EM algorithm for stochastic hybrid systems

Masaaki Fukasawa

Graduate School of Engineering Science
Osaka University

560-8531, Osaka, Japan
fukasawa@sigmath.es.osaka-u.ac.jp

Abstract

A stochastic hybrid system, also known as a switching diffusion, is a continuous-time Markov process with state space consisting of discrete and continuous parts. We consider parametric estimations of the Q matrix for the discrete state transitions and of the drift coefficient for the diffusion part based on a partial observation where the continuous state is monitored continuously in time, while the discrete state is unobserved. Extending results for hidden Markov models developed by Elliot et al. [1], we derive a finite-dimensional filter and the EM algorithm for stochastic hybrid systems.

Keywords: EM algorithm; filtering; stochastic hybrid system.

1 Introduction

A stochastic hybrid system (SHS, hereafter), also known as a switching diffusion [2], is a continuous-time Markov process Z with state space $S = \{e_1, \ldots, e_k\} \times \mathbb{R}^d$ consisting of both discrete and continuous parts, namely, $\{e_1, \ldots, e_k\}$ and \mathbb{R}^d respectively. The elements $\{e_i\}$ are, without loss of generality, specified as the standard basis of \mathbb{R}^k in this article. Denoting by $\langle \cdot, \cdot \rangle$ the inner product of \mathbb{R}^k or \mathbb{R}^d, $\langle e_i, e_j \rangle = \delta_{ij}$, where δ_{ij} is Kronecker’s delta. The discrete part of Z, denoted by X, can be seen as a continuous-time semi-Markov chain with state space $\{e_1, \ldots, e_k\}$ and “Q matrix” of the form $Q(Y_t) = [q_{ij}(Y_t)]$, where Y is the continuous part of Z. In other words,

$$P(X_{t+h} = e_j|X_t = e_i, Y_t = y) = (\delta_{ji} + q_{ji}(y))h + o(h)$$

as $h \to 0$. Here, $Q(y) = [q_{ij}(y)]$ is a Q matrix for each y, that is, $q_{ij}(y) \geq 0$ for $j \neq i$ and $\sum_{j \neq i} q_{ji}(y) = -q_{ii}(y)$ for all $y \in \mathbb{R}^d$. The continuous part Y is a semi-Markov
process on \(\mathbb{R}^d \) and defined as the solution of a stochastic differential equation

\[
\dot{Y} = \mu(X, Y) + \epsilon W
\]

for some \(\mathbb{R}^d \)-valued function \(\mu \), where \(\epsilon > 0 \) and \(W \) is a \(d \) dimensional white noise. The generator \(\mathcal{L} \) of this Markov process is given by

\[
\mathcal{L} f(e_i, y) = \langle \mu, \nabla_y f(e_i, y) \rangle + \frac{1}{2} \epsilon^2 \Delta_y f(e_i, y) + \sum_{j=1}^k (f(e_j, y) - f(e_i, y)) \langle e_j, Q(y)e_i \rangle.
\] (2)

There is a huge amount of literature on the analysis and applications of SHS. See e.g., \([3, 4, 7, 5]\) and the references therein. The author’s motivation to study SHS is its potential application to the analysis of single-molecule dynamics which has several unobservable switching states \([2]\). In this article, we consider parametric estimations of the Q matrix \(Q(y) = Q^\theta(y) \) and of the drift coefficient \(\mu(z) = \mu^\theta(z) \) based on a partial observation where \(Y \) is monitored continuously in time, while \(X \) is unobserved. When both \(Q \) and \(\mu \) do not depend on \(y \), the system is a hidden Markov model studied in Elliot et al. \([1]\).

Extending results developed in \([1]\), we derive a finite-dimensional filter and the EM algorithm for the SHS. In Section 2, we describe the basic properties of SHS as the solution of a martingale problem. In Section 3, we derive the likelihood function under complete observations of both \(X \) and \(Y \) on a time interval \([0, T]\). In Section 4, we consider the case where the discrete part \(X \) is unobservable, and construct a finite dimensional filter extending Elliot et al. \([1]\). In Section 5, again by extending Elliot et al. \([1]\), we construct the EM algorithm for parametric estimations under the partial observation.

2 A construction as a weak solution

Here we construct a SHS as a weak solution, that is, we construct a distribution on the path space \(D([0, T]; S) \) which is a solution of the martingale problem with the generator (2).

A direct application of Theorem (5.2) of Stroock \([6]\) provides the following.

Theorem 2.1 Let \(\mu \) be a bounded Borel function and \(q_{ij} \), \(1 \leq i, j \leq k \) be bounded continuous functions. Then, for any \(z \in S \), there exists a unique probability measure \(P_z \) on \(D([0, T]; S) \) such that \(Z_0 = z \) and

\[
f(Z_t) - \int_0^t \mathcal{L} f(Z_s) ds
\]

is a martingale under \(P_z \) for any \(f \in C^1_{0, \infty}((e_1, \ldots, e_k) \times \mathbb{R}^d) \), where \(Z : t \mapsto Z_t \) is the canonical map on \(D([0, T]; S) \). Moreover, \(Z \) is a strong Markov process with \(\{P_z\}_{z \in S} \).
The uniqueness part of Theorem 2.1 is important in this article. For the existence, we give below an explicit construction, which plays a key role to solve a filtering problem later.

First, we construct a SHS with $\mu = 0$ in a pathwise manner. Without loss of generality, assume $\epsilon = 1$. Note that Y is then a d dimensional Brownian motion. Let $(\Omega, \mathcal{F}, P^0)$ be a probability space on which a d dimensional Brownian motion Y and an i.i.d. sequence of exponential random variables $\{E_n\}$ that is independent of Y are defined. Conditionally on Y, a time-inhomogeneous continuous-time Markov chain X with (1) is defined using the exponential variables. More specifically, given $X_0 = e$, let

$$
\tau_1 = \min_{1 \leq j \leq k} \tau^j_1, \quad \tau^j_1 = \inf \left\{ t > 0; \int_0^t q_{ji}(Y_s)ds > E_j \right\}
$$

and $X_t = X_0$ for $0 \leq t < \tau_1$, $X_{\tau_1} = e_j$ with $j = \arg\min_1^k \tau^j_1$. The construction goes in a recursive manner; given $X_{\tau_n} = e_i$, let

$$
\tau_{n+1} = \min_{1 \leq j \leq k} \tau^j_{n+1}, \quad \tau^j_{n+1} = \inf \left\{ t > \tau_n; \int_{\tau_n}^t q_{ji}(Y_s)ds > E_{nk+j} \right\}
$$

and $X_t = X_{\tau_n}$ for $\tau_n \leq t < \tau_{n+1}$, $X_{\tau_{n+1}} = e_j$ with $j = \arg\min_1^k \tau^j_{n+1}$. Properties of the exponential distribution verifies the following lemma.

Lemma 2.1 Assume $q_{ji}(y)$ is bounded and continuous in $y \in \mathbb{R}^d$ for each (i, j). Then,

$$
P^0(X_{t+h} = e_j|X_t = e_i, Y) = (\delta_{ji} + q_{ji}(Y_t))h + o(h)
$$

and (1) with $P = P^0$.

By Itô’s formula, for any $f \in \mathcal{C}_{\text{b}}^{0,2}([e_1, \ldots, e_k] \times \mathbb{R}^d)$, we have

$$
f(X_{t+h}, Y_{t+h}) = f(X_t, Y_t) + \int_t^{t+h} \langle \nabla_y f(X_s, Y_s), dY_s \rangle + \frac{1}{2} \int_t^{t+h} \Delta_y f(X_s, Y_s)ds
$$

$$
+ \sum_{i<s \leq t+h} (f(X_s, Y_s) - f(X_{s-}, Y_s)),
$$

from which together with (1) it follows

$$
\lim_{h \to 0} \frac{E^0[f(X_{t+h}, Y_{t+h})|X_t = e_i, Y_t = y] - f(e_i, y)}{h} = \mathcal{L}^0 f(e_i, y),
$$

where E^0 is the expectation under P^0 and $\mathcal{L}^0 f = \mathcal{L} f$ with $\mu = 0$ in (2). Note only this, we have also that

$$
\mathcal{L}^0 f_i := f(X_t, Y_t) - \int_0^t \mathcal{L}^0 f(X_s, Y_s)ds
$$

is a martingale with respect to the filtration $\{\mathcal{F}_t\}$ generated by $Z = (X, Y)$. Even more importantly, Lemma 2.1 implies the following.
Lemma 2.2 Under the same conditions of Lemma 2.1, for any \(g \in C_0(\{e_1, \ldots, e_k\}) \),
\[
V_{i}^{0,g} := g(X_i) - \int_{0}^{t} \mathcal{L}_0^g(X_s)ds
\]
is a martingale with respect to the natural filtration of \(X \) under the conditional probability measure given \(Y \), where \(\mathcal{L}_0^g = \mathcal{L}_0^f \) with \(f(x, y) = g(x) \). In particular,
\[
X_i - \int_{0}^{t} Q(Y_s)X_s ds
\]
is a martingale under the conditional probability measure \(P^0(\cdot | Y) \).

Now we construct a SHS for a general bounded Borel function \(\mu \). Let
\[
\Lambda_T = \exp \left\{ \frac{1}{\varepsilon^2} \int_{0}^{T} \langle \mu(X_t, Y_t), dY_t \rangle - \frac{1}{2\varepsilon^2} \int_{0}^{T} |\mu(X_t, Y_t)|^2 dt \right\}.
\]
By the boundedness of \(\mu \), Novikov’s conditions is satisfied and so, \(\Lambda \) is an \(\{\mathcal{F}_t\} \)-martingale under \(P^0 \). Therefore,
\[
\frac{dP}{dP^0} = \Lambda_T
\]
defines a probability space \((\Omega, \mathcal{F}_T, P)\).

Theorem 2.2 Let \(Q = [q_{ij}] \) be a \(Q \) matrix-valued bounded continuous function and \(\mu \) be an \(\mathbb{R}^d \)-valued bounded Borel function. Under \(P \), \(Z = (X, Y) \) is a Markov process with generator (2). Further for any \(f \in C_0^0(\{e_1, \ldots, e_k\} \times \mathbb{R}^d) \),
\[
U_{i}^{f} := f(Z_i) - \int_{0}^{t} \mathcal{L}_f(Z_s)ds
\]
is an \(\{\mathcal{F}_t\} \) martingale.

Proof: By the Bayes formula,
\[
E[f(Z_{t+h})|\mathcal{F}_t] = \frac{E^0[\Lambda_T f(Z_{t+h})|\mathcal{F}_t]}{E^0[\Lambda_T|\mathcal{F}_t]} = E^0\left[\frac{\Lambda_{t+h}}{\Lambda_t} f(Z_{t+h})|\mathcal{F}_t \right].
\]
Since
\[
\frac{\Lambda_{t+h}}{\Lambda_t} = \exp \left\{ \frac{1}{\varepsilon^2} \int_{t}^{t+h} \langle \mu(Z_s), dY_s \rangle - \frac{1}{2\varepsilon^2} \int_{t}^{t+h} |\mu(Z_s)|^2 ds \right\}
\]
and \(Z \) is Markov under \(P^0 \), \(E[f(Z_{t+h})|\mathcal{F}_t] = E[f(Z_{t+h})|Z_t] \), meaning that it is Markov under \(P \) as well. By Itô’s formula,
\[
d\Lambda_t = \frac{1}{\varepsilon^2} \Lambda_t \mu(Z_t) dY_t
and

$$
\Lambda_{t+h} f(Z_{t+h}) = \Lambda_t f(Z_t) + \int_t^{t+h} f(Z_s) d\Lambda_s + \int_t^{t+h} \Lambda_s dU_s^0 / f
+ \int_t^{t+h} \Lambda_s \mathcal{L}^0 f(Z_s) ds + \int_t^{t+h} \Lambda_s \langle \mu, \nabla_y f \rangle (Z_s) ds.
$$

Therefore,

$$
\Lambda_{t+h} U_{t+h}^f = \Lambda_t U_t^f + \int_t^{t+h} U_s^f d\Lambda_s + \int_t^{t+h} \Lambda_s dU_s^f,
$$

meaning that ΛU^f is a martingale under P^0. The Bayes formula then implies that U^f is a martingale under P. In particular, the generator is given by \mathcal{L}. ////

Corollary 2.1 Under the same condition of Theorem 2.2,

$$
V_t := X_t - \int_0^t Q(Y_s) X_s ds
$$

is a martingale.

By the uniqueness result of Theorem 2.1, the law of Z under P coincides with P_x with $x = Z_0$.

3 The likelihood under complete observations

Here we consider a statistical model $\{P^\theta\}_{\theta \in \Theta}$ and derive the likelihood under complete observation of a sample path $Z = (X, Y)$ on a time interval $[0, T]$. For each $\theta \in \Theta$, P^θ denotes the distribution on $D([0, T]; S)$ induced by a Markov process Z with generator

$$
\mathcal{L}^\theta f(e_i, y) = \langle \mu^\theta, \nabla_y f \rangle (e_i, y) + \frac{1}{2} \epsilon^2 \Delta_y f(e_i, y) + \sum_{j=1}^k (f(e_j, y) - f(e_i, y)) (q^\theta_{ij}(y) e_i),
$$

where μ^θ is a family of \mathbb{R}^d-valued bounded Borel functions and $Q^\theta = [q^\theta_{ij}]$ is a family of Q matrix-valued bounded continuous functions. Note that $\epsilon > 0$ is almost surely identified from a path of Y by computing its quadratic variation. It is therefore assumed to be known hereafter. The initial distribution $P^\theta \circ Z_0^{-1}$ is also assumed to be known and not to depend on θ.

Theorem 3.1 Let $\theta, \theta_0 \in \Theta$ and assume that

$$
y \mapsto \frac{q^\theta_{ij}(y)}{q^{\theta_0}_{ij}(y)}, \quad y \mapsto \frac{q^{\theta_0}_{ij}(y)}{q^{\theta}_{ij}(y)}
$$

5
are bounded for each \((i, j)\), where \(0/0 = 1\). Then, \(P^\theta\) is equivalent to \(P^{\theta_0}\), and the log likelihood

\[
L_T(\theta, \theta_0) := \log \frac{dP^\theta}{dP^{\theta_0}}(\{Z_t\}_{t \in [0, T]})
\]

is given by

\[
L_T(\theta, \theta_0) = \sum_{i, j=1}^k \left\{ \int_0^T \log \frac{q_{ji}^\theta(Y_t)}{q_{ji}^{\theta_0}(Y_t)} dN_i^\theta - \int_0^T (q_{ji}^\theta(Y_t) - q_{ji}^{\theta_0}(Y_t))(X_t, e_i) dt \right\}
+ \frac{1}{e^2} \int_0^T \langle \mu^\theta(Z_t) - \mu^{\theta_0}(Z_t), dY_t \rangle - \frac{1}{2e^2} \int_0^T \langle |\mu^\theta(Z_t)|^2 - |\mu^{\theta_0}(Z_t)|^2 \rangle dt,
\]

where \(N_i^\theta\) is the counting process of the transition from \(e_i\) to \(e_j\):

\[
N_i^\theta = \int_0^t \langle X_s, e_i \rangle (e_j, dX_s).
\]

Proof: The proof is standard but given for the readers’ convenience. Let

\[
L_i^\theta = \int_0^T \log \frac{q_{ji}^\theta(Y_t)}{q_{ji}^{\theta_0}(Y_t)} dN_i^\theta - \int_0^T (q_{ji}^\theta(Y_t) - q_{ji}^{\theta_0}(Y_t))(X_t, e_i) dt
\]

and

\[
L_i^0 = \frac{1}{e^2} \int_0^T \langle \mu^\theta(Z_t) - \mu^{\theta_0}(Z_t), dY_t \rangle - \frac{1}{2e^2} \int_0^T \langle |\mu^\theta(Z_t)|^2 - |\mu^{\theta_0}(Z_t)|^2 \rangle dt
= \frac{1}{e^2} \int_0^T \langle \mu^\theta(Z_t) - \mu^{\theta_0}(Z_t), dY_t - \mu^{\theta_0}(Z_t) dt \rangle - \frac{1}{2e^2} \int_0^T |\mu^\theta(Z_t) - \mu^{\theta_0}(Z_t)|^2 dt.
\]

By Itô’s formula,

\[
\exp[L_i^\theta] = 1 - \int_0^T \exp[L_i^\theta] (q_{ji}^\theta(Y_t) - q_{ji}^{\theta_0}(Y_t))(X_t, e_i) dt + \sum_{0 < j < t} \exp[L_i^\theta] - \exp[L_{i-}^\theta]
= 1 + \int_0^T \exp[L_i^\theta] \left(\frac{q_{ji}^\theta(Y_t)}{q_{ji}^{\theta_0}(Y_t)} - 1 \right) dN_i^\theta - q_{ji}^{\theta_0}(Y_t)(X_t, e_i) dt
\]

and by (5),

\[
dN_i^\theta - q_{ji}^{\theta_0}(Y_t)(X_t, e_i) dt = \langle X_t, e_i \rangle (e_j, dX_t - Q^{\theta_0}(Y_t) X_t dt).
\]

Therefore, by Corollary 2.1 \(\exp[L_i^\theta]\) and \(\exp[L_i^0]\) are orthogonal local martingales under \(P^{\theta_0}\). The assumed boundedness further implies that they are martingales. This implies that \(\mathcal{E}_t := \exp[L_t(\theta, \theta_0)]\) is a martingale under \(P^{\theta_0}\).
It only remains to show that $\mathcal{E}U^{0,f}$ is a martingale under P^0 for any $f \in C_b^{0,2}$, where

$$U_t^{0,f} = f(Z_t) - f(Z_0) - \int_0^t \mathcal{L}^0 f(Z_s) \, ds.$$

By Itô’s formula,

$$\mathcal{E}_t U_t^{0,f} = \int_0^t \mathcal{E}_s U_s^{0,f} \, ds + \int_0^t U_s^{0,f} \, d\mathcal{E}_s + \int_0^t (\mu^{0} - \mu^{0_b}, \nabla_y f)(Z_t) \, dt + \sum_{0 \leq j \leq t} \Delta \mathcal{E}_j \Delta U_j^{0,f}$$

and

$$\Delta \mathcal{E}_t = \mathcal{E}_t - \mathcal{E}_{t^-} = \sum_{i,j=1}^k \left(\frac{q_{ij}^0(Y_i)}{q_{jj}^0(Y_i)} - 1 \right) (N_i^{ij} - N_i^{ij^-}) \Delta U_t^{0,f} = f(X_t, Y_t) - f(X_{t^-}, Y_t).$$

Since

$$\Delta \mathcal{E}_t \Delta U_t^{0,f} = \mathcal{E}_t - \mathcal{E}_{t^-} \sum_{i,j=1}^k \left(\frac{q_{ij}^0(Y_i)}{q_{jj}^0(Y_i)} - 1 \right) (N_i^{ij} - N_i^{ij^-})(f(e_j, Y_i) - f(e_i, Y_i)).$$

we have

$$\sum_{0 \leq j \leq t} \Delta \mathcal{E}_j \Delta U_j^{0,f}$$

$$= \int_0^t \mathcal{E}_s - \mathcal{E}_{s^-} \sum_{i,j=1}^k \left(\frac{q_{ij}^0(Y_i)}{q_{jj}^0(Y_i)} - 1 \right) (f(e_j, Y_i) - f(e_i, Y_i)) \, dN_i^{ij}$$

$$= \int_0^t \mathcal{E}_s - \mathcal{E}_{s^-} \sum_{i,j=1}^k \left(\frac{q_{ij}^0(Y_i)}{q_{jj}^0(Y_i)} - 1 \right) (f(e_j, Y_i) - f(e_i, Y_i))(dN_i^{ij} - q_{jj}^0(Y_i)(X_{t^-}, e_i) \, dt]$$

$$+ \int_0^t \mathcal{E}_s \sum_{i,j=1}^k (q_{jj}^0(Y_i) - q_{jj}^0(Y_i)) (f(e_j, Y_i) - f(e_i, Y_i))(X_{t}, e_i) \, dt.$$

Consequently, we have

$$\mathcal{E}_t U_t^{0,f} = \int_0^t \mathcal{E}_s \, ds + \sum_{0 \leq j \leq t} \mathcal{E}_j \mathcal{E}_j U_j^{0,f}$$

$$\int_0^t \mathcal{E}_s \sum_{i,j=1}^k \left(\frac{q_{ij}^0(Y_i)}{q_{jj}^0(Y_i)} - 1 \right) (f(e_j, Y_i) - f(e_i, Y_i))(dN_i^{ij} - q_{jj}^0(Y_i)(X_{t^-}, e_i) \, dt],$$

which is a martingale under P^0 by (5).
4 A finite-dimensional filter

Here we extend the filtering theory of hidden Markov models developed by Elliot et al. [1] to the SHS

\[dX_t = Q(Y_t)X_t dt + dV_t, \]
\[dY_t = \mu(X_t, Y_t) dt + c dW_t, \]

where \(V \) is a martingale (recall Corollary 2.1). In this section we assume we observe only a continuous sample path \(Y \) on a time interval \([0, T]\) while \(X \) is hidden. The system is a hidden Markov model in [1] when both \(Q \) and \(\mu \) do not depend on \(Y \). By this dependence, \(V \) is not independent of \(W \) and so, the argument in [1] cannot apply here any more. We however show in this and the next sections that the results in [1] remain valid. Namely, a finite-dimensional filter and the EM algorithm can be constructed for the SHS. A key for this is Lemma 2.2.

Denote by \(\mathcal{F}_Y \) the natural filtration of \(Y \). The filtering problem is to infer \(X \) from the observation of \(Y \), that is, to compute \(E[X_t | \mathcal{F}_Y_t] \). The smoothing problem is to compute \(E[X_t | \mathcal{F}_Y_T] \) for \(t \leq T \). Denote \(E^0[H] = E^0[H | \mathcal{F}_Y_t] \) for a given integrable random variable \(H \), where \(E^0 \) is the expectation under \(P^0 \) in Section 2.

For a given process \(H \), the Bayes formula gives

\[E^0[H_t | \mathcal{F}_Y_t] = E^0[H_t | \Lambda_t] E^0[\Lambda_t | \mathcal{F}_Y_t], \]

where \(\Lambda \) is defined by (4). Denoting \(\langle e_i, \mu(e_j, y) \rangle = c_{ij}(y) \), \(C(y) = [c_{ij}(y)] \), we can write \(\mu(Z_s) = C(Y_s)X_s \).

Theorem 4.1 Under the same conditions of Theorem 2.2, if \(H \) is of the form

\[dH_t = \alpha_t dt + \langle \beta_t, dX_t \rangle + \langle \delta_t, dY_t \rangle, \]

where \(\alpha, \beta, \delta \) are bounded predictable processes, then

\[E^0[\Lambda_t H_t] = H_0 + \frac{1}{c^2} \int_0^t \langle C(Y_s)E^0_s[\Lambda_s H_s X_s] + c^2 E^0_s[\Lambda_s \delta_s], dY_s \rangle + \int_0^t E^0_s[\Lambda_s \alpha_s] + E^0_s[\Lambda_s \langle \beta_s, Q(Y_s)X_s \rangle] + E^0_s[\Lambda_s \langle \delta_s, C(Y_s)X_s \rangle] ds. \]

Proof: Itô’s formula gives

\[\Lambda_t H_t = H_0 + \int_0^t H_s d\Lambda_s + \int_0^t \Lambda_s dH_s + \int_0^t \Lambda_s \langle \delta_s, \mu(Z_s) \rangle ds. \]

Take the conditional expectation under \(P^0 \) given \(\mathcal{F}_Y_t \) to get (9). Here, we have used the fact that \(Y/e \) is a \(d \) dimensional Brownian motion under \(P^0 \) as well as Lemma 2.2.
Theorem 4.2 Under the same conditions of Theorem 2.2, for each \(i = 1, \ldots, k \),

\[
\langle e_i, E_0^t[A_tX_t] \rangle = \langle e_i, X_0 \rangle + \frac{1}{\epsilon^2} \int_0^t \langle e_i, E_0^s[A_sX_s] \rangle (C(Y_s)e_t, dY_s) + \int_0^t \langle e_i, Q(Y_s)E_0^s[A_sX_s] \rangle ds, \tag{10}
\]

and

\[
E_0^t[A_t] = 1 + \int_0^t \langle C(Y_s)E_0^s[A_sX_s], dY_s \rangle. \tag{11}
\]

Proof: Let \(H_t = \langle e_i, X_t \rangle \) and \(H_t = 1 \) in (9) to get (10) and (11) respectively. Here we have used that \(\langle e_i, X_s \rangle C(Y_s)X_s = \langle e_i, X_s \rangle C(Y_s)e_t \).

Note that

\[
X_s = \sum_{i=1}^k \langle e_i, X_s \rangle e_i
\]

and so, (10) is a linear equation on the vector valued process \(E_0^t[A_tX_t] \) that is easy to solve. Then (11) is also solved, and \(E[X_t|F^T] \) is obtained from (7).

Theorem 4.3 Under the same conditions of Theorem 2.2, for each \(i = 1, \ldots, k \), for any \(\tau \leq t \),

\[
\langle e_i, E_0^\tau[A_\tau X_\tau] \rangle = \langle e_i, E_0^\tau[A_\tau X_\tau] \rangle + \frac{1}{\epsilon^2} \int_\tau^t \langle e_i, E_0^s[A_sX_s] \rangle (C(Y_s)e_t, dY_s).
\]

Proof: Let \(H_t = \langle e_i, X_{t\wedge \tau} \rangle \) in (9).

This is also a linear equation and so, the smoothing problem \(E[X_t|F^T] \) is easily solved via (7).

5 The EM algorithm

Here we consider again the parametric family \(\{P^\theta\} \) introduced in Section 3. We assume that a continuous sample path \(Y \) is observed on a time interval \([0, T]\) while \(X \) is hidden. We construct the EM algorithm to estimate \(\theta \). Under the same assumptions as in Theorem 3.1, the law of \(Y \) under \(P^\theta \) is equivalent to that under \(P^{\hat{\theta}} \) and the log likelihood function is given by

\[
L^Y(\theta, \theta_0) = \log E^{\hat{\theta}} \left[\frac{dP^\theta}{dP^{\theta_0}} | F^T \right].
\]

The maximum likelihood estimator is therefore given by

\[
\hat{\theta} = \arg\max_{\theta \in \Theta} L^Y(\theta, \theta_0).
\]
Note that \(\hat{\theta} \) does not depend on the choice of \(\theta_0 \) because by the Bayes formula,

\[
L^Y(\theta, \theta_0) = \log E^{\theta_0} \left[\frac{dP^\theta_0}{dP^\theta_0} | \mathcal{F}^Y_t \right] - \log E^{\theta_0} \left[\frac{dP^\theta_0}{dP^\theta_0} | \mathcal{F}^Y_{t-1} \right] = L^Y(\theta, \theta_1) - L^Y(\theta_0, \theta_1)
\]

for any \(\theta_1 \in \Theta \). Now, we recall the idea of the EM algorithm. Let

\[
Q(\theta^*, \theta) = E^\theta \left[\log \frac{dP^\theta}{dP^\theta_0} | \mathcal{F}^Y_t \right].
\]

By Jensen’s inequality and (12),

\[
Q(\theta^*, \theta) \leq \log E^\theta \left[\frac{dP^\theta}{dP^\theta_0} | \mathcal{F}^Y_t \right] = L^Y(\theta^*, \theta) = L^Y(\theta^*, \theta_0) - L^Y(\theta, \theta_0),
\]

which means that the sequence defined by

\[
\theta_{n+1} = \text{argmax}_{\theta \in \Theta} Q(\theta, \theta_n)
\]

makes \(L^Y(\theta_n, \theta_0) \) increasing. Under an appropriate condition the sequence \(\{\theta_n\} \) converges to the maximum likelihood estimator \(\hat{\theta} \), for which we refer to Wu [8].

The computation of \(Q(\theta, \theta_0) \) is a filtering problem for which can apply the results in Section 3. Now we state the main result of this article.

Theorem 5.1 Let \(\Lambda \) be defined by (4) with \(\mu = \mu^0 \). Under the condition of Theorem 3.1 we have

\[
Q(\theta, \theta_0) = \frac{E^0_t[\Lambda_t L_t(\theta, \theta_0)]}{E^0_t[\Lambda_t]},
\]

\[
E^0_t[\Lambda_t L_t(\theta, \theta_0)] = \frac{1}{\epsilon^2} \int_0^t \langle c_i, E^0_s[\Lambda_s L_s(\theta, \theta_0)X_s]\rangle (C^0_s(Y_s)c_i, dY_s) + \int_0^t (A_s(\theta, \theta_0) + B_s(\theta, \theta_0) + D_s(\theta, \theta_0)) E^0_s[\Lambda_s X_s] ds,
\]

and for \(i = 1, \ldots, k, \)

\[
\langle e_i, E^0_t[\Lambda_t L_t(\theta, \theta_0)X_t] \rangle = \frac{1}{\epsilon^2} \int_0^t \langle e_i, E^0_s[\Lambda_s L_s(\theta, \theta_0)X_s]\rangle (C^0_s(Y_s)e_i, dY_s) + \int_0^t \langle e_i, E^0_s[\Lambda_s X_s]\rangle (C_s(\theta, \theta_0)e_i, dY_s) + \int_0^t \langle e_i, Q^0_s(Y_s)E^0_s[\Lambda_s L_s(\theta, \theta_0)X_s] + F_s(\theta, \theta_0) E^0_s[\Lambda_s X_s] \rangle ds,
\]

10
where

\[A_s(\theta, \theta_0) = (A_{s,1}(\theta, \theta_0), \ldots, A_{s,k}(\theta, \theta_0)), \]

\[
A_{s,j}(\theta, \theta_0) = - \left\{ \sum_{j=1}^{k} (q^0_{ij}(Y_j) - q^0_{ij}(Y_s)) + \frac{1}{2e^2} \sum_{j=1}^{d} (c^0_{ij}(Y_s)^2 - c^0_{ij}(Y_s)^2) \right\} \langle e_i, X_t \rangle
\]

\[B_s(\theta, \theta_0) = (B_{s,1}(\theta, \theta_0), \ldots, B_{s,k}(\theta, \theta_0)), \]

\[
B_{s,j}(\theta, \theta_0) = \sum_{j=1}^{k} q^0_{ij}(Y_s) \log \frac{q^0_{ij}(Y_s)}{q^0_{ij}(Y_s)} \]

\[C_s(\theta, \theta_0) = C^0(Y_s) - C^0(\theta_s), \]

\[D_s(\theta, \theta_0) = (D_{s,1}(\theta, \theta_0), \ldots, D_{s,d}(\theta, \theta_0)), \]

\[
D_{s,i}(\theta, \theta_0) = \frac{1}{e^2} \sum_{j=1}^{k} (c^0_{ij}(Y_s) - c^0_{ij}(Y_s)) c^0_{ij}(Y_s),
\]

\[F_s(\theta, \theta_0) = [f_i(Y_s)]. \]

\[
f_{ij}(Y_s) = \begin{cases} q^0_{ij}(Y_s) \log \frac{q^0_{ij}(Y_s)}{q^0_{ij}(Y_s)} & \text{if } i \neq j, \\ -q^0_{ij}(Y_s) \log \frac{q^0_{ij}(Y_s)}{q^0_{ij}(Y_s)} & \text{if } i = j. \end{cases}
\]

and \(c^0(y) = \langle e_i, \mu^0(e_i, y) \rangle \), \(C^0(y) = [c^0(y)] \). Further, \(E_1[\Lambda_i X_t] \) and \(E_1[\Lambda_i] \) are respectively given by (10) and (11) with \(C = C^0 \) and \(Q = Q^0 \).

Proof: By Theorem 3.1, \(H_t := L_t(\theta, \theta_0) \) is of the form (8) with

\[
\alpha_t = -\sum_{i=1}^{k} \left\{ \sum_{j=1}^{k} (q^0_{ij}(Y_s) - q^0_{ij}(Y_s)) + \frac{1}{2e^2} \sum_{j=1}^{d} (c^0_{ij}(Y_s)^2 - c^0_{ij}(Y_s)^2) \right\} \langle e_i, X_t \rangle
\]

\[
= A_t(\theta, \theta_0) X_t,
\]

\[
\beta_t = \sum_{i,j=1}^{k} \log \frac{q^0_{ij}(Y_i)}{q^0_{ij}(Y_i)} (X_{i-1}, e_i) e_j,
\]

\[
\delta_t = \frac{1}{e^2} (C^0(Y_s) - C^0(\theta_s)) X_t = \frac{1}{e^2} C_t(\theta, \theta_0) X_t.
\]

Here we have used that \(\mu^0(Z_t) = C^0(Y_t)X_t \) and so,

\[
|\mu^0(Z_t)|^2 = \sum_{a,b,c} c^0_{ab}(Y_t) c^0_{ac}(Y_t) (e_b, X_t)(e_c, X_t) = \sum_{a,b} c^0_{ab}(Y_t)^2 (e_b, X_t).
\]
Since

\[E^0_s[\Lambda_s \alpha_s] = A_s(\theta, \theta_0)E^0_s[\Lambda_s X_s], \]
\[E^0_s[\Lambda_s(\beta_s, Q^{0b}(Y_s)X_{s-})] = B_s(\theta, \theta_0)E^0_s[\Lambda_s X_s], \]
\[e^2 E^0_s[\Lambda_s \delta_s] = C_s(\theta, \theta_0)E^0_s[\Lambda_s X_s], \]
\[E^0_s[\Lambda_s(\delta_s, C^{0b}(Y_s)X_s)] = D_s(\theta, \theta_0)E^0_s[\Lambda_s X_s], \]

(13) follows from (9).

By Itô’s formula, \(H_t = L_t(\theta, \theta_0)(e_i, X_i) \) is of the form (9) with

\[\alpha_i = \langle e_i, X_i \rangle A_i(\theta, \theta_0) e_i, \]
\[\beta_i = \langle e_i, X_i \rangle \sum_{j=1}^{k} \log \frac{q^0_{ij}(Y_i)}{q^{0i}_{ij}(Y_i)} e_j \]
\[+ \left(L_t(\theta, \theta_0) + (1 - 2\langle e_i, X_{i-} \rangle) \sum_{j=1}^{k} \log \frac{q^0_{ij}(Y_i)}{q^{0i}_{ij}(Y_i)} \langle X_{i-}, e_j \rangle \right) e_i \]
\[= \langle e_i, X_{i-} \rangle \sum_{j=1}^{k} \log \frac{q^0_{ij}(Y_i)}{q^{0i}_{ij}(Y_i)} e_j + \sum_{j=1}^{k} \langle e_i, X_{i-} \rangle \log \frac{q^0_{ij}(Y_i)}{q^{0i}_{ij}(Y_i)} e_i \]
\[+ \left(L_t(\theta, \theta_0) - 2\langle e_i, X_{i-} \rangle \log \frac{q^0_{ij}(Y_i)}{q^{0i}_{ij}(Y_i)} \right) e_i \]
\[\delta_i = \frac{1}{e^2} (e_i, X_i) C_i(\theta, \theta_0) e_i. \]

Note that

\[E^0_s[\Lambda_s \alpha_s] = A_s(\theta, \theta_0) e_i, \]
\[e^2 E^0_s[\Lambda_s \delta_s] = C_s(\theta, \theta_0) e_i, \]
\[E^0_s[\Lambda_s(\delta_s, C^{0b}(Y_s)X_s)] = D_s(\theta, \theta_0) e_i, \]

and that

\[E^0_s[\Lambda_s(\beta_s, Q^{0b}(Y_s)X_{s-})] \]
\[= B_s(\theta, \theta_0) e_i + \langle e_i, Q^{0b}(Y_s) \rangle E^0_s[\Lambda_s L_s(\theta, \theta_0) X_s] \]
\[+ \sum_{j=1}^{k} \langle e_i, E^0_s[\Lambda_s X_{s-}] \rangle q^{0b}_{ij}(Y_s) \log \frac{q^0_{ij}(Y_s)}{q^{0i}_{ij}(Y_s)} - 2\langle e_i, E^0_s[\Lambda_s X_{s-}] \rangle q^{0b}_{ij}(Y_s) \log \frac{q^0_{ij}(Y_s)}{q^{0i}_{ij}(Y_s)} \]
\[= B_s(\theta, \theta_0) e_i + \langle e_i, Q^{0b}(Y_s) \rangle E^0_s[\Lambda_s L_s(\theta, \theta_0) X_s] + F_s(\theta, \theta_0) E^0_s[\Lambda_s X_{s-}]. \]

Since

\[E^0_s[\Lambda_s L_s(\theta, \theta_0)(e_i, X_s) X_s] = E^0_s[\Lambda_s L_s(\theta, \theta_0)(e_i, X_s)] e_i, \]

(9) implies (14).
Conflict of Interest: The author states that there is no conflict of interest.

References

[1] R. J. Elliot, L. Aggoun and J.B. Moore, *Hidden Markov Models*, Springer, 1995.

[2] K. Fujita, M. Ohmachi, K. Ikezaki, T. Yanagida and M. Iwaki, Direct visualization of human myosin II force generation using DNA origami-based thick filaments, *Communications Biology*, doi: 10.1038/s42003-019-0683-0.

[3] M. Ghosh, A. Arapostathis and S. Marcus, Ergodic control of switching diffusions, *SIAM J. Control Optim.* 35, 1952-1988 (1997).

[4] J.P. Hespanha, A model for stochastic hybrid systems with application to communication networks, *Nonlinear Analysis* 62, 1353-1383 (2005).

[5] X. Ki, O. Omotere, L. Qian and E.R. Dougherty, Review of stochastic hybrid systems with applications in biological systems modeling and analysis, *EURASIM J. Bioinform. Syst. Biol.* doi: 10.1186/s13637-017-0061-5.

[6] D. Stroock, Diffusion Processes Associated with Lévy Generators, *Z. Wahrscheinlichkeitstheorie verw. Gebiete* 32, 209-244 (1975).

[7] A.R. Teel, A. Subbaraman and A. Sferlazza, Stability analysis for stochastic hybrid systems: A survey, *Automatica* 50, 2435-2456 (2014).

[8] C.F.J. Wu, On the convergence properties of the EM algorithm, *Ann. Statist.* 11, 95-103 (1983).