Synthesis of hydrocarbons under upper mantle conditions: Evidence for the theory of abiotic deep petroleum origin

To cite this article: V Kutcherov et al 2010 J. Phys.: Conf. Ser. 215 012103

View the article online for updates and enhancements.

Related content

- Polymerization of methane molecules and phase transition of san carlos olivine under the Earth’s mantle conditions
 A Shinozaki, H Hirai, H Kagi et al.

- High-pressure falling sphere viscometry of basaltic and dacitic rocks in conjunction with synchrotron radiation
 Hans J. Mueller, N Stroncik, R Naumann et al.

- Synthesis of new carbon-nitride-related materials at high pressure and temperature
 M Sougawa, T Sumiya, K Takarabe et al.

Recent citations

- Formation of complex hydrocarbon systems from methane at the upper mantle thermobaric conditions
 Aleksandr Serovaitskii and Vladimir Kutcherov

239th ECS Meeting with IMCS18
DIGITAL MEETING • May 30-June 3, 2021
Live events daily • Free to register
Synthesis of hydrocarbons under upper mantle conditions: evidence for the theory of abiotic deep petroleum origin

V Kutcherov¹,²,³, A Kolesnikov², T Dyuzheva³ and V Brazhkin¹

¹ Department of Energy, Royal Institute of Technology, Stockholm, 10044, Sweden
² Physical Chemistry Department, Moscow State Academy of Fine Chemical Technology, Vernadsky ave.86, Moscow, 119571, Russia
³ Institute of High Pressure Physics, Troitsk, 142190, Russia

E-mail: vladimir@flotten.se

Abstract. A theory of abiotic deep petroleum origin explains that hydrocarbon compounds are generated in the upper mantle and migrate through the deep faults into the Earth’s crust. There they form oil and gas deposits in any kind of rock in any kind of the structural position. Until recently one of the main obstacles for further development of this theory has been the lack of reliable and reproducible experimental results confirming the possibility of the spontaneous synthesis of complex hydrocarbon systems at high pressure and temperature. Our experimental results demonstrate that abiotic synthesis of hydrocarbons under mantle conditions is a real chemical process. Different paths of hydrocarbon synthesis under mantle conditions are discussed. Obtained experimental results place the theory of the abiotic deep petroleum origin in the mainstream of modern experimental physics and physical chemistry.

1. Introduction

The theory of abiotic deep petroleum origin is an extensive body of the modern science which covers the subjects of the chemical genesis of the hydrocarbon molecules. The theory of the abiotic deep petroleum origin recognizes that natural gas and petroleum are primordial materials of deep origin which have migrated through the deep faults into the Earth’s crust. Until recently one of the main obstacles for further development of this theory has been the lack of reliable and reproducible experimental results confirming the possibility of the spontaneous synthesis of complex hydrocarbon systems under the conditions of the upper mantle.

In 1998 we have started the research program ”Deep Oil” to get answers the following questions:

• is an abiotic synthesis of hydrocarbon systems (deep fluids) possible at mantle conditions;
• if it is possible how deep fluid had converted in different oil-and-gas systems;
• how could the deep fluid migrate from the depth to the Earth’s crust.

The results of the first series of experiments [1, 2] gave an answer to the first question. The abiotic synthesis of hydrocarbons at mantle conditions is a real physical process. At pressure of 5 GPa with a temperature of 1200°C, the synthesis is due to the reaction as follows:
\[n\text{CaCO}_3 + (9n + 3)\text{FeO} + (2n + 1)\text{H}_2\text{O} \rightarrow n\text{Ca(OH)}_2 + (3n + 1)\text{Fe}_3\text{O}_4 + C_n\text{H}_{2n+2} \] \hspace{1cm} (1)

A part of these results was confirmed by Scott et al. [3].

In the new series of experiments the following question should be answered:

- does the hydrocarbon synthesis under upper mantle conditions depend on the form of carbon and hydrogen donors;
- how does cooling rate of the fluid obtained at high thermobaric conditions influence on final content of hydrocarbon mixture;
- what are the possible reaction paths for hydrocarbon synthesis under conditions corresponding to the Earth's upper mantle.

2. Experimental details

Three different experimental methods were used: CONAC high-pressure chamber in a combination with mass-spectrometer and gas chromatograph; large-volume multi-anvil press apparatus BARS in a combination with gas chromatograph; in situ Raman spectroscopy in laser heated diamond anvil cell (DAC).

In CONAC and BARS experiments a filled ampule was placed into the high-pressure chamber, pressurized and then heated to given pressure and temperature. The treatment in the chamber was followed by cooling to room temperature at different rates (from 10-20 to several hundred degree per second), whereupon the pressure was decreased to normal pressure and the ampule was removed from the chamber. The composition of the reaction products was studied by gas chromatography and X-ray powder diffraction method. The procedures and experimental arrangement are fully described in [2 and 4]. The experiments were carried out in the temperature range 800-1500 K and at pressures up to 5 GPa.

Laser heated diamond anvil cell was combined with in situ Raman measurements and (in case of magnetite experiment) synchrotron X-ray diffraction of the products quenched to room temperature. Pressure was determined at room temperature using a conventional ruby manometer before and after laser heating (which was the same within the experimental error in most cases). The maximum coupler temperature was determined radiometrically by fitting the Planck function to the thermal radiation emitted. In in-situ experiment the Raman Stokes-to-anti-Stokes intensity technique was employed to determine the temperature of methane away from the heating spot. The method and experimental results were fully described in [5]. The experiments were made in the temperature range 900-2200 K and at pressures 2-5 GPa.

Initial components and experimental conditions are shown in table 1.

№	Initial substances	Pressure, GPa	Temperature, K	Cooling rate
1	CaCO₃ + Fe + H₂O	5	1500	quenching
2	CaCO₃ + Fe + D₂O	5	1500	quenching
3	C + Fe + H₂O	5	1500	quenching
4	C + Fe + H₂O	5	1500	4 hours
5	CH₄	2-5	900-2000	in-situ
6	CH₄ + Fe₃O₄	2-5	900-2000	in-situ
3. Experimental results

3.1. Experiments in the CONAC high-pressure chamber

Experiment 1. CaCO₃ and H₂O were used as donors of carbon and hydrogen respectively. Favorable reducing conditions were created by the presence of Fe.

Experiment 2. There was one difference from the experiment 1: we replaced H₂O for D₂O.

The result of chromatographic analyses for both experiments is shown in table 2 and in figure 1. The result of the experiment from the first series where we used the CaCO₃ and H₂O as donors of carbon and hydrogen, but favorable reducing conditions were created by the presence of FeO is also shown in table 2. The X-ray diffraction pattern for the 1ˢᵗ experiment is presented on the figure 2. Data presented confirms the following:

• a reduction value of iron +II or 0 does not influence the composition of the synthesized hydrocarbon mixture;
• replacement of H₂O by D₂O did not changed qualitative and quantitative composition of the hydrocarbon mixtures;
• presence of clearly recognized Ca(OH)₂ lines on the XRD pattern without lines of CaCO₃ confirms the following path of the reaction:

\[
\begin{align*}
\text{CaCO}_3 + (3n + 1) \text{Fe} + (2n + 1)\text{H}_2\text{O} &\rightarrow n\text{Ca(OH)}_2 + (3n + 1)\text{FeO} + n\text{H}_2\text{O} \\
\text{CaCO}_3 + (3n + 1) \text{Fe} + (2n + 1)\text{D}_2\text{O} &\rightarrow n\text{Ca(OD)}_2 + (3n + 1)\text{FeO} + n\text{D}_2\text{O}
\end{align*}
\]

Table 2 Results of chromatographic analysis for experiments 1, 2 and experiment from 1ˢᵗ series.

T, °C	CH₄	C₂H₆/C₂H₄	C₃H₈/C₃H₆	C₄H₁₀/C₄H₈	H₂	O₂	H₂O	CO₂	CO	N₂
120	310	210	30	4	60	–	8000	0	0	tr.
200	0.6	0	0.0	0.0	0.0	–	4200	2	0	0
300	2	0.0	tr.	30	40	–	8100	1	0	0
400	4	0.8	1	40	–	4000	0	0	0	0
500	3	4	4	40	–	4800	0	0	0	0
600	10	0.4	tr.	40	–	44000	7	20	0	0
700	7	1.4	0.8	50	–	40000	140	100	0	0
120	240	160	30	4	80	–	34600	0	0	tr.
200	2	0	0.0	0.0	0.0	–	4000	0	0	0
300	4	0.5	tr.	30	–	3400	0	0	0	0
400	3	0.4	0.5	60	–	4900	0	0	0	0
500	4	3	2	1800	–	4300	0	0	0	0
600	8	0.9	1	5400	–	4000	8	8	0	0
700	6	0	tr.	0.0	1600	–	4600	20	110	0
150	0.1	0	0	0	0.9	0	–	143	–	tr.
200	0.2	0	0	0	1.1	0	–	54	–	tr.
300	2.7	0.4	0.7	0.7	7.3	0	–	389	–	tr.
400	21.3	15.6	18.9	13.3	507	0	–	457	–	tr.
500	16	5	5.6	2.7	370	0	–	68	–	tr.
600	36	2.6	2.1	0.6	488	0	–	348	–	tr.
700	34	1.4	0.8	0.2	672	0	–	2118	–	tr.
Absence of CO and CO$_2$ in the reaction products shows instability of C-O compounds at the experimental thermobaric conditions. CO$_2$ was detected during chromatographic analysis at heating up to 700°C at helium atmosphere (experiment 1). This tells us that CO$_2$ in some solid phase like carbonate or carbonate-hydrate could remain after the experiment in small quantities. It is necessary to add that absence of nitrogen in the reaction products confirms that contamination by air was prevented on all stages of the experiments.

Figure 1 Gas chromatograms of products mixture heating at different temperature: a - 1st experiment with water; b - 2nd experiment with heavy water

Figure 2 X-ray diffraction pattern of 1st experiment products
3.2. **Experiments in the multi-anvil press apparatus BARS.**

In the experiments 3 and 4 CaCO₃ was replaced with graphite. H₂O was used as hydrogen donor. Favorable reducing conditions were created by FeO. The experiments were made in soldered 0.25 cm³ platinum ampules at two different cooling rates. Results of chromatographic analysis of the reaction products made at 120°C are shown in table 3. XRD patterns for the experiment 3 and 4 are presented at figure 3 and figure 4.

Table 3 Results of chromatographic analysis made at 120°C for experiments 3 and 4

	CH₄	C₂H₆/C₂H₄	C₃H₈/C₃H₆	C₄H₁₀/C₄H₈	H₂	O₂	H₂O	CO₂	CO	N₂
Experiment 3 (quenching)	40	3	0	0	7	0	0	0	0	0
Experiment 4 (cooling during 4 hours)	640	80	8	4	530	-	0	0	0	0

Figure 3 XRD pattern of 3rd experiment products
Comparison of chromatographic data for experiment 1 (table 2, 120°C) and experiment 3 (table 3), that differ only by carbon donor nature: CaCO$_3$ and graphite correspondingly, confirms presence of hydrocarbon mixtures and general pattern of hydrocarbon distribution: concentration decreasing with molecular weight increasing. Thereby fact of genesis of hydrocarbons at conditions similar to conditions of Earth’s upper mantle does not depend on the form of carbon donors. The general path of the reaction could be summarized as follows: donor of carbon + donor of hydrogen + deoxidizer \rightarrow hydrocarbons. Further investigation has to be carried out to establish accurate regularities of nature of donors factor influence.

The experiments 3 and 4 (table 3) were carried out at different cooling rates with other variables keeping constant. After quick cooling (quenching, experiment 3) CH$_4$ и C$_2$H$_6$/C$_2$H$_4$ were detected in the reaction products. At slower rate (4 hours, experiment 4) the amount of CH$_4$ и C$_2$H$_6$/C$_2$H$_4$ in the reaction products increased by tens times and more heavy saturated hydrocarbons up to C$_4$H$_{10}$ were fixed. Thus, cooling rate of the fluid synthesized at high pressure makes essential impact on its final composition. Decreasing of cooling rate leads to higher hydrocarbon yield and appearance of heavier hydrocarbons.

Analysis of XRD patterns for experiments 3 and 4 gives additional information. For the experiment 4 (figure 4, slow cooling) FeO signals (36, 42, 61) are absent, but they are fixed for the experiment 3 (figure 3, quenching). At the same time concentration of hydrogen in the reaction products is increased by ten times in the case of the slow cooling. All this suggests following paths of reactions:

experiment 3:

$$nC + (n + 2)Fe + (n + 2)H_2O \rightarrow C_nH_{2n+2} + (n + 2)FeO + H_2$$

(4)
3.3. Experiments in laser heated diamond anvil cell
Transformation of methane under conditions corresponding to the Earth’s upper mantle was investigated in the experiment 5 (pure methane) and 6 (pure methane with Fe$_3$O$_4$). These experiments were designed to check the following hypothesis: synthesis of hydrocarbons under the upper mantle conditions proceeds in two steps. In the first step methane is synthesized from carbon and hydrogen donors. In the second step a complex hydrocarbon mixture is synthesized from methane – “methane path”. Synthesis of methane under the upper mantle conditions was demonstrated previously [1, 3]. So, if our suggestion was correct we should obtain a mixture of saturated hydrocarbons from methane. Experimental results published recently [5] have confirmed our hypothesis and have demonstrated that according to thermobaric conditions (at corresponding depths) methane reacts to form saturated hydrocarbons (ethane, propane and butane) or dissociates to molecular hydrogen (or water in the experiment 6) and graphite. No other carbon or hydrogen containing products were observed (e.g. unsaturated hydrocarbons).

experiment 5:
\[4nC + (3n+6)Fe + (4n+8)H_2O = 4C_nH_{2n+2} + (n+2)Fe_3O_4 + 4H_2\] (5)

experiment 6:
\[4nC + (3n+6)Fe + (4n+8)H_2O = 4C_nH_{2n+2} + (n+2)Fe_3O_4 + 4H_2\]

4. Conclusion
The following general conclusions could be made on the basis of the experimental results discussed above:
- the abiotic generation of hydrocarbons in the mantle is a real physicochemical process. The «methane» path of hydrocarbons synthesis under mantle conditions has been proved experimentally,
- our suggestion that the fact of hydrocarbon synthesis at thermobaric conditions of the upper mantle does not depend on the type of carbon donor was confirmed. The general path of the reaction could be described as follows: donor of carbon + donor of hydrogen + deoxidizer → hydrocarbons,
- cooling rate of the fluid synthesized at high pressure makes essential impact on its final composition. Decreasing of cooling rate leads to higher hydrocarbon yield and appearance of heavier hydrocarbons.

5. References
[1] Kenney J F, Kutcherov V G, Bendiliani N A and Alekseev V A 2002 The evolution of multicomponent systems at high pressure Proc. Nat. Ac. Sci. 99 10976-10981
[2] Kutcherov V G, Bendiliani N A, Alekseev V A and Kenney J F 2002 Synthesis of hydrocarbons from minerals at pressures up to 5 GPa Dokl. Akad. Nauk [in Russian] 387 789-792
[3] Scott H P, Hemley R J, Mao H, Herschbach D R, Fried L E, Howard W M and Bastea S 2004 Generation of methane in the Earth’s mantle: In situ high pressure-temperature measurement
of carbonate reduction *Proc. Nat. Ac. Sci.* **101** 14023-14026

[4] Chepurov A I *et al.* 1999 Experimental study of intake of gases by diamonds during crystallization *J. Cryst. Growth* **198/199** 963-967

[5] Kolesnikov A, Kutcherov V G and Goncharov A F 2009 Methane-derived hydrocarbons produced under upper-mantle conditions *Nature Geoscience* **2** 566-570

Acknowledgement

We thank A.A. Tomilenko, A.I. Chepurov, V.M. Sonin (Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences), N.N. Nikolaev and L.N. Kulakova (Institute for High Pressure Physics, Russian Academy of Sciences) for help with experiments, valuable information and discussions. We acknowledge the support from INTAS Ref. Nr. 06-1000013-8750 and INTAS YSF Ref. Nr. 06-1000014-6546.