Table Of Contents

General Methods ...3

Synthetic Procedures ...3

Synthesis of ZnTMP₂..3

Synthesis of [{Ph₂Si(NAr*)₂Zn(TMP)}⁻{K(THF)₆}⁺] (1)...4

Synthesis of [{Ph₂Si(NAr*)₂Zn(CH₂SiMe₃)⁻{K(THF)₄}}⁻] (2) ...4

Synthesis of [{Ph₂Si(NAr*)₂Zn(TMP)}⁻{Na(THF)₆}]...5

Synthesis of [{Ph₂Si(NAr*)₂Zn(C₆H₂F₃)}⁻{K(THF)₆}] (3a): ...5

Synthesis of [{Ph₂Si(NAr*)₂Zn(C₆H₂F₃)}⁻{Na(THF)₅}]: ..6

Synthesis of [{Ph₂Si(NAr*)₂Zn(C₆H₂Cl₃)}⁻{K(THF)₆}] (3b): ..6

Synthesis of [{Ph₂Si(NAr*)₂Zn(C₆H₂F₂)}⁻{K(THF)₆}] (3c): ...7

Synthesis of [{Ph₂Si(NAr*)₂Zn(C₆H₂FNO₂)}⁻{K(THF)₆}] (3d): ...7

Synthesis of [{Ph₂Si(NAr*)₂Zn(C₆H₂F₃NO₂)}⁻{K(THF)₃}] (3e): ..8

Synthesis of [{Ph₂Si(NAr*)₂Zn(C₁₁H₆F₂N)}⁻{K(THF)₆}] (3f): ..8

Synthesis of [{Ph₂Si(NAr*)₂Zn(C₆F₅)}⁻{K(THF)₆}] (3g): ...9

Synthesis of [(THF)₆K₂Zn₂{Ph₂Si(NAr*)₂}₂(C₆F₄)] (3j): ...10

Synthesis of [{Ph₂Si(NHAr*)(NAr*)KZn(C₆F₅)}]∞ (4): ..10

Studies on C-C bond forming reactions using 3a ...11

General Experimental Procedure for the ¹H NMR Monitoring of the Zn-H Exchange Reactions........12

NMR monitoring of the reaction of 1 with 1,3,5 trifluorobenzene ...12

Reaction of 1 with 1,3,5 trifluorobenzene (2a) in presence of [2.2.2]cryptand14

Reaction of [(PMDETA)KZn(TMP)Et₂] with 2,4-difluoronitrobenzene ..14

Synthesis of [{Ph₂Si(NAr*)₂Zn(C₆H₂FN)}⁻{K(THF)₆}] (3g)..14
General Methods

All the reactions and manipulation were performed under protective Argon atmosphere; using the standard Schlenk technique or Glovebox MBraun equipped with a gas purification and recirculation unit. Hexane was dried over alumina column of Solvent Purification System (a MBraun MBSPS 5) and stored over activated 4Å molecular sieves collection and under argon atmosphere. Tetrahydrofuran were dried over sodium and benzophenone ketyl and purified by distillation under argon atmosphere, after the collection it was stored over activated 4 Å molecular sieves and argon atmosphere. Ph₂Si(NHAr*)₂ [[Ph₂Si(NHAr*)(NAr*)K]∞ were prepared as reported in literature.¹,²

NMR spectra were performed in J. Young’s NMR tube, prior oven dried and flushed with argon. NMR spectra were recorded using a Bruker AV 400 spectrometer operating at 400.13 MHz for ¹H and ¹⁹F, 100.62 MHz for ¹³C{¹H} or a Bruker AV 400 spectrometer operating at 300 MHz for ¹H and ¹⁹F, 75 MHz for ¹³C{¹H}. ¹H and ¹³C{¹H} NMR spectra were calibrated against the appropriate solvent signal. All the deuterated solvents for NMR were dried and distilled over NaK₂.₈ and stored over activated 4 Å molecular sieves and argon atmosphere.

Synthetic Procedures

Synthesis of ZnTMP₂

2.72 mL of 2,2,6,6-tetramethylpiperidine (16 mmol) were solubilized in 10 mL of THF and then 10 mL of nBuLi solution (1.6 M in hexane) were added drop by drop affording a yellow solution. 1.09 g of ZnCl₂ (8 mmol) were added, instantaneously a white precipitate was formed. The mixture was allowed to stir at room temperature for 1h. All the volatiles were removed under reduced pressure affording a yellow waxy solid. 30 mL of Hexane were added affording a white suspension. The suspension was filtered through celite and the mother liquor was evaporated furnishing Zn(TMP)₂ as white solid (2700 mg 98%). The solid can be further purified via sublimation as reported in the literature.³

¹H-NMR (300.1 MHz, D₈-THF, 298 K) δ(ppm): 1.68 (m, 4H, γ-CH₂), 1.32 (m, 8H, β-CH₂), 1.22 (s, 24H, α-CH₃)

¹³C{¹H}-NMR (75.5 MHz, D₈-THF, 298 K) δ(ppm): 53.3 (C₆₂₆), 39.8 (β-CH₂), 36.8 (α-CH₃) 19.7 (γ-CH₂)

Synthesis of [{Ph₂Si(NHAr*)₂Zn(TMP)}⁻{K(THF)₆}⁺⁺ (1)

572 mg of freshly prepared [{Ph₂Si(NHAr*)(NAr*)K]∞ (I)² (1 mmol) and 346 mg of Zn(TMP)₂ (1 mmol) were solubilized in 10 mL of THF and the solution was allowed to stir at reflux overnight. Volatiles were removed under
vacuum, the white residue was dissolved in 5 mL of hexane and 2 mL of THF, affording a pale-yellow solution. Storage in freezer (-33°C) for two days furnished colourless crystal of 1 (641.6 mg 67%).

\[^1\text{H-NMR} \quad (\text{D}_8\text{-THF}; 298K; 400 MHz) \delta (ppm): 7.28 [m, 4H, Ph], 6.93 [m, 4H, Ar*], 6.71 [m, 6H, Ph], 6.45 [t, 2H, Ar*], 4.14 [sept., 4H, CH\text{\textit{i}Pr}], 3.61 [m, 10H, O-CH\text{\textit{2}}\text{THF}], 1.77 [m, 10H, CH\text{\textit{2}} \text{THF}], 1.55 [m, 2H, \gamma-\text{CH}_2 \text{TMP}], 1.17 [m, 4H, \beta-\text{CH}_2 \text{TMP}], 0.97 [s, 12H, CH\text{\textit{3}}\text{TMP}] \]

\[^1\text{H NMR integration revealed that approximately four molecules of the solvating THF present in 1 were removed under vacuum when drying the crystals.} \]

\[^{13}\text{C}\{^1\text{H}\}-\text{NMR} \quad (\text{D}_8\text{-THF}; 298K, 100 MHz) \delta (ppm): 152.6, 148.2, 145.7 [\text{C quaternary Ar* and Ph}], 136.3, 126.5, 122.4, 117.5 [\text{CH, Ar* and Ph}], 68.4 [O-CH\text{\textit{2}} \text{THF}], 53.2 [\text{C quaternary TMP}], 42.0 [\beta-\text{CH}_2 \text{TMP}], 37.0 [\text{CH}_3 \text{TMP}], 28.2 [\text{CH \textit{i}Pr}], 26.5 [\text{CH}_3 \text{\textit{i}Pr}], 20.8 [\gamma-\text{CH}_2 \text{TMP}] \]

Elemental analysis: analytical calculated: C_{61}H_{94}KN_{3}O_{4}SiZn C 68.73, H 8.89, N 3.94. Found: C 68.51, H 8.72, N 3.93.

Synthesis of [{Ph\text{\textit{2}}Si(NAr*)\text{\textit{2}}Zn(CH\text{\textit{2}}\text{SiMe}_3)}\text{\textbar}{K(THF)_{\text{4}}}]^{-} (2)

126 mg of KCH\text{\textit{3}}\text{SiMe}_3 (1mmol), 346 mg of ZnTMP \text{\textit{2}} (1mmol) and 10 mL of hexane were added to a flushed Schlenk tube. The white suspension was left stirring for 2 hours until it becomes a fine suspension to which 1 mmol of Ph\text{\textit{2}}Si(NHAr*)\text{\textit{2}} (530 mg) and 1 mL of THF were added, the yellowish suspension was gently heated and allowed to stir overnight. Volatiles were removed under vacuum and to the white residue 7 mL of hexane and 0.7 mL of THF was added, affording a pale-yellow suspension. The mixture was heated under reflux and let slowly cool down at room temperature depositing a crop of colourless crystals of 2 after 24h at room temperature. (550 mg, yield 76%). The synthesis of this compound can be achieved using a different procedure reported in literature before.\[2\]

\[^1\text{H-NMR} \quad (D_6\text{-THF}; 298K; 600 MHz) \delta (ppm): 7.27 [m, 4H, Ph], 6.94 [m, 6H, Ph], 6.7 [d, 4H Ar*], 6.42 [t, 2H, Ar*], 4.15 [sept, 4H, CH\text{\textit{i}Pr}], 0.8 [d, 24H, CH\text{\textit{3}}\text{\textit{i}Pr}], -0.14 [s, 9H, CH\text{\textit{3}}\text{\textit{CH}_2} \text{SiMe}_3], -0.9 [s, 2H, CH\text{\textit{2}} \text{CH}_3 \text{SiMe}_3]. \]

\[^1\text{H NMR integration revealed that approximately three THF molecules in 2 were removed under vacuum when drying the crystals.} \]

\[^{13}\text{C}\{^1\text{H}\}-\text{NMR} \quad (D_6\text{-THF}; 298K; 150 MHz) \delta (ppm): 153.3, 148.2, 144.8 [\text{C quaternary Ar* and Ph}], 136.1, 126.66, 126.5 [\text{CH Ph}], 122.2, 117.0 [\text{CH of Ar*}], 28.3 [\text{CH \textit{i}Pr}], 25.0 [\text{CH}_3 \text{\textit{i}Pr}], 3.4 [\text{CH}_3, \text{CH}_2 \text{SiMe}_3], -6.1 [\text{CH}_2 \text{CH}_3 \text{SiMe}_3]. \]

Elemental analysis: analytical calculated: C_{44}H_{63}KN_{2}OSi_{2}Zn C 66.34, H 7.97, N 3.52. Found: C 66.27, H 7.42, N 3.64.

Synthesis of [{Ph\text{\textit{2}}Si(NAr*)\text{\textit{2}}Zn(TMP)}\text{\textbar}{\text{Na(THF)}}_{\text{6}}]^{-}

278 mg of freshly prepared [{Ph\text{\textit{2}}Si(NHAr*)(NAr*)Na}_2]^{\text{[1]} \text{]} (0.5 mmol) and 176 mg of Zn(TMP)_2 (0.5 mmol) were solubilized in 5 mL of THF and the
solution was allowed to stir at reflux overnight. Volatiles were removed under vacuum, the white residue was dissolved in 2.5 mL of hexane and 1 mL of THF, affording a pale-yellow solution. Storage in freezer (-33°C) for two days furnished colourless crystal of [{Ph$_2$Si(NAr*)$_2$Zn(TMP)}$^-$ {Na(THF)$_b^+$}] (541.5 mg 65%).

1H-NMR (D$_8$-THF; 298K; 400 MHz) δ(ppm): 7.29 [m, 4H, Ph], 6.93 [m, 4H, Ar*], 6.72 [m, 6H, Ph], 6.45 [t, 2H, Ar*], 4.14 [sept., 4H, CH$_3$Pr], 3.62 [m, 5H, O-CH$_2$THF], 1.78 [m, 5H, CH$_2$THF], 1.55[m, 2H, γ-CH$_2$TMP], 1.17 [m, 4H, β-CH$_2$TMP], 0.97 [s, 12H, CH$_3$TMP] 1H NMR integration revealed that approximately five THF molecules in this compound were removed under vacuum when drying the crystals.

13C{1H}-NMR (D$_8$-THF; 298K, 100 MHz) δ(ppm): 152.5, 148.2, 145.7 [C$_3$quaternary Ar* and Ph], 136.3, 126.6, 126.4,122.4, 117.4 [CH, Ar* and Ph], 68.4 [O-CH$_2$ of THF], 53.2 [C$_3$quaternary TMP], 42.0 [β-CH$_2$ of TMP], 37.0 [CH$_3$TMP], 28.2 [CH$_3$iPr], 26.5 [CH$_3$iPr], 20.8 [γ-CH$_2$TMP]

Elemental analysis: analytical calculated: C$_{61}$H$_{90}$NaN$_3$O$_4$SiZn C 70.05, H 8.67, N 4.02. Found: C 69.83, H 8.94, N 4.09

Synthesis of [{Ph$_2$Si(NAr*)$_2$Zn(C$_6$H$_2$F$_3$)}$^-$ {K(THF)$_b^+$}] ($3a$):

388 mg of 1 (0.5 mmol) was solubilized in 5 mL of THF, 0.05 mL of 1,3,5 trifluorobenzene (0.5 mmol) were added. The resulting yellow solution was allowed to stir at room temperature for 48 h. All the volatiles were removed under reduced pressure. The white solid was solubilized with 2.5 mL of hexane and 1.5 mL of THF. Overnight storage in freezer (-33°C) furnished colourless crystal of $3a$. (676.6 mg, 85%). The yield determined in NMR scale reaction using hexamethylbenzene as internal standard in 1H-NMR spectrum was 90%.

1H-NMR (D$_8$-THF; 298K; 400 MHz) δ(ppm): 7.33 [m, 4H, Ph], 6.97 [m, 6H, Ph], 6.72 [d, 4H, Ar*], 6.46 [t, 2H, Ar*], 6.33 [m, 2H, C$_6$H$_2$F$_3$] 4.19 [sept., 4H, CH$_3$Pr], 3.61 [m, 6H, O-CH$_2$THF], 1.77 [m, 6H, CH$_2$THF], 0.82 [d, 24H, CH$_3$iPr] 1H NMR integration revealed that approximately five THF molecules in $3a$ were removed under vacuum when drying the crystals.

13C{1H}-NMR (D$_8$-THF; 298K, 100 MHz) δ(ppm): 170.9, 168.8 [m, C$_3$-F C$_6$H$_2$F$_3$], 165.2 [Zn-C, C$_6$H$_2$F$_3$], 152.5, 147.2, 145.0 [C$_3$quaternary Ar*, C$_6$H$_2$F$_3$ and Ph], 136.1, 127.0, 126.6, 122.2, 117.7 [CH, Ar* and Ph], 98.36 [CH, C$_6$H$_2$F$_3$] 28.5 [CH$_3$iPr], 24.7 [CH$_3$iPr]

19F-NMR (D$_8$-THF; 298K; 400 MHz) δ(ppm): -83.45 [m, 2F], -116.0 [m, 1F]

Elemental analysis: analytical calculated: C$_{104}$H$_{127}$F$_8$K$_2$NaN$_3$O$_5$SiZn$_2$ C 70.05, H 6.77, N 2.96. Found: C 65.78, H 7.11, N 2.99

Synthesis of [{Ph$_2$Si(NAr*)$_2$Zn(C$_6$H$_2$F$_3$)}$^-$ {Na(THF)$_5$}]$^+$:

523 mg of [{Ph$_2$Si(NAr*)$_2$Zn(TMP)}$^-$ {Na(THF)$_6^-$}] (0.94 mmol) was solubilized in 5 mL of THF, 0.097 mL of 1,3,5 trifluorobenzene (0.94
mmol) were added. The resulting yellow solution was allowed to stir at reflux for 3 h. All the volatiles were
removed under reduced pressure. The white solid was solubilized with 5 mL of hexane and 3 mL of THF, that
was gently heated until a yellow solution was obtained. Colourless crystals of
\[\{\text{Ph}_3\text{Si(NAr*)}_2\text{Zn(C}_6\text{H}_2\text{F}_3)\}^-\{\text{Na(THF)}_3\}^+\]
were obtained after slow cooling of this solution (474 mg, 53%).

1H-NMR analysis of the filtrate of the reaction showed that this complex is the only organometallic species
present in

1H-NMR (D$_8$-THF; 298K; 400 MHz) \(\delta\)(ppm): 7.33 [m, 4H, Ph], 6.97 [m, 6H, Ph], 6.71 [d, 4H, Ar*], 6.45 [t,
2H, Ar* J=7.5 Hz], 6.32 [m, 2H, C$_6$H$_2$F$_3$], 4.19 [sept., 4H, CH$_3$ Pr], 3.62 [m, 10H, O-CH$_2$ THF], 1.77 [m, 10H,
CH$_2$ THF], 0.82 [d, 24H, CH$_3$ Pr] 1H NMR integration revealed that approximately four THF molecules in
this compound were removed under vacuum when drying the crystals.

13C{1H}-NMR (D$_8$-THF; 298K, 100 MHz) \(\delta\)(ppm): 152.5, 147.2, 145.0 [C$_{\text{quaternary Ar*}},$ C$_6$H$_2$F$_3$ and Ph], 136.1,
127.0, 126.6, 122.2, 117.7 [CH, Ar* and Ph], 98.36 [CH, C$_6$H$_2$F$_3$], 68.4 [O-CH$_2$ THF], 28.5 [CH$_3$ Pr], 26.5
[CH$_2$ THF] 24.7 [CH$_3$ Pr]. Relevant signals for the Zn-C and for the C-F of the C$_6$H$_2$F$_3$ could not be detected.

19F{1H}-NMR (D$_8$-THF; 298K; 400 MHz) \(\delta\)(ppm): -83.4 [d, 2F], -116.1 [t, 1F]

Elemental analysis: analytical calculated: C$_{58}$H$_{74}$F$_3$N$_2$NaO$_4$SiZn C 67.20, H 7.20, N 2.70. Found: C 67.36,
H 7.65, N 2.79

Synthesis of $\{\text{Ph}_3\text{Si(NAr*)}_2\text{Zn(C}_6\text{H}_2\text{Cl}_3)\}^-\{\text{K(THF)}_6\}^+$ (3b):

388 mg of 1 (0.5 mmol) was solubilized in 5 mL of THF, 90 mg of 1,3,5
trichlorobenzene (0.5 mmol) were added. The resulting yellow solution was
allowed to stir at reflux for 21 h. All the volatiles were removed under
reduced pressure. The white solid was solubilized with 3 mL of hexane and
1.5 mL of THF. Overnight storage in freezer (-33°C) furnished colourless
crystals of 3b (265mg, 65%). The yield determined by 1H NMR
spectroscopy using hexamethylbenzene as an internal standard was 96%.

1H-NMR (D$_8$-THF; 298K; 400 MHz) \(\delta\)(ppm): 7.36 [m, 4H, Ph], 6.97 [m, 8H, Ph and C$_6$H$_2$Cl$_3$], 6.72 [d, 4H,
Ar*], 6.46 [t, 2H, Ar*], 4.19 [sept., 4H, CH$_3$ Pr], 3.61 [m, 9H, O-CH$_2$ THF], 1.77 [m, 9H, CH$_2$ THF], 0.79 [d,
24H, CH$_3$ Pr] 1H NMR integration revealed that approximately four THF molecules in 3b were removed under
vacuum when drying the crystals.

13C{1H}-NMR (D$_8$-THF; 298K, 100 MHz) \(\delta\)(ppm): 152.5, 147.3, 145.8, 145.1 [C$_{\text{quaternary Ar*}},$ C$_6$H$_2$Cl$_3$ and Ph], 136.3,
127.0, 126.9, 126.6, 125.5, 122.3, 117.7 [CH, Ar* and Ph], 98.36 [CH, C$_6$H$_2$Cl$_3$], 68.4 [O-CH$_2$ THF], 28.5 [CH$_3$ Pr], 26.5
[CH$_2$ THF] 25.0 [CH$_3$ Pr]. Relevant signals for the Zn-C and for the C-Cl of the C$_6$H$_2$Cl$_3$ group could not be
detected.

Elemental analysis: analytical calculated: C$_{134}$H$_{152}$Cl$_6$K$_3$N$_6$O$_5$Si$_3$Zn$_3$ C 62.01, H 5.90, N 3.24. Found: C 61.81,
H 6.04, N 3.25
Synthesis of \([\text{Ph}_{2}\text{Si(NAr*)}_{2}\text{Zn(C}_{6}\text{H}_{3}\text{F}_{2})^- \{\text{K(THF)}_6\}]^+ \) (3c):

388 mg of 1 (0.5 mmol) was solubilized in 5 mL of THF, 0.1 mL of 1,3 difluorobenzene (0.5 mmol) were added. The resulting yellow solution was allowed to stir at reflux for 5 h. All the volatiles were removed under reduced pressure. The white solid was solubilized with 2.5 mL of Hexane and 1.5 mL of THF. Overnight storage in freezer (-33°C) furnished colourless crystals of 3c. (448 mg, 54%). The yield determined by \(^1\)H NMR spectroscopy using hexamethylbenzene as an internal standard was 90%.

\(^1\)H-NMR (D\(_8\)-THF; 298K; 400 MHz) δ(ppm): 7.35 [m, 4H, Ph], 6.98 [m, 6H, Ph], 6.92 [m, 1H, C\(_6\)H\(_3\)F\(_2\)], 6.71 [d, 4H, Ar*], 6.5 [m, 2H, C\(_6\)H\(_3\)F\(_2\)], 6.45 [t, 2H, Ar*], 4.21 [sept., 4H, CH\(_{i}\)Pr], 0.83 [d, 24H, CH\(_{3}\)iPr]. \(^1\)H NMR integration revealed that approximately five THF molecules in 3c were removed under vacuum when drying the crystals.

\(^{13}\)C\({^1}\)H-NMR (D\(_8\)-THF; 298K, 100 MHz) δ(ppm): 152.7, 147.4, 145.1 [C\(_{\text{quaternary}}\) Ar*, C\(_6\)H\(_3\)F\(_2\) and Ph], 136.2, 126.9, 126.6, 122.2, 117.6 [CH, Ar* and Ph], 109.9, 109.5 [CH, C\(_6\)H\(_3\)F\(_2\)] 28.5 [CH\(_{\text{i}}\)Pr], 24.7 [CH\(_{3}\)iPr]. Relevant signals for the Zn-C and for the C-F of the C\(_6\)H\(_3\)F\(_2\) could not detected.

\(^{19}\)F\({^1}\)H-NMR (D\(_8\)-THF; 298K; 400 MHz) δ(ppm): -85.75 [s, 2F]

Elemental analysis: analytical calculated: C\(_{46}\)H\(_{54}\)F\(_2\)KN\(_2\)OSiZn 67.25, H 6.63, N 3.41. Found: C 67.22, H 6.31, N 3.73

Synthesis of \([\text{Ph}_{2}\text{Si(NAr*)}_{2}\text{Zn(C}_{6}\text{H}_{3}\text{FNO}_{2})^- \{\text{K(THF)}_6\}]^+ \) (3d):

398 mg of 1 (0.5 mmol) was solubilized in 5 mL of THF. 0.05 mL of 3-fluoronitrobenzene (0.5 mmol) were added. The resulting deep red solution was allowed to stir at room temperature for 16 h. All the volatiles were removed under reduced pressure. The resulting red waxing solid was washed with 10 mL of hexane. The red solid was solubilized in 1 mL of THF and 3 mL of Hexane. Overnight storage in freezer (-33°C) furnishing red crystals of 3d (205mg 46%). The yield determined by \(^1\)H NMR spectroscopy using hexamethylbenzene as an internal standard was 69%.

\(^1\)H-NMR (D\(_8\)-THF; 298K; 300 MHz) δ(ppm): 7.94 [m, 1H, CH C\(_6\)H\(_3\)FNO\(_2\)], 7.48 [m, 4H, Ph], 7.16 [m, 1H, CH C\(_6\)H\(_3\)FNO\(_2\)] 6.97 [m, 6H, Ph], 6.67 [d, 4H, Ar*], 6.40 [t, 2H, Ar*], 4.36 [sept., 4H, CH\(_{i}\)Pr], 3.62 [m, 6H, O-CH\(_2\)THF], 1.77 [m, 6H, CH\(_2\)THF], 0.79 [d, 24H, CH\(_{3}\)iPr] \(^1\)H NMR integration revealed that approximately five THF molecules in 3d were removed under vacuum when drying the crystals.

\(^{13}\)C\({^1}\)H-NMR (D\(_8\)-THF; 298K, 75 MHz) δ(ppm): 147.6, 144.9 [C\(_{\text{quaternary}}\) Ar*, C\(_6\)H\(_3\)FNO\(_2\) and Ph], 136.3, 129.4, 126.3, 126.1 121.9, 117.1 [CH, Ar*, C\(_6\)H\(_3\)FNO\(_2\) and Ph], 68.0 [O-CH\(_2\)THF], 28.0 [CH\(_{\text{i}}\)Pr], 26.2 [CH\(_{3}\)THF], 24.6 [CH\(_{3}\)iPr]. Relevant signals for the Zn-C and for the C-F of the C\(_6\)H\(_3\)FNO\(_2\) could not detected.
19F-NMR (D8-THF; 298K; 300 MHz) δ(ppm): -82.26 [s, 1F]

Due to the high air and moisture sensitivity of 3c it was not possible to obtain satisfactory elemental analysis.

Synthesis of [{Ph2Si(NAr*)2Zn(C6H2F2NO2)}⁻{K(THF)3}⁺] (3e):

778 mg of 1 (1 mmol) was solubilized in 3.6 mL of THF in a Schlenk bottle wrapped in tin foil to prevent the contact with light. 0.11 mL of 2,4-difluoronitrobenzene (1 mmol) were added. The resulting deep red solution was allowed to stir at room temperature for 30 minutes. 6 mL of hexane were slowly added to the solution and then the mixture was stored overnight in freezer (-33°C) furnishing yellow crystals of 3e (520mg 55%). The yield determined by 1H NMR spectroscopy using hexamethylbenzene as an internal standard was 90%.

1H-NMR (D8-THF; 298K; 300 MHz) δ(ppm): 7.79 [m, 1H, CH C6H6F2NO2], 7.35 [m, 4H, Ph], 6.99 [m, 6H, Ph], 6.74 [m, 5H, Ar* and C6H2F2NO2], 6.48 [t, 2H, Ar*], 4.19 [sept., 4H, CHiPr], 3.62 [m, 9H, O-CH2THF], 1.77 [m, 9H, CH2THF], 0.82 [d, 24H, CH3iPr]. 1H NMR integration revealed that approximately five THF molecules in 3d were removed under vacuum when drying the crystals.

13C{1H}-NMR (D8-THF; 298K, 75 MHz) δ(ppm): 152.7, 147.4, 145.1 [C quaternary Ar*, C6H2F2NO2 and Ph], 136.2, 126.9, 126.6, 122.2, 117.6 [CH, Ar* and Ph], 109.9, 109.5 [CH, C6H2F2NO2] 28.5 [CH3iPr], 24.7 [CH3Pr]. Relevant signals for the Zn-C and for other quaternary C of the C6H2F2NO2 fragment could not be detected.

19F-NMR (D8-THF; 298K; 300 MHz) δ(ppm): -85.75 [s, 2F]

Elemental analysis: analytical calculated: C50H62F2KN3O4SiZn C 63.61, H 6.65, N 4.47. Found: C 63.26, H 6.91, N 4.12.

Synthesis of [{Ph2Si(NAr*)2Zn(C11H6F2N)}⁻{K(THF)3}⁺] (3f):

338 mg of 1 (0.44 mmol) was solubilized in 5 mL of THF, 99.5 mg of 2-(2,4-difluorophenyl)pyridine (0.5 mmol) were added. The resulting yellow solution was allowed to stir at reflux for 3 h. All the volatiles were removed under reduced pressure. 10 mL of hexane was added affording a white suspension. The suspension was filtered through celite and a white solid of 3f was isolated (195 mg, 54%). The yield determined in NMR scale reaction using hexamethylbenzene as internal standard in 1H-NMR spectrum was 95%.

1H-NMR (D8-THF; 298K; 400 MHz) δ(ppm): 8.51 [m, 1H, CH C11H6F2N], 7.78 [m, 1H, CH C11H6F2N], 7.74 [m, 1H, CH C11H6F2N], 7.64 [m, 1H, CH C11H6F2N], 7.36 [m, 4H, Ph], 7.08 [dd, 1H, CH C11H6F2N], 6.99 [m, 6H, Ph], 6.72 [d, 4H, Ar*], 6.65 [m, 1H, C11H6F2N], 6.46 [t, 2H, Ar*], 4.24 [sept., 4H, CH3Pr], 0.84 [d, 24H,
CH₃ iPr. ¹H NMR integration revealed that approximately five THF molecules in 3f were removed under vacuum when drying the crystals.

¹³C{¹H}-NMR (D₈-THF; 298K, 75 MHz) δ(ppm): 152.7 [C quaternary Ar*, Ph, C₁₁H₆F₂N], 150.1 [CH C₁₁H₆F₂N], 147.3, 145.1 [C quaternary Ar*, Ph, C₁₁H₆F₂N], 136.2, 131.6 [CH Ar*, Ph, C₁₁H₆F₂N], 126.7 [C quaternary Ar*, Ph, pyr or C₁₁H₆F₂N], 126.6, 125.0, 122.3, 122.0 117.7, 110.6 [CH Ar*, Ph, C₁₁H₆F₂N], 28.5 [CH iPr], 24.8 [CH₃ iPr]. Relevant signals for the Zn-C and for other quaternary C of the C₁₁H₆F₂N fragment could not be detected.

¹⁹F{¹H}-NMR (D₈-THF; 298K; 400 MHz) δ(ppm): -85.32 [d, 1F], -87.31 [d, 1F]

Due to the sensitivity of 3f it was not possible to obtain satisfactory elemental analysis.

Synthesis of [(THF)₆K₂Zn₂{Ph₂Si(NAr*)₂}Zn(C₆F₅)]⁻{K(THF)₆}⁺ (3h):

493 mg of 19 (0.46 mmol) were solubilized in 5 mL of THF. The solution was cooled down to -40°C. 0.05 mL of pentafluorobenzene (0.5 mmol) were added. The mixture was allowed to stir for 30 minutes at room temperature. All the volatiles were removed under reduced pressure. The resulting waxy solid was suspended in 10 mL of hexane and the suspension was filtered through celite. The remaining yellow-white solid was solubilized in 3 mL of hexane and 0.8 mL of THF. Overnight storage in the freezer (-15°C) furnishing yellow crystals of 3h. Any attempt in isolating the pure product was unsuccessful due to the co-crystallization of [K(THF)₆Zn(C₆F₅)] and Ph₂Si(NHar*)₂. The yield determined in NMR scale reaction using hexamethylbenzene as internal standard in ¹H-NMR spectrum was 91%.

¹H-NMR (D₈-THF; 298K; 300 MHz) δ(ppm): 7.33 [m, 4H, Ph], 6.99 [m, 6H, Ph], 6.73 [d, 4H, Ar*], 6.48 [t, 2H, Ar*], 4.16 [sept., 4H, CHiPr], 3.61 [m, 6H, O-CH₂THF], 1.77 [m, 6H, CH₂THF], 0.81 [d, 24H, CH₃ iPr]

¹H NMR integration revealed that approximately five THF molecules in 3h were removed under vacuum when drying the crystals.

¹³C{¹H}-NMR (D₈-THF; 298K, 75 MHz) δ(ppm): 151.7, 146.3, 144.7 [C quaternary Ar*, C₆F₅ and Ph], 135.8, 126.8, 126.4 [CH Ph] 122.0, 117.8 [CH Ar*], 68.0 [O-CH₂THF], 28.2 [CH iPr], 26.2 [CH₂THF], 24.3 [CH₃ iPr]. Relevant signals of the C₆F₅ fragment could not be detected.

¹⁹F-NMR (D₈-THF; 298K; 300 MHz) δ(ppm): -114.4 [m, 2F], -160.5 [t, 1F], -164.4 [m, 2F]

Compound 3h could not be isolated as a pure compound. Hence not satisfactory elemental analysis could be obtained.

Synthesis of [(THF)₆K₂Zn₂{Ph₂Si(NAr*)₂}₂(C₆F₄)] (3j):

397 mg of 1 (0.39 mmol) were solubilised in 5 mL of THF. The solution was cooled down to -40°C and 0.02 mL of 1,2,4,5 tetrafluorobenzene (0.1 mmol) were added dropwise. The resulting solution was allowed...
to stir at room temperature for 30 minutes. The solution was then left to stir at reflux for 16h. The next day all the volatiles were removed under reduced pressure. The obtained white solid was washed with 6 mL of hexane and solubilized in 2 mL of THF. Layering 1.5 mL of hexane on the yellow solution furnished colourless crystals of 3j (59 mg, 11%). The yield determined by 1H NMR spectroscopy using hexamethylbenzene as an internal standard was 84%.

1H-NMR (D$_8$-THF; 298K; 300 MHz) δ(ppm): 7.29 [m, 8H, Ph], 6.97 [m, 12H, Ph], 6.74 [d, 8H, Ar*], 6.48 [t, 4H, Ar*], 4.13 [sept., 8H, CH$_{i}$Pr], 3.61 [m, 10H, O-CH$_2$THF], 1.77 [m, 10H, CH$_2$THF], 0.78 [d, 48H, CH$_{3}$Pr].

13C{1H}-NMR (D$_8$-THF; 298K, 100 MHz) δ(ppm): 152.5, 146.4, 144.9 [C quaternary Ar*, C$_6$F$_4$ and Ph], 135.7, 126.8, 126.3 [CH Ph] 122.0, 117.3 [CH, Ar*], 68.0 [O-CH$_2$THF], 28.1 [CH$_{i}$Pr], 26.2 [CH$_2$THF], 24.2 [CH$_{3}$Pr]. Relevant signals of the C$_6$F$_4$ fragment could not be detected.

19F-NMR (D$_8$-THF; 298K; 300 MHz) δ(ppm): -119.0 [s, 4F]

Elemental analysis: analytical calculated: C$_{106}$H$_{137}$F$_{4}$K$_2$N$_4$O$_{7}$Si$_2$Zn$_2$ C 65.03, H 7.19, N 2.92. Found: C 65.17, H 7.41, N 3.03

Synthesis of [Ph$_2$Si(NHAr*)(NAr*)KZn(C$_6$F$_5$)$_2$]$_\infty$ (4):

398 mg of 1 (0.5 mmol) were solubilized in 5 mL of THF. The solution was cooled down to -40°C. 0.17 mL of pentafluorobenzene (1.5 mmol) were added. The mixture was allowed to stir for 1h at room temperature. All the volatiles were removed under reduced pressure. The resulting yellow solid was solubilized in 1 mL of fluoro benzene and 1.2 mL of hexane. Overnight storage in fridge (4°C) furnishing red crystals of 4 which was isolated with variable amounts of ([K(THF)$_x$Zn(C$_6$F$_5$)$_3$]) and Ph$_2$Si(NHAr*)$_2$. Despite numerous attempts 4 could not be isolated as a pure compound which precluded the collection of satisfactory elemental analysis data or a meaningful 13C NMR spectrum.

1H-NMR (D$_8$-THF; 298K; 300 MHz) δ(ppm): 7.67 [m, 4H, Ph], 7.05 [m, 6H, Ph], 6.92 [d, 2H, Ar*], 6.76 [t, 1H, Ar*], 6.72 [d, 2H, Ar*], 6.59 [t, 1H, Ar*], 4.13 [sept., 2H, CH$_{i}$Pr], 3.61 [m, 6H, O-CH$_2$THF], 2.55 [sept., 2H, CH$_2$Pr], 1.77 [m, 6H, CH$_2$THF], 0.88 [d, 12H, CH$_3$Pr], 0.55 [d, 12H, CH$_3$Pr] It should be noted that the resonance for the NH is overlapping with the residual signal of the solvent.

19F-NMR (D$_8$-THF; 298K; 300 MHz) δ(ppm): -115.5 [m, 2F], -163.5 [t, 1F], -165.2 [m, 2F]

Studies on C-C bond forming reactions using 3a

2',4',6'-trifluoro-[1,1'-biphenyl]-4-carbonitrile
384 mg of 3a (0.5 mmol), 18.3 mg of [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) (Pd(dppf)Cl₂) (0.025 mmol, 5%), 13 mg of triphenylphosphine (0.05 mmol, 10%) and 82 mg of 4-Bromobenzonitrile (0.45 mmol) were solubilized in 10 mL of THF. The mixture was let stir for 20h at 66°C. The reaction were quenched with a saturated solution NH₄Cl and extract with Et₂O. The combined organic layers were washed with HCl, dried with MgSO₄ and concentrated. 11.7 mg of hexamethylbenzene were added as internal standard (NMR yield 0.28 mmol, 63%). The compound was purified by chromatographic column (silica gel, hexane:ethyl acetate, 80:20) affording an isolate yield of 49%. The ¹H-NMR and ¹⁹F-NMR spectra fully agreed with those reported in literature.[⁴]

¹H-NMR (CDCl₃; 298K; 400 MHz) δ(ppm): 7.75 [d, 2H], 7.55 [d, 2H], 6.80 [m, 2H] ¹⁹F-{¹H}-NMR (CDCl₃; 298K; 400 MHz) δ(ppm): -106.4 [t, 1F], -110.0 [d, 2F]

Phenyl(2,4,6-trifluorophenyl)methanone

384 mg of 3a (0.5 mmol) were solubilized in 5 mL of THF. The mixture was cooled down to –20°C. 286 mg of CuI (1.5 mmol) and 0.18 mL of benzoylchloride (1.5 mmol) were added. The flask was removed from the bath and the mixture was allowed to reach the room temperature. The mixture was let stir for 16h, affording a red-brown solution. The reaction was quenched with a saturated solution NH₄Cl and extract with Et₂O. The combined organic layers were washed with HCl, dried with MgSO₄ and concentrated. 10.2 mg of Hexamethylbenzene were added as internal standard (NMR yield 0.35 mmol, 70%). The compound was purified by chromatographic column (silica gel, hexane:ethyl acetate, 80:20), despite the attempt of a complete purification impurities were still present together with the products. ¹H-NMR and ¹⁹F-NMR spectra are in agreement with those previously reported in literature for this compound.[⁵]

¹H-NMR (CDCl₃; 298K; 400 MHz) δ(ppm): 7.86 [d, 2H], 7.64 [m, 1H], 7.50 [t, 2H], 6.78 [m, 2H] ¹⁹F-{¹H}-NMR (CDCl₃; 298K; 400 MHz) δ(ppm): -103.6 [m, 1F], -108.1 [t, 2F]
General Experimental Procedure for the 1H NMR Monitoring of the Zn-H Exchange Reactions

In a glovebox, a J. Young’s NMR tube was filled with 78 mg of 1 (0.1 mmol), 16 mg of hexamethylbenzene (0.09 mmol) as internal standard and 0.45 mL of D$_8$-THF. The initial ratio of base calculated by integration in 1H-NMR spectrum relative to the Hexamethylbenzene. 0.1 mmol of fluoroarene was introduced and the mixture was heated at 69°C in an oil bath (when needed). The reactions times were measured from this point in regular intervals of time until full conversion by 1H NMR spectrum. All the yields were calculated by integration of the products relative to the hexamethylbenzene in the 1H NMR spectrum.

NMR monitoring of the reaction of 1 with 1,3,5 trifluorobenzene

75.7 mg of 1 (0.1 mmol) and 18.6 mg of hexamethylbenzene were solubilized in 0.5 mL of D$_8$-THF together with a precise amount of Hexamethylbenzene (used as internal standard) in a Young j tube. 9.8 μL of 1,3,5 trifluorobenzene (2a) were added to the mixture. 1H-NMR spectrum was recorded 5’ minutes after the addition of the fluoroarene (Figure S 1). The mixture was heated for 3 hours at 69°C in an oil bath. New NMR spectrum was recorded after the heating (Figure S 2). The amount of the component of the mixture were calculated against the mass of the internal standard according to the following equation:

$$n_c = \frac{\text{signal}}{N_N} \times \frac{m_{\text{hex.}}}{MM_{\text{hex.}}}$$

n_c= number of moles of the compounds N_N= number of the proton assigned to the chosen resonance $m_{\text{hex.}}$= mass of hexamethylbenzene $MM_{\text{hex.}}$= molecular mass of hexamethylbenzene

![Diagram](image)

Scheme S 1 Metalation of 1,3,5 trifluorobenzene monitored by NMR spectroscopy. The spectra re recorded after the addition of trifluorobenzene and after 3h at 69°C. The number of moles are calculated against Hexamethylbenzene. (a= NMR yield)
Figure S 1 1H-NMR (D_8-THF, 400 MHz, 298 K) spectrum of reaction between 1 and 1,3,5 trifluorobenzene, after 5 minutes at room temperature. (*= hexamethylbenzene, *= 1, *= 3a, *= TMP(H), *= 1,3,5 trifluorobenzene)

Figure S 2 1H-NMR (D_8-THF, 400 MHz, 298 K) spectrum of reaction between 1 and 1,3,5 trifluorobenzene, after 3 hours at 69°C. (*= hexamethylbenzene, *= 3a, *= TMP(H))
Reaction of 1 with 1,3,5 trifluorobenzene (2a) in presence of [2.2.2]cryptand

38 mg of 1 (0.05 mmol) and 8.8 mg of hexamethylbenzene (0.05 mmol), used as internal standard, were solubilised in 0.45 mL D$_8$-THF affording a light yellow mixture. 19.6 mg of [2.2.2]cryptand (0.05 mmol) and 5.4 µL of 1,3,5 trifluorobenzene (0.05 mmol) were added to the solution. The mixture was heated in a hot bath at 69°C for 3h. 3a was found formed in 96% yield, by integration against hexamethylbenzene in 1H-NMR spectrum.

Reaction of [(PMDETA)KZn(TMP)Et$_2$] with 2,4-difluoronitrobenzene

47 mg of [(PMDETA)KZn(TMP)Et$_2$] (0.1 mmol) freshly prepared, according to the method reported in the literature,[6] were solubilised in 0.45 mL of C$_6$D$_6$ affording a light yellow solution. 3 µL of hexafluorobenzene (0.025 mmol) and 7.7 mg of hexamethylbenzene (0.05 mmol) were added as internal standards. 11 µL of 2,4-difluoronitrobenzene (0.1 mmol) were added dropwise to the mixture. After the addition an insoluble dark precipitate appears instantaneously. The 19F-NMR spectrum shows two signals compatible with metalation in C3 position, their yield was calculated in 8% yield by integration against hexafluorobenzene. The 1H-NMR spectrum shows an intractable mixture of products.

Synthesis of [{Ph$_2$Si(NAr*)$_2$Zn(C$_5$H$_3$FN)}$^-$ {K(THF)$_x$}]$^+$ (3g)

34.6 mg of 1 (0.05 mmol) and 6.9 mg of hexamethylbenzene (0.04 mmol), as internal standard, were solubilised in 0.45 mL of D$_8$-THF affording a yellow solution, 4.1 µL of 3-Fluoropyridine (0.05 mmol). The mixture was heated at 69°C for 16h. The yield determined using hexamethylbenzene as internal standard was 89%.

1H-NMR (D$_8$-THF; 298K; 400 MHz) δ(ppm): 7.96 [d, 1H, H6], 7.92 [t, 1H, H5], 7.32 [m, 4H, Ph], 7.23 [m, 1H, H4], 6.99 [m, 6H, Ph], 6.75 [d, 4H, Ar*], 6.50 [t, 2H, Ar*], 4.20 [sept., 4H, CH$_i$Pr], 0.86 [d, 24H, CH$_3$iPr]

13C{1H}-NMR (D$_8$-THF; 298K, 75 MHz) δ(ppm): 168.3, 152.2, 146.8, 144.5 [C$_{\text{quaternary}}$ Ar*, Ph, C$_5$H$_3$FN], 143.8 [CH C6 C$_5$H$_3$FN], 135.9 [CH Ph], 135.2 [CH C5 C$_5$H$_3$FN], 134.9 [CH C4 C$_5$H$_3$FN], 126.4 [CH Ph], 122.0, 117.5 [CH Ar*], 49.9 [C$_{\text{quaternary}}$ TMP(H)], 38.9 [β-CH$_2$ TMP(H)], 32.2 [CH$_3$ TMP(H)], 28.1 [CH$_3$ Pr], 24.2 [CH$_3$ Pr], 19.4 [γ-CH$_2$ TMP(H)],

19F{1H}-NMR (D$_8$-THF; 298K; 400 MHz) δ(ppm): 102.2 [s, 1F]
Figure S 3 1H-NMR (D_8-THF, 400 MHz, 298 K) spectrum of reaction between 1 and 3-fluorpyridine, after 16 hours at 69°C. The spectrum was magnified in the area between 8.2 and 7.5 ppm. (* = hexamethylbenzene, ** = TMP(H))

Figure S 4 13C(H)-NMR (D_8-THF, 75 MHz, 298 K) spectrum of reaction between 1 and 3-fluorpyridine, after 16 hours at 69°C. (* = hexamethylbenzene, ** = TMP(H))
Figure S 5 19F-NMR (D_8-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 3-fluoropyridine, after 16 hours at 69°C. (*= 1,2,4,5-tetrafluorobenzene)

Figure S 6 1H-COSY (D_8-THF, 300.1 MHz, 298 K) spectrum of 3g magnified between 8.2 and 7.0 ppm, in the spectrum it is possible notice the correlation between the proton H5 and both the protons H4 and H6. The resonance of the proton in C4 appears as a triplet due to the coupling with the fluorine atom. ([Zn] = [{Ph$_2$Si(NAr*)$_2$Zn}¯], *)

Synthesis of [{Ph$_2$Si(NAr*)$_2$Zn(C$_5$HF$_4$)}¯{K(THF)$_x$}¯] (3i)

34.2 mg of 1 (0.05 mmol), were solubilised in 0.45 mL D_8-THF affording a light yellow mixture, 4 µL of α,α,α trifluorotoluene (0.032 mmol) and 10.1 mg of hexamethylbenzene (0.06 mmol) were added as internal standards. The tube was placed in cold bath at -40°C and 5 µL of 1,2,4,5 tetrafluorobenzene
(0.05 mmol, 1 eq.) were added to the mixture. The yield determined using hexamethylbenzene as internal standard was 89%.

$^1\text{H-NMR}$ \((D_8-\text{THF}; 298\text{K}; 400 \text{ MHz})\) δ(ppm): 7.37 [m, 4H, Ph], 7.00 [m, 6H, Ph], 6.80 [m, 1H, C$_3$HF$_4$] 6.75 [d, 4H, Ar*], 6.50 [t, 2H, Ar*], 4.20 [sept., 4H, CH$_2$Pr], 0.84 [d, 24H, CH$_3$Pr]

$^{13}\text{C}{^1\text{H}}$-NMR \((D_8-\text{THF}; 298\text{K}, 75 \text{ MHz})\) δ(ppm): 151.9, 146.6, 144.7 [C$_{\text{quaternary Ar*}}, \text{Ph}, C_3\text{HF}_4$], 135.9, 126.4 [CH Ph], 122.0, 117.7 [CH Ar*], 28.2 [CH$_2$Pr], 24.3 [CH$_3$Pr]

$^{19}\text{F}{^1\text{H}}$-NMR \((D_8-\text{THF}; 298\text{K}; 400 \text{ MHz})\) δ(ppm): -116.4 [m, 2F], -142.1 [m, 2F]

Figure S 7 $^1\text{H-NMR}$ \((D_8-\text{THF}, 300 \text{ MHz}, 298 \text{ K})\) spectrum of reaction between 1 and 1 eq. of 1,2,4,5 tetrafluorobenzene. \((\ast = \text{hexamethylbenzene}, \star = \text{TMP(H)}, \ast\ast = \text{tetrafluorotoluene} \ast\ast\ast = \text{Ph$_3$Si(NHAr*)}_2)\)
Figure S 8 13C{H}-NMR (D$_8$-THF, 75 MHz, 298 K) spectrum of reaction between 1 and 1eq. of 1,2,4,5 tetraflurobenzene. (* = hexamethylbenzene, * = TMP(H), *=Ph$_2$Si(NHAr*)$_2$)

Figure S 9 19F-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 1eq. of 1,2,4,5-tetrafluorobenzene, after 5 minutes. (* = [K(THF)$_2$Zn(C$_6$F$_4$H)$_2$], *= 1,2,4,5-tetrafluorobenzene)
Reaction of 1 with variable amounts of pentafluorobenzene

51 mg of 1 (0.07 mmol), were solubilised in 0.45 mL D$_8$-THF affording a light yellow mixture, 4.4 µL of α,α,α trifluorotoluene (0.036 mmol) and 8.8 mg of hexamethylbenzene (0.05 mmol) were added as internal standards. The tube was placed in cold bath at -40°C and 7.8 µL of pentafluorobenzene (0.07 mmol, 1 eq.) were added to the mixture. The solution was allowed to warm up at room temperature for 5 minutes before the analysis with multinuclear NMR spectroscopy was performed. The addition of pentafluorobenzene were repeated in total 3 times. The products are summarized in **Scheme S 2**

Scheme S 2 *Metalation of the pentafluorobenzene using 1 as base.*
Figure S 10 1H-NMR (D_8-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 1eq. of pentafluorobenzene, after 5 minutes. ($^*=3h$, $^*=\text{Ph}_2\text{Si(NAr)}^*$), $^*=\text{hexamethylbenzene}$, $^*=\text{TMP(H)}$)

The addition of the first equivalent of pentafluorobenzene, leads to a complete conversion of 1 in 3h. The reaction proceeds with concomitant formation of TMP(H) (as shown in Figure S 5). The 19F-NMR
spectrum confirms the presence of only $3h$, as the major product of the reaction (4 and $[\text{K(THF)}_x\text{Zn(C}_6\text{F}_5)_3]$ are present only in traces) (Figure S 6)

Figure S 12 1H-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 3eq. of pentafluorobenzene, after 5 minutes. ($* = 3h$, $* = 4$, $** = \text{Ph}_2\text{Si(NHAr*)}_2$, $*** = \text{hexamethylbenzene}$, $**** = \text{TMP(H)}$)
Adding a three fold excess of pentafluorobenzene 1 exhibits a polybasicity. 3h further reacts through the silyl bis(amido) ligand, generating 4 and Ph₂Si(NHar*)₂ (Figure S 7). Notably the reaction did not proceed stepwise and 4 and Ph₂Si(NHar*)₂ were generated with almost the same ratio. Pentafluorobenzene is still present in the mixture (Figure S 8) after 5 minutes due to the slower reactivity of [Ph₂Si(NHar*)₂]²⁻ towards protonation. After 16h the reaction goes to completion consuming all the pentafluorobenzene and having Ph₂Si(NHar*)₂ (Figure S 9) [K(THF)₃Zn(C₆F₅)₃] (Figure S 10) as only products.
Figure S 14 1H-NMR (D_8-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 3eq. of pentafluorobenzene, after 16 hours. (*=Ph$_2$Si(NHAr*)$_2$, *=hexamethylbenzene, *= TMP(H))

Figure S 15 19F-NMR (D_8-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 3eq. of pentafluorobenzene, after 16 hours. (*=[K(THF)$_x$Zn(C$_6$F$_6$)$_3$], *=trifluorotoluene, *=pentafluorobenzene)
Reaction of 1 with variable amount of 1,2,4,5-tetrafluorobenzene

34.2 mg of 1 (0.05 mmol), were solubilised in 0.45 mL D$_8$-THF affording a light yellow mixture, 4 µL of α,α,α trifluorotoluene (0.032 mmol) and 10.1 mg of hexamethylbenzene (0.06 mmol) were added as internal standards. The tube was placed in cold bath at -40°C and 5 µL of 1,2,4,5 tetrafluorobenzene (0.05 mmol, 1 eq.) were added to the mixture. The solution was allowed to warm up at room temperature for 5 minutes before the analysis with multinuclear NMR spectroscopy was performed. The addition of tetrafluorobenzene were repeated in total 3 times. The products are summarized in Scheme S 3.

Scheme S 3 Metalation of the 1,2,4,5 tetrafluorobenzene using 1 as base
Figure S 16 1H-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 1eq. of 1,2,4,5-tetrafluorobenzene, after 5 minutes. (*=3i, *=Ph$_2$Si(NAr*)$_2$, *=hexamethylbenzene, *= TMP(H))

Figure S 17 19F-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 1eq. of 1,2,4,5-tetrafluorobenzene, after 5 minutes. (*=3i, *= [K(THF)$_3$Zn(C$_6$F$_4$H)$_3$], *=trifluorotoluene, *= 1,2,4,5-tetrafluorobenzene)

The addition of the first equivalent of 1,2,4,5-tetrafluorobenzene, leads to a complete conversion of 1 in 3i. The reaction proceeds via liberation of TMP(H) (as shown in Figure S 11). The 19F-NMR spectrum confirms
the presence of 3i, as the principle product of the reaction ([K(THF),Zn(C,F,H)], and unreacted tetrafluorobenzene are present only in traces (Figure S 12)

Figure S 18 1H-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 3eq. of 1,2,4,5-tetrafluorobenzene, after 5 minutes. (*= 3i, *= [K(THF),Zn(Ph,Si(NHAr*)(NAr*))], *=Ph,Si(NHAr*), *=hexamethylbenzene, *= TMP(H))
Adding a threefold excess of 1,2,4,5-tetrafluorobenzene 1 exhibits a polybasicity, in fact 3i further reacts through the silyl bis(amido) ligand, generating $[\text{K(THF)}_x\text{Zn}\{\text{Ph}_2\text{Si(NHAr*)}(\text{NAr*})\}(\text{C}_6\text{F}_4\text{H})_2]$ and $\text{Ph}_2\text{Si(NHAr*)}_2$ (Figure S 13). 1,2,4,5-tetrafluorobenzene is still present in the mixture (Figure S 14) after 5 minutes due to the slower reactivity of $\text{Ph}_2\text{Si(NHAr*)}_2^{2-}$ towards protonation. After 16h the reaction goes to completion consuming most of the 1,2,4,5-tetrafluorobenzene and having $\text{Ph}_2\text{Si(NHAr*)}_2$ (Figure S 15) $[\text{K(THF)}_x\text{Zn}(\text{C}_6\text{F}_6)_3]$ (Figure S 16) as only products.
Figure S 20 1H-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 3eq. of 1,2,4,5-tetrafluorobenzene, after 16 hours. (*=Ph$_2$Si(NHar)*_2, *'=hexamethylbenzene, *= TMP(H))

Figure S 21 19F-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of reaction between 1 and 3eq. of 1,2,4,5-tetrafluorobenzene, after 16 hours. (*=[K(THF)$_3$Zn(C$_6$F$_4$H)$_3$], *=trifluorotoluene, *=1,2,4,5-tetrafluorobenzene e)
X-ray Crystallography

A crystal of 1 or 3a-j is immersed in parabar oil was mounted at ambient conditions and transferred into the stream of nitrogen (100 K for 3b, 3d, 3e, 3h, 3j and [{Ph₂Si(NAr*)}₂Zn(C₆H₅F)₂]⁻{K(THF)}₁⁺), 123 K for 1, 3a, 3c, [{Ph₂Si(NAr*)}₂Zn(TMP)]⁻{Na(THF)}₆⁺ and [{Ph₂Si(NAr*)}₂Zn(C₆H₂F₃)]⁻{Na(THF)}₅⁺. All measurements were made on a RIGAKU Synergy S area-detector diffractometer and Oxford Diffraction Gemini S or Xcalibur E using mirror optics monochromated Cu Kα radiation (λ = 1.54184 Å) or Mo Kα (λ = 0.71073 Å). The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of reflections in the range:

- 3.398° < θ < 73.102° for 1. A total of 2192 frames were collected using ω scans, with 1.335 second exposure time (15 s for high-angle reflections and 5.33 s for medium-angle reflections), a rotation angle of 1° per frame, a crystal-detector distance of 45.0 mm, at T = 123.35(10) K

- 3.7300° < θ < 73.1710° for [{Ph₂Si(NAr*)}₂Zn(TMP)]⁻{Na(THF)}₆⁺ A total of 2097 frames were collected using ω scans, with 1.53 second exposure time (15 s for high-angle reflections and 6.115 s for medium-angle reflections), a rotation angle of 1° per frame, a crystal-detector distance of 45.0 mm, at T = 123(2) K

- 4.3560° < θ < 72.5470° for 3a. A total of 1388 frames were collected using ω scans, with 2.71 second exposure time (35 s for high-angle reflections and 10.84 s for medium-angle reflections), a rotation angle of 1° per frame, a crystal-detector distance of 45.0 mm, at T = 123(2) K

- 3.8130° < θ < 73.1290° for [{Ph₂Si(NAr*)}₂Zn(C₆H₂F₃)]⁻{Na(THF)}₅⁺ A total of 2674 frames were collected using ω scans, with 1 second exposure time (9 s for high-angle reflections and 3 s for medium-angle reflections), a rotation angle of 1° per frame, a crystal-detector distance of 45.0 mm, at T = 123(2)K

- 3.4490° < θ < 71.4310° for 3b. A total of 3684 frames were collected using ω scans, with 0.5 second exposure time (2.75 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm, at T = 100(2) K.

- 2.296° < θ < 76.484° for 3c. A total of 11258 frames were collected using ω scans, with 2 second exposure time (12 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm, at T = 173.15(10)

- 3.487° < θ < 68.084° for 3d. A total of 3020 frames were collected using ω scans, with 5 second exposure time (12 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm, at T = 84.8(6) K.

- 2.7800° < θ < 76.7790° for 3e. A total of 3332 frames were collected using ω scans, with 0.1 second exposure time (0.25 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm, at T = 100.00(10) K.
- 3.098° < θ < 77.579° for 3b. A total of 6512 frames were collected using ω scans, with 0.7 second exposure time (4 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm, at T = 100.0(5) K.

- 2.965° < θ < 79.598° for 3j. A total of 6306 frames were collected using ω scans, with 0.8 second exposure time (3 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm, at T = 100.01(10) K.

- 2.860° < θ < 76.442° for 4 A total of 5894 frames were collected using ω scans, with 0.8 second exposure time (3.1s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 65.0 mm, at T = 173.00(10) K.

Data reduction was performed using the CrysAlisPro program[7]. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method using SCALE3 ABSPACK in CrysAlisPro[7] was applied.

The structures were solved by direct methods using SHELXT[8], which revealed the positions of all non-hydrogen atoms of the title compound. All non-hydrogen atoms were refined anisotropically. H-atoms were assigned in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom (1.5Ueq for methyl groups).

refinement of the structures was carried out on F² using full-matrix least-squares procedures, which minimized the function Σw(Fo² – Fc²)². The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. All calculations were performed using the SHELXL-2014/7[9] program in OLEX2.4[10]

The X-ray crystal structure determination service unit of the Department of Chemistry and Biochemistry of the University of Bern is acknowledged for measuring, solving, refining and summarizing the structures of compounds 3b, 3c 3d, 3e, 3h, 3j and 4. The Synergy diffractometer was partially funded by the Swiss National Science Foundation (SNF) within the R’Equip programme (project number 206021_177033).

Selected crystallographic data are presented in Table S1-S4 and full details in cif format can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.uk/data_request/cif.

Table S 1 Crystal data and structure refinement details for compounds 1, 3a, 3b

Compound	CCDC number	I	3a	3b										
Empirical formula	C₆₉H₁₁₀K₃N₅O₆SiZn	C₇₀H₁₀₂F₃K₃N₅O₇SiZn	C₇₀H₁₀₂Cl₃K₃N₅O₇SiZn											
Formula weight	1210.15	1273.09	1322.44											
Temperature/K	123(2)	123(2)	100.00(10)											
Crystal system	monoclinic	monoclinic	monoclinic											
Space group	P2₁/c	C2/c	P2₁/n											
Compound	a/Å	b/Å	c/Å	α/°	β/°	γ/°	Volume/Å³	Z	ρ calc	μ/mm⁻¹	F(000)	Crystal size/mm³	Radiation	2Θ range for refinement data/°
----------	-----	-----	-----	-----	-----	-----	-----------	----	--------	---------	--------	------------------	-----------------	-----------------------------
3c	18.6356(2)	22.630(3)	31.61154(15)	90	90	90	6831.65(8)	4	1.187	1.597	2624.0	-30.6 × 0.3	CuKa (λ = 1.54184)	6.262 to 146.178
3d	18.8587(3)	15.7650(10)	20.4853(17)	90	90	90	13804.3(4)	8	1.231	1.658	5456.0	0.8 × 0.6 × 0.6	CuKα (λ = 1.54184)	6.9 to 146.252
3e	18.8788(3)	20.4853(17)	31.61154(15)	90	90	90	7075.4(4)	4	1.291	2.613	2824.0	0.264 × 0.083 × 0.067	CuKα (λ = 1.54184)	6.946 to 129.306

Table S 2 Crystal data and structure refinement details for compounds 3c, 3d, 3e
Parameter	3h	3j	4
μ/mm⁻¹	1.681	1.664	2.043
F(000)	2536.0	2752.0	2144.0
Crystal size/mm³	0.168 × 0.13 × 0.085	0.304 × 0.217 × 0.122	0.17 × 0.12 × 0.09
Radiation	Cu Kα (λ = 1.54184)	Cu Kα (λ = 1.54184)	Cu Kα (λ = 1.54184)
2θ range for refinement data°	4.688 to 138.264	6.962 to 95.676	5.594 to 154.234
Index ranges	-22 ≤ h ≤ 22, -22 ≤ k ≤ 22, -21 ≤ h ≤ 21, -14 ≤ k ≤ 15, -14 ≤ h ≤ 12, -16 ≤ k ≤ 17, -22 ≤ l ≤ 22	19 ≤ l ≤ 16	39 ≤ l ≤ 39
Reflections collected	236341	38045	55788
Independent reflections	24646 [R_int = 0.0897, R_sigma = 0.0399]	6426 [R_int = 0.1321, R_sigma = 0.0636]	10802 [R_int = 0.0366, R_sigma = 0.0268]
Data/restraints/parameters	24646/520/1456	6426/515/778	10802/0/622
Goodness-of-fit on F²	1.338	1.035	1.039
Final R indexes [I>2σ(I)]	R₁ = 0.1143, wR₂ = 0.3376	R₁ = 0.1316, wR₂ = 0.3393	R₁ = 0.0358, wR₂ = 0.0873
Final R indexes [all data]	R₁ = 0.1576, wR₂ = 0.3734	R₁ = 0.1510, wR₂ = 0.3580	R₁ = 0.0412, wR₂ = 0.0908
Largest diff. peak/hole / e Å⁻³	1.12/-0.83	1.15/-0.62	0.62/-0.50

Table S 3: Crystal data and structure refinement details for compounds 3h, 3j, 4
Table S4 Crystal data and structure refinement details for compounds \{\(\text{[Ph}_2\text{Si(NAr}^*)\text{Zn(TMP)}\)}^-\{\text{Na(THF)}_6\}\}, \{\(\text{[Ph}_2\text{Si(NAr}^*)\text{Zn(C}_6\text{H}_2\text{F}_3}\)}^-\{\text{Na(THF)}_5\}\}.

Compound	\{\(\text{[Ph}_2\text{Si(NAr}^*)\text{Zn(TMP)}\)}^-\{\text{Na(THF)}_6\}\}	\{\(\text{[Ph}_2\text{Si(NAr}^*)\text{Zn(C}_6\text{H}_2\text{F}_3}\)}^-\{\text{Na(THF)}_5\}\}
CCDC number	2151991	2151993
Empirical formula	\(\text{C}_{69}\text{H}_{110}\text{NaO}_6\text{SiZn}\)	\(\text{C}_{62}\text{H}_{86}\text{F}_3\text{N}_2\text{NaO}_5\text{SiZn}\)
Formula weight	1194.04	1112.77
Temperature/K	123(2)	123(2)
Crystal system	triclinic	monoclinic
Space group	\(\text{P}-1\)	\(\text{P}_2_1/c\)
a/Å	10.47530(10)	16.8242(2)
b/Å	35.3408(5)	15.0900(2)
c/Å	37.5660(5)	25.0756(4)
\(\alpha/^\circ\)	87.6370(10)	90
\(\beta/^\circ\)	82.6610(10)	109.534(2)
\(\gamma/^\circ\)	88.9470(10)	90
Volume/Å³	13780.3(3)	5999.71(16)
Z	8	4
\(\rho_{\text{calc}}/\text{g/cm}^3\)	1.151	1.232
\(\mu/\text{mm}^{-1}\)	1.104	1.293
F(000)	5184.0	2376.0
Crystal size/mm³	\(0.9 \times 0.6 \times 0.6\)	\(1.0 \times 0.6 \times 0.4\)
Crystallographic radiation	CuKα \((\lambda = 1.54184)\)	CuKα \((\lambda = 1.54184)\)
2Θ range for refinement data/°	9.922 to 146.38	6.95 to 146.36
Index ranges	\(-11 \leq h \leq 12, -39 \leq k \leq 43, -18 \leq l \leq 20\)	\(-18 \leq h \leq 20, -18 \leq k \leq 18, -31 \leq l \leq 30\)
Reflections collected	125953	67540
Independent reflections	54223 [\(R_{\text{int}} = 0.0380, R_{\text{sigma}} = 0.0441\)]	11935 [\(R_{\text{int}} = 0.0362, R_{\text{sigma}} = 0.0182\)]
Data/restraints/parameters	54223/423/3056	11935/37/724
Goodness-of-fit on \(F^2\)	1.023	1.029
Final R indexes	\(R_1 = 0.0615, wR_2 = 0.1656\)	\(R_1 = 0.0432, wR_2 = 0.1154\)
[I=2σ (I)]
Final R indexes
[all data] \(R_1 = 0.0738, \ wR_2 = 0.1776 \) \(R_1 = 0.0458, \ wR_2 = 0.1184 \)
Largest diff. peak/hole / e Å\(^{-3}\) 1.31/-0.53 0.47/-0.36

Crystal Structure of 1

Figure S 22 Crystal structure of 1. Thermal ellipsoids are rendered at 50% probability. Hydrogen atoms and disordered components in THF are omitted, carbon atoms of Ar and THF fragments are drawn as wire frames for clarity. Selected bond distances (Å) and angles (°) N2-Zn1 1.9828(13), N1-Zn1 2.0123(14), Zn1-N3 1.8899(14), N2-Zn1-N1 79.50(5), N2-Zn1-N3 140.06(6), N1-Zn1-N3 139.51(5)

Crystal Structure of \([\{\text{Ph}_2\text{Si(NAr}^*\text{)}_2\text{Zn(TMP)}\}]^-\{\text{Na(THF)}_6\}^+\]

Figure S 23 Crystal structure of \([\{\text{Ph}_2\text{Si(NAr}^*\text{)}_2\text{Zn(TMP)}\}]^-\{\text{Na(THF)}_6\}^+\). Thermal ellipsoids are rendered at 50% probability. Hydrogen atoms are omitted, and carbon atoms of aryl and THF fragments are drawn as wireframes for clarity. The asymmetric unit contains 4 different anions and 4 cations all in general positions which are very similar, and therefore only one was represented (the one with least disorder), the selected bond and angle distances reported referred only to this structure. Selected bond distance (Å) and angles (°): N10-Zn4 1.9814(19), N11-Zn4 2.0080(18), Zn4-N12 1.887(19), N10-Zn4-N11 80.26(8), N10-Zn4-N12 138.43(8), N11-Zn4-N12 139.96(8), N10-Si4-N11 97.94(9), Si4-N10-Zn4 90.68(9), Si4-N11-Zn4 89.61(8).
Crystal Structure of 3a

Figure S 24 Crystal structure of 3a. Thermal ellipsoids are rendered at 50% probability. Hydrogen atoms and disordered components in THF are omitted, and carbon atoms of Ar*, phenyl ring and THF fragments are drawn as wireframes for clarity. Selected bond distances (Å) and angles (°) N2-Zn1 1.969(3), N1-Zn1 1.952(2), Zn1-C37 1.970(3), N2-Si1-N1 96.74(13), N2-Zn1-N1 81.01(11), Si1-N1-Zn1 91.32(11), Si1-N2-Zn1 90.71(12), N2-Zn1-C37 140.66(13), N1-Zn1-C37 137.56(13)

Crystal Structure of [\(\text{Ph}_2\text{Si(NAr*)}_2\text{Zn}(\text{C}_6\text{H}_2\text{F}_3)\)\(^-\)\{Na(THF)\}_5\)\(^+\)]

Figure S 25 Crystal structure of [\(\text{Ph}_2\text{Si(NAr*)}_2\text{Zn}(\text{C}_6\text{H}_2\text{F}_3)\)\(^-\)\{Na(THF)\}_5\)\(^+\)]. Thermal ellipsoids are rendered at 50% probability. Hydrogen atoms (with the exception of H32C) and disordered components in THF are omitted, and carbon atoms of Ar*, phenyl ring and THF fragments are drawn as wireframes for clarity. Symmetry transformations used to generate symmetrical atoms: 1-x,1-y,1-z. Selected bond distances (Å) and angles (°) N2-Zn1 1.9799(13), N1-Zn1 1.9547(13), Zn1-C37 1.9596(17), N2-Si1-N1 97.12(6), Si1-N1-Zn1 90.53(6), Si1-N2-Zn1 90.13(6), N2-Zn1-C37 135.49(6), N1-Zn1-C37 142.55(6).
Crystal Structure of 3b

Figure S 26 Anionic moiety of 3b. Thermal ellipsoids are rendered with 30% probability. Hydrogen atoms are omitted and carbon atoms of Ph₂Si(NAr*)₂²⁻ are drawn as wireframe for clarity. The asymmetric unit is neutral by the presence of two half K(THF)₆ units, where both half occupied K atoms are sitting on a special position (inversion centre) not shown here.

Crystal Structure of 3c

Figure S 27 Anionic moiety of 3c. Thermal ellipsoids are rendered with 30% probability. Hydrogen atoms are omitted and carbon atoms of Ph₂Si(NAr*)₂²⁻ are drawn as wireframe for clarity. The asymmetric unit has 2 different molecular structures very similar, so only one was represented
Crystal Structure of 3d

Figure S 28 Anionic Moiety of 3d. Hydrogen atoms and disorder in the iPr group are omitted for clarity. Carbon atoms of Ph₂Si(NAr*)₂⁺ are drawn as wireframe. Thermal ellipsoids are rendered at 20% probability. The asymmetric unit is neutral by the presence of two half K(THF)₆ units, where both half occupied K atoms are sitting on a special position (inversion centre) not shown here.

Crystal Structure of 3e

Figure S 29 Crystal structure of 3e, ellipsoids are rendered with 50% probability. Hydrogen atoms and disordered components in THF are omitted, carbon atoms of Aryl and THF fragments are drawn as wireframe for clarity. Selected bond distances (Å) and angles (°): Zn1-C8 1.9648(16), N1-Zn1 1.9633(13), N2-Zn1 1.9536(14), K1-F1 2.7149(10), K1-O1 2.8946(13), K1-Caryl ranging from 3.1875(17) to 3.5912(16), Si1-N2-Zn1 90.52(6), N2-Zn1-N1 81.58(6), N1-Zn1-C8 129.41(6), N2-Zn1-C8 146.70(6), Si1-N1-Zn1 90.05(6)
Crystal Structure of 3h

Figure S 30 Crystal structure of anionic moiety of 3h. Hydrogens atoms are omitted and carbon atoms (except for the pentafluoroaryl anion) are drawn as wireframe for clarity. Disorder components of fluorine atoms were omitted for clarity. The asymmetric unit is neutral by the presence of two half K(THF)$_6$ units, where both half occupied K atoms are sitting on a special position (inversion centre and a two fold axis) not shown here. Selected bond distances (Å) and angles (°): N1-Zn1 1.921(4), N2-Zn1 1.988(4), Zn1-C1 1.984(5), Si1-N1-Zn1 40.97(10), Si1-N2-Zn1 40.80(9), N1-Zn1-N2 81.75(16), N1-Zn1-C1 141.5(2), N2-Zn1-C1 135.1(2)

Crystal Structure of 3j

Figure S 31 Crystal structure of 3j. Ellipsoids are rendered with 50% probability. Hydrogen atoms and disordered components in THF, iPr group and phenyl are omitted, carbon atoms of Ar (except for the tetrafluoro dianion) and THF fragments are drawn as wire frames for clarity. Symmetry transformations used to generate symmetrical atoms: 1-x, 1-y, 1-z. Selected bond distances (Å) and angles (°): N1-Zn1 1.9872(14), N2-Zn1 1.9474(14), Zn1-C1 1.9689(17), K1-F2 2.6792(13), K1-C$_{Ar}$-ranging from 3.080(2) to 3.2702(19), Si1-N1-Zn1 90.03(6), Si1-N2-Zn1 91.66(6), N1-Zn1-N2 81.12(6), N1-Zn1-C1 139.39(6), N2-Zn1-C1 138.88(7)
Crystal Structure of 4

Figure S 32 Crystal structure of 4. Ellipsoids are rendered with 50% probability. Hydrogen atoms and disordered components in THF are omitted, and carbon atoms of Aryl and THF fragments are drawn as wire frames for clarity. Symmetry transformations used to generate symmetrical atoms: I: 1+x, y, z; II: 1-x, 1-y, 1-z; III: -1+x, y, z. Selected bond distances (Å) and angles (°): N1-Zn1 1.940(2), Zn1-C39 2.022(3), Zn1-C45 2.033(3), K1-F ranging from 2.681(3) to 3.436(3), K1-CAr ranging from 3.061(3) to 3.536(3), N1-Zn1-C39 123.11(11), N1-Zn1-C45 120.01(11), C39-Zn1-C45 116.69(12).

Figure S 33 Polymeric structure of 4. Ellipsoids are rendered with 50% probability. Hydrogen atoms and disordered components in THF are omitted, fluorine and carbon atoms are drawn as wire frames for clarity. Symmetry transformations used to generate symmetrical atoms: 1-x, 1-y, -z; 1+x, y, z; 1-x, 1-y, 1-z; -x, 1-y, -z; x, y, 1+z; 2-x, 1-y, -z; 1+x, y, 1+z.
NMR spectra of the reported compounds

Figure S 34 \(^1\)H-NMR (D\(_8\)-THF, 400 MHz, 298 K) spectrum of I
Figure S 35 13C{H}-NMR spectrum (D$_8$-THF, 100 MHz, 298 K) of 1

Figure S 36 1H-NMR (D$_8$-THF, 400 MHz, 298 K) spectrum of [{Ph$_2$Si(NAr*)Zn(TMP)}$^-$(Na(THF)$_6$)$_2$]
Figure S 37 13C{H}-NMR spectrum (D$_8$-THF, 100 MHz, 298 K) of [{Ph$_2$Si(NAr*)$_2$Zn(TMP)}$^-$]{$(Na(THF))_6$}$^{+}$

Figure S 38 1H-NMR (D$_8$-THF, 400 MHz, 298 K) spectrum of 3a
Figure S 39 13C-{H}-NMR spectrum (D_8-THF, 100 MHz, 298 K) of 3a

Figure S 40 19F-NMR (D_8-THF, 400 MHz, 298 K) spectrum of 3a
Figure S 41 1H-NMR (D$_8$-THF, 400 MHz, 298 K) spectrum of $\{\text{Ph}_2\text{Si(NAr*)}_2\text{Zn(C}_6\text{H}_2\text{F}_3)\}^-\{\text{Na(THF)}_3\}^+$

Figure S 42 13C{H}-NMR spectrum (D$_8$-THF, 75 MHz, 298 K) of $\{\text{Ph}_2\text{Si(NAr*)}_2\text{Zn(C}_6\text{H}_2\text{F}_3)\}^-\{\text{Na(THF)}_3\}^+$
Figure S 43 19F-NMR (D$_8$-THF, 400 MHz, 298 K) spectrum of $[{\text{Ph}_2\text{Si(NAr}^*)}_2\text{Zn(C}_6\text{H}_2\text{F}_3)]^{-}[\text{Na(THF)}]_3^+$

Figure S 44 1H-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of 3b
Figure S 45 13C{H}-NMR spectrum (D_8-THF, 75 MHz, 298 K) of 3b

Figure S 46 1H-NMR (D_8-THF, 300 MHz, 298 K) spectrum of 3c
Figure S 47 13C{H}-NMR spectrum (D$_8$-THF, 75 MHz, 298 K) of 3c

Figure S 48 19F-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of 3c
Figure S 49 1H-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of 3d

Figure S 50 13C(1H)-NMR spectrum (D$_8$-THF, 75 MHz, 298 K) of 3d
Figure S 51 19F-NMR (D_8-THF, 300 MHz, 298 K) spectrum of 3d

Figure S 52 1H-NMR (D_8-THF, 300 MHz, 298 K) spectrum of 3e
Figure S 53 13C{H}-NMR spectrum (D_8-THF, 75 MHz, 298 K) of 3e

Figure S 54 19F-NMR (D_8-THF, 300 MHz, 298 K) spectrum of 3e
Figure S 55 1H-NMR (D$_8$-THF, 400 MHz, 298 K) spectrum of 3f

Figure S 56 13C{H}-NMR spectrum (D$_8$-THF, 100 MHz, 298 K) of 3f
Figure S 57 19F-NMR (D_8-THF, 300 MHz, 298 K) spectrum of $3f$.

Figure S 58 1H-NMR (D_8-THF, 300 MHz, 298 K) spectrum of $3h$. Some impurities (*) are present due to the polibasicity reactivity of 1 towards pentafluorobenzene.
Figure S 59 13C{H}-NMR spectrum (D$_8$-THF, 75 MHz, 298 K) of 3h

Figure S 60 19F-NMR (D$_8$-THF, 300 MHz, 298 K) spectrum of 3h. Some impurities (*) are present due to the polibasicity reactivity of 1 towards pentafluorobenzene.
Figure S 61 1H-NMR (D_8-THF, 300 MHz, 298 K) spectrum of 3j

Figure S 62 13C{H}-NMR spectrum (D_8-THF, 75 MHz, 298 K) of 3j
Figure S 63 19F-NMR (D_8-THF, 300 MHz, 298 K) spectrum of 3j

Figure S 64 1H-NMR (D_8-THF, 300 MHz, 298 K) spectrum of 4 (* = $[\text{Ph}_2\text{Si(NHAr*)}_2]$ impurity)
Figure S 65 19F-NMR (D_8-THF, 300 MHz, 298 K) spectrum of 4 (* = [K(THF)$_2$Zn(C$_6$F$_6$)$_3$])

Figure S 66 1H-NMR (CDCl$_3$, 400 MHz, 298 K) spectrum of the crude of the synthesis of 2',4',6'-trifluoro-[1,1'-biphenyl]-
4-carbonitrile. The NMR yield was calculated against the integral of hexamethylbenzene, using the equation 1. The calculated yield is 63% (using as limiting reagent 4-Bromobenzonitrile, 0.45 mmol)
Figure S 67 $^1\text{H-NMR}$ (CDCl$_3$, 400 MHz, 298 K) spectrum of the crude of the synthesis of 2',4',6'-trifluoro-[1,1'-biphenyl]-4-carbonitrile, after purification via silica-gel column

Figure S 68 $^{19}\text{F-NMR}$ (CDCl$_3$, 400 MHz, 298 K) spectrum of the crude of the synthesis of 2',4',6'-trifluoro-[1,1'-biphenyl]-4-carbonitrile, after purification via silica-gel column
Figure S 69 1H-NMR (CDCl\textsubscript{3}, 400 MHz, 298 K) spectrum of the crude of the synthesis of Phenyl(2,4,6-trifluorophenyl)methanone. The NMR yield was calculated against the integral of hexamethylbenzene, using the \textbf{equation} \ref{eq:yield}. The calculated yield is 70%.

Figure S 70 1H-NMR (CDCl\textsubscript{3}, 400 MHz, 298 K) spectrum of the crude of the synthesis of Phenyl(2,4,6-trifluorophenyl)methanone. after gel purification column.
Figure S 71 19F-NMR (CDCl$_3$, 400 MHz, 298 K) spectrum of the crude of the synthesis of Phenyl(2,4,6-trifluorophenyl)methanone. after gel purification column.

References

[1] V. L. Blair, W. Clegg, A. R. Kennedy, Z. Livingstone, L. Russo, E. Hevia, Angew. Chemie 2011, 123, 10031–10034.

[2] P. Mastropierro, A. R. Kennedy, E. Hevia, Eur. J. Inorg. Chem. 2021, 2021, 1016–1022.

[3] W. S. Rees, O. Just, H. Schumann, R. Weimann, Polyhedron 1998, 17, 1001–1004.

[4] J.-J. Dai, J.-H. Liu, D.-F. Luo, L. Liu, Chem. Commun. 2011, 47, 677–679.

[5] R. McLellan, M. Uzelac, A. R. Kennedy, E. Hevia, R. E. Mulvey, Angew. Chem. Int. Ed. 2017, 56, 9566–9570.

[6] B. Conway, D. V. Graham, E. Hevia, A. R. Kennedy, J. Klett, R. E. Mulvey, Chem. Commun. 2008, 2638–2640.

[7] Oxford-Diffraction, CrysAlisPro (Version 1.171.40.37a), Oxford Diffraction Ltd., Yarnton, Oxfordshire, UK, 2018.

[8] G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8.

[9] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8.

[10] O. V Dolomanov, L. J. Bourhis, R. J. Gildie, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr.
2009, 42, 339–341.