Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis

Xinbo Zhang,* Cristina M. Ramírez,* Binod Aryal, Julio Madrigal-Matute, Xinran Liu, Antonio Diaz, Marta Torrecilla-Parra, Yajaira Suárez, Ana M. Cuervo, William C. Sessa, Carlos Fernández-Hernando

OBJECTIVE: Endothelial Cav-1 (caveolin-1) expression plays a relevant role during atherogenesis by controlling NO production, vascular inflammation, LDL (low-density lipoprotein) transcytosis, and extracellular matrix remodeling. Additional studies have identified cholesterol-rich membrane domains as important regulators of autophagy by recruiting ATGs (autophagy-related proteins) to the plasma membrane. Here, we investigate how the expression of Cav-1 in the aortic endothelium influences autophagy and whether enhanced autophagy contributes to the atheroprotective phenotype observed in Cav-1–deficient mice.

APPROACH AND RESULTS: To analyze the impact of Cav-1 deficiency on regulation of autophagy in the aortic endothelium during the progression of atherosclerosis, we fed \(Ldlr^{−/−} \) and \(Cav-1^{−/−}Ldlr^{−/−} \) mice a Western diet and assessed autophagy in the vasculature. We observe that the absence of Cav-1 promotes autophagy activation in athero-prone areas of the aortic endothelium by enhancing autophagic flux. Mechanistically, we found that Cav-1 interacts with the ATG5-ATG12 complex and influences the cellular localization of autophagosome components in lipid rafts, which controls the autophagosome formation and autophagic flux. Pharmacological inhibition of autophagy attenuates the atheroprotection observed in Cav-1 Knockout mice by increasing endothelial inflammation and macrophage recruitment, identifying a novel molecular mechanism by which Cav-1 deficiency protects against the progression of atherosclerosis.

CONCLUSIONS: These results identify Cav-1 as a relevant regulator of autophagy in the aortic endothelium and demonstrate that pharmacological suppression of autophagic flux in Cav-1–deficient mice attenuates the atheroprotection observed in Cav-1 Knockout mice. Additionally, these findings suggest that activation of endothelial autophagy by blocking Cav-1 might provide a potential therapeutic strategy for cardiovascular diseases including atherosclerosis.

BASIC SCIENCES

Key Words: animals & atherosclerosis & autophagy & caveolae & caveolin-1

Arteriosclerosis, Thrombosis, and Vascular Biology is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

Correspondence to: Carlos Fernández-Hernando, PhD, Yale University School of Medicine, 10 Amistad St, Room 337c, New Haven, CT 06520. Email carlos.fernandez@yale.edu

*These authors contributed equally to this article.

The Data Supplement is available with this article at https://www.ahajournals.org/doi/suppl/10.1161/ATVBAHA.120.314291.

For Sources of Funding and Disclosures, see page 1521.

© 2020 The Authors. Arteriosclerosis, Thrombosis, and Vascular Biology is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.
Inhibits endothelial inflammation. Conversely, defec-
tively upregulates endothelial NO synthase expression, and under laminar SS protects ECs from oxidative stress, and deleterious autophagy in ECs of hypercholesterolemic Apoe−/− mice develops larger atherosclerotic lesions, which is LDLR (LDL receptor) independent. Knocking down of Cav-1 in cultured bovine aortic ECs leads to a striking increase in the expression of the autophagy marker protein LC3BII, implying that Cav-1 is a critical determinant of autophagy. In this report, we identified the functional relationship of Cav-1 on autophagy activation in athero-prone areas characterized by disturbed flow and low SS and the effects of Cav-1 expression on the initiation of atherosclerosis through autophagy activation. We found that the absence of Cav-1 attenuates the initiation of atherosclerosis by promoting autophagic flux both in vascular ECs exposed to autophagy stimulation in vitro and in early atherosclerotic lesions in vivo. The effects of Cav-1 on autophagy activation were, in part, mediated by the interaction between Cav-1 and the ATG5-ATG12 complex and the alteration in the cellular localization of APG components, which impacts APG formation and autophagic flux. Notably, pharmacologic inhibition of autophagy abrogated the atheroprotection observed in Cav-1−/− mice, which implies regulation of autophagy by Cav-1 during atherogenesis.

MATERIALS AND METHODS

The data that support the findings of this study are available from the corresponding author upon reasonable request. For details of reagents used, please see the Major Resources Tables in the Data Supplement.

Animal Procedures

Cav-1−/− and Ldlr−/− mice were obtained from The Jackson Laboratory. Cav-1−/−Ldlr−/− mice were obtained by breeding Cav-1−/− and Ldlr−/− mice. All of these mice were on a C57BL/6J genetic background. Endothelial-specific Cav-1 transgenic mice (Cav-1ΔC) carrying a canine Cav-1 transgene under the preproendothelin-1 promoter were backcrossed 6 generations with F6-generation Cav-1−/− mice, as reported previously. Atherosclerosis was induced by feeding the mice a Western-type diet (No. D12108; Research Diets, Inc., Research Diets, Inc., New Brunswick, New Jersey).

Highlights

- Cav-1 (caveolin-1) deficiency promotes autophagy activation in vascular endothelial cells.
- ATG (autophagy-related protein)-5–ATG12 complex colocalizes with caveolae, and silencing of Cav-1 influences the distribution of autophagosome components.
- Increased autophagy in the endothelium mediates, in part, the atheroprotection observed in Cav-1−/− mice.
- Cav-1 deficiency attenuates endothelial cell activation in response to proatherogenic cytokines by enhancing autophagic flux.

Nonstandard Abbreviations and Acronyms

Abbreviation	Description
3-MA	3-methyladenine
AAV	adeno-associated virus
APG	autophagosome
ATG	autophagy-related protein
Cav-1	caveolin-1
Cx-43	connexin-43
EC	endothelial cell
HAEC	human aortic endothelial cell
IL1β	interleukin-1β
LDL	low-density lipoprotein
LDLR	low-density lipoprotein receptor
ORO	oil red O
PCKS9	proprotein convertase subtilisin/kexin type 9
SS	shear stress
TNFα	tumor necrosis factor-α
Vps34	vacuolar protein sorting 34
WT	wild type

Cav-1 has been recently shown to be involved in autophagy activation in adipocytes, cardiomyocytes, and cancer cells. Knocking down of Cav-1 in cultured bovine aortic ECs leads to a striking increase in the expression of the autophagy marker protein LC3BII, implying that Cav-1 is a critical determinant of autophagy. In this report, we identified the functional relationship of Cav-1 on autophagy activation in athero-prone areas characterized by disturbed flow and low SS and the effects of Cav-1 expression on the initiation of atherosclerosis through autophagy activation. We found that the absence of Cav-1 attenuates the initiation of atherosclerosis by promoting autophagic flux both in vascular ECs exposed to autophagy stimulation in vitro and in early atherosclerotic lesions in vivo. The effects of Cav-1 on autophagy activation were, in part, mediated by the interaction between Cav-1 and the ATG5-ATG12 complex and the alteration in the cellular localization of APG components, which impacts APG formation and autophagic flux. Notably, pharmacologic inhibition of autophagy abrogated the atheroprotection observed in Cav-1−/− mice, which implies regulation of autophagy by Cav-1 during atherogenesis.
Histology, Immunohistochemistry, and Morphometric Analyses

Mice were euthanized using 100 mg/kg ketamine and 10 mg/kg xylazine. Following anesthesia, the thoracic cavity was exposed immediately, and in situ perfusion fixation through the left cardiac ventricle was performed by thorough perfusion with PBS and 4% paraformaldehyde. Mouse hearts, aortas, and aortic arches were isolated, fixed O/N in 4% paraformaldehyde, dehydrated with 30% sucrose O/N, embedded in Optimal Cutting Temperature compound, and frozen at −80°C. For morphometric analysis, serial sections were cut at 6-μm thickness using a cryostat. Every third slide from the serial sections was stained with oil red O (ORO) for the quantification of the atherosclerotic plaque size. Each animal received intraperitoneal injection of 3-MA solution (5% donkey serum, 0.5% BSA, 0.3% Triton X-100 in PBS) for 1 hour at room temperature, incubated at 4°C O/N with primary antibodies for VCAM1 (vascular cell adhesion molecule 1; No. ab19569; Abcam), CD68 (No. MCA1957; AbD Serotec), CD31 (No. ab28364; Abcam), LC3B (No. 2775; Cell Signaling), or SQSTM1/p62 (sequestosome 1; No. ab56416; Abcam), and incubated with the Image J (National Institutes of Health) software.

ORO Staining

Neutral lipids in aortic frozen sections were detected by ORO staining as described previously.20 The frozen sections were thoroughly fixed in 78% methanol and stained with ORO solution (mixed with 35 mL of 0.2% ORO in methanol and 10 mL of 1M NaOH) for 50 minutes and then destained in 78% methanol for 5 minutes. The stained sections were captured with Olympus SZX16 stereo microscope and quantified with the Image J program.

Electron Microscopy Analysis

Mouse aortas were perfused and fixed by gravity monitoring a constant perfusion pressure of 40 cm H2O. For regular electron microscopy studies, mouse aortas were fixed with 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium cacodylate (pH 7.4) for 2 hours at room temperature. Tissues were postfixed in 1% OsO4 in the same buffer for 1 hour, then stained en bloc with 2% aqueous uranyl acetate for 30 minutes, dehydrated in a graded series of ethanol to 100%, and embedded in Poly/bed 812 for 24 hours. Thin sections (60 nm) were cut with a Leica ultramicrotome and poststained with uranyl acetate and lead citrate. Sample grids were examined with a FEI TenCai Biotwin transmission electron microscope at 80 kV. Digital images were taken using a Morada CCD camera fitted with iTEM imaging software (Olympus). Electron microscopy images were used to quantify APG compartments in the mouse aortic endothelium. Sampling and quantification was performed as described previously.21 The amount of APG compartment per endothelial area was calculated using Image J.

Proteolysis Measurements

Mouse fibroblast (NIH3T3 cells) transfected with nonsilencing control RNA or Cav-1 siRNA were labeled with 3H-leucine for 48 hours, washed extensively, and incubated in media supplemented with an excess of cold leucine in the presence of serum or native LDL (60 μg/mL). Contribution of lysosomes to total protein degradation was analyzed after adding 20 mmol/L NH4Cl and 100 mmol/L leupeptin to block protein degradation by lysosomes. Rate of proteolysis was calculated as the percentage of the initial acid precipitable radioactivity (proteins) transformed into acid soluble radioactivity (amino acids and small peptides) at the indicated times.

In Vivo Application of 3-Methyladenine

WT and Cav-1−/− mice injected with AAV8-PCSK9 virus were fed a Western-type diet diet for 4 weeks to induce early-stage atherosclerosis. Each animal received intraperitoneal injection of 3-methyladenine (3-MA; 30 mg/kg; Sigma-Aldrich) twice a week during the Western-type diet feeding period.22 3-MA was dissolved in PBS and kept at −20°C. The 3-MA solution was heated to 60°C immediately each time before injection. The heart was harvested after the last treatment for atherosclerotic plaque analysis.

In Vivo Autophagic Flux

To investigate the autophagic flux in vivo, Ldlr−/− and Ldlr−/− Cav-1−/− mice were subjected to intraperitoneal injection of 30 mg/kg chloroquine (Sigma-Aldrich) or PBS 48, 24, or 4 hours before euthanasia.8 The aortic arch was harvested for immunofluorescence staining of p62 and LC3B, and the descending aorta was harvested for Western blot analysis of p62.

Cell Culture, Treatment, and Transfection

Human aortic ECs (HAECs), human coronary aortic ECs, human umbilical vascular ECs and EA.hy926 cells were
obtained from American Type Tissue Collection. EA.hy926 cells are a human immortalized cell line commonly used to study ECs functions, including angiogenesis, NO production, and inflammation. Human primary and immortalized ECs were tested for mycoplasma contamination before performing the experiments. ECs were cultured in M199 complete medium (20% fetal bovine serum+endothelial cell growth supplement+0.1% Heparin+1% Pen-strep) unless stated otherwise. Off-target-plus siRNAs (Smartpool) against human Cav-1 (Cav-1 siRNA) and control siRNA (nonsilencing control RNA) were obtained from Dharmacon (Lafayette, CO). HAEcs, human umbilical vascular ECs, and EA.hy926 cells were transfected with 40 nmol/L siRNA utilizing RNAiMax (Invitrogen) and analyzed 72 hours after transfection. In some experiments, cells were treated with 100 nmol/L of rapamycin (LC Laboratories, Woburn, MA) 24 hours before the end of the transfection period.

Lipid Raft Isolation

Detergent-free lipid raft isolation was performed as described before.23 EA.hy926 cells were grown in 150-mm plates at confluence and washed 3× with ice-cold PBS. Cells were then scraped into 1 mL ice-cold sodium carbonate (500 mmol/L, pH 11.0) supplemented with a cocktail of protease inhibitors, homogenized using a Dounce homogenizer, and sonicated for 30 seconds at setting 2 on the Branson Sonifier 250. An aliquot was kept for protein quantification. Identical amount of protein from the different homogenates was then placed on the bottom of polycarbonate tubes and adjusted to 45% sucrose (w/v) by the addition of 2 mL of 90% sucrose prepared in 25 mmol/L MES (2-[N-morpholino]ethanesulfonic acid; pH 6.5, 0.5 M NaCl). A 5% to 35% discontinuous sucrose gradient was formed (4 mL of 35% sucrose and 4 mL of 5% sucrose, both in MES containing 250 mmol/L sodium carbonate) and centrifuged at 35000 rpm for 18 hours in a SW40 rotor (Beckman Coulter). Twelve gradient fractions (1 mL) and a pellet were scraped into 1 mL ice-cold sodium carbonate (500 mmol/L, pH 11.0) supplemented with a cocktail of protease inhibitors, and centrifuged at 35000 rpm for 18 hours in a SW40 rotor (Beckman Coulter). Twelve gradient fractions (1 mL) and a pellet were collected from the top and mixed with SDS-PAGE loading buffer. Equal volumes of each fraction were loaded, separated by SDS-PAGE, and assessed by Western blot.

Western Blot Analysis

Cells were lysed in ice-cold buffer containing 50 mmol/L Tris-HCl, pH 7.4, 0.1 mmol/L EDTA, 0.1 mmol/L EGTA, 1% NP-40, 0.1% sodium deoxycholate, 0.1% SDS, 100 mmol/L NaCl, 10 mmol/L NaF, 1 mmol/L sodium pyrophosphate, 1 mmol/L sodium orthovanadate, 1 mmol/L Pefabloc SC, and 2 mg/mL protease inhibitor cocktail (Roche Diagnostics Corp). Protein concentrations were determined using the DC Protein Assay Kit (Bio-Rad Laboratories). Cell lysates containing 12.5 to 25 μg of protein were analyzed by SDS-PAGE and immunoblotting. Primary antibodies used include the following: Cav-1 (No. 610058; BD Biosciences), LC3B (No. 2775; Cell Signaling), SOSTM1/p62 (No. ab56416; Abcam), and β-actin (No. sc-68979; Santa Cruz Biotechnology), PKB/AKT (protein kinase B, also known as Akt; No. 9272; Cell Signaling), p-AKT (No.9277; Cell Signaling), pS6K (No. 9205; Cell Signaling), S6K (No. 9202; Cell Signaling), ATG5 (No. 2630; Cell Signaling), connexin-43 (Cx-43; No. ab11370; Abcam), vinculin (No. v9131; Sigma), and HSP90 (No. 610419; BD Biosciences). Secondary antibodies were fluorescence-labeled antibodies (LI-COR Biotechnology). Bands were visualized using the Odyssey Infrared Imaging System (LI-COR Biotechnology). Densitometry analysis was performed with ImageJ software (National Institutes of Health) or Image Studio Lite (LI-COR Biosciences).

In Vitro Autophagic Flux

The mCherry-GFP-LC3 plasmid was used to analyze the effect of Cav-1 on autophagic flux in vitro. mCherry-GFP-LC3 functions as an autophagy biosensor capitalizing on the pH difference between the acidic autolysosome and the neutral APG. By combining an acid-sensitive GFP with acid-insensitive mCherry, the acidic environment inside the lysosome quenches the fluorescent signal of GFP, while the mCherry signal is relatively stable. Yellow puncta (GFP positive/mCherry positive) indicate the formation of APGs, with these puncta turning red (GFP negative/mCherry positive) upon fusion of an APG with a lysosome. An increase in autophagy leads to more yellow and red puncta, while blocking fusion of APGs with lysosomes leads to an increase in yellow puncta but a decrease in red puncta. Briefly, EA.hy926 cells were infected with AAV2/2_mCherry-GFP-LC3 for 48 hours following transfection with nonsilencing control RNA or Cav-1 siRNA for 72 hours. After transfection, cells were cultured under basal conditions or in the absence of fetal bovine serum for 6 hours (starvation). Confocal images were analyzed to quantify the amount of green, red, and yellow puncta per cell. Data represent the average of 20 cells per treatment.

Confocal Microscopy

In some in vitro experiments, immunofluorescence staining was analyzed using a Leica SP5 confocal microscope (Wetzlar, Germany). All gains for the acquisition of comparable images were maintained at a constant level. Measurement of Cav-1–positive fluorescence in the plasma membrane versus intracellular was assessed manually and nonblinded method by using Image J software (National Institutes of Health). Fluorescence intensity values (AU) using Image J and corresponding to traced lines in cells cultured in basal conditions or in the absence of fetal bovine serum for 6 hours (starvation) from individual stacks were obtained from at least 3 independent experiments. Data from a representative experiment were exported to and represented using GraphPad Prism 7. Specificity of the positive immunofluorescent staining was corroborated by substituting the primary antibody by a matched immunoglobulin. In some experiments, Pearson correlation coefficient was used to assess colocalization analysis by Image J (Coloc2).

Statistical Analysis

Animal sample size for each study was chosen based on literature documentation of similar well-characterized experiments. The number of animals used in each study is listed in the figure legends. In vitro experiments were routinely repeated at least 3× unless otherwise noted. Data are expressed as mean±SEM unless otherwise indicated. Data analysis was performed using GraphPad Prism Software, version 7 (GraphPad, San Diego, CA). Normality (D’Agostino-Pearson omnibus or Shapiro-Wilk test) and equal variance (Brown-Forsythe) were analyzed using Prism 7 to determine...
whether the applied parametric test was appropriate. Statistical differences were measured using an unpaired 2-sided Student t test, 1-way ANOVA, or 2-way ANOVA with Bonferroni correction for multiple comparisons. A value of P<0.05 was considered statistically significant.

RESULTS
Cav-1 Restrains Autophagy in the Aortic Endothelium

To assess in detail how Cav-1 influences EC morphology in athero-prone and athero-resistant areas, we analyzed the aortic endothelium in Ldlr−/− and Ldlr−/−Cav-1−/− mice by electron microscopy (Figure 1A). Interestingly, we found that Ldlr−/−Cav-1−/− mice show a 2–to 3-fold increase in vesicular compartments compatible with autophagic vacuoles compared with Ldlr−/− mice, suggesting that the absence of Cav-1 might enhance autophagy in vivo (Figure 1A). Injection with AAV-PCSK9 led to the degradation of hepatic LDLR and rapidly induced hypercholesterolemia.6,24 Immunostaining of athero-prone areas from the Cav−/− mice injected with AAV-PCSK9 (Cav−/−-AAV-PCSK9) also showed higher levels of LC3B (Figure 1B) and significantly decreased autophagy substrate p62 (Figure 1C), compared with the WT-AAV-PCSK9 (control mice), suggesting an increase in autophagic flux. Conversely, the reexpression of Cav-1 in the aortic endothelium (Cav−/− mice) reduced LC3B expression (Figure 1B) and increased p62 positive staining to similar levels observed in WT mice (Figure 1C), indicating EC autonomy. To confirm that changes in LC3 and p62 levels were indeed a result of increased autophagy, we treated mice with chloroquine to block lysosomal proteolysis and directly measure autophagic flux. We observed an accumulation of LC3B (Figure 1D) and p62 (Figure 1A and IB in the Data Supplement) in the aortic endothelium after chloroquine treatment that was significantly higher in Ldlr−/−Cav−/− than in the Ldlr−/− group, confirming an increase of autophagic flux in vivo in the absence of Cav-1.

Cav-1 Regulates Autophagy by Attenuating Autophagic Flux in Human ECs

We next assessed how Cav-1 expression influenced activation of autophagy in HAECs. Similar to the results observed in vivo, Cav-1 knockdown significantly increased LC3B puncta (Figure 2A) and reduced p62 levels (Figure 2B), suggesting that Cav-1–deficient ECs have an increased autophagic flux compared with control cells. Rapamycin treatment was used as a positive control for autophagy induction in HAECs (Figure 2A). To further demonstrate that Cav-1 expression influences the autophagic flux, we infected EA.hy926 cells with a construct encoding a mCherry-GFP-LC3 reporter gene.25 This approach facilitates the identification of APGs in both fluorescence colors and autolysosomes only in red fluorescence (GFP fluorescence is quenched at low pH as found in lysosomes). The ratio between the only red (autolysosomes) and dual color puncta indicates the measurement of the autophagic flux. Silencing of Cav-1 under starvation conditions (serum deprivation) significantly increased the total number of autophagic vacuoles as a result of higher content of both APGs and autolysosomes, thus suggesting that the higher autophagic flux observed in the Cav−/−–deficient ECs was a combination of higher induction of autophagy and efficient APG clearance (Figure 2C). In agreement with these results, silencing Cav-1 in mouse fibroblasts (NIH3T3 cells) resulted in significantly higher rates of lysosomal degradation of long-lived proteins compared with cells transfected with a nontargeting control sequence (nonsilencing control RNA; Figure II in the Data Supplement). This is consistent with results observed previously in ECs and adipocytes,13,16 indicating the important role of Cav-1 on autophagic flux in different cell types. Similarly, we observed a slight increase in autophagic flux under basal conditions in mouse fibroblasts (Figure II in the Data Supplement). Together, these results demonstrate that Cav-1/caveolae influence autophagic flux in ECs.

Autophagy Regulates Cav-1 Cellular Localization

To determine the potential mechanism of enhanced autophagy in Cav−/−–deficient HAECs, we initially analyzed whether Cav-1 silencing influences mTOR (mammalian target of rapamycin) signaling, which has been associated to the regulation of autophagy.26,27 As seen in Figure III in the Data Supplement, Cav-1 inhibition does not affect mTOR signaling or LC3BIll expression. Rapamycin was used as a positive control (Figure III in the Data Supplement). A previous report has identified the relevance of Cx-43—a lipid raft/caveolae-associated protein, in regulating the initial steps during APG formation.28 Connexins constitutively attenuate autophagy via direct interaction with several ATGs involved in the APG formation such as ATG16 and components of the PI3K (phosphoinositide 3-kinase) autophagy initiation complex (Vps34 [vacuolar protein sorting 34], Beclin-1, and Vps15).29 Vps34-dependent phosphorylation of lipids in specific intracellular membrane regions marks the site from where the APG membranes emerge and elongate through covalent conjugation of ATG5/ATG12/ATG16. Based on these observations, we wondered whether Cav-1 inhibition might influence the cellular localization of some APG components. To this end, we first determined how Cav-1 expression influences the cellular distribution of ATG5 using discontinuous sucrose gradient fractionation. This method allows the separation of tightly embedded membrane proteins that are buoyant (fractions 4–5, contains lipid
Figure 1. Lack of Cav-1 (caveolin-1) in endothelial cells (ECs) promotes autophagy in vivo.

A, Representative electron microscopy (EM) image of the lesser curvature of Ldlr\(^{-/-}\) mice (left). Middle, Representative EM images of aortic ECs from the lesser curvature of Ldlr\(^{-/-}\) and Ldlr\(^{-/-}\)Cav-1\(^{-/-}\) mice. Quantification of autophagosomes in ECs from the athero-prone area of the aortic arch in Ldlr\(^{-/-}\) and Ldlr\(^{-/-}\)Cav-1\(^{-/-}\) mice is shown in the right and is expressed as number of autophagosomes (#AC)/cell area (µm²). Data represent mean±SEM (**P<0.01; n=3, average of 20 images per mouse).

B, Representative immunofluorescence images of LC3B (light chain 3B) and CD31 (cluster of differentiation 31) staining in the lesser curvature of WT, Cav-1\(^{-/-}\), and Cav-1\(^{-/-}\) mice treated with adeno-associated virus (AAV)-PCSK9. White arrows in the magnified images indicate LC3B\(^{+}\) dots. Quantification is shown in right and represents the mean of LC3B\(^{+}\) dots per CD31\(^{+}\) cell (n=4 mice in each group and 15–30 ECs per mouse). Data represent the mean±SEM (*P<0.05).

C, Representative immunofluorescence images of p62 and CD31 staining in the lesser curvature of WT, Cav-1\(^{-/-}\), and Cav-1\(^{-/-}\) mice treated with AAV-PCSK9. D, Representative immunofluorescence images of LC3B and CD31 staining in the lesser curvature of Ldlr\(^{-/-}\) and Ldlr\(^{-/-}\)Cav-1\(^{-/-}\) mice treated with PBS or Chloroquine. Quantification of LC3B\(^{+}\) staining is represented in right (n=4 mice in each group). Data represent the mean±SEM. *P<0.05 compared with Ldlr\(^{-/-}\) mice treated with PBS; #P<0.05 compared with Ldlr\(^{-/-}\) mice treated with chloroquine (CQ).

Data were analyzed by an unpaired 2-sided Student t test (A), 1-way ANOVA (B), or 2-way ANOVA (D) with Bonferroni correction for multiple comparisons. Scale bar=100 µm. EL indicates elastic lamina; L, lumen; and VSMC, vascular smooth muscle cell.
rafts and caveolae) and nonraft proteins at the bottom of the gradient (fractions 7–P; Figure IV in the Data Supplement). Our results showed a partial localization of ATG5 and LC3BII in the lipid raft fractions that cofractionated with Cav-1 (Figure 3A, quantified in right), while ATG5 levels in raft fractions were reduced by the inhibition of Cav-1 protein expression (Figure 3B). Interestingly, ATG5 levels decrease in lipid raft fractions in cells treated with the autophagy inducer rapamycin (Figure 3C, quantified in right). Indeed, densitometric analysis of concentrated lipid rafts showed a decreased ratio of ATG5/Cav-1 in cells treated with Rapamycin (Figure 3D). Together, our results suggest that release of ATG5 from the caveolae might promote APG formation and autophagic flux.

Next, we analyzed whether the induction of autophagy influences Cav-1 expression and cellular localization in ECs. To test this hypothesis, we induced autophagy in ECs by culturing the cells in the absence of serum (serum starvation). Under these conditions, ECs showed an increase in LC3B punctate, increased levels of LC3BII, and a decrease of p62 levels (Figure V in the Data Supplement). Notably, we observed that Cav-1 cellular localization was significantly altered upon autophagy induction. In basal conditions, Cav-1 is predominantly located in the plasma membrane, whereas during starvation, Cav-1 is internalized in intracellular vesicles (Figure 4A and 4B). In agreement with this finding, sucrose gradient fractionation analysis demonstrated a significant increase of Cav-1 expression in nonraft fractions upon starvation, indicating a translocation toward intracellular membrane compartments during autophagy activation (Figure 4C, quantified in bottom). Similarly, ATG5 and Cx-43 cellular distribution
was also altered after autophagy induction (Figure 4C and 4D). We further characterized the intracellular localization of Cav-1 after autophagy induction. Interestingly, Cav-1 partially colocalized with LysoTracker in ECs, as well as with LC3B, under starvation conditions (Figure 4E and 4F; Figure VI in the Data Supplement). Our results are in agreement with previous reports that have shown the presence of Cav-1 in lysosomal compartments during serum deprivation. Overall, these findings suggest that Cav-1 might influence autophagy by regulating the cellular localization of APG components and that the induction of autophagy promotes Cav-1 cellular redistribution.

Silence ATG5 Abrogates the Anti-Inflammatory Effect of Cav-1 Knockdown in ECs

We previously reported that Cav-1 suppression attenuates proinflammatory cytokines (TNFα [tumor necrosis factor-α] and IL1β [interleukin-1β]) and oscillatory flow-induced inflammatory activation in ECs. Since autophagy has been associated with EC activation,430 we next analyzed whether suppression of autophagy attenuates the anti-inflammatory phenotype observed in Cav-1 silenced ECs. As expected, Cav-1 silencing reduces VCAM1 expression in ECs stimulated with TNFα or IL1β. This effect was abrogated in cells transfected with ATG5 siRNA, suggesting that Cav-1 might control EC activation through regulation of autophagy (Figure 5).

Inhibition of Autophagy Attenuates the Atheroprotection Observed in Cav-1–Deficient Mice

Previous reports have shown that autophagy regulates EC inflammation, endothelial-to-mesenchymal transition, redox status, and LDL transcytosis.8,12,16,31 The physiological relevance of autophagy in ECs during atherogenesis has recently been revealed.19 Mice lacking ATG7 in the endothelium develop larger atherosclerotic plaques, suggesting that endothelial autophagic flux protects against the progression of atherosclerosis. Mechanistically, the authors found that impaired autophagic flux promotes lipid deposition in the artery wall and enhances vascular inflammation. To investigate the extent to which autophagy contributes to the atheroprotection observed in the absence of Cav-1, WT and Cav-1−/− mice were injected with AAV-PCSK9, treated with the autophagy inhibitor 3-MA and...
fed a Western-type diet for 4 weeks. Immunostaining and Western blot analysis of p62 in the aorta confirmed the effectiveness of the 3-MA treatment in both WT and Cav-1−/− mice (Figure 6A and 6B; Figure VII in the Data Supplement). 3-MA treatment did not influence Cav-1 expression in ECs (Figure VII in the Data Supplement), and circulating cholesterol and triglycerides levels were not altered compared with untreated WT and Cav-1−/− mice (Figure 6C; Figure VIII in the Data Supplement). Based on our previous findings, the deficiency of Cav-1 in ECs reduced atherosclerosis by inhibiting LDL transcytosis and vascular inflammation.4,6 In this study, we found that the absence of Cav-1 attenuated lipid accumulation in atherosclerotic lesions of mice treated with 3-MA, suggesting that the increased autophagic flux observed in Cav-1−/− mice does not contribute to lipoprotein transport or retention in the artery wall (Figure 6D, quantified in right). However, Cav-1 deficiency no longer resulted in changes in atherosclerotic plaque size following treatment with 3-MA (Figure 6E, quantified in right). Mechanistically, we found that 3-MA impairs the anti-inflammatory effect (VCAM1 expression and CD68+ cells in atherosclerotic plaques).

Figure 4. Starvation mediates changes in Cav-1 (caveolin-1) subcellular localization.

A, Representative confocal images of Cav-1 expression (red) in EA.hy926 cells exposed to basal and starvation conditions. Scale bars=10 µm (top) and 5 µm (bottom). Nuclei were stained with DAPI (4′,6-diamidino-2-phenylindole dihydrochloride; blue). Experiments were performed 3 independent times. B, Representative analysis of Cav-1 expression by confocal microscopy in EA.hy926 cells. Fluorescence intensity plots for Cav-1 and signals along the arrow in the image during basal (red) and starvation conditions (blue) are shown in the bottom. Scale bars=5 µm. Similar fluorescence intensity plot was observed in EA.hy926 cells cultured under the same conditions in 3 independent experiments. C, Representative Western blot analysis of lipid raft fractionation in EA.hy926 cells cultured in basal conditions or fetal bovine serum starvation for 6 h showing differential distribution of Cav-1, ATG (autophagy-related protein)-5, Cx-43 (connexin-43), and LC3B (light chain 3B) along the sucrose fractions (highlighted in white squares). Densitometric analysis is shown in the bottom. D, Western blot analysis of ATG5 and Cav-1 in concentrated lipid raft fractions (F4+5) showing a reduction of ATG5 levels under starvation condition and its densitometric analysis represented as the ATG5/Cav-1 ratio (n=3 each group). Data represent the mean±SEM and were analyzed by an unpaired 2-sided Student t test. *P<0.05 compared with lipid rafts under basal condition. E, Representative confocal images of EA.hy926 cells stained with Cav-1 (red) and LysoTracker (green) during starvation. Scale bars=5 µm. Detailed magnification on the right shows colocalization of LysoTracker positive vesicles with Cav-1 (arrows). Similar Cav-1 intracellular localization was observed in 10 to 15 cells analyzed in 3 independent times. F, Representative confocal images of EA.hy926 cells stained with Cav-1 (red) and LC3B (green) in basal and starvation conditions. Experiments were performed 3 independent times. Scale bar=5 µm. PM indicates plasma membrane.
found in Cav-1−/− mice (Figure 6F and 6G, quantified in right). Together, these results identified autophagy as a relevant mechanistic component of the atheroprotective effects observed in the absence of Cav-1.

DISCUSSION

In this study, we demonstrate that the absence of Cav-1 promotes autophagy activation in the aortic endothelium, which attenuates vascular inflammation and the initiation of atherosclerosis. These findings provide novel mechanistic insight into how endothelial Cav-1 expression might regulate the progression of atherosclerosis and suggest that increased autophagy might be involved in mediating some of the other atheroprotective effects observed in Cav-1–deficient mice, including the decrease of EC activation and LDL transport into the arterial wall.4,32 The autophagy pathway is considered an important regulator of both inflammation and lipid metabolism.33,34 Despite the presence of numerous autophagy-stimulating factors (oxidized lipids, proinflammatory cytokines, and reactive oxygen species) within atherosclerotic plaques, recent reports have identified the dysfunction of autophagy during atherogenesis.35,36 Most important, a number of studies using cell type–specific deletion of ATG5 or ATG7 in ECs, vascular smooth muscle cells, and macrophages have demonstrated that defective autophagy in vascular and inflammatory cells accelerates atherogenesis.12,27,38 In particular, defective autophagy in ECs accelerates atherogenesis in hypercholesterolemic mice by promoting endothelial inflammation, senescence, and lipid retention.6,12

Previous studies have shown that Cav-1 knockdown in ECs promotes mitochondrial reactive oxygen species production, metabolic switching, and autophagic flux.16 However, the pathways connecting mitochondrial oxidative metabolism, bioenergetics, and plasma membrane content with accelerated autophagy in Cav-1 deficient ECs remained poorly understood. More than 30 ATG proteins are involved in the APG formation and regulation, as components of several discrete functional units.39 Two ubiquitin-like systems are key to APG formation including ATG5-ATG12 conjugation and LC3 processing.40,41 Notably, the localization of ATG5 in Cav-1 enriched lipid rafts and their direct interaction observed in this study and other group suggests that Cav-1 might suppress the activation of autophagy by interacting with ATG5, ATG12, and the active ATG5-ATG12 complex in ECs.42 Moreover, we found that the absence of Cav-1 influenced the cellular distribution of ATG5 and enhanced the release of ATG5 from other lipid raft fractions in the plasma membrane, which might be attributed to increased APG formation and autophagic flux in Cav-1–deficient mice. Besides the ATG5-ATG12 complex, Cx-43—a major component of plasma
membrane gap junctions—has been previously shown to interact directly with Cav-1 and translocate intracellularly upon starvation as a requirement for autophagy activation, demonstrating a novel role of raft-enriched membrane proteins in this cellular process.28,43,44 Cx-43 also associates with several ATGs that are involved in the initial steps of APG formation, such as ATG6 and components of the PI3K autophagy initiation complex (Vps34, Beclin-1, and Vps15), and downregulates APG formation and autophagy activation.28 Most Cav-1–interacting proteins are retained and kept inactive in the caveolae due to their interaction with the caveolin-binding domain. Therefore, it is conceivable that upon autophagy activation, the interaction of autophagy components with Cav-1 in the plasma membrane is disrupted as we observed during starvation, releasing components like ATG5 and Cx-43 interacting proteins from the plasma membrane to initiate the formation of APG vesicles. Notably, we found that after induction of autophagy, Cav-1 translocated from the plasma membrane to intracellular membrane compartments, which further regulated the cellular distribution of APG components that interact directly with Cav-1 including ATG5 and Cx-43. The effects of Cav-1 on the cellular distribution of APG components provide further evidence of the regulation of APG formation and autophagy activation by Cav-1.

Our previous studies demonstrated that the absence of Cav-1 protects against atherosclerosis by attenuating LDL transcytosis and vascular inflammation independently of endothelial NO activation.6 Here, we found that suppression of autophagy in vivo using 3-MA, in part,
abrogates the beneficial effects of Cav-1 deficiency during the initiation of atherosclerosis. Mechanistically, we discovered that inhibition of autophagic flux attenuates the anti-inflammatory effects observed in Cav-1 silenced ECs and in the endothelium of Cav-1−/− mice. We also found that increased autophagic flux in Cav-1−/− mice does not influence neutral lipid accumulation. These results were unexpected based in previous studies by Finkel et al demonstrating that autophagy controls lipoprotein transcytosis in vivo. Together, these results suggest that the increased autophagy found in mice lacking Cav-1 might protect against the progression of atherosclerosis by lessening vascular inflammation and macrophage infiltration in the artery wall. These findings are in accordance with our previous observations showing that overexpression of Cav-1 in ECs promotes atherosclerosis by increasing the expression of VCAM1 in the aortic endothelium. While these results suggest that the absence of Cav-1 in ECs diminishes inflammation through increasing autophagy, 3-MA treatment might also influence vascular smooth muscle cell and macrophage functions influencing atherogenesis. In fact, previous studies have shown that 3-MA administration to mice impairs atherosclerotic plaque progression and improves lesion stability by modulating macrophage autophagy, suppressing foam cell formation, and altering the immune microenvironment. Furthermore, autophagy is involved in the mobilization of lipid droplet-associated cholesterol for efflux, thereby impairing macrophage foam cell formation, which may also contribute to the progression of atherosclerosis. In contrast, inhibition of autophagy by 3-MA enhances vascular smooth muscle cell death and necrosis, which might promote the development of atherosclerosis as observed with vascular smooth muscle cell–specific deletion of ATG7 in mice. These studies provide evidence of both anti-atherosclerotic and proatherosclerotic effects of 3-MA in the vessel wall. Further studies using endothelial-specific autophagy-deficient mice will be important for dissecting the specific contribution of autophagy in mice lacking Cav-1 during atherogenesis.

In summary, this study reports that Cav-1 deficiency in vivo significantly increases the autophagy flux in the endothelium of large vessels. The increased autophagy provides a novel mechanism by which the absence of Cav-1 protects against the progression of atherosclerosis and provides novel insight into the mechanisms by which Cav-1 expression controls autophagy.

ARTICLE INFORMATION

Received September 8, 2019; accepted April 16, 2020.

Affiliations

From the Vascular Biology and Therapeutics Program (X.Z., C.M.R., B.A., Y.S., W.C.S., C.F.-H.), Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology (X.Z., C.M.R., B.A., Y.S., C.F.-H.), Department of Cell Biology (X.L.), and Department of Pharmacology (W.C.S.), Yale University School of Medicine, New Haven, CT; IMDEA Research Institute of Food and Health Sciences, Madrid, Spain (C.M.R., M.T.-P.); and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY (J.M.-M., A.D., A.M.C.).

Sources of Funding

This work was supported by grants from the National Institutes of Health (R35 HL135820 to C. Fernández-Hernando; RO1 HL105945 and RO1HL135012 to Y. Suárez; R35 HL139945 and ROI HL107205 to W. C. Sessa), the American Heart Association (16EIA27550005 to C. Fernández-Hernando; 16GRT26420047 to Y. Suárez; 17POST33650088 to J. Madrigal-Matute, James and Donna Dickenson-Sublett Award for the Advancement of Cardiovascular Research, SD2G2000025 to C. M. Ramirez, and American Heart Association Merit Award to W. C. Sessa), TALENTO Program from Madrid Government, Spain (2017-T11/BMD-3533 to C. M. Ramirez), the Foundation Leducq Transatlantic Network of Excellence in Cardiovascular Research MIRVAD (MicroRNA-based Therapeutic Strategies in Vascular Disease; to C. Fernández-Hernando and W. C. Sessa), and RA15CVD04 to (A.M. Cuervo and J. Madrigal-Matute).

Disclosures

None.

REFERENCES

1. Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of atheroma in man. Nature. 1969;223:1159–1160. doi: 10.1038/2231159a0
2. Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Curr Res. 2016;118:620–638. doi: 10.1161/CIRCRESAHA.115.306301
3. Liu P, Rudick M, Anderson RG. Multiple functions of caveolin-1. J Biol Chem. 2002;277:41296–41298. doi: 10.1074/jbc.R200029200
4. Fernández-Hernando C, Yu J, Suárez Y, Rahner C, Dávalos A, Lasunción MA, Sessa WC. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 2009;10:48–54. doi: 10.1016/j.cmet.2008.12.006
5. Pavides S, Gutiérrez-Pajares JL, Iturrieta J, Lisanti MP, Frank PG. Endothelial caveolin-1 plays a major role in the development of atherosclerosis. Cell Tissue Res. 2014;356:147–157. doi: 10.1007/s00441-013-1767-7
6. Ramírez CM, Zhang X, Bandyopadhyay C, Roflían N, Sugiyama MG, Ayal B, Liu X, He S, Kraehling JR, Ulrich V, et al. Caveolin-1 regulates autophagy by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation. 2019;140:225–239. doi: 10.1161/CIRCULATIONAHA.118.038571
7. Mizushima N, Komatsu M, Autophagy: renovation of cells and tissues. Cell. 2011;147:728–741. doi: 10.1016/j.cell.2011.10.026
8. Vion AC, Kheloufi M, Hammoutene A, Kheloufi M, Poisson J, Lasselin J, Devue C, Pich P, Dupont N, Busse J, Stark K, et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proc Natl Acad Sci USA. 2017;114:E9075–E9084. doi: 10.1073/pnas.1702233114
9. Guo F, Li X, Peng J, Tang Y, Yang Q, Liu L, Wang Z, Jiang Z, Xiao M, Ni C, et al. Autophagy regulates vascular endothelial cell eETOS and ET1-1 expression induced by laminar shear stress in an ex vivo perfused system. Arm Biom Eng. 2014;42:1978–1988. doi: 10.1016/j.esaim.2014.01-035-3
10. Liu J, Bi X, Chen T, Zhang Q, Wang SX, Chiu JJ, Liu GS, Zhang Y, Bu P, Jiang F. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis. 2015;6:e1827. doi: 10.1038/cddis.2015.193
11. Yao P, Zhao H, Mo W, He P. Laminar shear stress promotes vascular endothelial cell autophagy through upregulation with Rab4. DNA Cell Biol. 2016;35:118–123. doi: 10.1089/dcn.2015.3041
12. Torisu K, Singh KK, Torisu T, Lovren F, Liu J, Pan Y, Guan A, Ramadan A, Al-Omran M, Pankova N, et al. Intact endothelial autophagy is required to maintain vascular lipid homeostasis. Aging Cell. 2016;15:187–191. doi: 10.1111/acel.12423
13. Le Lay S, Briand N, Blouin CM, Chateau D, Prado C, Lasnier F, Le Lievre X, Haiduj E, Dugail I. The lipotoxic caveolin-1-deficient mouse model reveals autophagy in mature adipocytes. Autophagy. 2010;6:754–763. doi: 10.4161/auto.6.6.12574
14. Wu D, Xie F, Xiao L, Feng F, Huang S, He L, Liu M, Zhou Q, Li L, Chen L. Caveolin-1-autophagy pathway mediated cardiomyocyte
hypertrophy induced by spelin-13. DNA Cell Biol. 2017;36:611–618. doi: 10.1089/dnc.2016.3574
15. Shi Y, Tan SH, Ng S, Zhou J, Yang ND, Koo GB, McMahon KA, Parton RG, Hill MM, Del Pozo MA, et al. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy. 2015;11:769–784. doi: 10.1002/ajpc2.20154341
16. Shiroti T, Romero N, Sugiyama H, Calderino P, Tartoletto JL, Kalwa H, Yan Z, Shimokawa H, Michel T. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS One. 2014;9:e87891. doi: 10.1371/journal.pone.0087891
17. Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC. Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med. 2007;204:2373–2382. doi: 10.1084/jem.20062340
18. Robinet P, Milewicz DM, Cassis LA, Leeper NJ, Lu HS, Smith JD. Conservation of signals during the beginning from the end. J Clin Invest. 2015;125:28–32. doi: 10.1172/JCI73939
19. Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, Lisanti MP. Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:2375–2376. doi: 10.1161/ATVBAHA.110.201522
20. Guevara NV, Kim HS, Antonova EI, Chan L. The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat Med. 1999;5:335–339. doi: 10.1038/6585
21. Yía-Antilla P, Whinen H, Jokitalo E, Eskelinen EL. Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol. 2009;452:143–164. doi: 10.1016/S0076-6879(08)30610-0
22. Dai S, Wang B, Li W, Wang L, Song X, Guo C, Li Y, Liu F, Zhu F, Wang G, et al. Systemic application of α3-methylladenine markedly inhibited atherosclerotic lesion in ApoE−/− mice by modulating autophagy, foam cell formation, and immune-negative molecules. Cell Death Dis. 2016;7:e2498. doi: 10.1038/cddis.2016.2376
23. Song KS, Li Shengwen, Quilliam LA, Sargiacomo M, Lisanti MP. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem. 1996;271:9690–9697. doi: 10.1074/jbc.271.16.9697
24. Goetsch C, Hutcherson JD, Hagita S, Rogers MA, Creager MD, Pham T, Choi J, Miyahara C, Pieper B, Kjolby M, et al. A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardio-metabolic switches and immune-negative molecules. Cell Death Dis. 2016;7:e2498. doi: 10.1038/cddis.2016.2376
25. Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. J Cell Biol. 2015;211:211–222. doi: 10.1083/jcb.201501079
26. Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007;3:452–460. doi: 10.1080/15548627.2015.1096485
27. Kim YC, Guan KL, mTOR: a pharmacologic target for autoimmuage regulation. J Clin Invest. 2015;125:2575–2580. doi: 10.1172/JCI73939
28. Munson MJ, Ganley IG. mTOR, PIK3C3, and autophagy: signaling and pathologic consequences. J Invest. 2006;282:37298–37302. doi: 10.1074/jbc.C700195200
29. Klionsky DJ, Abdalla FC, Abeleibov I, Abraham RT, Adamovics A, Adeli K, Ahmed MM, Aguiar-Ghizo JS, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–454. doi: 10.1038/auto.2011.342
30. Chen ZH, Cao JF, Zhou JS, Liu H, Che LQ, Mizumura K, Li W, Choi AM, Shih HH. Interaction of caveolin-1 with ATG proteins in autophagy: an exposing therapeutic target. J Biol Chem. 2002;277:5754–5764. doi: 10.1074/jbc.M1021656
31. Wang J, Feng Y, Wang Y, Xiang D, Zhang X, Yuan F. Autophagy regulates Endothelial-Mesenchymal transition by decreasing the phosphorylation level of Smad3. Biochem Biophys Res Commun. 2017;487:740–747. doi: 10.1016/j.bbrc.2017.04.130
32. Fernández-Hernando C, Yu J, Dávalos A, Prendergast J, Sessa WC. Endothelial-specific overexpression of caveolin-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol. 2010;177:998–1003. doi: 10.2215/ajpath.2010.091297
33. Zhang Y, Sowers JR, Aron J. Targeting autophagy in obesity: from pathophysiologic to management. Nat Rev Endocrinol. 2018;14:356–376. doi: 10.1038/s41574-018-0009-1
34. Zhong Z, Sanchez-Lopez E, Kiran M. Autophagy, inflammation, and immunity: a triakoa governing cancer and its treatment. Cell. 2016;166:288–298. doi: 10.1016/j.cell.2016.05.051
35. Martinet W, De Meyer GR. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res. 2009;104:304–317. doi: 10.1161/CIRCRESAHA.108.188318
36. Luo Y, Lu S, Zhou P, Ai OD, Sun GB, Sun XB. Autophagy: an exposing therapeutic target in atherosclerosis. J Cardiovasc Pharmacol. 2016;67:266–274. doi: 10.1097/FJC.0000000000000342
37. Gronbaek MD, da Costa Martins PA, Britsch N, Pintelion I, De Meyer GR, Martinet W, Schirri MS. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy. 2015;11:2014–2032. doi: 10.1080/15548627.2015.1064685
38. Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012;15:545–553. doi: 10.1016/j.cmet.2012.01.022
39. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–132. doi: 10.1146/annurev-cellbio-092910-154005
40. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujikoa Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282:37298–37302. doi: 10.1074/jbc.C700195200
41. Chen ZH, Cao JF, Zhou JS, Liu H, Che LQ, Mizumura K, Li W, Choi AM, Shih HH. Interaction of caveolin-1 with ATG12-ATG5 system suppresses autophagy in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2014;306:L1016–L1025. doi: 10.1152/japlung.00268.2013
42. Schubert AL, Schubert W, Spray DC, Lisanti MP. Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry. 2002;41:5754–5764. doi: 10.1021/bi0121656
43. Langlois S, Cowan KN, Shao O, Cowan BJ, Laird DW. Caveolin-1 and -2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol Biol Cell. 2008;19:912–928. doi: 10.1091/mbc.E07-06-0596
44. Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcell YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. J Cell Biol. 2011;181:123–138. doi: 10.1083/jcb.201006023