PERMUTATION-EQUIVARIANT
QUANTUM K-THEORY V.
TORIC q-HYPERGEOMETRIC FUNCTIONS

ALEXANDER GIVENTAL

Abstract. We first retell in the K-theoretic context the heuristics of S^1-equivariant Floer theory on loop spaces which gives rise to D_q-module structures, and in the case of toric manifolds, vector bundles, or super-bundles to their explicit q-hypergeometric solutions. Then, using the fixed point localization technique developed in Parts II–IV, we prove that these q-hypergeometric solutions represent K-theoretic Gromov-Witten invariants.

S^1-equivariant Floer theory

We recall here our old (1994) heuristic construction [5, 6] which highlights the role of D-modules in quantum cohomology theory, and adjust the construction to the case of quantum K-theory and D_q-modules, following the more recent exposition [8].

Let X be a compact symplectic (or Kähler) target space, which for simplicity is assumed simply-connected, and such that $\pi_2(X) = H_2(X) \cong \mathbb{Z}^K$. Let $d = (d_1, \ldots, d_K)$ be integer coordinates on $H_2(X)$, and $\omega_1, \ldots, \omega_K$ be closed 2-forms on X with integer periods, representing the corresponding basis of $H^2(X, \mathbb{R})$.

On the space L_0X of contractible parameterized loops $S^1 \to X$, as well as on its universal cover \tilde{L}_0X, one defines closed 2-forms Ω_i, which associates to two vector fields ξ and η along a given loop the value

$$\Omega_i(\xi, \eta) := \oint \omega_i(\xi(t), \eta(t)) \, dt.$$

A point $\gamma \in \tilde{L}_0X$ is a loop in X together with a homotopy type of a disk $u : D^2 \to X$ attached to it. One defines the action functionals
$H_i : \tilde{\mathcal{L}}_0 \tilde{X} \to \mathbb{R}$ by evaluating the 2-forms ω_i on such disks:

$$H_i(\gamma) := \int_{D^2} u^* \omega_i.$$

Consider the action of S^1 on $\tilde{\mathcal{L}}_0 \tilde{X}$, defined by the rotation of loops, and let V denote the velocity vector field of this action. It is well-known that V is Ω_i-hamiltonian with the Hamilton function H_i, i.e.:

$$i_V \Omega_i + dH_i = 0, \quad i = 1, \ldots, K.$$

Denote by z the generator of the coefficient ring $H^*(BS^1)$ of S^1-equivariant cohomology theory. The S^1-equivariant de Rham complex (of $\tilde{\mathcal{L}}_0 \tilde{X}$ in our case) consists of S^1-invariant differential forms with coefficients in $\mathbb{R}[z]$, and is equipped with the differential $D := d + zi_V$. Then the degree-2 elements

$$p_i := \Omega_i + zH_i, \quad i = 1, \ldots, K,$$

are S^1-equivariantly closed: $Dp_i = 0$. This is standard in the context of Duistermaat–Heckman’s formula.

Furthermore, the lattice $\pi_2(X)$ acts by deck transformations on the universal covering $\tilde{\mathcal{L}}_0 \tilde{X} \to \mathcal{L}_0 X$. Namely, an element $d \in \pi_2(X)$ acts on $\gamma \in \tilde{\mathcal{L}}_0 \tilde{X}$ by replacing the homotopy type $[u]$ of the disk with $[u]+d$. We denote by $Q^d = Q_1^{d_1} \cdots Q_K^{d_K}$ the operation of pulling-back differential forms by this deck transformation. It is an observation from [5, 6] that the operations Q_i and the operations of exterior multiplication by p_i do not commute:

$$p_i Q_{i'} - Q_{i'} p_i = -zQ_i \delta_{ii'}.$$

These are commutation relations between generators of the algebra of differential operators on the K-dimensional torus:

$$[-zQ_{i} \partial_{Q_{i}}, Q_{i'}] = -zQ_{i} \delta_{ii'}.$$

Likewise, if P_i denotes the S^1-equivariant line bundle on $\tilde{\mathcal{L}}_0 \tilde{X}$ whose Chern character is e^{-p_i}, then tensoring vector bundles by P_i and pulling back vector bundles by Q_i do not commute:

$$P_i Q_{i'} = ((q-1)\delta_{ii'} + 1)Q_{i'} P_i.$$

These are commutation relations in the algebra of finite-difference operators, generated by multiplications and translations:

$$Q_i \mapsto Q_i \times, \quad P_i \mapsto e^{zQ_i \partial_{Q_i}} = q^{Q_i \partial_{Q_i}}, \quad \text{where} \quad q = e^z.$$

Thinking of these operations acting on S^1-equivariant Floer theory of the loop space, one arrives at the conclusion that S^1-equivariant Floer cohomology (K-theory) should carry the structure of a module over the
algebra of differential (respectively finite-difference) operators. We will elucidate this conclusion with toric examples after giving a convenient description of toric manifolds.

Toric manifolds

Fans and momentum polyhedra are two the most popular languages in algebraic and symplectic geometry of toric manifolds [1]. In symplectic topology, a third framework, where toric manifolds are treated as symplectic reductions or GIT quotients of a linear space, turns out to be more convenient [4].

Let \triangle be the momentum polyhedron of a compact symplectic toric manifold (we remind that it lives in the dual of the Lie algebra of a compact torus, and is therefore equipped with the integer lattice), and N be the number of its hyperplane faces. The corresponding N supporting affine linear functions with the minimal integer slopes canonically embed \triangle into the first orthant \mathbb{R}_+^N in \mathbb{R}^N, and thereby represent the toric manifold as the symplectic quotient of \mathbb{C}^N.

Indeed, the torus T^N acts by diagonal matrices on \mathbb{C}^N with the momentum map $(z_1, \ldots, z_N) \mapsto (|z_1|^2, \ldots, |z_N|^2)$: $\mathbb{C}^N \to \mathbb{R}_+^N \subset \text{Lie}^* T^N$. For a subtorus $T^K \subset T^N$, the momentum map is obtained by further projection $m : \text{Lie}^* T^N \to \text{Lie}^* T^K = \mathbb{R}^K$. The last equality uses a basis, (p_1, \ldots, p_K), which we will assume integer. In fact one only needs to look at the picture $m(\mathbb{R}_+^N) \subset \mathbb{R}^K$ of the first orthant (see example on Figure 1), i.e. to know the images u_1, \ldots, u_N in \mathbb{R}^K of the unit coordinate vectors from \mathbb{R}^N:

$$u_j = p_1 m_{1j} + \cdots + p_K m_{Kj}, \quad j = 1, \ldots, N.$$

When \triangle is the fiber $m^{-1}(\omega)$ in the first orthant over some regular value ω, the initial toric manifold is identified with the symplectic reduction $X = \mathbb{C}^N //_\omega T^K$. Alternatively, removing from \mathbb{C}^N all coordinate subspaces whose moment images do not contain ω, one identifies X with the quotient \mathbb{C}^N / T^K of the rest by the action of the complexified torus (GIT quotient), and thereby equips X with a complex structure.

Here is how basic topological information about X can be read off the picture. The space \mathbb{R}^K and the lattice spanned by p_i are identified with $H^2(X, \mathbb{R}) \supset H^2(X, \mathbb{Z})$. The vectors u_1, \ldots, u_N represent cohomology classes of the toric divisors of complex codimension 1 (they correspond to the hyperplane faces of the momentum polyhedron), and $c_1(T_X)$ is their sum. In the example of Figure 1, $u_1 = u_2 = p_1, u_3 = p_2, u_4 = p_2 - p_1$. The chamber (connected component) of the set of regular values of the moment map, which contains ω (it is the darkest region
on Figure 1) becomes the Kähler cone of X. It is the intersection of the images of those K-dimensional walls \mathbb{R}_+^K of the first orthant \mathbb{R}_+^N which contain ω in their image. In the example, there are 4 of these: spanned by (u_1, u_3), (u_2, u_3), (u_1, u_4), and (u_2, u_4). They are in one-to-one correspondence with the vertices of the momentum polyhedron, and hence with fixed points of T^N in X. By the way, X is non-singular if and only if the determinants of these maps $\mathbb{R}_+^K \to \mathbb{R}_+^K$ (i.e. appropriate $K \times K$ minors of the $K \times N$ matrix m) are equal to ± 1.

The ring $H^*(X)$ is multiplicatively generated by u_1, \ldots, u_N, which besides the $N-K$ linear relations (given by the above expressions in terms of p_1, \ldots, p_K,) satisfy multiplicative Kirwan’s relations. Namely, $\prod_{j \in J} u_j = 0$ whenever the toric divisors u_j with $j \in J \subset \{1, \ldots, N\}$ have empty geometric intersection. In minimalist form, for each maximal subset $J \subset \{1, \ldots, N\}$ such that the cone spanned by the vectors u_j on the picture misses the Kähler cone, there is one Kirwan’s relation $\prod_{j \notin J} u_j = 0$. In our example, there are two Kirwan’s relations: $u_1 u_2 = 0$ and $u_3 u_4 = 0$, i.e. the complete presentation of $H^*(X)$ is $p_1^2 = p_2(p_2 - p_1) = 0$.

The spectrum of the algebra defined by Kirwan’s relations (we call it hedgehog, after Czech, or anti-tank hedgehogs), is described geometrically as follows. For each $\alpha \in X^T$, consider the corresponding K-dimensional wall of \mathbb{R}_+^N whose picture contains ω, and let $J(\alpha)$ denote the corresponding cardinality-K subset of $\{1, \ldots, N\}$. In the complex space with coordinates u_1, \ldots, u_N, consider the $N-K$-dimensional coordinate subspace (rail) \mathbb{C}^{N-K}_α given by the equations $u_j = 0, j \in J(\alpha)$. The hedgehog is the union of the rails. Respectively $H^*(X, \mathbb{C})$ is the algebra of functions on the “thick point”, obtained by intersecting the hedgehog with the K-dimensional range of the map $\mathbb{C}^K \to \mathbb{C}^N: p \mapsto u = m^T p$. In the T^N-equivariant version of the theory, this subspace is
deformed into

\[u_j(p) = \sum_{i=1}^{K} p_i m_{ij} - \lambda_j, \quad j = 1, \ldots, N, \]

and for generic \(\lambda \) intersects the hedgehog at isolated points corresponding to the fixed points \(\alpha X^T \). Here \(\lambda_j \) are the generators of the coefficient ring \(H^\ast(BT^N) \). Finally, the operation of integration \(H^*_{T,N}(X) \to H^*_{T,N}(pt) \) can be written (under some orientation convention) in the form of the residue sum over these intersection point:

\[
\int_X \phi(p, \lambda) = \sum_{\alpha \in X_T} \text{Res}_{p,u(p) \in C_{N-K}^\alpha} \frac{\phi(p, \lambda) dp_1 \wedge \cdots \wedge dp_K}{u_1(p) \cdots u_N(p)}.
\]

This follows from fixed point localization.

In K-theory, let \(P_i \) and \(U_j \) be the \((T^N\text{-equivariant})\) line bundles whose Chern characters are \(e^{-u_j} \) and \(e^{-p_i} \) respectively. The ring \(K^0_{T,N}(X) \) is described by Kirwan’s relations

\[
\prod_{j \in J} (1 - U_j) = 0 \text{ whenever } \bigcap_{j \in J} u_j = \emptyset \text{ for corresponding toric divisors,}
\]

together with the multiplicative relations

\[
U_j = \prod_{i=1}^{k} P_i^{m_{ij}} \Lambda_j^{-1}, \text{ where } \Lambda_j = e^{-\lambda_j} \text{ are generators of } \text{Repr}(T^N),
\]

the coefficient ring of \(T^N\text{-equivariant K-theory}. \) The K-theoretic hedgehog, defined by Kirwan’s relations, lives in the complex torus \((\mathbb{C}^\times)^N \) with coordinates \(U_1, \ldots, U_N \), and is the union of subtori \((\mathbb{C}^\times)^{N-K}_\alpha \) given by the equations \(U_j = 1, j \in J(\alpha) \). The trace operation \(\text{tr}_{T^N} : K^0_{T,N}(X) \to K^0_{T,N}(pt) \) takes on the residue form

\[
\text{tr}_{T^N}(X; \Phi(P)) = \sum_{\alpha \in X_T} \text{Res}_{p \in U(P) \in (\mathbb{C}^\times)^{N-K}} \frac{\Phi(P) dp_1 \wedge \cdots \wedge dp_K}{\prod_{j=1}^{N}(1 - U_j(P))} P_1 \cdots P_K.
\]

This follows from Lefschetz’ fixed point formula. In the example, we have: \(U_1 = P_1/\Lambda_1, U_2 = P_1/\Lambda_2, U_3 = P_2/\Lambda_3, U_4 = P_2/P_1 \Lambda_4 \). There are four intersections with the hedgehog: \(U_1 = U_3 = 1, U_2 = U_3 = 1, U_1 = U_4 = 1, \) and \(U_2 = U_4 = 1 \). The respective residues take the form:

\[
\frac{\Phi(\Lambda_1, \Lambda_3)}{(1 - \Lambda_1/\Lambda_2)(1 - \Lambda_3/\Lambda_1 \Lambda_4)} + \frac{\Phi(\Lambda_2, \Lambda_3)}{(1 - \Lambda_2/\Lambda_1)(1 - \Lambda_3/\Lambda_2 \Lambda_4)} + \frac{\Phi(\Lambda_1, \Lambda_4)}{(1 - \Lambda_1/\Lambda_2)(1 - \Lambda_1 \Lambda_4/\Lambda_3)} + \frac{\Phi(\Lambda_2, \Lambda_4)}{(1 - \Lambda_2/\Lambda_1)(1 - \Lambda_2 \Lambda_4/\Lambda_3)}.
\]
Returning to the heuristics based on loop spaces, we replace the universal cover \tilde{L}_0X of the space of contractible loops in $X = \mathbb{C}^N//\omega T^K$ with the infinite dimensional toric manifold $\mathbb{C}^N//\omega T^K$. Note that the group LT^K of loops in T^K is homotopically the same as $T^K \times \pi_1(T^K)$, and that neglecting to factorize by $\pi_1(T^K) = \mathbb{Z}^K$ is equivalent to passing to the universal cover of L_0X. We consider the model of the loop space $L\mathbb{C}^N = \mathbb{C}^N[\zeta, \zeta^{-1}]$ as equivariant with respect to $T^N \times S^1$, where T^N acts as before on \mathbb{C}^N, and S^1 acts by rotation of the loop’s parameter: $\zeta \mapsto e^{it}\zeta$. The picture in \mathbb{R}^K corresponding to our infinite dimensional toric manifold consists of countably many copies of each of the vectors u_j. The copies represent the Fourier modes of the loops, and the equivariant classes of the corresponding toric divisors in terms of the basis p_1, \ldots, p_K have the form

$$\sum_{i=1}^{K} p_i m_{ij} - \lambda_j - rz = u_j(p) - rz, \quad j = 1, \ldots, N, \quad r = 0, \pm1, \pm2, \ldots$$

In K-theory of the loop space, the line corresponding line bundles are

$$\prod_{i=1}^{K} P_i^{m_{ij}} \Lambda_j^{-1} q^r = U_j(P)q^r, \quad j = 1, \ldots, N, \quad r = 0, \pm1, \pm2, \ldots$$

The Floer fundamental cycle Fl_X in the loop space, by definition, consists of those loops which bound holomorphic disks. In our model of the loop space, $Fl_X = \mathbb{C}^N[\zeta]//\omega T^K$. This gives rise to the following formula for the trace over Fl_X:

$$\text{tr}_{T^N \times S^1}(Fl_X; \Phi(P)) = \frac{1}{(2\pi i)^K} \oint \Phi(P) \prod_{j=1}^{N} \prod_{r=1}^{\infty} (1 - U_j(P)q^r) \frac{dP_1 \wedge \cdots \wedge dP_K}{P_1 \cdots P_K}.$$

Thus, the structure sheaf of the semi-infinite cycle Fl_X is Poincaré-dual to the semi-infinite product

$$\hat{I}_X := \prod_{j=1}^{N} \prod_{r=1}^{\infty} (1 - U_j(P)q^r).$$

Similarly, for a toric bundle $E \to X$ or super-bundle ΠE (see Part IV), endowed with the fiberwise scalar action of T^1, \hat{I}_E and $\hat{I}_{\Pi E}$ are obtained from \hat{I}_X by respectively division and multiplication by the K-theoretic
Euler class of the obvious semi-infinite vector bundle:
\[\hat{\iota}_E := \hat{\iota}_X / \prod_{a=1}^{L} \prod_{r=0}^{\infty} (1 - \lambda V_a(P)q^{-r}), \quad \text{and} \quad \hat{\iota}_{IE} = \hat{\iota}_X \prod_{a=1}^{L} \prod_{r=0}^{\infty} (1 - \lambda V_a(P)q^{-r}). \]

Here \(\lambda \in T^1 \), and \(V_a \) are toric line bundles,
\[V_a(P) = P_1^{l_1} \cdots P_K^{l_K}, \quad E = \bigoplus_{a=1}^{L} V_a. \]

Our aim is to compute the left \(D_q \)-module generated by \(\hat{\iota}_X \). The deck transformation \(Q^d \) corresponding to a homology class \(d \in H_2(X) \) acts in our model by \(Q^d(P_i) = P_i q^{-d_i} \), where \((d_1, \ldots, d_K) \) are coordinates on \(H_2(X) \) in the basis dual to \((p_1, \ldots, p_K) \). We find that \(\hat{\iota}_X \) satisfies the following relations:
\[Q^d \hat{\iota}_X = \prod_{j=1}^{N} \prod_{r=-\infty}^{D_j(d)-1} (1 - U_j(P)q^{-r}) \hat{\iota}_X^j. \]

Of course, the relations for all \(Q^d \) follow from the basis relations with \(Q^d = Q_i, i = 1, \ldots, K \). For instance, in our example, after some rearrangements, we obtain a system of two finite-difference equations (for \(d = (1, 0) \) and \((0, 1) \)):
\[(1 - P_1 \Lambda_1^{-1})(1 - P_2 \Lambda_2^{-1}) \hat{\iota}_X = Q_1(1 - P_2 P_1^{-1} \Lambda_1^{-1}) \hat{\iota}_X \]
\[(1 - P_2 \Lambda_2^{-1})(1 - P_2 P_1^{-1} \Lambda_1^{-1}) \hat{\iota}_X = Q_2 \hat{\iota}_X. \]

To save space, we refer the reader to [6] for an explanation (though given in the cohomological context) of how to mechanically pass from this “momentum” representation of the Floer fundamental class (i.e. expresses as a function of \(P \)) to the “coordinate” representation in the form of the hypergeometric \(Q \)-series with vector coefficients in \(K^0(X) \). In that representation, \(Q^d \) acts as multiplication by \(Q_1^{d_1} \cdots Q_K^{d_K} \), and \(P_i \) acts as \(P_i q^{Q_i \partial Q_i} \), i.e. as the change \(Q_i \mapsto qQ_i \) accompanied with multiplication by \(P_i \) in \(K^0(X) \). With these conventions, we have:
\[I_X = \sum_{d \in \mathbb{Z}^K} Q^d \prod_{j=1}^{N} \prod_{r=-\infty}^{D_j(d)} (1 - U_j(P)q^r). \]

This is just another way to describe the same \(D_q \)-module, and so \(I_X \) satisfies the system of finite-difference equations:
\[\prod_{j=1}^{N} \prod_{r=-\infty}^{m_{ij}-1} (1 - q^{-r} U_j(P q^{Q_j \partial Q_j})) \prod_{r=-\infty}^{m_{ij}-1} (1 - q^{-r} U_j(P q^{Q_j \partial Q_j}))^{i-1} I_X = Q_i I_X, \quad i = 1, \ldots, K. \]
The toric q-hypergeometric function I_X, though comes from heuristic manipulation, has something to do with real life.

Theorem. The series $(1 - q) I_X$ is a value of the big J-function in symmetrized T^N-equivariant quantum K-theory of toric manifold X.

Proof. We follow the plan based on fixed point localization and explained in detail in Part II and Part IV in the example of complex projective spaces.

We write $I_X = \sum_{\alpha \in X \cap N} I_X^{(\alpha)} \phi_\alpha$ is components in the basis $\{ \phi_\alpha \}$ of delta-functions of fixed points. Denote by $U_j(\alpha)$ the restriction of $U_j(P)$ to the fixed point α. We have $U_j(P) = 1$ for each of the K values of $j \in J(\alpha)$, i.e.

$$P_1^m \cdots P_K^m = \Lambda_j, \quad j \in J(\alpha).$$

This determines expressions for P_i, and consequently for $U_j(P)$ with $j \notin J(\alpha)$ as Laurent monomials in $\Lambda_1, \ldots, \Lambda_N$. We have

$$I_X^{(\alpha)}(q) = \sum_{d \in \mathbb{Z}_+^K(\alpha)} \frac{Q_d}{\prod_{j \in J(\alpha)} \prod_{r=1}^{D_j(d)} (1 - q^r)} \prod_{j \notin J(\alpha)} \prod_{r=-\infty}^0 (1 - q^r U_j(\alpha)).$$

The summation range $\mathbb{Z}_+^K(\alpha)$ is over $d \in \mathbb{Z}^K$ such that $D_j(d) \geq 0$ for all $j \in J(\alpha)$, because outside this range, there is a factor $(1 - q^0)$ in the numerator.\(^1\)

(i) Temporarily encode degrees d by $D_j(d), j \in J(\alpha)$, i.e. introduce Laurent monomials $Q_j(\alpha)$ in Novikov’s variables Q_1, \ldots, Q_K such that

$$Q_1^{d_1} \cdots Q_K^{d_K} = \prod_{j \in J(\alpha)} Q_j(\alpha)^{D_j(d)}$$

for all d.

We have:

$$\sum_{d \in \mathbb{Z}_+^K(\alpha)} \frac{Q_d}{\prod_{j \in J(\alpha)} \prod_{r=1}^{D_j(d)} (1 - q^r)} = \sum_{k>0} \sum_{j \in J(\alpha)} Q_j(\alpha)^k / k(1 - q^k).$$

According to Part I (or Part III), the right hand side is $\sum_{d \in \mathbb{Z}_+^K(\alpha)} Q_j(\alpha)^{D_j(d)}$ of the K-dimensional face of \mathbb{R}_+^N corresponding to α. Note that the intersection of all $\mathbb{R}_+^K(\alpha)$ is the closure of the Kähler cone, and respectively the convex hull of all $\mathbb{Z}_+^K(\alpha)$ is the Mori cone of possible degrees of holomorphic curves.

\(^1\)It is dual in $\mathbb{Z}^K = H_2(X, \mathbb{Z})$ to the image $\mathbb{R}_+^K(\alpha)$ on the picture $\mathbb{R}^K = H^2(X, \mathbb{R})$ of the K-dimensional face of \mathbb{R}_+^N corresponding to α. Note that the intersection of all $\mathbb{R}_+^K(\alpha)$ is the closure of the Kähler cone, and respectively the convex hull of all $\mathbb{Z}_+^K(\alpha)$ is the Mori cone of possible degrees of holomorphic curves.
value of the big J-function J_{pt}. Namely, recall from Part IV that by
Γ-operators we mean q-difference operators with symbol defined by

$$
\Gamma_q(x) := e^{\sum_{k>0} x^k/(1-q^k)} \sim \prod_{r=0}^{\infty} \frac{1}{1-xq^r}.
$$

Expressing each u_j as a linear combination $u_j = \sum_{i \in J(\alpha)} u_{n_{ij}}$, we find for multi-variable Γ-operators:

$$
\frac{\Gamma_{q^{-1}}(\lambda)}{\Gamma_{q^{-1}}(\lambda)q^{\sum_{i \in J(\alpha)} n_{ij}Q_{i}(\alpha)\partial Q_{i}(\alpha)}} Q^d = Q^d \prod_{r=-\infty}^{0} (1 - \lambda q^r) \prod_{r=-\infty}^{D_j(d)} (1 - \lambda q^r).
$$

Thus, applying to $J_{pt}/(1-q)$ such operators (one for each $j = 1, \ldots, N$) and setting $\lambda = U_j(\alpha)$, we obtain $I_X^{(\alpha)}$. Due to the invariance of the big J-function J_{pt} with respect to the q-difference operators (as explained in Part IV), we conclude that $(1-q)I_X^{(\alpha)}$ is a value of J_{pt}.

(ii) All poles of $I_X^{(\alpha)}$ away from roots of unity are simple for generic values of $\Lambda_1, \ldots, \Lambda_N$. We compute the residues at such poles. The pole is specified by the choice in the denominators of one of the factors $1 - q^n U_{j_0}$ with a $j_0 \notin J(\alpha)$, and by the choice of one of the mth roots $\lambda^{1/m}$ of $\lambda := U_{j_0}^{(\beta)}$. The choice of $j_0 \notin J(\alpha)$ determines a 1-dimensional orbit of T_C^N in X, connecting the fixed point α with another fixed point, β. The closure of this orbit is a holomorphic sphere $\mathbb{C}P^1 \subset X$, represented on the picture by a collection of u_j of cardinality $K + 1$: the union $J(\alpha) \sqcup \{j_0\} = J(\beta) \sqcup \{j_0'\}$, where j_0' is a unique element of $J(\alpha)$ missing in $J(\beta)$. The torus T_N acts on the cotangent lines to this $\mathbb{C}P^1$ at the fixed points by the characters $\lambda = U_{j_0}(\alpha)$ and $\lambda^{-1} = U_{j_0}^{(\beta)}$ respectively (which are therefore inverse to each other). Moreover, denote by $d_{\alpha\beta}$ the degree of this $\mathbb{C}P^1$. Then $U_j(\alpha)/U_j(\beta) = \lambda^{D_j(d_{\alpha\beta})}$, and in particular $D_{j_0}(d_{\alpha\beta}) = D_j^{(d_{\alpha\beta})} = 1$. Indeed, by cohomological fixed point localization on this $\mathbb{C}P^1$,

$$
D_j(d_{\alpha\beta}) := -\int_{d_{\alpha\beta}} \ln U_j = -\frac{\ln U_j(\alpha)}{-\ln \lambda} + \frac{\ln U_j(\beta)}{-\ln \lambda} = \frac{\ln U_j(\alpha)/U_j(\beta)}{-\ln \lambda}.
$$

Consequently, at $q = \lambda^{-1/m}$ we have for all r and j:

$$
1 - q^r U_j(\alpha) = 1 - q^{-mD_j(d_{\alpha\beta})} U_j(\beta).
$$

Under these constraints,

$$
\frac{\prod_{r=-\infty}^{mD_j(d_{\alpha\beta})}(1 - q^r U_j(\alpha))}{\prod_{r=-\infty}^{D_j(d)}(1 - q^r U_j(\alpha))} = \frac{\prod_{r=-\infty}^{0}(1 - q^r U_j(\beta))}{\prod_{r=-\infty}^{D_j(d)-mD_j(d_{\alpha\beta})}(1 - q^r U_j(\beta))}.
$$
It follows that at $q = \lambda^{-1/m}$,

$$(1 - q^m\lambda)I^{(\alpha)}_X(q) = (1 - q^mU_{j_0}(\alpha)) \sum_{d \in \mathbb{Z}^K} Q^d \prod_{j=1}^N \prod_{r=\infty}^{q^{mD_j}} (1 - q^rU_j(\alpha)) =$$

$$Q^{md_{\alpha\beta}} (1 - q^mU_{j_0}(\alpha)) \prod_{j=1}^N \prod_{r=\infty}^{q^{mD_j(d_{\alpha\beta})}} (1 - q^rU_j(\alpha)) \times$$

$$\sum_{d \in \mathbb{Z}^K} Q^{d-md_{\alpha\beta}} \prod_{j=1}^N \prod_{r=\infty}^{q^{mD_j(d_{\alpha\beta})}} (1 - q^rU_j(\beta)).$$

Equivalently,

$$\text{Res}_{q=\lambda^{-1/m}} I^{(\alpha)}_X(q) \frac{dq}{q} = -Q^{md_{\alpha\beta}} \frac{\phi\alpha}{m} \frac{C_{\alpha\beta}(m)}{\phi\alpha} I^{(\beta)}_X(\lambda^{-1/m}),$$

where $\phi\alpha = \prod_{j \notin J(\alpha)} (1 - U_j(\alpha)) = \text{Euler}_{F^K}^X(T^*_pX)$, and

$$\frac{C_{\alpha\beta}(m)}{\phi\alpha} = \phi\alpha \prod_{r=1}^{m-1} (1 - \lambda^{-r/m}) \prod_{j \notin J_0} \prod_{r=\infty}^{q^{mD_j(d_{\alpha\beta})}} (1 - \lambda^{-r/m}U_j(\alpha)) \prod_{r=\infty}^{q^{mD_j(d_{\alpha\beta})}} (1 - \lambda^{-r/m}U_j(\alpha)).$$

Thus, the residues at the simple poles satisfy the recursion relations derived by fixed point localization arguments in Part II. More precisely, it remains to check that $C_{\alpha\beta}(m) = \text{Euler}_{F^K}^X(T^*_p\mathcal{M}_{0,2}(X, md_{ab}))$, where T^*_p is the virtual cotangent space to the moduli space at the point p represented by the m-multiple cover of the 1-dimensional orbit connecting fixed points α and β. This verification is straightforward. In $K^0_{T^*X}(X)$, we have $T^*X = U_1 + \cdots + U_N - K$ (as follows from the quotient description of X, or by localization to X^T). Therefore the cotangent T^*_p is identified with the dual of $\oplus_j \left[H^0(\mathbb{C}P^1; U^{-m}_j) \odot H^1(\mathbb{C}P^1; U^{-m}_j)\right] - K - 1$ (the last -1 stands for reparameterizations of $\mathbb{C}P^1$ with 2 marked points), which is easily described in terms of spaces of binary forms of degrees $mD_j(d_{\alpha\beta})$. The factors in the formula for $C_{\alpha\beta}(m)$ correspond to T^N-weight of the monomials in such binary forms.

From (i) and (ii) it follows that $(1 - q)I_X$ is a value of the big J-function in permutation-equivariant quantum K-theory of X. Since I_X is defined over the λ-algebra $\mathbb{Z}[\Lambda^{\pm 1}][[Q]]$ involving only Novikov’s variables and functions on T^N, the value actually belongs to the symmetrized theory, i.e. carries information only about multiplicities the part of sheaf cohomology, invariant under permutations of marked points. \square
In the case of bundle E or super-bundle ΠE, where $E = \oplus_{a=1}^{L} V_a$ is the sum of toric line bundles $V_a = \prod_{i} P_{i}^{l_{ia}}$, one similarly obtains q-hypergeometric series

$$I_E = \sum_{d \in \mathbb{Z}^K} Q^d \prod_{j=1}^{N} \prod_{r=-\infty}^{0} (1 - q^r U_j(P)) \prod_{a=1}^{L} \prod_{r=-\infty}^{0} (1 - \lambda q^r V_a(P)),$$

$$I_{\Pi E} = \sum_{d \in \mathbb{Z}^K} Q^d \prod_{j=1}^{N} \prod_{r=-\infty}^{0} (1 - q^r U_j(P)) \prod_{a=1}^{L} \prod_{r=-\infty}^{0} (1 - \lambda q^r V_a(P)),$$

where $\Delta_a(d) = \sum_i d_i l_{ia}$.

Theorem. Functions $(1-q)I_E$ and $(1-q)I_{\Pi E}$ represent some values of the big J-functions in symmetrized quantum K-theories of toric bundle space E and super-bundle ΠE respectively.

This theorem is proved the same way as the previous one.

The above results are K-theoretic analogues of cohomological “mirror formulas” [7, 3, 9]. The strategy we followed is due to J. Brown [2]. Some special cases were obtained in [8] by a different strategy. Some further results and applications can be found in the recent preprint [10].

References

[1] M. Audin. The topology of torus actions on symplectic manifolds. Birkhäuser, Basel, 1991.

[2] J. Brown. Gromov–Witten invariants of toric fibrations. IMRN, 2013, 46 p., arXiv:0901.1290

[3] T. Coates, A. Givental. Quantum Riemann–Roch, Lefschetz and Serre. Ann. of Math. (2), 165 (2007), 15–53.

[4] A. Givental. A symplectic fixed point theorem for toric manifolds. Preprint UC Berkeley, 1992. Published in: The Floer memorial volume. H. Hofer, C. H. Taubes, A. Weinstein, E. Zehnder (eds.), Progress in Math. 133, Birkhäuser, 1995, 445–481.

[5] A. Givental. Homological geometry and mirror symmetry. Talk at ICM-94. In: Proceedings of ICM-94 Zurich. Birkhäuser, Basel, 1995, 472–480.

[6] A. Givental. Homological geometry I. Projective hypersurfaces. Selecta Math. (New Series) 1 (1995), 325–345.

[7] A. Givental. A mirror theorem for toric complete intersections. Topological field theory, primitive forms and related topics (Kyoto, 1996), 1998, pp.141–175.

[8] A. Givental, V. Tonita. The Hirzebruch–Riemann–Roch theorem in true genus-0 quantum K-theory. Preprint, arXiv:1106.3136

[9] H. Iritani. Convergence of quantum cohomology by quantum Lefschetz. J. Reine Angew. Math. 610 (2007), 29–69.

[10] V. Tonita. Twisted K-theoretic Gromov–Witten invariants. Preprint, 23 pp., arXiv:1508.05976