SQUAREFREE P-MODULES AND THE cd-INDEX

SATOSHI MURAI AND KOHJI YANAGAWA

Abstract. In this paper, we introduce a new algebraic concept, which we call squarefree P-modules. This concept is inspired from Karu’s proof of the non-negativity of the cd-indices of Gorenstein* posets, and supplies a way to study cd-indices from the viewpoint of commutative algebra. Indeed, by using the theory of squarefree P-modules, we give several new algebraic and combinatorial results on CW-posets. First, we define an analogue of the cd-index for any CW-poset and prove its non-negativity when a CW-poset is Cohen–Macaulay. This result proves that the h-vector of the barycentric subdivision of a Cohen–Macaulay regular CW-complex is unimodal. Second, we prove that the Stanley–Reisner ring of the barycentric subdivision of an odd dimensional Cohen–Macaulay polyhedral complex has the weak Lefschetz property. Third, we obtain sharp upper bounds of the cd-indices of Gorenstein* posets for a fixed rank generating function.

1. Introduction

After the beautiful proof of the upper bound theorem for triangulated spheres given by Stanley [St1] and Reisner [Rei], the study of Stanley–Reisner rings and its applications to f-vector theory have been of great interest both in combinatorics and in commutative algebra. In this paper, we introduce a new algebraic concept to study flag f-vectors of finite posets, which we call squarefree P-modules, and consider its applications.

Squarefree P-modules are defined as an analogue of squarefree modules [Ya1] which are module-theoretic generalization of Stanley–Reisner rings. The concept of squarefree P-modules is inspired from the work of Karu [Ka] who proved the non-negativity of the cd-indices of Gorenstein* posets by using sheaves of finite vector spaces on posets. Indeed, we show that there is a one-to-one correspondence between the squarefree P-modules and the sheaves on a poset P, and that squarefree P-modules give a way to interpret Karu’s proof of the non-negativity of cd-indices in terms of commutative algebra. We give the definition of squarefree P-modules in Section 2, and study their basic algebraic properties in the first half of the paper.

In the latter half of the paper, we consider applications of squarefree P-modules to f-vector theory, particularly to the study of cd-indices. First, we quickly review the theory of cd-indices. We refer the readers to [St4, Section 3] for basics on the theory of partially ordered sets. Let P be a finite partially ordered set (poset) of rank n with the minimal elements $\hat{0}$. The order complex Δ_P of P is the abstract simplicial complex whose faces are chains of $P \setminus \{\hat{0}\}$, namely,

$$\Delta_P = \{\{\sigma_1, \ldots, \sigma_k\} \subset P \setminus \{\hat{0}\} : \sigma_1 < \cdots < \sigma_k\}.$$

The first author was partially supported by JSPS KAKENHI 22740018, and the second author was partially supported by JSPS KAKENHI 25400057.
Macaulay if the simplicial complex Δ is considered a finite regular CW-complex. A finite poset P if the simplicial complex Δ is a CW-poset. Also, since a finite poset is a CW-poset if and only if it is homeomorphic to a sphere. Note that CW-posets and Gorenstein* posets are quasi homeomorphic to a sphere.

For a subset $S \subset [n] = \{1, \ldots, n\}$, an element $C = \{\sigma_1, \ldots, \sigma_k\} \in \Delta$ is called an S-chain if $\{\text{rank} \sigma_1, \ldots, \text{rank} \sigma_k\} = S$, where we define $\text{rank} \sigma = \max\{|C| : C \in \Delta, \text{max} C = \sigma\}$ for $\sigma \neq \emptyset$ and $\text{rank} \emptyset = 0$. Let $f_S(P)$ be the number of S-chains of P. Define $h_S(P)$ by

$$h_S(P) = \sum_{T \subseteq S} (-1)^{|S| - |T|} f_T(P).$$

The vectors $(f_S(P) : S \subset [n])$ and $(h_S(P) : S \subset [n])$ are called the flag f-vector and the flag h-vector of P respectively.

We express the flag h-vector of P by the homogeneous non-commutative polynomial, called the ab-index of P. For a subset $S \subset [n]$, its characteristic monomial is the non-commutative monomial $w_S = w_1 w_2 \cdots w_n$ in variables a and b defined by $w_i = a$ if $i \notin S$ and $w_i = b$ if $i \in S$. The ab-index of P is the polynomial

$$\Psi_P(a, b) = \sum_{S \subset [n]} h_S(P) w_S \in \mathbb{Z}\langle a, b \rangle,$$

where $\mathbb{Z}\langle a, b \rangle$ denotes the non-commutative polynomial ring over \mathbb{Z} with the variables a and b. Now we recall the definition of the cd-index. We say that P is Gorenstein* if Δ is a Gorenstein* simplicial complex (see [23, p. 67]). If P is Gorenstein* then there is a non-commutative polynomial $\Phi_P(c, d) \in \mathbb{Z}\langle c, d \rangle$ in the variables c and d such that $\Phi_P(a + b, ab + ba) = \Psi_P(a, b)$ (see [24, Theorem 3.17.1]). This polynomial $\Phi_P(c, d)$ is called the cd-index of P. Note that $\Phi_P(c, d)$ is homogeneous of degree n in the grading $\text{deg} c = 1$ and $\text{deg} d = 2$. In this paper, to simplify the notation, we regard $\Phi_P(c, d)$ as a polynomial in $\mathbb{Z}\langle a, b \rangle$ by the identifications $c = a + b$ and $d = ab + ba$.

The cd-index has two important properties. First, it efficiently encodes the flag f-vectors of Gorenstein* posets. Indeed, flag f-vectors of posets of rank n have 2^n entries, however, the cd-polynomial of degree n is a linear combination of the $(n + 1)$th Fibonacci number F_{n+1} ($F_1 = F_2 = 1, F_{k+2} = F_{k+1} + F_k$), which is much smaller than 2^n, of monomials and it is known that the existence of the cd-index describes all linear equations satisfied by the flag f-vectors of Gorenstein* posets [3, 4]. Another important property of the cd-index of a Gorenstein* poset is its non-negativity, which was proved by Karu [16].

Our first result is an extension of the notion of the cd-index to CW-posets. Let P be a finite poset with the minimal element \emptyset. We say that P is a quasi CW-poset if, for every $\sigma \in P \setminus \{\emptyset\}$, the poset $\partial \sigma = \{\tau \in P : \tau < \sigma\}$ is Gorenstein*, and that P is a CW-poset if, for every $\sigma \in P \setminus \{\emptyset\}$, the geometric realization of $\Delta_{\partial \sigma}$ is homeomorphic to a sphere. Note that CW-posets and Gorenstein* posets are quasi CW-posets. Also, since a finite poset is a CW-poset if and only if it is the face poset of a finite regular CW-complex [3], considering CW-posets are equivalent to considering finite regular CW-complexes. A finite poset P is said to be Cohen–Macaulay if the simplicial complex Δ_P is a Cohen–Macaulay simplicial complex (see [23, p. 58]).
Theorem 1.1. Let P be a quasi CW-poset of rank n. There are unique cd-polynomials $\Phi^d, \Phi^a, \Phi^b \in \mathbb{Z}(c, d)$ such that
\[
\Psi_P(a, b) = \Phi^d \cdot d + \Phi^a \cdot a + \Phi^b \cdot b.
\]
Moreover, if P is Cohen–Macaulay then all the coefficients in Φ^d, Φ^a and Φ^b are non-negative.

Since Φ^d, Φ^a, Φ^b are homogeneous of degrees $n-2, n-1$ and $n-1$ respectively, Theorem 1.1 gives a way to express flag f-vectors of CW-posets by $(n+2)$th Fibonacci number of integers. We prove in Proposition 5.2 that the existence of the expression (1) indeed describes all linear equations satisfied by the flag f-vectors of (Cohen–Macaulay) CW-posets. Also, the non-negativity statement for Cohen–Macaulay quasi CW-posets implies an interesting result on ordinal h-vectors. For a poset P of rank n, the h-vector $h(\Delta_P) = (h_0, h_1, \ldots, h_n)$ of Δ_P is given by
\[
h_i = \sum_{S \subseteq [n], |S| = i} h_S(P).\]
We say that a vector $(h_0, h_1, \ldots, h_n) \in \mathbb{Z}^{n+1}$ is unimodal if $h_0 \leq h_1 \leq \cdots \leq h_p \geq \cdots \geq h_n$ for some integer $0 \leq p \leq n$. By using Theorem 1.1 we prove

Corollary 1.2. If P is a Cohen–Macaulay quasi CW-poset then the h-vector of Δ_P is unimodal.

Recall that if P is a CW-poset, then Δ_P is combinatorially isomorphic to the barycentric subdivision of a regular CW-complex corresponding to P. It was proved by Brenti and Welker [BW Corollary 3] that the h-vector of the barycentric subdivision of a Cohen–Macaulay Boolean cell complex is unimodal. Corollary 1.2 says that this unimodality result holds in the level of regular CW-complexes.

In f-vector theory, once we have an unimodal sequence $h_0 \leq \cdots \leq h_p \geq \cdots \geq h_n$, it is natural to ask if the sequence $(h_0, h_1 - h_0, \ldots, h_p - h_{p-1})$ has a nice property. We study this problem for the h-vectors of the barycentric subdivisions of polyhedral complexes. We say that a CW-poset P is of polyhedral type if, for every $\sigma \in P \setminus \{\emptyset\}$, the subposet $\langle \sigma \rangle = \{\tau \in P : \tau \leq \sigma\}$ is the face poset of the boundary of a convex polytope. Let $[x]$ denote the integer part of $x \in \mathbb{Q}$.

Theorem 1.3. Let P be a Cohen–Macaulay CW-poset of polyhedral type having rank n and let $h(\Delta_P) = (h_0, h_1, \ldots, h_n)$ be the h-vector of Δ_P. Then the vector $(h_0, h_1 - h_0, \ldots, h_{\lfloor \frac{n}{2} \rfloor} - h_{\lfloor \frac{n}{2} \rfloor - 1})$ is the f-vector of a simplicial complex.

To prove the above theorem, we study the weak Lefschetz property (WLP for short) of squarefree P-modules. See Section 6 for the definition of the WLP. Indeed, we prove that the order complex of a Cohen–Macaulay CW-poset of polyhedral type has the WLP over \mathbb{R} if its rank is even (Corollary 6.3). This result gives a partial solution to the conjecture of Kubitzke and Nevo [KN Conjecture 4.12] who conjectured that the barycentric subdivision of a Cohen–Macaulay simplicial complex has the WLP.

Our final result is about upper bounds of the cd-indices of Gorenstein* posets for a fixed rank generating function. To state the result, we introduce a way to describe cd-monomials with certain subsets. Let \mathcal{A}_n be the set of subsets of $[n-1]$ which contains no consecutive integers, namely,
\[
\mathcal{A}_n = \{S \subseteq [n-1] : \{i, i+1\} \not\subseteq S \text{ for } i = 1, 2, \ldots, n-2\}.
\]
Let \mathcal{B}_n be the set of cd-monomials of degree n. Then there is a bijection $\kappa_n : \mathcal{B}_n \to \mathcal{A}_n$ defined by

$$\kappa_n(e^s \underline{d}^c : \underline{d} \cdots \underline{d}^k) = \{s_0 + 1, s_0 + s_1 + 3, \ldots, s_0 + \cdots + s_{k-1} + 2k - 1\}.$$

For a cd-polynomial $\Phi = \sum_{\nu \in \mathcal{B}_n} \alpha_\nu v$ of degree n, where $\alpha_\nu \in \mathbb{Z}$, and for any $S \in \mathcal{A}_n$, let $\alpha_S(\Phi) = \kappa_{\nu}^{-1}(S)$. Thus, if we write $\alpha_S = \alpha_S(\Phi)$ and $v^S = \kappa_{\nu}^{-1}(S)$, then we have $\Phi = \sum_{S \in \mathcal{A}_n} \alpha_S v^S$. For example, a cd-polynomial of degree 4 will be written in the form $\Phi = \alpha_{04} d^4 + \alpha_{12} d^2 c^2 + \alpha_{21} c^2 d + \alpha_{31} d^2$. For a Gorenstein* poset P, we define $\alpha_S(P) = \alpha_S(\Phi_P(c,d))$. We prove the following bound for $\alpha_S(P)$.

Theorem 1.4. If P is a Gorenstein* poset of rank n, then $\alpha_S(P) \leq \prod_{i \in S} \alpha_{i}(P)$ for all $S \in \mathcal{A}_n$.

The upper bounds in Theorem 1.4 are sharp. Indeed, we prove in Proposition 7.7 that for any sequence $\alpha_1, \ldots, \alpha_n$ of non-negative integers there is a Gorenstein* poset P of rank n such that $\alpha_S(P) = \prod_{i \in S} \alpha_i$ for all $S \in \mathcal{A}_n$. Also, since knowing $\alpha_{11}(P), \ldots, \alpha_{n-1}(P)$ is equivalent to knowing $f_{11}(P), \ldots, f_{n1}(P)$ (see Section 7), Theorem 1.4 gives sharp upper bounds of the cd-indices of Gorenstein* posets for a fixed rank generating function, and therefore gives sharp upper bounds of the flag h-vectors of Gorenstein* posets for a fixed rank generating function.

This paper is organized as follows: In Section 2, we define squarefree P-modules and study their basic algebraic properties. In Section 3 and 4, we study homological properties of squarefree P-modules. In Section 5, we translate Karu’s proof of the non-negativity of cd-indices in terms of squarefree P-modules, and prove Theorem 1.1 and Corollary 1.2. In Section 6, we study the weak Lefschetz property of Cohen–Macaulay squarefree P-modules, and prove Theorem 1.3. In Section 7, upper bounds of the cd-indices of Gorenstein* posets for a fixed rank generating function are studied. In Section 8, we present some open problems that arose during this research.

2. Squarefree P-modules

Throughout the paper, we assume that every poset is finite and has the minimal element 0. For a poset P and $\sigma \in P$, we write $P' = P \setminus \{0\}$; $\langle \sigma \rangle = \{\tau \in P : \tau \leq \sigma\}$ and $\partial \sigma = \langle \sigma \rangle \setminus \{\sigma\}$. We denote by \mathbb{N} the set of non-negative integers.

In the rest of this section, we fix a poset P of rank n.

Squarefree P-modules. Let $R = K[x_\sigma : \sigma \in \hat{P}]$ be the polynomial ring over a field K whose variables are indexed by the elements of \hat{P}. We consider the $\mathbb{N}[\hat{P}]$-grading of R by defining that the degree of x_σ is $e_\sigma \in \mathbb{N}[\hat{P}]$, where $\{e_\sigma : \sigma \in \hat{P}\}$ is the basis of $\mathbb{N}[\hat{P}]$. For $u = \sum_{\sigma \in \hat{P}} u_\sigma e_\sigma \in \mathbb{N}[\hat{P}]$, let $\text{supp}(u) = \{\sigma \in \hat{P} : u_\sigma \neq 0\}$. For an $\mathbb{N}[\hat{P}]$-graded R-module M, let M_u be its graded component of degree $u \in \mathbb{N}[\hat{P}]$.

Definition 2.1. A squarefree P-module (over K) is a finitely generated $\mathbb{N}[\hat{P}]$-graded R-module M satisfying the following two conditions:

(a) For any $u \in \mathbb{N}[\hat{P}]$ with $\text{supp}(u) \not\subseteq \Delta_P$, one has $M_u = 0$.

(b) For any $u \in \mathbb{N}[\hat{P}]$ with $\text{supp}(u) \subseteq \Delta_P$ and for any $\tau \in P$, the multiplication $\times x_\tau : M_u \to M_{u + e_\tau}$.
is bijective if supp\((u + e_v)\) \(\in \Delta_P\) and \(\tau \leq \max(\text{supp}(u))\).

A typical example of a squarefree \(P\)-module is the Stanley–Reisner ring of \(\Delta_P\).

Recall that, for a finite abstract simplicial complex \(\Delta\) with the vertex set \(V\), its Stanley–Reisner ring (over \(K\)) is the ring

\[
K[\Delta] = K[x_v : v \in V]/(\prod_{v \in F} x_v : F \subset V, F \not\in \Delta).
\]

For simplicity, we write \(K[Q] = K[\Delta_Q]\) for a finite poset \(Q\). The Stanley–Reisner ring \(K[P]\) is a squarefree \(P\)-module since \((K[P])_u\) is the 1-dimensional \(K\)-vector space spanned by the monomial \(\prod_{\sigma \in \hat{P}} x_{\sigma}^{\mu}\) if supp\((u)\) \(\in \Delta_P\) and is zero if supp\((u)\) \(\not\in \Delta_P\). Also, it is easy to see that, if \(Q\) is an order ideal of \(P\), that is, if \(Q\) is a subposet of \(P\) satisfying that \(\sigma \in Q\) and \(\tau < \sigma\) imply \(\tau \in Q\), then \(K[Q]\) is a squarefree \(P\)-module (by regarding \(K[Q]\) as an \(R\)-module). In particular, for any \(\sigma \in \hat{P}\), \(K[(\sigma)]\) and \(K[\partial\sigma]\) are squarefree \(P\)-modules.

In this paper, we say that a poset \(Q\) is Cohen–Macaulay (resp. Gorenstein*) over a field \(K\) if \(K[Q]\) is Cohen–Macaulay (resp. Gorenstein*). Also, when we consider the Cohen–Macaulay property (or Gorenstein* property) we skip the condition on a field \(K\) if it is arbitrary. Note that if \(Q\) is Cohen–Macaulay over some field then it is Cohen–Macaulay over \(\mathbb{R}\).

In the rest of this section, we discuss basic properties of squarefree \(P\)-modules.

Maps of squarefree \(P\)-modules. A map of squarefree \(P\)-modules is a degree preserving \(R\)-homomorphism between squarefree \(P\)-modules.

Lemma 2.2. If \(\varphi : N \rightarrow M\) is a map of squarefree \(P\)-modules, then ker \(\varphi\), im \(\varphi\) and coker \(\varphi\) are squarefree \(P\)-modules.

Proof. It is clear that ker \(\varphi\), im \(\varphi\) and coker \(\varphi\) satisfy condition (a) of squarefree \(P\)-modules. To see that they also satisfy condition (b), consider the following commutative diagram

\[
\begin{array}{llllll}
0 & \rightarrow & 0 & \rightarrow & (\ker \varphi)_u & \rightarrow & N_u & \rightarrow & M_u \\
\downarrow & & \downarrow \times x_{\tau} & & \downarrow \times x_{\tau} & & \downarrow \times x_{\tau} \\
0 & \rightarrow & 0 & \rightarrow & (\ker \varphi)_{u+e_v} & \rightarrow & N_{u+e_v} & \rightarrow & M_{u+e_v}.
\end{array}
\]

The above diagram and the five lemma imply that ker \(\varphi\) satisfies condition (b). The proofs for im \(\varphi\) and coker \(\varphi\) are similar. \(\square\)

Krull dimensions. Condition (b) of squarefree \(P\)-modules is equivalent to the following condition:

(b') For any \(\sigma \in \hat{P}\) and for any monomial \(x^u = \prod_{\rho \in \widehat{P}} \rho^u_\rho \in R\) which is non-zero in \(K[(\sigma)]\), the multiplication \(\times x^u : M_{e_\sigma} \rightarrow M_{e_\sigma + u}\) is bijective.

This implies a useful decomposition formula of squarefree \(P\)-modules. For convention, we write \(e_0 = 0\) for the zero vector in \(\mathbb{N}[\hat{P}]\) and write \(K[(0)] = K[\{0\}] = K\).

Lemma 2.3. If \(M\) is a squarefree \(P\)-module, then as \(K\)-vector spaces one has

\[
M = \bigoplus_{\sigma \in P} (M_{e_\sigma} \otimes_K K[(\sigma)]).
\]
Proof. Let \(N = \bigoplus_{\sigma \in P} (M_{e_{\sigma}} \otimes_K K[\langle \sigma \rangle]) \). We claim that \(N_u \cong M_u \) for all \(u \in \mathbb{N}^{|P|} \). The claim is obvious when \(u \) is the zero vector. Also, by condition (a) of squarefree \(P \)-modules, we may assume \(\text{supp}(u) \in \Delta_P \). Let \(u \in \mathbb{N}^{|P|} \) with \(\text{supp}(u) = \{ \sigma_1, \ldots, \sigma_k \} \in \Delta_P \), where \(\sigma_k = \max(\text{supp}(u)) \). Then we have

\[
N_u = (M_{e_{\sigma_k}} \otimes_K K[\langle \sigma_k \rangle])_u \cong M_{e_{\sigma_k}} \cong M_{e_{\sigma_k} + (u - e_{\sigma_k})} = M_u
\]

as desired, where the third equation follows from condition (b') of squarefree \(P \)-modules.

The above lemma determines the Krull dimension of a squarefree \(P \)-module. Recall that the (Krull) dimension \(\dim M \) of a finitely generated graded \(R \)-module \(M \) is the minimal number \(k \) such that there is a sequence \(\theta_1, \ldots, \theta_k \in R \) of positive degrees such that \(\dim_K(M/((\theta_1, \ldots, \theta_k)M)) < \infty \).

Corollary 2.4. If \(M \) is a squarefree \(P \)-module, then the Krull dimension of \(M \) is \(\max\{ \text{rank} \sigma : M_{e_{\sigma}} \neq 0 \} \).

Proof. Since the Krull dimension of a graded \(R \)-module is equal to the degree of its Hilbert polynomial plus one [BH Theorem 4.1.3], we have

\[
\dim M = \dim \left(\bigoplus_{\sigma \in P} M_{e_{\sigma}} \otimes_K K[\langle \sigma \rangle] \right) = \max\{ \dim K[\langle \sigma \rangle] : M_{e_{\sigma}} \neq 0 \}.
\]

Then the desired equation follows since \(\dim K[\langle \sigma \rangle] = \text{rank} \sigma \) by [St3, II Theorem 1.3].

Hilbert series and flag h-vectors. Squarefree \(P \)-modules have a natural \(\mathbb{N}^n \)-graded structure defined by \(\deg x_\sigma = e_{\text{rank} \sigma} \in \mathbb{N}^n \), where \(e_i \) denotes the \(i \)-th unit vector of \(\mathbb{N}^n \). Let \(M \) be a squarefree \(P \)-module of dimension \(d \). By the above \(\mathbb{N}^n \)-grading, \(M \) is actually \(\mathbb{N}^d \)-graded since Corollary 2.4 says that \(M_u = 0 \) for all \(u \in \mathbb{N}^{|P|} \) with \(\text{rank}(\max(\text{supp}(u))) > d \). The \((\mathbb{N}^d \text{-graded}) \) Hilbert series of \(M \) is the formal power series

\[
H_M(t_1, \ldots, t_d) = \sum_{v \in \mathbb{N}^d} (\dim_K M_v) t^v
\]

where \(t^v = t_1^{v_1} \cdots t_d^{v_d} \) for \(v = (v_1, \ldots, v_d) \in \mathbb{N}^d \).

For \(S \subset [d] \), let \(e_S = \sum_{i \in S} e_i \in \mathbb{N}^d \) and \(t^S = \prod_{i \in S} t_i \). For a squarefree \(P \)-module \(M \) of dimension \(d \), we define its flag \(f \)-vector \((f_S(M) : S \subset [d]) \) and the flag \(h \)-vector \((h_S(M) : S \subset [d]) \) by

\[
f_S(M) = \dim_K M_{e_S}
\]

and

\[
h_S(M) = \sum_{T \subset S} (-1)^{|S| - |T|} f_T(M),
\]

where \(f_\emptyset(M) = h_\emptyset(M) = \dim_K M_\emptyset \). Note that if \(M = K[P] \), then \(d = n \) and we have \(f_S(K[P]) = f_S(P) \) and \(h_S(K[P]) = h_S(P) \) for all \(S \subset [n] \).

Lemma 2.5. If \(M \) is a squarefree \(P \)-module of dimension \(d \), then

\[
H_M(t_1, \ldots, t_d) = \frac{\sum_{S \subset [d]} h_S(M) t^S}{(1 - t_1)(1 - t_2) \cdots (1 - t_d)}.
\]
Proof. Since the multiplication $\times x_\sigma : M_u \to M_{u+e_\sigma}$ is bijective if $\tau \in \text{supp}(u)$, we have the decomposition

$$M \cong \bigoplus_{C \in \Delta_P, \text{rank}(\text{max}(C)) \leq d} \left(M(\sum_{\sigma \in C} e_\sigma) \otimes_K K[x_\sigma : \sigma \in C] \right)$$

as K-vector spaces, where $M(\sum_{\sigma \in C} e_\sigma) = M_0$ and $K[x_\sigma : \sigma \in C] = K$ if $C = \emptyset$. Then

$$H_M(t_1, \ldots, t_d) = \sum_{C \in \Delta_P, \text{rank}(\text{max}(C)) \leq d} \left(\dim_K M(\sum_{\sigma \in C} e_\sigma) \right) \cdot \prod_{\sigma \in C} t_{\text{rank } \sigma}$$

$$= \sum_{S \subseteq [d]} f_S(M) \cdot \frac{t^S \cdot \prod_{t \in [d] \setminus S} (1 - t_i)}{(1 - t_1)(1 - t_2) \cdots (1 - t_d)}$$

$$= \frac{\sum_{S \subseteq [d]} h_S(M)t^S}{(1 - t_1)(1 - t_2) \cdots (1 - t_d)},$$

as desired. \hfill \Box

For a squarefree P-module M of dimension d, the ab-index of M is the polynomial

$$\Psi_M(a, b) = \sum_{S \subseteq [d]} h_S(M)w_S,$$

where w_S is the characteristic monomial of S defined in the introduction. The next lemma gives another way to express the flag h-vector of M.

Lemma 2.6. If M is a squarefree P-module of dimension d, then

$$\Psi_M(a, b) = (\dim_K M_0)(a - b)^d + \sum_{\sigma \in P} (\dim_K M_{e_\sigma})\Psi_{\partial \sigma}(a, b) \cdot b(a - b)^{d - \text{rank } \sigma}.$$

Proof. Observe that $K[\langle \sigma \rangle]$ is the polynomial ring over $K[\partial \sigma]$ with the variable x_σ, that is, $K[\langle \sigma \rangle] = K[\partial \sigma][x_\sigma]$. Hence, for any $\sigma \in \hat{P}$ with rank $\sigma = r \leq d$, we have

$$H_{K[\langle \sigma \rangle]}(t_1, \ldots, t_d) = \frac{\sum_{S \subseteq [r-1]} h_S(\partial \sigma)t^S}{(1 - t_1)(1 - t_2) \cdots (1 - t_r)}.$$

(Here we identify $H_{K[\langle \sigma \rangle]}(t_1, \ldots, t_r)$ and $H_{K[\langle \sigma \rangle]}(t_1, \ldots, t_d)$.) Then, by Lemma 2.3, we have

$$H_M(t_1, \ldots, t_d) = (\dim_K M_0) + \sum_{\sigma \in \hat{P}} (\dim_K M_{e_\sigma})t_{\text{rank } \sigma} \cdot H_{K[\langle \sigma \rangle]}(t_1, \ldots, t_d)$$

$$= \frac{\sum_{\sigma \in \hat{P}} (\dim_K M_{e_\sigma})t_{\text{rank } \sigma} \left(\sum_{S \subseteq [r-1]} h_S(\partial \sigma)t^S \right) \prod_{k > \text{rank } \sigma} (1 - t_k)}{(1 - t_1)(1 - t_2) \cdots (1 - t_d)},$$

where we consider $t_{\text{rank } \hat{0}} = 1$. Then, by translating the numerator of the above formula into an ab-polynomial, we obtain the desired formula. \hfill \Box

Sheaves on posets and squarefree P-modules. Here we discuss relations between sheaves on P and squarefree P-modules. A sheaf \mathcal{F} (of finite K-vector spaces) on P consists of the data

- A finite K-vector space \mathcal{F}_σ for each $\sigma \in P$, called the stalk of \mathcal{F} at σ.

• Linear maps \(\text{res}_\sigma^\rho : \mathcal{F}_\sigma \to \mathcal{F}_\tau \) for all \(\sigma > \tau \) in \(P \), called the restriction maps, satisfying \(\text{res}_\rho \circ \text{res}_\sigma^\rho = \text{res}_\rho^\sigma \) for all \(\sigma > \tau > \rho \) in \(P \).

A map of sheaves \(\mathcal{F} \to \mathcal{G} \) is a collection of linear maps \(\mathcal{F}_\sigma \to \mathcal{G}_\sigma \) commuting with the restriction maps. Note that the formal definition of sheaves is more complicated but it is equivalent to the above one.

Let \(M \) be a squarefree \(P \)-modules. We can construct a sheaf \(\mathcal{F}^M \) on \(P \) as follows: For \(\sigma > \tau \) in \(P \), we define the map \(\text{mult}_\tau^\sigma : M_{e_\sigma} \to M_{e_\tau} \) by the composition

\[
M_{e_\tau} \xrightarrow{x_\tau} M_{e_\tau + e_\rho} \xrightarrow{(x_\tau)^{-1}} M_{e_\rho},
\]

where \((x_\tau)^{-1}\) is the inverse map of the bijection \(x_\tau : M_{e_\tau} \to M_{e_\tau + e_\rho} \). Then, it is straightforward that these maps satisfy

\[
\text{mult}_\tau^\sigma \circ \text{mult}_\rho^\tau = \text{mult}_\rho^\sigma
\]

for all \(\sigma > \tau > \rho \) in \(P \). We define the sheaf \(\mathcal{F}^M \) on \(P \) by \(\mathcal{F}^M_\sigma = (M_{e_\sigma})^* \) for all \(\sigma \in P \) and \(\text{res}_\rho^\sigma = (\text{mult}_\tau^\rho)^* \) for all \(\sigma > \tau \) in \(P \), where * denotes the \(K \)-dual.

Conversely, from a sheaf \(\mathcal{F} \) on \(P \), we can define the squarefree \(P \)-module \(M(\mathcal{F}) \) as follows: As graded \(K \)-vector spaces, we define

\[
M(\mathcal{F}) = \bigoplus_{\sigma \in P} (\mathcal{F}_\sigma)^* \otimes_K K[\langle \sigma \rangle],
\]

where we consider that each element of \((\mathcal{F}_\sigma)^* \) has degree \(e_\sigma \). Then we define the multiplication structure by the following rule. For \(\rho \in \hat{P} \) and \(m \otimes f \in (\mathcal{F}_\sigma)^* \otimes_K K[\langle \sigma \rangle] \), we define

\[
x_\rho \cdot (m \otimes f) = \begin{cases} (\text{res}_\rho^\sigma)^*(m) \otimes x_\sigma f & (\in (\mathcal{F}_\rho)^* \otimes_K K[\langle \rho \rangle]), \\
 m \otimes x_\rho f & (\in (\mathcal{F}_\sigma)^* \otimes_K K[\langle \sigma \rangle]), \\
 0, & \text{if } \rho \leq \sigma,
\end{cases}
\]

It is easy to see that \(M(\mathcal{F}^N) \cong N \) and \(\mathcal{F}^{M(\mathcal{G})} \cong \mathcal{G} \) for any squarefree \(P \)-module \(N \) and for any sheaf \(\mathcal{G} \) on \(P \). Later in Section 4, we will discuss the anti-equivalence between the category of squarefree \(P \)-modules and that of sheaves on \(P \), which is given by the correspondences \(M \mapsto \mathcal{F}^M \) and \(\mathcal{F} \mapsto M(\mathcal{F}) \).

3. **Homological properties of squarefree \(P \)-modules**

In this section, we study homological properties of squarefree \(P \)-modules when \(P \) is a quasi CW-poset. In Sections 3–5, we fix a quasi CW-poset \(P = \bigcup_{i=0}^n P_i \) of rank \(n \), where \(P_i = \{ \sigma \in P : \text{rank} \sigma = i \} \), and let \(R = K[x_\sigma : \sigma \in \hat{P}] \). We consider the \(\mathbb{Z}[\hat{P}] \)-grading of \(R \) instead of \(\mathbb{N}[\hat{P}] \)-grading to deal with modules having negative graded components.

Augmented oriented chain complexes. We say that an element \(\sigma \in P \) covers \(\tau \) if \(\sigma > \tau \) and \(\text{rank} \sigma = \text{rank} \tau + 1 \). Recall that, since \(P \) is a quasi CW-poset, for all \(\sigma > \rho \) in \(P \) with \(\text{rank} \sigma = \text{rank} \rho + 2 \), there are exactly two elements \(\tau_1, \tau_2 \) with \(\sigma > \tau_1 > \rho \). An incidence function \(\varepsilon \) of \(P \) is a function \(\varepsilon : P \times P \to K \) satisfying the following conditions

(i) \(\varepsilon(\sigma, \tau) \neq 0 \) if and only if \(\sigma \) covers \(\tau \).
(ii) for cover relations \(\sigma > \tau_1 > \rho \) and \(\sigma > \tau_2 > \rho \) with \(\tau_1 \neq \tau_2 \), one has
\[
\varepsilon(\sigma, \tau_1)\varepsilon(\tau_1, \rho) + \varepsilon(\sigma, \tau_2)\varepsilon(\tau_2, \rho) = 0.
\]
For every quasi CW-poset, its incidence function exists and is unique in a certain sense (i.e., in the sense that the augmented oriented chain complex described below is independent of the choice of an incidence function up to isomorphism of complexes). Indeed, for a CW-poset \(P \), an incidence function of \(P \) coincides with that of the corresponding regular CW-complex, and the existence and the uniqueness are standard in combinatorial topology (see e.g., [LW, V Theorem 4.2] or [Ma, IV Theorem 7.2]). On the other hand, the corresponding statement for quasi CW-posets is obtained by the same proof since these results for finite regular CW-complexes works even if we allow a closed cell to be the cone of a homology sphere (here a homology sphere means a space which is homeomorphic to a Gorenstein* simplicial complex), and quasi CW-posets are the face posets of such generalized regular CW-complexes.

By using an incidence function \(\varepsilon \) of \(P \), we define the augmented oriented chain complex \(\mathcal{C}_P \) of \(P \) as the complex
\[
\mathcal{C}_P^* : \mathcal{C}_P^0 \longrightarrow \mathcal{C}_P^1 \longrightarrow \cdots \longrightarrow \mathcal{C}_P^{n-1} \longrightarrow \mathcal{C}_P^n \longrightarrow 0
\]
where \(\mathcal{C}_P^i = \bigoplus_{\sigma \in P_i+1} K \cdot \sigma \) is the \(K \)-vector space with basis \(P_i+1 \) and where \(\partial(\sigma) = \sum_{\tau \in P_{i+1} \subset \sigma} \varepsilon(\sigma, \tau) \tau \) for \(\sigma \in P_i+1 \).

Let \(M \) be a squarefree \(P \)-module. We define the augmented oriented chain complex of \(M \) (or \(\mathcal{F}^M \))
\[
\mathcal{C}_M^* : \mathcal{C}_M^0 \longrightarrow \mathcal{C}_M^1 \longrightarrow \cdots \longrightarrow \mathcal{C}_M^{n-1} \longrightarrow \mathcal{C}_M^n \longrightarrow 0
\]
by \(\mathcal{C}_M^i = \bigoplus_{\sigma \in P_i+1} \mathcal{F}^\sigma \otimes_K (K \cdot \sigma) \) and \(\partial(\mu \otimes \sigma) = \sum_{\tau \in P_{i+1} \subset \sigma} \text{res}^\sigma_\tau(\mu) \otimes \varepsilon(\sigma, \tau) \tau \) for \(\sigma \in P_i+1 \) and \(\mu \in \mathcal{F}^\sigma = (M_{\sigma})^* \).

Karu complexes. Augmented oriented chain complexes can be naturally extended to complexes of squarefree \(P \)-modules. For a squarefree \(P \)-module \(M \), we define the complex
\[
\mathcal{L}_M^* : 0 \longrightarrow \mathcal{L}_M^0 \longrightarrow \mathcal{L}_M^1 \longrightarrow \cdots \longrightarrow \mathcal{L}_M^{n-1} \longrightarrow \mathcal{L}_M^n \longrightarrow 0
\]
by
\[
\mathcal{L}_i^M = \bigoplus_{\sigma \in P_i} \mathcal{F}^\sigma \otimes_K (K[[\langle \sigma \rangle]] \cdot \sigma)
\]
(here we consider that elements of \(\mathcal{F}^\sigma \) have degree 0) and by
\[
\tilde{\partial}(\mu \otimes f\sigma) = \sum_{\tau \in P_{i+1} \subset \sigma} \text{res}^\sigma_\tau(\mu) \otimes \varepsilon(\sigma, \tau) \pi_{\sigma, \tau}(f) \tau
\]
for \(\mu \otimes f\sigma \in \mathcal{F}^\sigma \otimes_K (K[[\langle \sigma \rangle]] \cdot \sigma) \) with \(\text{rank} \sigma = i+1 \), where \(\pi_{\sigma, \tau} \) is a natural surjection \(K[[\langle \sigma \rangle]] \to K[[\langle \tau \rangle]] \). We call \(\mathcal{L}_i^M \) the Karu complex of \(M \).

For a \(\mathbb{Z}^{|\mathcal{P}|} \)-graded \(R \)-module \(N \) and \(u \in \mathbb{Z}^{|\mathcal{P}|} \), we write \(N(-u) \) for the graded module \(N \) with grading shifted by \(u \). The Karu complex has the following important property.
Theorem 3.1. For a squarefree P-module M, one has

$$H_i(\mathcal{L}_P^M) \cong \text{Ext}^{\lfloor \hat{P} \rfloor - i}_R(M, R(-1))$$

for $i = 0, 1, \ldots, n$, where $1 = (1, 1, \ldots, 1) \in \mathbb{Z}[\hat{P}]$.

We will prove the above theorem in the next section since it requires preparation.

Corollary 3.2. If M is a squarefree P-module, then so is $\text{Ext}^i_R(M, R(-1))$ for all i.

Proof. Observe that $\dim M \leq n$ and $\text{Ext}^i_R(M, R(-1)) = 0$ for $i < |\hat{P}| - \dim M$. Since \mathcal{L}_P^M is a complex of squarefree P-modules, its homologies are also squarefree P-modules by Lemma 2.2. So the assertion follows from Theorem 3.1. \qed

Cohen–Macaulay criterion. For $\sigma \in P$, the poset $\text{lk}_P(\sigma) = \{ \tau \in P : \tau \geq \sigma \}$ is called the link of σ in P and the poset $\text{cost}_P(\sigma) = \{ \tau \in P : \tau \not\geq \sigma \}$ is called the contrastar of σ in P. Note that $\text{cost}_P(\sigma)$ is an order ideal of P and $\text{lk}_P(\sigma)$ is a quasi CW-poset of rank $\leq n - \text{rank } \sigma$. The poset $\text{lk}_P(\sigma)$ is called a star in $[EK]$, but we call it a link since if P is the face poset of a simplicial complex, then this poset corresponds to a link of a simplicial complex.

Let F be a sheaf on P. We write $H_i(F) = H_i(\mathcal{O}_P^F)$. For $\sigma \in P$, let $\text{lk}_F(\sigma)$ (resp. $\text{cost}_F(\sigma)$) be the sheaf on P whose stalks and restriction maps are restricted to $\text{lk}_P(\sigma)$ (resp. $\text{cost}_P(\sigma)$). Let M be a squarefree P-module and $F = \mathcal{F}^M$. Then, by the definition of the Karu complex, it is easy to see that $(\mathcal{L}_P^M)_{\sigma, \epsilon} \cong \mathcal{O}_P^F / (\mathcal{O}_P^\text{cost}_F(\sigma))$ for $\sigma \in P$. Thus

$$H_i((\mathcal{L}_P^M)_{\sigma, \epsilon}) \cong H_{i-1}(\mathcal{O}_P^F / (\mathcal{O}_P^\text{cost}_F(\sigma))) \cong \widetilde{H}_{i + \text{rank } \sigma - 1}(\text{lk}_F(\sigma)).$$

Recall that a graded R-module N of dimension d is Cohen–Macaulay if and only if $\text{Ext}^i_R(M, R(-1)) = 0$ for $i \neq |\hat{P}| - d$ (see [BH Corollary 3.5.11]). Then (3) and Theorem 3.1 imply

Theorem 3.3. Let M be a squarefree P-module of dimension d and $F = \mathcal{F}^M$. Then M is Cohen–Macaulay if and only if, for any $\sigma \in P$, $\widetilde{H}_i(\text{lk}_F(\sigma)) = 0$ for all $i \neq d - 1 - \text{rank } \sigma$.

Remark 3.4. Theorems 3.1 and 3.3 are ring-theoretic interpretations of the results in [Ka, EK]. Indeed, Karu complexes essentially appeared in [Ka, Section 2.2] and conditions in Theorem 3.3 were used in [EK] as a definition of the Cohen–Macaulay property of sheaves. Also, about Corollary 3.2, the essentially same statement appeared in [EK] Lemma 5.3 for canonical modules (see next subsection). However, we remark that, in [Ka], the complex \mathcal{L}_P^M was treated as a complex of $K[\theta_1, \ldots, \theta_d]$-module, where $\theta_1, \ldots, \theta_d$ is a certain l.s.o.p. of $K[P]$, and the R-module structure was not given.

Canonical modules. For a $\mathbb{Z}[\hat{P}]$-graded R-module M of dimension d, the module

$$\Omega(M) = \text{Ext}^{\lfloor \hat{P} \rfloor - d}_R(M, R(-1))$$
is called the \((\mathbb{Z}[P]\)-graded) canonical module of \(M\). By Corollary 3.2, if \(M\) is a squarefree \(P\)-module then so is \(\Omega(M)\). We recall some known properties of canonical modules which are used in the latter sections.

It is well-known in commutative algebra that, if \(M\) is a finitely generated \(\mathbb{Z}^d\)-graded Cohen–Macaulay \(R\)-module, then \(\Omega(M)\) is Cohen–Macaulay and its \(\mathbb{Z}^d\)-graded Hilbert series is given by \(H_{R(M)}(t_1, \ldots, t_d) = (-1)^{\dim M} H_M(t_1, \ldots, t_d)\) (see [St3, p. 49]). This implies the following duality of flag \(h\)-vectors.

Lemma 3.5. If \(M\) is a \(d\)-dimensional Cohen–Macaulay squarefree \(P\)-module, then \(\Omega(M)\) is a \(d\)-dimensional Cohen–Macaulay squarefree \(P\)-module with \(\Psi_{\Omega(M)}(a, b) = \Psi_M(b, a)\).

Note that the latter condition in the above lemma says \(h_S(\Omega(M)) = h_{[d]\setminus S}(M)\) for all \(S \subset [d]\).

Recall that a linear system of parameters (l.s.o.p. for short) of a finitely generated \(\mathbb{Z}\)-graded \(R\)-module \(M\) of dimension \(d\) is a sequence \(\Theta = \theta_1, \ldots, \theta_d \in R\) of linear forms such that \(\dim_K(M/\Theta M) < \infty\), where we consider the \(\mathbb{Z}\)-grading of \(R\) defined by \(\deg x_\sigma = 1\) for all \(\sigma \in \mathcal{P}\). An l.s.o.p. exists if \(K\) is infinite. See [St3 I Lemma 5.2]. For a \(\mathbb{Z}\)-graded \(R\)-module \(M\) and for an integer \(k \in \mathbb{Z}\), let \(M_k\) be the graded component of \(M\) of degree \(k\) and let \(M(-k)\) be the graded module \(M\) with grading shifted by \(k\). Also, we write \(M^T\) for the graded Matlis dual of \(M\) [BH Section 3.6]. The following fact is more or less well-known, but we give a proof for completeness.

Lemma 3.6. Let \(M\) be a finitely generated \(\mathbb{Z}\)-graded Cohen–Macaulay module of dimension \(d\) and \(\Theta\) an l.s.o.p. of \(M\). Then \(\Theta\) is an l.s.o.p. of \(\Omega(M)\) and

\[
(M/(\Theta M))^T \cong (\Omega(M)/(\Theta \cdot \Omega(M)))(+d).
\]

Proof. If \(d = 0\), the assertion follows from the graded local duality [BH Theorem 3.6.19(b)]. In fact, if \(d = 0\) then \(M\) equals to its 0th local cohomology module \(H_0^M(m)\), where \(m\) is the graded maximal ideal of \(R\), and the local duality says \(H_0^m(M)^T \cong \Omega(M)\). Assume \(d \geq 1\) and set \(\Theta = \theta_1, \ldots, \theta_d\). By the long exact sequence of \(\text{Ext}_R^\bullet(-, R(-1))\) induced by

\[
0 \rightarrow M(-1) \xrightarrow{x_{\theta_1}} M \rightarrow M/\theta_1 M \rightarrow 0,
\]

we have \(\Omega(M/\theta_1 M) \cong (\Omega(M)/\theta_1 \Omega(M))(+1)\). Repeating this argument, we have

\[
\Omega(M/\Theta M) \cong (\Omega(M)/(\Theta \cdot \Omega(M)))(+d).
\]

Since \(M/\Theta M\) is a 0-dimensional (Cohen–Macaulay) \(R\)-module, we have \((M/\Theta M)^T \cong \Omega(M/\Theta M)\). Summing up the above equations, we get the desired statement. \(\square\)

Skeletons. For a sheaf \(F\) on \(P\), we define its dimension by \(\dim F = \max\{\text{rank}\sigma : \sigma \in P, F_\sigma \neq 0\}\). Thus \(\dim F = \dim M(F)\). For a sheaf \(F\) on \(P\) of dimension \(d\), Karu [Ka] defined its dual sheaf \(F^\vee\) as follows: The stalks of \(F^\vee\) are defined by \(F^\vee_\sigma = H_{d-1}(\mathcal{E}_F^\vee/\mathcal{E}^{\text{cost}F(\sigma)})^*\) and the restriction maps of \(F^\vee\) are the maps induced by the \(K\)-dual of the natural surjection

\[
(\mathcal{E}_F/\mathcal{E}^{\text{cost}F(\tau)}) \rightarrow (\mathcal{E}_F/\mathcal{E}^{\text{cost}F(\sigma)}).
\]
for $\sigma > \tau$. It is not difficult to see that taking the dual sheaf F^\vee is essentially the same as taking the canonical module, namely,

$$F^\Omega(M) \cong (F^M)^\vee.$$

Indeed, for a squarefree P-module M of dimension d with $F = F^M$, one easily verifies from (3) that

$$(F^M)^\vee = H_{d-1}(\mathcal{O}^F/\mathcal{O}^{\text{cost}_F(\sigma)})^* \cong H_d(\mathcal{L}^M_{\mathcal{E}_\sigma})^* \cong \Omega(M)_{\mathcal{E}_\sigma} \cong F^\Omega(M)$$

and that the restriction maps of $F^\Omega(M)$ are induced by the surjections (4) since they correspond to the multiplication maps $\mu^\sigma_{\mathcal{E}} : \Omega(M)_{\mathcal{E}_\sigma} \to \Omega(M)_{\mathcal{E}_\sigma}$ and, since, by the identifications $\Omega(M)_{\mathcal{E}_\sigma} \cong H_{d-1}(\mathcal{O}^F/\mathcal{O}^{\text{cost}_F(\sigma)})$ and $\Omega(M)_{\mathcal{E}_\sigma} \cong H_{d-1}(\mathcal{O}^F/\mathcal{O}^{\text{cost}_F(\tau)})$, these multiplication maps in $H_d(\mathcal{L}^M_{\mathcal{E}_\sigma})$ are induced from (4).

For an integer $k < n$, the poset $P^{(k)} = \{ \sigma \in P : \text{rank} \sigma \leq k + 1 \}$ is called the k-skeleton of P. For a sheaf F on P, we define its k-skeleton $F^{(k)}$ to be the sheaf whose restrictions and restriction maps are restricted in $P^{(k)}$. Also, for a squarefree P-module M, we define its k-skeleton $M^{(k)}$ by

$$M^{(k)} = M/(\sum_{\sigma \in P \setminus P^{(k)}} M_{\mathcal{E}_\sigma} \cdot R) \cong \bigoplus_{\sigma \in P^{(k)}} M_{\mathcal{E}_\sigma} \otimes_K K[\langle \sigma \rangle],$$

where the last isomorphism is an isomorphism as K-vector spaces. Note that $M^{(k)} = M((F^M)^{(k)})$ and, by the criterion of the Cohen–Macaulay property, $M^{(k)}$ is Cohen–Macaulay if M is Cohen–Macaulay. Karu proved that, for a Cohen–Macaulay sheaf F on P over \mathbb{R} and for $k < \text{dim} F - 1$, there is a surjection $(F^{(k)})^\vee \to F^{(k)}$ (see [EK, pp. 249–250]). This result of Karu implies the following statement for canonical modules.

Theorem 3.7 (Karu). Let P be a quasi CW-poset and M a Cohen–Macaulay squarefree P-module of dimension d over \mathbb{R}. For $k < d - 1$, there is an injection $M^{(k)} \to \Omega(M^{(k)})$.

Proof. Recall that $M(F^N) = N$ for any squarefree P-module N and that a surjection $F \to G$ between sheaves on P induces an injection $M(G) \to M(F)$ by the definition of $M(-)$. Observe $(F^M)^{(k)} = F^{M^{(k)}}$. Karu’s result says that there is a surjection from $(F^{M^{(k)})^\vee} \to (F^{M^{(k)})}^\vee$ to $(F^{M^{(k)})} = F^{M^{(k)}}$. This implies that there is an injection from $M(F^{M^{(k)})} = M^{(k)}$ to $M((F^{M^{(k)})^\vee} = \Omega(M^{(k)})$ as desired. \hfill \square

4. The proof of Theorem 3.1

In this section, we prove Theorem 3.1 as a corollary of a more general result (Theorem 4.1). Since the contents of this section is purely algebraic, readers who are only interested in combinatorics may skip this section. We refer the readers to [Ha] for basics on the theory of derived categories. Before proving the main result, we discuss some properties of squarefree P-modules and Karu complexes.

Squarefree modules. Here we recall squarefree modules over a polynomial ring introduced by the second author [Ya1]. Let $A = K[x_1, \ldots, x_m]$ be a polynomial ring with each $\deg x_i = e_i \in \mathbb{Z}^m$. For $F \subset \{1, 2, \ldots, m\}$, we write $e_F = \sum_{i \in F} e_i$ and $K[F] = A/(x_i : i \notin F) \cong K[x_i : i \in F]$.

Definition 4.1. A finitely generated \mathbb{N}^m-graded A-module M is called a squarefree A-module if it satisfies that, for any $u = (u_1, \ldots, u_m) \in \mathbb{N}^m$ and for any $i \in [m]$ with $u_i > 0$, the multiplication
\[\times x_i : M_u \to M_{u+e_i}, \]
is bijective.

Let $^\ast\!\text{Mod} A$ be the category of \mathbb{Z}^m-graded A-modules and their degree preserving A-homomorphism. Let $\text{Sq} A$ be the full subcategory of $^\ast\!\text{Mod} A$ consisting of squarefree A-modules. As shown in [Ya1], $\text{Sq} A$ is an abelian subcategory of $^\ast\!\text{Mod} A$. Moreover, $\text{Sq} A$ has enough injectives, and any injective object is a finite direct sum of copies of $K[F]$ for various $F \subset [m]$. Below, we recall homological properties of squarefree A-modules studied in [Ya2].

Let $^\ast\!D_A^\bullet$ be the \mathbb{Z}^m-graded dualizing complex of A. Thus $^\ast\!D_A^\bullet$ is a minimal injective resolution of $A(-1)$, where $1 = e_{[m]} \in \mathbb{Z}^m$; in $^\ast\!\text{Mod} A$ up to a translation, and has the following description
\[^\ast\!D_A^\bullet : 0 \longrightarrow ^\ast\!D_A^{-m} \xrightarrow{\partial} ^\ast\!D_A^{-m+1} \xrightarrow{\partial} \cdots \xrightarrow{\partial} ^\ast\!D_A^0 \longrightarrow 0 \]
with
\[^\ast\!D_A^{-i} = \bigoplus_{F \subset [m]} ^\ast\!E(K[F]), \]
where $^\ast\!E(K[F])$ is the injective hull of $K[F]$ in $^\ast\!\text{Mod} A$. If we forget the grading, $^\ast\!D_A^\bullet$ is quasi-isomorphic to the usual normalized dualizing complex. Note that, since $^\ast\!D_A^\bullet$ is a \mathbb{Z}^m-graded injective resolution of $A(-1)$, we have
\[H^{-i}(\text{Hom}^\ast_A(M, ^\ast\!D_A^\bullet)) \cong \text{Ext}^m_{A^{-i}}(M, A(-1)) \]
for any finitely generated \mathbb{Z}^m-graded A-module M. As shown in [Ya1, Theorem 2.6], if M is a squarefree A-module, then so is $\text{Ext}^i_A(M, A(-1))$ for all i. More generally, if M^\bullet is a bounded cochain complex of squarefree A-modules, then $H^i(\text{Hom}^\ast_A(M^\bullet, ^\ast\!D_A^\bullet))$ is a squarefree A-module for all i (see Section 3 of [Ya4]).

For a \mathbb{Z}^m-graded A-module M, $M_{\geq 0}$ denotes the submodule $\bigoplus_{u \in \mathbb{N}^m} M_u$, and call it the \mathbb{N}^m-graded part of M. Let $I_A^\bullet = (^\ast\!D_A^\bullet)_{\geq 0}$. Then I_A^\bullet is quasi-isomorphic to $^\ast\!D_A^\bullet$ itself, and $I_A^{-i} = \bigoplus_{F \subset [m], |F| = i} K[F]$ since $^\ast\!E(K[F])_{\geq 0} = K[F]$ (see e.g. [Ya2, p. 48]). Let Δ be a simplicial complex on $[m]$, that is, a collection of subsets of $[m]$ satisfying that $F \in \Delta$ and $G \subset F$ imply $G \in \Delta$ (we assume that \emptyset is an element of Δ). Consider the subcomplex of I_A^\bullet
\[I_\Delta^\bullet : 0 \longrightarrow I_\Delta^{-m} \xrightarrow{\partial} I_\Delta^{-m+1} \xrightarrow{\partial} \cdots \xrightarrow{\partial} I_\Delta^0 \longrightarrow 0 \]
with
\[I_\Delta^{-i} = \bigoplus_{F \in \Delta, |F| = i} K[F]. \]
Note that, for $f \in K[F] \subset I_\Delta^{-i}$, one has
\[\partial(f) = \sum_{i \in F} \pm \pi_{F, F\setminus \{i\}}(f) \in \bigoplus_{G \subset \Delta, |G| = i-1} K[G] = I_\Delta^{-i+1}, \]
where \(\pi_{F,F \setminus \{i\}} \) is the natural subjection \(K[F] \to K[F \setminus \{i\}] \) and where \(\pm \) is given by the standard incidence function of the simplicial complex \(\Delta \). We say that \(M \in \text{ Sq } A \) is supported by \(\Delta \) if \(M_{e_F} = 0 \) for all \(F \not\in \Delta \). The following result was essentially shown in [Ya4].

Lemma 4.2. Let \(\Delta \) be a simplicial complex on \([m] \).

(i) If \(M \) is a squarefree \(A \)-module, then for any subset \(F \subset [m] \),

\[
[\text{Hom}_A(M, K[F])]_{\geq 0} \cong (M_{e_F})^* \otimes K[F].
\]

(ii) For a bounded cochain complex \(M^\bullet \) of squarefree \(A \)-modules supported by \(\Delta \), \([\text{Hom}^*_A(M^\bullet, I_\Delta^\bullet)]_{\geq 0} \) and \([\text{Hom}^*_A(M^\bullet, *D_A^\bullet)]_{\geq 0} \) are isomorphic in the derived category.

Remark 4.3. In Lemmas 4.2 and 4.8, we consider that elements in \((M_{e_F})^* \) and \((M_{e_\Delta})^* \) have degree 0.

Proof of Lemma 4.2. (i) By [Ya2, Lemma 3.20] we have

\[
[\text{Hom}_A(M, *E(K[F]))]_{\geq 0} \cong (M_{e_F})^* \otimes K[F]
\]

for any \(F \subset [m] \). However, since \(*E(K[F])_{\geq 0} = K[F] \) and \(*E(K[F]) \setminus K[F] \) does not concern the \(\mathbb{N}^m \)-graded part of \(\text{Hom}_A(M, *E(K[F])) \), we have

\[
[\text{Hom}_A(M, K[F])]_{\geq 0} \cong [\text{Hom}_A(M, *E(K[F]))]_{\geq 0},
\]

which implies the desired statement.

(ii) Since each \(M^i \) is supported by \(\Delta \), (i) says that \([\text{Hom}^*_A(M^\bullet, I_\Delta^\bullet)]_{\geq 0} \) is equal to \([\text{Hom}^*_A(M^\bullet, I_\Delta^\bullet)]_{\geq 0} \). Also, (i) and the description of \(*D_A^\bullet \) imply \([\text{Hom}^*_A(M^\bullet, I_\Delta^\bullet)]_{\geq 0} = [\text{Hom}^*_A(M^\bullet, *D_A^\bullet)]_{\geq 0} \). Since homologies of \(\text{Hom}^*_A(M^\bullet, *D_A^\bullet) \) are squarefree \(A \)-modules by (i) and since squarefree \(A \)-modules are \(\mathbb{N}^m \)-graded, \([\text{Hom}^*_A(M^\bullet, *D_A^\bullet)]_{\geq 0} \) is quasi-isomorphic to \([\text{Hom}^*_A(M^\bullet, *D_A^\bullet)]_{\geq 0} \), which implies the desired statement. □

Consider the case when \(A = R \). Since squarefree \(P \)-modules are squarefree \(R \)-modules supported by \(\Delta_P \), Lemma 4.2 implies the following fact.

Corollary 4.4. If \(M \) is a squarefree \(P \)-module, then we have \(\text{Ext}^{[\hat{P}]_{-i}}_R(M, R(-1)) \cong H^{-i}([\text{Hom}^*_R(M, I_{\Delta_P}^\bullet)]_{\geq 0}) \) for all \(i \).

Note that a squarefree \(R \)-module supported by \(\Delta_P \) is not necessary a squarefree \(P \)-module because of condition (b) of squarefree \(P \)-modules.

Category of Squarefree \(P \)-modules. Here we discuss the category of squarefree \(P \)-modules. Let \(\text{ Sq } P \) be the full subcategory of \(* \text{ Mod } R \) consisting of squarefree \(P \)-modules. By Lemma 2.2 \(\text{ Sq } P \) is an abelian subcategory of \(* \text{ Mod } R \). From now on, if there are no danger of confusion, \(C \) and \(C' \) always denote (possibly empty) chains of \(\hat{P} \), equivalently, faces of \(\Delta_P \). For a chain \(C \) of \(\hat{P} \), we write \(K[C] = R/(x_\sigma : \sigma \not\in C) \).

Recall the notion of sheaves on \(P \) discussed in the previous sections. Let \(\text{ Sh } P \) denote the category of sheaves of finite vector spaces on the poset \(P \) and the maps between them.

Proposition 4.5. We have the category equivalence \(\text{ Sq } P \cong (\text{ Sh } P)^{\text{ op}} \), where \(\text{ op } \) means the opposite category.
Lemma 4.8. Let K be a finite direct sum of copies of $K[e_σ]$. Another description of a Karu complex. Next, we show that the Karu complex where $ε$ is the fixed incidence function and all the restriction maps of a sheaf F to the degree $e_σ$ part. Then the family of K-linear maps $\{(f_σ)^*\}_{σ ∈ P}$ gives a morphism $F^N → F^M$ in $Sh P$. It is easy to see that this correspondence gives a contravariant functor $Sh_P R → Sh P$. By a similar way, we can construct a morphism $M(\mathcal{G}) → M(\mathcal{F})$ in $Sh_P R$ from a morphism $\mathcal{F} → \mathcal{G}$ in $Sh P$, which gives a contravariant functor $Sh P → Sh_P R$. Then, since $M(\mathcal{F}^M) ≃ M$ and $\mathcal{F}^M(\mathcal{F}) ≃ F$, we have $Sh_P R ≃ (Sh P)^{op}$. □

Remark 4.6. In [Ya3], a sheaf on a finite poset is defined in the opposite manner. More precisely, the restriction maps of a sheaf F in \mathcal{F} for $σ < τ$. See, for example, [Ya3] and references cited therein (the reader should be careful with the point that the convention on sheaves in [Ya3] is “opposite” to ours as mentioned in Remark 4.6).

Corollary 4.7. The category $Sh_P R$ has enough injectives, and any injective object is a finite direct sum of copies of $K[⟨σ⟩]$ for various $σ ∈ P$.

Proof. It is well-known that $Sh P$ is an abelian category with enough projectives and injectives, and an indecomposable projective object is of the form $P(σ)$ for some $σ ∈ P$, where

$$P(σ)_τ = \begin{cases} K, & \text{if } τ ≤ σ, \\ 0, & \text{otherwise}, \end{cases}$$

and all the restriction map $res^σ_ρ : P(σ)_τ → P(σ)_ρ$ are injective for all $τ, ρ ∈ P$ with $τ > ρ$. See, for example, [Ya3] and references cited therein (the reader should be careful with the point that the convention on sheaves in [Ya3] is “opposite” to ours as mentioned in Remark 4.6).

Since $Sh_P R ≃ (Sh P)^{op}$, $Sh_P R$ also has enough projectives and injectives, and injective objects in $Sh_P R$ correspond to projective objects in $Sh P$. Moreover, it is easy to check that $M(P(σ)) ≃ K[⟨σ⟩]$. So we are done. □

Another description of a Karu complex. Next, we show that the Karu complex L^M_* can be described in a way similar to Lemma 4.2. We define the complex J^*_P by $J^*_P = L^K_{P[σ]}$. Thus, J^*_P is the complex of squarefree P-modules of the form

$$J^*_P : 0 → J_{P}^n → J_{P}^{n+1} → J_{P}^0 → 0$$

with $J_{P}^i = ⨁_{σ ∈ P} K[⟨σ⟩]$. Recall that, for $f ∈ K[⟨σ⟩]$ with rank $σ = i$,

$$\tilde{δ}(f) = \sum_{τ ∈ P, τ < σ} ε(σ, τ) : π_{σ, τ}(f) ∈ J_{P}^{i+1} = ⨁_{τ ∈ P_{i+1}} K[⟨τ⟩],$$

where $ε$ is the fixed incidence function and $π_{σ, τ}$ is the natural subjection $K[⟨σ⟩] → K[⟨τ⟩]$.

Lemma 4.8. Let $M ∈ Sh_P P$ and $σ ∈ P$ with rank $σ = r$.

(i) $[Hom_R(M, K[⟨σ⟩])_0 ≃ (M_{e_σ})^* ⊗_K K[⟨σ⟩]].$

(ii) $[Hom^*_R(M, J^*_P)_0 ≃ L^M_*].$

(iii) $H_k(L^K_*[⟨σ⟩]) = 0$ for $k ≠ r$ and $H_r(L^K_*[⟨σ⟩]) = x_σ K[⟨σ⟩].$
Proof. (i) We may assume that \(\sigma \neq 0 \). Since \(\partial \sigma \) is Gorenstein*, \(\Omega(K[\partial \sigma]) = K[\partial \sigma] \).
Then, since \(K[\langle \sigma \rangle] = K[\partial \sigma][x_{\sigma}] \), the canonical module \(\Omega(K[\langle \sigma \rangle]) \cong K[\langle \sigma \rangle][-e_{\sigma}] \) is isomorphic to \(x_{\sigma}K[\langle \sigma \rangle] \) the ideal of \(K[\langle \sigma \rangle] \) generated by \(x_{\sigma} \). Let \[0 \rightarrow K[\langle \sigma \rangle] \rightarrow I^0 \xrightarrow{f} I^1 \]
be the first step of the minimal injective resolution of \(K[\langle \sigma \rangle] \) in the category \(\text{Sq} R \).
By [Yad], Proposition 3.5, each \(I^i \) is the direct sum of \(\dim_K \Omega(K[\langle \sigma \rangle]) e_{\sigma} \) copies of \(R/(x_{\sigma} : \sigma \notin F) \) for \(F \subset \bar{P} \) with \(|F| = r - i \). Then, since \(\Omega(K[\langle \sigma \rangle]) \cong x_{\sigma}K[\langle \sigma \rangle] \),
\[I^0 = \bigoplus_{\max C = \sigma} K[C] \quad \text{and} \quad I^1 = \bigoplus_{\max C' = \sigma} K[C'] \].

Observe
\[\text{Hom}_R(M, K[C])_{\geq 0} \cong (M_{\sum_{\sigma \in C} e_{\sigma}})^* \otimes K[C] \cong (M_{e_{\text{max} C}})^* \otimes K[C] \]
by Lemma[12] and condition (b) of squarefree \(P \)-module. Since \(\text{Hom}_R(M, K[\langle \sigma \rangle]) \)
is the kernel of \[f_* : \text{Hom}_R(M, I^0) \rightarrow \text{Hom}_R(M, I^1), \]
\[[\text{Hom}_R(M, K[\langle \sigma \rangle])]_{\geq 0} \]
is isomorphic to the kernel of
\[(M_{\sigma})^* \otimes_K f : \bigoplus_{\max C = \sigma} (M_{e_{\sigma}})^* \otimes_K K[C] \rightarrow \bigoplus_{\max C' = \sigma} (M_{e_{\sigma}})^* \otimes_K K[C']. \]
Then the statement follows since \(\ker((M_{e_{\sigma}})^* \otimes_K f) \cong (M_{e_{\sigma}})^* \otimes_K \ker f \) and since \(\ker f = K[\langle \sigma \rangle] \).

(ii) is an immediate consequence of (i). We prove (iii). Recall that by (3) in Section 3, one has
\[H_k((L^K[\langle \sigma \rangle])_{e_{\sigma}}) \cong \tilde{H}_{k-1-\text{rank} \tau}(\text{lK}_{\langle \sigma \rangle}(\tau)) \]
for all \(\tau \leq \sigma \). Since \(\text{lK}_{\langle \sigma \rangle}(\tau) \) has the maximal element, its order complex is a cone unless \(\sigma = \tau \). Thus the homologies of \(\text{lK}_{\langle \sigma \rangle}(\tau) \) are zero except for the case when \(k = r \) and \(\tau = \sigma \), which implies the first assertion. Also, since \(L^K_{\langle \sigma \rangle} = K[\langle \sigma \rangle] \), \(H_\tau(L^K[\langle \sigma \rangle]) \) is an ideal of \(K[\langle \sigma \rangle] \). However, if an ideal in \(K[\langle \sigma \rangle] \) is a squarefree \(P \)-module then it must be generated by variables. Thus the above fact on homologies of \(\text{lK}_{\langle \sigma \rangle}(\tau) \) implies that \(H_\tau(L^K[\langle \sigma \rangle]) \) is the ideal generated by \(x_{\sigma} \).

We also note the following fact which will be obvious to the specialists.

Lemma 4.9. \([\text{Hom}^*_R(-, I^*_\Delta_p)]_{\geq 0} \) and \([\text{Hom}^*_R(-, J^*_P)]_{\geq 0} \) give contravariant functors from the bounded derived category \(D^b(\text{Sq}_P R) \) to \(D^b(\ast \text{Mod} R) \).

Proof. Since \(\text{Hom}^*_R(-, \ast D^*_P) \) is a contravariant functor in \(D^b(\ast \text{Mod} R) \), the statement for \(I^*_\Delta_p \) follows from Lemma[12](ii). We consider \(J^*_P \). Let \(M^* \) be a bounded complex of squarefree \(P \)-modules which is acyclic (i.e., \(H^i(M^*) = 0 \) for all \(i \)). What we must prove is that \([\text{Hom}^*_R(M^*, J^*_P)]_{\geq 0} \) is also acyclic. By Lemma[13](i), \([\text{Hom}^*_R(M^*, K[\langle \sigma \rangle])]_{\geq 0} \) is acyclic for all \(\sigma \in \bar{P} \). Recall that each \(J^*_P \) is a finite direct sum of copies of \(K[\langle \sigma \rangle] \). Hence, by the usual double complex argument, we can show that \([\text{Hom}^*_R(M^*, J^*_P)]_{\geq 0} \) is acyclic.
Main result. We will construct the chain map
\[\tilde{i} : J^*_p \to I^*_\Delta_p \]
and prove that this chain map induces a quasi-isomorphism from \([\text{Hom}^*_P(M^*, J^*_p)]_{\geq 0}\) to \([\text{Hom}^*_R(M^*, J^*_\Delta_p)]_{\geq 0}\) for any bounded cochain complex \(M^*\) of squarefree \(P\)-modules.

Construction 4.10. We construct the map \(\tilde{i}\). We write \(\partial^{-i} : I^*_\Delta_p \to I^*_{\Delta_p} \) for the boundaries of \(I^*_\Delta_p\). Fix an incidence function \(\varepsilon\) of \(P\). Take \(\sigma \in P\) with \(\text{rank} \sigma = r\).

The complex \(I^*_\sigma = [\text{Hom}^*_R(K(\langle \sigma \rangle), I^*_\Delta_p)]_{\geq 0}\) can be seen as a subcomplex of \(I^*_\Delta_p\), with \(I^*_\sigma = \bigoplus_{\max C \leq \sigma, |C| = i} K[C]\) by Lemma 4.2(i). The “tail” \(0 \to I^{-r}_\sigma \to I^{-r+1}_\sigma\) of the complex \(I^*_\sigma\) is of the form
\[0 \longrightarrow \bigoplus_{\max C = \sigma, |C| = r} K[C] \xrightarrow{\partial^{-r}} \bigoplus_{\max C' \leq \sigma, |C'| = r-1} K[C'] \bigoplus_{\max C = \sigma, |C| = r} K[C]. \]

Since \(\ker(\partial^{-r}) = \Omega(K(\langle \sigma \rangle))\) by Corollary 4.4 as we saw in the proof of Lemma 4.8(i), \(\ker(\partial^{-r})\) is isomorphic to \(x_\sigma K(\langle \sigma \rangle)\). Then, by the injectivity of \(K[C]'\)’s in \(\text{Sq} \; R\), we have an injection
\[\iota_\sigma : K(\langle \sigma \rangle) \longrightarrow \bigoplus_{\max C = \sigma, |C| = r} K[C] \]
satisfying \(\partial^{-r} \circ \iota_\sigma(x_\sigma) = 0\) by extending the injection
\[x_\sigma K(\langle \sigma \rangle) \cong \ker(\partial^{-r}) \hookrightarrow \bigoplus_{\max C = \sigma, |C| = r} K[C]. \]

Note that \(\iota_\sigma\) is unique up to constant multiplications. More precisely, if an injective homomorphism \(\iota' : K(\langle \sigma \rangle) \longrightarrow I^{-r}_\sigma\) satisfies \(\partial^{-r} \circ \iota'(x_\sigma) = 0\), then we have \(\iota' = a \cdot \iota_\sigma\) for some \(a \in K \setminus \{0\}\). This is because \(\iota'\) only depends on the choice of \(\iota'(1)\) but, by the injectivity of the multiplication by \(x_\sigma\) in \(I^{-r}_\sigma = \bigoplus_{\max C = \sigma, |C| = r} K[C]\), it actually only depends on the choice of \(\iota'(x_\sigma) \in \ker(\partial^{-r})_{e_\sigma} \cong K\). Also, by the injectivity of \(\iota_\sigma\), one has
\[\text{Im}(\partial^{-r} \circ \iota_\sigma) \cong K(\langle \sigma \rangle)/(x_\sigma K(\langle \sigma \rangle)). \]

We claim that, by appropriate choices of \(\iota_\sigma\), the maps \(\{\iota_\sigma\}_{\sigma \in P}\) induces a chain map from \(J^*_p\) to \(I^*_\Delta_p\).

Fix \(\{\iota_\sigma\}_{\sigma \in P}\). Let \(L_\sigma\) be the 1-dimensional \(K\)-vector space spanned by \(\iota_\sigma(1)\) and \(L^{-i} = \bigoplus_{\sigma \in P_1} L_\sigma\). We first prove that \((L^*, \partial)\) is a complex. Since \(x_\sigma \partial^{-r}(\iota_\sigma(1)) = \partial^{-r}(\iota_\sigma(x_\sigma)) = 0\), where \(r = \text{rank} \sigma\), and since the multiplication by \(x_\sigma\) in \(K[C]\) with \(\sigma \in C\) is injective,
\[\partial^{-r}(\iota_\sigma(1)) \in \bigoplus_{\max C < \sigma, |C| = r-1} K[C] = \bigoplus_{\sigma \text{ covers } \tau} I^{-r+1}_\tau. \]

Let \(\partial^{-r}(\iota_\sigma(1)) = \sum f_\tau \) with \(f_\tau \in I^{-r+1}_\tau\). Since \((I^{-r+1}_\rho)_e_\tau = 0\) for all \(\tau, \rho \in P_{r-1}\) with \(\tau \neq \rho\), \(\partial^{-r}(\iota_\sigma(x_\tau)) = x_\tau f_\tau\). Since \(\partial^{-r+1} \circ \partial^{-r} = 0\), \(x_\tau f_\tau\) is contained in the kernel of the map \(\partial^{-r+1} : I^{-r+1}_\tau \to I^{-r+2}_\tau\). Moreover, since \(\partial^{-r}(\iota_\sigma(x_\tau)) \neq 0\) by (7), \(x_\tau f_\tau \neq 0\).
Then, by the injectivity of the multiplication by x_τ in $L_{\tau}=0$ and by the uniqueness of the map ι_τ, there is an $a_{\sigma,\tau} \in K \setminus \{0\}$ such that $f_\tau = a_{\sigma,\tau} \cdot \iota_\tau(1)$. This implies that
\[
\partial^{-r}(\iota_\sigma(1)) = \sum_{\sigma \text{ covers } \tau} a_{\sigma,\tau} \cdot \iota_\tau(1) \in L_{-r+1},
\]
and therefore L^\bullet is a complex.

Observe that L^\bullet is a complex of K-vector spaces with basis $\{\iota_\sigma(1)\}_{\sigma \in P}$ and that, for every $\sigma > \rho$ in P with $\text{rank } \sigma = \text{rank } \rho + 2$, the set $\{\tau \in P : \sigma > \tau > \rho\}$ contains exactly two elements. Since all the coefficients $a_{\sigma,\tau}$ are non-zero in (8), the numbers $\{a_{\sigma,\tau}\}$ give an incidence function on P (in other words, L^\bullet is the augmented oriented chain complex of P). Thus, by the uniqueness of an incidence function of P, by replacing ι_σ with its scalar multiple if necessary we may assume that the equation
\[
\partial^{-r} \circ \iota_\sigma(1) = \sum_{\sigma \text{ covers } \tau} \varepsilon(\sigma, \tau) \cdot \iota_\tau(1)
\]
holds for all $\sigma \in P$. For each i with $0 \leq i \leq r$, define the map $\tilde{\iota}_i : J^\bullet_P \to I^\bullet_{\Delta_P}$ by $\tilde{\iota}_i^{-1} = \sum_{\sigma \in P_i} \iota_\sigma$. Clearly, (9) says that $\tilde{\iota}$ is a chain map.

Now we are in the position to prove the main result of this section.

Theorem 4.11. For a bounded cochain complex M^\bullet of squarefree P-modules, the complexes $[\text{Hom}_R^\bullet(M^\bullet, J^\bullet_P)]_{\geq 0}$ and $[\text{Hom}_R^\bullet(M^\bullet, I^\bullet_{\Delta_P})]_{\geq 0}$ are isomorphic in the bounded derived category $D^b(\text{Mod } R)$.

Proof. By Lemma 4.9, $[\text{Hom}_R^\bullet(-, J^\bullet_P)]_{\geq 0}$ and $[\text{Hom}_R^\bullet(-, I^\bullet_{\Delta_P})]_{\geq 0}$ are contravariant functors from $D^b(\text{Sq}_P R)$ to $D^b(\text{Mod } R)$. Consider the chain map $\tilde{\iota} : J^\bullet_P \to I^\bullet_{\Delta_P}$. Taking the $\mathbb{N}^{[\tilde{P}]}$-graded part of $\tilde{\iota}_* : \text{Hom}_R^\bullet(M^\bullet, J^\bullet_P) \to \text{Hom}_R^\bullet(M^\bullet, I^\bullet_{\Delta_P})$, we have the chain map
\[
[\text{Hom}_R^\bullet(M^\bullet, J^\bullet_P)]_{\geq 0} \to [\text{Hom}_R^\bullet(M^\bullet, I^\bullet_P)]_{\geq 0}.
\]
This gives a natural transform $\eta : [\text{Hom}_R^\bullet(-, J^\bullet_P)]_{\geq 0} \to [\text{Hom}_R^\bullet(-, I^\bullet_{\Delta_P})]_{\geq 0}$. By the construction of the chain map $\tilde{\iota}$, it follows that $\eta(K[[\sigma]])$ is quasi-isomorphism for all $\sigma \in P$. In fact, if $\text{rank } \sigma = r$, then, since $K[[\sigma]]$ is Cohen–Macaulay, both $[\text{Hom}_R^\bullet(K[[\sigma]], J^\bullet_P)]_{\geq 0}$ and $[\text{Hom}_R^\bullet(K[[\sigma]], I^\bullet_{\Delta_P})]_{\geq 0}$ are exact except at the $(-r)$-th cohomology, which is isomorphic to the ideal $x_\sigma K[[\sigma]]$ by Corollary 5.3 and Lemma 4.8. Also, the map between $(-r)$-th term of the complexes coincides with the map ι_σ that sends $x_\sigma K[[\sigma]]$ to the kernel of $\partial : I^{-r}_\sigma \to I^{-r+1}_\sigma$ which is isomorphic to $x_\sigma K[[\sigma]]$. It means that $\eta(-)$ is quasi-isomorphism for any injective object in $\text{Sq}_P R$. Hence applying [Ha, Proposition 7.1], we see that η is a natural isomorphism. \(\square\)

By Corollary 5.3 and Lemma 4.8(ii), Theorem 3.1 is the special case of Theorem 4.11 when M^\bullet is a single module. Indeed, for a squarefree P-module M, we have an isomorphisms
\[
\text{Ext}_R^{[\tilde{P}]^{-i}}(M, R(-1)) \cong H^{-i}([\text{Hom}_R^\bullet(M, I^\bullet_{\Delta_P})]_{\geq 0}) \cong H^{-i}([\text{Hom}_R^\bullet(M, J^\bullet_P)]_{\geq 0}) \cong H_i(L^\bullet_M).
\]

Corollary 4.12. The chain map $\tilde{\iota} : J^\bullet_P \to I^\bullet_{\Delta_P}$ defined above is a quasi-isomorphism.
Proof. We use the notation in the proof of Theorem 4.11. Since $[\text{Hom}_P(K[P], J_P)]_{\geq 0} = J_P$, $[\text{Hom}_P(K[P], I_P)]_{\geq 0} = I_P$, and $\eta(K[P]) = \ell$, the assertion follows from the fact that η is a natural isomorphism. \hfill \Box

5. Extended cd-indices

In this section, we consider an extension of the cd-index to quasi CW-posets. Recall that $\mathbb{Z}\langle c, d \rangle$ denotes the non-commutative polynomial ring with coefficients in \mathbb{Z} with the variables $c = a + b$ and $d = ab + ba$.

We say that a squarefree P-module M of dimension d has the symmetric flag h-vector if $h_S(M) = h_{[d] \setminus S}(M)$ for all $S \subset [d]$, equivalently, $\Phi_M(a, b) = \Phi_M(b, a)$.

Note that, if P is Gorenstein*, then $K[P]$ has the symmetric flag h-vector (see [St4, Corollary 3.16.6]).

Lemma 5.1. If M is a squarefree P-module of dimension d, then there are unique cd-polynomials $\Phi, \Upsilon \in \mathbb{Z}\langle c, d \rangle$ of degrees d and $d - 1$ such that

$$\tag{10} \Psi_M(a, b) = \Phi + \Upsilon b$$

Moreover, if M has the symmetric flag h-vector then $\Psi_M(a, b) = \Phi$.

Proof. We first prove the existence. By Lemma 2.6 we have

$$\Psi_M(a, b) = (\dim_K M_0) \cdot (a - b)^d + \sum_{\sigma \in \widehat{P}} (\dim_K M_{\partial \sigma}) \Psi_{\partial \sigma}(a, b) \cdot b(a - b)^{d - \text{rank } \sigma}.$$

Observe $(a - b)^d = (c - 2b)(a - b)^{d - 1}$ and each $\Psi_{\partial \sigma}(a, b) \in \mathbb{Z}\langle c, d \rangle$. Then, to prove the statement, it is enough to prove that, for any $\Phi, \Upsilon \in \mathbb{Z}\langle c, d \rangle$, there are $\Phi', \Upsilon' \in \mathbb{Z}\langle c, d \rangle$ such that $(\Phi + \Upsilon b)(a - b) = \Phi' + \Upsilon' b$. Indeed the following computation proves the desired statement.

$$(\Phi + \Upsilon b)(a - b) = \Phi \cdot (a - b) + \Upsilon \cdot (b - b^2) = \Phi \cdot (c - 2b) + \Upsilon \cdot (d - cb).$$

Next, the uniqueness of the expression (10) follows since if $\Psi_M(a, b) = \Phi + \Upsilon b$, then we have $\Psi_M(a, b) - \Psi_M(b, a) = \Upsilon(b - a)$, which says that $\Psi_M(a, b)$ determines Υ. Finally, if M has the symmetric flag h-vector and $\Psi_M(a, b) = \Phi + \Upsilon b$, then one obtains $\Phi + \Upsilon b = \Phi + \Upsilon a$, which implies $\Upsilon = 0$. \hfill \Box

We call (10) the b-expression of $\Psi_M(a, b)$. By substituting $b = c - a$ to (10), one obtains a similar expression

$$\Psi_M(a, b) = \Phi' + \Upsilon' a,$$

where $\Phi' = \Phi + \Upsilon c$ and $\Upsilon' = -\Upsilon$. We call the above expression the a-expression of $\Psi_M(a, b)$. These expressions are not always non-negative. We discuss their non-negativity later in Corollary 5.6.

Recall that F_n denotes the nth Fibonacci number defined by $F_1 = F_2 = 1$ and $F_{k+2} = F_{k+1} + F_k$. Since cd-polynomials of degree n have at most F_{n+1} coefficients, the a-expression gives a way to express flag h-vectors of CW-posets of rank n by $F_{n+1} + F_n = F_n + 2$ integers. We prove that the a-expression gives an efficient way to express the flag h-vectors in the sense that it incorporates all linear equations satisfied by the flag h-vectors of all quasi CW-posets. Let $\mathcal{H}_n \subset \mathbb{Z}^{2n}$ be the set of all flag h-vectors of quasi CW-posets of rank n and $\mathcal{H}_n \subset \mathcal{H}_n$ the set of all flag...
h-vectors of the face posets of the polyhedral complexes of dimension $n - 1$. Let $\mathbb{R}H_n$ (resp. $\mathbb{R}HP_n$) be the \mathbb{R}-linear space spanned by H_n (resp. HP_n). The next result shows that the existence of the a-expression describes all linear equations satisfied by the flag h-vectors of all quasi CW-posets (or all polyhedral complexes).

Proposition 5.2. $\dim_{\mathbb{R}} \mathbb{R}H_n = \dim_{\mathbb{R}} \mathbb{R}HP_n = F_{n+2}$.

Proof. Since the number of cd-monomials of degree n is F_{n+1}, Lemma 5.1 says that $\dim \mathbb{R}H_n \leq F_{n+2}$. Thus, to prove the statement, it is enough to find F_{n+2} polyhedral complexes of dimension $n - 1$ whose ab-indices are linearly independent. Note that to prove the linear independence of the ab-indices it is enough to prove the linear independence of their a-expressions.

For a convex polytope Q, we write Ψ_Q and $\Psi_{\partial Q}$ for the ab-indices of the face posets of Q and ∂Q respectively. Note that $\Psi_Q = \Psi_{\partial Q} \cdot a$ since Q and ∂Q have the same flag h-vectors. By [BB Proposition 2.2], there are n-polytopes $Q_1, \ldots, Q_{F_{n+1}}$ and $(n - 1)$-polytopes $Q'_1, \ldots, Q'_{F_{n+1}}$ such that $\Psi_{\partial Q_1}, \ldots, \Psi_{\partial Q_{F_{n+1}}} \in \mathbb{Z}(c, d)$ are linearly independent polynomials of degree n and $\Psi_{\partial Q'_1}, \ldots, \Psi_{\partial Q'_{F_{n+1}}} \in \mathbb{Z}(c, d)$ are linearly independent polynomials of degree $n - 1$. Then, since the a-expressions of the polynomials

$$\Psi_{\partial Q_1}, \ldots, \Psi_{\partial Q_{F_{n+1}}}, \Psi_{Q'_1} = \Psi_{\partial Q'_1} \cdot a, \ldots, \Psi_{Q'_{F_{n+1}}} = \Psi_{\partial Q'_{F_{n+1}}} \cdot a$$

are linearly independent, we obtain the desired statement. \hfill \Box

It is possible to find linear equations that determine $\mathbb{R}H_n$ in the same way as in the proof of [BB Theorem 2.1]. This will give another proof of Proposition 5.2.

Next, we prove Theorem 1.1. Before proving it, we translate Karu’s proof of the non-negativity of the cd-indices of Gorenstein* posets in the language of commutative algebra. For a Cohen–Macaulay squarefree P-module M such that there is an injection $\phi : M \to \Omega(M)$, we write $\Omega(M)/M = \Omega(M)/\phi(M)$ to simplify the notation. The following statement is due to Karu [Ka Lemma 4.7].

Lemma 5.3 (Karu). Let M be a Cohen–Macaulay squarefree P-module of dimension d such that there is an injection $M \to \Omega(M)$ and $\Psi_M(a, b) = \Phi + Tb$ the b-expression of $\Psi_M(a, b)$. Then $\Omega(M)/M$ is a Cohen–Macaulay squarefree P-module with $\Psi_{\Omega(M)/M}(a, b) = \Upsilon$.

Proof. The Cohen–Macaulay property is standard in commutative algebra. Indeed, since $\Omega(M)$ and M have the same dimension and the multiplicity (see [BH Proposition 4.1.9 and Corollary 4.4.6(a)]), $\Omega(M)/M$ has dimension at most $d - 1$ since the multiplicity is the leading coefficient of the Hilbert polynomial. Then, the short exact sequence $0 \to M \to \Omega(M) \to \Omega(M)/M \to 0$ and the depth lemma [BH Proposition 1.2.9] prove that $\Omega(M)/M$ is either zero or a Cohen–Macaulay module of dimension $d - 1$.

It remains to compute the ab-index of $\Omega(M)/M$. For an ab-polynomial $\Psi = \sum_{S \subset [d]} a_{S}w_{S} \in \mathbb{Z}(a, b)$, we write $\pi(\Psi) = \sum_{S \subset [d]} a_{S}t^{S}$. Since

$$\Psi_{\Omega(M)}(a, b) - \Psi_{M}(a, b) = \Psi_{M}(b, a) - \Psi_{M}(a, b) = \Upsilon \cdot (a - b),$$
we have
\[H_{Ω(M)/M}(t_1, \ldots, t_d) = \frac{\pi(\Upsilon \cdot (a - b))}{(1 - t_1) \cdots (1 - t_{d-1})(1 - t_d)} = \frac{\pi(\Upsilon)}{(1 - t_1) \cdots (1 - t_{d-1})} \]
which shows that \(Ψ_{Ω(M)/M}(a, b) = Υ \).

Let \(M \) be a squarefree \(P \)-module of dimension \(d \). By considering the \(b \)-expression, we have the decomposition
\[Ψ_M(a, b) = Φ_{-1} \cdot c^d + Φ_0 \cdot dc^{d-2} + Φ_1 \cdot dc^{d-3} + \cdots + Φ_{d-2} \cdot d + Υ \cdot b, \]
where \(Φ_{-1} \in \mathbb{Z}, \Φ_i \) is a \(cd \)-polynomial of degree \(i \) for \(i = 0, 1, \ldots, d - 2 \) and \(Υ \) is the \(cd \)-polynomial of degree \(d - 1 \) which appears in the \(b \)-expression. Then, for \(k < d - 1 \), since the flag \(h \)-vector of the \(k \)-skeleton \(M^{(k)} \) is given by \((h_S(M) : S \subset [k + 1]) \), we have
\[Ψ_{M^{(k)}}(a, b) = Φ_{-1} \cdot c^{k+1} + Φ_0 \cdot dc^{k-1} + \cdots + Φ_{k-1} \cdot d + Φ_k \cdot b. \]
Observe that if \(M \) is Cohen–Macaulay then so is \(M^{(k)} \) by Theorem 3.3. The above fact and Theorem 3.7 show

Corollary 5.4. With the same notation as above, if \(M \) is a Cohen–Macaulay squarefree \(P \)-module over \(\mathbb{R} \), then \(Ψ_{Ω(M^{(k)}/M^{(k)}}(a, b) = Φ_k. \)

By using Corollary 5.4, Karu [Ka] proved the non-negativity of the \(cd \)-indices of Gorenstein* posets. Moreover, Ehrenborg and Karu [EK, Theorem 5.6] proved that if \(M \) is a Cohen–Macaulay squarefree \(P \)-module and if the \(ab \)-index of \(M \) can be written in the form \(Φ_M(a, b) = Φ + Υa \), then \(Φ \) is non-negative. (The statements are written in the language of sheaves.) Since \(a \)-expression always exists by Lemma 5.1 we have the following result.

Corollary 5.5. Let \(M \) be a Cohen–Macaulay squarefree \(P \)-module over \(\mathbb{R} \) of dimension \(d \), and let
\[Ψ_M(a, b) = Φ + Υa = Φ' + Υ'b \]
be the \(a \)-expression and the \(b \)-expression of \(Ψ_M(a, b) \) respectively.

(i) The coefficients of \(Φ(c, d) \) and \(Φ'(c, d) \) are non-negative.
(ii) If there is an injection \(M \to Ω(M) \) then the coefficients of \(Υ'(c, d) \) are non-negative.
(iii) If there is an injection \(Ω(M) \to M \) then the coefficients of \(Υ(c, d) \) are non-negative.

Proof. We first prove the non-negativity of \(Φ' \) by induction on \(d \). The statement is obvious when \(d = 0 \). If \(d = 1 \), then the desired statement follows since
\[Ψ_M(a, b) = h_0(M)a + h_{11}(M)b = h_0(M)c + (h_{11}(M) - h_0(M))b \]
and \(h_0(M) = f_0(M) \geq 0 \). For \(d > 1 \), the non-negativity of \(Φ' \) follows from Corollary 5.4 and the induction hypothesis.

The non-negativity of \(Φ \) follows from the duality of the \(ab \)-index in Lemma 3.5 since it says \(Φ_{Ω(M)}(a, b) = Φ_M(b, a) = Φ + Υb \). Also, (ii) follows from (i) and Lemma 5.3 and, since \(Ω(Ω(M)) = M \), (iii) follows from (ii) and the duality of the \(ab \)-index. □
Remark 5.6. The coefficients of Φ' can be computed by embedding skeletons into its canonical module repeatedly. For example, if N is a Cohen–Macaulay squarefree P-module of dimension 8 with the b-expression $\Psi_M = \Phi + \Upsilon b$ and if γ is the coefficient of $c^d dc dc$ in Φ, then γ is obtained as follows: We note that, for any squarefree P-module M of dimension d, the coefficient of c^d in the b-expression is equal to $\dim_K M_0$. Let $N' = \Omega(N^{(5)})/N^{(5)}$. Then the coefficient of $c^d dc dc$ in Φ is the coefficient of of $c^d dc$ in the cd-index of N', and this is equal to the coefficient of c^d in the cd-index of $N'' = \Omega(N''^{(2)})/N''^{(2)}$, which is equal to $\dim_K N''_0$. This observation gives a ring-theoretic interpretation of [Ka, Theorem 4.10].

Here we give some examples of CW-posets whose a-expression or b-expression is non-negative.

Example 5.7 (Ehrenborg–Karu). If P is the face poset of a regular CW-complex Γ which is homeomorphic to a ball then $\Omega(K[P])$ is isomorphic to an ideal of $K[P]$ generated by all x_σ such that σ is an interior face. In this case, we have a natural injection $\Omega(K[P]) \to K[P]$. Thus, the a-expression of $\Psi_P(a, b)$ is non-negative by Corollary 5.5(iii). Moreover, if $\Phi + \Upsilon a$ is the a-expression, then Υ is the cd-index of the face poset of the boundary of Γ. See [EK, p. 231].

Example 5.8. A Cohen–Macaulay quasi CW-poset P is said to be doubly Cohen–Macaulay if, for any element $\sigma \in \hat{P}$, the poset $P \setminus \{\sigma\}$ is Cohen–Macaulay and has the same rank as P. If P is doubly Cohen–Macaulay then there is an injection $K[P] \to \Omega(K[P])$ (see [Se3, p. 91]). Thus doubly Cohen–Macaulay CW-posets have non-negative b-expressions.

Now, we prove the main result of this section which implies Theorem 1.1 in the introduction.

Theorem 5.9. Let M be a squarefree P-module of dimension d. There are unique cd-polynomials $\Phi^d, \Phi^a, \Phi^b \in \mathbb{Z}(c, d)$ such that

\begin{equation}
\Psi_M(a, b) = \Phi^d \cdot d + \Phi^a \cdot a + \Phi^b \cdot b.
\end{equation}

Moreover, if M is Cohen–Macaulay then all the coefficients in Φ^d, Φ^a and Φ^b are non-negative.

Proof. We first prove the uniqueness. If $\Psi_M(a, b)$ can be written in the form $\Psi_M(a, b) = \Phi^d \cdot d + \Phi^a \cdot a + \Phi^b \cdot b$ then $(\Phi^d \cdot d + \Phi^a \cdot c) + (\Phi^b - \Phi^a) \cdot b$ is the b-expression of $\Psi_M(a, b)$. Then the uniqueness of Φ^d, Φ^a and Φ^b follows from the uniqueness of the b-expression.

Next, we prove the existence and non-negativity. Let $\Psi_M(a, b) = \Phi + \Upsilon b$ be the b-expression of $\Phi_M(a, b)$. If we write $\Phi = \Phi' c + \Phi'' d$, then

\begin{equation}
\Psi_M(a, b) = \Phi'' \cdot d + \Phi' \cdot a + (\Phi' + \Upsilon) \cdot b.
\end{equation}

This proves the existence of (12). Also, Corollary 5.5(i) implies that $\Phi^a = \Phi'$ and $\Phi^b = \Phi''$ are non-negative if M is Cohen–Macaulay. Finally, the non-negativity of Φ^b follows from the duality $\Psi_M(a, b) = \Psi_{\Omega(M)}(b, a)$. \square

We call the right-hand side of (12) the extended cd-index of M (or of P if $M = K[P]$). Note that, if M has the symmetric flag h-vector, then $\Phi^a = \Phi^b$ and $\Phi^a c + \Phi^d d$ is the ordinal cd-index.
Remark 5.10. The existence of (12) holds for more general posets. Indeed, to prove Lemma 5.1, it suffices to assume that $\partial \sigma$ has the cd-index for each $\sigma \in \hat{P}$. Thus, Lemma 5.1 and the existence of (12) hold for posets P such that $\langle \sigma \rangle$ is Eulerian [St4, Section 3.16] for all $\sigma \in P$.

Example 5.11. Let Δ be the 2-dimensional polyhedral complex obtained from the boundary of the square pyramid by gluing one triangle along an edge in the square (see the following Figure).

Let P be the face poset of Δ. Then P is Cohen–Macaulay, but is not Gorenstein*. Its flag f-vector and the flag h-vector are given by

$$\sum_{S \subset \{3\}} f_{SW_S} = \text{aaa} + 6\text{baa} + 10\text{aba} + 6\text{aab} + 20\text{bba} + 19\text{bab} + 19\text{abb} + 38\text{bbb}$$

and

$$\Psi_P(a, b) = \text{aaa} + 5\text{baa} + 9\text{aba} + 5\text{aab} + 5\text{bba} + 8\text{bab} + 4\text{abb} + \text{bbb}.$$

The extended cd-index of P is

$$(4c)d + (c^2 + 4d)a + (c^2 + 3d)b.$$

While the non-negativity of the extended cd-index of Cohen–Macaulay squarefree P-modules easily follows from Karu’s results, it implies an interesting property on ordinal h-vectors. For a squarefree P-module M of dimension d, the h-vector of M is the vector $(h_0(M), h_1(M), \ldots, h_d(M))$ defined by

$$h_i(M) = \sum_{S \subset \{d\}, |S| = i} h_S(M).$$

By Lemma 2.5, this definition coincides with the usual definition of the h-vector. The next corollary proves Corollary 1.2.

Corollary 5.12. Let M be a Cohen–Macaulay squarefree P-module of dimension d and $h(M) = (h_0, h_1, \ldots, h_d)$. Then

(i) $h_k \leq h_{d-1-k}$ and $h_{d-k} \leq h_{k+1}$ for all $0 \leq k < \frac{d}{2}$.

(ii) $h_{k-1} \leq h_k$ for $k \leq \frac{d}{2}$ and $h_k \geq h_{k+1}$ for $k \geq \frac{d}{2}$.

Proof. Let $\Psi_M(a, b) = \Phi^d \cdot d + \Phi^a \cdot a + \Phi^b \cdot b$ be the extended cd-index of M. Then, by substituting $a = 1$, one obtains

$$(13) \quad \Psi_M(1, b) = \Phi^d(1 + b, 2b) \cdot 2b + \Phi^a(1 + b, 2b) + \Phi^b(1 + b, 2b) \cdot b.$$

On the other hand, by the definition of the h-vector, one has

$$(14) \quad \Psi_M(1, b) = h_0(M) + h_1(M)b + \cdots + h_d(M)b^d.$$
For any homogeneous cd-polynomial \(\Upsilon(c, d) \in \mathbb{Z}(c, d) \) of degree \(k \) whose coefficients are non-negative, \(\Upsilon(1 + b, 2b) \) can be written in the form
\[
\Upsilon(1 + b, 2b) = \alpha_0(1 + b)^k + \alpha_1 b(1 + b)^{k-2} + \alpha_2 b^2(1 + b)^{k-4} + \cdots
\]
where \(\alpha_0, \alpha_1, \alpha_2, \ldots \) are non-negative integers. Thus if we write
\[
\Upsilon(1 + b, 2b) = \gamma_0 + \gamma_1 b + \cdots + \gamma_k b^k,
\]
then \((\gamma_0, \gamma_1, \ldots, \gamma_k) \) is a symmetric vector satisfying \(\gamma_0 \leq \cdots \leq \gamma_{k-1} \geq \cdots \geq \gamma_k \) when \(k \) is even and \(\gamma_0 \leq \cdots \leq \gamma_{k+1} = \gamma_{k+1} \geq \cdots \geq \gamma_k \) when \(k \) is odd. By applying these facts to (13) and (14) we obtain the desired property. \(\square \)

6. **Lefschetz properties**

Recently, Kubitzke and Nevo [KN Theorem 1.1] proved that if \(\Delta \) is the barycentric subdivision of a shellable simplicial complex of dimension \(d-1 \), then there is an l.s.o.p. \(\Theta \) of \(K[\Delta] \) and a linear form \(w \) such that the multiplication map
\[
\times w^{d-1-2k} : (K[\Delta]/(\Theta K[\Delta]))_k \to (K[\Delta]/(\Theta K[\Delta]))_{d-1-k}
\]
is injective for \(k \leq \frac{d-1}{2} \). By using this result, it was proved in [KN Corollary 1.3] that if \((h_0, h_1, \ldots, h_d) \) is the \(h \)-vector of the barycentric subdivision of a Cohen–Macaulay simplicial complex of dimension \(d-1 \), then \((h_0, h_1 - h_0, \ldots, h_{\lfloor \frac{d}{2} \rfloor} - h_{\lfloor \frac{d}{2} \rfloor - 1}) \) is an \(M \)-vector, that is, the Hilbert function of a graded \(K \)-algebra. The purpose of this section is to extend these results to barycentric subdivisions of Cohen–Macaulay polyhedral complexes.

We need the following fact which is a consequence of the Hard Lefschetz Theorem [St3 III Theorems 1.3 and 1.4].

Lemma 6.1. If \(P \) is the face poset of a convex \(d \)-polytope, then there is an l.s.o.p. \(\Theta \) of \(\mathbb{R}[P] \) and a linear form \(w \in \mathbb{R}[P] \) such that the multiplication map
\[
\times w^{d-2k} : (\mathbb{R}[P]/(\Theta \mathbb{R}[P]))_k \to (\mathbb{R}[P]/(\Theta \mathbb{R}[P]))_{d-k}
\]
is bijective for \(k \leq \frac{d}{2} \).

Proof. Let \(\rho \) be the maximal element of \(P \) corresponding to the convex polytope itself, and let \(\partial P = P \setminus \{\rho\} \). Then \(\mathbb{R}[P] = \mathbb{R}[\partial P][x_\rho] \) and \(\mathbb{R}[\partial P] \) is the Stanley–Reisner ring of the barycentric subdivision of the boundary of a convex polytope. Since the barycentric subdivision of a convex polytope can be regarded as a convex polytope (see [ES]), it follows from [St3 III Theorem 1.3] that, by an appropriate choice of an l.s.o.p. \(\Theta \) of \(\mathbb{R}[\partial P] \), \(\mathbb{R}[\partial P]//(\Theta \mathbb{R}[\partial P]) \) is isomorphic to the cohomology ring of a toric variety arising from an integral simplicial \(d \)-polytope. Since \(x_\rho, \Theta \) is an l.s.o.p. of \(\mathbb{R}[P] \) and \(\mathbb{R}[P]//(x_\rho, \Theta \mathbb{R}[P]) \cong \mathbb{R}[\partial P]//(\Theta \mathbb{R}[\partial P]) \), the desired statement follows from [St3 III Theorem 1.4]. \(\square \)

We call a linear form \(w \) in Lemma 6.1 a **Lefschetz element** of \(\mathbb{R}[P]/(\Theta \mathbb{R}[P]) \).

Recall that a CW-poset \(P \) is said to be of **polyhedral type** if, for any \(\sigma \in P \), \(\langle \sigma \rangle \) is the face poset of a convex polytope. Obviously, the face poset of a polyhedral complex is a CW-poset of polyhedral type.
Theorem 6.2. Let P be a CW-poset of polyhedral type, and let M be a Cohen–Macaulay squarefree P-module over \mathbb{R} of dimension d. There is an l.s.o.p. Θ of M and a linear form w such that

(i) the multiplication

$$xu^{d-1-2k} : (M/\Theta M)_k \rightarrow (M/\Theta M)_{d-1-k}$$

is injective for $k \leq \frac{d-1}{2}$.

(ii) the multiplication

$$xu^{d-1-2k} : (M/\Theta M)_{k+1} \rightarrow (M/\Theta M)_{d-k}$$

is surjective for $k \leq \frac{d-1}{2}$.

Proof. Let $R = \mathbb{R}[x_{\sigma} : \sigma \in \hat{P}]$. We prove that, for a general choice of Θ and w, conditions (i) and (ii) hold. Since, for a graded R-module N and a linear form $w \in R$, the multiplication $\times w : N_k \rightarrow N_{k+1}$ is surjective if and only if $\times w : (N^T)_{k-1} \rightarrow (N^T)_k$ is injective, by Lemma 3.6 it suffices to prove (ii).

For a linear form $\theta = \sum_{\sigma \in \hat{P}} \alpha_{\sigma} x_{\sigma} \in R$, let $\theta^{\leq k} = \sum_{\max(\sigma) \leq k} \alpha_{\sigma} x_{\sigma}$. It follows from Proposition 3.6 that, if we take sufficiently general linear forms $\theta_1, \ldots, \theta_{d+1}$, then they satisfy that, for each $\sigma \in \hat{P}$ with $\max(\sigma) = r$, $\theta_1^{\leq r}, \ldots, \theta_{d+1}^{\leq r}$ is an l.s.o.p. of $\mathbb{R}[\langle \sigma \rangle]$ and $\theta_1^{\leq r}$ is a Lefschetz element of $\mathbb{R}[\langle \sigma \rangle]/((\theta_1^{\leq r}, \ldots, \theta_{d+1}^{\leq r})\mathbb{R}[\langle \sigma \rangle])$.

Let $\Theta = \theta_1, \ldots, \theta_d$. Consider the submodule $N = \bigoplus_{\sigma \in P_d} M_{e_\sigma} R \subset M$. Since $M_{e_{\sigma}} R \cong M_{e_\sigma} \otimes_{\mathbb{R}} \mathbb{R}[\langle \sigma \rangle]$ for $\sigma \in P_d$, we have

$$N/(\Theta N) \cong \bigoplus_{\sigma \in P_d} (M_{e_\sigma} \otimes_{\mathbb{R}} \mathbb{R}[\langle \sigma \rangle]/(\Theta \mathbb{R}[\langle \sigma \rangle])).$$

(Here elements of M_{e_σ} have degree e_σ.) Thus the multiplication

$$\times \theta_1^{d-1-2k} : (N/\Theta N)_{k+1} \rightarrow (N/\Theta N)_{d-k}$$

is bijective for $k \leq \frac{d-1}{2}$. Consider the following commutative diagram

$$
\begin{array}{ccc}
(N/\Theta N)_{k+1} & \rightarrow & (M/\Theta M)_{k+1} \\
\times \theta_1^{d-1-2k} \downarrow & & \downarrow \times \theta_1^{d-1-2k} \\
(N/\Theta N)_{d-k} & \rightarrow & (M/\Theta M)_{d-k}.
\end{array}
$$

To prove the surjectivity of the right vertical map, it is enough to prove that the lower horizontal map is surjective. Thus, we prove that the elements in N_k generates $(M/\Theta M)_k$ for $k \geq \frac{d+1}{2}$. For $u = \sum_{\sigma \in \hat{P}} u_{\sigma} e_{\sigma} \in N^{[\hat{P}]}$, we write $\text{rank}(u) = \text{rank}(\max(\text{supp}(u)))$ and $|u| = \sum_{\sigma \in \hat{P}} u_{\sigma}$. Let $\mu \in M_u$ with $\text{rank}(u) = r < d$ and with $|u| \geq \frac{d+1}{2}$. We claim that

$$\mu \in \Theta M + \bigoplus_{\text{rank}(\nu) > r} M_{\nu}.$$

Note that this claim implies that N_k generates $(M/\Theta M)_k$ for $k \geq \frac{d+1}{2}$.

Let $\sigma = \max(\text{supp}(u))$. By condition (b') of squarefree P-modules, $\mu = \mu x_{\tau}^{u-e_\sigma}$ for some $\mu \in M_{e_\sigma}$ and

$$R/(\text{ann} \mu + (x_{\tau} : \text{rank} \tau > r)) \cong \mathbb{R}[\langle \sigma \rangle],$$
where \(\text{ann} \, \tilde{\mu} = \{ f \in R : f \tilde{\mu} = 0 \} \). Since \(\theta_{r+1}^{\leq r} \) is a Lefschetz element of
\[
\mathbb{R}[\langle \sigma \rangle]/((\theta_{1}^{\leq r}, \ldots, \theta_{r}^{\leq r})\mathbb{R}[\langle \sigma \rangle]) \cong R/(\text{ann} \, \tilde{\mu} + (\theta_{1}^{\leq r}, \ldots, \theta_{r}^{\leq r}) + (x_{\tau} : \text{rank} \, \tau > r)),
\]
we have
\[
(\text{ann} \, \tilde{\mu} + (\theta_{1}^{\leq r}, \ldots, \theta_{r}^{\leq r}) + (x_{\tau} : \text{rank} \, \tau > r))_{k} = R_{k}
\]
for \(k \geq \frac{d}{2} \). Since \(r < d \), we have \(\deg x^{u-e_{e}} \geq \frac{d-k}{2} \geq \frac{d}{2} \). Thus we have
\[
x^{u-e_{e}} \in \text{ann} \, \tilde{\mu} + (\theta_{1}^{\leq r}, \ldots, \theta_{r+1}^{\leq r}) + (x_{\tau} : \text{rank} \, \tau > r).
\]
Hence
\[
\mu = \tilde{\mu} x^{u-e_{e}} \in ((\theta_{1}^{\leq r}, \ldots, \theta_{r+1}^{\leq r}) + (x_{\tau} : \text{rank} \, \tau > r)) \tilde{\mu} \subset \Theta M + \bigoplus_{\text{rank}(v) > r} M_{v},
\]
as desired. \(\square \)

A Cohen–Macaulay graded \(R \)-module \(M \) of dimension \(d \) is said to have the weak Lefschetz property (WLP for short) if there is an l.s.o.p. \(\Theta \) of \(M \) and a linear form \(w \in R \) such that the multiplication \(x \cdot w : (M/(\Theta M))_{k-1} \to (M/\Theta M)_{k} \) is either injective or surjective for all \(k \). Theorem 6.2 implies the following corollary.

Corollary 6.3. Let \(P \) be a CW-poset of polyhedral type and \(M \) a Cohen–Macaulay squarefree \(P \)-module of dimension \(d \) over \(\mathbb{R} \). There is an l.s.o.p. \(\Theta \) of \(M \) and a linear form \(w \) such that the multiplication \(x \cdot w : \mathbb{R}_{k-1}((M/(\Theta M))_{k-1} \to (M/\Theta M)_{k} \) is injective for \(k \leq \frac{d}{2} \) and surjective for \(k \geq \frac{d}{2} + 1 \). In particular, \(M \) has the WLP if \(d \) is even.

Remark 6.4. Theorem 6.2 and Corollary 6.3 hold over any infinite field if \(\langle \sigma \rangle \) is the face poset of a simplex for any \(\sigma \in \hat{P} \) since Lemma 6.1 holds for simplices over any infinite field [KN, Proposition 2.3]. Thus, for barycentric subdivisions of simplicial complexes, one can work over positive characteristic. In particular, Corollary 6.3 solves the conjecture of Kubitzke and Nevo [KN, Conjecture 4.12] in odd dimensions.

Note that Corollary 6.3 cannot prove the WLP when \(d \) is odd since it says nothing about the multiplication map \(x \cdot w : \mathbb{R}_{k-1}((M/(\Theta M))_{k-1} \to (M/\Theta M)_{k} \).

Finally, we prove Theorem 1.3

Proof of Theorem 1.3. Let \(P \) be a Cohen–Macaulay CW-poset of polyhedral type having rank \(n \), and let \((h_{0}, h_{1}, \ldots, h_{n}) \) be the \(h \)-vector of \(\Delta_{P} \). By Corollary 6.3 there is an l.s.o.p. \(\Theta = \theta_{1}, \ldots, \theta_{n} \) of \(\mathbb{R}[P] \) and a linear form \(w \) such that
\[
\dim_{\mathbb{R}} \left(\mathbb{R}[P]/((w, \Theta)\mathbb{R}[P]) \right)_{k} = \dim_{\mathbb{R}} \left(\mathbb{R}[P]/((\Theta\mathbb{R}[P]))_{k-1} \right)_{k-1} = h_{k} - h_{k-1}
\]
for \(k \leq \frac{d}{2} \), where the second equality follows since \(h_{i} = \dim_{\mathbb{R}} (\mathbb{R}[P]/(\Theta\mathbb{R}[P]))_{i} \) for all \(i \) (see e.g., [St3, II Corollary 2.5]). We prove that the Hilbert function of \(\mathbb{R}[P]/((w, \Theta)\mathbb{R}[P]) \) is the \(f \)-vector of a simplicial complex.

Let \(\mathbb{R}[P] = \mathbb{R}[x_{\sigma} : \sigma \in \hat{P}]/I \) and \(c = |\hat{P}| - n. \) Since \(I \) is generated by monomials of degree 2, by [CCV, Theorem 2.1] the ideal \(I \) contains a regular sequence of the form \(\ell_{1}, \ell_{2}, \ldots, \ell_{2c-1}, \ell_{2c}, \) where \(\ell_{1}, \ldots, \ell_{2c} \) are linear forms. Then, if we choose \(\Theta \) sufficiently general, \(\Lambda = \ell_{1}, \ell_{2}, \ldots, \ell_{2c-1}, \ell_{2c}, \theta_{1}, \ldots, \theta_{n} \) is also a regular sequence. Since
\(\mathbb{R}[P]/((w, \Theta)\mathbb{R}[P]) = \mathbb{R}[x_\sigma : \sigma \in \widehat{P}]/(I + (w, \Theta))\) and \(I + (w, \Theta)\) contains \(\Lambda\), the desired statement follows from Abedelfatah’s result on the Eisenbud-Green-Harris conjecture [AB] Corollary 4.3. \(\square\)

7. Upper bounds for the cd-indices

In this section, we study upper bounds of the cd-indices of Gorenstein* posets. Billera and Ehrenborg [BE] proved that the cd-index of a \(d\)-polytope with \(v\) vertices are bounded above by the cd-index of the cyclic \(d\)-polytope with \(v\) vertices. Reading [Rea, Section 7] study upper bounds of the cd-indices of Bruhat intervals in terms of the length of an interval. It is not possible to obtain upper bounds of the cd-indices of Gorenstein* posets for a fixed number of rank 1 elements or for a fixed rank since most coefficients of the cd-indices of Gorenstein* posets can be arbitrary large even if we fix their rank and the number of rank 1 elements. However, if we fix the number of rank \(i\) elements for all \(i\), the cd-index is clearly bounded since its flag \(f\)-vector is bounded. The purpose of this section is to find sharp upper bounds of the cd-indices of Gorenstein* posets when we fix the number of rank \(i\) elements for all \(i\).

We first study some algebraic properties of squarefree \(P\)-modules. We say that a squarefree \(P\)-module is standard if it is generated by elements of degree 0.

Lemma 7.1. Let \(P\) be a quasi CW-poset and \(M\) a Cohen–Macaulay squarefree \(P\)-module of dimension \(d\). Then, for any \(k < d - 1\), the module \(\Omega(M^{(k)})\) is standard.

Proof. Let

\[
\mathcal{L}^M_\bullet : 0 \longrightarrow \mathcal{L}^M_d \xrightarrow{\partial_d} \mathcal{L}^M_{d-1} \xrightarrow{\partial_{d-1}} \mathcal{L}^M_{d-2} \xrightarrow{\partial_{d-2}} \cdots
\]

be the Karu complex of \(M\). Observe that each \(\text{Im}\partial_k\) is standard since \(\mathcal{L}^M_k\) is the direct sum of Stanley–Reisner rings. Then the desired statement follows since \(\Omega(M^{(k)}) = \ker \partial_{k+1} \cong \text{Im}\partial_{k+2}\) by Theorem 3.1. \(\square\)

Remark 7.2. For a Cohen–Macaulay simplicial complex \(\Delta\), the module \(\Omega(K[\Delta])\) is generated in degree 0 if and only if \(\Delta\) is doubly Cohen–Macaulay [St3, III Section 3] over \(K\). It is known that a proper skeleton of a Cohen–Macaulay CW-poset satisfying the intersection property is always doubly Cohen–Macaulay [F] Corollary 2.5. (It is noteworthy that his definition of the doubly Cohen–Macaulay property is slightly different from ours, and “the intersection property” is really necessary in his context.) Lemma 7.1 is an analogue of this fact for squarefree \(P\)-modules.

For a squarefree \(P\)-module \(M\), we write \(\Phi^d_M \cdot d + \Phi^a_M \cdot a + \Phi^b_M \cdot b\) for its extended cd-index. Also, we write \(\Phi^*_P = \Phi^*_K[P]\), where \(\bullet\) is \(a\), \(b\) or \(d\).

Lemma 7.3. Let \(P\) be a Cohen–Macaulay quasi CW-poset and \(M\) a Cohen–Macaulay standard squarefree \(P\)-module with \(\dim M = \text{rank } P\). Then we have the coefficients inequality

\[
\Phi^d_M \cdot d + \Phi^a_M \cdot a + \Phi^b_M \cdot b \leq (\dim_K M_0)(\Phi^d_P \cdot d + \Phi^a_P \cdot a + \Phi^b_P \cdot b).
\]
Proof. Let $c = \dim_K M_0$ and let $N = \bigoplus_{i=1}^c K[P]$ be the direct sum of c copies of $K[P]$. Since M is standard, there is a surjection $\pi : N \twoheadrightarrow M$. Then we have the following short exact sequence

$$0 \to \ker \pi \to N \xrightarrow{\pi} M \to 0.$$

Observe that N and M are Cohen–Macaulay squarefree P-modules having the same dimension. It is clear that $\dim(\ker \pi) \leq \dim M$. Also, since the depth of $\ker \pi$ is larger than or equal to the depth of M, which is equal to $\dim M$ since M is Cohen–Macaulay, by the depth lemma [BH, Proposition 1.2.9] and since the depth is smaller than or equal to the dimension [BH, Proposition 1.2.12], it follows that $\ker \pi$ is a Cohen–Macaulay squarefree P-module with $\dim(\ker \pi) = \dim M$. Since the short exact sequence says that the extended cd-index of N is the sum of those of $\ker \pi$ and M, the desired statement follows from the non-negativity of the extended cd-index. □

Lemma 7.3 has the following combinatorial meanings, which says that the extended cd-index of a Cohen–Macaulay regular CW-complex is larger than or equal to that of its Cohen–Macaulay subcomplex having the same dimension.

Corollary 7.4. Let P be a Cohen–Macaulay quasi CW-poset and Q an order ideal of P having the same rank as P. If Q is Cohen–Macaulay, then we have the coefficients inequality

$$\Phi^d_Q \cdot d + \Phi^a_Q \cdot a + \Phi^b_Q \cdot b \leq \Phi^d_P \cdot d + \Phi^a_P \cdot a + \Phi^b_P \cdot b.$$

Proof. Since $K[Q]$ is a standard squarefree P-module, the statement is the special case of Lemma 7.3 when $M = K[Q]$. □

For a homogeneous cd-polynomial $\Phi = \sum_{v \in B_d} \alpha_v v \in \mathbb{Z} \langle c, d \rangle$ of degree d and for a cd-monomial u of degree $m < d$, let

$$\Phi_u = \sum_{v \in B_{d-m}} \alpha_{vu} v.$$

Note that Φ_{d^k} is equal to Φ_{d-k-2} of (11) in Section 5.

Lemma 7.5. Let P be a quasi CW-poset, M a Cohen–Macaulay squarefree P-module of dimension d over \mathbb{R} and let $\Psi_M(a, b) = \Phi + \Upsilon b$ be the b-expression of $\Psi_M(a, b)$. For any cd-monomial of degree $\leq d$ of the form $u = du'$, there is a Cohen–Macaulay standard squarefree P-module N such that $\Psi_N(a, b) = \Phi_u$.

Proof. We may assume that u is of the form $u = dc^k$. Then Φ_u is the cd-index of $N = \Omega(M^{(d-k-2)})/M^{(d-k-2)}$ by Corollary 5.4 and N is standard by Lemma 7.3. □

For a squarefree P-module M of dimension d with the b-expression $\Psi_M(a, b) = \Phi + \Upsilon b$, we write

$$\alpha_S(M) = \alpha_S(\Phi)$$

for $S \in \mathcal{A}_d$, where $\alpha_S(\Phi)$ is as in the introduction. Also, we write $\alpha_S(P) = \alpha_S(K[P])$. Note that, for Gorenstein* posets, this definition coincides with that given in the introduction since the b-expression of a Gorenstein* poset is equal to its cd-index.
Lemma 7.6. Let P be a Cohen–Macaulay quasi CW-poset and M a Cohen–Macaulay standard squarefree P-module of dimension d. Then, for any $S \in A_d$, one has
$$\alpha_S(M) \leq \alpha_\emptyset(M)\alpha_S(P).$$

Proof. Since M is a squarefree $P^{(d-1)}$-module and since $\alpha_S(P^{(d-1)}) = \alpha_S(P)$ for all $S \in A_d$ by the computation given before Corollary 5.4, we may assume that $\dim M = \rank P$. Since $(\Phi_M^a \cdot c + \Phi_M^d \cdot d) + (\Phi_M^b - \Phi_M^a) \cdot b$ is the b-expression of $\Psi_M(a, b)$, the desired statement follows from Lemma 7.3. \square

Now we prove the main result of this section.

Theorem 7.7. Let P be a Cohen–Macaulay quasi CW-poset. If M is a Cohen–Macaulay standard squarefree P-module over \mathbb{R} of dimension d, then $\alpha_S(M) \leq \alpha_\emptyset(M)\prod_{i \in S} \alpha_{\{i\}}(P)$ for all $S \in A_d$.

Proof. We prove the statement by induction on $|S|$. If $|S| = 0$, then the statement is obvious. Let $S \in A_n$ with $|S| = 1$ and let $a = \min S$. By the induction hypothesis, $\alpha_{S \setminus \{a\}}(M) \leq \alpha_\emptyset(M)\prod_{i \in S \setminus \{a\}} \alpha_{\{i\}}(P)$. By Lemma 7.6 there is a Cohen–Macaulay standard squarefree P-module N such that $\alpha_\emptyset(N) = \alpha_{S \setminus \{a\}}(M)$ and $\alpha_{\{a\}}(N) = \alpha_S(M)$. Then Lemma 7.6 says
$$\alpha_S(M) = \alpha_{\{a\}}(N) \leq \alpha_\emptyset(N)\alpha_{\{a\}}(P) = \alpha_{S \setminus \{a\}}(M)\alpha_{\{a\}}(P) \leq \alpha_\emptyset(M)\prod_{i \in S} \alpha_{\{i\}}(P),$$
as desired. \square

By considering the special case of Theorem 7.7 when $M = K[P]$, we obtain the following corollary which proves Theorem 1.4.

Corollary 7.8. If P is a Cohen–Macaulay quasi CW-poset rank n, then we have $\alpha_S(P) \leq \prod_{i \in S} \alpha_{\{i\}}(P)$ for all $S \in A_n$.

Recall that the rank generating function of a graded poset $P = \bigcup_{i=0}^n P_i$ is the polynomial $\sum_{k=0}^n f_{\{k\}}(P) t^k$, where $f_{\{0\}}(P) = 1$. For a Gorenstein* poset P of rank n, one has $f_{\{1\}}(P) - 1 = h_{\{1\}}(P) = 1 + \alpha_{\{1\}}(P)$ and
$$f_{\{i\}}(P) - 1 = h_{\{i\}}(P) = 1 + \alpha_{\{i-1\}}(P) + \alpha_{\{i\}}(P)$$
for $i = 2, 3, \ldots, n-1$. This implies
$$\alpha_{\{k\}}(P) = -1 + \sum_{i=0}^k (-1)^{k-i} f_{\{i\}}(P)$$
for $k = 1, 2, \ldots, n-1$. These equations and the Euler relation $\sum_{i=0}^n (-1)^{n-i} f_{\{i\}}(P) = 1$ say that knowing the integers $\alpha_{\{1\}}(P), \ldots, \alpha_{\{n-1\}}(P)$ is equivalent to knowing $f_{\{1\}}(P), \ldots, f_{\{n\}}(P)$. Thus Corollary 7.8 gives upper bounds of the cd-indices of Gorenstein* posets for a fixed rank generating function. In the rest of this section, we prove that the bounds are sharp. To prove this we use the technique, which was called unzipping in [MN].

Let P be a Gorenstein* poset and $\sigma > \tau$ a cover relation with $\tau \neq \emptyset$. We define the poset $U(P; \sigma, \tau)$ as follows: delete the cover relation $\sigma > \tau$, add elements σ', τ' with $\rank(\sigma') = \rank(\sigma), \rank(\tau') = \rank(\tau)$ and add cover relations (i) $\sigma' < \rho$ for all
cover relations \(\sigma < \rho \), (ii) \(\rho < \tau' \) for all cover relations \(\rho < \tau \) and (iii) \(\tau' < \sigma' \), \(\tau < \sigma' \) and \(\tau' < \sigma \). The following result was shown in [Rea, Theorem 4.6] and in [MN, Corollary 2.6].

Lemma 7.9. Let \(P \) be a Gorenstein* poset of rank \(n \) and \(\sigma > \tau \) a cover relation. Then \(\mathcal{U}(P; \sigma, \tau) \) is Gorenstein* and

\[
\Phi_{\mathcal{U}(P; \sigma, \tau)}(c, d) = \Phi_P(c, d) + \Phi_{\partial \tau}(c, d) \cdot d \cdot \Phi_{lk_P(\sigma)}(c, d).
\]

The next proposition guarantees that the bounds in Theorem [14] are sharp.

Proposition 7.10. For any sequence \(\alpha_1, \ldots, \alpha_{n-1} \) of nonnegative integers, there is a Gorenstein* poset \(P \) of rank \(n \) such that

1. \(\alpha_S(P) = \prod_{i \in S} \alpha_i \) for all \(S \in A_n \).
2. there is \(\sigma \in P_n \) such that \(\alpha_S(\partial \sigma) = \prod_{i \in S} \alpha_i \) for all \(S \in A_{n-1} \).

Proof. We use induction on \(n \). The statement is obvious when \(n = 1 \). Suppose \(n > 1 \). By the induction hypothesis, there is a Gorenstein* poset \(Q \) of rank \(n-1 \) and \(\tau \in Q_{n-1} \) such that \(\alpha_S(Q) = \prod_{i \in S} \alpha_i \) for all \(S \in A_{n-1} \) and \(\alpha_S(\partial \tau) = \prod_{i \in S} \alpha_i \) for all \(S \in A_{n-2} \). Let \(\Sigma Q = P \cup \{ \eta, \eta' \} \) be the suspension of \(P \). Thus \(\Sigma Q \) is the poset whose order is obtained from that of \(Q \) by adding the relations \(\eta > \rho \) and \(\eta' > \rho \) for all \(\rho \in Q \). By [St2, Lemma 1.1], \(\Sigma Q \) is a Gorenstein* poset with \(\Phi_{\Sigma Q}(c, d) = \Phi_Q(c, d) \cdot c \).

If \(\alpha_{n-1} = 0 \) then the poset \(\Sigma Q \) satisfies the desired conditions (i) and (ii) since \(\partial \eta' = Q \). Suppose \(\alpha_{n-1} > 0 \). Let \(P(1) = \mathcal{U}(\Sigma Q; \eta, \tau) \) and let \(\sigma(1) \in P(1)_n \) and \(\tau(1) \in P(1)_{n-1} \) be the elements which are not in \(\Sigma Q \). For \(k = 2, 3, \ldots, \alpha_{n-1} \), we recursively define the poset \(P(k) = \mathcal{U}(P(k-1); \sigma(k-1), \tau(k-1)) \) and elements \(\sigma(k) \in P(k)_n \) and \(\tau(k) \in P(k)_{n-1} \) so that \(\sigma(k) \) and \(\tau(k) \) are the elements which are not in \(P(k-1) \). We claim that \(P = P(\alpha_{n-1}) \) satisfies the desired conditions. By the construction of \(P(k) \), \(\partial \tau(k) = \partial \tau = \{ \rho \in P : \rho < \tau \} \) in \(P(k) \). Thus, by Lemma [7.9] we have

\[
\Phi_P = \Phi_{\Sigma Q} + \alpha_{n-1} \Phi_{\partial \tau} \cdot d = \Phi_Q \cdot c + \alpha_{n-1} \Phi_{\partial \tau} \cdot d.
\]

Hence, for \(S \in A_n \),

\[
\alpha_S(P) = \begin{cases}
\alpha_S(Q), & \text{if } n-1 \notin S, \\
\alpha_{n-1} \cdot \alpha_S(\partial \tau), & \text{if } n-1 \in S.
\end{cases}
\]

By the assumption on \(Q \) and \(\tau \), it follows that \(P \) satisfies condition (i). Also, since \(\partial \eta' = Q \) in \(P \), \(P \) also satisfies condition (ii). \(\square \)

Example 7.11. The Gorenstein* poset given in the proof of Proposition [7.10] is obtained from the poset of the zero dimensional sphere (that is, the CW-complex consisting of two vertices) by taking suspensions and unzipping repeatedly. For example, if \(\alpha_1 = \alpha_3 = 1 \) and \(\alpha_2 = 2 \), then we obtain the following poset.
Dotted lines are the relations which are removed by unzipping and colored elements are those which are added by unzipping. Black elements correspond to $\sigma(-)$ and brown elements corresponds to $\tau(-)$ in the proof.

8. CONCLUDING REMARKS

On f-vectors. Recall that the f-vector $f(\Delta_P) = (f_{-1}, f_0, \ldots, f_{n-1})$ of the order complex Δ_P of a poset P of rank n is given by $f_{i-1} = \sum_{S \subseteq [n], |S| = i} f_S(P)$. Considering Corollary 1.2 we ask the following question.

Problem 8.1. Is the f-vector of the order complex of a Cohen–Macaulay quasi CW-poset unimodal?

Brenti and Welker [BW] proved that, if P is a Cohen–Macaulay CW-poset of Boolean type, then the h-polynomial of Δ_P has only real zeros. This implies that its f-polynomial also has only real zeros, and therefore its f-vector is unimodal.

On flag f-vectors. Theorem 1.4 gives sharp upper bounds of flag f-vectors of Gorenstein* posets for a fixed rank generating function. However, we do not have an answer to the following problem.

Problem 8.2. Find sharp upper bounds of the flag f-vectors of (Cohen–Macaulay) CW-posets for a fixed rank generating function.

More strongly, the next problem would be of great interest.

Problem 8.3. Characterize all possible flag f-vectors of (Cohen–Macaulay) CW-posets.

The flag f-vectors of Gorenstein* posets of rank at most 4 were characterized in [MN]. Consider this fact, we think that Problem 8.3 will be tractable at least for CW-posets of rank 3.

On cd-indices. The proof of Theorem 7.4 says that if P is a Cohen–Macaulay quasi CW-poset of rank n, then, for any partition $S = \{a\} \cup T \in A_n$ with $a = \min S$, one has $\alpha_S(P) \leq \alpha_{\{a\}}(P)\alpha_T(P)$. Moreover, the same argument proves $\alpha_S(P) \leq \alpha_{T_1}(P)\alpha_{T_2}(P)$ for any partition $S = T_1 \cup T_2$ with $\max T_1 < \min T_2$. We suggest the following conjecture which generalize this property.

Conjecture 8.4. Let P be a Cohen–Macaulay CW-poset (or a Gorenstein* poset) of rank n and $S \in A_n$. If $S = T_1 \cup T_2$ is a partition of S then $\alpha_S(P) \leq \alpha_{T_1}(P)\alpha_{T_2}(P)$.
 References

[Ab] A. Abedelfatah, On the Eisenbud-Green-Harris conjecture, *Proc. Amer. Math. Soc.*, to appear, arXiv:1212.2653.
[BB] M.M. Bayer and L.J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, *Invent. Math.* 79 (1985), 143–157.
[BK] M.M. Bayer and A. Klapper, A new index for polytopes, *Discrete Comput. Geom.* 6 (1991), 33–47.
[BE] L.J. Billera and R. Ehrenborg, Monotonicity of the cd-index for polytopes, *Math. Z.* 233 (2000), 421–441.
[Bj] A. Björner, Posets, regular CW complexes and Bruhat order, *European J. Combin.* 5 (1984), 7–16.
[BW] F. Brenti and V. Welker, f-vectors of barycentric subdivisions, *Math. Z.* 259 (2008), 849–865.
[BH] W. Bruns and J. Herzog, Cohen–Macaulay rings, Revised Edition, Cambridge University Press, Cambridge, 1996.
[CCV] G. Caviglia, A. Constantinescu and M. Varbaro, On a conjecture by Kalai, *Israel J. Math.*, to appear, arXiv:1212.3726.
[EK] R. Ehrenborg and K. Karu, Decomposition theorem for the cd-index of Gorenstein posets, *J. Algebraic Combin.* 26 (2007), 225–251.
[ES] G. Ewald and G.C. Shephard, Stellar Subdivisions of Boundary Complexes of Convex Polytopes, *Math. Ann.* 210 (1974), 7–16.
[Fl] G. Floystad, Cohen–Macaulay cell complexes, In: Algebraic and geometric combinatorics, Contemp. Math., vol. 423, Amer. Math. Soc., Providence, 2006, pp. 205–220.
[Ha] R. Hartshorne, Residues and duality, Lecture notes in Mathematics, vol. 20, Springer, 1966.
[Ka] K. Karu, The cd-index of fans and posets, *Compos. Math.* 142 (2006), 701–718.
[KN] M. Kubitzke and E. Nevo, The Lefschetz property for barycentric subdivisions of shellable complexes, *Trans. Amer. Math. Soc.* 361 (2009), 6151–6163.
[LW] A.T. Lundell and S. Weingram, The Topology of CW Complexes, Van Nostrand Reinhold, 1969.
[Ma] W.S. Massey, Singular homology theory, Springer, 1980.
[MN] S. Murai and E. Nevo, The flag f-vectors of Gorenstein* order complexes of dimension 3, *Proc. Amer. Math. Soc.*, to appear.
[Rea] N. Reading, The cd-index of Bruhat intervals, *Electron. J. Combin.*, 11 (2004), Research Paper 74.
[Rei] G.A. Reisner, Cohen-Macaulay quotients of polynomial rings, *Adv. in Math.*, 21 (1976), 30–49.
[St1] R.P. Stanley, The upper bound conjecture and Cohen–Macaulay rings, *Stud. in Appl. Math.*, 54 (1975), 135–142.
[St2] R.P. Stanley, Flag f-vectors and the cd-index, *Math. Z.* 216 (1994), 483–499.
[St3] R.P. Stanley, Combinatorics and commutative algebra, Second edition, Progr. Math., vol. 41, Birkhäuser, Boston, 1996.
[St4] R.P. Stanley, Enumerative Combinatorics, Volume 1, Second edition, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012.
[Sw] E. Swartz, g-elements, finite buildings and higher Cohen-Macaulay connectivity, *J. Combin. Theory Ser. A* 113 (2006), 1305–1320.
[Ya1] K. Yanagawa, Alexander duality for Stanley–Reisner rings and squarefree \mathbb{N}-graded modules, *J. Algebra* 225 (2000), 630–645.
[Ya2] K. Yanagawa, Bass Numbers of Local cohomology modules with supports in monomial ideals, *Math. Proc. Cambridge Philos. Soc.* 131 (2001), 45–60.
[Ya3] K. Yanagawa, Sheaves on finite posets and modules over normal semigroup rings, *J. Pure Appl. Algebra* 161 (2001), 341–366.
[Ya4] K. Yanagawa, Derived category of squarefree modules and local cohomology with monomial ideal support, *J. Math. Soc. Japan* 56 (2004), 289–308.

Satoshi Murai, Department of Mathematical Science, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan.

E-mail address: murai@yamaguchi-u.ac.jp

Kohji Yanagawa, Department of Mathematics, Kansai University, Suita 564-8680, Japan.

E-mail address: yanagawa@kansai-u.ac.jp