Cryphonectria carpinicola sp. nov. Associated with hornbeam decline in Europe

Carolina Cornejo a, *, Andrea Hauser a, Ludwig Beenken a, Thomas Cech b, Daniel Rigling a

a Swiss Federal Research Institute WSL, Zuuercherstrasse 111, 8903, Birmensdorf, Switzerland
b Bundesforschungszentrum für Wald, Institut für Waldschutz, Seekendorf-Gudent-Weg 8, 1131, Wien, Austria

ABSTRACT

Since the early 2000s, reports on declining hornbeam trees (Carpinus betulus) are spreading in Europe. Two fungi are involved in the decline phenomenon: One is Anthostoma decipiens, but the other etiological agent has not been identified yet. We examined the morphology, phylogenetic position, and pathogenicity of yellow fungal isolates obtained from hornbeam trees from Austria, Georgia and Switzerland, and compared data with disease reports from northern Italy documented since the early 2000s. Results demonstrate distinctive morphology and monophyletic status of Cryphonectria carpinicola sp. nov. as etiological agent of the European hornbeam decline. Interestingly, the genus Cryphonectria splits into two major clades. One includes Cry. carpinicola together with Cry. radicans, Cry. decipiens and Cry. naterciae from Europe, while the other comprises species known from Asia—suggesting that the genus Cryphonectria has developed at two evolutionary centres, one in Europe and Asia Minor, the other in East Asia. Pathogenicity studies confirm that Car. betulus is a major host species of Cry. carpinicola. This clearly distinguished Cry. carpinicola from other Cryphonectria species, which mainly occur on Castanea and Quercus.

© 2020 The Authors. Published by Elsevier Ltd on behalf of British Mycological Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In last decades, the generic classification of Cryphonectriaceae (Diaporthales) has been reassessed based on molecular data (Gryzenhout et al., 2006a, b; Jiang et al., 2020). Several well-supported clades were recognized within Cryphonectriaceae, which correlate with morphological and eco-geographical features and were proposed to represent distinct generic lineages within the family. Some of these lineages relocated species formerly named as Cryphonectria in new erected genera, e.g., Cryosporthe, Rostraureum, Elaeocarpus, Amphilotia (Gryzenhout et al., 2006a), or Microthia, Holocyphia and Ursicollum (Gryzenhout et al., 2006b). In other cases, species known from other genera have been re-classified as Cryphonectria (e.g., Cry. citrina; Jiang et al., 2020), and new species are being discovered continuously, expanding the species list within this genus (e.g., Cry. quercus and Cry. quercicola, Jiang et al., 2018; Cry. neoparasitica, Jiang et al., 2019). The present study follows recent, revised classification and takes a critical look at some species within the genus Cryphonectria that occur in Europe.

The genus Cryphonectria is best known for its famous member, Cry. parasitica, the causal agent of chestnut blight (Rigling and Prospero, 2018). In Europe, three additional Cryphonectria species have been reported to occur together with the invasive chestnut blight fungus. One species, Cry. radicans, was first reported for North America but also well-documented for Europe and Japan at the beginning of the 20th century. It has, however, apparently disappeared in North America and seems to be rare in Europe since the introduction of the chestnut blight fungus (Hoejger et al., 2002). The other, Cry. naterciae, was recently described based on morphology as well as molecular data and has been confirmed for Portugal on Castanea sativa and Quercus suber (Braganca et al., 2011), and for Algeria and Italy on declining Q. suber (Pinna et al., 2019; Smahi et al., 2018). Both Cry. radicans and Cry. naterciae have often been accidently isolated from Cas. sativa during sampling campaigns for the chestnut blight fungus (Braganca et al., 2011; Hoejger et al., 2002; Sotirovski et al., 2004). A putative third species is Cry. decipiens, which was separated from Cry. radicans based on the ascospore morphology of herbarium samples preserved in the U.S. National Fungus Collections (BPI) (Gryzenhout...
et al., 2009). While there is no isolate deposition of Cry. decipiens linked to the holotype BPI 1112743, it has been assumed that Cry. decipiens and Cry. naterciae are conspecific (Rigling and Prospero, 2018). The present study focuses on an additional putative Cryphonectria species, which has been claimed to be involved in the decline of hornbeam trees in Europe.

The European hornbeam, C. betulus L. (Betulaceae), is a widely distributed deciduous tree with a natural range extending from the Pyrenees to southern Sweden and eastwards over the Caucasus to western Iran (Sikkema et al., 2016). It is one of few shade tolerant tree species, playing an important role as a secondary species in mixed stands dominated by oak (Postolache et al., 2017), or as ornamental tree in urban parks, gardens and along roadsides (Imperato et al., 2019; Saracchi et al., 2007). Although the wood of the hornbeam is very hard and strong, trees tend to have an irregular form and are therefore of minor commercial significance (Sikkema et al., 2016). Until recently, no major pest and disease problems were reported to affect European hornbeam. The powdery mildew Erysiphe arcula is known parasitizing the European hornbeam (Braun et al., 2006; Vajna, 2006; Woćzańska, 2007), and E. kenjiana found on hornbeam was recently reported as new alien species for Ukraine (Heluta et al. 2005). In addition, Moradi-Aminrashad et al. (2018) presented the first detection of the bacteri a Brenneria sp. and Rahnella victoriana, which are associated with hornbeam trees in the western forests of Iran and causes symptoms similar to acute oak decline.

Since the early 2000s, however, declining hornbeam trees have been repeatedly reported in Europe—starting from northern Italy (Dallavalle and Zambonelli, 1999; Ricca et al., 2008; Rocchi et al., 2010; Saracchi et al., 2007, 2008), followed later by several central European countries including Germany (Kehr et al., 2016, 2017; Krauthausen and Fischer, 2018), Austria (Cech, 2019) and Switzerland (Queloz and Dubach, 2019)—as well as from the most eastern distribution limit of Car. betulus in Iran (Mirabolfath et al., 2018). Trees are described to be infected by two fungi, individually or both at the same time, and die within a few years if heavily attacked. One fungus produces large bark necrosis with red resin-like clumps on trunks and main branches, and could be clearly identified as Anthostoma decipiens based on morphological and molecular analyses (Rocchi et al., 2010). The second etiological agent has been reported to produce yellow stromata on the bark, which were assigned to an unknown Endothiella or Cryphonectriaceae species (Ricca et al., 2008; Rocchi et al., 2010; Saracchi et al., 2007, 2008), followed later by several central European countries including Germany (Kehr et al., 2016, 2017; Krauthausen and Fischer, 2018), Austria (Cech, 2019) and Switzerland (Queloz and Dubach, 2019)—as well as from the most eastern distribution limit of Car. betulus in Iran (Mirabolfath et al., 2018). For this reason, hereafter, we refer to the fungus with yellow stromata on the European hornbeam as Cryphonectria taxon.

A first species hypothesis for the Cryphonectria taxon tested the relationship to Cry. parasitica. Dallavalle and Zambonelli (1999) isolated a Cryphonectria-like strain from hornbeam trees in the city of Parma and based on mating and vegetative compatibility experiments ruled out that it belongs to Cry. parasitica. Another hypothesis related the Cryphonectria taxon with Cry. radialis based on the ascospore morphology (Dallavalle et al., 2003). In fact, the fungal collection BPI registers several herbarium samples of Cry. radialis (syn. Endothia radia) on Carpinus species, e.g., on Car. betulus for Abkhazia and Slovakia (labelled as Czechoislovakia), or on Car. japonica for Japan, Car. laxifolia for Korea, and Carpinus sp. for the U.S.A. In contrast to these records, most Cryphonectria species are known to occur on members of the family Fagaceae—including mainly Castanea and Quercus (Gryzenhout et al., 2006b). In fact, only a few Cryphonectria species are reported on a wider host range than Fagaceae. Examples include the said Cry. radialis and Cry. japonica (syn., Cry. mitschkeii; Gryzenhout et al., 2009) with six different tree families listed as hosts (Myburgh et al., 2004a). However, many of historical reports should be taken with caution, as the identity of the Cryphonectria species remains uncertain due to the lack of molecular identification.

During phytosanitary surveys in Switzerland, several fungal cultures were isolated from the bark of hornbeam trees that showed sporulation as reported for the Cryphonectria taxon (Queloz et al., 2019). These isolates shared morphological features with the isolates M9290 from Austria and M5717 from Georgia preserved in our isolate collection at the Swiss Federal Research Institute WSL. First attempts to taxonomically assign the Austrian and Georgian isolates based on the fungal barcode ITS reached high identity scores with undetermined Cryphonectriaceae sp. (KCB94696–KCB94672) and Endothiella sp. (AM400898) (last search on 2020/07/17 on www.ncbi.nlm.nih.gov). Starting from these preliminary data, the present study first investigates the taxonomic position of the Cryphonectria taxon on hornbeam under the hypotheses that it belongs (i) to one of the four Cryphonectria species present in Europe, or that it represents (ii) a distinctive Cryphonectria, yet undescribed species. For this purpose, a molecular phylogeny was generated based on four genetic markers: the large subunit (LSU) and the internal transcribed spacer (ITS) of the ribosomal RNA gene, two different sections of the β-Tubulin gene (TUB) and a partial sequence of the RNA polymerase II gene (RPB2).

In addition, we analysed phenotypic traits such as culture morphology and conidia size, which were compared with features of Cry. naterciae, Cry. radialis and Cry. parasitica, which are present in Europe. Since sexual reproduction is common in Cryphonectria species (Milgroom et al., 1993; Wilson et al., 2015), isolates of the Cryphonectria taxon were crossed on hornbeam twigs to test their mating behaviour. Finally, the pathogenic characteristics of the isolates from Austria, Georgia and Switzerland was assessed in an inoculation experiment on Carpinus, Corylus, and Betula species as well as C. sativa.

2. Material and methods

2.1. Isolates used in this study

Table 1. From the Cryphonectria taxon, four isolates were molecularly characterized, one isolate from Carpinus sp. in Georgia, and three isolates from Car. betulus in Austria and Switzerland. Isolates of Cry. parasitica and Cry. radialis from Switzerland, Cry. japonica from Japan, and Cry. naterciae from Portugal were used to compare morphological features between the different Cryphonectria species. The species Cry. decipiens was only assessed molecularly at three loci (LSU, ITS and TUB) based on GenBank entries as no isolate of the holotype BPI 1112743 is available.

2.2. DNA extraction, PCR and sequencing

Strains were grown on Potato Dextrose Agar (PDA; 39 g/l; Difco Laboratories, Detroit, U.S.A.) for a period of 7 d at 25 °C in the dark. Thereafter, mycelia were harvested, transferred to 2 ml Eppendorf tubes, and lyophilized overnight. Genomic DNA was extracted from 10 to 20 mg of lyophilized and milled fungal mycelium using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Four genomic regions were amplified by polymerase chain reaction (PCR): (1) LSU (primer used: LR0R/LR5 and LR3/LR7; Vilgalys and Hester, 1980); (2) ITS (ITS1/ITS4; White et al., 1990); (3) TUB (Bt1a/Bt1b and Bt2a/Bt2b; Glass and Donaldson, 1995); and (4) RPB2 (RPB2-5F/RPB2-7cR; Liu et al., 1999). All reactions used a 25 μl-mix, containing 12.5 μl
JumpStart REDTaq ReadyMix (Sigma Aldrich: Merck KGaA, Darmstadt, Germany), 1 µl of DNA template, 8.5 µl of molecular-grade water (Merck) and 1 µl each primer (10 µM). Thermal cycling parameters for all reactions were: 2 min 94°C initial denaturation, 35 cycles of 30 sec 94°C, 30 sec 55°C, 1 min 72°C, and 10 min at 72°C final elongation. PCR products were purified by an exonuclease I and alkaline phosphatase treatment following the manufacturer's instructions (GE Healthcare, Chicago, Illinois, U.S.A.).

The forward and reverse DNA strands were Sanger sequenced using the same primer as for the PCR reactions, except for locus RPB2 that exceeded the available sequencing length. Therefore, an internal forward primer Cryph_RPB2seq_F (5'-TCTACGGCTGGTGT, C14) was newly designed and combined with the Bt1 and Bt2 according to Glass and Donaldson (1995); RPB2 = RNA polymerase II gene.

Table 1

Species	Specimen ID	Host	Origin	GenBank accession numbers¹					
				LSU	ITS	TUB	RPB2	Bt1	Bt2
Cryphonectria carpinicola	M5717	Carpinus sp.	Georgia	MT311229	MT330399	MW086463	MW086449		
	M9615	Carpinus betulus	Switzerland	MT311233	MT330391	MW086465	MW086451		
	M2290	Carpinus sp.	Austria	MT311230	MT330390	MW086464	MW086450		
	M10525	Carpinus betulus	Switzerland	MT311232	MT330391	MW086466	MW086452		
GIALLO²	AR2⁵	Carpinus betulus	Italy	NA	AM400898	AM920692	NA	NA	
	AR8³,⁴	Carpinus betulus	Italy	NA	KB94699	NA	NA	NA	
	AR6²	Carpinus betulus	Italy	NA	KB94700	NA	NA	NA	
	AR1¹,⁷	Carpinus betulus	Italy	NA	KB94700	NA	NA	NA	
	AR3⁸	Carpinus betulus	Italy	NA	KB94700	NA	NA	NA	
	C. citrina (M5717)	J. Karpov	Russia	EU255074	MN172407	NA	NA	EU219342	
	C. sepium	CMW 10484	Castanea sativa	NA	AF368327	AH011606	NA		
	C. nattercia	CMW 10436	Castanea sativa	Portugal	JQ862750	AF452317	AF525703	AF525710	NA
	C. japonica	M6005	Castanea crenata	Japan	MT311220	MT330397	MW086473	MW086458	
	C. japonica	M9606	Castanea crenata	Japan	MT311221	MT330396	MW086474	MW086459	
	C. japonica	M9607	Castanea crenata	Japan	MT311222	MT330398	MW086475	MW086460	
	C. japonica	CMW 10527	Quercus mongolica	Russia	AF408341	DQ120761	AH015162	NA	
	C. japonica	CFCC 52148	Quercus spinosa	China	MH514023	MH514033	MH539686	MH539696	
	C. japonica	CMW 13742	Quercus grosseserrata	Japan	NA	AV979396	AH014588	NA	
	C. neoparastica	CFCC 52146	Castanea mollissima	China	MH514019	MH514029	MH539682	MH539692	
	C. neoparastica	CFCC 52147	Castanea mollissima	China	MH514020	MH514030	MH539683	MH539693	
	C. macrospora	CMW 10463	Castanopsis cuspidata	Japan	NA	AF368331	AH011608	NA	
	C. macrospora	CMW 10914	Castanea cuspidata	Japan	JQ862749	AV979402	AH014594	NA	
	C. macrospora	CBS 109764	Castanea cuspidata	Japan	AF408340	EU199182	NA	EU200209	
	C. parastica	M2671	Castanea sativa	Switzerland	MT311218	MT330394	MW086476	MW086461	
	C. parastica	M4023	Castanea sativa	Switzerland	MT311219	MT330395	MW086477	MW086462	
	C. parastica	ATCC 38755	Castanea dentata	USA	EU199123	Y141856	NA	DQ862017	
	C. parastica	M2269	Castanea sativa	Switzerland	MT311223	NA	MW086467	NA	
	C. parastica	M2720	Castanea sativa	Switzerland	MT311224	AF548744	MW086468	MW086453	
	C. parastica	CMW 10455	Quercus suber	Italy	NA	AF452113	NA		
	C. parastica	CMW 7051	Castanea sativa	Italy	NA	AF368328	NA		
	C. parastica	CMW 13754	Fagus japonica	Japan	NA	AH014584	NA		
	C. parastica	CMW 10477	Quercus suber	Italy	NA	AH011607	NA		
	C. quercicola	CFCC 52140	Quercus wutaishanensis	China	NA	MG866026	MG869113	MG896117	
	C. quercicola	CFCC 52141	Quercus wutaishanensis	China	NA	MG866027	MG869114	MG896118	
	C. quercus	CFCC 52138	Quercus aliena	China	NA	MG866024	MG869111	MG896115	
	C. quercus	CFCC 52139	Quercus aliena	China	NA	MG866025	MG869112	MG896116	
	Amphilogia gyrosa⁹	CMW 10469	Elaeocarpus	New Zealand	MY14107	AF452111	AF525707	AF525714	NA
	Endothia gyrosa⁹	CMW 2091	Quercus palustris	USA	AY199144	AF368325	AH011601	AH011601	NA
	Chrysoporthe cubensis⁹	CBS 101281	Eucalyptus urophylla	Cameroon	NA	NA	NA	NA	EU219341

¹ ATCC – American Type Culture Collection, Manassas, Virginia, U.S.A.; CBS – Centraalbureau voor Schimmelcultures, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CFCC – China Forestry Culture Collection Center, Research Institute of Forest Ecology, Environment and Protection, Beijing, China; CMW – Culture Collection of the Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa; C – Collection of the Instituto Nacional de Recursos Biológicos (INRB), L.P., Oeiras, Portugal; M – culture collection of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.

² Strain IDs of specimens used in Rocchi et al. (2010).

³ Sequences of Amphilogia gyrosa, Endothia gyrosa, and Chrysoporthe cubensis were used as outgroup in phylogenetic analyses.
Curly phylogenetic reconstructions

Phylogenetic trees were reconstructed by Bayesian and maximum likelihood (ML) analyses, using BEAST 1.8.4 (Drummond and Rambaut, 2007) on desktop computer and PhyML 3.0 (Guindon and Gascuel, 2003; Guindon et al., 2010) on the ATGC platform (www.atgc-montpellier.fr). To select the tree that best fitted our data, the Smart Model Selection SMS (Lefort et al., 2017) and the Akaike Information Criterion (AIC) (Akaike, 1973) were used on the ATGC platform. BEAST analysis was run with 10 million generations, following a discarded burn-in of 2500 generations. Convergence and the consequent proportion of burn-in were assessed using Trace v1.7 (available from http://beast.community/). To obtain the Bayesian posterior probabilities (PP), a maximum clade credibility tree was generated by analysing the BEAST tree file in TreeAnnotator v1.8.4 (available in the BEAST package). Bootstrap confidence values (B) were calculated in PhyML for 100 pseudoreplicates (Felsenstein, 1985). Phylogenograms were displayed in TreeGraph 2 (Stoever and Mueller, 2010).

The neighbor joining (NJ) algorithm (Saitou and Nei, 1987) was applied exclusively to assess the genetic diversity of all available sequences linked to the hornbeam decline in Europe. Early Italian studies on hornbeam decline submitted several ITS sequences (KC894698–KC894672) and one TUB sequence (AM920698) to GenBank named as Curlygenetriae sp. or Endothiella sp. (cf. Table 1). The analyses were performed with SplitsTree v.4.11.3 (Huson and Bryant, 2006) on each data matrix separately. Support values for branch lengths were computed from 1000 bootstrap replicates.

2.4. Morphology, growth and mating behaviour

Mycelial plugs (0.5 cm diameter) of the Curly taxon M9290, M5717, and M9615 were excised with a sterile cork borer from the edge of actively growing PDA cultures and placed in the centre of a 9 cm PDA plate. One set of subcultures was incubated in a climate chamber at 25 °C with a cycle of 10 h at dark and 14 h at light and the morphology was recorded for a period of three weeks. The second set was incubated at 10, 15, 20, 25, and 30 °C in the dark to assess the effect of temperature on fungal growth. Ten replicated plates were prepared for each fungal strain and temperature. The radial growth (mm) of the colonies was assessed after 2 and 4 days and the mean and standard deviation calculated. Isolates of Cry. japonica, Cry. naterciae, Cry. parasitica and Cry. radicalis were included in this experiment for comparison of culture morphology, but growth—temperature correlation of these species was not assessed, since this has been already studied elsewhere (cf. Bragança et al., 2011; Gryzenhout et al., 2009; Hoeger et al., 2002).

To test the development of sexual fruiting bodies, three isolates (M9290, M5717, and M9615) were crossed on C. betulus stem segments, either with themselves or with each other. Small stems of Car. betulus with a diameter of approx. 2 cm were cut into 5 cm long segments, split lengthwise and then autoclaved for 15 min at 121 °C. The autoclaved segments were individually placed in 9 cm diameter petri dishes and PDA medium was poured around them. The isolates to be crossed were inoculated onto the agar medium at both ends of the segments. The plates were incubated at 25 °C under a 16 h photoperiod for 3 weeks. Conidia produced by the isolates were then suspended in sterile water and distributed over the stem segments to induce mating. The mating plates were sealed with parafilm and incubated at 20 °C under a 12 h photoperiod. The plates were periodically examined for the presence of perithecia under a dissecting microscope for one year. To prevent desiccation, sterile cover slips were added to the plates if necessary.

The mating plates were also used to harvest conidia of the Curly taxon for size measurements. After incubation for one year, conidia were taken under sterile conditions from the blister-like conidiomata produced on the hornbeam stems and dissolved in a water drop on a glass-slide. A Zeiss Axioscope A1 microscope was used to measure 50 conidia of each isolate at 1000 times magnification with the software ZEN 2.3 (Carl Zeiss Microscopy GMBH, Germany). The mean diameter of the conidia was determined, and the standard deviation was calculated.

Morphology of field collections and cultures were investigated using a Zeiss Discovery.V8 SterEO microscope and hand sections of stromata were studied at 1000 times magnification using Zeiss Axioscope A1 microscope. The ZEN 2.3 digital equipment was used for photography.

2.5. Pathogenicity studies

To assess the pathogenicity of the Curly taxon, three isolates (M9290, M5717, and M9615) were inoculated into C. betulus and two additional tree species belonging to the family Betulaceae, Corylus avellane and Betula pendula. Because Castanea spp. are major hosts for many Curly species, we also included C. sativa in this inoculation experiment. Two-year-old seedlings of Swiss provenances were used, except for Cas. sativa, which was of a German provenance. The stem of each seedling was wound-inoculated in a greenhouse chamber as described by Dennent et al. (2019). For each isolate, five seedlings of each tree species were used. As negative controls, five seedlings of each species (three for B. pendula) were inoculated with an agar plug. Two months after inoculations, the length and width of the lesions were measured and the lesion size calculated using the formula of an ellipse area. Sporulation of the isolates was assessed by recording presence or absence of fungal stromata on each lesion. In the end of the experiment, all lesions were sampled to recover the inoculated fungus as described by Dennent et al. (2020). The identity of the re-isolated cultures was assessed visually by their typical orange culture morphology when growing on PDA plates. Linear model with Scheffe post hoc test (calculated using DataDesk 6.3. Data-Description Inc, Ithaca, NY) were used to test for significant differences (P ≤ 0.05) in mean lesion size between isolates and tree species.
3. Results

3.1. Phylogenetic analyses

In total, ten ITS, 15 RPB2, 16 LSU, and 16 TUB sequences were obtained and submitted to GenBank (Table 1). The ITS and TUB sequences contained highly variable and repetitive regions that poses analytical problems related to the substitution model, which does not account for fast-evolving, repetitive mutations. Therefore, homopolymers and ambiguously aligned regions were processed with the software Gblocks. Information on data matrices, such as the number of excluded and polymorphic sites, is listed in Table 2.

The RPB2 dataset was mainly composed of one exon coding for a 354 amino acid sequence and containing around 18% polymorphic single nucleotides (SNP) as well as one indel (insertion/deletion)—a codon that was present in the outgroup species Chrysoporthe cubensis but not in Cryphonectria spp. TUB sequences included four introns and five exons, which resulted in protein sequences of 160–163 amino acids. After the exclusion of homopolymers and ambiguously aligned regions, the TUB dataset was composed of c. 24% and the ITS matrix of c. 11% informative SNPs. Although the LSU sequences were highly conserved, the c. 2.5% informative SNPs were mainly concerned to the studied lineages Cryphonectria taxa. Cry. decipiens, Cry. naterciae and Cry. radicalis as well as the outgroup species. In single-locus analyses (Supplemental Fig. S1), RPB2 topology resulted in well-supported monophyletic clades for the six analysed species. On contrary, the reduced ITS and TUB datasets failed to discriminate between already described species—such as Cry. naterciae and Cry. decipiens (ITS and TUB) or Cry. quercus and Cry. quercicola (TUB). The LSU tree resulted in a flat topology that did not resolve most species, except for specimens of the Cryphonectria taxon, Cry. decipiens and Cry. radicalis, but not among Cry. decipiens and Cry. naterciae. In the present study, a species was considered strongly supported if a lineage exhibited monophyly in a majority of sampled loci (genealogical concordance), which was not contradicted by phylogenetic patterns in other loci (genealogical non-discordance) (Dettman et al., 2003, 2006; Taylor et al., 2000). Since, no well-supported (>70%) conflicting branching was detected among single locus trees, multilocus analyses were performed based on a concatenated dataset.

The concatenated dataset included only specimens that were represented by three or four sequences in order to improve the detection of monophyly. For this reason, species like Cry. quercus and Cry. quercicola, which were described on two loci (ITS and TUB) only, were not included in this dataset. The resulting data matrix comprised 2804 sites and was composed of 23 sequences of nine Cyphonectria species and two outgroup species, Endotaphia gyrosa and Amphilogia gyrosa. Of the 2804 sites, 329 were polymorphic. Both the Bayesian and PhyML analyses resulted in almost identical topologies. Therefore, the Bayesian tree was selected for representation in Fig. 1. This phylogeny confirms the monophyly of the genus Cryphonectria (PP = 1.0; B = 98%), which splits into two highly supported lineages (Fig. 1, A, and B). Within lineage A, the isolates from declining hornbeam trees are separated from Cry. decipiens, Cry. naterciae and Cry. radicalis in a strongly supported monophyletic clade (PP = 1.0; B = 98%). Within lineage B, specimens of Cry. japonica, Cry. macrospora, Cry. neoparasitica, and Cry. parasitica each also represented a well-supported monophyletic clade.

The ITS dataset for NJ analysis contained 19 sequences of Cyphonectria taxon, Cry. decipiens, Cry. naterciae and Cry. radicalis. Thirty-four ambiguous positions were excluded from the dataset and, of the 503 analysed characters, 34 were polymorphic. On contrary, 78% of all positions were excluded from the TUB dataset due to ambiguously aligned sites and highly repetitive homopolymers. Finally, the dataset contained 20 sequences and reached a length of 339 positions including nine polymorphic sites. Similar to the single-locus topology, the ITS-tree failed to separate Cry. decipiens from Cry. naterciae at species level, but TUB data contained some genetic variability within the Cyphonectria taxon and abundant polymorphism between Cry. decipiens and Cry. naterciae.

Table 2
Summary of molecular data matrices used in phylogenetic analyses including the substitution model applied.

Alignment per locus	LSU	ITS	TUB	RPB2	Combined
Number of sequences	27	35	32	19	25
Number of characters	581	549	833	1098	–
Excluded ambiguous sites*	–	127	142	–	–
Final alignment	569	423	691	1098	2804b
Polymorphic sites	22	46	154	153	329
Substitution model	GTR + I	GTR + I	HKY + G	CTR + I	GTR + G + I

* Ambiguous aligned sites were automatically excluded using Gblocks.

b Data matrices were combined after Gblocks analyses.

Fig. 1. Phylogeny and culture morphology of specimens isolated from declining hornbeam trees, named as Cyphonectria carpinicola. Left: Phylogram resulting from Bayesian analysis of combined ITS, LSU, RPB2 and TUB sequences. Bifurcations with posterior probabilities <0.9 were collapsed. Numbers above branches represent posterior probabilities and bootstrap values of maximum likelihood analysis (bootstrap values > 70%). Species names written in bold highlight cultures shown at right. Right: Photographs of some representative species of the genus Cryphonectria grown on PDA plates under lab conditions. At top the habit of Cry. carpinicola.
Isolates from declining hornbeam trees from Italy were clearly positioned together with specimens from Austria, Georgia and Switzerland in both NJ-trees (Fig. 2).

3.2. Morphology, growth and mating behaviour

The culture habit of five Cryphonectria species examined in the present study are shown in Fig. 1 (right side). To assess growth characteristics and culture morphology, all isolates were grown on PDA plates incubated at 25 °C under a 14 h photoperiod. Under these conditions, the Cry. parasitica and Cry. radicalis isolates grew the fastest and reached the margin of the 90 mm agar plates after one-week incubation. While all other isolates reached the margin after two weeks, the Georgian isolate M5717 grew very slowly and reached the margin after two to three days from the centre of the plates (dashed line) and extended to the edge of the cultures after four days. The species nova Cryphonectria taxon showed orange pigmentation on a beige background, whereas the saturation of the orange colour was higher around the central area and faded out towards the margins of the culture. The Georgian isolate M5717 was beige to brown pigmented and had only a small central orange area. The mycelium of Cry. parasitica was orange-brown, similar to Cry. naterciae, whereas Cry. radicalis showed luteous to orange pigmentation with a dark brown central area. The mycelium of Cry. naterciae was also orange-brown, whereas Cry. naterciae, as well as the Cryphonectria taxon had rather less visible growth rings. The margins of the cultures were smooth except for the crenate margins of Cry. parasitica and the Georgian isolate M5717. The bright orange-beige coloured conidiomata of Cry. japonica were grouped as round droplets along the growth rings, whereas in the other cultures conidiomata were less visible.

The effect of temperature on mean colony diameter of the Cryphonectria taxon after two and four days is shown in Fig. 3. Initially, colonies expanded fastest at 25–30 °C, but this early behaviour decreased rapidly and, after four days, all isolates grew optimally at 20–25 °C. The Georgian isolate M5717 exhibited a slower growth than the other two isolates and did not grow above temperatures of 25 °C. In contrast, the Swiss isolate M9615 grew up to 30 °C and the Austrian isolate M9290 even at 35 °C.

Conidia dimensions are listed in Table 3. The mean conidia width of the Cryphonectria taxon and Cry. naterciae was similar but the mean length was shorter compared with the conidia length of Cry. parasitica and Cry. naterciae, but longer than Cry. radicalis.

Fig. 3. Relationship between culture growth (cm) and temperature (°C) after 2 days (dashed line) and 4 days (dragged line) on PDA medium. Each data point represents the mean value of ten repetitions and vertical bars the corresponding standard deviation.

No sexual fruiting bodies (perithecia) were produced on the mating plates, even after an extended incubation time of more than one year. In one cross (M9290 × M9290), perithecial necks typically of Cryphonectria spp. were observed (Fig. 4), however, no mature perithecia were present associated with the necks.

3.3. Pathogenicity studies

The lesions produced by the Cryphonectria taxon after wound inoculations varied depending on the isolate and the host species (Table 4, Fig. 5). The general linear model revealed significant differences between isolates (P = 0.0015) and host species (P = 0.0008). The largest lesions were produced by the isolates M9290 on Car. betulus and to smaller extend on Cos. sativa. The other two isolates did not produce significantly larger lesions than the control on both of these host species. There was no lesion larger

Table 3

Taxon	Isolate–ID	n	Mean ± SD (μm)	Range (μm)
C. carpincola	M9290	150	3.5 ± 0.3 × 1.3 ± 0.1	3.0–4.7 × 0.9–1.8
	M5717	50	3.5 ± 0.2 × 1.4 ± 0.1	3.1–3.6 × 1.2–1.5
	M9615	50	3.4 ± 0.3 × 1.2 ± 0.1	3.0–4.6 × 0.9–1.5
	M9290	50	3.7 ± 0.4 × 1.4 ± 0.1	3.1–4.7 × 1.2–1.8
C. decipiens	M9290	150	3.7 ± 0.4 × 1.3 ± 0.1	2.9–4.9 × 1.0–1.6
C. naterciae	M9290	150	3.4 ± 0.3 × 1.4 ± 0.1	2.7–4.1 × 1.2–1.8
C. radicalis	M9290	150	3.6 ± 0.4 × 1.4 ± 0.1	2.9–4.5 × 1.1–1.7

* Range is given as minimum and maximum dimension measured.

Fig. 2. Unrooted phylograms resulting from NJ analyses of (A) ITS, and (B) TUB sequences. Numbers beside nodes represent bootstrap values. The species nova Cryphonectria carpinicola is highlighted in orange rectangles. Specimen vouchers are listed beside nodes. Italian specimens shared identical ITS (A) or highly similar TUB (B) sequences with isolates from Austria, Georgia and Switzerland analysed in the present study. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
than the control on Cor. avellana and B. pendula for all isolates. In many cases, the inoculated wounds became completely overgrown by the callusing reaction of trees (Supplemental Fig. S2). Overall, lesions were significant larger on Car. betulus compared to Cor. avellana \((P = 0.009)\) and B. pendula \((P = 0.015)\) but not compared to Cas. sativa \((P = 0.84)\). Sporulation was observed only for isolate M9290 on two lesions on Car. betulus and two lesions on Cas. sativa (Table 4). This isolate also showed the highest re-isolation rate (15 out of 20 lesions), followed by M9615 (12 out of 20 lesions). The isolate M5717 was only recovered from three lesions on B. pendula and one lesion on Cas. sativa (totally 4 out of 20 lesions). Re-isolations were successful from many lesions, which were not larger than the control. During the entire duration of the experiment, no mortality of the inoculated plants was observed.

Table 4
Pathogenic characteristics of *Cryphonectria carpinicola* isolates on different tree species, assessed two months after inoculation.

Host, Isolate	N	Lesion size (cm2)	Sporulationa	Re-Isolationsb
Carpinus betulus				
M5717	5	0.57 ± 0.21	0	0
M9290	5	3.85 ± 3.05	0	0
M9615	5	1.00 ± 0.30	0	4
Control	5	0.60 ± 0.12	0	0
Corylus avellana				
M5717	5	0.48 ± 0.16	0	0
M9290	5	0.40 ± 0.05	0	2
M9615	5	0.43 ± 0.07	0	1
Control	5	0.43 ± 0.07	0	0
Betula pendula				
M5717	5	0.51 ± 0.15	0	3
M9290	5	0.50 ± 0.07	0	3
M9615	5	0.52 ± 0.11	0	4
Control	3	0.46 ± 0.10	0	0
Castanea sativa				
M5717	5	1.05 ± 0.23	0	1
M9290	5	1.94 ± 0.63	0	5
M9615	5	1.00 ± 0.05	0	3
Control	5	0.93 ± 0.27	0	0

a Number of lesions with fungal stromata development.

b Number of lesions from which *C. carpincola* was successfully re-isolated.

c Means followed by different letters were significant different \((P < 0.05)\).

![Fig. 4](image1.png)

Fig. 4. *Cryphonectria carpinicola* in culture. (A) Halved stem of *Carpinus betulus* overgrown with mycelium. (B–C) Conidiomata with conidial tendrils. (D) Long neck on a fake perithecia. (E) Conidia.

![Fig. 5](image2.png)

Fig. 5. Pathogenicity test on *Carpinus betulus* using three isolates of *Cryphonectria carpinicola* (A) M5717, (B) M9290, and (C) M9615. For each isolate, five two-year-old seedlings were inoculated. (D) As negative control, five seedlings of *C. betulus* were inoculated with an agar plug.

![Fig. 6](image3.png)

Fig. 6. *Cryphonectria carpinicola* from field collections. (A–C) Conidiomata breaking through the bark of *Carpinus betulus*, conidial mass emerging in orange tendrils. (D) Section through a multilocular stroma. (E–G) Microscopic view of section of stroma. (E) Prosenchymatose outermost layer. (F) Conidiogenous cells. (G) Part of pseudoparenchymatous layer surrounding conidial locules. Scale bars: A–D = 1 mm; E–G = 10 μm.
3.4. Taxonomy

Cryphonectria carpinicola D. Rigling, T. Cech, Cornejo & L. Beenken, sp. nov.

MycoBank MB837752 (Fig. 6)

Similar to *Cryphonectria radicalis*, but occurs on species of the family Betulaceae.

Etym: carpinicola means growing on *Carpinus*, the host genus.

Sexual state: ascomata not observed. **Asexual state:** un- to multicellular, stromatic conidiomata immersed in the bark, pustular, erupting through the bark, surface shiny smooth, bright orange, discoloring wine-red to purple with 2.5% KOH, pustular, erupting through the bark, surface shiny smooth, matous up to 60–70 mm thick, orange coloured; inner part pulvinate, eustromatic throughout, only basal, close to the substrate pseudostromatic, prosenchymatose, hyphae (1) 1.5–2.5(3.5) mm wide, with colourless or yellaish content, orange punctations on the hyphal walls dissolving and discoloring pink to purple in 2.5% KOH; many refracting, colourless crystal grains (roundish, up to 40 μm in diameter) between the stromal hyphae. Up to 8 locules per conidioma, locules ovoid bottle to 61307, culture ex-holotype CBS 147194. GenBank accession numbers: MT311233 (LSU), MT330391 (ITS), MW086451 (RPB2) and MW086465 (TUB).

Additional specimens examined: SWITZERLAND, canton of Basel Landschaft, Birsfelden, forest «Oberi Hard», 47.53900 N, 7.65550 E, 275 m altitude, on dead trunk of *Carpinus betulus*, 13 Jun. 2019, V. Queloz (M10525), ZT Mtc 61308, culture CBS 147195. Basel, Cemetery Wolfgottesacker, 47.37836 N, 7.35399 E, 550 m altitude, on dead trunk of *Carpinus betulus*, 03 May 2020. V. Queloz (WSS 13609)

—canton of Jura, Delémont, Le Béridier, forest la Vigne, 47.37836 N, 7.35399 E, 550 m altitude, on dead trunk of *Carpinus betulus*, 03 May 2020. V. Queloz (WSS 13609)

AUSTRIA, Biedermannsdorf, 48.090261 N, 16.348137 E, 190 m altitude, on dead trunk of *Carpinus betulus* in a hedge, 24 Nov. 2009, Thomas Cech (M9290), CBS 147196. **GEORGIA,** Tbilis, N 42.372981, E 43.016217, 1050 m altitude, on a dead stem of *Carpinus* sp. 31 March 2010. D. Rigling (M5177), CBS 147197.

Notes: The anamorph of *Cryphonectria carpinicola* shows only slight differences in morphology and anatomy to the closely related species *Cry. radicalis* and *Cry. naterciae* (Fig. 1) (Bragança et al., 2011). Small differences can be found in the dimensions of the conidia that show a large overlap (Table 3). The teleomorph of this new species, which could show more differentiating features, has not yet been found and mating experiments resulted in fake perithecia that did not produce any asci and ascospores. Therefore, the differentiation of the new species is mainly based on molecular sequence data and to some extent to its host specificity. While the other *Cryphonectria* species mainly occur on tree genera of the family Fagaceae. *Cry. carpinicola* was only found on *Carpinus* spp. of the family Betulaceae.

4. Discussion

4.1. Phylogenetic analyses

During last decades, many cases of dieback of *C. betulus* trees were reported in northern Italy and central Europe. Even tough, there was major effort to characterize both etiological agents associated with dieback, only *A. decipiens* could be identified at species level (Rocchi et al., 2010). The present work has studied the second fungus causing hornbeam dieback and confirms the species nov. *Cryphonectria carpinicola* as etiological agent. A comprehensive phylogenetic analysis, including all *Cryphonectria* species known to date (Jiang et al., 2020), show that this fungus belongs to the genus *Cryphonectria* as it is clearly integrated within the ingroup and forms monophyletic clades in three of four sampled loci (Supplemental Fig. S1). Additionally, NJ analysis of the ITS sequences from Italian isolates named in GenBank as *Cryphonectria* sp. and *Endothiella* sp. were identical to all our isolates of *Cry. carpinicola* as well as the TUB sequence AM920692 from the Lombardy (Italy). The phylogeny of *Cryphonectria* splits into two major clades (Fig. 1). One includes *Cry. carpinicola* together with *Cry. radicalis*, *Cry. decipiens* and *Cry. naterciae* from Europe, while the other comprises species spread in eastern Asia, such as *Cry. citrina*, *Cry. japonica*, *Cry. macrospora* or *Cry. parasitica*.

Morphologically, *Cry. carpinicola* shared many characteristics with *Cry. radicalis*, demonstrating the close relationship between both species. On PDA, the mycelium was flat in both species, but *Cry. radicalis* developed purple colour when grown in the dark (Hoegger et al., 2002). However, we also observed some variation in culture morphology among the *Cry. carpinicola* isolates. For example, the Georgian isolate grew very slowly and only up to 25 °C (Fig. 3). However, molecular data clearly confirmed its taxonomic position together with all other isolates of *Cry. carpinicola* (Figs. 1 and 2). Additionally, the conidia of all three isolates had similar shape and size. Culture morphology can be influenced by many factors and it is well-known that it can change during sub-culturing in the laboratory. Virus infection is also known to affect culture morphology in *Cryphonectria* spp. (Hillman and Suzuki, 2004).

4.2. Host range and distribution of *Cry. carpinicola*

So far, *Cry. carpinicola* was found in Europe only on *Carr. betulus* and in the Caucasus region in an unidentified *Carpinus* species, probably either *Carr. betulus* or *Carr. orientalis*. *Carpinus* spp. (Family Betulaceae) noticeably is the main host of *Cry. carpinicola*. The present work has studied the second fungus causing hornbeam dieback and confirms the species nov. *Cryphonectria carpinicola* as etiological agent. A comprehensive phylogenetic analysis, including all *Cryphonectria* species known to date (Jiang et al., 2020), show that this fungus belongs to the genus *Cryphonectria* as it is clearly integrated within the ingroup and forms monophyletic clades in three of four sampled loci (Supplemental Fig. S1). Additionally, NJ analysis of the ITS sequences from Italian isolates named in GenBank as *Cryphonectria* sp. and *Endothiella* sp. were identical to all our isolates of *Cry. carpinicola* as well as the TUB sequence AM920692 from the Lombardy (Italy). The phylogeny of *Cryphonectria* splits into two major clades (Fig. 1). One includes *Cry. carpinicola* together with *Cry. radicalis*, *Cry. decipiens* and *Cry. naterciae* from Europe, while the other comprises species spread in eastern Asia, such as *Cry. citrina*, *Cry. japonica*, *Cry. macrospora* or *Cry. parasitica*.

Morphologically, *Cry. carpinicola* shared many characteristics with *Cry. radicalis*, demonstrating the close relationship between both species. On PDA, the mycelium was flat in both species, but *Cry. radicalis* developed purple colour when grown in the dark (Hoegger et al., 2002). However, we also observed some variation in culture morphology among the *Cry. carpinicola* isolates. For example, the Georgian isolate grew very slowly and only up to 25 °C (Fig. 3). However, molecular data clearly confirmed its taxonomic position together with all other isolates of *Cry. carpinicola* (Figs. 1 and 2). Additionally, the conidia of all three isolates had similar shape and size. Culture morphology can be influenced by many factors and it is well-known that it can change during sub-culturing in the laboratory. Virus infection is also known to affect culture morphology in *Cryphonectria* spp. (Hillman and Suzuki, 2004).
Chestnut blight fungus, but *Cry. carpinicola* has never been reported on European chestnut in these studies. However, our inoculation tests and a field study by Saracchi et al. (2010) demonstrate that *Cry. carpinicola* possesses the potential to invade bark tissue of *Car. sativa*, although it acts rather as weak pathogen because no girdling cankers were observed. Likewise, *Cry. natercæ* and *Cry. japonica* were primarily reported to colonise chestnut wood saprotophically (Dennert et al., 2020).

Cryphonectria japonica has also been reported as weak parasite on *Carpinus tschonoskii* in Japan (as the syn. *Cry. nitschkei*; Myburgh et al., 2004a). Although, *C. tschonoskii* is only a minor host amongst the main host plants of the Fagaceae, the ability to colonise both Fagaceae and Betulaceae trees seems to be an ancestral character state in the genus *Cryphonectria* because, e.g., *Cry. carpinicola* and *Cry. japonica* belong to different lineages within this genus and the most recent common ancestor is placed at the basal genus node (Fig. 1). For this reason, we assume that, depending on the prevailing environmental conditions, *Cryphonectria* species have the potential to behave as pathogen, as weak parasite or as saprophyte on both Fagaceae and Betulaceae in the sense of the endophytic continuum (Schulz and Boyle, 2005). This concept hypothesizes that there are no neutral interactions, but rather that endophyte-host interactions involve a balance of antagonisms with at least a degree of virulence on the part of the fungus enabling infection. The ability to maintain a wide host range facilitate surviving under dynamic environmental conditions over a long-term timescale. Indeed, host jumps are common for plant pathogenic fungi (Burgess and Wingfield, 2016; Sieber, 2007; Slippers et al., 2005) and previous studies have shown that different species in the *Cryphonectriaceae* undergo regularly host jumps (Chen et al., 2016; Gryzenhout et al., 2009; Heath et al., 2006; Vermeulen et al., 2011). Hence, for *Cry. carpinicola*, we assume that it can colonise different host families at least as weak parasite or saprotroph, but it was first discovered as conspicuous pathogen on hornbeam trees.

Additionally, *Cry. radialis* has been documented on *Carpinus* trees in old herbarium specimens. An explanation for these records is that in the past several closely related species were jointly interpreted as *Cry. radialis* due to scarce morphological features useable for species discrimination. In fact, Myburgh et al. (2004a, b) reported phylogenetically distinctive lineages of specimens labelled as *Cry. radialis* that resulted in the separation of the new species *Cry. decipiens* from *Cry. radialis* sensu stricto (Gryzenhout et al., 2009). It is thus possible that *Cry. carpinicola* was reported on *Car. betulus* under the name of the morphologically very similar *Cry. radialis* and not recognized as a distinctive species.

4.3. Pathogenic potential of *Cry. carpinicola*

Due to heavy dieback in the Lombardy and Piedmont at early 2000s, the disease affecting *Car. betulus* trees was called *hornbeam decline* in Italy (Rica et al., 2008; Rocchi et al., 2010; Saracchi et al., 2007). In Torino, e.g., mortality increased by 11% from 2004 to 2007, and 54% of the 300 surveyed hornbeam trees were in 2007 symptomatic (Rica et al., 2008). Our pathogenicity tests confirmed that *Car. betulus* is a main host species of *Cry. carpinicola*. Two isolates (one each from Austria and Switzerland) produced clearly visible lesions, when inoculated into the stems of *Car. betulus* (Table 4, Fig. 5) and both could be re-isolated at high frequency two months after inoculation. This result is consistent with a previous inoculation study using a *Cry. carpinicola* (named *Endothiella sp.*) isolate from Italy, which produced significant larger lesions on *Car. betulus* than on other potential host trees (Saracchi et al., 2015). The isolate from Austria proved to be particularly virulent by producing sporulating lesions on both *Car. betulus* and *Car. sativa*. None of the isolates caused lesions on hazelnut and birch, but still could be re-isolated to some extend in the end of the experiment, most notably from inoculated birch seedlings.

To assess the pathogenicity potential of *Cry. carpinicola*, we used a wound inoculation method, which has been widely applied to determine virulence and host specificity of the chestnut blight fungus, *Cry. parasitica* (e.g. Dennert et al., 2019; 2020; Peever et al., 2000). Upon inoculations of susceptible chestnut seedlings, *Cry. parasitica* isolates typically produced large lesions within a few weeks, which lead to high seedling mortality (Dennert et al., 2019). In comparison, lesions produced by *Cry. carpinicola* on hornbeam were much smaller and did not cause host mortality, suggesting that *Cry. carpinicola* is rather a secondary than a primary pathogen on its main host tree. The isolates used in this study were all obtained from dead hornbeam trees, which in the cases of the Swiss isolates suffered from drought periods. In Italy, *Cry. carpinicola* has been mainly reported on stressed hornbeam trees in urban environment often together with *A. decipiens* (Saracchi et al., 2010). Which combination of environmental factors incites the pathogenic potential of *Cry. carpinicola*, however, remains to be determined.

Acknowledgement

We thank Valentin Quezoz for providing Swiss samples of *Cry. carpinicola* for this study. This work was supported by the Swiss Federal Office for the Environment, FOEN.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.funbio.2020.11.012.

References

Akaike, H., 1973. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255–265.

Bragança, H., Rigling, D., Diogo, E., Capelo, J., Phillips, A., Teneiro, R., 2011. *Cryphonectria parasitica* n. sp.: a new species in the *Cryphonectria*—*Endothia* complex and diagnostic molecular markers based on microsatellite-primed PCR. Fungal Biol. 115, 852–861.

Braun, U., Takamatsu, S., Heluta, V., Limkaisang, S., Divarangkoon, R., Cook, R., Boyle, H., 2006. Phylogeny and taxonomy of powdery mildew fungi of *Erysiphe* sect. *Uncinula* on *Carpinus* species. Mycol. Prog. 5, 139–153.

Burgess, T.L., Wingfield, M.J., 2016. Pathogens on the move: a 100-year global experiment with planted eucalypts. BioScience 67, 14–25.

Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. and Evol. 17, 540–552.

Cech, T.L., 2019. *Rindenlistung* am Stamm von Hainbuchen, assoziiert mit *Anthosoma decipiens*, Forstschutz Aktuell. BFW, Wien, Austria, pp. 45–50.

Chen, S.F., Wingfield, M.J., Li, G.Q., Liu, J.F., 2016. *Corticimorbus sinomyrti* gen. et sp. nov. (*Cryphonectriaceae*) pathogenic to native *Rhodomyrtus tomentosa* (*Myrtaceae*) in South China. Plant Pathol. 65, 1254–1266.

Dallavalle, E., Zambonelli, A., 1999. Epidemiological role of strains of *Cryphonectria parasitica* isolated from hosts other than chestnut. Eur. J. For. Pathol. 29, 97–102.

Dallavalle, E., lott, M., Zambonelli, A., 2003. *Cryphonectria radialis* a new pathogen of *Carpinus betulus*. J. Plant Pathol. 85, 319.

Dennert, F., Meyer, J.B., Rigling, D., Prospero, S., 2019. Assessing the phytosanitary risk posed by an intraspecific invasion of *Cryphonectria parasitica* in Europe. Phytopathology 109, 2053–2063.

Dennert, F., Rigling, D., Meyer, J.B., Scherer, C., Augustine, E., Prospero, S., 2020. Testing the pathogenic potential of *Cryphonectria parasitica* and related species on three common European Fagaces. Front. For. Glob. Chang. 3.

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Letort, V., Lescot, M., Claverie, J.M., Gascuel, O., 2008. Phylogenetic: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36, W465–W469.

Dettman, J.R., Jacobson, D.J., Taylor, J.W., 2003. A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote *Neurospora*. Evolution 57, 2073, 2720.

Dettman, J.R., Jacobson, D.J., Taylor, J.W., 2006. Multilocus sequence data reveal extensive phylogenetic species diversity within the *Neurospora discreta* complex. Mycologia 98, 436–446.
Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214.

Felsenstein, J., 1985. Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39, 783–791.

Glass, N.L., Donaldson, G.C., 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl. Environ. Microb. 61, 1233–1230.

Gryzenhout, M., Myburg, H., Hodges, C.S., Wingfield, B.D., Wingfield, M.J., 2006a. Microthia, Holocryphia and Ursicollum, three new genera on Eucaulpys and Coccoloba for fungi previously known as Cryphonectria. Stud. Mycol. 55, 35–52.

Gryzenhout, M., Wingfield, B.D., Wingfield, M.J., 2006b. New taxonomic concepts for the important forest pathogen Cryphonectria parasitica and related fungi. FEMS Microb. Lett. 258, 161–172.

Gryzenhout, M., Wingfield, B.D., Wingfield, M.J., 2009. Taxonomy, Phylogeny, and Ecology of Bark-Inhabiting and Tree-Pathogenic Fungi in the Cryphonectriaceae. American Mycological Society (APS Press), St. Paul, Minnesota, U.S.A.

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 370–372.

Heath, R.N., Gryzenhout, M., Roux, J., Wingfield, M.J., 2006. Discovery of the canker pathogen Chrysosporite austroafricana on native Syzygium spp. in South Africa. Plant Dis. 90, 433–438.

Heluta, V., Takamatsu, S., Voytky, S., Shroya, Y., 2009. Erysiphe kenjiana (Erysiphe)-, a new invasive fungus in Europe. Mycolog. Res. 8, 367.

Halfman, B.I., Suzuki, N., 2004. Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 63, 423–472.

Hoeger, P.J., Rigling, D., Heldensieder, O., Heiniger, U.L., 2002. Cryphonectria radicola rediscovery of a lost fungus. Mycologia 94, 105–115.

Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267.

Imperato, V., Kowalkowski, L., Portillo-Estrada, M., Gawronski, S.W., Vangronsveld, J., Thijs, S., 2019. Characterisation of the Carpinus betulus L. phyllo microbiome in urban and forest areas. Front. Microbiol. 10.

Jiang, N., Fan, X.L., Yang, Q., Du, Z., Tian, C.M., 2018. Two novel species of Cryphonectria from quercus in China. Phyto taxa 347, 243–250.

Jiang, N., Fan, X.L., Tian, C.M., 2019. Identification and pathogenicity of Cryphonectriaceae species associated with chestnut canker in China. Plant Pathol. 68, 256–260.

Kehr, R., Hecht, M., Schen onen, H., 2016. Neuartige rindenschaden an Hainbuchen in Deutschland. TASPO BaumZeitung 36, 132–3.

Kehr, R., Hecht, M., Schenonen, H., 2017. Rindenkrebs der Hainbuche durch zwei neue Schadpilze, Symptomatik und Verbreitung in Deutschland. Jahrbuch der Baumpflinge 21, 319–326.

Krauthausen, H.-J., 2018. Rindenkrebs der Hainbuche das Blute 4/2018. Dienstleistungszentrum Linderhoch, Germany.

Kehr, R., Hecht, M., Schenonen, H., 2016. Neuartige rindenschaden an Hainbuchen in Deutschland. Tapped Baumzeitung 36, 39–87.

Kehr, R., Hecht, M., Schenonen, H., 2017. Rindenkrebs der Hainbuche durch zwei neue Schadpilze, Symptomatik und Verbreitung in Deutschland. Jahrbuch der Baumpflinge 21, 319–326.

Kehr, R., Hecht, M., Schenonen, H., 2016. Neuartige rindenschaden an Hainbuchen in Deutschland. Tapped Baumzeitung 36, 39–87.

Kehr, R., Hecht, M., Schenonen, H., 2017. Rindenkrebs der Hainbuche durch zwei neue Schadpilze, Symptomatik und Verbreitung in Deutschland. Jahrbuch der Baumpflinge 21, 319–326.

Kehr, R., Hecht, M., Schenonen, H., 2016. Neuartige rindenschaden an Hainbuchen in Deutschland. Tapped Baumzeitung 36, 39–87.

Kehr, R., Hecht, M., Schenonen, H., 2017. Rindenkrebs der Hainbuche durch zwei neue Schadpilze, Symptomatik und Verbreitung in Deutschland. Jahrbuch der Baumpflinge 21, 319–326.

Kehr, R., Hecht, M., Schenonen, H., 2016. Neuartige rindenschaden an Hainbuchen in Deutschland. Tapped Baumzeitung 36, 39–87.

Kehr, R., Hecht, M., Schenonen, H., 2016. Neuartige rindenschaden an Hainbuchen in Deutschland. Tapped Baumzeitung 36, 39–87.