Electrochemical Metal Recycling: Recovery of Palladium from Solution and In Situ Fabrication of Palladium-Carbon Catalysts via Impact Electrochemistry

Abiola V. Oladeji, James M. Courtney, Marcos Fernandez-Villamarin, and Neil V. Rees*

Cite This: J. Am. Chem. Soc. 2022, 144, 18562−18574

ABSTRACT: Recycling of critical materials, regeneration of waste, and responsible catalyst manufacture have been repeatedly documented as essential for a sustainable future with respect to the environment and energy production. Electrochemical methods have become increasingly recognized as capable of achieving these goals, and “impact” electrochemistry, with the advantages associated with dynamic nanoelectrodes, has recently emerged as a prime candidate for the recovery of metals from solution. In this report, the nanoimpact technique is used to generate carbon-supported palladium catalysts from low-concentration palladium(II) chloride solutions (i.e., a waste stream mimic) as a proof of concept. Subsequently, the catalytic properties of this material in both synthesis (Suzuki coupling reaction) and electrocatalysis (hydrogen evolution) are demonstrated. Transient reductive impact signals are shown and analyzed at potentials negative of +0.4 V (vs SCE) corresponding to the onset of palladium deposition in traditional voltammetry. Direct evidence of Pd modification was obtained through characterization by environmental scanning electron microscopy/energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimetric analysis of impacted particles. This showed the formation of deposits of Pd0 partially covering the 50 nm carbon black particles with approximately 14% Pd (wt %) under the conditions used. This material was then used to demonstrate the conversion of iodobenzene into its biphenyl product (confirmed through nuclear magnetic resonance) and the successful production of hydrogen as an electrocatalyst under acidic conditions (under cyclic voltammetry).

1. INTRODUCTION

Platinum group metals (PGMs) are significant critical metals because of their wide range of applications, most notably as catalysts.1−3 Palladium is a common catalyst, utilized in many applications and processes such as environmentally important automotive catalytic converters, future energy use in hydrogen storage and production, and large-scale chemical synthesis.4−15 The Suzuki coupling reaction for example is an industrially important reaction frequently used in pharmaceutical drug synthesis, the formulation of agrochemicals, and polymer production.16−28

To improve both performance and economic use, PGM catalysts are often used as supported nanoparticles (NPs), where the support particles disperse the catalytic material to a greater extent, increasing exposure of the catalytic surface area. Carbon materials such as carbon black (CB), graphite, and graphene have been extensively studied as supports9,29−37 as they are inexpensive and possess useful properties such as a high electrical conductivity and large surface areas while being mechanically and chemically stable.38−45

Pd-modified carbon nanostructured catalysts are extensively used in a range of applications: from electrochemical sensors and organic synthesis to the oxidation of formic acid and reduction of oxygen in fuel cells.46−59 However, the use of Pd can lead to environmental pollution via release of contaminated waste solutions and particles.60−64 For example, the World Health Organization has reported concentrations of 260 μg kg-1 in sewage sludge and up to 4.7 mg kg-1 in waste discharged from the jewelry industries.65 Other sources of soluble palladium (often PdCl\textsubscript{2}) such as e-waste (electroplating and printed circuit boards) can result in concentrations of 1500 mg L-1 in waste streams.66 Concentrations in natural waters are significantly lower, with Pd concentrations of 22 ng L-1 and 70 pg L-1 being detected in fresh water and sea water, respectively.67 Palladium metal has historically been considered relatively low in toxicity; however, its compounds such as palladium(II) chloride are highly toxic and carcinogenic to
wet wildlife even in minute amounts. For example, a minimum 24 h lethal concentration of 7 mg has been reported for the freshwater fish \textit{medaka}, and LD$_{50}$ values in rats reach between 0.02 and 1.13 mmol kg$^{-1}$ bodyweight;67,68 hence, it is important to maximize recovery and clean waste already existing for both environmental and economic reasons.4,6,7,9–71

The primary method used to recover spent Pd catalysts is hydrometallurgy which is limited because of the significant volumes of toxic and expensive reagents needed and the further production of hazardous waste such as nitric oxides.4,7,2–74 These methods, often requiring the pretreatment of Pd, have been able to achieve recovery within the range of 58–97\%75–81 but are considered ineffective for the removal of metals from waste solutions at low concentrations resulting in waste storage challenges and reduced profit.76,82–85 Therefore, more environmentally sustainable methods of Pd nanoparticle synthesis and recovery have been investigated.86,87–89 Electrodeposition is considered a practical method for metal recovery because of its operational feasibility, with the deposition controlled through the potential applied and metal ion concentration,88–91 and traditional electrodeposition methods have many industrial applications.89–90 The use of electrochemical systems such as galvanic reduction and recovery from ionic liquids after solvent extraction have been explored within the literature as a method of Pd extraction achieving a recovery of 90–99\%.86,89–90 Higher recoveries were observed in systems increasing mass transport via the use of rotating electrodes or flow of the plating solution.90,91 However, overall recovery or recycling efficiency is not necessarily easily compared because studies often focus on one part of the recycling process (usually recovery, rather than separation, dissolution, etc.).

In this work, we consider the recovery process from solution: particle impact electrochemistry has been investigated as a method for in situ synthesis of Pd-modified carbon black nanoparticles (Pd/CB NPs) from the recovery of palladium from solutions containing low concentrations of PdCl$_4^-$ as a proxy for industrial waste streams. The impact electrochemistry technique involves nanoparticles suspended in solution moving under Brownian motion and occasionally “colliding” with a substrate electrode held at a suitable potential.102–105 While the particle-electrode interaction is usually referred to in terms of a “collision”, there is of course no requirement for physical contact: provided the particle approaches sufficiently close to reach the plane of electron transfer (i.e., electron tunneling distance), then electroreduction or oxidation can occur. Upon collision, the nanoparticles provide a surface at which solution species can be oxidized or reduced,106–113 resulting in transient current signals that can be analyzed to determine factors such as particle size, concentrations, and kinetics.124–129 The shape of the transient signal can also be used to infer the type of collision (or interaction) between the particle and electrode, ranging from apparently fully elastic (rebound) impacts to fully inelastic (“hit and stick”) impacts which appear to depend on a range of factors such as electrode and particle materials, surface groups, solution conditions, and so on. The extent of the electrochemical reaction occurring on the surface of the particle during a collision is therefore dependent on the conditions of the impact, most notably the electrochemical kinetics of the reaction and the duration of the particle-electrode “contact”. Once the particle moves away from the plane of electron transfer, no further (heterogeneous) electron transfer should occur. In some cases, the particles and substrate electrodes are chosen to be different materials: if the desired electrochemical reaction has significantly faster kinetics on the particle compared to the substrate, it is possible to only observe reactions at the particles. Where there is little or no difference in kinetics, the electrochemical reaction occurs at both the substrate and particles, which often makes observing impact signals challenging because of the respective current magnitudes.

Impact electrochemistry has previously been reported as a method of reducing metallic ions onto metallic nanoparticles (or cores) via both bulk and underpotential deposition processes.100–102 However, the deposition onto nonmetallic cores (for metal recovery) via impact electrochemistry has only recently been described, for the deposition of copper ions onto fly-ash cenosphere particles.103 The use of nonmetallic materials potentially increases the economic viability, flexibility, and sustainability of this technique as it reduces reliance on expensive and potentially critical core materials.

In this paper, we report the first metal on carbon deposition by impact electrochemistry for the case of Pd on CB, using the method to fabricate Pd/CB nanoparticles which were then characterized and directly used, as a proof of concept, to catalyze the hydrogen evolution and Suzuki coupling reactions. Under nonoptimized conditions, the fabrication process recovered >85\% of Pd from solution in 26 h, suggesting the viability for this technique in recovery/recycling of metals.

2. EXPERIMENTAL SECTION

All chemicals used were obtained commercially and used without further purification, namely, palladium chloride (99.99\%, Sigma-Aldrich), potassium chloride (99.0–100.5\%, Alfa Aesar), potassium sulfate (99.0\%, Alfa Aesar), sulfuric acid (95.0–98.0\%, Sigma-Aldrich), hydrochloric acid (37.0\%, Honeywell), and 50 nm-diameter CB nanoparticles (Fuel cell store). All solutions were made using Milli-Q water (Millipore).

All chemicals used were obtained commercially and used without further purification, namely, palladium chloride (99.99\%, Sigma-Aldrich), potassium chloride (99.0–100.5\%, Alfa Aesar), potassium sulfate (99.0\%, Alfa Aesar), sulfuric acid (95.0–98.0\%, Sigma-Aldrich), hydrochloric acid (37.0\%, Honeywell), and 50 nm-diameter CB nanoparticles (Fuel cell store). All solutions were made using Milli-Q water (Millipore).

2.1. Electrochemistry. Electrochemical experiments were performed using a three-electrode cell in a Faraday cage. The working electrodes used were a glassy carbon macroelectrode (GC, 3 cm diameter, BASi Inc) and carbon fiber (CF) microelectrodes of diameters 33 μm (ALS Inc) and 9 μm (made in-house using pitch-derived CF from Goodfellow Cambridge Ltd). All working electrodes were thoroughly polished with 3 μm diamond paste and alumina suspensions of 1, 0.3, and 0.05 μm sequentially, on a microcloth pad (all from Buehler Inc., USA). A saturated calomel electrode (SCE, ALS Inc) was used as a reference electrode and a graphite rod (3 mm diameter, Goodfellow Cambridge Ltd.) as the counter electrode. For impact studies, the SCE reference electrode was placed in a separate fritted compartment to prevent cross-contamination. Unless otherwise stated, a solution containing 0.01 M potassium chloride, 0.01 M hydrochloric acid, and 0.5 mM palladium(II) chloride was used. In this solution, the PdCl$_4^{2-}$ ion is more prevalent than PdCl$_6^{4-}$ because of the relatively low chloride concentration (see the Supporting Information for calculation). A bulk solution of CB NPs was prepared by adding CB NPs to ultrapure water and sonicating for 1 h before use. The desired CB NP concentration of 50 pM was prepared using aliquots of the CB NP bulk solution. Solutions were thoroughly degassed using nitrogen gas (oxygen-free, BOC Gases plc), and a nitrogen atmosphere was maintained throughout the experiments. For impact experiments, the solution was bubbled with nitrogen regularly to agitate the particle suspension and inhibit aggregation. For particle-modified GC voltammetry, the GC electrode was prepared via a drop-cast method where 5 μL of the relevant NP suspension was added to a polished GC electrode surface and allowed to dry under nitrogen.
Standard electrochemical measurements were conducted using an Autolab 128 N (Metrohm-Autolab BV, Netherlands) potentiostat controlled via a PC running NOVA 2.1 software conducting both linear sweep voltammetry and chronoamperometry scans. Particle impact chronoamperometric scans were performed using a bespoke low noise potentiostat, with a sampling rate of 100 kHz. All data were processed using a combination of Microsoft Excel and Origin Pro 2021. Unless stated otherwise, impact electrochemical data were analyzed following electronic filtration (digital) at 250 Hz in order to improve the signal-to-noise ratio and facilitate analysis. The design of the potentiostat is such that charge is conserved by the filter, as shown elsewhere.

For the bulk synthesis of Pd-modified carbon nanoparticles (Pd/CB) using impact electrochemistry, a polished graphite plate working electrode (Alfa Aesar) and a SCE reference electrode were used. Long-term chronoaomoerography (potential held at −0.1 V) was conducted in 500 mL of palladium solution with 20 nM 50 nm CB NPs to produce Pd/CB NP samples that had been modified for 168 h for imaging and rinsed with ultrapure water before drying. An analogous experiment was conducted for 24 h to fabricate Pd/CB nanoparticles which were additionally measured using the nanobalance (Sartorius) before and after thermal treatment.

2.3. Catalysis of the Suzuki Coupling Reaction. For the Suzuki coupling reaction, a solution of 184 mg of phenylboronic acid (≥97.0%, Sigma-Aldrich), 426 mg of potassium phosphate tribasic (≥98.0%, Sigma-Aldrich), and 20 mL of ultrapure water was added to a three-necked round bottom flask and stirred (450 rpm) for 20 min. To this mixture 115 µL of iodobenzene (98.0%, Sigma-Aldrich) and ca. 30 mg of Pd-modified carbon nanoparticles were added while stirring. The mixture was stirred and refluxed in a silicone oil bath at 80 °C for 6 h. After cooling, the organic phase was extracted three times using 20 mL of ethyl acetate (Sigma-Aldrich) and then dried using anhydrous sodium sulfate (Sigma-Aldrich). The sodium sulfate was then filtered out and the organic phase was concentrated under reduced pressure. The residue was dissolved in CDCl3 for 1H NMR analysis using a Bruker 400 MHz NMR spectrometer where four scans were conducted with an acquisition time of 4.7 s and relaxation delay of 2 s. Data were analyzed using Mestrenova software (version 14.0.0).

3. RESULTS AND DISCUSSION

3.1. Impact Deposition of Pd onto CB Nanoparticles. First, preliminary experiments were performed to confirm the deposition of Pd onto carbon surfaces and to determine at which potentials the deposition onto CB NPs during impacts might occur. To do this, the deposition of Pd from a solution containing 0.5 mM PdCl2, 0.01 M KCl, and 0.01 M HCl was investigated using macroelectrode CV at a voltage scan rate of 100 mV s−1 to determine the onset potential on the bare GC electrode, where onset is defined here as the potential at which the measured current density was −0.5 mA m−2.

Figure 1 shows the reductive segments of CV scans showing the deposition of palladium on the surface of 3 mm bare GC.
and 50 nm carbon black-modified GC electrodes. The CB-modified GC electrode was prepared via a drop-cast method where 5 \(\mu \)L of the CB NP suspension was added to a polished GC electrode surface and allowed to dry, resulting in a surface (particle) concentration of 66 pmol m\(^{-2}\). The deposition of palladium is known to be a two-electron transfer, \(\text{Pd}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Pd}^{0} (s) \), where the nucleation mechanism and morphology of the deposited Pd are influenced by deposition conditions such as applied potential and Pd concentration.\(^{88}\) The literature records the bulk deposition process to occur at potentials lower than ca. +0.3 to +0.4 V (vs SCE) depending on the carbonaceous material.\(^{88,140}\) This is in good agreement with the recorded data (Figure 1) showing the onset at +0.29 V (vs SCE) for the bare GC and +0.38 V (vs SCE) on the CB NP-modified GC. The proximity of these onset potentials suggests that it is unlikely that Pd will deposit onto CB NPs during impacts without some degree of background deposition onto the substrate GC electrode. It has previously been shown that at more positive potentials (lower overpotential) the electronucleation of Pd occurs via a 3D instantaneous mechanism while more negative potentials (higher overpotential) result in a 3D progressive nucleation mechanism.\(^{88,141,142}\)

Having determined the onset potentials for Pd deposition on GC and CB NPs under these conditions, chronoamperometric scans were conducted in the presence and absence of nanoparticles to investigate whether transient impact events occurred. The chronoamperometric scans were conducted using a three-electrode cell in a 0.5 mM palladium solution (as described previously) where either a 9 \(\mu \)m or a 33 \(\mu \)m diameter CF electrode acted as the substrate surface.
Figure 2 displays two chronoamperometric scans conducted using a 9 μm CF microelectrode at −0.1 V vs SCE before (a) and after (b) the addition of CB nanoparticles where scan (a) is void of reductive peaks. Upon the addition of nanoparticles, peaks were observed indicating the deposition of palladium onto the CB NPs upon impact. At this potential, Pd deposition may occur at CB NPs as well as the substrate GC electrode (see Figure 1), and so the measured currents reflect the capacitance of the GC substrate as well as any faradaic currents because of Pd deposition. The difference in currents of (a) and (b) is ascribed to fluctuations because of natural convection given the length of each chronoamperometric scan. Impact studies were conducted on both 9 and 33 μm CF electrodes: the former was used predominantly for potentials close to the onset of deposition, where transient signals were small, and optimal signal-to-noise ratios were required. Although the smaller electrode provided lower noise levels due to lower capacitance (see Supporting Information Section A), its smaller area also led to less frequent transient signals, and hence for convenience, the larger CF substrate electrodes were used at potentials further from onset to provide a greater quantity of data more rapidly.

Further impact studies were conducted by performing multiple chronoamperometric scans using 50 pM CB NPs at potentials between +0.6 and −0.2 V vs SCE. The impact frequency was determined at each potential by dividing the total number of observed impact signals by the total time of all scans, as seen in Figure 3i and was in the range of 0.34–0.57 GHz m⁻² (within the literature a frequency range of 0.7–3.7 GHz m⁻² is documented for metal deposition impacts using ca. 20 pM metallic cores.130,133). From Figure 3, reductive peaks can be observed at potentials negative of +0.4 V vs SCE, consistent with the onset observed in Figure 1. At all potentials, the impact signals had a similar duration, indicating that deposition of Pd occurred during approximately elastic collisions with the electrode (if deposition occurred at NPs that had preadsorbed to the GC surface, then step-like signals would be observed, see Figure 4 for a schematic). The role of preadsorbed Pd²⁺ is less straightforward to quantify and may well prove to be key to electrodeposition during impacts, especially where reduction kinetics may be less than reversible.

Integration of the CB NP reductive transients produced the charge associated with Pd deposition on individual nanoparticles (see Supporting Information Section B Table T1).133

Table 1. SEM Image of Agglomerated CBNPs Obtained from a 24 h Chronoamperometric Scan Conducted at −0.1 V (vs SCE) in a Solution of 0.5 mM PdCl₂, 0.01 M KCl, and 0.01 M HCl

CBNP samples	SEM/ EDX average weight% ratio Pd/CB	ICP-MS Pd conc. (ppm)
unmodified	0	0.01b
0.6V vs SCE	0.03 ± 0.005	2.75
-0.1V vs SCE	0.09 ± 0.009	17.67

The table displays palladium content determined by SEM/ EDX and ICP-MS analysis of the unmodified CBNPs, the sample held at +0.6 V vs SCE during chronoamperometry, and the sample held at −0.1 V vs SCE. bMeasurement equivalent to zero within error.
Figure 3ii shows the average charge of impacting CB NPs at different potentials ranging from +0.6 to −0.2 V vs SCE where at potentials more reductive than +0.4 V, charge ranging from −12.2 to −49.0 fC is observed, seemingly increasing with increased overpotential. The theoretical Pd coverage can be calculated based on the charge transferred during impacts (see Supporting Information Section B for details). For example, at +0.38 V (vs SCE) an average charge of −14.8 ± 2.1 fC corresponds to a coverage of 110 ± 15%, increasing to 365 ± 116% at a more reductive potential of −0.1 V (vs SCE) where the charge was −49.0 ± 15.6 fC.

3.2. Characterization of Pd-Modified CB NPs. To confirm palladium deposition on the CB nanoparticles, a 24 h impact experiment was conducted using a graphite plate electrode (area 6.25 cm²) held at a potential of −0.1 V (vs SCE) in 500 mL of a solution containing 0.5 mM PdCl₂, 0.01 M KCl, and 0.01 M HCl. The upscaling of the experiment was required to produce sufficient mass of impacted CB NPs to analyze. A concentration of 20 nM CB NPs was added to the solution and agitated continually with a nitrogen gas stream for the 24 h period. An analogous experiment was conducted at +0.6 V vs SCE, where no transient impact peaks due to Pd reduction were expected. The two samples held at −0.1 V and +0.6 V were rinsed thoroughly with deionized water during filtration using 0.02 μm anodisc inorganic membrane filters before drying.

The samples in addition to unmodified CB NPs were characterized using ESEM/EDX and ICP-MS with results shown in Table 1. The ESEM/EDX analysis indicated that no palladium was detected in the unmodified sample, as expected as it had not been in contact with the PdCl₂ solution. The sample held at −0.1 V exhibited the highest average weight % ratio Pd/C of 0.09 ± 0.009 followed by the sample held at +0.6 V with an average weight % ratio Pd/C of 0.03 ± 0.005. Analysis by ICP-MS showed a similar trend with the measured Pd concentration of 0.01, 2.75, and 17.67 ppm for the samples of unmodified CBNPs, held at 0.6 V vs SCE during chronoamperometry and at −0.1 V vs SCE, respectively. The Pd detected in the sample held at +0.6 V reflects the residual trace adsorbed palladium(II) left after the washing procedure. This level of Pd(II) appears to remain regardless of the extent of washing, suggesting adsorption to the CB surface, possibly via oxygen moieties. To further analyze the samples and determine the oxidation state of the Pd detected, XPS analysis was conducted on +0.6 and −0.1 V modified samples, shown in Figure 5. The data suggest that trace palladium was detected on the unmodified sample similar to results determined by the ESEM/EDX and ICP-MS analysis.

The Pd 3d XPS characterization of the sample held at −0.1 V vs SCE indicated the presence of both Pd²⁺ and Pd⁴⁺, with the latter associated with both PdCl₂ and PdO. The peak with a lower binding energy (Pd 3d₅/₂) of 335.49 eV is assigned to the metallic palladium (Pd⁰) content while the peaks with a binding energy of 336.14 and 338.10 eV indicate the presence of PdO and PdCl₂, respectively.145–150 The presence of Pd⁰ suggests that during impact events the potential was sufficiently negative to facilitate the reduction of Pd⁴⁺ to Pd⁰, which may have later (partially) oxidized to form PdO. Analysis of the sample held at +0.6 V vs SCE demonstrated the presence of Pd²⁺ as PdCl₂ (with binding energies 337.94 and 343.96 eV) but no Pd⁰. This supports the earlier conclusion from the ESEM/EDX and ICP-MS data that some residual PdCl₂ persisted after washing and no palladium deposition had occurred during collision at +0.6 V vs SCE.

3.3. Synthesis and Testing of Pd/CB NP Catalysts. To sufficiently scale-up the quantity of Pd/CB NPs fabricated for testing in the hydrogen evolution and Suzuki coupling reactions, a batch of Pd/CB NPs was produced from a longer-term, 24 h, and 168 h deposition experiment (see the Experimental Section). Subsequent analysis by TGA (see Supporting Information Section C Figure S2) suggested that the Pd/CB NPs contained 14% by mass of Pd. The TEM images (Figure 6i–vi) further highlighted the presence of palladium metal on some particles evident in the contrasting darker regions seen on the carbon core, confirmed with EDX mapping (see Supporting Information Section D Figure S3). Deposition did not occur consistently across all Pd/CB NPs as some CB NPs were void of Pd suggesting that not all CBNPs collided with the GC electrode during the investigation or alternatively some collisions resulted in little to no Pd deposition. Figure 6 (TEM images of the impacted particles) suggests that the Pd deposits formed were not singular nanoparticles evenly distributed across the surface of the CB particles, but rather deposits covering sections of the impacting particle. Using the tilt function of the TEM, it was observed that these growths followed the curvature of the carbon particle rather than directly protruding out from the particle surface (Figure 6vi), and future work will explore further details of the Pd deposition to shed light on the mechanism of metal deposition during impact.
As a simple test of the catalytic capabilities of the Pd/CB NPs as catalysts without further treatment, samples were used for both hydrogen evolution and Suzuki coupling reactions. For the HER, 24 h modified Pd/CB NPs were compared with commercial 10 wt % Pd on CB catalyst. The test was conducted in a solution of 0.01 M H\(_2\)SO\(_4\) and 0.09 M K\(_2\)SO\(_4\) and showed the characteristic proton reduction profile for both the commercial standard and the impact synthesized sample (see Supporting Information Section E).

For the Suzuki reaction, 30 mg of 168 h modified Pd/CB NPs was used to catalyze the reaction between benzeneboronic acid (phenylboronic acid), iodobenzene, and potassium phosphate to produce biphenyl.\(^{16,17,37}\) This was achieved under 80 °C reflux where the resulting product was identified using \(^1\)H NMR. It should be noted that the quantity of Pd/CB NPs used is not optimized: at 14 wt % Pd this quantity of NPs provides ca. 4.2 mg of Pd, chosen to produce sufficient product for convenient handling and analysis.\(^{37}\) It was determined that the Pd/CB NPs had successfully catalyzed the reaction producing a mixture of biphenyl and residual benzeneboronic acid, evidenced by \(^1\)H NMR spectra of the product mixture (Figure 7i, spectrum (c)) which indicated that the iodobenzene had reacted and was no longer present in the final product as the signals at 7.10 ppm (spectrum (a)) are no longer observed. The multiplets at 7.60, 7.45, and 7.35 ppm in both the reference spectrum (b) and the product spectrum (c) suggest the presence of biphenyl. The additional signals can be attributed to the excess benzeneboronic acid initially used in the reaction.

Figure 7. (i) \(^1\)H NMR spectrum of (a) iodobenzene, (b) biphenyl product taken from doi:10.13018/BMSE000506,\(^{151,152}\) (c) product extracted during the Suzuki reaction using Pd/CB NPs, and (d) displaying the \(^1\)H NMR analysis of the benzeneboronic acid reactant used in the investigation. The \(^1\)H NMR was performed using CDCl\(_3\) identified by the singlet at 7.26 ppm and (ii) schematic of the Suzuki reaction mechanism.

3.4. Palladium Recovery from Low Concentration of PdCl\(_2\)

Finally, the use of the impact method as a means to recover Pd from solution was studied. To examine the change in PdCl\(_2\) concentration during the impact deposition process, and hence Pd recovery from solution, 26 h chronoamperometric scans were conducted with and without CBNPs where a flow rate of nitrogen at \(5 \text{ L min}^{-1}\) (selected due to the range of flow rate gauges available) was maintained to ensure the same level of agitation. A 500 mL solution containing 0.01 M potassium chloride, 0.01 M hydrochloric acid, and 0.4 mM palladium(II) chloride (determined by ICP-OES) was used. The lower initial concentration determined by ICP-OES may be due to the presence of high levels of potassium ions in the samples causing a suppression of the Pd signal.\(^{153,154}\) At regular intervals throughout the experiments, 3 mL aliquots were extracted and filtered with 0.45 μm syringe filters to prepare samples for ICP-OES analysis.

Figure 8. (i) Shows the percentage of Pd\(^{2+}\) recovered during a 26 h chronoamperometric scan with and without the addition of CB NPs. Figure 8ii shows the depletion in Pd\(^{2+}\) concentration in logarithmic form: the NP-mediated experiment showing an enhancement in the recovery rate of a factor of approximately 1.7, for these nonoptimized conditions. Despite each individual nanoimpact resulting in the deposition of ca. \(10^5\) Pd atoms, the high number of impacts has a significant effect on the overall rate of removal of Pd from solution. Future work will seek to quantify the relationship between the experimental parameters and recovery rate.

The background deposition occurring on the graphite substrate electrode during chronoamperometric scans with and without CB NPs was studied via ESEM/EDX (see Supporting Information Section F). A comparison of Figure S6 displaying a polished graphite electrode with Figures S7 and S8 showing an electrode held in solution under potential for as

Figure 6. Typical TEM images (i–vi) of the 168 h palladium-modified carbon nanoparticles where the darker regions represent deposited Pd metal.
long as 168 h confirms that Pd deposition occurs on the electrode resulting in a heavily modified surface. Figure S9 shows a side profile of both graphite electrodes (modified with and without CBNPs) indicating that the extent of Pd deposition on the background electrode is more prominent without the presence of particles. An average Pd thickness of 2.2 μm with larger growths (some exceeding 10 μm) was seen on the electrode without CBNPs in comparison to an average thickness of 0.5 μm seen on the electrode used with CB NPs present.

4. CONCLUSIONS

Initial deposition studies conducted on glassy carbon showed that bulk deposition of Pd occurred at potentials negative of ca. +0.4 V (vs SCE), in good agreement with the literature. Subsequent impact electrochemistry studies with CB NPs showed that transient impact events resulting in Pd deposition also commenced at ca. +0.40 V (vs SCE). Analysis of the resulting transient peaks determined an average charge of −14.8 ± 2.1 fC was observed at the “switch on/off potential” of +0.38 V (vs SCE) increasing to −49.0 ± 15.6 fC at a potential of −0.1 V (vs SCE).

Direct evidence of impact-mediated Pd deposition on the CB NPs was obtained via ESEM, EDX, TEM, ICP-MS, and XPS analysis of the Pd/CB NP sample. The impact experiment was successfully scaled up to produce enough Pd/CB NPs to test as a catalyst through large-volume long-term chronoamperometry, and synthesized Pd/CB NPs were characterized using TEM and TGA confirming a metal loading of 14 wt % Pd. The particles were then used to demonstrate direct catalytic application via the hydrogen evolution and Suzuki coupling reactions.

Finally, Pd recovery via nanoimpacts was investigated. Although not optimized to recover the maximum amount of Pd from solution, it was found that comparing Pd recovery with and without CB NPs over a 26-h period, the NP-mediated method increased recovery from ca. 65% to ca. 85%. This demonstrates the potential for single-entity electrochemistry to be a useful recovery method for metals, and future work will investigate its optimization and develop semiempirical equations for practical use as well as exploring applications for the deposited metal such as using 3D structured substrate electrodes that could be used for energy storage (e.g., recovered Ni, Mn, and Co for battery materials).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c08239.

Transient current signal analysis using 9 and 33 μm CF; reductive peak charge and coverage analysis; TGA of the 168 h modified Pd/CB NP sample; TEM/EDX of impacted CB NPs; LSV of HER using modified CB NPs; cleaning CV conducted before HER investigation; and ESEM/EDX of the electrode used in Pd recovery investigation (PDF)

AUTHOR INFORMATION

Corresponding Author

Neil V. Rees — School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U. K.; orcid.org/0000-0002-5721-1453; Email: n.rees@bham.ac.uk

Authors

Abiola V. Oladeji — School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U. K.
James M. Courtney — School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U. K.
Marcos Fernandez-Villamarin — School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U. K.

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.2c08239

Figure 8. (i) Percentage of Pd recovered from PdCl₂ during a 26 h chronoamperometric scan conducted with (black square ■) and without (red circle ●) CB NP particles. (ii) ln [Pd²⁺] vs time based on the data in (i) where the best fit lines from linear regression are given by ln[Pd²⁺/ppm] = 3.74−0.067 t for (black square ■) and ln[Pd²⁺/ppm] = 3.85−0.04 t for (red circle ●).
Author Contributions
All authors contributed equally to the planning, execution, and writing of this work.

Funding
This work was supported by the Leverhulme Trust (RPG-2019-146) and the EPSRC (EP/G037116/1).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors thank Mr. Y. Yan for support with the TGA, Dr. C. Stark for assistance with ICP-MS/ICP-OES, Dr. L. Jiang, and Dr. M. Fay (University of Nottingham) for discussions on XPS and TEM.

ABBREVIATIONS

Acronym	Definition
PGM	platinum group metals
CB NPs	carbon black nanoparticles
SCE	saturated calomel electrode
CV	cyclic voltammetry
LSV	linear sweep voltammetry
GC	glassy carbon
CF	carbon fiber
ESEM	environmental scanning electron microscopy
EDX	energy-dispersive X-ray spectroscopy
TEM	transmission electron microscopy
XPS	X-ray photoelectron spectroscopy
ICP-MS	inductively coupled plasma mass spectrometry
ICP-OES	inductively coupled plasma optical emission spectrometry

REFERENCES
(1) Nose, K.; Okabe, T. H. Platinum Group Metals Production. In *Treatise on Process Metallurgy*; Elsevier, 2014; pp. 1071–1097.
(2) Hughes, A. E.; Haque, N.; Norrey, S. A.; Giddey, S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. *Resources* 2021, 10, 93.
(3) Crundwell, F. K.; Moats, M. S.; Ramachandran, V.; Robinson, T. G.; Davenport, W. G. Platinum-Group Metals, Production, Use and Extraction Costs. In *Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals*; Elsevier: 2011; pp. 395–409.
(4) Jamali, M. R.; Assadi, Y.; Kozani, R. R. Determination of Trace Amounts of Palladium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Dispersive Liquid-Liquid Microextraction. *J. Chem.* 2012, 2013, No. 671743.
(5) Antolini, E. Palladium in Fuel Cell Catalysis. *Energy Environ. Sci.* 2009, 2, 915–931.
(6) Kumar, S. S.; Ramakrishna, S. U. B.; Devi, B. R.; Himabindu, V. Phosphorus-doped carbon nanoparticles supported palladium electrocatalyst for the hydrogen evolution reaction (HER) in PEM water electrolysis. *Ionics* 2018, 24, 3113–3121.
(7) Huang, Y.; Li, X.; Liu, X.; Sun, X.; Sheng, G.; Zhang, Y.; Yan, G.; Wang, S.; Xu, A.; Yu, H. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. *Int. J. Hydrogen Energy* 2011, 36, 2773–2776.
(8) Alexeyeva, N.; Sarapuu, A.; Tammeveski, K.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Felu, J. Ethanol electroreduction on Vulcan Carbon Supported Pd Nanoparticles and Pd–M Nanoalloys in Acidic and Alkaline Solutions. *Electrochem. Acta* 2011, 56, 6702–6708.
(9) See, M. H.; Choi, S. M.; Lee, D. U.; Kim, W. B.; Chen, Z. Correlation Between Theoretical Descriptor and Catalytic Oxygen Reduction Activity of Graphene Supported Palladium and Palladium Alloy Electrocatalysts. *J. Power Sources* 2015, 300, 1–9.
(10) Safavi, A.; Kazemi, S. H.; Kazemi, H. Electrocatalytic Behaviors of Silver–Palladium Nanoalloys Modified Carbon Ionic Liquid Electrode Towards Hydrogen Evolution Reaction. *Fuel* 2014, 118, 156–162.
(11) Shao, M. Palladium-based Electrocatalysts for Hydrogen Oxidation and Oxygen Reduction Reactions. *J. Power Sources* 2011, 196, 2433–2444.
(12) Limptattayane, S.; Hunsom, M. Electrocatalytic Activity of Pt–Pd Electro catalysts for The Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells: Effect of Supports. *Renewable Energy* 2014, 63, 205–211.
(13) Sarkar, S.; Peter, S. C. An Overview on Pd-Based Electro-catalysts for The Hydrogen Evolution Reaction. *Inorg. Chem. Front.* 2016, 5, 2060–2080.
(14) Katara, P. Review Paper on Catalytic Converter for Automobile Exhaust Emission. *Int. J. Sci. Res.* 2016, 5, 30–33.
(15) Roy, K.; Jain, R.; Ghosalaya, M. K.; Reddy, K. P.; Gopinath, C. Three-Way Catalytic Converter Reactions Aspects at Near-Ambient Temperatures on Modified Pd-Surfaces. *C. R. Chim.* 2016, 19, 1363–1369.
(16) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. Highly Active Palladium Catalysts for Suzuki Coupling Reactions. *J. Am. Chem. Soc.* 1999, 121, 9550–9561.
(17) Li, Z.; Buchbaum, C.; Heener, W. L., IV; Fisk, J.; Jaganathan, A.; Holden, B.; Pollet, P.; Liotta, C. L. Palladium-Catalyzed Suzuki Reactions in Water with No Added Ligand: Effects of Reaction Scale, Temperature, pH of Aqueous Phase, and Substrate Structure. *Org. Proc. Res. Dev.* 2016, 20, 1489–1499.
(18) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. *Chem. Rev.* 1995, 95, 2457–2483.
(19) Suzuki, A. Recent Advances in The Cross-Coupling Reactions of Organoboron Derivatives with Organic Electrophiles, 1995–1998. *J. Organomet. Chem.* 1999, 576, 147–168.
(20) Kotha, S.; Lahiri, K.; Kashinath, D. Recent Applications of the Suzuki–Miyaura Cross-Coupling Reaction in Organic synthesis. *Tetrahedron* 2002, 58, 9633–9695.
(21) Bellina, F.; Carpita, A.; Rossi, R. Palladium Catalysts for the Suzuki-Cross-Coupling Reaction: An Overview of Recent Advances. *Synthesis* 2004, 2004, 2419–2440.
(22) Magano, J. J.; Dunnett, J. R. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. *Chem. Rev.* 2011, 111, 2177–2250.
(23) Nasrollahzadsho, M.; Sajadi, S. M.; Maham, M. Green Synthesis of Palladium Nanoparticles Using Hippophae Rhamnoides Linn Leaf Extract and Their Catalytic Activity for The Suzuki–Miyaura Coupling in Water. *J. Mol. Catal. A: Chem.* 2015, 396, 297–303.
(24) Siddiqi, K. S.; Husen, A. Green Synthesis, Characterization and Use of Palladium/Platinum Nanoparticles. *Nanoscale Res. Lett.* 2016, 11, 482.
(25) Mandal, P. K.; Chand, D. K. Palladium Nanoparticles Catalyzed Suzuki Cross-Coupling Reactions in Ambient Conditions. *Catal. Commun.* 2013, 31, 16–20.
(26) Heugebaert, T. S. A.; De Corte, S.; Sabbe, T.; Hennebel, T.; Verstreeta, W.; Boon, N.; Stevens, C. V. Biodeposited Pd/Au bimetallic nanoparticles as novel Suzuki catalysts. *Tetrahedron Lett.* 2012, 53, 1410–1412.
(27) Peng, Y.-Y.; Liu, J.; Leia, X.; Yina, Z. Room-temperature highly efficient Suzuki–Miyaura reactions in water in the presence of Stilbazo. *Green Chem.* 2010, 12, 1072–1075.
(28) Blakemore, D. C. Suzuki–Miyaura Coupling. In *Synthetic Methods in Drug Discovery: Volume 1*; Royal Society of Chemistry, 2015; pp. 1–69.
(29) Oosthuizen, R. S.; Nyamori, V. O. Carbon Nanotubes as Supports for Palladium and Bimetallic Catalysts for Use in Hydrogenation Reactions. *Platinum Met. Rev.* 2011, 55, 154–169.
(30) Fuentes, A. S.; Filippini, A. F.; Aguirre, M. D. C. Pd Nucleation and Growth Mechanism Deposited on Different Substrates. *Procedia Mater. Sci.* 2015, 8, 541–550.
Singh, S. B.; Tandon, P. K. Catalysis: A Brief Review on Nano-Catalyst. J. Energy Chem. Eng. 2014, 2, 106–115.

Mahesh, K. N.; Balaji, R.; Dhathathreyan, K. S. Palladium Nanoparticles as Hydrogen Evolution Reaction (HER) Electrocatalyst in Electrochemical Methanol Reformer. Int. J. Hydrogen Energy 2016, 41, 46–51.

Long, N. V.; Hien, T. D.; Asaka, T.; Ohtaki, M.; Nogami, M. Synthesis and Characterization of Pt-Pd Alloy and Core-SHELL Bimetallic Nanoparticles for Direct Methanol Fuel Cells (DMFCS): Enhanced Electrocatalytic Properties of Well-Structured Core-Shell Morphologies And Nanostructures. Int. J. Hydrogen Energy 2011, 36, 8478–8491.

Schlogl, R.; Abd Hamid, S. B. Nanocatalysis: Mature Science Revisited or Something Really New? Angew. Chem., Int. Ed. 2004, 43, 1628–1637.

Prinsen, P.; Luque, R. Chapter I. Introduction to Nanocatalysts. In Nanoparticle Design and Characterization for Catalytic Applications in Sustainable Chemistry; Royal Society of Chemistry, 2019; pp. 1–36.

Li, Z.; Li, M.; Bia, Z.; Khatrasher, Y.; Kawi, S. Design of Highly Stable and Selective Core/Yolk−Shell Nanocatalysts—A Review. Appl. Catal. B 2016, 188, 324–341.

Khan, M.; Albalawi, G. H.; Shaik, M. R.; Khan, M.; Adil, S. F.; Kuniyl, M.; Alkhathlan, H. Z.; Al-Warthan, A.; Siddiqui, M. R. H. Miswak Mediated Green Synthesized Palladium Nanoparticles as Effective Catalysts for The Suzuki Coupling Reactions in Aqueous Media. J. Saudi Chem. Soc. 2017, 21, 450–457.

Wang, X. X.; Tan, Z. H.; Zeng, M.; Wang, J. N. Carbon Nanocages: A New Support Material for Pt Catalyst with Remarkably High Durability. Sci. Rep. 2014, 4, 4437.

Su, D. S.; Centi, G. A. Perspective on Carbon Materials for Future Energy Application. J. Energy Chem. 2013, 22, 151–173.

Pushkarev, A. S.; Pushkareva, I. V.; Grigoriev, S. A.; Kalinichenko, V. N.; Presniakov, M. Y.; Fateev, V. N. Electrocatalytic Layers Modified by Reduced Graphene Oxide for PEM Fuel Cells. Int. J. Hydrogen Energy 2015, 40, 14492–14497.

Ramakrishna, S. U. B.; Reddy, D. S.; Kumar, S. S.; Himabindu, V. Nitrogen Doped CNFs Supported Palladium Electrocatalyst for Hydrogen Evolution Reaction in PEM Water Electrolyser. Int. J. Hydrogen Energy 2016, 41, 20447–20454.

Serpe, P.; Corrias, M.; Kalck, P. Carbon Nanotubes and Nanofibers in Catalysis. Appl. Catal., A 2003, 253, 337–358.

Mondal, K. C.; Cele, L. M.; Witcomb, M. J.; Coville, N. J. Carbon Microsphere Supported Pd Catalysts for Hydrogenation of Ethylene. Catal. Commun. 2008, 9, 494–498.

Pham-Huu, C.; Keller, N.; Charbonniere, L. J.; Ziesessel, R.; Ledoux, M. J. Carbon Nanofiber Supported Palladium Catalyst for Liquid-Phase Reactions. An Active and Selective Catalyst for Hydrogenation Of C=C Bonds. Chem. Commun. 2000, 1871–1872.

Rao, C. R. K.; Trivedi, D. C. Chemical and Electrochemical Depositions of Platinum Group Metals and Their Applications. Coord. Chem. Rev. 2005, 249, 613–631.

Thiagarajan, S.; Yang, R.; Chen, S. Palladium Nanoparticles Modified Electrodes for The Selective Detection of Catecholamine Neurotransmitters in Presence of Ascorbic Acid. Bioelectrochemistry 2009, 75, 163–169.

Liu, S.; Li, H.; Shi, M.; Jiang, H.; Hu, X.; Li, W.; Fu, L.; Chen, H. Pd/C as a Clean and Effective Heterogeneous Catalyst for C=C Couplings toward Highly Pure Semiconducting Polymers. Macromolecules 2012, 45, 9004–9009.

Miyake, H.; Okada, T.; Samjeskéb, G.; Osawa, M. Formic Acid Electrooxidation on Pd in Acidic Solutions Studied by Surface-Enhanced Infrared Absorption Spectroscopy. Phys. Chem. Chem. Phys. 2008, 10, 3662–3669.

Solis, V.; Iwasita, T.; Pavese, A.; Vielstich, W. Investigation of Formic Acid Oxidation on Palladium in Acidic Solutions by On-Line Mass Spectroscopy. J. Electroanal. Chem. Interfaceal Electrochem. 1988, 255, 155.
(112) Tschulik, K.; Haddou, B.; Omanovic, D.; Rees, N.; Compton, R. Coulometric Sizing of Nanoparticles: Cathodic and Anodic Impact Experiments Open Two Independent Routes to Electrochemical Sizing of Fe$_3$O$_4$ Nanoparticles. *Nano Res.* 2013, 6, 836–841.

(113) Nasir, M.; Pumera, M. Impact Electrochemistry on Screen-Printed Electrodes for The Detection of Monodispersed Silver Nanoparticles of Sizes 10–107 Nm. *Phys. Chem. Chem. Phys.* 2016, 18, 28183–28188.

(114) Teo, W. Z.; Pumera, M. Fate of silver nanoparticles in natural waters; integrative use of conventional and electrochemical analytical techniques. *RSC Adv.* 2014, 4, 5006–5011.

(115) Stuart, E. J. E.; Zhou, Y. G.; Rees, N. V.; Compton, R. Determining Unknown Concentrations of Nanoparticles: The Particle-Impact Electrochemistry of Nickel and Silver. *RSC Adv.* 2012, 2, 6879–6884.

(116) Lim, C. S.; Pumera, M. Impact Electrochemistry: Colloidal Metal Sulfide Detection by Cathodic Particle Coulometry. *Phys. Chem. Chem. Phys.* 2015, 17, 26977–27000.

(117) Kwon, S. J.; Bard, A. J. Analysis of Diffusion-Controlled Stochastic Events of Iridium Oxide Single Nanoparticle Collisions by Scanning Electrochemical Microscopy. *J. Am. Chem. Soc.* 2012, 134, 7102–7108.

(118) Xiao, X.; Fan, F. R.; Zhou, J.; Bard, A. J. Current Transients in Single Nanoparticle Collision Events. *J. Am. Chem. Soc.* 2008, 130, 16669–16677.

(119) Stuart, E. J. E.; Rees, N. V.; Compton, R. G. Particle-Impact Voltammetry: The Reduction of Hydrogen Peroxide at Silver Nanoparticles Impacting a Carbon Electrode. *Chem. Phys. Lett.* 2012, 531, 94–97.

(120) Zhou, Y. G.; Rees, N. V.; Compton, R. G. The Electrochemical Detection of Tagged Nanoparticles Via Particle-Electrode Collisions: Nanoelectroanalysis Beyond Immobilisation. *Chem. Commun.* 2012, 48, 2510–2512.

(121) Kwon, S. J.; Fan, F. R. F.; Bard, A. J. Observing Iridium Oxide (Irox) Single Nanoparticle Collisions at Ultrasensitive electrodes. *J. Am. Chem. Soc.* 2010, 132, 13165–13167.

(122) Kwon, S. J.; Zhou, H.; Fan, F.-R. F.; Vorobyev, V.; Zhang, B.; Bard, A. J. Stochastic Electrochemistry with Electrocatalytic Nanoparticles at Inert Ultrasensitive electrodes—Theory and Experiments. *Phys. Chem. Chem. Phys.* 2011, 13, 5394–5402.

(123) Zhou, Y. G.; Rees, N. V.; Compton, R. G. Electrochemistry of Nickel Nanoparticles Is Controlled by Surface Oxide Layers. *Phys. Chem. Chem. Phys.* 2012, 14, 13161–13167.

(124) Rees, N. V. Electrochemical Insight from Nanoparticle Electrode Collision Processes: The Underpotential Deposition of Thallium on Silver Nanoparticles in Aqueous Solution. *ChemPhysChem* 2011, 12, 2085–2087.

(125) Zhou, Y. G.; Rees, N. V.; Compton, R. G. Nanoparticle–Electrode Collision Processes: The Electroplating of Bulk Cadmium on Impacting Silver Nanoparticles. *Chem. Phys. Lett.* 2011, 511, 183–186.

(126) Oладеji, A. V.; Courtney, J. M.; Rees, N. V. Copper Deposition on Metallic and Non-Metallic Single Particles Via Impact Electrochemistry. *Electrochim. Acta* 2020, 385, No. 139838.

(127) Tschulik, K.; Batchelor-McAuley, C.; Tschulik, K. Impact Electrochemistry: Effects of Electronic Filtering on Peak Height, Duration and Area. *ChemElectroChem* 2018, 5, 3000–3005.

(128) Andersen, J. E. T.; Bech-Nielsen, G.; Møller, P.; Reeve, J. C. Influence of Tip Potential and Tafel Slope Determination of Earth-Abundant Water Oxidation Electrocatalysts. *Electrochim. Acta* 2021, 388, No. 138613.

(129) Andersen, J. E. T.; Bech-Nielsen, G.; Møller, P.; Reeve, J. C. Bulk Copper electrodeposition on Gold Imaged by In Situ STEM: Morphology and Influence of Tip Potential. *J. Appl. Electrochem.* 1996, 26, 161–170.

(130) Velinsky, M. F.; Harrison, J. A. The deposition of palladium. *J. Electroanal. Chem.* 1973, 41, 15–25.

(131) Maniam, K. K.; Muthukumar, V.; Che t s R. Electrodeposition of Dense Palladium Nanostructures on Carbon Support for Direct Formic Acid Fuel Cells. *J. Hydrogen Energy.* 2016, 41, 18602–18609.

(132) Heydari, H.; Abdolmaleki, A.; Ghollavand, M. B. Electrodeposition and characterization of palladium nanostructures on stainless steel and application as hydrogen sensor. *Ciencia E Natura* 2015, 37, 23–33.

(133) Smirnov, M. Y.; Klembovskii, I. O.; Kalinka, A. V.; Bukhtiyarov, V. I. An XPS Study of the Interaction of a Palladium Foil with NO$_2$. *Kinet. Catal.* 2018, 59, 786–791.

(134) Milletto, M. C.; Simko, S. J. Elemental Palladium By XPS. *Surf. Sci. Spectra* 1994, 3, 387–394.

(135) Briggs, D.; Seah, M. P. Practical Surface Analysis, Auger and X-Ray Photoelectron Spectroscopy; 2nd edition; John Wiley & Sons, 1990; Vol. I, pp. 595–641.

(136) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. *Handbook of X-Ray Photoelectron Spectroscopy*; Chastain, J., Ed.; Perkin-Elmer, 1992: pp. 118–119.

(137) Kim, K. S.; Gossmann, A. F.; Winograd, N. X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode. *Anal. Chem.* 1974, 46, 197–200.

(138) Milletto, M. C.; Simko, S. J. Palladium Oxide (PdO) By XPS. *Surf. Sci. Spectra* 1994, 3, 395–401.

(139) Milletto, M. C.; Simko, S. J. Palladium Chloride (PdCl$_2$) By XPS. *Surf. Sci. Spectra* 1994, 3, 402–409.

(140) Meng, H.; Wang, C.; Shen, P. K.; Wub, G. Palladium thorn clusters as catalysts for electrooxidation of formic acid. *Energy Environ.* 2011, 4, 1522–1526.

(141) Wheeler, D. L.; Barrett, T.; Benson, D. A.; Bryant, S. H.; Canese, K.; Chetvernin, V.; Church, D. M.; DiCuccio, M.; Edgar, R.; Federhen, S.; Geer, L. Y.; Kapustin, Y.; Khovayko, O.; Landsman, D.; Lipman, D. J.; Madden, T. L.; Maglott, D. R.; Ostell, J.; Miller, V.; Pruitt, K. D.; Schuler, G. D.; Sequeira, E.; Sherry, S. T.; Sirkin, K.; Souvorov, A.; Starchenko, G.; Tatusov, R. L.; Tatusova, T. A.; Wagner, L.; Yaschenko, E. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res.* 2007, 35, DS–D12.
(152) Ulrich, E. L.; Akutsu, H.; Doreleijers, J. F.; Harano, Y.; Ioannidis, Y. E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; Nakatani, E.; Schulte, C. F.; Tolmie, D. E.; Wenger, R. K.; Yao, H.; Markley, J. L. BioMagResBank. *Nucleic Acids Res.* 2008, 36, D402−D408.

(153) Wilschefski, S. C.; Baxter, M. R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. *Clin. Biochem. Rev.* 2019, 40, 115−133.

(154) Olivares, J. A.; Houk, R. S. Suppression of Analyte Signal by Various Concomitant Salts in Inductively Coupled Plasma Mass Spectrometry. *Anal. Chem.* 1986, 58, 20−25.