Improving Out-of-Distribution Robustness via Selective Augmentation

Huaxiu Yao¹, Yu Wang², Sai Li³, Linjun Zhang⁴
Weixin Liang¹, James Zou¹, Chelsea Finn¹

¹Stanford University, ²University of California San Diego ³Renmin University of China, ⁴Rutgers University
Machine Learning Systems are Fragile

Models often fail when **domain shift** happens

Deploy model to new environment

Trained on 3 hospitals

Deploy to a new hospital
Why ML Models Fail – Spurious Correlation

\[y_1: \text{digit} < 5 \]

\[y_2: \text{digit} \geq 5 \]

Spurious Correlation: color

Prediction: digit < 5

True: digit ≥ 5
Why ML Models Fail – Spurious Correlation

\(y_1: \) digit < 5

\(y_2: \) digit ≥ 5

40% of train data

10% of train data

10% of train data

40% of train data

Domain-invariant Correlation:
digit information

Prediction: digit > 5

True: digit ≥ 5
Why ML Models Fail – Spurious Correlation

Building robust machine learning models that can capture domain-invariant information

\[y_1 : \text{digit} < 5 \]
\[y_2 : \text{digit} \geq 5 \]

Prediction: digit > 5
True: digit ≥ 5
Prior Works Focus on Explicit Regularization

Standard empirical risk minimization (ERM)

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \hat{p}} [\ell(f_\theta(x), y)]$$

loss

average over training examples

Prior approaches to learn invariant representations/predictors

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \hat{p}} [\ell(f_\theta(x), y)] + \lambda \mathcal{L}_{reg}$$

explicit regularizers to learn domain-invariant representations/predictors
Discussion of Prior Works

Best prior domain invariance method

Camelyon17

Standard ERM

70.3% → 74.7%

RxRx1

29.9% → 28.4%

[PW Koh et al. ICML 2021]
LISA: Learning Invariant Predictors with Selective Augmentation

Colored MNIST

Domain

d_1: Green

γ_1: digit < 5

40% of train data

γ_2: digit ≥ 5

10% of train data

d_2: Red

10% of train data

40% of train data

Mixup: $x_{mix} = \lambda x_i + (1 - \lambda)x_j, y_{mix} = \lambda y_i + (1 - \lambda)y_j$

$\lambda \sim \text{Beta}(\alpha, \beta)$

Intra-label LISA – Interpolates samples with the same label but different domains ($d_i \neq d_j, y_i = y_j$)

Different background, same label

$\lambda = 0.0$ $\lambda = 0.25$ $\lambda = 0.5$ $\lambda = 0.75$ $\lambda = 1.0$

All $y = [0, 1]$
LISA: Learning Invariant Predictors with Selective Augmentation

Mixup:

\[x_{mix} = \lambda x_i + (1 - \lambda) x_j, \quad y_{mix} = \lambda y_i + (1 - \lambda) y_j \]

\(\lambda \sim \text{Beta}(\alpha, \beta) \)

Intra-domain LISA – Interpolates samples with the same domain but different labels \((d_i = d_j, y_i \neq y_j)\)

Colored MNIST

Domain information is **not** the reason for the label change

Use \(p_{sel} \) to determine intra-label LISA or intra-domain LISA
Performance – Subpopulation Shift

Dataset	Worst-group accuracy	Best prior domain invariance method	LISA
CMNIST	0.0%	70.7%	73.3%
Waterbirds	63.7%	79.8%	89.2%
CelebA	47.8%	86.7%	89.3%
CivilComments	56.0%	71.1%	72.6%
Performance – Domain Shift

Dataset	ERM	Best prior domain invariance method	LISA
Camelyon17	70.3%	74.7%	77.1%
FMoW	32.3%	34.6%	35.5%
RxRx1	29.9%	28.4%	31.9%
Amazon	53.8%	53.8%	54.7%
MetaShift	52.1%	52.3%	54.2%
Analysis

Analysis I: Are the performance gains of LISA from data augmentation?

	Vanilla mixup	LISA
Averaged performance over all datasets	60.9%	64.2%

Analysis II: Does LISA lead to more invariant predictors?

	Vanilla mixup	LISA
Best invariant learning Accuracy of domain prediction	68.1%	64.9%
Takeaways

• LISA eliminates spurious correlations between domain & label via **selective augmentation**

• Essentially, LISA improves out-of-distribution robustness by learning more domain-invariant predictors

Code: https://github.com/huaxiuyao/LISA