Supporting Information: Lithium ions solvated in helium

M. Rastogia, C. Leidlmaira, L. An der Lana, J. Ortiz de Zárateb, R. Pérez de Tudelac, M. Bartolomeib, M. I. Hernándezb, J. Campos-Martínezb, T. González-Lezanab,* J. Hernández-Rojasd, J. Bretónd, P. Scheiera, and M. Gatchella, e, *

aInstitut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
bInstituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain
cLehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
dDepartamento de Física and IUdEA, Universidad de La Laguna, 38205 Tenerife, Spain
eDepartment of Physics, Stockholm University, 106 91 Stockholm, Sweden

July 17, 2018

*t.gonzalez.lezana@csic.es
*michael.gatchell@uibk.ac.at
Figure 1: (top) Number of He atoms inside a sphere of radius r around the Li$^+$ ion in He$_n$Li$^+$ droplets with $n = 8$, 11, 14 and 17. The first solvation layer around the ionic impurity is formed by 8 He atoms as shown in the above panel with all distributions sharing the area in shadow covering up to $r \sim 3$ Å. Further confirmation is observed in the angular distribution in the bottom panel where the same pattern with the three features for the corresponding He–Li$^+$–He angles in the He$_2$–Li$^+$ clusters is found for the $n = 11$, 14 and 17 cases.