Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic

Farhana Rumzum Bhuiyan1,2*, Sabbir Howlader3, Topu Raihan4 and Mahmudul Hasan5

COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive research works have been reported in recent days on the development of effective therapeutics against this global health crisis, there is still no approved therapy against SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs) have been prioritized to make a review focusing on the efficacy of plant-originated therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless medicinal compounds, while the diversity of multidimensional chemical structures has made them superior to treat serious diseases. Some have already been reported as promising alternative medicines and lead compounds for drug repurposing and discovery. The versatility of secondary metabolites may provide novel antibiotics to tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant metabolites that have the therapeutic potential to treat a wide range of viral pathogens. The study includes the search of remedies belonging to plant families, susceptible viral candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in the collection of an enormous number of natural therapeutics that might be suggested for the treatment of COVID-19. About 219 plants from 83 families were found to have antiviral activity. Among them, 149 plants from 71 families were screened for the identification of the major plant secondary metabolites (PSMs) that might be effective for this pandemic. Our investigation revealed that the proposed plant metabolites can serve as potential anti-SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses. This review will stimulate further analysis by the scientific community and boost antiviral plant-based research followed by novel drug designing.

Keywords: medicinal plants, secondary metabolites, antiviral activities, natural therapeutics/alternative medicine, drug discovery, COVID-19
INTRODUCTION
Coronaviruses comprise a group of large, enveloped, positive-sensed, single-stranded RNA viruses that damage the respiratory tract of mammals including humans, bats, and other animals, leading to infections in the respiratory tract (1–5). The Coronavirus disease 2019 (COVID-19), initially called 2019 novel coronavirus (2019-nCoV), is an agile respiratory disease caused by a novel coronavirus primarily detected in Wuhan, China (6, 7). Now, it has spread to 216 countries and caused the death of more than 0.5 million people worldwide and was declared as a pandemic by the World Health Organization (WHO) (8, 9). Seven types of human coronaviruses have been reported so far, including HCoV-OC43, HCoV-229E, HCoV-HKU1, HCoV-NL63, severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS-CoV), and 2019-novel coronavirus nCoV (10). Among them, MERS-CoV, SARS-CoV, and nCoV have taken the concern of scientists worldwide. In 2003, the severe acute respiratory syndrome (SARS) outbreak occurred in Guangdong (southern China) (6, 11) which infected 8,000 people and resulted in 800 deaths in 26 countries. Only a decade later, another coronavirus has attacked the world and caused another devastating outbreak, MERS, which infected 2,494 people and caused the deaths of 858 worldwide (12, 13). However, the COVID-19 pandemic caused by SARS-CoV-2 resulted in remarkable levels of morbidity and mortality all over the world. Initially China, followed by the USA, Italy, France, Iran, Spain, Russia, Turkey, and the UK became hotspots for SARS-CoV-2. The virus hotspot has now moved to Latin America and, at this time, Brazil, Mexico, and Peru are the new hotspots of SARS-CoV-2. The important aspects of the pathobiology, a viral response phase, and a hyperbolic host response phase are linked with the morbidity and mortality in COVID-19 patients (14). However, the increased cytokine levels (IL-6, IL-10, and TNF-α), lymphopenia (in CD4+ and CD8+ T cells), and decreased IFN-γ expression in CD4+ T cells are the more risky and possibly life-threatening events related to severe COVID-19 (15–17). The infection rate of COVID-19 is increasing gradually but scientists have not been able to specify any specific drug, vaccine, or any other certified therapeutic agents against SARS-CoV-2, which consequently leads to the significant morbidity and mortality.

On the other hand, plants have been essential to human welfare for their uses as therapeutics since ancient times (18, 19). According to the WHO, about 80% of the world’s population depends on medicinal plants or herbs to fulfill their medicinal needs (20–22). A significant amount of antiviral compounds produced from numerous kinds of plants have been used in many studies (23–25). Researchers all around the world are screening therapeutic drugs from existing antiviral plant secondary metabolites (PSMs) and are also trying to find novel compounds from medicinal plants ([26–159]; Supplementary Table 1) to avert this global crisis. Plant metabolites can halt the activity of enzymes involved in the replication cycle of CoVs including papain-like protease and 3CL protease, halt the fusion of the S protein of coronaviruses and ACE2 of the host, and also inhibit cellular signaling pathways (123, 144, 160). Screening from existing PSMs, researchers have been trying to find novel compounds from medicinal plants to prevent numerous diseases, including COVID-19 (Supplementary Table 1). Therefore, the current manuscript aims to describe potential metabolites from plant sources that have antiviral properties that might be aligned for the alternative approach against COVID-19. Hence, understanding the structure, life cycle, pathogenicity, cell signaling, epidemiology of the recently emerging virus, drug targets, and drug discovery process have become very important issues to find specific/effective therapeutics.

EPIDEMIOLOGY, GENOMIC ORGANIZATION, AND LIFE CYCLE OF SARS CoV-2
In December 2019, SARS CoV-2, one of the most devastating viral outbreaks since SARS CoV and MERS, originated from Wuhan city seafood market in China (161–163). The virus was found to be transmitted through close contact with infected people or through exposure to coughing, sneezing, and respiratory droplets (164, 165). It has already been reported to have spread to 216 countries and caused more than 0.5 million deaths. Brazil is now the new hotspot for SARS CoV-2 after the USA, Russia, France, Italy, Germany, Spain, and the UK, where more than 11 million people are infected (166, 167).

The pleomorphic or spherical shaped SARS-CoV-2 has a single-stranded RNA genome of 26.4–31.7 kb in length and a crown-like glycoproteins on its surface (168–173). It is more similar to SARS CoV (over 80%) than MERS (174, 175). However, the RNA genome of CoV-2 is considered as one of the largest genomes compared to those of other RNA viruses (176, 177). The largest open reading frame, ORF1ab, encodes non-structural proteins while the remaining ORFs encode four structural proteins, namely the envelope glycoprotein or spike protein (S), envelope (E) protein, membrane (M) protein, and nucleocapsid (N) protein. The S protein mediates attachment to the host cell while the E protein is involved in virus assembly, membrane permeability of the host cell, and virus-host cell interaction. The M protein is known as a central organizer for the coronavirus assembly and the nucleocapsid (N) protein is usually involved in the processing of helical ribonucleocapsid complex, including some accessory proteins (172, 178). Six types of mutations are found in the genome of SARS-CoV-2 while three mutations have been reported in orf 1ab gene, two mutation in S gene, and the final one in the orf 7b and orf 8 (174, 175). Proteomic analysis revealed that SARS-CoV-2 is vastly homologous to SARS CoV but two proteins, orf 8 and orf 10, are not homologous to SARS CoV (175). To complete its life cycle, SARS-CoV-2 passes into the human body through the nose, mouth, or eyes and then attaches itself to the receptor-binding domain (RBD) using the surface glycoprotein (Spike-protein) of the virion which tries to attach with the hACE2 receptor (179, 180). The entry mechanism of SARS-CoV-2 depends on cellular transmembrane serine protease 2 (TMPRSS2) and furin, along with viral receptor ACE2 (180–182). However, after the fusion of the SARS-CoV-2 virion particle with the host cell membrane, the envelope and capsid part of the virus are
removed. The virus releases its genetic material (RNA) into the host cell cytoplasm and acts as mRNA for the translation from ORF1a and ORF1ab to produce pp1a and pp1ab polypeptides (169, 183). Subsequently, chymotrypsin-like protease (3CLpro) slices these polypeptides into 16 non-structural proteins (NSPs) that are responsible for replication and transcription (184). Then, infected cells produce proteins when they become hijacked by SARS CoV-2. In this situation, the immune system supports the assembly of SARS CoV-2 into new copies of virion particles (185, 186). Freshly synthesized viral nucleic acids and proteins then assemble into the lumen of the ERGIC (Endoplasmic Reticulum Golgi Intermediate Compartment) and leave the cells through exocytosis [(187, 188); Figure 1]. Infected cells release virions and infect other human cells.

SARS-CoV-2 viral infection can be divided into three stages: the asymptomatic period, non-severe symptomatic period, and the severe infection stage (17, 189). SARS CoV-2 patients are reported to have a significant amount of cytokines and chemokines; the levels of cytokines are especially highly increased in patients admitted to ICUs (Intensive Care Unit) (190, 191). These significantly high levels are what results in a patient reaching a critical stage. However, the main mediator of SARS CoV-2, the spike glycoprotein, is found in two conformations (192) and the enzyme 3CLpro of SARS-CoV-2 share a 99.02% sequence identity with 3CLpro of SARS-CoV, which is also highly similar to bat SARS CoV 3CLpro (193). SARS CoV-2 binds to the host cell receptor with a higher affinity than SARS CoV (194). SARS CoV-2 has shown some strategic alteration with the substrate-binding site of bat SARS CoV-2 and 12 point-mutations are found in SARS CoV-2 compared to SARS CoV. Mutations disrupt the significant hydrogen bonds and modify the receptor binding site (RBS) of SARS-CoV-2 3CLpro. However, the
occurrence of recurrent mutations can lead to new strains with alterations in virulence, which one of the reasons discovering a suitable vaccine to combat SARS CoV-2 is challenging (175, 195).

MAJOR DRUG TARGETS OF SARS CoV-2

A fundamental therapeutic approach to treat multi-viral infections is the interruption of human host-virus interactions (17). The major structural proteins of SARS-CoV-2 can be obvious targets for drugs designed against COVID-19. In addition, 16 non-structural proteins (NSPs) can also be considered (169). However, the manifestation of recurrent recombination events is a major hindrance to develop SARS CoV-2 specific vaccines/drugs (176). Up-to-date studies revealed that, though SARS-CoV-2 and SARS-CoV identify a similar receptor (ACE2) in humans (194, 196), there is a noteworthy variation in the antigenicity between SARS-CoV and SARS-CoV-2 which has significance on the development of therapeutic options against this rapidly emerging virus (197). The SARS-CoV-2 spike protein exhibits a higher affinity to the ACE2 receptor in comparison to SARS-CoV, but hACE2 showed a lower binding affinity to RBD (Receptor Binding Domain) of SARS COV-2 when compared to SARS CoV (194, 198). The two most paramount enzymes of SARS CoV-2, proprotein convertase furin- potentiates cell fusion and serine protease TMPRSS2, are responsible for S-protein activation and are propitious drug targets for the treatment of COVID (180, 194, 199).

SARS-CoV-2 AND SEARCHING FOR EFFECTIVE THERAPEUTICS

Though extensive research works are being continued for the development of effective vaccines or drug compounds against SARS-CoV-2, efficacious therapeutics have not yet being attained (200). Moreover, interferon therapies, monoclonal antibodies, oligonucleotide-based therapies, peptides, small-molecule drugs, and vaccines, are regarded as some strategic approaches for controlling or preventing COVID-19 (201, 202). Existing drugs can be used as the first-line treatment for coronavirus outbreaks, but this is not the ultimate solution to eradicate the disease (203). Therefore, the development of therapeutic drugs for the treatment of the COVID-19 outbreak have gathered considerable attention. Scientists from different fields are trying to figure out the way to develop therapeutics. However, experimental implications of drug recombination might be both expensive and time-consuming, whereas computational evaluation may bring about testable hypotheses for systematic drug recombination (174).

PSMs CAN BE EFFECTIVE OVER SYNTHETIC DRUGS AGAINST SARS CoV-2

Though there are approved, repurposed drugs currently in clinical use, there is still an urgent need for specific antiviral therapeutics and vaccines (199). Bioengineered and vectored antibodies and therapies based on cytokines and nucleic acid which target virus gene expression have been found as promising to treat coronavirus infections (204). For example, the repurposing drugs, including favipiravir, remdesivir, lopinavir, ritonavir, nebulized α-interferon, chloroquine, hydroxychloroquine, ribavirin, and interferon (IFN), have been shown to be effective for the treatment of COVID-19. Apart from this, some therapeutics are in clinical trials, such as peptide vaccine (mRNA-1273) (198) and antibody therapies (205). Recently, plasma therapy showed promising results for COVID-19 treatment (206, 207). But, application of these synthetic drugs are not efficient as they exhibit adverse direct or indirect side effects [(208–220); Table 1]. In addition, scientists

Drug	Side effects	References
Arbidol	Side effects in children include sensitization to the drug	(209)
Darunavir	Liver problems and severe skin reactions or rash	(210)
Flavipir	–	(211)
Hydroxychloroquine	One of the most serious side effects of hydroxychloroquine is a risk of heart rhythm problems, which can result in heart failure and in some cases death. Hydroxychloroquine can upset the stomach. Severe, permanent damage to the retina has been reported with the use of hydroxychloroquine	(212)
Ivermectin	Eye or eyelid irritation, pain, redness, or swelling	(213)
Lopinavir	Drowsiness, dizziness, a bad taste in the mouth, and trouble sleeping	(214)
Loprazolam	Paradoxic increase in aggression, lightheadedness, blood disorders, and jaundice	(215)
Lurasidone	Drowsiness, lightheadedness, weight gain, mask-like facial expression, and agitation	(215)
Oseltamivir	Phlegm-producing cough, wheezing, abdominal or stomach cramps or tenderness, bloating	(216)
Remdesivir	Increased liver enzyme levels that may indicate possible liver damage	(210, 212)
Ribavirin	Allergic reaction, anemia, stabbing chest pain, wheezing	(208)
Ritonavir	Diarrhea, nausea, vomiting, heartburn, stomach pain, dizziness, tiredness	(216)
Salmeterol	Hoarseness, throat irritation, rapid heartbeat, cough, dry mouth/throat, or upset stomach	(218)
Saquinavir	Hyperglycemia, increased bleeding in people with hemophilia, increases in the levels of certain fats	(210)
Talampicill	–	(215)
Teicoplanin	Maculopapular or erythematous rash and drug-related fever	(219)
Andrographolide (PSM)	–	(220)
Rubitecan	–	(215)
all around the world are trying to find out some prominent drug and multi-epitope vaccine candidates against this deadly virus using various kinds of immuno-informatics approaches (221, 222). Therefore, the urgent need for safe, effective, and inexpensive therapies/drugs with negligible side effects against COVID-19 is imperative.

PSMs are a source of natural antiviral compounds that could be an effective option, as most of them are safer and more cost-effective compared to orthodox drugs (223), though some PSMs are toxic too. The dependency on and popularity of plant-based drugs are increasing day by day (224). Due to the presence of multiple compounds in crude plant extracts, it can be either beneficial or not, depending on the amounts used each time; if properly regulated, better activity might be shown. It was also found that crude extracts can target multiple sites at a time in a virion particle (225). However, this is yet to be tested against SARS-CoV-2. PSMs can affect the disruption of cell membrane functions and structures (226), interference with intermediary metabolisms (227), interruption of DNA/RNA synthesis and function (228), interruption of normal cell communication (quorum sensing) (229), and the induction of coagulation of cytoplasmic constituents (230). Different kinds of plant metabolites act against SARS CoV (Supplementary Table 1). Plant-based products affect several key events in the pathogenic process. For example, curcin is effective for its antineoplastic, anti-proliferative, anti-aging, anti-inflammatory, anti-angiogenic, antiviral and anti-oxidant effects, and can regulate redox status, protein kinases, transcription factors, adhesion molecules, and cytokines in the human body (231). In silico analysis revealed that anti-SARS CoV PSMs could be one of the most valuable drug targets against SARS CoV-2 [(232–261); Table 2]. A huge amount of plant metabolites have remained unexplored due to the extensive process of isolation of the target compound. Now, various types of modern techniques have been developed for the isolation of lead compounds from crude extracts including maceration, percolation, decoction, reflux extraction, soxhlet extraction, pressurized fluid extraction, supercritical fluid extraction, ultrasound assisted extraction, microwave-assisted extraction, pulsed electric field extraction, enzyme assisted extraction, hydro distillation, and steam distillation (179). These techniques can lead us to find out novel anti-SARS CoV-2 compounds earlier than traditional techniques. In addition, plant metabolomics are used as a tool for the discovery of novel drugs from plant resources (262, 263).

PSMs HAVING ANTIVIRAL PROPERTIES AS ALTERNATIVES TO SYNTHETIC DRUGS AND HOPE FOR CoVID-19

Plants produce diversified low molecular weight PSMs to protect them from different herbivores and microbes (264). Before the discovery of allopathic drugs, these leading natural sources were extensively used for treating several kinds of human diseases (265, 266). Due to the increased resistance of microbial pathogens against allopathic drugs, researchers have now returned to natural resources, focusing especially on plant metabolites, to find out lead compounds to fight against human pathogens (175). Moreover, about 35% of the global medicine market (which accounts for 1.1 trillion US dollars) have been shared by medicinal products prepared using natural plants or herbs (265). Investigations are undergoing for the finding of novel and modern drugs from numerous herbal preparations to fight against this microbial resistance war. Many similarities have been found between SARS CoV and SARS CoV-2 (both of them belong to beta family, containing the same genetic material-RNA, and using the same receptor for viral attachment-ACE2, with an 86% identity and 96% similarity of genome, with almost the same pathogenesis). Thus, previously reported antiviral plant metabolites for SARS CoV can be considered as emerging drug candidates for COVID-19. Right now, the setbacks arising from viral infection around the world have placed budget constraints on researchers trying to discover effective antiviral drugs. However, some PSMs have already shown anti-SARS CoV activity where other antiviral activities are also reported (Supplementary Table 1). These results suggest that there is a scope to find alternative medicines and specific compounds. So, plants could be a vital resource in the fight against COVID-19. Our study suggests that around 76 natural metabolites from different plant species can be efficiently active against COVID-19 (Table 3 and Supplementary Figure 1).

PLANT-BASED ANTIVIRAL COMPOUNDS: GROUP BASIS MECHANISM OF ACTION AND PSMs STRUCTURE

A wide variety of antiviral compounds were found from 219 medicinal plants (26–159) belonging to 83 plant families (Supplementary Table 1). First and foremost are polyphenols, which contain multiple phenolic rings, and are classified as phenols, flavonoids, lignans, hydroxycinnamic acid, stilbenes, and hydroxybenzoic acid (267). We found polyphenols in numerous plants (Table 4) which exerted antiviral activity (269–271) against a wide range of viruses including HIV-1, HIV-2, HSV-1, HSV-2, Influenza virus, Dengue virus, HBV, HCV, Infectious bronchitis virus (IBV), Murbarg virus, Ebola virus, Newcastle disease virus (NDV), Poliomyelitis-1 virus, Lentivirus, and Coronavirus. Polyphenols work against coronaviruses using diverse mechanisms including actuating or inhibiting cellular signaling pathways or halting papain-like protease (PLpro) and 3-chymotripsin-like protease (3CLpro) enzyme (269, 272). Some polyphenol compounds (30-(3-methylbut-2-enyl)-30, 4-hydroxyisolonchocarpin, broussochalcone A, 4,7-trihydroxyflavane, broussochalcone B, papyrifavanol A, kazineol A, kazineol B, kazineol F, kazineol J, and broussoflavan A) isolated from Broussonetia papyrifera showed promising activity against SARS CoV. Higher efficiency against PLpro, as observed by these compounds though activity against Mpro or 3CLpro is not up to the mark. Specially, papyrifavanol A possesses impressive activity against SARS CoV (IC50 3.7, 1 M) (272). In silico analysis revealed that polyphenols can inhibit SARS CoV-2 Mpro and RdRp effectively (273, 274). In our study, we have
TABLE 2 | Probable drug candidates against SARS CoV-2 obtained through virtual screening.

Drug targets	Major metabolites	References
ANTIVIRAL PSMs THAT CAN INHIBIT SARS CoV-2 AT DIFFERENT TARGET	**Major metabolites**	**References**
Spike protein	Magnoflorine, tinosporone, cirsimaritin, chrysoeriol, vasicinone, quercetin, luteolin	(233)
Spike protein	Epigallocatechingallate (EGCG), curcumin, apigenin, chrysophanol	(234)
Spike protein, main protease	Spike protein, main protease	(235)
Spike protein and ACE-2	Hesperidin, emodin, and chrysion	(236)
Spike protein and ACE-2	Curcumin, nimb, withaferin A, piperine, mangiferin, thebaine, berberine, and andrographolide	(222)
Spike protein and ACE-2	Chebulagic acid	(237)
Spike protein, MPro, and RdRp	Silybin, withaferin A, cordoside, catechin, and quercetin	(238)
RdRp	Protomine, alcloctyptine, and (±) 6-acetyloldihydrochelerythrine	(239)
Main Protease (MPro)	Crocin, digitoxigenin, and b-eudesmol	(240)
Main Protease (MPro)	Oolonghomobisflavan-A, theasinsensin D, theaflavin-30-O-gallate	(241)
Main Protease (MPro)	Andrographolide	(242)
Main Protease (MPro)	Hispidin, lepidin E, and folic acid	(243)
Main Protease (MPro)	Ursolic acid, carvacrol, and oleanolic acid	(244)
Main Protease (MPro)	Hypercin, cyanidin 3-glucoside, baikalin, glabridin	(245)
Main Protease (MPro)	Cetylglyceropetidin, isoxanthohumol, and eicagic acid	(246)
Main Protease (MPro)	Benzylidenechromanones	(247)
Main Protease (MPro)	Carnosol, arjungluoside-I, and rosmanol	(248)
Main Protease (MPro)	Leuconefdin	(249)
Main Protease (MPro)	(1E,6E)-1,2,6,7-tetrahydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione and (4Z,6E)-1,5-dihydroxy-1,7-bis(4-hydroxyphenyl)hepta-4,6-dien-3-one	(250)
Mpro and ACE2	Quercetin 3-glucuronide-7-glucoside, and Quercetin 3-vicianoside	(251)
Mpro, hACE-2 and RdRp	d-Viniferin, myricitrin, chrysantherin, myritilin, taiwanhomoflavone A, lactucipinicin 15-oxalate, nymphydolide A, afzelin, biorobin, hesperidin, and phylloemblicin B	(252)
Mpro, spike protein, and non-structural proteins (NSP-9, 15)	Arzanol, ferulic acid, genistein, resveratrol, rosmanol	(253)
ACE-2 receptor	Resveratrol, pterostibene, pinosylvin, piceatannol	(254)
ACE-2 receptor	Isothymol, chloroquine, captopril	(255)
ACE-2 receptor	Resveratrol, quercetin, luteolin, naringenin, zingiberene, and gallic acid	(256)
Envelope protein	Belachinal, macafavlanone E, vinsanol B	(257)
PLpro, 3CLpro	Cryptotanshinone, quercetin, tanshinone lla, coumaroyltymine, N-cis-feruloytyraine	(258)
PLpro, 3CLpro, RdRp, and spike protein	Andrographolide (AGP1), 14-deoxy 11,12-didehydro andrographolide (AGP2), neoadrographolide (AGP3), and 14-deoxy andrographolide (AGP4)	(259)
3CLpro	10-hydroxysambaresvarine, cryptoquindrine, 6-oxoisoquisterin, 22-hydroxyhopan-3-one, cryptosiroplepine, isoquisterin, and 20-epiibronolic acid	(260)
3CLpro	Flavone and coumarine	(261)
3CLpro	Myricitrin, methyl rosmaninat, calceolarioside B, licoafol, amaranthine, colistin	(262)
6LU7 and 6Y2E proteases	Apigenin, glabridin, glycoumarin, oleanolic acid, glucobrassicin	(263)
Transmembrane protease serine 2 (TMRSS2)	Withanolone and withaferin-A	(264)
Membrane (M) and Envelope (E) proteins	Nimbinol A, nimcin, and cycloartanols	(265)
ANTIVIRAL PSMs THAT CAN INHIBIT SARS CoV-2 AT DIFFERENT LIFE CYCLE	**Phytoestrogens** (diadiazin, genistein, formontein, and biochanin A), chlorogenic acid, linoleic acid, palmitic acid, caffeic acid, caffeic acid phenethyl ester, hydroxytyrosol, cis-p-Coumaric acid, cinnamaldehyde, thymoquinone, and some physiological hormones such as estrogens, progesterone, testosterone, and cholesterol	(266)
Viral attachment	Dihydrotanshinone – 1, desmethoxyesperpine	(267)
Entry	Betulnic acid, desmethoxyserpine, ligan, sugiol	(268)
Multiplication	Dithymoquinone (DTQ)	(269)

found another widely distributed, low molecular weight phenolic compound named as a flavonoid which showed strong antiviral activity against SARS CoV, Influenza virus, HBV, HSV, HCV, HIV, Dengue virus, Simian virus, Human rotavirus, Bovine viral diarrhea virus, Poliomayllitis-1 virus, Vesicular stomatitis virus (VSV), and Newcastle disease virus (NDV) (Table 4). Flavonoid
Compounds	Plant source	Family	References
Diterpenoids	Andrographis paniculata	Anethaceae	(26)
Alkaloids, flavonoids, and coumarins	Sambucus nigra	Adoxaceae	(29)
Alkaloids, anthraquinones, glycosides, flavonoids, saponins, phenols, terpenoids, sugar bearing compound, protein, thiol, and inferences	Iresine herbstii	Amaranthaceae	(31)
Tannins, Flavonoids, Terpenes, and Saponins	Anacardium occidentale	Anacardicaceae	(33)
Tannins, gallic acid, flavonoids like quercetin and quercitrin, phenolics, triterpenes	Rhus aromatica	Anacardicaceae	(34)
Gallic acid, quercetin, kaempferol, glycosides	Rhus parviflora	Anacardicaceae	(35)
Tannins and flavonoids	Spondias lutea	Anacardicaceae	(33)
Flavonoids	Spondias lutea L.	Anacardicaceae	(33)
Apigenin and luteolin	Achillea fragrantissima	Asteraceae	(47, 48)
Phenolic acids, flavonoids (apigenin, apigininglucoside, luteolin, cirsiliol, diosmetin), lignans, terpenic lactones, and alkaloids	Baccharis gaudichaudiana DC	Asteraceae	(49)
Flavonoids, clerodane diterpenoids, phenolics, hydroxycinnamic acids	Baccharis spicata (Lam.) Baill	Asteraceae	(49)
Triterpenoids, Steroids	Bidens subalternans DC	Asteraceae	(49)
Flavonoid glycosides and caffeoyl quinic acids	Eupatorium perfoliatum	Asteraceae	(50)
Flavonoids and terpenes	Jasonia montana	Asteraceae	(47)
Phenylpropanoids, flavonoids, essential oils, polyphenols, tannins, triterpenes	Puechea sagittalis (Lam.) Cabrera	Asteraceae	(49)
Silimarin, quercetin, and kaempferol	Silybum marianum	Asteraceae	(51)
terpenoids, flavonoids, essential oils	Tagetes minuta L.	Asteraceae	(49)
phenolic acids (chlorogenic acids), and sesquiterpene lactones (parthenolide)	Tagetes parthenium	Asteraceae	(52)
Flavonoids, D-glucopyranoside, quercetin, luteolin	Taraxacum officinale	Asteraceae	(53)
Flavonoids (apigenin, quercetin, kaempferol, talarinol, selinene, limonene, and zerumbone)	Tridax procumbens	Asteraceae	(53)
Carbohydrates, lipids, proteins, alkaloids, flavonoids, saponins, and organic acids	Balanites aegyptiaca	Balanitaceae	(56, 57)
Icarin and quercetin	Epimedium koreanum Nakai	Berberidaceae	(58)
Flavonoids (quercetin, isoquercetin, and rutin)	Capparis sinaica	Capparaceae	(47, 64)
Tannins, flavonoids, carbohydrates and/or glycosides, resins, sterol, saponins, and alkaloids	Capparis sinaica	Capparaceae	(47, 65)
Natural lupane triterpenoids	Cassine xylocarpa	Celastraceae	(67)
Pentacyclic lupane-type triterpenoids	Maytenus cuzcoina	Celastraceae	(67)
Flavonoids, terpenoids, alkaloids, tannins, glycosides, and saponins	Combretum aderogonium	Combretaceae	(72)
Triterpenes, flavonoids, ellagitannins	Terminalia mollis	Combretaceae	(56, 73)
Lignans, diterpenes, flavonoids, proanthocyanidins, and sterols	Taxodium distichum	Cupressaceae	(73)
Monoterpenoids, sesquiterpenoids, triterpenoids, sterols, alkaloids, flavonoids, and phenolic compounds	Cyperus rotundus	Cyperaceae	(76)
Protocateuc acid, caffeic acid, epicatechin, rutin, resveratrol, quercitin, kaempferol	Ephedra alata	Ephedraceae	(47, 77)
Isolavonoid, indoles, phytosterols, polysaccharides, sesquiterpenoids, alkalines, glucans, and tannins	Equisetum giganteum	Equisetaceae	(78)
Triterpenes and steroids	Euphorbia denticulata	Euphorbiaceae	(79)
Tannins, diterpenes	Euphorbia hirta	Euphorbiaceae	(80)
Diterpenoids, jatrophone-type diterpenoids, and coumarino-type lignoids, lathyrene-type diterpenoids, multifidone, multifidolone, and multifidolone	Jatropha multifida	Euphorbiaceae	(82)
Flavonoid and polyphenol	Acacia arabica	Fabaceae	(83)
Luteolin and vexitin	Aspalathus linearis	Fabaceae	(85)
Saponins and flavonoids	Vachellia nilotica	Fabaceae	(87)
Catechin, kaempferol, quercetin, 3',4',7-trihydroxy-3',5-dimethoxyflavone, rutin, isorhamnetin, epicatechin, afzelechin, epiafzelechin, mesquitol, ophiglonin, aromadendrin, and phenol	Acacia catechu	Fabaceae	(88)
Flavonoids, phenolics, and tannins	Quercus persica	Fabaceae	(90)
Phenolic, flavonoid, and flavanol compounds	Quercus persica	Fabaceae	(90)
Gallic acid, protocatechuic acid, conilagin, geraniin, ellagic acid, kaempferitin, kaempferol 7-O-rhamnoside, quercetin, kaempferol	Geranium thunbergii	Geraniaceae	(91)
Flavonoids (orientin and vicentin)	Ocimum sanctum	Lamiaceae	(26, 99)
Terpenoid and polyphenol	Ocimum sanctum	Lamiaceae	(83)

(Continued)
type compounds, such as apigenin and quercetin, showed activity against SARS CoV virion particles through the inhibition of Mpro enzymes with an IC$_{50}$ of 38.4 ± 2.4 µM and 23.8 µM, respectively (144, 150, 275). According to in silico analysis, flavonoid compounds can terminate the activity of Mpro of SARS-CoV-2 (276, 277).

Alkaloids are another class of natural organic compounds which are classified into several groups based on their heterocyclic ring, such as tropanes, pyrrolidines, isooquinoline purines, imidazoles, quinolizidines, indoles, piperidines, and pyrrolizidines (278). Alkaloids are very promising against SARS-CoV-2 (276, 277), HIV-1, HSV-1, HSV-2, DNV, VSV, Influenza virus, and Newcastle disease virus (NDV) (Table 4). Different kinds of alkaloids showed anti-SARS activity including emetine, Ipecac, Macetaxime, tylophorine, and 7-methoxy cryptopleurine, through the inhibition of protease enzyme, RNA synthesis, and protein synthesis (244, 279). In addition, some alkaloids act against SARS CoV as a nucleic acid intercalating agent such as tetrandrine, fangchinoline, cepharanthine, and lycorine through degrading nucleic acids and inhibiting spike and nucleocapsid proteins (280). Virtual screening analysis revealed that 10-Hydroxyasamabensine and Cryptouquindolone—two alkaloid compound isolated from African medicinal plants showed anti-SARS CoV and anti-SARS-CoV-2 activity through inhibition of their Mpro (256). Chloroquine, a derivative of alkaloid, is found to be active against anti-SARS-CoV-2 (281). So,
Major group basis antiviral PSMs obtained from medicinal plants.

Major compounds	Plant source	Family	Target pathogen	References
Polyphenols	*Avicennia marina*	Acanthaceae	Human immunodeficiency virus (HIV) and herpes simplex virus (HSV)	(27)
	Sambucus nigra	Adoxaceae	Dengue virus serotype-2 (DENV-2)	(29)
	Sambucus nigra	Adoxaceae	Infectious bronchitis virus (IBV)—chicken coronavirus	(30)
	Iresine Herbstii	Amaranthaceae	Newcastle disease virus (NDV)	(31)
	Anacardium occidentale	Anacardiaceae	Simian (SA-11) virus	(33)
	Artocarpus integrifolia	Moraceae	(SA-11) and human (HCR3) rotaviruses	(33)
	Myristica fragrans	Myristicaceae	Human (HCR3) rotaviruses	(33)
	Psidium guajava	Myrtaceae	Simian (SA-11) virus	(33)
	Spondias lutea	Anacardiaceae	Human (HCR3) rotaviruses	(33)
	Spondias lutea L.	Anacardiaceae	Simian (SA-11) and human (HCR3) rotaviruses	(33)
	Rhus aromatica	Anacardiaceae	HSV-1 and HSV-2	(34)
	Rhus aromatica	Anacardiaceae	HSV-1 and HSV-2	(34)
	Rhus parviflora	Anacardiaceae	HIV-1	(35)
	Schnus terebinthifolia	Anacardiaceae	HSV-1	(36)
	Arisaema Tortuosum	Araceae	Acyclovir-resistant HSV-2 and HSV-1	(40)
	Jasonia montana	Asteraceae	Poliomyelitis-1 virus	(47)
	Baccharis gaudichaudiana DC	Asteraceae	Bovine viral diarrhea virus, HSV-1, Poliovirus type 2 (PV-2), and vesicular stomatitis virus (VSV)	(49)
	Pluchea sagittalis (Lam.) Cabrera	Asteraceae	Bovine viral diarrhea virus (BVDV) (HSV-1), poliovirus type 2 (PV-2), and vesicular stomatitis virus (VSV)	(49)
	Tagetes minuta L.	Asteraceae	Bovine viral diarrhea virus, HSV-1, poliovirus type 2 (PV-2), and vesicular stomatitis virus	(49)
	Eupatorium perfoliatum	Asteraceae	Influenza A virus (IAV) H1N1	(50)
	Silybum marianum	Asteraceae	Chikungunya virus (CHIKV), hepatitis C virus (HCV)	(51)
	Tanacetum parthenium	Asteraceae	HSV-1	(52)
	Equisetum giganteum	Equisetaceae	HSV-1, HBV	(78)
	Euphorbia hirta	Euphorbiaceae	HIV-1, HIV-2, SIV mac 251	(80)
	Euphorbia sikkimensis	Euphorbiaceae	HIV-1	(81)
	Acacia arabica	Fabaceae	Influenza A virus H9N2	(83)
	Aspalathus linearis	Fabaceae	Rhesus rotavirus (RRV), simian rotavirus (SA-11) infection	(85)
	Vachellia nilotica	Fabaceae	HSV-2	(87)
	Acacia catechu	Fabaceae	HIV-1	(88)
	Quercus persica	Fagaceae	HIV-1	(90)
	Geranium thunbergii	Geraniaceae	HIV (clinical HIV-1 and HIV-2) and Flaviruses, Ebola, and Marburg virus	(69)
	Ribes nigrum	Grossulariaceae	Influenza A virus	(94)
	Hamamelis virginiana	Hamamelidaceae	Influenza A virus and human papillomavirus	(95)
	Prunella vulgaris	Lamiaceae	Lentivirus	(101)
	Scutellaria baicalensis	Lamiaceae	RSV, HIV, Influenza, and Dengue viruses	(104)

(Continued)
Major compounds	Plant source	Family	Target pathogen	References
Strychnos pseudoquina	Loganiaceae	HSV-1 (KOS strain) and HSV-2 (333 strain)	(108)	
Punica granatum	Lythraceae	HSV-2	(109)	
Magnolia officinalis	Magnoliaceae	Dengue virus type 2	(111)	
Cissampelos pareira Linn	Menispermaceae	Dengue virus types 1-4 (DENV-1-4)	(113)	
Ficus benjamina	Moraceae	HSV-1 and HSV-2, varicella zoster virus (VZV)	(114)	
Ficus carica	Moraceae	HSV-1, HSV-1, ECV-11, and ADV, influenza virus	(115)	
Ficus religiosa	Moraceae	HSV-2	(116)	
Syzygium aromaticum L.	Myrtaceae	HSV and HCV	(119)	
Paulownia tomentosa	Paulowniaceae	SARS-CoV papain-like protease (PLpro)	(123)	
Polyphenols	Phyllanthus niruri	Phyllanthaceae	Acyclovir-resistant HSV strains, hepatitis B virus (HBV), HCV, and HIV	(126)
	Phyllanthus uninaria	Phyllanthaceae	Acyclovir-resistant HSV strains, hepatitis B virus (HBV), HCV and HIV	(126)
	Phyllanthus watsonii	Phyllanthaceae	Acyclovir-resistant HSV strains, hepatitis B virus (HBV), HCV, and HIV	(126)
	Limonium senhense	Plumbaginaceae	HCV	(128)
	Plumbago indica	Plumbaginaceae	Influenza A (H1N1)	(129)
	Agrimonia pilosa	Rosaceae	Influenza viruses (H1N1 and H3N2)	(135)
	Prunus dulcis	Rosaceae	HSV-1	(136)
	Pavetta tormentosa	Rubiaceae	Dengue virus (DENV)	(138)
	Aegle marmelos	Rutaceae	Human coxsackieviruses B1-B6, rotavirus SA-11	(139)
	Dimocarpus longan	Sapindaceae	HCV (genotype 2a strain JFH1)	(140)
	Toreya nucifera	Taxaceae	SARS-CoV 3CLpro	(144)
	Viola diffusa	Violaceae	Hepatitis B virus	(147)
	Alpinia katsumadai	Zingiberaceae	Influenza virus type A	(148)
	Illicium verum Hook. f.	Schisandraceae	Grouper iridovirus infection (GIV)	(190)
	Camellia sinensis	Theaceae	HIV, HTLV-1, HCV, influenza, and HBV	(145, 146)
	Ocimum sanctum	Lamiaceae	Dengue virus serotype-1 (DENV-1)	(26, 99)
	Achillea Fragrantissima	Asteraceae	Poliomyelitis-1 virus	(47, 48)
	Euphrodea alata	Ephedraceae	HSV	(47, 77)
	Tamarix nilotica	Tamaricaceae	HSV	(47, 143)
	Moringa peregrina	Moringaceae	HSV	(47, 189)
	Capparis sinaica	Capparaceae	Avian influenza strain H5N1	(47, 64)
	Ficus sycomorus	Moraceae	HSV-1	(56, 118)
	Balanites aegyptiaca	Balanitaceae	VSV	(56, 57)
	Terminalia mollis	Combretaceae	HSV-0	(56, 73)
	Tuberaria lignosa	Cistaceae	HIV	(70, 71)
	Anemopsis californica	Asclepiadaceae	SARS-CoV	(152)
	Cassia tora	Fabaceae	SARS-CoV	(59)
	Psoralea corylifolia	Fabaceae	SARS-CoV	(150)
	Taxillus chinensis	Loranthaceae	SARS-CoV	(268)
Polyphenols	Citrus sinensis	Rutaceae	SARS-CoV	(152)
	Polygonum multiflorum	Polygonaceae	SARS-CoV	(158)
	Rheum officinale	Polygonaceae	SARS-CoV	(158)
	Rheum palmatum	Polygonaceae	SARS-CoV	(158)
	Citrus sinensis	Rutaceae	SARS-CoV	(152)
Alkaloids	Sambucus nigra	Adoxaceae	Dengue virus serotype-2 (DENV-2)	(29)
	Iresine Herbstii	Amaranthaceae	Newcastle disease virus (NDV)	(31)
	Combretum adenogonium	Combretaceae	HIV-1	(72)
	Cyperus rotundus	Cyperaceae	HSV-1, HBV	(76)
Major compounds	Plant source	Family	Target pathogen	References
-----------------	--------------	--------	-----------------	------------
Saponins	*Iresine Herbstii*	Amaranthaceae	Newcastle disease virus (NDV)	(31)
	Anacardium occidentale	Anacardiaceae	Simian (SA-11) virus	(33)
	Panax ginseng	Araliaceae	RSV	(41)
	Panax ginseng	Araliaceae	Murine norovirus (MNV) and feline calicivirus (FCV)	(42)
	Balantia aegyptiaca	Balantaceae	HSV	(47, 118)
	Capparis sinaica	Capparaceae	HSV	(47, 65)
	Combretum adenogonium	Combretaceae	HIV-1	(72)
	Vachellia nilotica	Fabaceae	HSV-2	(87)
	Lindernia crustacea	Linderniaceae	Epstein-Barr virus (EBV)	(107)
	Artocarpus integrifolia	Moraceae	(SA-11) and human (HGR3) rotaviruses	(33)
	Ficus sycomorus	Moraceae	HSV-1	(56, 118)
	Moringa pergrina	Moringaceae	HSV	(47, 189)
	Plumbago indica	Plumbaginaceae	Influenza A (H1N1)	(129)
	Tarenna asiatica	Rubiaceae	Dengue virus (DENV)	(138)
Terpenoids	*Andrographis paniculata*	Acanthaceae	Dengue virus serotype-1 (DENV-1)	(26)
	Baccharis gaudichaudiana DC	Asteraceae	Bovine viral diarrhea virus, HSV-1, Poliovirus type 2 (PV-2), and vesicular stomatitis virus (VSV)	(49)
	Baccharis spicata (Lam.) Ball	Asteraceae	Bovine viral diarrhea virus (BVD), HSV-1, poliovirus type 2 (PV-2), and vesicular stomatitis virus (VSV)	(49)
	Taxodium distichum	Cupressaceae	Influenza A and B viruses	(75)
	Euphorbia hirta	Euphorbiaceae	HIV-1, HIV-2, SIV mac 251	(80)
	Jatropha multiforma	Euphorbiaceae	Influenza A H1N1 virus	(82)
	Tomeya nuclifera	Taxaceae	SARS-CoV 3CLpro	(144)
	Agrimonia pilosa	Rosaceae	Influenza viruses (H1N1 and H3N2)	(135)
	Tripterygium regelii	Celastraceae	SARS-CoV	(144)
	Gentiana scabra	Gentianaceae	SARS-CoV	(156)
Carbohydrates	*Panax ginseng*	Araliaceae	Human rotavirus	(33)
	Panax notoginseng	Araliaceae	Influenza A H1N1 virus	(43)
	Equisetum giganteum	Equisetaceae	HSV-2	(78)
	Prunella vulgaris	Lamiastraceae	HSV-1 and HSV-2 antigens virus antigen in Vero cells	(100)
	Prunella Spica	Lamiastraceae	Herpes simplex virus (HSV)	(102)
	Laminaria japonica	Laminariaceae	RSV	(105)
	Plumbago indica	Plumbaginaceae	Influenza A (H1N1)	(129)
	Ardisia chinesis Benth	Primulaceae	Coxsackie B3 Virus	(131)
	Capparis sinaica	Capparaceae	HSV	(47, 65)
	Balanes aegyptiaca	Balantaceae	VSV	(56, 57)
	Carissa edulis	Apocynaceae	Herpes simplex virus, chickenpox, and shingles	(38)
some PSMs as alkaloids can be alternative drug targets for COVID-19 (280).

Another class of PSMs, saponins (amphiphatic glycosides), are found ubiquitously in plants which showed antiviral activities against Newcastle disease virus (NDV), Simian (SA-11) virus, Murine norovirus (MNV) and Feline calicivirus (FCV), RSV, VSV, HSV-1, HSV-2, HIV-1, Epstein–Barr virus (EBV), (SA-11) and human (HCR3) rotavirus, Influenza virus, and Dengue virus (Table 4). Plants produce five carbon isoprene derived terpenes which are the largest and most diverse group of PSM. They are classified by monoterpenes, diterpenes, triterpenes, sesterterpenes, hemi terpenes, and sesquiterpenes (282). They exhibited antiviral activity against Bovine viral diarrhea virus, HSV-1, Poliovirus type 2 (PV-2) and vesicular stomatitis virus (VSV), Dengue virus serotype-1 (DENV-1), Influenza A and B viruses, HIV-1, HIV-2, SIV mac 251, and SARS-CoV (Table 4).

Ten diterpenes, two sesquiterpenes, and two triterpenes showed anti-SARS activity with IC50 of 3–10 µM (283). In silico analysis also revealed that terpene Ginkgolide A can strongly inhibit SARS-CoV-2 protease enzyme (284). Carbohydrates, mainly classified as monosaccharides, disaccharides, polysaccharides, and oligosaccharides (282), are found as antiviral agent against Human rotavirus, Influenza A virus, HSV-1, HSV-2, Herpes simplex virus (HSV), RSV, Coxsackie B3 Virus, and VSV [285; Table 4]. Acyclovir is an FDA (Food and Drug Administration) approved antiviral drug which is obtained based from Carissa edulis (Supplementary Table 1). It is mainly used for herpes simplex virus, chickenpox, and shingles. The group basis structure of some major compounds can be found in Table 5.

DRUG DISCOVERY FROM PSMs: ADDRESSING THE MAJOR CHALLENGES TOWARD FUTURE INSIGHTS

Drug discovery from plant metabolites refers to the extraction and purification of active ingredients from conventional cures. Natural plant products comprise complicated chemical structures which differ according to their numerous species. There are several classes of PSMs which are responsible for the biological activities of herbal medicines. PSMs exert their actions on molecular targets that differ from one case to the other. These targets may be enzymes, mediators, transcription factors, or even nucleic acids (286). Good knowledge of the chemical composition of plants leads to a better understanding of their possible and specific medicinal value. Drug discovery and development have become a wide interdisciplinary field over recent decades and many factors are involved in the successful evolution from a bioactive compound into a potential drug ([287, 288]; Figure 2). When existing methods with advanced technologies are applied, it can lead to a modern revelation of drugs, benefitting medicinal purposes (223, 289).

The development of modern technologies has streamlined the screening of natural products in discovering new drugs. Research for drug discovery must create robust and prudent lead molecules, which is progressed from a screening hit to a drug candidate through structural elucidation and structure recognizable proof available from high throughput technology like GC–MS, NMR, IR, HPLC, and HPTLC. Utilizing these advanced technologies gives us an opportunity to perform research in screening novel molecules employing a computer program and database to set up common items as a major source for drug discovery. It finally leads to lead structure discovery. Powerful new technologies are revolutionizing natural herbal drug discovery (223). Steps associated with the drug discovery process from natural resources is illustrated (Figure 3).

However, several factors involving the conversion of a desirable compound into a valuable drug candidate include availability, bioavailability, intellectual property, and the strong pharmacokinetic profile of the compound (268, 290). Sometimes researchers find great bioactivity of a plant-derived compound in in vitro analysis but unfortunately, the desired compound becomes ineffective under in vivo conditions (291). In vivo is a very crucial step to move to animal trials or subsequent clinical trials. Even if the compound shows promising activity in in vivo assay but it can still become ineffective in animal model trials due to a poor pharmacokinetic profile (292). Under in vivo condition, the target compound remains in direct contact with cells, while in animal models the compound moves to various stages where it might lose its bioactivity (292). For example, despite curcumin having promising antioxidant, anticancer, anti-inflammatory, and antimicrobial activities, it has not been released as a drug yet due to its poor bioavailability (292). Another propitious drug candidate, epigallocatechin gallate (EGCG), showed antioxidant, antihypertensive, anticancer, antimicrobial, and anti-inflammatory activity (293, 294) but unfortunately, it has also failed to obtain drug designation due to the same reason mentioned for curcumin (292).

To remedy these problems, researchers around the world are working to develop new approaches. Changing the administration route might increase the bioavailability of a compound. For example, the bioavailability of an anti-inflammatory compound, andrographolide, is increased when it is administered intravenously instead of through oral administration (295). Other methods to enhance the bioavailability of target compound include using drug delivery systems, the nano-formulation of a drug, using adjuvant systems, or altering structural analogs (208, 296). Furthermore, the modification of pharmacokinetic profiles of compounds like absorption, distribution, metabolism, and excretion can escalate its probability as drug candidate (268). Indeed, there is an urgent need for specific protocols for invention of novel bioactive compounds and for this purpose it is very crucial for related organizations, companies, and agencies, including the World Health Organization (WHO), Food and Drug Administration (FDA), European Medicines Agency (EMA), World Trade Organization (WTO), International Conference on Harmonization (ICH), World Intellectual Property Organization (WIPO), biotech companies, pharmaceutical pharmaceuticals companies, and several other companies and agencies, to work together. However, plant-originated therapeutics need to be taken under consideration against SARS-CoV-2 as they have already shown promising hopes for different critical conditions caused by deadly pathogens.
TABLE 5 | Structures of some major PSMs and Drugs used against SARS CoV-2.

ALKALOIDS
Buchapine
Colchicine
Acronine
Citrusinine
Rohitukine

POLYPHENOLS
Aescuflavoside
Dipherlin
Galangin
Isoscutellarein
Justicidin
Ternatin

(Continued)
TABLE 5 | Continued

TERPENOIDS	OTHERS	SYNTHETIC DRUGS
α-Peltatin	Podophyllotoxin	Ursolic acid
Betulinic acid	(-)-Calanolide	Inophyllum B
Andrographolide	Arbidol	Darunavir

(Continued)
TABLE 5 | Continued

Hydroxychloroquine	Ivermectin	Lopanovir
Loprazolam	Lurasidone	Oseltamivir
Remdesivir	Ribavirin	Ritonavir
Rubitecan	Salmeterol	Saquinavir

(Continued)
The seven major drug targets of SARS CoV-2 were described before (176). Similarly, screening of PSMs for drug establishment by molecular docking is efficient in terms of time and cost. Even the development of vaccines through computational biology was found to be effective for previous severe viruses like MERS using animal models, target antigens, and probable vaccine candidates (181). But still, there exists a lack of a complete review for PSMs as alternative drug therapeutics. Our review aims at establishing PSMs as a strong and safe candidate for the treatment of SARS CoV-2. Through suggesting probable antiviral plant metabolites or screening, druggability analysis of plant metabolites against SARS-CoV-2 has become a time-saving practice (280, 297). Without establishing a drug development pipeline that includes clinical trials, these suggested candidate PSMs will end up only in journal publications or be shelved as herbal formulations on a supermarket store as a traditional medicine and will never be a modern drug. Undoubtedly, the plant an underutilized source of novel bioactive compounds and is one of the hotspots to fight against this microbial resistance war. The decrypting of PSMs is not increasing so much in comparison to the number of metabolites produced from plants. A biotechnological approach can offer a desired amount of secondary metabolites in a rapid and eco-friendly way against SARS-CoV-2 (298). In addition, plant metabolomics are now used as a tool for discovery of novel drugs from plant resources (299). Characterization of genes and proteins involved in secondary metabolic pathways are also very crucial to understand. Therefore, omics approaches (transcriptomics, proteomics, and metabolomics) have paramount importance in food research and drug discovery (300, 301) for human welfare.

Genetic modifications for engineering plant metabolites can be helpful for reaching a specific drug. Quality control of natural products is also very important. So, laboratory support, skilled manpower, and funding is also very important for drug discovery from natural resources.

CONCLUSIONS

Scientists all around the world are trying to discover the most effective antiviral drug to combat SARS CoV-2. In this situation, our study accentuated some plant secondary metabolites that showed prominent antiviral activity against
1. **Plant selection, Identification, collection and sample preparation**
 Collection, Herbarium and Authentication of antiviral properties bearing plant by a taxonomist and preparation of sample

2. **Primary screening**
 Plant crude extract preparation using plant parts (Root, stem, Leaf, flower) Bioassays, Toxicology

3. **Secondary screening**
 Compound separation, Purification, qualitative and quantitative Analysis, bioassay of pure compound, Toxicology

4. **Tertiary screening**
 Structure elucidation, structure modification and bioassay, Toxicology and synthesis

5. **Preclinical trial**
 Lead identification, lead optimization and lead development

6. **Clinical trial**
 Phase I, Phase II, Phase III trial and treatment review

7. **Authority Approval**
 Review of the trial and final approval

FIGURE 3 Various steps involved in the tedious drug discovery process from plant sources.
coronaviruses through impeding the main machinery used in their pathogenesis and replication cycle. The in vitro, in vivo, and in silico investigations revealed numerous plant-derived compounds with promising anti-SARS CoV and anti-SARS CoV-2 activity [Table 2; (179, 220, 222, 233–261, 297)]. Plants are a dramatically underutilized source of bioactive compounds with a broad spectrum of antiviral activities. Some Chinese traditional plant formulations have been reported as being anti-SARS CoV-2 and this formulation is also provided in COVID patients (302, 303). We reported here on 219 plants which act against a wide range of DNA/RNA viruses, but the plant PSMS that showed promising activity against SARS CoV and MERS might be a desired drug candidate against SARS CoV-2. So, this review gathered all antiviral plants in a single platform to facilitate laboratory-based research for the development of novel drug/molecular therapeutics to overcome this and future pandemic situations. The world is facing a serious health crisis, and it needs an effective solution to combat the burning flame of COVID-19. Researchers are trying to find an effective way to overcome this situation, and the present study could help them to think with a new dimension by using the knowledge from the databases based on the plant metabolites (304, 305). Finally, advanced and rapid acting extraction, purification, and characterization techniques used for plant metabolites as well as multidisciplinary expertise and funding are very essential for novel drug discovery.

LITERATURE STUDY

Articles were selected and identified by searching specific keywords and journal citations for each section of a manuscript. Related peer reviewed scientific journal articles were screened from different journal depositories after reviewing abstracts and original data.

REFERENCES

1. Brian DA, Baric RS. Coronavirus genome structure and replication. *Curr Top Microbiol Immunol*. (2005) 287:1–30. doi: 10.1007/3-540-267 65-4_1
2. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. *Lancet*. (2020) 395:565–74. doi: 10.1016/S0140-6736(20)30251-8
3. Cavanagh D. Coronavirus avian infectious bronchitis virus. *Vet Res*. (2007) 38:281–97. doi: 10.1051/vetres:2006055
4. Ismail MM, Tang Y, Saif YM. Pathogenicity of turkey coronavirus in turkeys and chickens. *Avian Dis*. (2003) 47:515–22. doi: 10.1637/5917
5. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. *Methods Mol Biol*. (2015) 1282:1–23. doi: 10.1007/978-1-4939-2438-7_1
6. Lan, Jun, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. *Nature*. (2020) 581:215–20. doi: 10.1002/2019.956235
7. Chen Y, Peng H, Wang L, Zhao Y, Zeng L, Gao H, et al. Infants born to mothers with a new coronavirus (COVID-19). *Front Pediatr*. (2020) 8:104. doi: 10.3389/fped.2020.00104
8. WHO. Director-General’s Opening Remarks at the Media Briefing on COVID-19. (2020). Available online at: https://www.who.int/dg/speeches/ detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19 (accessed May 15, 2020).
9. WHO. Director-General’s Opening Remarks at the Media Briefing on COVID-19. (2020). Available online at: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19 (accessed April 5, 2020).
10. Kanne JP. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: Key points for the radiologist. *Radiology*. (2020) 295:16–7. doi: 10.1148/radiol.20200 0241
11. Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronavirus-drug discovery and therapeutic options. *Nat Rev Drug Discov*. (2016) 15:327– 47. doi: 10.1038/nrd.2015.37
12. Heymann DL, Rodier G. Global surveillance, national surveillance, and SARS. *Emerg Infect Dis*. (2004) 10:173–5. doi: 10.3201/eid1002.031038
13. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. *N Engl J Med*. (2012) 367:1814–20. doi: 10.1056/NEJMoA1211721
14. Shetty R, Ghosh A, Honavar SG, Khamar P, Sethu S. Therapeutic opportunities to manage COVID-19/SARS-CoV-2 infection: present and future. *Indian J Ophthalmol*. (2020) 68:693–702. doi: 10.4103/ijo.IJO_639_20
15. Hirano T, Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. *Immunity*. (2020) 52:731– 3. doi: 10.1016/j.immuni.2020.04.003

AUTHOR’S NOTE

The authors initiated this project to facilitate the research on molecular therapeutics from plant sources as an immediate action in response to the COVID-19 pandemic situation.

AUTHOR CONTRIBUTIONS

FB and MH designed the project. FB prepared the first draft. FB, SH, TR, and MH have investigated the data and completed the manuscript. All authors have read through the manuscript and approved it for submission and publication.

ACKNOWLEDGMENTS

We are thankful to Mr. Md. Fayezur Rahman (MSS in Economics, Comilla University) for drawing the figures as authors expected. Our sincere gratitude to Mr. Mohammad Saifullah (MA in English, University of Chittagong) for proofreading of the manuscript. We are grateful to the editors and reviewers for their valuable comments during the review process to improve the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2020.00444/full#supplementary-material

Supplementary Figure 1 | Different plant families showing antiviral properties. (Each portion of the pie chart describes a specific Family alongside its total number of plants that have antiviral properties).

Supplementary Table 1 | List of secondary metabolites found from medicinal plants.
16. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. (2020) 130:2202–5. doi: 10.1172/JCI137647
17. Coperchini F, Chiovato L, Croce L, Magni F, Rotondi M. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. (2020) 53:25–32. doi: 10.1016/j.cytogf.2020.05.003
18. Moses T, Goossens A. Plants for human health: greening biotechnology and synthetic biology. J Exp Bot. (2017) 68:4009–11. doi: 10.1093/jxb/erx268
19. Schaal B. Plants and people: our shared history and future. Plants People Planet. (2019) 1:1–9. doi: 10.1007/ppp3.12
20. World Health Organization. WHO Global Report on Traditional and Complementary Medicine 2019. World Health Organization (2019).
21. Hoque Haque MI, Chowdhury ABMA, Shahjahan M, Harun MGd. Traditional healing practices in rural Bangladesh: a qualitative investigation. BMC Complement Altern Med. (2018) 18:62. doi: 10.1186/s12906-018-2129-5
22. Ozioma E, Okaka A. Herbal medicines in African traditional medicine. In: Ozioma EJ and Chinwe OAN, editors. Herbal Medicine. IntraTech open (2019), p. 1–25.
23. Jassim SAA, Naji MA. Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol. (2003) 95:412–27. doi: 10.1046/j.1365-2672.2003.02026.x
24. Hussain W, Haleem KS, Khan I, Tauseef I, Qayyum S, Ahmed B, et al. Medicinal plants: a repository of antiviral metabolites. Future Virol. (2017) 12:299–308. doi: 10.2217/fvl-2016-0110
25. Özçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. (2011) 49:396–402. doi: 10.3109/13880209.2010.519390
26. Pick A, Ling K, Khoo BF, Seah CH, Foo KY, Cheah RK. Inhibitory activities of methanol extracts of Andrographis Paniculata and Ocimum Sanctum against Newcastle disease virus in ovo. Saudi J Biol Sci. (2017) 24:315–20. doi: 10.3897/SJBS.2007.002-2276
27. Namazi R, Zabihollahi R, Behbahani M, Rezae A. Inhibitory activity of Rhus parviflora prepared from hydroethanolic extract from Rhus aromatica (fragrant sumac) extract against two types of alkaloids. Phytomedicine. (2019) 55:249–54. doi: 10.1016/j.phymed.2018.06.040
28. Chen C, Zuckerman DM, Brantley S, Sharpe M, Childress K, Hoiczyk E, et al. Antiviral activity of a Arisaema tortosum leaf extract and some of its constituents against herpes simplex virus type 2. Planta Med. (2020) 86:267–75. doi: 10.1055/a-1087-8303
29. Castillo-Maldonado I, Moreno-Altamirano MMB, Serrano-Gallardo LB. In vitro antiretroviral activity of extracts of Aloe arborescens Mill. against a broad panel of viruses causing infections of the upper respiratory tract. Phytomedicine. (2015) 22:911–20. doi: 10.1016/j.phymed.2015.03.006
30. Choi J, Jin Y, Lee H, Oh TW, Yim N, Cho W. Protective effect of Panax notoginseng root water extract against influenza A virus infection by enhancing antiviral interferon-mediated immune responses and natural killer cell activity. Front Immunol. (2017) 8:1542. doi: 10.3389/fimmu.2017.01542
31. Glatthaar-Saalmüller B, Fal AM, Schönknecht K, Conrad F, Sievers L, Zandi K, Zadeh MA, Sartavi K, Rastian Z. Antiviral activity of Aloe vera against herpes simplex virus type 2: an in vitro study. Afr J Biotechnol. (2009) 6:1770203. doi: 10.5897/AJB2007.000-2276
32. Visintini M, Redko F, Muschietti L, Campos R, Martino V, Cavallaro LV. Protective effect of Korean red ginseng extract and ginsenosides on murine norovirus and feline calicivirus as surrogates for human norovirus. J Ginseng Res. (2011) 35:429–35. doi: 10.1016/j.jgr.2011.35.4.429
33. Moradi M, Rafieian-kopaei M, Karimi A. A review study on the effect of Iranian herbal medicines against in vitro replication of herpes simplex virus. Avicenna J Phytomed. (2016) 6:506–15.
34. Liana R, Hassandarvish B, Vishnivetskaya A, Bautista V, Vianco J, Frutos I. Anti-influenza virus effect of aqueous extracts from dandelion. Aloe arborescens Mill. against a broad panel of viruses causing infections of the upper respiratory tract. Phytomedicine. (2015) 22:911–20. doi: 10.1016/j.phymed.2015.03.006
35. Patocka J, Navratilova Z. Achillea fragrantissima : pharmacology review. Clin Oncol. (2019) 4:1601.
36. Visintini M, Redko F, Muschietti L, Campos R, Martino V, Cavallaro LV. In vitro anti-influenza activity of plant extracts from Asteraceae medicinal plants. Viral Res. (2014) 193:104–20. doi: 10.1016/j.virres.2014.08.001
37. Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, Jeong HJ, et al. Chalcones isolated from Angelica keiskei inhibit cytokine proteases of SARS-CoV-2. J Enzyme Inhib Med Chem. (2016) 31:23–30. doi: 10.1080/14756366.2014.1003215
38. Tolo FM, Rukunga GM, Muli FW, Ngaj ENM, Njue W, Kumon K, et al. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against Herpes simplex virus. J Ethnopharmacol. (2006) 104:92–9. doi: 10.1016/j.jep.2005.08.053
39. Lee MH, Lee B, Jung J, Cheon D, Kim K, Choi C. Antiviral activity of ginseng extract against respiratory syncytial virus infection. Int J Mol Med. (2014) 34:183–90. doi: 10.3892/ijmm.2014.17750
40. Renton HA, Zulqarnain M, Ammar YA, Tan EC, Rahman NA, Yusof R. Potential of Carissa edulis in silico against HCV NS5B polymerase. Biomed Pharmacother. (2019) 117:109143. doi: 10.1016/j.biopha.2019.109143
41. Min J, Navratilova Z, Achillea fragrantissima : pharmacology review. Clin Oncol. (2019) 4:1601.
42. Rezae A, Behbahani M, Namazi R, Zabihollahi R. Inhibitory activity of Rhus parviflora prepared from hydroethanolic extract from Rhus aromatica (fragrant sumac) extract against herpes simplex virus type 2. Planta Med. (2017) 83:509–18. doi: 10.1055/s-0042-117774
43. Medina-Villalobos B, Balan R, Bussetti M, Palumbo V, Vignali C, Taurino A, et al. Anti-HIV-1 activity, protease inhibition and safety profile of extracts of Panax notoginseng of bioactive composites and antiviral activity of extracts of Lipica saponins from Panax notoginseng against herpes simplex virus type 2. Plant Sci. (2014) 218:144–52. doi: 10.1016/j.jep.2016.05.016
44. He W, Han H, Wang W, Gao B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol J. (2011) 8:538. doi: 10.1186/1743-422X-8-538
45. He W, Han H, Wang W, Gao B. Anti-influenza virus effect of aqueous extracts from dandelion. Viral J. (2011) 8:538. doi: 10.1186/1743-422X-8-538
46. Rothan HA, Zulaikhah M, Ammar YA, Tan EC, Rahman NA, Yusof R. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay. Trop Biomed. (2014) 31:286–96.
47. Morgensfelder C, Armstrong T, Adasch P, Tietze B, Behrens J, Echinger B, et al. Screening of some Tanzanian medicinal plants from Bunda District for potential of screening antiviral activities in medicinal plants extracts against dengue.
antibacterial, antifungal and antiviral activities. J Ethnopharmacol. (2008) 119:58–66. doi: 10.1016/j.jep.2008.05.033

57. Al-thobaiti SA, Zeid MA. Phytochemistry and pharmaceutical evaluation of Balanites aegyptiaca : an overview. J Exp Biol Agric Sci. (2018) 6:453–65. doi: 10.18006/1.43) 453-665

58. Choi WK, Kim H, Choi YJ, Yin NH, Yang HJ, Ma JY. Epimedium koreanum Nakai water extract exhibits antiviral activity against porcine epidemic diarrhea virus in vitro and in vivo. Evid Based Complement Altern Med. (2012) 2012:985150. doi: 10.1155/2012/985151

59. Park JY, Jeong HJ, Kim JH, Kim YM, Park SJ, Kim D, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull. (2012) 35:2036–42. doi: 10.1248/bpb.12-00623

60. Tung NH, Woon KN, Kim JH, Ra JC, Ding Y, Kim JA, et al. Anti-influenza diarylheptanoids from the bark of Alnus japonica. Bioorganic Med Chem Lett. (2010) 20:1000–3. doi: 10.1016/j.bmcl.2009.12.057

61. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. (2005) 68:36–42. doi: 10.1016/j.antiviral.2005.07.002

62. Chen F, Yang L, Huang Y, Chen Y, Sang H, Duan W, et al. Isocoriolagen, isolated from Canarium album (Lour.) Raesusch, as a potent neuraminidase inhibitor against influenza A virus. Biochem Biophys Res Commun. (2020) 523:183–9. doi: 10.1016/j.bbrc.2019.12.043

63. César GZL, Alfonso MGM, Marius MM, Elizabeth EM, André CBM, Maira HR, Guadalupe CML, et al. Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico. Fitoterapia. (2011) 82:1027–34. doi: 10.1016/j.fitote.2011.06.006

64. Ibrahim AK, Youssef AI, Arafa AS, Ahmed SA. Anti-HSV1 virus flavonoids from Capparis sinaica Veil. Nat Prod Res. (2013) 27:2149–53. doi: 10.1080/17486149.2013.790027

65. Ghazal EA, Khamis IAM, Elhaw MMH. Chemical constituents of Capparis sinaica Veil. plant and its antimicrobial effects. Middle East J Appl Sci. (2015) 5:411–22.

66. Lam S-Z, Ng T-B. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine. (2009) 16:444–50. doi: 10.1016/j.phymed.2008.09.006

67. Callies O, Bedoya LM, Beltra M, Mun A, Obrego P, Osorio AA, et al. Antiviral and antitumoral activities of Ethylenediamine Glycine conjugates with protein isolated from Combretum adenogonium. J Nat Prod. (2015) 78:1045–55. doi: 10.1021/np500102s

68. Inoue R. Orally administered Extract of Salacia reticulata in vivo. Evid Based Complement Altern Med. (2015) 21:76. doi: 10.1186/s12906-017-1612-8

69. Rebensburg S, Helfer M, Schneider M, Koppensteiner H, Muller C, et al. Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cistus incanus. BMC Complement Altern Med. (2017) 17:2. doi: 10.1186/s12909-017-1618-2

70. Javed T, Ashfaq UA, Riaz S, Rehman S, Riazuddin S. In-vitro antiviral activity of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine : Rhizomes of Cyperus rotundus. J Ethnopharmacol. (2015) 171:131–40. doi: 10.1016/j.jep.2015.05.040

71. Churqui MP, Lind L, Thörn K, Svensson A, Savolainen O, Aranda KT, et al. Extracts of Equisetum giganteum L. and Copaifera reticulata Ducke show strong antiviral activity against the sexually transmitted pathogen herpes simplex virus type 2. J Ethnopharmacol. (2018) 210:192–7. doi: 10.1016/j.jep.2017.08.010

72. Shamsabadipour S, Ghadianian M, Saeedi H, Reza Rahimnejad M, Mohammad-I-Kamalabadi M, Ayatollahi SM, et al. Triterpenoids and steroids from Euphorbia denticalata Lam. with anti-herpes simplex virus activity. Iran J Pharm Res. (2013) 12:759–67.

73. Gyuris A, Szilávik L, Minárovits J, Vasas A, Molnár J, Hohmann J. Antiviral activities of extracts of Euphorbia hirta L. against HIV-1, HIV-2 and SIVmac251. In Vivo. (2008) 23:429–32.

74. Jiang C, Luo P, Zhao Y, Hong J, Morris-Natschke SL, Xu J, et al. Carolignans from the aerial parts of Euphorbia sikkimensis and their anti-HIV activity. J Nat Prod. (2016) 79:578–83. doi: 10.1021/acs.jnatprod.5b01012

75. Shoji M, Woo SY, Masuda A, Win NN, Ngwe H, Takahashi E, et al. Anti-influenza virus activity of extracts from the stems of Jatropha multifida Linn. Collected in Myanmar. BMC Complement Altern Med. (2017) 17:6. doi: 10.1186/s12906-017-1612-8

76. Ghoke SS, Sood R, Kumar N, Pateriya AK, Bhatia S, Mishra A, et al. Evaluation of antiviral activity of Osinum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complement Altern Med. (2018) 18:174. doi: 10.1186/s12906-018-2238-1

77. Makau JN, Watanabe K, Mohammed MMD, Nishida N. Antiviral activity of peanut (Arachis hypogaea L.) skin extract against human influenza viruses. J Med Food. (2018) 21:777–84. doi: 10.1089/jmf.2017.4121

78. Knipping K, Garssen J, van’t Land B. An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol J. (2012) 9:137. doi: 10.1186/1743-422X-9-137

79. Fahmy NM, Al-Sayed E, Moghannem S, Azam F, El-Shazly M, Singab AN. Breaking down the barriers to a natural antiviral agent: antiviral activity and molecular docking of Erythrina speciosa extract, fractions, and the major compound. Chem Biodivers. (2020) 17:2. doi: 10.1002/cbdv.201900511

80. Donaliso M, Cagno V, Cirva A, Gibellini D, Musumecci G, Rittà M, et al. The traditional use of Vachellia nilotica for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses. J Ethnopharmacol. (2018) 213:403–8. doi: 10.1016/j.jep.2017.11.039

81. Nutan SK, Modi M, Dezzutti CS, Kulbreshtha S, Rawat AKS, Srivastava SK, et al. Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol J. (2013) 10:309. doi: 10.1186/1743-422X-10-309

82. Karimi A, Rafieian-kopaei M, Moradi M. Anti -herpes simplex virus type-1 activity and phenolic content of crude ethanol extract and four corresponding fractions of Quercus brantii L. Acorn. J Ethn Based Complement Altern Med. (2016) 22:455–61. doi: 10.1016/j.jebcam.201900511

83. Rafieian-kopaei M, Saeedi M, Asgari S, Karimi A, Moradi M-T. Antiviral activity of Quercus persica L.: high efficacy and low toxicity. Adv Biomed Res. (2013) 2:36. doi: 10.4103/2277-9175.99722

84. Choi JG, Kim YS, Kim JH, Chung HS. Antiviral activity of ethanol extract of Capparis sinaica Veil. plant and its components against influenza viruses via neuraminidase inhibition. Sci Rep. (2019) 9:12132. doi: 10.1038/s41598-019-48430-8

85. Helfer M, Koppensteiner H, Schneider M, Reubens B, Forcisi S, Müller C, et al. The root extract of the medicinal plant Pelargonium...
... is a potent HIV-1 attachment inhibitor. PLoS ONE. (2014) 9:e87487. doi: 10.1371/journal.pone.0087487
93. Michaelis M, Doerr HW, Cinatl J. Investigation of the influence of Eps® 7630, a herbal drug preparation from Lamium galeobdolon, on replication of a broad panel of respiratory viruses. Phytomedicine. (2011) 18:384–6. doi: 10.1016/j.phymed.2010.09.008
94. Haasbach E, Hartmayer C, Hettler A, Aranecke A, Wulle U, Elhhardt C, et al. Antiviral activity of Ladania067, an extract from wild black currant leaves against influenza virus in vitro and in vivo. Front Microbiol. (2014) 5:171. doi: 10.3389/fmicb.2014.00171
95. Theisen LL, Erdelemier CAJ, Spoden GA, Boukhallouk F, Sausy A, Florin L, et al. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza, a virus and human papillomavirus. PLoS ONE. (2014) 9:e88062. doi: 10.1371/journal.pone.0088062
96. Erdelemier CAJ, Cinatl J, Rabenu H, Doerr HW, Biber A, Koch E. Antiviral and antipathologic activities of Hamamelis virginiana bark. Planta Med. (1996) 62:241–5. doi: 10.1055/s-2006-957868
97. Chen SG, Lee YL, Cheng ML, Ting SC, Cheng ML, Ting SC, Liu CC, Wang S. Der, et al. Antiherpes activity. J Ethnopharmacol. (2004) 97. doi: 10.1016/j.jep.2004.03.024
98. Schnitzler P, Schuhmacher A, Astani A, Reichling J. Hamamelis virginiana bark extract: affects infectivity of enveloped herpesviruses. Phytomedicine. (2008) 15:734–40. doi: 10.1016/j.phymed.2008.04.018
99. Tang LJC, Ling APK, Koh RY, Chye SM, Voon KGL. Screening of anti dengue activity in extracts of medicinal plants. BMC Complement Altern Med. (2012) 12.3. doi: 10.1186/1472-6882-12-3
100. Chiu LCM, Zhu W, Ooi VEC. A polysaccharide fraction from medicinal herb Prunella vulgaris downregulates the expression of herpes simplex virus antigen in Vero cells. J Ethnopharmacol. (2004) 93:63–8. doi: 10.1016/j.jep.2004.03.024
101. Brindley MA, Widrichner MP, McCoy JA, Murphy P, Hauck C, Rizshsky H, et al. Inhibition of lentivirus replication by aqueous extracts of Prunella vulgaris. Virol J. (2009) 6:8. doi: 10.1186/1743-422X-6-8
102. Ma F-W, Kong S-Y, Tan H-S, Wu R, Xia B, Zhou Y, et al. Ficus benjamina latex extracts. Antiviral activity inhibition in the viral lytic cycle. J Ethnopharmacol. (2020) 21:1133. doi: 10.1039/d000113-1371
103. Mancini DAP, Torres RP, Pinto JR, Mancini-Filho J. Inhibition of DNA virus: Strychnos pseudoquina in vitro affects infectivity of enveloped herpesviruses. Phytomedicine. 2017;14:158:89–97. doi: 10.1016/j.phymed.2016.10.008
104. Shi H, Ren K, Li B, Zhang W, Zhao Y, Tan RX, et al. Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice. Sci Rep. (2016) 6:35851. doi: 10.1038/srep35851
105. Cao YG, Hao Y, Li ZH, Liu ST, Wang LX. Anti-Influenza virus activity and constituents characterization of Paeonia lutea. Molecules. (2016) 21:1133. doi: 10.3390/molecules21091133
106. Benzekri R, Bouslama L, Papetti A, Hammami M, Smaoui A, Limam F. Anti HSV-2 activity of Peganum harmala (L.) and isolation of the active compound. Microb Pathog. (2018) 114:291–8. doi: 10.1016/j.micpath.2017.12.017
107. Li J, Yang L, Huang L. Anti-Influenza virus activity and constituents characterization of Paeonia lactiflora. Molecules. (2016) 21:1133. doi: 10.3390/molecules21091133
108. Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HW, Yuk HJ, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem. (2013) 21:3051–7. doi: 10.1016/j.bmc.2013.03.027
109. Lv J, Yu S, Wang Y, Wang D, Zhu H, Cheng R, et al. Anti-hepatitis B virus norisobolean sesquiterpenoids from Phyllanthus acidus and the establishment of their absolute configurations using theoretical calculations. J Org Chem. (2014) 79:5432–47. doi: 10.1021/jo5004604
110. Ravikumar YS, Ray U, Nandhitha M, Perween A, Raja Naika H, Kanna N, et al. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus Res. (2011) 158:89–97. doi: 10.1016/j.virusres.2011.03.014
111. Chavan RD, Shinde P, Girkar K, Madage R, Chowdhary A. Assessment of Anti-Influenza activity and hemagglutination inhibition of Plumbago...
indica and Allium sativum extracts. Pharmaceuticals (2016) 8:105–11. doi: 10.3390/1094-0172562

130. Xiong HR, Luo J, Hou X, Yao H, Yang QZ. The effect of Emodin, an anthraquinone derivative extracted from the roots of Rheum tataricum, against herpes simplex virus in vitro and in vivo. J Ethnopharmacol. (2011) 137:718–23. doi: 10.1016/j.jep.2010.10.059

131. Su M, Li Y, Leung KT, Cen Y, Li T, Chen R, et al. Antiviral activity and constituent of Ardisia Chinesis Benth against coxsackie B3 virus. Phytother Res. (2006) 20:634–9. doi: 10.1002/ptr.1912

132. Hossan MS, Fatima A, Rahmatullah M, Khoj TJ, Nissapatorn V, Galakhina T. Tamarix nilotica by activation of the STING/TKB-1/IRF3 signalling pathway. Manassantin B shows antiviral activity against coxsackievirus B3 infection. J Anim Sci Technol. (2015) 57:337. doi: 10.4078/jsts.01005-0165-5

133. Shin WJ, Lee KH, Park MH, Seong BL. Broad-spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses. Microb Immunol. (2010) 54:1–9. doi: 10.1111/j.1348-0421.2009.00173.x

134. Bisignano C, Mandalaris G, Smeriglio A, Trombetta D, Pizzo MM, Pennisi R, et al. Almond skin extracts abrogate HSV-1 replication by blocking virus binding to the cell. Viruses (2017) 9:1798. doi: 10.3390/v90701798

135. Ratnoglik SL, Aoki C, Sudaemomo P, Komoto M, Deng L, Shoii I, et al. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, aephorphorbid a and pyropheophorbid a, against hepatitis C virus. Microb Immunol. (2014) 58:188–94. doi: 10.1111/1348-0421.12133

136. Pratheeva T, Taranath V, Sai Gopal DVR, Natarajan D. Antidengue potential of leaf extracts of Pavetta tomentosa and Tarenna asiatica (Rubiaceae) against dengue virus and its vector Aedes aegypti (Diptera: Culicidae). Helyon. (2019) 5:e02732. doi: 10.1002/hely.2019.e02732

137. Brjesh S, Dasspani P, Tetali P, Antia N, Birdi T. Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit : validating its traditional usage. BMC Complement Altern Med. (2009) 9:541–2. doi: 10.1186/1472-6882-9-947

138. Apriyanto DR, Aoki C, Hartati S, Lin CJ, Liu CH, Lin CC, Yen MH, et al. Methanolic extract of rhizoma corylifolia f. against influenza virus. Viruses (2018) 10:669. doi: 10.3390/v10120669

139. Kim HB, Lee CY, Kim SJ, Han JH, Choi KH. Medicinal herb extracts ameliorate impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent porcine epidemic diarrhea virus. J Anim Sci Technol. (2017) 57:33. doi: 10.4078/jsts.01005-0165-5

140. Ryu YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, et al. SARS-CoV 3CLPRO inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorganic Med Chem Lett. (2010) 20:1873–76. doi: 10.1016/j.bmcl.2010.01.152

141. Loizzo MR, Saab AM, Sundir, Statti GA, Menichini F, Lampronti P. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem Biodivers. (2008) 5:461–70. doi: 10.1002/cbdv.200890045

142. Wu C, Liu Y, Yang Y, Zhang P, Zhang W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. (2020) 10:7668–88. doi: 10.1016/j.apsb.2020.02.008

143. Wen CC, Shyur LF, Jan JT, Liang PH, Kuo CJ, Arulselvan P, et al. Traditional Chinese medicine herbal extracts of Cbitium barometz, Gentiana scabra, Dioscorea batatas, Cassia tara, and Taxillus chinensis inhibit SARS-CoV replication. J Tradit Complement Med. (2011) 1:1–50. doi: 10.1016/j.jtcm.2010.07.005

144. Zhuang M, Jiang H, Suzuki Y, Li X, Xiao P, Tanaka T, et al. Procyanidins from the seeds of Rheum tanguticum and its major component epigallocatechin gallate inhibits hepatitis B virus DNA replication. Antiviral Res. (2008) 78:242–9. doi: 10.1016/j.antiviral.2007.09.007

145. Ryu YB, Jeong HK, Kim YM, Park JY, Kim D, et al. Biflavonoids from Dimocarpus longan Lour. display SARS-CoV 3CL protease inhibition. Antiviral Res. (2011) 91:124–6. doi: 10.1016/j.antiviral.2010.01.152

146. Ho TY, Wu SL, Chen JG, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotsin-converting enzyme 2 interaction. Antiviral Res. (2007) 74:92–101. doi: 10.1016/j.antiviral.2006.04.014

147. Luo W, Xu S, Gong S, Qin Y, Liu W, Li J, et al. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Biosci Trends. (2009) 3:124–6.

148. Yang C, Lee Y, Hsu H, Shih C, Chao Y, Lee S. Targeting coronaviral replication and cellular JAK2 mediated dominant NF-κB activation for comprehensive and ultimate inhibition of coronaviral activity. Sci Rep. (2017) 7:4105. doi: 10.1038/s41598-017-04203-9

149. Adhikari SP, Meng S, Wu Y, Mao Y, Ye R, Wang Q, et al. Novel Coronavirus during the early outbreak period: epidemiology, causes, clinical manifestation and diagnosis, prevention and control. Infect Dis Poverty. (2020) 9:29. doi: 10.1186/s40249-020-00646-x

150. Nickbakhsh S, Ho A, Marques DFP, McMenemy J, Gunson RN, Murcia PR. Epidemiology of seasonal coronaviruses: establishing the context for the emergence of Coronavirus disease 2019. J Infect Dis. (2020) 222:17–25. doi: 10.1093/infdis/jiaa185

151. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. (2020) 94:44–8. doi: 10.1016/j.ijid.2020.03.004

152. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. (2020) 382:1199–207. doi: 10.1056/NEJMoa2003136

153. Pan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, et al. Importation and human-to-human transmission of a novel Coronavirus in Vietnam. N Engl J Med. (2020) 382:872–4. doi: 10.1056/NEJMoa2001272

154. Cots JM, Alós J, Bárscena M, Boleda X. COVID-19 in Brazil: “So what?” Lancet. (2020) 395:1461. doi: 10.1016/S0140-6736(20)31095-3

155. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online at: https://coronavirus.jhu.edu/map.html (accessed July 5, 2020).
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. (2020) 30:269–71. doi: 10.1038/s41422-020-02820-0

Calý L, Druce JD, Catton MG, Jans DA, Wagstaft KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. (2020) 178:3–6. doi: 10.1016/j.antiviral.2020.104787

Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. (2020) 382:1787–99. doi: 10.1056/NEJMc2008043

Elmezayen AD, Al-O Baiadi A, Sahin AT, Yelecki K. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolyase and protease enzymes. J Biol Mol Struct Dyn. (2020) 2020:1–13. doi: 10.1080/07391102.2020.1758791

Muralidharan N, Sakhivel R, Velmurugan D, Gromiha MM. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J Biol Mol Struct Dyn. (2020) 2020:1–6. doi: 10.1080/07391102.2020.1752802

Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Today. (2020) 14:58–60. doi: 10.5582/ddt.2020.01012

Sarma P, Sekhar N, Prajapat M, Avti P, Kaur H, Kumar S, et al. In silico homology assisted identification of inhibitors of RNA binding against 2019-nCoV N-protein (N terminal domain). J Biol Mol Struct Dyn. (2020) 2020:1–9. doi: 10.1080/07391102.2020.1753580

Baron SA, Devaux C, Colson P, Raoult D, Rolain JM. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents. (2020) 55:105944. doi: 10.1016/j.ijantimicag.2020.105944

Ennozhi SK, Raja K, Sebastine I, Joseph J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biol Mol Struct Dyn. (2020) 2020:1–7. doi: 10.1080/07391102.2020.1760136

Wu R, Wang L, Kuo HCD, Shannar A, Peter R, Chou PJ, et al. An update on current therapeutic drugs treating COVID-19. Curr Pharmaco Rep. (2020) 11:1–15. doi: 10.1007/s40495-020-00216-7

Maurya VK, Kumar S, Bhatt MLR, Saxena SK. Therapeutic development and drugs for the treatment of COVID-19. Nat Public Health Emerg Collect. (2020) 2019:109–26. doi: 10.1007/978-981-15-4814-7_10

Koparde AA, Doijad RC, Magdum CS, Koparde AA. Natural products in drug discovery. In: Doijad RC, editor. Pharmacognosy - Medicinal Plants. Rijeka: IntechOpen. (2019). p. 14. doi: 10.5772/intechopen.82860

Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. (2020) 11:477. doi: 10.3389/fphar.2013.00177

Ganjhu RK, Mudga PP, Maity H, Doijad RC, editor. Pharmacognosy - Medicinal Plants. Rijeka: IntechOpen. (2019). p. 14. doi: 10.5772/intechopen.82860

Basu A, Sarkar A, Maulik U. Computational approach for the design of potential spike protein binding natural compounds in SARS-CoV-2. Pharmacodynamics. (2020). doi: 10.21203/rs.3.rs-33181/v1. [Epub ahead of print]

Krishnasamy R, Anand T, Baha M, Bharath MV, Sundhesh J, Arunachalam D. In silico analysis of active compounds from siddha herbal infusion of Ammaiya Koonadal Kudineer (Akk) against SARS-CoV-2 spike protein and its ACE2 receptor complex. SSRN Online J. (2020) 2020:1–11. doi: 10.21239/ssrn.3578294. [Epub ahead of print].

Pandit M, Latha N. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. Res Sq. (2020). doi: 10.21203/rs.3.rs-22687/v1. [Epub ahead of print].

Pandeya KB, Ganeshpurkar A, Kumar Mishra M. Natural RNA dependent RNA polymerase inhibitors: molecular docking studies of some biologically active alkaloids of Argemone mexicana. Med Hypotheses. (2020) 2020:109905. doi: 10.1016/j.mehy.2020.109905

Aanouz I, Belhassan A, El-Khatibi K, Lakhiti F, El-Irissi M, Bouachrine M. Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: computational investigations. J Biol Mol Struct Dyn. (2020) 2020:1–9. doi: 10.1080/07391102.2020.1758790

Bhardwaj VK, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. Identification of bioactive molecules from tea plants as SARS-CoV-2 main protease inhibitors. J Biol Mol Struct Dyn. (2020) 2020:1–11. doi: 10.1080/07391102.2020.1766572

Serseg T, Benarous K, Yousfi M. Hispidin and Lepidine E: two natural compounds and their derivatives against coronavirus. J Integr Med. (2020) 18:152–8. doi: 10.1016/j.joim.2020.02.005

Sayed AM, Khattab AR, AboulMagd AM, Hassan HM, Rateb ME, Zaid H, et al. Nature as a treasure trove of potential anti-SARS-CoV-2 drug leads: a structural/mechanistic rationale. RSC Adv. (2020) 10:19790–802. doi: 10.1039/D0RA04199D

Sepay N, Sepay N, Ali Hoque A, Mondal R, Halder UC, Muddassir M. In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme. Struct Chem. (2020) 2020:1–10. doi: 10.1007/s11224-020-01537-5
Umesh U, Kundu D, Selvaraj C, Singh SK, Dubey VK. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J Biomol Struct Dyn. (2020) 2020:1–9. doi: 10.1080/07391102.2020.1763202

Singh A, Mishra A, Leuceodin a potential inhibitor against SARS-CoV-2 M. J Biomol Struct Dyn. (2020) 2020:1–6. doi: 10.1080/07391102.2020.1777903

Gupta MK, Vemula S, Donde R, Gouda G, Behera L, Vadde R. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J Biomol Struct Dyn. (2020) 2020:1–11. doi: 10.1080/07391102.2017.1571300

Joshi RS, Jagdale SS, Bansode SB, Shankar SS, Tellis MB, Pandya VK, et al. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J Biomol Struct Dyn. (2020) 2020:1–6. doi: 10.20944/preprints202004.0068.v2

Josh T, Joshi T, Sharma P, Mathulp S, Pandur H, Bhatt V, et al. In-silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur Rev Med Pharmacol Sci. (2020) 24:4529–36. doi: 10.26355/eurrev_202004_21036

Salman S, Shah FH, Idrees J, Idrees F, Velagala S, Ali J, et al. Virtual screening of immunomodulatory medicinal compounds as promising anti-SARS-CoV-2 inhibitors. Future Virol. (2020). doi: 10.2217/fvl-2020-0079. [Epub ahead of print].

Wahedi HM, Ahmad S, Abbasi SW. Stilbene-based natural compounds as promising drug candidates against COVID-19. J Biomol Struct Dyn. (2020) 2020:1–10. doi: 10.1080/07391102.2020.1762743

Abdeli I, Hassani F, Bekkel Brikci S, Ghaem S. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Amanoides verticillata components harvested from Western Algeria. J Biomol Struct Dyn. (2020) 2020:1–14. doi: 10.1080/07391102.201763199

Murugan NA, Pandian CJ, Jeyakanthan J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J Biomol Struct Dyn. (2020) 2020:1–12. doi: 10.1080/07391102.2020.1777901

Gyebi GA, Ogunro OB, Adegunloye AP, Ogunyemi OM, Afolabi AA. In silico screening of immunomodulatory medicinal compounds as promising anti-SARS-CoV-2 inhibitors. J Enzyme Inhib Med Chem. (2017) 32:504–12. doi: 10.1080/14756366.2016.1265519

Abdelmageed MI, Abdelmoneim AH, Mustafa MI, Elfadol NM, Murshed NS, Shantier SW, et al. Design of a multisite-based peptide vaccine against the S protein of human COVID-19: an immunoinformatics approach. BioMed Res Int. (2020) 2020:268326. doi: 10.1155/2020.268326. doi: 10.1155/2020.02.1934232

Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Evaluation of green tea polyphenols as novel coronavirus (SARS-CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn. (2020). doi: 10.1080/07391102.2020.1779818. [Epub ahead of print].

Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV-3CLpro by flavonoids. J Enzyme Inhib Med Chem. (2020) 35:145–51. doi: 10.1080/14756366.2019.1690480

Peterson L. In silico molecular dynamics docking of drugs to the inhibitory active site of SARS-CoV-2 protease and their predicted toxicity and ADME. SSRN Electron J. (2020). doi: 10.20634/chemxrv.2012155523.v1. [Epub ahead of print].

Owis A, Marwa EH, Dalia EA, Omar A, Usama A, Mohamed K. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Adv. (2020) 10:19570–75. doi: 10.1039/D0RA03582C

Thawabteh A, Juma S, Bader M, Karaman D, Scrano L, Bufo SA, et al. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins. (2019) 11:656–83. doi: 10.3390/toxins11110656

Kim DE, Min JS, Jang MS, Lee JY, Shin YS, Park CM, et al. Natural bisbenzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus oc43 infection of mrc-5 human lung cells. Biomolecules. (2019) 9:696. doi: 10.3390/biom9110696

Wink M. Potential of DNA intercalating alkaloids and other plant secondary metabolites against SARS-CoV-2 causing COVID-19. Diversity. (2020) 12:175. doi: 10.3390/d12030175

Colson P, Rolain J,roud D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents. (2020) 55:105923. doi: 10.1016/j.ijantimicag.2020.105923

Hussein RA, El-Anssary A. Current antivirals and novel botanical agents. Front Microbiol. (2020) 11:139. doi: 10.3389/fmicb.2020.00139

Álvarez DM, Castil E, Duarte LF, Arriagada J, Corrales N, Farias MA, et al. Current antivirals and novel botanical molecules interfering with herpes simplex virus infection. Front Microbiol. (2020) 11:139. doi: 10.3389/fmicb.2020.00139
285. Sun Z, Yu C, Wang W, Yu G, Zhang T, Zhang L, et al. Aloe polysaccharides inhibit Influenza A virus infection—a promising natural anti-flu drug. *Front Microbiol.* (2018) 9:2338. doi: 10.3389/fmicb.2018.02338

286. Mera IFG, Falconi DEG, Córdova VM. Secondary metabolites in plants: main classes, phytochemical analysis and pharmacological activities. *Rev Biocol.* (2019) 4:1000–9. doi: 10.21931/RB/2019.04.04.11

287. Strovel J, Sittampalam S, Coussens NP, Hughes M, Inglese J, Kurtz A, et al. Early Drug Discovery and Development Guidelines: for Academic Researchers, Collaborators, and Start-Up Companies. *Assay Guidance Manual.* Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences (2004). p. 1–35.

288. Krüger A, Gonçalves Maltrarolo V, Wrenger C, Kronenberger T. ADME profiling in drug discovery and a new path paved on silica. In: Gaitonde V, editor. *Drug Discovery and Development - New Advances.* Istratech open (2020). p. 32. doi: 10.5772/intechopen.86174

289. Seca AML, Pinto DCGA. Biological potential and medical use of secondary metabolites. *Medicines.* (2019) 6:66. doi: 10.3390/medicines6020066

290. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. *Metabolites.* (2012) 2:303–36. doi: 10.3390/metabo2020303

291. Anand U, Nandy S, Mundhra A, Das N, Pandey DK, Dey A. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. *Drug Resist Update.* (2020) 51:100695. doi: 10.1016/j.drup.2020.100695

292. Anwar N, Teo, Y, Joash T. The role of plant metabolites in drug discovery: current challenges and future perspectives. In: Swamy, MK, Akhtar, M S, editors. *Natural Bio-active Compounds, Volume 2: Chemistry, Pharmacology and Health Care Practices.* New York, NY: Springer Publications (2019). p. 25–51. doi: 10.1007/978-1-3-7205-6_2

293. Gonzalez-Alfonso JL, Peñalver P, Ballesteros AO, Morales JC, Plou FJ. Effect of α-Glucosylation on the stability, antioxidant properties, toxicity, and neuroprotective activity of (−)-Epigallocatechin gallate. *Front Nutr.* (2019) 6:30. doi: 10.3389/fnut.2019.00030

294. Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Khalil AA, et al. Preclinical pharmacological activities of Epigallocatechin-3-gallate in signaling pathways: an update on cancer. *Molecules.* (2020) 25:467. doi: 10.3390/molecules25030467

295. Banerjee A, Czinn SJ, Reiter RJ, Blanchard TG. Crosstalk between endoplasmic reticulum stress and anti-viral activities: a novel therapeutic target for COVID-19. *Life Sci.* (2020) 255:117842. doi: 10.1016/j.lfs.2020.117842

296. Karade PG, Iadhav NR. Colon targeted curcumin microspheres laden with ascorbic acid for bioavailability enhancement. *J Microencapsul.* (2018) 35:372–80. doi: 10.1080/02652048.2018.1501111

297. Azim KF, Ahmed SR, Banik A, Khan MMR, Deb A, Somana SR. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: an integrative computational approach. *Inform Med Unlocked.* (2020) 20:100367. doi: 10.1016/j.imu.2020.100367

298. Capell T, Twyman RM, Armario NV, Ma JKC, Schillberg S, Christou P. Potential applications of plant biotechnology against SARS-CoV-2. *Trends Plant Sci.* (2020) 25:635–43. doi: 10.1016/j.tplants.2020.04.009

299. Nakabayashi R, Saito K. Metabolomics for unknown biomarkers. *Anal Bioanal Chem.* (2013) 405:5005–11. doi: 10.1007/s00216-013-6869-2

300. Li D, Halitschke R, Baldwin IT, Gaquerel E. Information theory tests critical predictions of plant defense theory for specialized metabolism. *Sci Adv.* (2020) 6:eaa0381. doi: 10.1126/sciadv.aaz0381

301. Bhuiyan FR, Campos NA, Swennen R, Carpentier S. Characterizing fruit ripening in plantain and Cavendish bananas: a proteomics approach. *J Proteomics.* (2020) 214:103632. doi: 10.1016/j.jprot.2019.103632

302. Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxia S, et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). *Pharmacol Res.* (2020) 156:104761. doi: 10.1016/j.phrs.2020.104761

303. Cyranoski D. China is promoting coronavirus treatments based on unproven traditional medicines. *Nature.* (2020). doi: 10.1038/s41586-020-01284-x. [Epub ahead of print].

304. Nguyen-Vo TH, Nguyen L, Do N, Nguyen TN, Trinh K, Cao H, et al. Plant metabolite databases: from herbal medicines to modern drug discovery. *J Chem Inf Model.* (2020) 60:1101–10. doi: 10.1021/acs.jcim.9b00826

305. Johnson SR, Lange BM. Open-access metabolomics databases for natural product research: present capabilities and future potential. *Front Bioeng Biotechnol.* (2015) 3:22. doi: 10.3389/fbioe.2015.00022

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.