Noteworthy prognostic value of phospholipase C delta genes in early stage pancreatic ductal adenocarcinoma patients after pancreaticoduodenectomy and potential molecular mechanisms

Xin Zhou1 | Xiwen Liao1 | Xiangkun Wang1 | Ketuan Huang1 |
Chengkun Yang1 | Tingdong Yu1 | Chuangye Han1 | Guangzi Zhu1 | Hao Su1 |
Quanfa Han1 | Zijun Chen1 | Jianlv Huang1,2 | Yizhen Gong3 | Guotian Ruan3 |
Xinpeng Ye1 | Tao Peng1

1Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
2Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
3Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China

Abstract
The purpose of this investigation was to explore the prognostic value of phospholipase C delta (PLCD) genes in early stage pancreatic ductal adenocarcinoma (PDAC) and its potential molecular mechanisms. The prognostic value of PLCD genes in early stage PDAC was assessed using the Kaplan-Meier method and multivariate Cox proportional hazards regression model. Genome-wide correlation analysis was performed on PLCD3 to identify the highly correlated genes in the transcriptome. Then, PLCD3 and these correlated genes together underwent a bioinformatics analysis to elucidate the potential molecular biological functions of PLCD3 in PDAC. PLCD1 and PLCD3 are significantly overexpressed in PDAC. In PDAC patients, PLCD3 is
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the sixth leading cause of all cancer-related deaths worldwide, and is predicted to become the second leading cause by 2030.1,2 PDAC is widely known for its high malignancy and mortality, with almost equal morbidity.3 Although the prevalence of PDAC reported in 2018 was only 2.5% of all cancers, mortality due to PDAC was about 4.5% of all cancers.3 In America, PDAC-related deaths rank fourth among all cancers in both sexes, and the incidence of PDAC has been rising steadily from 42,000 in 2009 to 57,000 in 2019.1,4,5 Since no remarkably reliable biomarkers have been identified for the detection of early stage PDAC, the low sensitivity of currently used serum tumor markers, such as carbohydrate antigen and carcinoembryonic antigen, has resulted in patients with PDAC being diagnosed predominantly at the advanced stage.6 Although many clinical treatment and basic research studies have been conducted during recent years, the 5-year survival of patients with PDAC being diagnosed predominately at the advanced stage.6 Although many clinical treatment and basic research studies have been conducted during recent years, the 5-year survival of patients with PDAC is merely 9% for all stages and 3% for patients with distant metastasis, which is the lowest survival rate among all cancers.1 To date, surgery is still the only method of treatment that can have a significantly positive impact on the survival of early stage PDAC patients.6 Therefore, exploring and identifying new therapeutic targets are vital for improving the outcome of PDAC patients.

Phospholipases, which includes phospholipase C (PLC), phospholipase D (PLD), and phospholipase A (PLA), play important roles in intracellular and intercellular signaling.7 Phospholipases can be stimulated by various hormones that act on receptor tyrosine kinases or G protein-coupled receptors.8-10 Among the phospholipases, PLC is most widely known for its role in cell growth promotion in signaling channels.11 The most important and best-known cellular signaling transduction biochemical reaction mediated by PLC is the splitting of phosphatidylinositol 4,5-diphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), which triggers the release of Ca2+.12-16 Both DAG and Ca2+ are capable of activating protein kinase C (PKC).17-21 Ca2+ can in turn stimulate PLC and amplify the calcium signal.22 In addition, IP3 is known to mediate the activation of several other protein kinases to promote/inhibit transcription in different cellular signal transduction pathways.22,23 The lipid mediators produced by PLC regulate a variety of cellular processes that promote tumor development, including proliferation, migration, invasion, and vesicle trafficking.11,24 PLC is the key downstream component of the EGF receptor (EGFR) that is found to be elevated in several cancers, such as breast cancer,25,26 pancreatic cancer, 27 and ovarian cancer.28,29 The phospholipase C delta (PLCD) subfamily within the PLC family has three family members, PLCD1, PLCD3, and PLCD4.30,31 PLCD genes are generally known to be tumor suppressors. PLCD1 has been identified as a tumor-inhibiting gene at 3p22, an area that is often mutational in esophageal cancer.32 In addition, decreased PLCD1 expression is associated with a worse outcome in leukemia.32 It has also been reported that the proliferation, invasion, and migration of pancreatic cancer cells can be inhibited by PLCD1.33 TSPAN1 can promote PDAC cell migration and invasion by regulating the MMP2 gene via PLCG.34 Additionally, PLCG1 has been identified as a hub gene in PDAC through bioinformatics analysis.35 PLCD3 is involved in the proliferation, migration, and invasion of nasopharyngeal carcinoma cells.36 Knockdown of PLCD3 in colon cancer impairs the development of microvilli architecture, which promotes the genesis of colon cancer.37 However, the effect of the PLCD subfamily...
on the survival of early stage PDAC patients is still unknown. The aim of this investigation was to explore the association between PLCD genes and survival of PDAC patients.

Materials and Methods

2.1 Data mining and processing

RNA-Sequencing data of 182 patients with pancreatic cancer were extracted from the TCGA database (https://cancergenome.nih.gov/, accessed on 20 April 2017). In order to decrease the spread of the raw data and convert it into an expression profile, the raw data were processed using the DESeq package of R software (version 3.5.2; www-project.org). Corresponding clinical and survival data were acquired from the University of California Santa Cruz Xena Platform (UCSC Xena http://xena.ucsc.edu/, accessed at April 20, 2017). In order to better suit the purpose of the experiment and eliminate the influence of confounding factors, the patients were selected based on the following inclusion criteria: (a) histological validation; (b) early stage PDAC (pathological stage I or II, according to the 7th American Joint Committee on Cancer (AJCC)); (c) availability of complete survival data; and (d) having undergone pancreaticoduodenectomy. The inclusion criteria were applied to our previous research as well (citation). Patients with incomplete survival data, advanced-stage PDAC, or non-PDAC cancer patients were eliminated. The relationship between clinical variables and the outcome of the 112 early stage PDAC patients was assessed using Kaplan-Meier analysis along with a log-rank test.

2.2 Differential expression analysis of PLCD genes

Differential expression of PLCD genes between pancreatic adenocarcinoma (PAAD) tissue and normal pancreatic tissue was acquired from GEPIA (http://gepia.cancer-pku.cn/). Since PDAC accounts for 90% of PAAD, we assumed that the differentially expressed genes represent the expression state of PLCD in PDAC. In addition, we further explored the differential expression of PLCD genes in these 112 early stage PDAC patients, based on age, gender, history of alcohol consumption, tumor size, and histological classification, using the t test in SPSS 22.0 software. Due to the small sample size of patients at pathological stage I and patients with a history of chronic pancreatitis, the differential expression of PLCD genes in terms of pathological stage and chronic pancreatitis history was not analyzed among the 112 patients with early stage PDAC.

2.3 Survival analysis of the PLCD genes

Patients were divided into low expression and high expression groups, based on the median value of PLCD gene expression. Kaplan-Meier analysis with log-rank test was used to estimate the association between the expression levels of PLCD genes and overall survival (OS) of the patients with early stage PDAC. The OS-associated clinical variables included histological grade, targeted molecular therapy, radiation therapy, and residual resection. A multivariate Cox proportional hazards regression model was used to adjust the survival analysis result of the PLCD genes.

A nomogram was made using the rms package of R software (version 3.5.2; www-project.org), and was used to explore the contribution of PLCD genes and several clinical variables to the OS of early stage PDAC patients. The length of the corresponding line segments represents the contribution of each variable.

After the single gene survival analysis, a combined effect survival analysis was conducted on the OS-related gene (PLCD3) using OS-related clinical variables, which included histological grade, targeted molecular therapy, radiation therapy, and residual resection. The combined effect of the OS-related clinical variables and PLCD3 was analyzed using Kaplan-Meier analysis with log-rank test and the multivariate Cox proportional hazards regression model. The multivariate Cox proportional hazards regression model was used to exclude heterogeneity of the clinical variables. Details of the grouping method are shown in Table 2.

In addition, the prognostic value of PLCD3 among patients with specific clinical characteristics was analyzed using a stratified survival analysis. We stratified patients based on their clinical characteristics and then analyzed the prognostic significance of PLCD isoforms in each group. Details of the stratified method are shown in Table 3.

2.4 Prognostic signature construction

Based on the expression of PLCD3 and the regression coefficient derived from the result of the multivariate Cox proportional hazards regression model, a risk score was calculated for each patient, in order to construct a prognostic signature. The formula for the risk score was as follows: risk score = (expression value of gene A) × βA + (expression value of gene B) × βB + ...(expression value of gene n) × βn; β meant the regression coefficient. In addition, time-dependent receiver operating characteristic curve (ROC) curves were generated using the survivalROC package of R software to test the predictive performance of the prognostic signature.

2.5 Genome-wide correlation analysis and bioinformatic analysis of PLCD genes

A genome-wide correlation analysis was performed to identify genes with a strong correlation with OS-related
(adjust $P < .05$) PLCD3. The first 1000 among the 31 776 genes based on correlation coefficient absolute value ranking were considered to be strongly correlated with PLCD3. PLCD3 and the correlated genes were analyzed in DAVID (https://david.ncifcrf.gov/, accessed on 25 April 2019) for GO (gene ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis.42 The gene-gene relationship and protein-protein interactions were retrieved using STRING (https://string-db.org/)43-45 and GeneMANIA (http://genemania.org/), respectively,46,47 while the results were visualized in Cytoscape (version 3.6.1).

2.6 | Statistical analysis

All statistical analyses were performed using SPSS 22.0 and R 3.5.2 software. Hazard ratios (HRs) with 95% confidence intervals were used to describe the relative risk between the high and low PLCD expression groups. Kaplan-Meier analysis with log-rank test and the Cox proportional hazard regression model were used for the univariate and multivariable survival analysis. A P value of $<.05$ was considered to indicate statistical significance. Normalized P values of $<.05$ and a false discovery rate (FDR) of $<.25$ were considered to indicate statistical significance in the GSEA analysis.

3 | RESULTS

3.1 | Data mining and processing

The complete expression matrix output obtained using the R platform, after standardization using the DESep package, contained 31 777 gene expression values from 182 samples. Based on our objective and corresponding inclusion criteria, 70 samples without pathological confirmation of PDAC neoplasia or with incomplete survival data were removed. Data of the remaining 112 patients with pathologically confirmed PDAC and complete survival data were used for further analysis.

Among the clinical variables analyzed, targeted molecular therapy, radiation therapy, residual resection, and neoplasm histological grade were all found to be associated with OS in all 112 PDAC patients (Table S1).

3.2 | Differential expression analysis of PLCD genes

A boxplot retrieved from GEPIA indicated that PLCD1 and PLCD3 are significantly overexpressed in PAAD tissue, compared with normal tissue (Figure 1). PLCD3 was also found to be overexpressed in patients with a history of alcoholism ($P = .032$; Figure 2). No significant difference was

FIGURE 1 | Expression of PLCD1, PLCD3, and PLCD4 between pancreatic adenocarcinoma and normal pancreatic tissue from TCGA database. Expression of PLCD1 (A), PLCD3 (B), and PLCD4 (C)
found between PLCD gene expression and the other groups in terms of clinical variables.

3.3 Survival analysis of the PLCD genes

The results of the univariate survival analysis using the Kaplan-Meier method with the log-rank test are shown in Table 1 and Figure 3. After adjusting for OS-related clinical variables, which included targeted molecular therapy, radiation therapy, residual resection, and neoplasm histological grade, the results of Cox proportional hazard regression elucidated that **PLCD3** is significantly related to overall survival for the 112 PDAC patients ($P = .020$; adjusted $P = .016$) (Table 1, Figure 3B). High expression of **PLCD3** was found to be associated with shorter overall survival among the PDAC patients (adjusted HR = 1.988, 95% CI 1.134-3.486) (Table 1, Figure 3B).

The nomogram indicated that high **PLCD3** distinctly contributes to a worse prognosis for PDAC patients (Figure 3D).

The combined effect survival analysis of **PLCD3** and clinical variables demonstrates that the survival time of patients with high **PLCD3** expression and a high histological grade (G3+G4) is significantly shorter than that of patients with low **PLCD3** expression and a low histological grade (G1+G2) ($P = .001$; adjusted $P = .001$; adjusted HR = 3.578, 95% CI 1.660-7.712) (Table 2, Figure 4). The survival time of patients with high **PLCD3** expression and no targeted molecular therapy was found to be significantly shorter than patients with low **PLCD3** expression and targeted molecular therapy ($P < .001$; adjusted $P < .001$; adjusted HR = 12.484, 95% CI 5.089-30.621) (Table 2; Figure 4). Patients with high **PLCD3** expression and no radiation therapy were found to have significantly shorter survival time than patients with low **PLCD3** expression and radiation therapy, and the difference was statistically significant ($P = .002$; adjusted $P = .039$; adjusted HR = 2.778, 95% CI 1.052-7.332) (Table 2; Figure 4), while high **PLCD3** expression and nonresidual resection resulted in shorter survival time than low **PLCD3** expression and residual resection ($P = .001$; adjusted $P = .002$; adjusted HR = 3.757; 95% CI 1.630-8.660) (Table 2; Figure 4).

In the stratified survival analysis, **PLCD3** expression was found to be associated with the OS of PDAC patients who...
TABLE 1 Survival analysis of PLCD genes for OS of patients in early stage PDAC

Gene expression	Patients (n = 112)	OS	No. of event	MST (days)	Crude HR (95% CI)	Crude Log-rank P	Adjusted HR (95% CI)	Adjusted P
PLCD1 Low	56		38	485	1	.359	1	1
High	56		31	607	0.799 (0.495-1.290)	.359	0.901 (0.527-1.540)	.703
PLCD3 Low	56		30	607	1	.359	1	1
High	56		39	470	1.741 (1.097-2.935)	.020	1.988 (1.134-3.486)	.016
PLCD4 Low	56		37	498	1	.359	1	1
High	56		32	518	0.806 (0.498-1.306)	.382	0.745 (0.432-1.285)	.290

Abbreviations: CI, confidence interval; HR, hazard ratio; MST, median survival time; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; PLCD, phospholipase C delta.

aAdjusted for clinical variables neoplasm histologic grade, targeted molecular therapy, radiation therapy, and residual resection.

FIGURE 3 Kaplan-Meier survival curves for PLCD genes in early stage pancreatic ductal adenocarcinoma from TCGA database (A-C) and nomogram for predicting the 0.5-, 1-, 2-, and 3-y event (death) of patients in early stage pancreatic ductal adenocarcinoma (D)
were >60 years of age, female, had a history of alcoholism, a low histological grade, had undergone radiation therapy, or R0 residual resection (Table 3).

3.4 | Prognostic signature

In order to intuitively demonstrate the relationship between PLCD3 expression and prognostic risk, and evaluate its predictive effectiveness, a prognostic signature was constructed. It included a PLCD3 expression scatter plot, survival scatter plot, PLCD3 expression heat map, survival curve for high- and low-risk groups, and time-dependent ROC curve (Figure 5). In this investigation, the specific formula used to calculate the risk score was as follows: risk score = (expression of MCM2) × 1.741, where 1.741 is the hazard ratio of the high PLCD3 expression group (Table 1).

The area under the curve (AUC) of the time-dependent ROC curve was 0.625, 0.630, and 0.612 for one-, two- and three-years survival, respectively (Figure 5C).

3.5 | Genome-wide correlation analysis and bioinformatics analysis of PLCD3

The correlation coefficients between the PLCD gene and strongly correlated genes (the first thousand) were all found to be greater than 0.4, with a P value of <.05 (Figure 6A). KEGG pathway analysis and GO annotation of these 1000 genes and PLCD3 indicates that PLCD3 is associated with angiogenesis, intracellular signal transduction, regulation of cell proliferation, lipid metabolic process, lipid catabolic process, plasma membrane, intracellular, cytosol, cleavage furrow, and signal transducer activity (Table S2; Figure 6B). The gene-gene relationship network produced using GeneMANIA revealed that PLCD genes are linked to several genes of the diacylglycerol kinase (DGK) gene family, including DGKA, DGKB, DGKD, DGKE, DGKG, DGKH, DGKI, and DGKZ (Figure 7A). The protein-protein interaction network indicates that PLCD genes are mainly co-expressed with several phosphatidylinositol-5-phosphate 4-kinase (PIP4K)

Table 2

Joint survival analysis of PLCD3 and clinical variables for OS of patients in early stage PDAC

Group	PLCD3	Variables	Events/total (n = 112)	MST (days)	Crude HR (95% CI)	Crude P-value	Adjusted HR (95% CI)	Adjusted P-value
Neoplasm histologic grade								
1 Low G1+G2	21/42	614	1	1.933 (0.866-4.316)	.108	3.717 (1.504-9.186)	.004	
2 Low G3+G4	9/14	517	1.780 (0.966-3.280)	.064	2.937 (1.450-5.948)	.003		
3 High G1+G2	24/38	518	3.219 (1.607-4.447)	.001	3.578 (1.660-7.712)	.001		
4 High G3+G4	15/18	313						

Targeted molecular therapy

A Low YES | 22/40 | 652 | 1 | 3.825 (1.549-9.487) | .004 | 4.844 (1.774-13.227) | .002 |
B Low NO | 7/11 | 467 | 1 | 2.102 (0.831-5.316) | .117 | 1.646 (0.597-4.538) | .336 |
C High YES | 19/33 | 627 | 1.528 (0.792-2.949) | .078 | 3.135 (1.045-9.4.4) | .041 |
D High NO | 17/18 | 153 | 13.968 (6.445-30.274) | <.001 | 12.484 (5.089-30.621) | <.001 |

Radiation therapy

a Low YES | 6/17 | 1059 | 1 | 2.102 (0.831-5.316) | .117 | 1.646 (0.597-4.538) | .336 |
b Low NO | 21/34 | 596 | 2.553 (0.902-7.228) | .078 | 3.135 (1.045-9.4.4) | .041 |
c High YES | 9/13 | 627 | 1.658 (0.855-3.217) | .135 | 2.214 (1.039-4.717) | .040 |
d High NO | 27/36 | 366 | 4.175 (1.707-10.210) | .002 | 2.778 (1.052-7.332) | .039 |

Residual resection

α Low R0 | 18/35 | 614 | 1 | 1.849 (0.858-3.984) | .117 | 2.152 (0.921-5.029) | .077 |
β Low R1+RX | 12/20 | 592 | 1.658 (0.855-3.217) | .135 | 2.214 (1.039-4.717) | .040 |
γ High R0 | 21/31 | 511 | 3.565 (1.732-7.338) | .001 | 3.757 (1.630-8.660) | .002 |
δ High R1+RX | 17/24 | 308 | 4.175 (1.707-10.210) | .002 | 2.778 (1.052-7.332) | .039 |

Abbreviations: CI, confidence interval; HR, hazard ratio; MST, median survival time; PDAC, pancreatic ductal adenocarcinoma; PLCD, phospholipase C delta; OS, overall survival.

a Targeted molecular therapy information is unavailable in 10 patients.
b Radiation therapy is unavailable in 12 patients.
c Residual resection is unavailable in 10 patients.
d Adjusted for clinical variables neoplasm histologic grade, targeted molecular therapy, radiation therapy, and residual resection.
subfamily and phosphatidylinositol-4-phosphate 5-kinase (PIP5K) subfamily members, such as PIP4K2A, PIP4K2B, PIP5K1A, PIP5K1B, PIP5K1C, and PIP5KL1 (Figure 7B).

4 | DISCUSSION

Although the PLCD subfamily plays an irreplaceable role in cell signal transduction, only few studies on PLCD isoforms in all types of cancer have been conducted during recent years, let alone pancreatic cancer. In this study, we found that patients with high expression of PLCD3 have shorter overall survival and higher levels of PLCD3 expression in tumor tissue, which indicates that PLCD3 plays a role as an oncogene in PDAC.

It has been reported that PLCD1 restrains the proliferation, invasion, and migration of pancreatic cancer cells CAPAN-1 and BXPC-3, and induces apoptosis through cell cycle inhibition at the G0/G1 phase. The prognostic significance of PLCD1 in PDAC was not revealed through this investigation, but its role as a tumor suppressor gene in breast cancer, chronic myeloid leukemia, and colorectal cancer has been widely accepted.48-57

Although only an isoform, existing studies show that PLCD3 functions as an oncogene. Silencing of PLCD3 inhibits the proliferation, migration, and invasion potency of nasopharyngeal carcinoma 5–8F cells. Similarly, PLCD3 knockdown significantly arrests the proliferation of breast cancer mda-mb-231 cells.58 In this investigation, the high PLCD3 expression group tended to have shorter overall survival. Taken together, it can be concluded that PLCD3 plays a role as an oncogene in nasopharyngeal cancer, breast cancer, and pancreatic cancer.

The association between PLCD3 expression and the overall survival of early stage PDAC patients and its corresponding mechanisms observed in this study further suggest that PLCD3 may be a new target for the treatment of pancreatic cancer, and even other types of cancers, given the fact that cancers show genetic similarity during tumorigenesis.59

Apart from the survival analysis, we also analyzed the differential expression of PLCD. The GEPIA analysis demonstrated that PLCD 1 and PLCD3 are highly expressed in PAAD. Though not exactly the same, PDAC accounts for more than 90% of the histological type of PAAD.6 Hence, we speculated that the PAAD data could be used to analyze the expression tendency of PDAC. Moreover, we also discovered that PLCD3 is highly expressed in PDAC patients with a history of alcoholism. This indicates that drinking alcohol may increase PLCD3 expression levels in PDAC, which in turn increases the risk of death from PDAC. This finding corresponds with that of previous reports, which indicate that the expression of PLCD3 increases via ethanol-induced G-protein activation.60-62

The combined effect of clinical variables and the expression of PLCD3 indicate that patients with two risk factors have a higher hazard ratio than those with only one risk factor. In particular, patients with the combination of high PLCD expression and no targeted molecular therapy have a noteworthy high hazard ratio (HR = 12.484, 95% CI 5.089-30.621). The stratified analysis confirmed that the prognostic value is effective in specific PDAC groups, such as those who are over 60 years old, female, have a history of alcohol use, a low histological grade, have undergone radiation therapy, or R0 residual resection.

FIGURE 4 Kaplan-Meier survival curves for joint effect of PLCD3 and clinical variables in early stage pancreatic ductal adenocarcinoma from TCGA database. Kaplan-Meier survival curves of PLCD3 and histologic grade (A); Kaplan-Meier survival curves of PLCD3 and targeted molecular therapy (B); Kaplan-Meier survival curves of PLCD3 and radiation therapy (C); Kaplan-Meier survival curve of PLCD3 and residual resection (D)
Variables	PLCD1		PLCD3		PLCD4							
	Low	High	Adjusted HR (95% CI)	Adjusted P	Low	High	Adjusted HR (95% CI)	Adjusted P	Low	High	Adjusted HR (95% CI)	Adjusted P
Age (years)												
≤60	19	19	4.193 (0.939-18.736)	.061	18	20	1.189 (0.372-3.797)	.770	19	19	0.387 (0.108-1.391)	.146
>60	37	37	0.573 (0.300-1.095)	.092	38	38	2.231 (1.169-4.258)	.015	37	37	0.839 (0.446-1.580)	.587
Gender												
Female	29	24	0.916 (0.418-2.009)	.826	26	27	2.527 (1.045-6.108)	.040	24	29	0.979 (0.440-2.179)	.959
Male	27	32	1.248 (0.522-2.987)	.618	30	29	1.541 (0.665-3.571)	.313	32	27	0.677 (0.294-1.555)	.358
Alcohol history												
No	22	13	0.676 (0.271-1.691)	.403	27	16	2.406 (0.768-7.536)	.132	20	23	0.820 (0.312-2.157)	.687
Yes	28	33	0.897 (0.410-1.963)	.785	24	37	2.570 (1.057-6.249)	.037	30	31	1.252 (0.578-2.711)	.569
Tumor size												
<=4	40	40	0.783 (0.395-1.554)	.485	39	41	2.018 (0.944-4.098)	.052	40	40	0.699 (0.364-1.345)	.284
>4	15	16	0.757 (0.207-2.768)	.674	17	14	1.466 (0.467-4.602)	.512	16	15	1.020 (0.369-2.822)	.970
Neoplasm histologic grade												
G1 + G2	39	41	0.633 (0.327-1.227)	.176	42	38	2.993 (1.448-6.188)	.003	35	45	0.988 (0.507-1.926)	.972
G3 + G4	17	15	2.150 (0.758-6.092)	.150	14	18	0.892 (0.275-2.888)	.848	21	11	0.335 (0.105-1.072)	.065
Targeted molecular therapy												
No	16	13	0.847 (0.349-2.056)	.714	11	18	3.648 (1.164-11.437)	.260	14	15	0.388 (0.148-1.020)	.055
Yes	35	38	1.205 (0.598-2.429)	.602	40	33	1.745 (0.851-3.574)	.128	39	34	1.087 (0.553-2.136)	.809
Radiation therapy												
No	33	37	0.834 (0.451-1.542)	.563	34	36	1.618 (0.842-3.111)	.149	38	32	0.711 (0.376-1.343)	.293
Yes	17	13	0.941 (0.269-3.297)	.925	17	13	4.227 (1.130-15.814)	.032	14	16	1.108 (0.363-3.388)	.857
Residual resection												
R0	31	35	1.171 (0.587-2.333)	.654	35	31	2.487 (1.138-5.435)	.022	31	35	0.529 (0.245-1.140)	.104
R1 + R2	24	20	1.197 (0.516-2.778)	.675	20	24	1.716 (0.701-4.201)	.237	24	20	1.197 (0.516-2.778)	.675

Abbreviations: CI, confidence interval; HR, hazard ratio; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; PLCD, phospholipase C delta.

*Alcohol history is unavailable in 8 patients.

*Tumor size is unavailable in 2 patients.

*Targeted molecular therapy information is unavailable in 10 patients.

*Radiation therapy is unavailable in 12 patients.

*Residual resection is unavailable in 10 patients.
Annotation of PLCD3 indicates its involvement in angiogenesis, intracellular signal transduction, regulation of cell proliferation, lipid metabolism process, lipid catabolism process, plasma membrane, intracellular, cytosol, cleavage furrow, and signal transducer activity. Among these, angiogenesis, intracellular signal transduction, and regulation of cell proliferation are highlighted with the highest involvement.

FIGURE 5 Prognostic model in early stage pancreatic ductal adenocarcinoma in terms of PLCD3 expression. A, From up to down are risk score plot, survival status scatter plot, and heat map of the expression of PLCD3 for low- and high-risk groups. B, Kaplan-Meier curves for low- and high-risk groups. C, ROC curve for predicting 1-, 2-, and 3-year survival in early stage pancreatic ductal adenocarcinoma patients by the risk score.

FIGURE 6 Correlation coefficient distribution of the 1000 most high correlated genes to PLCD3 (A) and functional annotation result of PLCD3 by KEGG pathway and GO term analysis (B).
Cell proliferation may be the primary biological functions of PLCD3 in PDAC, since activation of PLCD3 can induce angiogenesis in human endothelial cells.63

However, our study has some shortcomings. First, the sample size used for the survival analysis was not large enough, which led to many false-negative results regarding PLCD1 and PLCD4, especially since PLCD1 has been shown to inhibit pancreatic cancer cell growth in other studies. Meanwhile, certain clinical data and survival data values were not available, which may affect the results of the survival analysis. Second, the data used in this study were acquired from a single-center study, and multicenter data would make the results more convincing. Third, because no transcriptome data on normal pancreatic tissues were available in the dataset acquired from TCGA, we could only use results from GEPIA to estimate the expression trend of the PLCD gene in PDAC and normal pancreatic tissues. Fourth, selection bias and recall bias may have been easily generated due to the retrospective nature of this study.

Although there are limitations in our investigation, as far as we know, this is the first study to reveal the prognostic value of PLCD3 in PDAC. Our investigation also suggests that overexpression of PLCD3 is associated with a history of alcoholism, which is partially explained by the role of alcohol in pancreatic cancer. The discovery of genes highly correlated with PLCD3 opens the way forward for follow-up research on PLCD3 in PDAC, indicating also that the study of co-expressed genes can aid in the discovery of the interaction between genes and explain the mechanism of PLCD in PDAC.

CONCLUSION

In our investigation, PLCD1 and PLCD3 were found to be highly expressed in PAAD tumor tissue, compared with normal tissue. We also discovered that PDAC patients with a history of alcoholism had higher levels of PLCD3 than those without a history of alcoholism. Based on the results of the survival analysis, PLCD3 may be a potential prognostic biomarker for early stage PDAC. However, the stratification analysis found that PLCD3 is associated with OS only in early stage PDAC patients who are >60 years of age, female, have a history of alcoholism, a low histological grade, have undergone radiation therapy, or R0 residual resection.

ACKNOWLEDGMENTS

The authors thank the contributors of TCGA database (https://cancer.gov) for sharing RNA-Sequencing data of 182 patients with pancreatic cancer on open access and University of California Santa Cruz Xena (UCSC Xena http://xena.ucsc.edu/) for sharing corresponding clinical and survival data of these patients.

CONFLICT OF INTERESTS

The authors have declared that there are no competing interests.
AUTHOR CONTRIBUTIONS

Xin Zhou and Tao Peng constructed the study design; Xiwen Liao, Xiangkun Wang, and Ketuan Huang made acquisition of data; Chengkun Yang, Tingdong Yu, Chuangye Han, Guangzhi Zhu, Hao Su, Quanfa Han, Zijun Chen, Jianlv Huang, Yizhen Gong, Guotian Ruan, and Xinping Ye made acquisition of data and made data analysis. Xin Zhou wrote the manuscript, and Tao Peng guided and supervised the manuscript. All authors read and approved the final manuscript.

ORCID

Xin Zhou https://orcid.org/0000-0003-3152-5048
Xiwen Liao https://orcid.org/0000-0002-1724-1463
Tao Peng https://orcid.org/0000-0001-6133-7078

DATA AVAILABILITY STATEMENT

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.
2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913-2921.
3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
4. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225-249.
5. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9-29.
6. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. J Clin Gastroenterol. 2015;49(5):426-438.
7. Dennis EA. Inositol trisphosphate and calcium signalling. J Biol Chem. 2000;275(28):21391-21400.
8. Kishimoto A, Takai Y, Mori T, Kikkawa U, Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem. 1980;255(6):2273-2276.
9. Berridge MJ, Irvine RF. Inositol trisphosphate and calcium signalling mechanisms. Biochem Society Trans. 2000;28(Pt 2):239-245.
10. Berridge MJ. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984;220(2):345-360.
11. Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984;312(5992):315-321.
12. Wilson DB, Bross TE, Hofmann SL, Majorowicz JW. Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes. J Biol Chem. 1984;259(19):11178-11172.
13. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature. 1989;341(6239):197-205.
14. Rebecchi MJ, Pentylana SL. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000;80(4):1291-1335.
15. Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281-312.
16. Gresset A, Sondek J, Harden TK. The phospholipase C isozymes and their regulation. Sub-Cellular Biochem. 2012;58:61-94.
17. Rommerswinkel N, Keil S, Adawy A, et al. beta-Hereregulin impairs EGFR induced PLC-gamma1 signalling in human breast cancer cells. Cell Signal. 2018;52:23-34.
18. Yang Y, Li J, Song Qf, et al. Reduction in milk fat globule-EGF factor 8 inhibits triple-negative breast cancer cell viability and migration. Oncol Lett. 2019;17(3):3457-3465.
19. Zhao Q, Chen S, Zhu Z, et al. mir-R21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2. Cell Death Dis. 2018;9(12):1157.
20. Shen Y, Ruan L, Lian C, Li R, Tu Z, Liu H. Discovery of HB-EGF binding peptides and their functional characterization in ovarian cancer cell lines. Cell Death Discov. 2019;5:82.
21. Zeng X-Y, Xie H, Yuan J, et al. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing IncRNA LIMT expression. Cancer Biol Ther. 2019;1-11.
22. Fukushima K. Structure, regulation, and function of phospholipase C isozymes. J Biochem. 2002;131(3):293-299.
23. Li X, Cho H, Nakamura Y, et al. Phospholipase C delta-type consists of three isozymes: bovine PLCdelta1a is a homologue of human/mouse PLCdelta4. Biochem Biophys Res Commun. 2004;320(2):537-543.
24. Fu L, Qin X, Wang L, et al. Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res. 2007;67(22):10702-10726.
25. Hu D, Jiang Z. Phospholipase C delta (PLCdelta) inhibits the proliferation, invasion and migration of CAPAN-1 and BXPC-3 pancreatic cancer cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2016;32(6):739-745.
34. Zhang X, Shi G, Gao F, Liu P, Wang H, Tan X. TSPAN1 upregulates MMP2 to promote pancreatic cancer cell migration and invasion via PLCγ. *Oncol Rep*. 2019;41(4):2117-2125.

35. Hu B, Shi C, Jiang HX, Qin SY. Identification of novel therapeutic target genes and pathway in pancreatic cancer by integrative analysis. *Medicine*. 2017;96(42):e8261.

36. Liu W, Liu X, Wang L, et al. PLCD3, a flotillin-2-interacting protein, is involved in proliferation, migration and invasion of nasopharyngeal carcinoma cells. *Oncol Rep*. 2018;39(1):45-52.

37. Sakurai K, Hirata M, Yamaguchi H, Nakamura Y, Fukami K. Phospholipase Cδ3 is a novel binding partner of myosin VI and functions as anchoring of myosin VI on plasma membrane. *Adv Enzyme Regul*. 2011;51(1):171-181.

38. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. *Nucleic Acids Res*. 2019;47(W1):W556-W560.

39. Chen R-C, Wang X-D, Dong J-Z, et al. A MELD-based nomogram for predicting 3-month mortality of patients with acute-on-chronic hepatitis B liver failure. *Clinica Chimica Acta Int J Clin Chem*. 2017;468:195-200.

40. Liao X, Han C, Wang X, et al. Prognostic value of minichromosome maintenance mRNA expression in early-stage pancreatic ductal adenocarcinoma patients after pancreaticoduodenectomy. *Cancer Manag Res*. 2018;10:3255-3271.

41. Liao X, Liu X, Yang C, et al. Distinct diagnostic and prognostic values of minichromosome maintenance gene expression in patients with hepatocellular carcinoma. *J Cancer*. 2019;9(13):2357-2373.

42. Kuang D, Dong J-Z, et al. A MELD-based nomogram for predicting 3-month mortality of patients with acute-on-chronic hepatitis B liver failure. *Clinica Chimica Acta Int J Clin Chem*. 2017;468:195-200.

43. Sakurai K, Hirata M, Yamaguchi H, Nakamura Y, Fukami K. Phospholipase Cδ3 is a novel binding partner of myosin VI and functions as anchoring of myosin VI on plasma membrane. *Adv Enzyme Regul*. 2011;51(1):171-181.

44. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. *Nucleic Acids Res*. 2019;47(W1):W556-W560.

45. Chen R-C, Wang X-D, Dong J-Z, et al. A MELD-based nomogram for predicting 3-month mortality of patients with acute-on-chronic hepatitis B liver failure. *Clinica Chimica Acta Int J Clin Chem*. 2017;468:195-200.

46. Liao X, Han C, Wang X, et al. Prognostic value of minichromosome maintenance mRNA expression in early-stage pancreatic ductal adenocarcinoma patients after pancreaticoduodenectomy. *Cancer Manag Res*. 2018;10:3255-3271.

47. Liao X, Liu X, Yang C, et al. Distinct diagnostic and prognostic values of minichromosome maintenance gene expression in patients with hepatocellular carcinoma. *J Cancer*. 2019;9(13):2357-2373.

48. Shao Q, Luo X, Yang D, et al. Phospholipase Cδ1 suppresses cell migration and invasion of breast cancer cells by modulating KIF3A-mediated ERK1/2/beta-catenin/MMP7 signalling. *Oncotarget*. 2017;8(17):29056-29066.

49. Shao Q, Luo X, Yang D, et al. Phospholipase Cδ1 suppresses cell migration and invasion of breast cancer cells by modulating KIF3A-mediated ERK1/2/beta-catenin/MMP7 signalling. *Oncotarget*. 2017;8(17):29056-29066.

50. Shao Q, Luo X, Yang D, et al. Phospholipase Cδ1 suppresses cell migration and invasion of breast cancer cells by modulating KIF3A-mediated ERK1/2/beta-catenin/MMP7 signalling. *Oncotarget*. 2017;8(17):29056-29066.

51. Xiang T, Li L, Fan Y, et al. PLCD1 is a functional tumor suppressor inducing G(2)/M arrest and frequently methylated in breast cancer. *Cancer Biol Ther*. 2010;10(5):520-527.

52. Hu X-T, Zhang F-B, Fan Y-C, et al. Phospholipase C delta 1 is a novel 3p22.3 tumor suppressor involved in cytoskeleton organization, with its epigenetic silencing correlated with high-stage gastric cancer. *Oncogene*. 2009;28(26):2466-2475.

53. Song JJ, Liu Q, Li Y, et al. Epigenetic inactivation of PLCD1 in chronic myeloid leukemia. *Int J Mol Med*. 2012;30(1):179-184.

54. Xiang Q, He X, Mu J, et al. The phosphoinositide hydrolase phospholipase C delta1 inhibits epithelial-mesenchymal transition and is silenced in colorectal cancer. *J Cell Physiol*. 2019;234(8):13906-13916.

55. Satow R, Hirano T, Batori R, Nakamura T, Murayama Y, Fukami K. Phospholipase Cδ1 induces E-cadherin expression and suppresses malignancy in colorectal cancer cells. *Proc Natl Acad Sci USA*. 2014;111(37):13505-13510.

56. Fu L, Qin YR, Xie D, et al. Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. *Can Res*. 2007;67(22):10720-10726.

57. Lien YC, Noel T, Liu H, Stromberg AJ, Chen KC, St Clair DK. Phospholipase C-delta1 is a critical target for tumor necrosis factor receptor-mediated protection against adriamycin-induced cardiac injury. *Can Res*. 2006;66(8):4329-4338.

58. Rebbeck MJ, Raghubir A, Scarlata S, Harsteinse MJ, Brown T, Stallings JD. Expression and function of phospholipase C in breast cancer. *Adv Enzyme Regul*. 2009;49(1):59-73.

59. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell*. 2011;144(5):646-674.

60. Rubin R, Hoek JB. Alcohol-induced stimulation of phospholipase C in human platelets requires G-protein activation. *Biochem J*. 1988;254(1):147-153.

61. Hoek JB, Thomas AP, Rubin R, Rubin E. Ethanol-induced mobilization of calcium by activation of phosphoinositide-specific phospholipase C in intact hepatocytes. *J Biol Chem*. 1987;262(2):682-691.

62. Hoek JB, Rubin R, Thomas AP, Ethanol-induced phospholipase C activation is inhibited by phorbol esters in isolated hepatocytes. *Biochem J*. 1988;251(3):865-871.

63. Kim Y-M, Kim Y-M, Lee YM, et al. TNF-related activation-inducing cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. *J Biol Chem*. 2002;277(9):6799-6805.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Zhou X, Liao X, Wang X, et al. Noteworthy prognostic value of phospholipase C delta genes in early stage pancreatic ductal adenocarcinoma patients after pancreaticoduodenectomy and potential molecular mechanisms. *Cancer Med*. 2020;9:859-871. https://doi.org/10.1002/cam4.2699