Assessment of climate-based daylight performance in tropical office buildings: a case study

Szu-cheng Chien¹ and King Jet Tseng²*
¹Berkeley Education Alliance for Research in Singapore (BEARS), Singapore 138602;
²School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798

Abstract

The utilization of daylight can significantly affect building performance, energy efficiency, productivity, as well as occupants’ comfort and satisfaction in buildings. This paper aims to assess daylight performance for tropical office buildings in a parametric approach. Thus, four passive design categories are investigated, namely interior surface reflectance, glazing visual transmittance, light shelves and shading control. The approach is exemplified using the case study of two selected offices in Singapore. This study contributed to the assessment of the daylight performance and prediction of the consequences of retrofitting alternatives toward fostering the utilization of daylight in existing buildings in the tropics.

Keywords: daylighting; performance simulation; dynamic metrics; passive design strategies; tropical climate

*Corresponding author.
ekjtseng@ntu.edu.sg

Received 18 December 2013; revised 22 February 2014; accepted 25 February 2014

1 INTRODUCTION

Lighting accounts for 20% of energy use in Singapore’s office buildings, making it one of the primary energy loads in the building sector, and a critical factor in design strategy for effectively improving office building energy efficiency. To achieve a higher level of energy efficiency and sustainability in the buildings sector, the consideration of natural daylight utilization during the daytime is crucial. Toward this end, the electric lighting would then be supplemental, such that significant reduction of electric lighting demands can be achieved. That can result in significant impacts on building performance, energy efficiency, productivity, as well as occupants’ comfort and satisfaction. Nowadays, the most used daylight metric is based on simplified daylight performance model at one time step under the standardized overcast sky. There have been concerns that the results obtained from such metric may not reflect intermediate daylight performance conditions over an extended period of time with variable sky conditions. In the recent years, a number of more elaborated daylight metrics have been proposed [1–3].

In this context, our research effort describes a systematic approach toward obtaining and assessing simulation-based daylight performance data from high-rise office buildings. This approach is currently being applied within the framework of a living lab project, under the purview of the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) Program. Thereby, among other activities, local climate and building performance (involving visual/thermal performance and occupancy) data are being collected for this selected living lab in CREATE Tower, a high-rise office and dry laboratory building in Singapore. The high-level goal of this living lab research effort is a comprehensive understanding of visual performance in tropical built environment, including the utilization of daylight, energy efficiency, occupant comfort and integrated intelligent lighting and shading controls.

This paper presents a dynamic climate-based assessment of daylight performance for tropical office buildings in a parametric approach. Thus, four passive design categories are considered, namely interior surface reflectance, glazing visual transmittance, light shelves and shading control actions. We first evaluated an array of daylight performance metrics, namely daylight autonomy (DA), continuous Daylight Autonomy, and Daylight Autonomy max. Subsequently, a parametric approach toward assessing daylight performance is presented. The
approach is exemplified using the case study of two selected offices in CREATE Tower, an air-conditioned office building located in Singapore. Thereby, the simulation results were generated based on the above-mentioned four categories and then compared. This study contributed to the assessment of the daylight performance and prediction of the consequences of retrofitting alternatives toward fostering the utilization of daylight in existing buildings in the tropics. Furthermore, the outcomes of this effort are expected to serve as a solid basis toward a simulation-based daylight responsive building systems control demonstration in lighting and shading domain.

2 APPROACH

2.1 Description of the case study model
Daylight performance simulation was conducted for two offices (Areas A and B) at level 11 in CREATE Tower, University Town, Singapore (see Figures 1–3). To present the performance study in a structured manner, we use the following notations: ‘AA’ denotes Area A and ‘AB’ denotes Area B. AA was 14.5×17 m whereas AB was 14.5×18 m. Both AA and AB have a floor-to-ceiling height of 2.82 m and window sill height of 0.875 m. AA consists of two fenestrated facades (i.e. southwest and southeast facing facades) whereas AB includes one (i.e. southeast facing facade)(see Figures 1 and 2). The parametric plan for daylight simulation is listed in Table 1. AA and AB together with the surrounding urban context were modeled using Google SketchUp and exported to Ecotect and DASYSIM for further daylighting analysis. Also, one set (four rows) of illuminance sensor was deployed based on a grid resolution of 0.5×0.5 m at work plane height (0.8 m above the floor) [4] to further obtain the daylight performance distributions of each office. Thus, eight rows of sensor points located parallel to the southeast facing façade were implemented (see Figure 2). Also, the electric luminaires turned off were considered.

2.2 Weather file
The weather file used was Singapore (latitude 1.22°N, longtitude 103.59°E), with the ASHRAE International Weather for Energy Calculations (IWEC) data for Singapore, WMO 486980 downloaded from EnergyPlus weather data website [5]. The IWEC weather files for Singapore are derived from up to 18 years (1982–99) of 8760 hourly weather data originally archived at the National Climatic Data Center. The weather data are supplemented by solar radiations and illuminance estimated on an hourly basis from earth–sun geometry and hourly weather elements (e.g. cloud coverage) [6].

2.3 Computational simulation tools
This study was entirely carried out by simulation using DASYSIM [7–9] within Autodesk Ecotect Analysis [10] (see Figure 4). DASYSIM is a RADIANCE-based daylighting analysis tool developed by the National Research Council of Canada and the Fraunhofer Institute for Solar Energy Systems in Germany. DASYSIM employs the daylight coefficient method [11] to efficiently calculate illuminance distributions under all sky conditions in a year and the Perez sky model [12]. A simulation time step of 5 min was considered in our study. The simulations were performed assuming that these two selected offices (i.e. AA and AB) were occupied Monday through Friday from 9:00 to 17:00. The occupant leaves the office three times during the day (30 min in the morning, 1 h at midday and 30 min in the afternoon). The occupant performs a task that requires a minimum illuminance level of 500 lx [13]. For all simulations, ambient parameters in Radiance are set as shown in Table 2.

2.4 Shading control
A preconfigured simplified shading device model ‘Lightswitch Wizard’ [14] in DASYSIM was conducted for the simulations of ‘shading control’ category. The model incorporates annual illuminance profiles and user occupancy with behavioral patterns that are analyzed based on field studies in office buildings. Given a sophisticated calculation engine, Lightswitch Wizard allows users to select shading control models based on user types. This shading device model assumes that the test sites AA and AB are equipped with the venetian blinds to allow for occupants’ manual control. It further assumes that the blinds may block all direct sunlight and transmit 25% of all diffuse daylight compared with the case when the blinds are retracted. In addition,
we specifically considered following two user models for such shading device control, namely active and passive users:

(i) Active users: active users open the blinds in the morning and partly close them to avoid visual discomfort. A user may manually fully close the blinds when direct sunlight of \(>50 \text{ Wm}^{-2} \) is incident on any of the 16 work plane sensors (0.8 m above the floor). The shading device is manually retracted otherwise.

(ii) Passive users keep the blinds fully lowered throughout the year to avoid any glare issues.

3 PERFORMANCE METRICS FOR DAYLIGHTING

To conduct the daylight performance analysis for AA and AB, we propose a set of evaluative metrics, whereby dynamic (i.e. DAcon and DA max) are considered (see Table 3). Such dynamic metrics are calculated based on an extended period of time with variable sky conditions on an annual basis. Thus, dynamic metrics could provide more valuable detailed information on daylight performance [3].

3.1 Daylight autonomy and continuous daylight autonomy

Daylight autonomy is the simplest and most widely conducted annual metric. It is generally defined as the percentage of the occupied period (hours) of the year that the minimum daylight requirement is exceeded through the year. Such metric as DA could be employed to evaluate performance at individual points and address the spatial daylight distribution [1, 3]. The main advantage of DA over the daylight factor is that it takes facade orientation and user occupancy profiles into account and considers all possible sky conditions throughout the year [15].

In addition to DA, a modified metric DAcon proposed by Rogers attributes partial credit to time steps when daylight illuminance lies below the minimum illuminance level [16]. For example, in the case where 500 lx is required and 300 lx of daylight is received at a given time step, a partial credit of 300 lx/500 lx = 0.6 is attributed for that time step. Thus, the metric

Figure 2. Plan views and internal perspectives of AA (a) and AB (b) together with the positions of the exterior/interior shelves and sensor points.
acknowledges that even a partial contribution of daylight to illuminate a space is still beneficial.

3.2 Daylight autonomy max

To simultaneously consider the potential appearance of glare, Rogers [16] also proposed a second indicator called daylight autonomy maximum (DAmax). DAmax compiles the percentage of times during a year when the illuminance at a sensor is at least 10 times the recommended illuminance. For instance, for an office space with a design illuminance of 500 lx, DAmax corresponds to 5000 lx [1]. In such a situation, there is a high chance that this will correspond to a situation with a direct sunlight patch at the sensor and hence glare [17].

4 PARAMETRIC ANALYSIS RESULTS

A parametric study of daylighting performance for AA and AB using a set of simulation tools (i.e. Ecotect and DASYSIM) was carried out and generated an extensive quantity of data. The data were analyzed, some of which are presented later.

4.1 Interior surface reflectance

The first set of daylighting performance simulations was carried out for AA and AB based on three different variants of interior surface reflectance, namely 90–70–50, 80–60–40 and 70–50–30% (ceiling–wall–floor, see Table 1). Table 4 indicates the percentage of space exceeding DAcon (80, 60 and 40%) and DAmax (5%) in view of the ‘interior surface reflectance’ category. Figure 5 shows the daylight distributions (involving DAcon and DAmax) in AA and AB based on these three reflectance variants. The results suggest that DAcon and DAmax yielded higher levels based on a reflectance increase. For instance, increasing the reflectance from 80–60–40 to 90–70–50% for AB would increase DAcon (>80%) by 6.9%, DAcon (>60%) by 7.1% and DAmax by 4.9% (see Table 4). Moreover, the results shown in Figure 5 reveal that such reflectance increment has a significant effect on DAcon for the back work place (involving Rows 3 and 4) and DAmax for the front space (pertaining to Row 1) for both AA and AB.

4.2 Glazing visual transmittance

The second set of daylighting performance simulations was performed in terms of glazing visual transmittance, whereby three different variants (Tvis 72, Tvis 62 and Tvis 10%) were considered. The results regarding the percentage of space exceeding DAcon (80, 60 and 40%) and DAmax (5%) are shown in Table 5. Figure 6 shows the daylight distributions (involving DAcon and DAmax) in AA and AB based on three glazing variants on an annual basis. Table 5 and Figure 6 highlight the large differences that occur with glazing visual transmittance. For example, in the case of AA, DAcon and DAmax indicated that the glazing with Tvis 72% has more predominant daylight appearance than the Tvis 62% glazing with DAcon (>80%) rising from 75.7 to 81.3% and DAmax (>5%) rising from 13.5 to 25.7% (see Table 5). DAcon also clearly favors 72% glazing over 62% glazing for the back work place (i.e. Rows 3 and 4) (see Table 6). In addition, for the front work place of AA (specifically Row 1), 72% glazing obtained relatively higher DAmax values than 62% glazing. However, in both 62 and 72% glazing variants, the results indicated too much daylight in AA, with the occurrence of discomfort glare issues. A significant low daylight performance was observed for the variant of the photovoltaic (PV) glazing (Tvis 10%) with the DAcon (>60%) of 16.3% for AA and 11.2% for AB, respectively (see Table 5). It is worthwhile to note that although the glazing visual transmittance of PV glazing is only approximately one-sixth of the 62% glazing, neither the percentage of space exceeding DAcon (>60 and >40%) nor the DAcon values are divided by 6, as one would...
have been intuitively expected. As the results shown in Figure 6, the DAcon values with Tvis 10% for AA are in the range of 40 and 70 of 62% glazing. Similar observations have been discussed for the cases at high latitudes in past research efforts [15, 16].

4.3 Light shelves
The following daylighting performance simulations were performed for AA and AB in terms of light shelves. Here, we considered four design variants, namely no shelf deployed, the deployment of external shelves, internal shelves and external + internal shelves. The simulation results (see Table 6 and Figure 7) show the influence of the light shelf deployment on the daylight performance of AA and AB according to DAcon and DAmx. The simulation results appear to suggest that the light shelves may not increase the daylight performance for AA and AB. However, they would help reduce discomfort glare. For example, as the DAcon values shown in Table 6 and Figure 7, for both AA and AB, the light shelf variants (particularly the variant with external + internal shelves) provide slightly lower performance than the base case. On the other hand, the results also imply that the application of light shelves slightly reduces DAmx. Perhaps one would expect that the light shelves reflect daylight deeper into the workspace. Furthermore, the combination of exterior and interior shelves would be expected to work best in providing a relative high uniformity of daylight throughout the workspace. However, the results represent a sobering answer to this inquiry. This difference may be attributable to the observation that the existing ceiling design (see Figure 3) could not allow for effective daylight reflection onto the ceiling and
penetrate deep into the workspace and thus has less impact on the improvement of daylight performance.

4.4 Shading control
In most of the buildings, the occupants could operate the shading device to achieve the desirable visual comfort and avoid higher levels of glare and overheating issues. In the last set of simulations, we investigated the impact of manual shading control behaviors on the annual amount of daylight within AA and AB (see Table 7 and Figure 8). Thereby, as described in Section 2, we specifically considered two user models (i.e. active and passive users) and one simpler blind model (pertaining to the manual control of the venetian blinds). The results reveal that the shading control behaviors lead to a significant reduction in DAmax. For instance, in AB, DAmax falls from 15.8 to 11.8% and 0% for the active and passive shading control behaviors, respectively, suggesting that they are less prone to glare. However, DAcon raises a warning flag for the application of passive shading control behaviors, which clearly lead to the poor daylight appearance in both AA and AB. This implies that the occupants keep the blinds lowered throughout the year to avoid the glare issues and are expected to perform their tasks with the condition of poor daylight performance and/or supplementary electric lighting. Here, we see a challenge. We conclude that modern façade design in office buildings that offer high window-to-wall ratio for increasing the daylight level must also pay attention to the glare control strategies so that the efficiency of electric lighting as well as the visual comfort could be effectively achieved.

5 DISCUSSION
5.1 Passive design categories
The results indicated that the effect of interior surface reflectance on the daylight performance of two test spaces can be significant, especially on AB. This result implies that the space with smaller fenestration receives relatively more daylight from reflected interior building component (e.g. ceiling, wall and floors). Thereby, it leads to lower probability of glare. Here, we see a challenge. We conclude that modern office building that offer larger fenestration must also pay attention to the interior design (involving different reflectance combinations of the space surfaces) in the whole design process so that the desirable visual performance could be achieved.

In terms of glazing visual transmittance, the simulation results suggest that space with larger fenestration (i.e. AA) could conduct low-transmittance glazing to effectively decrease the levels of glare and its associated overheating issues with relatively slight reduction in daylight availability. In contrast, high-transmittance glazing can be considered in the space with relatively smaller fenestration (i.e. AB) to increase the daylight availability whereas the glare discomfort issues in the perimeter areas are appropriately managed.

Table 4. Simulation results regarding the percentage of space exceeding DAcon (80, 60 and 40%) and DAmax (5%) in view of the ‘interior surface reflectance’ category (500 lx specified as the illuminance threshold).

Parameters (%)	DAcon	DAmax		
	>80%	>60%	>40%	>5%
90–70–50 (AA)	95.5	95.5	35.1	
80–60–40 (AA)*	89.6	84.4	81.3	25.7
70–50–30 (AA)	85.8	81.3	95.4	18.8
90–70–50 (AB)	96.7	95.4	81.3	20.7
80–60–40 (AB)*	91.8	88.5	87.2	15.8
70–50–30 (AB)	91.8	78.6	80.3	11.8

*Base case.
Regarding light shelves, we were interested to know whether this architecture element is effective in high-rise tropical buildings. Ideal light shelves could allow not only daylight to penetrate deeper into the space but also shade the perimeter areas near the fenestrations to reduce the envelope thermal transfer value. The needs for electrical lighting and its associated cooling could then be reduced. Furthermore, incorporating light shelves in a building design are admissible for Singapore’s Green Mark point system (i.e. a green rating tool developed for the tropics). However, the results for both test spaces represent a sobering response to the above-mentioned inquiry. In other words, the deficient design of interior false ceiling results in poor effectiveness of light shelves (see Section 4.3). Interior design that is commonly executed by the interior designer in the latter design stage must thus pay particular attention to supporting effectively reflected false ceilings while capturing synergies with the design of light shelves.

As to shading control, the results indicated that DAcon and DAmx are appropriately reduced in the variant of active user control that the venetians are continuously controlled based on the occupancy perception to daylight conditions. However, active control behaviors may impose a large cognitive load on occupants and result in less productivity. On the other hand, in terms of passive user control behaviors, although keeping venetian blinds lowered all days may be a straightforward method to avoid glare discomfort (regarding DAcon), it also ends up with very limited daylight availability (involving DAmx) and obstructed view (space perception). Thereby, it highlighted the potentials of implementing such active technologies as the intelligent automatic shading system in building facade system while meeting the goal of optimal daylight performance.

5.2 Limitation
In our research efforts, computational daylight simulations and dynamic daylight metrics were successfully applied for the comparative studies. However, they could be further compared with real measured building daylight performance data. In addition, the supplementary analysis via other simulations tools (e.g. AGI32, Dialux) could be conducted as following steps. Post occupancy survey (involving visual comfort) can contribute to the ‘calibration’ of daylighting performance criteria and metrics in the tropics in future study. Also, the electric lighting was not considered in this study, which is not realistic. Future studies could include the dimmable electric lighting, systems control, as well as energy use for further discussion.

Table 5. Simulation results regarding the percentage of space exceeding DAcon (80, 60 and 40%) and DAmx (5%) in view of the ‘glazing visual transmittance’ category (500 lx specified as the illuminance threshold).

Parameters	DAcon >80%	DAcon >60%	DAcon >40%	DAmx >5%
Tvis 72% (AA)*	81.3	84.4	89.6	25.7
Tvis 62% (AA)	75.7	81.6	85.4	13.5
Tvis 10% (AA)	5.6	16.3	31.6	0.0
Tvis 72% (AB)*	80.3	88.5	96.1	15.8
Tvis 62% (AB)	72.4	83.2	94.7	11.8
Tvis 10% (AB)	4.9	11.2	23.0	0.0

*Base case.

Figure 6. Simulated results of DAcon (% top) and DAmx (% bottom) in view of the ‘glazing visual transmittance’ category. Each point indicates the mean values for each row (involving four sensor points) located parallel to the southeast facing window.
6 CONCLUSION

For the optimal visual performance of each office space, one key point is to clarify how the occupants use the space (involving user requirements and architectural programming) and how we introduce daylight (pertaining to integrated building design strategies) in an effective and appropriate manner. Such office spaces that are continuously occupied for long-term periods of time and where daylighting would increase the productivity and energy efficiency should be a high daylighting priority. Also, the provision of visual comfort (regarding low glare and good uniformity of daylight level) is critical. Specifically, the modernist glass curtain wall, which admits and traps not only daylight but also solar heat, has been commonly adopted for the office building design in Singapore. The development of architecture design and building systems appropriate to Singapore’s tropical climate as well as high-density urban context becomes an urgent issue.

This research effort contributed to above-mentioned topics. In this paper, we have obtained the results that have illustrated a parametric approach toward formulating, analyzing and simulating daylighting performance for a high-rise building in Singapore. Based on the authors’ knowledge, this research effort represents the first systematic approach for dynamic daylight simulations in standard, existing open plan offices in the tropics, whereby four passive design categories (i.e. interior surface reflectance, glazing visual transmittance, light shelves and shading control) were considered. We demonstrated the process and the generation of a set of computational performance simulation models on the basis of documentation of the building (geometry, construction, systems and operation), occupancy and external (weather) conditions. The results indicate that certain passive design strategies such as interior surface reflectance, glazing visual transmittance and shading control have significant

Table 6. Simulation results regarding the percentage of space exceeding DAcon (80, 60 and 40%) and DAmax (5%) in view of the ‘light shelves’ category (500 lx specified as the illuminance threshold).

Parameters	DAcon			
	>80%	>60%	>40%	
No shelf (AA)*	81.3	84.4	89.6	25.7
External shelves (AA)	81.2	84.3	89.2	24.3
Internal shelves (AA)	81.2	84.3	89.2	22.9
External + internal shelves (AA)	80.9	84.4	89.2	21.5
No shelf (AB)*	80.3	88.5	96.1	15.8
External shelves (AB)	77.6	87.5	95.4	13.5
Internal shelves (AB)	77.6	87.8	96.1	13.5
External + internal shelves (AB)	75.0	84.9	94.7	11.8

Table 7. Simulation results regarding the percentage of space exceeding DAcon (80, 60 and 40%) and DAmax (5%) in view of the ‘shading control’ category (500 lx specified as the illuminance threshold).

Parameters	DAcon			
	>80%	>60%	>40%	
No movable shades (AA)*	81.3	84.4	89.6	25.7
Shades control-active user (AA)	77.8	84.0	87.5	19.8
Shades control-passive user (AA)	41.0	51.4	67.7	0.0
No movable shades (AB)*	80.3	88.5	96.1	15.8
Shades control-active user (AB)	73.4	84.5	95.1	11.8
Shades control-passive user (AB)	26.3	42.1	55.9	0.0

*Base case.

Figure 7. Simulated results of DAcon (%, top) and DAmax (%, bottom) in view of the ‘light shelves’ category. Each point indicates the mean values for each row (involving four sensor points) located parallel to the southeast facing window.
effects on DAcon and DAmax. There are other strategies (involving light shelves), however, that have rather lower effects on these two metrics. The ongoing work involves long-term data collection regarding indoor illuminance, discomfort glare, temperature, electric lighting energy usage, occupancy patterns and sky illuminance. Subsequently, a detailed and dynamic digital visual performance model will be generated and calibrated based on the collected data. The calibrated models will be then applied to compare and evaluate retrofit and enhancement alternatives in view of building integrity, visual and energy performance. Furthermore, the outcomes of this effort are expected to serve as a solid basis toward a simulation-based daylight responsive building systems control in lighting and shading domain.

FUNDING

This research is funded by the Republic of Singapore’s National Research Foundation through a grant to the Berkeley Education Alliance for Research in Singapore (BEARS) for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) Program. The BEARS has been established by the University of California, Berkeley as a center for intellectual excellence in research and education in Singapore.

REFERENCES

[1] Reinhart CF, Mardaljevic J, Rogers Z. Dynamic daylight performance metrics for sustainable building design. *Leukos* 2006;3:7–31.
[2] Cantin F, Dubois M. Daylighting metrics based on illuminance, distribution, glare and directivity. *Light Res Technol* 2011;43:291–307.
[3] DiLaura DL. *The Lighting Handbook: Reference and Application*. Illuminating Engineering Society of North America, 2011.
[4] International Energy Agency. Daylight in buildings: a source book on daylighting systems and components. IEA SHC Task 21 report, Bruxelles: International Energy Agency, IEA, 2000. http://gaia.lbl.gov/iea21/ (19 February 2014, date last accessed).
[5] ASHRAE. International Weather for Energy Calculations (IWEW Weather Files) Users Manual and CD-ROM. Atlanta: ASHRAE, 2001.
[6] EnergyPlus. International Weather for Energy Calculation (IWEW). 2013. http://apps1.eere.energy.gov/buildings/tools_directory/software.cfm/ID=369/pagename=alpha_list (12 December 2013, date last accessed).
[7] Reinhart CF, Breton PF. Experimental validation of Autodesk® 3ds Max® Design 2009 and DASY 3.0. *Leukos* 2009;6:7–35.
[8] Jakubiec AJ, Reinhart CF. DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3d, DASY 3 and EnergyPlus. *Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association*, Sydney, 2011, pp.2202–9.
[9] DASY 3. Header file keywords. 2014. http://daysim.ning.com/ (13 February 2014, date last accessed).
[10] Autodesk. *Autodesk Ecotect Analysis: Green Building Analytical Applications*. Electronics Industry Publishing House, 2011.
[11] Trezenga P, Loe D. The design of lighting. E & FN Spon, 1998.
[12] Perez R, Seals R, Michalsky J. All-weather model for sky luminance distribution preliminary configuration and validation. *Sol Energy* 1993; 50:235–45.
[13] Singapore Standard. SSS31–1: code of practice for lighting of work places. SPRING Singapore, 2006.
[14] Reinhart CF. LIGHTSWITCH-2002: a model for manual control of electric lighting and blinds. *Sol Energy* 2004;77:15–28.
[15] Reinhart CF. Effects of interior design on the daylight availability in open plan offices. Report NRCC-45374. National Research Council of Canada, Institute for Research in Construction, 2002.
[16] Rogers Z. Daylight metric development using daylight autonomy calculations in the sensor placement optimization tool. CHPS Daylighting Committee, 2006.
[17] Dubois MC, Hildberg K. Daylight utilisation in perimeter office rooms at high latitudes: Investigation by computer simulations. *Light Res Technol* 2013;45:52–75.