Interim PET/CT Result Is The Sole Prognostic Factor Of Survival In Patients With Advanced-Stage Diffuse Large B-cell Lymphoma: A Prospective Trial

CURRENT STATUS: UNDER REVIEW

Jia Jin
Fudan University Shanghai Cancer Center

Yizhen Liu
Fudan University Shanghai Cancer Center

Qunling Zhang
Fudan University Shanghai Cancer Center

Kai Xue
Fudan University Shanghai Cancer Center

Zuguang Xia
Fudan University Shanghai Cancer Center

Junning Cao
Fudan University Shanghai Cancer Center

Xiaonan Hong
Fudan University Shanghai Cancer Center

Ye Guo
Shanghai East Hospital

Fang-Fang Lv lvff80@163.com
Fudan University Shanghai Cancer Center

Corresponding Author
ORCiD: 0000-0001-6636-3056
DOI:	10.21203/rs.2.18910/v1
SUBJECT AREAS	Oncology Cancer Biology
KEYWORDS	Diffuse large B-cell lymphoma, Positron emission tomography, Prognosis
Abstract

Background: We assessed whether interim positron emission tomography (iPET) had a prognostic value for diffuse large B-cell lymphoma (DLBCL) and whether PET-driven intensified therapy was needed. Methods: A prospective analysis of newly diagnosed stage III-IV DLBCL patients treated was conducted. The iPET scan was performed after 4 cycles of RCHOP (rituximab 375 mg/m2 d1; cyclophosphamide 750 mg/m2 d2; doxorubicin 50 mg/m2 d2; vincristine 1.4 mg/m2 [maximum 2 mg] d2; prednisone 100 mg orally daily d2-6) in all cases. Patients received 2 additional cycles when they achieved complete response. If they achieved partial response (PR), they received 4 additional cycles, and a final PET scan (fPET) was performed. If they had stable disease or progressive disease (PD), they were excluded from the study. The primary endpoint was 3-year progression-free survival (PFS), and secondary endpoints included 3-year overall survival (OS) and objective response rate (ORR). The trial is registered with ClinicalTrials.gov, number NCT 01804127. Results: From 2013 to 2015, a total of 55 patients were enrolled and 53 with both baseline and iPET scans were analyzed for prognostic value. Thirty-nine patients had iPET-negative (iPET-) and 14 patients had iPET-positive (iPET+) scans (11 had PR and 3 had PD). The ORR was 94.3%. With a median follow-up time of 36.4 months, 3-year PFS was 65.7% and 3-year OS was 79.9% for the entire cohort (n=53), and the median PFS and OS were not yet reached. iPET-patients had a higher 3-year PFS rate (78.1%) than iPET+ patients (34.3%) with a P value lower than 0.01. A trend for improved OS was also observed, with 3-year OS of 87.1% versus 62.3% (P=0.03). All 11 patients who had iPET PR received another 4 cycles of RCHOP, and 10 underwent fPET. Six patients had fPET-negative (fPET-) and
4 had fPET-positive (fPET+) scans. The 3-year PFS did not differ significantly between the iPET- and fPET- patients. In the univariate analysis, iPET- was the sole independent prognostic factor for PFS. Conclusions: PET/CT has a good prognostic value in patients with advanced-stage DLBCL. There was little significant benefit to intensifying chemotherapy if the iPET scan was positive.

Background

Diffuse large B-cell lymphoma (DLBCL) represents the most common subtype of adult non-Hodgkin’s lymphoma (NHL), and is associated with an aggressive clinical course. However, treatment failure is still an important problem as the 3-year progression-free survival (PFS) of DLBCL patients is approximately 60-70% after RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone)-like treatments as first-line strategies[1, 2].

The interim 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scan (iPET) during first-line therapy has been validated as a strongest prognostic tool in advanced Hodgkin’s lymphoma (HL), even offseting the role of traditional International Prognostic Score[3]. In advanced HL patients, better survival and life quality can be achieved, if using iPET-driven strategy. When iPET-negative (iPET-) indicates a good prognosis, doctors may downgrade the treatment such as removing Bleomycin, avoiding toxicity and second primary tumor[3]. And iPET-positive (iPET+) shows a poor outcome, early therapy intensification in response to positive iPET findings could improve the survival. However, compared to the conventional ABVD regimen, intensified treatments such as BEACOPP and high-dose chemotherapy with autologous stem cell transplantation could result great toxicities[4]. The role of cytotoxic drugs is
limited, so not all iPET+ patients can achieve complete response (CR) after intensified chemotherapy[5, 6]. To further improve the outcome, such new therapies as brentuximab vedotin are needed.

In DLBCL, it is common to perform an iPET after 2 to 4 cycles of first-line chemotherapy. Whether or not patients with a positive iPET should receive a more intensive regimen as an immediate salvage treatment is still a topic of debate. We conducted an open-label, non-randomised, single-arm, phase 2 study of a cohort of DLBCL patients treated at a single academic medical center to examine the prognostic value of iPET for DLBCL. This study adhered to CONSORT guidelines.

Methods

Inclusion and exclusion criteria

Newly diagnosed stage III-IV DLBCL patients, age 18-80 years, were eligible for this study. All patients had Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0-2 and adequate hepatic, renal, and hematologic functions. Patients had at least one measurable target lesion. Patients with left ventricular ejection fraction less than 50%, which was evaluated by echocardiogram at baseline, were excluded. Patients with a history of severe heart disease, uncontrolled hemorrhage, or infection were also excluded. All patients provided written informed consent.

Treatment and response evaluation

Patients received 6-8 cycles of RCHOP (rituximab 375mg/m² d1; cyclophosphamide 750 mg/m² d2; doxorubicin 50 mg/m² d2; vincristine 1.4 mg/m² [maximum 2 mg] d2; prednisone 100 mg orally daily d2-6). RCHOP was administered every 3 weeks. All patients conducted a baseline PET within two weeks before commencement of therapy and had positive and measurable lesions on PET. The iPET scan was
performed after 4 cycles of RCHOP in all cases on cycle 4 day 18 to day 20. The Lugano criteria (Cheson 2014) was used for the evaluation of the therapy response. Response criteria were based on Deauville 5-point scale, with scores of 1-2 considered negative, and scores of 3-5 considered positive.

Patients received 2 additional cycles of RCHOP when they achieved CR. If they achieved partial response (PR), they received 4 additional cycles of RCHOP, and a final PET (fPET) scan was performed on cycle 8 day 18 to day 20. If they had stable disease or progressive disease (PD), they were excluded from the study.

After completion of therapy, patients were followed up every 3 months for the first 2 years, then every 6 months for 3 years.

The primary endpoint was 3-year PFS, and secondary endpoints included 3-year overall survival (OS) and objective response rate (ORR). PFS was defined as the interval between initiation of RCHOP treatment and disease progression or the last follow-up visit in remission. OS was calculated from the date of initiation of RCHOP treatment to the date of death from any cause or last follow-up.

Categorical variables are expressed as frequencies. Chi-square test or Fisher’s exact test were applied to detect differences between groups. PFS and OS were compared using the Kaplan-Meier method and log-rank test, and a difference of $P<0.05$ was considered significant. All statistical analyses were performed using SPSS 17.0 software (SPSS Inc., Chicago, IL, USA).

The study was approved by the institutional review board of Fudan University Shanghai Cancer Center. The trial is registered with ClinicalTrials.gov, number NCT 01804127.

Results
From 1 April 2013 to 30 September 2015, a total of 55 patients were enrolled in the study, and 53 patients with baseline and iPET scans were analyzed for prognostic value. The reasons for exclusion were disease progression (n=1) and serious adverse event (n=1) before the interim response assessment.

A total of 24 women (45.3%) and 29 men (54.7%) were included. The mean age was 50 years (range, 23-76 years). In total, 32 patients (60.4%) had stage IV disease, and 14 patients (26.4%) exhibited B symptoms. Based on the International Prognostic Index (IPI) scores, 62.3% of patients were within intermediate-high or high risk of relapse parameters. The baseline clinical characteristics of the patients are summarized in Table 1.

Thirty-nine patients had iPET-negative and 14 patients had iPET-positive scans. Among the 14 iPET+ patients, 11 had PR and 3 had PD. The ORR was 94.3%. At a median follow-up time of 36.4 months (range, 3.8-63.6 months), 3-year PFS was 65.7% and 3-year OS was 79.9% for the entire cohort (n=53) and the median PFS and OS were not yet reached.

iPET- patients had a higher 3-year PFS rate (78.1%) than iPET+ patients (34.3%) with a P value less than 0.01. A trend for improved OS was also observed, with 3-year OS of 87.1% versus 62.3% (P=0.03) (Fig. 1a,b).

All 11 patients who had iPET PR received another 4 cycles RCHOP, and 10 of them underwent fPET. Six patients had fPET-negative (fPET-) and 4 patients had fPET-positive (fPET+) scans. The 3-year PFS or OS did not differ significantly between the iPET- and fPET- patients (78.1% vs 62.5%, P=0.64, 87.1% vs 83.3%, P=0.81) (Fig. 1c,d).

In the univariate analysis, iPET- was the sole independent prognostic factor for PFS in patients with DLBCL treated with RCHOP. No other baseline clinicopathologic
factors, including age, disease stage, gender, molecular subtype, B symptoms, ECOG PS, elevated lactate dehydrogenase (LDH), IPI score, or extra-nodal involvement, were predictive of PFS for the entire cohort. For this reason, multivariate analysis was not done.

Discussion

PET/CT is currently done for staging, assessment of remission and recurrence, and evaluation of therapeutic efficacy of patients with DLBCL[7]. The focus has generally been on whether PET can guide treatment escalation in poor responders to improve remission rates in NHL[8]. To date, in DLBCL, PET predicts response, but more intensive chemotherapy has failed to improve outcomes for patients with iPET+ scans[8, 9]. Several large prospective studies such as the PETAL and LYSA trials demonstrated that treatment intensification such as the Burkitt-type approach or autologous stem cell transplantation fail to prevent iPET+ patients from having a higher risk of relapse than iPET- patients[10]. RCHOP-like chemotherapies have been proven to be effective in DLBCL for many years. Any alternative options will be considered only after being shown to be superior to the ongoing treatment. In this study, patients who had iPET PR were treated with 4 further RCHOP cycles. If they achieved fPET CR, they had a similar good outcome to iPET- patients. Only patients with fPET+ scans had inferior PFS and OS. This study demonstrates no inferiority of continuation of the first-line regimen in patients with iPET PR. So, when aiming to maximize cure while minimizing toxicity, there is no need to escalate treatment of iPET+ patients.

Over the past decades, the IPI has become the most commonly used prognostic index in DLBCL patients[11, 12]. The IPI can differentiate DLBCL patients into
distinct risk groups for survival after RCHOP. More recently, iPET has shown high predictive value in HL. It has been validated as a strongest prognostic tool in advanced HL, even offsetting the role of traditional IPS. iPET- could indicate a good prognosis, and iPET+ could indicate a poor outcome, regardless of gender, stage, age or count of hemoglobin and lymphocyte[5, 13]; however, many studies focusing on the role of iPET in PFS prediction have been done, with conflicting results[14-20]. From these studies, it can be concluded that phenotypic and genotypic heterogeneity of DLBCL, heterogeneity in patient populations, therapy regimens, PET scanners, and timing and interpretation criteria of iPET scans made it hard to clarify the accuracy of iPET to predict clinical outcome in DLBCL. Recently, several studies have shown that PET/CT was a more valid prognosticator of survival for patients with DLBCL than traditional clinicopathologic factors such as IPI score[21-25]. Our results confirm that only iPET was a significant independent indicator of outcome for patients with DLBCL in the rituximab era. iPET- patients had a higher PFS rate and OS rate than iPET+ patients with a statistical significance. There are some limitations to this study. First, this study was a single-arm, small-scale clinical trial. There is an urgent need for randomized, large-scale, prospective trials to answer the question of whether iPET+ patients should continue with the same treatment or switch to an intensified treatment. Second, the follow-up time in this study was not long enough. The 5-year PFS and 5-year OS as minor endpoints requires long-term follow-up.

Conclusion

PET/CT has a good prognostic value in patients with advanced-stage DLBCL. Univariate analysis showed that iPET- identified good outcome regardless of B
symptoms, LDH, IPI score, and molecular subtypes. There was little significant benefit to intensifying chemotherapy if the iPET scan was positive. Another 4 cycles of the first-line regimen (RCHOP) was acceptable as fPET- patients could also have a good PFS.

Abbreviations

DLBCL: diffuse large B-cell lymphoma; NHL: non-Hodgkin's lymphoma; PFS: progression-free survival; 18F-FDG: 18F-fluoro-2-deoxy-D-glucose; PET: positron emission tomography; CT: computed tomography; iPET: interim PET; HL: Hodgkin's lymphoma; ECOG: Eastern Cooperative Oncology Group; PS: performance status; RCHOP: rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone; CR: complete response; PR: partial response; fPET: final PET; PD: progressive disease; OS: overall survival; ORR: objective response rate; IPI: International Prognostic Index; iPET-: iPET-negative; iPET+: iPET-positive; fPET-: fPET-negative; fPET+: fPET-positive; LDH: lactate dehydrogenase

Declarations

Acknowledgements

Not applicable.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Availability of data and materials

The dataset of the current study were available from the corresponding author on reasonable request.
Authors’ contributions
JJ and YL were responsible for data collection and drafted the manuscript; XH, JC and YG participated in the design of the study. JJ, QZ, KX and ZX performed statistical analysis and data interpretation; JJ and FL designed the study and revised the manuscript. All authors read and approved the manuscript.

Ethics approval and consent to participate
This study was conducted in accordance with the ethical standards of the Declaration of Helsinki and was approved by the Ethics Committee of Fudan University Shanghai Cancer Center. Written informed consent was obtained from all patients.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

References
1. Zelenetz AD. Guidelines for NHL: Updates to the Management of Diffuse Large B-cell Lymphoma and New Guidelines for Primary Cutaneous CD30+ T-cell Lymphoproliferative Disorders and T-cell Large Granular Lymphocytic Leukemia. J Natl Compr Canc Netw. 2014, 12(5 Suppl):797-800.
2. Bolshinsky M, Nabhan C. Interim PET Scans in Diffuse Large B-Cell Lymphoma: Is It Ready for Prime Time? Clin Lymphoma Myeloma Leuk. 2016, 16(12):655-61.
3. Johnson P, Federico M, Kirkwood A, Fossa A, Berkahn L, Carella A, et al. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin's
Lymphoma. N Engl J Med. 2016, 374(25):2419-29.

4. Zinzani PL, Broccoli A, Gioia DM, Castagnoli A, Ciccone G, Evangelista A, et al. Interim Positron Emission Tomography Response-Adapted Therapy in Advanced-Stage Hodgkin Lymphoma: Final Results of the Phase II Part of the HD0801 Study. J Clin Oncol. 2016, 34(12):1376-85.

5. Gallamini A, Patti C, Viviani S, Rossi A, Fiore F, Di Raimondo F, et al. Early Chemotherapy Intensification with BEACOPP in Advanced-Stage Hodgkin Lymphoma Patients with a interim-PET Positive After Two ABVD Courses. Br J Haematol. 2011, 152(5):551-60.

6. Press OW, Li H, Schoder H, Straus DJ, Moskowitz CH, LeBlanc M, et al. US Intergroup Trial of Response-Adapted Therapy for Stage III to IV Hodgkin Lymphoma Using Early Interim Fluorodeoxyglucose-Positron Emission Tomography Imaging: Southwest Oncology Group S0816. J Clin Oncol. 2016, 34(17):2020-7.

7. Barrington SF, Kirkwood AA, Franceschetto A, Fulham MJ, Roberts TH, Almquist H, et al. PET-CT for Staging and Early Response: Results From the Response-Adapted Therapy in Advanced Hodgkin Lymphoma Study. Blood. 2016, 127(12):1531-8.

8. Hertzberg M, Gandhi MK, Trotman J, Butcher B, Taper J, Johnston A, et al. Early Treatment Intensification with R-ICE and 90Y-ibritumomab Tiuxetan (Zevalin)-BEAM Stem Cell Transplantation in Patients with High-Risk Diffuse Large B-cell Lymphoma Patients and Positive Interim PET After 4 Cycles of R-CHOP-14. Haematologica. 2017, 102(2):356-63.

9. Kasamon YL, Wahl RL, Ziessman HA, Blackford AL, Goodman SN, Fidyk CA, et al. Phase II Study of Risk-Adapted Therapy of Newly Diagnosed, Aggressive
non-Hodgkin Lymphoma Based On Midtreatment FDG-PET Scanning. Biol Blood Marrow Transplant. 2009, 15(2):242-8.

10. Le Gouill S, Casasnovas RO. Interim PET-driven Strategy in De Novo Diffuse Large B-cell Lymphoma: Do we Trust the Driver? Blood. 2017, 129(23):3059-70.

11. A Predictive Model for Aggressive non-Hodgkin’s Lymphoma. N Engl J Med. 1993, 329(14):987-94.

12. Ziepert M, Hasenclever D, Kuhnt E, Glass B, Schmitz N, Pfrehundschuh M, et al. Standard International Prognostic Index Remains a Valid Predictor of Outcome for Patients with Aggressive CD20+ B-cell Lymphoma in the Rituximab Era. J Clin Oncol. 2010, 28(14):2373-80.

13. Evens AM, Kostakoglu L. The Role of FDG-PET in Defining Prognosis of Hodgkin Lymphoma for Early-Stage Disease. Blood. 2014, 124(23):3356-64.

14. Zinzani PL, Gandolfi L, Broccoli A, Argnani L, Fanti S, Pellegrini C, et al. Midtreatment 18F-fluorodeoxyglucose Positron-Emission Tomography in Aggressive non-Hodgkin Lymphoma. Cancer-Am Cancer Soc. 2011, 117(5):1010-8.

15. Yang DH, Ahn JS, Byun BH, Min JJ, Kweon SS, Chae YS, et al. Interim PET/CT-based Prognostic Model for the Treatment of Diffuse Large B Cell Lymphoma in the Post-Rituximab Era. Ann Hematol. 2013, 92(4):471-9.

16. Huntington SF, Nasta SD, Schuster SJ, Doshi JA, Svoboda J. Utility of Interim and End-Of-Treatment [(18)F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Frontline Therapy of Patients with Diffuse Large B-cell Lymphoma. Leuk Lymphoma. 2015, 56(9):2579-84.

17. Yoo C, Lee DH, Kim JE, Jo J, Yoon DH, Sohn BS, et al. Limited Role of Interim PET/CT in Patients with Diffuse Large B-cell Lymphoma Treated with R-CHOP.
18. Cashen AF, Dehdashti F, Luo J, Homb A, Siegel BA, Bartlett NL. 18F-FDG PET/CT for Early Response Assessment in Diffuse Large B-cell Lymphoma: Poor Predictive Value of International Harmonization Project Interpretation. J Nucl Med. 2011, 52(3):386-92.

19. Pregno P, Chiappella A, Bello M, Botto B, Ferrero S, Franceschetti S, et al. Interim 18-FDG-PET/CT Failed to Predict the Outcome in Diffuse Large B-cell Lymphoma Patients Treated at the Diagnosis with rituximab-CHOP. Blood. 2012, 119(9):2066-73.

20. Moskowitz CH, Schoder H, Teruya-Feldstein J, Sima C, Iasonos A, Portlock CS, et al. Risk-Adapted Dose-Dense Immunochemotherapy Determined by Interim FDG-PET in Advanced-stage Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2010, 28(11):1896-903.

21. Fan Y, Zhang Y, Yang Z, Ying Z, Zhou N, Liu C, et al. Evaluating Early Interim Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography with the SUVmax-liver-based Interpretation for Predicting the Outcome in Diffuse Large B-cell Lymphoma. Leuk Lymphoma. 2017, 58(9):1-9.

22. Kong Y, Qu L, Li Y, Liu D, Lv X, Han J. Predictive Significance of a New Prognostic Score for Patients with Diffuse Large B-Cell Lymphoma in the Interim-Positron Emission Tomography Findings. Medicine (Baltimore). 2016, 95(6):e2808.

23. Mamot C, Klingbiel D, Hitz F, Renner C, Pabst T, Driessen C, et al. Final Results of a Prospective Evaluation of the Predictive Value of Interim Positron Emission Tomography in Patients with Diffuse Large B-Cell Lymphoma Treated with R-CHOP-14 (SAKK 38/07). J Clin Oncol. 2015, 33(23):2523-9.
24. Carr R, Fanti S, Paez D, Cerci J, Gyorke T, Redondo F, et al. Prospective International Cohort Study Demonstrates Inability of Interim PET to Predict Treatment Failure in Diffuse Large B-cell Lymphoma. J Nucl Med. 2014, 55(12):1936-44.

25. Nols N, Mounier N, Bouazza S, Lhomme R, Costantini S, Vander BT, et al. Quantitative and Qualitative Analysis of Metabolic Response at Interim Positron Emission Tomography Scan Combined with International Prognostic Index is Highly Predictive of Outcome in Diffuse Large B-cell Lymphoma. Leuk Lymphoma. 2014, 55(4):773-80.

Table 1

Characteristics	IPET CR n (%)	IPET PR n (%)	IPET PD n (%)	P value
No. of patients	39	11	3	
Age, years				0.10
≤60	27 (69.2)	10 (90.9)	3 (100)	
>60	12 (30.8)	1 (9.1)	0 (0)	
Stage				0.73
III	16 (41.0)	4 (36.4)	1 (33.3)	
IV	23 (59.0)	7 (63.6)	2 (66.7)	
Gender				0.06
Male	19 (48.7)	7 (63.6)	3 (100)	
Female	20 (51.3)	4 (36.4)	0 (0)	
Variable	Yes	No	P-value	
--------------------------	------------	-----------	---------	
B symptoms			0.26	
Yes	10 (25.6)	2 (18.2)	2 (66.7)	
No	29 (74.4)	9 (81.8)	1 (33.3)	
ECOG performance status			0.11	
0	21 (53.8)	7 (63.6)	3 (100)	
1	18 (46.2)	4 (36.4)	0 (0)	
Elevated LDH			0.11	
Yes	14 (35.9)	7 (63.6)	2 (66.7)	
No	25 (64.1)	4 (36.4)	1 (33.3)	
Extra-nodal site >1			0.72	
Yes	7 (18.0)	3 (27.3)	0 (0)	
No	32 (82.1)	8 (72.7)	3 (100)	
IPI score			0.45	
0 or 1	17 (43.6)	2 (18.2)	1 (33.3)	
2 or -3	21 (53.8)	9 (81.8)	2 (66.7)	
4 or 5	1 (2.6)	0 (0)	0 (0)	
Molecular subtype			0.32	
GCB	27 (69.2)	7 (63.6)	1 (33.3)	
Non-GCB	11 (28.2)	4 (36.4)	2 (66.7)	
Unavailable	1 (2.6)	0 (0)	0 (0)	
Abbreviations: *iPET* interim positron emission tomography, *CR* complete response, *PR* partial response, *PD* progressive disease, *ECOG* Eastern Cooperative Oncology Group, *LDH* lactate dehydrogenase, *IPI* International Prognostic Index, *GCB* germinal center B-cell

Figures

Figure 1

a. Progression free survival curve between iPET negative and positive patients. b. Overall survival curve between iPET CR and fPET CR patients. c. Overall survival curve between iPET CR and fPET CR patients.
Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.
CONSORT checklist.pdf