Common Name	Latin Name	Accession Number	Sequence
MOUSE	Mus musculus	AAA3796.1	WLVVYGVLFGGLLYVALCIWV
HUMAN	Homo sapiens	NM_006139	WLVVYGVLGACGLLYVAIFIW
BABOON	Papio anubis	XP_009181099.1	WLVVYGVLGCGLLYVAIFSIFW
MACAQUE	Macaca fascicular	KM_0015432133	WLVVYGVLGCGLLYVAIFCIFW
GREEN MONKEY	Chlorocebus sabaeus	KM_0017965942	WLVVYGVLGCGLLYVAIFCIFW
GIBBON	Nomascus leucogenys	KM_003253970	WLVVYGVLGCGLLYVAIFCIFW
MARMOSET	Callithrix jacchus	KM_008999126	WLVVYGVLGCGLLYVALSWF
TARSIER	Tarsius syrichta	KM_008874308	WLVVYGVLGVLSEMVALCTFW
TREE SHREW	Tupaiota chinensis	KM_00615077	WLVVYGVLGVLSEMVALAFNY
RAT	Rattus norvegicus	NP_037253.1	WLPVLVYGVLGCGLLYVTLICIW
WOODCHUCK	Marmota monax	AAF36590.1	WTLVYFSQVLGSLYLMLCILW
RABBIT	Oryctolagus cuniculus	XP_017198104.1	WLVVYGAVLFGSMLVVALSCSW
DOG	Canis familiaris	NP_001003087.2	WLVVYGAVLFGSMLVVALCAYN
CAT	Felis catus	NP_001009844.1	WLVVYGGLGFLSMLVAIGC
SIBERIAN TIGER	Panthera tigris altaica	XP_007900030.2	WLVVYGGLGFLSMLVAICAWC
FERRET	Mustela putorius	KM_03062342	WLVVYGVLGVLSEMVALAFNY
GIANT PANDA	Alluropoda melanoleuca	KM_002919949	WLVVYGVLGVLSEMVALAFNY
ALPACA	Vicugna pacos	XP_006202628.1	WLVVYGVLGVLSEMVALAFNY
SHEEP	Ovis aries	KM_012111193	WLVVYGVLGVLSEMVALCNCW
BROWN FLYING FOX	Pteropus alecto	XP_006921437.1	WLVVYGVLGVLSEMVALCNCW
BROWN BAT	Myotis lucifugus	KM_01441937	WLVVYGVLGVLSEMVALCNYW
HORSE	Equus caballus	KM_001100179	WLVVYGVLGVLSEMVALCNYW
WHITE RHINOCEROS	Ceratotherium simum	XP_008426878.1	WLVVYGVLGVLSEMVALCNYW
AFRICAN ELEPHANT	Loxodonta africana	KM_00340929	WLVVYGVLGVLSEMVALCNYW
ARMADILLO	Dasypus novemcinctus	KM_012523351	WLL-ALLGLGSLYVCLAFLFWY
KILLER WHALE	Orcinus Orca	XP_004262874	WLVVYGVLGVLSEMVALCNCW
BOTTLENOSE DOLPHIN	Tursiops truncatus	XP_004131514	WLVVYGVLGVLSEMVALCNCW
GREY-TAILED OPOSSUM	Monodelphis domestica	XP_007501953.1	WPVVAALCFAFSMLVYAFCNW
TASMANIAN DEVIL	Sarcophilus harrisi	KM_003766002	WAVAALCFLASMLEAFCNW
KOALA	Phascolarctos cinereus	XP_020828504.1	WAVAALCFLASMLEAFCNW
STARLING	Sternum vulgaris	KM_014880339	WILGTVGLSLYVLCAINVY
GREAT TIT	Parus major	XP_013549801.1	WLIATIALILGLSMVALAFNY
CHICKEN	Gallus gallus	NM_053511	WVAWATGALGSMVLAFNY
TURKEY	Meleagris gallopavo	CAP04926.1	WVAWATGALGSMVLAFNY
DALMATIAN PELICAN	Pelecanus crispus	XP_009488081.1	WTVTAVGLFLSMVALAFNY
BALD EAGLE	Haliaeetus leucocephalus	XP_010563861.1	WIMAVATGLFSLVAFNY
RUFF	Calidris pugnax	KM_014954243	WIMAVATGLFSLVAFNY
ALLIGATOR	Alligator mississippiensis	KM_006261310	WLMMAAIGFAKSSILVACIHCS
SALTWATER CROCODILE	Crocodylus porosus	XP_023410247	WLMMAAIGFAKSSILVACIHCS
GREEN SEA TURTLE	Chelonia mydas	XP_007071905.1	WLVVYGVLGVLSEMVALAFVWC
SOFTSHELL TURTLE	Pelodiscus sinensis	KM_014577908	WPIJVLQFLGLVSLYVAIFCIFW
CLAWED FROG	Xenopus tropicalis	KM_012969996	WLPVILVQVWGLSMVALAFNY
BURMESE PYTHON	Python bivittatus	XP_025031234.1	VATIGPLLGFLVSLVAAFCVW
PIT VIPER	Protobothrops mucrosquamatus	KM_015819766.1	MPNAIPLGFVFSMLIAAYYY
ANOLE	Anolis carolinensis	KM_008114951	MLMAIAIFIFIYVSVTAAFCVY
BEARDED DRAGON	Pogona vitticeps	XP_020670148.1	WTVGTLVGLGIAFECYVW
RAINBOW TROUT	Oncorhynchus mykiss	NP_002118604.1	WMMLGFYWTTGLVVLVFAYV
ATLANTIC SALMON	Salmo salar	AC133726.1	WMMLGFYWTTGLVVLVFAYV
PUFFER FISH	Takifugu rubripes	NP_002167008.1	GWMMLFLGVLGSMVLVAAACIW
KILLIFISH	Fundulus heteroclitus	XP_02712711.2	WIIIMMVLAGLGLSVAIFAIFW
COELACANTH	Latimeria chalumnae	KM_014490127	WLPICLATTFLGAMTAMCYNLQ

Supplemental Table 1. The YxxxxT motif in the CD28 TM domain is evolutionarily conserved. The TM domain sequences of CD28 homologs from 51 different species are shown for mammals, marsupials, birds, reptiles, and fish. The conserved YxxxxT motif is highlighted in green and the single T variant in the alpaca is highlighted in yellow.
Supplemental Figure 1. Analysis of intermolecular FRET by flow cytometry. (A) Diagram of the CD28 dimer fused at the C-terminus to CER and YFP. When the tails of a CER-YFP containing dimer are within 100Å of each other, CER acts as a donor and YFP as an acceptor for FRET when excited by a 405nm laser and sensitized FRET emission is detected at 550nm. (B) CD28 deficient DO11.10 CD4 T cell hybridoma cells were retrovirally transduced with either CD28-CER, CD28-YFP, or both and were gated on expressing cells. Left, cell expressing only CD28-CER (blue box); middle, cell expressing only CD28-YFP (yellow box); right, cells expressing both CD28-CER and CD28-YFP (green box). (C) Fluorescent profiles of CD28-CER, CD28-YFP, or dual expressing cells as gated in (B) for the CER, YFP, or FRET channels. (D-F) Relative FRET efficiency (FRETe) was calculated and plotted by YFP or CER for dual expressing cells (D) or by YFP for YFP only cells (E) or CER for CER only cells (F).
Supplemental Figure 2. FRET analysis of hCD25 chimeras expressed in T cells. Relative FRET efficiency (FRET_e) was calculated for T cells expressing YFP and CER hCD25 chimeras containing the WT mouse CD28 TM domain (A) hCD25 chimeras containing the mouse CD28 Y7/LL mutated TM domain (B) or unmodified hCD25 (C). Relative FRET_e was plotted by YFP or CER for dual expressing cells (YFP + CER) or by YFP for YFP only cells or CER for CER only cells.
Common name	Latin name	Accession Number	Sequence
MOUSE	Mus musculus	NM_009843	WILAVA2SLGFSSFLYAVLS
HUMAN	Homo sapiens	NP_05205.2	WILAVARSSGLFSFLYAVLS
BABOON	Papio anubis	NP_001106104.1	WILAVA2SSGLFSFLYAVLS
MACAQUE	Macaca fascicularis	XP_005574071.1	WILAVASGLFSFLYAVLS
GREEN MONKEY	Chlorocebus sabaeus	XP_007964134.1	WILAVASGLFSFLYAVLS
GIBBON	Nomascus leucogenys	XP_003254019.1	WILAVASGLFSFLYAVLS
MARMOSET	Callithrix jacobus	XP_002749715.1	WILAVASGLFSFLYAVLS
TARSIER	Tarsius syrichta	XP_008072501.1	WILAVASGLFSFLYAVLSS
TREE SHREW	Tupaja chinensis	XP_006153140.1	WILAVASGLFSFLYAVLS
RAT	Rattus norvegicus	NM_031674.1	WILAVASGLFSFLYAVLS
MARMOT	Marmota marmota	XP_015336776.1	WILAVASGLFSFLYAVLS
RABBIT	Oryctolagus cuniculus	NP_001076154.1	WILAVASGLFSFLYAVLS
DOG	Canis familiaris	NP_001003016.1	WILAVASGLFSFLYAVLS
CAT	Felis catus	NM_001009236	WILAVASGLFSFLYAVLS
SIBERIAN TIGER	Panthera tigris altaica	XP_006921439.1	WILAVASGLFSFLYAVLS
FERRET	Mustela putorius	XP_004764261.1	WILAVASGLFSFLYAVLS
GIANT PANDA	Ailuropana melanoleuca	XP_002919994.1	WILAVASGLFSFLYAVLS
ALPACA	Vicugna pacosapaca	XP_006205269.1	WILAVASGLFSFLYAVLS
SHEEP	Ovis aries	NP_001009214.1	WILAVASGLFSFLYAVLS
BROWN FLYING FOX	Pteropus alecto	XP_006921439.1	WILAVASGLFSFLYAVLS
BROWN BAT	Myotis lucifugus	XP_006082485.1	WILAVASGLFSFLYAVLS
HORSE	Equus caballus	XP_023478240.1	WILAVASGLFSFLYAVLS
AFRICAN ELEPHANT	Loxodonta africana	XP_003406166.1	WILAVASGLFSFLYAVLS
ARMADILLO	Dasypus novemcinctus	XP_004453677.1	WILAVASGLFSFLYAVLS
KILLER WHALE	Orcinus Orca	XP_004262872.1	WILAVASGLFSFLYAVLS
BOTTLENOSE DOLPHIN	Tursiops truncates	XP_019794455.1	WILAVASGLFSFLYAVLS
OPOSSUM	Monodelphis domestica	XM_007501888.2	WILAVASGLFSFLYAVLS
TASMANIAN DEVIL	Sarcophilus harrisii	XM_003766000.2	WILAVASGLFSFLYAVLS
PLATYPUS	Ornithorhynchus anatinus	XM_001514865.2	WILAVASGLFSFLYAVLS
STARLING	Sturnus vulgaris	XP_014735824.1	WVLGATASGFLLSIISAILVG
GREAT TIT	Parus major	XP_015490579.1	WVLGATASGFLLSIISAILVG
CHICKEN	Gallus gallus	NM_001040091.1	WVLGATASGFLLSIISAVG
TURKEY	Meleagris gallopavo	XM_019617059.1	WVLGATASGFLLSIISAIW
DALMATIAN PELICAN	Pelecanus crispus	XP_009478785.1	WVLGATASGFLLSIISAVG
BALD EAGLE	Haliaeetus leucocephalus	XP_010563675.1	WVLGATASGFLLSIISAIW
RUFF	Calidris pugnax	XP_014809732.1	WVLGATASGFLLSIVISAILVG
PIT VIPER	Protobothrops mucrosquamatus	XM_015818576.1	WILVPVSGLGSILIFTIMV
ANOLE	Anolis carolinensis	XM_008125603.2	WISVMIASGLGSILITYMY
ALLIGATOR	Alligator mississippiensis	XM_006267243.3	WILGAASGLSSILLISAFLLS
SALTWATER CROCODILE	Crocodylus porosus	XP_019409174.1	WILGAASGLSSILLISAFLLS
GREEN SEA TURTLE	Chelonia mydas	XM_007071927.1	WILGAASGLSSILLICAVLSS
BURMESE PYTHON	Python bivittatus	XP_007421444.2	WILILVASGLGSILITIFISS
BEARDED DRAGON	Pogona vitticeps	XP_020634619.1	IIVTVVAVVGFLLSVIFSITVYIT
CLAWED FROG	Xenopus tropicalis	XM_018097345.1	ILLVVCVMFLSFSIFAVLLC

Supplemental Table 2. CTLA4 also contains an evolutionarily conserved YxxxT motif. The TM domain sequences of CD28 homologs from 44 different species are shown for mammals, marsupials, birds, and reptiles. The conserved YxxxT motif is highlighted in green, conservative aa variants (T/S and Y/F) are highlighted in yellow, and the single nonconservative aa variant in the bearded dragon (T/L) is highlighted in red.
Supplemental Figure 3. C123S disrupts CD28 disulfide bond formation. Retroviruses expressing WT and C123S CD28 containing a C-terminal HA tag were transfected into CD28-deficient, DO11.10 T cells (KO) and lysates were analyzed by nonreducing and reducing SDS-PAGE and western blotting with anti-HA Ab.