Research article

Evaluation of chemical composition, in vitro antioxidant, and antidiabetic activities of solvent extracts of *Irvingia gabonensis* leaves

Francis O. Atanu,*, Arinzechukwu Ikeojukwu, Peter A. Owolabi, Oghenetega J. Avwioroko

ARTICLE INFO

Keywords:
Irvingia gabonensis diabetes α-Amylase α-Glucosidase Antioxidant

ABSTRACT

Irvingia gabonensis commonly referred to as wild mango or ogbono is a tropical plant with both nutritional and medicinal uses. The present study was designed to evaluate the chemical composition, in vitro antioxidant activity, and inhibitory activity of carbohydrate hydrolyzing enzymes related to diabetes by different extracts of the plant. From the results of the study, Total Phenolic Content (TPC) was highest in the aqueous and ethanol extracts (367.30 ± 0.00 mg/100g GAE) compared to the chloroform and n-hexane extracts whereas the Total Flavonoid Content (TFC) was highest (230.69 ± 0.18 mg/100g QE) in the ethanol extract. Analysis of the in vitro antioxidant activity showed that the ethanol extract also possessed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (IC$_{50}$: 21.42 ± 0.05 μg/ml) and hydroxyl radical scavenging activity (81.43 ± 0.11%) compared to other solvent extracts. The aqueous extract had the highest (23.91 ± 0.04 mM Fe$^{++}$ equivalent) ferric antioxidant reducing power (FRAP). However, the antioxidant activity of the extracts was significantly lower than that of the reference compounds used for the study (butylated hydroxytoluene and Gallic acid). In vitro antidiabetic activity of the extracts was measured based on inhibition of α-amylase and α-glucosidase. The aqueous extract had the highest α-amylase and α-glucosidase inhibitory activity followed by the ethanol extract compared to the chloroform and n-hexane extracts. The inhibitory activity of the aqueous extract against both enzymes was higher compared to the reference compound Acarbose. Gas Chromatography-Mass Spectrometry analysis of the extracts revealed the presence of chemical constituents including fatty acids, vitamin, phytosterols, aromatic compounds, glycosides. The interaction of these compounds with α-amylase and α-glucosidase was evaluated in silico by molecular docking. Phytosterols namely, campesterol, stigmasterol and γ-sitosterol had the best binding affinities to α-amylase and α-glucosidase. In conclusion, the results of this study revealed that the aqueous and ethanol extracts of *Irvingia gabonensis* had the highest phenolic content, antioxidant activity, and in vitro antidiabetic activity. These results offer a scientific explanation for the mode of preparation and traditional use of the plant in the treatment of diabetes.

1. Introduction

Diabetes mellitus (DM) is a leading health problem in low and middle-income countries (Nguelefack et al., 2020). In 2019 DM caused 4.3 million deaths worldwide. Current statistics reveal that 463 million adults are currently diabetic and the number of affected persons is expected to double by 2045 (Nguelefack et al., 2020). The disease is therefore a public emergency. DM is characterized by a chronic disorder in the metabolism of carbohydrates, proteins, and lipids resulting from a deficiency in insulin production (type 1 diabetes) or insulin resistance (type 2 diabetes) leading to chronic hyperglycemia (Jemaa et al., 2017; Kifle et al., 2021; Atanu et al., 2018). Type 2 diabetes which is predominant in adults appears to be more common than type 1 which has its onset in adolescence. The common denominator in both types of diabetes is hyperglycemia which must be routinely monitored. The World Health Organization (WHO) reports that DM is responsible for significant economic loss accounted for by medical costs paid by patients, reduction of man-hours, and possible loss of manpower as a result of ill-health (Quan et al., 2019). DM often leads to complications such nephropathy, ulcer, cardiovascular disease, retinopathy, and nerve damage. Current treatment options available for DM include the use of oral hypoglycemic drugs, controlled exercise, diet modification, use of natural products from plants, and insulin therapy. However, due to the rising cases of DM, there is a need for new drugs which have better efficacy and are less toxic.

* Corresponding author.
 E-mail address: atanufo@gmail.com (F.O. Atanu).

https://doi.org/10.1016/j.heliyon.2022.e09922
Received 20 September 2021; Received in revised form 28 May 2022; Accepted 6 July 2022
2405-8440/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Carbohydrates in form of starch and simple sugars constitute a major part of the human diet. The recommended daily intake of carbohydrates is 40–45% which is sufficient to fulfill the energy needs of the human body. Breakdown of the starch produces monosaccharides which are further catalyzed to release energy or stored as glycogen (Majeed et al., 2020; Awvioroko et al., 2019). In addition, the breakdown of starch after a meal leads to an increase in postprandial glucose concentration leading to hyperglycemia. Diabetes control hyperglycemia by engaging in glycemic control through fasting however, the effectiveness of this strategy is limited (Nguelefack et al., 2020). A potent approach to checking postprandial hyperglycemia in diabetics is by slowing the digestion of carbohydrates by inhibiting pancreatic α-amylase and intestinal α-glucosidase. Current prescription drugs for inhibition of α-glucosidase and α-amylase include such as acarbose, miglitol, and voglibose however, there are reported cases of adverse effects (Alsightant et al., 2019). Chronic hyperglycemia is positively correlated to increased production of reactive oxygen species (ROS) leading to oxidative stress. Consequently, ROS oxidizes cellular components leading to impairment of cell function. Indeed, an impairment of redox status has been reported in diabetic patients while antioxidants have been shown to reverse the complication of diabetes (Misbah et al., 2013).

Medicinal plants are commonly used in low-income countries for the treatment of human diseases. Phytochemicals from plants are believed to be safe and effective with the added advantage of being affordable (Kifle et al., 2021). To date, more than 200 pure compounds with antihyperglycemic activity have been isolated from plants (Misbah et al., 2013).

Irvingia gabonensis, an African plant commonly referred to as ‘bush mango’. It is harnessed for both medicinal and nutritional benefits (Mateus-Reguengo et al., 2020). Traditionally the leaves of the plant is used for the treatment of diabetes while the seeds are used for ‘African soup’ and is believed to have antidiabetic effects. Based on available experimental evidence, it is proven that the leaves and stem extracts of Irvingia regulate blood glucose and lipid profile (Sulaimon et al., 2015). In a clinical study, seeds of Irvingia gabonensis were shown to cause a reduction in plasma lipids and an increase in HDL-cholesterol (Adamson et al., 1990). Similar results were obtained in a randomized double-blind, placebo-controlled clinical trial which revealed that patients fed with Irvingia gabonensis for 90 days had reduced waist circumference, glucose, and blood lipids (Méndez-Del Villar et al., 2018). In a report by Omoruyi & Adamson (1993), fiber extract from Irvingia gabonensis was shown to elevate the activities of hepatic glycolytic enzymes with a concomitant elevation of glycogen. Several studies have affirmed the effectiveness of extracts from Irvingia gabonensis against toxicity from various chemical agents (Gbadegesin et al., 2014; Olorundare et al., 2020a, 2020b).

Therefore, the present study was designed to evaluate the chemical composition, in vitro antioxidant activity, and effect of different solvent extracts from leaves of Irvingia gabonensis on glucose metabolizing enzymes linked to diabetes mellitus.

2. Materials and methods

2.1. Chemicals

α-amylase, α-glucosidase, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 1,10 phenaathroline, dinitrosalicylic acid, p-nitrophenyl-α-D-glycopyranoside, gallic acid, quercetin, and butylated hydroxytoluene were purchased from Sigma Aldrich chemical company (St. Louis, MO, USA). Ethanol, chloroform, and n-hexane were products of British Drug House (BDH). Every other chemical used for the study was of analytical grade purchased from Fisher Scientific (UK).

2.2. Collection and identification of the plant

Leaves of Irvingia gabonensis were collected from Egbe village in Kogi State, Nigeria. The plant was identified and authenticated at the Department of Plant Science and Biotechnology, Kogi State University, Anyigba.

2.3. Preparation of plant material

The leaves were washed with water and air-dried to constant weight at room temperature. Dried leaves were pulverized with the aid of an electric blender. The pulverized leaves were soaked (17.3 % w/v) separately in water, ethanol, chloroform, and n-hexane for two days. The suspension was filtered and the filtrate was concentrated in a water bath.

2.4. Test for total phenolic content

Total phenolic content (TPC) was measured using the Folin-Ciocaltel method described by Das et al. (2019). Dilutions of plant extracts (50 μl) were mixed with 150 μl of Folin-Ciocalteau reagent followed by the addition of 600 μl of 15% Na₂CO₃ solution and incubated for 2 h. Absorbance was taken at 760 nm. A standard calibration plot was prepared using gallic acid and the total phenolic content of extracts was expressed as mg Gallic acid equivalents (GAE)/100 g of extract (Samatha et al., 2012).

2.5. Test for total flavonoid content

Total flavonoid content (TFC) was determined by the aluminum chloride method described by Das et al. (2019). Plant extracts were diluted and 1 ml extract was added to 4 ml of distilled water in a volumetric flask followed by the addition of 0.3 ml of 5% NaNO₂. The reaction mixture was allowed to stand for 5 min, and then 0.3 ml of 10% AlCl₃ was added. The reaction was incubated for 1 min then 2 ml of 1 M NaOH was added and the total volume was made up to 10 ml with distilled water. Absorbance was read at 510 nm. A standard calibration plot was prepared using Quercetin and total flavonoid content of extracts was expressed as mg Quercetin equivalents (QE)/100 g of extract (Samatha et al., 2012).

2.6. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of plant extracts was determined based on the method reported by Shah et al. (2017). An aliquot 0.3 ml of various concentrations of plant extract ranging between 10–50 μg/ml were mixed with 2.7 ml of DPPH (6 x 10⁻⁵ M) in methanol and left in the dark for 1 h. Absorbance of the reaction mixture was taken at 512 nm. Butylated hydroxytoluene (BHT) was used standard antioxidant compound. The radical scavenging activity was calculated according to Equation 1 below:

\[
\% \text{DPPH radical scavenging activity} = \frac{\text{ABScontrol} - \text{ABSample}}{\text{ABScontrol}} \times 100
\]

where ABScontrol is the absorbance value of blank and ABSsample is the absorbance value of extract or standard.

The potency of the biological sample (plant extracts) and standard (BHT) was determined based on the concentration of the sample at which 50% radical inhibition (IC₅₀) was observed as extrapolated from a linear regression analysis of percentage inhibition plotted against sample concentration.

2.6.1. Ferric reducing antioxidant power (FRAP)

Ferric Reducing Antioxidant Power (FRAP) of the extracts was determined using the Benzie and Strain method (1996). Briefly, acetate buffer (Reagent A) was prepared by dissolving 3.1g of sodium acetate trihydrate in 16 ml of glacial acetic acid pH 3.6. Reagent B was prepared from a combination of TPTZ (2, 4, 6-tripryidyl-s-triazine) and 10 mM in 40 mM HCl. Reagent C was a solution of 20 mM FeCl₃·6H₂O. FRAP reagent was constituted by mixing Reagents A, B, and C in a ratio of 10:1:1. FRAP reagent (3.6 ml) was added to distilled water (0.4 ml) and mixed with 80 ml of plant extract. The reaction was incubated at 37 °C for 10
2.11. In silico experiments

The hydroxyl radical scavenging activity of extracts from *Irvingia gabonensis* was determined according to the method described by Kim et al. (2020). In order to generate hydroxyl radical 1.0 mL of 1,10-phenanthroline was mixed with 2.0 mL of 0.2 M sodium phosphate buffer (pH 7.4) and 1.0 mL of 0.75 mM FeSO₄ and 1.0 mL of H₂O₂. The mixture was incubated with 1 mL of sample for 10 min at 37 °C. Gallic acid was used as standard. Absorbance was measured at 510 nm and the hydroxyl radical scavenging activity was calculated according to Equation 2 below:

\[
\% \text{ OH radical scavenging activity} = \frac{\text{ABSsample} - \text{ABScontrol}}{\text{ABScontrol}} \times 100
\]

where ABSsample is the absorbance of the extract or standard and ABScontrol is the absorbance of the blank.

2.12. Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics version 20. Results were presented as mean ± SEM of four determinations. The differences between samples were analyzed by one-way analysis of variance (ANOVA). Duncan’s POST-HOC test was performed to determine statistical significance at p-value of 0.05.

3. Results and discussion

3.1. Phenolic and flavonoid content of *Irvingia gabonensis*

Four solvent extracts namely: aqueous, ethanol, chloroform and n-hexane were used for this study. The total phenolic and flavonoid contents are as shown in Figure 1. Total phenolic contents (TPC) of the aqueous and ethanol extracts were significantly higher than TPC of the chloroform and n-hexane extracts (p < 0.05). The TPC are in the following order: Aqueous > Ethanol > Chloroform > n-hexane. Similarly, the total flavonoid contents (TFC) of four extracts were statistically different (p < 0.05). The TFC of the extracts is as follows: Ethanol > Aqueous > Chloroform > n-hexane. The most important variable in the extraction process in this study is the choice of solvent. The different solvent extracts demonstrated variable phenolic and flavonoid contents which reflect their ability to selectively solubilize certain phytochemicals. The high levels of phenolic content of the aqueous and ethanol extracts may suggest that they are rich sources of nutraceuticals. Moreover, ethanol and water are safe for consumption and inexpensive solvents that are most commonly used for extracting plants for herbal medicines. Our results are in agreement with earlier studies that confirmed the presence of Phenolic and flavonoid compounds in the leaves of *Irvingia gabonensis* (Mgbemena et al., 2019; Idume and Barney, 2018; Ojemekele et al., 2017; Ewere et al., 2016).

3.2. Antioxidant activity of solvent extracts of *Irvingia gabonensis*

In vitro antioxidant activity of the solvent extracts are presented in Table 1. All extracts showed antioxidant activity. The results of the study reveal that the ethanol extract had the strongest DPPH radical inhibitory activity which was comparable to butylated hydroxytoluene (BHT) (p > 0.05). However, the DPPH radical inhibitory activity of the ethanol extract (IC₅₀: 21.42 ± 0.05 μg/ml) was significantly higher (p < 0.05) than that of the aqueous (IC₅₀: 30.74 ± 0.21 μg/ml), chloroform (IC₅₀: 36.62 ± 0.01 μg/ml), and n-hexane (IC₅₀: 31.41 ± 0.02 μg/ml) extracts. FRAP value expressed as concentration of mM Fe⁺⁺ equivalents in solution was highest for the aqueous extracts (23.91 ± 0.04 mM Fe⁺⁺ equivalent) but was significantly lower (p < 0.05) than the value for gallic acid (28.08 ± 0.01 mM Fe⁺⁺ equivalent). The n-hexane extract had the least FRAP value of 11.57 ± 0.02 mM Fe⁺⁺ equivalent. Analysis of the hydroxyl radical inhibitory activity of the extracts revealed that the ethanol (81.43 ± 0.11%) and chloroform extracts (69.66 ± 0.53%) had the strongest inhibitory activity and were significantly higher (p < 0.05) than activities recorded for the aqueous and n-hexane extracts (23.02 ± 0.32 and 23.77 ± 0.32% respectively). Concerning the high phenolic contents of the aqueous and ethanol extracts, this pattern of result is

Data Bank (PDB). The structures were cleaned by removing water molecules, ligands, and other co-crystallized molecules. A grid box with dimensions 26.3 × 25.0 × 25.8 for α-amylase and 25.0 × 25.0 × 25.0 for α-glucosidase was assigned prior to docking. Structures of the docked ligands were visualized using PyMol and Discovery studio 5.0.
Figure 1. Total phenolic and flavonoid content of solvent extracts of *Irvingia gabonensis*. Results are presented as mean ± SEM of four determinations. Bars for the same parameter with different superscripts are statistically significantly different (p < 0.05).

Sample	IC$_{50}$ Inhibition of DPPH radical (μg/ml)	FRAP value (mM Fe$^{2+}$ equivalent)	Hydroxyl radical inhibition (%)
Aqueous extract	30.74 ± 0.21*	23.91 ± 0.04*	23.02 ± 0.32*
Ethanol extract	21.42 ± 0.05*	22.25 ± 0.02*	81.43 ± 0.11*
Chloroform extract	36.62 ± 0.01*	22.34 ± 0.04*	69.66 ± 0.53*
N-Hexane extract	31.41 ± 0.02*	11.57 ± 0.02*	23.77 ± 0.32*
Reference	BHT: 21.73 ± 0.06*	GA*: 28.08 ± 0.01*	GA*: 100.00 ± 0.00*

Values are presented as mean ± SEM of four determinations. Bars for the same parameter with different superscripts are statistically significantly different (p < 0.05). BHT: Butylated hydroxytoluene; GA: Gallic acid.

3.3. In vitro antidiabetic activity

Management of blood glucose is one of the effective strategies for combating diabetes mellitus. Postprandial blood glucose level rises due to the activity of carbohydrate hydrolyzing enzymes: α-amylase and α-glucosidase. Inhibitors delay the release of monosaccharides from polysaccharides present in food (Oboh et al., 2017). By these mechanisms, they can neutralize free radicals (Quan et al., 2019). The results of this work mirror those of Ojemekele et al. (2017) and Ewere et al. (2016).

3.4. Bioactive compounds identified by GC-MS fingerprinting

Figures 3 and 4 depict the chromatograms for the gas chromatography analysis for the aqueous and ethanol extracts respectively. Figures 3 and 4 show the mass spectrometry data for the 34 compounds identified in the aqueous and ethanol extracts. The compounds belong to different classes including fatty acids, sterols, glycosides, and esters. Some of the compounds found in high concentration in the aqueous extracts were Propyramide N,N-dimethyl-1, 4H-Pyran-4-one 2,3-dihydro-3,5-dihydropyrido-6-methyl-, catechol, 3-Methyl-2-furoic acid, 1,2,3-Benzenetriol, and Carboxonic acid, 2-ethylhexyl pentadecy ester (Table 2). The ethanol extract on the other hand possessed high concentrations of α-Hexadecanoic acid [1,2,5]Oxadiazolo[3,4-b][1,4]diazocine-5,7(4H, 6H)-dione, 8,9-dihydro,
Cyclohexane, 1-ethenyl-1-methyl-2, 4-bis(1-methylethenyl)-[1S-(1,alpha.,2. beta.,4. beta.)]-, oleic acid and ethyl oleate (Table 2). Several plants possessing some of these phytochemicals have been reported to possess different pharmacological benefits such as anticancer, antiinflammatory, antioxidant, antidiabetic and hypolipidemic effects (Paudel et al., 2018; Naz et al., 2020; Batiha et al., 2020; Nokhala et al., 2020; Al-Nemari et al., 2020; Anigboro et al., 2021). Therefore, the presence of these compounds in extracts of *Irvingia gabonensis* may reflect the variety of pharmacological benefits attributed to the plant.

3.5. Analysis of molecular interaction

Docking studies were performed to predict the strength and type of interaction between the compounds identified by GC-MS and target proteins: α-amylase and α-glucosidase (Table 3). All compounds showed binding affinity to α-amylase and α-glucosidase. Stigmasterol showed the strongest binding affinity to both α-amylase (9.8 kcal/mol) and α-glucosidase (9.7 kcal/mol). Structurally related compounds of the phytosterol family namely campsterol and γ-Sitosterol also showed good

Figure 2. Inhibition of α-amylase and α-glucosidase by solvent extracts of *Irvingia gabonensis*. Results are presented as mean ± SEM of four determinations. Bars for the same parameter with different superscripts are statistically significantly different (p < 0.05).

Figure 3. Chromatogram of gas chromatography analysis of aqueous extracts of *Irvingia gabonensis*.
Figure 4. Chromatogram of gas chromatography analysis of ethanol extracts of *Irvingia gabonensis*.

Table 2. Chemical composition of solvent extracts *Irvingia gabonensis*.

S.No.	Retention time (min)	PubChem ID	Compound	Area %	Aqueous	Ethanol
1	3.370	77487	Butanedioic acid, monomethyl ester		2.04	
2	3.408	12965	Propanamide, N,N-dimethyl-		8.25	
3	3.691	119838	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-		19.68	2.33
4	3.980	289	Catechol		7.43	
5	4.146	78127	3-Methyl-2-furoic acid		10.76	-
6	4.403	785	Hydroquinone		2.47	-
7	4.515	222385	Erythritol		2.38	-
8	4.654	12570	Phenol, 2-propyl-		5.01	-
9	5.002	1057	1,2,3-benzenetriol		8.27	-
10	5.414	536755	1-Nitro-2-acetamido-1,2-dideoxy-d-glucitol		2.19	-
11	5.601	5353029	3-Cyclopentylpropionic acid, oct-3-en-2-yl ester		2.13	-
12	6.317	14035098	Butyrovanillone		2.03	-
13	6.499	14512	4(1H)-Pyrimidinone, 6-hydroxy-		2.78	-
14	6.601	91693131	Carbonic acid, 2-ethylhexyl pentadecyl ester		6.79	-
15	6.847	139926	Benzene, 1-(1,1-dimethylethoxy)-4-methyl-		1.87	-
16	7.633		Benzenecarboxylic acid, 4-hydroxy-3-methoxy-, methyl ester		2.18	-
17	8.115	85214	6-Hydroxy-4,4,7a-trimethyl-5,6,7,7-alpha-tetrahydrobenzofuran-2(4H)-one		6.62	-
18	8.671	10446	Neophytadiene		-	1.62
19	9.976	985	n-Hexadecanoic acid		-	8.46

(continued on next page)
S.No.	PubChem ID	Compound	Docking score (kcal/mol)	Area %
			α-amylase	
			α-glucosidase	
1	77487	Butanedioic acid, monomethyl ester	4.3	-
2	12965	Propanamide, N,N-dimethyl-	3.6	-
3	119838	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	5.0	-
4	289	Catechol	5.0	-
5	78127	3-Methyl-2-furoic acid	5.1	-
6	785	Hydroquinone	4.8	-
7	222285	Erythritol	4.0	-
8	12570	Phenol, 2-propyl-	5.6	-
9	1057	1,2,3-Benzetrietol	5.1	-
10	536755	1-Nitro-2-acetamido-1,2-diroyoxy-d-glucitol	5.6	-
11	5353029	3-Cycloproxypropionic acid, oct-3-en-2-yl ester	7.0	-
12	14035098	Butyrovanillione	6.4	-
13	14512	4(1H)-Pyrimidinone, 6-hydroxy-	4.7	-
14	91693131	Carbonic acid, 2-ethylhexyl pentadecyl ester	5.7	-
15	139926	Benzene, 1-(1,1-dimethylethoxy)-4-methyl-	5.9	-
16	14334	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	7.3	-
17	85214	6-Hydroxy-4,4,7a-trimethyl-5,6,7,7 a-tetrahydrobenzofuran-2(4H)-one	5.9	-
18	10446	Neophytiadiene	6.2	-
19	985	n-Hexadecanoic acid	5.3	-
20	6818	1,2-Benzenedicarboxylic acid, butyl 2-ethylhexyl ester	6.8	-
21	12366	Hexadecanoic acid, ethyl ester	5.8	-
22	5280435	Phytol	6.3	-
23	136654713	[1,2,5]Oxadiazolo[3,4-b][1,4]diazocine-5,7(4H,6H)-dione, 8,9-dihydro	6.4	-
24	5282761	cis-Vaccenic acid	5.6	-
25	445639	Oleic Acid	6.1	-
26	5363269	Ethyl Oleate	5.7	-
27	123409	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	5.6	-
28	5364643	cis-9-Hexadecen	5.3	-
29	638072	Squalene	7.3	-
30	9859094	Cyclohexane, 1-ethyl-1-methyl-2, 4-bis(1-methylethenyl)-, [1S-(1,1alpha,2-beta,4,4-beta)]-	7.0	-
31	2116	DL-alpha-Tocopherol	8.0	-
32	173183	Campesterol	9.5	-
33	5280794	Stigmasterol	9.8	-
34	457801	γ-Sitosterol	9.5	-
35	41774	Acarbose	7.9	-
binding affinity to both enzymes (Table 3). The analysis of the interaction pattern of the compounds with the enzymes shows the interaction was majorly driven by hydrophobic factors.

Campsterol interacted with the amino acids at the binding site of α-amylase. The binding was stabilized by π-alkyl interactions with TRP59, HIS201, π-δ interaction with TYR62, and alkyl interactions with LEU162, VAL163, and ALA198 (Figure 5a). Stigmasterol bound to α-amylase and formed π-δ and π-alkyl interactions with TRP59, the ligand also formed alkyl interactions with LEU162, VAL163, LEU165, and ALA198. A single H-bond was formed between stigmasterol and GLU233 with a bond length of 2.13Å (Figure 5b).

α-Glucosidase and γ-sitosterol formed a complex majorly via π-alkyl interactions with TYR1251, TRP1355, TRP1369, TRP1418, TRP1523, PHE1559, and HIS1584. One π-δ bond was found between γ-sitosterol and TYR1251. Stigmasterol on the other hand interacted with two amino acids of α-glucosidase namely: TRP1369 (π-alkyl and π-δ interactions) and PHE1559 (π-alkyl interaction).

Phenolic compounds and phytosterols found in plants are known to possess pharmacological effects. Phenolic compounds have proven antidiabetic effect through mechanisms that involve glycemic control (Kim et al., 2016; Lin et al., 2016). Similarly, phytosterols have been shown to possess antidiabetic and lipid lowering effects (Cedó et al., 2019; Vezza et al., 2020).

4. Conclusion

In summary, the present work evaluated the chemical composition of solvent extracts of *Irvingia gabonensis* leaves, determined the antioxidant and α-amylase and α-glucosidase inhibitory activity of the extracts. The results revealed that the aqueous and ethanol extracts had high phenolic content, antioxidant and α-amylase, and α-glucosidase inhibitory activity. It is concluded that the inhibitory effects of the plant extracts on enzymes linked to diabetes namely, α-amylase and α-glucosidase could be due to its phenolic content as well as other bioactive compounds identified by GC-MS analysis. This study provides evidence that inhibition of α-amylase and α-glucosidase is a mechanism by which *Irvingia gabonensis* exerts its antidiabetic effects.

Declarations

Author contribution statement

Francis O. Atanu: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.
Arinzechukwu Ieokejukwu, Peter A. Owolabi: Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.
Oghenetega J. Avwioroko: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement
Data is available from authors upon request.

Declaration of interests statement
The authors declare no conflict of interest.

Additional information
No additional information is available for this paper.

Acknowledgements
The authors thank Landmark University Omu-Aran for granting access to their facilities.

References
Adamson, I., Okafor, C., Abu-Bakare, A., 1990. A supplement of Dikanut (Irvingia gabonensis) improves treatment of type II diabetes. Afr. J. Med. 9 (2), 108–115.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Al-Nemari, R., Al-Senaidy, A., Semlali, A., Ismael, M., Badjah-Hadj-Ahmed, A.Y., Ben Naz, R., Igarashi, I., 2020. Gas chromatography-mass spectrometry, α-amylase: spectroscopic approach coupled with molecular docking. Biochem. Biophys. Res. Commun., 1085674.
Samatha, T., Shyamsundarachary, R., Srinivas, P., Swamy, N.R., 2012. Quantification of total phenolics and total flavonoid contents in extracts of oroxylix indicum I. Kurz. Asian J. Pharmaceut. Clin. Res. 5 (Suppl 4), 177–179.

Shah, M.D., D’Souza, U., Iqbal, M., 2017. The potential protective effect of Commelina nudiflora L. against carbon tetrachloride (CCL4)-induced hepatotoxicity in rats, mediated by suppression of oxidative stress and inflammation. Environ. Health Prev. Med. 22 (1), 66.

Sulaimon, A.O., Auna, T., Hassan, A.T., 2015. Evaluation of antidiabetic activity of Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) leaf and bark in alloxan induced diabetic rats. Biosciences Research in Today’s World 1 (1), 84–89.

Vezza, T., Canet, F., de Maron, A.M., Banuls, C., Rocha, M., Víctor, V.M., 2020. Phytosterols: nutritional health players in the management of obesity and its related disorders. Antioxidants 9 (12), 1266.