Recent Updates on the Effect of Endocrine Disruptors on Male Reproductive Functions

Roshini Rajendran¹, Latchoumycandane Calivarathan¹ and Premendu Prakash Mathur¹,²

¹Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvur – 610005, India
²Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry – 605014, India

Abstract:
Endocrine disruptors are man-made or naturally occurring chemical substances, upon exposure, alter the male reproductive health by interfering with hormonal homeostasis and spermatogenesis. Several studies have supported the hypothesis that a decrease in sperm count over the past few decades is due to exposure to environmental contaminants possessing estrogenic or anti-androgenic properties. Bisphenol A, phthalates, alkylphenols, and polychlorinated biphenyls are some of the endocrine-disrupting chemicals commonly present in our day-to-day products that have been shown to pose a significant threat to reproductive health. Many chemicals directly or indirectly affect the endocrine systems, altering metabolism, sex differentiation, growth, stress response, gender behavior, and reproduction. The endocrine pathway disruption is possible via membrane receptors or nuclear receptors and inhibition of enzymatic pathways. The declining male reproductive health has been linked to an increased presence of chemical contaminants in our environment in the form of pesticides and plastics. The effect of endocrine disruptors on reproductive health remains a real issue considering public health. This review gives a recent update on environmental chemicals that have endocrine-disrupting potential and their effect on the male reproductive system.

Keywords: Endocrine disruptors, Pesticide, Sperm Testicular function, Pesticides, Public health, Growth.

1. INTRODUCTION

In recent decades, several chemical and biological agents have been shown to interfere with various metabolic pathways, leading to development, growth, and reproduction alterations. Endocrine disruptors are exogenous agents that can interfere with the production, release, transportation, metabolism, binding, action, or elimination of natural hormones in the body needed to maintain homeostasis and regulate the developmental processes of an organism [1]. Endocrine-disrupting chemicals (EDC) are a heterogeneous group of substances that have been under consideration for the past three decades due to their possible harmful effects on wildlife and human [2]. Humans and animals are exposed to a wide range of chemical substances from the environment, contributing to a complex exposure situation in our day-to-day lives. Most of the reported effects on wildlife are based on the observation of aquatic organisms and have been linked to the concentration of pollutants along the food chain. In humans, there is increasing evidence that the birth sex ratio is altered in areas close to industry and exposed to environmental and industrial chemicals [3]. Epidemiological studies support the hypothesis that human male reproductive disorders have been increasing over the past few decades in relation to the increase in endocrine disruptors in our environment [4, 5].

Exposure to EDC has been linked to several reproductive disorders, including infertility, testicular germ cell cancer (TGCC), one of the most prevalent cancers in young men, and congenital developmental defects such as cryptorchidism and hypospadias [6]. Interestingly, exposure to endocrine disruptors during fetal, neonatal, and adult life plays a significant role in perturbing normal reproductive function and development. Increased exposure to these chemicals has decreased reproductive function and the average sperm counts [7, 8]. The existence of specific receptors in target cells allows the hormone-mimicking effect of endocrine disruptors. Even though some toxic substances, such as polychlorinated biphenyls and polybrominated diphenyl ether, are banned in many countries, many of these substances can still be detected in considerable amounts in our environment [9].

* Address correspondence to this author at the Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry – 605014, India; and Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvur – 610005, Tamil Nadu, India; Tel/Fax: +91-674-7103001; E-mail: ppmathur@yahoo.com

DOI: 10.2174/18742203-v9-e2208180, 2022, 9, e187422032208180
rods following exposure to endocrine-disrupting chemicals [10 - 12]. This brief review investigates the possible effects of environmental chemicals that have endocrine-disrupting potential and their effect on the male reproductive system.

1.1. Endocrine Disruptors (EDs)

The endocrine disruptors are a group of chemicals either occurring naturally or released into our environment due to man-made activities. EDs mimic or interfere with the endocrine system, thereby altering normal development and causing abnormalities in reproductive health. EDs are present in several products, and some of them are potentially hazardous. Unknowingly, we are exposed to these chemicals every day. The term EDs has been used to describe a highly heterogeneous group of substances that could be either toxicants or toxins that can disrupt the action of endogenous hormones. Some include industrial solvents, by-products of industrial processes, plasticizers, pesticides, pharmaceutical agents, phytoestrogens, and heavy metals. EDs are detected in air, soil, drinking water, food, cosmetics, household products, electronic devices, and textiles. Some EDs are highly persistent and lipophilic, so they accumulate in the body and appear in bodily fluids.

1.2. Human Exposure to Endocrine Disruptors

Some well-known examples of endocrine disruptors, similar to experimental rodents found in human bodily fluids, include bisphenol A, phthalates, PCBs, dioxins, alkylphenols, etc. Even though many chemicals possessing endocrine disrupting properties have been banned or restricted in some countries, they are still in use in other countries, and exposure occurs due to their presence in our environment at a considerable level. For example, even though the use of alkylphenols is restricted in the European Union and is still found in a considerable amount in our environment [13]. Several endocrine disruptors are detected in human urine, serum, amniotic fluid, breast milk, and semen [14 - 17]. Bisphenol A is one of the examples of endocrine-disrupting chemicals present in the bodily fluid of humans in several instances [18]. Men exposed to dioxins show a more significant number of morphologically abnormal sperm and low linear motility [19, 20]. Increased Exposure to polychlorinated biphenyls (PCBs) is associated with decreased sperm count, motility, and normal morphology [21, 22]. Exposure to organochlorine pesticides such as DDT has been shown to decrease normal sperm morphology, sperm count, volume, and motility [21, 23, 24], whereas organophosphate exposure has been shown to reduce the semen volume and increase pH [25, 26]. These findings in humans indicate that EDC exposure does affect human semen quality in a way that is similarly modeled by rodents in other studies.

1.3. Mechanism of Action of Endocrine Disruptors on the Male Reproductive System

EDs can modify the action of endogenous hormones and deregulate hormonal balance through multiple mechanisms. Phthalates, BPA, dioxins, and PCBs are some of the well-known EDs shown to decrease semen quality [19 - 21, 23 - 27]. They behave as imperfect ligands, activating or inhibiting the nuclear hormone receptors’ functions, such as estrogen, androgen, progesterone, retinoid, and thyroid receptors. EDs can also act as transcriptional co-activators and inhibit enzymatic pathways of steroid biosynthesis. Monoethylhexyl phthalate (MEHP), the reactive metabolite of di (2-Ethylhexyl) phthalate (DEHP), activates the peroxisome proliferator-activated receptor (PPAR) α and PPARγ, leads to stimulation of retinoid x receptor (RXR) and PPAR to compete for binding sites on DNA and leads to inhibition of transcription of enzyme aromatase involved in sexual development. PPAR diminishes the steroidogenic proteins and leads to low sperm quality [28, 29]. Steroidogenic acute regulatory protein (StAR) is regulated by cAMP and mediates the rate-limiting step in steroidogenesis by the transportation of cholesterol into Leydig cells’ mitochondria [30]. MEHP decreases the production of StAR protein and leads to a reduction in cholesterol transport. Apart from inducing oxidative stress in Leydig cells, exposure to a high level of MEHP inhibits the activities of steroidogenic enzymes such as 3β and 17β hydroxysteroid dehydrogenases, thereby altering testosterone biosynthesis [31, 32]. MEHP affects spermatogenesis by decreasing the number of Sertoli cells and its interaction with gonocytes and triggers testicular apoptosis by increasing Fas ligand expression [33 - 35]. The male reproductive system can be disturbed at different phases of a lifetime. Androgens are the essential hormones required for the normal development and differentiation of Wolffian ducts into the epididymis, vas deferens, and seminal vesicles. Dihydrotestosterone is produced from testosterone by 5α-reductase, an important hormone required for the masculinization of external genitalia and the prostate [36]. BPA affects sperm quality by the upregulation of the aryl hydrocarbon receptor mRNA level, which induces the expression of the CYP1 gene, which encodes the aromatase enzyme. Hence, a balanced hormonal environment is required for the normal development of the male reproductive system. Abnormal development of testes in fetal and neonatal life has long-term effects on sperm production [37]. Prepubertal exposure to endocrine-disrupting chemicals has negative consequences on reproductive function, as the blood-testis barrier in humans is developed just before puberty [38]. Thus, the effects of endocrine-disrupting chemicals mediated via activation or inhibition of androgen and estrogen receptors are the leading cause of adverse effects on male reproductive function. Estrogenic endocrine-disrupting chemicals exert more negative effects via the induction of oxidative stress. In addition, recently, possible negative actions on progeny through toxic epigenetic mechanisms have been found. Epigenetic modifications include heritable changes in gene expression without any change in DNA sequence. These changes include DNA methylation, histone modifications, and non-coding RNA expression. The early developmental period is susceptible to epigenetic mechanisms as the rate of DNA synthesis is maximum [39, 40]. The possible epigenetic action of EDs in humans is supported only by in vitro cell culture studies and more in vivo and human studies are needed to confirm it.
Table 1. Endocrine-disrupting chemicals and their impact on the male reproductive system.

Endocrine Disruptors	Sources	Effect on Male Reproduction
Bisphenol A	Polycarbonate plastics and epoxy resins	Reduced sperm concentration, motility, and normal morphology and arrest spermatogenesis at meiosis [83 - 86].
Phthalates	Plasticizers, vinyl flooring, lubricating oils, and personal-care products (soaps, shampoos, hair sprays)	Reduced fertility and semen quality parameters and reduced anogenital distance, reproductive abnormalities [33, 87 - 89].
Dioxins	Incomplete combustion of organic material by forest fires or volcanic activity, emissions from municipal solid waste and industrial incinerators, chlorine bleaching process used by pulp and paper mills	Reduced normal sperm morphology, lowered testosterone level, and limits prostate gland growth [90 - 93].
Pesticides	Occupational Exposure as well as Exposure from gardens and lawns, agriculture, drift from spraying, and pesticide residues on certain fruits and vegetables	Reduced sperm concentration, motility, and normal morphology alters Sertoli cell function and damages spermatozoa [94 - 97].
Triclosan	a widely-used antimicrobial in personal care products	Alters the morphology of sperm, and further research is necessary to conclude [98, 99].
Heavy metals like cadmium, lead	Cigarette smoke, release from phosphate fertilizer, waste incineration process, paints, etc.	Structural damage to seminiferous tubule hinders Leydig cell development and function, low sperm count, and motility [100 - 103].
Phytoestrogen	Mainly from food	Androgen insufficiency with under masculinization of the male urogenital tract and lowers sperm count [104 - 106].
Polychlorinated biphenyls	Cutting oils, lubricants, and electrical insulators in transformers and capacitors	Damages Sertoli cells, affects sperm motility and sperm count [107 - 109].
Alkylphenol	Used as precursors to detergents, additives for fuels and lubricants, polymers, and as components in phenolic resins, emulsifiers	Low sperm count, motility and reduced testosterone biosynthesis [110, 111].

2. IMPACT OF ENDOCRINE-DISRUPTING CHEMICALS ON MALE REPRODUCTIVE HEALTH

Several endocrine-disrupting chemicals have been shown to alter male reproductive functions, either directly or indirectly competing for the same hormone receptors. Furthermore, they also inhibit the enzymes involved in steroidogenesis and the synthesis of other factors required for normal spermatogenesis. This review discusses some of the most common endocrine disruptors and their effects on male reproductive functions (Table 1).

2.1. Bisphenol A (BPA)

BPA is commonly used in the manufacturing of polycarbonate plastics and epoxy resins and is found in a variety of food containers such as hard, rigid plastics and the epoxy-based inner coating of canned foods. Exposure to BPA mainly via consuming contaminated food and drinking water, while exposure from the environment, domestic supplies, medical equipment, and occupational sources can also occur [41, 42]. BPA is one of the most extensively studied endocrine-disrupting chemicals that mimic natural estrogen. Estrogen plays a critical role in the development of the brain, mammary gland, and testis, interference of BPA with estrogen activity, especially in early development, results in permanent changes that affect reproductive functions later in life [43]. Even though they have a weak affinity to estrogen receptors (ERs), they can bind to and stimulate them. BPA acts primarily by mimicking the effect of estrogen, modifying DNA methylation [44] and modulating the activities of several enzymes, and subsequently induces metabolic diseases, spermatogenesis defects, and/or infertility in males [45]. It has also been observed that frequently exposed males to epoxy resins have higher urinary BPA concentrations and are associated with slightly lower FSH concentrations [46]. Increased BPA concentration is associated with lower sperm concentration, motility, morphology and higher levels of DNA damage [47]. BPA is a nonsteroidal estrogen that impedes nuclear estrogen receptors in different targets in the body [48]. Androgen level is inversely associated with urinary BPA concentration in men of proven fertility and has no association with semen quality [46]. BPA impairs Sertoli cell function by impeding the expression and localization of tight junction proteins [49 - 51] as well as indirect actions through the induction of epigenetic mechanisms and DNA hypermethylation. Exposure to BPA during prenatal, perinatal, and adult either through oral route or subcutaneous injections cause developmental abnormalities such as genital anomalies, decreased epididymal weight, daily sperm production, or increased prostate weight [52 - 54]. Prenatal exposures to BPA increase the size of the preputial glands, reduce the size of the epididymides, and decrease the efficiency of sperm production in mice [54]. Perinatal exposure also causes infertility, daily sperm production and count reduction, and motility [55, 56]. Exposure to BPA prevents the action of anti-Müllerian hormone on Müllerian ducts of the developing fetus [57], leading to cause the failure of testicular descending [58]. The activities of steroidogenic enzymes such as 3β- and 17β-hydroxysteroid dehydrogenase decrease following BPA exposure, in both rat and human testicular microsomes, together with inhibition of 17α-hydroxylase/17,20-lyase [59]. BPA induces Sertoli cell apoptosis [60] via induction of caspase-3 [61]. Sertoli cell plays a pivotal role in spermatogenesis under the influence of FSH; therefore, modulation of the Sertoli cells by BPA directly or indirectly via inhibition of FSH synthesis [46] may impair reproductive function in exposed males. Occupational exposure to high levels of BPA causes sexual dysfunction, characterized by
reduced sexual desire and more significant erectile and ejaculatory difficulties [62]. A cross-sectional pilot study [63] has shown that workers exposed to BPA show altered sperm density and have a negative correlation between BPA concentration in blood and the percentage of normal sperm, suggesting the negative influence of BPA on semen quality. Male partners of subfertile couples seeking treatment from the Vincent Andrology Lab at Massachusetts General Hospital have shown a correlation between BPA exposure, increased DNA damage in spermatozoa, and reduced semen quality [47].

2.2. Phthalates

Phthalates are used as plasticizers, and are present in hundreds of products, including vinyl flooring, lubricating oil, and personal care products. Due to endocrine-disrupting properties, phthalates are well-known to cause reproductive and developmental abnormalities [64]. They exert their anti-androgenic action by hindering testosterone synthesis in Leydig cells, resulting from cytochrome CYP17 dysfunction [65]. Exposure to di (n-butyl) phthalate alters gene expression patterns that regulate cholesterol and lipid homeostasis or insulin signaling, which is responsible for lower testosterone synthesis in fetal rat testis (Barlow et al., 2003). In a rodent study, prenatal exposure to phthalates induces specific developmental and reproductive abnormalities such as hypospadias, undescended testes, malformations of the epididymis, vas deferens, seminal vesicles, and prostate, reduced sperm counts and testicular cancer that have been identified as a ‘testicular dysgenesis syndrome’ or ‘phthalate syndrome’ [65, 66]. Dibutyl phthalate administered during pregnancy and lactation shows the reduced anogenital distance in male rodents [67]. Oral administration of di-(2-ethylhexyl) phthalate in pre-pubertal rats has been shown to increase testicular apoptosis and loss of seminiferous epithelium [34]. There is a strong correlation between anogenital distance and maternal urinary concentrations of phthalate metabolites, and prenatal exposure to phthalates has been shown to alter the anogenital distance in boys [67]. However, a Danish cohort (2010-2012) study has shown that there are no consistent associations between any prenatal phthalate exposure to anogenital distance or penile width in the infant [68]. A prospective Danish-Finnish cohort study on cryptorchidism from 1997 to 2001 has shown that the reproductive hormone profiles and phthalate exposures in newborn boys are in accordance with rodent data and suggests that the development of human Leydig cells and their function may also be susceptible to perinatal exposure to some phthalates [17]. Exposure to phthalates decreases male fertility [38], a short-term in vitro incubation of spermatozoa with the phthalates has been shown to decrease sperm motility, while extended incubation of 96 hr, causes sperm cytotoxicity [7]. An inverse association has been reported between increasing concentration of urinary mono (2-Ethylhexyl) phthalate (MEHP) and circulating levels of testosterone, estradiol, and free androgen index [69]. In the body, phthalates are rapidly hydrolyzed by the enzyme esterase in the gut and other tissues into monoesters, the active molecules. For example, DEHP metabolizes to its monoester metabolite, mono-(2-Ethylhexyl) phthalate (MEHP), and DBP is converted into mono-butyl phthalate, with a high concentration of phthalates reducing motility, whereas it is cytotoxic in long-term cultures [7]. DBP could repress steroidogenesis in testes of mice and rats; no effects have been displayed in human xenografts for a range of DBP concentrations [70, 71] shows significant individual variations. The concentration of phthalates in biological fluids in human phthalate exposure has also been positively correlated with reactive oxygen species (ROS) production and increased DNA sperm damage [72]. A few epidemiological studies examined the detection of phthalate metabolites and their association with human testicular function [73], and have shown that there is a weak correlation between urinary metabolites of phthalate and lower sperm concentration, motility, and morphology [73]. However, sperm DNA damage increases in accordance with the urinary levels of phthalate monoester and oxidative metabolites [74]. In utero exposure to phthalates has been shown to induce ‘testicular dysgenesis syndrome’ [75 - 77] and abnormal aggregation of the fetal Leydig cells [78], an occurrence of intratubular Leydig cells, a reduction of fetal testosterone production [75, 79] and Leydig cell InsI3 gene expression [80]. Furthermore, in utero exposure to phthalates induces increased Sertoli cell proliferation by altering the ubiquitination pathway [81]. In vitro exposure to metabolites of phthalates, MEHP significantly inhibits the proliferation and differentiation of stem Leydig cells [82]. Increased concentrations of phthalates and their metabolites alter sperm concentration, motility, and morphology by various mechanisms; however, further studies are warranted to correlate exposure to phthalates and male reproductive health.

2.3. Alkylphenols (AP)

Alkylphenols (AP) are present in our environment in the form of isomers, and it becomes challenging when identifying and quantifying each isomer. The consequences of endocrine disruption by AP have been studied substantially in laboratory rodents by subjecting them to 4-n-nonylphenol (NP) for up to the third generation [112]. Sub-acute exposure of juvenile rats to NP causes testicular damage and depletion in spermatogenesis [113], and a notable increase in the rate of Sertoli cell apoptosis has also been observed in vitro studies with NP [114]. Several isomers of NP have also hindered testosterone biosynthesis by inhibiting testicular steroidogenesis in rats [115]. Gestational Exposure to NP has been shown to alter the epididymal weight [116].

2.4. Persistent Organochlorine Pollutants (POPs)

POPs are a large group of chemicals that include polychlorinated biphenyls (PCB), polychlorinated dibenzofurans (PCDDs), and polychlorinated dibenzo-dioxins (PCDDs), and the pesticide dichlorodiphenyltrichloroethane (DDT). PCBs are very stable mixtures of organochlorine chemicals that are resistant to extreme temperature and pressure; therefore, they are used widely in electrical equipment like capacitors and transformers as well as in hydraulic fluids, heat transfer fluids, lubricants, and plasticizers. Upon Exposure, PCBs are generally metabolized to phenols along with the formation of intermediates such as arene oxide via the P450 microsomal monooxygenase system. Due to its electrophilic nature, arene oxide covalently binds to
nucleophilic cellular macromolecules such as DNA, RNA, and proteins and induces DNA strand breaks. Most of the toxic effects caused by PCDs and PCDFs are mediated by the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor. Dioxins are a class of chemicals (polychlorinated dibenzop-dioxins) formed as by-products of incomplete combustion of chlorinated waste and in contact with plastics with hot surfaces. TCDD is structurally similar to polychlorinated aromatic hydrocarbons that act through the Ah receptor mechanism [117, 118]. After binding with the cytosolic receptor, the dioxin-receptor complex undergoes dimerization with the AHR nuclear translocator protein.

Consequently, this complex binds to dioxin response elements (DREs) on DNA, resulting in the induction of target genes such as CYP1A1 transcription [119]. Apart from inducing general toxicity, TCDD is well known to cause reproductive toxicity [90]. Following maternal exposure, the fetal pituitary gonadotrophin is the initial target of dioxins and indirectly impacts testicular steroidogenesis [120]. Interestingly, exposure to 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) in infancy has been shown to reduce sperm concentration and motility, but an opposite effect has been reported during puberty [121]. NIOSH cohort studies have shown that workers exposed to high concentrations of TCDD result in decreased testosterone and increased gonadotrophin concentrations [122], suggesting that persistent organochlorine pollutants negatively impact male reproductive health.

2.5. Perfluorinated Compounds (PFCs)

Perfluorinated compounds (PFCs), such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are synthetic chemical substances with endocrine-disrupting properties. These substances are widely used as lubricants and surfactants in the industry and products like clothes, household utensils, and food wrapping. PFC has long half-lives, ranging from 3.5 to 7.3 years [123], and has been shown to bioaccumulate in animal tissues [124]. Epidemiological studies have confirmed the effects of PFCs exposure on testicular function [125]. High PFOS and PFOA serum levels have been shown to lower sperm concentration and also, in utero exposure of men to PFOA led to lower sperm numbers and higher levels of LH and FSH. PFCs also cause Leydig cell hyperplasia [126] and inhibits spermatogenesis in rats following pubertal exposure [127].

2.6. Pesticides

Despite its benefits in controlling agricultural pests, pesticide persists in soils and water bodies, moves up to the trophic chains, and affects predators. Several reproductive disorders have been connected to pesticide exposure, and more than one hundred of them have been listed as reproductive toxicants. Pesticides may act as endocrine disruptors by various mechanisms, including agonist receptors such as estrogen receptor, androgen receptor, estrogen-related receptor, pregnane X receptor, aryl-hydrocarbon receptor, and antagonist receptor by interfering with the synthesis, transport, metabolism, and excretion of natural hormones. The negative effect of pesticides includes abnormalities in reproductive and sexual development, gametogenesis, and early development of the fetus. Dichlorodiphenyltrichloroethane (DDT), a persistent organochlorine compound, was heavily used in the 1940s as a broad-spectrum insecticide. It was banned in the 1970s due to its estrogenic properties that have been shown to interfere with pubertal development [128]. Similar to DDT, organochlorine insecticides such as endosulfan and lindane have altered the testicular function in animal models [129 - 135]. Methoxychlor, an organochlorine pesticide introduced as an alternative to DDT, was also banned in the United States due to its endocrine-disrupting properties. It was detected in human adipose tissue and has impaired male reproduction [96, 97, 136]. We have also shown that methoxychlor induces apoptosis via mitochondria-and FasL medicated pathways in adult rat testis [137].

2.7. Phytoestrogens

Phytoestrogens are plant-derived substances possessing endocrine-disrupting effects; due to their consumption of foods and food products, it has been widely detected in human urine and blood samples across several countries [138, 139]. Perinatal exposure of rats to a dietarily relevant mixture of phytoestrogens has been shown to lower sperm quality by disrupting the hypothalamic-pituitary-gonadal axis and hormonal balance [140]. A higher soy food intake and isoflavone are associated with lower sperm concentration [141]. A case-control study has shown higher risks of male infertility following increasing exposure to phytoestrogens such as daidzein, genistein, and secoisolariciresinol [142]. Genistein is another well-studied phytoestrogen that acts as a tyrosine kinase inhibitor [143] and an antioxidant [144]. Phytoestrogen exposure interferes with the androgen receptor pathway and affects spermatogenesis's late steps [145]. In utero and neonatal exposure to genistein shows delayed spermatogenesis and a reduced number of epididymal sperm [146]. Since phytoestrogens are nonsteroidal compounds that mimic estrogen and act via estrogen receptors, once bound, they not only act as estrogen agonists but also behave as selective estrogen receptor modulators. Exposure to phytoestrogens shows detrimental effects on male reproductive health [104].

2.8. Cigarette Smoke and Endocrine Disruptors

Cigarette smoke contains numerous endocrine-disrupting chemicals that are noxious and toxic to the human body. Several studies have shown that exposure to nicotine decreases sperm motility and count and increases the percentage of sperm abnormality [147, 148] as well as decreases testosterone levels in rats [149 - 151]. Constituents in cigarette smoke such as benzo (a) pyrene and cadmium (Cd) are some of the well-known endocrine disruptors shown to alter male reproductive health. Smoking habits significantly correlate with Cd level in bodily fluids [152]. Further studies with an animal also confirm that Cd causes reproductive toxicity, including reducing sperm cell numbers and sperm motility with increases in DNA fragmentation and sperm abnormality [153]. Cd also interferes with steroidogenesis and may act as an estrogen-like factor by binding to ER. Benzo(a)pyrene alters sperm functional competence, evidenced by a reduced percentage of acrosome halo formation and sperm hyperactivation [154]. Prepubertal
exposure to Benzo(a)pyrene alters the male reproductive parameters [155]. Even though the relationship between tobacco smoking and semen quality has remained controversial for the past several decades, most studies have reported significant changes in the conventional semen parameters, including semen volume, sperm density, motility, viability, and normal morphology in the smoking population and suggesting that smoking harms the male reproductive health [155, 156].

CONCLUSION

Exposure to endocrine-disrupting chemicals may lead to adverse health effects at different stages of life-based on the time and duration of exposure. The role of endocrine disruptors as genotoxic/epigenotoxic agents raises the issue of epigenome altering that may influence the health of the actual and future population. The influence of EDCs on reproduction, development, growth, metabolic rate, and gender behavior converts into present health hazards. Also, a change in dietary intake is responsible for increasing consequences. Furthermore, there is an increasing amount of research to describe that male children are more likely to develop reproductive disorders in response to neonatal and especially prenatal exposure; such exposures are even more likely to occur now with the increasing Exposure to EDCs from general consumers goods. Reproductive health is decreasing, as evidenced by the increased number of infertility cases that correlate with environmental exposure to endocrine-disrupting chemicals and lifestyle changes. Several in vivo studies for a few decades with rats and mice strongly support exposure to chemicals having endocrine-disrupting chemicals adversely affecting both male and female reproductive systems and fertility. However, no direct study correlates human exposure to endocrine disruptors and reproductive health, but based on animal studies, these chemicals can pose a significant threat to human reproduction. Several endocrine disruptors have been found in the bodily fluid of humans, suggesting that further studies are needed to elucidate their reproductive and non-reproductive effects. Even though, many known endocrine-disrupting chemicals present in our environment, either alone or in combination, pose a great threat to organisms. Apart from known environmental contaminants having endocrine-disrupting properties, several unknown chemicals are also present in our environment, and their effect needs to be studied in the future to understand their effect on reproductive and non-reproductive health.

LIST OF ABBREVIATIONS

Abbreviation	Description
ED	Endocrine Disruptor
BPA	Bisphenol A
DDT	Dichlorodiphenyltrichloroethane
FSH	Follicle Stimulating Hormone
LH	Leutinizing Hormone
ER	Estrogen Receptor
EDC	Endocrine Disrupting Chemical

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

CL greatly acknowledges the Science and Engineering Board, University Grants Commission and the Indian Council of Medical Research for the financial support in the form of Grants.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] La Merrill MA, Vandenberg LN, Smith MT, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 2020; 16(1): 45-57. [http://dx.doi.org/10.1038/s41574-019-0273-8] [PMID: 31719706]

[2] Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 1993; 101(5): 378-84. [http://dx.doi.org/10.1289/ehp.93101378] [PMID: 8080506]

[3] Mackenzie CA, Lockridge A, Keith M. Declining sex ratio in a first nation community. Environ Health Perspect 2005; 113(10): 1295-8. [http://dx.doi.org/10.1289/ehp.8479] [PMID: 16203237]

[4] Stukenborg JB, Mitchell RT, Söder O. Endocrine disruptors and the male reproductive system. Best Pract Res Clin Endocrinol Metab 2021; 35(5): 101567. [http://dx.doi.org/10.1016/j.beem.2021.101567] [PMID: 34426080]

[5] Bonde JP, te Velde E. Declining sperm counts — the never-ending story. Nat Rev Urol 2017; 14(11): 645-6. [http://dx.doi.org/10.1038/nruro.2017.153] [PMID: 28949326]

[6] Weidner IS, Müller H, Jensen TK, Skakkebaek NE. Cryptorchidism and hypospadias in sons of gardeners and farmers. Environ Health Perspect 1998; 106(2): 793-6. [http://dx.doi.org/10.1289/ehp.98106793] [PMID: 9831539]

[7] Pant N, Pant AB, Shakla M, Mathur N, Gupta YK, Saxena DK. Environmental and experimental exposure of phthalate esters: The toxicological consequence on human sperm. Hum Exp Toxicol 2011; 30(6): 507-14. [http://dx.doi.org/10.1111/j.1365-2559.2010.03334.x] [PMID: 20551087]

[8] Knapke ET, Magalhaes DP, Dalvie MA, Mandrioli D, Perry MJ. Environmental and occupational pesticide exposure and human sperm parameters: A Navigation Guide review. Toxicology 2022; 465: 153017. [http://dx.doi.org/10.1016/j.tox.2021.153017] [PMID: 34756984]

[9] Rudel RA, Perovich LJ. Endocrine disrupting chemicals in indoor and outdoor air: Atmos Environ 2009; 43(1): 170-81. [http://dx.doi.org/10.1016/j.atmosenv.2008.09.025] [PMID: 20047015]

[10] Zhou C, Gao L, Flaws JA. Exposure to an environmentally relevant phthalate mixture causes transgenerational effects on female reproduction in mice. Endocrinology 2017; 158(6): 1739-54. [http://dx.doi.org/10.1210/endo.2017-00100] [PMID: 28368545]

[11] Manikkam M, Guererro-Bosagna C, Tracey R, Haque MM, Skinner MK. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancesstral exposures. PLoS One 2012; 7(2): e31901. [http://dx.doi.org/10.1371/journal.pone.0031901] [PMID: 22389676]

[12] Anwer H, Morris MJ, Noble DWA, Nakagawa S, Lagisz M. Transgenerational effects of obeseogenic diets in rodents: A meta-analysis. Obes Rev 2022; 23(1): e13342. [http://dx.doi.org/10.1111/obr.13342] [PMID: 34595817]

[13] Soares A, Guicsey B, Jefferson B, Cartmell E, Lester JN. Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 2008; 34(7): 1033-49. [http://dx.doi.org/10.1016/j.envint.2008.01.004] [PMID: 18282600]

[14] Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekonj J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect 2005; 113(4): 9831539.
Recent Updates on the Effect of Endocrine Disruptors

The recent updates highlight the impact of endocrine disruptors on male reproductive health. These chemicals can affect sperm quality and fertility through various mechanisms. Here are some key points:

- **Bisphenol A (BPA)**: Studies show that BPA can interfere with the endocrine system, affecting sperm quality and fertility. For example, Sadler-Riggleman et al. (2019) found that prenatal exposure to BPA affects spermatogenesis in rats.

- **Phthalates**: These compounds, widely used as plasticizers, can disrupt the endocrine system. For instance, Demierre et al. (2010) reported that maternal exposure to phthalates reduced sperm count in male rats.

- **Perfluorinated Alkyl Substances (PFAS)**: These are found in many consumer products and can alter sperm function. A study by Demierre et al. (2010) showed that PFAS exposure can lead to reduced sperm motility.

- **Polychlorinated Biphenyls (PCBs)**: These persistent organic pollutants can affect hormone levels and sperm quality. Welshons et al. (2005) found that PCB exposure was associated with lower sperm count.

- **Dioxins**: These are highly toxic and can disrupt the endocrine system, leading to reproductive health issues. Kono et al. (2003) reported that dioxin exposure was associated with decreased sperm counts.

- **Organochlorine Pesticides**: Exposure to chlorinated hydrocarbons can affect sperm quality. For example, Aneck-Hahn et al. (2005) found that DDT exposure was associated with decreased sperm motility.

These findings underscore the importance of reducing exposure to endocrine disruptors to protect male reproductive health.

References:

- Aneck-Hahn NH, Schulenburg GW, Bornman MS, Farias P, De Jager A, et al. **Polychlorinated Biphenyls (PCBs) and perfluorinated alkylate emission levels.** Andrologia 2014; 46(7): 744-52.
- Akingbemi BT, Ge R, Klinefelter GR, Zirkin BR, Hardy MP. **Semen parameters in adulthood: Results of a nationwide cross-sectional study among Swiss conscripts.** Hum Reprod 2021; 36(7): 1948-58.
- Alcover C, Vázquez-Martínez J, Cebreros-Piñeiro M, Cervera-Fernández A, et al. **Endocrine-disrupting chemicals in human semen: A cross-sectional study in Spain.** Environ Health Perspect 2017; 125(10): 15016950.
- Alcover C, Vázquez-Martínez J, Cebreros-Piñeiro M, Cervera-Fernández A, et al. **Endocrine-disrupting chemicals in human semen: A cross-sectional study in Spain.** Environ Health Perspect 2017; 125(10): 15016950.
- Aneck-Hahn NH, Schulenburg GW, Bornman MS, Farias P, De Jager A, et al. **Polychlorinated Biphenyls (PCBs) and perfluorinated alkylate emission levels.** Andrologia 2014; 46(7): 744-52.

These updates emphasize the need for continued research to better understand the mechanisms of endocrine disruption and develop strategies to mitigate their effects.
Jensen TK, Frederiksen H, Kyhl HB, et al. Prenatal exposure to phthalates and anogenital distance in male infants from a low-exposed danish cohort (2010–2012). Environ Health Perspect 2016; 124(7): 1107-13. [http://dx.doi.org/10.1289/ehp.1509870] [PMID: 26672060]

Meeker JD, Calafat AM, Hauser R. Urinary metabolites of di(2-ethylhexyl) phthalate are associated with decreased steroid hormone levels in adult men. J Androl 2009; 30(3): 287-97. [http://dx.doi.org/10.2304/jand.200909012] [PMID: 19782717]

Heger NE, Hall SJ, Sandrof MA, et al. Human fetal testis xenografts are resistant to phthalate-induced endocrine disruption. Environ Health Perspect 2012; 120(8): 1137-43. [http://dx.doi.org/10.1289/ehp.1104711] [PMID: 22511033]

Mitchell RT, Childs AJ, Anderson RA, et al. Do phthalates affect steroidogenesis by the human fetal testis? Exposure of human fetal testis xenografts to di-n-butyl phthalate. J Clin Endocrinol Metab 2012; 97(3): E341-8. [http://dx.doi.org/10.1210/jc.2011-2411] [PMID: 22238399]

Khasin LG, Della Rosa J, Petersen N, Moeller J, Kriegsfeld LJ, Lishko PV. The impact of Di-2-Ethylhexyl phthalate on sperm fertility. Front Cell Dev Biol 2020; 8: 426. [http://dx.doi.org/10.3389/fcell.2020.00426] [PMID: 32696775]

Hauser R, Meeker JD, Duty S, Silva MJ, Calafat AM. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology 2006; 17(6): 682-91. [http://dx.doi.org/10.1097/01.ede.0000239966.89535.d7] [PMID: 17006368]

Hauser R, Meeker JD, Singh NP, et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 2007; 22(3): 688-95. [http://dx.doi.org/10.1093/humrep/del428] [PMID: 17090632]

Fisher JS, Macpherson S, Marchetti N, Sharpe RM. Human 'testicular dysgenesis syndrome': a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod 2003; 18(7): 1385-93. [http://dx.doi.org/10.1093/humrep/deg273] [PMID: 12832361]

Ema M, Miyawaki E, Kawashima K. Further evaluation of developmental toxicity of di-n-butyl phthalate following administration during late pregnancy in rats. Toxicol Lett 1998; 98(1-2): 87-93. [http://dx.doi.org/10.1016/S0378-4274(98)00107-6] [PMID: 9797665]

Barlow NJ, Foster PM. Pathogenesis of male reproductive tract lesions from gestation through adulthood following in utero exposure to Di(n-butyl) phthalate. Toxicol Pathol 2003; 31(4): 397-410. [PMID: 12851095]

Mahood IK, Hallmark N, McKinnell C, Walker M, Fisher JS, Sharpe RM. Abnormal Leydig cell aggregation in the fetal testis of rats exposed to di (n-butyl) phthalate and its possible role in testicular dysgenesis. Endocrinology 2005; 146(2): 613-23. [http://dx.doi.org/10.1210/endo.2004-0671] [PMID: 15359561]

Parks LG, Oshby JS, Lambright CR, et al. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci 2000; 58(2): 30-40. [http://dx.doi.org/10.1093/toxsci/58.2.339]

Wilson VS, Lambright C, Furr J, et al. Phthalate ester-induced gubernacular lesions are associated with reduced insulin gene expression in the fetal rat testis. Toxicol Lett 2004; 146(3): 207-15. [http://dx.doi.org/10.1016/j.toxlet.2003.09.002] [PMID: 14687758]

Ma T, Hou J, Zhou Y, Chen Y, Qiu J, Wu J, et al. (2020) Dibutyl phthalate promotes juvenile Sertoli cell proliferation by decreasing the levels of the E3 ubiquitin ligase Pellino 2. Environmental health: a global access science source 19 (1): 87. [http://dx.doi.org/10.1058/s41371-022-00877-y]

Hao X, Guan X, Zhao X, et al. Phthalate inhibits Leydig cell differentiation and promotes adipocyte differentiation. Chemosphere 2021; 262: 127855. [http://dx.doi.org/10.1016/j.chemosphere.2020.127855] [PMID: 32799419]

Dobrzynska MM, Radzkwowska J. Genotoxicity and reproductive toxicity of bisphenol A and X-ray/bisphenol A combination in male mice. Drug Chem Toxicol 2013; 36(1): 19-26. [http://dx.doi.org/10.3109/00410409.2011.644561] [PMID: 22261311]

Tiwari D, Vanage G. Mutagenic effect of Bisphenol A on adult rat male germ cells and their fertility. Reprod Toxicol 2013; 34: 59-62. [http://dx.doi.org/10.1016/j.reprotox.2013.05.013] [PMID: 23770294]

Liu C, Duan W, Li R, et al. Exposure to bisphenol A disrupts metotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Dev Death 2013; 4(6): e676. [http://dx.doi.org/10.1038/cddis.2013.203] [PMID: 23788033]

Liu X, Wang Z, Liu F. Chronic exposure of BPA impairs male germ
Recent Updates on the Effect of Endocrine Disruptors

[87] Wang YX, You L, Zeng Q, et al. Phthalate exposure and human semen quality: Results from an infertility clinic in China. Environ Res 2015; 142: 1-9.

[88] Conley JM, Lambright CS, Evans N, et al. A mixture of 15 phthalates and pesticides below individual chemical no observed adverse effect levels (NOAELs) produces reproductive tract malformations in the male rat. Environ Int 2015; 156: 1665-1.

[89] Yi WEI, Xiang-Liang T, Yu Z, et al. DEHP exposure destroys blood-testis barrier (BTB) integrity of immature testes through excessive ROS-mediated autophagy. Genes Dis 2018; 5(3): 263-74.

[90] Latchoumycandane C, Chitra KC, Mathur PP. Induction of oxidative stress in the epididymis and epididymal sperm of adult rats. Arch Toxicol 2003; 77(5): 280-4.

[91] Bijker DL, Peterson RE. Reproductive toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in male rats: different effects of in utero versus lactational exposure. Toxicol Appl Pharmacol 1994; 127(2): 241-9.

[92] Johnson KJ, Passage J, In H, Striam S, Budinsky RA. Dioxin male rat reproductive toxicity mode of action and relative potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzo-p-dioxin characterized by fetal pituitary and testis transcriptome profiling. Reprod Toxicol 2020; 93: 146-62.

[93] Jin M, Lou J, Yu H, et al. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin promotes inflammation in mouse testes: The critical role of Klotho in Sertoli cells. Toxicol Lett 2018; 295: 134-43.

[94] Andrologia 2021; 53(10): e14195 [PMID: 34374107]

[95] Wu K, Li Y, Pan P, et al. Gestational vinclozolin exposure suppresses fetal testis development in rats. Ecotoxicol Environ Saf 2020; 203: 11053.

[96] Latchoumycandane C, Chitra KC, Mathur PP. The effect of methoxychlor on the epididymal antioxidant system of adult rats. Reprod Toxicol 2002; 16(2): 161-72.

[97] Johnson KJ, Passage J, In H, Striam S, Budinsky RA. Dioxin male rat reproductive toxicity mode of action and relative potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzo-p-dioxin characterized by fetal pituitary and testis transcriptome profiling. Reprod Toxicol 2020; 93: 146-62.

[98] Latchoumycandane C, Mathur PP. Induction of oxidative stress in the epididymis and epididymal sperm of adult rats. Arch Toxicol 2003; 77(5): 280-4.

[99] Biswas S, Mourya CB, Mitra A, et al. Urinary triclosan and diethylstilbestrol levels in human semen: A case-control study. Int J Reprod Biomed (Yazd) 2019; 17(5): ijm.v17i5.163.4515.

[100] Kumar S, Sharma A. Cadmium toxicity: effects on human reproduction and fertility. Rev Environ Health 2019; 34(4): 327-38.

[101] Wu HM, Lin-Tan DT, Wang ML, et al. Lead level in seminal plasma may affect semen quality for men without occupational exposure to lead. Reprod Biol Endocrinol 2012; 10(1): 91.

[102] Bhardwaj JK, Palivali A, Saraf P. Effects of heavy metals on reproduction owing to infertility. J Biochem Mol Toxicol 2021; 35(8-9): e2283.

[103] Chineyere Nwosu-Anayo A, Raymond Ekon E, Jeremiah Offer S, et al. Heavy metals, biomarkers of oxidative stress and changes in sperm function: A case-control study. Int J Reprod Biomed (Yazd) 2019; 17(5): ijm.v17i5.163.4515.

[104] Cederroth CR, Zimmermann B, Jeppsson B, et al. Potential detrimental effects of a phytosterogen-rich diet on male fertility in mice. Mol Cell Endocrinol 2010; 321(2): 152-60.

[105] Meena R, Reddy K, Sreenivasulu Reddy P. (2017) Altered spermatogenesis, steroidogenesis and suppressed fertility in adult male rats exposed to genistein, a non-steroidal phytostrogen during embryonic development. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 99:70-7.

[106] Yuan G, Liu Y, Liu G, et al. Associations between semen phytosterogens concentrations and semen quality in Chinese men. Environ Int 2019; 129: 136-46.

[107] Cai J, Wang C, Wu T, et al. Disruption of spermatogenesis and differential regulation of testicular estrogen receptor expression in mice after polychlorinated biphenyl exposure. Toxicology 2011; 287(1-3): 21-8.

[108] Raychoudhury SS, Millette CF, Finlay MF. Toxic effects of polychlorinated biphenyls on cultured rat Sertoli cells. J Androl 2000; 21(6): 966-73.

[109] Singh N, Sood R, Roychand S, et al. Associations between semen phytosterogens concentrations and semen quality in Chinese men. Environ Int 2019; 129: 136-46.

[110] Jurewicz J, Radwan M, Wielgomas B, et al. Environmental levels of nonylphenol, phthalate, and diethylstilbestrol detected in human semen: A case-control study. Environ Res 2015; 139: 231-37.

[111] Raychoudhury SS, Millette CF, Finlay MF. Toxic effects of polychlorinated biphenyls on cultured rat Sertoli cells. J Androl 2000; 21(6): 966-73.

[112] Raychoudhury SS, Millette CF, Finlay MF. Toxic effects of polychlorinated biphenyls on cultured rat Sertoli cells. J Androl 2000; 21(6): 966-73.

[113] Singh N, Sood R, Roychand S, et al. Associations between semen phytosterogens concentrations and semen quality in Chinese men. Environ Int 2019; 129: 136-46.

[114] Cederroth CR, Zimmermann B, Jeppsson B, et al. Potential detrimental effects of a phytosterogen-rich diet on male fertility in mice. Mol Cell Endocrinol 2010; 321(2): 152-60.

[115] Meena R, Reddy K, Sreenivasulu Reddy P. (2017) Altered spermatogenesis, steroidogenesis and suppressed fertility in adult male rats exposed to genistein, a non-steroidal phytostrogen during embryonic development. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 99:70-7.

[116] Raychoudhury SS, Millette CF, Finlay MF. Toxic effects of polychlorinated biphenyls on cultured rat Sertoli cells. J Androl 2000; 21(6): 966-73.

[117] Singh N, Sood R, Roychand S, et al. Associations between semen phytosterogens concentrations and semen quality in Chinese men. Environ Int 2019; 129: 136-46.

[118] Jurewicz J, Radwan M, Wielgomas B, et al. Environmental levels of nonylphenol, phthalate, and diethylstilbestrol detected in human semen: A case-control study. Environ Res 2015; 139: 231-37.

[119] Raychoudhury SS, Millette CF, Finlay MF. Toxic effects of polychlorinated biphenyls on cultured rat Sertoli cells. J Androl 2000; 21(6): 966-73.

[120] Raychoudhury SS, Millette CF, Finlay MF. Toxic effects of polychlorinated biphenyls on cultured rat Sertoli cells. J Androl 2000; 21(6): 966-73.

[121] Raychoudhury SS, Millette CF, Finlay MF. Toxic effects of polychlorinated biphenyls on cultured rat Sertoli cells. J Androl 2000; 21(6): 966-73.
Antoniassi MP, Intasqui P, Camargo M, et al. Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers. BJU Int 2016; 118(5): 814-22. [http://dx.doi.org/10.1111/bju.13539] [PMID: 27208688]

© 2022 Rajendran et al.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.