Short Communication

Type III Secretion System of Bradyrhizobium sp. SUTN9-2 Obstructs Symbiosis with Lotus spp.

SHUN HASHIMOTO1, KOHKI GOTO1, PONGDET PYROMYOU2, PONGPAN SONGWATTANA2, TEERANA GREETATORN2, PANLADA TITTABUR2, NANTAKORN BOONKERD2, NEUNG TEAMROONG2, and TOSHIKI UCHIUMI1*

1Graduate School of Science and Engineering, Kagoshima University, 1–21–35 Korimoto, Kagoshima, Kagoshima 890–0065, Japan; and 2School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand

(Received April 9, 2020—Accepted June 8, 2020—Published online July 2, 2020)

The rhizobial type III secretion system secretes effector proteins into host plant cells, which may either promote or inhibit symbiosis with legumes. We herein demonstrated that the type III secretion system of Bradyrhizobium sp. SUTN9-2 obstructed symbiosis with Lotus japonicus Miyakojima, L. japonicus Gifu, and Lotus burttii. A mutant of SUTN9-2 that is unable to secrete effector proteins showed better nodulation and plant growth promotion than wild-type SUTN9-2 when paired with these Lotus spp. We propose that SUTN9-2 is a useful strain for understanding the mechanisms by which effector proteins obstruct symbiosis between Bradyrhizobium and Lotus spp.

Key words: symbiosis, Bradyrhizobium, Lotus spp., type III secretion system, effector protein

Rhizobia induce the growth of symbiotic nitrogen-fixing organs, called nodules, on the roots of leguminous plants. Rhizobial nodulation factors (NFs) are key molecules for symbiosis (Lerouge et al., 1990). NFs are lipochitooligosaccharides with a chitin oligomer backbone, the length and modifications of which are specific to rhizobial species (Ardourel et al., 1994; Haeze and Holsters, 2002). After recognizing a compatible NF, the host legume activates nodulation signaling (Radutoiu et al., 2003; Radutoiu et al., 2007).

In addition to NFs, the rhizobial type III secretion system (T3SS) is an important factor for initiating symbiosis. Bacterial T3SS proteins, known as “nano syringes” or “injectisomes”, deliver effector proteins (type III effector proteins, T3Es) into target cells (Ryan and Stebbins, 2016). The T3SS of plant pathogenic bacteria, such as Pseudomonas syringae, suppress plant immunity and contribute to the virulence of the pathogen (Jakobek et al., 1993). On the other hand, rhizobial T3SS may either promote or inhibit the establishment of symbiosis, depending on the host legume (Miwa and Okazaki, 2017). Rhizobial T3SS facilitate nodulation to promote symbiosis (Okazaki et al., 2013), whereas T3SS trigger plant immune responses that suppress nodulation to inhibit symbiosis (Sugawara et al., 2018; Kusakabe et al., 2020).

Bradyrhizobium sp. SUTN9-2 was originally isolated from Aeschynomene americana nodules (Noisangiam et al., 2012). SUTN9-2 has a wide host range and establishes symbiosis with legume species in several genera (Noisangiam et al., 2012; Hashimoto et al., 2019). To investigate the role of the T3SS of SUTN9-2 in symbiosis, a T3SS inactivation (ΔT3SS) mutant of SUTN9-2, which cannot deliver T3Es, was constructed by disrupting the rhcJ gene, which encodes a T3SS component (Pyromyou et al., 2015). Inactivation of the T3SS did not affect symbiosis of SUTN9-2 with the original host A. americana, which belongs to the Dalbergioideae legume clade (Pyromyou et al., 2015). However, in symbiosis with Vigna radiata and Macroptilium atropurpureum (these plants belong to the Phaseolelides legume clade), SUTN9-2ΔT3SS mutants induced a greater number of pink nodules and more effectively promoted plant growth than wild-type SUTN9-2 (Pyromyou et al., 2015). Thus, the T3SS of SUTN9-2 has a negative effect on symbiosis with V. radiata and M. atropurpureum. However, it currently remains unclear whether the T3SS of SUTN9-2 affects symbiosis with other host plants. In the present study, we focused on the symbiotic phenotypes of SUTN9-2 and its ΔT3SS mutant with a model legume of Lotus japonicus ecotypes B-129 Gifu and MG-20 Miyakojima as well as Lotus burttii B-303, which all belong to the Galegoideae clade. We found that the T3SS of SUTN9-2 obstructed symbiosis with these three Lotus spp.

Bradyrhizobium sp. SUTN9-2 and its ΔT3SS mutant were grown at 28°C in modified yeast-mannitol medium (Giraud et al., 2000). Mesorhizobium loti MAFF303099 (Kaneko et al., 2000), an original microsymbiont of L. japonicus, was cultivated under the same conditions as SUTN9-2. Lotus japonicus Miyakojima MG-20 and Gifu B-129 and L. burttii B-303 were used as host plants.

The seeds of Lotus spp. were surface-sterilized in concentrated sulfuric acid for 10 min followed by 0.2% sodium hypochlorite and 0.1% Tween 20 for 40 min, and then washed with sterilized water. After surface sterilization, the seeds were transferred onto 0.8% agar plates and germinated...
at 28°C. Two-day-old seedlings were transferred to the top of a test tube containing vermiculite with buffered nodulation medium (Ehrhardt et al., 1992) and grown at 28°C with a 12/12-h light/dark cycle. After 1 week, each seedling was inoculated with 1 mL of a rhizobial suspension adjusted to an OD₆₀₀=1.0 with sterilized distilled water. Plant fresh weights, nodule numbers, and acetylene reduction activity (ARA; a marker of nitrogenase activity) were measured at 5 or 8 weeks post-inoculation (wpi) according to Hashimoto et al. (2019).

When grown with <i>L. japonicus</i> Miyakojima, <i>Bradyrhizobium</i> sp. SUTN9-2 induced only white nodules with no ARA (Fig. 1B and E), and host plant growth was not promoted (Fig. 1A and C). However, SUTN9-2^{ΔT3SS} induced pink nodules with ARA (Fig. 1B and E) and promoted host plant growth (Fig. 1A and C). The number of white nodules induced by SUTN9-2^{ΔT3SS} was significantly lower than that induced by SUTN9-2 (Fig. 1D).

When <i>L. japonicus</i> Gifu was used as the host plant (Fig. 2), SUTN9-2 induced both white and pink nodules (65 and 35%, respectively; Fig. 2B and D). SUTN9-2^{ΔT3SS} also induced white and pink nodules; however, the ratio of pink to white nodules was higher (pink, 74%; white, 26%) than that induced by SUTN9-2 (Fig. 2D). In addition, the number of white nodules induced by SUTN9-2^{ΔT3SS} was significantly lower than that by SUTN9-2 (Fig. 2D). Plants inoculated with SUTN9-2^{ΔT3SS} showed significantly better growth and 2.7-fold stronger ARA than those inoculated with SUTN9-2 (Fig. 2A, C, and E).

When <i>L. burttii</i> was used as the host (Fig. 3), SUTN9-2 induced both white and pink nodules (93 and 7%, respectively; Fig. 3B and D). On the other hand, SUTN9-2^{ΔT3SS} induced 45% white and 55% pink nodules (Fig. 3B and D). The inoculation with SUTN9-2^{ΔT3SS} produced significantly fewer white nodules and significantly more pink nodules than that with SUTN9-2 (Fig. 3D). Plants inoculated with SUTN9-2^{ΔT3SS} showed significantly better growth and stronger ARA than those inoculated with SUTN9-2 (Fig. 3A, C, and E).

A previous study reported that the T3SS of <i>Bradyrhizobium</i> sp. SUTN9-2 negatively affected symbiosis with <i>V. radiata</i> and <i>M. atropurpureum</i>, but not symbiosis with the original host <i>A. americana</i> (Piromyou et al., 2015). In the present study, we also found that the T3SS of SUTN9-2 obstructed symbiosis with <i>Lotus</i> spp. The inoculation with wild-type SUTN9-2 induced only white nodules, whereas that with SUTN9-2^{ΔT3SS} induced pink nodules and promoted the growth of <i>L. japonicus</i> Miyakojima. In symbiosis with <i>L. japonicus</i> Gifu and <i>L. burttii</i>, SUTN9-2 induced pink nodules; however, the number of nodules and

![Fig. 1](image_url)
The putative NopM of SUTN9-2 contained the amino acid sequence identity with NopM (accession number in DDBJ, LC471585) of USDA61 (Fig. S2). The same leucine-rich repeat (LRR) and ubiquitin ligase domain which shows approximately 75% amino acid sequence identity with NopM (accession number in DDBJ, LC471585) of USDA61 (Fig. S2). The putative NopM of SUTN9-2 interference with symbiosis with SUTN9-2ΔnopM (Fig. S2). These results suggest that the T3E(s) responsible have yet to be identified. Similar to USDA61, the inactivation of T3SS in SUTN9-2 showed a better symbiotic phenotype than that of the wild-type strain (Fig. 4C). This result suggests that T3E(s) common to SUTN9-2 and USDA61, but not to M. loti, interfere with symbiosis with L. burttii.

SUTN9-2 induced pink nodules on L. japonicus Gifu, in contrast to USDA61 (Fig. 2B, D, and 4B). The NopF pro-
tein (accession number in DDBJ, LC471586) of USDA61 has been identified as a T3E that inhibits rhizobial infection and nodulation on *L. japonicus* Gifu (Kusakabe et al., 2020). Based on comparisons with genome sequence data available in the MicroScope database (Vallenet et al., 2020), SUTN9-2 does not possess a gene encoding NopF. The absence of NopF in SUTN9-2 may explain why SUTN9-2 exhibited a better nodulation ability than USDA61 on *L. japonicus* Gifu (Fig. 4B). However, the ability of the USDA61 *nopF* disruption mutant (Δ*nopF* in Fig. 4) to induce the formation of pink nodules was lower than that of wild-type SUTN9-2 (Fig. 4B). This result suggests that, in addition to NopF, USDA61 may possess specific T3E(s) that interfere with symbiosis with *L. japonicus* Gifu.

The ΔT3SS mutants derived from both SUTN9-2 and USDA61 more effectively promoted the growth of *Lotus* spp. than their respective wild-type strains, but not as well as the original microsymbiont *M. loti* (Fig. 1, 2, and 3; Kusakabe et al., 2020). This result suggests that not only T3SS, but also unknown rhizobial factor(s) of SUTN9-2 and USDA61 obstruct symbiosis with *Lotus* spp. In addition, the functions and target molecules of these T3Es in *Lotus* spp. cells remain unknown. Comparisons of the sequences of these putative T3Es among SUTN9-2, USDA61, and *M. loti* may provide a more detailed understanding of the functions of T3E proteins in *Lotus* spp. cells. Further functional experiments will reveal the functions of T3E proteins in *Lotus* spp. cells. *Lotus* spp. used in the present study are useful lines for further investigations to identify the target of T3E in host plant cells. Thus, the present results will contribute to clarifying the mechanisms by which rhizobial T3Es inhibit *Bradyrhizobium-Lotus* symbiosis.

Acknowledgements

We are especially grateful to Prof. Shusei Sato and Dr. Shohei Kusakabe (Tohoku University, Japan) for providing their data.
Bradyrhizobial type III secretion system

Fig. 4. Comparison of the ratio of white and pink nodules induced by Bradyrhizobium sp. SUTN9-2, Bradyrhizobium elkanii USDA61, and their derivatives on Lotus spp. WT, wild type. The results for B. elkanii USDA61 and its derivatives were cited from Kusakabe et al. (2020). Values are means±SE, and asterisks indicate a significant difference (*P<0.05, the Student’s t-test).

related to Bradyrhizobium elkanii USDA61. We thank the National BioResource Project for providing seeds of Lotus japonicus Miyakojima and Gifu and Lotus burttii. We also thank Ms. Yukino Yoshimine (Kagoshima University, Japan) for her excellent technical assistance. This work was partially supported by the National Institute for Basic Biology (NIBB) Collaborative Research Program No. 19-353 and No. 20-314, and by Suranaree University of Technology.

References

Ardourel, M., Demont, N., Debellé, F., MAILLET, F., de Billy, F., Promé, J.C., et al. (1994) Rhizobium meliloti lipoooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6:1357–1374.

Ehrhardt, D.W., Atkinson, M.E., and Long, R.S. (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 259:998–1000.

Giraud, E., Hannibal, L., Fardoux, J., Verméglio, A., and Dreyfus, B. (2000) Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proc Natl Acad Sci U S A 97:14795–14800.

Haeze, W.D., and Holsters, M. (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79R-105R.

Hashimoto, S., Wongdee, J., Songwattana, P., Greetatorn, T., Goto, K., Tittabutr, P., et al. (2019) Homocitrinate synthase genes of two wide-host-range Bradyrhizobium strains are differently required for symbiosis depending on host plants. Microbes Environ 34:393–401.

Jakobek, L.J., Smith, A.J., and Lindgren P. (1993) Suppression of bean defense responses by Pseudomonas syringae. Plant Cell 5:57–63.

Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., et al. (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338.

Kusakabe, K., Higasitani, N., Kaneko, T., Yasuda, M., Miwa, H., Okazaki, S., et al. (2020) Lotus accessions possess multiple checkpoints triggered by different type III secretion system effectors of the wide-host-range symbiont Bradyrhizobium elkanii USDA61. Microbes Environ 35:ME19141.

Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Promé, C.J., et al. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glycosamine oligosaccharide signal. Nature 344:781–784.

Miwa, H., and Okazaki, S. (2017) How effectors promote beneficial interactions. Curr Opin Plant Biol 38:148–154.

Noisangiam, R., Teamtisong, K., Tittabutr, P., Boonkerd, N., Uchiumi, T., Minamisawa, K., et al. (2012) Genetic diversity, symbiotic evolution, and proposed infection process of Bradyrhizobium strains isolated from root nodules of Aeschynomene americana L. in Thailand. Appl Environ Microbiol 78:6236–6250.

Okazaki, S., Kaneko, T., Sato, S., and Saeki, K. (2013) Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci U S A 110:17131–17136.

Piroumyou, P., Songwattana, P., Greetatorn, T., Okabo, T., Kakizaki-Chiba, K., Prakamhang, J., et al. (2015) The Type III secretion system (T3SS) is a determinant for rice-endophyte colonization by non-pathogenic Bradyrhizobium. Microbes Environ 30:291–300.

Radutou, S., Madsen, H.L., Madsen, B.E., Felle, H.H., Meheraya, Y., Gromlund, M., et al. (2003) Plant recognition of symbiotic bacteria requires two Lysm receptor-like kinases. Nature 425:585–592.

Radutou, S., Madsen, H.L., Madsen, B.E., Jurkiewicz, A., Fukai, E., Quistgaard, M.E., et al. (2007) LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26:3923–3935.

Ryan, Q.N., and Stebbins, C.E. (2016) The structure and function of type III secretion systems. Microbiol Spectr 4:VM00-0004-2015.

Sugawara, M., Takahashi, S., Umehara, Y., Iwano, H., Tsurumaru, H., Odake, H., et al. (2018) Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with R2 soybeans via effector-triggered immunity. Nat Commun 9:3139.

Valletton, D., Calteau, A., Dubois, M., Amours, P., Bazin, A., Beuvin, M., et al. (2020) MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, proteomic and metabolic comparative analysis. Nucleic Acids Res 48:D579–D589.

Xu, L.M., Ge, C., Cui, Z., Li, J., and Fan, H. (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711.

Zhu, Y.Y., Feng, L.K., En, T.W., Ge, H.W., and Wen, X.C. (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230.