Acanthocyclops trajani Mirabdullayev et Defaye (Copepoda, Cyclopoida) as An Indicator of the Ecological State of Water Bodies in Kazakhstan

Elena Krupa1,2,∗ and Moldir Aubakirova3,1

1 Institute of Zoology of Republic of Kazakhstan, Almaty, 050060, Kazakhstan
2 Kazakh Agency of Applied Ecology, Almaty, 050010, Kazakhstan
3 Al-Farabi Kazakh National University, Faculty of biology and biotechnology, Almaty, 050040, Kazakhstan
∗Email: elena_krupa@mail.ru

Abstract. In 1997-2007, the structure of populations of Acanthocyclops trajani Mirabdullayev et Defaye (Copepoda, Cyclopoida) in water bodies of Kazakhstan was studied. It was shown that cyclops prefers water bodies with TDS up to 3.0 g/dm³. The abundance of cyclops increased in the gradient of phosphate concentrations statistically significantly. In the same direction the dominance of males in the populations of cyclops increased. The appearance of individuals with morphological anomalies was associated with toxic pollution of water bodies. The results demonstrate that the structure of cyclops populations can be an indicator of the ecological state of aquatic ecosystems.

1 Introduction
The freshwater cyclopoid genus Acanthocyclops (Kiefer, 1927) consists of about 100 species (WoRMS, 2010) which has a world-wide distribution [1]. The morphological plasticity of the species of the genus makes it difficult to identify them. The search for new criteria that are used for species identification made it possible to bring greater clarity to the taxonomy of the genus Acanthocyclops and describe a number of new species [2, 3].

Acanthocyclops trajani Mirabdullayev et Defaye was described relatively recently from water bodies of Central Asia and Kazakhstan [4]. At present, it is known from the territory of Southeast, South, Central and Western Kazakhstan [5-7], Hungary [8], Czech Republic [9], Egypt [10], Mexico [11], Africa [4].

The wide distribution and high abundance of cyclops determines its leading role in zooplankton and, as a consequence, its high indicator significance for assessing the ecological state of water bodies in various natural and climatic zones. For bioindication purposes, information on the environmental preferences of Acanthocyclops trajani is required. There is no such information in references. This article partially fills this gap. Its purpose is to analyze the distribution of the total abundance, sex ratio, and the proportion of individuals with morphological anomalies in cyclops populations from water bodies of Kazakhstan in the gradient of external factors.

2. Material and Methods
Zooplankton studies were carried out in 40 water bodies of Kazakhstan in 1997-2007. Zooplankton samples were collected and processed using standard methods [12, 13]. To characterize the structure of Cyclops populations, the number of females, females with eggs, males, copepodites, and nauplii was separately counted in each sample. The sex ratio was found as the ratio of the number of sexually mature females to the number of males. When sampling zooplankton, water samples were taken to determine the total dissolved solids of water (TDS), the content of nutrients, heavy metals (zinc, copper, cadmium, and lead). Conventional methods of chemical analysis of water samples were used [14]. Heavy metal measuring was performed by mass spectrometry with inductively coupled plasma
by using Agilent 7500 A manufactured by Agilent Technologies, USA (National Standard RK ISO). Statistical data processing was performed using the Statistica 10 software.

3. Results and Discussion

TDS of water in the studied water bodies varied from 0.2 to 27.0 g/dm3. The content of phosphates in water reached 7-300 g/dm3, zinc 3.2-44.4, copper 3.8-58.8, cadmium 0.1-5.9, lead 8.2-30.4 μg/dm3.

Scatterplots analysis showed that A. trajani inhabits water bodies with water TDS up to 3.0 g/dm3 (Figure 1). In fresh and brackish water, the abundance of cyclops varied from 0.2-137.3 thousand ind./m3. The maximum abundance of populations was recorded in water bodies with a high anthropogenic load (wastewater storages, industrial reservoirs). The relationship between the abundance of cyclops and the content of phosphates (as indicators of nutrient load) was statistically significant (R = 0.79, p <0.05). The average abundance of its populations reached 0.3±0.1 thousand ind./m3 when a phosphorus concentration was less than 20 μg/dm3. It increased to 3.3±2.3 thousand ind./m3 and up to 44.8±17.9 thousand ind./m3 when a phosphorus content reached 25-50 μg/dm3 and 55-200 μg/dm3 accordingly (Figure 2). Along with an increase in the total abundance, the proportion of A. trajani in zooplankton increased from 6±1.2% to 8.9±5.7% and to 31.2±9.3%, respectively.

![Figure 1](image1.png)

Figure 1. The abundance and sex ratio in the *Acanthocyclops trajani* populations in the gradient of TDS in water bodies of Kazakhstan.

![Figure 2](image2.png)

Figure 2. The abundance and sex ratio in the *Acanthocyclops trajani* populations in the gradient of phosphate content in water bodies of Kazakhstan.
The sex ratio in cyclops populations varied from 0.15-0.60 (female dominance) to 1.5-55.0 (male dominance). The most pronounced dominance of males in populations of this species was recorded in reservoirs with a high level of mixed pollution (wastewater storage, technical water storage). A positive statistically significant relationship was found between male dominance and phosphate content ($R = 0.72, p < 0.05$).

The high abundance of males, in comparison with the females, testified to the violation of the sex structure of the Acanthocyclops trajani populations in the water bodies of Kazakhstan. Typically, females are slightly more numerous than males in populations of cyclopoid copepods [15-18]. This is explained by the fact that one male can fertilize several females, and there is no need for an equal sex ratio [19]. The influence of external factors on the sex structure of planktonic invertebrates is poorly studied. Deviations from the usual sex ratio in crustacean populations are induced by stress factors, including changes in water temperature, TDS, and pH [20, 21]. Our results showed the influence of the nutrient load on the dominance of males in the Acanthocyclops trajani population. The regional and climatic conditions of Kazakhstan determine the low content of phosphates in the water bodies of the region. As a result, phosphates are an indirect indicator of the intensity of nutrient load on the aquatic ecosystems of the region [22].

In the populations of A. trajani from the most polluted reservoirs (wastewater storages of southeastern and northern Kazakhstan, the Sharda, Samarkan, Intymak, Kok-Uzek reservoirs), individuals with morphological anomalies were constantly found. Ugly cyclops were sporadically present in certain parts of natural water bodies (Lake Balkhash, small lakes in the Ili River delta). All of them are characterized by mixed pollution (organic combined with toxic). The abundance of such animals was low and varied within 1-87 ind./m3. Their share reached 0.01-1.90% of the population abundance (excluding nauplial stages). In some periods of research, the occurrence of individuals with morphological anomalies reached 50-100% in a water body.

Positive statistically significant relationships were found between the relative abundance of the individuals with morphological anomalies and the content of heavy metals (table 1). The highest values of the Spearman correlation coefficient were observed between the proportion of such individuals in the population and the copper content. They were found already at a copper concentration of 4.0-4.5 μg/dm3 and were constantly observed in a copper concentration gradient of more than 10.0 μg/dm3.

Table 1. Spearman’s correlation coefficient (R) between the concentrations of heavy metals in water and the proportion of individuals with morphological anomalies in Acanthocyclops trajani populations from water bodies of Kazakhstan.

Variable	Number of samples (N)	R	t (N-2)	p-level
Zn	25	0.365	1.752	0.095
Cu	25	0.647	3.790	0.001
Pb	25	0.439	2.182	0.041
Cd	25	0.154	0.695	0.495
Total heavy metals	25	0.543	2.893	0.009

Copper is highly toxic to most living organisms [23]. For cyclops, copper is more harmful than zinc, chromium, and nickel [24]. The genotoxic impacts of copper mixed with pesticides were found to embryonic development and DNA integrity of the Pacific oyster, Crassostrea gigas Thunberg [25]. There are few data on the effect of toxic pollution on the frequency of occurrence of individuals with morphological deviations [26, 27]. Our results demonstrate the indicator significance of this biological variables for assessing the level of toxic pollution of aquatic ecosystems.

4. Conclusion
Acanthocyclops trajani prefers fresh and brackish water with high nutrient content. This species tolerates a wide range of toxic contamination. The dominance of males and the emergence of individuals with morphological anomalies is a species response to stressful environmental conditions. The results obtained can be used to assess the ecological state of aquatic ecosystems using bioindication methods.

Acknowledgments
The work was carried out under project no. AP08855655, Institute of Zoology, the Committee of Science, Ministry of Education and Science, Republic of Kazakhstan "Assessment of the ecological state of wastewater storages of the system of the Right-Bank Sorbulak Canal for the development of the scientific basis for wastewater disposal."

References
[1] Einsle U 1996 Copepoda: Cyclopoida. Genera Cyclops, Megacylops, Acanthocyclops. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World (Saint-Petersburg: Acad. Publishing) p 83
[2] Dodson S 1994 Morphological analysis of Wisconsin (U. S. A.) species of the Acanthocyclops vernalis group (Copepoda: Cyclopoida) J. Crust Biol 14 113–131
[3] Mirabdullayev I M, Defaye D 2004 On The taxonomy of the Acanthocyclops robustus species complex (Copepoda, Cyclopidae): Acanthocyclops brevispinosus and A. einslei sp. n. Vestnik zoologii 38(5) 27–37
[4] Mirabdullayev I M and Defaye D 2002 On the taxonomy of the Acanthocyclops robustus species-complex (Copepoda, Cyclopidae) Selevinia 1-4 7-20
[5] Krupa E G and Matmuratov S A 2002 Quantitative development and sex structure of Acanthocyclops robustus (Copepoda, Cyclopoida) populations in water bodies of southeastern Kazakhstan Aqua Zoological Research 191-194
[6] Krupa E G, Barinova S S, Assylbekova S Z and Isbekov K B 2018 Structural indicators of zooplankton of the Shardara Reservoir (Kazakhstan) and the main influencing factors. Turk J Fish Aquat Sci 18 659–669 doi:10.4194/1303-2712-v18_5_02.
[7] Krupa E G 2012 Zooplankton of limnic and lotic ecosystems in Kazakhstan. In Structure, Patterns of Formation; Palmarium Academic Publishing: Saarbrucken, Germany 346. (In Russian)
[8] Vad C F, Horváth Zs, Kiss K T and Ács É 2012 Microcrustacean (Cladocera, Copepoda) communities in artificial lakes in the region of the north Hungarian mountains, with special reference to the adventive species acta Zoologica Academiae Scientiarum Hungaricae 58 47–61,
[9] Bláha M 2010 Descriptions of copepodid and adult Acanthocyclops trajani (Mirabdullayev & Defaye 2002) and A. einslei (Mirabdullayev & Defaye 2004) (Copepoda: Cyclopoida) with notes on their discrimination Fundam Appl Limnol, Arch Hydrobiol 177/3, 223–240
[10] Hegab MH, Zaher Shymaa S and Mola H R A 2019 The consumption rate of three zooplankton species of different size fed on the green microalga Chlorella vulgaris Egyptian Journal of Aquatic Biology & Fisheries 23(2) 575-583
[11] Mercado-Salasa N F and Álvarez-Silva C 2013 A new Acanthocyclops Kiefer, 1927 (Cyclopoida: Cyclopinae) from an ecological reserve in Mexico City Journal of Natural History http://dx.doi.org/10.1080/00222933.2012.742589
[12] Kiselev I A 1956 Research methods of plankton. In Life of the Fresh Water of the USSR; Pavlovsky E N and Zhadin V I, Eds. (Moscow, Leningrad: Academy of Sciences) pp 188–253
[13] Balushkina E V and Vinberg G G 1979 *The relationship between the length and body weight of planktonic crustaceans. In Experimental and Field Studies of the Biological Foundations of Lake Productivity;* Vinberg G G Ed. (Leningrad: Institute of lake and river fishery) pp 58–79 (In Russian)

[14] Semenov A D 1977 *Guidance on the Chemical Analysis of Land Surface Water* (Leningrad: Gidrometeoizdat) p 541

[15] Meshkova T M 1975 *Regularities in the development of zooplankton in Lake Sevan* (Yerevan: AN ArmSSR) p 237 (In Russian)

[16] Maier G 1989 *The seasonal cycle of Thermocyclops crassus* (Fischer, 1853) (Copepoda: Cyclopoida) in a shallow, eutrophic lake *Hydrobiologia* **178** 43-58

[17] Dvoretzky V G and Pakhomova N A 2006 Comparative characteristics of the populations of *Oithona similis* (Claus) in the waters of the Pechora Sea and the coastal zone of East Murman *Vestnik MGTU* **9**, 797-804

[18] Mohamed H H, Salman S D and Abdullah A A M 2008 Some aspects of the biology of two Copepods: *Apostocyclops dengizicus* and *Mesocyclops isabellae* from a Pool in Garmat - Ali, Basrah, Iraq *Turk J Fish. Aquat Sc.* **8** 239-247

[19] Kiørboe T 2006 Sex, sex-ratios, and the dynamics of pelagic copepod populations *Oecologia*, **148** 181

[20] Geodakyan V A and Smirnov N N 1968 *Sexual dimorphism and evolution of lower crustaceans* In N.N. Vorontsov (ed.), Problems of evolution (Novosibirsk: Nauka) 1, pp 30-36.

[21] Khozyakin A A and Alekseev V R 2007 Influence of low heating of PSHPP on seasonal adaptations in cladocerans *Electronic scientific journal "Investigated in Russia"* pp 69-83

[22] Frumin G T and Krashanovskaya Yu V 2014 Trophic status of lakes in Kazakhstan Society Wednesday Development **3** pp 176-178.

[23] Mandil R, Prakash A, Rahal A et al. 2020 In vitro and in vivo effects of flubendiamide and copper on cyto-genotoxicity, oxidative stress and spleen histology of rats and its modulation by resveratrol, catechin, curcumin and α-tocopherol *BMC Pharmacol Toxicol* **21** 29

[24] Wong C K and Pak A P 2004 Acute and subchronic toxicity of the heavy metals copper, chromium, nickel, and zinc, individually and in mixture, to the freshwater copepod *Mesocyclops perpeiensis* *Bull Environ Contam Toxicol* **73** pp 190–196 DOI: 10.1007/s00128-004-0412-2.

[25] Mai H, Cachot J, Clérandeau C, Martin C, Mazzela N, Gonzalez P and Morin B 2020 An environmentally realistic pesticide and copper mixture impacts embryonic development and DNA integrity of the Pacific oyster, *Crassostrea gigas* *Environ Sci Pollut Res* **27** 3600–11

[26] Kayser H 1977 Effect of zinc sulphate on the growth of mono- and multispecies cultures of some marine plankton algae *Helgolander Wiss. Meeresunters* **30** 682–696

[27] Cerbin S, Kraak M H S, de Voogt P et al. 2010 Combined and single effects of pesticide carbaryl and toxic *Microcystis aeruginosa* on the life history of *Daphnia pulicaria* *Hydrobiologia* **643** 129–138