Development and application of novel InDel markers in flax (Linum usitatissimum L.) through whole-genome re-sequencing

Hui Jiang · Gen Pan · Touming Liu · Li Chang · Siqi Huang · Huijuan Tang · Yuan Guo · Yena Wu · Jie Tao · Anguo Chen

Received: 16 July 2021 / Accepted: 22 November 2021 / Published online: 18 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract Flax is an important oil and fibre crop grown in Northern Europe, Canada, India, and China. The development of molecular markers has accelerated the process of flax molecular breeding and has improved yield and quality. Presently, simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers in the whole genome have been developed for flax. However, the development of flax insertion/deletion (InDel) markers have not been reported. A total of 17,110 InDel markers were identified by comparing whole-genome re-sequencing data of two accessions (87-3 and 84-3) with the flax reference genome. The length of InDels ranged from 1 to 277 bp, with 1–15 bp accounting for the highest rate (95.55%). The most common InDels were in the form of a single nucleotide (8840), dinucleotide (3700), and trinucleotide (1349), and Ch2 (1505) showed the highest number of InDels among flax chromosomes, while Ch10 (913) presented with the lowest number. From 17,110 InDel markers, 90 primers that were evenly distributed in the flax genome were selected. Thirty-two pairs of polymorphic primers were detected in two flax accessions, and the polymorphism rate was 40.70%. Furthermore, genetic diversity analysis, population structure and principal component analysis (PCA) divided 69 flax accessions into two categories, namely oilseed flax and fibre flax using thirty-two pairs of polymorphic primers. Additionally, correlation analysis showed that InDel-26 and InDel-81 were associated with oil content traits, and two candidate genes (lus10031535 and lus10025284) tightly linked to InDel-26 and InDel-81, might be involved in flax lipid biosynthesis and lipid metabolism. This study is the first to develop InDel markers based on re-sequencing in flax and clustered the accessions into two well-separated groups for oil and fibre. The results demonstrated that InDel markers developed herein could be used for flax germplasm identification, genetic diversity analysis, and molecular marker-assisted breeding.

Keywords Flax · InDel · Re-sequence · Oil content · Genetic diversity
Introduction

Flax (*Linum usitatissimum* L., 2n = 30) is an important economic crop mainly cultivated in Canada, China, America, and India. Flax is a multipurpose plant with a high comprehensive utilisation value and is used in food, medicine, and feed, while fibre is widely used in manufacturing industries and the development of composite materials and fireproof materials (Westcott and Muir 2003; Zuk et al. 2015). Therefore, cultivating high-yield and high-quality flax varieties has emerged as one of the current breeding goals. Molecular marker-assisted breeding (MAS) is a new type of breeding technology that can help achieve the breeding goal of increasing crop yield and quality in a more direct, rapid, and efficient manner. In recent years, with the development of sequencing technology, the development of high-quality molecular markers in the whole genome has been realised. Random amplified polymorphic DNA (RAPD) (Fu et al. 2002, 2003; Kumari et al. 2017), amplified fragment length polymorphism (AFLP) (Spielmeyer et al. 1998; Chandrawati et al. 2014), simple sequence repeats (SSR) (Cloutier et al. 2009; Cloutier et al. 2011; Soto-Cerda et al. 2011; Asgarinia et al. 2013; Chandrawati and Yadav 2017; Wu et al. 2017; Pan et al. 2020), and single nucleotide polymorphism (SNP) (Kumar et al. 2012; Yi et al. 2017; Xie et al. 2018; Soto-Cerda et al. 2018; You et al. 2018; Singh et al. 2019; Hoque et al. 2020) molecular markers have been identified in flax. However, there no research has been conducted on flax InDel molecular markers. Therefore, the development of InDel for the expansion of molecular markers could accelerate the process of flax molecular breeding, thereby aiding the cultivation of high-quality flax varieties.

AFLP, RAPD, SSR, and SNP markers in flax have been studied and used in germplasm identification, genetic diversity analysis, genetic map construction, QTL mapping, and genome-wide association analysis. Presently, SNPs are mainly used for genetic map construction (Yi et al. 2017; Zhang et al. 2018), QTL mapping (Wu et al. 2018; Zhang et al. 2018), and genome-wide association analysis (You et al. 2018; Xie et al. 2018, 2019; Soto-Cerda et al. 2018). Based on principles of the SLAF technology, a genetic map with the highest density using the best quality of flax was constructed (Yi et al. 2017; Wu et al. 2018), and the QTL loci and candidate genes related to the agronomic traits of flax were screened through association analysis (Xie et al. 2018). The SSR markers were widely used to analysis genetic diversity of flax, and the flax was divided into oil, fibre, and oil-fibre flax according to its use (Wu et al. 2017; Pan et al. 2020). However, few studies showed that the classification of flax varieties differed depending on the type of marker used (Wu et al. 2017). Although studies have been conducted on different types of molecular markers in flax, the continuous development of new molecular markers can provide technical support for the study of molecular marker-assisted breeding of flax. With the development of re-sequencing technology in recent years, mining high-quality molecular markers based on the whole genome could accelerate the research on flax molecular breeding.

With the development of high-throughput sequencing technology, the development of SNP and InDel markers based on whole-genome has been widely considered in crop molecular marker-assisted breeding (MAS). InDel refers to the insertion or deletion of nucleotides in the plant genome, and such nucleotides are widely distributed, dense, and abundant in the plant genome (Lv et al. 2013; Liu et al. 2013, 2016). InDel characteristics are similar to those of SSR, and InDel markers are composed of short fragments of different lengths. Owing to the low cost and high efficiency of sequencing, InDel can be developed easily using high-throughput sequencing (Liu et al. 2016; Guo et al. 2019). InDel markers have been used in rice (Hayashi et al. 2006; Wu et al. 2013; Sahu et al. 2017), jute (Yang et al. 2018), quinoa (Zhang et al. 2017a, b), cabbage (Lv et al. 2013), cucumber (Adedze et al. 2021), tomato, (Ngan et al. 2016) and other crops (Liu et al. 2013, 2019; Guo et al. 2019; Kizil et al. 2020; Wang et al. 2020), and are mainly used for germplasm resource identification, genetic diversity analysis, and genetic map construction. However, there are no reports available on the development and application of InDel markers in flax.

To accelerate the application of more molecular markers in flax breeding, for the first time, re-sequencing was used to identify and develop flax InDel markers. In this study, based on the two materials with different oil contents developed in our laboratory in the early stage, our aims were to: 1) re-sequence the two materials (87–3 and 84–3) and compare them with the reference genome sequence to develop the InDel marker; 2) design the InDel primers.
and evaluate the quality of InDel markers in 87–3 and 84–3; 3) use polymorphic primers to analysis the genetic diversity of 69 flax accessions; and 4) conduct correlation analysis between InDel markers and oil content traits, as well as perform the screening of candidate genes related to oil content traits.

Methods

Plant materials

In the early stage, we prepared 87-3 (male, 35.94%) and 84-3 (female, 45.77%) samples with different oil contents for re-sequencing, and a total of 69 flax accessions were collected for genetic analysis. Among them, 10 accessions were provided by the Gansu Academy of Agricultural Sciences, 20 accessions were provided by the Heilongjiang Academy of Agricultural Sciences, and 37 private accessions were obtained (Table S1). These flax accessions were derived from regions across the globe and were divided into oil and fibre according to use. All materials were planted in the western centre of the Chinese Academy of Agricultural Sciences, and the oil content of flaxseed was determined by conducting near-infrared spectral analysis (NIRS) after maturity was reached.

DNA sample preparation and re-sequencing

Young leaf tissues of 10 individuals of 84-3 and 87-3 were collected for performing de novo genomic re-sequencing. Fresh and young leaf tissues of 69 flax accessions were collected for genetic analysis. Among them, 10 accessions were provided by the Gansu Academy of Agricultural Sciences, 20 accessions were provided by the Heilongjiang Academy of Agricultural Sciences, and 37 private accessions were obtained (Table S1). These flax accessions were derived from regions across the globe and were divided into oil and fibre according to use. All materials were planted in the western centre of the Chinese Academy of Agricultural Sciences, and the oil content of flaxseed was determined by conducting near-infrared spectral analysis (NIRS) after maturity was reached.

InDel detection and primer design

The flax reference genome sequence was obtained from NCBI (https://www.ncbi.nlm.nih.gov/assembly/GCA_000224295.2) with the re-sequencing data of 87–3 and 84–3 to detect the InDel loci. The Primer 3.0 software (https://bioinfo.ut.ee/primer3-0.4.0/) was used to design primers for the InDel loci. The primer size ranges from 18 to 27 bp, the min primer Tm was 57.0, the max was 63.0, and product size range from 80 to 300 bp. The other parameters were performed with default values, and then click Pick Primers. One pair of primers with the highest scoring was selected from the experimental design results.

InDel genotyping

Primers were designed based on the detected InDel loci. According to the distance of every 4 Mb of the whole genome, InDel primers evenly distributed on the flax chromosomes were selected for polymorphism analysis. InDel-primed polymerase chain reactions (PCRs) were performed in 10 μL reaction volumes, which included 8 μL of the PCR mix solution (CWBIO, Beijing, China), 0.5 μL of the forward primer (10 nmol/L), 0.5 μL of the reverse primer (10 nmol/L), and 1 μL of the DNA template. PCR amplification was performed under the following conditions: (1) pre-denaturation at 95 °C for 3 min; (2) 35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 1 min; and (3) 72 °C for 5 min.

Genetic diversity assay and population structure analysis

The two materials (87–3 and 84–3) were used for detecting InDel primers polymorphism, and band types were detected by performing analysis using polypropylene gel. The genetic diversity of 69 flax accessions was analysed by polymorphic primer. Each polymorphic band was detected by using the same primer represented an allelic mutation. To generate molecular data matrices, clear bands for each fragment...
were scored for each accession for each primer pair and were recorded as 1 (presence of a fragment), 0 (absence of a fragment), and 9 (complete absence of band). The PowerMarker software (version 3.25) was used to provide data on basic summary statistics (Liu and Muse 2005), which included the polymorphism information content (PIC), the number of alleles (Na), major allele frequency (MAF), and gene diversity for each InDel. The calculation formula of PIC was $\frac{1}{\sum_{i=1}^{n} p_i^2 - 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p_i p_j}$, where p_i is the frequency of the ith allele (Botstein et al. 1980). PowerMarker was performed to calculate Nei’s distance (Nei 1973). A clustering map was constructed based on Nei’s distances and the unweighted pair-group method with arithmetic means (UPGMA) using MEGA V6.0.

The population structure of 69 flax accessions was estimated using the software STRUCTURE v2.3.4. The number of presumed populations (K) was set from 1 to 10 and running 10 times per round, burn in time and MCMC (Markov Chain Monte Carlo) replication number both to were set to 100,000. The STRUCTURE HARVESTER (Earl and Vonholdt 2012) was used to calculate the optimal K value to determine the most suitable number of sub-populations. To further analysis genetic relationships of flax accessions, a principal component analysis (PCA) was performed based on variability trends of InDel using the NTSYSpc version 2.10.

Correlation analysis between InDel markers and oil content traits

Correlation analysis was conducted using the SPSS software (version 13.0) to analysis the correlation between the InDel markers that could be used to clearly distinguish 69 flax accessions and the oil content trait data. Pearson correlation analysis was used to analysis the correlation coefficient between the flax oil content traits and InDel markers. A multiple linear stepwise regression method (Kraakman et al. 2004) was used to fit the InDel markers that showed a significant correlation with the oil content traits of flax. The X-axis indicated the genotype generated with the presence of each InDel marker, and the Y-axis indicated the trait of flax oil content.

Results

Distribution of InDel markers

The clean base quantity generated was 3.69 G for 84-3 and was 1.01 G for 87-3 with an average of 2.35 G. Using the Burrows-Wheeler Alignment (BWA), 3.55 G and 0.96 G of 84-3 and 87-3 were respectively mapped to the flax reference genome sequence. The mapping read depth was 18.93 × for 84-3 and 6.02 × for 87-3, respectively (Table 1). Genome-wide InDel polymorphism led to the generation of 17,110 InDels between 84-3 and 87-3 (Table S2), exhibiting an InDels density of 54.12 InDel/Mb. InDel sites varied from 1 to 277 bp, and the number of InDel sites decreased as the length of InDel increased (Fig. 1). The number of InDels of 1–3 bp showed the highest value (81.17%), followed by that of InDels of > 15 bp (14.37%); the number of InDels of > 15 bp showed the least value (4.45%). Among all InDels, the most common InDel sites were single nucleotide (8840) accounting for 51.67%, dinucleotide (3700) accounting for 21.62%, and trinucleotide (1349) accounting for 7.88%. Furthermore, the repeats of A (2524) and T (2551) were more commonly present in single nucleotide sites, and there were four repeat types of dinucleotide (CA, CT, TA, and AT) and trinucleotide (TTC, AAT, CTT, and TAA) (Fig. S1). Additionally, the distribution of InDels on each chromosome was also different (Fig. 2a). Ch2 exhibited the highest number of InDels (1505), and Ch10 demonstrated the lowest number (913). The average density of InDels in the whole genome of flax was 54.12 InDels/Mb, and the InDel density of each chromosome was different. The highest density of Ch5 was 64.97 InDels/Mb, while the lowest density of Ch8 was 40.35 InDels/Mb (Fig. 2b).

Table 1 Summary of the original sequencing data of 84-3 and 87-3

Samples	Clean base (G)	Map ratio (%)	Q20 (%)	Depth
84-3	3.69	96.34	98.11	18.93
87-3	1.01	95.1	98.01	6.02
Average	2.35	95.72	98.06	12.475
InDel marker polymorphism analysis

Based on data comprising 17,110 InDels, 17,110 primer pairs were designed. Ninety pairs of InDel primers were selected according to the distance of each 4 MB and the difference of more than three bases in the whole genome, as shown in Table S3. The length of all primers was 24 bp, and the size of the product was 80–250 bp. The effectiveness of 90 pairs of InDel primers showed that 86 primers led to the successful amplification of bands, 32 pairs of polymorphic primers, and the polymorphism rate was 40.70% (Fig. 3; Fig. S2).

Genetic diversity analysis of 69 flax accessions

Data on 32 InDel primers were used to analyse the genetic diversity of the 69 flax accessions (Fig. 4). The number of alleles (Na) ranged from 2 to 3 (average of 2.25) (Table S4). Twenty-four InDels exhibited two alleles, and eight InDels presented with three alleles. The polymorphism information content (PIC) varied from 0.0674 to 0.3958, with an average of 0.3097, and the gene diversity ranged from 0.0698 to 0.5138, with an average of 0.3899. Additionally, the average major allele frequency (MAF) was 0.6941, which varied from 0.5000 to 0.9638. InDel-51 presented with the highest PIC (0.3958) and gene diversity (0.5138). InDel-13 presented with the lowest PIC (0.0674), gene diversity (0.0698), and the highest MAF (0.9638).

The genetic relationships between the 69 flax accessions were analysed. As shown in Fig. 5, the 69 accessions were unambiguously classified into two clusters according to oil and fibre content. Group I included 35 accessions of oil. Group II included 34 accessions of fibre. However, the two accessions for oil (Baya 7, Kuerle) were classified into Group II. Moreover, five InDel markers (InDel-14, InDel-26, InDel-40, InDel-74, and InDel-81) could be used to largely classify 69 flax accessions for oil and fibre.
among the 32 polymorphic primers, and the five markers could be further analysed (Fig. 4; Fig. S3).

Population structure and principal component analysis

To further determine the population structure of 69 flax germplasm, STRUCTURE 2.3.4 was used to analysis the population structure. The results of Delta K values of different assumed (K) populations showed that a sharp peak was given at K = 2, which indicated that there were two sub-populations in 69 flax accessions (Fig. 6a). As shown in Fig. 6b, the population structure analysis classified 69 flax genotypes into two sub-populations, with 33 fibre genotypes in population 1 and 36 oil genotypes in population 2. In addition, PCA analysis divided all accessions into two major groups (Fig. 7). The results of the two-dimensional scatter plot showed that principal component one and principal component two account for 63.7% and 21.0% of the variation, respectively.
Correlation analysis and candidate gene prediction

To further explore InDel markers related to oil content traits of flax, correlation analysis between five InDel markers and oil content traits was conducted (Table 2). The results showed that InDel-26 exhibited a significant positive correlation with oil content traits, whereas InDel-81 exhibited a significant negative correlation ($p < 0.05$). Meanwhile, the correlation analysis between InDel markers and flax type InDel-26 showed the existence of an extremely significant negative correlation, while InDel-81 showed the existence of an extremely significant positive correlation ($p < 0.01$) (Table 3).

Further, the marker loci information was compared with the flax reference genome data to identify the gene locus related to the two markers. InDel-26 and InDel-81 were located on Ch12 and Ch8, respectively. The genes close to InDel-26 were *lus10031534* and *lus100315535*, and functional annotations were found to be RNA-binding (RRM/RBD/RNP motifs) family protein and serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B prime gamma, respectively (Table 4). The genes close to InDel-81 were *lus10025284* and *lus10010835*, and their functional annotations included Lipin family protein and protein kinase superfamily protein, respectively.

Discussion

In this study, re-sequencing was performed for the first time to develop InDels related to the oil content of flax. Based on the re-sequencing data, 17,110 InDels were
detected with a density of 54.12 InDel/Mb in the whole genome. Compared with jute (*Corchorus* spp.) (51,172) (Yang et al. 2018), quinoa (*Chenopodium quinoa* Willd.) (842,783) (Zhang et al. 2017a, b), apple (*Malus* ssp.) (25,924) (Wang et al. 2020), tea plant (*Camellia sinensis* (L.) O. Kuntze) (255,218) (Liu et al. 2019), and pepper (*Capsicum* spp. L.) (1,651,856) (Guo et al. 2019), the number of InDels detected in this study was low but was higher than that of cucumber (*Cucumis sativus*) (10,470) (Adedze et al. 2021) and sesame (*Sesamum indicum* L.) (7477) (Anonymous 2020). Compared with other markers in flax, the number of InDels was less than that of SNPs (Yi et al. 2017; You et al. 2018) and more than most SSR markers (Cloutier et al. 2009, 2012; Soto-Cerda et al. 2011; Wu et al. 2017), which indicated that the efficiency of InDel and SNP marker discovery in flax are higher than that of SSR using whole-genome resequencing, and SNP markers were more widely distributed in the flax genome than InDel markers. Moreover, the length of InDel obtained in this study was 1–277 bp, with the largest number of single nucleotides (51.67%), followed by dinucleotides (21.62%) and trinucleotides (7.88%). The small InDel fragments (1–15 bp) accounted for a high rate (95.55%). Additionally, A and T were the most commonly occurring single nucleotides, and these results were consistent with previous studies (Yang et al. 2018; Liu et al. 2013; Wei et al. 2014). The InDel markers referred to the difference in nucleotides in the plant genome. In this study, using 84-3 and 87-3 with different oil contents constructed in the early stage of

![Fig. 6](https://example.com/fig6.png)

Fig. 6 a Delta K values for different assumed (K) populations and b population structure analysis divided 69 flax accessions into two populations based on 32 InDel markers ($K = 2$).
In experiments, the InDel marker was developed for the first time in flax by re-sequencing, which was helpful for conducting flax molecular marker-assisted breeding.

Analysis of the genetic relationship between species has important statistical significance for guiding crop genetic breeding. To verify the developed InDel markers, 32 pairs of polymorphic primers were screened from 90 pairs of InDel markers evenly distributed on the chromosomes in 37 flax accessions. The polymorphism rate was 40.70%, which was lower than that of pepper (67.4%) (Guo et al. 2019), cucumber (54.81%) (Adedze et al. 2021), and Brassica rapa (77%) (Liu et al. 2013). Additionally, the PIC was low (0.3097), which was consistent with the results reported by previous studies (Soto-Cerda et al. 2011; Wu et al. 2017; Pan et al. 2020). This indicated that InDel markers were more suitable for the identification of flax germplasm resources, since the degree of variation of flax genes was not substantial and the genetic background was narrow.

Table 2 Correlation coefficients between InDel markers and oil content traits in flax

Marker	Oil content	InDel-14	InDel-26	InDel-40	InDel-74
InDel-14	-0.015				
InDel-26	0.278*	0.011			
InDel-40	-0.186	0.023	0.106		
InDel-74	-0.070	0.743**	0.145	0.123	
InDel-81	-0.543**	0.060	-0.118	0.480**	0.228

*P < 0.05 indicates a significant correlation

**P < 0.01 indicates an extremely significant correlation
Genetic diversity analysis can help identify germplasm resources, which play a key role in crop breeding through the genetic evolution of crops. Based on the results of the previous analysis, thirty-two polymorphic InDel markers could be used to divide 69 flax accessions into two groups, namely oil and fibre. Group I was established for oil, and Group II was established for fibre. This classification was consistent with that reported in previous studies (Chandrawati et al. 2014; Wu et al. 2017; Pan et al. 2020). In addition, population structure analysis showed that when Delta K had a peak at K = 2, 69 flax genotypes were divided into two sub-populations, indicating that 69 flax accessions have a relatively simple population structure and a single genetic source. The PCA results also divided all accessions into two categories. The population structure and PCA classification results were consistent with the UPGMA clustering results, indicated that the classification results obtained in this study were reliable.

In previous studies, high-throughput sequencing techniques have been used for the development of SSR and SNP markers for QTL mapping and GWAS analysis of flax-related quality traits (Chandrawati and Yadav 2017; You et al. 2018; Xie et al. 2018, 2019). In this study, two InDel markers (InDel-26 and InDel-81) related to flax oil content traits were identified through correlation analysis of the developed InDel markers. Traditional breeding is the major method for the development of flax varieties, and molecular breeding remains in the exploratory stage. In this study, the InDel marker (InDel-26, InDel-81) could be used for the selection of traits with high oil content during flax breeding, and might further accelerate the process of flax molecular breeding.

Furthermore, through the comparison of gene loci information, four gene loci (lus10031534, lus10031535, lus10025284, and lus10010835) near InDel-26 and InDel-81 were found. lus10031535 is functionally annotated as serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B prime gamma, and the homologous gene in Arabidopsis thaliana is PUX5 (UniProtKB: Q7Y175; GeneID: 827210), which encodes a protein containing the ubiquitin regulatory domain. In Pichia pastoris, Ubx1 and Ubx2 were reported to play a key role in the synthesis of unsaturated fatty acids by exerting influence on Spt23, and both are reportedly involved in the formation of lipid droplets and protein degradation (Zhang et al. 2017a, b). lus10025284 is

Table 3 Correlation coefficients between InDel markers and type of flax

Marker	Type	InDel-14	InDel-26	InDel-40	InDel-74	InDel-81
InDel-14	0.083	0.0023	0.106	0.060	0.639**	
InDel-26	−0.475**	0.011	0.175	0.743**	−0.118	0.480**
InDel-40	0.250*	0.023	0.175	0.743**	−0.118	0.480**
InDel-74	0.175	0.011	0.106	0.060	0.639**	
InDel-81	0.639**	0.060	−0.118	0.480**	0.228	

*P < 0.05 indicates a significant correlation
**P < 0.01 indicates an extremely significant correlation

Table 4 Candidate gene information of InDel markers related to oil content traits in flax

Marker	Pos	Chr	ID	Scaffold	Start	End	Functional annotation
InDel-26	20001016	12	Lus10031534	scaffold863	20,003,169	20,003,873	RNA-binding (RRM/RBD/RNP motifs) family protein
			Lus10031535	scaffold863	19,995,796	19,998,319	Serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B prime gamma
InDel-81	12546472	8	Lus10025284	scaffold339	12,554,843	12,558,982	Lipin family protein
			Lus10010835	scaffold440	12,531,041	12,533,379	Protein kinase superfamily protein
functionally annotated as a lipid family protein, and its homologous gene in Arabidopsis thaliana is PAH1 (UniProtKB: Q9SF47; GeneID: 820113), which catalysed the dephosphorylation of phosphates to generate diacylglycerols (Nakamura et al. 2009; Eastmond et al. 2010; Mietkiewska et al. 2011). Therefore, it is speculated that lus10031535 and lus10025284 may function in flax lipid biosynthesis and lipid metabolism; however, the function of these genes in flaxseed warrants further verification using transgenic experiments.

Conclusion
In this study, 17,110 InDel markers were developed based on re-sequencing, and thirty-two pairs of polymorphic primers were obtained among accessions 84-3 and 87-3. Thereafter, 69 accessions were divided into two groups (oil and fibre) using 32 polymorphic primers based on population structure analysis, PCA analysis and the UPGMA clustering. Furthermore, the correlation analysis showed that InDel-26 and InDel-81 were related to the oil content of flax, and two candidate genes (lus10031535 and lus10025284) may relate to lipid biosynthesis and lipid metabolism. This is the first study conducted on the development of InDel markers based on re-sequencing in flax, which may provide a theoretical basis for the identification of flax germplasm resources, genetic map construction, QTL mapping, and GWAS.

Authors’ contributions AC designed experiment and provided resources. HJ performed experiment, analysed data and wrote original draft. GP designed experiment, analysed data and edited article. TL designed experiment. LC and SH edited article. HT investigated data of traits. YG provide resources. YW and JT performed part of experiment.

Funding This research was funded by National Natural Science Foundation of China (31771852 and 31771853) and Special college-level overall planning project for basic scientific research business expenses of Chinese Academy of Agricultural Sciences (Y2019XK15-06).

Data availability All data generated or analysed during this study are included in this published article and its supplementary information files.

References
Adedze YMN, Lu X, Xia Y, Sun Q, Nchongboh CG, Alam MA, Liu M, Yang X, Zhang W, Deng Z, Li W, Si L (2021) Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber. Sci Rep 11:3872. https://doi.org/10.1038/s41598-021-83313-x
Asgarinia P, Cloutier S, Duguid S, Rashid K, Mirlohi AF, Banik M, Saeidi G (2013) Mapping quantitative trait loci for powdery mildew resistance in flax (Linum usitatissimum L.). Crop Sci 53:2462–2472. https://doi.org/10.2135/cropsci2013.05.0298
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331
Chandrawati, Yadav HK (2017) Development of linkage map and mapping of QTLs for oil content and yield attributes in linseed (Linum usitatissimum L.). Euphytica 213:258. https://doi.org/10.1007/s10681-017-2050-x
Chandrawati MR, Singh PK, Ranade SA, Yadav HK (2014) Diversity analysis in Indian genotypes of linseed (Linum usitatissimum L.) using AFLP markers. Gene 549:171–178. https://doi.org/10.1016/j.gene.2014.07.067
Cloutier S, Niu Z, Datla R, Duguid S (2009) Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet 119:53–63. https://doi.org/10.1007/s00122-009-1016-3
Cloutier S, Ragupathy R, Niu Z, Duguid S (2011) SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol Breed 28:437–451. https://doi.org/10.1007/s11032-010-9494-1
Cloutier S, Miranda E, Ward K, Radovanovic N, Reimer E, Walichnowski A, Datla R, Rowland G, Duguid S, Ragupathy R (2012) Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor Appl Genet 125:685–694. https://doi.org/10.1007/s00122-012-1860-4
Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7
Eastmond PJ, Quettier AL, Kroon JT, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic
Kumari A, Paul S, Sharma V (2017) Genetic diversity analysis of cultivars and landraces of flax (Linum usitatissimum L.) as revealed by RAPD. Genet Resour Crop Evol 49:167–174. https://doi.org/10.1007/s10722-003-0290-6

Kraakman AT, Niks RE, Van den Berg PM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and disease resistance traits in modern spring barley cultivars. Theor Appl Genet 113:251–260. https://doi.org/10.1007/s00122-006-0290-6

Khan M, Liu S, An Y, Tong W, Liu J, Yang X (2016) Exploiting Illumina sequencing for the development of InDel markers in flax (Linum usitatissimum L.) following ddRADSeq. Plants (Basel) 21:2387–2399. https://doi.org/10.3390/plants21092387

Kizil S, Basak M, Guden B, Tosun HS, Uzun B, Yol E (2020) Development of InDel markers for sesame (Sesamum indicum L.) using ddRADSeq. Plants (Basel) 9:1262. https://doi.org/10.3390/plants9101262

Kraakman AT, Nits KE, Van den Berg PM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446. https://doi.org/10.1534/genetics.168.2.435

Kumar S, You FM, Cloutier S (2012) Genome-wide discovery of InDel markers in sesame (Sesamum indicum L.) using ddRADSeq. Plants (Basel) 9:1262. https://doi.org/10.3390/plants9101262

Kraakman AT, Nits KE, Van den Berg PM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446. https://doi.org/10.1534/genetics.168.2.435

Kumar S, You FM, Cloutier S (2012) Genome-wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genom 13:684. https://doi.org/10.1186/1471-2164-13-684

Kumari A, Paul S, Sharma V (2017) Genetic diversity analysis using RAPD and ISSR markers revealed discrete genetic makeup in relation to fibre and oil content in Linum usitatissimum L. genotypes. Nucleic Acids Res 45:43–53. https://doi.org/10.1015/j.genetics.104.026831

Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. https://doi.org/10.1093/bioinformatics/bti282

Liu B, Wang Y, Zhai W, Deng J, Wang H, Cui Y, Cheng F, Wang X, Wu J (2013) Development of InDel markers for Brassica rapa based on whole genome re-sequencing. Theor Appl Genet 126:231–239. https://doi.org/10.1007/s00122-012-1976-6

Liu G, Xu J, Zhang M, Li P, Yang X (2016) Exploiting Illumina sequencing for the development of InDel markers in watermelon (citrullus lanatus). J Hortic Sci Biotechnol 91:220–226. https://doi.org/10.1080/14620316.2015.1133809

Liu S, An Y, Tong W, Qin X, Samarina L, Guo R, Xia X, Wei C (2019) Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia sinensis) and development of InDel markers for genetic research. BMC Genom 20:935. https://doi.org/10.1186/s12864-019-6347-0

Lv H, Yang L, Kang J, Wang Q, Wang X, Fang Z, Liu Y, Zhuang M, Zhang Y, Lin Y, Yang X, Xie B, Liu B, Liu J (2013) Development of InDel markers linked to Fusarium wilt resistance in cabbage. Mol Breed 32:961–967. https://doi.org/10.1007/s11032-013-9925-x

Mietkiewska E, Siloto RM, Dewald J, Shah S, Brindley DN, Weselake RJ (2011) Lipins from plants are phosphatidate phosphatases that restore lipid synthesis in a pabi Δ mutant strain of Saccharomyces cerevisiae. FEBS J 278:764–775. https://doi.org/10.1111/j.1742-4658.2010.07995.x

Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325. https://doi.org/10.1093/nar/8.19.4321

Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenko M, Itos T, Ohita H (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci U S A 106:20978–20983. https://doi.org/10.1073/pnas.0907173106

Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenko M, Itos T, Ohita H (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci U S A 106:20978–20983. https://doi.org/10.1073/pnas.0907173106

Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323. https://doi.org/10.1073/pnas.70.12.3321

Ngan TP, Kim MK, Sim SC (2016) Genetic variations of F1 tomato cultivars revealed by a core set of SSR and InDel markers. Sci Hortic 212:155–161. https://doi.org/10.1016/j.scienta.2016.09.043

Pan G, Chen A, Li J, Huang S, Tang H, Chang L, Zhao L, Li D (2020) Genome-wide development of simple sequence repeats database for flax (Linum usitatissimum L.) and its use for genetic diversity assessment. Genet Resour Crop Evol 67:865–874. https://doi.org/10.1007/s10722-020-00882-y

Sahu PK, Mondal S, Sharma D, Vishwakarma G, Kumar V, Das BK (2017) Indel marker based genetic differentiation and genetic diversity in traditional rice (Oryza sativa L.) landraces of Chhattisgarh, India. PLoS ONE 12:e0188864. https://doi.org/10.1371/journal.pone.0188864

Singh N, Agarwal N, Yadav HK (2019) Genome-wide SNP-based diversity analysis and association mapping in linseed (Linum usitatissimum L.). Euphytica. https://doi.org/10.1007/s10681-019-2462-x

Soto-Cerda BJ, Carrasco RA, Aravena GA, Urbina HA, Navarro CS (2011) Identifying novel polymorphic microsatellites from cultivated flax (Linum usitatissimum L.) following data mining. Plant Mol Biol Report 29:753–759. https://doi.org/10.1007/s11105-010-0276-5

Soto-Cerda BJ, Cloutier S, Quian R, Gajardo HA, Olivos M, You FM (2018) Genome-wide association analysis of mucilage and hull content in flax (Linum usitatissimum L.) Seeds. Int J Mol Sci 19:2870. https://doi.org/10.3390/ijms19102870

Spielmeyer W, Green AG, Bittsnich D, Mendenhall N, Lagudah ES (1998) Identification of quantitative trait loci contributing to fusarium wilt resistance on an AFLP linkage map of flax (Linum usitatissimum). Theor Appl Genet 97:633–641. https://doi.org/10.1007/s001220050939

Wang X, Chen F, Gao Y, Wang K, Chen R, Luo J, Yang L, Zhang X, Qiu C, Li W, Wu T, Xu X, Wang Y, Cong P, Han Z, Zhang X (2020) Application of genome-wide insertion/
deletion markers on genetic structure analysis and identity signature of *Malus* accessions. BMC Plant Biol 20:540. https://doi.org/10.1186/s12870-020-02744-2

Wei L, Miao H, Li C, Duan Y, Niu J, Zhang T, Zhao Q, Zhang H (2014) Development of SNP and InDel markers via de novo transcriptome assembly in *Sesamum indicum* L. Mol Breed 34(4):2205–2217. https://doi.org/10.1007/s11032-014-0174-4

Westcott ND, Muir AD (2003) Flax seed lignan in disease prevention and health promotion. Phytochem Rev 2:401–417. https://doi.org/10.1023/B:PHYT.0000046174.97809.b6

Wu D, Wu H, Wang C, Tseng H, Hwu K (2013) Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica 192:131–143. https://doi.org/10.1007/s10681-013-0925-z

Wu J, Zhao Q, Wu G, Zhang S, Jiang T (2017) Development of novel SSR markers for flax (*Linum usitatissimum* L.) using reduced-representation genome sequencing. Front Plant Sci 7:2018. https://doi.org/10.3389/fpls.2016.02018

Wu J, Zhao Q, Zhang L, Li S, Ma Y, Pan L, Lin H, Wu G, Yuan H, Yu Y, Wang X, Yang X, Li Z, Jiang T, Sun D (2018) QTL mapping of fiber-related traits based on a high-density genetic map in flax (*Linum usitatissimum* L.). Front Plant Sci 9:885. https://doi.org/10.3389/fpls.2018.00885

Xie D, Dai Z, Yang Z, Sun J, Zhao D, Yang X, Zhang L, Tang Q, Su J (2018) Genome-wide association study identifying candidate genes influencing important agronomic traits of flax (*Linum usitatissimum* L.) Using SLAF-seq. Front Plant Sci 8:2232. https://doi.org/10.3389/fpls.2017.02232

Xie D, Dai Z, Yang Z, Tang Q, Deng C, Xu Y, Wang J, Chen J, Zhao D, Zhang S, Zhang S, Su J (2019) Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism. Plant Sci 286:98–107. https://doi.org/10.1016/j.plantsci.2019.06.004

Yang Z, Dai Z, Xie D, Chen J, Tang Q, Cheng C, Xu Y, Wang T, Su J (2018) Development of an InDel polymorphism database for jute via comparative transcriptome analysis. Genome 61:323–327. https://doi.org/10.1139/gen-2017-0191

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.