We examine - both experimentally and numerically - a two-dimensional nonlinear driven electrical lattice with honeycomb structure. Drives are considered over a range of frequencies both outside (below and above) and inside the band of linear modes. We identify a number of discrete breathers both existing in the bulk and also (predominantly) ones arising at the domain boundaries, localized either along the arm-chair or along the zig-zag edges. The types of edge-localized breathers observed and computed emerge in distinct frequency bands near the Dirac-point frequency of the dispersion surface while driving the lattice subharmonically (in a spatially homogeneous manner). These observations/computations can represent a starting point towards the exploration of the interplay of nonlinearity and topology in an experimentally tractable system such as the honeycomb electrical lattice.

Keywords:

I. INTRODUCTION

Honeycomb lattices have attracted substantial interest within the physics community in recent years, due to their inherent potential of topological surface phenomena [1]. The interplay of topology and wave dynamics (both at the linear and more recently at the nonlinear level) has had significant impact both in the realm of optics [2] and in that of acoustics/mechanical systems [3, 4]. Nonlinearity further adds to the complexity and the wealth of this interplay, especially in experimentally tractable settings. In the linear regime, some pioneering experimental results have appeared in the literature in photonic graphene and show the existence of edge-localized states [18, 19], and these were even shown to propagate in one direction only, upon breaking the time-reversal symmetry [20]. Yet, we argue that the identification of unprecedented, experimentally controlled settings where nonlinear states (both bulk and edge ones) can be obtained is of value to the efforts to understand nonlinear topological structures and how they differ from their more standard, non-topological variants (as well as how such states vary from linear topological ones). In that vein, we propose as a platform worth exploring the setting of honeycomb electrical lattices.

More concretely, in this paper we report on a series of findings of nonlinear waves in a 2D electrical honeycomb lattice. That intrinsic localized modes, also known as discrete breathers (DBs) can exist in square lattices of this kind has been shown previously [21]. In fact, such modes are well-known to exist in a wide range of physical settings, summarized, e.g., in a number of reviews [22, 23]. Here, however, we focus on the role of the honeycomb geometry and drive the system over a wide range of frequencies both within as well as outside the band of small amplitude excitations. We find both experimentally and numerically that not only can bulk-localized modes be identified in this setting, but also edge-localized modes can be excited with a spatially homogeneous, subharmonic driver. These DBs bear frequencies around that of the Dirac points. The exact DB frequency depends on the wave amplitude, as expected from a soft nonlinear system, but interestingly also on the type of edge. The relevant zig-zag edge-localized DBs are found to exist within a frequency band that is higher, in terms of frequencies (and non-overlapping) compared to the arm-chair mode band. We complement these results with a numerical stability analysis and find that these discrete breathers do not appear to derive from a continuation of linear modes, but that they come into existence via (saddle-node) bifurcation phenomena. Our findings constitute a first step towards the more systematic examination of stable bulk and edge modes in such honeycomb electrical lattices and we hope will spur further efforts in this direction.

Our presentation is structured as follows. In section II we present the mathematical model associated with the experimental setting of interest, i.e., the honeycomb lattice of LC resonators. The underlying linear modes are identified and their band is obtained for parameters associated within the experimental range in Section III. Subsequently, in section IV, we present an anthology of experimental and numerical re-
results for similar conditions between the experiment and the numerical computation. The findings are presented for different values of the driver frequency, progressively moving from frequencies below the band to ones above the band of linear states. Finally, we summarize our findings and present our conclusions and some challenges arising towards future work in Section V.

II. THE MODEL

The experimental system investigated in this paper is a honeycomb lattice consisting of unit cells that are comprised of LC resonators, whose nonlinearity is originated by using a varactor diode instead of the standard capacitor. These nonlinear resonators are coupled together into a two-dimensional lattice via coupling inductors. Such a system was studied in a previous publication [21], where it was found that stable two-dimensional ILMs/discrete breathers could be produced. That study used periodic boundary conditions exclusively, thus eliminating any lattice edges. In the present study, we have used free-ends boundary conditions, allowing a pair of both zig-zag and armchair edges. This has permitted us to investigate the dynamical interplay between lattice edges and nonlinear localized states.

More concretely, our use of a varactor diode (NTE 618) introduces a specific (experimentally determined) nonlinear capacitance $C(V)$. We also use inductors of value $L_2 = 330\mu\text{H}$, and the resulting unit cells are driven by a periodic voltage source $E(t)$ of frequency f (i.e., the driving is uniform) via a resistor $R = 10k\Omega$. Each single unit is coupled to its three neighbors via inductors $L_1 = 680\mu\text{H}$ building a honeycomb lattice.

Using basic circuit theory, the system can be described by the equations [21, 24],

$$\frac{di_{n,m}}{d\tau} = \frac{L_2}{L_1} \left(\sum_{j,k} v_{j,k} - K_{n,m} v_{n,m} \right) - v_{n,m}, \quad (1)$$

$$\frac{dv_{n,m}}{d\tau} = -\frac{1}{c(v_{n,m})} \left[i_{n,m} - i^D(v_{n,m}) \right] - \frac{v_{n,m}}{C_0 \omega_0 R} + \frac{1}{C_0 \omega_0 R} \frac{\varepsilon(\Omega t)}{V_d},$$

where the sum (j,k) is taken over all neighbors of the (n,m) node and $K_{n,m}$ is the number of neighbors of node (n,m). $K_{n,m}$ is equal to three in an infinite lattice (or finite lattice with periodic boundary conditions), but in a finite lattice with free boundaries it could be either $K_{n,m} = 1$ or $K_{n,m} = 2$ on the edges, depending on the particular lattice node. The varactor can be modeled as a nonlinear resistance in parallel with a nonlinear capacitance. As shown in [24], the nonlinear current $I^D(V)$ is given by

$$I^D(V) = -I_s \exp(-\beta V), \quad (2)$$

where $\beta = 38.8 \text{ V}^{-1}$ and $I_s = 1.25 \times 10^{-14} \text{ A}$, and its capacitance $C(V)$ as

$$C(V) = \begin{cases} C_v + C_1(V') + C_2(V')^2 & \text{if } V \leq V_c, \\ C_0 e^{-\alpha V} & \text{if } V > V_c, \end{cases} \quad (3)$$

where $V' = (V - V_c)$, $C_0 = 788 \text{ pF}$, $\alpha = 0.456 \text{ V}^{-1}$, $C_v = C_0 \exp(-\alpha V_c)$, $C_1 = -\alpha C_v$, $C_2 = 100 \text{ nF}$ and $V_c = -0.28 \text{ V}$.

The following dimensionless variables were used in Eq. (1):

$$\tau = \omega_0 t, \quad \varepsilon(t) = 1/\sqrt{2\pi C_0}, \quad \Omega = 2\pi f/\omega_0$$

is the dimensionless driving frequency; the dimensionless voltage $v_{n,m} = V_{n,m}/V_d$, with V_d representing the voltage amplitude of the driving; $i_{n,m} = (I_v - I_2)/(C_0 \omega_0 V_d)$, where I_v is the full current through the unit cell and I_2 is the current through the inductor L_2, both corresponding to cell (n,m) and $i^D = I^D/(C_0 \omega_0 V_d)$. A phenomenological dissipation resistor, R_i, was included in the model to better approximate the experimental dynamics and R_e is the equivalent resistance so $1/R_e = 1/R + 1/R_i$. In all cases, the ratio L_2/L_1 characterizes the strength of the effective discreteness of the system (with the uncoupled limit obtained for $L_1 \to \infty$). We should add that this is still only a simplified model of the varactor diodes, and comparison between theoretical and experimental results will not be exact. Yet, it is an important first step in the modeling effort towards understanding this setup.

III. LINEAR MODES

In the linear limit ($c(v) = 1, i_d = 0$) the undriven and undamped system reduces to

$$\frac{d^2v_{n,m}}{dt^2} = \frac{L_2}{L_1} \left(\sum_{j,k} v_{j,k} - K_{n,m} v_{n,m} \right) - v_{n,m}. \quad (4)$$

Linear modes can be found as plane-wave solutions. An infinite lattice (with nearest neighbor spacing of 1) can be generated from lattice vectors $\varepsilon_k = (1/2, \pm \sqrt{3}/2)$ (see e.g. [23]), and the dispersion relation $\omega(k)$, with $k = (k_x, k_y)$, is given by

$$\omega^2 = \frac{1}{C_0 L_2} + \frac{1}{C_0 L_1} \left[3\pm \sqrt{3 + 2 \cos(\sqrt{3} k_y) + 4 \cos(3k_x/2) \cos(\sqrt{3} k_y/2)} \right],$$

which yields a band of frequencies between $f_{\text{min}} = \sqrt{1/(C_0 L_2)}/(2\pi) \approx 312 \text{ kHz}$ and $f_{\text{max}} = \sqrt{1/(C_0 L_2) + 6/(C_0 L_1)}/(2\pi) \approx 617 \text{ kHz}$. As shown in Fig. 1 the band structure corresponds to a graphene-like surface where six Dirac points exist at a frequency of $\omega_d = \sqrt{3}/(C_0 L_1) + 1/(C_0 L_2)$, or $f_d = \omega_d/2\pi \approx 489.11 \text{ kHz}$.

In a finite lattice, wave vectors k are quantized. However, this quantization depends on the boundary conditions and the way the lattice is tiled. Because of this, one must be very cautious with the choice of boundary conditions, the way the
honeycomb is generated and the lattice size if the Dirac point is intended to be in the linear mode spectrum. For periodic boundary conditions, an explicit expression of the eigenfrequencies can be attained [25], but, for free ends boundary conditions, one must rely on the numerical solution of Eq. 4 for getting the linear mode spectrum.

In the present study, experimental limitations restrict us to a lattice of 6×6 nodes, distributed as shown in Fig. 2. The boundaries are free, as we are interested in seeking edge-localized breathers, as shown below. With this particular choice, there is a sole eigenmode oscillating with the Dirac frequency $f_d = 489.11$ kHz. Figure 2 also shows the oscillation pattern of such eigenmode (Dirac mode), which is similar to the oscillation pattern in an infinite lattice. We have checked that this sole Dirac mode is present when tiling this lattice in the first Brillouin zone. There are six Dirac points corresponding to $(k_x, k_y) = (0, \pm 4\pi/(3\sqrt{3})), (2\pi/3, \pm 2\pi/(3\sqrt{3})), (-2\pi/3, \pm 2\pi/(3\sqrt{3}))$ and a frequency $f_d = 489.11$ kHz, cf. Eq. 5.

In addition, the structure of the edges of our lattice can be crucial for the formation of edge-localized breathers. According to the types of edge modes on graphene-like systems [17], our system should be able to support both vertical zigzag and horizontal armchair edge-localized breathers.

IV. NONLINEAR MODES: NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we will describe some numerical and experimental results on the existence of DBs when the electric lattice is driven uniformly. We have observed two kinds of such DBs, depending on whether they are localized on the lattice boundaries or elsewhere. We will call these DBs edge breathers (EBs) or bulk breathers (BBs), respectively, hereafter. The latter owe their existence to the intrinsic nonlinearity of the lattice (see e.g. [21, 24]). In the former case, there is an interplay between nonlinearity and the nature of the coupling in the vicinity of the boundary.

A. Driving near the lowest frequency mode

Having constructed the 6×6 honeycomb lattice of Fig. 2, the simplest experiment we can perform is to drive the lattice with a sinusoidal-wave profile and a frequency close the bottom of the linear modes band, as the lowest frequency mode is uniform ($k = 0$, i.e., the same wavevector as that of the driver). This is performed in a progression of frequencies starting from outside (under) the linear mode band and systematically increasing the frequency of the drive. When the driver frequency is near the bottom of the linear band (i.e. $f \lesssim f_{\text{min}}$), we can generate experimentally both BBs and EBs, where the latter seems to be the most robust state between the two. Under the same conditions, in our theoretical model we find that only EBs exist. Alternatively, the use of periodic boundary conditions enables the existence of BBs for such frequencies. Fig. 3 shows a numerical bulk breather corresponding to a 6×6 lattice with periodic boundaries and its Floquet multipliers spectrum (see e.g. [23] for more details on Floquet analysis for discrete breathers). Recall that the existence of the corresponding multipliers solely within the unit circle for our driven/damped system indicates its spectral stability. In that figure, we also show the experimental BB obtained in the finite size lattice with free boundary conditions. In both cases the driver amplitude was set to 2.1 V and the frequency was 278 kHz. This is a representative example of such BBs within their relevant interval of existence (see also the discussion below).

Similarly, we can induce EBs which are, as indicated above, more robust than BBs. Fig. 4 shows an example of the theoretical and experimental features of an EB whose driving parameters are the same as for the BB of Fig. 3. The existence of both kinds of solutions for the same system parameters indicates the multistability of the system, given the different branches (bulk vs. edge) of solutions. That is, the regions of existence for the different kinds of breathers substantially overlap. The EBs are found to be somewhat more stable in the following sense: as we lower either the frequency...
subharmonic breathers are also denoted as pendula \[\text{[26]}\].

or the amplitude of the driver (starting from 278 kHz and 2.1 V), the BB will disappear first, before the EB ceases to exist. This means that there is a small window in driving parameters where only edge breathers can be stabilized. This finding, i.e. the wider range of stabilization of the EB relative to the BB, has been also experimentally observed in a chain of coupled pendula \[\text{[26]}\].

It should be mentioned that breathers can also be generated via subharmonic driving. In that case, breathers (which are also denoted as subharmonic breathers) are characterized by a core (i.e. the peak and large amplitude nodes around it) oscillating with half of the driver frequency whereas tails oscillate with the driving frequency (see \[\text{[28]}\]). Unlike what is observed in the experiments (featuring both BBs and EBs), it seems that numerically only subharmonic EBs are stable for this \(6 \times 6\) lattice with free boundaries (the analysis of subharmonic breathers in larger lattices will be the subject of further studies). The observation of long-lived subharmonic BBs in the experiment may be due to small spatial inhomogeneities in the lattice facilitating their stabilization \[\text{[24]}\]. In terms of the subharmonic EBs, a good agreement is found regarding both their existence and their dynamical robustness.

B. Driving near the Dirac point

As the driver frequency is increased from around 280 kHz, we first start producing more breathers in the lattice, as expected from previous studies \[\text{[27]}\]. Then, at higher frequencies, the lattice response gradually weakens. The modes at the Dirac point (with frequency 489.11 kHz) cannot be stimulated directly; this is a consequence of the fact that the Dirac mode possesses a non-zero wavevector, whereas the driver is associated with the zero wavevector.

At higher driving amplitudes, however, lattice response in the vicinity of the Dirac point can be induced via subharmonic driving. Both subharmonic BBs and EBs, which are excited close to the Dirac point frequency, are similar to the ones produced via direct driving although the oscillation frequency of the excited sites is the half of that of the driver and the breather tail (see also Ref. \[\text{[28]}\]). If the (sinusoidal) driver amplitude is increased to 9 V, a clear lattice subharmonic response is observed in the range \((530, 695)\) kHz. When using a square-wave driving profile, this range is slightly expanded; this phenomenon, which has been reported recently for non-sinusoidal driveings, is related to the enhancement of the “mechanical” impulse transmitted to the lattice from the driver, facilitating the generation of stationary breathers in experiments, as well as in numerical computations \[\text{[24]}\].

Above the upper edge of this frequency window, the lattice response goes to zero again (at least for the uniform driving used experimentally). Then, starting at 886 kHz and using a square-wave driving at 9 V (no subharmonic response has been found for this range of frequencies using sinusoidal driving), an EB appears firstly along the armchair edge of the honeycomb lattice (also dubbed as armchair-EB). In experiments this mode persists up to a frequency of 940 kHz, corresponding to a response frequency at the breather peak of 470 kHz. Numerical simulations show similar results, as represented in Figure \[\text{6}\].

At a driver frequency of 950 kHz, we witness an abrupt switch to an EB along the zig-zag edge of the lattice (also dubbed as zig-zag-EB). Such a breather, whose main features are shown in Fig. \[\text{6}\] persists up to a driving frequency of 967 kHz. In general, numerics are in qualitative agreement with the experiments. The switch between these two types of edge breathers as the frequency is adiabatically increased is very reproducible. This clearly suggests the different intervals of stability of the two edge configurations, indicating which one is the system’s lower energy state for the different frequency.
V. CONCLUSIONS & FUTURE WORK

Naturally, the above findings constitute only a first step in the emerging rich study of localized modes and the breathing dynamics in honeycomb electrical lattices. Here, we have explored the arguably most canonical and experimentally more straightforwardly tractable case of a uniform drive of zero wavevector. At frequencies below the linear band, we have found that this drive leads to the formation of bulk, as well as edge breathers, with the latter being more robust than the former. However, our most significant finding concerns to the subharmonic drive in the vicinity of twice the frequency of the Dirac point. There, depending on the frequency interval, both armchair and zigzag edge breathers can arise, with each one appearing as the stable state in a respective interval frame.

There are numerous questions that still remain worthwhile

FIG. 5: Same as Fig. 4 but for a subharmonic armchair-EB with a square-wave driving profile of amplitude 9 V. The driving frequency was 960 kHz in numerics and 940 kHz in experiments.

FIG. 6: Same as Fig. 5 but for a subharmonic zig-zag-EB. The driving frequency was 1000 kHz in numerics and 960 kHz in experiments.

FIG. 7: (a) Experimental subharmonic armchair-EB profile in a 6 × 6 lattice with free boundaries and (b) its corresponding density plot. The square-wave driving amplitude was set to 9 V and the frequency to 886 kHz. (c) Time dependence of the voltage at the two largest amplitude nodes on the top of the lattice: numerical simulations are shown by black continuous and dashed lines, whereas experimental data are shown in blue and red lines.
FIG. 8: Stability range versus driving frequency for different kinds of numerically calculated EBs together with the linear modes band, which is represented as a yellow region; Dirac point (f_d) and twice its value are depicted as black horizontal line. Green region corresponds to (direct-driven) EBs with $V_d = 2.1$ V (cfr. Fig. [3]). (b) Subharmonic armchair-EBs driven by $V_d = 9$ V (cfr. Fig. [5]) is represented by the blue region, and the lighter blue region overlapping part of the linear modes band corresponds to the subharmonic oscillations of the breather peak. Similarly to the armchair-EB case, the red region and the lighter red one in the linear modes band correspond to subharmonic zig-zag-EBs.

Acknowledgements. This material is based upon work supported by the US National Science Foundation under Grants No. PHY-1602994 and DMS-1809074 (PGK). PGK also acknowledges support from the Leverhulme Trust via a Visiting Fellowship and the Mathematical Institute of the University of Oxford for its hospitality during part of this work. J.C.-M. was supported by MAT2016-79866-R project (AEI/FEDER, UE). FP visited Dickinson College with support from the VI Plan Propio of the University of Seville (VI PPITUS). FP also acknowledges Dickinson for its hospitality.

[1] B. Andrei Bernevig, *Topological Insulators and Topological Superconductors* (Princeton University Press, 2013)
[2] L. Lu, J.D. Joannopoulos, M. Soljačić, Nat. Photon. 8, 821 (2014)
[3] R. Süsstrunk and S.D. Huber, Proc. Natl. Acad. Sci. USA 113, E4767 (2016)
[4] G. Ma, M. Xiao, C.T. Chan, Nat. Rev. Phys. 1, 281 (2019)
[5] X. Huang, Y. Lai, Z.H. Hang, H. Zheng, C. T. Chan, Nat. Mat. 10, 582?586 (2011)
[6] O. Peleg et al., Phys. Rev. Lett. 98, 103901 (2007)
[7] M.J. Ablowitz, S.D. Nixon, and Yi Zhu, Phys. Rev. A 79, 053830 (2009)
[8] M.J. Ablowitz, Y. Zhu, Phys. Rev. A 82, 013840 (2010)
[9] L.H. Haddad, L.D. Carr, Physica D 238, 1413 (2009)
[10] L.H. Haddad, L.D. Carr, New J. Phys. 17, 093037 (2015)
[11] K.S. Novoselov et al., Science 306, 666 (2004); Nature 438, 197 (2005).
[12] A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)
[13] C. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)
[14] A.V. Savin, Yu.S. Kivshar, Phys. Rev. B 81, 165418 (2010)
[15] A.V. Savin, Yu.S. Kivshar, Eur. Phys. Lett. 89, 46001 (2010)
[16] M.J. Ablowitz, Y.-P. Ma, Optics Lett. 40, 4635 (2015)
[17] M. Kohmoto, Y. Hasegawa, Phys. Rev. B 76, 205402 (2007)
[18] Y. Plotnik, et al., Nat. Mat. 13, 57 (2014)
[19] J. Noh, S. Huang, K.P. Chen, M.C. Rechtsman, Phys. Rev. Lett. 120, 063902 (2018)
[20] M. C. Rechtsman, et al., Nature 496, 196200 (2013)
[21] L.Q. English, F. Palmero, J.F. Stormes, J. Cuevas, R. Carretero-González, P.G. Kevrekidis, Phys. Rev. E 88, 022912 (2013)
[22] S. Flach, A.V. Gorbach, Phys. Rep. 467, 1 (2008)
[23] S. Aubry, Physica D 103, 201 (1997)
[24] F. Palmero, L.Q. English, J. Cuevas, R. Carretero-González, P.G. Kevrekidis, Phys. Rev. E 84, 026605 (2011)
[25] J. Cserti, G. Tichy, Eur. J. Phys. 25, 723 (2004)
[26] F. Palmero, J. Han, L.Q. English, T.J. Alexander, P.G. Kevrekidis, Phys. Lett. A 380, 402 (2015)
[27] L.Q. English, R. Basu Thakur, R. Stearrett, Phys. Rev. E 77, 066601 (2008)
[28] L.Q. English, F. Palmero, P. Candiani, J. Cuevas, R. Carretero-González, P.G. Kevrekidis, A.J. Sievers, Phys. Rev. Lett. 108, 084101 (2012)
[29] F. Palmero, J. Cuevas-Maraver, L.Q. English, W. Li, R. Chacón. Phys. Scr. 94, 065210 (2019)
[30] D. Leykam, A. Andreanov, S. Flach, Adv. Phys. 3, 1473052 (2018)
FIG. 9: V_{rms} on peak node of the numerically calculated subharmonic EBs (solutions in red and blue at Fig. 8), as a function of the frequency. Stable solutions are depicted as continuous lines and unstable solutions as dotted lines. The red line marks twice Dirac frequency ($2f_d$).