Severe exacerbations in moderate-to-severe asthmatics are associated with increased pro-inflammatory and type 1 mediators in sputum and serum

Michael A. Ghebre1†, Pee Hwee Pang2†, Dhananjay Desai1†, Beverley Hargadon1, Chris Newby1, Joanne Woods3, Laura Rapley3, Suzanne E. Cohen3, Athula Herath3, Erol A. Gaillard1, Richard D. May3,4† and Chris E. Brightling1*†

Abstract

Background: Asthma is a heterogeneous disease and understanding this heterogeneity will enable the realisation of precision medicine. We sought to compare the sputum and serum inflammatory profiles in moderate-to-severe asthma during stable disease and exacerbation events.

Methods: We recruited 102 adults and 34 children with asthma. The adults were assessed at baseline, 3, 6, and 12-month follow-up visits. Thirty-seven subjects were assessed at onset of severe exacerbation. Forty sputum mediators and 43 serum mediators were measured. Receiver-operator characteristic (ROC) curves were constructed to identify mediators that distinguish between stable disease and exacerbation events. The strongest discriminating sputum mediators in the adults were validated in the children.

Results: The mediators that were significantly increased at exacerbations versus stable disease and by ≥1.5-fold were sputum IL-1β, IL-6, IL-6R, IL-18, CXCL9, CXCL10, CCL5, TNFα, TNF-R1, TNF-R2, and CHT and serum CXCL11. No mediators decreased ≥1.5-fold at exacerbation. The strongest discriminators of an exacerbation in adults (ROC area under the curve [AUC]) were sputum TNF-R2 0.69 (95% CI: 0.60 to 0.78) and IL-6R 0.68 (95% CI: 0.58 to 0.78). Sputum TNF-R2 and IL-6R were also discriminatory in children (ROC AUC 0.85 [95% CI: 0.71 to 0.99] and 0.80 [0.64 to 0.96] respectively).

Conclusions: Severe asthma exacerbations are associated with increased pro-inflammatory and Type 1 (T1) immune mediators. In adults, sputum TNF-R2 and IL-6R were the strongest discriminators of an exacerbation, which were verified in children.

Keywords: Asthma, Cytokines, Sputum, Biomarkers

Background

Asthma affects over 300 million people worldwide. Severe asthma represents about 10% of all asthmatics [1]. This group has the greatest unmet need with persistent symptoms, airflow obstruction, and chronic inflammation punctuated by episodes or worsening of symptoms known as exacerbations. There is an increasing recognition that asthma, in particular severe asthma, is a heterogeneous condition with variability in clinical expression of disease, disordered airway physiology, inflammation and frequency of exacerbations [1–4].

Comparisons of cytokine profiles in eosinophilic versus non-eosinophilic and Type 2 (T2)high versus T2low asthma and between asthma, chronic obstructive pulmonary disease (COPD) and asthma/COPD overlap have provided insights into potential underlying mechanisms and responses to therapy [5–8]. Indeed this approach...
has revealed that asthmatics with eosinophilic, T2high disease respond more favourably to corticosteroids [5] and has uncovered non-eosinophilic, T2low asthmatics in which other mechanisms such as exposure to pollutants or persistent infection might play a role.

Approaches to stratify cytokine profiles in stable disease have been applied widely, but to date there are only a few studies that have explored sputum inflammatory mediators at exacerbations in adults [9–13] and children [14, 15]. These studies have included small numbers of subjects, limited panels or single sputum mediators and focused mostly upon mild-to-moderate disease, which might explain the variable reports of either increased eosinophils or neutrophils, together with increased T1 or T2 cytokines. Thus surprisingly, there is a paucity of data profiling a broad array of sputum inflammatory mediators in stable disease versus severe exacerbations.

We hypothesised that the sputum and serum inflammatory mediator profiles change between stable disease and exacerbation events. To test this hypothesis, we undertook a 1-year prospective study of moderate-to-severe adult asthmatics, assessed at stable visits and at the onset of severe exacerbations. The findings were then validated in children admitted to hospital with acute asthma exacerbations.

Methods

Subjects

In this study 102 adults with moderate-to-severe asthma and 34 children with mild-to-severe asthma, according to the Global Initiative for Asthma (GINA) treatment step [16], were recruited from a single centre Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom. The adults were assessed at baseline, 3, 6, and 12-month follow-up visits and at the onset of a severe exacerbation defined as requiring high dose systemic corticosteroids (≥ 30 mg a day) for 3 or more days. Some subjects had participated in an earlier cross-sectional study [8]. The mediators that best discriminated between stable state and exacerbations in the adults were validated in children with doctor-diagnosed asthma admitted to hospital (Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom) with acute-severe exacerbations or during stable visits. The studies were approved by the local Leicestershire, Northamptonshire and Rutland ethics committee (08/H0406/189). Written informed consent was obtained from each subject or the subject’s legal guardian.

Clinical assessments

Demographic, clinical and lung function data were recorded including Asthma Control Questionnaire-6 (ACQ6) score, Asthma Quality of Life Questionnaire (AQLQ) score, symptom scores using the visual analogue scale (VAS), pre- and post-bronchodilator forced expiratory volume in the first second (FEV\textsubscript{1}), forced vital capacity (FVC), fraction of exhaled nitric oxide (FeNO), sputum total and differential cell counts. For the paediatric group only demographics, clinical history and sputum collection was undertaken. Spontaneous sputum was collected at exacerbations and sputum was either spontaneous or induced at stable state dependent on whether subjects produced adequate sputum spontaneously.

Sputum and blood mediator measurements

Forty mediators in sputum supernatants, and 43 mediators in serum were measured using the Meso Scale Discovery Platform (MSD® Gaithersburg, MD, USA) and enzyme-linked immunosorbent assay (ELISA) as described previously [8]. MSD is an immunoassay that combines electrochemiluminescence in a multi-array platform. The lower limits of detection and quantification were reported in the Additional file 1: Table S1. Samples in which mediator concentrations were below half of the limit of quantification (BLQ) were assigned half the limit of quantification. Mediators that were BLQ in more than 60% of samples were assigned BLQ as a group. The groups that were assigned BLQ were not included in further analyses. These were IL-4, IL-9, IL-10, IL-12p70, IL-13, IL-17, IL-23, IL-33, GMCSF, IFN\gamma, TSLP, NGF and CEACAM-5. Serum IL-6R, CCL3, CCL5 and CCL13 were above the limit of quantification (ALQ) in all the samples and were therefore excluded from further analysis. Seventeen of the serum mediators included in the analysis had < 5% of the samples outside the measurable range and 5 (IL-1\beta, CCL2, TNF\alpha, VEGF, periostin) had 5–20% of the samples outside of the measurable range. Sixteen of the sputum mediators included in the analysis had < 5% of the samples outside the measurable range and 10 (IL2, IL5, IL15, IL18, CCL3, CCL4, CCL5, CCL11, CXCL11 and TNF\alpha) had 5–30% of the samples outside of the measurable range.

Statistical analysis

All analyses were done with STATA/IC version 14.0 for Windows (Stata Corp, College Station, TX, USA) and Prism version 7.00 for Mac OS X (GraphPad Software, La Jolla California, USA). The parametric and log transformed data were presented as mean with Standard Error of the Mean (SEM) and geometric mean with 95% confidence interval (CI) respectively. The changes of characteristics within and between subjects were examined using paired and unpaired t-tests. Receiver operating characteristic (ROC) curves were used to identify the inflammatory mediators that significantly discriminated between stable
versus exacerbation state for adults. The mediators that best discriminated between stable state and exacerbations in the adults were validated in the stable state versus exacerbation paediatric groups. No corrections were made for multiple comparisons. \(P < 0.05 \) was the threshold for significance.

Results

The study flow chart is shown in Fig. 1. A total of 102 adult subjects were recruited, of which 37 subjects were assessed at one or more exacerbation visits. The clinical characteristics at baseline of all the subjects and those that were or were not assessed at an exacerbation are described in Table 1. Subjects that had an exacerbation visit had a higher body mass index (BMI) and a higher proportion of severe asthma (Step 5 according to the GINA guidelines). However, there were no significant differences in the ACQ6 score, AQLQ score, daily inhaled and oral corticosteroid dose between the two groups. The proportion of current or ex-smokers was lower in those subjects assessed at exacerbation visits. At exacerbation, there was a significant decrease in FEV\(_1\) and an increase in VAS cough, dyspnoea and wheeze. No significant difference was observed in blood and sputum eosinophil and neutrophil cell counts, although sputum total cell count increased significantly at exacerbation (Table 1). The clinical characteristics of the 35 children recruited with an acute-severe exacerbation (\(n = 18 \)) or during a stable visit (\(n = 17 \)) are as shown (Additional file 1: Table S2).

Forty-four sputum and 52 serum samples were obtained from all the exacerbation visits, and 187 sputum and 228 serum samples were also obtained from all the stable visits. In the comparison between all stable and all exacerbation visits (Table 2), sputum IL-1\(\beta \), IL-2, IL-6, IL-6R, IL-18, CXCL9, CXCL10, CCL5, TNF\(_\alpha\), TNF-R1, TNF-R2, CHTR, and serum IL-18, CXCL10 and CXCL11 were significantly increased at exacerbations.

Fig. 1 Study flow chart illustrating the number of subjects at each stable visit and intervening exacerbation (E) with corresponding number of available samples.
| Variable | Baseline All (n = 102) | Baseline for subjects not assessed at exacerbation (n = 65) | Baseline for subjects assessed at exacerbation (n = 37) | P-value|| Change between Stable and Exacerbation (n = 37) | P-value¶ |
|----------|------------------------|---|--|---|---|
| Male (n [%]) | 49 (48) | 33 (51) | 16 (43) | 0.47 |
| Age (year) | 53 (1) | 52 (2) | 55 (2) | 0.21 |
| BMI (kg/m²) | 30 (1) | 29 (1) | 32 (1) | 0.034 |
| Current or Ex-smokers (n [%]) | 39 (38) | 31 (48) | 8 (22) | 0.009 |
| Pack yearsbc | 10 (2 to 14) | 10 (2 to 14) | 9 (2 to 16) | 0.73 |
| Exacerbations (OCS courses in last year) b | 3 (2 to 4) | 2.5 (2 to 3) | 3 (2 to 5) | 0.21 |
| GINA Classification III/IV/V (n) | 5/45/52 | 3/37/25 | 2/8/27 | 0.002 |
| Daily ICS dose (BDP eq μg/day) b | 1600 (1000 to 2000) | 1600 (1000 to 2000) | 1600 (800 to 2000) | 0.04 |
| Daily Prednisolone dose (mg) bd | 10 (7.5 to 15) | 10 (5 to 10) | 10 (7.5 to 15) | 0.02 |
| Asthma Quality of life Questionnaire (AQLQ) | 4.82 (0.14) | 4.77 (0.16) | 4.91 (0.25) | 0.062 |
| Asthma Control Questionnaire-6 (ACQ-6) | 1.95 (0.13) | 1.97 (0.17) | 1.92 (0.2) | 0.087 |
| Atopy (n [%]) | 48 (47) | 28 (43) | 20 (54) | 0.29 |
| IgE a | 143 (106 to 194) | 143 (96 to 212) | 144 (88 to 234) | 0.098 |
| Pre FEV₁/FVC ratio (%) | 68.4 (1.4) | 68.7 (1.9) | 68.0 (1.9) | 0.081 |
| Pre FEV₁ (L) | 2.14 (0.07) | 2.23 (0.09) | 2.00 (0.12) | 0.13 |
| Post FEV₁ (L) | 2.31 (0.08) | 2.39 (0.09) | 2.18 (0.14) | 0.19 |
| Pre FEV₁ (%) | 74 (2) | 76 (2) | 72 (4) | 0.38 |
| Post FEV₁ (%) | 80 (2) | 82 (3) | 76 (4) | 0.24 |
| VAS cough (mm) | 33 (3) | 35 (3) | 29 (4) | 0.26 |
| VAS dyspnoea (mm) | 35 (3) | 36 (3) | 34 (5) | 0.79 |
| VAS wheeze (mm) | 26 (3) | 27 (3) | 254 (5) | 0.76 |
| TCC (10⁶/g sputum)a | 1.52 (1.20 to 193) | 1.56 (1.15 to 2.12) | 1.46 (0.98 to 2.16) | 0.79 |
| Sputum eosinophil cell count (%)a | 1.9 (1.3 to 2.9) | 2.5 (1.5 to 4.1) | 1.2 (0.6 to 2.4) | 0.003 |
| Sputum neutrophil cell count (%) | 62 (3) | 60 (3) | 65 (4) | 0.32 |
| Blood eosinophil cell count (x 10⁹ cells/L)a | 0.24 (0.20 to 0.29) | 0.26 (0.21 to 0.31) | 0.21 (0.14 to 0.32) | 0.31 |
| Blood neutrophil cell count (x 10⁹ cells/L) | 5.7 (0.2) | 5.3 (0.3) | 6.2 (0.4) | 0.076 |
| Fraction of exhaled Nitric Oxide (FeNO) (ppb)a | 23 (20 to 27) | 21 (18 to 25) | 27 (20 to 35) | 0.13 |

Data presented as mean (standard error of mean [SEM]) unless stated; ageometric mean (95% CI); bmedian (first and 3rd quartiles); cpack year history for current and ex-smokers; d“dose of prednisolone in those receiving prednisolone”; ||P-value for unpaired comparison within baseline (stable) between those who assessed and not assessed at exacerbation; ¶P-value for paired comparison between stable (baseline) and exacerbation visits. Abbreviations: OCS Oral corticosteroid, ICS Inhaled corticosteroid, BDP eq Beclomethasone dipropionate equivalent, VAS Visual analogue scale, BMI Body Mass Index, FEV₁ Forced Expiratory Volume in the First Second, FVC Forced Vital Capacity
Many T2 cytokines (IL-4, IL-9, IL-13, IL-33, TSLP) were below the limit of quantitation both at stable and exacerbation. Serum periostin was significantly decreased at exacerbation compared to stable visits. The difference between stable and exacerbation visits was less than 1.5 fold for sputum IL-2, serum IL-18, CXCL10 and periostin.

The ROC AUC for sputum and serum mediators between all stable and all exacerbation visits are shown in Table 3. The strongest discriminators of an exacerbation in adults were sputum TNF-R2 and IL-6R, with ROC AUC of 0.69 (95% CI: 0.60 to 0.78) and 0.68 (95% CI: 0.58 to 0.78), respectively (Fig. 2a). The results were similar in the paediatric group. The ROC AUC of sputum TNF-R2 and IL-6R in children were 0.85 (95% CI: 0.71 to 0.99) and 0.80 (95% CI: 0.64 to 0.96), respectively (Fig. 2b). In the serum, the best discriminator of an exacerbation was CXCL11, with ROC AUC of 0.66 (95% CI: 0.57 to 0.76) in adults.

Unpaired and paired comparisons of sputum and serum mediator concentrations for all first stable and first exacerbation visits are shown in Additional file 1: Tables S3 and S4, respectively. The ROC AUC for sputum and serum mediators between all first stable and exacerbation visits are shown in Table 3.

Table 2

Geometric mean (95%CI) sputum and serum mediator concentration (pg/ml) for all stable and all exacerbation visits
Sputum
Stable (n = 187)
IL-1α
IL-1β
IL-2
IL-5
IL-6
IL-6R
IL-8
IL-15
IL-18
CXCL9
CXCL10
CXCL11
CCL2
CCL3
CCL4
CCL5
CCL11
CCL13
CCL17
CCL26
TNFα
TNF-R1
TNF-R2
VEGF
EGF
SCF
ST2
CTRK
Periostin
DDP4

BLQ Below limit of quantification, **ALQ** Above limit of quantification, unit of the mediators is pg/ml, † increase in mediator concentration, ↓ decrease in mediator concentration

All entries in bold are significant

Ghebre et al. BMC Pulmonary Medicine (2019) 19:144 Page 5 of 10
first exacerbations are presented in the Additional file 1: Table S5.

Discussion
In this study, we report the sputum and serum mediator profiles in moderate-to-severe asthmatics at stable and exacerbation visits. The results showed an increase in T1 and pro-inflammatory mediators at severe asthma exacerbations. Interestingly, there was no discernible increase in T2 mediators and, in contrast, some T2 mediators such as periostin decreased at exacerbation. From our findings, the strongest discriminators of an exacerbation were TNF-R2 and IL-6R in sputum and CXCL11 in serum. Similarly, in the paediatric group sputum TNF-R2 and IL-6R discriminated between stable and exacerbation events. Taking our findings together, up-regulated T1 and pro-inflammatory mediators rather than T2 inflammation appear to characterise severe asthma exacerbations.

TNFα is an important cytokine in the innate immune system, which is synthesized as a transmembrane precursor protein, mainly by activated macrophages and T cells. The cytoplasmic tail of this protein is then cleaved to release soluble TNFα. An aggregation of three TNFα monomers is required to form the trimeric TNFα, which then binds to ubiquitously expressed transmembrane

Sputum Mediators	ROC AUC (95% CI) for sputum and serum mediators between all stable and all exacerbation visits	Serum Mediators
IL-1α	0.61 (0.52 to 0.71) BLQ 0.50 (0.39 to 0.62)	IL-6R 0.52 (0.78) ALQ
IL-1β	0.59 (0.49 to 0.70) 0.43 (0.35 to 0.51)	IL-8 0.50 (0.49 to 0.50)
IL-2	0.57 (0.47 to 0.68) 0.49 (0.49 to 0.50)	IL-15 0.48 (0.69)
IL-5	0.50 (0.41 to 0.60) 0.49 (0.49 to 0.50)	IL-18 0.62 (0.52 to 0.72)
IL-6	0.61 (0.52 to 0.71) BLQ 0.50 (0.39 to 0.62)	IL-6R 0.68 (0.58 to 0.78)
IL-6R	0.68 (0.58 to 0.78) BLQ 0.50 (0.39 to 0.62)	IL-8 0.50 (0.49 to 0.50)
IL-8	0.59 (0.50 to 0.68) 0.49 (0.49 to 0.50)	IL-15 0.48 (0.69)
IL-15	0.59 (0.48 to 0.69) 0.49 (0.49 to 0.50)	IL-18 0.62 (0.52 to 0.72)
IL-18	0.62 (0.52 to 0.72) 0.60 (0.52 to 0.69)	CXCL9 0.65 (0.55 to 0.74)
CXCL10	0.63 (0.52 to 0.73) 0.52 (0.43 to 0.61)	CXCL11 0.50 (0.36 to 0.55)
CXCL11	0.63 (0.52 to 0.73) 0.52 (0.43 to 0.61)	CCL2 0.57 (0.47 to 0.67)
CCL2	0.57 (0.47 to 0.67) 0.44 (0.35 to 0.54)	CCL3 0.49 (0.38 to 0.59)
CCL3	0.49 (0.38 to 0.59) 0.50 (0.49 to 0.50)	CCL4 0.57 (0.47 to 0.67)
CCL4	0.57 (0.47 to 0.67) 0.48 (0.39 to 0.57)	CCL5 0.67 (0.56 to 0.77)
CCL5	0.67 (0.56 to 0.77) 0.50 (0.41 to 0.60)	CCL11 0.45 (0.36 to 0.55)
CCL11	0.63 (0.53 to 0.73) 0.52 (0.43 to 0.60)	CCL13 0.44 (0.36 to 0.52)
CCL13	0.63 (0.53 to 0.73) 0.52 (0.43 to 0.60)	CCL17 0.42 (0.33 to 0.51)
CCL17	0.63 (0.53 to 0.73) 0.52 (0.43 to 0.60)	CCL26 0.50 (0.41 to 0.59)
CCL26	0.63 (0.53 to 0.73) 0.52 (0.43 to 0.60)	TNFα 0.64 (0.54 to 0.74)
TNF-R1	0.63 (0.53 to 0.73) 0.52 (0.43 to 0.60)	TNF-R2 0.69 (0.60 to 0.78)
TNF-R2	0.69 (0.60 to 0.78) 0.50 (0.41 to 0.60)	VEGF 0.51 (0.41 to 0.62)
VEGF	0.51 (0.41 to 0.62) 0.49 (0.40 to 0.58)	EGF 0.50 (0.40 to 0.59)
EGF	0.50 (0.40 to 0.59) 0.46 (0.36 to 0.55)	SCF BLQ
SCF	0.50 (0.40 to 0.59) 0.46 (0.36 to 0.55)	ST2 BLQ
ST2	0.50 (0.40 to 0.59) 0.46 (0.36 to 0.55)	CHTR 0.64 (0.53 to 0.74)
CHTR	0.64 (0.53 to 0.74) 0.52 (0.46 to 0.58)	Periostin 0.52 (0.46 to 0.58)
Periostin	Not done 0.41 (0.32 to 0.50) 0.41 (0.32 to 0.50)	DDP4 Not done

BLQ Below limit of quantification, ALQ Above limit of quantification, unit of the mediators is pg/ml

All entries in bold are significant
receptors, TNF-R1 and TNF-R2. This in turn stimulates the release of various pro-inflammatory cytokines such as IL-1β, IL-6 and IL-8. TNFα has been implicated in asthma, with up-regulation of the TNFα axis noted in patients with severe refractory asthma [17–19]. However, in spite of early efficacy, late phase trials of anti-TNFα therapy in asthma failed to demonstrate important benefits and were discontinued early due to more frequent infections and higher incidence of malignancies in the treatment group [20]. Soluble TNF-R1 and TNF-R2 are formed by the proteolytic cleavage of the extracellular domains of the TNFα receptors. These soluble TNFα receptors can act as antagonists and function as natural regulators of the TNFα activity, thus diminishing the pro-inflammatory effects of TNFα. In our study, both TNFα and soluble TNFα receptors are significantly up-regulated at exacerbation compared to stable visits. In this regard, IL-6R then emerges as potentially more important than TNFα and its soluble receptors.

There is emerging evidence implicating IL-6 and its receptor in the pathogenesis of asthma. Elevated levels of IL-6 had been found in serum [21], induced sputum [22], bronchoalveolar fluid [23] and lung tissues of asthmatic patients [24]. Asthmatic patients with high serum IL-6 were found to have significantly worse lung function and more frequent exacerbations [25, 26]. A large Australian genome-wide association study identified a single-nucleotide polymorphism (SNP) located in the IL-6R gene (rs4129267) to be associated with asthma risk [27]. Soluble IL-6R was also found to be elevated in serum and bronchoalveolar fluid of asthmatic patients after allergen challenge and during spontaneous exacerbation [28, 29]. There are two signalling pathways driven by IL-6. IL-6 binds to membrane-bound IL-6R (mIL-6R) found on leukocytes and hepatocytes, before associating with the gp130 glycoprotein, to trigger the intracellular signalling cascades. The trans-signalling pathway is via the soluble IL-6R (sIL-6R), which is formed by the proteolytic cleavage of the mIL-6R or the translation from alternatively spliced messenger RNA (mRNA). The IL-6/sIL-6R complex then binds to gp130 glycoprotein, which is ubiquitously expressed. Thus, in contrast to soluble TNF-R1 and 2, which antagonise the effect of TNFα, soluble IL-6R can amplify the effects of IL-6 as it permits IL-6 to stimulate cells even if they lack mIL-6R. The IL-6R coding SNP rs2228145 (Asp358Ala), which increases IL-6R shedding and promotes IL-6 trans-signalling is associated with lower predicted FEV₁ [30] and is more frequent in the severe asthma clusters in the Severe Asthma Research Program (SARP) cohort. This suggests that IL-6 trans-signalling may have a key role in asthma severity. IL-6 trans-signalling has also been implicated in other diseases such as chronic inflammatory bowel disease and colon cancer [31], with a humanized monoclonal IL-6R antibody (tocilizumab) currently licensed for use in rheumatoid arthritis and systemic juvenile idiopathic arthritis [32]. IL-6 production is also linked to obesity [33]. The BMI was increased in those adult subjects that had an exacerbation versus the whole adult group whereas in contrast the BMI was lower in the exacerbation versus stable group for the children studied. In our study the increase in IL6R could not be attributed to BMI alone. Whether sputum IL-6R at exacerbations represents a target for asthma therapy or is a consequence of infection highlighting the possible need for anti-microbial therapy in some asthmatics at exacerbations is uncertain, although antibiotics have not consistently demonstrated improved outcomes for severe asthma exacerbations [34].

The interferon-γ-induced chemokines CXCL9, 10 and 11 were increased in either or both sputum and serum at exacerbations versus stable disease. These chemokines especially serum CXCL10 are increased in asthma and COPD exacerbations triggered by rhinoviral infections [6, 35, 36]. It is therefore likely that some of the exacerbation events in our study were triggered by viral infections. Both T1 and T2 responses have been reported following viral infections [9, 35, 37–39]. However, in our study there were no increases in T2 mediators. Although
a number of T2 mediators (IL-4, IL-9, IL-13, IL-33, TSLP) were below half of the limit of quantitation at both stable and exacerbation states, the T2 mediator periostin decreased at exacerbation versus stable state. Taken together our findings are consistent with infection rather than perturbed T2 immunity e.g. allergic responses as an important trigger for exacerbations. Despite this, drugs targeting T2-mediated inflammation such as anti-IL-5/IL-5 receptor monoclonal antibodies are proven to reduce exacerbations in severe eosinophilic asthma [40–42]. Drugs targeting the T2 cytokines IL-4 and IL-13 also appear to play a role in reducing exacerbations in patients with severe asthma [43–45]. It remains to be determined from ongoing phase III clinical trials to what extent patient sub-groups, which specifically express elevated biomarkers indicative of IL-13 signalling, will benefit from these treatments. Our data suggest that targeting underlying T2-mediated inflammation and thereby reducing susceptibility to exacerbations may be a more likely mechanism of action than direct targeting of exacerbation triggers themselves.

There are several potential limitations in this study. We prospectively studied asthma subjects that had a good success rate of producing adequate sputum for cell differential and cytokine analysis. This could have introduced an acquisition bias towards an infective phenotype, although we did not systematically assess the aetiology of the exacerbation. Notwithstanding this limitation, our success rate as a single centre to obtain adequate sputum samples for analysis is very high. Salivary contamination can affect the interpretation of sputum mediators. However, this is minimised using standardised sputum plug selection methods. Thus, this bias is unlikely to have had a major impact on our findings. We did not record asthma age of onset which might have affected the mediator profiles. Although we undertook a relatively large study of severe asthma exacerbations compared to reported studies [9–15], the study size is modest; undertaken in a single-centre and no corrections for multiple comparisons were made. The sample size limits our ability to explore asthma subgroups using statistical techniques such as cluster analysis, which we have applied to similar datasets in COPD [6]. Importantly, we were able to examine an extensive panel of mediators in both sputum and serum samples, which allowed us to explore effects upon T1 versus T2 immunity. However, we acknowledge a need for more sensitive assays of T2 mediators especially as our groups studied did not have high levels of T2 mediators either due to the sensitivity of the assays, recruitment of a predominantly T2 low group or as a consequence of corticosteroid therapy. Some of the mediators were outside the measurable range which reduces the precision of these analyses. However, the most discriminatory biomarkers namely sputum IL6R and TNFR2 were measurable in all samples. Additionally we replicated our findings in children recruited either at stable visits or at exacerbations. Although data derived from children and adults are not directly comparable the generalisability of our findings in the different age groups suggests they are not restricted to adults. Larger, multi-centre prospective studies to examine the inflammatory profiles of asthma exacerbations in adults and children are required in the future.

Conclusions
In conclusion, we found in moderate-to-severe asthma that the T1 and pro-inflammatory mediators in sputum and serum were up-regulated at exacerbation without a significant T2 response. Sputum TNF-R2 and IL-6R were strongly associated with asthma exacerbations in both adults and children. Our findings suggest that the role of the IL-6/IL-6R axis in asthma exacerbations warrants further investigation.

Additional files

Additional file 1: Table S1. Sputum and serum mediators lower limit of detection (LLD) and lower limit of quantification (LLQ).

Clinical characteristics at children assessed either at stable visits or following admission to hospital for an acute-severe exacerbation of asthma.	Table S2. Geometric mean (95% CI) serum mediator concentrations (pg/ml) for all first stable and first exacerbation visits.
Table S3. Geometric mean (95% CI) sputum mediator concentrations (pg/ml) for all first stable and first exacerbation visits.	Table S4. Geometric mean (95% CI) sputum mediator concentrations (pg/ml) for all first stable and first exacerbation visits.
Table S5. ROC area under the curve (AUC) (95% CI) for sputum and serum mediators between first stable and first exacerbation visits.	(DOCX 49 kb)

Abbreviations

ACQ6: Asthma Control Questionnaire-6; ALQ: Above the limit of quantification; AQLQ: Asthma Quality of Life Questionnaire; AUC: Area under the curve; BLOQ: Below half of the limit of quantification; BMI: Body mass index; CI: Confidence interval; COPD: Chronic obstructive pulmonary disease; ELISA: Enzyme-linked immunosorbent assay; FeNO: Fraction of exhaled nitric oxide; FEV1: Forced expiratory volume in the first second; FVC: Forced vital capacity; GiNA: Global Initiative for Asthma; mRNA: Messenger RNA; ROC: Receiver-operator characteristic; SARP: Severe Asthma Research Program; SEM: Standard Error of the Mean; SNP: Single-nucleotide polymorphism; T1: Type 1; T2: Type 2; VAS: Visual analogue scale.

Acknowledgements

Not applicable.

Authors’ contributions

MAG undertook the data analysis, statistical analysis and involved in manuscript writing. DD undertook the volunteer recruitment, data collection, and involved in data analysis and manuscript writing. BH involved in data collection and manuscript writing; CN, SC and AH involved in data analysis, statistical analysis and manuscript writing. JW and LR involved in analysing samples and manuscript writing. EG involved in data collection, volunteer recruitment, data analysis, and manuscript writing. RM and CEB led the design of the study, data collection, data interpretation, data analyses and had full access to the data and are responsible for the integrity of the data and final decision to submit. All authors contributed to the study design, writing of the manuscript and have approved the final version for submission.
Funding
MedImmune Ltd., Wellcome Trust Senior Fellowship (CEB). The research was performed in laboratories part funded by the European Regional Development Fund (ERDF 05367). This study was also part supported by the National Institute for Health Research Leicester Biomedical Research Centre, UK, and AnsProM (FP7-270194). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Availability of data and materials
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate
The studies were approved by the local Leicester NHS Trust, Northamptonshire and Rutland ethics committee. Written informed consent was obtained from each subject or the subject’s legal guardian.

Consent for publication
Each subject or legal guardian provided written informed consent to analyze and publish his/her data.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester LE3 9QP, UK. 2Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore. 3MedImmune Ltd, Millstein Building, Granta Park, Cambridge CB21 6QH, UK. 4Present address: Camallergy, Cambridge Biomedical Campus, Cambridge, UK.

Received: 22 May 2018 Accepted: 26 July 2019

References
1. Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, Adcock IM, Bateman ED, Bel EH, Bleecker ER, Boulet LP, Brightling C, Chanez P, Dahlén SE, Djukanovic R, Frey U, Gargi M, Gibson P, Hamid Q, Jourj VN, Mausad T, Sorkness RA, Teague WG. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.
2. Hartley R, Berair R, Brightling CE. Severe asthma: novel advances in the pathogenesis and therapy. Pol Arch Med Wewn. 2011;124(5):247–54.
3. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, Wardlaw AJ, Green RH. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2009;179(7):549–55.
4. Wu W, Bleecker ER, Brocouet J, Busse W, Dahlén SE, Holguin F, Wenzel SE, Meyers DA, Rabe KF, Antczak A, Baker J, Horvath I, Mark Z, Bernstein D, Kervin E, Schlenker-Herceg R, Lo KH, Watt R, Barnathan ES, Chanez P, T03 Asthma Investigators. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med. 2009;179(3):219–24.
5. Wu W, Bleecker ER, Moore W, Busse WW, Castro M, Chung KF, Calhoun WJ, Erzurum S, Gaston B, Israel E, Curran-Everett D, Wenzel SE. Unsupervised phenotyping of severe Asthma research program participants using expanded lung data. J Allergy Clin Immunol. 2014;133(5):1280–8.
6. Woodford PG, Modrek B, Choy DF, Jia G, Abbas AR, Elwanger A, Koth LL, Arron JR, Fahy J. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388–95.
7. Bafadhel M, McKenna S, Tery S, Mistry V, Reid C, Haldar P, McCormick M, Haldar K, Kebede T, Duvvok A, Lindblad K, Patel H, Rugman P,Dodson P, Jenkins M, Sanders M, Newbold P, Green RH, Venge P, Lomas DA, Barer MR, Johnston SL, Pavord ID, Brightling CE. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 2011;184(6):662–72.
8. Bafadhel M, McCormick M, Sahs S, McKenna S, Shelley M, Hargadon B, Mistry V, Reid C, Parker D, Dodson P, Jenkins M, Lloyd A, Rugman P, Newbold P, Brightling CE. Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease. Respiration. 2012;83(1):36–44.
9. Ghebre MA, Bafadhel M, Desai D, Cohen SE, Newbold P, Rapley L, Woods J, Rugman P, Pavord ID, Newby C, Burton PR, May RD, Brightling CE. Biological clustering supports both “Dutch” and “British” hypotheses of asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2015;135(1):63–72.
10. Pizzichini MM, Pizzichini E, Efthimiadias A, Chauhan AJ, Johnston SL, Hussack P, Mahony J, Dolovich J, Hargrave FE. Asthma and natural colds. Inflammatory mediators in induced sputum: a feasibility study. Am J Respir Crit Care Med. 1998;158(4):1178–84.
11. Pizzichini MM, Pizzichini E, Cilellan L, Efthimiadias A, Mahony J, Dolovich J, Hargrave FE. Sputum in severe exacerbations of asthma kinetics of inflammatory mediators after prednisone treatment. Am J Respir Crit Care Med. 1997;155(5):1501–8.
12. Fakhry J, Kim KW, Liu J, Boushey HA. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol. 1995;95(4):843–52.
13. Daldegan MB, Teixeira MM, Talvani A. Concentration of CCL11, CXC58 and TNF-alpha in sputum and plasma of patients undergoing asthma or chronic obstructive pulmonary disease exacerbation. Braz J Med Biol Res. 2005;38(9): 1359–65.
14. Warwick G, Thomas PS, Yates DH. Non-invasive biomarkers in exacerbations of obstructive lung disease. Respirolgy. 2013;18(5):874–84.
15. Norgiza MZ, Fakes K, Henny RL, Simpson J, Gibson PG. Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am J Respir Crit Care Med. 2000;161(3 Pt 1):769–74.
16. Bosco A, Ethesamhi S, Stern DA, Martinez FD. Decreased activation of inflammatory networks during acute asthma exacerbations is associated with chronic airflow obstruction. Mucosal Immunol. 2010;3(4):399–409.
17. www.ginasthma.org. Accessed 2 Aug 2019.
18. Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, Bradding P, Brighting CE, Wardlaw AJ, Pavord ID. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354(7):697–708.
19. Howarth PH, Babu KS, Kalliney A, Reynolds A, Davies D, Holgate ST. Tumour necrosis factor (TNF)alpha as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax. 2005;60(12):1012–8.
20. Wenzel SE, Barnes PJ, Bleecker ER, Boucquet J, Busse W, Dahlén SE, Holgate ST, Meyers DA, Rabe KF, Antczak A, Baker J, Horvath I, Mark Z, Bernstein D, Kervin E, Schlenker-Herceg R, Lo KH, Watt R, Barnathan ES, Chanez P, T03 Asthma Investigators. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med. 2009;179(7):549–58.
21. Yokoyama A, Kohno N, Fujino S, Hamada H, Inoue Y, Fujikawa S, Ishida S, Hivada K. Circulating interleukin-6 levels in patients with bronchial asthma. Am J Respir Crit Care Med. 1995;151(5):1345–48.
22. Neveu WA, Allard JL, Raymond DM, Bourassa LM, Burns BM, Bunn JY, Kivn CG, Karinskiy DA, Rincon M. Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associated with loss of central airway function. Respir Res. 2010;11:128. https://doi.org/10.1186/1465-9211-11-28.
23. Tille-Leblond I, Pugin J, Marquette CH, Lamblin C, Saulnier F, Brichet A, Wallaert B, Tonnel AB, Gossel P. Balance between proinflammatory cytokines and their inhibitors in bronchial lavage from patients with status asthmaticus. Am J Respir Crit Care Med. 1999;159(2):487–94.
24. Marini M, Vittori E, Hollemberg J, Mattoli S. Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol. 1992;90(5):1001–9.
25. Peters MC, McGrath KW, Hawkins GA, Hasteie AT, Levy BD, Israel E, Phillips BR, Mauger DT, Comhair SA, Ezurum SC, Johansson MW, Jarjour NN, Coverstone AA, Castro M, Holguin F, Wenzel SE, Woodford PG, Bleecker ER, Fahy JV. National Heart, Lung, and Blood Institute severe Asthma research program: plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med. 2016;4(7):574–84.
26. Fu JJ, McDonald VM, Baines R, Gibson PG. Airway IL-1beta and Systemic inflammation as predictors of future exacerbation risk in Asthma and COPD. Chest. 2015;148(3):618–29.
27. Ferreira MA, Matheson MC, Duffy DL, Marks GB, Hui J, Le Souef P, Danoy P, Baltic S, Nyholt DR, Jenkins M, Hayden C, Willemens G, Ang W, Kuokkanen M, Beilby J, Cheah F, de Geus EJ, Rasmussen A, Vedantam S, Salomaa V, Maddon PA, Heath AC, Hopper JL, Vischer PM, Musb B, Leeder SR, Janvelin MR, Pennell C, Boomsma DI, Hirschhorn JN, Walters H, Martin NG, James A,
in adults with uncontrolled persistent asthma despite use of medium-to-
high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a
randomised double-blind placebo-controlled pivotal phase 2b dose-ranging
trial. Lancet. 2016;388(10039):31–44.

44. Hanania NA, Koensik B, Chapman KR, Bateman ED, Kopecky P, Paggiaro P,
Yokoyama A, Olsion J, Gray S, Holweg CT, Etiner M, Asare C, Fischer SK,
Peng K, Putnam WS, Matthews JG. Efficacy and safety of lebrikizumab in
patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate,
phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir
Med. 2016;4(10):781–96.

45. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018;
391(10122):783-800.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Jones G, Abramson MJ, Robertson CF, Dharmage SC, Brown MA,
Montgomery GW, Thompson PJ. Australian Asthma Genetics consortium:
identification of IL6R and chromosome 11q13.5 as risk loci for asthma.
Lancet. 2011;378(9795):1006–14.

28. Doganci A, Eigenbrod T, Krug N, De Sanctis GT, Hausinger M, Epenbeck VJ,
Haddad e UHA, Schmitt E, Bopp T, Kallen KJ, Herz UJ, Schmitt S, Luft C, Hecht
O, Hohlfeld JM, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Rose-John S,
Renz H, Neurath MF, Galle PR, Finotto S. The IL-6R alpha chain controls lung
CD4+CD25+ Treg development and function during allergic airway
inflammation in vivo. J Clin Invest. 2005;115(2):313–25.

29. Yokoyama A, Kohno N, Sakai K, Kondo K, Hitsawa Y, Hivada K. Circulating
levels of soluble interleukin-6 receptor in patients with bronchial asthma.
Am J Respir Crit Care Med. 1997;156(6):1688–91.

30. Hawkins GA, Robinson MB, Hastie AT, Li X, Li H, Moore WC, Howard TD,
Busse WW, Erzurum SC, Wenzel SE, Peters SP, Meyers DA, Bleeker ER.
National Heart, Lung, and Blood Institute-sponsored severe Asthma research
program (SARP): the IL6R variation asp (358) ala is a potential modifier of
lung function in subjects with asthma. J Allergy Clin Immunol. 2012;130(2):
510–5.e1.

31. Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is
coordinated by membrane-bound and soluble receptors: role in
inflammation and cancer. J Leukoc Biol. 2006;80(2):227–36.

32. Singh JA, Beg S, Lopez-Olivo MA. Tocilizumab for rheumatoid arthritis: a
Cochrane systematic review. J Rheumatol. 2011;38(1):10–20.

33. Eder K, Baffy N, Falus A, Fulop AK. The major inflammatory mediator
interleukin-6 and obesity. Inflamm Res. 2009;58(11):727–36.

34. Johnston SL, Saltgi M, Cross M, Brightling C, Chaudhuri R, Harrison T,
Higgins B, P Singh D, Thomson NC, Ashby D, Chauhan A. AZALEA trial
team: azithromycin for acute exacerbations of Asthma : the AZALEA
randomized clinical trial. JAMA Intern Med. 2016;176(11):1630–7.

35. Wark PA, Bucchieri F, Johnston SL, Gibson PG, Hamilton I, Mimica J,
Zummo G, Holgate ST, Attsa J, Thakristian A, Davies DE. IFN-gamma-
induced protein 10 is a novel biomarker of rhinovirus-induced asthma
exacerbations. J Allergy Clin Immunol. 2007;120(3):586–93.

36. Quint J, Donaldson GC, Goldring JJ, Baghi-Ravary R, Hurst JR, Wedzicha
JA. Serum IP-10 as a biomarker of human rhinovirus infection at
exacerbation of COPD. Chest. 2010;137(4):812–22.

37. Parry DE, Busse WW, Sukow KA, Dick CR, Swenson C, Gern JE. Rhinovirus-
induced PBMC responses and outcome of experimental infection in allergic
subjects. J Allergy Clin Immunol. 2000;105(4):692–8.

38. Beale J, Jayaraman A, Jackson DJ, Macintyre JD, Edwards MR, Walton RP,
Zhu J, Ching YM, Shami B, Edwards M, Westwick J, Cousins DJ, Hwang YY,
McKenzie A, Johnston SL, Bartlett NW. Rhinovirus-induced IL-25 in asthma
exacerbation drives type 2 immunity and allergic pulmonary inflammation.
Sci Transl Med. 2014;6(256):256ra134.

39. Jackson DJ, Makritiouri H, Rana BM, Shamiij BW, Trujillo-Toralbo MB, Footitt J,
Jeric M, Telfan AG, Nakovosa N, Zhu J, Aniscenko J, Gogosade L,
Bakhmillani E, Traub S, Scharwel J, Bartlett NW, Hunt D, Hunt T, Stanciu
LA, Khaitov M, Bartlett NW, Edwards MR, Kon OM, Mallia P, Papapoulos
NG, Akdis CA, Westwick J, Cousins DJ, Hwang YY, Johnston SL. IL-33
independent type 2 inflammation in rhinovirus-induced asthma
exacerbations in vivo. Am J Respir Crit Care Med. 2014;190(1):837–82.

40. Pavorid ID, Korn S, Howarth P, Bleeker ER, Buhl R, Keene ON, Ortega H,
Chanez P. Mepolizumab for severe eosinophilic asthma (DREAM) : a
multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):
651–9.

41. Bjerner L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M.
Reslizumab for inadequately controlled Asthma with elevated
blood eosinophil levels: a randomized phase 3 study. Chest. 2016;
150(4):789–98.

42. FitzGerald JM, Bleeker ER, Nair P, Korn S, Ohta K, Lommatzsch M,
Ferguson GT, Busse WW, Barker P, Sproule S, Gilmartin G, Werkstrom V,
Auvilivus N, Goldman M. CALIMA study investigators: Bentializumab, an
anti-interleukin-5 receptor alpha monoclonal antibody, as add-on
treatment for patients with severe, uncontrolled, eosinophilic asthma
(CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial.
Lancet. 2016;388(10056):2128–41.

43. Wenzel S, Castro M, Corren J, Maspero J, Wang L, Zhang B, Pirrozi G,
Sutherland ER, Evans RR, Joish VN, Eckert L, Graham NM, Stahl N,
Yancoopoulos GD, Louis-Tisserand M, Teper A. Dupilumab efficacy and safety
in adults with uncontrolled persistent asthma despite use of medium-to-
high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a
randomised double-blind placebo-controlled pivotal phase 2b dose-ranging
trial. Lancet. 2016;388(10039):31–44.