Alevin-fry unlocks rapid, accurate and memory-frugal quantification of single-cell RNA-seq data

Dongze He1, Mohsen Zakeri2, Hirak Sarkar3, Charlotte Soneson4,5, Avi Srivastava6 and Rob Patro2,6

The rapid growth of high-throughput single-cell and single-nucleus RNA-sequencing (scRNA-seq and snRNA-seq) technologies has produced a wealth of data over the past few years. The size, volume and distinctive characteristics of these data necessitate the development of new computational methods to accurately and efficiently quantify sc/snRNA-seq data into count matrices that constitute the input to downstream analyses. We introduce the alevin-fry framework for quantifying sc/snRNA-seq data. In addition to being faster and more memory frugal than other accurate quantification approaches, alevin-fry ameliorates the memory scalability and false-positive expression issues that are exhibited by other lightweight tools. We demonstrate how alevin-fry can be effectively used to quantify sc/snRNA-seq data, and also how the spliced and unspliced molecule quantification required as input for RNA velocity analyses can be seamlessly extracted from the same preprocessed data used to generate normal gene expression count matrices.

Both the number and scale of single-cell RNA-sequencing (scRNA-seq) experiments have been growing rapidly in recent years1. The data generated by various scRNA-seq technologies have distinct characteristics preventing them from being processed by the otherwise mature and widely used tools developed for bulk RNA-seq data2–4. While Cell Ranger exists as a commercial solution for preprocessing data generated using popular 10x Genomics technologies, it is both computationally and memory intensive, and since version 3 has been developed as a closed-source product, limiting the transparency of the methods it implements. Further, it does not have built-in support for technologies beyond those developed by 10x Genomics. Therefore, to address the computational challenges that arise in the processing of high-throughput scRNA-seq data, numerous new approaches for efficient preprocessing have been developed.

Srivastava et al.5 introduced alevin, which focused on improving the computational efficiency of tagged-end scRNA-seq quantification and also introduced a new approach for resolving gene-multimapping unique molecular identifiers (UMIs). Likewise, the raindrop tool6 pairs a custom lightweight mapping approach with a reduced index to count UMIs mapping to genes, providing a fast-counting approach. Melsted et al.7 introduced the kallisto|bustools pipeline for processing scRNA-seq data; the approach focuses on modularity and speed, using pseudoalignment to the transcriptome to produce intermediate BUS files8 that are subsequently manipulated using bustools commands.

Most recently, Kaminow et al.9 introduced STARsolo, a preprocessing method built directly atop the STAR aligner on which Cell Ranger also relies. STARsolo focuses on being a fast and easy-to-use solution for processing single-cell and single-nucleus RNA-seq (snRNA-seq) data that can be tuned to mimic Cell Ranger, while being much faster and more memory frugal. However, since it performs spliced alignment to the genome, STARsolo is more memory and time-intensive than pseudoalignment to the transcriptome (at least for scRNA-seq data).

In this work, we present alevin-fry, a configurable framework for the processing of tagged-end scRNA-seq and snRNA-seq data. Alevin-fry has been designed as the successor to alevin. It subsumes the core features of alevin, while also providing important new capabilities and considerably improving the performance profile, and we anticipate that new method development and feature additions will take place primarily in the alevin-fry codebase. Alevin-fry can preprocess scRNA-seq data more quickly than the next-fastest method, kallisto|bustools, while also vastly reducing the considerable number of spuriously expressed genes predicted under pseudoalignment-to-transcriptome approaches5. Simultaneously, alevin-fry exhibits similar accuracy to STARsolo while processing data appreciably faster and requiring less memory. In snRNA-seq data processing, where intronic sequences are often included for quantification, alevin-fry and STARsolo are both faster and use less memory than kallisto|bustools. In fact, alevin-fry can process snRNA-seq data with the same speed and memory efficiency with which it processes scRNA-seq data, substantially outperforming both STARsolo and kallisto|bustools. Alevin-fry is an accurate, computationally efficient and easy-to-use tool that presents a unified framework for preprocessing sc/snRNA-seq data for gene expression or RNA velocity analysis, making it an appealing choice for processing the diverse and growing array of experiments being performed.

Results
We demonstrate the performance and accuracy of alevin-fry in a variety of different use cases, and compare its computational resource usage as well as the quality of its results to those provided by...
the other recently introduced tools STARsolo and kallisto|bustools. We examine results on simulated data (‘Simulated data’), on a scRNA-seq dataset where the effect of alignment pipelines has previously been explored (‘Analysis of a zebrafish pineal gland dataset’), in the context of preparing count matrices for an RNA velocity analysis (‘RNA velocity in a mouse pancreas experiment’), for the processing of a snRNA-seq dataset (‘Processing of a mouse placenta snRNA-seq dataset’) and finally we investigate the overall runtime and peak memory usage characteristics on this broad array of datasets (‘Speed and memory usage’).

Overview of alevin-fry. Alevin-fry is a configurable framework for the processing of (sc/snRNA-seq) data (Fig. 1), supporting many tagged-end sc/snRNA-seq protocols. After preparing a reference with respect to which quantification should occur, it makes use of salmon\(^\text{1}\) for barcode and UMI parsing and mapping of fragments to the reference index. Accepting as input this mapping information, alevin-fry generates a permit list for cellular barcodes that will be quantified in subsequent steps. Using a multi-threaded approach, it filters and collates the mapping records for permitted cellular barcodes to produce a representation optimized for quantification. During quantification, alevin-fry processes the mapping records assigned to the permitted cellular barcodes in parallel, and applies one of the available (user-specified) UMI resolution algorithms to estimate a count for each gene in each quantified cell. This results in a gene-by-cell count matrix that can be used for numerous downstream analyses.

Simulated data. We first evaluated the different methods on data from a non-parametric simulation first introduced by Kaminow et al.\(^\text{1}\). Details about the simulation are provided in the ‘Simulated data’ section. Table 1 displays the results of different methods as evaluated under various metrics on the set intersection of the cells quantified by all methods, where STARsolo was run to perform Cell Ranger-like barcode filtering. Although Cell Ranger was not included in this comparison, we expect it to perform very similarly to STARsolo under default parameter settings, as reported by Kaminow et al.\(^\text{1}\). The definitions of these metrics are given in Supplementary Information. While no method yields the best performance universally, there are some clear trends that can be observed. First, as noted by Kaminow et al.\(^\text{1}\), the methods that perform mapping (either pseudoalignment or pseudoalignment with structural constraints) directly to the spliced transcriptome alone performed worse than the other approaches—often considerably—under most metrics (the sole exception being the mean per-cell relative false-negative rate). Specifically, these approaches exhibited a markedly reduced cell-level Spearman correlation with the truth, as well as largely inflated relative false-positive expression (27–32\%) and increased mean absolute relative deviations (MARD). Among the two evaluated approaches that map only to the spliced transcriptome, alevin-fry (in sketch mode) performed better than kallisto|bustools. On the other hand, the methods that map to expanded references, either the whole genome in the case of STARsolo or the splici (spliced and intronic) reference (‘Simulated data’ and Supplementary Information) in the case of alevin-fry, all generally performed well under the various metrics. STARsolo exhibited the highest cell-level Spearman correlation, as well as the smallest relative false-positive and relative false-negative rate, while alevin-fry exhibited the lowest MARD (both when run in sketch mode and when using selective alignment).

To explore the false-positive expression estimates in more detail, we plotted the frequency distribution of the number of cells in which each gene appears, where genes are sorted in descending order, independently per method (Fig. 2a). We observed that STARsolo and both variants of alevin-fry that make use of the splici index followed a very similar frequency distribution, and that this was distinct from the frequency distribution followed by kallisto|bustools and alevin-fry when mapping only to the spliced transcriptome. This suggests that mapping to the spliced transcriptome alone not only results in hundreds of spuriously expressed genes per cell, but also many of these genes themselves are inferred to be expressed across hundreds of cells.

Although there were differences under all metrics reported by the methods mapping to the expanded reference, the magnitude of these differences was generally small, and, in particular, was much smaller than the difference between any of these methods and those methods that map only to the spliced transcriptome. Moreover, we observed that, holding the other variables fixed, selective-alignment yielded a small but consistent accuracy improvement over pseudo-alignment with structural constraints. Presumably, this resulted largely from the ability of selective-alignment to discard fragments arising from outside the spliced or unspliced transcriptome that would otherwise be spuriously assigned to some target. Nonetheless, we observed that pairing the expanded (splici) reference with an appropriate UMI resolution strategy that is aware of both spliced and unspliced gene variants allowed for the use of sketch mode (pseudoalignment with structural constraints) in a manner that corrected the high number of false-positive expression predictions that were otherwise observed when mapping only to the spliced transcriptome.

Analysis of a zebrafish pineal gland dataset. To explore the performance of alevin-fry in an experimental sample where the alignment pipeline has previously been shown to have an impact on downstream analysis, we reanalyzed an existing *Danio rerio* (zebrafish) pineal gland dataset\(^\text{10,11}\). Shainer and Stemmer\(^\text{11}\) demonstrated that for these data, kallisto|bustools’s quantifications enable the FindClusters function of Seurat\(^\text{12}\) to recover two distinct cone photoreceptor (cPhR) clusters—the cPhR expressing the red cone opsin (red+ cells) and the cPhR expressing *parietopin* (PT+ cells). Conversely, when using the quantifications from Cell Ranger, the red+ and PT+cPhR clusters are collapsed into a single cPhR cluster that expresses the main marker genes for both cPhR clusters. Given that the red+ and PT+c cells are two distinct types that represent mutually exclusive neuronal fates of photoreceptors in this tissue\(^\text{11}\), one would likely view the separate clusters as an important biological signal.

Method	Mean Spearman correlation	MARD (drop NA)	MARD (NA = 0)	Mean rFP per cell	Mean rFN per cell	
STARsolo	0.997	0.031	0.002	0.001	0.005	
kallisto	bustools	0.864	0.263	0.024	0.328	0.006
alevin-fry (sketch)	0.883	0.226	0.020	0.273	0.006	
alevin-fry (splici, sketch)	0.988	0.026	0.002	0.011	0.012	
alevin-fry (splici, sla)	0.992	0.019	0.001	0.004	0.011	

Table 1 | The performance of the examined tools on the simulated data. Each row lists a different quantification method being evaluated.

Among the variants of alevin-fry, txome stands for mapping against the spliced transcriptome reference, splici stands for mapping against the splici reference and sketch (pseudoalignment with structural constraints) and sla (selective-alignment) describe the mapping method. Each column lists a metric. They are, from left to right, the mean cell-level Spearman correlation of gene abundances, the MARD where NA values are dropped and treated as zero and the mean relative false-positive and negative expression per cell. Detailed definitions are in Supplementary Information. All metrics are measured on the subset of genes and cells defined by all tested methods, and are taken with respect to ground-truth abundances.
To further investigate the differences demonstrated in Shainer and Stemmer\(^1\) under a different set of preprocessing tools, we processed this data with STARsolo (with UMI resolution strategies described in ‘Additional preprocessing and filtering details for a zebrafish pineal gland experiment’), kallisto|bustools and alevin-fry using unspliced, spliced and ambiguous (USA) mode and the splicing reference. To normalize across the cell filtering methods, we ran all tools to produce unfiltered quantifications, then filtered the resulting count matrices using the DropletUtils\(^{14}\) R package. We also processed this data with STARsolo (with UMI resolution strategies described in ‘Additional preprocessing and filtering details for a zebrafish pineal gland experiment’). Under this filtering approach, all of the tested methods discovered two cPhR clusters at either of the tested resolution parameters (Supplementary figures.). Again, while Seurat did not separate these red- and PT+ cells, an inspection of the placement of the corresponding cells in the respective t-SNE embeddings, and the genes that they expressed, suggested that a signal distinguishing these cells was present in all tested methods.

Additionally, we evaluated the clustering results for the different quantification methods restricting the set of barcodes to those selected by alevin-fry’s knee-distance filtering procedure (details in ‘Additional preprocessing and filtering details for a zebrafish pineal gland experiment’). Under this filtering approach, all of the tested methods discovered two cPhR clusters at the 0.9 and 1.2 resolution parameters (Supplementary figures). This was true even for STARsolo’s quantification results when using the 1MM UMI resolution strategy.

Taken together, these results indicate that the main factors in the separation of these clusters during processing are a combination of (1) the specific filtering parameters used to retain cell barcodes, (2) the UMI deduplication strategy and (3) specific thresholds selected for feature detection and filtering. These results are investigated further in the Supplementary Information. Overall, we observed a general tendency for more strict filtering to clarify a signal between these clusters that can be detected by Seurat’s clustering algorithm. The signal itself, in terms of the biologically relevant \(opn1lw1\)\(^{15}\) and \(parietopsin\)\(^{16}\) marker genes, was strong in the quantifications produced by all of the tested methods, if explicitly sought out. This suggests that the specific clustering algorithm used may affect the ability to automatically separate these distinct clusters of cells. We have not investigated this here, but it may be an interesting direction for further work.

Finally, we explored the strong differentially expressed gene marker signal of the \(coll14a1b\) gene found between the two cPhR clusters in the kallisto|bustools quantifications, which is absent
from the filtered counts of STARsolo and alevin-fry. To the best of our knowledge, there is no immediate biological mechanism that would lead this gene to be a differential marker between red+ and PT+ cells. We performed a detailed, read-level analysis on the expression of this gene to explore the causes of this quantification difference. While this analysis was computationally intensive, and therefore not feasible at scale across experiments or as a standard part of preprocessing pipelines, it helped explain the mechanism at work and why such differences might manifest.

We ran kallisto\(^{1}\) in bulk mode to isolate the reads that were mapped to the constituent transcripts of \textit{coll14a1b}. We extracted these reads and attempted to align them to the corresponding transcripts. We found that they almost universally produced poor quality alignments, where the only long contiguous matches between the read and the transcript were stretches of low-complexity sequence close to the indexed k-mer length.

We ran BLAST\(^{17}\) to query these reads against the National Center for Biotechnology Information (NCBI) nucleotide database to investigate their potential origins. For reads we examined, the top BLAST hits contained the \textit{pde6hb} (phosphodiesterase 6H, cGMP-specific, cone, gamma, paralog b) gene, which has biologically plausible expression in this dataset. However, this gene does not appear in the Ensembl 101 \textit{D. rerio} annotation used in this section or the original annotation\(^{11}\). Thus, in this case, both STARsolo and alevin-fry avoided seemingly misattributing the large number of reads actually arising from \textit{pde6hb} to other genes in the annotation, while kallisto\(\mid\)bustools attributed many of these reads to \textit{coll14a1b}, for which there does not appear to be any evidence of expression.

The spuriously expressed genes when quantifying with a pseudoalignment-to-transcriptome based approach has been previously reported by Kaminow et al.\(^{9}\), and has been reported to result in the estimated expression of biologically implausible genes\(^{18}\). In this dataset, it resulted in the expression of a gene that is detected as the strongest marker between these clusters of interest under kallisto\(\mid\)bustools quantifications, and that is almost certainly a spurious result that derived from the use of pseudoalignment-to-transcriptome with no filtering of mapping results. Generally, such occurrences may not be particularly rare, and caution should be applied when interpreting metrics such as total gene detection, or median gene or UMI count, particularly among methods that use different fragment mapping approaches, as larger values of such quantities may indicate reduced precision and not just increased sensitivity.

Fig. 2 | Comprehensive analysis of the performance of alevin-fry on real and simulated datasets. a. The frequency distribution of the presence of genes across all shared cells for STARsolo, kallisto\(\mid\)bustools and alevin-fry (including multiple index types for alevin-fry) on the simulated data. Different colored lines represent the quantification methods. In the variants of alevin-fry, txome stands for transcriptome reference (that is, just indexing the annotated, spliced, transcriptome), and sketch (pseudoalignment with structural constraints) and sla (selective-alignment) label the mapping method used to obtain the result. Due to the similarity of the distributions, the line of STARsolo is occluded by the line of alevin-fry(splici, sla).

b. A visualization of the velocity estimation derived from alevin-fry counts in a UMAP-based embedding after assigning all ambiguous counts as spliced; the streamlines represent the direction of RNA velocity estimated by scVelo. Points (cells) are colored according to the cell-type annotation. Due to the similarity of the distributions, the line of STARsolo is occluded by the line of alevin-fry(splici, sla).

c. The t-SNE embedding plot of an alevin-fry processed mouse placenta snRNA-seq dataset. The color of each nucleus represents the inferred cell-type annotation, which was learned from a reference dataset. **d, e.** The timing (d) and peak memory (e) usage for all tools (run with 16 threads) on the different datasets evaluated in this paper. The x axes of d and e represent the evaluated datasets. The y axis of d represents the runtime of each tool, measured in seconds. The y axis of e denotes the peak memory usage—measured as the maximum resident set size (rss)—during the execution of each tool. Dashed horizontal lines in d denote 15, 30, 60 and 90 min, respectively. Dashed horizontal lines in e denote 4, 8, 16 and 32 GB, respectively.
RNA velocity in a mouse pancreas experiment. The USA mode of alevin-fry generates unaspliced, spliced and ambiguous counts for each gene in each cell. Those counts can be used to estimate single-cell RNA velocity\(^9\), which represents cellular transcriptional kinetics of cells that are sequenced in scRNA-seq. In a *Mus musculus* (mouse) pancreas dataset, the ratio of U:S:A is 0.125:0.806:0.069. As RNA velocity estimation methods\(^{19,20}\) most often take only spliced and unaspliced counts as the input, the ambiguous counts need either to be discarded or to be apportioned toward spliced and unaspliced counts. We tested seven different strategies for handling these ambiguous counts and observed that assigning the ambiguous count differently led to distinct velocity and latent time estimates (Supplementary Information). Here, we discuss the result of assigning all ambiguous counts as spliced counts, since this coincides with the reasonable prior belief that most reads in this type of experiment should arise from spliced transcripts (see ‘RNA velocity’ for details). By doing so, the ratio of U to S is then 0.125 to 0.875. The streamlines in the velocity graph (Fig. 2b) portray the cycling nature of the Ductal cells and endocrine progenitors, the cellular development process of endocrine progenitors (indicated by the concentration of the transcription factor Ngn3) and the differentiation process of endocrine cells, which ends with Beta cells at the latest time point, as described by Bergen et al.\(^6\).

Setting the corresponding RNA velocity-related flags for STARsolo (--soloFeatures Gene Velocyto) and for kallisto|bustools (--workflow lamanno), returns the counts required by the RNA velocity pipelines. The resulting U:S:A ratio of STARsolo counts was 0.122:0.834:0.044 and the resulting U:S ratio of kallisto|bustools counts was 0.181:0.819 (kallisto|bustools does not report ambiguous counts). Although the ratios were similar across the results of all methods, the velocity and the latent time estimation were distinct. In the velocity graph produced by kallisto|bustools counts (Supplementary figures), for example, the streamlines formed a back-flow, and the arrows pointed from the differentiated cells (Epsilon, Beta and Alpha cells) back toward the pre-endocrine cell cluster, corresponding to the results reported in Soneson et al.\(^7\). The velocity graph derived from STARsolo counts, after assigning ambiguous counts to spliced (Supplementary figures), avoided such back-flow but did not reveal the cycling population of Ductal cells, and some streamlines over the Beta cell cluster pointed in the opposite direction against other streamlines over the same cell population.

Additionally, while the latent time assignments computed by scVelo when using the alevin-fry (Supplementary figures) and STARsolo (Supplementary figures) counts matched the streamlines in their respective velocity graph and those provided in the scVelo tutorial, the latent time assignment derived from the kallisto|bustools counts were discordant with those of the other methods as well as with the directions of velocity arrows leading from the Ductal cell cluster and pre-endocrine cell cluster to the differentiated cells. Specifically, when using kallisto|bustools counts, the latent time estimated by scVelo (Supplementary figures) originated in the cluster of Beta cells, and concorded with the velocity arrows leaving this cluster, but ran opposite to the main flow from the Ductal, Ngn3 and pre-endocrine clusters into the differentiated cell clusters.

In summary, comparing the velocity graphs generated by all three methods on the endocrine pancreas dataset, the velocity streamlines and latent time assignments derived from alevin-fry counts well delineated the cellular development process of pancreatic endocrinogenesis, and those derived from STARsolo recapitulated most of the expected biology, but differed in some details, while the results derived from the kallisto|bustools counts recapitulated only parts of the expected biology.

Processing of a mouse placenta snRNA-seq dataset. Like scRNA-seq, snRNA-seq technology is increasingly used to explore many types of biological questions, particularly in situations where full-cell scRNA-seq would be difficult or dissociation unlikely to succeed. In this section, we analyzed a snRNA-seq dataset from the mouse placenta\(^8\). The details for processing the dataset can be found in ‘Clustering analysis of snRNA-seq data’ and Supplementary Information.

Among the 10,483 high-quality nuclei in the quantifications processed by alevin-fry, a total of 17 clusters were found with a clustering resolution parameter of 0.6. To assign cell types for each cluster, a preprocessed Seurat object (Supplementary Information) was used as the reference for cell-type classification using Seurat's anchor transfer functionality. In this Seurat object, cells were classified as belonging to five major cell types: blood cells, decidual stroma, endothelial, fetal mesenchyme and trophoblast. Those cell types correspond to the basic structure of the placenta, which consists of the maternal decidua, the junctional zone and the labyrinth zone\(^22,27\).

By transferring the cell-type annotations from the reference Seurat object to the alevin-fry result, all five clusters were detected and the t-SNE embedding of the alevin-fry counts was similar to that of the reference object (Fig. 2c). This process was also performed for the result of STARsolo (Supplementary Figs.) and kallisto|bustools (Supplementary Figs.), and the five essential cell types were also detected. In conclusion, all three methods were able to retain the most relevant biological signals captured in the snRNA-seq experiment, and subsequently produced similar cell-type assignments and t-SNE embeddings.

Subsequently, the 7,027 nuclei that were assigned as trophoblast in the alevin-fry result were selected to analyze refined trophoblast subclusters. As some cell types had only a few corresponding nuclei, we set the clustering resolution very high (at 2.5) to detect the detailed clustering assignments; 27 clusters were found. Referring to anchors from the reference result\(^21\) that defined 13 cell types, 12 of them (all but SynTI precursor) were assigned to these 27 clusters. After applying the same procedure, the 6,837 trophoblast nuclei assigned under the kallisto|bustools counts resulting in the discovery of 11 cell types (all but SynTI precursor and SynTI precursor) and the 6,631 trophoblast nuclei assigned under the STARsolo counts resulted in ten cell types being found, all but SynTI precursor, LaTP and JZP1. The reference labels not assigned across methods generally had low barcode counts in the reference dataset. Just as with the cluster analysis explored in the section ‘Analysis of a zebrafish pineal gland dataset’, the ‘absence’ of a cluster depends on the details of the filtering approach, intermediate processing and clustering parameters, and so the lack of a distinct cluster annotated via reference transfer does not necessarily indicate that the relevant biological signal was not present in the counts produced by a method.

In summary, all tools demonstrated robust recapitulation of the major expected biological signals from this snRNA-seq experiment, with alevin-fry recovering slightly more known cell types when subclustering trophoblast nuclei.

Speed and memory usage. Finally, we assessed the speed and memory requirements of the three tools tested in this paper across the datasets explored in the previous sections as well as using the PBMC10k dataset\(^24\) with the latest 10x reference annotation. We exclude Cell Ranger from this analysis, as it has previously been demonstrated that STARsolo can produce results that are almost identical to those of Cell Ranger, but that it is much faster and requires less RAM\(^7\) (‘Details of time and memory benchmarking’). Among the methods tested, alevin-fry, when using sketch mode, was the fastest (Fig. 2d). When processing scRNA-seq data and indexing only the spliced transcriptome, kallisto|bustools was the second-fastest tool. When both alevin-fry and kallisto|bustools are configured to use the spliced transcriptome alone as the mapping target, alevin-fry exhibited the lowest memory usage, followed by kallisto|bustools. The speed of STARsolo matched that of kallisto|bustools as the number of threads was increased (often at
around 16 to 20 threads depending on the specific details of the hardware configuration being used), but by virtue of aligning against the entire genome it consumed more memory when performing a standard (spliced) scRNA-seq analysis. As expected, when alevin-fry was configured to use the splice reference rather than just the spliced transcriptome, there was a moderate increase in the memory usage (for example, to roughly 10 GB in dense mode and roughly 6.5 GB in sparse mode for the most recent 10x Genomics annotation of the Homo sapiens (human) transcriptome). The runtime saw little effect when mapping against the splice reference compared to the spliced transcriptome, and there also appeared to be only a small difference in the mapping speed of alevin-fry when using the sparse rather than the dense index. Thus, while mapping against the splice reference required more memory, it had only a small effect on the runtime and yielded markedly more accurate counts, as it avoided the pitfalls of pseudoalignment-to-transcriptome described by Kaminov et al.9.

When processing snRNA-seq data, alevin-fry was the fastest and most memory-frugal method (Fig. 2d,e). Since STARsolo and alevin-fry indices already contained the relevant intronic sequence, their index size did not grow when processing snRNA-seq samples or preparing RNA velocity inputs. However, when processing snRNA-seq data, there was a notable performance inversion between STARsolo and kallisto|bustools. The size of the kallisto|bustools index grew much larger than those of the other tools, and the speed decreased substantially. Thus, depending on the specific organism and annotation complexity, when processing snRNA-seq samples, STARsolo was the second-fastest and second-most memory-frugal tool (even when using its dense suffix array index). On the dataset examined here, compared to alevin-fry (sparse, unfiltered), STARsolo took roughly 2.6 times as long and used roughly 6.3 times as much memory while kallisto|bustools took roughly 4.1 times as long and used roughly 13.1 times as much memory.

In summary, in the configuration tested here, alevin-fry was the fastest method, on average completing in under half the time required by the next-fastest method. It also exhibited tightly controlled peak memory requirements, with processing using the sparse index completing in less than 8 GB of memory for all the different organisms and datasets processed in this paper. Among STARsolo and kallisto|bustools, which method was faster or which required less memory depended on the specific type of data being processed and the details of the reference being used.

Discussion
We have introduced alevin-fry as an accurate, computationally efficient and lightweight framework for the processing of both sc and snRNA-seq data. Compared to both STARsolo and kallisto|bustools, alevin-fry is consistently the fastest of these tools and can process datasets, on average, in less than half the time taken by the other tools. At the same time, when taking advantage of its (already constructed) sparse index, alevin-fry can process both sc and snRNA-seq data using less than 8 GB of RAM. The splice index, which we propose to use for all types of quantification covered here, allows the application of a fast-mapping method (pseudoalignment9 with structural constraints) while largely avoiding the estimation of spurious gene expression that is observed when such approaches are applied only to the spliced transcriptome9. This allows alevin-fry to quantify expression with considerably increased precision compared to other lightweight tools, while using appreciably less memory than STARsolo.

Moreover, coupling the splice reference with a UMI resolution method that is aware of the splicing status of different indexed targets, we introduce UMA mode quantification. This unifies scRNA-seq, snRNA-seq and RNA velocity preprocessing using alevin-fry. At the same time, alevin-fry is highly configurable, providing flexibility to users at many stages of the preprocessing pipeline. For example, at the expense of a higher runtime (although not substantially increased peak memory usage), even more precise quantifications can be obtained by performing selective-alignment25 instead of pseudoalignment9 with structural constraints. Similarly, multiple options are provided for barcode (that is, cell) permit-list generation and UMI resolution. Alevin-fry can also be used for processing other types of experiment, such as spatial scRNA-seq data and feature bar-coded scRNA-seq data, and we are maintaining a growing suite of tutorials at https://combine-lab.github.io/alevin-fry-tutorials. As new sc/snRNA-seq technologies are rapidly and continually developed, improving methods used to analyze the resulting data will require ongoing benchmarking of methods to identify the strengths of existing techniques and areas for improvement in future approaches. For example, a recent study by You et al.26 evaluated many different pipelines for the preprocessing of UMI-based scRNA-seq data. Concordant with the current paper, You et al.26 found alevin-fry’s performance to be excellent, both computationally and in terms of the accuracy and robustness of the resulting counts. However, they report that alevin-fry—at least when using pseudoalignment with structural constraints—and kallisto|bustools demonstrate a left skew in the count distribution of pseudogenes and therefore may underestimate the abundance of transcripts labeled with this biotype. Studies such as these will help guide improvements to existing tools and the development of improved methods. Similarly, broad evaluations should be carried out for the quantification of snRNA-seq data and the evaluation of spliced and unspliced count estimates for purposes such as RNA velocity inference. Likewise, in addition to evaluating tools across various experimental samples, it will be useful for future studies to incorporate simulated data into their analysis9. However, the current paucity of sequence-level simulators for UMI and droplet-based technologies27 makes the extensive use of simulated data challenging.

While alevin-fry provides an efficient and flexible framework for processing many types of sc/snRNA-seq data, some current implementation limitations, and benchmarking studies such as that performed by You et al.26, motivate future work. For example, the existing mapping and UMI resolution algorithms are likely not well-suited to long-read scRNA-seq data, although we want to support such protocols in the future. Additionally, it will be useful to investigate what other reference sequences can be incorporated into the index, and what modifications to the mapping and UMI-assignment algorithms can be made, to further improve quantification accuracy and robustness, specifically among challenging transcript biotypes such as pseudogenes. Finally, we believe there is likely room to improve UMI resolution methodologies further: to infer more accurate cell-level molecule counts by, for example, modeling biases in the data, accounting for the likelihood with which different complex UMI and gene-mapping scenarios may arise, and by sharing information across similar cells in a sample or even across distinct data modalities.

We believe that alevin-fry strikes a remarkable balance between the often-competing criteria of accuracy, performance and flexibility, and that these characteristics make it an appealing choice for preprocessing the rapidly growing collection of high-throughput sc/ snRNA-seq data.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41592-022-01408-3.
Articles

References

1. Svensson, V., da Veiga Beltrame, E. & Pachter, L. A curated database reveals trends in single-cell transcriptomics. Database 2020, baaz073 (2020).
2. Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500 (2010).
3. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
4. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
5. Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 65 (2019).
6. Niebler, S., Müller, A., Hankeln, T. & Schmidt, B. RainDrop: rapid activation matrix computation for droplet-based single-cell RNA-seq reads. BMC Bioinformatics 21, 274 (2020).
7. Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat. Biotechnol. 39, 813–818 (2021).
8. Melsted, P., Ntranos, V. & Pachter, L. The barcode, UMI, set format and BUStools. Bioinformatics 35, 4472–4473 (2019).
9. Kaminow, B., Yunusov, D. & Dobin. A. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data. Preprint at bioRxiv https://doi.org/10.1101/2021.05.05.442755 (2021).
10. Shainer, I. et al. Agouti-related protein 2 is a new player in the teleost stress response system. Curr. Biol. 29, 2089–2099.e7 (2019).
11. Shainer, I. & Stemmer, M. Choice of preprocessing pipeline influences clustering quality of scRNA-seq datasets. BMC Genomics 22, 661 (2021).
12. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
13. Cau, E., Ronsin, B., Besièere, L. & Blader, P. A notch-mediated, temporal asymmetry in BMP pathway activation promotes photoreceptor subtype diversification. PLoS Biol. 17, e2006250 (2019).
14. Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).
15. Crespo, C., Soroldoni, D. & Knust, E. A novel transgenic zebrafish line for red opsin expression in outer segments of photoreceptor cells. Dev. Dyn. 247, 951–959 (2018).
16. Wada, S. et al. Color opponency with a single kind of bistable opsin in the zebrafish pineal organ. Proc. Natl Acad. Sci. USA 115, 11310–11315 (2018).
17. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
18. Brüning, R. S., Tombor, L., Schulz, M. H., Dimmel, S. & John, D. Comparative analysis of common alignment tools for single-cell RNA sequencing. GigaScience 11, gic001 (2022).
19. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
20. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
21. Soneson, C., Srivastava, A., Patro, R. & Stadler, M. B. Preprocessing choices affect RNA velocity results for droplet scRNA-seq data. PLoS Comput. Biol. 17, e1008585 (2021).
22. Marsh, B. & Blloch, R. Single nuclei RNA-seq of mouse placental labyrinth development. eLife https://doi.org/10.7554/elife.60266 (2020).
23. Woods, L., Perez-Garcia, V. & Hemberger, M. Regulation of placental development and its impact on fetal growth—new insights from mouse models. Front. Endocrinol. https://doi.org/10.3389/fendo.2018.00570 (2018).
24. 10k Peripheral Blood Mononuclear Cells (PBMCs) from a Healthy Donor (v3 Chemistry) (10x Genomics, 2018); https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3
25. Brüning, R. S., Tombor, L., Schulz, M. H., Dimmeler, S. & John, D. The role of telomeres in cell identity diversification. Cell 184, 3573–3587.e29 (2021).
26. You, Y. et al. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows. Genome Biol. 22, 339 (2021).
27. Sarkar, H., Srivastava, A. & Patro, R. Minnow: a principled framework for comparison of published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022
Methods

Alevin-fry is a configurable framework for the processing of sc/nRNA-seq data. It makes use of salmon\(^1\) for basic barcode and UMI parsing and the mapping of the reads to the constructed reference index. The output of salmon, when configured to produce output for alevin-fry, is a RAD (reduced alignment data) file, which is a chunk-based, binary file optimized for machine parsing, that encodes the relevant information necessary for subsequent (postmapping) processing of the data (Supplementary Information). Alevin-fry consumes the salmon output directory—containing the RAD file and other relevant meta-information about the sample—and processes the data in a number of steps. The main processing steps correspond to permit-list generation, RAD file collation and finally, quantification of the collapsed RAD file. We describe the options provided by alevin-fry and further details of these specific steps below.

Constructing a reference index. The alevin-fry workflow quantifies sc/nRNA-seq data based on a reference index created by salmon. Here, we discuss two types of reference sequence that can be used to construct such an index, and describe the relative advantages and disadvantages of these options. Regardless of the reference over which one decides to build an index, salmon makes use of the pufferfish\(^2\) index, and a dense or sparse index variant can be constructed.

First, at least for the processing of scRNA-seq (not nRNA-seq) data, one might consider building a reference index over the spliced transcriptome. The main benefits of this approach are that it is simple, and the resulting index tends to be very small. For example, when using the spliced transcriptome extracted from the latest 10x Genomics version of GRCh38, the (dense) reference index is only roughly 700 MB, and the splicing mapping and quantification procedure can be performed in roughly 3 GB of RAM.

However, while the frugal resource use of an index restricted to only the spliced transcriptome is appealing, it comes with potential drawbacks. The most important drawback, perhaps, is that it results in substantial false-positive rates (that is, spuriously detected genes).\(^3\) One likely mechanism is that in typical scRNA-seq experiments, some fraction of reads (in cases, up to roughly 25\%) derive from intronic or intergenic sequences rather than from exons.\(^4\) When these true sequences of origin are absent from the index, reads deriving from them may sometimes be spuriously assigned to a spliced transcript that shares some local sequence similarity with the true locus of origin. The degree to which such spurious assignment occurs also depends on the specifics of the algorithm used for mapping; for example, the problem is most pronounced when using pseudodigalignment\(^5\) followed by pseudodigalignment with structural constraints, and is somewhat (but not fully) mitigated when using selective-alignment\(^6\).

One alternative is to map to the genome directly, as is done by Cell Ranger and STARiso. This allows consideration of all genic loci when determining the approximate mapping position for a read, and results in the elimination of the false positives that are induced by forcing reads to map only against the annotated transcriptome. While building such an index is mostly comprehensive, the associated costs are that the index is inevitably larger and the common alignment approaches for scRNA-seq data (both Cell Ranger and STARiso are based on STAR\(^7\)) as their underlying aligner) require considerably more RAM during alignment. Further, these approaches require solving the spliced (rather than contiguous) alignment problem; while good solutions (such as STAR and HISAT2\(^8\)) exist, this problem is more computationally intensive and lightweight approaches such as quasi-mapping\(^9\) and pseudodigalignment\(^10\) have not yet been adapted to the problem of spliced mapping.

We propose here an alternative middle ground, which is to align against a reference that indexes both the spliced transcriptome and the set of (collapsed) intron sequences that are likely to generate reads in a typical sc/nRNA-seq experiment. We use a reference preparation algorithm to produce what we refer to as a splice (spliced + intrinsic) reference, representing a slight modification of reference preparation involving RNA velocity preprocessing.\(^11\) Further details explaining how this reference is constructed are provided in the Supplementary Information, and we have developed an R package, named roe, to automate this construction process. Unlike the spliced transcriptome alone, this index contains the intronic sequences that are likely to give rise to a non-trivial fraction of reads in a scRNA-seq experiment, and including these sequences allong the gene is likely to resolve read origin and avoid the spurious mapping associated with mapping against the spliced transcriptome alone, similar to what is accomplished by decay sequences in bulk RNA-seq quantification.\(^12\) Although different in execution, as the quantification method itself, and not just the mapping algorithm, is aware of these sequences). On the other hand, by indexing the spliced transcriptome and introns (with flanking sequence) directly, this reference does not require spaced alignment and is therefore amenable to both fast contiguous alignment algorithms such as selective-alignment\(^13\) as well as lightweight approaches such as pseudodigalignment.\(^1\) Throughout this paper, we append the mitochondrial genes to the splice reference (Supplementary Table 1). We also set the flank length as the read length minus five, although the quantification results appear very robust to the specific flank length chosen (Supplementary Information). While the size of this reference is considerably larger than the spliced transcriptome alone, it is still smaller than the genome. For the index used by alevin-fry, a dense index for a recent human reference constructed in such a manner requires roughly 10 GB of RAM for mapping, while the sparse index requires only around 6.5 GB.

We demonstrate how mapping against this index addresses the shortcomings of mapping against just the spliced transcriptome, while retaining modest memory requirements.

Fragment mapping. As with constructing a reference against which to map reads, multiple choices can be made as to exactly how fragments should be mapped to the reference. In alevin-fry there are two main options available, selective-alignment\(^13\) and pseudodigalignment\(^14\) with structural constraints. The mapping of reads is performed using the salmon alevin command with the --rad or --sketch flags, which instructs the program to produce a RAD file and other auxiliary files for subsequent processing with alevin-fry, rather than to quantify the data directly with alevin.\(^1\) Broadly, among the two mapping approaches, selective-alignment is more accurate but more computationally intensive. Fragments are mapped against the index using maximal exact matches between reads and indexed unigs (uniMEMs) as seeds, which are then chained to determine a putative mapping score. Low-scoring putative mappings are discarded, and high-scoring mappings are validated using alignment scoring via dynamic programming, based on the banded, parallel implementation of minimap2.\(^15\) All best-scoring alignments that are above a user-defined threshold are reported as valid alignments for the fragment. The explicit alignment scoring avoids the reporting of mappings where the locus with the best set of seed matches is not the locus with the best alignment. Likewise, the discarding of alignments below the user-defined threshold ensures that fragments arising from some other origin that have no high-quality alignment in the indexed reference will not be reported and processed as valid mappings.

On the other hand, pseudodigalignment with structural constraints and the --sketch flag, is very fast, but it does not validate mapping locations via alignment scoring. This approach first uses a custom implementation of pseudodigalignment\(^16\) to determine which k-mers from the fragment match different targets. Subsequently, the implied mappings are subjected to filtering by structural constraints requiring that the reads supporting the pseudodigalignment in a consistent orientation, are co-linear with respect to the read and the reference, and that the stretch (maximum distance between any pair of k-mers comprising the mapping) is not too large. While using a spliced reference largely eliminates the problem of false-positive expression that has previously been reported\(^17\) when using pseudodigalignment-to-transcriptome approaches, enabling reads to map using this rapid approach, there are still some false-positive mappings that can only be properly eliminated with alignment scoring (that is, using selective-alignment).

Permit-list generation. After the reads have been mapped to the target index, either using selective-alignment or pseudodigalignment with structural constraints, the resulting RAD file is inspected to determine the set of cellular barcodes that should be used for quantification. In scRNA-seq experiments, cell capture is imperfect and thus some fraction of barcodes may correspond to droplets that failed to properly capture a cell.\(^18\) In this case, the barcodes associated with these barcodes usually exhibit many fewer distinct UMI mapped to target sequences in the index than barcodes corresponding to properly captured cells. Likewise, errors that occur during PCR amplification, sequencing or pooling will also corrupt the sequence of a cellular barcode, so that the barcode observed in the sequenced fragment is different from that which was originally attached to the underlying molecule before sequencing.

Alevin-fry’s generate-permit-list command works to determine the set of cellular barcodes that will enable the pseudodigalignment process. We propose an alternative middle ground, which is to align against a reference that indexes both the spliced transcriptome and the set of (collapsed) intron sequences that are likely to generate reads in a typical sc/nRNA-seq experiment. We use a reference preparation algorithm to produce what we refer to as a splice (spliced + intrinsic) reference, representing a slight modification of reference preparation involving RNA velocity preprocessing.\(^11\) Further details explaining how this reference is constructed are provided in the Supplementary Information, and we have developed an R package, named roe, to automate this construction process. Unlike the spliced transcriptome alone, this index contains the intronic sequences that are likely to give rise to a non-trivial fraction of reads in a scRNA-seq experiment, and including these sequences allows resolving read origin and avoids the spurious mapping associated with mapping against the spliced transcriptome alone, similar to what is accomplished by decay sequences in bulk RNA-seq quantification.\(^12\) Although different in execution, as the quantification method itself, and not just the mapping algorithm, is aware of these sequences. On the other hand, by indexing the spliced transcriptome and introns (with flanking sequence) directly, this reference does not require spaced alignment and is therefore amenable to both fast contiguous alignment algorithms such as selective-alignment as well as lightweight approaches such as pseudodigalignment.\(^1\) Throughout this paper, we append the mitochondrial genes to the splice reference (Supplementary Table 1). We also set the flank length as the read length minus five, although the quantification results appear very robust to the specific flank length chosen (Supplementary Information). While the size of this reference is considerably larger than the spliced transcriptome alone, it is still smaller than the genome. For the index used by alevin-fry, a dense index for a recent human reference constructed in such a manner requires roughly 10 GB of RAM for mapping, while the sparse index requires only around 6.5 GB. We demonstrate how mapping against this index addresses the shortcomings of mapping against just the spliced transcriptome, while retaining modest memory requirements.

Knee-distance permit-list generation. The knee-distance filtering implemented in alevin-fry is a modified implementation of the strategy that is provided in the UMI-tools\(^19\) software. It is an iterative knee-finding strategy that attempts to automatically determine the number of barcodes corresponding to high-quality cells by examining the frequency histogram of observed barcodes. Briefly, this method first counts the number of reads associated with each barcode, and then sorts the barcodes in descending order by their associated read count. It then constructs the cumulative distribution function (CDF) from this sorted list of frequencies. Finally, it applies an iterative algorithm to attempt to determine the optimal number of barcodes to include by looking for a ‘knee’ in the CDF graph.
The algorithm considers each barcode in the CDF where its x-coordinate is this barcode's rank divided by the total number of barcodes (that is, its normalized rank) and the y-coordinate is the (normalized) cumulative frequency achieved at this barcode. It then computes the distance of this barcode from the baseline (defined by the start and end of the CDF). The initial knee is predicted as the point that has the maximum distance from this baseline. The algorithm is iterative, because experiments with many low-quality barcodes may predict too many valid barcodes using this method. Thus, the algorithm is run repeatedly, each time considering a prefix of the CDF from index 0 through the previous knee's index times five. Once two subsequent iterations of the algorithm return the same knee point, the algorithm terminates. Once the set of 'permitted' barcodes has been determined by this method, the reads that have barcodes not in this set are corrected against it by checking whether they are in one edit distance of some barcode in the list; if so, they are attributed to that barcode.

Correcting to an unfiltered permit list. Some technologies, such as 10x Chromium, provide a set of specific known and experiment-independent barcodes that will be a superset of the barcodes that should be observed in any given sample. This list of ‘possible’ barcodes can be treated as a set of barcodes against which the observed barcodes can be corrected. The --unfiltered-pl option accepts as an argument a list of possible barcodes for the sample. When using this argument, the user may also pass the --min-reads argument to determine the minimum frequency with which a barcode must be seen to be retained. The algorithm used in this mode passes over the input records (mapped reads) and counts how many times each of the barcodes determined to be present in this unfiltered permit list occur. Fragments occurring at least min-reads times will be considered as a present cell. Subsequently, all barcodes that did not match a present cell will be searched (at an edit distance of up to 1) against the barcodes determined to correspond to present cells. If an initially non-matching barcode has no unique neighbor among the barcodes for present cells, it will be corrected to that barcode, but if it has no 1-edit neighbor, or if it has two 1-edit neighbors and the mapping would be ambiguous), then the record is discarded. Of course, unfiltered count matrices constructed in this manner will contain many barcodes not corresponding to properly captured cells, and should be subjected to subsequent filtering before analysis. In all cases, the result of the generate-permit-list step of alevin-fry is the creation of a correction map that specifies which barcodes are to be quantified, and how barcodes are to be corrected against this quantified set, as well as a census of the number of observed and valid fragments corresponding to each corrected barcode. The census information is used in the subsequent collation step to enable an efficient partitioning strategy for collating the records by corrected barcodes.

Collation of RAD files. Once the permit list and correction map have been generated, the initial RAD file must be collated by the corrected cellular barcodes: this is done using alevin-fry's collate command. In this phase, all fragments to be generated, the initial RAD file must be collated by the corrected cellular barcodes: the census information is used in the subsequent collation step to enable an efficient partitioning strategy for collating the records by corrected barcodes.

The collation strategy implemented in alevin-fry is a two-pass approach. First, each corrected barcode is assigned a bucket index; the output RAD file is parsed (in parallel by many worker threads) and each record is written to the bucket it is assigned based on its corrected barcode. This ensures that all records sharing the same corrected barcode are routed to the same bucket. Further, the buckets are limited by a user-defined maximum record count to ensure that individual buckets can be fully loaded into memory while retaining an overall small memory profile. In a second pass, each bucket is read into memory and its records are locally collated. This is done by constructing an in-memory hash map mapping each corrected barcode in this bucket to the vector of records sharing this barcode. Subsequently, each collated chunk is appended to the output collated RAD file (and optionally compressed if the user passes the --compress flag). In the resulting RAD file, the number of chunks is equal to the number of cells to be quantified (that is, the number of corrected barcodes) and all of the records sharing the same corrected barcode appear consecutively in the file.

Quantification. With the collated RAD file prepared, alevin-fry is able to quantify the count for each gene in each cell separately and in parallel via the quant command. As with the mapping and permit-list generation phase, a number of different UMI resolution strategies are implemented in alevin-fry. Here, we briefly describe those strategies—cr-like and cr-like-em—that currently support the USA quantification mode and user-defined maximum record count to ensure that alevin-fry is able to quantify the count for each gene in each cell. First, read records are collated (in memory) by their corresponding UMI. For each UMI, the set of transcripts to which the read map is projected onto the corresponding set of genes. This process is aided by the use of a gene membership map. Each entry in this map contains the name of an individual target sequence from the spllic reference, the corresponding gene to which this target belongs, and a splicing status, recorded as ‘S’ if the target derives from a spliced transcript and ‘U’ if it derives from intronic (unspliced) sequence. Each gene is assigned a pair of globally unique identifiers, one corresponding to all ‘spliced’ variants of the gene and the other to the ‘unspliced’ (intronic) sequences for the gene. The gene-level identifiers corresponding to a given record are sorted and deduplicated. All records corresponding to the current UMI are iterated in the same fashion, and a count is kept of how many times the UMI is associated with a read that maps to each gene identifier (with ‘spliced’ and ‘unspliced’ identifiers treated as distinct).

After all occurrences of the UMI are observed, the UMI is assigned to the gene with the largest frequency. If there is no unique gene with the highest frequency of occurrence, then the UMI is discarded if the cr-like resolution strategy is being used. On the other hand, if the cr-like-em resolution strategy is being used, a gene-level equivalence class is formed from all gene identifiers having the highest frequency of mapping for this UMI. Each identifier in the label of the equivalence class comprises a gene and a splicing status. The status is ‘U’ if only the unspliced identifier of this gene is among the most frequent mapping targets for this UMI, it is ‘S’ if only the spliced identifier is among the most frequent, and if both the spliced and unspliced identifiers of this gene are among the most frequent mapping targets then this is ‘A’ (ambiguous). This is analogous to this equivalence class, and an expectation maximization algorithm, such as that used in alevin, is subsequently used to probabilistically allocate counts to specific gene and splicing status pairs in the resulting count vector for this cell.

Under both of these resolution strategies, the resulting count matrix contains a count not just for each gene in each cell, but the count is further distributed over each gene's splicing status (confidently assigned to spliced molecules from the gene, confidently assigned to unspliced molecules from the gene or ambiguous in splicing status). Depending on the type of data analysis being performed, this count matrix can then be used to directly extract the counts of interest. For example, if performing a ‘standard’ single-cell gene expression analysis, one can extract the counts for each gene's splicing status from the count matrix to produce the equivalent of a standard count matrix. If performing quantification on a sRNA-seq sample, the counts from all splicing categories can be summed to produce the total UMI count attributed to each gene. For a RNA velocity analysis, the spliced and unspliced counts can be separated into distinct matrices and provided to a downstream RNA velocity computation tool.

These two resolution strategies provide a convenient solution for the quantification of gene expression in a variety of different single-cell settings. The same processing approach can be used for the quantification of gene expression in single-cell experiments, in single-nucleus experiments or even to provide the input for RNA velocity analysis. At the same time, explicitly accounting for the unknown (and often origin of reads from intronic (unspliced) cell experiments) can also greatly mitigate spurious detection of genes exhibited by methods that restrict mapping or alignment to only the spliced transcrptome. It is possible that these resolution strategies supported by alevin-fry are designed to infer both the gene and splicing status of the underlying fragments, but leave the determination of how to combine or aggregate UMIs arising from different splicing
articles to downstream analysis. We provide the function loadFry in the fishpond package for flexibly processing alvein-fry's result. Finally, a number of additional and even more sophisticated resolution methods (namely parsimony and parsimony–em) are present in alvein-fry but not yet exposed under USA mode. These implement variants on the original UMI resolution algorithm introduced by Srivastava et al.1 that applies a parsimony condition to approximately determine the minimal set of transcripts that could give rise to the observed set of UMIs. These alternative methods are further described in the Supplementary Information. We are currently working on adapting these algorithms so that they can also be meaningfully applied in alvein-fry's USA mode.

Additional preprocessing and filtering details for a zebrafish pineal gland experiment. Different UMI resolution modes of STARsolo. In the section 'Analysis of a zebrafish pineal dataset', we explored the effect of making use of different UMI resolution modes that are exposed by STARsolo. Here, we briefly enumerate the modes we evaluated, and summarize their behavior. The default UMI resolution approach of STARsolo is IMM. This applies an iterative collapse of barcodes mapping to the same gene and separated by a single mismatch; this approach is designed to replicate the behavior of Cell Ranger. The second UMI resolution strategy (namely 1MM) is labeled by STARsolo as IMMx1. This strategy is based on the directional algorithm introduced by Smith et al.33. It builds a directed graph that takes into account both the mismatch distance between barcodes mapping to the same gene, as well as the relative frequency of these barcodes, and then applies a greedy algorithm to resolve the vertices in the graph into a set of uniquely sampled barcodes, without any user input option, with the constraint of the original sample before PCR amplification and sequencing. Finally, we evaluated the exact UMI deduplication strategy, which only deduplicate UMIs that map to the same gene and that have identical UMI sequences. While the first of these strategies is designed to replicate the behavior of Cell Ranger, the last two are not available in Cell Ranger, and therefore are not considered by Shainer and Stemmer1.

Cell and feature filtering using emptyDrops. To apply cell barcode filtering using the knee-distance approach introduced by Smith et al.33, we created a Seurat object using the CreateSeuratObject with thresholds min.cells = 3 and min.feature = 200. These thresholds were used throughout the subsequent analyses for the zebrafish dataset.

RNA velocity. With the development of scRNA-seq technologies, RNA velocity analysis has become increasingly popular. Velocity34 defines single-cell RNA velocity as the time derivative of the gene expression state, which is determined by comparing the spliced count of a gene with the unspliced count of the same gene. By modeling transcriptional dynamics, RNA velocity can reveal cellular differentiation dynamics and developmental lineages present in a given single-cell experiment. scVelo further enhances RNA velocity computation by eliminating the steady-state assumption made by Velocytpe, and applying an expectation maximization filtering method to solve the differentiation dynamics according to a series of master equations. The accurate and robust estimation of RNA velocity remains an active and exciting area of research.

To explore preprocessing for RNA velocity analysis, we make use of a mouse pancreatic endocrine (gene expression dataset introduced by Bastidas-Ponce et al.35 and used as an example dataset in the scVelo python package. This experiment is obtained with the Chromium Single Cell 3 Reagent V3 Kit from 10x Genomics, and the read length is 150 nucleotides. To use the cell state annotation information provided in the scVelo example dataset, only the 3,696 cells that are included in the scVelo example dataset are included in our analysis. The quantified cells are all from stage E15.5. The processing was performed on raw FASTQ files retrieved from the Gene Expression Omnibus under accession number GSM382785.

Following the preprocessing steps adopted by scVelo, we downloaded the prebuilt mouse mm10 v2.1.0 reference from 10x Genomics. To obtain the appropriate input for RNA velocity analysis with alvein-fry, we made use of USA mode quantification, kallisto|bustools was run via the kb_python tool with the --workflow nucleus option and the following parameters in the generation of the two separate output matrices corresponding to the spliced and unspliced counts of STARsolo was run with the --sofules GeneVelocytpe option.

Depending on the RNA velocity method being used, ambiguous counts (which are output separately by STARsolo and alvein-fry) should either be provided explicitly, or allocated among the spliced and unspliced counts (or discarded entirely). We tested seven different strategies to process the ambiguous counts, which are for each gene in each individual cell, (1) discarding the ambiguous count, (2) regarding the ambiguous count as spliced, (3) regarding the ambiguous count as unspliced, (4) evenly distributing the ambiguous count to spliced and unspliced, (5) dividing the ambiguous count by the ratio of confidently spliced count to the confidently unspliced count, (6) dividing the ambiguous count by the ratio of not-unspliced (spliced and ambiguous) to unspliced and (7) dividing the ambiguous counts by the ratio of spliced to not-spliced (unspliced and ambiguous). We discuss the results of approach (2) in 'RNA velocity in a mouse pancreas experiment', and provide all other results in the Supplementary Information.

MaxCell v0.2.3 is used to analyze RNA velocity under a Python v3.8.5 environment. Cells whose cell barcode is in the scVelo example dataset are kept for further analysis. The predefined cell type and uniform manifold approximation and projection (UMAP) representation of each cell are obtained from the scVelo example dataset. The count matrices generated by all three methods are processed as described in Berg et al.36. Specifically, the count matrices are median normalized, only the top 2,000 variable genes are kept, the first- and second-order moments of the normalized spliced and unspliced counts of each gene are calculated, and the reaction rates and latent variables are recovered. RNA velocity is estimated using the dynamical mode, and the directional flow of the estimated velocity is visualized in the predefined UMAP embedding.

Clustering analysis of snRNA-seq data. To evaluate the process of quantifying an snRNA-seq dataset using these preprocessing tools, we performed a cell-type clustering analysis for the E14.5 samples from a snRNA-seq mouse placenta dataset using Cellranger v4.0.1 (ref. 12) under an R v4.0.5 environment. The nuclei were captured with the Chromium Single Cell 3 Reagent V3 Kit from 10x Genomics, and the read length is 150 nucleotides. These raw reads were accessed from the Gene Expression Omnibus under accession code GSE4609872. When analyzing single-nucleus RNA-seq data, we sum the USA counts returned by alvein-fry to get the overall count of each gene in each cell. Likewise, kallisto|bustools is run via the kb_python tool with the --workflow nuclear option specified, with the STARsolo is run with GeneVelocytpe.

To compare the results from different quantification tools in the snRNA-seq setting under a consistent and robust barcode filtering approach, we implemented the emptyDrops.CR functionality of STARsolo in R. The emptyDrops.CR filtering method is, itself, reverse engineered from the hybrid filtering strategy of Cell Ranger, which combines filtering based on various thresholds with the statistical testing method introduced by Liu et al.33. This functionality is now included in the DropletUtils R package as the emptyDropsCellRanger function. This method can help to avoid the large number of relatively low-quality barcodes that we observed to pass the filtering of emptyDrops in snRNA-seq data. The hybrid method makes use of specific thresholds to control the size of the call set, and pooling high-quality bars. We applied this function to remove putative emptyDrops from the results of all tools under the same setting, which is the default setting in STARsolo. Only barcodes (cells) with FDR-adjusted P values lower than 0.01 of arising from non-empty droplets, with mitochondrial count percentage lower than 0.25% and with 0–4–0 expressed genes, were kept for further clustering analysis.
After filtering empty droplets, the RNA counts of each nucleus were log-normalized. Next, the top 2,000 variable genes were selected and their gene counts were scaled and used in the following steps. Then, principal component analysis was conducted with these variable genes and a subset of significant principal components was selected using the JackStraw algorithm implemented in Seurat. Using these significant principal components, t-SNE dimensionality reduction was performed, the nearest neighbor graph was constructed and clustering was performed. To assign a cell type to each cluster, the R object provided by Marsh and Blelloch\(^2\) was used as the reference to transfer the cell-type annotation from the reference samples to the query object according to the anchor genes determined by the significant principal components using the FindTransferAnchors function of Seurat (Supplementary Information). The nuclei assigned as trophoblast were then selected to explore the trophoblast subclusters. Similar to the previous procedure, clusters were found using a subset of significant principal components determined by a JackStraw plot, and cell types were learned from the trophoblast R object provided as a supplementary file of Marsh and Blelloch\(^2\).

Details of time and memory benchmarking. All experiments were conducted on a server with an Intel Xeon CPU (ES-2699 v4) with 44 cores and clocked at 2.20 GHz, 512 GB of memory and eight (non-RAID) 3.6 TB Toshiba MG03ACA4 HDDs. Samples were processed using a Nextflow\(^3\) workflow. All tools tested here provide multi-threaded capabilities and were run with 16 threads. Experiments were run using STARsolo v2.7.9a, salmon v1.5.1, alevin-fry v0.4.0, kb-python v0.26.0 with kallisto v0.46.2 and bustools v0.40.0. STARsolo was run with the --soloFeatures Gene option to process single-cell samples, with the --soloFeatures GeneFull option to process single-nucleus samples and with the --soloFeatures Gene Velocito option to process samples for RNA velocity analysis. STARsolo offers the ability to use either a dense or sampled suffix array index. Here, all tests were run using the dense suffix array, which provides the fastest runtime but which also requires more memory. If memory is at a greater premium, users can instead choose to use the sparse index, which reduces the index size by a factor of roughly two but requires roughly 1.7 times as long for processing on average\(^4\). Kallisto|bustools was run with the kb-python wrapper with --workflow standard used for single-cell samples, --workflow nucleus used for single-nucleus samples and --workflow lamanno used to process samples for RNA velocity analysis. Alevin-fry was run in USA mode on all samples using the --cr-like UMI resolution method and the appropriate counts were extracted from the resulting count matrix depending on the sample type. Alevin-fry was tested with both the sparse and dense index as well as using both the unfiltered permit list and filtering of barcodes before quantification using the knee-distance method.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
All data analyzed in this paper are publicly available. The mouse pancreas dataset, the mouse placenta dataset and the zebrafish pineal dataset analyzed during the current study are available on NCBI Gene Expression Omnibus, under accession numbers GSM3852755, GSM4609872 and GSM3511193, respectively. The PBMC3k and PBMC10k dataset are available from 10x Genomics at https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3 and https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3, respectively. The description of the references that were used for mapping the sequencing reads from each dataset can be found in Supplementary Table 1.

Code availability
Alevin-fry is written in Rust (https://www.rust-lang.org), and is available under the BSD 3-Clause license. The alevin-fry output (including USA mode output) has been integrated into the fishpond package available at https://github.com/mikelove/fishpond as well as through Bioconductor\(^5\). The scripts used to perform the analyses in this paper are available at https://github.com/COMBINE-lab/alevin-fry-paper-scripts.

References
28. Almodaresi, F., Sarkar, H., Srivastava, A. & Patro, R. A space and time-efficient index for the compacted colored de Bruijn graph. Bioinformatics 34, 1169–1177 (2018).
29. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
30. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
31. Srivastava, A., Sarkar, H., Gupta, N. & Patro, R. RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes. Bioinformatics 32, 1192–1200 (2016).
32. Li. H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
33. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).
34. Zhu, A., Srivastava, A., Ibrahim, J. G., Patro, R. & Love, M. I. Non-parametric expression analysis using inferential replicate counts. Nucleic Acids Res. 47, e105–e109 (2019).
35. 5K Peripheral Blood Mononuclear Cells (PBMCs) from a Healthy Donor (v3 Chemistry) (10x Genomics, 2019): https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3
36. Bastidas-Ponce, A. et al. Massive single-cell mRNA profiling reveals a detailed roadmap for pancreatic endocrine differentiation. Development https://doi.org/10.1242/dev.173849 (2019).
37. Recht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
38. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
39. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).
40. He, D. et al. Alevin-fry v0.4.0 for manuscript "Alevin-fry unlocks rapid, accurate, and memory-frugal quantification of single-cell RNA-seq data". Zenodo https://doi.org/10.5281/zenodo.5806834 (2021).
41. Grünning, B. et al. Biocoda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15, 475–476 (2018).
42. He, D. et al. Additional data for manuscript "Alevin-fry unlocks rapid, accurate, and memory-frugal quantification of single-cell RNA-seq data" [Data set]. Zenodo https://doi.org/10.5281/zenodo.7599568 (2021).
43. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome biology 5(10), 1–16 (2004).

Acknowledgements
This work was supported by the National Institute of Health under grant award numbers R01HG009937 to R.P. and K99CA267677 to A.S., and the National Science Foundation under grant award numbers CCF-1750472 to R.P. and CNS-1763680 to R.P. Also, this project has been made possible in part by grant number CZIF2020-004893 from the Chan Zuckerberg Initiative Foundation to R.P. The funders had no role in the design of the method, data analysis, decision to publish or preparation of the manuscript.

Author contributions
All authors conceptualized the method. D.H., A.S., R.P., M.Z. and H.S. implemented the software. M.Z. and R.P. benchmarked the tools. D.H., R.P. and C.S. analyzed the results.

Competing interests
R.P. is a cofounder of Ocean Genomics, Inc. The other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41592-022-01408-3.
Correspondence and requests for materials should be addressed to Rob Patro.

Peereview information Nature Methods thanks Davis McCarthy, David van Dijk and Matthew Ritchie for their contribution to the peer review of this work. Lin Tang was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Methods | www.nature.com/naturemethods
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
☐ The statistical test(s) used AND whether they are one- or two-sided
☐ Only common tests should be described solely by name; describe more complex techniques in the Methods section.
☐ A description of all covariates tested
☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
☐ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable.
☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
☐ Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection For samples SRR11993485, SRR11993486, SRR11993487 and SRR11993488, fastq-dump v2.8.2 was used for data collection.

Data analysis Rust (v.1.5.5), Alevin-fry (v.0.4.0), Salmon (v.1.5.1), Kallisto (v.0.46.2), Bustools (v.0.40.0), kbb_python (v.0.26.0), STAR (v2.7.9a), Cell Ranger (v5.0.1), Nextflow (v21.04.1.15565), fastq-dump (v2.8.2), Sffread (v0.9.6), R (v4.1.1), Python (v3.8.3 and v3.8.5), R packages: Seurat (v4.0.2), DropletUtils (v1.13.2), ggplot2 (v3.3.3), SingleCellExperiment (v1.14.1), pheatmap (v1.0.12), reticulate (v1.20), Python packages: NumPy (v1.19.1 and v.20), Pandas (v1.1.1 and v.20), Scipy (v1.6.0 and v.1.7.1), Anndata (v0.7.5), Scipy (v1.5.4 and v.1.6.1), scvelo (v0.2.3), Seaborn (v0.11.1), Matplotlib (v3.3.3), pytimeparse (v1.1.8), Json (v2.0.9), Kneed (v0.7.0).

For manuscripts utilizing custom algorithms or software that are not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. Github). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All data used in this paper are publicly available.
The mouse pancreatic endocrinogenesis scRNA-seq dataset used for generating Figure 3, 5, 6, and S7.1-S7.5 is available in the GEO repository, under accession number GSE3852755 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3852755).
The mouse placenta snRNA-seq dataset used for generating Figure 4, 5, 6, and S9:1-39:4 is available in the GEO repository, under accession number GSM4609872 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4609872].

The Danio rerio pimeal dataset used for generating Figure 5, 6, S5.1-S5.6 and S6:2-S6:4 is available in the GEO repository, under accession number GSM3511193 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3511193].

The PBMC5k dataset used for generating Figure 2 is available at https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3.

The human PBMCM10k dataset used for generating Figure 5 and 6 is available at 10x Genomics website [https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3].

The mouse mm10 v2.1.0 reference sequence file and gene annotation file are available at http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-mm10-2.1.0.tar.gz.

The mouse mm10 2020 A reference sequence file and gene annotation file are available at https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-2020-A.tar.gz.

The human 2020A reference sequence file and gene annotation file are available at https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz.

The human GRC3 reference sequence file and gene annotation file are available at https://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.0.0.tar.gz.

The Danio rerio reference sequence file is available at ftp://ftp.ensembl.org/pub/release-101/fasta/danio_rerio/dna/

Danio_rerio.GRCz11.dna_sm.primary_assembly.fas.gz.

The Danio rerio 101 gene annotation file is available at ftp://ftp.ensembl.org/pub/release-101/gtf/danio_rerio/Danio_rerio.GRCz11.101.gtf.gz.

The cellranger v2 barcode permit list is downloaded from https://raw.githubusercontent.com/10XGenomics/cellranger/master/lib/python/cellranger/barcodes/737K-august-2016.txt.

The cellranger v3 barcode permit list is downloaded from https://raw.githubusercontent.com/10XGenomics/cellranger/master/lib/python/cellranger/barcodes/translation/3M-february-2018.txt.

The mitochondrial sequences used in the analyses can be downloaded from 10.5281/zenodo.5799568.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Educational, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-list.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No data were collected in this study. All datasets analyzed in this study were publicly available and can be downloaded from GEO.

Data exclusions No data were excluded.

Replication Not applicable for this study since new data were not collected.

Randomization Not applicable for this study since new data were not collected.

Blinding Not applicable for this study since new data were not collected.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☑	Antibodies
☑	Eukaryotic cell lines
☑	Palaeontology and archaeology
☑	Animals and other organisms
☑	Human research participants
☑	Clinical data
☑	Dual use research of concern

Methods

n/a	Involved in the study
☑	ChiP-seq
☑	Flow cytometry
☑	MRI-based neuroimaging