Modeling of the production size using Fuzzy-Mamdani Logic to support green engineering: A zinc sheets industrial case study

S Mangngenre, S Bahri, F Mardin, R Hanafi, S Asmal and M F Fasra
The Department of Industrial Engineering, Engineering Faculty, Universitas Hasanuddin, Makassar, Indonesia
Email: saiful.ti@gmail.com

Abstract. Production planning is a tactical scheme in the supply chain management of product that aims to provide optimal solutions based on the inventory stock of the company in terms of fulfilling the production demand. The variable of demand, supply, and production amount is used in this research as an input to determine the production by the implementation of Fuzzy-Mamdani Logic (FML). This research aims to obtain the optimal production and supply planning for several periods, which later comparing the total cost through the Fuzzy-Mamdani Logic implementation with the method used by the company. The objects for this research are the 7’ and 10’ big-corrugation types of zinc sheets manufactured by PT Y, which is the highest demand product of the company. The result shows that the implementation of FML outlined as an appropriate solution for the decision making to determine the production amount. The amount production itself for the 7’ and 10’ big-corrugation type of zinc sheets during June 2017 - May 2018 were 663,700 and 640,400 quantities for each model, while production in June 2017 was only 18,100 and 32,800 quantities.

1. Introduction
The increasing of the competition in the industrial world nowadays gives the implication of industrial management development, specifically the optimal services for the customer, as well as optimizing the company profit. This condition will affect the development of the company in terms of market competition. Generally, the manufacturer companies implement the Make to Stock (MTO) concept as the strategy in fulfilling the customer demand. The companies with this strategy have the finished product in the inventory for direct-delivery when there is an order from the customer [1]. However, the implementation of this strategy occurs some problems, particularly in the inventory issue.

Vollmann [2] defines production planning as a tactical scheme, which aims to provide optimal solutions, based on the inventory stock of the company in terms of fulfilling the production demand. Production planning has a methodology that needed in planning the production amount, known as aggregate. That aggregate used to obtain the response to demand planning. The aggregate scheme is a process of planning the quantity and time of the certain period through the adjustment of the high level of production, supply, and other controlled variables.

Inventory is a collective term to show the supply stock as the anticipation for fulfilling the demand. It is defined as the product that stocked, which later will be used to sell at a specified period. Companies sometimes facing the uncertain demand of the product during the fulfilling period, thus need the extra amount of quantity which often known as safety inventories and appropriate production planning. Hence, the company should develop rational plans to show how they will respond to the
market [3]. This activity of production planning starts from creating the forecast to find out the type of product and the quantity for future production. However, most of the companies could not be able to adjust their production level with real demand. Thus, in terms of determining the production amount, it needs the appropriate forecast related to customer demand [4].

Fuzzy defines as unclear, blur, or uncertain. The Fuzzy Set is a subsidiary of the oldest mathematical system, which studies the process of random numeric, such as probability theory, mathematical statistics, information theory, and others. The problem solving by using the set of fuzzy is more convenient compared with the probability theory [5].

The fuzzy set defined by the component function. The component function is a curve that shows the dots map of the data as the value of the components [6]. One of the methods that can be used to get those values is by the function approach. Nasr et al. [7] stated that the fuzzy function and the Mamdani model, also known as a min-max method.

PT Y is a zinc sheets production company. The production decision in the company implements the Fuzzy Logic (FL) since this method able to mapping from the input into the output with the involvement of the variables [7]. This FL will be flexible and tolerant with the available data. It will create a model from a system which able to estimate the production amount. The factors that affect the decision of the production amount in FL are the supply and the demand. The objective of this study was to obtain the optimal production planning of zinc sheets for several periods.

2. Methods
The object of this research is the zinc sheets produced data by PT Y, which consists of small-corrugation, medium-corrugation, and plate types. Only big-corrugation type come with 7' (0,20x762x2134 cm) and 10' (0,20x762x3048 cm) and will be selected as the samples.

The method of FML used for data processing has steps as followed: creating the fuzzy Set; implicating the function; forming the composition, and defuzzification.

3. Results
3.1. Data set
Data collected for designing the decision of production amount were monthly data from January 2016 to May 2017, as presented in table 1 and table 2.

Period	7' (Sheets)	10' (Sheets)		
	Supply	Production	Supply	Production
January 2016	16.072	113.525	14.775	74.440
February 2016	63.936	77.988	12.472	96.981
March 2016	95.080	89.663	52.965	85.856
April 2016	124.702	124.242	74.251	47.875
May 2016	200.749	27.484	73.744	59.928
June 2016	186.053	36.969	90.769	36.982
July 2016	199.951	57.829	91.820	84.592
August 2016	198.303	61.472	119.821	101.313
September 2016	214.325	63.959	166.324	42.588
October 2016	213.987	62.320	148.922	79.512
November 2016	186.309	1.496	137.171	20.355
December 2016	104.799	82.179	79.486	81.862
Table 2. Supply and production in 2017

Period	7 '(Sheets)	10 '(Sheets)		
	Supply	Production	Supply	Production
January 2017	108.552	41.462	80.487	70.414
February 2017	100.681	57.125	106.131	107.758
March 2017	76.196	64.508	150.092	43.890
April 2017	62.653	51.555	114.015	23.972
May 2017	64.384	42.177	85.298	4.751

3.2. Modeling

Forecasting the demand for the period between June 2017-May 2018 (table 3) was conducted using the demand between January 2014-May 2017.

Table 3. Demand forecast of the product June 2017-May 2018

No.	Period	Product (Sheets)	
		7 ft.	10 ft.
1	June 2017	35.002	44.072
2	July 2017	39.124	39.227
3	Augustus 2017	42.254	50.250
4	September 2017	68.630	64.386
5	October 2017	90.811	82.037
6	November 2017	94.676	93.517
7	December 2017	85.602	79.553
8	January 2018	56.725	55.515
9	February 2018	38.944	40.555
10	March 2018	47.487	45.359
11	April 2018	40.684	43.326
12	May 2018	35.908	33.541
	Total	675.847	671.340
Mean Error	-1.225	-344	
MAD	12.788	11.585	
MAPE	20%	18%	
RSFE	-16.228	6.667	

The first step to obtain the decision of the production amount using FML in this study was creating the Fuzzy Set. In the Mamdani method, both input and output variables divided into one or more fuzzy sets, as shown in table 4.

Table 4. The Fuzzy Set

Variable	Type	Range (Sheets)
Demand	7’	[23.071 – 89.998]
	10’	[35.931 – 91.263]
Supply	7’	[16.072 – 214.325]
	10’	[12.472 – 166.324]
Production Amount	7’	[1.496 – 124.242]
	10’	[4.751 – 107.758]

The second step was forming of component function aims to represent the variables of demand, supply, and production amount, as presented in table 5 and table 6.
Table 5. The Fuzzy set domain of 7' Type

Fuzzy Set	Range (Sheets)	Domain (Sheets)
Small	[23.071 – 89.998]	[23.071 – 99.998]
Medium	[16.072 – 214.325]	[16.072 – 214.325]
Large	[1.496 – 124.242]	[1.496 – 124.242]

Table 6. The Fuzzy set domain of 10' Type

Fuzzy Set	Range (Sheet)	Domain (Sheet)
Small	[35.931 – 91.263]	[35.931 – 91.263]
Medium	[12.472 – 166.324]	[12.472 – 166.324]
Large	[4.751 – 107.758]	[4.751 – 107.758]

The next step was to form the rules. Based on the available data, it could be formed the rules for this study, as shown in table 7 and table 8.

Table 7. The fuzzy rules of 7'

No	Demand	Supply	Production	No	Demand	Supply	Production
1	Small	Small	Medium	7	Medium	Large	Small
2	Small	Medium	Small	8	Medium	Very Large	Small
3	Small	Large	Small	9	Large	Small	Large
4	Small	Very Large	Small	10	Large	Medium	Large
5	Medium	Small	Large	11	Large	Large	Medium
6	Medium	Medium	Medium	12	Large	Very Large	Small

Table 8. The fuzzy rules of 10'

No	Demand	Supply	Production	No	Demand	Supply	Production

The last step was defuzzification. This step was conducted using Matlab R2016a software and tools fuzzy logic function. Figure 1 shows the result of defuzzification with demand and supply of products between June 2016-May 2017.

![Defuzzification result](image)

Figure 1. Defuzzification result

Base on FML with the optimal supply result, the rules from defuzzification could be accepted. With the demand based on forecast between July 2017-May 2018 as the input, it obtained decisions of production amount for the upcoming 12 month-periods as presented in table 9.

Table 9. Production decision based on the FML

Period	Production Amount (Sheet)	
	7’	10’
June 2017	18.100	32.800
July 2017	40.600	18.600
August 2017	40.200	52.400
September 2017	62.100	58.600
October 2017	92.300	76.600
November 2017	92.500	93.500
December 2017	91.300	69.700
January 2018	61.900	66.200
February 2018	38.100	42.200
March 2018	50.100	46.400
April 2018	36.400	42.400
May 2018	40.100	41.000
Total	**663.700**	**640.400**

4. Conclusions

The implementation of FML can be minimized or eliminating the supply cost through the modification of rules compositions by using the Matlab R2016a software based on the input of demand, supply, and
production amount of the company. The determination of the production amount of zinc sheets through the FML is more optimal than the previous method implemented by PT Y with the difference of production amount between 9,553 for 7’ and 2,789 for 10’ type during the period between January 2016-May 2017.

References
[1] Gaspersz V 2009 Production Planning And Inventory Control (Jakarta: Gramedia)
[2] Vollmann T E 2005 Manufacturing planning and control for supply chain management
[3] Zawadzki P and Żywicki K 2016 Smart product design and production control for effective mass customization in the Industry 4.0 concept Manag. Prod. Eng. Rev. 7 105–12
[4] Altendorfer K, Felberbauer T and Jodlbauer H 2016 Effects of forecast errors on optimal utilization in aggregate production planning with stochastic customer demand Int. J. Prod. Res. 54 3718–35
[5] Zadeh L A 1978 Fuzzy sets as a basis for a theory of possibility Fuzzy sets Syst. 1 3–28
[6] Jang J-S R, Sun C-T and Mizutani E 1997 Neuro-fuzzy and soft computing - A computational approach to learning and machine intelligence [Book Review] IEEE Trans. Automat. Contr. 42 1482–4
[7] Nasr A S, Rezaei M and Barmaki M D 2012 Analysis of groundwater quality using Mamdani Fuzzy Inference System (MFIS) in Yazd Province, Iran Int. J. Comput. Appl. 59