The fortification effect of duck eggshell nano-calcium on the physical quality of beef sausage

AH Prayitno1*, DL Rukmi1, A Widiyawati2, and B Prasetyo1

1Department of Animal Science, Politeknik Negeri Jember, Jl. Mastrip Po Box 164 Jember, Indonesia
2Department of Health, Politeknik Negeri Jember, Jl. Mastrip Po Box 164 Jember, Indonesia

*E-mail: agushp@polije.ac.id

Abstract. This research was aimed the fortification effect of duck eggshell nano-calcium on the physical quality of beef sausage. The materials include beef, duck eggshell nano-calcium, tapioca, soy protein isolate, palm oil, salt, pepper, garlic, onion, shallot, coriander, nutmeg, sugar, frankfurter, sodium tripolyphosphate, monosodium glutamate, and ice. The treatments for fortification of duck eggshell nano-calcium were 0; 0.15; 0.3; 0.45; and 0.6% of the total dough. The parameters tested were pH value, water holding capacity, tenderness, and water activity. The physical quality data were analyzed by analysis of variance and if there was a significant difference (P<0.05) then further tested with Duncan's New Multiple Range Test. The results showed that the fortification of duck eggshell nano-calcium had a significant effect (P<0.05) on the pH value, water holding capacity, tenderness, and water activity of beef sausage. Fortification of duck eggshell nano calcium up to 0.6% can increase the value of pH, tenderness, water activity, and decrease water holding capacity.

1. Introduction

Duck eggshells are one of the wastes from duck farming which are abundant with a high calcium content. The utilization of by-products from duck eggshells [1] can be used as a source of dietary calcium. Duck eggshells contain about 94-97% calcium carbonate [2]. The calcium content of eggshells in the form of flour is as much as 50.75% [1]. The function and economic value of duck eggshells can be increased by the application of nanotechnology to form nanoparticles. High energy ball milling is nanotechnology that can be applied to change the size of eggshell particles into nano. The process of applying nanotechnology with high energy ball milling can change the particle size of duck eggshells from 13,229 nm to 347 nm in the form of calcium oxide [3] with a calcium content of around 54.36-59.27% [4]. Particles in nanosize have the advantage of being easy to dissolve and high absorption in the intestine so that they are more efficient when compared to micro-sized calcium [5].

The performance of nano-sized particles is better due to an increase in a surface area [6]. One type of metal oxide that has been widely applied is nano calcium oxide (NCaO). Nano calcium oxide can be used as an antibacterial agent [7], catalyst [8], food additive [9–13], drug delivery system [14] which can increase absorption [15] so that it can be absorbed almost 100% by the body [16]. Nano calcium duck eggshell as a source of food is very good compared to other sources of calcium as a component that is functional and has a positive impact on body health. The results of research...
conducted by the International Osteoporosis Foundation (IOF) show that 1 in 4 Indonesian women with an age range of 50 to 80 years has a risk of osteoporosis so that Indonesian women have a risk of osteoporosis 4 times higher than men at risk of osteoporosis [17]. Men up to 55 years of age and after 55 years of age have a higher risk of osteoporosis than women. Low intake of calcium into the body causes the risk of osteoporosis [18].

One of the things that the body needs to meet bone health is calcium as a macrominer. Fulfillment of body calcium obtained from broccoli, spinach, soybeans, milk, and dairy products. Fulfillment of body calcium can also be met in other ways such as consuming calcium in the form of supplements. Whereas there is another way that is safer and healthier, namely by consuming food products fortified with calcium. Eggshell nano-calcium as a natural source of calcium has been developed as a fortified material for functional food products. Fortified sausage is one of the most popular forms of food in Indonesia. Sausage is one of the comminution products of meat which is in the process of being made with or without the addition of other food ingredients that are inserted into the sausage casing with or without a cooking process [19]. Sausage fortified with eggshell calcium can be used as a functional food [20]. Sausage fortified with eggshell calcium has been studied [21] and has the potential to prevent osteoporosis for those who consume it [22]. So far, there has been no supporting research on the effect of nano-calcium fortification on the physical quality of sausages. The physical quality of sausage is one of the variables used to evaluate the quality of sausage products that are tested objectively. Therefore, this study was conducted to determine the effect of duck eggshells nano-calcium fortification of on the physical quality of beef sausage and its potential as a functional food.

2. Materials and Methods

2.1. Materials
The materials used in this study consisted of beef, duck eggshell nano-calcium, tapioca, palm oil, salt, garlic, pepper, monosodium glutamate (MSG), sodium tripolyphosphate (STPP), soybean protein isolate, frankfurter, ice, and collagen casing.

2.2. Methods
This research consists of several steps. This research started from the preparation of duck eggshell nano-calcium, sausage processing, physical quality test, and statistical analysis.

2.2.1. Preparation of duck eggshell nano-calcium. Eggshell nano-calcium are made using high energy ball milling [3]. Duck eggshells were soaked in hot water for 10 minutes, the eggshell membranes were cleaned, dried at 105°C for 12 hours, then mashed using a sample mill. Eggshell flour was calcined at 1000°C for 2 hours to produce calcium oxide. Eggshell calcium oxide was further processed using high energy ball milling for 60 minutes to produce nano calcium oxide powder.

2.2.2. Preparation of ingredients. The sausage dough formulations that will be used in this study are beef (50%), tapioca (16.5%), soybean protein isolate (2.5%), palm oil (10.5%), salt (1.2 %), STPP (0.5%), MSG (1%), pepper (0.2%), garlic (1.2%), shallot (2%), onion (2%), coriander (0.2%), nutmeg (0.2%), sugar (0.5%), frankfurter (1%), and ice (10.5%).

2.2.3. Sausage processing. The level of fortification of eggshell nano-calcium in this study were: 0; 0.15; 0.3; 0.45; and 0.6% of the total sausage dough. Beef cut into small pieces, cleaned of connective tissue, then ground. Ground meat and oil were mixed, added salt, sodium tripolyphosphate, eggshell nano-calcium treatment, and half of the ice. All spices are ground, and oil is added to the dough, soy protein isolate, tapioca, and the remaining half of the ice are mixed until smooth. Sausage dough is inserted into the collagen casing. Raw sausage is then boiled for 45 minutes at a temperature of 60-70°C and after being cooked the sausage is cooled and then tested for physical quality.
2.3. Physical Quality Test
The fortified beef sausage with duck eggshell nano-calcium tested physical quality, namely the pH value [23], water holding capacity [24], tenderness [25], and water activity [26].

2.4. Statistic Analysis
The data physical quality were analyzed by analysis of variance using completely randomized design and if there was significantly different (P<0.05), then tested further by the Duncan's New Multiple Range Test [27].

3. Results and Discussion
The physical quality is a parameter of meat quality consisting of pH value, water holding capacity, tenderness, and water activity of meat products that were tested objectively [28]. The results of the physical quality test of sausage fortified with duck eggshell nano-calcium were presented in Table 1.

Table 1. The results of the physical quality test of sausage fortified with duck eggshell nano-calcium

Variable	Fortification Level				
	0%	0.15%	0.30%	0.45%	0.60%
Value of pH	6.38^a	6.68^a	7.38^b	8.43^c	8.93^d
Water holding capacity (%)	93.96^a	92.70^b	85.80^c	79.30^d	74.41^e
Tenderness (mm/g/ 5 second)	8.30^{ab}	8.50^{bc}	8.45^b	8.00^c	8.90^e
Water activity	0.68^{ab}	0.78^{ab}	0.78^{ab}	0.75^{ab}	0.83^b

^{abcd} Different superscripts at the same row indicate significant differences (P<0.05)

3.1. Value of pH
The results showed that different levels of fortified duck eggshell nano-calcium had a significant effect (P<0.05) on the pH value of beef sausage. The pH value of beef sausage produced ranged from 6.38-8.93. The higher the level of fortified duck eggshell nano-calcium, the pH value of beef sausage increased. This is following the research of Suryanto et al. [12] that fortification of eggshell calcium can increase the pH value of processed meat products. Eggshell nano-calcium fortified in a beef sausage in the form of calcium oxide which decomposes into Ca²⁺ and O⁻² [1]. Ca²⁺ is alkaline and O⁻² is acidic so oxygen will evaporate into gas and beef sausage fortified with duck eggshell nano-calcium has higher levels of alkaline calcium, which causes the pH value of beef sausage to increase.

3.2. Water holding capacity
The results showed that different levels of fortified duck eggshell nano-calcium had a significant effect (P<0.05) on the water holding capacity of beef sausage. The water holding capacity of beef sausage produced ranges from 74.41-93-96%. The higher the level of fortified duck eggshell nano-calcium, the water holding capacity of beef sausage decreases. The decreasing water holding capacity of sausages is followed by the increasing pH value. The water holding capacity of sausages is strongly influenced by the pH value [1]. Increasing the pH value causes changes in the protein content of meat [29] and with the presence of fortified duck eggshell nano-calcium in sausage processing, the ability of meat proteins to bind water decreases as a result, the water holding capacity of sausages decreases.

3.3. Tenderness
The results showed that different levels of fortified duck eggshell nano-calcium had a significant effect (P<0.05) on the tenderness of beef sausage. The tenderness value of beef sausage produced ranges from 8.00-8.90 mm/kg/5 second. The higher the level of eggshell nano-calcium duck fortification, the tenderness value of beef sausage increased. The increase in the value of sausage tenderness indicates that the resulting sausage becomes more tender. This can be influenced by the water holding capacity of the sausage which is decreasing so that the texture of the sausage is getting more open as a result the sausage becomes more tender. In addition, the increasing pH value of sausages affects the binding
capacity of sausage water (Table 1). This is in accordance with the research of Prayitno et al. [30] that tenderness has a relationship with the pH value and water holding capacity.

3.4. Water activity
The results showed that different levels of fortified duck eggshell nano-calcium had a significant effect (P<0.05) on the water activity of beef sausage. The water activity value of beef sausage produced ranged from 0.68-0.83. The higher the level of fortified duck eggshell nano-calcium, the water activity value of beef sausage increased. The increase in water activity indicates that the free water content in the sausage is getting higher. This can be influenced by the decreasing water holding capacity so that the ability of meat protein to bind the free water content decreases as a result the water activity value of sausages increases. In addition, the increase in water activity can also be affected by the meat processing process. This is in accordance with Novasina [31] that the water activity value of meat products decreases during the processing where the water activity value of sausages ranges from 0.97-0.96 so that the sausages fortified with duck eggshell nano-calcium in this research still meet the standards for water activity value.

4. Conclusion
The results showed that the fortification of duck eggshell nano-calcium had a significant effect on the pH value, water holding capacity, tenderness, and water activity of beef sausage. Fortification of duck eggshell nano-calcium up to 0.6% can increase the value of pH, tenderness, water activity, and decrease water holding capacity.

Acknowledgment
The author thanked profusely to the P3M of Politeknik Negeri Jember for providing research funding through PNPB 2021 sources so that this research could be carried out.

References
[1] Prayitno A H, Suryanto E and Rusman 2016 Pengaruh fortifikasi nanopartikel kalsium laktat kerabang telur terhadap sifat kimia dan fisik bakso ayam Bul. Peternak. 40 40–7
[2] Nurlaela A, Dewi S U, Dahlan K and Soejoko D S 2014 Pemanfaatan limbah cangkang telur ayam dan bebek sebagai sumber kalsium untuk sintesis mineral tulang J. Pendidik. Fis. Indones. 10 81–5
[3] Prayitno A H and Sutirtoadi A 2019 Karakteristik Nano Kalsium Alami Berbagai Jenis Kerabang Unggas (Jember: Politeknik Negeri Jember)
[4] Prayitno A, Prasetyo B and Sutirtoadi A 2020 Synthesis and characteristics of nano calcium oxide from duck eggshells by precipitation method IOP Conf. Ser. Earth Environ. Sci. 411 1–6
[5] Poulain N and Nakache E 1998 Nanoparticles from vesicles polymerization. II. Evaluation of their encapsulation capacity J. Polym. Sci. A Polym. Chem. 36 3035–43
[6] Habte L, Shiferaw N, Mulatu D, Thenepalli T, Chilakala R and Ahn J W 2019 Synthesis of nano-calcium oxide from waste eggshell by sol-gel method Sustain. 11 1–10
[7] Roy A, Gauri S S, Bhattacharya M and Bhattacharya J 2013 Antimicrobial activity of CaO nanoparticles J. Biomed. Nanotechnol. 9 1570–8
[8] Gopalappa H, Yogendra K, Mahadevan K M and Madhusudhana N 2012 A comparative study on the solar photocatalytic degradation of Brilliant Red azo dye by CaO and CaMgO2 nanoparticles Int. J. Sci. Res. 1 91–5
[9] Prasetyo B and Prayitno A H 2021 The sensory characteristics of fortified beef sausage with duck eggshell The 3rd International Conference On Food and Agriculture (Jember: IOP Conference Series: Earth and Environmental Science) pp 1–6
[10] Prasetyo B and Prayitno A H 2020 Aplikasi Nano Kalsium Alami Kerabang Telur Pada Sosis dan Potensinya Sebagai Pangan Fungsional (Jember)
[11] Suryanto E, Setiyono, Rusman and Prayitno A H 2014 Firmness and microstructure properties
of chicken meatball fortified with eggshell calcium powder Sustainable Livestock Production in The Perspective of Food Security, Policy, Genetic Resources, and Climate Change (Yogyakarta: The Asian-Australasian Association of Animal Production Societies) pp 1280–183

[12] Suryanto E, Setiyono, Rusman and Prayitno A H 2014 Chemical composition, cooking, physical and sensorial properties of chicken meatball fortified with eggshell calcium powder XIVth European Poultry Conference (Stavanger: World’s Poultry Science Association) pp 1–3

[13] Prayitno A H, Suryanto E, Rusman, Setiyono, Jamhari and Utami R 2019 Pengaruh fortifikasi kalsium dan nanopartikel kalsium laktat terhadap sifat sensoris bakso ayam Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner (Jember: Pusat Penelitian dan Pengembangan Peternakan) pp 725–32

[14] Balaganesh A S, Sengodan R, Ranjithkumar R and Chandarshekar B 2018 Synthesis and characterization of porous calcium oxide nanoparticles (CaO NPS) Int. J. Innov. Technol. Explor. Eng. 2278–3075

[15] Malsch N H 2005 Biomedical nanotechnology (Boca Raton (US): CRC Press)

[16] Suptijah P 2009 Sumber Nano Kalsium Hewan Perairan 101 Inovasi Indonesia (Jakarta: Kementerian Riset dan Teknologi)

[17] Kementerian Kesehatan 2005 Data dan Kondisi Penyakit Osteoporosis di Indonesia (Jakarta: Pusat Data dan Informasi Kementerian Kesehatan RI)

[18] Jahari A B and Prihatini S 2014 Risiko Osteoporosis Di Indonesia Gizi Indones. 30 1–11

[19] SNI 2015 Sosis Daging (Jakarta: Badan Standardisasi Nasional)

[20] Astawan M 2011 Pangan Fungsional Untuk Kesehatan Yang Optimal Kompas

[21] Daengprok W, Garnjanagoonchorn W and Mine Y 2002 Fermented pork sausage fortified with commercial or hen eggshell calcium lactate Meat Sci. 62 199–204

[22] Murota I, Baba T, Shimada M and Sato N 2010 Safety evaluation of excessive intake of calcium-fortified fish sausage to prevent osteoporosis in humans J. Japanese Soc. Food Sci. Technol. 57 163–70

[23] AOAC 2019 Official Methods of Analysis of the Association of Analytical Chemists (Washington DC: Association of Official Analytical Chemist)

[24] Luckose F and Pandey M C 2014 Combined Effect of Non Meat Proteins and Different Binders on Low Salt Poultry Meat Systems Int. J. Adv. Res. 2 413–24

[25] Dhana I G N A O and Wikandari P R 2019 Pengaruh konsentrasi enzim protease dari isolat Lactobacillus plantarum B1765 terhadap keempukan daging UNESA J. Chem. 8 33–7

[26] Petrocchi M, Laghi L, Rocculi P, Rimini S, Panarese V, Cremonini M A and Cavani C 2012 The use of sodium bicarbonate for marination of broiler breast meat Poult. Sci. 91 526–34

[27] Riadi E 2014 Metode Statistika: Parametrik & Non-Parametrik (Tangerang: Pustaka Mandiri)

[28] Sujarwanta R O, Jamhari, Suryanto E, Yuliatmo R and Prayitno A H 2019 Physicochemical and sensory characteristics of chicken nugget with curcuma (Curcuma zanthorrhiza) flour fortification IOP Conference Series: Earth and Environmental Science vol 387

[29] Knipe L 2003 EMULSIFIERS | Phosphates as Meat Emulsion Stabilizers Encyclopedia of Food Sciences and Nutrition (Cambridge: Academic Press) pp 2077–80

[30] Prayitno A H, Suryanto E and Zupriza 2010 Kualitas fisik dan sensoris daging ayam broiler yang diberi pakan dengan penambahan ampas virgin coconut oil (VCO) Bul. Peternak. 34 55–63

[31] Novasina 2008 The influence of water activity (aw) in meat products (Lavalle: EQUINLAB S.R.L.)