Novel PhoH-encoding vibriophages with lytic activity against environmental Vibrio strains

Alice N. Maina1,2 · Francis B. Mwaura1 · Miriam Jumba1 · Kristopher Kiefts3 · Hanzada T. Nour El-Din4 · Ramy K. Aziz4,5,6

Received: 8 December 2020 / Revised: 23 July 2021 / Accepted: 4 August 2021 / Published online: 11 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Cholera is a devastating diarrheal disease that accounts for more than 10% of children’s lives worldwide, but its treatment is hampered by a rise in antibiotic resistance. One promising alternative to antibiotic therapy is the use of bacteriophages to treat antibiotic-resistant cholera infections, and control Vibrio cholerae in clinical cases and in the environment, respectively. Here, we report four novel, closely related environmental myoviruses, VP4, VP6, VP18, and VP24, which we isolated from two environmental toxigenic Vibrio cholerae strains from river Kuja and Usenge beach in Kenya. High-throughput sequencing followed by bioinformatics analysis indicated that the genomes of the four bacteriophages have closely related sequences, with sizes of 148,180 bp, 148,181 bp, 148,179 bp, and 148,179 bp, and a G + C content of 36.4%. The four genomes carry the phoH gene, which is overrepresented in marine cyanophages. The isolated phages displayed a lytic activity against 15 environmental, as well as one clinical, Vibrio cholerae strains. Thus, these novel lytic vibriophages represent potential biocontrol candidates for water decontamination against pathogenic Vibrio cholerae and ought to be considered for future studies of phage therapy.

Keywords Vibrio cholerae · Vibriophages · Myoviruses · phoH · Biocontrol · Genomics · Genome annotation · Phage therapy

Introduction
Acute infectious diarrheal diseases remain among the most frequent causes of childhood deaths, accounting for 10–12% of the death toll in children under 5 years of age, and around 1.4–1.9 million fatalities worldwide (Levy et al. 2016). Cholera is a devastating watery diarrheal disease that causes severe dehydration and death if untreated. It is mainly caused by O1 and O139 toxigenic Vibrio cholerae serotypes. The disease is spread through the faecal–oral route and hence strongly associated with poverty, poor hygiene, clean water shortage, and lack of adequate sanitation facilities (Deen et al. 2020). The aquatic environment is the main reservoir for V. cholerae, specifically...
brackish, estuarine, and coastal waters (Almagro-Moreno and Taylor 2013).

Treatment of cholera is challenging. A combination of antibiotics with rehydration therapy relieves the symptoms of cholera and shortens the disease duration. Unfortunately, environmental drug-resistant *V. cholerae* strains have been recently reported, hampering the treatment option for cholera and urgently calling for adjunct or alternative approaches (Loo et al. 2020), such as bacteriophage therapy.

Bacteriophages, termed phages for short, are viruses that infect bacteria and exist in equilibrium with their bacterial hosts. The relationship between *V. cholerae* and bacteriophages dates to the 1920s, when Felix d’Herelle described the spread of phages in the environment after the onset of an outbreak (Jassim and Limoges 2014; Silva-Valenzuela and Camilli 2019). Back then, several studies proved the effectiveness of phage treatment against versatile diseases, including cholera, staphylococcal infections, typhoid fever, and bacterial dysentery (Sulakvelidze et al. 2001; El-Shibiny and El-Sahhar 2017).

Despite this early success, enthusiasm towards phage treatment and research immensely declined with the discovery of antibiotics (Abedon et al. 2011). Revisiting phage therapy ought to be taken into consideration, given that human and environmental *V. cholerae* populations are naturally controlled by serogroup-specific bacteriophages (Faruque et al. 2005a). Since *V. cholerae* is a natural inhabitant of aquatic environments (Almagro-Moreno and Taylor 2013; Lutz et al. 2013), these environments are favorable for exploring candidate therapeutic bacteriophages. Indeed, several tailed bacteriophages, especially from family *Myoviridae*, were detected during environmental surveys in regions, where outbreaks were reported, e.g., Peru (Talledo et al. 2003), Kolkata (Sen and Ghosh 2005) and Kenya (Maina et al. 2014). Of note, tailed bacteriophages are the most dominant viruses in the aquatic environment (Madhusudana Rao and Lalitha 2015; Letchumanan et al. 2016), which makes them a good initial candidate for screening, but will require elaborate efforts for their isolation.

Here we report the isolation, characterization and sequencing of four novel phages with contractile tails (typical myophage morphology). These lytic phages demonstrated a biocontrol potential against tested environmental and clinical *V. cholerae* strains. Hence, they should be considered as possible candidates for the highly needed phage therapy targeting the increasingly resistant *V. cholerae* and for water decontamination as well.

Materials and methods

Bacterial hosts used for phage isolation and propagation

Two environmental strains of *Vibrio cholerae*, previously isolated from different water sources, were used for bacteriophage isolation and propagation. The first of the two strains, Vc_ke, isolated from river Kuja in Migori County and identified as toxigenic El Tor strain, was used for phages VP4, VP6, and VP18. The second strain, Vc_Use, isolated from Usenge beach in Siaya, was used for VP24.

Phage isolation, propagation and DNA isolation

Like their bacterial hosts, phages VP4, VP6, and VP18 were isolated from river Kuja in Migori County, Kenya, while phage VP24 was isolated from Usenge beach in Siaya, Kenya.

The double agar layer method was used for isolation and purification of the phages, as described by van Twest and Kropinski (2009) but with a slight modification: The soft agar layer (0.6% agar) was made of Trypticase Soy agar instead of Luria–Bertani agar.

Genomic DNA was extracted from phage lysates by the standard phenol–chloroform protocol as described in Sambrook et al. (2001) and modified by Shah (2014).

Host range profiling

The host range for the isolated phages was profiled as previously described (Stenholm et al. 2008; Kutter 2009), with a minor modification (Trypticase Soy with 0.6% agar was used instead of Luria–Bertani agar). Each phage was tested for its ability to form plaques on lawns of each of the 15 used environmental *V. cholerae* strains isolated from the different Kenyan waters (Table 1), in addition to one clinical *V. cholerae* isolate. The host range was estimated from the number of lysed strains out of the 16 tested strains above.

Among these isolates, three had been earlier confirmed by 16S rRNA gene sequencing. The 16S rRNA sequences were deposited in NCBI and given accession numbers MN467399.1 (Vc_ke isolated from river Kuja, Migori), MN907464.1 (Vc_Koleche, from Koleche pond, Siaya), and MN907465.1 (Vc_Nsongoni, isolated from river Nsongoni, Mombasa). Each isolate of the target strains was cultured on thiosulfate–citrate–bile salts–sucrose (TCBS) agar and incubated for 12 h at 37 °C. Thereafter, 10 ml of trypticase soy broth (TSB) was inoculated with a single colony of each bacterial strain, and then incubated for 12 h at 37 °C. A 500 ul
aliquot of the overnight culture was mixed with 4 ml soft agar, and poured onto the surface of the TSA plates to make the host lawns. Subsequently, the plates were allowed to set, and 10 µl of the phage lysate was spotted per lawn. After the spots were allowed to set, plates were incubated for 12 h at 37 °C. The plates were examined for zones of clearing/lysis, wherever a phage had been spotted (Yu et al. 2013). If a clear zone was observed, the isolate was declared sensitive to the phage. A control culture was set with sterile sodium chloride–magnesium sulfate (SM) buffer, instead of phage lysates, to verify the growth and purity of the culture.

The phages were also tested for their infectivity against three other Gram-negative bacteria isolated from the same environmental sources at the same geographical areas as the Vibrio isolates (Maina et al. 2021). These bacteria included two strains of *E. coli* (Ec_Kuja, 16S rRNA sequence accession number MN907473.1, isolated from river Kuja, and EC_ke, 16S rRNA sequence accession number MN467398.1, isolated from Nairobi River). The other two bacterial isolates, *Proteus mirabilis* and *Providencia sneebia*, were isolated from river Kuja, and their 16S rRNA sequences were determined and assigned accession numbers MN467400.1 and MN467401.1, respectively).

Morphological characterization by transmission electron microscopy (TEM)

Purified bacteriophage samples (titer between 10^9 to 10^{10} PFUs/ml) were prepared for TEM at the Wellcome Sanger Institute, operated by Genome Research Limited. Negative staining was performed with 5% of Uranyl acetate at a ratio of 5:1 for each phage sample and magnification of $X_{60,000}$. Purified and washed phage samples were adhered to freshly glow-discharged carbon/Formvar grids, briefly stained with 5% uranyl acetate and then blotted and air dried. Grids were then viewed on a 120 kV FEI Spirit Biotwin microscope (Thermo Fisher Scientific, Hillsboro, OR) and imaged by a Tietz 4.16 charge-coupled device (CCD) camera. Measurements were taken directly with the TVIPS EMTTools (Germany).

Library construction and sequencing

A Covaris sonicator (Covaris, MA, USA) was used to randomly shred the genomic DNA, after its concentration was measured with a Qubit 3.0 fluorometer (Life Technologies, CA, USA) and adjusted. For library preparation, DNA fragments were end-repaired, A-tailed, ligated with adapters, purified, and amplified by the polymerase chain reaction (PCR).

After library construction, the library DNA was accurately quantified by Qubit 3.0 and diluted. Finally, its quality was assessed in an Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Additional quality check was performed via quantitative PCR (qPCR) determination of the library DNA concentration. Once good quality of the libraries was confirmed, they were pooled and sequenced in an Illumina flow cell, according to the manufacturer’s requirement of concentration and volume. The sequencing was performed on the high-throughput platform of Illumina NovaSeq 6000 (Illumina, CA, USA).

Annotation of phage genomes

The phages were annotated by both VIBRANT v1.2.1 (Kieft et al. 2020) and Rapid Annotation using Subsystems Technology (RAST) server (Aziz et al. 2008), after adjusting RAST settings to the optimized phage pipeline (Aziz et al. 2018; McNair et al. 2018). Genes encoding tRNAs were detected by tRNAscan-SE (Lowe and Eddy 1997). Annotations of VP4 were visualized by Geneious Prime 2019.0.3 (Biomatters, Ltd., New Zealand) and color-coded according to the respective annotation category.

Phylogenetic analysis

The annotations from VIBRANT were used to identify ribonucleotide reductase (RnR) subunits alpha and beta, as well as the large terminase (LT) subunit, which were subsequently used for phylogenetic tree construction. RnR alpha, RnR beta and LT protein sequences from VP4 were used to query the NCBI nr database (accessed August 2020, July 2021).

Table 1 Sources of *Vibrio cholerae* strains used in host range profiles

Code	Source	Region	Geographical site
Vc_ke*	Environmental	Migori	River Kuja
Vc_Kuj	Environmental	Migori	River Kuja
Vc_Kuj	Environmental	Migori	River Kuja
Vc_Kuj	Environmental	Migori	River Kuja
Vc_Kuj	Environmental	Migori	River Kuja
Vc_Koleche*	Environmental	Bondo	Koleche Pond
Vc_Kot	Environmental	Bondo	Kotonde Pond
Vc_Owi	Environmental	Bondo	Owira Pond
Vc_Use	Environmental	Rarieda	Usenge Beach
Vc_Osi	Environmental	Rarieda	Osieko Beach
Vc_Lau	Environmental	Rarieda	Lauda Beach
Vc_Nsongoni*	Environmental	Coast	River Nsongoni
Vc_Kiz	Environmental	Coast	River Kizulini
Vc_Kam	Environmental	Central	River Kamiti
Vc_Riv	Environmental	Central	Riverside River
VCM	Clinical	UnN	Medical Microbiology Laboratory

Those bacteria were previously isolated and described (Maina et al. 2021)
taxid10239, e value < 1e−5) for reference virus sequences. The top 100 results from each search were taken and individually dereplicated by CD-HIT v4.6, -aS 0.8 -c 0.9 (Huang et al. 2010).

Respective protein sequences for VP4, VP6, VP18, and VP24 were added to the reference sequences and aligned by MAFFT (v7.388, Katoh and Standley 2013), with default settings. Phylogenetic trees were constructed with RAxML (v8.2.4, Stamatakis 2014), with the command: raxmlHPC-PTHREADS -N 100 -f a -m PROTCATLG, and the resulting trees, representing 100 bootstrap iterations and rooted by outgroup, were visualized by FigTree v1.4.4 (Rambaut 2007).

Results and discussion

Morphology of vibriophages VP4, VP6, VP18, and VP24

Morphological characterization, based on the TEM images, of the four studied phages VP4, VP6, VP18, and VP24, showed an icosahedral capsid head, ranging in size from 78 to 85 nm and a contractile tail, ranging in length from 95 to 103 nm (Fig. 1). The virion morphology suggested that the phages belong to the family **Myoviridae**, order **Caudovirales**, as previously described (Maina et al. 2014).

Genomic features and primary classification of VP4, VP6, VP18, and VP24

The whole genomes of the four phages were sequenced. The linear double-stranded DNA size ranged between 148,179 bp and 148,181 bp, and its molecular weight was 91.54 MDa, which suggests relatively large genomes compared to those of other myoviruses. The GC content was 36.4%. The annotation suggested 186 protein-coding sequences (CDSs) for phages VP4 and VP18, and 185 CDSs for VP6 and VP24.

Among the well-studied bacteriophages that infect *V. cholerae* O1, the myophage ICP1, a double-stranded DNA virus (previously known as JSF1), has a genome size of 125,956 bp, G + C content of 37% and 230 coding sequences. A similar phage of the same series, JSF7, propagated on strain *V. cholerae* O1, has a double-stranded DNA genome with G + C content of 48.42% has a genome size of 46 kb (Naser et al. 2017). The genome size of JSF7 is much smaller than the four phages in this study.

The best-characterized phage of the **Myoviridae** family is phage T4. T4 has a genome size of 168,903 bp, an elongated head (110 x 80 nm), a contractile tail that ends with a complex base plate with six long fibers radiating from it. The T4 genome (NCBI accession number NC_000866) has a G + C

Nucleotide sequence accession number

The full genome sequence of phage VP4 (systematically named vB_veM_Kuja) is currently available in the NCBI Nucleotide database under the accession number MN718199.1 The corresponding RefSeq record is NC_048827.1

![Fig. 1](https://example.com/fig1.png) Transmission electron micrographs of VP4, VP6, VP18, and VP24 phages after negative staining. The four vibriophages have icosahedral heads and contractile tails. Bar = 100 nm

© Springer
content of 35% and eight tRNA genes. The propagating strain is *Escherichia coli*. More than 200 similar phages have been described that share common virion morphology and related features (Comeau and Krisch 2008). The genomes of the four closely related phages isolated in this study can possibly be placed with the class of T4-like phages.

About 90% of known T4-like phages grow on *E. coli* or other enterobacteria, but 10% grow on phylogenetically more distant bacteria, such as *Aeromonas*, *Vibrio*, *Cyanobacteria*, among others, and they significantly vary in virion morphology (Comeau and Krisch 2008). Phage JS98 (NCBI accession number NC_010,105), propagated on *E. coli*, with a genome size of 170,523, three tRNAs, G + C content of 39%, can be considered to be closely related to the four phage genomes in this study.

A well-studied vibriophage, KVP40 has a giant genome of 244,834 bp (NCBI accession number NC_005083), host strain *Vibrio parahaemolyticus*, G + C content of 42.6%, and 30 tRNAs. The phage, isolated from polluted sea water in Japan, belongs to the *Myoviridae* family and is classified as a T4-like phage with a broad host range (Miller et al. 2003).

The four phages are closely related to two non-*Vibrio* phages: S-PM2 (NCBI genome accession NC_006820) and S-RSM4 (NCBI genome accession number NC_013085), which infect *Synechococcus*. Their G + C content is 37% and 41%, respectively, and their genomes sizes are 196,280 bp and 194,454 bp (Clokie et al. 2010).

Two other phages are closely related in percent G + C content. These are P-SSM2 and P-SSM4, known to infect *Prochlorococcus*. The genomes of these two phages (NCBI accession numbers NC_006,883 and NC_006884, respectively) have G + C content of 35.5% and 36.7%, respectively, and genome sizes 252,401 bp and 178,249 bp, respectively. P-SSM2 only encodes for one tRNA, while P-SSM4 lacks tRNA genes. These two bacteria, *Prochlorococcus* and *Synechococcus*, are globally ubiquitous marine cyanobacteria, and their phages are among the most abundant in the world’s oceans (Clokie et al. 2010; Aziz et al. 2015).

Because the four phages isolated in this study have relatively large genomes, they are potentially interesting subjects of further studies.

Genome annotation

As mentioned above, 186 CDSs were defined for phages VP4 and VP18, and 185 CDSs for phages VP6 and VP24. Out of these, 103 genes (55%) were annotated as ‘hypothetical’ or ‘unknown’ proteins. High frequency of proteins with unassigned functions is typical for phage genomes from previously unsampled geographical sites, and calls for further studies to identify the potential functions of those proteins.

On the other hand, the annotation process identified 82 genes (45% of all CDSs) associated with two main categories: (1) functional subsystems/modules, including nucleotide replication, repair, recombination, and metabolism, and (2) phage structural and hallmark genes (Fig. 2).

The four phages had near identical set of predicted protein, with marginal differences in 2–3 proteins per genome (Fig. 3 and Supplementary data table S1). Other than structural and functional phage domains, detailed for phage VP4 (Fig. 2), no unusual genes were detected. Specifically, both VIBRANT (Kieft et al. 2020) and the PATRIC (Davis et al. 2020) database indicated no known resistance or virulence genes, and no evidence of integrases was found.

Detection and significance of phoH

A notable exception to the above categories was the *phoH* gene, the expression of which was linked to phosphate starvation conditions. The *phoH* is a host-derived auxiliary metabolic gene (AMG), sometimes known as a moron (Hendrix et al. 2000, 2003), and is commonly carried by some phages. It belongs to the phosphate regulon that regulates phosphate uptake and metabolism under conditions of low phosphate and phosphate limitation. The *phoH* gene homologs were detected in phages with various morphological types, e.g., siphophages, myophages, and podophages, and with a wide bacterial host range (including autotrophic and heterotrophic bacteria). They were even detected in viruses of autotrophic eukaryotes (Goldsmith et al. 2011).

The *phoH* gene is not restricted to a certain morphological type of phage, which suggests that it could be a powerful biomarker gene for studying phage diversity. Goldsmith et al. (2011) found out that nearly 40% of marine phages contained *phoH*, compared to only 4% of nonmarine phages (Goldsmith et al. 2011).

In a study by Wang et al. (2016), more than 400 phage-harborowed *phoH* sequences were obtained from several paddy floodwaters in northeast China. Precisely, four specific groups and seven subgroups of this gene family were detected in phages from paddy waters (Wang et al. 2016). The study demonstrated that *phoH* was present in phage genomes of terrestrial environments and that this gene was useful for studying phage ecology in paddy ecosystems. These findings support the evidence that this biomarker gene can be used to investigate the diversity of phages in both marine and terrestrial environments (Li et al. 2019).

Phosphorus is a major element, necessary for nucleotide biosynthesis and DNA replication, but is extremely scarce in oligotrophic waters and is consequently thought to be one of the limiting factors for cyanobacterial growth (Martiny et al. 2006; Tetu et al. 2009; Kelly et al. 2013). Thus, it is not surprising that some phosphorus-acquisition genes, such as the phosphate-inducible genes, *pstS* and *phoH*, and the alkaline phosphatase gene *phoA*, which are regulated by the PhoR/PhoB two-component regulatory system to
sense phosphorus availability, were found in the genomes of cyanophages infecting cyanobacteria (Martiny et al. 2006; Sullivan et al. 2010; Zeng and Chisholm 2012). These genes could be upregulated in response to phosphate starvation in host cells, and their products could play an important role in regulating phosphorus absorption and transportation of host cells under low-phosphorus content or phosphorus-deprived conditions (Gao et al. 2016). It was also proposed that cyanophages maintain phoH to allow their host increased phosphate uptake during infection; however, the mechanism of how it occurs is not well known (Clokie et al. 2010), and phoH expression in phosphate-limited conditions appears to vary between hosts (Lindell et al. 2007; Tetu et al. 2009).

Based on the above observations, phoH has been proposed as a novel signature gene to assess the genetic diversity of viruses in multiple families of double-stranded DNA tailed phages (Goldsmith et al. 2011). phoH was commonly discovered in cyanophages, such as marine cyanophages P-SSM2, P-SSM4, and Syn9 (Sullivan et al. 2005; Weigele et al. 2007), and freshwater cyanophages Ma-LMM01 (Yoshida et al. 2008) and MaMV-DC (Ou et al. 2015). It was also found in non-marine phages, such as coliphage T5 (Wang et al. 2005) and Staphylococcus phages K, G1, and Twort (O’Flaherty et al. 2004; Kwan et al. 2005). The frequent detection of phoH genes in phage genomes suggests that their products play a role in the phosphate metabolism of the phage-infected cell (Sullivan et al. 2005). Based on bioinformatic analyses, phoH genes were suggested to be part of a multi-gene family with divergent functions from phospholipid metabolism and RNA modification to fatty acid beta-oxidation (Kazakov et al. 2003).

PhoH was also reported in vibriophages, represented by phage KVP40 (Miller et al. 2003) the well-studied T4-like phage isolated from polluted coastal sea water in Japan. The propagating host bacterium of phage KVP40 was Vibrio parahaemolyticus. Here, phoH was found in all the four phage genome sequences reported here. phoH has already been reported in phages isolated from versatile geographic locations. Although most phages harboring the phoH gene originated from marine environments, some belonged to other habitats, such as soil, sewage and stool (Adriaenssens and Cowan 2014). Taken together, the presence of genes involved in phosphorous acquisition demonstrate how phages might have developed adaptation to life in oligotrophic environment (Baudoux et al. 2012).

Phylogenetic context of VP4, VP6, VP18, and VP24

Phylogenetic analysis of RnR alpha, RnR beta and LT protein sequences of the four phages, compared to those from reference phages, displayed separate branching of the four phages (Fig. 4). Although the four phages were phylogenetically distinct from reference phages, they were most closely related to other Vibrio-infecting phages. Based on...
the trees for RnR alpha and RnR beta, the four phages are most closely related to Vibrio phage 1.244.A._10N.261.54.C3 (NCBI accession number MG592609.1, 159 kb length), from seawater, which has a partial genome sequence and is estimated to belong to the family Ackermannviridae (Kauffman et al. 2018).

As for the LT-based phylogeny, LT from the four phages are most closely related to Vibrio phage YC (RefSeq NC_048709.1, 147 kb length), which belongs to Ackermannviridae and infects Vibrio coralliilyticus (Cohen et al. 2013). Other phages that are related based on the LT tree include Vibrio phage VP-1 (NCBI MH363700.1, 150 kb length) (Mateus et al. 2014) and Vibrio phage VAP7 (RefSeq NC_048765.1, 144 kb length), both of which belong to the family Ackermannviridae as well (Gao et al. 2020), but were found to infect Vibrio parahaemolyticus and Vibrio alginolyticus, respectively.

Although the four phages described here seem to belong to family Ackermannviridae and share a similar genome length (~150 kb) to those other phages, their separate phylogenetic branching and different host range suggest that they are evolutionarily distinct from other known phages.

Alignment of phage VP4 with two closely related Vibrio-infesting phages shows that VP4 shares a few genes with known Vibrio phages (Fig. 5). The genes with the highest similarity are those predicted to encode terminases and major capsid proteins. These similarities, along with the phylogenetic trees, confirm the phylogenetic relatedness, yet distinction, of the four novel phages relative to known Vibrio phages.

Potential applications and therapeutic value

Cholera epidemics are known to be self-limiting in nature, since the epidemics subside after reaching a peak, even without any active human intervention (Hoque et al. 2016). Among other factors, lytic phages that kill V. cholerae have been shown to play a significant role in modulating...
the course of epidemics, presumably through their inherent bactericidal activity. Studies suggested that seasonal cholera epidemics may end as a result of phage predation of the causative epidemic *V. cholerae* strains (Faruque et al. 2005a, b; Nelson et al. 2009). This natural predatory role of phages make them appealing tools for the biocontrol of epidemics before they claim human lives; hence, the value of lytic phages is not only therapeutic, but also preventive, in some sense.

One of the pivotal phage features, which affects their therapeutic value, is their host spectrum. The four phages isolated here were infective against the 15 different tested environmental *V. cholerae* strains, in addition to a clinical strain. However, the phages were not infective against bacteria representing three other species: *E. coli*, *Proteus mirabilis* and *Providencia sneebia* so they remain of limited spectrum. A cocktail, composed of three different phages isolated from surface waters in Bangladesh and designated as JSF7, JSF4, and JSF3, could significantly influence the distribution and concentration of the active planktonic form and biofilm-associated form of toxigenic *V. cholerae* in water (Naser et al. 2017). Therefore, the four phages in this study are potential candidates to be added to cocktails for water decontamination and control of *V. cholerae* in environmental waters, used by poor communities for domestic purposes in Kenya.

Conclusion and outlook

Here, we report the initial characterization and whole genome sequencing of four novel vibriophages that could be primarily classified in the subfamily *Ackermannviridae*. Our analysis...
showed they possess relatively large genomes, with over half of their genes encoding for unknown proteins that might be involved in manipulating the *Vibrio* host during infection.

Phage therapy is a potential life-saver during cholera outbreaks in underprivileged countries, owing to the relative ease and speed of phage preparation with basic inexpensive laboratory equipment (Bhandare et al. 2019). To further circumvent antibiotic resistance, more complex and stable phage formulation methods are being explored (e.g., lyophilization, spray drying, emulsification, and microencapsulation (Malik et al. 2017). Future directions should target further characterization of the presented vibriophages and aim to test their control over pathogenic *V. cholerae* for water decontamination and phage therapy.

Post scriptum

It is important to note that while this manuscript was being written and was going through several rounds of revision, the Bacterial Viruses Subcommittee of International Committee on Taxonomy of Viruses (ICTV, URL: https://talk.ictvonline.org/) has set out to make major changes in nomenclature and taxonomy, with a re-assignment of order *Caudovirales* into class *Caudoviricetes*, and an eventual abolishment of families *Myoviridae*, *Podoviridae* and *Siphoviridae* (Turner et al. 2021). However, we opted to keep the current description of phages with contractile tails as “myophages” or “myoviruses” to allow comparison with literature, until a genome-based taxonomic system is fully established for the members of those three families.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00203-021-02511-3.

Acknowledgements We wish to acknowledge David Goulding for help with TEM imaging. We are grateful for the generous financial assistance provided by Professor Elizabeth Kutter (The Evergreen State College, Olympia, WA, USA) and Tobi Nagel (Phages for Global Health) to phage researchers from Africa. The clinical *Vibrio* isolate was kindly provided by the Department of Microbiology, University of Nairobi, Kenya.

Funding RKA is funded by the Egyptian Academy for Scientific Research and Technology (ASRT) JESOR program (Project #3046). The funder has no interference with the scientific content of the article.

Declarations

Conflict of interest None of the authors has a financial or personal conflict of interest to declare.

References

Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85. https://doi.org/10.4161/bact.1.2.15845

Adriaenssens EM, Cowan DA (2014) Using signature genes as tools to assess environmental viral ecology and diversity. Appl Environ Microbiol 80:4470–4480. https://doi.org/10.1128/aem.00878-14

Almagro-Moreno S, Taylor RK (2013) Cholera: environmental reservoirs and impact on disease transmission. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.OM-0003-2012

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/0022-2836(90)90570-K

Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

Aziz RK, Dwivedi B, Akhter S, Breitbart M, Edwards RA (2015) Multidimensional metrics for estimating phage abundance, distribution, gene density, and sequence coverage in metagenomes. Front Microbiol 6:381. https://doi.org/10.3389/fmicb.2015.00381

Aziz RK, Ackermann HW, Petty NK, Kropinski AM (2018) Essential steps in characterizing bacteriophages: biology, taxonomy, and genome analysis. Methods Mol Biol 1681:197–215. https://doi.org/10.1007/978-1-4939-7343-9_15

Baudoux AC, Hendrix RW, Lander GC et al (2012) Genomic and functional analysis of *Vibrio* phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses. Environ Microbiol 14:2071–2086. https://doi.org/10.1111/j.1462-2920.2011.02685.x

Bhandare S, Colom J, Baig A et al (2019) Reviving phage therapy for the treatment of cholera. J Infect Dis 219:786–794. https://doi.org/10.1093/infdis/jiy563

Clokie MR, Millard AD, Mann NH (2010) T4 genes in the marine environment. Virol J 7:291. https://doi.org/10.1186/1743-422x-7-291

Cohen Y, Joseph Pollock F, Rosenberg E, Bourne DG (2013) Phage therapy treatment of the coral pathogen *Vibrio coralliilyticus*. Microbiol Open 2:64–74. https://doi.org/10.1002/mbo3.52

Comeau AM, Krisch HM (2008) The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere. Mol Biol Evol 25:1321–1332. https://doi.org/10.1093/molbev/msn080

Davis JJ, Wattam AR, Aziz RK et al (2020) The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606-d612. https://doi.org/10.1093/nar/gkz943

Deen J, Mengel MA, Clemens JD (2020) Epidemiology of cholera. Vaccine 38(Suppl 1):A31-a40. https://doi.org/10.1016/j.vaccine.2019.07.078

El-Shibiny A, El-Sahhar S (2017) Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. Can J Microbiol 63:865–879. https://doi.org/10.1139/cjm-2017-0030

Faruque SM, Islam MJ, Ahmad QS et al (2005a) Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci USA 102:6119–6124. https://doi.org/10.1073/pnas.0502069102

Faruque SM, Naser IB, Islam MJ et al (2005b) Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 102:1702–1707. https://doi.org/10.1073/pnas.0408992102

Gao EB, Huang Y, Ning D (2016) Metabolic genes within cyanophage genomes: implications for diversity and evolution. Genes (Basel). https://doi.org/10.3390/genes7100080

Gao M, Qin Y, Fan H et al (2020) Characteristics and complete genome sequence of the virulent *Vibrio alginolyticus* phage VAP7, isolated in Hainan, China. Arch Virol 165:947–953. https://doi.org/10.1007/s00705-020-04535-4

Goldsmith DB, Crosti G, Dwivedi B et al (2011) Development of phoH as a novel signature gene for assessing marine phage diversity.
Appel Environ Microbiol 77:7730–7739. https://doi.org/10.1128/aem.05531-11

Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508. https://doi.org/10.1016/s0966-842x(00)01863-1

Hendrix RW, Hatfull GF, Smith MC (2003) Bacteriophages with tails: chasing their origins and evolution. Res Microbiol 154:253–257. https://doi.org/10.1016/s0926-2005(03)00068-8

Hoque MM, Naser IB, Bari SM, Zhu J, Mekalanos JJ, Faruque SM (2016) Quorum regulated resistance of Vibrio cholerae against environmental bacteriophages. Sci Rep 6:37956. https://doi.org/10.1038/srep37956

Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. https://doi.org/10.1093/bioinformatics/btp003

Jassim SA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages “The Living Drugs.” World J Microbiol Biotechnol 30:2153–2170. https://doi.org/10.1007/s11274-014-1655-7

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/msm010

Kauffman KM, Hussain FA, Yang J et al (2018) A major lineage of Vibrio cholerae: are they beneficial or inimical. Int J Pharm Bio Sci 11:121–129

Malik DJ, Sokolov IJ, Vinner GK et al (2017) Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci 249:100–133. https://doi.org/10.1016/j.cis.2017.05.014

Martiny AC, Coleman ML, Chisholm SW (2006) Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc Natl Acad Sci USA 103:12552–12557. https://doi.org/10.1073/pnas.0601301103

Mateus L, Costa L, Silva Y, Pereira C, Cunha A, Almeida A (2014) Efficiency of phage cocktails in the inactivation of Vibrio in aquatic culture. Aquaculture 424:167–173. https://doi.org/10.1016/j.aquaculture.2014.01.001

McNair K, Aziz RK, Pusch GD, Overbeek R, Dutilh BE, Edwards R (2018) Phage genome annotation using the RAST pipeline. Methods Mol Biol 1681:231–238. https://doi.org/10.1007/978-1-4939-7343-9_17

Miller ES, Heidelberg JF, Eisen JA et al (2003) Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 185:5220–5233. https://doi.org/10.1128/jb.185.17.5220-5233.2003

Naser IB, Hoque MM, Abdullah A, Bari SMN, Ghosh AN, Faruque SM (2017) Environmental bacteriophages active on biofilms and planktonic forms of toxigenic Vibrio cholerae: potential relevance in cholera epidemiology. PLoS ONE 12:e0180838. https://doi.org/10.1371/journal.pone.0180838

Nelson EJ, Harris JB, Norris JG Jr, Calderwood SB, Camilli A (2009) Cholera transmission: the host, pathogen and bacteriophage dynamics. Nat Rev Microbiol 7:693–702. https://doi.org/10.1038/nrmicro2204

O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP (2004) Genome of staphylococcal phage K: a new lineage of Myoviridae infecting Gram-positive bacteria with a low G+C content. J Bacteriol 186:2862–2871. https://doi.org/10.1128/jb.186.9.2862-2871.2004

Ou T, Gao XC, Li SH, Zhang QY (2015) Genome analysis and gene nbla identification of Microcystis aeruginosa mycovirus (MaMV-DC) reveal the evidence for horizontal gene transfer events between cyanomyovirus and host. J Gen Virol 96:3681–3697. https://doi.org/10.1099/jgv.0.000290

Rambaut A (2007) FigTree, a graphical viewer of phylogenetic trees. Edinburgh, UK: Institute of Evolutionary Biology University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/

Sambrook J, Russell DW, Russell DW (2001) Molecular cloning: a laboratory manual (3-volume set), 3rd edn. Cold Spring Harbor Laboratory Press, New York
Sen A, Ghosh AN (2005) New Vibrio cholerae O1 biotype ElTor bacteriophages. Virol J 2:28. https://doi.org/10.1186/1743-422x-2-28

Shah M (2014) An application of sequencing batch reactors in the identification of microbial community structure from an activated sludge. J Appl Env Microbiol 2:176–184. https://doi.org/10.12691/jaem-2-4-11

Silva-Valenzuela CA, Camilli A (2019) Niche adaptation limits bacteriophage predation of Vibrio cholerae in a nutrient-poor aquatic environment. Proc Natl Acad Sci USA 116:1627–1632. https://doi.org/10.1073/pnas.1810138116

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74:4070–4078. https://doi.org/10.1128/aem.00428-08

Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659. https://doi.org/10.1128/aac.45.3.649-659.2001

Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3:e144. https://doi.org/10.1371/journal.pbio.0030144

Sullivan MB, Huang KH, Ignacio-Espinoza JC et al (2010) Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol 12:3035–3056. https://doi.org/10.1111/j.1462-2920.2010.02280.x

Sullivan MJ, Petty NK, Beaton SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. https://doi.org/10.1093/bioinformatics/btr039

Talledo M, Rivera IN, Lipp EK et al (2003) Characterization of a Vibrio cholerae phage isolated from the coastal water of Peru. Environ Microbiol 5:350–354. https://doi.org/10.1046/j.1462-2920.2003.00411.x

Tetu SG, Brahmaha B, Johnson DA et al (2009) Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J 3:835–849. https://doi.org/10.1038/ismej.2009.31

Turner D, Kropinski AM, Adriaenssens EM (2021) A roadmap for genome-based phage taxonomy. Viruses. https://doi.org/10.3390/v13030506

van Twed R, Kropinski AM (2009) Bacteriophage enrichment from water and soil. Methods Mol Biol 501:15–21. https://doi.org/10.1007/978-1-60327-164-6_2

Wang J, Jiang Y, Vincent M et al (2005) Complete genome sequence of bacteriophage T5. Virology 332:45–65. https://doi.org/10.1016/j.virol.2004.10.049

Wang X, Liu J, Yu Z, Jin J, Liu X, Wang G (2016) Novel groups and unique distribution of phage phoH genes in paddy waters in northeast China. Sci Rep 6:38428. https://doi.org/10.1038/srep38428

Weigele PR, Pope WH, Pedulla ML et al (2007) Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol 9:1675–1695. https://doi.org/10.1111/j.1462-2920.2007.01285.x

Yoshida T, Nagasaki K, Takashima Y et al (2008) Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol 190:1762–1772. https://doi.org/10.1128/jb.01534-07

Zeng Q, Chisholm SW (2012) Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr Biol 22:124–128. https://doi.org/10.1016/j.cub.2011.11.055

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.