The Sound Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents

Timothy J. Crone*, William S. D. Wilcock, Andrew H. Barclay, Jeffrey D. Parsons

School of Oceanography, University of Washington, Seattle, Washington, United States of America

Hydrothermal flow through seafloor black smoker vents is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these vents radiate significant acoustic energy. The sounds contain a broadband component and narrowband tones which are indicative of resonance. The amplitude of the broadband component shows tidal modulation which is indicative of discharge rate variations related to the mechanics of tidal loading. Vent sounds will provide researchers with new ways to study flow through sulfide structures, and may provide some local organisms with behavioral or navigational cues.

Citation: Crone TJ, Wilcock WSD, Barclay AH, Parsons JD (2006) The Sound Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents. PLoS ONE 1(1): e133. doi:10.1371/journal.pone.0000133

INTRODUCTION

Mid-Ocean ridge hydrothermal systems support rich communities of chemosynthetic organisms and are conduits for large heat and chemical exchanges between young oceanic lithosphere and the ocean. On a global scale the time-averaged hydrothermal heat flux and many chemical fluxes are well constrained [1]. On local scales these fluxes are temporally and spatially variable [2–4], but the variations are poorly quantified because there are few time-series measurements of fluid flow with which to integrate temperature and chemical observations. While time-series measurements of flow have been obtained in low-temperature vents [4,5], and point measurements have been obtained in black smokers [6,7], no time-series measurements of black smoker flow exist. High temperatures, low pH, and mineral precipitation limit the long-term usefulness of invasive flow measurement techniques commonly employed in these environments.

The development of a non-invasive flow measurement technique could solve this problem and enable the collection of extended time-series flow data. One proposed method [8] would use passive acoustic measurements and capitalize on the potential for fluid flow to produce sound [9]. Passive acoustic measurements near black smokers could provide flow rate information if flow-related sounds can be detected, and if a relationship between flow rate and acoustics can be established. Point measurements of flow using an invasive measurement technique [6] could be used to convert time-series measurements of acoustically-determined relative flow rates into absolute measurements.

While previous studies have noted an apparent increase in ambient noise within several hundred meters of two hydrothermal vent sites [10,11], another study found no conclusive evidence that hydrothermal vents generate sound [8]. In this report we present the first detailed description of the localized sound generation by two mid-ocean ridge black smoker hydrothermal vents. We discuss the likely sound source mechanisms that operate to produce both broadband and narrowband signals. We then discuss the tidal variations observed in one record, which we argue is related to tidal forces affecting fluid circulation within the hydrothermal system. We conclude with speculation on the biological implications of black smoker sound production.

RESULTS

Using a stand-alone deep-sea digital acoustic recording system, we recorded 45 hours of continuous sound sampled at 1000 Hz in 2004, and 136 hours of continuous sound sampled at 1920 Hz in 2005, from the “Sully” and “Puffer” vents respectively (Figure 1). These two vents are situated approximately 2200 m below the sea surface, within the Main Endeavour vent field on the Juan de Fuca Ridge. We also recorded the local ambient noise field at a distance of ~150 m from the nearest black smoker in 2004, and ~25 m from the nearest black smoker in 2005. Movie S1 and Audio S1 contain samples of the recorded audio, and Figure 2 shows the recording system deployed at Sully and Puffer.

The power spectra of the recorded signals show that both vents radiate significant acoustic energy at all frequencies up to the anti-aliasing filter which has a corner frequency of 500 Hz (Figure 5). Both vents generate a broadband acoustic signal with power levels ~10–30 dB above the ambient noise level. Both vents also produce numerous narrowband tones at frequencies ranging from ~10–250 Hz, with power levels ~10–20 dB above the broadband signal level and bandwidths of ~5–15 Hz. Root-mean-square pressure fluctuations associated with these spectra, computed from the integral of these curves over the frequency range 5–500 Hz, are shown in Table 1.

A spectrogram generated from the Puffer recording (Figure 4) and an animation of Puffer’s acoustic power spectrum (Movie S2) illustrate the temporal evolution of this vent’s acoustic signature. The general shape of the spectrum remains relatively constant, but some fine-scale features vary. For example, the
spectral peaks centered at \(\sim 27 \) Hz and \(\sim 67 \) Hz each split into two separate peaks, and the power spectrum within the 150–250 Hz band changes significantly over the measurement period.

Tidal variability is also evident in the acoustic record of Puffer. A comparison of the predicted tidal heights with the spectrogram (Figure 4) hints at this variability. For the choice of color scales in this figure, the power levels within the \(\sim 200–250 \) Hz band appear elevated after high tide. A spectral analysis of the power in different frequency bands reveals that the acoustic signals contain semi-diurnal periodicity within the \(\sim 150–325 \) Hz and \(\sim 450–500 \) Hz bands (Figure 5). The \(\sim 1.95 \) cycles per day signal corresponds closely to the 1.93 cycles per day frequency of the 12.42-h \(M_2 \) tidal component \([12]\). Cross correlation of the tidal signal with the time-series of power level in these frequency bands shows that maximal acoustic output lags the \(M_2 \) tidal component by \(\sim 115–127^\circ \) (Figure 6). This is equivalent to a lag of \(\sim 238–262 \) minutes with respect to high tide.

DISCUSSION

Source Mechanisms

There are a variety of sound source mechanisms that could potentially operate within black smoker systems. The presence of both broadband and narrowband components in the acoustic signals indicate that multiple mechanisms are operating within Sully and Puffer. Potential broadband sources include boiling, cavitation, turbulent shear, advected fluid heterogeneity, pulsating exit flow, fluid-structure interactions, and volume changes associated with the cooling of hydrothermal fluid. Many of these source mechanisms were discussed in the context of black smoker systems in \([8]\). Here we review some of this work in light of our results.
Sound source mechanisms are typically divided into three separate classes of acoustic radiators: monopoles, dipoles, and quadrupoles. Each of these source types has a different near-field radiation pattern, where the near-field is defined as the region within one acoustic wavelength of the sound source [8]. Monopoles radiate sound through volume or mass fluctuations, and have one-dimensional pressure fields. This type of acoustic radiation would be generated by a sphere vibrating in its first mode, expansion and contraction [13]. In the near-field, pressure perturbations generated by a monopole fall off in proportion to $1/r$.

Dipole radiation usually arises from force fluctuations at a fluid–fluid or fluid–solid interface, and has a two-dimensional pressure field. This type of acoustic radiation would be generated by a rigid sphere oscillating side to side, or by two monopoles spaced closely together and vibrating out of phase [13]. In the near-field, pressure perturbations generated by a dipole fall off in proportion to $1/r^2$.

Quadrupole radiation arises from the fluctuating shear stresses within a turbulent fluid [14] and has a three-dimensional pressure field. This type of acoustic radiation would be generated by a sphere vibrating in its third mode, ellipsoidal distortion, or by two dipoles of opposite polarity situated side-by-side [13]. In the near-field, pressure perturbations generated by a quadrupole fall off in proportion to $1/r^3$.

Boiling produces monopole acoustic radiation as the expansion, and sometimes the subsequent collapse, of vapor bubbles within a heated fluid produce pressure fluctuations that propagate away from the forming bubble [15]. While this mechanism could be a significant source of sound in vents that are boiling [8], the temperatures of Sully and Puffer were about 15–20°C below the 375°C boiling point of hydrothermal fluid at 2200 m depth [16] when we recorded their sound. Thus it is unlikely that boiling is a source of sound in these recordings.

Similar to boiling, cavitation also produces monopole radiation during the formation and collapse of vapor pockets. These pockets form in response to hydrodynamic pressure drops that bring local fluid pressures below the vapor pressure [17]. Cavitation can be a significant source of sound when it occurs [17], however the fluids issuing from Sully and Puffer are far from the two-phase curve [16], and are unlikely to cavitate as a result of hydrodynamic forces within these two chimneys [8].

Free turbulence in a fluid generates quadrupole acoustic radiation which is associated with the fluctuating shear stresses in the flow [14]. The power output from this mechanism is typically quite small in low Mach number flows [18,19]. Near-field pressure perturbations associated with this mechanism can be

Table 1. Root-Mean-Square Pressures

Source	Pressure (Pa)
Sully (2004)	4.52
Ambient (2004)	0.21
Puffer (2005)	2.30
Ambient (2005)	0.20

a Perturbations integrated over 5–500 Hz

doi:10.1371/journal.pone.0000133.t001

The Sound of Black Smokers

Figure 5. Contours of the spectra computed from the average spectral power of Puffer’s acoustic signal in 5-Hz bands. The power level time-series have been normalized by their root-mean-square, thus the units of the contoured values are inverse cycles per day (cpd), and the relative magnitudes of the contours are only meaningful in the horizontal direction. The length of the time-series (136 hours) renders the spectrum showing strong semi-diurnal periodicity (Figure 5). Phase lags of the maximal acoustic power output, relative to the M2 tidal component period of 12.42 h, for parts of the acoustic spectrum below 1 cycles per day unresolved. Semi-diurnal (~1.95 cycles per day) variability of Puffer’s acoustic power occurs within the ~150–325 Hz and ~450–500 Hz frequency bands.

doi:10.1371/journal.pone.0000133.g006

approximated by [8]:

\[P = 10^{-2} \rho U^2 \left(\frac{D}{r} \right)^3, \]

where \(P \) is the root-mean-square pressure fluctuation, \(r \) is the fluid density, \(U \) is the mean fluid velocity, \(D \) is the vent orifice diameter, and \(r \) is the distance from the source. Letting \(r = 625 \text{ kg/m}^3 [16], \) \(U = 1 \text{ m/s}, \) \(D = 0.05 \text{ m}, \) and \(r = 0.5 \text{ m}, \) we find that pressure fluctuations associated with free turbulence may equal \(\sim 6 \times 10^{-5} \text{ Pa}. \) Such pressures are far below the ambient sound pressure recorded at the Main Endeavour field (Table 1), thus this source mechanism is not likely responsible for any of the acoustic radiation recorded in this study.

Turbulent fluid flows containing heterogeneous density or compressibility fields can generate significantly more sound than uniform fluid flows [20]. Pockets of differing density or compressibility can interact with hydrodynamic pressure variations to produce dipole acoustic radiation with wavelengths that are much longer than the heterogeneity length scale [20]. In black smoker systems, this can result in pressure fluctuations that are a factor of \(\sim 4 \times 10^2 \) greater than those generated by turbulent shear in a uniform flow [8]. Thus pressure perturbations generated by this source mechanism may equal \(\sim 2.4 \text{ Pa}, \) which is similar in magnitude to the pressures measured near Sully and Puffer (Table 1), and suggests that fluid heterogeneity may play a role in sound production in these vents.

Mass flux variations at the vent orifice caused by pulsating flow can produce monopole acoustic radiation [18,19]. This source mechanism functions much like a baffle piston [17], and the sound from this mechanism would originate from the plane of the vent orifice [18,19]. Pressure perturbations associated with this mechanism can be approximated by [8]:

\[P \approx \frac{3\pi DP_P}{16r}, \]

where \(P_P \) is the root-mean-square pressure fluctuation of the pulsating flow. Letting \(P_P \) equal 10 percent of the total mean pressure, which can be approximated by \(\rho T^2 \) [8], and letting \(r = 625 \text{ kg/m}^3 [16], \) \(U = 1 \text{ m/s}, \) and \(r = 0.5 \text{ m}, \) we find that pressures from pulsating flow may equal \(\sim 3.7 \text{ Pa}. \) Pressures of this magnitude would be easily detected over the background noise, and are indeed similar to those measured at both vents (Table 1). Thus pulsating flow may contribute to the sound signals recorded in this study.

The interaction of unsteady flow with the internal walls of the chimney can create force fluctuations at the fluid–solid interface, which can, in turn, cause the structure to vibrate and emit dipole acoustic radiation [9]. Sound from this mechanism would originate from within the chimney structure. It is difficult to predict the magnitude of acoustic pressure perturbations associated with source, as it will depend on many factors including the stiffness of the chimney and the geometry of the fluid conduits. However, this mechanism is strongly dependent on fluid flow, with acoustic intensities being proportional to roughly the fifth power of the mean flow rate [17], and coupling between the fluid and solid increasing with increased conduit roughness and tortuosity. Considering the rapid flow rates and the rough and often tortuous fluid pathways found in black smoker structures [21], we consider it possible that this sound source is significant in these systems.

Another potential sound source mechanism is related to fluid volume changes driven by the mixing of hydrothermal fluid with seawater. The equation of state for hydrothermal fluid at high temperatures and pressures predicts a significant volume decrease when this fluid mixes and exchanges heat with ambient seawater [16]. This process will produce monopole acoustic radiation with the source located in the jet mixing region some distance above the vent orifice. To the best of our knowledge, this sound source mechanism has not been investigated, thus there is no theory to quantify the magnitude of the pressure perturbations it may generate. However, considering the large density differences...
given by \[9\]:

\[f \approx \frac{c}{2\pi} \sqrt{\frac{A}{V(L + \frac{1}{2}\sqrt{\pi A})}} \]

(3)

where \(c \) is the speed of sound in the fluid filling the cavity, \(A \) is the area of the cavity opening, \(V \) is the volume of the cavity, and \(L \) is the length of the cavity opening. For a relatively small 2-liter cavity connected to the chimney conduit by an opening of diameter 0.02 m and a length of 0.04 m, filled with hot hydrothermal fluid for which \(c = 450 \text{ m/s} \) [16], \(f \) would equal \(\approx 120 \text{ Hz} \). For a quarter-wave oscillator, the first resonant mode is given by [23]:

\[f = \frac{c}{4l} \]

(4)

where \(l \) is the length of the cavity. Thus for a 1-m tube closed at one end and filled with hot hydrothermal fluid, the fundamental frequency is \(\approx 113 \text{ Hz} \).

Both Sully and Puffer produce acoustic tones at several different frequencies. The different tones might be produced by different types of resonators, or by several resonators of a single type but with different geometries and different relationships to the fluid flow. In either case, the tones that are generated will depend strongly on the vent’s morphological structure, and each vent within the vent field is likely to have its own unique acoustic signature.

Temporal Variability

The relatively long timescale changes observed in the broadband and narrowband sources within black smokers are related to the excitation of the acoustic modes of resonators by unsteady flow. Such resonance typically involves flow past cavities, or flow impinging upon solid bodies. Among the many possible resonators are Helmholtz resonators, half-wave or quarter-wave resonators, and solid structures such as tubes, plates, or cavities within the chimneys [22–24]. Considering the typical acoustic properties of black smoker fluids, and the geometry of these structures, the frequencies of the observed resonant signals are reasonable. For example, the fundamental frequency \(f \) of a Helmholtz resonator is given by [9]:

\[f = \frac{c}{2\pi} \sqrt{\frac{A}{V(L + \frac{1}{2}\sqrt{\pi A})}} \]

(3)

Potential narrowband sources within black smokers are related to the excitation of the acoustic modes of resonators by unsteady flow. Such resonance typically involves flow past cavities, or flow impinging upon solid bodies. Among the many possible resonators are Helmholtz resonators, half-wave or quarter-wave resonators, and solid structures such as tubes, plates, or cavities within the chimneys [22–24]. Considering the typical acoustic properties of black smoker fluids, and the geometry of these structures, the frequencies of the observed resonant signals are reasonable. For example, the fundamental frequency \(f \) of a Helmholtz resonator is given by [9]:

\[f = \frac{c}{2\pi} \sqrt{\frac{A}{V(L + \frac{1}{2}\sqrt{\pi A})}} \]

(3)

where \(c \) is the speed of sound in the fluid filling the cavity, \(A \) is the area of the cavity opening, \(V \) is the volume of the cavity, and \(L \) is the length of the cavity opening. For a relatively small 2-liter cavity connected to the chimney conduit by an opening of diameter 0.02 m and a length of 0.04 m, filled with hot hydrothermal fluid for which \(c = 450 \text{ m/s} \) [16], \(f \) would equal \(\approx 120 \text{ Hz} \). For a quarter-wave oscillator, the first resonant mode is given by [23]:

\[f = \frac{c}{4l} \]

(4)

where \(l \) is the length of the cavity. Thus for a 1-m tube closed at one end and filled with hot hydrothermal fluid, the fundamental frequency is \(\approx 113 \text{ Hz} \).

Both Sully and Puffer produce acoustic tones at several different frequencies. The different tones might be produced by different types of resonators, or by several resonators of a single type but with different geometries and different relationships to the fluid flow. In either case, the tones that are generated will depend strongly on the vent’s morphological structure, and each vent within the vent field is likely to have its own unique acoustic signature.

Biological Implications

Sound production by black smokers has possible implications for local organisms. Considering the near-field sound pressure fall-off predicted for the likely sound source mechanisms, we estimate that vent sound levels would be above ambient levels at a distance of \(\approx 5–15 \text{ m} \) from the vent orifice at the time our measurements were made. Thus fish, crustaceans, and cephalopods, which are common in these environments [33,34] and can typically detect and process sound [35–38], might utilize this source of environmental information to their advantage. The acoustic detection of vent locations could help an organism avoid damage from hot hydrothermal fluid, and could provide foraging or reproductive benefits by helping an organism find food or a mating partner. An analogous adaptation is suspected in the Mid-Atlantic Ridge shrimp species *Rimicaris exoculata* which may use infrared light to locate hydrothermal vents [39]. In reef settings, certain fish
larvae are known to use environmental sounds in their search for settlement habitat [40]. Novel field or laboratory studies could be used to investigate the effects of vent sounds on the local animal community.

Conclusion
Our study shows that high-temperature seafloor vents produce high levels of acoustic radiation which can provide valuable information about geological and physical processes occurring within these systems, and may provide animals with information about the environment they inhabit. Several new lines of inquiry regarding the acoustical, geophysical and biological implications of hydrothermal vent sounds should soon be explored.

MATERIALS AND METHODS
Acoustic Recording System
We developed two versions of the deep-sea digital acoustic recording system used in this study. Both versions were based on the Persistor CF2 microcontroller and both had 4 GB of flash memory capable of storing ~6–10 days of continuous sound data. Both versions could be equipped with two hydrophones, based on the Benthos AQ-2000 piezoceramic sensor element. One hydrophone was affixed to the instrument’s titanium pressure case, and the other had a 3 m cable and was attached to a bracket allowing it to be positioned just a few centimeters from a black smoker vent orifice. We refer to these two hydrophones as the “case” and “remote” hydrophones, respectively. The first-generation system, used in 2004, sampled on three channels continuously at 1000 Hz with a 12-bit A/D converter and a fixed gain for each channel. The second-generation system, used in 2005, sampled on two channels continuously at 1920 Hz with a 16-bit A/D converter and a programmable gain. Additional information on the instrument specifications is shown in Table 2.

Field Program
In September 2004 we lowered the acoustic recording system to the seafloor using a free-falling platform (called an elevator) which landed about 150 m east of the Sully vent. The instrument recorded several hours of ambient noise at this location. We then returned to the seafloor to collect an ambient noise recording. The elevator landed about 25 m east of the Hulk vent in the northern part of the vent field, and at this location the instrument recorded several hours of data before being recovered.

Data Reduction
We converted the raw hydrophone values into units of zero-mean pressure by first applying a 1-Hz high-pass 4-pole Butterworth filter. We divided the signal by the overall system gain used by the recording instrument for that channel, then applied the nominal sensitivity of the hydrophone element as published by the manufacturer.

We obtained 10-minute average spectra using Welch’s method [41] with 215-point fast Fourier transforms applied to 9600-point sections of the record. Each section of the record overlapped adjacent sections by 50 percent, and was multiplied by a Hamming window [42]. These 10-minute spectra were then time averaged to obtain the representative hour-average spectra shown in Figure 3. The 10-minute spectra are contoured in Figure 4.

We conducted the spectral analysis of the power time-series for different acoustic frequencies by first averaging the power into 5-Hz bands. For each of these records, we applied a 1-cycles-per-day high-pass 4-pole Butterworth filter, then normalized the record by its root-mean-square. Finally we multiplied each record by a 50-percent Tukey (cosine-taper) window [42], and computed periodograms using a 214-point fast Fourier transform. Contours of these periodograms are shown in Figure 5.

Table 2. Recording System Specifications.
Microcontroller
Hydrophone Element
Sample Rate
Number of Channels
A/D Converter
Anti-Aliasing
Programmable Gain
Overall Gain
Dynamic Range
Storage Medium
Recording Capacity

doi:10.1371/journal.pone.0000133.t002
SUPPORTING INFORMATION

Audio S1 Audio file containing a short section of sound collected with the black smoker acoustic recording system at Puffer in September 2005. The audio has been upsampled to 8 kHz, and high-pass filtered at 10 Hz using a 4-pole Butterworth filter. It is played in real-time (i.e., without time stretching or pitch shifting). Because much of the acoustic energy falls below ~100 Hz, speakers with good bass response are required to properly reproduce the sound. Most laptop speakers will not produce sound.

Found at: doi:10.1371/journal.pone.0000133.s001 (0.96 MB WAV)

Movie S1 Movie showing the black smoker acoustic recording system deployed at the Sully vent in September 2004 with audio from the same deployment. The audio and video are not contemporaneous because the remotely-operated vehicle carrying the video camera generated excessive noise. The video is included to provide context for the audio. The audio has been upsampled to 8 kHz, and high-pass filtered at 10 Hz using a 4-pole Butterworth filter. It is played in real-time (i.e., without time stretching or pitch shifting). Because much of the acoustic energy falls below ~100 Hz, speakers with good bass response are required to properly reproduce the sound. Most laptop speakers will not produce sound.

Found at: doi:10.1371/journal.pone.0000133.s002 (9.58 MB MOV)

REFERENCES

1. Elderfield H, Schultz A (1998) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24: 191–224.

2. Baker ET (1994) A 6-year time series of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge. J Geophys Res 99: 4889–4904.

3. Delaney JR, Kelley DS, Lilley MD, Butterfield DA, Baross JA, et al. (1998) The quantum event of oceanic crustal accretion: Impacts of diking at mid-ocean ridges. Science 281: 222–230.

4. Schultz A, Dickson P, Elderfield H (1996) Temporal variations in diffuse hydrothermal plume flow at TAG. Geochem Geophys Geosyst 3: 3473–3474.

5. Pauk MJ, Johnson HP (2008) Tapping into the sub-seafloor: examining diffuse flow and temperature from an active seamount on the Juan de Fuca Ridge. Earth Planet Sci Lett 271: 379–388. 10.1016/j.epsl.2008.07.009.

6. Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69: 159–172.

7. Little SA, Stolzenbach KD, Von Herzen RP (1987) Measurements of plume flow from a hydrothermal vent field. J Geophys Res 92: 2587–2596.

8. Little SE, Stolzenbach KD, Purdy GM (1990) The sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. J Geophys Res 95: 12,927–12,945.

9. Blake WK (1986) Mechanics of Flow-Induced Sound and Vibration, Volumes 1 & 2. Orlando: Academic Press. 974 p.

10. Blevins LD, Jacobson RS (1986) Acoustic noise measurements on Axial Seamount, Juan de Fuca Ridge. Geophys Res Lett 13: 957–960.

11. Riedesel M, Orcutt JA, Macdonald KC, McClain JS (1982) Microearthquakes in Rüppell’s Rift Valley. Nature 298: 641–643.

12. Melchior P (1983) The Tides of the Planet Earth. New York: Pergamon Press. 974 p.

13. Rockwell D, Naudascher E (1994) Acoustics of Fluid-Structure Interactions. Cambridge: Cambridge University Press. 560 p.

14. Rockwell D, Naudascher E (1997) Self-sustaining oscillations of impinging free shear layers. Annu Rev Fluid Mech 11: 67–94.

15. Bibee LD, Jacobson RS (1986) Acoustic noise measurements on Axial Seamount, Juan de Fuca Ridge. Geophys Res Lett 13: 957–960.

16. Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69: 159–172.

17. Riedesel M, Orcutt JA, Macdonald KC, McClain JS (1982) Microearthquakes in Rüppell’s Rift Valley. Nature 298: 641–643.

18. Melchior P (1983) The Tides of the Planet Earth. New York: Pergamon Press. 974 p.

19. Rockwell D, Naudascher E (1994) Acoustics of Fluid-Structure Interactions. Cambridge: Cambridge University Press. 560 p.

20. Rockwell D, Naudascher E (1997) Self-sustaining oscillations of impinging free shear layers. Annu Rev Fluid Mech 11: 67–94.

21. Bibee LD, Jacobson RS (1986) Acoustic noise measurements on Axial Seamount, Juan de Fuca Ridge. Geophys Res Lett 13: 957–960.

22. Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69: 159–172.

23. Little SA, Stolzenbach KD, Von Herzen RP (1987) Measurements of plume flow from a hydrothermal vent field. J Geophys Res 92: 2587–2596.

24. Little SE, Stolzenbach KD, Purdy GM (1990) The sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. J Geophys Res 95: 12,927–12,945.

25. Bibee LD, Jacobson RS (1986) Acoustic noise measurements on Axial Seamount, Juan de Fuca Ridge. Geophys Res Lett 13: 957–960.

26. Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69: 159–172.

27. Johnson HP, Humak M, Dzjak RP, Fox CG, Urcuyo I, et al. (2000) Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407: 174–177.

28. Bibee LD, Jacobson RS (1986) Acoustic noise measurements on Axial Seamount, Juan de Fuca Ridge. Geophys Res Lett 13: 957–960.

29. Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69: 159–172.

30. Jupp TE, Schultz A (2004) A pore-scale model for the tidal modulation of sub-seafloor hydrothermal systems. J Geophys Res 109: B30315. 10.1029/2004JB002583.

31. Thomson RE, Miha´ly SF, Rabinovich AB, McDuff RE, Veirs SR, et al. (2003) Temporal variations in diffuse hydrothermal plume flow at TAG. Geophys Res Lett 30: 1680. 10.1029/2003GL016904.

32. Thomson RE, Roth SE, Dymond J (1990) Near-inertial motions over a mid-ocean ridge: Effects of topography and hydrothermal plumes. Geochim Cosmochim Acta 54: 3995–4010.

33. Desbruye`res D, Segonzac M, Bright M, editors (2006) Handbook of Deep-Sea Vents, Volume 1: Physical Processes and Chemical Implications. Oxford: Blackwell Publishing. 1258 p.

34. Wolff T (2005) Composition and endemism of the deep-sea hydrothermal vent fauna. Cah Biol Mar 46: 97–104.

35. Packard A, Karlsen HE, Sand O (1990) Low frequency hearing in cephalopods. Physiol Zool 63: 501–505.
36. Popper AN, Salmon M (2001) Acoustic detection and communication by decapod crustaceans. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 187: 83–89. 10.1007/s003590100184.
37. Schuijf A, Hawkins AD, eds (1976) Sound Reception in Fish, Volume 5 of Developments in Aquaculture and Fisheries Science. Amsterdam: Elsevier. 287 p.
38. von Frisch K (1923) Ein Zwergwels, der kommt, wenn man ihm pfeift. Biol Zentralbl 43: 439–446.
39. Van Dover CL, Suazo EZ, Chamberlain SC, Cann JR (1989) A novel eye in 'eyeless' shrimp from hydrothermal vents of the Mid-Atlantic Ridge. Nature 337: 438–460.
40. Tolimieri N, Jeffs A, Montgomery JC (2000) Ambient sound as a cue for navigation by the pelagic larvae of reef fishes. Mar Ecol Progr 207: 219–224.
41. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: A method based on time-averaging over short, modified periodograms. IEEE Trans Audio Electroacoust AU-15: 70–73.
42. Harris FF (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE 66: 51–83.
43. Delaney JR, Robigou V, McDuff RE (1992) Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge. J Geophys Res 97: 19,663–19,682.
44. Mofjeld HO, González FI, Eble MC (1993) Ocean tides in the continental margin off the Pacific Northwest Shelf. J Geophys Res 100: 10,789–10,800.