Bacteria related to tick-borne pathogen assemblages in *Ornithodoros* cf. *hasei* (Acari: *Argasidae*) and blood of the wild mammal hosts in the Orinoquia region, Colombia

Juan D. Carvajal-Agudelo1 · Héctor E. Ramírez-Chaves1,2 · Paula A. Ossa-López1,3 · Fredy A. Rivera-Páez1

Received: 21 October 2021 / Accepted: 16 June 2022 / Published online: 13 July 2022
© The Author(s) 2022

Abstract

Interest in research on soft ticks has increased in recent decades, leading to valuable insight into their role as disease vectors. The use of metagenomics-based analyses have helped to elucidate ecological factors involved in pathogen, vector, and host dynamics. To understand the main bacterial assemblages present in *Ornithodoros* cf. *hasei* and its mammalian hosts, 84 ticks and 13 blood samples from bat hosts (Chiroptera) were selected, and the 16S rRNA gene V4 region was sequenced in five pools (each one related to each host-tick pairing). Bacterial taxonomic assignment analyses were performed by comparing operational taxonomic units (OTUs) shared between ticks and their host blood. This analysis showed the presence of Proteobacteria (38.8%), Enterobacteriaceae (25%), Firmicutes (12.3%), and Actinobacteria (10.9%) within blood samples, and Rickettsiaceae (39%), Firmicutes (25%), Actinobacteria (13.1%), and Proteobacteria (9%) within ticks. Species related to potentially pathogenic genera were detected in ticks, such as *Borrelia* sp., *Bartonella* tamiae, *Ehrlichia* sp. and *Rickettsia*-like endosymbiont, and the presence of these organisms was found in all analyzed bat species (*Cynomops planirostris, Molossus pretiosus, Noctilio albiventris*), and *O. cf. hasei*. About 41–48.6% of bacterial OTUs (genera and species) were shared between ticks and the blood of bat hosts. Targeted metagenomic screening techniques allowed the detection of tick-associated pathogens for *O. cf. hasei* and small mammals for the first time, enabling future research on many of these pathogens.

Keywords *Borrelia* · Chiroptera · Endosymbiont · Microbiome · Soft tick · *Rickettsia*
Introduction

Globally, ticks comprise about 955 species from three families: Ixodidae (ca. 736 species), Argasidae (ca. 218 species) and Nuttalliellidae (1 species), and about a quarter of all species are found within the Neotropical region (Dantas-Torres et al. 2019). Common methods to investigate the role of ticks as a disease vector involve DNA-based diagnostic molecular methods (i.e., PCR-based), but these methods alone are unable to provide insight into other ecological factors (e.g., transmission of organisms between tick species and hosts, detection of other microorganisms, parasite loads, etc. (Estrada-Peña et al. 2013; Tijsse-Klasen et al. 2014; Cabezas-Cruz et al. 2018). Targeted microbiome analysis enables the detection and identification of bacteria assemblages by metagenomic profiling (Cabezas-Cruz et al. 2018; Greay et al. 2018; Thoendel 2020) and has allowed for increased detection of new microorganism species, strains, and genetic variation within ticks (Tokarz and Lipkin 2021). The list of potential tick-borne pathogens is growing (Shapiro et al. 2010; Subramanian et al. 2012; Wu-Chuang et al. 2021) and microbiome studies are beginning to take on a critical role in the functional investigation of microbial communities; this is largely due to the understanding of vector-borne diseases in relation to their pathogenicity, ecology, reproduction, potential hosts, and the implication in human and animal public health (Vílcins et al. 2009; Rynkiewicz et al. 2015; Bonnet et al. 2017). For hard ticks from the genus Amblyomma (A. americanum, A. maculatum, A. tuberculatum), Ixodes rici-nus, and Rhipicephalus microplus, microbiome analyses have been successfully used to characterize bacterial communities involving pathogenic bacteria species such as Borrelia, Anaplasma, Rickettsia and Ehrlichia (Andreotti et al. 2011; Carpi et al. 2011; Menchaca et al. 2013; Budachetri et al. 2014, 2016; Wu-Chuang et al. 2021), whereas other studies have focused on complete pathobiome analysis involving ticks (Vayssier-Taussat et al. 2015; Bennett 2017; Zhuang et al. 2018; Tufts et al. 2020). Similarly, research on soft ticks (Argasidae) has gained importance in recent decades and has provided considerable information on the ecology, taxonomy, systematics, and their role as vectors of pathogens (Wen and Chen 2016; Nava et al. 2017). Nonetheless, studies focusing on bacterial assemblages of soft ticks are known for limited species such as Argas japonicus with special interest in pathogens such as Rickettsia (Yan et al. 2019); Ornithodoros muesebecki with interest in pathogenic groups such as Borrelia, Coxiella, and Rickettsia (Alkayyoomi 2018); and Ornithodoros turicata and its general microbiome (Barraza-Guerrero et al. 2020). In Latin America, studies on soft ticks have focused on the role as vectors of Anaplasma, Borrelia, and Rickettsia (Loftis et al. 2005; Tahir et al. 2016; Muñoz-Leal et al. 2019; Luz et al. 2019; de Oliveira et al. 2020). Nonetheless, other epidemiological groups of argasid-related organisms such as Coxiella, responsible for Crimean-Congo hemorrhagic fever, West Nile virus, and Royal Farm virus, have re-emerged as common pathogens (Manzano-Román et al. 2012; Sarwar 2017; Diaz 2021; Hanafi-Bojd et al. 2021; Kazim et al. 2021).

In Colombia, studies involving ticks, bacterial assemblages and pathogens related to soft ticks are incipient and fragmented. Within the 58 tick species found, 51 are associated with wild mammals Hidalgo et al. 2011; Esser et al. 2016; Faccini-Martínez et al. 2016; Rivera-Páez et al. 2018a; Guglielmon 2021; Ortíz-Giraldo et al. 2021): 43 of these species belong to Ixodidae and 15 to Argasidae. For the latter, 12 species (Antricola mexicanus and 11 species of the genus Ornithodoros: O. azteci, O. brodyi, O. hasei, O. marmosae, O. peropteryx, O. puertoricensis, O. rossi, O. rudis, O. talaje and O. yumatensis) are related to mammals (Ortíz-Giraldo et al. 2021). Some species distributed in Colombia such as O. rudis have been related to recurrent fevers in the 20th century
In particular, *Ornithodoros hasei* (Schulze), is one of the most widely distributed soft ticks in South America and is present in about 20 countries (Nava et al. 2017) where it has been primarily associated with bats (Marinkelle and Grose 1981; Ortíz-Giraldo et al. 2021). Molecular detection of *Rickettsia* has been verified in *O. hasei* in Argentina (Colombo et al. 2020), French Guyana (Tahir et al. 2016) and *Borrelia* in Brazil (Muñoz-Leal et al. 2021a). In Colombia, *O. hasei* has been recorded mainly in bats (Marinkelle and Grose 1981; Tarquino-Carbonell et al. 2015; Ortíz-Giraldo et al. 2021); however, to date there are no reports of the presence of associated pathogens. Given this, the objective of this study is to describe the main bacterial and the related to tick-borne pathogens assemblages present in *Ornithodoros cf. hasei* and its mammalian hosts in the Orinoquia region of Colombia.

Materials and methods

Collection of samples and identification of specimens

Samples were obtained in the municipalities of Arauca, Cravo Norte, Tame, Department of Arauca (Orinoquia region of Colombia), between November and December 2018, and March, July, and August 2019 (Table S1). Bats (Chiroptera) were captured and sampled using standard protocols (Bazán-León 2011). The collected ticks were stored in 2-mL Eppendorf tubes with 96% ethanol. Blood samples were taken from mammal samples hosting argasids via axillary venipuncture, and deposited in 5-mL heparinized tubes mixed at a 1:9 ratios with DNA/RNA Shield reagent (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions and stored at −80 °C.

Sample collection was conducted under the framework permit granted by the National Environmental Licensing Authority (ANLA) to the Universidad de Caldas as stipulated in resolution 02497 of December 31, 2018. Additionally, no species registered in the list of threatened wild species of Colombian biological diversity consigned in resolution nr. 1912 of 2017 were collected. All samples and specimens collected were deposited in the mammal collection of the Museum of Natural History of the Universidad de Caldas (MHN-UCa), and identified using taxonomic keys (e.g., Gardner 2008).

Morphological identification of soft ticks to species level was performed following clarification in 25% KOH and fixation in Hoyer medium (Muñoz-Leal et al. 2019). The dichotomous keys of Filippova (1966), Hoogstraal (1985), Klompen and Oliver (1993), Camicas et al. (1998) and Battesti et al. (2006) were used. After morphological identification, individuals were processed for DNA extraction using the DNeasy Blood and Tissue kit (Qiagen) according to the manufacturer’s suggested protocol. DNA extracted from each tick was amplified via PCR targeting an approximate 460 bp fragment corresponding to the mitochondrial 16S rDNA gene using primers F 5′-CCG GTC TGA ACT CAG ATC AAG-3′ and R 5′-GCT CAA TGA TTT TTT AAA TTG CTG-3′ (Mangold et al. 1998). The amplicons were used for Sanger sequencing at Macrogen (Seoul, South Korea). Confirmation of soft tick species was performed using BLAST and comparison of a maximum likelihood (ML) similarity analysis with 1000 iterations in MEGA X and a Bayesian (BY) analysis using MrBayes v.3.2.7 (Ronquist et al. 2012) via CIPRES tool (Miller et al. 2011), employing four independent Markov chains, 15,000000 generations and sampling every 1000 generations. The first 25% of the trees
were discarded and the remaining trees were used to calculate posterior probability values. The trees were edited using the iTOL tool (Letunic and Bork 2019). Identification and analysis of ticks were performed based on similarity comparisons with public sequences in GenBank and BOLD (Barcode of Life Data Systems) databases. The sequences obtained in this study were deposited in GenBank (accessions MZ773894–MZ773899).

Sample selection, preparation, and sequencing

All ticks selected were attached to the hosts (feeding stage). For tick pools, a selection was made on the abundance of ticks found on the hosts, and only the samples that contained ticks and the mammalian blood collected on RNA/DNA-shield were used. This selection included five pools of ticks, as well as blood pools from bat species such as *Cynomops planirostris*, *Molossus pretiosus*, *Myotis handleyi*, and two pools from *Noctilio albiventris* (Table 1). Ticks were sterilized using 1% sodium hypochlorite followed by washes with 70% ethanol and distilled water (Binetruy et al. 2019). DNA from ticks and blood of wild mammals was obtained using ZymoBIOMICS DNA/RNA Miniprep Kit (Zymo Research), according to the specific instructions that involve the maceration of all samples through bead beating (30 min), and specifically for blood, 750 µL of sampled blood (blood + RNA/DNA shield) were used to the whole process according to the specific instructions. Samples were prepared in argasid and mammalian blood pools. Samples were sent for sequencing to amplify the V4 region of the 16S gene (ca. 250 bp) bacterial rRNA (fusion primers/515F-806R) using the targeted sequencing service at BGI Genomics (Hong Kong, China). This includes quality control to verify the viability of the sequencing process, 16S gene library preparation and use of the Illumina HiSeq2500 sequencing platform to obtain amplified reads.

Bioinformatics analysis

Sequences were individually filtered to obtain high quality clean sequences using fqtools software; fqcheck (v.0.25), readfq (v.1.0) (removal of truncated reads and reads below 75% length) (Fadrosh et al. 2014; Droop 2016); and cutadapt (v.2.6) (Martin 2011), to remove reads contaminated with adapter sequences, ambiguous bases (N bases), and low complexity. Sequence consensus of paired-end reads was performed using FLASH v.1.2.11 (Magoč and Salzberg 2011). Clustering, chimera removal, rarefaction curves, Shannon index, and sequence identification at 97% identity was performed in QIIME 2 (v.2021.04) (Estaki et al. 2020). Operational taxonomic units (OTUs) were generated using the VSEARCH tool (Rognes et al. 2016) and the Greengenes database (Kaehler et al. 2019). The MEGAN v4 program was used to compare the readings with NCBI (Huson and Mitra, 2012). To relate the shared bacterial communities between ticks and hosts, a Venn diagram was made using the taxonomic classification of OTUs (genus and species) by means of the vegan package (Oksanen et al. 2013), in the R v.4.0 program. Sequences are available under the BioProject ID PRJNA767818.

Results

In total, 169 soft ticks of the genus *Ornithodoros* were collected from 19 bats: 163 larvae and 6 nymphs (Table S1). The ticks involved in the study were morphologically and molecularly assigned to *O. cf. hasei*, based on the following combination of traits: 19 pairs of
Table 1 Conformation of the pools used in the study for *Ornithodoros cf. hasei* ticks and blood from wild mammals of Arauca, Orinoquia region, Colombia (all ticks used in the study were in the larval stage)

Pool ID	Museum code	No. ticks	Host	Locality	Coordinates
3AS	MHN-UCa-M 2808	1	*Molossus pretiosus*	Arauca, Vereda El Socorro, Finca Los Trompillos	06°47'3.23" N 70°42'8.2" W
	MHN-UCa-M 2863	1	*Molossus pretiosus*	Arauca, Vereda El Socorro, Finca Los Trompillos	06°47'3.23" N 70°42'8.2" W
	MHN-UCa-M 2822	10	*Molossus pretiosus*	Arauca, Vereda El Socorro, Finca Los Trompillos	06°47'3.23" N 70°42'8.2" W
	MHN-UCa-M 2869	2	*Molossus pretiosus*	Arauca, Vereda El Socorro, Finca Los Trompillos	06°47'3.23" N 70°42'8.2" W
5AS	MHN-UCa-M 2327	1	*Cynomops planirostris*	Cravo Norte, Vereda El Deleite	06°32'25.2" N 70°31'23.6" W
	MHN-UCa-M 2328	1	*Cynomops planirostris*	Cravo Norte, Vereda El Deleite	06°32'25.2" N 70°31'23.6" W
	MHN-UCa-M 2317	1	*Cynomops planirostris*	Arauca, Vereda Las Plumas, Sitio Los Cunaguaro	06°36'15" N 70°29'52" W
	MHN-UCa-M 2323	1	*Cynomops planirostris*	Arauca, Vereda Las Plumas, Sitio Los Cunaguaro	06°36'15" N 70°29'52" W
6AS*	MHN-UCa-M 2265	3	*Noctilio albiventris*	Cravo Norte, Vereda El Deleite	06°32'25.2" N 70°31'23.6" W
	MHN-UCa-M 2253	6	*Noctilio albiventris*	Cravo Norte, Vereda El Deleite	06°32'25.2" N 70°31'23.6" W
	MHN-UCa-M 2262	1	*Noctilio albiventris*	Cravo Norte, Vereda El Deleite	06°32'25.2" N 70°31'23.6" W
7AS	MHN-UCa-M 2806	50	*Noctilio albiventris*	Arauca, Vereda El Socorro, Finca Los Trompillos	06°47'3.23" N 70°42'8.2" W
8AS	MHN-UCa-M 2928	6	*Myotis handleyi*	Arauca, Campus Universidad Nacional Sede Orinoquia, Vereda Mategallina, road to Caño Limón	07°0'8.47" N 70°44'44.2" W

*The 6SAN pool belongs to the *N. albiventris* marked in all the document as *
setae on the dorsal, three pair sternal setae (ventral), three pair circumananal setae (ventral), four central setae (dorsal), seven pairs of anterolateral setae (dorsal), eight pairs of posterolateral setae (dorsal) and pointed end hypostome with three rows of teeth on the distal end. The 16 S rDNA gene sequences showed a similarity of 95.3–95.6% with other sequences belonging to O. hasei. Nymphs were only confirmed molecularly as O. cf. hasei comparing the sequences with the larvae (100% similarity). ML analysis placed this species with other O. hasei specimens from Brazil and Argentina (Fig. 1).

In total 3,427924 sequencing reads were obtained from the total samples; 1,613538 reads from tick samples and 1,814386 reads from mammalian blood samples. The average number of reads for each sample was 107123 (57288–154859) and with an average length of 297 bp. The Shannon index and the species accumulation curves showed that all samples except for 8SAN-pool manage to achieve a correct species richness upon sampling (Fig. 2). Argasid pools presented a higher diversity (higher number of taxa described) of bacteria found, as well as a higher average number of reads (115252) compared to host blood (100799) (Table S2). Based on the analysis of bacterial abundances and identification, bacterial groups belonging to Proteobacteria (38.8%), Enterobacteriaceae (25%), Firmicutes (12.3%) and Actinobacteria (10.9%) were found in mammalian blood. For ticks, higher abundances were found for Rickettsiaceae (39%), Firmicutes (25%), Actinobacteria (13.1%) and Proteobacteria (9%) and between 0.8 and 1.41% was not taxonomically assigned (Fig. 3).

The readings confirmed the presence of tick-associated pathogenic bacteria, which were found on the families Anaplasmacetaceae, Bartonellaceae, Borrelliaceae, Francisellaceae and Rickettsiaceae (Table 2). Rickettsiaceae presented the highest abundance (up to 85%), represented mainly by Rickettsia-like endosymbionts. The identification of the deepest taxonomic level for the pathogenic species resulted as Borrelia sp., Bartonella tamiae, Ehrlichia sp., Francisella cantonensis, and Rickettsia-like endosimbiont. Bartonella tamiae and Francisella cantonensis species were not found to be present in both tick and host blood samples. Francisella cantonensis was only detected in O. cf. hasei. Analysis of shared OTUs (genera and species) between ticks and host blood showed that about 41–48.6% is shared (Fig. 4).

Discussion

Our results demonstrate the high diversity of bacteria found in both the blood of small wild mammals and ticks. The results agree with previous studies where Actinobacteria, Proteobacteria and Firmicutes, are the most common bacteria in the tick-related microbiome (Narasimhan and Fikrig 2015), such as O. turicata (Barraza-Guerrero et al. 2020), A. americanum (Maldonado-Ruiz et al. 2021) and A. tuberculatum (Budachetri et al. 2016). Moreover, Proteobacteria has been related as one of the most common and dominant bacterial types in the tick microbiome in general, and it has been reported as the main abundant taxon in species such as A. japonicus (Yan et al. 2019), Dermacentor marginatus, I. ricinus, and Rhipicephalus sanguineus (Portillo et al. 2019). On the other hand, although Proteobacteria is abundant in the blood of mammals, in ticks it was the most prominent in only half of the pools, Rickettsiaceae dominating the other half. The dominance of Rickettsiaceae is comprised on two taxa: Rickettsia-like endosymbionts and Wolbachia-like endosymbionts (Table 2). These two taxa have been considered as parasites of ticks and in the case of Rickettsia as disease-causing in vertebrates (Miranda et al. 2012; Plantard...
et al. 2012; Rivera-Páez et al. 2018a, b; López-Pérez et al. 2019; Muñoz-Leal et al. 2019; Bobo 2020), and specifically related to soft ticks (Duh et al. 2010; Sánchez-Montes et al. 2016; Muñoz-Leal et al. 2019; Han et al. 2021; Peixoto et al. 2021). In addition, both have been related to the transmission or interference to other pathogens or bacterial communities (Haine 2008; Walker et al. 2011).

Other tick-related pathogenic bacteria include the families Anaplasmacetaceae, Bartonellaceae, Borreliaeae and Francisellaeae (Table 1). In the case of Anaplasmacetaceae,
Ehrlichia has been reported widely for ticks of the genus Amblyomma and Rhipicephalus (Bekker et al. 2002; Loftis et al. 2006; Stich et al. 2008; Doudier et al. 2010). Although Ehrlichia is not related with soft ticks, it has been listed as an effective pathogen in

Fig. 2 Shannon index and species accumulation curves (Observed) for each pool sequenced

Ehrlichia has been reported widely for ticks of the genus Amblyomma and Rhipicephalus (Bekker et al. 2002; Loftis et al. 2006; Stich et al. 2008; Doudier et al. 2010). Although Ehrlichia is not related with soft ticks, it has been listed as an effective pathogen in
Fig. 3 Relative abundance of bacterial taxa in *Ornithodoros* cf. *hasei* from the blood of their mammalian hosts. Bacterial taxa are grouped at the phyla (top panel) and family (bottom panel) level. Every bar represents a pooled sample for *O. cf. hasei* and the corresponding mammalian host blood (Table 1). The order of taxa and their respective color is consistent from top to bottom.
Table 2 Description of taxa detected in the study related to ticks, abundance, and their relationship with hosts (direct: present in ticks and host and not direct: present in only one organism)

Host	Relation	Family	Genus	Abundance (%)
O. cf. hasei – M. pretiosus	Direct (M. pretiosus – O. cf. hasei)	Anaplasmacetaceae	Ehrlichia sp.	0.005–0.091
O. cf. hasei, N. albiventeris and C. planirostris	Direct (N. albiventeris – O. cf. hasei)	Borreliaceae	Borrelia sp.	0.007–2.61
O. cf. hasei – N. albiventeris	Not direct	Bartonellaceae	Bartonella taniae	0.008–5.26
O. cf. hasei	Not direct	Francisellaceae	Francisella cantonensis	0.01
O. cf. hasei, N. albiventeris, C. planirostris and M. pretiosus	Direct (N. albiventeris/M. pretiosus/C. planirostris – O. cf. hasei)	Rickettsiaceae	Rickettsia-like endosimbiont	0.08–85
circulation among mammals, such as *E. canis* (Stich et al. 2008). Therefore, central studies in mammals could reveal much more information about its cycle and related vectors. *Ehrlichia* sp. was detected only in ticks and in the blood one bat host (*Molossus pretiosus*) (Table 2). Meanwhile, *Bartonella* and *Francisella* have been most frequently associated with tick-borne transmission, which may contribute to disease in humans (Sun et al. 2000; Chang et al. 2001; Johnson et al. 2003; Scoles 2004; Chomel et al. 2006; Petersen et al. 2009; Gerhart et al. 2016; Wechtaisong et al. 2020). Specifically, *Bartonella tamiae* has been considered a notable pathogen due to reports of blood in humans in Thailand (Kosoy et al. 2008), and ticks of the genus *Ixodes* in Algeria (Leulmi et al. 2016). *Francisella* *cantonensis* is known primarily as an aquatic species (Duodu et al. 2012), though it has been isolated from air systems (Qu et al. 2009). The ability of *F. cantonensis* to act as a pathogen has yet to be determined in humans or other animals, though this requires more research (Qu et al. 2009; Duodu et al. 2012). Given this, the detection of the genus in metagenomic methodologies is critical, as the identification of species-level using a short 16 S segment is highly variable (Poretsky et al. 2014).

Borrelia was primarily detected in wild mammal species in the study (*C. planirostris, N. albiventris*). Despite this prevalence, OTUs analysis did not determine a preferred species for *Borrelia* readings, which could suggest the presence of a new species. Reports of *Borrelia* in ticks and wild mammals have been increasing in recent years in South America (Ataliba et al. 2007; Kelly et al. 2014; Muñoz-Leal et al. 2018, 2021b; Morel et al. 2019; Sánchez et al. 2020), but with few records in Colombia (Marinkelle and Grose 1968; Muñoz-Leal et al. 2021b). *Borrelia* and *Rickettsia* have been the only confirmed potential pathogenic bacteria related to *O. hasei* (Tahir et al. 2016; Colombo et al. 2020; Muñoz-Leal et al. 2021a), however, all recorded pathogenic genera were detected in *O. cf. hasei* (Table 2), which relates this tick to the presence of other pathogenic bacteria that have not been studied or classified. The presence of these bacteria could come directly from

Fig. 4 Operational taxonomic units (OTUs) shared at the genus and species level for each tick pool and corresponding mammalian host blood. The overall represent all the genus and species OTUs found in the whole pools of tick and mammals.
contamination of blood shared by hosts (Wu-Chuang et al. 2021). Therefore, the role of O. hasei and the maintenance of pathogenic bacteria from hosts has not been fully studied, and the role of O. hasei and its relationship to the presence of Borrelia in South America is still under investigation (Shapiro and Gerber 2011; Wang 2015; Robles et al. 2018; O’Keeffe et al. 2020).

Several studies have been conducted on the shared bacterial assemblages in the microbiome of ticks and blood of their wild hosts (Zhang et al. 2014; Swei and Kwan 2017), as well as in experimental methodologies (Rynkiewicz et al. 2015). These studies have identified a large variety of bacterial species that could be potential pathogens for vertebrates, and a large percentage of bacterial communities that could be transmitted during the feeding process (Zhang et al. 2014; Rynkiewicz et al. 2015; Swei and Kwan 2017). The analysis of OTUs in our study showed that about 41–48.6% are shared between ticks and their hosts (Fig. 4). Previous studies have shown that blood from wild hosts and the suction process during tick feeding is a possible mechanism for sharing of bacterial assemblages (Rynkiewicz et al. 2015; Swei and Kwan 2017). Moreover, there are several factors that may involve host-parasite contamination, such as the presence of non-pathogenic symbiotic communities from the surrounding environment of the sample and errors in sample handling (Wu-Chuang et al. 2021). Thus, the results of this study may suggest that, although a large number of OTUs are shared, only a small proportion may actually be transmissible, and a smaller proportion has pathogenic potential. Other studies have related the shared microbiome to non-pathogenic symbiont species, though this may be confounded by low resolution in species identification analyses (Rynkiewicz et al. 2015; Barraza-Guerrero et al. 2020; Wu-Chuang et al. 2021).

Conclusions

The detection of genera such as Ehrlichia, Bartonella, Borrelia and Rickettsia, allows the involvement of a significant and direct relationship between ticks and wild mammals. However, transmission by other related vectors in the study area must be elucidated. Wild mammals are rarely included in microbiome screening studies or in the search for new bacteria with pathogenic potential. In this sense, the inclusion of these species is emphasized in order to elucidate the dynamics of the disease ecology in which they may be involved.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10493-022-00724-9.

Acknowledgements We thank to Universidad de Caldas, Universidad Católica de Manizales, Unidad Administrativa Especial de Salud de Arauca, Universidad Nacional Campus Orinoquia, and all the landowners and the general community of the localities. We thank Dr. Sebastian Muñoz Leal for confirming the species of soft ticks related to bats in the study. We also thank to the ELAP (Emerging Leaders in the Americas Program) of the Global Affairs Canada for the travel and research support of Juan David Carvajal Agudelo (JDCA) to Mount Allison University, Sackville, NB, Canada. Ministerio de Ciencia, Tecnología e Innovación de Colombia—Minciencias for funding the PhD in Science-Biology of the student Paula Andrea Ossa López (PAOL) “Convocatoria del Fondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías para la conformación de una lista de proyectos elegibles para ser viabilizados, priorizados y aprobados por el OCAD dentro del Programa de Becas de Excelencia cohorte 1–2019”.

Funding Open Access funding provided by Colombia Consortium. This project was funded by the Ministerio de Ciencia, Tecnología e innovación—Minciencias; Project ‘El papel de las aves y pequeños mamíferos silvestres en la circulación de garrapatas y rickettsias en el departamento de Arauca (Orinoquia
colombiana’ [code: 11277758193, contract 858 of 2017], and by the Vicerrectoria de Investigaciones y Posgrados—’Ticks (Acari: Ixodidae) of small mammals in Arauca (Arauca, Colombia): an approach to the transmission cycle of borreliosis or Lyme disease’ [Code: 0277620].

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alkayyoomi RN (2018) Metagenomic profile of the bacterial communities associated with *Ornithodoros Muesebecki* (Acari: Argasidae) ticks on Socotra cormorant colony in the United Arab Emirates and presence of three important pathogenic groups in them. United Arab Emirates University. Biology thesis

Andreotti R, de Leon AAP, Dowd SE, Guerrero FD, Bendele KG, Scoles GA (2011) Assessment of bacterial diversity in the cattle tick *Rhipicephalus (Boophilus) microplus* through tag-encoded pyrosequencing. BMC Microbiol. https://doi.org/10.1186/1471-2180-11-6

Ataliba AC, Resende JS, Yoshinari N, Labruna MB (2007) Isolation and molecular characterization of a Brazilian strain of *Borrelia anserina*, the agent of fowl spirochaetosis. Res Vet Sci 83:145–149. https://doi.org/10.1016/j.rvsc.2006.11.014

Barraza-Guerrero SI, Meza-Herrera CA, García-De la Peña C, González-Álvarez VH, Vaca-Paniagua F, Díaz-Velasquez CE, Sánchez-Tortosa F, Ávila-Rodríguez V, Valenzuela-Núñez LM, Herrera-Salazar JC (2020) General microbiota of the soft tick *Ornithodoros turicata* parasitizing the *Bolson Tortoise* (Gopherus flavomarginatus) in the Mapimi biosphere reserve. Mexico Biol 9:275. https://doi.org/10.3390/biology9090275

Battesti DMB, Arzua M, Bechara GH (2006) Carrapatos de importância médico-veterinária da região neotropical: um guia ilustrado para identificação de espécies, in: Carrapatos de Importância Médico-Veterinária Da Região Neotropical: Um Guia Ilustrado Para Identificação de Espécies. pp. xvi–223

Bazán-León EA (2011) Ecología parasitaria de dos especies de pequeños mamíferos de Chile, *Abrothrix olivaceus* (Rodentia-Cricetidae) y *Thylamys elegans* (Didelphimorphia-Didelphidae), *Abrothrix olivaceus* (Rodentia: Cricetidae) y *Thylamys elegans* (Didelphimorphia: Didelphidae). Tesis (Magister en Ciencias, mención Ecología y Biología Evolutiva). Santiago, Chile. Universidad de Chile, Facultad de Ciencias, 2011. 108 p

Bekker CPJ, De Vos S, Taoufik A, Sparagano OAE, Jongejan F (2002) Simultaneous detection of *Anaplasm* and *Ehrlichia* species in ruminants and detection of *Ehrlichia ruminantium* in *Amblyomma variegatum* ticks by reverse line blot hybridization. Vet Microbiol 89:223–238. https://doi.org/10.1016/s0378-1135(02)00179-7

Bennett S (2017) The complex eco-epidemiology of tick borne disease: ticks, hosts and pathobiomes in an urbanizing environment. University of Minnesota Ph.D. dissertation. https://hdl.handle.net/11299/191397

Binetruy F, Dupraz M, Buyssse M, Duron O (2019) Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites & Vectors 12(1):1–10. https://doi.org/10.1186/s13071-019-3517-5

Bobo CG (2020) Molecular characterization of *Wolbachia* and its impact on the microbiome of exotic and united states ticks. The University of Southern Mississippi. Honors Bachelor Theses. 702. https://aquila.usm.edu/honors_theses/702
Bonnet SI, Binetruy F, Hernandez-Jarguin AM, Duron O (2017) The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2017.00236

Budachetri K, Browning RE, Adamson SW, Dowd SE, Chao C-C, Ching W-M, Karim S (2014) An insight into the microbiome of the *Amblyomma maculatum* (Acari: Ixodidae). J Med Entomol 51:119–129. https://doi.org/10.1603/ME12223

Budachetri K, Gaillard D, Williams J, Mukherjee N, Karim S (2016) A snapshot of the microbiome of *Amblyomma tuberculatum* ticks infesting the gopher tortoise, an endangered species. Ticks Tick Borne Dis 7:1225–1229. https://doi.org/10.1016/j.ttbdis.2016.07.010

Cabezas-Cruz A, Vayssier-Taussat M, Greub G (2018) Tick-borne pathogen detection: what’s new? Microbes Infect 20:441–444. https://doi.org/10.1016/j.micinf.2017.12.015

Camicas JL, Hervy JP, Adam F, Morel PC (1998) The ticks of the world (Acarida, Ixodida): nomenclature, described stages, hosts, distribution. Éditions de l’Orstom, Paris. The Food and Agriculture Organization (FAO)

Carpi G, Cagnacci F, Wittekindt NE, Zhao F, Qi J, Tomsho LP, Drautz DI, Rizzoli A, Schuster SC (2011) Metagenomic profile of the bacterial communities associated with *Ixodes ricinus* ticks. PLoS ONE. https://doi.org/10.1371/journal.pone.0025604

Chang CC, Chomel BB, Kasten RW, Romano V, Tietze N (2001) Molecular evidence of Bartonella spp. in questing adult *Ixodes pacificus* ticks in California. J Clin Microbiol 39:1221–1226. https://doi.org/10.1128/jcm.39.4.1221-1226.2001

Chomel BB, Boulouis H-J, Maruyama S, Breitschwerdt EB (2006) Bartonella spp. in pets and effect on human health. Emerg Infect Dis 12:389. https://doi.org/10.1016/j.eid.2005.10.003

Colombo VC, Montani ME, Pavé R, Antoniazzi LR, Gamboa MD, Fasano AA, Félix ML, Nava S, Venzal JM (2020) First detection of “*Candidatus Rickettsia wissemannii*” in *Ornithodoros hasei* (Schulze,1935) (Acari: Argasidae) from Argentina. Ticks Tick Borne Dis. https://doi.org/10.1016/j.ttbdis.2020.101442

Dantas-Torres F, Fernandes Martins T, Muñoz-Leal S, Onofrio VC, Barros-Battesti DM (2019) Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: updated species checklist and taxonomic keys. Ticks Tick Borne Dis 10:101252. https://doi.org/10.1016/j.ttbdis.2019.06.012

de Oliveira GMB, da Silva IWG, da Cruz Ferreira Evaristo AM, de Azevedo Serpa MC, Silva Campos AN, Dutra V, Nakazato L, de Aguiar DM, Bahia Labruna M, Horta MC (2020) Tick-borne pathogens in dogs, wild small mammals and their ectoparasisites in the semi-arid Caatinga biome, northeastern Brazil. Ticks Tick Borne Dis. https://doi.org/10.1016/j.ttbdis.2020.101409

Diaz A (2021) Flaviviruses and where the Zika virus fits in: an overview. Zika Virus Biol Transm Pathol. https://doi.org/10.1016/b978-0-12-820268-5.00001-8

Droop AP (2016) fqtools: an efficient software suite for modern FASTQ file manipulation. Bioinformatics 32:1883–1884. https://doi.org/10.1093/bioinformatics/btw088

Doudier B, Olano J, Parola P, Brouqui P (2010) Factors contributing to emergence of *Ehrlichia* and *Anaplasma* spp. as human pathogens. Veterinary Parasitol 167(2–4):149–154. https://doi.org/10.1016/j.vetpar.2009.09.016

Duh D, Punda-Polic V, Avsic-Zupanc T, Bouyer D, Walker DH, Popov VL, Jelovsek M, Gracner M, Trilar T, Bradaric N, Kurtti TJ, Strus J (2010) *Rickettsia hoogstraalii* sp. nov., isolated from hardand soft-bodied ticks. Int J Syst Evol Microbiol 60:977–984. https://doi.org/10.1099/ijes.0.011049-0

Duodu S, Larsson P, Sjödin A, Forsman M, Colquhoun DJ (2012) The distribution of Francisella-like bacteria associated with coastal waters in Norway. Microb Ecol 64:370–377. https://doi.org/10.1007/s00248-012-0023-0

Esser HJ, Herre EA, Blüthgen N, Loaiza JR, Bermúdez SE, Jansen PA (2016) Host specificity in a diverse neotropical tick community: an assessment using quantitative network analysis and host phylody. Parasit Vectors. https://doi.org/10.1186/s13071-016-1655-6

Estaki M, Jiang L, Bokulich NA, McDonald D, González A, Kosciulek T, Martino C, Zhu Q, Birmingham A, Vázquez-Baeza Y (2020) QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr Protec Bioinforma 70:e100. https://doi.org/10.1002/cpbi.100

Estrada-Peña A, Gray JS, Kahl O, Lane RS, Njhoff AM (2013) Research on the ecology of ticks and tick-borne pathogens—methodological principles and caveats. Front Cell Infect Microbiol 3:29. https://doi.org/10.3389/fcimb.2013.00029

Faccini-Martínez AA, Botero-García CA (2016) Regarding tick-borne relapsing fever in the Americas: some historical aspects of a forgotten disease in Colombia. Vet Sci. https://doi.org/10.3390/vetsci3040033
Faccini-Martínez ÁA, Ramírez-Hernández A, Forero-Becerra E, Cortés-Vecino JA, Escandón P, Rodas JD, Palomar AM, Portillo A, Oteo JA, Hidalgo M (2016) Molecular evidence of different *Rickettsia* Species in Villeta, Colombia. Vector-Borne Zoonotic Dis 16:85–87. https://doi.org/10.1089/vbz.2015.1841

Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brozman RM, Ravel J (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2:1–7. https://doi.org/10.1186/2049-2618-2-6

Filippova N (1966) Argasid ticks (Argasidae). Fauna SSSR Paukoobraznye 96:1–269

Franco R, Toro G, Martínez J (1911) Fiebre amarilla y fiebre espiroquetal. Ses. Científicas del Centen. Acad Nac Med Bogota 1:169–227

Gardner AL (2008) Mammals of South America, volume 1: marsupials, xenarthrans, shrews, and bats. University of Chicago Press, Chicago, Illinois

Gerhart JG, Moses AS, Raghavan R (2016) A Francisella-like endosymbiont in the gulf coast tick evolved from a mammalian pathogen. Sci Rep 6:1–6. https://doi.org/10.1038/srep33670

Greay TL, Gofton AW, Paparini A, Ryan UM, Oskam CL, Irwin PJ (2018) Recent insights into the tick microbiome gained through next-generation sequencing. Parasit Vectors. https://doi.org/10.1186/s13071-017-2550-5

Guglielmone AA (2021) Neotropical hard ticks (Acari: Ixodidae): a critical analysis of their taxonomy, distribution, and host relationships. Springer, Heidelberg

Haine ER (2008) Symbiont-mediated protection. Proc R Soc Biol Sci 275:353–361

Han S-W, Chae J-B, Jo Y-S, Cho Y-K, Kang J-G, Shin N-S, Youn H-J, Youn H-Y, Nam H-M, Kim H-J (2021) First detection of *Borrelia* and *Rickettsia* species from *Ornithodoros* ticks in the Republic of Korea. Ticks Tick Borne Dis 12:101689. https://doi.org/10.1016/j.ttbdis.2021.101689

Hanafi-Bojd AA, Jafari S, Telmadarraiy Z, Abbasi-Ghahramanloo A, Moradi-Asl E (2021) Spatial distribution of ticks (Arachnida: Argasidae and Ixodidae) and their infection rate to crimean-Congo hemorrhagic fever virus in Iran. J Arthropod Borne Dis. https://doi.org/10.18502/jad.v15i1.6485

Hidalgo M, Miranda J, Heredia D, Zambrano P, Vesga JF, Lizarrazo D, Mattar S, Valbuena G (2011) Outbreak of rocky mountain spotted fever in Córdoba, Colombia. Mem Inst Oswaldo Cruz 106:117–118. https://doi.org/10.1590/ S0074-0276201100100019

Hoogstraal H (1985) Argasid and nuttallielid ticks as parasites and vectors. Adv Parasitol 25:353–361

Huson DH, Beier S, Flade I, Górská A, El-Hadidi M, Mitra S, Tappu R (2016) MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12(6):e1004957. https://doi.org/10.1371/journal.pcbi.1004957

Huson DH, Mitra S (2012) Introduction to the analysis of environmental sequences: metagenomics with MEGAN, Evolutionary Genomics. Humana Press, pp 415–429. https://doi.org/10.1007/978-1-61779-585-5_17

Johnson G, Ayers M, McClure SCC, Richardson SE, Tellier R (2003) Detection and identification of *Bartonella* species pathogenic for humans by PCR amplification targeting the riboflavin synthase gene (ribC). J Clin Microbiol 41:1069–1072. https://doi.org/10.1128/JCM.41.3.1069-1072.2003

Kaehler BD, Bokulich NA, McDonald D, Knight R, Caporaso JG, Huttenle GA (2019) Species abundance sequence confirms sequence taxonomy classification accuracy. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-11821-8

Kazim AR, Houssaini J, Ehlers J, Tappe D, Heo CC (2021) Soft ticks (Acari: Argasidae) in the island nations of Southeast Asia: a review on their distribution, associated hosts and potential pathogens. Acta Trop. https://doi.org/10.1016/j.actatropica.2021.106085

Kelly AL, Raife SJ, Fischer R, Bellinghausen M, Stevenson C, Schwan TG (2014) First isolation of the relapsing fever spirochete, *Borrelia hermsii*, from a domestic dog. Ticks Tick Borne Dis 5:95–99. https://doi.org/10.1016/j.ttbdis.2013.08.005

Klompen JSH, Oliver JH (1993) Systematic relationships in the soft ticks (Acari: Ixodidae: Argasidae). Syst Entomol 18:313–331

Kosoy M, Morway C, Sheff KW, Bai Y, Colborn J, Chalcraft L, Dowell SF, Peruski LF, Maloney SA, Baggett H (2008) *Bartonella tamaiae* sp. nov., a newly recognized pathogen isolated from three human patients from Thailand. J Clin Microbiol 46:772–775. https://doi.org/10.1128/JCM.02120-07

Letunic I, Bork P (2019) Interactive tree of life (iTOl) v4: recent updates and new developments. Nucleic Acids Res 47(W1):W256–W259. https://doi.org/10.1093/nar/gkz239

Leulmi H, Aouadi A, Bitam I, Bessas A, Benakhl A, Raoult D, Parola P (2016) Detection of *Bartonella tamaiae, Coxiiella burnetti* and rickettsiae in arthropods and tissues from wild and domestic animals in northeastern Algeria. Parasit Vectors 9:1–8. https://doi.org/10.1186/s13071-016-1316-9
Lofitis AD, Gill JS, Schriefer ME, Levin ML, Eremeeva ME, Gilchrist MJR, Dasch GA (2005) Detection of *Rickettsia, Borrelia, and Bartonella* in Carios kelleyi (Acari: Argasidae). J Med Entomol 42:473–480. https://doi.org/10.1603/0022-2585(2005)042[0473:dorhab]2.0.co;2

Lofitis AD, Reeves WK, Sparlock JP, Mahan SM, Troughton DR, Dasch GA, Levin ML (2006) Infection of a goat with a tick-transmitted *Ehrlichia* from Georgia, USA, that is closely related to *Ehrlichia ruminantium*. J Vector Ecol 31:213–223. https://doi.org/10.3376/1081-1710(2006)31[213:ioawal]2.0.co;2

López-Pérez AM, Sánchez-Montes S, Foley J, Gzmán-Cornejo C, Colunga-Salas P, Pascoe E, Becker I, Delgado-de la Mora J, Licona-Enriquez JD, Suzan G (2019) Molecular evidence of *Borrelia burgdorferi* sensu stricto and *Rickettsia massiliae* in ticks collected from a domestic-wild carnivore interface in Chihuahua, Mexico. Ticks Tick Borne Dis 10:1118–1123. https://doi.org/10.1016/j.tibdis.2019.05.018

López Y, Robayo-Sánchez LN, Muñoz-Leal S, Alemán A, Arroyave E, Ramírez-Hernández A, Cortés-Vecino JA, Mattar S, Faccini-Martínez ÁA (2021) *Ornithodoros puertoricensis* (Ixodida: Argasidae) associated with domestic fowl in rural dwellings from Córdoba department, Caribbean Colombia. Front Vet Sci. https://doi.org/10.3389/fvets.2021.704399

Luz HR, Muñoz-Leal S, de Carvalho WD, Castro UJ, Xavier BS, Toledo JJ, Hilário R, Acosta ICL, Faccini JLH, Labruna MB (2019) Detection of “Candidatus Rickettsia wissemannii” in ticks parasitizing bats (Mammalia: Chiroptera) in the northern Brazilian Amazon. Parasitol Res 118:3185–3189. https://doi.org/10.1007/s00436-019-06442-3

Magoć T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btq450

Maldonado-Ruiz LP, Neupane S, Park Y, Zurek L (2021) The bacterial community of the lone star tick (*Amblyomma americanum*). Parasit Vectors 14:1–10. https://doi.org/10.1186/s13071-020-04550-z

Mangold AJ, Bargues MD, Mas-Coma S (1998) Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of *Rhipicephalus* and other tick genera among Metastriata (Acari: Ixodidae). Parasitol Res 84:478–484. https://doi.org/10.1007/s004360050433

Manzano-Román R, Díaz-Martín V, de la Fuente J, Pérez-Sánchez R (2012) Soft ticks as pathogen vectors: distribution, surveillance and control. Parasitology 7:125–162. https://doi.org/10.1077/2521

Marinkelle CJ, Grose ES (1968) Species of borrelia from a Colombian bat (*Natalus tumidirostris*). Nature 218:487. https://doi.org/10.1038/218487a0

Marinkelle CJ, Grose ES (1981) A list of ectoparasites of Colombian bats. Rev Biol Trop 29:11–20

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J 17:10–12. https://doi.org/10.14806/ej.17.1.200

Menchaca AC, Visi DK, Strey OF, Teel PD, Kalinowski K, Allen MS, Williamson PC (2013) Preliminary assessment of microbiome changes following blood-feeding and survivorship in the *Amblyomma americanum* nymph-to-adult transition using semiconductor sequencing. PLoS ONE. https://doi.org/10.1371/journal.pone.0067129

Miller MA, Pfeiffer W, Schwartz T (2011) The CIPRES science gateway: a community resource for phylogenetic analyses. In: Proceedings of the 2011 TeraGrid conference: extreme digital discovery (pp. 1–8). https://doi.org/10.1007/BF978-1-4610-4008-8.00017-1

Miranda J, Portillo A, Oteo JA, Mattar S (2012) Rickettsia sp. strain colombianensi (Rickettsiales: Rickettsiaceae); a new proposed rickettsia detected in *Amblyomma dissimilis* (Acari: Ixodidae) from iguanas and free-living larvae ticks from vegetation. J Med Entomol 49:960–965. https://doi.org/10.1603/0022-2585(2005)042[0473:dorbab]2.0.co;2

Morel N, De Salvo MN, Cicuttin G, Rossner V, Thompson CS, Mangold AJ, Nava S (2019) The presence of *Borrelia theileri* in Argentina. Vet Parasitol Reg Stud Rep 17:100314. https://doi.org/10.1016/j.vprsr.2019.04.004

Muñoz-Leal S, Faccini-Martínez AA, Costa FB, Marcili A, Mesquita ETKC, Marques EP Jr, Labruna MB (2018) Isolation of Neurospora ruts from in Brazil. Ticks Tick Borne Dis 9:864–871. https://doi.org/10.1016/j.tibdis.2018.03.008

Muñoz-Leal S, Macedo C, Goncalves TC, Barreira JD, Labruna MB, Sampaio de Lemos ER, Ogzewalska M (2019) Detected microorganisms and new geographic records of *Ornithodoros rietcorreai* (Acari: Argasidae) from northern Brazil.Ticks Tick Borne Dis 10:1118–1123. https://doi.org/10.1016/j.tibdis.2019.05.018

Muñoz-Leal S, Faccini-Martínez AA, Pires-Torres J, Chala-Quintero SM, Herrera-Sepulveda MT, Cuervo C, Labruna MB (2021b) Novel *Borrelia* genotypes in bats from the Macaregua Cave, Colombia. Zoonoses Public Health 68:12–18. https://doi.org/10.1111/zph.12789
Narasimhan S, Fikrig E (2015) Tick microbiome: the force within. TRENDS Parasitol 31:315–323. https://doi.org/10.1016/j.pt.2015.03.010

Nava S, Venzal JMM, González-Acuña DG, Martins TFF, Guglielmone AAA (2017) Ticks of the southern cone of America: diagnosis, distribution, and hosts with taxonomy, ecology and sanitary importance. Elsevier, London. https://doi.org/10.1016/b978-0-12-811075-1.00011-x

O’Keeffe KR, Oppler ZJ, Brisson D (2020) Evolutionary ecology of lyme borrelia. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2020.104570

Oksanen J, Blanchet FG, Kindr P, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Package ‘vegan.’ Community Ecol. Packag. version 2, 1–295. http://CRAN.Rproject.org/package=vegan

Ortíz-Giraldo M, Tobón-Escobar WD, Velásquez-Guarín D, Usma-Marín MF, Ossa-López PA, Ramírez-Chaves HE, Carvajal-Agudelo JD, Rivera-Páez FA (2021) Ticks (Acari: Ixodidae) associated with mammals in Colombia: a historical review, molecular species confirmation, and establishment of new relationships. Parasitol Res. https://doi.org/10.1007/s00436-020-06989-6

Peixoto MP, Luz HR, de Abreu DPB, Faccini JLH, McIntosh D (2021) Detection of Rickettsia sp. strain Itinguçú in Ornithodoros faccinii (Acari: Argasidae) parasitizing the toad Rhinella ornata (Anura: Bufonidae) in Brazil. Ticks Tick Borne Dis 12:101680. https://doi.org/10.1016/j.ttbdis.2021.101680

Petersen JM, Mead PS, Oppler ZJ, Brisson D (2020) Evolutionary ecology of lyme borrelia. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2020.104570

Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 9(4):e93827. https://doi.org/10.1371/journal.pone.0093827

Pinto Pou R (1984) La fiebre recurrente en general y particularmente en Venezuela, in: Trabajos Científicos y Discursos de Incorporación a La Academia Nacional de Medicina 1915–1923; Tomo II. pp. 143–221

Plantard O, Bouju-Albert A, Malard M-A, Hermouet A, Capron G, Verheyden H (2012) Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Ixodiphagus hookeri. PLoS ONE 7:e30692. https://doi.org/10.1371/journal.pone.0030692

Portillo A, Palomar AM, de Toro M, Santibáñez S, Santibáñez P, Oteo JA (2019) Exploring the bacteriome in anthropophilic ticks: to investigate the vectors for diagnosis. PLoS ONE 14:e0213384. https://doi.org/10.1371/journal.pone.0213384

Qu P, Deng X, Zhang J, Chen J, Zhang Q, Xiao Y, Chen S (2009) Identification and characterization of the Francisella strain 08HL01032 isolated in air condition systems. Acta Microbiol Sin 49:1003–1010

Rivera-Páez FA, Labruna MB, Martins TF, Perez JE, Castaño-Villa GJ, Ossa-López PA, Gil CA, Sampieri BR, Aricapa-Giraldo HJ, Camargo-Mathias MI (2018a) Contributions to the knowledge of hard ticks (Acari: Ixodidae) in Colombia. Ticks Tick Borne Dis 9:57–66. https://doi.org/10.1016/j.ttbdis.2017.10.008

Rivera-Páez FA, Martins TF, Ossa-López PA, Sampieri BR, Camargo-Mathias MI (2018b) Detection of Rickettsia spp. in ticks (Acari: Ixodidae) of domestic animals in Colombia. Ticks Tick Borne Dis 9:819–823. https://doi.org/10.1016/j.ttbdis.2018.03.006

Robles A, Fong J, Cervantes J (2018) Borrelia infection in Latin America. Rev Investig Clín 70:158–163. https://doi.org/10.24875/ric.18002509

Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. https://doi.org/10.1093/sysbio/sys029

Rynkiewicz EC, Hemmerich C, Rusch DB, Fuqua C, Clay K (2015) Concordance of bacterial communities of two tick species and blood of their shared rodent host. Mol Ecol 24:2566–2579. https://doi.org/10.1111/mec.13187

Sánchez-Montes S, Guzmán-Cornejo C, Martínez-Nájera Y, Becker I, Venzal JMJM, Labruna MB (2016) Rickettsia lactisutaniae associated with Ornithodoros yumatensis (Acari: Argasidae) from two caves in Yucatan, Mexico. Ticks Tick Borne Dis 7:1097–1101. https://doi.org/10.1016/j.ttbdis.2016.09.003

Sánchez RST, Santodomingo AMS, Muñoz-Leal S, Silva-de la Fuente MC, Llanos-Soto S, Salas LM, González-Acuña D (2020) Rodents as potential reservoirs for Borrelia spp. in northern Chile. Rev Bras Parasitol Veterinária. https://doi.org/10.1590/s1984-296120200209

Salwar M (2017) Status of argasid (soft) ticks (Acari: Parasitiformes: Argasidae) in relation to transmission of human pathogens. Int J Vaccines Vaccin 4:89

Scopes GA (2004) Phylogenetic analysis of the Franciscella-like endosymbionts of dermacentor ticks. J Med Entomol 41:277–286. https://doi.org/10.1603/0022-2585-41.3.277
Shapiro ED, Gerber MA (2011) CHAPTER 17 - Borrelia infections: Lyme disease and relapsing fever. In: Remington JS, Klein JO, Wilson CB, Nizet V, Maldonado YABT-ID of the F. and N. (Seventh E. (eds), W.B. Saunders, Philadelphia, pp 564–576. https://doi.org/10.1016/B978-1-4160-6400-8.00017-1

Shapiro MR, Fritz CL, Tait K, Paddock CD, Nicholson WL, Abramowicz KF, Karpathy SE, Dasch GA, Sumner JW, Adem PV, Scott JJ, Padgett KA, Zaki SR, Erremevea ME (2010) Rickettsia 364D: a newly recognized cause of eschar-associated illness in California. Clin Infect Dis 50:541–548. https://doi.org/10.1086/649926

Stich RW, Schaefer JJ, Bremer WG, Needham GR, Jittapalapong S (2008) Host surveys, ixodid tick biology and transmission scenarios as related to the tick-borne pathogen, <i>Ehrlichia canis</i>. Vet Parasitol 158(4):256–273. https://doi.org/10.1016/j.vetpar.2008.09.013

Subramanian G, Mediniannikov O, Angelakis E, Socolovschi C, Kaplanski G, Martzolff L, Raoult D (2012) Diplorickettsia massiliensis as a human pathogen. Eur J Clin Microbiol Infect Dis 31:365–369. https://doi.org/10.1007/s10096-011-1318-7

Sun LV, Scoles GA, Fish D, O’Neill SL (2000) Francisella-like endosymbionts of ticks. J Invertebr Pathol 76:301–303. https://doi.org/10.1006/jipa.2000.4983

Swei A, Kwan JY (2017) Tick microbiome and pathogen acquisition altered by host blood meal. ISME J 11:813–816. https://doi.org/10.1038/ismej.2016.152

Tahir D, Socolovschi C, Marié J-L, Ganay G, Berenger J-M, Socolovschi B, Parola P (2016) New rickettsia species in soft ticks <i>Ornithodoros hasei</i> collected from bats in French Guiana.Ticks Tock Borne Dis 7:1089–1096. https://doi.org/10.1016/j.ttbdis.2016.09.004

Tarquino-Carbonell A, del Gutiérrez-Díaz P, Galindo-Espinosa KA, Reinoso-Flórez EY, Solarí G, Guerrero S, R (2015) Ectoparasites associated with bats in northeastern Tolima. Colombia Mastozoología Neotrop 22:349–358. http://www.redalyc.org/articulo.oa?id=45743273012

Thoendel M (2020) Targeted metagenomics offers insights into potential tick-borne pathogens. J Clin Microbiol 58:e01893–e01820. https://doi.org/10.1128/jcm.01893-20

Tijssse-Klasen E, Koopmans MPG, Sprog H (2014) Tick-borne pathogen–reversed and conventional discovery of disease. Front Public Health 2:73. https://doi.org/10.3389/fpubh.2014.00073

Tokarz R, Lipkin WI (2021) Discovery and surveillance of tick-borne pathogens. J Med Entomol. https://doi.org/10.1093/jme/tja269

Tufts DM, Sameroff S, Tagliaferro T, Jain K, Oleynik A, VanAcker MC, Diuk-Wasser MA, Lipkin WI, Tokarz R (2020) A metagenomic examination of the pathobiome of the invasive tick species, <i>Haemaphysalis longicornis</i>, collected from a New York City borough, USA. Ticks Tock Borne Dis 11:101516. https://doi.org/10.1016/j.ttbdis.2020.101516

Vayssier-Taussat M, Kazimirova M, Hubalek Z, Hornok S, Farkas R, Cosson J-F, Bonnet S, Vourch G, Plantard O, Silaghi C, Rizzoli A (2015) Emerging horizons for tick-borne pathogens: from the ‘one pathogen-one disease’ vision to the pathobiome paradigm. Future Microbiol 10:2033–2043. https://doi.org/10.2217/fmb.15.114

Vilcins İ-ME, Old JM, Deane E (2009) Molecular detection of <i>Rickettsia</i>, Coxiella and <i>Rickettsiella</i> DNA in three native Australian tick species. Exp Appl Acarol 49:229–242. https://doi.org/10.1007/s10493-009-9260-4

Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P (2011) The w Mel <i>Wolbachia</i> strain blocks dengue and invades caged <i>Aedes aegypti</i> populations. Nature 476:450–453. https://doi.org/10.1038/nature10355

Wang G (2015). In: Tang Y-W, Sussman M, Liu D, Poxtón I, Schwartzman JB (eds) Chapter 104—<i>Borrelia burgdorferi</i> and other <i>Borrelia</i> species. Academic Press, Boston, pp 1867–1909. https://doi.org/10.1016/B978-0-12-397169-2.00104-9

Wechtaiwong W, Bonnet SI, Lien Y-Y, Chuang S-T, Tsai Y-L (2020) Transmission of <i>Bartonella henselae</i> within <i>Rhipicephalus sanguineus</i>: data on the potential vector role of the tick. PLoSNeglTropDis 14:e0008664. https://doi.org/10.1371/journal.pntd.0008664

Wen TH, Chen Z (2016) The world list of ticks. 1. Argasidae and Nuttalliellidae (Acari: Ixodida). J Parasitol Parasit Dis 34:58–69

Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A (2021) Current debates and advances in tick microbiome research. Curr Res Parasitol Vector-Borne Dis. https://doi.org/10.1016/j.crpvbd.2021.100036

Yan P, Qiu Z, Zhang T, Li Y, Wang W, Li M, Yu Z, Liu J (2019) Microbial diversity in the tick <i>Argas japonicus</i> (Acari: Argasidae) with a focus on <i>Rickettsia</i> pathogens. Med Vet Entomol 33:327–335. https://doi.org/10.1111/mve.12373
Zhang X-C, Yang Z-N, Lu B, Ma X-F, Zhang C-X, Xu H-J (2014) The composition and transmission of microbiome in hard tick, *Ixodes persulcatus*, during blood meal. Ticks Tick Borne Dis 5:864–870. https://doi.org/10.1016/j.ttbdis.2014.07.009

Zhuang L, Du J, Cui X-M, Li H, Tang F, Zhang P-H, Hu J-G, Tong Y-G, Feng Z-C, Liu W (2018) Identification of tick-borne pathogen diversity by metagenomic analysis in *Haemaphysalis longicornis* from Xinyang, China. Infect Dis Poverty 7:1–8. https://doi.org/10.1186/s40249-018-0417-4

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.