Battlefronts of evolutionary conflict between bacteria and animal hosts

Omoshola Aleru1,2, Matthew F. Barber1,2

1 Institute of Ecology & Evolution, University of Oregon, Eugene, Oregon, United States of America,
2 Department of Biology, University of Oregon, Eugene, Oregon, United States of America

* mfbarber@uoregon.edu

What is evolutionary conflict?

Conflict is pervasive in nature, as observed in the struggle between predators and prey, competition for mates, as well as between pathogenic microbes and their hosts. The burden imposed by pathogens can place strong selective pressure on host populations to evolve resistance to infection [1]. Conversely, host immune responses promote the repeated evolution of defensive countermeasures by microbial pathogens. This antagonism can give rise to evolutionary conflicts, including “Red Queen” dynamics, in which pathogens and hosts are forced to continually adapt to maximize their relative fitness (Fig 1) [2,3]. Consistent with the existence of such conflicts, immune system components have been shown to be among the most rapidly evolving genes in animal genomes [4–7]. These observations can reflect the rapid spread of new beneficial mutations in populations over time, a process termed positive selection. Unique genetic signatures are used to infer positive selection between and within species, including elevated rates of nonsynonymous nucleotide substitutions relative to synonymous substitutions in protein-coding genes (also termed dN/dS or ω), as well as to measure the loss of genetic variation around a locus associated with a recent selective sweep. Genomic studies further support the long-held theory that host–pathogen interactions are major drivers of natural selection and adaptation across diverse taxa [4,6–8].

The past 15 years have seen a powerful integration of genetic and experimental approaches to identify instances of host–pathogen conflict as well as empirically test how conflicts shape immunity and disease [9]. Such approaches have pinpointed new molecular functions underlying host defense [10,11], identified completely new genes or pathways involved in disease susceptibility [12,13], and revealed new determinants of pathogen tropism [14–16]. Host–pathogen evolutionary conflicts thus provide powerful systems for dissecting mechanisms of infectious disease pathogenesis.

How have host immune defenses been shaped by evolutionary conflicts with bacteria?

An established and growing body of work has characterized instances of evolutionary conflict between animals and viruses [5,9]. More recently, studies have begun to emerge revealing molecular details of conflicts driven by cellular pathogens including bacteria, fungi, and parasites. Below, we highlight recent advances in our understanding of evolutionary conflicts between animal hosts and pathogenic bacteria (Fig 2), as well as discuss future areas of study in this burgeoning field.
Cell-autonomous immunity

Many metazoan cell types possess the intrinsic ability to detect and defend against pathogens, a feature termed cell-autonomous immunity [17]. Cell-autonomous immunity represents an ancient arm of host defense which can be triggered by cytosolic pattern recognition receptors.
as well as extracellular signaling molecules such as interferon [18]. Evidence is accumulating that intracellular bacteria have instigated repeated evolutionary conflicts with several critical cytosolic host defense factors. Key among these are inflammasomes, protein complexes that form in response to detection of various intracellular pathogens [19,20]. Assembly of distinct inflammasomes containing inflammatory caspases as well as nucleotide-binding oligomerization domain-like receptor (NLR) proteins can ultimately lead to inflammatory host cell death, termed pyroptosis, along with the release of proinflammatory cytokines. Recent studies have illustrated that several mammalian NLR family proteins have undergone rapid divergence in domains responsible for bacterial pathogen sensing. In one case, mapping the flagellin-binding region of the neuronal apoptosis inhibitory proteins (NAIPs), a subgroup of mouse NLRs, simultaneously revealed that this domain exhibits high dN/dS across the rodent lineage, suggestive of repeated positive selection [21]. Given the diversity of flagellin proteins found in bacteria and the expansion of NAIP gene copy number in rodents, these data support a model in which NAIPs have undergone repeated adaptation to recognize an array of bacterial flagellins encountered during infection. More recently, Chavarría-Smith and colleagues provided evidence that primate NLRP1 is rapidly diverging within an N-terminal region that undergoes bacterial-mediated proteolytic cleavage leading to inflammasome activation [22]. In light of additional studies that collectively revealed how NLRP1 N-terminal degradation functions as a sensor of bacterial-induced proteolysis [23,24], signatures of natural selection in NLRP1 family proteins suggest that genetic variation in this region can enhance surveillance against a range of intracellular bacterial effectors.

An additional group of host factors that contribute to defense against intracellular pathogens are interferon-stimulated GTPases, including the guanylate binding proteins (GBPs). Molecular, cellular, and genetic studies have demonstrated that GBPs serve numerous roles in cell-autonomous immunity, from recognizing pathogen-containing cellular compartments to promoting inflammasome activation and directly binding to microbial cell surfaces in the cytosol [25–27]. Mammals encode a variable number of GBP paralogs, with humans possessing seven, as well as several pseudogenes. Oligomerization on a target surface allows GBPs to cooperatively bind to pathogens or pathogen-containing membranes as well as recruit additional defense factors to limit microbial replication. A series of recent studies has illustrated mechanisms by which human GBP1 recognizes cytosolic Gram-negative bacteria [28–30]. Detection of pathogenic *Shigella* by human GBP1 relies on the presence of a C-terminal prenylation motif adjacent to a stretch of basic amino acids, termed the polybasic motif (PBM). The PBM contributes to direct recognition of the Gram-negative bacterial envelope, allowing GBP1 to serve as an oligomeric lipopolysaccharide sensor [31–33]. We and our collaborators recently demonstrated that this PBM displays signatures of recurrent positive selection in primate GBP1 and GBP2, suggestive of adaptation in response to conflicts with cytosolic microbes (Fig 2A) [34]. Swapping the PBM between primate GBP1 proteins revealed that several New World monkeys possess enhanced bacterial-targeting activity relative to humans, illustrating how beneficial mutations are capable of augmenting GBP defensive functions. Although much more remains to be uncovered regarding the evolution of cell-autonomous immunity, these recent studies demonstrate how selective pressures imposed by bacterial pathogens can rapidly shape the activity of host defense factors.

The complement system

The complement system comprises a large network of soluble and cell-surface proteins in animals that recognize nonself molecular features, facilitating the direct rupture of microbial membranes as well as stimulating leukocyte recruitment and inflammation [35]. Successful
Pathogens in turn have evolved a variety of mechanisms to avoid or down-regulate complement activation. One effective means of pathogen complement evasion involves the recruitment of regulatory proteins, which normally serve to protect host cells from inappropriate complement activation. By recruiting these host regulators, microbes can effectively “cloak” themselves against this potent defense system. Although core components of the complement system are widely conserved in animals, genome-wide studies have also revealed that numerous complement genes exhibit evidence of repeated positive selection between species. A recent study highlighted such signatures in several complement regulators, including factor H (fH) and C4 binding protein A (C4BPA) [36]. fH is a major soluble host complement regulator that prevents activation of the alternative complement pathway, while C4BPA prevents activation of the classical and lectin pathways. Moreover, rapidly evolving domains in both fH and C4BPA map to known binding sites of diverse pathogenic bacteria [37,38]. These findings strongly suggest that antagonism by bacteria has prompted evolutionary conflicts with host complement regulators over millions of years of animal evolution (Fig 2B). Given that humans also encode native fH-like proteins that are hypothesized to serve as mimics against pathogen hijacking [39], future work aimed at delineating the relationship between host and microbial variation at this interface could reveal important determinants of pathogen complement evasion, as well as potential strategies to counteract this process.

Nutritional immunity

In addition to evading dedicated host immune defenses, bacteria and other cellular pathogens must acquire nutrients to survive and grow during an infection. Nutrient metals are particularly scarce and must be scavenged by bacterial pathogens within the host. The active sequestration of metals such as iron, manganese, and zinc provides an important host defense mechanism termed nutritional immunity [40–42]. We and others have shown that multiple components of host nutritional immunity exhibit genetic signatures of evolutionary conflicts similar to more canonical immune defense factors mentioned above. Previous work illustrated that transferrin, the principle bloodstream iron transport protein in vertebrates, has undergone repeated positive selection specifically at the interface with the Gram-negative bacterial receptor transferrin binding protein A (TbpA) [43]. This outer-membrane protein facilitates the acquisition and transport of iron into bacterial cells from transferrin, making it a major virulence factor in several human pathogens, including *Neisseria gonorrhoeae*, *N. meningitidis*, *Haemophilus influenzae*, and *Moraxella catarrhalis* [44]. Although evidence of repeated adaptation was also observed in the transferrin paralog lactoferrin, rapidly evolving regions of this protein suggest that selection has acted primarily on new antimicrobial functions that have emerged since its divergence from transferrin, rather than iron binding [45]. More recently, we and others discovered that mammalian heme binding proteins are also rapidly evolving at molecular interfaces recognized by bacterial pathogens [46,47], most notably the hemoglobin alpha and beta subunits targeted by diverse bacterial and eukaryotic pathogens. Mutating positions subject to positive selection in both transferrin and hemoglobin are sufficient to impair recognition by pathogenic bacteria, supporting the hypothesis that variation in these host factors could provide a benefit to host fitness during bacterial infections (Fig 2C) [46]. It remains an open question as to how competition for other nutrients may lead to evolutionary conflicts between bacteria and animal hosts.

What are emerging questions regarding bacterial–host evolutionary conflicts?

The studies highlighted here illustrate that evolutionary conflicts between bacteria and animal hosts are widespread and have important consequences for infectious disease pathogenesis.
and immunity. However, many unanswered questions remain. Beyond immune evasion and nutrient acquisition, bacteria encode a wide variety of virulence factors that could also give rise to conflicts. Recent work has provided evidence of repeated adaptation among host proteins targeted by bacterial toxins [48,49], consistent with this hypothesis. Given that many bacterial virulence factors are also encoded by related commensal microbes, pathogen-driven conflicts could also hold the potential to restrict the host species tropism of commensal members of the microbiota. In this case, we would expect that commensal bacteria are also forced to adapt in response to rapidly evolving host factors required for colonization, even when they themselves are not the driving agents of conflict. Since the effectiveness of host barrier defenses can depend on the presence of the microbiota [50–53], it will be important to test how evolution of commensal microbes can in turn shift the balance of host–pathogen conflicts. For example, host genetic variation in iron-binding proteins may only be effective at excluding pathogens when particular host-adapted commensal microbes are present to out-compete them [54]. We expect the coming years will continue to expand our understanding of how and why bacterial–host evolutionary conflicts arise, as well as provide opportunities to apply this knowledge in humanity's ongoing battles with microbial pathogens.

Acknowledgments

The authors would like to thank members of the Barber lab for critical reading of the manuscript. We apologize to colleagues whose work could not be discussed due to space constraints.

References

1. Haldane J. Disease and evolution. La Ricerca Scientifica Supplemento. 1949; 1–11.
2. Van Valen L. A new evolutionary law. Evol Theory. 1973; 1: 1–30.
3. Hamilton WD, Axelrod R, Tanese R. Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci U S A. 1990; 87: 3566–3573. https://doi.org/10.1073/pnas.87.9.3566 PMID: 2185476
4. Sackton TB, Lazzaro BP, Schlenke TA, Evans JD, Hultmark D, Clark AG. Dynamic evolution of the innate immune system in Drosophila. Nat Genet. 2007; 39: 1461–1468. https://doi.org/10.1038/ng.2007.60 PMID: 17987029
5. Enard D, Cai L, Gnenna C, Petrov DA. Viruses are a dominant driver of protein adaptation in mammals. Elife. 2016; 5: 56.
6. van der Lee R, Wiel L, van Dam TJP, Huynen MA. Genome-scale detection of positive selection in nine primates predicts human-virus evolutionary conflicts. Nucleic Acids Res. 2017. https://doi.org/10.1093/nar/gkx7405
7. Hawkins JA, Kaczmarek ME, Müller MA, Drosten C, Press WH, Sawyer SL. A metaanalysis of bat phylogenetics and positive selection based on genomes and transcriptomes from 18 species. Proc Natl Acad Sci U S A. 2019; 116: 11351–11360. https://doi.org/10.1073/pnas.1814995116 PMID: 31113885
8. Nielsen R, Bustamante C, Clark AG, G Ianowski S, Sackton TB, Hubisz MJ, et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 2005; 3: e170. https://doi.org/10.1371/journal.pbio.0030170 PMID: 15869325
9. Daugherty MD, Malik HS. Rules of Engagement: Molecular Insights from Host-Virus Arms Races. Annu Rev Genet. 2012; 46: 677–700. https://doi.org/10.1146/annurev-genet-110711-155522 PMID: 23145935
10. Mitchell PS, Patzina C, Emerman M, Haller O, Malik HS, Kochs G. Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA. Cell Host Microbe. 2012; 12: 598–604. https://doi.org/10.1016/j.chom.2012.09.005 PMID: 23084925
11. Daugherty MD, Schaller AM, Geballe AP, Malik HS. Evolution-guided functional analyses reveal diverse antiviral specificities encoded by IFIT1 genes in mammals. Elife. 2016. Available: https://elifesciences.org/content/5/e14228v1
12. Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature. 2014; 516: 242–245. https://doi.org/10.1038/nature13760 PMID: 25274305
13. Lou DI, Kim ET, Meyerson NR, Pancholi NJ, Mohini KN, Enard D, et al. An Intrinsic ally Disordered Region of the DNA Repair Protein Nbs1 Is a Species-Specific Barrier to Herpes Simplex Virus 1 in Primates. Cell Host Microbe. 2016; 20: 178–188. https://doi.org/10.1016/j.chom.2016.07.003 PMID: 27512903

14. Sawyer SL, Wu Li, Emerman M, Malik HS. Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci U S A. 2005; 102: 2832–2837. https://doi.org/10.1073/pnas.0409853102 PMID: 15689398

15. Patel MR, Loo Y-M, Horner SM, Gale M Jr, Malik HS. Convergent evolution of escape from hepaviral antagonism in primates. PLoS Biol. 2012; 10: e1001282. https://doi.org/10.1371/journal.pbio.1001282 PMID: 22427742

16. Wang LF, Kuhn JH, Müller MA, Dye JM, Sawyer SL. Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. Elife. 2015. Available: https://elifesciences.org/articles/11785

17. Randow F, MacMicking JD, James LC. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science. 2013; 340: 701–706. https://doi.org/10.1126/science.1233028 PMID: 23661752

18. MacMicking JD. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat Rev Immunol. 2012; 12: 367–382. https://doi.org/10.1038/nri3210 PMID: 22531325

19. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013; 13: 397–411. https://doi.org/10.1038/nri3452 PMID: 23702978

20. Mitchell PS, Sandstrom A, Vance RE. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol. 2019; 60: 37–45. https://doi.org/10.1016/j.coi.2019.04.015 PMID: 31121538

21. Chavarría-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. Functional and Evolutionary Analyses Identify Proteolysis as a General Mechanism for NLRP1 Inflammasome Activation. PLoS Pathog. 2016; 12: e1006052. https://doi.org/10.1371/journal.ppat.1006052 PMID: 27926929

22. Chavarría-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. Functional and Evolutionary Analyses Identify Proteolysis as a General Mechanism for NLRP1 Inflammasome Activation. PLoS Pathog. 2016; 12: e1006052. https://doi.org/10.1371/journal.ppat.1006052 PMID: 27926929

23. Santos JC, Broz P. Sensing of invading pathogens by GBP1: At the crossroads between cell-autonomous and innate immunity. J Leukoc Biol. 2018; 104: 729–735. https://doi.org/10.1002/JLB.4MR0118-038R PMID: 30020539

24. Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR, Vittimberga BA, et al. N-terminal degradation activates the Nlrp1b inflammasome. Science. 2019; 364. https://doi.org/10.1101/317826

25. Santos JC, Broz P. Sensing of invading pathogens by GBP1: At the crossroads between cell-autonomous and innate immunity. J Leukoc Biol. 2018; 104: 729–735. https://doi.org/10.1002/JLB.4MR0118-038R PMID: 30020539

26. Praefcke GJK. Regulation of innate immune functions by guanylate-binding proteins. Int J Med Microbiol. 2018; 308: 237–245. https://doi.org/10.1016/j.ijmm.2017.10.013 PMID: 29174633

27. Tretina K, Park E-S, Maminska A, MacMicking JD. Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. J Exp Med. 2019; 216: 482–500. https://doi.org/10.1084/jem.20182031 PMID: 30755454

28. Piro AS, Hernandez D, Luoma S, Feeley EM, Finethy R, Yirga A, et al. Detection of Cytosolic Shigella flexneri via a C-Terminal Triple-Arginine Motif of GBP1 Inhibits Actin-Based Motility. MBio. 2017; 8. https://doi.org/10.1128/mBio.01979-17 PMID: 29233899

29. Wandel MP, Pathe C, Werner EI, Ellison CJ, Boyle KB, von der Malsburg A, et al. GBPs Inhibit Motility of Shigella flexneri but Are Targeted for Degradation by the Bacterial Ubiquitin Ligase IpaH9.8. Cell Host Microbe. 2017; 22: 507–518.e5. https://doi.org/10.1016/j.chom.2017.09.007 PMID: 29024643

30. Li P, Jiang W, Yu Q, Liu W, Zhou P, Li J, et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defense. Nature. 2017; 551: 378–383. https://doi.org/10.1038/nature24467 PMID: 29144452

31. Kutsch M, Sistemic L, Lesser CF, Goldberg MB, Herrmann C, Coers J. Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions. EMBO J. 2020; e104926. https://doi.org/10.15252/embj.2020104926 PMID: 32510692

32. Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M, Shkarina K, et al. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat Commun. 2020; 11: 3276. https://doi.org/10.1038/s41467-020-16889-z PMID: 32581219

33. Wandel MP, Kim B-H, Park E-S, Boyle KB, Nayak K, Lagrange B, et al. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat Immunol. 2020. https://doi.org/10.1038/s41590-020-0697-2 PMID: 32541830
34. Kohler KM, Kutsch M, Piro AS, Wallace GD, Coers J, Barber MF. A Rapidly Evolving Polybasic Motif Modulates Bacterial Detection by Guanylate Binding Proteins. MBio. 2020; 11. https://doi.org/10.1128/mBio.00340-20 PMID: 32430466

35. Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol. 2019; 19: 503–516. https://doi.org/10.1038/s41577-019-0168-x PMID: 31048789

36. Cagliani R, Forni D, Filippi G, Mozzi A, De Gioia L, Pontremoli C, et al. The mammalian complement system as an epitome of host-pathogen genetic conflicts. Mol Ecol. 2016; 25: 1324–1339. https://doi.org/10.1111/mec.13558 PMID: 26836579

37. Granoff DM, Welsch JA, Ram S. Binding of complement factor H (fH) to Neisseria meningitidis is specific for human fH and inhibits complement activation by rat and rabbit sera. Infect Immun. 2009; 77: 764–769. https://doi.org/10.1128/IAI.01191-08 PMID: 19047046

38. Beernink PT, Shaughnessy J, Stefek H, Ram S, Granoff DM. Heterogeneity in rhesus macaque complement factor H binding to meningococcal factor H binding protein (FHbp) informs selection of primates to assess immunogenicity of FHbp-based vaccines. Clin Vaccine Immunol. 2014; 21: 1505–1511. https://doi.org/10.1128/CVI.00517-14 PMID: 25185576

39. Caesar JJE, Lavender H, Ward PN, Exley RM, Eaton J, Chittock E, et al. Competition between antagonistic complement factors for a single protein on N. meningitidis rules disease susceptibility. Elife. 2014; 3. Available: http://elifesciences.org/lookup/doi/10.7554/eLife.04008.015

40. Weinberg ED. Nutritional Immunity: Host’s Attempt to Withhold Iron From Microbial Invaders. JAMA. 1975; 231: 39–41. https://doi.org/10.1001/jama.231.1.39 PMID: 12436566

41. Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol. 2012; 10: 525–537. https://doi.org/10.1038/nrmicro2836 PMID: 22796883

42. Skaar EP, Raffatellu M. Metals in infectious diseases and nutritional immunity. Metalomics. 2015; 7: 926–928. https://doi.org/10.1039/c5mt90021b PMID: 26017093

43. Barber MF, Elde NC. Escape from bacterial iron piracy through rapid evolution of transferrin. Science. 2014; 346: 1362–1366. https://doi.org/10.1126/science.1259329 PMID: 25504720

44. Pogoutse AK, Moraes TF. Iron acquisition through the bacterial transferrin receptor. Crit Rev Biochem Mol Biol. 2017; 52: 314–326. https://doi.org/10.1080/10409238.2017.1293606 PMID: 28276700

45. Barber MF, Kronenberg Z, Yandell M, Elde NC. Antimicrobial Functions of Lactoferrin Promote Genetic Conflicts in Ancient Primates and Modern Humans. PLoS Genet. 2016; 12: e1006063. https://doi.org/10.1371/journal.pgen.1006063 PMID: 27203426

46. Choby JE, Buechi HB, Farrand AJ, Skaar EP, Barber MF. Molecular Basis for the Evolution of Species-Specific Hemoglobin Capture by Staphylococcus aureus. MBio. 2018; 9. https://doi.org/10.1128/mBio.01524-18 PMID: 30459189

47. Mozzi A, Forni D, Clerici M, Cagliani R, Sironi M. The Diversity of Mammalian Hemoproteins and Microbial Heme Scavengers Is Shaped by an Arms Race for Iron Piracy. Front Immunol. 2018; 9: 2086. https://doi.org/10.3389/fimmu.2018.02086 PMID: 30271410

48. Boguslawski KM, McKeown AN, Day CJ, Lacey KA, Tam K, Vozhilla N, et al. Exploiting species specificity to understand the tropism of a human-specific toxin. Sci Adv. 2020; 6: eaax7515. https://doi.org/10.1126/sciadv.aax7515 PMID: 32195339

49. Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med. 2018; 24: 1097–1103. https://doi.org/10.1038/s41591-018-0145-0 PMID: 30082869

50. Kamada N, Chen GY, Inohara N, Nuñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013; 14: 685–690. https://doi.org/10.1038/ni.2608 PMID: 23778796

51. Theriot CM, Young VB. Interactions Between the Gastrointestinal Microbiome and Clostridium difficile. Annu Rev Microbiol. 2015; 69: 445–461. https://doi.org/10.1146/annurev-micro-091014-104115 PMID: 26488281

52. Kim S, Covington A, Parmer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017; 279: 90–105. https://doi.org/10.1111/imr.12563 PMID: 28856737

53. Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med. 2018; 24: 1097–1103. https://doi.org/10.1038/s41591-018-0145-0 PMID: 30082869

54. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa R, Contreras H, et al. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe. 2013; 14: 26–37. https://doi.org/10.1016/j.chom.2013.06.007 PMID: 23870311