Different aspects of the Activin/1 Smad pathway involvement in 2 zebrafish development

SHAGHAYEGH HASANPOUR, SOHEIL EAGDERI, HADI POORBAGHER and MOHAMMAD HASANPOUR

ACCEPTED MANUSCRIPT

The International Journal of Developmental Biology publishes an “Accepted” manuscript format as a free service to authors in order to expedite the dissemination of scientific findings to the research community as soon as possible after acceptance following peer review and corresponding modification (where appropriate).

An “Accepted” manuscript is published online prior to copyediting, formatting for publication and author proofing, but is nonetheless, fully citable through its Digital Object Identifier (DOI). Nevertheless, this “Accepted” version is NOT the final version of the manuscript.

When the final version of this paper is published within a definitive issue of the journal with copyediting, full pagination, etc. the new final version will be accessible through the same doi and this "Accepted" version of the paper will disappear.
Different aspects of the Activin/Smad pathway involvement in zebrafish development

Running title: Activin-like factors function

Shaghayegh Hasanpour¹,², Soheil Eagderi¹*, Hadi Poorbagher¹ and Mohammad Hasanpour³

¹PhD, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.

²PhD, Development and biosystematics lab, Department of fisheries and animal sciences, Faculty of Natural Resources, University of Tehran, P.C: 31587-7787, Karaj, Iran. ³MD,

⁴Department of neurosurgery, division of vascular and endovascular neurosurgery, Firoozgar hospital, Iran University of Medical sciences, Tehran, Iran.

Keywords: ndr1, differentiation, mesendoderm, zebrafish.

*Correspondence: soheil.eagderi@ut.ac.ir, Tel: +982632223044.
Abstract

To investigate the role of maternal Activin-like factors in the preservation of stemness and mesendoderm induction, their effects were promoted and inhibited using synthetic human Activin A or SB-505124 treatments, respectively, before the maternal to zygotic transition (MZT). To study the role of zygotic Activin-like factors, SB-505124 treatment was also used after the MZT. Promoting the signaling intensity of maternal Activin-like factors led to premature differentiation, loss of stemness, and no mesendoderm malformation, while its alleviation delayed the differentiation and caused various malformations. Inhibition of the zygotic Activin-like factors was associated with suppressing the *notail* transcription, differentiation retardation at the oblong stage, and a broad spectrum of anomalies in a dosedependent manner. Together, promoting the signal intensity of maternal Activin-like factors drove development along with mesendodermal differentiation, while suppression of the maternal or zygotic ones maintained the pluripotent state and delayed the differentiation\(^1\).

\(^1\) MZT, maternal to zygotic transition; hpf, hours post fertilization; A2, Activin 20 ng/ml; A5, Activin 50 ng/ml; SB-B50, SB-505124 50 μM; SB-B50 : SB-505124 100 μM; SB-A30, SB-505124 30μM; SB-A50, SB-505124 50μM; SB-A100, SB-505124 100μM; TGFβ, Transforming Growth Factor β; sqt or ndr1, squint; cyc or ndr2, cyclops; ndr3, southpaw; ALK4/5/7, Activin receptor Like Kinase 4/5/7; EGF-CFC, Epidermal Growth FactorCrypto Fr1 Cryptic co-receptor; oep, one eyed pinhead; flh, floating head; hESCs, human embryonic stem cells; ntl, notail; EVL, enveloping layer; WT, Wild Type; DMSO, dimethyl sulfoxide; PBS, phosphate-buffered saline; RIN, RNA Integrity Number; RE, relative expression.
Introduction

NODAL, a glycoprotein belonging to the Transforming Growth Factor β (TGFβ) superfamily, is a conserved factor in vertebrates participating in multiple developmental events (Bennett *et al*., 2007, Jia *et al*., 2008, Whitman, 2001). Although there is one *Nodal* gene in mammals, due to the whole genome duplication occurred in the evolution of teleost, the zebrafish genome contains three NODAL orthologues, including *ndr1* (*squint/sqt*), *ndr2* (*cyclops/cyc*), and *ndr3* (*southpaw*) (Schier, 2009). NODAL ligand transmits the signal through a tetrameric receptor complex, consisting of two Activin types I and two Activin types II serine/threonine kinase receptors. Following ligand binding, both the type I (Activin receptor Like Kinase 4/5/7 (ALK4/5/7)) and type II receptors (ActRIIB) in association with the EGF-CFC co-receptor (*Crypto* and *oep/tdgf1* in mice and zebrafish, respectively) phosphorylates SMAD2/3 (Hasanpour and Eagderi, 2020, Quail *et al*., 2013). The phosphorylated SMAD2/3 homo or heterodimerize and then form a triplex complex by SMAD4, and subsequently translocate into the nucleus, where in association with other transcription factors regulate their target genes expression (Hasanpour and Eagderi, 2020, Wu and Hill, 2009). In addition to NODAL, Activins, Growth Differentiation Factor 1/3 (GDF1/3), and other TGFβ-related ligands, collectively termed Activin-like factors, can also regulate gene expression through the SMAD2/3 signaling pathway (Hagos and Dougan, 2007, Hagos *et al*., 2007, Shen, 2007, Sun *et al*., 2006).

As the multifunctional morphogens, Activin-like factors may have different roles during the development (Chen and Schier, 2001, Hagos and Dougan, 2007, Thisse *et al*., 2000). In
particular, Activin/SMAD signaling is critical for self-renewal and pluripotency of both hESCs and mESCs, (human and mice embryonic stem cells) where it participates in the control of the core transcriptional network characterizing pluripotency which includes, NANOG, OCT4, MYC, etc. (Brown et al., 2011). Moreover, Activin/SMAD cooperates with NANOG and OCT4 to repress the expression of neuroectoderm promoting gene, namely SIP1 (smad interacting protein 1) (Chng et al., 2011, Fathi et al., 2017, Xu et al., 2008). Further investigation revealed that Activin/SMAD and FGF synergize to inhibit BMP signaling, which in turn prevents endoderm formation and sustains the expression of the core pluripotency markers. The cascade also induces FGF2 and WNT3 expression that are essential to sustain stemness (James et al., 2005, Oshimori and Fuchs, 2012). However, no evidence has been reported on the role of Activin-like factors to sustain the stemness in zebrafish yet.

Despite its crucial role in ESCs pluripotency, Activin/SMAD signaling also functions in vitro and in vivo to drive the differentiation of pluripotent stem cells toward mesendoderm. Indeed genetic analysis in vertebrates, e.g., zebrafish, clarifies the core of a conserved transcriptional pathway wherein Activin/Smad is mediated separately by Gata5 (faust) and Mixer/Mezzo (bonnie and clyde) to activate Sox32 (casanova), whose expression is required for terminal differentiation of the endoderm through definitive endoderm marker expression called Sox17 (Gong and Korzh, 2004, Tam et al., 2003). Furthermore, Nodal/Activin activates Fgf signaling in the equatorial region of the zebrafish embryo. Fgf/Erk activity, directly and indirectly, promotes mesoderm formation by eliciting the notail (ntl, tbxta) expression and antagonizing the endoderm formation in the dorsal region.
Notail (ntl) is a T-box transcription factor involved in the gene programs required for the mesoderm differentiation, whose expression parallels the induction of the differentiation processes during the zebrafish development (Amacher et al., 2002, Schulte-Merker et al., 1994), i.e., the sole presence of the pluripotent markers cannot determine the pluripotency state of the embryonic stem cells in zebrafish. Therefore, the onset of the germ layers differentiation is a critical point for loss of stemness condition, and notail is used as a differentiation index in this regard (Xiao et al., 2016). Together, it seems Activin-like factors have a bi-functional role in pluripotency maintenance and differentiation induction.

In addition, the preliminary stages of embryonic development occur in the absence of de novo transcription and rely on maternal mRNAs and proteins deposited in the egg during the oogenesis (Giraldez et al., 2006). Following the transcriptional quiescence, the zygotic transcription starts, and maternal control of development declines (Giraldez et al., 2006). This period known as the maternal-to-zygotic transition (MZT), occurs at the 1K-cell stage (Giraldez et al., 2006, Kane and Kimmel, 1993). The roles of maternal and zygotic Activin-like factors during zebrafish development are highly controversial (Chen and Schier, 2001, Hagos and Dougan, 2007, Thisse et al., 2000). Several experiments were conducted to define their exact roles in zebrafish. However, the findings are controversial (Hagos et al., 2007, Sun et al., 2006). Other experiments were performed by injecting the antisense morpholino oligonucleotides, which have many pivotal disadvantages, including incomplete knockdown and occasional off-target non-specific deleterious effects, and their efficacy diminishes following the developmental progression.
To investigate the roles of maternal and zygotic Activin-like factors in zebrafish development, a pharmacologic experiment was performed using Activin as an activator and SB-505124 as an inhibitor of the pathway. Activin binds to Activin type II receptors and initiates a cascade reaction leading to Smad2/3 phosphorylation. In contrast, SB-505124, the inhibitor of Activin type I receptors, prevents activation of the pathway (Laping et al., 2002). The effects of maternal Activin-like factors were studied by treating the zebrafish embryos with Activin and SB-505124 before the 1K-cell stage. In contrast, the role of zygotic Activin-like factors was assessed by SB-505124 treatments applied from the 1K-cell stage.

In this regard, Activin was used at 20 (A20) and 50 (A50) ng/ml, and SB-505124 at 20 and 50 μM (SB-B20 and SB-B50, respectively) before the 1K-cell stage. Following the MZT, SB505124 was also applied at 10, 20, and 50 μM (SB-A10, SB-A20, and SB-A50, respectively). The effects of treatments were extensively studied based on morphological and physiological features of the embryos and measuring the ndr1, ndr2, mycb, oct4 (pou5f3) and notail (ntl) mRNA levels at the 1K-cell (3 hours post-fertilization (hpf)), oblong (3.65 hpf), dome (4.33 hpf) and shield (6 hpf) stages using the RT-qPCR.
Results

Promoting the maternal Activin-like factors through Activin exposure

The mortality rate showed no difference in Activin-treated groups and the control (Figure 1-a). Morphological assessments of the eye development and its pigmentation, heart, axial, and paraxial mesoderm formation in the A20 and A50 groups were normal, without any significant differences with those of the control ($P>0.05$, Figure 1, 2).

Immunoblotting analysis of the phosphorylated-Smad2 at the oblong stage demonstrated that Activin treatments effectively promote the Smad2/3 pathway (Figure 3). Activin treatments promoted the ndr1 expression in a dose-dependent fashion at the 1K-cell stage, reduced its mRNA level at the oblong stage at the higher dose (50 ng/ml), and had no effects at the dome and shield stages (Figure 4-a). The ndr2 was first transcribed at the oblong stage, and then its levels went up until the shield stage. Aside the dome stage, the effect of activin treatments on ndr2 expression was insignificant (Figure 4-b).

Maternal transcripts of the oct4 (pou5f3), which is involved in maintaining pluripotency, increased at the 1K-cell stage due to the addition of its zygotic versions and then surged at the oblong and dome stages. Administration of Activin was associated with a significant plunge in Oct4 (pou5f3) mRNA level lasting up to the shield stage when no difference was seen among the groups (Figure 4-c). The Mycb, a pleiotropic transcription factor participating in various developmental programs and establishment of pluripotency, followed the same patterns seen in the oct4 (pou5f3). The only difference was that the
decreasing effects of Activin treatments on Mycb mRNA levels had been restricted until the dome stage (Figure 4-d).

The maternal transcripts of notail were not detected at the 256-cell stage. Lack of the notail transcripts lasted up to the oblong stage when it strongly increased until the shield stage in the control group. Activin treatments exerted increasing effects on the notail zygotic expression at the oblong and dome stages, but no significant difference was found between the groups at the shield stage (Figure 4-e). Furthermore, morphological landmarks ascribed to the oblong and dome stages appeared in advance in activin-treated groups (about 10-15 min).

Inhibiting the maternal Activin-like factors through SB-505124 exposure before the MZT

A significant increase in the mortality rate (19%, 57/300) was observed in the SB-B50 treatment compared to the control group (P>0.05). Developmental procedures of the eye, heart, notochord, and somites in the SB-B20 and SB-B50 groups were similar to the control one. However, the prevalence of cardiologic disorders, including the functional and anatomical defects, e.g., abnormal dilation of the pericardium in the front of the yolk, was significantly higher. In addition, 8% (24/300) of the SB-B20 embryos and 12% (36/300) of the SB-B50 represented abnormal eye development, ranging from their convergence to synophthalmia (cyclopia) (P<0.05, Figure 1-b and Figure 5).

Immunoblotting analysis of the phosphorylated-Smad2 at the oblong stage showed that SB-505124 treatments before the MZT effectively inhibit the Smad2/3 pathway (Figure 3).
SB-505124 treatments before the MZT reduced the ndr1 mRNA levels at the 1K-cell and oblong stages. However, it was associated with the ndr1 mRNA abundancy at the dome and shield stages (Figure 6-a). The effect of maternal Activin/Smad suppression on ndr2 mRNA levels was first detected at the oblong stage when they were lower than the control group; then, they soared until the shield stage ($P<0.05$, Figure 6-b).

The SB-505124 usage before the MZT led to a significant increase in the oct4 (pou5f3) mRNA levels at the 1K-cell and oblong stages. No effects were registered for the next stages (Figure 6-c). The mycb followed the oct4 (pou5f3) pattern except at the 1K-cell stage when it showed no difference among the groups (Figure 6-d).

Application of SB-505124 before the MZT markedly reduced the notail expression ($P<0.05$) at the oblong stage, as it was not detected. Globally, SB-B20 and SB-B50 treatments decreased the notail expression at the dome and shield stages ($P<0.05$, Figure 6-e). Besides, the morphological landmarks ascribed to the oblong and dome stages appeared about 10-15 min later, i.e., inhibition of the Activin-like factors delays the induction of differentiation.

Inhibiting the zygotic Activin-like factors through SB-505124 exposure after the MZT

The mortality rate of the SB-505124 treated embryos after the MZT rocketed in a dosedependent manner ($P<0.05$). The hatching rate considerably declined from 89% (267/300) in the control group to 71% (213/300) in the SB-A10, 54% (162/300) in the SB-A20, and 43% (129/300) in the SB-A50 ($P<0.05$, Figure 1-c). Axial and paraxial mesoderm malformations, including the notochord truncation and fused somites or lack of them except in the tail region, were observed in 31% (93/300) of the SB-A10 embryos, significantly
higher than the control group \((P<0.05, \textbf{Figure 7})\). This acute shortage of the mesendodermal derivatives in the SBA20 and SB-A50 groups markedly increased by 61% and 76% \((183/300 \text{ and } 228/300)\) one by one \((\textbf{Figure 1-c})\). Anatomical and physiological evaluations indicated the heart dilation with the ceasing of the heartbeat and blood circulation in about one-fourth of the SB-A10 treated embryos and more than half of the other treated groups \((\textbf{Figure 8})\). The ectoderm and its derivatives developed in contrast with mesendodermal defects. However, 27% \((81/300)\) of the SB-A10, 33% \((99/300)\) of the SB-A20, and 44% \((132/300)\) of the SB-A50 group displayed synophthalmia.

Immunoblotting analysis of the phosphorylated-Smad2 at the oblong stage showed that SB-505124 treatments after MZT effectively inhibit the Smad2/3 pathway \((\textbf{Figure 3})\). SB505124 exposure after MZT significantly reduced the ndr1, ndr2, oct4 \((\text{pou5f3})\), and mycb expression at the oblong, dome, and shield stages \((\textbf{Figure 9-a-d})\). Application of SB-505124 after the MZT suppressed the notail expression at the oblong stage, thereby delaying the differentiation. Inhibition of the Activin type I receptors after the MZT was associated with a dose-dependent decrease in the notail expression at the dome and shield stages \((\textbf{Figure 9-e})\). Besides, detecting the morphological landmarks ascribed to each stage of development was associated with a significant delay in these treatments.
Discussion

The roles of maternal and zygotic Activin-like proteins are highly controversial (Chen and Schier, 2001, Hagos and Dougan, 2007, Thisse et al., 2000). Therefore, we investigated their effects on the morphological and physiological parameters as well as the expression of some key genes. Although morphological assessment of the A20 and A50-embryos confirmed their normal appearance, the prevalence of the disorders in the SB-B20 and SBB50 groups was significantly higher and confirmed the role of maternal Activin-like factors during the development. In line with our results, it has been reported that maternal \(ndr1 \) is necessary to form a part of dorsal and anterior tissues in some genetic backgrounds (Hagos and Dougan, 2007, Hagos et al., 2007). Other works showed that maternal Activin-like factors are sufficient for mesoderm expansion and axis formation, and there is no need for zygotic Activin (Hyodo et al., 2004, Thisse et al., 2000). It seems that the effectiveness of Activin treatments to influence morphological indices was not equal with SB-505124 treatments and might be affected by the additional complexities of tissue thickness, and higher application of Activin or its mRNA injection can probably create the reverse effects seen in the next group. Together, our findings substantiated the role of maternal Activin-like factors, at least in some genetic backgrounds.

Inhibition of the zygotic Activin-like factors by SB-505124 after the MZT led to a broad spectrum of malformations in mesendoderm derivatives dose-dependently. Principally, the \(ndr1 \) and \(ndr2 \) redundantly pattern the germ layers in a dose-dependent manner. In this regard, during the blastula stage, the Activin/Smad signaling pathway directly regulates
transcription of the \textit{bonni and clyde} (Mixer and Mezzo) and \textit{faust} (Gata5), which provoke the \textit{casanova} (Sox32) expression. Sox32 acts as an upstream regulator of the Sox17, considered a definitive endoderm marker (Gong and Korzh, 2004, Tam \textit{et al.}, 2003). In addition, Activin-like factors indirectly, through Fgf/Erk activation, promote the \textit{notail} expression known as a pan-mesodermal marker (Mizoguchi \textit{et al.}, 2006, Poulain \textit{et al.}, 2006). Therefore, our finding was in line with earlier findings.

Activin administration brought about an increase in \textit{nrd1} and \textit{notail} mRNA levels, consistently suppressing either maternal or zygotic Activin/Smad transduction pathway lowered transcription of the two genes. In line with our findings, Yang \textit{et al.} (2017) reported that Activin treatment promotes \textit{nrd1} expression due to higher activation of the cellular signaling pathway (Yang \textit{et al.}, 2017). However, reduced \textit{nrd1} expression at the oblong stage in our Activin treated groups was similar to the observation in \textit{Xenopus laevis} in which FoxH1, the direct target of the Nodal, in association with Grg4 (groucho related gene 4) negatively regulates Nodal gene expression to ensure proper formation of the primary germ layers (Osada \textit{et al.}, 2000, Reid \textit{et al.}, 2016). The above-mentioned results about the modulation effects of Activin-like factors on \textit{nrd1} and \textit{notail} were consistent with the necessity of \textit{nrd1} signaling for mesoderm formation, as \textit{notail} expression fails to initiate in embryos with diminished \textit{nrd1} signaling (Dougan \textit{et al.}, 2003, Schulte-Merker \textit{et al.}, 1994). Another study revealed that \textit{notail} is downregulated in the dorsal side of the \textit{nrd1} mutant embryos because Ndr1 indirectly promotes \textit{notail} encoding through Fgf/Erk activation (Mizoguchi \textit{et al.}, 2006, Poulain \textit{et al.}, 2006). Together \textit{nrd1} increase due to Activin treatments was responsible for an earlier activation of the \textit{notail} gene, i.e., brought forward
the start point of the *notail* encoding. Reversely *ndr1* decrease because of SB-505124 application delayed and decreased the *notail* expression.

In the control group, *notail* expression initiated at the oblong stage, when its level went up stage-by-stage in accordance with the notochord development (Garnett *et al.*, 2009, Mullins, 1998, Schulte-Merker *et al.*, 1994). Promoting the signaling intensity of maternal Activin-like factors was associated with a slash in *oct4* (*pou5f3*) and *mycb* mRNA levels. At the same time, the mentioned treatment led to an earlier activation of the *notail* and an increase in the *notail* and *ndr1* expression. Moreover, inhibiting the maternal Activin-like factors promoted the expression level of the *oct4* (*pou5f3*) and *mycb*, delayed *notail* encoding, and downregulated *notail* and *ndr1* transcription. *Oct4* (*pou5f3*) participates in genome-wide chromatin reprogramming to gain the transient totipotency and zygotic genome activation (Lee *et al.*, 2013, Miao *et al.*, 2020). In all organisms, *oct4* (*pou5f3*) expression is associated with the cells at the pluripotency stages and during loss of pluripotency (Onichtchouk, 2012), although this master pluripotency marker is downregulated upon differentiation (Perrett, 2008). Therefore its presence and lack of the primary differentiation markers, especially the *notail*, demonstrates the cells' stemness state (Xiao *et al.*, 2016), as Gao et al. (2020) reported that *oct4* (*pou5f3*) ablation leads to a burst of premature expression of the genes which normally regulate tissue differentiation at organogenesis stage (Gao *et al.*, 2020). In another study, abrogation of the *oct4* (*pou5f3*) expression in mESCs, led to their differentiation along the trophoblast lineage (Kotkamp *et al.*, 2014, Radzisheuskaya and Silva, 2014). Taken together, Activin usage leading to a significant decrease in *oct4* (*pou5f3*) and *mycb* expression, along with *ndr1* and
consequently notail transcription enhancement, elicited premature differentiation. While SB505124 administration by improving the oct4 (pou5f3) and mycb expression along with decreasing ndr1 and suppressing the notail transcription, delayed the differentiation program.

Application of Activin and SB-505124 before the MZT led to a decrease and an increase in oct4 (pou5f3) expression, respectively. However, SB-505124 usage after the MZT caused a decrease in its transcription. Comparison of the results obtained from modulation of the maternal Activin/Smad was consistent with a previous study clarifying that SB-431542, a TGFβ signaling inhibitor, can activate the expression of endogenous oct4 (pou5f3) during reprogramming. According to this study, SB-431542 can sustain the pluripotency of iPSCs and ESCs by reducing ERK phosphorylation, which is a downstream effector of the FGF signaling (Tan et al., 2015). Indeed due to the low affinity of Erk to bind with the notail promoter region, its basal level does not transcribe the notail (stemness state). Therefore, following Activin usage, the prompt enhancement of the ndr1 significantly increases the Erk level, which elicits the notail expression (Itoh et al., 2014, Oshimori and Fuchs, 2012, Perrett, 2008). The effects of zygotic Activin/Smad modulation on oct4 (pou5f3) in this study were in accord with the fact that Activin/Smad transcribes the key pluripotency genes, which in turn coordinate with Smad2/3 to sustain the stemness of hESCs. Together the Smad2/3 presence is a necessary condition but not enough to oct4 (pou5f3) transcription.
Based on our results, mycb and oct4 (pou5f3) genes had the same response against the treatments. In line with the results, the myc gene, which inhibits cell differentiation due to its capability of epigenetic modifications (Marandel et al., 2012, Mitra et al., 2019), is regulated by oct4 (pou5f3) during early embryogenesis. This regulatory mechanism is considered as an evolutionarily conserved feature in vertebrate development (Kotkamp et al., 2014), as the transcription levels of the two zebrafish myc genes, mycl1b and mych were reduced in the maternal and zygotic oct4 (pou5f3) mutant embryos (Kotkamp et al., 2014).

The ndr2 expression pattern followed the same observed in earlier studies (Liang and Rubinstein, 2003, Rebagliati et al., 1998). Fluctuations of ndr2 due to administration of different treatments were in accord with the ndr1, which is necessary for ndr2 to achieve the normal level (Dougan et al., 2003).

Together, this study revealed a novel function of the maternal and zygotic Activin-like factors in sustaining the stemness and differentiation retardation in the zebrafish embryo.
Materials and methods

Fish maintenance

Adult zebrafish were reared at 28°C with a 14h light/10h dark photoperiod (in the Ontogeny and Biosystematics lab, the University of Tehran). Following the natural spawning, Wild Type (WT) embryos were collected and staged according to Kimmel et al. (Kimmel et al., 1995). All procedures involving animals were under the ethical standards of the National Institutes of Health guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978).

Activin treatments

Due to the sequence conservation of Activin βA and βB subunits, recombinant human Activin A can substitute Activin-like factors in other vertebrates (Hyodo et al., 2004, Melamed and Sherwood, 2005, Tada et al., 1998). Hence, to promote the effects of the maternal Activin-like factors, synthetic human Activin A (Peprotech, Rocky Hill, USA) was applied before the MZT, following the chorion removal. For dechorionation with two pairs of sharply pointed forceps, the embryos were first incubated in 2 mg/ml pronase (Roche, Mannheim, Germany) for 1 min, and rinsed 3-4 times with 8X water (12 ml stock salts per liter dH₂O (stock salts: 40 gr instant ocean sea salt per liter dH₂O)) (Apelqvist et al., 1997, Grove and Monuki, 2013, Henn and Braunbeck, 2011, Ho et al., 2006, Westerfield, 1995, Westerfield, 2000). After dechorionation, undamaged embryos were transferred to 2% agarose coated plates and treated with Activin A. Activin A was applied on the 1- to 4-cell
stage embryos at 20 and 50 ng/ml media, hereafter known as the A20 and A50 groups, respectively (Gurdon et al., 1995, Ninomiya et al., 1999). Human recombinant activin A was dissolved in the embryo medium (Westerfield, 2000) containing 0.1% bovine serum albumin at a concentration of 20 and 50 ng/ml. Each treatment was performed 15 times with 100 embryos.

SB-505124 treatments

SB-505124, a specific inhibitor of Alk4/5/7, can pass through the chorion, and therefore it was applied on the chorionated embryos. SB-505124 was purchased from Tocris R and D system (Bristol, UK) and stored as a 100 mM stock in DMSO at -20°C. To reduce the maternal Activin-like factors effects, SB-505124 was used before the MZT, on the 1- to 4cell stage embryos at 20 and 50 μM, which are called the SB-B20 and SB-B50 groups, respectively. To relieve the effects of SB-505124 and recover the receptors at the 1K-cell stage, the embryos were washed out with egg water five times (Hagos and Dougan, 2007, Hagos et al., 2007, Jia et al., 2008, Sun et al., 2006). To examine the effects of the zygotic Activin-like factors, 1K-cell stage embryos were incubated with 10, 20, and 50 μM SB505124. Hereafter, they are mentioned as SB-A10, SB-A20, and SB-A50, respectively. The control embryos were treated with an equivalent concentration of DMSO (50 μM). Each treatment was performed 15 times with 100 embryos.

Morphological assessments

Three replicates per treatment were evaluated morphologically and physiologically until 72 hpf. The embryos were anesthetized using tricaine solution (0.168 mg/ml, IACUC approved) and fixed in 10% neutral buffered formalin for 1 hour at 24°C. They were then
kept in 70% ethanol at -4°C. The embryos were photographed in 50% phosphate-buffered saline (PBS) in a glycerol bath.

RNA extraction and RT-qPCR

Total RNA was extracted from the embryos at the 256-cell, 1K-cell, oblong, dome, and shield stages using the RNeasy Mini Kit (Qiagen, Valencia, USA) according to the manufacturer's instructions. Then its quality was assessed using the Nanodrop (2000 Thermo-scientific), and only samples with high RNA Integrity Number (RIN) (A2060/A2080 ratios of 1.8-2) were selected. cDNAs were synthesized using Superscript II reverse transcriptase (Invitrogen, Carlsbad, USA) according to the manufacturer's instructions. For each sample, 1 μg of total RNA was used to perform the reverse transcription experiments (reaction volume: 20 μl). The real-time qPCR [ABI step one Real-Time PCR and StepOne software V2.3] was performed using 2X SYBR Green PCR Master Mix (Ampliqon, Odense, Denmark) according to the manufacturer's protocol. The real-time PCR conditions were as follows: 5 min at 95°C, [15 sec at 95°C, 10 sec at 58.5°C, 10 sec at 72°C] 35 cycles, 10 sec at 95°C, 1 min at 65°C, and 15 sec at 93°C. The annealing temperature of the ndr2, oct4 (pou5f3) and mycb was 60°C. The ndr1 (accession number: NC-007132.7), ndr2 (accession number: NM_139133.1), oct4 (pou5f3, accession number: NM_131112.1), mycb (accession number: NM_200172.1), notail (accession number: NC-007130.7), and gapdh (accession number: NC-007127.7) genes were amplified using these primers:

ndr1-F: (GCAGTTGTCCACACCCAGTA)
ndr1-R: (CTGGCAGGAGGAAAACGGAA)
ndr2-F: (AGATGAACCAGACGCACGA)
ndr2-R: (CTGACGTTCGACAAACCG)

...
oct4 (pou5f3)-F: (AGCGTCTAGCTTTGCCCTTT)
oct4 (pou5f3)-R: (GCATGTATAAGGCAGGGGCT)
mycb-F: (ATACTCCCGCAACATGTTGG)
mycb-R: (CGCGTCAGACTTTTCACCG)
notail-F: (ATCATCTCTTAGCGCCGTG)
notail-R: (AGCACGGGAAACATTCCGTCT)
gapdh-F: (TGTTCCAGTACGACTCCACC)
gapdh-R: (ACCTGCATCACCCACTTTA)

The relative expression was quantified from the threshold cycle for amplification and normalized to the *gapdh* level (ΔCt). The ΔΔCt and relative expression (RE) of the genes were calculated based on their maternal mRNA levels at the 256-cell stage.

Immunoblotting of the phosphorylated-Smad2

The effectiveness of Activin and SB-505124 treatments was confirmed according to the phosphorylated-Smad2 (p-Smad2) quantification through western blot analysis at the oblong stage. After dechorionation, the oblong-embryos were homogenized in 150 μl SDS buffer and microfuged for 1-2 minutes. The supernatant was then run on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and electrophoretically transferred to PVDF blotting paper (Westerfield, 2000). Immunoblotting was conducted using phosphoSmad2 (ser465/467) antibody (#3101, Cell signaling technology) and fluorescein goat antirabbit IgG secondary antibody (611-1202; Rockland antibodies and assays). β-Actin was used as a loading control (anti β-Actin antibody N-terminal (ab209869, Abcam)). The results were quantified through the Image-J software (Version 1.46r), with β-actin for normalization.
Statistics

Significant differences at 5% in terms of the survival, hatching rate, morphological characteristics, Smad2 phosphorylation, and relative expression of the genes were analyzed using a one-way analysis of variance (ANOVA) in SPSS software (Version 20). All the graphs were drawn in Microsoft excel 2016. The data represent the mean of three independent experiments, and the error bars indicate the standard deviation.
Declarations

Conflict of interests

The authors declare no conflicts of interest.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Funding

University of Tehran was in charge of the financial support by providing all the required materials and instruments during the experiment.

Acknowledgements

It is not applicable.

Funding sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

All authors have read and approved the manuscript. Conceptualization, S.H and S.E; Methodology and Investigation, S.H; Software, S.H; Validation and Formal Analysis, S.H and H.P; Resources and Data Curation, M.H; Writing – Original Draft Preparation, S.H and
References

AMACHER, S.L., DRAPER, B.W., SUMMERS, B.R. and KIMMEL, C.B. (2002). The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development 129: 3311-3323.
APELQVIST, Å., AHLGREN, U. and EDLUND, H. (1997). Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Current Biology 7: 801804.
BENNETT, J.T., JOUBIN, K., CHENG, S., AANSTAD, P., HERWIG, R., CLARK, M., LEHRACH, H. and SCHIER, A.F. (2007). Nodal signaling activates differentiation genes during zebrafish gastrulation. Developmental biology 304: 525-540.
BROWN, S., TEO, A., PAUKLIN, S., HANNAN, N., CHO, C.H.H., LIM, B., VARDY, L., DUNN, N.R., TROTTER, M. and PEDERSEN, R. (2011). Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem cells 29: 1176-1185.
CHEN, Y. and SCHIER, A.F. (2001). The zebrafish Nodal signal Squint functions as a morphogen. Nature 411: 607.
CHNG, Z., VALLIER, L. and PEDERSEN, R. (2011). Activin/nodal signaling and pluripotency. In Vitamins & Hormones, vol. 85. Elsevier, pp.39-58.
DOUGAN, S.T., WARGA, R.M., KANE, D.A., SCHIER, A.F. and TALBOT, W.S. (2003). The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130: 1837-1851.
FATHI, A., EISA-BEYGI, S. and BAHARVAND, H. (2017). Signaling molecules governing pluripotency and early lineage commitments in human pluripotent stem cells. Cell Journal (Yakhteh) 19: 194.
GAO, M., VEIL, M., ROSENBLATT, M., GEBHARD, A., HASS, H., BURYANOVA, L., YAMPOLSKY, L.Y., GRÜNING, B., TIMMER, J. and ONICHTCHOUK, D. (2020). Pou5f3 and Sox19b select gene expression repertoire at Zygotic Genome Activation. bioRxiv.
GARNETT, A.T., HAN, T.M., GILCHRIST, M.J., SMITH, J.C., EISEN, M.B., WARDLE, F.C. and AMACHER, S.L. (2009). Identification of direct T-box target genes in the developing zebrafish mesoderm. Development 136: 749-760.
GIRALDEZ, A.J., MISHIMA, Y., RIHEL, J., GROCOCK, R.J., VAN DONGEN, S., INOUE, K., ENRIGHT, A.J. and SCHIER, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312: 75-79.

GONG, Z. and KORZH, V. (2004). Fish development and genetics: the zebrafish and medaka models. World Scientific.

GROVE, E. and MONUKI, E. (2013). Morphogens, patterning centers, and their mechanisms of action. In Patterning and Cell Type Specification in the Developing CNS and PNS. Elsevier, pp.25-44.

GURDON, J., MITCHELL, A. and MAHONY, D. (1995). Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376: 520.

HAGOS, E.G. and DOUGAN, S.T. (2007). Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Developmental Biology 7: 22.

HAGOS, E.G., FAN, X. and DOUGAN, S.T. (2007). The role of maternal Activin-like signals in zebrafish embryos. Developmental biology 309: 245-258.

HASANPOUR, S. and EAGDERI, S. (2020). The Life Story of TGFβs superfamily: from the beginning to the end. International Journal of Aquatic Biology 8: 216-223.

HENN, K. and BRAUNBECK, T. (2011). Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 153: 91-8.

HO, D.M., CHAN, J., BAYLISS, P. and WHITMAN, M. (2006). Inhibitor-resistant type I receptors reveal specific requirements for TGF-β signaling in vivo. Developmental biology 295: 730-742.

HYODO, M., MAKINO, S., AWAJI, Y., SAKURADA, Y., OHKUBO, T., MURATA, M., FUKUDA, K. and TSUDA, M. (2004). A novel in vitro system for studying cardiomyocyte differentiation with medaka embryonic cells. International Journal of Developmental Biology 53: 615-622.

ITOH, F., WATABE, T. and MIYAZONO, K. (2014). Roles of TGF-beta family signals in the fate determination of pluripotent stem cells. Semin Cell Dev Biol 32: 98-106.

JAMES, D., LEVINE, A.J., BESSER, D. and HEMMATI-BRIVANLOU, A. (2005). TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132: 1273-1282.

JIA, S., REN, Z., LI, X., ZHENG, Y. and MENG, A. (2008). smad2 and smad3 are required for mesendoderm induction by transforming growth factor-β/nodal signals in zebrafish. Journal of Biological Chemistry 283: 2418-2426.

KANE, D.A. and KIMMEL, C.B. (1993). The zebrafish midblastula transition. Development 119: 447-456.

KIMMEL, C.B., BALLARD, W.W., KIMMEL, S.R., ULLMANN, B. and SCHILLING, T.F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics 203: 253-310.

KOTKAMP, K., KUR, E., WENDIK, B., POLOK, B.K., BEN-DOR, S., ONICHTCHOUK, D. and DRIEVER, W. (2014). Pou5f1/Oct4 promotes cell survival via direct activation of mych expression during zebrafish gastrulation. PloS one 9: e92356.
LAPING, N., GRYGIELKO, E., MATHUR, A., BUTTER, S., BOMBERGER, J., TWEED, C., MARTIN, W., FORNWALD, J., LEHR, R. and HARLING, J. (2002). Inhibition of transforming growth factor (TGF)-β1–induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. *Molecular pharmacology* 62: 58-64.

LEE, M.T., BONNEAU, A.R., TAKACS, C.M., BAZZINI, A.A., DIVITO, K.R., FLEMING, E.S. and GIRALDEZ, A.J. (2013). Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. *Nature* 503: 360.

LIANG, J.O. and RUBINSTEIN, A.L. (2003). Patterning of the zebrafish embryo by nodal signals. *Current topics in developmental biology* 55: 143-171.

MARMAD, L., LABBE, C., BOBE, J. and LE BAIL, P.Y. (2012). Evolutionary history of cmyc in teleosts and characterization of the duplicated c-myca genes in goldfish embryos. *Molecular reproduction and development* 79: 85-96.

MELAMED, P. and SHERWOOD, N. (2005). *Hormones and their receptors in fish reproduction*. World Scientific.

MIAO, L., TANG, Y., BONNEAU, A.R., CHAN, S.H., KOJIMA, M.L., POWNALL, M.E., VEJNAR, C.E. and GIRALDEZ, A.J. (2020). Synergistic activity of Nanog, Pou5f3, and Sox19b establishes chromatin accessibility and developmental competence in a context-dependent manner. *bioRxiv*.

MITRA, S., SHARMA, P., KAUR, S., KHURSHEED, M.A., GUPTA, S., CHAUDHARY, M., KURUP, A.J. and RAMACHANDRAN, R. (2019). Dual regulation of lin28a by Myc is necessary during zebrafish retina regeneration. *Journal of Cell Biology* 218: 489-507.

MIZOGUCHI, T., IZAWA, T., KUROIWA, A. and KIKUCHI, Y. (2006). Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish. *Developmental biology* 300: 612-622.

MULLINS, M.C. (1998). Embryonic axis formation in the zebrafish. In *Methods in cell biology*, vol. 59. Elsevier, pp.159-178.

NINOMIYA, H., TAKAHASHI, S., TANEGASHIMA, K., YOKOTA, C. and ASASHIMA, M. (1999). Endoderm differentiation and inductive effect of activin-treated ectoderm in Xenopus. *Development, growth & differentiation* 41: 391-400.

ONICHTCHOUK, D. (2012). Pou5f1/oct4 in pluripotency control: insights from zebrafish. *genesis* 50: 75-85.

OSADA, S.-I., SAJOH, Y., FRISCH, A., YEO, C.-Y., ADACHI, H., WATANABE, M., WHITMAN, M., HAMADA, H. and WRIGHT, C. (2000). Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. *Development* 127: 2503-2514.

OSHIMORI, N. and FUCHS, E. (2012). The harmonies played by TGF-beta in stem cell biology. *Cell stem cell* 11: 751-64.

PERRETT, R.M. (2008). The human germ cell lineage: pluripotency, tumourogenesis and proliferation, (ed.: University of Southampton.

POULAIN, M., FURTHAUS, M., THISSE, B., THISSE, C. and LEPAGE, T. (2006). Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling.
Development 133: 2189-2200.
QUAIL, D.F., SIEGERS, G.M., JEWER, M. and POSTOVIT, L.-M. (2013). Nodal signalling in embryogenesis and tumourigenesis. The international journal of biochemistry & cell biology 45: 885-898.
RADZISHEUSKAYA, A. and SILVA, J.C. (2014). Do all roads lead to Oct4? The emerging concepts of induced pluripotency. Trends in cell biology 24: 275-284.
REBAGLIATI, M.R., TOYAMA, R., HAFFTER, P. and DAWID, I.B. (1998). Cyclops encodes a nodal-related factor involved in midline signaling. Proceedings of the National Academy of Sciences 95: 9932-9937.
REID, C.D., STEINER, A.B., YAKLICHKIN, S., LU, Q., WANG, S., HENNESSY, M. and KESSLER, D.S. (2016). FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development. Developmental biology 414: 34-44.
SCHIER, A.F. (2009). Nodal morphogens. Cold Spring Harbor perspectives in biology 1: a003459.
SCHULTE-MERKER, S., VAN EEDEN, F., HALPERN, M.E., KIMMEL, C. and NUSSLEIN-VOLHARD, C. (1994). no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120: 1009-1015.
SHEN, M.M. (2007). Nodal signaling: developmental roles and regulation. Development 134: 1023-1034.
SUN, Z., JIN, P., TIAN, T., GU, Y., CHEN, Y.-G. and MENG, A. (2006). Activation and roles of ALK4/ALK7-mediated maternal TGFβ signals in zebrafish embryo. Biochemical and biophysical research communications 345: 694-703.
TADA, T., HIRONO, I., AOKI, T. and TAKASHIMA, F. (1998). Cloning and sequencing of carp and medaka activin subunit genes. Fisheries science 64: 680-685.
TAM, P.P., KANAI-AZUMA, M. and KANAI, Y. (2003). Early endoderm development in vertebrates: lineage differentiation and morphogenetic function. Current opinion in genetics & development 13: 393-400.
TAN, F., QIAN, C., TANG, K., ABD-ALLAH, S.M. and JING, N. (2015). Inhibition of transforming growth factor β (TGF-β) signaling can substitute for Oct4 protein in reprogramming and maintain pluripotency. Journal of Biological Chemistry 290: 4500-4511.
THISSE, B., WRIGHT, C.V. and THISSE, C. (2000). Activin- and Nodal-related factors control antero–posterior patterning of the zebrafish embryo. Nature 403: 425.
WESTERFIELD, M. (1995). The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon press.
WESTERFIELD, M. (2000). The zebrafish book: a guide for the laboratory use of zebrafish. http://zfin.org/zf_info/zfbook/zfbk.html.
WHITMAN, M. (2001). Nodal signaling in early vertebrate embryos: themes and variations. Developmental cell 1: 605-617.
WU, M.Y. and HILL, C.S. (2009). TGF-β superfamily signaling in embryonic development and homeostasis. Developmental cell 16: 329-343.
XIAO, Y., GAO, M., GAO, L., ZHAO, Y., HONG, Q., LI, Z., YAO, J., CHENG, H. and ZHOU, R. (2016). Directed differentiation of zebrafish pluripotent embryonic cells to functional cardiomyocytes. Stem cell reports 7: 370-382.

XU, R.-H., SAMPSELL-BARRON, T.L., GU, F., ROOT, S., PECK, R.M., PAN, G., YU, J., ANTOSIEWICZ-BOURGET, J., TIAN, S. and STEWART, R. (2008). NANOG is a direct target of TGFβ/activin-mediated SMAD signaling in human ESCs. Cell stem cell 3: 196-206.

YANG, F., WANG, N., WANG, Y., YU, T. and WANG, H. (2017). Activin-SMAD signaling is required for maintenance of porcine iPS cell self-renewal through upregulation of NANOG and OCT4 expression. Journal of cellular physiology 232: 2253-2262.

Figure legends:

Figure 1. Effects of Activin-like factors modulation on the mortality, hatching rate (hatch), abnormal eye development (ab.eye.dev), lack of the eye pigment (no.pig.eye), abnormal heart (ab.heart), and abnormal paraxial/axial mesoderm formation (ab.P/A.mes) until 72 hpf. (a) Effect of human Activin A applied before the MZT on the above-mentioned factors (A20 and A50: 20 and 50 ng/ml Activin), (b) effect of SB-505124 applied before the MZT on the above-mentioned factors (SB-B20 and SB-B50: 20 and 50 µM SB-505124), and (c) effect of SB-505124 applied after the MZT on the above-mentioned factors (SB-A10, SB-A20, and SB-A50: 10, 20, and 50 µM SB-505124). Bars assigned with different letters are significantly different (P<0.05).

Figure 2. Effect of human Activin A applied before the MZT on the morphological and physiological characteristics (bar: 800 µm). The control group at 72 hpf (a-b), the A20 group (Activin 20 ng/ml) at 72 hpf (c-d), and the A50 group (Activin 50 ng/ml) at 72 hpf (e-f).
A20 and A50 groups were normal without any significant differences with the control one (d and f), however, the mild pericardial dilation of the heart was observed in some larvae (c and e).

Figure 3. Immunoblotting analysis of the phosphorylated-Smad2 (p-Smad2) at the oblong stage. A20 and A50: 20 and 50 ng/ml Activin applied before the MZT; SB-B20 and SB-B50: 20 and 50 μM SB-505124 applied before the MZT; SB-A10, SB-A20 and SB-A50: 10, 20 and 50 μM SB-505124 applied after the MZT. The bars assigned with different letters are significantly different (P<0.05).

Figure 4. The Effect of human Activin A applied before the MZT on the relative mRNA abundance of the (a) ndr1, (b) ndr2, (c) oct4 (pou5f3), (d) mycb and (e) notail measured by RT-qPCR (A20 and A50: 20 and 50 ng/ml Activin, P<0.05).

Figure 5. The effect of SB-505124 applied before the MZT on the morphological and physiological characteristics (bar: 800 μm). The SB-B20 group (20 μM SB-505124) at 48 hpf (a-b) and at 72 hpf (c), the SB-B50 group (50 μM SB-505124) at 48 hpf (d-e) and at 72 hpf (f), and the control group at 48 hpf (g) and at 72 hpf (h-i). Abnormal dilation of the pericardium (b-f) and the eye convergence (a-b and e) have been indicated.

Figure 6. The Effect of SB-505124 applied before the MZT on the relative mRNA abundance of the (a) ndr1, (b) ndr2, (c) oct4 (pou5f3), (d) mycb and (e) notail measured by RT-qPCR (SB-B20 and SB-B50: 20 and 50 μM SB-505124, P<0.05).

Figure 7. The effect of SB-505124 applied before the MZT on the morphological and physiological characteristics (bar: 800um). The SB-A10 group (10 μM SB-505124) at 48 hpf (a-d) and at 72 hpf (e-f), the control group at 48 hpf (g-i) and at 72 hpf (j). The
notochord truncation and fused somites (a and d respectively), heart dilation (a-b and e-f), endodermal defects (e-f), eye synophthalmia, and lack of its pigmentation (b-c and e) have been indicated.

Figure 8. The effect of SB-505124 applied after MZT on the morphological and physiological characteristics (bar: 800um). The SB-A20 group (20 μM SB-505124) at 48 hpf (a-e) and at 72 hpf (f-h), the control group at 48 hpf (i-k) and at 72 hpf (l-n), and the SB-A50 group (50 μM SB-505124) at 48 hpf (o-p) and at 72 hpf (q-r). The notochord truncation and fused somites (a, c and p, q respectively), heart dilation (d-f, and o-r), endodermal defects (f-g, and o-r), eye synophthalmia, and lack of its pigmentation (b, d, and g) have been indicated. Figure 9. The Effect of SB-505124 applied after the MZT on the relative mRNA abundance of the (a) ndr1, (b) ndr2, (c) oct4 (pou5f3), (d) mycb and (e) notail measured by RT-qPCR (SB-A10, SB-A20 and SB-A50: 10, 20 and 50 μM SB-505124, P<0.05).
Figure 1.

(a) The effect of Activin treatments applied before the MZT

(b) The effect of SB-505124 treatments applied before the MZT

(c) The effect of SB-505124 treatments applied after the MZT
Figure 2.

Immunoblotting of the p-Smad2 treatments effect on the p-Smad2 level at the oblong

Figure 3.
Figure 4.

(a) the effect of Activin treatments applied before the MZT

(b) the effect of Activin treatments applied before the MZT

(c) the effect of Activin treatments applied before the MZT

(d) the effect of Activin treatments applied before the MZT

(e) the effect of Activin treatments applied before the MZT

Figure 4.
Figure 6.

(a) the effect of SB-505124 treatments applied before the MZT

(b) the effect of SB-505124 treatments applied before the MZT

(c) the effect of SB-505124 treatments applied before the MZT

(d) the effect of SB-505124 treatments applied before the MZT

(e) the effect of SB-505124 treatments applied before the MZT

Figure 6.
Figure 9.

(a) Relative expression of the ndr1 gene under the effect of SB-505124 treatments applied after the MZT control. The graphs show the data for SB-A10, SB-A20, and SB-A50, with different letters indicating significant differences between treatments.

(b) Relative expression of the ndr2 gene under the effect of SB-505124 treatments applied after the MZT control. Similar notation for significance levels as in (a).

(c) Relative expression of the pou5f3 gene under the effect of SB-505124 treatments applied after the MZT control. Again, different letters indicate significant differences.

(d) Relative expression of the mycb gene under the effect of SB-505124 treatments applied after the MZT control. Symbols indicate significant differences.

(e) Relative expression of the no tail gene under the effect of SB-505124 treatments applied after the MZT control. Symbols indicate significant differences as well.