A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases

Mary Hunt
Technological University Dublin, mary.hunt@tudublin.ie

Junji Yamada
Tokyo University of Pharmacy and Life Science

Lois Maltais
The Jackson Laboratory

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/scschbioart

Part of the Molecular Biology Commons

Recommended Citation
Hunt, M., Maltais, L., Wright, M., Podesta, E., Alexson, S.: A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases. Journal of Lipid Research, Vol. 45,(10), 2004,pp. 1958-1961. doi:10.1194/jlr.E400002-JLR200
Authors
Mary Hunt, Junji Yamada, Lois Maltais, Mathew Wright, Ernesto Podesta, and Stefan Alexson
A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases.

#Mary C. Hunt, #Junji Yamada, §Lois J. Maltais, *Matthew Wright, §§ Ernesto J. Podesta, and #Stefan E. H. Alexson,

#Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry C1-74, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden, ##Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan, §The Mouse Genomic Nomenclature Committee (MGNC), Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, *University College London, London, UK, §§Department of Biochemistry, School of Medicine, University of Buenos Aires, Argentina.

Running title: acyl-CoA thioesterase nomenclature

Key words: acyl-CoA thioesterase, acyl-CoA hydrolase, nomenclature, fatty acid metabolism, coenzyme A.
Abstract

Acyl-CoA thioesterases, also known as acyl-CoA hydrolases, are a group of enzymes that hydrolyze CoA esters such as acyl-CoAs (saturated, unsaturated, branched chain), bile acid-CoAs, CoA esters of prostaglandins etc, to the corresponding free acid and coenzyme A. There is however significant confusion regarding the nomenclature of these genes. In agreement with the HUGO Gene Nomenclature Committee (HGNC) and the Mouse Genomic Nomenclature Committee (MGNC), a revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases has been suggested for the 12 member family. The family root symbol is ACOT, with human genes named ACOT1-12, and rat and mouse named Acot1-12. Several of the ACOT genes are the result of splicing events and these splice variants are catalogued.
Introduction

Acyl-CoA thioesterases (EC 3.1.2.1. and EC 3.1.2.2.) are enzymes that catalyze the hydrolysis of CoA esters of various molecules to the free acid plus coenzyme A (CoA) (1,2). These enzymes have also been referred to in the literature as acyl-CoA hydrolases, acyl-CoA thioester hydrolases and palmitoyl-CoA hydrolases. The reaction carried out by these enzymes is as follows:

CoA ester + \(H_2O \) \(\rightarrow \) free acid + CoASH

These enzymes are distinct from long-chain acyl-CoA synthetases in that they hydrolyze the CoA-activated molecule to the free acid and CoA, whereas long-chain acyl-CoA synthetases ligate fatty acids to CoA, to produce the CoA ester (3). Although the functions for many of the acyl-CoA thioesterases in this gene family are not fully understood, they are considered to regulate intracellular levels of CoA esters, the corresponding free acid and CoASH and, in turn, cellular processes involving these compounds. Over the years, several different groups have identified and cloned unrelated acyl-CoA thioesterases, which has led to many inconsistencies regarding the nomenclature in the literature. In view of this, we have put together this short article, with the revised and approved nomenclature for the acyl-CoA thioesterase gene family in human, mouse and rat, to help avoid confusion in this field. This nomenclature has been carried out in co-operation with the HUGO Gene Nomenclature Committee (HGNC) and the Mouse Genomic Nomenclature Committee (MGNC) and proposes the use of ACOT as the root symbol for the acyl-CoA thioesterase gene family. It is therefore recommended and hoped that the new nomenclature of ACOT will be accepted and used by all scientists.

Nomenclature

Acyl-CoA thioesterases are referred to in the literature as acyl-CoA hydrolases, but as the reaction carried out by these enzymes is the cleavage of a thioester bond, it is considered that the name acyl-CoA thioesterase, gene symbol ACOT-, is more appropriate to the nomenclature of these enzymes.
The substrate specificity for these enzymes is rather diverse, with some members hydrolyzing long-chain saturated and unsaturated acyl-CoAs (4-9), while others hydrolyze a broad variety of CoA-activated substrates including bile acids, branched-chain fatty acids, prostaglandins etc (Acot8) (10,11) or acetyl-CoA (12,13).

According to human, mouse and rat gene nomenclature guidelines, human symbols are entirely capitalized (e.g. ACOT1, ACOT2 etc) while the mouse and rat symbols are lowercase except for the first letter (e.g. Acot1, Acot2 etc). Gene and allele symbols are italicized while protein symbols are nonitalicized capitalized fonts. Italics need not be used in gene catalogs. Proteins are shown in uppercase letters. To distinguish between mRNA, genomic DNA and cDNA, the relevant prefix should be written in parentheses (mRNA) ACOT1, (gDNA) ACOT1, (cDNA) ACOT1.

Gene clusters/families
Mouse has six distinct genes (previously called Type-I acyl-CoA thioesterases), all located in a cluster within 120 kb on mouse chromosome 12 D3 (6,14). These six gene products result in one protein localized in cytosol (ACOT1) (4), one protein in mitochondria (ACOT2) (15) and four proteins in peroxisomes (ACOT3-6) (6). The proteins resulting from these genes are all encoded for by three exons. In human, however, there are 4 distinct genes on chromosome 14q24.3 that encode two cytosolic enzymes (ACOT1 and ACOT6), one mitochondrial (ACOT2) and one peroxisomal enzyme (ACOT4) (14). ACOT1, 2 and 4 open reading frames are encoded by three distinct exons. However, the ACOT6 gene in human encodes a protein that is shorter than the other ACOT proteins and translation appears to start at a methionine at the end of exon 2. The human gene family contains one expressed pseudogene, encoded on chromosome 19, which is an intronless gene and contains many in-frame stop codons. In the case of ACOT2, this cDNA has previously been cloned as a peroxisomal acyl-CoA thioesterase (PTE2) (16). ACOT2 contains a carboxyterminal –SKV, which is a variant of the peroxisomal type 1 targeting signal of –SKL, which targets proteins to peroxisomes (17). Database analysis shows that ACOT2 in fact contains 62 extra amino acids at its N-terminal end, which function as a mitochondrial targeting sequence that targets the protein to mitochondria (Hunt et al, unpublished results). ACOT2, in addition to being identified as a mitochondrial acyl-CoA thioesterase (15), was also identified as a phosphoprotein called ARTIS1t, involved in steroid synthesis (18). Recently, ACOT2
involvement in a novel pathway of arachidonic acid release in hormonal regulation of steroidogenesis had been described (19).

One gene that has caused much confusion is the ACOT8. This gene was cloned from several species and the protein characterized. In human, the ACOT8 was identified as hACTEIII (20) and hTE (21), as a protein that interacted with and activated the HIV-1 Nef protein. Later this gene was identified and characterized as a peroxisomal acyl-CoA thioesterase YJR019C or PTE1 from yeast and human respectively (22). The cDNA was also cloned from mouse as PTE-2, the major acyl-CoA thioesterase in mouse peroxisomes (10) and subsequently characterized in rat as rat PTE (11).

In the case of Acot9 and 10, this subfamily comprises two genes in mouse. These two mitochondrial proteins are 95% identical to each other (9). One gene is encoded on chromosome XF3, while the second gene is encoded on chromosome 15B1. In human and rat, there appears to be only one gene, ACOT9/Acot9, on chromosome X.

Splice variants

Some of the ACOT/Acot genes identified to date undergo splicing events, which result in several different proteins with different cellular localizations e.g. Acot 3, ACOT7/Acot7 and Acot11 (6,23,24).

Acot3, ACOT7/Acot7 and ACOT11 variants

Acot3 and ACOT11

In the case of Acot3, two splice variants have been identified in mouse, which result in two almost identical proteins, one of which contains 11 extra amino acids in the N-terminal end, with the remaining 421 amino acids being identical (6). The function of these 11 amino acids is not known and they do not function as a mitochondrial targeting signal, however the two splice variants differ in their tissue expression. In human, two splice variants of ACOT11 (ACOT11_v1 and _v2) were identified, whereas only one variant was identified in mouse which is most similar to ACOT11_v2 (24).
ACOT7/Acot7 variants

The human ACOT7 gene comprises at least thirteen exons, of which the first four exons (1a-1d) can be used as alternative first exons. Three patterns of splicing occur at exon X located between exons 7 and 8 that contain an internal 3’-splice acceptor site. Thus, it gives rise theoretically to twelve transcript variants through a mechanism of alternative exon use. So far, seven kinds of ACOT7 variants (ACOT7_v1 to v7) have been demonstrated (23). ACOT7_v1 to v4 have unique sequences derived from the respective exon 1’s and share the same sequence corresponding to exons 2-9. Compared with the protein encoded by ACOT7_v1 (ACOT7a), ACOT7_v2 and ACOT7_v3 encode 42- and 12-amino acid longer proteins (ACOT7b and ACOT7c, respectively), that contain mitochondrial targeting signals at their N-termini. ACOT7_v5 and ACOT7_v6 have the same sequence as ACOT7_v1 except for having exon X-derived insertions that create premature stop codons by frame-shift. Human ACOT7 is homologous to rat and mouse ACOT7. In addition to Acot7_v1 to v3, Acot7_v7 was identified in mice. Acot7_v7 has a 5’-extended sequence of Acot7_v1, which contains an earlier in-frame start codon that encodes an ACOT7g protein 41 amino acids longer than ACOT7a (25).

Proteins translated from mRNA variants may be distinguished by lowercase suffixes (e.g. ACOT7a and ACOT7b).

Conclusions

Decades of research into acyl-CoA thioesterses/hydrolases has led to a disparity in the nomenclature system used by scientists. It is hoped that this new nomenclature for mammalian ACOT genes will help to reduce confusion in this field. It is recommended that any newly identified ACOT/Acot family members should be given the next available number in the ACOT system and refer to the website http://www.gene.ucl.ac.uk/nomenclature/genefamily/acot.html

Acknowledgements:

This project was supported by Svenska Sällskapet för Medicinsk Forskning, Åke Wibergs stiftelse, Hjärt-Lungfonden, Lars Hiertas Minne, Fredrik och Ingrid
References

1. Hunt, M. C., and S. E. H. Alexson. 2001. The role acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog. Lipid Res. 41: 99-130
2. Yamada, J. 2005. Long-chain acyl-CoA hydrolase in the brain. Amino Acids. 28: 273-278
3. Mashek, D. G., K. E. Bornfeldt, R. Coleman, A., J. Berger, D. A. Bernlohr, P. Black, C. C. DiRusso, S. A. Farber, W. Guo, N. Hashimoto, V. Khodiyar, F. A. Kuypers, L. J. Maltais, D. W. Nebert, A. Renieri, J. E. Schaffer, A. Stahl, P. A. Watkins, V. Vasiou, and T. T. Yamamoto. 2004. Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. J. Lipid Res. 45: 1958-1961
4. Lindquist, P. J. G., L. T. Svensson, and S. E. H. Alexson. 1998. Molecular cloning of the peroxisome proliferator-induced 46-kDa cytosolic acyl-CoA thioesterase from mouse and rat liver. Eur. J. Biochem. 251: 631-640
5. Huhtinen, K., J. O'Byrne, P. J. G. Lindquist, J. A. Contreras, and S. E. H. Alexson. 2002. The peroxisome proliferator-induced cytosolic type I acyl-CoA thioesterase (CTE-I) is a serine-histidine-aspartic acid alpha/beta hydrolase. J. Biol. Chem. 277: 3424-3432
6. Westin, M. A., S. E. H. Alexson, and M. C. Hunt. 2004. Molecular cloning and characterization of two mouse peroxisome proliferator-activated receptor alpha (PPARalpha)-regulated peroxisomal acyl-CoA thioesterases. J. Biol. Chem. 279: 21841-21848
7. Yamada, J., A. Kurata, M. Hirata, T. Taniguchi, H. Takama, T. Furihata, K. Shiratori, N. Iida, M. Takagi-Sakuma, T. Watanabe, K. Kurosaki, T. Endo, and T. Suga. 1999. Purification, molecular cloning, and genomic organization of human brain long-chain acyl-CoA hydrolase. J. Biochem. 126: 1013-1019
8. Yamada, J., T. Furihata, H. Tamura, T. Watanabe, and T. Suga. 1996. Long-chain acyl-CoA hydrolase from rat brain cytosol: purification, characterization, and immunohistological localization. Arch. Biochem. Biophys. 326: 106-114
9. Poupon, V., B. Begue, J. Gagnon, A. Dautry-Varsat, N. Cerf-Bensussan, and A. Benmerah. 1999. Molecular cloning and characterization of MT-ACT48, a novel mitochondrial acyl-CoA thioesterase. J. Biol. Chem. 274: 19188-19194
10. Hunt, M. C., K. Solaas, B. F. Kase, and S. E. H. Alexson. 2002. Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J. Biol. Chem. 277: 1128-1138
11. Ofman, R., L. el Mrabet, G. Dacremont, D. Spijer, and R. J. A. Wanders. 2002. Demonstration of dimethylnonanoyl-CoA thioesterase activity in rat liver peroxisomes followed by purification and molecular cloning of the thioesterase involved. *Biochem. Biophys. Res. Comm.* **290**: 629-634

12. Suematsu, N., K. Okamoto, and F. Isohashi. 2002. Mouse cytosolic acetyl-CoA hydrolase, a novel candidate for a key enzyme involved in fat metabolism: cDNA cloning, sequencing and functional expression. *Acta Biochim. Pol.* **49**: 937-945

13. Suematsu, N., K. Okamoto, K. Shibata, Y. Nakanishi, and F. Isohashi. 2001. Molecular cloning and functional expression of rat liver cytosolic acetyl-CoA hydrolase. *Eur. J. Biochem.* **268**: 2700-2709

14. Hunt, M. C., S. E. B. Nousiainen, M. K. Huttunen, K. Oriti, L. T. Svensson, and S. E. H. Alexson. 1999. Peroxisome proliferator-induced long chain acyl-CoA thioesterases comprise a highly conserved novel multi-gene family involved in lipid metabolism. *J. Biol. Chem.* **274**: 34317-34326

15. Svensson, L. T., S. T. Engberg, T. Aoyama, N. Usuda, S. E. H. Alexson, and T. Hashimoto. 1998. Molecular cloning and characterization of a mitochondrial peroxisome proliferator-induced acyl-CoA thioesterase from rat liver. *Biochim. J.* **329**: 601-608

16. Jones, J. B., and S. J. Gould. 2000. Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase. *Biochem. Biophys. Res. Commun.* **275**: 233-240

17. Gould, S. J., G. A. Keller, N. Hosken, J. Wilkinson, and S. Subramani. 1989. A conserved tripeptide sorts proteins to peroxisomes. *J. Cell. Biol.* **108**: 1657-1664

18. Finkielstein, C., P. Maloberti, C. F. Mendez, C. Paz, F. Cornejo Maciel, C. Cymeryng, I. Neuman, L. Dada, P. G. Mele, A. Solano, and E. J. Podesta. 1998. An adrenocorticotropic hormone-regulated phosphoprotein intermediary in steroid synthesis is similar to an acyl-CoA thioesterase enzyme. *Eur. J. Biochem.* **256**: 60-66

19. Maloberti, P., R. Castilla, F. Castillo, F. Cornejo Maciel, C. F. Mendez, C. Paz, and E. J. Podesta. 2005. Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steriodogenesis. *FEBS J.* **272**: 1804-1814

20. Watanabe, H., T. Shiratori, H. Shoji, S. Miyatake, Y. Okazaki, K. Ikuta, T. Sato, and T. Saito. 1997. A novel acyl-CoA thioesterase enhances its enzymatic activity by direct binding with HIV Nef. *Biochem. Biophys. Res. Commun.* **238**: 234-239

21. Liu, L. X., F. Margottin, S. Le Gall, O. Schwartz, L. Selig, R. Benarous, and S. Benichou. 1997. Binding of HIV-1 Nef to a novel thioesterase enzyme correlates with Nef-mediated CD4 down-regulation. *J. Biol. Chem.* **272**: 13779-13785

22. Jones, J. M., K. Nau, M. T. Geraghty, R. Erdmann, and S. J. Gould. 1999. Identification of peroxisomal acyl-CoA thioesterases in yeast and human. *J. Biol. Chem.* **274**: 9216-9223

23. Yamada, J., Y. Kuramochi, M. Takagi, T. Watanabe, and T. Suga. 2002. Human brain acyl-CoA hydrolase isoforms encoded by a single gene. *Biochem. Biophys. Res. Comm.* **299**: 49-56

24. Adams, S. H., C. Chui, S. L. Schilback, X. X. Yu, A. D. Goddard, J. C. Grimaldi, J. Lee, P. Dowd, S. Colman, and D. A. Lewin. 2001. BFIT, a unique acyl-CoA thioesterase induced in thermogenic brown adipose tissue: cloning, organization of the human gene and assessment of a potential link to obesity. *Biochem. J.* **360**: 135-142
25. Takagi, M., K. Kawabe, T. Suga, and J. Yamada. 2004. A 50-kDa isoform of mouse brain acyl-CoA hydrolase: expression and molecular properties. *Arch. Biochem. Biophys.* 429: 100-105
Table I: Revised nomenclature for the acyl-CoA thioesterase (ACOT/Acot) gene family

Approved nomenclature (chromosome location)	Previous nomenclature & Aliases	Accession No. Gene & protein sequences			
Human ACOT 1 (14q24.3)	CTE-I, LACH2, ACH2	DQ082754 Y09334 NM_031315 Y14004 NM_012006			
Rat Acot1 (6q31)					
Mouse Acot1 (12 D3)					
Human ACOT2 (14q24.3)	MTE-I, PTE2, ARTISt/p43	DQ082755 AB010429 NM_134188			
Rat Acot2 (6q31)					
Mouse Acot2 (12 D3)					
Human Acot3 (6q31)	PTE-Ia, Pte2a (variant 5:1)	XM_234399 NP_599007 AY563097			
Rat Acot3 (12 D3)	(variant 5:2)				
Mouse Acot3 (12 D3)					
Human ACOT4 14q24.3	PTE-Ib, Pte2b	NM_152331 XM_234398 NM_134247			
Rat Acot4 (6q31)					
Mouse Acot4 (12 D3)					
Human Acot5 (6q31)	PTE-Ic	AY563099 NM_145444			
Rat Acot5 (12 D3)					
Mouse Acot5 (12 D3)					
Human ACOT6 (6q31)	PTE-Id	DQ082756 AY999300			
Rat Acot6 (12 D3)					
Mouse Acot6 (12 D3)					
Approved nomenclature	Previous nomenclature & Aliases	Accession No.	Gene & protein sequences		
------------------------	----------------------------------	--------------	--------------------------		
(chromosome location)					
Human	**Rat**	**Mouse**			
ACOT7 (1p36.31-p36.11)	Acot7	Acot7	BACH, CTE-II, ACT	Y09332	AB049821
	(5q36)	(4 E2)	ACH1, BACHa		
	MTE-II, LACH1, BACHb		variant 1 -NM_007274		
	BACHc		variant 2 - AB074417	D88891	AB088411
	BACHd		variant 3 - AB074418		
	BACHa/X		variant 4 - AB074419		
	BACHa/Xi		variant 5 - AB074415		
	50-kDa BACH		variant 7		AB207243
ACOT8 (20q12-q13.1)	Acot8	Acot8	PTE-2, Pte1, hTE,	NP_005460.2	AF452100
	(3q42)	(2 H3)	hACTEIII, PTE1	NM_005469.	AAL66289.1
					NM_133240
					NP_573503.1
Approved nomenclature (chromosome location)	Previous nomenclature & Aliases	Accession No. Gene & protein sequences			
--	---------------------------------	--			
Human	**Rat**	**Mouse**			
ACOT9 (Xp22.11)	MT-ACT48, act48.1	AF132950			
	Acate2, U8, MTE-2, CGI-16, p48	BC085822			
		AAH85822			
	Acot10				
	MT-ACT48, act48.2, Acate3	AJ238894			
ACOT11 (1p32.3)	AF416921				
ACOT 12 (5q14.1)	CACH-1, MGC105114	AB078619			
	mCACH-1, CACH	NM_130747			
		AB078618			

Please also refer to the Human Genome Nomenclature Committee website (http://www.gene.ucl.ac.uk/nomenclature/genefamily/acot.html) for further information on the ACOT/Acot gene family.