A SEARCH FOR TeV GAMMA-RAY EMISSION FROM THE PSR B1259−63/SS 2883 BINARY SYSTEM WITH THE CANGAROO-II 10 METER TELESCOPE

A. Kawachi,1 T. Naito,2 J. R. Patterson,3 P. G. Edwards,4 A. Asahara,5 G. V. Bicknell,6 R. W. Clay,3 R. Enomoto,1 S. Gunji,7 S. Hara,1,5 T. Hara,2 T. Hattori,2 Seuchi Hayashi,2 Shin’ichiro Hayashi,9 C. Itoh,10 S. Kabuki,1 F. Kaijo,6 H. Katagiri,1 T. Kijima,1 L. Ksenofontov,1 H. Kudo,5 J. Kushida,5,12 Y. Matsubara,13 Y. Mizumoto,14 M. Mori,1 H. Moro,8 H. Muraishi,15 Y. Muraki,13 T. Nakase,8 D. Nishida,2 K. Nishijima,3 M. Ohshei,1 K. Okumura,1 R. J. Protheroe,6 K. Sakurazawa,12 D. L. Swaby,3 T. Tanimori,5 F. Tokanai,1 K. Tsuchiya,1 H. Tsuno,1 T. Uchida,5 A. Watanabe,2 S. Watanabe,5 S. Yanagita,10 T. Yoshida,1 and T. Yoshikoshi16

Received 2003 April 19; accepted 2004 February 16

ABSTRACT

Observations of the PSR B1259−63/SS 2883 binary system using the CANGAROO-II Čerenkov telescope are reported. This nearby binary consists of a 48 ms radio pulsar in a highly eccentric orbit around a Be star and offers a unique laboratory to investigate the interactions between the outflows of the pulsar and Be star at various distances. It has been pointed out that the relativistic pulsar wind and the dense mass outflow of the Be star may result in the emission of gamma rays up to TeV energies. We have observed the binary in 2000 and 2001, approximately 157 days after the 2000 October periastron. Upper limits at the 0.13–0.54 crab level are obtained. A new model calculation for high-energy gamma-ray emission from the Be star outflow is introduced, and the estimated gamma-ray flux, considering bremsstrahlung, inverse Compton scattering, and the decay of neutral pions produced in proton-proton interactions, is found to be comparable to the upper limits of these observations. Comparing our results with these model calculations, we constrain the mass-outflow parameters of the Be star.

Subject headings: binaries: close — gamma rays: observations — gamma rays: theory — pulsars: general — stars: winds, outflows

1 INTRODUCTION

PSR B1259−63 ([α, δ] = (13h02m47s68, −63°50′08″6) in J2000.0 coordinates) is a 48 ms radio pulsar discovered in a 1500 MHz radio survey of the southern Galactic plane (Johnston et al. 1992a) that was subsequently found to be in a highly eccentric orbit with a 10th magnitude main-sequence star, SS 2883 (Johnston et al. 1992b, 1994). With an orbital eccentricity of 0.87, the separation of the stars varies in the range (0.97−14.0) × 10^13 cm during the orbital period of 1236.72 days. The periastron epoch is MJD 48,124.35 (Wex et al. 1998). SS 2883 is of spectral type B2e (Johnston et al. 1994), with a mass Ms of ~10 Ms, and a radius Rs of ~6 Rs. The luminosity and radius of the B2e star correspond to an effective temperature Teff of ~27,000 K at the star surface (Tavani & Arons 1997). Its characteristic emission disk extends to at least 20 Rs, similar to the distance between the pulsar and the Be star at periastron. Here we assume a distance of 1.5 kpc to the binary system, which has been estimated from optical photometric observations of SS 2883 (Johnston et al. 1994).

The periastron passages have been closely observed at radio frequencies (Johnston et al. 1999; Connors et al. 2002). No pulsed emission was detected for about 5 weeks, centered on periastron, and the pulsed emission was depolarized for ~200 days, also centered on periastron. Timing measurements have shown that the disk of the Be star is likely to be inclined with respect to the orbital plane (Melatos et al. 1995; Wex et al. 1998), which has been suggested in Kaspi et al. (1995) and Tavani & Arons (1997). In Connors et al. (2002), the unpulsed light curves are discussed with an assumption of two short-time crossings of the pulsar and the disk, before (τ − 18 to τ − 8 days) and after (τ + 12 to τ + 22 days) periastron (τ).

A weak X-ray signal was first detected by ROSAT, which observed the system just after periastron in 1992 September.
(Cominsky et al. 1994). Through 1994–1996, unpulsed X-ray emission with a single-power-law spectrum was detected at the six different orbital phases observed by ASCA (Hirayama et al. 1996, 1999). The photon index of the X-ray spectrum is about −1.6 in the post-periastron to apastron period, steepening toward periastron, when the steepest index of −1.96 was observed. The 1–10 keV band luminosity varies by about an order of magnitude, from $\sim 10^{34}$ erg s$^{-1}$ around periastron to $\sim 10^{33}$ erg s$^{-1}$ at apastron. The maximum luminosity was detected at $\tau = 12$ days, with the intensity decreasing at periastron, then increasing again. The column density was low and constant ($6 \times 10^{21}$ cm$^{-2}$) at all orbital phases. The periastron passage in 1994 January was monitored by a multiwavelength campaign including observations in the X-ray and gamma-ray bands with ROSAT, ASCA, and Compton Gamma-Ray Observatory (Grove et al. 1995). The power-law spectrum (photon index approximately −2.0) extended to the 200 keV energy region of OSSE, with no pulsations being detected. No emission in the energy range of 1 MeV–3 GeV was detected down to the observational limits. OSSE failed to detect signals at the apastron passage in 1996; however, its upper limit does not conflict with the extrapolation of the ASCA spectrum (Hirayama et al. 1999). Several TeV observations of the binary system were performed in 1994 and 1997 using the CANGAROO 3.8 m ground-based Cerenkov telescope, resulting in a marginally significant suggestion of gamma-ray signals (Sako et al. 1997).

The multiwavelength spectrum from the 1994 periastron strongly implies that the hard X-ray emission up to 200 keV originates from synchrotron radiation of nonthermal electrons (Tavani et al. 1994). Electrons released in the pulsar wind may be accelerated in a shock wave generated in the region where the relativistic pulsar wind interacts with dense mass flow from the Be star. Adjusting the pressure balance between the flows, Tavani & Arons (1997) have interpreted the measured hard X-ray spectrum on the basis of accelerated particles in the pulsar-side shock, using an approximated approach to the Klein-Nishina effect for emission. They conclude that the energy loss of electrons due to inverse Compton scattering is the dominant process for the energy loss of electrons. It is argued that synchrotron cooling, rather than the Klein-Nishina effect in the emission and cooling process, has been proposed. Murata et al. (2003) note that the inverse Compton cooling–dominated spectrum is flatter, since the Klein-Nishina effect suppresses the cooling of higher energy electrons. It is argued that synchrotron cooling, rather than the inverse Compton scattering discussed by Tavani & Arons (1997), is the dominant process for the energy loss of electrons in the pulsar wind on account of the steepening of the X-ray spectral index observed around the 1994 periastron.

The light curves of the radio unpulsed emission around periastron have been recently modeled by the adiabatic expansion of synchrotron bubbles formed in the pulsar–Be star disk interaction (Connors et al. 2002). They assume short-time interactions of the pulsar and the disk, as the pulsar should cross the disk twice in the orbital period. When the pulsar enters the disk, electrons are accelerated in the contact surface of the pulsar wind and the disk material, but after the pulsar leaves the disk, the pulsar-wind bubble remains behind, moves in the disk flow, and decays through synchrotron losses. The model successfully explains the radio data, however, it does not appear to describe the X-ray data well; for example, the weak unpulsed emissions in the X-ray region was observed after these modeled bubbles should have decayed by adiabatic expansion as moving outward, and, the constant spectral index in the radio region is inconsistent with the steepening observed in the X-ray spectrum.

Electrons accelerated in a pulsar-side shock to Lorentz factors of $\Gamma_e \gtrsim 10^6$ in the radiative environment of the binary system may produce high-energy gamma rays. The suggestion that detectable levels of gamma-ray emission may arise in the shocked pulsar wind via inverse Compton scattering (Kirk et al. 1999) provided the initial motivation for the observations described here. Subsequently, inverse Compton emission from the unshocked region of the pulsar wind has been considered (Ball & Kirk 2000; Ball & Dodd 2001). The integrated contribution from the unshocked pulsar wind may increase the gamma-ray flux around periastron for some conditions. The maximum level of emission in the TeV energy range is estimated to be $\sim 4 \times 10^{-3}$ MeV cm$^{-2}$ s$^{-1}$ in the integrated energy flux with a wind Lorentz factor of $10^7$ (Ball & Kirk 2000), which may raise the TeV gamma-ray flux above our detector’s sensitivity of typically $10^{-11}$ to $10^{-12}$ TeV cm$^{-2}$ s$^{-1}$. Further studies have considered the effect of the termination of the wind (Ball & Dodd 2001), which, depending on its assumed location, may act to decrease the inverse Compton flux compared to previous predictions. On the other hand, Murata et al. (2003) predict a maximum energy flux from the pulsar wind of $\sim 10^{-13}$ erg s$^{-1}$ cm$^{-2}$ at TeV energies around periastron, which would require a very deep observation to detect.

At the contact surface of the pulsar and Be star flows, ions and electrons in the Be star outflow may be accelerated to high energies via the first-order Fermi mechanism. In the dense outflow from the Be star, there is a lot of target material for proton-proton interactions and bremsstrahlung emission. The Be star also provides target photons for upscattering by the inverse Compton mechanism, in addition to the 2.7 K microwave background radiation. The densities of these targets increase as the contact surface gets closer to the Be star, and so does the total energy of accelerated particles. In this paper, a new model calculation for gamma-ray emission from the accelerated particles in the Be star outflow, taking into consideration bremsstrahlung, the inverse Compton mechanism, and proton-proton interactions, is applied to the binary system and discussed along with our observational results.

2. OBSERVATIONS

The CANGAROO (Collaboration between Australia and Nippon for a Gamma-Ray Observatory in the Outback) Cerenkov telescopes are located near Woomera, South Australia (136°47′ east, 31°06′ south, 160 m above sea level). The 3.8 m CANGAROO telescope, used for the previous observations of PSR B1259–63, was operated from 1991 to 1998. The CANGAROO-II telescope was constructed in 1999 initially with a 7 m diameter dish, which was upgraded to 10 m in 2000 (Mori et al. 2001). Cerenkov photons from extensive air showers initiated by primary gamma rays/cosmic rays are collected with a parabolic reflector and detected by an imaging camera placed in the prime focal plane. The 10 m reflector consists of 114 spherical plastic mirrors of 0.8 m diameter.
(Kawachi et al. 2001) to make a composite parabolic shape (f/0.8). The camera has an array of 552 photomultiplier tubes (PMTs) of half-inch diameter (Hamamatsu; R4124UV) covering a field of view of 2°8, with groups of 16 PMTs using the same high-voltage line. In the observations described in this paper, accepted events were required to meet two conditions within the central region of the camera (1° diameter): at least three PMTs above a ~3 photoelectron threshold and at least one preamplifier unit with an analog sum of signals above a ~10 photoelectron threshold. The typical raw trigger rates of these observations were in the 10–80 Hz range. The charge and timing information of each PMT signal were recorded for each event. Details of the telescope are given in Mori et al. (2001) and Asahara et al. (2003).

The PSR B1259–63/SS 2883 system was observed with the CANGAROO-II Cerenkov telescope at two different orbital phases; for several days in 2000 December (observation A; MJD 51,881.4 in average of the observation time) and in 2001 March (observation B; MJD 51,991.5), about 47 and 157 days after the periastron of 2000 October (MJD 51,834.51). The orbital phase of observation A is similar to that of ASCA observation 4 in Hirayama et al. (1999). We have no data closer to periastron, because observing conditions were not suitable during 2000 June–November. The orbital phases of the observations are schematically shown in Figure 1, and details of the observations are summarized in Table 1. In all observations, the telescope was pointing so that the binary system was at the tracking center.

The target and offset region(s) were observed for equal amounts of time on each night under moonless and fine sky conditions. In a typical observation, the target (on-source) region was observed for a few hours including source culmination, and an offset (off-source) run was carried out before and/or after the on-source run to cover the same track, in the elevation and azimuthal angles, as that of the on-source run. The average zenith angles were 58° for observation A and 34° for observation B, corresponding to differences in observing seasons. The observations closer to periastron, observation A, were performed at larger zenith angles, thus at a higher energy threshold, than the optimum observing condition for the source. The zenith angle of 58° is similar to the observing conditions for the Crab Nebula (~55° in Tanimori et al. 1998) from the CANGAROO site; thus, the data have been analyzed in a manner similar to the recent analysis of the Crab data (Itoh et al. 2003).

3. ANALYSIS AND RESULTS

3.1. Data Analysis

The digitized counts of PMT signal charges have been calibrated after pedestal subtraction. The gains of the pixels have been normalized using a blue LED located at the center of the telescope to illuminate the camera uniformly. The LED is driven by a fast-pulse generator. Accidental events, caused mainly by the night sky or environmental background light, have been removed in the analysis by requiring at least five neighboring PMTs to exceed the ~3.3 photoelectron threshold.

![Fig. 1.—Approximate locations of the pulsar at the observed orbital phases for observations A (2000 December) and B (2001 March) are marked as filled circles on the schematic orbit.](image)

| Date          | Epoch (MJD) | True Anomalya (deg) | Separationb (10¹³ cm) |
|---------------|-------------|---------------------|------------------------|
| **Observation A:** |             |                     |                        |
| 2000 Dec 1    | 51,879.72–51,879.76 | ...                | ...                    |
| 2000 Dec 3    | 51,881.69–51,881.74 | ...                | ...                    |
| 2000 Dec 04   | 51,882.71–51,882.76 | ...                | ...                    |
| Average       | 51,881.4   | 125                 | 3.6                    |
| **Observation B:** |             |                     |                        |
| 2001 Mar 19   | 51,987.60–51,987.68 | ...                | ...                    |
| 2001 Mar 21   | 51,989.62–51,989.75 | ...                | ...                    |
| 2001 Mar 22   | 51,990.62–51,990.79 | ...                | ...                    |
| 2001 Mar 24   | 51,992.59–51,992.73 | ...                | ...                    |
| 2001 Mar 25   | 51,993.54–51,993.70 | ...                | ...                    |
| 2001 Mar 26   | 51,994.53–51,994.60 | ...                | ...                    |
| Average       | 51,991.5   | 153                 | 8.1                    |

Note:—The days after the 2000 October periastron are calculated with the average MJD of the observation periods.
a The true anomaly is zero at the epoch of periastron.
b The binary separation at periastron is assumed to be 0.97 × 10¹³ cm.
c Average observation A epoch corresponds to periastron + 47 days.
d Average observation B epoch corresponds to periastron + 157 days.
within ±35 ns. A small number of pixels affected by noise or the passage of bright stars have been excluded from the analysis. The count rate of events that satisfy these criteria is stable (about 0.6 and 1.9 Hz in observations A and B data sets, respectively), and differences in the raw event rates between on- and off-source runs, ratios of about 1:4 in observation A and 3:2 in observation B, have been resolved. Data under cloudy or unstable conditions have been rejected by checking deviations of the counting rate. The effective observation times and event numbers at this stage of the analysis are summarized in Table 2.

In order to distinguish gamma-ray events from cosmic ray–induced events, a likelihood analysis has been applied (Enomoto et al. 2002b; Itoh et al. 2003) to the characteristic light images recorded by the camera. In this image analysis, we also require the total charge contained in an image to be greater than ~35 photoelectrons, in order to improve the efficiency of background rejection. We have used Monte Carlo simulations (Enomoto et al. 2002a) for a gamma-ray (γ) event set and the off-source events for the background (BG) event set. The average zenith angle, the discarded pixels, and the cut parameters in the analysis have been taken into account in the simulations for the different conditions of observations A and B. The following results are based on simulations assuming a power-law energy spectrum with an index of −2.5 for the generated gamma rays. The “hit map” of triggered pixels, weighted by size of the signal, has been fitted with an ellipse parameterized by the rms spread of light along the minor/major axis of the image (width/length) and the distance between the image centroid and the source position (distance) (Hillas 1982) to characterize each event. Images truncated by the camera edge, or too concentrated at the camera center, have been omitted by putting a loose limit on distance (0.35 ≤ distance ≤ 1.2). Each of the image parameters has been plotted against the total signal in the image for the γ and BG event sets to produce probability density functions (PDFs) of the “γ-like” and “BG-like” events, respectively. Thus, the dependences of the image parameters on the event size have been taken into the analysis. Finally, a single parameter, $R_{\text{prob}} = \text{prob} (\gamma)/[\text{prob} (\gamma) + \text{prob} (\text{BG})]$, is calculated for each event, where prob (γ) is the probability of

| DATA          | $\theta_{\text{zen}}$ (deg) | $E_{\text{th}}$ (TeV) | Time (min) | Number of Events |
|---------------|-----------------------------|------------------------|------------|------------------|
|               |                             |                        | Real       | Effective        | Recorded | Noise Reduction | Image Selected |
| Observation A |                             |                        |            |                  |          |                |                |
| ON:           | 58.9                        | 3.6                    | 202        | 196              | 1.17E5   | 6.62E3          | 1.85E3          |
| OFF:          | 59.2                        |                        | 193        | 160              | 4.29E5   | 5.86E3          | 1.62E3          |
| Observation B |                             |                        |            |                  |          |                |                |
| ON:           | 34.0                        | 0.78                   | 1078       | 623              | 4.43E6   | 7.06E4          | 1.81E4          |
| OFF:          | 34.3                        |                        | 1001       | 645              | 2.63E6   | 7.21E4          | 1.87E4          |

Notes.—In the effective observation time, data taken in poor weather conditions have been rejected and the dead time due to the data acquisition process has been corrected for. The energy threshold $E_{\text{th}}$ has been deduced assuming a spectral index of −2.5 and is identical in the on- and off-source data.

Fig. 2.—Distributions of the orientation angle α. “OFF” (histogram) and “ON” (filled circles, with statistical errors) are plotted after normalization. The region $\alpha \leq \alpha_{cr}$ is assumed to contain gamma-ray signals from the binary. Left: Observation A data set; $\alpha_{cr} = 20^\circ$. Right: Observation B data set; $\alpha_{cr} = 15^\circ$. 

Table 2

Summary of Observations and Data Reduction
Monte Carlo simulations are plotted as filled circles, and those with a spectral threshold, corresponding to the different zenith angles of the observations. The two data sets (observations A and B) have different energy thresholds, calculated from the two-dimensional PDFs. We use the PDFs of three parameters with equal weight. A selection criterion has been chosen considering the acceptance of \( \gamma \) events and the figure of merit of \( \gamma \) events to the BG events. The event numbers of the selected data are listed in Table 2.

After the image selection, gamma rays from the pulsar should have image orientation parameter \( \alpha \) (Punch et al. 1992) of less than 20\(^\circ\) for the observation A data set and 15\(^\circ\) for the observation B data set. A broader \( \alpha \) distribution for gamma rays at larger zenith angle is expected from simulations (Okumura et al. 2002). Figure 2 shows the distributions of \( \alpha \) after all the other cuts have been applied. The off-source (“OFF”) \( \alpha \) distributions are normalized to the on-source (“ON”) ones by the number of events with \( \alpha \geq 40\(^\circ\)\). The normalization factor is consistent with that deduced from the effective observation times, within statistical errors. No statistically significant excess of the ON over the OFF counts is seen in either of the \( \alpha \) histograms. Subtracting the normalized OFF counts from the ON data results in 31 and 47 events within the \( \alpha \) selection criteria, corresponding to significances (assuming Poisson fluctuations only) of +1.0 and +0.60 \( \sigma \) for observations A and B, respectively.

3.2. Energy Threshold and Upper Limit Flux

The gamma-ray acceptance for the cuts used in the analysis has been estimated based on the simulations. The energy threshold is defined as the peak of the acceptance multiplied by the generated energy spectrum, and thresholds of 3.6 and 0.78 TeV are derived for an \( E^{-2.5} \) spectrum for the observations A and B data sets, respectively. The corresponding effective areas are 3.6 \( \times 10^9 \) and 1.3 \( \times 10^9 \) cm\(^2\). The 2 \( \sigma \) upper limits of our result are

\[
F(\geq 3.6 \text{ TeV}) \leq 1.4 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}
\]

for observation A and, for observation B,

\[
F(\geq 0.78 \text{ TeV}) \leq 3.1 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}
\]

Figure 3 shows the upper limits of the two observations. The integral flux of the Crab Nebula is also shown (Tanimori et al. 1998) as a reference. The systematic error in the energy scale determination has been estimated to be 15\% (Itoh et al. 2003) and is shown in the figure as errors in the abscissa.

The whole procedure of the analysis has been performed changing the simulated spectral index from −2.5 to −2.0. The significance levels of the gamma-ray signals are unchanged, and the corresponding threshold energies and the gamma-ray acceptances increase by about 20\%. Thus, the upper limits, assuming a spectral index of −2.0, are \( F(\geq 4.0 \text{ TeV}) \leq 1.2 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1} \) (observation A) and \( F(\geq 0.88 \text{ TeV}) \leq 2.7 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1} \) (observation B), as shown in Figure 3.

4. DISCUSSION

The observational results are compared with some model calculations. A new model of gamma-ray emissivity is introduced, considering the particles accelerated in the Be star outflow.

4.1. Models of the Two Flows

Figure 4 schematically illustrates the assumed configuration of the system: the pulsar and its relativistic pulsar wind, the Be star and its polar and disklike outflows, and the shock composed of three surfaces: pulsar-side shock, contact surface, and Be star–side shock. Particles are assumed to be accelerated by the shock at the pressure balance between the flows of the two stars. In the figure, the contact discontinuity between the pulsar wind and the equatorial disk of the Be star is illustrated. The alignment of the Be star disk to the orbital plane, and its effect, will be discussed below in calculating light curves over orbital phase.

For the pulsar wind, we adopt the model of Kennel & Coroniti (1984) for the synchrotron nebula around the Crab pulsar. For the Be star mass flow, the simple model of Waters (1986) is used, which represents radiation from Be stars using the IR, optical, and UV observational results. The parameters are chosen so as to be consistent with the observational results of Be stars in general (Cote´ & Waters 1987) and of the PSR B1259–63/SS 2883 binary (Johnston et al. 1994, 1996; Melatos et al. 1995). We fully consider the Klein-Nishina effect in the calculations of the emission processes via electrons. Provided that the pulsar wind is driven by the spin-down luminosity \( \dot{E}_{\text{rot}} \) of the pulsar, a fraction \( f_{\text{pw}} = 0.1 \) of the wind luminosity is assumed to be enhanced in the equatorial plane. Both kinetic and electromagnetic energies are included in \( \dot{E}_{\text{rot}} \) (Kennel & Coroniti 1984). The radial distribution of the wind pressure, \( P_{\text{pw}} \), is given by

\[
P_{\text{pw}}(r) = \frac{\dot{E}_{\text{rot}}}{f_{\text{pw}}4\pi r^2 c},
\]

where \( r \) is the distance from the pulsar and \( c \) is the speed of light.
For the mass flow of the Be star, we consider a high-density, slow, equatorially orbiting disklike flow (Waters 1986) with a low-density, fast, polar component (stellar wind) (Waters et al. 1988; Dougherty et al. 1994). The density profile, \( \rho \), is assumed to depend on the distance from the center of the Be star, \( R \), as \( \rho(R) = \rho_0(R/R_\star)^{-2} \) with a power-law index \( n \), where \( R_\star \) is the star radius and \( \rho_0 \) is the density of the outflow at the surface of the star. The flow speed \( v(R) = v_0(R/R_\star)^{n-2} \) is obtained from conservation of mass flux, where \( v_0 \) is speed of the outflow at the surface of the star. Then the momentum flux of the flow, \( P_{\text{Be}} \), is

\[
P_{\text{Be}}(R) = \rho v^2 = \rho_0 v_0^2 \left( \frac{R}{R_\star} \right)^{n-4}.
\]

In our calculation, indices \( n \) of 2.5 and 2 are chosen in outflows of disk and polar wind, respectively.

The location of the shock regime is determined by the balance between the pressures of the pulsar wind (eq. [1]) and the Be star outflow (eq. [2]).

We introduce a new parameter, \( x \), defined as

\[
x = \frac{\rho_0}{10^{-12} \text{ g cm}^{-3}} \frac{v_0}{10^6 \text{ cm s}^{-1}}.
\]

When \( x \) is larger, the location of the pressure balance becomes farther from the Be star. If we assume that the opening angle \( \theta_{\text{disk}} \) of the disk outflow is 15° (Johnston et al. 1996), the parameter \( x \) is related to the \( \Upsilon \) of Tavani & Arons (1997) by \( \Upsilon \equiv \left[ M/(10^{-8} M_\odot \text{ yr}^{-1}) \right] \left[ v_0/(10^6 \text{ cm s}^{-1}) \right] = 0.90 x \left[ v_0/(10^6 \text{ cm s}^{-1}) \right] \), where \( M \) is the mass-loss rate. The parameter \( x \) depends on \( v_0 \) and \( \rho_0 \), which are obtained directly from UV/optical observations, independent of the disk opening angle. As shown later, the gamma-ray emission is approximately proportional to \( x^2 \) in our model.

4.2. Particle Acceleration and Gamma-Ray Spectrum

First, we deduce the flux \( j_i \) \((i = e, p)\) as a function of energy \( E_i \) of the particles in the Be star outflow on the basis of Fermi acceleration, where \( e \) denotes electrons and \( p \) denotes protons. For simplicity, we assume that all ions are protons. Second, we calculate the energy flux from the binary system induced from the emission mechanisms of bremsstrahlung, inverse Compton (electrons), and proton-proton collisions.

In general terms, the momentum spectrum \( dN/dP \) of the shock-accelerated particles is expressed as \( N_0 P^{-\alpha} \), and \( 4\pi \mathcal{J} \) is obtained from \( dN/dE \), where \( E \) is the kinetic energy, described as \( dN/dE = (dP/dE_k) dN/dP \). The constant \( N_0 \) is evaluated with the following integration regarding the energy balance at the shock location in the Be star flow:

\[
\int_{E_{\text{min}}}^{E_{\text{max}}} \frac{dN}{dE_i} (E_i) dE_i = f_{\text{acc},i} P_{\text{Be}}(R_{\text{shock}}), \quad i = e, p,
\]

where \( R_{\text{shock}} \) is the distance to the contact surface from the Be star center. We assume \( f_{\text{acc},i} = 0.001 \) and 0.1 for \( i = e \) and \( p \), respectively, for the efficiency of the acceleration to be consistent with an \( e/p \) ratio in cosmic-ray observations (e.g., Müller et al. 1995; Baring et al. 1999). The variation of \( R_{\text{shock}} \) causes the orbital modulation in the light curve. The orbital inclination to the line of sight has not been included in our calculation, as this effect is less significant in the Be star emission models than in the pulsar wind emission models. Anisotropy of the optical photons from the Be star is neglected for simplicity. Assuming Fermi acceleration, we take a power-law index of \( \alpha = -2.0 \) for the proton momentum spectrum \( dN_p/dP_p \), with an assumed compression ratio of 4.0. The spectral index of the electron momentum spectrum at the shock front does not vary much from the canonical \( \alpha = -2.0 \) for plausible values of pulsar wind parameters, because inverse Compton cooling in the higher energy electrons are reduced by the Klein-Nishina effect (Murata et al. 2003). In addition, synchrotron cooling does not affect the spectral index, since the magnetic field strength on the Be-star side should be weak. We therefore assume that the electron spectral index has a constant value of \( \alpha = -2.0 \).

The integration is performed from the threshold energy \( E_{\text{min},i} \) or the particle mass, \( m_{e,p}c^2 \), to the maximum energy of the accelerated particle \( E_{\text{acc},i} \), which we assume here to be \( \sim 10^{15} \text{ eV} \). Applying the obtained \( f_{\text{acc},i}(E_{\text{acc},i}) \), the gamma-ray spectrum from the source at the distance \( D \) is calculated.
The contributions of the inverse Compton (IC) and bremsstrahlung are calculated from $j_{e, \gamma}(E_{e, \gamma})$ as

$$F^{\text{IC}, \text{brem}}(E_{\gamma}) = \frac{1}{D^2} \int n_{\text{target}} dV \int_{m_p c^2}^{E_{\gamma}^{\text{max}}} dE_p j(E_{p}) \frac{d\sigma_{pp \rightarrow \gamma}(E_{\gamma}, E_p)}{dE_{\gamma}},$$

(6)

where $n_{\text{target}} = n_{\text{photon}}$ and $d\sigma/dE_{\gamma}$ is a cross section that includes the Klein-Nishina effect for inverse Compton emission, and $n_{\text{target}}$ of $\rho/m_p$ and the cross section $d\sigma/dE_{\gamma}$ of electron-proton and electron-electron interaction are used for bremsstrahlung emission (Gaisser et al. 1998; Sturier et al. 1997). For $n_{\text{photon}}$, we adopt the 2.7 K cosmic microwave background and $T_{\text{eff}} = 27,000$ K blackbody radiation from the Be star. In the spatial integration, we assume that the accelerated particles extend into the Be star outflow downstream of the shock. The contributions of different emission mechanisms are calculated with $x_{\text{disk}} = 1500$ for the phase of periastron, and their differential energy spectra are shown in Figure 5 (the disk and the pulsar wind are assumed to interact at periastron in the calculation). The total gamma-ray flux is deduced as $F(\gamma) = F^{\text{brems}}(E_{\gamma}) + F^{\text{IC}}(E_{\gamma}) + F^{\text{pp}}(E_{\gamma})$, and the dominant contribution is from $F^{\text{pp}}(E_{\gamma})$. The inverse Compton flux in the sub-TeV energy region, expected from the pulsar wind side (Murata et al. 2003), is comparable to $F^{\text{IC}}$ from the Be star outflows, except that the former has a break at $\sim 400$ GeV due to the stronger magnetic field in the pulsar wind side. After the spatial integration, the total flux is approximately expressed as

$$F(\gamma)(E_{\gamma}, x) \propto x^2 \frac{1}{n-1} R_{\text{shock}}(x, n, \nu_0).$$

(7)

The $R_{\text{shock}}(x, n, \nu_0)$ for the same orbital phase does not vary much within the parameter range discussed in the following. The adopted model parameters are summarized in Table 3. Now we discuss the possible ranges of two parameters, $x$ and the density profile index $n$. For the polar component, the value $x_{\text{polar}}$ is set to be proportional to the disk component, $x_{\text{disk}}$. The factor is estimated using the following two

**TABLE 3**

| Adopted Parameters in the Model Calculation of Gamma-Ray Emissivity |
|---------------------------------------------------------------|
| **Parameter**                      | **Adopted Value** |
|-----------------------------------|-------------------|
| **Pulsar wind**                   |                   |
| Fraction to the equatorial plane, $f_{pw}$ | 0.1 |
| **Be star**                       |                   |
| Radius, $R$                       | $6 \ R_\odot = 4.17 \times 10^{11}$ cm$^3$ |
| Distance, $D$                     | 1.5 kpc$^2$       |
| Opening angle of the disk outflow, $\theta_{\text{disk}}$ | 15$^\circ$ |
| Power-law index of density profile of the disk, $n_{\text{disk}}$ | 2.5 |
| Power-law index of density profile of the polar wind, $n_{\text{polar}}$ | 2 |
| Efficiency of acceleration, $f_{\text{acc}}$, for protons | 0.1 |
| Efficiency of acceleration, $f_{\text{acc}}$, for electrons | 0.001 |
| Power-law index of the proton/electron energy flux, $\alpha$ | $-2.0$ |
| Maximum energy of the accelerated particles, $E_{\gamma}^{\text{max}}$ | $10^{15}$ eV |
| Outflow parameter of the disk, $x_{\text{disk}}$ | 500–5000 |
| Outflow parameter of the polar wind, $x_{\text{polar}}$ | $10^{-4} x_{\text{disk}}$ |

**Note:** See text for the detailed definitions.

* Taken from Johnston et al. (1994).
There are no fixed limits for the orbital phases in which the Be star disk outflow interacts with the pulsar wind. We consider three possibilities in calculating the light curves: (i) aligned disk to the orbital plane and interaction throughout the orbit; (ii) misaligned disk and interaction in the ~200 day period around periastron ($\tau$), during which the radio emission is depolarized; and (iii) misaligned disk and interaction in two short periods, from $\tau - 18$ to $\tau - 8$ days and from $\tau + 12$ to $\tau + 22$ days, as discussed in Connors et al. (2002). Equation (7), with $x_{\text{polar}}$ of $10^{-5} x_{\text{disk}}$, suggests that the contribution from the polar wind–pulsar wind interaction is a factor of $1.5 \times 10^{-2}$ of that from the disk–pulsar wind interaction. The polar wind is generally assumed to interact with the pulsar wind at all orbital phases. When the disk–pulsar wind interaction diminishes, the estimated intensity from the system is only of the polar wind contribution and is reduced by a factor of $\sim 10^{-2}$. We take account of model (i), implying the maximum effect of the disk–pulsar wind interaction, although the disk material becomes dilute at larger distances (eq. [2]). In models (ii) and (iii), we consider emissions from the pulsar wind bubble formed in the disk flow, after the pulsar leaves the disk (Connors et al. 2002). The bubble moves at velocity $v_{\text{bubble}}$ in the outflow, and shock acceleration of particles in the flow proceeds in the contact discontinuity between the bubble and the outflow material. Emissions from the moving bubble are calculated along its track, referring to the material and momentum density profiles of the flow, by replacing $R_{\text{polar}}(x, \theta_{\text{polar}}, 0)$ with $R_{\text{bubble}}(t - t_0)$ in equation (7), where $t_0$ denotes the time when the polar wind moves out of the disk flow. We assume an initial value of $v_{\text{bubble}} = 100 \text{ km} \text{ s}^{-1}$, which is larger than the value used in Connors et al. (2002), $15 \text{ km} \text{ s}^{-1}$ but is similar to that in the model in Paredes et al. (1991), as well as to the typical velocity of the disk flow. The adiabatic expansion, which is mainly important for synchrotron emission, does not affect much the emission mechanism mentioned here. The rise time of bubble emission is assumed to be $\sim 1 \text{ day}$.

### 4.3. Comparison with the Results

The observational upper limits are compared with light curves calculated from the model. The energy thresholds of our results have been scaled to 1 TeV, assuming an $E^{-2.0}$ spectrum. The spectra calculated with model (i) in disk–pulsar wind interaction are integrated ($E \geq 1 \text{ TeV}$) for four different mass outflow parameters, $x_{\text{disk}} = 500, 1000, 1500, \text{ and } 5000$ (Fig. 6). The outflow parameter is constrained by our results to $x_{\text{disk}} \leq 1500$. The light curves with models (i)–(iii) for the fixed mass outflow parameter $x_{\text{disk}}$ of 1500 are shown in Figure 7. As discussed in § 4.2, the light curve is reduced by a factor of $\sim 10^{-2}$ outside the assumed disk–pulsar wind interaction period, since the polar wind becomes the only counterpart to the pulsar wind. In addition, contribution from the wind bubble formed in the disk–pulsar wind interaction remains while the bubble is moving in the disk. Thus, for model (iii), in which the disk and the pulsar wind interact twice in the orbit, the emission peak after periastron consists of the “second” disk–pulsar wind interaction, of the disk–wind bubble interaction where the bubble is the outcome of the “first” interaction, and of the polar wind–pulsar wind interaction. For all three models the constraint from the observations, mainly from observation A, is similar. With this relatively small outflow pressure, the Be star wind may not be able to overwhelm the pulsar wind pressure to produce
accretion onto the pulsar, as has been suggested by the X-ray observations.

Besides our emission models based on the Be-star outflows, we discuss the light curve shown in Figure 5 of Ball & Kirk (2000) as the optimum case for TeV emission from the pulsar wind side, using the rather ideal model of inverse Compton scattering on the unshocked pulsar wind with a wind Lorentz factor of $10^7$. Our upper limits are modified into units of integrated energy flux using the approximated spectral indices in Figure 4 of Ball & Kirk (2000), but the obtained limit of $\sim 1 \times 10^{-5}$ MeV cm$^{-2}$ s$^{-1}$ does not strongly constrain the model, since the light curve quickly declines from $\sim 5$ at the periastron epoch to 0.2 in units of $10^{-5}$ MeV cm$^{-2}$ s$^{-1}$. The integrated flux greater than 1 TeV is obtained from another model calculation of pulsar wind emission using the spectra in Figure 7 of Murata et al. (2003). They argue for the dominance of synchrotron cooling in the energy loss of the pulsar wind electrons. Assuming the distance of 1.5 kpc, the predicted flux of $10^{-14}$ cm$^{-2}$ s$^{-1}$ is about 2 orders of magnitude smaller than our limit.

Recently, new projects of ground-based Cerenkov telescopes have begun operations (Ong 2003). With the improved sensitivity and the lower energy threshold, they will offer a better opportunity to observe the PSR B1259–63 binary system in the high-energy band. For projects such as CANGAROO-III or HESS, located in the southern hemisphere, a 50 hr observation of the binary system gives a typical sensitivity of $\sim 10^{-11}$ cm$^{-2}$ s$^{-1}$, with an energy threshold of $\sim 100$ GeV (Konopelko 1999). The calculated spectra of our models are integrated again, for energies greater than 100 GeV, for comparison with this sensitivity. In Figure 8, the sensitivity levels of 20, 10, and 5 hr (statistically scaled) observations, respectively, are drawn over the calculated light curves. A day-scale light curve might be detectable for the model with $x_{\text{disk}} \gtrsim 700$ along the periastron passage. Ball & Dodd (2001) estimate the $\sim 100$ GeV emission from the pulsar wind with a Lorentz factor of $10^6$, and their light curves are compared with these expected sensitivities after modification of the units into the integrated energy flux (MeV cm$^{-2}$ s$^{-1}$), assuming the spectral shape from Figure 4 of Ball & Dodd (2001). The light curves in Figure 8 (right) are taken from Figure 5 of Ball & Dodd (2001), showing terminated (solid line) and unterminated (dashed line)
shock models in the pulsar wind emissions. Both model predictions are comparable with the detectable flux, at least, around the periastron epoch. From Murata et al. (2003), integrations of $E \geq 100$ GeV are performed, resulting in fluxes of $\sim 4 \times 10^{-12}$ cm$^{-2}$ s$^{-1}$ at periastron and $\sim 1 \times 10^{-12}$ cm$^{-2}$ s$^{-1}$ at apastron, which is still below the improved sensitivity of ground-based detectors.

5. SUMMARY

The PSR B1259–63/SS 2883 binary system has been observed at TeV energies using the CANGAROO-II 10 m telescope. The observations were performed at two different orbital phases following the 2000 October periastron. Upper limits on the integrated TeV gamma-ray flux are obtained. A new model for gamma-ray emission from the Be star outflow has been introduced, and contributions from bremsstrahlung, inverse Compton scattering, and proton-proton interactions are calculated, with possible variations in parameters considered. The light curves are calculated with different assumptions on the disk–pulsar wind interaction. The estimated light curves are discussed and compared with our observational results to constrain the disklike outflow density $\rho_{0,-12} = \rho_0/10^{-12}$ g cm$^{-3}$ and its flow speed $v_{0,6} = v_0/10^6$ cm s$^{-1}$ by $x_{\text{disk}} = \rho_{0,-12} v_{0,6} \leq 1500$. The next periastron will occur in 2004 March, when the conditions will be favorable for small–zenith angle observations and hence low energy thresholds for ground-based Cerenkov telescopes. Further observations of the PSR B1259–63 system during the periastron passage (including the weeks before and after the periastron, respectively) are encouraged to provide valuable information.

The authors greatly thank L. Ball for introducing his model calculations to us and for promoting the first idea of these observations. T. Terasawa gave useful comments in the early discussion of the model. The research was supported by a Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Science, Sports, and Technology of Japan, by the Australian Research Council, and by ARC Linkage Infrastructure grant LE0238884 and Discovery Project grant DP0345983. A. A., S. H., J. K., L. K., K. O., K. S., and K. T. were supported by Research Fellowships and Postdoctoral Fellowships of Japan Society of Promotion of Science.

REFERENCES

Johnston, S., Manchester, R. N., McConnell, D., & Campbell-Wilson, D. 1999, MNRAS, 302, 277
Kaspi, V. M., & Remillard, R. A. 1998, in Neutron Stars and Pulsars, ed. N. Shibazaki, N. Kawai, S. Shibata, & T. Kifune (Tokyo: Universal Academy Press), 519
Kaspi, V. M., et al. 1995, ApJ, 453, 424
Kawachi, A., et al. 2001, Astropart. Phys., 14, 261
Knell, C. F., & Coroniti, F. V. 1984, ApJ, 283, 694
Kirk, J. G., Ball, L., & Skjæraasen, O. 1999, Astropart. Phys., 10, 31
Konopelko, A. 1999, Astropart. Phys., 11, 263
Lamers, H. J. G. L. M., & Waters, L. B. F. M. 1987, A&A, 182, 80
Melatos, A., Johnston, S., & Melrose, D. B. 1995, MNRAS, 275, 381
Mori, M., et al. 2001, in Proc. 27th Int. Cosmic-Ray Conf. (Hamburg), 2831
Muller, D., et al. 1995, in Proc. 24th Int. Cosmic-Ray Conf. (Rome), 13
Murata, K., Tamaki, H., Maki, H., & Shibazaki, N. 2003, PASJ, 55, 467
Naito, T., & Takahara, F. 1994, J. Phys. G, 20, 477
Okumura, K., et al. 2002, ApJ, 579, L9
Ong, R. A. 2003, in The Universe Viewed in Gamma Rays, ed. R. Enomoto, M. Mori, & S. Yanagita (Tokyo: Universal Academy Press), 587
Paredes, J. M., Mart, J., Estallela, R., & Sarrate, J. 1991, A&A, 248, 124
Punch, M., et al. 1992, Nature, 358, 477
Sako, T., et al. 1997, in Proc. 25th Int. Cosmic-Ray Conf. (Durban), 193
Strickman, M. S., & Arons, J. 1995, ApJ, 447, L113
Tanimori, T., et al. 1998, ApJ, 492, L33
Tavani, M., & Arons, J. 1997, ApJ, 477, 439
Tavani, M., Arons, J., & Kaspi, V. M. 1994, ApJ, 433, L37
Waters, L. B. F. M. 1986, A&A, 162, 121
Wex, N., Johnston, S., Manchester, R. N., Lyne, A. G., Stappers, B. W., & Bailes, M. 1998, MNRAS, 298, 997