Aflatoxin M\textsubscript{1} in Milk of Cow in Relation to Lactation Period and Yields

Smita Tudu1, Ashish Ranjan2, Priyanka Kumari3, A. K. Choudhary4*

1,2,3Senior Research Fellow, Mycotoxin Laboratory, University Department of Botany, T. M. Bhagalpur University, Bhagalpur, India
2Head, Mycotoxin Laboratory, University Department of Botany, T. M. Bhagalpur University, Bhagalpur, India
4Corresponding author: choudharyakbot@gmail.com

\textbf{Abstract:} Aflatoxin produced from few molds as \textit{Aspergillus flavus}, \textit{A. parasiticus} and \textit{A. nomius} is highly carcinogenic, mutagenic to the animals and humans. These molds are present in the dietary intake of cattle feed. Present investigation was performed to observe the carryover of AFB\textsubscript{1} to the milk toxin of lactating cows. Cows during early lactation stage yields more milk compared to late lactating stage, hence, the same cows were used to keep the variable of physiology of cows as nearly constant. AFM\textsubscript{1} concentration was found independent to the intake of AFB\textsubscript{1} with the compound foods ingested by cows. Carryover of aflatoxin was observed comparatively less in case of cows of late lactation stage. With the yield of milk per day (milking twice), the carryover concentration was observed independent to the intake of AFB\textsubscript{1} as nearly constant. The complications related to aflatoxin M\textsubscript{1} contaminated milk and the significance of healthy milk and its dairy products have rendered various researchers to monitor the factors affecting the level of AFM\textsubscript{1} contamination in milk and its products [5]-[7]. Impact of various factors such as geographical regions, climatic factors, types of feeds etc. have been evidenced to influence the incidence and prevalence of aflatoxin M\textsubscript{1} in milk [1], [4], [5], [6]. However, in this specified geographical region, there is no previous recorded study with regard to aflatoxin M\textsubscript{1} level in milk in relation to the milk yields and lactation period of cows. The aim of this study was to determine the carryover rate of aflatoxin M\textsubscript{1} in the milk of early lactating period (3-4 weeks after calving) and late lactating period (34-36 weeks after calving) of cows.

\textbf{Keywords:} Aflatoxin, AFB\textsubscript{1}, AFM\textsubscript{1}, Bhagalpur, Milk toxin.

1. Introduction

Mycotoxins are secondary metabolites produced by some toxigenic fungi under conducive conditions of temperature and humidity [1]. Broad range of food and feeds are contaminated by this toxin. Aflatoxins produced by \textit{Aspergillus flavus}, \textit{A. parasiticus} and \textit{A. nomius} is highly toxic and hazardous to animals and human beings [2]. Aflatoxin M\textsubscript{1}, also known as milk toxin, is a hydroxyl metabolite of aflatoxin B\textsubscript{1}, metabolized in the liver of cattle and is being secreted in bile, urine, dung and also in milk of lactating cattle [3], [4]. These toxins can cause carcinogenic, mutagenic, teratogenic and immunosuppressive effect on many animal species including human. Humans may be exposed to aflatoxin M\textsubscript{1} through the consumption of contaminated milk. The toxin might cause unfavourable effects in the human body [1], [3]. However, aflatoxin M\textsubscript{1} is less poisonous than aflatoxin B\textsubscript{1}, and according to the International Agency for Research on Cancer (IARC) classification, aflatoxin B\textsubscript{1} and M\textsubscript{1} were classified as group 1 and 2 of the human carcinogens, respectively [2], [4]. Milk in almost every part of world is the main dietary intake of infants, old and weak/ sick people. Hence, consumption of AFM\textsubscript{1} contaminated milk (exceeding the regulatory limit of USFDA, EU and CAC) can adversely affect the health of children, old and weak and susceptible people.

2. Materials and Methods

A. \textit{AFB\textsubscript{1} analysis in feed of cows}

The qualitative and quantitative test for AFB\textsubscript{1} was done employing the methods previously discussed [7].

B. Milk sample collection

Raw milk was collected twice (morning and evening) from each cow and was stored in sterile plastic container. The samples of milk obtained during morning and evening time from each cow were mixed in the ratio of the quantity it was produced. The resultant quantity was labelled as Day 1 and sample from the mixture was considered for AFM\textsubscript{1} testing.
C. Extraction

For the determination of AFM1, the method used was the AOAC, 2000. 50 ml of different milk samples was added to the 10 ml saturated salt solution (40gm NaCl in 100ml of water) and was shaken gently. Final preparation was further added to chloroform (120 ml) at 30 ºC in a 250 ml separating funnel and allowed filtrate to settle for 2-3 minutes. Filtrate was then taken for column chromatography.

D. Column chromatography

Silica gel slurry made with 2gm silica gel and CHCl3 was added to the column containing half-filled CHCl3. Sodium sulphate (2 gm) was further added in the column. Excess CHCl3 was drained out and sides of column was rinsed with CHCl3. The milk sample was added to the column and drained entire solution through column simultaneously Sodium sulphate was stirred gently. The cylinder was rinsed with CHCl3 and it was again added to the column. Then was washed off with 25 ml toluene and acetic acid (9+1). This removed any coloured compounds in the column. Further, column was washed with 25 ml of hexane, ether and acetone (5+3+2) for fat removal. Finally, aflatoxin M1 eluted with 40 ml CHCl3 and acetone (4+1). The elute was evaporated to dry and was used for TLC technique.

E. Thin Layer chromatography

The residue of sample was dissolved in 100 μl of benzene and acetone (9+1) solution by mixing them and further, spots on TLC plate were marked. Spot 20μl of test solutions and 2, 4, 6, 8 and 10μl aflatoxin M1 standard (0.25 μg/ml). The plate was developed in chloroform - acetone – isopropanol (87+10+3) and Aflatoxin M1 was calculated in μg/ kg or ppb.

3. Results and Discussion

Carry-over rate of low milking cows (<20 kg milk yield/ day) was observed (milked twice daily) as 1-2% of AFB1 and high milking cows showed up to 6%. Multiple factors affecting the carry over rates were differences in species/ breed, physiology/ health of the cattle, biotransformation capacity of liver, types of feed etc. [8], [9]. C1, C2C10 indicate the cow numbered for experimental purposes.

Table 1 shows the summarized data of milk yield during early lactation stage of ten cows and their respective carryover rates of AFM1. During early lactation, the cows were in 2-4 weeks after calving and same cows while in late lactation period (34 to 36 weeks after calving) were employed for our present investigation. Consumption of AFB1 cattle feed was analysed for each cow and accordingly it was found that the mean intake of aflatoxin B1 during early lactation period was 40.7 ± 3.6μg/ day. The mean concentration of AFM1 toxin during early lactating cows was 0.05 ± 0.01μg/kg, which was 2.1± 0.027μg/day. The average carry over rate was 0.50%. The carryover rate varied from 0.041 ± 0.007 to 0.058 ± 0.011. Various researchers have studied the metabolism of AFB1 in cattle feed to AFM1 in the milk yield [10]-[13].

Table 2 shows the AFB1 intake and AFM1 excretion by the selected cows during late lactation (34.36 weeks after calving).

Lactation period	Cows	AFM1 concentration in milk (µg/kg)	AFM1 excretion in milk (µg/day)	Carry-over rate
Early lactation	C1	0.06 ± 0.02	2.3 ± 0.46	0.051 ± 0.009
	C2	0.05 ± 0.01	2.4 ± 0.47	0.043 ± 0.008
	C3	0.05 ± 0.01	2.2 ± 0.42	0.058 ± 0.011
	C4	0.04 ± 0.01	2.1 ± 0.31	0.041 ± 0.007
	C5	0.05 ± 0.02	2.1 ± 0.44	0.048 ± 0.009
	C6	0.06 ± 0.01	2.1 ± 0.39	0.056 ± 0.011
	C7	0.05 ± 0.01	2.2 ± 0.51	0.057 ± 0.009
	C8	0.04 ± 0.01	1.7 ± 0.35	0.041 ± 0.008
	C9	0.05 ± 0.01	2.2 ± 0.53	0.053 ± 0.010
	C10	0.06 ± 0.02	2.5 ± 0.61	0.054 ± 0.011
Mean		0.05 ± 0.01	2.1 ± 0.27	0.050 ± 0.007

Lactation period	Cows	AFM1 concentration in milk (µg/kg)	AFM1 excretion in milk (µg/day)	Carry-over rate
Late lactation	C1	0.03 ± 0.02	0.9 ± 0.72	0.023 ± 0.009
	C2	0.04 ± 0.02	0.7 ± 0.34	0.019 ± 0.010
	C3	0.04 ± 0.01	0.7 ± 0.89	0.019 ± 0.006
	C4	0.03 ± 0.01	0.6 ± 0.17	0.017 ± 0.008
	C5	0.03 ± 0.02	0.4 ± 0.66	0.011 ± 0.006
	C6	0.05 ± 0.03	1.0 ± 0.53	0.027 ± 0.010
	C7	0.05 ± 0.02	0.5 ± 0.81	0.014 ± 0.013
	C8	0.03 ± 0.02	0.3 ± 0.59	0.008 ± 0.008
	C9	0.04 ± 0.01	0.4 ± 0.61	0.011 ± 0.010
	C10	0.05 ± 0.01	0.7 ± 0.49	0.019 ± 0.007
Mean		0.04 ± 0.02	0.6 ± 0.21	± 0.005
An average the daily intake of AFB₁ during late lactating period was 34.4 ± 1.08 µg/day. During late lactation period the yield of milk from same cow, however, decreased (9.4 ± 1.45 kg/day). Mean production of milk from the cows were 10.1 ± 1.39 kg/day during this period of milking. Mean AFM₁ concentration in milk was 0.04 ± 0.02µg/kg, which was 0.5 ± 0.21 µg/day. The mean carry-over rate observed in this period was recorded to be 0.016 ± 0.005 (ranging from 0.009 ± 0.008 to 0.024 ± 0.009).

There was no significant correlation among AFM₁ concentration in milk, carryover rate by individual cow and the amount of AFB₁ consumed by respective cow. Our observations are in conformity with the previous work [14]. They fed the cattle with AFB₁ contaminated feed (57 to 311µg/day per cow) and the resultant carry-over rate was found independent of AFB1 intake ingested.

Remarkable differences were found in the carry over rate of aflatoxin between early lactation and late lactation period of milking. While comparing two different lactating periods, the difference of carryover rate was found in a factor of 3.1. Variation among the AFM₁ excretion has been observed among the cows of same stage fed with similar AFB₁ concentration. This has been supported by the fact that conversion of AFB₁ to AFM₁ in liver is partially excreted by the urine and by way of bile to faeces (apart from milk) [12]. The variation in the carry-over rate of each cow can be supported with the fact that the metabolism/ conversion of AFB₁ to AFM₁ can be due to variation in activities of enzyme of the MFO (mixed function oxidase) system. Moreover, the conversion of AFB₁ is not only converted to AFM₁ but also to AFP₁ and AFQ₁ [10].

![Figure 1. Relationship between milk yield and carry-over rate of aflatoxin](image)

Figure 1 shows relation between the milk yield and carry-over rate of aflatoxin from AFB₁ to AFM₁. The data reflects the facts that with the variation in the milk yield, the carry-over rate can be predicted (if other variables such as lactation period, age of the cows etc. remain same). This is in conformity with the results obtained by earlier researchers [15], [16]. The metabolism of AFB₁ to AFM₁ is performed in the liver of lactating cows and are disposed out of the body through bile, urine, faeces and milk [3], [4]. Partial conversion of AFB₁ occurs to AFM₁ occurs and rest to other forms of toxins. It is evident that more milk production by the cow, there are the chances of more AFM₁ contamination in milk. Previous workers [11], [17] observed that high milk yield could intensify the effect on AFM₁.

4. Conclusion

The presence of AFM₁ in the milk of the cows is a result of carryover by the ingestion of AFB₁ contaminated feed. AFB₁ is metabolized and hydroxylated to form AFM₁ in the cows which are excreted through the milk. Mean percent AFM₁ contamination was comparatively high in the milk produced by early lactating cows than late lactating cows. The food intake by early lactating cows and late lactating cows are nearly similar. The intake of diet/feed were metabolized to excrete bile, urine, faeces and milk. Hence, the toxin gets excreted out through various discharges. Thus it relates to the finding that amount of toxins will vary with the amount of excretions. The observation leads to a finding that amount of milk yielded by the cows is in correlation with the AFM₁ contamination of the milk.

Acknowledgement

Authors are thankful to UGC, Regional office, Kolkata for financial assistance (Sanction no. – F.PSB-34/13-14 ERO).

References

[1] Becker-Algeri TA, Castagnaro D, de Bortoli K, de Souza C, Drunkler DA, Badiale-Furlong E. Mycotoxins in bovine milk and dairy products: a review. J Food Sci. 2016; 81(3):544-52.
[2] Scaglioni PT, Becker-Algeri T, Drunkler D, Badiale-Furlong E. Aflatoxin B1 and M1 in milk. Anal Chim Acta. 2014; 829:68-74.
[3] Govaris A, Roussi V, Koidis PA, Botsoglou NA. Distribution and stability of aflatoxin M1 during processing, ripening and storage of Telemes cheese. Food Addit Contam. 2001; 18(5):437-43.
[4] Womack ED, Sparks DL, Brown AE. Aflatoxin M1 in milk and milk products: a short review. World Mycotoxin Journal. 2016; 9: 305 – 315.
[5] Ismail A, Akhtar S, Levin RE, Ismail T, Riaz M, Amir M. Aflatoxin M1: Prevalence and decontamination strategies in milk and milk products. Crit Rev Microbiol. 2016; 42(3):418-27.
[6] Sahin HZ, Celik M, Kotay S, Kabak B. Aflatoxins in dairy cow feed, raw milk and milk products from Turkey. Food Addit Contam Part B Survell. 2016; 9(2):152-8.
[7] A. K. Choudhary, P. Kumar, S. tudu, A. Ranjan, “Present status, prevalence and seasonal variations of aflatoxin in cattle feed, Bihar, India,” Indian Journal of Science and Technology, vol. 13, no. 17, pp. 1738-1745, 2020
[8] Battacone, G., Nudda, A., Cannas, A., Borlinio, A. C., Bomboi, G., & Pulina, G. (2003). Excretion of aflatoxin M1 in milk of dairy ewes treated with different doses of aflatoxin B1. Journal of Dairy Science, 86(8), 2667-2675.
[9] Diaz, D. E., Hagler, W. M., Blackwelder, J. T., Eve, J. A., Hopkins, B. A., Anderson, K. L., ... & Whitlow, L. W. (2004). Aflatoxin binders II: Reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. Mycopathologia, 157(2), 233-241.
[10] Veldman, A., Meijis, J. A. C., Borggreve, G. J., & Heeres-Van der Tol, J. J., Carry-over of aflatoxin from cows’ food to milk. Animal Science, vol. 55, no. 2, 163-168, 1992
[11] Mosoero, F. R. A. N. C. E. S. C. O., Gallo, A., Moschini, M., Piva, G. I. A. N. F. A. N. C. O., & Diaz, D., “Carry-over of aflatoxin from feed to milk in dairy cows with low or high somatic cell counts,” Animal, vol. 1, no. 9, 1344-1350, 2007.
[12] Britzi, M., Friedman, S., Miron, J., Solomon, R., Cuneah, O., Shimshoni, J. A., & Shlosberg, A. (2013). Carry-over of aflatoxin B1 to aflatoxin M1
in high yielding Israeli cows in mid-and late-lactation. *Toxins*, 5(1), 173-183.

[13] Nile, S., Park, S., & Khobgarade, C (2015). Occurrence and analysis of aflatoxin M1 in milk produced by Indian dairy species, Food and Agriculture Immunology.

[14] Munksgaard, L., Larsen, J., Werner, H., Andersen, P. E., & Viuf, B. T. (1987). Carryover of aflatoxin from cows’ feed to milk and milk products. *Milchwissenschaft*, 42(3), 165-167.

[15] Van Eijkeren, J. C., Bakker, M. I., & Zeilmaker, M. J. (2006). A simple steady-state model for carry-over of aflatoxins from feed to cow’s milk. *Food additives and contaminants*, 23(8), 833-838.

[16] Sumantri, I., Murti, T. W., Van der Poel, A. F. B., Boehm, J., & Agus, A. (2012). Carry-over of aflatoxin B1-feed into aflatoxin M1-milk in dairy cows treated with natural sources of aflatoxin and bentonite. *Journal of the Indonesian Tropical Animal Agriculture*, 37(4), 271-277.

[17] Lafont, P., Sarfati, J., Jacquet, J., Gaillardin, M., & Lafont, J. (1983). Influences de facteurs pathologiques et nutritionnels sur l’élimination de l’aflatoxine par la mamelle chez la vache. *Microbiologie Aliments Nutrition*, 1, 293-300.