Non-split Brauer-Severi varieties do not admit full exceptional collections

Theo Raedschelders

Abstract

Recently, Novaković conjectured that non-split Brauer-Severi varieties do not admit full strong exceptional collections. In this short note, we explain how a stronger version of this conjecture follows easily from known results on noncommutative motives.

1 Introduction

For an arbitrary field k, Novaković stated the following as a conjecture in [3]:

Conjecture 1.1. Let $X \neq \mathbb{P}^n_k$ be a n-dimensional Brauer-Severi variety. Then $D^b(X)$ does not admit a full strongly exceptional collection.

He proves the conjecture in dimension $n \leq 3$ [4] by exploiting the transitivity of the braid group action on full exceptional collections for \mathbb{P}^n_k to reduce to an equivalence $D^b(A) \cong D^b(k)$. If $A \cong M_l(D)$, for D a division algebra over k, these are just the categories of \mathbb{Z}-graded vector spaces over D, respectively k, so there is an equivalence only if D is isomorphic to k. Since the transitivity of the braid group action (which is only established for $n \leq 3$) is only used to be able to reduce to a single semi-orthogonal component, this suggests that noncommutative motives might provide the right framework for this conjecture. Using some results from [7] on noncommutative motives of separable algebras, we prove a slightly stronger version of Conjecture 1.1, showing that non-split Brauer-Severi varieties do not admit full étale exceptional collections.

2 Noncommutative motives of separable algebras

To any small dg-category \mathcal{A}, one can associate (functorially) its noncommutative motive $U(\mathcal{A})$, which takes values in a category $\mathsf{Hmo}_0(k)$. This category has as objects small dg-categories, and for two such categories \mathcal{A} and \mathcal{B},

$$\mathsf{Hom}_{\mathsf{Hmo}_0(k)}(\mathcal{A}, \mathcal{B}) \cong K_0\mathsf{rep}(\mathcal{A}, \mathcal{B}),$$

$$\mathsf{Hom}_{\mathsf{Hmo}_0(k)}(\mathcal{A}, \mathcal{B}) \cong K_0\mathsf{rep}(\mathcal{A}, \mathcal{B}),$$

1
where \(\text{rep}(A, B) \) is the full triangulated subcategory of \(D(A^{\text{op}} \otimes^L B) \) consisting of those \(A-B \)-bimodules \(B \) such that for every \(x \in A \), the right \(B \)-module \(B(x, -) \) is a compact object in \(D(B) \). The composition is induced by the derived tensor product of bimodules.

More details on the construction of \(U \) can be found in [6], but for the purposes of this note, we will only need that \(U \) is a “universal additive invariant”. An additive invariant is any functor \(E : \text{dgcat}(k) \to D \) taking values in an additive category \(D \) such that:

1. it sends dg-Morita equivalences to isomorphisms,
2. for any pre-triangulated dg-category \(A \), with full pre-triangulated dg-subcategories \(B \) and \(C \) giving rise to a semi-orthogonal decomposition \(H^0(A) = \langle H^0(B), H^0(C) \rangle \), the morphism \(E(B) \oplus E(C) \to E(A) \) induced by the inclusions is an isomorphism.

We now review some results from [7]. Remember that the category of noncommutative Chow motives \(\text{NChow}(k) \) is defined as the idempotent completion of the full subcategory of \(\text{Hmo}_0(k) \) containing the smooth and proper dg-categories. Now let \(\text{Sep}(k) \) (respectively \(\text{CSep}(k) \)) denote the full subcategory of \(\text{NChow}(k) \) consisting of the \(U(A) \), for \(A \) a separable (respectively commutative separable) \(k \)-algebra. Also let \(\text{CSA}(k) \oplus \) denote the closure under finite direct sums of the full subcategory of \(\text{NChow}(k) \) consisting of the \(U(A) \), for \(A \) a central simple \(k \)-algebras. Note that the \(\oplus \) is there since central simple \(k \)-algebras are not closed under products, whereas (commutative) separable algebras are. In this way \(\text{Sep}(k), \text{CSep}(k) \) and \(\text{CSA}(k) \oplus \) are additive symmetric monoidal categories.

Theorem 2.1. [7, Corollary 2.13] There is an equivalence of categories

\[
\{ U(k)^{\oplus n} | n \in \mathbb{N} \} \simeq \text{CSA}(k)^{\oplus} \times_{\text{Sep}(k)} \text{CSep}(k),
\]

i.e. \(\{ U(k)^{\oplus n} | n \in \mathbb{N} \} \) is a 2-pullback of categories with respect to the obvious inclusion morphisms.

For a central simple algebra \(A \) over \(k \), denote by \(\text{ind}(A) \) and \(\text{deg}(A) \) the index (respectively degree) of \(A \). Then by [2, Proposition 4.5.16], \(A \) admits a \(p \)-primary decomposition

\[
A = \bigotimes_{i=1}^{k} A^{p_i},
\]

where \(A^{p_i} \) is uniquely characterised by the property \(\text{ind}(A^{p_i}) = p_i^{n_i} \) if

\[
\text{ind}(A) = p_1^{n_1} \cdots p_k^{n_k}
\]

is the primary decomposition.
Theorem 2.2. [7, Theorem 2.19] Given central simple k-algebras A_1, \ldots, A_n and B_1, \ldots, B_m, the following two conditions are equivalent:

1. There is an isomorphism of noncommutative motives:
 \[
 U(A_1) \oplus \cdots \oplus U(A_n) \simeq U(B_1) \oplus \cdots \oplus U(B_m).
 \]

2. The equality $n = m$ holds, and for all $1 \leq j \leq n$ and all p
 \[
 [B_j^p] = [A_{\sigma_p(j)}^p]
 \]
 holds in $\text{Br}(k)$, for some permutations σ_p depending on p.

Remark 2.3. Though the isomorphism classes of objects in $\text{CSA}(k)^\oplus$ are in some sense understood by Theorem 2.2, this is not true for $\text{CSep}(k)$. In fact, using the (additive) equivalence $\text{CSep}(k) \simeq \text{Perm}(G)$, where $G = \text{Gal}(k_{\text{sep}}/k)$, and $\text{Perm}(G)$ is the category of permutation G-modules, interesting examples can be obtained from integral representation theory, see [7, Remark 2.5, 2.6].

3 Brauer-Severi varieties and full étale exceptional collections

Denote by $BS(A)$ the Brauer-Severi variety associated to a central simple k-algebra A. We will say (see also [5]) that an object $E \in D^b(BS(A))$ satisfying $\text{Hom}(E, E[i]) = 0$ for all $i \neq 0$ is

- semi-exceptional if $\text{Hom}(E, E) = S$ is a semisimple k-algebra,
- étale exceptional if $\text{Hom}(E, E) = L$ is an étale k-algebra.

It is well known [1] that $BS(A)$ has a full semi-exceptional collection giving rise to a semi-orthogonal decomposition
\[
D^b(BS(A)) = \langle D^b(k), D^b(A), \ldots, D^b(A^{\oplus \deg(A) - 1}) \rangle.
\]

The following theorem now provides a positive answer to Conjecture 1.1.

Theorem 3.1. Non-split Severi-Brauer varieties do not admit full étale exceptional collections.

Proof. Suppose A is non-split and $\deg(A) = d$. Then if $BS(A)$ has a full étale exceptional collection, we deduce from (3.1) and additivity of $U(-)$ with respect to semi-orthogonal decompositions that there is an isomorphism
\[
U(k) \oplus U(A) \oplus \cdots \oplus U(A^{\oplus d - 1}) \simeq U(D^b(BS(A))) \cong U(L_1) \oplus \cdots \oplus U(L_d),
\]
where the L_i are étale k-algebras. Using Theorem 2.1 and the universal property of fibre products, this isomorphism gives rise to an isomorphism

$$U(k) \oplus U(A) \oplus \cdots \oplus U(A^\otimes d-1) \simeq U(k)^\otimes d.$$

Now by Theorem 2.2, for all $p : [A^p] = [k]$ in Br(k), so $[A] = [k]$ or in other words A should split. \qed

Remark 3.2. This result formalizes (in this case) the intuition that for varieties defined over arbitrary fields, one should consider semi-exceptional collections instead of usual exceptional collections.

References

[1] Marcello Bernardara, *A semiorthogonal decomposition for Brauer–Severi schemes*, Mathematische Nachrichten **282** (2009), no. 10, 1406–1413.

[2] Philippe Gille and Tamás Szamuely, *Central simple algebras and Galois cohomology*, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006.

[3] Saša Novaković, *Tilting objects on some global quotient stacks*, arXiv:1503.00522 (2015).

[4] ____*, *No full exceptional collections on non-split Brauer–Severi varieties of dimension ≤ 3*, arXiv:1603.08373 (2016).

[5] Dmitri Orlov, *Smooth and proper noncommutative schemes and gluing of dg categories*, (2014).

[6] Gonçalo Tabuada, *Additive invariants of dg-categories*, Internat. Math. Res. Notices (2005), no. 53, 3309–3339.

[7] Gonçalo Tabuada and Michel Van den Bergh, *Noncommutative motives of separable algebras*, arXiv:1411.7970 (2014).