Serum cadmium is associated with hepatic steatosis and fibrosis

Korean national health and nutrition examination survey data IV–VII

Seogoo Han, MDa, Gi-Ho Sung, PhDb,c, Sangheun Lee, MD, PhDb,a,d,*, Ki Jun Han, MD, PhDb,a,d, Hyun-Jeong Han, MDb

Abstract

Although cadmium (Cd) is correlated with elevated levels of hepatic amino transferases, its influence on the degree of liver steatosis and fibrosis are unknown yet. We aimed to investigate the associations between the serum level of Cd and degree of liver steatosis/fibrosis.

Clinical data were obtained from Korean National Health and Nutrition Examination Surveys IV–VII. Alanine aminotransferase (ALT) elevation was defined as ≥ 33 IU/L for men and ≥ 25 IU/L for women. Significant steatosis was defined as a hepatic steatosis index ≥ 36, while significant fibrosis was defined as a fibrosis index (FIB-4) ≥ 2.67 and as an aspartate aminotransferase and platelet ratio index ≥ 0.7. Adjusted odds ratios and 95% confidence intervals were calculated after adjustment.

The levels of serum Cd were assessable in 15,783 subjects. The serum cadmium concentrations were significantly associated with ALT elevation, significant liver steatosis and fibrosis. Multivariate logistic regression analysis demonstrated serum Cd level in the forth quartile had a positive correlation with ALT elevation, hepatic steatosis index ≥ 36, FIB-4 ≥ 2.67 and aspartate aminotransferase-to-platelet ratio ≥ 0.7 using the first quartile of serum Cd level as the reference, (adjusted odds ratios 1.90, 1.26, 1.73, and 2.53, respectively; P values < .001).

The serum level of Cd was associated with liver steatosis and fibrosis. The evaluation of serum Cd may help for assessing an unexplained liver steatosis and fibrosis, and further prospective studies are needed to confirm our findings.

Abbreviations: ALT = alanine aminotransferase, AORs = adjusted odds ratios, APRI = AST-to-platelet ratio, AST = aspartate aminotransferase, BMI = body mass index, Cd = cadmium, CIs = confidence intervals, DM = diabetes mellitus, HSI = hepatic steatosis index, HT = hypertension, KNHANES = Korea National Health and Nutrition Examination Surveys.

Keywords: cadmium, cirrhosis, hepatic fibrosis, hepatic steatosis
1. Introduction

Hepatic steatosis is a condition where excess fat builds up in the liver while hepatic fibrosis is the excessive accumulation of extracellular matrix proteins including fibrillar collagens. They occur in most types of chronic liver diseases. The onset of liver steatosis and fibrosis is usually insidious, and most of the related morbidity and mortality occur after the development of cirrhosis.

The main causes to liver fibrosis and cirrhosis are chronic viral diseases, alcohol abuse, fatty liver, and medications. Wilson disease, autoimmune hepatitis, and primary biliary cirrhosis are not common diseases, alcohol abuse, fatty liver, and medications. Wilson disease, autoimmune hepatitis, and primary biliary cirrhosis are not common but can cause liver fibrosis and cirrhosis. Several drugs (e.g., amiodarone, tamoxifen, antiretroviral nucleoside analogues) and environmental factors (e.g., industrial solvents) may be responsible for hepatic steatosis and fibrosis in chronic liver disease.

Cadmium (Cd) is a well-known persistent environmental pollutant. Cd exposure in the population was associated with osteoporosis, renal dysfunction, diabetes, cancer, blood pressure and reproduction. Cd is also deposited in the liver for a long time, resulting in liver injury. The studies in animal models have reported that exposure to Cd can cause acute and chronic hepatitis. Chronic Cd exposure can lead oxidative stress by an imbalance in the cellular redox status. Moreover, by depleting glutathione and other sulfhydryl groups, it aggravates the oxidative stress and cellular damage resulting in apoptosis. After acute Cd exposure, the damaged liver is often infiltrated by polymorphonuclear neutrophils and Kupffer cells, which contribute to hepatotoxicity by releasing inflammatory mediators. These initiate a cascade of cellular and humoral responses leading to inflammation and subsequently enhance promoting necrosis.

There is a study in human that support this point. Kang et al reported the possibility of liver injury by Cd. In that study, the concentration of Cd in the serum was correlated with the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Even though the presence of advanced liver steatosis or fibrosis is the stronger determinant of liver-related mortality than simply elevated levels of liver enzymes, no one has studied that the association between serum Cd and hepatic steatosis/fibrosis. Therefore, here we aimed to investigate the possible link of serum Cd level with hepatic steatosis and fibrosis in the general population by using the database from the Korea National Health and Nutrition Examination Survey (KNHANES), a nationwide cross-sectional cohort with a nationally representative sample of the Korean population conducted annually by the Korea Centre for Disease Control and Prevention to regularly assess the health and nutritional status of general civilians.

2. Methods

2.1. Subjects eligibility

KNHANES is a nationwide cross-sectional investigation into the health behavior of citizens, prevalence rates of chronic diseases, food intake, and nutrition consumption status of a representative population in Korea. The survey was conducted by the Korea Centers for Disease Control and Prevention. This study was based on data acquired from the KNHANES IV–VII (2008–2013 and 2016–2017).

The study covered here included 18,859 people surveyed for the serum level of Cd among the subjects (n=70,106) who undertook the 2008–2017 KNHANES. In all, 15,783 subjects were finally analyzed whose AST, ALT, platelet, and BMI data were available for noninvasive predictive models of hepatic steatosis and fibrosis. Subjects younger than 20 years of age were excluded from the analysis. Those with a positive hepatitis B surface antigen or anti hepatitis C virus antibody were excluded (Fig. 1). This study was approved by the institutional Review Board of Catholic Kwandong University, International St. Mary’s Hospital (approval no. IS18EISI0050).

2.2. Measurements

In the KNHANES for these years, subjects were selected randomly for measurement of serum Cd level by gender and age. Serum Cd level were measured by atomic absorption spectrophotometry using a PerkinElmer AAnalyst 600 (PerkinElmer, Turku, Finland). Diabetes Mellitus (DM) was defined as a fasting blood glucose level ≥126 mg/dL, or when this disease had been diagnosed by a physician and the subject had been prescribed a hypoglycemic agent. Hypertension (HT) was defined as having a systolic blood pressure >140 mm Hg or a diastolic blood pressure >90 mm Hg, or when the subject was taking an antihypertensive drug. Smoking status was categorized by self-reporting as never, ex-, or current smoker. The significant alcohol consumption was defined as >210 in g ethanol/wk for men and >140 in g ethanol/wk for women.

2.3. Definition of liver steatosis and fibrosis

FIB-4 and the AST-to-platelet ratio (APRI) were selected to assess the severity of liver fibrosis. The FIB-4 and APRI indexes are the most commonly used formulae for predicting liver fibrosis as a combination of items capable of acquiring information from...
blood tests. The severity of fatty liver was expressed by hepatic steatosis index (HSI). FIB-4 was calculated as age × AST (U/L)/platelet count (× 10^9/L) × √ALT (U/L).

APRI was calculated as AST (U/L)/(upper limit of normal AST (U/L))/platelet count × 10^9/L) × 100. HSI was calculated as 8 × AST/ALT + BMI + (2 for women) + (2 if diabetes mellitus was present). ALT elevation was defined as ≥ 33 IU/L for men and ≥ 25 IU/L for women; significant steatosis as HSI ≥ 36, and significant fibrosis as FIB-4 ≥ 2.67 and APRI ≥ 0.7.

2.4. Statistical analysis

The characteristics of the study subjects were analyzed using Student t-tests for continuous variables and χ² tests for categorical variables. Continuous and categorical variables were expressed as the mean ± standard deviation (SD) and n (%), respectively. The association between serum Cd and liver steatosis and fibrosis prediction scores (HSI, APRI, and FIB-4) was evaluated using a χ² test after transformation of these variables into quartiles. Multivariable logistic regression analysis was applied to determine the independent association between serum Cd and liver steatosis/fibrosis. Adjusted odds ratios (AORs) and confidence intervals using generalized estimating equations were calculated after adjusting for age, gender, residence area, economic status, BMI, HT, DM, smoking, and Significant alcohol consumption. To control for the effects of obesity or metabolic underlying disease, the study population was stratified into two groups depending on the presence of obesity (BMI ≥ 25 kg/m²), DM or HT. A P value < .05 was considered to be statistically significant. The analyses have been performed using the R statistics program (version 4.0.3).

3. Results

3.1. Subject characteristics

We investigated 15,783 subjects who were checked for serum Cd level using data derived from KNHANES IV–VII (2008–2013 and 2016–2017). The mean age of this study population was 46 years, and there were 8,210 (52.0%) women. The geometrical mean of the serum cadmium level was 1.105 ± 0.6 (μg/dL). Of all subjects, 12,799 (81.1%) were living in urban areas, 4,290 (27.6%) had HT and 1,480 (9.7%) had DM. Other baseline characteristics are listed in Table 1.

The prevalence of unexplained ALT elevation (≥ 33 IU/L for men and ≥ 25 IU/L for women) was 2625 (16.6%), and significant steatosis (HSI ≥ 36) was 3630 (22.9%). The prevalence of significant liver fibrosis with FIB-4 ≥ 2.67 and APRI ≥ 0.7 were 265 (1.6%) and 201 (1.2%), respectively.

The serum Cd were divided into quartiles (Q1, Q2, Q3, Q4) for analysis. For Cd (μg/dL), Q1 was < 0.651, Q2 was 0.651–0.973, Q3 0.973–1.413 and Q4 was ≥ 1.413.

3.2. Independent association between serum Cd and ALT elevation by quartiles stratification

Table 2 summarizes the results of the linear regression model exploring the association of blood Cd quartiles with ALT elevation. Using the first quartile of serum Cd as the reference, the AORs (confidence intervals) of second, third, and fourth quartiles were 1.31 (1.14–1.49), 1.45 (1.26–1.66) and 1.90 (1.65–2.19), respectively (P < .001). The mean serum level of Cd in subjects with ALT elevation was higher than in those with normal ALT [1.21 (±0.7) versus 1.09 (±0.6), respectively; P < .001].

3.3. Independent association between serum Cd and steatosis burden (HSI≥36) by quartiles stratification

The prevalence of HSI quartiles gradually increased with increasing Cd quartiles (P for trend < .001; Fig. 2A). Using the first quartile of blood Cd level as the reference, blood Cd level in the second, third and fourth quartiles had a positive correlation with a high HSI (≥ 36) [AOR (CI); 1.13 (1.01–1.27), 1.17 (1.03–1.32), 1.26 (1.11–1.43); Table 2]. The mean serum level of Cd in subjects with a high HSI (≥ 36) was higher than in those with a low HSI (< 36) [1.14 (±0.6) versus 1.10 (±0.6), respectively; P = .002].

Table 1

Demographic and clinical characteristics (total n=15,783).

Variables	Values
Age (yr)	46 ± 15
Gender (female)	8210 (52.0%)
Region	
Urban	12,799 (81.1%)
Rural	2984 (18.9%)
Economic status	
Low	2535 (16.0%)
Mid Low	4044 (25.6%)
Mid High	4419 (28.0%)
High	4635 (29.4%)
Missing	150 (1.0%)
Education	
Elementary school	2818 (17.9%)
Middle school	1595 (10.1%)
High school	5532 (35.1%)
College	5366 (34.0%)
Missing	472 (2.9%)
Hypertension	4200 (27.6%)
Diabetes	1490 (9.7%)
Smoking	
Current	8699 (55.1%)
Past	2422 (15.3%)
Never	4368 (27.7%)
Missing	294 (1.9%)
Significant alcohol consumption	866 (5.6%)
Fasting glucose (mg/dl)	98.5 ± 22.9
Total cholesterol (mg/dl)	189.7 ± 36.9
HDL cholesterol (mg/dl)	49.9 ± 12.1
LDL cholesterol (mg/dl)	114.1 ± 33.0
Triglycerides (mg/dl)	137.7 ± 116.1
Cadmium (μg/dL)	1.105 ± 0.6
AST (IU/L)	22.2 ± 14.3
ALT (IU/L)	21.9 ± 16.7
Blood Urea Nitrogen (mg/dl)	14.1 ± 4.3
Creatinine (mg/dl)	0.8 ± 0.3

ALT = alanine aminotransferase, AST = aspartate aminotransferase, HDL = high-density lipoprotein, LDL = low-density lipoprotein, sd = standard deviation.

Hypertension was defined as having a systolic blood pressure > 140 mm Hg or a diastolic blood pressure > 90 mm Hg, or when the subject was taking an antihypertensive drug. Diabetes was defined as a fasting blood glucose level ≥ 126 mg/dL, or when this disease had been diagnosed by a physician and the subject had been prescribed a hypoglycemic agent.

Significant alcohol consumption was defined as >210 g ethanol/week for men and 140 g ethanol/week for women.
3.4. Independent association between serum Cd and significant liver fibrosis (FIB-4 ≥ 2.67 and APRI ≥ 0.7) by quartiles stratification

The prevalence of FIB-4 and APRI quartiles gradually and markedly increased with increasing Cd quartiles (P for trend <.001) (Fig. 2B and 2C). The Cd levels showed a strong positive relationship with FIB-4 [AOR was 1.73 (1.09–2.87) of the forth quartile compared with the first quartile; Table 2]. We observed similar results when we compared the blood Cd levels with a high APRI (≥ 0.7) [AOR was 2.53 (1.61–4.07) of the forth quartile compared with the first quartile; P < .001; Table 2]. Subjects with a high FIB-4 (≥2.67) showed a significant elevation in mean serum Cd levels compared with those with a low FIB-4 (<2.67) [1.42 (±0.6) versus 1.10 (±0.7) μg/dL, respectively; P < .001]. Subjects with a high APRI (≥ 0.7) also showed significant elevations in mean serum Cd levels compared with those with a low APRI (< 0.7) [1.39 (±0.8) versus 1.10 (±0.6) μg/dL, respectively; P < .001].

3.5. Degree of liver fibrosis and serum Cd stratified by DM, HT and BMI

We further investigated the association between serum Cd and the degree of liver steatosis and fibrosis by stratifying the study population using DM, HT, and BMI. When we calculated significant liver fibrosis using APRI and FIB-4, we found a significant higher level of serum Cd in subjects with liver steatosis and fibrosis than subjects without. The subjects with high FIB-4 (FIB-4 ≥2.67) had a significantly higher serum Cd than subjects with low FIB-4 (FIB-4 <2.67) regardless of DM [mean serum Cd1.47 ± 0.6 (μg/dL) vs 1.23 ± 0.7 (μg/dL) in subjects with DM and 1.41 ± 0.7 (μg/dL) vs 1.09 ± 0.6 (μg/dL) in subjects without DM (all Ps < .001)]. When we used APRI to assess liver fibrosis, we obtained comparable results (Table 3). Similar results were obtained when the subjects were divided by hypertension and BMI, showing a higher serum cadmium level in the subjects with fibrosis or steatosis than in the subjects without (Tables 4 and 5).

4. Discussion

Chronic hepatitis can progress to liver fibrosis and cirrhosis.[23–25] To prevent this progression, it is important to identify the cause of the disease and to correct the causal factors.[26–28] Although more studies are still needed, anti-fibrotic drug such as lactoferrin was suggested for the treatment of liver fibrosis.[29]

However, we sometimes have cases where it is difficult to determine the cause of cirrhosis even after excluding viral hepatitis, nonalcoholic fatty liver disease, alcoholic hepatitis, and genetic liver disorders.[30] Therefore, some challenging trials are required to find new potential causes.

Most of the heavy metals emit into the atmosphere and are ultimately absorbed into the human body through the
Table 3

The mean differences of serum Cd (µg/dL) according to alanine amionotransferase elevation, Hepatic Steatosis Index, Aspartate aminotransferase to platelet ratio index and FIB-4 stratified by diabetes mellitus.

	Without DM	With DM				
	normal ALT, n=12,102	elevated ALT, n=2,201	P value	normal ALT, n=1,056	elevated ALT, n=424	P value
	1.07±0.6	1.19±0.7	<.001	1.22±0.6	1.29±0.8	.356
HSI (<36), n=11,464	HSI (≥36), n=2,839	P value	HSI (<36), n=689	HSI (≥36), n=791	P value	
	1.09±0.6	1.12±0.6	.101	1.25±0.6	1.22±0.7	.09
APRI (≤0.7), n=14,144	APRI (≥0.7), n=159	P value	APRI (≤0.7), n=1,438	APRI (≥0.7), n=42	P value	
	1.09±0.6	1.37±0.9	<.001	1.23±0.7	1.44±0.7	.001
FIB-4 (<2.67), n=14,102	FIB-4 (≥2.67), n=201	P value	FIB-4 (<2.67), n=1,416	FIB-4 (≥2.67), n=64	P value	
	1.09±0.6	1.41±0.7	<.001	1.23±0.7	1.47±0.6	<.001

ALT = alanine aminotransferase, APRI = aspartate aminotransferase to platelet ratio index, DM = diabetes mellitus, HSI = hepatic steatosis index.

Table 4

The mean differences according to alanine aminotransferase elevation, hepatic steatosis index, aspartate aminotransferase to platelet ratio and FIB-4 stratified by hypertension.

	Without HT	With HT				
	normal ALT, n=8,814	elevated ALT, n=13,15	P value	normal ALT, n=4,344	elevated ALT, n=1,310	P value
	1.00±0.5	1.11±0.6	<.001	1.25±0.6	1.30±0.7	<.001
HSI (<36), n=8,836	HSI (≥36), n=1,765	P value	HSI (<36), n=3,789	HSI (≥36), n=1,865	P value	
	1.01±0.5	1.05±0.6	.109	1.3±0.7	1.2±0.7	.003
APRI (≤0.7), n=10,052	APRI (≥0.7), n=77	P value	APRI (≤0.7), n=5,530	APRI (≥0.7), n=124	P value	
	1.01±0.6	1.22±0.7	.003	1.26±0.7	1.49±0.8	<.001
FIB-4 (<2.67), n=10,030	FIB-4 (≥2.67), n=99	P value	FIB-4 (<2.67), n=5,488	FIB-4 (≥2.67), n=166	P value	
	1.01±0.6	1.32±0.7	<.001	1.26±0.7	1.49±0.8	<.001

ALT = alanine aminotransferase, APRI = aspartate aminotransferase to platelet ratio index, HSI = hepatic steatosis index, HT = hypertension.

Table 5

The mean differences according to alanine aminotransferase elevation, Hepatic steatosis index, Aspartate aminotransferase to platelet ratio index and FIB-4 stratified by body mass index.

	With low BMI	With high BMI				
	normal ALT, n=9,482	elevated ALT, n=1,110	P value	normal ALT, n=3,676	elevated ALT, n=1,515	P value
	1.07±0.6	1.24±0.7	<.001	1.12±0.6	1.18±0.7	.002
HSI (<36), n=10,079	HSI (≥36), n=513	P value	HSI (<36), n=2,074	HSI (≥36), n=3,117	P value	
	1.09±0.6	1.12±0.7	.739	1.09±0.6	1.12±0.7	.803
APRI (≤0.7), n=10,470	APRI (≥0.7), n=122	P value	APRI (≤0.7), n=5,112	APRI (≥0.7), n=79	P value	
	1.09±0.6	1.52±0.9	<.001	1.13±0.6	1.20±0.6	.375
FIB-4 (<2.67), n=10,393	FIB-4 (≥2.67), n=199	P value	FIB-4 (<2.67), n=5,125	FIB-4 (≥2.67), n=66	P value	
	1.08±0.6	1.47±0.7	<.001	1.13±0.7	1.28±0.6	.002

ALT = alanine aminotransferase, APRI = aspartate aminotransferase to platelet ratio index, BMI = body mass index, HSI = hepatic steatosis index.
significant correlations with steatosis (AOR 1.26 for \(HSI \geq 36 \)) and fibrosis (AOR 1.73 for \(\text{FIB-4} \geq 2.67 \), and AOR 2.53 for \(\text{APRI} \geq 0.7 \)) in our study using representative KNHANES data. Based on our results and the previous study for the association an increase in urinary Cd and an increase in liver – related mortality, serum blood Cd level might also lead to an increase in the incidences of liver steatosis and fibrosis, which can affect mortality adversely. DM, HT and BMI are well known predictors for steatosis and fibrosis.\(^{42–44}\) Interestingly, serum Cd levels were higher in subjects with significant steatosis and fibrosis than without significant steatosis and fibrosis regardless with obesity, DM or HT.

Based on this study, we think evaluating serum Cd concentration may be helpful in clinical practice. The United States Environmental Protection Agency suggested 1.7 \(\mu \text{g/dl} \) as a reference value for the serum Cd concentration in the general population.\(^{45}\) In our study, more than 1.413 \(\mu \text{g/dl} \) of the serum Cd concentration is also strongly associated with ALT elevation, hepatic steatosis and hepatic fibrosis. To evaluate chronic exposure to cadmium may be considered when the cause of fatty liver or liver fibrosis is not clear. In addition, chronic exposure to cadmium may be expected to affect the prognosis of patients with liver disease as well as diabetes, hypertension, and obesity.

Our study had some drawbacks. First, the gold standard for diagnosing liver steatosis and fibrosis is a liver biopsy. However, the information obtained from liver biopsy was not included in the KNHANES data, so indirect and noninvasive tests for measuring liver fibrosis were used. HSI, FIB-4, and APRI are important noninvasive methods for assessing liver steatosis and fibrosis. They have been used in replace of liver biopsies in previous studies.\(^{46}\) Second, in light of the cross-sectional nature of this study, we cannot infer any cause–effect relationships between the serum Cd level and liver steatosis/fibrosis. However, a large sample size was established to minimize sampling errors.

In conclusion, elevated serum Cd level was associated with liver steatosis and fibrosis in this KNHANES-based study. Cd needs to be confirmed as a possible cause of unexplained liver steatosis and fibrosis, and further prospective studies are needed to confirm our findings.

Author contributions

Conceptualization: Sangheun Lee.

Data curation: Sangheun Lee.

Formal analysis: Sangheun Lee.

Funding acquisition: Sangheun Lee.

Investigation: Gi-Ho Sung, Sangheun Lee.

Methodology: Seogoo Han, Gi-Ho Sung, Sangheun Lee, Ki Jun Han.

Project administration: Seogoo Han, Sangheun Lee.

Resources: Sangheun Lee.

Software: Gi-Ho Sung, Sangheun Lee.

Supervision: Sangheun Lee.

Validation: Seogoo Han.

Writing – original draft: Seogoo Han, Sangheun Lee, Ki Jun Han.

Writing – review & editing: Gi-Ho Sung, Sangheun Lee, Hyun-Jeong Han.

References

1. Zafrazi ES. Non-alcoholic fatty liver disease: an emerging pathological spectrum. Virchows Arch 2004;444:3–12.

2. Ekstedt M, Hagstrom H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015;61:1547–54.

3. Heidelbaugh JJ, Bruderly M. Cirrhosis and chronic liver failure: part I. Diagnosis and evaluation. Am Fam Physician 2006;74:756–62.

4. Sanyal AJ, American Gastroenterological A. AGA technical review on nonalcoholic fatty liver disease: Gastroenterology 2002;123:1705–25.

5. Cotrim HP, Andrade ZA, Parana R, et al. Nonalcoholic steatohepatitis: a toxic liver disease in industrial workers. Liver 1999;19:299–304.

6. Jarup L, Berglund M, Elinder CG, et al. Health effects of cadmium exposure – a review of the literature and a risk estimate. Scand J Work Environ Health 1998;24 Suppl 1:1–51.

7. Nawrot TS, Staessen JA, Roels HA, et al. Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 2010;23:769–82.

8. Satarug S, Moore MR. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 2004;112:1099–103.

9. Verougraetve V, Lison D, Hotz P. Cadmium, lung and prostate cancer: a systematic review of recent epidemiological data. J Toxicol Environ Health B Crit Rev 2003;6:227–55.

10. Ba Q, Li M, Chen P, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health Perspect 2017;125:437–46.

11. Jia X, Zhang H, Liu X. Low levels of cadmium exposure induce DNA damage and oxidative stress in the liver of Ouyang colored common carp Cyprinus carpio var. color. Fish Physiol Biochem 2011;37:97–103.

12. Zhang Y, Li JH, Liu XR, et al. Spectroscopic and microscopic studies on the mechanisms of mitochondrial toxicity induced by different concentrations of cadmium. J Memb Biol 2011;241:39–49.

13. Lastfer M, Vadrot N, Aoudjehane L, et al. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes. Cell Biol Toxicol 2008;24:55–62.

14. Yamano T, DeCicco LA, Rikans IE. Attenuation of cadmium-induced liver injury in senescent male fisher 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol 2000;162:68–75.

15. Hornguchi H, Harada A, Oguma E, et al. Cadmium-induced acute hepatic injury is exacerbated in human interleukin-8 transgenic mice. Toxicol Appl Pharmacol 2000;163:231–9.

16. Kang MY, Cho SH, Lim YH, et al. Effects of environmental cadmium exposure on liver function in adult. Occup Environ Med 2013;70:268–73.

17. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018;67:328–57.

18. Wong VW, Vergioli J, Wong GL, et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010;51:454–62.

19. Lee JH, Kim D, Kim HJ, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis 2010;42:503–8.

20. Sterling RK, Lissen E, Clumneck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006;43:1317–25.

21. Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003;38:518–26.

22. Lin ZH, Xin YN, Dong QJ, et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology 2011;53:726–36.

23. Fattovich G. Natural history and prognosis of hepatitis B. Semi Liver Dis 2003;23:47–58.

24. Tong MJ, el-Farra NS, Reikes AR, et al. Clinical outcomes after transfusion-associated hepatitis C. N Engl J Med 1995;332:1463–6.

25. Schwartz JM, Reinus JF. Prevalence and natural history of alcoholic liver disease. Hepatology 2010;51:454–62.

26. Marcellin P, Gane E, Buit M, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013;381:468–75.

27. Soliman H, Zida D, Hamisa M, et al. The effect of HCV eradication after direct acting antiviral agents on hepatic steatosis: a prospective observational study. Endocr Metab Immune Disord Drug Targets 2021.

28. Soliman H, Zida D, Salama M, et al. Predictors for fibrosis regression in chronic HCV patients after the treatment with DAAs: results of a
real-world cohort study. Endocr Metab Immune Disord Drug Targets 2020;20:104–11.

[29] Rizk FH, Sarhan NI, Soliman NA, et al. Heat shock protein 47 as an indispensable participant in liver fibrosis: possible protective effect of lactoferrin. IUBMB Life 2018;70:795–805.

[30] Setiawan VW, Stram DO, Porcel J, et al. Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: the multiethnic cohort. Hepatology 2016;64:1969–77.

[31] Yang WY, Zhang ZY, Thijs L, et al. Left ventricular structure and function in relation to environmental exposure to lead and cadmium. J Am Heart Assoc 2017;6.

[32] Zeng X, Xu X, Boezen HM, et al. Decreased lung function with mediation of blood parameters linked to e-waste lead and cadmium exposure in preschool children. Environ Pollut 2017;230:838–48.

[33] Gustin K, Tofail F, Vahter M, et al. Cadmium exposure and cognitive abilities and behavior at 10 years of age: a prospective cohort study. Environ Int 2018;113:259–68.

[34] Seo MS, Lee HR, Shim JY, et al. Relationship between blood mercury levels and subclinical changes in liver enzymes among South Korean general adults: analysis of 2008-2012 Korean national health and nutrition examination survey data. Environ Res 2014;130:14–9.

[35] Hamed AE, Elsahar M, Elwan NM, et al. Managing diabetes and liver disease association: Practice guidelines from the Egyptian Association for the Study of Liver and Gastrointestinal Disease (EASLGD). Arab J Gastroenterol 2019;20:61–3.

[36] Hays SM, Nordberg M, Yager JW, et al. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 2010;59:1265–9.