Ciguatoxin Is a Novel Type of Na+ Channel Toxin*

Jean-Noël Bidard†, Henk P. M. Vijverberg‡, Christian Frelin‡, Eliane Chongue‡, Anne-Marie Legrand‡, Raymond Bagnis‡, and Michel Lazdunski**

From the ‡Centre de Biochimie du Centre National de la Recherche Scientifique. Faculté des Sciences, Parc Valrose, 06034-Nice Cedex, France, the ‡Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80176, 3508TD, Utrecht, The Netherlands, and the ‡Institut Malardé, Papeete, Tahiti, Polynésie Française

Purified ciguatoxin at 0.1 to 10 ng/ml inhibits the net accumulation of neurotransmitters (γ-aminobutyric acid and dopamine) by brain synaptosomes. This action is due to a stimulation of neurotransmitter release. The half-maximum effect of the toxin is observed at 0.62 ng/ml. The effect of ciguatoxin is completely abolished by tetrodotoxin (K0.5 = 4 nM). Electrophysiological studies on neuroblastoma cells indicate that ciguatoxin induces a membrane depolarization which is prevented by tetrodotoxin and which is due to an action that increases Na+ permeability. Under appropriate conditions ciguatoxin creates spontaneous oscillations in the membrane polarization level and repeated action potentials. Ciguatoxin stimulates 22Na+ entry through the voltage-dependent Na+ channels of neuroblastoma cells and rat skeletal myoblasts when it is used in synergy with veratridine, batrachotoxin, pyrethrins, sea anemone, or scorpion toxins. The half-maximum effect of ciguatoxin on 22Na+ flux in the presence of veratridine occurs at a concentration of 0.5 ng/ml. Stimulation of 22Na+ flux by ciguatoxin is abolished by tetrodotoxin. These results taken together indicate that ciguatoxin belongs to a new class of toxins acting on Na+ channels.

Ciguatera, a specific endemic affliction of many tropical islands, is due to alimentary consumption of fresh reef fish (1). The origin of ciguatera poisoning is a toxin named CTX1 (2) which is synthesized by a dinoflagellate (3). The structure of this toxin which is among the most potent marine toxins (1) is still unknown, however, it has been reported that it is an oxygenated polyether compound (4).

This paper analyzes the effects of CTX on neurotransmitter accumulation and release by rat brain synaptosomes, on 22Na+ flux in nerve and muscle cells, and on the electrical properties of the neuroblastoma membrane.

EXPERIMENTAL PROCEDURES

Materials—[3H]GABA, [3H]dopamine, and Biofluor were obtained from New England Nuclear. 23NaCl was from the Commissariat à l'Energie Atomique (Saclay, France). Na valproate (Depakine) was obtained from Laboraz Laboratories (France). Pargyline, ouabain, veratridine, and other chemicals were from Sigma. A53 and AS5 were obtained according to Schweitz et al. (5). Aeg was obtained according to Miranda et al. (6). TTX was from Sankyo Chemical Company (Tokyo, Japan). Deltamethrine was from Procida (Marseille, France). Batrachotoxin was a generous gift of Dr. J. Daly (National Institutes of Health, Bethesda, MD).

Preparation of CTX—CTX was extracted from muscle of Gymnothorax javanicus and then purified partially using the procedure described by Chanteau et al. (7). After the last step, the toxic fraction has a LD50 of 30 μg/kg (intraperitoneally) in mice. This fraction was further purified using high performance liquid chromatography (Waters Associates, Inc.) on a Lichrosorb RP-18 column (Merck) using CH3CN/H2O (65:35, by volume) as eluting solvent. Fig. 1 shows this last step of the purification of the toxin. The position of the active fraction in the eluate was determined by its lethality to mice (8) and by its effects on synaptosomal neurotransmitter transport (see later). The active fraction of CTX from the high performance liquid chromatography step was stored in lyophilized form or in methanol under nitrogen at -30 °C. Under these conditions activity is stable for at least 1 month. The quality of the purification procedure is shown by the following facts: (i) the peak of activity emerges in parallel with a peak of absorption at 208 nm (Fig. 1) and (ii) after removing the active fraction obtained in Fig. 1 on the same high performance liquid chromatography column with a linear 40-80% methanol gradient for 40 min at a flow rate of 1 ml/min1, only one peak of activity emerges. Intraperitoneal (100 μl) and intracisternal (5 μl) injections into the fourth ventricle (9) were made into 20-g female Swiss mice. Intraperitoneal injection of purified CTX was lethal in 50% of the mice at a dose of 0.5–1 μg/kg. This is the most active preparation of CTX so far obtained. CTX is much more active when administrated by intracisternal injection since as little as 20 ng/kg induced complete paralysis of hind limbs, convulsions, and death of mice in times ranging from 10 to 60 min. The symptoms (8) induced in mice were the same at all stages of purification.

Accumulation and Release of Neurotransmitter by Synaptosomes—Synaptosomes were prepared from decerebellated brains of Sprague-Dawley rats (200 g) using standard techniques (10). [3H]GABA and [3H]dopamine accumulation measurements were carried out as previously described (10, 11). Rates of [H]GABA release from preloaded synaptosomes were measured as described by Abita et al. (10).

(Na+),K+-ATPase Activity Measurements—(Na+,K+)-ATPase activity was measured as previously described (12).

Cell Culture—N1E 115 neuroblastoma cells were grown as previously described (13) using 24-well Costar tissue culture clusters. Cells were differentiated in the presence of medium containing 1% fetal calf serum and 1.5% dimethyl sulfoxide. Primary cultures of rat skeletal muscle cells were used at the myoblast stage after 4 days in culture (14).

Electrophysiological Measurements—Culture dishes containing differentiated neuroblastoma cells (N1E 115) (13) were mounted on a warmed stage (30 °C) of an inverted phase microscope. Immediately prior to the measurements, the culture medium was replaced by an external solution containing 115 mM NaCl, 5.4 mM KCl, 0.4 mM MgCl2, 1.8 mM CaCl2, 5 mM glucose, buffered by 25 mM HEPES/
Ciguatoxin Is a Novel Type of Na+ Channel Toxin

RESULTS AND DISCUSSION

Fig. 2 (inset) shows that CTX drastically decreases the net uptake of [3H]GABA and of [3H]dopamine by brain synaptosomes. The dose-response relation (Fig. 2) for the CTX inhibition of neurotransmitter accumulation indicates a Hill coefficient of 1.0 and a half-maximum effect of CTX at $K_{0.5} = 0.87 \text{ ng/ml}$.

TTX which by itself has only small effects on GABA or dopamine accumulation prevents CTX effects on neurotransmitter uptake (Fig. 3, inset). TTX inhibition of CTX action (Fig. 3) reveals a $K_{0.5}$ of 4 nm. This value corresponds closely with the dissociation constant of TTX ($K_D = 5 \text{ nm}$) for the Na+ channel in synaptosomes (10, 19).

Net uptake of neurotransmitters by synaptosomes is controlled both by the rates of influx and release. The decrease of the net uptake of neurotransmitters in the presence of CTX is mainly due to an increased rate of neurotransmitter release (Fig. 4, inset). The concentration dependence of CTX-stimulated release of neurotransmitters (Fig. 4) yields a value of $K_{0.5} = 0.62 \text{ ng/ml}$, a value very similar to that found in Fig. 2. Accelerated neurotransmitter release due to CTX is also inhibited by 1 μM TTX (Fig. 4, inset).

The inhibition of net neurotransmitter accumulation and the stimulation of neurotransmitter release by CTX, as well as the inhibition of CTX effects by TTX, are similar to those previously observed with veratridine or with scorpion and sea anemone toxins (10). These toxins are known either to produce permanent activation of the Na+ channel (veratridine) or to prolong drastically the lifetime of the open form of the channel (scorpion and sea anemone toxins) (19–21). The simplest explanation for the effects of CTX on net neurotransmitter accumulation and release is that the toxin activates voltage-dependent Na+ channels producing a depolarization.

Fig. 1. Final purification step of CTX by HPLC. Partially purified CTX (3.4 μg) was solubilized in 70 μl of CH$_3$CN/H$_2$O (65:35, by volume) mixture and loaded on a Lichrosorb RP-18 column (7 μm, RT 20–4) with a Lichrosorb RP-18 precolumn (45 μm, 0.4 x 1 cm) equilibrated with the solvent described above. The flow rate was 1 ml/min. The column was first eluted with the equilibration solvent, then at 18 min (arrow) with a linear gradient from 65% to 95% CH$_3$CN for 10 min, and then the elution was continued with 95% of CH$_3$CN.

Fig. 2. The influence of CTX on net accumulation levels of [3H]GABA and [3H]dopamine by rat brain synaptosomes. Dose-response curve for CTX inhibition of the net uptake of [3H]GABA (●) and of [3H]dopamine (○) by synaptosomes. Time of uptake was 15 min. CTX-insensitive rates of [3H]GABA and [3H]dopamine uptake were 3.7 nmol/mg of protein and 0.9 pmol/mg of protein, respectively. These values were subtracted from the total rate of uptake. Inset, the time course of [3H]GABA (□, □) and [3H]dopamine (□, ●) uptake by synaptosomes. Synaptosomes (140–300 pg/ml) were equilibrated in the presence (●, ○) or in the absence (□, □) of 10 ng/ml of CTX at 22°C for 30 min (GABA uptake experiments) or at 30°C for 15 min (dopamine uptake experiments). Uptake experiments were then initiated by the addition of labeled neurotransmitter and carried out as previously described (10, 11). Maximum uptake levels of [3H]GABA and [3H]dopamine were 7.0 nmol/mg of protein and 8.4 pmol/mg of protein, respectively.

Fig. 3. Antagonism by TTX of CTX inhibition of [3H]GABA accumulation by rat brain synaptosomes. Dose-response curve for TTX reversal of the CTX (10 ng/ml)-induced inhibition of the net [3H]GABA uptake, measured after 15 min of incubation. 0 and 100% [3H]GABA uptakes were 3.8 and 7.0 nmol/mg of protein, respectively. Inset, time course of [3H]GABA uptake in the absence of toxin (○), in the presence of 10 ng/ml of CTX (□), in the presence of 1 μM TTX (△), and in the presence of 10 ng/ml of CTX and 1 μM TTX (●).
The rate of release measured in the presence of a given concentration of GABA release from synaptosomes. Time of release was 20 min. The rate of CTX-sensitive [3H]GABA release was the difference between the activity of this enzyme (data not shown). Transmitter release appears not to be due to an inhibition by classical Ca2+ channel antagonists, since CTX is without effect on the electrical properties of the Na+ channel (Fig. 6). This observation may seem surprising in view of the fact that CTX has a depolarizing effect which seems to be due to an action on the Na+ channel (Fig. 5). However, in order to obtain a CTX-induced stimulation of Na+ uptake one would need to have a Na+ entry through Na+ channels opened by the toxin which is significantly higher than the Na+ entry into the excitable cells via other Na+ entry systems. For example, the Na+/H+ exchange system represents a large part of the Na+ entry in excitable cells when Na+ channels are closed. It appears that CTX has no action on slow Ca2+ channels confirming the specificity of the toxin for Na+ channels, (ii) that CTX action on Na+ channels is antagonized by Ca2+. The same lack of effect of TTX has been found in 10 mM Ca2+ medium. Antagonism between Ca2+ and Na+ channel toxins has been observed with veratridine (28).

Electrophysiological experiments with neuroblastoma cells were also carried out in an external medium containing 10 mM instead of 1.8 mM Ca2+. Under these conditions, the Ca2+ current due to the slow Ca2+ channels of neuroblastoma cells is sufficiently high to produce a Ca2+ channel component in the action potential and to be seen by voltage clamp techniques (26, 27). CTX is without effect on the electrical properties of neuroblastoma in a 10 mM Ca2+ medium (data not shown). This result shows: (i) that CTX has no action on slow Ca2+ channels confirming the specificity of the toxin for Na+ channels, (ii) that CTX action on Na+ channels is antagonized by Ca2+. The same lack of effect of TTX has been found in 10 mM Ca2+ medium. Antagonism between Ca2+ and Na+ channel toxins has been observed with veratridine (28).

The effects of CTX on the electrical activity of neuroblastoma cells are the same when the toxin is applied to cells exposed to an external medium containing 25 mM tetrathylammonium with CsF in the pipette (Fig. 5B). Under these conditions K+ channels are blocked (24). Moreover, addition of TTX (1 μM), a specific Na+ channel blocker, in the external medium not only blocks electrical activity but also reverses CTX-induced membrane depolarization (Fig. 5B). Removal of TTX by perfusion with a CTX- and TTX-free medium induces the reappearance of the effects of CTX. This is because TTX action is easily reversible whereas CTX action is not. These results taken together strongly support the idea that the action of CTX is specific for voltage-dependent Na+ channels. This conclusion is also consistent with the observation that unpurified CTX induces a TTX-sensitive depolarization of the skeletal muscle membranes (25).

Electrophysiological experiments with neuroblastoma cells were also carried out in an external medium containing 10 mM instead of 1.8 mM Ca2+. Under these conditions, the Ca2+ current due to the slow Ca2+ channels of neuroblastoma cells is sufficiently high to produce a Ca2+ channel component in the action potential and to be seen by voltage clamp techniques (26, 27). CTX is without effect on the electrical properties of neuroblastoma in a 10 mM Ca2+ medium (data not shown). This result shows: (i) that CTX has no action on slow Ca2+ channels confirming the specificity of the toxin for Na+ channels, (ii) that CTX action on Na+ channels is antagonized by Ca2+. The same lack of effect of TTX has been found in 10 mM Ca2+ medium. Antagonism between Ca2+ and Na+ channel toxins has been observed with veratridine (28).

Measurements of 22Na+ flux have been used successfully in recent years to analyze the pharmacological and mechanistic properties of the Na+ channel (13, 14, 29). Two cells in culture have been used in our work, neuroblastoma cells (N1E 115 clone) which have TTX-sensitive Na+ channels (EC50TTX = 1 nM) (13) and rat skeletal muscle myoblasts which have TTX-resistant Na+ channels (EC50TTX = 1 μM) (14). CTX has no significant action by itself on the rate of 22Na+ uptake by these cells (Fig. 6). This observation may seem surprising in view of the fact that CTX has a depolarizing effect which seems to be due to an action on the Na+ channel (Fig. 5). However, in order to obtain a CTX-induced stimulation of 22Na+ uptake one would need to have a Na+ entry through Na+ channels opened by the toxin which is significantly higher than the Na+ entry into the excitable cells via other Na+ entry systems. For example, the Na+/H+ exchange system represents a large part of the Na+ entry in excitable cells when Na+ channels are closed. It appears that 22Na+ uptake elicited by CTX alone is not significantly higher than uptake through other pathways. The lack of increase of the TTX-sensitive Na+ uptake by CTX suggests that a small population of Na+ channels is affected by the toxin and/or that CTX-modified Na+ channels do not remain permanently open. This view is consistent with the observations that CTX only produces a partial depolarization of the membrane (which remains negatively polarized even after application of the toxin). However, CTX acts in synergy with alkaloid toxins veratridine and batrachotoxin, with polypeptide toxins from sea anemone and scorpion venom, and with the pyrethroid molecule deltamethrine to increase the rate of 22Na+ uptake (Figs. 6 and 7). This acceleration of 22Na+ uptake is due to an activation of Na+ channels since the effect of CTX is antagonized by TTX (Fig. 7). The dose-response curve for CTX action on 22Na+ flux in neuroblastoma cells in the presence of veratridine (Fig. 7) shows half-maximal response at 0.5 ng/ml, a value similar to that found in synaptosomes (Figs. 2 and

Fig. 4. The influence of CTX on the release of [3H]GABA by synaptosomes. Dose-response curve for CTX activation of [3H]GABA release from synaptosomes. Time of release was 20 min. The effects of TTX on the electrical properties of neuroblastoma cells were also carried out in an external medium containing 10 mM instead of 1.8 mM Ca2+. Under these conditions, the Ca2+ current due to the slow Ca2+ channels of neuroblastoma cells is sufficiently high to produce a Ca2+ channel component in the action potential and to be seen by voltage clamp techniques (26, 27). CTX is without effect on the electrical properties of neuroblastoma in a 10 mM Ca2+ medium (data not shown). This result shows: (i) that CTX has no action on slow Ca2+ channels confirming the specificity of the toxin for Na+ channels, (ii) that CTX action on Na+ channels is antagonized by Ca2+. The same lack of effect of TTX has been found in 10 mM Ca2+ medium. Antagonism between Ca2+ and Na+ channel toxins has been observed with veratridine (28). Measurements of 22Na+ flux have been used successfully in recent years to analyze the pharmacological and mechanistic properties of the Na+ channel (13, 14, 29). Two cells in culture have been used in our work, neuroblastoma cells (N1E 115 clone) which have TTX-sensitive Na+ channels (EC50TTX = 1 nM) (13) and rat skeletal muscle myoblasts which have TTX-resistant Na+ channels (EC50TTX = 1 μM) (14). CTX has no significant action by itself on the rate of 22Na+ uptake by these cells (Fig. 6). This observation may seem surprising in view of the fact that CTX has a depolarizing effect which seems to be due to an action on the Na+ channel (Fig. 5). However, in order to obtain a CTX-induced stimulation of 22Na+ uptake one would need to have a Na+ entry through Na+ channels opened by the toxin which is significantly higher than the Na+ entry into the excitable cells via other Na+ entry systems. For example, the Na+/H+ exchange system represents a large part of the Na+ entry in excitable cells when Na+ channels are closed. It appears that 22Na+ uptake elicited by CTX alone is not significantly higher than uptake through other pathways. The lack of increase of the TTX-sensitive Na+ uptake by CTX suggests that a small population of Na+ channels is affected by the toxin and/or that CTX-modified Na+ channels do not remain permanently open. This view is consistent with the observations that CTX only produces a partial depolarization of the membrane (which remains negatively polarized even after application of the toxin). However, CTX acts in synergy with alkaloid toxins veratridine and batrachotoxin, with polypeptide toxins from sea anemone and scorpion venom, and with the pyrethroid molecule deltamethrine to increase the rate of 22Na+ uptake (Figs. 6 and 7). This acceleration of 22Na+ uptake is due to an activation of Na+ channels since the effect of CTX is antagonized by TTX (Fig. 7). The dose-response curve for CTX action on 22Na+ flux in neuroblastoma cells in the presence of veratridine (Fig. 7) shows half-maximal response at 0.5 ng/ml, a value similar to that found in synaptosomes (Figs. 2 and
Ciguatoxin Is a Novel Type of Na\(^+\) Channel Toxin

Fig. 5. Electrophysiological action of CTX on electrically evoked action potentials in neuroblastoma cells. **A,** left, control action potential before adding CTX, evoked by a depolarizing stimulus from a steady hyperpolarized membrane potential level of \(-75\) mV. **Right,** electrical activity recorded 2 min after the addition of 10 ng/ml of CTX to the external solution. The membrane was depolarized by the action of the toxin to \(-48\) mV, and a hyperpolarizing stimulus \((-1.5\) nA for 100 ms) evoked slow transient membrane action potentials. **B,** left, electrical activity recorded 4 min after the addition of 1 ng/ml of CTX in the presence of 25 mM tetraethylammonium. Membrane was depolarized to \(-20\) mV 16 min after application of the toxin, and the transient membrane hyperpolarization was evoked by a hyperpolarizing stimulus of \(-0.5\) nA for 1 s. Action potential duration is prolonged because K\(^+\) current was blocked by tetraethylammonium. **Right,** effect of the addition of 1 \(\mu\)M TTX on the membrane potential of the same cell. The cell was repolarized by the action of TTX to the control level of \(-70\) mV, and even a large depolarizing stimulus no longer evoked an active electrical response. Zero and resting membrane potentials are indicated.

Fig. 6. Synergistic effects of CTX and other neurotoxins specific for the Na\(^+\) channel on the initial rate of TTX-sensitive \(^{22}\)Na\(^+\) uptake by neuroblastoma cells and rat muscle cells. Initial rates of \(^{22}\)Na\(^+\) uptake were determined after 1 min of uptake in the presence of various neurotoxins used alone (open bars) or in combination with 2.9 ng/ml of CTX (hatched bars). The rate of TTX-insensitive \(^{22}\)Na\(^+\) uptake was subtracted from all data. Vera, veratridine; Decis, deltamethrine.

The inset of Fig. 7 shows how CTX increases batrachotoxin action on \(^{22}\)Na\(^+\) flux. CTX at a saturating concentration shifts the dose-response curve for batrachotoxin to a lower concentration range. The EC\(_{50}\) for batrachotoxin action is reduced from 3.0 to 0.23 \(\mu\)M in the presence of 2.9 ng/ml of CTX. This shift is identical to that found with a saturating concentration of the sea anemone toxin AS\(_{57}\) (Fig. 7, inset) which is also known to be synergistic in its action with batrachotoxin (13). Pyrethroids are also known to have the same type of action on batrachotoxin action (30). Neurotoxins active on the Na\(^+\) channel have been distinguished in 5 separate classes (20, 21, 31, 32) including (i) the Na\(^+\) channels antagonists TTX and saxitoxin, (ii) the lipid-soluble toxins (veratridine, batrachotoxin, grayanotoxins, etc.) that cause persistent activation of
Na⁺ channels, (iii) the polypeptide toxins including sea anemone toxins and some of the scorpion toxins (Leiurus, Androctonus) that slow Na⁺ current inactivation, (iv) the scorpion toxins (Centruroides, Tityus) that are primarily active on Na⁺ channel activation. They shift the voltage dependence of the activation of Na⁺ channels and induce a Na⁺ channel activity at negative potentials at which Na⁺ channels are normally closed in the resting state (32). These toxins do not produce a persistent membrane depolarization. (v) Another class is the pyrethroids that transform fast Na⁺ channel toxins, (iii) the polypeptide toxins including sea anemone toxins and some of the scorpion toxins

In conclusion, CTX appears to be a toxin acting selectively on voltage-dependent Na⁺ channels in nerve and muscle cells as well as on synaptic terminals. The electrophysiological behavior of CTX is unlike any other Na⁺ channel toxins. Na⁺ flux measurements and experiments involving competition of CTX with a variety of other labeled Na⁺ channel toxins indicate that CTX belongs to a new class of Na⁺ channel toxins. There are now six different classes of such toxins.

Acknowledgments—We are very grateful to Dr. A. Lombet, D. Pauzon, and J. Barlanin for carrying out binding experiments, to Dr. G. Romey for very useful discussions, to Drs. J. Taylor and M. Staszak for their careful reading of the manuscript, and to M. Valetti for secretarial assistance.

REFERENCES

1. Bagnis, R. (1981) Oceanol. Acta 4, 375-387
2. Scheuer, P. J., Takahashi, W., Tatsusumi, J., and Yoshida, T. (1976) Science (Wash. D. C.) 195, 1267-1268
3. Bagnis, R., Chanteau, S., Chungue, E., Hurtel, J. M., Yasumoto, T., and Inoue, A. (1980) Toxicon 18, 199-208
4. Mursakami, Y., Oshima, Y., and Yasumoto, T. (1982) Bull. Jpn. Soc. Sci. Fish. 48, 69-72
5. Schweitz, H., Vincent, J. P., Barhanin, J., Frelin, C., Lindon, G., Hugues, M., and Lazdunski, M. (1981) Biochemistry 20, 5245-5257
6. Miranda, F., Kupyan, C., Rochat, H., Rochat, C., and Lisistzky, S. (1970) Eur. J. Biochem. 16, 514-523
7. Chanteau, S., Bagnis, R., and Yasumoto, T. (1976) Biochimie 58, 1149-1151
8. Hoffman, P. A., Granade, H. R., and McCormill, J. P. (1983) Toxicon 21, 363-369
9. Schanberg, S. M., Schildkraut, J. J., and Kopin, J. J. (1967) J. Pharmacol. Exp. Ther. 157, 311-318
10. Abta, J.-P., Chicheportiche, R., Schweitz, H., and Lazdunski, M. (1977) Biochimie 59, 1838-1844
11. Vignon, J., and Lazdunski, M. (1984) Biochim. Biophys. Acta 784, 249-252
12. Bagnis, R., Rosen, B., Renaud, J. F., and Lazdunski, M. (1984) Biochim. Biophys. Acta 769, 249-252
13. Jacques, Y., Fosset, M., and Lazdunski, M. (1978) J. Biol. Chem. 253, 7383-7389
14. Frelin, C., Vigne, P., and Lazdunski, M. (1983) J. Biol. Chem. 258, 6722-6726
15. Hugues, M., Remy, G., Duval, D., Vincent, J. P., and Lazdunski, M. (1980) Proc. Natl. Acad. Sci. U. S. A. 79, 1038-1052
16. Vincent, J. P., Balerna, M., Barhanin, J., Fosset, M., and Lazdunski, M. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 1649-1650
17. Barhanin, J., Giglio, J. R., Legoupil, P., Schmid, A., Sampaio, S. V., and Lazdunski, M. (1981) J. Biol. Chem. 256, 12553-12558
18. Chicheportiche, R., Balerna, M., Loubet, A., Remy, G., and Lazdunski, M. (1980) Eur. J. Biochem. 104, 617-625
19. Remy, G., Abita, J. P., Chicheportiche, R., Rochat, A., and Lazdunski, M. (1978) Biochim. Biophys. Acta 448, 807-819
20. Lazdunski, M., Fosset, M., Renaud, J. F., Schweitz, H., Vigne, P., and Vincent, J. P. (1985) in Physical Chemistry of Transmembrane Ion Movements (Spach, J., ed.) pp. 491-504, Elsevier Science Publishers B.V., Amsterdam
21. Lazdunski, M., and Renaud, J. F. (1980) Annu. Rev. Physiol. 44, 463-473
22. Ohizumi, Y., Shibata, S., and Tachibana, K. (1981) J. Pharmacol. Exp. Ther. 217, 475-489
23. Ohizumi, Y., Ishida, Y., and Shibata, S. (1981) J. Pharmacol. Exp. Ther. 217, 475-489
24. Moolenaar, W. H., and Spector, I. (1979) J. Biol. Chem. 254, 882-897
25. Novohero, E., Bideleux, M., Barhanin, J., Rougier, O., and Lazdunski, M. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 3996-3996
26. Barhanin, J., Pauzon, D., Lombet, A., Norman, R. L., Vijeherberg, H. P. M., Giglio, J. R., and Lazdunski, M. (1983) EMBO J. 2, 915-920