Meta-Analysis of Preclinical Studies of Fibrinolytic Therapy for Acute Lung Injury

Cong Liu1†, Yana Ma1†, Zhenlei Su1, Runzhen Zhao2, Xiaoli Zhao3, Hong-Guang Nie4, Ping Xu1, Lili Zhu5, Mo Zhang1, Xiaomin Li1, Xiaojie Zhang6, Michael A. Matthay7* and Hong-Long Ji2*

1Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang, China, 2Department of Molecular and Cellular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, United States, 3Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States, 4Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China, 5School of Nursing, Xinxiang Medical University, Xinxiang, China, 6Department of Pulmonary Medicine, Henan Provincial People’s Hospital, Zhengzhou, China, 7Department of Anesthesia and Medicine, University of California, San Francisco, San Francisco, CA, United States

Background: Acute lung injury (ALI) is characterized by suppressed fibrinolytic activity in bronchoalveolar lavage fluid (BALF) attributed to elevated plasminogen activator inhibitor-1 (PAI-1). Restoring pulmonary fibrinolysis by delivering tissue-type plasminogen activator (tPA), urokinase plasminogen activator (uPA), and plasmin could be a promising approach.

Objectives: To systematically analyze the overall benefit of fibrinolytic therapy for ALI reported in preclinical studies.

Methods: We searched PubMed, Embase, Web of Science, and CNKI Chinese databases, and analyzed data retrieved from 22 studies for the beneficial effects of fibrinolytics on animal models of ALI.

Results: Both large and small animals were used with five routes for delivering tPA, uPA, and plasmin. Fibrinolytics significantly increased the fibrinolytic activity both in the plasma and BALF. Fibrin degradation products in BALF had a net increase of 408.41 ng/ml vs controls (P < 0.00001). In addition, plasma thrombin–antithrombin complexes increased 1.59 ng/ml over controls (P = 0.0001). In sharp contrast, PAI-1 level in BALF decreased 21.44 ng/ml compared with controls (P < 0.00001). Arterial oxygen tension was improved by a net increase of 15.16 mmHg, while carbon dioxide pressure was significantly reduced (11.66 mmHg, P = 0.0001 vs controls). Additionally, fibrinolytics improved lung function and alleviated inflammation response: the lung wet/dry ratio was decreased 1.49 (P < 0.00001 vs controls), lung injury score was reduced 1.83 (P < 0.00001 vs controls), and BALF neutrophils were lesser (3 × 10^4/ml, P < 0.00001 vs controls). The mortality decreased significantly within defined study periods (6 h to 30 days for mortality), as the risk ratio of death was 0.2-fold of controls (P = 0.0008).

Conclusion: We conclude that fibrinolytic therapy may be effective pharmacologic strategy for ALI in animal models.

Keywords: lung diseases, fibrinolytic agents, molecular therapy, interventions, preclinical study
INTRODUCTION

Suppressed fibrinolysis is a pathological hallmark of acute lung injury (ALI) in addition to pulmonary edema and cytokine/chemokine "storm" (1, 2). Over the last two decades, the mortality of acute respiratory distress syndrome (ARDS), the late stage of ALI remains unacceptably high. There are approximately 200,000 new cases annually in the United States (3, 4). ALI could be caused by pulmonary (e.g., pneumonia and smoke inhalation) or systemic disorders (e.g., sepsis, hemorrhagic shock, and trauma) (5). The heterogeneity of ALI apparently makes it difficult to identify the etiology precisely and promptly for designing case-specific salutary interventions. To date, supportive strategies have been shown to be beneficial (5). In addition, some promising therapeutic strategies are being evaluated by registered clinical trials, including stem cell therapy (6, 7), corticosteroid, interferon beta, and tumor necrosis factor-alpha (8).

In injured lungs, alveolar fibrinolytic activity is depressed markedly and intravascular and extracellular fibrin is deposited in the air spaces (9, 10). The eliminated fibrinolytic activity was predominately attributed to elevated plasminogen activator inhibitor-1 (PAI-1) in both the plasma and bronchoalveolar lavage fluid (BALF). The fibrinolytic system is composed of proteases and anti-proteases, including plasminogen, plasminogen activators (tissue-type plasminogen activator, tPA; urokinase plasminogen activator, uPA), plasmin, PAI-1, and plasmin catalytic antagonists (α2-antiplasmin and α2-macroglobulin). Both uPA and tPA proteolytically cleave zymogen plasminogen to generate plasmin with catalytic activity, which degrades fibrin. To date, the fibrinolytic therapy has clinically been applied to pleural effusion/empyema as fibrinolytics (11), cardiovascular diseases as thrombolytics (12), and obstructive airway diseases as mucolytics (13, 14). The benefit of fibrinolytic therapy for ALI, however, is still at the earlier stage of preclinical studies. Intravenous delivery of either uPA or tPA might be protective for traumatic lung injury, as improved survival and gas exchange were observed in treated pigs (15). Moreover, tPA attenuated pulmonary abnormalities in smoke inhalation injured sheep (16). Interestingly, an earlier pilot study reported a potential improvement in lung function following administration of either uPA or tPA in 20 ALI patients (17). Because of inconclusive preclinical studies to address optimized dose, routes, and benefit, clinical trials have not been conducted to date.

The main purpose of this meta-analysis is, therefore, to assess preclinical studies of ALI for the potential effects of fibrinolytic therapy. Additionally, we quantified the differences in outcomes between large and small animal models, variable fibrinolytic regimes, and routes. Our analysis suggests that three fibrinolytic regimens may benefit ALI by improving gas exchange, inflammation, and lung injury.

MATERIALS AND METHODS

The study was conducted in accordance with the methods recommended in the PRISMA guidelines. Please see Datasheet S1 in Supplementary Material for detail search strategies.

Data Sources

Three investigators (CL, ZS, and YM) independently searched the published studies indexed by the PubMed, Embase, Web of Science, and CNKI on March 2017, using the strategy: (fibrinolytics OR plasmin OR fibrinase OR fibrinolyin OR alfmeprazase OR uPA OR urokinase OR abbokinase OR streptokinase OR kabiokinase OR streptase OR kabikinase OR activase OR metalyse OR SK OR streptomycin OR TNKase OR TNK tPA OR metalyse OR SK OR streptokinase OR streptase OR kabiokinase OR actase OR thrombolysin OR eminase OR desmoteplase OR pro-urokinase OR staphylokinase OR plasminogen activator) AND (lung injury OR ALI OR ARDS OR respiratory distress syndrome OR septic OR sepsis OR bac- teremia OR endotoxemia OR multi-organ failure OR respiratory failure OR pneumonia OR shock OR pulmonary edema OR lung edema OR edematous OR pulmonary edema). The fourth investigator (H-LJ) was consulted in case of no consensus on inclusion. There was no language restriction in the searching and non-English literature was translated into English via a professional service. We also checked the references of included studies for additional publications that were not hit by the searching strategy.

Inclusion and Exclusion Criteria

Studies were included in the current meta-analysis if: (1) the species of studies were animals; (2) animal models were ALI, including Pseudomonas aeruginosa pneumonia, Klebsiella pneumonia, fibrotic lung injury, trauma, septic shock, burn and smoke inhalation injury, and disseminated intravascular coagulation; (3) the animals were treated with three fibrinolytics, genetically engineered for overexpressing of plasminogen activators or knocking out PAI-1; and (4) results were expressed or could be digitized or converted to mean and SD.

The following studies were excluded: (1) review articles, letters, case reports, posters, or without objective data to be evaluated; (2) data were from PAI-1 transgenic, PAI-1 knock-in, and tPA- and uPA-deficient animals; (3) insufficient publications existed to perform a meta-analysis; (4) the number of control group or experimental group was less than three animals; (5) the animals were treated with combined heparin, antithrombin, activated protein C, and other medicines with potential effects on fibrinolysis; and (6) combined regimens and fibrinolytic therapy for lung injury.

Data Extraction

Data extraction was carried out by three authors (CL, ZS, and YM). The following items from the eligible studies were extracted: article information (first author name, publication date, and country of origin), animal species, gender, method of ALI induction, type and dose of fibrinolytics, duration of treatment, delivery approach, and number of animals for both control and treated groups. Data were extracted as mean and SD if available. When only graphic presentations were available, values for mean and SD were obtained via calibrating images using GetData Graph Digitizer software (version 2.26.0.20) (18–20). If raw data were represented by median and interquartile...
range (20, 21) or range (22), these values were converted to SD by the formulas: $SD^2 = 1/12 [(a - 2m + b)/4 + (b - a)^2]$, and mean = $(a + 2m + b)/4$, where m represents median, a and b are lower and upper range (23). If the SE was reported (20), it was converted to SD using the function, $SD = SE \times \sqrt{n}$, where n is the sample size. For one study (24), we combined individual data using the formulas, $\bar{X} = \sum X / n$ and $SD = \sqrt{\sum(X - \bar{X})^2 / n - 1}$, where x represent variance, \bar{X} is the mean of the pooled individual data. If neither SD nor SEM were found (15, 25), we borrowed SD value of similar studies for the same parameter. For parameters reported with divergent units, for example, PaO2, PaCO2, and neutrophils, the units were converted to the same one. For lung water content that shown as weight gain or lung leak index, we converted them to W/D ratio following the formulas: W/D ratio = $(W_0 + W_1)/D_0$ = lung leak index × 100, where W_0 represents normal animal lung wet weight, W_1 represents weigh gain, and D_0 represents normal animal lung dry weight. Lung injury scores were analyzed as occurrence of at least one of following indices: (1) leukocyte and red blood cell infiltration, (2) alveolar epithelium damage, (3) interstitial edema, and (4) fibrin deposition and hyaline membrane formation. Extracted raw data are included in Datasheet S2 in Supplementary Material.

Quality Assessment

Risk of biases was assessed using the Cochrane Handbook for Systematic Reviews of Interventions (26). All included studies were assessed on seven fronts: randomization (selection bias), blinding of personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), allocation concealment (selection bias), selective outcome reporting (reporting bias), and other biases. These assessments are included in Table 6. In addition, we examined the quality of the included 22 studies with the ARRIVE guidelines specifically for animal studies (Table 2).

Statistical Analysis

We performed statistical analysis in the preclinical studies using Review Manager (RevMan), version 5.3 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) and STATA V.12 (StataCorp. College Station, TX, USA). The mean differences were considered to be statistically significant when $P \leq 0.05$. If P-value was less than 0.05, or the I^2-value was greater than 50%, the overall estimate was analyzed in a random effects model. Groups within a parameter were included if there were \geq 3 comparisons. Eleven readouts were selected: PaO2, PaCO2, plasma thrombin–antithrombin complexes (TATc), plasma PAA, fibrin degradation products (FDP) in BALF, PAA in BALF, PAI-1 in BALF, neutrophils in BALF, lung water content, lung injury score, and mortality. The data were combined using inverse variance method and shown as weighted mean differences (WMD) with 95% confidence intervals (95% CI) in the forest plots in addition to mortality. The measures for the parameters (PaO2 and PaCO2) at the same time points were continuously monitored. If unavailable, we used the data collected at an adjacent time point. We pooled dichotomous variables (i.e., mortality) using the Mantel–Haenszel method. If the mortality was measured within a period, the end time point was used. The RR was computed with the random effects model for a high heterogeneity. The potential publication bias was assessed with funnel plots and the Egger’s regression test (40) (Stata, version 12). Heterogeneity among studies was defined with the P-statistic function as an unimportant ($P < 25\%$), a moderate ($25\% < P < 75\%$), or a high degree of heterogeneity ($P > 75\%$).

To eliminate heterogeneity, the meta-analyses were further performed for data grouped by animal size (small or large animals), individual fibrinolytics (tPA, uPA, or plasmin), and routes (i.v., i.p., l.t., nebulization, or transgenic). Small animals included mice, rats, and rabbits. Large animals were comprised of sheep, pigs, and dogs. Subgroup analysis was not performed when there was only one sample. In addition, the robustness of the results was confirmed by sensitivity analysis. If multiple studies with the same first author and publication year, they were distinguished with an asterisk (*) (19, 20). The same control group was used for several comparisons and denoted with superscript letters a, b, c, and d (15, 18, 29, 32).

RESULTS

Characteristics of Included Studies

Our comprehensive search of the PubMed, the Web of Science, the Embase, and the CNKI databases hit 7,624 publications. After carefully examining the titles and abstracts, we selected 73 articles with full texts available for further screening. Twenty-two studies were finally included for systematic review and meta-analysis (Figure 1). General characteristics of these 22 studies were summarized in Table 1. Ten studies were performed for tPA (0.098–250 mg) (15, 16, 19, 20, 22, 24–27, 30), seven for uPA (up to 240 mg or 2,230,000 IU) (18, 21, 25, 32–35), three for plasmin (0.5 mg or 100,000 IU) (37–39), and two in gene therapeutic mice by either over expressing uPA (36) or tPA (31). The geological distributions of these studies are: 10 from USA (48%) (15, 16, 25, 27–30, 32, 36, 37), 4 from Netherlands (17%) (19, 20, 24, 31), 4 from China (17%) (22, 33–35), 2 from Japan (9%) (38, 39), 1 from Germany (4%) (18), and 1 from Denmark (21). Fifteen papers were published in small animals. Twelve studies were conducted in rodents: 2 in mice (31, 36) and 10 in rats (19, 20, 22, 24, 27–30, 38, 39). In addition, 3 studies used rabbits (18, 34, 35). Seven studies used large animals: 5 in pigs (15, 21, 25, 32, 33), 1 in dogs (37), and 1 in sheep (16). Five routes used in the studies included intravenous injection/infusion (i.v., $n = 12$), nebulization (Neb, $n = 5$), intratracheal inhalation (i.t., $n = 2$), intraperitoneal injection (i.p., $n = 1$), and gene delivery (Tg, $n = 2$). To evaluate the strength of the included 22 studies, we checked the adherence to the 20 checklists of the ARRIVE guidelines (Table 2). In general, no papers fully reported 20 checklists, most of studies partially reported these requests except title, objectives, and experimental outcomes. In particular, none of 22 studies performed sample size calculation and provided detailed adverse events. Thus, we examined the quality of the included studies for mortality (Table 3). In total, 200 animals (112 for control and 88 for treated group) from 10 studies were...
included for meta-analyzing mortality. There were no animals excluded by the original authors due to incident death or severe side-effects. Average mortality was 87 and 17%, respectively, for controls and treated animals. Correspondingly, 7 animals (power = 80%, alpha = 0.05) or 10 animals (power = 95%, alpha = 0.05) are requested. Definitely, the animals for both groups are sufficient for performing meta-analysis. On the other hand, because only 6 of 22 studies simply mentioned paucity of hemorrhage descriptively instead of quantitative measurements, we could not have high quality primary data to analyze this adverse effect.

Mortality Within Defined Follow-Up Periods

The mortality associated with fibrinolytic therapy was evaluated (Figure 2). Compared with controls, fibrinolytics significantly reduced the deaths of treated animals, as shown by the overall risk ratio (RR) (0.21, 95% CI: 0.08 to 0.52, \(P = 0.0008 \)). Furthermore, we analyzed mortality of small and large animals separately (Table 4). The mortality was reduced significantly in both large and small animals, as shown by RR values of 0.24 (\(P = 0.02 \)) and 0.17 (\(P = 0.01 \)), respectively. The mortality associated with three fibrinolytics was evaluated individually for tPA (38 controls, 38 treated from 5 studies), uPA (40 controls, 37 treated from 5 studies), and plasmin (34 controls, 13 treated from 1 study). The mortality was reduced in a treatment-dependent manner; the RR values were 0.13 for tPA (\(P = 0.01 \)), 0.18 for uPA (\(P = 0.13 \)), and 0.42 for plasmin (\(P = 0.02 \)). The mortality was further analyzed by three routes: i.v. (73 controls, 44 treated from 6 studies), i.t. (17 controls, 21 treated from 2 studies), and gene delivery (22 controls, 23 treated from 2 studies). The RR values were 0.24 for i.v. (95% CI: 0.07 to 0.82, \(P = 0.02 \)), 0.05 for i.t. (95% CI: 0.01 to 0.32, \(P = 0.002 \)), and 0.38 for gene delivery (95% CI: 0.17 to 0.85, \(P = 0.02 \)). The defined follow-up periods for counting mortality of 10 studies are included in Table 3.

Levels of PaO2 and PaCO2

Eighteen studies examined the effects of fibrinolytic therapy on blood oxygen concentration. Compared with controls, an increment of 15 mmHg (95% CI: 8 to 23 mmHg, \(P < 0.0001 \)) in arterial oxygen tension (PaO2) was observed (Figure 3A).
Author (year, country)	Species, gender control/treated	Insult	Total dose	Route	Medicine, vehicle	Time
Enkhbaatar et al., (16), USA	Sheep, F (6/6)	Burn and smoke inhalation	22 mg (2 mg every 4 h, beginning 4 h after injury)	Neb	rhtPA, saline	48 h
Choi et al., (19, 20)	Rat, M (11/8 or 12/8)	LPS	0.28 mg, 0.84 mg (1.25 mg/kg, 30 min before injection of LPS; no 6 and 12 h for group b)	i.v.	rPA, saline	4 or 16 h
Choi et al., (19, 20)	Rat, M (8/8)	Pseudomonas aeruginosa	0.31 mg, 0.94 mg (1.25 mg/kg, 30 min before induction of pneumonia; at 6 and 12 h for group b)	rtPA, saline	6 or 16 h	
Huang et al., (22)	Rat, M (7/7)	Ventilation	0.34 mg (1.25 mg/kg in 0.5 ml saline, 15 min before ventilation)	tPA, saline	2 h	
Stringer et al., (27)	Rat, M (10/6)	IL-1	4.2 mg (6 mg/kg, 10 min before IL-1, 6 mg/kg after 2.5 h)	tPA, saline	5 h	
Hofstra et al., (24)	Rat, M (7/7)	P. aeruginosa or LPS	0.84 mg (1.25 mg/kg, 30 min before induction of pneumonia or injection of LPS; at 6 and 12 h)	rtPA, saline	16 h	
Conhaim et al., (28)	Rat, M (6/6)	Acute blood loss	0.136 mg (200 μg/kg x 0.325 kg x 1)	Neb	tPA, ipratropium bromide	24 h
Veress et al., (29)	Rat, M (4/12)	Sulfur mustard Inhalation	0.098, 0.195, 0.325, or 0.455 mg (0.15, 0.30, 0.50, or 0.70 mg/kg x 0.325 kg x 2, at 5.5 and 6.5 h)	i.t.	tPA, PBS	48 h
Veress et al., (30)	Rat, M (13/9)	2.06 mg (0.70 mg/kg x 0.245 kg x 12, every 4 h)	tPA, PBS	48 h		
Renckens et al., (31)	Mice, F (12/12)	K. pneumoniae	250 mg (initially 50 mg, then 200 mg, beginning 4 h after injury)	Tg	hPA DNA, control Ad.	30 days
Hardaway et al., (15)	Pig, NR (9/5)	Trauma	250,000 IU (250,000 IU in 500 ml 5% glucose solution and administered at 15 drops/min, beginning 4 h after injury)	i.v.	tPA, NT	48 h
Hardaway et al., (25)	Pig, NR (8/8)	E. coli	2,230,000 IU (initially 250,000 IU, then 2,000 IU/pound/h for 4 h of 2, 20-h	uPA, saline 210,000 IU (210,000 IU in 20 ml saline over a 20 min period)	uPA, NT	24 h
Vasquez et al., (32)	Pig, NR (6/6 or 7/7)	E. coli	250 IU (250,000 IU in 20 ml saline and inject over a 20 min period)	uPA, NT	24 h	
Munster et al., (21)	Pig, NR (14/14)	Trauma	240 mg (5 mg/ml x 4 ml x 12, 5 mg/ml as 12 consecutive nebulizations of 4 ml)	Neb	scuPA, saline	6 h
Chen et al., (33)	Pig, NR (6/6)	LPS	74,184 IU (initially 4,400 IU/kg in 10 min, then 4,400 IU/kg/h for 2 h)	i.v.	uPA, NT	28 days
Gunther et al., (18)	Rabbit, NR (9/5 or 9/7)	Bleomycin	6,319 ± 0.05/0.26 IU (6,319 ± 0.05/0.26 IU x 1) or 6,898 ± 0.12 IU (6,898 ± 0.12 IU x 1)	Neb	hPA NT	14 days
Yu et al., (34)	Rabbit, M (18/18)	Embolism	45,000 IU (20,000 IU/kg x 2.25 kg)	uPA, saline	12 h	
Chen et al., (33)	Rabbit, NR (6/6)	Embolism	55,000 IU (18,333 IU in 3 ml saline, 36,667 IU in 5 ml saline)	Tg	mPA DNA, plasmid	28 days
Sisson et al., (36)	Mice, NR (10/11)	Bleomycin	55,000 IU (18,333 IU in 3 ml saline, 36,667 IU in 5 ml saline)	uPA, saline	12 h	
Hardaway et al., (27)	Dog, NR (3/12)	Hemorrhagic shock	100,000 IU	Tg	mPA DNA, plasmid	28 days
Motoyama et al., (39)	Rat, M (7/7)	Hypoxia reperfusion	0.5 mg	i.v.	Plasmin, NT	48 h
Sisson et al., (36)	Mice, NR (10/11)	Embolism	55,000 IU (18,333 IU in 3 ml saline, 36,667 IU in 5 ml saline)	uPA, saline	12 h	

rPA, tissue-type plasminogen activator; uPA, urokinase plasminogen activator; hPA/hruPA, recombinant human hPA/uPA; scuPA, single-chain uPA; i.v., intravenous injection/infusion; i.p., intraperitoneal injection; i.t., intratracheal inhalation; Neb, nebulization; Tg, transgenic; LPS, lipopolysaccharide; E. coli, Escherichia coli; IL-1, interleukin 1; PBS, phosphate buffered saline; F/M, female/male; Ad., adenoviral vector; NT, not treated; NR, not reported.
Because the heterogeneity between these studies was significant ($I^2 = 87\%$), we, therefore, analyzed the beneficial effects of each individual fibrinolysin. As a result, tPA, uPA, and plasmin elevated PaCO$_2$ with a net value of 23 mmHg (95% CI: 6 to 41 mmHg, $P = 0.008$), 8 mmHg (95% CI: 2 to 13 mmHg, $P = 0.005$), and 23 mmHg (95% CI: −6 to 51 mmHg, $P = 0.12$), respectively (Table 4). Next, the contribution of three routes to the efficacy of fibrinolytics on PaCO$_2$ was assessed. 5 of 10 studies delivered intravenously showed an increase of 15 mmHg in PaCO$_2$ (95% CI: 4 to 27 mmHg, $P = 0.001$) in treated animals. Intratracheal administration showed a beneficial effect (30 mmHg, 95% CI: 24 to 37 mmHg, $P < 0.00001$), whereas nebulization did not (3 mmHg, 95% CI: −2.0 to 8 mmHg, $P = 0.18$) (Table 4). Finally, we analyzed this benefit in small and large animals separately. Twelve small animal studies (85 animals for controls, 77 animals for treated group) were analyzed. Six studies favored fibrinolytic therapy, while another half did not. Ultimately, there was an improvement of 14 mmHg in PaCO$_2$ in small animals compared with controls (95% CI: 7 to 23 mmHg, $P = 0.0007$). In contrast, the improvement in large animals was statistically insignificant due to a large variance (21 mmHg, 95% CI: −26 to 68 mmHg, $P = 0.38$) (Table 4).

Overall arterial carbon dioxide pressure (PaCO$_2$), another physiological parameter for gas exchange capacity of the lung, showed a significant reduction of 12 mmHg (95% CI: −18 to −5 mmHg, $P = 0.0001$) in treated animals (Figure 3B). Moreover, five of seven tPA studies (42 controls, 36 treated animals) favored fibrinolytic therapy with a decrease of 21 mmHg (95% CI: −34 to −8 mmHg, $P = 0.002$) in PaCO$_2$, whereas the other two studies did not. In contrast, uPA did not significantly alter PaCO$_2$ (0.3 mmHg, 95% CI: −2 to 2 mmHg, $P = 0.79$) in three studies (Table 4). Regarding routes of administration, all of the five studies investigating i.t. treatment (29 controls, 23 treated animals) demonstrated a favor, as there was a 31 mmHg reduction in PaCO$_2$ (95% CI: −45 to −18 mmHg, $P < 0.00001$). In contrast, i.v. (3 studies) and nebulization (2 studies) did not exhibit significant effects on PaCO$_2$ with a change of 1 mmHg (Table 4). Nine studies in small animals (66 controls, 60 treated animals) were evaluated for the efficacy of fibrinolytic therapy in the reduction of PaCO$_2$. Five studies favored fibrinolytic therapy, and four studies did not. Taken together, the overall PaCO$_2$ showed a reduction of 15 mmHg in small animals (95% CI: −23 to −7 mmHg, $P = 0.0005$). However, fibrinolytics did not reduce PaCO$_2$ significantly in large animals (Table 4). In addition, the overall benefit of fibrinolytics on PO$_2$ and PaCO$_2$ levels at the same time point were confirmed by analyzing data at the endpoint of each study (Table 4, data with *).

Fibrinolytic Activity

Fibrinolytic therapy significantly increased the fibrinolytic activity both in the plasma and BALF, as measured by the alterations in plasminogen activator activator (PAA), PAI-1, and FDP. Overall, fibrinolytics significantly increased 39% (95% CI: 25 to 52%, $P < 0.00001$) for PAA in the plasma, 51% (95% CI: 45 to 56%, $P < 0.00001$) for PAA in BALF, and 408 ng/ml (95% CI: 352 to 463 ng/ml) for PAI-1 in BALF.

TABLE 2 | ARRIVE checklists of included studies.

Study	Fully reported n/N (% reported)	Partially reported n/N (% reported)	Not reported n/N (% reported)
Vasquez et al., (32)*	6/6 (100)	6/6 (100)	0/6 (0)
Vasquez et al., (32)*	7/7	7/7	0/7 (0)
Hardaway et al., (37)	34/13	34/13	31/5 (48)
Renckens et al., (31)	12/12	12/12	9/4 (30)
Sisson et al., (35)	10/11	10/11	5/1 (21)
Hardaway et al., (25)	8/8	8/8	7/0 (24)
Veress et al., (33)	13/9	13/9	13/0 (41.5)
Hardaway et al., (19)*	8/5	9/5	9/0 (44)
Hardaway et al., (19)*	9/5	9/5	9/0 (44)
Veress et al., (29)	4/12	4/12	4/0 (15.5)
Total	112/88	112/88	97/15 (6–30)

N, total number of papers where the item was applicable; n, total number of papers reporting the item.

TABLE 3 | Data quality included for analyzing mortality.

Study	Total number (control/ treated)	Included number (control/ treated)	Death incidence (control/ treated)	Follow-up time (hour or day)
Vasquez et al., (32)*	6/6	6/6	6/5	6–8 h
Vasquez et al., (32)*	7/7	7/7	4/0	23 h
Hardaway et al., (37)	34/13	34/13	31/5	48 h
Renckens et al., (31)	12/12	12/12	9/4	30 days
Sisson et al., (35)	10/11	10/11	5/1	21 days
Hardaway et al., (25)	8/8	8/8	7/0	24 h
Veress et al., (33)	13/9	13/9	13/0	41.5 h
Hardaway et al., (19)*	8/5	9/5	9/0	44 h
Hardaway et al., (19)*	9/5	9/5	9/0	44 h
Veress et al., (29)	4/12	4/12	4/0	41.5 h
Total	112/88	112/88	97/15	6 h–30 days

None of the animals were excluded during the experiments due to severe adverse events. Sample size for both control and treated groups was computed by the online server, the Clinicl: (www.clinicalcalc.com/stats/samplesize.aspx) with the settings for two independent study groups for “Study Group Design,” dichotomous for “Primary Endpoint,” 87% mortality for control (group 1), 17% mortality for treated group (group 2), $\alpha = 0.05$, and meta (power) = 80 or 95%. Calculated sample size for both groups is 7 animals (power = 80%) or 10 animals (power = 95%).
465 ng/ml, $P < 0.00001$) for FDP in BALF, respectively. In sharp contrast, PAI-1 in BALF was decreased significantly in treated animals (-21 ng/ml, 95% CI: -24 to -19 ng/ml, $P < 0.00001$) (Figure 4).

The effects of fibrinolitics on fibrinolytic activity were further analyzed with the data grouped by delivering routes. For PAA in the plasma, intravenous delivery was used in two studies (39 controls, 32 treated animals), and nebulization was applied in one publication (14 controls, 14 treated animals). Both systemic (i.v.) and local (nebulization) routes were effective in augmenting plasma PAA: an increase of 35% of basal level for i.v. (95% CI: 0.85 [0.55, 1.31]) and 16.1% for nebulization (95% CI: 0.42 [0.21, 0.85]) (Table 4).

Similarly, fibrinolytic activity in BALF was improved significantly. PAA in BALF was increased by 48% (95% CI: 43 to 53%, $P < 0.00001$) for i.v. and 58% (95% CI: 32 to 84%, $P < 0.00001$) for nebulization, respectively (Table 4). Six tPA (50 controls, 48 treated animals) and two uPA studies (14 controls, 14 treated animals) were analyzed separately. The other 5 tPA studies, however, did not exhibit significant changes in neutrophils compared with controls. UPA suppression the infiltration of neutrophils into alveoli (-21 ng/ml, 95% CI: -24 to -19 ng/ml, $P > 0.00001$) or nebulization (-22 ng/ml, 95% CI: -24 to -21 ng/ml, $P < 0.00001$) (Table 4).

Lung Edema

The random effect model was used to assess the efficacy of fibrinolitics on the resolution of edema fluid in injured lungs (Figure 6B). Total gravimetric lung wet/dry ratios were analyzed in two studies for plasmin (14 controls, 14 treated animals), two for tPA (16 controls, 12 treated animals), and two studies via nebulization (14 controls, 14 treated animals). Both nebulization (3.7 ng/ml, 95% CI: 1.6 to 5.9 ng/ml, $P = 0.0007$) and i.v. (1.2 ng/ml, 95% CI: 0.4 to 2.1 ng/ml, $P = 0.005$) increased plasma TATc (Table 4).
Overall effect	Small animal	Large animal	tPA	uPA	Plasmin	i.v.	Nebulization	i.t.	i.p.	Transgenic		
Mortality (RR)	0.21 (0.08, 0.52)	0.17 (0.04, 0.65)	0.24 (0.07, 0.82)	0.13 (0.03, 0.66)	0.18 (0.02, 1.70)	0.42 (0.21, 0.85)	0.24 (0.07, 0.82)	–	0.05 (0.01,0.32)	–	0.38 (0.17, 0.85)	
	0.0008, 88/112	0.01, 44/39	0.02, 44/73	0.01, 38/38	0.13, 37/40	0.12, 3/14	0.02, 44/73	–	0.002, 21/17	–	0.02, 23/22	
PaO2, mmHg	15.16 (7.78, 22.55)	14.79 (6.28, 23.30)	21.01 (−25.54, 67.55)	23.41 (6.06, 40.76)	7.68 (2.23, 13.03)	22.74 (−5.72, 51.21)	15.18 (5.59, 26.76)	3.17 (−1.50, 7.83)	0.18, 29/38	30.31 (23.74, 36.89)	–	–
<0.0001, 119/138	0.0007, 77/85	0.008, 32/38	0.005, 73/86	0.12, 14/14	0.0008, 68/74	0.0007, 32/38	0.0005, 73/86	0.0003, 21/17	<0.00001, 14/16	–	–	
PaO2, mmHg*	15.03 (6.63, 24.42)	–	–	–	–	–	–	–	–	–	–	
	0.002, 116/104	–	–	–	–	–	–	–	–	–	–	
PaCO2, mmHg	–11.66 (−17.58, −5.73)	–14.82 (−23.11, −6.52)	−21.23 (−34.40, −8.06)	0.29 (−1.84, 2.42)	–	0.89 (−1.71, 3.48)	1.36 (−2.60, 5.31)	0.50, 31/31	0.0004, 14/14	–	–	
	0.0001, 71/80	0.0005, 60/66	0.0002, 38/42	0.79, 35/38	0.0001, 46/48	0.0001, 48/53	0.0001, 46/53	–	<0.00001, 23/29	–	–	
PaCO2, mmHg*	–13.65 (−22.39, −4.92)	–35.80 (16.40, 55.19)	–	30.31 (23.74, 36.89)	–	–	–	–	–	–	–	
	0.002, 58/49	0.0003, 32/39	0.0001, 46/53	0.0001, 46/53	0.0001, 46/53	0.0001, 46/53	0.0001, 46/53	–	<0.00001, 23/29	–	–	
Plasma PAA, %	38.84 (25.36, 52.31)	–	–	–	–	–	–	–	–	–	–	
	<0.00001, 46/53	–	–	–	–	–	–	–	–	–	–	
BALF PAA, %	50.53 (45.35, 55.73)	–	–	–	–	–	–	–	–	–	–	
	<0.00001, 46/53	–	–	–	–	–	–	–	–	–	–	
BALF FDP, ng/ml	409.41 (351.65, 465.16)	590.58 (441.78, 739.38)	4.90 (3.12, 6.68)	<0.00001, 46/48	<0.00001, 46/48	–	–	–	–	–	–	
	<0.00001, 60/67	<0.00001, 14/14	–	–	–	–	–	–	–	–	–	
BALF PAI-1, ng/ml	–21.44 (−23.78, −19.09)	–21.12 (−24.54, −17.69)	–	–	–	–	–	–	–	–	–	
	<0.00001, 46/53	<0.00001, 14/14	–	–	–	–	–	–	–	–	–	
Plasma TATc, ng/ml	1.59 (0.78, 2.40)	–	–	–	–	–	–	–	–	–	–	
	0.0001, 46/53	–	–	–	–	–	–	–	–	–	–	
Neutrophil, 10⁶ cells/ml	–0.03 (−0.05, −0.02)	–0.08 (−0.16, −0.00)	−0.03 (−0.05, −0.02)	0.54 (2.86, 1.12)	0.04, 48/50	<0.00001, 12/18	1.24 (0.37, 2.12)	0.005, 32/39	0.0007, 14/14	–	–	
	<0.00001, 60/68	0.0001, 60/68	0.0001, 60/68	0.0001, 60/68	0.0001, 60/68	0.0001, 60/68	0.0001, 60/68	0.0001, 60/68	0.0001, 60/68	–	–	
Lung water content	–1.49 (−2.15, −0.83)	–2.09 (−2.72, −1.45)	–0.60 (−1.26, −0.00)	1.41 (0.00, 1.12)	0.17, 12/12	0.41, 6/6	1.92 (−2.65, −1.19)	–	–	–	–	
	<0.00001, 32/36	<0.00001, 20/24	0.07, 12/12	0.0004, 20/20	0.0001, 14/14	0.0001, 14/4	0.0001, 55/55	<0.00001, 6/10	–	–	–	
Lung injury score	–1.83 (−2.55, −1.12)	–1.94 (−2.69, −1.19)	−1.16 (−1.96, −0.36)	−0.64 (−2.83, 1.55)	−0.65, 38/38	0.004, 6/6	–	–	–	–	–	
	<0.00001, 64/64	<0.00001, 58/58	<0.00001, 58/58	<0.00001, 58/58	<0.00001, 58/58	<0.00001, 58/58	<0.00001, 58/58	<0.00001, 58/58	–	–	–	

RR, risk ratio; tPA, tissue-type plasminogen activator; uPA, urokinase-type plasminogen activator; i.v., intravenous injection/infusion; i.t., intratracheal inhalation; i.p., intraperitoneal injection; PaO2, arterial oxygen tension; PaCO2, arterial carbon dioxide pressure; PAA, plasminogen activator activity; PAI-1, plasminogen activator inhibitor-1; BALF, bronchoalveolar lavage fluid; FDP, fibrin degradation products; TATc, thrombin–antithrombin complexes. Weighted mean differences, 95% CI in brackets, and p values and animal numbers for treated/control groups are listed on three rows for each parameter. Analyzed results from grouped data are filled with blue, orange, and green for animal size, fibrinolytics, and routes, respectively. *Analyzed with endpoint data.
Figure 3

Effect of fibrinolytic therapy on PaO₂ (A) and PaCO₂ (B). Weighted mean difference (WMD, square) and overall effect (diamond) are depicted.

Table A

Study or Subgroup	Treated	Control	WMD of PaO₂ (mmHg)	WMD of PaO₂ (mmHg)					
	Mean	SD	N	Mean	SD	N	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Münter et al. 2002	82.69	3.67	11	77.25	5.2	14	9.0	5.44 [1.96, 6.92]	
Chen et al. 2009	67.4	3.8	6	61.7	4.9	6	8.8	5.70 [0.74, 10.66]	
Yu et al. 2014	75	11	18	61	10	18	8.5	14.00 [7.13, 20.87]	
Huang et al. 2012	103	5	7	107	9	7	8.3	-4.00 [-11.63, 3.63]	
Conhaim et al. 2014	205.1	3.6	6	105.8	10.2	6	8.1	-3.30 [-11.93, 5.33]	
Veress et al. 2013	78.44	5.19	4	42.6	7.27	4	8.1	35.84 [27.09, 44.59]	
Motoyama et al. 2013	151.19	10.87	7	142.74	4.83	7	8.1	8.45 [0.36, 17.26]	

Table B

Study or Subgroup	Treated	Control	WMD of PaCO₂ (mmHg)	WMD of PaCO₂ (mmHg)					
	Mean	SD	N	Mean	SD	N	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Münter et al. 2002	36.56	1.95	11	36.94	1.96	14	12.4	-0.38 [-1.92, 1.16]	
Conhaim et al. 2014	41.7	4.1	6	38	1.3	6	12.0	3.70 [0.26, 7.14]	
Yu et al. 2014	41	6	18	38	5	18	12.0	3.00 [-6.1, 6.1]	
Chen et al. 2009	28.1	4.2	6	29.3	3.4	6	11.8	-1.20 [-5.52, 3.12]	
Huang et al. 2012	21	6	7	21	2	7	11.6	0.00 [-4.69, 4.69]	
Veress et al. 2013	32.5	1.65	4	54.26	11.57	4	6.5	-21.76 [-33.21, -10.31]	
Veress et al. 2013	31.4	2.75	4	54.26	11.57	4	6.5	-22.86 [-34.51, -11.21]	
Veress et al. 2013	28.37	2.75	4	54.26	11.57	4	6.5	-25.89 [-37.54, -14.24]	
Veress et al. 2013	29.19	2.73	2	54.26	11.57	4	8.3	-25.07 [-37.02, -13.12]	
Veress et al. 2015	51.3	9.3	9	117.4	28.12	13	6.4	-66.10 [-82.55, -49.65]	

Histologic Lung Injury Score

The random effect model was utilized to examine the efficacy of fibrinolytics on histological lung injury score (Figure 6C) for the substantial heterogeneity existed among nine studies: five for tPA (38 controls, 38 treated animals), two for uPA (12 controls, 12 treated animals), and two for plasmin (14 controls, 14 treated animals). Both uPA and plasmin improved lung injury score, respectively, by a decrease of 1.7 for uPA (95% CI: −2.5 to −0.9, P < 0.0001) and 3.5 for plasmin (95% CI: −3.6 to −3.4, P < 0.00001). By comparison, tPA reduced lung injury score to a lesser extent (−0.6, 95% CI: −2.8 to 1.6, P = 0.55) insignificantly. Further, we analyzed potential differences between two routes, eight for i.v. (55 animals for both control and treated groups) and one for gene therapy (9 animals for both control and treated groups). Fibrinolytics delivered via i.v. reduced lung injury score significantly (−1.9 via i.v., 95% CI: −2.7 to −1.2, P < 0.0001), but not via gene therapy (−0.4, 95% CI: −2.8 to 2.1, P = 0.77). Finally, we assessed the data from nine studies grouped per animal sizes: eight in small animals (55 animals for both control and treated groups) and one in large animals (6 controls, 6 treated animals). A significant reduction in

one for uPA (6 controls, 6 treated animals). Our results showed that plasmin reduced lung water content (wet/dry ratio) significantly (−1.8, 95% CI: −2.4 to −1.3, P < 0.00001). However, the effects of tPA and uPA on edema resolution were insignificant statistically, albeit a greater extent than plasmin was reduced by tPA (−2.8, 95% CI: −6.6 to 1.1, P = 0.17) but not uPA (−0.2, 95% CI: −0.8 to 0.3, P = 0.41). Fibrinolytic effects on the resolution of edema fluid were examined by routes in five studies: three via i.v., one via nebulization, and one via i.p. A significant improvement in edema fluid clearance was seen when delivered via i.v. (−1.4, 95% CI: −2.1 to −0.6, P = 0.004), nebulization (−0.9, 95% CI: −1.1 to −0.7, P < 0.00001), and i.p. (−5, 95% CI: −7 to −3, P < 0.00001). The effects of fibrinolytics on lung water content were analyzed by grouping data per animal sizes: three studies in small animals (20 controls, 24 treated animals) and two in large animals (12 controls, 12 treated animals). Lung water content was reduced to a greater extent by fibrinolytics in small animals (−2.1, 95% CI: −2.7 to −1.5, P < 0.00001) than that in large animals (−0.6, 95% CI: −1.3 to 0.1, P = 0.07) (Table 4).
Figure 4 | Effects of fibrinolytic treatment on the fibrinolysis in the plasma and bronchoalveolar lavage fluid (BALF). (A) Plasma plasminogen activator activity (PAA). (B) BALF PAA. (C) BALF fibrin degradation products (FDP). (D) BALF plasminogen activator inhibitor type 1 (PAI-1).
Figure 5 | Effect of fibrinolytic therapy on plasma thrombin–antithrombin complexes.

Study or Subgroup	Treated Mean	Treated SD	Control Mean	Control SD	WMD of plasma TATc (ng/ml) IV, Fixed, 95% CI	WMD of plasma TATc (ng/ml) IV, Fixed, 95% CI
Choi et al. 2007* a	18.76	1.46	8	16.9	1.17	8
Choi et al. 2007* b	15.26	1.75	8	14.2	0.67	8
Hofstra et al. 2013 a	19.23	2.02	7	15.3	3.05	7
Hofstra et al. 2013 a	33.92	3.66	8	34.5	3.01	11
Hofstra et al. 2013 b	25.82	3.13	7	21.7	3.71	7
Choi et al. 2007 b	20.06	5.13	8	19.5	3.14	12

Total (95% CI) 46 53 100.0% 1.59 [0.78, 2.40]
Heterogeneity: Chi² = 6.88, df = 5 (P = 0.23); I² = 27%
Test for overall effect: Z = 3.85 (P = 0.0001)

Figure 6 | Effects of fibrinolytic therapy on lung neutrophils (A), lung water content (B), and lung injury score (C).

A

Study or Subgroup	Treated Mean	Treated SD	Control Mean	Control SD	WMD of neutrophil (×10⁶ cells/ml) IV, Fixed, 95% CI	WMD of neutrophil (×10⁶ cells/ml) IV, Fixed, 95% CI
Günther et al. 2003 b	0.07	0.008	7	0.1	0.03	9
Günther et al. 2003 a	0.06	0.01	5	0.1	0.03	9
Choi et al. 2007 b	0.059	0.03	8	0.064	0.058	12
Hofstra et al. 2013 b	0.27	0.05	7	0.36	0.08	7
Hofstra et al. 2013 a	1.78	0.23	7	1.97	0.16	7
Choi et al. 2007* b	1.83	0.3	8	1.85	0.27	8
Choi et al. 2007* a	2.01	0.18	8	2.27	0.37	8
Stringer et al. 1998	2.7	1.26	10	2.9	1.13	8

Total (95% CI) 60 68 100.0% -0.03 [-0.05, -0.02]
Heterogeneity: Chi² = 10.62, df = 7 (P = 0.16); I² = 34%
Test for overall effect: Z = 5.03 (P < 0.000001)

B

Study or Subgroup	Treated Mean	Treated SD	Control Mean	Control SD	WMD of wet dry ratio IV, Random, 95% CI	WMD of wet dry ratio IV, Random, 95% CI
Motoyama et al. 2014	3.76	0.03	7	5.33	0.26	7
Motoyama et al. 2013	3.6	0.08	7	5.72	0.28	7
Enkhbaatar et al. 2004	6.04	0.24	6	6.9	0.16	6
Chen et al. 2006	5.77	0.45	6	5.99	0.48	6
Stringer et al. 1998	4.75	0.79	6	9.63	3.17	10

Total (95% CI) 32 36 100.0% -1.49 [-2.15, -0.83]
Heterogeneity: Tau² = 0.46; Chi² = 91.20, df = 4 (P < 0.000001); I² = 96%
Test for overall effect: Z = 4.44 (P < 0.000001)

C

Study or Subgroup	Treated Mean	Treated SD	Control Mean	Control SD	WMD of lung injury score IV, Random, 95% CI	WMD of lung injury score IV, Random, 95% CI
Motoyama et al. 2013	0.5	0.025	7	4	0.2	7
Motoyama et al. 2014	0.5	0.025	7	4	0.2	7
Chen et al. 2009	2.0	0.1	6	4	0.2	6
Choi et al. 2007* b	5.75	0.83	8	7.78	0.75	8
Chen et al. 2006	4.43	0.64	7	5.59	0.76	6
Hofstra et al. 2013 b	5.17	0.85	7	4.25	1.71	7
Huang et al. 2012	6.0	0.61	7	10.25	2.04	7
Hofstra et al. 2013 a	8.28	1.28	7	5.42	2.33	7
Ranczak et al. 2006	5.31	2.76	9	5.67	2.55	9

Total (95% CI) 64 64 100.0% -1.83 [-2.55, -1.12]
Heterogeneity: Tau² = 0.89; Chi² = 302.12, df = 8 (P < 0.000001); I² = 97%
Test for overall effect: Z = 5.02 (P < 0.000001)
lum injury score was found in both small (−1.9, 95% CI: −2.7 to −1.2, P < 0.00001) and large animals (−1.2, 95% CI: −2.0 to −0.4, P = 0.004) treated with fibrinolytics (Table 4).

Preventive and Therapeutic Intervention on Effects of Fibrinolysis

The mortality, PaO2, lung water content, and lung injury score of preventive and therapeutic intervention was analyzed. As to mortality, preventive strategy showed a beneficial effect (0.41, 95% CI: 0.24 to 0.68, P = 0.0007), whereas treatment strategy did not (0.11, 95% CI: 0.01 to 1.10, P = 0.06) (Table 5). Treatment strategy showed a beneficial effect (18.53 mmHg, 95% CI: 7.2 to 29.9 mmHg, P = 0.001) (Table 5) on PaO2, but not preventive strategy (8.09 mmHg, 95% CI: −11.5 to 27.7 mmHg, P = 0.42). With regards to lung water content, there was a significant decrease of 2.1 (95% CI: −2.7 to −1.5, P < 0.00001) compared with control groups in preventive maneuvers, but this decrease was not significant in therapeutic maneuver (−0.6, 95% CI: −1.3 to 0.06, P = 0.07). Compared with control group, the lung injury score was reduced by 2.1 for preventive maneuver (95% CI: −2.8 to −1.5), 1.7 for therapeutic maneuver (95% CI: −2.5 to −0.9) (Table 5).

TABLE 5 Effects of preventive strategies vs treatment strategies only.

Endpoints	Preventive strategies	Treatment strategies
Mortality	0.41 (0.24, 0.68)	0.11 (0.01, 1.10)
PaO2	8.09 (−11.49, 27.67)	18.53 (7.15, 29.91)
Lung water content	−2.09 (−2.72, −1.45)	−0.60 (−1.26, 0.06)
Lung injury score	−2.14 (−2.80, −1.48)	−1.67 (−2.48, −0.87)

TABLE 6 Risk of bias assessments.

Study	Randomization	Blinding of personnel	Allocation concealment	Blinding of outcome assessment	Incomplete outcome data	Selective outcome reporting	Other bias
Hardaway et al., (37)	U	U	U	U	L	L	U
Hardaway et al., (19)	U	U	U	U	L	L	U
Hardaway et al., (25)	U	U	U	U	L	L	U
Stringer et al., (27)	U	U	U	U	L	L	U
Vasquez et al., (52)	U	L	L	L	U	U	U
Munster et al., (21)	L	L	L	L	U	U	U
Sisson et al., (36)	L	U	L	L	U	U	U
Gunther et al., (18)	U	U	U	U	L	U	U
Enkhbaatar et al., (16)	L	L	L	L	L	L	U
Chen et al., (33)	L	L	L	L	L	L	U
Choi et al., (20)	L	L	L	L	L	L	U
Choi et al., (19)*	L	L	L	L	L	L	U
Renckens et al., (31)	U	U	U	U	L	L	U
Chen et al., (35)	L	L	L	L	L	L	U
Huang et al., (22)	L	L	L	L	L	L	U
Hofstra et al., (24)	L	L	L	L	L	L	U
Motoyama et al., (38)	L	L	L	L	L	L	U
Veress et al., (29)	U	U	U	U	L	L	U
Conhaim et al., (28)	U	U	U	U	L	L	U
Motoyama et al., (39)	L	L	L	L	L	L	U
Yu et al., (34)	L	L	L	L	L	L	U
Veress et al., (30)	U	U	U	U	L	L	U

L, low risk of bias; U, unclear risk of bias.

*Second publication from the same author.

Assessment of Bias and Sensitivity Analysis

To determine if potential threats to internal validity influenced our findings, we evaluated the quality of included 22 studies in addition to the checklists of the ARRIVE guidelines (Table 2). Incomplete outcome data and selective outcome reporting in all studies were low risk. Randomization, blinding of personnel, allocation concealment, and blinding outcome assessment in 11 projects were low risk, whereas the risk in remaining projects was unclear (Table 6).

Funnel plot found no asymmetrical distribution for PaO2 (Figure 7A), which was confirmed by the Egger regression (Figure 7B; P = 0.199 for PaO2). Without imputing any missing studies for PaO2, the Trim and Fill analysis exhibited a symmetrical funnel plot too (data not shown).

To test the stability and dependability of the results, we omitted one study (34), which had a relative large sample size. The combined WMD of PaO2 for remaining 17 studies was estimated by the sensitivity plot again, yielding a value of 15 (95% CI: 7 to 24) (Figure 8), which is same as the estimate of overall effect. These results indicated that the reliability of our meta-analysis was considerably strong.

DISCUSSION

Fibrinolytic therapy for ALI has been emerging during the last decade (41). Comparing with systematic evaluation (including systematic review and meta-analysis) of the efficacy of anticoagulants in clinical and preclinical studies of ALI (42), the potential benefit of fibrinolitics for ALI patients has not been tested by well-designed clinical trials yet. In this analysis, we
have performed meta-analysis and systematic review, focusing on efficacy in 22 published preclinical studies of ALI. Our results suggest that fibrinolytic therapy significantly improves gas exchange, reduces alveolar neutrophils, increases fibrinolytic activity, reduces the quantity of pulmonary edema fluid, and suppresses the histologic severity of lung injury in a fibrinolysin-, route-, and species-dependent manners. The overall effects of fibrinolytics on death toll, oxygenation, fibrinolysis, and lung function were corroborated by analyzing subgrouped data and sensitivity. To our knowledge, this is the first meta-analysis to summarize previous preclinical studies aiming to provide evidence for further animal studies and clinical trials.

Fibrinolytic Therapy for ALI Is Feasible and Tolerant

All of three fibrinolytic reagents, tPA, uPA, and plasmin were administered for 14 animal models of ALI in the included studies. The large range of applied doses demonstrates feasibility and tolerance. In addition, tolerability of tPA was confirmed in mice by a classic study (43). Airway bleeding was observed only where treatment was given locally with a large dose of

FIGURE 7 Bias assessment of PaO₂ from 18 studies. (A) Funnel plots of precision (1/SE) as a function of weighted mean differences (WMD) showing the distribution of published study outcomes (filled circles). Vertical gray line is a global estimate of efficacy. (B) Egger regression of PaO₂ precision (1/SE) against WMD/SE.

FIGURE 8 Sensitivity analysis of PaO₂.
tPA (≥1 mg/kg/d). Although the scarcity of gross hemorrhage and other severe adverse events applied via five routes were reported in 6 of 22 studies, considering the non-adherence to the ARRIVE guidelines (44) and informal systematic measurements of local and systemic hemorrhage quantitatively, the potential risk for bleeding associated with fibrinolytic therapy could not be ruled out.

Mortality Improved by Fibrinolytic Therapy

Overall mortality was improved during the defined follow-up period from 1 h to 28 days. The most effective route to reduce mortality is intratracheal administration, and plasmin is the least effective lytic to improve survival rate. It is note worthy that only two of 10 studies followed mortality 48 h to 30 days. Other eight studies determined death toll within 2 days. Given the inconsistent follow-up time that differs from clinical studies, the overall improvement of mortality by fibrinolytic therapy shall be confirmed by further studies designed per the ARRIVE guidelines (44) and with extended follow-up periods identical to that for ALI/ARDS clinical studies.

Fibrinolytic Therapy Improves Gas Exchange

Intriguingly, fibrinolytics increase gas exchange based on data at the same time-point, and to the most extent when delivered via intratracheal route. Fibrinolytics benefited gas exchange differently between small and large animals. It is probably due to divergent dose applied between species. Furthermore, the structure of the respiratory tract, lung function, inner surface of the lung for gas exchange, and oxygen consumption are body size dependent. Additionally, inconclusive results of oxygenation are seen for plasmin due to insufficient samples for meta-analysis. Hypoxia is correlated with the mortality of ALI (45). This notion is supported by the benefit of both gas exchange and survival rate by intratracheal delivery of fibrinolytic regimens.

Fibrinolytic Therapy Alleviates Lung Injury

Our meta-analysis demonstrates that fibrinolytic therapy restores the dysfunctional fibrinolysis and coagulation in ALI. This benefit does not depend on routes and fibrinolytic regimens. Alveolar fibrin deposition attracted neutrophils and fibroblasts, and decreased lung edema fluid clearance (46). We identify that fibrinolysin tPA and i.v. route are the most potent for reducing neutrophil infiltration. We also find that fibrinolytics facilitate edema fluid resolution in small animals to a greater extent than in large animals. Our previous studies proved that uPA and plasmin but not tPA could activate apically located epithelial sodium channels, a predominate pathway to remove edema fluid (47, 48). Considering that tPA competitively binds to PAI-1 with a greater affinity than uPA, delivered tPA may form complexes with elevated PAI-1 and serve as a “cage” to separate endogenous uPA from PAI-1 (49). Under this situation, freed uPA is able to activate epithelial sodium channels and resolve edema fluid. It is unclear why intraperitoneal administration eliminates lung edema to the most extent. At least, this is the only way to get rid of direct addition of extra fluid to the flooded air spaces intratracheally or indirectly leaking to the alveoli through the impaired blood–gas barrier post intravenously fluid infusion. In addition, we find that plasmin may be the best fibrinolysin to improve lung injury score. Plasmin may defragment deposited fibrin. However, this is not supported by FDP content in BALF. It is probably due to the cleavage of epithelial sodium channels by plasmin proteolytically to expedite transalveolar fluid re-absorption (unpublished data). Exogenously applied tPA displayed anti-inflammatory effects (50). Therefore, anti-inflammatory properties of three fibrinolytic agents could be a mechanism for alleviating ALI. Taken together, fibrinolytic regimens may suppress the mortality in preclinical models of ALI through multifaceted mechanisms in a route- and model-dependent manner. ALI animal models may not be representative of human ALI, because of the timing and severity of ALI induction, the dose and timing of the treatment in relation to ALI induction, the use of small/young animals without comorbid illnesses, and lack of administration of standard of care co-interventions, such as fluids and antibiotics during the study period. How well animal models of ALI mimic the pathophysiology of human ALI has also been a contentious issue. Thus, the effect of construct validity on fibrinolytic therapy of ALI remains to be determined.

Limitations of Our Analysis

Our review has some limitations. First, the duration of delivery of fibrinolytic agents and the period of observation were not consistent. More than half of the included studies do not adhere to the ARRIVE guidelines. Second, although subgroups and sensitivity analyses were conducted, we could not completely explain the substantial heterogeneity and some diverse effects in experimental ALI. Third, uncertainty of the potential benefits of fibrinolytics in ALI may be improved by future preclinical studies with larger numbers of animal studies. For example, we could not perform dose-effect analysis because of a paucity of sufficient data. Finally, the effects of fibrinolytics on ALI animal models provide basic information for further preclinical studies. Considering the difference between relative homogeneous animals (e.g., healthy young or adult animals without comorbidity and extremely heterogeneous patients), it shall be cautious to link the findings in preclinical studies to ALI patients.

CONCLUSION

Our results identify that the best route is intratracheal delivery, and the most efficacious regimen is tPA. FDA approved fibrinolytic therapies for cardiovascular and pleural diseases, including hypertensive intraventricular hemorrhage (51), loculated pleural effusions, parapneumonic effusions, pleural empyema, malignant effusions, hemothorax, and myocardial infarction (52–55), demonstrate the tolerance and feasibility of this treatment. This meta-analysis, however, did not provide data on the optimized dose of each therapy, the optimal time...
to initiate therapy, and the model-specific strategy. These unsolved questions await further well-designed preclinical studies following the ARRIVE guidelines. On balance, this review provides preclinical evidence for designing clinical trials to test the benefit of the fibrinolytic therapies for ALI.

AUTHOR CONTRIBUTIONS

Project design: H-LJ, RZ, MM, and XLZ. Data collection: CL, ZS, MY, and H-LJ. Data analysis: CL, ZS, MY, and LZ. Project design: H-LJ, RZ, MM, and XLZ. Data collection: CL, ZS, MY, and LZ. Revision: H-LJ, XJZ, and MM. Approval and submission: H-LJ and MM.

REFERENCES

1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke J, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. *Am J Respir Crit Care Med* (1994) 149:818–24. doi:10.1164/ajrccm.149.3.5709706
2. Maca J, Jor O, Holub M, Sklenka P, Bursa F, Burda M, et al. Past and present ARDS mortality rates: a systematic review. *Respir Care* (2017) 62:113–22. doi:10.4187/respcare.04716
3. Ware LB, Matthay MA. The acute respiratory distress syndrome. *N Engl J Med* (2000) 342:334–49. doi:10.1056/NEJM200005043421806
4. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. *N Engl J Med* (2005) 353:1685–93. doi:10.1056/NEJMoa050333
5. Matthay MA, Mcauley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. *Lancet Respir Med* (2017) 5:524–34. doi:10.1016/S2213-2600(17)30188-1
6. Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. *Lancet Respir Med* (2014) 2:1016–26. doi:10.1016/S2213-2600(14)70217-6
7. Wilson FG, Liu KD, Zhuo H, Caballero L, Mcmillan M, Fang X, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. *Am J Respir Crit Care Med* (1994) 149:818–24. doi:10.1164/ajrccm.149.3.5709706
8. Enkhbaatar P, Pruitt RA Jr, Suman O, Mical R, Wolf SE, Sakurai H, et al. Pathophysiology, research challenges, and clinical management of smoke inhala
9. Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. *Crit Care Med* (2003) 31:S213–20. doi:10.1097/00001721-200310000-00003
10. Bai C, Wang X. Multiple-systems dysfunction within the lung: a new angle for understanding pulmonary dysfunction. *J Soc Motion Pict Eng* (2006) 2:2–3. doi:10.1080/17471060500462393
11. Janda S, Swiston J. Inhalational fibrinolytic therapy for treatment of adult para-pneumonic effusions and empyemas: a systematic review and meta-analysis. *Chest* (2012) 142:401–11. doi:10.1378/chest.11-3071
12. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, De Lemos JA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction in patients with acute coronary syndrome: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *Circulation* (2013) 127:2362–425. doi:10.1161/CIR.0b013e31827472c4
13. Yamaya M. [Effects of mucolytic agents and macrolides in the treatment of COPD]. *Nihon Rinsho* (2013) 71:483–8.
14. Cazzola M, Rogliani P, Calzetta L, Hanania NA, Matera MG. Impact of mucolytic agents on COPD exacerbations: a pair-wise and network meta-analysis. *COPD* (2017) 14:552–63. doi:10.1080/15412555.2017.1347798
15. Hardaway RM, Williams CH, Marvasti M, Farias M, Tieng A, Pinon I, et al. Prevention of adult respiratory distress syndrome with plasminogen activator in pigs. *Crit Care Med* (1992) 20:1413–8. doi:10.1097/00002551-199201000-00021
16. Enkhbaatar P, Murakami K, Cox R, Westfall M, Morita N, Brantley K, et al. Aerosolized tissue plasminogen inhibitor improves pulmonary function in sheep with burn and smoke inhalation. *Shock* (2004) 22:70–5. doi:10.1097/01.shk.0000129201.38588.85

FUNDING

This work was supported by the NIH (HL134828, HL116826, AI 133465, and HL51865), American Heart Association award (16GRNT30780002), National Natural Science Foundation of China (NSFC 81670010), and a fund from the Education Department of Henan Province (182102410009).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at https://www.frontiersin.org/articles/10.3389/fimmu.2018.01898/full#supplementary-material.
32. Vasquez Y, Williams CH, Hardaway RM. Effect of urokinase on disseminated intravascular coagulation. J Appl Physiol (1985) (1998) 85:1421–8. doi:10.1152/ jappl.1998.85.4.1421
33. Chen Y, Lu ZJ, Lu GP. Changes of plasminogen activator inhibitor-1 activity and effects of exogenous urokinase on endotoxin-induced acute lung injury. Chin Pediatr Emerg Med (2006) 13:537–9. doi:10.3760/cma.j.issn.1673-4912.2006.06.017
34. Yu H, Wu Q, Wu J, Sun X, Du Z, Li L, et al. [The effect of low molecular heparin and urokinase on MCP-1 of acute experimental pulmonary embolism in rabbits]. Zhonghua Jie He Hu Xi Za Zhi (2014) 37:437–41. doi:10.3760/ cma.j.issn.1001-0939.2014.06.012
35. Chen X, Huang P, Wu H, Chen Y, Zhang J. The investgate of Xuebijing’s therapeutic effects on tissue plasminogen activator inhibition in the carrageenan rat footpad model. Front Immunol (2013) 32:505–10. doi:10.1016/j.healun.2013.02.007
36. Sisson TH, Hanson KE, Subbotina N, Patwardhan A, Hattori N, Simon JW, et al. Influence of trauma and hemolysis on hemorrhagic shock in dogs. J Trauma (1964) 4:624–41. doi:10.1097/00005373-196409000-00007
37. Motoyama H, Chen F, Ohsumi A, Hijiy K, Okita K, Nakajima D, et al. Protective effect of plasmin in marginal donor lungs in an ex vivo lung perfusion experiment. J Heart Lung Transplant (2013) 32:505–10. doi:10.1016/j. hltx.2013.02.007
38. Motoyama H, Chen F, Hijiy K, Kondo T, Ohsumi A, Yamada T, et al. Plasmin administration during ex vivo lung perfusion ameliorates lung ischemia-reperfusion injury. J Heart Lung Transplant (2014) 33:1093–9. doi:10.1016/j.hrtlu.2014.06.004
39. Higgs JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (2003) 327:557–60. doi:10.1136/bmj.327.7414.557
40. MacLaren R, Stringer KA. Emerging role of anticoagulants and fibrinolytics in the treatment of acute respiratory distress syndrome. Pharmacotherapy (2007) 27:860–73. doi:10.1592/phco.27.6.860
41. Tuinman PR, Dixon B, Levi M, Juliane MN, Schultz MJ. Nebulized anticoagulants for acute lung injury – a systematic review of preclinical and clinical investigations. Crit Care (2012) 16:R70. doi:10.1186/cc11325
42. Lackowski NP, Pitzer JE, Tobias M, Van Rhee Z, Nayar R, Mosharaf M, et al. Safety of prolonged, repeated administration of a pulmonary formulation of tissue plasminogen activator in mice. Pulm Pharmacol Ther (2010) 23:107–14. doi:10.1016/j.pupt.2009.10.009
43. Leung V, Rousseau-Blass F, Beauchamp G, Pang DS. ARRIVE has not ARRIVED: support for the ARRIVE (Animal Research: reporting of in vivo experiments) guidelines does not improve the reporting quality of papers in animal welfare, analgesia or anesthesia. PLoS One (2018) 13:e0197882. doi:10.1371/journal.pone.0197882
44. Alessandri F, Pugliese F, Ranieri VM. The role of rescue therapies in the treatment of severe ARDS. Respir Care (2018) 63:92–101. doi:10.4187/ respcare.05752
45. Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med (2006) 27:337–49. doi:10.1055/s-2005-94121
46. Chen Z, Zhao R, Zhao M, Liang X, Bhattachar D, Dhiman R, et al. Regulation of epithelial sodium channels in urokinase plasminogen activator deficiency. Am J Physiol Lung Cell Mol Physiol (2014) 307:L609–17. doi:10.1152/ajplung.00126.2014
47. JI HI, Zhao R, Komissarov AA, Chang Y, Liu Y, Matthay MA. Proteolytic regulation of epithelial sodium channels by urokinase plasminogen activator: cutting edge and cleavage sites. J Biol Chem (2015) 290:5241–55. doi:10.1074/jbc.M114.623496
48. Florova G, Karandashova S, Decker P, Idell S, Komissarov AA. Remarkable stabilization of plasminogen activator inhibitor 1 in a “molecular sandwich” complex. Biochemistry (2013) 52:4697–709. doi:10.1021/bi400470s
49. Stringer KA, Rose SK, Mccord JM. Antiinflammatory activity of tissue plasminogen activator in the carrageenan rat footpad model. Free Radic Biol Med (1997) 22:985–8. doi:10.1016/S0891-5849(96)00484-4
50. Baker AD, Rivera Perla KM, Yu Z, Dhugash R, Avadhani R, Mould WA, et al. Fibrinolytic for the treatment of intraventricular hemorrhage: a meta-analysis and systematic review. Int J Stroke (2017) 13:11–23. doi:10.1117/1747493017730745
51. Ahmed AH, Yacob TE. Intrapleural therapy in management of complicated parapneumonic effusions and empyema. Clin Pharmacol (2010) 2:213–21. doi:10.2147/CPAA.S14104
52. Ben-On Y, Feins RH, Verma B, Vechtchineni NK, Hightcock BE. Effectiveness and risks associated with intrapleural aleplase by means of tube thoracostomy. Ann Thorac Surg (2011) 91:860–865; discussion 863–864. doi:10.1016/j. ats.2010.10.082
53. Bundhun PK, Janoo G, Chen MH. Bleeding events associated with fibrinolytic therapy and primary percutaneous coronary intervention in patients with STEMI: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) (2016) 95:e3877. doi:10.1097/ MD.0000000000003873
54. Majid A, Ochoa S, Chatterji S, Fernandez-Bussy S, Kheir F, Rivera E, et al. Safety and efficacy of tissue plasminogen activator and DNase for complicated pleural effusions secondary to abdominal pathology. Ann Am Thorac Soc (2017) 14:342–6. doi:10.1513/AnnalsATS.201608-594BC

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.