A 3D Ex Vivo Mandible Slice System for Longitudinal Culturing of Transplanted Dental Pulp Progenitor Cells

John S. Colombo,1,2 Rachel A. Howard-Jones,2,3* Fraser I. Young,4 Rachel J. Waddington,2 Rachel J. Errington,3 Alastair J. Sloan2

Abstract
Harnessing mesenchymal stem cells for tissue repair underpins regenerative medicine. However, how the 3D tissue matrix maintains such cells in a quiescent state whilst at the same time primed to respond to tissue damage remains relatively unknown. Developing more physiologically relevant 3D models would allow us to better understand the matrix drivers and influence on cell lineage differentiation in situ. In this study, we have developed an ex vivo organotypic rat mandible slice model; a technically defined platform for the culture and characterization of dental pulp progenitor cells expressing GFP driven by the β-actin promoter (cGFP DPPCs). Using confocal microscopy we have characterized how the native environment influences the progenitor cells transplanted into the dental pulp. Injected cGFP-DPPCs were highly viable and furthermore differentially proliferated in unique regions of the mandible slice; in the dentine region, cGFP-DPPCs showed a columnar morphology indicative of expansion and lineage differentiation. Hence, we demonstrated the systematic capacity for establishing a dental pulp cell micro-community, phenotypically modified in the tooth (the "biology"); and at the same time addressed technical challenges enabling the mandible slice to be accessible on platforms for high-content imaging (the biology in a "multiplex" format).

Key terms
mesenchymal stem cell; organ culture; high-content imaging

Mesenchymal stem cells (MSCs), multi-potent cells from which connective tissues arise, are currently the focus of intense scientific interest from the standpoint of regenerative medicine and tissue engineering. Harnessing the MSC population to initiate repair has wide ranging implications in many tissue types, including teeth, bone, and the cardio-vascular system (1–6). In the tooth, endogenous MSCs present in the dental pulp are known to be capable of migration to a site of tissue damage and differentiation into odontoblasts enhancing capacity for the active synthesis of reparative matrix (7–9). Evidence is emerging which points to mineralized matrix itself as a significant source of relevant growth factors (BMP-2, VEGF, and TGFβ1 have been shown to have a stimulatory effect of MSCs resident within the dental pulp (10,11)). The mechanistic role of the matrix in which dental pulp progenitor cells (DPPCs) reside is not clearly defined—it is comprised primarily of collagen types (I&III), fibronectin and proteoglycans (12). DPPCs are heterogeneous in nature and numerous studies suggest significant clonal variation may exist. Such heterogeneity may be explained by the possible tissue niches which may exist within the tissue including undifferentiated mesenchymal dental papilla cells, neural crest stem cells (13) and a third niche surrounding the extensive vascular network within the tissue (pericyte/perivascular population). Current isolation methods make no
A 3D Ex Vivo Mandible Slice System

The transition from monolayer cell culture on the flat substrate of a plastic vessel (sometimes coated) to a three-dimensional (3D) environment, matrix or scaffold with a 3D architecture is well established, and in particular for biomedical applications in tissue engineering and stem cell research (14–18). The prospect of developing more physiologically relevant 3D models systems for use in in vitro high-content screening however, remains open to major improvement. The current-status is still some way off from providing fully validated and robust 3D culture methodologies and tools—particularly where both the cell-cell heterogeneity and phenotypic expression for chemo resistance are adequately accommodated. We take the view that with a novel capacity for using an organotypic culture model, there is an opportunity for constructing and understanding better defined micro-communities. There is a drive toward cell-based assays that enable functional measurements of complex cellular behavior. On the other hand, there exists a need to make kinetic cell-based assays 3D, simple to perform and include readouts of the micro-environment. High content-screening also requires the process to be relevant yet ensure accuracy, reproducibility, and scalability.

Thus, the aim of the current work was the development of a rat mandible slice (tooth) culture system, which has provided the “organotypic” soft and hard tissue environment to assess the molecular and cellular responses of DPPCs growing and differentiating in this complex biomaterial. In particular, we focus on a 3D model that enables optical access to the functional identification and measurement of the DPPCs and where the overriding imaging challenge has been to contend with both hard and soft tissues. Our proposed mandible slice model has provided the micro-environment to receive GFP-actin expressing DPPCs, enabling us to determine phenotypic expression of biomarkers, cell spread and orientation throughout the matrix as well as their capacity for proliferation within their native tissue environment. Specifically the work addresses the design, optimization and implementation of a human mandible slice suitable for automated high-content clonogenic/proliferation assays.

Materials and Methods

GFP Cell Isolation

DPPCs were isolated from the dental pulp of GFP “green rats” [SDTg (CAG-EGFP) CZ-004 Osb] produced by the method of Okabe and colleagues whereby ubiquitous production of green fluorescent protein is driven under control of a chicken B-actin promoter (19). Healthy animals were bred and maintained according to the NIH guide for care and use of laboratory animals, approved by the University of Reading animal usage ethics committee and were housed in the Biological Resource Unit. Four-week old male rats were sacrificed in accordance with Schedule 1 of the UK Animal (Scientific Procedures) Act 1986 and dental pulps were extracted from both mandibular and maxillae incisors. Pulpal tissue was digested with 0.1 mM MgCl₂, 1 mM CaCl₂, 180 unit/mL collagenase and 0.1 mM Streptomycin Sulphate. The resulting single cell suspension was made up to 1 × 10⁶ cells/ml in DPPC medium. Cells were seeded onto fibronectin-coated plates to enrich for a progenitor cell population based on their increased expression of zB₅ integrins (20). Plates were coated overnight at 4 °C using a 10 µg/mL solution of human plasma fibronectin (Sigma, UK) diluted in 1× PBS+ (1× PBS supplemented with 0.1 mM MgCl₂ and 0.1 mM CaCl₂). Fibronectin-adherent cells were isolated after 20 min by removal of all non-adherent cells in suspension. Clonal populations were isolated using cloning rings and subsequently expanded for characterization and experimental use (referred to as cGFP-DPPCs).
cGFP-DPPCs Cell Culture and Characterization

cGFP-DPPC populations were cultured in DPPC medium and maintained at 37 °C, 5% CO₂. Cells were passaged when they were 80% confluent and re-seeded at a density of 2 × 10⁴ cells/cm². Cell counts were performed at each passage and population doublings calculated. Cells from a single clone, AVII-d, were used for experiments between passages 10 and 14. RNA was extracted from AVII-d at passage 12 using the traditional phenol/chloroform method. RT-PCR was performed for CD73, CD90, CD105, CD45, CD34, CD146 and Osteopontin (Primer sequences; CD90 Fwd 5’ CCTGACCCGA GAGAAGAA 3’, Rev 5’ TGAAGTTGGCTAGATAGAAGA 3’; CD73 Fwd 5’GGTGTGGGAGGACTGATTG 3’, Rev 5’ CCGAC AGAGAACCTTTATATAGG 3’; CD105 Fwd 5’ ACATGGTGC CCACACCGCAAGCTGGCA 3’, Rev 5’ CACTGCCACCCAGGGTCCGGTCT 3’; CD45 Fwd 5’ CTCAACCAACT CAGGCTGCTCCAGGGC 3’, Rev 5’ GCAAGGGCGATTTC GTTGCAACCTCCCAA 3’; CD34 Fwd 5’ GTCAACGTGCC TACTACCTC 3’, Rev 5’ TCCTCAGGTCTCCGACTAAGATCAGCTGAACATC 3’ and Osteopontin Fwd 5’ TCCAAGGAGTATAAGCAGAGGGCCA 3’, Rev 5’ CTCTTAGGGTCTAGGACTAGCTTGT 3’). PCR products were sequenced by Central Biotechnology Services, Cardiff using an Applied Biosystems 3130xl 16 capillary Genetic Analyzer.

Flow Cytometry and Simple DPPC Profiling

To assess the proportion of GFP expressing DPPCs within the population of isolated DPPCs, 80% confluent cells were detached using accutase (Sigma) and run on a FACSCalibur (BD biosciences) flow cytometer, with 10,000 total events being collected. Simple gating FSC vs. SSC allowed us to identify the viable fraction. From there the profile of the GFP expression was elucidated.

A Six Step Method to Establish the Mandible Slice Organ Culture Model

The overall approach was based on our established mandible organ slice cultures (18) and adapted for time series laser scanning microscopy (Fig. 1 and Supporting Information Fig. S1).

Step 1. Retrieving the mandible organ slice. Animals were sacrificed under schedule 1 of the UK Animals Scientific Procedures Act, 1986 by a qualified technician at the Joint Biological Services Unit, Cardiff University for harvesting of tissue. Briefly, mandibles were removed from euthanized 28-day old Wistar rats and cut into 2 mm sections using an isomet bone saw (Buehler). A single blue agarose bead (BD Biosciences) was placed in the alveolar bone on the injected side of each
mandible slice, in order to aid orientation of the tissue for imaging at each time point

Step 2. Stabilizing the mandible slice in culture. These slices were then stabilized in culture for 24 hours in full-DPPC medium prior to injection with the cGFP-DPPCs.

Step 3. Injection of cGFP DPPCs into mandibles. 80% confluent cGFP-DPPCs were detached using accutase (Sigma), centrifuged, counted using a hemocytometer and resuspended in culture media at a concentration of 2×10^6 cells/mL. Cells were loaded into a nanofil syringe (World Precision Instruments) with a 35 g microneedle. 1 μL, containing 2,000 cGFP DPPCs was injected into the pulp region of each mandible slice. Mandible slices were cultured for up to 7 days at 37 °C, 5% CO₂. Sham injected mandibles were injected with 1 μL of PBS (Supporting Information Fig. S2).

Step 4. Preparation of injected mandible slices for microscopy. In order to maintain an enclosed and level platform for imaging cell injected mandible slices, chambers were made from inverted 1.5 mL Eppendorf tube lids and attached to plastic petri dishes using superglue. Within the chambers provided by the inverted tube lids, mandible slices were suspended in CyGel™ (Biostatus, Shepshed, UK). CyGel is a thermo-reversible hydrogel; it is a viscous liquid at room temperature, but a gel at 37 °C. Furthermore, it is compatible with live cells and biomaterials and thus acts as a suitable support and immobilizing matrix for the mandible slice. Optically it provides the crucial interface between the biomaterial and No. 1.5 coverslip, leveling the surface and contending with the diversity of the surface from bone (a rough surface) to the pulp (a more elastic material). After suspension within the imaging chambers and placement of the coverslips, mandible slices were placed in an incubator at 37 °C for 3 min, allowing the CyGel to solidify around them. After imaging, slices were removed from the imaging chambers by gentle rinsing in sterile 4 °C PBS, cooling and liquefying the CyGel, allowing retrieval. Subsequently, slices were returned to culture in 24-well plates containing DPPC medium.

Step 5. Confocal laser scanning microscopy (CLSM), standard set-up, and acquisition. Mounted slices were imaged using an upright confocal microscope (Nikon Eclipse FN1 Fixed-stage with a Radiance 2100 scan head, Zeiss, UK). Dual channel images were collected simultaneously (GFP fluorescence 488 nm excitation and 530/30 emission; and reflection
at 488 nm of the cell-matrix tissue (a polarizer was used to remove mottle). A simple LUT was used to ensure that there was no saturation of signal at both ends of the grey scale levels (ie no pixels at 0 and 255). The x,y position of the data collection was always made with reference to the agarose bead. Z stack images were collected at 2 \(\mu \text{m} \) increments with a Nikon Plan Fluor x10, 0.3 NA lens; importantly, the reflection image was used to ensure the collection regimen was always the same, the two-surface reflection of the coverslip acted as a reference point which ensured that the data was collected from inside the mandible slice toward the coverslip, this enabled the location of similar depth comparison between DAY 1 and DAY 7. Mandible slices were imaged at both 1 and 7 days after injection with cGFP-DPPCs (\(n = 3 \)). Correction of z-focus distortion was adopted to calculate actual depth of each z-region, the correction factor in this case was a ratio of the refractive index air:CYGel (i.e., 1.365) (21)

Step 6. Projection and image analysis. Images were visualised using Metamorph imaging software. Maximum projection images of the pulp surface, pulp sub-surface and dentine region of the injected tooth slice were created for DAY 1 and DAY 7 post injection using equal Z stack images. Equivalent z-depth maximum projection images of each region were made to perform further simple image analysis, to determine features of cell growth and location (pattering) over the two time points. Total area of GFP fluorescence (in pixels) was calculated using Metamorph region measurements, to provide a global index of cell density or spread for a given region of the mandible slice. Morphology filters were used to extract features from cell ‘blobs’ and provided the means for the estimate of number and centroid for each cell, again in a designated region. Each of the cell ‘blobs’ represented a total pixel area ranging from 55 to 120; after applying a median filter to each image, a Top Hat filter (shape circle (three pixels diameter), was used to detect the bright features across the image and this corresponded to the location of individual cells (22)

RESULTS

Characterization of cGFP-DPPCs

Population analysis using flow cytometry showed a high level of GFP-expression (FL1-H geometric mean 1463 ± 42.2 (arb units)) which averaged 80.66% ± 7.1 for the cGFP-DPPCs (Fig. 2A). This stable high level of GFP-expression in the positive fraction is important for identification of the injected fraction into the mandible tissue. Since \(\beta \)-actin is a housekeeping gene in the DPPC lineage (see Fig. 2A), GFP expression controlled under its promoter ensures high protein levels. This is particularly important when imaging these live cells transplanted into the highly scattering environment of the pulp to ensure optimal detection. cGFP-DPPCs demonstrated a sustained population doubling after an extended time in culture and were still dividing at the passage number at which they were used experimentally (passage 10-14) (Fig. 2B). cGFP-DPPCs were found to positively express mesenchymal stem cell markers CD73, CD90 and CD105, and were negative for the hematopoietic marker.
CD45 consistent with standard MSC characterisation (23,24). In addition to the mesenchymal stem cell markers, these cells express CD146, indicative of pericytes but have additional expression of CD34, suggesting potential presence of transit amplifying progenitor cells (25). These cells also demonstrated positive expression of osteopontin, an early mineralized tissue marker associated with early attachment, at the mRNA level (Fig. 2C). The tooth slices demonstrated maintenance of the tissue architecture following injection of the cGFP-DPPCs (Fig. 2D).

Injection of cGFP-DPPCs Into Mandible Slices

The cGFP-DPPCs were injected into the dental pulp of a rat tooth slice. After DAY 1 post-injection, cGFP-DPPCs were distributed in clusters across the surface pulpal region of the slice (Fig. 3A); by DAY 7 the cGFP-DPPCs have expanded in the same region (Fig. 3A'). This is evidenced both by an increase in the total area of GFP (GFP TA), or total extracted cell number in the designated cell locations. From these simple analyses cell number expansion increased by >2.5-fold (Figs. 3A and 3A'), and the total area of GFP signal (GFP TA) demonstrated a >4.5 fold increase in area. Similar clustered populations are seen on Day 1 in the sub-surface pulpal region and by Day 7 the cells have expanded (Figs. 3B and 3B'). This is again confirmed by a cell number fold-increase of 1.7 and a total GFP area that increase by approximately 3.5 fold between Day 1 and Day 7 (Figs. 3B and 3B'). In each case, reflecting the cell proliferation and the change in the underlying morphology of the cells. What is clear is that the distribution and location of the seeded cells is already determined by Day1, and that regional clonal expansion was detectable and quantifiable. The interplay between cell motility and proliferation would suggest that the latter is the predominant behavior between these two time points; at least from a global view.

After 7 days of culture, on the upper surface of the tooth slice there were a large number of cGFP-DPPCs that appeared to associate with the dentine surface of the mandible slice as evidenced by the reflection image (Figs. 4A,4A', and 4A''). (** indicates location of cells in A''). (C) Higher magnification image to demonstrate morphology of cGFP-DPPCs at day 1 post-injection. (D) A different mandible slice focusing on the dentine surface demonstrating cGFP-DPPC columnar morphology. Scale bar = 100 μm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
DISCUSSION

We are fundamentally interested in understanding how cells that grow in micro-communities respond under tissue repair. This is not a trivial problem, and one that requires new tools and smarter "biomaterial" models. Due to large interplay of environmental factors that dictate mesenchymal progenitor cell behavior within the dentin-pulp complex, advances in our understanding of dental pulp biology can only come with the development of more complex models that resemble the actual in vivo situation. It is to this end that we have described the development of a model that combines the use of an established ex vivo organ culture system, which allows cell behavior to be monitored and measured in the native 3D tissue environment. The current work relates to the reduction of excessive animal model systems for understanding bone repair by the creation of an organ-like system, which could be used for the testing of compounds directly in human-derived material. The requirement for such alternative translational in vitro systems allowing appropriate and reliable testing of new pharmaceuticals is of paramount importance (26). Others have assessed the osteogenic potential of human dental pulp stem cells on different polycaprolactone (PCL) scaffolds, determining their characteristics for promoting cell migration and differentiation (27). Here we describe a significant step toward being able to track dental-pulp derived mesenchymal progenitor cells within their native extra cellular matrix environment in real-time. This dynamic organ culture model system will prove to be useful in further exploring mesenchymal progenitor cell biology and for addressing questions that conventional 2D culture systems cannot, regarding the influence of pulp extracellular matrices and growth factors on maintaining "stem-ness," determining cell-lineage fates and cell responses to tissue injury (28).

The cGFP-DPPCs we have isolated and characterized to carry out this work will continue to provide a useful tool to further interrogate MSC biology as it pertains to clonal variation, control of differentiation, maintenance of pluripotency as well as behavior in complex 3D tissue environments. One of the difficulties in pursuing these lines of inquiry have been the lack of an ability to simply live-image MSCs in order to track their lineage and relative location in complex culture environments such as whole tissues or tissue engineered scaffolds. These cells lend themselves to overcoming this barrier by producing a stable and easily accessible fluorescent readout that is sufficient to determine cell location, orientation and morphology. The methodology of injecting into the dental pulp area of the tooth and the subsequent mounting of the mandible slices into hydrogel proved effective from different perspectives for a longitudinal culture study. First, it provided a robust immobilization of the mandible slice in the imaging chamber, and second it provided a suitable optical interface (refractive index 1.365) between tooth biomaterial and coverslip, as well as a leveling surface for mounting the hard material as close as possible to the coverslip. Finally, the thermo-reversible nature of this hydrogel permitted recovery of the slice ensuring the slices could be recovered and placed back in the conditioned (original) media.

Here we show the expansion of the injected cGFP-DPPCs onto the cut surface of the dentine and the changes in their morphology from rounded to flattened and elongated. It has been well established that mineralized tissues, specifically both bone and dentine, contain a significant reservoir of sequestered bioactive factors (29–34). Here it is possible that when presented with a "damaged" dentin surface, these factors were at work in recruiting the injected cGFP-DPPCs to the site of the "injury." Osteopontin is expressed by cells in a variety of tissues, including bone, dentin and hypertrophic cartilage; it is a key early marker of mineralized tissue matrix repair and has been postulated to play a role in initially attaching migrated DPPCs to a repair site (35,36). Therefore as a potential robust differentiation biomarker, the expression profile in this mandible slice model requires further characterization. What is evident from these results is that, although the injected cells were of clonal origin, the cells have exhibited very different behaviors. Following injection, cells have expanded considerably over the 7 days in the cut dentine region whilst others remained in the pulpal soft tissue where expansion occurred to a lesser extent, which suggests that the cells are heterogeneous in nature. This is potentially due to differences in the differentiated state of the cells upon injection into the tooth slice: lineage-committed phenotypes may migrate to the site of damage to initiate the repair process whilst more immature progenitor cells settle within a supportive niche environment, available for further recruitment (5). In the 3D mandibles the property of cellular expansion is clearly maintained, further experiments with single cell-lineage tracking or barcoding would provide the opportunity for mapping clonal expansion in the native pulp and also to compare against the 2D model. There are also potential changes in morphology taking place over the 7 days. This is evidenced by the increase in the total GFP intensity/cell. This suggests that cells are potentially increasing in size or changing their morphology in response to their surroundings as the cells begin to interact with their matrix and other cells. Further investigation of changes to cell morphology is required to confirm this.

While cells were successfully injected into the dental pulp, control over the localized delivery of DPPCs in this model could be greatly improved. Due to the fluid dynamics of the injection media, injected cells had a tendency to disperse around the injection site rather than being delivered in a localized cluster. Use of an injectable cyto-compatible material, such as a shear thinning multi-domain peptide scaffold as a carrier may allow for tighter plugs and more localized distribution of cells within specific regions of the dentin-pulp complex (15,37). Similarly, the model presented here could be used to examine the activity of other progenitor cells such as periodontal ligament or alveolar bone derived MSCs in their native 3D matrix environments, as these are present within the mandible slice organ (38). Given the interest in the use of progenitor cell based therapies to
drive tissue regeneration, we propose that this model system could be used to gauge the response of intact tissues or biomaterials to the delivery of progenitors which are traceable/trackable in terms of their migration and differentiation once delivered (39,40)

ACKNOWLEDGMENTS

The authors thank Prof Ketan Patel, University of Reading, for access to GFP-Rats from which GFP-DPPCs were isolated.

LITERATURE CITED

1. Casagrande L, Cordeiro MM, Nor S, Nor J. Dental pulp stem cells in regenerative dentistry. Odontology 2011;99:1–7.
2. Casagrande L, Cordeiro M, Nor S, Nor J. Dental pulp stem cells in regenerative dentistry. Odontology 2011;99:1–7.
3. Colombo JS, Moore AN, Hartgerink JD, D’Souza RN. Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endodont 2014;40:56–512.
4. Harichane Y, Hirata A, Dimitrov-Nakov S, Granja L, Goldberg A, Kellermann O, Polaard A. Pulpal progenitors and dentin repair. Adv Dent Res 2011;23:307–312.
5. Nanci A. Ten Cate’s oral histology: Development, structure, and function. Elsevier Health Sciences; 2007.
6. Sloan AJ, Waddington RJ. Dental pulp stem cells: What, where, how? Int J Paediatr Dent 2009;19:61–70.
7. Sloan AJ, Smith AJ. Stem cells and the dental pulp: Potential roles in dentine regeneration and repair. Oral Dis 2007;13:151–157.
8. Waddington RJ, Vroula SJ, Lee CP, Sloan AJ. Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissue Org 2009;189:268–274.
9. Gronthos S, Mankani M, Braham J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2006;103:13625–13630.
10. Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials 2006;27:2860–2873.
11. Baker SM, Sugars RV, Wendel M, Smith AJ, Waddington RJ, Cooper PR, Sloan AJ. TGF-beta/extracellular matrix interactions in dentin matrix: A role in regulating sequestration and protection of bioactivity. Calcif Tissue Int 2009;85:66–74.
12. Linde A. The extracellular matrix of the dental pulp and dentin. J Dent Res 1985;64Spec No:523–529.
13. Chai Y, Jang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Suwa HM. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 2006;132:1671–1679.
14. Galler KM, Cavender AG, Koebluek U, Sugis LJ, Schmalz G, D’Souza RN. Bioengineering of dental stem cells in a PEGylated fibrin gel. Regen Med 2011;6:191–200.
15. Galler KM, Hartgerink JD, Cavender AG, Schmalz G, D’Souza RN. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng Part A 2012;18:176–184.
16. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: A biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 2004;15:13–27.
17. Sun HH, Jin T, Yu Q, Chen FM. Biological approaches toward dental pulp regeneration by tissue engineering. J Tissue Eng Regen Med 2011;5:1–16.
18. Smith EL, Locke M, Waddington RJ, Sloan AJ. An ex vivo rodent mandible culture model for bone repair. Tissue Eng Part C Methods 2010;16:1287–1296.
19. Okabe M, Ikawa M, Kominami K, Nakamichi T, Nishimune Y. Green mice as a source of ubiquitous green cells. FEBS Lett 1997;407:313–319.
20. Jones PH, Watt FM. Separation of human epidermal stem cells from transit-amplifying cells on the basis of differences in integrin function and expression. Cell 1993;73:713–724.
21. Errington RJ, Fricke MD, Wood JL, Halc AC, White NS. Four-dimensional imaging of living chondrocytes in cartilage using confocal microscopy: a pragmatic approach. Am J Physiol 1997;272:C3040–C3051.
22. Bright DS, Steel EB. Two-dimensional top hat filter for extracting spots and spheres from digital images. J Microsc 1987;146:191–200.
23. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 2006;8:315–317.
24. Darcia LG, Locke M, Webb RD, Roberts JT, Langley M, Thomas DW, Archer CW, Stephens P. A multipotent neural crest-derived progenitor cell population is resident within the oral mucosa lamina propria. Stem Cells Dev 2010;19:819–830.
25. Zimmerman J, Donnenberg VS, Rubin JP, Donnenberg AD. Mesenchymal markers on human adipose stem/progenitor cells. Cytotherapy 2012;14:134–140.
26. Erben RG, Silva-Lima B, Reichel I, Steinhoff G, Tiedemann G, Dalemans W, Vos A, Jansen RT, Le Blanc K van Osch GJ, et al. White article on how to go forward with cell-based advanced therapies in europe. Tissue Eng Part A 2014;20:2549–2554.
27. Jensen J, Kraft DC, Lydahl H, Foldager CR, Chen M, Kristiansen AA, Rolling JH, Burger GE. Functionalization of polyacrylateone scaffolds with hyaluronic acid and beta-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng Part A 2014;21:729–739.
28. Harrington J, Sloan AJ, Waddington RJ. Quantification of clonal heterogeneity of mesenchymal progenitor cells in dental pulp and bone marrow. Connect Tissue Res 2014;55(Suppl 1):62–67.
29. Sloan AJ, Mosesly R, Dobie K, Waddington R, Smith A. TGF-beta latency-associated peptides (LAPs) in human dentin matrix and pulp. Connect Tissue Res 2002;43:381–386.
30. Sloan AJ, Rutherford R, Smith A. Stimulation of the rat dentine–pulp complex by bone morphogenetic protein-7 in vitro. Arch Oral Biol 2000;45:173–177.
31. Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shilton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol 2012;57:109–121.
32. Smith E, Colombo J, Sloan AJ, Waddington R. TGF-beta exposure from bone surfaces by chemical treatment modalities. Eur Cell Mater 2011;21:193–201.
33. Smith GT, Smith AJ, Shilton RM, Cooper PR. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components. Exp Cell Res 2012;318:2397–2406.
34. Lee C, Chen M, Zhao W, Fu S, Qi J, Chotkowski G, Eiseig S, Wong A, Mao J. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res 2011;90:1013–1018.
35. Colombo JS, Balani D, Sloan AJ, Crean SJ, Okazaki J, Waddington RJ. Delayed osteoblast differentiation and altered inflammatory response around implants placed in incisor sockets of type 2 diabetic rats. Clin Oral Implant Res 2011;22:578–586.
36. Hughes SJ, Turner W, Belhabasak G, Martuccelli G. Effects of growth factors and cytokines on osteoblast differentiation. Periodontology 2000 2006;41:48–72.
37. Kang MK, Colombo JS, D’Souza RN, Hartgerink JD. Sequence effects of Self-assembling MultiDomain peptide hydrogels on encapsulated SHED cells. Biomacromolecules 2014;15:2004–2011.
38. Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res 2014;93:1212–1221.
39. Donnenberg VS, Ulrich H. Mesenchymal stem cells, therapy, and cytometry. Cytotherapy 2013;15:48–61.
40. Nery AA, Nascimento IC, Glaser T, Bassanez V, Krieger JF, Ulrich H. Human mesenchymal stem cells from immunophenotyping by flow cytometry to clinical applications. Cytotherapy 2013;15:48–61.
