Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine *Bacillus subtilis* strain SR60 [version 1; peer review: 1 approved with reservations, 1 not approved]

Bruno Oliveira de Veras\(^1\), Yago Queiroz dos Santos\(^2\), Katharina Marquez Diniz\(^1\), Gabriela Silva Campos Carelli\(^2\), Elizeu Antunes dos Santos\(^2\)

\(^1\)Department of Biochemistry, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
\(^2\)Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil

Abstract

Background: The marine environment harbours different microorganisms that inhabit niches with adverse conditions, such as temperature variation, pressure and salinity. To survive these particular conditions, marine bacteria use unique metabolic and biochemical features, producing enzymes that may have industrial value.

Methods: The aim of this study was to observe the production of multiple thermoenzymes and haloenzymes, including protease, cellulase, amylase and xylanase, from bacterial strains isolated from coral reefs Cabo Branco, Paraiba State, Brazil. Strain SR60 was identified by the phylogenetic analysis to be *Bacillus subtilis* through a 16S ribosomal RNA assay. To screening of multiples enzymes *B. subtilis* SR60 was inoculated in differential media to elicit the production of extracellular enzymes with the addition of a range of salt concentrations (0, 0.25, 0.50, 1.0, 1.25 and 1.5 M NaCl).

Results: The screening showed a capacity of production of halotolerant protease, cellulase, amylase and xylanase and thermostable by the isolate (identified as *B. subtilis* SR60). Protease, cellulase, amylase and xylanase production were limited to 1.5, 1.5, 1.0 and 1.25 M NaCl, respectively.

Conclusions: *Bacillus subtilis* SR60 was shown in this study be capable of producing protease, cellulase, amylase and xylanase when submitted to a high salinity environment. These data demonstrate the halophytic nature of SR60 and its ability to produce multiples enzymes.
Keywords
Bacteria, Thermoenzymes, Haloenzyme, Enzymes, Industrial Applications.

Corresponding author: Bruno Oliveira de Veras (brunooveras@hotmail.com)

Author roles: de Veras BO: Conceptualization, Data Curation, Formal Analysis, Validation, Writing – Review & Editing; dos Santos YQ: Formal Analysis, Funding Acquisition, Investigation, Methodology; Diniz KM: Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Carelli GSC: Investigation, Methodology, Resources; dos Santos EA: Methodology, Software, Supervision, Validation, Visualization

Competing interests: No competing interests were disclosed.

Grant information: This work was supported in part by the Federal University of Pernambuco. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 de Veras BO et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author(s) is/are employees of the US Government and therefore domestic copyright protection in USA does not apply to this work. The work may be protected under the copyright laws of other jurisdictions when used in those jurisdictions.

How to cite this article: de Veras BO, dos Santos YQ, Diniz KM et al. Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine Bacillus subtilis strain SR60 [version 1; peer review: 1 approved with reservations, 1 not approved] F1000Research 2018, 7:1704 https://doi.org/10.12688/f1000research.16542.1

First published: 26 Oct 2018, 7:1704 https://doi.org/10.12688/f1000research.16542.1
Introduction
Covering large surface of the Earth’s surface, the marine environment is a rich source of biological and chemical diversity; it contains endless habitats that may present adverse conditions of survival. However, these conditions favour the establishment of microorganisms able to produce enzymes that have extraordinary properties, such as salt tolerance, thermostability, pH and temperature variations. These enzymes have many industrial applications, such as the production of detergents, food, feed, pharmaceuticals, leather and biofuel.

The conditions of the industrial scale activities are related to the maintenance of enzymatic activity in environments with variations in temperature (55°C to 121°C and -2°C to 20°C), pressure (> 500 atmospheres), pH (pH> 8, pH <4) and salinity (1–5 M NaCl or KCl). The production of enzymes of bacterial origin is a frequent application of industrial biotechnology; the enzymes produced include hydrolytic thermostable enzymes such as amylases, cellulases, proteases and xylanases for the production of biofuel. Use of the genus *Bacillus* is promising for the production of biomolecules, because it is classified by the FDA as being generally recognized as safe and research has revealed the ability of this genus to produce and secrete enzymes with infinite applications.

This study aimed to produce multiple thermoenzymes and haloenzymes (protease, cellulase, amylase and xylanase) expressed by *Bacillus subtilis* strain SR60, a bacterial symbiont isolated from Siderastrea stellate (Verrill, 1868) in a Brazilian coral reefs ecosystem 7°08’50’’ S; 34° 47’51’’ W.

Methods
Isolation of thermophilic bacterial strain
The bacterial strains were obtained from aseptically collected tissues of *Siderastrea stellate* Verrill, 1868 (Cnidaria, Scleractinia) colonies at Cabo Branco coral reefs, Paraiba State, Brazil (7°08’50’’ S; 34°47’51’’ W). For bacterial isolation from the anthozoan, samples were suspended in sterile saline solution, agitated until homogenization was achieved and then spread over marine agar plates (pH 8.0±0.3) containing 5 g/l peptone; 1 g/l yeast extract; 15 g/l agar diluted in sterile marine water and incubated at 55°C until adequate growth was achieved. A total of 12 bacterial isolates were obtained, which were analysed for protease, cellulase, amylase and xylanase production capacity, and only the one with the simultaneous production capacity of these enzymes was selected.

For further screening of enzymatic activity described below, two bacterial colonies, isolated using the above culturing conditions, were inoculated onto each plate. A total of three replicates were performed for each salt molarity.

Bacterial identification
In order to identify the isolate, morphophysiological and molecular data were evaluated. The obtained 16S rRNA gene was sequenced by ATCGene (UFRGS, Porto Alegre, RS, Brazil) using the automated sequencer ABI-PRISM 3100 Genetic Analyzer. The SR60 isolate sequence was compared to sequences deposited in the Genbank database (NCBI). For the local alignment, the BLASTn tool (NCBI) was used. MEGA 6.0 software was used for monitoring multiple sequences and for construction of a dendrogram by the Neighbor-Joining method.

Screening of protease
The isolated bacterial strains were screened for protease production on agar medium comprising 10 g/l gelatine and 20 g/l agar in increasing concentrations of NaCl (0, 0.25, 0.50, 1.0, 1.25 and 1.5 M) pH 8.0±0.3. The inoculated plates were incubated at 48 h at 55°C and observed for the formation of zone of hydrolysis.

Screening of cellulase
The ability of isolate on produce cellulose was tested a plate containing 1 g/l carboxymethylcellulose (CMC); 0.5 g/l NaNO₃; 1 g/l K₂HPO₄; 0.5 g/l MgSO₄∙7H₂O; 0.001 g/l FeSO₄∙7H₂O; 1 g/l yeast extract; 15 g/l agar) in increasing molarities of NaCl (0, 0.25, 0.50, 1.0, 1.25 and 1.5 M) for 48 h at 55°C on pH 8.0±0.3 and then overlaid with 0.2 g/l potassium iodide for 5 min, bacterial colonies showing clear zones were considered to be cellulase producers.

Screening of amylase
Amylolytic activity of culture was screened on starch nutrient agar plates containing: 10 g/l starch; 0.05 g/l NaNO₃; 1 g/l K₂HPO₄; 0.5 g/l MgSO₄∙7H₂O; 0.001 g/l FeSO₄∙7H₂O; 1 g/l yeast extract; 15 g/l agar, in increasing molarities of NaCl (0, 0.25, 0.50, 1.0, 1.25 and 1.5 M) pH 8.0±0.3 for 48 h, the zone of clearance was determined by flooding the plates with 0.2 g/l potassium iodide for 5 min.

Screening of xylanase
Xylanase activity was detected using a saline medium containing: (10 g/l xylan; 0.05 g/l NaNO₃; 1 g/l K₂HPO₄; 0.5 g/l MgSO₄∙7H₂O; 0.001 g/l FeSO₄∙7H₂O; 1 g/l yeast extract; 15 g/l agar) in increasing molarities of NaCl (0, 0.25, 0.50, 1.0, 1.25 and 1.5 M) pH 8.0±0.3. After incubation at 55°C for 48 h, the zone of clearance was determined by flooding the plates with 0.2 g/l potassium iodide for 5 min.

Results and discussion
Bacterial identification
The SR60 isolate was revealed to be a Gram-positive spore-forming bacillus, facultative anaerobe, catalase-positive; it was negative for indole, H₂S production and citrate utilization bacterium (Table 1). Those findings led us to consider the isolate belonging to the genus *Bacillus* which was posteriorly confirmed by the phylogenetic analysis which revealed that the SR60 strain formed a clade with *Bacillus subtilis* (Figure 1). The nucleotide sequence was deposited in GenBank under accession number MH698455.1.

Screening for protease, cellulase, amylase and xylanase
In differential media for the production of different extracellular enzymes, it was observed that conditions of high salinity from 0 to 1.5 M NaCl, a SR60 strain showed proteolytic, cellulolytic, amylolytic and xylanolytic activity, these productions being observed by zones of enzymatic hydrolysis (Table 2). The halo detection for protease and cellulase was observed up to the maximum salinity, 1.5 M NaCl (Figure 2 and Figure 3). Cellulolytic enzymes comprise a group of glycosidic hydrolases,
including endoglucanases, exoglucanases and beta-glycosidase. In general, the production of the enzyme group is mainly observed in fungi, actinomycetes and some other bacteria. The use of fungi to produce cellulases has been practiced in the food, textile, fuel and chemical industry, but the growth period for the microorganism does not match the high demand from the industries for production. In an attempt to solve this problem bacteria present rapid growth and high enzymatic production. Bacterial isolates produced from different environments, such as bovine ruminants, soil and in isolation, were found to

Table 1. Morphological and biochemical characteristics of isolated *Bacillus subtilis* sp. SR60.

Parameter	Result
Gram staining	Positive
Morphology	*Bacillus*
Arrangement	Absent
Endospore	Positive
Catalase	Positive
Urease	Negative
Citrate Utilization	Negative
H₂S Production	Negative
Indole Production	Negative

Figure 1. Phylogenetic tree of isolated SR60 and other related species based on 16S rRNA sequences. The scale bar represents 0.01 substitutions per site. GenBank accession numbers of the sequences are given in parentheses.
Table 2. Screening of enzyme production culture in different molarities NaCl.

Molarity NaCl	Zone Formation
	Pro Cel Amy Xyl
0 M	+ + + +
0.25 M	+ + + +
0.50 M	+ + + +
1.0 M	+ + + +
1.25 M	+ + - +
1.5 M	+ + - -

Figure 2. Screening of protease in crescent saline molarity. Halos around bacterial colonies are indicative of cellulose degradation.

Figure 3. Screening of cellulase in crescent saline molarity. Halos around bacterial colonies are indicative of cellulose degradation.

Figure 4. Screening of amylase in crescent saline molarity. Halos around bacterial colonies are indicative of cellulose degradation.

produce hydrolases\(^1\), Biofuel industries that use lignocellulose as the first raw material pre-treatment process for the release of cellulose, making it more accessible to the enzymatic action. During the processing of the cellulose, various compounds containing salts are used, the enzymatic catalysis being reduced or inhibited in this halophilic environment\(^1\). The extracellular production of amylase and xylanase reached an upper NaCl concentration limit of 1.0 M and 1.25 M NaCl, respectively (Figure 4 and Figure 5); however, as a bacterial cell growth molecule at the other salt concentrations.

Conclusions

The *Bacillus* sp. isolate identified in this study, *Bacillus subtilis* SR60, has the capacity for proteases, cellulases, amylases...
and xylanases with thermostable and halotolerant characteristics. These products can be used as thermostable enzymes in the production of biofuels in crucial stages of this bioprocess.

Data availability
The sequence of the *Bacillus subtilis* strain SR60 16s RNA gene isolated in this experiment is available from GenBank, accession number MH698455.1: https://identifiers.org/ncbi:GI:1435753077.

Images of the repeats of the screening for enzymatic activity have been uploaded to Harvard Dataverse, DOI: https://doi.org/10.7910/DVN/15JCC0. Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Grant information
This work was supported in part by the Federal University of Pernambuco.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Hu Y, Chen J, Hu G, et al.: Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs. 2015; 13(1): 202–221. PubMed Abstract | Publisher Full Text | Free Full Text
2. Izadpanah Qeshmi F, Homaei A, Fernandes P, et al.: Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res. 2018; 208: 89–112. PubMed Abstract | Publisher Full Text
3. Dumorné K, Córdova DC, Astorga-Eló M, et al.: Extremozymes: A Potential Source for Industrial Applications. J Microbiol Biotechnol. 2017; 27(4): 649–659. PubMed Abstract | Publisher Full Text
4. Srivastava A, Verma J, Singh H, et al.: Screening of biologically active microbial strains having therapeutic applications. Indian J Exp Biol. 2018; 56: 244–251. Reference Source
5. Hadjidj R, Badis A, Mechri S, et al.: Purification, biochemical, and molecular characterization of novel protease from *Bacillus licheniformis* strain K7A. Int J Biol Macromol. 2018; 114: 1033–1048. PubMed Abstract | Publisher Full Text
6. Dustan P: Distribution of zooxanthella and photosynthetic chloroplast pigment of the reef building coral *Montastrea annularis* Ellis and Solander in relation to depth on a West Indian coral reef. Bull Mar Sci. 1979; 29(1): 79–95. Reference Source
7. Hogg JC, Lehane MJ: Identification of bacterial species associated with the sheep scab mite (*Psoroptes ovis*) by using amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1999; 65(9): 4227–4229. PubMed Abstract | Free Full Text
8. Fogarty WM, Kelly CT: Microbial Enzymes and Biotechnology. In: Microbial Enzymes and Biotechnology. 1990. Publisher Full Text
9. Kasana RC, Salwan R, Dhar H, et al.: A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol. 2008; 57(5): 503–507. PubMed Abstract | Publisher Full Text
10. Amoozegar MA, Malekzadeh F, Malik KA: Production of amylose by newly isolated moderate halophile, *Halobacillus* sp. Strain MA-2. J Microbial Methods. 2003; 52(2): 303–309. PubMed Abstract | Publisher Full Text
11. Bailey MJ, Bieły P, Poutanen K: Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 1992; 23(3): 257–270. Publisher Full Text
12. Singhania RR, Sukumaran RK, Patel AK, et al.: Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol. 2010; 46(7): 541–549. Publisher Full Text
13. Ja’afaru MI: Screening of fungi isolated from environmental samples for xylanase and cellulase production. ISRN Microbiol. 2013; 2013: 805429. PubMed Abstract | Publisher Full Text | Free Full Text
14. Singh Y, Gundampati RK, Jagannadham MV, et al.: Extracellular L-asparaginase from a protease-deficient *Bacillus aryabhattai* ITBHU02: purification, biochemical characterization, and evaluation of antineoplastic activity in vitro. Appl Biochem Biotechnol. 2013; 171(7): 1759–1774. PubMed Abstract | Publisher Full Text
15. Ma L, Yang W, Meng F, et al.: Characterization of an acidic cellulase produced by *Bacillus subtilis* BY-4 isolated from gastrointestinal tract of Tibetan pig. J Taiwan Inst Chem Eng. 2015; 56: 67–72. Publisher Full Text
16. Veras B: Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine *Bacillus subtilis* strain SR60. Harvard Dataverse, V1. 2018. http://www.doi.org/10.7910/DVN/15JCC0

Figure 5. Screening of xylanase in crescent saline molarity. Halos around bacterial colonies are indicative of cellulose degradation.
Open Peer Review

Current Peer Review Status: ? ×

Version 1

Reviewer Report 21 April 2021

https://doi.org/10.5256/f1000research.18079.r72914

© 2021 Ariaenejad S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Shohreh Ariaenejad
Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran

The main idea of this work is to observe the production of multiple thermoenzymes and haloenzymes, including protease, cellulase, amylase and xylanase, from bacterial strains isolated from coral reefs Cabo Branco, Paraiba State, Brazil. Strain SR60 was identified by the phylogenetic analysis to be Bacillus subtilis through a 16S ribosomal RNA assay. To screen multiples enzymes, B. subtilis SR60 was inoculated in differential media to elicit the production of extracellular enzymes with the addition of a range of salt concentrations (0, 0.25, 0.50, 1.0, 1.25 and 1.5 M NaCl).

Comments to the author(s):

Comment #1:
The introduction is very poorly written. No history of similar work has been mentioned in this regard.

Comment #2:
At the end of the introduction: “This study aimed to produce multiple thermoenzymes and haloenzymes (protease, cellulase, amylase and xylanase) expressed by Bacillus subtilis strain SR60, a bacterial symbiont isolated from Siderastrea stellate (Verrill, 1868) in a Brazilian coral reefs ecosystem 7°08′50″ S; 34° 47′51″ W.” - What does this mean?
You expressed some enzyme genes to Bacillus subtilis strain SR60?
Or
You found a novel bacterial symbiont isolated from Siderastrea stellate and this bacteria had some enzyme genes?

The Authors wrote in materials “A total of 12 bacterial isolates were obtained, which were analysed for protease, cellulase, amylase and xylanase production capacity, and only the one with the simultaneous production capacity of these enzymes was selected.” - This is very different from the last sentence of the introduction.
Comment #3:
At the end of the isolation of the thermophilic bacterial strain: “For further screening of enzymatic activity described below, two bacterial colonies, isolated using the above culturing conditions, were inoculated onto each plate.” - Why did you choose the two bacterial colonies?

Comment #4:
In the part of Bacterial identification:
Why are there no comparisons of the phylogenetic tree of these 12 identified strains? Why is their access number not in the article?

Comment #5:
The results are very vague. Which strains showed what enzymatic activity? The whole article is written as a short story.

Comment #6:
In the Table 2. Screening of enzyme production culture in different molarities NaCl.
The results should be expressed as a comparative percentage (Relative activity). Please see my related article about effect of salt on enzymes1.

References
1. Ariaeenejad S, Sheykh Abdollahzadeh Mamaghani A, Maleki M, Kavousi K, et al.: A novel high performance in-silico screened metagenome-derived alkali-thermostable endo-β-1,4-glucanase for lignocellulosic biomass hydrolysis in the harsh conditions. BMC Biotechnology. 2020; 20 (1).
Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Enzyme biochemical characterization
I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Reviewer Report 16 May 2019

https://doi.org/10.5256/f1000research.18079.r43316

© 2019 Olmos-Soto J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jorge Olmos-Soto
Molecular Microbiology Laboratory, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico

- The isolated *B. subtilis* strain only has the capacity to degrade cellulose at high saline concentrations (1.25-1.5 M) and its xylanase activity is only developed at medium salt concentration (1 M). However, protease and amylase activity cannot be considered as halotolerant because these enzymes only have good activity at 0.25-0.5 M. In this sense, I believe the conclusion must be reoriented to point out these results.

- All the figures contain the same legend, please correct this issue.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
No

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
No

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com