Data Article

“Early earth” structural data from the Memve’ele area in the northwestern Congo Craton (Ntem complex-southwestern Cameroon)

Sylvestre M. NTOMBAa,∗, Dieudonné BISSOb, Rufine C. MAGNEKOU TAKAMTEb, François NDONG BIDZANC, Eric J. MESSI OTTOUb, Joseph MVONDO ONDOAb

aCentre for Geological and Mining Research, Institute of Geological and Mining Research, P.O. Box 333, Garoua, Cameroon
bDepartment of Earth Sciences, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
cOre Processing Laboratory (LTM), Institute of Geological and Mining Research, P.O. Box 4110, Yaoundé, Cameroon

ARTICLE INFO

Article history:
Received 7 October 2020
Revised 2 November 2020
Accepted 4 November 2020
Available online 10 November 2020

Keywords:
“Early earth” tectonics
Constriction
Transpression
Field investigation
Thin section observations
Memve’ele area
Ntem Complex
Cameroon

ABSTRACT

Structural data, meso– and micro-photographies were collected from Archean basement of the Memve’ele area (Ntem Complex, southwestern Cameroon). The analyses were acquired using field and laboratory investigations. Meso-photographies were obtained by a camera Canon SX160 IS, 16X digital zoom, HD 16.0 Mega pixels. Micro-photographies were carried out by electronic microscope Olympus BX60 type with a camera and entire thin section picture scan. Structural data were acquired by a topochaix compass type and stereographic data were obtained by a stereonet program. The data presented in this paper are further interpreted and discussed in the Ntomba et al., 2020 [1].

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

DOI of original article: 10.1016/j.jsg.2020.104195
∗Corresponding author.
E-mail address: sylvestre.martial@yahoo.fr (S.M. NTOMBA).
Social media: (S.M. NTOMBA)

https://doi.org/10.1016/j.dib.2020.106516
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Earth sciences
Specific subject area	Structural geology
Type of data	Figures, plots and tables
How data were acquired	Field investigations, sampling, compass, camera, electronic microscope, scanning, ternary diagram and stereonet program.
Data format	Raw
Parameters for data collection	Samples collected, structural features captured, and structural measurements taken in place on the field. Samples collected were orientated in the field to maintain the field sample orientation throughout the thin section. Thin section scanned.
Description of data collection	Structural features were captured at meso-, micro-scales with camera and entire thin section scan. Strike, dip and trend, plunge measurements were considered to orientate foliations and lineations respectively; all these values were recorded and plotted on the ternary diagram; Obtained structural parameters with stereonet program are best poles, mean foliations and best lines; fold data capture allowed the delineation of fold axes and shortening trends.
Data source location	Memve’ele region (Ntem Complex, Southwestern Cameroon) as reported in [1].
Data accessibility	Data are available within this article and in the supplementary material.
Related research article	Sylvestre M. Ntomba, Dieudonné Bisso, Rufine C. Magnekou Takamte, François Ndong Bidzang, Eric J. Messi Ottou, Joseph Mvondo Ondoa, Crustal growth in the Mesoarchean plutonic belt from the Memve’ele area (Ntem Complex – Southwestern Cameroon): Evidence of “early earth” transpressional tectonics. Journal of Structural Geology. 141 (2020) 104,195 [1].

Value of Data

- Foliation, folds, lineation and fold axes are structural patterns which represent a ductile deformation package for a comprehensive “early earth” tectonics of the Memve’ele region in the Ntem Complex (Southwestern Cameroon).
- Data enable recognition of “early earth” constrictional and transpressional regimes from the Memve’ele area.
- Data reveal significant variations in term of structural patterns orientation and can assist researchers to better understand the mechanisms of crustal growth during the lower Precambrian.
- Data contribute to highlight the characterization of structural patterns during the field investigation. This method is found as reliable tool to evaluate rapid crustal growth.
- The dataset contributes to efforts closing knowledge gap on structural geology in the Ntem Complex and could help to compare it with other cratons in the world.
- Data enable recognition of low and high temperature grades.

1. Data Description

In this article we report structural data from the Memve’ele region in the Ntem Complex (Southwestern Cameroon). Data were obtained using different strategies such as field investigations, microscope observations and analytical methods. The most robust work on the field has allowed recording foliation and lineation measurements as reported in supplementary file and photo captures of structural patterns as shown in Fig. 1. Mineral behaviors have been captured, scanned and interpreted as shown in Fig. 2. Table 1 presents best poles, mean foliations, axe fold orientations and best lines obtained after calculations of the raw structural data (foliations
Fig. 1. Field observations in the Memwe’ele area.

Continued
Fig. 1. Continued
Fig. 2. Photomicrographs showing some structural characters recorded by rocks from the Memwe’ele shear zone (MSZ, [1]).

Table 1
Analyzed foliation and lineation data in the Memwe’ele area (in red are axe fold traces).

Site numbers	Best poles	Best lines	Site numbers	Best poles	Best lines
1	134.54	N044.36NW	11	124.43	334/44
	N110.90				
2	165.53	306/34	12	198.28	N034.47NNW
	N075.38NNW	015/20	13	131.39	N109.62
	N105.20NNE				
3	137.50	326/41	14	177.44	N087.46N
4	073.65	246/25	16	186.47	N096.43N
	156.46	350/37			N050.90
					N102.34N
5	156.47		18	192.56	
			19	164.43	006/39
6	267.59	N065.43NNW	20	103.37	N074.47N
	N177.32E	015/20			
	N040.90				
7	174.50	N084.40N	21	140.46	N048.33NW
	336.75	006/36			
	N090.55N	040/39			
	N064.15S	31			
8	162.49	352/38	32	122.51	N048.33NW
	N071.42NNW				
9	164.42	500/42	33	164.45	N071.42NNW
10	133.37	N043.53NW			
and lineations) collected during field investigations and using stereonet program. The insight of tectonic regimes recorded in the Memve’ele region was obtained using ternary diagram of [3].

2. Experimental Design, Materials and Methods

2.1. Data and sample collections

Investigated sites belong to the Memve’ele region in the south Cameroon where structural measurements, lithologies sampling and structural patterns capture have been collected and done respectively (e.g. Fig. 1 and [1]). Mineral structural behaviors as reported in Fig. 2 and in entire thin section structural type (as shown in Fig. 2a) have been captured and scanned respectively in the GET laboratory (France).

2.2. Sample preparation

Lithology samples were previously marked by orientation traces during field investigations in order to preserve the orientation throughout the thin section process. Thin confections were carried out in the GET laboratory thin sections. For these preparations, thin sections were cut parallel to the aggregate lineation which represents (X) direction and normal to foliation plane (XY) [4], preserving orientation traces as shown in the Fig. 2a. Whole thin section was scanned in order to present an extensive deformation pattern as reported in Fig. 2a.

![Fig. 3. Structural pattern data (foliation and lineation) plotted on dip-pitch-plunge triangular diagram of [2] (modified after a diagram concept of [3]). Noted that steep of both foliation and lineation data are not shown.](image-url)
3. Geology

The regional fabrics pattern consists of shallow to steeply (\(\sim 10^\circ \) to \(~ 85^\circ\)) dipping foliations with various directions; moderate to steeply \((25^\circ \) to \(65^\circ)\) plunging and various strike parallel lineations (Table 1 and supplementary file).

The pictures captured show that the Memve’ele region displays a deformation pattern characterized by a shallowly dipping foliation (Fig. 1a, b and f), which is overprinted by a steeply dipping foliation (Fig. 1g and h) and a shallowly to steeply plunging and strike-parallel lineation (Fig. 1h). Pictures presenting foliation flattening planes, symmetric boudins and pintoch and swell of feldspar in the YZ and XZ planes (Fig. 1b-c and h) were used to assess shortening directions as shown in Figs. 1a – b and f – h. Deformation on this region involves various shortening directions, forming folded foliation trace (Fig. 1i and j); various oriented trending folds including curved fold axis (Fig. 1k), superimposed folds (Fig. 1l), upright and sheath folds (Fig. 1m and n). Insight of partial melting in this region is shown in Figs. 1o and p.

Fig. 2a displays microstructures of symmetric amphibole bands in the alternation of quartzo-plagioclassic ribbons parallel to stretching direction. Kinematic patterns are rarely seen, but locally amphibole stair stepping (Fig. 2b) and c-axis quartz fabric as shown in interpretative sketch picture (Fig. 2c) indicate displacement directions. Fig. 2d displays quartz ribbon with curved sub-grain boundaries or an activation of “a” gliding system.

Foliation and lineation measurements recorded during field investigations in the shear zone have been plotted in Fig. 3 in order to characterize tectonic regimes.

CRediT Author Statement

Sylvestre M. Ntomba: Conceptualization, Methodology, Data curation, Project administration. Dieudonné Bisso: Visualization, Investigation. Rufine C. Magnekou Takamte: Writing - original draft. François Ndong Bidzang: Formal analysis. Eric J. Messi Ottou: Writing - review & editing. Joseph Mvondo Ondoa: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are grateful to the IRD scholarship for support toward Ntomba’s stay in Toulouse, France. We are also grateful for laboratory work assistance by A. Nedelec. We would like to thank a thin section laboratory team, whose helpful to perform thin sections.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2020.106516.

References

[1] S.M. Ntomba, D. Bisso, T.R.C. Magnekou, B.F. Ndong, O.J.E. Messi, O.J. Mvondo, Crustal growth in the Mesoarchean plutonic belt from the Memve’ele area (Ntem Complex – Southwestern Cameroon): evidence of “early earth” transpressional tectonics, J. Struct. Geol. 141 (2020) 104195.
[2] D. Chardon, D. Gapais, F. Cagnard, Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic, Tectonophysics 477 (2009) 105–118.
[3] P. Balé, J.P. Brun, Late Precambrian thrust and wrench zones in Northern Brittany (France), J. Struct. Geol. 11 (1989) 391–405.
[4] V.L. Hansen, Collection and preparation of thin sections of oriented samples, J. Geol. Educ. 38 (1990) 294 V.