Gradient Boosting with Piece-Wise Linear Regression Trees

Yu Shi, Jian Li and Zhize Li

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
shiyu17@mails.tsinghua.edu.cn, lijian83@mail.tsinghua.edu.cn, zz-li14@mails.tsinghua.edu.cn

Abstract

Gradient Boosted Decision Trees (GBDT) is a very successful ensemble learning algorithm widely used across a variety of applications. Recently, several variants of GBDT training algorithms and implementations have been designed and heavily optimized in some very popular open sourced toolkits including XGBoost, LightGBM and CatBoost. In this paper, we show that both the accuracy and efficiency of GBDT can be further enhanced by using more complex base learners. Specifically, we extend gradient boosting to use piecewise linear regression trees (PL Trees), instead of piecewise constant regression trees, as base learners. We show that PL Trees can accelerate convergence of GBDT and improve the accuracy. We also propose some optimization tricks to substantially reduce the training time of PL Trees, with little sacrifice of accuracy. Moreover, we propose several implementation techniques to speedup our algorithm on modern computer architectures with powerful Single Instruction Multiple Data (SIMD) parallelism. The experimental results show that GBDT with PL Trees can provide very competitive testing accuracy with comparable or less training time.

1 Introduction

Gradient Boosted Decision Trees (GBDT) [Friedman, 2001] has shown its excellent performance in many real world applications and data science competitions [Tyree et al., 2011; Chen et al., 2012]. Decision trees widely used as base learners by GBDT assign a single predicted value for data on the same leaf. We call these decision trees piecewise constant regression trees, since each tree defines a piecewise constant function in the input space. ID3 [Quinlan, 1986], C4.5 [Quinlan, 2014] and CART [Breiman, 2017] are famous algorithms for training standalone piecewise constant decision trees. [Tyree et al., 2011; Chen and Guestrin, 2016] propose efficient algorithms for training them as base learners of GBDT. It is very likely that with more complex decision tree model, we can enhance the power of gradient boosting algorithms. The most natural extension to piecewise constant trees is replacing the constant values at the leaves by linear functions, so called piecewise linear regression trees (PL Trees). This idea has been explored in [Wang and Hastie, 2014; Hall et al., 2009; Kuhn et al., 2012]. However, due to its heavy computation cost, so far there’s no fast and scalable implementation of gradient boosting with PL Trees.

In this paper, we provide a fast and scalable implementation of gradient boosting with PL Trees. Our algorithm has training cost comparable to carefully optimized GBDT toolkits including XGBoost [Chen and Guestrin, 2016], LightGBM [Ke et al., 2017] and CatBoost [Prokhorenkova et al., 2018], all of which use piecewise constant trees as base learners. We reduce the cost of training PL Trees from both algorithmic and system aspects. From algorithmic level, we adopt an incremental feature selection strategy during the growth of a tree to constrain the size of linear models. The histogram technique (see e.g., [Tyree et al., 2011; Chen and Guestrin, 2016]) used by piecewise constant trees is also adapted to PL Trees. We then propose half-additive fitting to further reduce the cost of fitting linear models. From system level, SIMD parallelism is very suitable for speeding up the training of PL Trees. However, cache must be efficiently utilized to provide operands fast enough for SIMD instructions. We arrange data structures carefully to reduce cache misses. All these techniques together make our algorithm more efficient than existing GBDT algorithms.

The main contributions of our work are summarized as follows:

- We extend GBDT with second-order approximation to ones that use PL Trees as base learners. Our experiments demonstrate that PL Trees can improve the convergence rate of GBDT.
- We design an efficient strategy to fit the linear models in tree nodes, with incremental feature selection and half-additive fitting. This strategy avoids the prohibitive computational cost for fitting large linear models repeatedly when training a PL Tree.
- We propose several implementation techniques to exploit the power of SIMD parallelism by reducing cache misses in PL Tree training.
- We evaluate our algorithm on 10 public datasets, and compare it with state-of-the-art toolkits including XGBoost, LightGBM and CatBoost. The experimental re-
sults show that our algorithm can improve accuracy with comparable training time on numerical dense data.

2 Review of Gradient Boosted Decision Trees

In this section, we provide a brief review of GBDT. Specifically, we review one of the most popular variant XGBoost [Chen and Guestrin, 2016], which uses second-order approximation of loss function [Friedman et al., 2000]. Second-order approximation is important for fast convergence of GBDT [Sun et al., 2014]. Given a dataset $D = \{(x_i, y_i)\}$ with m features, and $x_i \in \mathbb{R}^m$, GBDT trains a sequence of decision trees $\{t_k\}_k^T$. The final output is the summation of these trees $\hat{y}_i = \sum_{k=1}^T t_k(x_i)$. The loss function is usually augmented by regularization terms $\Omega(t_k)$ to prevent overfitting. $\Omega(t_k)$ reflects the complexity of tree t_k. Let $l: \mathbb{R}^2 \rightarrow \mathbb{R}$ be the loss function for a single data point. The total loss $\mathcal{L} = \sum_{i=1}^n l(y_i, \hat{y}_i) + \sum_{k=1}^T \Omega(t_k)$. Let $\hat{y}_i^{(k)}$ be the predicted value of x_i after iteration k. At iteration $k+1$, a new tree t_{k+1} is trained to minimize the following loss.

$$\mathcal{L}^{(k+1)} = \sum_{i=1}^n l(\hat{y}_i^{(k+1)}; y_i) + \sum_{k=1}^T \Omega(t_k)$$

We can approximate the loss above.

$$\mathcal{L}^{(k+1)} \approx C + \Omega(t_{k+1}) + \sum_{i=1}^n \left[\frac{1}{2} h_i t_{k+1}(x_i)^2 + g_i t_{k+1}(x_i) \right]$$

Here C is a constant value independent of t_{k+1}, $g_i = \frac{\partial l(y_i, \hat{y}_i)}{\partial \hat{y}_i}$, and $h_i = \frac{\partial^2 l(y_i, \hat{y}_i)}{\partial \hat{y}_i^2}$. Leaving out the constant, we get the objective of iteration $k+1$.

$$\tilde{\mathcal{L}}^{(k+1)} = \Omega(t_{k+1}) + \sum_{i=1}^n \left[\frac{1}{2} h_i t_{k+1}(x_i)^2 + g_i t_{k+1}(x_i) \right]$$

The specific form of regularizer Ω varies with the type of base learner.

3 Gradient Boosting with PL Trees

In this section, we derive GBDT with second-order approximation using PL Trees. Formally, there are two basic components of our PL Trees,

- **Splits:** A split associated with an internal node is a condition used to partition the data in the node to its two child nodes. Our PL Trees use univariate splits in the form $x_{i,j} \leq c$, where $x_{i,j}$ is the jth feature value of data point $x_i \in \mathbb{R}^m$. The feature j is called the **split feature**.

- **Linear Models:** On each leaf s, there is a linear model $f_s(x_i) = b_s + \sum_{j=1}^{m_s} \alpha_{s,j} x_i, k_{s,j}$, where $\{x_{i,j_{s,j}}\}_{j=1}^{m_s}$ is a subset of $\{x_{i,j}\}_{j=1}^{m}$. We call features $\{k_{s,j}\}_{j=1}^{m_s}$ the **regressors** for leaf s. The selection of the regressors is described in Section 4.

Algorithm 1 Training Process of PL Tree

1: initialize the tree with a single root node
2: put all the sample points in root node
3: while number of leaves fewer than a preset value do
4: for each leaf s do
5: \(j_s^*, c_s^* \leftarrow \arg \max_j \text{SplitEval}(s, j, c) \)
6: \(\hat{s} \leftarrow \arg \max \text{SplitEval}(s, j_s^*, c_s^*) \)
7: split \hat{s} with condition $x_{i,j_s^*} \leq c_s^*$ into s_1 and s_2
8: FitNode(s_1), FitNode(s_2)

Starting from a single root node, a PL Tree is trained by greedily splitting nodes into children until the number of leaves in the tree reaches a preset maximum value. To give a clear framework for the training of PL Trees, we first define two operations:

1. **FitNode(s)** fits a linear function on data in leaf s. The parameters of the function are calculated analytically to minimize $\tilde{\mathcal{L}}^{(k+1)}$.

2. **SplitEval(s, j, c)**. For a leaf s in tree t_{k+1} of (1), a variable j and a real value c, it returns the reduction of $\tilde{\mathcal{L}}^{(k+1)}$, when splitting leaf s with $x_{i,j} \leq c$ and fitting data in both child nodes using FitNode.

Now the framework for training a PL Tree is summarized in Algorithm 1. We will spell out the details for FitNode and SplitEval later in this section. Let I_s be the set of data in leaf s of tree t_{k+1} in (1). We can rewrite (1) as follows.

$$\tilde{\mathcal{L}}^{(k+1)} = \Omega(t_{k+1}) + \sum_{s \in I_s} \left[\frac{1}{2} h_s t_{k+1}(x_s)^2 + g_s t_{k+1}(x_s) \right]$$

Let f_s be the linear model fitted in leaf s. We use regularization term $\Omega(t_k) = \lambda \sum_{s \in I_{k+1}} \omega(f_s)$. Here $\omega(f_s)$ is the L^2 norm of parameters of linear model in leaf s. This prevents the linear models in the leaves from being too steep. Leaving out the k notation and focusing on the loss of a single leaf s.

$$\tilde{\mathcal{L}}_s = \omega(f_s) + \sum_{i \in I_s} \left[\frac{1}{2} h_s f_s(x_i)^2 + g_s f_s(x_i) \right]$$

We first focus on fitting an optimal linear model for leaf s given regressors $\{k_{s,j}\}_{j=1}^{m_s}$. The choice of regressors $\{k_{s,j}\}_{j=1}^{m_s}$ is left to Section 4. Let $\alpha_s = [\alpha_{s,1}, ..., \alpha_{s,m_s}]^T$. Substituting $f_s(x_i)$ into (2), we get the loss in terms of α_s.

$$\tilde{\mathcal{L}}_s = \sum_{i \in I_s} \left[\frac{1}{2} h_s (b_s + \sum_{j=1}^{m_s} \alpha_{s,j} x_{i,k_{s,j}})^2 \
+ g_s (b_s + \sum_{j=1}^{m_s} \alpha_{s,j} x_{i,k_{s,j}}) \right] + \frac{\lambda}{2} \|\alpha_s\|^2$$

Let $H = \text{diag}(h_1, ..., h_n)$, $g = [g_1, ..., g_n]^T$, and H_s and g_s be the submatrix and subvector of H and g respectively by selecting h_i and g_i for $i \in I_s$. Let X_s be the matrix of data in I_s with features $\{k_{s,j}\}_{j=1}^{m_s}$, augmented by a column of 1’s.

We can write the loss $\tilde{\mathcal{L}}_s$ in a concise form.

$$\tilde{\mathcal{L}}_s = \frac{1}{2} \alpha_s^T (X_s^T H_s X_s + \lambda I) \alpha_s + g_s^T X_s \alpha_s.$$
Thus the optimal value of α can be calculated analytically.

$$\alpha_s^* = -(X_s^T H_s X_s + \lambda I)^{-1} X_s^T g_s$$ \hspace{1cm} (3)$$

Calculation of Equation (3) is exactly $\text{FitNode}(s)$. Then we get the minimum loss of leaf s.

$$\mathcal{L}_s^* = -\frac{1}{2} g_s^T X_s (X_s^T H_s X_s + \lambda I)^{-1} X_s^T g_s$$ \hspace{1cm} (4)$$

When splitting a leaf s into child s_1 and s_2 with condition $x_{i,j} \leq c$, we split the matrix X_s into sub-matrices X_{s_1} and X_{s_2} accordingly. Similarly we define H_{s_1}, H_{s_2}, g_{s_1} and g_{s_2}. With these notations and the definition in (3), the results of $\text{FitNode}(s_1)$ and $\text{FitNode}(s_2)$ are $\alpha_{s_1}^*$ and $\alpha_{s_2}^*$. Similarly we define $\mathcal{L}_{s_1}^*$ and $\mathcal{L}_{s_2}^*$ as in (4). Then the reduction of loss incurred by splitting s into s_1 and s_2 is as follows.

$$\text{SplitEval}(s,j,c) = \mathcal{L}_{s_1}^* + \mathcal{L}_{s_2}^* - \mathcal{L}_s^*$$ \hspace{1cm} (5)$$

4 Algorithmic Optimization

In Algorithm 1, SplitEval and FitNode are executed repeatedly. For each candidate split, we need to calculate Equation (4) twice for both child nodes. We use Intel MKL [Wang et al., 2014] to speedup the calculation, but it is still very expensive when the number of regressors is large. In this section, we introduce algorithmic optimizations to reduce the cost.

4.1 Histograms for GBDT with PL Trees

Histogram is an important technique to speedup GBDT [Tyree et al., 2011] by reducing the number of candidate splits. However, the construction of histograms becomes the most expensive part of tree training. We extend the histogram technique for PL Tree in GBDT. With piecewise constant trees, each bin in a histogram only needs to record the sum of gradients and Hessians of data in that bin [Chen and Guestrin, 2016]. For PL Trees, the statistics in the histogram is more complex [Vogel et al., 2007]. Two components in (4) require summation over leaf data.

$$X_s^T H_s X_s = \sum_{i \in s} h_i x_i x_i^T, \quad X_s^T g_s = \sum_{i \in s} g_i x_i$$ \hspace{1cm} (6)$$

For simplicity, here we use x_i for the column vector of selected regressors of data i. Thus each bin B needs to record both $\sum_{i \in B} h_i x_i x_i^T$ and $\sum_{i \in B} g_i x_i$. And histogram construction becomes much more expensive. In Section 5, we introduce methods to speedup histogram construction.

4.2 Incremental Feature Selection and Half-Additive Fitting

It is uncomfortable to use all features as regressors when fitting the linear models. For each node, we need to select a small subset of the features as regressors.

In fact, the regressor selection can be done automatically as the tree grows [Friedman, 1979; Vens and Blockeel, 2006]. Considering splitting s into s_1 and s_2 with condition $x_{i,q} \leq c$, it is very natural to add split feature q into the regressor sets of s_1 and s_2. The intuition is that, if this split should result in a significant reduction in the loss function, then feature q contains relatively important information for the fitting of linear models in s_1 and s_2. Thus, for each leaf s, we choose the split features of its ancestor nodes as regressors. Formally, suppose the linear model of leaf s is

$$f_s(x_i) = b_s + \sum_{j=1}^{m} \alpha_{s,j} x_{i,j}.$$ \hspace{1cm} (7)$$

Then the linear model of s_1 is $f_{s_1}(x_i) = b_{s_1} + \sum_{j=1}^{m} \alpha_{s_1,j} x_{i,j} + \alpha_{s_1,m+1} x_{i,q}$. Similarly we have the linear model for s_2. When the number of regressors reach a preset threshold d, we stop adding new regressors to subsequent nodes. We call this incremental feature selection. To decide the parameters in f_{s_1}, we have 3 approaches.

1. additive fitting: Only b_{s_1} and $\alpha_{s_1,m+1}$ are calculated. Coefficients of other regressors directly follow those of node s. This is the approach taken by [Friedman, 1979].

2. fully-corrective fitting: All parameters of node s_1 are recalculated optimally according to (3).

3. half-additive fitting: We have the following model of s_1.

$$f_{s_1}(x_i) = b_{s_1} + \beta \sum_{j=1}^{m} \alpha_{s,j} x_{i,j} + \alpha_{s_1,m+1} x_{i,q}$$

Node s_1 takes the value $\sum_{j=1}^{m} \alpha_{s,j} x_{i,j}$ as a combined regressor, and learns 3 parameters b_{s_1}, $\alpha_{s_1,m+1}$ and a scaling parameter β.

Fully-corrective fitting provides the optimal parameters, while additive fitting has the lowest cost. Half-additive fitting combines the two and make a good trade-off between accuracy and efficiency, which is shown in Section 6.2. When adding the new regressor q to node s, β rescales the coefficients of regressors shared by parent node s. When the regressors are orthogonal and zero-mean in s and s_1, and with square loss, it is easy to check that the 3 approaches produce the same result.

5 System Optimization

In this section, we show how to speedup our algorithm, specifically the histogram construction, on modern CPUs. With slight abuse of notation, we use n to denote the number of data points in the leaf, and N to denote the size of training set. Each data point has a unique ID, ranging from 1 to N. For each leaf s, an array index_s of length n is maintained to record these ID’s for all data points in the leaf. For each feature j, we maintain an array bin_j of length N. For a data point with unique ID id, $\text{bin}_j[id]$ records which bin the data point falls in the histogram of feature j. With these notations, we summarize the histogram construction process for leaf s and feature j in Algorithm 2. As mentioned in Section 4.1, the multiple terms $[h_i x_i x_i^T, g_i x_i]$ making the histogram construction expensive. Next, we introduce two important techniques to speedup the construction.

Algorithm 2 Histogram Construction for Feature j on Leaf s

1. Input: x_1, \ldots, x_n, g_1, \ldots, g_n, h_1, \ldots, h_n, bin_j, index_s
2. Output: histogram $\text{hist}_{j,s}$
3. for $i = 1$ to n do
4.
5.
6. $\text{hist}_{j,s}[\text{bin}] += [h_i x_i x_i^T, g_i x_i]$
5.1 SIMD Parallelism with Reduced Cache Misses

Single Instruction Multiple Data (SIMD) parallelism of modern CPUs supports operations on multiple data items with single instruction. It is obvious that SIMD can be used to speedup line 6 of Algorithm 2, which is a simultaneous addition of multiple items. With SIMD, however, each clock cycle more operands are needed, thus the speedup of SIMD is often bounded by memory bandwidth [Espasa et al., 1998]. In Algorithm 2, when accessing bin_j, we have to skip the data points not in leaf s (purple blocks in Figure 1). Thus the access to array bin_j is discontinuous, causing frequent cache misses. To address this problem, we reduce cache misses by rearranging the data structures (a very similar idea is used in LightGBM [Ke et al., 2017] for histogram construction of sparse features).

Suppose leaf s has n data points. For each feature j, we maintain an array $leafBin_{s,j}$ of length n to record bin indices of feature j for data points in leaf s. In other words, with the notations in Algorithm 2, for $i = 1, \ldots, n, leafBin_{s, j}[i] = bin_j[index_{x[i],j}]$. Since each bin index is stored in a byte, and the access to $leafBin_{s,j}$ is continuous, we keep the memory footprint very small and reduces cache misses. Also, with $leafBin_{s,j}$, we can avoid accessing the unique ID array $index_{x[j]}$. Histogram construction with $leafBin_{s,j}$ using SIMD is summarized in Algorithm 3.

For root node s_0, $leafBin_{n,j}$ is exactly bin_j. When leaf s is split into s_1 and s_2, $leafBin_{s,j}$ is split into $leafBin_{s_1,j}$ and $leafBin_{s_2,j}$ accordingly. The split operation has to be done for every feature j. In Section 5.2, we show how to reduce the cost of splitting $leafBin_{s,j}$ using Bit Manipulation Instruction Set.

5.2 Using Bit Manipulation Instructions

Splitting $leafBin_{s,j}$ requires extracting bin indices from $leafBin_{s_1,j}$ and store into $leafBin_{s_1,j}$ and $leafBin_{s_2,j}$. To do this, we need to know for each data point in s, whether it goes to s_1 or s_2. This information is recorded in a bit vector. Specifically, if s is split with condition $x_{i,k} \leq c$, then $bitVector[i] = x_{i,k} \leq c$. Creating $bitVector$ only requires a single sweep of $[x_{1,k}, \ldots, x_{n,k}]$. Then for each feature j, bin indices in $leafBin_{s,j}$ are extracted according to $bitVector$. BMI is an extension of x86 instructions to speedup bit operations. We use Parallel Bits Extract (PEXT) of BMI to extract the bin indices. PEXT takes two 64-bit registers a and b as operands. For each bit in a whose value is 1, the corresponding bit in b is extracted and stored in the output register. Each bin index is stored in a single byte. Each PEXT instruction can handle 64 bits simultaneously, so we can process 8 bin indices in $leafBin_{s,j}$ simultaneously. The workflow of using PEXT is shown in Figure 2. We first broadcast each bit in $bitVector$ into a byte, thus 1 becomes 0xff and 0 becomes 0x00. Then, with a PEXT instruction, we can extract $leafBin_{s_1}$. Then we negate the bits in $bitVector$ and extract $leafBin_{s_2}$ using another PEXT operation.

6 Experiments

Our experiments aim to answer the following questions 1. How the optimization techniques influence the accuracy and efficiency of boosted PL Trees. 2. How is our algorithm compared with state-of-the-art GBDT packages including LightGBM, XGBoost and CatBoost. We evaluate our algorithm on 10 public datasets. We name our algorithm GBDT-PL. Our code, details of experiment setting and datasets is available at the github page.

6.1 Speedup Effects of Optimization Techniques

To evaluate the speedup effects of various techniques in Section 4 and 5, we start from a baseline version, and add the optimization techniques incrementally. We record the training time, for 500 iterations using 63 histogram bins, of HIGGS and Epsilon datasets. Figure 3 shows the training time when adding each optimization technique, from top to bottom. The first bar in the top is the baseline version (Algorithm 2 for histogram construction, using fully-corrective fitting). The second bar adds SIMD for histogram construction in Algorithm 2. The third bar uses the $leafBin$ (Algorithm 3). The fourth bar adds Bit Manipulation Instructions (BMI) (Section 5.2). The bottom bar adds the half-additive technique (Section 4.2). Compared with the second bar, the fourth bar with $leafBin$ data structure and BMI gets a speedup of about 1.5 to 2 times. With $leafBin$ we reduce the cache misses when

\[1\] https://github.com/GBDT-PL/GBDT-PL.git
6.2 Effects of Optimization Techniques on Accuracy

Incremental feature selection restricts the size of linear models, and half-additive fitting results in suboptimal linear model parameters. We evaluate the effects of these two techniques on the accuracy. We test the following 3 settings. a. Disable the half-additive fitting and incremental feature selection. This means all features will be used in linear models of all nodes. b. Enable the incremental feature selection. Set the maximum constraint of regressors to 5. c. Based on b, enable the half-additive fitting. Table 1 shows the results. Here we use 255 histogram bins and 256 leaves. Incremental feature selection and half-additive fitting brings great speedup, with small sacrifice of accuracy. It is expensive to use all features in the linear models for leaves. With incremental feature selection, we restrict the size of linear models to reduce the computational cost. With half-additive fitting, we fit linear models of any size with the cost of 3 regressors. These two techniques are important for the scalability of GBDT-PL.

6.3 Overall Performance

In this section, we compare GBDT-PL with XGBoost, LightGBM and CatBoost, which are state-of-the-art GBDT packages. We compare testing accuracy, convergence rate, and training speed on CPUs.

Accuracy

We evaluate all 10 datasets with the 4 algorithms. For regression datasets Casp, CT, Sgemm, Year, SuperConductor and Energy, we use RMSE as evaluation metric. And for binary classification datasets Higgs, Hepmass, Epsilon and Susy, we use AUC. Different settings of hyperparameters are tried. Key hyperparameters we tuned include: 1. `num leaves ∈ {16, 64, 256, 1024}`, which controls the size of each tree. 2. `max depth ∈ {4, 6, 8, 10}` is used instead of `num leaves`. 3. `max bin ∈ {63, 255}`, the maximum number of bins in histograms. 4. `min sum hessians ∈ {1.0, 100.0}`, the sum of hessians of data in each leaf. 5. `learning rate ∈ {0.01, 0.05, 0.1}`, the weight of each tree. 6. `l2 reg ∈ {0.01, 1.0, 10.0}`, $l2$ regularization for leaf predicted values. We fix the number of regressors used in GBDT-PL to 5 in all runs. Different combinations of these parameters are tried. The maximum number of trees is chosen according to the rule $\text{learning rate} \times \text{num trees} = 50$ (For CatBoost in SymmetricTree mode we use $\text{learning rate} \times \text{num trees} = 200$ since it converges slower). For large datasets, only learning rate 0.1 is tried. More details of parameter settings are listed in our github. For XGBoost, LightGBM and CatBoost, result of the best iteration over all settings on test set is recorded. For GBDT-PL, we separate 20% of training data for validation, and pick the best setting on validation set, then record the corresponding accuracy on test set. Table 2 shows the results. With linear models on leaves, GBDT-PL achieves better accuracy in these dense numerical datasets. It shows greater advantage in regression tasks. The results shows that 5 regressors is enough for most datasets. Adjusting the number of regressors can further improve the results.

Convergence Rate

To show that PL Trees speedup the convergence rate of GBDT, we set the maximum number of leaves to 256, and the maximum depth of CatBoost in SymmetricTree mode to 8. We use 63 histogram bins, 500 iterations with learning rate 0.1. We set `min sum hessians` to 100 and `l2 reg` to 0.01. Figure 4 plots testing accuracy per iteration. In most datasets, GBDT-PL uses fewer trees to reach a comparable accuracy.

Training Time on CPU

To test the efficiency on CPU, we use the same hyperparameters as previous subsection. (So far only SymmetricTree mode is supported by CatBoost on CPU, so only this mode is tested.) Figure 5 shows testing accuracy by training time. With the same tree size, GBDT-PL achieves better accuracy with less or comparable training time in most datasets.

7 Related Work and Discussions

Boosted PL Trees have several existing implementations. Weka [Hall et al., 2009] and Cubist [Kuhn et al., 2012] use M5/M5' [Quinlan and others, 1992] as base learners. M5/M5' grows the tree in a way similar to piece-wise constant ones, then fits linear models on the nodes after the tree structure has been fixed. By contrast, PL Tree used in our work is designed to greedily reduce the loss at each step of its growing. Whenever a node is split in our PL Tree, we choose the optimal split that will result in the largest reduction in loss, considering the linear models in both child nodes. Wang and Hastie, 2014 proposes a gradient boosting algorithm using PL Trees as base learners and then apply it to a product demand prediction task. However, the algorithm only uses the first-order gradients. By contrast, GBDT-PL uses second-order gradients, which is important for faster convergence rate of GBDT [Sun et al., 2014]. None of the aforementioned algorithms can handle large scale datasets as SOTA GBDT toolkits. Training scalable single PL Tree has been investigated in [Dobra and Gehreke, 2002]. To the best of our knowledge, GBDT-PL is the first to make boosted PL Trees scalable, by various optimization methods in Section 4 and 5. Currently GBDT-PL only handles numerical features. Both LightGBM and CatBoost handles categorical features. However, GBDT-PL is still feasible for categorical features by first converting them into numerical ones, as is done in CatBoost, which encodes the categorical values with label values. Efficient training of GBDT on GPUs is also a hot topic [Zhang et al., 2018]. We will add support for GPU in the future.
Table 2: Testing Accuracy

Algorithm	Higgs	Hepmass	Casp	Epsilon	Susy	CT	Sgemm	Year	SuperConductor	Energy
LightGBM	0.854025	0.95563	3.4961	0.951422	0.878112	1.30902	4.61431	8.38817	8.80776	64.256
XGBoost	0.854147	0.95567	3.4939	0.948292	0.877825	1.34131	4.37929	8.37935	8.91063	64.780
CatBoost	0.851590	0.95554	3.5183	0.957327	0.878206	1.56937	4.41177	8.42593	8.78452	65.761
GBDT-PL	0.860198	0.95652	3.4574	0.957894	0.878287	1.23753	4.16871	8.37233	8.79527	65.462

Figure 4: Convergence Rate: AUC/RMSE per iteration (We use ST for SymmetricTree mode of CatBoost, and LG for Lossguide mode.)

Figure 5: Training Time Comparison on CPU: AUC/RMSE by training time

8 Conclusions

In this paper, we propose efficient GBDT with PL Trees. We first extend GBDT with second-order approximation for PL Trees. Then incremental feature selection and half-additive fitting are proposed to efficiently fit the linear models in tree nodes. Finally, we show how to exploit SIMD parallelism and reduce cache misses by rearranging the data structures with Bit Manipulation Instructions. The proposed optimization techniques are tested to show their effects on efficiency and accuracy. Comparisons with SOTA baselines show the value of our methods.

Acknowledgements

The research is supported in part by the National Basic Research Program of China Grant 2015CB358700, the National Natural Science Foundation of China Grant 61822203, 61772297, 61632016, 6176114603, and a grant from Microsoft Research Asia.
References

[Breiman, 2017] Leo Breiman. *Classification and Regression Trees*. Routledge, 2017.

[Chen and Guestrin, 2016] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 785–794. ACM, 2016.

[Chen et al., 2012] Tianqi Chen, Linpeng Tang, Qin Liu, Diyi Yang, Saining Xie, Xuezhi Cao, Chunyang Wu, Enpeng Yao, Zhengyang Liu, Zhansheng Jiang, et al. Combining factorization model and additive forest for collaborative followee recommendation. *KDD Cup*, 2012.

[Dobra and Gehrke, 2002] Alin Dobra and Johannes Gehrke. Secret: a scalable linear regression tree algorithm. In *Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 481–487. ACM, 2002.

[Espasa et al., 1998] Roger Espasa, Mateo Valero, and James E Smith. Vector architectures: past, present and future. In *Proceedings of the 12th International Conference on Supercomputing*, pages 425–432. ACM, 1998.

[Friedman et al., 2000] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). *The Annals of Statistics*, 28(2):337–407, 2000.

[Friedman, 1979] Jerome H Friedman. A tree-structured approach to nonparametric multiple regression. *Smoothing Techniques for Curve Estimation*, 757:5–22, 1979.

[Friedman, 2001] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. *Annals of Statistics*, pages 1189–1232, 2001.

[Hall et al., 2009] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten. The weka data mining software: an update. *ACM SIGKDD Explorations Newsletter*, 11(1):10–18, 2009.

[Ke et al., 2017] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In *Advances in Neural Information Processing Systems*, pages 3149–3157, 2017.

[Kuhn et al., 2012] Max Kuhn, Steve Weston, Chris Keefer, and Nathan Coulter. Cubist models for regression. *R package Vignette R package version 0.0*, 18, 2012.

[Kuhn et al., 2018] Max Kuhn, Steve Weston, Chris Keefer, and Maintainer Max Kuhn. Package `cubist`. 2018.

[Prokhorenkova et al., 2018] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. Catboost: unbiased boosting with categorical features. In *Advances in Neural Information Processing Systems*, pages 6639–6649, 2018.

[Quinlan and others, 1992] John R Quinlan et al. Learning with continuous classes. In *5th Australian Joint Conference on Artificial Intelligence*, volume 92, pages 343–348. World Scientific, 1992.

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees. *Machine Learning*, 1(1):81–106, 1986.

[Quinlan, 2014] J Ross Quinlan. *C4. 5: programs for machine learning*. Elsevier, 2014.

[Sun et al., 2014] Peng Sun, Tong Zhang, and Jie Zhou. A convergence rate analysis for logitboost, mart and their variant. In *ICML*, pages 1251–1259, 2014.

[Tyree et al., 2011] Stephen Tyree, Kilian Q Weinberger, Kunal Agrawal, and Jennifer Paykin. Parallel boosted regression trees for web search ranking. In *Proceedings of the 20th International Conference on World Wide Web*, pages 387–396. ACM, 2011.

[Vens and Blockeel, 2006] Celine Vens and Hendrik Blockeel. A simple regression based heuristic for learning model trees. *Intelligent Data Analysis*, 10(3):215–236, 2006.

[Vogel et al., 2007] David S Vogel, Ognian Asparouhov, and Tobias Scheffer. Scalable look-ahead linear regression trees. In *Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 757–764. ACM, 2007.

[Wang and Hastie, 2014] Jianqiang C Wang and Trevor Hastie. Boosted varying-coefficient regression models for product demand prediction. *Journal of Computational and Graphical Statistics*, 23(2):361–382, 2014.

[Wang and Witten, 1997] Y. Wang and I. H. Witten. Induction of model trees for predicting continuous classes. In *Poster papers of the 9th European Conference on Machine Learning*. Springer, 1997.

[Wang et al., 2014] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. Intel math kernel library. In *High-Performance Computing on the Intel® Xeon Phi™*, pages 167–188. Springer, 2014.

[Wen et al., 2018] Zeyi Wen, Bingsheng He, Ramamohanarao Kotagiri, Shengliang Lu, and Jiashuai Shi. Efficient gradient boosted decision tree training on GPUs. In *2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS)*, pages 234–243. IEEE, 2018.

[Zhang et al., 2018] Huan Zhang, Si Si, and Cho-Jui Hsieh. GPU-acceleration for large-scale tree boosting. In *SysML Conference*, 2018.
Appendix

A. More on Histograms for GBDT With PL Tree

Histogram is used in several GBDT implementations [Tyree et al., 2011] [Chen and Guestrin, 2016] [Ke et al., 2017] to reduce the number of potential split points. For each feature, a histogram of all its values in all data points is constructed. The boundaries of bins in the histogram are chosen to distribute the training data evenly over all bins. Each bin accumulates the statistics needed to calculate the loss reduction. When finding the optimal split point, we only consider the bin boundaries, instead of all unique feature values. After the histogram is constructed, we only need to record the bin number of each feature for each data point. Fewer than 256 bins in a histogram is enough to achieve good accuracy [Zhang et al., 2018], thus a bin number can be stored in a single byte. We can discard the original feature values and only store the bin numbers during the boosting process. Thus using histograms produces small memory footprint.

It seems nature to directly use the histogram technique in our algorithm. For LightGBM and XGBoost, each bin in a histogram only needs to record the sum of gradients and hessians of data in that bin. For our algorithm, the statistics in the histogram is more complex. The statistics are used to compute the least squares. Each bin \(B \) needs to record both \(\sum_{i \in B} h_i x_i x_j \) and \(\sum_{i \in B} g_i x_i \), where \(x_i \) is the column vector of selected regressors of data \(i \). However, the feature values \(x_i \) are needed when fitting linear models in leaves. We still need to access the feature values constantly, which incurs long memory footprint. To overcome this problem, for each feature \(j \) and each bin \(i \) of \(j \), we record the average feature values in bin \(j \), denoted as \(\pi_{i,j} \). When fitting linear models, we use \(\pi_{i,j} \) to replace the original feature value \(x_{k,i} \). Here \(x_{k,i} \) is the value of feature \(i \) of data point \(x_k \), and \(x_{k,j} \) falls in bin \(j \). In this way, we can still discard the original feature values after preprocessing. Thus we adapt the histogram technique to PL Trees and preserve the small memory footprint.

The histogram technique used in several existing methods (such as XGBoost and LightGBM) only record 2 elements in each bin (sum of gradients and hessians). Our histograms require more than 2 elements (including quadratic terms of feature values). So the detailed implementation is in fact quite different from existing ones. To better utilized the SIMD units when constructing histograms, we use intel intrinsics (which directly indicate the assemble instructions to use) to carefully arrange the calculation.

B. Experiment Platform for Training Time Recording

The experiment environment for training time comparison are listed in Table 1.

OS	CPU	Memory
CentOS Linux 7	2 x Xeon E5-2690 v3	DDR4 2400MHz, 128GB

C. Datasets

The datasets we used in this paper are all from UCI datasets. The number of instances and features can be found in the following table. We will provide details about how we split the datasets into train and testing sets on our github page. 2

name	# training	# testing	# features	task
HIGGSS	10000000	350000	28	classification
HEPMASS	7000000	3500000	28	classification
CASP	50000	15731	9	regression
Epsilon	400000	1000000	2000	classification
SUSY	400000	1000000	18	classification
SGEMM	193280	48320	14	regression
SUPERCONDUCTOR	17088	4255	81	regression
CT	42941	10559	384	regression
Energy	15788	3947	27	regression
Year	412206	103139	90	regression

D. Comparison With Existing Boosted PL Trees

We compare our results with boosted PL Trees in Weka [Hall et al., 2009] and Cubist [Kuhn et al., 2018] packages. The base learner of Weka and Cubist is M5/M5P, a PL Tree proposed by [Quinlan and others, 1992] [Wang and Witten, 1997]. The main differences between M5/M5P and our algorithm are: 1. M5/M5P does not use half-additive fitting, histogram and our system optimization techniques. 2. M5/M5P grows the tree in a way similar to piecewise constant regression trees (e.g. CART), then fits the linear models at the nodes. Each split in our algorithm considers how much the resultant linear models in the child nodes will reduce the boosting objective. In other words, the split finding in GBDT-PL is greedy and more expensive. Figure 6 shows the results on a small subset of HIGGSS dataset with only 100k samples and CASP. All datasets with features of large values, including Year, SUPERCONDUCTOR, Energy and CASP, we first find the minimum and maximum values of each feature in the training set, and rescale the features into range [0, 1] before feeding it into GBDT-PL. This is for numerical stability when computing matrix inversions.

Figure 6: Comparison With Weka and Cubist

2 https://github.com/GBDT-PL/GBDT-PL.git
algorithms train 100 trees. GBDT-PL has a significant advantage in efficiency. For example, GBDT-PL finished training 100 32-leaf trees for CASP within 2 seconds, while Cubist takes about 150 seconds.

E. Parameter Settings

The parameters we tried are listed in following tables. For big datasets (HIGGS, Epsilon, SUSY and HEPMASS), we only test the learning rate 0.1. We evaluate all different combinations of these values. On small datasets, 96 combinations of parameters are tested for GBDT-PL, and 144 combinations of parameters are tested for XGBoost, LightGBM and CatBoost. The total number of trees (iterations) are chosen according to the learning rate. For XGBoost, LightGBM and GBDT-PL, 500 trees for learning rate 0.1, 1000 trees for learning rate 0.05 and 5000 trees for learning rate 0.01. For CatBoost in SymmetricTree mode, instead of controlling maximum leaf number, we tried maximum tree depth of 4, 6, 8, 10 and use 4 times number of trees in other 3 packages. Since CatBoost in SymmetricTree mode uses simpler tree structure, it convergences slower. Thus for CatBoost in SymmetricTree mode, we use 2000 trees for learning rate 0.1, 4000 trees for learning rate 0.05 and 20000 trees for learning rate 0.01. Subsampling of training data and features are disabled in all experiments. For the accuracy and convergence rate experiments, we use the Ordered mode of CatBoost for better accuracy. And for the training time experiments, we use Plain mode since it is much faster. Other parameters are left as default.

For XGBoost, LightGBM and CatBoost, we directly pick up the best result on test set in the best iteration of the best hyperparameter setting. For GBDT-PL, we sample 20% from training data for validation, and pick the iteration and hyperparameter setting performs best in the validation set, then report the corresponding accuracy on test data.

The versions of python packages we used are LightGBM 2.1.0, XGBoost 0.81 and CatBoost 0.14.2.

Table 5: Parameter Settings for LightGBM

num_leaves	16, 64, 256, 1024
max_bin	63, 255, 1024
min_sum_hessian_in_leaf	1.0, 100.0
learning_rate	0.01, 0.05, 0.1
reg_lambda	0.01, 10.0
min_data_in_leaf	0, 20

Table 6: Parameter Settings for XGBoost

max_leaves	16, 64, 256, 1024
max_bin	63, 255, 1024
min_child_weight	1.0, 100.0
eta	0.01, 0.05, 0.1
lambda	0.01, 10.0
grow_policy	loss_guided
tree_method	hist

Table 7: Parameter Settings for CatBoost (SymmetricTree mode)

depth	4, 6, 8, 10
border_count	63, 128, 255
min_data_in_leaf	1, 100
learning_rate	0.01, 0.05, 0.1
l2_leaf_reg	0.01, 10.0
grow_policy	SymmetricTree
leaf_estimation_method	Newton
random_strength	0.0
bootstrap_type	No

Table 8: Parameter Settings for CatBoost (Lossguide mode)

max_leaves	16, 64, 256, 1024
border_count	63, 128, 255
min_data_in_leaf	1, 100
learning_rate	0.01, 0.05, 0.1
l2_leaf_reg	0.01, 10.0
grow_policy	Lossguide
leaf_estimation_method	Newton
random_strength	0.0
bootstrap_type	No

Table 9: Parameter Settings for GBDT-PL

max_leaf	16, 64, 256, 1024
max_bin	63, 255
min_sum_hessian_in_leaf	1.0, 100.0
learning_rate	0.01, 0.05, 0.1
l2_reg	0.01, 10.0
grow_by	leaf
leaf_type	half_additive
max_vars	5