Antigen-presenting cells (APCs) include dendritic cells, macrophages, and B cells. These cells play a crucial role in activating naive T cells and inducing an immune response. The process begins when APCs present antigens to T cells. This interaction is mediated by specific receptors on the T cells, known as T-cell receptors (TCRs). The TCRs bind to peptides presented on the surface of the APC, which have been processed and presented in the context of major histocompatibility complex (MHC) molecules. When the TCRs recognize the antigen, they trigger a signaling cascade that results in the activation of the T cell.

In the case of Candida albicans, the immune response can be influenced by factors such as the expression of specific antigens and the presence of adhesins on the cell surface. Adhesins are proteins that allow the fungus to adhere to and invade host cells. These proteins can interact with specific receptors on the host cell, leading to the activation of immune cells. The immune response to C. albicans is often characterized by the production of cytokines, which are signaling molecules that help coordinate the immune response.

In summary, the immune response to Candida albicans is a complex process that involves the activation of T cells and the production of cytokines. Understanding the mechanisms that contribute to this response is crucial for developing effective strategies to prevent or treat candidiasis.