Structure-aware combinatorial group testing: a new method for pandemic screening
Combinatorial Group Testing
Combinatorial Group Testing

1 2 3 4 5 6
FAIL FAIL PASS PASS
Combinatorial Group Testing

1 2 3 4 5 6

FAIL FAIL PASS PASS
Cover-Free Families

Test	1	2	3	4	5	6	Result
Test 1	1	1	1	0	0	0	FAIL
Test 2	1	0	0	1	1	0	FAIL
Test 3	0	1	0	1	0	1	PASS
Test 4	0	0	1	0	1	1	PASS
Cover-Free Families

![Diagram of Cover-Free Families](image)

	1	2	3	4	5	6
Test 1	1	1	1	0	0	0
Test 2	1	0	0	1	1	0
Test 3	0	1	0	1	0	1
Test 4	0	0	1	0	1	1

\(d - CFF(t, n)\)

- Test 1: FAIL
- Test 2: FAIL
- Test 3: PASS
- Test 4: PASS
Definition: Let d be a positive integer. A d-cover-free family, denoted $d-CFF(t, n)$, is a set system $\mathcal{F} = (X, \mathcal{B})$ with $|X| = t$ and $|\mathcal{B}| = n$ such that for any $d + 1$ subsets $B_{i_0}, B_{i_1}, \ldots, B_{i_d} \in \mathcal{B}$, we have:

$$\left| B_{i_0} \setminus \left(\bigcup_{j=1}^{d} B_{i_j} \right) \right| \geq 1.$$

No element is covered by the union of any other d.

* Equivalent to disjunct matrices and superimposed codes.
Cover-Free Families

Test 1	Test 2	Test 3	Test 4
1	1	0	0
1	0	1	0
1	0	0	1

1 – CFF(4, 6)
Cover-Free Families

Test	1	2	3	4	5	6
1	1	1	1	0	0	0
2	1	0	0	1	1	0
3	0	1	0	1	0	1
4	0	0	1	0	1	1

1 – CFF(4, 6)
Cover-Free Families

1 – CFF(4, 6)

	1	2	3	4	5	6
Test 1	1	1	1	0	0	0
Test 2	1	0	0	1	1	0
Test 3	0	1	0	1	0	1
Test 4	0	0	1	0	1	1

- Test 1: FAIL
- Test 2: FAIL
- Test 3: PASS
- Test 4: PASS
Cover-Free Families

Test	1	2	3	4	5	6
1	1	1	1	0	0	0
2	1	0	0	1	1	0
3	0	1	0	1	0	1
4	0	0	1	0	1	1

1 – CFF(4, 6)
Cover-Free Families

	1	2	3	4	5	6
Test 1	1	1	1	0	0	0
Test 2	1	0	0	1	1	0
Test 3	0	1	0	1	0	1
Test 4	0	0	1	0	1	1

1 – CFF(4, 6)
Cover-Free Families

Test 1

Test 2

Test 3

Test 4

1 – CFF(4, 6)
In this talk

- Applications of **combinatorial group testing** in pandemic screening
- Study of **structure-aware combinatorial group testing** *
- New constructions of structure-aware CFFs **
- Future work

* (Nikolopoulos et al., 2021), (Gonen et al., 2022), (My PhD Thesis, 2019)
** This work
Structure-aware CFFs

Model the communities as hypergraphs

\[\mathcal{H} = (V, \mathcal{S}) \]

Propose constructions that take \(\mathcal{H} \) into consideration

\[(\mathcal{S}, r) \rightarrow CFF(t, n) \]
Structure-aware CFFs

Overlapping and non-overlapping edges:

Configurations:

- \((S, r) - CFF(t, n)\)
 - Identify all infected individuals, as long as there are at most \(r\) infected edges that jointly contain them

- \((S, r) - ECFF(t, n)\)
 - Identify \(r\) infected edges, without internal identification
Non-overlapping edges

• Revisit old $d - CFF$ constructions

• Show we can boost the number of infected items they can identify
 • Sperner-type construction for $r = 1$
 • Kronecker-type construction for $r > 1$
 • Array construction
 • Polynomial construction
The classroom problem

Non-overlapping edges
The classroom problem

Non-overlapping edges
Sperner-type construction

The classroom problem

One column per classroom
Sperner-type construction

The classroom problem

	Classroom 1	Classroom 2	Classroom 3	Classroom 4	Classroom 5	Classroom 6
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Classroom 1

Classroom 2

Classroom 3

Classroom 4

Classroom 5

Classroom 6
Sperner-type construction
The classroom problem
Sperner-type construction

The classroom problem

\[(\mathcal{S},1) - ECFF(4,24)\]
Sperner-type construction
The classroom problem
Sperner-type construction

The classroom problem

$(\mathcal{S},1) - CFF(8,24)$
Sperner-type construction

The classroom problem

- Consider n individuals divided into m non-overlapping edges, each of size up to d.
- Variation of a $1 - CFF(t_1, m)$ concatenated with a $d \times d$ id-matrix.
 - Generates a $(\mathcal{S},1) - CFF(t,n)$, $t = t_1 + d \approx \log m + d = \log n/d + d$
- If we only care about infected edges
 - Restrict to the first t_1 rows to get a $(\mathcal{S},1) - ECFF(t_1,n)$
Sperner-type construction

Comparison with traditional $d - CFF(t, n)$

n	m	d	$(\delta, 1) - CFF(t, n)$	$d - CFF(t, n)$
100	10	10	15	66
200	10	20	25	180
300	10	30	35	231
100	20	5	11	21
200	20	10	16	66
400	20	20	26	231

Total number of students

Number of classrooms

Classroom size

Lower bound
Kronecker-type construction

What if more classrooms are infected?

- Propose some constructions of $(\mathcal{S}, r) \rightarrow CFF$
- For m classrooms of k students each
- Identifies r infected classrooms and everyone inside them
- Generalization of Li, van Rees and Wei (2006)
 - Uses an $r \rightarrow CFF(t, m)$ to build $(\mathcal{S}, r) \rightarrow ECFF(t, km)$ and $(\mathcal{S}, r) \rightarrow CFF(kt, km)$
- Allows edges of different cardinalities
Overlapping edges

- Explore the properties of the hypergraph
- Propose constructions inspired by the non-overlapping ones
 - Construction of $(\mathcal{S}, 1) - CFF$ and $(\mathcal{S}, 1) - ECFF$ based on edge-colouring
 - Construction of $(\mathcal{S}, r) - CFF$ based on strong edge-colouring
 - **Defect cover**: a set of at most r edges whose union contains the set of infected elements
The high school problem

Constructions
The high school problem

Construction

Morning classes:
\(n = 18 \) students, 6 classrooms, 3 students each
The high school problem

Construction

Afternoon classes:
\(n = 18 \) students, 6 classrooms, 3 students each
The high school problem

Construction

Total:
n = 18 vertices, m = 12 edges with k = 3 students each, and 2 colour classes \(C_1 \) and \(C_2 \)
Overlapping edge construction

	edge 1	edge 2	edge 3	edge 4	edge 5	edge 6
C_1	1	1	1	0	0	0
	1	0	0	1	1	0
	0	1	0	1	0	1
	0	0	1	0	1	1

	edge 7	edge 8	edge 9	edge 10	edge 11	edge 12
C_2	1	1	1	0	0	0
	1	0	0	1	1	0
	0	1	0	1	0	1
	0	0	1	0	1	1
Overlapping edge construction

\[\mathcal{C}_1 \]

edge 1	edge 2	edge 3	edge 4	edge 5	edge 6
1 | 1 | 1 | 0 | 0 | 0
1 | 0 | 0 | 1 | 1 | 0
0 | 1 | 0 | 1 | 0 | 1
0 | 0 | 1 | 0 | 1 | 1

\[\mathcal{C}_2 \]

edge 7	edge 8	edge 9	edge 10	edge 11	edge 12
1 | 1 | 1 | 0 | 0 | 0
1 | 0 | 0 | 1 | 1 | 0
0 | 1 | 0 | 1 | 0 | 1
0 | 0 | 1 | 0 | 1 | 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Overlapping edge construction

\[(\mathcal{S},1) - CFF(t,n)\]
Overlapping edge construction

Edges 1, 7 and 8 are infected

$(\delta, 1) - CFF(t, n)$
Overlapping edge construction

Edges 1, 7 and 8 are infected, students 4-18 are cleared out

$$(\mathcal{S}, 1) - CFF(t, n)$$
Overlapping edge construction

Inside each infected edge, we can identify precisely the infected students

\[
(\mathcal{S},1) - CFF(t = 2 \times (4 + 3), n = 18)
\]

\[
(\mathcal{S},1) - ECFF(t' = 2 \times 4, n = 18)
\]
For a larger highschool

- \(n = 900 \) students
- Each student taking 4 courses (4 colour classes)
- Total of \(m = 120 \) courses (edges)
- Each course with 30 students (cardinality of edges)
- Tests:
 - Use \(1 - CFF(7,30 = 120/4) \)
 - \(t' = 7 \times 4 = 28 \) tests to detect infected edges (course of outbreak)
 - \(t = 28 + 30 \times 4 = 148 \) tests to identify all infected individuals
Overlapping edge construction

\((\mathcal{S},1) - CFF(t,n)\)

- Consider a hypergraph \(\mathcal{H}\) with edge chromatic number \(\chi(\mathcal{H}) = \ell\) and colour classes \(\mathcal{C}_1, \ldots, \mathcal{C}_\ell\)

- If \(\mathcal{H}\) is \(k\)-uniform: we have \((\mathcal{S},1) - CFF(t,n)\) and \((\mathcal{S},1) - ECFF(t',n)\)
 - Start with a \(1 - CFF(t_1, n/k)\)
 - \(t \leq \ell \times (t_1 + k) \approx \ell \times (\log n/k + k)\)
 - \(t' \leq \ell \times t_1 \approx \ell \times \log n/k\)

- If \(\mathcal{H}\) has edges of different cardinalities, we have \((\mathcal{S},1) - CFF(t,n)\) and \((\mathcal{S},1) - ECFF(t',n)\)
 - Start with \(1 - CFF(t_i, |\mathcal{C}_i| + \delta_i), 1 \leq i \leq \ell\)
 - \(t = \sum_{i=1}^{\ell} (t_i + k_i), \quad k_i = \text{max edge in colour class } \mathcal{C}_i\)
 - \(t' = \sum_{i=1}^{\ell} t_i\)
Overlapping edge construction

\((\mathcal{S}, r) - CFF(t, n)\)

- Generalization for \((\mathcal{S}, r) - CFF(t, n)\) using strong edge-colouring
 - Assuming that \(r\) edges \(\mathcal{E} = \{S_1, S_2, \ldots, S_r\}\) contain all infected individuals
 - There are at most \(r\) edges in \(\mathcal{C}_i\) which intersect \(\mathcal{E}\)
 - \(\mathcal{C}_i\) contains at most \(r\) infected edges
 - Use a combination of \(r - CFF(t_i, |\mathcal{C}_i|)\) and \((r - 1) - CFF(t'_i, |\mathcal{C}_i|)\)

\((\mathcal{S}, r) - CFF(t, n)\) with \(t \leq \sum_{i=1}^{\ell} (t_i + k_i t'_i)\), \(k_i = \text{max edge in colour class } \mathcal{C}_i\)
Future Work on structure-aware CFFs

- Explore other constraints of the applications
 - Limit on number of 1s per row
- Generalize definitions to allow flexible internal identification
 - Assume a bound on the number of infected items inside an edge (instead of edge size)
- Explore probabilistic constructions
- Compare constructions with known lower bounds
Thank you!