$b \rightarrow s\ell^+\ell^-$ in the high q^2 region at two-loops

Volker Pilipp, Christof Schüpbach

Albert Einstein Center for Fundamental Physics
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
E-mail: volker.pilipp@itp.unibe.ch, christof.schuepbach@itp.unibe.ch

We report on the first analytic NNLL calculation for the matrix elements of the operators O_1 and O_2 for the inclusive process $b \rightarrow X\ell^+\ell^-$ in the kinematical region $q^2 > 4m^2_c$, where q^2 is the invariant mass squared of the lepton-pair.
1. Introduction

In the Standard Model, the flavor-changing neutral current process $b \rightarrow X_s l^+ l^-$ only occurs at the one-loop level and is therefore sensitive to new physics. In the kinematical region where the lepton invariant mass squared q^2 is far away from the $c\bar{c}$-resonances, the dilepton invariant mass spectrum and the forward-backward asymmetry can be precisely predicted using large m_b expansion, where the leading term is given by the partonic matrix element of the effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) O_i(\mu).$$

(1.1)

We neglect the CKM combination $V_{us}^* V_{ub}$ and the operator basis is defined as in [1]. In [2] we published the first analytic NNLL calculation of the high q^2 region of the matrix elements of the operators

$$O_1 = (\bar{s}_L \gamma^\mu c_L)(\bar{c}_L \gamma^\mu b_L), \quad O_2 = (\bar{s}_L \gamma^\mu c_L)(\bar{c}_L \gamma^\mu b_L),$$

(1.2)

which dominate the NNLL amplitude numerically. Earlier these results were only available analytically in the region of low q^2 [3, 4]. Using equations of motion the NNLL matrix elements of the effective operators take the form

$$\langle s^+\ell^- | O_i | b \rangle_{2\text{-loops}} = -\left(\frac{\alpha_s}{4\pi}\right)^2 \left[F_1^{(7)} \langle O_7 \rangle_{\text{tree}} + F_1^{(9)} \langle O_9 \rangle_{\text{tree}} \right],$$

(1.3)

where $O_7 = e g_5^2 m_b (\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu}$ and $O_9 = e^2 g_5^2 (\bar{s}_L \gamma^\mu b_L) \sum l (\bar{l} \gamma^\mu l)$.

2. Calculations

Figure 1: Diagrams that have to be taken into account at order α_s. The circle-crosses denote the possible locations where the virtual photon is emitted (see text).

The diagrams contributing at order α_s are shown in Figure [1]. We set $m_s = 0$ and define

$$\hat{s} = \frac{q^2}{m_b^2} \quad \text{and} \quad z = \frac{m_c^2}{m_b^2},$$

(2.1)
where q is the momentum of the virtual photon. After reducing occurring tensor-like Feynman integrals \([5]\) the remaining scalar integrals can be further reduced to master integrals using integration by parts (IBP) identities \([3]\). Considering the region $\delta > 4z$, we expanded the master integrals in z and kept the full analytic dependence in δ.

For power expanding Feynman integrals we use a combination of method of regions \([6, 7]\) and differential equation techniques \([8, 9]\): Consider a set of Feynman integrals I_1, \ldots, I_n depending on the expansion parameter z and related by a system of differential equations obtained by differentiating I_α with respect to z and applying IBP identities:

$$\frac{d}{dz} I_\alpha = \sum_\beta h_{\alpha \beta} I_\beta + g_\alpha,$$

(2.2)

where g_α contains simpler integrals which pose no serious problems. Expanding both sides of (2.2) in ε, z and $\ln z$

$$I_\alpha = \sum_{i,j,k} I_{\alpha, i}^{(j,k)} e^{i k} (\ln z)^k,$$

(2.3)

$$h_{\alpha \beta} = \sum_{i,j} h_{\alpha \beta, i} e^{i j},$$

(2.3)

$$g_\alpha = \sum_{i,j,k} g_{\alpha, i}^{(j,k)} e^{i k} (\ln z)^k,$$

(2.3)

and inserting (2.3) into (2.2) we obtain algebraic equations for the coefficients $I_{\alpha, i}^{(j,k)}$

$$0 = (j + 1) I_{\alpha, i}^{(j+1,k)} + (k + 1) I_{\alpha, i}^{(j+1,k+1)} - \sum_\beta \sum_\gamma h_{\alpha \beta, \gamma} I_{\beta, i}^{(j-\gamma,k)} - \delta_{\alpha, i}^{(j,k)}.$$

(2.4)

This enables us to recursively calculate higher powers of z once the leading powers are known. In practice this means that we need the $I_{\alpha, i}^{(1,0)}$ and sometimes also the $I_{\alpha, i}^{(1,0)}$ as initial condition to (2.4). These initial conditions can be computed using method of regions. A non trivial check is provided by the fact that the leading terms containing logarithms of z can be calculated by both method of regions and the recurrence relation (2.4).

The summation index j in (2.3) can take integer or half-integer values, depending on the specific set of integrals I_α. In order to determine the possible powers of z and $\ln(z)$ we used the algorithm described in \([9]\). A given D-dimensional L-loop Feynman integral $I(z)$ reads in Feynman parameterization

$$I(z) = (-1)^N \left(\frac{i}{4\pi} \right)^D \Gamma(N - LD/2) \int d^N x \, \delta(1 - \sum_{n=1}^N x_n) \, U^{N-(L+1)D/2} \left(\frac{z F_1 + F_2}{z F_1 + F_2} \right)^{N - LD/2},$$

(2.5)

where U, F_1 and F_2 are polynomials in x_n. Using Mellin-Barnes representation (2.5) can be cast into the following form

$$I(z) = (-1)^N \left(\frac{i}{4\pi} \right)^D \Gamma(s + N - LD/2) \int d^N x \, \delta(1 - \sum_{n=1}^N x_n) \, U^{N-(L+1)D/2} F_1^{s-N+LD/2} \left(\frac{z F_1 + F_2}{z F_1 + F_2} \right)^{N - LD/2}.$$

(2.6)

By closing the integration contour over s to the right hand side the poles on the positive real axis turn into powers of z. If we apply the technique of sector decomposition \([10]\) to (2.6) we end up with terms of the following form

$$\sum_{l=1}^N \sum_k \int_0^d d^{N-1} t \left(\prod_{j=1}^{N-1} A_j - B_j e^{-C_j t} \right) U^{N-(L+1)D/2} F_1^{s-N+LD/2} F_2^{s-N+LD/2},$$

(2.7)
where U_{lk}, $F_{1, lk}$ and $F_{2, lk}$ contain terms that are constant in \bar{t}. From (2.7) we can read off that the poles in s are located at:

$$s_{jn} = \frac{1 + n + A_j - B_j \varepsilon}{C_j},$$

(2.8)

where $n \in \mathbb{N}_0$.

Additionally, the procedure described above allows us to evaluate the coefficients of the expansion in z numerically which we used to again test the initial conditions of the differential equations.

3. Results

In order to get accurate results we keep terms up to z^{10}. Our results agree with the previous numerical calculation [1] within less than 1% difference. To demonstrate the convergence of the power expansions, we show in Figure 3 the form factors defined in (1.3) as functions of \hat{s}, where we include all orders up to z^6, z^8 and z^{10}. We use as default value $z = 0.1$ such that the $c\bar{c}$-threshold is located at $\hat{s} = 0.4$. One sees from the figures that far away from the $c\bar{c}$-threshold, i.e. for $\hat{s} > 0.6$, the expansions for all form factors are well behaved.

The impact of our results on the perturbative part of the high q^2-spectrum [3]

$$R(\hat{s}) = \frac{1}{\Gamma(\bar{B} \to X_c e^- \bar{\nu}_e)} \frac{d\Gamma(\bar{B} \to X_c \ell^+ \ell^-)}{d\hat{s}},$$

(3.1)

is shown in Figure 3 (left), where we used the same parameters as in [2]. The finite bremsstrahlung corrections calculated in [4] are neglected. From Figure 3 (left) we conclude that for $\mu = m_b$ the contributions of our results lead to corrections of the order 10% - 15%. Integrating $R(\hat{s})$ over the high \hat{s} region, we define

$$R_{\text{high}} = \int_{0.6}^{1} d\hat{s} R(\hat{s}).$$

(3.2)

Figure 3 (right) shows the dependence of the perturbative part of R_{high} on the renormalization scale. We obtain

$$R_{\text{high, pert}} = (0.43 \pm 0.01(\mu)) \times 10^{-5},$$

(3.3)

where we determined the error by varying μ between 2 GeV and 10 GeV. The corrections due to our results lead to a decrease of the scale dependence to 2%.

Acknowledgments

This work is partially supported by the Swiss National Foundation, by EC-Contract MRTNCT-2006-035482 (FLAVIAnet) and by the Helmholtz Association through funds provided to the virtual institute ”Spin and strong QCD” (VH-VI-231). The Albert Einstein Center for Fundamental Physics is supported by the ”Innovations- und Kooperationsprojekt C-13 of the Schweizerische Universitätskonferenz SUK/CRUS”.

Volker Pilipp
Figure 2: Real and imaginary parts of the form factors $F_{1,2}^{(7,9)}$ as functions of \hat{s}. To demonstrate the convergence of the expansion in z we included all orders up to z^6, z^8 and z^{10} in the dotted, dashed and solid lines respectively. We put $\mu = m_b$ and used the default value $z = 0.1$.

Volker Plipp
$b \to s\ell^+\ell^-$ in the high q^2 region at two-loops

Volker Pilipp

Figure 3: Perturbative part of $R(\hat{s})$ (left) and R_{high} (right) at NNLL. The solid lines represents the NNLL result, whereas in the dotted lines the order α_s corrections to the matrix elements associated with $O_{1,2}$ are switched off. In the left figure we use $\mu = m_b$. See text for details.

References

[1] C. Bobeth, M. Misiak and J. Urban, Nucl. Phys. B574, 291 (2000).
[2] C. Greub, V. Pilipp and C. Schüpbach, JHEP 0812, 040 (2008).
[3] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, Phys. Rev. D65, 074004 (2002).
[4] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, Phys. Rev. D66, 034009 (2002).
[5] G. Passarino and M. J. G. Veltman, Nucl. Phys. B160, 151 (1979).
[6] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192, 159 (1981); F. V. Tkachov, Phys. Lett. B100, 65 (1981).
[7] M. Beneke and V. A. Smirnov, Nucl. Phys. B522, 321 (1998); S. G. Gorishnii, Nucl. Phys. B319, 633 (1989); V. A. Smirnov, Commun. Math. Phys. 134, 109 (1990); V. A. Smirnov, Springer Tracts Mod. Phys. 177, 1 (2002).
[8] R. Boughezal, M. Czakon and T. Schutzmeier, JHEP 09, 072 (2007); A. V. Kotikov, Phys. Lett. B254, 158 (1991); V. Pilipp, Nucl. Phys. B794, 154 (2008); E. Remiddi, Nuovo Cim. A110, 1435 (1997).
[9] V. Pilipp, JHEP 09, 135 (2008).
[10] T. Binoth and G. Heinrich, Nucl. Phys. B 585, 741 (2000).
[11] A. Ghinculov, T. Hurth, G. Isidori and Y. P. Yao, Nucl. Phys. B685, 351 (2004).