The Water Footprint of Staple Crop Trade
under Climate and Policy Scenarios

Supplementary Information

Megan Konar*, Jeffrey J. Reimer², Zekarias Hussein³, and Naota Hanasaki⁴

¹Civil and Environmental Engineering Department, University of Illinois at Urbana-Champaign ²Department of Applied Economics, Oregon State University ³Environmental Protection Agency, Washington D.C. ⁴National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan

This document includes supplementary data, methods, and results. Terms, abbreviations and symbols are the same as in the main text.
S1 H08 Model

In this section, we provide additional information on the H08 model. Table S1 lists the 14 global climate models that were used to force the H08 model. Table S2 provides the range of yield shock values by country and crop as output from H08. Table S3 provides the mean shock values by country and crop as output from H08. When H08 output is not available, yield shock values from Hertel et al. (2010) were used. Table S4 highlights the importance of the Y_{min} threshold in calculating the corn yield shock for the USA.

Table S1: List of the 14 global climate models (GCMs) that were used to obtain projections of evapotranspiration and yield in the H08 global hydrology model.

Number	Global Climate Model
1	UKMO-HadGEM1
2	ECHAM5/MPI-OM
3	UKMO-HadCM3
4	GFDL-CM2.1
5	CGCM3.1 (T47)
6	CSIRO Mk3.0
7	CCSM3
8	MIROC3.2 (medres)
9	GFDL-CM2.0
10	MRI-CGCM2.3.2
11	CNRM-CM3
12	INM-CM3.0
13	PCM
14	IPSL-CM4
Table S2: Range of yield shocks by country and crop. Starred values indicate that projections from Hertel et al. (2010) were used. Values are reported in percentage terms [%].

Country	Maize	Rice	Soy	Wheat
Albania	−5, 19*	−5, 19*	−10, 2	
Argentina	[−16, 4]	−19, 9*	−21, 4	−21, 2
Australia	[−13, 5]	−5, 19*	−10, 14*	−21, 0
Austria	−5, 19*	−5, 19*	−17, −2	
Bangladesh	−10, 1	−10, 4*	−47, 16	
Belgium	−5, 19*	−5, 19*	−39, −10	
Bolivia	[−13, 1]	−5, 0	−8, 2	−10, 1
Botswana	[−22, 16]	−15, 9*	−15, 9*	−15, 9*
Brazil	[−5, 1]	−6, −1	−4, 0	−18, −1
Bulgaria	−5, 19*	−5, 19*	−14, 0	
Canada	[−100, 116]	−10, 4*	0, 24*	−31, 19
Chile	[−80, −19]	−10, 4*	−10, 4*	−16, −5
China	[4, 55]	−7, 0	147, 230	−17, −2
Colombia	[−4, 0]	−5, −2	0, 14*	0, 14*
Croatia	−5, 19*	−5, 19*	−18, −5	
Cyprus	−5, 19*	−5, 19*	−5, 19*	
Czech Republic	−5, 19*	−5, 19*	−45, −3	
Denmark	−5, 19*	−5, 19*	−5, 19*	
Ecuador	[−4, 3]	−6, −1	−10, 4*	−10, 4*
Estonia	−5, 19*	−5, 19*	−5, 19*	
Finland	−5, 19*	−5, 19*	−5, 19*	
France	−5, 19*	−5, 19*	−31, −7	
Germany	−5, 19*	−5, 19*	−29, −5	
Greece	[−54, 15]	−5, 19*	−5, 19*	−13, −5
Hong Kong	−10, 4*	−10, 4*	−10, 4*	
Hungary	−5, 19*	−5, 19*	−13, −1	
India	[−8, 2]	−4, 0	−4, 1	−42, 17
Indonesia	[−3, 1]	−3, 0	0, 14*	0, 14*
Iran Islamic Re	[−33, −5]	−5, 9*	−5, 9*	−11, −2
Ireland	−5, 19*	−5, 19*	−5, 19*	
Italy	[−12, 19]	−5, 19*	−5, 19*	−23, −3
Japan	[−4, 13]	2, 16*	−20, −1	
Latvia	−5, 19*	−5, 19*	−12, 10	
Lithuania	−5, 19*	−5, 19*	−7, 7	
Luxembourg	[−5, 19]	−5, 19*	−5, 19*	
Country	Values			
----------------------	----------------			
Madagascar	[-16, 3]			
Malawi	[-3, 0]			
Malaysia	[-15, 1]			
Malta	[-5, 19]			
Mauritius	[-15, 9]			
Mexico	[-8, -1]			
Morocco	[-5, 9]			
Mozambique	[-4, 1]			
Netherlands	[-5, 19]			
New Zealand	[-5, 19]			
Nigeria	[-1, 0]			
Pakistan	[-80, 1]			
Peru	[-4, 1]			
Philippines	[-9, 2]			
Poland	[-5, 19]			
Portugal	[-25, -2]			
Republic of Korea	[-5, 32]			
Romania	[-100, 14]			
Russian Federation	[-68, 38]			
Singapore	[5, 19]			
Slovakia	[-5, 19]			
Slovenia	[-5, 19]			
South Africa	[-13, 11]			
Spain	[-47, -10]			
Sri Lanka	[-38, 3]			
Sweden	[-5, 19]			
Switzerland	[-5, 19]			
Taiwan	[5, 19]			
Tanzania	[-2, 1]			
Thailand	[-4, 0]			
Tunisia	[-5, 9]			
Turkey	[348, 1240]			
Uganda	[-2, 2]			
United Kingdom	[-5, 19]			
United States of America	[15, 116]			
Uruguay	[-10, 2]			
Venezuela	[-9, 0]			
Viet Nam	[-21, -2]			
Zambia	[-1, 1]			
Country	Range 1	Range 2	Range 3	Range 4
------------	---------	---------	---------	---------
Zimbabwe	$[-10, 10]$	$[-15, 9]^*$	$[-15, 9]^*$	$[-63, -26]$
Table S3: Mean of yield shocks by country and crop. Starred values indicate that projections from Hertel et al. (2010) were used. Values are reported in percentage terms [%].

Country	Maize	Rice	Soy	Wheat
Albania	7*	7*		−6
Argentina	−3	−6	−4	−5
Australia	−4	7*	2*	−9
Austria	7*	7*		−8
Bangladesh	−3	−3*	−15	
Belgium	7*	7*		−19
Bolivia	−4	−1	−2	−3
Botswana	−5	−3*	−3*	−3*
Brazil	−2	−3	−3	−9
Bulgaria	7*	7*		−7
Canada	463	−3*	12*	5
Chile	−57	−3*	−3*	−9
China	45	−3	190	−9
Colombia	−2	−3	7*	7*
Croatia	7*	7*		−12
Cyprus	7*	7*		7*
Czech Republic	7*	7*		−10
Denmark	7*	7*		7*
Ecuador	0	−2	−3*	−3*
Estonia	7*	7*		7*
Finland	7*	7*		7*
France	7*	7*		−15
Germany	7*	7*		−13
Greece	−21	7*	7*	−8
Hong Kong	−3*	−3*	−3*	
Hungary	7*	7*		−8
India	−2	−2	−1	−20
Indonesia	−1	−2	7*	7*
Iran Islamic Re	−18	2*	2*	−7
Ireland	7*	7*		
Italy	1	7*	7*	−13
Japan	5	9*		−7
Latvia	7*	7*		1
Lithuania	7*	7*		1
Luxembourg	7*	7*		7*
Country	Change	Δ4	Δ3	Δ2
---------------------	--------	-----	-----	-----
Madagascar	-2	-6	-3*	-3*
Malawi	-1	-3*	-3*	-3*
Malaysia	-5	-3*	-3*	-3*
Malta	7*	7*	7*	7*
Mauritius	-3*	-3*	-3*	-3*
Mexico	-3	-5	-3*	-8
Morocco	2*	2*	-10	
Mozambique	-1	-2	-3*	-3*
Netherlands	7*	7*	-20	
New Zealand	7*	2*	7*	
Nigeria	0	0	-3*	-3*
Pakistan	-27	-5*	-3*	-5
Peru	-3	-7	7*	-42
Philippines	-1	-2	-3*	-3*
Poland	7*	7*	-8	
Portugal	-11	7*	7*	-5
Republic of Korea	23	12*	12*	
Romania	-55	7*	7*	-7
Russian Federation	-15	7*	7*	-7
Singapore	12*	12*	12*	
Slovakia	7*	7*	-8	
Slovenia	7*	7*	-8	
South Africa	-3	-8*	-8*	-6
Spain	-25	7*	7*	-9
Sri Lanka	-13	-3*	-3*	-3*
Sweden	7*	7*	7	
Switzerland	7*	7*	-9	
Taiwan	12*	12*	12*	
Tanzania	0	-3*	-3*	-6
Thailand	-1	-3	-3*	-3*
Tunisia	2*	2*	-10	
Turkey	748	2*	2*	-6
Uganda	0	-2	-1	-3*
United Kingdom	7*	7*	-19	
United States of America	70	8	39	-6
Uruguay	-6	-4	-3*	-4
Venezuela	-3	-1	-3*	-3*
Viet Nam	-8	-4	-3*	-3*
Zambia	0	-3*	-3*	-16
Zimbabwe	−1	−3*	−3*	−52
Table S4: Corn yield change [%] in the United States under different Y_{min} [kg ha$^{-1}$] threshold values.

	100	500	1,000
UKMO-HadGEM1	69%	48%	26%
ECHAM5/MPI-OM	90%	67%	42%
UKMO-HadCM3	98%	74%	48%
GFDL-CM2.1	60%	41%	22%
CGCM3.1 (T47)	73%	52%	31%
CSIRO Mk3.0	44%	26%	10%
CCSM3	40%	23%	6%
MIROC3.2 (medres)	45%	27%	9%
GFDL-CM2.0	97%	73%	47%
MRI-CGCM2.3.2	116%	85%	57%
CNRM-CM3	69%	49%	27%
INM-CM3.0	59%	40%	19%
PCM	87%	64%	40%
IPSL-CM4	87%	64%	40%
Mean	73%	52%	30%
Median	71%	50%	29%
Minimum	40%	23%	6%
Maximum	116%	85%	57%
S2 GTAP Model

In this section, we provide additional details on the GTAP trade model. Table S5 lists the 76 countries included in the model. Note that some countries are lumped into ‘Rest of World (ROW)’. We have provided the list of countries in ROW in Table S6. The yield shock for ROW was obtained by taking the mean across all ROW countries with projections.
Table S5: Countries in the GTAP trade database.

Number	Country Name	Number	Country Name
1	Albania	39	Malta
2	Argentina	40	Mauritius
3	Australia	41	Mexico
4	Austria	42	Morocco
5	Bangladesh	43	Mozambique
6	Belgium	44	Netherlands
7	Bolivia	45	New Zealand
8	Botswana	46	Nigeria
9	Brazil	47	Pakistan
10	Bulgaria	48	Peru
11	Canada	49	Philippines
12	Chile	50	Poland
13	China	51	Portugal
14	Colombia	52	Republic of Korea
15	Croatia	53	Romania
16	Cyprus	54	Russian Federation
17	Czech Republic	55	Singapore
18	Denmark	56	Slovakia
19	Ecuador	57	Slovenia
20	Estonia	58	South Africa
21	Finland	59	Spain
22	France	60	Sri Lanka
23	Germany	61	Sweden
24	Greece	62	Switzerland
25	Hong Kong	63	Taiwan
26	Hungary	64	Tanzania
27	India	65	Thailand
28	Indonesia	66	Tunisia
29	Iran Islamic Re	67	Turkey
30	Ireland	68	Uganda
31	Italy	69	United Kingdom
32	Japan	70	United States of America
33	Latvia	71	Uruguay
34	Lithuania	72	Venezuela
35	Luxembourg	73	Viet Nam
36	Madagascar	74	Zambia
37	Malawi	75	Zimbabwe
38	Malaysia	76	ROW
Table S6: List of countries in the ‘Rest of World (ROW)’ in the GTAP database.

Number	Country
1	Mongolia
2	Cambodia
3	Laos
4	Nepal
5	Afghanistan
6	Paraguay
7	Costa Rica
8	Guatemala
9	Honduras
10	Nicaragua
11	Panama
12	El Salvador
13	Belize
14	Jamaica
15	Dominican Republic
16	Norway
17	Poland
18	Kyrgyzstan
19	Azerbaijan
20	Georgia
21	Kuwait
22	Saudi Arabia
23	Egypt
24	Cameroon
25	Ghana
26	Senegal
27	Namibia
S3 Value of food trade

Table S7 presents some of the most significant price changes under the trade liberalization scenario. Japan and China’s imports are some of the most dramatic changes under the trade liberalization scenario. We present changes in imports in percentage terms for Japan in Table S8 and China in Table S9.

Table S7: Local price change under trade policy liberalization (free on board, % change).

Commodity	Argentina	Australia	Brazil	Japan	South Korea	USA
Rice	1.4	25.1	0.5	-13.1	-46.7	25.1
Wheat	1.9	1.1	0.7	-11.4	-13.8	1.4
Maize	1.6	2.6	0.9	-6.6	-24.5	1.3
Other grains	1.0	0.9	0.5	-5.0	-14.1	1.1
Soybeans	2.8	0.8	1.5	-5.0	-44.2	1.3

Table S8: Japan’s % change in imports from this country.

Commodity	Australia	Canada	China	USA
Rice	348.7	9.4	1926.0	1552.3
Wheat	68.6	55.1	0.8	143.5
Maize	37.1	17.1	-6.6	2.4

Table S9: China’s % change in imports from this country.

Commodity	Argentina	Brazil	USA
Soybeans	280.3	412.0	16.7

The value [$USD] of aggregate crop trade across scenarios is provided in Fig S1. In the baseline there is approximately $30.2 billion worth of staple crop trade. If all policy barriers to trade are removed (free trade scenario), this rises by 31% to $39.6 billion worth of trade. The increase in trade occurs because of new opportunities for spatial arbitrage. Removing trade barriers lowers prices in importing countries, and raises prices in exporting countries.

If, by contrast, only the yield shocks occur, then there is also an increase in the value of trade relative to the baseline. In particular, the value of trade rises by 17.5%, to $35.5 billion worth of trade, on average. With greater supply, there tends to be a lower price for importers, leading to increased imports.

If trade liberalization and the climate scenarios occur simultaneously, the two effects compound each other, increasing trade by 48.7% over the baseline to an average $44.9 billion worth of trade. The scenario with both trade liberalization and yield shocks exhibits more
uncertainty than does the scenario with trade liberalization alone. This is due to the range of yield outcomes across the 14 climate change scenarios. Note that this uncertainty is offset by the large increase in trade that would occur with trade liberalization.

The value of crop-specific trade across scenarios is provided in Fig S2. This allows for a breakdown of the aggregate figures provided above. In percentage terms, the trade liberalization policy scenario (free trade) has the greatest impact on rice. Should all tariffs and subsidies be eliminated, there would be an approximately 300% growth in rice trade value. This increase is followed by trade value increases of 15% for soy, 11% for wheat, and 5% for corn. The successively lower increases are due to lower initial trade distortions or barriers for these commodities. Rice is a particularly sensitive food commodity in a number of countries, and countries have erected high import barriers so as to protect domestic producers from foreign competition.

There is also an increase in trade value due to yield effects. This is largest for wheat (23.9%), followed by corn (17.5%), rice (14.7%), and finally by soy (2.2%). When the policy change is combined with the yield effects, the trade value effect for all commodities except for soy are intensified. This is especially true for rice, which has a mean 325% increase in trade value over the baseline value.
Base Policy Yield All
3
3.2
3.4
3.6
3.8
4
4.2
4.4
4.6
4.8

Figure S1: The aggregate value [USD$] of staple crop trade across scenarios.
Figure S2: Crop-specific value [USD$] trade across scenarios. Note that the wheat trade exhibits the highest value, followed by rice.
S4 Mass of food trade

An alternative means of evaluating the scenarios is through physical quantities. The mass [metric tons] of aggregate crop trade across scenarios is provided in Fig S3. In the base scenario, the mass of trade in the four commodities is approximately 260 million metric tons. When tariffs and subsidies are eliminated, prices for most importers fall, leading to a rise in the mass of agricultural trade. Under full trade liberalization trade rises by 33.4% to 346 million tons. The mass of food trade increases across all climate scenarios. Globally, yields increase, which decreases the price and leads to more agricultural trade. The rise under the climate scenarios is more modest than under trade liberalization, however, climbing 10.6% to 287 million tons.

If both the policy and climate scenarios prevail, there is a much larger (46.0%) rise in physical quantities, quite similar to the change in value (48.7%). The difference is due to the price changes for individual commodities that additionally influence the change measured in value terms. As with trade values, there is also considerable uncertainty regarding the potential increase in the physical mass of trade. However, the mass of food trade clearly increases as compared with the baseline.

The mass [metric tons] of crop-specific trade across scenarios is provided in Fig S4. Under most of the scenarios there is a positive change in trade volume for all crops, but rice experiences by far the largest proportionate change in the case of the trade liberalization scenario, as well as the combined trade liberalization and climate change scenario. As mentioned above, this is due to the existing high policy barriers to rice trade that exist at present. While trade volumes generally increase under the yield change scenarios, there is a potential decrease in trade volume with some of the climate change scenarios, for the case of corn and wheat.
Figure S3: The aggregate mass [metric tons] of staple crop trade across scenarios. The aggregate food trade mass is driven by wheat.
Figure S4: Crop-specific mass [metric tons] trade across scenarios. Note that rice does not show increases under the climate-only scenario, but is most impacted under the free trade scenario.
S5 Water footprint of food trade

Here, we provide additional water footprint results. Specifically, we map changes in net total virtual water trade by scenario in Fig S5. Additionally, we rank the top net virtual water traders in Tables S10 and S11.
Figure S5: Maps of changes in net total virtual water trade [km3] for each country from the baseline scenario to the (A) policy only, (B) climate change only, and (C) climate change and policy scenario. Warm shades indicate reductions in net trade, while cool shades show positive changes to net trade. Countries that are shaded white indicates that model results are not available. Note that the ranges on the color bars are different across scenarios.
Table S10: Top net virtual water traders [km3] across scenarios.

Positive Baseline Policy Yield All	Country	Volume								
Rank										
1	USA	62.56	USA	79.47	USA	87.76	USA	102.97		
2	Argentina	41.46	Argentina	46.53	Canada	58.62	Canada	57.80		
3	Brazil	33.37	Brazil	44.05	Argentina	38.34	Argentina	31.31		
4	Canada	27.25	Canada	31.01	Brazil	26.49	Brazil	21.09		
5	Australia	13.68	Australia	15.94	Australia	9.51	Australia	10.78		
6	France	6.13	India	6.29	France	3.12	France	4.16		
7	India	5.76	France	5.42	Pakistan	2.59	Pakistan	1.72		
8	Russia	3.06	Russia	3.96	Russia	2.44	Russia	1.67		
9	Pakistan	3.06	Thailand	3.32	Hungary	1.60	Hungary	1.52		
10	Hungary	2.55	Hungary	2.75	India	1.52	India	1.13		

Negative Baseline Policy Yield All	Country	Volume	Country	Volume	Country	Volume	Country	Volume
Rank								
1	Japan	-22.25	Japan	-54.42	Japan	-32.10	Japan	-32.10
2	Iran	-15.08	Korea	-21.40	Iran	-16.16	Mexico	-15.38
3	China	-14.01	Iran	-14.87	Mexico	-12.87	Iran	-15.10
4	Mexico	-10.88	Mexico	-11.01	Spain	-10.75	Netherlands	-10.93
5	Netherlands	-10.87	Netherlands	-10.95	Netherlands	-10.74	China	-10.74
6	Spain	-9.43	Italy	-9.56	Italy	-10.13	Spain	-10.62
7	Italy	-8.83	Spain	-9.42	Korea	-6.43	Italy	-9.36
8	Philippines	-5.78	Philippines	-5.88	Indonesia	-6.23	Indonesia	-6.65
9	Korea	-5.77	Morocco	-5.86	Philippines	-5.51	UK	-5.65
10	Indonesia	-5.76	Indonesia	-5.82	UK	-4.86	Korea	-5.50
Table S11: Top net blue virtual water traders [km3] across scenarios.

Positive Baseline Country	Volume	Policy Country	Volume	Yield Country	Volume	All Country	Volume
Rank							
1	USA	9.96	USA	14.54	USA	12.08	USA
2	Pakistan	3.28	China	5.17	Pakistan	2.82	Pakistan
3	India	1.72	Pakistan	2.75	Argentina	1.53	Argentina
4	Argentina	1.67	India	1.88	China	1.32	Canada
5	Australia	1.19	Argentina	1.81	Canada	1.18	Australia
6	Canada	0.58	Australia	1.77	Australia	0.85	India
7	Morocco	0.37	Thailand	1.03	India	0.61	China
8	Uruguay	0.20	Canada	0.68	Morocco	0.36	Morocco
9	Thailand	0.16	Uruguay	0.27	Uruguay	0.15	Uruguay
10	Russia	0.12	Brazil	0.25	Thailand	0.09	Turkey

Negative Baseline Country	Volume	Policy Country	Volume	Yield Country	Volume	All Country	Volume
Rank							
1	Japan	-2.27	Japan	-10.82	Japan	-2.96	Japan
2	Mexico	-1.30	Korea	-4.40	Mexico	-1.23	Mexico
3	UK	-0.87	Mexico	-1.25	UK	-0.95	UK
4	Philippines	-0.85	Italy	-0.98	Italy	-0.81	Netherlands
5	Korea	-0.73	UK	-0.91	Korea	-0.72	Italy
6	Italy	-0.70	Philippines	-0.86	Netherlands	-0.67	Spain
7	Indonesia	-0.66	Indonesia	-0.67	Philippines	-0.65	Indonesia
8	Netherlands	-0.50	Spain	-0.53	Spain	-0.64	Korea
9	Malaysia	-0.48	Netherlands	-0.51	Indonesia	-0.55	Philippines
10	Iran	-0.45	Belgium	-0.45	Malaysia	-0.46	Malaysia
S6 Global water savings

In this section, we present additional results on the global water savings (GWS) of staple crop trade. Specifically, we plot total GWS of aggregate crop trade in Fig S6. We present total GWS by crop and scenario in Fig S7. In Fig S8 we map changes in total GWS by country and scenario. Fig S9 maps changes in link-level total GWS. Table S14 lists the links that save and lose the most water under the ‘Baseline’ and ‘All’ scenarios.
Figure S6: Global water savings across scenarios. Note that aggregate global water savings is highest under climate change when free trade is enabled.
Figure S7: Crop-specific global water savings across scenarios. Note that rice and soy exhibit large water-efficiency gains in trade under free trade policies.
Figure S8: Maps of changes in total global water savings [km3] for each country from the baseline scenario to the (A) policy only, (B) climate change only, and (C) climate change and policy scenario. Warm shades indicate negative changes to global water savings, while cool shades show positive changes to global water savings. Countries that are shaded white indicates that model results are not available. Note that the ranges on the color bars are different across scenarios.
Table S12: Top contributors to total global water savings [km^3] across scenarios.

Positive	Baseline	Policy	Yield	All				
Rank	Country	Volume	Country	Volume	Country	Volume	Country	Volume
1	USA	30.91	USA	37.38	USA	64.92	USA	73.94
2	Canada	28.96	Canada	36.83	Canada	41.56	Canada	50.75
3	Argentina	22.98	Argentina	26.25	Argentina	23.56	Argentina	25.15
4	France	14.40	France	14.73	France	16.08	Australia	13.27
5	Australia	9.75	Australia	12.91	Australia	10.44	France	13.23
6	Germany	4.65	China	8.29	Germany	7.28	China	8.37
7	South Africa	3.34	Germany	5.35	South Africa	3.64	Germany	5.85
8	China	1.60	South Africa	3.45	China	2.85	Turkey	4.10
9	UK	0.92	Turkey	1.58	Turkey	2.77	South Africa	
10	Hungary	0.90	Hungary	1.27	Sweden	2.09	Denmark	3.15

Negative	Baseline	Policy	Yield	All				
Rank	Country	Volume	Country	Volume	Country	Volume	Country	Volume
1	Brazil	-4.98	Thailand	-1.94	Brazil	-6.20	Thailand	-2.95
2	Morocco	-0.77	Pakistan	-0.95	Pakistan	-1.71	Brazil	-2.89
3	Pakistan	-0.63	Morocco	-0.73	Morocco	-0.74	Pakistan	-1.28
4	India	-0.34	India	-0.41	India	-0.69	Morocco	-0.74
5	Russia	-0.23	Malaysia	-0.35	Portugal	-0.17	India	-0.72
6	Portugal	-0.18	Tunisia	-0.18	Botswana	-0.13	Malaysia	-0.64
7	Botswana	-0.09	Uruguay	-0.17	Mauritius	-0.09	Korea	-0.23
8	Mauritius	-0.08	Portugal	-0.17	Russia	-0.06	Portugal	-0.18
9	Greece	-0.07	Greece	-0.08	Tanzania	-0.05	Botswana	-0.11
10	Indonesia	-0.06	Indonesia	-0.07	Mozambique	-0.04	Tanzania	-0.10
Positive Baseline Policy Yield All	Positive Baseline Policy Yield All							
-----------------------------------	-----------------------------------							
Rank	Country	Volume	Country	Volume	Country	Volume	Country	Volume
1	Argentina	10.21	Argentina	12.77	USA	20.74	USA	24.05
2	Brazil	8.25	Brazil	11.60	Canada	11.04	Canada	12.47
3	USA	7.96	USA	10.80	Argentina	9.68	Argentina	11.52
4	Canada	6.48	Canada	7.66	France	6.12	Brazil	9.26
5	France	5.17	France	4.46	Brazil	6.10	China	5.29
6	Australia	3.09	Australia	4.12	Australia	3.06	France	4.74
7	Germany	1.22	China	3.71	Turkey	1.92	Australia	4.09
8	Hungary	0.82	Germany	1.21	Germany	1.92	Turkey	2.83
9	South Africa	0.61	Hungary	0.99	China	1.61	Germany	1.45
10	Turkey	0.43	Turkey	0.71	Hungary	0.77	Hungary	0.87

Negative Baseline Policy Yield All	Negative Baseline Policy Yield All							
Rank	Country	Volume	Country	Volume	Country	Volume	Country	Volume
1	Pakistan	-0.86	Pakistan	-1.20	Pakistan	-2.77	Pakistan	-2.24
2	India	-0.68	India	-0.74	India	-0.60	India	-0.59
3	Morocco	-0.53	Morocco	-0.46	Morocco	-0.51	Morocco	-0.47
4	Thailand	-0.19	Uruguay	-0.14	Uruguay	-0.07	Thailand	-0.15
5	Uruguay	-0.08	Thailand	-0.09	Thailand	-0.06	Uruguay	-0.11
6	Indonesia	-0.05	Indonesia	-0.06	Portugal	-0.03	Korea	-0.09
7	Chile	-0.03	Chile	-0.03	Indonesia	-0.02	Indonesia	-0.04
8	Portugal	-0.02	Portugal	-0.02	Korea	-0.01	Portugal	-0.03
9	Greece	-0.02	Greece	-0.02	Venezuela	-0.01	Sri Lanka	-0.01
10	Peru	-0.01	Sri Lanka	-0.02	Mozambique	-0.01	Venezuela	-0.01
Figure S9: Maps of changes in link-level total global water savings [km3] from the baseline scenario to the climate change and policy scenario. (A) Blue links indicate positive changes to global water savings, while (B) red links illustrate negative changes in global water savings.
Table S14: Top 10 links that save and lose the most water under the ‘Baseline’ and ‘All’ scenarios for aggregate crop trade. All values are in km³. Note that ‘Export’ refers to the country of export and ‘Import’ refers to the country of import. ‘ROW’ indicates ‘Rest of World’.

Positive Baseline		All				
Rank	Volume	Export	Import	Volume	Export	Import
1	12.5	Canada	Venezuela	19.9	USA	Japan
2	10.9	Argentina	Brazil	18.5	Canada	Venezuela
3	7.7	USA	Japan	16.2	USA	ROW
4	7.6	France	Morocco	13.4	Canada	Morocco
5	5.2	Brazil	China	10.4	Argentina	Brazil
6	5.1	USA	Venezuela	7.9	USA	Mexico
7	4.4	Canada	Morocco	7.4	Canada	ROW
8	4.3	Argentina	Morocco	6.2	USA	Venezuela
9	3.2	Germany	Morocco	5.9	USA	Morocco
10	3.1	Argentina	Peru	5.5	France	Morocco

Negative Baseline		All				
Rank	Volume	Export	Import	Volume	Export	Import
1	-3.3	Brazil	Spain	-3.1	Brazil	Iran
2	-3.2	Brazil	Iran	-2.1	Brazil	Spain
3	-1.6	Brazil	Netherlands	-2.0	USA	Spain
4	-1.0	Brazil	Italy	-1.9	Thailand	Korea
5	-1.0	Brazil	Germany	-1.8	USA	Italy
6	-1.0	USA	Spain	-1.3	Brazil	Netherlands
7	-0.9	USA	Italy	-1.0	Canada	UK
8	-0.9	Argentina	Spain	-0.9	Argentina	Chile
9	-0.9	Argentina	Chile	-0.8	Thailand	Italy
10	-0.7	Brazil	France	-0.8	Brazil	Italy

References

T. Hertel, M. Burke, D. Lobell, The poverty implications of climate-induced crop yield changes by 2030, Global Environmental Change 20 (2010) 577585, doi: 10.1016/j.gloenvcha.2010.07.001.