Non-conditioned bone marrow chimeric mouse generation using culture-based enrichment of hematopoietic stem and progenitor cells

Kiyosumi Ochi1,5, Maiko Morita1,5, Adam C. Wilkinson2, Atsushi Iwama3 & Satoshi Yamazaki1,4✉

Bone marrow (BM) chimeric mice are a valuable tool in the field of immunology, with the genetic manipulation of donor cells widely used to study gene function under physiological and pathological settings. To date, however, BM chimera protocols require myeloablative conditioning of recipient mice, which dramatically alters steady-state hematopoiesis. Additionally, most protocols use fluorescence-activated cell sorting (FACS) of hematopoietic stem/progenitor cells (HSPCs) for ex vivo genetic manipulation. Here, we describe our development of cell culture techniques for the enrichment of functional HSPCs from mouse BM without the use of FACS purification. Furthermore, the large number of HSPCs derived from these cultures generate BM chimeric mice without irradiation. These HSPC cultures can also be genetically manipulated by viral transduction, to allow for doxycycline-inducible transgene expression in donor-derived immune cells within non-conditioned immunocompetent recipients. This technique is therefore expected to overcome current limitations in mouse transplantation models.

1Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 2MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Radcliffe Department of Medicine, University of Oxford, Oxford, UK. 3Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 4Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan. ✉These authors contributed equally: Kiyosumi Ochi, Maiko Morita. ✉✉email: y-sato4@md.tsukuba.ac.jp
The genetic determinants of mammalian immunity are commonly studied using genetically modified mice. Although we can generate transgenic mice for the phenotypic and functional analysis of immune cells in vivo, the process of generating and characterizing these mice models take several years and requires highly technical and expensive methodologies1–4. This hinders research progress in immunology and hematology. A quicker alternative to the generation of transgenic mice is the use of BM chimeras, which are routinely used in immunological research5–7 and involve the engraftment and immune system-reconstitution of donor hematopoietic stem/progenitor cells (HSPCs) in recipient mice. When combined with ex vivo genetic manipulation (e.g., lentiviral transduction8), BM chimeras can be a useful approach to investigate the determinants of hematopoietic and immune system development and function9.

While relatively easy and inexpensive, BM chimera assays currently have several limitations. These include the need to treat the recipient mice using irradiation or chemotherapy to allow for donor cell engraftment within the BM10,11. Such conditioning damages endogenous hematopoietic tissues such as the BM microenvironment and can irreversibly alter steady-state hematopoiesis12–14. Additionally, most protocols use complex multicolor fluorescence-activated cell sorting (FACS) to isolate donor HSPCs for transplantation, requiring expensive equipment and technical expertise.

We recently developed a polyvinyl alcohol (PVA)-based media that could expand FACS-purified CD150+CD34−/Lin−c-Kit+Sca1+ Lineage− hematopoietic stem cells (HSCs) for over a month15,16. Undifferentiated HSCs were stimulated to grow in these cultures using a combination of recombinant stem cell factor (SCF) and thrombopoietin (TPO) cytokines, while downstream cell types were poorly supported. Here, we describe the application of this media to enrich HSPCs from BM without the need for FACS. These cultures enriched and expanded HSPCs can be genetically modified ex vivo and robustly engraft in non-conditioned immunocompetent recipients, thereby providing a useful and practical experimental approach for the fields of immunology and hematology.

Results

Culture-based enrichment of HSPCs from c-Kit+ BM cells. Based on the selective expansion of HSCs in our recently described PVA-based media15,16, we hypothesized that we may be able use ex vivo culture to enrich for functional HSCs from more differentiated cell types. To test this hypothesis, we collected c-Kit+ BM cells from C57BL/6-CD45.1 mice (via magnetic column enrichment) and cultured them for 28 days ex vivo in PVA-based HSC medium (Fig. 1A). In these experiments, cell cultures were initiated with 3.5 × 10^6 cells, where Lin− and c-Kit+Sca1+Lineage− (KSL) HSPC fractions were at initial frequencies of ~71% and ~5.9%, respectively (meaning each culture was initiated with ~2.5 × 10^6 Lin− cells including ~2.1 × 10^4 KSL cells). A progressive increase in total cell number was observed throughout these 28-day cultures (Fig. 1B) and flow cytometry analysis detected a high percentage of c-Kit+ cells (88% at day 28) (Fig. 1C, Supplementary Fig. 1A). This represented a 5.8-fold increase in c-Kit+ cell numbers over 28 days (Fig. 1B, C). A more detailed analysis of phenotypic KSL and CD150+KSL HSPC populations also identified progressive increases in the frequency of these populations during the culture (Fig. 1C, Supplementary Fig. 1A). These results supported our hypothesis that PVA-based HSC media could enrich for and support expansion of HSPCs ex vivo.

To evaluate the function of these culture-enriched HSPCs, we performed competitive BM transplantation using the congenic C57BL/6 system, where irradiated C57BL/6-CD45.2 recipient mice are reconstituted with C57BL/6-CD45.1 donor cells and C57BL/6-CD45.1/CD45.2 competitor BM cells, allowing for donor reconstitution to be tracked and quantified using allele-specific CD45 antibodies (Supplementary Fig. 1B). In this study, 1 × 10^6 expanded cultured cells at day 28 (approximately ~1/25 of the culture, equivalent to ~1 × 10^7 Lin− cells containing ~8.4 × 10^3 KSL cells at day 0) or 1 × 10^6 fresh BM cells derived from C57BL/6-CD45.1 BM were transplanted against 1 × 10^6 C57BL/6-CD45.2 BM competitors. Expanded cells displayed stable high-level and multilineage peripheral blood (PB) reconstitution in primary recipients, similar to fresh BM cells (average of 73% vs 61% donor chimerism at 16-weeks, respectively) (Fig. 1D). In addition, there were no significant differences in multilineage differentiation within PB myeloid cells (Mac-1+/Gr-1−), T cells (CD4+/CD8a−), and B cells (B220+) as compared with the fresh BM cells (Fig. 1E).

To further confirm long-term (LT)-HSC function within the expanded cells, we performed secondary transplantation assays. The expanded cells from c-Kit+ BM displayed higher engraftment in secondary recipients than the fresh controls throughout the 16-week assay (average 77% vs 55% donor chimerism at 16 weeks, respectively) (Fig. 1G). Finally, BM analysis of these secondary recipients after 16-weeks confirmed robust contributions of the expanded cells to the phenotypic KSL HSPC and CD34−KSL HSC populations (Fig. 1H). Together, these results suggested that we could selectively expand functional HSCs ex vivo using PVA-based media.

To further assess the expansion of engraftable HSCs in these c-Kit+ BM cultures, we performed limiting dilution transplantation assays comparing fresh c-Kit+ cells and expanded c-Kit+ cells. Doses of 1 × 10^3, 1 × 10^4, and 1 × 10^5 cells were transplanted into lethally irradiated C57BL/6-CD45.2 recipient mice against 1 × 10^6 competitor BM cells. At 12 weeks post-transplantation, average chimerism of the cultured cells was 1.3, 28, and 83%, respectively, while chimerism of fresh cells averaged 0.6, 8.7, and 67%, respectively (Fig. 1I). Using extreme limiting dilution analysis17 (with a 1% donor chimerism threshold cutoff), we estimated the engraftable HSC frequency in the expanded cells as 1:2164 whereas fresh c-Kit+ cells had an HSC frequency of 1:3971. These data suggest an ~8-fold expansion in HSPC potency can be achieved via this approach. We therefore conclude that the expansion culture from c-Kit+ BM cells is a practical approach for efficiently generating functional HSPCs without either expensive equipment or time-intensive methods.

Given the ability of PVA-based media to enrich for HSCs in culture, we also evaluated whole (unfractionated) BM in our ex vivo culture system, with cultures initiated with 2 × 10^7 BM cells (Supplementary Fig. 2A). Within the starting whole BM, the Lin− and KSL fractions were at initial frequencies of ~2.3% and ~1.0%, respectively (meaning each cell culture was initiated with approximately 4.7 × 10^6 Lin− cells including 2.4 × 10^4 KSL cells). Although c-Kit+ cells were enriched for over the 28-day cultures, the purity of phenotypic KSL and CD150+KSL remained lower than in the c-Kit+ BM-derived cultures (Supplementary Fig. 2B–D). Primary and secondary transplantation assays were also performed. In these experiments, cell cultures contained ~1 × 10^7 cell by day 28, and primary recipients received 1 × 10^6 of these cultured cells (approximately ~1/10 of the culture, equivalent to ~4.7 × 10^6 Lin− cells with ~2.4 × 10^4 KSL cells at day 0). The functional assays confirmed that hematopoietic progenitors and short-term HSCs expanded in whole BM cell
cultures (Fig. 2A, B), but low BM chimerism in primary recipients and reduced engraftment in secondary recipients suggested that LT-HSCs were poorly supported (Fig. 2C, D, Supplementary Fig. 2E).

Given that total live cell numbers rapidly dropped in the first 7 days, over 80% to ~3.8 × 10^6 cells (Supplementary Fig. 2B), we hypothesized that toxicities from cell death may affect HSC activity in whole BM cultures. In order to evaluate this further, we compared whole BM and c-Kit^+ BM cell cultures by performing Annexin V apoptosis assays and evaluating the expression of senescence-related genes (p16^{Ink4a}, p19^{Arf}, and Trp53). The frequency of apoptotic cells was significantly higher in whole BM cell cultures (Fig. 2E), and expression of p16^{Ink4a} and p19^{Arf} was also higher within both bulk culture cells as well as phenotypic KSL cells in the whole BM cultures (Fig. 2F). Additionally, expression of Trp53 was higher in the whole BM-
derived bulk cell cultures (Fig. 2F). Together, these results suggested that cellular stress may be negative regulator of HSC activity ex vivo.

Cultured HSPCs efficiently engraft non-conditioned mice. Generation of mice chimeric BM without conditioning represents an important approach to study immune system development and function without the toxicities associated with irradiation or chemotherapy. Unfortunately, the routine use of approach has been essentially unfeasible due to the large numbers of HSPCs required for engraftment; donor HSPCs engraft very inefficiently without recipient conditioning. In our previous study, the HSPCs expanded from FACS-purified CD150+CD34− KSL cells were able to engraft in immunocompetent autologous mice without irradiation or other conditioning.

We therefore sought to evaluate the capacity of our culture-enriched HSPCs from c-Kit+ BM cells to engraft and reconstitute non-conditioned recipients by transplanting 1×10^6 culture-enriched cells (from C57BL/6-CD45.1 c-Kit+ BM) into C57BL/6-CD45.1/CD45.2 recipient mice (Supplementary Fig. 3A). Donor engraftment and lineage contribution was tracked by PB chimerism and irradiation-based conditioning means that recipients can be studied under steady-state conditions, and the lack of undesirable morbidity/mortality from cytotoxic chemotherapy and irradiation-based conditioning means that recipients can survive long-term (more than a year) post-transplantation (Fig. 3E).

Finally, to determine the potential of ex vivo expanded c-Kit+ BM, we performed limiting dilution transplantation assays, comparing fresh c-Kit+ BM cells and 28-day cultured cells in non-conditioned recipients. Doses of 1×10^4, 1×10^5, 1×10^6 cells were transplanted into C57BL/6-CD45.1/CD45.2 recipients. After 12 weeks of transplantation, the average chimerism of fresh c-Kit+ cells was 0.1, 0.2, and 0.8%, respectively, while the average chimerism of cultured cells was 0.1, 2.6, and 20%, respectively (Fig. 3D). These results confirmed that culture-enriched HSPCs have high engraftment and reconstitution potential, and at least 10-fold higher engraftment potential than fresh c-Kit+ cells. It is worth noting the remarkable advantages of these non-conditioned BM chimeric mice; this procedure does not involve radiation or chemotherapy, immune system and function can be studied under steady-state conditions, and the lack of undesirable morbidity/mortality from cytotoxic chemotherapy.

Genetically engineered immune cells from cultured HSPCs. As demonstrated above, these 28-day ex vivo cultures enriched and expanded HSPCs with long-term reconstitution activity and immune cell repopulation potential in vivo. We therefore evaluated the possibility of genetic manipulation and ex vivo selection using lentiviral vectors in this culture platform. As proof-of-concept, we developed a puromycin-selectable doxycycline (DOX) inducible vector system for inducible transgene expression (Supplementary Fig. 4A), and evaluated expression of enhanced green fluorescent protein (EGFP), AE9a (an AML1/ETO isoform), and BCR-ABL.

Lentiviral transduction was first evaluated ex vivo by EGFP expression and drug selection efficiencies (Fig. 4A). In these experiments, c-Kit+ BM cells were seeded in PVA-based HSC medium, transduced lentivirus particles on day 2, and then treated with puromycin for 48 h at day 4. Puromycin selection, replace with fresh medium without puromycin. The 28-day cultures maintained a high percentage of c-Kit positive cells (average 92%) (Supplementary Fig. 4B) and displayed a 4.8-fold increase in total CD150+ KSL cell numbers (Supplementary Fig. 4C). After a total of 28 days culture, the cells were split into media with or without DOX for 48 h, and then analyzed by flow cytometry and RT-PCR. In terms of the frequencies of phenotypic Lin−, c-Kit+Lineage− (KL) and KSL cell fractions, transduced cells showed no difference compared to non-
Fig. 2 Ex vivo enrichment of HSPCs from whole BM cells. A Percentage of donor-derived CD45.1+ cells in primary transplant recipients over time (n = 5 mice per group) following competitive transplantation of 1 × 10^6 fresh or 28-day cultured whole BM cells (same transplantation protocol as detailed in Fig. 1A). **p < 0.0001 at week 4, **p < 0.0001 at week 8, *p = 0.0114 at week 16. B Percentage of Mac-1+/Gr-1+ (myeloid cells), CD4+/CD8a+ (T cells), and B220+ (B cells) among donor-derived CD45.1+ cells in primary transplant recipients over time for the mice described in A. Mean ± SD from 5 primary recipients (n = 5 mice per group). C Percentage of CD45.1+ BM Lin−, KSL, and CD34− KSL cells at 16 weeks post-transplantation for the mice described in A (n = 5 mice per group). **p = 0.0043 in KSL, *p = 0.0142 in CD34− KSL. D Percentage of donor-derived CD45.1+ cells over time following secondary transplantation using the mice described in A (n = 5 mice per group). p = 0.6265 at week 4, *p = 0.0459 at week 8, *p = 0.0107 at week 12, **p = 0.0024 at week 16. E Percentages of Annexin V+/Propidium iodide (PI)+ from day 7 and day 14 cultured whole BM or c-Kit+ BM cells. Mean ± SD of 4 independent cultures **p = 0.0004 at Day 7, **p = 0.0003 at Day 14. F Evaluation of gene p16^{Ink4a}, p19^{Arf} and Trp53 expression in 7-day cultured whole BM or c-Kit+ BM cells (RNA isolated from bulk and phenotypic KSL cells). Mean of three independent cultures, with gene expression normalized to Gapdh expression. Error bar denote SD. p16^{Ink4a}: **p = 0.0001 (bulk cells expanded whole BM vs c-Kit+ cells), ***p < 0.0001 (KSL expanded from whole BM vs c-Kit+ cells), p19^{Arf}: **p = 0.0008 (bulk cells expanded from whole BM vs c-Kit+ cells), *p = 0.0203 (KSL expanded from whole BM vs c-Kit+ cells), Trp53: p = 0.0218 (bulk cell expanded from whole BM vs c-Kit+ cells), p = 0.2424 (KSL expanded from whole BM vs c-Kit+ cells). Statistical significance was calculated using an unpaired two-tailed t-test, *p < 0.05, **p < 0.01; n.s. not significant.
transduced (mock) cells (Fig. 4B). Quantitative PCR confirmed higher EGFP expression in the presence of DOX (Fig. 4C), which was also confirmed by flow cytometry (Fig. 4D, E). As compared to cells without puromycin treatment, puromycin selection significantly increased the frequency of EGFP+ cells (average of ~23% vs 98% within the KSL cell population) (Fig. 4D, E, Supplementary Fig. 4D).

Having validated the stable transduction of culture-enriched HSPCs, we next evaluated the reconstitution and EGFP expression in vivo (Fig. 4A). We injected 1×10^6 cells into each non-conditioned immunocompetent and tracked donor chimera over 16 weeks; stable multilineage PB chimera was observed during this time (Fig. 4F). To evaluate inducible transgene expression in vivo, recipient mice were administrated
with DOX via the drinking water ad libitum at 16 weeks post-transplantation21,22. After DOX administration, >90% of CD45.1+ donor-derived cells displayed EGFP expression and large increases in EGFP gene expression were observed (Fig. 4G, H, Supplementary Fig. 4E). By contrast, minimal leaky EGFP expression (1–2\%) was observed prior to DOX administration (Fig. 4G, H, Supplementary Fig. 4E).

These experiments were also repeated with AE9a and BCR-ABL transgenes. Inducible expression of AE9a and BCR-ABL expression was confirmed in ex vivo cell cultures and in CD45.1+...
PB cells following non-conditioned transplantation (Fig. 4B, C, Supplementary Fig. 4F–H). Finally, we evaluated the consequences of lentiviral transduction on the engraftment potential of culture-enriched HSPCs using the EGFP-transduced HSPC recipient cohort. By flow cytometry, no significant differences were observed in the frequency of phenotypic Lin-?, KSL, and CD34–KSL BM cell populations (Supplementary Fig. 4I). Additionally, stable long-term PB and BM chimerism was observed in secondary transplantation assays (Supplementary Fig. 4J–K). Together, these results confirm that our HSPC-enrichment cultures can be used to efficiently produce genetically engineered LT-HSCs and immune cells in vivo.

Discussion
While hematopoietic and immune system reconstructing HSCs remain the most well-characterized somatic stem cell population, the isolation of HSCs usually involves complex and expensive methodologies. Here, we have demonstrated that functional HSCs can be enriched by simply culturing magnetic column-enriched c-Kit+ BM cells in PVA-based HSC medium. This culture-based enrichment retains functional LT-HSCs for at least 28 days ex vivo. As demonstrated here, these cell culture–enriched HSPCs are also amenable to viral transduction and further selection prior to transplantation. This approach therefore has broad and important applications in the study of immune system function. Furthermore, the large numbers of HSPCs that can be generated by this approach allow for the engraftment of genetically modified HSPCs in non-conditioned immunocompetent mice, affording studies to be undertaken without tissue toxicities associated with chemotherapy or irradiation conditioning.

In conclusion, we have developed a simple and useful approach for generating irradiation-free BM chimeric mice for the study of steady-state hematopoiesis and immune system development. The approach improves experimental animal welfare and does not require any specialized equipment (e.g., multicolor FACS). We therefore expect that this platform has numerous applications for the investigation of hematopoietic system development and immune response in health and disease.

Methods

Mice. C57BL/6-Cd45.1 (Cd45.1) and C57BL/6-Cd45.1/Cd45.2 (Cd45.1/Cd45.2) mice were purchased from Sankyo Laboratory Service (Tsukuba, Japan), C57BL/6-Cd45.2 (Cd45.2) mice were purchased from Japan SLC (Shizuoka, Japan), respectively. 8 to 12-week-old male mice were used as donors and recipients. All mice were housed in specific-pathogen-free conditions with free access to food and water. All animal protocols were approved by the Animal Care and Use Committee of the Institute of Medical Science, the University of Tokyo. The environment in the mouse chamber is a temperature of 23–25 °C, humidity of about 50%, and a light period of 12 h each.

PVA-based serum-free culture. C57BL/6-Cd45.1 mouse BM cells, unfractionated or following magnetic c-Kit+ cell enrichment, were cultured using Ham’s F-12 medium (Wako), supplemented with 0.1% PVA (Sigma, Cat# P8136), 1% Insulin-Transferrin-Selenium-Ethanalamine (ITS-X) (100X) (Thermo Fisher Scientific), 1% Penicillin-Streptomycin-L-Glutamine Solution (100X) (Wako), 2% hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES) (10 mM; Gibco), mouse TPO (100 ng/mL; PeproTech), and mouse SCF (10 ng/mL; PeproTech) for 28 days, incubated at 37 °C in a humidified 5% CO2 incubator. Medium was changed every other day. Magnetic cell separation was performed using anti-mouse c-Kit MicroBeads (Miltenyi Biotec, Cat# 130-091-224) according to the manufacturer’s instructions. Cell culture using either commercially available pre-packaged HemEx-Type9A (NIPRO) or in-house prepared medium supplemented with 100 ng/mL mouse TPO and 10 ng/mL mouse SCF. Unfractionated whole BM cells were seeded at 2 × 106/well onto 48-well plates in 1 mL culture medium. Medium (day 15–28). Magnetic column-enriched c-Kit+ BM cells were seeded at 1 × 106/well onto 48-well plates in 1 mL culture medium. For long-term cultures, complete medium changes were made every 2 days and cell cultures were passaged at a ratio of 1:2–3 when cells exhibited 80–90% confluency.

Cell counting and sample preparation for flow cytometry. Cell counting was performed using an automated cell counter (Countess II Automated Cell Counter, Invitrogen). PB samples were collected from the retro-orbital venous plexus into capillary tubes filled with powdered EDTA. BM samples were obtained by flushing the tibia, femur, and pelvic bones with sterile 1X phosphate-buffered saline. PB samples were stained with PE-conjugated anti-gr-1, PE-conjugated anti-Mac-1, APC-conjugated anti-CD4, APC-conjugated anti-CD8a, APC/Cy7-conjugated anti-B220, PE/Cy7-conjugated anti-CD45.1, and eFluor450-conjugated anti-CD45.2 antibodies. BM samples were stained with PE/Cy7-conjugated anti-CD45.1, eFluor450-conjugated anti-CD45.2, PE-conjugated anti-Sca-1, APC-conjugated anti-c-Kit, APC/Fluor780-conjugated anti-CD4, APC/Fluor780-conjugated anti-CD8, APC/Fluor780-conjugated anti-Mac-1, APC/Fluor780-conjugated anti-Gr-1, APC/Fluor780-conjugated anti-B220, APC/Fluor780-conjugated anti-Ter119, APC/Fluor780-conjugated anti-ID127/IL-7Ra, and FITC-conjugated anti-CD34 or PE/Cy5-conjugated anti-CD34+antibodies. BM cultures were stained with PE-conjugated anti-CD150, APC-conjugated anti-c-Kit, PE/Cy7-conjugated anti-Sca-1, APC/Fluor780-conjugated anti-CD4, APC/Fluor780-conjugated anti-CD8, APC/Fluor780-conjugated anti-Mac-1, APC/Fluor780-conjugated anti-Gr-1, APC/Fluor780-conjugated anti-B220, APC/Fluor780-conjugated anti-Ter119, and APC/Fluor780-conjugated anti-ID127/IL-7Ra+antibodies. See Supplementary Table 1 for antibody details. Data were acquired on a FACSariaII or FACSVerse (BD) and analyzed with Flowjo (v10.5.3) Software (Flowjo, LLC).

Competitive transplantation assays. Fresh or cultured cells (at indicated cell doses) were transplanted via single intravenous injection into irradiated (9.5 Gy) male C57BL/6-Cd45.2 recipient mice along with 1 × 106 male C57BL/6-Cd45.1/Cd45.2 whole BMcompetitor cells. PB analysis was performed every 4 weeks for 16 weeks. Limiting dilution analysis was performed using ELDA software based on a 1% PB multilineage chimerism as the threshold for positive engraftment.

Non-conditioned transplantation assays. Fresh or cultured cells (at indicated cell doses) were transplanted via single intravenous injection into non-irradiated male C57BL/6-Cd45.1/Cd45.2 recipient mice. PB analysis was performed every 4 weeks for 16 weeks.

Secondary BM transplantation assays. Secondary BM transplantation assays were performed after 16 weeks by transferring 1 × 106 whole BM cells from the primary recipient mice into irradiated (9.5 Gy) male C57BL/6-Cd45.2 mice by intravenous injection.

Vector construct and lentivirus production. The DOX-inducible lentiviral vector was based on an all-in-one inducible lentiviral vector (AI-LV)26 from Dr. T. Yamaguchi (The University of Tokyo), and was cloned to carry a Tet-responsive promoter driving EGFP, AEs9 or BCR-ABL and a downstream rTA gene and puromycin gene driven by a human elongation factor-1 alpha (EF-1a) promoter. MigR1-AEs9 and P210 pdcNA3 plasmids were used as templates for AE9a and BCR-ABL transgenes. Viral supernatant was generated from a lentiviral vector

Fig. 4 Conditional transgene expression in non-conditioned BM chimeric mice. A Experimental schematic for non-conditioned transplantation of culture-enriched HSPC cultures derived from c-Kit+ BM cells following lentiviral transduction and puromycin selection. Cell cultures were initiated with 3.5 × 10^6 c-Kit+ BM cells. Lentiviral transduction was performed at day 2, puromycin treatment performed at day 4 for 48 h, DOX treatment performed at day 28 for 48 h, and flow cytometric analysis on day 30. 1 × 10^6 day-28 cells were injected into non-conditioned C57BL/6-Cd45.1/Cd45.2 recipient mice. B Percentage of phenotypic Lin–, KLS and KSL cell populations at culture day 28, as described in A. Mean ± SD of independent triplicate cultures. C Quantitative-PCR for expression of EGFP, AE9a, and BCR-ABL in cells from DOX on or off HSPC cultures. Mean ± SD of independent triplicate cultures. D Representative flow cytometric histograms for EGFP expression in HSPC cultures with or without puromycin selection. E Percentages of EGFP+ cells in KSL cells with or without puromycin selection. F PB chimerism and multilineage differentiation of CD45.1+ cells at 16 weeks post transplant (n = 5 mice), for the non-conditioned recipients described in A. G Representative flow cytometric plots of CD45.1+ cells and EGFP expression in non-conditioned recipients (described in F) before and after DOX administration at 16-weeks post-transplantation. H Percentage of EGFP in CD45.1+ PB cells in individual mice (described in F) before and after DOX administration at 16-weeks post-transplantation (n = 5 mice).
transfected into Lenti-X 293 T Cells using a polyethylenimine (PEI) transfection protocol. For each 10 cm culture dish, use the lentiviral transfer vector plasmid, packaging plasmid (pspAX2), and envelope plasmid (pMD2G) DNA (6:1:5 μg, respectively) in 500 μl of 10 mM HEPES/150 mM NaCl (pH 7.05). Add 42 ul of 1 ug/ul PEI MAX (Polysciences Inc.) to the diluted DNA. DNA/PEI mixtures were incubated at room temperature for ≥ 10 min. Lenti-X 293 T Cells were trypsinized, washed twice with 1X phosphate buffered saline, and resuspended (2 × 10^6 cells/ml) in serum-free Opti-MEM (Invitrogen Life Technologies, Inc.). The DNA/PEI mixture was added to 7.5 ml suspended cells, and immediately plated onto a 10 cm dish and incubated at 37 °C in a 5% CO_2 humidified atmosphere. The supernatants were collected and concentrated by using Lenti-X concentrator (Takara Bio Inc.).

Viruses were titrated and analyzed in NIH 3T3 cells by serially diluting 1.0 μg/ml virus stock to 10^-10 μg/ml. Parallel samples were used to determine the transduction efficiency of each virus. Transduction efficiencies were typically ≥ 80%. Viral supernatants were titrated as described above and were used for all experiments.

Supplementary Information

Provided as a Source Data

Source data underlying Figs. 1, 2, 3, and 4, as well as Supplementary Figs. 2, 3, and 4 are given below.

1. Lampreht Tratar, U., Horvat, S. & Cemazar, M. Transgenic mouse models in cancer research. *Front. Oncol.* 8, 288 (2018).

2. Bradely, A., Evans, M., Kaufman, M.H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. *Nature* 309, 255–256 (1984).

3. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. *Nature* 292, 154–156 (1981).

4. Hatada, S., NikiKuni, K., Bentley, S. A., Kirby, S. & Smithies, O. Gene correction in hematopoietic progenitor cells by homologous recombination. *Proc. Natl Acad. Sci. U.S.A.* 97, 13807–13811 (2000).

5. Stripeke, R. et al. Immune response to green fluorescent protein: implications for gene therapy. *Gene Ther.* 6, 1305–1312 (1999).

6. Krause, D. S. et al. Multi-organ, multi-lineage engrafment by a single bone marrow-derived stem cell. *Cell* 105, 369–377 (2001).

7. Pillitreau, S., Sweenie, C. H., McGinness, M. J., Gray, D. & Anderson, S. M. B cells regulate autoimmunity by provision of IL-10. *Nat. Immunol.* 3, 944–950 (2002).

8. van Til, N. P. et al. Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. *Blood* 115, 3529–3537 (2010).

9. Machein, M. R. & Plate, K. H. Bone marrow chimera experiments to determine the contribution of hematopoietic stem cells to cerebral angiogenesis. *Methods Mol. Biol.* 1135, 275–288 (2014).

10. Kuwatanit, I., Ikaraishi, Y., Mineishi, S., Asaka, M. & Wakisugi, H. An irradiation-free nonmyeloablative bone marrow transplantation model: importance of the balance between donor T-cell number and the intensity of conditioning. *Transplantation* 80, 1145–1152 (2005).

11. Peake, K. et al. Basalafin as a myelosuppressive agent for generating stable high-level bone marrow chimerism in mice. *J. Vis. Exp. [https://doi.org/10.3791/52553] (2015).

12. Cachaço, A. S. et al. TNF-alpha regulates the effects of irradiation in the mouse bone marrow microenvironment. *PloS One* 5, e9890 (2010).

13. S. et al. Induction induces bone injury by damaging bone marrow microenvironment for stem cells. *Proc. Natl Acad. Sci. U.S.A.* 108, 1609–1614 (2011).

14. Busch, K. & Rodewald, H.-R. Unperturbed vs. post-transplantation hematopoiesis: both in vivo but different. *Curr. Opin. Hematol.* 23, 295–303 (2016).

15. Wilkinson, A. C. et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. *Nature* 571, 117–121 (2019).

16. Wilkinson, A. C., Ishida, R., Nakauchi, H. & Yamanaka, S. Long-term ex vivo expansion of mouse hematopoietic stem cells. *Nat. Protoc.* 15, 628–648 (2020).

17. Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. *J. Immunol. Methods* 347, 70–79 (2009).

18. Shimoto, M., Sugiyama, T. & Nagasawa, T. Numerous niches for hematopoietic stem cells remain empty during homeostasis. *Blood* 129, 2124–2131 (2017).

19. Yan, M. et al. A previously unidentified alternatively spliced isoform of tie4 (tie2) transcript promotes leukemogenesis. *Nat. Med.* 12, 945–949 (2006).

20. He, Y. et al. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr-abl. *Blood* 99, 2957–2968 (2002).

21. Crawthorne, C., Swindell, R., Stratford, I. J., Dive, C. & Welman, A. Comparison of doxycycline delivery methods for Tet-inducible gene expression in a subtracted xenograft model. *J. Biomol. Tech.* 18, 120–123 (2007).

22. Redelsperger, I. M. et al. Stability of doxycycline in feed and water and minimal effective doses in tetracycline-inducible systems. *J. Assoc. Lab. Anim. Sci.* 55, 467–474 (2016).

23. Nakauchi, H. Isolation and clonal characterization of hematopoietic and liver stem cells. *Current Op. Hematol.* 23, S2–S7 (2004).

24. Rossi, L., Challen, G. A., Sirin, O., Lin, K. K.-Y. & Goodell, M. A. Hematopoietic stem cell characterization and isolation. *Methods Mol. Biol.* 765, 47–59 (2014).

25. Rector, K., Liu, Y. & Van Zant, G. Comprehensive hematopoietic stem cell isolation methods. *Methods Mol. Biol.* 976, 1–15 (2013).

26. Kobayashi, T. et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. *Cell* 142, 787–799 (2010).

27. Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. *J. Immunol. Methods* 184, 39–51 (1995).

28. Cross, N. C. P. et al. Development and evaluation of a secondary reference panel for BCR-ABL1 quantification on the International Scale. *Leukemia* 30, 1844–1852 (2016).

29. Ochi, K. et al. Cell culture-based enrichment of mouse hematopoietic stem and progenitor cells. *Protoc. Exch.* [https://doi.org/10.1038/s41467-021-23763-z] (2021).

Acknowledgements

We thank S. Yamazaki, Y. Ishii, R. Ishida, and HJ. Becker for support and advice. This research was funded by JSPS KAKENHI Grant-in-Aid for Scientific Research (JP20H03707; JP20H05025; JP20K17407) and the Japan Agency for Medical Research and Development (JP18lm044020; 21bm070455b0002). A.C.W. acknowledges funding.
support from the Leukemia and Lymphoma Society (3385-19), NIH (K99HL150218), the Edward P. Evans Foundation, and the Kay Kendall Leukaemia Fund.

Author contributions
K.O., M.M., and S.Y. conceived and designed the study, analyzed data, and wrote the manuscript. A.I. and A.C.W. wrote and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-23763-z.

Correspondence and requests for materials should be addressed to S.Y.

Peer review information Nature Communications thanks Bernhard Gentner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.