Variational solutions to nonlinear stochastic differential equations in Hilbert spaces

Viorel Barbu* Michael Röckner†

Abstract

One introduces a new variational concept of solution for the stochastic differential equation \(dX + A(t)X \, dt + \lambda X \, dt = X \, dW, \, t \in (0, T); \)
\(X(0) = x\) in a real Hilbert space where \(A(t) = \partial \varphi(t), \, t \in (0, T)\), is a maximal monotone subpotential operator in \(H\) while \(W\) is a Wiener process in \(H\) on a probability space \(\{\Omega, \mathcal{F}, \mathbb{P}\}\). In this new context, the solution \(X = X(t, x)\) exists for each \(x \in H\), is unique, and depends continuously on \(x\). This functional scheme applies to a general class of stochastic PDE not covered by the classical variational existence theory [15], [16], [17] and, in particular, to stochastic variational inequalities and parabolic stochastic equations with general monotone nonlinearities with low or superfast growth to \(+\infty\).

Keywords: Brownian motion, maximal monotone operator, subdifferential, random differential equation, minimization problem.

Mathematics Subject Classification (2010): Primary 60H15; Secondary 47H05, 47J05.

*Octav Mayer Institute of Mathematics of Romanian Academy, Iași, Romania. Email: vbarbu41@gmail.com
†Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany. Email: roeckner@math.uni-bielefeld.de
1 Introduction

Here, for $\lambda \in (0, \infty)$, we consider the stochastic differential equation

\[dX(t) + A(t)X(t)dt + \lambda X(t)dt \ni X(t)dW_t, \quad t \in (0, T),\]
\[X(0) = x \in H,\]

in a real Hilbert space H whose elements are generalized functions on a bounded domain $O \subset \mathbb{R}^d$ with a smooth boundary ∂O. In examples, we have in mind that H is e.g. $L^2(O)$ or $H^1_0(O)$, $H^1(O)$, $H^{-1}(O)$.

The norm of H is denoted by $| \cdot |_H$, its scalar product by (\cdot, \cdot) and its Borel σ-algebra by $\mathcal{B}(H)$.

W is a Wiener process of the form

\[W(t, \xi) = \sum_{j=1}^{\infty} \mu_j e_j(\xi) \beta_j(t), \quad \xi \in O, \quad t \geq 0,\]

where $\{\beta_j\}_{j=1}^{\infty}$ is an independent system of real (\mathcal{F}_t)-Brownian motions on a probability space $\{\Omega, \mathcal{F}, \mathbb{P}\}$ with natural filtration $(\mathcal{F}_t)_{t \geq 0}$ and $\{e_j\}$ is an orthonormal basis in H such that both c_j and e_j^2, $j \in \mathbb{N}$, are multipliers in H, while $\mu_j \in \mathbb{R}$, $j = 1, 2, \ldots$, satisfy (1.9) below.

As regards the nonlinear (multivalued) operator $A = A(t, \omega) : H \to H$, the following hypotheses will be assumed below.

(i) Let $\varphi : [0, T] \times H \times \Omega \to \mathbb{R} = (-\infty, +\infty]$ be convex lower semicontinuous in $y \in H$ and progressively measurable, i.e., for each $t \in [0, T]$ the function φ restricted to $[0, t] \times H \times \Omega$ is $\mathcal{B}([0, t]) \otimes \mathcal{B}(H) \otimes \mathcal{F}_t$ measurable, and let

\[A(t, \omega) = \partial \varphi(t, \omega), \quad \forall (t, \omega) \in [0, T] \times \Omega.\]

In particular, $y \to A(t, \omega, y)$ is maximal monotone in $H \times H$ for all $(t, \omega) \in [0, T] \times \Omega$. Furthermore, φ is such that there exists $\alpha \in L^2([0, T] \times \Omega, H)$ and $\beta \in L^2([0, T] \times \Omega)$ such that

$\varphi(t, y, \omega) \geq (\alpha(t, \omega), y) - \beta(t, \omega)$ for $dt \otimes \mathbb{P} - a.e., (t, \omega) \in [0, T] \times \Omega$.

(ii) $e^{\pm W(t)}$ is a multiplier in H such that there is an $(\mathcal{F}_t)_{t \geq 0}$-adapted \mathbb{R}_+-valued process $Z(t)$, $t \in [0, T]$, with

\[\sup_{t \in [0, T]} |Z(t)| < \infty, \quad \mathbb{P}\text{-a.s.,}\]

\[|e^{\pm W(t)} y|_H \leq Z(t)|y|_H, \quad \forall t \in [0, T], \quad y \in H,\]

$t \to e^{\pm W(t)} \in L(H, H)$ is continuous.
Recall that a multivalued mapping \(A : D(A) \subset H \rightarrow H \) is said to be maximal monotone if it is monotone, that is, for \(u_1, u_2 \in D(A) \),
\[
(z_1 - z_2, u_1 - u_2) \geq 0, \ \forall z_i \in Au_i, \ i = 1, 2,
\]
and the range \(R(\lambda I + A) \) is all of \(H \) for each \(\lambda > 0 \).

If \(\varphi : H \rightarrow \mathbb{R} \) is a convex, lower semicontinuous function, then its subdifferential \(\partial \varphi : H \rightarrow H \)
\[
\partial \varphi(u) = \{ v \in H; \ \varphi(u) \leq \varphi(\bar{u}) + (v, u - \bar{u}), \ \forall \bar{u} \in H \} \quad (1.6)
\]
is maximal monotone (see, e.g., [1]).

The conjugate \(\varphi^* \) of \(H \) defined by
\[
\varphi^*(v) = \sup\{(u, v) - \varphi(u); \ u \in H\} \quad (1.7)
\]
satisfies
\[
\varphi(u) + \varphi^*(v) \geq (u, v), \ \forall u, v \in H,
\]
\[
\varphi(u) + \varphi^*(v) = (u, v), \ \text{iff} \ v \in \partial \varphi(u). \quad (1.8)
\]

As regards the basis \(\{ e_j \} \) arising in the definition of the Wiener process \(W \), we assume also that, for the multipliers \(e_j^2 \), we have

(iii) For \(\gamma_j = \max\{\sup\{|ue_j|_H; \ |u|_H = 1\}, (\sup\{|ue_j^2|_H; \ |u|_H = 1\})^{\frac{1}{2}}, 1\} \), we assume
\[
\nu = \sum_{j=1}^{\infty} \mu_j^2 \gamma_j^2 < \infty, \quad (1.9)
\]
and that \(\lambda > \nu \).

Clearly, then
\[
\mu = \frac{1}{2} \sum_{j=1}^{\infty} \mu_j^2 e_j^2 \quad (1.10)
\]
is a multiplier in \(H \).

It should be noted that the condition \(\lambda > \nu \) in (1.9) is made only for convenience. In fact, by the substitution \(X \rightarrow \exp(-\lambda t)X \) and replacing \(A(t) \) by \(u \rightarrow e^{-\lambda t}A(t)(e^{\lambda t}u) \) we can always change \(\lambda \) in (1.11) to a big enough \(\lambda \) which satisfies \(\lambda > \nu \). It should be emphasized that a general existence and uniqueness result for equation (1.11) is known only for the special case where \(A(t) \) are monotone and demicontinuous operators from \(V \) to \(V' \), where
(V,V') is a pair of reflexive Banach spaces in duality with the Hilbert space H as pivot space, that is, $V \subset H(\equiv H') \subset V'$ densely and continuously. If, in addition, for $\alpha_1 \in (0, \infty)$, $\alpha_2, \alpha_3 \in \mathbb{R}$,

$$\begin{align*}
V':(A(t)u,u)_V &\geq \alpha_1\|u\|_V^p + \alpha_2|u|_H^2, \forall u \in V, \\
\|A(t)u\|_{V'} &\leq \alpha_3\|u\|_{V'}^{p-1}, \forall u \in V,
\end{align*}$$

where $1 < p < \infty$, then equation (1.11) has under assumptions (i)–(iii) a unique strong solution $X \in L^p((0,T) \times \Omega;V)$ (see [15], [16], [17], [18]). We noted before that assumption (i) implies that $A(t,\omega)$ is maximal monotone in H for all $t \in [0,T]$, though not every maximal monotone operator $A(t) : D(A(t)) \subset H \rightarrow H$ has a realization in a convenient pair of spaces (V,V') such that (1.8)–(1.9) hold. Though assumptions (1.11)–(1.12) hold for a large class of stochastic parabolic equations in Sobolev spaces $W^{1,p}(\Omega)$, $1 \leq p < \infty$ (see [6]), some other important stochastic PDEs are not covered by this functional scheme. For instance, the variational stochastic differential equations, nonlinear parabolic stochastic equations in $W^{1,1}(\Omega)$, in Orlicz-Sobolev spaces on Ω or in $BV(\Omega)$ (bounded variation stochastic flows) cannot be treated in this functional setting. As a matter of fact, contrary to what happens for deterministic infinite differential equations, there is no general existence theory for equation (1.1) under assumption (i)–(iii). The definition of a convenient concept of a weak solution to be unique and continuous with respect to data is a challenging objective of the existence theory of the infinite dimensional SDE. In this paper, we introduce such a solution X for (1.1) which is defined as a minimum point of a certain convex functional defined on a suitable space of H-valued processes on $(0,T)$. This idea was developed in [11] for nonlinear operators $A(t) : V \rightarrow V'$ satisfying condition (1.11)–(1.12) and is based on the so-called Brezis–Ekeland variational principle [11]. Such a solution in the sequel will be called the variational solution to (1.1). (Along these lines see also [2], [3], [5], [6].)

2 The variational solution to equation (1.1)

First, we transform equation (1.1) into a random differential equation via the substitution

$$X(t) = e^{W(t)}(y(t) + x), \ t \in [0,T],$$

which, by Itô’s product rule,
\[dX = e^W dy + e^W (y + x) dW + \mu e^W (y + x) dt, \]

leads to

\[
\frac{dy(t)}{dt} + e^{-W(t)} A(t) (e^{W(t)} (y(t) + x)) + (\mu + \lambda) (y(t) + x) \geq 0, \quad t \in (0, T), \tag{2.2} \]

\[y(0) = 0. \]

(In the following, we shall omit \(\omega \) from the notation \(A(t, \omega) \).)

As a matter of fact, the equivalence between (1.1) and (2.2) is true only for a smooth solution \(y \) to (2.2), that is, for pathwise absolutely continuous strong solutions to (2.2) (see [9], [10]). In the sequel, we shall define a generalized (variational) solution for the random Cauchy problem (2.2) and will call the corresponding process \(X \) defined by (2.1) the variational solution to (1.1).

We shall treat equation (2.2) by the operator method developed in [10]. Namely, consider the space \(\mathcal{H} \) of all \(H \)-valued processes \(y : [0, T] \rightarrow H \) such that

\[
|y|_{\mathcal{H}} = \left(\mathbb{E} \int_0^T |e^{W(t)} y(t)|^2_H dt \right)^{\frac{1}{2}} < \infty,
\]

which have an \((\mathcal{F}_t)_{t \geq 0} \)-adapted version. Here \(\mathbb{E} \) denotes the expectation with respect to \(\mathbb{P} \). The space \(\mathcal{H} \) is a Hilbert space with the scalar product

\[
\langle y, z \rangle = \mathbb{E} \int_0^T (e^{W(t)} y(t), e^{W(t)} z(t)) dt, \quad y, z \in \mathcal{H}.
\]

We set \(\delta = \frac{1}{2} (\lambda - \nu) \). Now, consider the operators \(A : D(A) \subset \mathcal{H} \rightarrow \mathcal{H} \) and \(B : D(B) \subset \mathcal{H} \rightarrow \mathcal{H} \) defined by

\[
(A y)(t) = e^{-W(t)} A(t) (e^{W(t)} (y(t) + x)) + \delta (y + x), \quad y \in D(A), \quad t \in [0, T],
\]

\[
D(A) = \{ y \in \mathcal{H} ; \ e^{W(t)} (y(t) + x) \in D(A(t)), \ \forall t \in [0, T] \text{ and } e^{-W(t)} A(e^{W(t)} (y + x)) \in \mathcal{H} \}, \tag{2.3}
\]

\[
(B y)(t) = \frac{dy(t)}{dt} (t) + (\mu + \nu + \delta) (y + x), \quad \text{a.e.} \ t \in (0, T), \quad y \in D(B),
\]

\[
D(B) = \left\{ y \in \mathcal{H} ; \ y \in W^{1,2}_0 ([0, T]; H), \ \mathbb{P}-\text{a.s., } \frac{dy}{dt} \in \mathcal{H} \right\}. \tag{2.4}
\]
Here, $W^{1,2}_0([0, T]; H)$ denotes the space \(\{ y \in W^{1,2}([0, T]; H); y(0) = 0 \} \), where $W^{1,2}([0, T]; H)$ is the Sobolev space $\{ y \in L^2(0, T; H), \frac{dy}{dt} \in L^2(0, T; H) \}$.

We recall that $W^{1,2}([0, T]; H) \subset AC([0, T]; H)$, the space of all H-valued absolutely continuous functions on $[0, T]$.

Then we may rewrite equation (2.2) as

$$By + Ay \ni 0.$$ \hspace{1cm} (2.5)

(If $A(t)$ is multivalued, we replace $A(t)(e^W(y + x))$ in (2.3) by $\{ \eta(t); \eta(t) \in A(t)(e^W(y(t) + x)), \text{ a.e. } (t, \omega) \in (0, T) \times \Omega \}$.)

Consider the functions $\Phi : H \rightarrow \mathbb{R}$ defined by

$$\Phi(y) = \mathbb{E} \int_0^T (\varphi(t, e^W(y(t) + x)) + \frac{\delta}{2} |e^W(y(t) + x)|^2_H) dt, \ \forall y \in H. \quad (2.6)$$

It is easily seen that Φ is convex, lower-semicontinuous and

$$\partial \Phi = A. \quad (2.7)$$

As regards the operator \mathcal{B}, we have

Lemma 2.1 For each $y \in D(\mathcal{B})$ we have

$$\langle \mathcal{B}y, y \rangle = \frac{1}{2} \mathbb{E}|e^W(T)y(T)|^2_H + (\nu + \delta)|y|^2_H - \frac{1}{2} \mathbb{E} \int_0^T \sum_{j=1}^\infty |e^W ye_j|^2_H \mu_j^2 dt \geq \frac{1}{2} \mathbb{E}|e^W(T)y(T)|^2_H + \frac{\lambda}{2} |y|^2_H. \quad (2.8)$$

Proof. We have

$$\langle \mathcal{B}y, y \rangle = \mathbb{E} \int_0^T \left(e^{W(t)} \frac{dy}{dt}(t), e^{W(t)} y(t) \right) dt + \mathbb{E} \int_0^T ((\mu + \nu + \delta)e^W y, e^W y) dt. \quad (2.9)$$

Taking into account that

$$d(e^W y) = e^W dy + e^W y dW + \mu e^W y dt, \ \forall y \in D(\mathcal{B}),$$
we get via Itô’s formula that (see [6])
\[
\frac{1}{2} d|e^W y|^2_H = \left(e^W \frac{dy}{dt}, e^W y \right) dt + (e^W y, e^W y dW) + (\mu e^W y, e^W y) dt \\
+ \frac{1}{2} \sum_{j=1}^{\infty} \mu_j^2 |e^W ye_j|^2_H dt.
\]

Hence
\[
\mathbb{E} \int_0^T \left(e^W \frac{dy}{dt}, e^W y \right) dt = \frac{1}{2} \mathbb{E} |e^{W(T)} y(T)|^2_H - \mathbb{E} \int_0^T (\mu e^W y, e^W y) dt \\
- \frac{1}{2} \mathbb{E} \int_0^T \sum_{j=1}^{\infty} |e^W ye_j|^2_H \mu_j^2 dt,
\]
and so, because \(\lambda > \nu \), by (1.9), (2.9), we get (2.8), as claimed. \(\square \)

Consider now the conjugate \(\Phi^* : \mathcal{H} \to \mathbb{R} \) of functions \(\Phi \), that is,
\[
\Phi^*(z) = \sup \{ \langle z, y \rangle_H - \Phi(y); \ y \in \mathcal{H} \}.
\]
By (2.6), we see that (see [19])
\[
\Phi^*(z) = \mathbb{E} \int_0^T (\psi^*(t, e^{W(t)} z(t)) - (e^{W(t)} z(t), e^{W(t)} x)) dt,
\]
where \(\psi^* \) is the conjugate of the function
\[
\psi(t, y) = \varphi(t, y) + \frac{\delta}{2} |y|^2_H,
\]
that is,
\[
\psi^*(t, v) = \sup \{ \langle v, y \rangle - \varphi(t, y) - \frac{\delta}{2} |y|^2_H; \ y \in H \}.
\]
We recall (see [1.8]) that
\[
\Phi(y) + \Phi^*(u) \geq \langle y, u \rangle_H, \ \forall y, u \in \mathcal{H},
\]
with equality if and only if \(u \in \partial \Phi(y) \). We infer that \(y^* \) is a solution to equation (2.5) if and only if
\[
y^* = \arg \min_{(y, u) \in D(B) \times \mathcal{H}} \{ \Phi(y) + \Phi^*(u) - \langle y, u \rangle_H; \ B y + u = 0 \} = \arg \min_{(y, u) \in D(B) \times \mathcal{H}} \{ \Phi(y) + \Phi^*(u) + \langle B y, y \rangle_H; \ B y + u = 0 \}.
\]
and
\[
\Phi(y^*) + \Phi^*(u^*) + \langle B y^*, y^* \rangle = 0. \tag{2.15}
\]

Taking into account (2.10) and recalling (2.6), (2.8), we have

\[
y^* = \arg \min_{(y,u) \in D(B) \times H} \left\{ \mathbb{E} \int_0^T \left(\varphi(t, e^{W(t)}(y(t) + x)) + \frac{\delta}{2} |e^{W(t)}(y(t) + x)|^2_H
\right.
\]
\[
+ \psi^*(t, e^{W(t)}u(t)) - (e^{W(t)}u(t), e^{W(t)}x)
\]
\[
+ \eta(e^{W(t)}y(t)) \right) dt + \frac{1}{2} \mathbb{E}|e^{W(T)}y(T)|^2_H; \quad By + u = 0 \right\},
\]

where

\[
\eta(z) = (\nu + \delta)|z|^2_H - \frac{1}{2} \sum_{j=1}^{\infty} |ze_j|^2_H \mu_j^2. \tag{2.17}
\]

We note also that, by Itô’s product rule, we have, for \(u \in H, \ y \in D(B), \)

\[-\mathbb{E} \int_0^T (e^{W(t)}u(t), e^{W(t)}x) dt
\]
\[= \mathbb{E} \int_0^T \left(e^{W}x, e^{W} \left(\frac{dy}{dt} + (\mu + \nu + \delta)(y + x) \right) \right) dt
\]
\[= \mathbb{E} \int_0^T \left(e^{W}x, d(e^{W}y) - \int_0^T (e^{W}x, \mu e^{W}y - (\mu + \nu + \delta)(y + x)e^{W}) dt
\]
\[= \mathbb{E} \int_0^T \left(e^{W}x, (\mu + \delta + \nu)(y + x)e^{W} \right) dt
\]
\[+ \mathbb{E} \int_0^T d(e^{W}x, e^{W}y) - \int_0^T \left((e^{W}y, e^{W}(1 + \mu)x) - (\mu e^{W}y, e^{W}x) \right) dt
\]
\[= \mathbb{E}(e^{W(T)}x, e^{W(T)}y(T)) - \int_0^T \left((e^{W}y, e^{W}(1 + \mu)x) - (\mu e^{W}y, e^{W}x) \right) dt
\]
\[+ \mathbb{E} \int_0^T (e^{W}x, (\mu + \nu + \delta)(y + x)e^{W}) dt
\]
\[= \mathbb{E}(e^{W(T)}x, e^{W(T)}y(T)) + \mathbb{E} \int_0^T (e^{W}x, ((\mu + \nu + \delta)(y + x) - \mu y)e^{W}) dt
\]
\[- \int_0^T (e^{W}y, e^{W}(1 + \mu)x) dt
\]
\[= \mathbb{E} \int_0^T (e^{W}((\nu + \delta)(y + x) + \mu x), e^{W}x) dt + \mathbb{E}(e^{W(T)}y(T), e^{W(T)}x)
\]
\[- \int_0^T (e^{W}y, e^{W}(1 + \mu)x) dt.\]
Let \mathcal{H}_0 denote the set of all $u \in L^2([0, T] \times \Omega; H)$ which have an $(\mathcal{F}_t)_{t \geq 0}$-adapted version. We set, for $y \in \mathcal{H}$, $u \in \mathcal{H}_0$,

$$G_1(y) = \mathbb{E} \int_0^T \varphi(t, e^{W(t)}(y(t) + x))dt$$

$$+ \mathbb{E} \int_0^T ((e^{W(t)}((\nu + \delta)(y(t) + x) + \mu x), e^{W(t)}x)

+ \frac{\delta}{2} |e^{W(t)}(y(t) + x)|_H^2 + \eta(e^{W(t)}y(t)))dt

+ \frac{1}{2} \mathbb{E}|e^{W(T)}y(T)|_H^2 + \mathbb{E}(e^{W(T)}y(T), e^{W(T)}x)

- \mathbb{E} \int_0^T (e^{W(t)}y(t), e^{W(t)}(1 + \mu)x)dt,$$

$$G_2(u) = \mathbb{E} \int_0^T \psi^*(t, u(t))dt,$$

where ψ^* is given by (2.12).

By (2.16) it follows that y^* is a solution to equation (2.5) if and only if

$$y^* = \arg \min_{(y,u) \in \mathcal{D}(\mathcal{B}) \times \mathcal{H}_0} \{G_1(y) + G_2(u); \ e^{W}B_y + u = 0\}$$

(2.20)

and

$$G_1(y^*) + G_2(u^*) = 0.$$ (2.21)

It should be said, however, that under our assumptions the convex minimization problem (2.20) might have no solution (y^*, u^*) because, in general, G_2 is not coercive on the space \mathcal{H}. (G_2 is, however, coercive if φ is bounded on bounded sets of H. But such a condition is too restrictive for applications to PDEs.) So, we are led to replace (2.20) by a relaxed optimization problem to be defined below.

Let

$$\mathcal{X} = L^2(\Omega; (W^{1,2}([0, T]; H))'),$$

where $(W^{1,2}([0, T]; H))'$ is the dual space of $W^{1,2}([0, T]; H)$.

Define the operator $\widetilde{\mathcal{B}} : \mathcal{H} \times L^2(\Omega; H) \to \mathcal{X}$ by
\[\mathcal{B}(y, y_1)(\theta) = \mathbb{E}(e^{W(T)}y_1, \theta(T)) + \mathbb{E} \int_0^T ((\nu + \delta)(y(t) + x) + \mu x)e^{W(t)}, \theta(t))dt - \mathbb{E} \int_0^T (e^{W(t)}y(t), \frac{d\theta}{dt}(t))dt, \quad \forall \theta \in L^2(\Omega; W^{1,2}([0, T]; H)). \] (2.23)

We note that \(y_1(\omega) \in H \) can be viewed as the trace of \(y(\omega) \) at \(t = T \).

Indeed, if \(y \in \mathcal{D}(\mathcal{B}) \), we have via Itô’s formula

\[
\mathbb{E} \int_0^T (e^{W} \mathcal{B}y, \theta)dt = \mathbb{E} \left(\int_0^T (d(e^{W} y), \theta) - \int_0^T (e^{W} \mu y, \theta)dt \right)
+ \mathbb{E} \int_0^T (e^{W}(\mu + \nu + \delta)(y + x), \theta)dt
= \mathbb{E}(e^{W(T)}y(T), \theta(T))
+ \mathbb{E} \int_0^T (e^{W}((y + x)(\nu + \delta) + \mu x), \theta)dt
- \mathbb{E} \int_0^T \left(e^{W} y, \frac{d\theta}{dt} \right)dt, \quad \forall \theta \in L^2(\Omega; W^{1,2}([0, T]; H)).
\]

This means that \(\tilde{\mathcal{B}}(y, y(T)) = e^{W} \mathcal{B}y, \forall y \in \mathcal{D}(\mathcal{B}) \). We set

\[
\tilde{G}_1(y, y_1) = \mathbb{E} \int_0^T \varphi(t, e^{W(t)}(y(t) + x))dt
+ \mathbb{E} \int_0^T \left((e^{W(t)}((\nu + \delta)(y(t) + x) + \mu x), e^{W(t)}x \right)dt
+ \mathbb{E} \int_0^T \left(\frac{\delta}{2} |e^{W(t)}(y(t) + x)|^2_H + \eta(e^{W(t)}y(t)) \right)dt
- \mathbb{E} \int_0^T (e^{W(t)}y(t), e^{W(t)}(1 + \mu)x)dt + \frac{1}{2} \mathbb{E}|e^{W(T)}y_1|^2_H
+ \mathbb{E}(e^{W(T)}y_1, e^{W(T)}x), \quad \forall (y, y_1) \in \mathcal{H} \times L^2(\Omega; H) \]

and note that \(\tilde{G}_1(y; y(T)) = G_1(y), \forall y \in \mathcal{D}(\mathcal{B}) \).

We note also that, if \(y_n \in \mathcal{D}(\mathcal{B}) \) such that \(y_n \to y \) weakly in \(\mathcal{H} \) and \(y_n(T) \to y_1 \) weakly in \(L^2(\Omega; H) \), then

\[
e^{W} \mathcal{B}y_n \to \tilde{\mathcal{B}}(y, y_1) \text{ weakly in } \mathcal{X}. \quad (2.25)
\]
Let \(\overline{G} : \mathcal{H} \times L^2(\Omega; H) \times \mathcal{X} \to \overline{\mathbb{R}} \) be the lower semicontinuous closure of the function \(G(y, y_1, u) = \tilde{G}_1(y, y_1) + G_2(u) \) in \(\mathcal{H} \times L^2(\Omega; H) \times \mathcal{X} \), on the set \(\{(y, y_1, u) \in \mathcal{H} \times L^2(\Omega; H) \times \mathcal{X}; e^W \mathcal{B} y + u = 0\} \), that is,

\[
\overline{G}(y, y_1, u) = \liminf \{G(z, z(T), u); z(T) \to y_1 \text{ in } L^2(\Omega; H), \quad z \in \mathcal{D}(\mathcal{B}), (z, v) \to (y, u) \text{ in } \mathcal{H} \times \mathcal{X}; e^W \mathcal{B} z + v = 0\}.
\] (2.26)

(Here and everywhere in the following, by \(\to \) we mean weak convergence.)

Taking into account that the function \(\tilde{G}_1 \) is convex and lower semicontinuous in \(\mathcal{H} \times L^2(\Omega; H) \), we have by (2.26)

\[
\overline{G}(y, y_1, u) = \tilde{G}_1(y, y_1) + \liminf \{G_2(v); (z, v) \to (y, u) \text{ in } \mathcal{H} \times \mathcal{X}; e^W \mathcal{B} z + v = 0\}.
\] (2.27)

Now, we relax (2.20) to the convex minimization problem

\[
(P) \quad \text{Min} \{\overline{G}(y, y_1, u); \tilde{\mathcal{B}}(y, y_1) + u = 0; (y, y_1, u) \in \mathcal{H} \times L^2(\Omega; H) \times \mathcal{X}\}.
\]

We have

Theorem 2.2 Let \(x \in \mathcal{H} \). Then problem (P) has a unique solution \((y^*, y_1^*, u^*)\) in \(\mathcal{H} \times L^2(\Omega; H) \times \mathcal{X} \), with \(u^* = -\tilde{\mathcal{B}}(y^*, y_1^*) \). Moreover, \(\varphi(\cdot, e^W(y^* + x)) \in L^1((0, T) \times \Omega) \).

Proof. Let \(m \) be the infimum in (P) and let \((y_n, u_n) \in \mathcal{D}(\mathcal{B}) \times \mathcal{H}\) be such that

\[
m \leq G(y_n, y_n(T), u_n) \leq m + \frac{1}{n}, \quad \forall n \in \mathbb{N},
\] (2.28)

\[
e^W \mathcal{B} y_n + u_n = 0.
\] (2.29)

Since, by assumption (iii), for some \(C_1, C_2 \in]0, \infty[\),

\[
\tilde{G}_1(y_n, y_n(T)) \geq C_1(|y_n|^2_H + \mathbb{E}|e^W(T)y_n(T)|^2_H) - C_2,
\]

we have along a subsequence

\[
y_n \to y^* \text{ weakly in } \mathcal{H}, \quad y_n(T) \to y_1^* \text{ weakly in } L^2(\Omega; H),
\]

and so, by (2.25), we have

\[
u_n \to u^* = -\tilde{\mathcal{B}}(y^*, y_1^*) \text{ weakly in } \mathcal{X}.
\]
As \overline{G} is weakly lower semicontinuous on $\mathcal{H} \times L^2(\Omega; H) \times \mathcal{X}$, we see by (2.28) that
$$\overline{G}(y^*, y_1^*, u^*) = m,$$
as claimed. The uniqueness of (y^*, y_1^*, u^*) is immediate because the function $\overline{G}(.\cdot, u)$ is strictly convex on $\mathcal{H} \times L^2(\Omega; H)$ for all $u \in \mathcal{X}$.

Definition 2.3 A pair (y^*, y_1^*) such that $(y^*, y_1^*, u^*) \in \mathcal{H} \times L^2(\Omega; H) \times \mathcal{X}$, $u^* = -\overline{B}(y^*, y_1^*)$, is a solution to problem (P), is called the variational solution to equation (2.2), and $X^* = e^W(y^* + x)$ is called the variational solution to equation (1.1).

The variational solution $X^* : (0, T) \to H$ is an $(\mathcal{F}_t)_{t \geq 0}$-adapted process.

Theorem 2.4 Under hypotheses (i)–(iii), equation (1.1) has a unique variational solution $X^* \in L^2((0, T) \times \Omega; H)$ with $\varphi(t, X^*) \in L^1((0, T) \times \Omega)$.

It should be noted that y^* and X^*, as well, are not pathwise continuous on $[0, T]$. As seen later on, this happens, however, in some specific cases with respect to a weaker topology.

In the next section, we shall see how problem (P) looks like in a few important examples of stochastic PDEs.

Remark 2.5 The above formulation of the variational solution X^* is strongly dependent on the subdifferential form (1.3) of the operator $A(t)$. The extension of the above technique to a general maximal monotone function $A(t) : H \to H$ remains to be done using the Fitzpatrick formalism (see [20]).

3 Nonlinear parabolic stochastic differential equations

We consider here the stochastic differential equation
$$
\begin{align*}
&dX - \text{div}_\xi(a(t, \nabla X))dt + \lambda X \, dt = X \, dW \text{ in } (0, T) \times \mathcal{O}, \\
&X = 0 \text{ on } (0, T) \times \partial \mathcal{O}, \\
&X(0, \xi) = x(\xi), \quad \xi \in \mathcal{O} \subset \mathbb{R}^d,
\end{align*}
$$

(3.1)
where \(x \in H \), \(W \) is the Wiener process \((1.2)\) in \(H = L^2(\Omega) \), \(\Omega \) is a bounded and open subset of \(\mathbb{R}^d \) with smooth boundary \(\partial \Omega \), and \(a : (0, T) \times \mathbb{R}^d \to \mathbb{R}^d \) is a nonlinear mapping of the form

\[
a(t, z) = \partial_z j(t, z), \quad \forall z \in \mathbb{R}^d, \quad t \in [0, T],
\]

(3.2)

where \(j : (0, T) \times \mathbb{R}^d \to \mathbb{R} \) is measurable, convex, lower semicontinuous in \(z \) and

\[
\lim_{|z| \to \infty} \frac{j(t, z)}{|z|} = +\infty, \quad t \in [0, T],
\]

(3.3)

\[
\lim_{|v| \to \infty} \frac{j^*(t, v)}{|v|} = +\infty, \quad t \in [0, T],
\]

(3.4)

uniformly with respect to \(t \in [0, T] \).

We note that, if the function \((t, y) \to j(t, y)\) is bounded on bounded subsets of \((0, T] \times \mathbb{R}^d\), then (3.4) automatically holds by the conjugacy formula \((1.8)\), that is,

\[
j^*(t, v) \geq v \cdot z - j(t, z), \quad \forall v, z \in \mathbb{R}^d, \quad t \in [0, T].
\]

It should be noted that equation (3.1) cannot be treated in the functional setting \((1.11)-(1.12)\) which require polynomial growth and boundedness for \(j(t, \cdot) \), while assumptions (3.3)–(3.4) allow nonlinear diffusions \(a \) with slow growth to \(+\infty \) as well as superlinear growth of the form

\[
a(t, z) = a_0 \exp(a_1 |z|^p \text{sgn } z).
\]

We note also that assumptions (3.2)–(3.4) do not preclude multivalued mappings \(a \). Such an example is

\[
j(t, z) \equiv |z|(\log(|z| + 1)),
\]

\[
a(t, z) = \left(\log(|z| + 1) + \frac{1}{|z| + 1} \right) \text{sgn } z, \quad \forall z \in \mathbb{R}^d.
\]

By \((2.1)\), one reduces equation (3.1) to the random parabolic differential equation

\[
\frac{\partial y}{\partial t} - e^{-W} \text{div}_x a(t, \nabla(e^W(y + x)) + (\lambda + \mu)(y + x)) = 0
\]

in \((0, T) \times \mathbb{O})

(3.5)

\[
y = 0 \text{ on } (0, T) \times \partial \mathbb{O},
\]

\[
y(0, \xi) = 0, \quad \xi \in \mathbb{O}.
\]
We are under the conditions of Section 2, where

\[H = L^2(\mathcal{O}), \]
\[A(t)y = -\text{div}_\xi a(t, \nabla y), \]
\[D(A(t)) = \{y \in W^{1,1}_0(\mathcal{O}); \text{div}_\xi a(t, \nabla y) \in L^2(\mathcal{O})\} \]
\[\varphi(t, y) = \int_\mathcal{O} j(t, \nabla y(\xi))d\xi. \]

By (2.12), we have

\[\psi^*(t, v) = \int_\mathcal{O} (a(t, \nabla z) \cdot \nabla z - j(t, \nabla z) + \frac{\delta}{2} z^2) d\xi, \quad \forall v \in L^2(\mathcal{O}), \]

where \(z \) is the solution to the equation

\[-\text{div} a(t, \nabla z) + \delta z = v \quad \text{in} \; \mathcal{O}, \]
\[z = 0 \quad \text{on} \; \partial \mathcal{O}, \]

or, equivalently,

\[z = \arg \min_{\tilde{z} \in W^{1,1}_0(\mathcal{O})} \left\{ \int_\mathcal{O} j(t, \nabla \tilde{z}) d\xi - \int_\mathcal{O} v \tilde{z} d\xi + \frac{\delta}{2} \int_\mathcal{O} \tilde{z}^2 d\xi \right\}. \]

By (3.3), it follows that (3.8) has, for each \(v \in L^2(\mathcal{O}) \) and \(t \in [0, T] \), a unique solution \(z \in W^{1,1}_0(\mathcal{O}) \). In fact, as easily seen, by condition (3.3) it follows that the functional arising in the right side part of (3.8) is convex, lower semicontinuous and coercive on \(W^{1,1}_0(\mathcal{O}) \). By (2.24), we have

\[\tilde{G}_1(y, y_1) = \mathbb{E} \int_0^T \int_\mathcal{O} (a(t, \nabla (e^{W(t)}(y(t) + x))) + \frac{\delta}{2} |e^{W(t)}(y(t) + x)|_H^2 + e^{W(t)}((\nu + \delta)(y(t) + x) + \mu x)e^{W(t)}x) d\xi dt \]
\[-\mathbb{E} \int_0^T (e^{W(t)}y(t), e^{W(t)}(1 + \mu)x) dt \]
\[+ \mathbb{E} \int_0^T \eta(e^{W(t)}y(t)) dt + \frac{1}{2} \mathbb{E} \int_\mathcal{O} |e^{W(T)}y_1(\xi)|^2 d\xi \]
\[+ \mathbb{E} (e^{W(T)}y_1, e^{W(T)}x), (y, y_1) \in \mathcal{H} \times L^2(\Omega; H), \]

where (see (2.17))

\[\eta(z) = (\nu + \delta) \int_\mathcal{O} |z|^2 d\xi - \frac{1}{2} \sum_{j=1}^{\infty} \mu_j^2 \int_\mathcal{O} |ze_j|^2 d\xi. \]
By (2.19) and (3.6)–(3.7), we also have
\[G_2(u) = \mathbb{E} \int_0^T \int_{\mathcal{O}} (a(t, \nabla z(t, \xi)) \cdot \nabla z(t, \xi)) \]
\[- j(t, \nabla z(t, \xi)) + \frac{\delta}{2} z^2(t, \xi) dt, \quad u \in \mathcal{H}, \] (3.11)
where \(z(t, \omega) \in W^{1,1}_0(\mathcal{O}) \) for \(dt \otimes \mathbb{P}\text{-a.e.}, \quad (t, \omega) \in (0, T) \times \Omega \), is given by (see (3.7))
\[- \text{div} a(t, \nabla z) + \delta z = u \quad \text{in} \quad \mathcal{O}, \]
\[z = 0 \quad \text{on} \quad \partial \mathcal{O}. \] (3.12)
Taking into account that \(a(t, \nabla z) \cdot \nabla z \geq j(t, \nabla z) - j(t, 0) \), we see by (3.3) and (3.12) that
\[z \in L^1((0, T) \times \Omega; W^{1,1}(\mathcal{O})) \cap L^2((0, T) \times \mathcal{O} \times \Omega). \]
Recalling (1.7)–(1.8), we have
\[a(t, \nabla z) \cdot \nabla z - j(t, \nabla z) = j^*(t, a(t, \nabla z)) \text{ a.e. in } (0, T) \times \mathcal{O}, \]
and this yields
\[G_2(u) = \mathbb{E} \int_0^T \int_{\mathcal{O}} (j^*(t, a(t, \nabla z(t, \xi)))) + \frac{\delta}{2} z^2(t, \xi) d\xi dt. \] (3.13)
By (3.4), it follows via the Dunford–Pettis weak compactness theorem in \(L^1 \) that every level set
\[\left\{ v; \mathbb{E} \int_0^T \int_{\mathcal{O}} j^*(t, v(t, \xi)) dx d\xi \leq M \right\}, \quad M > 0, \]
is weakly compact in the space \(L^1((0, T) \times \mathcal{O} \times \Omega) \). By (3.12) and (3.13), we see that, if \(G_2(u_n) \leq M \), where \(\{u_n\} \subset L^2((0, T) \times \mathcal{O} \times \Omega) \) and \(z_n \) is the solution to (3.12) with \(u_n \) replacing \(u \), then, by the Dunford–Pettis theorem, the sequence \(\{a(t, \nabla z_n)\} \) is weakly compact in \(L^1((0, T) \times \mathcal{O} \times \Omega) \). Hence \(\{u_n\} \) is weakly compact in \(L^1((0, T) \times \mathcal{O}; W^{-1,\infty}(\mathcal{O})) \).
By (3.13), it follows also that \(\{z_n\} \) is weakly compact in \(L^2((0, T) \times \mathcal{O} \times \Omega) \).
By (2.26), this means that, if \(x \in L^2(\mathcal{O}) \), then, for \((y, y_1, u) \in \mathcal{H} \times L^2(\Omega; H) \times \mathcal{X}, \)
\[\overline{G}(y, y_1, u) \]
\[= \overline{G}_1(y, y_1) + \mathbb{E} \int_0^T \int_{\mathcal{O}} \left(j^*(t, a(t, \nabla z(t, \xi))) + \frac{\delta}{2} z^2(t, \xi) \right) d\xi dt, \] (3.14)
where $z \in L^1((0, T) \times \Omega; W^{1,-1}_0(\mathcal{O})) \cap L^2((0, T) \times \mathcal{O} \times \Omega)$ is the solution to (3.12).

Let $(y_n, u_n) \in \mathcal{H} \times \mathcal{H}$ be such that $e^W_B y_n + u_n = 0$ and $(y_n, u_n) \to (y, u)$ in $\mathcal{H} \times \mathcal{X}; y_n(T) \to y_1$ in $L^2(\Omega; H)$. Since $\sup\{G_1(y_n)\} < \infty$, by (3.3) and (3.9), it follows also that $\{\nabla (e^W(y_n + x))\}$ is weakly compact in $L^1((0, T) \times \mathcal{O} \times \Omega)$, and so $e^W (y + x) \in L^1((0, T) \times \mathcal{O}; W^{1,1}_0(\mathcal{O}))$. Moreover, it follows that $\{\frac{dy_n}{dt}\}$ is weakly compact in $L^1((0, T) \times \Omega; W^{-1,\infty}(\mathcal{O}))$, and so $\frac{dy}{dt} \in L^1((0, T) \times \Omega; W^{-1,\infty}(\mathcal{O}))$. This implies that the equation $\tilde{B}(y^*, y_1^*) + u^* = 0$ reduces to

$$e^W \frac{dy^*}{dt} + e^W (\mu + \nu + \delta)(y^* + x) + u^* = 0 \text{ in } D'(0, T), \text{ } \mathbb{P}\text{-a.s.,}
$$

$$y^*(0) = 0, \quad y^*(T) = y_1^*.$$

Hence, if $D(G_1) = \{(y, y_1, u); \overline{G}_1(y, y_1, u) < \infty\}$, then we have

$$D(G_1) \subset \{(y, y_1, u) \in \mathcal{H} \times L^2(\Omega; H) \times \mathcal{H}; e^W y \in L^1((0, T) \times \Omega; W^{1,1}_0(\mathcal{O})); \frac{dy}{dt} \in L^1((0, T) \times \Omega; W^{-1,\infty}(\mathcal{O})); u \in L^1((0, T) \times \Omega; W^{-1,\infty}(\mathcal{O})), y_1 = y(T)\}.$$

This means that, in this case, problem (P) can be rewritten as

$$\begin{align*}
\text{Min} \left\{ \overline{G}(y, y(T), u); y \in L^2((0, T) \times \mathcal{O} \times \Omega) \cap \mathcal{H}, \\
e^W (y + x) \in L^1((0, T) \times \Omega; W^{1,1}_0(\mathcal{O})), \\
\frac{dy}{dt} \in L^1((0, T) \times \Omega; W^{-1,\infty}(\mathcal{O})), \\
u \in L^1((0, T) \times \Omega; W^{-1,\infty}(\mathcal{O})) \cap \mathcal{X}; \\
\text{subject to} \\
\frac{dy}{dt} + (\mu + \nu + \delta)(y + x) + e^{-W} u = 0 \text{ on } (0, T); y(0) = 0 \right\},
\end{align*}$$

(3.15)

where \overline{G}_1 is defined by (3.14). By Theorem 2.2 there is a unique solution (y^*, u^*) to (3.15). Taking into account that $u^* \in L^1((0, T) \times \Omega; W^{-1,\infty}(\mathcal{O}))$ and that

$$y^*(t) = -\int_0^t e^{-W} u^*(s)ds - \int_0^t (\mu + \nu + \delta)(y^*(s) + x)ds, \forall t \in (0, T),$$

we infer that the process $t \to y^*(t)$ in pathwise $W^{-1,\infty}(\mathcal{O})$ continuous on $(0, T)$. By Theorem 2.4 we have, therefore,
Theorem 3.1 Assume that \(x \in L^2(\mathcal{O}) \) and that conditions (3.2)–(3.4) hold. Then, equation (3.1) has a unique variational solution

\[
X^* \in L^2((0,T) \times \mathcal{O} \times \Omega), \quad e^W X^* \in L^1((0,T) \times \Omega; W^{1,1}_0(\mathcal{O})).
\]

Moreover, the process \(t \to X^*(t) \) is \(\mathcal{F}_t \) \(\mathcal{F}_t \geq 0 \)-adapted and pathwise \(W^{-1,\infty}(\mathcal{O}) \)-valued continuous on \((0,T)\).

The total variation flow

The stochastic differential equation

\[
dX - \text{div} \left(\frac{\nabla X}{|\nabla X|_d} \right) dt + \lambda X \, dt = X \, dW \text{ in } (0,T) \times \mathcal{O},
\]

\[
X(0) = x \text{ in } \mathcal{O},
\]

\[
X = 0 \text{ on } (0,T) \times \partial \mathcal{O}
\]

with \(x \in L^2(\mathcal{O}) \) is the equation of stochastic variational flow in \(\mathcal{O} \subset \mathbb{R}^d, \) \(1 \leq d \leq 3. \) The existence and uniqueness of a generalized solution to (3.17) \(X : [0,T] \to BV(\mathcal{O}) \) was established in [9] by using some specific approximation techniques. We shall treat now equation (3.17) in the framework of variational solution developed above in the space \(H = L^2(\mathcal{O}) \) with the norm \(| \cdot |_H = | \cdot |_2 \) and the scalar product \((\cdot, \cdot) \), and \(\varphi : L^2(\mathcal{O}) \to \mathbb{R} \) defined by

\[
\varphi(y) = \begin{cases}
\|Dy\| + \int_{\partial \mathcal{O}} |\gamma_0(y)| d\mathcal{H}^{d-1}, & y \in BV(\mathcal{O}) \setminus L^2(\mathcal{O}), \\
+\infty & \text{otherwise.}
\end{cases}
\]

Here, \(BV(\mathcal{O}) \) is the space of functions with bounded variation and \(\|Dy\| \) is the total variation of \(y \in BV(\mathcal{O}). \) (See, e.g., [9].) Then, with the notations of Section 2, we have \(Ay = \partial \varphi(y) \), where \(\partial \varphi : L^2(\mathcal{O}) \to L^2(\mathcal{O}) \) is the subdifferential of \(\varphi \) and (see (2.2), (2.18))

\[
\frac{\partial y}{\partial t} + e^{-W} A(e^W (y + x)) + \mu(y + x) = 0 \text{ in } (0,T) \times \mathcal{O},
\]

\[
y(0,\xi) = 0, \quad \xi \in \mathcal{O},
\]

\[
y = 0 \text{ on } (0,T) \times \partial \mathcal{O}.
\]

The function \(\tilde{G}_1 \) is given, in this case, by
\[G_1(y, y_1) = E \int_0^T \left(\varphi(e^{W(t)}(y(t) + x)) + \frac{\delta}{2} |e^{W(t)}(y(t) + x)|^2 \right. \]
\[+ (e^{W(t)}(\nu + \delta y(t) + \mu x), e^{W(t)}x) \right) dt \]
\[-E \int_0^T (e^{W(t)}y(t), e^{W(t)}(1 + \mu)x) dt \]
\[+ E \int_0^T \eta(e^{W(t)}y(t)) dt + \frac{1}{2} E|e^{W(T)}y_1|^2 \]
\[+ E(e^{W(T)}y_1, e^{W(T)}x), (y, y_1) \in \mathcal{H} \times L^2(\Omega; H), \]
where \(\eta \) is given by (3.10). We have also (see (2.11), (2.12), (3.6))
\[
\psi(y) = \varphi(y) + \frac{\delta}{2} |y|^2, \quad \forall y \in D(\varphi),
\]
\[
\psi^*(v) = (v, \theta) - \varphi(\theta) - \frac{\delta}{2} |\theta|^2, \quad v \in \partial \varphi(\theta) + \delta \theta.
\]
Hence,
\[
\psi^*(v) = \frac{\delta}{2} |\theta|^2 + (\partial \varphi(z), \theta) - \varphi(\theta)
\]
\[
= \frac{\delta}{2} |(\delta I + \partial \varphi)^{-1}(u)|^2 + \varphi^*(u - (\delta I + \partial \varphi)^{-1}v)
\]
and, therefore, by (2.19),
\[
G_2(u) = E \int_0^T \left(\frac{\delta}{2} |(\delta I + \partial \varphi)^{-1}(u)|^2 + \varphi^*(u - (\delta I + \partial \varphi)^{-1}u) \right) dt,
\]
where \(\varphi^*: L^2(\mathcal{O}) \rightarrow \mathbb{R} \) is the conjugate of the function \(\varphi \). This yields
\[
\mathcal{G}(y, y_1, u) = G_1(y, y_1) + \lim \inf_{(z,v) \to (y,u)} \left\{ E \int_0^T \left(\frac{\delta}{2} |(I + \partial \varphi)^{-1}(v(t))| \right. \right. \]
\[+ \left. \varphi^*(v - (\delta I + \partial \varphi)^{-1}(v(t))) \right) dt, e^Wz + v = 0 \right\},
\]
where the space \(\mathcal{X} \) is defined by (2.22).

By definition, the solution \((y^*, y_1^*)\) to the minimization problem
\[
\text{Min}\{\mathcal{G}(y, y_1, u); \mathcal{B}(y, y_1) + u = 0, (y, y_1, u) \in \mathcal{H} \times L^2(\Omega; H) \times \mathcal{X} \}\]
is the \textit{variational solution} to the random differential equation (3.18).
Denote by V^* the dual of the space $V = BV(\mathcal{O}) \cap L^2(\mathcal{O})$. We note that φ^* can be extended as a convex lower semicontinuous convex function on F^*, and we also have
\[
\frac{\varphi^*(u)}{\|u\|_{V^*}} \to +\infty \text{ as } \|u\|_{V^*} \to +\infty.
\]

Then, if $(z_n, y_n) \in H \times H$ is convergent to $(y, u) \in H \times X$, it follows by the Dunford-Pettis compactness criterium (see [12]) that \{v_n\} is weakly compact in $L^1((0, T) \times \Omega; V^*)$. This implies that
\[
D(G) \subset L^1((0, T) \times \Omega; BV(\mathcal{O})) \times L^2(\Omega; H) \times L^1((0, T) \times \Omega; V^*),
\]
and so, in particular, it follows that
\[
y \in W^{1,1}([0, T]; V^*), \text{ } \mathbb{P}\text{-a.s.}
\]
We have, therefore,

Theorem 3.2 Let $x \in BV(\mathcal{O}) \cap L^2(\mathcal{O})$. Then equation (3.17) has a unique variational solution $X = e^{W}(y + x)$ which is V^*-valued pathwise continuous and satisfies
\[
\varphi(X) \in L^1((0, T) \times \Omega), \quad \text{(3.22)}
\]
\[
X \in L^2((0, T) \times \mathcal{O} \times \Omega), \quad AX \in L^1((0, T) \times \Omega; V^*), \quad \text{(3.23)}
\]
\[
e^{-W}X \in W^{1,1}([0, T]; V^*), \quad \mathbb{P}\text{-a.s.} \quad \text{(3.24)}
\]

In [9], it was proved the existence and uniqueness of a generalized solution X, also called the variational solution, which was obtained as limit $X^* = \lim_{\varepsilon \to 0} X_\varepsilon$ in $L^2(\Omega; C((0, T); L^2(\mathcal{O})))$, where X_ε is the solution to the approximating equation
\[
\begin{align*}
dX_\varepsilon - \text{div } a_\varepsilon(\nabla X_\varepsilon)dt + \lambda X_\varepsilon &= X_\varepsilon dW \text{ in } (0, T) \times \mathcal{O}, \\
X_\varepsilon(0) &= x, \quad X_\varepsilon = 0 \text{ on } (0, T) \times \mathcal{O}, \quad \text{(3.25)}
\end{align*}
\]
where $a_\varepsilon = \nabla j_\varepsilon$ and j_ε is the Moreau–Yosida approximation of the function $r \to |r|_d$. Since, as strong solution to (3.25), X_ε is also a variational solution to this equation in sense of Definition 2.3, it is clear by the structural stability of convex minimization problems that, for $\varepsilon \to 0$, we have also $X_\varepsilon \to X$, where X is the variational solution given by Theorem 3.2.
We may infer, therefore, that the function X given by Theorem 3.2 is just the generalized solution of (3.17) given by Theorem 3.1 in [9]. In particular, this implies that X is $L^2(O)$-valued pathwise continuous.

In [4], it is developed a direct variational approach to (3.17), which leads via first order conditions of optimality to sharper results. (On these lines, see also [13].)

Stochastic porous media equations

Consider the equation

\[
\begin{aligned}
dX - \Delta \beta(X) dt + \lambda X dt &= X dW \text{ in } (0, T) \times O, \\
X &= 0 \text{ on } (0, T) \times \partial O, \\
X(0, \xi) &= x(\xi), \quad \xi \in O,
\end{aligned}
\]

(3.26)

where O is a bounded and open domain of \mathbb{R}^d, $d \geq 1$, $\lambda > 0$, W is a Wiener process in $H = H^{-1}(O)$ of the form (1.2) and β is a continuous and monotonically nondecreasing function such that $\beta(0) = 0$ and

\[
\lim_{|r| \to \infty} \frac{f(r)}{|r|} = +\infty.
\]

(3.27)

In this case,

\[
\begin{aligned}
H &= H^{-1}(O), \\
Ay &= -\Delta \beta(y), \\
D(A) &= \{y \in H^{-1}(O) \cap L^1(O), \beta(y) \in H^1_0(O)\} \text{ and} \\
A &= \partial \varphi, \text{ where } \varphi(y) = \int_O j(y(\xi))d\xi.
\end{aligned}
\]

By (2.11), we have also

\[
\psi^*(v) = \int_O j^*(\beta(\theta))d\xi + \frac{\delta}{2} |\theta|_{-1}^2, \quad v \in L^2(O),
\]

where $\theta \in H^{-1}(O) \cap L^1(O)$,

\[
\begin{aligned}
2\delta \theta - \Delta \beta(\theta) &= v \quad \text{in } O, \\
\theta &= 0 \quad \text{on } \partial O,
\end{aligned}
\]

20
and $| \cdot |_{-1}$ is the norm of $H^{-1}(\mathcal{O})$. Then we have

$$
\tilde{G}_1(y, y_1) = \mathbb{E} \int_0^T \left(\int_{\mathcal{O}} \tilde{j}(e^{W(t)}(y(t) + x))d\xi + \frac{\delta}{2} |e^{W(t)}(y(t) + x)|_{-1}^2 \right) d\xi \, dt
$$

$$
+ \mathbb{E} \int_0^T \int_{\mathcal{O}} e^{W(t)}((\nu + \delta)(y(t) + x) + \mu x)e^{W(t)}x \, d\xi \, dt
$$

$$
- \mathbb{E} \int_0^T (e^{W(t)}y(t), e^{W(t)}(1 + \mu)x)dt
$$

$$
+ \mathbb{E} \int_0^T \eta(e^{W})dt + \frac{1}{2} \mathbb{E}|e^{W(T)}y(T)|_{-1}^2
$$

$$
+(e^{W(T)}y_1, e^{W(T)}x)_{-1},
$$

while

$$
G_2(u) = \mathbb{E} \int_0^T \left(\int_{\mathcal{O}} j^*(\beta(\tilde{z}))d\xi + \frac{\delta}{2} |\tilde{z}(t)|_{-1}^2 \right) \, dt,
$$

where

$$
\delta \tilde{z} - \Delta \beta(\tilde{z}) = u \quad \text{in } \mathcal{O},
$$

$$
\tilde{z} = 0 \quad \text{on } \partial \mathcal{O}. \tag{3.28}
$$

(Here, $(\cdot, \cdot)_{-1}$ is the scalar product of $H^{-1}(\mathcal{O})$.)

Taking into account that $\frac{j^*(r)}{|r|} \to +\infty$ as $|r| \to \infty$, it follows, as in the previous case, for each $M > 0$, the set

$$
\left\{ \beta(\tilde{z}); \mathbb{E} \int_0^T \int_{\mathcal{O}} j^*(\beta(\tilde{z}))d\xi dt \leq M \right\}
$$

is weakly compact in $L^1((0, T) \times \mathcal{O} \times \Omega)$, we infer that

$$
\overline{G}(y, y_1, u) = \tilde{G}_1(y, y_1) + \mathbb{E} \int_0^T \left(\int_{\mathcal{O}} j^*(\beta(\tilde{z}))d\xi + \frac{\delta}{2} |\tilde{z}(t)|_{-1}^2 \right) dt, \tag{3.29}
$$

where \tilde{z} is the solution to (3.28). This implies that

$$
D(\overline{G}) \subset \{(y, y_1, u) \in \mathcal{H} \times L^2(\Omega; H) \times \mathcal{X}; u \in L^1((0, T) \times \Omega; \mathcal{Z})\}.
$$

Here $\mathcal{Z} = (-\Delta)^{-1}(L^1(\mathcal{O})) \subset W^{1,p}_0(\mathcal{O}), \ 1 \leq p < \frac{d}{d-1}$, where Δ is the Laplace operator with homogeneous Dirichlet conditions and

$$
D(\overline{G}) = \{(y, y_1, u); \overline{G}(y, y_1, u) < \infty\}.
$$
We define, as above, the solution to (3.26) as \(X^* = e^W y^* \), where \((y^*, y_1^*, u^*)\) is the solution to the minimization problem

\[
\text{Min} \left\{ G(y, y_1, u); \frac{dy}{dt} + (\mu + \nu + \delta)(y + x) + e^{-W} u = 0, \; y(0) = 0, \; y(T) = y_1, \; (y, y_1, u) \in \mathcal{H} \times L^2(\Omega; H) \times \mathcal{X} \right\}
\]

(3.30)

(Here, \(\frac{dy}{dt} \) is taken in sense of distributions, i.e., in \(\mathcal{D}'(0, T; H) \).) We have, therefore,

Theorem 3.3 Assume that \(x \in L^2(\mathcal{O}) \). Then equation (3.26) has a unique variational solution \(X^* \),

\[
X^* \in L^2((0, T) \times \mathcal{O} \times \Omega), \; \varphi(X^*) \in L^1((0, T) \times \mathcal{O} \times \Omega), \; e^{-W} X \in W^{1,1}([0, T]; W^{1,1}_0(\mathcal{O})), \; \mathbb{P}\text{-a.s.}
\]

Moreover, the process \(t \to X^*(t) \) is pathwise \(W^{1,1}_0(\mathcal{O}) \)-valued continuous on \((0, T)\).

Remark 3.4 A different treatment of equation (3.26) under the general assumptions (3.27) was developed in [7] (see also [8], Ch. 5).

4 Stochastic variational inequalities

Consider the stochastic differential equation

\[
dX + A_0 X \, dt + N_K(X) \, dt + \lambda X \, dt \ni X \, dW, \; t \in (0, T),
\]

\[
X(0) = x,
\]

in a real Hilbert space \(H \) with the scalar product \((\cdot, \cdot)\) and the norm \(|\cdot|\). Assume that \(x \in H \) and

(j) \(A_0 : D(A_0) \subset H \to H \) is a linear self-adjoint, positive definite operator in \(H \).

(jj) \(W \) is the Wiener process (1.2) and \(\lambda > \nu \).

(jjj) \(K \) is a closed, convex subset of \(H \) such that \(0 \in K, \; (I + \lambda A_0)^{-1} K \subset K, \; \forall \lambda > 0 \).
Here, $N_K : H \rightarrow 2^H$ is the normal cone to K, that is,

$$N_K(u) = \{ \eta \in H; \langle \eta, u - v \rangle \geq 0, \forall v \in K \}. \quad (4.2)$$

By the transformation (2.1), equation (4.1) reduces to the nonlinear random differential equation

$$\frac{dy}{dt} + e^{-W} A_0(e^W(y + x)) + e^{-W} N_K(e^W(y + x)) + \mu(y + x) = 0, \quad t \in (0, T), \quad (4.3)$$

$$y(0) = 0.$$

(We note that, if $W(t) = \sum_{j=1}^{N} \mu_j \beta_j(t)$, then (4.3) reduces to a deterministic variational inequality.)

To represent this problem as an optimization problem of the form (P), we set

$$\phi(u) = \frac{1}{2} (A_0 u, u) + I_K(u), \quad \forall u \in H,$$

where I_K is the indicator function

$$I_K(u) = \begin{cases} 0 & \text{if } u \in K, \\ +\infty & \text{otherwise}. \end{cases}$$

The function $\phi : H \rightarrow \mathbb{R}$ is convex and lower semicontinuous. Then, by (2.6), (2.18), (2.19), we have

$$\tilde{G}_1(y, y_1) = \mathbb{E} \int_0^T \left(\frac{1}{2} (A_0(e^W(t)(y(t) + x)), e^W(t)(y(t) + x)) + e^{2W}((\nu + \delta)(y + x) + \mu y)x + \frac{\delta}{2} |e^W(t)(y(t) + x)|_H^2 \\
+ I_K(e^W(t)(y(t) + x)) + \eta(e^W(t)y(t)) \right) dt$$

$$- \mathbb{E} \int_0^T (e^W y, e^W(1 + \mu)y) dt \quad (4.4),$$

$$G_2(u) = \mathbb{E} \int_0^T \psi^*(u(t)) dt, \quad (4.6)$$

where, by (2.11)-(2.12), we have

$$\tilde{G}_1(y, y_1) = \mathbb{E} \int_0^T \left(\frac{1}{2} (A_0(e^W(t)(y(t) + x)), e^W(t)(y(t) + x)) + e^{2W}((\nu + \delta)(y + x) + \mu y)x + \frac{\delta}{2} |e^W(t)(y(t) + x)|_H^2 \\
+ I_K(e^W(t)(y(t) + x)) + \eta(e^W(t)y(t)) \right) dt$$

$$- \mathbb{E} \int_0^T (e^W y, e^W(1 + \mu)y) dt \quad (4.4),$$

$$G_2(u) = \mathbb{E} \int_0^T \psi^*(u(t)) dt, \quad (4.6)$$

where, by (2.11)-(2.12), we have
\[
\psi^*(e^W u) = \sup \left\{ (e^W u, v) - \frac{1}{2} (A_0 v, v) - \frac{\delta}{2} |v|^2 ; \, v \in K \right\},
\]
where \(A_0 z + \delta z + N_K(z) \ni e^W u \). (We note that, by (iii), \(z \) is uniquely defined.)

By (4.4)-(4.6), we see that
\[
G(y, y_1, u) = \tilde{G}_1(y, y_1) + \frac{1}{2} \liminf_{n \to \infty} \mathbb{E} \int_0^T \left((A_0 z_n, z_n) + \frac{\delta}{2} |z_n|^2 \right) dt,
\]
where \(A_0 z_n + \delta z_n + N_K(z_n) \ni u_n, \ e^W B y_n + u_n = 0, \ y_n \to y \) in \(\mathcal{H} \), \(y_n(T) \to y_1 \) in \(L^2(\Omega; H) \), \(u_n \to u \) in \(\mathcal{X} \).

This yields
\[
\mathbb{E} \int_0^T |A_0^{1/2} z_n|^2 dt \leq C < \infty, \ \forall n \in \mathbb{N},
\]
and, therefore, we have
\[
\tilde{G}(y, y_1, u) = \tilde{G}_1(y, y_1) + \frac{1}{2} \mathbb{E} \int_0^T (|A_0^{1/2} z|^2 + \delta |z|^2) dt,
\]
where \(V = D(A_0^{1/2}) \). We note that \(D(\tilde{G}_1) \subset L^2((0, T) \times \Omega; V) \).

We may conclude, therefore, by Theorem (2.4) that

Theorem 4.1 Under hypotheses (i)–(iij), there is a unique variational solution \(X^*(t) \in K \), a.e. \(t \in (0, T) \), \(X^* \in L^2((0, T) \times \Omega) \) to equation (4.1).

More insight into the problem can be gained in the following two special cases.

Stochastic parabolic variational inequalities

The stochastic differential equation
\[
dX - \Delta X dt + \lambda X dt + N_K(X) dt \ni X dW \text{ in } (0, T) \times \mathcal{O},
\]
\[X(0) = x \text{ in } \mathcal{O},\]
\[X = 0 \text{ on } (0, T) \times \partial \mathcal{O},\]
where \(N_K(X) \subset L^2(\mathcal{O}) \) is the normal cone to the closed convex set \(K \) of \(L^2(\mathcal{O}) \),
\[K = \{ z \in L^2(\mathcal{O}); \ z \geq 0, \ \text{a.e. in } \mathcal{O} \}, \ \alpha \in \mathbb{R}, \]

can be treated following the above infinite-dimensional scheme in the space \(H = L^2(\mathcal{O}) \), where \(A_0 u = -\Delta u, \ u \in D(A_0) = H^1_0(\mathcal{O}) \cap H^2(\mathcal{O}). \)

Then the variational solution to (4.11) is defined by \(X = e^W y \), where \(y \) is given by (4.11) and \(G \) is given by

\[
G(y, y_1, u_1) = \tilde{G}_1(y, y_1) + \frac{1}{2} E \int_0^T \int_\Omega (|\nabla z|^2 + \delta |z|^2) d\xi \ dt,
\]

where \(G_1 \) is defined by (4.4) and \(z = w - \lim_{n \to \infty} z_n \) in \(L^2((0, T) \times \mathcal{O}; H^1_0(\mathcal{O})) \).

Since \(u_n \to u \) in \(D'(0, T; L^2(\mathcal{O})) \) and \(\eta_n(t, \xi) \leq 0 \) a.e. \((t, \xi) \in (0, T) \times \mathcal{O} \), by (4.12), we infer that

\[-\Delta z + \delta z + \eta = u \text{ in } D'((0, T) \times \mathcal{O}), \]

where \(\eta, u \) are in \(\mathcal{M}((0, T) \times \mathcal{O}) \) the space of bounded measures on \((0, T) \times \mathcal{O} \). If we denote by \(\eta_a, u_a \in L^1((0, T) \times \mathcal{O}) \) the absolutely continuous parts of \(\eta \) and \(u \), we get

\[-\Delta z + \delta z + \eta_a = u_a \text{ in } L^1(\mathcal{O}), \]

\(z \in H^1_0(\mathcal{O}) \) and \(\eta_a(t, \xi) = 0, \ \text{a.e. on } [z(t, \xi) > 0] \)

\[\eta_a(t, \xi) \geq 0, \ \text{a.e. on } [z(t, \xi) = 0]. \]

Then the process \(X = e^W(y + x) \) is the variational solution to (4.11) and so, by Theorem 4.1, we have

Corollary 4.2 There is a unique variational solution \(X \in L^2((0, T) \times \Omega; H^1_0(\mathcal{O})) \), \(X \geq 0, \ \text{a.e. on } (0, T) \times \Omega. \)

Finite dimensional stochastic variational inequalities

Consider equation (1.11) in the special case \(K \subset \mathbb{R}^d, \ \text{int } K \neq \emptyset, \ 0 \in K, \)

\(W = \sum_{i=1}^N \mu_i \beta_i \) and \(A_0 \in L(\mathbb{R}^d, \mathbb{R}^d), \ A_0 = A_0^* \). Then, as easily seen by (2.13), we have

25
\[
\psi^*(u) \geq \alpha_1 |u| - \alpha_2, \quad \forall u \in \mathbb{R}^d. \tag{4.13}
\]

Let \(z_n \) be the solution to (see (4.8))

\[
A_0 z_n + \delta z_n + N_K(z_n) \ni u_n. \tag{4.14}
\]

Since, by (4.13)-(4.14), the sequence \(\{u_n\} \) is bounded in \(L^1((0,T) \times \Omega, \mathbb{R}^d) \), it follows that it is weak-star compact in \(\mathcal{M}(0,T; \mathbb{R}^d) \), \(\forall \varepsilon > 0 \), and so \(u \in \mathcal{M}(0,T; \mathbb{R}^d) \). (Here, \(\mathcal{M}(0,T; \mathbb{R}^d) \) is the space of \(\mathbb{R}^d \)-valued bounded measures on \((0,T) \). Letting \(n \to \infty \) in (4.14), we get

\[
A_0 z + \delta z + \zeta = u, \tag{4.15}
\]

where \(u \in \mathcal{M}(0,T; \mathbb{R}^d) \), \(\forall \varepsilon > 0 \), and \(\zeta \in \mathcal{M}((0,T); \mathbb{R}^d), \mathbb{P}\text{-a.s.} \) By the Lebesgue decomposition theorem, we have

\[
z = (A_0 + \delta I + N_K)^{-1}(u_a), \quad \zeta = u_a.
\]

As a matter of fact, the singular measure \(\zeta \) belongs to the normal cone \(N_K(z) \subset \mathcal{M}(0,T; \mathbb{R}^d) \) to the set \(K = \{ \tilde{z} \in C([0,T]; \mathbb{R}^d); \tilde{z}(t) \in K, \forall t \in [0,T] \} \) and it is concentrated on the set of \(t \)-values for which \(z(t) \) defined by (4.16) lies on the boundary \(\partial K \) of \(K \).

By (2.22)-(2.23), we have

\[
\overline{G}(y, y_1, u) = \tilde{G}_1(y, y_1) + \mathbb{E} \int_0^T \left(\frac{1}{2} \langle A_0 F(u_a), F(u_a) \rangle + \frac{\delta}{2} |F(u_a)|^2 \right) dt, \tag{4.17}
\]

where \(\tilde{G}_1 \) is given by (4.4) and \(y \in \mathcal{H} \) is solution to the equation

\[
\begin{align*}
y &= y_a + y_s, \quad y_a \in AC([0,T]; \mathbb{R}^d), \quad y_s \in BV([0,T]; \mathbb{R}^d), \quad \mathbb{P}\text{-a.s.}, \\
\frac{dy_a}{dt} + (\mu + \nu + \delta)(y_a + x) + e^{-W}u_a &= 0, \text{ a.e. on } (0,T), \\
y_a(0) &= 0, \\
\frac{dy_s}{dt} + e^{-W}u_s &= 0 \text{ in } \mathcal{D}'(0,T; \mathbb{R}^d),
\end{align*}
\]

26
where $BV([0,T];\mathbb{R}^d)$ is the space of functions with founded variations on $[0,T]$. We note that, by (4.17), it follows also that

$$D(G) \subset \{(y, y_1, u) \in H \times L^2(\Omega; H) \times X; y \in BV([0,T]; \mathbb{R}^d), \; \mathbb{P}\text{-a.s.,}$$

$$F(u_a) \in L^2((0,T) \times \Omega \times \mathbb{R}^d)\}$$

where $D(G) = \{(y, y_1, u); G(y, y_1, u) < \infty\}$. We have, therefore,

Theorem 4.3 The minimization problem

$$\text{Min}\{G(y, y_1, u); \; (y, y_1, u) \in H \times L^2(\Omega; \mathbb{R}^d) \times X, \text{ subject to (4.18)}\} \tag{4.19}$$

has a unique solution $(y^*, y_1^*) \in H \times L^2(\Omega; \mathbb{R}^d)$ satisfying (4.18). The process $X^* = e^{Wy^*}$ is the solution to the variational solution to (4.17).

Remark 4.4 Since $y^* \in BV([0,T]; \mathbb{R}^d)$ and, as seen by (4.18), the singular measure $\zeta_s = u_s \neq 0$, it follows that the process X^* is not pathwise continuous on $[0,T]$. However, by the Lebesgue decomposition, we have, \mathbb{P}-a.s., $X^*(t) = X_a^*(t) + X_1^*(t) + X_2^*(t), \; \forall t \in [0,T]$, where $t \rightarrow X_a^*(t)e^{-W(t)}$ is absolutely continuous, X_1^* is a jump function and X_2^* is a singular function, that is, $X_2^* = e^{Wy_2}$, where $\frac{dy_2}{dt} = 0.$ a.e.

Acknowledgement. This work was supported by the DFG through CRC 1283. V. Barbu was also partially supported by CNCS-UEFISCDI (Romania) through the project PN-III-P4-ID-PCE-2016-0011.

References

[1] Barbu, V., *Nonlinear Differential Equations of Monotone Type in Banach Spaces*, Springer Monographs in Mathematics, Springer, New York, 2010.

[2] Barbu, V., A variational approach to stochastic nonlinear problems, *J. Math. Anal. Appl.*, 384 (2011), 2-15.

[3] Barbu, V., Optimal control approach to nonlinear diffusion equations driven by Wiener noise, *J. Optim. Theory Appl.*, 153 (2012), 1-26.

[4] Barbu, V., A variational approach to nonlinear stochastic differential equations with linear multiplicative noise (submitted).
[5] Barbu, Existence for nonlinear finite dimensional stochastic differential equations of subgradient type, *Mathematical Control and Related Fields* (to appear).

[6] Barbu, V., Brzezniak, Z., Hausenblas, E., Tubaro, L., Existence and convergence results for infinite dimensional nonlinear stochastic equations with multiplicative noise, *Stoch. Processes and Their Appl.*, 123 (2013), 984-951.

[7] Barbu, V., Da Prato, G., Röckner, M., Existence of strong solutions for stochastic porous media equations under general monotonicity conditions, *Ann. Probab.*, 37 (2) (2009), 428-452.

[8] Barbu, V., Da Prato, G., Röckner, M., *Stochastic Porous Media Equations*, Lecture Notes in Mathematics, 2163, Springer, 2016.

[9] Barbu, V., Röckner, M., Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise, *Archive Rational Mech. Anal.*, 209 (2013), 797-834.

[10] Barbu, V., Röckner, M., An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise, *J. European Math. Soc.*, 17 (2015), 1789-1815.

[11] Brezis, H., Ekeland, I., Un principe variationnel associé à certains équations paraboliques, le cas indépendent du temps, *C.R. Acad. Sci. Paris*, 282 (1976), 971-974.

[12] Brooks, J.K., Dinculeanu, N., Weak compactness in spaces of Bochner integrable functions and applications, *Advances in math.*, 24 (1977), 172-188.

[13] Da Prato, G., Zabczyk, J., *Stochastic Equations in Infinite Dimensions*, 1992. Second Edition, Cambridge University Press, Cambridge, 2008.

[14] Gess, B., Röckner, M., Stochastic variational inequalities and regularity for degenerate stochastic partial differential equations, *Trans. Amer. Math. Soc.*, 369 (2017), 3017-3045.

[15] Krylov, N.V., Rozovskii, B.L., Stochastic evolution equations, *J. Soviet Math.*, 16 (1981), 1233-1277.

[16] Liu, W., Röckner, M., *Stochastic Partial Differential Equations: An Introduction*, Springer, 2015.

[17] Pardoux, E., Equations aux dérivées partielles stochastiques non-linéaires monotones, Thèse, Orsay, 1972.
[18] Prevot, C., Röckner, M., *A Concise Course on Stochastic Partial Differential Equations*, Lecture Notes in Mathematics, 1905, Springer, Berlin 2007.

[19] Rockafellar, R.T., Integrals which are convex functionals, *Pacific J. Math.*, 24 (1968), 525-539.

[20] Visintin, A., Extension of the Brezis-Ekeland-Nayroles principle to monotone operators, *Adv. Math. Sci. Appl.*, 18 (2008), 633-680.