A NATURAL PRODUCT DECURSIN ENHANCES THE RADIOSENSITIZATION OF IONIZING RADIATION AGAINST DMBA-INDUCED TUMOR

ADEEB SHEHZAD*, HIRA ZAHID†, WAZIR MUHAMMAD‡, RIZWAN AHMAD§, EBTESAM A AL-SUHAIMI**

*Department of Biomedical Engineering and Sciences, SMME, National University of Sciences and Technology, H-12, Islamabad, Pakistan. †Department of Therapeutic Radiology, Yale School of Medicine, Yale University, New Haven, CT, USA. ‡Department of Biology, National Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia. §Department of Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Saudi Arabia.

Department of Biomedical Engineering and Sciences, SMME, National University of Sciences and Technology, H-12, Islamabad, Pakistan. For 3-[4-(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cells were exposed to various concentrations of decursin for 24 h. After this, medium was removed and 50 µl of MTT solution (5 mg/mL in phosphate-buffered saline) was added to each well. After 3 h, the MTT solution was removed and 200 µl

ABSTRACT

Objective: Radiation therapy has gained significant attention for the treatment and prevention of solid and malignant human tumors. However, after periodical exposures, radiation therapy loses its efficacy against cancer cells displaying radio-resistant phenotypes. Therefore, decursin might improve the efficiency of radiotherapy against a variety of human cancers.

Methods: The chemopreventive efficacy of decursin was evaluated against B16F10 cancer cell lines and DMBA/croton oil-induced skin carcinogenesis in BALB/c mice. Decursin was administered intraperitoneal at the dose of 20 mg/kg/day for 8 weeks following exposure to 5 Gy of ionizing radiation (IR) after 1 month of DMBA application. Western blot was performed for underlying mechanism of radioresistance.

Results: Decursin suppressed the proliferation and viability of melanoma cancer cell lines in a concentration- and time-dependent manner. The in vivo data collected from mice model revealed that decursin reduced the precancerous skin lesions and the incidence of tumor bearing in radiation-exposed mice. Decursin also enhanced the effect of IR by downregulation of Akt/NFκB pathway through activation of IκBα.

Conclusion: Our results suggest that the activation of Akt/NFκB establishes a pro-survival response to radiation that may account for the development of radioresistance. Decursin blocks the abnormal expression of these proteins and potentiates the radiotherapeutic effect.

Keywords: Decursin, Ionizing radiation, DMBA, Inflammation, Squamous carcinoma.

INTRODUCTION

Ionizing radiation (IR) is an established beneficial treatment modality for the treatment of pre- and post-operative cancer, which selectively target and destroy cancer cells [1]. Radioresistance is a biological phenomenon which limits and decreases the maximal therapeutic efficacy of radiotherapy for the treatment of tumors [2]. Among various human cancers, melanoma has been believed to be a radio-resistant tumor type as compared to other types of cancers [3]. Studies have reported various plant isolated compounds for radiosensitization as well as radioprotection [4]. Therefore, low cost and less toxic radiosensitizers are urgently required, which can reduce the radiotherapy dose-response threshold for cancer cells and provide radioprotection to normal cells [4].

PI3K/Akt pathway has been involved in tumor cell proliferation and intrinsiradioresistance [5]. In melanoma, aberrant activity of the PI3K/Akt pathway has been demonstrated to promote melanogenesis [5]. A number of studies have shown that specific inhibition of PI3K/Akt/mTOR pathway has enhanced the radioresensitivity of various cancer cell lines both in vitro and in vivo [6]. On activation, PI3K/Akt pathway also regulates the expression of downstream targets such as NFκB, which further potentiates the process of radioresistance. NFκB activation constitutively leads to radioresistance. Inhibition of NFκB activation can lead to an increase in the efficacy of radiotherapy [7]. Therefore, downregulation of NFκB is a promising target to enhance radioresistance [7].

Decursin is a naturally occurring coumarin compound isolated from the roots of Korean Angelica also known as Angelica gigas Nakai [8]. Decursin exerts its antitumor effects by inducing apoptosis through activation of caspase 8, 9, and 3, downregulation of antiapoptotic proteins such as Bcl-2 and Bcl-xL, by inhibiting vascular endothelial growth factor (VEGF)-induced angiogenesis, by inducing cell cycle arrest through the downregulation of cyclin D1, and by modulating various signaling pathways including NFκB and PI3K pathways [9,10].

Previously, we have summarized and reported the anti-inflammatory and synergistic role of decursin in various cancers [11]. In the current study, we have investigated the role of decursin in modulating the radioresponse of melanoma cancer in vitro and in vivo. Decursin enhanced radiosensitization through downregulation of NFκB and PI3K.

METHODS

Cell culture and treatment
B16F10 cells of Mus musculus skin melanoma were obtained from ATCC, CRL-6475™. Cells were cultured at a density of 5×10^5 in RPMI-1640 medium containing 10% heat-inactivated fetal bovine serum, L-glutamine and supplemented with 1% (v/v) antibiotic-penicillin streptomycin (Gibco, Invitrogen Corporation) at 37°C in a 5% CO₂ humidified atmosphere. 70% confluent growing cells were seeded at 1×10^4 cells per dish followed by exposure to various concentrations (2, 5, 10, 20, 40, 80, and 100 µM) of decursin (≥97% Sigma-Aldrich, USA). For 3-[4-(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cells were exposed to various concentrations of decursin for 24 h. After this, medium was removed and 50 µl of MTT solution (5 mg/mL in phosphate-buffered saline) was added to each well. After 3 h, the MTT solution was removed and 200 µl of

Received: 15 April 2018, Revised and Accepted: 25 June 2018

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ijap.2019.v11s3.M1001
dimethyl sulfoxide was added and analyzed by microplate reader (BioTek, USA) at 570 nm in a triplicate.

Experimental design
BALB/C male mice (27–30 g, 5–6 weeks) were purchased from the National Institute of Health (NIH, Islamabad, and were divided into four groups, each containing six mice. Our experimental protocol was approved by the Institutional Animal Care and Ethics Committee, in line with international laws and policies (NIH Guide for the Care and Use of Laboratory Animals, NIH publication No. 85–23, 1985). These groups were assigned to different treatments as follows: Group A (DMBA/Croton oil): The animals in this group received topical applications of DMBA in acetone (100 µL) at a dose of 400 nmol per application at an interval of 72 h per mouse. Starting from the 8th day after the first DMBA application, croton oil (1% w/v) in acetone (100 µL) was applied twice in a week for a total of 8 weeks. Group B mice were exposed to 5 Gy/month of IR after induction of tumor with DMBA/croton oil. Group C (decursin 20 mg/kg ip injection): The animals in this group were applied with DMBA/croton oil following concomitant treatment with ip injection of decursin. Group D received decursin and IR after treatment with DMBA/croton oil. During the 8 weeks of experimental period, the animals were observed daily for the appearance of skin papillomas and the tumor volume was recorded. The mice were sacrificed for the isolation of tumor after 8 weeks.

Decursin reduced DMBA-induced tumor in BALB/C
We evaluated the combined effects of decursin and IR against the growth of DMBA-induced tumor model. As shown in Fig. 2, combined administration of decursin and IR reduced the tumor growth as compared to their individual effect. Tumor volume was measured according to the formula: V = 4/3πW^2L (short size^2*long size/2 (mm^3)). The mice were sacrificed for the isolation of tumor after the 8th week.

Decursin inhibited the DMBA-induced expression of NFκB and Akt
In our study, DMBA treatment activates Akt and NFκB, whereas degrad IκB (Fig. 3). However, decursin treatment reversed the carcinogenic and tumorigenic effect of DMBA. Decursin potentiated the effects of IR in DMBA-induced tumor (Fig. 3). One of the known activators of IκB signaling pathway is Akt, which also mediates radiosensitivity through induction of pro-survival signaling. Decursin significantly inhibited DMBA-induced Akt and NFκB (Fig. 3).

DISCUSSION
Skin cancers are counted among curable cancers, but the development of resistant phenotype makes it hard to treat with standard chemo and radiotherapy [12,13]. The study was conducted to investigate the radiosensitizing effect decursin in DMBA-induced carcinoma. For this purpose, B16F10 cells and carcinogen model were exposed to decursin and IR. Decursin reduced the cells viability in a concentration- and time-dependent manner. Decursin reduced the cancer lesions in squamous cell carcinoma and potentiated the effect of IR in DMBA-induced tumor model. The previous studies have shown that activation of Akt and NFκB provides a pro-survival response to radiation that may account for the development of radioresistance [14,15]. Decursin activates IκBα and inhibits Akt/NFκB pathway and boosts the efficacy of radiotherapy.
There is accumulating evidence that PI3K/Akt and NFκB signaling pathways are involved in radioresistance [12,14]. Activation of Akt causes downregulation of tumor suppressor gene phosphatase and tensin homolog and inhibits the process of apoptosis [16,17]. Furthermore, Akt has been reported to phosphorylate the NFκB, increasing the transcription of NFκB downstream targets involved in cancer development and therapeutic resistance [18,19]. Therefore, inhibition of Akt will suppress the activation of NFκB in malignant melanoma cells [18]. Decursin treatment decreased the expression of p52 subunit of NFκB in a DMBA-treated group. The expression of IκB was also increased in the decursin-treated group. Our results indicate that decursin has the ability to block Akt and NFκB activation in DMBA-induced tumor model. Decursin can provide alternate strategy to potentiate the therapeutic effect of IR.

The underlying mechanism of tumor resistance is mediated through multiple interrelated signal transduction pathways. Deep understanding of these multiple molecular processes underlying resistance to cancer therapies has led to the demand for the less toxic and cost-effective novel agents [20,21].

CONCLUSION

Decursin has the ability to reduce the cells viability of B16F10 cells in a concentration- and time-dependent manner. Decursin also enhances the effect of IR by downregulating the expression of Akt/NFκB, which is involved in cancer cells survival and radioresistance. Therefore, decursin-induced radiosensitization may have potential therapeutic effect in cancer radiotherapy.

Further in vitro and in vivo studies are needed to investigate the molecular mechanism of decursin in various cancers to further advocate the radiosensitizer role. Furthermore, pharmacodynamics, pharmacokinetics, and safety studies of decursin are further needed to confirm the detail mechanism of action with optimum dose and dosage form in cancer chemotheraphy.

CONFLICTS OF INTEREST STATEMENT

All authors have declared no conflicts of interest.

REFERENCES

1. Qureshi M, Al-Suhaimi EA, Wahid F, Shehzad O, Shehzad A. Therapeutic potential of curcumin for multiple sclerosis. Neurol Sci 2018;39:207-14.
2. Shehzad A, Park JW, Lee J, Lee YS. Curcumin induces radiosensitivity of in vitro and in vivo cancer models by modulating pre-mRNA processing factor 4 (Prpf4). Chem Biol Interact 2013;206:394-402.
3. Chang DT, Amdur RJ, Morris CG, Mendenhall WM. Adjutant radiotherapy for cutaneous melanoma: Comparing hypofractionation to conventional fractionation. Int J Radiat Oncol Biol Phys 2006;66:1051-5.
4. Camphausen K, Tofilon PJ. Combining radiation and molecular targeting in cancer therapy. Cancer Biol Ther 2004;3:247-50.
5. Al-Suhaimi EA. Curcumin induces apoptosis of 3T3-L1 adipocytes and affects molecular signals of adiponectin, AMPK and PKA. An Real Acad Farm 2104;80:720-34.
6. Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis 2013;4:e875.
7. Nakanshi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 2005;5:297-309.
8. Kim BS, Seo H, Kim HJ, Bae SM, Son HN, Lee YJ, et al. Decursin from Angelica gigas nakai inhibits B16F10 melanoma growth through induction of apoptosis. J Med Food 2015;18:1121-7.
9. Kim JH, Jeong JH, Jeon ST, Kim H, Ock J, Suk K, et al. Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages. Mol Pharmacol 2006;69:1783-90.
10. Lee SH, Lee HJ, Kim EJ, Kim WJ, Suk K, Kim JH, et al. A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF-κB activities in HT1080 cells. Cell Biol Int 2012;36:683-8.
11. Shehzad A, Parveen S, Qureshi M, Subhan F, Lee YS. Decursin and decursinol angelate: Molecular mechanism and therapeutic potential in inflammatory diseases. Inflamm Res 2018;67:209-18.
12. Munsli A, Kurland J, Eshrat T, Chiao PB, Andreeff M, Meyn RE, et al. Inhibition of constitutively activated nuclear factor-kappaB radiosensitizes human melanoma cells. Mol Cancer Ther 2004;3:985-92.
13. Al-Suhaimi E. Molecular mechanisms of leptin and pro-apoptotic signals induced by menadione in hepG2 cells. Saudi J Biol Sci 2014;21:582-8.
14. Schön M, Wienerich BG, Kneitz S, Sennenhoffer H, Anschalk M, Vöhringer V, et al. KINK-1, a novel small-molecule inhibitor of IKKbeta, and the susceptibility of melanoma cells to antitumoral treatment. J Narl Cancer Inst 2008;100:862-75.
15. Yu CC, Hung SK, Lin HY, Chiou WY, Lee MS, Liao HF, et al. Targeting the PI3K/Akt/mTOR signaling pathway as an effectively radiosensitizing strategy for treating human oral squamous cell carcinoma in vitro and in vivo. Oncotarget 2017;8:68641-53.
16. Al-Suhaimi EA. Effect of Coriandrum sativum, a common herbal medicine on endocrine and reproductive organ structure and function. Internet J Altern Med 2008;7:1540-2584.
17. Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng QJ, Bosenberg MW, et al. Deregulated akt3 activity promotes development of malignant melanoma. Cancer Res 2004;64:7002-10.
18. Al-Suhaimi EA, Fadwa M, Raviyagam V, Mohammad H. Serum adipokynes, metabolic and immunological correlations in Type 1 diabetes mellitus (T1DM) children. Open Endocrinol J 2012;6:110-8.
19. Dhwain P, Singh AB, Ellis DL, Richmond A. Constitutive activation of akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res 2002;62:7335-42.
20. Al-Suhaimi EA, Akbar A. Relationship of leptin hormone with insulin and glucose in Arabian camel (Camelus dromedarius). J Camel Pract Res 2009;16:201-7.
21. Al-Suwaigh EA, Al-Suhaimi EA. Comparative study on some biochemical constituents of plasma in male camels and goats. J Camel Pract Res 2014;12:141-3.