A Potential Model of Electric Energy Substitution for Environmental Protection Based on Emission Reduction Targets

Yu ZHANG¹, Bao-guo SHAN¹*, Peng WU¹, Peng ZHENG², Fen LIN² and Ke XIONG³

¹State Grid Energy Research Institute Co., Ltd., Beijing, China
²State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
³Beijing Jiaotong University, Beijing, China

*Corresponding author

Keywords: Electric energy substitution, Potential model, Environmental protection, Emission reduction targets.

Abstract. In this paper, we propose a potential model of electric energy substitution for environmental protection based on emission reduction targets. By analyzing the environmental capacity under the constraint of PM2.5 compliance by region and main pollutant emission in waste gas by region, we obtained the emission reduction targets by region (either SO2 or NOx). Then, we can calculate the potential of electric energy substitution by region based on the effect of electricity emission reduction. Calculation shows that the potential of electric energy substitution for environmental protection in China is 2134.95×10^9 kwh.

Introduction

At present, the proportion of coal is high and the proportion of electrification is low in China, and a large amount of coal burning and fuel consumption is one of the main factors causing severe haze. Electric energy substitution means that electricity can replace the energy consumption mode of coal and fuel in the terminal energy consumption [1-3]. Thus, to implementation of electric energy substitution is an important measure to reduce air pollution.

According to the target of *The Environmental Macro Strategy Research and The Air Pollution Prevention Action Plan Target*, the Chinese government is committed to: the urban air quality should be basically standard in 2030, in other words, the concentration of particulate matter (PM) 2.5 should be less than 35 micrograms per cubic metre [4].

In this paper, we propose a potential model of electric energy substitution for environmental protection based on emission reduction targets [5]. By analyzing the environmental capacity under the constraint of PM2.5 compliance by region and main pollutant emission in waste gas by region, we obtained the emission reduction targets by region (either SO2 or NOx). Then, we can calculate the potential of electric energy substitution by region based on the effect of electricity emission reduction [6-8].

Potential Model of Electric Energy Substitution for Environmental Protection

Environmental Capacity under the Constraint of PM2.5 Compliance by Region

PM can be divided into primary PM and secondary PM. The primary PM is the PM that are released into the atmosphere by natural and anthropogenic sources of pollution, such as soil particles, sea salt particles, burning soot and so on. The secondary PM is composed of some polluting gas components in the atmosphere (e.g. sulfur dioxide (SO2), nitrogen oxide (NOx), and nitrogen and hydrogen compounds (NH3)) which is transformed into PM by photochemical oxidation, catalytic oxidation, or
other chemical reactions. Thus, there are four targets for urban air quality: annual emissions of SO$_2$, NOx, primary PM2.5 and NH$_3$ [9].

According to the department of atmospheric environment (Environmental Planning Institute, Ministry of Environmental Protection) estimates, environmental capacity under the constraint of pm2.5 compliance by region is shown in Table 1. That means if the pollutant emission in waste gas in a region is less than the environmental capacity for this region shown in Table 1, the air quality of the region can meet the standard.

Table 1. Environmental capacity under the constraint of pm2.5 compliance (104 tons).

Region	SO$_2$	NOx	primary PM2.5	NH$_3$	Region	SO$_2$	NOx	primary PM2.5	NH$_3$
Beijing	4.11	6.79	2.79	1.35	Hubei	31.37	24.21	21.67	29.09
Tianjing	8.68	10.7	3.57	1.57	Hunan	34.09	25.59	18.03	29.07
Hebei	48.58	51.19	23.19	19.5	Guangdong	68.95	105.72	37.21	35.16
Shanxi	85.37	66.08	34.78	10.9	Guangxi	50.5	38.4	41.15	32.16
Inner Mongolia	130.9	118.7	42.67	39.5	Hainan	3.11	8.03	3.18	6.84
Liaoning	72.81	59.05	29.12	20.4	Chongqing	35.07	20.78	14.32	15.55
Jilin	32.53	42.98	21.81	17.7	Sichuan	37.9	23.88	27.72	39.09
Heilongjiang	39.19	55.01	24.34	24.0	Guizhou	63.81	23.2	19.04	16.92
Shanghai	14.4	22.78	5.4	1.7	Yunnan	65.47	46.52	31.76	47.26
Jiangsu	52.38	63.37	24.57	28.4	Tibet	0.42	3.83	0.57	9.59
Zhejiang	39.74	45.36	14.15	11.5	Shangxi	60.43	47.06	21.5	19.15
Anhui	20.78	30.71	16.8	17.5	Gansu	52.06	35.24	18.51	17.64
Fujian	39.05	43.71	18.73	18.9	Qinghai	14.37	9.89	5.98	6.85
Jiangxi	41.86	39	16.1	16.4	Ningxia	34.61	35.85	6.85	5.91
Shandong	70.92	57.17	33.85	27.6	Xinjiang	62.33	53.33	17.75	24.73
Henan	47.39	44.27	21.92	35.3	Total	1363.2	1258.4	619.04	627.7

Main Pollutant Emission in Waste Gas by Region

Table 2 shows the main pollutant emission in waste gas by region based on China Statistical Yearbook 2017. Clearly, regions where emissions exceed environmental capacity (either SO$_2$ or NOx) need to implement electric energy substitution to reduce emissions.

Table 2. Main pollutant emission in waste gas by region (104 tons).

Region	SO$_2$	NOx	Region	SO$_2$	NOx	Region	SO$_2$	NOx		
Beijing	3.32	9.61	Shandong	113.4	Shandong	113.4	5.42	Shandong	113.4	
Tianjin	7.06	14.47	Qinghai	11.37	9.42	Sichuan	48.83	45.10	Sichuan	48.83
Hebei	78.9	112.6	Hunan	41.36	80.83	Guizhou	64.71	37.79	Guizhou	64.71
Shanxi	68.6	67.28	Hubei	28.56	39.14	Yunnan	52.62	44.69	Yunnan	52.62
Inner Mongolia	62.5	64.53	Hunan	34.68	42.06	Tibet	0.54	5.52	Tibet	0.54
Shanxi	31.8	38.03	Guangdong	35.37	84.27	Shanghai	7.42	16.63	Shanghai	7.42
Emission Reduction Effect Estimation

In this section, we analyze and compare the emission reduction effect by calculating the conversion value of sulfur dioxide and the conversion value of nitrogen oxides for several typical terminal energy sources (coal, petrol, diesel, natural gas, kerosene).

a) Calculating the equivalent power value of terminal energy. \(E \) is the equivalent energy value of 1 units of terminal energy, that is, \(E \) kw·h electric energy is equal to the energy value of 1 units of terminal energy.

b) Calculating the conversion value of sulfur dioxide for terminal energy. \(S \) and \(C_{SO_2} \) respectively represents the sulfur dioxide emission factor and sulfur dioxide conversion value for 1 units of terminal energy. Calculate the sulfur dioxide conversion value of terminal energy by \(C_{SO_2} = S/E \).

c) Calculating the conversion value of nitrogen oxides for terminal energy. \(N \) and \(C_{NO_x} \) respectively represents the nitrogen oxides emission factor and nitrogen oxides conversion value for 1 units of terminal energy. Calculate the nitrogen oxides conversion value of terminal energy by \(C_{NO_x} = N/E \).

Table 3. Equivalent emissions for several typical terminal energy.

Terminal energy	1kW·h electric energy efficiency	S(kg/t)	C_{SO_2}(g)	N(kg/t)	C_{NO_x}(g)
natural gas	0.114m³	0.0092kg/10⁶ca 1	0.00090	1.57kg/10⁶cal	0.151
diesel	0.0939kg	8.0	0.75140	3.21	0.302
kerosene	0.0894kg	1.6	0.14304	5.84	0.522
coal	0.3257kg	16.2	5.27660	1.88	0.612
petrol	0.093kg	2.4	0.22320	16.71	1.554

Potential of Electric Energy Substitution by Region

By comparing Table 1 and Table 2, we obtained the emission reduction targets by region (either \(SO_2 \) or \(NO_x \)). If the \(SO_2 \) exceeds, electric energy should be used to replace coal. The potential of electric energy substitution is calculated through emission reduction target divided sulfur dioxide conversion value for 1 unit coal (5.2766g). If the \(NO_x \) exceeds, electric energy should be used to replace petrol. The potential of electric energy substitution is calculated through emission reduction target divided nitrogen oxides conversion value for 1 unit petrol (1.554g). Then, we can calculate the potential of electric energy substitution by region shown in Table 4 based the effect of electricity emission reduction.

Table 4. Potential of Electric Energy Substitution for environmental protection by region (10⁶kwh).

Region	Potential of Electric Energy Substitution	Region	Potential of Electric Energy Substitution	Region	Potential of Electric Energy Substitution
Beijing	18.14	Shandong	503.59	Chongqing	6.37
Tianjin	24.25	Qinghai	0.00	Sichuan	157.19
Hebei	452.87	Henan	235.13	Guizhou	95.54
Province	Value				
--------------	---------				
Shanxi	7.72				
Inner Mongolia	0.00				
Hubei	96.02				
Tibet	11.10				
Shenxi	0.00				
Guangdong	0.00				
Shanghai	0.00				
Liaoning	15.95				
Hunan	107.04				
Jiangsu	199.53				
Jilin	0.00				
Jiangxi	18.84				
Zhejiang	0.00				
Xinjiang	42.77				
Hainan	0.00				
Anhui	142.93				
Gansu	0.00				
Fujian	0.00				
Ningxia	0.00				
Henan	200.00				
Jiangsu	199.53				
Sichuan	200.00				
Anhui	142.93				
Hunan	100.00				
Hebei	150.00				
Shandong	500.00				
Guizhou	100.00				
Gansu	100.00				
Qinghai	100.00				
Guangdong	100.00				
Guangxi	100.00				
Hainan	100.00				
Fujian	100.00				
Yunnan	100.00				
Shanghai	100.00				
Ningxia	100.00				
Inner Mongolia	0.00				
Shanxi	0.00				
Jilin	0.00				
Heilongjiang	0.00				
Gansu	0.00				
Xinjiang	100.00				
Jiangxi	100.00				
Zhejiang	100.00				
Hainan	100.00				
Fujian	100.00				
Yunnan	100.00				
Shanghai	100.00				
Ningxia	100.00				

Summary

According to the potential model of electric energy substitution for environmental protection based on emission reduction targets by region, the region with the greatest potential is Shandong (more than 500×10^9 kw·h) and the second greatest potential is Hebei (more than 450×10^9 kw·h). Regions with the potential about 200×10^9 kw·h are Henan and Jiangsu, regions with the potential about 150×10^9 kw·h are Sichuan and Anhui, and regions with the potential about 100×10^9 kw·h are Hunan, Hubei and Guizhou. The potential of other regions are all less than 50×10^9 kw·h and the potential of Inner Mongolia, Shanxi, Jilin, Heilongjiang, Gansu, Qinghai, Guangdong, Guangxi, Hainan, Fujian, Yunnan, Shanghai and Ningxia are all zero.

Acknowledgement

This research was financially supported by the 2017 Science & Technology Project of State Grid Corporation of China (Research on electric energy substitution planning models, policy simulations and their applications, No. 52130N17000R), the 2018 Self-study Program of State Grid Energy Research Institute Co., Ltd. (Study on short-term policy simulation of electric energy substitution considering electricity price of renewable energy generation, No. 52670017000R), and the Young Talents Programme of State Grid Energy Research Institute Co., Ltd. (Research on the key technology of fog computing for smart grid, No. XM2018020035180).

References

[1] W. Tang, Y. Zhang, F. Luan, Study on Method of Determine the Value of Multi-field Energy Saving Project Promotion [C]. The IET 7th International Conference on Wireless, Mobile & Multimedia Networks, 2017.

[2] L. Wu, Survey Analysis on Energy Substitution of Boilers in Business-Based on Questionnaire Survey of 112 Boiler Users in Nanjing [J]. Journal of Industrial Technological Economics, 2012.

[3] K. Wu, P. Yao, Research on Energy Substitution Terminal Energy Application Based on CRITIC Algorithm[C]. International Conference on Intelligent Computation Technology and Automation. IEEE, 2017:414-416.

[4] Y. Sun, M. Shi, B. Shan, F. Cao, Electric Energy Substitution Potential Analysis Method Based on Particle Swarm Optimization Support Vector Machine [J]. Power System Technology, 2017.

[5] W. Tang, Scientific Implementation of Electric Energy Substitution Planning [J]. China Power Enterprise Management, 2017.7, pp. 54-55.

[6] Y. Zhang, B. G. Shan, P. Wu, W. Tang, F. Lin, K. Xiong, A Three-Level Sustainability Evaluation Framework for Electric Energy Substitution Project [C]. 2018 International Conference on Energy, Power and Materials Engineering (EPME2018), 2018.

[7] Z. Q. Qu, X. Jin, L. Wu, et al. Argument on Boundary Conditions of Selection Electric Energy Substitution Technologies with Electric Heating for Commercial Customers[J]. Automation of Electric Power Systems, 2016.
[8] Z. T. Cui, Analysis of the application based on electric energy substitution [J]. Electric Drive Automation, 2016.

[9] W. Tang, Y. Zhang, X. C. Liu, K. Xiong, C. Li And G. Xiong, Evaluation Method of Provincial Low-carbon Energy Power Development [C]. 2018 2nd International Conference on Energy and Power Engineering (EPE2018), 2018.