The formation of nano-layered grains and their enhanced superconducting transition temperature in Mg-doped FeSe$_{0.9}$ bulks

Feng Lan1, Zongqing Ma1,2, Yongchang Liu1, Ning Chen1, Qi Cai1, Huijun Li1, Shaon Barua2, Dipak Patel2, M. Shahriar Al Hossain2, Jung Ho Kim2 & Shi Xue Dou2

1Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China, 2Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales, 2500, Australia.

To search a proper dopant to further improve superconductivity in 11 type Fe-based superconductors makes sense to both their superconductivity mechanism and possible technological applications. In present work, Mg doped FeSe polycrystalline bulks were obtained by a two-step solid-state reaction method. Even though there are many MgSe and iron impurities existing in the Mg heavy doped FeSe bulks, they exhibit obviously increased T_c compared to undoped FeSe sample. It was found that Mg addition has little effect on the crystal lattice parameters of superconducting β-FeSe, whereas leads to the formation of nano-layered grain structure consisted of MgSe and β-FeSe with similar X-ray diffraction characteristics. Lots of nano-structural interfaces between FeSe and MgSe formed in this homogenous layered grain structure have significant effect on the superconducting properties and are responsible for the enhancement of T_c, as like the case of FeSe thin film on some specific substrates. Our work not only demonstrates a powerful way for raising T_c in bulk superconductors, but also provides a well-defined platform for systematic studies of the mechanism of unconventional superconductivity by considering interface effect.

The recent discovery of the Fe-based high temperature superconductors with superconducting transition temperatures as high as 55 K1 have attracted world-wide attention despite the magnetism of Fe. Among them, 11 compounds with T_c of 8 K possesses the simplest crystal structure3, containing a single layer of tetrahedrally coordinated Fe atoms to chalcogen atoms (Se/Te). This simplicity of structure and presence of less toxic Se as compared to As make 11 compounds more attractive to study the superconductivity mechanism in iron based superconductors as well as their possible technological applications.

Even more remarkably, the onset T_c of binary β-FeSe$_{1-x}$ was shown to be as high as 27 K4 with applied hydrostatic pressure, which suggests a possibility of increasing T_c via the chemical pressure route. Therefore, it is considered that chemical substitutions can be an alternative way to introduce pressure to change parameters and thereby affect superconductivity in the search for novel superconducting materials. Subsequently, several groups focused on different substitutions of ions with varied ionic radius upon either the Fe-site or the Se-site. Until now, the partial substitution of Se by Te and S has been found to significantly increase the T_c, e.g. with a maximum onset T_c of 15 K for FeSe$_{0.5}$Te$_{0.5}$ or FeSe$_{0.8}$Te$_{0.2}$.$^-5,6$.

Meanwhile, the effect of various metals dopants, such as Al, Ti, V, Cr, Mn, Co, Ni, Cu, Ga, In, Ba and Sm on the FeSe$_{1-x}$ superconducting polycrystalline samples obtained by a solid state reaction was investigated in previous study.7,8 Among them, Co, Ni, Cu, Al, Ga or Sm doped samples consist of mainly the tetragonal phase, and these dopants occupied the Fe-sites and resulted in the changes in the lattice constants. On the other hand, the rest of the studied metal dopants did not incorporate into the host lattice of superconducting FeSe$_{1-x}$, and mainly formed inclusions with elements (Fe or Se) not incorporated into the matrix. However, in either case, the T_c in these doped FeSe$_{1-x}$ samples were generally suppressed, or even no longer emerged according to the resistivity as a function of temperature. Superconducting single crystal of pure FeTe$_{1-x}$Se$_x$ (x = 0.3−0.55) doped with Co, Ni, Cu, Mn, Zn, Mo, Cd, In, Pb, Hg, V, Ga, Mg, Al, Ti, Cr, Sr or Nd were also studied, and the similar results were found in these doped single crystals.9.
Based on these backgrounds, doping of various metals in the FeSe polycrystalline bulks or single crystal samples seems to be a noneffective way to raise T_c. Consequently, lots of research teams around the world lost their interest in exploring the doping of various metals and mainly focused on the research of substitution of Se-site by Te and S in recent years. Nevertheless, in present work, Mg doped FeSe polycrystalline bulks were prepared by two-step solid-state reaction method, which exhibits enhanced T_c compared to undoped FeSe sample. The corresponding enhancement mechanism is also discussed in detail, appearing to be quite different from that of the other metals doped FeSe polycrystalline bulks in previous studies.

Experimental details

Polycrystalline bulk samples FeSe$_{0.9}$Mg$_x$ ($x = 0, 0.2, 0.4$ and 1) were prepared by two-step solid-state reaction method. The Fe powder (99.99% purity) and Se powder (99.5% purity) were firstly mixed in a molar ratio of FeSe$_{0.9}$. The mixed powders were cold-pressed into pellets of 5 mm in diameter and 2 mm in thickness under a uniaxial pressure of 5 MPa. All the pressed pellets were placed in an alumina crucible inside a quartz tube furnace and then sintered at 650°C for 24 h under protection of ultra-high purity Ar gas. After slowly cooling down to room temperature, these sintered FeSe$_{0.9}$ bulks were reground into powders. Then these powders was mixed homogeneously with Mg powders (99.99% purity) in a molar ratio of FeSe$_{0.9}$Mg$_x$ ($x = 0, 0.2, 0.4$ and 1). The mixed powders were cold-pressed into pellets again. All the pressed pellets were placed in an alumina crucible inside a quartz tube furnace again and then sintered at 750°C for 0.5 h under protection of ultra-high purity Ar gas.

The phase composition of the sintered samples was determined by X-ray diffractometer (XRD) using Rigaku D/max2500 X-ray diffractometer with Cu Kα radiation. The morphologies were examined by field-emission scanning electron microscopes (SEM, S-4800, Hitachi). The sample resistance was measured using the standard four-probe method.

Results and Discussion

Figure 1 shows the temperature dependence of electrical resistivity for the sintered FeSe$_{0.9}$Mg$_x$ ($x = 0, 0.2, 0.4$ and 1) samples. One can see that superconducting phase, β-FeSe, is the main phase in all the sintered samples. Some common impurities, Fe$_3$Se$_8$ and Fe$_2$O$_3$, are also recognized in FeSe$_{0.9}$ sample. As the amount of Mg dopant was added from FeSe$_{0.9}$Mg$_{0.2}$ to FeSe$_{0.9}$Mg$_1$, the intensity of β-FeSe peaks decreased while the peaks corresponding to MgSe and Fe emerge and gradually become stronger. Observing Fig. 2a more carefully, one can also see that all the MgSe main peaks are very close to, and even overlap with β-FeSe peaks in the patterns (for example, MgSe (200) peak and β-FeSe (002) peak, MgSe (220) peak and FeSe (112) peak, MgSe (111) peak and FeSe (101) peak). Besides, it is noticed that the positions of (001) and (101) peaks corresponding to β-FeSe phase almost keep unchanged with the amount of Mg addition increasing, as shown in Fig. 2b and Fig. 2c, suggesting that the lattice parameters (a and c) of β-FeSe almost remain unchanged. Based on the above XRD results, it can be concluded that Mg dopant mainly reacted with FeSe forming MgSe and Fe: Mg + FeSe = MgSe + Fe, and seldom entered into crystal lattice of β-FeSe and substitute of Fe-site.

The SEM images of sintered FeSe$_{0.9}$Mg$_x$ ($x = 0, 0.2, 0.4$ and 1) samples are given in Fig. 3. It can be seen that the sintered undoped FeSe sample is dense and consisted of small randomly aligned grains (about 500 nm in size, see Fig. 3a), which is the typical characteristic of FeSe bulks prepared by traditional solid-state sintering11,12. On the other hand, regular layered grains are observed in the sintered Mg-doped samples. As the amount of Mg addition increases, the percent
of layered grains increased, and finally the layered grains dominate in the microstructure of sintered FeSe0.9Mg0.4 and FeSe0.9Mg samples. Moreover, the size of layered grains also enlarges as Mg addition increases. Interestingly, observing Fig. 3c and Fig. 3d more carefully, one can see that the thickness of each layer in these layered grains is very small (only about 100 nm) and also very homogeneous. This unique microstructure was seldom observed in other-metal doped FeSe samples. Combined with the XRD results, Mg addition mainly reacts with FeSe forming MgSe. The formation of these layered grains is supposed to be closely related with this reaction. Since the produced MgSe shares the similar x-ray diffraction characteristics with β-FeSe, it can incorporate into superconducting β-FeSe matrix, finally forming these multi-layered grain structure in the sintered Mg-doped sample. This speculation can be further proved by the elemental maps of Se, Fe and Mg for the microstructure of Mg doped sample, as shown in Fig. 4. It can be seen from Fig. 4 that Fe distributes uniformly in the whole SEM image while Mg and Se are relatively concentrated at the region of layered grains, as marked by white squares in Fig. 4. This result suggests that the layered grains are mainly consisted of MgSe and FeSe.

Combined with all the above results of superconducting properties, phase composition and microstructure, As Mg addition has little effect on the crystal lattice parameters of β-FeSe, but leads to the formation of unique layered grain structure consisted of MgSe and FeSe, it can be suggested that the enhancement of \(T_c\) in the FeSe0.9Mg0.4 sample should be attributed to the multi-layered grain structure. Interestingly, Nabeshima et al have just reported that FeSe epitaxial thin film deposited on CaF2 (100) substrate exhibits significantly enhanced \(T_c\). In fact, the multi-layered grain structure in sintered FeSe0.9Mg0.4 samples here is consisted of lots of homogeneous and thin MgSe and FeSe layers (as described above, the thickness of each layer is about 100 nm, see Fig. 3c), just like as the FeSe thin films on the MgSe substrates. MgSe is very similar with CaF2 in the crystal structure and crystal constants (Cubic, \(a = 5.463\) and 5.462 for MgSe and CaF2, respectively). From this view, our result is coincidently consistent with their research. They attribute the enhancement of \(T_c\) to the change of crystal lattice parameters \(a/c\) ratio. However, the lattice parameters of FeSe bulks almost keep unchanged by Mg doping in our work. There must be other mechanism underlying the enhancement of \(T_c\) here.
Besides Nabeshima et al’s work, FeSe and FeSe_{1-x}Te_x thin films with much higher T_c than those of bulk superconductors have also been achieved by other groups recently, especially the thin films on the substrate with quite similar lattice constants with them. In these films, it was found that the T_c of these films is significantly enhanced, whereas their lattice parameters changed very little, or even remained unchanged. The effect of the change in lattice parameters is too weak to account for the improvement of T_c. It was suggested that the interface effect plays an important role in increasing T_c of these thin films. In fact, interface effect has always been an interesting topic in the superconducting field. A lot of previous studies reported some unique superconducting phenomena at the various interfaces.

In the case of FeSe_{0.9}Mg_{0.4} sample prepared in present work, there are a lot of nano-structural interface between FeSe and MgSe formed in the multi-layered grain structure of Mg-doped sample. As we all know, MgSe is wide band gap semiconductor with bandgap energy of about 4.0 ev. One can imagine that the interfaces between MgSe and FeSe forming in present work have an important effect on the superconducting properties of FeSe. These interfaces might enhance electron-phonon coupling, as reported in the interface of atomically uniform films of Ag on Fe substrate. Another possibility is formation of two-dimensional electron gas at these interfaces, which may cause the higher T_c, as demonstrated in Ref. [18]. Further research need to be carried out to elucidate the mechanism underlying the enhancement of T_c observed here.

Based on the interface effect discussed above, it also explains well why the T_c performance in FeSe_{0.9}Mg_{0.4} sample is best among these three Mg doped samples. As for FeSe_{0.9}Mg_{0.2} sample, Mg addition is not enough and the interface between MgSe and FeSe in the layered grains is insufficient to affect the overall T_c of sintered sample. When it comes to the FeSe_{0.9}Mg, excess MgSe is formed and the superconducting β-FeSe is decreased too much, which also decrease the interfaces between MgSe and FeSe, and thus affects T_c performance.

Conclusions

Mg doped FeSe polycrystalline bulks were obtained by two-step solid-state reaction method, which exhibits increased T_c compared to undoped FeSe sample. It was found that Mg addition has little effect on the crystal lattice parameters of superconducting β-FeSe, whereas leads to the formation of nano-layered grain structure consisted of MgSe and β-FeSe. Lots of nano-structural interfaces between FeSe and MgSe formed in this homogenous layered grain structure have significant effect on the superconducting properties and are responsible for the enhancement of T_c. Although T_c in the Mg doped FeSe bulks in present work needs to be further enhanced via optimizing both the amount of dopants and the synthesis technique to form better layered structure, our work not only demonstrates a powerful way for raising T_c in bulk superconductors, but also provides a well-defined platform for systematic studies of the mechanism of unconventional superconductivity through considering...
interface effect. Besides, FeSe thin film on MgSe substrate is also worth being studied in terms of interfacial superconductivity.

1. Ren, Z. A. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFe1−xFex]As. Chin Phys Lett 25, 2215–2216 (2008).

2. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−yFe1−xFex. Nature 453, 761–762 (2008).

3. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc Natl Acad Sci USA 105, 14262–14264 (2008).

4. Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T. & Takano, Y. Superconductivity at 27 K in tetragonal FeSe under high pressure. Appl Phys Lett 93, 152505 (2008).

5. Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T. & Takano, Y. Superconductivity in S-substituted FeTe. Appl Phys Lett 94, 012503 (2009).

6. Yeh, K. W. et al. Tellurium substitution effect on superconductivity of the α-phase iron selenide. Europhys Lett 84, 37002 (2008).

7. Fang, M. H. et al. Superconductivity close to magnetic instability in Fe(S1−xSex)0.82. Phys Rev B 78, 224503 (2008).

8. Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T. & Takano, Y. Substitution Effects on FeSe Superconductor. J Phys Soc Jpn 78, 074712 (2009).

9. Wu, M. K. et al. The development of the superconducting PbO-type β-FeSe and related compounds. Physica C: Superconductivity 469, 340–349 (2009).

10. Gawryluk, D. J. Growth conditions, structure and superconductivity of pure and metal-doped FeTe−xSex single crystals. Supercond Sci Technol 24, 065011 (2011).

11. Li, X. T., Ma, Z. Q., Liu, Y. C., Dong, M. L. & Yu, L. M. The sintering process and superconductivity of polycrystalline milled Fe-Se. IEEE Trans Appl Supercon 23, 7000405 (2013).

12. Xia, Y. J., Huang, F. Q., Xie, X. M. & Jiang, M. H. Preparation and superconductivity of stoichiometric β-FeSe. Europhys. Lett 86, 37008 (2009).

13. Fuyuki, N., Yoshinori, I., Masafumi, H., Ichiro, T. & Atsutaka, M. Enhancement of the superconducting transition temperature in FeSe epitaxial thin films by anisotropic compression. Appl Phys Lett 103, 172602 (2013).

14. Wang, Q. Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin Phys Lett 29, 037402 (2012).

15. Si, W. S. et al. High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 Tesla. Nat Commun 4, 1347 (2013).

16. Tan, S. Y. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SeTiO3 thin films. Nat Mater 12, 634–640 (2013).

17. Luh, D.-A., Miller, T., Paggel, J. J. & Chiang, T.-C. Large electron-phonon coupling at an interface. Phys Rev Lett 88, 256802 (2002).

18. Phillips, P., Wan, Y., Martin, I., Knysz, S. & Daldovich, D. Superconductivity in a two-dimensional electron gas. Nature 395, 253–257 (1998).

19. Reyren, N. et al. Superconducting Interfaces Between Insulating Oxides. Science 317, 1196 (2007).