Caspase 3 as a Novel Marker to Distinguish Chromophobe Renal Cell Carcinoma from Oncocytoma

Adam Kowalewski1, Łukasz Szylberg1, Janusz Tyloch2, Paulina Antosik1, Izabela Neska-Długosz1, Łukasz Frąckowski2, Dominik Tyloch2, Piotr Purpurowicz2, Dariusz Grzanka1

Received: 12 December 2017 / Accepted: 16 November 2018 / Published online: 22 November 2018
© The Author(s) 2018

Abstract
Despite advances in our understanding of the biology of chromophobe renal cell carcinoma (ChRCC) and renal oncocytoma (RO), the differential diagnosis among these tumors remains one of the most problematic in renal pathology. Today, CK7 is the most recommended marker to distinguish these entities, however it appears insufficiently accurate by itself. This study aimed to find an easily accessible IHC stain that might out-compete CK7 in this field. Expressions of CK7, cyclin D1, p16, survivin, CD138, Ki-67 and caspase 3 (CASP3) were analyzed in a total of 27 cases (20 ROs and 7 ChRCCs). Immunoreactivity was assessed based on a combined score of the extent and intensity of staining. Compared to RO, a higher percentage of the total ChRCCs stained positive for CK7 (67% vs. 22%, respectively) and CASP3 (86% vs. 25%) (P < 0.005). The differences in staining with cyclin D1, p16, survivin, CD138 and Ki-67 turned out to be statistically insignificant in differentiating ChRCC from RO. CASP3 is a promising marker in distinguishing ChRCC from RO and may represent an alternative for CK7. Cyclin D1, p16, survivin, CD138 and Ki-67 cannot be used to distinguish these neoplasms.

Keywords Chromophobe · ChRCC · Oncocytoma · Caspase 3 · CASP3 · Cyclin D1 · p16 · Survivin · CD138 · Ki-67

Introduction
Differential diagnosis among chromophobe renal cell carcinoma (ChRCC) and renal oncocytoma (RO) is one of the most problematic distinctions between renal neoplasms [1]. Despite the fact that numerous techniques for differentiating these two tumor histologies have been explored over the years, including histochemical stains, immunohistochemistry, chromosomal changes, molecular assays, and electron microscopy, we still encounter borderline cases [2]. Because oncocytoma is a benign disease, differentiating it from ChRCC is important in that it can often be treated conservatively [3]. ChRCC, on the other hand, is a serious condition and requires surgical removal [4, 5]. At present, histological features together with limited CK7 and Hale’s colloidal iron staining are most agreed upon for RO [2]. For tumors with mixed or inconclusive features, pathologists typically use the term “oncocytic renal neoplasm” with a comment that ChRCC cannot be completely excluded to be preferable to overdiagnosing a likely benign neoplasm as ChRCC [2].

To prevent such situations from happening and provide patients more accurate diagnosis, our team tried to find more suitable stain, which is also applicable in most pathology laboratories.

Heterogeneous nature of these two tumors constituted the starting point for the search. We presumed that ChRCC and RO might differ in proteins expressions proved to correlate with aggressiveness in other neoplasms.

We selected cyclin D1, p16, survivin, CD138, Ki-67 and caspase 3 (CASP3).

Material and Methods

Study Population
Pathologic records of 639 consecutive patients who underwent nephrectomy or nephron-sparing surgery for renal
tumors between 2009 and 2017 were assessed in accordance with the Institutional Review Board guidelines. The study was performed in accordance with the Declaration of Helsinki.

We retrieved 24 cases of RO and 11 cases of ChRCC. All available hematoxylin and eosin (H&E) slides were reviewed and diagnosis was confirmed based on the presence of specific morphologic features. Vimentin and CD117 were used to exclude clear cell renal cell carcinoma and papillary renal cell carcinoma. Lesions that could not be diagnosed with the highest level of confidence were excluded. Ultimately, 20 cases of RO and 7 cases of ChRCC were enrolled in the study as the most representative sample. To minimize bias, clinicopathologic data such as sex, age, and tumor-node-metastasis stage are not mentioned.

Immunohistochemistry

For immunohistochemistry, unstained 3 μm sections from FFPE tissue specimens were cut on the manual rotary microtome (AccuCut, Sakura, Torrance, USA). The immunohistochemical procedure was standardized using a series of positive and negative control reactions. Immunohistochemical stainings were performed according to well-known protocols [6, 7]. We investigated expressions of proteins: CK7, cyclin D1, p16, survivin, CD138, Ki-67 and cleaved CASP3.

For primary antibodies such as rabbit monoclonal cytokeratin 7 (SP52), rabbit monoclonal cyclin D1 (SP4-R), mouse monoclonal p16 (E6H4) and mouse monoclonal Ki-67 (30-9) (Ventana Medical Systems) immunohistochemical staining was performed on the Benchmark GX Platform (Ventana Medical Systems, Tuscon, AZ, USA). We used visualization system UltraView DAB IHC Detection Kit (Ventana Medical Systems, Tuscon, AZ, USA) as recommended by the producer. Using the EnVision system detection (Dako; Agilent Technologies, Inc., Santa Clara, CA, USA), immunohistochemical procedure was performed for monoclonal mouse Survivine (12C4), monoclonal mouse CD138 (MI15), (Dako; Agilent Technologies, Inc., Santa Clara, CA, USA) and CASP3 (Ab13847) (Abcam, Cambridge, UK).

Scoring of Immunoreactivity

For each studied antibody, antigen expression evaluation was scored on a two-point scale: 0 - negative IHC reaction result, 1 – positive IHC reaction result. We consider such approach transparent and useful in routine diagnostics. Slides were examined in the light microscope ELIPSE E800 (Nikon Instruments Europe, Amsterdam, Netherlands) at 10x and 20x original objective magnification. Scoring was repetitively performed by three pathologists who were blinded to the clinical information.

Statistical Analysis

All statistical analyses were performed using Statistica version 10 (StatSoft) and Microsoft Excel 2007. The comparative studies were analyzed statistically using the nonparametric chi-square test. The P value <0.05 was considered statistically significant.

Results

The immunohistochemical results of CK7, CASP3, cyclin D1, p16, survivin and CD138 in ChRCCs and ROs are reported in Table 1. 67% of ChRCCs revealed cytoplasmic positivity with membrane accentuation for CK7 whereas only 22% of ROs were positive for CK7 and revealed staining in only single cells (Fig. 1). The level of CK7 in ChRCCs was significantly higher than in RO group (p = 0.0047). CASP3 protein was strongly expressed in 75% of ChRCCs (Fig. 1) and the staining was cytoplasmic and selectively nuclear. Only 25% of RO were positive for CASP3. The level of CASP3 in ChRCCs was significantly higher than in RO group (p = 0.0001). Cyclin D1 expression was observed in 58% of ChRCCs and 38% of ROs. None of the ChRCCs were positive for survivin, whereas only 5% of ROs were positive. 17% of ChRCCs and 8% of ROs were positive for p16. CD138 positivity was found in 25% of ChRCCs and 24% of ROs. Cyclin D1, p16, survivin and CD138 did not reach statistical significance. Low number of ChRCC and RO cells were positive for Ki-67, 1% (±1.94) and 1% (±1.37), respectively (Table 2). CK7 and CASP3 help discriminate between ChRCC and RO. CASP3 showed 75% specificity, whereas the sensitivity was 86%. CK7 had high specificity (78%) and lower sensitivity (67%). Representative immunohistochemical staining is illustrated in Fig. 1.

Table 1 The immunohistochemical results of CK7, CASP3, cyclin D1, p16, survivin and CD138 in ChRCC and RO. CASP3, caspase 3; ChRCC, chromophobe renal cell carcinoma; RO, renal oncocytoma

Antigen	Kidney tumor	Immunopositive (%)	Immunonegative (%)	Statistical significance
CK7	RO	22	78	p = 0.0047
	ChRCC	67	33	
CASP3	RO	25	75	p = 0.0001
	ChRCC	86	14	
Cyclin D1	RO	38	62	p = 0.2125
	ChRCC	58	42	
p16	RO	8	92	p = 0.3947
	ChRCC	17	83	
Survivin	RO	5	95	p = 0.4043
	ChRCC	0	100	
CD138	RO	24	76	p = 0.9259
	ChRCC	25	75	
Discussion

Overlapping morphologic characteristics of RO and ChRCC pose a diagnostic challenge. Hence, a range of methods emerged as an adjunct to conventional H&E staining.

Electron microscopy was performed in the past. Now it is found time-consuming and too expensive. Genetic testing, although not available in most facilities [8, 9], may be used to confirm a diagnosis of numerous neoplasms, including RO and ChRCC. Using next-generation sequencing (NGS), Durinck et al. analyzed exome, transcriptome, and copy number alteration data from primary renal tumors. Analysis of differential expression in ChRCC versus RO identified a minimal set of 5 genes - ASB1, GLYAT, PDZK1IP1, PLCG2 and SDCBP2 - that were sufficient to separate ChRCC from RO [10]. In addition to widespread differences in gene expression between ChRCC and RO, unsupervised clustering of mRNA profiles indicated further molecular heterogeneity within ChRCC, with at least two subsets identified [11]. Gerlinger et al. detected expression signatures of good or poor prognosis in different regions of the same renal tumor [12]. It may account for the benefits associated with cytoreductive nephrectomy [13, 14] that would eliminate an evolutionary reservoir of phenotypic tumor-cell diversity. This is why particularly renal intratumor heterogeneity leads to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and presents major challenges to personalized-medicine and IHC markers development [12]. On the other hand, identification of the most accurate stain for separation ChRCC from RO may help reconstruct the trunk of the phylogenetic tree and also contribute to novel therapeutic approaches.

Hale colloidal iron stain, despite its specificity, is technically demanding and frequently difficult to assess. Multitude of markers including CK7, kidney-specific cadherin, CD10, EMA, RCC, MOC31, S100A1, parvalbumin and RON proto-oncogene have been used to distinguish ChRCC from RO, however no single marker appears sufficiently accurate by itself [8, 15]. For this reason panels of markers were suggested [9, 16]. Although the panels achieved higher sensitivity and specificity than any marker alone, they did not become as popular as CK7 in this field [2].

In ChRCC there is a strong and diffuse staining for CK7, comparing to scattered single cells in RO [1]. Five studies are compatible with this statement [9, 17–20]. Remaining authors reported lower sensitivity and specificity of this marker [21–23]. They indicated that positive CK7 immunostaining

Antigen	Kidney tumor	Median	Mean	Std. Deviation	Statistical significance
Ki-67	RO	1	1,34	1,37	p = 0.555
	ChRCC	1	1,83	1,94	
starts from 63% of ChRCC patients [24], while scattered single positive cells might be observed in only 4% of RO cases [25]. The conflicting results could be caused by the variance in pathologic diagnosis, tumor heterogeneity, use of different antibodies and reagents for the studies, and different laboratory staining procedures. Some of CK7 negative cases may be better classified as oncocytic renal neoplasm unless EM proves that they are ChRCC. Our results support the utility of CK7, however its low sensitivity (67%) discourages from using it as the only stain. Nevertheless, CK7 staining remains the most recommended in differential diagnosis between ChRCC and RO [1]. That indicates the growing need of novel, reliable and easily accessible marker that individually or together with histologic findings solves the dilemma.

Cyclin D1 was considered promising due to its role in progression through the G1 phase of the cell cycle. Deregulation of cyclin D1 not only promotes mitogen-independent proliferation, but also affects other cellular processes, both directly and indirectly, in ways that have potentially oncogenic consequences [26]. Cyclin D1 was highly expressed in close to half of ROs (38%) and ChRCCs (58%) suggesting its complex role in biology of both of these tumors. Nevertheless, its role in distinguishing both tumors is unsatisfactory.

p16 contributes to the regulation of cell cycle progression by inhibiting the S phase, and is one of the main factors to avert tumor formation. Close to 50% of all cancers show p16 inactivation. Intriguingly, overexpression of p16 has also been described in several tumors [27]. Most of ROs and ChRCCs were p16 negative indicating that their cells similarly evade the senescence.

Survivin is involved in inhibition of apoptosis and regulation of cell cycle. Expression pattern of survivin is distinctive; it is prominently expressed during embryonal development, absent in most normal, terminally differentiated tissues but upregulated in a variety of cancers. Expression of survivin correlates with aggressiveness of tumors [28]. According to our results, survivin plays no significant role in biology of RO, nor ChRCC.

CD138 (syndecan-1) is well known to be associated with cell proliferation, adhesion, and migration in various malignancies. CD138 promotes angiogenesis in ductal breast carcinomas [29] and correlates with urothelial cancer recurrence [30]. CD138 appeared highly expressed in one fourth of both ROs and ChRCCs and cannot be used to distinguish these neoplasms.

ROs and ChRCCs differ in growth kinetics. Richard et al. reported that annual growth rate was 0.14 cm for RO and 0.38 cm for ChRCC [31]. Expression of cell proliferation marker such as Ki-67 might reflect these differences. The fraction of Ki-67-positive tumor cells is often correlated with the clinical course of cancer [32]. The differences in staining with Ki-67 turned out to be statistically insignificant in distinguishing ChRCC from RO.

CASP3 is a cysteine-aspartic acid protease that plays a central role in the execution-phase of cell apoptosis. Although CASP3 activation causes cell death in the host cell, it has been found to stimulate cell proliferation in neighbouring, non-apoptotic cells [33]. Fang et al. named this mechanism the “Phoenix Rising” pathway, as it is a manifestation of the inextricable link between the Yin and Yang of cellular life and death in metazoan organisms. This phenomenon is important in wound healing and tissue regeneration [34], however it may potentially hinder success in cancer therapy. Emerging evidence has indicated that apoptotic tumor cells stimulate the repopulation of tumors from a small number of surviving cells by CASP3 regulation. High levels of activated CASP3 significantly correlate with a poor prognosis in a number of cancers [33, 35–37]. Distinct outcomes in patients with RO and ChRCC might be a result of different CASP3 expression accordingly.

Both RO and ChRCC share a common origin from intercalating cells of the distal renal tubules [38, 39]. Their common coexistence causes difficulty to render a diagnosis basing on limited tissue biopsy samples. As a general rule, if the lesion resembles ChRCC on needle biopsy, it can be confidently reported as such. By comparison, a lesion resembling RO may be incompletely sampled, with other areas merging into the ChRCC. In fact, it may be a hybrid oncocytic/chromophobe tumor or oncocytoma-like areas in ChRCC [8, 40]. The existence of a hybrid together with similarity of both neoplasms speak for the concept that these entities might belong to the same morphologic spectrum [41]. Perhaps under certain circumstances ChRCC may actually arise from RO and alteration in CASP3 expression plays a pivotal role in the malignant transformation. That would explain high sensitivity and specificity of this marker.

Features	RO	ChRCC
Micro description	Nests floating in hypocellular stroma	Diffuse, sheet like pattern
	Clear cells only focally in hyalinized scars	Clear cells usually prominent, frequently peripheral in nests
		Perinuclear halos
Histochemistry	Hale colloidal iron (−)	Hale colloidal iron (+)
Immunohistochemistry	CASP3 (−); CK7 (−)	CASP3 (+); CK7 (+)
Conclusions

CK7 does not show the satisfactory immunoreactivity in ChRCCs and ROs. Meanwhile, a very high level of diagnostic certainty is required if surgical intervention is to be avoided. We propose CASP3 as a reliable and also easily accessible marker. Our results show that CASP3 fits the optimal diagnostic strategy of separation ChRCC from RO (Table 3). Further studies are needed to investigate this approach.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Differential diagnosis - renal oncocytoma - surgical pathology criteria - Stanford university school of medicine. at <http://surgpathcriteria.stanford.edu/kidney/oncocytoma-renal/differential-diagnosis.html>. Accessed 4 Dec 2017

2. Williamson SR, Gadde R, Trpkov K, Hirsch MS, Srigley JR, Reuter VE, Cheng L, Kenji LP, Barod R, Rogers CG, Delahunt B, Hes O, Eble JN, Zhou M, McKenney JK, Martignoni G, Fleming S, Grignon DJ, Moch H, Gupta NS (2017) Diagnostic criteria for oncocytic renal neoplasms: a survey of urologic pathologists. Hum Pathol 63:149–156

3. Žokaj L, Marotti M, Kolarí B (2014) Pretreatment differentiation of renal cell carcinoma subtypes by CT: the influence of different tumor enhancement measurement approaches. Int Urol Nephrol 46:1089–1100

4. MacLennan S, Imamura M, Laptian MI, Lam TB, Hilvano-Cabungcal AM, Royle P, Stewart F, MacLennan G, MacLennan S, Canfield SE, McClintock S, Griffiths TR, Ljungberg B, N'Dow J, UCAN Systematic Review Reference Group, EAU Renal Cancer Guideline Panel (2012) Systematic review of oncological outcomes following surgical Management of Localised Renal Cancer. Eur Urol 61:972–993

5. Bellmunt J, Dutcher J (2013) Targeted therapies and the treatment of non-clear cell renal cell carcinoma. Ann Oncol 24:1730–1740

6. Bodnar M, Szylberg L, Kazmierczak W, Marszalek A (2015) Tumor progression driven by pathways activating matrix metallo-proteinsases and their inhibitors. J Oral Pathol Med 44:437–443

7. Bodnar M, Luszcz M, Bednarcz-K, Szylberg L, Marszalek A, Gremn M, Szytka J, Jarmuz-Szymczak M, Giewf M (2016) Proteomic profiling identifies the inorganic pyrophosphatase (PPA1) protein as a potential biomarker of metastasis in laryngeal squamous cell carcinoma. Amino Acids 48:1469–1476

8. Ng KL, Rajandream M, Morais C, Yap NY, Samaratunga H, Gobe GC, Wood ST (2014) Differentiation of oncocytoma from chromophobe renal cell carcinoma (RCC): can novel molecular biomarkers help solve an old problem? J Clin Pathol 67:97–104

9. Liu L, Qian J, Singh H, Meiers I, Zhou X, Bostwick DG (2007) Immunohistochemical analysis of chromophobe renal cell carcinoma, renal oncocytoma, and clear cell carcinoma: an optimal and practical panel for differential diagnosis. Arch Pathol Lab Med 131:1290–1297

10. Durinck S, Stawiski EW, Pavia-Jiménez A, Modrusan Z, Kapur P, Jaiswal BS, Zhang N, Toffessi-Tchenyap V, Nguyen TT, Pahuja KB, Chen YJ, Saleem S, Chaudhuri S, Heldens S, Jackson M, Peña-Llopis S, Guillory J, Toy K, Ha C, Harris CJ, Holloman E, Hill HM, Stinson J, Rivers CS, Janakiraman V, Wang W, Kinch LN, Grishin NV, Haverty PM, Chow B, Gehring JS, Reeder J, Pau G, Wu TD, Margulis V, Lotan Y, Sagalowsky A, Pedrosa I, de Sauvage FJ, Brugarolas J, Seshagiri S (2015) Spectrum of diverse genomic alterations define non–clear cell renal carcinoma subtypes. Nat Genet 47:13–21

11. Davis CF, Ricketts CJ, Wang M, Yang L, Chemiak AD, Shen H, Buhay C, Kang H, Kim SC, Fahey CC, Hacker KE, Bhanot G, Gordenin DA, Chu A, Gunaratne PH, Biehl M, Seth S, Kaiparettu BA, Bristow CA, Donehower LA, Walen EM, Smith AB, Tickoo SK, Tamboli P, Reuter V, Schmidt LS, Hsiej JH, Choueiri TK, Hakimi AA, Chin L, Meyerson M, Kucherlapati R, Park WY, Robertson AG, Laird PW, Henske EP, Kwiatkowski DJ, Park PJ, Morgan M, Shuch B, Muzny D, Wheeler DA, Linehan WM, Gibbs RA, Rathmell WK, Creighton CJ, Creighton CJ, Davis CF, Morgan M, Gunaratne PH, Donehower LA, Kaiparettu BA, Wheeler DA, Gibbs RA, Signoretti S, Cherniak AD, Robertson AG, Chu A, Choueiri TK, Henske EP, Kwiatkowski DJ, Reuter V, Hsiej JH, Hakimi AA, Tickoo SK, Ricketts C, Linehan WM, Schmidt LS, Gordenin DA, Bhanot G, Siebler M, Tamboli P, Rathmell WK, Fahey CC, Hacker KE, Smith AB, Walen EM, Shen H, Laird PW, Shuch B, Muzny D, Buhay C, Wang M, Chao H, Dahdouli M, Xi L, Kakkar N, Reid JG, Downs B, Drummond M, Morton D, Doddapaneni H, Lewis L, English A, Meng Q, Kovar C, Wang Q, Hale W, Hawes A, Kalra D, Walker K, Murray BA, Sougnez C, Saksena G, Carter SL, Schumacher SE, Tabak B, Zack TI, Getz G, Beroukhim R, Gabriel SB, Meyerson M, Ally A, Balasundaram M, Birol I, Brooks D, Butterfield YSN, Chauh E, Clarke A, Dhalla N, Guin R, Holt RA, Kasaian K, Lee D, Li H, Lim E, Ma Y, Mayo M, Moore RA, Mungall AJ, Schein JE, Sipahimalani P, Tama M, Thiessen N, Wong T, Jones SM, Marra MA, Auman JT, Tan D, Meng S, Jones CD, Hoadley KA, Mieczkowski PA, Mose LE, Jefferys SR, Roach J, Veluvelu U, Wilkerson MD, Waring S, Buda E, Wu J, Bodenheimer T, Hoyle AP, Simons JV, Soloway MG, Salu B, Parker JS, Hayes DN, Perou CM, Weisenberger DJ, Bootwalla MS, Triche T Jr, Lai PH, van den Berg DJ, Baylin SB, Chen F, Coara B, Noble MS, DiCara D, Zhang H, Cho J, Heimian DI, Gehrlohn N, Voet D, Lim P, Frazer S, Stojanov P, Liu Y, Zou L, Kim J, Lawrence MS, Chin L, Yang L, Seth S, Bristow CA, Protopopov A, Song X, Zhang J, Pantazi A, Hadjipanayis A, Lee E, Luetteji L, Lee S, Parfenov M, Santosio N, Seidman J, Xu AW, Kucherlapati R, Park PJ, Kang H, Lee J, Roberts SA, Fardjo D, Lang M, Choi YL, Kim SC, Lee JK, Park PW, Wang Y, Fan Y, Ahn J, Akbani R, Weinstein MN, Haussler D, Ma S, Radenbaugh A, Zhul J, Biehl M, Lichtenberg TM, Zmuda E, Black AD, Hanf B, Ramirez NC, Wise L, Bowen J, Leraaa KM, Hall TM, Gastier-Foster JM, Kaelin WG, Thorne L, Boice L, Huang M, Vocke C, Peterson J, Worrell R, Merino M, Czerniak BA, Aldape KD, Wood CG, Spellman PT, Atkins MB, Cheville J, Thompson RH, Jensen MA, Pihl T, Wan Y, Ayala B, Baboud J, Velaga S, Walton J, Liu J, Chudamani S, Wu Y, Sheth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L, Wang Z, Tarnuzzer RW, Zhang J, Eley G, Felau I, Zenklusen JC, Hutter CM, Guyer MS, Ozenberger BA, Davidsen T, Yang L, Seth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L, Wang Z, Tarnuzzer RW, Zhang J, Eley G, Felau I, Zenklusen JC, Hutter CM, Guyer MS, Ozenberger BA, Davidsen T, Yang L, Seth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L, Wang Z, Tarnuzzer RW, Zhang J, Eley G, Felau I, Zenklusen JC, Hutter CM, Guyer MS, Ozenberger BA, Davidsen T, Yang L, Seth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L, Wang Z, Tarnuzzer RW, Zhang J, Eley G, Felau I, Zenklusen JC, Hutter CM, Guyer MS, Ozenberger BA, Davidsen T, Yang L, Seth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L, Wang Z, Tarnuzzer RW, Zhang J, Eley G, Felau I, Zenklusen JC, Hutter CM, Guyer MS, Ozenberger BA, Davidsen T, Yang L, Seth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L, Wang Z, Tarnuzzer RW, Zhang J, Eley G, Felau I, Zenklusen JC, Hutter CM, Guyer MS, Ozenberger BA, Davidsen T, Yang L, Seth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L, Wang Z, Tarnuzzer RW, Zhang J, Eley G, Felau I, Zenklusen JC, Hutter CM, Guyer MS, Ozenberger BA, Davidsen T, Yang L, Seth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L, Wang Z, Tarnuzzer RW, Zhang J, Eley G, Felau I, Zenklusen JC, Hutter CM, Guyer MS, Ozenberger BA, Davidsen T, Yang L, Seth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L, Wang Z, Tarnuzzer RW, Zhang J, Eley G, Felau I, Zenklusen JC, Hutter CM, Guyer MS, Ozenberger BA, Davidsen T, Yang L, Seth M, Mills Shaw KR, Demchok JA, Davidsen T, Yang L,
13. Flanigan RC, Mickisch G, Sylvester R, Tangen C, van Poppel H, Crawford ED (2004) Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J Urol 171:1071–1076
14. Flanigan RC, Salmon SE, Blumenstein BA, Beanman SI, Roy V, McGrath PC, Caton JR Jr, Munshi N, Crawford ED (2001) Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med 345:1655–1659
15. Adam AC, Scriba A, Ortmann M, Huss S, Kahl P, Steiner S, Störkel S, Böttner R (2015) Immunohistochemical analysis of cytochrome c oxidase facilitates differentiation between Oncocytoma and Chromophobe renal cell carcinoma. Appl Immunohistochem Mol Morphol 23:54–59
16. Ohe C, Kuroda N, Takasu K, Senzaki H, Shikata N, Yamaguchi T, Miyasaka C, Nakano Y, Sakaeda N, Uemura Y (2012) Utility of immunohistochemical analysis of KAI1, epithelial-specific antigen, and epithelial-related antigen for distinction of chromophobe renal cell carcinoma, an eosinophilic variant from renal oncocytoma. Med Mol Morphol 45:98–104
17. Memeo L, Jhang J, Assaad AM, Mckiernan JM, Murty VVVS, Adam AC, Scriba A, Ortmann M, Huss S, Kahl P, Steiner S, Störkel S, Böttner R (2015) Immunohistochemical analysis of cytochrome c oxidase facilitates differentiation between Oncocytoma and Chromophobe renal cell carcinoma. Appl Immunohistochem Mol Morphol 23:54–59
18. Leroy X, Moukassa D, Copin MC, Saint F, Mazeman E, Gosselin B (2015) Role of p16INK4A overexpression in sporadic cases. BJU Int 103:1381–1384
19. Flanigan RC, Mickisch G, Sylvester R, Tangen C, van Poppel H, Crawford ED (2004) Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J Urol 171:1071–1076
20. Geramizadeh B, Ravanshad M, Rahsaz M (2008) Useful markers for differentiation of oncocytoma, chromophobe renal cell carcinoma and conventional renal cell carcinoma. Indian J Pathol Microbiol 51:167–171
21. Adley BP, Papavero V, Sugimura J, Teh BT, Yang XJ (2006) Diagnostic value of cytokeratin 7 and parvalbumin in differentiating chromophobe renal cell carcinoma from renal oncocytoma. Anal Quant Cytol Histol 28:228–236
22. Wu SL, Kothari P, Wheeler TM, Reese T, Connelly JH (2002) Cytokeratins 7 and 20 immunoreactivity in Chromophobe renal cell carcinomas and Oncocytomas. Mod Pathol 15:712–717
23. Bing Z, Lai P, Lu S, Ziober A, Tomaszewski JE (2013) Role of carbonic anhydrase IX, α-methylacyl coenzyme a racemase, cytokeratin 7, and galectin-3 in the evaluation of renal neoplasms: a tissue microarray immunohistochemical study. Ann Diagn Pathol 17:58–62
24. Huang W, Kanehira K, Drew S, Pier T (2009) Oncocytoma can be differentiated from its renal cell carcinoma mimics by a panel of markers. Appl Immunohistochem Mol Morphol 17:12–17
25. Garcia E, Li M (2006) Caveolin-1 Immunohistochemical analysis in differentiating Chromophobe renal cell carcinoma from renal Oncocytoma. Am J Clin Pathol 125:392–398
26. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11:558–572
27. Romagosa C, Simonetti S, López-Vicente L, Mazo A, Lleonart ME, Castellvi J, Ramon y Cajal S (2011) p16INK4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30:2087–2097
28. Garg H, Suri P, Gupta JC, Talwar GP, Dubey S (2016) Survivin: a unique target for tumor therapy. Cancer Cell Int 16(49):49
29. Götte M, Kersting C, Radke I, Kiesel L, Wülfing P (2007) An expression signature of syndecan-1 (CD138), E-cadherin and e-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ. Breast Cancer Res 9:R8
30. Shimada K, Nakamura M, de Velasco MA, Tanaka M, Ouij Y, Miyake M, Fujimoto K, Hirao K, Konishi N (2010) Role of syndecan-1 (CD138) in cell survival of human urothelial carcinoma. Cancer Sci 101:155–160
31. Richard PO, Jewett MAS, Bhattachar J, Evans AJ, Timilsina N, Finelli A (2016) Active surveillance for renal neoplasms with Oncocytic features is safe. J Urol 195:581–586
32. Li L, Jiang G, Chen Q, Zheng J (2014) Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol Med Rep 11:1566–1572
33. Flanagan L, Meyer M, Fay J, Curry S, Bacon O, Duesmann H, John K, Boland KC, McNamara DA, Kay EW, Bantel H, Schulze-Bergkamen H, Prehn JHM (2016) Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. Cell Death Dis 7:e2087
34. Li F et al (2010) Apoptotic cells activate the "phoenix rising" pathway to promote wound healing and tissue regeneration. Sci Signal 3:ra13–ra13
35. Hu Q, Peng J, Liu W, He X, Cui L, Chen X, Yang M, Liu H, Liu S, Wang H (2014) Elevated cleaved caspase-3 is associated with shortened overall survival in several cancer types. Int J Clin Exp Pathol 7:5057–5070
36. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O'Sullivan B, He Z, Peng Y, Tan AC, Zhou L, Shen J, Han G, Wang XJ, Thorburn J, Thorburn A, Jimeno A, Raben D, Bedford JS, Li CY (2011) Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17:860–866
37. Takata T, Tanaka F, Yamada T, Yanagihara K, Otake Y, Kawano Y, Nakagawa T, Miyahara R, Oyanagi H, Inui K, Wada H (2001) Clinical significance of caspase-3 expression in pathologic-stage I, non-small-cell lung cancer. Int J Cancer 96:54
38. Dunnick, R., Sandler, C. M. & Newhouse, J. H. Textbook of Uroradiology. (Wolters Kluwer Health, 2012). at <https://books.google.com/books?id=FicoXJbIdoDC&pg=PA128&lpg=PA128&dq=oncocytoma+collecting+duct&source=bl&ots=KAC89KWv-G&sighJVnW3gP-aYnPMGyds4SlgZjU&hl=en&sa=X&ved=0ahUKEwiLlv2PlpXWAhVvSZoKHYibBOYQ6AEIVjAN#v=onepage&q=oncocytoma+collecting+duct&f=.> Accessed 4 Dec 2017
39. Van der Kwast T, Perez-Ordoñez B (2007) Renal oncocytoma, yet another tumour that does not fit in the dualistic benign/malignant paradigm? J Clin Pathol 60:585–586
40. Hes O, Petersson F, Kuroda N, Hora M, Michal M (2013) Renal hybrid oncocytic/chromophobe tumours - a review. Histol Histopathol 28:1257–1264
41. Delongchamps NB, Galmiche L, Eiss D, Rouach Y, Vogt B, Simtis MO, Vieillefond A, Méjean A (2009) Hybrid tumour ‘oncocytoma-chromophobe renal cell carcinoma’ of the kidney: a report of seven sporadic cases. BJU Int 103:1381–1384