Prospection of antiviral compounds from forest plants under ongoing SARS-CoV-2 pandemic

Natchiappan Senthilkumar*, Ramasamy Sumathi and Devaraj Suresh Babu
Institute of Forest Genetics and Tree Breeding, Coimbatore-641002, Tamil Nadu, India

Article Info

1. Introduction

The exponential spread of the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused a serious global threat to human health. Severe acute respiratory syndrome (SARS) is a respiratory illness caused by SARS-CoV-2 (Drosten et al., 2003; Ksiazek et al., 2003; Peiris et al., 2003b; Poutanen et al., 2003). This febrile respiratory illness was initially described in early 2003 (Chan-Yeung and Yu, 2003; Donnelly et al., 2003; Lee et al., 2003; Peiris et al., 2003a; Tsang et al., 2003). The potential to cause life-threatening respiratory failure and rapid transmission placed SARS-CoV-2 in public health emergency of international concern (PHEIC) list (Al-Qahtani, 2020). In the last two decades, the world has faced three important outbreaks of very pathogenic CoVs, including the emergence of SARS-CoV between 2002 and 2003, Middle East Respiratory Syndrome (MERS-CoV) in the year 2012 till date and now COVID-19 is the 3rd deadliest coronavirus pandemic. The coronavirus disease 2019 (COVID-19) pandemic (previously known as 2019-nCoV) was first discovered in the city of Wuhan, China, at the end of December 2019. In a very short period, an outbreak of apparent idiopathic pneumonia had become the COVID-19 pandemic and countries worldwide are comprehensively trying to find preventative measures or cure against the acute resolving disease COVID-19. This pandemic situation warrants us to develop novel antiviral drugs immediately to control and prevent the spread of SARS-CoV-2.

India predominantly relied on plant-based medications under different domain names like Ayurveda, Siddha, Unani, etc. Though, the advent of allopathic medicines has cornered the prevalence of plant-based treatments, the current pandemic emphasizes the need for revisiting those plants and studying those using advanced tools and approaches. Technology interventions are the need-of-the-time to dissect the medicinal value of plants for identifying suitable phytochemicals that could serve as potential molecules in treating SARS-CoV-2. In this present scenario, exploration of plants with bioactive molecules of antiviral property for the development of novel drug is much needed. Several antiviral active compounds from medicinal plants against some notable viral pathogens including coronavirus (CoV), coxsackie virus (CV), dengue virus (DENV), entero virus 71 (EV71), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus, human immunodeficiency virus (HIV), influenza virus, measles virus (MV), and respiratory syncytial virus (RSV) have been discovered, however, nature and composition of those plants and their mode of actions are not available for drug development. The age-old antimalarial drug chloroquine (Cq), introduced in 1945 and its analogue hydroxychloroquine (Hcq) could be potent therapeutic agents against COVID-19 (Tripathy et al., 2020). Quinine an alkaloid obtained from the bark of Cinchona officinalis has been used in the treatment of malaria since the 1960s (Achan et al., 2011). In SARS-CoV-2, Hcq in combination with...
azithromycin found to be more effective in reducing the viral load (Gautreta et al., 2020). Similarly, glycyrrhizin, a saponin isolated from Glycyrrhiza glabra roots is reported to be effective against SARS-CoV by inhibiting viral replication (Cinatl et al., 2003b). As an RNA virus, 2019-nCoV may have the same functional proteins to process virus replication and assembly to human immuno-deficiency virus (HIV). As a result, HIV protease inhibitors may also be effective for 2019-nCov. Currently, the combination of lopinavir/ritonavir (LPV/R), which has been proven effective in SARS-CoV and MERS-CoV, has been recommended for treatment in 2019-nCoV. It is also reported that around 35 drugs and vaccines are under clinical trials for amelioration of COVID-19. AYUSH, Ministry of Health, GOI, New Delhi has recommended various traditional formulations for both preventive and symptomatic management of COVID-19 (Table 1) with add on interventions to conventional care from Ayurvedha, Siddha, Unani, and Homeopathy. There are around 25 plant species reported to have inhibitory activity on ACE, IL and other proteins such as Transmembrane protease, serine 2 (TMPRSS2); 3-chymotrypsin-like protease (3CLpro); spike, RNA-dependent RNA polymerase (RdRp), and papain like protease (PLpro) which would lead to develop drug for SARS-CoV-2. This review throws the state of knowledge on the antiviral compounds from medicinal plants under ongoing SARS-COV-2 pandemic.

Table 1: This table depicts the Indian medicinal plants and its usage provided by the AYUSH, Government of India as a therapeutic approach for COVID-19

Indian medicinal plant	Form of extract	Trade name	Indian traditional medical practice	Preparation	Recommended usage	Effective against
Preventive and prophylactic						
Tinospora cordifolia	Aqueous	Samshamanivati	Ayurveda	Samshamanivati 500 g with warm water	Twice a day for 15 days	Chronic fever
Andrographis paniculata	Aqueous	Nilavembukudineer	Siddha	Nilavembukudineer 60 ml decoction	Twice a day for 14 days	Fever and cold
Cydonia oblonga	Aqueous	Behidanaunnab	Unani	Behidana-3 g Unnab-5 Nos	Twice a day for 14 days	Antioxidant, immunomodulatory, anti-allergic, smooth muscle relaxant, anti-influenza activity
Zizyphus jujube	Sapistan					
Cordia myxa						
Arsenicum album 30	Tablet	Arsenicum album 30	Homeopathy	Daily once in empty stomach for 3 days (should be presented after 1 month till the infection persist)	Effective against SARS-CoV-2, immunomodulator	

| **Symptomatic management for COVID-19** |
Ayush-64	Tablet	–	Ayurveda	–	2 tablets twice a day	Respiratory infection
Agastya haritaki	Powder	Agasthya rasayanan	Ayurveda	5 gm in warm water	Twice a day	Upper respiratory infection
Anathaila	Oil	Sesame oil	Ayurveda	–	2 drops in each nostril daily morning	Respiratory infection
Adathodai manapagu	Aqueous	Adathodai manapagu	Siddha	–	10 ml twice a day	Fever
Bryonia alba	Tablet	Bryonia	Homeopathy	–	–	Reducing lung inflammation
Table 1: Homeopathic formulation

Drug	Formulation	Component	Dosage	Ailment
Rhus toxicodendron	Tablet	Rhusox		Viral infection
Atropa belladonna	Tablet	Belladonna		Asthma and chronic lung diseases.
Bignonia sempervirens	Tablet	Geisemium		Asthma
Eupatorium perfoliatum	Tablet	Eupatorium		Respiratory symptoms

Add on interventions to the conventional care

Drug	Formulation	Component	Dosage	Ailment
Vishasura kudineer	Tablet	Polyherbal	Decoction 60 ml	Fever
Kabasura kudineer	Tablet	Polyherbal	Decoction 60 ml	

(Ref: AYUSH Ministry of Health Corona Advisory - D.O. No. S. 16030/18/2019 - NAM).

2. Genomic organization and virus structure

Coronavirus (COVs) are encased in a positive stranded RNA that comes into the coronavirinae subfamily. In addition, the genetic material is surrounded by nucleocapsid proteins in the nucleus and envelope that contain four proteins, such as spike proteins, envelope proteins, and membrane proteins. The genome of the CoVs range is long from 26 to 32 kilobase, which is perhaps the largest known RNA virus.

![Figure 1: Mode of action of coronavirus (CoV). (Source: Vellingiri et al., 2020).](image)

Among the viral structure, the S protein has a major role in binding the virus to the host receptor cells. S protein has two subunits which are the S1 receptor-binding subunit and S2 the membrane fusion subunit; where the earlier one attached itself to the ACE2 receptor of the human host cell and the S2 subunit internalizes and creates the membrane fusion among the viral subunit and the ACE2 receptors. This leads to the release of the viral RNA into the host cell and results into respiratory infection. Therefore, exploration of biologically active compounds to inhibit the SARS-CoV-2 spike protein into ACE2 receptor is the main priority (Figure 1).

Coronaviruses are present in a number of bat and bird species that are thought to serve as natural hosts. Molecular clock dating coronavirus analyzes suggest that the most recent common ancestor of these viruses was about 10,000 years ago. This relatively young age contrasts dramatically with the ancient evolutionary past of...
their supposed natural hosts, which started to diversify. It is found that the time for all coronaviruses common to the most recent ancestor is possibly much greater (millions of years) than the period previously inferred. In early 21st Century, severe acute respiratory coronavirus syndrome (SARS-CoV) and Middle East respiratory coronavirus syndrome (MERS-CoV) are the two major and highly infectious and pathogenic bat borne coronaviruses posed severe threats to humans.

3. Coronavirus cases in India

India’s coronavirus tally rose to 4.37 million with a single-day spike of 89,706 infections, while the death toll crossed the 73,890 mark with 1115 fresh fatalities, according to the Union Health Ministry data. The recoveries surged to 3.39 million pushing the recovery rate to 78 per cent. Meanwhile, Indian companies have asked the Russian Direct Investment Fund (RDIF) to provide the technical details of phase 1 and phase 2 clinical trials of Russia’s coronavirus vaccine, the world’s first registered vaccine against the infection. However, countries like India using dietary therapy and herbal medicines to prevent SARS-CoV-2 infections could be a complementary COVID-19 therapy, while drugs remain under development. Hence, the present review provides an insight into look at antiviral compounds from medicinal plants for the development of drugs for SARS-CoV-2 (Table 2).

Table 2: List of selected clinical trials for the amelioration of COVID-19 specific drugs and vaccines

S.No.	Study	Drug	Status	Organization
1.	Evaluation of the efficacy and safety of sarilumab in hospitalized patients with COVID-19	Sarilumab	Recruiting	Regeneron study site New York, United States
2.	Study to evaluate the safety and antiviral activity of remdesivir in participants with severe coronavirus disease (COVID-19)	Remdesivir	Recruiting	Hoag Memorial Hospital Presbyterian Newport Beach, California, United States: Stanford Hospital, Stanford, California, United States: Providence Regional Medical Centre Everett, Everett, Washington, United States
3.	Fingolimod in COVID-19	Fingolimod 0.5 mg	Recruiting	Wan-Jin Chen Fuzhou, China
4.	The clinical study of carrimycin on treatment patients with COVID-19	Carrimycin Lopinavir/ ritonavir tablets or arbidol or chloroquine phosphate	Not recruiting	-
5.	Efficacy and safety of corticosteroids in COVID-19	Methylprednisolone	Recruiting	Hubei Province Hospital of Integrated Chinese and Western Medicine Wuhan, Hubei, China Yichang First People's Hospital Yuchang, Hubei, China Renmin Hospital of Wuhan University Wuhan, China
6.	Mild/moderate 2019 nCoV remdesivir	Remdesivir	Recruiting	Jin Yin-tan Hospital. Wu Han, Hubei, China
7.	Adaptive COVID-19 treatment trial	Remdesivir	Recruiting	National Institutes of Health Clinical Center, National Institute of Allergy and Infectious Disease Laboratory of Immunoregulation, Clinical Research Section. Bethesda, Maryland, United State University of Nebraska Medical Center Infectious Diseases, Omaha, Nebraska, United States, University of Texas Medical Center Infectious Disease. Galveston, Texas, United States Providence Sacred Heart Medical Center Spokane, Washington, United states
	Severe 2019-nCoV remdesivir RCT	Remdesivir	Recruiting	Bin Cao Bejing, Benijing, China
---	---------------------------------	------------	------------	--------------------------------
9	Nitric oxide gas inhalation for severe acute respiratory syndrome in COVID-19.	Nitric oxide gas	Not yet recruiting	-
10	Efficacy and safety of IFN- '2' in the treatment of novel coronavirus patients	Recombinant human interferons - '1'	Not yet recruiting	-
11	Evaluating and comparing the safety and efficacy of ASC09/ritonavir and lopinavir/ritonavir for novel coronavirus infection	ASC09/ritonavir group Lopinavir/ritonavir group	Not yet recruiting	-
12	Safety and immunogenicity study of 2019-nCoV vaccine (MRNA-1273) to prevent SARS-CoV-2 infection	mRNA-1273	Not yet recruiting	Kaiser Permanente Washington Health Research Institute Vaccines and Infectious Diseases
13	Glucocorticoid therapy for novel coronavirus critically Ill patients with severe acute respiratory failure	Methylprednisolone	Recruiting	Medical ICU, Peking Union Medical College Hospital Bejing, Beijing China
14	Lopinavir/ritonavir, ribavirin and IFN-beta combination for nCoV	Lopinavir/ritonavir Ribavirin Interferon beta-1B	Recruiting	University of Hong Kong, Queen Mary Hospital Hong Kong, Hong Kong
15	Efficacy of chloroquine and lopinavir / ritonavir in mild/general novel coronavirus (COVID-19) infections: A prospective, open-label, multicenter randomized controlled clinical study	Chloroquine Lopinavir / ritonavir	-	The Fifth Affiliated Hospital Sun Yat-Sen University
16	A study for the efficacy of hydroxychloroquine for mild and moderate COVID-19 infectious diseases	Hydroxychloroquine	-	The Second Affiliated Hospital of Chongqing Medical University
17	A prospective, randomized, open-label, parallel controlled trial for the preventive effect of hydroxychloroquine on medical personnel after exposure to COVID-19	Hydroxychloroquine	-	Renmin Hospital of Wuhan University
18	The efficacy and safety of carrimycin treatment in patients with novel coronavirus infectious disease (COVID-19): multicenter randomized, open-label controlled trial	Carrimycin	-	Beijing Youan Hospital, Capital Medical University
19	A prospective clinical study for recombinant human interferon alpha infection in highly exposed medical staffs	Recombinant humaninterferon alpha 1b	-	Chinese PLA General Hospital
20	A pilot study of sildenafil in COVID-19	Sildenafil citrate	Recruiting	Department and Institute of Infectious Disease, Wuhan Hubei, China
21	Comparison of lopinavir/ ritonavir or hydroxychloroquine in patients with mild coronavirus disease (COVID-19)	Lopinavir/ ritonavir hydroxychloroquine sulfate	Recruiting	Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, Republic of Korea
Study Number	Study Title	Intervention(s)	Status	Location
--------------	--	--	-------------------------	--
22	The efficacy and safety of thalidomide combined with low-dose hormones in the treatment of severe COVID-19	Thalidomide	Not yet recruiting	-
23	Various combination of protease inhibitors, oseltamivir, favipiravir, and chloroquine for treatment of COVID-19: A randomized control trial.	Oral	Not yet recruiting	Subsai Kongsaengdao, Bangkok, Thailand
24	Chloroquine prevention of coronavirus disease (COVID-19) in the healthcare setting	Chloroquine	Not yet recruiting	-
25	Favipiravir combined with tocilizumab in the treatment of coronavirus disease 2019	Favipiravir combined with tocilizumab	Recruiting	Anhui Medical University Affiliated First Hospital, Hefei, Anhui, China
26	Trial treatment for COVID-19 in hospitalized adults	Remdesivir Lopinavir/ritonavir interferon beta-1A	Not yet recruiting	-
27	Randomized controlled trial of losartan for patients with COVID-19 losartan requiring hospitalization	Losartan	Not yet recruiting	Hennepin Country Medical Center, Minneapolis, Minnesota, United States
28	Evaluation of ganovo (danoprevir) combined with ritonavir in the treatment of novel coronavirus infection	Ganovo with ritonavir +/- Interferon	Recruiting	The Ninth Hospital of Nanchang Nanchang, Jiangxi, China
29	Eculizumab (soliris) in COVID-19 infected patients	Eculizumab	Initiated	-
30	Expanded access remdesivir (RDV; GS-5734™)	Remdesivir	Initiated	-
31	Norwegian coronavirus disease 2019 study	Hydroxychloroquine sulfate	Not yet recruiting	-
32	Post-exposure prophylaxis for SARS-coronavirus-2	Hydroxychloroquine	Recruiting	University of Minnesota Medical Center, Minneapolis, Minnesota, United States
33	The efficacy and the safety of pirfenidone capsules in the treatment of severe new coronavirus pneumonia (COVID-19)	Pirfenidone	-	Third Xinzguya Hospital of Central South University

Source: Vellingiri et al. (2020)
Many researchers have determined the inhibitory ability of various active compounds from natural resources. Compounds such as asiatic acid, andrographolide, apigenin, brazilein, brazilin, catechin, curcumin, gingerol, hesperidin, hesperetin, kaemferol, luteolin, myricetin, naringenin and quercetin against the target protein of SARS-CoV-2, particularly ACE2, TMPRSS2, RdRp, 3CLpro and PLpro through molecular docking studies by evaluating the binding energy between the active compound and the target proteins are well known (Laksmani et al., 2020). Laksmani et al. (2020) reported few active chemical compounds in medicinal plants showed excellent affinity towards target protein proved that they can be used as antivirals against SARS-CoV-2. The active compounds from Caesalpinia sappan L. such as brazilein and brazilin had an excellent affinity towards ACE2. Hesperidin from Citrus sp. to TMPRSS2 with most negative value of docking score and lower binding energy value than drugs such as arbidol, chloroquine, camostatmesylate, remdesivir and lopinavir that used as inhibitor agent to COVID-19 (Laksmani et al., 2020). Hence, the aforementioned medicinal plants could be a potential source of antivirals to develop drugs against SARS-CoV-2 through inhibiting ACE2, TMPRSS2, RdRp and protease (3CLpro and PLpro) that interfered the process of virus infection which causing pneumonia (Laksmani et al., 2020). Glycyrrhizin isolated from Glycyrrhiza glabra roots was found effective in preventing the SARS-CoV replication (Cinatl et al., 2003a); myricetin from Myrica rubra, scutellarein from Scutellaria baicalensis and Asplenium belangeri are known to inhibit the ATPase activity of SARS-CoV helicase nsP13 (Yu et al., 2020); amentoflavone, quercetin, luteolin and apigenin from Torreya nucifera (Ryu et al., 2010) and emodin, sinigrin and hesperetin extracted from Isatis indigotica (Lin et al., 2005) have inhibit 3CLpro function. Water extract of Houttuynia cordata has antiviral activity against SARS-CoV due to its inhibitory effect on 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) of the virus; lycorine from Lycoris radiate (Li et al., 2005); 13 mannose-binding lectins identified to possess a robust anti-coronaviral activity (Keyaerts et al., 2007). Another lectin, agglutinin isolated from Galanthus nivalis, was effective against FCoV when administered in combination with a synthetic drug nelfinavir (Hsieh et al., 2010). Recently, resveratrol (trans-3, 5, 42-trihydroxystilbene) a natural stilbene derivative present in abundance in Vitis vinifera, Polygonum cuspidatum, and as Vaccinium macrocarpon showed inhibition of MERS-CoV infection (Lin et al., 2017).

Sivaraman and Pradeep (2020) and Vellingiri et al. (2020) had underlined the positive side of this plant-based concoction that keeps the infection levels at bay. Identification of the antiviral mechanisms from these natural agents has helped to understand how and where they interact with the viral life cycle, such as viral entry, replication, assembly, and release, as well as on the targeting of virus-host-specific interactions. It has been shown that natural plants (Table 3) contain antiviral activities to coronaviruses (McCutcheon et al., 1995) and the mechanism of action is to inhibit viral replication (Vlietinck and Vanden Berghe, 1991; Jassim and Naji, 2003). The Table 3 provides ethnobotanical details with respect to SARS - severe acute respiratory syndrome, MERS-Middle East respiratory syncytial virus, ARVI-Acute respiratory viral infections.

Table 3: List of ethnobotanicals and their mode of action against CoV

S. No.	Plant source	Mechanism of action	Target	Virus	References
1	Acacia nilotica	Inhibition	-	HIV-PR	Mishra et al., 2014
2	Allium sativum	Proteolytic and hemagglutinating activity and viral replication	-	SARS	Keyaerts et al., 2004
3	Andrographis paniculata	Suppression	NLRP3, Caspase-1, and IL-1	SARS-CoV and likely SARS-CoV-2	Liu et al., 2020a, 2020b
4	Boerhavia diffusa	Inhibition	ACE	-	Prathapan et al., 2013; Khan and Kumar, 2019
5	Clerodendrum inerme	Inactivation	Ribosome	SARS-CoV-2	Olivierir et al., 1996
6	Cistus ternatea	Inhibition	Metalloproteinase inhibitor	ADAM17	Maity et al., 2012
7	Corydalis sativum	Inhibition	ACE	-	Pandey et al., 2011
8	Cynara scolymus Cassia occidentalis Cascinum fernestrum	Inhibition	ACE	-	Prathapan et al., 2013; Khan and Kumar, 2019
9	Embelia ribes	Inhibition	ACE	-	Prathapan et al., 2013; Khan and Kumar, 2019
10	Eugenia jambolana	Inhibition	Protease	-	Otake et al., 1995
11	Euphorbia granulata	Inhibition	-	HIV-1PR	Mishra et al., 2014
12	Glycyrrhiza glabra	Inhibition of viral replication: Modulation of membrane fluidity	-	SARS; HIV-1	Akamatsu et al., 1991; Cinatl et al., 2003a; Fiore et al., 2008
13	Gymnema sylvestre	Inhibition of viral DNA synthesis	-	-	Vimalanathan et al., 2009; Arun et al., 2014
14. **Hyoscyamus niger** | Inhibition and Bronchodilator | Ca2+ | Gilani et al., 2008
15. **Ocimum lilimandscharicum** | Inhibition | - | HIV-1 | Thayilseema and Thyagarajan, 2016
16. **Ocimum sanctum** | Inhibition | - | HIV-1 | Rege and Chewdhary, 2014
17. **Panica granatuma** | Inhibition | ACE | - | Prathapan et al., 2013; Khan and Kumar, 2019
18. **Salacia oblonga** | Suppression | Angiotensin II, ATI Signal | - | He et al., 2011
19. **Sambucus ebulus** | Inhibition | - | Enveloped virus | Ganghu et al., 2015
20. **Solanum nigrum** | - | - | HIV-1 | Yu, 2004
21. **Sphaeranthus indicus** | Inhibition | - | Mouse coronavirus and Herpesvirus | Galani et al., 2010; Tiwari and Khosa, 2009; Vimalanathan et al., 2009
22. **Strobilanthes callosa** | Blocking | - | HCoV-NL63 | Tsai et al., 2020
23. **Strobilanthes casia** | Blocking | - | HCoV-NL63 | Tsai et al., 2020
24. **Vitex negundo** | Inhibition | - | HIV-1 | Nair, 2012
25. **Vitex trifolia** | Reduction | - | SARS-CoV | Liou et al., 2018

Note: HIV-IPR: Human Influenza Virus -1 Protease; SARS; Severe Acute Respiratory Syndrome; SARS-CoV: Severe Acute Respiratory Syndrome-Coronavirus; ACE-Angiotensin converting enzyme; HIV-1: Human Influenza Virus-1; gp120: Envelope Glycoprotein 120; CD4: Cluster of Differentiation; HCoV-NL63: Human coronavirus N62; RNA : Ribonucleic acid; MHV-A59: Mouse Hepatitis Virus-A59; Ca2+: Calcium ion; NLRP3: NLR Family Pyrin Domain Containing 3; ATI-Angiotensin 1; HCoV-NL63: Human Coronavirus-NL63.

Table 4: Bioproducts against CoV

Extracts or preparations	Test system	Test dose/concentration	Proposed mechanism	IC50 or EC50 value	References
Lycoris radiata	SARS-CoV	$10^{-1} - 10^{-4}$ mg/ml	Undefined	2.4 ± 0.2 µg/ml	Li et al., 2005
Artemisia lingua	SARS-CoV	$10^{-3} - 10^{-4}$ mg/ml	Undefined	34.5 ± 2.6 µg/ml	Li et al., 2005
Pyrosis lingua	SARS-CoV	$10^{-1} - 10^{-4}$ mg/ml	Undefined	43.2 ± 14.1 µg/ml	Li et al., 2005
Lindera aggregate	SARS-CoV	$10^{-1} - 10^{-4}$ mg/ml	Undefined	88.2 ± 7.7 µg/ml	Li et al., 2005
Isatis indigotica	SARS-CoV	1-500 µg/ml	3CL protease inhibition	-	Li et al., 2005
Extract of Rheum officinale and Polygonum ulitflorum	SARS-CoV	0-100 µg/ml	Inhibits the interaction of SARS-CoV S protein and ACE2.	1 to 10 µg/ml	Ho, Wu, Chen, Li, and Hsiang, 2007
Houttuynia cordata ethanolic extract	SARS-CoV	0-400 µg/ml	3CL protease and viral polymerase inhibition	-	Lau et al., 2008
Herbal extracts (Gentiana scabra, Dioscorea batatas, Cassia tora, Taxillus chinensis, Cibotium barometz)	SARS-CoV	25-200 µg/ml	3CL protease inhibition	39 µg/ml and 44 µg/ml (Two extracts of Cibotium barometz)	Wen et al., 2011
Anthemis hyaline, Nigella sativa and Citrus sinensis extracts	Coronavirus infected HeLa-epithelial carinoembryonic antigen-related cell adhesion molecule la cells inoculated with MHV-A59 (Mouse hepatitis virus-A59)	1/50 and 1/100 dilution of ethanolic extract (100 g/200 ml)	Increased IL-8 level, Significantly changed the expression of TRPA1, TRPC4, TRPM8, TRPM7, and TRPV4 genes	-	Ulashi et al., 2014
4. Natural products inhibiting virulence effect of CoV infection

Nature provides a vast library of chemicals to explore and develop drugs for treatment of various ailments including viral diseases (Denaro et al., 2019). Natural products and their derivatives are used in folk medicine will have always played a crucial role in drug development process against various diseases, which resulted in screening of such agents to combat emergent mutants of coronavirus (Ganjhu et al., 2015). There is a vast scope for herbal medicines in the view of nutraceuticals market (Williamson et al., 2020). Interestingly, the acceptability and, therefore, research on plant based drugs are growing on a daily basis. Some natural products have been found to exhibit their antiviral activity through the inhibition of viral replication (Moghadamtousi et al., 2015; Oliveira et al., 2017). Apart from plant derived compounds (Jardim et al., 2018), several marine natural products (Wang et al., 2014) as well as biotechnologically produced compounds (Neumann and Neumann Staubitz, 2010) are also reported for their antiviral properties against different viruses. Along this line, Nigella sativa demonstrated its inhibitory activity against hepatitis C virus (Oyero et al., 2016). General mechanism for antiviral activity of most of the natural products is inhibition of viral replication and some natural products (e.g., lycorine, homoharringtonine, silvestrol, ouabain, tylorhophorine and 7 methoxycryptopleurine) have interacted with important virulent viral proteins (Table 4). The natural compounds, procyanidin A2, procyanidin B1, and cinnamantin B1, isolated from Cinnamomi cortex inhibited SARS-CoV infection at 0-500 μM (Zhuang et al., 2009). On the other hand, tetra O galloyl beta D glucose, luteolin, and tetra O galloyl beta D glucose blocked the host cell entry of SARS-CoV at 0–10³ mol/l (Yi et al., 2004). In another study, bauchinim, neobavaisoflavone, isobavachalcone, 4’O methylbavachalcone, psoraladin, and corylifol isolated from Psoralea corylifolia inhibited papain like protease of SARS-CoV (Kim et al., 2014). Interestingly, psoraladin exhibited a strong protease inhibitory effect on SARS-CoV with an IC₅₀ value 4.2 μM, whereas emodin, rhein, and chrysin inhibited interaction of SARS-CoV (S) protein and ACE2 at 0-400 μM (Ho et al., 2007).

Table 5: Efficacy of secondary metabolites and their derivatives against CoV infection

Compounds (Biological source)	Test system mechanism	Dose concentration	Proposed	IC₅₀ or EC₅₀ value	References
Aloe emodin (Isatis indigotica)	SARS-CoV	1-100 μg/ml	3CL protease inhibition	8.3 μM	Lin et al., 2005
Amentoflavone (Torreya nucifera)	SARS-CoV	1-1000 μM	3CL protease inhibition	8.3 μM	Ryu et al., 2010
Apigenin (Torreya nucifera)	SARS-CoV	1-1000 μM	3CL protease inhibition	280.8 μM	Ryu et al., 2010
Bavachinin (Psoralea corylifolia)	SARS-CoV	1-150 μM	Inhibitors of papain like protease (PLpro).	38.4 ± 2.4 μM	Kin et al., 2014
Berbamine	HCoV-NL63	0-20 μM	Undefined	1.48 μM	Kin et al., 2019
Beta-sitosterol (Isatis indigotica)	SARS-CoV	1-100 μg/ml	3CL protease inhibition	1210 μM	Lin et al., 2005
Betulonic acid	SARS-CoV	0-10 μM	Inhibition of replication	0.63 μM	Wen et al., 2007
Betulonic acid	SARS-CoV	8-80 μM	3CL protease inhibition	10 μM	Wen et al., 2007
Betulonic acid	SARS-CoV	8-80 μM	3CL protease inhibition	>100 μM	Wen et al., 2007
Broussochalcone A (Broussonetia papyrifera)	3-chymotrypsin -like and papain -like coronavirus cysteine proteases	0-200 μM	Protease inhibition	-	Park et al., 2017
(-) Catechingallate and (-) Gallocatechingallate	SARS-CoV	0.001-1 μg/ml	Inhibition of nanoparticle-based RNA oligonucleotide	-	Roh, 2012
Compound	Type	Concentration	Effect	Concentration	Reference
----------	------	---------------	--------	---------------	-----------
Cepharanthine	SARS-CoV	0.5-10 µg/ml	Protease inhibition	9.5 µg/ml	Zhang et al., 2005
Cinanserin (1dpi) (Houttuynia cordata)	Murine CoV	500-15.63 µg/ml	Undefined	31.25 µg/ml	Cho et al., 2019
Cinanserin (2dpi) (Houttuynia cordata)	Murine CoV	15.63-500 µg/ml	Undefined	62.50 µg/ml	Cho et al., 2019
Cinnamantannin B1 (Cinnamomi cortex)	SARS-CoV	0-500 µM	Inhibition of pseudovirus infection	32.9 ± 3.9 µM	Zhuang et al., 2009
Concanavalin A	-	-	Lose the haemagglutination properties of the virus envelope and cause a transient interference with infectivity	-	Greig and Bouillant, 1977
Corylifol (Psoralea corylifolia)	SARS-CoV	1-150 µM	Inhibitors of papain like protease (PLpro)	32.3 ± 3.2 µM	Kim et al., 2014
Curcumin	SARS-CoV	8-80 µM	Inhibition of 3CL protease	40 µM	Wen et al., 2007
Dieckol (Ecklonia cava)	Porcine epidemic diarrhea CoV	1-200 µM	Inhibition of viral replication	14.6 ± 1.3 µM	Kwon et al., 2013
Diplacone (Paulownia tomentosa)	SARS-CoV	0-100 µM	Inhibition of papain like protease	10.4 ± 0.16 µM	Chow et al., 2013
38,12-diacetoxyabieta-6,8,11,13-tetraene	SARS-CoV	0-10 µM	Inhibition of replication	1.57 µM	Wen et al., 2007
1-(4,5-Dihydroxy-3-hydroxymethylclope-2-enyl)-1H-1,2,4-triazole-3-carboxylic acid amide	SARS-CoV	-	Undefined	21 µM	Cho et al., 2006
1-(4,5-Dihydroxy-3-hydroxymethylclope-2-enyl)-1H-1,2,4-triazole-3-carboxylic acid amide	SARS-CoV	-	Undefined	47 µM	Cho et al., 2006
Eckol (Ecklonia cava)	Porcine epidemic diarrhea CoV	1-200 µM	Blockage of the binding of virus to cells	22.5 ± 2.2 µM	Cho et al., 2013
Emetine	HCoV-OC43, HCoV-NL63,MERS-CoV and MHV-A59	0-5 µM	Inhibited RNA,DNA and Protein synthesis	0.30,1.43, 0.34 and 0.12 µM	Shen et al., 2019
Emodin (1,3,8-trihydroxy-6-methylanthraquinone)	SARS-CoV	0-400 µM	Inhibited interaction of SARS-CoV (S) protein and ACE2	200 µM	Ho et al., 2007
Fangchinoline	HCoV-OC43-infected MRC-5 human lung cells	2-20 µM	Undefined	1.01 ± 0.07 µM	Kim et al., 2019
Ferruginol	SARS-CoV	0-10 µM	Inhibition of replication	1.39 µM	Wen et al., 2007
6-geranyl-4',5,7-trihydroxy-3',5'-dimethoxy-flavanone (Paulownia tomentosa)	SARS-CoV	0-10 µM	Inhibition of replication	13.9 ± 0.18 µM	Cho et al., 2013
Halituna (Halimeda tuna)	Murine coronavirus A59	-	Undefined	-	Koehn et al., 1991
5. Conclusion

COVID-19 a newly emerged upper respiratory tract viral respiratory disease caused by the coronavirus. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is identified from China, in December 2019, spreads rapidly across worldwide. A novel coronavirus disease (COVID-19) is zoonotic and also transmitted from human-to-human rapidly leading to pandemic responsible for the current global health crisis. COVID-19 spreads over 221 countries and territories around the world with total confirmed cases of 130 million and 2.84 million deaths. While drugs remain under development, using conventional medicines along dietary therapy are recommended by Ayush, Govt. of India to prevent and boost immunity to tackle SARS-CoV-2 infections. Exploration of antiviral compounds from medicinal plants to develop drugs for SARS-CoV-2 is highly warranted.

6. Solution strategy to combat COVID-19

The spectrum of symptoms associated with COVID-19 ranges from difficulties in breathing and other respiratory conditions to critical conditions including kidney failure, heart attack and sometimes even death and, therefore, the following strategies have been recommended to avoid spread of COVID-19.

- Avoiding international and domestic travels to spread the infection from severely affected areas/countries.
- Individuals are likely to be infected by others who have been infected with the virus. The disease can spread from person-to-person via small droplets from nose or mouth when a person with COVID-19 coughs or exhales; these particles in the air, settle on surfaces in the environment further infecting people who breathe these particles or touch these places and then touch their body parts, and hence 6 feet physical distance is recommended (WHO, 2020).
- Reports suggest that older persons and persons with pre-existing medical conditions (such as high blood pressure, heart disease, lung disease, cancer or diabetes) appear to develop serious illness more often than others, and hence co-morbid patients must be treated with utmost care.
- Also, it has been reported that some of the Asian populations are more susceptible to acquire this COVID-19 infection when compared to the other races populations, needs special attention.
- National Institute of Health (NIH) has mentioned that SARS-CoV-2 could survive for up to 3 h maximum as aerosols to a maximum of three days on surfaces.
- Slowing the spread of the COVID-19 cases will significantly reduce the strain on the healthcare system of the country by limiting the number of people who are severely sick by COVID-19 and need hospital care.
- So, it is time for all the citizens to join hands together to fight against coronavirus by practicing self-hygiene and physical distancing.
- WHO is coordinating efforts to develop medicines to prevent and treat COVID-19.
- India as a front runner developed an indigenous COVID vaccine COVAXIN along with Covishield (the Oxford-AstraZeneca vaccine) and started vaccination campaign on 16th January, 2021. As of 31st March 2021, India’s vaccination programme has given 65.1 million doses of vaccine with 9.3 million Indians having had two doses, and targeted to vaccinate 30 crores in near future.

7. Dietary therapy and herbal medicine could be used against COVID-19 in the following four ways

- Diet or supplement for infection prevention and immunity strengthening.
- Application as antiviral agent on masks.
- Air disinfection agent to stop aerosol transmission of the virus.
- Surface sanitizing agent to afford a disinfected environment.

Conflict of interest

The authors declare that there are no conflicts of interest relevant to this article.
Outbreak of severe acute respiratory syndrome (SARS) in Hong Kong. Lancet, 361(9365):293-294.

Donnelly, C.A.; Ghani, A.C.; Leung, G.M.; Hedley, A.J.; Fraser, C.; Riley, S.; Abu-Raddad, L.J.; Hui, D.; Thach, T.Q.; Chau, P.; Chinn, K.; Lam, T.H.; Tse, L.Y.; Tsang, T.; Liu, S.H.; Kong, J.H.; Lau, E.M.; Ferguson, N.M. and Anderson, R.M. (2003). Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet, 361: 1761-1766.

Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brudt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.; Berger, A.; Burgmair, A.M.; Cinatl, J.; Heikmann, M.; Eseren, N.; Gryzova, K.; Kramme, S.; Manuguerra, J.C.; Müller, S.; Rickerts, V.; Stürmer, M.; Vieth, S.; Klenk, H.-D.; Albert D.M. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England Journal of Medicine, 348(20):1967-1976. https://doi.org/10.1056/NEJMoA030747.

Fiore, C.; Eisenbut, M.; Kransus, R.; Ragazzi, E.; Pessati, D.; Armanini, D. and Bielenberg, J. (2008). Antiviral effects of Glycyrrhiza species. Phytother. Res., 22:141-148. https://doi.org/10.1002/ptr.2295.

Gali, V.J.; Patel, B.G. and Rana, D.G. (2010). Sphaeranthus indicus: A phyto-pharmacological review. Int. J. Ayurveda Res., 1:247-253. https://doi.org/10.1016/j.ajpa.2009.12.003.

Ganju, R.K.; Mudgal, P.P.; Maity, H.; Dowarha, D.; Devadiga, S.; Nag, S. and Arunkumar, G. (2015). Herbal plants and plant preparations as remedial approach for viral diseases. Virus, 26(4):225-236.

Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, J.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot-Dupont, H.; Honore, S.; Cobon, P.; Chabriere, E.; La Scola, B.; Rolain, J.M.; Brouqui, P. and Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 56(1):105949. https://pubmed.ncbi.nlm.nih.gov/32205204/.

Gilani, A.H.; Khan, A.; Raof, M.; Ghayour, M.N.; Siddiqui, B.S.; Yohra, W. and Begum, S. (2008). Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamus niger are mediated through dual blockade of muscarinic receptors and Ca2+ channels. Fundam. Clin. Pharmacol., 22:87-99. https://doi.org/10.1111/j.1472-8206.2007.00561.x.

Greig, A.S. and Boullant, A.M. (1977). Binding effects of concanavalin A on a coronavirus. Canadian Journal of Comparative Medicine, 41(1):122-126.

He, L.; Qi, Y.; Rong, X.; Jiang, J.; Yang, Q.; Yamahara, J.; Murray, M. and Li, Y. (2011). The Antiviral Medicine Salacia oblonga attenuates diabetic renal fibrosis in rats: Suppression of angiotensin II/AT1 signaling. Evid. Based Complement. Alternat. Med., 12. https://doi.org/10.1093/ecam/nep095.

Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C. and Heang, C.Y. (2007). Emodin blocks the SARS coronavirus spike protein and angiotensin converting enzyme 2 interaction. Antiviral Research, 74(2):92-101.

Hsieh, L.-E.; Lin, C.-N.; Su, B.L.; Jan, T.R.; Chen, C.M.; Wang, C.H.; Lin, D.S.; Lin, C.T. and Cheueh, L.L. (2010). Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus. Antivir Res., 88:25-30. https://doi.org/10.1016/j.antiviral.2010.06.010.

Jardim, A.C.G.; Shimizu, J.F.; Rahal, P. and Harris, M. (2018). Plant derived antivirals against hepatitis c virus infection. Virology Journal, 15(34).

Jassim, S.A. and Naji, M.A. (2003). Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol., 95:412-427.

Keyaerts, E.; Vigen, L.; Maes, P.; Neys, J. and Van Ranst, M. (2004). In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 323:264-268. https://doi.org/10.1016/j.bbrc.2004.08.085.

Keyaerts, E.; Vigen, L.; Pannecoque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini J. and Van Ranst, M. (2007). Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antivir. Res., 75:179-187. https://doi.org/10.1016/j.antiviral.2007.03.003.

Khan, M.Y. and Kumar, V. (2019). Mechanism and inhibition kinetics of bioassay-guided fractions of Indian medicinal plants and foods as ACE inhibitors. J. Tradit. Complement. Med. 9:73-84. https://doi.org/10.1016/j.jtcm.2018.02.001.
Kim, D. E.; Min, J. S.; Jung, M. S.; Lee, J. Y.; Shin, Y. S.; Park, C. M.; and Kwon, S. (2019). Natural bis benzylisoquinoline alkaloids tetrandrine, fangchinoline, and cephaparine, inhibit human coronavirus OC43 infection of MRC 5 human lung cells. Biomolecules, 9(11):e696.

Kim, D.W.; Seo, K.H.; Curtis Long, M.J.; Oh, K.Y.; Oh, J.W.; Cho, J.K.; Lee, K.H. and Park, K.H. (2014). Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 29:59-63.

Koeha, F. E.; Gunasekera, P. S.; Neil, D. N. and Cross, S. S. (1991). Halitunal, an unusual diterpene aldehyde from the marine alga, Halimeda tuna. Tetrahedron Letters, 32(2):169-172.

Ksiarzak, Z.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; Rollin, P.E.; Dowell, S.F.; Ling, A.E.; Humphrey, C.D.; Shiieh, W.J.; Guarnier, J.P.; Paddock, C.D.; Rota, P.; Fields, B.; DeRisi, J.; Yang, Y.J.; Cox, N.; Hughes, J.M.; LeDuc, J.W.; Bellini, W.J. and Anderson, L.J. (2003). A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med., 348:1953-1966.

Kwon, H. J.; Ryu, Y.B.; Kim, Y.M.; Song, N.; Kim, C.Y.; Rho, M. C. and Park, S. J. (2013). In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorganic and Medicinal Chemistry, 21(15):4706-4713. https://doi.org/10.1016/j.bmc.2013.04.085.

Laksmani, N. P. L.; Larasanty, L. P. F.; Santika, A.A.I. K. and Dewi, N.P.A.K. (2020). Active compounds activity from the medicinal plants against SARS-CoV-2 using in silico assay. Biomed. Pharmacol. J., 13(2):873-881.

Lan, K.M.; Lee, K.M.; Koon, C.M.; Cheung, C.S.F.; Lau, C.P.; Ho, H.M. and Fung, K.P. (2008). Immunomodulatory and anti-SARS activities of Houaitynia cordata. Journal of Ethnopharmacology, 118(1):79-85.

Lee, N.; Hui, D.; Wu, A.; Chan, P.; Cameron, P.; Joyn, G.M.; Ahuja, A.; Yung, M.Y.; Leung, C.B.; To, K.F.; Lui, S.F.; Szeto, C.C.; Chung, S. and Sung, J.J. (2003). A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med., 348:1986-1994.

Li, S.Y.; Chen, C.; Zhang, H.Q.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R. and Tan, X. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir. Res., 67:18-23. https://doi.org/10.1016/j.antiviral.2005.02.007.

Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C. and Chao, P-D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antivir. Res., 68:36-42. https://doi.org/10.1016/j.antiviral.2005.07.002.

Lin, L. T.; Hou, W. C. and Lin, C. C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1):24-35.

Lin, S.C.; Ho, C.T. and Chou, W.H. (2017). Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 17:144.

Liu, C.J.; Cheng, C.Y.; Yeh, K.W.; Wu, Y.H. and Huang, W.C. (2018). Protective effects of casticins from Vitex trifolia alleviate eosinophilic airway inflammation and oxidative stress in a murine asthma model. Front. Pharmacol., 9:635. https://doi.org/10.3389/fphar.2018.00635.

Liu, Y.T.; Chen, H.w.; Liu, C.K.; Huang, J.H.; Huang, C.S.; Li, M.L. and Yao, H.T. (2020a). A diterpenoid, 14-deoxy-11, 12-didehydroandrographolide, in Andrographis paniculata reduces steatohepatitis and liver injury in mice fed a high-fat and highcholesterol diet. Nutrients, 12:523. https://doi.org/10.3390/nu12020523.

Liu, Z.; Xiao, X.; Wei, X.; Li, J.; Yang, J.; Tan, H.; Zhu, J.; Zhang, Q.; Wu, J. and Liu, L. (2020b). Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J. Med. Virol., https://doi.org/10.1002/jmv.25726.

Macintyre, G.; Curry, B.; Wong, F. and Anderson, R. (1991). Hygromycin B therapy of a murine coronavirus hepatitis. Antimicrobial Agents in Chemotherapy, 35(10):2125-2127.

Maity, N.; Nema, N.K.; Sarkar, B.K. and Mukherjee, P.K. (2012). Standardized Clerotria ternatea leaf extract as hylurondiase, elastase and matrix-metalloproteinase-1 inhibitor. Indian. J. Pharmacol., 44:584. https://doi.org/10.4103/0253-7613.100381.

McCutcheon, A.R.; Roberts, T.E.; Gibbons, E.; Ellis, S.M.; Babiker, I.A.; Hancock, R.E. and Towers, G.H. (1995). Antiviral screening of British Columbian medicinal plants. J. Ethnopharmacol., 49:101-110.

Mishra, S.; Aeri, V.; Gaur, P.K. and Jakach, S.M. (2014). Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa. Biomed. Res. Int., 808302. https://doi.org/10.1155/2014/808302.

Moghaddamtonsi, S. Z.; Nikzad, S.; Kadir, H. A.; Abubakar, S. and Zandi, K. (2015). Potential antiviral agents from marine fungi: An overview. Marine Drugs, 13(7):4520-4538.

Nair, R. (2012). HIV-1 reverse transcriptase inhibition by Vitex negundo L. leaf extract and quantification of flavonoids in relation to anti-HIV activity. J. Cell. Mol. Biol., 10:53-59.

Neumann, H. and Neumann Staubitz, P. (2010). Synthetic biology approaches in drug discovery and pharmaceutical biotechnology. Applied Microbiology and Biotechnology, 87(1):75-86.

Oliveria, A. F. C. S.; Teixeira, R. R.; de Oliveira, A. S.; de Souza, A. P. M.; da Silva, M. L. and de Paula, S. O. (2017). Potential antivirals: Natural products targeting replication enzymes of dengue and Chikungunya viruses. Molecules, 22(3):505.

Olivieria, F.; Prasad, V.; Valbonesi, P.; Srividha, S.; Ghosal-Chowdhury, P.; Barbieri, L.; Bolognesi, A. and Stirpe, F. (1996). A systemic antiviral resistance-inducing protein isolated from Clerodendrum inerme Gaertn. Is a polynucleotide: adenosome glycosidase (ribosome-inactivating protein).FEBS Lett., 396:132-134.

Otake, T.; Morii, H.; Morimoto, M.; Ueba, N.; Sutardjo, S.; Kusumoto, I.T.; Hattori, M. and Namba, T. (1995). Screening of Indonesian plant extracts for anti-human immunodeficiency virus-type 1 (HIV-1) activity. Phytother. Res., 9:6-10.

Oyero, O. G.; Toyama, M.; Mitsuhiro, N.; Onifade, A. A.; Hidakaw, A.; Okamoto, M. and Baba, M. (2016). Selective inhibition of hepatitis C virus replication by alpha zama, a Nigella sativa seed formulation. Afr J. Tradit. Complement. Altern. Med., 13(6):144-148. doi: 10.21010/ajtcam.v13i6.20.

Pandey, A.; Bigoniya, P.; Raj, V. and Patel, K.K. (2011). Pharmacological screening of Coriandrum sativum Linn. For hepatoprotective activity. J. Pharm. Bioalbl. Sci., 3(3):435. https://doi.org/10.4103/0975-7406.84462.

Park, J. Y.; Yon, H.; Ryu, H.W.; Lim, S.H.; Kim, K. S.; Park, K.H.; and Lee, W. S. (2017). Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1):504-512.

Peiris, J.S.; Chu, C.M.; Cheng, V.C.; Chan, K.S.; Hung, I.F.; Poon, L.L.; Law, K.I.; Tang, B.S.; Hon, T.Y.; Chan, C.S.; Chan, K.H.; Ng, J.S.; Zheng, B.J.; Ng, W.L.; Lai, R.W.; Guan, Y. and Yuen, K.Y. (2003a). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet, 361:1767-1772.
Citation
Natchiappan Senthilkumar, Ramasamy Sumathi and Devaraj Suresh Babu (2021). Prospection of antiviral compounds from forest plants under ongoing SARS-COV-2 pandemic. Ann. Phytomed., Volume10, Special Issue1 (COVID-19): S195-S208. http://dx.doi.org/10.21276/ap.covid19.2021.10.1.18