THE Π^1_1 LÖWENHEIM-SKOLEM-TARSKI PROPERTY OF STATIONARY LOGIC

SEAN COX

ABSTRACT. Fuchino-Maschio-Sakai proved that the Löwenheim-Skolem-Tarski (LST) property of Stationary Logic is equivalent to the Diagonal Reflection Principle on internally club sets (DRP$_{IC}$) introduced in [4]. We prove that the restriction of the LST property to (downward) reflection of Π^1_1 formulas, which we call the Π^1_1-LST property, is equivalent to the internal version of DRP from [2]. Combined with results from [2], this shows that the Π^1_1-LST Property for Stationary Logic is strictly weaker than the full LST Property for Stationary Logic, though if CH holds they are equivalent.

CONTENTS

1. Introduction
2. Preliminaries
3. Proof of Theorem 1.2
4. Concluding remarks
References

1. INTRODUCTION

Stationary Logic is a relatively well-behaved fragment of Second Order Logic introduced by Shelah [12], and first investigated in detail by Barwise et al [1]. Stationary Logic augments first order logic by introducing a new second order quantifier stat; we typically interpret “$\text{stat} Z \phi(Z,\ldots)$” to mean that there are stationarily many countable Z such that $\phi(Z,\ldots)$ holds. The quantifier aa stands for “almost all” or “for club many”; so

$$aaZ \phi(Z,\ldots)$$

is an abbreviation for

$$\neg \text{stat} Z \phi(Z,\ldots).$$

2010 Mathematics Subject Classification. 03E05, 03E55, 03E35, 03E65.

The author thanks Hiroshi Sakai (JSPS Kakenhi Grant Number 18K03397) for travel support to the RIMS Set Theory Workshop 2019, and also gratefully acknowledges support from Simons Foundation grant 318467.

1Other interpretations, e.g. for uncountable Z, or for filters other than the club filter, are often considered too.
Section 2 provides more details.

By \textit{structure} we will always mean a first order structure in a countable signature. The question of whether every structure has a “small” elementary substructure in Stationary Logic was raised already in [1]. One cannot hope to always get countable elementary substructures; e.g. if κ is regular and uncountable, then (κ, \in) satisfies “\in is a linear order and

$$aaZ \exists x x \text{ is an upper bound of } Z$$

but no countable linear order can satisfy that sentence. In a footnote in [1], it was observed that even the statement

“Every structure has an elementary (w.r.t. Stationary Logic) substructure of size $\leq \omega_1$”

(LST)

carries large cardinal consistency strength.2 The quoted statement above is now typically called the \textit{Löwenheim-Skolem-Tarski} (LST) property of Stationary Logic.3

Fuchino et al. recently proved that LST is equivalent to a version of the Diagonal Reflection Principle introduced in Cox [4]:

\textbf{Theorem 1.1} (Fuchino-Maschio-Sakai [7]). \textit{LST is equivalent to the Diagonal Reflection Principle on internally club sets (DRP}\textsubscript{IC}\textit{).}

The purpose of the present note is to prove the following variant of Theorem 1.1 involving Π^1_1 formulas in Stationary Logic (defined in Section 2 below) and the principle DRP\textsubscript{internal} from [2]:

\textbf{Theorem 1.2.} The Π^1_1-LST property of Stationary Logic (see Definition 2.2) is equivalent to the principle DRP\textsubscript{internal}.

Cox [2] proved that DRP\textsubscript{IC} is strictly stronger than DRP\textsubscript{internal}. This was obtained by forcing over a model of a strong forcing axiom in a way that preserved DRP\textsubscript{internal} while killing DRP\textsubscript{IC} (in fact killing RP\textsubscript{IC}; the argument owed much to Krueger [10]). Furthermore, if CH holds, then DRP\textsubscript{IC} is equivalent to DRP\textsubscript{internal}. Combining those results with Theorem 1.2 immediately yields:

\textbf{Corollary 1.3.} The LST property of Stationary Logic is \textbf{strictly} stronger than the Π^1_1-LST property of Stationary Logic.

\textit{However, if the Continuum Hypothesis holds, they are equivalent.}4

2See Definition 2.2 for precisely what is meant by “elementary substructure” in this context.

3The weaker assertion that every consistent theory (in Stationary Logic) has a model of size ω_1, on the other hand, is a theorem of ZFC, as proven in [1].

4One doesn’t actually need the full continuum hypothesis for this equivalence to hold, but rather a variant of Shelah’s Approachability Property, namely that the class of internally stationary sets is the same (mod NS) as the class of internally club sets. See Cox [2] for more details.
Figure 1. An arrow indicates an implication, an arrow with an X indicates a non-implication.

Martin’s Maximum $\xrightarrow{\mathcal{X}}$ DRP_{internal} \leftarrow Stationary Logic has the Π_1^1 LST property

Stationary Logic has the LST property

(\textit{these 4 statements are equivalent if CH holds})

We note that while the technical strengthening MM$^{++}$ of Martin’s Maximum implies DRP_{IC} (see [4]), recent work of Cox-Sakai [6] shows that Martin’s Maximum alone does not imply even the weakest version of DRP. Figure 1 summarizes the relevant implications and non-implications discussed in this introduction.

Section 2 covers the relevant preliminaries, and Section 3 proves Theorem 1.2. Section 4 ends with some concluding remarks.

2. Preliminaries

Recall that $S \subseteq [A]^\omega$ is stationary if it meets every closed, unbounded subset of $[A]^\omega$ (in the sense of Jech [9]). By Kueker [11] this is equivalent to requiring that for every $f : [A]^<\omega \to A$ there is an element of S that is closed under f.

In what follows, we will use uppercase letters to denote second order variables/parameters, and lowercase letters to denote first order variables/parameters. We will also use some standard abbreviations; e.g. if our language includes the \in symbol, v is a first order variable, and Z is a second order variable, “$v = Z$” is short for

$$\forall x \ x \in v \iff Z(x).$$

Given a structure $\mathfrak{A} = (A, \ldots)$ (which we always assume to have a countable signature), the satisfaction relation in Stationary Logic is defined recursively by:

$$\mathfrak{A} \models \text{stat}_Z \phi(Z, U_1, \ldots, U_\ell, p_1, \ldots, p_k)$$

$$\iff$$

$$\{ Z \in [A]^\omega : \mathfrak{A} \models \phi(Z, U_1, \ldots, U_\ell, p_1, \ldots, p_k) \} \text{ is stationary in } [A]^\omega.$$
We define a hierarchy of formulas in Stationary Logic that mimics the usual hierarchy in Second Order Logic. Since
\[\text{aa}Z \phi(Z, \ldots) \]
roughly translates as
\[\exists C \ C \text{ is club and } \forall Z \in C \phi(Z, \ldots), \]
the \text{aa} quantifier will correspond to the existential second order quantifier when constructing the hierarchy. Similarly, since
\[\text{stat}Z \phi(Z, \ldots) \]
roughly translates as
\[\forall C \ C \text{ is club } \Rightarrow \exists Z \in C \phi(Z, \ldots), \]
the \text{stat} quantifier will correspond to the universal second-order quantifier.

Definition 2.1. A formula in Stationary Logic without second order quantifiers will be denoted by \(\Sigma^1_0 \) or \(\Pi^1_0 \). For \(n > 0 \), a formula of the form
\[\text{stat}Z_1 \ldots \text{stat}Z_k \phi(Z_1, \ldots, Z_k, \ldots) \]
where \(\phi \) is \(\Sigma^{1}_{n-1} \) will be called a \(\Pi^1_n \) formula, and a formula of the form
\[\text{aa}Z_1 \ldots \text{aa}Z_k \psi(Z_1, \ldots, Z_k, \ldots) \]
where \(\psi \) is \(\Pi^{1}_{n-1} \) will be called a \(\Sigma^1_n \) formula.

For example, if \(\phi(Z_0, Z_1, v_1, \ldots, v_\ell) \) has no \text{stat} or \text{aa} quantifiers, then
\[\text{stat}Z_0 \ \text{aa}Z_1 \phi(Z_0, Z_1, v_1, \ldots, v_\ell) \]
is a \(\Pi^1_2 \) formula.

Definition 2.2. We say that the LST property holds for Stationary Logic iff for every structure \(\mathfrak{A} = (A, \ldots) \) there exists a \(W \subseteq A \) of size \(\leq \omega_1 \) such that for all formulas \(\phi \) in Stationary Logic with no free occurrences of second order variables, and all first order parameters \(p_1, \ldots, p_k \in W \),
\[\mathfrak{A} \models \phi[p] \text{ if and only if } \mathfrak{A}|W \models \phi[p]. \]

We say that the \(\Pi^1_\downarrow \) LST property holds for Stationary Logic iff for every structure \(\mathfrak{A} = (A, \ldots) \) there exists a \(W \subseteq A \) of size \(\leq \omega_1 \) such that for all \(\Pi^1_n \) formulas \(\phi \) in Stationary Logic with no free occurrences of second order variables, and all first order parameters \(p_1, \ldots, p_k \in W \),
\[\text{if } \mathfrak{A} \models \phi[p], \text{ then } \mathfrak{A}|W \models \phi[p]. \]

Remark 2.3. Note that in the definition of the \(\Pi^1_\downarrow \) LST property, we only require that \(\Pi^1_n \) formulas reflect downward. If there is always an \(\omega_1 \) sized substructure that reflects \(\Pi^1_n \) formulas both upward and downward, then the full LST property holds. This issue is discussed further in Section 4.

5Recall we always assume countable signature, though for everything discussed in this paper an \(\omega_1 \)-sized signature would still be fine.
We consider variants of the **Diagonal Reflection Principle** introduced in Cox [4] and [2]. We use the following definition, which by Cox-Fuchs [5] is equivalent to the definitions from [4] and [2]:

Definition 2.4. \(\text{DRP}_{\text{internal}}\) asserts that for every sufficiently large regular \(\theta\), there are stationarily many \(W \in \wp(\omega_2(H_\theta))\) such that:

- \(|W| = \omega_1 \subset W\); and
- Whenever \(A \in W\) is uncountable and \(S \in W\) is a stationary subset of \([A]^{\omega}\), the set \(S \cap W \cap [W \cap A]^{\omega}\) is stationary in \([W \cap A]^{\omega}\).

The “internal” part of the definition refers to the fact that we require that \(S \cap W \cap [W \cap A]^{\omega}\) is stationary, not merely that \(S \cap [W \cap A]^{\omega}\) is stationary. Definition 2.4 is simply the diagonal version of an internal variant of WRP introduced in Fuchino-Usuba [8] (see Cox [2] for a discussion).

3. Proof of Theorem 1.2

We prove a slightly stronger variant of Theorem 1.2. The proof below is strongly influenced by Fuchino et al [7].

Theorem 3.1. The following are equivalent:

1. \(\text{DRP}_{\text{internal}}\).
2. For every structure \(\mathfrak{A} = (A, \ldots)\), there is a \(W \subseteq A\) of size at most \(\omega_1\) such that for every finite list \(p_1, \ldots, p_k \subseteq W \cap A\) and every formula \(\phi\) without 2nd order quantifiers,

\[
\left(\mathfrak{A} \models \text{stat}Z \phi[Z, \vec{p}] \right) \implies \left(\mathfrak{A}|W \models \text{stat}Z \phi[Z, \vec{p}] \right).
\]

3. The \(\Pi^1_1\)-LST property holds of Stationary Logic (as in Definition 2.2);
4. For every structure \(\mathfrak{A} = (A, \ldots)\), there is a \(W \subseteq A\) of size at most \(\omega_1\) such that for every formula \(\psi\) in 2nd order prenex form with no free occurrences of second order variables, and every finite list \(p_1, \ldots, p_k\) of elements of \(W\), if

\[
\mathfrak{A} \models \psi[\vec{p}]
\]

then, letting \(\hat{\psi}\) be the formula obtained from \(\psi\) by changing all \(\forall\) quantifiers to \(\text{stat}\) quantifiers,

\[
\mathfrak{A}|W \models \hat{\psi}[\vec{p}].
\]

Before proving the theorem, we remark that in parts 2, 3, and 4 of Theorem 3.1 we only mentioned first order parameters from \(W \cap A\). If the structure \(\mathfrak{A}\) is sufficiently rich then it often makes sense to also speak of second-order parameters that are elements of \(W\). But in general (e.g. when \(\mathfrak{A}\) is a group) it is more natural to only speak of first order parameters from \(W \cap A\).
Proof. (of Theorem 3.1): (4) trivially implies (3), since if ψ is represented as a prenex Π^1_1 formula, then $\hat{\psi} = \psi$ (because there are no aa quantifiers in the original formula at all). Similarly, (3) trivially implies (2) because if ϕ has no second order quantifiers,

$$\text{statZ } \phi$$

is obviously a Π^1_1 formula.

To see that (2) implies (1), assume (2) and suppose θ is a regular cardinal $\geq \omega_2$. We need to find a $W \prec (H_\theta, \in)$ such that $|W| = \omega_1 \subset W$ and for every $s \in W$ that is a stationary collection of countable sets,

$$s \cap W \cap [W \cap \bigcup s]^\omega \text{ is stationary.}$$

Consider $\mathfrak{A} = (H_\theta, \in)$. Let $W \subset H_\theta$ be as in the statement of (2). Fix any $s \in W$ that is a stationary collection of countable sets. Then

$$\mathfrak{A} \models \text{statZ } \exists p \exists \alpha \ (p = Z \cap \omega_1, \ \alpha < \omega_1, \ \text{and } \alpha \text{ is an upper bound of } p),$$

so by assumption on W, this statement is also satisfied by $\mathfrak{A}|W$ (note that the parameter ω_1 is an element of W because ω_1 is first-order definable in \mathfrak{A} and W is at least first-order elementary in \mathfrak{A}). If $W \cap \omega_1$ were countable, say $W \cap \omega_1 = \delta < \omega_1$, it would follow that for stationarily many $Z \in W \cap [W]^{\omega}$, there is an $\alpha < W \cap \omega_1 = \delta$ such that α is an upper bound of $Z \cap \delta$. This would be a contradiction, since due to the countability of δ, the set of $Z \in [W]^{\omega}$ such that $\delta \subseteq Z$ is a club.

Finally, to prove that (1) implies (4): fix a structure $\mathfrak{A} = (A, \ldots)$ and let θ be a sufficiently large regular cardinal with $\mathfrak{A} \in H_\theta$. By (1) there is a $W \prec (H_\theta, \in, \mathfrak{A})$ witnessing $\text{DRP}_{\text{internal}}$. We prove by induction on complexity of formulas ψ in 2nd order prenex form that if $p_1, \ldots, p_k \in W \cap A$ and

$$\mathfrak{A} \models \psi[\vec{p}]$$

then, letting $\hat{\psi}$ be the result of replacing all aa quantifiers with stat quantifiers,

$$\mathfrak{A}|(W \cap A) \models \hat{\psi}[\vec{p}].$$
We actually need to inductively prove a slightly stronger statement: namely, that whenever ψ is a 2nd order prenex formula, $p_1, \ldots, p_k \in W \cap A$, and $Z_1, \ldots, Z_\ell \in W \cap [A]^\omega$,

\[(1)\quad \mathfrak{A} \models \psi[Z, \vec{p}] \implies \mathfrak{A}[(W \cap A)] \models \hat{\psi}[Z, \vec{p}].\]

So suppose

\[(2)\quad \mathfrak{A} \models QZ \phi[Z, U_1, \ldots, U_k, p_1, \ldots, p_\ell]\]

where Q is either the aa or $stat$ quantifier, U_1, \ldots, U_k are each elements of $W \cap [A]^\omega$, $p_1, \ldots, p_\ell \in W \cap A$, and the inductive hypothesis holds of the formula ϕ.

Now regardless of whether Q is the aa or $stat$ quantifier,

\[\bar{QZ} \phi \equiv \text{stat}Z \hat{\phi}.\]

and by (2) (since the aa quantifier is stronger than the $stat$ quantifier)

\[\mathfrak{A} \models \text{stat}Z \phi[Z, U_1, \ldots, U_k, p_1, \ldots, p_\ell].\]

Hence, by the definition of the stationary logic satisfaction relation,

\[s := \{Z \in [A]^\omega : \mathfrak{A} \models \phi[Z, \vec{U}, \vec{p}]\}\]

is stationary in $[A]^\omega$.

Note that since \vec{U}, \vec{p}, ϕ, and \mathfrak{A} are elements of W, it follows that $s \in W$. Since W is internally diagonally reflecting,

\[s \cap W \cap [W \cap A]^\omega\]

is stationary in $[W \cap A]^\omega$.

Consider for the moment an arbitrary $Z \in s \cap W \cap [W \cap A]^\omega$. Then

\[\mathfrak{A} \models \phi[Z, \vec{U}, \vec{p}]\]

and it follows by the induction hypothesis (and that Z, \vec{U}, and \vec{p} are each elements of W) that:

\[\mathfrak{A}[(W \cap A)] \models \hat{\phi}[Z, \vec{U}, \vec{p}].\]

Hence, we have shown that

\[s \cap W \cap [W \cap A]^\omega \subseteq \{Z \in [W \cap A]^\omega : \mathfrak{A}[(W \cap A)] \models \hat{\phi}[Z, \vec{U}, \vec{p}]\}\]

Since the set on the left side is stationary, the set on the right side is too. So by the definition of the satisfaction relation,

\[\mathfrak{A}[(W \cap A)] \models \text{stat}Z \hat{\phi}[Z, \vec{U}, \vec{p}].\]

This completes the proof of the (1) \implies (4) direction. \square
4. Concluding remarks

We remark that it is straightforward to show, in ZFC alone, that:

Lemma 4.1. For every structure $\mathcal{A} = (A, \ldots)$ there exists a $W \subseteq A$ of size at most ω_1 such that

$$\mathcal{A}|W \prec_{\Sigma^1_1} \mathcal{A}$$

(i.e. such that Σ^1_1 formulas satisfied by \mathcal{A} are also satisfied by $\mathcal{A}|W$).

In fact, if θ is a regular cardinal such that $\mathcal{A} \in H_\theta$, and

$$W \prec_{\text{1st order}} (H_\theta, \in, \mathcal{A})$$

is such that $|W| = \omega_1$ and

(3) $W \cap [W \cap A]^\omega$ contains a club in $[W \cap A]^\omega$

(this always holds for stationarily many W, e.g. for those W that are internally approachable), then

$$\mathcal{A}|(W \cap A) \prec_{\Sigma^1_1} \mathcal{A}.$$

We briefly sketch the proof of the lemma; more details, and other related results, can be found in Cox [3]. One proves by induction on complexity of formulas, making use of (3), that if ϕ is Σ^1_1, $p_1, \ldots, p_k \in W \cap A$, and $Z_1, \ldots, Z_\ell \in W \cap [A]^\omega$, then

if $\mathcal{A} \models \phi[Z,p]$, then $\mathcal{A}|(W \cap A) \models \phi[Z,p].$

This was basically part of the proof from Fuchino et al [7] that DRP$_{\text{IC}}$ implied the LST for Stationary Logic. See [3] for some other related ZFC theorems.

So by Lemma 4.1 one can always get an ω_1 sized substructure that reflects all Σ^1_1 statements downward. And if DRP$_{\text{internal}}$ holds, one can also get an ω_1 sized substructure that reflects all Π^1_1 statements downward. But it is consistent that both of these are true, yet no single ω_1-sized substructure downward reflects all Π^1_1 and all Σ^1_1 statements. In particular, in any model where DRP$_{\text{internal}}$ holds and DRP$_{\text{IC}}$ fails, Theorem 1.2 tells us that there is a structure such that no ω_1-sized substructure reflects all Π^1_1 and all Σ^1_1 statements (though there are structures that reflect one or the other).

Another way to view this phenomenon, in terms of DRP-like principles, is that DRP$_{\text{internal}}$ yields stationarily many $W \in \wp_{\omega_2}(H_\theta)$ such that the transitive collapse H_W of W is “correct about stationary sets”; i.e. whenever $s \in H_W$ and $H_W \models \text{“s is a stationary set of countable sets”}$, then V believes this too. However, if W is not internally club, it is possible (by [2]) that H_W is correct about stationary sets, but is not correct about clubs; i.e. there can be a $c \in H_W$ such that $H_W \models \text{“c is a club of countable sets”}$, but V does not believe this. If, on the other hand, W witnesses DRP$_{\text{IC}}$, then H_W is correct about both stationarity and clubness.
References

[1] Jon Barwise, Matt Kaufmann, and Michael Makkai, Stationary logic, Ann. Math. Logic 13 (1978), no. 2, 171–224, DOI 10.1016/0003-4843(78)90003-7. MR486629

[2] Sean Cox, Forcing axioms, approachability at ω_2, and stationary set reflection, Journal of Symbolic Logic, to appear, available at https://arxiv.org/abs/1807.06129

[3] , Internal reflection and applications, in preparation.

[4] , The Diagonal Reflection Principle, Proceedings of the American Mathematical Society 140 (2012), no. 8, 2893–2902.

[5] Sean Cox and Gunter Fuchs, in preparation.

[6] , Martin’s Maximum and the Diagonal Reflection Principle, under review, available at https://arxiv.org/abs/1904.00262.

[7] Sakaé Fuchino, André Rodrigues Ottenbreit Maschio, and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, I, preprint (2018).

[8] Sakaé Fuchino and Toshimichi Usuba, A reflection principle formulated in terms of games, RIMS Kokyuroku 1895, 37–47.

[9] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR1940513 (2004g:03071)

[10] John Krueger, Internal approachability and reflection, J. Math. Log. 8 (2008), no. 1, 23–39.

[11] David W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), no. 1, 57–103. MR0457191 (56 #15406)

[12] Saharon Shelah, Generalized quantifiers and compact logic, Trans. Amer. Math. Soc. 204 (1975), 342–364. DOI 10.2307/1997362. MR376334

E-mail address: scox9@vcu.edu

Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, Virginia 23284, USA