The Enigmatic Charcot-Leyden Crystal Protein (Galectin-10): Speculative Role(s) in the Eosinophil Biology and Function

Christine A Clarke1,3, Clarence M Lee2 and Paulette M Furbert-Harris1,3,4*

1Department of Microbiology, Howard University College of Medicine, Washington, D.C., USA
2Department of Biology, Howard University College of Arts and Sciences, Washington, D.C., USA
3Howard University Cancer Center, Howard University College of Medicine, Washington, D.C., USA
4National Human Genome Center, Howard University College of Medicine, Washington, D.C., USA

Corresponding author: Furbert-Harris PM, Department of Microbiology, Howard University Cancer Center, 2041 Georgia Avenue NW, Room #530, 20060, Washington, D.C., USA, Tel: 202-806-7722, Fax: 202-667-1686; Email: pfurbertharris@gmail.com

Received date: February 22, 2015, Accepted date: April 25, 2015, Published date: April 29, 2015

Copyright: © 2015 Clarke CA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Eosinophilic inflammation in peripheral tissues is typically marked by the deposition of a prominent eosinophil protein, Galectin-10, better known as Charcot-Leyden crystal protein (CLC). Unlike the eosinophil’s four distinct toxic cationic proteins and enzymes [major basic protein (MBP), eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), and eosinophil peroxidase (EPO)], there is a paucity of information on the precise role of the crystal protein in the biology of the eosinophil. While its clinical significance at inflammatory foci remains highly speculative, its relative abundance (~10% of total eosinophil protein), as well as its dual nuclear and cytosolic localization is, however, suggestive of its biological and functional significance. In this article, we present a short review of the Charcot-Leyden crystal protein, specifically highlighting its most recently delineated modulatory role in regulatory T lymphocytes, and its speculative intracellular and extracellular role(s) in eosinophil function or associated inflammatory responses.

Keywords: Charcot-Leyden crystal protein; Eosinophil; Galectin; Regulatory T lymphocyte; Inflammation

Introduction

Eosinophils are bone marrow-derived granulocytes [1] that contribute to the pathogenesis of allergic, inflammatory, and immunoregulatory responses through the release of toxic proteins, preformed cytokines, chemokines, growth factors, and lipid mediators. They are activated in response to infection and tissue damage; and, in multiple disease states, inflammatory mediators stimulate their migration from the bone marrow, and their localization to the affected sites [2]. Eosinophil infiltration and localization is characterized by the presence and persistence of the enigmatic autocrystallizing Charcot-Leyden crystal protein, a member of the galectin family of carbohydrate-binding proteins that have emerged as bioactive molecules with powerful immuno-regulatory functions. The galectin family includes 15 members that are characterized by galactose-binding domains and are widely expressed in diverse cell types [3]. Different members of the glycoprotein family have been shown to positively or negatively modulate multiple steps of the inflammatory response, including cell trafficking, cell survival, pro-inflammatory cytokine secretion, cell growth and regulation [4], cell adhesion and aggregation, and tumor cell apoptosis [5]. In addition, several galectins are currently being investigated as potential therapeutic targets for immunologically-based pathologies, such as hematological malignancies [6], asthma, infections [7], autoimmune disorders and cancer [8]. Despite the explosion of information on these intriguing proteins in pathological states, particularly inflammation, fibrosis, and cancer [3], the precise role of galectin-10 in the eosinophil biology still remains to be ascertained. Its selective localization in several host immune cells—eosinophils, basophils, and regulatory T lymphocytes—as well as its structural and functional similarities to other galectins is, however, indicative of a potentially crucial role in inflammation. This review presents a brief description of Charcot-Leyden crystal protein—examining what is currently known about its association with two major immuno-regulatory cells, eosinophils and regulatory T lymphocytes, and its potential intracellular and extracellular function in eosinophil pre-mRNA splicing and the modulation of eosinophil-T lymphocyte interactions, respectively.

Eosinophilic charcot-leyden crystal protein

Charcot-Leyden crystal protein is a major constituent of eosinophils (and basophils) [9] and a hallmark of eosinophil-associated inflammatory reactions [10-12]. The crystals are distinct, colorless, hexagonal and bi-pyramidal; 20µm to 40µm in length, and 2 µm to 4µm across [13,14]. They are unique to primate eosinophils [15] and are frequently observed in human tissues and secretions in association with eosinophilic inflammatory responses, such as asthma, myeloid leukemias, allergic and parasitic diseases [11,16], and various types of cancers [17-19] (Figure 1). The protein is among the most abundant of eosinophil constituents [11,20], comprising an estimated 7% to10% of total eosinophil cellular protein [21]—an amount comparable with the eosinophil’s content of toxic cationic proteins and enzymes, such as MBP and EPO [10]. The 16.5 kDa hydrophobic protein [20], localized primarily to a small cytoplasmic granule fraction [9] and to the nucleus of eosinophils [10], lacks a secretion signal peptide and transmembrane domain, and is secreted under certain conditions by nonclassical and novel apocrine mechanisms [4]. Eosinophil development and Ca2+ ionophores stimulate its secretion [22]; and the
The CLC gene, localized on chromosome 19 [13], is transcriptionally induced by butyric acid [23].

Figure 1: Photomicrograph of Charcot-Leyden Crystals in Prostatic Adenocarcinoma. A transrectal needle biopsy of the prostate shows an adenocarcinoma and numerous degranulated eosinophils in the peritumor fibrous stroma. An intraepithelial group of eosinophils is seen (thick arrow) and intraluminal Charcot-Leyden crystals (thin arrow). Photomicrograph reproduced from Diagnostic Pathology 2006, 1:26 [9].

CLC, like all galectins, lacks a secretory signal peptide [4]. While the absence of a signal peptide, as well as its nuclear and cytosolic localizations, are suggestive of a strictly intracellular function, its atypical secretion or exportation, however, strongly suggests a potential extracellular role(s) in eosinophil function [10]. Galectin-3 has been identified as a nuclear factor in the regulation of pre-mRNA splicing [32]. CLC’s similarity to galectin-3, therefore, gives credence to the intriguing possibility of CLC’s intracellular function(s) in pre-mRNA splicing [10]. Galectin-3’s IgE [33] and carbohydrate (laminin)-binding [34] abilities also provoke the idea of an extracellular role(s) for CLC in eosinophil function. Equally intriguing is the modulatory role of the protein in regulatory T lymphocytes. Eosinophils, like Tregs, possess immunoregulatory properties [35] and regulate a variety of immune cells. They express surface antigens, as well as produce and release most cytokines that regulate and promote T-cell activation, proliferation, and cytokine secretion [2]. Given CLC’s necessity for Treg suppression of CD4⁺ T lymphocytes, one can certainly envision a role for eosinophilic CLC in regulating the proliferation and function of CD4⁺ T cells.

Charcot-Leyden crystals represent active legacies of eosinophil infiltration in peripheral tissues. The protein is more than a curious crystalline artefact—persisting in tissues long after eosinophil death. Given the findings presented here, and the multifunctional nature of galectins, the role of galectin-10/CLC in eosinophil biology and function seems worthy of further exploration.

Acknowledgement

This review is part of a study on eosinophils in health and disease funded by the Washington Baltimore Hampton Roads Louis Stokes Alliance for Minority Participation (WBHR-LSAMP)- NSF Grant Number HRD-1000286

References

1. Melo RC, Spencer LA, Dvorak AM, Weller PF (2008) Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. J Leukoc Biol 83: 229-236.
2. Davis BP, Rothenberg ME (2014) Eosinophils and cancer. Cancer Immunol Res 2: 1-8.
