THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

WeiKang Zheng1, Jeffrey M. Silverman2,17, Alexei V. Filippenko1, Daniel Kasen3,4, Peter E. Nugent1,3, Melissa Graham1,5,6, Xiaofeng Wang7, Stefano Valenti5,6, Fabrizio Ciabattari8, Patrick L. Kelly1, Ori D. Fox1, Isaac Shaviv1, Kelsey I. Clubb1, S. Bradley Cenko9, Dave Balam10, D. Andrew Howell5,6, Eric Hsiao11, Weidong Li1,18, G. Howie Marion2,12, David Sand13, Jozsef Vinko2,14, J. Craig Wheeler2, and JuJia Zhang15,16

1 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA; zwk@astro.berkeley.edu
2 Department of Astronomy, University of Texas, Austin, TX 78712, USA
3 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4 Department of Physics, University of California, Berkeley, CA 94720, USA
5 Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117, USA
6 Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106, USA
7 Department of Physics, Tsinghua University, Beijing 100084, China
8 Monte Agliale Observatory, Borgo a Mozzano, Lucca, I-55023 Italy
9 Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA
10 Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
11 Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601, Chile
12 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
13 Physics Department, Texas Tech University, Lubbock, TX 79409, USA
14 Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary
15 Yunnan Astronomical Observatory, Chinese Academy of Sciences, 650011, Yunnan, China
16 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China

Received 2013 September 25; accepted 2013 October 18; published 2013 November 6

ABSTRACT

The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R0 < 0.25 R⊙, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C ii absorption line comparable in strength to Si ii. This is the strongest C ii feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C ii line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C ii is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M_B = −18.72 ± 0.03 mag ~17.7 days after first light.

Key words: supernovae: general – supernovae: individual (SN 2013dy)

Online-only material: color figures

1. INTRODUCTION

Type Ia supernovae (SNe Ia) are used as calibratable candles with many important applications, including measurements of the expansion rate of the universe (Riess et al. 1998; Perlmutter et al. 1999). However, the understanding of their progenitor systems and explosion mechanisms remains substantially incomplete. It is thought that SNe Ia are the product of the thermonuclear explosions of C/O white dwarfs (Hoyle & Fowler 1960; Colgate & McKee 1969; see Hillebrandt & Niemeyer 2000 for a review), but very early discovery and detailed follow-up observations are essential for learning about the nature of the progenitor evolution and the nature of the explosion process. Recent examples of well-studied SNe Ia include SN 2009ig (Foley et al. 2012), SN 2011fe (Nugent et al. 2011; Li et al. 2011), and SN 2012cg (Silverman et al. 2012a); like SN 2013dy, they were discovered shortly after exploding.

Early discovery and identification give us the opportunity to obtain spectra when the SNe are still very young, yielding more insight into the composition of the SN blastwave (especially the outer layers) and its progenitor star. For example, while O is often seen (can be from both unburned material and a product of C burning), spectroscopic C is much more rare. In particular, strong C features have been seen only in a few “super-Chandrasekhar mass” SNe Ia: SNLS-03D3bb (SN 2003fg; Howell et al. 2006), SN 2006gz (Hicken et al. 2007), SN 2007if (Scolzo et al. 2010), and SN 2009dc (Yamanaka et al. 2009; Silverman et al. 2011; Taubenberger et al. 2011). Though often detectable in normal SNe Ia, C lines are usually not strong (e.g., Patat et al. 1996; Garavini et al. 2005; Nugent et al. 2011; Silverman & Filippenko 2012). Here we present our observations and analysis of SN 2013dy, detected merely 0.10 days after first light. An early spectrum (1.63 days) exhibits an unusually strong absorption feature ~245 Å redder than Si ii λ6355, very likely produced by C ii.

2. DISCOVERY AND OBSERVATIONS

The field of NGC 7250 has been observed by the 0.76 m Katzman Automatic Imaging Telescope (KAIT) more than 600 times over the past 15 yr as part of the Lick Observatory Supernova Search (LOSS; Filippenko et al. 2001). In early...
2011, the LOSS search strategy was modified to monitor fewer galaxies at a more rapid cadence with the objective of promptly identifying very young SNe (hours to days after explosion). The new software autonomously prompts KAIT to obtain a sequence of $U, B, V,$ and unfiltered (roughly R) images when a new transient is discovered, usually only minutes after the discovery images were taken. One of the first successful discoveries using this technique was SN 2012cg (Silverman et al. 2012a), followed by several others (e.g., SN 2013ab, Blanchard et al. 2013; SN 2013dh, Kumar et al. 2013). Although multi-band follow-up photometry was not autonomously triggered for SN 2013dy on the night of discovery, it was triggered 2 days later. The trigger was not activated the first night because the SN was quite faint and multiple other (spurious) candidates were found in the discovery image. However, the autonomous trigger activated by the second KAIT image demonstrates that the software triggering capability functions well.

SN 2013dy was discovered (Casper et al. 2013) in an 18 s unfiltered KAIT image taken at 10:55:30 on 2013 July 10 (UT dates are used throughout) at $R = 17.19 \pm 0.05$ mag. We measure its J2000.0 coordinates to be $α = 22^h 18^m 17.603$, $δ = +40^\circ 34' 09'' 54'$, with an uncertainty of 0.15 in each coordinate. Figure 1 shows KAIT and the Sloan Digital Sky Survey (SDSS) finding chart near the SN location. SN 2013dy is 2.3 west and 26.4 north of the nucleus of the host galaxy NGC 7250, at a distance of 13.7 ± 3.0 Mpc (calculated from the Tully–Fisher relation; Tully et al. 2009), which gives the SN a projected distance of ~1.76 kpc from the nucleus. We note that there is a bright, blue region about 8.7 west and 6.4 south of the SN (projected distance ~0.71 kpc), which may be a star-forming region or merger (LEDA 214816; Paturel et al. 2000). It has been recently reported that the observed differences among SNe Ia may be tied to their birthplace environments (e.g., Kelly et al. 2010; Wang et al. 2013). However, it is unclear whether SN 2013dy has any connection with this star-forming region.

We obtained KAIT multi-band images almost every night for the following ~3 weeks, and they were reduced using our image-reduction pipeline (Ganeshalingam et al. 2010). Point-spread function photometry was then obtained using DAOPHOT (Stetson 1987) from the IDL Astronomy User’s Library.19 The SN instrumental magnitudes are calibrated to local SDSS standards transformed into the Landolt system.20 We applied an image-subtraction procedure to remove host-galaxy light from only the unfiltered images, because multi-band images without the SN are not yet available. However, KAIT has a relatively small pixel scale (0.78 pixel$^{-1}$), and the host background is quite uniform and faint in the KAIT images, so we believe that the contribution from the host galaxy is minor in all bands, especially considering the brightness of the SN. Comparisons of the subtracted and not subtracted unfiltered images yield nearly identical results (differences of ~0.1 mag or less).

Interestingly, an unfiltered prediscovery detection of SN 2013dy was obtained at 02:04:11 July 10 (Casper et al. 2013) with the 0.5 m reflector at Monte Agiiale Observatory as part of the Italian Supernova Search Project (ISSP). Additional confirmation images were taken on July 11 and 26. We have reprocessed the original images as part of this study. Owing to the relatively large pixel scale (232 pixel$^{-1}$), the SN is blended with host-galaxy light. Using a template image taken on 2011 August 4, we performed the same subtraction method as for the KAIT unfiltered images. We then obtained photometry with an aperture of radius 1.5 pixels, a reasonable size given the seeing and large pixel scale.

Additional multi-band photometry in Johnson–Cousins $BVRI$ was obtained with the Las Cumbres Observatory Global Telescope (LCOGT) network of robotic 1.0 m telescopes (Brown et al. 2013). The LCOGT instrumental magnitudes are calibrated to local SDSS standards, transformed to $BVRI$.21 Optical spectra of SN 2013dy were obtained on eight different nights with DEIMOS (Faber et al. 2003) on the Keck II Telescope (1.63 days), the 1.82 m Plaskett Telescope of the National Research Council of Canada (3.30 days), YFOSC on the 2.4 m telescope at LiJiang Gaomeigu Station of YNAO (4.76 days), the Kast double spectrograph (Miller & Stone 1993) on the Shane 3 m telescope at Lick Observatory (5.43 days), the FLOYDS robotic spectrograph (D. Sand et al., in preparation) on the LCOGT 2.0 m Faulkes Telescope North on Haleakala, Hawaii (7.50, 8.57, 10.57 days), and the Marcario Low-Resolution Spectrograph (Hill et al. 1998) on the 9.2 m Hobby–Eberly Telescope at McDonald Observatory (11.27 days). Data were reduced following standard techniques for CCD processing and analysis. The SN is near the western edge of the spiral arm wrapped around thehost galaxy NGC 7250, at a distance of 13.7 Mpc (calculated from the Tully–Fisher relation; Tully et al. 2009), which gives the SN a projected distance of ~1.76 kpc from the nucleus. We note that there is a bright, blue region about 8.7 west and 6.4 south of the SN (projected distance ~0.71 kpc), which may be a star-forming region or merger (LEDA 214816; Paturel et al. 2000). It has been recently reported that the observed differences among SNe Ia may be tied to their birthplace environments (e.g., Kelly et al. 2010; Wang et al. 2013). However, it is unclear whether SN 2013dy has any connection with this star-forming region.

We obtained KAIT multi-band images almost every night for the following ~3 weeks, and they were reduced using our image-reduction pipeline (Ganeshalingam et al. 2010). Point-spread function photometry was then obtained using DAOPHOT (Stetson 1987) from the IDL Astronomy User’s Library. The SN instrumental magnitudes are calibrated to local SDSS standards transformed into the Landolt system. We applied an image-subtraction procedure to remove host-galaxy light from only the unfiltered images, because multi-band images without the SN are not yet available. However, KAIT has a relatively small pixel scale (0.78 pixel$^{-1}$), and the host background is quite uniform and faint in the KAIT images, so we believe that the contribution from the host galaxy is minor in all bands, especially considering the brightness of the SN. Comparisons of the subtracted and not subtracted unfiltered images yield nearly identical results (differences of ~0.1 mag or less).

Interestingly, an unfiltered prediscovery detection of SN 2013dy was obtained at 02:04:11 July 10 (Casper et al. 2013) with the 0.5 m reflector at Monte Agliale Observatory as part of the Italian Supernova Search Project (ISSP). Additional confirmation images were taken on July 11 and 26. We have reprocessed the original images as part of this study. Owing to the relatively large pixel scale (232 pixel$^{-1}$), the SN is blended with host-galaxy light. Using a template image taken on 2011 August 4, we performed the same subtraction method as for the KAIT unfiltered images. We then obtained photometry with an aperture of radius 1.5 pixels, a reasonable size given the seeing and large pixel scale.

Additional multi-band photometry in Johnson–Cousins $BVRI$ was obtained with the Las Cumbres Observatory Global Telescope (LCOGT) network of robotic 1.0 m telescopes (Brown et al. 2013). The LCOGT instrumental magnitudes are calibrated to local SDSS standards, transformed to $BVRI$. Optical spectra of SN 2013dy were obtained on eight different nights with DEIMOS (Faber et al. 2003) on the Keck II Telescope (1.63 days), the 1.82 m Plaskett Telescope of the National Research Council of Canada (3.30 days), YFOSC on the 2.4 m telescope at LiJiang Gaomeigu Station of YNAO (4.76 days), the Kast double spectrograph (Miller & Stone 1993) on the Shane 3 m telescope at Lick Observatory (5.43 days), the FLOYDS robotic spectrograph (D. Sand et al., in preparation) on the LCOGT 2.0 m Faulkes Telescope North on Haleakala, Hawaii (7.50, 8.57, 10.57 days), and the Marcario Low-Resolution Spectrograph (Hill et al. 1998) on the 9.2 m Hobby–Eberly Telescope at McDonald Observatory (11.27 days). Data were reduced following standard techniques for CCD processing and analysis.

19 http://idlastro.gsfc.nasa.gov/

20 http://www.sdss.org/dr7/algorithms/sdssUBVRITransform.html#Jester2005

21 http://www.sdss.org/dr7/algorithms/sdssUBVRITransform.html#Jester2005
spectrum extraction using IRAF. The spectra were flux calibrated through observations of appropriate spectrophotometric standard stars.

3. ANALYSIS AND RESULTS

3.1. Light Curves

Figure 2 shows our BVRI and unfiltered light curves of SN 2013dy. Applying a low-order polynomial fit, we find that SN 2013dy reached a B-band peak magnitude of 13.28±0.03 on 2013 July 27.71 ± 0.30, ~17.7 days after first light. Assuming $E(B-V)_{MW} = 0.15$ mag (Schlegel et al. 1998), $E(B-V)_{host} = 0.15$ mag (see below), and $d = 13.7$ Mpc (Tully et al. 2009), this implies $M_B = -18.72 ± 0.03$ (statistical only) mag, which is ~0.5 mag dimmer than the typical SN Ia, but still within the range of a “normal” SN Ia. The unfiltered band reached a peak of 12.81 ± 0.03 mag, which means our first detection of the SN from the ISSP image (18.71 mag, with a limiting magnitude of ~19.5) was taken when the SN was at only ~0.43% of its peak brightness.

In order to determine the time of first light, one can assume that the SN luminosity scales as the surface area of the expanding fireball, and therefore increases quadratically with time ($L \propto t^2$, commonly known as the t^2 model; Arnett 1982; Riess et al. 1999; Nugent et al. 2011). We restrict our model fit to the unfiltered data, which have the best phase coverage. Although ISSP images are also unfiltered, there might be possible differences between the KAIT and ISSP effective bandpasses. Fortunately, the second and third ISSP observations are between KAIT observations, and the ISSP magnitudes are consistent with the KAIT light curve, suggesting that the ISSP unfiltered band is very close to that of KAIT. Moreover, we measured isolated reference stars in the ISSP images and compared their magnitudes with the same stars in the KAIT images, finding consistent results between the two telescopes with differences <0.04 mag. Thus, it is reasonable to combine the ISSP and KAIT unfiltered results.

Regardless, we first apply the fit only to KAIT fluxes in the first few days (before July 18). We find that a t^2 model cannot fit the data very well. We therefore free the exponent of the power law and obtain a best-fit value of $2.24 ± 0.08$, with a corresponding first-light time of $-2.14 ± 0.17$ days (relative to the first detection time, July 10.086). The exponent is about 3σ away from the t^2 model (marginally consistent). However, as can be seen from the residual plot in Figure 2, the first night of KAIT data is below the fit, indicating an even faster light curve. This becomes more drastic if we include the first ISSP detection, which is far below the extrapolation of the t^2 fit. Thus, we refit the fluxes including both ISSP and KAIT data, but restricted to data taken before July 14. We find the best-fit power-law exponent for these early data to be $1.15 ± 0.04$, with a corresponding first-light time of $-0.31 ± 0.05$ days. Note that the nondetection from KAIT on July 8.47 (limiting magnitude ~19.4) is consistent with both the t^2 fit and the $t^{2.24}$ fit.

The apparent change of the power-law indices indicates a varying power law of the early rising light curve. Hence, we adopt a broken power-law function, also widely used for fitting gamma-ray burst afterglows (e.g., Zheng et al. 2012):

$$f = \left(\frac{t - t_b}{t_0} \right)^{\alpha_1} \left[1 + \left(\frac{t - t_b}{t_0} \right)^{s(\alpha_1 - \alpha_2)} \right]^{-1/s},$$

(1)

where f is the flux, t_0 is the first-light time, t_b is the break time, α_1 and α_2 are the two power-law indices before and after the break, and s is a smoothing parameter. The final fit result gives $t_0 = -0.10 ± 0.05$ days, namely July 9.99, and $t_b = 3.14 ± 0.30$ days, $s = -6.32 ± 3.26$, $\alpha_1 = 0.88 ± 0.07$, and $\alpha_2 = 1.80 ± 0.10$, as shown in Figure 3.

With an estimated first-light time of ~0.10 days (2.4 hr), this is the earliest detection of any SNe Ia, even earlier than for SN 2011fe (detected only 11.0 hr after first light; Nugent et al. 2011) and SN 2009ig (detected 17 hr after first light; Foley et al. 2012). It also makes SN 2013dy a rare case with more than one detection within the initial day after first light: there are three epochs of detection within 1 day and five epochs within 1.5 days.

Our best-fit broken power-law model of the early light curve yields the following conclusions. (1) The t^2 model is not sufficient for every SN Ia; some SNe may have different power-law exponents describing their rise (see also Piro & Nakar 2012). (2) The rising exponent may vary with time. Perhaps the usual t^2 model works well for previous SNe Ia because those examples did not have more than one observation to constrain the power-law exponent within the first day. The varying exponent indicates that the very early fireball may exhibit significant changes in either the photospheric temperature, the velocity, or the fireball input energy during expansion. These changes may happen on a time scale of ~2–4 days after first light. The very early light curve before the break time may be the contribution from the
shock-heated cooling emission after shock breakout, which has a predicted rising index of 1.5 ($f \propto t^{1.5}$; see Equation (3) in Piro \& Nakar 2013). However, our observed power-law index is 0.88, smaller than predicted. The rising index also depends on underlying physical parameters; detailed analysis will be presented elsewhere.

Alternatively, the early-time observations constrain the emission from the ejecta, which can be used to limit the radius of the progenitor star as well as interaction with the circumstellar medium or a companion star (Kasen 2010). For SN 2013dy, the early ISSP unfiltered observation of \sim17.89 mag (corrected for extinction) at 0.10 days limits any emission from this process to $E_U \lesssim 2.6 \times 10^{40}$ erg s$^{-1}$ at optical wavelengths. Comparing these parameters with those of SN 2011fe, which has a constraint on its progenitor star $R_0 \lesssim 0.1 R_\odot$ (see Figure 4 of Nugent et al. 2011), our constraint for SN 2013dy is slightly weaker (factor of \sim2.6), and so we infer the radius of the progenitor star to be $R_0 \lesssim 0.25 R_\odot$. Even if we conservatively assume the first-light time to be earlier, the same time as the KAIT upper limit (July 8.47), we can still find that $R_0 \lesssim 0.35 R_\odot$, consistent with a white dwarf progenitor.

3.2. Spectra

Figure 4 shows our spectra of SN 2013dy from the first \sim2 weeks. Most exhibit narrow Na I D absorption from both the host galaxy and the Milky Way. The median redshift determined from these features is $z = 0.00383 \pm 0.00025$, consistent with the redshift given in SIMBAD (0.00389).

The equivalent width (EW) of Na I D absorption is often converted into reddening, but with large scatter over the empirical relationship (Poznanski et al. 2011). The median EW of Na I D from the host galaxy is measured to be \sim0.53 Å, which yields a range of possible reddening values around $E(B - V)_{\text{host}} = 0.15$ mag (Poznanski et al. 2011). For Milky Way extinction, the measured median EW of Na I D is \sim0.50 Å, corresponding to $E(B - V)_{\text{MW}} = 0.14$ mag, consistent with the value of $E(B - V)_{\text{MW}} = 0.15$ mag given by Schlegel et al. (1998); here we adopt the latter.

3.2.1. Species and Individual Lines

To help identify the species present in our spectra of SN 2013dy, we used the spectrum-synthesis code SYNAPPS (Thomas et al. 2011). A few examples of our fits are shown in Figure 4. Our first spectrum of SN 2013dy (1.63 days after...
first light) consists of absorption features from ions usually seen in SNe Ia (Ca II, Si II, Fe II, S II, and O I, as well as strong C II). All of these species have expansion velocities $\gtrsim 15,000$ km s$^{-1}$, similar to what was found in the earliest spectra of SN 2011fe (Parrent et al. 2012). Figure 5 shows our measurements of individual line velocities (see Silverman et al. 2012b for details).

In addition to the usual photospheric absorption component of the Ca II near-infrared triplet, SN 2013dy exhibits a high-velocity feature (HVF) in our early spectra having a velocity of $\sim 26,000$ km s$^{-1}$. Similar absorption is also seen in a few other well-observed SNe, including SN 2005cf (Wang et al. 2009) and SN 2012fr (e.g., Maund et al. 2013; Childress et al. 2013). This HVF appears to be detached from the rest of the photosphere, slowing down to $\sim 23,000$ km s$^{-1}$ after 3 days (measured from the first spectrum) and maintaining that velocity through at least 11 days. As for Si II $\lambda 6355$, the velocity continuously slow down from $\sim 18,500$ km s$^{-1}$ at 1.63 days to $\sim 11,400$ km s$^{-1}$ at 11.27 days.

Interestingly, our first spectrum exhibits a strong line ~ 245 Å redward of the usual prominent Si II $\lambda 6355$. It is very likely to be the C II $\lambda 6580$ line; a weaker C II $\lambda 7234$ feature is also visible. Such strong C II lines are not usually seen in normal SNe Ia (Silverman & Filippenko 2012), but similar features have been observed in a few super-Chandrasekhar mass examples. Though C II is distinguishably detected in over 1/4 of all normal SNe Ia (e.g., Parrent et al. 2011; Silverman & Filippenko 2012), it is usually not very strong. However, spectra of other SNe Ia have generally not been obtained as early as our spectra of SN 2013dy. In fact, the C II $\lambda 6580$ line weakens rapidly in SN 2013dy; it became much weaker by 3.30 days, and it is undetectable after an age of \sim 1 week. Thus, the early discovery of SNe Ia and timely spectroscopic observations are crucial for detecting the C II features and studying their evolution.

The velocity of C II $\lambda 7234$ is slightly lower than that of C II $\lambda 6580$ in the 1.63 day spectrum, and both are a bit below that of the photospheric component of Si II $\lambda 6355$, as seen in previous work (e.g., Silverman & Filippenko 2012). But after \sim 3 days, their velocities are similar to each other. The presence of C II with velocity comparable to that of Si II gives direct evidence that there exists some amount of unburned material. Moreover, the presence of both O I (often seen in normal SNe Ia) and C II suggests that the progenitor is probably a C+O white dwarf, consistent with the analysis of our early-time light curve.

3.2.2. Classification

Using the SuperNova IDentification code (Blondin & Tonry 2007), we find that SN 2013dy is spectroscopically similar to several normal SNe Ia, though some of our early spectra (7.50, 8.57, 10.57 days) also resemble those of the peculiar SN 1999aa and similar events (e.g., Li et al. 2001). Since the peak B-band brightness lies in the range of typical SN Ia luminosities, SN 2013dy is probably a normal SN Ia.

4. CONCLUSIONS

In this Letter we present optical photometry and spectroscopy of the Type Ia SN 2013dy, the earliest detection of an SN Ia thus far. The rising light curve shows a variable power-law exponent and its early-time spectrum exhibits a strong C II feature, both of which are not seen in previous studies of normal SNe Ia. Such well-studied objects will help us understand the underlying nature of SNe Ia.

A.V.F.’s group (and KAIT) at UC Berkeley have received financial assistance from the TABASGO Foundation, the Sylvia and Jim Katzman Foundation, the Christopher R. Redlich Fund, and NSF grant AST-1211916. J.M.S. is supported by an NSF postdoctoral fellowship under award AST-1302771. X. Wang acknowledges NNSFC grants 11073013 and 11178003, the Foundation of Tsinghua University (2011Z02170), and the Major State Basic Research Development Program (2013CB834903). J.V. is grateful for Hungarian OTKA grant NN 107637. J.C.W. acknowledge support from NSF AST-1109801. This research used resources of NERSC, supported by DoE under Contract DE-AC02-05CH11231. Some data were obtained at the W. M. Keck Observatory, which was made possible by the generous financial support of the W. M. Keck Foundation. We thank the staffs of the various observatories at which data were obtained. We also thank the anonymous referee for useful suggestions which improved the Letter.

REFERENCES

Arnett, W. D. 1982, ApJ, 253, 785
Blanchard, P., Zheng, W., Cenko, S. B., et al. 2013, CBET, 3422, 1
Blondin, S., & Tonry, J. L. 2007, ApJ, 666, 1024
Brown, T. M., Baliber, N., Bianco, F. B., et al. 2013, PASP, 125, 1031
Childress, M., Zheng, W., Li, W., Filippenko, A. V., & Cenko, S. B. 2013, CBET, 3588, 1
Childress, M., Scalzo, R. A., Sim, S. A., et al. 2013, ApJ, 770, 29
Colgate, S. A., & McKee, C. 1969, ApJ, 157, 623
Fabers, S. M., Phillips, A. C., Kibbick, R. I., et al. 2003, Proc. SPIE, 4841, 1657
Filippenko, A. V., Li, W. D., Treffers, R. R., & Modjaz, M. 2001, in ASP Conf. Ser. 246, Small-Telescope Astronomy on Global Scales, ed. B. Paczynski, W. P. Chen, & C. Lemme (San Francisco, CA: ASP), 121
Foley, R. J., Challis, P. J., Filippenko, A. V., et al. 2012, ApJ, 744, 38
Ganeshalingam, M., Li, W., Filippenko, A. V., et al. 2010, ApJS, 190, 418
Garavini, G., Aldering, G., Amadon, A., et al. 2005, AJ, 130, 2278
Hicken, M., Garnavich, P. M., Prieto, J. L., et al. 2007, ApJL, 669, L17
Hill, G. J., Nicklas, H. E., MacQueen, P. J., et al. 1998, Proc. SPIE, 3555, 375
Hillebrandt, W., & Niemeyer, J. C. 2000, ARA&A, 38, 191
Howell, D. A., Sullivan, M., Nugent, P. E., et al. 2006, Natur, 443, 308
