Discussion on the installation checking method of precast composite floor slab with lattice girders

To cite this article: Li Chen et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 128 012060

View the article online for updates and enhancements.

Related content

- Python and Matplotlib Essentials for Scientists and Engineers: Downloading and installation
 M A Wood

- A national survey on radon remediation in Switzerland
 Fabio Barazza, Christophe Murith, Martha Palacios et al.

- The improvement of aseismic horizontal frame’s thermal insulations
 Oleg Khalimov, Galina Shibaeva, Denis Portnyagin et al.
Discussion on the installation checking method of precast composite floor slab with lattice girders

Li Chen, Xing Jin, Yahui Wang, Hele Zhou, Jianing Gu
(Zhejiang Baoye Modern Construction Industrialization Manufacturing CO, LTD, Shaoxing, Zhejiang, 412000, China)
(olivechl@126.com;307010422@qq.com;3164649886@qq.com;1181753541@qq.com;27869350242@qq.com)

Abstract. Based on the installation checking requirements of China's current standards and the international norms for prefabricated structural precast components, it proposed an installation checking method for precast composite floor slab with lattice girders. By taking an equivalent composite beam consisted of a single lattice girder and the precast concrete slab as the checking object, compression instability stress of upper chords and yield stress of slab distribution reinforcement at the maximum positive moment, tensile yield stress of upper chords, slab normal section normal compression stress and shear instability stress of diagonal bars at the maximum negative moment were checked. And the bending stress and deflection of support beams, strength and compression stability bearing capacity of the vertical support, shear bearing capacity of the bolt and compression bearing capacity of steel tube wall at the bolt were checked at the same time. Every different checking object was given a specific load value and load combination. Application of installation checking method was given and testified by example.

1. Introduction
As a horizontal composite component, composite floor slab with lattice girders (hereinafter referred to composite floor slab) do not participate in seismic calculation, and in the construction scene it can save a lot of floor form-work. So it is extensively used in the current application. In the Code for design of concrete structure GB50010-2010[1] of China (hereinafter referred to design codes), horizontal composite components are designed in two situations according to whether or not to set the vertical and reliable support, and it lists the relevant design calculation formulas. Precast concrete components should be checked by real in the production and construction process. Checking load should consider the dynamic coefficient, and the value of the dynamic coefficient should be adjusted appropriately in consideration of specific conditions; In the Load code for the design of building structures GB50009-2012[2] (hereinafter referred to as load codes), it lacks of load value in construction stage; In the Technical specification for precast concrete structures JGJ1-2014[3] (hereinafter referred to as precast specification), the value of load under different working conditions is stipulated. The specific checking method refers to the Code for construction of concrete structures GB50666-2011[4] (hereinafter referred to as construction codes); Construction codes indicating the stress checking method only gives normal compression tensile stress index of concrete cross section and the tensile stress index of steel bars. Composite floor slab is composed of lattice girders and reinforced concrete slab. It is not only need to ensure the safety and reliability of the reinforced concrete slab in the construction and installation stage, but also to ensure that the lattice girders are within the enable loading capacity.

In this paper, based on the existing internal codes, combined with the requirements of foreign relevant
standards, we proposed an installation checking method for precast composite floor slab: First, take an equivalent composite beam consisted of a single lattice girder and precast concrete slab as the checking object, and use stress checking method to check the horizontal spacing of support beams in floor slab. Second, when the horizontal spacing of support beams is determined, check the horizontal spacing of vertical supports. Ensure the strength, deflection of support beams and the strength, stability of vertical supports.

2. Checking calculation of bearing capacity of normal section of composite floor slab

2.1. Equivalent composite beam section and basic parameters

Composite floor slab is composed of lattice girders and reinforced concrete slab. We take an equivalent composite beam consisted of a single lattice girder and precast concrete slab as the checking unit (Fig. 1). It is stipulated in European standards EN 13747:2005\(^5\) that the range of action of a single lattice girder is \(\min\{630, 0.75(15t+125)\}\) mm. And in precast specification, the minimum thickness \(t\) of precast floor slab may be more than 60 mm, so the range of action of a single lattice girder is 630 mm; in precast specification, the maximum spacing of lattice girders is 600 mm, so the maximum width \(B\) of composite beam is equal to the maximum spacing of lattice girders, 600 mm.

![Fig.1 equivalent composite beam schematic diagram](image)

2.1.1. Equivalent composite beam neutral wheelbase \(y_0\)

\[
y_0 = h - \frac{B \cdot t \cdot (h-t/2) + (A_1 h_1 + A_1 h_1)(\alpha_E -1)}{B \cdot t + (A_1 + A_1)(\alpha_E -1) + A_1 \cdot \alpha_E}
\]

In the formula: \(h\) is the distance from the bottom of the precast floor slab to the centroid of upper chords;

\(h_1\) is the distance from the centroid of slab distribution reinforcement parallel to lattice girders to the centroid of upper chords; \(h_1\) is the distance from the centroid of upper chords to the centroid of lower chords; \(t\) is the thickness of precast floor slab; \(B\) is the effective width of the composite beam; \(A_1\) is the area of slab distribution reinforcement parallel to lattice girders in the effective width of the composite beam; \(A_1\) is the area of upper chords; \(A_1\) is the area of lower chords; \(\alpha_E\) is the ratio of elastic modulus between steel bars and precast slab concrete.

2.1.2. Equivalent composite beam moment of inertia \(I_0\)

\[
I_0 = A_1 \cdot \alpha_E (h - y_0)^2 + \{y_0 - (h - h_1)\}^2 A_1 + \{y_0 - (h - h_1)\}^2 A_1
\]

\[
(\alpha_E - 1) + (y_0 - t/2)^2 B \cdot t + \frac{1}{12} B \cdot t^3
\]

2.1.3. Equivalent composite beam concrete elastic resistance moment of pulling edge \(W_0\)

\[
W_0 = I_0 / y_0
\]

2.1.4. Equivalent composite beam upper chord elastic resistance moment of pulling edge \(W_c\)
\[W_c = I_o \cdot (h - y_o) \] \hfill (4)

2.2. **Internal force calculation model of equivalent composite beam**

The equivalent composite beam can be divided into single-span simple beam and multi-span continuous beam by the arrangement of support beams. The internal force and deformation coefficient of multi-span continuous beam can be found in the Technical code for safety of forms in construction JGJ 162-2008[6] (hereinafter referred to as forms safety technical codes) Appendix C.

2.3. **Load value and combination**

Taking construction codes, forms safety technical codes and the actual loading features of the equivalent composite beam into consideration, the constant concrete self-weight of the equivalent composite beam takes 24\(kN/m^3\), reinforcement self-weight takes 1.1\(kN/m^3\), the construction variable load takes 2.5\(kN/m^2\), and the concentrated load takes 2.5\(kN\) for checking.

As the checking for the equivalent composite beam takes experience method, that is permissible stress method. Load combination takes characteristic combination, not considering the load partial factor.

2.4. **Checking indexes and methods**

For the single-span simple beam, reinforcement yield stress of plate bottom and compression instability stress of the upper chord at mid-span, shear instability stress of diagonal bars at the support should be checked. For the multi-span continuous beam, the reinforcement yield stress of plate bottom and compression instability stress of the upper chord at the maximum bending moment at mid-span, tensile yield stress of upper chord and concrete compression stress of plate bottom at the maximum negative moment at the support, shear instability stress of diagonal bars at the support should be checked.

2.4.1. **The tensile yield stress of the distribution reinforcement parallel to lattice girders**

\[\sigma_s = \frac{M_+}{A_i \cdot h_i} \leq 0.7 f_{yk} \] \hfill (5)

In the formula: \(M_+\) is the maximum positive bending moment at mid-span; \(f_{yk}\) is the standard value of tensile strength of reinforcement.

2.4.2. **The compression instability stress of the upper chord**

\[\sigma_{sc} = \frac{M_+}{A_i \cdot h_i} \leq \varphi_c f_{yk} \] \hfill (6)

In the formula: \(\varphi_c\) is the compression stability coefficient of the upper chord, valued according to the Code for design of reinforcement structures GB 50017-2003[7] (hereinafter referred to as reinforcement structures codes). And the upper chord slenderness ratio \(\lambda = 0.9 l_c / i_c\) (\(l_c\) is the distance between welded joints of the upper chord, generally taking 200mm; \(i_c\) is the radius of gyration of cross-section of the upper chord).

2.4.3. **The tensile yield stress of the upper chord**

\[\sigma_s = \alpha_E \frac{M_-}{W_c} \leq 0.7 f_{yk} \] \hfill (7)

In the formula: \(M_-\) is the maximum negative bending moment at the support.

2.4.4. **Normal section normal compression stress of precast slab**
\[\sigma_{cc} = \frac{M}{W_0} \leq 0.8 f_{ck}^l \] (8)

In the formula: \(f_{ck}^l \) is the standard value of compression strength corresponding to concrete cube compression strength in each construction link.

2.4.5. \textit{The shear instability stress of diagonal bars}. In reinforcement structures codes, there is no calculation formula of shear instability. So in this article, the shear force is converted to the pressure of diagonal bars \(N \).

\[N = 0.5V \sin \phi \sin \alpha \] (9)

In the formula: \(V \) is the standard value of diagonal bars shear under load; \(\phi, \alpha \) is the inclined angle of diagonal bars, \(\phi = \arctan(H/100) \) (\(H \) is the outsourcing height of lattice girders); \(\alpha = \arctan(2H/b_0) \) (\(b_0 \) is the outsourcing distance of lower chords, generally taking 80mm).

\[\sigma_v = \frac{N}{A_f} \leq \varphi_d f_{sk} \] (10)

In the formula: \(A_f \) is the sectional area of a single diagonal bar; \(\varphi_d \) is the compression stability coefficient of diagonal bars, valued according to reinforcement structures codes. And the diagonal bars slenderness ratio \(\lambda = 0.7l_d/i_d \) (\(l_d \) is the length of free segment of diagonal bars, calculated according to formula (11); \(i_d \) is the radius of gyration of cross-section of diagonal bars).

\[l_d = \sqrt{H^2 + \left(\frac{b_0}{2}\right)^2 + \left(\frac{l}{2}\right)^2 - t_c / \sin \phi / \sin \alpha} \] (11)

In the formula: \(t_c \) is the distance from the bottom surface of the lower chord to the internal surface of the precast floor slab.

3. \textbf{Checking of the support beam and the vertical support}

Checking of the support beam and the vertical support refers to forms safety technical codes, based on the limit states design method which is based on the probability theory and expressed by partial factors.

3.1. \textit{Checking of the support beam}

The support beam is calculated by the simply supported beam. The concrete self-weight takes 24 kN/m\(^3\). The reinforcement bar self-weight takes 1.1 kN/m\(^3\). The construction variable load takes 1.5kN/m\(^2\). The bending stress and deflection of the support beam are checked.

3.2. \textit{Checking of the vertical support}

Taking the construction convenience into consideration, the vertical support usually takes tool-type steel pipe column and is very convenient to adjust. Its compression bearing capacity, compression stability, shear bearing capacity of bolt and compression bearing capacity of steel tube wall at the bolt should be checked.

4. \textbf{Examples}

There are three composite floor slabs in a bay (7800mm \(\times \) 6000mm, story height 3200mm), the total thickness of the composite floor slab is 160mm. The length of each precast floor slab is 6000mm, and width 2600mm, thickness 60mm. The concrete strength grade is C30. The stress bars and the distributed bars are grade HRB400 reinforcing bars. The diameter of the stress bars is 10mm, and spacing 100mm. The diameter of the distributed bars is 8mm, and spacing 200mm. The thickness of the protective layer is 15mm. The lattice girder is model E11 (All lattice girders are grade HRB400 reinforcing bars. The diameter of upper chord is 10mm, and lower chord, diagonal is 6mm) (Fig. 2). Try to make a support
scheme.

4.1. Checking of the spacing of support beams
Support beams should be arranged along the direction vertical to lattice girders, and the distance between the first support beam and the support edge should not be greater than 500\,mm. It is preliminarily assumed that the support beams are H20 wood I beams, and their spacing is 1700\,mm (Fig. 3).

(1). The equivalent composite beam section calculation parameters of the precast floor slab are showed in Table 1.

```
| parameters | value | unit | parameters | value | unit |
|------------|-------|------|------------|-------|------|
| $y_0$      | 30.62 | mm   | $I_0$      | 15779374 | mm$^4$|
| $W_0$      | 515329 | mm$^4$ | $W_e$      | 168980 | mm$^4$|
| $\phi$     | 47.73 | °     | $\alpha$   | 70.02 | °    |
| $\varphi$  | 0.684 | —     | $\varphi_d$ | 0.890 | —    |
```

(2). Load calculation:

$q_p = 0.16 \times 0.6 \times (24 + 1.1) = 2.41\,kN/\,m$ \hspace{1cm} (12)

$q_v = 2.5 \times 0.6 = 1.5\,kN/\,m$ \hspace{1cm} (13)
\[F_v = 2.5kN \]

According to Figure 3, the equivalent composite beam is calculated by three-span continuous beam.

\[M_v = 1.46kN \cdot m \] \hspace{2cm} (15)
\[M_\perp = 1.44kN \cdot m \] \hspace{2cm} (16)
\[V = 4.15kN \] \hspace{2cm} (17)

(3). The checking results are shown in Table 2.

No	Checking index	Calculation index	Permission index	Checking results
1	pressure instability of upper reinforcement	\(\sigma_{sc} = 251.0 \)	\(\varphi_s f_y = 273.6 \)	OK
2	pressure instability of upper reinforcement	\(\sigma_s = 56.8 \)	0.7 \(f_y = 280.0 \)	OK
3	tensile yield stress of distribution	\(\sigma_s = 35.7 \)	0.7 \(f_y = 280.0 \)	OK
4	normal section direct compressive stress of precast concrete	\(\sigma_{cc} = 2.79 \)	0.8 \(f_{ck} = 16.08 \)	OK
5	shear instability of oblique reinforcement	\(\sigma_{\nu} = 51.0 \)	\(\varphi_d f_y = 356.0 \)	OK

4.2. Checking of the vertical support spacing

H20 wood I beam is made of Picea Koraiensis Nakai (TC13B). Its cross section is symmetrical I-shaped section. The sectional dimension is 89mm × 200mm × 38mm (width × height × thickness). Vertical supports are model CH steel pipe struts, spacing 1450mm (Fig. 4). Reinforcing bars take Q235B material. The cannula outside diameter is 48.6mm, internal diameter is 43.8mm. The bushing outside diameter is 60.5mm, internal diameter is 55.7mm. Both wall thickness is 2.4mm. The bolt diameter is 12mm, and the bolt aperture dimension is 15mm.

Fig.4 vertical floor props layout

4.2.1. Checking of wood I beams. Wood I beams are calculated by simply supported beams. The construction uniform variable load takes 1.5 kN/m². Reinforced concrete self-weight takes 25.1 kN/m³. Wood I beams self-weight takes 5kN/m³. The load range of a single wooden I beam takes 1700mm.

1) Load calculation

 Permanent load:
 \[q_p = 25.1 \times 0.16 \times 1.7 + 0.011476 \times 5 = 6.9kN / m \] \hspace{2cm} (18)

Variable load:
\[q_v = 1.5 \times 1.7 = 2.55 \text{kN/m} \]

2) Checking of bending strength

\[M = 2.8 \text{kN} \cdot \text{m} \]
\[I = 5.12 \times 10^7 \text{mm}^4 \]
\[\sigma = \frac{My}{I} = 5.47 \text{N/mm}^2 < 13 \text{N/mm}^2 \]

3) Checking of deflection

\[\nu = \frac{5ql^4}{384EI} = 0.86 \text{mm} < \frac{l}{400} = 3.6 \text{mm} \]

4.2.2. Checking of the vertical support

1) Load calculation

Permanent load:

\[G_k = 6.9 \times 1.45 = 10 \text{kN} \]

Variable load:

\[Q_k = 1.0 \times 1.7 \times 1.45 = 2.5 \text{kN} \]

\[N = 0.9 \max(1.35 \times 10 + 2.5 \times 1.4 \times 0.7 + 1.2 \times 10 + 2.5 \times 1.4) = 14.36 \text{kN} \]

2) Checking of strength

\[N \frac{A_n}{348 - 2 \times 15 \times 2.4} = 52 \text{N/mm}^2 < f \]

3) Checking of compression bearing capacity

The looseness between the cannula and the bushing makes supports into the shape of a polyline, and forms the initial eccentricity. In this example, the eccentricity is 25 mm.

\[n = \frac{I_{i2}}{I_{i1}} = \frac{18.51 \times 10^4}{9.93 \times 10^4} = 1.99 \]
\[\mu = \sqrt{\frac{1 + n}{2}} = \sqrt{\frac{1 + 1.99}{2}} = 1.223 \]
\[\lambda = \mu \frac{L}{i_2} = 1.223 \times \frac{2840}{20.6} = 169 \]
\[\phi = 0.251 \]
\[\frac{N}{\phi A_n} + \frac{\beta_{mx}M_s}{W_{ix}(1 - 0.8 \frac{N}{N_{EX}})} = 223.8 \text{N/mm}^2 \]

Because of \[223.8 \text{N/mm}^2 < 215 \times 1.05 = 225.75 \text{N/mm}^3 \], so the checking also meets the requirements.

4) Checking of shear strength of bolt

\[\frac{N}{2A_0} = 63.5 \text{kN/mm}^2 < 125 \text{kN/mm}^2 \]

5) Checking of compression strength of steel tube wall at the bolt
The layout of wood I beams and vertical supports meet the requirements of the calculation. In the construction site, we can construct according to the Figure (3) and Figure

5. Conclusion and Outlook

5.1. Conclusion
The installation checking is an important content of the construction checking of the bottom plate of the composite floor slab. It is a powerful guarantee to ensure the safety of site construction. This article proposes a computational method of the installation checking of the composite floor slab, and defines the load value and the combination. Then the computing method is used in a project case. It can be seen that the simple computational method and sufficient checking indexes can be used as the checking method of precast floor slab installation in the future.

5.2. Outlook
In actual projects, there are too many types of slab, and manual calculation workload is so heavy. In the future, we should focus on the research to develop the corresponding computer program, and use optimization analysis to provide the most reasonable layout of support beams and vertical supports. Try to achieve the lowest cost and the fastest construction layout under the premise of ensuring the safety of construction.

References
[1] China Academy of Building.GB 50010-2010 Code for design of concrete structure[S].Beijing: China Architecture & Building Press, 2010.(In Chinese)
[2] China Academy of Building.GB 50009-2012 Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012.(In Chinese)
[3] China institute of Building Standard Design & Research. JGJ 1-2014 Technical specification for precast concrete structures[S]. Beijing: China Architecture & Building Press, 2014.(In Chinese)
[4] China Academy of Building.GB 50666-2011 code for construction of concrete structures [S]. Beijing: China Architecture & Building Press, 2012.(In Chinese)
[5] British Standards Institution.BS EN 13747:2005 Precast concrete products——Floor plates for floor systems[S].London: London South Bank University, 2007.
[6] Shenyang Jianzhu University. JGJ 162-2008 Technical code for safety of forms in construction [S]. Beijing: China Architecture & Building Press, 2008.(In Chinese)