Research paper

An analysis of variability in genome organisation of intracellular calcium release channels across insect orders

Bartlomiej J. Troczka, Ewan Richardson, Rafael A. Homem, T.G. Emyr Davies

Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK

1. Introduction

Recent advances in sequencing technologies have led to a rapid increase in the number of publicly available genomes, including those of insects. The insect genomes have been found to be incredibly diverse in size; the smallest genome, that of Beluga antarctica, comprising only 99 megabases (Kelley et al., 2014) whilst the ~6.5 gigabase genome of Locusta migratoria is the largest genome within the animal kingdom (Wang et al., 2014). This diversity in genome size is also reflected in gene architecture complexity; in other words, despite a high degree of similarity at the protein level, the genomic architecture of genes can vary greatly between insect orders. Recent genome annotation efforts suggest that insect ryanodine receptors (RyRs) are a classic example of this type of complexity e.g. the number of exons present within this gene can vary from 26 in the fruit fly D. melanogaster (Takeshima et al., 1994) to 55 in the red flour beetle T. castaneum (Liu et al., 2014) and 98 in aphids (e.g. Myzus persicae and Acrystosiphon pisum) (Troczka et al., 2015a; Dale et al., 2010).

Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) are large and complex calcium release channels; whilst RyRs are primarily located in the endo (sarco) plasmatic reticulum of muscle cells, IP3Rs and RyRs are also found in many other cell types (Foskett et al., 2007; Hamilton and Serysheva, 2009). Both types of channels are inherently involved in the release of Ca\(^{2+}\) from internal stores - however, each channel has a distinct biological function; RyRs are involved in the regulation of calcium release during excitation-contraction coupling in muscle tissues and are primarily activated either by free Ca\(^{2+}\) or direct interaction with Cav1.2 located in the plasma membrane (depending on channel isoform) (Fill and Copello, 2002), whereas IP3Rs are involved in complex spatio-temporal Ca\(^{2+}\) dynamics that have been implicated in a wide variety of biological functions from gene expression and apoptosis to learning and memory, and are primarily activated by the secondary messenger inositol 1,4,5-trisphosphate (IP3) (Foskett et al., 2007).

Partly due to the effectiveness and consequent commercial success of diamide insecticides, namely flubendiamide and chlorantraniliprole, which act as selective activators of insect RyRs (Cordova et al., 2006; Ebbinghaus-Kintscher et al., 2007), these channels have recently been receiving a considerable amount of attention from the scientific community, especially from researchers interested in understanding the mechanisms underlying the development of diamide resistance. Consequently, the number of RyR cDNAs being sequenced and cloned from
2. Materials and methods

2.1. In silico annotation and data mining

26 insect species from 5 insect orders with publicly available genomes (Diptera, Coleoptera, Hemiptera, Hymenoptera, Lepidoptera), 3 representatives of other insect orders (Blattellidae, Locusta, Phthiraptera) and one outlying aracine species (Tetranychus urticae) of the order Trombidiiformes were included in the study (for a list of genome projects used for data generation see Appendix A). For each of the 5 main insect orders studied, a ‘reference species’ sequence was chosen to BLAST against the other available genomes within that particular order. The choice of ‘reference species’ sequence was based on a previous cloning and annotation of the sequence and the overall quality of the available genome. In the case of RyR the 5 reference species were: Dipteran = D. melanogaster, Hemipteran = Myzus persicae, Coleopteran = T. castaneum, Hymenopteran = Apis mellifera, Lepidopteran = Bombyx mori. For the IP3R, D. melanogaster and T. castaneum IP3R genes were the only sequences available to be used as a reference. PCR validation of Hymenopteran and Hemipteran IP3R genes was carried out to confirm the automated annotations. Three additional species, Blattella germanica, Locusta migratoria and Pediculus humanus corporis, were chosen for analysis based on the ‘completeness’ of their RyR genomic region, low contig fragmentation and few intra-contig gaps, determined by tblastn results against the WGS contig database with a reference RyR sequence. Relevant contigs were downloaded from the NCBI database and manually curated using Geneious software v. 8.1.3 (Biomatters, Ltd., New Zealand). Translated exon sequences from the ‘reference species’ were blasted against databases created in Geneious using the tblastn algorithm. Megablast was used when DNA sequences were compared. Multiple sequence alignments were done using the MAFFT plugin in Geneious.

Splign (https://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi) (Kapustin et al., 2008) and manual curation was used to map intron-exon junctions, using as a curation guide the sequences of the most closely related reference species. Predicted RyR ORFs were extracted from the genomic sequence and validated with multiple alignments against a database of 25 manually curated insect and mammalian RyR sequences obtained from the NCBI database (see Appendix B). Gene structure graphs were generated using WebScipio (http://www.webscipio.org/) (Hatje et al., 2011). A web version of GenePainter

Table 1

Summary of annotated sequences for ryanodine receptors.

Order	Species	Exon	Accession no.	Protein (AA)	Gene (bp)	Genome (Mb)
Diptera	Anopheles gambiae (African malaria mosquito)	29	XP_318561	5109	29,159	265.027
	Ceratitis capitata (Mediterranean fruit fly)	31	XP_012158404	5140	38,927	479.048
	Drosophila melanogaster (fruit fly)	26	NP_001246211	5134	24,856	143.726
	Musca domestica (house fly)	30	XP_011296550	5127	71,276	750.404
	Belda antarctica (Antarctic midge)	28	5098	21,215	89.583	
Hymenoptera	Apis mellifera (honey bee)	54	5107	30,266	250.287	
	Bombus terrestris (buff-tailed bumblebee)	54	XP_012175586	5108	37,861	248.654
	Nasonia vitripennis (jewel wasp)	56	XP_00342568	5099	30,168	295.781
	Megachile rotundata (alitla leafcutting bee)	55	5109	30,560	272.661	
	Harpegnathos saltator (Jerdon’s jumping ant)	54	5101	41,561	294.466	
Coleoptera	Tribolium castaneum (red flour beetle)	54	NP_001308588	5094	97,420	165.944
	Dendroctonus ponderosae (mountain pine beetle)	70	5137	50,615	252.848	
	Anoplophora glabripennis (Asian longhorned beetle)	63	5091	30,477	707.712	
	Hypothenemus hampei (coffee berry borer)	66	5107	21,874	151.272	
Hemiptera	Myzus persicae (green peach aphid)	98	AJA41114	5101	59,601	347.313
	Ciclox lectarius (bed bug)	91	XP_014249567	5093	62,674	650.478
	Rhodius prolitus (Assassin bug)	103	5103	117,911	706.824	
	Ferrisia virgos (striped mealbug)	100	4982	47,978	304.571	
Lepidoptera	Bombyx mori (domestic silkworm)	110	5121	137,409	481.819	
	Papilio xuthus (Asian swallowtail butterfly)	109	5124	92,730	243.89	
	Manduca sexta (tobacco hornworm)	110	5127	114,469	419.424	
	Phobus senec (cloudless sulphur butterfly)	108	5109	97,628	287.49	
	Spodoptera frugiperda (fall armyworm)	109	5127	131,979	358.048	
Acari	Tetranychus urticae (two-spotted spider mite)	12	XP_015783312	5200	18,117	90.8266
Other orders	Blattella germanica (German cockroach)	103	5120	159,200	203.72	
	Pediculus humanus corporis (human body louse)	78	XP_002424547	5058	23,243	110.781
	Locusta migratoria (migratory locust)	103	5130	371,221	5759.8	

* The ORF in Pheboph senae, although located on a single scaffold, remains incomplete as exons 48, 102, 103 and part of exon 54 are missing. This is likely due to gaps in the published scaffold sequence.

† The ORF in Locusta migratoria also remains incomplete with predicted exons 44, 68 and 76 being missing and sequencing gaps are present in exons 52, 58, 80 and 88. Due to missing sequence information the number of predicted exons for these two genes differs on manual curation compared with the webscipio/gene painter analysis.
(http://www.motorprotein.de/genepainter/genepainter) (Muhlhausen et al., 2015; Hammesfahr et al., 2013) was then used to generate intron phylogeny analysis based on the structure of the genes.

Structural features of analysed RyRs were determined based on multiple alignments of protein sequences with the previously annotated *P. xylostella* RyR (NCBI accession AET09964) (Troczka et al., 2017) and Pfam annotations (http://pfam.xfam.org/).

2.2. PCR validation of IP3R receptors

Total RNA from *M. persicae* and *B. terrestris* were extracted using Trizol reagent (Life technologies, CA, USA) or ISOLATE II RNA mini kit (Bioline, UK) following the manufacturer’s guide. 4 μg of total RNA was used to synthesise cDNA in 20 μl reactions containing SuperScript® III Reverse Transcriptase (Thermo Fisher Scientific, USA) and Oligo dT (15) primers (Promega, USA), following the manufacturer’s instructions. PCR primers were designed based on the in silico predicted
sequences using Geneious software v. 8.1.3 (Biomatters, Ltd., New Zealand). PCR reactions were performed in 25 μl volumes using 2× DreamTaq mastermix (ThermoFisher Scientific, USA) with 10 pmols of each primer and 1 μl of cDNA. Details of the PCR primers used can be found in Supplementary Tables 2 and 3. All PCR reactions were analysed on 1% (w/v) TAE agarose gels and visualised using ethidium bromide staining and UV light. PCR products were purified from the agarose gel using QIAquick gel extraction kit (Qiagen, Germany), following the manufacturer’s recommended protocol, and directly sequenced using Eurofins Genomics Value Read service.

3. Results & discussion

3.1. Structural organisation of insect RyR’s

RyR cDNA sequences and their corresponding genomic organisation have been previously confirmed experimentally in D. melanogaster, M. persicae, T. castaneum and B. mori (Takeshima et al., 1994; Liu et al., 2014; Troczka et al., 2015a; Xu et al., 2000; Kato et al., 2009). Here we have manually annotated the RyRs of a further 23 insect species. A summary of the predicted channels and intron/exon arrangements of all 26 insect species can be found in Table 1 and Fig. 1. Additional information can be found in Supplementary excel file (SUP Table 1).

Protein alignments and Pfam database searches were performed to compare RyRs from different insect species. As expected, all the insect RyRs presented the classical cytosolic motifs and domains previously annotated in P. xylostella (Troczka et al., 2017) including one MIR (220–400), two SPRY domains, (726–862 and 1702–1841), four RYR domains (917–1007, 1031–1120, 3075–3166 and 3220–3303), three RIH domains (503–702, 2433–2682, 4307–4423) and EF calcium binding motifs (4531–4576). The numbering is based on a consensus sequence of a MAFFT alignment of all 27 RyR sequences with the annotated P. xylostella RyR (Fig. 2). The transmembrane (TM) region of the channel, which according to three-dimensional reconstructions using Cryo EM structures consist of six α-helixes (Van et al., 2015; Zalk et al., 2015), was the most highly conserved region of the protein across all examined insect species.

The TM region of RyR is thought to be the binding site of diamide insecticides (Kato et al., 2009). In support of that hypothesis a glycine to glutamic acid substitution at position 4946 of the transmembrane domain of Plutella xylostella RyR has been shown to be a major cause of diamide resistance in this pest insect (Troczka et al., 2015b; Troczka B.J. Troczka et al.

Gene 670 (2018) 70–86
et al., 2012; Steinbach et al., 2015). Recently, a novel glycine to valine substitution at this position has been identified in diamide resistant populations of *Tuta absoluta* (Roditakis et al., 2017). Additionally, three other mutations (E1338D, Q4594L and I4790M) have been associated with diamide resistant strains of *P. xylostella* (Guo et al., 2014). The equivalent of I4790M, located in the second TM helix and coming to close proximity to G4946 in a 3D model of insect RyR, was also found in some resistant populations of *T. absoluta* (Roditakis et al., 2017). Interestingly, the glycine residue at position 4946 appears to be conserved in most insect species, apart from *B. antarctica* and *T. utricae* which have an alanine in this position and *F. virgata* which has an arginine. It remains to be tested, however, whether these changes have any implications on diamide binding. Additionally, the neighboring amino acids in these later three species have a lower level of conservation in comparison to other insects (SUP Fig. 1). This amino acid residue “flexibility” within a highly conserved region could be one of the reasons diamide resistance mutations have emerged relatively quickly and without any apparent fitness costs (Ribeiro et al., 2014). In contrast to G4946 the isoleucine at position 4790 appears to be unique to lepidopterans, with all other insect species analysed in this study having a methionine or valine (found only in *F. virgata*). Therefore, it is hypothesised that an isoleucine at position 4790 may confer selectivity for some diamides towards lepidopteran insects. Q4594 is located in divergent region one with several different amino acids being found at this position, the most common being lysine (present in Coleoptera, Hymenoptera and some Diptera), glutamine (Lepidoptera), histidine (some Hemiptera), arginine (*A. gambiae*) and asparagine (*M. persicae*). E1338 is located between the first SPRY domain and divergent region two and like Q45954 shows little amino acid conservation with various amino acids (valine, glycine, serine, glutamine, aspartic acid, glutamate) found in different species.

Fig. 1. (continued)

![Gene 670 (2018) 70–86](image)
IP$_3$R CDNA sequences and their corresponding genomic organisation have been previously confirmed experimentally only in D. melanogaster and T. castaneum (Liu et al., 2014; Yoshikawa et al., 1992). Here we have manually annotated the IP$_3$R$_s$ of a further 24 insect species. A summary of the predicted channels and intron/exon arrangements of all 26 insect species can be found in Table 2 and Fig. 3.

A Pfam search of conserved domains for the IP$_3$R$_s$ identified 6 such domains across all 26 annotated channels. They include the IP$_3$ binding region (44–398), MIR domain (402–703), two RIH domains (747–987, 1844–2031), RIH associated domain (3070–3177) and the transmembrane ion transport region (3508–3940). All numbering is based on the consensus sequence of the MAFFT alignment of the 26 annotated IP$_3$R$_s$ (Fig. 4). The transmembrane region of IP$_3$R, as for RyR$_s$, is thought to consist of 6 transmembrane helixes, which has been confirmed in a 3D structure of mammalian IP$_3$R1 elucidated by Cryo-EM (Ludtke et al., 2011). Insect IP$_3$R$_s$ appear to have overall higher homology than RyR$_s$ to their mammalian counterparts with approximately 60% amino acid sequence identity (Srikanth et al., 2004).

Due to very little experimental information being available in the literature on cloning and sequencing of IP$_3$R a decision was taken to PCR and sequence two of the insect IP$_3$R channels, from M. persicae and Bombus terrestris, to validate our manual annotation predictions.

In silico annotation of M. persicae IP$_3$R predicted a relatively larger channel compared to other insects. With a predicted ORF of 11,373 bp, M. persicae IP$_3$R was projected to encode a 3790 aa protein, making it approximately 1000 aa larger than any other insect IP$_3$R reported in this study, including those insects in the order hemiptera (e.g. Bemisia tabaci (Guo et al., 2017)). Protein alignment of the M. persicae channel with D. melanogaster IP$_3$R indicated that the additional amino acids are scattered across the entire length of the protein (Fig. 5). Some of these insertions are present in functionally important domains, which could have a significant impact on the channels function. Interestingly the majority of insertions appear to be within the middle of the exons as opposed to 5' or 3' ends. Protein blast analysis of this predicted protein provided a good match up (over 90% identity) with other computationally predicted aphid IP$_3$R$_s$ from pea aphid (Acyrthosiphon pisum, NCBI Acc. XP_001947344.2, encoding a 3831aa protein) and two predicted Russian wheat aphid alternatively spliced forms (Diuraphis noxia, NCBI Acc. XP_015373414.1 and XP_015373416.1, encoding proteins of 3816 and 3788 aa respectively). RT-PCR validation of the in-silico prediction for M. persicae IP$_3$R confirmed that the receptor is much larger in this species in comparison to other insects, and that the predicted extra amino acids are present in the cDNA and are not intronic sequences. These larger IP$_3$R channels appear to be unique to aphids. Pfam analysis of the protein sequence matches it with IP$_3$R receptors, with conserved domains: Ins145_P3_rec (45–313), two MIR domains (345–476, 530–583), RIH (627–860) and the ion transport domain (3404–3624). The reason for a much larger IP$_3$R in aphids is not apparent and we have found no evidence of similarly enhanced IP$_3$R$_s$ in other insect orders, so there is no clear evolutionary lineage. IP$_3$R is the more ancient of the two channels studied (Alzayady et al., 2015).

Evidence for larger IP$_3$R$_s$-like channels (over 3000 amino acids) was reported in protozoan species such as Paramecium (Ladenburger and Plattner, 2011) and the filasterean Capaspora owczarzaki (Alzayady et al., 2015); however these channels show very little conservation to the aphid protein. A significantly increased receptor size clearly has the potential to have a substantial impact on the channel’s physiology and regulation. It has also been previously reported that aphids have an unusual heterodimeric voltage-gated cation channel, with close sequence homology with the voltage-gated sodium channel in other insects, albeit with an altered selectivity filter and being encoded by two unique heteromers (Amey et al., 2015; Zuo et al., 2016; Jiang et al., 2017). It is worth speculating that significant structural changes to at least two important ion channels could be indicative of a unique ion...
physiology in aphids in comparison to other insects.

Initial computational prediction of *B. terrestris* IP₃R projected an ORF of 8370 bp (NCBI Acc. XP_012175773.1). However, RT-PCR validation followed by cdna sequencing gave an ORF of 8184 bp (encoding a 2727 aa protein), which is a perfect match to another automatically predicted isoform of *B. terrestris* IP₃Rs (NCBI Acc. XP_003394052). In comparison to the initial in silico prediction, the PCR validated sequence showed ∼105 introns (~105 introns) (Phillips et al., 1996).

A summary of loss and gain of introns across species is presented in the Genepainter phylogenetic ‘intron distribution’ trees for RyR and IP₃Rs (Figs. 6 and 7). Notably within the Paraneoptera, the entire IP₃R gene of *P. humanus corporis* is made up of only 2 large exons. This dramatic reduction in intron number could be related to the ectoparasitic lifestyle of the species and small genome size (Sundberg and Pulkkinen, 2015). Within the Endopterygota, a significant intron loss has occurred within RyR genes in 3 of the 4 main orders (Diptera, Coleoptera, Hymenoptera, Lepidoptera), with almost 75% of ancestral introns being lost in some Dipteran species (e.g. *D. melanogaster* with 25 introns). Only Lepidoptera (Obectomeria) have maintained a relatively high ancestral intron number whilst simultaneously showing evidence of intron gain, making their RyR genes the most complex in all of the targeted insect species included in this study. They contain up to 110 exons on average, comparable in complexity to their mammalian counterparts (Phillips et al., 1996). The same pattern is observed for the IP₃Rs genes, with the most complex architecture being found in Lepidoptera (58 exons), whilst the Diptera display the greatest overall reduction in intron number (25 introns) of all the insect orders studied (with the notable exception of *P. humanus corporis* as discussed above).

Despite an overall high level of conservation at the protein (amino acid) level for both RyR and IP₃R channels in insects, an extensive remodelling of the genomic structure has resulted in a low conservation of common introns across insect orders. GenePainter analysis showed only 8 common introns conserved within RyR across the insect species looked at in this study. This number falls to only 3 when *T. urticae* (Acari) is included in the analysis. Interestingly, 4 of the common (conserved) introns are located within the first 10 introns, with a further 2 encompassing a highly-conserved exon (exon 20 in *D. melanogaster*, 39 in *A. mellifera*, and 20 in *A. mori* in *M. persicae*). Looking at the overall distribution of intron positions, it appears that the greatest number of intron losses occur towards the 3’ end of the ORF (see SUP Table 1), possibly indicating the involvement of reverse transcriptase in this evolutionary process (Cohen et al., 2012). The conservation of intron-exon organisation does not appear to be linked with any particular

Table 2

Order	Species	Exon	Accession no.	Protein (AA)	Gene (bp)	Genome (Mb)
Diptera	*Anopheles gambiae* (African	16	XP_557157	2830	14,149	265,027
	malaria mosquito)					
	Ceratitis capitata (Mediterranean	19	XP_012156517	2886	18,431	479,048
	fruit fly)					
	Drosophila melanogaster (fruit	22	P29993	2838	10,830	143,726
	fly)					
	Musca domestica (house fly)	22		2800	32,699	765,404
	Bombyx mori (Asian swallowtail	43		2727	27,950	250,287
	butterfly)					
	Nasonia vitripennis (jewel	43	XP_006391078	2724	30,520	295,781
	wasp)					
	Megachile rotundata (alalfa	42		2724	39,393	272,661
	leafcutting bee)					
	Hypermegabothris saluator	44	XP_011151642	2741	37,606	294,466
Coleoptera	*Tribolium castaneum* (red flour	27	XP_003108660	2724	11,552	165,944
	beetle)					
	Dendroctonus ponderosae	27		2700	15,589	252,848
	(mountain pine beetle)					
	Anoplophora gilbrippennis	26		2706	12,268	707,712
	(Asian longhorned beetle)					
	Hypothenthesum hampei	26		2692	10,408	151,272
Hemiptera	*Myzus persicae* (green peach	49	XP_014243514	2735	26,666	650,478
	aphid)					
	Cimex lectularius (bed bug)	49		2634	40,691	706,824
	Rhopinia prolixus (assassin	47		2645	25,926	304,571
	bug)					
	Ferrisia virgata (striped	58		2713	74,322	481,819
	meallybug)					
	Papilio xuthus (Asian	58		2722	32,751	243,89
	swallowtail butterfly)					
	Manduca sexta (tobacco	58		2717	51,935	419,424
	hornworm)					
	Spodoptera frugiperda	58		2707	58,102	358,048
	(fall armyworm)					
Acari	*Tetranychus urticae* (two-spotted	6	XP_015786315	2754	9348	90,828
Other orders	(spider mite)					
	Blatella germanica (German	46		2661	219,647	2027,2
	cockroach)					
	Pediculus humanus corporis	2	XP_002452693	2680	8124	110,781
	(human body louse)					
	Locusta migratoria (migratory	46		2680	27,815	5759,8
	locust)					
structural features. All of the conserved intron-exon junctions occur within the cytosolic portion of the protein. The highest level of conservation is found in the introns surrounding a mutually exclusive splice site in the second SPRY domain, with *M. persicae* being the outlier. The second highest conserved pair of introns is found around the predicted calmodulin/Apo-calmodulin interaction site, which also appears to be alternatively spliced in some species. In contrast, there are 34 unique introns detected across all species (Fig. 8). There are no conserved introns for IP$_3$Rs and only 2 conserved introns if *T. urticae* and *P. humanus corporis* are excluded. However, there are 56 unique introns found across the 26-species studied (Fig. 9). In comparison to the RyRs, the IP$_3$R gene structure is less well conserved with a much higher
3.4. Alternative splicing of RyR and IP_{3}R

Fully annotated gene structures can elucidate further useful information such as the regulatory mechanisms governing gene expression and the probability of alternative splicing (Chorev and Carmel, 2012). Understanding splicing regulation is a difficult challenge as the spliceosome is one of the most complicated molecular complexes, consisting of over 150 proteins (Wahl et al., 2009). Point mutations in the genomic structure may lead to modulation of the splicing machinery resulting in exon skipping (Cartegni et al., 2002). Such an event in the nicotinic acetylcholine receptor has already been linked with resistance to the insecticide spinosad in *Tuta absoluta* (Berger et al., 2016). Intron size and number have also been shown to directly correspond to splicing diversity (Chorev and Carmel, 2012; Fox-Walsh et al., 2005).

RyRs are known to possess an inherently complex genomic organisation and several alternative spliced isoforms have been reported in insects (Xu et al., 2000; X. Wang et al., 2012; Puente et al., 2000). A common (mutually exclusive) alternative splice site has been found in 21 of the 26 studied species, the exceptions being *P. humanus*, *T. urticae*, *B. antarctica*, *C. lectularius* and the previously reported *M. persicae* (Troczka et al., 2015a). This site is located within the second SPRY domain in the N-terminal part of the channel (Fig. 10). SPRY domains are found in many mammalian proteins and are thought to be linked with immune responses (D'Cruz et al., 2013). In mammalian RyR1, the second SPRY domain is a site of interaction with the II-III loops of Cav1.1 and also with scorpion toxin A (Tae et al., 2009). Although insect RyRs are thought not to be directly linked with Cav1.1 channels (Takekura and Franzini-Armstrong, 2002), alternative exons in this region might play important roles in modulating the interaction of insect RyRs with other regulatory proteins. To date alternative exons have been best described in Lepidopteran species (Wang et al., 2013; J. Wang et al., 2012; Sun et al., 2015; Wu et al., 2013; Cui et al., 2013). As highlighted in Fig. 8, exon version A is present in all species lacking an alternative exon. Thus, version A is likely to be the most common splice form. In *M. persicae* this exon is fused with a neighboring exon.
indicating a clear intron loss event (Troczka et al., 2015a).

Apart from mutually exclusive exons, there is growing evidence, especially in Lepidoptera, of a number of deletions and insertions which result in a greater diversity of detectable splice forms in comparison to other insect species, as shown by the extensive splice forms detected in P. xylostella (X. Wang et al., 2012).

We did not attempt to map mutually exclusive exons in insect IP3Rs due to the scarcity of experimentally obtained mRNA sequences. However, due to this paucity of validated cDNA’s the existence of such exons cannot be dismissed. Alternative splicing of IP3Rs is well documented in mammals (Foskett et al., 2007) and at least one of these splice sites appears to be conserved in D. melanogaster (Sorrentino et al., 2000).

4. Conclusions

Despite an ever-growing number of insect genomes becoming publicly available the quality of many of them remains problematic. Short contig lengths and a high degree of fragmentation make it challenging to fully annotate large genes such as RyRs and IP3Rs (Mackrill, 2012). Additionally, automatic annotations can omit certain sections of the gene (usually the 1st exon) if it is positioned a long distance from the rest of the gene and no reference transcriptome data is available. Manual curation of important genes and gene families is required to verify and improve genomic data. In the case of insects, validation of automatically annotated genes has not been done for many species. Certain insect orders remain over represented in the wet biology due to their importance to agriculture or disease control. Our study shows that despite a relatively high protein homology, the gene architecture of proteins can differ substantially among different insect orders. We have shown that there is a substantial variation in exon number and overall gene size for both RyR and IP3R channels and very little intron conservation across different species. Structural variation of genes coding for highly conserved proteins is likely to contribute to a great diversity in potential mRNAs among insects allowing for the existence of species and order-specific splice variants.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gene.2018.05.075.
Fig. 4. MAFFT alignment and Pfam domain map of annotated insect IP₃R sequences.

Fig. 5. Alignment of *D. melanogaster* IP₃R with *M. persicae* IP₃R. Black arrows indicate individual exons. The approximate location of additional amino acids found in the aphid channel are indicated in purple. There are 36 individual insertions in the aphid channel with the largest being 63 amino acids in length. IP₃R functional domains are mapped on the *D. melanogaster* sequence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Phylogenetic distribution of intron positions for insect RyRs generated by GenePainter. The phylogenetic tree indicates those taxon branches at which introns were lost (coloured red) or gained (coloured green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Phylogenetic distribution of intron positions for insect IP3R's generated by GenePainter. The phylogenetic tree indicates those taxon branches at which introns were lost (coloured red) or gained (coloured green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Gene structure alignment for insect RyRs obtained from Genepainter. Each dash corresponds to an intron overlaid on a protein alignment. To improve clarity the size of each exon is not representative of the actual exon size. Red dashes indicate unique introns and their number in individual species. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Gene structure alignment for IP₃Rs obtained from Genepainter. Each dash corresponds to an intron. To improve clarity the size of each exon is not representative of the actual exon size. Red dashes indicate unique introns and their number in individual species. In total there are 56 unique introns mapped on the alignment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Conflicts of interest

The authors declare no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Acknowledgments

Dr. T.G. Emyr Davies and Dr. Rafael A. Homem receive grant-aided support from the Biotechnology and Biological Sciences Research Council’s Industrial Strategy Challenge Fund (BBS/OS/CP/000001). Ewan Richardson is in receipt of an Industrial studentship jointly funded by the BBSRC and Bayer CropScience (BB/N504075/1).

Appendix A. List of genome projects and Accessions used for data generation with associated peer reviewed publications (where appropriate)

Tetranychus urticae (BioProjects: PRJNA315122, PRJEA71041) (Grbic et al., 2011), Drosophila melanogaster (chromosome 2R ref. seq: NT_033778.4) (Hoskins et al., 2007), Anopheles gambiae (chromosome 3L ref. seq: NT_078267.5) (Holt et al., 2002), Ceratitis capitata (Bio-Projects: PRJNA201381, PRJNA168120) (Papanicolaou et al., 2016), Locusta migratoria (BioProject: PRJNA10625) (Honeybee Genome Sequencing Consortium, 2006), Bombus terrestris (BioProjects: PRJNA68545, PRJNA45869) (Sadd et al., 2015), Aphis mali (Linkage group: NC_007071.3, BioProject: PRJNA210139) (Scott et al., 2014), Megachile rotundata (BioProjects: PRJNA87021, PRJNA66515), Aphis nasturtii (Linkage group: NC_007071.3, BioProject: PRJNA10625) (Honeybee Genome Sequencing Consortium, 2006), Bombus terrestris (BioProjects: PRJNA68545, PRJNA45869) (Sadd et al., 2015), Nasonia vitripennis (BioProjects: PRJNA20073, PRJNA13660) (Werren et al., 2010), Harpegnathos saltator (BioProjects: PRJNA273397, PRJNAS0203) (Bonasio et al., 2010), Tribolium castaneum (BioProjects: PRJNA15718, PRJNA12540) (Tribolium Genome Sequencing Consortium, 2008), Dendrocytus ponderosae (BioProject: PRJNA162621) (Keeling et al., 2013), Anoplophora glabripennis (Bio-Projects: PRJNA348318, PRJNA167479), Hypothenemus hampei (Bio-Project: PRJNA279497) (Vega et al., 2015), Myzus persicae (BioProject: PRJNA99782, PRJNA319804), Cinemus lectularius (BioProject: PRJNA167477) (Rosenfeld et al., 2016), Rhodius proligerus (BioProject: PRJNA13648) (Mesquita et al., 2015), Ferrisia virgata (BioProject: PRJEB12067), Blattella germanica (BioProject: PRJNA203136), Locusta migratoria (BioProject: PRJNA185471) (Wang et al., 2014), Pediculus humanus corporis (BioProjects: PRJNA19807, PRJNA16223) (Kirkness et al., 2010), Bombyx mori (BioProject: PRJDA20217) (International Silkworm Genome Consortium, 2008), Papilio xuthus (BioProject: PRJDB2956), Manduca sexta (BioProject: PRJNA81037) (Kanost et al., 2016), Spodoptera frugiperda (BioProject: PRJNA257248) (Kakumani et al., 2014), Pheobius sennae (BioProject: PRJNA308118) (Cong et al., 2016).

Appendix B. Ryanodine receptor sequences (and associated NCBI Accession numbers) used for the validation alignments

Aphis citricidus (AKM95171.1), Atta colombica (KYM79740.1), Bemisia tabaci (AFN84957.1), Cnaphalocrocis medinalis (AFI80904.1), Cerapachys biroi (EZA52107.1), Carposina sasaki (A.HN16453.1), Chilo suppressalis (AFN70791.1), Dahlia pulvin (EFX89429.1), Dialeurodes citri (AKM95170.1), Helicoverpa armigera (AHB33498.1), Homo sapiens RyR1 (AAC51191.1), Homo sapiens RyR2 (CA046978.1), Lepionotarsa decemlineata (AWH99830), Lucilia cuprina (KNC23059.1), Melipona quadrifasciata (KOX73585.1), Nilaparvata lugens (KF306296.1), Ostrinia furnacalis (AGH68757.1), Pieris rapae (AGF62938.1), Plutella xylostella (AET09964.1), Sogatella furcifera (AIA23859), Spodoptera exigua (AFC36359.1), Trachymyrmex cornetzi (KYN11971.1), Tuta absoluta (APC65631.1).

References

Alzayed, K.J., et al., 2015. Tracing the evolutionary history of insectid, 1, 4, 5-triphosphate receptor: insights from analyses of Capsaphor owczarzaki Ca2 + release channel orthologs. Mol. Biol. Evol. 32 (9), 2236–2253.
Amey, J.S., et al., 2015. An evolutionarily-unique heterodimeric voltage-gated cation channel found in aphids. FEMB Lett. 589 (5), 598-607.
Berger, M., et al., 2016. Insecticide resistance mediated by an exop skipping event. Mol. Ecol. 25 (22), 5692-5704.
Bonasio, R., et al., 2010. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329 (5995), 1068–1071.
Cordova, D., et al., 2010. Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Physiol. 84 (3), 195–214.
Cui, L., et al., 2013. Molecular cloning, characterization and expression profile of a ryanodine receptor gene in Asian corn borer, Ostrinia furnacalis (Guenée). PLoS One 8 (10).
Dale, R.P., et al., 2010. Identification of ion channel genes in the Acyrthosiphon pisum genome. Insect Mol. Biol. 19, 141–153.
D’Cruz, A.A., et al., 2013. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci. 22 (1), 1–10.
Ebbinghaus-Küntscher, U., et al., 2007. Flubendiamide, the first insecticide with a novel
mode of action on insect ryanodine receptors. Pflanzeneschutz-Nachrichten Bayer 60 (2), 117–140.

Fili, M., Coppell, J.A., 2002. Ryanodine receptor calcium release channels. Physiol. Rev. 82 (4), 893-922.

Foskett, J.K., et al., 2007. Inositol trisphosphate receptor Ca²⁺ release channels. Physiol. Rev. 87 (2), 593-658.

Fox-Walsh, K.L., et al., 2005. The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc. Natl. Acad. Sci. U. S. A. 102 (45), 16176-16181.

Gric, M., et al., 2011. The genome of Triamphymia urticae reveals herbivorous pest adaptations. Nature 479 (7374), 487-492.

Guo, L., et al., 2014. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Sci. Rep. 4, 6924.

Guo, L., et al., 2017. Silence of inositol 1,4,5-trisphosphate receptor expression increases cyantraniliprole susceptibility in Bemisia tabaci. Pestic. Biochem. Physiol. 142, 162-169.

Hamilton, S.L., Serysheva, I.L., 2009. Ryanodine receptor structure: progress and chal-

Ludtke, S.J., et al., 2011. Flexible architecture of IP3R1 by Cryo-EM. Structure 19 (8), 1255-1266.

Mackrill, J.J., 2012. Ryanodine receptor calcium release channels: an evolutionary perspective. Adv. Exp. Med. Biol. 740, 159-182.

Mesquita, R.D., et al., 2015. Genome of Plutella xylostella (Lepidoptera: Pyralidae). Insect Biochem. Mol. Biol. 60, 118-127.

Mühlhausen, S., Hellkamp, M., Kollmar, M., 2015. Gene Painter v.2.0 resolves the taxo-

Papanicolaou, A., et al., 2016. The whole genome sequence of the Mediterranean fruit

Plettner, E., et al., 2009. Ubiquitous SPRY domains and their role in the extreme environment. Nat. Commun. 5, 4611.

Putignano, A., et al., 2016. The architecture of pre-mRNAs a

Rosenfeld, J.A., et al., 2016. Genome assembly and geospatial phylogenomics of the bed bug Cimex lectularius. Nat. Commun. 7, 192.

Rudds, R.M., et al., 2015. The genomes of two key bumblebee species with primitive eu-

Stenbeck, D., et al., 2016. In: Horowitz, A.R., Ishaaya, I. (Eds.), Resistance to dia-

Trevisan, S., et al., 2008. The ryanodine receptor calsequestrin from the red

Vega, F.E., et al., 2015. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer. Hypothenemus hampei. Sci. Rep. 5, 15852.

Vidyasagar, A.C., 2010. Functional characterization of a polymorphic ryanodine receptor gene from the redbanded leafhopper, Lycorma delicatula. BMC Bioinf. 11, 539.

Wang, J., et al., 2012. Molecular characterization of a ryanodine receptor gene in the rice

Wang, J., et al., 2013. Molecular cloning and mRNA expression of a ryanodine receptor gene in the cotton bollworm,

Wang, X., et al., 2012. Molecular cloning, characterization and mRNA expression of a ryanodine receptor gene from the peach-potato aphid,

Wang, X.H., et al., 2014. The locust genome provides insight into swarm formation and

Zalik, R., et al., 2015. Structure of a mammalian ryanodine receptor. Nature 517 (7532), 44-49.

Zuo, Y., et al., 2016. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltage-gated sodium channel genes. Sci. Rep. 6, 30166.

treatment of paralogs. Biol. Direct 3, 20.