Effectiveness and safety of mexiletine in patients at risk for (recurrent) ventricular arrhythmias: a systematic review

Martijn H. van der Ree, Laura van Dussen, Noa Rosenberg, Nina Stolwijk, Sibren van den Berg, Vincent van der Weij, A.W. Jacobs, Arthur A.M. Wilde, Carla E.M. Hollak, and Pieter G. Postema

Aims
While mexiletine has been used for over 40 years for prevention of (recurrent) ventricular arrhythmias and for myotonia, patient access has recently been critically endangered. Here we aim to demonstrate the effectiveness and safety of mexiletine in the treatment of patients with (recurrent) ventricular arrhythmias, emphasizing the absolute necessity of its accessibility.

Methods and results
Studies were included in this systematic review (PROSPERO, CRD42020213434) if the efficacy or safety of mexiletine in any dose was evaluated in patients at risk for (recurrent) ventricular arrhythmias with or without comparison with alternative treatments (e.g. placebo). A systematic search was performed in Ovid MEDLINE, Embase, and in the clinical trial registry databases ClinicalTrials.gov and ICRP. Risk of bias were assessed and tailored to the different study designs. Large heterogeneity in study designs and outcome measures prompted a narrative synthesis approach. In total, 221 studies were included reporting on 8970 patients treated with mexiletine. Age ranged from 0 to 88 years. A decrease in ventricular arrhythmias of >50% was observed in 72% of the studies for pre-mature ventricular complexes, 64% for ventricular tachycardia, and 33% for ventricular fibrillation. Electrocardiographic effects of mexiletine were small; only in a subset of patients with primary arrhythmia syndromes, a relative (desired) QTc decrease was reproducibly observed. As for adverse events, gastrointestinal complaints were most frequently observed (33% of the patients).

Conclusions
In this systematic review, we present all the currently available knowledge of mexiletine in patients at risk for (recurrent) ventricular arrhythmias and show that mexiletine is both effective and safe.

Keywords
Mexiletine • Systematic review • Ventricular arrhythmias

Introduction
Patients at risk for recurrent ventricular arrhythmias can be treated with anti-arrhythmic drugs or ablations. For example, the anti-arrhythmic agents currently known as quinidine and digoxin have already been used for the treatment of palpitations since the 18th century. Over time, more drugs were developed and became available for the treatment of arrhythmias. However, the tide has turned after the pivotal anti-arrhythmic drug developments in the 1960s to 1980s. Since the late 1990s and early 2000s, anti-arrhythmic drugs may no longer be sufficiently profitable for the pharmaceutical industry and anti-arrhythmic drug availability has actually decreased in many countries around the globe. As a consequence, the pharmaceutical
treatment of numerous patients with (life-threatening) ventricular arrhythmias has become increasingly difficult.5-8

Mexiletine, a sodium channel blocker and the oral lidocaine equivalent, is such an example. Mexiletine is predominantly prescribed in both cardiology and neurology. Mexiletine was initially developed as an anti-arrhythmic drug by Boehringer Ingelheim and the first results were presented in 1973.9 Although other anti-arrhythmic drugs, such as sotalol and amiodarone, surpassed mexiletine over time with regards to efficacy and safety (e.g. mortality),10 it still can be very effective drug in specific subgroups of patients. In cardiology, mexiletine is most often prescribed to adult patients with recurrent ventricular tachycardia or ventricular fibrillation (VT/VF) when other therapies have failed, and to paediatric and adult patients with severe forms of the long QT syndrome (LQTS). This use of mexiletine has also been mirrored in successive international guidelines on the prevention of VT/VF.1,11 In neurology, mexiletine has proved effective in paediatric and adult patients with the disabling neuromuscular disorder non-dystrophic myotonia.12,13 In addition, mexiletine is sometimes successfully used for pain syndromes.14

Despite the use of mexiletine for over 40 years as an anti-arrhythmic drug, the accessibility of mexiletine in Europe is now critically endangered. After Boehringer Ingelheim withdrew Mexitil from the European market, patients had to rely on named patient import from other countries, including Canada and Japan. In 2018, the European Medicines Agency (EMA) authorized mexiletine (Namuscla, Lupin Europe GmbH, Germany) for the treatment of the neurological indication non-dystrophic myotonia as an orphan drug. The rationale behind the European (and e.g. USA) orphan drug legislation is to promote commercial interest for the development of new products for rare diseases assuming that such products will otherwise not be developed.6 This legislation was developed without exclusion of existing drugs from orphan designation, among others (Postema, 2020 #1603). This authorization of Namuscla as orphan drug for the neurological indication granted a 10-year market exclusivity. Not unexpectedly, the price of Namuscla was raised up to >30-fold for both neurology and cardiology in comparison with imported generic products, resulting in reimbursement issues.6,13,16 Remarkably, the contra-indications of Namuscla now include ventricular tachyarrhythmias and previous myocardial infarction while the guidelines on the treatment and prevention of VT/VF mexiletine can actually be an effective and safe drug of choice.1,11 This may constrain the off-label use of Namuscla for VT/VF. Herewith, the accessibility of mexiletine to prevent ventricular arrhythmias (and for the treatment of myotonia) is further compromised. This in turn may have life-threatening consequences.5

If the effectiveness and safety of mexiletine in patients at risk for (recurrent) ventricular arrhythmias would be demonstrated, this would prove the clear needs of its accessibility. Therefore, a systematic review to summarize all available efficacy and safety data was conducted.

Methods

This systematic review was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) Guidelines and registered in the International Prospective Register for Systematic Reviews (CRD42020213434).17

Selection criteria

Studies were included in this systematic review if the efficacy and/or safety of mexiletine in any dose or route of administration were evaluated in patients at risk for (recurrent) ventricular arrhythmias with or without comparison with alternative treatments (e.g. placebo, other anti-arrhythmic drugs). Only studies with original data published in peer-reviewed journals were included and no restrictions in study design applied.

Search strategy

A comprehensive search using controlled terms and free text terms for the concepts (i) mexiletine (or brand names including, but not limited to, Mexitil and Ritalmex) and (ii) ventricular arrhythmias was performed in the Ovid MEDLINE, Embase, and in the clinical trial registry databases [ClinicalTrials.gov, International Clinical Trials Registry Platform (ICTRP) registry]. The search was restricted to studies in human subjects, no other date or language restrictions applied. The search was performed on 22 October 2020. In the Supplemental material, the complete search strategy is presented. The identified records were imported into reference management tool Endnote (X9.2; Clarivate Analytics, Philadelphia, PA, USA) and duplicates were removed.

Study selection and critical appraisal

Titles, abstracts, and subsequently the acquired relevant full-text articles were independently assessed by two reviewers (M.H.R., L.D.) for eligibility using Rayyan (Qatar Computing Research Institute, Doha, Qatar).18 The assessment of methodological quality and risk of bias was performed independently by the review team (M.H.R., L.D., N.R., N.S., S.B., and V.W.) and tailored to the different study designs, discrepancies were resolved by discussion. For case reports and case series, the tool developed by Murad and colleagues19 was used, for non-randomized intervention studies, the ROBINS-1 tool was used,20 and for randomized studies, the ROB2 tool was used.21 In case no efficacy but only safety data about mexiletine was reported, risk of bias was not assessed. As the different tools have different (overall) scores, a 3-point scale [low, moderate (some concerns), and high (critical and serious)] was constructed to enhance comparability.

Data collection and analysis

Baseline characteristics, mexiletine details (e.g. daily dose), follow-up, and outcomes were independently extracted by two members of the review team per study (M.H.R., L.D., N.R., N.S., S.B., and V.W.) using a standardized extraction form in Castor EDC,22 discrepancies were resolved by discussion during weekly meetings or by consultation of a third reviewer. Data were processed and aggregated using R version 4.0.3. Outcome data included both efficacy as well as safety and survival data. Efficacy outcome data were further stratified in effects of mexiletine on the ventricular arrhythmia burden [consisting of the burden of pre-mature ventricular complexes (PVCs), sustained VT or VF], changes in electrophysiological parameters [VT inducibility, VF inducibility, effects on cycle length, and effective refractory period (ERP)], and changes in electrocardiographic parameters [heart rate, QRS-duration, corrected QT interval (QTc)]. For the electrocardiographic changes, the results are subdivided into patients with and patients without primary arrhythmia syndrome. In case multiple subtypes of LQTS were reported in one study, by virtue of pathology, LQTS type 3 was the preferred outcome for extraction.23 If available, pre-post mexiletine outcome data were used so that patients served...
as their own controls. Safety data included adverse events, left and right ventricular ejection fraction, drug–drug interaction, and the occurrence of worsening of arrhythmias. Adverse events were scored according to the definitions of the Common Terminology Criteria for Adverse Events (CTCAE) v5.0, no grading was applied. If the adverse events were not reported in enough detail, only the organ system was scored. For the presentation of the adverse events, the organ systems with $\geq 3\%$ adverse event incidences were reported. The incidence of the adverse events is reported relative to the evaluable patients from studies reporting that specific adverse event and presented for events with $\geq 3\%$ incidence. Efficacy and safety data were summarized per stratified outcome measure in the manuscript. Efficacy data from studies considered to have a high risk of bias were excluded from the main efficacy results. Safety data from these high risk of bias studies were, however, included in the main safety results to present a complete overview of all reported adverse events available. Mexiletine was considered pro-arrhythmic if the arrhythmia worsened after the start of mexiletine [e.g. an increase in the number of PVCs or development of more malignant arrhythmias (e.g. from VT at baseline to VF during mexiletine treatment)]. The study data are available from the corresponding author upon reasonable request.

Results

Search results and risk of bias

Of the 1436 unique records identified, of which after screening based on title and abstract 432 (30%) records were assessed for eligibility, 221 (15%) studies were included in this systematic review. In Figure 1, a flow chart of the study selection is presented. Efficacy was reported in 174 (79%) of the studies (efficacy and safety: $n = 126$; only efficacy: $n = 48$), 33 (19%) were considered low risk, 80 (46%) moderate risk, and 61 (35%) high risk of bias. In 173 (78%) studies, safety was reported (efficacy and safety: $n = 126$; only safety: $n = 47$).

Figure 1 Flow chart of study inclusion.
Table 1 The effect of mexiletine on ventricular arrhythmia burden

Arrhythmias	Publications, n (%)	Study design	Follow-up range	Studies with therapy-resistant patients	Patients on mexiletine (years)	Type of Mexiletine dose range	Evaluable patients	Studies that show >50% reduction	Number of patients meeting the cut-off				
Pre-mature ventricular contractions	611	24–83	Non-randomized 61	7 days–84 months	13	2369	0.42–88	Ischaemic	814	200–1500 mg/day	1834 patients in pre-post design 137 patients on mexiletine vs. 152 control patients	627/882 (72%)	23 studies work with a cut-off 0.42–88 mg/day 61 mg/kg/day
Randomized 0	Non-ischaemic 321										50–95% (7)	95/175 (54%)	
Ventricular tachycardia	341	25,27,31,35,36,38,39–41,43,44–47,67,71,72,79,80,82,84–99	Non-randomized 34	0–70 months	15	1803	16–87	Ischaemic	616	50–1500 mg/day	943 patients in pre-post design 167 patients on mexiletine vs. 172 control patients	673/822 (82%)	23 studies work with a cut-off 0.42–88 mg/kg 4–21 mg/kg/day/kg
Randomized 0	Non-ischaemic 124										75% (2)	63/85 (74%)	
Ventricular fibrillation	121	5,6,7,10,12,13,15,19,36,39,91,93,95,97,98,99–103	Non-randomized 12	1–84 months	4	870	1–79	Ischaemic	246	400–1200 mg/day	358 patients in pre-post design 137 patients on mexiletine vs. 147 control patients	100/123 (80%)	9 studies work with a cut-off 0.42–88 mg/kg 6–8 mg/kg/day/kg
Randomized 0	Non-ischaemic 34										100% (9)	290/324 (90%)	

Studies that report a percentage change or enabled us to calculate a percentage change.
Baseline characteristics
In total, 8970 patients have reportedly been treated with mexiletine. Sex was reported in 4647 (52%) patients, and of these, the majority were males (n = 3322, 72%). The patient age in the studies ranged from 0 to 88 years. Of the studies reporting mean age, the weighted average was 56.5 years. Of 5131 patients, a diagnosis category was extractable. The most frequent diagnosis was ischaemic heart disease (n = 3671, 72%), followed by non-ischaemic heart disease (n = 720, 14%) and primary arrhythmia syndromes n = 144, 3%. Of patients with a primary arrhythmia syndrome, 132 (91%) were diagnosed with LQTS. The remaining group of patients received other diagnoses (e.g. idiopathic PVC). From the 174 studies reporting on efficacy, 60 (35%) studies included therapy-resistant patients in whom previous conventional therapy was ineffective. In 157 (71%) studies, the route of administration was oral. In 24 (11%) studies, mexiletine was administered intravenously. In 13 (6%) studies, both routes of administration were used. Intramuscular administration of mexiletine was used in 1 (0.5%) study, while in 26 (12%) studies, the route of administration was not reported. Doses ranged from 50–2400 mg/day to 1–42 mg/kg/day.

Outcome
In this section, an overview of the results is presented. In the supplementary excel file, we present the extracted data for the individual studies per outcome measure. In this supplement, it is possible to filter on (multiple) variables, for example in order to select studies with a specific follow-up duration, mexiletine dose, or certain arrhythmia burden cut-offs.

Data on effectiveness of mexiletine
Results of individual studies are presented in the supplements.

Ventricular arrhythmia burden
Efficacy of mexiletine with regards to the ventricular arrhythmias is further stratified in the burden of PVC (n = 61 studies), VT (n = 34 studies), and VF (n = 12 studies). Table 1 shows the study details and outcomes. For the PVC burden, in the 38 studies (n = 1143 evaluable patients) in which a percentage change was reported or calculable, 27 (72%) studies comprising 877 evaluable patients showed a reduction of >50% in PVC burden. In 8 studies (21%, n = 197 patients), this reduction percentage was >80%.24–31 For the studies that applied a cut-off value for efficacy, the results are presented in Table 1. For the VT burden, in the 11 studies (n = 412 evaluable patients) in which a percentage change was reported or calculable, 7 (64%) studies, comprising 237 evaluable patients, showed a reduction of >50% in VT burden. Two studies applied a cut-off of >75% for efficacy, 74% of the patients met this criterion. Twenty-one studies applied a cut-off of 100%, in those studies 90% of the patients met this criterion (Table 1). For VF burden, in the 3 studies (n = 171 evaluable patients) in which a percentage change was reported or calculable, 1 (33%) study comprising of 34 evaluable patients showed a reduction of >50% in VF occurrence.

Nine studies applied a cut-off of 100%, 90% of the patients met this criterion (Table 1). In only two studies (n = 2 patients), ICDs were implanted.100,101 In the studies with recurrences, details on the episodes (sustained vs. unsustained) were sparsely reported. Worsening of arrhythmias is discussed in the ‘Safety and survival data’ section. For patients with LQTS, efficacy of mexiletine in VF reduction is reported in three studies (n = 40 patients, LQTS type 3: 100%).100–102 A reduction of >90% was achieved in 39 (98%) of these patients.100,102

Electrophysiological study parameters
Table 2 shows the study details and outcome for the studies evaluating the effect of mexiletine on VT/VF inducibility and electrophysiological parameters. Inducibility of ventricular arrhythmias was reported in 19 studies for VT, and 2 studies for VF. In 11/2379 (30%) patients, non-inducibility was achieved for VT and in 11/17 (65%) for VF (Table 2). The range in relative change percentage after mexiletine for the VT cycle length was −17% to +27%. Ten (55%) studies comprising 119 patients showed a change in cycle length of >15% after mexiletine, and most of those studies, 9/10 (90%), comprising 89 patients, showed that this change was an increase in cycle length (Table 2). With regards to the ERP, 0 (0%) of the 10 studies (n = 151 patients) showed a change of >15%. The effect ranged from −11% to +8% (Table 2).

Electrocardiographic parameters
Table 3 shows the electrocardiographic effects of mexiletine in patients without a primary arrhythmia syndrome and in Table 4, the results are presented for the patients with a primary arrhythmia syndrome. The electrocardiographic effects of mexiletine in patients without primary arrhythmia syndrome showed that the effects of mexiletine on electrocardiographic parameters were small. Only 1 study out of 16 (6%, 5 of 329 patients) showed a change of >15% on heart rate (increase). For the QRS-duration (n = 21 studies, 536 patients) and the QTc (n = 16 studies, 439 patients), no effects >15% were observed. The range in relative change for the heart rate, QRS-duration, and the QTc were between −14% and +16% (Table 3).

Patients with primary arrhythmia syndromes
In patients with a primary arrhythmia syndrome, mostly patients with LQTS (Table 4), the results for heart rate (n = 5 studies, n = 34 patients) and QRS-duration (n = 1 study, n = 12 patients) were similar (range of relative change −7% to +6%). In contrast, all studies reporting on QTc showed QTc shortening (n = 90 evaluable patients). Indeed, 3 (27.3%) of the 11 studies (22 of 90 evaluable patients) in LQTS patients report a relative decrease of >15% after mexiletine.129–131 Most of the evaluable LQTS patients were patients with type 3 (n = 64, 82%), followed by type 2 (n = 11, 14%), a combination LQT1/2 or LQT2/3 (n = 2, 3%) and type 8 (n = 1, 1%).

Safety and survival data
In 173 (78%) studies, safety is reported in total evaluating 7379 (82%) patients.9,10,24,26,27,29–77,84–97,100,103–110,118,124–126,127,128–130,132,133,136–222 Survival is reported in 151 studies (68%).9,10,25–32,35,40,43,46–50,52–63,66–71,73–80,84–87,89,91–98,100–113,119–126,128,130–139,142–145,148–159,161,162,164,165,169,171–173,175–177,181–184,188,190–194,196,199–201,204,207,208,211,212,214–217,220–229

Adverse events
In total, adverse events are reported in 128 (58%) of the studies. For the 589 adverse events reported, in 512 (86%), the number of
Table 2 The effects of mexiletine on electrophysiological study parameters

Electrophysiology studies	Inducibility studies	Electrophysiology study parameters										
	Publications, n (%)	Study design										
	Reports	Studies with therapy-resistant patients										
		Patients on mexiletine	Age range	Type of patients (if reported)	Mexiletine dose range	Evaluable patients	Number of patients with non-inducibility					
VT inducibility		Non-randomized	19	12	432	16–79	Ischaemic	229	125–2400 mg/day	379 patients in pre-post design	112 (30%)	
		Randomized	0					Non-ischaemic	53	mg/day/kg		
		Non-randomized	2	1	35	60	Ischaemic	15	800–1200 mg/day	17 patients in pre-post design	11 (65%)	
VF inducibility		Randomized	0					Non-ischaemic	20	mg/day/kg		
				Arrhythmia syndrome	Other	8						
		Non-randomized	0					Arrhythmia syndrome	Other	0		
		Randomized	0					Other	0			
		Non-randomized										
		Randomized	0									
Cycle length		Non-randomized	18	18	409	16–79	Ischaemic	179	125–2400 mg/day	376 patients in pre-post design	10/18	
		Randomized	0					Non-ischaemic	50	mg/day/kg		
		Non-randomized	10	6	178	5–79	Ischaemic	95	125–1200 mg/day	151 patients in pre-post design	0/10	
		Randomized	0					Non-ischaemic	25	mg/day/kg		
		Non-randomized						Arrhythmia syndrome	Other	0		
		Randomized	0					Other	3			
Effective refractory period		Non-randomized	10	6	178	5–79	Ischaemic	95	125–1200 mg/day	151 patients in pre-post design	0/10	
		Randomized	0					Non-ischaemic	25	mg/day/kg		
		Non-randomized						Arrhythmia syndrome	Other	0		
		Randomized	0					Other	3			

NA, not applicable; VF, ventricular fibrillation; VT, ventricular tachycardia.

*aMean age based on one study, and the age is not reported in the other study.
Table 3 Electrocardiographic effects of mexiletine in patients without primary arrhythmia syndromes

Electrocardiographic effects	Publications, n (%)	Study design	Follow-up range	Studies with therapy-resistant patients	Patients on mexiletine	Age range (years)	Type of patients (if reported)	Mexiletine dose range	Evaluable patients	Studies that show >15% change
Heart rate		Non-randomized	16 2 days–12 months	7	449	5–83	Ischaemic	181	300–1200 mg/day	360 patients in pre-post design
		Randomized	0 months				Non-ischaemic	82	4–24 mg/day/kg	9 patients on mexiletine vs. 26 control patients
							Other	117		
		Non-randomized	21 2 days–36 months	9	647	21–87	Ischaemic	316	125–1500 mg/day	536 patients in pre-post design
		Randomized	0 months				Non-ischaemic	90	7 mg/day/kg	0/21 Range of the change: --4% to +7%
							Other	98		
QTc		Non-randomized	16 0.1–36 months	7	557	18–87	Ischaemic	235	200–1200 mg/day	439 patients in pre-post design
		Randomized	0 months				Non-ischaemic	92	NA mg/day/kg	0/16 Range of the change: --5% to +2%
							Other	112		

NA, not applicable.
Table 4 Electrocardiographic effects of mexiletine in patients with primary arrhythmia syndromes

Electrocardiographic studies	Publications, n (%)	Study design	Follow-up range	Patients on mexiletine	Age range (years)	Type of patients	Mexiletine dose range	Evaluable patients	Studies that show >15% change
Heart rate									
Non-randomized	5	12–84 months	0	50	1–63	LQTS	NA mg/day	34 patients in pre-post design	0/5 Range of the change: −7% to +6%
Randomized		0				CPVT	0		
Brugada		12	2–42 mg/day/kg			CPVT	0		
Brugada		12	2–42 mg/day/kg			CPVT	0		
Brugada		12	2–42 mg/day/kg			CPVT	0		
Non-randomized	11	0.69–84 months	0	115	0–64	LQTS	103 150–600 mg/day	90 patients in pre-post design	3 11–13/11% Range of the change: −19% to −1.3%
Randomized		0				CPVT	0		
Brugada		12	2–42 mg/day/kg			CPVT	0		
CPVT, catholaminergic polymorphic ventricular tachycardia; LQTS, long QT syndrome; NA, not applicable.									
patients with adverse events was specified resulting in a total of 4037 evaluable patients. Table 5 shows the incidences of adverse events. The most frequently reported organ system with adverse events was the gastrointestinal tract (33%). Gastrointestinal pain was reported in 27% of the patients, gastrointestinal discomfort/distress was reported in 19%, as was nausea (19%). Adverse events concerning the nervous system were also frequently reported (31%), and in 17% of the patients, a tremor occurred. Psychiatric adverse events were reported in 12% of the patients with insomnia most frequently.

Table 5 Overview of the adverse events

Adverse events	# patients with event/number of patients in the studies reporting the event
Gastrointestinal	
1348 patients with this type of event (33%)	
Nausea	462/2475 (19%)
Other (e.g. discomfort/distress or not further specified)	341/1833 (19%)
Gastrointestinal pain	88/329 (27%)
Constipation	150/1043 (14%)
Diarrhoea	100/1259 (8%)
Nervous system disorders	
1267 patients with this type of event (31%)	
Tremor	414/2485 (17%)
Other (e.g. coordination difficulties or not further specified)	131/1002 (13%)
Dizziness	293/2368 (12%)
Headache	165/1644 (10%)
Parasthesia	111/1373 (8%)
Psychiatric disorders	
475 patients with this type of event (12%)	
Insomnia	291/1457 (20%)
Depression	67/689 (10%)
Other (e.g. anxiety, nervousness, mood changes, nightmares)	80/1225 (7%)
Confusion	26/470 (6%)
Musculoskeletal and connective tissue disorders	
175 patients with this type of event (4%)	
Generalized muscle weakness	171/912 (19%)
Joint effusion	1/32 (3%)
Cardiac disorders	
144 patients with this type of event (4%)	
Sinus bradycardia	36/388 (9%)
Heart failure	29/533 (5%)
Chest pain—cardiac	10/246 (4%)

The organ systems and adverse events with ≥3% incidences are presented.

Left and right ventricular ejection fraction
Only 15 (7%) of the studies (n = 476 patients) report on effects of mexiletine on cardiac function.49,55,57,58,62,65,66,97,125,126,139,155,180,181,189 In all of the studies reporting on left ventricular ejection fraction, 14 (9.3%) of the studies (475 of 476 patients) showed no negative effects of mexiletine on left ventricular ejection fraction.49,54,57,58,62,65,66,97,125,126,155,180,181,189 Three (20%) studies comprising 36 patients reported on right ventricular ejection fraction, and none of these studies demonstrated a decrease in right ventricular ejection fraction.66,125,126

Drug–drug interactions
Nine studies (n = 23 patients) report on mexiletine interacting with other drugs.95,150,158,182,183,186,216,221,222 The majority [n = 5 (56%) studies, 7 (30%) patients] of those studies report an interaction with theophylline.95,158,182,183,216 Clearance of theophylline is reduced as a consequence of CYP1A2 inhibition by mexiletine, which results in increased (possibly toxic) theophylline blood levels.

Worsening of arrhythmias
In 40 (18%) studies, worsening or not worsening of arrhythmias is actively mentioned.27,31,34,38,39,41,50,54,55,57,58,60,62,64,68,75,76,85,87,90,106,118,128,129,138,141,151,154,161,164,166,174,175,183,201,207–209,213,218 In total, in this subset of 40 studies, in 137 of 2173 (6.3%) patients, the arrhythmia worsened after start of mexiletine.

Survival
Survival is reported in 151 (68%) studies evaluating 4801 patients on mexiletine. During varying follow-up durations ranging from 0.5 h to 167 months, 213 (4%) patients reportedly died during the study follow-up. In 13 studies reporting on both survival in patients with mexiletine and control patients, the proportions of survival are similar (90% in mexiletine vs. 92% in control patients).10,35,40,56,84,93,127,137,144,152,173,176,193

Discussion
In this systematic review, we present all the currently reported knowledge from 1973 onwards on the effectiveness and safety of mexiletine in patients at risk for (recurrent) ventricular arrhythmias. The data presented confirm that mexiletine is both effective and safe in patients at risk for (recurrent) ventricular arrhythmias. The evaluation of effectiveness is extensive and comprises of several aspects, including appreciable effects on PVC, VT and VF burden and on electrocardiography. Also with regards to our safety evaluation, to the best of our knowledge, such a detailed overview of adverse event incidences of mexiletine has not been previously reported.

For example, we present incidences of several adverse events (e.g. diarrhoea and confusion) of which the incidences are currently marked as unknown.210 The presented safety data should be implemented into the product information of mexiletine to inform patients and prescribers adequately. Unfortunately, because of our broad study aim and the subsequent inclusion of studies with extremely heterogeneous designs and outcomes, it is not possible to
compare the efficacy results of mexiletine with other anti-arrhythmic drugs such as sotalol or amiodarone.2,3,11,22

The findings of this systematic review indicate that treatment of mexiletine should be part of the therapeutic cardiology arsenal, both in paediatric (LQTS) and adult cardiology. Accessibility should thus be guaranteed. However, accessibility has been jeopardized by the market authorization as an orphan drug of Namuscla. Remarkably, the contra-indications of Namuscla actually include ventricular tachyarrhythmias and previous myocardial infarction. However, as can be appreciated from its previous anti-arrhythmic drug labelling, from the international guidelines on the treatment and prevention of VT/VF,1,11 and from our results section, mexiletine can be an effective and safe choice for the treatment and prevention of VT and VF. Furthermore, these results are mostly driven by patients with (post-)ischaemic heart disease as mexiletine was most frequently prescribed in this patient category (72%). Possibly, the indication for non-dystrophic myotonia would have been complicated by potential pro-arrhythmic effects, which is, of course, intrinsically a part of every anti-arrhythmic drug. The lack of new data may have led to declaring a contra-indication for cardiology patients whose lives are threatened by VT/VF. Importantly, labelling a contra-indication for a previous indication that is still recommended in the guidelines could have important medico-legal consequences for off-label prescription. This could further limit mexiletine use in patients who could benefit. In addition, as per European regulation, the authorization of Namuscla as an orphan drug for the neurological indication non-dystrophic myotonia granted a 10-year market exclusivity and prohibits import of mexiletine for VT/VF. Upon introduction of Namuscla, the price was raised up to >30-fold in comparison with imports which in turn led to reimbursement issues for both the cardiac and neurological indication.6,15,16

Practical suggestion
The current use of mexiletine is constrained to (high risk and/or therapy refractory) VT/VF, which is also supported by the results of our systematic review. However, as shown, mexiletine also appears to be very successful in suppressing PVCs. Hence, mexiletine may have a position in patients without complex ventricular arrhythmias who do not respond well to conventional therapy (be it side effects or inefficacy). Mexiletine also appears to be very effective in (paediatric) patients with LQTS. Therefore, we suggest the use of mexiletine in:

- Patients at high risk for VT/VF who do not respond to conventional therapy
- Patients without complex ventricular arrhythmias who do not respond to conventional therapy
- Patients with LQTS (mainly Types 3 and 2) with ventricular arrhythmias or a high risk of ventricular arrhythmias (e.g. very long QTc)

Limitations
From 1973 onwards, 221 publications with original data regarding the efficacy and safety of mexiletine in patients with (recurrent) ventricular arrhythmias were identified. Over time, inevitably, the quality of conducting and reporting scientific research improved.23 For the efficacy data, studies with a high risk of bias were therefore excluded. Furthermore, in this review, we aimed to evaluate both the effectiveness and safety of all types of patients at risk for (recurrent) arrhythmias. As efficacy of mexiletine comprises of multiple relevant outcome measures (e.g. PVC reduction, or QTc reduction in patients with LQTS), included studies were different in methodology, follow-up duration, outcome measures, and also in the reporting of efficacy (e.g. cut-off % for efficacy) and of safety data. Therefore, a single estimate effect of mexiletine could not be calculated. Due to this heterogeneity, extracting data for standardized evaluation required modulation or interpretation of study data for some studies. Data were independently extracted by at least two members of the study team to prevent subjectivity. Also due to the large amount of data, in the body of the manuscript only a general overview of the results is presented. For more detailed results of individual studies, we refer to the supplementary excel file. This supplementary excel also allows the reader to select on specific study characteristics (e.g. follow-up duration). It is important to acknowledge that drug–drug studies not involving mexiletine treatment effectiveness or safety (i.e. healthy volunteer studies) are beyond the scope of this review. Consequently, evaluation of relevant drug–drug interactions, mainly involving the cytochrome P450 enzymes CYP1A2 and CYP2D6, is incomplete. Lastly, efforts were made to prevent double reporting of patients and outcome data in this systematic review; however, we cannot exclude that double reported data entered our results.

Conclusion
In this systematic review, we present all the currently available knowledge on the effectiveness and safety of the long-known anti-arrhythmic drug mexiletine in patients at risk for (recurrent) ventricular arrhythmias and based on the results, we conclude that mexiletine is both effective and safe. As the European accessibility of mexiletine has recently been critically endangered by its acceptance as an anti-myotonic drug, efforts should be undertaken to unchain mexiletine and assure its fair accessibility for both cardiology and neurology patients.

Supplementary material
Supplementary material is available at Europea online.

Funding
This systematic review is performed as part of a larger project ‘platform Medicijn voor Maatschappij (platform Medicine for Society)’. This platform is financially supported by a grant from ‘de VriendenLoterij’, a National Lottery that distributes funds raised by this lottery for good causes primarily concerning health and welfare in The Netherlands. P.G.P. receives research funding from the Dutch Heart Foundation (grant 03-003-2021-T061).

Conflict of interest: P.G.P. is a member of the Scientific Advisory Group on Cardiovascular Issues (SAG-CVS) of the EMA since 2021. C.E.M.H. is involved in pre-marketing research with Sanofi, Protalix, and Idorsia, outside the submitted work. N.R., N.S., S.B., V.W., B.J., and C.E.M.H. are members of the platform ‘Medicijn voor de Maatschappij’. This is an academic initiative that aims to support sustainable access to medicines for rare diseases, including mexiletine. V.W. reports personal fees from Fair Medicine Foundation, personal fees from Patient One, outside the submitted work.
Data availability

As stated in the method section: The study data is available from the corresponding author upon reasonable request.

References

1. Priori SG, Blomstrom-Lundqvist C, Mazzafer A, Blom N, Berggren M, Carmi J et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology. Eur Heart J 2015;36:2793–867.

2. Sencac J-B, Orléans P, Orléans L, Potier J, Robert J. Traité de la structure du cœur, de son action, et de ses maladies. 1749.

3. Withering W. An account of the foglove and some of its medical uses: with practical remarks on dropsy and other diseases. London 1785.

4. Le M, Wu L, Terrar DA, Huang CL. Modernized classification of cardiac arrhythmogenic drugs. Circulation 2018;138:1879–96.

5. Wilde AAM, Langendijk P. Antiarrhythmic drugs, patients, and the pharmaceutical industry: value for patients, physicians, pharmacists or shareholders? Neth Heart J 2007;15:127–8.

6. Postema PG, Schwartz PJ, Arbello E, Bannenberg WJ, Behr ER, Belhassen B et al. Continued misuse of orphan drug legislation: a life-threatening risk for mexiletine. Eur Heart J 2000;21:614–7.

7. Viskin S, Antzelevitch C, Márquez MF, Belhassen B. Quinidine: a valuable medication. J Cardiovasc Pharmacol 1982;4:389–95.

8. Viskin S, Wilde AA, Guevara-Valdivia ME, Daoulah A, Krahn AD, Zipes DP et al. Quinidine, a life-saving medication for Brugada syndrome, is inaccessible in many countries. J Am Coll Cardiol 2013;61:2383–4.

9. Talbot RG, Nimmo J, Julian DG, Clark RA, Nelson JM, Prescott LF. Treatment of ventricular arrhythmias with mexiletine (Ko 1173). Lancet 1973;302:399–404.

10. International mexiletine and placebo antiarrhythmic coronary trial: I. Report on arrhythmia and other findings. Impact Research Group. J Am Coll Cardiol 1984;4:1148–63.

11. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB et al. 2017 AHA/ACC/CHS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2018;138:e272–e391.

12. Postema PG. About the different faces of mexiletine. J Int Med Res 2017;45:1795–2.

13. Stunnenberg BC, Raaphorst J, Groenewoud HM, Statland JM, Griggs RC, van den Berg S, van der Wel V, de Visser SJ, Stunnenberg BC, Timmers L, van der Zwaluw MG, et al. Comparison of procainamide and mexiletine in prevention of ventricular arrhythmias after acute myocardial infarction. Lancet 1979;2:305:1257–60.

14. Capucci A, Di Pasquale G, Boriani G, Carini G, Balducci M, Frabetti L et al. A double-blind crossover comparison of flecainide and slow-release mexiletine in the treatment of stable premature ventricular complexes. Int J Clin Pharmacol Res 1991;11:23–33.

15. Chaudron JM, Luwaert RJ. Effectiveness of mexiletine in ventricular arrhythmias. Am J Cardiol 1985;50:612–617.

16. Fenster PE, Hanson CD. Mexiletine and quinidine in ventricular ectopy. Clin Pharmacol Ther 1983;34:136–42.

17. Haedo AH, Chiare PA, Ileri JD, Lázari JO, Elizari MV, Rosenstein MB. Comparative antiarrhythmic efficacy of verapamil, 17-monochloroacetamidene, mexiletine and amiodarone in patients with severe chagasic myocarditis: relation with the underlying arrhythmogenic mechanisms. J Am Coll Cardiol 1986;7:1114–20.

18. Iro-Oka E, Takashina T. Comparison of clinical efficacy of disopyramide and mexiletine in treatment of premature ventricular complexes. Drug Interv 1989;5:3–9.

19. Jewett DE, Jackson G, McCormp M. Comparative anti-arrhythmic efficacy of mexiletine, procanamide and tolomidin in patients with symptomatic ventricular arrhythmias. Prostaglandins Med 1979;5:158–62.

20. Kerin NZ, Aragon E, Marinescu G, Faitel K, Frumin H, Rubenfire M. Mexiletine. Long-term efficacy and side effect in patients with chronic drug-resistant potentially lethal ventricular arrhythmias. Arch Intern Med 1990;150:381–4.

21. Koster G, Lindstrom B. Efficacy of oral mexiletine in the prevention of exercise-induced ventricular ectopic activity. Eur J Clin Pharmacol 1978;13:237–40.

22. Masetti G, Morettini A, Casolo GC, Ieri A, Zipoli A, Serneri GG. Efficacy of mexiletine compared with quinidine in the treatment of ventricular arrhythmias associated with chronic obstructive pulmonary disease. J Clin Pharmacol 1980;20:1053–5.

23. Mota MA, Hiznayashiki K, Nozaki S, Ohmori K, Yoshikawa K, Matsu M. Chronic effect of oral mexiletine administration on left ventricular contractility in patients with congestive heart failure: a study based on mitral regurgitant flow velocity measured by continuous-wave Doppler echocardiography. J Clin Pharmacol 1995;35:478–83.

24. Muburigh DP, Goldman AP. The anti-arrhythmic efficacy of perehine maleate, disopyramide and mexiletine in ventricular ectopic activity. S Afr Med J 1978;54:15–5.

25. Nademanee K, Feld G, Hendrickson J, Intarachot, Y, Cale H, Meng MK et al. Mexiletine: double-blind comparison with procanamide in PVC suppression and
Cardiol Shensongyangxin capsule on treating premature ventricular contractions: a prevention of ventricular extrasystole by mexiletine in patients with normal QT in left ventricular function and relation to suppression of ventricular arrhythmia. Disopyramide suppress ventricular premature contractions (VPC) irrespective of antiarrhythmic drugs. Premedication on the development of premature ventricular contractions during premature beats by mexiletine. Cardiol intervals is associated with a reduction of transmural dispersion of repolarization. Determination profile and tolerability of conventional mexiletine and slow-release mexiletine by acute oral drug testing. The efficacy of an implantable cardioverter-defibrillator in a neonate with LQT3 associated arrhythmias. Efficacy of an implantable cardioverter-defibrillator in patients with recurrent ventricular tachycardia. Prediction of long-term arrhythmia suppression from acute drug testing. Combination drug therapy with a class IC antiarrhythmic agent and mexiletine for ventricular tachycardia. Prediction of long-term ventricular arrhythmia suppression from acute and short-term response. Cardiol Drugs Ther 1991;5:835–41. Sami M, Lisboa R. Mexiletine: long-term efficacy and hemodynamic actions in patients with ventricular arrhythmia. Coron Artery Dis 1985;6:1251–8. Sathymurthy I, Krishnaswami S, Padmakumar P, Mao R. Comparative trial of mexiletine and lignocaine in the treatment of ventricular arrhythmias. Indian Heart J 1987;39:371–5. Singh JB, Rasul AM, Shah A, Adams E, Flessas A, Kocot SL. Efficacy of mexiletine in chronic ventricular arrhythmias compared with quinidine: a single-blind, randomized trial. Am J Cardiol 1990;65:844–7. Singh S, Klein R, Eisenberg B, Hughes E, Sh DP. Long-term effect of mexiletine on left ventricular function and relation to suppression of ventricular arrhythmia. Am J Cardiol 1990;66:1222–7. Talbot RG, Julian DG, Prescott LF. Long-term treatment of ventricular arrhythmias with oral mexiletine. Am Heart J 1977;93:269–82. Tanabe T, Yoshikawa H, Tagawa R, Funuya H, Ide M, Goto Y. Evaluation of antiarrhythmic drug efficacy using Holter electrocardiographic technique. Jpn Circ J 1985;49:337–44. Thomas MG, Giles TD. Mexiletine: long-term follow-up of a patient with prolonged QT interval and quinidine-induced torsades de pointes. South Med J 1985;78:205–6. Kim SG, Seiden SW, Matos JA, Waspe LE, Fisher JD. Discordance between ambulatory monitoring and programmed stimulation in assessing efficacy of mexiletine in patients with ventricular tachycardia. Am Heart J 1986;112:14–9. Kim SG, Mercando AD, Tam S, Fisher JD. Combination of disopyramide and mexiletine for better tolerance and additive effects for treatment of ventricular arrhythmias. J Am Coll Cardiol 1989;13:659–64. Nakashishi T, Nishimura M, Kubota S, Hirabayashi M. Effects of antiarrhythmic agents on ventricular premature systoles, with special reference to the coupling interval. Circ Ther Rev Clin Exp 1990;48:623–31. Deyell MW, Steinberg C, Doucette S, Parkash R, Nault I, Gray C et al. Mexiletine or catherter ablation after ventriculoplane failure in the VANISH trial. J Cardiovasc Electrophysiol 2018;29:603–11. Fenster PE, Kern KB. Mexiletine in refractory ventricular arrhythmias. Clin Pharmacol Ther 1983;34:777–84. Hoffmann A, Schütz E, White R, Follath F, Burckhardt D. Suppression of high-grade ventricular ectopic activity by antiarrhythmic drug treatment as a marker for survival in patients with chronic coronary artery disease. Am Heart J 1986;110:1033–8. Mendes L, Podrid PJ, Fuchs T, Frankel S. Role of combination drug therapy with a class IC antiarrhythmic agent and mexiletine for ventricular tachycardia. J Am Coll Cardiol 1991;17:1396–402. Otuki S, Hasegawa K, Watahanabe H, Katsumi G, Yagihara N, Iijima K et al. The effects of pure potassium channel blocker nifekalant and sodium channel blocker mexiletine on malignant ventricular tachyarrhythmias. J Electrocardiol 2017;50:277–81. Okuwaki H, Kato Y, Lin L, Nozaki Y, Takahashi-Igari M, Horigome H et al. Mexiletine infusion for the treatment of recurrent drug-refractory ventricular arrhythmias. Yonsei Med J 2013;54:529–33. Podrid PJ, Lown B. Mexiletine for ventricular arrhythmias. Am J Cardiol 1981;47:895–902. Poole JE, Werner JA, Bardy GH, Graham EL, Pulaski WP, Abrahamson CE et al. Intolerance and ineffectiveness of mexiletine in patients with serious ventricular arrhythmias. Am Heart J 1986;112:322–6. Sammarco V, Chiarello M, St condo M, Condorelli M. Intravenous mexiletine in management of lidocaine-resistant ventricular tachycardia. Am Heart J 1983;105:680–5. Smylie HC, Doar JW, Head CD, Leggett RJ. A trial of intravenous and oral mexiletine in acute myocardial infarction. Eur J Clin Pharmacol 1984;26:537–42. Sobiech M, Lewandowski M, Zając D, Maciąg A, Syska P et al. Antiarrhythmic efficacy of mexiletine with oral administration and the antiarrhythmic effect of mexiletine in patients with chronic ventricular arrhythmias. Chemotherapy 1981;29:298–303. Starman BG, Comer T, Taylor JL, Salis D. Mexiletine-theophylline interaction. Am Heart J 1986;114:733–4. Stein J, Podrid PJ, Lampert S, Hi roswitz G, Lown B. Long-term mexiletine for ventricular arrhythmias. Am Heart J 1987;114:1091–8. Whitford EG, McGovern B, Schoenfeld MH, Garan H, Newell JB, McElroy M et al. The ef fect of mexiletine on left ventricular function and tolerability of conventional mexiletine and slow-release mexiletine. Eur Heart J 1984;5:247–52. Waleffe A, Kulbertus HE. The efficacy of intravenous mexiletine on ventricular ec topic activity. Acta Cardiol 1977;32:269–82. Wang RJ, Lee PK, Wong KL, Chow MS. Mexiletine in the treatment of recurrent ventricular tachycardia. Prediction of long-term arrhythmia suppression from acute and short-term response. J Clin Pharmacol 1983;23:89–92. Waspe LE, Waxman HL, Buxton AE, Josephson ME. Mexiletine for control of drug-resistant ventricular tachycardia: clinical and electrophysiologic results in 44 patients. Am J Cardiol 1983;51:1175–81. Yamauchi M, Watanabe E, Yatsu K, Takeuchi H, Terasawa T, Sawada K et al. Prevention of ventricular extrastole by mexiletine in patients with normal QT interval is associated with a reduction of transmural dispersion of repolarization. Int J Cardiol 2005;103:92–7. Zaias A, Ziaella P, Slipakova R, Vainsor A, Pentiokiniene D, Levisa kausiene R et al. Signal-averaged ECG in prediction of the short-term suppression of ventricular premature beats by mexiletine. Int J Cardiol 1994;46:243–54. Zaias A, Ziaella P, Slipakova R, Vainsor A, Pentiokiniene D, Levisa kausiene R et al. The effects of intravenous mexiletine on the spectral of the signal-averaged ECG. Pacing Clin Electrophysiol 1994;17:217–21.
104. Breithardt G, Segel L, Abendroth RR. Comparison of the antiarrhythmic efficacy of disopyramide and mexiletine against stimulus-induced ventricular tachycardia. J Cardiovasc Pharmacol 1981;1:1026–37.

105. Jordaens LJ, Tavernier R, Vanneerrehaeghe X, Robbins E, Clement DL. Combination of flecainide and mexiletine for the treatment of ventricular tachyarrhythmias. Pacing Clin Electrophysiol 1990;13:1127–35.

106. Palles EV, Welch W, Holf J, Straubeg B, Bauernfeind RA, Swiny S et al. Lack of effectiveness of oral mexiletine in patients with drug-refractory paroxysmal sustained ventricular tachycardia. A study utilizing programmed stimulation. Am J Cardiol 1982;50:1075–81.

107. Raffele A, Di Pede F, Delise P, Picollo E. Value of serial electrophysiological testing in managing patients resuscitated from cardiac arrest. Pacing Clin Electrophysiol 1984;7:850–60.

108. Taveiren L, Kadaah A, Morady F. A prospective comparison of class IA, B, and C antiarrhythmic agents in combination with amiodarone in patients with inducible sustained ventricular tachycardia. Circulation 1991;84:101–8.

109. Widerhorn J, Sager PT, Rahimtoola SH, Bhandari AK. The role of combination therapy with mexiletine and procainamide in patients with inducible sustained ventricular tachycardia refractory to intravenous procainamide. Pacing Clin Electrophysiol 1991;14:420–6.

110. Young-Lai-Wah JA, Murdoch CJ, Boone J, Kerr CR. Propafenone-mexiletine combination for the treatment of sustained ventricular tachycardia. J Am Coll Cardiol 1992;20:547–51.

111. Dennis AR, Ross DL, Cody DV, Russell PA, Young AA, Richards DA et al. Randomized controlled trial of prophylactic antiarrhythmic therapy in patients with inducible ventricular tachyarrhythmias after recent myocardial function. Eur Heart J 1989;10:764–76.

112. Gillis AM, Traboulsi M, Hii JTY, Wyse DG, Duff HJ, McDonald M et al. Antiarrhythmic drug effects on QT interval dispersion in patients undergoing electrophysiologic testing for ventricular tachycardia and fibrillation. Am J Cardiol 1998;81:588–93.

113. Ohira K, Niwano S, Furushima K, Taneda K, Chiniishi M, Azawa Y. The use of the block cycle length as a safe and efficient means of interrupting sustained ventricular tachycardia and its pharmacological modification. Pacing Clin Electrophysiol 1998;21:1668–92.

114. Rae AP, Greenspan AM, Spielman SR, Sokoloff NM, Webb CR, Kay HR et al. Antiarrhythmic drug efficacy for ventricular tachyarrhythmias associated with coronary artery disease as assessed by electrophysiologic studies. Am J Cardiol 1985;55:1494–9.

115. Miller SM, Martinez JJ, Deal BJ, Bauman JL, Scaglotti D, Hariman RJ et al. Electrophysiological testing of tocainide and mexiletine for ventricular tachycardia: assessment of the need to test both drugs. Am Heart J 1986;112:1114–6.

116. Rae AP, Spielman SR, Kutalek SP, Kay HR, Horowitz LN. Electrophysiological assessment of antiarrhythmic drug efficacy for ventricular tachycardias associated with dilated cardiomyopathy. Am J Cardiol 1987;59:291–5.

117. Bonavita GJ, Pires LA, Wagshal AB, Cuello C, Mittleman RS, Greene TO et al. Usefulness of oral quinidine-mexiletine combination therapy for sustained ventricular tachycardias as assessed by programmed electrical stimulation when monotherapy has failed. Am Heart J 1994;127:847–51.

118. Manz M, Steinbeck G, Nitsch J, Luderitz B. Treatment of recurrent sustained ventricular tachycardia with mexiletine and disopyramide. Br Heart J 1983;49:222–8.

119. Abe A, Azawa Y, Ma M. Does mexiletine have a preferential action (versus healthy myocardium) on the reentrant circuit of ventricular tachycardia? Heart Vessels 1997;23:5–9.

120. Azawa Y, Abe A, Ohira K, Furushima H, Chiniishi M, Fujita S. Preferential action of mexiletine on central common pathway of reentrant ventricular tachycardia. J Am Coll Cardiol 1996;28:1759–64.

121. Ohkubo K, Watanabe I, Okamura Y, Ashino S, Kofune M, Nagashima K et al. Functional atrioventricular conduction block in an elderly patient with acquired long QT syndrome: elucidation of the mechanism of block. J Electrophysiol 2011;44:353–6.

122. Reiter MJ, Esley AR, Mann DE. Efficacy of class II (lidocaine-like) antiarrhythmic agents for prevention of sustained ventricular tachycardia secondary to coronary artery disease. Am J Cardiol 1987;59:1319–24.

123. Rosenheck S, Schmalz S, Kadih AH, Summert J, Morady F. The effect of quinidine and mexiletine on the adaptation of ventricular refractoriness to an increase in rate. Am Heart J 1991;121:512–7.

124. Shikaki JG, Meozi EB. Electrophysiologic effects of mexiletine in children. Jpn Heart J 1982;23:733–8.

125. Sheldon RS, Duff HJ, Mitchell LB, Wyse DG, Manary DE. Effect of oral combination therapy with mexiletine and quinidine on left and right ventricular function. Am Heart J 1988;115:1030–6.

126. Takada Y, Ito, Okada M, Ando A, Nonokawa M, Inden Y et al. Effects of antiarrhythmic agents on left ventricular function during exercise in patients with chronic left ventricular dysfunction. Ann Nucl Med 2004;18:209–19.
209. Rae AP, Kay HR, Horowitz LN, Spielman SR, Greenspan AM. Proarrhythmic effects of antiarrhythmic drugs in patients with malignant ventricular arrhythmias evaluated by electrophysiologic testing. J Am Coll Cardiol 1988;12:131–9.

210. Ravid S, Podrid PJ, Lempert S, Lown B. Congestive heart failure induced by six of the newer antiarrhythmic drugs. J Am Coll Cardiol 1989;14:1326–30.

211. Santinelli V, Chiarilli M, Stanislao M, Condorelli M. Mexiletine for treatment of sustained recurrent ventricular tachycardia. Int J Cardiol 1983;2:443–5.

212. Sekiguchi A, Kashiwagi T, Ishida-Yamamoto A, Takahashi H, Hashimoto Y, Kimura H et al. Drug-induced hypersensitivity syndrome due to mexiletine associated with human herpes virus 6 and cytomegalovirus reactivation. J Dermatol 2005;32:278–81.

213. Stanton MS, Prystowsky EN, Fineberg NS, Miles WM, Zipes DP, Heger JJ. Arrhythmogenic effects of antiarrhythmic drugs: a study of 506 patients treated for ventricular tachycardia or fibrillation. J Am Coll Cardiol 1989;14:209–15.

214. Stavenow L, Hansson A, Johansson BW. Mexiletine in treatment of ventricular arrhythmias. A long-term follow-up. Acta Med Scand 1979;205:411–5.

215. Timmis AD, Jackson G, Holt DW. Mexiletine for control of ventricular dysrhythmias in pregnancy. Lancet 1980;316:647–8.

216. Ueno K, Miyai K, Seiki T, Kawaguchi Y. Interaction between theophylline and mexiletine. Dia 1990;24:471–2.

217. Ueno K, Tamamura A, Matsumoto K, Komamura K, Kanakura S, Miyatake K et al. Evaluation of mexiletine clearance in a Japanese population. Ann Pharmacother 2002;36:241–5.

218. Velebit V, Podrid P, Lown B, Cohen BH, Graboys TB. Aggravation and provocation of ventricular arrhythmias by antiarrhythmic drugs. Circulation 1962;35:886–94.

219. Vio R, Zorzi A, Bello L, Bozzone V, Botta A, Ricevi F et al. Evaluation of mexiletine effect on conduction delay and bradyarrhythmic complications in patients with myotonic dystrophy type 1 over long-term follow-up. Heart Rhythm 2020;17:944–50.

220. Waleffe A, Mary-Rabine L, Legr DJC, Kubertus HE. Combined mexiletine and amiodarone treatment of refractory recurrent ventricular tachycardia. Am Heart J 1980;100:788–93.

221. Weir RAP. Sacubitril/Valsartan and mexiletine: a proarrhythmic combination? Cardiology 2019;142:4–6.

222. Zakrzewska-Koperska J, Bilinska ZT, Tuzszczkowa GT, Fransaszcz M, Eilowski W, Warminski G et al. A combination of quinidine/mexiletine reduces arrhythmia in dilated cardiomyopathy in two patients with R814W SCN5A mutation. ESC Heart Fail 2020;7:4326–35.

223. Aizawa Y, Chinchu M, Kitazawa H, Washizuka T, Abe A, Shibata A et al. Discrepant effects of mexiletine on cycle length of ventricular tachycardia and on the effective refractory period in the area of slow conduction. Heart 1996;75:281–6.

224. Blaufox AD, Tristani-Firouzi M, Seslar S, Sanatani S, Trivedi B, Fischbach P et al. Congenital long QT 3 in the pediatric population. Am J Cardiol 2012;109:1459–65.

225. Drago F, Fazio G, Silvetti MS, Oricchio G, Michelon G. A successfully novel ICD implantation and medical treatment in a child with LQT syndrome and self-limiting ventricular fibrillation. Int J Cardiol 2007;118:108–12.

226. Gao Y, Xue X, Hu D, Liu W, Yuen Y, Sun H et al. Inhibition of late sodium current by mexiletine: a novel pharmacotherapeutic approach in Timothy syndrome. Circ Arrhythmia Electrophysiol 2013;6:614–22.

227. Kehl HG, Haverkamp W, Rellensmann G, Yelbuz TM, Krasemann T, Vogt J et al. Images in cardiovascular medicine. Life-threatening neonatal arrhythmias: successful treatment and confirmation of clinically suspected extreme long QT syndrome-J. Circulation 2004;109:e205–6.

228. Takanaka C, Norokawa M, Machii T, Lee S, Kato H, Haruna M et al. Mexiletine and propafenone: a comparative study of monotherapy, low, and full dose combination therapy. Pacing Clin Electrophysiol 1992;15:2130–3.

229. Tsai CF, Chen SA, Tai CT, Chang CE, Ding YA, Chang MS. Idiopathic ventricular fibrillation: clinical, electrophysiologic characteristics and long-term outcomes. Int J Cardiol 1998;64:47–55.

230. EMA. Namuscla (mexiletine). Annex 1: Summary of Product Characteristics https://www.ema.europa.eu/en/documents/product-information/namuscla-epar-product-information_en.pdf 2018.

231. Hohrloser SH, Zabel M, van de Loo A, Klingenheben T, Just H. Efficacy and safety of sotalol in patients with complex ventricular arrhythmias. Int J Cardiol 1992;37:283–91.

232. Piccini JP, Berger JS, O’Connor CM. Amiodarone for the prevention of sudden cardiac death: a meta-analysis of randomized controlled trials. Eur Heart J 2009;30:1245–53.

233. Castillo M. Trends and predictors of biomedical research quality, 1990-2015: a meta-research study. BMJ Open 2019;9:e030342.