Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice

Amburanjan Santra¹, Rakesh Kumar²

¹Department of Nuclear Medicine, Brain imaging Centre, Dakshi Diagnostics, Lucknow, Uttar Pradesh, ²Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India

ABSTRACT

Brain single photon emission computed tomography (SPECT) is a well-established and reliable method to assess brain function through measurement of regional cerebral blood flow (rCBF). It can be used to define a patient’s pathophysiological status when neurological or psychiatric symptoms cannot be explained by anatomical neuroimaging findings. Though there is ample evidence validating brain SPECT as a technique to track human behavior and correlating psychiatric disorders with dysfunction of specific brain regions, only few psychiatrists have adopted brain SPECT in routine clinical practice. It can be utilized to evaluate the involvement of brain regions in a particular patient, to individualize treatment on basis of SPECT findings, to monitor the treatment response and modify treatment, if necessary. In this article, we have reviewed the available studies in this regard from existing literature and tried to present the evidence for establishing the clinical role of brain SPECT in major psychiatric illnesses.

Keywords: Brain perfusion, psychiatric disorders, regional cerebral blood flow, single photon emission computed tomography

INTRODUCTION

Brain single photon emission computed tomography (SPECT) is a well-established and reliable method for evaluating brain function through measurement of regional cerebral blood flow (rCBF).[1] It is being utilized for detection of various neurodegenerative diseases and their management for several years. Brain SPECT can be used to define a patient’s pathological status when neurological or psychiatric symptoms cannot be explained by structural neuroimaging findings. Though there is ample evidence in the literature validating brain SPECT as a promising technique to track human behavior and correlating psychiatric disorders with dysfunction of specific brain regions, it is rarely utilized technique in routine psychiatric practice. Renowned medical bodies like the American College of Radiology, the Society of Nuclear Medicine and the European Society of Nuclear Medicine have published evidence-based guidelines for using brain SPECT to improve patient care. Commonly accepted clinical indications for brain SPECT include: Dementia (early diagnosis, differentiation from normal ageing, and differential diagnosis of Alzheimer’s disease from other neurodegenerative diseases), epilepsy (localization of epileptic focus by ictal and interictal studies), movement disorders, traumatic brain injury, cerebrovascular diseases, brain tumor and brain infections.[2-4] Nearly two decades back, Holman and Devous in their study, highlighted brain SPECT as a powerful window into the function of the brain and asserted it as a promising tool which could become an important component of the routine clinical evaluation of patients with neurological and psychiatric diseases.[5] A consistently growing body of research supports brain SPECT’s clinical utility. In 1996, Vasile concluded that, the clinical utility of SPECT in neuropsychiatry is well-established.[6] Camargo reviewed the utility of brain SPECT in 2001 and demonstrated its role in obsessive-compulsive disorder (OCD), Gilles de la Tourette’s syndrome, schizophrenia, depression, panic disorder, and drug abuse, in addition to common neurological indications.[7] However, despite the evidence relevant to diagnosis and treatment, only few psychiatrists have adopted brain SPECT or other functional neuroimaging techniques in...
routine clinical practice. Brain SPECT can be utilized to evaluate the involvement of specific brain regions in different patients, to individualize the treatment, for monitoring the treatment response and to modify treatment, when warranted. Though specific perfusion patterns for various psychiatric diseases have not been definitely recognized, perfusion and receptor imaging findings may be used as an additional diagnostic tool to guide clinicians searching for a definitive diagnosis. In this review article we have tried to consolidate the facts from existing literature and our own clinical experience, as to the kind of role brain SPECT can play in different psychiatric diseases.

BRAIN PERFUSION SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY-TECHNICAL OVERVIEW

Radiopharmaceuticals

The tracers used for brain perfusion SPECT are technetium-99m- hexamethylpropyleneamineoxime (99mTc-HMPAO) and technetium-99m-ethylcysteinate dimer (99mTc-ECD). The main differences between 99mTc-HMPAO and 99mTc-ECD relate to their *in vitro* stability, uptake mechanism, and dosimetry. 99mTc-HMPAO is highly unstable *in vitro* and high radiochemical purity must be assured before injection. Stabilized forms of 99mTc-HMPAO allow easier labeling and improvement of image quality by reducing background activity. By contrast, 99mTc-ECD is stable up to at least 4 h *in vitro*, and freshly eluted 99mTc is not required. Higher gray-matter-to-white-matter ratio, contributes to the better image quality obtained with 99mTc-ECD. Although both of tracers are distributed proportionally to rCBF, their retention is not completely linear with rCBF because of an initial back diffusion. High blood flow may be underestimated and low blood flow may be overestimated with both tracers. In normal brain tissue, the kinetic properties are similar for both the perfusion agents. They enter the brain cells because of their lipophilic nature and remain there because of conversion into hydrophilic compounds. However, in patients with brain disease, the distribution of these compounds may differ because of the biochemistry of lipophilic-to-hydrophilic conversion. Although a metabolic process of de-esterification accounts for hydrophilic conversion of 99mTc-ECD, instability of the lipophilic form have been proposed for 99mTc-HMPAO. A perfusion-metabolic (de-esterification) coupling is needed in case of 99mTc-ECD to be trapped within cell, whereas only perfusion matters in 99mTc-HMPAO. Thus, 99mTc-ECD would have a predominant cellular-metabolic uptake, and 99mTc-HMPAO would reflect blood flow arrival to cerebral regions.

Patient preparation

Before arrival, patients should be instructed to avoid, if possible, caffeine, alcohol, or other drugs known to affect cerebral blood flow (CBF). Brain perfusion is sensitive to neuronal activities, hence, tracer injection to be done in a quiet room and no interaction with patients at this time is desirable, to avoid any sensorial and cognitive stimuli. To avoid head movement during scanning (20-30 min), the patient should be comfortable and relaxed. The uncooperative patients (those with severe cognitive impairment or with loss of insight) may need sedation. Tracer injection must precede sedation to avoid sedation-induced blood flow changes. Appropriate positioning is needed to keep the collimators as close as possible to the patient's head and to get entire brain within the center of field of view.

Acquisition system and postprocessing software

Because of the small size of important anatomically and functionally independent cerebral structures, spatial resolution is the main concern in brain imaging. A good compromise is to fit a general purpose rotating camera with fan beam collimator. Addition of computed tomography scan improves the quality of images by attenuation correction and structural correlation. Software applications are available for image processing to quantify the results in terms of rCBF for each brain functional area. Many of them have the features to compare with normal population database and provide statistical parametric mapping, so that one can easily recognize the abnormally perfused area.

MAJOR PSYCHIATRIC DISORDERS AND BRAIN PERFUSION SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY

Attention deficit hyperactivity disorder

Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent disorders in child and adolescent psychiatry. Prevalence of ADHD in the general population is approximately 5% of school-age children. ADHD is characterized by a developmentally inappropriate poor attention span or age-inappropriate features of hyperactivity and impulsivity or both. To meet the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) diagnostic criteria, the disorder should be present for at least 6 months, cause impairment in academic or social functioning, and occur before the age of 7 years. ADHD appears to be heterogeneous, with a variety of known etiologies such as head trauma, intrauterine exposure to toxins, and infections, but in the majority of cases no etiology can be determined. A neurobiological basis of ADHD resulting from the involvement of the fronto-striatal system has been proposed. Several studies [Table 1] analyzed the patterns of rCBF in ADHD, demonstrating decreases in brain perfusion, especially in the premotor cortex and the prefrontal cortex, and hypoperfusion of striatal and periventricular structures. Daniel et al. found that, 65% of children and adolescents with ADHD revealed decreased perfusion in the prefrontal cortex with intellectual stress, though only 25% had decreased prefrontal lobe activity at rest. There is a pattern of lateralization in prefrontal hypoperfusion from right to left with increase in age of patients as demonstrated by a study. Many researcher demonstrated temporal lobe dysfunction as significant in patients with ADHD. An association of temporal lobe hypoperfusion being more frequent than in the frontal cortex. An association of temporal lobe hypoperfusion with severity of
Obsessive-compulsive disorder
Obsessive-compulsive disorder is rare (5% of psychiatric patients), with a usually gradual onset in adolescence or early adult life and a slightly greater prevalence in females. Family history shows a high incidence in other members. Obsessions are imperative, distressing thoughts that persist despite the desire to resist them and may take various forms: Intellectual (phrases, rhymes, ideas, images), impulsive (killing, stabbing, performing abject acts), or inhibiting. Compulsions are acts that result from obsessions, such as checking rituals, repeated hand washing, and wiping objects. Brain SPECT findings in patients with OCD have been investigated by several authors [Table 2]. A study suggested involvement of prefrontal-striatal-thalamic and limbic circuitry in the pathophysiology of OCD. Hyperperfusion of the anterior portion of the cingulate gyrus; bilateral orbito-frontal regions; and in some patients, basal ganglia, before therapy has been described. These changes returned to normal after treatment with fluoxetine. In contrast, hypoperfusion of the frontal lobes, right caudate nucleus, and right thalamus has also been found. Patients with poor insight on their condition or with schizo-obssessive behavior probably will display hypoperfusion of the frontal lobes, whereas patients with adequate insight tend to display hyperperfusion of frontal lobes and cingulate gyrus. Impulsive issues are often from low activity in the prefrontal cortex and compulsive tendencies are usually due to high activity in the anterior cingulate gyrus. In our patients, we observed hypoperfusion of prefrontal, temporal and AC cortex in majority, probably due to our study group, which comprises chronic patients under long term treatment [Figure 2]. Anterior cingulate cortex seems to be an important structure in the pathogenesis of OCD symptoms and anterior cingulotomy is an approach for symptomatic improvement. The patients having increased activity in frontal and AC cortex also respond well to selective serotonin reuptake inhibitors. There is possible role of brain SPECT in tracking hereditary OCD or predicting future development of OCD in offspring.

Author	Year	Study group	Brain SPECT tracer	Perfusion pattern (*hypoperfusion, ↑hyperperfusion*)
Our findings	-	ADHD-baseline and posttreatment	99mTc-HMPAO	↓B/L prefrontal (mainly orbito-frontal)
Yeh et al.	2012	ADHD with developmental coordination disorder	99mTc-ECD	↓B/L frontal lobe, inferior parental lobe
Gardner et al.	2009	ADHD with depression	99mTc-HMPAO	↑Right posterior cingulate gyrus, anterior lobe of cerebellum
Cho et al.	2007	ADHD-MPH responders versus nonresponders	99mTc-HMPAO	↓B/L cerebellum and ↓B/L frontal in
				“depression+ADHD” compared to “depression” only
				Nonresponders had ↑left anterior cingulate cortex,
				↑left claustrum, ↑right anterior cingulate cortex,
				↑right putamen and ↑right superior parietal lobe
				↑Prefrontal rCBF, lateralization from the right to the left side with age
Oner et al.	2005	ADHD in relation to age	99mTc-HMPAO	↑Prefrontal rCBF, lateralization from the right to the left side with age
Lee et al.	2005	ADHD—response to MPH	99mTc-HMPAO	Baseline↓orbito-frontal, ↑somatosensory
Lorberboym et al.	2004	ADHD with comorbid conditions	99mTc-ECD	MPH response-normalization of above with ↑striatum activity
				↑Temporal lobe in comorbid type of ADHD
Kaya et al.	2002	ADHD	99mTc-HMPAO	↑Temporal cortex
Kim et al.	2002	ADHD	99mTc-HMPAO	Hypoperfusion is inversely correlated with severity of disease
Langleben et al.	2001	ADHD rCBF asymmetry	99mTc-ECD	↓Right lateral prefrontal cortex, right middle temporal cortex, both orbital prefrontal cortex and both cerebellar cortices
Kim et al.	2001	ADHD-effect of MPH	99mTc-HMPAO	The severe hyperactivity group exhibited left > right asymmetry in prefrontal and occipito-parietal area
Gustafsson et al.	2000	ADHD-association of rCBF with symptoms	99mTc-HMPAO	↑Left and right prefrontal areas, and caudate
				and thalamic areas after MPH treatment
				Disturbance of right frontal lobes related to behavior,
				integration of temporal, cerebellum and subcortical structures, related to motor planning and cognition
Amen et al.	1997	ADHD on intellectual stress	99mTc-HMPAO	↑Prefrontal cortex with intellectual stress

**SPECT: Single photon emission computed tomography, ADHD: Attention deficit hyperkinetic disorder, 99mTc-HMPAO: Technetium-99m-exametazime-hexamethylpropyleneamineoxime, 99mTc-ECD: Technetium-99m-ethylcysteinatedimer, MPH: Methylphenidate, rCBF: Regional cerebral blood flow, B/L: Bilateral
is conflict among several studies [Table 3], brain SPECT most frequently shows hypofrontality, especially during a specific task; perfusion changes in the basal ganglia, possibly related to the use of neuroleptic drugs; and temporal lobe hypoperfusion, usually on the left side and frequently associated with ipsilateral frontal lobe hypoperfusion[41] [Figure 3]. However, patients who are not

Table 2: Review summary of important brain perfusion study findings in patients with OCD

Author	Year	Study group	Brain imaging	Perfusion pattern (↓ hypoperfusion, ↑ hyperperfusion)
Our findings		OCD on treatment	99mTc-HMPAO SPECT	Prefrontal and temporal bilaterally, ↓ anterior cingulate cortex, also involvement of thalamus, basal ganglia and cerebellum noted
Karadağ et al.	2013	OCD response to SSRI	99mTc-HMPAO SPECT	SSRI normalized rCBF in the frontal region with bilaterally increased rCBF in the thalamus
Wen et al.	2012	OCD	SPECT	↓ Basal ganglia and occipital lobe
Huysen et al.	2009	OCD	fMRI, MRS, SPECT	Involvement of prefrontal-striatal-thalamic and limbic circuitry
Oner et al.	2008	OCD versus ADHD	99mTc-HMPAO SPECT	↑ Prefrontal rCBF in OCD subjects, significantly in right; ↓ prefrontal in ADHD
Topcuoglu et al.	2005	OCD	99mTc-HMPAO SPECT	↓ Right basal ganglion
Castillo et al.	2005	OCD-rCBF/age relation	99mTc-HMPAO SPECT	Age and age of onset of OCD correlated with rCBF in the B/L superior frontal, and B/L parietal cortex
Diler et al.	2004	OCD	99mTc-HMPAO SPECT	↑ B/L cingulate cortex and B/L dorsolateral prefrontal lobe
Chang et al.	2003	OCD and anterior cingulotomy	99mTc-HMPAO SPECT	Anterior cingulated cortex seems to be an important structure in the pathogenesis of OCD symptoms
Lacerda et al.	2003	OCD	99mTc-HMPAO SPECT	↑ Right superior and inferior frontal cortex and B/L thalamus
Hoehn-Saric et al.	2001	OCD with depression	99mTc-HMPAO SPECT	Responders have ↑ prefrontal regions (mostly left), ↑ B/L cingulate and basal ganglia
Alptekin et al.	2001	OCD	99mTc-HMPAO SPECT	↑ Right thalamus, left frontotemporal cortex and B/L Orbito-frontal cortex
Busatto et al.	2001	OCD-early and late onset	99mTc-ECD	Early-onset: ↑ Left anterior insulatum and right orbito-frontal rCBF, and ↑ right cingulum, whereas late-onset: ↓ Right orbitofrontal and ↑ left precuneus
Busatto et al.	2000	OCD	99mTc-ECD	↓ Right lateral orbito-frontal cortex, ↓ left dorsal anterior cingulate cortex
Lucey et al.	1995	OCD	99mTc-HMPAO SPECT	↓ B/L superior frontal cortex, right inferior frontal cortex, left temporal cortex, left parietal cortex, right caudate nucleus and right thalamus
Rubin et al.	1995	OCD	99mTc-HMPAO SPECT	↑ Orbital frontal cortex, posterofrontal cortex, dorsal parietal cortex bilaterally, ↓ caudate nucleus bilaterally
Harris et al.	1994	OCD	99mTc-HMPAO SPECT	↑ Medial-frontal, right frontal cortex and cerebellum, ↓ right visual association cortex

SPECT: Single photon emission computed tomography, OCD: Obsessive-compulsive disorder, 99mTc-HMPAO: Technetium-99m-hexamethylpropyleneamineoxime, 99mTc-ECD: Technetium-99m-ethylcysteinate dimer, rCBF: Regional cerebral blood flow, SSRI: Selective serotonin reuptake inhibitor, fMRI: Functional magnetic resonance imaging, MRS: Magnetic resonance spectroscopy, ADHD: Attention deficit hyperkinetic disorder, B/L: Bilateral
receiving medication may show hyperfrontality and depending on positive or negative symptoms may show conflicting findings (hypo and hyperperfusion).

Patients with positive symptoms have demonstrated increased precuneus activity. Hypofrontality and temporal hypoperfusion related with negative symptoms and aggression in schizophrenia. Studies on treatment response evaluation demonstrated improvement of blood flow in frontal, temporal, basal ganglia region with increased activity in motor cortex. Involvement of inferior parietal cortex, cuneus and posterior temporal lobe are noted in chronic and progressive disease. Injection of perfusion agents at the time of visual or auditory hallucinations shows hyperperfusion of the primary visual or auditory cortex, respectively. Cognitive activation also significantly increases frontal activity in schizophrenia cases.

We have studied >50 patients of chronic schizophrenia and found significant hypoperfusion in prefrontal cortex mainly dorsolateral prefrontal cortex, and orbitofrontal cortex (OFC), temporal lobe, mainly temporopolar and superior temporal cortex, and inferior parietal lobule. There was also involvement of basal ganglia in 50% cases with occasional involvement of cerebellum, and sometimes global hypoperfusion [Figure 4] in severe cases.

Anxiety and depression

Anxiety and depression are extremely common public health problems in today’s world. The loss to our society from these illnesses is staggering: Individual pain, family strife, school and relationship failure, lost work productivity, and death. People actively seek out a cure for anxiety and depression, and are put on prescription medications that can harm them in other ways. Loss of interest or pleasure is the key symptom of depression. Other symptoms include feelings of hopelessness, worthlessness, and emotional pain; reduced energy and motivation; trouble sleeping;

![Figure 2](image1.png)

Figure 2: Technetium-99m-hexamethylpropyleneamineoxime brain perfusion single photon emission computed tomography (SPECT) in a 40-year-old male patient with obsessive-compulsive disorder revealed hypoperfusion in bilateral prefrontal cortices, with right temporal and occipital lobe. (a) Transverse view, (b) sagittal view, (c) coronal view of the SPECT images

![Figure 3](image2.png)

Figure 3: A 45-year-old female with paranoid schizophrenia on antipsychotic treatment have bilateral frontal, and temporal hypoperfusion in technetium-99m-hexamethylpropyleneamineoxime brain perfusion single photon emission computed tomography-computed tomography images. (a) Transverse view, (b) sagittal view, (c) coronal view

![Figure 4](image3.png)

Figure 4: A 26-year-old male with disorganized schizophrenia was under treatment for last 1-year, showing global cortical hypoperfusion with relative increase in basal ganglia and cerebellar activity in technetium-99m-hexamethylpropyleneamineoxime brain perfusion single photon emission computed tomography-computed tomography images. (a) Transverse view, (b) sagittal view, (c) coronal view
decreased appetite and weight loss. Brain SPECT with perfusion agents in patients free of medication has shown hypoperfusion of the following areas: The prefrontal area and temporal lobes, cingulate gyrus, and left caudate nucleus. There is evidence of prefrontal, limbic, and paralimbic hypoperfusion in both unipolar and bipolar depression. The lateral frontal area involvement in acute depression in the elderly. Hypofrontality was shown to be associated with severe negative symptoms. In many occasions, both anxiety and depression coexist. Increased activity in the basal ganglia and frontal lobe may be seen in patients with anxiety. Severity of depression is inversely correlated with rCBF in left cingulate cortex, lentiform nucleus, and parahippocampal gyrus, and directly correlated with right posterolateral parietal cortex. Anxiety directly correlated with right anterolateral OFC, while cognitive performance correlated with right posteromedial OFC and left lentiform nucleus. Cognitive decline in postmenopausal women is also associated with hypofrontality. In major depressive disorders, sadness is related to decrease activity in dorsolateral prefrontal and dorsal cingulated cortex, with increased activity in ventromedial

Author	Year	Study group	Imaging	Perfusion pattern ([↑hyperperfusion, ↓hypoperfusion])	
Our findings		Schizophrenia-chronic medicated	⁹⁹mTc-HMPAO SPECT	↓Prefrontal cortex (DLPFC and OFC mainly)	
				↓Temporalobe (temporopolar and superior	
				temporal mainly); ↓inferior parietal lobe	
				Basal ganglia involvement in 50%, occasional	
				involvement of cerebellum, may be global	
				hypoperfusion in severe cases	
				↓Prefrontal cortex. OFC might play an important role	
				in the development of severe negative symptoms	
Kanahara et al.	2013	Schizophrenia-negative symptoms	SPECT	↓Prefrontal cortex.	
				↑Precocious activity	
Faget-Agius et al.	2012	Schizophrenia with preserved insight	⁹⁹mTc-ECD		
Tsujino et al.	2011	Very-late-onset schizophrenia with catatonia	SPECT	Baseline: ↓Striatum and the thalamus, ↑left	
				lateral frontal and the left temporal cortex. After	
				treatment, normalization, with ↑motor cortex	
Hopman et al.	2011	Aggression in schizophrenia	fMRI	Frontal and temporal abnormalities appear to be a	
				consistent feature of aggression in schizophrenia	
Wake et al.	2010	First-episode schizophrenia	⁹⁹mTc-ECD	↓B/L temporal	
Ertugrul et al.	2009	Effect of clozapine	SPECT, MRS	↓B/L frontal (superior and medial)/caudate	
				perfusion ratios in treatment responders	
Kanahara et al.	2009	Progression in schizophrenia	SPECT	First-episode↓prefrontal cortex, anterior cingulated	
				Chronic cases↓inferior parietal cortex, posterior	
				temporal lobe, and the cuneus	
Zhao et al.	2006	Schizophrenia-negative symptom	SPECT	↓Left temporal and frontal areas of the brain, no	
				difference with adult onset schizophrenia	
Malhotra et al.	2006	Childhood onset schizophrenia	SPECT	↑B/L frontal and ↓temporal lobe	
Kohn et al.	2006	BPRS and rCBF in schizophrenia	¹³¹I-IMP SPECT	BPRS score was positively correlated with	
				rCBF in the left inferior temporal gyrus	
Ortuno et al.	2006	Schizophrenia	⁹⁹mTc-HMPAO SPECT	↑B/L prefrontal and right parietal	
Novak et al.	2005	Schizophrenia-before and after symptoms	⁹⁹mTc-ECD	Baseline: ↑Dorsolateral frontal (left > right). ↑	
				Dorsolateral frontal bilaterally after 10 weeks of	
Moreno-Iñiguez et al.	2005	Simple schizophrenia	SPECT	Negative symptoms: ↓Prefrontal lobe	
Li et al.	2005	Schizophrenia	SPECT	Positive symptoms: ↑Left-frontal blood flow	
Sharafi et al.	2005	Schizophrenia, before and after clozapine	⁹⁹mTc-ECD	Prefrontal hypoperfusion	
Wang et al.	2003	Negative symptoms in schizophrenia	SPECT	Negative symptoms negatively correlated left rCBF.	
				Improved memory correlated with ↑rCBF in the left	
				temporal lobe	
				Before treatment, hypofrontality was the most common	
				(85%) finding, whereas after treatment hypofrontality	
				was mostly cleared	
Gonul et al.	2003	Schizophrenics with deficit and nondeficit	⁹⁹mTc-HMPAO SPECT	↑Prefrontal cortex	
		syndrome		↑Temporal lobe	
				↑Motor cortex	
				↑Occipital uptake, particularly on the left	
Puri et al.	2001	Schizophrenia with religious delusion	⁹⁹mTc-HMPAO SPECT	↑Prefrontal cortex	
				↑Temporal lobe	
Vaiva et al.	2000	Schizophrenics with deficit and nondeficit	⁹⁹mTc-HMPAO SPECT	↑Prefrontal cortex	
		syndrome		↑Temporal lobe	
Yildiz et al.	2000	Schizophrenia effects of neuroleptics	SPECT	↑Prefrontal cortex	
				↑Temporal lobe	
Toone et al.	2000	Schizophrenia-cognitive activation	SPECT	↑Prefrontal cortex	
				↑Temporal lobe	

**SPECT: Single photon emission computed tomography, ⁹⁹mTc-HMPAO: Technetium-99m-hexamethylpropyleneamineoxime, ⁹⁹mTc-ECD: Technetium-99m-ethylcysteinate dimer, rCBF: Regional cerebral blood flow, DLPFC: Dorsolateral prefrontal cortex, OFC: Orbito-frontal cortex, fMRI: Functional magnetic resonance imaging, MRS: Magnetic resonance spectroscopy, IMP: Iodomethyltyrosine, BPRS: Brief psychiatric rating scale, B/L: Bilateral
prefrontal and ventral cingulated cortex; whereas anxiety is associated with left AC cortex. Whole brain blood flow also correlated positively with anxiety. When recurrent depressions progressed to melancholies, involvement of left posterior parieto-temporal region is seen in addition to hypofrontality. Findings of brain SPECT in anxiety depression disorders from different studies are summarized in Table 4.

Substance abuse and addiction
Psychoactive substance abuse and dependence are disorders defined by patterns of maladaptive behavior related to the procurement and ingestion of substances of abuse (marijuana, hallucinogens, inhalants, cocaine, crack, heroin, stimulants, alcohol, and others). Short and long-term substance abuse affects blood flow and metabolism, which negatively affect the way our central nervous system works [Table 5]. Fortunately, some researchers report that the damage associated with chronic use of alcohol, nicotine, inhalants, and solvents is at least partially reversible with de-addiction treatment. Brain SPECT, has shown disseminated CBF defects in abusers of cocaine, crack, heroin and alcohol. [Figures 7 and 8].

Disappearance or improvement of the defects after a period of abstinence has been described, suggesting that arterial spasms may cause the defects. Some studies in cocaine abusers described abnormality in the OFC and superior temporal cortex, with evidence of minute differences between men and women. Patients with a history of inhalation of industrial solvents, such as glue, paint, and gasoline, have similar perfusion abnormalities.

Autism spectrum disorders
Autism spectrum disorders (ASD) are diagnosed today more than ever before. It has incidence rate of 2.5/10,000 births, males 1.5 times more commonly affected than females. This disorder is an early and severe development disorder, characterized by deficits in verbal and nonverbal languages, social skills, cognitive functioning and abnormal repetition of behavior (DSM-III R criteria). All children, teens, and adults with ASD are individuals and have unique brain patterns-one size does not fit all when it comes to ASD. Though SPECT studies are normal in many of the autism patients, it may show decreased temporal lobe perfusion. Up to 30% of autistic children eventually develop temporal lobe epilepsy. A study by Degirmenci et al. suggested the existence of regional brain perfusion alterations in frontal, temporal, and parietal cortex and in caudate nucleus in autistic children and in their first-degree family member.

SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY TO PERSONALISE TREATMENT IN PSYCHIATRIC DISORDERS

When brain SPECT scans detect the hyperfrontality pattern, it opens new avenues for intervention since this finding has been associated with predicting a positive treatment response to serotonergic medications in depression and OCD.
predicting a positive response to sleep deprivation86,87 and repetitive transcranial magnetic stimulation88 for depression, predicting treatment response to a cingulotomy in OCD,89 and help in distinguishing OCD from ADHD.90 Hypofrontality, that is, decreased perfusion or activity in the prefrontal cortex, is another important brain SPECT finding that is often helpful

Table 4: Summary of important brain perfusion study findings in patients suffering from anxiety-depression disorder
Author

Kim et al.
Yao et al.
Perico et al.
Carey et al.
Gillin et al.
Brody et al.
Fernández-Argüelles et al.
Lucey et al.
Philpot et al.

SPECT: Single photon emission computed tomography. ⁹⁹mTc-HMPAO: Technetium-99m-hexamethyl propylene amine oxime, ⁹⁹mTc-ECD: Technetium-99m-ethylcysteinate dimer, rCBF: Regional cerebral blood flow, DLPCF: Dorsolateral prefrontal cortex, VMPFC: Ventromedial prefrontal cortex, AC: Anterior cingulated, B/L: Bilateral, PTSD: Posttraumatic stress disorder, CKD: Chronic kidney disease, CBF: Cerebral blood flow

predicting a positive response to sleep deprivation86,87 and repetitive transcranial magnetic stimulation88 for depression, predicting treatment response to a cingulotomy in OCD,89 and help in distinguishing OCD from ADHD.90 Hypofrontality, that is, decreased perfusion or activity in the prefrontal cortex, is another important brain SPECT finding that is often helpful.

Table 5: Summary of important brain perfusion study findings in patients suffering from substance abuse disorders
Author

Our findings
Jordaen et al.
Adinoff et al.
Nehlig et al.
Chung et al.
Pach et al.
Botelho et al.
Adinoff et al.
Demir et al.
Gottschalk et al.
Kucuk et al.
Earnst et al.
Gansler et al.

SPECT: Single photon emission computed tomography. ⁹⁹mTc-HMPAO: Technetium-99m-exametazime-hexamethyl propyleneamineoxime, ⁹⁹mTc-ECD: Technetium-99m-ethylcysteinate dimer, rCBF: Regional cerebral blood flow, DLPCF: Dorsolateral prefrontal cortex, OFC: Orbito-frontal cortex, AIPD: Alcohol induced psychotic disorder, DLPCF: Dorsolateral prefrontal cortex, B/L: Bilateral

predicting a positive response to sleep deprivation86,87 and repetitive transcranial magnetic stimulation88 for depression, predicting treatment response to a cingulotomy in OCD,89 and help in distinguishing OCD from ADHD.90 Hypofrontality, that is, decreased perfusion or activity in the prefrontal cortex, is another important brain SPECT finding that is often helpful.
in understanding and targeting treatment in individual patients. Hypofrontality is associated with a negative response to serotonergic medication in depression\(^\text{[81]}\) and clozapine in schizophrenia\(^\text{[82]}\) as well as with predicting relapse in alcoholics,\(^\text{[93]}\) improved response to acetylcholine-esterase inhibitors for memory and behavior in AD,\(^\text{[94,95]}\) predicting a poor response to ketamine in fibromyalgia patients\(^\text{[96]}\) and improved response to stimulants in patients with ADHD symptoms during a concentration challenge.\(^\text{[97]}\) Hypofrontality is also associated with antisocial symptoms, impulsive behaviors, and murder\(^\text{[98]}\) as well as with completed suicide, which is often an impulsive act.\(^\text{[99]}\) When hypofrontality is present in depressed patients, it is important to be vigilant in their care, as well as involve family support, as they may be less likely to respond to typical antidepressant medications and they may not have the cognitive resources to follow through with recommendations.\(^\text{[100]}\) When abnormalities in the temporal lobes are seen (either hypo or hyperperfusion) and mood instability or temper problems are present, anticonvulsants provide a rational treatment option.\(^\text{[101]}\) If there are memory or learning issues (and low temporal lobe perfusion), acetylcholine-esterase inhibitors may be helpful,\(^\text{[102]}\) always taking into consideration the clinical picture.

CONCLUSIONS

Brain perfusion SPECT is a valuable tool in management of psychiatric disorders. It has a role in the diagnosis, therapeutic management, and follow-up of these patients. In addition, brain SPECT is a useful tool for research, because it is widely available and provides noninvasive *in vivo* assessment of human brain function. We can use this tool in psychiatric practice to evaluate the involvement of brain regions in a patient for a particular clinical condition, can individualize the treatment on basis of brain SPECT findings, can monitor the treatment response and modify the treatment, if necessary. There are a number of important areas where brain SPECT has the potential to provide relevant information to help personalize treatment to patients’ specific brain system pathophysiology rather than rely solely on general diagnostic and/or therapeutic categories. Brain SPECT should always be evaluated in conjunction with clinical assessment since it adds value to routine clinical assessment.
REFERENCES

1. Catafau AM, Parellada E, Lomeña F, Bernardo M, Pavía J, Ros D, et al. Baseline, visual deprivation and visual stimulation 99Tc-HMPAO-related changes in visual cortex can be detected with a single-head SPECT system. Nucl Med Commun 1996;17:480-4.

2. ACR Guidelines and Standards Committee. ACR-SPR Practice Guideline for the Performance of Single Photon Emission Computed Tomography (SPECT) Brain Perfusion and for Brain Death Examinations. Practice Guideline Revised; 2012. Resolution 25. p. 1-11.

3. Juni JE, Waxman AD, Devous MD, Tilkofsky RS, Ichise M, Van Heerum RM, et al. Society of Nuclear Medicine Procedure Guideline for Brain Perfusion Single Photon Emission Computed Tomography (SPECT) Using Tc-99m Radiopharmaceuticals, Version 2.0. Society of Nuclear Medicine Procedure Guidelines Manual; June, 2002. p. 113-8.

4. Kapcuu OL, Nobili F, Varrone A, Booj J, Vander Borght T, Ngren K, et al. EANM procedure guideline for brain perfusion SPECT using 99mTe-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol Imaging 2009;36:2031-2.

5. Holman BL, Devous MD Sr. Functional brain SPECT: The emergence of a powerful clinical method. J Nucl Med 1992;33:1888-904.

6. Vasile RG. Single photon emission computed tomography in psychiatry: Current perspectives. Harv Rev Psychiatry 1996;4:27-38.

7. Camargo EE. Brain SPECT in neurology and psychiatry. J Nucl Med 2001;42:611-23.

8. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, et al. Technetium-99m ECD: A new brain imaging agent: In vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med 1989;30:599-604.

9. Nakamura K, Tukatani Y, Kubo A, Hashimoto S, Terayama Y, Amano T, et al. Evaluation of 99mTc-d, l-HPMAO in the human brain after intracarotid bolus injection: A kinetic analysis. J Cereb Blood Flow Metab 1988;8 Suppl 1:S13-22.

10. Nakamura K, Tukatani Y, Kubo A, Hashimoto S, Terayama Y, Amano T, et al. Technetium-99m ECD: A new brain imaging agent: In vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med 1989;30:599-604.

11. Piera C, Martínez A, Ramírez I. Radiochemical purity of 99mTc-HMPAO. J Nucl Med 1996;37:480-4.

12. Barthel H, Kämpfer I, Seese A, Dannenberg C, Kluge R, Burchert W, et al. Technetium-99m-HMPAO brain SPECT in children with attention deficit hyperactivity disorder. Ann Nucl Med 2002;16:527-31.

13. Loewe SW. Regional cerebral blood flow in children with ADHD: Changes with age. Brain Dev 2005;27:279-85.

14. Kaya GC, Pekeranlar A, Belko R, Ada E, Mital S, Emirzogl N, et al. Technetium-99m HMPAO brain SPECT in children with attention deficit hyperactivity disorder. J Child Neurol 2001;16:279-85.

15. Koyama M, Kawashima R, Ito H, Ono S, Sato K, Goto R, et al. Regional cerebral blood flow in children with attention deficit hyperactivity disorder. Arch Pediatr 2002;9:1129-33.

16. Laufer MW, Denhoff E. Hyperkinetic behavior syndrome in children. Am J Psychiatry 1992;149:1691-6.

17. Catafau AM, Parellada E, Lomeña F, Bernardo M, Pavía J, Ros D, et al. Baseline, visual deprivation and visual stimulation 99Tc-HMPAO-related changes in visual cortex can be detected with a single-head SPECT system. Nucl Med Commun 1996;17:480-4.

18. Szatmari P, Parellada E, Lomeña F, Bernardo M, Pavía J, Ros D, et al. Baseline, visual deprivation and visual stimulation 99Tc-HMPAO-related changes in visual cortex can be detected with a single-head SPECT system. Nucl Med Commun 1996;17:480-4.

19. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV [Internet]. 4th ed. Washington (DC): American Psychiatric Association; 1994. p. 866. Available from: http://www.psychiatryonline.com/DSMIVPDF/dsm-ivpdf, last accessed on 03/07/2014.

20. Laufer MW, Denhoff E. Hyperkinetic behavior syndrome in children. J Pediatr 1957;50:463-74.

21. Zanetkin AJ, Nordahl TE, Gross M, King AG, Semple WE, Rumsey J, et al. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med 1990;323:1361-6.

22. Zanetkin AJ, Liebenaue LL, Fitzgerald GA, King AC, Minuskas DV, Herscovitch P, et al. Brain metabolism in teenagers with attention-deficit hyperactivity disorder. Arch Gen Psychiatry 1993;50:333-40.

23. Lou HC, Henriksson I, Bruhn P, Borner H, Nielsen JB Strial dysfunction in attention deficit and hyperkinetic disorder. Arch Neurol 1989;46:48-52.

24. Zanetkin AJ, Liotta W. The neurobiology of attention-deficit/hyperactivity disorder. J Clin Psychiatry 1998;59 Suppl 7:17-23.

25. Daniel G, Amen MD, Blake D. Carmichael, high-resolution brain SPECT imaging in ADHD. Ann Clin Psychiatry 1997;9:81-8.

26. Oner O, Oner P, Aysev A, Kacik O, Ibisi E. Regional cerebral blood flow in children with ADHD: Changes with age. Brain Dev 2005;27:279-85.

27. Kaya GC, Pekeranlar A, Belko R, Ada E, Mital S, Emirzogl N, et al. Technetium-99m HMPAO brain SPECT in children with attention deficit hyperactivity disorder. Ann Nucl Med 2002;16:527-31.

28. Koyama M, Kawashima R, Ito H, Ono S, Sato K, Goto R, et al. Regional cerebral blood flow in children with attention deficit hyperactivity disorder. Arch Pediatr 2002;9:1129-33.

29. Kim BN, Lee JS, Cho SC, Lee DS. Methylphenidate increased regional cerebral blood flow in subjects with attention deficit/hyperactivity disorder. Yonsei Med J 2001;42:19-29.

30. Lee JS, Kim BN, Kang E, Lee DS, Kim YK, Chung JK, et al. Regional cerebral blood flow in children with attention deficit hyperactivity disorder: Comparison before and after methylphenidate treatment. Hum Brain Mapp 2005;24:157-64.

31. Cho SC, Hwang JW, Kim BN, Lee HY, Kim HW, Lee JS, et al. The relationship between regional cerebral blood flow and response to methylphenidate in children with attention-deficit hyperactivity disorder: Comparison between non-responders to methylphenidate and responders. J Psychiatric Res 2007;41:459-65.

32. Huyer C, Velman DJ, de Haan E, Boer F. Paediatric obsessive-compulsive disorder, a neurodevelopmental disorder? Evidence from neuroimaging. Neurosci Biobehav Rev 2009;33:818-30.

33. Machín SR, Harris GJ, Pearlson GD, Hoehn-Saric R, Jeffery R, Camargo EE. Elevated medial-frontal cerebral blood flow in obsessive-compulsive patients: A SPECT study. Am J Psychiatry 1991;148:1240-2.

34. Hoehn-Saric R, Pearlson GD, Harris GJ, Machín SR, Camargo EE. Effects of fluoxetine on regional cerebral blood flow in obsessive-compulsive patients. Am J Psychiatry 1991;148:1243-5.

35. Hoehn-Saric R, Harris GJ, Pearlson GD, Cox CS, Machín SR, Camargo EE. A fluoxetine-induced frontal lobe syndrome in an obsessive compulsive patient. J Clin Psychiatry 1991;52:131-3.

36. Lucey JV, Costa DC, Blancs T, Busatto GF, Pilowsky LS, Takei N, et al. Regional cerebral blood flow in obsessive-compulsive disordered patients at rest. Differential correlates with obsessive-compulsive and anxious-avoidant dimensions. Br J Psychiatry 1995;167:629-34.

37. Chang JW, Kim CH, Lee JD, Chung SS. Single photon emission computed tomography imaging in obsessive-compulsive disorder and for stenocytic lateral anterior cingulotomy. Neurosurg Clin N Am 2003;14:237-50.

38. Hoehn-Saric R, Schlaepfer TE, Greenberg BD, McLeod DR, Pearlson GD, Wong SH. Cerebral blood flow in obsessive-compulsive patients with major depression: Effect of treatment with sertraline or desipramine on treatment responders and non-responders. Psychiatry Res 2001;108:89-100.

39. Karadag F, Kalkan Oguzhanoglu N, Yüksel D, Karac S, Cura C, Ozdel O, et al. The comparison of pre-and post-treatment (99mTc) Tc-HMPAO brain SPECT images in patients with obsessive-compulsive disorder. Psychiatry Res 2013;213:169-77.

40. Santra A, Thukral RK. Brain perfusion single photon emission computed tomography with (99mTc) Tc-hexamethylpropyleneamineoxime in hereditary obsessive compulsive disorder. Indian J Nucl Med 2013;28:256-7.

41. Woods SW. Regional cerebral blood flow imaging with SPECT in psychiatric disease: Focus on schizophrenia, anxiety disorders, and substance abuse. J Clin Psychiatry 1992;53 Suppl: 20-5.

42. Sabri O, Erikwoh R, Schreckenberg M, Owega A, Siss H, Buell U. Correlation of positive symptoms exclusively to hyperperfusion or hypoperfusion of cerebral cortex in never-treated schizophrenics. Lancet 1997;349:1738-9.

43. Fagot-Agius C, Boyer J, Padovani R, Richier C, Munnier O, Lançon C, et al. Schizophrenia with preserved insight is associated with increased perfusion of the prefrontal cortex. J Psychiatry Neurosci 2012;37:297-304.
44. Hoptman MJ, Antonius D. Neuroimaging correlates of aggression in schizophrenia: An update. Curr Opin Psychiatry 2011;24:100-6.

45. Zhao J, He X, Liu Z, Yang D. The effects of clozapine on cognitive function and regional cerebral blood flow in the negative symptom profile schizophrenia. Int J Psychiatry Med 2006;36:171-81.

46. Moreno-Iriguiz M, Ortuzo F, Arbizu J, Millan M, Soutullo C, Cervera-Enguix S. Regional cerebral blood flow SPECT study, at rest and during Wisconsin Card Sorting Test (WCST) performance, in schizophrenia naïve patients or treated with atypical neuroleptics. Actas Esp Psiquiatr 2005;33:343-51.

47. Li X, Tang J, Wu Z, Zhao G, Liu C, George MS. SPECT study of Chinese schizophrenic patients suggests that cerebral hypoperfusion and laterality exist in different ethnic groups. World J Biol Psychiatry 2005;6:98-106.

48. Wang CS, Yang YK, Chen M, Chiu NT, Yeh TL, Lee HI. Negative symptoms and regional cerebral blood flow in patients with schizophrenia: A single photon emission computed tomography study. Kaohsiung J Med Sci 2003;19:464-9.

49. Tsujino N, Nemoto T, Yamaguchi T, Katagiri N, Tohgi N, Ikeda R, et al. Regional cerebral blood flow changes in very late-onset schizophrenia-like psychosis with catatonia before and after successful treatment. Psychiatry Clin Neurosci 2011;65:600-3.

50. Ertugrul A, Volkan-Salanci B, Karli Oguz K, Demir B, Ergun EL, et al. The effect of clozapine on regional cerebral blood flow and brain metabolite ratios in schizophrenia: Relationship with treatment response. Psychiatry Res 2009;174:421-9.

51. Novak B, Mileinski M, Gremek M, Koemr M. Early effects of treatment on regional cerebral blood flow in first episode schizophrenia patients evaluated with 99mTc-ECD SPECT. Neuro Endocrinol Lett 2005;26:685-9.

52. Sharafi M. Comparison of Classical and Clozapine Treatment on Schizophrenia Using Positive and Negative Syndrome Scale of Schizophrenia (PANSS) and SPECT Imaging. Int J Med Sci 2005;2:79-86.

53. Kanahara N, Shimizu E, Sekine Y, Uchida Y, Shibuya T, Yamanaka H, et al. Does hypofrontality expand to global brain area in progression of schizophrenia? A cross-sectional study between first-episode and chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:410-5.

54. Musaalı M, Podreka I, Walter H, Suess E, Passweg V, Nutzinger D, et al. Regional brain function in hallucinations: A study of regional cerebral blood flow with 99mTc-HMPAO-SPECT in patients with auditory hallucinations, tactile hallucinations, and normal controls. Compr Psychiatry 1989;30:99-108.

55. Toone BK, Okocha CI, Sivakumar K, Syed GM. Changes in regional cerebral blood flow due to cognitive activation among patients with schizophrenia. Br J Psychiatry 2000;177:222-8.

56. Kaplan HI, Sadock BJ. Synopsis of Psychiatry. 6th ed. Baltimore, MD: Williams and Williams; 1991. p. 278-84, 363-82.

57. Devous MD Sr. Comparison of SPECT applications in neurology and psychiatry. J Clin Psychiatry 1992;53 Suppl 13-9.

58. Mayberg HS, Segal Z, Fiore CC, Pan H, Yeh S, Javitt DB, et al. Cingulate function in depression: A potential predictor of treatment response. Neuropeptides 1989;19:604-10.

59. Santra and Kumar: Brain SPECT in psychiatry

60. Ito H, Kawashima R, Awata S, Ono S, Kuroda K, Ito T, et al. Cerebral perfusion in patients with auditory hallucination in schizophrenia: A cross-sectional study between first-episode and chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:410-5.

61. Van Heertum RL, O’Connell RA. Functional brain imaging in the evaluation of the relationship between regional cerebral blood flow and symptom clusters of the depressive mood in patients pre-diabetic chronic kidney disease. Ann N Y Acad Sci 2006;1074:466-77.

62. Jordaan GP, Warner MJ, Del DG, Hewlett R, Emsley R. Alcohol-induced psychotic disorder: Brain perfusion and psychopathology before and after anti-psychotic treatment. Metab Brain Dis 2012;27:67-77.

63. Jordaan GP, Warner MJ, Hewlett R, Emsley R. Resting brain perfusion in alcohol-induced psychotic disorder: A comparison in patients with alcohol dependence, schizophrenia and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:473-83.

64. Kucuk NO, Kiliç EO, Ibis E, Aysev A, Gençoglu EA, Aras G, et al. A study using technetium-99m-HMPAO and ASPECT. J Nucl Med 1998;39:608-12.

65. Sleep deprivation PET correlations of Hamilton symptom improvement with WCST. Maturitas 2008;60:83-90.

66. Lucey JV, Costa DC, Ashhead G, Deahl M, Busatto G, Gacimovic S, et al. Brain blood flow in anxiety disorders. OCD, panic disorder with agoraphobia, and post-traumatic stress disorder on 99mTcHMPAO single photon emission tomography (SPECT). Br J Psychiatry 1997;171:346-50.

67. Fernández-Arigielle P, Castro Montaño J, García Lópezo O, Cambil Molina T. SPECT study of a group of patients with severe recurrent depression. Actas Esp Neurol Psiquiatr Cieñ Alafins 1998;26:223-32.

68. Holman BL, Carvalho PA, Mendelson J, Teoh SK, Nardini R, Hallgren E, et al. Brain perfusion is abnormal in cocaine-dependent polydrug users: A study using technetium-99m-HMPAO and ASPECT. J Nucl Med 1991;32:2106-10.

69. Betoleho MF, Relvas JS, Abrantes M, Cunha MJ, Marques TR, Rovira E, et al. Brain blood flow SPECT imaging in heroin abusers. Ann N Y Acad Sci 2006;1074:466-77.

70. Jordan AP, Devous MD, Harris TS. Caudolateral orbitofrontal regional cerebral blood flow is decreased in abstinent cocaine-addicted subjects in two separate cohorts. Addict Biol 2012;17:1001-12.

71. Adinoff B, Williams MJ, Best SE, Harris TS, Chandler P, Devous MD Sr. Sex differences in medial and lateral orbitofrontal cortex hypoperfusion in cocaine-dependent men and women. Genl Med 2006;3:206-22.

72. Kucuk KO, Kiliç EO, Ibis E, Aysev A, Gençoglu EA, Aras G, et al. A study using technetium-99m-HMPAO and ASPECT. J Nucl Med 1998;39:608-12.

73. Limbic-frontal circuitry in major depression: A path modeling approach with WCST. Maturitas 2008;60:83-90.

74. Sleep deprivation PET correlations of Hamilton symptom improvement with WCST. Maturitas 2008;60:83-90.

75. Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wieand M, et al. Depressive disorder: PET correlations of Hamilton symptom improvement ratings with changes in relative glucose metabolism in patients with depression. J Affect Disord 2008;107:181-6.

76. Achieving a balanced lifestyle in the treatment of depression. J Clin Psychopharmacol 1998;18:581-8.

77. Adinoff B, Braud J, Devous MD, Harris TS. Caudolateral orbitofrontal regional cerebral blood flow is decreased in abstinent cocaine-addicted subjects in two separate cohorts. Addict Biol 2012;17:1001-12.

78. A study using technetium-99m-HMPAO and ASPECT. J Nucl Med 1998;39:608-12.

79. The effect of clozapine on regional cerebral blood flow is decreased in abstinent cocaine-addicted subjects in two separate cohorts. Addict Biol 2012;17:1001-12.

80. Adinoff B, Williams MJ, Best SE, Harris TS, Chandler P, Devous MD Sr. Sex differences in medial and lateral orbitofrontal cortex hypoperfusion in cocaine-dependent men and women. Genl Med 2006;3:206-22.

81. Kucuk KO, Kiliç EO, Ibis E, Aysev A, Gençoglu EA, Aras G, et al. A study using technetium-99m-HMPAO and ASPECT. J Nucl Med 1998;39:608-12.

82. Achieving a balanced lifestyle in the treatment of depression. J Clin Psychopharmacol 1998;18:581-8.

83. Sleep deprivation PET correlations of Hamilton symptom improvement with WCST. Maturitas 2008;60:83-90.

84. Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wieand M, et al. Depressive disorder: PET correlations of Hamilton symptom improvement ratings with changes in relative glucose metabolism in patients with depression. J Affect Disord 2008;107:181-6.

85. Achieving a balanced lifestyle in the treatment of depression. J Clin Psychopharmacol 1998;18:581-8.

86. Sleep deprivation PET correlations of Hamilton symptom improvement with WCST. Maturitas 2008;60:83-90.

87. Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wieand M, et al. Depressive disorder: PET correlations of Hamilton symptom improvement ratings with changes in relative glucose metabolism in patients with depression. J Affect Disord 2008;107:181-6.
Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry 1999;156:1149-58.

Langguth B, Wiegand R, Kharraz A, Landgrebe M, Marienhagen J, Frick U, et al. Pre-treatment anterior cingulate activity as a predictor of antidepressant response to repetitive transcranial magnetic stimulation (rTMS). Neuro Endocrinol Lett 2007;28:633-8.

Dougherty DD, Weiss AP, Cosgrove GR, Alpert NM, Cassem EH, Nierenberg AA, et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neuropsychiatry Clin Neurosci 2000;12:209-18.

Guedj E, Cammilleri S, Colavolpe C, Taieb D, de Laforte C, Niboyet J, et al. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia. Eur J Nucl Med Mol Imaging 2007;34:1274-9.

Ames DG, Hanks C, Prunella J. Predicting positive and negative treatment responses to stimulants with brain SPECT imaging. J Psychoactive Drugs 2006;40:131-8.

Goethals I, Audenaert K, Jacobs F, Van den Eynde F, Bernagie K, Kolindou A, et al. Brain perfusion SPECT in impulsivity-related personality disorders. Behav Brain Res 2005;157:187-92.

Ames DG, Hanks C, Prunella JR, Green A. An analysis of regional cerebral blood flow in impulsive murderers using single photon emission computed tomography. J Neuropsychiatry Clin Neurosci 2007;19:304-9.

Gescoher DM, Malevani J. Mood stabilizer in the psychopharmacotherapy of borderline personality disorder. Fortschr Neurol Psychiatr 2009;77:389-98.

Frez U, Pizzolato G, Dam M, Ori C, Battistin L. A short review of cognitive and functional neuroimaging studies of cholinergic drugs: Implications for therapeutic potentials. J Neural Transm 2002;109:857-70.

Nil.

How to cite this article: Santra A, Kumar R. Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice. Indian J Nucl Med 2014;29:210-21.

Source of Support: Nil. Conflict of Interest: None declared.