1. Introduction

Since the end of the 1980s, new formable steels with higher strength levels have been thoroughly studied.1–3) These steels are well adapted to the requirements of the automotive industry for driving down the weight and improving the crashworthiness. Among these high-strength steel grades, the new and so-called ‘TRIP-assisted multiphase steels’ (that are related to the Dual Phase steels) present an improved balance of strength and ductility thanks to complex multiphase microstructures and the TRIP effect, i.e. a mechanically-induced martensitic transformation of retained austenite. The chemical composition and processing routes of these TRIP-assisted multiphase steels are designed for the retention of austenite within a multiphase microstructure. In the case of cold-rolled and annealed steels, the TRIP-aided steels are obtained at the end of a 2-stage heat-treatment. The first stage consists in an intercritical annealing (as for Dual-Phase steels) during which a controlled volume fraction of austenite is formed together with the intercritical ferrite. This intercritical annealing is followed by an isothermal holding stage in the bainite transformation temperature range. During this holding, part of the austenite transforms to bainite, whereas residual austenite (i.e. non bainitically transformed austenite) may become sufficiently stabilised by carbon rejection from bainitic ferrite as to not transform to martensite during the final quenching to room temperature. It is indeed well known that the bainite transformation is accompanied by the carbon redistribution from the bainitic ferrite to the surrounding residual austenite.4) In order to promote the formation of carbon supersaturated austenite instead of cementite precipitation during the bainitic holding, TRIP-aided steels are alloyed with significant amounts of silicon (from 1 to 2 wt%).4,5) Silicon inhibits cementite precipitation during bainite transformation and therefore promotes enrichment of residual austenite with carbon. As a consequence, studies dealing with the TRIP-assisted steels mainly focus on alloys containing rather high concentrations of silicon (from 1 to 2.5 wt%).

These high levels of silicon constitute the major drawback for industrial developments of the TRIP-assisted multiphase steels. Silicon is known to cause surface defects after casting and to form adherent hard oxides not compatible with the industrial surface cleaning practice prior to hot-rolling. Furthermore, steel compositions have to be kept at low silicon contents in order to allow galvanisation and spot welding.

Studies dealing with conventional high silicon TRIP-assisted steels have mainly focused on the maximisation of the TRIP effect. This effect is considered as the main cause responsible for the enhanced mechanical properties of these steels. The emphasis was thus to allow austenite retention in a wide range of bainite transformation conditions. Furthermore, it is sometimes believed that retention of austenite is almost impossible with silicon contents lower than 1 wt%.6,7) Whereas it is well demonstrated that the TRIP effect plays a favourable role on the properties of TRIP-assisted multiphase steels, hardly anything has been reported on the effect of the other phases and on the mechanical properties of multiphase steels. However, a recent
2. Experimental Procedure

The chemical compositions of the investigated steels are given in Table 1. 100 kg cast ingots of alloys HSiI and HSiII together with the industrially produced steel LSi were hot-rolled following classical practice before being 75 to 82% cold-rolled to 1 mm in thickness.

For the laboratory studies, heat-treatments were carried out on samples of steels HSiI, HSiII and LSi oriented in the rolling direction. Samples were first intercritically annealed in a fluidised bed furnace and then transferred to a lead bath furnace for the bainitic holding. A complete description of the heat-treatment conditions can be found elsewhere.

The heat-treatment schemes were also simulated in a dilatometer in order to characterise completely the formation and transformation of austenite.

The steel designated by ‘IND’ corresponds to a newly developed multiphase steel industry produced by Usinor-Cockerill-Sambre. As shown in Table 1, its chemical composition is quite identical to steel LSi. After hot-rolling following classical route and 69% cold-rolling to a thickness of 1.25 mm, the steel was continuously annealed in a fluidised bed furnace and then transferred to a lead bath furnace for the bainitic holding. A complete description of the heat-treatment conditions can be found elsewhere. The heat-treatment schemes were also simulated in a dilatometer in order to characterise completely the formation and transformation of austenite.

The last two steel grades, REF1 and REFII, are conventional steel grades presently used by the automotive industry. They correspond to classical HSLA and AlK DDQ steels.

Tensile specimens were prepared according to the European standard EN 10002-1. The initial gauge length was 50 mm and the width was 12.5 mm. Tensile testing was done at a crosshead speed of 2 mm/min. Measured loads and elongations were converted to true stress–true strain curves. Yield strength (σy), true stress at maximum load (σmax) and true uniform strain (εu) (i.e. the maximum uniform true strain) were measured from these tensile curves. The yield strength was defined either as the conventional 0.2% yield strength (σ0.2) or as the true stress corresponding to the Lüders deformation plateau for samples with continuous or discontinuous yielding behaviours, respectively. Strain-hardening was characterised by the incremental strain-hardening exponent (nincr) defined as

\[n_{\text{incr}} = \frac{d \ln \sigma}{d \ln \epsilon} \]

Microstructures were studied by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) after particular preparation routes described elsewhere. Retained austenite contents were measured by Mössbauer spectroscopy. X-ray diffraction was used to determine the lattice parameter (a0) of retained austenite and therefore its carbon content by making use of the relationship:

\[a_0 (\text{Å}) = 3.578 + 0.033 (\text{wt}\% \text{C}) \]

3. Results and Discussion

3.1. Heat-treatment and Microstructure

Figure 1 sketches the map giving the evolution of the phases present in the room temperature microstructure of steel LSi after increasing bainite transformation times. The bainite transformation was conducted at 370°C after intercritical annealing for 5 min at 730°C (i.e. 10°C above Ac1). As represented in Fig. 1, the intercritical annealing brings about an initial volume fraction of austenite of 25%. Depending on the bainite transformation conditions, the nature of the non intercritical ferrite phases can be adjusted.

Figure 2 shows typical microstructures obtained after bainitic transformation times of 1 min and 30 min, respectively. The microstructures consist in a matrix of ferritic grains with a dispersion of bainite–austenite–martensite grains located at the ferrite grain boundaries. As shown in these 2 figures, up to 10% of austenite can be retained after very short holding times (from 15 sec to 3 min). The retention of such a large volume fraction of austenite was not anticipated when considering previous studies dealing with low silicon steel grades. For longer holding times, the bainite transformation goes nearly to completion and only bainite can be found in the microstructure, as shown in Fig. 2(b). As predicted by the laboratory study on steel LSi, the microstructure of the industrially produced low silicon multiphase steel (IND) also consisted in a ferritic matrix with a dispersion of bainite and retained austenite as second phas-

| Table 1. Chemical compositions (10^-3 wt%) of the investigated steels. |
|-----------------|---|---|---|---|---|---|---|---|
| | C | Mn | Si | P | S | Nb | Al | N |
| HSiI | 130| 1420|1500|13 |9 | 0 | 27 | 7.9|
| HSiII | 290| 1420|1410|12 |20 | 0 | 40 | 8 |
| LSi | 160| 1300|380 |13 |12 |13 |30 | 6.3|
| IND | 160| 1390|420 |19 |6 |10 |29 | 5.1|
| REF1 | 65 | 380 |<30 |<15 |<8 |50 |35 | 5.2|
| REFII | 30 | 200 |<30 |<15 |10 |0 |40 | 3.5|
A similar transformation map given in Fig. 3 was obtained for steel HSiII after intercritical annealing at 760°C (i.e. 15°C above Ac₁) for 6 min and bainitic holding at 360°C. Due to a higher carbon content, the volume fraction of intercritical austenite is in this case larger despite similar annealing conditions (i.e. approximately the same temperature difference with respect to Ac₁). Micrographs shown in Fig. 4 were obtained after bainitic transformation times of 3 and 15 min, respectively. In the case of steel HSiII, a volume fraction of 16% of austenite can be retained with bai-
nite and ferrite for longer bainitic holding times than for steel LSi.

For steel HSiI, the same behaviour as for steel HSiII can be observed during the bainite transformation, i.e. the behaviour of a high silicon steel. However, because of a lower carbon content, a lower volume fraction of austenite can be retained. The maximum volume fraction of austenite is about 8–10% in the case of steel HSiII.

Figure 5 summarises the evolution of the volume fraction of retained austenite as a function of the bainitic holding time at 360°C for steels HSiI and HSiII and at 370°C for steel LSi while Fig. 6 presents the evolution of the carbon content of this retained austenite. Figure 5 shows that the bainite transformation of intercritical austenite is accompanied by the stabilisation of austenite in each steel grade. However, the behaviours of the high and low silicon steels are not identical. In both steels HSiI and HSiII, the amount of austenite retained at room temperature first increases (at the expense of martensite) to reach a maximum when martensite completely disappears from the microstructure. This level of retained austenite is then maintained even for longer bainitic holding times. A much larger volume fraction of austenite (~20%) can be retained in steel HSiII due to a higher carbon content of the grade. However, steels HSiI and HSiII present identical evolutions of the carbon enrichment of austenite with the bainitic holding time. Indeed, the austenite carbon content increases in both steels up to a level of about 1 wt% that corresponds to the T_C-curve (i.e. the upper bound for the carbon enrichment of austenite during a diffusionless phase transformation\(^9\),\(^12\),\(^13\)). Once this upper bound is attained, the bainite transformation cannot further proceed (the transformation is said to be ‘incomplete’) as shown in Fig. 6. As already reported elsewhere,\(^14\),\(^15\) this behaviour corresponds to the typical behaviour of high silicon steels in which cementite precipitation is totally inhibited. The TEM micrograph of Fig. 7 confirms that only bainitic ferrite without cementite can be found together with retained austenite in steels HSiI and HSiII.

In the case of the low silicon steel LSi, the bainitic holding first leads to a very fast increase of the retained austenite content. Bainitic holding longer than approximately 50 sec then induces a monotonous decrease of the retained austenite content. Contrarily to steels HSiI and HSiII, this maximum of the retained austenite content occurs when the major part of the second phases is martensite and when the carbon enrichment of austenite is not maximum. As a consequence, it can be postulated that in the case of steel LSi, the stabilisation of austenite is not only due to the carbon enrichment of austenite but also to a partial martensitic transformation. As already reported by Xie et al.,\(^16\) a partial transformation of the austenite during quenching stabilises the remaining austenite against the further progress of the transformation.

Furthermore, if carbon enrichment of austenite during the bainitic transformation can be observed (Fig. 6) and has a stabilising effect, cementite precipitation also occurs in steel LSi. Figure 8 presents a TEM micrograph of an austenite grain of steel LSi after 3 min of bainitic holding at 370°C. Together with the retained austenite, cementite particles can be found between the laths of bainitic ferrite. This cementite precipitation can explain why no incomplete reaction phenomenon is observed in steel LSi. While bainite transformation leads to a carbon enrichment of austenite, cementite precipitation brings about a carbon weaken-
ing of austenite so that the upper bound for the carbon content of austenite dictated by the T_c-curve cannot be attained before the complete transformation of residual austenite.9)

3.2. Tensile Properties

Figure 9 presents the values of true uniform strain vs. true stress at maximum load for all combinations of heat-treatment parameters (i.e., intercritical annealing temperature and time and bainite transformation temperature and time) of steels HSiI, HSiII and LSi as well as for the industrially produced multiphase steel (IND) and the 2 conventional steels REFI and REFII. We can see that better combinations of strength and ductility are obtained with the multiphase steels in comparison with steels REFI and REFII currently used in the automotive industry. Furthermore, this figure shows that each steel grade leads to particular and well-defined levels of strength and ductility.

For steels HSiI and HSiII, true stress at maximum load varies between 850 and 1050 MPa and 1000 and 1200 MPa, respectively, while true uniform strain ranges between 0.12 and 0.27 for both of them. These 2 conventional TRIP-assisted multiphase steels present the best mechanical properties among the investigated steels. Steel HSiII with its much larger content of retained austenite leads to further enhancements of the combinations of strength and ductility.

For the laboratory developed low silicon steel LSi, true stress at maximum load varies between 700 and 900 MPa, while true uniform strain ranges from 0.10 to 0.19. These performances are quite remarkable for such a steel composition when compared to solid-solution or precipitation hardened high-strength steels,17) or even to conventional TRIP-aided steels with a lower carbon content (~0.1 wt%).18) The mechanical properties of the industrially produced multiphase steel IND corresponds to a mean true stress at maximum load of 735 MPa with a true uniform strain of 0.15, i.e. comparable to the mean values of the laboratory processed identical grade. It is noteworthy that this combination of properties is much larger than the ones of the presently produced steels for the automotive industry.

Figure 10 shows the yield strength as a function of the true stress at maximum load for all combinations of heat-treatment parameters tested in this study. For the 3 laboratory studied steels, i.e. HSiI, HSiII and LSi, the yield strength can be varied in a large range globally comprised between 200 and 600 MPa. As indicated on Fig. 10, this yields to σ_y/σ_{TS} ratios between 0.3 and 0.8. The industrially produced multiphase steel IND presents a mean yield strength of 540 MPa and therefore a σ_y/σ_{TS} ratio comprised between 0.7 and 0.8 (which is almost comparable with the σ_y/σ_{TS} ratio of the steel REFI).

Figure 11 presents the true stress vs. true strain curves (Fig. 11(a)) as well as the η_{true} vs. true strain curves (Fig. 11(b)) of particular specimens of steels HSiI, HSiII and LSi presenting the best strength–ductility balance for each steel grade. Furthermore, Fig. 12 shows the evolution of the retained austenite content of these specimens as a function of true strain. Specimens of steels HSiI and LSi present the same initial amount of retained austenite (~8%) with different carbon contents (0.95 wt% for steel HSiI and 0.73 wt% for steel LSi). Specimen of steel HSiII contains twice as much austenite than the two other specimens with also a high carbon content (0.97 wt%). This carbon content influences the transformation rate during straining: a progressive transformation all along straining for steels HSiI and HSiII and a predominant transformation in the early part of plastic straining for steel LSi.

![Fig. 8. TEM micrograph (bright field) of steel LSi after 3 min of bainitic holding at 370°C (intercritical annealing at 730°C for 5 min) showing that cementite can be found between the plates of bainitic ferrite (αb: bainitic ferrite; θ: cementite).](image)

![Fig. 9. Map of true uniform strain vs. true stress at maximum load for all combinations of the investigated heat-treatment parameters on the different studied steels.](image)

© 2001 ISIJ
As also shown in Ref. 19), this transformation rate of austenite influences in a large way the strain-hardening behaviour expressed by the n_{incr} curves. Specimens of steels HSI and HSIII presents an initially low n_{incr} value that increases with plastic straining, thus allowing larger true uniform strains to be reached before the fulfilment of the Considere’s criterion and the onset of necking. On the contrary, steel LSI presents a decreasing n_{incr} curve reflecting the large austenite transformation in the early stage of plastic strain followed by its levelling off. Nevertheless, steel LSI presents an improved balance of strength and ductility thanks to the presence in the initial microstructure of thermal martensite (i.e., martensite formed during the quench to room temperature). The simultaneous occurrence of the TRIP effect and the strengthening due to the martensite is responsible of the mechanical performance of steel LSI. These results show that the best combinations of strength and ductility obtained with steels HSI and HSIII steels can be attributed to the TRIP effect and its beneficial influence on the mechanical properties. In the case of LSI, both the TRIP effect and a ‘composite strengthening effect’20) contribute to the improvement of mechanical properties.

4. Conclusion

This study investigates how a low silicon cold-rolled steel compatible with the industrial practice can be heat-treated in order to generate multiphase microstructures containing retained austenite. It is shown that excellent tensile properties in comparison with presently used steels or even high-Si TRIP-aided steels can be obtained thanks to the combination of a composite strengthening effect and a

As also shown in Ref. 19), this transformation rate of austenite influences in a large way the strain-hardening behaviour expressed by the n_{incr} curves. Specimens of steels HSI and HSIII presents an initially low n_{incr} value that increases with plastic straining, thus allowing larger true uniform strains to be reached before the fulfilment of the Considere’s criterion and the onset of necking. On the contrary, steel LSI presents a decreasing n_{incr} curve reflecting the large austenite transformation in the early stage of plastic strain followed by its levelling off. Nevertheless, steel LSI presents an improved balance of strength and ductility thanks to the presence in the initial microstructure of thermal martensite (i.e., martensite formed during the quench to room temperature). The simultaneous occurrence of the TRIP effect and the strengthening due to the martensite is responsible of the mechanical performance of steel LSI. These results show that the best combinations of strength and ductility obtained with steels HSI and HSIII steels can be attributed to the TRIP effect and its beneficial influence on the mechanical properties. In the case of LSI, both the TRIP effect and a ‘composite strengthening effect’20) contribute to the improvement of mechanical properties.

4. Conclusion

This study investigates how a low silicon cold-rolled steel compatible with the industrial practice can be heat-treated in order to generate multiphase microstructures containing retained austenite. It is shown that excellent tensile properties in comparison with presently used steels or even high-Si TRIP-aided steels can be obtained thanks to the combination of a composite strengthening effect and a
TRIP effect.

Acknowledgements

This work was supported by the Belgian State, Prime Minister’s Office, Federal Office for Scientific, Technical and Cultural Affairs, under contract P4/33 Inter-University Poles of Attraction Programme. The work of P. J. Jacques was supported by the Fonds National de la Recherche Scientifique (Belgium) and by a fellowship of the Government of Québec for a post-doctoral period at McGill University.

REFERENCES

1) Y. Sakuma, D. K. Matlock and G. Krauss: Metall. Trans. A, 23A (1992), 1221.
2) K. Sugimoto, N. Usui, M. Kobayashi and S. Hashimoto: ISIJ Int., 32 (1992), 1311.
3) W. C. Jeong, D. K. Matlock and G. Krauss: Mater. Sci. Eng. A, 165 (1993), 1.
4) H. K. D. H. Bhadeshia and D. V. Edmonds: Metall. Trans. A, 10A (1979), 895.
5) M. Takahashi and H. K. D. H. Bhadeshia: Mater. Trans. JIM, 32 (1991), 689.
6) H.-C. Chen: China Steel Tech. Rep., 4 (1990), 66.
7) W. C. Jeong and J. H. Chung: HSLA Steels: Processing, Properties and Applications, ed. by G. Tither and Z. Shoubua, Min., Met. and Mat. Soc., Warrendale, PA, (1992), 305.
8) P. Jacques, X. Cornet, P. Harlet, J. Ladréere and F. Delannay: Metall. Trans. A, 29A (1998), 2383.
9) P. Jacques, E. Girault, T. Catlin, Th. Kop, N. Geerlofs, S. Van Der Zwaag and F. Delannay: Mater. Sci. Eng. A, 273–275 (1999), 475.
10) E. Girault, P. Jacques, Ph. Harlet, K. Mols, J. van Humbeeck, E. Aernoudt and F. Delannay: Mater. Charact., 40 (1998), 111.
11) D. J. Dyson and B. Holmes: J. Iron Steel Inst., 208 (1970), 469.
12) E. Girault, P. Jacques, P. Ratchev, J. Van Humbeeck, B. Verlinden and E. Aernoudt: Mater. Sci. Eng. A, 273–275 (1999), 471.
13) H. K. D. H. Bhadeshia: Bainite in Steels, The Institute of Materials, London, (1992), 117.
14) A. Ali, M. Ahmed, F. H. Hashmi and A. Q. Khan: Metall. Trans. A, 24A (1993), 2145.
15) H. K. D. H. Bhadeshia and D. V. Edmonds: Acta Metall, 28 (1980), 1265.
16) Z. L. Xie, Y. Liu and H. Hänninen: Acta Metall., 42 (1994), 4117.
17) H. Hayashi and T. Nakagawa: J. Mater. Process. Technol., 46 (1994), 455.
18) Y. Sakuma, O. Matsumura and O. Akisue: ISIJ Int., 31 (1991), 1348.
19) P. Jacques, Q. Furnémont, A. Mertens and F. Delannay: Philos. Mag. A, 81 (2001), 1789.
20) P. Jacques and Q. Furnémont: J. J. Jonas Symp. on Thermomechanical Processing of Steel, ed. by S. Yue and E. Essadiqi, CIM, Montréal, Qc., (2000), 527.