Net ammonium and nitrate fluxes in wheat roots under different environmental conditions as assessed by scanning ion-selective electrode technique

Yangquanwei Zhong*, Weiming Yan*, Juan Chen & Zhouping Shangguan

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.

Wheat is one of the most important food crops in the world, its availability affects global food security. In this study, we investigated variations in NH$_4^+$ and NO$_3^-$ fluxes in the fine roots of wheat using a scanning ion-selective electrode technique in the presence of different nitrogen (N) forms, N concentrations, and pH levels as well as under water stress. Our results show that the fine roots of wheat demonstrated maximum NH$_4^+$ and NO$_3^-$ influxes at 20 mm and 25 mm from the root tip, respectively. The maximal net NH$_4^+$ and NO$_3^-$ influxes were observed at pH 6.2 in the presence of a 1/4 N solution. We observed N efflux in two different cultivars following the exposure of roots to a 10% PEG-6000 solution. Furthermore, the drought-tolerant cultivar generally performed better than the drought-intolerant cultivar. Net NH$_4^+$ and NO$_3^-$ fluxes may be determined by plant growth status, but environmental conditions can also affect the magnitude and direction of N flux. Interestingly, we found that NO$_3^-$ was more sensitive to environmental changes than NH$_4^+$. Our results may be used to guide future hydroponic experiments in wheat as well as to aid in the development of effective fertilisation protocols for this crop.

As an essential constituent of proteins, nucleic acids, chlorophylls and many secondary metabolites, nitrogen (N) is one of the major elements required for plant growth. Insufficient accumulation as well as the excess accumulation of N may compromise various plant functions. Ammonium (NH$_4^+$) and nitrate (NO$_3^-$) are two common forms of inorganic N that can serve as limiting factors for plant growth1,2.

To enable the performance of a variety of functions, the root system is composed of anatomically, morphologically and physiologically distinct root types that demonstrate a high degree of plasticity in terms of their responses to external signals and adaptation to heterogeneous nutrient supplies3,4. These anatomical and physiological complexities often determine the NH$_4^+$ and NO$_3^-$ absorption capacity of the root. NH$_4^+$ and NO$_3^-$ fluxes in roots have been investigated in many previous studies over the past few decades. Spatial and temporal variability in NH$_4^+$ and NO$_3^-$ uptake have been demonstrated along the lengths of roots in herbaceous and woody plants. The net flux of NO$_3^-$ appears to be low near the root apex and high in the basal regions of maize and barley roots6. However, in rice and carob seedlings, the opposite pattern has been reported7,8. A previous study of Pinus pinaster has shown that the highest NO$_3^-$ uptake rate occurs in an area 20–50 mm along the root axis from the root tip9. More recently, Luo, et al. have demonstrated marked spatial variability in NH$_4^+$ and NO$_3^-$ fluxes in the roots of the woody plant species Populus populars3,4.

NO$_3^-$ uptake is thought to be strongly regulated by a plant’s demand for N10. The physiological mechanisms underlying the interactions between net NH$_4^+$ and NO$_3^-$ fluxes and the environment remain unclear. Hawkins, et al.11 have demonstrated that net NH$_4^+$ uptake is unaffected by the presence of NO$_3^-$ and vice versa in the roots of Douglas fir and lodgepole pine trees. However, the net uptake of NO$_3^-$ is markedly reduced in the presence of NH$_4^+$ in non-mycorrhizal roots of corn plants12 and Pinus pinaster13. NH$_4^+$ and NO$_3^-$ absorption share common pathways because both ions are actively absorbed by root cells at low external concentrations. Furthermore, NH$_4^+$ and NO$_3^-$ influx measurements have indicated the presence of two high-affinity transport systems (HATS) for...
NO$_3^-$ (one constitutive and the other inducible) and one HATS for NH$_4^+$44. However, the energetic and biochemical characteristics of NH$_4^+$ and NO$_3^-$ assimilation differ, resulting in differing net fluxes of these ions in roots as well as variable NH$_4^+$ or NO$_3^-$ preferences in some plants15. Many studies have shown that some species of boreal forest plants preferentially absorb NH$_4^+$ or amino acids over NO$_3^-$14,16,17, even when the concentration of NO$_3^-$ exceeds that of NH$_4^+$ by as much as 10-fold. In addition, the uptake of NH$_4^+$ has been shown to greatly exceed that of NO$_3^-$ in spruce tree roots but not in beech tree roots18. However, several plant species that have been supplied with moderate concentrations of NH$_4^+$ as the sole N source have shown reduced growth compared with their growth in the presence of similar amounts of NO$_3^-$19-22. This reduction in plant growth in the presence of NH$_4^+$ as the sole N source has been attributed to the combined effects of the acidification of the root zone and the toxic accumulation of free NH$_3$ or ammonia in plant tissues22-23. Rhizosphere pH affects the uptake and assimilation of N ions by plants. Moreover, the temporal dynamics of net ion fluxes and the influences of other ions and environmental factors, such as pH, have been reported in the roots of maize, barley, rice, conifer and Eucalyptus species24-27. The temporal dynamics of net ion fluxes in roots in the presence of salinity stress have been widely studied, but few studies have examined these temporal dynamics under drought conditions28-31.

Wheat (Triticum aestivum L.) is one of the most important food crops in the world, and it plays an important role in global food security. Climate change and the use of urea can result in dry and acidified soil, which is detrimental to wheat crop yields. NH$_4^+$ and NO$_3^-$ are often used as wheat fertilisers to maximise crop yields. Therefore, information regarding the NH$_4^+$ and NO$_3^-$ fluxes in wheat roots exposed to various conditions (e.g., different forms of N (NH$_4^+$, NO$_3^-$ or both), varying pH levels and drought conditions) can be used to aid in the improvement of N fertiliser management practices in wheat farming.

Scanning ion-selective electrode technique (SIET) is an electro-physiological method that can non-invasively measure ion/molecule-specific activities27. To date, NH$_4^+$, NO$_3^-$, Ca$_2^+$, H$^+$, Na$^+$, K$^+$, Cl$^-$, Mg$^{2+}$, Cd$^{2+}$, Al$^{3+}$ and O$_2$ have been detected using SIET; however, its use for the examination of temporal and spatial patterns of net NH$_4^+$ and NO$_3^-$ fluxes in wheat roots exposed to different environmental conditions has not yet been reported.

In this study, we used SIET to investigate ion fluxes in wheat roots. Net NH$_4^+$ and NO$_3^-$ fluxes in fine roots of wheat that were exposed to different environmental conditions were measured non-invasively with SIET. The aims of this study were as follows: (1) to examine the spatial patterns of net NH$_4^+$ and NO$_3^-$ fluxes and to determine the locations relative to the root tips at which the maximal net uptake of these ions occurs in wheat; (2) to monitor alterations in net NH$_4^+$ or NO$_3^-$ fluxes in response to various environmental stimuli, including pH alterations, different N forms and N levels and drought stress; and (3) to assess the net NH$_4^+$ and NO$_3^-$ fluxes in the roots of two wheat cultivars and the differences in their responses to drought-like conditions. This study represents the first attempt to detect net NH$_4^+$ and NO$_3^-$ fluxes in wheat in the presence of various N forms, N concentrations and pH and under drought conditions using SIET. Our results may aid in the development of future hydroponic wheat experiments and effective fertilisation protocols for soil-grown wheat crops.

**Results**

**Locations of maximal net NH$_4^+$ and NO$_3^-$ uptake.** To determine the areas along the root axis corresponding with maximal net NH$_4^+$ and NO$_3^-$ uptake, the net fluxes of these ions were measured along the root tips to an area located 35 mm from the apex (Fig. 1). These measurements widely varied at the different locations; for example, net NH$_4^+$ flux varied from $-37.2 \pm 2.6$ (efflux) to 172.4 $\pm 21.0$ (influx) pmol cm$^{-2}$ s$^{-1}$ along the root axis (Fig. 1a), whereas net NO$_3^-$ flux varied from $-17.1 \pm 1.5$ (efflux) to 26.5 $\pm 2.7$ (influx) pmol cm$^{-2}$ s$^{-1}$ (Fig. 1b). The maximum net NH$_4^+$ and NO$_3^-$ influxes occurred in an area between 20 mm and 25 mm from the root apex, respectively.

**Net NH$_4^+$ and NO$_3^-$ fluxes in the presence of different N forms.** At the locations corresponding with the highest net NH$_4^+$ and NO$_3^-$ influxes in the wheat roots, detailed measurements of the net fluxes of these ions were obtained (Fig. 2). Twenty millimetres from the root apex, slight fluctuations in net NH$_4^+$ were observed over a 10-min period (Fig. 2a). No significant differences were observed in net NH$_4^+$ fluxes in the roots exposed to NH$_4$Cl and NH$_4$NO$_3$ solutions; the mean net NH$_4^+$ fluxes in the roots exposed to these solutions for 10 min were 140.6 $\pm 9.4$ pmol cm$^{-2}$ s$^{-1}$ and 146.9 $\pm 2.7$ pmol cm$^{-2}$ s$^{-1}$, respectively (Fig. 3a). However, 25 mm from the root apex, net NO$_3^-$ fluxes differed markedly in roots exposed to NO$_3^-$ and NH$_4$NO$_3$ solutions for 10 min (Fig. 2b). Following exposure to the NO$_3^-$ solution, the mean net NO$_3^-$ efflux was 7.5 $\pm 3.1$ pmol cm$^{-2}$ s$^{-1}$, whereas following exposure to the NH$_4$NO$_3$ solution, the mean net influx of this ion was 13.8 $\pm 2.9$ pmol cm$^{-2}$ s$^{-1}$ (Fig. 3a).

**Net NH$_4^+$ and NO$_3^-$ fluxes in response to different concentrations of NH$_4$NO$_3$ solution.** The net NH$_4^+$ and NO$_3^-$ fluxes observed in wheat roots that were grown in solutions containing different levels of ammonium nitrate markedly differed (Fig. 3b). The maximum net NH$_4^+$ and NO$_3^-$ influxes in the presence of a 1/4 N solution were 198.0 $\pm 24.3$ and 16.8 $\pm 21.3$ pmol cm$^{-2}$ s$^{-1}$, respectively. The uptake rate of NH$_4^+$ by the roots was significantly higher than that of NO$_3^-$; however, this difference in uptake decreased as the concentration of the solution increased. The net NO$_3^-$ flux changes correlated with the net NH$_4^+$ flux changes; however, following treatment with a 2 N solution, NO$_3^-$ ions in the backfilling solution effluxed at a rate of 13.8 $\pm 2.3$ pmol cm$^{-2}$ s$^{-1}$ (Fig. 3b).

**Net fluxes of NH$_4^+$, NO$_3^-$ and H$^+$ at different pH levels.** Solution pH affects N and H$^+$ uptake and assimilation by plants. In wheat roots, pH had a significant effect on net proton flux; net proton efflux was observed at pH 5.0, and net proton influx was observed at pH 8.0 (Fig. 4). The net efflux of H$^+$ was the highest at pH 5.0, and the net flux of H$^+$ at pH 8.0 was smaller than that observed at pH 6.2 (Fig. 4a). The net NH$_4^+$ and NO$_3^-$ fluxes in the wheat roots incubated at different pH levels also varied (Fig. 4b). The maximum net NH$_4^+$ and NO$_3^-$ influxes, which occurred at pH 6.2, were 146.9 $\pm 2.7$ and 138.8 $\pm 2.2$ pmol cm$^{-2}$ s$^{-1}$, respectively. The net influx of NH$_4^+$ did not differ at pH 5.0 and 8.0, and at all three pH levels, NH$_4^+$ exhibited a net influx. However, the roots displayed a net efflux of NO$_3^-$ at a rate of 23.1 $\pm 2.1$ pmol cm$^{-2}$ s$^{-1}$ at pH 8.0, which was lower than the net influx of NH$_4^+$ (68.4 $\pm 2.9$ pmol cm$^{-2}$ s$^{-1}$). The total influxes of N ions in the wheat roots were 61.7, 160.7 and 45.3 pmol cm$^{-2}$ s$^{-1}$ at pH levels of 5.0, 6.2 and 8.0, respectively (Fig. 4b).

**Net NH$_4^+$ and NO$_3^-$ fluxes under water stress.** Following exposure to water stress, the net flux of NH$_4^+$ in the wheat roots varied significantly between the two cultivars (Fig. 5). In the CH cultivar, NH$_4^+$ influx switched to efflux and the efflux rate increased in a time-dependent manner following exposure to water stress. However, we did not observe a statistically significant time-dependent difference in the efflux rate following 24 h versus 48 h of exposure to water stress. In the 2 N treatment group, the rate of net NH$_4^+$ flux was consistently lower compared with that of the 1 N treatment group. However, the net flux of NH$_4^+$ in the ZM cultivar exhibited some interesting differences. In the ZM and CH cultivar 1 N treatment groups, the net influx of NH$_4^+$ switched to efflux after 24 h of exposure to water stress. When the ZM cultivar was subjected to
water stress in the presence of the 2 N solution, the switch to NH$_4^+$ and NO$_3^-$ efflux occurred after 48 h of stress exposure. The rate of net NH$_4^+$ efflux after 48 h of stress exposure in the presence of the 1 N solution was $87.0 \pm 10.2$ pmol cm$^{-2}$ s$^{-1}$ for the CH cultivar and $65.0 \pm 9.6$ pmol cm$^{-2}$ s$^{-1}$ for the ZM cultivar, whereas the net NH$_4^+$ efflux after 48 h of stress exposure in the presence of the 2 N solution was $54.2 \pm 6.0$ pmol cm$^{-2}$ s$^{-1}$ for CH and $47.6 \pm 9.6$ pmol cm$^{-2}$ s$^{-1}$ for ZM. Net NO$_3^-$ flux following exposure to the 1 N solution was similar to that of NH$_4^+$; N O$_3^-$ influx switched to efflux in the presence of water stress. The net NO$_3^-$ flux rates in the CH roots following treatment with the 1 N solution were $13.8 \pm 2.2$ (influx), $-5.0 \pm 1.4$ (efflux) and $-8.3 \pm 0.4$ (efflux) pmol cm$^{-2}$ s$^{-1}$. Net NO$_3^-$ flux in the presence of the 2 N solution was significantly different compared with that observed in the presence of the 1 N solution; the CH wheat roots that were unstressed, stressed for 24 h and stressed for 48 h exhibited NO$_3^-$ efflux rates of $13.8 \pm 2.2$, $9.6 \pm 3.0$ and $17.5 \pm 1.1$ pmol cm$^{-2}$ s$^{-1}$, respectively. NO$_3^-$ efflux in the ZM cultivar differed from that in the CH cultivar; the ZM cultivar exhibited efflux in the presence of the 1 N solution under no stress and after 24 h and 48 h of stress exposure. In the presence of the 2 N solution, NO$_3^-$ and NH$_4^+$ efflux occurred after 48 h of stress exposure.

**Discussion**

**Variations in NH$_4^+$ and NO$_3^-$ fluxes along the root tip of wheat.** Higher net NH$_4^+$ and NO$_3^-$ fluxes occurred in the white zone of wheat, which is located between 5 mm and 30 mm from the root tip. Previous studies have suggested that different zones of the root apical region exhibit distinct net fluxes of NH$_4^+$ and/or NO$_3^-$.

Net NH$_4^+$ and NO$_3^-$ were the highest at 20 and 25 mm from the root tips, respectively, in the fine roots of the wheat plants (Fig. 1).

Garnett, et al. have reported no consistent pattern of net NH$_4^+$ or NO$_3^-$ flux in an area located between 20 and 60 mm from the root tips of *E. nitens*; however, studies analysing several other plant species have shown variations in ion uptake rates along root axes. Seedlings of some woody plants show the highest net NH$_4^+$ and NO$_3^-$ uptake between 5 and 20 mm from root tips. In 18–20-day-old rice plants, net NH$_4^+$ uptake declines in the more basal regions of the root, but maximal net NO$_3^-$ uptake occurs at 21 mm from the apex, declining thereafter. Henriksen, et al. have reported that net NO$_3^-$ uptake increases with distance from the root tip up to 60 mm, whereas maximal net NH$_4^+$ uptake occurs in an area located between 10 and 20 mm from the root tip in 7-day-old barley. Different N ion uptake profiles may reflect differences in root anatomy and rates of root growth, correlating with gene expression patterns and flux profiles along the lengths of young roots.

**NH$_4^+$ and NO$_3^-$ fluxes respond to environmental conditions.** Pretreatment may induce NO$_3^-$ and NH$_4^+$ transporter expression in roots of wheat seedlings as indicated by studies showing the substrate induction of root NO$_3^-$ and NH$_4^+$ transporters in many higher plants. Our observations that the net influx of NH$_4^+$ was significantly higher than that of NO$_3^-$ in the roots incubated in the ammonium nitrate solution and that the maximal rate of N uptake occurred following concurrent exposure to NO$_3^-$ and NH$_4^+$ (Fig. 3) are consistent with previous studies of wheat. Although the NH$_4^+$ concentration in the NH$_4^+$ solution was twice that in the ammonium nitrate solution, the net influx of this ion was not significantly

**Figure 1** | Net NH$_4^+$ (a) and NO$_3^-$ (b) fluxes along root tips of wheat. The data represent the mean ± SE (n=6). Asterisks indicate significant differences between the measurements in question. Net influxes are suggested by positive values, whereas net effluxes are indicated by negative values.
different following the exposure of the roots to either solution, suggesting that the presence of \(\text{NO}_3^-\) has a positive effect on net \(\text{NH}_4^+\) uptake. These results are consistent with studies of wheat roots performed by Cramer and Lewis\textsuperscript{39}. Interestingly, in the presence of \(\text{NO}_3^-\) solution, the roots exhibited a net \(\text{NO}_3^-\) efflux that was likely due to the dynamic balance of the influx and efflux of this ion at the root surface. We suspect that this net efflux in the presence of the \(\text{NO}_3^-\) solution was largely determined by an increase in \(\text{NO}_3^-\) efflux because high concentrations of this ion have been demonstrated to suppress its net influx and increase its efflux at the root surface\textsuperscript{40–41}. In contrast, net \(\text{NO}_3^-\) influx was observed in the roots incubated in the ammonium nitrate solution, suggesting that \(\text{NH}_4^+\) did not interfere with \(\text{NO}_3^-\) influx, whereas high concentrations of \(\text{NO}_3^-\) appeared to inhibit the net uptake of this ion\textsuperscript{42}. These results are in contrast with a previous study performed by MacKown, et al\textsuperscript{12}, in which \(\text{NH}_4^+\) was shown to inhibit \(\text{NO}_3^-\) uptake in corn.

The highest rate of N uptake detected in the N-deprived plants was most likely due to the release of the roots from negative feedback, suggesting that the cytosolic concentrations of \(\text{NH}_4^+\) and \(\text{NO}_3^-\) were lower than the thresholds necessary for growth. The net rates of \(\text{NH}_4^+\) and \(\text{NO}_3^-\) uptake were the highest in the roots exposed to the 1/4 N solution followed by the 1 N solution and the 2 N solution. When \(\text{NH}_4^+\) and \(\text{NO}_3^-\) were supplied simultaneously, the roots exhibited a higher net influx or smaller net efflux of \(\text{NH}_4^+\) compared with \(\text{NO}_3^-\) (Fig. 1), but the magnitude of change differed according to the N concentration. The net \(\text{NH}_4^+\) uptake was 12-fold greater than the net \(\text{NO}_3^-\) uptake in the roots treated with the 1/4 N solution and was 14-fold greater in those treated with the 1 N solution. Similarly, net \(\text{NH}_4^+\) uptake has been reported to be 2-fold greater than net \(\text{NO}_3^-\) uptake at the maize root apex zone\textsuperscript{7} and 3-fold greater in rice roots\textsuperscript{6}. Our data suggest that wheat roots exhibit a preference for \(\text{NH}_4^+\) over \(\text{NO}_3^-\), which may indicate that seedlings require a greater uptake of \(\text{NH}_4^+\) to meet the N demands necessary for rapid growth. There are several potential explanations for the observed preference for \(\text{NH}_4^+\) influx compared with \(\text{NO}_3^-\) influx. One reason may involve root morphology because different root tissues require different amounts of \(\text{NH}_4^+\) and \(\text{NO}_3^-\), and the meristem zone needs a higher concentration of \(\text{NH}_4^+\) for protein synthesis\textsuperscript{7}. In most species, \(\text{NH}_4^+\) taken up by the roots is directly converted to amino acids within the roots, which cost less energy for both transport and assimilation (Fig. 6)\textsuperscript{44}. Another reason that wheat roots prefer \(\text{NH}_4^+\) to \(\text{NO}_3^-\) is based on differences in the expression and activities of the transport systems for these ions in the different root zones. Net \(\text{NH}_4^+\) and \(\text{NO}_3^-\) uptake can be mediated by high-affinity transporters and by various low-affinity transporters. Furthermore, the uptake of these ions can be reversed by their efflux systems\textsuperscript{46}, and several high-affinity \(\text{NH}_4^+\) and \(\text{NO}_3^-\) transporters have been cloned\textsuperscript{47,48}. Britto et al. and Class et al.\textsuperscript{15,49} reported that when high-affinity \(\text{NH}_4^+\) fluxes are effectively regulated, transport via the low-affinity system is poorly regulated, this may resulting in considerable futile cycling of \(\text{NH}_4^+\) across the plasma membrane as well as toxic effects of excessive \(\text{NH}_4^+\) accumulation. In our study, \(\text{NO}_3^-\) are more variable in different environmental conditions. This may be explained by that \(\text{NO}_3^-\) is able to function both as an osmoticum and as a mobile ion as Salsac, et al.\textsuperscript{6} reported. In all, the changes for \(\text{NH}_4^+\) and \(\text{NO}_3^-\) in different solutions may be explained by these ion characteristics and regulation mechanisms in wheat.

The net \(\text{NH}_4^+\) and \(\text{NO}_3^-\) influxes appeared to be the highest at pH 6.2, which would presumably result in the fastest growth of the wheat. Exposure to low and high pH levels resulted in relatively lower...
net NH$_4^+$ and NO$_3^-$ uptake in the wheat roots (Fig. 4). The differences in NH$_4^+$ and NO$_3^-$ uptake in response to pH may be related to the ability of wheat roots to maintain proton efflux (Fig. 6), as indicated by previous studies suggesting that H$^+$ may be co-transported along with cations, such as NH$_4^+$, and anions, such as NO$_3^-$. Roots that absorb N in the form of NO$_3^-$ tend to exhibit a decrease in proton efflux, resulting in an increase in pH within the rhizosphere, whereas roots that absorb NH$_4^+$ tend to show an increase in proton efflux, which leads to a lower pH in the rhizosphere. Due to the importance of protons in the regulation of N uptake and assimilation, the differences in proton flux in the presence of various pH levels that were observed in this study are intriguing. Previous studies have shown that plants grown at a low pH show an increase in H$^+$-ATPase protein activity and maintain a high rate of proton efflux as a means to acclimate to acidic environments. Changes in H$^+$ concentration due to pH treatment could have affected H$^+$-ATPase activity, resulting in significant changes in H$^+$ flux from the root cells, indirectly affecting N flux. The low rate of NO$_3^-$ influx at pH 5.0 could also have been due to negative effects of the high chloride ion concentration on NO$_3^-$ transporters because these two anions have been shown to compete for the same transporter. The influence of pH on N ion uptake is complex; thus, we are not surprised that results vary among studies investigating this phenomenon.

We observed a net influx of NO$_3^-$ in the roots in the presence of the 1 N solution, which changed to efflux in the presence of the 2 N solution in the drought-tolerant CH cultivar. These findings were completely opposite of those observed in the water-sensitive ZM cultivar. However, we detected a net influx of NH$_4^+$ in the roots of both cultivars. The net NH$_4^+$ uptake in the presence of the 1 N solution was higher than that in the presence of the 2 N solution for the CH cultivar. Moreover, no differences in net NH$_4^+$ uptake were observed in the roots of the ZM cultivar exposed to non-stress conditions, which may have been due to differences in genotypes (Fig. 5). However, following exposure to 10% PEG, we observed N efflux after additional treatments with the 1 N and 2 N solutions for 24 h and 48 h. When CH was exposed to the 2 N solution and water stress for 24 h, NH$_4^+$ efflux was observed. When this cultivar was treated with the 1 N solution, NH$_4^+$ efflux was higher than that observed following treatment with the 2 N solution, and these results were the opposite of those obtained with the CH cultivar in terms of NO$_3^-$ flux. In the ZM cultivar, no differences in N efflux were observed after 48 h of water stress in the presence of either solution (Fig. 5). Plant growth responds to drought stress with rapid, osmotic changes that parallel those that occur following salinity stress. Drought stress leads to water loss or a reduction in water absorption by roots. This can cause disturbances in the mineral nutrient balances of plants and can also lead to ion deficiencies or other nutrient imbalances due to the competition of nutrients for various cations and anions. The influence of drought stress on N ion uptake is very complex. Our study is the first to examine net N flux using SIET, and our results suggest that N efflux represents a drought stress response involving nutrient efflux aimed at decreasing the plant growth rate. In addition, the net efflux of NO$_3^-$ and NH$_4^+$ may also be influenced by the influx or efflux of other ions, such as K$^+$ and Ca$^{2+}$, which play important roles in drought and salt stress (Fig. 6). The net N uptake in the 2 N solution was lower than that of the 1 N solution, suggesting that extra nutrition may alleviate the detrimental effects of drought. These results are consistent with studies showing that increasing the supply of nutrients to plant growth media maintained under drought-like conditions can alleviate the adverse effects of drought on plant growth. The response of the CH cultivar to the drought-like conditions was more rapid than that of ZM, revealing that the rapid efflux of N was able to slow the growth rate and prevent additional drought-induced damage from occurring. We suspect that this ability of CH permits it to perform better than ZM under similar drought conditions as indicated by our previous study.

Overall, the simultaneous uptake and assimilation of NO$_3^-$ and NH$_4^+$ in the wheat roots was influenced by the endogenous N concentration and exogenous supply of substrates (Fig. 6). The net N flux represents a balance of influx and efflux that is influenced by many factors, including soluble carbohydrates in the roots, which can supply energy for N$^-$ uptake by respiration. Other factors that influence N flux include transporters that regulate N uptake, the expression of high-affinity N transport systems, the H$^+$ concentration in the growth medium, water flux, and the fluxes of other ions. Net NH$_4^+$ and NO$_3^-$ fluxes respond to environmental conditions differently according to plant growth status. To date, many studies of inorganic N uptake at the physiological and molecular levels have focused on the regulation of root plasma membrane transporters. Future physiological and molecular studies will be required to fully elucidate the mechanisms of N uptake that occur in plants.

**Conclusions**

The elucidation of the mechanisms associated with N transport by evaluating net N flux is challenging. Net N flux is based on the sum of N influx and efflux, and it is influenced by the rates of assimilation and compartmentalisation. Our results indicated that at the four-leaf stage, the maximum influxes of NH$_4^+$ and NO$_3^-$ occurred in an area between 20 mm and 25 mm from the root apex, respectively, in the fine roots of wheat. Interestingly, we found that NO$_3^-$ flux was more sensitive to environmental changes than that of NH$_4^+$. Furthermore, the wheat grown under optimal conditions absorbed more overall N, but this absorption was influenced by the form and concentration of N, the pH and the presence of water stress. Because
Figure 5 | Net NH₄⁺ and NO₃⁻ fluxes under water stress in the two wheat cultivars in the presence of different N concentrations. PEG-6000 (10%, –0.32 MPa) was added to the nutrient solutions to simulate water stress. (a) and (b) correspond to the CH cultivar, whereas (c) and (d) correspond to the ZM cultivar. The data represent the mean ± SE (n = 6). The different letters indicate statistical significance corresponding to a p < 0.05, and ns corresponds to a p > 0.05.

The SIET method was used to measure the net fluxes of NH₄⁺, NO₃⁻ and H⁺ and not their individual rate of influx or efflux in the roots, further research is necessary to understand the biological implications of stoichiometric proportions of net NH₄⁺, NO₃⁻ and H⁺ fluxes in relation to environmental conditions. These results may aid in the elucidation of mechanisms associated with N uptake by roots and provide additional information with regard to the spatial and temporal patterns of net N uptake in wheat. Our findings may also be used to guide future hydroponic experiments with wheat and to develop effective fertilisation protocols for field-grown wheat.

**Methods**

**Plant materials and treatments.** Wheat (Triticum aestivum cv. Changhan No. 58 and Zhengmai No. 9023) seeds were obtained from Northwest A&F University (Yangling, Shaanxi, China), disinfected with 20% (w/v) sodium hypochlorite for 30 min to prevent fungal infection, rinsed with distilled water and placed on wet filter paper at 25°C for approximately 24 h in the dark. The cultivar Zhengmai No. 9023 (ZM) was water-sensitive and drought-intolerant, whereas the cultivar Changhan No. 58 (CH) was drought-tolerant and therefore suitable for drought-prone environments. The thousand-kernel weights of ZM and CH were 43.58 and 43.61 g, respectively. After the seeds sprouted, they were germinated in large petri dishes lined with moistened filter paper in an illuminated incubator at 25°C under a 12 h-12 h light-dark cycle. On the 7th day of germination, which is when the wheat plants had grown to the one-leaf stage, the seedlings were hydroponically cultured in 1/2 modified Hoagland nutrient solution in a closed-climate chamber (AGC-D001P, Quishi Corp., China) under an 11 h dark period (18°C, RH 50%) and 13 h light period (25°C, RH 50%, 300 µmol photons m⁻² s⁻¹ from 6:30 a.m. to 7:30 p.m.). Nine wheat plants were cultivated in a 15 × 10 × 8 cm container filled with 1 L of nutrient solution that was aerated with an aquarium diffuser.

After two days of growth in 1/2 Hoagland nutrient solution, the nutrient solution was replaced with a treatment solution. Single-factor controlled experiments were designed to test the effects of pH (5.0, 6.2 and 8.0), N source (NH₄Cl and NO₃⁻) and N concentration (1/4 N, 1 N, 2 N) on the CH cultivar. The ZM cultivar was grown only in 1 N and 2 N solutions, followed by an H⁺-selective liquid ion exchange cocktail (pH 6.2). Measurement of ion flux at the root surface. To monitor the net fluxes of NH₄⁺, NO₃⁻ and H⁺ in wheat roots in response to pH alterations, white fine roots of wheat were selected and excised from the root system of each plant in each treatment group. The excised roots were immersed in a measuring solution (A: 0.1 mM KNO₃, 0.1 mM KCl, 1 mM CaCl₂, and 0.3 mM MES, pH 6.2; B: NH₄Cl: 0.1 mM NH₄Cl, 0.1 mM KCl, 0.1 mM CaCl₂, and 0.3 mM MES, pH 6.2; C: NH₄NO₃: 0.1 mM NH₄NO₃, 0.1 mM KCl, 0.1 mM CaCl₂, and 0.3 mM MES at pH 5.0, pH 6.2 or pH 8.0), MES refers to 2-(N-morpholino)ethanesulfonic acid hydrate buffer. Six of the most similar roots (two plants from each trial) from the NH₄⁺ treatment group and from the NO3⁻ treatment group were used for ion flux analyses. Net ion flux was measured using the SIET technique (BIO-003A system; Younger USA Science and Technology Corp.; Applicable Electronics Inc.; Science Wares Inc., Falmouth, MA, USA), which was conducted on-site at Xuyue Science and Technology Co., Ltd. (Beijing, China). The SIET system and its application in ion flux detection have been described previously in detail32,33. Briefly, ion-selective microelectrodes designed with 2–4-µm apertures were manufactured and silanised (for the NH₄⁺ electrode, 15 mM NaCl and 40 mM KH₂PO₄ were used as the backfilling solution, followed by an NH₄⁺-selective liquid ion exchange cocktail (#09897, Sigma); for the NO₃⁻ electrode, 10 mM KNO₃ was used as the backfilling solution, followed by an NO₃⁻-selective liquid ion exchange cocktail (#72549, Sigma); for the H⁺ electrode, 15 mM NaCl and 40 mM KH₂PO₄ were used as the backfilling solutions, followed by an H⁺-selective liquid ion exchange cocktail (#95293, Sigma). Prior to performing the flux measurements, the microelectrodes were calibrated (for the NH₄⁺ measurements, 0.05, 0.5 and 0.1 mM NH₄Cl in addition to other compounds were used for calibration; for the NO₃⁻ measurements, 0.05, 0.5 and 0.1 mM KNO₃ in addition to other compounds were used for calibration; for H⁺ measurements, pH 5.0, 6.2, and 8.0 solutions in addition to other compounds were used for calibration). The calibration curves are shown in Supplemental Figure S1, and only electrodes with Nernstian slopes of higher than 55 mV per ten-fold concentration difference were used.

To determine the areas along the root where the maximal ion influxes of NH₄⁺ and NO₃⁻ occurred, a preliminary experiment was conducted, in which an initial mea-
measurement was performed at the root tip, followed by additional measurements in either 300-mm (between 0 and 2,700 mm from the root tip) or 5-mm (between 5 and 35 mm from the root tip) increments (Fig. 1). When maximal ion influxes were achieved, the fluxes of NH4+ and NO3− were measured for each treatment. H+ concentration was measured in a similar area as the NH4+ and NO3− concentrations to evaluate the pH treatments. Ion gradients (NH4+, NO3− and H+) close to (approximately 5 mm above) the root surface were measured by moving the ion-selective microelectrode between two positions (separated by a distance of 30 mm) in a direction perpendicular to the root axis. The recording rate of ion flux was one reading per 6 s. Ion flux was recorded at each measurement point for 10 min. The amplifier curves generated by the measurements and representative images of real-time flux are shown in Supplemental Figures S2 and S3. Acquisition of root images was performed using Mageflux software (version 1.0) in association with the SIET system.

Data processing and statistical analysis. Net ion flux data were calculated and exported using Mageflux software (version 1.0) in association with the SIET system. For analyses of maximal net NH4+ and NO3− fluxes, the net fluxes of these ions were measured within 10 min of each treatment, and the values were averaged. All statistical analyses were performed using SPSS software version 17.0 (SPSS Inc., Chicago, IL, USA). One-way ANOVA was performed to determine the significance of the differences observed. Significant differences were evaluated at a 95% confidence level. When significance was observed at p<0.05, a least significant difference (LSD) post hoc test was performed for multiple comparisons.

1. Luo, J. et al. Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus populans. *Planta* **237**, 919–931 (2013).
2. Causin, H. & Barneix, A. Regulation of NH4+ uptake in wheat plants: Effect of root ammonium concentration and amino acids. *Plant Soil* **151**, 211–218 (1993).
3. Sorgona, A. et al. Spatial and temporal patterns of net nitrate uptake regulation and kinetics along the tap root of Citrus aurantium. *Acta Physiol. Plant.* **32**, 683–693 (2010).
4. Waisel, Y. & Eshel, A. Functional diversity of various constituents of a single root system. *Plant roots: the hidden half* **3**, 157–174 (2002).
5. Henriksen, G. H., Raman, D. R., Walker, L. P. & Spanswick, R. M. Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes II. Patterns of uptake along the root axis and evaluation of the microelectrode flux estimation technique. *Plant Physiol.* **99**, 734–747 (1992).
32. Xu, Y., Sun, T. & Yin, L.-P. Application of non-invasive microsensing system to root growth inhibition by NH4+ and NO3⁻ in plants. *Plant Cell Environ.* 30, 1309–1319 (2007).

33. Li, Q., Li, B.-H., Kronzucker, H. J. & Shi, W.-M. Root growth inhibition by NH4+ and NO3⁻ in plants. *Plant Cell Environ.* 30, 1309–1319 (2007).

34. Glass, A. D. et al. The regulation of nitrate and ammonium transport systems in plants. *J. Exp. Bot.* 53, 855–864 (2002).

35. Patterson, K. et al. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. *Plant Cell and Environment* 33, 1486–1501 (2010).

36. Kaczmarek, T., Jackson, W. A. & Volk, R. I. Restricted nitrate influx and reduction in corn seedlings exposed to ammonium. *Plant Physiol.* 69, 353–359 (1982).

37. Jackson, W., Volk, R. & Tucker, T. Apparent induction of nitrate uptake in nitrate-depleted plants. *Agron. J.* 64, 518–521 (1972).

38. Cox, W. & Reisenauer, H. Growth and ion uptake by wheat supplied nitrogen as NH4+ or NO3⁻. *Planta* 138, 823–831 (1980).

39. Cramer, M. & Lewis, O. The influence of NO3⁻ and NH4+ nutrition on the carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) plants. *Plant Soil* 154, 289–300 (1993).

40. Deane-Drummond, C. E. & Glass, A. D. Short Tern Studies of Nitrate Uptake into Barley Plants Using Ison-Specific Electrodes and +ClO₃⁻. I. Control of Net Uptake by NO3⁻ Efflux. *Plant Physiol.* 73, 100–104 (1983).

41. Morgan, M., Volk, R. & Jackson, W. Simultaneous influx and efflux of nitrate during uptake by perennial ryegrass. *Plant Physiol.* 51, 267–272 (1973).

42. Tolk, R., H. Jackson, W. A., Volk, R. J. & Moll, R. H. Exoogenous +NO3⁻ influx and endogenous +NO₃⁻ efflux by two maize (Zea mays L.) inbreds during nitrogen deprivation. *Plant Physiol.* 86, 778–781 (1988).

43. MacKown, C. T., Volk, R. J. & Jackson, W. A. Nitrate accumulation, assimilation, and transport by decapitated corn roots effects of prior nitrate nutrition. *Plant Physiol.* 68, 133–138 (1981).

44. Miller, A. & Kramer, M. Root nitrogen acquisition and assimilation. *Plant Soil* 274, 1–36 (2004).

45. Fang, Y. Y., Babourina, O., Rangel, Z., Yang, X. E. & Pu, P. M. Spatial distribution of ammonium and nitrate fluxes along roots of wetland plants. *Plant Sci.* 173, 240–246 (2007).

46. Loqué, D. & von Wirén, N. Regulatory levels for the transport of ammonium in plant roots. *J. Exp. Bot.* 55, 1293–1305 (2004).

47. Forde, B. G. Nitrate transporters in plants: structure, function and regulation. *Biochimica et Biophysica Acta (BBA)-Biomembranes* 1465, 219–235 (2000).

48. Britto, D. T., Siddiqui, M. Y., Glass, A. D. & Kronzucker, H. J. Nitrate translocation in maize: a cellular hypothesis to explain ammonium toxicity in plants. *Proc. Natl. Acad. Sci. USA* 98, 4255–4258 (2001).

49. Solas, L., Chailloux, S., Morot Gaudry, J., Lesaint, C. & Jolivet, E. Nitrate and ammonium nutrition in plants organic anion, ion accumulation, osmolarity. *Plant Physiol. Biochem.* 25, 805–812 (1987).

50. Wang, M. Y., Glass, A. D., Shaaf, J. E. & Kochian, L. V. Ammonium uptake by rice roots (III. Electrophysiology). *Plant Physiol.* 104, 899–906 (1994).

51. Bashan, Y. & Levanony, H. Effect of root environment on protons efflux in wheat roots. *Plant Soil* 119, 191–197 (1989).

52. Nye, P. Changes of pH across the rhizosphere induced by roots. *Plant Soil* 61, 7–26 (1981).

53. Zhu, Y. et al. Adaptation of plasma membrane H⁺-ATPase of rice roots to low pH as related to ammonium nutrition. *Plant Cell Environ.* 32, 1428–1440 (2009).

54. Weiss, M. & Pick, U. Primary structure and effect of pH on the expression of the plasma membrane H⁺-ATPase from Dunaliella acidophila and Dunaliella salina. *Plant Physiol.* 112, 1693–1702 (1996).

55. Reid, R. & Hayes, J. Mechanisms and control of nutrient uptake in plants. *Int. Rev. Cytol.* 229, 73–114 (2003).

56. Ek, H., Andersson, S., Arnebrant, K. & Söderström, B. Growth and ion uptake by wheat supplied nitrogen as NH4+ or NO3⁻. *J. Exp. Bot.* 48, 7223; DOI:10.1038/srep07223

Acknowledgments
This study was sponsored by the National Natural Science Foundation of China (41390463, 61273079).

Author contributions
Y.Z., W.Y., J.C. and Z.S. conceived and designed the experiments. Y.Z. and W.Y. performed the experiments. Z.S. and J.C. contributed reagents/materials/analysis tools. Y.Z., W.Y., J.C. and Z.S. performed the data analysis. Y.Z. and W.Y. wrote the paper. All authors read and approved the final manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/...
