The Musculoskeletal Involvement After Mild to Moderate COVID-19 Infection

Patty K. dos Santos*, Emilly Sigoli, Lorenna J.G. Bragança and Anabelle S. Cornachione*

Muscle Physiology and Biophysics Laboratory, Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil

COVID-19, a disease caused by the novel coronavirus SARS-CoV-2, has been drastically affecting the daily lives of millions of people. COVID-19 is described as a multiorgan disease that affects not only the respiratory tract of infected individuals, but it has considerable effects on the musculoskeletal system, causing excessive fatigue, myalgia, arthralgia, muscle weakness and skeletal muscle damage. These symptoms can persist for months, decreasing the quality of life of numerous individuals. Curiously, most studies in the scientific literature focus on patients who were hospitalized due to SARS-CoV-2 infection and little is known about the mechanism of action of COVID-19 on skeletal muscles, especially of individuals who had the mild to moderate forms of the disease (non-hospitalized patients). In this review, we focus on the current knowledge about the musculoskeletal system in COVID-19, highlighting the lack of researches investigating the mild to moderate cases of infection and pointing out why it is essential to care for these patients. Also, we will comment about the need of more experimental data to assess the musculoskeletal manifestations on COVID-19-positive individuals.

Keywords: COVID-19, musculoskeletal system, mild to moderate COVID-19, SARS-CoV-2, long COVID, non-hospitalized individuals, muscle symptoms

INTRODUCTION

Coronavirus Disease 2019 (COVID-19), a disease caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), has been drastically affecting and changing people’s lifestyle around the world since 2020. It caused a social and economic global crisis, leading to the collapse of public health systems in various countries. COVID-19 has demonstrated to affect a multi-variety of organs, including the musculoskeletal system, causing symptoms such as fatigue, arthralgia, myalgia and muscle weakness, which can persist during weeks or months after the end of the infection, affecting the daily lives of numerous individuals named as “long haulers” (Jacobs et al., 2020; Sagarra-Romero and Viñas-Barros, 2020; Aiyelebusi et al., 2021; Akbarialiabad et al., 2021).

Interestingly, the majority of the reports in the scientific literature focus on the musculoskeletal symptomatology and on the severe and critical forms of COVID-19, comprising studies with hospitalized patients who needed ventilator support throughout the disease course. Little is known about the individuals who had the mild to moderate forms of the infection, and whose musculoskeletal symptoms can persist. Therefore, the aim of this narrative review is to point out the current evidence on the musculoskeletal aspects of the SARS-CoV-2 infection, highlighting and...
commenting about the lack of information and experimental data regarding the musculoskeletal manifestations in mild to moderate COVID-19 cases (non-hospitalized individuals).

We conducted a comprehensive literature search on five electronic databases, namely Google Scholar, CAPES Periodicals, PubMed, ScienceDirect and Virtual Health Library (VHL) Regional Portal. The search terms used were “COVID-19”, “musculoskeletal”, “musculoskeletal symptoms”, “muscle”, “muscle weakness”, “myalgia”, “fatigue”, “creatine kinase”, “long-hauler”, “long-COVID-19”, “mild to moderate COVID-19”, and “mild COVID-19”, combined using the Boolean operator AND. We included original research articles, brief reports, case reports, case series, short communications, reviews, mini reviews, editorials, features, letters to the editor, pre-proof and in press articles published from December 2019 to July 2021, and written in English or Portuguese. Articles in the form of preprint manuscripts, correspondence, opinion, perspectives and insights were excluded. Studies were considered eligible for inclusion if their focus was the musculoskeletal system (muscle pathophysiology, persistent muscle symptoms, laboratory findings related to the musculoskeletal system, musculoskeletal sequelae). All the information were synthesized and discussed in a narrative manner in each section within this review.

BACKGROUND

Origin and Virology of COVID-19

The novel coronavirus SARS-CoV-2 emerged in December 2019 as a cluster of “pneumonia of unknown etiology” epidemiologically linked to a seafood market in Wuhan City, Hubei Province (People’s Republic of China) (World Health Organization, 2021a; Pan American Health Organization, 2021). Its genetic sequence was identified on 7 January 2020, sharing >95% of homology with the bat coronavirus and 79.5% sequence identity with the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) (Abdelrahman et al., 2020; Lu et al., 2020; Romagnoli et al., 2020; Chilamakuri and Agarwal, 2021). The virus structure is composed of four major structural proteins: (1) the spike glycoprotein (S), (2) the membrane glycoprotein (M), (3) the envelope protein (E), and (4) the nucleocapsid protein (N) (Disser et al., 2020; Tang et al., 2020; Chilamakuri and Agarwal, 2021) (Figure 1). The viral entry on the human cell is via the angiotensin-converting enzyme 2 (ACE2) surface receptor along with the transmembrane protease serine 2 (TMPRSS2). Briefly, the SARS-CoV-2 virus binds to ACE2 on the host cell surface (mainly alveolar epithelial cells), which leads to the proteolytic cleavage and the activation of the viral S protein by TMPRSS2. These processes expose a fusion peptide signal (S2 subunit of the S protein) that enables the fusion between the viral and the human membranes, and the final release of the viral RNA into the cell cytoplasm, where the virus will replicate using the host cell machinery (Bohn et al., 2020; Disser et al., 2020; Gonzalez et al., 2020; Tang et al., 2020).

SUSCEPTIBILITY OF SKELETAL MUSCLE CELLS TO SARS-COV-2 INFECTION

Comprising 40% of the human body weight, the skeletal muscle is an important organized tissue composed by numerous bundles of fiber (myofibers) (Frontera and Ochala, 2015; Trovato et al., 2016; Mukund and Subramaniam, 2020). It has a crucial mechanical role, generating force and power through the conversion of chemical to mechanical energy, which yields movement, facilitating our daily activities. Furthermore, skeletal muscle can store energetic substrates (carbohydrates and amino acids) for the basal metabolism and it can contribute to heat production, stabilizing the body’s temperature (Frontera and Ochala, 2015; Trovato et al., 2016). Considering the multiple functions of the musculoskeletal system, essential to maintain a “healthy status,” and knowing that COVID-19 is a multi-organic disease that causes a large spectrum of symptoms (Baj et al., 2020; Gavriatopoulou et al., 2020; Gupta et al., 2020; Machhi et al., 2020; Romagnoli et al., 2020; Tang et al., 2020; Wu and McGoogan, 2020). Fortunately, a total of 4.615.260.567 COVID-19 cases (non-hospitalized individuals) were reported as of 23 August 2021, there have been 211.730.035 confirmed deaths (World Health Organization, 2021a; Pan American Health Organization, 2021).

SARS-CoV-2 belongs to the Betacoronavirus genus (Coronavirinae family; Nidovirales order) and it is a positive-sense, single-stranded RNA virus with a diameter of approximately 60–140 nm (Disser et al., 2020; Machhi et al., 2020; Romagnoli et al., 2020; Chilamakuri and Agarwal, 2021). The virus genetic sequence was identified on 7 January 2020, sharing >95% of homology with the bat coronavirus and 79.5% sequence identity with the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) (Abdelrahman et al., 2020; Lu et al., 2020; Romagnoli et al., 2020; Chilamakuri and Agarwal, 2021). The virus structure is composed of four major structural proteins: (1) the spike glycoprotein (S), (2) the membrane glycoprotein (M), (3) the envelope protein (E), and (4) the nucleocapsid protein (N) (Disser et al., 2020; Tang et al., 2020; Chilamakuri and Agarwal, 2021) (Figure 1). The viral entry on the human cell is via the angiotensin-converting enzyme 2 (ACE2) surface receptor along with the transmembrane protease serine 2 (TMPRSS2). Briefly, the SARS-CoV-2 virus binds to ACE2 on the host cell surface (mainly alveolar epithelial cells), which leads to the proteolytic cleavage and the activation of the viral S protein by TMPRSS2. These processes expose a fusion peptide signal (S2 subunit of the S protein) that enables the fusion between the viral and the human membranes, and the final release of the viral RNA into the cell cytoplasm, where the virus will replicate using the host cell machinery (Bohn et al., 2020; Disser et al., 2020; Gonzalez et al., 2020; Tang et al., 2020).
However, Disser et al. demonstrated that human skeletal muscle cells, including satellite cells and myofibers, express only TMPRSS2 (Disser et al., 2020). Using single-cell RNA sequencing of human data sets, they showed that human skeletal muscle cells, including satellite cells and myofibers, express only TMPRSS2 (Disser et al., 2020). This unexpected result leads us to hypothesize that maybe SARS-CoV-2 interacts with cells in an ACE-2 independent way and that the presence of TMPRSS2, which helps in the viral spike protein cleavage, together with other host cell receptors is sufficient to promote virus binding and infection. Indeed, Partridge et al. observed through flow cytometry that the SARS-CoV-2 S protein associates with multiple human epithelial cell lines without ACE2 (Partridge et al., 2021). However, they did not analyse any muscle cell line, which indicates that further studies are needed to elucidate if the susceptibility of the skeletal muscle tissue to COVID-19 can be directly via ACE2.

The second hypothesis proposes an indirect mechanism of action, considering the adverse effects of the elevated inflammatory process caused by SARS-CoV-2 infection on the musculoskeletal tissue (Figure 2B) (Ferrandi et al., 2020). The "cytokine storm," a deregulated release of numerous cytokines by the immune system after SARS-CoV-2 infection in the lungs, results in exacerbated inflammation that can promote multi-organ injuries (Henderson et al., 2020; Ragab et al., 2020; Tay et al., 2020). Cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), interleukin-8 (IL-8), interferon-gamma inducible protein 10 (IP-10) or CXCL10), and tumor necrosis factor alpha (TNF-α), induce muscle fiber proteolysis and promote a decrease in protein synthesis, interfering in the myogenic process and disrupting the body homeostasis (Broussard et al., 2004; Pajak et al., 2008; Li et al., 2009; Rayavarapu et al., 2013; Pelosi et al., 2014; VanderVeen et al., 2019; Abdullahi et al., 2020; Cipollaro et al., 2020; Disser et al., 2020; Morley et al., 2020; Sarkesh et al., 2020). Consequently, symptomatic COVID-19 individuals can present musculoskeletal manifestations like fatigue and myalgia due to this uncontrolled inflammatory environment.

Considering these data, we suggest that the systemic release of cytokines, an indirect and well-studied process, is likely the main promoter of the susceptibility of the musculoskeletal tissue to SARS-CoV-2 infection. However, we do not discard the urgent need of more studies to confirm the possibility of a direct binding between the virus and the skeletal muscle cell via ACE2 receptor or not. It is noteworthy to highlight that the majority of studies about COVID-19 comprises hospitalized individuals. Thus, some musculoskeletal manifestations can be present due to a prolonged immobilization rather than a direct or an indirect mechanism of action of SARS-COV-2 virus on the muscles.

Additionally, some studies pointed out that the musculoskeletal symptomatology observed in COVID-19 positive patients can be due to pre-existing neuromuscular, muscular or autoimmune disorders, instead of symptoms directly caused by the viral infection. Three studies reported...
that individuals with myasthenia gravis, a chronic autoimmune disorder, had an exacerbation of their disease (mainly muscle weakness) after SARS-CoV-2 infection (Anand et al., 2020; Palival et al., 2020; Ramani et al., 2021). Tseng and Chen also suggested that individuals with motor neuron diseases and dystrophinopathies might be at elevated risk of manifesting exacerbating pre-existing muscle symptoms after COVID-19 infection (Tseng and Chen, 2021). Lastly, myositis, a muscle inflammation that can induce muscle pain and weakness, symptoms observed in COVID-19, was well documented in numerous virus pathologies such as parainfluenza; influenza A/B; hepatitis A, B, C, and E; HIV; Dengue and West Nile, being considered a viral-related disease (Desdouits et al., 2013; Ramani et al., 2021; Wasserman et al., 2021). Although the association “myositis-COVID-19” needs further elucidation, some researchers hypothesized that the muscle symptoms seen in individuals with both diseases can be due to direct viral infection or release of cytokines mediated by the virus (Paliwal et al., 2020; Balcom et al., 2021; Saud et al., 2021; Wasserman et al., 2021); mechanisms that we described in the beginning of this section. We agree with these studies; however, we highlight the urge of more scientific works with detailed data elucidating the involvement of SARS-CoV-2 infection in patients with underlying muscle disorders. As we know, the use of electromyography and other electrodiagnostic and imaging tools can assist on the diagnosis of the myopathic process presented in COVID-19, excluding motor neuron disorders as cause of the observed musculoskeletal symptomatology, as well reported by Ramani et al. (2021).

EPIDEMIOLOGY AND ASSOCIATED RISKS OF COVID-19

COVID-19 is transmitted primarily via respiratory tract droplets (coughing and/or sneezing), direct contact (human-to-human transmission) and/or indirect contact (contaminated objects and/or surfaces) (Coelho et al., 2020; de Souza et al., 2020; Tu et al., 2020; Zaim et al., 2020; Chilamakuri and Agarwal, 2021). The viral transmission occurs during the pre-symptomatic and symptomatic phases, and even asymptomatic individuals are able to transmit the infection (Romagnoli et al., 2020; Tu et al., 2020; Mehta et al., 2021), which not only results in the fast spread of SARS-CoV-2 in a short period of time, but also creates a considerable difficult in tracing the virus. Studies showed that the average incubation time of SARS-CoV-2 is 1–14 days (Romagnoli et al., 2020; Tu et al., 2020; Zaki and Mohamed, 2021), supporting a quarantine period for positive-asymptomatic, symptomatic and exposed individuals.

Interestingly, even though COVID-19 can affect all age groups, the disease evolves to worse outcomes, such as pneumonia, acute respiratory distress syndrome (ARDS) and/or death when associated with several risk factors (Machhi et al., 2020; Mehta et al., 2021). Older people and individuals with comorbidities like chronic respiratory disease, cardiovascular diseases, chronic kidney disease, cancer, type 2 diabetes mellitus, hypertension and obesity (Baj et al., 2020; Burn et al., 2021; World Health Organization, 2021c) are likely to have a severe form of COVID-19, so a continuous medical support is necessary and indispensable.

THE MUSCULOSKELETAL SYMPTOMATOLOGY

COVID-19 can be considered the new “Achilles heel” of Science, because it affects people in numerous ways, causing a variety of different symptoms that are difficult to categorize. According to WHO, the most common clinical symptoms associated with COVID-19 are fever, cough, anosmia (loss of smell), ageusia (loss of taste) and tiredness (fatigue) (World Health Organization, 2021d). WHO classified aches and pains, sore throat, headache, diarrhoea, conjunctivitis, and rashes on skin as less typical symptoms (World Health Organization, 2021d). Curiously, the “list” of common symptoms is somewhat discrepant between the published articles and governmental organizations.

On 22 February 2021, the Centers for Disease Control and Prevention (CDC) of the United States Department of Health and Human Services updated in their website1, a more generalized list of common COVID-19-related symptoms in comparison with the list presented by WHO2. The CDC list includes symptoms such as fever or chills, cough, shortness of breath, fatigue, muscle or body aches, headache, anosmia and ageusia, sore throat, congestion, nausea or vomiting, and diarrhea (Centers for Disease Control and Prevention, 2021), emphasizing the multi-systemic character of the COVID-19 infection.

Accumulating evidences have showed that the musculoskeletal symptoms can occur during the first days of infection, even before the common respiratory symptomatology (dry cough, nasal congestion, sore throat and dyspnoea). Fatigue, arthralgia

1www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html.
2www.who.int/health-topics/coronavirus#tab=tab_3.
(joint pain), myalgia (muscle pain) and muscle weakness have
been reported as initial and common symptoms by COVID-19-
positive individuals (Figure 3) (Baj et al., 2020; Chan et al., 2020;
Cipollaro et al., 2020; Ali and Kunugi, 2021; Kannaniraja et al.,
2021; Knight et al., 2021). Unfortunately, these extenuating
symptoms can decrease the individuals’ ability to perform
activities of daily living (ADL) such as ambulating, dressing,
housecleaning and working (Edemekong et al., 2021), which
reduces the quality of life, generating anxiety and depression.

Additionally, it has been well documented case reports of
COVID-19 related rhabdomyolysis (Alrubaye and Choudhary,
2020; Chan et al., 2020; Husain et al., 2020; Khoosal et al., 2020;
Meegada et al., 2020; Mukherjee et al., 2020; Rivas-García et al., 2020;
Rosato et al., 2020; Singh et al., 2020; Byler et al., 2021; Haroun et al.,
2021; Mah et al., 2021; Patel et al., 2021). Rhabdomyolysis is a skeletal
muscle injury that can result in acute kidney injury, a life-threatening
clinical complication. It is mainly characterized by elevated levels of
creatine kinase (CK; > 200 U/L), a muscular damage marker,
myoglobin, potassium and lactate dehydrogenase (LDH) in the
bloodstream (Giannoglou et al., 2007; Stahl et al., 2020). As
expected, the reported cases associating rhabdomyolysis with
SARS-CoV-2 infection comprise only hospitalized patients, which
highlights once more, a biased for scientific studies focusing on the
severe form of COVID-19.

Furthermore, the different and somewhat discrepant
symptoms of COVID-19, including the musculoskeletal ones,
difficult the diagnostic of the disease, and SARS-CoV-2 viral
infection versus musculoskeletal symptomatology is still a subject
poorly investigated and a challenge to the researchers in the
Muscle Physiology field. Interestingly, some studies highlighted that
laboratory findings (elevated levels of CK, LDH, C-reactive protein,
creatinine, D-dimer and cytokines; lymphopenia and leukocytosis) and imaging tools (computed tomography—CT scan; magnetic resonance imaging—MRI; positron emission
tomography—PET; ultrasound; radiography) can play a crucial role in the
prognosis, diagnosis and evaluation of the manifestations of COVID-19, supporting a better treatment of the
patients (Feng et al., 2020; Ghayda et al., 2020; Orsucci, 2020;
Ponti et al., 2020; Revzin et al., 2020; Afshar-Oromieh et al., 2021;
Akbar et al., 2021; Capaccione et al., 2021; Chopra et al., 2021;
Khamis et al., 2021; Meng et al., 2021; Ramani et al., 2021; Xie
et al., 2021). Unfortunately, the majority of the laboratory and
imaging techniques focus on the respiratory, cardiac,
gastrointestinal and neurologic systems, and few findings are
related to the musculoskeletal apparatus. Even so, we emphasise
that the combination of different tools can also contribute to
assess the extent and severity of the muscle injury caused by
SARS-CoV-2 infection, providing advancements not only on the
prognosis of the disease, but on the creation of rehabilitation
programs comprising effective physical therapy treatments.

Long-COVID and Musculoskeletal Sequelae

Recent studies have suggested that the musculoskeletal
symptoms, along with the neurological manifestations, prevail
after the acute phase of infection, persisting for weeks and/or
months, and giving rise to a debilitating condition named as long-
COVID (Brüssow and Timmis, 2021; Crook et al., 2021; Fernández-de-las-Peñas et al., 2021; Marshall, 2021;
Salamanna et al., 2021). While we are fighting COVID-19,
numerous patients around the world, who have suffered from the
disease, are calling themselves as “long-haulers,” that is,
individuals who present post-COVID symptoms that are
lasting even after recovery and viral elimination (Callard and
Perego, 2021; Crook et al., 2021; Davis et al., 2021; Fernández-de-
las-Peñas et al., 2021).

According to the guidelines of the National Institute for
Health and Care Excellence (NICE) of the United Kingdom,
long-COVID is defined as “signs and symptoms that continue
after acute COVID-19, persisting for more than 4 weeks”
(National Institute for Health and Care Excellence, 2020; Sivan
and Taylor, 2020; Salamanna et al., 2021). These long-term effects
of COVID-19 are usually divided into two categories: (i)
“continuous or ongoing symptomatic COVID-19,” which
indicates symptoms lasting from 4 to 12 weeks; and (ii)
“post-
COVID-19 syndrome,” comprising signs and symptoms that
persist beyond 12 weeks and are not elucidated by an
alternative diagnosis except COVID-19 (National Institute for
Health and Care Excellence, 2020; Akbarialiabad et al., 2021).

Interestingly, while Ghosn et al. reported that 60% of the
individuals hospitalized for severe COVID-19 in a French cohort
study complained of symptoms after 6 months of hospital
admission, Carvalho-Schneider et al. observed that even non-
critical patients declare to have post-COVID symptoms
(Carvalho-Schneider et al., 2021; Ghosn et al., 2021). This
observation highlights the need of follow-up studies that
include individuals who had mild to moderate COVID-19,
and indicates that the post-COVID symptomatology (long-
COVID) does not seem to occur only in people recovering
from the severe and critical forms of the disease, as also observed by some reports (Graham et al., 2021; Hoffer, 2021;
Logue et al., 2021).

Regarding the risk factors associated with long-COVID, they
are not well defined; however, studies have reported that this
condition occurs more in female patients and individuals with
increased age and body mass index, presenting comorbidities,
and with a reduced functional status and physical activity practice
(Jacobs et al., 2020; Sudre et al., 2021; Yelin et al., 2021).
Additionally, the most prevalent symptoms in long-hauler
individuals are fatigue, headache, dyspnea, and anosmia
(Stavem et al., 2021; Vanichkachorn et al., 2021; Varghese
et al., 2021), which emphasizes a persistent neurological and
musculoskeletal symptomatology as previously remarked.
Fatigue is considered the musculoskeletal symptom most
frequently reported by patients after recovery from COVID-19
(Amenta et al., 2020; Rudroff et al., 2020) while myalgias and
arthralgias are also common complaints (Liang et al., 2020).

It has been reported that long-haulers can have sequelae from
one or more systems such as pulmonary, cardiovascular,
gastrointestinal, renal, neural and musculoskeletal (Leviner,
2021). Studies showed that regarding the musculoskeletal
system sequelae, COVID-19 survivors, including those who
also had the mild to moderate forms of the infection, can experience exacerbated muscle and joint pain (Elhiny et al., 2021), and intense myalgia (muscle pain) (Aiyegbusi et al., 2021; Carvalho-Schneider et al., 2021). Another sequel is intolerance to physical activities associated with a chronic fatigue condition and a difficulty in returning to a normal daily life (Miyazato et al., 2020; Humphreys et al., 2021). Finally, the pathophysiology of the musculoskeletal complications in long COVID is not well understood, but researchers believe that post-COVID symptoms are associated with a persistent pro-inflammatory syndrome ("cytokine storm") that contributes to long-term sequelae (Fernández-de-las-Peñas et al., 2021; Peghin et al., 2021; Salamanna et al., 2021). We emphasize that a more detailed understanding of the musculoskeletal sequelae in long COVID will be essential for the adequate treatment of long-hauler individuals in the future.

THE LACK OF MUSCULOSKELETAL DATA RELATED TO MILD TO MODERATE FORMS OF COVID-19

The lack of scientific researches focusing on the musculoskeletal system in mild to moderate COVID-19 individuals is a problem that needs attention. The majority of people with symptomatic COVID-19 develop the mild (40%) or moderate (40%) forms of infection, and only 15% evolve to a severe form requiring oxygen support and hospitalization (Chinese Center for Disease Control and Prevention, 2020; World Health Organization, 2021c). Individuals with mild illness present various symptoms of COVID-19, except shortness of breath, dyspnoea and viral pneumonia, while individuals with moderate disease present clinical signs of pneumonia with an oxygen saturation (SpO₂) ≥ 90% on room air (sea level) (World Health Organization, 2021c; National Institutes of Health, 2021). Therefore, it was expected a considerable number of published articles having as studied subjects the individuals with mild or moderate COVID-19. However, the reality is quite different and frustrating, and it gets worse if you consider the musculoskeletal aspects of COVID-19 in these symptomatic individuals.

We observed, after a comprehensive literature search, the existence of four main types of studies comprising COVID-19 and the skeletal muscle, which we categorize in: (i) case reports and original articles of hospitalized individuals (severe COVID-19; functional and morphologic techniques); (ii) review and observational articles citing only the musculoskeletal symptoms (mild and severe COVID-19; no experimental data); (iii) follow-up studies of patients with persistent muscle symptoms (mild and severe COVID-19; no experimental data); and (iv) neurological studies that includes musculoskeletal symptoms (mild to moderate and severe COVID-19; functional assays). ICU = intensive care unit. Figure produced using Servier Medical Art (smart.servier.com).
and increased levels of serum CK (Chan et al., 2020; Khosla et al., 2020; Batur et al., 2021; Byler et al., 2021; De Rosa et al., 2021; Haroun et al., 2021; Orsucci et al., 2021; Pittscheider et al., 2021).

Surprisingly, few studies included functional or morphological techniques in their methodologies. Two scientific works assessed the skeletal muscle strength of hospitalized patients diagnosed with severe COVID-19 through functional tests such as handgrip measurement and maximal voluntary contraction test (dominant biceps brachii and quadriceps), demonstrating a decrease in muscle strength in the studied individuals (Andrade-Junior et al., 2021; Paneroni et al., 2021). Biopsies of skeletal muscles (vastus lateralis and quadriceps femoris) were performed in critical and severe cases associated with rhabdomyolysis (Byler et al., 2021; Mughal et al., 2021) and elevated serum CK (Zhang H. et al., 2020; Islam et al., 2021), indicating necrotizing myopathy and myositis. Cabañes-Martínez et al. also confirmed, through muscle biopsy (quadriceps femoris and tibialis anterior), a diagnosis of critical myopathy in 12 patients with severe COVID-19; however they related this condition to the long stay in ICU (Cabañes-Martínez et al., 2020). Additionally, two studies carry out histological assays in muscle tissues (rectus abdominis and psoas) of patients, who died from severe COVID-19 (Mageriu et al., 2020; Suh et al., 2021). The authors found signs of necrotizing myopathy, myositis and fiber atrophy in the analysed samples, which, according to them, can be a result of the pro-inflammatory cytokine release that occurs during SARS-CoV-2 infection (Mageriu et al., 2020; Suh et al., 2021). Lastly, a case report described histopathologic alterations (e.g., microthrombi, microhemorrhages, fiber degeneration and necrosis) in the skeletal muscle of a patient who died from COVID-19; however, they associated the observed changes to vascular damage and endothelial injury than to a direct myocyte viral infection (Hooper et al., 2021).

The second type of published researches relating COVID-19 to the musculoskeletal system comprised review and observational articles briefly describing the muscle symptomatology. These systematic and meta-analysis studies summarize evidences on extrapulmonary features of the infection, aiming to contribute to a better diagnosis, prevention and treatment of COVID-19. Generally, they cited the prevalent muscle symptoms reported by hospitalized patients during the acute phase of SARS-CoV-2 infection (Abdullahi et al., 2020; Ashraf et al., 2020; Small and Beatty, 2020; Zaim et al., 2020; Disser et al., 2020; do Nascimento et al., 2020; Ghaya et al., 2020; Gupta et al., 2020; Kordzadeh-Kermani et al., 2020; White-Dzuro et al., 2021; Kanmaniraja et al., 2021; Ramani et al., 2021; Ramos-Casals et al., 2021), which highlights once more the biased aspects of the severe form of COVID-19, part of the follow-up studies assess the persistent symptoms, including the muscle ones, in non-hospitalized patients. We found thirteen studies reporting at least one long-term muscle symptom in individuals who had the mild form of the viral infection.

As observed in the severe COVID-19, fatigue was also the prevalent manifestation in mild COVID cases, persisting for almost 2–7 months after the acute onset of the disease and worsening the quality of life of the assessed individuals (Goertz et al., 2020; Augustin et al., 2021; Moreno-Pérez et al., 2021; Peghin et al., 2021; Shendy et al., 2021). In addition to fatigue, Carvalho-Schneider et al. and Petersen et al. reported the persistence of arthralgia (2 months follow-up), Chopra et al. and Graham et al. reported a prolonged myalgia (2 months follow-up), while Logue et al. reported the presence of muscle aches (9 months follow-up) in mild COVID outpatients (Petersen et al., 2020; Carvalho-Schneider et al., 2021; Chopra et al., 2021; Graham et al., 2021; Logue et al., 2021). Only one study did not report a debilitating long-fatigue, simply observing myalgia and arthralgia in 451 non-hospitalized individuals (Stavem et al., 2021). Tenford et al., on the other hand, followed-up mild cases of COVID-19 for just 21 days after the acute phase, observing a
persistence of fatigue in young adults (18–34 years) (Tenforde et al., 2020). The last study comprising mild cases of COVID also reported a prolonged fatigue in 33 patients after 2 months of observation and concluded that the persistent symptoms were not associated with a dysregulated immune response (Fang et al., 2021).

The mentioned studies evaluated their volunteers through electronic medical records, questionnaires, online surveys and/or phone calls, not carrying out any morphological or biochemical assay. They pointed out the need of more data available from mildly symptomatic individuals whose long-term effects of COVID-19 prevail after the end of the infection. We agree that more information and knowledge regarding the musculoskeletal manifestations in non-hospitalized positive-COVID-19 individuals can collaborate with the planning and provision of health services for these patients, and thus allow a better recovery and return to normality.

Lastly, there are studies focusing in the neurological aspects of COVID-19 that includes musculoskeletal symptoms in their findings. This was expected considering the existence of a linkage between the neural (central and peripheral nervous) and the musculoskeletal systems to generate movement (locomotion) (Taga, 1995; Kerkman et al., 2018; Seth et al., 2018). The muscles connected to bones produce movement through contraction and the nervous system controls this movement via motor neurons (Kerkman et al., 2018). Additionally, fatigue and muscle pain (myalgia) might result from detrimental changes in the muscle and/or from alterations in the neural input to the skeletal muscle (Mense, 2003; Fitts, 2004).

We observed that several articles within this category reviewed the neurological manifestations and complications of severe COVID-19, reporting skeletal muscle damage associated with myalgia and elevated levels of CK in severely ill patients (Ahmad and Rathore, 2020; Benny and Khadilkar, 2020; Drozdżal et al., 2020; Fotuhi et al., 2020; Khan et al., 2020; Nepal et al., 2020; Pinzon et al., 2020; Puccioni-Sohler et al., 2020; Sheraton et al., 2020; Andalib et al., 2021; Harapan and Yoo, 2021; Moghimi et al., 2021; Orsucci et al., 2021; Quraishi et al., 2021). It was also reported cases of muscle pain associated with muscle denervation atrophy, suggesting Guillain-Barré syndrome, an autoimmune peripheral nervous system disease, as a sequel of the SARS-CoV-2 infection (Aksan et al., 2020; Bahouth et al., 2021; Meyer-Friësem et al., 2021).

The neurological studies that evaluated muscle weakness and pain through functional techniques, such as electroneuromyography (EMG) and electroencephalography (EEG), showed neuromuscular alterations and the presence of cerebrovascular disease in the inpatients with severe COVID-19 (75% and 3.8%, respectively) along with an ICU-acquired weakness associated with high levels of CK and IL-6 (Karada et al., 2020; Bax et al., 2021).

Only two neurological researches explored the neuromuscular effects of COVID-19 in mild to moderate individuals. A follow-up study conducted for 8 months in Denmark, performed electromyography in three muscles (biceps brachii, vastus medialis and anterior tibial) of 20 patients with persistent fatigue (10 individuals presented mild symptoms during the acute phase of disease while 10 individuals had moderate symptoms with an hospitalization stay of 2–9 days) (Agergaard et al., 2021). Myalgia and physical fatigue were the most common reported symptoms (mild-cases: 50% myalgia, 80% physical fatigue; moderate-cases: 30% myalgia, 60% physical fatigue). It was also observed myopathic changes resulting in decreased muscle force in 55% of the individuals, which suggests that myopathy can be a consequence of the exacerbated inflammatory process (high levels of interleukins) promoted by SARS-COV-2 infection even in non-hospitalized individuals (Agergaard et al., 2021). Similarly, a cross-sectional study conducted in Lima (Peru) demonstrated that 46.2% of 199 patients with mild to moderate COVID-19 complained of myalgia and that non-neurological symptoms, such as fever, cough or dyspnea, increased the risk of developing at least one neurological symptom (headache, ageusia, anosmia, dizziness, myalgia) (Garcia et al., 2021).

CONCLUDING REMARKS

Altogether, the few studies that investigated the mild to moderate cases of COVID-19 clearly pointed out that the viral disease affects the musculoskeletal system (acute and long-term effects) even of individuals who did not need hospitalization. However, little is known about the biological and biochemical mechanisms that trigger the muscle symptoms in the mild forms of COVID-19 as most of the available data focus mainly on the muscular manifestations and their consequences after a severe and critical infection that requires internalization and oxygen support. Moreover, the majority of studies investigate only the clinical aspects of COVID-19, carrying out questionnaires, phone calls, and online surveys to summarize the common symptoms of the disease, including the musculoskeletal ones. Analysis of electronic medical records were also realized to associate laboratorial findings and risk factors (e.g., comorbidities) to disease severity and progression. As a result, there is a need for further biophysical and morphological data describing the muscle injury caused by COVID-19 in all positive individuals who experienced some sort of musculoskeletal symptom.

Studies performing biopsy, muscle histopathology, muscle immunofluorescence, skeletal muscle imaging or biochemical techniques are scarce and consequently it is difficult to evaluate if the reported muscle weakness is related to an elevated inflammation (“cytokine storm”), myopathy or other disorder acquire directly or indirectly after SARS-CoV-2 infection. When considering the mild to moderate COVID-19, this difficult only deepens due to the lack of informative studies investigating the natural history of the infection and the cellular and biological mechanisms associated with the common musculoskeletal manifestations (fatigue, myalgia and arthralgia) in the non-hospitalized patients, as utterly highlighted throughout this review.

As the majority of COVID-19 cases comprise mildly symptomatic individuals who can experience persistent muscle symptoms that decrease the ability to perform activities of daily living, it is essential to provide an early diagnosis to these patients, aiming to reduce the risks of viral transmission while supporting them with medical care and rehabilitation services to handle physical and psychological issues.
Hopefully, just as our knowledge about the musculoskeletal system in COVID-19 increases, more studies in this field will be developed in the next months and the care of mild symptomatic patients will be considered a social priority.

AUTHOR CONTRIBUTIONS

PS and AC conceived the topic of research. PS, ES and LB performed the literature search. PS drafted the manuscript. PS, ES and AC edited and revised the writing. All authors contributed to the article and approved the submitted version.

REFERENCES

Abdelrahman, Z., Li, M., and Wang, X. (2020). Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Front. Immunol. 11, 1–14. doi:10.3389/fimmu.2020.552909
Abdullahi, A., Candan, S. A., Abba, M. A., Bello, A. H., Alshehri, M. A., Afamefuna Victor, E., et al. (2020). Neurological and Musculoskeletal Features of COVID-19: A Systematic Review and Meta-Analysis. Front. Neurol. 11, 1–14. doi:10.3389/fneur.2020.006687
Afshar-Oromieh, A., Prosch, H., Schaefer-Prokop, C., Bohn, K. P., Alberts, I., Mingels, C., et al. (2021). A Comprehensive Review of Imaging Findings in COVID-19 - Status in Early 2021. Eur. J. Nucl. Med. Mol. Imaging 48, 2500–2524. doi:10.1007/s00259-021-05375-3
Agergaard, J., Leth, S., Pedersen, T. H., Harbo, T., Blicher, J. U., Karlsson, P., et al. (2021). Myopathic Changes in Patients with Long-Term Fatigue after COVID-19. Clin. Neurophysiol. 132, 1974–1981. doi:10.1016/j.clinph.2021.04.009
Ahmad, I., and Rathore, F. A. (2020). Neurological Manifestations and Complications of COVID-19: A Literature Review. J. Clin. Neurosci. 77, 8–12. doi:10.1016/j.jocn.2020.05.017
Aiyeigbue, O. L., Hughes, S. E., Turner, G., Rivera, S. C., McMullan, C., Chandan, J. S., et al. (2021). Symptoms, Complications and Management of Long COVID: a Review. J. R. Soc. Med. 114, 428–442. doi:10.1177/14107169211032850
Akbar, M. R., Pranata, R., Wibowo, A., Lim, M. A., Shite, T. A., and Martha, J. W. (2020). Severe Rhabdomyolysis in a 35-Year-Old Woman with COVID-19 Due to SARS-CoV-2 Infection: A Case Report. Am. J. Case Rep. 22, e931616. doi:10.1111/ajcr.14135
Bak, F., Lettieri, C., Marini, A., Pellitteri, G., Surcincell, A., Valente, M., et al. (2020). Clinical and Neurophysiological Characterization of Muscular Weakness in Severe COVID-19. Neurol. Sci. 42, 2173–2178. doi:10.1007/s10072-021-05110-8
Bairati, I., Ball, A., Zaninotto, G., Salmaso, L., Gabbanini, E., et al. (2020). Post-COVID Syndrome in Non-hospitalised Patients with COVID-19: a Longitudinal Prospective Cohort Study. The Lancet Reg. Health. - Europe 6, 100122. doi:10.1016/j.lancrep.2020.100122
Bahouth, S., Chuzang, K., Olson, L., and Rosenthal, D. (2021). COVID-19 Related Muscle Denervation Atrophy. Skeletal Radiol. 50, 1717–1721. doi:10.1007/s00256-021-03721-y
Baj, J., Karakula-Juchnowicz, H., Teresinski, G., Buszewicz, G., Ciesielka, M., Sitarz, E., et al. (2020). COVID-19: Specific and Non-specific Clinical Manifestations and Symptoms: The Current State of Knowledge. Jcm 9, 1753. doi:10.3390/jcm9061753
Balcom, E. F., Nath, A., and Power, C. (2021). Acute and Chronic Neurological Disorders in COVID-19: Potential Mechanisms of Disease. Brain 144, 3576–3588. doi:10.1093/brain/awab302
Batur, E. B., Korez, M. K., Gerzer, I. A., Levendoglu, F., and Ural, O. (2021). Musculoskeletal Symptoms and Relationship with Laboratory Findings in Patients with COVID-19. Int. J. Clin. Pract. 75, e14135. doi:10.1111/ijcpr.14135
Bhattacharya, S. K., Singh, K., Saha, S., and Adeli, K. (2021). COVID-19: A Comprehensive Systemic Review and Meta-Analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 15, 529–534. doi:10.1016/j.dsx.2021.02.012
Akbarialiaad, H., Taghirir, M. H., Abdollahi, A., Ghahramani, N., Kumar, M., Paydar, S., et al. (2021). Long COVID, a Comprehensive Systemic Review. Infectio 49, 1163–1186. doi:10.1186/s13510-021-01666-x
Aksan, F., Nelson, E. A., and Swedish, K. A. (2020). A COVID-19 Patient with Intense Burning Pain. J. Neurosurg. 26, 800–801. doi:10.36750-20-00087-4
Ali, A. M., and Kunugi, H. (2021). Skeletal Muscle Damage in Covid-19: A Call for Action. Medicina 57, 372. doi:10.3390/medicina57040372
Alrubaye, R., and Choudhury, H. (2020). Severe Rhabdomyolysis in a 35-Year-Old Woman with COVID-19 Due to SARS-CoV-2 Infection: A Case Report. Am. J. Case Rep. 21, e926733. doi:10.12659/AJCR.926733
Amenta, E. M., Spallone, A., Rodriguez-Barradas, M. C., El Sahly, H. M., Atmar, R. L., and Kulkarni, P. A. (2020). Postacute COVID-19: An Overview and Approach to Classification. Open Forum Infect. Dis. 7, 1–7. doi:10.1093/ofid/ofaa509
Anand, P., Cabañes-Martínez, L., Villadóniga, M., González-Rodríguez, L., Araque, L., Díaz-Cid, A., Ruiz-Caracuel, I., et al. (2020). Neuromuscular Involvement in COVID-19 Critically Ill Patients. Clin. Neurophysiol. 131, 2809–2816. doi:10.1016/j.clinph.2020.09.017
Andrade-Junior, M. C. d., Salles, I. C. D. d., de Brito, C. M. M., Pastore-Junior, L., Righetti, R. F., and Yamaguti, W. P. (2021). Skeletal Muscle Wasting and

FUNDING

This work was supported by São Paulo Research Foundation (FAPESP) grant 2020/14172-1 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant 149807/2021-0.

ACKNOWLEDGMENTS

The authors thank Dr Dilson E. Rassier for the writing’s revision of this work.
Zahan, T., Nasir, M., Pervere, R. A., Akhtar, A., Rahman, A. F. M. M., Farha, N., et al. (2021). Overview of 254 Mild Cases of COVID-19 in Bangladeshi Cohort: a Cross-Sectional Observation. *Int. J. Adv. Med.* 8, 735–741. doi:10.18203/2349-3933.ijam20211896

Zaim, S., Chong, J. H., Sankaranarayanan, V., and Harky, A. (2020). COVID-19 and Multiorgan Response. *Curr. Probl. Cardiol.* 45, 100618. doi:10.1016/j.cpcardiol.2020.100618

Zaki, N., and Mohamed, E. A. (2021). The Estimations of the COVID-19 Incubation Period: A Scoping Reviews of the Literature. *J. Infect. Public Health* 14, 638–646. doi:10.1016/j.jiph.2021.01.019

Zhang, H., Charmchi, Z., Seidman, R. J., Anziska, Y., Velayudhan, V., and Perk, J. (2020b). COVID-19-associated Myositis with Severe Proximal and Bulbar Weakness. *Muscle & Nerve* 62, E57–E60. doi:10.1002/mus.27003

Zhang, Q., Shan, K. S., Minalyan, A., O’Sullivan, C., and Nace, T. (2020a). A Rare Presentation of Coronavirus Disease 2019 (COVID-19) Induced Viral Myositis with Subsequent Rhabdomyolysis. *Cureus* 12, e8074. doi:10.7759/cureus.8074

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 dos Santos, Sigoli, Bragança and Cornachione. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.