Fuzzy PID Control of the Magnetic Levitation Ball System
Xue-juan SHAO*, Fan-bin MENG and Zhi-mei CHEN
College of Electronic Information Engineering, Taiyuan University of Science and Technology,
Taiyuan 030024, China
*Corresponding author

Keywords: Magnetic levitation ball system, Instability, Fuzzy PID control, Overshoot.

Abstract. The magnetic levitation ball system has nonlinear and open loop instability. The traditional PID control system has good stability. But when the system is disturbed by the outside factor, the control performance of the system is limited because of the fixed PID parameters. In this paper, a fuzzy PID controller which could adjust the PID parameters on-line to enhance the robustness of the system was designed. The experimental study was carried out on the dSPACE platform. The experimental results show that the proposed control strategy exhibits better control character than that of the traditional PID control. The fuzzy PID control can reduce the overshoot of the system and has better anti-interference capability.

Introduction
Magnetic levitation ball system is a single degree of freedom and open-loop unstable nonlinear system, in which the parameter perturbation and external uncertain interference factors will influence the stability of system and other control performance. The traditional PID [1] control system has good stability. But when the system is subject to the parameter variation or outside interference, the use of fixed controller parameters will make the control system performance worse.

Aiming at the defects of traditional PID, a lot of new PID algorithms such as neural network PID [2-4], fuzzy PID [5-11], fuzzy neural PID [12], sliding PID [13], internal PID [14] are proposed and applied to the practical industrial process control to obtain good control effect. In this paper, the fuzzy control combined with PID control was designed for magnetic levitation ball system. The fuzzy PID controller with adaptive ability revised PID parameters constantly by using fuzzy control to make the system a certain adaptive ability, which could enhance both the control performance of the system in each stage and the robustness to external interference as well as its parameter perturbation. The experimental results based on the dSPACE platform show that the fuzzy PID can significantly reduce the overshoot of the system, and have better anti-jamming performance.

Mathematical Model of the System
The control structure of the magnetic levitation ball system is shown in Fig. 1.

In the picture, \(m \) is the steel ball quality, \(g \) is the gravity acceleration, \(x \) is the distance between the center of steel ball and the electromagnet pole and \(f \) is the electromagnetic force. \(u \) provides the...
control voltage for the external circuit and \(u_e \) is the sensor output voltage corresponding to the steel ball position.

Ignoring the influence of other external interference factors, the small ball is attracted by electromagnetic force \(F(i,x) \) and the impact of its own gravity \(mg \) in the vertical direction. By analyzing the mechanism of the magnetic levitation ball system, the following mathematical model can be established:

Kinetic equation: \[m \frac{d^2x(t)}{dt^2} = mg - F(i,x) \] (1)

Electromagnetic mechanical equation: \[F(i,x) = K \left(\frac{i}{x} \right)^2 \] (2)

Electrical equation: \[U(t) = Ri(t) + L \frac{di(t)}{dt} \] (3)

In the above formula, \(x \) is the distance between the center of steel ball and the electromagnet pole, \(i \) is the current in the electromagnetic coil, \(m \) is the mass of the steel ball, \(g \) is the gravity acceleration, \(R \) is the resistance of the electromagnetic coil, and \(L \) is the inductance of the electromagnetic coil.

When the steel ball is in a stable suspension as \(x=x_0 \), the current in the electromagnetic coil is \(i=i_0 \), the equation of the ball at equilibrium point is

\[F(i_0,x_0) = mg \] (4)

In order to facilitate the design of the controller, the system is linearized at the equilibrium position \((i_0, x_0)\). The \(F(i,x) \) in the Eq. 1 is carried out by the Taylor series expansion, and the high order term is neglected and Laplace transform is performed. The result is

\[\frac{X(s)}{I(s)} = \frac{-1}{(i_0/2g)s^2 - i_0/x_0} \] (5)

In the actual control, the controlled variable is the input voltage of the power amplifier, and the relationship between the output of the sensor \(u_e \) and the input voltage of the power amplifier \(u \) is:

\[G(s) = \frac{U_x(s)}{U(s)} = \frac{-(K_x/K_a)}{(i_0/2g)s^2 - i_0/x_0} \] (6)

where \(K_x \) is sensor gain, \(K_a \) is control voltage to coil current gain.

By the Eq. 6, it is known that the magnetic levitation system is an unstable second-order object. Therefore, it is necessary to combine the closed-loop control with the controller to make the controlled ball reach the stable suspension state.
The Design of Fuzzy PID Controller

\[u_k = K_p e_k + K_i \sum_{j=0}^{k} e_j + \frac{K_d}{T}(e_k - e_{k-1}) \]

(7)

in which \(u_k \) is the output of the controller at time \(k \), \(e_k \) is the input signal of the controller, \(K_p \), \(K_i \) and \(K_d \) are proportional, integral and differential coefficient respectively and \(T \) denotes the system sampling time.

When PID control parameters are regulated, their respective impact on system performance and mutual interconnected relationship at different times must be considered. Typically, proportional control can speed up the system response speed, integral control is used to eliminate the steady-state error of the system and differential link is used to restrain the change of deviation.

The structure of fuzzy PID controller is shown as Fig. 2. The input parameters of fuzzy PID controller are error \(e \) and error change rate \(e_c \). The output value is gotten after defuzzification and fuzzy inference. PID controller adjusts its parameters according to the output value of the fuzzy control.

The introduction of fuzzy control is to detect the response error \(e \) and change rate \(e_c \) at each sampling time, and then the correction of PID parameter is drawn according to the good fuzzy rules. So PID controller adjusts its parameter size according to the change of the system response to enhance both dynamic response performance and robustness to external disturbance.

The design of fuzzy PID controller includes the fuzzification of input and output variables, fuzzy rules, fuzzy reasoning and defuzzification.

The fuzzification of input and output variables

The displacement deviation \(e \) of ball and its change rate \(e_c \) are selected as the input variables of the fuzzy controller. The fuzzy variables \(E \) and \(E_c \) are obtained after the effect of quantitative factor. The output fuzzy variables are \(\Delta k_p \), \(\Delta k_i \) and \(\Delta k_d \). The fuzzy domain and membership function of the input and output are shown in Fig. 3 and Fig. 4 respectively.

The determination of the fuzzy rules

According to the influence of PID parameters on the system performance and the experimental parameter adjustment experience, the fuzzy PID control parameter tuning principle that enables the system to obtain the best response performance is shown in Table 1 - 3.
Table 1. Fuzzy rule table of Δk_p.

e	NB	NM	NS	ZO	PS	PM	PB
NB	NB	NB	NB	NB	NB	NB	NB
NM	NM	NM	NM	NM	NM	NM	NM
NS	NS	NS	NS	NS	NS	NS	NS
ZO	ZO	ZO	ZO	ZO	ZO	ZO	ZO
PS	PS	PS	PS	PS	PS	PS	PS
PM	PM	PM	PM	PM	PM	PM	PM
PB	PB	PB	PB	PB	PB	PB	PB

Table 2. Fuzzy rule table of Δk_i.

e	NB	NM	NS	ZO	PS	PM	PB
NB	NB	NB	NB	NB	NB	NB	NB
NM	NM	NM	NM	NM	NM	NM	NM
NS	NS	NS	NS	NS	NS	NS	NS
ZO	ZO	ZO	ZO	ZO	ZO	ZO	ZO
PS	PS	PS	PS	PS	PS	PS	PS
PM	PM	PM	PM	PM	PM	PM	PM
PB	PB	PB	PB	PB	PB	PB	PB

Table 3. Fuzzy rule table of Δk_d.

e	NB	NM	NS	ZO	PS	PM	PB
NB	NB	NB	NB	NB	NB	NB	NB
NM	NM	NM	NM	NM	NM	NM	NM
NS	NS	NS	NS	NS	NS	NS	NS
ZO	ZO	ZO	ZO	ZO	ZO	ZO	ZO
PS	PS	PS	PS	PS	PS	PS	PS
PM	PM	PM	PM	PM	PM	PM	PM
PB	PB	PB	PB	PB	PB	PB	PB

Fuzzy reasoning and defuzzification

According to the fuzzy rules, the control input e at each sampling time and change rate e_c are fuzzied E and E_c. Through fuzzy reasoning and defuzzification the corresponding fuzzy outputs Δk_p, Δk_i, Δk_d can be drawn.

The membership degree of the first fuzzy rule corresponding to Δk_p is as follows:

$$\mu_{\Delta k_p} = \mu_{NB}(E) \star \mu_{NB}(E_c)$$

where the type of operator ‘\star’ is the representation of small value, i.e.

$$\mu_{\Delta k_p} = \min \{\mu_{NB}(E), \mu_{NB}(E_c)\}$$

Order by analogy, the membership degree of all fuzzy rules of the output Δk_p corresponding to different deviation and change rate can be obtained. By the method of gravity defuzzification of each fuzzy rule, the fuzzy value of available Δk_p is as follows:

$$\Delta k_p = \frac{\sum_{j=1}^{49} \mu_{k_{pj}}(\Delta k_p) \Delta k_{pj}}{\sum_{j=1}^{49} \mu_{k_{pj}}(\Delta k_p)}$$

where Δk_{pj} is the real value on the domain $\Delta k_p = [-6, 6]$ and $\mu_{k_{pj}}$ is the activation of corresponding fuzzy rules.

Similarly, the fuzzy output values of Δk_i and Δk_d for each sampling period can be obtained. However, these values are still the corresponding fuzzy values in their domain, so the actual output values Δk_p, Δk_i, and Δk_d can be gotten after the fuzzy values respectively multiplied by their respective proportion factor. The adjustment algorithm of controller parameters updated corresponding to the system deviation e and its change rate e_c is as follows:

$$k_p = k_{p0} + \Delta k_p$$
$$k_i = k_{i0} + \Delta k_i$$
$$k_d = k_{d0} + \Delta k_d$$

where k_{p0}, k_{i0} and k_{d0} are the initial values of k_p, k_i and k_d.

The Experimental Study

The parameters of the physical system considered are depicted as follows:

$$i_0 = 0.6105 A, \quad x_0 = 0.02 m$$
\[K_a = 5.8929 \text{A/V}, \quad K_x = -458.7156 \text{V/m} \quad (12) \]

\[g = 9.8 \text{m/s}^2 \]

With these parameters, the mathematical model of magnetic suspension system is

\[G(s) = \frac{2499.1}{s^2 - 980} \quad (13) \]

A position command is the voltage signal corresponding to the suspension position. PID controller and fuzzy PID controller are respectively applied to the system. \(K_p, K_i \) and \(K_d \) of PID control is respectively taken as 1.6, 10 and 0.045. \(k_{p0}, k_{i0} \) and \(k_{d0} \) of fuzzy PID controller is 1.6, 10 and 0.045. The quantification factor of \(e \) and \(e_c \) respectively taken as 1.5/3 and 6/40. The proportion factor of \(\Delta k_p, \Delta k_i \) and \(\Delta k_d \) are respectively 0.2/6, 1/6 and 0.006/6. The sampling period \(T \) is 0.001s.

In this paper, the experiment is done based on the dSPACE hardware platform. The real time control platform of magnetic levitation ball system includes industrial control computer, hardware interface circuit, and magnetic suspension experiment device and so on. This platform is shown in Fig. 5.

![Real-time control platform of magnetic levitation ball system](image)

In the experiment, the given position voltage is -3V, and the manual interference is added after the magnetic levitation ball is stable for 15s. When the conventional PID control and fuzzy PID control are used respectively, the real-time position of the system is shown in Fig. 6. If the overshoot \(\sigma \), adjustment time \(t_s \) and transition time \(t_t \) after interference are chosen as the performance index of the system, the performance of the two control methods is shown in Table 4.

![Ball position curves of magnetic levitation ball system](image)

(a) The result of PID control

(b) The result of fuzzy PID control

Figure 6. Ball position curves of magnetic levitation ball system.
Table 4. Performance comparison of different controller.

Control method	Tracking set value	Transition time after disturbance	
	σ	t_s	t_t
PID	7.7%	2.5s	2.1s
Fuzzy PID	0	1.3s	0.6s

From Fig. 6 and Table 4, we can see that the overshoot and adjusting time of the system can be reduced and the system has better anti jamming performance compared with the conventional PID control when the fuzzy PID control algorithm is applied to the magnetic suspension system.

Summary

Based on the analysis of conventional PID control limitations and aimed at the magnetic levitation ball system nonlinear and open-loop unstable, the fuzzy PID control algorithm is used for the magnetic levitation system. In order to enhance both the control performance of the system in each stage and the robustness to external interference as well as its parameter perturbation, PID parameters are constantly revised by using the fuzzy control to have a certain adaptive ability. The experimental results show that fuzzy PID has better performances than the conventional PID in the process of the whole dynamic response.

Acknowledgement

This research was financially supported by the National Science Foundation of Shanxi province (2014011020-1,2), Postgraduate Education Reform Project of Shanxi Province(20132050) and Postgraduate Science and Technology Innovation Project Of Taiyuan University of Science and Technology(20145020).

References

[1] Ding Zheng-yu. Research on rapid control prototype of magnetic levitation platform based on dSPACE [D]. Changsha: Central South University, 2010.

[2] Gao Kun-lun, Liang Xiao, et al. Study of the control over the main steam temperature in a thermal power plant based on improved neural network PID [J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(6): 709-714.

[3] Wang Ke, Liu Xin-zheng. Application of immune single neuron PID regulator in permanent magnet synchronous machine AC servo system [J]. Journal of Xi’an Jiaotong University, 2010, 44(4): 76-81.

[4] Wang Xian-bing, Fei Shu-min, Xu Qing, et al. Constant Current Charging Characteristic Analysis of Storage Capacitor Based on BP Neural Network PID Control for Permanent Magnet Vacuum Switch [J]. Transactions of China Electrotechnical Society, 2015, 30(10): 212-218.

[5] Zhou Li-ying, Zhao Guo-shu. Application of Fuzzy-PID Control algorithm in uniform velocity temperature control system of resistance furnace [J]. Chinese Journal of Scientific Instrument, 2008, 29(2): 405-409.

[6] Cui Jia-rui, LI Qing, Zhang Bo, et al. Permanent Magnet Synchronous Motor of Variable Universe Adaptive Fuzzy PID Control [J]. Proceedings of the CSEE, 2013, 33(Supplement): 190-194.

[7] Zhou Peng, Wang An-fu, et al. Temperature control system based on immune fuzzy PID controller [J]. Mechanical & Electrical Engineering Technology, 2010, 39(4): 94-95.
[8] Guo Xia, Li Hai-tao, et al. PWM speed regulating system of DC torque motor based on fuzzy immune-PID control [J]. Journal of Naval Aeronautical and Astronautical University, 2010, 25(3): 263-266.

[9] Sun Dian-sheng, Bai Lian-ping. Application of fuzzy adaptive PID controller for control system of BLDCM [J]. Electric Drive, 2009, 39(10): 63-66.

[10] Yu Yue-qing, Zhou Gang, et al. Active vibration control for flexible piezoelectric manipulator based on fuzzy-PID fusion control [J]. China Mechanical Engineering, 2008, 19(15): 1836-1841.

[11] Xia Chang-liang, Liu Dan, et al. Control of brushless DC motors using fuzzy set based immune feedback PID controller [J]. Transactions of China Electrotechnical Society, 2007, 22(9): 68-73.

[12] Chen Jie, Chen Ran, Chen Jia-wei et al. Fuzzy Single-neuron PID Control of Variable-speed Wind Turbines [J]. Proceedings of the CSEE, 2011, 31(27): 88-94.

[13] Zeng Guo, Li Xing-yuan, Duan Yi. Design of IMC-PID controller based on internal model control theory for HVDC control system [J]. Electric Power Automation Equipment, 2014, 34(4): 162-167.

[14] Yang Yan-fei, Cui Ke, Lv Xin-jun. Combined Sliding Mode and PID Control of Automatic Train Operation system [J]. Journal of the China Railway Society, 2014, 36(6): 61-67.