Laser-Activated Luminescence of BaAl$_2$O$_4$:Eu

To cite this article: Daniel den Engelsen et al 2020 ECS J. Solid State Sci. Technol. 9 026001

View the article online for updates and enhancements.
Laser-Activated Luminescence of BaAl$_2$O$_4$:Eu
Daniel den Engelsen, George R. Fern, Terry G. Ireland, and Jack Silver

Centre for Phosphor and Display Materials, Wolfson Centre for Materials Processing, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom

In this article the laser-activated (LA) luminescence of BaAl$_2$O$_4$ doped with 3 mol% Eu$^{2+}$ and SrAl$_2$O$_4$ doped with 700 ppm Eu$^{2+}$ is described. The LA spectrum of BaAl$_2$O$_4$:Eu did not show any emission from Eu$^{2+}$, but rather luminescence from the Eu$^{3+}$ ion. This surprising result is explained in terms of ionization of the excited Eu$^{2+}$ ions (photo-ionization), while the freed electrons are trapped in an excited state of the F-centre: this is considered to be a deep trap. The temperature of the ferroelectric-paramagnetic phase transition is BaAl$_2$O$_4$ has been determined at $\approx 180^\circ$C from the Raman spectra recorded at various temperatures.

© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2162-8777/ab682c]

Manuscript submitted September 24, 2019; revised manuscript received December 10, 2019. Published January 21, 2020.

Recently we published the crystal structures and photoluminescence (PL) spectra of Sr$_{1-x}$Ca$_x$Al$_2$O$_4$, Ba$_{1-x}$Ca$_x$Al$_2$O$_4$ and Ba$_{1-x}$Sr$_x$Al$_2$O$_4$ doped with Eu$^{2+}$, Eu$^{3+}$, and Eu$^{4+}$. These studies were followed with an analysis of the cathodoluminescence (CL) spectra of undoped BaAl$_2$O$_4$ and BaAl$_2$O$_4$:Eu$^{2+}$, $^{4+}$. In the case of BaAl$_2$O$_4$:Eu$^{2+}$ it was found that by exchanging a small quantity of Ba for Sr, the hexagonal P6$_3$ (ferroelectric) structure changed to the more symmetric hexagonal P6$_{22}$ (paraelectric) structure at room temperature. This conclusion was based on the analyses of the PL spectra of Ba$_{1-x}$Sr$_x$Al$_2$O$_4$:Eu$^{2+}$ at $x=$0.3: this was a confirmation by spectroscopy of the work of Kagawa et al., who discovered this phase transition in Ba$_{1-x}$Sr$_x$Al$_2$O$_4$ without Ln$^{2+}$ dopant using X-ray diffraction (XRD). The ferroelectric-paramagnetic transition in pure, undoped BaAl$_2$O$_4$ was described earlier by other workers based on X-ray diffraction (XRD), electron diffraction studies and analysis of the infrared (IR) spectrum. From these studies it was concluded that the ferroelectric-paramagnetic phase transition in BaAl$_2$O$_4$ takes place between 400 and 450 K, which is substantially higher than room temperature. In view of the extended investigations on the afterglow behaviour of BaAl$_2$O$_4$ the γ-form with Dy$^{3+}$ co-doped with Dy$^{3+}$, it is surprising that no study has been published that confirmed this phase transition based on spectroscopic properties.

As a natural follow up from our previous work on the alkaline earth aluminates doped with Eu$^{2+}$ we decided to investigate undoped BaAl$_2$O$_4$ and BaAl$_2$O$_4$:Eu$^{2+}$, $^{3+}$ between 298 K and 573 K by laser-activated (LA) spectroscopy. The objective was to obtain spectroscopic evidence of the P6$_3$ \rightarrow P6$_{22}$ phase transformation in BaAl$_2$O$_4$. In the LA spectra of BaAl$_2$O$_4$:Eu$^{2+}$, $^{3+}$, which were recorded with a YAG:Nd laser (532.1 nm), we detected only Eu$^{3+}$ transitions with an abnormal temperature behaviour, i.e. increasing spectral radiance upon raising the temperature. This prompted us to propose a new model for the excitation process by the laser beam. The results are reported and discussed in the following sections of this paper. We also measured the LA-spectrum of SrAl$_2$O$_4$:Eu$^{2+}$ at room temperature for comparison with BaAl$_2$O$_4$:Eu$^{2+}$ and literature data.

Experimental

Synthesis.—Table I presents the samples that were investigated in the current study.

Starting materials were: barium carbonate (Alfa Aesar, UK, 99%), strontium carbonate (Sigma Aldrich, UK, 99.9%), aluminum oxide (SASOL Inc., USA), europium oxide (Ampere Industrie, France, 99.99%), and concentrated hydrochloric acid (Sigma Aldrich, UK, 37%). All materials were used as supplied without further purification. BA2 (Ba$_{0.97}$Eu$_{0.03}$Al$_2$O$_4$) was prepared by calcining mixtures of an appropriate molar ratio of BaCO$_3$, γ-Al$_2$O$_3$ and EuCl$_3$ powders in a flow of 90% N$_2$–10% H$_2$. After calcination the powder was ground by ball milling (Al$_2$O$_3$) for 3 h. The final annealing was at 1350 °C under H$_2$/N$_2$ for 2 h. Sample SA1 (SrAl$_2$O$_4$ doped with 700 ppm Eu) was made using the same procedures. Sample BA1, BaAl$_2$O$_4$ without a detectable Eu concentration, was obtained from ABCR (Karlsruhe, Germany). By X-ray diffraction (XRD) it was determined that ABCR’s material had partly been decomposed into BaCO$_3$ and Al$_2$O$_3$ due to prolonged shelf life in air. Before recording the spectra, this material was annealed for 60 h at 950 °C in air; after this treatment it was determined by XRD that the material had the hexagonal P6$_3$ structure of BaAl$_2$O$_4$ ($\approx 100\%$).

Characterisation and spectroscopy.—The crystallinity of the samples BA1, SA1 and BA2 was verified by X-ray powder diffraction using a Bruker D8 Advance X-ray diffractometer fitted with a nickel-filtered copper source, CuKα at $\lambda=1.5406$ Å, and a LynxEye$^\text{TM}$ silicon strip detector. BA1 and BA2 had the hexagonal P6$_3$ phase, whereas SA1 had the monoclinic P2$_1$ phase.

Laser-induced fluorescence spectra of the samples were measured with a Horiba Jobin Yvon Labram HR monochromator by excitation with a Nd:YAG laser (second harmonics at 532 nm) at temperatures varying between 25 °C and ≈ 300 °C. The effects of temperature drift had to be nullified by monitoring the position of the laser spot on the sample by a microscope and careful manual readjustment using the automated stage of prominent surface features as a marker. The temperature of the sample during measurements was controlled within 0.1 °C. After recording the spectra, this material was annealed for 60 h at 950 °C in air; after this treatment it was determined by XRD that the material had the hexagonal P6$_3$ structure of BaAl$_2$O$_4$ ($\approx 100\%$).

Morphology and structure.—Figure 1 presents a TEM-image of the particle in a BA2 sample. The size of the particles in the samples varied between about 0.5 μm to about 5 μm. From the XRD patterns recorded at room temperature it was concluded that the BA1 and SA1 samples listed in Table I consisted of one phase, namely the hexagonal P6$_3$ structure (ferroelectric).

Results

Morphology and structure.—Figure 2 presents the Stokes spectra of BA2 between 570 nm and 670 nm recorded at various temperatures. The emission peaks in these spectra can be assigned to BaAl$_2$O$_4$:Eu$^{3+}$. No Eu$^{2+}$ emission at any temperature between 25 °C and 300 °C was observed in the LA spectra, neither in the anti-Stokes part ($\lambda<332$ nm),
nor in the Stokes part. It should be noted that these Eu$^{3+}$ bands were not detected in the PL and CL spectra in our previous study of this sample, although the Eu$^{3+}$ emission bands in Fig. 2 are rather strong. The spectrum at T = 50 °C in Fig. 2 is similar to the PL spectrum of hexagonal BaAl$_2$O$_4$:Eu$^{3+}$ published by Chatterjee et al. and slightly less similar to the PL spectrum of orthorhombic BaAl$_2$O$_4$:Eu$^{3+}$ measured by Wiglusz and Grzyb. Saturation effects in the LA-spectra of BaAl$_2$O$_4$:Eu$^{2+}$ were separately checked by varying the power density of the laser beam. This was done by inserting 6 different filters in the beam. It was found that the spectral radiances of the 417 cm$^{-1}$ Raman line (in Fig. 4) and the Eu$^{3+}$ 5D$_0$ \rightarrow 7F$_1$ transition at 592 nm vary proportionally with the filter factors between 0.1% and 100%. This result indicates that saturation effects are not expected to play a role. In two recent articles a similar approach about the presence of saturation in the spectra of phosphors has been described.

The absence of any Eu$^{2+}$ luminescence and the presence of rather strong Eu$^{3+}$ luminescence from hexagonal BaAl$_2$O$_4$:Eu cannot be explained by incomplete reduction during the annealing in the H$_2$/N$_2$ flow, because most of the Eu will still be present in the form of Eu$^{2+}$. In the discussion section a model will be introduced that explains the suppression of any Eu$^{2+}$ emission and the presence of Eu$^{3+}$ lines only. Figure 2 features a rather unusual behaviour of the emission bands, namely a substantial increase of the spectral radiance of all Eu$^{3+}$ transitions at T $>$ 200 °C instead of decreasing luminescence due to thermal quenching. This can clearly be observed in the growth of the shoulder of the 5D$_0$ \rightarrow 7F$_2$ multiplet at 622 nm from 200 °C onwards. This phenomenon will also be explained in the discussion section.

An analysis illustrating the characteristics of the LA-spectra of Fig. 2 is shown in Fig. 3. Fig. 3a presents the result of the deconvolution of the Eu$^{3+}$ 5D$_0$ \rightarrow 7F$_2$ multiplet recorded at 250 °C with 5 Lorentzian profiles. The profiles were fitted to the LA-spectrum with a least squares algorithm using the Excel solver. The LA-spectrum was recorded at 250 °C. The wavenumbers at the maximum spectral radiance (\(\nu_0\)) of the profiles are indicated in cm$^{-1}$. (b) Arrhenius plot of the spectral radiance at 613 nm (highest peak of the 5D$_0$ \rightarrow 7F$_2$ multiplet of BaAl$_2$O$_4$:Eu$^{3+}$. The insert shows \(\nu_0\) of the profiles, defined in (a), as a function of the temperature.
the Fig. 3a. We assume that both the change in SR613 and the kinks in the change of the crystal structure of BaAl2O4, the crystal phase transition at about 185 °C, it would be expected that the ferroelectric P63 phase to the paraelectric P6322 phase. Because of the change of the crystal structure of BaAl2O4, the crystal field for the Eu ions modifies, which means that the radiance ratio(s) between the 5 Stark components of the 5D0 → 7F1 multiplet shifts as well. In Table II we have summarized the Stark levels of the 5D0 → 7F1 multiplets at room temperature for the P63 and P6322 phases respectively (in cm⁻¹). Table III summarizes the observed Raman-active transitions in the spectra of Fig. 4. Lazic et al. published the Raman spectrum of Ba3Al2O6, which adopts the cubic subgroup P2₁3. As expected, the lattice vibrations differ substantially; however, in the tribarium aluminate a Raman line at 248 cm⁻¹ was measured, which is close to the Raman line at 242 cm⁻¹ in BaAl2O4. Lazic et al. assign this line tentatively to a vibration of the ring formed by the AlO₄ tetrahedra.

RS in Table III stands for Raman shift. For comparison reasons, the IR-active transitions of BaAl2O4, measured by Rodehorst et al. at room temperature, have been included in Table III. Table III indicates that the majority of the weak Raman lines at 25 °C have disappeared at 225 °C. The Raman shift of the Raman-active lines of sample BA1 (with no detectable Eu³⁺) is generally ~1.5 cm⁻¹ higher. For instance the two strong Raman lines for this sample are at 243.6 cm⁻¹ and 418.7 cm⁻¹ at room temperature.

The Raman lines at 200 cm⁻¹ and the other w-lines listed in the first column of Table III (except the lines at 570 cm⁻¹ and 821 cm⁻¹) disappear at about 175 °C. This is shown in Fig. 5b for the 200 cm⁻¹ line. Note that the radiance decreases gradually: there does not seem to be an abrupt change at ~175 °C. In the transition from the hexagonal P63 phase of BaAl2O4 to the hexagonal P6322 structure the number of Raman active lines reduces from 82 to 15; indeed, in Fig. 4 and Table III a large reduction of the number of Raman lines upon increasing the temperature beyond 175 °C is observed. So, it can be concluded that Fig. 4 and 5 provide additional spectroscopic evidence of the ferroelectric → paraelectric transition in BaAl2O4. Herein this transition is found at slightly higher temperature than indicated by Huang et al. at the same temperature as published by Kawaguchi et al. and Rodehorst et al., and inside the range of temperatures reported by Abakumov et al. Fig. 6 is the LA-spectrum of SA1 between 570 nm and 630 nm at room temperature. This spectrum also shows the Eu³⁺ → 5D0 → 7F1 (J = 0, 1, 2) transitions; however, the lines are much narrower at a low Eu concentration than the partially overlapping peaks in Fig. 2. The arrows in Fig. 6 indicate very weak lines, which are tentatively assigned to 5D0 → 7F1 (J = 0, 1, 2) transitions of Eu³⁺ ions at the other alkaline earth site in the monoclinic SrAl2O4 structure. In Table II. Lowest 4f levels of Eu³⁺ in BaAl2O4 at 25 °C and 300 °C for the P63 and P6322 phases respectively (in cm⁻¹).

State	P63	P6322
Dₛ	17262	17281
	1289	1378
F₁	1182	1310
	1050	1219
	972	1038
	912	961
	568	522
F₅	385	367
	218	239
F₉	0	0

kink in the ν₀ curves at about 225 °C. The spectral radiance at 613 nm (SR613) is largely determined by the p₅ profile shown in Fig. 3a. We assume that both the change in SR613 and the kinks in the ν₀ curves are related to the transformation of BaAl2O4 from the ferroelectric P63 phase to the paraelectric P6322 phase. Because of the change of the crystal structure of BaAl2O4, the crystal field for the Eu ions modifies, which means that the radiance ratio(s) between the 5 Stark components of the 5D0 → 7F1 multiplet changes as well. In Table II we have summarized the Stark levels of the 5D0 → 7F1 multiplets at room temperature for the P63 phase of BaAl2O4:Eu⁺ at 225 °C and 300 °C for the P6322 phase.

Table III. Raman-active lines of BaAl2O₄:Eu⁺ at 25 °C and 225 °C and IR-active transitions (from Rodehorst et al.⁹).

T = 25 °C	T = 225 °C				
RS (cm⁻¹)	Int.	RS (cm⁻¹)	Int.	Rodehorst et al.⁹	
156	w	140	m		
200	w	160	m		
242	ms	240	w	230⁷	vw
270	w				
371	w				
383	w				
417	s	411	s	415	s
457	w				
528	w				
570	w	566	vw		
654	w			620	s
663	m	671	m		
705	m	692	m		
809	w			810	m
821	w	816	w		
850	w	830	m		

The Eu³⁺ ⁵D₀ → ⁷F₁ transition at 579 nm was also analysed, as it has only one Stark component. In view of this it would be expected to be symmetric, however this peak is asymmetric at 25 °C and at 200 °C and this asymmetry must indicate the presence of at least two overlapping luminescence peaks. Because of the P63 → P6322 phase transition at about 185 °C, it would be expected that the 579 nm transition has a symmetric profile at T > 200 °C, because the BaAl₂O₄ P6322 phase has only one Ba site, and thus would be expected to have only one Eu site. Since this is not the case (as evidenced by the asymmetry, then there are only to our minds two possible explanations), either some sort of electron-phonon coupling is occurring or the Eu³⁺ cations being much smaller than the Ba²⁺ cations find two or more positions in the sites that each give rise to a slightly different ⁵D₀ → ⁷F₁ transition hence generating the overall asymmetric band.

Fig. 4 presents the Raman spectra of BaAl₂O₄:Eu²⁺ recorded at various temperatures.

For clarity reasons only a limited number of spectra have been displayed in Fig. 4. The spectrum recorded at 25 °C indicates the presence of a rather large number of weak Raman lines, which gradually disappear at high temperature. Table III summarizes the 4f levels of Eu³⁺ in BaAl₂O₄ at 25 °C and 300 °C for the P63 and P6322 phases respectively (in cm⁻¹).
The Raman spectra of $\text{BaAl}_2\text{O}_4:\text{Eu}^+\text{(BA2)}$ and $\text{SrAl}_2\text{O}_4:\text{Eu}^+\text{(SA1)}$ recorded at 25°C. Figure 7 presents strong Raman lines at 418 cm$^{-1}$.

Discussion

In this section we shall discuss the rather surprising result that $\text{BaAl}_2\text{O}_4:\text{Eu}$ reduced in H_2/N_2 at 1350 °C generates only Eu^{3+} luminescence when excited by the green YAG:Nd laser. At this temperature during annealing, even if the dew point of the H_2/N_2 gas would be about 20 °C, the reduction of Eu^{3+} to Eu^{2+} in BaAl_2O_4 is expected to be nearly 100% based on thermodynamic considerations. An incomplete reduction of Eu^{3+} in $\text{BaAl}_2\text{O}_4/\text{SrAl}_2\text{O}_4$ was assumed by Clabaugh et al.20 and Rodrigues et al.21 If a trace of Eu^{3+} would be present in the BA2 sample, Eu^{3+} may directly be excited by the green YAG:Nd laser (1879 cm$^{-1}$) to the $\text{Eu}^{3+}5D_0$ state at 17262 cm$^{-2}$. The consequent luminescence of the $^5D_0 \rightarrow ^7F_0$ transitions is then expected to have the normal thermal behaviour, i.e. decreasing spectral radiance upon increasing the temperature. Since this is not observed in BA2, we assume that the quantity of Eu^{3+} in the sample is so small that it will not lead to detectable Eu^{3+} emission. The conclusion of this reasoning is that the Eu^{3+} luminescence in Figs 2 and 3 has a different origin.

In Fig. 8 the energy levels of Eu^{2+} and Eu^{3+} in BaAl_2O_4 that are relevant for the present discussion are presented. For Eu^{2+} the $^8S_{7/2}$ ground state level and the lowest $\text{Eu}^{3+}5d$ level have been depicted, while for the Eu^{3+} ion the 7F_1 levels and the 5D_0 level have been indicated. This diagram has been based on the energy diagram for $\text{BaAl}_2\text{O}_4:\text{Eu}^{3+}$, R$^{3+}$ where R is Dy or Nd, reported by Kaur et al.10

For a discussion about the Arrhenius plot illustrated in Fig. 3b, the band gap E_g and the position of the $\text{Eu}^{3+}^8S_{7/2}$ (ground state) level relative to the valence band (VB), indicated by V in Fig. 8a, needs to be known. The literature is not particularly unanimous about the bandgap (E_g) of BaAl_2O_4: it varies between 4.5 and 6.5 eV.21-24 For Fig. 8a we have adopted $E_g=6.5$ eV (52430 cm$^{-1}$) as was done by Kaur et al.10 Dorenbos25 described a method for determining the ground state of Eu^{2+} relative to the top of the VB. He argued that it may be positioned at the same level as the Eu^{3+} charge transfer (CT). This latter level is about 4.1 eV above the VB as indicated by Kaur et al.10 and Wiegulusz and Grzyb.14 When V is set to 4.1 eV, it follows that the lowest $\text{Eu}^{2+}4f^65d$ level would be placed inside the conduction band (CB), which cannot be the case. This conclusion is based on the PL and CL bands of $\text{BaAl}_2\text{O}_4:\text{Eu}^{3+}$, which are at 2.5 eV. A way out is to assume that a rather large difference of ≈4000 cm$^{-1}$ (0.5 eV) between the Eu^{3+} CT and the $\text{Eu}^{2+}^8S_{7/2}$ levels could be in place, as mentioned by Dorenbos.25 This uncertainty in the positioning of the ground state of Eu^{3+} (and the other states of Eu^{3+}) relative to the VB of $\text{BaAl}_2\text{O}_4:\text{Eu}^{3+}$ renders Fig. 8a slightly speculative. Nevertheless, with this assumption it is plausible that upon laser excitation the lowest 5d level, the $4f^55d$ level, can be excited according to arrow L. The energy of the laser is not sufficient to reach the $4f^55d$ level, but due to the thermal population of higher vibronic levels of the $\text{Eu}^{2+}^8S_{7/2}$ level the lowest 5d level of the Eu^{3+} can be excited, as illustrated in more detail in
Fig. 8b, although the Stokes shift of this Eu$^{2+}$ transition is about 6000 cm$^{-1}$, as estimated by Poort et al.26 Excitation of phosphors at energies below the UV PL absorption range has been described in detail by Silver et al. for Y$_2$O$_3$:Eu$^{3+}$ with a He-Ne laser.7

The Eu$^{2+}$ 4f5d1 level is assumed to be close to the bottom of the conduction band (CB): in4 we have determined that the 4f5d1 level is 0.4 eV below the bottom of the CB of BaAl$_2$O$_4$:Eu$^{2+}$; however, the accuracy of this value is not particularly large due the limited temperature range of the PL measurements. The Eu$^{2+}$ 4f5d1 state can also be populated by a two-photon absorption process. Apart from the fact that this process has a low probability, it would also be expected to lead to green Eu$^{2+}$ emission at about 500 nm. Since this emission is not observed, we shall neglect this possibility.

The model presented in Fig. 8a is similar to the electron trapping model that has been used to explain the long decay times in H$_2$/N$_2$ guarantees apparently a sufficient level of oxygen vacancies. This model that has been used to explain the long decay times in H$_2$/N$_2$ guarantees apparently a sufficient level of oxygen vacancies. This

This is also the underlying assumption in the long-persistence model for SrAl$_2$O$_4$:Eu$^{2+}$, Dy$^{3+}$ and BaAl$_2$O$_4$:Eu$^{2+}$, Dy$^{3+}$.$^{10,28-30}$ The temperature behaviour of the Eu$^{3+}$ emission presented in Figs. 2 and 3 will now be discussed with aid of Fig. 8b. In this latter figure two configuration diagrams are presented, one for the ferroelectric P6$_3$ phase and the other for the paraelectric P6$_3$,22 phase. It is assumed that for the P6$_3$,22 phase the minimum of the energy curve for the Eu$^{2+}$ 4f5d1 state has shifted more than the corresponding minimum for the P6$_3$ phase. This means that more energy is required for exciting 4f5d1 state, as can be seen in Fig. 8b. This difference explains the higher activation energy for the Eu$^{2+}$ transition indicated in Fig. 3 for the P6$_3$,22 phase.

Conclusions

In this paper we have described the changes in the LA and Raman spectra of undoped BaAl$_2$O$_4$ and BaAl$_2$O$_4$:Eu$^{2+}$ that appear at the phase change from the ferroelectric P6$_3$ phase to the paraelectric P6$_3$,22 phase. From the analyses of the Raman spectra of BaAl$_2$O$_4$:Eu$^{2+}$ it was concluded that the transition from the P6$_3$ phase to the P6$_3$,22 phase takes place at ~190°C, which is in good agreement with the results based on totally different methods that were described in the literature. Another interesting finding is that the LA-spectra of BaAl$_2$O$_4$:Eu$^{2+}$ did not contain Eu$^{3+}$ luminescence, but rather Eu$^{3+}$ emission lines/band. This result has been explained by a model that is based on the ionization of the excited 5d state of Eu$^{3+}$ and migration of the freed electron to a deep trap, which is assumed to be an F-centre. The model presented in Fig. 8 also explains qualitatively the two activation energies presented in Fig. 3b and it illustrates the correspondence to the model described.

The work reported herein has provided a new insight to the role and the origin of traps important to the properties of long persistence phosphors as well as those of other non-persistent BaAl$_2$O$_4$:Eu$^{2+}$ phosphors.

Acknowledgments

We are grateful to the EPSRC and Technology Strategy Board (TSB) for funding the PURPOSE (TP11/MEF6/1/AA129F, EPSRC TS/G000271/1) and CONVERTED (JeS no. TS/1003053/1), PRISM (EP/N508974/1) and FAB3D programs. We are finally grateful to the TSB for funding the CONVERT program.

References

1. L. Yu, D. den Engelsen, J. Gorobez, G. Fern, T. Ireland, C. Frampton, and J. Silver, Opt. Mater. Express, 9, 2175 (2019).
2. M. Volhard, L. Yu, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, Opt. Mater. Express, in press.
3. M. Volhard, D. den Engelsen, G. Fern, T. Ireland, and J. Silver, Opt. Mater. Express, 9, 3895 (2019).
4. D. den Engelsen, G. Fern, T. Ireland, F. Yang, and J. Silver, Opt. Mater. Express, in press.
5. S. Kawaguchi, Y. Ishii, E. Tanaka, H. Tsukasaki, Y. Kubota, and S. Mori, Phys. Rev. B, 94, 054117 (2016).
6. S. Y. Huang, R. V. D. Mühll, J. Ravez, and M. Couzi, Ferroelectrics, 159, 127 (1994).
7. S. Y. Huang, R. V. D. Mühll, J. Ravez, J. F. Chaminade, P. Hagenmuller, and M. Couzi, J. Solid State Chem., 109, 97 (1994).
8. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, Phase Transitions, 71, 143 (2000).
9. U. Rodehorst, M. A. Carpenter, S. Marion, and C. M. Henderson, Mineral. Mag., 67, 989 (2003).
10. J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N. S. Suryanarayana, Res. Chem. Intermed., 41, 2317 (2015).
11. W. Hörkner and H. K. Müller-Buschbaum, Z. Anorg. Allg. Chem., 451, 40 (1979).
12. A. R. Schulze and H. Müller-Buschbaum, Z. Anorg. Allg. Chem., 475, 205 (1981).
13. R. Chatterjee, S. Saha, D. Sen, K. Panigraphi, U. K. Ghorai, G. C. Das, and K. K. Chattopadhyay, ACS Omega, 3, 788 (2018).
14. R. J. Wiglusz and T. Grzyb, Opt. Mater., 36, 539 (2013).
15. T. Jansen, D. Böhnsch, and T. Jüstel, ECS J. Solid State Sci. Technol., 5, R91 (2016).
16. O. B. Shchekin, P. J. Schmidt, F. Him, N. Lawrence, K. J. Vampola, H. Bechtel, D. R. Chamberlin, R. Mueller-Mach, and G. O. Mueller, Phys. Status Solidi RRL, 10, 310 (2016).
17. B. Lazic, V. Kahlenberg, R. Kaindl, and A. Kremenovic, Solid State Sci., 11, 77 (2009).
18. G. Dong, X. Xiao, L. Zhang, Z. Ma, X. Bao, M. Peng, Q. Zhang, and J. Qiu, J. Mater. Chem., 21, 2194 (2011).
19. H. Terraschke, M. Suta, M. Adlung, S. Mamandouva, N. Musayeva, R. Jabbarov, M. Nazarov, and C. Wickleder, J. Spectroscopy, 2015, 541955 (2015).
20. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. L. Mercier, Chem. Mater., 17, 3904 (2005).
21. L. C. V. Rodrigues, J. Holsä, J. M. Carvalho, C. C. S. Pedroso, M. Lastusaari, M. C. F. C. Felinto, S. Watanabe, and H. F. Brito, Physica B, 439, 67 (2014).
22. L. Zhang, L. Wang, and Y. Zhu, Adv. Funct. Mater., 17, 3781 (2007).
23. H. Wako, F. B. Dejene, and H. C. Swart, J. Rare Earths, 32, 806 (2014).
24. L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Holsä, M. Lastusaari, T. Laamanen, and M. Malkamaki, J. Solid State Chem., 183, 2365 (2010).
25. P. Dorenbos, J. Phys. Condens. Matter, 15, 8417 (2003).
26. S. H. M. Poort, W. P. Blokpoel, and G. Blasse, Chem. Mater., 7, 1547 (1995).
27. J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, J. Chem Phys. B, 105, 9107 (2001).
28. E. Nakazawa, Y. Murazaki, and S. Saito, J. Appl. Phys., 100, 113113 (2006).
29. P. Dorembos, J. Electrochem. Soc., 152, H107 (2005).
30. H. F. Brito, M. C. F. C. Felinto, J. Holsä, T. Laamanen, M. Lastusaari, M. Malkamaki, P. Novák, L. C. V. Rodrigues, and R. Stefani, Opt. Mater. Express, 2, 420 (2012).
31. K. H. Lee and J. H. Crawford Jr, Phys. Rev. B, 19, 3217 (1979).
32. B. G. Draeger and G. P. Summers, Phys. Rev. B, 19, 1172 (1979).
33. P. Jonnard, C. Bonnelle, G. Blaise, G. Rémond, and C. Roques-Carmes, J. Appl. Phys., 88, 6413 (2000).