Measurement of flow harmonics correlations with mean transverse momentum in lead–lead and proton–lead collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV with the ATLAS detector

ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Received: 12 July 2019 / Accepted: 13 November 2019 / Published online: 3 December 2019

Abstract To assess the properties of the quark–gluon plasma formed in ultrarelativistic ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the flow harmonics. The analysis uses data samples of lead–lead and proton–lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of 22 μb$^{-1}$ and 28 nb$^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the 2nd-, 3rd-, and 4th-order flow harmonics are measured in the lead–lead collisions as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution, which only weakly depends on the charged-particle momentum range. In the proton–lead collisions, the modified Pearson correlation coefficient measured for the 2nd-order flow harmonics shows only weak centrality dependence. The lead-lead data is qualitatively described by the predictions based on the hydrodynamical model.

1 Introduction

The large azimuthal anisotropy observed for particles produced in heavy-ion collisions at RHIC [1–4] and the LHC [5–8] is one of the main signatures of the formation of strongly interacting matter called quark–gluon plasma (QGP). A standard picture of an ultrarelativistic heavy-ion collision is that the initial, asymmetric ‘almond’ shape of the colliding nuclei’s overlap region leads to the formation of pressure gradients in the QGP. These pressure gradients transform the initial shape into an azimuthal anisotropy of the final-state particle distributions through a nearly ideal hydrodynamic evolution and subsequent QGP hadronisation process [9]. The azimuthal anisotropy is customarily decomposed into Fourier components with the amplitude of the nth term denoted by v_n and known as a flow harmonic [10]. Theoretical hydrodynamical models successfully describe observed flow phenomena at low particle transverse momenta [11]. The properties of QGP were recently studied with measurements of correlations between flow harmonics of different order [12–16] as well as with analyses of event shapes [16–20]. It is expected that in lead–lead (Pb+Pb) collisions the magnitudes of the azimuthal flow harmonics [6,7] should be correlated with the mean transverse momentum [p_T] of the particles on an event-by-event basis [21]. In this paper, that correlation is called the v_n–[p_T] correlation. In proton–lead (p+Pb) collisions, the measurements of multiparticle correlations [22] show evidence of collective phenomena. The spectra of identified particles in p+Pb collisions are consistent with a presence of the radial flow [23] while the nuclear modification factor at high p_T approaches unity [24]. Despite intensive studies, the mechanism responsible for the collective behaviour in small collision systems still remains unknown [9]. In p+Pb collisions the v_2–[p_T] correlation could provide constraints on the initial geometry of the particle source, thereby reducing the overall modelling uncertainty. According to the hydrodynamical model predictions [25], in p+Pb collisions the v_n–[p_T] correlation is sensitive to the distribution of energy deposition in the first stage of the collision. For a larger source a positive v_2–[p_T] correlation is expected while for a compact source the negative correlation is obtained. Simultaneous measurements of v_n–[p_T] correlations in small and large systems may help disentangle the role of initial conditions and subsequent dynamical QGP evolution in final-state particle distributions.
To measure the strength of the \(v_n - \{ p_T \} \) correlation, the Pearson correlation coefficient (PCC) \(R \) [25] is used where

\[
R = \frac{\text{cov}(v_n[2] \{ p_T \})}{\sqrt{\text{Var}(v_n[2] \{ p_T \})}}.
\]

(1)

The term \(v_n[2] \) is the square of the \(n \)th-order flow harmonic obtained using the two-particle correlation method [26], \(\text{cov}(v_n[2], \{ p_T \}) \) is the covariance between \(v_n[2] \) and \(\{ p_T \} \), and \(\text{Var}(v_n[2]) \) and \(\text{Var}(\{ p_T \}) \) are the variances of the \(v_n[2] \) and \(\{ p_T \} \) distributions, respectively. Experimentally, however, the finite event-by-event charged-particle track multiplicity results in an additional broadening of the \(v_n[2] \) and \(\{ p_T \} \) distributions due to statistical fluctuations. Thus, the values of the respective variances are increased, especially for \(\{ p_T \} \). The magnitude of this broadening depends on the choice of kinematic region and on detector performance, making direct comparisons between experimental results and with theoretical calculations difficult. To overcome this problem, a modified correlation coefficient \(\rho \), less sensitive to the charged-particle multiplicity than \(R \), was suggested in Ref. [25]. To reduce the auto-correlation effects and those due to the finite charged-particle multiplicity in an event, the variances of the \(v_n[2] \) and \(\{ p_T \} \) distributions are replaced by corresponding dynamical variables, which are more sensitive to intrinsic initial-state fluctuations. The variance of \(v_n[2] \) is replaced by its dynamical counterpart [27]

\[
\text{Var}(v_n[2])_{\text{dyn}} = v_n[2] - \langle v_n[4] \rangle^2 = \langle \text{corr}_n[4] \rangle - \langle \text{corr}_n[2] \rangle^2, \tag{2}
\]

where \(\text{corr}_n[2] \) and \(\text{corr}_n[4] \) are the two- and four-particle correlations [26] and where angular brackets denote that they are averaged over events. These correlations are described in detail in Sect. 4.

The variance of \(\{ p_T \} \) is replaced by the dynamical \(p_T \) fluctuation magnitude [28,29] \(c_k \) defined as

\[
c_k = \frac{1}{N_{\text{pair}}} \sum_i \sum_{j \neq i} (p_{T,i} - \langle p_T \rangle)(p_{T,j} - \langle p_T \rangle) \tag{3}
\]

where \(\langle p_T \rangle \) is the average \(p_T \) over the all analysed events. The modified PCC \(\rho \) is thus defined as

\[
\rho = \frac{\text{cov}(v_n[2], \{ p_T \})}{\sqrt{\text{Var}(v_n[2])_{\text{dyn}} \sqrt{c_k}}. \tag{4}
\]

It was demonstrated in Ref. [25] that the \(\rho \) coefficient calculated using realistic and finite multiplicities provides a reliable estimate of the true value of \(R \) found in the limit of infinite multiplicity, whereas the coefficient \(R \), calculated using Eq. (1) for finite multiplicity underestimates the true value.

The ALICE experiment measured [20] that the charged-particle \(p_T \) spectrum is correlated with the magnitude of the elliptic flow. It is measured to be harder in collisions with the higher second flow harmonics and softer in collisions where the elliptic flow is smaller. The magnitude of spectra modification is observed to increase with \(p_T \), starting to be significant at around 1 GeV and reaching a few percent at around 5 GeV. The modification is found to be most significant in the mid-central collisions, decreasing in the most central ones. The ALICE results suggest that the value of the correlation coefficient should be significant in mid-central and central collisions and that its magnitude and centrality dependence should be sensitive to the scale of intrinsic fluctuations of \(v_2 \) and \(p_T \). Including particles of higher \(p_T \) in the measurement is expected to result in increased values of the \(\rho(v_2[2], \{ p_T \}) \). The \(\{ p_T \} \) correlations with \(v_2 \) in peripheral Pb+Pb collisions, \(v_3 \) and \(v_4 \) in wide centrality range as well as for the \(v_2 \) in high multiplicity \(p+Pb \) are unexplored by measurements.

This paper reports on the first measurement of the \(\rho \) coefficient with the ATLAS detector in Pb+Pb and \(p+Pb \) collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The Pb+Pb data sample with a total integrated luminosity of 22 μb\(^{-1}\) was collected in 2015, and the \(p+Pb \) sample with 28 nb\(^{-1}\) in 2013.

This paper is organised as follows. Section 2 gives a brief description of the ATLAS detector. Details of the event selection and charged-particle reconstruction are provided in Sect. 3. Section 4 describes the analysis procedure for calculating the \(\rho \) coefficient. Systematic uncertainties are described in Sect. 5 and Appendix A. Results are presented in Sect. 6, followed by a summary in Sect. 7.

2 Experimental setup

The ATLAS experiment [30] at the LHC is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and a near 4π solid angle coverage. The inner detector (ID) covers the pseudorapidity\(^1\) range \(|\eta| < 2.5 \) and is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field. The ID consists of silicon pixel, silicon microstrip (SCT), and straw tube tracking detectors. After the 2013 \(p+Pb \) run, an additional pixel silicon layer, the insertable B-layer [31,31,32], was installed prior to the 5.02 TeV Pb+Pb data-taking to attain more precise track-

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the \(z \)-axis along the beam pipe. The \(x \)-axis points from the IP to the centre of the LHC ring, and the \(y \)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the \(z \)-axis. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = - \ln \tan(\theta/2) \).
ing. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator tile hadronic calorimeter covers the central pseudorapidity range ($|\eta| < 1.7$). The endcap and forward regions are instrumented with LAr calorimeters for EM and hadronic energy measurements up to $|\eta| = 4.9$. The forward calorimeter (FCal) covers $3.2 < |\eta| < 4.9$ and is used for centrality estimation [10]. The minimum-bias trigger scintillators (MBTS) are located on each side of the detector at $z = \pm 3.6$ m and detect charged particles with $2.07 < |\eta| < 3.86$. The zero-degree calorimeter (ZDC), located in the LHC tunnel and covering $|\eta| > 8.3$, is used for triggering on collision events and pile-up event rejection. It is calibrated to resolve an individual neutron originating from the collision spectators.

A two-level trigger system selects events [33,34]. The level-1 trigger is implemented in hardware and preselects up to 10^5 events per second for further decisions by the high-level trigger (HLT). The software-based HLT tuned for Pb+Pb collision data selects up to 1000 events per second for recording. This analysis primarily uses charged-particle tracks in the ID, but information from the central calorimeters and the ZDC is also used for triggering, event selection, and analysis.

3 Event and track selection

The Pb+Pb data in this analysis were selected using two mutually exclusive minimum-bias triggers. Events with semi-central and central collisions were selected if the scalar sum of transverse energy in the entire ATLAS calorimeter system exceeded 50 GeV. Peripheral events, i.e. those with large impact parameter of the colliding Pb nuclei, fail the 50 GeV selection and were instead selected by requiring a deposition in the ZDC corresponding to at least one neutron and by requiring at least one track reconstructed in the HLT. Data in this analysis are required to come from periods when the entire detector was functioning normally. The events are required to have a reconstructed vertex within 100 mm of the nominal interaction point. The contribution from events containing more than one inelastic interaction (pile-up) is studied by exploiting correlations between the transverse energy measured in the FCal (ΣE_T^{FCal}) with the estimated number of neutrons in the ZDC, and with the number of tracks associated with a primary vertex [27,35]. The distribution of ΣE_T^{FCal} and the distribution of the number of neutrons in events with more than one collision are broader than the corresponding distributions in events with only one collision. Pile-up events are suppressed by rejecting events with abnormally large values of either ΣE_T^{FCal} or the number of neutrons in the ZDC compared with the charged-particle multiplicity in the event. Approximately 0.2% of the events are rejected by these requirements.

The p+Pb data in this analysis were selected using minimum-bias triggers and high-multiplicity triggers (HMT). The minimum-bias trigger required signals in both sides of the MBTS system with a timing difference of less than 10 ns to eliminate non-collision backgrounds. The HMT required the total transverse energy in the calorimeter at level-one and the number of ID track candidates reconstructed in the HLT to be above predefined thresholds. Six combinations of thresholds were used to optimise data-taking during periods with different luminosities. Samples of events collected by these triggers are combined by applying event weights to reproduce the charged-particle multiplicity distribution of the minimum-bias trigger. Further details of the data selection are given in Refs. [22,36]. The average pile-up probability in the p+Pb dataset is approximately 3% but can be significantly larger in high-multiplicity events. Events with more than one reconstructed vertex are removed from the sample. Similarly to the Pb+Pb dataset, to remove events where the two interaction vertices are too close to resolve as independent ones, the ZDC signal on the Pb fragmentation side is used. The distribution of the number of neutrons, which is broader in events with pile-up than that for the events without pile-up is exploited for that purpose [36]. The fraction of rejected events varies with the event activity and reaches a maximum of 10% for events with the highest multiplicities.

The analysis for both collision systems is performed in narrow bins of event activity defined by the charged-particle multiplicity N_{ch} (described in Sect. 4), which estimates the collision centrality. In addition, the Pb+Pb results are presented as a function of collision centrality expressed by the average number of nucleons participating in the collision, N_{part}, to allow comparison with theoretical predictions [37]. The centrality is estimated from the ΣE_T^{FCal} distribution [6,10] using the Glauber model [38]. The number of events passing the selection requirements is 1.3×10^8 for Pb+Pb within the 0–80% centrality interval. For the p+Pb system, about 0.64×10^8 events enter the analysis.

The charged-particle tracks reconstructed in the ID are required to satisfy selection criteria in order to suppress the contribution of incorrectly reconstructed tracks and secondary products of particle decays. The selection criteria include the requirement that the number of hits in the pixel and SCT detectors should be greater than two and eight, respectively, for the Pb+Pb data and greater than one and six for the p+Pb data. The track impact parameters relative to the collision vertex in the transverse direction, $|d_0|$, and longitudinal direction, $|z_0 \sin \theta|$, are required to be less than 1 mm for tracks in the Pb+Pb data sample and less than 1.5 mm in the p+Pb sample. In addition, in p+Pb collisions, the track impact parameter significances must satisfy $|d_0/\sigma_{d_0}| < 3$ and $|z_0 \sin \theta/\sigma_z| < 3$, where σ_{d_0} and σ_z are the uncertainties.
in \(d_0 \) and \(z_0 \sin \theta \) determined from the covariance matrix of the track fit. The different selection criteria for Pb+Pb and \(p+Pb \) optimise the performance of the track reconstruction in differing running conditions.

Corrections needed due to track reconstruction effects are evaluated using \(4 \times 10^6 \) Pb+Pb and \(10^7 \) \(p+Pb \) minimum-bias Monte Carlo (MC) events generated by the HIJING v1.38b [39] event generator. After the generation, an azimuthal flow is implemented using the afterburner technique [40], and the \(p_T \) spectrum is reweighted to match the data. Generated events were simulated in the detector by the GEANT 4-based [41] ATLAS detector simulation programs [42] and reconstructed using the same procedures and detector conditions as the data. Track reconstruction corrections are applied to each selected track using weights to account for the tracking efficiency \(\epsilon \) and the fake-track fraction \(f \). The efficiency is defined as the fraction of primary MC charged particles that are matched to reconstructed tracks, and \(f \) is the fraction of tracks that are not matched to primary MC particles or are produced from random combinations of hits in the ID. A similar analysis procedure is described in Refs. [10, 16]. The fake-track fraction and tracking efficiency are determined as functions of the track \(p_T \) and \(\eta \) and of the track multiplicity in the event. Tracks included in the analysis are weighted with the factor \((1-f)/\epsilon\). An additional multiplicative weight evaluated from data is applied to the data to correct for detector non-uniformity in the azimuthal angle. These weights are obtained by requiring the tracks to be distributed uniformly in azimuth and pseudorapidity slices of width 0.1.

In the Pb+Pb data, the contribution of fake tracks is largest in central collisions at the lowest analysed track \(p_T \) of 0.5 GeV and at the largest \(|\eta|\), reaching up to 20%. The fake-track rate is below 1% for tracks with \(p_T \) above 2 GeV and \(|\eta| \leq 1.5\). The tracking efficiency depends weakly on centrality, and in the most central events it is about 3% less than in more peripheral events. The efficiency increases with the \(p_T \) from about 50% at the lowest analysed \(p_T \) to 70% above 2 GeV. It is highest at mid-rapidity and drops by about 15% for \(|\eta| > 1\). For \(p+Pb \) collisions, with \(p_T \) increasing from 0.3 to 1 GeV the efficiency increases from about 75% (60%) to 83% (70%) at \(|\eta| \approx 0 \) (\(|\eta| > 2\)). The \(p+Pb \) tracking efficiency is independent of the event’s multiplicity for \(N_{ch} \geq 10 \), i.e. in the multiplicity range used in the analysis. The fake rate in \(p+Pb \) collisions is very low, below 1% (3%) at \(|\eta| \approx 0 \) (\(|\eta| > 2\)).

4 Correlation coefficient \(\rho \)

In each event, charged-particle tracks are grouped into three regions of subevents based on their pseudorapidity: region A with \(-2.5 < \eta < -0.75\), central region B with \(|\eta| < 0.5\) and region C with \(0.75 < \eta < 2.5\). The \(v_n^a \) for the \(n = 2–4 \) harmonics are calculated by correlating charged-particle tracks from subevents A and C, which are separated in pseudorapidity to suppress non-flow contributions. Tracks in central region B are used to obtain the mean value of the charged-particle transverse momentum in the event, \([p_T]\), defined as

\[
[p_T] = \frac{1}{\sum b w_b} \sum b w_b p_{Tb}
\]

where the summation is over tracks in region B, labelled by index \(b \). The variable \(c_q \) (Eq. (3)) is also calculated using tracks from region B. Here, and in following formulas, the weights \(w \) include the fake-track fraction, efficiency, and azimuthal non-uniformity corrections, as discussed in Sect. 3.

The covariance term from the numerator of Eq. (4) is defined as

\[
\text{cov}(v_n^a[2],[p_T]) = \text{Re}\left(\frac{1}{\sum a,c w_a w_c} \sum a_c w_a w_c e^{i\phi_{a} - i\phi_{c}} ([p_T] - \langle [p_T] \rangle) \right)
\]

(5)

where \(\phi \) is the azimuthal angle and indices \(a \) and \(c \) span the tracks in regions A and C, respectively.

The two- and four-particle correlations used to define the dynamical variance in Eq. (2), which enters the denominator of Eq. (4), are calculated as in Ref. [26]

\[
\langle \text{corr}_n[2] \rangle = \text{Re}\left(\frac{1}{\sum a,c w_a w_c} \sum a_c w_a w_c e^{i\phi_{a} - i\phi_{c}} \right)
\]

(6)

\[
\langle \text{corr}_n[4] \rangle = \text{Re}\left(\frac{(Q_{n,a}^2 - Q_{2n,a})(Q_{n,c}^2 - Q_{2n,c})^*}{S_a S_c} \right)
\]

(7)

where for subevent A

\[
Q_{n,a} = \sum a w_a e^{i\phi_a}, \quad Q_{2n,a} = \sum a w_a^2 e^{i2\phi_a},
\]

\[
S_a = \left(\sum a w_a^2 \right) - \sum a w_a^2,
\]

 Springer
and similarly for subevent C. Equation (7) represents the sum
\[\sum e^{\text{bin}(\phi_1 + \phi_2^2 - \phi_3^2 - \phi_4^2)} \] over all particles from subevents A and C normalised by the number of quadruplets without autocorrelations in each subevent.

The second factor in the denominator of Eq. (4), the mean \(p_T \) fluctuation in the event class \(c_\text{K} \), is defined by Eq. (3) and in this analysis it is calculated as
\[c_\text{K} = \left\{ \left(\frac{1}{(\sum b) w_b(\text{b})} - \frac{1}{\sum b} w_b(\text{b}) \sum b \sum b' \neq b w_b(\text{b}) - \langle [p_T]\rangle w_b(\text{b}) \langle [p_T]\rangle - \langle [p_T]\rangle \right) \right\}. \]

The summation indices \(b \) and \(b' \) run over all charged particles in region B.

The correlation coefficient expressed by Eq. (4) is evaluated for the range \(0.5 < p_T < 2 \, \text{GeV} \) in Pb+Pb collisions and \(0.3 < p_T < 2 \, \text{GeV} \) in \(p + \text{Pb} \) collisions. These intervals, called 'main', contain a large number of soft particles and constitute the main result of the analysis which can be compared with hydrodynamical models. For each system, two additional \(p_T \) ranges are considered: \(0.5 < p_T < 5 \, \text{GeV} \) and \(1 < p_T < 2 \, \text{GeV} \) in the analysis of Pb+Pb collisions, and \(0.3 < p_T < 5 \, \text{GeV} \) and \(0.5 < p_T < 2 \, \text{GeV} \) in \(p + \text{Pb} \) collisions. These ranges facilitate the study of the sensitivity of \(\rho(v_n(2)^2) \) to the high \(p_T \) part of the particle spectrum and to the lower charged-particle multiplicity from the higher minimum \(p_T \) value. The charged-particle \(p_T \) range \(0.5 < p_T < 2 \, \text{GeV} \) is common to both systems and can be used to compare the \(\rho(v_n(2)^2) \) results from Pb+Pb and \(p + \text{Pb} \) collisions.

The quantities of interest, i.e. \(\text{cov}(v_n(2)^2, [p_T]) \), \(\text{Var}(v_n(2)^2)_{\text{dyn}} \), \(c_\text{K} \), and \(\rho(v_n(2)^2, [p_T]) \), are determined in bins of reconstructed track multiplicity \(M_{\text{AC}} \) measured in the combination of regions A and C. This is done to avoid a negative correlation between the multiplicity in subevents \(A + C \) and \(B \) that occurs if the analysis is binned in multiplicity in the entire ID. Narrow \(M_{\text{AC}} \) bins are also chosen due to the sensitivity to multiplicity fluctuations of the multi-particle correlations that are used to obtain the \(\text{Var}(v_n(2)^2)_{\text{dyn}} \) (27). The events are grouped in fine bins with a width of ten in \(M_{\text{AC}} \) for \(0.5 < p_T < 5 \, \text{GeV} \) in the Pb+Pb analysis and \(0.3 < p_T < 5 \, \text{GeV} \) in the \(p + \text{Pb} \) analysis. It was cross-checked that the variables of interest obtained with a finer binning in \(M_{\text{AC}} \) are consistent with the measurement with the nominal binning.

To enable comparisons with the theoretical predictions and with future experimental results, measurements obtained in \(M_{\text{AC}} \) are presented as a function of the ATLAS ID multiplicity \(N_{\text{ch}} \) of \(0.5 < p_T < 5 \, \text{GeV} \) and \(|\eta| < 2.5 \). They are projected from the \(M_{\text{AC}} \) values taking into account tracking efficiency and fake-track production as described in the previous section. A similar analysis procedure is described in Ref. [22]. For the \(N_{\text{part}} \) dependencies in the Pb+Pb system, the results measured in \(M_{\text{AC}} \) multiplicity intervals are averaged, with weights equal to the probabilities to find any given \(M_{\text{AC}} \) value in the centrality intervals.

The formulation of the modified PCC \(\rho(v_n(2)^2, [p_T]) \) requires that there should be at least two tracks in each region (\(A, B, \) and \(C \)). Further, \(\text{Var}(v_n(2)^2)_{\text{dyn}} \) calculated according to Eq. (6) can be negative at low multiplicities due to statistical fluctuations, which renders Eq. (4) invalid because of the \(\sqrt{\text{Var}(v_n(2)^2)_{\text{dyn}}} \) term. For each \(M_{\text{AC}} \) bin, \(p_T \) interval, and harmonic, a criterion is applied that \(\text{Var}(v_n(2)^2)_{\text{dyn}} \) needs to be positive at a level of at least one standard deviation of its statistical uncertainty. Results presented as a function of \(N_{\text{ch}} \) are produced only for those \(M_{\text{AC}} \) intervals. For the \(N_{\text{part}} \) dependencies in the Pb+Pb system, it is additionally required for each centrality interval that the fraction of rejected events due to this criterion does not exceed 1%.

5 Systematic uncertainties

The systematic uncertainty is estimated by varying individual aspects of the analysis. The systematic uncertainties for the main \(p_T \) interval are discussed for each collision system. Systematic uncertainties for the other \(p_T \) intervals behave consistently with the ones for the main \(p_T \) interval. Since the modified PCC \(\rho(v_n(2)^2, [p_T]) \) is a ratio of quantities which are calculated using tracks, many variations largely cancel out and the resulting systematic uncertainties are small. To suppress the statistical fluctuations and to get more robust estimation of systematic uncertainties, they are averaged over several, wide ranges of the charged-particle multiplicity. For each uncertainty source and for each measurement point, the maximum variation from the baseline measurement is used. The total resulting uncertainty is the sum of the individual contributions combined in quadrature. The following sources of systematic uncertainties are considered.

Track selection The tracking performance has a relatively small impact on \(v_n(2) \), but it directly affects the \([p_T] \) and \(c_\text{K} \) via the admixture of the fake tracks, especially at low \(p_T \). To assess the impact on \(\rho(v_n(2)^2, [p_T]) \), the measurement is repeated with tracks selected with looser and tighter track quality criteria, thus increasing and decreasing the fake-track rate, respectively. The weights used in the evaluation of measured quantities take the modified selection into account. The loose track selection in the Pb+Pb analysis relaxes requirements on the number of pixel and SCT hits to at least one and six, respectively. Additionally, the requirements on the transverse and longitudinal impact parameters of the track are relaxed to 1.5 mm. The tighter selection in the Pb+Pb analysis tightens the requirement on the transverse and lon-
gitudinal impact parameters of the track to 0.5 mm. For the $p+Pb$ analysis, the loose selection relaxes the requirements on the transverse and longitudinal impact parameters of the track to 2 mm and on the impact parameter significances to less than 4. In the tight selection, the impact parameter values and their significances must be less than 1 mm and 2, respectively. For each of the two track selections the absolute difference is calculated with respect to the baseline measurement: $|\rho(v_n[2]^2, [p_T])|_{\text{base}} - \rho(v_n[2]^2, [p_T])_{\text{loose}}$ or $|\rho(v_n[2]^2, [p_T])|_{\text{base}} - \rho(v_n[2]^2, [p_T])_{\text{tight}}$. The largest difference is taken as a systematic uncertainty.

Detector material Since the tracks that are used in the calculation of $\rho(v_n[2]^2, [p_T])$ are weighted by the inverse of the tracking efficiency, a bias in its estimation due to inaccurate modelling of the material in the detector may change the balance between low- and high-p_T tracks in the sums. Based on simulations, the estimated uncertainty in the detector description is obtained [43,44]. The resulting p_T- and η-dependent uncertainties in the track efficiency of up to 4% are used to determine the systematic uncertainty.

Tracking azimuthal uniformity In this analysis, the weighting factors w correct for any non-uniformity in the azimuthal angle distribution of reconstructed tracks. The weights are obtained from the data by requiring azimuthal uniformity over the two-dimensional distribution of reconstructed tracks in the $\eta-\phi$ plane. The effect of that correction on the result is conservatively estimated by comparing the baseline measurement and the measurement obtained without applying this weight. The uncertainty is small, and it envelopes potential effects of imperfections in the weighting factors determination, including their dependence on the transverse momentum, collision centrality, run-by-run differences, on dead module maps or the vertex position.

Residual pile-up events The selection criteria discussed in Sect. 3 suppress the fraction of pile-up events accepted for analysis to almost zero in central Pb+Pb collisions. To estimate the systematic uncertainty related to pile-up, the measurement is conservatively repeated without this event rejection, resulting in at most a 1% difference in the most central Pb+Pb events for the $\rho(v_n[2]^2, [p_T])$ coefficient. The $p+Pb$ data were taken with higher pile-up than the Pb+Pb data. To estimate the impact of contamination by residual pile-up events, $p+Pb$ results were obtained with only the vertex criteria applied. The variation covers the estimated residual pile-up fraction in events of the highest track multiplicity [36].

Centrality selection The minimum-bias trigger is fully efficient for the 0–85% centrality interval. However, the total fraction of inelastic Pb+Pb events selected is known only to 1% accuracy due to trigger inefficiency and possible sample contamination in more peripheral interactions. The centrality is estimated using the ΣE_T^{FCal} distribution [6,10] and the Glauber model [38] to obtain the mapping from the observed ΣE_T^{FCal} to the number of nucleons participating in the collision, N_{part}. The modified PCC uncertainty is evaluated by repeating the analysis with the altered centrality selections on the ΣE_T^{FCal} distribution, which results in ±1% uncertainty in the total fraction of inelastic Pb+Pb events. The centrality selection contributes mainly to uncertainties for peripheral collisions.

Figure 1 shows the magnitude of the systematic uncertainties $\delta \rho(v_n[2]^2, [p_T])$ for $n = 2 - 4$ in Pb+Pb collisions as a function of N_{ch}. In Pb+Pb collisions, the systematic uncertainty of the measured correlation coefficients across different order harmonics and centralities is not dominated by a single source. One of the largest uncertainties comes from restoring the azimuthal uniformity, and dominates for the second order harmonic in the most central collisions and for the third and fourth order harmonics almost over the full centrality range. A sizeable contribution to the uncertainty for all three harmonics is due to the track selection. The impact of the detector material is rather small except for a significant contribution for the forth order harmonic in the most central events. The residual pile-up in Pb+Pb collisions gives a negligible contribution. Figure 1d shows systematic uncertainties for $\rho(v_n[2]^2, [p_T])$ coefficients in $p+Pb$ collisions for the main interval of $0.3 < p_T < 2$ GeV as a function of event activity. In $p+Pb$ interactions the largest uncertainty in the most active collisions ($N_{ch} > 150$) originates from pile-up. The track selection is a source of sizeable uncertainty for this collision system, while the azimuthal uniformity correction procedure and the detector material have a small impact.

Details on the contributions to systematic uncertainties from different sources of c_k, $\text{Var}(v_n[2]^2)_\text{dyn}$ and $\text{cov}(v_n[2]^2, [p_T])$ are included in the Appendix.

6 Results

6.1 The constituents of the modified PCC

The constituents of the modified PCC, c_k, $\text{Var}(v_n[2]^2)_\text{dyn}$ and $\text{cov}(v_n[2]^2, [p_T])$ and are combined, using Eq. (4), to obtain ρ. Figure 2 shows the dynamical p_T fluctuation coefficient c_k as a function of charged-particle multiplicity in Pb+Pb and $p+Pb$ collision systems for tracks in three different p_T intervals. A strong decrease of c_k with increasing N_{ch} is observed in all measured results. A similar decrease was seen for c_k in Au+Au and Pb+Pb data at lower centre-of-mass energies [28,29], evaluated for lower p_T range, $0.15 < p_T < 2$ GeV, not accessible with the ATLAS detector. For the same N_{ch}, the c_k values differ by an order of magnitude for different p_T ranges of tracks used in the analysis. For the intervals with the same lower p_T limit, the c_k
Fig. 1 The systematic uncertainty of $\rho(v_n^2, \{p_T\})$ as a function of N_{ch} measured with tracks from main p_T intervals for each collision system for the a second, b third, and c fourth harmonics in Pb+Pb collisions, and for d $\rho(v_3^2, \{p_T\})$ in p+Pb collisions. The total uncertainty is also shown.

values are higher for the interval with the larger upper p_T limit.

Figure 3 shows $\text{Var}(v_n^2)^{\text{dyn}}$ for $n = 2 - 4$ as function of N_{ch} for Pb+Pb collisions. For low multiplicities, $\text{Var}(v_n^2)^{\text{dyn}}$ increases with increasing N_{ch}, reaching a maximum at N_{ch} of approximately 500 (1000) for $n = 2$ ($n = 3$), respectively. At higher N_{ch} values the variances decrease with multiplicity. The dynamical variance for $n = 4$, measured for $N_{ch} \gtrsim 500$, decreases with increasing N_{ch}. The ordering $\text{Var}(v_2^2)^{\text{dyn}} > \text{Var}(v_3^2)^{\text{dyn}} > \text{Var}(v_4^2)^{\text{dyn}}$ and the multiplicity dependence of $\text{Var}(v_n^2)^{\text{dyn}}$ are similar to the ordering and centrality dependence of v_n^2 measured by ATLAS [10]. Also shown in Fig. 3 is $\text{Var}(v_2^2)^{\text{dyn}}$ for p+Pb collisions as a function of N_{ch}. The dependence is monotonic, similarly to v_2^2 [45]. In both collision systems and for all harmonics, the same ordering of $\text{Var}(v_n^2)^{\text{dyn}}$ depending on the p_T interval is...
Fig. 3 The variance \(\text{Var}(v_n(2)^2)_{\text{dyn}} \) for \(n = 2 - 4 \) for a–c Pb+Pb collisions and \(\text{Var}(v_2(2)^2)_{\text{dyn}} \) for d p+Pb collisions for the three \(p_T \) intervals as a function of charged-particle multiplicity \(N_{\text{ch}} \). The statistical and systematic uncertainties are shown as vertical error bars and boxes, respectively.

observed. The largest variances are observed for the \(p_T \) intervals with an increased lower limit. This is expected as the \(v_n(2) \) value increases strongly with \(p_T \) below 3 GeV [10]. Additionally, the interval in which the upper limit on \(p_T \) is set to 5 GeV integrates the region with the highest values of \(v_n(2) \) (which occur around 3 GeV) and thus the values of the variance are expected to be larger than that for the main \(p_T \) range.

In Fig. 4, the covariances \(\text{cov}(v_n(2)^2, [p_T]) \) are shown for the 2nd-, 3rd-, and 4th-order harmonics in Pb+Pb collisions and for the second-order harmonics in p+Pb collisions. They are presented as a function of \(N_{\text{ch}} \) for three \(p_T \) intervals. Significant positive correlations between \(v_n(2) \) and \([p_T] \) are observed in the Pb+Pb events. The measured covariances depend on the charged-particle multiplicity and the \(p_T \) range of the charged particles. In Pb+Pb collisions, a strong dependence on the multiplicity is observed for \(n = 2 \) and 4. The \(\text{cov}(v_3(2)^2, [p_T]) \) depends only weakly on \(N_{\text{ch}} \). A negative \(\text{cov}(v_2(2)^2, [p_T]) \) is measured at multiplicities \(N_{\text{ch}} \gtrsim 200 \) and a negative \(\text{cov}(v_3(2)^2, [p_T]) \) for \(1 < p_T < 2 \) GeV below \(N_{\text{ch}} < 1800 \). The covariances \(\text{cov}(v_2(2)^2, [p_T]) \) in p+Pb events are negative in the entire measured \(N_{\text{ch}} \) range and show weak \(N_{\text{ch}} \) dependence. Unlike in Pb+Pb events, the \(\text{cov}(v_2(2)^2, [p_T]) \) in p+Pb events have similar magnitudes for different \(p_T \) intervals.

6.2 The modified PCC

The modified PCC \(\rho(v_n(2)^2, [p_T]) \) for \(n = 2 - 4 \) in Pb+Pb collisions and for \(n = 2 \) in p+Pb collisions is shown in Fig. 5. In Pb+Pb collisions, the behaviour of \(\rho(v_2(2)^2, [p_T]) \) is similar for all \(p_T \) intervals. It starts at negative values for \(N_{\text{ch}} \gtrsim 200 \) and rapidly increases with multiplicity up to \(\sim 1500 \) particles where the increase slows down and reaches the maximum at \(N_{\text{ch}} \approx 4500 \) of 0.24–0.3, depending on the \(p_T \) interval. At even higher \(N_{\text{ch}} \), the \(\rho(v_2(2)^2, [p_T]) \) value decreases rapidly. The significant correlation observed for mid-central events suggests a connection between anisotropic and radial [46] flows which might be attributed to stronger hydrodynamic response (larger pressure gradients) to the large initial-state eccentricities [47]. The modified PCC multiplicity dependence could reflect a balance between stronger radial flow observed in central collision and the larger initial eccentricity seen in peripheral interactions. The decrease observed in central collisions, for \(N_{\text{ch}} \gtrsim 5000 \), might be related to the increased role of
initial-state fluctuations in anisotropic flow [27]. However, a complete understanding of this effect would require a more precise modelling of heavy ion collisions. The correlation coefficients calculated with the upper p_T limit of 2 GeV are 10–20% smaller than the values obtained with a p_T limit of 5 GeV. The correlation coefficient $\rho(v_2(2)^2, [p_T])$ is evaluated in Pb+Pb collisions for the same three p_T ranges. The magnitudes measured for $\rho(v_3(2)^2, [p_T])$ are significantly smaller than those measured for $\rho(v_2(2)^2, [p_T])$ and similar to the magnitudes of $\rho(v_4(2)^2, [p_T])$. All three curves increase with N_{ch} in the range of $1000 < N_{ch} < 5000$. At low values of N_{ch}, a flattening of the trend can be noticed. In the most central collisions, a breakdown of the rise is seen, similarly to the $\rho(v_2(2)^2, [p_T])$. Above $N_{ch} \sim 1500$, the curves for the two intervals with the same maximum p_T are consistent with each other and are below the curve for the interval which uses tracks with p_T up to 5 GeV. The largest values of $\rho(v_4(2)^2, [p_T])$ are observed at $N_{ch} \sim 1000$. For high N_{ch}, $\rho(v_4(2)^2, [p_T])$ decreases with N_{ch} up to about $N_{ch} \sim 4000$ and rises slowly at higher values. The trends obtained for p_T intervals with the same minimum value are consistent above $N_{ch} \sim 1500$ as is the case for $\rho(v_3(2)^2, [p_T])$. The decrease for $N_{ch} < 4000$ might be due to a contribution to v_4 from a non-linear term containing v_2^2, decreasing with increasing centrality [13]. However, a theoretical modelling of the initial state and its subsequent evolution would be required to support this interpretation. Similarly to the $\rho(v_3(2)^2, [p_T])$, the $\rho(v_4(2)^2, [p_T])$ correlations measured with the larger upper p_T limit have larger magnitudes. The results for the larger upper p_T limit show the sensitivity of the $\rho(v_n(2)^2, [p_T])$ coefficients to the high p_T part of the particle spectrum contaminated with non-flow correlations from jets. On the other hand, the correlations measured for the intervals with fixed upper p_T limit (2 GeV) and varied lower p_T limits are similar, demonstrating insensitivity of the modified PCC coefficients to a significant change of the event charged-particle multiplicity as expected [25]. The fourth-order correlations are weaker than those for the second-order flow harmonic and for $N_{ch} > 4000$ are comparable to $\rho(v_3(2)^2, [p_T])$. The results for all harmonics indicate a change in the trend in events with high N_{ch} around 4500, which suggests a change in the nature of the correlations in those events [47].

In $p+$Pb collisions, $\rho(v_2(2)^2, [p_T])$ exhibits much weaker N_{ch} dependence than that in Pb+Pb collisions. For the main p_T interval, the modified PCC assumes a negative value of approximately -0.1 and is almost constant within uncertain-
ties. Values for different lower \(p_T \) limits are similar, and the \(\rho(v_2[2]^2, [p_T]) \) magnitudes for the larger upper \(p_T \) limit are smaller. The magnitude (and sign) of the modified PCC in \(p+Pb \) collisions is expected to be related to the distribution of the energy deposition in the initial state, as predicted by the hydrodynamic model [25]. In hydrodynamics, in \(p+Pb \) collision, for small sources a higher initial pressure gradients and smaller eccentricities are expected to be generated. This mechanism could lead to the negative correlation of the final state observables, this is the mean transverse momentum and higher order flow harmonics. Thus, the negative value of the modified PCC for \(v_2[2] \) in \(p+Pb \) and peripheral \(Pb+Pb \) that is measured should provide valuable constraints for models describing the collectivity in small systems.

6.3 Comparison of \(p+Pb \) and \(Pb+Pb \) results

Figure 6 shows a comparison of \(p+Pb \) and \(Pb+Pb \) results shown in Figs. 2, 3, 4, 5 for the common \(p_T \) interval of \(0.5 < p_T < 2 \text{ GeV} \). The values of the \(c_k \) (Fig. 6a) are similar for \(p+Pb \) and \(Pb+Pb \) collisions in this \(p_T \) interval, while the behaviour of the dynamical variance \(\text{Var}(v_2[2]^2)_\text{dyn} \) (Fig. 6b) is very different due to the different initial eccentricities in the overlap regions in \(Pb+Pb \) and \(p+Pb \) collisions. Only a small rise with the multiplicity is observed for \(p+Pb \) collisions, which is in agreement with a slow increase of \(v_2[2] \) with growing event activity [22, 36, 45]. For \(N_{ch} \approx 50 \), the dynamical variances are comparable between \(Pb+Pb \) and \(p+Pb \) collisions. The \(N_{ch} \) dependence of \(\text{cov}(v_2[2]^2, [p_T]) \) is significantly different for \(Pb+Pb \) and \(p+Pb \) collisions. A steady rise from negative to positive values with \(N_{ch} \) is observed for peripheral \(Pb+Pb \) collisions, and approximately constant values are obtained for \(p+Pb \) collisions. The \(N_{ch} \) dependence of \(\rho(v_2[2]^2, [p_T]) \) is consistent between \(Pb+Pb \) and \(p+Pb \) collisions. The negative \(\rho(v_2[2]^2, [p_T]) \) coefficients for the small systems in \(p+Pb \) and \(Pb+Pb \) collisions may suggest a more compact source model [25]. The comparison of the systems underlines the importance of the initial stage in the correlations described by the \(\rho(v_2[2]^2, [p_T]) \) coefficient. The theoretical predictions for midcentral and central \(Pb+Pb \) collisions suggests that for a large system an increase of the mean transverse momentum indicates a stronger transverse flow and a stronger collective

\[\psi \text{ Springer} \]
6.4 Comparison to theoretical predictions

To compare the Pb+Pb results with a theoretical prediction in Ref. [25], the $\rho(v_n[2], [p_T])$ coefficients for $0.5 < p_T < 2$ GeV are obtained as a function of the charged-particle multiplicity N_{ch}. The statistical and systematic uncertainties are shown as vertical error bars and boxes, respectively.

Figure 7 shows the N_{part} dependence of $\rho(v_n[2], [p_T])$ for $n = 2 - 4$ in Pb+Pb collisions. It resembles the trends observed in Fig. 5, which show the modified PCC as a function of N_{ch}, a measure of event activity. The theoretical predictions of the $\rho(v_n[2], [p_T])$ coefficient are based on a model in which the initial conditions were generated with nucleon positions by a MC Glauber model [48]. These initial conditions are then evolved using the pressure-driven 3+1D hydrodynamical simulations with viscous effects followed by the statistical particle emission to match multiplicities observed experimentally [37]. The modified Pearson correlation coefficient is then extracted from the final-state particles. The predictions for all harmonics are consistent with the data within the large model uncertainties except for the most central collisions where the predictions underestimate the measured $\rho(v_2[2], [p_T])$ and for the semi-peripheral collisions, for $N_{part} \sim 130$, where the predictions overestimate the $\rho(v_2[2], [p_T])$ and underestimate $\rho(v_4[2], [p_T])$.

7 Summary

The first measurement of the modified PCC $\rho(v_n[2], [p_T])$, which quantifies the correlation between the flow harmonics and the mean transverse momentum, is performed by ATLAS experiment at the LHC. The measurement uses 22 μb$^{-1}$ of Pb+Pb data and 28 nb$^{-1}$ of p+Pb data at the same centre-of-mass energy per nucleon pair of 5.02 TeV.

The correlation coefficient for several charged-particle p_T ranges is measured as a function of the number of charged particles N_{ch} and, in Pb+Pb collisions, the average number of nucleons participating in the collision, N_{part}. For the 2nd-, 3rd-, and 4th-order harmonics, the measured quantities exhibit a dependence on the choice of charged-particle p_T range. Measurements with an upper limit of 5 GeV on p_T indicate a stronger correlation than those with an upper limit.
of 2 GeV. For mid-central and central collisions, when varying the lower p_T limit, consistent values of $\rho(v_2(2)^2, [p_T])$ and $\rho(v_3(2)^2, [p_T])$ coefficients are obtained, whereas for the $\rho(v_4(2)^2, [p_T])$ coefficient a difference of 10–20% is seen. As a function of event activity, for Pb+Pb collisions, a strong positive correlation $\rho(v_2(2)^2, [p_T])$ is observed in mid-central and central collisions while negative values are measured for peripheral events. The correlation $\rho(v_3(2)^2, [p_T])$ is found to be weaker, yet non-zero. The values of $\rho(v_4(2)^2, [p_T])$ are also positive in the studied centrality range. Non-monotonic behaviour is observed in central Pb+Pb collisions. That trend observed for $\rho(v_2(2)^2, [p_T])$ in Pb+Pb collisions is in line with expectations drawn from the ALICE results [20]. In $p+Pb$ collisions, the value of $\rho(v_2(2)^2, [p_T])$ is negative and approximately independent of N_{ch}.

The modified PCC is a valuable tool for studying the dynamics of heavy-ion collisions. It provides a reliable estimate of the magnitude of correlations calculated using finite multiplicities. In comparison with existing results, it allows quantitative comparisons between the experimental data and theoretical models. The precise measurements of this observable, presented in this paper, provide useful insights into the interplay of the azimuthal anisotropies (azimuthal flow) and the mean event p_T (radial flow), providing input for a better understanding of QGP dynamics and for constraining the theoretical models. The obtained $\rho(v_n(2)^2, [p_T])$ coefficients for $0.5 < p_T < 2$ GeV were compared with a theoretical prediction based on the pressure-driven 3+1D hydrodynamical simulations with viscous effects. The predictions for all harmonics are consistent with the data within the large model uncertainties. The only exception are the most central collisions, where the predictions underestimate the measured $\rho(v_2(2)^2, [p_T])$ and the semi-peripheral collisions, where the predictions overestimate the $\rho(v_2(2)^2, [p_T])$ and underestimate $\rho(v_4(2)^2, [p_T])$. Sizeable positive correlations observed for non-peripheral Pb+Pb collisions support a qualitatively expected scenario in which the azimuthal flow originates from the pressure gradients.

In small system collisions the magnitude of the transverse flow is expected to be very sensitive to the size of the initial source in the hydrodynamic model. In particular, in the compact source scenario in $p+Pb$ collisions, the smaller source sizes are expected to yield larger transverse flow and smaller initial eccentricities. The negative sign of the modified PCC measured in $p+Pb$ collisions seems to support the compact source scenario, and indicates the role of the initial conditions in these systems.
Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSS-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [49].

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: “All ATLAS scientific output is published in journals, and preliminary results are made available in Conference Notes. All are openly available, without restriction on use by external parties beyond copyright law and the standard conditions agreed by CERN. Data associated with journal publications are also made available: tables and data from plots (e.g. cross section values, likelihood profiles, selection efficiencies, cross section limits, ...) are stored in appropriate repositories such as HEPDATA (http://hepdata.cedar.ac.uk/). ATLAS also strives to make additional material related to the paper available that allows a reinterpretation of the data in the context of new theoretical models. For example, an extended encapsulation of the analysis is often provided for measurements in the framework of RIVET (http://rivet.hepforge.org/).” This information is taken from the ATLAS Data Access Policy, which is a public document that can be downloaded from http://opendata.cern.ch/record/413.]

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

Appendix

A Systematic uncertainty of c_k, $\text{Var}(\nu_n(2)^2)_{\text{dyn}}$ and $\text{cov}(\nu_n(2)^2, [p_T])$

This section presents the systematic uncertainties of c_k, $\text{Var}(\nu_n(2)^2)_{\text{dyn}}$ and $\text{cov}(\nu_n(2)^2, [p_T])$ for the Pb+Pb and p+Pb collisions at 5.02 TeV as a function of N_{ch}. Each figure shows individual contributions to the total uncertainty from sources described in Sect. 5, i.e. track selection, detector material, tracking azimuthal non-uniformity and residual pile-up events. Figure 8 shows contributions to the systematic uncertainty of c_k measured with tracks from the main p_T intervals in Pb+Pb and p+Pb collisions. The contributions to the systematic uncertainty of $\text{Var}(\nu_n(2)^2)_{\text{dyn}}$ as a function of N_{ch} for each collision system for the second, third, and fourth order harmonics in Pb+Pb collisions, and for $\text{Var}(\nu_2(2)^2)_{\text{dyn}}$ in p+Pb collisions are shown in Fig. 9. Figure 10 presents the corresponding systematic uncertainty of $\text{cov}(\nu_n(2)^2, [p_T])$ for the second, third, and fourth order harmonics in Pb+Pb collisions, and for $\text{cov}(\nu_2(2)^2, [p_T])$ in p+Pb collisions.

Fig. 8 The systematic uncertainty of c_k as a function of N_{ch} measured with tracks from main p_T intervals in a Pb+Pb collisions and in b p+Pb collisions. The total uncertainty is also shown.

\begin{align*}
\text{ATLAS} & \quad \text{Pb+Pb, 5.02 TeV, 22 μb}^{-1} \\
\text{ATLAS} & \quad \text{p+Pb, 5.02 TeV, 28 nb}^{-1}
\end{align*}

| N_{ch} | $|\beta_{c_k}| \times 10^6$ |
|----------|-------------------|
| 50 | 0.2 |
| 100 | 0.3 |
| 150 | 0.4 |
| 200 | 0.5 |
| 250 | 0.6 |

(a) $p_T < 2$ GeV

(b) $0.3 < p_T < 2$ GeV

\begin{figure}[h]
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[width=\textwidth]{a.png}
\caption{(a) Pb+Pb, 5.02 TeV, 22 μb-1 \\
0.5 < p_T < 2 GeV}
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[width=\textwidth]{b.png}
\caption{(b) p+Pb, 5.02 TeV, 28 nb-1 \\
0.3 < p_T < 2 GeV}
\end{subfigure}
\end{figure}
Fig. 9 The systematic uncertainty of $\text{Var}(v_n^{(2)})_{\text{dyn}}$ as a function of N_{ch} measured with tracks from main p_T intervals for each collision system for the a second, b third, and c fourth order harmonics in Pb+Pb collisions, and for d $\text{Var}(v_2^{(2)})_{\text{dyn}}$ in $p+Pb$ collisions. The total uncertainty is also shown.

Fig. 10 The systematic uncertainty of $\text{cov}(v_n^{(2)}, [p_T])$ as a function of N_{ch} measured with tracks from main p_T intervals for each collision system for the a second, b third, and c fourth order harmonics in Pb+Pb collisions, and for d $\text{cov}(v_2^{(2)}, [p_T])$ in $p+Pb$ collisions. The total uncertainty is also shown.
References

1. PHOBOS Collaboration, The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28 (2005). arXiv:nucl-ex/0410022

2. STAR Collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102 (2005). arXiv:nucl-ex/0501009

3. BRAHMS Collaboration, Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1 (2005). arXiv:nucl-ex/0401020

4. PHENIX Collaboration, Formation of dense partonic matter in relativistic-nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184 (2005). arXiv:nucl-ex/0410003

5. ALICE Collaboration, Elliptic flow of charged particles in Pb–Pb collisions at √sNN = 2.76 TeV. Phys. Rev. Lett. 105, 252302 (2010). arXiv:1011.3914 [nucl-ex]

6. ATLAS Collaboration, Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead–lead collisions at √sNN = 2.76 TeV with the ATLAS detector. Phys. Lett. B 707, 330 (2012). arXiv:1108.6018 [hep-ex]

7. ATLAS Collaboration, Measurement of the azimuthal anisotropy for charged particle production in √sNN = 2.76 TeV lead–lead collisions with the ATLAS detector. Phys. Rev. C 86, 014907 (2012). arXiv:1203.3087 [hep-ex]

8. CMS Collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at √sNN = 2.76 TeV. Phys. Rev. C 87, 014902 (2013). arXiv:1204.1409 [hep-ex]

9. J. Schukraft, QM2017: status and key open questions in ultra-relativistic heavy-ion physics. Nucl. Phys. C 967, 1 (2017). arXiv:1705.02646 [nucl-ex]

10. ATLAS Collaboration, Measurement of the azimuthal anisotropy of charged particles produced in √sNN = 5.02 TeV Pb+Pb collisions with the ATLAS detector. Eur. Phys. J. C 78, 997 (2018). arXiv:1808.03951 [nucl-ex]

11. S. Ryu et al., Importance of the bulk viscosity of QCD in ultrarelativistic heavy-ion collisions. Phys. Rev. Lett. 115, 132301 (2015). arXiv:1502.01675 [nucl-th]

12. Z. Qiu, U. Heinz, Hydrodynamic event-plane correlations in Pb + Pb collisions at √s = 2.76 ATeV. Phys. Lett. B 717, 261 (2012). arXiv:1208.1200 [nucl-th]

13. ATLAS Collaboration, Measurement of the correlation between flow harmonics of different order in lead–lead collisions at √sNN = 2.76 TeV with the ATLAS detector. Phys. Rev. C 92, 034903 (2015). arXiv:1504.01289 [hep-ex]

14. D. Teaney, L. Yan, Triangularity and dipole asymmetry in relativistic heavy ion collisions. Phys. Rev. C 85, 064904 (2011). arXiv:1010.1876 [nucl-th]

15. R.S. Bhadrao, J.-Y. Ollitrault, S. Pal, Characterizing flow fluctuations with moments. Phys. Lett. B 742, 94 (2015). arXiv:1411.5160 [nucl-th]

16. ATLAS Collaboration, Measurement of the distributions of event-by-event flow harmonics in lead–lead collisions at √sNN = 2.76 TeV with the ATLAS detector at the LHC. JHEP 11 183 (2013). arXiv:1305.2942 [hep-ex]

17. PHENIX Collaboration, Multiparticle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au + Au collisions at √sNN = 200 GeV. Phys. Rev. C 99, 024903 (2019). arXiv:1804.10024 [nucl-ex]

18. PHOBOS Collaboration, Non-flow correlations and elliptic flow fluctuations in Au + Au collisions at √sNN = 200 GeV. Phys. Rev. C 81, 034915 (2010). arXiv:1002.0534 [nucl-ex]
40. J. Jia, S. Mohapatra, Disentangling flow and nonflow correlations via Bayesian unfolding of the event-by-event distributions of harmonic coefficients in ultrarelativistic heavy-ion collisions. Phys. Rev. C 88, 014907 (2013). arXiv:1304.1471 [nucl-ex]

41. S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003)

42. ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). arXiv:1005.4568 [physics.ins-det]

43. ATLAS Collaboration, Study of the material of the ATLAS inner detector for Run 2 of the LHC. JINST 12, P12009 (2017). arXiv:1707.02826 [hep-ex]

44. ATLAS Collaboration, Charged-particle distributions in $\sqrt{s} = 13$ TeV pp interactions measured with the ATLAS detector at the LHC. Phys. Lett. B 758, 67 (2016). arXiv:1602.01633 [hep-ex]

45. ATLAS Collaboration, Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and $p + Pb$ collisions with the ATLAS detector at the CERN Large Hadron Collider. Phys. Rev. C 97, 024904 (2018). arXiv:1708.03559 [hep-ex]

46. S. Voloshin, A.M. Poskanzer, R. Snellings, Collective phenomena in non-central nuclear collisions (2008). arXiv:0809.2949 [nucl-ex]

47. A. Mazeliauskas, D. Teaney, Fluctuations of harmonic and radial flow in heavy ion collisions with principal components. Phys. Rev. C 93, 024913 (2016). arXiv:1509.07492 [nucl-th]

48. C. Loizides, Glauber modeling of high-energy nuclear collisions at the subnucleon level. Phys. Rev. C 94, 024914 (2016). arXiv:1603.07375 [nucl-ex]

49. ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-GEN-PUB-2016-002. https://cds.cern.ch/record/2202407

‡ Springer
Department of Physics, Ankara University, Ankara, Turkey; (b) Istanbul Aydin University, Istanbul, Turkey; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
Department of Physics, University of Arizona, Tucson, AZ, USA
Department of Physics, University of Texas at Arlington, Arlington, TX, USA
Physics Department, National and Kapodistrian University of Athens, Athens, Greece
Physics Department, National Technical University of Athens, Zografou, Greece
Department of Physics, University of Texas at Austin, Austin, TX, USA
(a) Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey; (b) Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Istanbul, Turkey; (c) Department of Physics, Bogazici University, Istanbul, Turkey; (d) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Physics Department, Tsinghua University, Beijing, China; (c) Department of Physics, Nanjing University, Nanjing, China; (d) University of Chinese Academy of Science (UCAS), Beijing, China
Institute of Physics, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, UK
Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
(a) Dipartimento di Fisica, INFN Bologna and Universita’ di Bologna, Bologna, Italy; (b) INFN Sezione di Bologna, Bologna, Italy
Physikalisches Institut, Universität Bonn, Bonn, Germany
Department of Physics, Boston University, Boston, MA, USA
Department of Physics, Brandeis University, Waltham, MA, USA
(a) Transilvania University of Brasov, Brasov, Romania; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania; (d) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania; (e) University Politehnica Bucharest, Bucharest, Romania; (f) West University in Timisoara, Timisoara, Romania
(a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Physics Department, Brookhaven National Laboratory, Upton, NY, USA
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
California State University, Long Beach, CA, USA
Cavendish Laboratory, University of Cambridge, Cambridge, UK
(a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Carleton University, Ottawa, ON, Canada
(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b) Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e) Faculté des sciences, Université Mohammed V, Rabat, Morocco
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington, NY, USA
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
(a) Dipartimento di Fisica, Università della Calabria, Rende, Italy; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy
Physics Department, Southern Methodist University, Dallas, TX, USA
Physics Department, University of Texas at Dallas, Richardson, TX, USA
National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
Department of Physics, Stockholm University, Stockholm, Sweden; (b) Oskar Klein Centre, Stockholm, Sweden
Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, NC, USA
SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
INFN e Laboratori Nazionali di Frascati, Frascati, Italy
Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
(a) Dipartimento di Fisica, Università di Genova, Genoa, Italy; (b) INFN Sezione di Genova, Genoa, Italy
II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
INFN Sezione di Roma, Rome, Italy; (b) Dipartimento di Fisica, Sapienza Università di Roma Tor Vergata, Rome, Italy
(a) INFN Sezione di Roma Tor Vergata, Rome, Italy; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
(a) INFN Sezione di Roma, Rome, Italy; (b) Dipartimento di Fisica, Università di Roma Tre, Rome, Italy
(a) INFN-TIFPA, Povo, Italy; (b) Università degli Studi di Trento, Trento, Italy
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City, IA, USA
Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
Joint Institute for Nuclear Research, Dubna, Russia
(a) Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil; (b) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (c) Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil; (d) Instituto de Física, Universidade de São Paulo, Sao Paulo, Brazil
am Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
an Also at Louisiana Tech University, Ruston, LA, USA
ao Also at LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France
ap Also at Manhattan College, New York, NY, USA
aq Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
ar Also at National Research Nuclear University MEPhI, Moscow, Russia
as Also at Physics Department, An-Najah National University, Nablus, Palestine
at Also at Physics Dept, University of South Africa, Pretoria, South Africa
au Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
av Also at School of Physics, Sun Yat-sen University, Guangzhou, China
aw Also at The City College of New York, New York, NY, USA
ax Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China
ay Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
az Also at TRIUMF, Vancouver, BC, Canada
aaa Also at Universita di Napoli Parthenope, Naples, Italy
*Deceased