Alkaline Earth-promoted CO homologation and Reductive Catalysis

Mathew D. Anker, Michael S. Hill,* John P. Lowe and Mary F. Mahon

Abstract: Reaction between a β-diketiminato magnesium hydride and carbon monoxide results in the isolation of a dimeric cis-enediolate species through the reductive coupling of two CO molecules. Under catalytic conditions with PhSiH₃, an observable Mg formyl species may be intercepted for the mild reductive cleavage of the CO triple bond.

The deoxygenative conversion of carbon monoxide to hydrocarbon fuels and lower oxygenses is typically achieved through heterogeneous catalytic methods.[1] Although Fischer-Tropsch (F-T) chemistry and related processes have been successfully implemented for some eighty years to produce a Schultz-Flory distribution of hydrocarbons, only limited success has been achieved with well-defined homogeneous systems, typically at CO pressures in excess of 1000 atm.[2] More recent activity has targeted the synthesis of putative F-T intermediates including, and most pertinent to the current work, enediolates such as the zirconium and cerium species I – III (Chart 1), which were prepared through treatment of the relevant metal hydride with CO.[3] Our own research efforts have focused on the development of a homogeneous catalytic chemistry for complexes derived from the inexpensive and environmentally benign alkaline earth elements,[4] in particular magnesium and calcium; respectively the eighth and fifth most abundant elements in the lithosphere. In this contribution we demonstrate that similar CO homologation reactivity may be achieved through exposure of the β-diketiminato magnesium hydride (IV)[5] to one atmosphere of CO and that this and other alkaline earth species enable the highly selective catalytic reduction of the carbon monoxide molecule under similarly mild reaction conditions.

Compound IV reacted under one atmosphere of CO at room temperature to provide a single new species (1) characterized by the appearance of a singlet resonance at δ 5.53 ppm in the resultant ¹H NMR spectrum with an accompanying vinyllic carbon resonance at δ 131.7 ppm in the corresponding ¹³C(¹H) NMR spectrum. Repetition of this reaction with ¹³CO provided ready access to the isotopomer (¹³CO), which comprised diagnostic 10 line AA'XX' patterns (¹¹JCH = 174.4, ²¹JCH = 20.4, ¹³JCC = 79.5, ³¹JHH = 1.3 Hz) in both the ¹H and gated ¹³C(¹H) NMR spectra (Figures S1, S2). Replacement of the ¹³CO atmosphere of this sample with ¹²CO resulted in no simplification of the AA'XX' spin system even at elevated temperatures indicating that the formation of compound 1 is irreversible. These spectral data are closely comparable to those reported for compounds I - III and are thus similarly indicative of the reductive coupling of two molecules of CO to form a dinuclear magnesium enediolate species (eq. 1).[3]

These deductions were confirmed through a subsequent X-ray structural analysis, the results of which are illustrated in Figure 1, performed on a selected single crystal of compound 1 grown from a saturated n-pentane solution. While the C30-C31 distance [1.327(3) Å] is clearly indicative of the formation of a C=C double bond and a cis-enediolate similar to that observed in both compounds II and III, the ligand does not adopt a directly analogous symmetrical bridging disposition. Rather, the planar cis-enediolate adopts an asymmetric bridging mode in which one four-coordinate pseudo-tetrahedral magnesium (Mg1) center is bound through chelation of both O1 [Mg1-O2 1.92(1) Å] and O2 [Mg1-O2 2.01(1) Å]. This latter bond is slightly elongated as O2 is also bound to the further trigonal Mg2 centre [Mg2-O2 1.88(1) Å]. Variable temperature ¹H NMR studies performed in toluene-d₈ did not show any change in the singlet resonance at δ 5.53 ppm down to the low temperature limit of ~90°C (Figure S3). We, thus, suggest that the cis-enediolate chelate undergoes facile exchange between both Mg1 and Mg2 centers at a rate that is faster than the NMR time scale. The geometry and resultant asymmetry of compound 1 in the solid state is, therefore, suggested to be reflective of the lowest energy conformer and is not retained in solution.

A further reaction between compound IV and ¹³CO was performed at ~60°C and monitored by ¹H and ¹³C NMR spectroscopy. Even under these reduced temperature conditions, the onset of the formation of compound 1-¹³C was clearly apparent. An increase in temperature to ~40°C, however, resulted in the observation of a new species (2) characterized by a doublet resonance at δ 14.08 ppm (¹¹JCH = 102.5 Hz) in the ¹H NMR spectrum (Figure S4) and the appearance of a new, heavily deshielded singlet signal at δ 358.9 ppm in the ¹³C(¹H) spectrum (Figure S5). In the corresponding proton coupled ¹³C NMR spectrum this latter resonance was observed to split into a
The initial step of the catalysis again involves the insertion of CO into the MgH bond of IV to form a magnesium formyl similar to species 2. The absence of any evidence of C=C products formed by the reduction of the enediolate component of compound 1, however, suggests that the metathetical reaction between this formyl species and a CO to give the ultimate CO-containing product (Eq. 2). The formation of PhSiH2CO-CH3 was evidenced through the development of a resonance at 7.32 ppm in the 13C{1H} NMR spectrum, which appeared as a quartet of triplets (JCH = 122.0, JCH = 5.6 Hz) in the corresponding 13C-1H gated spectrum (Figure S6, S7). With no recharging of the 13CO in the headspace of the sealed reaction vessel, reactions performed at 60°C in toluene required 21 days to achieve a 15% consumption of PhSiH3. Although notably slow, these reactions provide the first example of any homogeneous catalytic reduction of CO by a main group system. Monitoring of the reactions by NMR spectroscopy also revealed the intermediacy of Ph(H)Si-O-CH2SiPh(H) (5). The methoxysilane species (5) was clearly apparent through the observation of a resonance centered at 50.7 ppm in the 13CO{1H} NMR spectrum, which split as a binomial triplet of triplets (JCH = 130.7, JCH = 4.1 Hz) in the 13C-1H gated spectrum and was consumed simultaneously with the production of PhSiH2CO-CH3 (Figure S6, S7).

Scheme 2 depicts a provisional reaction mechanism which accounts for these observations. We suggest that the initial step of the catalysis again involves the insertion of CO into the MgH bond of IV to form a magnesium formyl similar to species 2. The absence of any evidence of C=C products formed by the reduction of the enediolate component of compound 1, however, suggests that the metathetical reaction between this formyl species and a Si-H bond of phenylsilane occurs more rapidly than any of the hydroxysilane species, [Th(Si(3g)CH2SiPh(H))2]+ (the likely intermediacy of magnesium formyl species during the synthesis of compound 1 was further supported by a study of the reaction of phenylsilane and one atmosphere of 13CO in the presence of 10 mol% CO. This reaction proved to be absolutely selective for the deoxygenative reduction of 13CO to phenylsilane as the ultimate 13C-containing product (Eq. 2). The formation of PhSiH2CO-CH3 was evidenced through the development of a resonance at 7.32 ppm in the 13C{1H} NMR spectrum, which appeared as a quartet of triplets (JCH = 122.0, JCH = 5.6 Hz) in the corresponding 13C-1H gated spectrum (Figure S6, S7). With no recharging of the 13CO in the headspace of the sealed reaction vessel, reactions performed at 60°C in toluene required 21 days to achieve a 15% consumption of PhSiH3. Although notably slow, these reactions provide the first example of any homogeneous catalytic reduction of CO by a main group system. Monitoring of the reactions by NMR spectroscopy also revealed the intermediacy of Ph(H)Si-O-CH2SiPh(H) (5). The methoxysilane species (5) was clearly apparent through the observation of a resonance centered at 50.7 ppm in the 13C{1H} NMR spectrum, which split as a binomial triplet of triplets (JCH = 130.7, JCH = 4.1 Hz) in the 13C-1H gated spectrum and was consumed simultaneously with the production of PhSiH2CO-CH3 (Figure S6, S7).

Scheme 1: Postulated reaction pathway for the formation of compound 1.

The likely intermediacy of magnesium formyl species during the synthesis of compound 1 was further supported by a study of the reaction of phenylsilane and one atmosphere of 13CO in the presence of 10 mol% CO. This reaction proved to be absolutely selective for the deoxygenative reduction of 13CO to phenylsilane as the ultimate 13C-containing product (Eq. 2). The formation of PhSiH2CO-CH3 was evidenced through the development of a resonance at 7.32 ppm in the 13C{1H} NMR spectrum, which appeared as a quartet of triplets (JCH = 122.0, JCH = 5.6 Hz) in the corresponding 13C-1H gated spectrum (Figure S6, S7). With no recharging of the 13CO in the headspace of the sealed reaction vessel, reactions performed at 60°C in toluene required 21 days to achieve a 15% consumption of PhSiH3. Although notably slow, these reactions provide the first example of any homogeneous catalytic reduction of CO by a main group system. Monitoring of the reactions by NMR spectroscopy also revealed the intermediacy of Ph(H)Si-O-CH2SiPh(H) (5). The methoxysilane species (5) was clearly apparent through the observation of a resonance centered at 50.7 ppm in the 13C{1H} NMR spectrum, which split as a binomial triplet of triplets (JCH = 130.7, JCH = 4.1 Hz) in the 13C-1H gated spectrum and was consumed simultaneously with the production of PhSiH2CO-CH3 (Figure S6, S7).

Scheme 1: Postulated reaction pathway for the formation of compound 1.

The likely intermediacy of magnesium formyl species during the synthesis of compound 1 was further supported by a study of the reaction of phenylsilane and one atmosphere of 13CO in the presence of 10 mol% CO. This reaction proved to be absolutely selective for the deoxygenative reduction of 13CO to phenylsilane as the ultimate 13C-containing product (Eq. 2). The formation of PhSiH2CO-CH3 was evidenced through the development of a resonance at 7.32 ppm in the 13C{1H} NMR spectrum, which appeared as a quartet of triplets (JCH = 122.0, JCH = 5.6 Hz) in the corresponding 13C-1H gated spectrum (Figure S6, S7).
provided by the activation of the C-O bond of compound 5 through O-C/Mg-H and Mg-O/Si-H metathesis steps to yield \(\text{PhH}_2\text{SiCH}_3 \) and \(\text{(PhH}_2\text{Si)}_2\text{O} \) respectively. The driving force for the reaction is, thus, provided by the production of this latter siloxane by-product.

In conclusion, we have shown that the application of a readily accessible magnesium hydride complex allows the homolysis of CO to a cis-enedioliate species and provides a means to effect its completely selective catalytic deoxygenative reduction under very mild conditions. In further preliminary investigations we have observed that similar but significantly enhanced CO-derived reactivity may be enabled through extensions of this chemistry to magnesium's heavier group 2 congeners. Application of the conveniently synthesized homoleptic calcium and strontium amides, \([\text{AeN(SiMe}}_3]_2\) (Ae = Ca, Sr), for example, in catalytic reactions performed under identical conditions as those described above have provided 35% and 40% conversions respectively of the input PhSiH3 in only 4 days at 60°C. We are continuing to explore the mechanistic possibilities presented by this process and to expand the use of CO as both a \(\text{C}_1 \) and \(\text{C}_2 \) synthon derived from such highly reactive but earth-abundant alkaline earth catalysts.

Supporting Information

Details of the synthesis and characterization of compound 1 and the reaction of CO with PhSiH3 catalyzed by IV including \(^1\text{H} \) and \(^13\text{C} \) NMR spectra. Details of the X-ray diffraction analysis of compound 1. The CIF file for compound 1 has been deposited as CCDC 1408044 with the Cambridge Crystallographic Data Center.

Acknowledgements

We thank the University of Bath for a PhD scholarship (MDA).

Keywords: magnesium • carbon monoxide • reduction • catalysis • Fischer-Tropsch

REFERENCES

(1) A. A. Adesina, Appl. Catal. A 1996, 138, 345–367; (b) H. Schulz, Appl. Catal. A 1999, 186, 3–12; (c) P. M. Mattias, J. Organomet. Chem. 2004, 699, 4366–4374; (d) P. M. Mattias, V. Zanetti, Chem. Commun. 2009, 1619–1634; (e) Advances in Fischer-Tropsch Synthesis, Catalysts and Catalysis (eds.: B. H. Davis, M. L. Occelli), CRC, Boca Raton, FL, 2009.

(2) N. M. West, A. J. M. Miller, J. A. Labinger, J. E. Bercaw, Coord. Chem. Rev. 2011, 255, 881–898.

(3) (a) D. R. McAllister, R. D. Sanner, J. E. Bercaw, J. Am. Chem. Soc. 1976, 98, 6733-6735; (b) J. M. Manriquez, D. R. McAllister, R. D. Sanner, J. E. Bercaw, J. Am. Chem. Soc. 1978, 100, 2716-2724; (c) P. J. Fagan, K. G. Molloy, T. J. Maaks, J. Am. Chem. Soc. 1991, 103, 6959-6963; (d) W. J. Evans, J. W. Grate, R. J. Doedens, J. Am. Chem. Soc. 1985, 107, 1671-1671; (e) C. C. Cummins, G. D. Van Duyne, C. P. Schaller, P. T. Wolczanski, Organometallics 1990, 9, 164-170; (f) G. M. Ferrence, R. McDonald, J. Takats, Angew. Chem. Int. Ed. 1999, 38, 2233-2237; (g) E. L. Werkema, L. Maron, O. Eisenstein, R. A. Andersen, J. Am. Chem. Soc. 2007, 129, 2529-2541.

(4) For reviews, see; (a) M. Arrowsmith, M. S. Hill, ‘Alkaline Earth Chemistry: Applications in Catalysis’, Comprehensive Inorganic Chemistry II, ed. Chivers, T. Elsevier, 2013, 1, 1189; (b) A. G. M. Barrett, M. R. Criminlin, M. S. Hill, P. A. Procopiou, Proc. R. Soc. A. 2010, 466, 927; (c) M. R. Criminlin, M. S. Hill, Topics in Organometallic Chemistry, ed. S. Harder, 2013, 45, 191; (d) S. Harder, Chem. Rev., 2010, 110, 3852.

(5) S. J. Bonyhady, C. Jones, S. Nembenna, A. Stasch, A. J. Edwards, G. J. McIntyre, Chem. Eur. J. 2010, 16, 938-955.

(6) D. C. Sonnenberger, E. A. Mintz, T. J. Marks, J. Am. Chem. Soc. 2013, 115, 1634-1639.

(7) For a discussion of stoichiometric CO activation by main group- and transition metal-based 'frustrated' Lewis pairs, see; A. E. Ashley, D. O'Hare, Top. Curr. Chem. 2013, 334, 191-218.
Mathew D. Anker, Michael S. Hill,* John P. Lowe and Mary F. Mahon

Page No. – Page No.
Alkaline Earth-promoted CO homologation and Reductive Catalysis