New Insights Into the Nature of Interspecific Hybrid Sterility in Rice

Jing Li, Jiawu Zhou, Yu Zhang, Ying Yang, Qiuhong Pu and Dayun Tao*

Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China

Interspecific and intraspecific hybrid sterility is a typical and common phenomenon of postzygotic reproductive barrier in rice. This is an indicator of speciation involved in the formation of new species or subspecies, and it significantly hampers the utilization of favorable genes from distant parents for rice improvement. The *Oryza* genus includes eight species with the same AA genome and is a model plant for studying the nature of hybrid sterility and its relationship with speciation. Hybrid sterility in rice is mostly controlled by nuclear genes, with more than 50 sterility loci genetically identified to date, of which 10 hybrid sterility loci or pairs were cloned and characterized at the molecular level. Comparing the mapping results for all sterility loci reported indicated that some of these loci from different species should be allelic to each other. Further research revealed that interactions between the multiple alleles at the hybrid sterility locus caused various genetic effect. One hypothesis for this important phenomenon is that the hybrid sterility loci are orthologous loci, which existed in ancient ancestors of rice. When one or more ancestors drifted to different continents, genetic divergence occurred because of adaptation, selection, and isolation among them such that various alleles from orthologous loci emerged over evolutionary time; hence, interspecific hybrid sterility would be mainly controlled by a few orthologous loci with different alleles. This hypothesis was tested and supported by the molecular characterization of hybrid sterility loci from S1, S5, Sa, qHMS7, and S27. From this, we may further deduce that both allelic and non-allelic interactions among different loci are the major genetic basis for the interspecific hybrid sterility between *O. sativa* and its AA genome relatives, and the same is true for intraspecific hybrid sterility in *O. sativa*. Therefore, it is necessary to raise the near-
isogenic lines with various alleles/haplotypes and pyramided different alleles/haplotypes from sterile loci in the same genetic background aiming to study allelic and non-allelic interaction among different hybrid sterility loci in the AA genome species. Furthermore, the pyramiding lines ought to be used as bridge parents to overcome hybrid sterility for rice breeding purposes.

Keywords: allelic variation, hybrid sterility, interspecific hybrid, rice, Oryza sativa

INTRODUCTION

Reproductive barriers are very common and important phenomena in biology, being widely observed in animal and plant populations. Reproductive isolation was classified into prezygotic and post-zygotic isolation mechanisms (Smith, 1989). The former prevents the formation of hybrids, and the latter acts after the formation of a hybrid and includes hybrid necrosis, weakness, hybrid sterility, and lethality (Stebbins, 1950).

Hybrid sterility is generally thought to be the most pervasive post-zygotic isolating mechanism, which provides an initial driving force for genetic differentiation and thus plays a key role in speciation (Orr and Presgraves, 2000). One of the major challenges in biology is to understand the origin of species, so the relationship between the hybrid sterility and the formation of new species, or subspecies, is a subject of major interest in evolutionary biology (Darwin, 1859; Coyne and Orr, 2004). Yet, the introgression of favorable genes from distantly relatives through wide crossing and heterosis utilization between subspecies or species are hindered by the hybrid sterility.

Various causes have been ascribed to explain hybrid sterility, such as meiotic irregularities (Yao et al., 1958), chromosomal aberrations (Henderson, 1964), and cytoplasmic-nuclear interactions (Shinjyo, 1975). Recent reports have also speculated that structural variation at particular trait loci may contribute to the intersubspecific hybrid sterility between the O. sativa L. ssp. indica and O. sativa L. ssp. japonica accesses (Shen et al., 2017; Wang et al., 2018).

Nevertheless, most known cases of sterility arise from a disharmonious interaction between nuclear genes derived from their respective parents (Stebbins, 1958; Grant, 1981). Genes for hybrid sterility have been reported frequently in fungi, animals, and plants (Brideau et al., 2006; Lee et al., 2008; Bikard et al., 2009). This prominence indicates that gene interactions are critically involved in generating hybrid sterility.

Hybrid sterility occurs widely in hybrids of Asian cultivated rice species, especially between the Asian and African rice species, and between the cultivated rice species and their wild relatives. Because Oryza genus had broad genetic diversity and well-characterized genetic base, it is perhaps one of the best model plants to study the nature of hybrid sterility. Based upon published reports of more than 50 sterility loci genetically identified, and 10 hybrid sterility loci or pairs cloned and characterized at the molecular level, this review examines the links between the evolutionary relationship of the Oryza genus and hybrid sterility, the genetic models of hybrid sterility, the allelic variation of orthologous loci for hybrid sterility, the non-allelic interactions for hybrid sterility, and strategies for overcoming hybrid sterility in rice improvement.

HYBRID STERILITY AND THE CLASSIFICATION, ORIGIN, AND EVOLUTIONARY RELATIONSHIPS OF THE ORYZA GENUS

The Oryza genus has eight AA genome species of diploid chromosome, of which six are wild and two are cultivated (Vaughan, 1989). One of the cultivated species, O. sativa L., has a global distribution and is now classified as two subspecies: O. sativa L. ssp. japonica and O. sativa L. ssp. indica. The japonica subspecies is further classified as three subpopulations, tropical, temperate, and aromatic, while the indica subspecies contains two subpopulations, indica and aus (Garris et al., 2005) or six subpopulations (Wang et al., 2018). Another cultivated species is O. glaberrima Steud., which is localized in West Africa and commonly referred to as African rice (Morishima et al., 1963). The six wild species are O. rufipogon Griff. and O. nivara Sharmar et Shastray from Asia; O. longistaminata A. Chev. et Roehr. and O. barthii A. Chev. from sub-Saharan Africa; O. meridionalis Ng from Australia, and O. glumaeaputula Steud. from South America (Vaughan et al., 2003). Hybrid sterility in rice was frequently observed between and within the AA genome species and was thought to serve as an important indicator for studying these species’ relationships, besides their morphological, physiological, ecological traits, and molecular markers (Kato et al., 1928; Chu et al., 1969; Morishima, 1969; Lu et al., 1998; Naredo et al., 1998; Lu et al., 2000; Vaughan et al., 2003).

The origin and evolutionary relationship of the AA genome nevertheless remain quite contentious, with different opinions and arguments being advanced. Most researchers now believe that the domestication of rice from wild to cultivated species occurred independently in Africa and Asia, respectively (Londo et al., 2006; Vaughan et al., 2008). Recent studies confirmed that O. glaberrima was domesticated directly from an O. barthii subgroup in a single domestication center along the Niger river (Wang et al., 2014).

One hypothesis is that japonica was derived from indica (Chang, 1976; Oka, 1988), while according to an alternative hypothesis both indica and japonica were originated independently from their wild ancestors (Second, 1982; Bautista et al., 2001; Cheng et al., 2003). Based on an analysis of their whole chloroplast genome sequences, the maternal genome of japonica may have been derived from O. rufipogon and that of indica may
have originated from *O. nivara*, which would support the independent domestication theory (Wambugu et al., 2015). By employing the *indica-japonica* specific insertion/deletion markers to evaluate the genetic relationships within the genus *Oryza*, Chin et al. (2017) recently provided more evidence of *indica* and *japonica* evolving independently.

All the above studies concerned with rice’s origin and evolutionary history relied on evidence from either archaeological analyses or genetic markers. Given that the strength of reproductive isolation is significantly and positively correlated with parental divergence (Coyne and Orr, 2004), comparative analyses of the timing and evolutionary progression of genetic changes underlying reproductive isolation genes could help better understand the mechanisms of speciation (Moyle and Payseur, 2009). With the advent of molecular biology and in recent years genomic studies especially, the hybrid sterility genes, also called “speciation genes”, provide an unique angle of view for understanding the genetic, origin and evolution of the *Oryza* genus. For instance, the molecular evolution analysis of the *S5* locus, one of the important female sterility loci in *indica-japonica* hybrids, revealed that *indica* and *japonica* subspecies of the Asian cultivated rice *O. sativa* were domesticated independently from wild species (Du et al., 2011). This result thus supported the independent origin theory of *indica* and *japonica* and was consistent with the finding reported by Wambugu et al. (2015). The cloning of *S1* locus, which is the most important genetic factor causing the hybrid sterility between two cultivated species, provides experimental evidence for the independent origin of Asian cultivated rice and African cultivated rice (Xie et al., 2019b).

GENETIC MODELS FOR THE GENETIC MECHANISM OF HYBRID STERILITY IN RICE

Two genetic models are generally accepted for explaining the genetic mechanism underpinning hybrid sterility in rice according to the Mendelian inheritance: allelic interaction (Kitamura, 1962) and epistatic interaction (Oka, 1957; Oka, 1974). The former proposes that a genetic interaction between two divergent alleles on a single locus causes the abortion of gametes carrying a specific allele, while the latter proposes that epistatic interactions between two loci cause hybrid sterility.

To date, more than 50 hybrid sterility loci in rice have been identified from gene mapping populations generated from various germplasm lines (Supplementary Table 1). Some of these loci cause pollen sterility, some cause female gamete abortion, and a few cause the abortion of both. Yet most of these loci seem to act independently on hybrid sterility, which could be explained by the one-locus interaction model; for those showing epistatic interactions, they fit the two-loci interaction model.

From the mapping loci, 10 hybrid sterility loci or pairs of epistatic interaction were cloned and characterized at the molecular level, for which the genetics of seven loci—*S1, S5, S7, Sa, Sc, hsa1*, and *qHMS7*—follow the one-locus interaction model (Chen et al., 2008; Long et al., 2008; Yang et al., 2012; Kubo et al., 2016; Yu et al., 2016; Shen et al., 2017; Xie et al., 2017; Koide et al., 2018; Yu et al., 2018; Xie et al., 2019b). Most loci contain two or more closely linked genes interacting to cause gamete sterility, which can take these recognized forms: a single Mendelian factor, such as two genes at *Sa, qHMS7* and *hsa1* locus (Long et al., 2008; Kubo et al., 2016; Yu et al., 2018); three genes at *S1* and *S5* loci (Yang et al., 2012; Xie et al., 2017; Koide et al., 2018; Xie et al., 2019b); and genomic structural variation at the *Sc* locus (Shen et al., 2017). All can be regarded as interaction between different alleles from a single Mendelian factor to control hybrid sterility.

The other three pairs (*S27/28, DPL1/DPL2, and DGS1/DGS2*) follow the two-loci interaction model (Mizuta et al., 2010; Yamagata et al., 2010; Nguyen et al., 2017). These gamete-essential genes were interchromosomal duplicated segment from their ancestral loci. The reciprocal loss of one of the duplicated genes caused the sterility in hybridization in the divergent species. Therefore, genetic segregation and recombination gave rise to gametes lacking any duplicated functional genes in the hybrids, thus leading to hybrid sterility (Mizuta et al., 2010; Yamagata et al., 2010; Nguyen et al., 2017).

However, the molecular mechanisms underlying each of the loci are in fact complex though the genetic basis of reproductive isolation seems simple according to classical genetic analysis. Not only are the genes involved in hybrid sterility characterized by very different functional categories, the way in which they interact to cause sterility is also distinct, and this topic has been reviewed before (Ouyang and Zhang, 2013; Xie et al., 2019a). However, it is necessary to recheck hybrid sterility from different perspectives.

SEVERAL HYBRID STERILITY LOCI FROM DIFFERENT SPECIES SHOULD CONFER MULTIPLE ALLELES

In reviewing the progress made in the genetic mapping study of hybrid sterility loci/QTL between *O. sativa* and its AA genome relatives, six “hot spots” from different species were frequently identified (Figure 1). Comparing the mapping results for all these sterility loci suggested that some sterility loci arising from multiple species should be allelic to each other, since they were located to the same chromosome region and were identified as having similar genetic activity.

The interspecific hybrid sterility locus *S1* on chromosome 6 was first identified in the cross between *O. sativa* and its AA genome relatives, six “hot spots” from different species were frequently identified (Figure 1). Comparing the mapping results for all these sterility loci suggested that some sterility loci arising from multiple species should be allelic to each other, since they were located to the same chromosome region and were identified as having similar genetic activity.

The interspecific hybrid sterility locus *S1* on chromosome 6 was first identified in the cross between *O. sativa* and its AA genome relatives, six “hot spots” from different species were frequently identified (Figure 1). Comparing the mapping results for all these sterility loci suggested that some sterility loci arising from multiple species should be allelic to each other, since they were located to the same chromosome region and were identified as having similar genetic activity.
female gametes' abortion in an intraspecific hybrid cross between T65wx (japonica type) and PTB 10 (indica type), was mapped onto the similar chromosome position as S1 on chromosome 6 (Sano et al., 1994), with some later studies indicating that S1 and S10 are allelic to each other (Heuer and Miezan, 2003; Zhu et al., 2005). Chen et al. (2009) detected one main-effect QTL, qpsf6, for pollen and spikelet fertility on the short arm of chromosome 6 close to the SSR marker RM587, from the cross between an indica rice cultivar RD23 of O. sativa and an accession of O. longistaminata. Comparing their position and effect indicated that this QTL coincides with the gamete eliminator S1 (Chen et al., 2009). Recently, a genetic study found that S1 also was a major sterility locus in the hybrid combinations obtained from O. sativa crossed with O. rufipogon, O. nivara, and O. barthii, respectively (Yang et al., 2016), which strongly suggests there was an orthologous hybrid sterility locus controlling hybrid sterility between O. sativa and its AA genome relatives in this area on rice chromosome 6.

The pollen killer locus S22, initially derived from the cross between O. glumaepatula and O. sativa, was subsequently identified as two closed but linked loci, S22A and S22B. Since the sterile alleles S22A and S22B are closely linked and contributed to hybrid sterility in the one-locus allelic interaction model, the S22A and S22B loci were regarded as a single Mendelian locus in their initial mapping experiments (Sobrizal et al., 2000a; Sakata et al., 2014). A pollen killer locus S29(t), which induced hybrid sterility in the cross between O. glaberrima and O. sativa, was mapped onto the similar position to S22 on chromosome 2, whose comparative mapping indicated that S29(t) corresponded to S22B (Hu et al., 2006; Sakata et al., 2014). S53(t), caused pollen sterility in an O. sativa–O. meridionalis hybrid, was identified on the same chromosome region harboring S22B (Li et al., 2018b). The male gametes carrying the O. sativa allele were viable whereas those carrying the O. glumaepatula/O. meridionalis allele were aborted in the S22B and S53(t) loci; hence, these loci from different species should be allelic to each other with multiple alleles. This implies there might be another orthologous hybrid sterility locus between the Asian cultivated rice O. sativa and the African rice O. glaberrima, and its wild relatives O. glumaepatula, O. meridionalis on rice chromosome 2.

The major locus Sa conferring the indica-japonica hybrid male sterility was identified on chromosome 1 with the genetic background of a japonica variety (Zhuang et al., 1999). Work by Li et al. (2018b) identified a pollen killer S51(t) on chromosome 1 from O. meridionalis. The sterile pollen in the heterozygotes of S51(t) and S6 showed a similarly empty abortion phenotype under I2-KI staining. Additionally, both S51(t) and S6, the japonica alleles, were aborted and were incapable of being transmitted to the progeny via the male gametes. According to a comparison of the location and the genetic mode of locus action, the S51(t) can be allelic to Sa (Li et al., 2018b).

The hybrid sterility locus S20 was identified on the distal end of the short arm of chromosome 7, from the cross between japonica rice (Taichung 65) and African rice Acc. IRGC104038 (Doi et al., 1999). An examination of map positions also revealed that S20 was highly likely to be allelic to S54(t) and S56(t), which were respectively identified in the hybridization crossed combinations between O. sativa (japonica) and O. meridionalis (Li et al., 2018b) and between O. sativa (japonica) and O. glumaepatula (Zhang et al., 2018). Just like S20, the japonica alleles of S54(t) and S56(t) were aborted and could not be inherited in progeny via male gametes, so plants with normal pollen fertility were homozygous for O. meridionalis and O.

FIGURE 1 | Loci with good co-linear relationship and similar genetic action for hybrid sterility in rice.
glumaepatula allele in the inbreeding population raised from the semisterile individuals (Li et al., 2018b; Zhang et al., 2018).

The hybrid sterility locus S21 was identified on the distal end of the long arm of chromosome 7, from the cross of japonica (Tai-chung 65) and African rice (IRGC104038) (Doi et al., 1999). But a new allele of S21 was identified from O. ruﬁpogon (IRGC105715) (Miyazaki et al., 2007). Using the O. glumaepatula introgression lines with the background of O. sativa (Tai-chung 65), the pollen semi-sterile locus S23(t) was also located on the long arm of chromosome 7 and was thought to be allelic to S21 from O. glaberrima and O. ruﬁpogon after comparing their map positions (Sobrizal et al., 2000b; Miyazaki et al., 2007). The pollen killer locus S55(t)/qHMS7, from O. meridionalis, has a map position similar to that of S21 identiﬁed from O. ruﬁpogon, O. glaberrima, and S23(t) identified from O. glumaepatula (Doi et al., 1999; Sobrizal et al., 2000b; Miyazaki et al., 2007; Li et al., 2018b; Yu et al., 2018). This congruence pointed to a major pollen sterility locus on the long arm of chromosome 7 that is capable of inducing sterility in the hybridization combinations arising from O. sativa crossed with O. glaberrima, O. ruﬁpogon, O. glumaepatula, and O. meridionalis, respectively, whose sequence analysis was based on the cloning of S23 and qHMS7 (Yu et al., 2018; Fang et al., 2019).

S36 and S25 are two F1 pollen sterility loci, both found on the distal end of the short arm of chromosome 12 from the interspeciﬁc cross of O. sativa (japonica) and O. nivara, and the intersubspecific cross of O. sativa, respectively (Kubo et al., 2001; Win et al., 2009). The pollen sterility locus S6 and hybrid male sterility QTL qS12, both from the intersubspecific cross between japonica and indica, were mapped onto the short arm of chromosome 12 (Zhu et al., 2008; Zhang H. et al., 2011). Further, the pollen killer S39(t) identiﬁed from the interspeciﬁc cross between O. sativa ssp. japonica and O. glaberrima was likewise mapped onto the same chromosome region of S36 and S25 (Xu et al., 2014). Those pollen grains carrying the japonica allele were sterile in the heterozygous state. Having a similar map position and same genetic activity, S25, S36, S39, qS12, and S6 might therefore be multiple alleles on the same locus responsible for hybrid sterility in rice.

The six hot spots mentioned above each includes at least two hybrid sterile alleles from different interspeciﬁc hybrid crosses, and researchers believe these loci should be allelic to each other, though their allelic relationship has yet to be tested. Nonetheless, the existence of these multiple alleles implies that the hybrid sterility among AA genome species of genus Oryza could be governed by a few orthologous loci. It is thus imperative to clarify the allelic relationships of these loci, although any robust conﬁrmation of this allelism is diﬃcult to obtain due to their diverse genetic backgrounds. Based upon this consideration, the near-isogenic lines (NILs) of 5 hybrid sterility loci (S1, S39, S44, S53, and S21/qHMS7) have been developed in the same genetic background, using 35 rice accessions from eight species of AA genome as donors and one japonica cultivar (Dianjingyou 1) as the recurrent parent. And the allelic relationship conﬁrmation is ongoing.

THE ALLELIC INTERACTION AMONG DIFFERENT ALLELES OF ORTHOLOGOUS LOCI AND NON-ALLELIC INTERACTION AMONG DIFFERENT LOCI INDUCE INTERSPECIFIC HYBRID STERILITY BETWEEN O. SATIVA AND AA GENOME SPECIES

One hypothesis for multiple alleles from different species is that these hybrid sterility loci are orthologous loci, which existed in ancient ancestors. When one or more ancestors drifted to different continents, genetic divergence occurred because of adaptation, selection, and isolation among them. With this accumulated genetic differentiation, the various alleles may divide the original function, lose it altogether, or introduce a new function (Lynch and Force, 2000). Hence, interspeciﬁc hybrid sterility would be mainly controlled by a few orthologous loci with diﬀerent alleles/haplotypes. This hypothesis was proven by the molecular characterization of cloned hybrid sterility loci in rice.

The hybrid sterility locus qHMS7, which conﬁers pollen semi-sterility in the hybrid between O. meridionalis and O. sativa ssp. japonica Dianjingyou 1 (DJY1), was cloned and molecularly characterized (Yu et al., 2018). The O. sativa allele of ORF2 (ORF2-D) and ORF3 (ORF3-D) respectively encoded the toxin and antidote, while ORF2-mer was non-functional and ORF3 was absent in O. meridionalis, which induced the pollens carrying the O. meridionalis allele to be aborted (Yu et al., 2018). The analyzed gene structure of the qHMS7 locus indicated that ORF2 was present in all sequenced accessions, with a total 27 haplotypes of ORF2 identiﬁed, yet only one haplotype of ORF3 (ORF3-D) was identiﬁed in parts of O. ruﬁpogon and most of Asian-cultivated rice accessions, but none in O. meridionalis, O. longistaminata, O. barthii, and O. glaberrima (Yu et al., 2018). So, qHMS7 was not only detected in the cross of O. sativa–O. meridionalis (Yu et al., 2018; Li et al., 2018b) but also in the crosses of O. sativa–O. glaberrima and O. sativa–O. ruﬁpogon as S21 (Doi et al., 1999; Miyazaki et al., 2007). The pollen semi-sterility locus S23 in O. sativa–O. glumaepatula has a similar map position to qHMS7 (Sobrizal et al., 2000b; Fang et al., 2019). Sequence analysis revealed that S23 was allelic to qHMS7, the ORF2 and ORF3 of S23 have the same ”Toxin-Antidote” function when compared with qHMS7; however, the genetic effect of S23 differs from qHMS7 in two ways (Fang et al., 2019). On the one hand, F1 pollen fertility was semi-sterility (51.16 ± 1.29%) for qHMS7 and no homozygote for O. meridionalis was obtained, indicating the pollen grains carrying O. meridionalis allele had aborted completely; whereas, for S23, its F1 pollen fertility was higher (63.15 ± 13.49%) than that of qHMS7 and a few homozygotes of O. glumaepatula was found available, indicating that the pollen grains carrying the O. glumaepatula allele were not completely sterile (Yu et al., 2018; Fang et al., 2019). On the other hand, the pollen sterility of F1 hybrid could only be observed in a short photoperiods, but not in a long photoperiods at the S23 locus, yet no phenotypic diﬀerences were observed in diﬀerent environments at the qHMS7 locus (Li et al.,
The Sa locus was the first cloned and molecularly characterized hybrid sterility locus, from the *indica-*japonica cross, and it comprises two adjacent genes, *SaF* and *SaM* (Long et al., 2008). Most *indica* cultivars have the allele of *SaM*+*SaF*, whereas all *japonica* cultivars contain *SaM*−*SaF*. The alleles *SaM*+*SaF* and *SaM*−*SaF* were variably present in *Oryza* species having the GG, FF, CC, EE, and AA genomes, including *O. barthii*, *O. nivara*, and *O. sativa* subsp. *indica*. Three alleles in particular *SaM*+*SaF*, *SaM*−*SaF*, and *SaM*−*SaF* were found in the *O. ruifogon* populations. The mutation of *SaM* most likely arose in an *O. ruifogon* population with the allele *SaM*+*SaF* and then generated the allele *SaM*−*SaF*, whereas the variation in *SaF* occurred before the evolutionary split and gave rise to most of the current *Oryza* species (Long et al., 2008). We noticed that eight AA genome species possess the alleles of *SaM*+*SaF* and *SaM*−*SaF*, but not *O. sativa* subsp. *japonica*, so it is readily inferred that the hybrid sterility locus *S51* detected from *O. meridionalis--japonica* hybrid was one allele of *Sa* (Li et al., 2018b), with neutral allele *Sa-n* being identified from the *indica* rice and wild rice *O. ruifogon* (Long et al., 2008). It is reasonable to anticipate that, with further research, a tri-allelic system consisting of three types of *Sa* alleles (*SaM*+*SaF*, *SaM*−*SaF*, and *SaM*−*SaF*) will emerge, which is able to control hybrid male sterility and fertility not only in *O. sativa* but also among AA genome species of *Oryza*.

The hybrid sterility locus *S5*, controlling female semi-sterility in hybrids between *indica* and *japonica*, consists of three closely linked genes *ORF3*, *ORF4*, and *ORF5* that function together in a “Killer–Protector” system (Yang et al., 2012). The typical *indica*-like (*ORF3*+*ORF4*+*ORF5*), *japonica*-like (*ORF3*+*ORF4*−*ORF5*), and neutral (*ORF3*+*ORF4*−*ORF5* and *ORF3*−*ORF4*+*ORF5*) alleles were found in wild rice accessions of *O. ruifogon* and *O. nivara*; this suggested the *S5* locus already existed in wild relatives and the ancestors of *indica* and *japonica* rice, thus probably originating before domestication (Du et al., 2011; Yang et al., 2012). Presently, *S5* has only been identified in the intersubspecific hybrid cross between *indica* and *japonica*, but according to the distribution of alleles in AA genome we think *S5* also had effect for interspecific hybridization crosses.

Interspecific hybrid sterility locus *S1* is also a tripartite “Killer–Protector” complex (Xie et al., 2019b). The African rice *S1* allele is composed of three adjacent genes (*SIA4, SITPR, SIA6*), while the Asian *S1* allele includes only one gene, *SITP*, which is a truncated form of *SITPR* (Xie et al., 2017; Koide et al., 2018; Xie et al., 2019). Based on the analyzed gene structure of the *S1* locus, the function structure A4−TPR−A6 exists in all examined accessions of *O. glaberrima*; and the nonfunction or dysfunction structures are present in all analyzed accessions of *O. sativa, O. longistaminata*, and *O. ruifogon*. The accessions of *O. meridionalis* and *O. barthii* possess both of the structures (Xie et al., 2019b). Total 7 haplotypes and 22 allelic variations of the *S1* locus were detected in the *Oryza* species (Xie et al., 2019b). Further studying the relationship between hybrid sterility and the multiple allelic interactions is needed.

Taken together, the research findings above indicate the interaction between divergent alleles/haplotypes may lead to hybrid sterility, even their interaction mechanisms and genetic effects may be different. It can be further deduced that not only the allelic interactions among different alleles of orthologous loci, but also the non-allelic interactions among different loci, constitutes the major genetic basis for interspecific hybrid sterility between *O. sativa* and other AA genome species.

Benefit from the clone of *S27* and *S28*, a pair of epistatic interaction loci caused *F1* hybrid sterility in the hybrid pairs *O. sativa*–*O. glumaepatula* and *O. sativa*–*O. nivara* (Yamagata et al., 2010; Win et al., 2011), we can trace the interaction between different alleles that induce hybrid sterility. The *S27* allele of *O. sativa* is composed of two tandem mitochondrial ribosomal protein *L27* genes (*mtRPL27a* and *mtRPL27b*), and the *S28* allele of *O. sativa* contains a loss-of-function allele for *mtRPL27a*. In brief, the *S27* has normal functioning and *S28* has no function in the *O. sativa* allele, whereas only the *S28* has normal functioning and *S27* is absent in the *O. glumaepatula* allele. The epistatic interaction induces the abortion of pollen grains carrying *S27* and *S28*, both of which are inactive in *F1* progeny of *O. sativa* and *O. glumaepatula*. Judging from a comparison of their genomic sequences, *mtRPL27a* at *S27* on chromosome 4 is thought to be the most ancestral locus. With an interchromosomal duplication, a new copy of *mtRPL27a* at *S27* on chromosome 8 was generated, and likewise *mtRPL27b*, also at *S27* (Ueda et al., 2006). Among the eight AA genome species, the duplicated segment of *S27* was widely observed, occurring in all except *O. glumaepatula*, and only part of the accessions of *O. barthii* and *O. longistaminata* lacked this segment (Yamagata et al., 2010). Further study showed that the interaction between *S27* and *S28* loci also causes the pollen sterility in the *F1* hybrid of *O. sativa* and *O. nivara*, which inherited the duplicated segment of *S27* (Win et al., 2011). Sequence analysis revealed that the structure of *S27* allele in *O. nivara* is different from that of *O. glumaepatula*; in the former it is composed of two inactive genes (*mtRPL27a*, *mtRPL27b*) while in the latter species these two genes are absent. In short, *S27-niv* is a loss-of-function allele of *S27*. These results highlight that the mechanisms for hybrid sterility are likely different because of epistatic interactions between *S28* loci and different alleles of *S27* in divergent rice species.

The multiple alleles causing hybrid sterility in rice were analyzed at the molecular level for *S5*, *Sa*, *qHMS5/S21/S23/S55*, and *S27*. Meanwhile the cloning of hybrid sterility loci also proves the data support for the allelic relationship of these hybrid sterility loci mentioned above with same molecular location and similar genetic action. According to the latest research, at each hybrid sterility locus, the number of interacting alleles does not seem to be limited to three, of which one is neutral. It has been reported that four alleles...
characterize the S7 locus, S-7kn, S-7kn, S-7kn, and S-7kn, which cause female sterility in the indica-japonica hybrid (Yanagihara et al., 1992). The genotype of S-7kn/S-7kn shows semi-sterility, in that the female gametes carrying S-7kn are aborted. But in the S-7kn/S-7kn genotype, only some of the female gametes possessing S-7kn are aborted. On the other hand, the S-7kn/S-7kn, S-7kn/S-7kn, and S-7kn/S-7kn genotypes did not exhibit sterility as female gamete abortion (Yanagihara et al., 1992). The initial loci existing in the ancestral species likely differentiated into multiple alleles/haplotypes due to the emergence of genetic differentiation, which accumulated in each population; importantly, this variation was not harmful in the populations in which they arose. Of course, the variation that may affect fitness has been eliminated with the death of the individual. After hybridization between divergence populations, due to the incompatible interaction between two or more functionally diverged genes, the gametes carrying the weak alleles will be aborted, which may be nonfunctional, inactivated, or lack of corresponding protectors. This also explains why the cloned hybrid sterility loci involved in the one-locus systems are mostly composed of more than two linked genes. These closely linked genes, which are distinguished by minimal recombination, form a complex acted as a single Mendelian factor that can avoid inducing the suicidal killer/nonprotector allele in a hybrid that would result in a breakdown of the system (Xie et al., 2019a). The evolutionary history of cloned hybrid sterility genes has been described by many researchers (Long et al., 2008; Yamagata et al., 2010; Du et al., 2011; Kubo et al., 2016; Yu et al., 2018). Ouyang and Zhang (2013) proposed three evolutionary genetic models, those of parallel divergence, sequential divergence, and parallel-sequential divergence, to illustrate the process going from essential genes in the ancestral species to diverged genes based on the cloning data of hybrid sterility genes (Ouyang and Zhang, 2018). By disentangling the interaction between various alleles of these “speciation genes” which underpin the timing and evolutionary progression of genetic changes, we can understand the processes and patterns underlying the speciation and origin of AA genome species of rice further.

STRATEGIES FOR OVERCOMING HYBRID STERILITY IN RICE IMPROVEMENT

During the process by which cultivated rice was domesticated from wild ancestor thousands years ago, the cultivated rice’s genetic diversity has been gradually eroded. More importantly, the frequent use of a few elite parents in rice genetic improvement programs has exacerbated this decline in genetic diversity (Simmonds, 1976; Moncada et al., 2001). These challenges hinder our ability to attain further improvement in yield of new varieties while also making rice more susceptible to disease epidemics and pest outbreaks (Tanksley and McCouch, 1997). Thus, the relatives of O. sativa, which contain favorable genes (alleles), could be a valuable genetic resource for rice improvement via hybridization techniques. On the other hand, the utilization of heterosis in the grain yield of rice has boosted rice production in the past few decades. Current rice hybrids are mostly derived from the indica lines. Given their limited genetic diversity, intra-subspecific hybrid vigor now only provides rice breeders with limited yield increases, whereas the distant hybrids derived from intersubspecific even interspecific crosses performed stronger heterosis. However, severe reproductive isolation, such as that incurred by interspecific and intersubspecific hybrid sterility, limits the extensive utilization of these rice distant hybrids (Ikeda et al., 2009; Bolaji and Nwokeocha, 2014). Therefore, hybrid sterility studies should also aim to overcome the reproductive barrier, so as to enable breeders to utilize the valuable extant genetic resources and obtain the strong vigor of these hybrids.

Since hybrid sterility is partly caused by the negative interaction between divergent alleles in the background of the hybrid, replacing the divergent allele with the same or neutral alleles can eliminate the hybrid sterility on the corresponding locus. In this respect, the neutral alleles S5-n, Sa-n, Sb-n, Sd-n, and Se-n in the intersubspecific hybrid of indica-japonica (Ikehashi and Araki, 1986; Long et al., 2008; Li J. Q. et al., 2012), as well as S38-n, S39-n in the interspecific hybrid of O. sativa and O. glaberrima (Li et al., 2018a), have been identified. The use of these neutral alleles will give a strong promises on overcoming the interspecific and intersubspecific hybrid sterility. In most cases, as small number of sterility loci are involved in the hybrid cross, so it is necessary to pyramid several sterility loci alleles by using molecular marker assistant backcrossing methods. For example, Guo et al. (2016) polymerized four indica alleles of pollen sterility loci (Sh, Sc, Sd, Se) and the neutral allele of S5 locus, imparting the embryo sac sterility to the japonica variety, with eight indica-compatible japonica lines with different japonica backgrounds thus obtained. These indica-compatible japonica lines are highly compatible with the indica and effectively overcome the hybrid sterility in the intersubspecific hybrid. In the same vein, two neutral alleles of hybrid sterility loci were introgressed into indica rice HJX74 to develop HJX74 wide-compatible lines that were compatible with both japonica and indica testers (Guo et al., 2016).

Another promising strategy is to create hybrid-compatible lines with artificial neutral alleles generated by advanced molecular approaches, such as RNA interference technologies and gene-editing technology. For example, the neutral allele S1mut was created by mutagenesis and the heterozygous hybrids harboring S1mut/S1R and S1mut/S1R did not exhibit sterility (Koide et al., 2018). Artificial neutral S1 alleles could also be obtained by disrupting any one of the three genes in the S1-g (S1A4-SITPR-S1A6), through a CRISPR/Cas9 knockout (Xie et al., 2019). The same is true for qHMS7 (Yu et al., 2018). The introduction of both Sa-n and Sc-n via CRISPR/Cas9 plant genome editing can assist in overcoming unwanted hybrid male sterility (Shen et al., 2017; Xie et al., 2017). A combination of these strategies may provide better assurance of hybrid fertility. With the further discovery and creation of neutral loci and the generation of intersubspecies and interspecies bridge parents, rice improvement will step into a new era.
CONCLUDING REMARKS

The Bateson-Dobzhansky-Muller model posits that hybrid sterility arises from a disharmonious interaction between functionally diverged genes from the hybridizing distant parents (Bateson, 1909; Dobzhansky, 1937; Muller, 1942). This model was first proposed in tomato by Rick (1966) and supported by many other reports (Kitamura, 1962; Ikehashi and Araki, 1986; Sano, 1990). According to the model, independent mutations occur in diverging populations but without a reduction in fitness, becoming fixed; consequently, multiple alleles, including a neutral allele, present at the causal orthologous loci, which then interact negatively in the background of the hybrid (Nei et al., 1983). One locus allelic interaction model underpins the negative interaction occurring at a single locus as a consequence of the independent evolution of two alleles, thereby causing a significant reduction in the fitness of the heterozygote when compared with their homozygote parents. Such negative interaction can also occur between two independent loci affecting gamete development, the gametes carrying the recessive alleles at both loci aborted during gamete development, but gametes of other genotypes remained normal. In this review, we rechecked and updated current genetic models for hybrid sterility in rice. The multiple alleles should exist at each orthologous hybrid sterility locus including, but not limited to, the neutral allele. The major genetic basis for interspecific hybrid sterility between O. sativa and AA genome species in genus Oryza should be the interaction between various alleles at a single locus, and various alleles with other loci, and the same is true for intersubspecific hybrid sterility in O. sativa. Even some of the sterility loci identified in individual combinations/species existed like an orphan, but whether they harbor various alleles in other AA genome species or not requires more study.

Currently, our understanding of hybrid sterility remains limited to that within Asian cultivated rice and between Asian cultivated rice and other species of AA genome, along with a few reports on hybrid sterility among different ecotypes within O. sativa that are available. Meanwhile, the availability of information is very limited due to different backgrounds of the genetic materials used by various researchers. To better understand these processes, it is essential to identify, clone, and functionally characterize more hybrid sterility loci in the genus Oryza. Efforts should also extend to investigating both the genetic diversity and geographical distribution of the alleles of various loci at the species level, including extant wild relatives. Since allelic and non-allelic interactions among major sterility loci are the foundation for understanding the relationship between hybrid sterility and speciation, it is necessary to raise near-isogenic lines with various alleles/haplotypes and pyramided different loci, with the same genetic background, based on the cloning and molecular characteristics. Then, taking these data together, it would become possible to provide more evidence illuminating the origin of genes responsible for hybrid sterility and the evolutionary processes for the establishment of new species in Oryza genus and shed light on overcoming hybrid sterility in rice improvement.

AUTHOR CONTRIBUTIONS

DT proposed the insights. JL conceived and wrote the paper. JZ, YZ, YY, and QP reviewed and edited the manuscript.

FUNDING

This research was funded by grants from the National Natural Science Foundation of China (grant numbers 31991221, 31860372, and 31660380) and the Key Foundation Project of Yunnan Academy of Agricultural Sciences (grant numberYJZ201801).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2020.555572/full#supplementary-material

REFERENCES

Bateson, W. (1909). “Heredity and variation in modern light”. In: Darwin and modern Science. Ed. A. C. Seward (Cambridge: Cambridge Univ. Press), 85–7101.

Bautista, N. S., Solis, R., Kamijima, O., and Ishii, T. (2001). RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice. Genes Genet. Syst. 76, 71–79. doi: 10.1266/ggs.76.71

Bikard, D., Patel, D., Le Mette, C., Giorgi, V., Camilleri, C., Bennett, M. J., et al. (2009). Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323, 623e626. doi: 10.1126/science.1165917

Bolaji, A. O., and Nwokeocha, C. C. (2014). Issues concerning reproductive isolation in a rice hybrid swarm involving Oryza sativa Linn., O. longistaminata A. Chev. et Roehr. and Oryza glaberrima Steud. located in Jebba Nigeria. Int. J. Biol. Chem. Sci. 7, 2040–2049. doi: 10.5341/ijbcs.v7i5.21

Brideau, N. J., Flores, H. A., Wang, J., Maheshwari, S., Wang, X., and Barbash, D. A. (2006). Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science 314, 1292–1295. doi: 10.1126/science.1133953

Chang, T. T. (1976). Origin, evolution, cultivation, dissemination, and Asian and African rice. Euphytica 25, 425–441. doi: 10.1007/BF00041576

Chen, J., Ding, J., Ouyang, Y., Du, H., Yang, J., Cheng, K., et al. (2008). A triallelic system of S is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc. Natl. Acad. Sci. U. S. A. 105 (32), 11436–11441. doi: 10.1073/pnas.0804761105

Chen, Z., Hu, F., Xu, P., Li, J., Deng, X., Zhou, J., et al. (2009). QTL analysis for hybrid sterility and plant height in interspecific populations derived from a wild rice relative, Oryza longistaminata. Breed. Sci. 59, 441–445. doi: 10.1270/jbbs.59.441

Cheng, C., Motohashi, R., Tsuchimoto, S., Fukuta, Y., Ohitsuho, H., and Ohitsuho, E. (2003). Polyploidy origin of cultivated rice: based on the interspersion pattern of SINEs. Mol. Biol. Evol. 20, 67–75. doi: 10.1093/molbev/msg004

Chin, J. H., Lee, Y. J., Jiang, W., Koh, H. J., and Thomson, M. J. (2017). Characterization of indica-japonica subspecies-specific InDel loci in wild relatives of rice (Oryza sativa L. subsp. indica kato and subsp. japonica kato). Genet. Resour. Crop Evol. 64 (2), 405–418. doi: 10.1007/s10722-016-0368-1
Chu, Y. E., Morishima, H., and Oka, H. II. (1969). Reproductive barriers distributed in cultivated rice species and their wild relatives. *Jpn. J. Genet.* 44, 200–207. doi: 10.1270/jsbbs.18001

Li, J., Zhou, J., Xu, P., Deng, X., Deng, W., He, M., et al. (2018a). Neutral alleles at hybrid sterility loci of *Oryza glaberrima* from AA genome relatives in genus *Oryza*. *Breed. Sci.* 68 (3), 343–351. doi: 10.1270/jsbbs.18006

Li, J., Zhou, J., Xu, P., Deng, X., Deng, W., Zhang, Y., et al. (2018b). Mapping five novel interspecific hybrid sterile loci between *Oryza sativa* and *Oryza meridionalis*. *Breed. Sci.* 68 (5), 516–523. doi: 10.1270/jsbbs.18001

Londo, J. P., Chiang, Y. C., Hung, K. H., Chiang, T. Y., and Schaal, B. A. (2006). Phylogeography of Asian wild rice, *Oryza rufipogon*, reveals multiple independent domestications of cultivated rice, *Oryza sativa*. *Proc. Natl. Acad. Sci. U. S. A.* 103, 9578–9583. doi: 10.1073/pnas.0503152103

Long, Y., Zhao, L., Niu, B., Su, J., Wu, H., Chen, Y., et al. (2008). Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. *Proc. Natl. Acad. Sci. U. S. A.* 105 (48), 18871–18876. doi: 10.1073/pnas.0810108105

Lu, B. R., Naredo, M. E. B., Juliano, A. B., and Jackson, M. T. (1998). Taxonomic status of *Oryza glaumapatula* Steud. III. Assessment of genomic affinity among AA genome species from the New World, Asia, and Australia. *Genet. Resour. Crop Evol.* 45, 205–214. doi: 10.1007/A100866517357

Lu, B. R., Naredo, M. E. B., Juliano, A. B., and Jackson, M. T. (2000). “Preliminary studies on taxonomy and biosystematics of the AA genome *Oryza* species (poaceae)” in *Grasses, Systematics and Evolution* Eds. Jacobs, S. W. L. and Everett, J. (CSIRO Publication), 51–58

Lynch, M., and Force, A. G. (2000). The origin of interspecific genomic incompatibility via gene duplication. *Annu. Rev. Genet.* 34, 590–605. doi: 10.1146/annurev.genet.34.1.590

Miyazaki, Y., Doi, K., and Yasui, H. (2007). Identiﬁcation of a new allele of F1 pollen sterility, S21, detected from the hybrid between *Oryza sativa* and *Oryza rufipogon*. *Rice Genet. Newslett.* 23, 36–38.

Mizuta, Y., Harushima, Y., and Kurata, N. (2010). Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes. *Jpn. J. Genet.* 85, 207–219. doi: 10.1270/jsbbs.18001

Moyle, L. C., and Payseur, B. A. (2009). Reproductive isolation grows on trees. *Evolution* 63 (11), 2565–2575. doi: 10.1111/j.1558-5646.2009.00722.x

Müller, H. J. (1942). Isolating mechanisms, evolution and temperature. *Biol. Rev.* 17, 61–125.

Naredo, M. E. B., Juliano, A. B., Lu, B. R., and Jackson, M. T. (1998). Taxonomic status of *Oryza glaumapatula* steud. ii. hybridization between new world diploids and aa genome species from asia and australia. *Genet. Resour. Crop Evol.* 45 (3), 205–214. doi: 10.1023/A:1008634400519

Nei, M., Maruyama, T., and Wu, C. II. (1983). Models of evolution of reproductivesoilation. Genetics 103, 557–579. doi: 10.1270/jsbbs.18001

Nguyen, N. T., Yang, C. Y., and Oka, H. II. (1969). Genetic studies on sterility observed in hybrids between *Oryza sativa L.* and *Oryza glaberrima* Steud. *Breed. Sci.* 29, 27–35. doi: 10.1270/jsbbs.59.27

Ikehashi, H., and Araki, H. (1986). *Genetics of F1 sterility in remote cross of rice*, *pp. in rice Genetics*. Ed. G. S. Khush (Manila, Philippines: International Rice Research Institute), 119–130.

Kato, S., Kosa, H., and Hara, S. (1928). On the affinity of rice varieties as shown by fertility of hybrids. *Bull. Agric. Kysiu. Sci.* 3, 132–137.

Kitamura, E. (1962). Genetic studies on sterility observed in hybrids between distantly related varieties of rice, *Oryza sativa L.* *Bull. Chugoku Agric. Exp. Station A8*, 141–205.

Koida, Y., Onishi, K., Nishimoto, D., Baruah, A. R., Kanazawa, A., and Sano, Y. (2008). Sex-independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. *New Phytol.* 179, 888–900. doi: 10.1111/j.1469-8137.2008.02490.x

Koida, Y., Ogino, A., Yoshikawa, T., Kitashima, Y., Saito, N., Kanaoka, Y., et al. (2018). Lineage-specific gene acquisition or loss is involved in interspecific hybrid sterility in rice. *Proc. Natl. Acad. Sci. U. S. A.* 115, E1955–E1962. doi: 10.1073/pnas.1711656115

Kubo, T., Eguchi, M., and Yoshimura, A. (2001). A new gene for F1 pollen sterility located on chromosome 12 in *japonica* indica cross of rice. *Rice Genet. Newslett.* 18, 54.

Kubo, T., Takashi, T., Ashikari, M., Yoshimura, A., and Kurata, N. (2016). Two tightly linked genes at the *Isa1* locus cause both F1 and F2 hybrid sterility in rice. *Mol. Plant Biol.* 219, 221–232. doi: 10.1104/molp.2015.09.014

Lee, H. Y., Chou, J. Y., Cheong, L., Chang, N. H., Yang, S. Y., and Lee, J. Y. (2008). Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. *Cell 135* (6), 1065–1073. doi: 10.1016/j.cell.2008.10.047

Li, J., Q, Shahid, M. Q., Feng, J. H., Liu, X. D., Zhao, X. J., and Lu, Y. G. (2012). Identification of neutral alleles at pollen sterility gene loci of cultivated rice (*Oryza sativa L.*) from wild rice (*O. rufipogon Griff.*). *Plant Syst. Evol.* 298, 33–42. doi: 10.1007/s00606-011-0520-5

Li, J., Xu, P., Zhou, J., Hu, F., Deng, X., Chen, Z., et al. (2012). Molecular Mapping of Sterility QTLs ss3-5, ss5-6a and ss5-7 as Single Mendelian Factors via NIL Tryptic. *Rice Genet. Biol. Symp.* 28, 110–115. doi: 10.1016/j.tries.2009.05.010

Li, J., Xu, P., Deng, X., Deng, W., He, M., et al. (2018a). Neutral alleles at hybrid sterility loci of *Oryza glaberrima* from AA genome relatives in genus *Oryza*. *Breed. Sci.* 68 (3), 343–351. doi: 10.1270/jsbbs.18006

Ouyang, Y., and Zhang, Q. (2013). Understanding reproductive isolation based on the rice model. *Annu. Rev. Plant Biol.* 64, 111–135. doi: 10.1146/annurev-arplant-050312-120205
