A convolutional neural network-based system to detect malignant findings in FDG PET/CT examinations

CURRENT STATUS: ACCEPTED

DOI: 10.21203/rs.2.13839/v2

SUBJECT AREAS
Nuclear Medicine & Medical Imaging Neurology

KEYWORDS
FDG, PET, convolutional neural network, deep learning
Abstract

Background: As the number of PET/CT scanners increases and FDG PET/CT becomes a common imaging modality for oncology, the demands for automated detection systems on artificial intelligence (AI) to prevent human oversight and misdiagnosis are rapidly growing. We aimed to develop a convolutional neural network (CNN)-based system that can classify whole-body FDG PET as 1) benign, 2) malignant, or 3) equivocal. Methods: This retrospective study investigated 3,485 sequential patients with malignant or suspected malignant disease, who underwent whole-body FDG PET/CT at our institute. All the cases were classified into the 3 categories by a nuclear medicine physician. A residual network (ResNet)-based CNN architecture was built for classifying patients into the 3 categories. In addition, we performed region-based analysis of the CNN (head-and-neck, chest, abdomen, and pelvic region). Results: There were 1,280 (37%), 1,450 (42%), and 755 (22%) patients classified as benign, malignant and equivocal, respectively. In patient-based analysis, the CNN predicted benign, malignant and equivocal images with 99.4%, 99.4%, and 87.5% accuracy, respectively. In region-based analysis, the prediction was correct with the probability of 97.3% (head-and-neck), 96.6% (chest), 92.8% (abdomen) and 99.6% (pelvic region), respectively. Conclusion: The CNN-based system reliably classified FDG PET images into 3 categories, indicating that it could be helpful for physicians as a double-checking system to prevent oversight and misdiagnosis.

Background

FDG PET/CT is widely used to detect metabolically active lesions, especially in oncology.[1, 2] PET/CT scanners are becoming widespread because of their usefulness, whereas the number of FDG PET/CT examinations has also increased. In Japan, the number of institutes that have installed a PET/CT scanner has increased by 177 (212 to 389) from 2007 to 2017, with examinations increasing 72% from 414,300 to 711,800.[3] In the current clinical practice, FDG PET/CT images require interpretation by specialists in nuclear medicine. As the physicians’ burden of interpreting images increases, the risk of oversight or misdiagnosis also increases. Therefore, there is a demand for an automated system that can prevent such incidents.

Image analysis using a convolutional neural network (CNN), a machine learning method, has attracted
a great deal of attention as a method of artificial intelligence (AI) in the medical field.[4–7] CNN is a branch of deep neural network (so-called deep learning) techniques and is known to be feasible for image analysis because of its high performance at image recognition.[8] In a previous study using a CNN, tuberculosis was automatically detected on chest radiographs.[9] The use of a CNN also enabled brain tumor segmentation and prediction of genotype from magnetic resonance images.[10] Another study showed high diagnostic performance in the differentiation of liver masses by dynamic contrast agent-enhanced computed tomography.[11] CNN methods have also been applied to PET/CT, with successful results.[12–14]

We hypothesized that introducing an automated system to detect malignant findings would prevent human oversight/misdiagnosis. In addition, the system would be useful to select patients who need urgent interpretation by radiologists. Physicians who are inexperienced in nuclear medicine would particularly benefit from such a system.

In this research, we aimed to develop a CNN-based diagnosis system that classifies whole-body FDG PET images into 3 categories: 1) benign, 2) malignant, and 3) equivocal; such a system would allow physicians performing radiology-based diagnosis to double-check their opinions. In addition, we examined region-based predictions in the head and neck, chest, abdomen, and pelvis regions.

Methods

Subjects

This retrospective study included 3,485 sequential patients (mean age ± SD, 63.9 ± 13.6 y; range, 24–95 y) who underwent whole-body FDG PET/CT (Table1). All patients were scanned on either Scanner 1 (N=2,864, a Biograph 64 PET/CT scanner, Asahi-Siemens Medical Technologies Ltd., Tokyo) or Scanner 2 (N=621, a GEMINI TF64 PET/CT scanner, Philips Japan, Ltd., Tokyo) at our institute between January 2016 and December 2017.

The institutional review board of Hokkaido University Hospital approved the study (#017-0365) and waived the need of written informed consent from each patient because the study was conducted retrospectively.
Labeling

An experienced nuclear medicine physician classified all cases into 3 categories: 1) benign, 2) malignant and 3) equivocal, based on the FDG PET maximum intensity projection (MIP) images and diagnostic reports. The criteria of classification were as follows.

1) The patient was labeled as malignant when the radiology report described any malignant uptake masses and the labeling physician confirmed that the masses were visually recognizable.

2) The patient was labeled as benign when the radiology report described no malignant uptake masses and the labeling physicians confirmed that there were no visually recognizable uptake indicating malignant tumor.

3) The patient was labeled as equivocal when the radiology report was inconclusive between malignant vs. benign and the labeling physician agreed with the radiology report. In case the labeling physician disagreed with the radiology report, the physician further investigated the electric medical record and categorized the patient into malignant, benign, or equivocal.

Finally, 1,280 (37%) patients were labeled "benign", 1,450 (42%) "malignant" and 755 (22%) "equivocal". Note that the number of malignant label was smaller than the number of pretest diagnosis in Table 1, mainly because Table 1 includes patients who were suspected of recurrence of the particular cancer but showed no malignant findings on PET.

The location of any malignant uptake was determined as A) head and neck, B) chest, C) abdomen, D) pelvic region. For the classification, the physician was blinded to the CT images and parameters such as maximum standardized uptake value (SUVmax). Diagnostic reports were made based on several factors including SUVmax, diameter of tumors, visual contrast between the tumors, location of tumors, and changes over time by 2+ physicians each with more than 8 years’ experience in nuclear medicine.

Image acquisition and reconstruction

All clinical PET/CT studies were performed with either Scanner 1 or Scanner 2. All patients fasted for \(\geq 6 \) hr before the injection of FDG (approx. 4 MBq/kg), and the emission scanning was initiated 60 min
post-injection. For Scanner 1, the transaxial and axial fields of view were 68.4 cm and 21.6 cm, respectively. For Scanner 2, the transaxial and axial fields of view were 57.6 cm and 18.0 cm. Three-min emission scanning in 3D mode was performed for each bed position. Attenuation was corrected with X-CT images acquired without contrast media. Images were reconstructed with an iterative method integrated with (Scanner 1) or without (Scanner 2) a point spread function. Each reconstructed image had a matrix size of 168 × 168 with the voxel size of 4.1 × 4.1 × 2.0 mm for Scanner 1, and a matrix size of 144 × 144 with the voxel size of 4.0 × 4.0 × 4.0 mm for Scanner 2. MIP images (matrix size 168 × 168) were generated by linear interpolation. MIP images were created at increments of 10-degree rotation for up to 180 or 360 degrees. Therefore, 18 or 36 angles of MIP images were generated per patient. In this study, CT images were used only for attenuation correction, not for classification.

Convolutional neural network (CNN)

A neural network is a computational system that simulates neurons of the brain. Every neural network has input, hidden, and output layers. Each layer has a structure in which multiple nodes are connected by edges. A “deep neural network” is defined as the use of multiple layers for the hidden layer. Machine learning using a deep neural network is called “deep learning.” A convolutional neural network (CNN) is a type of deep neural network that has been proven to be highly efficient in image recognition. A CNN does not require predefined image features. We propose the use of a CNN to classify the images of FDG PET examination.

Architectures

In this study, we used a network model with the same configuration as ResNet [15]. In the original ResNet, the output layer was classified into 1000 classes. We modified the number of classes to 3. We used this network model to classify whole-body FDG PET images into 1) benign, 2) malignant and 3) equivocal categories. Here we provide details on CNN architectures with the techniques used in this study. The detailed architecture is shown in Figure 1 and Table 2. Convolution layers create feature-
maps that extract image features. Pooling layers have the effect of reducing the amount of data and improving the robustness against misregistration by down-sampling the obtained feature-map. "Residual" is a block that can be said to be a feature of ResNet that combines several layers, thereby solving the conventional gradient disappearance problem. Each neuron in a layer is connected to the corresponding neurons in the previous layer. The architecture of the CNN used in the present study contained five convolutional layers. This network also applied a rectified linear unit (ReLU) function, local response normalization, and softmax layers. The softmax function is defined as follows: (see Equation 1 in the Supplementary Files)

Model training and testing

Experiment 1 (Overall): First, input images were enlarged to (224, 224) pixels to match the input size of the network. After that, we trained the CNN using data from the FDG PET images. The CNN was trained and validated using 70% patients (N=2440) which were randomly selected. After the training process, the remaining 30% patients (N=1045) were used for testing. A 5-fold cross-validation scheme was used to validate the model. Subsequently, we tested the model. In the model-training phase, we used “early stopping” and “dropout” to prevent overfitting. Early stopping is a function used to monitor the loss function of training and validation and to stop the learning before falling into excessive learning.[16] Early stopping and dropout have been adopted in various machine-learning methods.[17, 18]

Experiment 2 (Region-based analysis): In this experiment, the neural network having the same architecture were trained using 4 datasets consisting of differently cropped images: (A) head and neck, B) chest, C) abdomen, and D) pelvic region, respectively. The label was malignant when the malignancy existed in the corresponding region. The label was equivocal when the equivocal uptake existed in the corresponding region. Otherwise, the label was benign. The configuration of the network was the same as in Experiment 1.

Experiment 3 (Grad-CAM[19]): We carried out additional experiments using the Grad-CAM technique, which visualizes the part activating the neural network. In other words, Grad-CAM highlights the part
of the image that the neural network responds to. The same image as the original image used in Experiment 1 was used as the input image.

Hardware and software environments

This experiment was performed under the following environment:

OS, Windows 10 pro 64 bit; CPU, intel Core i7-6700K; GPU, NVIDIA GeForce GTX 1070 8GB;
Framework, Keras 2.2.4 and TensorFlow 1.11.0; Language, Python 3.6.7; CNN, the same configuration as ResNet; Optimizer, Adam [20].

Results

Figure 2 shows typical images of each category. A total of 76,785 maximum intensity projection (MIP) images were investigated. The number of images of benign patients, malignant patients, and equivocal patients were 28,688, 31,751 and 16,346, respectively.

Experiment 1 (Overall analysis)

In the image-based prediction, the model was trained for 30 epochs using an early stopping algorithm. The CNN process spent 3.5 hours for training and <0.1 second / image for prediction. When images of benign patients were given to the learned model, the accuracy was 96.6%. Similarly, the accuracies for images of malignant and equivocal patients were 97.3% and 77.8%, respectively. The results are shown in Table 3 (a).

In this study, 18 or 36 angles of MIP images were generated per patient. Based on that premise, the patient-based prediction was performed based on the following algorithm.

1. If more than 1/3 of all the images of the particular patient were judged as malignant, the patient was judged as being malignant.

2. If less than 1/3 of all the images of the particular patient were judged as malignant and more than 1/3 were judged as equivocal, the patient was judged as being equivocal.
3. If none of the above were satisfied, the patient was judged as being benign.

When images of benign patients were given to the learned model, the accuracy was 99.4%. The accuracy for images of malignant patients was also 99.4%. The accuracy was lower (87.5%) when images of equivocal patients were given. The results are shown in and Table 3 (b). The prediction showed a tendency to fail especially when strong physiological accumulation (e.g., in the larynx) or mild malignant accumulation was present. Typical cases where the neural network failed to predict the proper category are shown in Figure 3.

Experiment 2 (Region-based analysis)

The same population was used in this experiment as was used in Experiment 1. The model was trained for 33-45 epochs for each dataset using an early stopping algorithm. The CNN process spent 4-5 hours for training and <0.1 second / image for prediction.

In the experiment for the head-and-neck region, a new labeling system was introduced to classify the images into 3 categories: 1) benign in the head-and-neck region, 2) malignant in the head-and-neck region, and 3) equivocal in the head-and-neck region. When images from “malignant in the head-and-neck region” patients were given to the learned model, the accuracy was 97.3%. The accuracy was 97.8% and 96.2% for “benign in the head-and-neck region” patients and “equivocal in the head-and-neck region” patients, respectively.

Similar experiments were performed for the chest, abdominal, and pelvic regions. The details of the results are shown in Table 3 (c)-(f). The accuracy was higher for the pelvic region (95.3–99.7%) than for the abdominal region (91.0–94.9%).

Experiment 3 (Grad-CAM[19])

We employed Grad-CAM to identify the part of the image from which the neural network extracted the largest amount of information. Typical examples are shown in Figure 3. To estimate the accuracy of Grad-CAM, we extracted 100 malignant patients randomly from the test cohort. Grad-CAM provided
continuous value for each pixel, and we set 2 different cut-offs (70% and 90% of maximum) to contour the activated area. Grad-CAM result was judged correct or incorrect by a nuclear medicine physician. As the result, when the activated area was defined with the cut-off of 70% maximum, 93% patients had at least one image that showed the activated area covering any part of the tumor. Similarly, when the activated area was defined with the cut-off of 90% maximum, 72% patients had at least one image that showed the activated area covering any part of the tumor.

Discussion

In patient-based classification, the neural network predicted correctly both the malignant and benign categories with 99.4% accuracy, although the accuracy for equivocal patients was 87.5%. Therefore, an average probability of 95.4% suggests that a CNN may be useful to predict 3-category classification from MIP images of FDG PET. Furthermore, in the prediction of the malignant uptake region, it was classified correctly with probabilities of 97.3% (head-and-neck), 96.6% (chest), 92.8% (abdomen) and 99.6% (pelvic region), respectively. These results suggested that the system may have the potential to help radiologists avoid oversight and misdiagnosis.

To clarify the reasons for the classification failure, we investigated some cases that were incorrectly predicted in Experiment 1. As expected, the most frequent patterns we encountered were strong physiological uptake and weak pathological uptake. In the case shown in Fig. 4a, the physiological accumulation in the oral region was relatively high, which might have caused erroneous prediction. In contrast, another case (Fig. 4b) showed many small lesions with low-to-moderate intensity accumulation, which was erroneously predicted as benign despite the true label being malignant. The equivocal category was more difficult for the neural network to predict; the accuracy was lower than for the other categories. The results may be due to the definition; though common in clinical settings, “equivocal” is a kind of catch-all or “garbage” category for all images not clearly belonging to “malignant” or “benign”; thus, a greater variety of images was included in the equivocal category. We speculate that such a wide range may have made it difficult for the neural network to extract consistent features.

We also conducted patient-based predictions in this study. In patient-based prediction, the accuracy
was higher than in image-based prediction by an ensemble effect. This approach takes advantages of MIP images generated from various angles.

The CNN focuses on some features of the images. Grad-CAM is a technology that visualizes the region of interest. The results of Experiment 3 suggested that CNN responded to the part of the malignant uptake if presented. Grad-CAM results would provide physicians information on the mechanisms of the CNN; such information would help physicians decide whether to accept or reject the CNN’s diagnosis.

The computational complexity becomes enormous when a CNN directly learns with 3D images [21–25]. Although we employed MIP images in the current study, an alternative approach may be to provide each slice to the CNN. However, even in the case of ‘malignant’ or ‘equivocal’, the tumor is usually localized in some small area and thus most of the slices do not contain abnormal findings. Consequently, a positive vs. negative imbalance problem would disturb efficient learning processes.

In this context, MIP seems to be advantageous for a CNN as most MIP images of malignant patients contain accumulation in the image somewhere unless a stronger physiological accumulation (e.g., brain or bladder) hides the malignant uptake. Although there is still room for improvement, we showed that at least PET images can be classified by MIP images.

In this study, we used only 2 scanners, but further studies are needed to reveal what will happen when more scanners are investigated. For instance, what if the numbers of examinations from various scanners is imbalanced? What if a particular disease is imaged by some scanners but not by the other scanners? There is a possibility that AI system cannot make a correct evaluation in such cases. The AI system should be tested using “real-world data” before using in clinical settings.

Some approaches could further improve the accuracy. In this research, in order to reduce the learning cost, we used a network that is equivalent to ResNet-50 [15], which is a relatively simple version of the “ResNet” family. In fact, ResNet systems with deeper layers can be built technically. More recently, various networks based on ResNet have been developed and demonstrated to have high performance [26, 27]. From the viewpoint of big-data science, it is also important to increase the number of images for further improvement in diagnostic accuracy.
There are many other AI algorithms that can be used for PET image classification and detection. In a recent study by Zhao et al., they used so-called 2.5D U-Net to detect lesions on 68Ga-PSMA-11 PET-CT images for prostate cancer [28]. They trained the CNN using not fully 3D images but axial, coronal, and sagittal images in order to simulate the workflow of physicians and save computational and memory resources. They reported that the network achieved 99% precision, 99% recall, and 99% F1 score. Not only U-Net [29] as an image segmentation method, but also regional CNN (RCNN) and M2Det [30] as object extraction methods, may be useful to localize the lesion. In a study by Yan K et al., MR images segmentation was performed using a deep learning-based technology named the Propagation Deep Neural Network (P-DNN). It has been reported that by using P-DNN, the prostate was successfully extracted from MR images with a similarity of 84.13 ± 5.18% (dice similarity coefficient)[31]. On the other hand, these methods also have a problem that enormous time is required to create training data.

The oversight rate (i.e., the rate of misclassifying malignant images as benign ones) was 0.6%. We think that the rate is small but not satisfactory. As we consider the current system will contribute to radiologists as a double-checking system, decreasing oversight is much more important to decreasing false positive rate. We are planning experiments to decrease oversight rate by adding the CT data to the CNN.

This study has some limitations. First, this model can only deal with FDG PET MIP images in the imaging range from the head to the knees; correct prediction is much more difficult when spot images or whole-body images from the head to the toes are given. Future studies will use RCNN to solve the problem. Second, low-accumulation lesions such as pancreatic cancer cannot be classified only with MIP images, and there is a possibility that it cannot be labeled correctly. Third, the cases were classified by a nuclear medicine physician but were not based on a pathological diagnosis.

Conclusion

The CNN-based system successfully classified whole-body FDG PET images into 3 categories in whole-body and region-based analyses. These data suggested that PET images can be classified by MIP images and that the AI could be helpful for physicians as a double-checking system to prevent
oversight and misdiagnosis, although further improvement is needed before it is used clinically.

List Of Abbreviations

PET, positron emission tomography
CT, computed tomography
FDG, 18F-fluorodeoxy glucose
AI, artificial intelligence
CNN, convolutional neural network
ResNet, residual network
MIP, maximum intensity projection
SUVmax, maximum standardized uptake value
ReLU, rectified linear unit
Grad-CAM, Gradient-weighted Class Activation Mapping
RCNN, regional convolutional neural network

Declarations

Ethics approval and consent to participate

The institutional review board of Hokkaido University Hospital approved the study (#017-0365) and waived the need of written informed consent from each patient because the study was conducted retrospectively registered.

Consent for publication

Not applicable

Availability of data and materials

Images used in this study cannot be released from the viewpoint of personal information protection. In addition, the amount of data is too large to publish.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was partly supported by the Center of Innovation Program from Japan Science and
Technology Agency Grant Number H30W16 to purchase a computer for data analysis, and hard disks for data storage, and to compose the manuscript.

Authors' contributions

KKa, KH, and TS conceived the study concept. KKa conducted the experiments. KKa, KH, and SF interpreted the results. KKa, KH, and SF wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This research is partially supported by the Center of Innovation Program from Japan Science and Technology Agency, JST (Grant Number H30W16). We thank Eriko Suzuki for her support.

References

1. Mandelkern M, Raines J. Positron emission tomography in cancer research and treatment. Technol Cancer Res Treat. 2002;1:423-39. doi:10.1177/153303460200100603.

2. Nabi HA, Zubeldia JM. Clinical applications of (18)F-FDG in oncology. J Nucl Med Technol. 2002;30:1-3. https://www.ncbi.nlm.nih.gov/pubmed/11948260.

3. Kinuya K, Nishiyama Y, Kato R, Kayano D, Sato S, Tashiro M, et al. The 8th survey report on national nuclear medicine clinical practice in Japan. Radioisotopes. 2018;67:339-87.

4. Komeda Y, HANDA H, Watanabe T, Nomura T, Kitahashi M, Sakurai T, et al. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience. Oncology. 2017;93 Suppl 1:30-4. doi:10.1159/000481227.

5. Shen D, Wu G, Suk HI. Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng. 2017;19:221-48. doi:10.1146/annurev-bioeng-071516-044442.

6. Kahn Jr. CE. From Images to Actions: Opportunities for Artificial Intelligence in Radiology. Radiology. 2017;285:719-20. doi:10.1148/radiol.2017171734.
7. Dreyer KJ, Geis JR. When Machines Think: Radiology’s Next Frontier. Radiology. 2017;285:713–8. doi:10.1148/radiol.2017171183.

8. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436. doi:10.1038/nature14539.

9. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 2017;284:574–82. doi:10.1148/radiol.2017162326.

10. Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7:5467. doi:10.1038/s41598-017-05848-2.

11. Yasaka K, Akai H, Abe O, Kiryu S. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study. Radiology. 2018;286:887–96. doi:10.1148/radiol.2017170706.

12. Xu L, Tetteh G, Lipkova J, Zhao Y, Li H, Christ P, et al. Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on (68)Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods. Contrast Media Mol Imaging. 2018;2018:2391925. doi:10.1155/2018/2391925.

13. Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net convolutional neural network study. PLoS One. 2018;13:e0195798. doi:10.1371/journal.pone.0195798.

14. Ypsilantis PP, Siddique M, Sohn HM, Davies A, Cook G, Goh V, et al. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks. PLoS One. 2015;10:e0137036. doi:10.1371/journal.pone.0137036.

15. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. p. 770–8. doi:10.1109/CVPR.2016.90.

16. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.

17. Karimpouli S, Fathianpour N, Roohi J. A new approach to improve neural networks’ algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN). J Pet Sci Eng. 2010;73:227–32. doi:https://doi.org/10.1016/j.petrol.2010.07.003.

18. Kahou SE, Michalski V, Konda K, Memisevic R, Pal C. Recurrent Neural Networks for Emotion Recognition in Video. Proc 2015 ACM. 2015;:467–74. doi:10.1145/2818346.2830596.

19. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. In arXiv:161002391v3. 2017.

20. Diederik PK, Jimmy B. Adam: A Method for Stochastic Optimization. In arXiv:14126980. 2014.

21. Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks. Deep Learn Data Label Med Appl. 2016;2016:170–8. doi:10.1007/978-3-319-46976-8_18.

22. Choi H, Lee DS, Alzheimer’s Disease Neuroimaging I. Generation of Structural MR Images from Amyloid PET: Application to MR-Less Quantification. J Nucl Med. 2018;59:1111–7. doi:10.2967/jnumed.117.199414.

23. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19. doi:10.1002/mp.12155.

24. Martinez-Murcia FJ, Górriz JM, Ramírez J, Ortiz A. Convolutional Neural Networks for
Neuroimaging in Parkinson’s Disease: Is Preprocessing Needed? Int J Neural Syst. 2018;28:1850035. doi:10.1142/S0129065718500351.

25. Zhou Z, Chen L, Sher D, Zhang Q, Shah J, Pham N-L, et al. Predicting Lymph Node Metastasis in Head and Neck Cancer by Combining Many-objective Radiomics and 3-dimensional Convolutional Neural Network through Evidential Reasoning. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2018;2018:1-4. doi:10.1109/EMBC.2018.8513070.

26. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and. 2016. http://arxiv.org/abs/1602.07360. Accessed 7 Mar 2019.

27. Zagoruyko S, Komodakis N. Wide Residual Networks. 2016. http://arxiv.org/abs/1605.07146. Accessed 7 Mar 2019.

28. Zhao Y, Gafita A, Vollnberg B, Tetteh G, Haupt F, Afshar-Oromieh A, et al. Deep neural network for automatic characterization of lesions on 68Ga-PSMA-11 PET/CT. Eur J Nucl Med Mol Imaging. 2019. doi:10.1007/s00259-019-04606-y.

29. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag; 2015. p. 234-41.

30. Zhao Q, Sheng T, Wang Y, Tang Z, Chen Y, Cai L, et al. M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network. 2018. http://arxiv.org/abs/1811.04533. Accessed 26 Dec 2019.

31. Yan K, Wang X, Kim J, Khadra M, Fulham M, Feng D. A propagation-DNN: Deep combination learning of multi-level features for MR prostate segmentation. Comput Methods Programs Biomed. 2019;170:11-21.
Tables

Table 1. Patient characteristics

	n (%)
Total patients	3485
Males	1954 (56.1)
Females	1531 (43.9)

	n (%), Mean±SD
Age (in years)	
Mean±SD	63.9 ± 13.6
Range	24 - 95

Cancer-related biomarkers	Positive/Total (%)
AFP	16/167 (9.6)
CA19-9	177/591 (29.9)
CEA	282/889 (31.7)
CYFRA	138/402 (34.3)
NSE	381/621 (61.4)
PIVKA-II	24/135 (17.8)
Pro-GRP	95/540 (17.6)
PSA	18/55 (32.7)
SCC	172/784 (21.9)
S-hCG	3/3 (100)

Pretest diagnosis	n (%)
Head and neck neoplasms	988 (28.4)
Hematopoietic neoplasms	510 (14.6)
Neoplasms of lung, pleura, or mediastinum	507 (14.5)
Hepatobiliary neoplasms	305 (8.8)
Gastrointestinal neoplasms	258 (7.4)
Skin neoplasms	168 (4.8)
Urologic neoplasms	135 (3.9)
Gynecological neoplasms	112 (3.2)
Sarcoidosis	91 (2.6)
Breast neoplasms	67 (1.9)
Brain and spinal neoplasms	65 (1.9)
Others	279 (8.0)
Table 2. Details of architecture.

Layer	Filter Size	Stride	Repeat count	Output Size
Input				(224, 224, 3)
Convolutional	(7, 7)	(2, 2)	1	(112, 112, 64)
Max pooling	(3, 3)	(2, 2)	1	(56, 56, 64)
Residual 1	(3 x 3, 64)	(1, 1)	3	(56, 56, 64)
Residual 2	(3 x 3, 128)	(2, 2)	4	(28, 28, 128)
Residual 3	(3 x 3, 256)	(2, 2)	6	(14, 14, 256)
Residual 4	(3 x 3, 512)	(2, 2)	3	(7, 7, 512)
Average pooling	(7, 7)	(1, 1)	1	(1, 1, 1024)
Fully connected				(3)

"Residual" contains the following structure. “1. Convolutional layer1, 2. Batch normalization1, 3. Activation layer1 (ReLU), 4. Convolutional layer2, 5. Batch normalization2, 6. Merge layer (Add), 7. Activation layer2 (ReLU).”

Table 3. Details of Results of Experiments 1 and 2

Experiment 1	(a) Image-based	Correct Label	
	Benign	Malignant	Equivocal
Benign	96.6%	2.4%	10.1%
Malignant	0.3%	97.3%	12.1%
	Benign	Malignant	Equivocal
----------------	--------	-----------	-----------
Equivocal	3.2%	0.2%	77.8%
(b) Patient-based		Correct Label	
	Benign	Malignant	Equivocal
Benign	99.4%	0.6%	3.8%
Malignant	0.0%	99.4%	8.8%
Equivocal	0.6%	0.0%	87.5%

Experiment 2

	Benign	Malignant	Equivocal
(c) Head and Neck		Correct Label	
	Benign	Malignant	Equivocal
Benign	97.8%	1.7%	3.0%
Malignant	1.5%	97.3%	0.8%
Equivocal	0.7%	1.1%	96.2%
(d) Chest		Correct Label	
	Benign	Malignant	Equivocal
	Benign	Malignant	Equivocal
----------------	---------	-----------	-----------
Benign	98.4%	1.8%	5.9%
Malignant	0.6%	96.6%	1.6%
Equivocal	1.0%	1.6%	92.5%
(e) Abdomen		Correct Label	
	Benign	Malignant	Equivocal
Benign	94.9%	5.7%	7.0%
Malignant	1.1%	92.8%	2.0%
Equivocal	4.1%	1.5%	91.0%
(f) Pelvic region		Correct Label	
	Benign	Malignant	Equivocal
Benign	99.7%	0.4%	2.8%
Malignant	0.1%	99.6%	1.9%
Equivocal	0.3%	0.0%	95.3%
The functional architecture of the CNN. (A) The detailed structure of the CNN used in this study. (B) An internal structure of the residual layer.
Figure 2

Typical cases in this study. (1) benign patient with physiological uptake in the larynx, (2) malignant uptake patient with multiple metastasis to bones and other organs, and (3) equivocal patient with abdominal uptake that was indeterminant between malignant or inflammatory foci.
Figure 3

Visualization of classification standard of CNN. (A) Examples of original images input to CNN.
(B) Examples of images output by Grad-CAM, highlighting the area of malignant uptake.
Figure 4

Typical cases whose category were incorrectly classified (a, false positive case; b, false negative case).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Equation 1.jpg