RESEARCH ARTICLE

Nephrectomy Type Was Not Associated with a Subsequent Risk of Coronary Heart Disease: A Population-Based Study

Shiu-Dong Chung1,2,3*, Chao-Yuan Huang4,5, Sheng-Tang Wu6, Herng-Ching Lin3,7†, Chung-Chien Huang7‡, Li-Ting Kao3,8‡*

1 Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, Banciao, Taiwan, 2 Graduate Program in Biomedical Informatics, College of Informatics, Yuan-Ze University, Chung-Li, Taiwan, 3 Sleep Research Center, Taipei Medical University Hospital, Taipei, Taiwan, 4 School of Public Health, Taipei Medical University, Taipei, Taiwan, 5 Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan, 6 Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, 7 School of Health Care Administration, Taipei Medical University, Taipei, Taiwan, 8 Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan

☯ These authors contributed equally to this work.
‡ These authors also contributed equally to this work.
* kaoliting@gmail.com

Abstract

Previous studies investigated the impacts of a partial nephrectomy (PN) or radical nephrectomy (RN) on cardiovascular events and death. However, the association between the type of nephrectomy (PN vs. RN) and cardiovascular disease is still equivocal. This retrospective cohort study aimed to compare the risk of coronary heart disease (CHD) between patients who underwent a PN and those who underwent an RN. We used data from the Taiwan Longitudinal Health Insurance Database 2005. In total, 60 patients who underwent a PN and 545 patients who underwent an RN were included. Each patient was tracked for 1-, 2-, 3-, and 5-year periods to identify those who were subsequently diagnosed with CHD. Cox proportional hazard regression analyses were used to calculate hazard ratios (HRs) for CHD during 1-, 2-, 3-, and 5-year follow-up periods between these two cohorts. For the 1-year follow-up period, the adjusted HR was 0.39 (95% CI: 0.05~2.90, p = 0.355) for patients who underwent a PN compared to those who underwent an RN. Additionally, the adjusted HRs of CHD in patients who underwent a PN for 2-, 3-, and 5-year follow-up periods were 1.40 (95% CI: 0.62~3.16, p = 0.417), 1.09 (95% CI: 0.52~2.31, p = 0.814), and 1.02 (95% CI: 0.48~2.18, p = 0.961), respectively, compared to those who underwent an RN. We concluded that there was no significant difference in the risk of CHD between patients who underwent a PN and those who underwent an RN.
Introduction

Radical nephrectomy (RN) is recognized as a gold standard treatment for localized renal cell carcinomas [1, 2]. This surgery would remove the entire kidney and all the contents within the renal fascia [3]. Nevertheless, in comparison to an RN, the partial nephrectomy (PN) could preserve the renal parenchyma uninvolved by the tumor at the time of surgery [4]. Therefore, although an RN has been the common treatment of small renal tumors in past decades, a PN is now the preferred treatment for patients with small renal masses [5, 6]. To date, increasing evidences showed that PN and RN have similar outcomes for T1 renal tumors, including the rate of cancer-specific mortality and local or distant recurrence [7]. Moreover, many studies indicated that this surgery may protect long-term renal function and decrease the risk of subsequent chronic kidney disease (CKD) since a PN can preserve patients' renal parenchyma [8–12].

Exacerbation of renal function and CKD are both risk factors for the development of cardiovascular diseases [13, 14]. Additionally, coronary heart disease (CHD) is a primary cause of death in general populations and in patients with CKD [15, 16]. Accordingly, it is plausible that PN might decrease the incidence of CHD because PN can preserve renal parenchyma and protect renal function [8–16]. However, to date, most literatures only attempted to investigate the association between nephrectomy types and oncologic or overall survival [12, 17–23]. Only a few studies have attempted to investigate differences in cardiovascular mortality and morbidity between patients who underwent a PN and those who underwent an RN [24–27]. For instance, one study in the United States reported no difference in postoperative cardiovascular morbidity rates between a PN and RN [24]. Another study also found that the type of nephrectomy (PN vs. RN) was not an independent predictor of cardiac-specific deaths [25].

Conversely, two studies conducted in the United States both showed that an RN was significantly associated with a higher cardiovascular mortality than was a PN [26, 27]. Therefore, the associations between nephrectomy type and cardiovascular morbidity and mortality are still inconsistent. Additionally, all relevant studies were conducted in western countries. To our best knowledge, no study to date has directly examined the relationship between the nephrectomy type and the risk of cardiovascular diseases in an Asian country. Therefore, this study aimed to explore the relationship between nephrectomy type and the subsequent risk of CHD using a large population-based dataset in Taiwan.

Methods

Database

This study used data from the Taiwan Longitudinal Health Insurance Database 2005 (LHID2005). The LHID2005 involves original claims data and registration files for 1 million individuals randomly selected from all enrollees in the Taiwan National Health Insurance (NHI) program in 2005 (n = 25.68 million). The NHI program in Taiwan is a single-payer system and approximately 99.9% of Taiwanese population were registered in this system. Additionally, this NHI program was initiated in 1995 and provides accessible and affordable medical services for all citizens in Taiwan. The LHID2005 allows researchers to trace all medical records (including physician diagnoses, medications, treatments, and surgeries, etc.) of these 1 million enrollees since the beginning of Taiwan’s NHI program. This population-based database is released to researchers in Taiwan for academic purposes by the Taiwan National Health Research Institutes (http://nhird.nhri.org.tw/en/index.html). It consists of de-identified secondary data and a number of studies have been published in international peer-reviewed journals to date.
Study Sample
This study was a retrospective cohort study and included a study cohort and a comparison cohort. We selected the study cohort by first identifying 84 patients who underwent a PN (ICD-9-CM procedure code 554) in January 2001 to December 2010. The date of the PN was defined as the index date for the study cohort, and the procedure codes were made by a certified urologist. We then excluded patients who had been diagnosed with CHD (ICD-9-CM codes 410~414 or 429.2) \((n = 24)\) prior to the index date. Finally, 60 patients who underwent a PN were included in the study cohort.

For the comparison cohort, we initially defined 782 patients who underwent an RN between January 2001 and December 2010 based on the ICD-9-CM procedure code 555. The date of the RN was identified as the index date. We then excluded 237 patients who had a history of CHD prior to their index date. Ultimately, 545 patients who underwent an RN were identified as the comparison cohort.

Outcome Measures
In this study, each patient \((n = 605)\) was individually tracked for a 1-, 2-, 3-, and 5-year period to define those who received a diagnosis of CHD (ICD-9-CM codes 410~414 or 429.2) during the period from January 2001 to December 2013 after the index date.

Statistical Analysis
All analyses in this study were conducted with the SAS system (SAS System for Windows, vers. 9.2, SAS Institute). Chi-squared tests were performed to compare differences in sex, monthly income, geographic location, urbanization level, and patients' comorbidities (including hypertension, diabetes mellitus, hyperlipidemia, and chronic renal failure) between patients who underwent a PN and those who underwent an RN. These medical comorbidities were only included if they were diagnosed prior to the index date. Student’s \(t\)-test was conducted to investigate differences in age between patients who underwent a PN and those who underwent an RN.

Thereafter, Cox proportional hazard regression analyses were used to calculate hazard ratios (HRs) for CHD during 1-, 2-, 3-, and 5-year follow-up periods between these two cohorts. We censored patients who died during the follow-up period. Additionally, in order to avoid the potential effect of the cardiovascular risk factors, renal function, and patients’ demographics on the association between a PN and CHD, we estimated the risk of CHD by taking hypertension, diabetes, hyperlipidemia, chronic renal failure, patients’ age, sex, geographical location, monthly income, urbanization level into consideration in the regression models. This study showed HRs along with 95% confidence intervals (CIs). Statistical significance was set at a conventional two-sided \(p\) value of \(<0.05\).

Results
This study included 60 patients who underwent a PN as the study cohort and 545 patients who underwent an RN as the comparison cohort. Of the 605 patients, the mean age was 56.7 years with a standard deviation of 16.1 years. Mean ages for the study and comparison cohorts were 53.6 and 57.0 years, respectively \((p = 0.202)\). The demographic characteristics and comorbidities of the sampled patients are shown in Table 1. Patients who underwent a PN had a significantly lower prevalence of chronic renal failure than those who underwent an RN \((5.0\% \text{ vs. } 16.7\%, p = 0.018)\). However, there was no significant difference in monthly income, geographic
Table 1. Demographic characteristics of patients who underwent a partial nephrectomy (PN) and those who underwent a radical nephrectomy (RN) (N = 605).

Variable	Patients who underwent a PN	Patients who underwent an RN	p value		
	n = 60	n = 545			
	Total no.	Column %	Total no.	Column %	
Age (years)	53.6±14.2		57.0±16.3		0.202
Sex					
Male	28	46.7	274	50.3	0.596
Female	32	53.3	271	49.7	
Monthly income					0.122
≤NT$15,840	26	43.3	267	49.0	
NT$15,841–25,000	18	30.0	190	34.9	
> NT$25,001	16	26.7	88	16.2	
Geographical region					0.277
Northern	30	50.0	213	39.1	
Central	9	15.0	133	24.4	
Southern	20	33.3	193	35.4	
Eastern	1	1.7	6	1.1	
Urbanization level					0.215
1 (most urbanized)	20	33	161	29.5	
2	21	35	151	27.7	
3	11	18	83	15.2	
4	4	6.7	69	12.7	
5 (least urbanized)	4	6.7	81	14.9	
Comorbidities					
Hypertension	20	33.3	181	33.2	0.985
Diabetes mellitus	14	23.3	93	17.1	0.227
Hyperlipidemia	10	16.7	86	15.8	0.858
Chronic renal failure	3	5.0	91	16.7	0.018

The average exchange rate in 2011 was US$1.00=New Taiwan (NT)$30.

doi:10.1371/journal.pone.0163253.t001

region, urbanization level, or some comorbidities, including hypertension, diabetes, and hyperlipidemia, between the study and comparison cohorts.

Table 2 presents the incidence rates for CHD among sampled patients. Incidence rates of CHD per 100 person-years within the 1-year follow-up period were 1.68 (95% CI: 0.43–9.38) and 5.14 (95% CI: 3.36–7.53) for patients who underwent a PN and those who underwent an RN, respectively. Incidence rates of CHD per 100 person-years within the 2-year follow-up period were 5.96 (95% CI: 2.40–12.29) for patients who underwent a PN and 5.64 (95% CI: 4.20–7.41) for those who underwent an RN. Moreover, incidence rates of CHD per 100 person-years within the 3-year follow-up period were 4.59 (95% CI: 1.98–9.05) and 5.45 (95% CI: 4.25–6.89), respectively, for patients who underwent a PN and those who underwent an RN. Additionally, the incidence rates of CHD per 100 person-years within the 5-year follow-up period were 3.98 (95% CI: 1.91–7.31) and 5.00 (95% CI: 4.06–6.12) for patients who underwent a PN and those who underwent an RN, respectively.

The HRs for subsequent CHD in patients who underwent a PN compared to those who underwent an RN are also shown in Table 2. For the 1-year follow-up period, the adjusted HR was 0.39 (95% CI: 0.05–2.90, p = 0.355) for patients who underwent a PN compared to those who underwent an RN after adjusting for patients' age, sex, monthly income, geographical...
location, urbanization level, and comorbidities. Furthermore, the adjusted HRs of CHD in patients who underwent a PN for 2-, 3- and 5-year follow-up periods were 1.40 (95% CI: 0.62–3.16, *p* = 0.417), 1.09 (95% CI: 0.52–2.31, *p* = 0.814), and 1.02 (95% CI: 0.48–2.18, *p* = 0.961), respectively, compared to those who underwent an RN.

Discussion

This retrospective cohort study found that patients who underwent a PN did not have an elevated risk of subsequent CHD for the 1-, 2-, 3- or 5-year follow-up periods compared to those who underwent an RN. According to our best knowledge, no previous study has attempted to explore the association between the nephrectomy type and CHD, although a few studies suggested that preserving renal function might protect patients’ cardiovascular system and decrease the occurrence of cardiovascular diseases [13, 14].

To date, most of the literature only indicated that patients who underwent a PN would have lower overall mortality compared to those who underwent an RN [12, 17–22]. Conversely, a randomized trial found that PN seems to be less effective than RN in terms of overall survival [23]. However, very few studies further investigated the relationship of the nephrectomy type with cardiovascular morbidity and mortality to date. Our study found that patients who underwent a PN did not have a higher risk of subsequent CHD compared to those who underwent an RN. Our observation is in light of findings of some prior studies [24–28]. For instance, one retrospective cohort study which used data from the Surveillance, Epidemiology and End Results (SEER) registry in the United States showed that there was no difference in adverse cardiovascular outcomes (including ischemic heart disease-related or congestive heart failure-related hospitalizations or

Table 2. Prevalences, hazard ratios (HRs), and 95% confidence intervals (CIs) for coronary heart disease among the sampled patients.

Presence of coronary heart disease	Patients who underwent a partial nephrectomy (n = 60)	Patients who underwent a radical nephrectomy (n = 545)
One-year follow-up period		
Incidence rate per 100 person-years	1.68 (0.43–9.38)	5.14 (3.36–7.53)
(95% CI)		
HR (95% CI)	0.34 (0.05–2.53)	1.00
Adjusted HR a (95% CI)	0.39 (0.05–2.90)	1.00
Two-year follow-up period		
Incidence rate per 100 person-years	5.96 (2.40–12.29)	5.64 (4.20–7.41)
(95% CI)		
HR (95% CI)	1.23 (0.56–2.71)	1.00
Adjusted HR a (95% CI)	1.40 (0.62–3.16)	1.00
Three-year follow-up period		
Incidence rate per 100 person-years	4.59 (1.98–9.05)	5.45 (4.25–6.89)
(95% CI)		
HR (95% CI)	1.04 (0.50–2.15)	1.00
Adjusted HR a (95% CI)	1.09 (0.52–2.31)	1.00
Five-year follow-up period		
Incidence rate per 100 person-years	3.98 (1.91–7.31)	5.00 (4.06–6.12)
(95% CI)		
HR (95% CI)	0.94 (0.46–1.91)	1.00
Adjusted HR a (95% CI)	1.02 (0.48–2.18)	1.00

Notes: Using Cox proportional regressions with cases censored if patients died during the follow-up period.

a Adjustments were made for patients’ age, sex, geographical location, monthly income, urbanization level, hypertension, diabetes, hyperlipidemia, and chronic renal failure.

doi:10.1371/journal.pone.0163253.t002
diagnoses) between patients who underwent a PN and those who underwent an RN [24]. In addition, an American study reported that the nephrectomy type was not an independent predictor of cardiac-specific deaths (including deaths from ischemic heart disease, congestive heart disease, ischemic stroke, and peripheral vascular disease) [25]. A randomized study in Europe also observed that there were no significant differences in cardiovascular mortality between a PN and RN [28]. Furthermore, Huang et al. performed a cohort study using the SEER registry and found that patients who underwent an RN did not have significant risks of a first cardiovascular event or cardiovascular death compared to those who underwent a PN [26].

However, results of some previous studies do not parallel our findings. For example, Huang et al. reported that the occurrence of cardiovascular events in patients who underwent an RN was 1.4-fold higher than those who underwent a PN [26]. One study in the United States also showed that patients who underwent an RN had a significantly higher risk of cardiovascular mortality (HR 2.53, 95% CI: 1.51~4.23) compared to those who underwent a PN [27]. Recently, a multi-institutional study in Europe concluded that the risk of subsequent cardiovascular events (including the onset of coronary artery disease, cardiomyopathy, vasculopathy, hypertension, heart failure, dysrhythmias, or cerebrovascular disease) in patients who underwent a PN was 0.57-fold lower compared to those who underwent an RN. In conclusion, based on the above studies, the association between the nephrectomy type and overall cardiovascular outcomes remains unclear. Further large-scale epidemiological studies in other regions or countries are still needed to clarify this association.

The principle strength of this study is the use of the LHID2005 which is a longitudinal population-based dataset in Taiwan. The characteristics of this dataset could increase the statistical power and reduce the potential effects of a selection bias. Nevertheless, this study suffers from some limitations. First, the LHID2005 used in this study contained no information on several potential confounders, including the family history of CHD, body-mass index, dietary habits, cigarette smoking, etc [29]. These are considered to be risk factors for CHD and might further affect the relationship between the nephrectomy type and CHD. Second, there was no laboratory information about patients' renal function, such as the glomerular filtration rate or creatinine clearance rate, in the LHID2005. However, in order to avoid the potential impact of renal function on the relationship between a PN and CHD, we estimated the risk of CHD by taking chronic renal failure into consideration in the regression model. Third, the LHID2005 provide no records about the quality and quantity of preserving renal parenchyma after PN. The amount of renal reservation is considered to be a determinant of post-surgical renal function. Fourth, even though this research was a population-based study, a relatively small sample size of PN cases might potentially affect the association between a PN and subsequent CHD. Finally, most sampled patients in this study were of Chinese ethnicity. Therefore, the ability to generalize the findings to other ethnic groups is still uncertain.

In conclusion, this population-based cohort study showed that there was no significant difference in the risk of subsequent CHD during a 1-, 2-, 3-, or 5-year follow-up period between patients who underwent a PN and those who underwent an RN. We consider that the results of this study have suggestions for patients facing nephrectomy. Additionally, the findings may provide some clinical information for physicians to evaluate the potential risks and benefits of the use of a PN and RN. Nevertheless, further large epidemiologic studies are still required to confirm the relationship between nephrectomy type and subsequent CHD in different ethnicity and countries.

Author Contributions

Conceptualization: SD LT.

Data curation: LT.
Formal analysis: HC LT.
Methodology: HC CC LT.
Software: HC CC LT.
Supervision: SD.
Validation: SD LT CY ST HC CC.
Writing – original draft: SD LT CY ST HC CC.
Writing – review & editing: SD LT CY ST HC CC.

References
1. Eskicorapci SY, Teber D, Schulze M, Ates M, Stock C, Rassweiler JJ. Laparoscopic radical nephrectomy: the new gold standard surgical treatment for localized renal cell carcinoma. ScientificWorldJournal. 2007; 7: 825–836. PMID:17619767
2. Krabbe L-M, Kunath F, Schmidt S, Miernik A, Cleves A, Walther M, et al. Partial nephrectomy versus radical nephrectomy for clinically localized renal masses. Cochrane Database of Systematic Reviews. 2016.
3. Edwards L, Hafron J (2016) Kidney Cancer. The Nurse Practitioner in Urology. Springer. pp. 333–344.
4. Lane BR, Babineau DC, Poggio ED, Weight CJ, Larson BT, Gill IS, et al. Factors Predicting Renal Functional Outcome After Partial Nephrectomy. The Journal of Urology. 2008; 180: 2363–2369. doi: 10.1016/j.juro.2008.08.036 PMID: 18930264
5. Campbell SC, Novick AC, Beldeguen A, Blute ML, Chow GK, Derweesh IH, et al. Guideline for management of the clinical T1 renal mass. J Urol. 2009; 182: 1271–1279. doi: 10.1016/j.juro.2009.07.004 PMID: 19683266
6. Ljungberg B, Cowan NC, Hanbury DC, Hora M, Kuczyk MA, Merseburger AS, et al. EAU guidelines on renal cell carcinoma: The 2010 Update. Eur Urol. 2010; 58: 398–406. doi: 10.1016/j.eururo.2010.06.032 PMID: 20633979
7. Patard JJ, Shvarts O, Lam JS, Pantuck AJ, Kim HL, Ficarra V, et al. Safety and efficacy of partial nephrectomy for all T1 tumors based on an international multicenter experience. J Urol. 2004; 171: 2181–2185, quiz 2435. PMID:15126781
8. Kopp RP, Liss MA, Mehrazin R, Wang S, Lee HJ, Jabaji R, et al. Analysis of renal functional outcomes after radical or partial nephrectomy for renal masses ≥7 cm using the RENAL Score. Urology. 2015; 86: 312–320. doi: 10.1016/j.urology.2015.02.067 PMID: 26189330
9. Lane BR, Chen H, Morrow M, Anema JG, Kahnoski RJ. Increasing use of kidney sparing approaches for localized renal tumors in a community based health system: Impact on renal functional outcomes. J Urol. 2011; 186: 1229–1235. doi: 10.1016/j.juro.2011.05.081 PMID: 21849192
10. Silberstein JL, Power NE, Savage C, Tarin TV, Favaretto RL, Su D, et al. Renal function and oncologic outcomes of parenchymal sparing versus radical nephroureterectomy for upper tract urothelial carcinoma. J Urol. 2012; 187: 429–434. doi: 10.1016/j.juro.2011.09.150 PMID: 22177163
11. Yokoyama M, Fujiy Y, Iimura Y, Saito K, Koga F, Masuda H, et al. Longitudinal change in renal function after radical nephrectomy in Japanese patients with renal cortical tumors. J Urol. 2011; 185: 2066–2071. doi: 10.1016/j.juro.2011.02.005 PMID: 21496840
12. Kim SP, Thompson RH, Boorjian SA, Weight CJ, Han LC, Murad MH, et al. Comparative effectiveness for survival and renal function of partial and radical nephrectomy for localized renal tumors: A systematic review and meta-analysis. J Urol. 2012; 188: 51–57. doi: 10.1016/j.juro.2012.03.006 PMID: 22591957
13. Samak MJ, Levey AS, Schoolverth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension. 2003; 42: 1050–1065. PMID:14604997
14. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004; 351: 1296–1305. PMID: 15385656
15. McCullough PA. Coronary artery disease. Clin J Am Soc Nephrol. 2007; 2: 611–616. PMID: 17699471
16. Cai Q, Mukku VK, Ahmad M. Coronary artery disease in patients with chronic kidney disease: a clinical update. Curr Cardiol Rev. 2013; 9: 331–339. PMID: 24527682
17. Weight CJ, Lieser G, Larson BT, Gao T, Lane BR, Campbell SC, et al. Partial nephrectomy is associated with improved overall survival compared to radical nephrectomy in patients with unanticipated benign renal tumours. Eur Urol. 2010; 58: 293–298. doi: 10.1016/j.eururo.2010.04.033 PMID: 20546991

18. Weight CJ, Larson BT, Gao T, Campbell SC, Lane BR, Kaouk JH, et al. Elective partial nephrectomy in patients with clinical T1b renal tumors is associated with improved overall survival. Urology. 2010; 76: 631–637. doi: 10.1016/j.urology.2009.11.087 PMID: 20451967

19. Takagi T, Kondo T, Iizuka J, Omae K, Kobayashi H, Yoshida K, et al. Comparison of survival rates in stage 1 renal cell carcinoma between partial nephrectomy and radical nephrectomy patients according to age distribution: a propensity score matching study. BJU Int. 2015.

20. Sun M, Trinh Q-D, Bianchi M, Hansen J, Hanna N, Abdollah F, et al. A non–cancer-related survival benefit is associated with partial nephrectomy. Eur Urol. 2012; 61: 725–731. doi: 10.1016/j.eururo.2011.11.047 PMID: 22172373

21. Smaldone MC, Egleston B, Uzzo RG, Kulaik A. Does partial nephrectomy result in a durable overall survival benefit in the Medicare population? J Urol. 2012; 188: 2089–2094. doi: 10.1016/j.juro.2012.07.099 PMID: 23083877

22. Daugherty M, Bratslavsky G. Compared with radical nephrectomy, nephron-sparing surgery offers a long-term survival advantage in patients between the ages of 20 and 44 years with renal cell carcinomas (<4 cm): An analysis of the SEER database. Urologic Oncology: Seminars and Original Investigations. 2014; 32: 549–554. doi: 10.1016/j.urolonc.2013.11.009 PMID: 24495447

23. Van Poppel H, Da Pozzo L, Albrecht W, Matveev V, Bono A, Borkowski A, et al. A prospective, randomized EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol. 2011; 59: 543–552. doi: 10.1016/j.eururo.2010.12.013 PMID: 21186077

24. Miller DC, Schonlau M, Litwin MS, Lai J, Saigal CS. Renal and cardiovascular morbidity after partial or radical nephrectomy. Cancer. 2008; 112: 511–520. PMID: 18072263

25. Weight CJ, Larson BT, Fergany AF, Gao T, Lane BR, Campbell SC, et al. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J Urol. 2010; 183: 1317–1323. doi: 10.1016/j.juro.2009.12.030 PMID: 20171688

26. Huang WC, Elkin EB, Levey AS, Jang TL, Russo P. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors—is there a difference in mortality and cardiovascular outcomes? J Urol. 2009; 181: 55–61; discussion 61–62. doi: 10.1016/j.juro.2008.09.017 PMID: 19012918

27. Kates M, Badalato GM, Pitman M, McKiernan JM. Increased risk of overall and cardiovascular mortality after radical nephrectomy for renal cell carcinoma 2 cm or less. J Urol. 2011; 186: 1247–1253. doi: 10.1016/j.juro.2011.05.054 PMID: 21849201

28. Van Poppel H, Da Pozzo L, Albrecht W, Matveev V, Bono A, Borkowski A, et al. A prospective, randomized EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol. 2011; 59: 543–552. doi: 10.1016/j.eururo.2010.12.013 PMID: 21186077

29. Mack M, Gopal A. Epidemiology, traditional and novel risk factors in coronary artery disease. Cardiol Clin. 2014; 32: 323–332. doi: 10.1016/j.ccl.2014.04.003 PMID: 25091961