Probability distribution of the free energy of a directed polymer in a random medium

Éric Brunet and Bernard Derrida

Laboratoire de Physique Statistique,
École Normale Supérieure,
24, rue Lhomond,
75231 Paris Cédex 05, France.

Eric.Brunet@physique.ens.fr
Bernard.Derrida@physique.ens.fr

Physical Review E 61 (6), (2000).

March 21, 2022

Abstract

We calculate exactly the first cumulants of the free energy of a directed polymer in a random medium for the geometry of a cylinder. By using the fact that the \(n \)-th moment \(\langle Z^n \rangle \) of the partition function is given by the ground state energy of a quantum problem of \(n \) interacting particles on a ring of length \(L \), we write an integral equation allowing to expand these moments in powers of the strength of the disorder \(\gamma \) or in powers of \(n \). For \(n \) small and \(n \sim (L\gamma)^{-1/2} \), the moments \(\langle Z^n \rangle \) take a scaling form which allows to describe all the fluctuations of order \(1/L \) of the free energy per unit length of the directed polymer. The distribution of these fluctuations is the same as the one found recently in the asymmetric exclusion process, indicating that it is characteristic of all the systems described by the Kardar-Parisi-Zhang equation in \(1 + 1 \) dimensions.

P.A.C.S. numbers: 05.30, 05.70, 64.60 Cn.

1 Introduction

Directed polymers in a random medium is one of the simplest systems for which the effect of strong disorder can be studied. At the mean field level, it possesses a low temperature phase, with a broken symmetry of replica similar to mean field spin glasses. The problem is however much better understood than spin glasses; in particular one can write closed expressions of the mean field free energy and one can predict the existence of phase transitions in all dimensions \(d + 1 > 2 + 1 \). It is also an interesting system from the point of view of non-equilibrium phenomena: through the Kardar-Parisi-Zhang (KPZ) equation, it is related to ballistic growth models and, in \(1 + 1 \) dimensions, to the asymmetric simple exclusion process (ASEP).

In the theory of disordered systems, the replica approach plays a very special role. On the one hand, it is one of the most powerful theoretical tools and often the only possible approach to study some strongly disordered systems. On the other hand it is difficult to tell in advance whether the predictions of the replica approach are correct or not. When it does not...
work, one can always try to break the symmetry of replica: this usually makes the calculations much more complicated without being certain that the results become correct. In the replica approach, the calculation usually starts with an integer number \(n \) of replica. Then, as the limit of physical interest is the limit \(n \to 0 \), one has to extend to non-integer \(n \) results obtained for integer \(n \). This is in fact the big difficulty of the replica approach, so it is useful to look at simple examples for which the \(n \) dependence can be studied in detail.

This is one of the motivations of the present work, where we show how to calculate integer and non-integer moments \(\langle Z^n \rangle \) of the partition function \(Z \) of a directed polymer in \(1 + 1 \) dimensions. The geometry we consider is a cylinder infinite in the \(t \) direction and periodic, of size \(L \), in the \(x \) direction (i.e. \(x + L \equiv x \)). The partition function \(Z(x, t) \) of a directed polymer joining the points \((0, 0)\) and \((x, t)\) on this cylinder is given by the path integral

\[
Z(x, t) = \int_{(0, 0)}^{(x, t)} \mathcal{D}y(s) \exp \left(-\int_0^t ds \left[\frac{1}{2} \left(\frac{dy(s)}{ds} \right)^2 + \eta(y(s), s) \right] \right),
\]

where the random medium is characterised by a Gaussian white noise \(\eta(x, t) \)

\[
\langle \eta(x, t) \eta(x', t') \rangle = \gamma \delta(x - x') \delta(t - t').
\]

One of the main goals of the present work is to calculate the cumulants \(\lim_{t \to \infty} \langle \ln^k Z(t) \rangle / t \) of the free energy per unit length of the directed polymer. These cumulants are the coefficients of the small \(n \) expansion of \(E(n, L, \gamma) \) defined as

\[
E(n, L, \gamma) = -\lim_{t \to \infty} \frac{1}{t} \ln \left[\frac{\langle Z^n(x, t) \rangle}{\langle Z(x, t) \rangle^n} \right].
\]

This \(E(n, L, \gamma) \) was calculated exactly by Kardar\(^{10}\) for integer \(n \) and \(L = \infty \). His closed expression \(E(n, \infty, \gamma) = -n(n^2 - 1)\gamma^2/24 \) cannot however be continued to all values of \(n \), in particular to negative \(n \), as it would violate the fact that \(\partial^2 E(n, L, \gamma) / \partial n^2 \) is negative. Therefore one does not know the range of validity of this expression.

The second motivation of the present work is to test the universality class of the KPZ equation. The problem\(^{1}\) of a directed polymer in a random medium is described by the KPZ equation as several other problems such as growing interfaces or exclusion processes\(^{3}\). For certain models of this class, the asymmetric exclusion processes, the distribution of the total current \(Y_t \), integrated over time \(t \) has been calculated exactly\(^{11, 12, 13, 14}\) in the long time limit. For large \(t \), the generating function of this integrated current \(Y_t \) on a ring of \(L \) sites takes the form\(^{11, 12}\)

\[
\ln \langle e^{\alpha Y_t} \rangle \sim \Lambda_{\max}(\alpha) t,
\]

and it was shown\(^{11, 12, 13, 14}\), when \(L \) is large and when the parameter \(\alpha \) in \(\langle \rangle \) is of order \(L^{-3/2} \), that \(\Lambda_{\max}(\alpha) \) takes the following scaling form

\[
\Lambda_{\max}(\alpha) = \alpha K_1 = K_2 G(\alpha K_3)
\]

where \(K_1, K_2 \) and \(K_3 \) are three constants which depend on the system size \(L \), the density of particles and the asymmetry.

The interesting aspect of \(\langle \rangle \) is that the function \(G(\beta) \) is universal\(^{12, 14, 10}\) in the sense that it does not depend on any of the microscopic parameters which define the model. It is given (in a parametric form) by

\[
\beta = -\sum_{p=1}^{\infty} c_p p^{3/2},
\]

\[
G(\beta) = -\sum_{p=1}^{\infty} c_p p^{3/2}.
\]

In the correspondence\(^3\) between the directed polymer problem and the asymmetric exclusion process through the KPZ equation, the role played by \(\ln(Z(t)) \) is the ratio \(Y_1 / L \). Comparing \(\langle \exp(\alpha Y_t) \rangle \) and \(\langle Z^n(t) \rangle \) in equations \(\langle \rangle \) and \(\langle \rangle \), we see that \(n \) corresponds to \(\alpha L \) and \(E(n, L, \gamma) \) to \(\Lambda_{\max}(\alpha) \). If the function \(G(\beta) \) is characteristic of systems described by the KPZ equation, we expect in the scaling regime (large \(L \) and \(n \sim L^{-1/2} \)), a relation similar to \(\langle \rangle \) between \(E(n, L, \gamma) \) (defined by \(\langle \rangle \)) and \(n \). This is
indeed one of the main results of the present work: when L is large and $n \sim L^{-1/2}$, we find

$$E(n, L, \gamma) = \frac{n\gamma^2}{24} - \frac{\sqrt{n}}{2\sqrt{2\pi}L^{3/2}} G(-n\sqrt{2\pi}L\gamma). \quad (8)$$

It is clear that in order to establish this relation we have to calculate non-integer moments of the partition function.

The paper is organised as follows. In section 2, we recall how the replica approach of (1) can be formulated as a quantum problem with n particles on a ring and how this problem can be solved by the Bethe ansatz when the noise is δ correlated as in (2).

In section 3, we write an integral equation (26) which, together with some symmetry conditions (27, 28), allows to solve the Bethe equations of section 4. The main advantage of (26) is that the strength c of the disorder (where $c = \gamma L/2$) and the number of replica appear as continuous parameters. We show how expansions in powers of c or in powers of the number n of replica can be obtained from this integral equation. In the expansion of the energy $E(n, L, \gamma)$ in powers of c, all the coefficients are polynomials in n. This allows us to define $E(n, L, \gamma)$ for a non-integer n at least perturbatively in c. At the end of section 3, we show how to generate a small n expansion which solves the integral equation (26). We also give explicit expressions up to order n^3 and we notice that in this small n expansion of the energy, we have to deal with coefficients that are functions of c with a zero radius of convergence. The content of sections 2 and 3 is essentially a recall of a method developed in our previous work [1-3]. In section 4, we show that the recursion of section 3 which generates all the terms of the small n expansion simplifies greatly in the scaling regime (c large and $n \sim c^{-1/2}$) allowing to calculate all the terms of the expansion and to establish (4).

2 A quantum system of n particles with δ interactions

Let us start with a case slightly more general than (2) where the noise $\eta(x, t)$ in (1) is a Gaussian noise δ correlated in time but with some given correlation v

$$\langle \eta(x, t)\eta(x', t') \rangle = \gamma \, v(x - x') \, \delta(t - t'). \quad (9)$$

If we consider the correlation function $\langle Z(x_1, t) Z(x_2, t) \ldots Z(x_n, t) \rangle$ of the partition function $Z(x, t)$ at points x_1, x_2, \ldots, x_n, one can check [3] from (1, 9) that it satisfies

$$\frac{d}{dt} \langle Z(x_1, t) Z(x_2, t) \ldots Z(x_n, t) \rangle = - \mathcal{H} \langle Z(x_1, t) Z(x_2, t) \ldots Z(x_n, t) \rangle \quad (10)$$

where the Hamiltonian \mathcal{H} is given by

$$\mathcal{H} = -\frac{1}{2} \sum_{\alpha} \frac{\partial^2}{\partial x_\alpha^2} - \gamma \sum_{\alpha < \beta} v(x_\alpha - x_\beta) - \gamma^2 v(0), \quad (11)$$

and where, because of the cylinder geometry in the directed polymer model, we have $x_\alpha \equiv x_\alpha + L$ for $1 \leq \alpha \leq n$.

This implies that in the long time limit,

$$\langle Z(x_1, t) Z(x_2, t) \ldots Z(x_n, t) \rangle \sim e^{-tE(n, L, \gamma)}, \quad (12)$$

where $E(n, L, \gamma)$ is the ground state energy of (11).

If one takes the limit $v(x - x') \rightarrow \delta(x - x')$, the energy $E(n, L, \gamma)$ becomes infinite because of the constant part $nv(0)/2$ in (11). This divergence disappears, however, if we consider the ratio $\langle Z(x_1, t) Z(x_2, t) \ldots Z(x_n, t) \rangle / \prod_\alpha (Z(x_\alpha, t))$, and one can see that in the long time limit,

$$\frac{\langle Z(x_1, t) Z(x_2, t) \ldots Z(x_n, t) \rangle}{\langle Z(x_1, t) Z(x_2, t) \ldots Z(x_n, t) \rangle} \sim e^{-tE(n, L, \gamma)}, \quad (13)$$

where $E(n, L, \gamma)$ is the ground state energy of the Hamiltonian

$$\mathcal{H} = -\frac{1}{2} \sum_{\alpha} \frac{\partial^2}{\partial x_\alpha^2} - \gamma \sum_{\alpha < \beta} \delta(x_\alpha - x_\beta), \quad (14)$$

where the positions x_α of the n particles are on a ring of length L.

Lieb and Liniger have shown that the Bethe ansatz allows to calculate the ground state energy
\(E(n, L, \gamma) \) of this one dimensional quantum Hamiltonian exactly [13, 14, 21, 22, 23, 24]. The Bethe ansatz consists in looking for a ground state wave function \(\Psi(x_1, \ldots, x_n) \) of (14) of the form

\[
\Psi(x_1, \ldots, x_n) = \sum_P a_P e^{2q_1 x_{P(1)} + \cdots + q_n x_{P(n)}} / L \tag{15}
\]

in the region \(0 \leq x_1 \leq \cdots \leq x_n \leq L \). The sum in (15) runs over all the permutations \(P \) of \(\{1, \ldots, n\} \) and the value of \(\Psi \) in other regions can be deduced from (15) by symmetries. One can show [22, 23, 24, 17] that (15) is the ground state wave function of (14) at energy

\[
E(n, L, \gamma) = -\frac{2}{L^2} \sum_{1 \leq \alpha \leq n} q_\alpha^2, \tag{16}
\]

if the \(q_\alpha \) are the solutions of the \(n \) coupled equations

\[
e^{2q_\alpha} = \prod_{\beta \neq \alpha} q_\alpha - q_\beta + c, \tag{17}
\]

obtained by continuity from the solution \(\{q_\alpha\} = \{0\} \) at \(c = 0 \) where

\[
c = \frac{\gamma L}{2}. \tag{18}
\]

Moreover, the \(q_\alpha \) are all different and the ground state is symmetric (\(\{q_\alpha\} = \{-q_\alpha\} \)). (See for instance [22]. Note that \(ik_j \) and \(c \) in [22] are here \(\frac{1}{L} q_j \) and \(-\gamma \); so our \(c \) defined by (18) and the \(c \) in [22] are different.)

If we introduce the polynomial \(P(X) \)

\[
P(X) = \prod_{q_\alpha} (X - q_\alpha), \tag{19}
\]

the system of equations (17) becomes

\[
e^{p\alpha} P(q_\alpha - c) + e^{-q_\alpha} P(q_\alpha + c) = 0, \tag{20}
\]

for any \(1 \leq \alpha \leq n \), and we have from the symmetry of the ground state

\[
P(-X) = (-1)^n P(X). \tag{21}
\]

The knowledge of the polynomial \(P(X) \) determines the energy (16) as

\[
P(X) = X^n - \frac{1}{2} \left(\sum_{1 \leq \alpha \leq n} q_\alpha^2 \right) X^{n-2} + \cdots \tag{22}
\]

(using (19) and the fact that \(\sum q_\alpha = 0 \).)

For small \(c \), it is possible to solve directly (20) and to determine the \(q_\alpha \) (see appendix A). This leads to the following expression of the ground state energy (16)

\[
E(n, L, \gamma) = -\frac{2}{L^2} n(n - 1) \left(\frac{c}{2} + \frac{c^2}{12} + \frac{n c^3}{180} + O(c^4) \right), \tag{23}
\]

We see that the first coefficients of the small \(c \) expansion are polynomial in \(n \). In fact, following the approach of appendix A, one can see that each coefficient of the small \(c \) expansion of \(E(n, L, \gamma) \) is polynomial in \(n \), allowing to define, at least perturbatively in \(c \), the ground state energy \(E(n, L, \gamma) \) for non-integer \(n \). The approach of appendix A becomes however quickly complicated. This is why in the next section we develop a different approach based on the integral equation (26).

3 Solution of the Bethe ansatz using an integral equation

In this section we recall the approach developed in our previous work [7], which consists in writing an integral equation where \(c \) and \(n \) appear as continuous parameters and which allows to expand the energy in powers of \(c \) as well as in powers of \(n \).

Let us introduce the following function of \(\{q_\alpha\} \):

\[
B(u) = \frac{1}{n} e^{c(u^2 - 1)/4} \sum_{q_\alpha} \rho(q_\alpha) e^{q_\alpha(u - 1)}, \tag{24}
\]

where the parameters \(\rho(q_\alpha) \) are defined by

\[
\rho(q_\alpha) = \prod_{q_\beta \neq q_\alpha} \frac{q_\alpha - q_\beta + c}{q_\alpha - q_\beta}. \tag{25}
\]

If the \(\{q_\alpha\} \) are given by the solution of (17) which corresponds to the ground state, one can show (see appendix A) that the function \(B(u) \) satisfies the in-
integral equation

\[B(1 + u) - B(1 - u) = \]
\[n c \int_0^u dv e^{-c(v^2 - uv)/2} B(1 - v)B(1 + u - v). \]

(26)

and the following two conditions

\[B(1) = 1, \quad B(u) = B(-u). \]

(27)

(28)

Moreover, the energy \(E \) can be extracted from the knowledge of \(B(u) \) through

\[E(n, L, \gamma) = \frac{2}{L^2} \left[\frac{n^3 c^2}{6} + \frac{nc^2}{12} + \frac{nc}{2} - nB''(1) \right]. \]

(29)

The derivation of [24, 25, 26, 27] is given in appendix A. We are now going to see how one can find perturbatively in \(c \) or in \(n \) the solution of \([24, 25, 26] \) and, consequently, the ground state energy \([24] \).

3.1 Expansion in powers of \(c \)

To obtain the small \(c \) expansion of \(B(u) \) for arbitrary \(u \), we write

\[B(u) = B_0(u) + cB_1(u) + c^2B_2(u) + \ldots \]

(30)

Conditions \([25] \) and \([26] \) impose that \(B_0(0) = 1 \) and all \(B_k(1) = 0 \) for \(k > 0 \), and that the \(B_k(u) \) are all even. Moreover, as can be seen directly from \([26] \), the \(q_\alpha \) scale like \(\sqrt{c} \) when \(c \) is small. (Appendix D shows how to obtain the small \(c \) expansion of the \(q_\alpha \).)

This implies from the definition \([24] \) of \(B(u) \) that all the \(B_k(u) \) are polynomials in \(u \).

At zero-th order in \(c \), \([26] \) becomes:

\[B_0(1 + u) - B_0(1 - u) = 0. \]

(31)

The only polynomial solution of \([24] \) consistent with \([24, 26] \), i.e. \(B_0(u) = B_0(-u) \) and \(B_0(1) = 1 \) is simply

\[B_0(u) = 1 \]

(32)

for any \(u \). We put this back into \([24] \) and we get at first order in \(c \)

\[B_1(1 + u) - B_1(1 - u) = nu. \]

(33)

Again, there is a unique polynomial solution which satisfies the facts that \(B_1(u) \) is even and that \(B_1(1) = 0 \):

\[B_1(u) = \frac{n}{4}(u^2 - 1). \]

(34)

It is easy to see from \([24] \) that at any order in \(c \), we have to solve

\[B_k(1 + u) - B_k(1 - u) = \phi_k(u), \]

(35)

where \(\phi_k(u) \) is a polynomial odd in \(u \). There is a unique even polynomial \(B_k(u) \) solution of \([25] \) satisfying \(B_k(1) = 0 \): it is one degree higher than \(\phi_k(u) \) and can be determined by equating each power of \(u \) on both sides of \([35] \). Alternatively, we found a way of writing the solution for any \(\phi_k(u) \):

\[B_k(u) = \left[\frac{s_0}{2} \int_1^u dv \phi_k(v) + \frac{s_1}{2} (\phi_k'(u) - \phi_k'(1)) \right. \]
\[+ \frac{s_2}{2} (\phi_k''(u) - \phi_k''(1)) + \ldots \]
\[+ \left. \frac{s_p}{2} (\phi_k^{(2p-1)}(u) - \phi_k^{(2p-1)}(1)) \right]/2 \]

(36)

where the \(s_k \) are the coefficients of the expansion of \(x/\sinh x \) in powers of \(x \) (i.e. as \(x/\sinh x = 1 - x^2/6 + 7x^4/360 + \ldots \), one has \(s_0 = 1, s_1 = -1/6, s_2 = 7/360, \ldots \).)

This procedure gives for the first terms

\[B(u) = 1 + \frac{cn(u^2 - 1)}{4} + \frac{c^2 n(2n + 1)(u^2 - 1)^2}{96} \]
\[+ \frac{c^3 n(u^2 - 1)^2}{5760} \left(5n^2(u^2 - 1) + 4n(2u^2 - 1) \right) \]
\[+ O(c^4). \]

(37)
The energy can then be deduced from (37):

\[
E(n, L, \gamma) = -2 \frac{n(n-1)}{L^2} \left[\frac{c}{2} + \frac{c^2}{12} + \frac{n}{180} c^3 \right] + \left(\frac{n^2}{1512} - \frac{n}{1260} \right) c^4 + \ldots.
\]

(For (38), we used more terms than given above in \(B(u) \)) Of course, this expression agrees with (34) obtained directly by expanding the \(q_\alpha \).

3.2 Expansion in powers of \(n \)

The number of particles \(n \) is a priori an integer. However, when we look at the small \(c \) expansion of \(B(u) \) or \(E(n, L, \gamma) \) of the energy, we see that at any given order in \(c \) the expression is polynomial in \(n \). Therefore, one can extend the definition of the small \(c \) expansion of \(B(u) \) or of \(E(n, L, \gamma) \) to non-integer \(n \). We can also collect in the small \(c \) expansion of \(B(u) \) all the terms proportional to \(n \) and call this series \(b_1(u) \). From (37) we see that

\[
b_1(u) = \frac{(u^2 - 1)c}{4} + \frac{(u^2 - 1)^2 c^2}{96} + \frac{(u^2 - 1)^2(u^2 - 3)}{2880} c^3 + O(c^4) \tag{39}
\]

More generally, we can collect all the terms proportional to \(n^k \) in the small \(c \) expansion and call the series \(b_k(u) \). This means that we can write \(B(u) \) as a power series in \(n \)

\[
B(u) = 1 + nb_1(u) + n^2b_2(u) + \ldots \tag{40}
\]

where all the \(b_k(u) \) are defined perturbatively in \(c \). Conditions (27, 28) impose that all the \(b_k(u) \) are even and that \(b_k(1) = 0 \) for all \(k \geq 1 \). We define \(b_0(u) = 1 \) for consistency. (It is easy to see in the small \(c \) expansion that if \(n = 0 \), then \(B(u) = 1 \).)

We are now going to describe the procedure we used in \(27, 28 \) to determine the whole function \(b_1(u) \) and eventually all the \(b_k(u) \). If we insert (40) into (26), we get, at first order in \(n_k \)

\[
b_1(1 + u) - b_1(1 - u) = c \int_0^u e^{-c(v^2 - uv)/2} dv. \tag{41}
\]

It is easy to check that a solution of (41) compatible with the conditions \(b_1(1) = 0 \) and \(b_1(u) = b_1(-u) \) is

\[
b_1(u) = \sqrt{c} \int_0^{+\infty} d\lambda \frac{\cosh \left(\frac{\lambda u}{2} \right) - \cosh \left(\frac{\lambda u}{2} \right)}{\sinh \left(\frac{\lambda u}{2} \right)} e^{-\lambda^2/2}.
\]

There are however many other solutions of (41), which can be obtained by adding to (42) an arbitrary function \(F(u, c) \) even and periodic in \(u \) of period 2 and vanishing at \(u = 1 \). If we require that each term in the small \(c \) expansion of \(b_1(u) \) is polynomial in \(u \) (as justified in section 3.1), we see that all the terms of the small \(c \) expansion of \(F(u, c) \) must be identically zero. This already shows that (42) has the same small \(c \) expansion (39) as what one would get by collecting all the terms proportional to \(n \) in the small \(c \) expansion of section 3.1.

If the solution (42) of (41) had a non-zero radius of convergence in \(c \), it would be natural to choose this solution and set \(F(u, c) = 0 \). However it is easy to see that (42) has a zero radius of convergence in \(c \); by making the change of variable \(\lambda^2 = 2c \), it is easy to see that (42) is the Borel sum of a divergent series (24).

Apart from being the Borel sum of its expansion in powers of \(c \), we did not find definitive reasons why (42) is the solution of (41) we should select. However, we can notice that for integer \(n \), all the \(q_\alpha \) are real and \(B(u) \) defined by (24) is analytic in \(u \) and remains bounded as \(|\text{Im } u| \to \infty \). The solution \(b_1(u) \) given by (42) is also analytic in \(u \) and grows as \(\ln(u) \) as \(|\text{Im } u| \to \infty \). Adding any function \(F(u, c) \) periodic and analytic in \(u \) to (42) would produce a much faster growth.

If we insert (40) into (26), we have to solve at order \(n^k \)

\[
b_k(1 + u) - b_k(1 - u) = \varphi_k(u), \tag{43}
\]

where \(\varphi_k(u) \) is some function odd in \(u \) which can be calculated if we know the previous orders \(b_1(u), \ldots, b_{k-1}(u) \).

\[
\varphi_k(u) = c \sum_{i=0}^{k-1} \int_0^u dv e^{-c(v^2 - uv)/2} b_i(1 - v) \times b_{k-i-1}(1 + u - v). \tag{44}
\]
We see that the difficulty of selecting a solution of a difference equation appears at all orders in the expansion in powers of n, and we are now going to explain the procedure we have used to select one solution.

If we write, as $\varphi_k(u)$ is an odd function of u,

$$ \varphi_k(u) = 2 \int_0^{+\infty} d\lambda \sinh \left(\frac{\lambda u \sqrt{c}}{2} \right) a_k(\lambda), \quad (45) $$

which is equivalent, by inverting when u is imaginary the Fourier transform in (17), to define $a_k(\lambda)$ by

$$ a_k(\lambda) = \frac{1}{2\pi} \int_0^{+\infty} du \sin \left(\frac{\lambda u}{2} \right) \varphi_k \left(\frac{iu}{\sqrt{c}} \right), \quad (46) $$

then the solution for $b_k(u)$ we select is given by

$$ b_k(u) = \int_0^{+\infty} d\lambda \frac{\cosh \left(\frac{\lambda u \sqrt{c}}{2} \right) - \cosh \left(\frac{\lambda u \sqrt{c}}{2} \right)}{\sinh \left(\frac{\lambda u \sqrt{c}}{2} \right)} a_k(\lambda). \quad (47) $$

Indeed, $b_k(u)$ is an even function, vanishes at $u = 1$ and one can check using (17) that (17) solves (43).

The integrals in (17) are convergent and equations (14) (15) (17) give an automatic way of calculating the $b_k(u)$ up to any desired order.

This procedure is the direct generalisation of the choice (12) we did to solve (11). In fact, for $k = 1$, equations (14) (16) give (for $\lambda \geq 0$) $a_1(\lambda) = \sqrt{\pi} \exp(-\lambda^2/2)$ and (17) is identical to (12).

As for (12), the solution (17) is not the only solution of (13). At any order k, we could add an arbitrary even periodic function $F(u, c)$ of period 2, the expansion of which vanishes to all order in c. As for $b_1(u)$, we did not find an unquestionable justification of our choice. One can notice nevertheless that (17) is the solution of (13) analytic in u and with the slowest growth when $|\text{Im} u| \to \infty$.

At order n^2, the procedure (14) (16) gives

$$ a_2(\lambda) = ce^{-\lambda^2/2} \left[\int_0^{\lambda} d\mu e^{-\mu^2/2} \frac{2 \cosh \left(\frac{\mu \lambda \sqrt{c}}{2} \right) - 2}{\tanh \left(\frac{\mu \lambda \sqrt{c}}{2} \right)} \right. \quad (48) $$

$$ \left. + \int_{\lambda}^{+\infty} d\mu e^{-\mu^2/2} \frac{e^{-\lambda \mu/2} - 2}{\tanh \left(\frac{\mu \lambda \sqrt{c}}{2} \right)} \right], $$

with $b_2(u)$ given by (17). Writing down $b_3(u)$ or $a_3(u)$ would take here about half a column.

We can now give the first terms in the small n expansion of the energy. Using relation (23), we find

$$ \frac{L^2}{2} E(n, L, \gamma) = n \left(\frac{c}{2} + \frac{c^2}{12} \right) - n^2 \frac{c^3}{4} \int_0^{+\infty} d\lambda \tanh \left(\frac{\lambda \sqrt{c}}{2} \right) e^{-\lambda^2/2} $$

$$ - n^3 \frac{c^2}{4} \int_0^{+\infty} d\lambda \lambda^2 \tanh \left(\frac{\lambda \sqrt{c}}{2} \right) e^{-\lambda^2/2} $$

$$ - n^4 \frac{c}{4} \int_0^{+\infty} d\lambda e^{-\lambda^2/2} \frac{2 \cosh \left(\frac{\lambda u}{2} \right) - 2}{\tanh \left(\frac{\mu \lambda \sqrt{c}}{2} \right)} + n^3 \frac{c^2}{6} + O(n^4). $$

By making the change of variable $\lambda^2 = 2\nu$, the terms of order n^2 and n^3 appear as Borel transforms of series in c with a finite radius of convergence. We conclude that these terms have both a zero radius of convergence in c.

This small n expansion gives quickly very complicated expressions of $b_k(u)$. It turns out, as we shall see in the next section, that for large c, the expressions of the $b_k(u)$ get simpler and the energy $E(n, L, \gamma)$ can be calculated to all orders in powers of n.

4 Expansion in powers of n in the regime $c \to \infty$

In the previous section, we have developed a procedure allowing to get the small n expansion of the energy by solving the problem (24) (28). Here, we show how this procedure gets greatly simplified for large c.

The expansion in powers of n of the previous section can be summarised as follows: if we use (40) and we write

$$ a(\lambda) = na_1(\lambda) + n^2 a_2(\lambda) + \ldots, \quad (50) $$
the $b_k(u)$ and $a_k(\lambda)$ can be obtained by expanding in powers of n the following two equations

$$B(u) = 1 + \int_0^{+\infty} \frac{d\lambda}{\sinh \left(\frac{\lambda u}{2} \right)} a(\lambda),$$

(51)

(this is a rewriting of (17)), and

$$a(\lambda) = \frac{nc}{2\pi} \int_0^{+\infty} du \sin \left(\frac{\lambda u}{2} \right) \times$$

$$\int_0^{+\infty} dv e^{-c(v^2-uv \sqrt{c})/2} B(1-v) B(1+u-v).$$

(52)

This is a rewriting of (14, 46, 47). It will be convenient in the following to replace (53) by its Fourier transform

$$2 \int_0^{+\infty} d\lambda \sinh \left(\frac{\lambda u \sqrt{c}}{2} \right) a(\lambda) =$$

$$\int_0^{u} dv e^{-c(v^2-uv \sqrt{c})/2} B(1-v) B(1+u-v).$$

(53)

(This is a rewriting of (14, 46, 17).)

We are going to see how one can simplify (51, 53) when c is large. First we observe that for large c and u fixed of order 1, the expression $b_1(u)$ takes the scaling form

$$b_1(1 + \frac{u}{\sqrt{c}}) \simeq \sqrt{c} \int_0^{+\infty} (e^{\lambda u/2} - 1) e^{-\lambda^2/2} d\lambda.$$ (54)

One can check from (14, 46, 17) that this scaling form is present at any order in the small n expansion. Indeed, (51) becomes in the large c limit

$$B(1 + \frac{u}{\sqrt{c}}) = 1 + \int_0^{+\infty} d\lambda (e^{\lambda u/2} - 1)a(\lambda),$$

(55)

and using (53), we find

$$2 \int_0^{+\infty} d\lambda \sinh \left(\frac{\lambda u}{2} \right) a(\lambda) =$$

$$\int_0^{u} dv e^{-c(v^2-uv \sqrt{c})/2} B \left(1 - \frac{u}{\sqrt{c}} \right) B \left(1 + \frac{u - v}{\sqrt{c}} \right).$$

(56)

It is apparent on (55) and (56) that in the large c limit the function $B(1 + u/\sqrt{c})$ depends only on u and $n\sqrt{c}$, and $a(\lambda)$ depends only on λ and $n\sqrt{c}$. Let us introduce the constant K

$$K = 1 - \int_0^{+\infty} d\lambda a(\lambda).$$

(57)

Equation (55) becomes

$$B(1 + \frac{u}{\sqrt{c}}) = K + \int_0^{+\infty} d\lambda e^{\lambda u/2} a(\lambda).$$

(58)

In (58), if we write the integral from 0 to u as the difference between an integral from 0 to $+\infty$ and an integral from u to $+\infty$, and if we change the variable in the second integral to shift it to 0 to $+\infty$, we obtain

$$2 \int_0^{+\infty} d\lambda \sinh \left(\frac{\lambda u}{2} \right) a(\lambda) =$$

$$n \sqrt{c} \int_0^{+\infty} dv e^{-c(v^2-uv \sqrt{c})/2} B(1-v) B(1+u-v) \left[e^{uv/2} B(1 + \frac{u-v}{\sqrt{c}}) - e^{-uv/2} B(1 - \frac{u+v}{\sqrt{c}}) \right].$$

(59)

If we replace $B(1+(u-v)/\sqrt{c})$ and $B(1-(u+v)/\sqrt{c})$ by their expression (58), we get after some rearrangements

$$2 \int_0^{+\infty} d\lambda \sinh \left(\frac{\lambda u}{2} \right) a(\lambda) =$$

$$n \sqrt{c} \int_0^{+\infty} dv e^{-c(v^2-uv \sqrt{c})/2} B(1-v) \left[2K \sinh \left(\frac{uv}{2} \right) + \int_0^{+\infty} d\mu a(\mu) e^{-\mu v/2} \sinh \left(\frac{u + \mu}{\sqrt{c}} \right) \right].$$

(60)

Taking the Fourier transform of this expression for imaginary u, we get for $\lambda \geq 0$

$$a(\lambda) = n \sqrt{c} \int_0^{+\infty} dv e^{-c(v^2-uv \sqrt{c})/2} B(1-v) \left[K \delta(\lambda - v) + \int_0^{+\infty} d\mu a(\mu) e^{-\mu v/2} \delta(\lambda - v - \mu) \right].$$

(61)
This last expression can be used to calculate \(B(1 + u/\sqrt{c}) \) using (58):

\[
B(1 + \frac{u}{\sqrt{c}}) = K + \frac{1}{2K^{2/3}} e^{-u^2/4} B(1 + \frac{u}{\sqrt{c}})^2 + \int_{0}^{+\infty} dv e^{-v^2/2} e^{v u/2} B(1 + \frac{u}{\sqrt{c}}) \]

Finally, using (68), we recognize the relation

\[
B(1 + \frac{u}{\sqrt{c}}) = K + \frac{1}{2K^{1/3}} e^{-u^2/4} B(1 + \frac{u}{\sqrt{c}})^2 + \int_{0}^{+\infty} dv e^{-v^2/2} e^{v u/2} B(1 + \frac{u}{\sqrt{c}}) \]

We see that, in the large \(c \) limit, (51, 52) reduce to this single equation (63). We are now going to see that (63) can be solved to all order in the parameter \(n\sqrt{c} \). If we substitute \(c \) using (58), we obtain the result announced in (8).

We get

\[
L^2 \frac{E(n, L, \gamma)}{2} = \frac{2}{12} \left[\frac{n c^2}{12} + \frac{\sqrt{c}}{8} \left(1 - \frac{2\sqrt{3}}{27} \right) (2n \sqrt{c \pi})^3 \right] + O ((n \sqrt{c})^4) \]

5 Conclusion

In this paper, we have calculated, using the replica method, the first cumulants (13, 49) of the free energy of a directed polymer in a random medium (1) for a cylinder geometry. We used the integral equation (28) of (17) which together with conditions (27) allowed us to expand the moments \(\langle Z^n \rangle \) of the partition function in powers of the strength \(c \) of the disorder or in powers of the number \(n \) of replica. All the coefficients of the small \(c \) expansion (28) are polynomial in \(n \) allowing to define the expansions for non-integer \(n \). On the other hand, the coefficients of the expansion (28) in powers of \(n \) are complicated functions of \(c \), with in general a zero radius of convergence at \(c = 0 \). As already mentioned in (17), we think that weak disorder expansions of the moments \(\langle Z^n \rangle \) have generically a zero radius of convergence for non-integer \(n \) when the disorder is Gaussian; this is al-
ready the case for a single Ising spin in a Gaussian random field.\cite{7}

To obtain our small n expansion, we solved a difference equation \cite{26} which at each order in powers of n has several solutions. We selected the particular solution which has the slowest growth in the imaginary u direction and has the right small c expansion, but we could not exclude other solutions. A different approach, with a direct calculation of the first cumulants of the free energy, and not based on replica would therefore be very useful to test the validity of our expressions \cite{49} which we have been able to derive only perturbatively to all orders in c.

Although our expansion in powers of n becomes quickly very complicated, it simplifies when c is large and we could write in this limiting case, all the terms of the small n expansion \cite{25, 69}. The expression $\langle \rho \rangle$ we obtain of the energy $E(n, L, \gamma)$ (that is, through \cite{4}, the expression of $\langle Z^n \rangle$) is given exactly by the same scaling function as found for the ASEP. The present work therefore gives additional evidence that the scaling function $G(\beta)$ given by \cite{6, 7} is characteristic of the long time behaviour of the KPZ equation in $1+1$ dimensions on a ring and that the probability distribution of the free energy for a very long directed polymer on a ring should have an universal shape in the range where the fluctuations per unit length of the free energy are of order $1/L$. Other universal distributions for the free energy of a directed polymer have been found recently for different geometries\cite{26, 27, 28, 29, 30}. Our present approach, based on the Bethe ansatz is, at the moment, unable to recover these other distributions. One can try however to extend it to open boundary conditions (in this case too, the Bethe ansatz can be used\cite{24}) instead of periodic boundary conditions and see how this change of boundary conditions affects the distribution of $\ln Z$. Of course, it would be very nice to find a simpler approach which would somehow unify all these results and allow to relate all these universal distributions corresponding to the possible geometries, in the spirit of critical phenomena in two dimensions where conformal invariance\cite{31} allows to connect the properties of different geometries.

Technically, the approach followed in the present work is simply to try to find the q_α solution of \cite{17}, and to calculate the energy \cite{16} which is a symmetric function of the roots q_α, in such a way that n becomes a continuous variable. One could do the same in all kinds of situations. For example, in appendix \ref{app:big} we show how to define and calculate symmetric functions of the roots of Hermite polynomials when the degree of the polynomial becomes non-integer.

Another interesting extension of the present work would be to consider more general correlations of the noise \cite{4}. The corresponding quantum problem becomes then the general problem of quantum particles interacting with an arbitrary pair potential. If the interactions are short ranged, one expects the universality class of the KPZ equation to hold, so one could try to repeat our expansion in powers of c for a general potential (without the use of the Bethe ansatz) simply by a standard perturbation theory in the strength of the potential. We believe that at any order in the strength of the potential, the ground state energy is polynomial in n allowing to define the perturbation expansion for non-integer n as we did here. If, with such an approach based on perturbation theory, one could recover the scaling function G of \cite{4, 6}, one could try to extend the approach to higher dimension as the relation between the directed polymer problem and the quantum hamiltonian is valid in any dimension.

Acknowledgements We thank François David, Michel Gaudin, Vincent Pasquier, Herbert Spohn and André Voros for interesting discussions.

A Derivation of (26, 27, 28, 29)

Let us first establish some useful properties of the numbers $\rho(q_\alpha)$ defined by \cite{25}. If the q_α are the n roots of the polynomial $P(X)$

$$P(X) = \prod_{q_\alpha} (X - q_\alpha), \quad (A.1)$$

it is easy to see that the $\rho(q_\alpha)$ defined in \cite{25} satisfy

$$\frac{P(X + c)}{P(X)} = 1 + c \sum_{q_\alpha} \frac{\rho(q_\alpha)}{X - q_\alpha}. \quad (A.2)$$
(The two sides have the same poles with the same residues and coincide at $X \to \infty$.) Expanding the right hand side of (A.2) for large X, we get
\[
\frac{P(X + c)}{P(X)} = 1 + \epsilon \sum_{q_\alpha} \rho(q_\alpha) \left(1 + \frac{q_\alpha}{X} + \frac{q_\alpha^2}{X^2} \right) + O \left(\frac{1}{X^4} \right). \tag{A.3}
\]

On the other hand, using (16, A.1) and the symmetry \(\{q_\alpha\} = \{-q_\alpha\}\) we have
\[
P(X) = X^n + \frac{L^2}{4} E(n, L, \gamma) X^{n-2} + O(X^{n-4}), \tag{A.4}
\]
so that
\[
\frac{P(X + c)}{P(X)} = 1 + \frac{\epsilon n}{X} + \frac{c^2 (\frac{n}{2})}{X^2} + \frac{c^3 (\frac{n}{3}) - c E(n, L, \gamma) L^2/2}{X^3} + O \left(\frac{1}{X^4} \right). \tag{A.5}
\]
Comparing (A.3) and (A.5), we get the relations
\[
\sum_{q_\alpha} \rho(q_\alpha) = n, \tag{A.6}
\]
\[
\sum_{q_\alpha} q_\alpha \rho(q_\alpha) = c \binom{n}{2}, \tag{A.7}
\]
\[
\sum_{q_\alpha} q_\alpha^2 \rho(q_\alpha) = c^2 \binom{n}{3} - \frac{E(n, L, \gamma) L^2}{2}. \tag{A.8}
\]
Moreover, by letting $X = \pm q_\beta - c$ in (A.2) we get for any q_β root of $P(X)$
\[
\frac{1}{c} = \sum_{q_\alpha} \rho(q_\alpha) \frac{1}{q_\alpha - q_\beta + c} = \sum_{q_\alpha} \rho(q_\alpha) \frac{q_\alpha}{q_\alpha + q_\beta + c}. \tag{A.9}
\]
Lastly using the symmetry \(\{q_\alpha\} = \{-q_\alpha\}\) and the definition (25), the Bethe ansatz equations (17) reduce to
\[
e^{i\pi} \rho(-q_\alpha) - e^{-i\pi} \rho(q_\alpha) = 0. \tag{A.10}
\]

From the definition (24) of $B(u)$ and the properties (A.6 A.10), it is straightforward to establish (26-24): the integral equation (24) is a direct consequence of (24) and (A.9). Properties (27 28) follow from (24, A.6) and (24, A.10) respectively. Lastly (29) is a consequence of (24, A.6 A.8).

B The energy in the scaling regime

In this appendix, we show how to calculate the energy from the integral equation (13). This equation is of the form
\[
\beta(u) = H(u) + \epsilon \int_0^{+\infty} dv \beta(u - v)\beta(-v), \tag{B.1}
\]
where, in our case, $H(u)$ is given by
\[
H(u) = \frac{1}{2\sqrt{\pi}} e^{-u^2}. \tag{B.2}
\]
We are going to do our calculations for an arbitrary function $H(u)$, even in u and decreasing fast enough (to make all the integrals converge) when $|u| \to \infty$.

To find the energy, we see from (17), that we have to calculate from (B.1) the quantities $\beta(0)$ and $\beta''(0)$ as functions of ϵ. We first show that (B.1) is equivalent to
\[
\beta(u) = H(u) + \epsilon \int_0^{+\infty} dv H(u - v)\beta(v), \tag{B.3}
\]
as long as $H(u)$ is even and decreases fast enough. Then, we will introduce a new function $\beta^*(u)$ which is easy to calculate, and relate the derivatives of $\beta(u)$ and $\beta^*(u)$ at $u = 0$.

B.1 Equivalence between (B.1) and (B.3)

The solution of (B.3) can be written as
\[
\beta(u) = \beta_0(u) + \epsilon \beta_1(u) + \epsilon^2 \beta_2(u) + \ldots, \tag{B.4}
\]
where
\[
\beta_0(u) = H(u), \tag{B.5}
\]
\[
\beta_1(u) = \int_0^{+\infty} H(u - v_1) H(v_1) dv_1, \]
\[
\beta_2(u) = \int_0^{+\infty} H(u - v_1) H(v_1 - v_2) H(v_2) dv_1 dv_2, \]
\[
\ldots \]
\[
\beta_k(u) = \int \ldots \int_0^{+\infty} H(u - v_1) H(v_1 - v_2) \ldots H(v_{k-1} - v_k) H(v_k) dv_1 \ldots dv_k.
\]
For a given \(k > 0 \), the integration range of \(\beta_k(u) \) can be divided into \(k \) parts: the region where \(v_1 \) has the lowest value of all the \(\{ v_i \} \), the region where \(v_2 \) has the lowest value, \ldots, the region where \(v_k \) has the lowest value. Let us consider, for some \(j \) such that \(1 \leq j \leq k \), the region where \(v_j \) has the lowest value. All the other integrals then run from \(v \) to \(+\infty \). If we translate those to integrals running from 0 to \(+\infty \) by changing \(v \) into \(v_i + v_j \), we get:

\[
\int_0^{+\infty} dv_j \int_0^{+\infty} dv_{j-1} H(u - v_1 - v_j) \quad ... \quad H(v_{j-1}) \times H(v_1 - v_2) \quad ... \quad H(v_{j-1}) \times H(v_{j+1}) \quad ... \quad H(v_k + v_j)
\]

Using the fact that \(H(u) = H(-u) \), we see that (B.4) is equal to

\[
\int_0^{+\infty} dv_j \beta_j(u) \beta_{j-1}(-v_j).
\]

By summing over \(j \), we therefore have

\[
\beta_k(u) = \int_0^{+\infty} dv \sum_{j=1}^{k} \beta_j(u - v) \beta_{j-1}(-v).
\]

Finally, if we multiply by \(\epsilon^k \) and if we sum over \(k \) all these terms (keeping apart the term for \(k = 0 \)), we obtain equation (B.1).

The equations (B.1) and (B.3) are thus equivalent and (B.4) and (B.3) give the solution of (B.1) to any order in \(\epsilon \).

B.2 Calculation of the derivatives of \(\beta(u) \)

If we look at the expression (B.5) of \(\beta(u) \) in powers of \(\epsilon \), the calculation of \(\beta(0) \) and \(\beta''(0) \) looks simple, especially when \(H(u) \) is given by (B.2). However, when we try to actually do the calculation, the expressions become quickly complicated with error-functions, primitives of error-functions, etc. It would be much easier if the integrals in (B.5) were running from \(-\infty \) to \(+\infty \) instead of 0 to \(+\infty \). This is why we introduce the even function

\[
\beta^*(u) = \beta^*_0(u) + \epsilon \beta^*_1(u) + \epsilon^2 \beta^*_2(u) + \ldots,
\]

where, for \(k > 0 \),

\[
\beta^*_k(u) = \frac{1}{k+1} \int_0^{+\infty} H(u - v_1) \ldots H(v_k) dv_1 \ldots dv_k,
\]

and \(\beta^*_0(u) = H(u) \). One can see easily that

\[
\beta^*(u) = \frac{-1}{2\pi \epsilon} \int_{-\infty}^{+\infty} dq e^{-i q u} \ln(1 - \epsilon \hat{H}(q)),
\]

where we have defined

\[
\hat{H}(q) = \int_{-\infty}^{+\infty} du e^{i q u} H(u).
\]

The Wiener-Hopf technique allows to relate \(\beta(u) \) and \(\beta^*(u) \). More specifically, we are going to show that for any \(X > 0 \),

\[
\epsilon \int_0^{+\infty} e^{-uX} \beta^*(u) = \ln \left(1 + \epsilon \int_0^{+\infty} e^{-uX} \beta(u) \right).
\]

This relation allows to relate the derivatives of \(\beta(u) \) and \(\beta^*(u) \) at \(u = 0 \): indeed, if \(X \) is large in (B.13), we get

\[
\int_0^{+\infty} e^{-uX} \beta(u) = \frac{\beta(0)}{X} + \frac{\beta''(0)}{X^2} + \frac{\beta'''(0)}{X^3} + \ldots,
\]

and a similar expression for \(\beta^*(u) \). Comparing both sides of (B.13) gives

\[
\beta(0) = \beta^*(0), \quad (B.15)
\]

\[
\beta'(0) = \frac{\epsilon}{2} \beta(0)^2.
\]

\[
\beta''(0) = \beta''(0) + \frac{\epsilon^2}{6} \beta(0)^3.
\]

(We have used the fact that \(\beta''(0) = 0 \) because \(\beta^*(u) \) is an even function.)
In order to prove (B.13), the first thing to note is that, as $H(u)$ decreases fast when $u \to \pm \infty$, then also does $\beta(u)$. This allows to define the two “partial” Fourier transforms

$$\hat{\beta}_+(q) = \int_0^{\infty} du e^{i u} \beta(u),$$

(B.16)

$$\hat{\beta}_-(q) = \int_0^{\infty} du e^{i u} \beta(u).$$

(B.17)

It is easy to see that $\hat{\beta}_+(q)$ is analytic in the upper half-plane ($\text{Im} q \geq 0$). Moreover, in this half-plane, $\hat{\beta}_+(q)$ is bounded and vanishes when $|q| \to \infty$. Conversely, $\hat{\beta}_-(q)$ is analytic, bounded, and decreases to 0 at infinity when $\text{Im} q \leq 0$.

The function $\beta(u)$ can be written in terms of $\hat{\beta}_+(q)$ and $\hat{\beta}_-(q)$:

$$\beta(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dq e^{-iu} (\hat{\beta}_+(q) + \hat{\beta}_-(q)),$$

(B.18)

which allows to express the right-hand side of (B.13) when X is positive:

$$\int_0^{\infty} du e^{-uX} \beta(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dq \frac{\hat{\beta}_+(q)}{X + i q} + \frac{1}{2\pi} \int_{-\infty}^{\infty} dq \frac{\hat{\beta}_-(q)}{X + i q}.$$

(B.19)

We calculate the two integrals in the right hand side of (B.13) by the residue theorem. As $\hat{\beta}_+(q)$ is analytic and decreases at infinity in the upper half-plane, the first integral can be written when $X > 0$ as a contour integral around the upper half-plane. The only contribution to the first integral comes, using Cauchy’s theorem, from the pole $q = iX$. One can also check that the second integral vanishes (using a contour around the lower half-plane and the fact that $\hat{\beta}_-(q)$ has no pole). Therefore, (B.13) gives

$$\int_0^{\infty} du e^{-uX} \beta(u) = \hat{\beta}_+(iX).$$

(B.20)

Now, if we multiply (B.3) by $\exp(iu)$ and if we integrate over u, we easily get for any real q

$$\hat{\beta}_+(q) + \hat{\beta}_-(q) = \hat{H}(q) + \epsilon \hat{H}(q) \hat{\beta}_+(q).$$

(B.21)

This relation between $\hat{H}(q)$, $\hat{\beta}_-(q)$ and $\hat{\beta}_+(q)$, together with (B.11) gives

$$\beta^* (u) = \frac{1}{2\pi \epsilon} \int_{-\infty}^{\infty} dq e^{-i u q} \left(\ln(1 + \epsilon \beta_+(q)) \right) - \ln(1 - \epsilon \beta_-(q)).$$

Using again that, in the upper half-plane, $\hat{\beta}_+(q)$ is analytic and vanishes at infinity, we see that, for a small enough ϵ, the quantity $\ln(1 + \epsilon \beta_+(q))$ is also analytic and decreases to 0 at infinity when $\text{Im} q \geq 0$. Similarly, $\ln(1 - \epsilon \beta_-(q))$ has the same properties for $\text{Im} q \leq 0$. This allows to calculate the left hand side of (B.13) as we did for the right hand side. We find

$$\int_0^{\infty} du e^{-uX} \beta^*(u) = \frac{1}{\epsilon} \ln(1 + \epsilon \beta_+(iX)).$$

(B.23)

Comparing (B.20) and (B.23) completes the proof of (B.13).

We can now give an expression of the energy. If we use the definition (B.2) of $H(u)$ in (B.11, B.13), we find

$$\beta^*(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\sum_{k=0}^{+\infty} \frac{e^k}{(k+1)^{3/2}} e^{-u^2/4(k+1)} \right).$$

(B.24)

This gives

$$\beta^*(0) = \frac{1}{2\sqrt{\pi}} \sum_{k=0}^{+\infty} \frac{e^k}{(k+1)^{3/2}},$$

(B.25)

$$\beta''^*(0) = -\frac{1}{4\sqrt{\pi}} \sum_{k=0}^{+\infty} \frac{e^k}{(k+1)^{5/2}},$$

(B.26)

and, together with (B.17), these equations allows to give an expression of $\beta(0)$ and $\beta''(0)$.

From (27, 24, 23), we see that

$$\epsilon \beta(0) = n \sqrt{\epsilon}.$$

(B.27)

Then, using (B.17) we get

$$\frac{\epsilon \beta^*(0)}{\beta(0)} = n \sqrt{\epsilon},$$

(B.28)

$$\frac{\epsilon \beta''(0)}{\beta(0)} = \frac{1}{n \sqrt{c}} \beta''(0) + \frac{n^2 c}{6}.$$
The energy is given by (17). We get:

\[E(n, L, \gamma) = \frac{2}{L^2} \left[\frac{nc^2}{12} - \epsilon \sqrt{\gamma} \beta''(0) \right]. \]

(B.29)

And, finally, using relation (B.23, B.24), we obtain (63, 64).

C Hermite polynomials with a non-integer number of roots

What we try to do in this whole paper is essentially to calculate \(\sum_\alpha q_\alpha^2 \) (the energy) where \(\{q_\alpha\} \) is solution of (17), in such a way that \(n \) appears as a continuous parameter. This allows us to obtain expressions of the energy for non-integer \(n \).

One can use the same procedure in other kinds of situations. A simple example which illustrates our calculations is the case of the zeroes of Hermite polynomials.

The \(n \)-th Hermite polynomial \(H_n(X) \) is the solution polynomial in \(X \) with leading coefficient 1 of the differential equation (33):

\[\frac{1}{2} H_n''(X) - X H_n'(X) + n H_n(X) = 0. \]

(C.1)

The polynomial \(H_n(x) \) is of degree \(n \) and has the symmetry \(H_n(-x) = (-1)^n H_n(x) \). For example, we have \(H_4(X) = X^4 - 3X^2 + \frac{3}{2} \). The \(n \) roots \(\{h_\alpha\} \) (\(1 \leq \alpha \leq n \)) of \(H_n(X) \) are real and distinct (32).

By deriving (C.1) \(p \) times with respect to \(X \), we see that, for all \(p \),

\[X H_n^{(p+1)}(X) = \frac{1}{2} H_n^{(p+2)}(X) + (n-p) H_n^{(p)}(X). \]

(C.2)

This shows that the \((n-p) \)-th Hermite polynomial is, up to a constant factor, equal to the \(p \)-th derivative of \(H_n(X) \). (This property will be used a lot in appendix B).

Equation (C.1) can be used directly to calculate the first coefficients of \(H_n(X) \)

\[H_n(X) = X^n - \frac{1}{2} \binom{n}{2} X^{n-2} + \frac{3}{4} \binom{n}{4} X^{n-4} + \ldots \]

(C.3)

Using (C.3), the symmetry of \(H(X) \) and the large \(X \) expansion

\[\frac{H_n'(X)}{H_n(X)} = \sum_{p \geq 0} \frac{1}{X^{p+1}} \left(\sum_\alpha h_\alpha^p \right), \]

(C.4)

we can calculate the moments of the roots \(\{h_\alpha\} \) of \(H(X) \):

\[\sum_\alpha h_\alpha^2 = \frac{n(n-1)}{2}, \]

(C.5)

\[\sum_\alpha h_\alpha^4 = \frac{n(n-1)}{4} (2n-3), \]

(C.6)

and so on. These moments are a priori defined only for integer \(n \) but as the expressions are polynomial in \(n \), one can obviously extend their definition to non-integer \(n \) (similarly to what we do in the small \(c \) expansion of \(B(u) \) in section (3.2)).

To generate all the moments of the roots \(h_\alpha \), it is convenient to consider the generating function

\[Q(u) = \sum_{h_\alpha} e^{h_\alpha u}, \]

(C.7)

which is reminiscent of the quantity \(\beta(u) \) defined in our quantum problem. (Using (24) and (64) we can check that \(\beta(u) \propto \exp(u \sqrt{c}/2) \sum q_\alpha \exp(q_\alpha u/\sqrt{c}) \).

The function \(Q(u) \) is hard to calculate for general \(n \) but we can expand it in powers of \(n \). This can be done by considering

\[\Psi(X) = \frac{H_n'(X)}{H_n(X)} = \int_0^{+\infty} du Q(u) e^{-uX}, \]

(C.8)

which is defined only for \(X \) positive and large enough to make the integral converges. This function \(\Psi(X) \) is solution of a differential equation which follows from (C.1):

\[\frac{1}{2} \Psi'(X) + \frac{1}{2} \Psi(X)^2 - X \Psi(X) + n = 0. \]

(C.9)

To obtain an expansion in powers of \(n \), we write

\[\Psi(X) = n \Psi_1(X) + n^2 \Psi_2(X) + \ldots \]

(C.10)
Thus $\Psi_1(X)$ satisfies
\[\frac{1}{2} \Psi_1''(X) - X \Psi_1(X) + 1 = 0. \] (C.11)

This differential equation can easily be solved, and the integration constant can be fixed using the requirement (C.8) that, for large X, $\Psi(X) \simeq n/X$

\[\Psi_1(X) = \int_0^{+\infty} du e^{-uX-u^2/4}. \] (C.12)

Then order n^2 of (C.9) gives
\[\frac{1}{2} \Psi_2''(X) - X \Psi_2(X) + \frac{1}{2} \Psi_1(X)^2 = 0, \] (C.13)

the solution of which can be written as
\[\Psi_2(X) = 2 \int_0^{+\infty} du e^{-uX-u^2/4} \int_0^{+\infty} \cosh \left(\frac{ut}{\sqrt{2}} \right) - 1 \frac{dt}{t} e^{-t^2}. \] (C.14)

The procedure can be iterated to any order in n (of course expressions become more and more complicated). Using (C.8) and the expressions of $\Psi_1(X)$ and $\Psi_2(X)$ we can give an expression of $Q(u)$:
\[Q(u) = n e^{-u^2/4} + 2n^2 e^{-u^2/4} \int_0^{+\infty} \cosh \left(\frac{ut}{\sqrt{2}} \right) - 1 \frac{dt}{t} e^{-t^2} + O(n^3). \] (C.15)

Expanding this expression in powers of u, one calculate from this expression and from (C.7) the terms linear and quadratic in n of all the moments of the h_α. (The results agree for the second and the fourth moments with (C.3, C.4).)

We noticed that for small n, the expression (C.15) corresponds to n roots h_α distributed along the imaginary axis with a Gaussian distribution. We do not know whether this is general and whether there exists, for general non-integer n, a distribution of the roots h_α in the complex plane plane which gives all moments calculated as in (C.3, C.4).

It is interesting to notice the similarity between $Q(u)$ and $\beta(u)$ defined in section 4.

D The expansion in powers of c using Hermite polynomials

In this appendix we show how to expand the solution $\{q_\alpha\}$ of (17) in powers of c for integer n. One can see from (17) that the roots q_α scale for small c like $\sqrt[4]{c}$. It is thus convenient to rescale the polynomial $P(X)$ defined in (10) and the q_α in the following way:
\[q_\alpha = r_\alpha \sqrt[4]{c}, \] (D.1)
\[P(X\sqrt[4]{c}) = c^{n/2} R(X). \]

(\{r_\alpha\} are thus the roots of $R(X)$.) With these new variables, equation (21) becomes
\[e^{r_\alpha \sqrt[4]{c}} P(r_\alpha - \sqrt[4]{c}) + e^{-r_\alpha \sqrt[4]{c}} P(r_\alpha + \sqrt[4]{c}) = 0. \] (D.2)

As the roots r_α of $R(X)$ are all distinct, this equation is equivalent to
\[e^{X \sqrt[4]{c}} R(X - \sqrt[4]{c}) + e^{-X \sqrt[4]{c}} R(X + \sqrt[4]{c}) = 2 (cosh(X \sqrt[4]{c}) + f(X)) R(X), \] (D.3)

where $f(X)$ is analytic (this follows from the fact that as $R(X)$ is polynomial, $f(X)$ defined by (D.3) is obviously meromorphic; moreover as the left hand side of (D.3) vanishes at all the roots of $R(X)$, $f(X)$ has no pole.) We are now going to solve (D.3) as a power series in c (i.e. find both $f(X)$ and $R(X)$ as power series in c).

D.1 Expansion of the polynomial $R(X)$

We only have the single equation (D.3) to obtain two quantities ($R(X)$ and $f(X)$); however, using the fact that $f(X)$ has no pole and $R(X)$ is a polynomial, both quantities can be determined in a small c expansion. Let us write
\[R(X) = R_0(X) + c R_1(X) + c^2 R_2(X) + \ldots, \] (D.4)
\[f(X) = c f_1(X) + c^2 f_2(X) + \ldots, \]

where the $f_i(X)$ have no pole, $R_0(X)$ is a polynomial of degree n (the term of highest degree in $R_0(X)$ is
When no more transformation is possible, we are left into nX^2 anymore, but we can apply (C.2) to the term R as many times as needed in the right hand side can use the property (C.2) of the Hermite polynomials. Therefore possible function H_{α} right hand side of equation (D.7) divided by f_{α} Hermite polynomials. Therefore recognise then the differential equation (C.1) that defines Hermite polynomials. Therefore

$$ f_1(X) = -n, \quad R_0(X) = H(X). $$

We recover that way that the r_α are the zeroes of the n-th Hermite polynomial when c is very small.[2] At next order in c, equation (D.3) gives:

$$ \frac{1}{2} R_0'' - X R_0' = f_1 R_0. \quad (D.5) $$

As $f_1(X)$ has no pole, it must be a polynomial. Because $R_0(X)$ is of degree n, we see by looking at both sides of (D.3) that, necessarily, $f_1(X) = -n$. We recognise then the differential equation (C.1) that defines Hermite polynomials. Therefore

$$ f_1(X) = -n, \quad R_0(X) = H(X). \quad (D.6) $$

The Euclidian division is then easy to perform

$$ f_2(X) = -\frac{n}{6} X^2 + \frac{n(n-1)}{6}, \quad (D.9) $$

Using again (C.2), the differential equation on R_1 can be solved; we find

$$ R_1(X) = -\frac{1}{24} H''(X). \quad (D.10) $$

As $R_1(X)$ is simply a derivative of $H(X)$, and as $f_1(X)$ is a known polynomial of X, we see that at the next order in c we will have to solve an equation of the form

$$ \frac{1}{2} R_1'' - X R_1' + n R_1 = -\frac{1}{12} H'''. $$

Using many times equation (C.2) the right hand side can be written in a “canonical form”:

$$ \sum X^j H^{(k)} = \sum X^j H + \sum H^{(k)}, \quad (D.11) $$

which allows to write f_3 as a polynomial in X and R_2 as a sum of derivatives of $H(X)$. It is easy to see recursively that at any order c^k in the expansion we can repeat this procedure to calculate $f_k(X)$ and $R_{k-1}(X)$. As a result we see that f_k is a polynomial in X and that R_{k-1} can be written as a sum of derivatives of $H(X)$.

It is worth noting that at each order the variable n comes from the previous orders and from transformations of the kind $X H'(X) \rightarrow \frac{1}{2} H''(X) + n H(X)$. Because those are the two only mechanisms by which n appears, it is easy to see that at each order the coefficients of the sum of derivatives of $H(X)$ that constitutes $R_{k-1}(X)$ are all polynomials in n.

A computer can easily do this tedious but straightforward task to any desired order. Up to c^3, we find:

$$ R = H - \frac{c}{24} H'' - c^2 \left(\frac{n}{360} H'' + \frac{7}{5760} H^{(4)} \right) + $$

$$ c^3 \left(\left(\frac{n}{2520} - \frac{n^2}{3024} \right) H'' + \frac{11n}{60480} H^{(4)} - \frac{31}{967680} H^{(6)} \right) + O(c^4). \quad (D.13) $$
D.2 Expansion of the roots \(r_\alpha \) of \(R(X) \)

As seen in (D.13), the polynomial \(R(X) \) is to leading order in \(c \) given by \(H(X) \). It is thus natural to write the roots \(r_\alpha \) of \(R(X) \) as

\[
r_\alpha = h_\alpha + cx_\alpha + O(c^2),
\]

where \(\{h_\alpha\} \) are the roots of \(H \). Inserting (D.14) into (D.13), we find, at first order in \(c \),

\[
x_\alpha H'(h_\alpha) - \frac{1}{24} H''(h_\alpha) = 0.
\]

Using the definition (C.1) of Hermite polynomials, we have \(H''(h_\alpha) = 2h_\alpha H'(h_\alpha) \). This gives in turn \(x_\alpha = \frac{1}{12} h_\alpha \). Repeating this procedure to any order in \(c \), we generate terms of the form \(h_\alpha^k H(h_\alpha) \) which can be reduced to terms of the form \(h_\alpha^k H'(h_\alpha) \) by using (C.2) as many times as necessary. It is then possible to divide the expression by \(H'(h_\alpha) \) and we are left with an equation giving each new term in the expansion of \(r_\alpha \) as a polynomial in \(h_\alpha \). Again, this can be programmed, and we get, up to the order \(c^2 \):

\[
r_\alpha = \frac{q_\alpha}{\sqrt{c}} = h_\alpha + \frac{c}{12} h_\alpha + c^2 \left(\frac{n}{120} - \frac{11}{1440} \right) h_\alpha
\]

\[
- \frac{1}{360} h_\alpha^3 + O(c^3).
\]

(D.16)

Using (D.1) and (16), this leads to

\[
\frac{2}{L^2} E(n, L, \gamma) = -c \sum h_\alpha^2 - \frac{c^2}{6} \sum h_\alpha^2 - \frac{c^3}{360} \left(6n - 3 \right) \sum h_\alpha^2 - 2 \sum h_\alpha^4 + O(c^4).
\]

which coincides with (38) when one uses the properties (C.5) (C.6) of the roots \(h_\alpha \) of the Hermite polynomials.

References

[1] M. Kardar and Y.-C. Zhang, “Scaling of Directed Polymers in Random Media,” Phys. Rev. Lett. 58, 2087–2090 (1987).
[2] Y.-C. Zhang, “Ground-State Instability of a Random System,” Phys. Rev. Lett. 59, 2125–2128 (1987).
[3] T. Halpin-Healy and Y.-C. Zhang, “Kinetic Roughening Phenomena, Stochastic Growth, Directed Polymers and all That,” Physics Reports 254, 215–414 (1995).
[4] B. Derrida and H. Spohn, “Polymers on Disordered Trees, Spin Glasses and Traveling Waves,” J. Stat. Phys. 51, 817–840 (1988).
[5] B. Derrida, “Mean Field Theory of Directed Polymers in a Random Medium,” Physica Scripta T38, 6–12 (1991).
[6] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond (World Scientific, 1987).
[7] J. Z. Imbrie and T. Spencer, “Diffusion of Directed Polymers in a Random Environment,” J. Stat. Phys. 52, 609–626 (1988).
[8] M. Kardar, G. Parisi, and Y.-C. Zhang, “Dynamic Scaling of Growing Interfaces,” Phys. Rev. Lett. 56, 889–892 (1986).
[9] J. Krug, “Origins of Scale Invariance in Growth Processes,” Adv. Phys. 46, 139–282 (1997).
[10] M. Kardar, “Replica Bethe Ansatz Studies of Two-Dimensional Interfaces with Quenched Random Impurities,” Nuclear Physics B 290 [FS20], 582–602 (1987).
[11] B. Derrida and J. L. Lebowitz, “Exact Large Deviation Function in the Asymmetric Exclusion Process,” Phys. Rev. Lett. 80, 209–213 (1998).
[12] B. Derrida and C. Appert, “Universal Large-Deviation Function of the Kardar-Parisi-Zhang Equation in One Dimension,” J. Stat. Phys. 94, 1–30 (1999).
[13] D. Kim, “Bethe Ansatz Solution for Crossover Scaling Functions of the Asymmetric XXZ Chain and the Kardar-Parisi-Zhang-Type Growth Model,” Phys. Rev. E 52, 3512–3524 (1995).
[14] D.-S. Lee and D. Kim, “Large Deviation Function of the Partially Asymmetric Exclusion Process,” Phys. Rev. E 59, 6476–6482 (1999).

[15] J. L. Lebowitz and H. Spohn, “A Gallavotti-Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics,” J. Stat. Phys. 95, 333–365 (1999).

[16] C. Appert, “Large Deviation Function for the Eden Model and Universality within the One-Dimensional Kardar-Parisi Zhang class,” Phys. Rev. E 61, 2092–2094 (2000).

[17] É. Brunet and B. Derrida, “Ground state energy of a non-integer number of particles with δ attractive interactions,” Physica A 279, 398–407 (2000).

[18] E. H. Lieb and W. Liniger, “Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State,” Phys. Rev. 130, 1605–1616 (1963).

[19] E. H. Lieb, “Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum,” Phys. Rev. 130, 1616–1624 (1963).

[20] C. N. Yang and C. P. Yang, “Thermodynamics of One-Dimensional Systems of Bosons with Repulsive Delta-Function Potential,” J. Math. Phys. 10, 1115–1122 (1969).

[21] M. Gaudin, “Boundary Energy of a Bose Gas in One Dimension,” Phys. Rev. A 4, 386–394 (1971).

[22] M. Jimbo, T. Miwa, Y. Môri, and M. Sato, “Density Matrix of an Impenetrable Bose Gas and the Fifth Painlevé Transcendent,” Physica 1D, 80–158 (1980).

[23] H. B. Thacker, “Exact Integrability in Quantum Field Theory and Statistical Systems,” Reviews of Modern Physics 53, 253–285 (1981).

[24] M. Gaudin, La Fonction d’Onde de Bethe (Masson, Paris, 1983).

[25] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (CUP, Cambridge, 1927).

[26] M. Praehofer and H. Spohn, “Statistical Self-Similarity of One-Dimensional Growth Processes,” cond-mat/9910273 (1999).

[27] K. Johansson, “Shape Fluctuations and Random Matrices,” Commun. Math. Phys. 209, 437 (1999).

[28] J. M. Kim, M. A. Moore, and A. J. Bray, “Zero-Temperature Directed Polymers in a Random Potential,” Phys. Rev. A 44, 2345–2351 (1991).

[29] T. Halpin-Healy, “Directed Polymers in Random Media: Probability Distributions,” Phys. Rev. A 44, R3415–R3418 (1991).

[30] J. Krug, P. Meakin, and T. Halpin-Healy, “Amplitude Universality for Driven Interfaces and Directed Polymers in Random Media,” Phys. Rev. A 45, 638–653 (1992).

[31] J. L. Cardy, “Conformal Invariance and Universality in Finite Size Scaling,” J. Phys. A 17, L385–387 (1984).

[32] J. Mathews and R. L. Walker, Mathematical Methods of Physics (Addisson-Wesley, 1973).

[33] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, New-York, 1972).

[34] G. Szegö, Orthogonal Polynomials, No. 23 in Colloquium Publications (AMS, New York, 1959).