On the nonexistence of \(k\)-reptile tetrahedra

JIŘÍ MATOUŠEK
Department of Applied Mathematics and
Institute of Theoretical Computer Science (ITI)
Charles University, Malostranské nám. 25
118 00 Praha 1, Czech Republic

ZUZANA SAFERNOVÁ*
Department of Applied Mathematics
Charles University, Malostranské nám. 25
118 00 Praha 1, Czech Republic

Rev. 26/IV/10 JM

Abstract

A \(d\)-dimensional simplex \(S\) is called a \(k\)-reptile if it can be tiled without overlaps by simplices \(S_1, S_2, \ldots, S_k\) that are all congruent and similar to \(S\). For \(d = 2\), \(k\)-reptile simplices (triangles) exist for many values of \(k\) and they have been completely characterized by Snover, Waiveris, and Williams. On the other hand, for \(d \geq 3\), only one construction of \(k\)-reptile simplices is known, the Hill simplices, and it provides only \(k\) of the form \(m^d\), \(m = 2, 3, \ldots\).

We prove that for \(d = 3\), \(k\)-reptile simplices (tetrahedra) exist only for \(k = m^3\). This partially confirms a conjecture of Hertel, asserting that the only \(k\)-reptile tetrahedra are the Hill tetrahedra.

Our research has been motivated by the problem of probabilistic packet marking in theoretical computer science, introduced by Adler in 2002.

1 Introduction

A closed set \(X \subset \mathbb{R}^d\) with nonempty interior is called a \(k\)-reptile (sometimes written “\(k\) rep tile” or “\(k\) rep-tile”) if there are sets \(X_1, X_2, \ldots, X_k\) with disjoint interiors and with \(X = X_1 \cup X_2 \cup \cdots \cup X_k\) that are all congruent and similar to \(X\). Such sets have been studied in connection with fractals and also with crystallography and tilings of \(\mathbb{R}^d\); see, for example, [Ban91, SWW91, Gel96, Gel94, NSVW00].

Here we consider the following question: For what \(k\) and \(d\) there exist \(d\)-dimensional simplices that are \(k\)-reptiles? This investigation was motivated by a paper of Adler [Adl02] on probabilistic marking of Internet packets. The connection and the quite interesting questions arising there are discussed in in [AEM05] or, in a more concise form, in [Mat05]. From this point of view, it would be interesting to find \(d\)-dimensional \(k\)-reptile simplices with \(k\) as small as possible.

The simplest \(k\)-reptile simplex, for \(d = k = 2\), is the isosceles right triangle (with angles 45, 45, and 90 degrees). There are several possible types of \(k\)-reptile triangles, and they have been completely classified by Snover et al. [SWW91]. In particular, \(k\)-reptile triangles exist for all \(k\) of the form \(a^2 + b^2\) or \(3a^2\) for arbitrary integers \(a, b\).

In contrast, for \(d \geq 3\), reptile simplices seem to be much more rare. The only known construction, at least as far as we could find, of higher-dimensional \(k\)-reptile simplices has

*Research supported by the Charles University grant GAUK 52110.
$k = m^d$ and is known as the \emph{Hill simplex} (or \emph{Hadwiger–Hill simplex}) \cite{Hil96}. A d-dimensional Hill simplex is the convex hull of vectors $0, b_1, b_1+b_2, \ldots, b_1+\cdots+b_d$, where b_1, b_2, \ldots, b_d are vectors of equal length such that the angle between every two of them is the same and lies in the interval $(0, \frac{2\pi}{3})$. Fig. 1 shows the decomposition of a 3-dimensional Hill simplex, with $(b_1, b_2, b_3) = (e_1, e_2, e_3)$ the standard orthonormal basis, into 8 congruent pieces similar to it.

Concerning nonexistence of k-reptile simplices in dimension $d \geq 3$, Hertel \cite{Her00} proved that a 3-dimensional simplex is an m^3-reptile using a “standard” way of dissection (which we won’t define here) if and only if it is a Hill simplex. He conjectured that Hill simplices are the only 3-dimensional reptile simplices. The first author \cite{Mat05} showed that there are no 2-reptile simplices of dimension 3 or larger.

We prove the following result.

Theorem 1.1 For $d = 3$, k-reptile simplices (tetrahedra) exist only for k of the form m^3, $m = 2, 3, \ldots$, and in particular, no k-reptile tetrahedra exist with $k \leq 7$.

The case $k = 2$ is an (easy) special case of the result of \cite{Mat05} mentioned above. The starting point of the proof in \cite{Mat05} is observing that there is essentially only one way of partitioning a simplex into two simplices (in any dimension).

The case $k = 3$, i.e., nonexistence of 3-reptile tetrahedra, was also established earlier, by the second author in her Bc. thesis \cite{Saf08}. The proof again discusses all geometric possibilities of how a tetrahedron can be partitioned into three tetrahedra. There are five cases to consider, and it seems clear that for larger k, keeping track of all geometric partitions quickly becomes unmanageable.

Our proof of Theorem 1.1 uses other tools, and among others, results related to Hilbert’s third problem on \emph{equidecomposability}, or \emph{scissors congruence}, of polyhedra (a recent and very nice discussion of this area can be found in \cite{Pak09}, and a more classical source is \cite{Bol78}). The proof ultimately relies on a case analysis, but with only few cases to consider, and while some of the steps are clearly specific for dimension 3, we believe that some of the ideas may be useful for attacking higher-dimensional cases as well.

It is well known, and easy to see, that whenever S is a d-dimensional k-reptile simplex, then all of \mathbb{R}^d can be tiled by congruent copies of S (indeed, using the tiling of S by its smaller copies S_1, \ldots, S_k as a pattern, one can inductively tile larger and larger similar copies of S). The question of characterizing the tetrahedra that tile \mathbb{R}^3 is an open and apparently rather difficult question. Several papers have been devoted to it, e.g., \cite{Deb85, Gol74, Sen81}.

![Figure 1: A 3-dimensional Hill simplex as an 8-reptile](image-url)
but they contain mainly existence results (i.e., constructions of tilings), and mostly they don’t seem to be directly relevant to the k-reptile question.

Open problems. Concerning the existence of k-reptile simplices in dimensions $d \geq 4$, we dare to state the following conjecture:

Conjecture 1.2 If $d \geq 3$ and a d-dimensional k-reptile simplex exists, then $k = m^d$ for some natural number $m \geq 2$.

For $d = 3$, it remains to find out whether all m^3-reptile simplices are indeed Hill simplices, as conjectured by Hertel, or whether some other types may exist as well.

2 Preliminaries

Scissors congruence of polyhedra. Two convex polytopes in \mathbb{R}^d are called scissors-congruent if the first can be cut into finitely many convex polytopes that can be reassembled to yield the second. We recall some results on scissors congruence; proofs and references can be found, e.g., in [Pak09]. A convex polytope P is called rectifiable if it is scissors-congruent to a cube.

A dihedral angle of a convex polytope in \mathbb{R}^3 is the internal angle of two facets of P that meet in an edge. (For example, a tetrahedron has 6 dihedral angles.) Bricard’s condition asserts that if P is rectifiable, then the number π can be written as a linear combination of all the dihedral angles of P with strictly positive rational coefficients.

A convex polytope P is called self-similar if it is scissors-congruent to a disjoint union of two or more polytopes, each of them similar to P. In particular, a k-reptile simplex is self-similar. According to Sydler’s criterion, a convex polytope $P \subset \mathbb{R}^3$ is rectifiable if and only if it is self-similar. Thus, we have the following consequence.

Fact 2.1 Let S be a k-reptile tetrahedron, for some k, and let $\alpha_1, \ldots, \alpha_6$ be its dihedral angles (not necessarily all distinct). Then there are strictly positive rational numbers q_1, \ldots, q_6 such that

$$\sum_{i=1}^{6} q_i \alpha_i = \pi.$$

Existence of simplices with given dihedral angles. In the forthcoming proof of Theorem 1.1 we will need to exclude the existence of tetrahedra with specified dihedral angles. We can use the following elegant condition due to Fiedler, which we state for an arbitrary dimension d.

For a d-dimensional simplex S, let us number the facets as F_1, \ldots, F_{d+1}, let v_i be the vertex opposite to F_i, and let φ_{ij} be the dihedral angle of F_i and F_j (so $\varphi_{ij} = \varphi_{ji}$). Moreover, for technical convenience we define $\varphi_{ii} = \pi$ for all i.

Theorem 2.2 Let the φ_{ij}, $i, j = 1, 2, \ldots, d + 1$, be as above for some d-dimensional simplex S, and let A be the $(d+1) \times (d+1)$ matrix with $a_{ij} := \cos \varphi_{ij}$ for all i, j. Then A is negative semidefinite of rank d, and the (1-dimensional) kernel of A is generated by a vector $z \in \mathbb{R}^{d+1}$ with all components strictly positive.
This result is an immediate consequence of [Fie54, Theorem 6]. Since we haven’t found any published proof in English, we include one proof, in the spirit of Fiedler’s recent lecture notes [Fie01].

Proof. Let \(u_i \) be the unit normal of \(F_i \) pointing inside \(S \). Then \(a_{ij} = \cos \varphi_{ij} = -\langle u_i, u_j \rangle \), where \(\langle \cdot, \cdot \rangle \) denotes the scalar product, and so \(-A\) is the Gram matrix of the \(u_i \). Thus, \(A \) is negative semidefinite of rank \(d \).

After translation, we may assume \(v_{d+1} = 0 \). Then \(v_j \) is contained in \(F_i \) for \(i \neq j \), while \(v_i \) lies on the side of \(F_i \) where \(u_i \) points to, \(1 \leq i, j \leq d \). Thus, \(\langle u_i, v_j \rangle = 0 \) for \(i \neq j \) and \(\langle u_i, v_i \rangle > 0 \), again for \(1 \leq i, j \leq d \). Similarly, considering the facet \(F_{d+1} \), we get \(\langle u_{d+1}, v_i \rangle < 0 \) and \(\langle u_{d+1}, v_i - v_j \rangle = 0 \) for all \(i, j = 1, 2, \ldots, d \).

Now we define the vector \(z \) generating the kernel of \(A \): for \(i = 1, 2, \ldots, d \) we set \(z_i := \langle u_i, v_i \rangle^{-1} \), and we put \(z_{d+1} := \|w\| \), where \(w = -\sum_{i=1}^{d} z_i u_i \) and \(\|\cdot\| \) denotes the Euclidean norm. Since \(z_1, \ldots, z_d > 0 \), we have \(w \neq 0 \) by the linear independence of \(u_1, \ldots, u_d \), and thus \(z = (z_1, \ldots, z_{d+1}) \) has all components strictly positive.

It remains to show that \(Az = 0 \); in other words, that \(\sum_{i=1}^{d+1} z_i \langle u_i, u_j \rangle = 0 \) for all \(j \). To this end, it suffices to check that \(\sum_{i=1}^{d+1} z_i u_i = 0 \).

By definition, \(\sum_{i=1}^{d} z_i u_i = -w \), so we need to show that \(z_{d+1} u_{d+1} = w \). Since \(z_{d+1} = \|w\| \), we should verify that \(w \) is parallel to \(u_{d+1} \) and has the same orientation.

We have \(\langle w, v_j \rangle = -\sum_{i=1}^{d} z_i \langle u_i, v_j \rangle = -z_j \langle u_j, v_j \rangle = -1 \). Thus \(\langle w, v_j - v_k \rangle = 0 \) for all \(j, k = 1, 2, \ldots, d \), and so \(w \) is indeed parallel to \(u_{d+1} \), and \(\langle w, v_i \rangle < 0 \), and so \(u_{d+1} \) and \(w \) have the same orientation.

We will use the following consequence of Theorem 2.2 several times.

Corollary 2.3 If \(A \) and the \(\varphi_{ij} \) are as in Theorem 2.2, then the row space of \(A \) cannot contain a nonzero vector with all entries nonnegative (or all entries nonpositive).

We will also need the following fact (see, e.g., Fiedler [Fie54, Theorem 8]; here we don’t reproduce a proof, since in the single instance where we use the fact, one can easily give an alternative argument).

Lemma 2.4 A simplex is determined by its dihedral angles, uniquely up to similarity.

Here is another useful fact concerning the dihedral angles of a tetrahedron.

Observation 2.5 The three dihedral angles adjacent to a vertex of a tetrahedron have sum greater than \(\pi \).

Sketch of proof. This follows from the fact that the sum of the angles of a spherical triangle exceeds \(\pi \).

On rational dihedral angles. Let us call an angle \(\alpha \) rational if it is a rational multiple of \(\pi \), or equivalently, if its value in degrees is rational. We will need the following result of Jahnel [Jah10] concerning the values of the cosine for rational angles.

Theorem 2.6 Let \(\alpha = \frac{2\pi m}{n} \) be a rational angle, where \(m, n \) are coprime integers (and \(n \neq 0 \)). Then
(i) \(\cos \alpha\) is a rational number if and only if \(\varphi(n) \leq 2\), where \(\varphi(.)\) denotes the Euler totient function, and

(ii) \(\cos \alpha\) is an algebraic number of degree \(d \geq 2\) if and only if \(\varphi(n) = 2d\).

Jahnel’s proof is short and we sketch it: Since \(t := \cos \alpha = (\xi + \xi^{-1})/2\), where \(\xi = e^{2\pi im/n}\) is a primitive \(n\)th root of unity, \(\xi\) is a root of the quadratic equation \(x^2 - 2tx + 1 = 0\), and hence \([\mathbb{Q}(\xi) : \mathbb{Q}(t)] \leq 2\). For \(n \geq 3\) we have \([\mathbb{Q}(\xi) : \mathbb{Q}(t)] = 2\) since \(\xi\) is not real, and using \([\mathbb{Q}(\xi) : \mathbb{Q}] = \varphi(n)\), we get \([\mathbb{Q}(t) : \mathbb{Q}] = \frac{\varphi(n)}{2}\).

3 The proof

Here we prove Theorem 1.1. For contradiction, we assume, from now on, that \(S\) is a \(k\)-reptile tetrahedron, where \(k\) is not a third power of a natural number.

Let \(S_1, \ldots, S_k\) be the mutually congruent simplices similar to \(S\) that tile \(S\), as in the definition of a \(k\)-reptile. Then each \(S_i\) has volume \(k\)-times smaller than \(S\), and thus \(S_i\) is scaled by the ratio \(\rho := k^{-1/3}\) compared to \(S\).

As is well known, \(\rho\) is irrational. We will need a stronger property: \(\rho\) has degree 3 over \(\mathbb{Q}\), and thus it is not the root of a quadratic polynomial with integer coefficients. (Indeed, if the polynomial \(kx^3 - 1\) were reducible over the rationals, then it would have a linear factor and thus a rational root, which is not the case, and therefore, it is irreducible.)

Let \(D \subseteq \mathbb{R}\) denote the set of the dihedral angles of \(S\). We have \(|D| \leq 6\), since \(S\) has 6 edges, but it may happen that \(|D| < 6\), since the same dihedral angle may appear at several edges.

Let us say that a dihedral angle \(\alpha \in D\) is indivisible in \(D\) if it cannot be written as a linear combination of other elements of \(D\) with nonnegative integer coefficients. (In particular, the smallest dihedral angle \(\alpha_{\text{min}} \in D\) is indivisible in \(D\).)

Here is a key lemma in the proof, which allows us to reduce the possible shapes of the considered tetrahedron to a manageable number of cases.

Lemma 3.1 If \(\alpha \in D\) is indivisible in \(D\), then the edges of \(S\) with dihedral angle \(\alpha\) have at least three different lengths (and in particular, there are at least three such edges).

Proof. Let \(e\) be an edge of \(S\) with dihedral angle \(\alpha\). Every point of \(e\) belongs to some edge of some of the smaller simplices \(S_i\). Since \(\alpha\) is indivisible in \(D\), we get that \(e\) is tiled by edges of the \(S_i\), and each of the edges in this tiling also has dihedral angle \(\alpha\) in the appropriate \(S_i\).

For contradiction, let us assume that the lengths of all the edges of \(S\) with dihedral angle \(\alpha\) belong to the set \(\{x_1, x_2\}\), where \(x_1, x_2\) are some strictly positive reals (we also admit \(x_1 = x_2\)). Then, by the above, an edge of length \(x_1\) in \(S\) is tiled by edges with lengths \(\rho x_1\) and \(\rho x_2\), and similarly for \(x_2\). Thus, we get that there are nonnegative integers \(n_{ij}, i, j = 1, 2\), such that

\[
\begin{align*}
n_{11}\rho x_1 + n_{12}\rho x_2 &= x_1, \\
n_{21}\rho x_1 + n_{22}\rho x_2 &= x_2.\
\end{align*}
\]

If we now regard \(x_1, x_2\) as unknowns, then (1) is a homogeneous system of two linear equations in two unknowns. Since we assume that there is a nonzero solution, the two equations must
be linearly dependent, and thus the determinant of this system vanishes. This leads to
\[(n_{11}n_{22} - n_{12}n_{21})\rho^2 - (n_{11} + n_{22})\rho + 1 = 0.\]
Thus, \(\rho\) should satisfy a quadratic equation with integer coefficients, but, as was mentioned earlier, it doesn’t. This is a contradiction proving the lemma.

Here is another condition on the dihedral angles, resembling Fact 2.1 but much simpler.

Lemma 3.2 There are nonnegative integers \(i_\alpha, \alpha \in D\), such that \(\sum_{\alpha \in D} i_\alpha \alpha = \pi\).

Proof. Consider a facet \(F\) of \(S\) of the largest area. Then \(F\) cannot be covered by a facet of any \(S_i\), and thus there is an edge of some \(S_i\) going through the relative interior of \(F\). We choose a point \(x\) on this edge that is not a vertex of any \(S_i\). The lemma follows by considering the dihedral angles of those edges of the \(S_i\) that contain \(x\).

The next lemma describes two possible structures of \(D\).

Lemma 3.3 One of the following two possibilities occur:

(i) All the dihedral angles of \(S\) are integer multiples of the minimal dihedral angle \(\alpha_{\text{min}}\), which has the form \(\frac{\pi}{n}\) for an integer \(n \geq 3\).

(ii) There are exactly two distinct dihedral angles \(\beta_1\) and \(\beta_2\), each of them occurring three times in \(S\).

Proof. We select elements \(\beta_1 < \beta_2 < \cdots\) from \(D\) as follows. We let \(\beta_1\) be the smallest element \(\alpha_{\text{min}}\), and having selected \(\beta_1\) through some \(\beta_i\), we let \(\beta_{i+1}\) be the smallest element of \(D\) that is not a linear combination of \(\beta_1, \ldots, \beta_i\) with nonnegative integer coefficients. We finish as soon as all of \(D\) has been exhausted, and we let \(\beta_\ell\) be the last element thus obtained.

It is easy to check that each \(\beta_i\) is indivisible in \(D\) (i.e., it is not a linear combination of other elements of \(D\) with nonnegative integer coefficients). Indeed, elements of \(D\) larger than \(\beta_i\) cannot contribute to such a combination, and by the construction, \(\beta_i\) is not a combination of smaller elements.

Now if \(\ell = 1\), then all dihedral angles are integer multiples of \(\beta_1 = \alpha_{\text{min}}\). Lemma 3.2 then implies that \(\pi = n\alpha_{\text{min}}\) for some \(n\). Since \(\frac{\pi}{2}\) cannot be the smallest dihedral angle, we get that case (i) occurs.

If \(\ell \geq 2\), then each \(\beta_i\) is the dihedral angle of at least three edges by Lemma 3.1 and we have case (ii).

If \(S\) has two distinct dihedral angles \(\beta_1 \neq \beta_2\), each occurring at three edges, then they are placed as in Fig. 2 left or right (up to a permutation of the vertices). We speak of the triangle-tripod configuration and the path configuration. The former is easy to deal with and we exclude it right away.

Lemma 3.4 (Excluding triangle-tripod) A tetrahedron with the triangle-tripod configuration of (at most) two dihedral angles cannot be a \(k\)-reptile (assuming, as usual, that \(k\) is not a third power).
Figure 2: Two possible configurations of two dihedral angles: the path configuration (left), and the triangle-tripod configuration (right). Black edges correspond to one of the dihedral angles, and gray edges to the other.

Proof. Let β_1 be the dihedral angle at the edges of the triangle, and let β_2 be dihedral angle at edges of the tripod. For geometric reasons we have $0 < \beta_1 < \frac{\pi}{2}$.

For every $\beta_1 \in (0, \frac{\pi}{2})$, we can construct a symmetric pyramid with an equilateral triangle as a base and with dihedral angles β_1 at the base (as indicated in Fig. 2). Such a pyramid has at most two distinct edge lengths, and so it cannot be a k-reptile by Lemma 3.1.

It remains to check that this pyramid is the **only** possible tetrahedron with the triangle-tripod configuration and with dihedral angle β_1 at the edges of the triangle. This can be done using Theorem 2.2, for example.

Letting $t := \cos \beta_1$ and $s := \cos \beta_2$, the matrix A as in Theorem 2.2 is

$$A = \begin{pmatrix} -1 & t & t & t \\ t & -1 & s & s \\ t & s & -1 & s \\ t & s & s & -1 \end{pmatrix}.$$

We have $\det(A) = (1 + s)^2(1 - 2s - 3t^2)$, and this has to be 0 according to Theorem 2.2. Hence t determines s uniquely, and since the dihedral angles determine a tetrahedron up to similarity (Lemma 2.4), the considered tetrahedron has to be the pyramid as claimed. □

Next, we dispose with case (i) in Lemma 3.3, where all dihedral angles are integer multiples of the minimal angle.

Lemma 3.5 (Multiples of α_{min}) A tetrahedron where the minimal dihedral angle $\alpha_{\text{min}} = \frac{\pi}{n}$ for an integer $n \geq 3$ and all other dihedral angles are integer multiples of α_{min} cannot be a k-reptile.

Proof. The angle α_{min} occurs on at least three edges by Lemma 3.1 and thus it occurs at least twice at some vertex. Let β be the third angle at such a vertex (possibly equal to α_{min}); we have $2\alpha_{\text{min}} + \beta > \pi$ (Observation 2.5).

Writing $\beta = m\alpha_{\text{min}} = \frac{m}{n}\pi$, we thus have $2\frac{\pi}{n} + \frac{m}{n}\pi > \pi$, which means $m > n - 2$. Since $m < n$, we have $m = n - 1$ and $\beta = \pi - \alpha_{\text{min}}$. So β is the largest dihedral angle.

Now we distinguish several cases depending on the position of the (at least three) edges with α_{min}.

- If they form a triangle, then all the other edges must have the angle β and we are in the triangle-tripod case excluded by Lemma 3.4.
Figure 3: The case with three dihedral angles.

- If they meet at a single vertex, then $\beta = \alpha_{\min}$, and thus $\alpha_{\min} = \frac{\pi}{2}$, which is a contradiction (we know that $n \geq 3$).

- It remains to deal with the case where the angles α_{\min} occur along a path; then two edges have the angle β and the remaining edge has some angle γ (Fig. 3).

With $t := \cos \alpha_{\min}$, $\cos \beta = \cos(\pi - \alpha_{\min}) = -t$, and $u := \cos \gamma$, the matrix A in Theorem 2.2 is

$$A = \begin{pmatrix} -1 & -t & t & t \\ -t & -1 & u & t \\ t & u & -1 & -t \\ t & t & -t & -1 \end{pmatrix}.$$

The first and last rows add to $(t - 1, 0, 0, t - 1)$, but, since $t < 1$, this contradicts Corollary 2.3.

The lemma is proved. \square

So now we are left with two distinct dihedral angles β_1, β_2 forming the path configuration. The next lemma further restricts their values.

Lemma 3.6 If S has two dihedral angles $\beta_1 \neq \beta_2$ forming the path configuration, then $\max(\beta_1, \beta_2) > \frac{\pi}{3}$, and one of the following cases occurs:

(i) one of β_1, β_2 equals $\frac{n \pi}{n}$ for some natural number $n \geq 2$, or

(ii) $\beta_1 + \beta_2 = \pi$.

Proof. By Lemma 3.2, we have $n_1 \beta_1 + n_2 \beta_2 = \pi$ for some nonnegative integers n_1, n_2. If one of n_1, n_2 is 0, we have case (i), so we assume $n_1, n_2 \geq 1$.

By Observation 2.5, the sum of the dihedral angles incident to each vertex is strictly larger than π. For the path configuration (Fig. 2 left), this yields both $\beta_1 + 2\beta_2 > \pi$ and $2\beta_1 + \beta_2 > \pi$. This shows that the only remaining possibility is $n_1 = n_2 = 1$, giving case (ii).

The inequality $\max(\beta_1, \beta_2) > \frac{\pi}{3}$ follows from $\beta_1 + 2\beta_2 > \pi$ and $2\beta_1 + \beta_2 > \pi$. \square

As the next step, we can exclude case (ii) of the previous lemma.

Lemma 3.7 (Path configuration with $\beta_1 + \beta_2 = \pi$) There are no tetrahedra with the path configuration of two dihedral angles β_1, β_2, $\beta_1 + \beta_2 = \pi$.

Proof. Let us set $t := \cos \beta_1$; then $\cos \beta_2 = -t$. We are going to use Corollary 2.3. The matrix A is
\[
\begin{pmatrix}
-1 & t & -t & -t \\
t & -1 & t & -t \\
-t & t & -1 & t \\
-t & -t & t & -1
\end{pmatrix}.
\]
The sum of the second and third row is $(0, t - 1, t - 1, 0)$ (and $t < 1$), which contradicts Corollary 2.3. The lemma is proved. \hfill \square

Excluding tetrahedra with rational angles. By now we have hunted the possible k-reptile tetrahedra down to the path configuration of two dihedral angles $\beta_1 = \frac{\pi}{n}$ and β_2. By Fact 2.1 β_2 must be a rational multiple of π.

The plan for the rest of the proof is simple: Using Theorem 2.2, we show that, for the path configuration, $\min(\beta_1, \beta_2)$ cannot be too small, and thus it suffices to consider only a small number of possible values of n, and the corresponding β_1's. For each of these values of β_1, we can determine the possible values of $\cos \beta_2$, which always turn out to be quartic or quadratic irrationalities, and finally, using Theorem 2.6 we check that none of them is a value of the cosine function at a rational angle.

To execute this plan, we write $t = \cos \beta_1$, $s = \cos \beta_2$, and we set up the matrix A as in Theorem 2.2:
\[
A = \begin{pmatrix}
-1 & t & s & s \\
t & -1 & t & s \\
s & t & -1 & t \\
s & s & t & -1
\end{pmatrix}.
\]

First we get rid of the case $n = 2$, i.e., $\beta_1 = \frac{\pi}{2}$. Then $t = 0$, and $\det(A) = 1 - 3s^2 + s^4$. By Theorem 2.2 A has to be singular, so s must satisfy $1 - 3s^2 + s^4 = 0$. There are two roots of this equation in $(-1, 1)$, namely, $\phi - 1$ and $1 - \phi$, where we introduce the useful notation $\phi = \frac{\sqrt{5} + 1}{2}$ for the golden ratio.

However, using Theorem 2.6 one can easily produce a list of all quadratic irrationalities attained by the cosine function (and such a list is provided by Jahnel [Jah10]: $\pm \cos 72^\circ \approx \pm 0.309$, $\pm \cos 45^\circ \approx \pm 0.707$, $\pm \cos 36^\circ \approx \pm 0.809$, and $\pm \cos 30^\circ \approx \pm 0.866$. So $\pm (\phi - 1) \approx \pm 0.618$ is not such a value.

From now on, we thus assume $n \geq 3$, and since $\max(\beta_1, \beta_2) > \frac{\pi}{3}$, we have $\beta_1 = \frac{\pi}{n} \leq \frac{\pi}{3} < \beta_2$. Consequently, $t \in [\frac{1}{2}, 1)$.

Next, we find that the characteristic polynomial of A factors reasonably nicely, and in particular, that one of the eigenvalues is
\[
\lambda_1 = -\phi s + \frac{t}{\phi} - 1.
\]

Since A should be negative semidefinite, we have $\lambda_1 \leq 0$, and thus $s \geq \frac{\phi t}{\phi} - \frac{1}{\phi}$. Using $t \geq \frac{1}{2}$ we have $s \geq -0.43$, and thus $\beta_2 = \arccos s \leq \arccos(-0.43) < \frac{2\pi}{3}$. Then, using the “vertex inequality” $2\beta_1 + \beta_2 > \pi$, we obtain $\beta_1 > \frac{\pi}{2}$. Hence we have restricted the possible values of β_1 to $\frac{\pi}{3}, \frac{\pi}{4},$ and $\frac{\pi}{5}$.

Assuming $\beta_1 = \frac{\pi}{3}$, the inequality $2\beta_1 + \beta_2 > \pi$ yields $\beta_2 > \frac{2\pi}{3}$, and thus $s \leq \cos \frac{2\pi}{3} = -\frac{1}{2}$, while $t = \cos \frac{\pi}{3} = \frac{\phi}{2}$. Then, however, we obtain $\lambda_1 > 0$, which is a contradiction excluding $\beta_1 = \frac{\pi}{3}$.

9
It remains to consider $\beta_1 \in \{\frac{\pi}{3}, \frac{\pi}{4}\}$. These cases correspond to actual geometric tetrahedra, and here we need to use the rationality of β_2.

The polynomial $\det(A)$ factors as

$$-\left(s^2 + t^2 + st + s + t - 1\right) \left(s - \frac{t}{\phi^2} + \frac{1}{\phi}\right) \left(t - \frac{s}{\phi^2} + \frac{1}{\phi}\right).$$

For $\beta_1 = \frac{\pi}{3}$ we get $t = \frac{1}{2}$, and it is clear that all s with $\det(A) = 0$ are quadratic irrationalities. There are two such s in the interval $(-1, 1)$, which are numerically approximately -0.427 and 0.151. Clearly, they don’t belong to the above list of quadratic irrationalities (if we wanted to avoid numerical approximation, we could also substitute the numbers from the list for s and check that $\det(A) \neq 0$).

Similarly, for $\beta_1 = \frac{\pi}{4}$, we have $t = \frac{1}{\sqrt{2}}$. This time the values of s for which $\det(A)$ vanishes are quartic (or possibly quadratic) irrationalities, and numerically, there are two values in $(-1, 1)$: -0.131 and -0.348. The list of all quartic irrationalities attained by $\cos \alpha$ at rational α’s (also given in [Jah10]) goes as follows: $\pm \cos 84^\circ \approx 0.105$, $\pm \cos 75^\circ \approx 0.259$, $\pm \cos 67\frac{1}{2}^\circ \approx 0.383$, $\pm \cos 54^\circ \approx 0.588$, $\pm \cos 48^\circ \approx 0.669$, $\pm \cos 24^\circ \approx 0.914$, $\pm \cos 22\frac{1}{2}^\circ \approx 0.924$, $\pm \cos 18^\circ \approx 0.951$, $\pm \cos 15^\circ \approx 0.966$, and $\pm \cos 12^\circ \approx 0.978$. So the possible values of s again don’t occur there, and Theorem 1.1 is proved.

Remark. Our considerations in the last part of the proof deal with a very special case of an interesting and possibly quite challenging problem: characterizing the tetrahedra with all dihedral angles rational. This problem has been considered by Smith [Smi03], but unfortunately, his claimed reduction of the problem to Coxeter’s classification of reflection groups seems to be unsubstantiated.

Acknowledgment

We would like to thank Professor Miroslav Fiedler for an inspiring consultation.

References

[Adl02] M. Adler. Tradeoffs in probabilistic packet marking for IP traceback. In Proc. 34th Annu. ACM Symposium on Theory of Computing, pages 407–418, 2002.

[AEM05] M. Adler, J. Edmonds, and J. Matoušek. Towards asymptotic optimality in probabilistic packet marking. In Proc. 37th Annu. ACM Symposium on Theory of Computing, pages 450–459, 2005.

[Ban91] C. Bandt. Self-similar sets. V. Integer matrices and fractal tilings of \mathbb{R}^n. Proc. Amer. Math. Soc., 112(2):549–562, 1991.

[Bol78] V. G. Boltianskii. *Hilbert’s third problem*. Translated by Richard A. Silverman and introduced by Albert B. J. Novikoff. V.H. Winston & Sons, Washington D.C., John Wiley & Sons, New York, 1978.

[Deb85] H. E. Debrunner. Tiling Euclidean d-space with congruent simplexes. In *Discrete geometry and convexity (New York, 1982)*, volume 440 of Ann. New York Acad. Sci., pages 230–261. New York Acad. Sci., New York, 1985.
[Fie54] M. Fiedler. Geometry of the simplex in E^n (in Czech, with English and Russian summary). Časopis pro pěstování matematiky, 79:297–320, 1954.

[Fie01] M. Fiedler. Matrices and graphs in Euclidean geometry (in Czech). Preprint ITI Series 2001-041, Institute for Theoretical Computer Science, Charles University, Prague, 2001.

[Gel94] G. Gelbrich. Crystallographic reptiles. Geom. Dedicata, 51(3):235–256, 1994.

[Gel96] G. Gelbrich. Self-affine lattice reptiles with two pieces in \mathbb{R}^n. Math. Nachr., 178:129–134, 1996.

[Gol74] M. Goldberg. Three infinite families of tetrahedral space-fillers. J. Comb. Theory, Ser. A, 16:348–354, 1974.

[Her00] E. Hertel. Self-similar simplices. Beiträge Algebra Geom., 41(2):589–595, 2000.

[Hil96] M.J.M. Hill. Determination of the volumes of certain species of tetrahedra without employment of the method of limits. Proc. Lond. Math. Soc., 2:39–53, 1895–1896.

[Jah10] J. Jahnel. When is the (co)sine of a rational angle equal to a rational number? Preprint, Georg-August-Universität Göttingen, http://www.uni-math.gwdg.de/jahnel/Preprints/cos.pdf, 2010.

[Mat05] J. Matoušek. Nonexistence of 2-reptile simplices. In Discrete and Computational Geometry: Japanese Conference, JCDCG 2004, Lecture Notes in Computer Science 3742, Springer, Berlin etc., pages 151–160, 2005. Erratum at http://kam.mff.cuni.cz/~matousek/no2r-err.pdf.

[NSVW00] S.-M. Ngai, V. F. Sirvent, J. J. P. Veerman, and Y. Wang. On 2-reptiles in the plane. Geom. Dedicata, 82(1-3):325–344, 2000.

[Pak09] I. Pak. Lectures on Discrete and Polyhedral Geometry. Book in preparation, available at http://www.math.ucla.edu/~pak/book.htm, 2009.

[Saf08] Z. Safernová. Perfect tilings of simplices (in Czech). Bc. degree thesis, Charles University, Prague, 2008.

[Sen81] M. Senechal. Which tetrahedra fill space? Math. Mag., 54:227–243, 1981.

[Smi03] W. D. Smith. Pythagorean triples, rational angles, and space-filling simplices. Preprint, 2003. Retrieved from http://www.math.temple.edu/~wds/homepage/diophant.pdf in April 2010.

[SWW91] S. L. Snover, C. Waiveris, and J. K. Williams. Rep-tiling for triangles. Discrete Math., 91(2):193–200, 1991.