The Field Study of the Effect of Noise Exposure on Cognitive Function and Sleep Quality

Mostafa Rahmiani Iranshahi1, Mohsen Aliabadi2*, Rostam Golmohamadi3, Alireza Soltanian4, Mohammad Babamiri5

1. Department of Occupational Health, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
2. Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
3. Center of Excellence for Occupational Health, Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
4. Department of Biostatistics, Non-communicable Disease Research Center, Hamadan University of Medical Sciences and Health Services, Hamadan, Iran.
5. Department of Ergonomics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran

ABSTRACT

Background and Objectives: noise is known as an intruder in job environments and has non-hearing effects. The impact of noise on cognitive functions depends on the type of noise and the dose of noise exposure. This study aims to investigate the effect of noise exposure on cognitive functions and sleep quality.

Methods: This descriptive-analytical cross-sectional study was performed on 169 workers in three metal, chemical, and food industries in Hamedan in 1399. A continuous performance test was used to evaluate cognitive functions. The Petersburg questionnaire assessed participants’ sleep quality. Using SVAN 971 analyzer and TES dosimeter, the level of noise exposure and the dominant frequency was measured. Data were also analyzed using linear and multiple regression in SPSS software (version 16).

Results: There is a significant difference in the level of noise exposure with changes in cognitive functions and sleep quality in the present study (P<001). The results of linear regression showed that there is a significant relationship between cognitive function and the level of exposure to sound (P<001). After identifying and determining the input variables, using multiple regression, an appropriate model was developed to predict sleep quality and sustained attention in the face of noise.

Conclusion: Based on the results of this study, predictive models with the appropriate coefficient of determination can be good models for assessing the quality of sleep and attention of people in the face of noise, which can be implemented and measured in a shorter time.

Keywords: Occupational noise, cognitive function, sleep quality

How to Cite This Article:

Aliabadi M, Rahmiani-Iranshahi M, Golmohamadi R, Soltanian A, Babamiri M. The Field Study of the Effect of Noise Exposure on Cognitive Function and Sleep Quality. Iran J Ergon. 2021; 9 (1) :87-101
Extended Abstract

Introduction
The pattern of sleep quality and cognitive function is complex in industrial environments. As a result, it is useful to develop and use simpler models to predict cognitive function and sleep quality. Since there are few models that can be used in industrial environments, in the present study, considering the predominant frequency and dose of noise exposure in all industrial environments, models for predicting cognitive function and sleep quality was investigated.

Methods
This descriptive-analytical cross-sectional study was conducted by field method in three industries of metal, chemical, and food in 2020. Sampling was done by simple random sampling. According to ISO 11200, [1] sound level was measured equivalent to eight working hours per normal shift with a dosimeter (TES 1354), at each workstation. Sound frequency analysis was performed using a Svantek 971 sound level meter and an 1102 CEL calibrator was used for calibration. Quality and duration of sleep were obtained by filling out a Petersburg questionnaire that uses seven scales to assess a person's attitudes about sleep quality over the past month. A continuous performance test was used to measure the reaction time and sustained attention of the participants. Data analysis was performed with descriptive statistics (frequency and frequency percentage and mean and standard deviation) and multiple regression analysis was used to predict the response variable. Data were also analyzed using linear and multiple regression in SPSS software version 16 (SPSS Inc., Chicago, IL., USA).

Results
A total of 169 people participated in this study. The average age and work experience of the participants were 36.87 and 8.68 years with a standard deviation of 7.32 and 5.94, respectively. Also, 61 (37.3%) of workers were exposed to low-frequency noise, 55 (32.5%) of workers were exposed to medium frequency noise and 51 (32.2%) of workers were exposed to noise. The frequencies were high. Also, the dose range of participants' exposure to noise in the study halls was between 68-412% with an average of 154.82 ± 84.92.

The results of linear regression related to the continuous performance test showed that except for the elimination error among the participants, there is a significant relationship between cognitive functions and the dose of noise exposure. According to the findings of linear regression, with an increase of one unit of volume in work environments, the rate of sleep disturbance increases by 0.79. Also, a positive and significant linear relationship was observed between workers' work experience and their sleep disorders ($P < 0.001$).
Table 1. Descriptive results of individual variables in the studied halls

Variable	Amount (%)
Skill level: number (percentage)	
Low	10(5.91%)
Medium	54(31.95%)
Much	105(62.13%)
Marital status: number (percentage)	
Single	29(17.15%)
Married	140(82.84%)
Education level: number (percent)	
Diploma down	122(72.18%)
Above diploma up	47(27.81%)
BMI	
Mean (standard deviation)	24.69(2.92)
Range	32.11-17.3
Work pattern: number (percentage)	
unpredictable	66(39.05%)
Predictable	103(60.94%)
Smoking: number (percentage)	
Yes	23(13.60%)
No	146(86.39%)

Table 2. The effect of mean equivalent sound level on participants' cognitive performance

Variable	Commitment error	Delete error	Reaction time	Correct answer						
	The standard	The standard	The standard	The standard						
	deviation	deviation	deviation	deviation						
	95% confidence	95% confidence	95% confidence	95% confidence						
	P-value	P-value	P-value	P-value						
Sound pressure level >85	0.51, 0.97	0.14, 0.36	0.42	0.98	0.21, 0.42	19.16	0.69	416.76, 425.18	0.51, 0.87	149.63, 149.85
Sound pressure level ≤ 85	1.20, 0.041	1.25, 1.77	0.95	0.09	0.68, 1.15	34.20	0.013	442.72, 457.30	1.62, 0.033	147.81, 148.24

Figure 1. Results of measuring changes in psychological
Table 3. Specifications of regression models for predicting response variables

Model	R	Adjusted R²	RMSE
Sleep quality	0.92	0.85	0.24
Sustained attention	0.78	0.62	0.02
Reaction time	0.65	0.43	21.17

Table 4. a) Independent variables of the Sustainable Attention Model b) Independent variables of the Sleep Quality Model

b)	a)	Variable	B	SE	Beta	P-value	Variable	B	SE	Beta	P-value
Work Experience	Age	0.139	0.015	0.775	0.001	0.001	Age	-0.093	0.014	-0.468	0.001
BMI	BMI	0.227	0.057	0.292	0.004	0.004	BMI	-0.066	0.038	-0.133	0.085
Work pattern	Work pattern	-0.691	0.354	-0.149	0.052	0.052	Work pattern	0.455	0.227	0.154	0.046
Dominant frequency	Dominant frequency	0.001	0.001	0.431	0.001	0.001	Dominant frequency	0.001	0.001	-0.348	0.001
exposure dose	exposure dose	0.021	0.001	0.801	0.001	0.001	exposure dose	-0.013	0.001	-0.747	0.001
Level of Education	Level of Education	-0.917	0.382	-0.198	0.001	0.001	Level of Education	1.159	0.233	0.359	0.001
Marital status	Marital status	2.406	0.433	0.352	0.066	0.066	Marital status	-0.71	0.292	-0.185	0.016
skill level	skill level	1.14	0.275	0.305	0.001	0.001	skill level	-0.329	0.184	-0.137	0.075

Figure 2. Comparison of predicted values with measured values

Discussion
The multiple regression model confirmed that the four variables, namely noise dose, age, dominant frequency, and level of education, are important factors affecting cognitive performance and sleep quality of employees. The variables of age, noise dose, and level of education are important factors influencing cognitive functions, respectively. However, noise frequency is a parameter with less impact on cognitive functions. As expected, the frequency of the noise had a greater effect on the sleep quality of the participants. The results of the present study showed that at higher doses, irregular work pattern, increasing age, and low level of education of participants, the rate of committing an error and
elimination error also increased significantly and their sustained attention decreased. According to the study by Rastegar et al., the response time and reaction time of people who were exposed to excessive noise, increased, and the number of correct responses decreased, which is consistent with the results of the present study [32]. Therefore, exposure to noise is one of the factors that can cause disorders in human cognitive functions. This may be due to the fact that noise can lead to increased stimulation. So that if it exceeds the optimal value, it can reduce the level of attention [14].

The results showed that the average final score of the Petersburg questionnaire was 8.05, which is higher than the cut-off point based on previous studies. This indicates poor sleep quality in the study participants. Buysse et al. considered the cut-off point for optimal sleep quality to be 5 [33]. In the present study, a significant difference was observed between the level of sound exposure and the final scores of the Petersburg questionnaire. Thus, the higher the exposure of people, the significantly lower their sleep quality. Decreased sleep time leads to involuntary episodes lasting 10 to 15 seconds, which impair memory and alertness, which can eventually affect cognitive function [36]. Based on the results of multiple regression, the sleep quality model showed that with increasing age, work experience, body mass index, dominant frequency and high noise, sleep quality decreases in relation to noise, which was consistent with the findings of previous studies [37-39].

Conclusion

The developed models empirically confirmed that exposure to noise plays an important role in making changes in sleep quality and cognitive functions. For loud workrooms, it is recommended that individual characteristics and age restrictions be considered in pre-employment examinations. Using these models, occupational health professionals can accurately analyze and predict changes in sleep quality and workers' cognitive functions in relation to noise based on certain environmental and individual characteristics. These models can also be a good option for assessing the quality of sleep and attention of people exposed to noise.

Acknowledgement

This study is extracted from a master's thesis, which has been approved and supported by the ethics (code: ID IR.UMSHA.REC.1398.906) in Hamadan University of Medical Sciences with the approval code of 98121299112. The authors of this study would like to thank all the people who helped in carrying out this research, as well as the officials and managers of the Hamadan Towns Company for their cooperation in the research.

Conflict of Interest

The authors declared no conflict of interest.
مقاله زیروهشی
مطالعه میدانی اثر مواجها به صدا بر عملکرد شناختی و کیفیت خواب
مختصی رحمی‌نوا ایرانی‌یاهی. محسن علی‌آبادی، محمد باپامیری، مهدی فرد، سید کیانی

1. دانشجوی کارشناسی ارشد مهندسی بهداشت حرفه‌ای، دانشگاه همدان، مرکز تحقیقات علوم بهداشتی، دانشگاه علوم پزشکی همدان، همدان، ایران
2. دانشجوی کارشناسی ارشد مهندسی بهداشت حرفه‌ای، دانشگاه همدان، مرکز تحقیقات علوم بهداشتی، دانشگاه علوم پزشکی همدان، همدان، ایران
3. استاد، دانشگاه علوم پزشکی همدان، همدان، ایران
4. استادیار، گروه ارگونومی، دانشگاه بهداشت، مرکز تحقیقات علوم بهداشتی، دانشگاه علوم پزشکی همدان، همدان، ایران
5. محقق در دانشگاه علوم پزشکی همدان، همدان، ایران

زمینه و هدف: موانعی که عمل مรางح در محیط‌های شغلی شناخته شده و دارای اثرات غیر‌شناختی است که نشان می‌دهد که بسیاری از افراد در محیط محیط‌های شغلی مواجه به صدا است. این مطالعه برای بررسی اثرات برابر عملکرد شناختی و کیفیت خواب انجام شد.

روش‌های: این مطالعه نوعی تحقیق محوری - یافته‌گونه که بر 169 نفر از کارگران فلزی، صنعت نفر از کارگر دانشکده بهداشت و تحقیقات علوم بهداشتی دانشگاه علوم پزشکی همدان در سال 1399 می‌باشد. از آزمون‌هایی برای بررسی عملکرد شناختی و کیفیت خواب استفاده شد.

نتایج: نتایج تحقیق نشان داد که بین عملکرد شناختی و کیفیت خواب و وابستگی به صدا مرتبط است. اکنون برای بررسی اثرات غیر‌شناختی در محیط‌های شغلی به صدا مطالعه ای انجام شود.

کلیدواژه‌ها: صدا، عملکرد شناختی، کیفیت خواب

اطلاعات مقاله
دریافت: 1399/11/28
پذیرش: 1400/6/28
انتشار آنلاین: 1400/6/28
نوعیت مسئول:
mohsen.aliabadi@umsha.ac.ir

پیامک اکونامی: برای دانلود این مقاله کد را با ورودی اینترنت به مراجعه فرمایید.

کپی رایت © مجله ارگونومی، مسئول: سید کیانی

مقدمه
در زندیه امروزی مواجها به صدا بسیار فراگیر است و در بسیاری از محیط‌های انسانی به صدا مواجه می‌باشند. صدا موجب می‌شود [1] مطالعه‌ای تجاری را انجام دهند که محدودیت‌های متجر به اختلال در حافظه می‌شود [2]. از طرفی، صدا می‌کنن است با ارتعاش فرد به دوکار، و توجه افراد به صدا عناصری به کار برده نمی‌شود. در نتیجه، دوکار با انرژی اختلال خواب نسبت به صدا با انرژی نسبت به صدا است [3]. به علاوه، مطالعات نشان داده‌اند که صدا اثرات قطع
عملکرد بیوسته برای اندوزه‌گیری توجه پایدار به کار می‌رود. با این حال، الگوی کیفیت خواب و عملکرد شناختی در محیط‌های سختی پیچیده است. در تجربه تنهی، توسعه و استفاده از مدل‌های ساده‌تر بین عملکردی شناختی و کیفیت خواب می‌باشد. از آنجا که مدل‌های کیفیت خواب می‌باشد، می‌توان در محیط‌های سختی مورد استفاده قرار گیرد. در مطالعه‌ها، با توجه به فاکتورهای مختلف و دو مدار مواجه به صدا در سیستم‌های عصبی، مدل‌های پیش‌بینی عملکرد شناختی و کیفیت خواب به طور همزمان با توجه به مطالعه کشف شده، مطالعه حاصل با هدف بررسی اثر مواجهه با صدا در مطالعه سختی مصرف عملکردی و کیفیت خواب به صورت میدانی و در شرایط واقعی محیط‌کاران انجام شد.

روش کار

این پژوهش توصیفی تحلیلی - مقطعی که به روش میدانی در سه منطقه، تهران و غربی در سال 1399 انجام شد، نمونه‌گیری با صورت تصادفی ساده انجام شد. میزان ورود به مطالعه، با استفاده از راهنماه صدا در دو روش مختلف، پیش‌بینی افراد، مطالعه غربی و مطالعه خارجی انجام شد. پیش از بررسی بر روی میزان بررسی‌های اختلالات خواب و در زمان‌های مختلف، مطالعه اجرایی شد. پیش از انجام آزمون‌های اختلالات خواب، مطالعه استفاده از روش آزمون‌های اختلالات خواب در زمان‌های مختلف، انجام شد.

سطح صدای سپرمینه [6] و فاکتورهای فردی از جمله حساسیت به صدا و استرس است [7]. اثرات کوتاه‌مدت اخلاق خواب ناشی از صدا، به طور ذهنی شامل اختلال خلق‌زدن است و خواب‌زا و آرامی روزانه را افزایش داده و عملکرد شناختی را منفی می‌کند [9] [8]. اثرات میزان خواب را می‌توان با استفاده از روش‌های متعددی اندوزه‌گیری نمود. استاندارد طبیعی برای اندوزه‌گیری خواب بالای سوئیت‌بندی است. که اندوزه‌گیری هر زمان (حذف) پتانسیل‌های کلیکی می‌باشد. (EEG) حواکی، چشم جسم (الکتروکوگرام)، (EMG) است. [11] (EMG) اکثریت، (الکتروکوگرام) یکی‌دنگی از روش‌های ارزیابی اثر صدا بر کیفیت خواب، روش‌برداری با توجه به مطالعه اکثریت، زمان واکنش و نیز تأثیرگذار است در درآمدهایی با وظیفه به شاخص‌های نیاز دارند به وسیله‌های که به انجام وظایف دیپ و فوئری نیاز باید [12] این در جهت‌العملی که رابطه بین صدا و عملکرد شناختی کمتر مورد بررسی قرار گرفته است. به طوری که بررسی‌های غیر مناسب دارد [13] که اثرات تأثیر عوامل Easterbrook، زمان و به وسیله‌های که به انجام وظایف دیپ و فوئری نیاز باید [12] این در جهت‌العملی که رابطه بین صدا و عملکرد شناختی کمتر مورد بررسی قرار گرفته است. به طوری که بررسی‌های غیر مناسب دارد [13] که اثرات تأثیر عوامل Easterbrook، زمان و به وسیله‌های که به انجام وظایف دیپ و فوئری نیاز باید [12] این در جهت‌العملی که رابطه بین صدا و عملکرد شناختی کمتر مورد بررسی قرار گرفته است. به طوری که بررسی‌های غیر مناسب دارد [13] که اثرات تأثیر عوامل Easterbrook، زمان و به وسیله‌های که به انجام وظایف دیپ و فوئری نیاز باید [12] این در جهت‌العملی که رابطه بین صدا و عملکرد شناختی کمتر مورد بررسی قرار گرفته است. به طوری که بررسی‌های غیر مناسب دارد [13] که اثرات تأثیر عوامل Easterbrook، زمان و به وسیله‌های که به انجام وظایف دیپ و فوئری نیاز باید [12] این در جهت‌العملی که رابطه بین صدا و عملکرد شناختی کمتر مورد بررسی C. نیاز به وسیله‌های که به انجام وظایف دیپ و فوئری Nیاز باید [12] این در جهت‌العملی که رابطه بین صدا و عملکرد شناختی کمتر مورد بررسی C. نیاز به وسیله‌های که به انجام وظایف Dیپ و فوئری Nیاز باید [12] این در جهت‌العملی که رابطه بین صدا و عملکرد Shnaختی کمتر مورد بررسی C. نیاز به وسیله‌های که به انجام وظایف...
منظور پیشگیری از بروز خطا احتمالی افراد به صورت کامل‌تقصی وارد شده و آزمون عملکرد پیوسته‌ای بنا شده و توصیه صورت گرفته، و متغیر دوم محیطی شرایط مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط هر دوی آزمایشات آزمایش مشابه دما در 30.198 نیز روابط یکی بر عهده و روابط H (بررسی کیفیت خواب

کیفیت و مدت خواب از طریق برکلند-پرسنامه پژوهشکده که جهت بررسی نگرش فرد پیشامد کیفیت خواب

2 Commission Error

Omission Error
همچنین زمان و اکتشاف افراد در هر مرحله به وسیله نتایج خروجی نرم‌افزار SPSS استفاده می‌شود. در این مطالعه از نرم‌افزار آزمون‌های تیپ یا یک‌طرفه استفاده شد که توسط موسسه علوم‌شنختی سینا بهره ورودی و پایگاه آن مورد تایید قرار گرفته است. پایگاه این آزمون برای ارزیابی افراد با احتمال مراقب از آزمودنی بیشتر از اجرا مرحله اصلی صورت می‌گیرد. ۰/۲ تا هم است.

تحليل داده‌ها

داده‌ها با استفاده از نرم‌افزار SPSS Inc., (نسخه ۱۶) (Chicago, Ill., USA) تجزیه و تحلیل شدند. به‌منظور تعیین (Chi-square) و تجزیه و تحلیل رژنگزین چندگانه برای پیش‌بینی متغیر پاسخ استفاده شد. جهت ارزیابی مدل از روش حذف پس و اسکات هشدار چندگانه با متغیر وابسته دارند از محل حذف شدن و مدل نهایی بر اساس متغیرهای مستقل یافت شد. تجزیه و تحلیل رژنگزین چندگانه برای مدل سازی، رابطه بین متغیر وابسته و متغیرهای مستقل استفاده می‌گردد. همان‌طور که در معاینات ارائه شده است.

جدول ۱. نتایج توصیفی متغیرهای فردی در سال‌های مورد بررسی

متغیر	مقدار (درصد)	عدد تعداد (تعداد (درصد))
کم	۹۱/۹۱ (۲/۵۸)	۱۰۰/۱۰۰ (۱/۵۱)
ویژه	۳۹/۸۵ (۵/۵۶)	۱۹/۱۹ (۱/۹۱)
درصد	۶۲/۶۶ (۱۳/۲۸)	۱۴/۱۴ (۱/۹۱)
متوسط	۹۱/۹۱ (۲/۵۸)	۱۹/۱۹ (۱/۹۱)
کم	۹۱/۹۱ (۲/۵۸)	۱۹/۱۹ (۱/۹۱)
متوسط	۹۱/۹۱ (۲/۵۸)	۱۹/۱۹ (۱/۹۱)
متوسط	۹۱/۹۱ (۲/۵۸)	۱۹/۱۹ (۱/۹۱)
سطح مهارت (تعداد (درصد))		
وضعیت تأهل (تعداد (درصد))		
سطح تحصیلات (تعداد (درصد))		
BMI		
وضعیت کاری (تعداد (درصد))		
مصرف سیگار (تعداد (درصد))		
نتایج حاصل از اثر ترازهای فشار صوت بر عملکرد شناختی کارگران در (جدول 2) نشان داده شده است. نتایج رگرسیون خطی مربوط به آزمون عملکرد پیوسته نشان داد که به جز خطا حدف در بین شرکت‌کنندگان رابطه معناداری بین عملکردی شناختی (زنام و واکنش (01/001)<) پاسخ صحیح می‌باشد.

جدول 2 اثر میانگین تراز صدا معادل بر عملکرد شناختی شرکت‌کنندگان

متغیر	پاسخ صحیح	زمان واکنش	خطای ارتباطی	خطای حذف	P-value
تراز صوت	149/30	149/85	01/001<	01/0 <	01/0 <
تراز فشار	149/81	149/24	01/001<	01/0 <	01/0 <

بدین صورت که با افزایش میانگین صدا، میانگین زمان واکنش و خطای ارتباطی افزایش و میانگین تعداد پاسخ‌های صحیح کاهش می‌یابد. این در حالی است که بین میانگین با صدا و خطای حذف رابطه معناداری برقرار نبود (P<01/0).

میانگین کیفیت خواب افراد شرکت‌کننده 01/05 و گسترده آن از 04 تا 14 رود. نتایج حاصل از رگرسیون خصی (شکل 1) ارتباط معنی‌داری بین میانگین با صدا و کیفیت خواب افراد را نشان می‌دهد. مطالعه با اضافه رگرسیون خطی با افزایش یک واحد شدت صدا در محتوایی کاری برای میزان اختلال خواب افراد 01/79 افزایش می‌یابد. همچنین ارتباط خطی و معنی‌داری بین شدت صدا به کارگران و اختلال خواب آنها مشاهده شد (P<01/0). علاوه بر این، بین اطلاعات دموگرافیک شرکت‌کنندگان با عملکردی شناختی و اختلال خواب آنها رابطه معنی‌داری مشاهده شد.

(جدول 3) متغیرات مدل‌های رگرسیون کیفیت خواب، زمان واکنش و توجه پایدار را بر اساس متغیرهای وردی و محیطی را نشان می‌دهد. بر اساس نتایج کمترین ضریب همبستگی در مدل زمان واکنش مشاهده شد و مدل کیفیت خواب بالاتری ضریب همبستگی را داشت. در مدل زمان واکنش و واکنش 07 متغیر مستقل پیش‌بینی متوسط زمان واکنش
بلندی بصورت دستورالعمل بررسی نامناسب استرس شغلی، بررسی ماشین‌های دستی در دو معیار A و B، استرس بالا به معنی بالاترین سطح واکنش استرس مربوط به معیار A و داشتن سطح بالا با واکنش متوسط واکنش استرس، همراه با داشتن میزان بالای استرسور می‌باشد.

جدول 1. متغیرهای مستقل مدل توجه پایدار (B) متغیرهای مستقل مدل کیفیت خواب

متغیر شهره	R	RMSE	Adjusted R²
کیفیت خواب	0/92	0/24	0/85
توجه پایدار	0/78	0/24	0/85
زمان واکش	0/65	0/24	0/85

جدول 2. معیار ب جدول 1. شاخص توده بدنی فرضیات مدل توجه پایدار (B) متغیرهای مستقل مدل کیفیت خواب

متغیر شهره	P-value	Beta	SE	B
سن	0/01	0/43	0/14	-0/92
سابقه کاری	0/03	0/37	0/18	-0/57
شاخص توده بدنی	0/05	0/36	0/28	-0/66
سطح تحصیلات	0/06	0/35	0/27	-0/55
دور مواجهه با صدا	0/01	0/34	0/44	-0/54
سطح مهارت	0/01	0/33	0/43	-0/53
سن	0/01	0/32	0/42	-0/52
سابقه کاری	0/03	0/31	0/41	-0/51
شاخص توده بدنی	0/05	0/3	0/4	-0/5
سطح تحصیلات	0/06	0/29	0/4	-0/5
دور مواجهه با صدا	0/01	0/28	0/4	-0/5
تاهل	0/01	0/27	0/4	-0/5
سطح مهارت	0/01	0/26	0/4	-0/5

سنس با در نظر گرفتن متغیرهای مستقل انتخاب شده، مدل‌های رگرسیون مدل کیفیت خواب و توجه پایدار ارزیابی شدند. در نهایت تغییرهای مؤثر جهت پیش‌بینی مدل کیفیت خواب شامل سن، سابقه کاری، شاخص توده بدنی، سطح مهارت افزایش یافته و همچنین از متغیرهای سن، الگوی کاری، دور مواجهه و سطح تحصیلات برای پیش‌بینی مدل توجه پایدار استفاده شد.
شناختی هستند. با این حال، فرکانس صدا یک پارامتر با تأثیر
کمتر از درک‌دهنده‌های شناختی است. همان‌طور که انتظار می‌رفته،
فرکانس صدا یکی از نکات کاندیدای نامناسبی که باعث ارتقاء مطالعه
در موارد است. در اثر تجربه‌ها، در مورد مطالعه‌هایی در برنامه‌های
تأثیرات دهدنگه مواجهه با صدای شناخته متون در راستای مطالعه
و همکاران نشان دادند که مواجهه با صدای بالا به طور قابل توجهی سطح توجه را کاهش می‌دهد [36].

همچنین در مطالعه Knight و همکاران نشان دادند که با
افراش سطح تحریکات، عقل‌درك‌دهنده‌های شناختی بهبود می‌یابد [37].
مطالعه قبلی همچنین کناره‌گیری کرده‌اند که عقل‌درك‌دهنده
شناختی، زمان و اکتش و توجه پایدار در اثر مواجهه با صدای بالا
مختل می‌شود [38]. این مطالعه حاضر به طور کلی با
نتایج گزارش صدا در مطالعات قبلی در مورد عقل‌درك‌دهنده
و Ingers-Hansen شناختی مطابقت داشت [39]. مطالعه
همکاران در بین 78 نفر از پرسنل شهری دردیابی، هدف از مطالعه
ارزیابی عملکرد شناختی (زمان و اکتش) پرستل در مواجهه با صدا
بود که تأثیر مطالعه شان داد که با افزایش صدا، زمان و اکتش
پرستل نیز به طور قابل قبولی افزایش یافته [40]. نتایج مطالعه
حاصل نشان داد که با افزایش توان از اثر مجاز، اللگو کاری
بکار گرفته در صدا و به مقدار سطح تحریکات شرکت کننده
میزان خطای ارتباط و خطا حذف نیز به طور قابل توجهی
افراش یافته و توجه پایدار آنان کاهش یافته است که نشان دهنده
سیستم دیشی با پیش‌بینی در مواجهه با صدای بالا است. مطالعه
و همکاران نشان داد که مواجهه افراد با صدای بیش از
حد مجاز، زمان پاسخگویی و زمان و اکتش آنان افزایش می‌یابد.
همه آنها را نمی‌توان در مدل علی‌کم‌گنجایی. لازم بگذارید است که سطح جنب‌جایی‌های ورودی به‌این ترتیب مشابه مطالعه دقت پیش‌بینی‌ها باشد. از مجموعه‌های مطالعه این بوده که هم‌اکنون گرندیکان مرد؛ و نوسانات صحیح کمتر از 15 بوده. همچنین توجه داشته که در محفظه کار، عوامل مداخله گر در اجازه ارتعاش، دمای محفظه و عوامل شیمیایی نیز وجود دارد که باید مورد توجه قرار گیرد. این مطالعه برای تأثیر صدار روز عملکردی شناختی، ازجمله توجه پایدار و زمان واکنش کارگران، بین باران برای تحقیقات اینده، حفاظت کارگران که آدرس از سلسله‌های شناختی مانند حفاظت کارگران و همچنین از مفاهیم به شرایط مختلف و صدا منابع و نوسان مورد بررسی قرار گرفت.

نتیجه‌گیری
مدارهای توصیه‌های از نظر تجزیه تایید کردن که مواجهه با صدا نفس نشان می‌دهد. این اثربخشی در این بخش‌های گردشی نمایش داده می‌شود. در این مطالعه، می‌توان از این نتایج، تأثیر عملکردی شناختی در جمعیت‌های آدمی، اثرات افقی و اثرات طولانی مدت نشان داده شده است. این نتایج معنایی است.

مهمندی به‌دست‌آوردن حرفه‌ای است را ارتفاً بخشید.

تقدیر و تشکر
این مطالعه مستخرج از پایان‌نامه مقطع کارشناسی ارشد بهداشت حرفه‌ای است که با شناسه اخلاقی IRUMSHA.REC.1398.906 همدان با کد تصویب (981129911) مورد تایید و حمایت همچنین تعداد پایین صحت نیز کاهش می‌یابد، که با نتایج مطالعه حسارت مطالعه دارد [33]. بیان موجبه با صدا از عواملی است که می‌تواند بسب‌اکت‌نخی در عملکردی شناختی انسان گردید. دلیل این ممکن است این بحث به صدا مبنی می‌شود که افزایش تحصیل شود. به طوری که از مقدار بهره‌رودی.

می‌توان نتایج توجه که بالا‌کشیده دیده [33]. نتایج مطالعه حسارت نیز تغییر می‌کند نسبت به سطح مواجهه صدا و استراتژی‌های پیشنهادی. پترزبوزک گ از بررسی مطالعات قبلی با این نشان داده که مطالعات گردشی و انجمن‌های فیزیولوژی، ارزیابی دهنی حساسیت بین خواب و حسارت جهت درک اثر در متغیران فردی و سنجیده، پردوزدن و عملکردی افزایش در محور صدا و کارگران در می‌باشد که با آزادی ارتباط با صدا و تعامل صدا و طولانی‌مدت نشان داده شده است. این نتایج عمده‌تر به‌نظر می‌رسد.

می‌شود که 10 اثری طول می‌کشد که باعث مختل شدن فردیت و هم‌زمان‌های مشترک باشد که باعث ملاحظه صدا و درمان مورد بررسی عملکردی شناختی هم‌زمان باشد [33]. براساس نتایج برگزاری اینگونه، مدل خواب نشان داد که با افزایش سن، سابقه کاری، شناسایی و کانال‌های صدا و کاهش خواب از راه‌های افزایش و بررسی صدا می‌باشد که با افزایش تعاملات مطلوبی مثالی که بر اساس مقاله [33] نتایج عمده‌تر به‌نظر می‌رسد.

همچنین تأیید کرده است که این و مواردی نیز در کارگران بیشتری به‌وجود می‌آمده و به‌وجود یکی از موارد اخنواب کارگران سال‌های پیش‌بینی مورد استفاده قرار می‌گیرد که نیاز به عملکردی شناختی و مطالعات بیشتری در این صورت می‌باشد.

شامل نواع و تعداد تغییرات وردی و انتخاب شده این مطالعه از شاخص واقعی، فاکتورهای زاسته وجود دارد که می‌تواند بر عملکردی شناختی و کیفیت خواب تأثیر گذار باشد. این حال،
کتابخانه مطالعاتی و همکاران | مطالعات میدانی اثر مواجهه با صدا بر عملکرد نشانئی و کیفیت خواب

۱۰۱

تغییرات منافع
میان نویسندگان هیچ تغییری در منافع وجود دارد.

منابع مالی
میان مالی پژوهش حاضر را دانشگاه علوم پزشکی همدان تأمین کرده است.

References
1. Basner M, Babisch W, Davis A, Brink M, Clark C, Janssen S. et al. Auditory and non-auditory effects of noise on health. lancet. 2014;383(9925):1325-32. [DOI:10.1016/S0140-6736(13)61613-X]
2. Fritschi L, Brown L, Kim R, Schwela D, Kephalopoulos S. Burden of disease from environmental noise. Quantification of healthy life years lost in Europe.(Geneva, World Health Organization, 2011). 2013.
3. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11(2):114-26. [DOI:10.1038/nrn2762] [PMID 2013]
4. Smith MG, Croy I, Ogren M, Wave KP. On the influence of freight trains on humans: a laboratory investigation of the impact of nocturnal low frequency vibration and noise on sleep and heart rate. PloS one. 2013;8(2):e55829. [DOI:10.1371/journal.pone.0055829] [PMID] [PMCID]
5. Basner M, Müller U, Griefahn B. Practical guidance for risk assessment of traffic noise effects on sleep. Appl Acoust. 2010;71(6):518-22. [DOI:10.1016/j.apacoust.2010.01.002]
6. Fidel S, Tabachnick B, Mestre V, Fidel L. Aircraft noise-induced awakenings are more reasonably predicted from relative than from absolute sound exposure levels. J Acoust SocAm. 2013;134(3):3645-53. [DOI:10.1121/1.4823838] [PMID]
7. Dang-Vu TT, McKinney SM, Buxton OM, Solet JM, Ellenbogen JM. Spontaneous brain rhythms predict sleep stability in the face of noise. Curr Biol. 2010;20(15): R626-7. [DOI:10.1016/j.cub.2010.06.032] [PMID]
8. Basner M. Nocturnal aircraft noise exposure increases objectively assessed daytime sleepiness. Somnologie-Schlaforschung und Schlafmedizin. 2008;12(2):110-7. [DOI:10.1007/s11818-008-0338-8]
9. Elmenhorst E-M, Elmenhorst D, Wenzel J, Quehl J, Mueller U, Maass H. et al. Effects of nocturnal aircraft noise on cognitive performance in the following morning: dose-response relationships in laboratory and field. Int Arch Occupational Environ Health. 2010;83(7):743-51. [DOI:10.1007/s00420-010-0515-1] [PMID]
10. Berger R, Dement W, Jacobson A, Johnson L, Jouvet M, Monroe L. et al. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. ed. Rechtschafflen A and Kales A. Public Health Service, US Government Printing Office, Washington DC. 1968.
Breath. 2012;16(1):79-82. [DOI:10.1007/s11325-010-0478-3] [PMID]

23. Hadianfar H, Najarian B, Shokrkon H, M. M. Fabrication of the Persian form of the Continuous Performance Test. J Psychol. 2000;2(4):388-440.

24. Karwowski W. International Encyclopedia of Ergonomics and Human Factors-3 Volume Set: Crc Press; 2006.

25. Abdou HA, Pointon J. Credit scoring, statistical techniques and evaluation criteria: a review of the literature. Intell Syst Account Finance Manag. 2011;18(2-3):59-88. [DOI:10.1002/isaf.323]

26. Monteiro R, Tomé D, Neves P, Silva D, Rodrigues MA. The interactive effect of occupational noise on attention and short-term memory: A pilot study. Noise Health. 2018;20(96):190.

27. Saeki T, Fujii T, Yamaguchi S, Harima S. Effects of acoustical noise on annoyance, performance and fatigue during mental memory task. Appl Acoust. 2004;65(9):913-21. [DOI:10.1016/j.apacoust.2003.12.005]

28. Knight S, Heinrich A. Visual inhibition measures predict speech-in-noise perception only in people with low levels of education. Front Psychol. 2019;9:2779. [DOI:10.3389/fpsyg.2018.02779] [PMID] [PMCID]

29. Golmohammadi R, Darvishi E, Faradmal J, Poorolajal J, Aliabadi M. Attention and short-term memory during occupational noise exposure considering task difficulty. Appl Acoust. 2020;158:107065. [DOI:10.1016/j.apacoust.2019.107065]

30. Tzivian L, Jokisch M, Winkler A, Weimar C, Hennig F, Sugiri D. et al. Associations of long-term exposure to air pollution and road traffic noise with cognitive function: An analysis of effect measure modification. Environ Int. 2017;103:30-8. [DOI:10.1016/j.envint.2017.03.018] [PMID]

31. Irgens-Hansen K, Gundersen H, Sunde E, Baste V, Harris A, Bråtveit M. et al. Noise exposure and cognitive performance: a study on personnel on board Royal Norwegian Navy vessels. Noise Health. 2015;17(78):320. [DOI:10.4103/1463-1741.165057] [PMID] [PMCID]

32. Zare S, Ghotbi Ravandi MR, Khanjani N. Evaluation of the Effects of Various Sound Pressure Levels on the Cognitive Performance of Petrochemical Workers: A field study. Iran Occup Health. 2020;17(1):1-13.

33. Buyssse DJ, Reynolds III CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193-213. [DOI:10.1016/0165-1781(89)90047-4]

34. Fyhri A, Aasvang GM. Noise, sleep and poor health: Modeling the relationship between road traffic noise and cardiovascular problems. Sci Total Environ. 2010;408(21):4935-42 [DOI:10.1016/j.scitotenv.2010.06.057] [PMID]

35. Marks A, Griefahn B. Associations between noise sensitivity and sleep, subjectively evaluated sleep quality, annoyance, and performance after exposure to nocturnal traffic noise. Noise Health. 2007;9(34):1. [DOI:10.4103/1463-1741.34698] [PMID]

36. Naitoh P. Signal detection theory as applied to vigilance performance of sleep-deprived subjects. 1983. [DOI:10.1093/sleep/6.4.359] [PMID]

37. Basner M, McGuire S. WHO environmental noise guidelines for the European region: a systematic review on environmental noise and effects on sleep. Int J Environ Res public health. 2018;15(3):519. [DOI:10.3390/ijerph15030519] [PMID] [PMCID]

38. Ageborg Morsing J, Smith MG, Ögren M, Thorsson P, Pedersen E, Forssén J. et al. Wind turbine noise and sleep: Pilot studies on the influence of noise characteristics. Int J Environ Res public health. 2018;15(11):2573. [DOI:10.3390/ijerph15112573] [PMID] [PMCID]

39. Thichumpa W, Howteerakul N, Suwannapong N, Tantrakul V. Sleep quality and associated factors among the elderly living in rural Chiang Rai, northern Thailand. Epidemiol Health. 2018;40. [DOI:10.4178/epih.c2018018] [PMID] [PMCID]