Response of Water Melon (Citrus lanatus L.) Varieties to Different Time of Poultry Manure Application

Abdulmaliq, S. Y., Kumar, N., Adekola, O. F., Kareem, I. and Mahamoud, J.

1Department of Crop Production, IBB University, Lapai, Niger State, Nigeria.
2Department of Agronomy, University of Ilorin, Kwara State, Nigeria.
3Lower River Basin, Ministry of Water Resources, Ilorin, Kwara State, Nigeria.

Correspondence e-mail: drsmaliq@gmail.com

Abstract
Field experiments were conducted between April and November 2016 at the Teaching and Research Farm of Ibrahim Badamasi Babangida University, Lapai (Latitude 09° 02' N and Longitude 06° 34' E) and Research Farm of College of Agriculture, Mokwa (Latitude 09° 08' N and Longitude 05° 04' E) to examine the effects of poultry manure time of application on the growth and yield of water melon varieties. The experiment was a 4 x 3 factorial laid in a Randomized Complete Block Design (RCBD) replicated three times. The treatments consisted of four (4) varieties of water melon and three (3) different times of application of poultry manure; a week before planting, during planting and a week after planting. The poultry manure was applied to all the treatments at the rate of 10 tonnes per hectare. Parameters evaluated were vine length per plant (cm), number of leaves per plant, number of branches per plant, days to first flowering, days to 50% flowering, number of fruits per plant, weight of fruits per plant (kg) and fruit yield (t/ha). Data collected were subjected to analysis of variance (ANOVA), significant means were separated using Least Significant Difference (LSD0.05). The results indicated that, out of the four varieties evaluated, variety Koloss F1, and Kaolak significantly produced longest vine, higher number of leaves and branches, higher number of fruits per plant, heavier fruits weight per plant and higher yield (t/ha). Also the application of poultry manure at a week before planting significantly supported higher growth rate and yield in all the four water melon varieties evaluated. Based on the outcome of this research, Koloss F1 and Kaolak varieties planted in the plots with the application of poultry manure a week before planting showed appreciable growth responses at the two locations considered.

Keywords: Application time, Fruit yield, Poultry manure, Variety, Watermelon

Introduction
Watermelon (Citrus lanatus L.) is an important fruit vegetable cultivated worldwide (Huh et al., 2002) and Nigeria inclusive. Its centre of origin has been traced to the Kalahari Desert in Africa, South of the Equator (Jarret et al., 1996). Watermelon consumption is higher than any other member of his family cucubitaceae. About 6.8% of world cultivated area is devoted to water melon production (Goreta et al., 2005). Very large number of water melon varieties are being cultivated in Africa (Zohary and Hopf, 2000).

Total world annual water melon production was estimated at 104, 472, 354 tonnes (Wikipedia, 2013). China is the leading watermelon producers in the world with about 69, 576, 643 tonnes, followed by Iran- 4, 501, 250 tonnes, Turkey-3, 864, 490 tonnes, Brazil- 2, 864, 490 and United States- 1, 769, 230 tonnes in 2011 (Wikipedia, 2013). Despite the increasing demand for watermelon in Nigeria, the yield is...
not encouraging because of rapid reduction in soil fertility caused by both continuous cropping and negligence of soil amendment materials (Enujeke, 2013) in addition to the use of a good cultivar (Tailor et al., 2013).

Tailor et al. (2013) attributed the low yield of watermelon to improper cultural practices such as irrigation, cultivation, planting distance, pests and diseases management, proper nutrition as well as time of nutrient application and choice of cultivars. These cultural practices and others play vital roles in improving the growth and yield of watermelon, therefore, it is very important to screen the available varieties in the study areas with the aim of selecting the best performing ones in terms of higher yield and the appropriate time of nutrient application in other to synchronize the nutrient supply with the plant need. Currently, there is paucity of information on the best varieties of watermelon that can guaranty high yield as well as the right time for nutrients supply. Therefore the objective of the study was to evaluate some varieties of watermelon in the Southern Guinea Savanna and to determine the appropriate time of poultry manure application for optimum fruit production.

Materials and Methods
Two field trials were conducted between April 2016 and November 2016, at two experimental sites (Lapai and Mokwa locations) in Niger state. The sites are located in Southern Guinea Savannah agro ecological zone of Nigeria. The trial in Lapai was sited in the Teaching and Research farm of Ibrahim Badamasi Babangida University located on latitude 9°02’ N and longitude 06°34’E with average temperature of 23-34.4°C and minimum rainfall of 107.3mm. The trial in Mokwa was conducted at the research farm of the College of Agriculture Mokwa, which lies at latitude 09°08’ N and longitude 05°04’E of the equator, with average temperature of 24 – 27°C and annual rainfall of 1517mm.

Improved watermelon varieties used for the trials were sourced from seed vendors in Minna and kaduna, North central Nigeria. The experimental field at the two locations were cleared, ploughed, harrowed and ridged at the onset of the raining season. Prior to the planting, soil and poultry manure samples were collected and analysed for the two locations (Lapai and Mokwa). The treatments, which were arranged in a 4 x3 factorial in a randomized block design (RCBD), comprised of four varieties of watermelon (Kaolak, Koloss F1 hybrid, Charleston grey and sugar baby) and three application time for poultry manure (10t/ha) (a week before planting, during planting and a week after planting). The treatments were replicated three times. Plot size of 4 x 3m, and inter and intra row of 1 x 1m were adopted. Two times weeding was carried out. Pests and diseases were controlled using neem oil extract applied weekly. Data collected include vine length/ plant (cm), number of leaves per plant and number of branches per plant, days to first flowering, days to 50% flowering, number of fruits per plant, weight of fruits per plant and cumulative fruit yield (t/ha). The data collected were subjected to analysis of variance (ANOVA) and the means were separated using the Fisher’s Least Significant Differences (LSD) at P<0.05 probability level. Genstat Discovery 10.3DE Statistical Package (2011) was used for the data analysis.

Results and Discussion
Table 1 showed the result of poultry manure time of application on the vine length of watermelon varieties. The result indicated that there were significant differences among the four (4) varieties tested at Lapai and Mokwa. At 4 weeks after sowing (WAS), the vines of kolos F1 and kaolak varieties were significantly different from charlston grey variety of water melon in the two locations, at 5% probability level. However, at 8 and 12 WAS, koloss F1 variety produced significantly longest vines in the two locations at 5% probability level.

The effects of poultry manure application time on the vine length of the watermelon varieties was not significantly different at 4 WAS, however at 8 and 12 WAS there were significant differences among the vine length of the varieties. The application of poultry manure at a week before planting showed significant highest positive effects on the vine lengths of the varieties (Table 1). The Interactive effects
between the water melon varieties and poultry manure time of application were not significant at P ≤ 0.05 for the parameter (Table 1).

The number of leaves produced by the water melon varieties evaluated was significantly different at 8 and 12WAS (Table 2). Kaolak, Kolos F1 and Sugar Baby varieties were not significantly different from one another but significantly different from Charleston Grey variety in number of leaves/plant throughout the experiment. With regard to the effects of poultry manure time of application, number of leaves from the application at a week before planting and application at planting were significantly higher than those from the application at a week after planting throughout the experiment. The interaction effects were not significantly different for number of leaves/plant among the varieties (Table 2).

Table 3 showed the effects of varieties and poultry manure application time on the number of branches of four water melon varieties at Lapai and Mokwa. The results indicated that Kaolak, Kolos F1 and Sugar Baby varieties were not significantly different in number of branches/plant. However, they were significantly different from Charleston Grey variety which produced lowest number of branches at the two locations. In another vein, the effects of poultry manure time of application on number of branches per plant indicated that the application of poultry manure a week before planting and application at planting were significantly different from the application of poultry manure a week after planting. The least number of branches/plant was produced when poultry manure was applied a week after planting. The interaction effects were not significant.

The differential behaviour of water melon varieties in the growth parameters (vine length, number of leaves and number of branches) can be attributed to genetics and adaptability of these varieties (kolos F1, kaolak and sugar baby) to the southern guinea ecological zone of Nigeria. The varieties have been in cultivation since time immemorial (Dauda et al., 2008). This similar pattern of response in growth parameters exhibited by watermelon cultivars in this study agrees with the findings of Davis et al. (2008). These workers reported differential growth performance in watermelon varieties under different environments conditions. Longinus and Gilbert (2014) reported better growth of kaolak variety of water melon over sugar baby in Abakaliki, Southeastern Nigeria. However, Dantata (2014) reported similarity in the growth parameter of sugar baby, kaolak and paradise varieties of water melon.

The flowering characteristics of water melon which included day to first flowering and days to 50% flowering were not significantly different among the water melon varieties as shown in Table 4. Also, the poultry manure application did not significantly affect flowering characteristics of water melon in 2016 cropping seasons at the two locations (Table 4).

Table 5 showed the effects of water melon varieties and poultry manure application time on the fruiting characteristics of four water melon varieties at Lapai and Mokwa in 2016 cropping season. The results indicated that, in the two locations, the Koloss F1 and Kaolak varieties significantly produced higher number of fruits/plant and heavier fruit weight/plant which were significantly different from Sugar Baby and Charleston Grey varieties. Also, the effect of the water melon varieties on fruit yield (t/ha) is presented in Table 5. The results showed that, at Lapai location, Kaolac, Kolos F1 and Sugar Baby varieties recorded significantly higher fruit yields (tonnes/ha) which were far apart from the yield obtained from Charleston Grey variety. At Mokwa, the Kaolak and Kolos F1 varieties produced higher fruit yields which were significantly different from those of Sugar Baby and Charleston Grey varieties. The variations observed in the number of fruits/plant, fruit weight/plant and fruit yield/ha can be attributed to the genetic variability in each of the varieties and the influence of environmental condition. This result corroborates the earlier report of Granberry et al. (1986) who reported variations in the fruit yield parameters of water melon varieties. It is also in agreement with Abdulmaliq et al. (2016) who reported varied yield of okra varieties in the Southern Guinea Savanna.

Table 3 showed the effects of varieties and poultry manure application time on the number of branches of four water melon varieties at Lapai and Mokwa. The results indicated that Kaolak, Kolos F1 and Sugar Baby varieties were not significantly different in number of branches/plant. However, they were significantly different from Charleston Grey variety which produced lowest number of branches at the two locations. In another vein, the effects of poultry manure time of application on number of branches per plant indicated that the application of poultry manure a week before planting and application at planting were significantly different from the application of poultry manure a week after planting. The least number of branches/plant was produced when poultry manure was applied a week after planting. The interaction effects were not significant.

The differential behaviour of water melon varieties in the growth parameters (vine length, number of leaves and number of branches) can be attributed to genetics and adaptability of these varieties (kolos F1, kaolak and sugar baby) to the southern guinea ecological zone of Nigeria. The varieties have been in cultivation since time immemorial (Dauda et al., 2008). This similar pattern of response in growth parameters exhibited by watermelon cultivars in this study agrees with the findings of Davis et al. (2008). These workers reported differential growth performance in watermelon varieties under different environments conditions. Longinus and Gilbert (2014) reported better growth of kaolak variety of water melon over sugar baby in Abakaliki, Southeastern Nigeria. However, Dantata (2014) reported similarity in the growth parameter of sugar baby, kaolak and paradise varieties of water melon.

The flowering characteristics of water melon which included day to first flowering and days to 50% flowering were not significantly different among the water melon varieties as shown in Table 4. Also, the poultry manure application did not significantly affect flowering characteristics of water melon in 2016 cropping seasons at the two locations (Table 4).

Table 5 showed the effects of water melon varieties and poultry manure application time on the fruiting characteristics of four water melon varieties at Lapai and Mokwa in 2016 cropping season. The results indicated that, in the two locations, the Koloss F1 and Kaolak varieties significantly produced higher number of fruits/plant and heavier fruit weight/plant which were significantly different from Sugar Baby and Charleston Grey varieties. Also, the effect of the water melon varieties on fruit yield (t/ha) is presented in Table 5. The results showed that, at Lapai location, Kaolac, Kolos F1 and Sugar Baby varieties recorded significantly higher fruit yields (tonnes/ha) which were far apart from the yield obtained from Charleston Grey variety. At Mokwa, the Kaolak and Kolos F1 varieties produced higher fruit yields which were significantly different from those of Sugar Baby and Charleston Grey varieties. The variations observed in the number of fruits/plant, fruit weight/plant and fruit yield/ha can be attributed to the genetic variability in each of the varieties and the influence of environmental condition. This result corroborates the earlier report of Granberry et al. (1986) who reported variations in the fruit yield parameters of water melon varieties. It is also in agreement with Abdulmaliq et al. (2016) who reported varied yield of okra varieties in the Southern Guinea Savanna.
The poultry manure application time significantly influenced the fruit yields of the four watermelon varieties in the two locations. The result showed that the plants under application of poultry manure at a week before planting and the application at planting were similar in their responses on fruit yield (t/ha) (Table 5). This result is in line with Abdulmaliq et al. (2015) who worked on the poultry manure application time and rates on the yield of okra and observed that the application of poultry manure before planting significantly lead to higher yield of okra in the Southern Guinea Savannah.

Conclusion
The results of the experiments in the two locations revealed that vine length, number of leaves, number of fruits and fruit yield of watermelon cultivars were significantly varied based on cultivars. These growth and yield parameters of watermelon were statistically higher in koloss followed by kaolak and sugar baby varieties while charlston grey variety recorded lowest growth and yield. Also, the results of the poultry manure application time revealed significantly better growth and yield from the application of poultry manure a week before planting and the application at planting. It is therefore recommended that the varieties kaolak, k0llos F1 and sugar baby could be nominated for further yield performance evaluation in the Southern Guinea Savannah, while the organic nutrient such as poultry manure should be applied a week or at planting to the water melon for better growth and yield.

References
Abdulmaliq, S. Y., Isah, M. K., Bello, O. B and Mahamood, J. (2015). Effects of poultry manure application time and rates on the performance of okra (Abelmoschus esculentus(L.) Moench) Varieties in Southern Guinea Savannah of Nigeria. *Journal of Organic Agriculture and Environment*, 3:84 – 96.

Abdulmaliq, S. Y., Abayomi,Y. A.,Aduloju,M. O. and Olugbemi, O. (2016). Effects of Curing Period of Livestock Droppings on the Growthand Yield of Okra (Abelmoschus esculentusL.) Varieties. *International Journal of Agronomy*, 1-7.

Dantata, I. J. (2014). Assessing Watermelon Cultivars under Different Planting Distances in Bauchi North, Nigeria.*Asian Journal of Applied Science*, 02(03):381-386.

Dauda, S. N., Ajayi, F. A. and Ndor, E. (2008). Growth and yield of watermelon (Citrus lanatus) as affected by poultry manure application. *Journal of Agriculture and Social Sciences*, 4: 121-124.

Davis, A.R., Webber, III, C.L., Perkins – Veazie, P., Ruso, V. and Lopez, G.S. (2008). A review of production systems on watermelon quality Cucurbitaceae. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae (Pitrat M,ed), INRA, Avignon (France), May 21 – 24th, pp. 517- 520.

Enujeke, E. C. (2013). Effects of varieties and fertilizers on Number of Grain/Cob of Maize in Asaba Area of Delta State. *Asian Journal of Agriculture and Rural Development*, 3(04):215-225.

GenStat Release 10.3DE (2011). VSN International Ltd. (Rothamsted Experimental Station)

Goreta, S., Perica, S., Dumičić, G., Bućan, L. and Žanić, K. (2005). Growth and yield of water melon on polyethylene mulch with different spacings and nitrogen rates. *Horticultural Science*, 40:366-369.

Granberry, D. M, Colditz, P. and McLamin, W. J. (1986). Water melon: Commercial vegetable production. University of Georgia, Athens Cooperative Extension Service . Circular no 466.

Huh, Y. C., Om, Y. H., and Lee, J. M. (2002). Utilization of Citrullus germplasm with resistance to fusarium wilt (Fusarium oxysporum f. sp. niveum) for water melon root stocks. *Acta Horticulturae*, 588:127–132.

Jarret, B., R. Bill-tom W. and Garry, A. (1996). *Cucurbits Germplasm Report*. Water Melon National Germplasm System,
Agricultural Service, U.S.D.A, pp: 29-66.

Longinus, A. and Gilbert, N. (2014). Effects of Organic Manure Sources on the Growth and Yield of Watermelon in Abakaliki, Southeastern Nigeria. *International Journal of Science and Research (IJSR)*, 4(1):1923-1927.

Taylor, M.J., Wenhua, Lu., James, A.. Duthie, B., Warren, R., Jonathan, V. E. (2013) Effects of High and Low Management Intensity on Profitability for Three Watermelon Genotypes Paper presented at the Evaluation of Production Alternatives 1Session of the Southern Agricultural Economics Association. Annual Meeting, Mobile, Alabama, February 1-5.

Wikipedia (2013). Free encyclopedia .http://en.wikipedia.org/w/index. Worlds healthiest foods. www.wh food.com.

Zohary, D. and Hopf, M. (2000). *Domestication of Plants in the Old World* (Third ed.). Oxford University Press, United Kingdom. p. 194.

Table 1. Effects of poultry manure application time on the vine lengths of four water melon varieties at Lapai and Mokwa

Parameters	Lapai	Mokwa				
	4WAP	8WAP	12WAP	4WAP	8WAP	12WAP
Varieties						
Sugar baby	14.42a	125.40b	134.00bc	14.20ab	152.80b	158.80bc
Charlston grey	8.75b	102.40c	145.00b	9.25b	130.30c	144.00c
Koloss F1	15.65a	134.20a	185.00a	16.43a	182.80a	189.00a
Kaolak	13.48a	125.80a	126.40c	15.20a	104.20d	168.52b
LSD_{0.05}	4.56	10.65	15.24	5.22	11.53	15.80
Time of Application						
A week before planting	20.55	128.50a	172.40a	25.55	125.50a	170.40a
At planting	16.60	120.20b	163.52b	20.40	110.35b	145.30b
A week after planting	15.30	121.20b	162.55b	19.80	104.20b	139.25b
LSD_{0.05}	NS	7.30	8.25	NS	9.65	10.45
Interaction	NS	NS	NS	NS	NS	NS

Note: WAP – Week(s) after planting

Table 2. Effects of poultry manure application time on number of leaves of four water melon varieties at Lapai and Mokwa

Parameters	Lapai	Mokwa				
	4WAP	8WAP	12WAP	4WAP	8WAP	12WAP
Varieties						
Sugar baby	5.85	64.60a	88.60a	5.60ab	64.45a	86.40a
Charlston grey	5.20	40.20b	64.60b	3.85b	41.65b	62.50b
Koloss F1	6.40	64.25a	80.10ab	6.20ab	64.25a	89.80a
Kaolak	6.65	66.25a	82.40a	6.60a	64.35a	81.20a
LSD_{0.05}	NS	3.84	16.95	2.45	14.65	15.34
Time of Application						
A week before planting	6.75	58.20a	80.50a	9.50	62.80a	82.40a
At planting	5.95	50.40a	78.20a.	8.60	60.40a	81.50a
A week after planting	5.60	44.10b	66.60b	8.50	48.20b	60.80b
LSD_{0.05}	NS	5.80	6.50	NS	6.50	7.50
Interaction	NS	NS	NS	NS	NS	NS

Note: WAP – Week(s) after planting
Table 3. Effects of poultry manure application time on Number of Branches of four water melon varieties at Lapai and Mokwa

Parameters	Number of Branches					
	Lapai	4WAP	8WAP	12WAP	Mokwa	
		4WAP	8WAP	12WAP		
Varieties						
Sugar baby	4.32a	16.25a	30.25a	4.40a	16.40a	33.50a
Charlston grey	2.50b	13.80b	22.50b	2.70b	13.80b	25.40b
Koloss F1	5.65a	16.45a	30.25a	5.40a	16.70a	32.60a
Kaolak	4.80a	16.50a	30.70a	5.45a	16.80a	32.90a
LSD_{0.05}	1.45	2.25	5.32	1.50	2.30	5.45
Time of Application						
A week before planting	4.60	16.40a	35.20a	5.20	19.50a	45.50a
At planting	3.80	15.20a	33.20a	4.60	18.80a	44.20a
A week after planting	3.60	12.80b	28.60b	4.80	14.20b	35.80b
LSD_{0.05}	NS	2.50	4.20	NS	2.80	4.50
Interaction	NS	NS	NS	NS	NS	NS

Note: WAP – Week(s) after planting

Table 4. Effects of poultry manure application time on flowering characteristics of four water melon varieties at Lapai and Mokwa.

Flowering characteristics	Lapai				
	Days to 1st Flowering	Days to 50% Flowering	Days to 1st Flowering	Days to 50% Flowering	
Varieties					
Sugar baby	30.00	35.00	30.00	36.00	
Charlston grey	29.00	32.00	31.00	37.00	
Koloss F1	32.00	36.00	31.00	36.50	
Kaolak	31.00	36.00	30.00	32.00	
LSD_{0.05}	NS	NS	NS	NS	
Time of Application					
A week before planting	26.00	32.00	25.00	32.00	
At planting	30.00	35.00	29.00	34.00	
A week after planting	30.00	36.00	30.00	36.00	
LSD_{0.05}	NS	NS	NS	NS	
Interaction	NS	NS	NS	NS	
Table 5. Effects of poultry manure application time on fruiting characteristics of four varieties

Varieties	Number of Fruits/plant	Fruit weight/plant (kg)	Fruit yield (t/ha)	Number of Fruits/plant	Fruit weight/plant (kg)	Fruit yield (t/ha)
Sugar baby	4.00ab	4.25ab	3.58a	1.85b	4.10ab	2.85b
Charlston grey	3.20b	2.90b	0.48b	1.80b	2.83b	0.32c
Koloss F1	4.70a	3.45ab	3.36a	4.20a	5.20a	3.42a
Kaolak	4.00ab	4.80a	3.53a	4.60a	5.70a	3.42a
LSD_{0.05}	1.10	1.40	0.66	1.20	2.08	0.46

Time of Application

	Lapai			Mokwa		
A week before planting	4.00	4.35a	3.10a	3.50	4.20a	3.50a
At planting	3.00	4.25a	2.80a	3.00	3.90a	3.20a
A week after planting	3.00	3.00b	1.45b	2.50	2.60b	1.94b
LSD_{0.05}	NS	1.20	1.30	NS	1.20	1.25
Interaction	NS	NS	NS	NS	NS	NS