Recent discovery of superconducting (SC) ternary iron selenides has block antiferromagnetic (AFM) long range order. Many experiments show possible mesoscopic phase separation of the superconductivity and antiferromagnetism, while the neutron experiment reveals a sizable suppression of magnetic moment due to the superconductivity indicating a possible phase coexistence. Here we propose that the observed suppression of the magnetic moment may be explained due to the proximity effect within a phase separation scenario. We use a two-orbital model to study the proximity effect on a layer of block AFM state induced by neighboring SC layers via an interlayer tunneling mechanism. We argue that the proximity effect in ternary Fe-selenides should be large because of the large interlayer coupling and weak electron correlation. The result of our mean field theory is compared with the neutron experiments semi-quantitatively. The suppression of the magnetic moment due to the SC proximity effect is found to be more pronounced in the d-wave superconductivity and may be enhanced by the frustrated structure of the block AFM state.

PACS numbers: 74.20.Mn, 74.25.Ha, 74.62.En, 74.25.nj
neighboring SC layer. Our model calculations show the proximity effect in a mesoscopically phase separated state of Fe-selenides may explain various seemingly conflicted experiments.

II. MODEL AND MEAN FIELD THEORY

$A_yFe_{2-x}Se_2$ is a layered material with FeSe layers separated by alkali atoms, similar to the 122 material in iron pnictides family. To investigate the proximity effect to the BAFM layer, we consider a single BAFM layer next to a SC layer as shown schematically in Fig. 1. The electronic Hamiltonian describing the BAFM layer is given by

$$H = H_0 + H_{inter},$$

where H_0 describes the electron motion and spin couplings in the BAFM layer and H_{inter} describes the coupling to the neighboring SC layer. We consider a two-orbital model to describe H_0,

$$H_0 = - \sum_{i,j,\alpha,\sigma} t_{ij,\alpha} C_{i,\alpha}^\dagger C_{j,\sigma} - \mu \sum_{i,\sigma} C_{i,\sigma}^\dagger C_{i,\sigma}$$

$$+ J_1 \sum_{<ij>\alpha\beta} S_{i,\alpha} \cdot S_{j,\beta} + J_2 \sum_{<ij>\alpha\beta} S_{i,\alpha} \cdot S_{j,\beta}$$

$$+ J_1' \sum_{<ij>\alpha\beta} S_{i,\alpha} \cdot S_{j,\beta} + J_2' \sum_{<ij>\alpha\beta} S_{i,\alpha} \cdot S_{j,\beta}$$

where $C_{i,\alpha\sigma}$ annihilates an electron at site i with orbital α (d_{xz} and d_{yz}) and spin σ, μ is the chemical potential. $t_{ij,\alpha\beta}$ are the hopping integrals, and $<ij>$, $<ij>'$ denote the intra-block (inter-block) nearest (NN) and next nearest neighbor (NNN) bonds, respectively [see the upper layer in Fig. 1]. J_1 (J_2) are the exchange coupling constants for NN (NNN) spins in the same block, and J_1' (J_2') are for the two NN (NNN) spins in different blocks. The two-orbital model is a crude approximation for electronic structure. However, it may be a minimal model to capture some of basic physics in examining the proximity effect. The band structure around the obtained Fermi energy from the two-orbital model is shown in Fig. 2, which is very similar to the result obtained in density functional theory. The main shortcoming in using the two-orbital model is that the magnetic moment is 2μ_B at largest, smaller than the experimentally measured 3.31μ_B. We consider this to be a quantitative issue, and will not qualitatively change our results.

We now consider H_{inter}, the coupling between SC layer and BAFM layer. Because of the semiconducting gap of the BAFM layer and the SC gap in the SC layer, the leading order of the interlayer coupling are the pairing hopping between the SC and BAFM layers. According to the crystal structures22 such a coupling term can be expressed as

$$H_{inter} = \frac{t_r^2}{\omega_c} \sum_{ij,\alpha,\beta} \left(C_{i,\alpha,\sigma}^\dagger C_{j,\beta,\sigma} C_{j,\beta',\sigma} C_{i,\alpha',\sigma}^\dagger - H.c. \right),$$

where ω_c is a characteristic energy, and t_r is the interlayer hopping integral, the superscript B represents the SC layer. With the mean field approximation $\Delta_{ij,\alpha',\bar{\sigma}} = <C_{i,\alpha,\sigma}^\dagger C_{j,\beta',\bar{\sigma}} >$, we have

$$H_{inter} = \sum_{ij,\alpha',\bar{\sigma}} \left(V_{\tau,ij} C_{i,\alpha,\sigma}^\dagger C_{j,\beta',\bar{\sigma}} + H.c. \right),$$

where $V_{\tau,ij} = \sqrt{5} \sum_{\alpha,\sigma} \Delta_{ij,\alpha',\bar{\sigma}}$.

The $\sqrt{5} \times \sqrt{5}$ vacancy order and the BAFM order lead to an enlarged unit cell with eight sites per unit cell. We use a mean field theory for the Ising spins in Eq. (2) and obtain the Bogoliubov-de Gennes equations in the enlarged unit cell

$$\sum_k \sum_{j,\beta} \left(H_{i,j,\alpha,\beta} + \tilde{H}_{i,j,\alpha,\beta} \right) H_{c,ij,\alpha,\beta}^*$$

$$\times \exp[i\mathbf{k} \cdot (\mathbf{r}_j - \mathbf{r}_i)] \left(\begin{array}{c} U_{k,\beta,\sigma}^* \\ V_{k,\beta,\sigma}^* \end{array} \right) = E_k \left(\begin{array}{c} U_{k,\beta,\sigma} \\ V_{k,\beta,\sigma} \end{array} \right),$$

where, the summation of k are over the reduced Brillouin zone, and

$$H_{i,j,\alpha,\beta} = -t_{ij,\alpha,\beta} - \mu,$$

$$\tilde{H}_{i,j,\alpha,\beta} = \sum_{\tau} \left(J_{\tau, intra} + J_{\tau, inter} \right) < S_{i+\tau,\beta} > \delta_{ij}$$

$$H_{c,ij,\alpha,\beta} = V_{\tau,ij} \sum_{\alpha',\beta'} \Delta_{ij,\alpha',\beta',\bar{\sigma}}.$$
Here, \(J_{\tau,\text{intra}} = J_1 \) (\(J_{\tau,\text{inter}} = J_2 \)) if \(\tau = \pm \hat{x}, \pm \hat{y} \), and \(J_{\tau,\text{intra}} = J_3 \) (\(J_{\tau,\text{inter}} = J'_2 \)) if \(\tau = \pm \hat{x} \pm \hat{y} \). \(\hat{x} \) and \(\hat{y} \) denote the unit vectors along \(x \) and \(y \) directions, respectively.

\[\langle S_{i+\tau,\beta} \rangle \text{ is defined as } \frac{\langle n_{i+\tau,\beta,\uparrow} - n_{i+\tau,\beta,\downarrow} \rangle}{2}, \]

\(u_{n,j,\alpha,\sigma}^k \), \(v_{n,j,\alpha,\sigma}^k \) are the Bogoliubov quasi-particle amplitudes on the \(j \)-th site with corresponding eigenvalues \(E_n^k \). The self-consistent equations of the mean fields are

\[
\begin{align*}
n_{i,\beta,\uparrow} &= \sum_{k,n} |u_{n,i,\beta,\uparrow}^k|^2 f(E_n^k), \\
n_{i,\beta,\downarrow} &= \sum_{k,n} |v_{n,i,\beta,\downarrow}^k|^2 [1 - f(E_n^k)].
\end{align*}
\]

The magnitude of the magnetic order on the \(i \)-th site and the induced SC pairing correlation in the BAFM layer are defined as,

\[
M(i) = \frac{1}{4} \sum_{\beta} \left(n_{i,\beta,\uparrow} - n_{i,\beta,\downarrow} \right)
\]

\[
\Delta_{ij,\alpha,\beta} = \frac{1}{4} \sum_{k,n} \left(u_{n,i,\alpha,\sigma}^k v_{n,j,\beta,\sigma}^{k*} e^{-ik(r_j - r_i)} + v_{n,i,\alpha,\sigma}^k u_{n,j,\beta,\sigma}^{k*} e^{ik(r_j - r_i)} \right) \tanh \left(\frac{E_n^k}{2k_B T} \right).
\]

In the calculations, we choose the hopping integrals as follows:

\(t_1 = 0.4 \) eV and the \(d_{yz} - d_{yz} \) NN hopping integral \(t_2 = 0.13 \) eV; they are exchanged to the \(x \) direction; the NN interorbital hoppings are zero; the NNN intraorbital hopping integral \(t_3 = -0.25 \) eV for both \(d_{xz} \) and \(d_{yz} \) orbitals, and the NNN interorbital hopping is \(t_4 = 0.07 \) eV. The hopping integral \(t_1 \) is taken as the energy unit. We keep \(J_1 : J'_2 : J_2 = J'_2 = -4 : -1 : 2 \). The doping level is given by \(\delta = n - 2.0 \).

III. RESULTS

To begin with, we present the energy band structure at half filling with \(n = 2 \) in Fig. 2(a), where \(J_1 = 2.0 \) is so chosen to get a band gap \(\sim 500\text{meV} \) being in agreement with the first principle calculations. For the electron doping with \(n = 2.1 \), the Fermi level crosses an energy band around the center of the Brillouin zone [\(\Gamma \) point in Fig. 2(b)], while it intersects with an energy band around the zone corner at the hole doping with \(n = 1.9 \) [\(M \) point in Fig. 2(c)]. Although a simple two-orbital model is adopted here, both the electron and hole doping cases with \(\delta = 0.1 \) are qualitatively consistent with the first principle calculations. In the presence of the ordered vacancies and BAFM order, the original two-band structures are splitting to sixteen subbands as a result of the enlarged unit cell with 8 sites. At half filling, 8 lower bands are occupied, i.e., 1/4 electron per one subband, while another 8 bands above the Fermi energy are unoccupied, resulting in a band gap in Fig. 2.

The electron and hole doping with \(\delta = 0.1 \), the chemical potential crosses one subband which produce the characteristic features of the Fermi surface and the metallic BAFM state.

![FIG. 2: (color online) Electronic band structures of \(H_0 \) given by Eq. (2). The parameters are given at the end of section II of the text, and \(J_1 = 2.0 \). (a): at half filling or \(n = 2.0 \); (b): at electron doping \(n = 2.1 \); and (c): at hole doping \(n = 1.9 \). The color scale indicates the relative spectra weight.](image_url)

Motivated by the agreement of the self-consistent mean-field solutions with the mentioned first principle calculations, we consider now the proximity effect in BAFM layer induced by the SC in SC layer. For explicit reason, we choose two possible singlet pairing symmetries in the SC layer, i.e., the NNN \(s_{\pm} \)-wave and the NN \(d \)-wave symmetries with their respective gap functions \(\Delta_{s_{\pm}} = \Delta_0 \cos(k_x) \cos(k_y) \) and \(\Delta_d = \Delta_0 \cos(k_x) - \cos(k_y) \), where the former results in the NNN bond and the latter the NN bond couplings in the BAFM layer. The interlayer hopping constant \(t_{xy} \) is assumed to be site independent. Fig. 3 displays the moment of the BAFM order as a function of the effective tunneling strength \(V_{ij} \). At the half filling, both symmetries of the SC order in the SC layer introduce the decrease of the BAFM order and simultaneously induce the SC correlation with the same symmetries in the BAFM layer as the tunneling strength increases. A main difference between the \(s_{\pm} \) and the \(d \)-wave symmetries is the more pronounced proximity effect in reducing the moment of the BAFM order produced by the \(d \)-wave symmetry as the tunneling strength increase, as shown in Figs. 3(a) and 3(b). In the case of electron doping with \(n = 2.1 \), where the metallic BAFM state results, although the proximity effect is more pronounced, the magnetic and the induced SC correlation remain the qualitatively unchanged, due possibly to the very low total carrier concentration.

The unique feature of the effective tunneling in the second order is its temperature dependence via the SC pairing \(\Delta_{ij,\alpha,\alpha',\sigma,\sigma'} \), which differs from that in one particle tunneling process. The temperature dependence of the SC pairing parameter is modeled by a phenomenological form with \(\Delta = \Delta_0 \sqrt{T - T_c} \).
present the temperature dependence of the magnetic moment in Fig. 4(a) for the typical choice of the coupling constants $g_\tau = 2V_{\tau,ij}\Delta_0 = 0.25$. As temperature decrease, the magnetic order increases when temperature is above T_c, while it decreases when temperature is below T_c, resulting in a broad peak around T_c. We note that the temperature dependence of the AFM moment is reminiscent of the neutron diffraction and the two-magnon experiments [Fig. 4(b)]. There is another scenario that the competition between the AFM and the SC orders in the microscopic coexistence of them may also produce the decrease of the AFM moment below T_c. The study of such possibility is currently under way and the results will be published elsewhere. It is worthwhile to notice that the sizable proximity effect relies on the substantial interlayer hopping constant t_τ. Based on the first principle calculation, the interlayer hopping t_τ was estimated to have a comparable magnitude with t_1 possibly due to the high values of electron mobility from the intercalated alkaline atoms, and leads to the highly three dimensional Fermi surface.

IV. SUMMARY AND DISCUSSIONS

In summary, we have proposed that various seemingly conflict experiments on the phase separation or coexistence of superconductivity and BAFM may be explained within a phase separation scenario by taking into account of the proximity effect of superconductivity to the neighboring layer of BAFM. We have theoretically studied the proximity effect to a BAFM layer induced by adjacent SC layers in a simplified two-orbital model for Fe-selenides. The proximity effect in reducing the moment of the BAFM order highly depends on the coupling constant $V_{\tau,ij}$. For realistic parameters of the interlayer tunneling, our calculation shows that the superconductivity proximity effect may result in substantial suppression of the magnetic moment. This is in contrary to that in the cuprate superconductor, where the coupling constant $V_{\tau,ij}$ is very small because of small c-axis hopping integral due to the large anisotropy, and because of the renormalization of $V_{\tau,ij}$ by a factor proportional to hole concentrations due to the no double-occupation condition. In iron-based superconductor, the anisotropy of iron-based material is much smaller than in the cuprate, which lead to a relative larger t_τ. And the moderate correlation effect in iron-based superconductor leads to a moderate renormalization factors. As a consequence, the coupling constant $V_{\tau,ij}$ in iron chalcogenide superconductor should be moderate.

We remark that we’d be careful in drawing a concrete conclusion to compare with the experiments. The approximation that only d_{xz} and d_{yz} orbitals are important in the bands close to Fermi energy is good in terms of the band structures. But the maximum magnetic moment in two-orbital model is only 2µB, smaller than the moment of 3.31µB measured in experiments. The other effect is that we only calculated the suppression of the BAFM order of the surface layer of the BAFM domain. According to TEM experiment, each BAFM domain has around ten layers. And the suppression of BAFM order of the layers in the middle of domain may be more complicated. In brief, the suppression of the BAFM moment is sizable because of the moderate coupling constant $V_{\tau,ij}$, and our calculation may be viewed as a semi-quantitative result.

We also investigated proximity effect for various pairing symmetry of the SC phase. It has shown that the SC pairing with NN d-wave symmetry resulted a more pronounced proximity effect in reducing the moment of the BAFM order than the NNN s_\pm-wave pairing. The second order process induced proximity effect has a temperature dependent as the SC pairing, which may be relevant to the experimental observations. More remarkable proximity effect was found in the BAFM state by comparison...
with the conventional AFM state, which was the consequence of the frustrated structure and the associated anisotropic exchange interactions.

V. ACKNOWLEDGEMENT

We thank W. Bao, G. Aeppli, Y. Zhou, and T. M. Rice for helpful discussions. This work is supported in part by Hong Kong’s RGC GRF HKU706809 and HKUST3/CRF/09. HMJ is grateful to the NSFC (Grant No. 10904062), Hangzhou Normal University (HSKQ0043, HNUEYT).

VI. APPENDIX

In the following, we compare the above proximity effect with that in the single band conventional AFM (CAF) system. In order to make the comparison more convincing, we choose the dispersion $\varepsilon_k = -2t[\cos(k_x) + \cos(k_y)] - 4t'\cos(k_x)\cos(k_y) - \mu$ with $t = t_1$ and $t' = t_3$, which gives rise to the similar energy band width with that in the above two-orbital model and is close to the case of the cuprates. The AFM order is introduced by the AFM exchange interaction $J \sum_{(ij)} S_i S_j$ between the NN sites. At the half filling $n = 1$, we find that $J = 1.6$ produces the comparable band gap and the electron polarization as in the above BAFM state. In Fig. 5, we present the magnitude of the magnetic order and the induced pairing correlation as a function of the effective tunneling $V_{\tau,ij}$. The upper panel shows the results for the NNN s_{\pm}-wave pairing and the lower panel the results for the NN d-wave pairing. In the figure, the magnitude of the magnetic order in both cases is renormalized. The proximity effect in reducing the AFM order is more pronounced for the BAFM state as shown in Figs. 5(a) and 5(c). As for the induced pairing correlation, the larger correlation is found in the BAFM state for the s_{\pm}-wave pairing and in the CAFM state for the d-wave pairing, as displayed in Figs. 5(b) and 5(d), respectively.

We can understand the above results by considering the different spin configurations of the BAFM and CAFM orders, as shown in Fig. 6. In the BAFM state, when two electrons transfer from the BAFM layer to the SC one, the energy changes due to the bonds breaking for the NN bond coupling are $\Delta E_{NN}^{+} = |J_1| [A1 and A2 bonds in Fig. 6(a)]$ and $\Delta E_{NN}^{-} = 7|J_1|/4 [A3 bond in Fig. 6(a)]$ for the electron pairs with ferromagnetic and antiferromagnetic alignments, respectively. On the other hand, the energy changes due to the bonds breaking for the NNN bond are $\Delta E_{NNN}^{+} = 9|J_1|/4 [B3 bond in Fig. 6(a)]$ and $\Delta E_{NNN}^{-} = 5|J_1|/2 [B1 and B2 bonds in Fig. 6(a)]$. As a result, the proximity effect in reducing the moment of the AFM order by the d-wave pairing is more remarkable than that by the s_{\pm} one. However, the energy changes due to the bonds breaking in the CAFM state are

\[\Delta E_{NN} = 7|J| [C bond in Fig. 6(b)] \]
\[\Delta E_{NNN} = 8|J| [D bond in Fig. 6(b)] \]

for the NN and NNN band couplings. Therefore, the proximity effect in reducing the moment of the AFM in the CAFM state is rather weak for both the s_{\pm}- and d-wave pairing couplings. As for the induced pairing correlation, the extent of the match between the AFM order configuration and the singlet SC pairing largely determines the magnitude of the induced pairing correlation. For example, the CAFM matches well with the NN d-wave pairing, so that one can expect a large induced pairing correlation without the severe decrease of the AFM order as displayed in Figs. 5(c) and 5(d).
1. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520(R) (2010).
2. A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetskens, and K. Conder, J. Phys.: Condens. Matter 23, 052203 (2011).
3. M. H. Fang, H. D. Wang, C. H. Dong, Z. J. Li, C. M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. 94, 27009 (2011).
4. Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsumani, S. Kimura, and D. L. Feng, Nature Materials 10, 273 (2011).
5. C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature 453, 899 (2008).
6. F. Ma, Z. Y. Lu, and T. Xiang, Phys. Rev. B 78, 224517 (2008); Front. Phys. China 5, 150 (2010).
7. X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Phys. Rev. Lett. 106, 087005 (2011).
8. F. Ma, W. Ji, J. Hu, Z. Y. Lu, and T. Xiang, Phys. Rev. Lett. 102, 177003 (2009).
9. W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E. K. Velstedt, J. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).
10. S. Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y. L. Huang, F. C. Hsu, K. W. Yeh, M. K. Wu, and P. Dai, Phys. Rev. B 79, 054503 (2009).
11. W. Bao, Q. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qiu, Chinese Phys. Lett. 28, 086104 (2011).
12. Z. Shermadini, A. Krzton-Maziopa, M. Bendele, R. Khasanov, H. Luetskens, K. Conder, E. Pomjakushina, S. Weyeneth, V. Pomjakushin, O. Bossen, and A. Amato, Phys. Rev. Lett. 106, 117602 (2011).
13. Y. Zhou, D.-H. Xu, F.-C. Zhang, and W.-Q. Chen, Europhys. Lett. 95, 17003 (2011).
14. R. Yu, J.-X. Zhu, and Q. Si, Phys. Rev. Lett. 106, 186401 (2011).
15. R. H. Yuan, T. Dong, G. F. Chen, J. B. He, D. M. Wang, and N. L. Wang, e-print [arXiv:1102.1381] (to be published).
16. A. M. Zhang, J. H. Xiao, Y. S. Li, J. B. He, D. M. Wang, G. F. Chen, B. Normand, Q. M. Zhang, and T. Xiang, e-print [arXiv:1106.2706] (unpublished).
17. Z. Shermadini, A. Krzton-Maziopa, M. Bendele, R. Khasanov, H. Luetskens, K. Conder, E. Pomjakushina, S. Weyeneth, V. Pomjakushin, O. Bossen, and A. Amato, Phys. Rev. Lett. 106, 117602 (2011).
18. F. Chen, M. Xu, Q. Q. Ge, Y. Zhang, Z. R. Ye, L. X. Yang, Juan Jiang, B. P. Xie, R. C. Che, M. Zhang, A. F. Wang, X. H. Chen, D. W. Shen, X. M. Xie, M. H. Jiang, J. P. Hu, D. L. Feng, e-print [arXiv:1106.3020] (unpublished).
19. D. A. Torchetti, M. Fu, D. C. Christensen, K. J. Nelson, T. Imai, H. C. Lei, and C. Petrovic, Phys. Rev. B 83, 104508 (2011).
20. Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Phys. Rev. B 83, 140505(R) (2011).
21. W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L. Wang, X. Ma, J.-P. Hu, X. Chen, and Q.-K. Xue, e-print [arXiv:1108.0069] (unpublished).
22. G. Aeppli, D. Bishop, C. Broholm, E. Bucher, K. Siemensmeyer, M. Steiner, and N. Stusser, Phys. Rev. Lett. 63, 676 (1989).
23. E. I. Blount, C. M. Varma, G. Aeppli, Phys. Rev. Letts. 64, 3074 (1990).
24. W. L. McMillan, Phys. Rev. 175, 537 (1968).
25. W.-G. Yin, C.-C. Lee, and W. Ku, Phys. Rev. Letts. 105, 107004 (2010).
26. C. Cao, and J. Dai, Phys. Rev. Lett. 107, 056401 (2011).
27. Y.-Z. You, H. Yao, and D.-H. Lee, Phys. Rev. B 84, 020406(R) (2011).
28. X.-W. Yan, M. Gao, Z.-Y. Lu, and T. Xiang, Phys. Rev. B 83, 232305 (2011).
29. M. Mori, and S. Maekawa, Phys. Rev. Lett. 94, 137003 (2005).
30. J.-X. Zhu, and C. S. Ting, Phys. Rev. B 61, 1456 (2000).
31. B. M. Andersen, I. V. Bobkova, P. J. Hirschfeld, and Yu. S. Barash, Phys. Rev. B 72, 184510 (2005).
32. C. Cao, private communications.
33. M. Mori, T. Tohyama, and S. Maekawa, J. Phys. Soc. Jpn. 75, 034708 (2006).