{w : |w| \geq 2^r Y} \frac{\tau(w)^C}{|w|^2} \right)^{1/2} \left(\log N \right)^2 \ll \left(\frac{2^j D_1}{A_1} + \frac{1}{2^j D_1} \right)^{1/2} \left(\frac{2^j D_1}{Y} + \frac{1}{2^j D_1} \right)^{1/2} \left(\log N \right)^{d+2} \ll \log^{-B'} N.$$

Using the above choice of Y, T and Substituting above estimations into (3.2), (3.1) we have,

$$\Sigma_6' \ll |A^0(N)| \log^{-B'} N.$$

\[\square\]

4. PROOF OF COROLLARY 1.3

\textbf{Proof.} We need the following lemma.

\textbf{Lemma 4.1} (Lemma 2, [5]). If $|q| \ll \log^D N$ with a positive constant D, then we have for a non-principal character $\chi \pmod{q}$

$$\sum_{w \in A^0(N)} \chi(w) \ll |A^0(N)| \exp \left(-c (\log N)^{1/2} \right),$$

for some $c = c(D, K) > 0$.

Using Lemma 4.1 we can say that the function $f(w) = 1_w$ satisfies (S-W) condition. Therefore under hypothesis that prime have level of distribution $1/2$, Corollary follows from Theorem 1.1 and Corollary 1.2. \[\square\]
References

[1] E. Bombieri, *On Large Sieve*, Mathematika **12** (1965), 201-225.

[2] A. Castillo, C. Hall, R.J.L. Oliver, P. Pollack and L. Thompson, *Bounded gaps between primes in number fields and function fields*, Proc. Amer. Math. Soc. **143** (2015), 2841-2856.

[3] Pan Cheng-Dong, Ding Xia-Xi and Wang Yuán *On the representation of every large even integer as a sum of a prime and an almost prime*, Scientia Sinica **5** (1975), 599-610.

[4] W. Grotz, *Einige Anwendungen der Siegelschen Summenformel*, Acta Arithmetica **XXXVIII** (1980), 69-95.

[5] J.G. Hinz, *On the theorem of Barban and Davenport-Halberstam in algebraic number fields*, J. Number Theory **13** (1981), 463-484.

[6] J.G. Hinz, *A generalization of Bombieri’s prime number theorem to algebraic number fields*, Acta Arith. **51** (1988), 173-193.

[7] M. N. Huxley, *The large sieve inequality for algebraic number fields III. Zero-density results*, J. London Math. Soc. (2) **3** (1971), 233-240.

[8] Y. Motohashi, *An induction principle for the generalization of Bombieri’s prime number theorem*, Proc. Japan Acad. **52** (1976), 273-275.

[9] W. Schaal, *On the expression of a number as the sum of two squares in totally real algebraic number fields I*, Proc. Amer. Math. Soc. **16** (1965), 529-537.

[10] C. L. Siegel, *Additive Theorie der Zahlkörper II*, Math. Ann. **88** (1923), 184-210.

[11] G. Tenenbaum *Introduction to Analytic and Probabilistic Number Theory* Cambridge University Press, 1995

Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

E-mail address, Pranendu Darbar: dpranendu@imsc.res.in

Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

E-mail address, Anirban Mukhopadhyay: anirban@imsc.res.in