Abstract. Background/Aim: Resistance to anoikis is a prerequisite step in metastasis, a major cause of death in patients with cancer, including thyroid cancer. Impairing anoikis resistance is a possible strategy for therapy of metastatic cancer. We, therefore, aimed to investigate the key players of anoikis resistance. Materials and Methods: Papillary-type (BCPAP), follicular-type (FTC133), and anaplastic-type (ARO) thyroid carcinoma cells, cultured in poly(2-hydroxyethyl methacrylate)-coated plates to mimic circulating cells, were used as model systems in this study. Flow cytometry and soft-agar assays were used to determine cells exhibiting anoikis resistance. Proteomics was used to identify candidate proteins and validated using western blot and siRNA knockdown. Results: Only ARO cells showed both anoikis resistance potential and anchorage-independent growth ability. Tumor susceptibility gene 101 protein (TSG101) was identified to be potentially important in anoikis resistance, which was confirmed by an increase in anoikis and expression of a pro-apoptotic protein (BCL-2 like protein 4) and an apoptotic marker (cleaved poly-ADP ribose polymerase) in floating siTSG101-knockdown cells. Conclusion: To our knowledge, this is the first study that implicates the importance of TSG101 in anoikis resistance of thyroid cancer.

Metastasis is a multi-step process involving tissue invasion, cell migration, anoikis resistance and implantation to other organs. At the cellular level, metastasizing cells detach from the extracellular matrix (ECM) and neighboring cells in the primary organ and travel through the circulatory system.

Translocation of normal epithelial cells is normally inhibited by a detachment-induced cell death mechanism called anoikis, which is a self-defense mechanism of multicellular organisms against cellular detachment, re-adhesion on inappropriate ECM or other organs, and dysplastic growth; in other words, anoikis is a natural barrier to metastasis (1, 2). Metastasizing cancer cells develop a survival mechanism called anoikis resistance that permits them to survive when they detach from the ECM, then float in the circulatory system, and grow in distant organs (3). Therefore, targeting anoikis resistance is a promising strategy for anti-metastasis therapy.

Thyroid cancer is ranked in the top ten female malignancies, with increasing worldwide incidence, as reported in 2016 (4, 5). Despite early diagnosis and available effective treatments, the mortality rate has been increasing by about 0.8% annually (6). Indeed, primary thyroid cancer is completely curable by available treatments whereas metastatic thyroid cancer is incurable, leading to death and significantly reducing the survival rate to approximately 50% within 5 years (5, 7). More than 90% of all thyroid cancer types are derived from thyroid epithelial cells or follicular cells that are clinically classified into three subtypes based on their pathology, namely papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC) and anaplastic thyroid carcinoma (ATC) (8). Clinical information indicates a metastatic potential in increasing order for PTC, FTC and ATC. Approximately 15-50% of PTCs invade neighboring tissues and metastasizes only to regional lymph nodes, about 20% of FTCs metastasize to distant organs including bone and lung, while ATC is the most aggressive type, with more than 98% of all cases metastasizing to bone, lung and brain (8, 9). The difference in their metastatic property makes thyroid cancer a good model for studying metastasis. However, few studies have reported on anoikis resistance in thyroid cancer, with some proteins showing potential involvement, such as S100A11, connexin 43 and myocardin-related transcription factor A (10-12). Unfortunately, these proteins were implicated with the weakly metastatic subtype (PTC), rather than FTC or ATC. Even though proteomics is
a valuable tool for identifying essential proteins involved in cellular mechanisms, there is currently no report of studies on anoikis resistance in thyroid cancer using proteomics.

In the present study, we aimed to identify important proteins involved in anoikis resistance of human thyroid cancer cells using proteomics, by comparing attached cells in monolayer culture with floating cells cultured under non-adherent condition that mimic metastasizing cells in circulation.

Materials and Methods

Cell culture. Human PTC cell line (BCPAP), human FTC cell line (FTC133) and human ATC cell line (ARO) were provided by Professor Johan Lillehaug (University of Bergen, Bergen, Norway). BCPAP and ARO cells were maintained in RPMI and DMEM (Invitrogen, Carlsbad, CA, USA), respectively, supplemented with 10% v/v fetal bovine serum (FBS; Millipore, Temecula, CA, USA) and 1% v/v antibiotic-antimycotic (Gibco, Carlsbad, USA). FTC133 cells were maintained in 1:1 mixture of DMEM: F12 media (Invitrogen) supplemented with 10% v/v FBS, 1% v/v antibiotic-antimycotic, and 2 mM L-glutamine (Invitrogen). All cells were maintained at 37°C in a humidified incubator with 5% CO₂.

Floating cells were harvested by culturing under non-adherent condition using plates pre-coated with 10 mg/ml poly(2-hydroxyethyl methacrylate) (polyHEMA; Sigma-Aldrich, St. Louis, MO, USA) (13). Cell morphologies were observed under a phase-contrast inverted microscope (Eclipse TS100; Nikon, Tokyo, Japan).

Anoikis/Apoptosis cell death assay. Floating cells were harvested by centrifugation at 300 × g, 18°C for 5 min. Attached cells were trypsinized, and then centrifuged at 300 × g, 18°C for 5 min. Media were replaced with fresh media containing 1% v/v FBS (without antibiotics).

Anchorage-independent growth assay. Anchorage-independent cell growth (AIG) was determined using soft-agar assay. Cells (1 × 10⁵) were suspended in 1 ml culture medium containing 0.35% agar and overlaid onto 1.5 ml culture medium containing 0.8% agar in 6-well plates. Medium was added every 3 days as a feeder layer. On day 21, phosphate-buffered saline. Attached cells were trypsinized and colony numbers from six biological replicates. Data are the mean±S.D.

Comparisons were analyzed using ANOVA with Tukey’s post-hoc test. Significantly different at *p≤0.05, **p≤0.01, and ***p≤0.001. 7AAD: annexin V and 7-aminoactinomycin D.

Figure 1. Properties of anoikis resistance in thyroid cancer cell lines. A: Cell morphology of thyroid cancer cell lines: BCPAP, FTC133 and ARO cells. Micrographs were taken under magnification of 200x (attached cells) or 100x (floating cells), using a phase-contrast inverted microscope. B: Representative flow cytometric results of anoikis resistance in thyroid cancer cell lines. Data are the mean±S.D. Comparisons were analyzed using the Student’s t-test. C: Percentage total apoptosis/anoikis from flow cytometric analysis from three biological replicates. Data are the mean±S.D. Comparisons were analyzed using ANOVA with Tukey’s post-hoc test. Significantly different at *p≤0.05, **p≤0.01, and ***p≤0.001. 7AAD: annexin V and 7-aminoactinomycin D.
Saharat et al.: TSG101-Mediated Anoikis Resistance in Thyroid Cancer

A

BCPAP

FTC133

ARO

Attached

100 μm

Floating

100 μm

B

BCPAP

FTC133

ARO

Attached

Dead 2.52%

Late Apop./Dead 8.78%

Live 84.76%

Early Apop. 3.94%

Annexin V

7-AAD

Dead 2.08%

Late Apop./Dead 3.45%

Live 90.11%

Early Apop. 4.36%

Annexin V

7-AAD

Dead 1.80%

Late Apop./Dead 4.14%

Live 90.06%

Early Apop. 4.00%

Annexin V

7-AAD

Dead 1.48%

Late Apop./Dead 6.05%

Live 89.25%

Early Apop. 3.22%

Annexin V

7-AAD

C

Total apoptosis/anoikis (%)

- Attached

- Floating

BCPAP

FTC133

ARO

D

Number of colonies

BCPAP

FTC133

ARO
colonies of BCPAP and FTC133 cells were more compact under non-adherent condition compared to adherent condition (Figure 1B and C), indicating that FTC133 and ARO cells were more resistant to anoikis than BCPAP cells.

Anchorage-independent growth. Anoikis resistance is required for AIG and is correlated with tumorigenicity and metastatic potential of cancer cells (15, 16). AIG was examined using soft-agar assay. Although all the cell lines formed colonies in soft-agar, the number of ARO colonies was significantly higher than those of the other two cell lines (Figure 1D), suggesting that ARO exhibited the highest capacity for AIG among the tested cell lines.

Taken together, our data indicated different potential for anoikis resistance and AIG capacity among the three thyroid cancer cell lines, in ascending order for BCPAP (papillary type), FTC133 (follicular type), and ARO (anaplastic type) cell lines, consistent with their metastatic potential as observed in clinical pathology (8). Additionally, our results supported the use of the ARO cell line as a suitable model for further studies into the mechanisms of anoikis resistance and AIG in metastatic thyroid cancer.

Identification of key proteins involved in anoikis resistance of thyroid cancer cells. After 24 h of culture under adherent or non-adherent conditions, attached and floating ARO cells were subjected to proteomic analysis, according to the protocol in our previous study (4). Twenty-five protein spots showed significant differences in expression by more than 1.25-fold; 14 spots decreased in expression and 11 spots increased in expression in floating cells when compared to those of attached cells (Figure 2). These spots were identified by LC-MS/MS and MASCOT database search (Table I) and then classified based on their functions, namely into those related to cell proliferation, stress response, cellular movement, apoptosis, and glycolysis (Figure 3A).

In order to identify critical proteins involved in anoikis resistance of ARO cells, the dataset of identified proteins was analyzed using IPA. IPA revealed cell death and survival to be the most relevant biological network, with a score of 11, and six molecules from our identified proteins were categorized into three functional groups (Figure 3B); namely lamin A/C (LMNA) and KRT8, involved in cellular movement (17, 18); stress-induced phosphoprotein 1 (STIP1) and HSPD1, involved in stress response (19, 20); and 14-3-3 epsilon (YWHAE) and TSG101, involved in apoptosis (21, 22). HSPD1, KRT8 and TSG101 were selected as candidate proteins from each functional group. According to IPA analysis, HSPD1 interacts with multiple proteins from different cellular functions that are involved with apoptosis, such as stress response (heat-shock proteins) and pro-apoptosis (BAX). KRT8 and TSG101 were selected because the expression level of KRT8 was higher than that of the other five proteins and TSG101 is involved with the...
progression of multiple cancer types. Moreover, IPA suggested the involvement of BAX in anoikis resistance in floating ARO cells.

Validation of proteomic and network analyses. The expression of candidate proteins was determined for the three thyroid cancer cell lines by immunoblotting, as shown in Figure 3C. The expression of HSPD1 was slightly decreased in all cell lines when cultured under non-adherent condition for 24 h. KRT8 was detected only in ARO cells, consistent with a previous report of KRT8 overexpression in patient-derived ATC cell lines (23). KRT8 expression was reduced in floating cells, in contrast to proteomics results. Previous studies revealed HSPD1 and KRT8 to be apoptotic drivers (23, 24) and their down-regulation would support anoikis resistance. Unfortunately, our immunoblot results showed no statistically significant differences in HSPD1 and KRT8 expression between attached and floating cells, thereby diminishing their importance in anoikis resistance. Interestingly, TSG101 expression was increased in floating cells of all cell lines, with statistical significance in FTC133 and ARO cells, consistent with the proteomics results.

Role of TSG101 in anoikis resistance. To elucidate the role of TSG101 in anoikis resistance, siRNA-mediated knockdown of TSG101 was performed. When evaluating the incubation time, 72-h incubation was most suitable at suppressing TSG101 protein expression. TSG101 expression significantly decreased as a function of time (data not shown) and decreased dramatically at 72-h post-transfection with siTSG101, but not in siRNA control cells (scramble) (Figure 4A). After 72-h post siTSG101 transfection, floating ARO cells displayed significant up-regulation of the pro-apoptotic protein BAX compared to attached and floating cells transfected with scramble siRNAs. This increase correlated with the increase in the expression of cleaved PARP, a marker of apoptosis (Figure 4A), indicating that anoikis occurred in the siTGS101-transfected floating cells.

The consequence of TSG101 knockdown in anoikis was confirmed using flow cytometric analysis. No significant differences were found in the levels of apoptosis/anoikis between adherent and non-adherent cultures of scramble-transfected cells (Figure 4B and C). In contrast, the level of anoikis was significantly increased in siTSG101-transfected floating cells (30±2% and 25±2% anoikis for siTSG101 sequence 1 and 2, respectively), compared with scramble-transfected floating cells (18±1% anoikis) (Figure 4B and C). Moreover, statistical analysis using Pearson correlation suggested a negative correlation between TSG101 expression and total apoptosis/anoikis with r=-0.767 and p=0.004. These results confirmed the importance of TSG101 in anoikis resistance in the ATC cell line, ARO.
Figure 3. Continued
Investigation of the mechanism underlying TSG101-mediated anoikis resistance. We evaluated two potential promising mechanisms of anoikis resistance: epithelial–mesenchymal transition (EMT) and changes in the integrin expression profile (“integrin switch”) (1). The down-regulation of E-cadherin together with the up-regulation of N-cadherin and vimentin are characteristics of EMT. However, we observed the up-regulation of E-cadherin expression in floating ARO cells rather than a decrease (Figure 5A), together with the lack of N-cadherin and vimentin expression (data not shown). Regarding the integrin switch, no significant changes in expression of integrins β1, β4 and αV were observed (Figure 5B) and expression of integrins α4, α5 and β6 was not detected (data not shown). Therefore, the up-regulation of E-cadherin and the lack of changes in the expression of multiple integrins in floating ARO cells suggests that TSG101 may not trigger anoikis resistance in floating cells through EMT and integrin switch.

Discussion

In this study, we utilized proteomics together with non-adherent cultures to identify key proteins in anoikis resistance of thyroid cancer cell lines. Overexpression of TSG101 protein was found to be essential for anoikis resistance of thyroid cancer cells with high metastatic potential. As far as we are
Table I. Identification of differentially expressed proteins by LC-MS/MS and Mascot database search.

Spot ID	Accession no.	Protein name (symbol)	MW (Da)/pl	Coverage	Peptide match	Mascot score	Fold change	p-Value	Function	
A1	gi	179955	Catechol-O-methyltransferase (COMT)	30,433/5.26	15	3	168	+1.43	0.04	Stress response
A2	gi	4758484	Glutathione S-transferase omega-1 (GSTO1)	27,833/6.23	31	9	344	+1.51	0.05	Stress response
A3	gi	7305503	Stomatine-like protein 2 (GLRX3)	38,624/6.88	21	8	304	-1.27	0.03	Cell proliferation
A4	gi	87456	Macrophage-capping protein (CAPG)	38,779/5.88	11	5	156	+1.54	0.01	Cellular movement
A5	gi	3899354	RNA-binding protein 4B (RBM4)	40,466/6.28	22	8	336	+2.05	0.03	Stress response
A6	gi	55956919	Heterogeneous nuclear ribonucleoprotein A/B (hnRNPA/B)	36,059/6.49	18	6	267	-1.26	0.05	Cell proliferation
A7	gi	5454140	Tumor susceptibility gene 101 protein (TSG101)	44,088/6.06	15	5	250	+1.31	0.04	Apoptosis
A8	gi	4503571	Alpha-enolase (ENO1)	47,481/7.01	17	6	323	+1.56	0.01	Glycolysis
A9	gi	119617057	Cytokeratin 8 (KRT8)	57,829/5.41	39	22	929	-1.42	0.04	Cell proliferation
A10	gi	544063423	Stress-induced-phosphoprotein 1 (STIP1)	68,721/7.21	23	19	568	-1.20	0.03	Stress response
A11	gi	31542947	Heat shock protein 60-kDa (HSPD1)	61,187/5.70	53	33	1,472	-1.24	0.03	Stress response
A12	gi	768088730	Heterogeneous nuclear ribonucleoprotein L (hnRNPL)	58,068/7.25	20	8	395	-1.52	0.01	Cellular movement
A13	gi	119573383	Lamin A/C (LMNA)	87,829/8.91	45	37	1850	-1.57	0.03	Cell proliferation
A14	gi	332837089	Glutathione S-transferase P (GSTP1)	23,555/5.43	26	4	259	+2.04	0.01	Stress response
A15	gi	4504517	Heat shock protein beta-1 (HSPB1)	22,826/5.98	37	9	320	+1.52	0.02	Stress response
A16	gi	4507953	14-3-3 protein epsilon (YWHAE)	27,899/4.73	37	9	501	-1.26	0.04	Apoptosis
A17	gi	4504035	GMP synthase (GMPS)	77,408/6.42	39	22	996	-1.72	0.00	Apoptosis
A18	gi	5803225	14-3-3 protein zeta/delta (YWHAZ)	29,326/4.63	43	12	594	-2.00	0.01	Apoptosis
A19	gi	4758484	Glutathione S-transferase omega-1 (GSTO1)	27,833/6.23	15	4	148	+1.48	0.02	Stress response
A20	gi	181573	Cytokeratin 8 (KRT8)	53,529/5.52	15	8	410	Present	0.01	Cell proliferation
A21	gi	32189392	Peroxiredoxin 2 (PRDX2)	22,049/5.66	23	7	341	Present	0.00	Apoptosis
A22	gi	5031653	Pre-mRNA-splicing factor SPF27 (BCAS2)	26,229/5.48	16	3	160	Absent	0.00	Apoptosis
A23	gi	4506667	60S acidic ribosomal protein (RPLP0)	34,423/5.71	23	6	265	Absent	0.00	Cell proliferation
A24		No data available	-	-	-	-	-	-	-	-
A25	gi	5453880	Acidic leucine-rich nuclear phosphoprotein 32 (LANP)	28,682/3.99	34	11	427	Absent	0.05	Cell proliferation

Aware, this is the first report to show the novel role of TSG101 overexpression in anoikis resistance of thyroid cancer cells. TSG101 (also known as VPS23) is an integral component of the first complex of the endosomal sorting complex required for transport pathway (ESCRT-I) by assisting in the biogenesis of vesicles or multivesicular bodies (MVB), e.g. endosomes and exosomes (25). TSG101 was originally identified as a tumor-suppressor gene (26), but recent studies showed its...
oncogenic role in several types of cancer. siRNA-mediated down-regulation of TSG101 triggered cell-cycle arrest in breast cancer, prostate cancer and hepatocellular carcinomas (27-29). Our results also support the oncogenic role of TSG101 as a regulator of anoikis resistance in thyroid cancer cells.

EMT and integrin switch have been proposed to be mechanisms underlying anoikis resistance. Down-regulation of E-cadherin during EMT may promote cell survival by reducing the formation of the death-inducing signaling complex (DISC) (30). Likewise, switching of integrin

Figure 4. Importance of tumor susceptibility gene 101 protein (TSG101) in anoikis resistance of ARO cells. A: Expression of TSG101, BCL-2 like protein 4 (BAX) and cleaved poly-ADP ribose polymerase (PARP) in ARO cells after 72-h siRNA-mediated knockdown of TSG101. Band intensities (arbitrary unit) were normalized by that of actin (loading control). B: Flow cytometric analysis of apoptosis/anoikis (%) in ARO cells after TSG101 knockdown for 72 h. C: Quantitative analysis of flow cytometric results of percentage total apoptosis/anoikis, indicating significantly increased total apoptosis/anoikis in cells with siRNA-mediated knockdown of TSG101. Comparisons of attached with floating scramble-siRNA-transfected cells, and floating scramble-siRNA-transfected cells with siTSG101-transfected cells were analyzed using Student t-test. Data are the mean±S.D. Significantly different at *p≤0.05, **p≤0.01, and ***p≤0.001. 7AAD: annexin V and 7-aminoactinomycin D.
expression by the down-regulation of intrinsic apoptosis inducer, αVβ5 integrin, along with the up-regulation of prosurvival αVβ6 integrin, has been shown to support the acquisition of anoikis resistance (31). Additionally, up-regulation of β4 integrin can promote cell survival through constitutive activation of phosphoinositide 3-kinase survival pathway (1). However in our study, an increase in E-cadherin expression in floating thyroid cancer cells transfected with either siRNA control or siTSG101, rather than a decrease, as well as the lack of significant changes in expression of integrin types, suggests that TSG101 does not regulate anoikis resistance through EMT or integrin switch.

Another mechanism that may induce anoikis resistance is the shutdown of apoptotic signaling. Activation of cellsurface death receptors has been reported to trigger anoikis in normal cells (3). In addition, endocytosis is important in preventing prolonged activation of cell surface receptors. In mitogenic signaling, for example, activated cell surface growth factor receptors are endocytosed, and subsequently sorted to lysosomes for degradation (32). Therefore, we hypothesize that endocytosis of death receptors has the potential to be a mechanism by which cancer cells resist anoikis. TSG101 is involved in vesicular biogenesis, endocytosis, membrane trafficking and receptor recycling (33). Moreover, defective mutations of TSG101 had been shown to impair trafficking of endocytosed epidermal growth factor (EGF) receptors to lysosomes, which resulted in decreased degradation of EGF receptors and prolonged mitogenic signaling in cells (32). Therefore, we intend to further explore the possibility of the involvement of TSG101 overexpression in anoikis resistance via an increase in the sequestration of death receptors through endocytosis.

In summary, we provide the first evidence on the significance of TSG101 in anoikis resistance of metastatic thyroid cancer cells, which may be a new molecular therapeutic target against metastatic thyroid cancer.

Conflicts of Interest

The Authors declare that there are no conflicts of interest in regard to this study.

Acknowledgements

This work was supported by Chulabhorn Research Institute [Grant numbers BC 2008-02 and BC 2017-01] and Chulabhorn Graduate Institute, Thailand. The Authors very much appreciate Professor Johan Lillehaug from University of Bergen, Norway for providing the thyroid cancer cell lines.

References

1 Paoli P, Giannoni E and Chiarugi P: Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta Mol Cell Res 1833(12): 3481-3498, 2013.
Gupta GP and Massagué J: Cancer metastasis: Building a framework. Cell 127(4): 679-695, 2006.

Simpson CD, Anyiwe K and Schimmer AD: Anoikis resistance and tumor metastasis. Cancer Lett 272(2): 177-185, 2008.

Paricharttanakul NM, Sahara K, Chokchachammankit D, Punnarit P, Srisom sap C and Svasti J: Unveiling a novel biomarker panel for diagnosis and classification of well-differentiated thyroid carcinomas. Oncol Rep 35(4): 2286-2296, 2016.

American Cancer Society: Cancer Treatment and Survivorship Facts & Figures 2016-2017. Atlanta: American Cancer Society, 2016.

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin 66(1): 7-30, 2016.

Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66(4): 271-289, 2016.

Viglietto G and De Marco C: Molecular biology of thyroid cancer. In: Contemporary Aspects of Endocrinology. Diamanti-Kandarakis E (eds): InTech; c2011, pp. 189-234, 2011.

Arc C and Shaha AR: Anaplastic thyroid carcinoma: Biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol 13(4): 453-464, 2006.

Anania MC, Miranda C, Vizioli MG, Mazzoni M, Cleris L, Pagliardini S, Manenti G, Borrello MG, Pierotti MA and Greco A: $S100a11$ overexpression contributes to the malignant phenotype of papillary thyroid carcinoma. J Clin Endocrinol Metab 98(10): E1591-E1600, 2013.

Zhang W-L, Lv W, Sun S-Z, Wu X-Z and Zhang J-H: Tripeptide-2-Met inhibits metastasis-relevant traits by degrading MRTF-A in anaplastic thyroid cancer. Int J Oncol 47(1): 133-142, 2015.

Jensen K, Patel A, Klubo-Gwiezdzinska J, Bauer A and Vasko V: Inhibition of gap junction transfer sensitizes thyroid cancer cells to anoikis. Endocr Relat Cancer 18(5): 613-626, 2011.

Atjanasuppat K, Lirdprapamongkol K, Jantaree P and Svasti J: Non-adherent culture induces paclitaxel resistance in b460 lung cancer cells via ERK-mediated up-regulation of βIIIa-tubulin. Biochem Biophys Res Commun 466(3): 493-498, 2015.

Champattanakul V, Netsirisawan P, Chaiyawat P, Phueaouan T, Janes SM and Watt FM: Switch from αvβ5 to αvβ6 integrin phenotype of papillary thyroid carcinoma. J Clin Endocrinol Metab 98(10): 3898-3901, 2013.

Zhang W-L, Lv W, Sun S-Z, Wu X-Z and Zhang J-H: Mir-206 inhibits metastasis-relevant traits by degrading MRTF-A in anaplastic thyroid cancer. Int J Oncol 47(1): 133-142, 2015.

Jensen K, Patel A, Klubo-Gwiezdzinska J, Bauer A and Vasko V: Inhibition of gap junction transfer sensitizes thyroid cancer cells to anoikis. Endocr Relat Cancer 18(5): 613-626, 2011.

Atjanasuppat K, Lirdprapamongkol K, Jantaree P and Svasti J: Non-adherent culture induces paclitaxel resistance in b460 lung cancer cells via ERK-mediated up-regulation of βIIIa-tubulin. Biochem Biophys Res Commun 466(3): 493-498, 2015.

Champattanakul V, Netsirisawan P, Chaiyawat P, Phueaouan T, Charoeawattanasatien R, Chokchaichamnankit D, Punnarit P, Srisom sap C and Svasti J: Proteomic analysis and abrogated tumor susceptibility gene 101 protein expression protects squamous cell carcinomas from anoikis. Mol Cell Proteomics 13(4): 624-634, 1978.

Mori S, Chang JT, Andrechek ER, Matsumura N, Babu T, Yao G, Kim JW, Gatza M, Murphy S and Nevins JR: Anaplastic thyroid cell growth signature identifies tumors with metastatic potential. Oncogene 28(31): 2796, 2009.

Kong L, Schäfer G, Bu H, Zhang Y, Zhang Y and Klocker H: Lamin a/c protein is overexpressed in tissue-invasive prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway. Carcinogenesis 33(4): 751-759, 2012.

Saharet et al: TSG101-Mediated Anoikis Resistance in Thyroid Cancer

19 Wang T-H, Chao A, Tsai C-L, Chang C-L, Chen S-H, Lee Y-S, Chen J-K, Lin Y-J, Chang P-Y and Wang C-J: Stress-induced phosphoprotein 1 as a secreted biomarker for human ovarian cancer promotes cancer cell proliferation. Mol Cell Proteomics 9(9): 1873-1884, 2010.

20 Ciocca DR and Calderwood SK: Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2): 86-103, 2005.

21 Young TW, Mei FC, Rosen DG, Yang G, Li N, Liu J and Cheng X: Up-regulation of tumor susceptibility gene 101 protein in ovarian carcinomas revealed by proteomics analyses. Mol Cell Proteomics 6(2): 294-304, 2007.

22 Kim KO, Hsu AC, Lee HG, Patel N, Chandhanayingyong C, Hickerell T and Lee FYI: Proteomic identification of 14-3-3ε as a linker protein between pERK1/2 inhibition and BIM up-regulation in human osteosarcoma cells. J Orthop Res 32(6): 848-854, 2014.

23 Guo D, Xu Q, Pabla S, Koomen J, Biddinger P, Sharma A, Pabla S, Pacholczyk R, Chang C-C and Friedrich K: Cytokeratin 8 in anaplastic thyroid carcinoma: More than a simple structural cytoskeletal protein. Int J Mol Sci 19(2): 577, 2018.

24 Kirchhoff S, Gupta S and Knowlton A: Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105(24): 2899-2904, 2002.

25 Henné WM, Buchkovich NJ and Emr SD: The ESCRT pathway. Dev Cell 21(1): 77-91, 2011.

26 Li L and Cohen SN: Tsg101: A novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85(3): 319-329, 1996.

27 Shao Z, Ji W, Liu A, Qiu H, Shen L, Li G, Zhou Y, Hu X, Yu E and Jin G: Tsg101 silencing suppresses hepatocellular carcinoma cell growth by inducing cell cycle arrest and autophagic cell death. Med Sci Monit 21: 3371, 2015.

28 Zhu G, Gilchrist R, Borley N, Chng HW, Morgan M, Marshall JC, Camplejohn RS, Muir GH and Hart IR: Reduction of TSG101 protein has a negative impact on tumor cell growth. Int J Cancer 109(4): 541-547, 2004.

29 Zhang Y, Song M, Cui Z, Li C, Xue X, Yu M, Lu Y, Zhang S, Wang E-H and Wen Y: Down-regulation of TSG101 by small interfering rna inhibits the proliferation of breast cancer cells through the MAPK/ERK signal pathway. Histol Histopathol 26(1): 87, 2011.

30 Lu M, Maristers S, Ye X, Luis E, Gonzalez L and Ashkenazi A: E-Cadherin couples death receptors to the cytoskeleton to regulate apoptosis. Mol Cell 54(6): 987-998, 2014.

31 Janes SM and Watt FM: Switch from cytoplasmic to cytoskeletal expression protects squamous cell carcinomas from anoikis. J Cell Biol 166(3): 419-431, 2004.

32 Babst M, Odorizzi G, Estepa EJ and Emr SD: Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Tsg101, identified by screening a cDNA library and soft-agar assay, promotes cell proliferation in human lung cancer. Mol Biol Rep 37(6): 2829-2838, 2010.

Received July 20, 2018
Revised August 11, 2018
Accepted August 21, 2018