Entanglement through path identification

Karl Svozil

Institute for Theoretical Physics, Vienna University of Technology,
Wiedner Hauptstrasse 8-10/136, 1040 Vienna, Austria and
Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

(Dated: April 25, 2017)

Entanglement in multipartite systems can be achieved by the coherent superposition of product states, generated through a universal unitary transformation, followed by spontaneous parametric down-conversions and path identification.

Keywords: entanglement, quantum state, quantum indeterminism, quantum randomness

From a formal point of view, an arbitrary pure (we shall not consider mixed states as we consider them epistemic) state of \(N \) particles with dichotomic properties 0, 1 can be written as the coherent superposition

\[
|\Psi\rangle = \sum_{i_1, \ldots, i_N=0}^{1} \alpha_{i_1, \ldots, i_N} |i_1, \ldots, i_N\rangle
\]

(1)

of all product states \(|i_1, \ldots, i_N\rangle = |i_1\rangle \cdots |i_N\rangle \). One possible direct physical implementation of this formula requires (i) a universal (with respect to the unitary group) transformation rendering the coefficients \(\alpha_{i_1, \ldots, i_N} \); followed by (ii) a spontaneous parametric down-conversion producing the product states whose outputs are properly integrated and identified in a third phase (iii).

In what follows we shall use Fock states (notwithstanding issues such as localization [1, p. 931]) having definite occupation numbers of the quantized field modes. For such states the unitary quantum evolution on elementary quanta is represented by elementary transition rules, reflecting unitary transformations [2, 3]: a symmetrical beam splitter is represented by \(|\text{in}\rangle \xrightarrow{50:50 \text{BS}} \frac{1}{\sqrt{2}} (|\text{transit}\rangle + |\text{reflect}\rangle) \); and an asymmetrical beam splitter by \(|\text{in}\rangle \xrightarrow{\text{in}} |\text{transit}\rangle + i|\text{reflect}\rangle \), with \(|T|^2 + |R|^2 = 1 \). Phase shifts are represented by \(|\text{in}\rangle \xrightarrow{\phi_{\text{BS}}} e^{i\phi} |\text{in}\rangle \), and spontaneous parametric down-conversions by \(|\text{in}\rangle \xrightarrow{\text{NL1, NL2}} \eta |\text{out1}\rangle |\text{out2}\rangle = \eta |\text{out1 out2}\rangle \) for supposedly small \(\eta \).

For the sake of a demonstration, consider an arrangement depicted in Fig. 1. It consists of a single particle source producing a state \(|a\rangle \) impinging on a symmetrical beam splitter BS whose output ports are identified with the states \(|b\rangle \) for transcit \(|a\rangle \), and \(|c\rangle \) for reflected \(|a\rangle \), respectively. Those states are the subjected to two spontaneous parametric down-conversion crystals NL1 and NL2, producing product pairs \(|de\rangle \) and \(|fg\rangle \), respectively. “Adjacent” beam pairs \(d-f \) as well as \(e-g \) are then integrated and identified a states \(|h\rangle \) and \(|i\rangle \), respectively. The aforementioned substitution rules yield

\[
|a\rangle \xrightarrow{50:50 \text{BS}} \frac{1}{\sqrt{2}} (|b\rangle + i|c\rangle) \xrightarrow{\text{NL1, NL2}} \eta (|de\rangle + i|fg\rangle).
\]

(2)

Note that an additional phase shift of \(\phi = \frac{\pi}{2} \) applied to \(|c\rangle \), with the identification \(d = g = 0 \) and \(e = f = 1 \), would have resulted in the traditional singlet state \(|\Psi^-\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \) of the Bell basis.

The final phase of this experiment is depicted in Fig. 1 by the addition of “integrators” I1 and I2 which combine or collimate ingoing ports into a single port. Thereby it is not necessary to take care that it is impossible for any observer to determine from which of the spontaneous parametric down-conversion crystals the quantum came from. The which-way information may be obtained through measurement of the output \(|h\rangle \) or \(|i\rangle \).

In order to fully realize Eq. (1), universal unitary transformations in finite-dimensional Hilbert space need to be operationalized. One conceivable way of doing this is through generalized beam splitters [4], which is based upon the parameterization of the unitary group [5]. Fig. 1 depicts this configuration for two dichotomic (two possible states per quantum) quanta. A generalization to an arbitrary number of quanta, as well as an arbitrary number of states per quanta can be given along very similar lines.

Let me finally address the question why, even granted the fact that this might be a novel way of looking at and producing multipartite states (I am quite confident that similar schemes might have been proposed in one way or another be-
Therefore, but I am unaware and thus less than sure about these), one needs yet another scheme. After all, higher-dimensional two-particle entanglements can be realized in principle solely via multiport beam splitters [6]; without some additional final steps involving spontaneous parametric down-conversion and integration. (This conforms to the interpretation of the Clauser-Horne-Shimony-Holt expression as a single operator which can be subjected to min-max considerations [7].) It should also be mentioned that a recent proposal [8], based on an intriguing experiment [9, 10] upon a suggestion of Ou [11], uses path identification as a resource to produce multipartite states.

One good motivation for the aforementioned contemplations might be the “production” of entanglement in these configurations which might yield fresh ways to perceive or “understand” this quantum feature. As expressed by Bennett [12] in quantum physics the possibility exists “that you have a complete knowledge of the whole without knowing the state of any one part. That a thing can be in a definite state, even though its parts were not. . . . It’s not a complicated idea but it’s an idea that nobody would ever think of.” Bennett, if I interpret him correctly, is referring to Schrödinger’s 1935 & 1936 series of papers; both in German [13, 14] and English [15, 16] pointing out that the quantum state of multiple particles can evolve in such ways that, say, the initial definiteness of the states of the individual independent constituent without any relational properties among themselves gets re-encoded into purely relational properties among the particles [17–20], thereby “erasing” the definiteness of the individual particle properties. One may also say that the multipartite state is “breathing in and out of” individuality and entanglement [21].

The formal expression for this is a sort of zero-sum game with respect to knowledge or information encoded by the quantum state: due to the permutative character of the unitary (one-to-one isometry) state evolution, no information is ever lost or gained; that is, any loss of individual definiteness “on” the individual constituents has to be compensated by a gain through “sampling” of their independence; to the effect that they are no longer independent but possess definite relational properties. Conversely, any “scrambling” of these relational properties needs to be (due to the impossibility to “loose” information) compensated by a gain of individual definitiveness.

For the sake of a concrete demonstration [22, Section 1.5], consider a a general state in 4-dimensional Hilbert space. It can be written as a vector in \(\mathbb{C}^4 \), which can be parameterized by

\[
(\alpha_1, \alpha_2, \alpha_3, \alpha_4)^T, \quad \text{with } \alpha_1, \alpha_3, \alpha_3, \alpha_4 \in \mathbb{C},
\]

and suppose (wrongly) (3) that all such states can be written in terms of a tensor product of two quasi-vectors in \(\mathbb{C}^2 \)

\[
(a_1, a_2)^T \otimes (b_1, b_2)^T \equiv (a_1 b_1, a_1 b_2, a_2 b_1, a_2 b_2)^T,
\]

with \(a_1, a_2, b_1, b_2 \in \mathbb{C} \). A comparison of the coordinates in (3) and (4) yields

\[
\alpha_1 = a_1 b_1, \quad \alpha_2 = a_1 b_2, \quad \alpha_3 = a_2 b_1, \quad \alpha_4 = a_2 b_2.
\]

By taking the quotient of the two first and the two last equations, and by equating these quotients, one obtains

\[
\frac{\alpha_1}{\alpha_2} = \frac{b_1}{b_2} = \frac{\alpha_3}{\alpha_4}, \quad \text{and thus } \alpha_1 \alpha_4 = \alpha_2 \alpha_3.
\]

How can we imagine this? As in many cases, states in the Bell basis, and, in particular, the Bell state, serve as a sort of Rosetta Stone for an understanding of this quantum feature. The Bell state \(|\Psi^-\rangle\) is a typical example of an entangled state; or, more generally, states in the Bell basis can be defined and, with \(|0\rangle = (1, 0)^T \) and \(|1\rangle = (0, 1)^T \) encoded by

\[
|\Psi^-\rangle = \frac{1}{\sqrt{2}} (|01\rangle \mp |10\rangle) = (0, 1, \mp 1, 0)^T,
\]

\[
|\Phi^-\rangle = \frac{1}{\sqrt{2}} (|00\rangle \mp |11\rangle) = (1, 0, 0, \mp 1)^T.
\]

For instance, in the case of \(|\Psi^-\rangle\) a comparison of coefficient yields

\[
\alpha_1 = a_1 b_1 = 0, \quad \alpha_2 = a_1 b_2 = \frac{1}{\sqrt{2}},
\]

\[
\alpha_3 = a_2 b_1 = -\frac{1}{\sqrt{2}}, \quad \alpha_4 = a_2 b_2 = 0;
\]

and thus entanglement, since

\[
\alpha_1 \alpha_4 = 0 \neq \alpha_2 \alpha_3 = \frac{1}{2}.
\]

This shows that \(|\Psi^-\rangle\) cannot be considered as a two particle product state. Indeed, the state can only be characterized by considering the relative properties of the two particles – in the case of \(|\Psi^-\rangle\) they are associated with the statements [20]: “the quantum numbers (in this case 00” and “11”) of the two particles are different in (at least) two orthogonal directions.”

The Bell basis symbolizing entanglement and nonindividuality can, in an ad hoc manner, be generated from a nonentangled, individual state: suppose such a styte is represented by elements of the Cartesian standard basis in 4-dimensional real space \(\mathbb{R}^4 \), representable as column vectors whose components are \((|e_i\rangle)_j = \delta_{ij}\), with \(1 \leq i, j \leq 4\).
coordinates of the Bell basis (7) are arranged as row or column vectors, thereby forming the respective unitary transformation
\[
U = |\Psi^\rangle\langle e_1| + |\Psi^+\rangle\langle e_2| + |\Phi^-\rangle\langle e_3| + |\Phi^+\rangle\langle e_4| =
\]
\[
= \begin{pmatrix}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1
\end{pmatrix}. \tag{10}
\]

Then successive application of \(U\) and its inverse \(U^\dagger\) transforms an individual, nonentangled state from the Cartesian basis back and forth into an entangled, nonindividual state from the Bell basis. For the sake of another demonstration, consider the following perfectly cyclic evolution which permutes all (non)entangled states corresponding to the Cartesian & Bell bases:
\[
|e_1\rangle \mapsto |\Psi^\rangle \mapsto \Psi \mapsto |\Psi^+\rangle \mapsto |e_2\rangle
\]
\[
\Psi \mapsto |e_3\rangle \mapsto |\Phi^-\rangle \mapsto |\Phi^+\rangle \mapsto |e_4\rangle.
\tag{11}
\]

This evolution is facilitated by \(U\) of Eq. (10), as well as by the following additional unitary transformation [23]:
\[
V = |e_2\rangle\langle \Psi^-| + |e_1\rangle\langle \Psi^+| + |e_4\rangle\langle \Phi^-| + |e_1\rangle\langle \Phi^+| =
\]
\[
= \begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -1
\end{pmatrix}. \tag{12}
\]

One of the ways thinking of this kind of breathing in and

ACKNOWLEDGMENTS

This work was supported in part by the John Templeton Foundation’s Randomness and Providence: an Abrahamic Inquiry Project. I thank Johann Summhammer for useful comments and suggestions.
[18] David N. Mermin, “What is quantum mechanics trying to tell us?” American Journal of Physics 66, 753–767 (1998), arXiv:quant-ph/9801057.

[19] Anton Zeilinger, “Quantum teleportation and the non-locality of information,” Philosophical Transactions of the Royal Society of London A 355, 2401–2404 (1997).

[20] Anton Zeilinger, “A foundational principle for quantum mechanics,” Foundations of Physics 29, 631–643 (1999).

[21] Karl Svozil, Physical [A]Causality. Determinism, Randomness and Uncaused Events (Springer, Berlin, Heidelberg, New York, 2017) in print.

[22] David N. Mermin, Quantum Computer Science (Cambridge University Press, Cambridge, 2007).

[23] Julian Schwinger, “Unitary operators bases,” Proceedings of the National Academy of Sciences (PNAS) 46, 570–579 (1960).

[24] C. Macchiavello, G. M. Palma, and Anton Zeilinger, Quantum Computation and Quantum Information Theory (World Scientific, Singapore, 2001).