Prostate cancer is the second-most common cancer and the fifth-leading cause of cancer-related mortality in the male population worldwide (Ilic et al., 2018). The incidence of prostate cancer has notably increased in Asian, Northern, and Western European countries (Teoh et al., 2019). The progression of this disease is highly variable and depends mostly on the initial state at diagnosis. Prostate cancer patients with a Gleason score of 8 to 10 can progress from localized disease to metastasis and final death within a relatively short period (Tabei et al., 2020). Although the exact cause of prostate cancer remains unknown, advanced age remains the leading risk factor from a clinical viewpoint. A previous study indicated that prostate cancer was rare among patients aged less than 50 years (Dunn, 2017). Because it is a common and important disease that imposes a substantial burden on the health care and economic system (Cao et al., 2021), early detection of this disease by regular screening followed by an appropriate therapeutic strategy may offer a practical means for prevention of disease-associated damage in men aged more than 50 years (J. He et al., 2022).

Screening for prostate cancer with serum prostate-specific antigen (PSA) aims to detect the early stages of prostate cancer, the interposed stage susceptible to treatment, and further reductions in overall and specific mortality.
The European Randomized Study of Screening for Prostate Cancer (ERSPC) identified that 4-year PSA-based screening for prostate cancer in participants aged 55 to 69 years increased the incidence of cancer diagnoses by 41% and reduced the mortality rate by 20% over a 16-year follow-up period (Hugosson et al., 2019). The PSA test is a low-cost procedure, but it may yield false-positive results that result in unnecessary biopsies, overdiagnosis, and overtreatment (Fenton et al., 2018; Hugosson et al., 2019). Several effective drugs have been approved for treatment and their concomitant use has significantly improved the survival of patients with advanced prostate cancer (Tian et al., 2018).

In China, prostate cancer is becoming more problematic and an increased incidence of prostate cancer is inevitable due to the longer life expectancy and Westernized lifestyles related to rapid economic growth and sociocultural changes (R. Chen et al., 2017). The majority of newly diagnosed cases of prostate cancer are in the middle or late stage, and only 30% of the cases are clinically localized, which leads to a poor prognosis of prostate cancer in China (Zhang et al., 2021). To identify the incidence and predictive factors of prostate cancer in the male population, community-based screening for early detection of prostate cancer is essential. Early cases of prostate cancer can be ascertained through PSA examination. Trends of the incidence and mortality of prostate cancer in the United States indicate that large-scale screening may be beneficial (H. He et al., 2022). Few community-based epidemiological studies have focused on incident prostate cancer in China. In this study, we conducted a community-based screening program for prostate cancer to assess the morbidity and associated factors of prostate cancer among the subpopulation of men aged ≥50 years in Taizhou, China.

Method

Study Population

Taizhou Integrated Prostate Screening (TIPS) is a large, observational, population-based study of prostate cancer screening based on serum PSA measurements. We conducted a pilot census of all male residents aged 50 years or older in Luqiao District, one of the field sites of the TIPS cohort in the city of Taizhou, Zhejiang Province, China in December 2020 (N = 7,279), by using the official residential register. A total of 3,516 eligible men enrolled from 30 villages received a total PSA (tPSA) test from November to December 2020. The response rate to our pilot survey was 48.3% (3,516/7,279), which is comparable to that of other surveys of community-dwelling residents. The personal identification number assigned to each Chinese citizen at birth was used to link the participants’ screening data with their health examination records. The questionnaire, covering participants’ demographic characteristics and environmental exposure factors, was administered by interviewers. Of them, 1,806 men aged ≥50 years or patients with diabetes and/or hypertension underwent physical examinations in community health service centers in 2020. Figure 1 shows the detailed procedure for the TIPS. This study was approved by the Ethics Committee of Taizhou Enze Medical Center (Group) Enze Hospital (No: K20210402). All participants signed an informed consent form and understood the procedure before the screening.

The Screening Program

The prostate screening program has been held in Taizhou, Zhejiang Province, China, since December 2020. To encourage participation, we conducted an educational seminar or on-air health program for health workers, health counselors, and the public before screening. Measurement of the serum prostate-specific antigen (PSA) level with a cutoff value of ≥4.0 ng/mL was the main screening test and indication for biopsy. The criteria for prostate biopsy were as follows: PSA ≥10.0 ng/mL or 4.0 to 10.0 ng/mL with free-to-total PSA ratio ≤15%, suspicious digital rectal examination (DRE) findings, or no abnormal signals on ultrasound or magnetic resonance imaging (MRI).

Serum PSA Assay

The concentration of total PSA (tPSA) and free PSA (fPSA) in serum samples was determined by using Beckman Coulter immunoassays on a DXI800 instrument. The PSA measurements were performed in accordance with the standard assays and procedures at the hospital, with recalibration to the World Health Organization (WHO) standard (PSA-WHO 96/670) using the appropriate correction factor (Vignati & Giovanelli, 2007). Serum PSA levels were used to stratify the individuals’ risk of prostate cancer (normal, PSA <4.0 ng/ml; low risk, 4.0 ng/ml ≤ PSA <10.0 ng/ml; moderate risk, 10 ng/ml ≤ PSA ≤20 ng/ml; and high risk, PSA >20 ng/ml).

Statistical Analyses

Based on a cross-sectional design, we estimated that an enrollment target of 117 participants would provide the study with greater than 90% statistical power to detect a 30% or more difference in risk factors between PSA ≥4.0 ng/ml group and PSA <4.0 ng/ml group at a significance level of .05, using a two-tailed test (Cohen, 1988; Faul et al., 2009).

We used the Statistical Package for Social Sciences software (Version 22.0; IBM SPSS, Chicago, IL, USA)
Figure 1. The Procedure of Taizhou Integrated Prostate Screening

Note. PSA = prostate-specific antigen; MRI = magnetic resonance imaging; TNM = tumor, node, and metastases.
The findings of previous studies in Western countries have indicated that the mortality rates associated with prostate cancer fulfills the Wilson screening criteria that specify that the disease is a critical health problem and which are listed as follows: the disease natural history should be understood; there should be a recognizable latent or early symptomatic stage; there should be a test that is easy to perform and interpret, acceptable, accurate, reliable, sensitive, and specific; there should be an accepted treatment recognized for the disease; treatment should be more effective if started early; there should be a policy on who should be treated; diagnosis and treatment should be cost-effective; and the case finding should be a continual process (J. Y. Chen et al., 2013).

To the best of our knowledge, only a few population-based prostate screening studies for identification of early stage prostate cancer in this male subpopulation have been conducted to date in China. From the preventive medicine viewpoint, medical policy makers must consider the multilevel situations in which organized screening regimens are necessary for early detection in a specific population (Sivaram et al., 2018). The participants ing regimens are necessary for early detection in a specific population (Sivaram et al., 2018). The participants ing regimens are necessary for early detection in a specific population (Sivaram et al., 2018). The participants...
cancer have been reducing since the 1990s, and this reduction was partially attributable to routine screening for prostate cancer (Tabei et al., 2020). Two major randomized controlled trials of PSA-based screening, namely, the prostate, lung, colorectal, and ovarian (PLCO) trial (Pinsky et al., 2019) and the ERSPC (Hugosson et al., 2019), yielded discrepant findings related to prostate cancer-specific mortality. These differences may be explained by disparities in study designs and populations as well as the relatively high proportions of men in the control group who received PSA-based screening (de Koning et al., 2018). PSA may not be a reliable marker for prostate cancer because it is also secreted by normal healthy prostate tissue (Wassersug & Fox, 2021). Serum PSA levels can be elevated due to reasons other than cancer, such as prostatitis, infection, or trauma. PSA may perform other functions in healthy men (Wassersug & Fox, 2021).

Table 1. Baseline Characteristics of Participants in Taizhou Integrated Prostate Screening in 2020 (N = 1,806).

Variables	Categories	All	50–59	60–69	70–79	≥80	χ²	p
n (%)	1,806 (100)	201 (11.1)	900 (49.8)	546 (30.2)	159 (8.8)			
Health by self-assessment								
Satisfied	1,077 (68.3)	/	619 (70.9)	367 (67.2)	91 (57.2)	12.016	.002	
Dissatisfied	501 (31.7)	/	254 (29.1)	179 (32.8)	68 (42.8)			
Exercise frequency								
Every day	351 (19.4)	36 (17.9)	159 (17.7)	120 (22.0)	36 (22.6)	9.650	.380	
More than once a week	77 (4.3)	8 (4.0)	37 (4.1)	24 (4.4)	8 (5.0)			
Occasionally	142 (7.9)	17 (8.5)	82 (9.1)	34 (6.2)	9 (5.7)			
No exercise	1,236 (68.4)	140 (69.7)	622 (69.1)	368 (67.4)	106 (66.7)			
Dietary status								
Balanced diet	1,760 (97.5)	194 (96.5)	879 (97.7)	532 (97.4)	155 (97.5)	0.876	.831	
Halophilic diet	1,491 (82.6)	167 (83.1)	728 (80.9)	461 (84.4)	135 (84.9)	3.720	.293	
Smoking status								
Never smoke	792 (43.9)	88 (43.8)	363 (40.3)	246 (45.1)	95 (59.7)	34.987	<.001	
Quit smoking	422 (23.4)	44 (21.9)	201 (22.3)	138 (25.3)	39 (24.5)			
Smoke	592 (32.8)	69 (34.3)	336 (37.3)	162 (29.7)	25 (15.7)			
Drinking frequency								
Never	820 (45.4)	82 (40.8)	400 (44.4)	248 (45.4)	90 (56.6)	15.318	.083	
Occasionally	294 (15.7)	41 (20.4)	136 (15.1)	89 (16.3)	18 (11.3)			
Often	117 (6.5)	17 (8.5)	56 (6.2)	34 (6.2)	10 (6.3)			
Every day	585 (32.4)	61 (30.3)	308 (34.2)	175 (32.1)	41 (25.8)			
History of exposure to occupational hazards								
No	1,779 (98.5)	199 (99.0)	881 (97.9)	540 (98.9)	159 (100.0)	4.646	.098	
Yes	27 (1.5)	2 (1.0)	19 (2.1)	6 (1.1)	0			
Hypertension								
No	879 (48.7)	39 (19.4)	503 (55.9)	260 (47.6)	77 (48.4)	87.935	<.001	
Yes	927 (51.3)	162 (80.6)	397 (44.1)	286 (52.4)	82 (51.6)			
Diabetes								
No	1,576 (87.3)	148 (73.6)	791 (87.9)	489 (89.6)	148 (93.1)	41.360	<.001	
Yes	230 (12.7)	53 (26.4)	109 (12.1)	57 (10.4)	11 (6.9)			
Heart disease								
No	1,766 (97.8)	198 (98.5)	887 (98.6)	529 (96.9)	152 (95.6)	7.556	.023	
Yes	40 (2.2)	3 (1.5)	13 (1.4)	17 (3.1)	7 (4.4)			
Cerebrovascular disease								
No	1,731 (95.8)	191 (95.0)	869 (96.6)	522 (95.6)	149 (93.7)	3.380	.337	
Yes	75 (4.2)	10 (5.0)	31 (3.4)	24 (4.4)	10 (6.3)			
Table 2. Clinical Characteristics of Participants in Taizhou Integrated Prostate Screening in 2020 (N = 1,806).

Variables	All	50–59\(^a\)	60–69\(^b\)	70–79\(^c\)	≥80\(^d\)	p	Post hoc test
n (%)	1,806 (100)	201 (11.1)	900 (49.8)	546 (30.2)	159 (8.8)		
PSA\(^a\) (ng/mL)	1.7 (1.1–2.3)	1.4 (1.0–1.9)	1.6 (1.1–2.2)	1.9 (1.3–2.8)	2.3 (1.4–3.8)	<.001	d>c>b>a
BMI (kg/m\(^2\))	24.1 ± 3.2	25.8 ± 2.9	24.0 ± 3.1	23.8 ± 3.4	23.3 ± 3.2	<.001	a>b, a>c, a>d
Waist circumference (cm)	84.3 ± 9.2	87.8 ± 8.0	83.7 ± 9.0	84.1 ± 9.7	84.6 ± 9.2	<.001	a>b, c>b, d>b
Waist to height ratio	0.52 ± 0.06	0.53 ± 0.05	0.51 ± 0.05	0.52 ± 0.06	0.53 ± 0.06	<.001	a>b, c>b, d>b
Fasting blood sugar\(^a\) (mmol/L)	5.52 (4.90–5.90)	5.97 (5.10–6.90)	5.53 (4.80–5.90)	5.42 (4.90–5.70)	5.32 (4.70–5.70)	<.001	a>b, a>c, a>d
Triglyceride\(^a\) (mmol/L)	1.40 (0.97–1.91)	1.77 (1.13–2.54)	1.43 (0.98–1.98)	1.30 (0.93–1.78)	1.22 (0.87–1.6)	<.001	b>c, b>d, d>b
Total cholesterol (mmol/L)	4.99 ± 0.88	5.13 ± 0.92	5.00 ± 0.88	4.93 ± 0.84	4.99 ± 0.91	.049	—
LDL-C (mmol/L)	2.44 ± 0.64	—	2.45 ± 0.63	2.42 ± 0.64	2.47 ± 0.67	.711	—
HDL-C (mmol/L)	1.25 ± 0.31	—	1.24 ± 0.31	1.26 ± 0.31	1.25 ± 0.30	.757	—
Alanine aminotransferase\(^a\) (U/L)	24 (19–29)	29 (22–38)	25 (19–29)	23 (19–28)	21 (17–24)	<.001	a>b, a>c, a>d, b>d, c>d
Aspartate transaminase\(^a\) (U/L)	26 (22–30)	26 (21–31)	26 (22–29)	27 (23–30)	27 (23–30)	.091	—
Creatinine\(^a\) (µmol/L)	86 (75–95)	—	84 (74–92)	88 (74–98)	91 (78–103)	<.001	c>b, d>b
Urea (mmol/L)	6.25 ± 1.88	—	6.04 ± 1.66	6.41 ± 2.03	6.83 ± 2.26	<.001	c>b, d>b

Note. Data are expressed as the mean ± SD or n (%). PSA = prostate-specific antigen; BMI = body mass index.

*Data are skewed distribution, expressed as the geometric mean (interquartile range) and logarithmically transformed for analysis.
Variables	All (N = 1,806)	PSA <4.0 ng/mL (n = 1,598)	PSA ≥4.0 ng/mL (n = 208)	p for \(\chi^2 \) test	OR	Lower	Upper	p
Age group (years)	n (%) or M ± SD	n (%) or M ± SD	n (%) or M ± SD	p for \(\chi^2 \) test	OR	Lower	Upper	p
50–59	201 (11.1)	194 (12.1)	7 (3.4)	<.001				
60–69	900 (49.8)	815 (51.0)	85 (40.9)	2.92	1.31	6.49	1.00	.009
70–79	546 (30.2)	466 (29.2)	80 (38.5)	4.45	1.99	9.97	1.00	<.001
80+	159 (8.8)	123 (7.7)	36 (17.3)	6.96	2.91	16.63	1.00	<.001
Hypertension								
No	879 (48.7)	790 (49.4)	89 (42.8)	ref.				
Yes	927 (51.3)	808 (50.6)	119 (57.2)	.071	1.50	1.11	2.03	.008
Diabetes								
No	1,576 (87.3)	1,385 (86.7)	191 (91.8)	ref.				
Yes	230 (12.7)	213 (13.3)	17 (8.2)	.036	0.76	0.42	1.38	.366
Height (cm)	163.0 ± 6.5	163.2 ± 6.4	161.9 ± 6.9	.006	0.99	0.97	1.01	.405
Fasting blood sugar (mmol/L)	5.52 (4.90–5.90)	5.55 (4.90–5.90)	5.36 (4.80–5.80)	.005	0.68	0.28	1.67	.399
Alanine aminotransferase (U/L)	24 (19–29)	25 (19–30)	23 (18–27)	.004	0.69	0.45	1.08	.105

*Data are skewed distribution, expressed as the geometric mean (interquartile range) and logarithmically transformed for analysis. PSA = prostate-specific antigen; OR = odds ratio; CI = confidence interval.
In this study, 1.00% (n = 18) of the patients were diagnosed with early stage prostate cancer and received immediate further therapy. Some studies have suggested that the costs and damages associated with prostate cancer screening outweigh the health advantages of early detection and diagnosis. Another contrasting view is that prostate cancer screening has become so broadly recognized that one should consider the disadvantages of this approach in light of the health care cost reduction achieved with prostate cancer screening (Karlsson et al., 2021). A decrease in the number of biopsies and overtreatment can improve the health-related quality of life and lower medical costs (Hugosson et al., 2019).

With the implementation of mass screening programs for cancers, the population-level findings have deepened our knowledge of cancer biology. Screening efforts for prostate cancer have shown a previously unidentified incidence of cancers that would not have come to clinical attention otherwise. Screening for disease prevention is associated with the idea that it is to invite healthy-like people better for early detection (Hugosson et al., 2019). Prostate cancer screening is increasing the probability of biopsy investigations and identification of the progression of metastatic disease. These routine screening regimens could be advantageous if the diagnosis and therapy of an early stage tumor could avoid progression of the disease to metastasis and/or final death (Wender et al., 2019).

To the best of our knowledge, almost all studies have reported an increased risk of men’s prostate cancer with advancing age. This study found that advancing age and history of hypertension were associated with increased PSA, in line with the recommendation of screening guidelines that the beginning age of prostate cancer screening should be 60 years. We also found that history of hypertension significantly increased the likelihood of PSA elevation. Previous studies on relationship between hypertension and prostate cancer risk have been inconsistent. The Prostate Cancer throughout life (PROCA-life) study reported that men (≥45 years) with systolic blood pressure > 150 mm Hg had a 35% increased risk of prostate cancer compared with men with systolic blood pressure ≤130 mm Hg. Prostate cancer patients with high systolic or diastolic blood pressure also had a significantly increased risk of death (Stikbakke et al., 2022). A pooled cohort study recently suggested that elevated blood pressure is unlikely to be an important risk factor for prostate cancer (Jochems et al., 2022). Further large-scale, well-designed prospective cohorts, as well as mechanistic studies, are needed to confirm our preliminary findings.

Limitations
Since we combined prostate cancer findings based on a combination of PSA screening, a noninvasive examination, and biopsy, the sensitivity of the prostate cancer diagnosis was better than that of other evidence-based studies. The screening information and biochemical data were collected simultaneously; however, some unknown potential factors, including family history of prostate cancer, could still be biased in this population-based study. With our study design, it was possible to explore the relationship between biochemical levels and prostate cancer. Although the sample included in this study allowed power to reach 99%, the possible influence on the morbidity and associations in early prostate cancer in our estimations was inevitably due to the relatively low response rate for first screening and further clinical examinations. In addition, in our study, the nonparticipants were younger, indicating that many participants from previous studies did not return for follow-up. This could indicate the presence of a selection bias. Non-differential misclassification-bias identification may occur and cause a biased estimation of prostate cancer prevalence. The few advanced prostate cancers in our study did not carry sufficient statistical power to allow an assessment of the association between risk factors and advanced stages of prostate cancer. Finally, our measurements were conducted at only a single time point and, by clear inference, could not reflect long-term exposure to various demographic or biochemical aspects or factors, which might be essential influences on the development and/or progression of prostate cancer. The solution to such an obfuscation would be reached by organizing prospective longitudinal analogous studies, the findings of which would be expected to assist the cross-sectional results of this study.

Conclusion
In conclusion, the advantages of routine cancer screening are superior when the detection of malignancy at a primary (or precancerous) stage results in better outcomes. Thus, the assessable treatment should be reliable, proper, and more valid when implemented earlier in the course of the disease. This community-based PSA screening program indicated the results of early detection of prostate cancer among men aged ≥50 years. Early screening and appropriate clinical therapy for the management of prostate cancer are essential in this subpopulation.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Taizhou Luqiao District Science and Technology Planning Program (2022S1B010) to FPL.

Ethical Approval
This study was approved by the Ethics Committee of Taizhou Enze Medical Center (Group) Enze Hospital (No: K20210402).

ORCID iD
Tao-Hsin Tung https://orcid.org/0000-0003-2097-8375

References
Cao, W., Chen, H. D., Yu, Y. W., Li, N., & Chen, W. Q. (2021). Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. *Chinese Medical Journal, 134*(7), 783–791. https://doi.org/10.1097/CM9.0000000000001474

Chen, J. Y., Tsai, S. T., Hsu, C. T., Liu, J. H., & Tung, T. H. (2013). Cost-benefit analysis of screening for gallstone disease among Chinese population in Taiwan. *The Open Access Journal of Science and Technology, 1*(1), 1–7. https://doi.org/10.11131/2013/100002

Chen, R., Sjoberg, D. D., Huang, Y., Xie, L., Zhou, L., He, D., Vickers, A. J., & Sun, Y., Chinese Prostate Cancer Consortium, & Prostate Biopsy Collaborative Group. (2017). Prostate specific antigen and prostate cancer in Chinese men undergoing initial prostate biopsies compared with Western cohorts. *The Journal of Urology, 197*(1), 90–96. https://doi.org/10.1016/j.juro.2016.08.103

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences*. Routledge.

de Koning, H. J., Gulati, R., Moss, S. M., Hugosson, J., Pinsky, P. F., Berg, C. D., Auvinen, A., Andriele, G. L., Roobol, M. J., Crawford, E. D., Nelen, V., Kwiatakowski, M., Zappa, M., Luján, M., Villers, A., de Carvalho, T. M., Feuer, E. J., Tsodikov, A., Mariotto, A. B., Etzioni, R. (2018). The efficacy of prostate-specific antigen screening: Impact of key components in the ERSPC and PLCO trials. *Cancer, 124*(6), 1197–1206. https://doi.org/10.1002/cncr.31178

Dunn, M. W. (2017). Prostate cancer screening. *Seminars in Oncology Nursing, 33*(2), 156–164. https://doi.org/10.1016/j.socn.2017.02.003

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. *Behavior Research Methods, 41*(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149

Fenton, J. J., Weyrich, M. S., Durbin, S., Liu, Y., Bang, H., & Melnikow, J. (2018). Prostate-specific antigen–based screening for prostate cancer: Evidence report and systematic review for the US Preventive Services Task Force. *JAMA, 319*(18), 1914–1931. https://doi.org/10.1001/jama.2018.3712

He, H., Liang, L., Han, D., Xu, F., & Lyu, J. (2022). Different trends in the incidence and mortality rates of prostate cancer between China and the USA: A jointpoint and age-period-cohort analysis. *Frontiers in Medicine, 9*, Article 824464. https://doi.org/10.3389/fmed.2022.824464

He, J., Chen, W. Q., Li, N., Cao, W., Ye, D. W., Ma, J. H., Xing, N. Z., Peng, J., & Tian, J. H., & China Prostate Cancer Screening Early Diagnosis Early Treatment Guidelines Development Expert Group Working Group on Formulation of Guidelines for Prostate Cancer Screening Early Diagnosis Early Treatment in China. (2022). China guideline for the screening and early detection of prostate cancer (2022, Beijing). *Zhonghua Zhong Liu Za Zhi [Chinese Journal of Oncology], 44*(1), 29–53. https://doi.org/10.3760/cma.j.cn112152-202111226-00975

Hugosson, J., Roobol, M. J., Månsson, M., Tammela, T., Zappa, M., Nelen, V., Kwiatkowski, M., Lujan, M., Carlsson, S. V., Talala, K. M., Lilja, H., Denis, L. J., Recker, F., Paez, A., Puliti, D., Villers, A., Rebillard, X., Kilpeläinen, T. P., & Stenman, U. H., & Investigators. (2019). A 16-yr follow-up of the European Randomized Study of Screening for Prostate Cancer. *European Urology, 76*(1), 43–51. https://doi.org/10.1016/j.eurouro.2019.02.009

Ilic, D., Djulbegovic, M., Jung, J. H., Hwang, E. C., Zhou, Q., Cleves, A., Agoritsas, T., & Dahm, P. (2018). Prostate cancer screening with prostate-specific antigen (PSA) test: A systematic review and meta-analysis. *BMJ (Clinical Research Ed.), 362*, k3519. https://doi.org/10.1136/bmj.k3519

Jochems, S., Häggström, C., Stattin, P., Järnholm, B., & Stocks, T. (2022). Association of blood pressure with prostate cancer risk by disease severity and prostate cancer death: A pooled cohort study. *Cancer Epidemiology, Biomarkers & Prevention, 31*(7), 1483–1491. https://doi.org/10.1158/1055-9965.EPI-22-0159

Karlsson, A. A., Hao, S., Jauhiainen, A., Elfström, K. M., Egevad, L., Nordström, T., Heintz, E., & Clements, M. S. (2021). The cost-effectiveness of prostate cancer screening using the Stockholm3 test. *PLOS ONE, 16*(2), Article e0246674. https://doi.org/10.1371/journal.pone.0246674

Pinsky, P. F., Miller, E., Prorok, P., Grubb, R., Crawford, E. D., & Andriele, G. (2019). Extended follow-up for prostate cancer incidence and mortality among participants in the Prostate, Lung, Colorectal and Ovarian randomized cancer screening trial. *BJU International, 123*(5), 854–860. https://doi.org/10.1111/bju.14580

Sivaram, S., Majumdar, G., Perin, D., Nessa, A., Broeders, M., Lynge, E., Saraiya, M., Segnan, N., Sankaranarayanan, R., Rajaraman, P., Trimble, E., Taplin, S., Rath, G. K., & Mehrotra, R. (2018). Population-based cancer screening programmes in low-income and middle-income countries: Regional consultation of the International Cancer Screening Network in India. *The Lancet, 19*(2), e113–e122. https://doi.org/10.1016/S1470-2045(18)30003-2

Stikbakke, E., Schirmer, H., Knutsen, T., Stoyten, M., Wilsgaard, T., Giovanucci, E. L., McTiernan, A., Eggen, A. E., Haugnes, H. S., Richardsen, E., & Thune, I. (2022). Systolic and diastolic blood pressure, prostate cancer risk, treatment, and survival. The PROCA-life study. *Cancer Medicine, 11*(4), 1005–1015. https://doi.org/10.1002/cam4.4523

Tabei, T., Taguri, M., Sūkaitis, N., Koh, H., Yosida, M., Fujikawa, A., Nirei, T., Tsutsunami, S., Ito, H., Furuhata, S., Kawahara,
T., Miyoshi, Y., Noguchi, S., Uemura, H., & Kobayashi, K. (2020). Does screening for prostate cancer improve cancer-specific mortality in Asian men? Real-world data in Yokosuka city 15 years after introducing PSA-based population screening. *The Prostate, 80*(11), 824–830. https://doi.org/10.1002/pros.23997

Teoh, J., Hirai, H. W., Ho, J., Chan, F., Tsoi, K., & Ng, C. F. (2019). Global incidence of prostate cancer in developing and developed countries with changing age structures. *PLOS ONE, 14*(10), Article e0221775. https://doi.org/10.1371/journal.pone.0221775

Tian, J. Y., Guo, F. J., Zheng, G. Y., & Ahmad, A. (2018). Prostate cancer: Updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. *Carcinogenesis, 39*(3), 307–317. https://doi.org/10.1093/carcin/bgx141

Vignati, G., & Giovanelli, L. (2007). Standardization of PSA measures: A reappraisal and an experience with WHO calibration of Beckman Coulter Access Hybritech total and free PSA. *The International Journal of Biological Markers, 22*(4), 295–301. https://doi.org/10.5301/jbm.2008.220

Wassersug, R. J., & Fox, I. N. (2021). The molecule that makes prostate cancer easy to find shows why it will be so difficult to cure. *Journal of Men’s Health, 17*(2), 1–3. https://doi.org/10.31083/jomh.2021.014

Wender, R. C., Brawley, O. W., Fedewa, S. A., Gansler, T., & Smith, R. A. (2019). A blueprint for cancer screening and early detection: Advancing screening’s contribution to cancer control. *CA: A Cancer Journal for Clinicians, 69*(1), 50–79. https://doi.org/10.3322/caac.21550

Zhang, Z., Liang, G., Zhang, P., Zhao, Z., He, Z., Luo, F., Chen, Z., Yang, Z., Zhang, Z., Xia, T., Liu, X., Zhang, Y., & Ye, W. (2021). China county-based prostate specific antigen screening for prostate cancer and a cost-effective analysis. *Translational Andrology and Urology, 10*(10), 3787–3799. https://doi.org/10.21037/tau-21-779