Sociodemographic and Health-Related Characteristics of a Safety-Net Patient Population

Afiba Manza-Azele Agovi aagovi@jpshealth.org
JPS Health
Corresponding Author
ORCiD: 0000-0001-7995-8358

Ifedioranma Anikpo
JPS Health Network

Matthew J. Cvitanovich
JPS Health Network

Lu Yan
JPS Health Network

Tzu-Chun Chu
JPS Health Network

Brooke MacDonald
JPS Health Network

Aaron W. Gehr
JPS Health Network

Kevin Craten
JPS Health Network

Rohit P. Ojha
JPS Health Network

DOI: 10.21203/rs.2.14361/v2

SUBJECT AREAS
Health Policy
KEYWORDS

Safety-net, vulnerable, underserved, health services, chronic disease, health disparities
Abstract

ABSTRACT Background Safety-net health systems are an important source of healthcare for underserved or vulnerable individuals, but definitions of safety-net institutions are largely based on patient characteristics. Some definitions may not accurately identify such institutions. Therefore, we aimed to describe the characteristics of urban safety-net patients in Texas and compare the distribution of morbidities between safety-net and general population patients. Methods We used hospital claims data from the Dallas-Fort Worth Hospital Council Foundation to create a cross-sectional cohort. Eligible patients were aged ≥18 years and Tarrant County residents in 2018. Patients were divided into two groups for comparison. The first group represented patients with hospital claims from JPS Health Network (i.e. safety-net population). The second group represented all patients with hospital claims in Tarrant County (i.e. general population). We estimated frequencies of patient characteristics. In addition, we estimated overall and payor-stratified standardized morbidity ratios (SMRs) adjusted for age, gender, and race/ethnicity to compare the prevalence of common chronic diseases between safety-net patients and patients in the general population. Results Our study population comprised 459,827 patients, of whom 74,323 (16%) were safety-net patients. Patients aged ≥65 years comprised 23% of the general population and 11% of the safety-net population. Non-Hispanic Whites comprised 52% of the general population and 29% of safety-net patients. A larger proportion of safety-net patients were uninsured compared with general population patients (safety-net: 54%; general population: 25%), but Medicaid distribution was less discrepant (safety-net: 9%; general population: 7%). Medicare was the primary payor for 24% of general population...
patients and 14% of safety-net patients. Safety-net patients had relative excesses of mental health and chronic conditions ranging between 5% and 230% for all selected conditions except dementia/Alzheimer’s. The patterns for payor-stratified SMRs were consistent with the overall results. Conclusions We observed considerable sociodemographic diversity and a high burden of mental health and chronic conditions among safety-net patients, which may support understanding the healthcare needs of safety-net populations. Our findings raise questions about definitions of safety-net institutions based on Medicaid distribution alone and the transportability of findings from studies in which safety-net populations are unrepresented.

background

The Affordable Care Act (ACA) intended to expand Medicaid coverage for low-income individuals in the United States (U.S.), but states were given the option to decline expansion. As of August 2019, 14 states including Texas, have not expanded Medicaid coverage, which has created a coverage gap that affects an estimated 2.5 million adults [1, 2]. Texas has the highest prevalence of uninsured adults in the U.S. [3] and accounts for 31% of people in the coverage gap [2]. Safety-net health systems offer service regardless of an individual’s ability to pay and are an important source of healthcare for these uninsured individuals [4, 5], but safety-net populations are understudied and limited information is available about their healthcare needs [6, 7].

Individuals who rely on safety-net institutions are often broadly described as underserved or medically vulnerable populations and include not only the uninsured but also underinsured, racial/ethnic minorities, unemployed, immigrants, chronically

ill (physical or mental), disabled, veterans, homeless, or incarcerated [5]. Prior reports involving safety-net populations have largely been about specific conditions [8, 9] or conducted at the hospital-level using aggregate definitions of patient characteristics [10–14]. Reports of specific conditions have limited generalizability to the broader safety-net population and hospital-level (i.e. group-level) have a different unit of analysis [15]. In addition, group-level comparisons may obscure important differences in patient case mix [16]. A systematic individual-level assessment of people receiving care in a safety-net health system may thus contribute to a multilevel understanding[17] about underserved and vulnerable individuals. Therefore, we aimed to describe the characteristics of an urban safety-net population in Texas and compare the distribution of morbidities between safety-net patients and patients in the general population.

methods

Study setting

JPS Health Network (JPS) is an urban integrated safety-net health system and a member of America’s Essential Hospitals [18]. The network has a well-defined catchment area that encompasses Tarrant County, Texas, which is part of the Dallas-Fort Worth metropolitan area. Tarrant County is the third largest County in Texas with a population of 2.1 million people and an overall poverty of 13.5% [19, 20]. The network includes a 573-bed academic teaching hospital in Fort Worth, Texas and over 40 satellite community health and school-based clinics distributed across the county. JPS provides comprehensive health services including inpatient, outpatient, and specialty services. Specialty services include Level 1 services for trauma and stroke, an accredited comprehensive Community Cancer Program, and a
comprehensive HIV clinic (Healing Wings Clinic) supported by the Ryan White HIV/AIDS Program.

Data source and eligibility criteria

We used administrative claims data from the Dallas Fort Worth Hospital Council Foundation (DFWHC) regional database for this study. The DFWHC, which includes 90 member hospitals in the North Texas region, houses all administrative claims data reported from about 95% of hospitals in the region [21]. This comprehensive database has information on patient charges, emergency department (ED) use, and sociodemographic characteristics of patients from the North Texas region [21]. Our eligibility criteria included patients aged ≥18 years who were Tarrant County residents at any point in 2018 and had a hospital encounter at any DFWHC member hospital in Tarrant County during that year. Patients without a Tarrant County zip code during 2018 were ineligible. We defined our safety-net population as adults who generated either at least one claim for services rendered during a non-ED hospital encounter or who had claims that exclusively originated from the ED at JPS between January 1, 2018 and December 31, 2018. General population patients were defined as adults generating at least one claim for health care services rendered during a hospital encounter at any DFWHC member hospital within Tarrant County during 2018.

Sociodemographic and health related characteristics.

Sociodemographic characteristics included age (18—29, 30—39, 40—49, 50—59, 60—64 or ≥65 years), race/ethnicity (Hispanic, non-Hispanic Black, non-Hispanic White, non-Hispanic Other), and gender (male or female). Health insurance status was defined as the primary payor listed on the medical claim and categorized as insured (commercial insurance, health maintenance organization and preferred
provider organization insurance, workers compensation, veteran and other Federal programs insurance), uninsured (self-pay or unknown insurance status), Medicare, and Medicaid. We used the Centers for Medicare and Medicaid Services (CMS) developed list of chronic illnesses [22] for the study. The presence of a selected chronic illness in study patients was based on International Classification of Diseases, Tenth Revision, (ICD-10) codes for the first listed principal diagnosis in the medical claim for that hospital encounter (detailed in Supplementary Table S1).

Multi-morbidity burden was defined as the presence of more than one selected chronic illness per hospital encounter and classified from zero to greater than or equal to three (0, 1, 2, or ≥3).

Data analysis

We estimated relative frequencies of sociodemographic characteristics in both safety-net patients and general population patients. In addition, we computed overall- and payor-stratified (private insurance, Medicaid, Medicare, and uninsured) standardized morbidity ratios (SMRs) and corresponding 95% confidence limits (CL) to compare the observed number of cases for a selected chronic condition among safety-net patients with the expected number of cases if patients in the general population had the same age-, gender-, and racial/ethnic distribution as safety-net patients. An SMR greater than one thus indicates the relative excess number of cases for a particular condition among safety-net patients compared with patients in the general population.

Results

Our study population comprised 459,827 adult Tarrant County residents with an administrative claim during 2018, of whom 74,323 (16%) were safety-net patients
Table 1 summarizes the sociodemographic characteristics of our study population by safety-net or general population status. Patients aged ≥65 years comprised 23% of the general population and 11% of the safety-net population. The majority of general population patients were non-Hispanic White (52%) and female (65%), whereas gender and race/ethnicity were more evenly distributed among safety-net patients. A larger proportion of safety-net patients were uninsured compared with general population patients (safety-net: 54%; general population: 25%). In contrast, Medicare was the primary payor for about 24% of general population patients but only 14% of patients used the safety-net health system.

Health-related characteristics

Figure 2 illustrates SMRs comparing the burden of select chronic illnesses between the general and safety-net populations. Safety-net patients had relative excesses of morbidities ranging between 5% and 230% for all but one of the conditions of interest. The top five excess morbidities among safety-net patients were major depression (SMR = 3.30, 95% CL: 3.18, 3.44), schizophrenia-related disorders (SMR = 2.57, 95% CL: 2.46, 2.68), human immunodeficiency virus (HIV) (SMR = 2.20, 95% CL: 2.01, 2.41), chronic viral hepatitis (SMR = 2.09, 95% CL: 1.96, 2.24) and chronic obstructive pulmonary disease (SMR = 1.56, 95% CL: 1.51, 1.61). The combination of Alzheimer’s disease and dementia was the only condition with a lower relative morbidity among safety-net patients compared with patients in the general population (SMR = 0.90, 95% CL: 0.84, 0.97).

Table 2 illustrates insurance-stratified SMRs comparing the burden of select morbidities between general and safety-net populations. The patterns of relative excess morbidity observed were generally consistent with the overall population for individuals who were uninsured, Medicaid and Medicare. Safety-net patients with
private insurance had relative excesses ranging between 9% and 525% for all of the chronic conditions of interest. The top five excess morbidities among privately insured safety-net patients were major depression (SMR = 6.25, 95% CL: 5.81, 6.73), schizophrenia-related disorders (SMR = 4.54, 95% CL: 3.99, 5.16), HIV (SMR = 3.96, 95% CL 3.30, 4.74), chronic viral hepatitis (SMR = 2.87, 95% CL: 2.43, 3.39) and chronic obstructive pulmonary disease (SMR = 2.06, 95% CL: 1.88, 2.26).

Discussion

Our results suggest that safety-net patients are substantially different from the general population of patients overall and by payor status. Safety-net patients are younger, have greater racial/ethnic diversity, and are largely uninsured. In addition, safety-net patients have a substantially higher burden of mental illness and chronic conditions including HIV infection, chronic viral hepatitis, chronic obstructive pulmonary disease, cancer, and type 2 diabetes.

Prior reports have primarily focused on hospital-level comparisons using definitions of disproportionate share hospitals. These reports used hospital characteristics such as the proportion of individuals who are uninsured or the proportion of Medicaid or Medicare beneficiaries to define safety-net health systems [10, 11, 23-26]. Our results suggest that definitions based on the proportion of Medicaid or Medicare beneficiaries could have substantial misclassification of safety-net status, which could affect interpretation of the results. In addition, these definitions do not consider underinsured individuals or high-need low income patients with non-Medicaid insurance, who comprise 28% (41 million) of the adult population in the U.S. [27, 28]. Our findings support the use of a revised definition based on uncompensated care for defining safety-net institutions [12].
We identified two prior studies with an individual-level analysis comparing safety-net populations with patients in other settings. Our results are generally consistent with the study by Balasubramanian et al. [29], who reported a greater proportion of safety-net patients had higher comorbidity scores compared with patients at non-safety-net institutions. Nevertheless, the population for this study comprised patients aged 50—63 years and the data were derived from both administrative claims and clinical sources including electronic health records. Our study population included all patients aged ≥18 years and was based on administrative claims data, but the observed higher morbidity among safety-net patients is consistent between studies. The study by Whitaker et al. [16] is not directly comparable with our study considering the authors focused on lower post-operative complications after colorectal cancer surgery and not the broader comparisons pursued in our study.

We observed sizable differences in the chronic disease burden between safety-net patients and general population patients by payor status. In particular, our results suggest substantially higher relative excess of mental health and chronic conditions even when comparing safety-net patients with patients in the general population by private insurance, Medicaid, and Medicare. These differences may be partially attributable to being underinsured [30], which prompted care at a safety-net health system. This finding, combined with the low frequency of Medicare beneficiaries in our population, adds further questions about standard definitions of disproportionate share hospitals that are used to identify safety-net institutions.

Our findings should be interpreted in the context of certain limitations. Our SMR estimates may be sensitive to outcome misclassification because of errors in coding claims and varying coding practices across participating hospitals. For example, a prior study [31] reported that administrative claims data have 61% sensitivity and
94% specificity for classifying depression when electronic health records are the reference standard. If outcome misclassification is precisely nondifferential (i.e. no variation in misclassification between safety-net patients and patients in the general population) given additional assumptions including independent errors [32], then our SMRs may underestimate the true magnitude of relative excess of depression or other conditions. In contrast, if outcome misclassification is differential, then our SMR estimates may underestimate or overestimate the true magnitude of relative excess. In addition, our SMR estimates may be sensitive to selection bias if individuals in our safety-net hospital also received care at other hospitals. This bias is related to an initial misclassification of hospital status but manifests as selection bias because the individual could “participate” in both the safety-net and general population of patients. The consequence may bias SMRs toward the null, which would underestimate the magnitude of health conditions among safety-net patients. Lastly, claims data do not include services provided through outpatient labs or hospital-based outpatient services which limits the generalizability of these findings to those settings.

In summary, if the limitations of our study did not materially affect our results, then our findings provide useful evidence about safety-net populations. We observed considerable sociodemographic diversity and a high burden of mental health and chronic conditions among safety-net patients, which may support understanding the healthcare needs and priorities of safety-net populations. The high burden of chronic conditions extended to safety-net patients regardless of payor. The differences in characteristics between safety-net populations and patients in the general population raise questions about definitions of safety-net institutions based on Medicaid or Medicare distribution. In addition, the transportability of findings
from studies in which safety-net populations are unrepresented are questionable [6, 7, 33-37]. Despite a Federal Act in 1993 to improve representation of vulnerable populations in research [38], little improvement has been reported [39, 40]. Vulnerable populations’ lack of willingness to participate in research is a reported barrier to inclusion, but several studies have refuted this claim [41-43]. Rather, logistical considerations may be a greater concern, but these issues are not insurmountable with proper planning [6, 44]. In the absence of adequate representation in research used to generate evidence for interventions and guidelines, greater attention should be given to evaluating interventions and guidelines for benefits and harms in safety-net settings.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication:

Not applicable

Availability of data and materials

The data that support the findings of this study are available from Dallas Fort Worth Hospital Council Foundation but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Dallas Fort Worth Hospital Council Foundation.

Competing interests

The authors declare that they have no competing interests.
Funding: None to declare

Authors’ contributions

AMA contributed to the design of the study, reviewed background literature, interpreted study results and led the write-up and final edit of manuscript. RPO concieved study design, participated in critical review of manuscript and final edit of manuscript. IA contributed to literature review for study and participated in critical revision and final edit of manuscript. MJC performed data analysis, participed in interpretation of study results and manuscript preparation. LY, TC, BM, AWG, KC participated in interpretation of study results and participated in critical review and final edit of manuscript. All authors read and approved the final manuscript.

Acknowledgements

Dallas Fort Worth Hospital Council Foundation who provided data for the study.

References

1. Status of State Action on the Medicaid Expansion Decision
[https://www.kff.org/health-reform/state-indicator/state-activity-around-expanding-medicaid-under-the-affordable-care-act/?currentTimeframe = 0&sortModel = %7B%22colId%22:%22Location%22,%22sort%22:%22asc%22%7D]

2. The Coverage Gap: Uninsured poor adults in States that Do Not Expand Medicaid
[https://www.kff.org/medicaid/issue-brief/the-coverage-gap-uninsured-poor-adults-in-states-that-do-not-expand-medicaid/]

3. Income & Poverty Data Tables [https://www.census.gov/topics/income-poverty/data/tables.2018.html]

4. Cunningham P, Felland, L.: Environmental Scan to Identify the Major Research
Questions and Metrics for Monitoring the Effects of the Affordable Care Act on Safety Net Hospitals. In: Center for Studying Health System Change; 2013.

5. Institute of Medicine (US) Committee on the Changing Market MC, and the Future Viability of Safety Net Providers: The Core Safety Net and the Safety Net System. In: Americas’s Health Care Safety Net: Intact but Endangered. edn. Edited by Ein Lewin M, Altman S. Washington (DC); 2000.

6. Bonevski B, Randell M, Paul C, Chapman K, Twyman L, Bryant J, Brozek I, Hughes C: Reaching the hard-to-reach: a systematic review of strategies for improving health and medical research with socially disadvantaged groups. BMC Med Res Methodol 2014, 14:42.

7. Laws R, Gillespie S, Puro J, Van Rompaey S, Quach T, Carroll J, Weir RC, Crawford P, Grasso C, Kaleba E et al: The Community Health Applied Research Network (CHARN) Data Warehouse: a Resource for Patient-Centered Outcomes Research and Quality Improvement in Underserved, Safety Net Populations. EGEMS (Wash DC) 2014, 2(3):1097.

8. Lu Y, Jackson BE, Gehr AW, Cross D, Neerukonda L, Tanna B, Ghabach B, Ojha RP: Affordable Care Act and cancer stage at diagnosis in an underserved population. Prev Med 2019, 126:105748.

9. Stewart RA, MacDonald BR, Chu TC, Moore JD, Fasanmi EO, Ojha RP: Ledipasvir/Sofosbuvir Effectively Treats Hepatitis C Virus Infections in an Underserved Population. Dig Dis Sci 2018, 63(12):3233–3240.

10. Sutton JP, Washington RE, Fingar KR, Elixhauser A: Characteristics of Safety-Net Hospitals, 2014: Statistical Brief #213. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. edn. Rockville (MD): Agency for Healthcare Research and Quality (US); 2006.
11. Barnett ML, Linder JA, Clark CR, Sommers BD: Low-Value Medical Services in the Safety-Net Population. JAMA Intern Med 2017, 177(6):829–837.

12. Popescu I, Fingar KR, Cutler E, Guo J, Jiang HJ: Comparison of 3 Safety-Net Hospital Definitions and Association With Hospital Characteristics. JAMA Netw Open 2019, 2(8):e198577.

13. Werner RM, Goldman LE, Dudley RA: Comparison of change in quality of care between safety-net and non-safety-net hospitals. JAMA 2008, 299(18):2180–2187.

14. Zuckerman RB, Joynt Maddox KE, Sheingold SH, Chen LM, Epstein AM: Effect of a Hospital-wide Measure on the Readmissions Reduction Program. N Engl J Med 2017, 377(16):1551–1558.

15. Morgenstern H: Ecologic studies in epidemiology: concepts, principles, and methods. Annu Rev Public Health 1995, 16:61-81.

16. Whitaker RG, Reiter KL, Weinberger M, Stearns SC: Colorectal cancer surgery outcomes for vulnerable patients in safety-net versus non-safety-net hospitals. J Health Care Poor Underserved 2013, 24(2):718–729.

17. Diez-Roux AV: Multilevel analysis in public health research. Annu Rev Public Health 2000, 21:171–192.

18. Members of America’s Essential Hospitals [https://essentialhospitals.org/about-americas-essential-hospitals/listing-of-americas-essential-hospitals-members/]

19. Healthy North Texas- People Living Below Poverty Level, 2013–2017 [http://www.healthynortexas.org/indicators/index/view?indicatorId = 347&localeId = 2794]

20. United States Census Bureau QuickFacts Tarrant County, Texas [https://www.census.gov/quickfacts/tarrantcountytexas]

21. Sharma S. MT, Seals N., Jenkins K., Isaacs M., Anderson RJ: High frequency
patient analysis to identify disparities associated with emergency department utilization in Dallas County. *Texas Public Health Journal* 2017, 69(1):19-29.

22. *Chronic Conditions* [https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Chronic-Conditions/CC_Main.html]

23. Ross JS, Bernheim SM, Lin Z, Drye EE, Chen J, Normand SL, Krumholz HM: Based on key measures, care quality for Medicare enrollees at safety-net and non-safety-net hospitals was almost equal. *Health Aff (Millwood)* 2012, 31(8):1739-1748.

24. Gaskin DJ, Hadley J: *Population characteristics of markets of safety-net and non-safety-net hospitals*. *J Urban Health* 1999, 76(3):351-370.

25. Salerno AM, Horwitz LI, Kwon JY, Herrin J, Grady JN, Lin Z, Ross JS, Bernheim SM: Trends in readmission rates for safety net hospitals and non-safety net hospitals in the era of the US Hospital Readmission Reduction Program: a retrospective time series analysis using Medicare administrative claims data from 2008 to 2015. *BMJ Open* 2017, 7(7):e016149.

26. Zuckerman RB, Joynt Maddox KE, Sheingold SH, Chen LM, Epstein AM: Effect of a Hospital-wide Measure on the Readmissions Reduction Program. *N Engl J Med* 2017, 377(16):1551-1558.

27. Collins SR, Gunja MZ, Doty MM: *How Well Does Insurance Coverage Protect Consumers from Health Care Costs?* 2017:23.

28. Nguyen OK, Makam AN, Halm EA: *National Use of Safety-Net Clinics for Primary Care among Adults with Non-Medicaid Insurance in the United States*. *PLoS ONE* 2016, 11(3):e0151610.

29. Balasubramanian BA, Garcia MP, Corley DA, Doubeni CA, Haas JS, Kamineni A, Quinn VP, Wernli K, Zheng Y, Skinner CS: *Racial/ethnic differences in obesity and comorbidities between safety-net- and non safety-net integrated health systems.*
30. Rosenbaum S: One Nation, Underinsured. Milbank Q 2015, 93(3):463-466.

31. Doktorchik C, Patten S, Eastwood C, Peng M, Chen G, Beck CA, Jette N, Williamson T, Quan H: Validation of a case definition for depression in administrative data against primary chart data as a reference standard. BMC Psychiatry 2019, 19(1):9.

32. Jurek AM, Greenland S, Maldonado G: How far from non-differential does exposure or disease misclassification have to be to bias measures of association away from the null? Int J Epidemiol 2008, 37(2):382-385.

33. Lesko CR, Buchanan AL, Westreich D, Edwards JK, Hudgens MG, Cole SR: Generalizing Study Results: A Potential Outcomes Perspective. Epidemiology 2017, 28(4):553-561.

34. Schmidt AF, Klungel OH, Nielen M, de Boer A, Groenwold RH, Hoes AW: Tailoring treatments using treatment effect modification. Pharmacoepidemiology and drug safety 2016, 25(4):355-362.

35. Stuart EA, Rhodes A: Generalizing Treatment Effect Estimates From Sample to Population: A Case Study in the Difficulties of Finding Sufficient Data. Evaluation review 2016.

36. Stuart EA, Bradshaw CP, Leaf PJ: Assessing the generalizability of randomized trial results to target populations. Prevention science: the official journal of the Society for Prevention Research 2015, 16(3):475-485.

37. Xie Y: Population heterogeneity and causal inference. Proceedings of the National Academy of Sciences of the United States of America 2013, 110(16):6262-6268.

38. National Institutes of Health Revitalization Act of 1993. In., 2d edn; 1993.
39. Burchard EG, Oh SS, Foreman MG, Celedon JC: Moving toward true inclusion of racial/ethnic minorities in federally funded studies. A key step for achieving respiratory health equality in the United States. Am J Respir Crit Care Med 2015, 191(5):514–521.

40. Chen MS, Jr., Lara PN, Dang JH, Paterniti DA, Kelly K: Twenty years post-NIH Revitalization Act: enhancing minority participation in clinical trials (EMPaCT): laying the groundwork for improving minority clinical trial accrual: renewing the case for enhancing minority participation in cancer clinical trials. Cancer 2014, 120 Suppl 7:1091–1096.

41. Ojha RP, Jackson BE, Lu Y, Burton M, Blair SE, MacDonald BR, Chu TC, Teigen KJ, Acosta M: Participation and retention can be high in randomized controlled trials targeting underserved populations: a systematic review and meta-analysis. J Clin Epidemiol 2018, 98:154–157.

42. Katz RV, Kegeles SS, Kressin NR, Green BL, Wang MQ, James SA, Russell SL, Claudio C: The Tuskegee Legacy Project: willingness of minorities to participate in biomedical research. J Health Care Poor Underserved 2006, 17(4):698–715.

43. Anderson PL, Glidden DV, Liu A, Buchbinder S, Lama JR, Guanira JV, McMahan V, Bushman LR, Casapia M, Montoya-Herrera O et al: Emtricitabine-tenofovir concentrations and pre-exposure prophylaxis efficacy in men who have sex with men. Sci Transl Med 2012, 4(151):151ra125.

44. George S, Duran N, Norris K: A systematic review of barriers and facilitators to minority research participation among African Americans, Latinos, Asian Americans, and Pacific Islanders. Am J Public Health 2014, 104(2):e16–31.

Tables
Table 1. Sociodemographic characteristics of safety-net and general population patients in Tarrant County, 2018.

Characteristic	Safety-net n= 74,323	General p n= 45,982
	n (%)	(1)
Gender		
Female	41,724 (56)	296,987
Male	32,599 (44)	162,840
Age, years		
18 - 29	15,842 (21)	91.08
30 - 39	14,260 (19)	76.45
40 - 49	13,178 (18)	73.53
50 - 59	15,816 (21)	78.80
60 - 64	6,732 (9)	35.88
≥65	8,495 (11)	104.05
Race/Ethnicity		
Hispanic	25,169 (34)	73.12
Non-Hispanic White	21,415 (29)	240.33
Non-Hispanic Black	21,285 (29)	97.52
Non-Hispanic Other	6,454 (9)	48.85
Primary payor at first eligible claim\footnote{1}		
Insured\footnote{2}	16,817 (23)	204.56
Medicare	6,882 (14)	32.90
Medicaid	10,403 (9)	109.1
Uninsured\footnote{3}	40,221 (54)	113.20
Multi-morbidity burden\footnote{4}		
No chronic comorbidity\footnote{4}	35,675 (47)	257.50
1 comorbidity	17,094 (23)	91.96
2 comorbidities	10,405 (14)	50.58
3 comorbidities	5,203 (7)	27.59
4 comorbidities	2,973 (4)	13.79
≥5 comorbidities	2,973 (4)	18.39

\footnote{1}Claims do not include services provided through outpatient labs or Hospital-based outpatient clinics

\footnote{2}Insured includes commercial, federal, PPO, HMO, point of service, exclusive provider, liability and worker’s comp programs

\footnote{3}Uninsured includes claims with no primary payor listed as well as those that were self-pay

\footnote{4}Comorbid count only includes chronic illnesses of interest
Table 2. Standardized morbidity ratios\(^1\) for selected chronic conditions in Tarrant County safety-net patients by insurance status.

Chronic Condition	Insured	Medicaid	Medicare
Major Depression	6.25 (5.81, 6.73)	1.74 (1.49, 2.02)	2.51 (2.21, 2.86)
Schizophrenia-related Disorders	4.54 (3.99, 5.16)	1.60 (1.45, 1.76)	2.31 (2.11, 2.52)
HIV	3.96 (3.30, 4.74)	1.53 (1.20, 1.95)	2.32 (1.93, 2.79)
Chronic Viral Hepatitis	2.87 (2.43, 3.39)	1.30 (1.12, 1.52)	1.73 (1.50, 2.00)
COPD	2.06 (1.88, 2.26)	0.92 (0.84, 1.01)	1.27 (1.20, 1.33)
Type 2 Diabetes	1.42 (1.37, 1.48)	0.96 (0.91, 1.02)	1.09 (1.05, 1.12)
Malignant Cancer	1.16 (1.06, 1.27)	1.45 (1.30, 1.62)	1.19 (1.11, 1.28)
Essential Hypertension	1.31 (1.28, 1.35)	0.98 (0.94, 1.03)	1.06 (1.04, 1.09)
Chronic Kidney Disease	1.46 (1.35, 1.59)	1.03 (0.93, 1.14)	0.98 (0.98, 1.08)
Stroke	1.14 (0.96, 1.37)	1.16 (0.99, 1.36)	0.99 (0.90, 1.09)
Chronic Ischemic Heart Disease	1.09 (1.01, 1.18)	0.84 (0.75, 0.93)	0.93 (0.89, 0.98)
Dementia/Alzheimer’s	1.30 (0.99, 1.70)	0.93 (0.74, 1.17)	0.77 (0.70, 0.84)

\(^1\) Estimates are standardized for population differences in sex, race/ethnicity and age categories

Figures
Figure 1

Selection of safety-net patients and patients in the general population.
Figure 2

Standardized morbidity ratios (SMRs) for select chronic conditions in Tarrant County, 2018.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Supplementary.docx