TOPICAL REVIEW

Dirac electronic states in graphene systems: optical spectroscopy studies

M Orlita and M Potemski

Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSIA, 25, avenue des Martyrs, 38042 Grenoble, France
E-mail: milan.orlita@grenoble.cnrs.fr and marek.potemski@grenoble.cnrs.fr

Received 28 October 2009, in final form 20 March 2010
Published 30 April 2010
Online at stacks.iop.org/SST/25/063001

Abstract
Electronic properties of two-dimensional allotropes of carbon, such as graphene and its bilayer, multi-layer epitaxial graphene, few-layer Bernal-stacked graphene, as well as of three-dimensional bulk graphite are reviewed from the viewpoint of recent optical spectroscopy studies. Attention is focused on relativistic-like character of quasi-particles in these systems, which are referred to as massless or massive Dirac fermions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The family of carbon-based materials, including two distinct crystal forms: the isotropic diamond and anisotropic graphite, together with other allotropes such as fullerenes and carbon nanotubes, has been recently enlarged to include graphene, a unique material which consists of a two-dimensional (2D) lattice of carbon atoms with a honeycomb symmetry. Graphene, the closest archetype of a two-dimensional crystal, while being very promising for future applications, represents also an extremely interesting system from the viewpoint of fundamental physics [1, 2]. Distinctly, the electronic states of graphene do not obey the conventional laws of Schrödinger’s quantum mechanics but are rather governed by an equation which is equivalent to the Dirac equation for massless fermions [3, 4]. This very peculiar, but at the same time simple, electronic band structure of graphene has been investigated theoretically for more than 60 years [5]. The ‘rise’ of graphene dates however only from 2004 when it was effectively introduced into the laboratory environment, following the clear identification of 10 μm sized graphene flakes deposited on Si/SiO2 substrates [6] and of multi-layer epitaxial graphene thermally decomposed from silicon carbide [7, 8]. More recently, the growth of large area graphene samples on metallic surfaces (Ru, Ni or Cu) [9–14], and their subsequent transfer to arbitrary substrates has also substantially progressed [12, 14], which may be a promising option for easy preparation of macroscopic-size crystallites of graphene.

The intense, over the last years, investigations of different graphene systems have expanded today into a broad research field of qualitatively new two-dimensional systems [15]. The challenging expectations are that graphene will introduce quantum electrodynamics into solid state laboratories [16–19] and that it will constitute the basis for future electronics plausibly avoiding the known limitations (at the nano-scale) of the CMOS technology. As of today, the basic properties of ‘new’ 2D allotropes of carbon, including graphene [3, 4], graphene bilayer [20, 21], multi-layer graphene [6, 22], graphene on a silicon carbide substrate [7], are already relatively well known and the basis of graphene physics is well established.

Despite relevant advances in various experimental techniques, such as angular resolved photoemission spectroscopy (ARPES) [23–26] or scanning tunnelling spectroscopy (STS) [27–29], a large part of our knowledge on electronic properties of graphene has been deduced from conventional, electric transport and optical experiments, in particular under an applied magnetic field. The physics of the integer quantum Hall effects in single-layer and bilayer
graphene [3, 4, 20] or of the minimum conductivity of graphene [30, 31] is nowadays underpinned by a solid basis of published transport experiments. Optical investigations of graphene systems are equally fertile. They offer a rather direct verification of electronic band structure in these materials and/or help to avoid the advanced sample processing of often invasive character [32].

A number of papers which review graphene-related physics have already appeared within the last few years [1, 2, 15, 33–36], but the progress in this research area is extremely fast. This, in particular, concerns the developments related to optical spectroscopy, which was perhaps not very popular at the birth of the research on graphene but is now more and more frequently used, as testified by a large number of recent papers cited here. As any review article, this one also includes some unavoidable repetitions of information that can be found elsewhere. However, our intention is to discuss the properties of different graphene systems from the viewpoint of optical spectroscopy methods, including the most recent developments in this field. Whereas previous review articles were mostly focused on the properties of a single graphene monolayer, here we discuss the Dirac-like electronic states (massless and massive) which in fact are representative of any two-dimensional allotrope of carbon or even of bulk graphite.

Indeed, the methods of optical spectroscopy have been recently applied to a large class of graphene-based systems. A number of various optical and magneto-optical measurements have been performed on mono-, bi- and multi-layer Bernal-stacked graphene (exfoliated from graphite and placed on Si/SiO2), on multilayer epitaxial graphene thermally decomposed from C-terminated surface of SiC, as well as on bulk graphite. The published papers provide a mosaic of information as they usually address a particular problem or individual sample characteristics. Investigations of the electronic band structure remain, however, the key element of the majority of these papers and also constitute the bulk of our review. Other characteristic problems invoked with optical methods concern the efficiency or mechanisms of carrier scattering. The effects of disorder or interactions are also discussed here.

The review is organized as follows. The next section has still some introductory character in which we stress the relevance of optical spectroscopy in the ‘rise’ of graphene, i.e. in the identification of graphene flakes on Si/SiO2 substrates. The following sections 3–6 are systematically devoted to monolayer graphene and multilayer epitaxial graphene (on C-face of SiC) which both exhibit the simple Dirac-like electronic spectrum (section 3), bilayer graphene with the unique massive Dirac-like fermions (section 4), bulk graphite, with more complex electronic bands but also displaying the Dirac-like dispersion relations (section 5) and N-layer (N > 2) segments of graphite (section 6). In each of these sections we first present the theoretically expected band structure and optical response of the investigated system; then we confront it with the available experimental data and discuss the implications. Particular attention is focused on magneto-optical investigations, which we consider to be particularly valuable in the studies of electronic properties of the investigated systems. Conclusions and possible perspectives related to optical studies of graphene systems are presented in section 7.

2. How to see graphene

The identification of ‘exfoliated graphene’ on Si/SiO2 substrates by the group at Manchester University [6] is one of the unquestionable milestones in the development of graphene oriented research. Initially, however, it was perhaps not so clear why a few- or even single-graphene sheets can be seen just through an optical microscope. The explanation of this today widely accepted and frequently used experience is not trivial and invokes the importance of spectroscopic analysis already at the birth of graphene physics. As more recently revealed in detail [37–41], the choice of the appropriate thickness of the SiO2 layer plays an essential role in the visualization of the graphene layers. As shown in figure 1, the contrast which is necessary to ‘see’ the individual graphene layers depends on the wavelength of light and the actual thickness of the SiO2 layer. This is accounted for by the analysis of multireflections from the sandwiched graphene/SiO2/Si structure within the framework of standard Fresnel equations (despite the fact that we are dealing with the material at atomic resolution). The substrates used by the Manchester group were characterized by 300 nm thick oxide layers, for which the optimum contrast to see the graphene flakes is ~10 % and falls in the middle of the visible range. This greatly helped to visualize the graphene flakes.

3. Graphene

3.1. Electronic band structure

The first calculation of electronic states in a 2D lattice of carbon atoms with a honeycomb symmetry, see figure 2, dates back to 1947, when Wallace [5] used graphene as a starting element for description of bands in bulk graphite. Taking into account the strong hybridization of 2sp2 orbitals in the graphene plane, Wallace considered just the remaining p orbital (oriented perpendicular to the crystal plane) to be responsible for the electronic band structure in the vicinity of the Fermi level and suggested a standard tight-binding approach. Considering only the nearest-neighbour hopping parameter γ0 (see figure 2), one easily finds a pair of π-bands [2]:

\[E_{π±}(k) = -E_{π}(k) = γ_0 \sqrt{1 + 4 \cos^2 \left(\frac{k \cdot a_0}{2} \right) + 4 \cos \left(\frac{k \cdot \sqrt{3} a_0}{2} \right) \cos \left(\frac{k \cdot a_0}{2} \right)}, \]

which distinctly cross (touch) at two inequivalent K and K’ points of the Brillouin zone, see figure 3. The strength of the nearest-neighbour hopping is γ0 ≈ 3.2 eV [43] and the lattice constant a0 = 0.246 nm [42] is by a factor of \(\sqrt{3} \) larger than the distance between the nearest carbon atoms.
In pristine graphene, the Fermi level lies just at the touching (crossing) point of \(\pi \) and \(\pi^* \) bands and graphene has the character of zero-band-gap semiconductor (semimetal). Close to a given crossing (touching) point, known also as the Dirac or charge neutrality point, the electronic bands are nearly linear and practically rotationally symmetric. In other words, the carrier dispersion relations take a simple form: \(E_{\pi^*} = -E_\pi \approx v_F \hbar |\mathbf{k}| \), where the momentum \(\mathbf{k} \) is measured with respect to the \(K \) (\(K' \)) point. The parameter \(v_F \), having dimension of a velocity, is directly related to the coupling strength (hopping integral) between the nearest carbon atoms: \(v_F = \sqrt{3} a_0 \gamma_0 / (2 \hbar) \) [2].

The linearity of bands in graphene (in the vicinity of the \(K \) and \(K' \) points) implies that charge carriers in this material behave as relativistic particles with zero rest mass and constant velocity \(v_F \approx 10^6 \, \text{m/s} \). They are often referred to as massless Dirac fermions, and with good precision, their behaviour is described by the effective Hamiltonian [2, 44]:

\[
\hat{H} = v_F \begin{pmatrix} 0 & p_x - i p_y \\ p_x + i p_y & 0 \end{pmatrix} = v_F \begin{pmatrix} 0 & \pi^1 \\ \pi & 0 \end{pmatrix} = v_F \sigma \cdot \mathbf{p},
\]

which is equivalent to the Hamiltonian in the Weyl equation for real relativistic particles with zero rest mass (originally for neutrinos) derived from the Dirac equation. Due to this formal similarity, a direct link between quantum electrodynamics and the physics of graphene is established.

Figure 1. Graphene crystallites on the Si/SiO\(_2\) substrate with the oxide thickness of 300 nm imaged in white light (a), green light (b) and another graphene sample on the Si substrate with a 200 nm thick SiO\(_2\) layer imaged in white light (c). The smaller figures in the upper and lower lines represent the images taken at various wavelengths for the thickness of the oxide layer 300 and 200 nm, respectively. The theoretically calculated contrast (for the graphene monolayer) as a function of wavelength and thickness of the oxide layer is shown in (d). In relatively good agreement with these calculations, graphene crystallites are best visible in images taken at wavelengths slightly below 600 nm and around 400 nm, for the thickness of the dioxide layer 300 and 200 nm, respectively. Reprinted with permission from [37]. Copyright 2007, American Institute of Physics.

Figure 2. Segment of the graphene crystal: carbon atoms are arranged into a 2D lattice with a characteristic honeycomb symmetry and lattice constant \(a_0 = 0.246 \, \text{nm} \) [42], which is by a factor of \(\sqrt{3} \) larger than the inter-atomic distance.

Figure 3. Schematic view of the graphene band structure with the characteristic Dirac cones in the vicinity of the \(K \) and \(K' \) points.

The characteristic linear dispersion relations of electronic states makes graphene very distinct among other 2D systems (such as quantum wells or heterojunctions) which have been widely investigated in condensed-matter physics for the last thirty years. For instance, the density of states in graphene is not constant as for conventional massive particles, \(D = g_s g_v m / (2 \pi \hbar^2) \), but rises linearly with the energy distance \(\epsilon \) from the Dirac point \(D(\epsilon) = g_s g_v |\epsilon|/(2 \pi v_F^2 \hbar^2) \). Here, \(g_s = g_v = 2 \) stand for the spin and valley degeneracies, respectively.

Nevertheless, it should be noted that the relativistic-like image of electronic states in graphene given by Hamiltonian (2) remains an approximate model. This simple approximation is well, and perhaps even surprisingly well, fulfilled in the case of electronic states in the vicinity of the Dirac point. Those states indeed show an almost perfect character of massless Dirac fermions when probed with different experiments. However, as can be seen from figure 3, the deviations from this relativistic model become obviously important for states far away from the Dirac point, even if we consider only the nearest neighbours in...
the tight-binding calculation. Other complications may arise when including the hopping integrals between further located neighbours. For example, when taking into account the non-zero values of γ^2 hopping integrals \[45, 46\] (see figure 2), the nonlinearity is enhanced and Dirac cones become asymmetric with respect to the charge neutrality point \[46–48\].

3.2. Optical conductivity at B = 0

Interaction of massless Dirac fermions in graphene with light, expressed usually in terms of dynamical (optical) conductivity, has been theoretically treated at different levels of approximation \[44, 46, 50–59\]. Within the simplest approach of electronic states described by Hamiltonian (2), only vertical in k-space transitions across the Dirac point are optically active. Then, the dynamical conductivity takes a constant (energy-independent) value of \(G_0 = e^2/(4\hbar)\), which results in frequency-independent absorption \(\gamma^2_{\alpha, T} \approx 2.3\%\), where \(\alpha = e^2/hc\) (in cgs units) is the fine structure constant. Hence, in this model, the absorption of light in graphene is so-called universal, given just by \(\alpha\) which in general describes the strength of interaction between light and matter. Let us note that the graphene dynamical conductivity related to the vertical across the Dirac point transitions is frequency independent, \(\sigma(\omega) \propto (1/\omega)D(\omega) = \text{const}\), simply because the joint density of states \(D(\omega)\) is linear with energy (frequency). When considering the linearly polarized light, the contribution of individual k-conserving transitions to the total optical conductivity depends on the angle between the given momentum \(k\) and the vector of light polarization \[51\], but the universal conductivity is restored after integration over all angles.

Transforming \(G_0\) in to measurable quantities, such as the optical transmission \(T\) and reflection \(R\), one finds that \(R \ll T\) \((R = \pi^2\alpha^2T/4)\), and therefore, the absorption of light in graphene, and also the fine structure constant \(\alpha\) itself, can be estimated in a straightforward transmission experiment, \(T \approx 1 - \pi\alpha\). This fact was confirmed in recent experiments in the visible range on the self-standing graphene membrane \[49\], see figure 4, and further explored by other groups \[60, 61\]. The universality of the optical conductivity in graphene has also been discussed in the context of epitaxial graphene on the SiC substrate \[62\] in a wide range of photon energies.

Nevertheless, we should mention that the declared universality of the graphene absorption is only approximate (which unfortunately limits its applications in metrology), since Hamiltonian (2) represents just the simplest model of the graphene band structure and therefore neglects the nonlinearity of bands at high energy distance from the Dirac point. In other words, the absorption of light in graphene is as ‘universal’ as ‘ideal’ are massless Dirac fermions in this system. A theoretical analysis of these corrections was performed by Stauber et al \[46\], who not only discussed deviations from nonlinearity due to finite width of \(\pi\)-bands as given by equation (1), but also included the effects of next-nearest hopping integral \(\gamma^2_{\alpha, T}\), see figure 2. Experimentally, the deviations of the optical conductivity from the ‘universal’ value \(G_0\) have been probed in the visible range by Fei and co-workers \[61\]. Another departure from ‘universality’ of the graphene transmission is provided by saturation effects, due to which graphene can find use as a saturable absorber \[63–66\].

It is worth noting that a nearly universal conductivity has also been reported by Kuzmenko et al \[67\] for bulk graphite (conductivity per single atomic sheet). Naively, one can seek for the origin of this effect in a relatively weak inter-layer coupling in graphite, but a deeper theoretical analysis is also available: the appearance of the universal conductivity (again per sheet) in multi-layer graphene stacks has been considered by Min and MacDonald \[68\] in relation to the presence of the chiral symmetry in structures with AB and/or ABC stacking sequences.

A more general theoretical approach to the optical conductivity of graphene, which includes the effects of carrier density, temperature, as well as carrier scattering (both short- and long-range scatterers considered), has been presented already in ‘pre-graphene’ era by Ando et al \[50\] in the framework of the self-consistent Born approximation, see figure 5(a). Later on, further calculations were performed by Peres et al \[44\] as well as Stauber et al \[57\]. A simple
analytical expression for the optical conductivity was found by Gusynin et al [52] followed by Falkovsky and Varlamov [55]. These works account for both inter-band transitions, which are blocked at energies below twice the Fermi energy (2\(E_F\)), as well as intra-band transitions, which result in the appearance of the Drude peak centred at zero frequency (see figure 5). As can be expected, these models uncover the universal conductivity \(G_0 = e^2/(4\hbar)\) in the limit of high energies. If the Fermi energy approaches the neutrality point, the optical conductivity is universally \(G_0 = e^2/(4\hbar)\) at any finite frequency but singular at \(\omega = 0\). The apparent value of \(\sigma(\omega = 0)\) related to the so-called minimum conductivity is one of the lively discussed issues in graphene physics, without clear consensus between different experiments and theoretical models so far [3, 4, 30, 31, 50, 70, 71].

Experimentally, the optical response of exfoliated graphene flakes placed on Si/SiO\(_2\) substrates has been investigated in the mid-infrared range in the reflection configuration by Wang et al [72] who reported the pronounced modification of graphene’s optical properties as a function of the position of the Fermi level. Further experimental data taken in both reflection and transmission mode, accompanied by a detailed analysis have been presented by Li et al [69] and later on also by Mak et al [60]. The spectrum of the optical conductivity extracted from these experiments (see figure 6) is in overall agreement with theoretical predictions. However, some of the observed features, such as the striking scaling of the onset of inter-band transitions with the gate voltage or the intriguing finite absorption in-betweenthe Drude peak and the \(2E_F\) onset remain to be firmly clarified. Possibly, these observations might be due to effects of disorder and/or of electron–electron interactions, which as yet may not be fully accounted for in theoretical models [53].

3.3. Magneto-spectroscopy

Cyclotron motion of charge carriers and the related cyclotron resonance phenomenon (absorption of light at cyclotron frequency \(\omega_C\) are primarily a classical effect, probably the most representative for magneto-optical spectroscopy. Such motion is not only characteristic for a conventional charged (\(\epsilon\)) particle with mass \(m\), which precesses with the frequency \(\omega_C = eB/m\). The solution of the classical equation of motion for charged particle with energy \(\epsilon\), depending linearly on momentum \(p (\epsilon = v_F p)\), also results in the cyclotron motion but with the frequency \(\omega_C = eB/|\epsilon|/v_F^2\), in which one easily identifies the energy-dependent mass \(m = |\epsilon|/v_F^2\). This latter equation, equivalent to the Einstein relation between mass and energy, invokes again the relativistic-like character of electronic states in graphene. Perhaps surprisingly, the strictly speaking classical, i.e. linear with the magnetic field, cyclotron resonance has not been clearly observed in graphene so far,
though the existing experimental results are well explained by the quantum mechanical approach.

In a quantum-mechanical picture, the application of the magnetic field \(B \) perpendicular to the graphene plane transforms the continuous electronic spectrum into discrete and highly degenerate Landau levels (LLs) [73]:

\[
E_n = \text{sign}(n) v_F \sqrt{2|e|B|n|} = \text{sign}(n) E_1 \sqrt{|n|},
\]

\[n = 0, \pm 1, \pm 2, \ldots \tag{3}\]

whose positions are defined by a single material parameter, the Fermi velocity \(v_F \) (\(E_1 = v_F \sqrt{2eB} \)). The degeneracy of each Landau level is \(\xi(B) = g_s g_v |eB|/\hbar \), where we take into account both spin and valley degeneracies. This LL spectrum consists of electron levels (\(n > 0 \)), hole levels (\(n < 0 \)) and the zero LL (\(n = 0 \)), which is shared by both types of carriers and which is responsible for the unusual sequence of the quantum Hall effect in graphene [3, 4]. We also immediately see that LLs in graphene are non-equidistant and they evolve as \(\sqrt{B} \), see figure 7(a), which both can be understood as a consequence of the extreme non-parabolicity (in fact linearity) of the bands. The unusual \(\sqrt{B} \)-dependence of LLs in graphene is responsible for its surprising sensitivity to the magnetic field. Experimentally, well-defined LLs have been spotted in this system down to 1 mT and almost up to the temperature of liquid nitrogen [74]. It might be realistic that Landau level quantization in pure graphene could also be observable in the magnetic field of the Earth (\(B_{\text{Earth}} \sim 10^{-5} \, \text{T} \)), which is unique for a condensed-matter system.

Interaction of light with graphene in a quantizing magnetic field has been explored several times both theoretically and experimentally over the few past years [44, 47, 48, 74–83]. To describe the magneto-optical response of graphene, we start with a single-particle model and use the Kubo–Greenwood formula [84–86]. Then, the longitudinal conductivity takes the following form:

\[
\text{Re}(\sigma^\alpha(\omega, B)) = \frac{4e^2}{\hbar} \frac{|eB|}{\gamma} \sum_{m,n} \frac{|\langle n | \hat{v}_\alpha | m \rangle|^2}{(E_n - E_m - \hbar \omega)^2 + \gamma^2},
\]

\[0 \leq f_n \leq 1 \text{ stands for the occupation of the nth LL and } \gamma \text{ is a phenomenological broadening parameter.} \tag{4}\]

The matrix elements of the velocity operators \(\hat{v}_\alpha = (\hat{v}_x - i\hat{v}_y)/\sqrt{2} \) and \(\hat{v}_\pm = (\hat{v}_x + i\hat{v}_y)/\sqrt{2} \) are \(|\langle n | \hat{v}_\alpha | m \rangle|^2 = \alpha \delta_{|m|,|n|+1} \) and \(|\langle n | \hat{v}_\pm | m \rangle|^2 = \alpha \delta_{|m|,|n|}, \) respectively, with \(\alpha = v_F^2/2 \) if \(n \) or \(m \) equals zero, and otherwise \(\alpha = v_F^2/4 \) [76, 79, 81, 87].

We see that graphene exhibits a relatively rich (multi-mode) magneto-optical response, where energies of individual resonances that correspond to individual inter-LL transitions scale as \(\sqrt{B} \), preserving this unique property of the Landau level fan chart in graphene. Let us now discuss a few basic facts which imply from equation (4): All dipole-allowed inter-LL transitions in graphene follow the selection rules \(|n| \rightarrow |n| + 1 \) and \(|n| \rightarrow |n| - 1 \), which are active in the \(\sigma^+ \) and \(\sigma^- \) polarization of the incoming light [81, 87], respectively. The possible transitions can be divided into three groups (\(j \geq 1 \)): inter-band resonances \(L_{j-1} \rightarrow L_{j+1} \) and \(L_{j-1} \rightarrow L_{j-1} \) at energy \(E_1(\sqrt{J+T} - \sqrt{J}) \), intra-band resonances \(L_j \rightarrow L_{j+1} \) and \(L_{j-1} \rightarrow L_j \) with energy \(E_1(\sqrt{J+T} - \sqrt{J}) \) and the mixed \(L_{j-1} \rightarrow L_{j+1} \) resonance, involving the \(n = 0 \) LL, having energy of \(E_1 \). From a purely terminological point of view, only intra-band resonances can be referred to as cyclotron resonance (CR); nevertheless, the term cyclotron resonance experiments is used frequently to describe any of inter- or intra-band inter-LL transitions in the current literature, and thus becomes equivalent to a more general term of Landau level spectroscopy.

A scheme of optically active transitions for a hypothetical system of 2D Dirac fermions at two, arbitrary chosen, filling factors \(\nu = 2 \) and 6 is illustrated in figure 7(b). The corresponding optical-conductivity spectra are presented in figures 7(c) and 7(d). The intra-band transitions appear at low energies and are followed by inter-band resonances at higher energies. There is however no distinct separation between these two types of transitions, which is in contrast to the case of conventional 2D systems based on gapped semiconductors, but somehow similar to the case of narrow-gap II/VI compounds structures [88, 89]. Nevertheless, in graphene, we deal with only one type of atomic orbital, and therefore both intra- and inter-band transitions follow similar selection rules: the modulus of the LL index is changed by 1. This is again in contrast to the case of the conventional 2D system, made for instance of GaAs, for which the inter-band transitions conserve the LL index and their dipole moment is due to different s- and p-orbitals of the conduction and valence band, respectively. Owing to the electron–hole symmetry of the graphene band structure, two different inter-band resonances, such as, for example, \(L_{-2} \rightarrow L_3 \) and \(L_{-3} \rightarrow L_2 \) in figure 7(b), may appear at the same energy. Such degenerate in energy transitions are however active in opposite circular polarization of light. At low temperatures one may expect at most two different intra-band transitions but a series of inter-band transitions. The situation is even more complex at higher temperatures, when the thermal spreading of the Fermi distribution exceeds the separation between Landau levels. The intra-band absorption (CR) may then also reveal a multi-mode character, as seen, for example, in figure 7(d), where the grey curve depicts the thermal activation of the \(L_0 \rightarrow L_1 \) and \(L_2 \rightarrow L_3 \) transitions. Such a multi-mode intra-band absorption spectrum, whose envelop corresponds, n.b., to the classical cyclotron resonance discussed at the beginning of this section, was recently observed in graphene (on the surface of bulk graphite) by Neugebauer et al [74].

Another interesting point is that the velocity operators (and also their matrix elements) are magnetic-field-independent in graphene, in contrast to the case of standard systems with a parabolic band [90]. In consequence, if the occupation difference \((f_n - f_m) \) between the initial and final state Landau levels is not changed with the magnetic field (which is often the case for inter-band transitions), the oscillator strength of such a transition rises as \(\sqrt{B} \), see equation (4) with \(\omega \sim \sqrt{B} \). The transitions involving the \(n = 0 \) Landau level are also interesting in this respect. In the quantum limit, once the Fermi energy is pinned to the \(n = 0 \) level, the oscillator strength of the degenerate (non-polarized) \(L_{-1(0)} \rightarrow L_{0(1)} \) transition does not depend on the
Figure 7. (a) Characteristic \sqrt{B}-dependence of LLs in graphene shown for a few low-index levels. (b) Dipole-allowed inter-LL transitions for two different filling factors $\nu = 2$ and 6. Real parts of the (low-temperature) optical conductivity (proportional to the optical absorption) determined using equation (4) are plotted in panels (c) and (d) for filling factors $\nu = 2$ and 6, respectively. The grey curve is calculated for the same position of the Fermi level as in the $\nu = 6$ case, but at a temperature of 150 K.

Figure 8. (a) Typical multi-mode magneto-transmission spectrum of graphene, taken on a few-layer epitaxial specimen (3–5 layers) prepared on C-terminated surface of 4H-SiC [76]. The inset shows a schematic of the evolution of Landau levels with applied magnetic field, and possible optical transitions. (b) Fan chart of observed inter-LL transitions, showing clear \sqrt{B} evolution of all absorption lines. Reprinted from [76], copyright (2006) by The American Physical Society.

Particular occupation f_0 of this level. This is due to the fact that the change in one of the occupation factors $(f_1 - f_0)$ and $(f_0 - f_1)$ relevant for the $L_{-1} \rightarrow L_0$ and $L_0 \rightarrow L_1$ transitions, respectively, is compensated by the same gain for the other one. For the same reason, the oscillator strength of the unpolarized transition involving the $n = 0$ LL increases as \sqrt{B} at high magnetic fields. This is very much in contrast to the case of conventional electron gas with parabolic dispersion relations, for which the oscillator strength of the cyclotron resonance is just a measure of the electron concentration, including the high-field limit. However, the doping of graphene in this limit can still be deduced from the comparison of the intensities of the (polarized) $L_0 \rightarrow L_1$ and $L_{-1} \rightarrow L_0$ transitions.

Experiments: magneto-optical measurements, mainly magneto-transmission, have been up to now performed on three different kinds of graphene samples. First experiments were carried out on epitaxial graphene prepared by the thermal decomposition of the surface of silicon carbide [76, 80], see figure 8. To be more specific, these CR data have been obtained on a multilayer epitaxial graphene (MEG) specimen prepared on a C-terminated surface of 4H-SiC. The Dirac-like spectrum, genuine of the graphene monolayer, found to dominate in MEG structures, was initially an intriguing observation but is today a well-established experimental fact [29, 91]. The electronic bands in MEG grown on the carbon face of SiC are like those of a single layer because of preferentially rotational and not Bernal-type layer stacking in this material [91, 92]. To our knowledge, no reliable magneto-optical measurements have been reported on samples grown on Si-face of 4H-SiC (or 6H-SiC), where mostly the standard (well known from bulk graphite) Bernal stacking is set. On the other hand, Si-face samples have been used in a number of
ARPES experiments, see e.g. [23–25]. The magneto-optical experiments on epitaxial samples were soon followed by measurements on a single flake of exfoliated graphene [48, 78], see figure 9, and recently, also by CR in decoupled graphene sheets on the surface of bulk graphite [74]. To compare, whereas the large-size samples (up to a few mm²) covered with MEG flakes (up to a few mm²) allow for relatively easy and precise CR measurements on well-defined, practically undoped graphene sheets (\(n_0 \approx 5 \times 10^9 \text{ cm}^{-2} \) [82]), the demanding experiments on single flakes of exfoliated graphene are more subtle. They have been successfully realized with a differential (modulation) technique when using the gate voltage to tune the Fermi energy and therefore to block the apparent transitions in the reference signal. The magneto-transmission experiments offer several pieces of important information about electronic properties of graphene; we will summarize them in the following.

Landau level fan charts and Fermi velocity: a clear illustration of the characteristic \(\sqrt{|B|} \) scaling of Landau levels, in fact equivalent to the observation of linear dispersion relations of carriers, has been the first important feat of the Landau level spectroscopy of graphene systems [76]. Sadowski et al [76] observed a practically perfectly \(\sqrt{|B|}\) scaled Landau level fan chart in MEG structures and extracted \(v_F = 1.03 \times 10^6 \text{ m s}^{-1}\) for the Fermi velocity in this system. Jiang et al [78] and subsequently Deacon et al [48] found somewhat higher values \(v_F \approx 1.1 \times 10^6 \text{ m s}^{-1}\) for gated (exfoliated) graphene flakes on Si/SiO\(_2\). We note that Landau levels in MEG structures as well as in graphene flakes floating on the graphite surface have been recently also visualized using tunnelling spectroscopy in magnetic fields [28, 29]. The Fermi velocity found in these later STS experiments agrees well with magneto-transmission data in the case of MEG structures [76, 82], but it is surprisingly low \(0.79 \times 10^6 \text{ m s}^{-1}\) [28] in the case of graphene flakes on graphite, for which magneto-spectroscopy gives a much higher value of \(1.00 \times 10^6 \text{ m s}^{-1}\) [74]. Individual values of the Fermi velocity determined in various samples by different experimental techniques have been summarized in table 2.

Beyond simple band models: relatively small but noticeable deviations of bands from their ideal linearity, of the order of a few per cent at large ±0.5 eV distance from the Dirac point, have been found by a combination of far and near-infrared magneto-optical experiments performed on multi-layer epitaxial graphene by Plochocka et al [47]. These deviations were revealed by a departure of the observed transitions from a simple \(\sqrt{B}\)-dependence, which rises with the photon energy of the probing light. No signs of the electron–hole asymmetry have been found in these experiments. On the other hand, traces of the electron–hole asymmetry have been reported by Deacon et al [48] in exfoliated graphene placed on the Si/SiO\(_2\) substrate, who estimated the difference in the electron and hole Fermi velocities to be of the order of a few per cent. Magneto-transmission experiments if carried out on neutral graphene specimens may also bring relevant information on the conceivable appearance of a gap at the Dirac point. Working in the limit of low magnetic fields, Orlita et al have estimated the gap to be smaller than 1 meV in quasi-neutral MEG structures [82] and its maximum possible value of a fraction of 1 meV in graphene flakes on graphite substrates [74].

Scattering/disorder: cyclotron resonance measurements on graphene, in particular in the limit of low magnetic fields (low frequencies), can be effectively used to estimate the scattering time and/or mobility of carriers. For instance, Orlita et al [82] (working in fields down to 10 mT range) have shown (see figure 10) the possibility of achieving room-temperature carrier mobility exceeding 250 000 cm\(^2\) (V s\(^{-1}\)), which is the record value among all other known materials.
of the (LL-independent) linewidth nearly following the information about the scattering mechanisms. An increase Moreover, a closer look at the CR lineshape can offer valuable

The interest in the physics of a graphene bilayer started after magneto-transport experiments of Novoselov et al [20] who showed a characteristic quantum Hall effect and a Berry’s phase of 2π with magneto-resistance measurements of this material. Carriers in a graphene bilayer are characterized by a finite mass but are clearly distinct from those in conventional systems with parabolic bands and referred to as massive Dirac fermions. Similarly to the case of graphene, the basics of the electronic band structure of the graphene bilayer were established in 1947 by Wallace [5] and further developed in the band structure model of bulk graphite introduced by...
Slonczewski, Weiss and McClure [104–106] (SWM model). As a matter of fact, it is not graphene, but the graphene bilayer, which is the basic unit in the construction of Bernal-stacked bulk graphite.

The presence of four atoms in the unit cell of the graphene bilayer implies the appearance of four bands in the vicinity of the Fermi level, instead of two in the graphene monolayer. The SWM model, reduced to a true bilayer, represents a solid basis with the corresponding SWM hopping parameters $\gamma_1, \gamma_2, \gamma_3$ and γ_4. These bands are symmetric with respect to the zero energy level, defined by the touching point of the bands E_F.

These bands are characterized by a finite energy gap Δ, as well as the bias voltage U applied across the layers, is usually taken into account when modelling the band structure of the graphene bilayer.

As only γ_0, γ_1 and U parameters predominantly affect the shape of bands, we neglect the others for a while and express the Hamiltonian of the graphene bilayer as [21]

$$\hat{H} = \begin{pmatrix} \frac{U}{2} & 0 & 0 & v_F \pi^1 \\ 0 & -\frac{U}{2} & v_F \pi & 0 \\ 0 & v_F \pi & -\frac{U}{2} & \gamma_1 \\ v_F \pi & 0 & \gamma_1 & \frac{U}{2} \end{pmatrix},$$

which corresponds to the case of atoms in layers 1 and 2 ordered as (A_1, B_2, A_2, B_1). The electronic bands obtained by the diagonalization of this Hamiltonian have a simple form of

$$E_{1,2} = -E_{4,3}$$

$$= -\left(\gamma_1/2 + \frac{U}{2} + v_F^2 p^2 \pm \sqrt{\gamma_1^2/4 + v_F^2 p^2 (\gamma_1^2 + U^2)}\right)^{1/2}.$$ (6)

These bands are symmetric with respect to the zero energy level, defined by the touching point of the bands E_2 and E_3 (so-called charge neutrality point) for $U = 0$, see figure 12(a). A nearly parabolic shape of bands E_2 and E_3 close to the charge neutrality point allows us to introduce an effective mass $m = \gamma_1/(2v_F^2)$ with a relatively low value of $m \approx 0.03m_0$ [107] comparable to the mass found in narrow gap semiconductors. Assuming no doping or external gating, the Fermi level is located just at the charge neutrality point and similarly to graphene, the graphene bilayer can be viewed as a zero-gap semiconductor (semimetal). As sketched in figure 12(b), the external bias U applied across the layers, transforms this gap-less band structure into a system characterized by a finite energy gap $E_{gap} \approx U$.

4.2. Optical conductivity at $B = 0$

The relevant optical response of the graphene bilayer is expected in the infrared range, see the illustrative figure 12, as the characteristic band energy scale is given by the parameter $\gamma_1 \approx 0.4$ eV [43]. Experiments have followed the well-established theoretical background [87, 109–112]. Two groups almost simultaneously reported on experiments performed on a single gated flake of the exfoliated graphene bilayer [108, 113–115], see figure 13, overall confirming the expected electronic band structure given by equation (6). A closer data analysis revealed a weak electron–hole asymmetry, going beyond the Hamiltonian (5) and quantified by parameters $\gamma_4 \approx 150$ meV and $\Delta \approx 18$ meV [113], see also table 3. No pronounced influence of the trigonal warping, expressed predominantly by the γ_2 parameter, was found in these experiments. Very recently, analogous experiments have been performed on more sophisticated devices with two gates incorporated, allowing independent tuning of the carrier density and voltage U [116, 117]. A possibility of smoothly tuning the energy gap from zero up to $E_{gap} \approx 200$ meV has thus been demonstrated. The possibility of relatively easily tuning of the gap in the graphene bilayer depicts the interesting potential of this system in designing the electronic devices.

4.3. Magnetooptical spectroscopy

In most of the experimentally studied cases, the graphene bilayer evokes the quantum mechanical character of its band structure under the magnetic field applied across the 2D plane. Following the Hamiltonian (5), the energy ladder of Landau levels with indices $n \geq 0$ is given by

$$E_{1,2}^n = -E_{4,3}^n$$

$$= -\left(\gamma_1/2 + (n + 1/2)E_1 \pm \sqrt{\gamma_1^2/4 + (n + 1/2)E_1^2/4 + E_1^2/4}\right)^{1/2}.$$ (7)

The eightfold $(8eB/h)$ degeneracy of the LL with $n = 0$ is twice the degeneracy of all other levels and this results in a characteristic quantum Hall effect with the Berry phase of 2π [20, 21]. At energies around the neutrality point, the Landau levels are formed of E_2 and E_3 bands, and their energies are practically linear with B. As shown in figure 14(a), a departure from (saturation of) this linear dependence appears however at higher energy distances from the neutrality point (from the zero LL at energy zero) and/or for Landau levels with higher indices.

Similar to the case of the graphene monolayer, the magnetooptical response of the graphene bilayer can be described within the Kubo–Greenwood formalism, employed in the previous section, but the individual matrix elements are not easy to evaluate. Up to now, this problem was approached approximatively by Mucha-Kruczyński et al [118] and also some numerical results are available [119, 120]. In general, we expect that all transitions between LLs arising from all four bands are dipole allowed, if the selection rules $n \rightarrow n \pm 1$ are obeyed, and they are active in the σ^\pm polarization of the incoming light, respectively. A few transitions in the vicinity of the Fermi level, including their
Figure 12. A schematic view of the band structure in the graphene bilayer, showing its modification via the bias voltage U applied across the two layers, (a) $U = 0$ and (b) $U \neq 0$. The arrows show dipole-allowed transitions in this system which determine its optical response in the infrared spectral range.

Figure 13. Real part of the optical conductivity of the bilayer graphene as a function of the gate voltages, i.e. at various hole (a) and electron (b) densities measured by Li et al [108]. The inset in (a) schematically shows the band structure of the graphene bilayer without and with parameters γ_4 and Δ taken into account. The position of individual band-edge inter-band transitions in the optical conductivity is shown in the inset of (b). Reprinted from [108], copyright (2009) by The American Physical Society.

Figure 14. (a) LLs in the graphene bilayer, evolving nearly linearly with B at lower fields, but bending to sub-linear dependence at higher B and/or higher energies. (b) Dipole-allowed inter-LL transitions for the case of two filling factors $\nu = 4$ and 8. Certain additional complications arise from the appearance of the trigonal warping, expressed mainly by the parameter γ_3, which is not included in the Hamiltonian (5) and which induces the second set of dipole-allowed transitions between LLs. Such transitions appearing between levels whose indices differ by $3N \pm 1$, where $N = 1, 2, 3, \ldots$ [87], may have their oscillator strengths comparable with $n \rightarrow n \pm 1$ transitions but only at low magnetic fields [87].
equation (8) has the form of the and special care has to be taken to account for possible splitting expected to depend on the actual position of the Fermi energy taken into account separately. The spectrum is obviously

\[E_n = \text{sign}(n)\hbar \omega_c \sqrt{|n|(|n| + 1)}, \quad n = 0, \pm 1, \pm 2, \ldots, \]

(8)

where \(\omega_c \) stands for the cyclotron frequency \(\omega_c = eB/m \) with \(m = \gamma_1/(2\nu_F^2) \). In this approximation, the Landau levels are perfectly linear with the applied field \(B \). Let us note that in the limit of high \(|n| \) (practically even for \(|n| \geq 1 \)), the LL spectrum equation (8) has the form \(E_n \approx \text{sign}(n)\hbar \omega_c / (|n| + 1/2) \), typical of conventional massive particles.

Within the parabolic approximation, the matrix elements of the velocity operators, \(\langle m|\hat{v}_\pm|n\rangle^2 \), to be set in the Kubo–Greenwood formula, have been evaluated by Abergel and Fal’ko [87]. They obtained \(\langle m|\hat{v}_\pm|n\rangle^2 = \hbar \omega_c (\sqrt{|n| + 1}) \delta_{m,n+1} \) (for \(m \neq 0 \) and \(n \neq 0 \)), where \(\hbar = \sqrt{\hbar/eB} \) denotes the magnetic length. Transitions involving the doubly degenerate \(n = 0 \) LL level must be taken into account separately. The spectrum is obviously expected to depend on the actual position of the Fermi energy and special care has to be taken to account for possible splitting of the \(n = 0 \) Landau level (including the elucidation of the character of this splitting). To prevent confusion, we note that our convention of LL indexing differs from the one used by Abergel and Fal’ko, whose Landau level spectrum reads \(E_n^2 = -E_n^2 = \hbar \omega_c \sqrt{n(n - 1)} \) for \(n \geq 1 \), compared to our equation (8).

The available magneto-optical data on a graphene bilayer are not as rich as on graphene. Probably the only report is by Henriksen et al [107], who examined a single gated flake of an exfoliated graphene bilayer in (differential) far infrared magneto-transmission experiments. In this work [107] the authors investigated the transitions between the adjacent LLs (intra-band transitions) as a function of the magnetic field and the carrier density (filling factor). Relatively good agreement with the simplified LL energy spectrum (7) has been obtained for low carrier densities. At higher filling factors, deviations appear due to the finite energy gap induced by the gate voltage, as recently explained by Mucha-Kruczyński et al [121].

5. Graphite

5.1. Band structure

The renewed interest in the properties of bulk graphite is a direct consequence of the outbreak of current graphene physics. As a 3D crystal, graphite is a system characterized by a higher degree of complexity compared to graphene; nevertheless, both materials share many common properties.

The physics of bulk graphite has been reviewed several times, see e.g. [42, 43]. Here we mostly focus on the optical properties which distinctly uncover the massless and massive Dirac-like electronic states also in this material. The appealing possibility of tracing the ‘relativistic’ carriers not only in graphene monolayer and bilayer but also in bulk graphite (which is definitely easier to handle!) resulted in a number of works which offer new pieces of information, new interpretations of old data but often also rediscoveries of well-established knowledge.

Starting with the pioneering work of Wallace [5], the fundamentals of the graphite band structure were formulated by Slonczewski, Weiss and McClure in the 1950s [104–106], as already mentioned in section 4. This model describes the band structure along the \(H–K–H \) line of the 3D Brillouin zone, see figure 16, which is responsible for most of the electrical and optical properties of bulk graphite. The SWM model mostly implies six hopping integrals \(\gamma_0, \ldots, \gamma_5 \), as sketched in figure 17, and additional parameter \(\Delta \), usually referred to as a pseudogap and related to the difference of the crystal field on atom-sites A and B. By definition, this pseudogap is related to a similar parameter in an isolated graphene bilayer as \(\Delta = \Delta - \gamma_2 + \gamma_5 \).

To describe the optical response of graphite, we leave the full complexity of the SWM model and follow a simplified approach taking into account only the two most relevant hopping integrals \(\gamma_0 \) and \(\gamma_1 \), which describe intra- and interlayer tunnelling, respectively [119, 122]. In this way, the band structure of bulk graphite along \(H–K–H \) is obtained by the diagonalization of the Hamiltonian:

\[
\hat{H} = \begin{pmatrix}
0 & 0 & 0 & v_F \pi \gamma_1 \\
0 & v_F \pi & 0 & 0 \\
v_F \pi & 0 & 0 & \lambda \gamma_1 \\
v_F \pi & 0 & \lambda \gamma_1 & 0 \\
\end{pmatrix},
\]

(9)

which is formally equivalent to that of an unbiased graphene bilayer (5), with the same ordering of the atomic wavefunctions, but with an effective coupling tuned by the momentum \(k_z \), in the direction perpendicular to layers, \(\lambda = 2\cos(\pi k_z) \). The appearance of the cosine band in \(k_z \), having
the amplitude of \(2\gamma_1\), thus reflects the periodic crystal ordering along the \(c\)-axis, similarly to formation of minibands in semiconductor superlattices [123].

The straightforward diagonalization of the Hamiltonian (9) gives the band structure in the form of equation (6), i.e. electronic bands equivalent to the graphene bilayer, but with an effective coupling \(\lambda\gamma_1\):

\[
E_{1,2} = -E_{4,3} = -\left(\frac{\lambda\gamma_1^2}{2} + v_F^2 p^2 \pm \sqrt{\frac{\lambda\gamma_1}{4} + v_F^2 p^2 (\lambda\gamma_1)^2}\right)^{1/2}. \tag{10}
\]

Hence, depending on their momentum along the \(c\)-axis, electrons in bulk graphite behave as massive Dirac fermions in the graphene bilayer, but with an effective coupling \(\lambda\gamma_1\), which directly gives their effective mass \(m = \lambda\gamma_1 \sqrt{2v_F^2}\). For example, electrons at the \(K\) point \((k_c = 0)\) behave as massive Dirac fermions with an effective mass enhanced twice \((\lambda = 2)\) in comparison to the true graphene bilayer. Carriers (in real graphite holes) at the \(H\) point \((k_c = 0.5)\) have the character of massless Dirac fermions due to the effectively vanishing inter-layer coupling \((\lambda = 0)\). Bulk graphite thus shares some common properties with the graphene monolayer as well as its bilayer.

5.2. Optical conductivity at \(B = 0\)

In reflection and/or transmission experiments at zero magnetic field the whole optical response corresponds to an average over all momenta \(k_c\) along the \(H-K-H\) line. With this averaging, the concluded response (per one sheet) is surprisingly close to the optical conductivity of an isolated graphene monolayer, as pointed out by Kuzmenko et al [67], see also [125, 126]. Hence, a nearly universal optical conductivity can also be observed in bulk graphite.

5.3. Magneto-spectroscopy

Historically, the verification of the band structure expected in the framework of the SWM model and estimates of individual tight-binding parameters have often been done using optical experiments in magnetic fields. In this case, the main contribution to the optical response is provided just by the \(K\) and \(H\) points, where Landau bands become flat, which leads to singularities in the joint density of states [119, 120]. Cyclotron resonance of massive electrons around the \(K\) point was reported in several works, see older papers [127–130] and also recent measurements [125], showing a well-defined response which scales nearly linearly with \(B\). Much less information has been collected about the massless Dirac fermions around the \(H\) point, but nevertheless the features in magneto-reflection spectra which follow the \(\sqrt{B}\)-dependence, typical of 2D massless particles, have already been reported by Toy et al [124], see figure 18. This work [124] may be

Figure 16. Brillouin zone of graphite and its electronic band structure along the \(H-K-H\) line. Whereas electrons in the vicinity of the \(K\) point behave as massive Dirac fermions with mass twice enhanced in comparison to the true graphene bilayer, the holes around the \(H\) point have nearly linear dispersion and behave as (nearly) massless Dirac fermions in graphene, but with an additional double degeneracy.

Figure 17. Segment of the crystal structure of A–B stacked graphite with coupling constants used in the standard SWM model.

Figure 18. Positions of inter-LL transitions related to the \(H\) point of bulk graphite observed by Toy et al [124] in magneto-reflection experiment. The observed well-defined \(\sqrt{B}\)-dependence is characteristic of massless Dirac fermions. The splitting of the line with the lowest energy is induced by existence of the pseudogap \(\Delta\). Reprinted from [124], copyright (1977) by The American Physical Society.
Figure 19. (a) Transmission spectra of a thin graphite layer at selected magnetic fields. The plotted energy is scaled as E/\sqrt{B} to emphasize the massless Dirac fermion-like features originating at the H point (indicated by dashed vertical lines). Arrows denote transitions arising at the K point which evolve (nearly) linearly with B. (b) Positions of the absorption lines related to the H point as a function of \sqrt{B}. The solid and dashed lines represent expected positions of absorption lines for $v_F = 1.02 \times 10^6$ m s$^{-1}$ (c) Positions of the absorption lines related to the K point as a function of B. The solid lines show the expected dipole-allowed transitions in a graphene bilayer with an effective coupling $2\gamma_1$ calculated using equation (10) for $v_F = 1.02 \times 10^6$ m s$^{-1}$ and $\gamma_1 = 375$ meV. The inset schematically shows the observed inter-band transitions in the effective bilayer. Reprinted from [134], copyright (2009) by The American Physical Society.

Considered as probably the very first observation of massless Dirac fermions in solids. Later on, magneto-transmission experiments on a very thin graphite specimen (≈ 100 sheets) allowed for a deeper analysis of the H point optical response [131, 132]. Magneto-optical response of the H point of graphite includes a set of transitions equivalent to those of graphene [48, 76, 78], but it is nevertheless significantly richer [133]. Since there are four carbon atoms in the unit cell of graphite (and only two in the unit cell of graphene) the degeneracy of Landau levels in graphite (at the H point only) is doubled compared to the case of graphene. This results in a set of additional dipole allowed inter Landau transitions at the H point of graphite which are indeed observed in experiments, see transitions marked with small Greek letters in figure 19.

The basic understanding of the complex magneto-optical response of bulk graphite [134], see figure 19, is possible just by viewing this material as an effective graphene monolayer and an effective bilayer with a coupling strength enhanced twice in comparison to a true graphene bilayer. Interestingly, this model including only two material parameters, γ_0 and γ_1, is capable of catching the basic (magneto-optical) properties of bulk graphite, a complex 3D material. This creates an interesting link between physics of bulk graphite and graphene monolayer and bilayer. The values of band structure parameters determined by magneto-transmission experiments [134] are $\gamma_0 = (3.20 \pm 0.06)$ eV and $\gamma_1 = (375 \pm 10)$ meV. The presented model is however evidently simplified, and therefore, let us now consider the role of other tight-binding parameters $\gamma_2 \ldots \gamma_5$ and Δ.

The integral γ_2, due to the hopping between next-nearest graphene planes (see figure 17), is dominantly responsible for the presence of electron and hole pockets around K and H points, and therefore, for the semimetallic character of graphite. This is clearly evidenced for instance by magneto-transport experiments [135–138]. Using the language of the effective graphene bilayer and monolayer, we obtain an effective n-doped bilayer at the K point with the Fermi level $E_F \approx 20$ meV and similarly, a p-doped monolayer around the H point with $E_F \approx -20$ meV. It is important to note that magneto-optics and magneto-transport probes are sensitive to very different states selected from those along the K–H dispersion line. Magneto-optics is selective with respect to the states at K and H points, because it is sensitive to the maxima in joint density of states (integrated along the k_z direction) of Landau bands which becomes flat at the extreme of the Brillouin zone along the z direction. In turn, magneto-oscillations in transport or de Haas–van Alphen experiments result from the subsequent coincidences between the Fermi energy position and the maximum in the density of states. Those latter maxima appear not only at the K and H points but importantly also at the intermediate point somewhere in the middle of the dispersive line. It appears that K- and intermediate-point maxima, both reflecting
rather massive (bilayer) character, are responsible for the two characteristic sequences of magneto-oscillations observed in magneto-transport experiments on graphite [138–140].

Trigonal warping of the band structure of graphite is described in the SWM model by the γ_3 parameter ($\gamma_3 \approx 300$ meV [43]), and its relative influence on the band structure is scaled with the parameter λ. Therefore, the band structure is mainly modified in the vicinity of the K point and its influence at the H point is completely cancelled. Probably, the most pronounced effect related to trigonal warping is the observation of the harmonics of the basic CR mode due to the K-point electrons. Interestingly, the γ_3 parameter negligibly affects the LL energies at the K point, but it induces new selection rules allowing transitions between LLs differing by $3N \pm 1$ in their indices [127, 129, 130, 141], whose relative strength is increasing with the decreasing magnetic field [87]. Let us note, however, that determination of LLs within the full SWM model is only possible via direct numerical diagonalization of a truncated infinite matrix [142]. The effects of γ_2 and Δ parameters are analogous to the case of a true bilayer, i.e. they in principle induce the electron–hole asymmetry of the band structure as discussed in the previous section. Again, the effective strength of γ_2 scales with λ, giving the most pronounced effects at the K point, where a relatively weak asymmetry has been observed [67, 134, 143–145]. At the H point, the parameter Δ corresponds to a (pseudo)gap opened at the Dirac point in the graphene-like band structure and is estimated in the range of several meV [45, 124, 131, 132].

6. Few-layer Bernal-stacked segments of graphite

A fairly established knowledge about optical properties of the 2D graphene monolayer and bilayer, as well as 3D bulk graphite, logically leads to a question about the properties of graphite stacks composed of three and more layers with Bernal ordering of sheets. As pointed out by Partoens and Peeters [147] the ten-layer graphene stack already resembles graphite very much, but the investigation of the grapheneto-graphite evolution is interesting and instructive. To get insight into the electronic states of a few-layer graphite stack, we use a relatively simple and intuitive model. We start with the electronic band structure of bulk graphite and select discrete values of momentum k_z along the c-axis, $k_m = (\pi/2)|1 - m/(N + 1)|$, with $m = 0, 2, \ldots, (N - 1)$ for odd N or with $m = 1, 3, \ldots, (N - 1)$ for even N, for which a standing wave appears in a stack with N layers. Using mathematical language, this approach corresponds to a decomposition of the Hamiltonian (assumption that $\gamma_2 = \gamma_5 = 0$ is compulsory) describing a graphite stack with N-layers (dimension $2N \times 2N$) into a set of sub-Hamiltonians (4×4). For even N, each segment corresponds to the Hamiltonian of the bilayer with the effective coupling constant $\lambda_m \gamma_1$, which is directly related to the allowed discrete values of momentum k_z; as $\lambda_m = 2 \cos k_m$. For an odd number of stacked layers N, we get very similar results, $(N - 1)/2$ effective bilayers and one monolayer-like Hamiltonian (2×2). Hence, in this way, the problem of the band structure of few-layer graphite is reduced to the already discussed band structures of a graphene monolayer and bilayer, by simply introducing the appropriate effective coupling parameters. This approach has been discussed by Partoens and Peeters [122] and further developed by Koshino and Ando [119, 120, 148] who also included the influence of the magnetic field. Perhaps a more elaborate, but less intuitive approach can be found, e.g., in [45, 149].

Experimentally, only the very first measurements which probe the optical properties of graphite stacks with $N > 2$ have just appeared for stacks up to $N = 8$ [146]. They display a clear evolution of the optical conductivity as a function of N and well resemble the features that can be seen in the traces of the calculated optical conductivity expected in these structures (figure 20).

Figure 20. The expected dynamic conductivity of Bernal-stacked N-graphene layers, as calculated within a simple band structure model of these systems discussed in the text. All graphene stacks are assumed to be neutral. The dynamic conductivity of the monolayer is constant and equals $\pi e^2/h$. The bilayer conductivity is calculated according to the theory developed in [83], and assuming $\gamma_1 = 385$ meV. The conductivity of the higher order stack is the sum of the conductivities of its effective bilayers and if applicable of a monolayer (if N is odd). For example: the trilayer conductivity is the sum of the conductivity of the monolayer and the effective bilayer with the coupling parameter of 1.41 γ_1; the conductivity of the $N = 6$ stack is the sum of the conductivities of three effective bilayers with effective coupling parameters of 0.45 γ_1, 1.25 γ_1 and 1.80 γ_1.

7. Summary and outlook

Optical spectroscopy has in recent years been successfully applied to investigate the properties of new two-dimensional allotropes of carbon and to revise the properties of bulk graphite. The majority of these experiments have been devoted to establish or verify the band structure character of the investigated materials and they certainly helped to establish and/or to better understand the characteristic nature of massless or massive Dirac electronic states in graphene
in bilayer graphene [108, 113, 114, 116, 117], uncover their properties [47, 49, 61, 150]. The authors of methods of infrared spectroscopy have been frequently used, tables 1–4. In complement to convectional electric transport are the primary results of applications of these methods, see band curvature (effective mass) in bilayer graphene structures of the Fermi velocity in graphene-based systems or of the methods to study band structure parameters. Estimations techniques and consider them among the most effective this review are particularly attached to magneto-spectroscopy.

Similarly, the surprisingly extremely weak scattering effect is obviously risky to foresee further developments in optics of graphene-related structures but probably safe to say that they will be very much dependent on the progress in sample preparation: fabrication of easily handled large area samples, of systems with higher electronic quality and certainly new structures. Optical and magneto-optical methods will continue to be used to extract the relevant band structure parameters of these materials. These methods are likely to be of particular importance with respect to intense efforts of band gap engineering in different graphene systems [20] (e.g. a graphene bilayer under the applied voltage [115–117, 121] or chemically functionalised graphene [152–154]). The problem of the specific, for linear bands, role of electron–electron interactions in inter Landau level transitions is to be clarified both on experimental and theoretical grounds. Better quality samples could certainly help in experiments, as they recently did in the case of the first observations of the fractional quantum Hall effect in graphene [98, 99]. Intriguingly, the classical collective phenomena such as low energy plasmons are absent in the experiments so far. This is to be verified, for example, in low-field low-frequency magneto-optical experiments on samples with well-defined shape, as already done for standard 2D semiconductor systems [155, 156]. Low-energy plasma excitations might be very unique in graphene [157–161] and also interesting from the viewpoint of THz applications [162]. The predicted nonlinear effects related to cyclotron resonance and/or plasmon excitations are also to be examined [163, 164]. A possibility of detecting cyclotron resonance emission, which may perhaps easily appear in the system with non-equidistant Landau levels, due to expectable inefficient

Table 1. Table of various graphene-related quantities together with their numerical values. The energy ε and the Fermi level E_F in the last column are expressed in meV and the Fermi velocity v_F in units of 10^6 m s$^{-1}$. m_0 denotes the bare electron mass.

Quantity	Relations	Numerical values				
Effective mass	$m =	e	/v_F^2$	$1.76 \times 10^{-4}(e	/v_F^2)$
Density of states	$g_\ast g_0	e	/(2\pi v_F^2 R^2)$	$1.47 \times 10^6(e	/v_F^2)$
Carrier density	$g_\ast g_0 E_F/(4\pi v_F^2 B^2)$	$7.35 \times 10^7(E_F/v_F)^2$				
Energy of 1st LL	$E_1 = v_F\sqrt{2\hbar eB}$	36.3 $v_F\sqrt{B[7]}$ meV				

Table 2. Fermi velocity in various graphene specimens deduced by different experimental techniques: magneto-optics (MO), ARPES and STS. Values for nearest-neighbour coupling parameter γ_0 were obtained via the relation $\gamma_0 = 2hv_F/(\sqrt{3}m_0)$, $\gamma_0 [eV] \approx 3.088v_F[10^6m s^{-1}]$.

Graphene specimen	v_F (106 m s$^{-1}$)	γ_0 (eV)	Remark
Exfoliated, SiO$_2$ substrate	1.12	3.46	MO [78]
Exfoliated, SiO$_2$ substrate	1.09	3.37	MO [48]
Epitaxial (C-terminated surface)	1.02–1.03	3.15–3.18	MO [76, 82]
Epitaxial (C-terminated surface)	1.13	3.49	STS [29]
Epitaxial (C-terminated surface)	1.0	3.1	ARPES [91]
Decoupled on surface of bulk graphite	1.00	3.09	MO [74]
Decoupled on surface of bulk graphite	0.79	2.4	STS [28]

Table 3. Band structure parameters of the graphene bilayer γ_1, γ_4 and Δ' derived from infrared optical experiments performed on the exfoliated graphene bilayer specimen.

Band structure parameter	Value	References
γ_1	400 meV	[108, 113]
γ_1	378 meV	[114, 115]
γ_1	\approx350 meV	[107]
γ_4	150 meV	[108, 113]
γ_4	140 meV	[114, 115]
Δ'	18 meV	[108, 113]
Δ'	22 meV	[114, 115]
inter-Landau level Auger processes [165–167], is worth verifying. This could give rise to efficient (B tunable) sources of infrared radiation or even to THz lasers [168]. (Magneto-)optical experiments may also be decisive in confirmation of the Dirac subbands [169] when fabricating artificial graphene [170] (by honeycomb lithography of a conventional 2DEG). Approaching the illusive quantum electrodynamics effect of Zitterbewegung is perhaps another challenge for optics of graphene [17, 171–173].

It should be stressed that this review covers only the basic linear transmission/reflection optical studies of graphene-based structures. For example, it does not include the vast domain of Raman scattering experiments [174, 175]. We just briefly note that Raman scattering measurements on graphene systems are so far limited to investigations of the phonon response. However, since we deal with resonant processes, the phonon response also includes information on the electronic response. However, since we deal with resonant processes, the phonon response also includes information on the electronic states of graphene [171, 172].

Table 4. Various quantities related to the graphene bilayer in the parabolic approximation of E_F and E_b bands. The numerical values are calculated for $\gamma_1 = 375 \text{ meV}$ and $v_F = 10^6 \text{ m s}^{-1}$. m_0 denotes the bare electron mass.

Quantity	Relations	Numerical values		
Effective mass m	$\gamma_1/(2v_F^2)$	0.033 m_0		
Density of states g_{sr}	$g_{sr}\gamma_1/(4v_F^2\pi\hbar^2)$	2.76×10^{10} $\text{ cm}^{-2} \text{ meV}^{-1}$		
Carrier density g_{sr}	$g_{sr}\gamma_1/(4v_F^2\pi\hbar^2)$	$2.76 \times 10^{10}	E_F	$ cm^{-2}
Cyclotron energy $h\omega_c$	$2\hbar eB\nu_F/\gamma_1$	$3.51 B [\text{T}]$ meV		

Acknowledgments

This work has been supported by the European Commission via EuroMagNET II contract no. 228043 and Marie Curie Actions grant MTKD-CT-2005-029671, as well as, by projects PCR CNRS(France)-CNRC(Canada), CNRS-PICS-4340, MSM0021620834, KAN400100652, GACR no P204/10/1020 and Barrande no 19535NF.

References

[1] Geim A K and Novoselov K S 2007 The rise of graphene Nature Mater. 6 183
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Two-dimensional gas of massless Dirac fermions in graphene Nature 438 197
[4] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Experimental observation of the quantum Hall effect and Berry’s phase in graphene Nature 438 201
[5] Wallace P R 1947 The band theory of graphite Phys. Rev. 71 622–34
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666
[7] Berger C et al 2004 Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphene-based nanoelectronics J. Phys. Chem. B 108 19912
[8] Berger C et al 2006 Electronic confinement and coherence in patterned epitaxial graphene Science 312 1191
[9] Feige J I, Sutter P W and Sutter E A 2008 Epitaxial graphene on ruthenium Nature Mater. 7 406
[10] Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G Jr, Hinarejos J J, Guinea F and Miranda R 2008 Periodically rippled graphene: growth and spatially resolved electronic structure Phys. Rev. Lett. 100 056807
[11] Grüneis A and Vyalikh D V 2008 Tunable hybridization between electronic states of graphene and a metal surface Phys. Rev. B 77 193401
[12] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y and Hong B H 2009 Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 457 706–10
[13] Grunieis A, Kummer K and Vyalikh D V 2009 Dynamics of graphene growth on a metal surface: a time-dependent photomission study New J. Phys. 11 073050
[14] Li X et al 2009 Large-area synthesis of high-quality and uniform graphene films on copper foils Science 324 1312–4
[15] Geim A K 2009 Graphene: status and prospects Science 324 1530–4
[16] Katsnelson M I, Novoselov K S and Geim A K 2006 Chiral tunnelling and the Klein paradox in graphene Nature Phys. 2 620–5
[17] Katsnelson M I 2006 Zitterbewegung, chirality, and minimal conductivity in graphene Eur. Phys. J. B 51 157
[18] Beenakker C W J 2008 Colloquium: Andreev reflection and Klein tunneling in graphene Rev. Mod. Phys. 80 1337
[19] Young A F and Kim P 2009 Quantum interference and Klein tunnelling in graphene heterojunctions Nature Phys. 5 222–6
[20] Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Katsnelson I I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene *Nature Phys.* 2 177–80

[21] McCann E and Fal’ko V I 2006 Landau-level degeneracy and quantum Hall effect in a graphene bilayer *Phys. Rev. Lett.* 96 086805

[22] Craciun M F, Russo S, Yamamoto M, Oostinga J B, Morpurgo A F and Tarucha S 2009 Trilayer graphene is a semimetal with a gate-tunable band overlap *Nature Nanotech.* 4 383

[23] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Controlling the electronic structure of bilayer graphene *Science* 313 951–4

[24] Bostwick A, Ohta T, Seyller T, Horn K and Rotenberg E 2007 Quasiparticle dynamics in graphene *Nature Phys.* 3 36–40

[25] Zhou S Y, Gweon G-H, Fedorov A V, First P N, de Heer W A, Lee D-H, Guinea F, Neto A H Castro and Lanzara A 2007 Substrate-induced bandgap opening in epitaxial graphene *Nature Mater.* 6 770–5

[26] Gruneis A 2008 Electronic-magnon correlation in graphene: a combined angle-resolved photoemission and first-principles study *Phys. Rev. Lett.* 100 037601

[27] Martin J, Akerman N, Ulbricht G, Tometich J H, von Klitzing K and Yacoby A 2008 Observation of electron–hole puddles in graphene using a scanning single-electron transistor *Nature Phys.* 4 144

[28] Li G, Luican A and Andrei E Y 2009 Scanning tunneling spectroscopy of graphene on graphite *Phys. Rev. Lett.* 102 176804

[29] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2009 Observing the quantization of zero mass carriers in graphene *Science* 324 924–7

[30] Tan Y-W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Sarma S D, Stormer H L and Kim P 2007 Measurement of scattering rate and minimum conductivity in graphene *Phys. Rev. Lett.* 99 246803

[31] Chen J-H, Jang C, Adami S, Fuhrer M S, Williams E D and Ishigami M 2008 Charged-impurity scattering in graphene *Nature Phys.* 4 377

[32] Blake P, Yang R, Morozov S V, Schedin F, Ponomarenko L A, Zhukov A A, Nair R R, Grigorieva I V, Novoselov K S and Geim A K 2009 Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point *Solid State Commun.* 149 1068–71 (Recent Progress in Graphene Studies)

[33] Geim A K and MacDonald A H 2007 Graphene: exploring carbon flatland *Phys. Today* 60 35–41

[34] Gusynin V, Sharapov S and Carbotte J P 2007 Ac conductivity of graphene: from tight-binding model to 2+1 dimensional quantum electrodynamic *Int. J. Mod. Phys. B* 21 4611

[35] Katsnelson M I 2007 Graphene: carbon in two dimensions *Mater. Today* 10 20–7

[36] Katsnelson M I and Novoselov K S 2007 Graphene: new bridge between condensed matter physics and quantum electrodynamics *Solid State Commun.* 143 3–13

[37] Blake P, Hill E W, Neto A H Castro, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Making graphene visible *Appl. Phys. Lett.* 91 063124

[38] Abergel D S L, Russell A and Fal’ko V I 2007 Visibility of graphene flakes on a dielectric substrate *Appl. Phys. Lett.* 91 063125

[39] Roddaro S, Pingue P, Piazza V, Pellegrini V and Beltram F 2007 The optical visibility of graphene: interference colors of ultrathin graphite on SiOx *Nano Lett.* 7 2707–10

[40] Casiiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S and Ferrari A C 2007 Rayleigh imaging of graphene and graphene layers *Nano Lett.* 7 2711–7

[41] Jung I, Pelson M, Pitner R, Dikin D A, Stankovich S, Watcharotone S, Hausner M and Ruoff R S 2007 Simple approach for high-contrast optical imaging and characterization of graphene-based sheets *Nano Lett.* 7 3569–75

[42] Chung D D L 2002 Review graphite *J. Mater. Sci.* 37 1475

[43] Brandt N B, Chudinov S M and Ponomarev Y G 1988 *Semimetals I: Graphite and Its Compounds (Modern Problems in Condensed Matter Sciences)* vol 20.1 (Amsterdam: North-Holland)

[44] Peres N M R, Guinea F and Neto A H Castro 2006 Electronic properties of disordered two-dimensional carbon *Phys. Rev.* B 73 125411

[45] Gruneis A, Attaccalite C, Wirtz L, Shiozawa H, Saito R, Pichler T and Rubio A 2008 Tight-binding description of the quasiparticle dispersion of graphene and few-layer graphene *Phys. Rev.* B 78 205425

[46] Stauber T, Peres N M R and Geim A K 2008 Optical conductivity of graphene in the visible region of the spectrum *Phys. Rev.* B 78 085432

[47] Plochocka P, Faugeras C, Orlita M, Sadowski M L, Martinez G, Potemski M, Goerbig M O, Fuchs J-N, Berger C and de Heer W A 2008 High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy *Phys. Rev. Lett.* 100 087401

[48] Deacon R S, Chuang K-C, Nichols R J, Novoselov K S and Geim A K 2007 Cyclotron resonance study of the electron and hole velocity in graphene monolayers *Phys. Rev.* B 76 081406R

[49] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Fine structure constant defines visual transparency of graphene *Science* 320 1308

[50] Ando T, Zheng Y and Suzuura H 2002 Dynamical conductivity and zero-mode anomaly in honeycomb lattices *J. Phys. Soc. Japan* 71 1318–24

[51] Gruneis A, Saito R, Samsonidze Ge G, Kimura T, Pimenta M A, Jorio A, Filo Ai G, Dousa Dresselhaus G and Dresselhaus M S 2003 Inhomogeneous optical absorption around the k point in graphite and carbon nanotubes *Phys. Rev.* B 67 165402

[52] Gusynin V P, Sharapov S G and Carbotte J P 2006 Unusual microwave response of Dirac quasiparticles in graphene *Phys. Rev. Lett.* 96 256802

[53] Mikhailov S A and Ziegler K 2007 New electromagnetic mode in dimensional graphene *Phys. Rev. Lett.* 99 016803

[54] Mishchenko E G 2007 Effect of electron–electron interactions on the conductivity of clean graphene *Phys. Rev. Lett.* 98 216801

[55] Falkovsky L A and Varlamov A A 2007 Space-time dispersion of graphene conductivity *Eur. Phys. J.* B 56 281

[56] Falkovsky L A and Pershoguba S S 2007 Optical far-infrared properties of a graphene monolayer and multilayer *Phys. Rev.* B 76 153410

[57] Stauber T, Peres N M R and Castro Neto A H 2008 Conductivity of suspended and non-suspended graphene at finite gate voltage *Phys. Rev.* B 78 085418

[58] Grushin A G, Valenzuela B and Vozmediano M A H 2009 Effect of Coulomb interactions on the optical properties of doped graphene *Phys. Rev.* B 80 155417

[59] Sheehy D E and Schmalian J 2009 Optical transparency of graphene as determined by the fine-structure constant *Phys. Rev.* B 80 193441
[60] Mak K F, Steir M Y, Wu Y, Lui C H, Misevich J A and Heinz T F 2008 Measurement of the optical conductivity of graphene Phys. Rev. Lett. 101 196405

[61] Fei Z, Shi Y, Pu L, Gao F, Liu Y, Sheng L, Wang B, Zhang R and Zheng Y 2008 High-energy optical conductivity of graphene determined by reflection contrast spectroscopy Phys. Rev. B 78 201402

[62] Dawlaty J M, Shivaraman S, Strait J, George P, Chandrashekar M, Rana F, Spencer M G, Vekslers D and Chen Y 2008 Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible Appl. Phys. Lett. 93 131905

[63] Tan W D, Su C Y, Kaine R J, Xie G Q, Li L J and Tang D Y 2010 Mode locking of ceramic Nd:Yttrium aluminium garnet with graphene as a saturable absorber Appl. Phys. Lett. 96 031106

[64] Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Large energy mode locking of an erbium doped fiber laser with atomic layer graphene Opt. Express 17 17630–5

[65] Mishchenko E G 2009 Dynamic conductivity in graphene beyond linear response Phys. Rev. Lett. 103 246802

[66] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Atomic layer graphene as a saturable absorber for ultrafast pulsed lasers Adv. Funct. Mater. 19 3077–83

[67] Kuzmenko A B, van Heumen E, Carbone F and van der Marel D 2008 Universal optical conductance of graphite Phys. Rev. Lett. 100 117401

[68] Min H and MacDonald A H 2009 Origin of universal optical conductivity and optical stacking sequence identification in multilayer graphene Phys. Rev. Lett. 103 067402

[69] Li Z Q, Henriksen E A, Jiang Z, Henriksen E A, Cadden Zimansky P, Jiang Z, Martin M C, Kim P, Stormer H L and Basov D N 2008 Dirac charge dynamics in graphene by infrared spectroscopy Nature Phys. 4 532–5

[70] Adam S, Hwang E H, Galitski V M and Sarma S D 2007 A self-consistent theory for graphene transport Proc. Natl Acad. Sci. USA 104 18392

[71] Cheianov V V, Fal’ko V I, Altshuler B L and Aleiner I L 2007 Random resistor network model of minimal conductivity in graphene Phys. Rev. Lett. 99 176801

[72] Fang W, Zhang Y, Tian C, Girit C, Zettl A, Crommie M and Shen Y R 2008 Gate-variable optical transitions in graphene Science 320 206–9

[73] Zheng Y and Ando T 2002 Hall conductivity of a two-dimensional graphite system Phys. Rev. B 65 245420

[74] Neugebauer P, Orlita M, Faugeras C, Barra A-L and Potemski M 2009 How perfect can graphene be? Phys. Rev. Lett. 103 136403

[75] Gusynin V P and Sharapov S G 2006 Transport of Dirac quasiparticles in graphene: Hall and optical conductivities Phys. Rev. B 73 245411

[76] Sadowski M L, Martinez G, Potemski M, Berger C and de Heer W A 2007 Magneto-optical spectroscopy of epitaxial graphene Solid State Commun. 143 123

[77] Sadowski M L, Martinez G, Potemski M, Berger C and de Heer W A 2007 Magneto-spectroscopy of epitaxial graphene Int. J. Mod. Phys. B 21 1145

[78] Orlita M et al 2008 Approaching the Dirac point in high-mobility multilayer epitaxial graphene Phys. Rev. Lett. 101 266601

[79] Henriksen E A, Cadden Zimansky P, Jiang Z, Li Z Q, Tung L C, Schwartz M E, Takita M, Wang Y J, Kim P and Stormer H L 2010 Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy Phys. Rev. Lett. 104 067404

[80] Kubo R 1957 Statistical-mechanical theory of irreversible processes: I. General theory and simple applications to magnetic and conduction problems J. Phys. Soc. Japan 12 570

[81] Greenwood D A 1958 The Boltzmann equation in the theory of electrical conduction in metals Proc. Phys. Soc. 71 585

[82] Moseley L L and Lukes T 1978 A simplified derivation of the Kubo–Greenwood formula Am. J. Phys. 46 476

[83] Abergel D S L and Fal’ko V I 2007 Optical and magneto-optical far-infrared properties of bilayer graphene Phys. Rev. B 75 155430

[84] Schultz M, Merkt U, Sonntag A, Rössler U, Colin T, Helgesen P, Skauti T and Lovakov S 1998 Density dependent cyclotron and intersubband resonance in doped CdTe/HgTe/CdTe quantum wells J. Cryst. Growth 184–185 1180

[85] Schultz M, Merkt U, Sonntag A, Rössler U, Winkler R, Colin T, Helgesen P, Skauti T and Lovakov S 1998 Crossing of conduction- and valence-subband Landau levels in an inverted HgTe/CdTe quantum well Phys. Rev. B 57 14772

[86] Anikeev T 1975 Theory of cyclotron-resonance line shapes in a 2-dimensional electron-system J. Phys. Soc. Japan 38 989–97

[87] Sprinkle M et al 2009 First direct observation of a nearly ideal graphene band structure Phys. Rev. Lett. 103 226803

[88] Hass J, Varchon F, Millán-Otaya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L and Conrad E H 2008 Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene Phys. Rev. Lett. 100 125504

[89] Morozov S V, Novoselov K S, Katsnelson M I, Schiedel F, Elias D C, Jaszczak J A and Geim A K 2008 Giant intrinsic carrier mobilities in graphene and its bilayer Phys. Rev. Lett. 100 016602

[90] Shon N H and Ando T 1998 Quantum transport in two-dimensional graphite system J. Phys. Soc. Japan 67 2421

[91] Jernigan G G, Van Mil B L, Tedesco J L, Tischler J G, Glaser E R, Davidson A III, Campbell P M and Gaskill D K 2009 Comparison of epitaxial graphene on Si-face and C-face 4H-SiC formed by ultrahigh vacuum and RF furnace production Nano Lett. 9 2605–9

[92] vol Klitzing K, Dorda G and Pepper M 1980 New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance Phys. Rev. Lett. 45 494–7

[93] Tsui D C, Stormer H L and Gossard A C 1982 Two-dimensional magnetotransport in the extreme quantum limit Phys. Rev. Lett. 48 1559–62

[94] Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene Nature 462 192

[95] Bolotin K I, Ghalari F, Shulman M D, Stormer H L and Kim P 2009 Observation of the fractional quantum Hall effect in graphene Nature 462 196

[96] Iyengar A, Wang J, Fertig H A and Brey L 2007 Excitations in graphene layers Anomalous absorption line in the magneto-optical spectra of epitaxial graphene from terahertz to visible Solid State Commun. 143 123
Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8 4248

[186] Sun D, Wu Z-K, Divin C, Li X, Berger C, de Heer W A, First P N and Norris T B 2008 Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy Phys. Rev. Lett. 101 157402

[187] Choi H, Borondics F, Siegel D A, Zhou S Y, Martin M C, Lanzara A and Kaindl R A 2009 Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene Appl. Phys. Lett. 94 172102

[188] Kampfrath T, Perfetti L, Schapper F, Frischkorn Ch and Wolf M 2005 Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite Phys. Rev. Lett. 95 187403

[189] Breusing M, Ropers C and Elsaesser T 2009 Ultrafast carrier dynamics in graphite Phys. Rev. Lett. 102 086809

[190] Newson R W, Dean J, Schmidt B and van Driel H M 2009 Ultrafast carrier kinetics in exfoliated graphene and thin graphite films Opt. Exp. 17 2326–33