Simon Labbé’s work on iron and copper homeostasis

Simon Labbé

Simon Labbé, Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke J1H 5N4, Canada

Author contributions: Labbé S solely contributed to this manuscript.

Supported by The Canadian Institutes for Health Research (MOP-36450 to Labbé S), Natural Sciences and Engineering Research Council of Canada (MOP-238238-2010 to Labbé S), and the Fonds de la Recherche en Santé du Québec (Senior Investigator Scholarship to Labbé S)

Correspondence to: Simon Labbé, PhD, Professor, Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke J1H 5N4, Canada. simon.labbe@usherbrooke.ca

Telephone: +1-819-5645281 Fax: +1-819-5645340
Received: May 8, 2010 Revised: May 18, 2010
Accepted: May 25, 2010 Published online: May 26, 2010

Abstract

Iron and copper have a wealth of functions in biological systems, which makes them essential micronutrients for all living organisms. Defects in iron and copper homeostasis are directly responsible for diseases, and have been linked to impaired development, metabolic syndromes and fungal virulence. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of iron- and copper-dependent proteins in living systems. Simon Labbé maintains parallel programs on iron and copper homeostasis using the fission yeast Schizosaccharomyces pombe (Schiz. pombe) as a model system. The study of fission yeast transition-metal metabolism has been successful, not only in discerning the genes and pathways functioning in Schiz. pombe, but also the genes and pathways that are active in mammalian systems and for other fungi.

© 2010 Baishideng. All rights reserved.

Key words: Iron and copper transport systems; Metalloregulatory sensors; Iron- and copper-responsive genes; Metal trafficking pathways; Metalloenzymes; Fungi as model systems

Peer reviewer: Gaetano Cairo, PhD, Professor, Department Human Morphology and Biomedical Sciences-Città Studi-Via Mangiagalli 31, Milano, 20133, Italy

Labbé S. Simon Labbé’s work on iron and copper homeostasis. World J Biol Chem 2010; 1(5): 196-200 Available from: URL: http://www.wjgnet.com/1949-8454/full/v1/i5/196.htm DOI: http://dx.doi.org/10.4331/wjbc.v1.i5.196

INTRODUCTION AND EDUCATIONAL EXPERIENCE

Dr. Simon Labbé is a Professor of Biochemistry in the Faculty of Medicine and Health Sciences at the Université de Sherbrooke, Canada (Figure 1). He received his bachelor’s degree in Microbiology from the Université Laval (Québec, Canada) in 1987. He pursued graduate work at Université Laval and received his Masters and Ph.D. in microbiology and molecular/cellular biology, respectively. Subsequently, Dr. Labbé trained as a postdoctoral fellow in biological chemistry with Professor Thiele DJ at the University of Michigan (Ann Arbor, USA). He was sup-
Fe-using genes off
Fe uptake genes on
Php4 is expressed
php4

Fe-using genes on
Fe uptake genes off
Fep1
php4

Figure 2 A proposed transcription model for an “iron economy”. Under low iron supply conditions, Fep1 cannot bind to DNA and php4 is expressed. Once biosynthesized, Php4 interacts with the Php2/Php3/Php5 heterotrimer to mediate repression of genes that encode iron-storage (Pcl1) and iron-containing (Sdh4 and Isa1) proteins, as well as the fep1 gene. Conversely, under iron-replete conditions, Fep1 binds DNA and, with the aid of Tup11 and Tup12, turns off php4 gene expression. This inactivation of php4 enables genes involved in storage and utilization of iron to be expressed via the Php2/Php3/Php5 heterotrimeric CCAAT binding factor.

ACADEMIC STRATEGY AND GOALS

Over recent years, Dr. Labbé’s research group has developed a productive yeast model [Schizosaccharomyces pombe (Schiz. pombe)] for investigating both iron and copper metabolism at the molecular level. Because Schiz. pombe provides an excellent and useful model that permits the drawing of parallels with other eukaryotic living systems, his studies have led to significant advances in understanding how cells regulate the acquisition of iron and copper. Dr. Labbé’s research also utilizes the model organism Saccharomyces cerevisiae (S. cerevisiae) as an intermediate step to advance our understanding of metal ion signaling and trafficking in eukaryotic cells. By combining the best features of both species of yeast, Schiz. pombe and S. cerevisiae, he expects to elucidate mechanisms and genes common to all eukaryotes. Thus far, Dr. Labbé’s research has contributed to the identification of molecular defects in iron and copper transport, as well as uncovering different strategies that yeasts have acquired to take up iron and copper from their environment and/or hosts.

ACADEMIC ACHIEVEMENTS

The following contributions highlight Dr. Labbé’s activities in the field of iron and copper homeostasis.

Discovery of Fep1, an iron sensor that represses iron transport gene expression

Dr. Labbé and his team took advantage of the Schiz. pombe model to identify the GATA-type transcription factor Fep1[1-3]. The identification of Fep1 was significant because it revealed that iron-regulated gene expression in fungi other than S. cerevisiae is mediated by a group of non-canonical GATA-type transcription factors. These studies also demonstrated, for the first time, a central role for Fep1 in coordinating regulation of genes that encode components of the reductive and non-reductive iron transport systems[4]. Using a genetic approach to find GATA-factor-associated proteins, his research group identified the co-repressors Tup11 and Tup12 as physi-
Figure 3 A model (steps 1-4) for copper homeostasis in *Schizosaccharomyces pombe* (*Schiz. pombe*). Step 1: Copper is reduced from Cu\(^{2+}\) to Cu\(^{+}\) by a putative cell surface reductase. Following reduction, copper is transported across the plasma membrane by a heteroprotein complex formed by the Ctr4 and Ctr5 proteins; Step 2: Three copper chaperones, namely, Aox1, Pccs and Cox17, deliver copper to specific intracellular localizations. Aox1 shuttles copper from the cytosol to post-Golgi vesicles by docking specifically with the Ccc2 copper-transporting P-type ATPase. Once loaded, Ccc2 pumps copper into the lumen of the Golgi, which provides copper to the ferroxidase Fio1 as part of its maturation (with Fp1). Aox1 can function as a copper chaperone for a molecule other than Ccc2, which participates in the delivery of copper to Cao1. In the mitochondria, copper delivered by Cox17 is incorporated into cytochrome c oxidase, with the aid of Sco1 and Cox11. Pccs delivers copper to SOD1 in the cytosol; Step 3: When the pool of cytoplasmic copper is insufficient, Ctr6 is involved in copper efflux from the vacuole, which provides copper to cytosolic copper-dependent enzymes. Step 4: In response to copper deficiency, Cuf1 is localized in the nucleus where it activates the transport of copper by upregulating expression of the *ctr4+, ctr5+* and *ctr6+* genes. Conversely, in cells that undergo a shift from low to sufficient copper concentrations, Cuf1 translocates from the nucleus to the cytoplasm. The functional link between copper transport and iron uptake is explained by the observation that the Fp1 copper permease must couple with Fio1, which is a copper-dependent enzyme, to move through the secretory pathway and assemble as a functional iron-transport complex at the plasma membrane. Therefore, the inability to deliver copper to the interior of the cell, or to traffic copper appropriately to the lumen of the secretory compartment where it binds to Fio1, leads to an iron-starvation defect.

Discovery of the iron-responsive regulatory subunit Php4 of the CCAAT-binding complex

Dr. Labbé’s laboratory has shown that, under high iron conditions, transcriptional activation of genes for iron utilization results from a transcriptional activator complex composed of Php2, Php3 and Php5. In contrast, under low iron conditions, his group has determined that Php4 associates with the Php2/Php3/Php5 heterotrimer and inhibits target gene expression\(^{[8]}\). The outcome of these findings is considerable because it establishes a new mechanism for downregulation of iron metabolic genes during iron deficiency (Figure 2). Using microarrays, many new Php4 target genes have been identified\(^{[9]}\). These results are important because future studies that address the function of these genes should provide new insights into how cells adapt to conditions of iron deficiency. Although the mechanism by which Php4 is inactivated by iron remains poorly understood, Dr. Labbé’s group recently has found that the glutaredoxin Grx4 and the exportin Crm1 are involved in this process\(^{[8]}\). Taken together, these findings have been highlighted in influential reviews\(^{[11,12]}\).

One of the first demonstrations that vacuoles communicate with the plasma membrane to ensure that sufficient copper is acquired for effective functioning of copper-dependent enzymes

Dr. Labbé and coworkers have published a seminal paper on the monitoring of copper uptake and the role of the vacuolar membrane copper transporter Ctr6\(^{[13]}\). Using a cDNA library, they have isolated *ctr6\(^+\)*, a novel Ctr family member (Figure 3). With sustained expression of Ctr6, cells were hypersensitive to copper, but \(^{64}\text{Cu}\) uptake was reduced by approximately 70%. Consistent with this reduction in copper uptake, transcript levels of the plasma membrane copper transporters Ctr4 and Ctr5 were also reduced\(^{[14]}\). On the basis of these results, we have proposed a model of vacuole to plasma membrane communication. As Ctr6 mobilizes vacuolar copper, the copper-sensing transcription factor Cuf1 senses a larger pool of labile copper, which in turn downregulates the Cuf1-
dependent transcription of Ctr4 and Ctr5, which results in a reduction of copper uptake. As a sign of recognition, the work has been discussed in leading reviews by Watt S, Bähler J, Labbé S. Key function for the regulation of iron and copper homeostasis, and elucidation of their primary functions, is a crucial step for attaining a more detailed, integrated understanding of iron and copper metabolism. Due to the facilitation of analysis of protein function from yeast genetics, Schizosaccharomyces pombe is an excellent model organism for studying fundamental processes in eukaryotic cells, especially those of metal ion homeostasis. Overall, Dr. Labbé’s research has provided a better understanding of the key mechanistic aspects of iron and copper homeostasis that includes iron/copper-mediated cellular sensing, assembly, trafficking and compartmentalization.

ACKNOWLEDGMENTS

I am grateful to the past and present members of my laboratory for their contributions to our studies. I also wish to express my gratitude to several investigators worldwide for their collaborations.

REFERENCES

1. Pelletier B, Beaudoin J, Mukai Y, Labbé S, Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J Biol Chem 2002; 277: 22950-22958
2. Pelletier B, Trott A, Morano KA, Labbé S. Functional characterization of the iron-regulatory transcription factor Fep1 from Schizosaccharomyces pombe. J Biol Chem 2005; 280: 25146-25161
3. Jbel M, Mercier A, Pelletier B, Beaudoin J, Labbé S. Iron activates in vivo DNA binding of Schizosaccharomyces pombe transcription factor Fep1 through its amino-terminal region. Eukaryot Cell 2009; 8: 649-664
4. Pelletier B, Beaudoin J, Philpott CC, Labbé S. Fep1 represses expression of the fission yeast Schizosaccharomyces pombe siderophore-iron transport system. Nucleic Acids Res 2003; 31: 4332-4344
5. Znaidi S, Pelletier B, Mukai Y, Labbé S. The Schizosaccharomyces pombe corepressor Tup1 interacts with the iron-responsive transcription factor Fep1. J Biol Chem 2004; 279: 9462-9474
6. Labbé S, Pelletier B, Mercier A. Iron homeostasis in the fission yeast Schizosaccharomyces pombe. Biometals 2007; 20: 523-537
7. Pelletier B, Mercier A, Durand M, Peter C, Jbel M, Beaudoin J, Labbé S. Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors. Yeast 2007; 24: 883-900
8. Mercier A, Pelletier B, Labbé S. A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 2006; 5: 1866-1881
9. Mercier A, Watt S, Bähler J, Labbé S. Key function for the CCAAT-binding factor Php4 to regulate gene expression in response to iron deficiency in fission yeast. Eukaryot Cell 2008; 7: 493-508
10. Mercier A, Labbé S. Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1. J Biol Chem 2009; 284: 20249-20262
11. Kaplan CD, Kaplan J. Iron acquisition and transcriptional regulation. Chem Rev 2009; 109: 4536-4552
12. Haas H, Eisendle M, Turgeon BG. Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 2008; 46: 149-187
13. Bellemare DR, Shaner L, Morano KA, Beaudoin J, Langlois R, Labbé S. Ctr6, a vacuolar membrane copper trans...
porter in Schizosaccharomyces pombe. J Biol Chem 2002; 277: 46676-46686

14 Beaudoin J, Laliberté J, Labbé S. Functional dissection of Ctr4 and Ctr5 amino-terminal regions reveals motifs with redundant roles in copper transport. Microbiology 2006; 152: 209-222

15 Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 2008; 4: 176-185

16 Rees EM, Thiele DJ. From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms. Curr Opin Microbiol 2004; 7: 175-184

17 O'Halloran TV, Culotta VC. Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 2000; 275: 25057-25060

18 Laliberté J, Whitson LJ, Beaudoin J, Holloway SP, Hart PJ, Labbé S. The Schizosaccharomyces pombe Pccs protein functions in both copper trafficking and metal detoxification pathways. J Biol Chem 2004; 279: 28744-28755

19 Laliberté J, Labbé S. Mechanisms of copper loading on the Schizosaccharomyces pombe copper amine oxidase 1 expressed in Saccharomyces cerevisiae. Microbiology 2006; 152: 2819-2830

20 Lin SJ, Pufahl RA, Dancis A, O'Halloran TV, Culotta VC. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 1997; 272: 9215-9220

21 Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O'Halloran TV. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 1997; 278: 853-856

22 Peter C, Laliberté J, Beaudoin J, Labbé S. Copper distributed by Atx1 is available to copper amine oxidase 1 in Schizosaccharomyces pombe. Eukaryot Cell 2008; 7: 1781-1794

23 Labbé S, Peña MM, Fernandes AR, Thiele DJ. A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe. J Biol Chem 1999; 274: 36252-36260

24 Beaudoin J, Labbé S. The fission yeast copper-sensing transcription factor Cuf1 regulates the copper transporter gene expression through an Ace1/Amt1-like recognition sequence. J Biol Chem 2001; 276: 15472-15480

25 Beaudoin J, Mercier A, Langlois R, Labbé S. The Schizosaccharomyces pombe Cuf1 is composed of functional modules from two distinct classes of copper metalloregulatory transcription factors. J Biol Chem 2003; 278: 14565-14577

26 Beaudoin J, Labbé S. Copper induces cytoplasmic retention of fission yeast transcription factor cuf1. Eukaryot Cell 2006; 5: 277-292

27 Beaudoin J, Labbé S. Crm1-mediated nuclear export of the Schizosaccharomyces pombe transcription factor Cuf1 during a shift from low to high copper concentrations. Eukaryot Cell 2007; 6: 764-775

S- Editor Cheng JX L- Editor Lutze M E- Editor Zheng XM