Chlorella Induces Stomatal Closure via NADPH Oxidase-Dependent ROS Production and Its Effects on Instantaneous Water Use Efficiency in *Vicia faba*

Yan Li, Shan-Shan Xu, Jing Gao, Sha Pan, Gen-Xuan Wang*

College of Life Sciences, Zhejiang University, Hangzhou, China

Abstract

Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of *Vicia faba*. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H$_2$O$_2$) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in *Vicia faba* via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (P$_n$) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi, in leave levels.

Introduction

Stomata are natural microscopic pores located in the epidermis of the aerial parts of plants that play a pivotal role in regulating influx of CO$_2$ for photosynthesis and water loss through transpiration [1]. However, transpiration and photosynthesis do not respond to the changing stomatal aperture identically [2,3]. As the stomatal aperture decreases above the threshold, leaf transpiration rates always diminish prior to the CO$_2$ assimilation rates, favoring a higher instantaneous water use efficiency (WUEi) [3–5]. It provides a basis for the suggestions that partial closure of the stomata might conduce to the improvement of WUEi in plants [3–5]. It provides a basis for the suggestions that partial closure of the stomata might conduce to the improvement of WUEi in plants [3–5].

Citation: Li Y, Xu S-S, Gao J, Pan S, Wang G-X (2014) Chlorella Induces Stomatal Closure via NADPH Oxidase-Dependent ROS Production and Its Effects on Instantaneous Water Use Efficiency in *Vicia faba*. PLoS ONE 9(3): e93290. doi:10.1371/journal.pone.0093290

Editor: Ji-Hong Liu, Key Laboratory of Horticultrual Plant Biology (MOE), China

Received: October 20, 2013; **Accepted:** March 4, 2014; **Published:** March 31, 2014

Copyright: © 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by the National High-Tech R & D Program (863 Program) for the 12th Five-Year Plan (2011AA100503), Natural Science Fund of China (31330010), and Zhejiang Provincial Natural Science Foundation of China (LZ13C030002). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: 11207018@zju.edu.cn
lipopolysaccharides (LPS)-induced stomatal closure [9,29–36], while ROS production modulated by salicylic hydroxamic acid (SHAM)-sensitive cell wall peroxidase is implicated in salicylic acid (SA)-, high dose of UV-B-, chitosan-, yeast elicitor (YEL)-, methylglyoxal- and yeast-triggered stomatal closure [15,24,37–41]. However, it is unknown whether Chlorella induces ROS production and what is the enzyme source of ROS production in guard cells.

Certain dicotyledon (e.g. *Vicia faba* L.) and microalgae (e.g. *Chlorella vulgaris*) provide ideal material models for exploring the effects of Chlorella on stomatal movement and WUE in *V. faba.*

Using epidermal strip bioassay, H$_2$O$_2$ fluorescence assay, gas-exchange measurements, chlorophyll fluorescence and content analysis, we were to determine 1) whether Chlorella can be perceived by guard cell to trigger partial stomatal closure in epidermal strips of broad bean; 2) whether this action requires ROS production, and if so, which enzyme mediates ROS production; 3) whether this action improves WUE in *V. faba.*

Materials and Methods

Plant materials

Seeds of broad bean (*V. faba* L. cv. Da qing pi) were selected and sterilized in 70% ethanol for 30 min, then cleaned with distilled water. Sterilized Seeds were soaked in water until they were sterilized in 70% ethanol for 30 min, then cleaned with distilled water. Finally the cells were resuspended in sterile double distilled chloride (DPI), catalase (CAT, bovine liver) and ethanesulfonic acid (SHAM), Sigma-Aldrich, St Louis, MO, USA) was dissolved in double distilled water to yield the different concentrations of Chlorella suspension (0.10 x 106, 1.0 x 106, 1.0 x 107, 1.0 x 108 and 1.0 x 109 ind mL$^{-1}$) for another 2 h. When inhibitors or scavenger (SHAM, DPI, or CAT) were used, they were added 30 min prior to the Chlorella treatments. Finally, stomata were digitized using a Canon PowerShot G10 camera coupled to a DSZ5000X microscope (UOP, Chongqing, China). The width and length of stomatal pore were measured on digital images with the Image-Pro plus6.0 software (Media Cybernetics, Silver Springs, MD). The stomatal aperture was calculated as pore width/length. Fifty stomata originated from three separate plants were randomly chosen for each treatment and the experiments were repeated three times [15,36]. These data represented 150 measurements ± SE. To obtain time response course, the stomatal aperture was examined at 20 min intervals. Twenty stomata were randomly selected for three independent experiments. These data represented 60 measurements ± SE.

Measurement of ROS in guard cells

Reactive oxygen species (ROS) in guard cells were examined by loading epidermal preparations with 2', 7'-dichlorofluorescin diacetate (H$_2$DCF-DA). After the treatment described in the above experiment, the epidermal strips were transferred to opening buffer containing different concentrations of Chlorella suspension (0.10 x 106, 1.0 x 106, 1.0 x 107, 1.0 x 108 and 1.0 x 109 ind mL$^{-1}$) and water were sprayed onto all fully expanded leaves with a hand sprayer until the both sides of leaves were uniformly wet. After treatment for 48 h, the net photosynthetic rate (P_n), stomatal conductance (g_s), intercellular CO$_2$ concentration (C_i) and transpiration rate (E) of the fourteen random fully expanded leaves were measured on seven individual plants per treatment under a photosynthetic active radiation (PAR) of 1000 μmol m$^{-2}$ s$^{-1}$ with a portable photosynthetic open-system between 10:00 a.m. and noon (CI-340, 4845NW Camas Meadows Drive, Camas, WA, 98607, USA) [44]. Before measurements, the plants were allowed to acclimate to a sufficient light irradiance for more than 1 h. In operation, air temperature in the assimilation chamber was kept at 25°C, air flow was set to 500 mL min$^{-1}$ and ambient CO$_2$ concentration was maintained at 380 ppm. Data were recorded after 3–4 min, when the steady-state photosynthesis was achieved. WUE, was calculated as P_n/E [45].

To further test the effects of Chlorella on stomatal aperture in leaves level, the epidermal strips of expanded leaves of broad beans

Materials and Methods

Plant materials

Seeds of broad bean (*V. faba* L.) sample used in this study was obtained from FACHB (Wuhan, People’s Republic of China). Chlorella cells were cultured in Erlemeyer flasks (500 mL) containing 250 mL BG11 medium (PH 6.8) and shaken at 150 rpm in a rotary shaker under controlled conditions at a temperature of 25°C–25°C, a relative humidity of 70%, photosynthetic active radiation (PAR) of 300 μmol m$^{-2}$ s$^{-1}$ and a photoperiod of 14 h light/10 h dark, and watered daily. When plants were 4 weeks old, the even-aged fully expanded leaves were used as experimental material.

Chemicals

Molecular probe 2', 7'-dichlorofluorescin diacetate (H$_2$DCF-DA), Sigma-Aldrich, St Louis, MO, USA) was dissolved in dimethyl sulfoxide to produce a stock solution, which was aliquoted. Salicylic hydroxamic acid (SHAM), diphenylethenoiodonium chloride (DPI), catalase (CAT, bovine liver) and ethanesulfonic acid (MES) were obtained from Sigma-Aldrich. Besides these chemicals, the remaining chemicals were purchased from Chinese companies. All the chemicals used were of the highest analytical grade.

Culture of Chlorella cells

The Chlorella (*Chlorella vulgaris*) sample used in this study was obtained from FACHB (Wuhan, People’s Republic of China). Chlorella cells were cultured in Erlemeyer flasks (500 mL) containing 250 mL BG11 medium (PH 6.8) and shaken at 150 rpm in a rotary shaker under controlled conditions at a temperature of day 25°C/night 22°C, photosynthetic active radiation (PAR) of 30 μmol m$^{-2}$ s$^{-1}$ and a photoperiod of 16 h light/8 h dark. After 7 days of culture, the Chlorella cells were collected by centrifugation, and then rinsed twice with sterile water. Finally the cells were resuspended in sterile double distilled water to yield the different concentrations of Chlorella suspension (1.0 x 106, 1.0 x 107, 1.0 x 108, 1.0 x 109 and 1.0 x 1010 ind mL$^{-1}$) as determined by optical density and serial dilutions with plate counts.

Stomatal bioassay

Stomatal bioassay experiments were performed as described [15,42,43] with slight modifications. Briefly, the epidermis was first peeled carefully from the abaxial surface of the youngest, fully expanded leaves of 4-week-old plants, and cut into strips, then incubated in opening buffer (10 mM MES, 50 mM KCl, pH 6.15) for 2 h under low light condition (photon flux density of 300 μmol m$^{-2}$ s$^{-1}$) at 22°C–25°C to promote stomatal opening. Once the stomata were fully open, the epidermal strips were transferred to opening buffer containing different concentrations of Chlorella suspension (0.10 x 106, 1.0 x 106, 1.0 x 107, 1.0 x 108 and 1.0 x 109 ind mL$^{-1}$) for another 2 h. When inhibitors or scavenger (SHAM, DPI, or CAT) were used, they were added 30 min prior to the Chlorella treatments. Finally, stomata were digitized using a Canon PowerShot G10 camera coupled to a DSZ5000X microscope (UOP, Chongqing, China). The width and length of stomatal pore were measured on digital images with the Image-Pro plus6.0 software (Media Cybernetics, Silver Springs, MD). The stomatal aperture was calculated as pore width/length. Fifty stomata originated from three separate plants were randomly chosen for each treatment and the experiments were repeated three times [15,36]. These data represented 150 measurements ± SE. To obtain time response course, the stomatal aperture was examined at 20 min intervals. Twenty stomata were randomly selected for three independent experiments. These data represented 60 measurements ± SE.

Gas-exchange measurements and leaf stomatal bioassay

When plants were 4 weeks old, the different concentrations of Chlorella suspension (1.0 x 106, 1.0 x 107, 1.0 x 108, 1.0 x 109 and 1.0 x 1010 ind mL$^{-1}$) and water were sprayed onto all fully expanded leaves present with a hand sprayer until the both sides of leaves were uniformly wet. After treatment for 48 h, the net photosynthetic rate (P_n), stomatal conductance (g_s), intercellular CO$_2$ concentration (C_i) and transpiration rate (E) of the fourteen random fully expanded leaves were measured on seven individual plants per treatment under a photosynthetic active radiation (PAR) of 1000 μmol m$^{-2}$ s$^{-1}$ with a portable photosynthetic open-system between 10:00 a.m. and noon (CI-340, 4845NW Camas Meadows Drive, Camas, WA, 98607, USA) [44]. Before measurements, the plants were allowed to acclimate to a sufficient light irradiance for more than 1 h. In operation, air temperature in the assimilation chamber was kept at 25°C, air flow was set to 500 mL min$^{-1}$ and ambient CO$_2$ concentration was maintained at 380 ppm. Data were recorded after 3–4 min, when the steady-state photosynthesis was achieved. WUE, was calculated as P_n/E [45].

To further test the effects of Chlorella on stomatal aperture in leaves level, the epidermal strips of expanded leaves of broad beans
sprayed with different concentrations of Chlorella suspension and water for 48 h were peeled off and immediately observed under a microscope. Finally, stomata were digitized using a Canon PowerShot G10 camera coupled to a DSZ3000X microscope (UOP, Chongqing, China). The width and length of stomatal pore were measured on digital images with the Image-Pro plus 6.0 software (Media Cybernetics, Silver Springs, MD). 120 stomata were randomly selected for each treatment from different epidermal strips of seven individual plants. These data represented 120 measurements ± SE.

Chlorophyll fluorescence measurements

Maximal photochemical efficiency (F_v/F_m), the effective quantum yield of PSII (FPSII), non-photochemical quenching (NPQ), the coefficient for photochemical quenching (q_P) and electron transportation rate (ETR) were measured on the same leaves used for gas exchange analysis with the MAXI version of the IMAGING-PAM M-Series chlorophyll fluorescence system (Heinz-Walz GmbH, Effeltrich, Germany). The experiment procedures and nomenclature used for fluorescence measurements were based on the descriptions in previous studies [46]. Saturating light pulses were given every 20 s [47,48].

Chlorophyll determination

The same leaves selected for gas-exchange and chlorophyll fluorescence analysis were used for immediate chlorophyll determination with a spectrophotometer (SP752, Shanghai, China). 0.1 g leaf tissue was first homogenized in 10 mL acetone: ethanol (1:1, v/v) for 24 h, then the chlorophyll content of the supernatant was measured and supernatant absorption spectrum was set at 645 and 663 nm. The chlorophyll a and b content were calculated as \([12.71 \times A_{663} - 2.69 \times A_{645}] / [100 \times \text{fresh weight of leaves}]\) and \([22.80 \times A_{653} - 4.67 \times A_{633}] / [100 \times \text{fresh weight of leaves}]\), respectively. The unit was reported as mg Chl. per g FW, as described in [49,50].

Statistical analysis

Statistical analyses were performed using the one-way analysis of variance (ANOVA) procedure of SPSS (ANOVA; SPSS Inc., Chicago IL, USA). Significant differences among treatments were based on P values determined using LSD test ($P<0.05$).

Results

Chlorella-induced stomatal closure in broad bean

To determine whether Chlorella has any effect on stomatal movement, the abaxial epidermal peels of broad bean were separately treated with 1.0 \times 105, 1.0 \times 106, 1.0 \times 107, 1.0 \times 108 and 1.0 \times 1010 ind mL$^{-1}$ of Chlorella suspension. After 2 h, the stomatal apertures were reduced by 7.5% ($P<0.001$), 22.0% ($P<0.001$), 33.3% ($P<0.001$), 39.7% ($P<0.001$), and 39.4% ($P<0.001$), respectively, and showed a dosage effect (Figure 1A). Furthermore, as noted in Figure 1B, 1.0 \times 108 ind mL$^{-1}$ of Chlorella suspension induced stomatal closure in a time-dependent manner, reaching the maximum effect at 2 h after treatment, under which conditions the stomatal apertures were reduced by 40.8% ($P<0.001$).

The effects of CAT, DPI and SHAM on Chlorella-induced stomatal closure

ROS play a vital role in regulating stomatal movement [34,40,51]. To confirm the involvement of ROS in Chlorella-induced stomatal closure and elucidate the enzymatic sources of ROS production, the abaxial epidermal strips of broad bean were incubated with 1.0 \times 109 ind mL$^{-1}$ of Chlorella suspension with or without CAT, DPI or SHAM, all of which remove or decrease ROS level [8,24,42]. We observed that Chlorella-induced stomatal closure was almost entirely restored by a H$_2$O$_2$ scavenger, CAT, at 100 UmL$^{-1}$ ($P<0.03$), strongly inhibited by an NADPH oxidase inhibitor, DPI, at 20 μm ($P<0.001$), while slightly suppressed by a peroxidase inhibitor, SHAM, at 2 μm ($P<0.001$) (Figure 2). Additionally, there was no statistical change in stomatal aperture when epidermal strips of broad bean were treated with DPI, SHAM or CAT alone (Figure S1).

Chlorella-induced ROS production in guard cells of broad bean

ROS act as important second messengers in mediating stomatal closure [29,39,52,53]. ROS production via NADPH oxidase has been demonstrated to participate in Chlorella-triggered stomatal closure in the stomatal bioassay experiments. Therefore, we further monitored Chlorella-induced ROS production in guard cells using 2′, 7′-dichlorofluorescin diacetate (H$_2$DCF-DA). As shown in Figure 3, the ROS level in guard cells was significantly improved when 1.0 \times 107 ind mL$^{-1}$ of Chlorella suspension was applied ($P<0.001$). Moreover, the Chlorella-induced ROS production was completely inhibited by 100 UmL$^{-1}$ CAT ($P<0.001$), largely suppressed by 20 μm DPI ($P<0.001$) while not affected by 2 μm SHAM ($P=0.949$) (Figure 3).

The effects of Chlorella on gas-exchange

To survey the effects of Chlorella on plant photosynthetic gas-exchange, 1.0 \times 105, 1.0 \times 106, 1.0 \times 107, 1.0 \times 108 and 1.0 \times 1010 ind mL$^{-1}$ of Chlorella suspension were evenly sprayed onto leaves of broad beans. After 48 h, the stomatal apertures were reduced by 0.4% ($P=0.999$), 1.1% ($P=0.863$), 15.2% ($P<0.001$), 21.8% ($P<0.001$), and 27.2% ($P<0.001$), respectively (Figure 4), the g_s was severely reduced by 1.6% ($P=0.919$), 8.9% ($P=0.563$), 6.3% ($P<0.001$), 13.9% ($P<0.001$), and 19.3% ($P<0.001$), and the E was reduced by 0.2% ($P=0.992$), 3% ($P=0.872$), 7.3% ($P<0.001$), 14.7% ($P<0.001$) and 20.4% ($P<0.001$), respectively (Figure 5). Furthermore, the P_n and C_i were hardly affected when the concentrations of Chlorella suspension were less than or equal to 1.0 \times 107 ind mL$^{-1}$ ($P>0.05$), while were significantly inhibited at a higher concentration ($P<0.001$) (Figure 5). As a result, the WUE$_s$ were separately improved by 1.5% ($P=0.062$), 4% ($P=0.600$), 8.6% ($P<0.001$), 19.2% ($P<0.001$) and 10.2% ($P<0.001$) (Figure 5).

Chlorophyll fluorescence and content analysis

To investigate whether plant photosynthetic activities are influenced by Chlorella, leaf chlorophyll fluorescence was tested on the same leaves used for gas exchange analysis. No statistical alterations in the values of minimal fluorescence (F_0) and maximal fluorescence (F_m) were observed after different treatments (Table S1). As a result, there was no pronounced change in maximal photochemical efficiency, F_v/F_m ($P>0.05$) (Table 1). Furthermore, other chlorophyll fluorescence parameters such as effective quantum yield of PSII (FPSII), non-photochemical quenching (NPQ), the coefficient for photochemical quenching (q_P) and electron transportation rate (ETR) were not significantly affected by different concentrations of Chlorella suspension ($P>0.05$) (Table 1). Moreover, as noted in Table 1, the contents of chlorophyll a, chlorophyll b and total chlorophyll and the ratio of chlorophyll a/b were not different among treatments ($P>0.05$).
Discussion

The effects of Chlorella on stomatal movement in broad bean

Stomatal openings have long been recognized as passive access to inner leaf tissues for many plant bacteria. However, recent studies have revealed that potential microbes can induce stomatal closure by activating a series of signaling transduction pathways [8,9,12,14,15,24]. In the present study, we found that Chlorella as an available autotrophic microorganism induced stomatal closure in epidermal strips of broad beans in a dose- and time-dependent manner, arriving at the maximum effect at 1.0×10^9 ind mL$^{-1}$ of Chlorella suspension and 2 h after treatment (Figure 1). These results further validate that microbes can actively trigger stomatal closure. Mounting evidence suggests that microbe-triggered stomatal closure relies on the perception of MAMPs by pattern recognition receptors (PRRs) [54–56]. MAMPs are conserved molecules on the surface of microorganisms, such as flg22, elf18, LPS, fungal cell wall derived chitin, ergosterol, glucans and chitosan oligosaccharides, yeast elicitor, plant cell wall derived oligogalacturonic acid, as well as various glycopeptides and glycoproteins, most of which are capable of inducing stomatal closure [57–59]. It is known that Chlorella cell wall and extracellular organic matter (EOM) attached at the Chlorella cell surface are mainly composed of polysaccharides, glycoproteins, lipids, glucosamine, chitin-like glycans and other matrix [60,61]. Consequently, we speculate that some components of Chlorella cell wall and EOM are involved in Chlorella-triggered stomatal closure. Further work will be done to unveil which component induces stomatal closure.

The effects of Chlorella on ROS production in broad bean

In plant cells, ROS functions as an integral intermediate in MAMPs- and ABA-dependent stomatal closure [9,24,32,34,42]. Our work primarily indicated that Chlorella-induced stomatal closure was accompanied by ROS production (Figure 3), which is similar to live pathogenic microbes, yeast and MAMPs-induced stomatal closure [8,9,12,15,24]. ROS production in guard cells is mediated by various enzymes in response to different stimuli, including NADPH oxidase, peroxidase, xanthine oxidase, oxalate oxidase and amine oxidase [25–28,52,62,63]. To clarify which enzyme catalyzes ROS production mediating Chlorella-induced stomatal closure, we further assessed the effects of Chlorella on stomatal movement and ROS production with pharmacological inhibitors or scavenger such as DPI, SHAM and CAT [24,42]. We observed that Chlorella-induced stomatal closure was almost completely reversed by an H$_2$O$_2$ scavenger, CAT, strongly inhibited by an NADPH oxidase inhibitor, DPI, while slightly suppressed by a peroxidase inhibitor, SHAM (Figure 2). In addition, it was shown that the Chlorella-induced ROS production was completely abolished by CAT, largely restrained by DPI, whereas hardly affected by SHAM (Figure 3). Taken together, these results suggest that Chlorella-induced stomatal closure is mediated by ROS production mainly via DPI-sensitive plasma membrane NADPH oxidase but not SHAM-sensitive peroxidase. It is analogous to ABA-, MeJa-, ozone-, darkness-, ethylene-, etc.
Figure 2. Effects of 20 \(\mu \text{M} \) DPI, 2 mM SHAM and 100 \(\text{UmL}^{-1} \) CAT on Chlorella-induced stomatal closure. Epidermal peels of broad beans preincubated for 2 h in opening buffer under light were treated with or without 20 \(\mu \text{M} \) DPI, 2 mM SHAM and 100 \(\text{UmL}^{-1} \) CAT for 30 min, then, floated on \(1.0 \times 10^{9} \text{ind mL}^{-1} \) Chlorella suspension and stomatal apertures were measured after 2 h. These data are the mean \(\pm \text{SE} \) of the representative results from three biological repeats (\(n = 150 \) per bar). Different letters above the bars indicate mean values that are significantly different from one another as determined by ANOVA (LSD test, \(P < 0.05 \)).

doi:10.1371/journal.pone.0093290.g002

Figure 3. Chlorella induces ROS production in \textit{V. faba}. Epidermal peels of broad beans without (control) (A) or with 120 min of treatment with Chlorella alone (B), with Chlorella and DPI (C), with Chlorella and SHAM (D) or with Chlorella and CAT (E) were loaded with 50 \(\mu \text{M} \) \text{H}_{2}\text{DCF-DA} \) for 15–20 min in the dark. After a brief wash with opening buffer, photographs were taken for representative pairs of guard cells from each treatment using fluorescence microscopy (A–E). The scale bar in E is 100 \(\mu \text{m} \), and applies to all photographs. (F) The average fluorescence intensity of guard cells in images (A–E). The vertical scale represents percentage response relative to fluorescence value taken as 100% in control treatments. These data are the mean \(\pm \text{SE} \) of the representative results from three biological repeats (100 total guard cells per bar). Different letters above the bars indicate mean values that are significantly different from one another as determined by ANOVA (LSD test, \(P < 0.05 \)).

doi:10.1371/journal.pone.0093290.g003
AITC-, low dose of UV-B-, flg22-, LPS- and elf18-induced stomatal closure modulated by DPI-sensitive NADPH oxidase [9,29–36], while different from SA-, high dose of UV-B-, chitosan-, YEL-, methylglyoxal- and yeast-triggered stomatal closure via SHAM-sensitive peroxidase [15,24,38–41]. These results will provide insights for the prediction of elicitors from Chlorella. In plants, the NADPH oxidase respiratory burst oxidase homologs (RBOHs) are encoded by 10 different RBOHs genes, four of which have been characterized, namely RBOHB, RBOHC, RBOHD and RBOHF [64]. Among four RBOHs, RBOHD is the primary NADPH oxidase responsible for the rapid ROS production in response to MAMPs, RBOHF on the other hand, is the main ROS-producing enzymes mediating ABA-dependent ROS production [65]. Although our work showed that Chlorella-induced ROS production was mainly dependent on NADPH oxidase, which RBOH catalyzes the generation of ROS remains unsolved. Mechanical studies have revealed that stomatal closure triggered by biotic and abiotic stresses is related to the ABA-mediated complex network of signalling events, including activation of G-proteins and the guard cell specific OST1 kinase, generation of ROS and nitric oxide (NO), elevation of cytosolic Ca\(^{2+}\) levels and Ca\(^{2+}\) oscillations, protein phosphorylation/dephosphorylation, reorganization of the cytoskeleton, elevation of cytosolic pH, and activation of cation and anion channels [66]. Besides ROS, whether other components of ABA signaling pathways are involved in Chlorella-induced stomatal closure need to be explored in the future. The stomatal system of Arabidopsis mutant will provide an attractive tool for dissecting novel aspects of signaling events.

Figure 4. The effects of Chlorella on stomatal movement in leave level. After spraying uniformly different concentrations of Chlorella suspension (1.0×10^6, 1.0×10^7, 1.0×10^8 and 1.0×10^9 ind mL\(^{-1}\)) and water onto the leaves of broad bean for 48 h, the epidermal strips were peeled off and immediately observed under a microscope. Photographs were taken for representative pairs of guard cells from each treatment using microscopy (A–F). The scale bar in F is 40 μm, and applies to all photographs. (G) The average stomatal aperture shown in images (A–F). These data are the mean ± SE of the representative results (n = 120 per bar). Different letters above the bars indicate mean values that are significantly different from one another as determined by ANOVA (LSD test, P<0.05).

doi:10.1371/journal.pone.0093290.g004

Involvement of Chlorella-induced stomatal closure in the improvement of WUE in broad bean

Stomata play a prominent role in controlling gas exchanges between plants and environments. Numerous studies have demonstrated that moderate stomatal closure is an extraordinary adaptation to various environmental stresses in plants [7,67–70].
When the plant encounters mild stress, the leaf stomatal conductance usually decreases earlier than photosynthesis, leading to the increase of WUEi in plants [3,4,67,71]. Therefore, Chlorella-induced stomatal closure can be expected to improve WUEi of plants by preventing more water loss through transpiration. Our studies showed that Chlorella caused reductions in leaf stomatal aperture, gs and E until the concentration reached 1.0×10^8 ind mL$^{-1}$ in intact leaves (Figure 4 and Figure 5). The images in Figure 4 provided further visible proof that reductions in transpiration rate and stomatal conductance in whole leaves when the concentration reached $1.0 \times 10^8-1.0 \times 10^{10}$ ind mL$^{-1}$ were only due to the Chlorella-induced stomatal closure rather than mechanical obstruction of stomata caused by stacked Chlorella cells. Comparing the results in Figure 1, Figure 4 and Figure 5, it could be seen that there was a linear response in stomatal closure when floating epidermal peels on increasing Chlorella concentration from 1.0×10^6 up to 1.0×10^9 ind mL$^{-1}$ (Figure 1), however, stomatal aperture, transpiration rate and stomatal conductance (Figure 4 and Figure 5) remained unchanged up to 1.0×10^7 ind mL$^{-1}$ in intact leaves. These differences between stomata in intact leaves and epidermal peels responding to various treatments may be attributed to the stomatal sensitivity to different stimuli because of the structure discrepancies. It agreed with a previous study that stomata in epidermal peels of *Commelina communis* L. were more sensitive to ABA than that in intact leaves [72]. The study revealed that the cuticle and mesophyll of the whole leaf might limit the stomatal sensitivity to applied stimulus [72]. Furthermore, the Pn and Ci were hardly affected after treatment with less than or equal to 1.0×10^9 ind mL$^{-1}$ of Chlorella suspension, whereas were significantly repressed at a higher concentration (Figure 5). As a consequence, the WUEi of broad beans was improved greatly when proper concentrations of Chlorella suspension were applied, while less affected at higher concentrations due to the inhibition of leaf Pn (Figure 5). Previous

Figure 5. The effects of Chlorella on gas exchange in leaves of broad bean. Alterations in (A) net photosynthetic rate (Pn), (B) stomatal conductance (gs), (C) intercellular CO2 concentration (Ci), (D) transpiration rate (E), and (E) instantaneous intrinsic water use efficiency (WUEi), of broad bean leaves at 48 h after treatment with different concentrations of Chlorella suspension (1.0×10^6, 1.0×10^7, 1.0×10^8, 1.0×10^9 and 1.0×10^{10} ind mL$^{-1}$). These data are the mean ± SE (n = 14 per bar). Different letters above the bars indicate mean values that are significantly different from one another as determined by ANOVA (LSD test, $P < 0.05$).

doi:10.1371/journal.pone.0093290.g005
Table 1. Photosynthetic activity and chlorophyll content of broad bean leaves after treatment with different concentrations of Chlorella suspension ranging from 0 to 1.0×10^10 ind mL^{-1} for 48 h.

Parameters	Control	1.0×10^6	1.0×10^7	1.0×10^8	1.0×10^9	1.0×10^10
Fv/Fm	0.79±0.004a	0.76±0.003a	0.79±0.004a	0.79±0.002a	0.79±0.002a	0.79±0.002a
φPSII	0.63±0.004a	0.63±0.002a	0.62±0.005a	0.63±0.003a	0.62±0.002a	0.62±0.002a
NPQ	0.78±0.020a	0.78±0.014a	0.80±0.009a	0.78±0.007a	0.78±0.005a	0.79±0.007a
qP	0.92±0.003a	0.91±0.001a	0.91±0.002a	0.91±0.003a	0.92±0.001a	0.91±0.005a
ETR	44.1±0.396a	43.7±0.304a	43.3±0.486a	43.12±0.321a	43.92±0.244a	43.96±0.402a
Chl. a	1.84±0.032a	1.84±0.015a	1.89±0.023a	1.87±0.022a	1.84±0.009a	1.87±0.016a
Chl. b	0.79±0.020a	0.75±0.018a	0.78±0.018a	0.79±0.020a	0.75±0.019a	0.76±0.027a
Chl. a+b	2.63±0.049a	2.60±0.025a	2.67±0.037a	2.66±0.036a	2.59±0.021a	2.64±0.038a
Chl. a/b	2.36±0.039a	2.46±0.059a	2.43±0.043a	2.38±0.055a	2.49±0.062a	2.48±0.082a

Fv/Fm, maximum quantum yield of photosystem II (PSII); φPSII, effective quantum yield of PSII; NPQ, non-photochemical quenching; qP, photochemical quenching; ETR, electron transportation rate; Chl. a, Chl. b, Chl. a + b, chlorophyll a, chlorophyll b, total chlorophyll content, expressed as mg per g fresh weight; Chl. a/b, ratio of chlorophyll a to b. Each value represents the mean ± SE (n = 14). Means estimates with same letters are not significantly different among treatments as determined by ANOVA (LSD test, P<0.05).

doi:10.1371/journal.pone.0093290.t001

studies have indicated that photosynthesis is not only restricted by stomatal limitations of the CO2 influx but also by non-stomatal limitations that influence activities of photosynthetic reactions center such as photosynthetic apparatus, ATP synthesis, and electron transfer [73–76]. The comprehensive information about the photosynthetic activity can be obtained from chlorophyll fluorescence and content analysis [73]. Our data demonstrated that no pronounced alterations in the chlorophyll content and fluorescence parameters, including Fv/Fm, φPSII, NPQ, qP, and ETR, were detected 48 h after application of various concentrations of Chlorella suspension (Table 1). These phenomena suggest that short-term Chlorella treatment neither affect the photosynthetic transport of electrons nor lead to photoinhibition at the PSII complexes [44,75]. The data together with the changes of Pn and Ci reveal that inhibition of photosynthesis at a higher concentration of Chlorella suspension is only attributed to a decrease in CO2 after 2 h. These data are the mean ± SE of the representative results from three biological repeats (n = 150 per bar). Same letters above the bars indicate mean values that are not significantly different from one another as determined by ANOVA (LSD test, P<0.05).

In conclusion, Chlorella could be sensed by guard cell to trigger partial stomatal closure via NADPH oxidase-dependent ROS production and improve WUE in V. faba when applied as foliar spray. In addition, heated-killed Chlorella cells could trigger stomatal closure and improve WUE just as live Chlorella cells did (Figure S2 and Figure S3). Further work will be needed to comprehensively understand the effects of Chlorella on stomatal movement and WUE, of a wide of agricultural crops. It will provide scientific evidence for the development of new bio-antitranspirant and advancement of water-saving technology for solving fresh water scarcity.

Supporting Information

Figure S1 Effects of 20 μM DPI, 2 mM SHAM and 100 UmL^{-1} CAT on stomatal aperture in V. faba. Epidermal peels of broad beans preincubated for 2 h in opening buffer under light were treated with 20 μM DPI, 2 mM SHAM and 100 UmL^{-1} CAT and stomatal apertures were measured after 2 h. These data are the mean ± SE of the representative results from three biological repeats (n = 150 per bar). Same letters above the bars indicate mean values that are not significantly different from one another as determined by ANOVA (LSD test, P<0.05).

Figure S2 Heated-killed Chlorella-triggered stomatal closure in V. faba. (A) The dosage effect of heated-killed Chlorella-induced stomatal closure in epidermal peel experiments. Epidermal peels of broad beans preincubated for 2 h in opening buffer under light were treated with different concentrations of heated-killed Chlorella suspension, and stomatal apertures were measured after 2 h. These data are the mean ± SE of three biological replicates (n = 150 per bar). (B) The dosage effect of heated-killed Chlorella-triggered stomatal closure in intact leaves. After evenly spraying various concentrations of heated-killed Chlorella suspension and water onto the leaves of broad bean for 48 h, the epidermal strips were peeled off and immediately observed under a microscope. Each bar represents the mean ± SE of the representative results (n = 120). Different letters above the bars indicate mean values that are significantly different from one another as determined by ANOVA (LSD test, P<0.05).

Figure S3 The effects of Heated-killed Chlorella on instantaneous water use efficiency (WUEi) in V. faba. The changes in instantaneous intrinsic water use efficiency (WUEi) of broad bean leaves 48 h after treatment with different concentrations of heated-killed Chlorella suspension (1.0×10^6, 1.0×10^7, 1.0×10^8, 1.0×10^9 and 1.0×10^10 ind mL^{-1}). These data are the mean ± SE (n = 14 per bar). Different letters above the bars demonstrate mean values that are significantly different from one another as determined by ANOVA (LSD test, P<0.05).

Table S1 The minimal fluorescence (F0) and maximal fluorescence (Fm) of broad bean leaves after treatment with different concentrations of Chlorella suspension ranging from 0 to 1.0×10^10 ind mL^{-1} for 48 h. Each value represents the mean ± SE (n = 14). Means estimates with same letters are not significantly different among treatments as determined by ANOVA (LSD test, P<0.05).
Acknowledgments

We thank Dr. Kun Jiang for critical reading of this paper.

Author Contributions

Conceived and designed the experiments: YL. Performed the experiments: YL. Contributed reagents/materials/analysis tools: JG. Wrote the paper: YL. GXW.

References

1. Jiang K, Sorefan K, Deeks MJ, Bevan MW, Jones JD (2009) Role of plant hormones in plant defence responses. Plant J 59: 419–431.
2. Guzman S, Gato A, Calleja J (2001) Antiinflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella vulgaris cultured on special conditions. Boll Chim Farm 140: 165–168.
3. Desikan R, Cheung MK, Clarke A, Golding S, Sagi M, et al. (2004) Hydrogen peroxide is a common signal for darkness-and ABA-induced stomatal closure in Arabidopsis. Plant Cell 16: 913–920.
4. Suhita D, Ragahaven AS, Kwoa JM, Vavaseur A (2004) Cytosolic plasmolysis accompanies precocious reactive oxygen species production during methyl jasmonate-and ascorbic acid-induced stomatal closure. Plant Physiol 134: 1536–1545.
5. Peri ZM, Murata Y, Benning G, Thomine S, Slussner B, et al. (2000) Calcium channels activated by hydrogen peroxide mediate ascorbic acid signalling in guard cells. Nature 406: 731–734.
52. Mustilli AC, Merlot S, Vavasseur A, Fenzl F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14: 3089–3099.

53. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H$_2$O$_2$ synthesis. Plant J 45: 113–122.

54. Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5: 1003–1011.

55. Zipfel C, Kunze G, Cinchilla D, Caniard A, Jones JDG, et al. (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749–760.

56. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, et al. (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. PNAS 104: 19613–19618.

57. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, et al. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764–767.

58. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60: 379–406.

59. Sawinski K, Mersmann S, Robatzek S, Bohmer M (2013) Guarding the green: pathways to stomatal immunity. Mol Plant Microbe In 26: 626–632.

60. Henderson RK, Baker A, Parsons SA, Jefferson B (2008) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res 42: 3435–3445.

61. Gerken HG, Donohoe B, Knosaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237: 239–253.

62. Cuevas JC, Sánchez DH, Marina M, Ruiz OA (2004) Do polyamines modulate the Lotus glaber NADPH oxidation activity induced by the herbicide methyl viologen? Funct Plant Biol 31: 921–928.

63. Miller G, Shulaev V, Mitler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plantarum 133: 481–489.

64. Marino D, Dunand C, Pappo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17: 9–15.

65. Macho AP, Bouret F, Rathjen JP, Zipfel C (2012) Aspartate oxidase plays an important role in Arabidopsis stomatal immunity. Plant Physiol 159: 1845–1856.

66. Underwood W, Melotto M, He NY (2007) Role of plant stomata in bacterial invasion. Cell Microbiol 9: 1621–1629.

67. Chaves MM, Santos TP, Souza CR, Ortuno M, Rodrigues M, et al. (2007) Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann Appl Biol 150: 237–252.

68. Neill S, Barros R, Bright J, Desikan R, Hancock J, et al. (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59: 163–176.

69. Wam J, Griffiths R, Ying J, McCourt P, Huang Y (2009) Development of drought-tolerant Canola (Brassica napus L.) through genetic modulation of ABA-mediated stomatal responses. Crop Sci 49: 1539–1554.

70. Vahisalu T, Puzorjova I, Brosché M, Valk E, Lepiku M, et al. (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62: 442–453.

71. De Souza CR, Maroco JP, Dos Santos TP, Rodrigues ML, Lopes CM, et al. (2005) Impact of deficit irrigation on water use efficiency and carbon isotope composition (%delta^13C) of field-grown grapevines under Mediterranean climate. J Exp Bot 56: 2163–2172.

72. Trejo CL, Davies WJ, Ruiz I (1993) Sensitivity of stomata to abscisic acid (an effect of the mesophyll). Plant Physiol 102: 497–502.

73. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51: 659–668.

74. Lao L, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25: 275–294.

75. Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150: 1530–1540.

76. Pereira EG, Oliveira MA, Roseo-Souza L, Mendes GC, Calares DS, et al. (2012) Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci 201–202: 81–92.