The formation of authigenic deposits during Paleogene warm climatic intervals: a review

Santanu Banerjee ¹*, Tathagata Roy Choudhury ¹, Pratul Kumar Saraswati ¹ and Sonal Khanolkar ²

Abstract

Although Paleogene warm climatic intervals have received considerable attention for atmospheric and oceanographic changes, the authigenic mineralization associated with these time spans remains overlooked. An extensive review of the literature reveals a close correspondence between the high abundance of glauconite and warm climatic intervals during the Paleogene period. The abundance of phosphorite, ironstone, lignite and black shale deposits reveals similar trends. Although investigated thoroughly, the origin of these authigenic deposits is never understood in the background of Paleogene warming climatic intervals. A combination of factors like warm seawater, hypoxic shelf, low rate of sedimentation, and enhanced rate of continental weathering facilitated the glauconitization. The last factor caused the excess supply of nutrients, including Fe, Si, K, Mg and Al through the rivers, the cations needed for the formation of glauconite. The excessive inflow of nutrient-rich freshwater into the shallow seas further ensured high organic productivity and stratification in shallow shelves, causing hypoxia. The consequent rapid rise in sea-level during the warm periods created extensive low-relief shallow marine shelves starved in sediments. Oxygen-deficiency in the shallow marine environment facilitated the fixation of Fe into the glauconite structure. The inflow of nutrient-rich water during the warm climatic intervals facilitated the formation of phosphorite, ironstone, and organic-matter-rich sedimentary deposits as well. Although global factors primarily controlled the formation of these authigenic deposits, local factors played significant roles in some of the deposits. Therefore, phosphorites formed in marine conditions with open circulation within the tropical zone. While lush growth of rainforest covers in the tropical belt facilitated the formation of coastal lignite.

Keywords: Warm climatic intervals, Hyperthermal events, Glauconite, Phosphorite, Oolitic ironstone, Lignite, Hypoxia, Paleogene

1 Introduction

The Paleogene period witnessed several global hyperthermal events (Zachos et al. 2001). Out of them, the most significant had been that took place at the end of the late Paleocene and the beginning of early Eocene intervals when the seawater temperature rose by about 4 °C (Jenkyns 2003; Hessler et al. 2017). These hyperthermal events were triggered by an enhanced supply of greenhouse gases that ushered rapid evolutionary and/or environmental turnovers. These events are marked by records of sharp sea-level rise, ocean de-oxygenation (Sluijs et al. 2014 and references therein), shoaling of the calcite compensation depth (CCD), enhanced hydrological and weathering cycles (Nicolo et al. 2007) and increased supply of kaolinite to the marine realm (Gibson et al. 2000 and references therein). Several studies link the formation of authigenic minerals to sea-level changes in sequence stratigraphic context (Morad et al. 2012). On the contrary, the role of seawater temperature and composition on authigenic mineral formation representing the ‘greenhouse world’ is rarely investigated beyond carbonate sediments. This paper finds a correlation of authigenic mineralization with the fluctuations in global seawater temperature. It points out marked enhancement in authigenic

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
mineralization in marine sediments during Paleogene warm climatic intervals.

Glauconite formed abundantly during the Paleogene, constituting up to 24% of the total record (Banerjee et al. 2016a). Recently Bansal et al. (2019) attributed the high abundance of glauconite in the Upper Cretaceous to a combination of factors like high sea-level, enhanced continental weathering in warm and humid climatic conditions and oxygen depletion on shelf seas. However, because of the lack of biostratigraphic control, these authors could not relate the abundance of the Upper Cretaceous glauconites to specific geological events. Therefore, it is unclear whether the glauconite is distributed evenly within the Late Cretaceous, or it is restricted to specific time intervals. Palaeo-oceanographic conditions of the Late Cretaceous time largely continued in the Paleogene (Jenkyns 2003). The biostratigraphically constrained sections in the Paleogene provide an opportunity to explore whether the occurrence of glauconite depended on subtle changes in palaeo-oceanographic conditions corresponding to warm climatic intervals. Phosphorite is a common associate of the Late Cretaceous glauconites, particularly Tethyan deposits (Banerjee et al. 2019). Lignite, phosphorite, and ironstone deposits of commercial importance are well known in the Paleogene sedimentary succession. However, the relationship between the abundance of these minerals and hyperthermal events is never investigated. This paper aims to present the commonalities of authigenic minerals formed during the Paleogene warm climatic intervals. Although the focus of this study is on glauconitization, phosphorite, ironstone, and lignite formation are also considered. To this effect, a thorough review has been presented.

2 Global record of hyperthermal events

Paleogene time represents a complex evolution of Earth’s climate bracketed within the overall warmer Cretaceous to colder Neogene transition (Zachos et al. 1993). Deep-sea benthic foraminiferal δ18O and δ13C values reveal extreme warming during the Paleogene (Zachos et al. 2001). Short-lived (~200 kyr) events of rapid climatic shifts characterize the Paleogene climate. The ‘hyperthermal’ events coincide with negative carbon isotopic excursions (CIEs) (Fig. 1; Cramer et al. 2003; Nicolo et al. 2007; Stap et al. 2009; Zachos et al. 2010). The negative CIE implies a rapid delivery of isotopically depleted carbon into marine shelves and the rise of pCO2 in the atmosphere subsequently. The climatic transitions during the Paleogene had a severe impact on the biosphere and lithosphere. Microfossil records show severe decline and diversifications in pelagic and open marine ecosystems during these thermal events (e.g., Thomas 1998; Crouch et al. 2001; Kelly 2002; Khanolkar and Saraswati 2019).

Early Paleogene time records warming of Earth’s surface in the period from late Paleocene (ca. 59 Ma) to early Eocene (ca. 52 Ma). Most of the hyperthermal events viz. the Paleocene–Eocene thermal maximum (PETM) or H-1 (Cramer et al. 2003) and the Eocene thermal maximum 2 (ETM2) or Eocene layers of mysterious origin (ELMO) (Lourens et al. 2005) and the Eocene thermal maximum 3 (ETM3) or H2 or “X” event (Nicolo et al. 2007; Stap et al. 2010; Zachos et al. 2010), besides several short-lived climatic perturbations viz. I1 and I2 (Cramer et al. 2003; Nicolo et al. 2007), belong to this period. These hyperthermal events belong to three warm climatic intervals (Fig. 1). The early Paleogene warming interval includes the early late Paleocene event (ELPE, Bralower et al. 2002), also known as mid-Paleocene biotic event (MPBE, Bernaola et al. 2007), and the latest Danian event (LDE, Bornemann et al. 2009) in the Paleocene, and PETM, ETM2, ETM3 and EECO (early Eocene climatic optimum in the early Eocene. A 17 Myr of cooling trend succeeds upwards and is interrupted by another warm climatic interval incorporating the middle Eocene climatic optimum (MECO) during the early Bartonian (Fig. 1). It is followed upwards by a long-term cooling trend that continues till the early Oligocene, as the arctic ice-sheets formed. A short-lived warming interval incorporates the late Oligocene warming event (LOWE), representing the last hyperthermal event during the Paleogene (Zachos et al. 2001). The Paleocene hyperthermal events viz. Dan C2-event, latest Danian event (LDE), and early late Paleocene event (ELPE) have received less attention compared to the hyperthermal events in the Eocene (Schulte et al. 2013).

3 Paleogene authigenic mineral formation

3.1 Occurrence of glauconite

Our study presents 124 Paleogene glauconite occurrences that formed principally in four major continents/zones, and these account for >90% of the total global record of this time (Table 1; Fig. 2). These zones are: A) North American continental margin (eastern and western coastal plain deposits); B) Palaeo-Tethys, including northern Africa, parts of southern Europe, Middle East and India to the east; C) Palaeo-North Sea, extending from the United Kingdom to the west to northern Germany in the east; and D) High southern latitudes, including New Zealand eastern Tasman Plateau and Argentina (Figs. 2, 3, 4, 5, 6). Paleogene glauconite also occurs in places in Africa, including Ivory Coast, Nigeria and South Africa, and Asia, including Russia, China and Japan. The majority of the glauconite deposits formed on the well-developed continental margin on the northern hemisphere.
Out of 124 occurrences, approximately ~55% have reliable age control, biostratigraphic or radiometric. Therefore, they are presented separately from those not having similar age constraints in Fig. 1. The stratigraphic distribution of glauconite during the Paleogene shows a non-uniform trend (Fig. 1). Eocene, Paleocene, and Oligocene record 49%, 35%, and 16%, respectively, of total glauconite occurrences (Table 1; Fig. 1). These time intervals also included the hyperthermal events within the grey bands are marked along with the carbon and oxygen isotopic curves. The sea-level cycle is adapted from Haq et al. (1987). Numbers correspond to those provided in Table 1. MECO: Middle Eocene climatic optimum; EECO: Early Eocene climatic optimum; ETM2: Eocene thermal maximum 2; ETM3: Eocene thermal maximum 3; PETM: Paleocene–Eocene thermal maximum; ELPE: Early late Paleocene event; MPBE: Mid Paleocene biotic event; DAN-C2 represents two short-lived carbon and oxygen isotope excursion at the early Danian (Gradstein et al. 2012); Black solid circles with ‘O’ represents Oligocene isotope excursion events (Miller et al. 2009).

Extensive Paleocene–early Eocene phosphorite deposits occur along the northern margin of the African continent (Lucas and Prévôt-Lucas 1995; Soudry et al. 2006; Kechiched et al. 2018) (Figs. 3, 4). These deposits represent the so-called ‘Tethyan phosphorites’ (Soudry et al. 2006). Broadly similar lithology defined by clays, marls, dolomite, and foraminiferal limestone hosts phosphorites in these basins. Phosphorites deposited in low palaeo-latitudes (<30°) in Tunisia and Algeria (Kouwenhoven et al. 1997; Messadi et al. 2016; Garnit et al. 2017; Kechiched et al. 2018) (Fig. 3). During the early Eocene, phosphorite-rich sediments, hosting glauconite, extended towards the north in shallow marine deposits of Germany (Dill et al. 1996), and to the east in Dababiya Quarry Member in Egypt (Metwally and Mahfouz 2018) (Fig. 4). During the middle to late Eocene, the locus of phosphorite deposits along the palaeo-Tethyan margins (Figs. 2, 3, 4, 5; see also Soudry et al. 2006). The co-occurrence of glauconite and phosphorite is reported in 17 cases, all of which correspond to the Paleogene warm climatic intervals (Fig. 1).

3.2 Glaucinite–phosphorite association
Phosphorite deposits of economic significance are associated with glauconitic sandstone, siltstone and shale (Banerjee et al. 2019 and references therein; Boukhalfa et al. 2020). Our study reveals a cluster of glauconite–phosphorite deposits along the palaeo-Tethyan margins (Figs. 2, 3, 4, 5; see also Soudry et al. 2006). The co-occurrence of glauconite and phosphorite is reported in 17 cases, all of which correspond to the Paleogene warm climatic intervals (Fig. 1).
Table 1 Paleogene glauconites along with precise age, associated lithology, mineral and biostratigraphic assemblage (the serial no. of data correspond to those provided in Figs. 1, 2, 3, 4, 5, 6)

Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
PALEOCENE						
A: North American continental margin						
1	Stassen et al. (2015)	Paleocene / Vincetown Formation, New Jersey Gulf Coastal Plain, USA	Glauconitic quartz sand	Middle to outer neritic	Glauconite-bearing Vincetown Formation was deposited during NP9a. The lithology changed to a kaolinite-rich mudstone with the onset of PETM	The glauconite-bearing sandy unit is overlain by a transitional bed deposited during PETM
2	Sluijs et al. (2014)	Paleocene / Tuscaloosa Formation, Wilcox Group, Gulf Coastal Plain, USA	Glauconitic sands and silts	Shallow marine to estuarine	Glauconitic unit demarcates *Apectodinium* acme and shallow marine dys-oxic condition	Lignite appears intermittently within the formation
3	John et al. (2008)	Paleocene / Moreno Formation, Turnley Gulch Section, USA	Glauconitic shale	Outer shelf	Glauconitic unit was deposited during NP9	
4	Cramer et al. (1999)	Paleocene / Vincetown Formation, ODP Leg 174AX, USA	Glauconitic sand (> 40% sand)	Shallow marine	Glauconitic sand was deposited during NP9a	
5	Liu et al. (1997)	Paleocene / Homerstown Formation, ODP Leg 150X, USA	Quartzose glauconitic clay	Middle neritic	Glauconite formation took place during biozone P1c or NP3	Lignite appears at the top part of the section
6	Mancini and Tew (1993)	Paleocene / Matthews Landing Marl Member, Porters Creek Formation, USA	Fossiliferous sandstone and marlstone	Shallow marine	In Porters Creek Formation, glauconite is confined within lower part of *M. angulata* I.Z. (upper part of NP4 toward the boundary of NP4–NP5)	
7	Mancini and Tew (1993)	Paleocene / Coal Bluff Member, Naheola Formation, USA	Fossiliferous sandstone and marlstone	Shallow shelf	In Naheola Formation, glauconite is confined within *P. pusilla pusilla* I.Z. (Upper NP5)	The glauconitic sandstones and marlstones overlie a lignitic marlstone member, which grades laterally into carbonaceous shale
8	Self-Trail et al. (2012)	Paleocene / Aquia Formation, USA	Glauconitic sandstone	Shallow shelf	Glauconitic Aquia Formation was deposited during NP9a and truncated by unconformity at Paleocene–Eocene boundary	
9	Mancini (1981)	Paleocene / Nanafalia Formation, USA	Glauconitic sandstone	Shallow shelf	Biostratigraphically the Middle Member belongs to *P. pusilla pusilla* I.Z. and Grampian Hill belongs to *P. pseudomenadrii* R.Z.	
10	Duarte and Martinez (2002)	Paleocene / Sepultura Formation, Mexico	Glauconitic sandstone with ovoid and vermiform pellets	Shallow marine	Absolute K–Ar ages of glauconite are 59±1 Ma and 60±1 Ma. Although biostratigraphy not given, author reports that the ages are consistent with reported biostratigraphic age	
B: Palaeo-Tethys (northern Africa, southern Europe and eastern Tethys)						
11	Kouwenhoven et al. (1997)	Paleocene / El Kef section, El Haria Formation, Tunisia	Siltstone	Middle to inner neritic setting	Glauconitic unit is dated with planktonic foraminifera and calcareous nanoplanктон to be of NP6/7–NP7/8 age	At the basal part, close to K–Pg boundary, pyrite is associated. Phosphorite occurs at the
Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
-----------	--------	---------------------------------	-----------	--------------------------	-------------------------	-----------------------------
12	Sprong et al. (2013)	Paleocene / Sidi Nasseur Section, El Harria Formation, Tunisia	Marl	Shallow marine	Glaucnite beds of P3a/P3b age serves as a marker bed to the latest Danian event (LDE) along the Tunisian deposits	upper part
13	Garnit et al. (2017)	Paleocene / Chouabine Formation, Metlaoui Group, Tunisia	Glaucnite associated with phosphorite	Shallow marine	Precise biostratigraphy not provided	Restricted marine condition in Eastern Basin and Gafsa-Metlaoui Basin inhibited glauconite formation and favoured phosphorite deposit. Open ocean condition in Northern Basin favoured phosphorite with abundant glauconite
14	Messadi et al. (2016)	Paleocene / Thelja Formation, Southern Tunisia	Glaucnite associated with phosphorite	Shallow marine	Precise biostratigraphy not provided	Glaucnites are associated with phosphates
15	Steurbaut et al. (2000)	Paleocene / Ain Settara marls, El Harria Formation, Tunisia	Marl	Shallow marine	Glaucnite bed is assigned to subzone NTp7B	Associated with phosphorite deposits, glauconites are concentrated in the phosphorite-rich bands
16	Speijer and Schmitz (1998)	Paleocene / Dakhla Formation, Egypt	Conglomeratic and glauconitic marl	Palaeodepth varies at ~ 200 m	Planktonic foraminiferal zone P1c was assigned to the glauconitic marl	
17	Kechiched et al. (2018)	Paleocene / Djebel el Kouif and Kef Essenoun deposit, Algeria	Argillaceous phosphorite	Shallow marine	Precise biostratigraphy not provided	
18	Samanta et al. (2013a)	Paleocene / Cambay Shale Formation, India	Shale	Lagoonal	Ar–Ar age of glauconite is 56.6 ± 0.7 Ma	Lignite appears as thick seams within a dominantly shaley lithology
19	Egger et al. (2009)	Paleocene / Kroischbach Member, Kressenberg Formation, Austria	Glaucnite-bearing quartz sandstone	Shallow marine	Glaucnite-bearing quartz sandstone unit was deposited during upper Thanetian (NP8)	Coal-bearing terrestrial deposits of the Paleogene Holzer Formation yielded palynoflora typical of Nypa mangrove forest. Ooidal sandstone unit is present at the basal part of the section
C: Palaeo-North Sea						
20	Knox (1979)	Paleocene / Thanet Beds, England	Glaucnitic clayey sandstone	Shallow marine	Precise biostratigraphy not provided	The high degree of montmorillonite in most of the 'glauconite' pellets is correlated to the montmorillonite-rich nature of associated clays or even to a pyroclastic mud precursor.
Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
-----------	-----------------------------	--	---	---------------------------	--	-------------------------------
21	Fitch et al. (1978)	Paleocene / Oldhaven Beds, Thanet Sand, England	Sandstone	Shallow marine	Fair age of Thanet Bed and Reculver Sand obtained by K-Ar method. Basal Thanet Sand: 59.5 ± 0.9 Ma; Reculver Sand: 56.8 ± 0.6 Ma. Precise biostratigraphy not provided.	
22	Huggett et al. (2017)	Paleocene / Upnor Formation, England	Fine- to medium-grained sandstone with glauconite pellets	Shallow marine to estuarine	Age of glauconite formation is ~55.6–56.2 Ma (NP8–NP9) which is referred to Ali and Jolley (1996).	
23	Ellison et al. (1996)	Paleocene / Upnor Formation, England	Medium-grained, glauconitic, quartzose sands	Shallow marine	C25n to C24r, NP9, Dinocyst zone A. hyperacanthum; FO Discoaster multiradiatus. Four (4) pulses of glauconite formation is observed and dated magnetostratigraphically to be in between C25n to C24r.	
24	Schmitz et al. (2004)	Paleocene / Ølst Fm., Østerrenden core, Denmark	Siltstone	Shallow marine	Glauconitic siltstone appears just below the peak-CIE i.e. Apectodinium acme.	Presence of ash layer directly points towards explosive basaltic volcanism.
25	Steurbaut et al. (2003)	Paleocene / Grandglise Sand Member, Hannut Formation, Belgium	Bioturbated sandstone, very fine sand to sandy silt	Shallow marine	Just below the main CIE, reappears again in 54.6 Ma in Mont Héribu Clay Member. Before CIE – Hannut Formation, in sandstone, upper part of NP8.	Tienen Formation, sandwiched between Hannut Formation and Mont Héribu Clay Member have abundant thin lignite bodies.
26	Clemmensen and Thomsen (2005)	Paleocene / Lellinge Greensand Formation, North Sea Basin	Greensand	Inner shelf	Lellinge Greensand deposited during 595–60 Ma. Biostratigraphic information is based on calcareous nannoplankton and supplemented by planktonic foraminifera.	
27	Hamberg et al. (2005)	Paleocene / Bohr Member, Våle Formation, Siri Canyon, Stavanger Platform Area, Denmark	Sandstone	Deep marine	Biostratigraphic data provided. All Paleogene sandstones in Siri Canyon, Denmark contains glauconite.	
28	Hamberg et al. (2005)	Paleocene / Ty Member, Våle Formation, Siri Canyon, Stavanger Platform Area, Denmark	Sandstone	Deep marine	Biostratigraphic data provided.	
29	Hamberg et al. (2005)	Paleocene / Heimdal Member, Holmehus Formation, Siri Canyon, Stavanger Platform Area, Denmark	Sandstone	Deep marine	Biostratigraphic data provided.	
30	Hamberg et al. (2005)	Paleocene / Heimdal Member, Lista Formation, Siri Canyon, Stavanger Platform Area, Denmark	Sandstone	Deep marine	Biostratigraphic data provided.	
31	Dill et al. (1996)	Paleocene / Formation A, North German Basin, Germany	Sandstone	Shallow marine	Biostratigraphic data provided; dinocyst zone D4 is assigned for Formation A.	Glaucnite is confined within the lower sandstones. Glaucnite-rich Formation A is overlain by phosphorite and
Serial No.	Author(s) and Year	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
-----------	---------------------	-----------------------------------	-----------	--------------------------	-------------------------	-----------------------------
32	Schmitz et al. (2004)	Paleocene / Zumaya and Ermua Section, Basque Basin, Spain	Grey limestone with glauconite at the top	Middle to lower bathyal: shallow marine	Glaucocitic limestone appears just below the peak-CIE i.e. Apectodinium acme. The limestone bed is assigned to NP9 zone.	sideritic horizon of Formation B
33	Dypvik et al. (2011)	Paleocene / Fryjaadden Formation, Norway	Highly-bioturbated sandstone	Deep marine	Precise biostratigraphy not provided. Report of PETM is based on Th/U and clay mineral proxies	Coal seams are present in the upper part of the formation. PETM interval contains abundant pyrite
	D: High southern latitudes					
34	Ferrow et al. (2011)	Paleocene / Conway Formation, New Zealand	Sandstone	Shallow marine	Glaucocitic is present throughout the formation, in Paleogene it is associated with *Trithyrodinium evittii* IZ, *Acarinina* spp. and *Globigerina* sp.	In K-Pg boundary, jarosite is associated Fe-bearing phases. Sporadic coal seams are present
35	Hines et al. (2013)	Paleocene / Awhea Formation, New Zealand	Glaucocitic sandstone	Deep marine	Awhea Formation: Middle and upper member contain definitive Paleocene (Teurian) assemblages, including *Stensioina beccariiformis*, *Nuttallinella florealis*, *Acanthina* spp. and *Globigerina* sp.	Pyrite occurs within burrows
36	Hines et al. (2013)	Paleocene / Mungaroa Limestone, New Zealand	Glaucocitic sandstone	Deep marine	Mungaroa Limestone: Calcareous nannofossil assemblages from the middle member of the Mungaroa Limestone in the Pukemuri Stream include *F. tympaniformus* and *Heliolithus cantabriac* with a notable absence of *Heliolithus kleinpellii*, placing the middle member in Upper Zone NP5.	
37	Lurcock and Wilson (2013)	Paleocene / Abbotsford Formation, New Zealand	Greensand	Shallow marine	Precise biostratigraphy not provided	Magneteite is associated/embedded in glauconite pellets
38	Schiøler et al. (2010)	Paleocene / Tartan Formation, New Zealand	Glaucocitic mudstone	Marginal marine	Precise biostratigraphy not provided	
39	Franzosi et al. (2014)	Paleocene / Salamanca Formation, Argentina	Moderately sorted and weakly consolidated sand	Shallow marine	Precise biostratigraphy not provided	Volcanic clasts and glass sherds are common within the sand that hosts glauconite
40	Friel et al. (2014)	Paleocene / Lyulinvor Formation, Russia	Sandstone	Shallow marine (from Rudmin et al. 2017)	Biostatigraphic data provided. Glaucocite-rich unit separates the top of Chron 25n and the PETM	In the eastern part, a sapropelic unit overlies the glauconite. In the western part, thicker glauconitic sandstone overlain by oolitic ironstone
41	Iakovleva and Kulikova (2003)	Paleocene / Talitskaya Formation, West Siberia	Glaucocitic sandstone and siltstone	Shallow marine	Glaucocite-bearing sediments range in age from P3b to middle P7. Glaucocite	
Table 1 Paleogene glauconites along with precise age, associated lithology, mineral and biostratigraphic assemblage (the serial no. of data correspond to those provided in Figs. 1, 2, 3, 4, 5, 6) (Continued)

Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
42	Iakovleva and Kulkova (2003)	Paleocene / Serovskaya Formation, West Siberia	Glaucnitic sandstone	Shallow marine	Glaucnite is confined within the dinoflagellate zone, Cerodinium speciosum	Glauconite is associated with phosphate. Background lithology is marl, black shale and clayey limestone
43	Nahon et al. (1980)	Paleocene / Eboinda region, Ivory Coast	Shale	Shallow marine	Precise biostratigraphy not provided	Diagenetic pyrite replaces many glauconite. Glaucnitic beds alternate with black shales
44	Stassen et al. (2015)	Eocene / Manasquan Formation, New Jersey Gulf Coastal Plain, USA	Fine sand/silt	Shallow marine	Biostratigraphic data provided	
45	Goodman (1979); Gibson et al. (1993)	Eocene / Nanjemoy Formation, Northern Gulf Coastal Plain, USA	Fine-grained quartz sand	Shallow marine	Precise biostratigraphy not provided	
46	John et al. (2008)	Eocene / Lodo Formation, USA	Fine sandstone	Outer shelf	Biostratigraphic data provided	
47	Sluijs et al. (2014)	Eocene / Bashi Marl Member, Hatchetibee Formation, USA	Coarse sandstone	Inner shelf	Biostratigraphy (in parts) is provided	Burst (1958) and Hower (1961) characterized the glauconites
48	Pietsch et al. (2016)	Eocene / Gosport Sand Alabama Gulf Coastal Plain, USA	Sandstone	Shallow marine	Biostratigraphic data provided	
49	Strickler and Ferrell Jr. (1993)	Eocene / Wilcox Sandstone, USA / Lower Eocene, Texas, USA	Glaucnitic lithic arkose / feldspathic litharenite with pellets	Shallow marine	Glaucnite is in lower Eocene Wilcox Group but no biostratigraphic or radiogenic dates are given. Precise biostratigraphy not provided	
50	Harris et al. (1984)	Eocene / Santee Limestone (South Carolina), USA	Limestone	Shallow marine	Rb-Sr radiometric age of glauconites from Santee Limestone is 36.7 ± 0.6 Ma	
51	Harris et al. (1984)	Eocene / Castle Hayne Limestone (North Carolina), USA	Limestone	Shallow marine	Rb-Sr radiometric age of glauconites from Castle Hayne Limestone is 34.9 ± 1.1 Ma	
52	Harris et al. (1984)	Eocene / Cross Formation, USA	Impure limestone	Shallow marine	Rb-Sr radiometric age of glauconites from Cross Formation is 34.1 ± 1.5 Ma	

B: Palaeo-Tethys (northern Africa, southern Europe and eastern Tethys)

Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
53	Tlig et al. (2010)	Eocene / El Garia Formation, Metlaoui Group, Tunisia	Impure limestone	Shallow marine	Precise biostratigraphy not provided. Glaucnite is of Ypresian age	
54	Metwally and	Eocene / Esna Formation, Dababiya	Shale	Shallow marine	Glaucnite-bearing strata are marked by	Glaucnite is associated with phosphate. Background lithology is marl, black shale and clayey limestone
Table 1 Paleogene glauconites along with precise age, associated lithology, mineral and biostratigraphic assemblage (the serial no. of data correspond to those provided in Figs. 1, 2, 3, 4, 5, 6). (Continued)

Serial No.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
55	Marivaux et al. (2014)	Eocene / Fortuna Formation, Tunisia	Shale	Subtidal to upper intertidal	Glaucites are of late middle Eocene (Bartonian). Radiometric ages from glauconite (in m.y.): 38.7 ± 1.0, 39.4 ± 1.1, 40.7 ± 1.1, 39.3 ± 1.0	Phosphates
56	Jorry et al. (2003)	Eocene / Choubine Formation, Central Tunisia	Marl	Shallow marine	Biostatigraphy of the glauconitic marl indicates a P8 biozone	Glaucitic marl is overlain by rich phosphate deposits
57	Hegab and El-Wahed (2016)	Eocene / Qarara Formation / Middle Eocene, Egypt	Green shale with pellets	Shallow marine	Precise biostratigraphy not provided	
58	Baioumy (2007); El- Habaak et al. (2016)	Eocene / Hamra Formation, Egypt	Sandy glauconitic limestone	Marginal marine	Although the formation is biotically constrained using Nummulites species and SBZ. The glauconitic unit did not yield any microfossil	Glaucite in Upper Hamra Formation unconformably overlies oolitic ironstone deposits of Lower Hamra Formation
59	Chattoraj et al. (2009)	Eocene / Naredi Formation, Kutch, India	Green shale	Middle shelf	Two glauconite horizons occur within Naredi Formation; the basal unit is biotaxonomically dated as SBZ 8 and the upper bed is dated as SBZ 10	Lignite is present at the basal part of the Naredi Formation
60	Banerjee et al. (2012b)	Eocene / Harudi Formation, Kutch, India	Green shale	Lagoon to shelf transition	Biostatigraphically the glauconite bed at the top of Harudi Formation is dated to be in SBZ 17	At the basal part of Harudi Formation, lignite appears as lenses
61	Samanta et al. (2013a)	Eocene / Cambay Shale Formation, India	Shale	Lagoonal	Glaucite formed related to 11/12 event	Thick seams of lignite within a dominantly shaley lithology
62	Kalia and Kintso (2006)	Eocene / Laki Formation, Jaisalmer Basin, India	Sandy clay	Shallow marine	Glaucite is confined within Acarinina sibayensis zone (E1?) and reported as basal part of Psb	Lignite occurs at the Paleocene–Eocene boundary, along with glaucite and pyrite
63	Kharkwal (1966)	Eocene / Subathu Formation, Simla, India	Limestone and calcareous sandstone	Shallow marine	Precise biostratigraphy not provided	Clays are carbonaceous at the basal part, locally coal. Possible ooidal ironstone at the basal Subathu Formation
64	Sarma and Basumallick (1979)	Eocene / Sylhet Limestone, India	Limestone	Neritic	Precise biostratigraphy not provided	Coal alternate with sandstone at the basal part, followed upwards by glauconitic nummulitic limestone
65	Sarma and Borgohain (2012)	Eocene / Narpuh Sandstone, India	Calcareous sandstone	Shallow shelf	Precise biostratigraphy not provided	Thin lenses of coal seams at the basal part
66	Shiloni et al. (1977)	Eocene / Zor’a Formation, Israel	Glaucitic chalky	Shallow marine	Precise biostratigraphy not provided	Phosphate-bearing rocks underlie
Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
-----------	-------------------------------	--	----------------	---------------------------	--	---
67	Zarasvandi et al. (2019)	Eocene / Pabdeh Formation, Iran	Limestone	Shallow marine	Precise biostratigraphy not provided	Glaucite is overlain by phosphorite. REE data indicate sub-oxic to anoxic condition
68	Beavington-Penney et al. (2006)	Eocene / Seeb Formation, Oman	Wackestone, packstone	Shallow lagoonal	Precise biostratigraphy not provided	Glaucite is associated with minor phosphate and siderite
69	Clark and Robertson (2005)	Eocene / Gümüs Member, Hasangazi Formation, Turkey	Facal pellets and infillings	Shallow shelf	Precise biostratigraphy not provided	
70	Bektemirova et al. (2018)	Eocene / Hanabad Formation, Kyzyltokoy Basin, Kyrgyzstan	Clay	Shallow marine	The basin are dated using macrofossils (bivalve) and presented in Bosboom et al. (2017)	
71	Rasser and Piller (2004)	Eocene / Helvetic Shelf, Austria	Nummulitic limestone	Shallow marine	Precise biostratigraphy not provided	
72	Cosović and Drobne (1995)	Eocene / Adriatic Carbonate Platform, Istran Peninsula, Croatia	Wackestone, packstone	Palaeodepth as high as ~ 130m	Abundant glauconite is found confined within Alveolina stipes and Alveolina munieri zone which demarcates SBZ 13/14. Precise biostratigraphy not provided	In the Liburnian Formation, the basal part of Eocene succession, coal occurs locally.
73	Schweitzer et al. (2005)	Eocene / “Marl with crab”, Istran Peninsula, Croatia	Foraminiferal packstones	Outer ramp	P-11 biozone was identified based on Globigerinahteca mexicana, Turborotalia frontosa, Turborotalia posagnoensis, and Subbotina inaequispira for the glauconite-bearing formation	
74	Cosović et al. (2004)	Eocene / Adriatic Carbonate Platform, Istran Peninsula, Croatia	Foraminiferal wackstone/ packstone	Slightly deeper water	Glaucite ages were determined using foraminiferal biozones. Glaucite occurs within SBZ13–SBZ16 interval	

C: Palaeo-North Sea

Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
75	Huggett and Gale (1997)	Eocene / Harwich Formation, Hampshire Basin, UK	Fine-grained glauconitic sandstone	Shallow marine	Biostratigraphic data obtained from the authors and Ali and Jolley (1996). Glaucitic sandstone belongs to NP9 and part of NP10	Siderite-bearing units alternate with glauconites. Harwich Formation contain tephra deposits
76	Huggett and Gale (1997); Amorosi and Centineo (1997)	Eocene / London Clay Formation, Hampshire Basin, UK	Fine-grained glauconitic sandstone	Shallow marine	Biostratigraphic data obtained from the authors and Ali and Jolley (1996)	
77	Huggett and Gale (1997); Amorosi and Centineo (1997)	Eocene / Wittering Formation, Hampshire Basin, UK	Glaucitic silty sand	Shallow marine	Biostratigraphic data obtained from the authors and Ali and Jolley (1996)	Two glauconitic horizons are overlain by siderite concretion-bearing units
78	Huggett and Gale (1997); Amorosi and	Eocene / Earnley Formation, Hampshire Basin, UK	Bioturbated glauconitic sand	Shallow marine	Biostratigraphic data obtained from the authors and Ali and Jolley (1996)	
Serial No.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
-----------	--------	-----------------------------------	-----------	--------------------------	--------------------------	-----------------------------
79	Hughes and Whitehead (1987); Huggett and Gale (1997)	Eocene / Barton Clay, Hampshire Basin, UK	Glauconitic muddy silt	Shallow marine	Biostratigraphic data obtained from the authors and Ali and Jolley (1996)	
80	Huggett and Cuadros (2010)	Eocene / Headon Hill Formation, Hampshire Basin, UK	Shale, siltstones and marls	Lacustrine	Biostratigraphic zonation of Aubry (1985) indicates a NP18 to NP19–20 age of Headon Hill Formation. Radiometric dating provides ~34 Ma. Precise biostratigraphy not provided	
81	Steurbaut et al. (2003)	Eocene / Mont Héribu Clay Member, Belgium	Glauconitic clayey very fine sand	Mostly lagoonal	Biostratigraphic data provided	
82	Vanhove et al. (2011)	Eocene deposits of Belgium (including Tielt, Hyon, Gentbrugge & Aalatar Formation), Belgium	Glauconitic sand and muds	Shallow marine	Glaucocotic sand and mud is very common in latest NP12 and NP13 zones	
83	Morton et al. (1984)	Eocene / Offshore Ireland DSDP Leg 81, North Sea Basin	Pale-green clay	Shallow marine shelf	Glaucocitization started at late NP10 and truncated at NP12. Biostratigraphy and magnetostratigraphy data available	
84	Czuryłowicz et al. (2014)	Eocene / Siemier Formation, Lubartów area, Poland	Siltstone and sandstone	Shallow marine	Precise biostratigraphy not provided	Glaucocotic silty sand overlies a phosphate unit
85	Gedl (2014)	Eocene sediments of Solokija Graben, Roztocze, Poland	Glaucocitic sandstone, calcareous and non-calcareous	Shallow marine	Glaucocitic sands are confined from upper part of NP16 to lower NP18 or top of NP17	
86	Dill et al. (1996)	Eocene / Formation C, North German Basin, Germany	Sandstone	Shallow marine	Formation C is confined within Subzone D7a and D8b	Glaucocite is confined within the lower sandstones while pyrite formed in clays and marls

D: High southern latitudes

Serial No.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
87	Sorrentino et al. (2014)	Eocene / Red Bluff Tuff Formation, New Zealand	Volcanic tuff	Shallow marine	Precise biostratigraphy not provided	Magnetite and hematite are associated with glauconite
88	Crouch et al. (2003)	Eocene / Wanstead Formation, Tawanui, New Zealand	Glaucocitic sandy siltstone	Deep marine	Biostratigraphy is done based on Apectodinium acme and dinocyst assemblages	Although depositional environment was deep, land-derived terrestrial components are abundant
89	Wei (2004)	Eocene / Tasmanian Gateway, ODP Leg No 189, New Zealand	Silty claystone and siltstone	Shallow marine	Its first occurrence of glauconite is between the FO of Reticulofenestra reticulata (41.2 Ma) and that of Reticulofenestra umbilicus (42.0 Ma) and thus it can be dated as 41–42 Ma	
90	Dallanave et al. (2016)	Eocene / Ashley Mudstone, New Zealand	Mudstone	Deep marine	Age of glauconite is confined to NP16, LO of Reticulofenestra umbilicus marks the	
Table 1 Paleogene glauconites along with precise age, associated lithology, mineral and biostratigraphic assemblage (the serial no. of data correspond to those provided in Figs. 1, 2, 3, 4, 5, 6). (Continued)

Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
91	Aitchison (1988)	Eocene / Tapui glauconitic sandstone, New Zealand	Sandstone	Storm-dominated inner shelf	Precise biostratigraphy not provided. Glauconites are of early to middle Eocene age	onset of glauconite but upper boundary is not defined. Absolute age of glauconite is 42.64 Ma (Gradstein et al. 2012)
92	MacGregor (1983)	Eocene / Waitakere Limestone, Nile Group, New Zealand	Limestone	Marginal marine	Precise biostratigraphy not provided. Age is based on benthic foraminiferal assemblage but not precisely demarcated	Pyrite occurs at upper part of the section. Underlying Brunner Coal measure is a thick coal-bearing unit
93	Hines et al. (2013)	Eocene / Pukemuri Siltstone, New Zealand	Glaucnitic sandstone	Deep marine	Pukemuri Siltstone. The presence of Discocysta lodoensis throughout the formation indicates correlation with Nannofossil Zones NP12–14	
94	Iakovleva and Kulkova (2003)	Eocene / Tavdinskaya Formation, West Siberia, Russia	Glaucnitic sand and siltstone	Shallow marine	Glaucnite-bearing sediments of Tavdinskaya Formation belong to Rhombodinium draco dinoflagellate zone	
95	Polevaya et al. (1961)	Paleogene deposits of Abkhazia, Russia	Sandstone, clayey sandstone and limestone	Shallow marine	Absolute age of glauconite by radiometric dating yields ~ 53 Ma	
96	Polevaya et al. (1961)	Paleogene deposits of Turgay, Russia	Sandstone, clayey sandstone and limestone	Shallow marine	Radiometric dating provides ~ 51 Ma	
97	Polevaya et al. (1961)	Paleogene deposits of Volga River Area, Russia	Sandstone, clayey sandstone and limestone	Shallow marine	Radiometric dating provides ~ 46 Ma is reported	
98	Polevaya et al. (1961)	Paleogene deposits of Ciscaucasia, Russia	Sandstone, clayey sandstone and limestone	Shallow marine	Radiometric dating provides ~ 37 Ma	
99	Geptner et al. (2008)	Eocene / Amanin Formation, Russia	Volcanogenic sandstone and mudstone	Shallow marine	Precise biostratigraphy not provided	
100	Wei et al. (2018)	Eocene / Shahejie Formation Bohai Bay Basin, China	In varying lithologies from sandstone to calcareous mudstone	Shallow marine	Main glauconite event took place ~ 42.47 Ma with two minor event ~ 35.99 Ma and ~ 31.94 Ma. Precise biostratigraphy not provided	
101	Jiang et al. (2007)	Eocene / Shulu Sag Basin, China	Calcareous shale and siltstone	Lacustrine	Precise biostratigraphy not provided	
102	Petters and Olsson (1979)	Eocene / Akinbo Formation, Nigeria	Shale	Shallow marine	K–Ar method yields 54.45 ± 2.7 Ma	
Table 1 Paleogene glauconites along with precise age, associated lithology, mineral and biostratigraphic assemblage (the serial no. of data correspond to those provided in Figs. 1, 2, 3, 4, 5, 6). (Continued)

Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
103	Amaral (1967)	Eocene / Calumbi Formation, Mosquiro well, Sergipe-Alagoas Basin, Brazil	Glaucnitic sandstone	Shallow marine	K-Ar absolute ages of glauconite from Mosquiro Formation are 53 ± 2 Ma and 51 ± 2 Ma	
104	Amaral (1967)	Eocene / Cururu well, Majaró Basin, Brazil	Fine sandstone and siltstone	Shallow marine	K-Ar absolute age of glauconite from Mosquiro Formation is 35 ± 2 Ma	

OLIGOCENE

A: North American continental margin

Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
105	Miller et al. (2009)	Oligocene / Sequence O1, New Jersey Coastal Plain, USA	Glaucnitic sand	Middle shelf	The Sequence O1 has rich glauconite concentration and age is defined as NP22	
106	Miller et al. (2009)	Oligocene / Sequence O2, New Jersey Coastal Plain, USA	Glaucnitic sand	Middle shelf	The Sequence O2 has rich glauconite concentration and age is defined as upper part of NP23	
107	Miller et al. (2009)	Oligocene / Bumpnose sequence, SSQ section Alabama Gulf Coastal Plain, USA	Glaucnitic sand	Middle shelf	The Sequence O2 has rich glauconite concentration and age is defined as upper part of NP23	
108	Hesselbo and Huggett (2001); Savrda et al. (2001)	Oligocene / Offshore New Jersey, ODP Leg 174A, USA	Mudstone and sandstone	Deep marine	Precise biostratigraphy not provided. Age estimation is based on Sr stratigraphy (Savrda et al. 2001)	Glauconite has ooidal coating of glauconitic smectite, while shallow water glauconites have cores of siderite

B: Palaeo-Tethys (northern Africa, southern Europe and eastern Tethys)

Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
109	Boukhalfa et al. (2013)	Oligocene / Fortuna Formation, Tunisia	Glaucnitic siltstone and mudstone	Lagoonal	Glauconite forms in Chattian. Glauconite-bearing sequence is marked by biostratigraphically well-constrained upper and lower boundary	Lagoonal glauconite of Fortuna Formation overlies a Fe-, S-bearing horizon
110	Boukhalfa et al. (2015)	Oligocene / Lower Béjaoua Group, Tunisia	Glaucnitic siltstone	Lagoonal	Glauconite-bearing sequence is marked by biostratigraphically well-constrained upper and lower boundary	
111	Banerjee et al. (2012a)	Oligocene / Maniyara Fort Formation, Kutch, India	Green shale	Lagoonal	Glauconite age is modified to the base of SBZ 22B based on foraminiferal studies	
112	Tóth et al. (2010)	Oligocene / Eger Formation, Hungary	Carbonate cemented sandstone layers	Deep sublittoral to epibathyal	Precise biostratigraphy not provided	Phosphate is associated with glauconite even as very fine particles

C: Palaeo-North Sea

Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
113	Rasmussen and Dybkjær (2005)	Oligocene / Brejning Clay Member, Vejle Fjord Formation, Denmark	Bioturbated greenish silty clay	Shallow marine	Overlying the glauconitic unit is characterized by common occurrences of *Delflandrea phosphoritica* and *Chiropteridium galea* (Dinocyst assemblage)	Glaucony is abundant with pyritized burrow. Glauconitic clay is overlain by silty to sandy unit with iron oolite and siderite cemented sandstone
114	Porrenga (1968)	Oligocene / Kerkom sand Belgium	Thin green clay layers	Marginal marine	Precise biostratigraphy not provided	
Serial no.	Author	Age / Stratigraphic unit, location	Lithology	Depositional environments	Biostratigraphic details	Associated authigenic phases
-----------	--------	-----------------------------------	-----------	---------------------------	--------------------------	-----------------------------
114	De Man and Van Simaeys (2004)	Oligocene / Southern North Sea Basin, Belgium	Glauconitic sand and lenses intercalated in sands	Marginal marine	Oldest time-transgressive glauconitic sand was deposited around 26.7 Ma	Coals are present in the formation, but precise stratigraphy not available
115						
116	Van der Lingen et al. (1978)	Oligocene / Oxford Chalk, New Zealand	Cross-bedded glauconitic sand with foraminiferal infillings	Shallow marine	Precise biostratigraphy not provided	
117	Lewis and Belliss (1984)	Oligocene / Gee Greensand Otekaie Limestone, New Zealand	Greensand	Inner shelf	Age of the formation is based on Harland et al. (1982); but the age is redefined again. Precise biostratigraphy not provided. Ostracoda biostratigraphy is provided in Ayress (2006)	
118	McConchie and Lewis (1978)	Oligocene / Coleridge Formation, New Zealand	Glauconitic sandstone with faecal pellets	Shallow marine	Precise biostratigraphy not provided. Oligocene glauconite belongs to early Oligocene (Whaingaroan Stage) (Harland et al. 1982)	
119	Kelly and Webb (1999)	Oligocene / Jan Juc Formation, Torquay Group, Australia	Argillaceous sandstone	Middle shelf	Foraminiferal biostratigraphy is provided in Li et al. (1999)	Pyrite, siderite, phosphate and iron oxide minerals overlie basal glauconite-rich units. Glauconitic unit contains pyrite, phosphates and iron oxides, but lacks siderite
120	Dix and Parras (2014)	Oligocene / San Julián Formation, Patagonia (Argentina)	Hardground in limestone	Shallow marine	Precise biostratigraphy not provided. Age of glauconite-bearing rocks are correlated with chronostratigraphy of Gradstein et al. (2012)	Microcrystalline siderite is associated with glauconite. Glauconite overlies coal-bearing member
121	Sageman and Speed (2003)	Oligocene / Caratas Fm., Tinajitas Lst. and Los Jabilos Fm., Venezuela	Arenites with foraminiferal infillings	Shallow marine	NP24 for Glauconitic wacke; three distinct glauconitization event without proper biostratigraphic age provided. Precise biostratigraphy not provided	
122	Amaral (1967)	Oligocene / Cururu Fm., Majará Basin, Brazil	Fine sandstone and siltstone	Shallow marine	K–Ar age of glauconite from upper part of Cururu well section is 25 ± 2 Ma which is in good agreement with biostratigraphic data according to the author	
123	Wigley and Compton (2006)	Oligocene / Upper Oligocene-Lower Miocene Calcareous unit, South Africa	Calcareous sand	Shallow marine	Glauconite formed during Upper Oligocene (258–27.2 Ma)	Phosphate (CFA) is associated with glauconite
124	Tazaki and Fyfe (1992)	Oligocene / Isu Bonin Forearc Basin, ODP Leg 126, Japan	Volcanogenic sandstone	Deep marine	Precise biostratigraphy not provided	Glauconite along with celadonite and graphite occurs in volcaniclastic sediments
phosphorite deposition shifted towards the eastern and northern parts of the Tethyan domain (Fig. 5). The deposition of phosphorite took place in Iran and in Oman (Beavington-Penney et al. 2006; Zaraşvandi et al. 2019) and in Poland (Czuryłowicz et al. 2014). Phosphorite deposition was less common in the Oligocene. Besides the Tethyan margin, glauconite and phosphorite deposits formed within the Oligocene succession of Australia and South Africa (Kelly and Webb 1999; Wigley and Compton 2006; Tóth et al. 2010) (Fig. 6). Throughout the Paleogene, most of the phosphorite–glauconite association was restricted to arid paleoclimate, low-latitudinal passive margin settings (Figs. 3, 4, 5, 6).

3.3 Glauconite–lignite association
Lignite is a common deposit of the Paleogene time (Table 1; Fig. 1). The formation of Paleogene lignite overlaps with glauconite within the warm climatic intervals (Fig. 1). Paleogene glauconite occurs in the same stratigraphic succession with economically exploitable lignite in 15 cases. During the Paleocene, lignites formed within a short span of ~ 10 Ma from late Danian to late Lutetian (Mancini and Tew 1993; Liu et al. 1997; Steurbaut et al. 2003; Egger et al. 2009; Ferrow et al. 2011; Samanta et al. 2013a; Sluijs et al. 2014). The oldest record of the lignite–glauconite association from North American Gulf Coastal Plain deposits corresponds to the Danian–Selandian transition (Fig. 1). At the Paleocene–Eocene transition, lignite formed even at high palaeolatitudes in Svalbard, Norway (Dypvik et al. 2011) (Fig. 3). The late Paleocene and middle Eocene lignite–glauconite associations are best developed in the eastern margin of Tethys (Figs. 3, 4). Lignite formed in restricted marine conditions (Chattoraj et al. 2009; Saraswati et al. 2014, 2018). The glauconite–lignite association reduced abruptly during middle and late Eocene (Fig. 1). During the late Oligocene, lignite–glauconite association was restricted only to palaeo-North Sea basin (De Man and Van Simaeys 2004) (Fig. 5). Lignites formed in humid, tropical to boreotropical, and even warm temperate climatic conditions favoring lush growth of vegetation (Figs. 3, 4, 5, 6). Most lignite–glauconite occurrences of high northern latitudes coincide with the Paleocene–
Eocene transition, but it is restricted to middle Eocene in Russia and late Oligocene in Belgium (Table 1; Figs. 5, 6). At high southern latitude lignite is devoid of glauconite during the Paleocene and early Eocene.

3.4 Glauconite–oolitic ironstone association
Oolitic ironstone deposits contain ~ 5% iron oolith/ooid and more than 15% iron, with goethite, siderite, chamosite, odinite, and berthierine as chief iron-bearing minerals (Rudmin et al. 2019). The majority of the oolitic ironstone of the Cenozoic time preferably formed in the late Paleocene to early-middle Eocene period in marginal marine environments (van Houten 1992; Rudmin et al. 2019). van Houten (1992) found that the majority of the oolitic ironstone deposits of the Cenozoic time are associated with glauconites and phosphorites, hardgrounds and coal measures. Our review reports 14 cases of glauconite–oolitic ironstone association, closely linked to the warming events of the Paleogene (Table 1; Fig. 1). In most of these deposits, glauconite and oolitic ironstone deposited in close proximity to lignite and phosphorite.

Glauconite–oolitic ironstone association occurs within the Paleocene Kressenberg Formation in Austria (Egger et al. 2009) (Fig. 3). Oolitic ironstone deposits proliferate in the London Basin during the late Paleocene and early Eocene (Huggett and Gale 1997). Glauconite–ironstone association declines during the onset of cold climatic conditions after EECO (ca. 50 Ma) (Figs. 1, 5, 6). This deposit in Egypt, Iran, and Oman coincides with middle Eocene climatic optimum (MECO) (Beavington-Penney et al. 2006; Baioumy 2007; El-Habaak et al. 2016; Zarasvandi et al. 2019). The late Oligocene glauconite–oolitic ironstone association occurs in the North American continental shelf deposit, from the palaeo-North Sea basin and high southern latitude deposits in Australia and New Zealand (Kelly and Webb 1999; Hesselbo and Huggett 2001). Oolitic ironstones tend to form in tropical/boreotropical and warm temperate climate during most of the Paleogene. During the middle Eocene, the locus of their formation shifted towards the northern margin of the African Shelf (Fig. 5).

4 Discussion
4.1 The formation of glauconite during warming intervals
Although the allo genetic glauconite occasionally occurs in the ancient rock record (Amorosi 1997), the vast
majority of glauconites form on the seafloor in situ with negligible sediment input (Odin and Matter 1981; El Albani et al. 2005; Amorosi et al. 2007, 2012; Banerjee et al. 2012a, 2012b, 2015, 2016a, 2016b; Baldermann et al. 2013, 2017). Prolonged chemical exchange between seawater and sediments is a prerequisite for the formation of glauconite (Odin and Matter 1981). Several case studies indicate that the composition of glauconite bears subtle evidence of seawater composition of the past (El Albani et al. 2005; Meunier and El Albani 2007; Banerjee et al. 2016a, 2016b; Mandal et al. 2020). The following section discusses the influence of the controlling factors in the formation of authigenic glauconite during the Paleogene.

The deposition environment has strong control over the formation of glauconite by regulating the rate of sedimentation, redox conditions as well as the supply of abundant ions. Although seawater contains abundant potassium, its iron content is very less, particularly in the deep marine environment. Iron is supplied into the shallow sea by the weathering of continental landmasses. However, the depositional environment remains oxic and sediment supply remains high in shallow marine environments, which discourages the growth of glauconite. In modern oceans, glauconite forms abundantly within the outer shelf and deeper environments (Odin and Matter 1981; Amorosi 2012; Banerjee et al. 2016a). However, the Paleogene glauconite formed primarily in
shallow seas, possibly below the fair-weather wave base (Table 1; Fig. 7). Significantly, glauconites formed predominantly in shallow marine conditions during the Cretaceous period, which is also known for warm climatic conditions (Bansal et al. 2019). However, Bansal et al. (2019) could not establish the relationship between warming intervals and glauconite occurrence because of poor biostratigraphic controls of the Cretaceous successions. Recent glauconite forms mostly along the eastern and western margins of Africa and North America, southern margin of Australia, and western margin of South America. The formation of glauconite always remained confined within 60° latitudes on both sides of the equator (Porrenga 1968; Odin and Matter 1981). Except for one report of glauconite from Norway, all the Paleogene glauconites also show a similar latitudinal distribution, i.e. within the confinement of 60° palaeo-latitudes. They are absent in the high latitudes (in the Arctic and Antarctic region) (Figs. 3, 4, 5, 6). The absence of glauconite in the polar region and its paucity in the extra-tropical region indicates that a high temperature of seawater facilitates the formation of this mineral. As carbonate deposition shifted to the shallow marine environment during the greenhouse climate, likewise glauconitization too shifted to shallow seas during the Paleogene hyperthermal events. The formation of glauconite is five times slower in the cold water at a depth of 2.5 km, compared to the shallow marine region (Baldermann et al. 2013). Microbiota plays a crucial role in the fixation of iron into the smectite structure, transforming it into glauconite in the modern deep marine environment (Baldermann et al. 2017). In the case of shallow marine glauconite, such a microbial role is not apparent. The chemical composition of deep marine glauconite differs from their shallow marine counterparts by having more Fe₂O₃ and less Al₂O₃ and therefore indicates that the mechanism of formation of this mineral must be different (Baldermann et al. 2017).

The warm and humid climatic conditions during the Paleogene thermal events enhanced the rate of continental weathering (Hessler et al. 2017). Consequently, an increase in the supply of K, Fe, Si, Al, Fe, and Mg ions into the shallow marine environment through riverine input likely to have raised the alkalinity of oceans (Fig. 7). Experimental results indicate that highly alkaline seawater promotes the formation of glauconite (Harder...
Extensive physical reworking of all varieties of continental rocks during the attendant marine transgression further facilitated the release of nutrients to the seawater (Peters and Gaines 2012). The enhanced riverine input during the warm climatic intervals could have provided the required Fe for the formation of glauconite in the shallow marine environment. The formation of iron-bearing authigenic phases is regulated by the depositional redox condition and the iron reduction reactions (El Albani et al. 2005; Meunier and El Albani 2007; Taylor and Macquaker 2011). Experimental results indicate that sub-oxic condition is a prerequisite for glauconite formation (Harder 1980). Fe occurs as sulfide in reducing conditions in the sulfidic environment.
anoxic zone (Berner 1981), while goethite and chamosite forms in oxygenated seawater (Kimberly 1979; Rudmin et al. 2019). However, shallow and intermediate seas presumably became oxygen-deficient during the hyperthermal events (Nicolo et al. 2010; Schulte et al. 2013; Sluijs et al. 2014). The extensive occurrence of Paleogene black shale within the shallow marine Tethyan domain bears testimony to this (Gavrilov et al. 2013; Schulte et al. 2013). Micropalaeontological data of Kutch in India also supports oxygen-deficient shallow marine environments during PETM, ETM2, and ETM3, all of which are characterized by the high abundance of rectilinear benthic foraminifera that is known to be tolerant to low oxygen (Nigam et al. 2007; Khanolkar and Saraswati 2015, 2019). Multiple factors possibly led to this hypoxia on the Paleogene shelves (Fig. 7). The enhanced bioproductivity related to the abundant supply of nutrients created the sub-oxic condition in the shallow marine domain (Sluijs et al. 2014). Widespread hypoxia in marginal marine environments has been documented from Cretaceous global anoxic events (Sluijs et al. 2014). Significant warming during the hyperthermal events led to the discharge of freshwater and nutrients, causing a stratified seawater column and thereby promoting the suboxic to anoxic conditions. Sluggish deep-water circulation further aided the seafloor oxygen depletion (Ridgwell and Schmidt 2010). The glauconite-bearing green shales of Kutch in early and middle Eocene correspond to ETM2 and MECO. These glauconitic shales are typically characterized by tiny, triserial planktic foraminifera Jenkiniina Columbiana and Streptochilus martini (Kroon and Nederbragt 1990; Kimoto et al. 2009; Khanolkar et al. 2017). Their abundance reaching up to 35% of planktic foraminiferal count suggests high runoff and upwelling conditions in these intervals. Therefore, the availability of abundant continent-derived Fe, as well as the development of the sub-oxic conditions in shallow seas boosted glauconite formation during warm climatic intervals.

A slow rate of sedimentation generally helps the reduced iron to be incorporated into the glauconite structure (Odin and Matter 1981; Meunier and El Albani 2007; Amorosi 2012; Banerjee et al. 2016a, 2016b). The enhanced supply of siliciclastics because of heightened continental weathering during the hyperthermal events should also have raised the sedimentation rate. Although the absolute sea-level rose only about 20 m to 30 m during the hyperthermal events, its rapidness might have led to sediment starvation in shallow seas (Sluijs et al. 2014). The occurrence of around 90% glauconite coinciding with the three warm climatic intervals marked in Fig. 1 indicate that temperature, redox condition of the depositional environment, rapid transgression as well as the availability of abundant nutrients possibly superseded the effect of possible excessive clastic supply into the marine basin related to enhanced weathering during the ‘greenhouse world’.

4.2 Factors promoting phosphorite deposition during the Paleogene time
Phosphorite is a common associate of glauconite in the Paleogene (Glenn and Arthur 1990; Kouwenhoven et al. 1997; Kechiched et al. 2018; Metwally and Mahfouz 2018; Banerjee et al. 2019). Conditions favourable for the precipitation of phosphorite and glauconite broadly overlap, requiring depletion in clastic supply and oxygen-depleted seawater. Hypoxic and anoxic bottom seawater facilitates the recycling of phosphorus from organic matter. Sub-oxic Paleogene shelf waters, therefore, remained the favourable sites of formation for both glauconite and phosphorite. Schulte et al. (2013) reported the formation of phosphorite during the recovery phase of the PETM. Phosphorite–glauconite association in modern and ancient sediments forms within a narrow zone lying between upper slope (Fe- and P-poor, TOC enriched) and outer shelf (Fe- and P-enriched), in close vicinity of the oxygen minimum zone (Banerjee et al. 2019 and references therein). Palaeolatitude is also another factor that controls global P-cycle (Soudry et al. 2006). Low latitudes favouring open circulation prefer the accumulation of phosphorite (Cook and McElhinny 1979; Soudry et al. 2006). During most of the Paleogene, the northern part of the African continent remained close to the equator (Figs. 3, 4, 5, 6).

4.3 Factors influencing lignite deposition
Paleogene lignite deposits are predominantly of strand plain origin (Prasad et al. 2013), and they remain confined to the tropical zone along the palaeo-Tethyan margin (Figs. 3, 4, 5, 6; Chattoraj et al. 2009; Egger et al. 2009; Samanta et al. 2013a, 2013b). Lignite deposits form at the top of smaller order shallowing-upward cycles, below the marine flooding surfaces within an overall transgressive deposit (Prasad et al. 2013). Whereas, the occurrence of glauconite coincides with the marine flooding surfaces (Banerjee et al. 2012a, 2012b). A humid climate presumably facilitated the growth of the tropical rainforest during the warmer climatic intervals of Paleogene. Accumulation of abundant vegetal matter in a stagnant marginal marine environment possibly led to lignite formation. Coal deposits during the Paleozoic formed in tropical climates under high rainfall (Cecil et al. 1985). A low rate of clastic input coupled with wet climatic conditions and vegetation cover facilitated coal formation (Cecil 1990). However, glauconite, as well as phosphorite are rarely associated with Paleozoic coal deposits.
Coal/lignite is particularly abundant in several Indian Paleogene basins including Cambay (Prasad et al. 2013; Samanta et al. 2013b), Kutch (Khanolkar and Saraswati 2015 and references therein), Rajasthan (Raju and Mathur 2013) and in Assam-Arakan basin (Saikia et al. 2009). The high abundance of lignite within the Indian Paleogene possibly relates to the formation of a tropical rainforest that leads to the rapid deposition of organic matter and higher land plants into the marginal marine environment (Prasad et al. 2013). Extensive development of marsh-bay complexes characterized the Indian sub-continent that remained close to the equator during the Eocene (Figs. 4, 5) (Prasad et al. 2013).

4.4 Formation of oolitic ironstone during the Paleogene
Glaucinite forms an important component within the Paleogene oolitic ironstone deposits along the globe (van Houten 1992). Depositional conditions required for the formation of oolitic ironstone, glauconite, and phosphorite are broadly similar (van Houten 1992; Todd et al. 2019). Although most Paleozoic oolitic ironstones involve upwelling, Cenozoic deposits are controversial in terms of origin. A warm climate and marine transgression favour the formation of oolitic ironstone (Todd et al. 2019). The warm climate facilitates continental weathering and supplies abundant Fe into the shallow marine ocean (see Todd et al. op. cit.). The particulate riverine Fe is trapped mostly in lagoons, estuaries and flood plains before reaching the deep ocean during the rapid transgression (Poulton and Canfield 2011). Further, submarine volcanism, related to ocean floor spreading provides abundant Fe$^{2+}$ into the marine realm. The upwelling current carries additional P$^{4+}$ and Fe$^{2+}$ from the deeper ocean and facilitates the formation of phosphorite, glauconite and oolitic ironstone. Microbial respiration/oxidation of organic matter is further responsible for the formation of anoxic and hypoxic water column. The upwelling front favouring the formation of francolite (and/or pyrite) and Fe-silicates, respectively (Todd et al. 2019). A more oxygenated water column results in the formation of Fe-(oxyhydr)oxide constituting the ironstone facies. Several studies indicated that the formation of oolitic ironstone is favoured immediately after ocean hypoxia (Schulte et al. 2013; Bekker et al. 2014). Therefore, an increase in productivity and related oxygen deficiency provides abundant ferrous iron in shelf waters, thus facilitating massive ironstone deposits during the warm climatic intervals (Homoky 2017; Konhauser et al. 2017). While the pyrite can be formed in hypoxic and anoxic seawater, chamosite and/or berthierine formation is favoured in hypoxic seawater conditions (Berner 1981; Taylor and Macquaker 2011; Todd et al. 2019; Rudmin et al. 2020). Rudmin et al. (op. cit.) established a link between volcanism and oolitic ironstone formation from the Siberian basins. Widespread volcanism in north Atlantic during the early part of Paleogene might have facilitated hypoxic seawater.

5 Conclusions
The review of existing literature establishes a link between Paleogene warming events and authigenic mineralization, with the following conclusions.

1) A review of global occurrences of Paleogene glauconites broadly correspond to warm climatic intervals that witnessed multiple hyperthermal events.

2) The widespread occurrence of glauconite across the globe in the late Paleocene and early Eocene relates to a combination of factors including global sea-level rise, hypoxic shelf, and warm and humid climate. A slow rate of sediment accumulation within the transgressive shallow seas facilitated the formation of glauconite on the seafloor.

3) The depositional conditions of phosphorus and oolitic ironstone are broadly similar to those of glauconite, and therefore, the abundance of these two deposits follows a similar trend.

4) Although the occurrence of authigenic deposits was largely influenced by global climatic conditions, factors like upwelling current and palaeolatitude led to the formation of phosphorite and lignite regionally.

5) Palaeo-latitudinal settings also influenced the occurrence of authigenic deposits. The deposition of phosphorite and lignite deposits was favoured in low palaeolatitudes.

6) Paleogene lignite formed mostly in coastal environments and their formation is facilitated in warm and humid climate. These deposits marked smaller order regressions within an overall transgressive deposit of warm climatic intervals.

Abbreviations
CCD: Calcite compensation depth; CFA: Carbonate fluorapatite; CIE: Carbon isotopic excursion; DAN-C2: Danian C2 event; EECO: Early Eocene climatic optimum; ELMO: Eocene layer of mysterious origin; ELPE: Early late Paleocene event; ETM1: Eocene thermal maximum 1; ETM2: Eocene thermal maximum 2; ETM3: Eocene thermal maximum 3; FO: First occurrence; FWWB: Fair-weather wave base; LDE: Latest Danian event; LO: Last occurrence; LOWE: Late Oligocene warming event; MECO: Middle Eocene climatic optimum; MPBE: Mid Paleocene biotic event; OM: Organic matter; PETM: Paleocene–Eocene thermal maximum; SWWB: Storm-weather wave base

Acknowledgements
Authors acknowledge infrastructure support by Indian Institute of Technology Bombay. Authors thank S.C. Patel and Javed M. Shaikh for providing analytical support to study many glauconite samples over the years at the DST IITB National facility for EPMA, Department of Earth Sciences, Indian Institute of Technology Bombay.
Authors’ contributions
SB, TRC and PKS carried out the data analysis and drafted the manuscript. SB conceived the study and helped to revise the manuscript. TRC and SK performed literature survey. PKS took care of biostatigraphic data interpretation. All authors read and approved the final manuscript.

Funding
SB is thankful to Ministry of Mines, Government of India for financial support through grant F No. 14/77/2015- Met. IV. TRC is thankful to Council of Scientific and Industrial Research, India for the financial support.

Availability of data and materials
Since this is a review paper all data analyzed in this study are available in published literature, which are cited in this paper.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. 2Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, India.

Received: 27 April 2020 Accepted: 22 September 2020
Published online: 09 October 2020

References
Aitchison, J.C. 1988. An Eocene storm-generated littoral placer, Northeast Otago. New Zealand Journal of Geology and Geophysics 31: 381–383.
Ali, J.R., and D.W. Jolley. 1996. Chronostratigraphic framework for the Thanetian and lower Ypresian deposits of southern England. Geological Society, London, Special Publications 101: 129–144.
Amaral, G. 1967. Potassium-argon age measurements on some Brazilian glauconites. Earth and Planetary Science Letters 3: 190–192.
Amorosi, A. 1995. Glaucony and sequence stratigraphy; a conceptual framework of distribution in silicilastic sequences. Journal of Sedimentary Research 65: 419–425.
Amorosi, A. 1997. Detecting compositional, spatial, and temporal attributes of glaucony: A tool for provenance research. Sedimentary Geology 109: 135–152.
Amorosi, A. 2011. The problem of glaucony from the Shannon sandstone (Campanian, Wyoming). Terra Nova 23: 100–107.
Amorosi, A. 2012. The occurrence of glaucony in the stratigraphic record: Distribution patterns and sequence-stratigraphic significance. International Association of Sedimentologists Special Publications 45: 37–54.
Amorosi, A., and M.C. Centinio. 1997. Glaucony from the Eocene of the Isle of Wight (southern UK): Implications for basin analysis and sequence-stratigraphic interpretation. Journal of the Geological Society 154: 887–896.
Amorosi, A., R. Guidi, R. Mai, and E. Falanga. 2012. Glaucony from the Cretaceous of the sierra de Guadarrama (Central Spain) and its application in a sequence-stratigraphic context. International Journal of Earth Sciences 101: 415–427.
Amorosi, A., I. Sammartino, and F. Tateo. 2007. Evolution patterns of glaucony maturity: A mineralogical and geochemical approach. Deep Sea Research Part II: Topical Studies in Oceanography 54: 1364–1374.
Aubry, M.P. 1985. Northwestern European Paleogene magnetostatigraphy, biostatigraphy, and paleogeography: Calcareous nannofossil evidence. Geology 13: 198–202.
Ayres, M.A. 2006. Ostracod biostatigraphy of the Oligocene-Miocene (upper Waiatkin to lower Otakan) in southern New Zealand. New Zealand Journal of Geology and Geophysics 49: 359–373.
Baloumey, H.M. 2007. Iron-phosphorus relationship in the iron and phosphorite ores of Egypt. Geochemistry 67: 229–239.
Baldermann, A., M. Dietzel, V. Mavromatis, F. Mittermayr, L.N. Warr, and K. Wemm. 2017. The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: A case study of Upper Cretaceous shallow-water carbonates. Chemical Geology 453: 21–34.
Baldermann, A., L.N. Warr, G.H. Grathoff, and M. Dietzel. 2013. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast–Ghana marginal ridge. Clays and Clay Minerals 61: 258–276.
Banerjee, S., U. Bansal, K. Pande, and S.S. Meena. 2016b. Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation. Sedimentary Geology 331: 12–29.
Banerjee, S., U. Bansal, and A.V. Thotar. 2016a. A review on palaeogeographic implications and temporal variation in glaucony composition. Journal of Palaeogeography 5(1): 43–71.
Banerjee, S., S.L. Chattoraj, P.K. Saraswat, S. Dasgupta, and U. Sarkar. 2012b. Substrate control on formation and maturation of glauconites in the middle Eocene Harudi formation, western Kutch, India. Marine and Petroleum Geology 30: 144–160.
Banerjee, S., S.L. Chattoraj, P.K. Saraswat, D. Asadpura, and U. Sarkar. 2012a. The origin and maturation of lagoonal glauconites: A case study from the Oligocene Maniyara fort formation, western Kutch, India. Geological Journal 47: 357–371.
Banerjee, S., S. Farouk, E. Nagm, T.R. Choudhury, and S.S. Meena. 2018. High mg-glauconite in the Campanian Duwi formation of Abu Tartur plateau, Egypt and its implications. Journal of African Earth Sciences 156: 12–25.
Banerjee, S., S. Jeevanakumar, and P.G. Eriksson. 2013. Mg-rich ferric illite in marine transgressive and hightstand systems tracts: Examples from the Paleoproterozoic Semri group, Central India. Precambrian Research 162: 212–226.
Banerjee, S., S. Mondal, P.P. Chakraborty, and S.S. Meena. 2015. Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona formation, Chhatsigah basin, India. Precambrian Research 271: 33–48.
Bansal, U., S. Banerjee, and R. Nagendra. 2002b. Is the ratio of glauconite in Precambrian deposits related to its transformation to chloride? Precambrian Research 336. https://doi.org/10.1016/j.precamres.2019.105509.
Bansal, U., S. Banerjee, K. Pande, A. Arora, and S.S. Meena. 2017. The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch Basin, India) and its implications. Marine and Petroleum Geology 82: 97–117.
Bansal, U., S. Banerjee, K. Pande, and D.K. Ruidas. 2020a. Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada basin, central India. Geological Magazine 157: 233–247.
Bansal, U., S. Banerjee, D.K. Ruidas, and K. Pande. 2018. Origin and geochemical characterization of the glauconites in the Upper Cretaceous Lameta Formation, central India. Journal of Palaeogeography 7 (1): 99–116.
Bansal, U., K. Pande, S. Banerjee, R. Nagendra, and K.C. Jagadeesan. 2019. The timing of oceanic anoxic events in the Cretaceous succession of Cauvery Basin: Constraints from 40Ar/39Ar ages of glauconite in the Karai Shale Formation. Geological Journal 54: 308–315.
Beavington-Penney, S.J., V.P. Wright, and A. Racey. 2006. The middle Eocene Seeb formation of Oman: An investigation of aciclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings. Journal of Sedimentary Research 76: 1137–1161.
Bekker, A., N. Planavsky, B. Rasmussen, K. Krappez, A. Hofmann, J. Shack, O. Rouxel, and K. Konhauser. 2014. Iron formations: Their origins and implications for ancient seawater chemistry. In Treatise on Geochemistry. https://doi.org/10.1016/B978-0-08-095975-7.00719-1.
Bektemirova, T., A. Bakirov, R. Hu, H. He, Y. Cai, W. Tan, and A. Chen. 2018. Mineralogical evolution of the Paleogene formations in the Kyzyltokoy Basin, Kyrgyzstan: Implications for the formation of glauconite. Clays and Clay Minerals 66: 43–60.
Bernaola, G., J.J. Raceta, X. Orue-Etbegi, L. Alejandro, M. Martin-Rubio, J. Arostegui, and J. Dinanais-Turell. 2007. Evidence of an abrupt environmental disruption during the mid-Paleocene biotic event (Zumaia section, western Pyrenees). Geological Society of America Bulletin 119: 785–795.
Berner, R.A. 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research 51: 359–365.
Bornemann, A., P. Schulte, J. Sprong, E. Steurbaut, M.A. Youssef, and RP. Speijer. 2009. Latest Cenozoic 310 carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt). Journal of the Geological Society of London 166: 1135–1142.

Bosboom, R., O. Mandic, G. Dupont-Nivet, J.N. Prous, C. Ormukov, and J. Aminov. 2017. Late Eocene palaeogeography of the proto-Paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan). Geologische Gesellschaft, London, Special Publications 427: 505–588.

Boukhalfa, K., A. Amorosi, M. Soussi, and K.B. Ismail-Lattrâche. 2015. Glauconitic-rich strata from Oligo-Miocene shallow-marine siliciclastic deposits of the northern margin of Africa (Tunisia): Geochemical approach for basin analysis. Arabian Journal of Geosciences 8: 1731–1742.

Boukhalfa, K., M. Soussi, E. Ozcan, S. Banerjee, and A. Tounekti. 2020. The Oligo-Miocene siliciclastic foreland basin deposits of northern Tunisia: Stratigraphy, sedimentology and palaeogeography. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2020.103932.

Bralower, T.I., I. Premoli Silva, and M.J. Malone. 2002. New evidence for abrupt climate change in the Cretaceous and Paleogene: An ocean drilling program expedition to Shatsky rise, Northwest Pacific. Geological Society of America Today 12: 4–10.

Burst, J.F. 1958. “Glauconite” pellets: Their mineral nature and applications to stratigraphic interpretations. AAPG Bulletin 42: 310–327.

Campbell, H.J., P.B. Andrews, A.G. Beu, A.R. Edwards, N.D. Hornibrook, M.G. Laird, P.A. Maxwell, and W.A. Watters. 1988. Cretaceous–Cenozoic lithostratigraphy of the Chatham Islands. Journal of the Royal Society of New Zealand 18: 285–308.

Cecil, C.B. 1990. Paleoclimate controls on stratigraphic repetition of chemical and silicilastic rocks. Geology 18: 533–536.

Cecil, C.B., R.W. Stanton, S.G. Neuill, F.T. Dulong, L.F. Ruppert, and B.S. Pierce. 1985. Paleoclimate controls on late Paleozoic sedimentation and peat formation in the central Appalachian Basin (USA). International Journal of Coal Geology 5: 195–230.

Chatteraj, S.L., S. Banerjee, and P.K. Saraswati. 2009. Glauconites from the late Paleocene–early Eocene Naredi formation, western Kutch and their genetic implications. Journal of the Geological Society of India 73: 567.

Clark, M., and A. Robertson. 2005. Uppermost Cretaceous–lower Tertiary Ulukhla Basin, south-central Turkey: Sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sedimentary Geology 173: 15–51.

Clemmensen, A., and E. Thomsen. 2005. Palaeoenvironmental changes across the Danian–Selandian boundary in the North Sea Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 219: 351–394.

Cook, P.J., and M.W. McElhinny. 1979. A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Economic Geology 74: 315–330.

Cosović, V., and K. Drobre. 1995. Palaeoecological significance of morphology of orthophagminids from the Istrian peninsula (Croatia and Slovenia). Geobios 28: 93–99.

Cosović, V., K. Drobre, and A. Moro. 2004. Palaeoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian peninsula). Fosici 50: 61–75.

Cramer, B.S., M.P. Aubry, K.G. Miller, R.K. Olsson, J.D. Wright, and D.V. Kent. 1999. An exceptional chronologic, isotopic, and clay mineralogic record of the latest Paleocene thermal maximum, Bass River, NJ, ODP 174AX. Bulletin of the Société géologique de France 170: 883–897.

Cramer, B.S., J.D. Wright, D.V. Kent, and M.P. Aubry. 2003. Orbitally climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n). Palaeogeography 18 (4). https://doi.org/10.1029/2003PA000909.

Crouch, E.M., G.R. Dickens, H. Brinkhuis, M.P. Aubry, C.J. Hollis, K.M. Rogers, and H. Wisscher. 2003. The Apectodinium acme and terrestrial discharge during the Paleocene–Eocene thermal maximum: New palynological, geochemical and calcareous nanoplaston observations at Tawanai, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 194: 387–403.

Crouch, E.M., C. Heilmann-Clausen, H. Brinkhuis, H.E. Morgans, K.M. Rogers, H. Egger, and B. Schmitz. 2001. Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology 29: 315–318.

Czuryłowicz, K., A. Lejerzowicz, S. Kowalczyk, and A. Wysocka. 2014. The origin and depositional architecture of Paleogene quartz–glauconite sands in the Lubartów area, eastern Poland. Geological Quarterly 58: 125–144.

Dallanave, E., V. Bachtadse, E.M. Crouch, L. Tauxe, C.L. Shepherd, H.E. Morgans, C.J. Hollis, B.R. Hines, and S. Sugisaki. 2016. Constraining early to middle Eocene climate evolution of the Southwest Pacific and Southern Ocean. Earth and Planetary Science Letters 433: 380–392.

De Man, E., and S. Van Simaeys. 2004. Late Oligocene warming event in the southern North Sea Basin: Benthic foraminifera as paleotemperature proxies. Netherlands Journal of Geosciences 83: 227–239.

Dill, H.G., A. Köthe, F. Gramann, and R. Botz. 1996. A palaeoenvironmental and palaeoecological analysis of fine-grained Paleogene esuustrae deposits of North Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 124: 273–326.

Dx, G.R., and A. Parras. 2014. Integrated diagenetic and sequence stratigraphy of a late Oligocene–early Miocene, mixed-sediment platform (Austral Basin, southern Patagonia): Resolving base-level and paleoceanographic changes, and paleoauquifer characteristics. Sedimentary Geology 307: 17–33.

Durante, M.A.T., and M.L. Martinez. 2002. K–Ar dating and geological significance of clastic sediments of the Paleocene Sepuptura formation, Baja California, México. Journal of South American Earth Sciences 15: 725–730.

Dyypvik, H., L. Riber, F. Burca, D. Rüther, D. Jargvoll, J. Nagy, and M. Jochmann. 2011. The Paleocene–Eocene thermal maximum (PETM) in Svalbard — Clay mineral and geochemical signals. Palaeogeography, Palaeoclimatology, Palaeoecology 302: 156–169.

Egger, H., C. Heilmann-Clausen, and B. Schmitz. 2009. From shelf to abyss: Record of the Paleocene/Eocene boundary in the eastern Alps (Austria). Geologica Acta: an International Earth Science Journal 7: 215–227.

El Albani, A., A. Meunier, and F. Fünsich. 2005. Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France). Terra Nova 17: 537–544.

El-Habaek, G., M. Askalany, M. Galal, and M. Abdel-Hakeem. 2016. Upper Eocene glauconites from the Bahariya depression: An evidence for the marine regression in Egypt. Journal of African Earth Sciences 117: 1–11.

Ellison, R.A., J.R. Alli, N.M. Hine, and D.W. Jolley. 1996. Recognition of chron C25n in the upper Paleocene Unpnr formation of the London Basin, UK. Geological Society, London, Special Publications 101: 185–193.

Fernow, E., V. Vajda, C.B. Koch, B. Peukert-Ehrenbrink, and P.S. Willumsen. 2011. Multiproxy analysis of a new terrestrial and a marine Cretaceous–Paleogene (K–Pg) boundary site from New Zealand. Geochimica et Cosmochimica Acta 75: 657–672.

Fitch, F.J., P.J. Hooker, J.A. Miller, and N.R. Berereton. 1978. Glauconite dating of Paleocene–Eocene rocks from East Kent and the time-scale of Paleogene volcanism in the Northern Atlantic region. Journal of the Geological Society 135: 499–512.

Franzosi, C., L.N. Castro, and A.M. Celeda. 2014. Technical evaluation of glauconites as alternative potassium fertilizer from the Salamanca formation, Patagonia, Southwest Argentina. Natural Resources Research 23: 311–320.

Frieling, J., A.I. Jakovleva, G.R. Reichart, G.N. Aleksandrovna, Z.N. Gnibdenko, S. Schouten, and A. Slijus. 2014. Paleocene–Eocene warming and biotic response in the epicontinental west Siberian Sea. Geoilogy 42: 767–770.

Garnett, H., S. Bouhlé, and I. Jarvis. 2017. Geochemistry and depositional environments of Paleocene–Eocene phosphorites: Melaluca group, Tunisia. Journal of African Earth Sciences 134: 704–736.

Gavrilov, Y.O., E.A. Shcherbinina, O.V. Golovanova, and B.G. Pokrovski. 2013. The late Cenomanian palaeoecological event (OA2) in the eastern Caucasian basin of northern Peri-Tethys. Lithology and Mineral Resources 48: 457–488.
Zachos, J.C., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.

Zarasvandi, A., Z. Fereydouni, H. Pourkaseb, M. Sadeghi, B. Mokhtari, and B. Alizadeh. 2019. Geochemistry of trace elements and their relations with organic matter in Kuh-e-Sefid phosphorite mineralization, Zagros Mountain, Iran. Ore Geology Reviews 104: 72–87.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.