Effects of a Total Dietary Fish Oil Replacement with Vegetable Oils to the Survival, Growth and Development of the Blue Swimming Crab *Portunus Pelagicus* Early Juveniles

Abstract

The feasibility of different vegetable based lipids as a complete replacement to dietary fish oil (FO) to blue swimmer crab *Portunus pelagicus* juveniles was assessed. A total of five iso-nitrogenous and iso-lipidic diets were formulated to contain FO, soybean oil (SBO), linseed oil (LSO), canola oil (CO), or palm oil (PO) as the main lipid source. The diets were fed to first staged juvenile crabs (total of 45 replicate crabs/treatment) over at least four molts. After 35 days, final sizes and weights were determined, and then measured for whole-body cholesterol. Crabs fed the FO, SBO, LSO, or CO-based diets showed similar specific growth rates (SGR) (p > 0.05) for carapace length and width, which was significantly higher (p < 0.05) compared to crabs in the dietary PO treatment. Whole-body cholesterol content was significantly lower for crabs fed the FO, LSO or CO-based diets. Results indicate SBO, LSO or CO can totally replace FO, which may improve cost-effective and sustainable diets for portunid crabs. Further research into the use of dietary PO blends with other vegetable oils should be conducted.

Keywords: Fatty acid; Lipid replacement; Cholesterol; Portunids

Introduction

The rising cost and unsustainable practice of utilizing wild caught marine oil sources have led to increasing research on suitable alternatives in the diets for both farmed fish and crustaceans [1]. This is believed to be an important research direction for many sectors of the aquaculture industry to expand. Typically, vegetable oils are the focus of such research and among these, soybean oil (SBO) is perhaps the most investigated as a partial or complete replacement with relatively good results for various crustacean species [1,2].

Crabs from the genus *Eriocheir*, *Scylla* and *Portunus* are being farmed in commercial ponds and their combined aquaculture production was over a million tonnes in 2014 [3]. The farming of the blue swimmer crab *Portunus pelagicus*, however, is largely in the developmental stage despite a high market demand for this species with fisheries landings increasing from around 76,000 tonnes in 1990 to 180,000 tonnes in 2012 [3]. In general, the farming of portunid crabs is still heavily reliant on pellets designed for shrimp or are fed trash fish since feed formulations for these crabs are largely underdeveloped [4,5]. Recently, however, there has been increasing research in this area [2,5,7].

When various dietary fish oil (FO) to SBO ratios were compared, the sole inclusion of SBO led to lower survival and growth of *P. pelagicus* early juveniles while the best FO to SBO ratio was 1:1 [2]. It was suggested that this was due to the dietary provision of both n-3 and n-6 fatty acids that likely reflected the natural feeding habits of these crabs that consist of both plant and animal material [2]. Similarly, the use of dietary corn oil, which has relatively high levels of n-6 fatty acids, in a 1:2 ratio to FO was optimal for the survival and growth of mud crab *Scylla serrata* juveniles [8]. Meanwhile, a corn oil and FO ratio of 1:1 also led to optimal survival of the mud crab *S. serrata* megalopae to the first crab stage while both the sizes and weights of the crabs were similar to those fed only FO as the lipid source [9]. It has been suggested that optimal productivity can be achieved by balanced fatty acids, but is often specific to each species [10]. In particular, the n-3 to n-6 fatty acid ratio has been demonstrated to greatly influence the growth of other shrimps, including the kuruma shrimp *Marsupenaeus japonicus* [11], white-leg shrimp *Litopenaeus vannamei* [12,13], and black tiger shrimp *Penaeus monodon* [14].

The feasibility of a total dietary FO replacement with vegetable sources to crustaceans has thus far been in consistent [15-17]. For *S. serrata* juveniles, the sole use of dietary SBO or sunflower seed oil caused significantly lower growth compared to crabs fed diets with only FO or in combination with sunflower seed oil and SBO after 65 days [17]. On the other hand, Deering et al. [15] found that *P. monodon* had significantly higher growth when fed diets containing canola oil (CO) or SBO compared to those fed lard or cod liver oil based diets. Similarly, when the giant freshwater prawn *Macrobrachium rosenbergii* were fed diets with FO, SBO,
Effects of a Total Dietary Fish Oil Replacement with Vegetable Oils to the Survival, Growth and Development of the Blue Swimming Crab Portunus Pelagicus Early Juveniles

Citation: Romano N, Kohiino S, Ebnhimi M, Amin NSM, Arshad A (2017) Effects of a Total Dietary Fish Oil Replacement with Vegetable Oils to the Survival, Growth and Development of the Blue Swimming Crab Portunus Pelagicus Early Juveniles. J Aquac Mar Biol 5(1): 00107. DOI: 10.15406/jamb.2017.05.00107

Effects of a Total Dietary Fish Oil Replacement with Vegetable Oils to the Survival, Growth and Development of the Blue Swimming Crab Portunus Pelagicus Early Juveniles

Currently, the feasibility of using different dietary lipid sources to P. pelagicus has not yet been investigated. The aim of this study was to feed P. pelagicus early juveniles with diets containing FO, SBO, CO, linseed oil (LSO) or palm oil (PO), and assess their survival, growth, development and whole-body cholesterol after 35 days.

Materials and Methods

Experimental diets

A total of five iso-nitrogenous and iso-lipidic diets were formulated to contain different lipid sources that included fish oil (FO), soybean oil (SBO), canola oil (CO), linseed oil (LSO) or palm oil (PO), and assess their survival, growth, development and whole-body cholesterol after 35 days.

Experimental Diets	FO	SBO	CO	LSO	PO
Fishmeal a	500	500	500	500	500
Soybean meal b	100	100	100	100	100
Lecithin c	30	30	30	30	30
Cholesterol d	10	10	10	10	10
Vitamin premix e	40	40	40	40	40
Mineral premix f	30	30	30	30	30
Corn starch	200	200	200	200	200
Calcium phosphate g	10	10	10	10	10
Choline chloride h	10	10	10	10	10
Fish oil i	70				
Soybean oil j	70				
Canola seed oil k	70				
Linseed oil l	70				
Palm oil m	70				

Proximate Composition

	Moisture	Crude protein	Crude lipid	Crude ash	Crude fiber
Fishmeal a	96.5	423.0	137.6	116.4	12.5
Soybean meal b	102.4	411.3	131.8	116.3	12.7
LSO	90.1	419.3	147.6	114.5	11.3
PO	102.9	415.8	143.2	114.1	13.2
PO	97.0	414.5	140.7	115.4	12.8

Materials

- Fishmeal -≥ 96.0% (Sigma 21218)
- Soybean meal - ≥ 98.0% (Sigma P364)
- Soybean oil - ≥ 92.5% powder (Sigma C8503)
- Canola seed oil -≥ 96.0% (Sigma 21218)
- Corn starch -≥ 98.0% powder (Sigma C7527)
- Palm oil -90.0% (Sigma F8020)
- Crude protein of 170.0-171.9 g kg⁻¹, respectively, on as is basis
- Crude lipid of 140.5-141.0 g kg⁻¹, respectively, on as is basis
- Crude ash of 113.7-114.2 g kg⁻¹, respectively, on as is basis
- Crude fiber of 12.5-12.8 g kg⁻¹, respectively, on as is basis

The crabs were larvi cultured according to [26] however, 1000 L plastic tanks were used instead of 300 L. After the crabs settled to juveniles, which was within 12 hours of metamorphosis from the megalopa stage, they were siphoned out and a total of 225 intact and apparently healthy crabs were individually placed in 500 ml plastic containers to prevent cannibalism. The crabs were then randomly assigned one of the five treatments and were immediately fed the experimental diets. This yielded 45 replicate crabs in each treatment and the culture units were located within a plastic lined room and an air heater maintained the temperature at 29±2°C. The water was natural seawater, which was previously filtered (to 5µm) and ultraviolet sterilized.
Table 2: Fatty acid composition (% of total fatty acids) of the experimental diets with different oil sources.

Experimental Diets	FO	SBO	CO	LSO	PO
Individual fatty acids					
C14:0	3.54	4.25	2.13	3.62	4.47
C16:0	16.43	17.98	11.54	12.32	34.32
C16:1n-7	4.69	6.72	2.76	2.88	2.67
C18:0	6.38	5.34	4.85	1.13	6.39
C18:1n-9	14.73	14.47	39.63	11.16	21.14
C18:2n-6	18.32	36.41	24.68	27.54	18.37
C18:3n-3	4.95	3.26	4.41	31.47	2.50
C20:4n-6	2.14	1.36	0.45	0.63	0.82
C20:5n-3	8.85	3.54	3.39	3.65	3.68
C22:5n-3	1.54	0.24	0.31	0.46	0.39
C22:6n-3	18.43	6.16	5.85	5.14	5.25

Major fatty acid groups

SFA	MUFA	n-6 PUFA	n-3 PUFA	LC-PUFA	n-6/n-3
26.35	27.84	18.52	17.07	45.18	
19.42	20.19	41.39	13.04	22.81	
20.46	37.77	25.13	28.17	19.19	
33.77	14.20	14.96	41.72	12.82	
30.96	11.30	10.00	9.88	10.14	
0.61	2.66	1.68	0.68	1.50	

SFA = saturated fatty acid (sum of C14:0+C16:0+C18:0)
MUFAs = monounsaturated fatty acid (sum of C16:1+C18:1n-9)
PUFAs = polyunsaturated fatty acid (sum of C18:2n-6+C18:3n-3+C20:4n-6+C20:5n-3+C22:5n-3+C22:6n-3)
Σ n-6 PUFA = (sum of C18:2n-6+C20:4n-6+C20:5n-3+C22:5n-3+C22:6n-3)
Σ n-3 PUFA = (sum of C18:3n-3+C20:5n-3+C22:5n-3+C22:6n-3)
FO = fish oil; SBO = soybean oil; CO = canola oil; LSO = linseed oil; PO = palm oil.

The crabs were fed twice each day, once in the morning (9:00) and afternoon (15:00) and before feeding, any uneaten food was siphoned out, followed by a 20% water exchange. During this time, the presence of any mortality or molts was recorded. If a mortality was found, their carapace length and width was measured using a digital caliper (0.01 mm; Mitutoyo, Japan). After one week, all the crabs were transferred to new containers, and the following week were all transferred to 5 L containers filled with 2 L of seawater. This was done to ensure hygienic conditions.

After 35 days, all the crabs were measured for their final carapace width and length as well as wet weights. The remaining crabs were kept at -20°C to measure their whole-body cholesterol content within one month.

Whole-body cholesterol

From the remaining crabs, these were equally pooled in triplicate and their whole body was measured according to [23].

Briefly, approximately 0.5 gram of sample was homogenized and then 3 ml of 95% ethanol was added followed by 2 ml of 50% KOH. After the samples were fully digested at 60°C for 10 min., the solution was allowed to cool to room temperature and 5 ml of hexane was added followed by 3 ml of distilled water. Phase separation occurred after 15 min and the upper hexane layer (2.5 ml) was removed and evaporated at 60°C under nitrogen gas flow. Then 4 ml of o-phthalaldehyde reagent was added followed by 2 ml of concentrated sulfuric acid and then 6 ml of distilled water. Absorbance was read at 550 nm and the results are expressed as mg 100g⁻¹.

Statistical analysis

Data were checked for homogeneity and normality and were log-transformed if the assumptions were violated. Then, the data were subjected to a one-way ANOVA after prior confirmation of data homogeneity and normality, with the exception of the survival data. Survival was based on each crab acting as a replicate, which prevented variance. If significant differences were detected (p<0.05), a Duncan’s post-hoc test was performed to identify differences among treatments. All statistical analysis was performed using SPSS (ver.22).

Results

Survival, growth and development

The survival ranged between 87.5% in the dietary SBO treatment to 62.5% in the dietary PO treatment (Table 3). The specific growth rates (SGR) for carapace width and length were significantly lower for crabs fed the PO-based diet, compared to all other treatments (Table 3). Except for crabs in the dietary CO treatment, those fed the PO-based diet had significantly lower SGR for wet weight than all others (Table 3).

Table 3: Survival and specific growth rate (SGR) (% day⁻¹) for carapace width, length and wet weights of the swimming crab Portunus pelagicus juveniles after 35 days of being fed diets with different lipids.

Treatments	Survival (%)	Carapace width	Carapace length	Wet weight
Fish oil	77.8	3.68 ± 0.09a	2.66 ± 0.08a	10.37 ± 0.25a
Soybean oil	87.5	3.89 ± 0.10a	2.76 ± 0.08a	10.91 ± 0.24a
Canola oil	82.5	3.65 ± 0.07a	2.64 ± 0.07a	10.13 ± 0.20ab
Linseed oil	67.5	3.81 ± 0.11a	2.77 ± 0.09a	10.07 ± 0.29ab
Palm oil	62.5	3.30 ± 0.13ab	2.38 ± 0.13ab	9.42 ± 0.35ab

SGR values are mean ± SE, n = 27 – 36. Different superscripted letters within each column are significantly different from each other (Duncan’s multiple range test, p<0.05)

*no statistical tests could be performed due to each crab being a replicate.

For the first two molts (C1-C2 and C2-C3), there was no significant difference in the intermolt duration (Table 4). By the third molt, however, crabs fed the SBO-based diet had significantly longer intermolt duration than crabs fed the FO, CO or LSO-based diets. Similarly, by the fourth molt, crabs fed the FO or LSO diets had significantly shorter intermolt durations compared to those fed the SBO or PO-based diets (Table 4).

Citation: Romano N, Kohinoo S, Ebnhimi M, Amin NSM, Arshad A (2017) Effects of a Total Dietary Fish Oil Replacement with Vegetable Oils to the Survival, Growth and Development of the Blue Swimming Crab Portunus Pelagicus Early Juveniles. J Aquac Mar Biol 5(1): 00107. DOI: 10.15406/jamb.2017.05.00107
Table 4: Molt interval (days) of the swimming crab *Portunus pelagicus* juveniles when fed diets with different lipid sources over four molts.

Crab Stage	Treatment	C1 – C2	C2 – C3	C3 – C4	C4 – C5
Fish oil	3.77 ± 0.24	3.93 ± 0.45	6.67±0.81	7.43±0.62	
Soybean oil	3.55 ± 0.23	4.48 ± 0.43	8.00±0.94	11.00±1.07	
Canola oil	3.73 ± 0.17	3.36 ± 0.39	5.47±0.53	7.93±0.69	
Linseed oil	3.89 ± 0.35	4.63 ± 0.56	5.52±0.45	8.81±1.09	
Palm oil	3.64 ± 0.15	4.84 ± 0.58	7.76±0.98	10.67±1.29	

Values are mean ± SE. Different superscripted letters within each column are significantly different from each other (Duncan’s multiple range test, p<0.05).

Table 5: Whole-body cholesterol content (mg 100g⁻¹) of the blue swimmer crab *Portunus pelagicus* juveniles after 35 days of being fed diets with different lipids.

Cholesterol	Fish Oil	Soybean Oil	Canola Oil	Linseed Oil	Palm Oil
Cholesterol	42.10 ± 3.57	27.61 ± 4.56	31.60 ± 4.32	32.16 ± 2.54	21.49 ± 3.17

Values are mean ± SE, n = 3. Different letters indicate significant differences (Duncan’s multiple range test, p<0.05).

Whole-body cholesterol content

Crabs fed the FO-based diet had the highest whole-body cholesterol content than all other dietary treatments (Figure 1). The lowest whole-body cholesterol was from crabs fed the PO-based diet, which was significantly lower than those fed the LSO, CO or FO-based diet. There was no significant difference between crabs fed the SBO or PO-diets (Figure 1).

Based on the lower survival and growth of *P. pelagicus* fed the PO-based diet, this also appears to indicate SFA was poorly digested. Moreover, with the exception of the SBO dietary treatment, crabs fed the PO-based diet had significantly lower whole-body cholesterol content than all the other treatments. A contributor for this likely includes the lower amounts of cholesterol in the vegetable oils compared to FO, although this is unlikely to fully explain such a finding, especially as cholesterol transport via lipoproteins was disrupted as suggested by Noordin et al. [2]. This certainly requires further research on the influence that different fatty acids could have on cholesterol metabolism in crustaceans. Since cholesterol plays crucial roles such as being a precursor for the molting hormone ecdysone [32], this time, the majority of crabs molted at least four times to reach the fifth crab stage, with some reaching the sixth juvenile stage, which is approximately half way through their development until market size. Since it is known that *P. pelagicus* require LC-PUFA for their survival and growth [19], the ability of the crabs to grow well on the various tested vegetable oils may have been due to residual FO from the fishmeal that was included as the dominant protein source (at 500 g kg⁻¹) leading to a total n-3 LC-PUFA of 9.88 to 11.30%. Indeed, more recently when dietary LC-PUFA was deficient in the diets of *P. pelagicus* early juveniles, there was a steep drop in their survival after only three molts along with significantly lower growth compared diets containing LC-PUFA of only 3.7% [2]. It has been suggested that the ability of *P. pelagicus* to grow well with only small amounts of LC-PUFA reflects their natural feeding habits on both animal and plant material, but the necessity of LC-PUFA is probably due to an inability to synthesize these fatty acids from linoleic (18:2n-6) and α-linolenic (18:3n-3) [2]. In contrast, when *S. serrata* were fed sunflower or SBO as the sole lipids, growth was significantly lower of over two-fold despite residual FO from fishmeal (as the dominant protein source) as well as oils from squid, shrimp and dam meal leading to a total n-3 LC-PUFA of 8.1 and 7.9%, respectively [17]. This may indicate that *P. pelagicus* have a lower n-3 LC-PUFA requirement than *S. serrata*.

On the other hand, despite the presence of n-3 LC-PUFA in the PO-based diets, at similar amounts to the other vegetable oil based diets, this diet led to significantly lower growth of the crabs compared to those in the other treatments. This may have been due to the high amount of saturated fatty acids (SFA) in the PO diet compared to the other tested diets. This finding is in agreement with a study on *M. rosenbergii* since among various vegetable oils, that included CO, LSO, sunflower seed oil or crude palm oil (CPO), prawns fed the CPO-based diet had the lowest growth performance [18]. Kim et al. [18] suggested that since SFA were poorly digested by *M. monodon* [27,28] this might have applied to *M. rosenbergii* thus leading to lower growth.

Based on the lower survival and growth of *P. pelagicus* fed the PO-based diet, this also appears to indicate SFA was poorly digested. Moreover, with the exception of the SBO dietary treatment, crabs fed the PO-based diet had significantly lower whole-body cholesterol content than all the other treatments. A contributor for this likely includes the lower amounts of cholesterol in the vegetable oils compared to FO, although this is unlikely to fully explain such a finding, especially as cholesterol was supplemented at 10 g kg⁻¹. Such a supplementation was more than sufficient to satisfy the requirements for *S. serrata* [21], which is an essential nutrient for crustaceans due to their inability to synthesize this de novo [29]. Another possible contributor to the reduced whole-body cholesterol was due the presence of phytosterols, which can diminish cholesterol absorption [30], and the tested vegetable oils in the current study are also known to contain this compound [31]. In addition, it may be possible that cholesterol transport via lipoproteins was disrupted as suggested by Noordin et al. [2]. This certainly requires further research on the influence that different fatty acids could have on cholesterol metabolism in crustaceans. Since cholesterol plays crucial roles such as being a precursor for the molting hormone ecdysone [32],

Discussion

The results of the current study demonstrate that dietary FO can be completely replaced by SBO, LSO, or CO in the diets of *P. pelagicus* without affecting their growth after 35 days. During this time, the majority of crabs molted at least four times to reach the fifth crab stage, with some reaching the sixth juvenile stage, which is approximately half way through their development until market size. Since it is known that *P. pelagicus* require LC-PUFA for their survival and growth [19], the ability of the crabs to grow well on the various tested vegetable oils may have been due to residual FO from the fishmeal that was included as the dominant protein source (at 500 g kg⁻¹) leading to a total n-3 LC-PUFA of 9.88 to 11.30%. Indeed, more recently when dietary LC-PUFA was deficient in the diets of *P. pelagicus* early juveniles, there was a steep drop in their survival after only three molts along with significantly lower growth compared diets containing LC-PUFA of only 3.7% [2]. It has been suggested that the ability of *P. pelagicus* to grow well with only small amounts of LC-PUFA reflects their natural feeding habits on both animal and plant material, but the necessity of LC-PUFA is probably due to an inability to synthesize these fatty acids from linoleic (18:2n-6) and α-linolenic (18:3n-3) [2]. In contrast, when *S. serrata* were fed sunflower or SBO as the sole lipids, growth was significantly lower of over two-fold despite residual FO from fishmeal (as the dominant protein source) as well as oils from squid, shrimp and dam meal leading to a total n-3 LC-PUFA of 8.1 and 7.9%, respectively [17]. This may indicate that *P. pelagicus* have a lower n-3 LC-PUFA requirement than *S. serrata*.

On the other hand, despite the presence of n-3 LC-PUFA in the PO-based diets, at similar amounts to the other vegetable oil based diets, this diet led to significantly lower growth of the crabs compared to those in the other treatments. This may have been due to the high amount of saturated fatty acids (SFA) in the PO diet compared to the other tested diets. This finding is in agreement with a study on *M. rosenbergii* since among various vegetable oils, that included CO, LSO, sunflower seed oil or crude palm oil (CPO), prawns fed the CPO-based diet had the lowest growth performance [18]. Kim et al. [18] suggested that since SFA were poorly digested by *M. monodon* [27,28] this might have applied to *M. rosenbergii* thus leading to lower growth.

Based on the lower survival and growth of *P. pelagicus* fed the PO-based diet, this also appears to indicate SFA was poorly digested. Moreover, with the exception of the SBO dietary treatment, crabs fed the PO-based diet had significantly lower whole-body cholesterol content than all the other treatments. A contributor for this likely includes the lower amounts of cholesterol in the vegetable oils compared to FO, although this is unlikely to fully explain such a finding, especially as cholesterol was supplemented at 10 g kg⁻¹. Such a supplementation was more than sufficient to satisfy the requirements for *S. serrata* [21], which is an essential nutrient for crustaceans due to their inability to synthesize this de novo [29]. Another possible contributor to the reduced whole-body cholesterol was due the presence of phytosterols, which can diminish cholesterol absorption [30], and the tested vegetable oils in the current study are also known to contain this compound [31]. In addition, it may be possible that cholesterol transport via lipoproteins was disrupted as suggested by Noordin et al. [2]. This certainly requires further research on the influence that different fatty acids could have on cholesterol metabolism in crustaceans. Since cholesterol plays crucial roles such as being a precursor for the molting hormone ecdysone [32],
this could potentially explain the significantly longer intermolt duration of the crabs fed the SBO and PO-based diets. It was similarly found that L. vannamei fed SBO or poultry fat-based diets led to lower cholesterol in the muscle and hepatopancreas, although growth was not significantly impacted after 28 days [16].

The findings of this study are encouraging since LSO, SBO, or CO can be used to totally replace traditionally used FO as cheaper and more sustainable alternatives in the diets of P. pelagicus juveniles without affecting growth. The reduced performance of the crabs fed the PO-based diet may have been due to excessive SFA that reduced fatty acid utilization and/or disrupted cholesterol metabolism. This, however, requires further investigations. Considering PO is an inexpensive lipid source, particularly in Southeast Asia where these crabs are predominately farmed [1,4], investigations into the use of PO blends with other plant oils may help further improve cost-effectiveness without compromising productivity. Such research, along with the findings of this study, should assist in more cost-effective and eco-friendly feed formulations of portunid crabs.

Acknowledgements

This study was funded by a grant from Universiti Putra Malaysia (UPM); project no. GP-IPB/2014/9440403.

References

1. Turchini GM, Torstensen BE, Wing Keong Ng (2009) Fish oil replacement in finfish nutrition. Rev Aquacult 1(1): 10-57.
2. Noordin NM, Zeng C, Southgate PC, Romano N (2015) Effects of dietary fish oil to soybean oil ratio on survival, development, and growth of early juveniles of the blue swimmer crab Portunus pelagicus. J Shellfish Res 34(3): 1065-1072.
3. FAO (Food and Agriculture Organization). (2015) FISHSTAT plus: Universal Software for Fishery Statistical Time Series, Version 2.3. FAO Fisheries Department, Fishery Information, Data and Statistical Unit, Rome.
4. Shelley C, Lovatelli A (2011) Mud crab aquaculture: A practical manual. Fisheries and Aquaculture Technical Paper 567: 1-78.
5. Zhao J, Wen X, Li S, Zhu D, Li Y (2015) Effects of dietary lipid levels on growth, feed utilization, body composition and antioxidants of juvenile mud crab Scylla paramamosain (Estampador). Aquaculture 435(1): 200-206.
6. Jin M, Zhou QC, Zhang WX, Xie FJ, Shen Tu JK, Huang XL (2013) Dietary protein requirements of the juvenile swimming crab, Portunus trituberculatus. Aquaculture 414-415: 303-308.
7. Sukor SA, Taher S, Ehteshami F, Arshad A, Ng WK, Romano N (2016) Effects of different organic acids on the survival, growth, and hepatopancreatic histopathology of the blue swimmer crab, Portunus pelagicus. J Shellfish Res 35(2): 555-561.
8. Sheen SS, Wu SW (1999) The effects of dietary lipid levels on the growth response of juvenile mud crab Scylla serrata. Aquaculture 175(1-2): 143-153.
9. Holme MH, Zeng C, Southgate PC (2006) The effects of supplemental dietary cholesterol on growth, development and survival of mud crab, Scylla serrata, megalopa fed semi-purified diets. Aquaculture 261(4): 1328-1334.
10. Glencross BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquacult 1(2): 71-124.
11. Deshimaru O, Kuroki K, Yone Y (1979) The composition and level of dietary lipid appropriate for the growth of prawn. Bull Jap Soc Fish 45: 591-594.
12. Lim C, Ako H, Brown CL, Hahn K (1997) Growth response and fatty acid composition of juvenile Penaeus vannamei fed different sources of dietary lipid. Aquaculture 151(1-4): 143-153.
13. González-Félix M, Gatlin DM, Lawrence AL, Perez-Velazquez M (2005) Nutritional evaluation of fatty acids for the open thelycum shrimp, Litopenaeus vannamei: II. Effect of dietary n-3 and n-6 polyunsaturated and highly unsaturated fatty acids on juvenile shrimp growth, survival and fatty acid composition. Aquacult Nutr 9(2): 115-122.
14. Glencross BD, Smith DM, Tonks L, Tabrett SJ, Williams KC (2002) The effect of dietary n-3 and n-6 fatty acid balance on the growth of the prawn Penaeus monodon. Aquacult Nutr 8(1): 43-51.
15. Deering MJ, Fielder DR, Hewitt DR (1997) Growth and fatty acid composition of juvenile leader prawns, Penaeus monodon, fed different lipids. Aquaculture 151(1-4): 131-141.
16. Cheng ZJ, Hardy RW (2004) Protein and lipid sources affect cholesterol concentration of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone). J Animal Sci 82(4): 11 36-1145.
17. Unnikrishnan U, Chakraborty K, Paulraj R (2010) Efficacy of various lipid supplements in formulated pellet diets for juvenile Scylla serrata. Aquaculture Res 41(10): 1498-1513.
18. Kim YC, Romano N, Lee KS, Teo CY, Ng WK (2013) Effects of replacing dietary fish oil and squid liver oil with vegetable oils on the growth, tissue fatty acid profile and total carotenoids of the giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture Res 44(11): 1731-1740.
19. Romano N, Zeng C, Noordin NM, Ng WK (2012) Improving the survival, growth and hemolymph ion maintenance of early juvenile blue swimming crabs, Portunus pelagicus, at hypo- and hyper-osmotic conditions through dietary long chain PUFA supplementation. Aquaculture 342-343: 24-30.
20. Chen Y, Chen L, Qin JG, Ding Z, Li M, et al. (2016) Growth and immune response of Chinese mitten crab (Eriocheir sinensis) fed diets containing different lipid sources. Aquaculture Res 47(6): 1984-1995.
21. Sheen SS (2000) Dietary cholesterol requirement of juvenile mud crab Scylla serrata. Aquaculture 189(3-4): 277-285.
22. Li X, Wang J, Han T, Hu S, Jiang Y, et al. (2014) Effect of dietary phospholipids levels and sources on growth performance, fatty acid composition of the juvenile swimming crab, Portunus trituberculatus. Aquaculture 430: 166-172.
23. Romano N, Simon W, Ebrahim M, Fadel AHI, Chong CM, et al. (2016) Dietary sodium citrate improved oxidative stability in red hybrid tilapia (Oreochromis sp.) but reduced growth, health status, intestinal short chain fatty acids and induced liver damage. Aquaculture 458: 170-176.
24. AOAC (Association of Official Analytical Chemists) (1997) In: Cunniff PA (Eds.), Official methods of analysis of AOAC International, 16th edition AOAC International Arlington, Virginia, USA.
25. Ebrahim M, Rajon MA, Meng GY, Eirjam AS (2014) Omega-3 fatty

Citation: Romano N, Kohinoor S, Ebrahim M, Amin NSM, Arshad A (2017) Effects of a Total Dietary Fish Oil Replacement with Vegetable Oils to the Survival, Growth and Development of the Blue Swimming Crab Portunus Pelagicus Early Juveniles. J Aquac Mar Biol S1(1): 00107. DOI: 10.15406/jamb.2017.05.00107
Effects of a Total Dietary Fish Oil Replacement with Vegetable Oils to the Survival, Growth and Development of the Blue Swimming Crab Portunus Pelagicus Early Juveniles

acid enriched chevon (goat meat) lowers plasma cholesterol levels and alters gene expression in rats. BioMed Res Intern 2014: 1-8.

26. Romano N, Zeng Z (2006) The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimming crabs, Portunus pelagicus. Aquaculture 260(1-4): 151-162.

27. Merican ZO, Shim KF (1994) Lipid and fatty acid utilization in adult Penaeus monodon fed diets supplemented with various oils. Aquaculture 123(3-4): 335-347.

28. Merican ZO, Shim KF (1995) Apparent digestibility of lipid and fatty acids in residual lipids of meals by adult Penaeus monodon. Aquaculture 133(3-4): 275-286.

29. Teshima S, Kanazawa A, Okamoto H (1974) Absorption of sterols and cholesteryl esters in prawn, P. japonicus. Bull Jap Soc Sci Fish 40: 1015-1019.

30. Gilman CI, Leusch FDL, Breckenridge WC, MacLathcy DL (2003) Effects of a phytosterol mixture on male plasma lipoprotein fractions and testis P450scc activity. Gen Comp Endocrinol 130(2): 172-184.

31. Verleyen T, Forcades M, Verhé R, Greyt WD (2002) Analysis of free and esterified sterols in vegetable oils. J Amer Oil Chem Soc 79(2): 117-122.

32. Watson RD, Spaziani E (1982) Uptake of ¹⁴C-cholesterol and secretion of ecdysone by crab Y-organs in vitro. Amer Zool 22: 956.