Review Article

The physiological and pharmacological effects of *Ziziphoratenuior* L.: A review study

Ali Zarei¹,* , Saeed Changizi-Ashtiyani², Behnam Masmouei³, Fatemeh Rasekh⁴, Mansour Sokhandani³, Fridoon Jahangir³

¹Department of Physiology, Estahban School of Paramedical Sciences, School of Nursing Hazrat Zahra (P.B.U.H) Abadeh, Shiraz University of Medical Sciences, Shiraz, Iran
²Department of Physiology, Arak University of Medical Sciences, Arak, Iran
³Department of Nursing, School of Nursing Hazrat Zahra (P.B.U.H) Abadeh, Shiraz University of Medical Sciences, Shiraz, Iran
⁴Department of Biology, Payam Noor University of Tehran, Tehran, Iran

Article history:
Received: May 22, 2020
Received in revised form: Jan 15, 2021
Accepted: Feb 16, 2021
AJP, Vol. 12, No. 1, Jan-Feb 2022, 16-29.
https://dx.doi.org/10.22038/AJP.2021.48607.2606

* Corresponding Author:
Tel: +98-7144361280
Fax: +98-7144361280-7
Zarei.ali40@gmail.com

Keywords:
Ziziphoratenuior L.
Pulegone
Antioxidant
Diabetes

Abstract

Objective: Many reports have revealed preventive and therapeutic effects of *Ziziphoratenuior*; however, few systematic reviews have evaluated such effects. The present study reviews the physiological and pharmacological effects of *Z. tenuior* extract and its components.

Materials and Methods: English articles were searched in international databases, such as Embase, Scopus, and PubMed; Persian studies were also searched in national databases such as SID and Magiran.

Results: Pulegone is one of the most important effective compounds of *Z. tenuior*, which has analgesic, anti-inflammatory, and anti-stress properties as it affects serotonergic and opioidergic systems and decreases the gastric acid secretion. Moreover, this compound inhibits cholesterol absorption and synthesis, resulting in hyperlipidemic effects and weight loss. In addition to its antioxidant, antitumor, and antibacterial properties, this herb contains an antidiabetic effect mediated by increasing the number of pancreatic beta cells and insulin secretion, and inhibiting alpha-amylase. Although its effective dosage has no side effects, the overuse of its effective compounds, such as pulegone, may raise some liver and pulmonary disorders.

Conclusion: *Z. tenuior* and its extract can have preventive and therapeutic effects on diabetes and hyperlipidemia-associated diseases. Since most studies on this herb were *in vivo*, it is necessary to design clinical trials to evaluate its effects.

Please cite this paper as:
Zarei A, Changizi-Ashtiyani S, Masmouei B, Rasekh F, Sokhandani M, Jahangir F. The physiological and pharmacological effects of *Ziziphoratenuior* L: A review study. Avicenna J Phytomed, 2022; 12(1): 16-29.
The physiological and pharmacological effects of *Ziziphoratenuior* L.

Introduction

Traditional medicine is a complementary therapy system that provides a healthy and preventive lifestyle based on individuals’ characteristics and has therapeutic potentials in various organ disorders. The advantages of using medicinal plants are superior to its disadvantages such as drug resistance, side effects and complex drug interactions, and their high price (Changizi-Ashtiyani et al., 2017; Zarei et al., 2015a). Moreover, numerous studies have been carried out worldwide to extract bioactive compounds from widely-used medicinal herbs and produce drugs to prevent and treat some diseases (Kolangi et al., 2017).

Ziziphoratenuior (“Kakuti” in Persian) belongs to the Lamiaceae family and has small leaves and white, pink, and purple flowers (Figure 1). Main compounds of *Ziziphora* include pulegone, 3’, 5’-dihydroxy acetophenone, isomentone, 2-methyl-5-(1-methyl-ethyl)-phenol, limonene, 12-acetyl-4, 4-d-methyl-cyclopentane-2-isen (Pakniyat and Mousavi, 2014), ziziphorins (Mehmood et al., 2010), anthocyanins, proteins, and oils (Zarei et al., 2014). Pulegone is one of the bioactive compounds of this herb, which is used in the treatment of fever, dysmenorrhea, and gastric tonus owing to its analgesic and anti-inflammatory effects. The steroid compounds, carvacrol, phytonutrients limonene, and alfa-terpineol in the herbs of this family also have analgesic properties (Zendehdel and Babapour, 2010). This herb encompasses hypolipidemic properties and improves oxidative stress in rabbits lung and liver (Karimi et al., 2013). Studies on other species of this genus have revealed that these herbs have antidiabetic properties, improve cognitive processes by having positive effects on neural function, such as Alzheimer’s disease (Mohammadi and Mohammadi Mehdabadi Hassan, 2017; Mohammad Sadeghi et al., 2015). Moreover, *Ziziphoratenuior* has antitumor (Mohammadi and Mohammadi Mehdabadi Hassan, 2017) and antibacterial properties and is used in dairy foods as a flavoring and preservative constituent (Abdolshahi et al., 2018). As these effects have been reported in a large number of studies, the present study aimed to review the physiological and pharmacological effects of bioactive compounds obtained from *Z. tenuior*.

![Figure 1. Ziziphoratenuior L.](image)

Materials and Methods

This review study was conducted by searching some reliable international databases, such as Embase (39 records), Scopus (59 records), and PubMed (15 records), as well as Iranian databases, viz. SID (26 records) and Magiran (135 records), using some relevant keywords as *Ziziphoratenuior*, Pulegone, Disease, herbal medicine, *Kakuti* January 15, 2020. Six studies were extracted using other methods such as searching references of the articles. In total, 280 articles were collected for this review. Duplicate studies (98 records), unrelated articles, and those addressing other genera (123 records) were excluded, and totally 58 articles were included in this review (Figure 2).
Results
Antidepressant effect
Depression is considered one of the main causes of disability worldwide and plays a critical role in the global burden of disease at all ages (Arthur et al., 2020). Researchers used Forced Swimming Test (FST) and Tail Suspension Test (TST) to evaluate the antidepressant effects of hydroalcoholic extracts obtained from *Z. tenuior*, fluoxetine, and imipramine on immobility, climbing, and swimming *in vivo*. The findings indicate that different doses of the extract decreased the duration of immobility in the FST and TST. In other words, exposing animals to the *Z. tenuior* extract in a dose-dependent manner increases the duration of swimming, similar to that of fluoxetine. Since fluoxetine is also a serotonin reuptake inhibitor, this extract probably reinforces the serotonin neurotransmission. Although few studies have evaluated the antidepressant effects of this extract, some existing data confirm such an effect (Gharetapeh et al., 2014).

Analgesic and wound healing effects
Currently, pain is controlled using non-steroidal anti-inflammatory drugs (NSAIDs) and opioid analgesic drugs, which have some side effects. Accordingly, it is of paramount importance to achieve analgesic drugs with fewer side effects (Zendehdel and Babapour, 2010). Zendehdel et al. (2010) evaluated the analgesic effect of the *Z. tenuior* extract in mice in comparison to indomethacin. The findings indicated that this extract along with indomethacin as a co-treatment decreased visceral pain; however, pretreatment with naloxone and cyproheptadine relatively inhibited the analgesic effects of the extract. The analgesic properties of this herb are probably mediated by serotonergic and opioidergic mechanisms, confirming the use of this herb as an analgesic. The decreased analgesic effects of this extract after pretreatment with naloxone and cyproheptadine result from the activity of naloxone as an opioid receptor antagonist (receptor M) and cyproheptadine as a serotonin receptor blocker (5-HT1). The presence of pulegone, steroid compounds, carvacrol, phytonutrients, limonene, and alfa-terpineol in this herb raises analgesic...
The physiological and pharmacological effects of Ziziphoratenuior L.

properties (Zendehdel and Babapour, 2010). The analgesic effects of pulegone and limonene obtained from this family were reported to be more than those of its monoterpenes (de Sousa et al., 2007).

Abbasi et al. (2018) evaluated the effect of Z. tenuior ethanolic extract on the morphine withdrawal signs in mice and found that bruxism, jumping, and diarrhea decreased in the animals. Accordingly, this extract decreases some morphine withdrawal behaviors such as rearing, climbing, writing, and wet-dog shakes (Abbasi et al., 2016). According to another study, the inflammation after inducing ear edema via Xylenol was lowered by intraperitoneal injection of the Z. tenuior extract, thereby acting similar to dexamethasone (Ghobrani Ranjbary et al., 2016).

Compared the analgesic effects of the hydroalcoholic extract and diclofenac using the formalin test and noticed that the level of pain decreased in the group received both the extract and diclofenac. Moreover, pretreatment with naloxone decreased the analgesic effect of the extract (Ahmadi Moghadam and Shahraki, 2015). The effect of Z. tenuior extract was evaluated on the gastric ulcer induced by acetic acid in rats. Results showed an increase in the number of ulcer neutrophils and macrophages and a decrease in the number of fibroblasts (Mousavi Mobarake et al., 2013). Pulegone and 1, 8-cineole, as the main bioactive compounds in Z. tenuior extract, decreased the secretion of gastric acid (Azadmehr et al., 2014). Flavonoids pass through the blood-brain barrier, control the pain, and lead to an analgesic effect by affecting the Gamma aminobutyric acid (GABA), opioid, and alpha 2-adrenergic receptors and inhibiting enzymes contributing to brain inflammation (Table 1) (Mohammadi and Mohammadi Mehdiaabadi Hassani, 2017).

Hypolipidemic effects

Hyperlipidemia refers to the increased levels of lipid and cholesterol in plasma, leading to various disorders, including coronary artery diseases (Changizi-Ashtiyani et al., 2018; Zarei et al., 2015c). Karimi et al. (2013) evaluated the hypolipidemic effects of aromatic water (AW) obtained from Z. tenuior in rabbits receiving a high-cholesterol diet and reported that such a diet increased levels of triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), very-low-density lipoprotein-cholesterol (VLDL-C), atherogenic index (AI), and coronary heart disease index (CHD) in the control group. However, the groups receiving a high-cholesterol diet along with the extract of the herb for four weeks revealed decreased levels of these factors (Shahnazi et al., 2015a; Karimi et al., 2013). Probably, this herb inhibits intestinal cholesterol uptake, down-regulates LDL receptors, increases the excretion of cholesterol and bile acids via the stool, and decreases cholesterol synthesis (Karimi et al., 2013). Z. tenuior extract also raises hypertriglyceridemia by inhibiting hepatic lipogenesis through decreasing sterol receptor element-binding protein-1. In other words, it induces lipid oxidation in the liver and muscles by activating proliferator-activated receptors (PARs). Consequently, the conversion of glucose to glycogen is associated with the down-regulation of hepatocyte nuclear factor-4-alpha (HNF-4 α) (Shahnazi et al., 2016).

Pulegone, isomenthone, 8-hydroxy delta4 (5)-pimen3-one, and limonene are the main compounds found in the essential oil of Z. tenuior, the most significant of which is pulegone. Pulegone and its metabolites, including menthofuran, are known as hepatotoxic compounds and lead to pulmonary edema, centrilobular necrosis, and internal bleeding (Karimi et al., 2013). Nevertheless, a high level of pulegone was noticed in the AW of this herb compared to other hypolipidemic compounds such as limonene. Accordingly, further research should investigate the effects of AW on
improving lipid profiles (Karimi et al., 2013). Evaluating the effects of *Z. tenuior* extract on biochemical factors, including liver function tests and fat profiles, revealed that cholesterol, Alanine aminotransferase (ALT), and TG levels decreased in groups receiving this extract (Dehkordi et al., 2014). *Z. tenuior* essential oil contains thymol and carvacrol, leading to a decrease in the concentrations of plasma TG (Lee et al., 2003) and cholesterol in animals by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (Elson and Qureshi, 1995; Case et al., 1995). Carvacrol also stimulates the reproduction and growth of lactobacilli, thereby playing an important role in improving blood factors and reducing serum fats (Tschirch, 2000). Lacobacilli can metabolize and uptake cholesterol in the small intestine and reduce its absorption via the blood (Percival, 1997). This herb not only has no hepatotoxic effects but also improves hepatic function by causing a significant decrease in alanine aminotransferase (ALT) and a relative but not significant decrease in aspartate aminotransferase (AST) (Dehkordi et al., 2014).

Effects on the liver and lungs

Antioxidant compounds promote the health of the liver due to the significance and exposure of this organ to many oxidizing and carcinogenic agents (Taheri et al., 2012; Rezaei et al., 2013). Yazdanazadeh et al. (2017) evaluated the protective effects of *Z. tenuior* extract on the liver and lung toxicity caused by chlorpyrifos (CPF, a widely-used organophosphate pesticide) in rats. The antioxidant activity of the extract improved the oxidative stress in the liver and lungs; therefore, it seems that CPF toxicity originates from oxidative stress, inducing cell death. This extract protects pulmonary and liver tissues from damages caused by CPF (Yazdinezhad et al., 2017).

The effect of *Z. tenuior* hydroalcoholic extract was investigated on cadmium toxicity in the liver and increases were noticed in the activities of the liver enzymes, superoxide dismutase (SOD) and glutathione reductase (GR), in the cadmium group compared to the control group. However, there was a decrease in malondialdehyde (MDA) levels in the control group (Jafari Sani, 2019).

Effects on diabetes

Currently, diabetes as a factor leading to the disability of patients and their hospitalization, imposes significant financial pressure on society (Cho et al., 2018; Taleb et al., 2017). The existing methods, such as dietary changes and oral hypoglycemic agents, used to treat type 2 diabetes are accompanied by some limitations. The use of herbs for the treatment of diabetes is highly common in Central Asia (Mohammad Sadeghi et al., 2015; Case et al., 1995; Zarei et al., 2015b). Mohammadi et al. (2017) studied the effect of *Z. tenuior* extract on memory disorders in diabetic rats and reported that this extract prevented spatial memory loss in these animals (Mohammadi and Mohammadi Mehdiabadi Hassan, 2017).

The genus *Ziziphora* has antibacterial properties and its extract increases the number of beta cells and eventually insulin levels, and decreases the level of blood sugar in diabetic rats (Mohammad sadeghi et al., 2015). Sadeghi et al. showed that another species in this genus, called *Z. clinopodioides*, reduced the level of serum glucose in diabetic rats. *Z. clinopodioides* lam could reduce serum glucose level in diabetic animals by increasing insulin secretion (Sadeghi et al., 2015) and decreased glucose reabsorption in the kidney (Table 1) (Ghafari et al., 2006, Tian et al., 2011).
The physiological and pharmacological effects of *Ziziphoratenuior* L.

Table 1. Some physiological effects of *Ziziphoratenuior* extract at different doses.

Extract	Dosage/Treatment day	Experimental model and animal	Observed effects	Ref.
Hydroalcoholic extract	100, 150, 200, and 300 mg/kg – 18 days	*In vivo*, albino bulb/C mice	Increased number of beta cells and insulin secretory activity	Mohammad sadeghi et al., 2015
Hydroalcoholic extract	50, 75, and 100 mg/kg	*In vivo*, albino N-MRI mice	Reduced response to visceral pain	Zendehdel and Babapour, 2010
Hydroalcoholic extract	50, 75, and 100 mg/kg	*In vivo*, albino N-MRI mice	Decreased morphine withdrawal symptoms	Abbasi et al., 2016
Ethanolic extract	100 μg/ml,	*In vitro*	Increased CD40 surface expression, increased IL12 and IL10 production	Azadmehr et al., 2014
Hydroalcoholic extract	100, 150, and 200 mg/kg – 60 days	*In vivo*, Wistar rats	Increased polycystic ovary tissue symptoms	Nabiuni et al., 2015
Hydroalcoholic extract	100, 150, and 200 mg/kg – 21 days	*In vivo*, Alzheimer's Wistar rats	Preventing memory loss using the Morris Water Maze Test	Mohammadi and Mohammadi Mehdiaabadi Hassani, 2017
Aromatic water	0, 1, and 3% v/v of AW dissolved in 10 ml of distilled water – 28 days	*In vivo*, cholesterol-fed rabbits	Decreased levels of TG, HDL-C, VLDL-C, TG, AI, and CHD	Karimi et al., 2013
Hydroalcoholic extract	400, 800, and 150 mg/kg – 21 days	*In vivo*, Wistar rats	Decreased levels of ALT and TG	Dehkordi et al., 2014
Aqueous extract	75 and 100 mg/kg - 14 days	*In vivo*, Wistar rats with peptic ulcer	Accelerated wound healing, increased number of neutrophils and macrophages, and decreased number of fibroblasts over time	Mousavi Mobarake et al., 2013
Hydroalcoholic extract	400, 800, and 1600 mg/kg	Male rats	Reduced pain	Ahmadi Moghadam and Shahraki, 2015
Hydroalcoholic extract	50, 75, and 100 mg/kg	Immobility, swimming and climbing behaviors in forced FST and TST using animal models of depression	Reduced immobility period in FST	Gharetapeh et al., 2014
Hydroalcoholic extract	40, 80, and 160 mg/kg, 8 weeks	Against chlorpyrifos (CPF)-induced liver and lung toxicity in rats	Protection against CPF-induced liver and lung tissue damage	Yazdinezhad et al., 2017
Hydroalcoholic extract	100, 300, and 600 mg/kg	Cadmium-induced hepatotoxicity in male rats	Decreased activity of liver enzymes, oxidative stress, malondialdehyde, and increased levels of glutathione and superoxide dismutase	Jafari Sani, 2019
Ethanolic extract	500, 250, 125, and	Antibacterial /activity	Significant antibacterial effects of the extract on Staphylococcus aureus and S. epidermidis	Kouhsari, 2014
Extract Type	Assay Method/Concentration	Microorganism Description	Reference	
---	----------------------------	--	-----------------------------	
Ethanolic extract 62.5 mg/ml	10 µl of extract per well	Antibacterial activity indicating inhibition zone diameters of 30 and 26 mm)	Antimicrobial effect against Escherichia coli, Bacillus subtilis, and S. aureus	Najafi et al., 2011
Essential oil	Essential oil	Assessing antimicrobial activity by micro broth dilution assay	Less sensitivity of Pseudomonas aeruginosa and Enterococcusfaecalis to the oil and bactericidal effect of the oil on P. aeruginosa, E. faecalis, and Bacillus Cereus	Mahboubi et al., 2012
Mixed thyme and Ziziphora essential oil 0.15% and 0.3% of diet	Adding oil to diets of broiler chicken	Improvement of useful gut microflora (Lactobacillus) and a decrease in the harmful bacteria (coliiform) in the ileum of broilers.	Mahdavi and Nobakht, 2018	
Essential oil	Essential oil	Candida albicans	Stronger inhibitory and bactericidal effects of essential oil than that of the standard drug chlorhexidine	Salman et al., 2017
Essential oil and methanolic extract 10 µl/disk	Bacteria isolated from urogenital tract infections	Inhibiting the growth of bacteria at low concentrations	Anzabi and Khaki, 2016	
Essential oil	Essential oil	E. faecalis	Strong antibacterial effect against E. faecalis	Bahareh et al., 2018
Extract and its fractions (ethanol, petroleum ether, ethyl acetate, and chloroform) 10 mg/ml	Protoscolices	The effectiveness of Z. tenuior extract and its fractions against protoscolices and its anti-inflammatory properties	Shahnazi et al., 2017	
Ethanolic extract 3-100 mg/ml for 10-60 min In vitro protoscolicidal effect	High scolicidal activity produced by ethanolic extract of Z. tenuior as an appropriate and effective scolicidal agent in hydatidosis surgeries	Shahnazi et al., 2016		
Methanolic extract 10, 20, 30, and 40% Significant foodborne pathogens in vitro	Strong antimicrobial activity of alcoholic extract against many food pathogenic bacteria and its use as a natural antimicrobial in food products	Yazdi et al., 2013		
Ethanol extract 50,100, and 200 µg/ml Propagated tachyzoites of Toxoplasma gondii in the peritoneum cavity of mice	Strong anti-toxoplasmic activity	Adineh, 2014		
Aqueous and ethanolic extracts 5, 10, 15, 20, and 30 mg/ml Cell lines (macrophage) were infected by promastigotes of Leishmania	Reduced number of amastigotes in macrophages	Hejazi, 2018		
Effect on polycystic ovary syndrome

This herb has anti-inflammatory effects due to the presence of pulegone, flavonoids, and anthocyanins. The anti-inflammatory properties of this extract were examined on the hormonal profile and the improvement of the tissue symptoms of polycystic ovary syndrome (PCOS) in rats. The findings showed significant decreases in the thickness of granulosa layer, the number of corpus luteum, and cyst formation, as well as an increase in C-reactive protein (CRP), in the PCOS group compared to the control group (that received no drug injection or extract treatment). However, tissue changes in the ovaries of the experimental groups (that received the extract or estradiol valerate) exhibited no significant difference compared to the control group. Luteinizing hormone (LH), estradiol, testosterone, and CRP levels decreased in the experimental groups. Regarding the anti-inflammatory effects, Z. tenuior extract could induce ovulation by improving the PCOS tissue symptoms and modulating hormone levels. In this study, the researchers also observed increased serum testosterone and estradiol levels and decreased serum progesterone levels caused by decreased corpus luteum formation and increased number of non-ovulated follicles and cysts. With respect to the inhibitory effects of flavonoids, thymol, and carvacrol on cyclooxygenase enzymes, this extract may play a role in improving ovarian tissue symptoms in PCOS rats treated with hydroalcoholic extracts by inhibiting the proliferation of theca layer cells (Table 1) (Nabiuni et al., 2015).

Effect on the immune system

CD40 is one of the co-stimulatory markers existing on dendritic cells, the surface expression of which is increased by Z. tenuior extract. However, it failed to change CD86 and MHC-11 molecules and consequently promote the development of dendritic cells (DCs). This extract increased the interleukin 12 (IL-12) production in DCs, inhibited the proliferation of allogenic T cells, and increased IL10 levels in allogeneic T cells. It can regulate the immune response by inducing the CD40 expression on dendritic cells and the production of cytokines. On the other hand, this extract inhibits the stimulatory activity of T cells at high concentrations; hence, it is probably effective in treating the immune system diseases (Azadmehr et al., 2014). The effects of different concentrations of the extract on the viability of rats’ peritoneal macrophages, their nitroxide and Reactive Oxygen Species (ROS) production, and antifungal activities were evaluated. Moreover, the aqueous extract of this herb enhanced the activities of macrophages. The extract also had a significant inductive effect on ROS levels and the antifungal activities of macrophages (Naeini Aet al., 2010).

Antitumor effect

The bioactive compounds of the Z. tenuior extract have antitumor activity and decrease the growth of malignant (32.6%) and cancerous (47.5%) tumors (Mohammadi and Mohammadi Mehdiaabi Hassani, 2017; Franks, 1995).

Effect on tyrosinase

Tyrosinase plays a critical role in the melanin biosynthesis in skin pigments. The inhibitory Effect of this enzyme was evaluated through the effects of extracts from Z. tenuior, sage (Salvia officinalis), Teacriumpolium, and myrtle (Myrtuscommunis) on tyrosinase. All the extracts inhibited this enzyme in a dose-dependent manner. The maximum inhibitory effect was observed for the extract obtained from myrtle, which was comparable to hydroquinone as a standard drug. Afterwards, Z. tenuior, Teacriumpolium, and sage extracts had the highest inhibitory effects, respectively (Rafati, 2015).
Antioxidant properties
The effect of a herbal tea containing *Z. tenuior* on the total antioxidant capacity (TAC), total thiol, and total MDA (oxidative stress indices) was evaluated in inactive girls after having a session of athletic activity, and the findings indicated that drinking a high amount of this herbal tea might increase TAC. The possible mechanism for the effect of this herbal tea on increasing TAC was explained by enhancing intracellular antioxidants such as bilirubin, uric acid, and albumin. In addition, some changes in MDA and no change in the total thiol suggested that the antioxidants could balance the antioxidant defense system (Rostami et al., 2017; Aliakbarlu and Shameli, 2013; Dakah et al., 2014; Mahdavi and Nobakht, 2018).

Antimicrobial properties
Aromatic herbs have long been used to prevent and treat infectious diseases, and they have recently attracted much attention. Researchers evaluated the antibacterial effect of ethanolic extracts from *Z. tenuior* and ajowan (*Trachyspermum copticum* L.) on Gram-positive (four species) and Gram-negative (five species) bacteria. Both ethanolic extracts had significant antibacterial effects on the concerned bacteria. *S. aureus* and *S. epidermidis* were the most sensitive bacteria in response to these extracts, and Gram-negative bacteria were more resistant than Gram-positive ones (Kouhsari et al., 2014). The ethanolic extract from *Z. tenuior* had an inhibitory effect on the growth of *Escherichia coli* (*E. coli*), *Bacillus subtilis*, and *Staphylococcus aureus*. The chemical composition of *Z. tenuior* extract and of course its antimicrobial and pharmacological effects are affected by factors such as climatic characteristics, soil type, altitude and so on. (Najafi and Tavakkoli, 2011). Mahboubi et al. (2012) identified 44 compounds in the essential oil of this herb, the most significant of which were alpha terpineol, thymol, and acetyl geranyl. The antimicrobial effects of the essential oil from this herb were also confirmed on saprophytic fungi and *Pseudomonas aeruginosa*, *Enterococcus faecalis*, and *B. cereus* (Mahboubi et al., 2012).

Salman et al. (2017) studied the antifungal effects of essential oils obtained from native herbs, including *Prangos frulacea*, *Z. tenuior*, *Ferula gummosa*, and *Dracocephalum moldavica* on *C. albicans* (yeast). Except for *F. gummosa*, the inhibitive and lethal effects of the essential oils were stronger than chlorhexidine (standard), and *Z. tenuior* had higher antifungal effects than the other herbal essential oils (Salman et al., 2017). In addition, *Z. tenuior* extract had high scolicidal activity and was used as an effective scolicidal agent in surgeries on hydrated cysts (Shahnazi et al., 2016a; Shahnazi et al., 2017; Shahnazi et al., 2016b). *Z. tenuior* was reported to be effective in controlling and treating leishmaniosis and affected the number of amastigotes appeared in macrophages (Hejazi et al., 2018).

Chemical compounds in *Z. tenuior* extract and factors affecting the contents of these compounds
Najafi and Tavakoli (2010) examined and compared the composition of the essential oil from *Z. tenuior* in two regions of Iran (Karaj and Qom) using gas chromatography/mass spectrometry (GC/MS). The results indicated that the quality of the essential oil and its antibacterial properties were affected by changes in the concentrations of elements existing in the soils of the two regions (Najafi and Tavakkoli, 2011). Moreover, climatic and ecological factors independently or simultaneously affect the morphological characteristics of this herb and raise diversity in its morphology. Among these factors, soil type had the lowest effect and the climate and altitude had the highest effects on the vegetative
and reproductive organs of the herb (Talebi et al., 2010). In another study, the volatile components of the herb (Z. tenuior) were studied in two different regions of Turkey. The components identified in the herb from the two regions had 99.4-98.8% similarity, and their main component was pulegone (Sezik et al., 1991). Accordingly, the different effects of this extract on various body organs and its different antibacterial activities can be attributed to the type of soil and the altitude of the harvest region. Moreover, the high genetic diversity among this family of Ziziphora can be useful to apply heterosis in modifying and increasing bioactive compounds of this herb. Given the herb overharvesting, the establishment of its germplasm bank and propagation of this species were recommended in previous studies (Hatari et al., 2013; Navid et al., 2017).

The chemical analysis of the essential oil from Z. tenuior in Shahr-e Babak, Kerman, also showed that its main compounds were pulegone, 3’,5’-dihydroxy acetophenone, isomentone, 2-methyl-5- (1-methy-ethyl) -phenol, limonene, 12 acetyl – 4, and 4 d-methyl-cyclopentine-2-isen (Pakniyat and Mousavi, 2014). Ziziphorins (A and B) are one of the new flavonoids extracted from Z. tenuior (Mehmood et al., 2010), and the aerial parts of this herb contain anthocyanins, proteins, and oils (Zarei et al., 2014).

Different extraction techniques of essential oil affect the quantity and quality of the oil. In a study, four different techniques, viz. simultaneous distillation extraction (SDE), hydro distillation (using a Clevenger-type apparatus), steam-cooled distillation (ultrasonic), and steam distillation, were used to extract the essential oil from two species (Z. tenuior and Z. clinopodiodes). A high percentage of menthol in the essential oil from Z. clinopodiodes resulted in its high quality. The SDE was found to be the best method for the essential oil extraction in both herbs (Batooli et al., 2012).

Discussion

Pulegone is one of the main compounds in Z. tenuior, which has analgesic and anti-inflammatory effects and reduces the gastric acid secretion. Z. tenuior extract affects serotonergic and opioidergic systems and consequently leads to analgesic activities. In this regard, its anti-inflammatory effects are comparable to dexamethasone. Flavonoids reduce pain by affecting GABA, opioid, and adrenergic receptors (Kouhsari et al., 2014; Zendehdel and Babapour, 2010). The extract contributes to wound healing by affecting the number of macrophages, neutrophils, and fibroblasts in the wound area. Over time, it increases neutrophils and macrophages and reduces the number of fibroblasts (Mohammadi and Mohammadi Mehdibadi Hassani, 2018). This herb inhibits cholesterol absorption in the intestine, regulates LDL receptor, increases cholesterol and acidic bile excretion in the stool, and decreases cholesterol synthesis, thereby inducing a hyperlipidemic effect and weight loss. Thymol and carvacrol in this plant decrease the level of cholesterol in animals by inhibiting HMG-CoA reductase. Considering its antioxidant activity, this extract improves oxidative stress in the liver and lungs, enhances the activity of antioxidant enzymes in the body, and reduces MDA (Karimi et al., 2013). It has antidiabetic effects (Tomczyk et al., 2019) by increasing the number of pancreatic beta cells and insulin secretion and prevents memory loss in diabetic rats. Z. tenuior extract leads to skin whitening by inhibiting tyrosinase (Rafati, 2015). Although the extract has no side effects, a high amount of pulegone and its metabolites may raise pulmonary edema, internal bleeding, and hepatotoxic effects (Karimi et al., 2013; Anderson et al., 1996).

Acknowledgment

We would like to thank the Vice-Chancellor of Research at Shiraz
Zarei et al.

University of Medical Sciences, who helped us to approve and implement the present research (Ethics Code: IR.SUMS.REC.1398.1223).

Conflicts of interest
The authors have declared that there is no conflict of interest.

References
Abdolshahi A, Naybandi-Atashi S, Heydari-Majd M, Salehi B, Kobarfard F. 2018. Antibacterial activity of some Lamiaceae species against Staphylococcus aureus in yoghurt-based drink (Doogh). Cell Mol Biol (Noisy-le-grand), 64: 71-77.

Adineh M. 2014. Evaluation of in vitro antitoxoplasma effects of Ziziphora Tenuior, Zingiber officinale, Juglans regia, Melia azedarach and Peganum harmala herbal extracts (Doctoral dissertation, Qazvin University Of Medical Sciences, Qazvin, Iran).

Anzabi Y, Khaki A. 2016. Antibacterial activity of Ziziphora tenuior L. extract and essential oil against bacteria isolated from urogenital tract infections. mljgoums, 10: 54-59.

Ahmadi Moghadam M, Shahrahi M. 2015. Comparison of nociceptive effect of Ziziphora tenuior L. hydroalcoholic extract and diclofenac using formaline test in male rats. HMS, 20: 209-214.

Aliakbarlu J, Shameli F. 2013. In vitro antioxidant and antibacterial properties and total phenolic contents of essential oils from Thymus vulgaris, T. kotschyanus, Ziziphora tenuior and Z. clinopodioides. Turk J Biochem, 38: 425-431.

Anderson IB, Mullen WH, Meeker JE, Khojasteh-Bakht SC, Oishi S, Nelson SD. 1996. Pennroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. Ann Intern Med, 124: 726-734.

Arthur A, Savva GM, Barnes LE, Borjian-Boroojeny A, Dening T, Jagger C. 2020. Changing prevalence and treatment of depression among older people over two decades. BJPsych, 216: 49-54.

Azadmehr A, Latifi R, Mosalla S, Hajiaghaee R, Shahnazi M. 2014. Immunomodulatory effects of Ziziphora tenuior L. extract on the dendritic cells. Daru, 22: 63.

Bahooli H, Akhbari M, Hosseinizadeh SMJ. 2012. Effect of different distillation methods on quantity and quality of essential oil of two Ziziphora L. species. Int J Herb, 3: 135-146.

Case GL, He L, Mo H, Elson CE. 1995. Induction of geranyl pyrophosphate pyrophosphatase activity by cholesterol-suppressive isoprenoids. Lipids, 30: 357-359.

Changizi-Ashtiyani S, Berenji S, Zarei A, Ramezani M, Hosseini N. 2018. The effects of the extract of Rosa canina L. On lipid profile, liver and thyroid functions in hypercholesterolemic rats. J Kerman Univ Medical Sci, 25: 318-327.

Changizi-Ashtiyani S, Zarei A, Rezaei A. 2017. A quick review of the effects of Chelidonium majus L and its active components on health and disease treatment. J. Kerman Univ Medical Sci, 24: 435-447.

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD. 2018. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 138: 271-281.

Dakah A, Zaid S, Suleiman M, Abbas S, Wink M. 2014. In vitro propagation of the medicinal plant Ziziphora tenuior L and evaluation of its antioxidant activity. Saudi J Biol Sci, 21: 317-323.

de Sousa DP, Junior EV, Oliveira FS. 2007. Antinociceptive activity of structural analogues of rotundifolone: structure-activity relationship. Z Naturforsch C J Biotics, 62: 39-42.

Dehkordi HS, Mobarakhe H, Dehkordi MJ, Khamisipour F. 2014. Studying the effect of the Ziziphora tenuior L plant on some biochemical factors of serum in rats. Int J Biol, 6: 131.

Elson C, Qureshi A. 1995. Coupling the cholesterol and tumor suppressive actions of palm oil to the impact of its minor constituents on 3-hydroxy-3-methylglutarylcoenzyme A reductase activity. PLEFA, 52: 205-208.

Franks S. 1995. Polycystic ovary syndrome. N Engl J Med, 333: 853-861.
Ghafari H, Yasa N, Mohammadirad A, Dehghan G, Zamani MJ, Nikfar S. 2006. Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity. Hum Exp Toxicol, 25: 325-32.

Gharetapeh HH, Maleki SA, Asgharpanah J. 2014. Antidepressant effects of Ziziphora tenuior L. hydroalcoholic extract in animal models of depression. IJIFAS, 3: 664-668.

Hejazi SH, Said Abedi SM, Soleimanifard S. 2018. The study of the inhibitory effects of aqueous and ethanolic extracts of Ziziphora tenuior L. on the proliferation of Leishmania major amastigotes. Iran J Dermatol, 21: 71-76.

Jafari Sani M. 2019. Reduce the cadmium-induced hepatotoxicity using hydro-alcoholic extract of Ziziphoratenuior. Journal of Knowledge and Health, 13: 55-61.

Karimi I, Hayatgheybi H, Motamedi S, Naseri D, Shamspur T. 2013. Chemical composition and hypolipidemiec effects of an aromatic water of Ziziphora tenuior L. in cholesterol-fed rabbits. JABS, 7: 61-67.

Kolangi F, Memariani Z, Gorji N. 2017. Herbs from Iranian traditional medicine for reinforcement of kidney and prevention of renal atrophy. J Med Plants, 4: 21-31.

Kouhsari H, Ghaemi E, Sadegh Sheshpoli M, Jahadi M. 2014. Antibacterial activity of Trachyspermum copticum L. and ziziphora tenuior L. from Azadshahr region in golestan province. EJMP, 2: 49-56.

Lee KW, Everts H, Kappert H, Frehner M, Losa R. 2003. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br Poult Sci, 44: 450-457.

Mahboubi M, Kazempour N, Hosseini H. 2012. Chemical composition, antimicrobial activity of essential oil from Ziziphora tenuir L. aerial parts. J Essent Oil Bear Pl, 15: 545-549.

Mahdavi S, Nobakht A. 2018. Evaluation of the effect of thyme (Thymus vulgaris L) and ziziphora (Ziziphora tenuior L) essential oils on intestine microflora of broilers. Vet Clin Path, 11: 305-312.

Mehmood R, Imran M, Malik A. 2010. Ziziphorins A and B new flavonoids from Ziziphora tenuior. Z. Naturforsch, 65: 1397-1400.

Mohammadi S, Mohammadi Mehdiaabadi Hassani MH. 2017. The effect of Ziziphora tenuior L. hydro-alcoholic extract on learning and spsital memory in Rat Model of Alzheimer's Disease by intraventricular injection of streptozotocin. Armaghan J, 22: 557-569.

Mousavi-Mobarake S, Rahnama M, Bigdeli MR, Nasiri-Semnani S. 2013. Effect of Ziziphora clinopodioides L. aqueous extract on peptic ulcer induced by acetic acid in rats. Horizon Med Sci, 19: 173-177.

Nabiuni M, Doostikiah S, Panahandeh SR, Karimzadeh LH. 2015. Hydro-alcoholic extract of Ziziphora tenuior L. on polycystic ovary syndrome in wistar rats. Tehran Univ Med J, 73: 324-333.

Naeini A, Khosravi A, Tadjbakhsh H, Ghanafar R, Yaraee R, Shokri H. 2010. Evaluation of the immunostimulatory activity of Ziziphora tenuior extracts. Comp Clin Path, 19: 459-463.

Najafi F, Tavakkoli Z. 2011. Comparing essential oil composition and antibacterial effects of ziziphora tenuior L. in two regions of Iran. JIMP, 27: 239-248.

Nazemisalman B, Vahabi S, Yazdinejad A, Haghghi F, Shabbuii Jam M. 2018. Comparison of antimicrobial effect of Ziziphora tenuior, Dracocephalum moldavica, Ferula gummosa, and Prangos furulacea essential oil withchlorhexidine on Enterococcus faecalis: An in vitro study. Dent Res J, 15: 111-116.

Zamani N, Zamani W, Mirzaei K. 2016. Genetic diversity analysis of Ziziphora tenuior L. using SCOT markers. Iranian
Journal of Rangelands Forests Plant Breeding and Genetic Research, 24: 177-188.

Pakniyat E, Mousavi M. 2014. Improvement of GC-MS analysis of Shahrbabak Ziziphora tenuior essential oil by using multivariate curve resolution approaches. J Chin Chem Soc-Taip, 61: 649-658.

Percival M. 1997. Choosing a probiotic supplement. Clin Nutr Insights, 6: 1-4.

Rafati P. 2015. Study of tyrosinase enzyme inhibitory effect of methanolic extract of Ziziphora tenuior (Kakuti), Myrtus communis (Myrtle), Salvia rhytidea (Persian sage), Teucrium polium (Germander) as suggested anti pigmentation compounds. School of Pharmacy, KMU, Kerman, Iran.

Rezaei A, Shekarforoush S, Changizi Ashtiyani S. 2013. The effects of Artemisia australer extract on hepatotoxicity induced by thioacetamide in male rats. Avicenna J Phytedom, 3: 293-301.

Rostami A, Malai S, Homaei HM. 2017. Effect of drinking Ziziphora Tenuior on total antioxidant capacity, total tiol and malondiadehyde serum after one session exercise inactive women. J Med Plants, 15: 134-140.

Sadeghi H, Mansourabadi AH, Emami S, Nahvinejad MR. 2015. The effect of Ziziphora clinopodioides Lam hydroalcoholic extract of on active pancreatic beta cells count in diabetic type 1 induced STZ mice. ijidd, 14: 373-378.

Godarzi M, Abbasi Maleki S, Mousavi Z, Moradi Kor N. 2016. Morphine withdrawal symptoms improvement by Ziziphora tenuior L. ethanoic extract in male mice. Koomesh J, 17: 990-995.

Salman BN, Yazdinejad A, Salah S. 2017. Antifungal activity of essential oils of Prangos frulacea, Ziziphora tenuior, Ferula gummosa and Dracocephalum moldavica against candida albicans. J Qazvin Univ Med Sci, 21: 4-11.

Sezik E, Tümen G, Başer KHC. 1991. Ziziphoratenuior L., a new source of pulegone. Flavour Frag J, 6: 101-103.

Shahnazi M, Azadmehr A, Latifi R, Hajiaghaee R, Sar aei M. 2016a. In vitro protoscolidal effects of various concentrations of Ziziphora tenuior L. extract at different exposure times. Avicenna J Phytomed, 6: 376-382.

Shahnazi M, Azadmehr A, Andalibian A. 2016b. Protoscolidal and immunomodulatory activity of Ziziphora tenuior extract and its fractions. Asian Pac J Trop Med, 9: 1062-1068.

Shahnazi M, Azadmehr A, Andalibian A. 2017. Scolidal and immunomodulatory effects of Ziziphora tenuior extract and its fractions. Iran J Parasitol, 13: 285.

Taheri S, Zarei A, Changizi-Ashtiyani S. 2012. Evaluation of the effects of hydroalcoholic extract of Berberis vulgaris root on the activity of liver enzymes in male hypercholesterolemic rats. Avicenna J Phytomed, 2: 153-161.

Taleb A, Qannadi F, Changizi-Ashtiyani S, Zarei A, Rezvanfar M, Akbari A. 2017. The effect of aqueous extract thymus kotschyanusboiss. Et hohen on glycemic control/ and dyslipidemia associated with type II diabetes: A randomized controlled trial. IJEM, 19: 234-243.

Talebi SM, Ebrahimi J, Mansouri M. 2010. The phenotypic plasticity in variant population of Ziziphora tenuior L. (labiatae). Plant And Ecosystem, 6: 3-17.

Tian S, Shi Y, Zhou X, Ge L. 2011. Total polyphenolic (flavonoids) content and antioxidant capacity of different Ziziphora clinopodioides Lam. extracts. Pharmacogn Mag, 7: 65-68.

Tomczyk M, Ceylan O, Locatelli M, Tartaglia A. 2019. Ziziphora taurica subsp. taurica: Analytical characterization and biological activities. Biom, 9: 367-379.

Tschirch H. 2000. Use of natural plant extracts as productive enhancers in modern animal rearing practices. Zeszyty Naukowe Akademii Rolniczej we Wroclawi. Konferencje (Poland).

Yazdi FT, Mortazavi SA, Koocheki A, Afsharian S. 2013. Antimicrobial properties of plant extracts of Thymus vulgaris L., Ziziphora tenuior L. and Menthaspicata L., against important foodborne pathogens in vitro. Sci J Microbiol, 2: 23-30.

Yazdinezhad A, Abbasian M, Hojjat Hosseini S. 2017. Protective effects of Ziziphora tenuior extract against chlorpyrifos induced liver and lung toxicity in rat: Mechanistic approaches in subchronic study. Environ Toxicol, 32: 2191-2202.
The physiological and pharmacological effects of Ziziphora tenuior L.

Zarei A, Changizi-Ashtiyani S, Taheri S. 2015a. A quick overview on some aspects of endocrinological and therapeutic effects of Berberis vulgaris L. Avicenna J Phytomed, 5: 485-497.

Zarei A, Vaezi G, Malekirad AA, Abdollahi M. 2015b. Effects of ethanol extract of Salvia hydrangea on hepatic and renal functions of streptozotocin-induced diabetic rats. Avicenna J Phytomed, 5: 138-147.

Zarei A, Vaezi G, Malekirad AA. 2015c. Hypoglycemic and hypolipidemic activities of Salvia hydrangea in streptozotocin-induced diabetes in rats. Iran J Basic Med Sci, 18: 417-422.

Zarei G, Bariabarghuei H, Amini F. 2014. Study of oil, protein and anthocyanin of ziziphora tenuior in yazd. National congress on medicinal plants.

Zendehdel M, Babapour V. 2010. Study of antinociceptive effects of ziziphora tenuior and its interference on opioidergic and serotoninergic systems. J Vet Res, 65: 57-60.