Familial Myelodysplastic/Acute Leukemia Syndromes—Myeloid Neoplasms with Germline Predisposition

Renata Lyrio Rafael Baptista1,*, Anna Cláudia Evangelista dos Santos2, Luciana Mayumi Gutiyama3, Cristiana Solza1 and Ilana Renault Zalcberg3

1 Departamento de Medicina Interna/Hematologia, Hospital Universitário Pedro Ernesto, Rio de Janeiro, Brazil, 2 Programa de Genética, Instituto Nacional do Câncer, Rio de Janeiro, Brazil, 3 Divisão de Laboratórios do Centro de Transplantes de Medula Ossea (CEMOC), Instituto Nacional do Câncer, Rio de Janeiro, Brazil

Although most cases of myeloid neoplasms are sporadic, a small subset has been associated with germline mutations. The 2016 revision of the World Health Organization classification included these cases in a myeloid neoplasm group with a predisposing germline mutational background. These patients must have a different management and their families should get genetic counseling. Cases identification and outline of the major known syndromes characteristics will be discussed in this text.

Keywords: familial, leukemia, myeloid neoplasms, germline mutations, WHO classification, GATA2, RUNX1, CEBPA

INTRODUCTION

Most cases of myeloid neoplasms are sporadic; however, a small subset has been associated with germline mutations (1–3). The 2016 revision of the World Health Organization (WHO) classification included a group of myeloid neoplasms—such as myelodysplastic syndrome (MDS), MDS/myeloproliferative neoplasms, and acute myeloid leukemia (AML)—with a predisposing, germline mutational background. The presence of underlying genetic alterations or predisposition syndromes is crucial for diagnosing these familial cases (4).

In familial neoplasms, mutations are present in the heterozygous condition, most commonly resulting in loss of functional alleles and subsequent haploinsufficiency, although gain-of-function mutations have also been reported (5). It seems likely, although still unknown, that progression to hematologic malignancy requires the additional acquisition of somatic mutations in bone marrow stem or progenitor cells, probably in the same genes previously affected by germline mutations.

As many genes related to familial predisposition to myeloid neoplasms were also found to be recurrently mutated in sporadic cases, investigation of familial myeloid neoplasms may further provide insights into normal and malignant hematopoiesis and pathogenic mechanisms underlying hematologic malignancies. Moreover, the presence of germline genetic alterations associated to myeloid neoplasms should not be limited to the proband: family members might be at higher risk of developing myeloid neoplasms (6, 7).

Despite efforts to identify familial cases, only a minority with germline mutation can be explained by known genetic factors. The use of next-generation gene sequencing is allowing more
cases of the syndrome to be diagnosed, including those without gene mutation (8). However, it is crucial for the germline material availability from the proband and affected family members for this analysis.

Therapy-related MDS/AML seems to be associated with germline mutations in familial cancer predisposition genes. This increases the possibility of these mutations being susceptibility factors for AML development (9, 10).

Given the above clinical conditions, physicians should be trained to identify highly suspicious cases of familial neoplasms. A detailed family medical history, collected in all cases of myeloid neoplasms, especially in younger patients, must be mandatory. Close collaboration between hematologists and experienced geneticists in suspected familial cases is crucial. In this review, we will discuss the specific germline alterations associated to familial myeloid malignancies aiming to provide hematologists with diagnosis tools (Figure 1).

MYELOID NEOPLASMS WITH GERMLINE PREDISPOSITION

The 2016 revision of the WHO classification included, in a new subset of hematological malignancies associated to germline mutations, the following conditions: (1) myeloid neoplasms with germline predisposition without a preexisting disorder or organ dysfunction, (2) myeloid neoplasms with germline predisposition and preexisting platelet disorders, and (3) myeloid neoplasms with germline predisposition and other organ dysfunction (Table 1) (4).

MYELOID NEOPLASMS WITH GERMLINE PREDISPOSITION WITHOUT A PREEXISTING DISORDER OR ORGAN DYSFUNCTION

AML with Germline CCAAT/Enhancer-Binding Protein-A (CEBPA) Mutation

The transcription factor CEBPA is allocated in 19q13.1. This gene, consisting of a single exon, is involved in myeloid differentiation. Familial AML with mutated CEBPA is an inherited autosomal dominant condition with complete or near-complete penetrance (11, 12). There is not a specific genotype–phenotype presentation. On the other hand, 10–15% of sporadic acute myeloid leukemia with normal karyotype (NK-AML) presents the somatic CEBPA mutations. Somatic, bi-allelic CEBPA mutations (CEBPAdm), found in 10–15% of NK-AML, confer a favorable prognosis, a reason why the identification of CEBPA mutation is currently incorporated in routine diagnosis (13, 14). The identification of the germline origin of CEBPA mutations in patients with CEBPAdm is recommended for discriminating between sporadic and familial cases. Family history is helpful since type or location differences between somatic and germline mutations are presently unknown.

Acute myeloid leukemia diagnosis may be difficult considering the lack of (i) specific clinical features preceding hematological history, (ii) anticipation, and (iii) genotype–phenotype correlation, thus making family history the only source of data for somatic versus familial cases distinction. Identification of familial

FIGURE 1 | How to identify acute myeloid leukemia (AML) familial cases.
cases may be impaired by occurrence of de novo mutations in a proband or early death of an affected parent without evident clinical AML manifestations. The replacement of the mutated allele in bone marrow can only be achieved by allogeneic stem cell transplantation from a previously tested related donor in whom the mutated allele has been excluded (15).

Finally, the recognition of familial AML with mutated CEBPA is essential since penetrance is nearly complete. Genetic counseling is key for managing these cases (16).

Myeloid Neoplasm with Germline DDX41 Mutation

DEAD/H-box helicase gene (DDX41), allocated in 5q35.3, contains 17 exons and encodes an RNA helicase protein apparently involved in RNA splicing. Its role in hematopoiesis and leuke-
mogenesis remains unknown. Prevalence and penetrance of DDX41 mutations, as well as prognosis, are unclear (4). However, DDX41 mutations were present in 1.5% of patients with myeloid neoplasm in a cohort of 1,000 patients. Fifty percent of DDX41 mutations were germline suggesting that a germline analysis should be considered in these cases (17).

Familial AML with mutated DDX41 displays a pattern of autosomal dominant inheritance with the characteristics of other MDS/AML syndromes, including a long latency (18). Apart from the family history, there are no preceding clinical signs or symptoms suggesting increased risk for hematologic malignancy. The majority of familial cases previously identified with this leukemia harbor a heterozygous germline frameshift mutation, DDX41 c.415_418dupGATG (p.D140Gfs*2), although missense and splice variants have also been described. Another mutation in the other DDX41 allele occurs in 50% of germline mutation carriers developing MDS or AML, thereby suggesting that DDX41 is a tumor suppressor gene (17). DDX41 may play a role in the pathogenesis of myeloid neoplasms with del(5q), since some of these deletions include DDX41 locus, leading to haploinsufficiency. The DDX41 defects in cases with del(5q) were associated with advanced disease and responsiveness to lenalidomide, a possible therapeutic intervention for otherwise poor-risk disease (19). The overall survival seems to be inferior in DDX41 mutations or deletions cases and a decreased DDX41 expression seems to be associated with worse outcomes (14).

Unfortunately, surveillance of unaffected individuals in the general population is not possible. Nevertheless, a bone marrow biopsy with cyogenetic analysis and blood count may be recommended at regular intervals to families with known DDX41 mutations or deletions and other predisposition syn- dromes (4).

MYELOID NEOPLASMS WITH GERMLINE PREDISPOSITION AND PREEXISTING PLATELET DISORDERS

Myeloid Neoplasms with Germline RUNX1 Mutation

Runt-related transcription factor 1 (RUNX1) is a protein coding gene located in 21q22.12, which contains nine exons. It encodes the DNA-binding subunit of the core-binding factor transcription complex that is essential for normal hematopoiesis (20). Myeloid neoplasms with germline RUNX1 mutations result from monoallelic RUNX1 mutations occurring all along this gene, including missense, nonsense, frameshift, insertions, deletions, and, a recently reported, disrupting congenital translocation (21).

Monoallelic RUNX1 mutations carriers show a heterogeneous range of clinical manifestations: from moderate thrombocytenia, bleeding, or myeloid neoplasm with frequent strong anticipation, to asymptomatic family members (22).

Management of patients with myeloid neoplasms and germline RUNX1 mutations depends on clinical presentation. Diagnosis of underlying germline mutations requires allogeneic stem cell transplantation as consolidation therapy provided that RUNX1 mutations are not carried by related donors (6). Management of asymptomatic RUNX1 mutation carriers is difficult because guidelines are not presently available for this recently described condition. Considering that myeloid neoplasms with germline RUNX1 mutations occur with strong anticipation, close follow-ups of the younger members of an affected family are necessary: a baseline blood count with annual checkups, and a bone marrow biopsy in the event of significant changes in peripheral blood counts (7). Finally, as RUNX1 mutations are found in 32% of sporadic AML (23, 24), translational studies might be relevant for clarifying leukemogenesis in familial platelet disorders (FDP) (23, 24).

Myeloid Neoplasm with Germline ANKRD26 Mutation

The Ankyrin repeat domain-containing protein 26 gene (ANKRD26), located in 10p12.1, contains 34 exons. Mutations affecting this gene interfere with controlling mechanisms of ANKRD26 expression, impacting upon megakaryopoiesis and platelet production (25). In 9 of 20 unrelated families with auto- somal dominant non-syndromic thrombocytopenia-2 (THC2),...
In affected families, GATA2 mutations were transmitted as highly penetrant autosomal dominant traits with early MDS or AML onset. Onset at early age was reported in patients with syndromic presentations (39). Several families with GATA2 mutations have been described without any distinctive phenotypic or cytogenetic abnormality (2).

Some clinical syndromes, such as Emberger, MonoMAC, congenital neutropenia, and DCML (dendritic cell, monocyte, and lymphocyte deficiency), are associated with germline GATA2 mutations (40). Emberger syndrome is associated with predisposition to MDS/AL and the presence of systemic manifestations such as primary lymphedema confined to lower extremities and genitals, lymphopenia with low CD4/CD8 ratio, cutaneous warts, and sensorineural deafness. Emberger syndrome also seems to be associated with eight independent GATA2 variants (41). The MonoMAC syndrome is connected to MDS/AL predisposition and immunologic defects—such as immunodeficiency, monocytopenia, NK cell, B cell, and macrophage deficiencies—that lead to predisposition to atypical infections and pulmonary alveolar proteinosis (42).

Pedigree analysis showed four different GATA2 mutations: two in familial AML (p.T354M and p.T355del, both in the second zinc finger domains) (21, 43) and two other in de novo AML (p.R308P and p.A350N351ins8) (43).

Transformation to MDS/AL rapidly occurs conferring an adverse prognosis, while indication of allogeneic hematopoietic stem cell transplantation appears to be the most adequate treatment (43).

Myeloid NeoplasmsAssociated with Bone Marrow Failure Syndromes

Inherited bone marrow failure syndromes (IBMFS) are rare genetic disorders with characteristic hematopoietic dysfunction and ensuing cytopenias, with high risk of transformation to clonal myeloid malignancies (CMMT) including MDS, AML, or isolated clonal cytogenetic abnormalities (44–48). Hematological neoplasms may occur as the initial manifestation of IBMF; approximately 25% of Fanconi anemia patients lack the typical disease phenotype such as short stature and radial ray anomalies (49, 50). Adult and pediatric de novo CMMT are not precisely defined, although diagnosis is based on peripheral blood cell counts and types, bone marrow blasts, cellularity, cytogenetic analysis, and dysplasia presence. A widely accepted definition of IBMFS-associated CMMT is, however, not presently available. Diagnosis of pediatric MDS is based on peripheral blood counts, marrow morphologic dysplasia, and blasts (51, 52). These are valuable indicators for defining MDS. Nevertheless, their applicability to IBMFS-associated MDS in the absence of transformation has not been tested. The risk of developing CMMT in patients with IBMFS has been estimated to be 2,284-fold higher than in general population (53).

The differential risk of developing CMMT among patients with various IBMFS types has not been precisely estimated due to dearth population-based data (54). Despite IBMFS types sharing several clinical and morphological phenotypes, IBMFS genes might be involved in different pathways, a reason why mutations in different IBMFS genes might have disparate malignant effects.
This provides a rationale for routine leukemia surveillance in children with Fanconi anemia and Shwachman–Diamond syndrome.

Myeloid Neoplasms Associated with Telomere Biology Disorders

Malignancies associated with telomere biology disorders result from mutations in nine different genes that induce an abnormal maintenance of telomeres leading to chromosome instability and apoptosis (55, 56). Dyskeratosis congenita (DKC), an X-linked recessive disease, is characterized by nail dystrophy, abnormal reticular skin pigmentation, and oral leukoplasia (57). The clinical presentation may vary, resulting in patients with constitutional defects while cancer and MDS predisposition are distinctive. Excessive telomere shortening in Xq28, where the X-linked gene DKC1 (Dyskerin) is located, leads to genetic instability and high cancer risk (58, 59). A high frequency of hematological malignancies is observed in DKC: approximately 200-fold for AML and 2,500-fold for MDS in relation to the normal population, a reason why the affected patient must be properly screened (60). Deleterious mutations affecting TERT (telomerase reverse transcriptase), a gene in 5p15.33, or TERC (telomerase RNA component), a gene in 3q26.2, are transmitted as autosomal dominant traits with heterogeneous phenotypes and incomplete penetrance (61). Phenotypes range from normal to severe hematological neoplasms, with variable age at onset and anticipation (62). This fact should not be ignored since children inheriting TERT/TERC mutations might present earlier clinical manifestations although their parents carrying the same mutations may not. Clinical presentation may include isolated idiopathic pulmonary fibrosis, hepatic cirrhosis, early-onset anogenital or head and neck cancer, and combinations of these features. The frequency of these associated manifestations is still unknown. These findings point out the need of TERC and TERT screening in families with more than one case of MDS/AL and/or patients with subtle blood abnormalities, failure to mobilize stem cells or clinical manifestations in other organs or systems (6).

Juvenile Myelomonocytic Leukemia (JMML) Associated with Neurofibromatosis, Noonan Syndrome, or Noonan Syndrome-Like Disorders

Juvenile myelomonocytic leukemia is an aggressive myelodysplastic/myeloproliferative malignancy. Most JMML cases are associated with somatic gain-of-function mutations in components of the RAS/MAPK signal transduction pathway (63). A minority of cases arise in young children with Noonan syndrome, a genetic disorder with increased RAS/MAPK signaling. Fifty percent of Noonan syndrome patients and 35% of JMML cases carry gain-of-function mutations in PTPN11 (protein-tyrosine phosphatase, non-receptor-type, 11), altering SHP-2, a tyrosine phosphatase involved in the regulation of the RAS/MAPK pathway (64).

In Noonan syndrome, JMML may occur due to PTPN11 germline mutations with similar clinical features to children with JMML arising from PTPN11 somatic mutations, although with a generally better outcome. Mutations in PTPN11, RAS, NF1, and CBL are exclusive in JMML indicating that one hit in the RAS/MAPK pathway is sufficient for leukemogenesis (65).

Neurofibromatosis

Approximately 10–15% of pediatric JMML occur in association with neurofibromatosis type I, disease resulting from mutations in the neurofibromatosis type I gene (NF1) that encodes neurofibromin. Neurofibromin is a molecule that regulates several intracellular processes, such as the RAS–MAPK pathway (66). Neurofibromatosis type I is an autosomal dominant disorder with a clinical presentation that includes café au lait spots, ocular Lisch nodules, and skin fibromatosus tumors. The development of benign and malignant tumors is high in these individuals.

Noonan Syndrome-Like Disorders

Germline mutations affecting CBL (casitas-B-lineage lymphoma protooncogene), a gene located in 11q23.3, may result in variable Noonan syndrome-like phenotypes (OMIM#613563). In these patients, presence of neurologic features is relatively high, with predisposition to JMML, low prevalence of cardiac abnormalities, reduced growth, and cryptorchidism (67).

Finally, germline mutations affecting SHOC2 (suppressor of clear, C. elegans, homolog), a gene located in 10q25.2, usually result in Noonan syndrome-like phenotypes (OMIM#607721) and JMML, and a classic Noonan syndrome in a small proportion of affected individuals. A recurrent missense SHOC2 mutation (4A>G) has been identified in a NS subgroup with growth hormone deficiency, hyperactive behavior improving with age, hair anomalies, darkly pigmented skin with eczema or ichthyosis, hypernasal speech, and mitral valve dysplasia and septal defects respective with classic NS (68).

Myeloid Neoplasms Associated with Down Syndrome

The myeloid neoplasms associated with Down syndrome are Down syndrome transient abnormal myelopoiesis (DS-TAM) and myeloid leukemia Down syndrome (ML-DS). The GATA-binding protein 1 gene (GATA1), located in Xp11.23, encodes a zinc finger DNA-binding transcription factor that is critical for the normal development of hematopoietic cells. GATA1 mutations are a hallmark of DS-TAM and ML-DS (69). All GATA1 mutations have been allocated to exon 2 (or rarely exon 3) (70). Regardless of mutation types, all of them have been found to generate a premature stop codon, with transcription initiating from an in-frame ATG triplet in codon 84 resulting in a short GATA1 isoform (~40 kDa), called “GATA1s,” lacking an N-terminal transactivation domain. DS-TAM/ML is associated with a typically constitutional trisomy 21, although some patients have been shown to be mosaics for trisomy 21 or carriers of translocations involving chromosome 21. The lack of a typical DS phenotype cannot, therefore, exclude DS-TAM. DS-TAM is clinically and morphologically undistinguishable from AML, with blasts with morphologic and immunologic characteristics of the megakaryocytic lineage. It is unique to Down syndrome newborns, present in approximately 10% of DS but infrequent in phenotypically normal trisomy 21 mosaics (71).
Down syndrome transient abnormal myelopoiesis shows a heterogeneous clinical presentation and most patients are asymptomatic. This is the reason why it is incidentally diagnosed in peripheral blood checkups showing thrombocytopenia or thrombocytosis, high white blood cell counts, excess of blasts, and, frequently, nucleated red blood cells. Hepatomegaly is a common feature, while infrequent severe manifestations may include fetal hydrops, liver failure, jaundice, coagulation defects, bleeding diathesis, heart failure, pleural effusions, ascites, and/or respiratory failure. Symptoms may appear as early as first 3 weeks of life. In most patients, DS-TAM undergoes spontaneous remission within the first 3 months of life (72). ML-DS is frequently preceded by a MDS-like phase that may last for months, characterized by decreasing thrombocytopenia, ineffective erythropoiesis with subsequent anemia, and dysplastic alterations in bone marrow (73).

While coexisting GATA1 mutations and trisomy 21 might account for DS-TAM, additional alterations in preexisting DS-TAM—GATA1 seem to be necessary for generating ML-DS. These include trisomy 8 and 21, partial or complete deletions of chromosome 5 and 7, dup(1q), del(16q) (74) and somatic mutations in JAK1, JAK2, JAK3 (75), TP53 (76), FLT3, and MPL in small subsets of cases.

Individuals with DS have a 50-fold increase in the incidence of acute leukemia during the first 5 years of life compared to non-DS individuals. The great majority of DS children with ML-DS are under 5 years of age (77). ML-DS occurs in 20–30% non-DS individuals. The great majority of DS children with DS-TAM—ML-DS, in contrast to non-DS AMKL cases, indicating that these malignancies are different entities (72).

Malignancies are different entities (72).

REFERENCES

1. Owen C, Barnett M, Fitzgerald J. Familial myelodysplasia and acute myeloid leukemia — a review. Br J Haematol (2008) 140(2):123. doi:10.1111/j.1365-2147.2007.06909
2. Hahn C, Chong C, Carmichael C, Wilkins E, Brautigan P, Li X, et al. Germline GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet (2011) 43(10):1012. doi:10.1038/ng.913
3. Nickels EM, Soodalter J, Cherpeke JE, Godley LA. Recognizing familial myelodysplasia in adults. Ther Adv Hematol (2013) 4(4):254. doi:10.1177/2040620713487399
4. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood (2016) 127(20):2391. doi:10.1182/blood-2016-03-645544
5. Godley LA. Inherited predisposition to acute myeloid leukemia. Semin Hematol (2014) 51(4):306. doi:10.1053/j.seminhematol.2014.08.001
6. West AH, Godley LA, Cherpeke JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci (2014) 1310(10):111. doi:10.1111/nyas.12346
7. Cherpeke JE, Lorenz R, Nedumgottil S, Onel K, Olopade O, Sorrell A, et al. Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leuk Lymphoma (2013) 54(1):28. doi:10.3109/10428194.2012.701738
8. Cherpeke JE, Pyrtel K, Kanchi K-L, Shao J, Koboldt D, Miller CA, et al. Genomic analyses of germline and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood (2015) 126:2484. doi:10.1182/blood-2015-04-641100
9. Cherpeke J, Marquez R, Neistadt B, Claussen K, Lee M, Cherpeke M, et al. Inherited mutations in cancer susceptibility genes are common among breast cancer survivors who develop therapy-related leukemia. Cancer (2016) 122:304. doi:10.1002/cncr.29615
10. Voso MT, Fabiani E, Zang Z, Fianchi L, Falcioni G, Padella A, et al. Fanconi anemia gene variants in therapy-related myeloid neoplasms. Blood Cancer J (2015) 5:e253. doi:10.1038/bcj.2015.47
11. Pabst T, Eiholzer M, Haeliger S, Schardt J, Mueller B. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J Clin Oncol (2008) 26:5088. doi:10.1200/JCO.2008.16.5563
12. Rennerville A, Mialou V, Philippe N, Kajalis-Girard S, Baggio V, Zabot MT, et al. Another pedigree with familial acute myeloid leukemia and germline CEBPA mutation. Leukemia (2009) 23(4):804. doi:10.1038/leu.2008.294
13. Taskesen E, Bullinger L, Corbacioglu A, Sanders MA, Erpelinck CA, Wouters BJ, et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood (2011) 117(8):2469. doi:10.1182/blood-2010-09-307280
14. Dufour A, Schneider F, Metzeler KH, Hoster E, Schneider S, Zellmeier E, et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol (2010) 28(4):570. doi:10.1200/JCO.2008.16.6104
15. Stelljes M, Corbacioglu A, Schlenk R, Dohner K, Fruhwald M, Rossig C, et al. Allogeneic stem cell transplant to eliminate germline mutations in the gene for CCAAT-enhancer-binding protein alpha from hematopoietic cells in a family with AML. Leukemia (2011) 25:1209. doi:10.1038/leu.2011.64
16. Tawana K, Wang J, Renneville A, Bödör C, Hills R, Loveday C, et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood (2013) 125(10):1214. doi:10.1182/blood-2013-05-647172

17. Polpraset C, Schulze I, Sokeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and somatic defects in DXD41 in myeloid neoplasms. Cancer (2015) 27(5):658. doi:10.1016/j.ccell.2015.03.017

18. Lewinsohn M, Brown AL, Weinil LM, Phung C, Rafidi G, Lee MK, et al. Novel germine DXD41 mutations define families with a longer age of MDS/AML onset and lymphoid malignancies. Blood (2016) 127:1017. doi:10.1182/blood-2015-10-676098

19. Jerez A, Gondek LP, Jankowska AM, Makishima H, Przychodzen B, Tiu RV, et al. Topography, clinical, and genomic correlates of Sq myeloid malignancies revisited. J Clin Oncol (2012) 30:1343. doi:10.1200/JCO.2011.36.1824

20. Liew E, Owen C. Familial myelodysplastic syndromes: a review of the literature. Haematologica (2011) 96:1536. doi:10.3324/haematol.2011.034322

21. Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N, et al. In vitro citogenesis for mechanisms of pathogenesis. Blood (2002) 99:1364. doi:10.1182/blood.V99.4.1364

22. Churpek JE, Garcia JS, Madzo J, Jackson SA, Onel K, Godley LA. Identification and molecular characterization of a novel 3’ mutation in RUNXI in a family with familial platelet disorder. Leuk Lymphoma (2010) 51:1931. doi:10.3109/10428194.2010.503821

23. Holme H, Hossain U, Kirwan M, Walne A, Vulliamy T, Dokal I. Marked red cell macrocytosis and predisposition to lymphoblastic leukemia. Br J Haematol (2015) 127:1017. doi:10.1111/bjh.13874

24. Mendler JH, Maharry K, Radmacher MD, Mrózek K, Becker H, Metzeler KA, et al. RUNXI mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukaemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol (2012) 30:3109. doi:10.1200/JCO.2011.40.6652

25. Hahn Y, Bera TK, Pastan IH, Lee B. Duplication and extensive remodeling shaped POTE family genes encoding proteins containing ankyrin repeat and coiled coil domains. Gene (2006) 366(2):238. doi:10.1016/j.gene.2005.07.045

26. Pippucci T, Savoia A, Perrotta S, Pujol-Moix N, Noris P, Castegnaro G, et al. Mutations in the 5-UTR of ANKR2D6, the ankinrin (sic) repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopathy, THCP2. Am J Hum Genet (2011) 88:115. doi:10.1016/j.ajhg.2010.12.006

27. Noris P, Perrotta S, Seri M, Pecci A, Gnan C, Loffredo G, et al. Mutations in ANKR2D6 are responsible for a frequent form of inherited thrombocytopathy. Ann Hematol (2013) 92(10):733. doi:10.1007/s00277-013-1934-z

28. Hock H, Meade E, Medeiros S, Schindler JW, Valk PJ, Fujiwara Y, et al. TelEtv6 is an essential and selective regulator of adult hematopoietic stem cell homeostasis. Blood (2005) 105(12):3364. doi:10.1182/blood-2004-08-1298

29. Pasquet M, Bellanné-Chantelot T, Tavitian S, Prade N, Beaupain B, Larcheolle O, et al. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood (2013) 121:8229. doi:10.1182/blood-2012-08-447367

30. Mir MA, Kochuparambil ST, Abraham RS, Rodriguez V, Howard M, Hsu AP, et al. Spectrum of myeloid neoplasms and immune deficiency associated with germline GATA2 mutations. Cancer Med (2015) 4(4):490. doi:10.1002/cam4.381

31. Babushok DV, Bessler M, Alson TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma (2016) 57:520. doi:10.3109/10428194.2015.1115041

32. Bodor C, Renneville A, Smith M, Charazac A, Iqbal S, Etancelin P, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet (2011) 43:929. doi:10.1038/ng.923

33. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood (2011) 118:2653. doi:10.1182/blood-2011-05-356352

34. Churpek JE, Garcia JS, Madzo J, Jackson SA, Onel K, Godley LA. Identification and molecular characterization of a novel 3’ mutation in RUNXI in a family with familial platelet disorder. Leuk Lymphoma (2010) 51:1931. doi:10.3109/10428194.2010.503821

35. Bodor C, Renneville A, Smith M, Charazac A, Iqbal S, Etancelin P, et al. Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica (2012) 97:890. doi:10.3324/haematol.2011.054361

36. Dror Y, Durie P, Ginzberg H, Herman R, Barnerjee A, Champagne M, et al. Clonal evolution in marrows of patients with Shwachman-Diamond syndrome: a prospective 5-year follow-up study. Exp Hematol (2002) 30(7): 659. doi:10.1016/S0301-472X(02)00815-9

37. Dror Y, Durie P, Ginzberg H, Herman R, Barnerjee A, Champagne M, et al. Clonal evolution in marrows of patients with Shwachman-Diamond syndrome: the CCC system. J Clin Invest (2002) 81(9):485. doi:10.1172/JCI11176

38. Alter BP, Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program (2007) 2007(1):29–39. doi:10.1182/asheducation-2007.1.29

39. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood (2009) 113(26):6549. doi:10.1182/blood-2008-12-192880

40. Alter BP. Fanconi anemia and development of leukemia. Best Pract Res Clin Haematol (2014) 27(2):214. doi:10.1016/j.beha.2014.10.002

41. Aul C, Giagounidis A, Germing U, Ganser A. Evaluating the prognosis of patients with myelodysplastic syndromes. Ann Hematol (2002) 81(4):485. doi:10.1007/s00277-002-0530-x

42. Kee Y, D’Andrea AD. Molecular pathogenesis and clinical management of Fanconia anemia. J Clin Invest (2012) 122:3799. doi:10.1172/JCI58321

43. Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program (2007) 2007(1):29–39. doi:10.1182/asheducation-2007.1.29

44. Mandel K, Dror Y, Poon A, Freedman MH. A practical, comprehensive classification for pediatric myelodysplastic syndromes: the CCC system. J Pediatr Hem Oncol (2002) 24(7):596. doi:10.1097/00004753-200207000-00075-3

45. Haile H, Niemeyer CM, Chessells JM, Baumann I, Bennett JM, Kornrup G, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia (2003) 17(2):277. doi:10.1038/sj.lj.5202476

46. Cader GL, Segbefia CI, Klaassen R, Fermazex CV, Vanosky RA, Wu J, et al. The impact of category, cytopathology and cytogenetics on development and progression of clonal and malignant myeloid transformation in inherited bone marrow failure syndromes. Haematologica (2015) 100(5):633. doi:10.3324/haematol.2014.117457
54. Hashmi SK, Allen C, Klakassen R, Fernandez CV, Yanofsky R, Sherek E, et al. Comparative analysis of Shwachman Diamond syndrome to other inherited bone marrow failure syndromes and genotype-phenotype correlation. *Clin Genet* (2011) 79(5):448. doi:10.1111/j.1399-0004.2010.01468.x

55. Ballew BJ, Savage SA. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. *Expert Rev Hematol* (2013) 6:327. doi:10.1586/ehm.13.23

56. Ballew BJ, Yeager M, Jacobs K, Giri N, Boland J, Burdett L, et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in dyskeratosis congenita. *Hum Genet* (2013) 132:473. doi:10.1007/s00439-013-1265-8

57. Heiss NS, Knight SW, Vulliamy TJ, Krauss SM, Wiemann S, Mason PJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. *Nat Genet* (1998) 19:32. doi:10.1038/ng598-32

58. Streffer C. Strong association between cancer and genomic instability. *Radiat Environ Biophys* (2010) 49:125. doi:10.1007/s00411-009-0258-4

59. Raynaud CM, Sabatier L, Philipot O, Olaussen KA, Soria JC. Telomere length, telomeric proteins and genomic instability during the multistep carcinogenic process. *Crit Rev Oncol Hematol* (2008) 66:99. doi:10.1016/j.critrevonc.2007.11.006

60. Gramatges MM, Alison AB. Short telomeres: from dyskeratosis congenita to sporadic aplastic anaemia and malignancy. *Transl Res* (2013) 162(6):1.

61. Young NS. Bone marrow failure and the new telomere diseases: practice and research. *Hematology* (2012) 17(Suppl 1):S18. doi:10.1179/102453312X13336169155132

62. Armanios M. Syndromes of telomere shortening. *Annu Rev Genomics Hum Genet* (2009) 10:45. doi:10.1146/annurev-genom-082908-150046

63. Yoshida N, Doi I. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, to sporadic aplastic anemia and malignancy. *Radiat Environ Biophys* (2007) 46(2):117. doi:10.1007/s00468-007-0115-8

64. Mulero-Navarro S, Sevilla A, Roman AC, Lee DF, D’Souza SL, Pardo S, et al. Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia. *Cell Rep* (2015) 13(3):504–15. doi:10.1016/j.crep.2015.09.019

65. Perez B, Mechinaud F, Galambrun C, Ben Romdhane N, Isidor B, et al. Heterozygous germline mutations in the tumor-suppressor gene *CBL* cause a Noonan syndrome-like phenotype. *Blood* (2012) 119:2999. doi:10.1182/blood-2011-12-367777

66. Shen MH, Harper PS, Upadhyaya M. Molecular genetics of neurofibromatosis type 1 (NF1). *J Med Genet* (1996) 33:2. doi:10.1136/jmg.33.1.2

67. Martinielli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri E, et al. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. *Am J Hum Genet* (2010) 87:290. doi:10.1016/j.ajhg.2010.06.015

68. Cordeddu V, Di Schiavi E, Pennacchio LA, Ma’ayan A, Sarkozy A, Fodale V, et al. Mutation of SHOC2 promotes aberrant protein N-mycristoilation and causes Noonan-like syndrome with loose anagen hair. *Nat Genet* (2009) 41:1022. doi:10.1038/ng.425

69. Roberts I, Alford K, Hall G, Juban G, Richmond H, Norton A, et al. GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. *Blood* (2013) 122:9908. doi:10.1182/blood-2013-07-515148

70. Alford KA, Reinhardt K, Garnett C, Norton A, Bohmer K, von Neuhoff C, et al. Analysis of GATA1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. *Blood* (2011) 118:2222. doi:10.1182/blood-2011-03-342774

71. Klusmann JH, Creutzig U, Zimmermann M, Dworzak M, Jorch N, Langebrake C, et al. Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. *Blood* (2008) 111:2991. doi:10.1182/blood-2007-10-118810

72. Gamis AS, Alonzo TA, Gerbing RB, Hilden JM, Sorrell AD, Sharma M, et al. Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children’s Oncology Group Study A2971. *Blood* (2011) 118:6752. doi:10.1182/blood-2011-04-350017

73. Zipursky A, Poon A, Doyle J. Leukemia in Down syndrome: a review. *Pediatr Hematol Oncol* (1992) 9:139. doi:10.3109/08880019209018329

74. Blink M, Zimmermann M, von Neuhoff C, Reinhardt D, de Haas V, Hasle H, et al. Normal karyotype is a poor prognostic factor in myeloid leukemia of Down syndrome: a retrospective, international study. *Haematologica* (2014) 99:299. doi:10.3324/haematol.2013.089425

75. Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Perez C, et al. Activating mutations in human acute megakaryoblastic leukemia. *Blood* (2008) 112:4220. doi:10.1182/blood-2008-01-136366

76. Malkin D, Brown EI, Zipursky A. The role of p53 in megakaryocyte differentiation and the megakaryocytic leukemias of Down syndrome. *Cancer Genet Cytoenet* (2000) 116:15. doi:10.1016/S0165-4608(99)00072-2

77. Rao A, Hills RK, Stiller C, Gibson BE, de Graaf SSN, Hann JM, et al. Treatment of myeloid leukemia of Down syndrome: population-based experience in the UK and results from the Medical Research Council AML 10 and AML 12 trials. *Br J Haematol* (2006) 132:576. doi:10.1111/j.1365-2141.2005.09506.x

78. Bourquin JP, Subramanian A, Langebrake C, Reinhardt D, Bernard O, Ballerini P, et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. *Proc Natl Acad Sci U S A* (2006) 103:3339. doi:10.1073/pnas.0511150103

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Baptista, dos Santos, Gutiyama, Solza and Zalcberg. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.