AN EXACT METHOD FOR OPTIMIZING TWO LINEAR FRACTIONAL
FUNCTIONS OVER THE EFFICIENT SET OF A MULTIOBJECTIVE
INTEGER LINEAR FRACTIONAL PROGRAM

Abstract
In this paper, an exact method is proposed to optimize two fractional linear functions over the efficient set of a fractional multiobjective linear problem (MOILFP). This type of problems is encountered when there are two decision makers and each has his own utility function that he wants to optimize over the efficient set of multiobjective problem. The proposed method uses Branch and Bound method combined with a cutting plane technique to find the efficient solutions for both utility functions and (MOILFP) without going through all the efficient solutions of the two problems. An illustrative example and a computational study are reported.

Keywords Multiobjective programming · Fractional programming · Integer programming · Branch-and-cut · Nonlinear programming

1 Introduction
Optimizing a nonlinear or linear function over the efficient set is an interesting area of multiobjective programming (Miettinen, 1999). It is a simple way to avoid listing all efficient solutions by evaluating and distinguishing them from each other using a function that summarizes the preferences of decision makers.

First considered by Philip (1972), the problem of optimization over the efficient set has since attracted the attention of several authors, among whom Jorge (2009) who proposed an exact method that successively solves single-objective programs, Zerdani and Moulaï (2011) have optimized a linear function over the integer efficient set of MOILFP using Ehrgott’s efficiency test (1997). More recently, Drici et al. (2018) also proposed an exact method that uses the well-known concept of branch-and-bound combined with efficient cuts technique and Liu and Ergoth (2018) have presented primal and dual algorithms to solve this problem. Other entries can be found in Yamamoto’s survey (2002).

Most of the time, in this type of problems, we have several decision makers and each one of them can have a utility function. Cherfaoui and Moulaï (2019) have treated the case where there are two linear functions to optimize over the efficient set of an integer linear multiobjective problem. However, in practice, measuring a quality, a profitability, a probability,..., are described as fractional functions. Fractional programming is encountered in several areas of application such as : stock cutting problem (Gilmore & Gomory, 1961), shape-quality optimization (Munson, 2007), clustering problems (Rao, 1971), etc., more applications of fractional programming can be found in Schaible (1981), Stancu-Minasian’s bibliography (2013).

In this article, we generalize the latter method (Cherfaoui & Moulaï, 2019) where we have two linear fractional functions (BOILFP) that we want to optimize over the efficient set of (MOILFP). This problem was encountered in a real world problem summarized as follow: A company "A" wants to subcontract a part of its production. On another hand, a Company "B" wants to take over the project and at the same time.
has several fractional linear objective functions. The company "B" wants to know if there is one or more solutions to benefit both companies. In other words, finding the solutions that are efficient for both the (BIOLFP) problem and the (MOILFP) problem. One way to solve this problem is to enumerate the efficient sets of both (BIOLFP) and (MOILFP) and find the intersection between the two efficient sets. This method has an important computational cost as we will show it in the computational study.

The proposed method is an exact branch and cut procedure that provides the exact efficient solutions for both (BIOLFP) and (MOILFP). This procedure has the advantage to avoid useless exploration of domain by using cuts that eliminates dominated solutions, pruning by the same way useless nodes in the tree. It also uses efficiency tests that allow only the good solutions to be selected.

2 Definitions and preliminaries

Linear Fractional Programs (LFP) are very important because of their contribution to real problems (Bajalinov, 2013; Stancu, 2012), their general formulation is:

\[
(LFP) \begin{cases}
 \max f_1(x) = \frac{p^1 x + \alpha^1}{q^1 x + \beta^1} \\
 \text{s.t.} \\
 x \in \mathcal{X}
\end{cases}
\]

(1)

where \(\mathcal{X} = \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\} \), \(p^1, q^1 \) are \(n \)-vectors, \(\alpha^1 \) and \(\beta^1 \) are scalars, \(b \) is an \(m \)-vector, \(A \) is an \(n \times m \)-matrix and \(x \) is the \(n \)-vector decision.

The set \(\mathcal{X} \) is assumed to be nonempty convex polytope and the set \(\mathcal{D} = \mathcal{X} \cap \mathbb{Z}^n \) is assumed not empty as well.

Several authors proposed approaches that can solve (LFP) efficiently. In the first place, Charnes and Cooper (1962) proposed a variable transformation that turns the problem into a linear program. Cambini and Martein (1986) proposed a simplex procedure improved from the procedure of Martos (1964). This procedure uses the reduced gradient to move towards the optimum for a base \(B_l \) and associated solution \(x^{(l)} \) using the following notations:

\[
\begin{align*}
 \nu^{(l)} &= p^1 - p^1_{B_l} B^{-1}_{l} A \\
 \mu^{(l)} &= q^1 - q^1_{B_l} B^{-1}_{l} A, \\
 P^1(x) &= p^1 x^{(l)} + \alpha^1 \\
 Q^1(x) &= q^1 x^{(l)} + \beta^1
\end{align*}
\]

the reduced gradient for the problem (1) can be formulated as:

\[
\gamma^{(l)} = Q^1(x)\nu^{(l)} - P^1(x)\mu^{(l)}
\]

The reduced gradient gives the direction of growth of the objective function \(f_1(x) \), so if for all index \(j \) from the non-basic index set \(N_l \), \(\gamma_j^{(l)} \leq 0 \) then the function \(f_1(x) \) cannot increase.

Most of real life problems can be modelled as multiobjective problems with integer numbers, therefore let us consider the following multiobjective program:

\[
(MOILFP) \begin{cases}
 \max Z_1(x) = \frac{c^1 x + c^1_0}{d^1 x + d^1_0} \\
 \max Z_2(x) = \frac{c^2 x + c^2_0}{d^2 x + d^2_0} \\
 \quad \vdots \\
 \max Z_k(x) = \frac{c^k x + c^k_0}{d^k x + d^k_0} \\
 \text{s.t.} \\
 x \in \mathcal{D}
\end{cases}
\]

(2)
where $k \geq 2$; c^i, d^i are $n-$vectors; c^i_0, d^i_0 are scalars for each $i \in \{1, 2, \ldots, k\}$. Throughout this article, we assume that $d^i x + d^i_0 > 0$ over X for all $i \in \{1, 2, \ldots, k\}$.

Definition 2.1. A solution $x \in D$ is called an efficient solution for $(MOILFP)$, if there exists no point $y \in D$ such that $Z_i(y) \geq Z_i(x)$, for all $i \in \{1, \ldots, k\}$ and $Z_i(y) > Z_i(x)$ for at least one $i \in \{1, \ldots, k\}$.

Some researchers tackled this problem in their papers especially in the continuous case; Kornbluth and Steuer (1981) presented a simplex-based solution procedure to find all weakly efficient vertices, while Costa (2007) proposed a new technique to optimize a weighted sum of the linear fractional objective functions. Finally, Cambini et al. (1999) wrote a survey on the biobjective fractional problems.

In general, since it is computationally heavy, authors avoid trying to generate the whole efficient set. However, Chergui and Moulaï (2008) used a branch-and-cut procedure to generate the whole efficient set. In their paper, they combined branch-and-bound exploration with a cutting plane technique to generate the efficient set without enumerating the whole integer domain.

In this paper, we propose a method that generates a part of the efficient set of $(MOILFP)$ that is defined by decision makers preferences. Therefore, let us assume the existence of two utility functions f_1 and f_2:

\[
\begin{align*}
(BOILFP) \quad \max f_1(x) &= \frac{p^1 x + \alpha^1}{q^1 x + \beta^1} \\
\max f_2(x) &= \frac{p^2 x + \alpha^2}{q^2 x + \beta^2} \\
\text{s.t.} & \quad x \in D
\end{align*}
\]

where p^1, p^2, q^1, q^2 are $n-$vectors; α^1, β^1 and α^2, β^2 are scalars. Throughout this article, we also assume that $q^1 x + \beta^1 > 0$ and $q^2 x + \beta^2 > 0$ over X and the following notations are used for B_i, N_i and $x^{s(i)}$:

\[
\begin{align*}
P^s(x) &= p^s x + \alpha^s, \\
z^s_1(x) &= c^s x + c^s_0, \\
Q^s(x) &= q^s x + \beta^s, \\
z^s_2(x) &= d^s x + d^s_0, \\
\nu^{s(i)} &= p^s - p^s_i B_i^{-1} A, \\
\mu^{s(i)} &= q^s - q^s_i B_i^{-1} A, \\
\eta^{s(i)} &= c^s - c^s_i B_i^{-1} A, \\
\phi^{s(i)} &= d^s - d^s_i B_i^{-1} A.
\end{align*}
\]

Therefore, the problem that we propose to solve is:

\[
(B_E) \quad \max f_1(x) = \frac{p^1 x + \alpha^1}{q^1 x + \beta^1} = \frac{p^1 x + \alpha^1}{q^1 x + \beta^1}
\]

\[
\text{s.t.} \quad x \in X_E,
\]

where X_E is the set of efficient solutions of $(MOILFP)$, we also note X_E: the set of efficient solutions of the $(BOILFP)$. The problem (B_E) has a real practical utility, yet it has not been considered. It arises, for example, whenever two firms have to optimize their respective interest and a common problem.

2.1 Efficiency test for multi-objective linear fractional programs

The efficiency test of integer feasible solutions x^* of the problem (2) is verified by solving the mixed integer linear program (5).

\[
MM(x^*) \quad \max \psi = \sum_{i=1}^{k} \psi_i
\]

\[
\text{s.t.} \quad \begin{align*}
&[c^i - Z_i(x^*)] d^i x - \psi_i = Z_i(x^*) d^i_0 - c^i_0, \quad i = 1, \ldots, k \quad x \in D; \\
&\psi_i \geq 0, \text{ for all } i \in \{1, \ldots, k\}
\end{align*}
\]
where \(Z_i(x^*) = \frac{d_i^j x^* + c_i^j}{d_i^* x^* + d_0^j} \) and \(\psi = (\psi_i)_{i \in \{1, \ldots, K\} \in \mathbb{R}}. \)

Theorem 2.2. A feasible solution \(x^* \) of problem (2) is efficient if and only if the optimal objective value of problem \(M M(x^*) \) is zero.

Proof. Let \((y, \psi)\) be any feasible solution of problem \(M M(x^*) \), then for all \(i = 1, \ldots, k \), we have:

\[
\psi_i \geq 0, \\
\iff (c_i^j - Z_i(x^*) d_i^j)y - Z_i(x^*) d_0^j + \lambda c_i^j \geq 0, \\
\iff Z_i(y) \geq Z_i(x^*).
\]

Assume that \(\Psi = \sum_{i=1}^{k} \psi_i \neq 0 \), then there exists \(r \in \{1, \ldots, k\} \) such that

\[
\psi_r > 0 \iff (c_r^j - Z_r(x^*) d_r^j)y - Z_r(x^*) d_0^j + c_r^j > 0 \\
\iff Z_r(y) > Z_r(x^*),
\]

therefore, there exists a feasible solution \(y \in D \) such that \(Z_i(y) \geq Z_i(x^*) \) for all \(i \in \{1, \ldots, k\} \) and \(Z_r(y) > Z_r(x^*) \) for at least one \(r \in \{1, \ldots, k\} \). Hence, \(x^* \) is not efficient.

Conversely, let \((y, \psi)\) be an optimal solution of \(M M(x^*) \), where \(\Psi = 0 \), then we have

\[
\sum_{i=1}^{k} \psi_i = 0 \implies \psi_i = 0, \quad i = 1, \ldots, k, \text{ it follows that for all criteria } (Z_i)i = 1, \ldots, k
\]

\[
(c_i^j - Z_i(x^*) d_i^j)y - Z_i(x^*) d_0^j + c_i^j = 0, \\
\iff c_i^j y + c_i^j = Z_i(x^*)(d_i^j y + d_0^j), \\
\iff Z_i(y) = Z_i(x^*).
\]

Hence, the criterion vector \((Z_1(x^*), Z_2(x^*), \ldots, Z_k(x^*))\) is not dominated, then \(x^* \) is efficient. \(\square \)

3 Methodology, Algorithm and Theoretical Results

The naive approach to solve \((B_E)\) consists in enumerating the elements of \(\mathcal{X}_E \) and \(\mathcal{X}_E' \) and determine their intersection. In what follows, we propose a method that avoids the enumeration of both and gives the exact solution set of \((B_E)\). This method is a branch-and-cut procedure that combines the branch-and-bound exploration technique and cutting plane method. The solution set of \((B_E)\) is noted \((S_E)\).

In this paper, we propose to use an equivalent cutting plane method of Chergui and Moulaï (2008) to remove solutions that do not belong to \(\mathcal{X}_E \) or \(\mathcal{X}_E' \). Our method can be summarized as follows:

The branching process

The search for efficient solutions is an implicit exploration structured as a tree where \(f_1 \) or \(f_2 \) can be chosen to be optimized at each node. The choice of function \(f_1 \) or \(f_2 \) will not change the result set \(S_E \), however, it will alter the search tree and change the evolution of \(S_E \) but not the final result.

At each node \(l \) of the tree we optimize the function \(f_l \) over the subdomain corresponding to the node \(\mathcal{X}_l. \)

\[
\{LFP\} \left\{ \begin{array}{ll}
\max f_l(x) = \frac{p^l x + \alpha^l}{q^l x + \beta^l} \\
\text{s.t.} \\
x \in \mathcal{X}_l
\end{array} \right.
\]

where \(\mathcal{X}_0 = \mathcal{X} \) and \(\mathcal{X}_l \) is subset of the original set \(\mathcal{X} \) to explore at node \(l \) of the tree.

The functions \(f_1 \) and \(f_2 \) are linear fractional. To solve the \((LFP_l)\), we can either use the method presented in (Charnes & Cooper, 1962) or another simplex method like those presented in (Cambini & Martein, 1986, Martos, 1964).

After solving \((LFP_l)\), three cases can occur:

- **(LFP_l) has no solution** As for a classical Branch-and-Bound process the node has no descendant.

- **(LFP_l) has a non-integer solution \(x^*(l) \)** If the solution of \((LFP_l)\) is not integer, the approach is the same as the Branch-and-Bound for integer programming, which means that the node has two descendants \(l_1 \) and \(l_2 \) such as: Let \(r \) be an index where \(x^{*(l)}_r \) is not integer then for \(l_1 \) we put \(\mathcal{X}_l_1 = \{x \in \mathcal{X}_l | x_r \leq \lfloor x^{*(l)}_r \rfloor \}\) and for \(l_2 \) we put \(\mathcal{X}_l_2 = \{x \in \mathcal{X}_l | x_r \geq \lceil x^{*(l)}_r \rceil \}\).
(LPF) has an integer solution $x^{*(l)}$ If after calculating the solution $x^{*(l)}$, this solution is integer then two steps are performed:

- **The first step is to test the membership of $x^{*(l)}$ to S_E:***

 Since there are two efficiency tests to take into account:

 $$(T^1_{x^{*(l)}}) \begin{cases}
 \max \sum_{i=1}^{k} w_i \\
 \text{s.t.} \\
 (c_i - Z_i(x^{*(l)}))d_i - w_i = Z_i(x^{*(l)})d_0 - e_i, \ i = 1, k \\
 x \in D \\
 \max v_1 + v_2
 \end{cases}
 $$

 $$(T^2_{x^{*(l)}}) \begin{cases}
 \max v_1 + v_2 \\
 \text{s.t.} \\
 (p^1 - f_1(x^{*(l)})q^1)x - v_1 = f_1(x^{*(l)})\beta^1 - \alpha^1 \\
 (p^2 - f_2(x^{*(l)})q^2)x - v_2 = f_2(x^{*(l)})\beta^2 - \alpha^2 \\
 x \in D
 \end{cases}
 $$

 The first program is for testing the efficiency in the program (MOILFP) and the second for the program (BIOILFP). If both programs have a zero as an optimal value it means that the solution $x^{*(l)}$ is efficient for (MOILFP) and (BIOILFP) and thus $x^{*(l)} \in S_E$.

- **The second is to search the descendants of the node l:** The node in this case has either no descendant or one direct descendant depending on the growth direction of the functions $Z_i, i \in \{1, \ldots, k\}$ and f_2. If there is no increasing for all the functions Z_i in the domain X_i then $x^{*(l)}$ dominates all the domain X_i in terms of (MOILFP) and the node is fathomed. Similarly if there is no solution that is at least better than $x^{*(l)}$ in the criterion f_2, then the solution $x^{*(l)}$ dominates the whole domain X_i in terms of (BOILFP) and the node is fathomed.

 On the other hand, if there is a possible improvement of one of the functions $Z_i, i \in \{1, \ldots, k\}$ and f_2, an efficient solution in terms of (MOILFP) and (BOILFP) might still exists in X_i and the node has descendants. So, the cutting plane method that we use permit to remove solutions that are dominated by $x^{*(l)}$ criteria vectors.

 Let B_i and N_i be the sets of basic variables and non-basic variables indexes of $x^{*(l)}$ respectively. In what follows we will use these notations for $j \in N_i$:

 $$
 \gamma^{2(l)} = Q^2(x^{*(l)})\nu^{2(l)} - P^2(x^{*(l)})\mu^{2(l)} \\
 \lambda^{i(l)} = z^2(x^{*(l)})\eta^{i(l)} - z^1(x^{*(l)})\theta^{i(l)}, \ i \in \{1, 2, \ldots, k\}
 $$

 Since $\gamma^{1(l)}$ and $\gamma^{2(l)}$ represent the reduced gradient vectors for f_1 and f_2, and $\lambda^{i(l)}$ corresponds to the reduced gradient vectors for the criterion Z_i for each $i \in \{1, 2, \ldots, k\}$. We define the sets H_l and H'_l for each node l as follows:

 $$
 H_l = \{ j \in N_i | \exists i \in \{1, \ldots, k\}; \lambda^{i(l)}_j > 0 \} \cup \{ j \in N_i | \gamma^{j(l)} = 0, \forall i \in \{1, \ldots, k\} \}
 $$

 $$
 H'_l = \{ j \in N_i | \gamma^{j(l)} > 0 \} \cup \{ j \in N_i | \gamma^{j(l)} = 0 \text{ and } \gamma^{j(l)} = 0 \}
 $$

 In the following theorem [4.1] we will prove that the cuts:

 $$
 \sum_{j \in H_l} x_j \geq 1 \text{ and } \sum_{j \in H'_l} x_j \geq 1
 $$

 are valid and eliminate solutions that are dominated by $x^{*(l)}$.

 After finding an integer solution, we update S_E and calculate H_l, H'_l. If $H_l = \emptyset$ or $H'_l = \emptyset$ it means that the remaining domain contains no efficient solution either in terms of (MOILFP) or (BOILFP), and the node l is fathomed (See proposition [4.2]). Otherwise, if $H_l \neq \emptyset$ and $H'_l \neq \emptyset$ the node l has one successor l_0 with $X_{l_0} = \{ x \in X_l | \sum_{j \in H_l} x_j \geq 1, \sum_{j \in H'_l} x_j \geq 1 \}$.

 Thus, there exists two rules of fathoming nodes, the first rule is when the corresponding program (LPF) is not feasible and the second is when $H_l = \emptyset$ or $H'_l = \emptyset$.
In the following algorithm, the nodes in the tree structure can be treated according to the backtracking or the depth first principles or any other exploration strategy.

Algorithm 1: Biobjective optimization over MultiObjective Integer Linear Fractional Program

Result: The set \(S_E \) containing all the efficient solutions of the program (4) initialization \(l = 0, \mathcal{X}_l = \{ x \in \mathbb{R}^n | Ax \leq b \text{ and } x \geq 0 \} \) and \(S_E = \emptyset \); **while there is a non-fathomed node \(l \) do**

solve \((LFP_l)\); \[
\begin{align*}
(LFP_l) \quad \max & \quad f_1(x) \\
\text{s.t.} & \quad x \in \mathcal{X}_l
\end{align*}
\]

if \((LFP_l)\) has an optimal solution \(x^*(l) \) then

if \(x^*(l) \) is integer then

Update \(S_E \);

Construct the sets \(\mathcal{H}_l, \mathcal{H}'_l \);

if \(\mathcal{H}_l = \emptyset \) or \(\mathcal{H}'_l = \emptyset \) then

Fathom the node \(l \);

else

Add the cuts \((6)\) and \((7)\) to \(l_0 \) the successor of \(l \);

end

else

Choose an index \(r \) such as \(x^*_r(l) \) is fractional. Then, split the program \((LFP_l)\) into two sub-programs, by adding respectively the constraints \(x_r \leq \lfloor x^*_r(l) \rfloor \) and \(x_r \geq \lceil x^*_r(l) \rceil \) to obtain \((LFP_{l_1})\) and \((LFP_{l_2})\) (\(l_1 \geq l + 1, l_2 > l + 1 \) and \(l_1 \neq l_2 \));

end

else

Fathom the node \(l \);

end

end

4 **Theoretical results**

The following theoretical tools show that the algorithm yields the solution set \(S_E \) of the program (4) \((B_E)\) in a finite number of iterations.

Theorem 4.1. Assume that \(\mathcal{H}_l \neq \emptyset \) and \(\mathcal{H}'_l \neq \emptyset \) at the current integer solution \(x^*(l) \). If \(x \in S_E, x \neq x^*(l) \) and \(x \in \mathcal{X}_l, then x \in \mathcal{X}_{l_1} \) \((l_1 \text{ successor of } l)\).

Proof. Let \(x \neq x^*(l) \) be an integer solution in domain \(\mathcal{X}_l \) such as \(x \notin \mathcal{X}_l \), two cases can occur:

- \(x \notin \mathcal{X}_l \) because \(x \in \{ x \in \mathcal{X}_l \mid \sum_{j \in \mathcal{N}_l \setminus \mathcal{H}_l} x_j \geq 1 \} \), this implies \(x \in \{ x \in \mathcal{X}_l \mid \sum_{j \in \mathcal{H}_l} x_j < 1 \} \).

Therefore, the following inequalities hold:

\[
\sum_{j \in \mathcal{H}_l} x_j < 1 \quad \sum_{j \in \mathcal{N}_l \setminus \mathcal{H}_l} x_j \geq 1.
\]

It follows that \(x_j = 0 \) for all \(j \in \mathcal{H}_l \) and \(x_j \geq 1 \) for at least one index \(j \in \mathcal{N}_l \setminus \mathcal{H}_l \).
From the optimal simplex table corresponding to solution \(x^{*(l)} \), the updated value of each objective function is written according to the non-basic indexes \(j \in \mathcal{N}_l \) as follows:
\[
\begin{align*}
 z_1^i(x) &= z_1^i(x^{*(l)}) + \delta_j \eta_j^{i(l)}, \\
 z_2^i(x) &= z_2^i(x^{*(l)}) + \delta_j \varphi_j^{i(l)},
\end{align*}
\]
where \(\delta_j = \frac{x_{B_i(x^*)}^j}{A_j^*} = \min \left\{ \frac{x_{B_i(x^*)}^j}{A_j^*} \mid A_j^* > 0 \right\} \).

Thus, we have for all \(i \in \{1, 2, \ldots, k\} \):
\[
Z_i(x) = \frac{z_1^i(x)}{z_2^i(x)} = \frac{z_1^i(x^{*(l)}) + \delta_j \eta_j^{i(l)}}{z_2^i(x^{*(l)}) + \delta_j \varphi_j^{i(l)}},
\]
then we can write
\[
Z_i(x) - Z_i(x^{*(l)}) = \frac{z_1^i(x^{*(l)}) + \delta_j \eta_j^{i(l)}}{z_2^i(x^{*(l)}) + \delta_j \varphi_j^{i(l)}} - \frac{z_1^i(x^{*(l)})}{z_2^i(x^{*(l)})}
\]
\[
= \delta_j \left[\frac{z_2^i(x^{*(l)}) \eta_j^{i(l)} - z_1^i(x^{*(l)}) \varphi_j^{i(l)}}{z_2^i(x^{*(l)}) + \delta_j \varphi_j^{i(l)}} \right]
\]
\[
= \delta_j \left[\frac{z_2^i(x^{*(l)}) \eta_j^{i(l)} - z_1^i(x^{*(l)}) \varphi_j^{i(l)}}{z_2^i(x^{*(l)} \times z_2^i(x^{*(l)})} \right]
\]

Since we have already the following notation:
\[
\lambda^{i(l)} = z^2(x^{*(l)}) \eta_j^{i(l)} - z^1(x^{*(l)}) \varphi_j^{i(l)}, \quad i = 1, \ldots, k
\]
As the components \(\lambda^{i(l)} \leq 0 \), for every index \(j \in \mathcal{N}_l \setminus \mathcal{H}_l \)
\[
Z_i(x) - Z_i(x^{*(l)}) \leq 0, \quad i = 1, \ldots, k
\]
and for at least one criterion \(i_0 \in \{1, \ldots, r\} \), \(Z_{i_0}(x) - Z_{i_0}(x^{*(l)}) < 0 \).
Hence, the criterion vector \((Z_1(x), Z_2(x), \ldots, Z_k(x)) \) is dominated by the criterion vector \((Z_1(x^{*(l)}), Z_2(x), \ldots, Z_k(x^{*(l)})) \) then \(x \notin \mathcal{X}_E \). Hence \(x \notin \mathcal{S}_E \)

\(\bullet \) \(x \notin \mathcal{X}_l \) because \(x \in \left\{ x \in \mathcal{X}_l \mid \sum_{j \in \mathcal{N}_l \setminus \mathcal{H}_l} x_j \geq 1 \right\} \), by the same way it implies that
\[
x \in \left\{ x \in \mathcal{X}_l \mid \sum_{j \in \mathcal{H}_l} x_j < 1 \right\}.
\]

Therefore, the following inequalities hold:
\[
\sum_{j \in \mathcal{H}_l} x_j < 1 \quad \sum_{j \in \mathcal{N}_l \setminus \mathcal{H}_l} x_j \geq 1.
\]
It follows that \(x_j = 0 \) for all \(j \in \mathcal{H}_l \) and \(x_j \geq 1 \) for at least one index \(j \in \mathcal{N}_l \setminus \mathcal{H}_l \).

From the optimal simplex table corresponding to solution \(x^{*(l)} \), the updated value of each objective function is written according to the non-basic indexes \(j \in \mathcal{N}_l \) as follows:
\[
P^2(x) = P^2(x^{*(l)}) + \delta_j \mu_j^{2(l)},
\]
\[
Q^2(x) = Q^2(x^{*(l)}) + \delta_j \mu_j^{2(l)}.
\]
The algorithm terminates in a finite number of iterations and the set S_E contains all solutions of B_E, if such solutions exist.

Proof. Let D, the set of integer feasible solutions of $MOILFP$ problem, be a finite bounded set contained in X. The cardinality of efficient sets S_E and X_E, X_E is a finite number. It contains a finite number of integer solutions. So the search tree would have a finite number of branches. Thus the algorithm terminates in a finite number of steps.

Now, assume that $\mathcal{H}_i = \emptyset$, then $\forall j \in N_i$, $\forall x \in D_i$, we have $\overline{\lambda}_j \leq 0$ and $\exists \lambda_0 \in \{1, \ldots, r\}$ such that $\overline{\lambda}_j \leq 0$, $\forall j \in N_i$. So, $x^{*(l)}$ dominates all points $x, x \neq x^{*(l)}$ of domain D_i.

Now, assume that $\mathcal{H}_i = \emptyset$, then $\forall j \in N_i$, $\overline{\lambda}_j < 0$ or $\overline{\lambda}_j = 0$ and $\overline{\lambda}_j < 0$, adding to that $\overline{\lambda}_j < 0$, $\forall j \in N_i$ since it is an optimal solution for (LP_i), $x^{*(l)}$ becomes the most preferred solution in the domain D_i.

Theorem 4.3. The algorithm terminates in a finite number of iterations and the set S_E contains all solutions of B_E, if such solutions exist.

Proof. Let D, the set of integer feasible solutions of $MOILFP$ problem, be a finite bounded set contained in X. The cardinality of efficient sets S_E and X_E, X_E is a finite number. It contains a finite number of integer solutions. So the search tree would have a finite number of branches. Thus the algorithm terminates in a finite number of steps.

For S_E to contain all the solutions of (B_E), the fathoming rules are used without loss of any elements in S_E. At each step l of the algorithm [1] if an integer solution $x^{*(l)}$ is found, the cuts eliminate $x^{*(l)}$ and all dominated solutions from search (see proposition 4.2).
So, the first fathoming rule is when the set H_l or H'_l is empty. In this case, the current node can be pruned since the rest of the domain contains only dominated solutions, either in terms of the multiobjective program or in terms of $(BIOLFP)$. The second rule is the trivial case when the reduced domain becomes infeasible, whether it is because of previous cuts or the branching.

5 Illustrative example

Let us consider the optimization of two utility functions:

$$f_1(x) = \frac{-x_1 + x_2 - 3}{2x_1 + x_1 + 1} \quad \text{and} \quad f_2(x) = \frac{-4x_1 + 3x_2 + 1}{2x_1 + x_2 + 2}$$

over the efficient set \mathcal{X}_E of the $(MOILFP)$ presented in (Kornbluth & Steuer, [1981]):

$$\begin{align*}
\max & \quad x_1 - 4 \\
\max & \quad -x_2 + 2 \\
\max & \quad -x_1 + 4 \\
\max & \quad x_2 + 1 \\
\max & \quad -x_1 + x_2 \\
\text{s.t.} & \quad -x_1 + 4x_2 \leq 0 \\
& \quad 2x_1 - x_2 \leq 8 \\
& \quad x_1 \geq 0, \ x_2 \geq 0 \text{ and integers.}
\end{align*}$$

To solve this problem using the described algorithm, the steps below will be followed:

Initialization Firstly we initialise $l = 0$, $S_E = \emptyset$ and $\mathcal{X}_0 = \mathcal{X}$.

the forward iterations consist in solving the problem attached to the node, so for the node 0 we will solve (LFP_0):

$$\begin{align*}
(LFP_0) \quad \max & \quad f_1(x) = \frac{-x_1 + x_2 - 3}{2x_1 + x_1 + 1} \\
\text{s.t.} & \quad x \in \mathcal{X}_0
\end{align*}$$

Since the method of solution of (LFP_0) is a simplex procedure it gives a final simplex table, from which we will analyse the results according to the described algorithm.

Node 0 solving (LFP_0) gives the final simplex Table [1]:

9
Table 1: Optimal simplex table for node 0.

	x_3	x_4	RHS
x_1	1/7	4/7	32/7
x_2	2/7	1/7	8/7
$\nu^{1(0)}$	-1/7	3/7	-45/7
$\mu^{1(0)}$	-4/7	-9/7	79/7
$\gamma^{1(0)}$	-37/7	-24/7	-45/79
$\nu^{2(0)}$	-2/7	13/7	-97/7
$\mu^{2(0)}$	-4/7	-9/7	86/7
$\gamma^{2(0)}$	-80/7	5	-97/86
$\nu^{3(0)}$	-1/7	-4/7	4/7
$\mu^{3(0)}$	2/7	1/7	6/7
$\gamma^{3(0)}$	-2/7	-4/7	2/3
$\nu^{4(0)}$	1/7	4/7	-4/7
$\mu^{4(0)}$	-2/7	-1/7	15/7
$\gamma^{4(0)}$	1/7	8/7	-4/15
$\nu^{5(0)}$	-1/7	3/7	-24/7
$\mu^{5(0)}$	0	0	1
$\gamma^{5(0)}$	-1/7	3/7	-24/7

Since the optimal solution $\left(\frac{32}{7}, \frac{8}{7}\right)$ is not integer, the problem is divided into two sub-problems by adding constraints $x_1 \leq \bigg\lfloor \frac{32}{7} \bigg\rfloor$ and $x_1 \geq \bigg\lceil \frac{32}{7} \bigg\rceil$ respectively to X_0, and we obtain the two programs:

\[
\begin{align*}
(LFP_1) & \quad \max f_1(x) = -\frac{x_1 + x_2 - 3}{2x_1 + x_1 + 1} \\
& \text{s.t.} \\
& x \in X_0 \\
& x_1 \leq 4
\end{align*}
\]

\[
\begin{align*}
(LFP_2) & \quad \max f_1(x) = -\frac{x_1 + x_2 - 3}{2x_1 + x_1 + 1} \\
& \text{s.t.} \\
& x \in X_0 \\
& x_1 \geq 5
\end{align*}
\]

Node 1 Solving the problem (LFP_1) gives the following Table 2.
Table 2: Optimal simplex table for node 1.

B_1	x_3	x_5	RHS
x_1	0	1	4
x_2	1/4	1/4	1
x_4	1/4	-7/4	1

	$\nu^{1(1)}$	$\mu^{1(1)}$	$\gamma^{1(1)}$
	-1/4	-1/4	-4
	3/4	-9/4	-6
	-6	-3/5	

	$\nu^{2(1)}$	$\mu^{2(1)}$	$\gamma^{2(1)}$
	-3/4	1/4	-1/4
	13/4	1/4	-1/4
	-12	11	

	$\nu^{2(1)}$	$\mu^{2(1)}$	$\gamma^{2(1)}$
	-3/4	1/4	-1/4
	13/4	1/4	-1/4
	-12	11	

	$\eta^{1(1)}$	$\omega^{1(1)}$	$\lambda^{1(1)}$
	0	1	0
	1/4	1/4	1
	0	-1	0

	$\eta^{2(1)}$	$\omega^{2(1)}$	$\lambda^{2(1)}$
	0	1	0
	1	-1/4	2
	0	2	0

	$\eta^{3(1)}$	$\omega^{3(1)}$	$\lambda^{3(1)}$
	-1/4	3/4	-3
	0	0	1
	-1/4	3/4	-3

The optimal solution found $(4, 1)$ is integer, according to the algorithm we start by updating S_E, since this set is empty $S_E = \{(4, 1)\}$ then we calculate H_1 and H'_1: From the Table 2 we find $H_1 = \{5\}$ and $H'_1 = \{5\}$. So the Node 0 has one successor Node 3 with $\lambda_3 = \lambda_1 \cap \{x_5 \geq 1\}$.

Node 2 The program (LFP_2) is infeasible.

Node 3 After solving the corresponding linear fractional program, it gives Table 3.
Table 3: Optimal simplex table for node 3.

B_3	x_3	x_6	RHS
x_1	0	1	3
x_2	1/4	1/4	3/4
x_4	1/4	-7/4	11/4
x_5	0	-1	1
$\nu^{1(3)}$	-1/4	3/4	-21/4
$\mu^{1(3)}$	-1/4	-9/4	31/4
$\gamma^{1(3)}$	-13/4	-6	-21/31
$\nu^{2(3)}$	-3/4	13/4	-35/4
$\mu^{2(3)}$	-1/4	-9/4	35/4
$\gamma^{2(3)}$	-35/4	35/4	-1
$\eta^{1(3)}$	0	-1	-1
$\vartheta^{1(3)}$	1/4	1/4	5/4
$\lambda^{1(3)}$	1/4	-1	-4/5
$\eta^{2(3)}$	0	1	1
$\vartheta^{2(3)}$	-1/4	-1/4	7/4
$\lambda^{2(3)}$	1/4	2	4/7
$\nu^{3(3)}$	-1/4	3/4	-9/4
$\vartheta^{3(3)}$	0	0	1
$\lambda^{3(3)}$	-1/4	3/4	-9/4

The optimal solution $(3, \frac{3}{4})$ is not integer so the constraints $x_2 \leq \lfloor \frac{3}{4} \rfloor$ and $x_1 \geq \lceil \frac{3}{4} \rceil$ are added respectively to Table 3 and the nodes 4 and 5 are created.

Node 4 Solving the problem gives Table 4.
Table 4: Optimal simplex table for node 4.

B_4	x_6	x_7	RHS
x_1	0	1	3
x_2	1	0	0
x_3	-4	-1	3
x_4	1	-2	2
x_5	0	-1	1
$\nu^{1(3)}$	-1	1	-6
$\mu^{1(3)}$	-1	-2	7
$\gamma^{1(3)}$	-13	-5	-6/7
$\nu^{2(3)}$	-3	4	-11
$\mu^{2(3)}$	-1	-2	8
$\gamma^{2(3)}$	-35	10	-11/8
$\eta^{1(3)}$	0	-1	-1
$\theta^{1(3)}$	1	0	2
$\lambda^{1(3)}$	1	-2	-1/2
$\eta^{2(3)}$	0	1	1
$\theta^{2(3)}$	-1	0	1
$\lambda^{2(3)}$	1	1	1
$\nu^{3(3)}$	-1	1	-3
$\theta^{3(3)}$	0	0	1
$\lambda^{3(3)}$	-1	1	-3

The optimal solution found $(3, 0)$ is integer, this solution is dominated by the solution $(4, 1)$ then $S_E = \{(4, 1)\}$. From the Table we find $H_4 = \{6, 7\}$ and $H_4' = \{6\}$, so the Node 4 has one successor Node 6 with $X_6 = X_4 \cap \{x_6 + x_7 \geq 1, x_6 \geq 1\}$.

Node 5 The corresponding problem is infeasible and the node is fathomed.

Node 6 By adding the constraints $x_6 \geq 1$ and $x_6 + x_7 \geq 1$ to Table and solving, we obtain Table.
Table 5: Optimal simplex table for node 6.

B_6	x_7	x_9	RHS
x_1	0	1	2
x_2	1	0	0
x_3	-4	1	2
x_4	1	-2	4
x_5	0	-1	2
x_6	-0	-1	1
x_8	-1	-1	0

$\nu^{1(6)}$	-1	1	-5
$\mu^{1(6)}$	-1	-2	5
$\gamma^{1(6)}$	-10	-5	-1

$\nu^{2(6)}$	-3	4	-7
$\mu^{2(6)}$	-1	-2	6
$\gamma^{2(6)}$	-25	10	-7/6

$\eta^{1(6)}$	0	-1	-2
$\vartheta^{1(6)}$	1	0	2
$\lambda^{1(6)}$	2	-2	-1

$\eta^{2(6)}$	0	1	2
$\vartheta^{2(6)}$	-1	0	1
$\lambda^{2(6)}$	2	1	2

$\eta^{3(6)}$	-1	1	-2
$\vartheta^{3(6)}$	0	0	1
$\lambda^{3(6)}$	-1	1	-2

The optimal solution found $(2, 0)$ is integer, this solution is dominated by the solution $(4, 1)$ then $S_E = \{(4, 1)\}$. From the Table 5 we find $H_6 = \{7, 9\}$ and $H'_6 = \{9\}$, so the Node 6 has one successor Node 7 with $X_7 = X_6 \cap \{x_7 + x_9 \geq 1, x_9 \geq 1\}$.

Node 7 Solving the corresponding problem produces Table [6](#)
Table 6: Optimal simplex table for node 7.

E_7	x_7	x_{10}	RHS
x_1	0	1	1
x_2	1	0	0
x_3	-4	1	1
x_4	1	-2	6
x_5	0	-1	3
x_6	0	-18	2
x_8	0	-1	1
x_9	-1	-1	1
x_{11}	-1	-1	0

$\nu^1(7)$	-1	1	-4
$\mu^1(7)$	-1	-2	3
$\gamma^1(7)$	-7	-5	-4/3

$\nu^2(7)$	-3	4	-3
$\mu^2(7)$	1	-2	4
$\gamma^2(7)$	-15	10	-3/4

$\eta^1(7)$	0	-1	-3
$\phi^1(7)$	1	0	2
$\lambda^1(7)$	3	-2	-3/2

$\eta^2(7)$	0	1	3
$\phi^2(7)$	-1	0	1
$\lambda^2(7)$	3	1	3

$\eta^3(7)$	-1	1	-1
$\phi^3(7)$	0	0	1
$\lambda^3(7)$	-1	1	-1

The optimal solution found (1, 0) is integer, this solution is not dominated by the solution (4, 1) so $S_E = \{(4, 1), (1, 0)\}$. From the Table we find $H_7 = \{7, 10\}$ and $H'_7 = \{10\}$, so the Node 7 has one successor Node 8 with $X_8 = X_7 \cap \{x_7 + x_{10} \geq 1, x_{10} \geq 1\}$. Node 8 Solving the corresponding problem produces Table.
The optimal solution found \((0, 0)\) is integer, this solution is not dominated by the either \((4, 1)\) or \((0, 0)\), it doesn’t dominate both so \(\mathcal{S}_E = \{(4, 1), (1, 0), (0, 0)\}\). From the Table 7 we find \(\mathcal{H}_8 = \{7, 13\}\) and \(\mathcal{H}_0 = \{13\}\), so the Node 8 has one successor Node 9 with \(\mathcal{X}_9 = \mathcal{X}_8 \cap \{x_7 + x_{10} \geq 1, x_{13} \geq 1\}\)

Node 9
The corresponding problem is infeasible and the node is fathomed.

There remains no nodes so the search is finished with the solution set \(\mathcal{S}_E = \{(4, 1), (1, 0), (0, 0)\}\). The efficient set of this problem is \(\mathcal{X}_E = \{(4, 1), (3, 0), (2, 0), (1, 0), (0, 0)\}\)

The search tree is presented in Figure[1]

Table 7: Optimal simplex table for node 8

\(B_8\)	\(x_7\)	\(x_{12}\)	RHS
\(x_1\)	0	1	0
\(x_2\)	1	0	0
\(x_3\)	-4	1	0
\(x_4\)	1	-2	8
\(x_5\)	0	-1	4
\(x_6\)	0	-1	3
\(x_8\)	0	-1	2
\(x_9\)	-1	-1	2
\(x_{10}\)	0	-1	1
\(x_{11}\)	-1	-1	1
\(x_{12}\)	-1	-1	0

\(\nu^{1(8)}\): -1 1 -3

\(\mu^{1(8)}\): -1 -2 1

\(\gamma^{1(8)}\): -4 -5 -3

\(\nu^{2(8)}\): -3 4 1

\(\mu^{2(8)}\): -1 -2 2

\(\gamma^{2(8)}\): -5 10 1/2

\(\eta^{1(8)}\): 0 -1 -4

\(\theta^{1(8)}\): 1 0 2

\(\lambda^{1(8)}\): -4 -2 -2

\(\eta^{2(8)}\): 0 1 4

\(\theta^{2(8)}\): -1 0 1

\(\lambda^{2(8)}\): 4 1 4

\(\nu^{3(8)}\): -1 1 0

\(\mu^{3(8)}\): 0 0 1

\(\lambda^{3(8)}\): -1 1 0
6 Computational results

The proposed branch-and-cut algorithm is implemented in Matlab r2017a. The linear and integer linear programs are solved using the library IBM CPLEX 12.9 for Matlab. To perform tests we have used a computer with an Intel i7 5500u processor and 8GB of memory.

The method is tested on randomly generated (MOILFP) with two randomly generated utility linear fractional functions. The objective functions and constraints coefficients are uncorrelated uniformly distributed. Each component of the vector b and the entries of the matrices A were randomly drawn from discrete uniform distributions in the ranges $[50, 100]$, $[1, 30]$ respectively. The vectors p^1, p^2 and c^i, $i = 1, k$ and the scalars α^1, α^2 and c^i_0 are randomly drawn from discrete uniform distributions in the range $[-10, 10]$, while the vectors q^1, q^2 and d^i, $i = 1, k$ and the scalars β^1, β^2 and d^i_0 are generated randomly from discrete uniform distributions in the range $[0, 10]$ to avoid the indefinite case of the null denominator. Also, to avoid infeasibility, all the constraints of each problem are of the \leq type. Furthermore, since all coefficients of A are positive, a bounded feasible region is assured.

The problems were grouped according to the number of variables, constraints and objective functions into six categories. In each category the number of objective functions $r = 3, 5, 7$. For each category of problems, 10 instances were solved.

The computational results obtained are summarized in Table 8. The statistics of the CPU time (in seconds) and the number of nodes are reported. The last column μ refers to the average of $|\mathcal{X}_E|$, while n and m refer to the number of variables and constraints respectively. The cases where the execution time required to find the efficient set \mathcal{X}_E is too high are noted $-\infty$.
Table 8: Random instances execution time

$r \times m \times n$	CPU time (second)	Number of nodes	μ				
	Mean	Max.	Min.	Mean	Max.	Min.	
3							
10 \times 5	3.20	7.70	0.18	250	600	10	28
10 \times 10	1.64	9.20	0.1	117.8	660	3	22.3
25 \times 20	13.51	28.66	0.45	1257.1	2656	40	26.5
30 \times 25	12.29	25.35	3.83	1167.7	2242	336	26
35 \times 30	20.25	47.89	0.44	2182.7	5892	43	33.7
40 \times 35	14.29	46.48	0.67	1862.8	5804	71	37.6
45 \times 40	22.74	54.15	1.33	3193.2	7325	81	29.2
50 \times 25	46.25	109.31	10.57	6061.5	13081	1405	
60 \times 30	61.87	222.27	11.70	8012.6	28371	1675	
70 \times 35	162.81	373.31	3.35	20018.5	42385	376	
80 \times 40	164.48	343.94	4.40	21545.1	42653	592	
90 \times 45	208.17	462.57	45.30	29060.2	60184	5880	
100 \times 50	451.76	1127.12	14.98	54032.4	128250	2106	
120 \times 60	608.84	1015.43	159.95	68329.22	115096	19820	
140 \times 70	1477.00	5250	281	138			
160 \times 80	1477.00	5250	281	138			
5							
5 \times 5	0.57	1.81	0.06	55.4	191	3	39.3
10 \times 5	2.15	6.23	0.11	262.44	725	8	149
10 \times 10	1.72	3.96	0.31	218.9	496	38	42.5
20 \times 20	4.43	12.08	0.48	571.7	1463	65	109.4
30 \times 30	11.01	38.81	2.23	1477	5250	281	138
40 \times 40	18.84	46.37	0.22	2138	4987	16	125
50 \times 50	41.88	103.93	1.79	4677.5	10157	236	162.5
7							
5 \times 5	0.26	0.56	0.06	19.5	32	4	36.7
10 \times 5	2.45	6.98	0.06	309.1	824	3	221.7
10 \times 10	1.40	2.74	0.15	199	381	18	110.5
20 \times 20	6.00	18.57	0.52	958	3104	60	190.9
30 \times 30	6.71	12.86	1.34	953.4	1733	200	174.3
40 \times 40	30.34	54.32	17.82	4387.5	8030	2635	191.4
50 \times 50	33.4	71.02	2.34	4591	9401	293	243.6
50 \times 25	77.31	163.62	14.05	10553.5	20943	2146	
60 \times 30	55.75	164.07	2.008	8314.1	24890	351	
70 \times 35	93.86	284.15	0.404	12448.8	32799	40	
80 \times 40	176.06	350.88	40.98	22950.1	48044	6468	
90 \times 45	243.70	773.29	4.33	28888.8	88885	585	
100 \times 50	269.34	541.84	51.32	26847.9	52410	5782	
110 \times 55	517.56	847.28	163.40	51484.9	83932	15147	
120 \times 60	352.08	899.07	9.58	33535.2	79358	894	
130 \times 65	546.83	1522.45	19.69	50156	133845	1873	
140 \times 70	799.93	2243.55	45.90	65041.6	175900	5006	

From the computational experiments shown in Table 8, we observe that the proposed method solves small and medium size problems in a reasonable amount of time.
Figure 2: Execution time comparison

In (Figure 6) summarises the average execution time using our method and the Brute Force method, which consists in finding the two efficient sets X_E and X'_E using the algorithm presented in [Chergui & Moulaï, 2008], and then finding the intersection between the two. Notice that in case where S_E is empty the problem has been replaced by another one. We observe that our proposal is faster than Brute Force with 3, 5 and 7 objectives, especially when the number of variables and constraints increases. In fact, when the number of variables and constraints is smaller (5x5, 10x5, 10x10) our method and Brute Force compete with each other, yielding almost the same execution time.

7 Conclusion

In this article, we have presented a novel method to optimize a BIOLFP over the efficient set of a MOILFP problem using a branch-and-cut algorithm. The latter reduces the search domain and thus allows us to avoid exploring all efficient sets X_E and X'_E. In addition, the same algorithm can be easily extended in case where there are several utility functions to consider which is a very common real-life case. The experimental results showed that our proposal yields good execution time for small and medium size problems. Furthermore, when compared with Brute Force method, our proposal proved to be better especially when problem size increases.

For future work, we intend to replace linear fractional functions with other non-linear functions.

References

Bajalinov, E. B. (2013). Linear-fractional programming theory, methods, applications and software. Springer Science & Business Media, 84.

Cambini, L. & Martein, A. (1986). A modified version of Martos’ algorithm for the linear fractional problem. Mathematics of Operations Research, 53, 33–44.

Cambini, A., Martein, L. & Stancu-Minasian, I M. (1999). A survey of bicriteria fractional problems. Advanced Modeling and Optimization, 1(1), 9–46.

Charnes, A., & Cooper, W W. (1962). Programming with linear fractional functionals. Naval Research logistics quarterly, 9(3-4), 181–186.

Cherfaoui, Y., & Moulaï, M. (2019). Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial and Management Optimization. Advance online publication. doi: dx.doi.org/10.3934/jimo.2019102

Chergui, M. E-A., & Moulaï, M. (2008). An exact method for a discrete multiobjective linear fractional optimization. Journal of Applied Mathematical Decision Science, 2008(760191), 12 pages. http://dx.doi.org/10.1155/2008/760191

Costa, J P. (2007). Computing non-dominated solutions in MOLFP. European Journal of Operational Research, 181(3), 1464–1475.

Drici, W., Ouaïl, F.Z. & Moulaï, M. (2018). Annals of Operations Research, 267(1-2), 135–151.

Ehrgott, M., Hamacher, H.W., Klamroth, K., Nickel, S. Schobel, A. & Wieck, M.M. (1997). A note on the equivalence of balance points and Pareto solutions in multiple-objective programming. Journal of Optimization Theory and Applications, 92(1), 209–212.
Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem. *Operations research, 9*(6), 849–859.

Jorge, J. M. (2009). An algorithm for optimizing a linear function over an integer efficient set. *European Journal of Operational Research, 195*(1), 98–103.

Kornbluth, JSH, & Steuer, R.E. (1981). Multiple objective linear fractional programming. *Management Science, 27*(9), 1024–1039.

Liu, Z. & Ehrgott M. (2018). Primal and dual algorithms for optimization over the efficient set. *Optimization, 67*(10), 1661-1686.

Martos, B. (1964). Hyperbolic Programming. *Naval Research Logistics Quarterly, 11*, 135–155.

Miettinen, K. (1999). *Nonlinear Multiobjective Optimization*. International Series in Operations Research & Management Science, Kluwer Academic Publishers, Boston, USA 12.

Munson, T. (2007). Mesh shape-quality optimization using the inverse mean-ratio metric. *Mathematical Programming, 110*(3), 561–590.

Philip, J. (1972). Algorithms for the vector maximization problem. *Mathematical programming, 2*(1), 207–229.

Schaible, S. (1981). Fractional programming: applications and algorithms. *European Journal of Operational Research, 7*(2), 111–120.

Stancu-Minasian, I M. (2019). *A ninth bibliography of fractional programming*. Taylor & Francis.

Stancu-Minasian, I M. (2012). *Fractional programming: theory, methods and applications*. Springer Science & Business Media, 409.

Rao, M. R. (1971). Cluster analysis and mathematical programming. *Journal of the American statistical association, 66*(335), 622–626.

Yamamoto, Y. (2002). Optimization over the efficient set: overview. *Journal of Global Optimization, 22*(1-4), 285–317.

Zerdani, O., & Moulaï, M. (2011). Optimization over an integer efficient set of a multiple objective linear fractional problem. *Applied Mathematical Sciences, 5*(50), 2451–2466.