Some non perturbative calculations on spin glasses

Matteo Campellone

October, 1994

Dipartimento di Fisica, Università di Roma La Sapienza,
P. Aldo Moro 2, 00185 Roma, Italy

campellone@roma1.infn.it

Abstract

Models of spin glasses are studied with a phase transition discontinuous in the Parisi order parameter. It is assumed that the leading order corrections to the thermodynamic limit of the high temperature free energy are due to the existence of a metastable saddle point in the replica formalism. An ansatz is made on the form of the metastable point and its contribution to the free energy is calculated. The Random Energy Model is considered along with the p-spin and the p-state Potts Models in their $p < \infty$ expansion.

Please contact me if you want the original pictures as postscript files.
1 Introduction

The mean field replica theory has revealed to be a very powerful method to study spin glass models [1]. The main problem with the replica method is that it necessarily requires an ansatz on the solution. The Random Energy Model (R.E.M.) is a very simplified spin glass model which can also be solved without the utilisation of the replicas. It is, therefore, a very good testing ground for the replica method since, although very simple, it presents the typical features of spin glasses such as replica symmetry breaking and non-ergodicity. For T greater than a critical temperature T_c the R.E.M. presents no breaking of the permutation symmetry among the replicas which, in absence of external fields, tend to have the lowest possible value of the mean overlap. When $T < T_c$ the system undergoes a phase transition towards a one-replica-symmetry-broken phase. The corresponding latent heat is zero and so the transition is second order. The R.E.M. was first introduced and solved by B. Derrida who was also able to calculate the finite-size corrections to the high temperature free energy [2].

In the present work this last result will be obtained by making use of the replica method. In doing so, a metastable saddle point in the replica space will be individuated as the responsible for the leading order finite-size corrections. The p-spin model and the p-state Potts model will also be considered. Both these models tend to a R.E.M. in the limit $p \rightarrow \infty$.

The scheme of this paper is as follows: Section 1 is based on reference [2]; the Random Energy Model and Derrida’s results for the finite-size corrections will be presented. In section 2 the same results as the contribution of a metastable saddle point will be recovered. Section 3 will introduce the p-spin model and repeat the calculation performed for the R.E.M. in the formalism of a $(p = \infty)$-spin model. In section 4 the results will be extended to the case $p < \infty$. In section 5 the p-state Potts model will be introduced and the $p = \infty$ limit will be studied. Finally, a $p < \infty$ expansion for the Potts model will be formulated and the calculations will be extended to this case.

2 The Random Energy Model

It is worthwhile recalling the main results on the R.E.M. in order to establish the notations. The model describes the behaviour of any system with a fixed number of energy levels whose energies are independently distributed according to a gaussian law. If 2^N is the number of levels, the model is defined by the properties:

$$P(E) = \frac{1}{\sqrt{N\pi J^2}} \exp \left[-\frac{E^2}{N^2 J^2} \right]$$

$$P(E_i, E_j) = P(E_i)P(E_j).$$

The solution can be easily derived using a microcanonical argument. For the free energy one finds:
\[F = \begin{cases}
N\left[-\frac{\ln 2}{\beta} - \frac{\beta J^2}{4} \right] & \text{for } \beta < \beta_c \\
-E_0 & \text{for } \beta > \beta_c
\end{cases} \quad (3) \]

where \(E_0 = NJ\sqrt{\ln 2} \) and \(\beta_c = 2\sqrt{\ln 2}/J \).

The R.E.M. can also be solved making use of the replicas. If one computes the \(n \)-th power of the partition function one obtains

\[Z^n = \sum_{\{p_i\}} \frac{n!}{\prod_i (p_i!)} \exp \left[-\frac{2^N}{n} \sum_i p_i E_i \right], \quad (4) \]

where

\[p_i \geq 0 \]
\[\sum_i p_i = n. \quad (5) \]

After averaging over the disorder one has

\[\overline{Z^n} = \sum_{\{\nu\}} \frac{n!}{\prod_{p=1}^n (p^!)^{\nu_p}} \exp \left[N \sum_{p=0}^n \nu_p \left[\ln 2 + \frac{p^2 \beta^2 J^2}{4} \right] \right], \quad (6) \]

where \(\nu_p \) is the number of \(p_i \) that are equal to \(p \). The \(\nu_p \) verify the conditions

\[\nu_p \geq 0 \]
\[\sum_{p=0}^n \nu_p = 2^N \]
\[\sum_{p=1}^n p \nu_p = n. \quad (7) \]

To obtain equation (3) it has been used the fact that for large enough \(N \) it can be written

\[\frac{(2^N)!}{\nu_0!} \sim 2^N \sum_{p=1}^n \nu_p. \quad (8) \]

One can find that for \(T > \sqrt{n} T_c \) the dominant contribution of (6) is obtained by taking

\[\nu_1 = n \]
\[\nu_{p \geq 2} = 0. \quad (9) \]
The correspondent expression for Z^n is linear in n, so one can use the well known formula

$$\ln Z = \lim_{n \to 0} \frac{Z^n - 1}{n}$$

(11)

to calculate the high temperature free energy \(3(a)\). The low temperature expression of \(3\) is instead obtained by taking $\nu_{p \neq \bar{p}} = 0$ and $\nu_{p = \bar{p}} = n/\bar{p}$, where \bar{p} comes out to be equal to T/T_c.

Finally one can write, without deriving it, the expression for the finite size high temperature free energy.

$$\ln Z = N \left[\ln 2 + \frac{J^2}{4T^2} \right] - \frac{1}{2} \left[\frac{Z}{Z} - 1 \right]^2 + \frac{1}{3} \left[\frac{Z}{Z} - 1 \right]^3 + \cdots + \frac{(-1)^{k+1}}{k} \left[\frac{Z}{Z} - 1 \right]^k +$$

$$+ \frac{2T\sqrt{\pi}}{J \left(\frac{T^2}{T_c^2} + 1 \right) \sqrt{N} \sin \left(\frac{n}{2} \left(\frac{T^2}{T_c^2} + 1 \right) \right)} \exp \left[-\frac{NT^2J^2}{16} \left[\frac{1}{T_c^2} - \frac{1}{T^2} \right]^2 \right] + \cdots$$

per $\sqrt{2k-1}T_c < T < \sqrt{2k+1}T_c$.

(12)

Derrida derives expression \(12\) for $k = 1, 2, 3$. He also makes the more general guess that it should be true for every $k \geq 1$.

3 The Metastable Point

In this section the replica method shall be used to try to derive equation \(12\). It has been asserted that, for $T > T_c$, the dominant contribution to the equation \(8\) is given by the choice \(10\). It will now be considered the effect of only one grouping of m replicas. This can be done by taking

$$\nu_1 = n - m,$$
$$\nu_m = 1.$$

(13)

For large N equation \(8\) can thus be written as follows

$$Z^n = Z_{dom}^n + Z_{sub}^n,$$

(14)

where \(dom\) stands for ‘dominant’ and \(sub\) stands for ‘subdominant’. Z_{dom}^n is given by the choice \(10\) in equation \(8\) while Z_{sub}^n is given by the choice \(13\). One then has

$$\ln Z = N \left[\ln 2 + \frac{J^2}{4T^2} \right] + \lim_{n \to 0} \frac{1}{n} Z_{sub}^n,$$

(15)

where in Z_{sub}^n all the integer m greater than $m = 1$ are summed over. One then has
\[
\lim_{n \to 0} \frac{1}{n} Z_{\text{sub}}^n = -\sum_{m=2}^{\infty} \frac{(-1)^m}{m} \exp N \left[(1 - m) \ln 2 + \frac{\beta^2 J^2}{4} (m^2 - m) \right]. \tag{16}
\]

The sum in (16) can be written as an integral in the complex plane over the circuit \(C\) as shown in figure 1.

One has
\[
\sum_{m=2}^{\infty} \frac{(-1)^m}{m} \exp N \left[(1 - m) \ln 2 + \frac{\beta^2 J^2}{4} (m^2 - m) \right] = -\frac{1}{2} \int_C \frac{N [(1-m) \ln 2 + \frac{\beta^2 J^2}{4} (m^2 - m)]}{m \sin (\pi m)} \, dm. \tag{17}
\]

Both the sum and the integral are not well defined. They can be defined by deforming the circuit \(C\) into a vertical path as indicated in figure 2. It can then be written
\[
\sum_{m=2}^{\infty} \frac{(-1)^m}{m} \exp N \left[(1 - m) \ln 2 + \frac{\beta^2 J^2}{4} (m^2 - m) \right] \equiv -\frac{1}{2} \int_\uparrow \frac{N [(1-m) \ln 2 + \frac{\beta^2 J^2}{4} (m^2 - m)]}{m \sin (\pi m)} \, dm. \tag{18}
\]

The integral on the right hand side of the previous equation can be solved with the aid of the saddle point method. Two remarks have to be made on this subject. The first is that since the integration is over imaginary \(dm\), and, since the exponent is quadratic in \(m\), the saddle point \(m_{sp}\) is given by the minimum and not by the maximum in \(m\). Therefore
\[
m_{sp} = \frac{1}{2} \left(1 + \frac{T^2}{T_c^2} \right). \tag{19}
\]

The second remark is that to the saddle point contribution one has to add the residues of the integrand that fall on the left of the \(m_{sp}\) if the phase constant circuit \(\uparrow\) shifts on its right hand side when one makes it pass trough \(m_{sp}\).

The evaluation of the integrand on \(m_{sp}\) gives exactly the last term in equation (12). The terms \(\frac{(-1)^{k+1}}{k} \left[\frac{Z}{Z - 1} \right]^k\) are reproduced by the residues that are added. The number \(k\) of those terms is given by the condition \(2 \leq k < m_{sp}\) which is equivalent to the condition \(\sqrt{2k - 1} T_c < T < \sqrt{2k + 1} T_c\) in equation (12). The ansatz (13) seems therefore to be true, at least in the range of temperatures \(T_c < T < \sqrt{T_c}\), where expression (12) has been proved correct by Derrida. Thus, the choice (13) (14) reproduces exactly expression (12) while other possible choices of the \(\nu_p\) seem to lead to lower order contributions. In reference [3] this assertion could be proved rigorously for choices of the \(\nu_p\) such as
\[\nu_1 = n - m - r, \]
\[\nu_m = 1 \quad \text{with } m > 0, \]
\[\nu_r = 1 \quad \text{with } r > m. \]

(20)

It can also be argued that this is likely to happen in general for more complicated choices of the \(\nu_p \) where the insertion of more groupings is allowed. Furthermore, these arguments do not seem to be dependent on \(k \). If this is so, the choice (13) provides the leading order corrections to the high temperature free energy for all \(T > T_c \) and expression (12) is correct even for \(k > 3 \).

4 The \(p \)-Spin Model

All this may now be extended to the \(p \)-spin model which is defined by the Hamiltonian

\[[A_H_p(\{s\}) = - \sum_{1 \leq i_1 < i_2 < \cdots < i_p \leq N} J_{i_1,i_2,\cdots,i_p} s_1 \cdots s_p + h \sum_i s_i, \quad (21) \]

where \(h \) is an external magnetic field and the \(J_{i_1,i_2,\cdots,i_p} \) are random variables that obey the gaussian law

\[P(J_{i_1,i_2,\cdots,i_p}) = \frac{1}{\pi N^p!} \exp \left[-\frac{(J_{i_1,i_2,\cdots,i_p})^2 N^p-1}{J^2 p!} \right]. \quad (22) \]

For sake of simplicity, from now on it will be assumed \(J = 1 \). If one indicates with \(E_i \) the energy relative to configuration \(\{\sigma\}_i \), it is a well known result that

\[P(E_1, E_2, \cdots, E_k) \xrightarrow{p \to \infty} \prod_{i=1}^k P(E_i) \quad \text{for } |q_{i,j}| < 1, \forall i, j, \quad (23) \]

where \(q_{i,j} \) indicates the overlap between \(\{\sigma\}_i \) and \(\{\sigma\}_j \). In the limit \(p \to \infty \) then, the \(p \)-spin model reduces to R.E.M..

The expression for \(Z^n \) is

\[Z^n = \sum_{\{s^a\}} \exp \left[\frac{\beta^2 N}{4} \left(n + \sum_{a \neq b} Q_{ab}^p(s) \right) \right], \quad (24) \]

where \(Q_{ab}(s) = \frac{1}{N} \sum_i s_i^a s_i^b \).

Above \(T_c = 1/2\sqrt{\ln 2} \) the model presents no breaking of the replica symmetry. After the elimination of all the requested Lagrange multipliers, the high temperature solution is a \(n \times n \) matrix of the form
\[Q_{ab} = q_0, \quad \text{for } a \neq b, \]
\[Q_{aa} = 0, \]
(25)

For \(T < T_c \) the matrix \(Q_{ab} \) has two parameters \(q_0 \) and \(q_1 \). In the limit \(p \to \infty \) the solution is \(q_0 = 0 \) and \(q_1 = 1 \) and one recovers expression (23). For simplicity it has been put \(h = 0 \) because it will not affect the point.

Assuming now \(T > T_c \), one can proceed equivalently to what has been done in the previous section and evaluate \(Z^n \) on a one block matrix \(Q_{ab} \) of the form

\[
Q_{1\text{Block}} = \begin{pmatrix}
0 & q_1 & q_1 & q_1 & q_0 & q_0 & q_0 & q_0 \\
q_1 & 0 & q_1 & q_1 & q_0 & q_0 & q_0 & q_0 \\
q_1 & q_1 & 0 & q_1 & q_0 & q_0 & q_0 & q_0 \\
q_1 & q_1 & q_1 & 0 & q_0 & q_0 & q_0 & q_0 \\
q_0 & q_0 & q_0 & q_0 & 0 & q_0 & q_0 & q_0 \\
q_0 & q_0 & q_0 & q_0 & q_0 & 0 & q_0 & q_0 \\
q_0 & q_0 & q_0 & q_0 & q_0 & q_0 & 0 & q_0 \\
q_0 & 0
\end{pmatrix}
\]
(26)

\(Q_{1\text{Block}} \) is a \(n \times n \) matrix with an \(m \times m \) block of elements \(q_1 \). To represent \(Q_{1\text{Block}} \) it has been chosen \(n = 8 \) and \(m = 4 \). It is easy to see that

\[
\lim_{n \to 0} Z^n_{1\text{Block}} = \lim_{n \to 0} Z^n_{\text{sub}} = \lim_{n \to 0} \sum_{m=2}^{\infty} \frac{n!}{(n-m)!m!} e^{-N\left[(1-m)\ln 2 + \frac{\beta^2}{2} (m^2 - m)\right]} \]
(27)

which is the same result found in the previous section. Ansatz (13) is therefore equivalent to a matrix of the form (23). It is worth remarking that to obtain \(Z^n_{1\text{Block}} \) one has to sum over all the possible ways of inserting an \(m \times m \) block in an \(n \times n \) matrix.

This result will now be extended to the case \(p < \infty \) in the fashion of [6]. Before that, it is appropriate to briefly show the low temperature behaviour of the model. Under \(T_c \), the \(p < \infty \) expansion leads to the mean field equations

\[
q_0 = 0, \quad q_1 = 1 - \frac{m\xi(m)}{1-m} \frac{e^{-\frac{p\beta^2 m^2}{2}}}{2 \sqrt{p(1-m)}},
\]
(28)

where it has been set

\[
\xi(m) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty dz \left(2 \cosh(mz) - 2^m \cosh^m(z)\right).
\]
(29)

One also has
\(T_c = \frac{1}{2\sqrt{\ln 2}} \left(1 + 2^{-(p+1)} \sqrt{\frac{\pi}{4p(\ln 2)^3}} \right). \) \hfill (30)

Equation (30) for the critical temperature comes from the condition that the value of the break point in the order parameter function \([5]\) that maximises the free energy is 1. This is because of the nature of the transition which, though second order in the thermodynamic sense, is discontinuous from the order parameter point of view \([6]\).

Assuming now to set \(T > T_c \), one can calculate \(\overline{Z_{\text{sub}}} \) with the insertion of a block as it was done in the \(p \to \infty \) limit. Defining \(T^\infty_c \equiv \frac{1}{2\sqrt{\ln 2}} \), the finite-\(p \) equivalent of expression (12) can be easily obtained

\[
\ln\overline{Z} = \ln 2 + \frac{1}{4T^2} \left[\frac{1}{2} \left(\frac{Z}{Z} - 1 \right)^2 + \frac{1}{3} \left(\frac{Z}{Z} - 1 \right)^3 \right] + \cdots + \frac{(-1)^{k+1}}{k} \left[\frac{Z}{Z} - 1 \right]^k + \\
+ 2T\sqrt{\pi} \exp \left[\frac{-NT^2}{16} \left(\frac{1}{(T^\infty_c)^2} - \frac{1}{T^2} \right)^2 - N\eta + \frac{N\omega^2\beta^2}{4} \right] + \cdots \\
\text{for } \sqrt{2k' - 1} (T_c^\infty) < T < \sqrt{2k' + 1} (T_c^\infty), \hfill (31)
\]

where

\(k' \equiv k - w. \) \hfill (32)

\(\omega \equiv 2T^2\eta'(m), \) \hfill (33)

\[
\eta(m) \equiv \frac{\xi(m)e^{\beta^2p_0q_{p-1}m_2}}{\sqrt{2\beta^2p_0q_{p-1}m_2}}. \hfill (34)
\]

One also has

\[
m_{sp} = \frac{1}{2} \left(1 + \left(\frac{T}{T^\infty_c} \right)^2 \right) + \omega, \hfill (35)
\]

It is worthwhile noting that, assuming \(m_{sp} = 1 \) in equation (35) one obtains the equation (30) for the critical temperature. This means that one can find \(T_c \) as the temperature at which the block inserted in the metastable matrix disappears and \(Q_{1\text{Block}} \) coincides with the stable saddle point matrix of \(\overline{Z_{\text{dom}}} \). Furthermore, equation (28) for \(q_1 \) is recovered as a saddle point equation for \(\overline{Z_{\text{sub}}} \). In absence of magnetic field, it has been assumed \(q_0 = 0 \).
5 The Potts Model

The results obtained up to now will be extended in this section to the Potts model which is defined by the Hamiltonian

\[\mathcal{H} = -\frac{1}{2} \sum_{i,j \neq 1}^{N} J_{ij} (p \delta_{p(i)p(j)} - 1) - h \sum_{i=1}^{N} (p \delta_{p(i),\lambda} - 1), \]

(36)

where \(p(i) = 0, 1, \ldots, p - 1 \), and the \(J_{ij} \) are as usual random variables obeying a gaussian distribution with variance \(1/N \) and mean value \(J_0/N \).

For every \(p > 4 \), the model undergoes a phase transition of the same kind as the one observed in R.E.M., from a replica symmetric phase to a one-symmetry-broken phase. In this work all the ferromagnetic order parameters will be neglected and the focus will be put only on the glassy aspects of the model. Hence, the free energy is [7],[3]

\[\frac{n \beta F(Q)}{N} = -\frac{\beta}{4} (p - 1) + \frac{\beta^2}{2p^2} \sum_{\alpha<\beta}^{n} \sum_{r,s}^{p} (q_{\alpha\beta}^{rs})^2 - \ln Z(Q), \]

(37)

where

\[\ln Z(Q) = \ln \left\{ \sum_{\{p(\alpha)\}} \exp \left[\beta^2 \sum_{\alpha<\beta}^{n} q_{p(\alpha)p(\beta)}^{\alpha\beta} \right] \right\}, \]

(38)

and

\[q_{rs}^{\alpha\beta} = q_{rs}^{\alpha\beta} (p \delta_{r,s} - 1), \quad \text{with } 0 \leq |q_{\alpha\beta}| \leq 1. \]

(39)

According to the conventional wisdom, one can assume that in the high temperature phase one has \(q_0 = 0 \). Therefore the free energy is

\[F = -N \left[\frac{\beta}{4} (p - 1) + \frac{\ln p}{\beta} \right]. \]

(40)

and the entropy

\[S = N \left[\ln p - \frac{p - 1}{4T^2} \right], \]

(41)

which becomes negative if \(T < T_c \equiv \sqrt{\frac{p - 1}{4 \ln p}} \). Under \(T_c \) the solution is given by a one-symmetry-broken matrix of elements \(q_{\alpha\beta} \).

To calculate the low temperature free energy it is useful to use the \(p \) vectors \(\vec{e}^a \) (\(a = 1, \cdots, p \)), defined by the relations

\[e_i^a e_i^b = p \delta_{a,b} - 1 \quad i = 1, \cdots, p - 1, \]

(42)

where repeated indexes are summed. If \(q_0 = 0 \) e \(q_1 = q \), with a little algebra, one gets to the low temperature free energy expression
\[
\beta F_N = -\frac{\beta^2}{4}(p-1) + \frac{\beta^2}{4}(p-1)(m-1)q^2 + \frac{\beta^2}{2}(p-1)q + \frac{1}{m} \ln \int d\vec{z} e^{\left(-\frac{z^2}{2}\right)} \left(\sum_{b=1}^{p} \exp \left[k e^{\beta} \cdot \vec{z} \right] \right)^m,
\]

where \(\vec{z} = (z_1, z_2, \ldots, z_{p-1}) \) and \(k \equiv \beta \sqrt{q} \).

In the limit \(p \to \infty \), the last integral can be exactly solved \([3]\) and the solution is found to be given by the mean field equations

\[
q_0 = 0 \quad q_1 = 1
\]

\[
T_c = \frac{1}{2} \sqrt{\frac{p-1}{\ln p}}.
\]

\[
F = \begin{cases}
N[-\frac{\beta}{(p-1)} - \frac{\ln p}{\beta}] & \text{for } T > T_c \\
-E_0 = -N\sqrt{(p-1)\ln p} & \text{for } T < T_c
\end{cases}
\]

This solution describes a \(p^N \) states Random Energy Model with variance proportional to \((p-1)\). The finite size corrections for this limit are already known, so the more general case in which the finite-\(p \) corrections are included shall be treated directly.

One can define

\[
\frac{\xi(m)}{p^\beta \sqrt{q}} \equiv \int_{-\infty}^{\infty} \prod_{b=1}^{p} da_b e^{-\frac{\beta}{2}(\sum_b a_b^2)} \delta \left(\sum_{b=1}^{p} a_b \right) \left[\left(\sum_{b=1}^{p} e^{\beta \sqrt{q} ma_b} \right)^m - \left(\sum_{b=1}^{p} e^{\beta \sqrt{q} a_b} \right)^m \right],
\]

where obviously one has

\[
\xi(1) = 0.
\]

Recent work has been done on the numerical estimation of the \(p \)-dimensional integral \(\xi(m) \) \([8]\). Correcting the integral in the free energy expression one obtains the mean field equations

\[
q = 1 - \frac{1}{(\beta^2 p^2(p-1)\sqrt{q} m(1-m))} \frac{\xi(m)}{m^2 \beta^2(p-1) + \frac{1}{q}} e^{-\frac{q^2}{2}m^2(p-1)q}.
\]

Assuming \(\ln p \gg 1 \) the last term in square brackets can be neglected

\[
q = 1 - \frac{\xi(m)}{m^2 \beta^2(p-1) + \frac{1}{q}} e^{-\frac{q^2}{2}m^2(p-1)q}.
\]

Setting \(q = 1 - \epsilon \), one finds an equation for the critical temperature

\[9\]
The finite size corrections are obtained proceeding in the same way as for the p-spin. Defining

\[\eta(m) \equiv \frac{\xi(m)}{\beta(p-1)p^2} e^{-\frac{3}{2}m^2(p-1)} \]

\[\omega \equiv 2T^2\eta'(m), \]

one gets

\[m_{sp} = \frac{1}{2} \left(1 + \left(\frac{T}{T_c^\infty} \right)^2 \right) + \omega, \]

where $T_c^\infty \equiv \frac{1}{2} \sqrt{\frac{p-1}{\ln p}}.$

and finally

\[\ln Z = N \left[\ln 2 + \frac{1}{4T^2} \right] - \frac{1}{2} \left\{ \frac{Z}{Z - 1} \right\}^2 + \frac{1}{3} \left\{ \frac{Z}{Z - 1} \right\}^3 + \cdots + \frac{(-1)^{k+1}}{k} \left\{ \frac{Z}{Z - 1} \right\}^k + 2T \sqrt{\pi} \exp \left[-\frac{N^2T^2}{16} \left(\frac{1}{(T_{c}^\infty)^2} - \frac{1}{T^2} \right)^2 - N\eta + \frac{N\omega^2\beta^2}{4} \right] \left(\frac{T^2}{(T_{c}^\infty)^2} + 1 + 2\omega \right) \]

\[\ln N = \frac{1}{2} \frac{\pi}{(T_{c}^\infty)^2} \sqrt{N} \sin \left(\frac{\pi}{2} \frac{\pi}{(T_{c}^\infty)^2} + 1 + 2\omega \right) \]

for \(\sqrt{2k' - 1} (T_c^\infty) < T < \sqrt{2k' + 1} (T_c^\infty), \)

where

\[k' \equiv k - w. \]

In principle, all this is equivalent to what has been done for the p-spin and all the considerations made at the end of section 4 can be repeated here.

6 Conclusion

For the high temperature phase of the Random Energy Model, the partition function was evaluated on a metastable point that was introduced in order to account for the probability that a group of m replicas freezes in a phase which resembles the low temperature one. In this way the finite size corrections to the free energy were calculated. The result was checked with the one obtained by B. Derrida without the use of replicas. The two approaches are totally independent. Derrida proves his result to be true only in the range of temperatures $T_c < T < \sqrt{7}T_c$. The results obtained in this work coincide with Derrida’s,
in particular they coincide for \(T_c < T < \sqrt{7} T_c \). The reliability of this method does not seem to depend on the temperature, provided that \(T > T_c \). Therefore, the equivalence of the two results in the range where formula (12) can be proved to be true, seems to indicate the reliability of the result for all temperatures. In extending this ansatz to the \(p \)-spin and Potts models it was possible to identify a one-block matrix as the metastable point. Mean field equations give, for the elements of the block, the same value as the low temperature mean overlap. Furthermore, a \(p < \infty \) expansion was performed for these models in order to extend the results to finite-\(p \) \(p \)-spin and Potts models.

Acknowledgments

I am extremely grateful to Giorgio Parisi for his constant support. I also would like to thank Enzo Marinari for his comments and suggestions.

References

[1] For a general review on spin glasses see M. Mezard, G. Parisi, and M.A. Virasoro, *Spin Glass Theory and Beyond*, World Scientific, 1987.

[2] B. Derrida, Random Energy Model: an exactly solvable model of disordered systems, *Physical Review B*, 24(5):2613-2626, 1981.

[3] M. Campellone, Calcoli non perturbativi nei vetri di spin, *tesi di laurea*, 1994.

[4] B. Derrida, Random Energy Model: Limit of a Family of Disordered Models, *Physical Review Letters*, 45(2):79-82, 1980.

[5] G. Parisi, The order parameter for spin glasses: A function on the interval 0-1, *J. Phys. A: Math. Gen.*, 13:1101, 1979.

[6] E. Gardner, Spin glasses with \(p \)-spin interactions, *Nuclear Physics B* 257, FS14:747-765, 1985.

[7] D. Elderfield and D. Sherrington, The curious case of the Potts spin glass, *J. Phys. C: Solid State Phys.*, 16:L487–L503, 1983.

[8] E. De Santis, G. Parisi, F. Ritort, On the Static and Dynamical Transition in the Mean-Field Potts glass *Submitted to J. Phys A*