UNIVERSAL COVERING CALABI-YAU MANIFOLDS OF THE HILBERT SCHEMES OF \(n \) POINTS OF ENRIQUES SURFACES

TARO HAYASHI

Abstract. The purpose of this paper is to investigate the Hilbert scheme of \(n \) points of an Enriques surface from the following three points of view: (i) the relationship between the small deformation of the Hilbert scheme of \(n \) points of an Enriques surface and that of its universal cover (Theorem 1.1), (ii) the natural automorphisms of the Hilbert scheme of \(n \) points of an Enriques surface (Theorem 1.4), and (iii) the number of distinct Hilbert schemes of \(n \) points of Enriques surfaces, which has the same universal covering space (Theorem 1.7).

Key words. Calabi-Yau manifold, Enriques surface, Hilbert scheme.

Mathematics Subject Classification. Primary 14J32; Secondary 14J28.

1. Introduction. Throughout this paper, we work over \(\mathbb{C} \), and \(n \) is an integer such that \(n \geq 2 \). A K3 surface \(K \) is a compact complex surface with \(\omega_K \simeq \mathcal{O}_K \) and \(H^1(K, \mathcal{O}_K) = 0 \). An Enriques surface \(E \) is a compact complex surface with \(H^1(E, \mathcal{O}_E) = 0, H^2(E, \mathcal{O}_E) = 0 \), and \(\omega_{E}^{\otimes 2} \simeq \mathcal{O}_E \). A Calabi-Yau manifold \(X \) is an \(n \)-dimensional compact kähler manifold such that it is simply connected, there is no holomorphic \(k \)-form on \(X \) for \(0 < k < n \), and there is a nowhere vanishing holomorphic \(n \)-form on \(X \). By Oguiso and Schröer [11, Theorem 3.1], the Hilbert scheme of \(n \) points of an Enriques surface \(E^{[n]} \) has a Calabi-Yau manifold \(X \) as the universal covering space of degree \(2 \). Recall that when \(n = 1 \), \(E^{[1]} \) is an Enriques surface \(E \), and \(X \) is a K3 surface.

In this paper, we study the Hilbert scheme of \(n \) points of an Enriques surface \(E^{[n]} \) from the relationship between \(E^{[n]} \) and its universal covering space \(X \) (Theorem 1.1 and 1.7) and the natural automorphisms of \(E^{[n]} \) (Theorem 1.4).

Section 2 is a preliminary section. We prepare and recall some basic facts on the Hilbert scheme of \(n \) points of a surface and show that for the universal covering space \(X = E^{[n]} \), there is a quotient singular variety \(Z \) such that \(X \) is a resolution of \(Z \) (Theorem 2.7).

In Section 3, we investigate the relationship between the small deformation of \(E^{[n]} \) and that of \(X \). When \(n = 1 \), \(E^{[1]} \) is an Enriques surface \(E \), and \(X \) is a K3 surface. An Enriques surface has a 10-dimensional deformation space and a K3 surface has a 20-dimensional deformation space. Thus the small deformation of \(X \) is much bigger than that of \(E \). For \(n \geq 2 \), by using the result of Göttsche and Soergel [7, Theorem 2] and the properties of the covering space \(X \to E^{[n]} \), we compute the dimension of the deformation space of \(X \). Consequently, we obtain Theorem 1.1 which is different from the case of \(n = 1 \):

Theorem 1.1. For \(n \geq 2 \), let \(E \) be an Enriques surface, \(E^{[n]} \) the Hilbert scheme of \(n \) points of \(E \), and \(X \) the universal covering space of \(E^{[n]} \). Then every small deformation of \(X \) is induced by that of \(E^{[n]} \).

Remark 1.2. By Fantechi [4, Theorems 0.1 and 0.3], every small deformation of \(E^{[n]} \) is induced by that of \(E \). Thus for \(n \geq 2 \), every small deformation of \(X \) is induced by that of \(E^{[n]} \).
induced by that of E.

In Section 4, we study the natural automorphisms of $E^{[n]}$.

Definition 1.3. For $n \geq 2$ and S a smooth compact surface, any automorphism $f \in \text{Aut}(S)$ induces an automorphism $f^{[n]} \in \text{Aut}(S^{[n]})$. An automorphism $g \in \text{Aut}(S^{[n]})$ is called natural if there is an automorphism $f \in \text{Aut}(S)$ such that $g = f^{[n]}$.

When S is a $K3$ surface, the natural automorphisms of $S^{[n]}$ were studied by Boissière and Sarti [3]. They showed that an automorphism of $S^{[n]}$ is natural if and only if it preserves the exceptional divisor of the Hilbert-Chow morphism [3, Theorem 1]. We obtain Theorem 1.4 which is similar to [3, Theorem 1]:

Theorem 1.4. For $n \geq 2$, let E be an Enriques surface, and D the exceptional divisor of the Hilbert-Chow morphism $\pi_E : E^{[n]} \to E^{(n)}$. An automorphism f of $E^{[n]}$ is natural if and only if $f(D) = D$.

In Section 5, we compute the number of distinct Enriques surface type quotients of X for a fixed X.

Definition 1.5. For $n \geq 1$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. A variety Y is called an Enriques surface type quotient of X if there is an Enriques surface E' and a free involution τ of X such that $Y \simeq E'^{[n]}$ and $E'^{[n]} \simeq X/\langle \tau \rangle$. Here we call two Enriques surface type quotients of X distinct if they are not isomorphic to each other.

Recall that when $n = 1$, $E^{[1]}$ is an Enriques surface E and X is a $K3$ surface. In [12, Theorem 0.1], Ohashi showed the following theorem:

Theorem 1.6. For any nonnegative integer l, there exists a $K3$ surface with exactly 2^{2l+10} distinct Enriques quotients. In particular, there does not exist a universal bound for the number of distinct Enriques quotients of a $K3$ surface.

We obtain Theorem 1.7 which is different from Theorem 1.6 in the sense of the Enriques surface type quotient:

Theorem 1.7. For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. Then the number of distinct Enriques surface type quotients of X is one.

Remark 1.8. When $n = 2$, we do not count the number of distinct Enriques surface type quotients of X. We compute the Hodge numbers of the universal covering space X of $E^{[2]}$ (Appendix A).

In Proposition 5.2, we show that for $n \geq 3$, the covering involution of $\pi : X \to E^{[n]}$ acts on $H^2(X, \mathbb{C})$ as the identity. In Proposition 5.5, by using Theorem 2.7 and 1.4, we show that for $n \geq 2$, if an automorphism φ of X acts on $H^2(X, \mathbb{C})$ as the identity, then φ is a lift of a natural automorphism of $E^{[n]}$. In Proposition 5.9, by using Proposition 5.5 and checking the action to $H^1(X, \Omega_X^{2n-1})$, we classify involutions of X which act on $H^2(X, \mathbb{C})$ as the identity. We prove Theorem 1.7 using those results.

In addition, let Y be a smooth compact Kähler surface. For a line bundle L on Y, by using the natural map $\text{Pic}(Y) \to \text{Pic}(Y^{[n]}))$, $L \mapsto L_n$, we put

$$h^{p,q}(Y^{[n]}, L_n) := \dim_{\mathbb{C}} H^q(Y^{[n]}, \Omega_{Y^{[n]}}^p \otimes L_n),$$
\[h^{p,q}(Y, L) := \dim \mathbb{C}H^q(Y, \Omega_Y^p \otimes L), \]

\[A := \sum_{n,p,q=0}^{\infty} h^{p,q}(Y[n], L_n) x^p y^q t^n, \]

\[B := \prod_{k=1}^{\infty} \prod_{p,q=0}^{2} \left(\frac{1}{1 - (-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k} \right)^{(-1)^{p+q} h^{p,q}(Y, L)}. \]

In [2, Conjecture 1], S. Boissière conjectured that

\[A = B. \]

In the proof of Theorem 1.1, we obtain the counterexample to this conjecture for \(Y \) an Enriques surface and \(L = \Omega_Y^2 \). See Appendix B for details.

Acknowledgements. I would like to express my thanks to Professor Keiji Oguiso for his advice and encouragement and the referees for a very careful reading and many helpful suggestions, especially, an improvement of the proof of Proposition 3.1 and the counterexample to the conjecture in [2, Conjecture 1].

2. Preliminaries. Let \(S \) be a nonsingular surface, \(S[n] \) the Hilbert scheme of \(n \) points of \(S \), \(\pi_S : S[n] \to S^{(n)} \) the Hilbert-Chow morphism, and \(p_S : S^n \to S^{(n)} \) the natural projection. We denote the exceptional divisor of \(\pi_S \) by \(D \). By Fogarty [5, Theorem 2.4], \(S[n] \) is smooth of \(\dim \mathbb{C}S[n] = 2n \).

Let \(\Delta^n \) be the set of \(n \)-uples \((x_1, \ldots, x_n) \in S^n\) with at least two \(x_i \)'s equal, \(S^n_s \) the set of \(n \)-uples \((x_1, \ldots, x_n) \in S^n\) with at most two \(x_i \)'s equal. We put

\[S_s^{(n)} := p_S(S^n_s), \]
\[\Delta^{(n)} := p_S(\Delta^n), \]
\[S_s^{[n]} := \pi_S^{-1}(S_s^{(n)}), \]
\[\Delta_s^{(n)} := \Delta^n \cap S_s^{(n)}, \]
\[\Delta_s^{(n)} := p_S(\Delta_s^{(n)}), \] and

\[F := S[n] \setminus S_s^{[n]} . \]

When \(n = 2 \), \(S_s^2 = S^2 \), \(F = \emptyset \) and \(\text{Blow}_{\Delta\Delta^2} S^n_s/S_n \simeq S^{[2]} \). For \(n \geq 3 \), we have \(\text{Blow}_{\Delta_2} S_s^n/S_n \simeq S_s^n \), and \(F \) is an analytic closed subset and its codimension is 2 in \(S[n] \) by Beauville [1, page 767-768]. Here \(S_n \) is the symmetric group of degree \(n \) which acts naturally on \(S^n \) by permuting of the factors.

Let \(E \) be an Enriques surface, \(E^{(n)} \) the Hilbert scheme of \(n \) points of \(E \), and \(\pi : X \to E^{(n)} \) the universal covering space. Let \(\mu : K \to E \) be the universal covering space of \(E \) where \(K \) is a K3 surface, and \(\Lambda \) the pullback of \(\Delta^{(n)} \) by the morphism:

\[\mu^{(n)} : K^{(n)} \ni [(x_1, \ldots, x_n)] \mapsto [(\mu(x_1), \ldots, \mu(x_n))] \in E^{(n)}. \]
Then we get a 2^n-sheeted unramified covering space:

$$\mu^{(n)}|_{K^{(n)} \setminus \Lambda} : K^{(n)} \setminus \Lambda \to E^{(n)} \setminus \Delta^{(n)}.$$

Furthermore, let Γ be the pullback of Λ by the natural projection $p_K : K^n \to K^{(n)}$. Since Γ is an algebraic closed set with codimension 2, then

$$\mu^{(n)} \circ p_K : K^n \setminus \Gamma \to E^{(n)} \setminus \Delta^{(n)}$$

is the $2^n n!$-sheeted universal covering space. Since $E^{[n]} D = E^{(n)} \Delta^{(n)}$ where $D = \pi^{-1}(\Delta^{(n)})$, we regard the universal covering space

$$\mu^{(n)} \circ p_K : K^n \setminus \Gamma \to E^{[n]} D.$$

as the universal covering space of $E^{[n]} D$.

Since $\pi : X \setminus \pi^{-1}(D) \to E^{[n]} \setminus D$ is a covering space, and $\mu^{(n)} \circ p_K : K^n \setminus \Gamma \to E^{[n]} \setminus D$ is the universal covering space, there is a morphism

$$\omega : K^n \setminus \Gamma \to X \setminus \pi^{-1}(D)$$

such that $\omega : K^n \setminus \Gamma \to X \setminus \pi^{-1}(D)$ is the universal covering space and $\mu^{(n)} \circ p_K = \pi \circ \omega$:

$$K^n \setminus \Gamma \xrightarrow{\omega} X \setminus \pi^{-1}(D) \xrightarrow{\mu^{(n)} \circ p_K} E^{[n]} \setminus D.$$

We denote the covering transformation group of $\pi \circ \omega$ by

$$G := \{ g \in Aut(K^n \setminus \Gamma_K) : \pi \circ \omega \circ g = \pi \circ \omega \}.$$

Since $\deg(\mu^{(n)} \circ p_K) = 2^n n!$, the order of G is $2^n n!$. Let σ be the covering involution of $\mu : K \to E$. For

$$1 \leq k \leq n, \ 1 \leq i_1 < \cdots < i_k \leq n,$$

we define automorphisms $\sigma_{i_1 \ldots i_k}$ of K^n in the following way: for $x = (x_i)_{i=1}^{n} \in K^n$,

the j-th component of $\sigma_{i_1 \ldots i_k}(x) = \begin{cases} \sigma(x_j) & j \in \{i_1, \ldots, i_k\} \\
 x_j & j \notin \{i_1, \ldots, i_k\}, \end{cases}$

then $S_n \subset G$, and $\{\sigma_{i_1 \ldots i_k}\}_{1 \leq k \leq n, \ 1 \leq i_1 < \cdots < i_k \leq n} \subset G$. Let H be the subgroup of G generated by S_n and $\{\sigma_{ij}\}_{1 \leq i < j \leq n}$.

PROPOSITION 2.1. G is generated by S_n and $\{\sigma_{i_1 \ldots i_k}\}_{1 \leq k \leq n, \ 1 \leq i_1 < \cdots < i_k \leq n}$.

Proof. We assume that

$$s \circ t = s' \circ t'$$
for some \(s, s' \in S_n \) and \(t, t' \in \{ \sigma_{i_1 \ldots i_k} \}_{1 \leq k \leq n, 1 \leq i_1 < \ldots < i_k \leq n} \). If \(s \neq s' \), then \(s'^{-1} \circ s \neq \text{Id}_{K^n} \). We take an element \(\tilde{x} = (\tilde{x}_i)_{i=1}^n \in K^n \) with \(\tilde{x}_i \neq \tilde{x}_j \) for \(1 \leq i < j \leq n \) and \(\sigma(\tilde{x}_i) \neq \tilde{x}_i \) for \(1 \leq i \leq j \leq n \). Since \(s \circ t = s' \circ t' \), we have \(s'^{-1} \circ s(x) = t' \circ t^{-1}(x) \). Thus for some \(i \) where \(1 \leq i \leq n \),

\[
\sigma(\tilde{x}_i) \in \{ \tilde{x}_j \}_{j=1}^n.
\]

This contradicts the definition of \(\tilde{x} \). Therefore we get \(s = s' \) and \(t = t' \). Since \(|S_n| = n! \), \(\{ \sigma_{i_1 \ldots i_k} \}_{1 \leq k \leq n, 1 \leq i_1 < \ldots < i_k \leq n} = 2^n \), and \(|G| = 2^n n! \), \(G \) is generated by \(S_n \) and \(\{ \sigma_{i_1 \ldots i_k} \}_{1 \leq k \leq n, 1 \leq i_1 < \ldots < i_k \leq n} \).

Proposition 2.2. \(|H| = 2^{n-1} n!\).

Proof. For \(s \in S_n \) and \(\sigma_{j_1 \ldots j_l} \in \{ \sigma_{i_1 \ldots i_k} \}_{1 \leq k \leq n, 1 \leq i_1 < \ldots < i_k \leq n} \), there are positive numbers \(u_1, \ldots, u_k \) such that

\[
\{ u_1, \ldots, u_k \} = \{ s^{-1}(j_1), \ldots, s^{-1}(j_l) \}, \quad \text{and} \quad u_1 \cdots < u_k.
\]

Then we get \(\sigma_{j_1 \ldots j_l} \circ s = s \circ \sigma_{u_1 \ldots u_k} \). For arbitrary \(j, (i, j) \circ i \circ (i, j) = \sigma_j \). Since \(H \) is generated by \(S_n \) and \(\{ \sigma_{ij} \}_{1 \leq i < j \leq n} \), from Proposition 2.1 we obtain \(|G/H| = 2^n = 2^n n!\).

Recall that \(\mu : K \to E \) is the universal covering and \(\sigma \) is the covering involution of \(\mu \). We put

\[
K_{\mu}^n := (\mu^n)^{-1}(E^n),
\]

where \(\mu^n : K^n \ni (x_i)_{i=1}^n \to (\mu(x_i))_{i=1}^n \in E^n \),

\[
T_{ij} := \{ (x_i)_{i=1}^n \in K_{\mu}^n : \sigma(x_i) = x_j \},
\]

\[
U_{ij} := \{ (x_i)_{i=1}^n \in K_{\mu}^n : x_i = x_j \},
\]

\[
T := \bigcup_{1 \leq i \leq j \leq n} T_{i,j}, \quad \text{and} \quad U := \bigcup_{1 \leq i < j \leq n} U_{ij}.
\]

When \(n = 2 \), \(K_{\mu}^2 = K^2 \), \(U = \Delta^2 \), and \(T = \{(x, y) \in K^2 : \sigma(x) = y \} \). By the definition of \(K_{\mu}^n \), \(H \) acts on \(K_{\mu}^n \). For an element \(\tilde{x} := (\tilde{x}_i)_{i=1}^n \in U \cap T \), some \(i, j, k, l \) with \(k \neq l \) such that \(\sigma(\tilde{x}_i) = \tilde{x}_j \) and \(\tilde{x}_k = \tilde{x}_l \). Since \(\sigma \) does not have fixed points. Thus \(\tilde{x}_i \neq \tilde{x}_j \). Therefore \(\mu^n(\tilde{x}) \notin E^n \). This is a contradiction. We obtain \(T \cap U = \emptyset \).

Lemma 2.3. For \(t \in H \) and \(1 \leq i < j \leq n \), if \(t \in H \) has a fixed point on \(U_{ij} \), then \(t = (i, j) \) or \(t = \text{id}_{K^n} \).

Proof. Let \(t \in H \) be an element of \(H \) where there is an element \(\tilde{x} = (\tilde{x}_i)_{i=1}^n \in U_{ij} \) such that \(t(\tilde{x}) = \tilde{x} \). By Proposition 2.1, for \(t \in H \), there are \(\sigma_{i_1 \ldots i_k} \in \{ \sigma_{i_1 \ldots i_k} \}_{1 \leq k \leq n, 1 \leq i_1 < \ldots < i_k \leq n} \) and \((j_1, \ldots, j_l) \in S_n \) such that

\[
t = (j_1, \ldots, j_l) \circ \sigma_{i_1 \ldots i_k}.
\]
From the definition of U_{ij}, for $(x_l)_{l=1}^{n} \in U_{ij}$,
\[
\{x_1, \ldots, x_n\} \cap \{\sigma(x_1), \ldots, \sigma(x_n)\} = \emptyset.
\]
Suppose $\sigma_{i_1 \ldots i_k} \neq \text{id}_{K^n}$. Since $t(\bar{x}) = \bar{x}$, we have
\[
\{\bar{x}_1, \ldots, \bar{x}_n\} \cap \{\sigma(\bar{x}_1), \ldots, \sigma(\bar{x}_n)\} \neq \emptyset.
\]
This is a contradiction. Thus we have $t = (j_1, \ldots, j_l)$. Similarly from the definition of U_{ij}, for $(x_l)_{l=1}^{n} \in U_{ij}$, if $x_s = x_t$ $(1 \leq s < t \leq n)$, then $s = i$ and $t = j$. Thus we have $t = (i, j)$ or $t = \text{id}_{K^n}$. \(\Box\)

Lemma 2.4. For $t \in H$ and $1 \leq i < j \leq n$, if $t \in H$ has a fixed point on T_{ij}, then $t = \sigma_{i,j} \circ (i, j)$ or $t = \text{id}_{K^n}$.

Proof. Let $t \in H$ be an element of H where there is an element $\tilde{x} = (\tilde{x}_i)_{i=1}^n \in T_{ij}$ such that $t(\tilde{x}) = \tilde{x}$. By Proposition 2.1, for $t \in H$, there are $\sigma_{i_1 \ldots i_k} \in \{\sigma_{i_1 \ldots i_k}\} \leq k \leq n$, $1 \leq i_1 < \ldots < i_k \leq n$ and $(j_1, \ldots, j_l) \in S_n$ such that
\[
t = (j_1 \ldots j_l) \circ \sigma_{i_1 \ldots i_k}.
\]
Since $(j, j + 1) \circ \sigma_{i,j} \circ (j, j + 1) : U_{ij} \to T_{ij}$ is an isomorphism, and by Lemma 2.3, we have
\[
(j, j + 1) \circ \sigma_{i,j} \circ (j, j + 1) \circ t \circ (j, j + 1) \circ \sigma_{i,j} \circ (j, j + 1) = (i, j) \text{ or } \text{id}_{K^n}.
\]

If $(j, j + 1) \circ \sigma_{i,j} \circ (j, j + 1) \circ t \circ (j, j + 1) \circ \sigma_{i,j} \circ (j, j + 1) = \text{id}_{K^n}$, then $t = \text{id}_{K^n}$. If $(j, j + 1) \circ \sigma_{i,j} \circ (j, j + 1) \circ t \circ (j, j + 1) \circ \sigma_{i,j} \circ (j, j + 1) = (i, j)$, then
\[
t = (j, j + 1) \circ \sigma_{i,j} \circ (j, j + 1) \circ (i, j) \circ (j, j + 1) \circ \sigma_{i,j} \circ (j, j + 1)
= (j, j + 1) \circ \sigma_{i,j} \circ (i, j + 1) \circ \sigma_{i,j} \circ (j, j + 1)
= (j, j + 1) \circ \sigma_{i,j+1} \circ (i, j + 1) \circ (j, j + 1)
= \sigma_{i,j} \circ (i, j).
\]
Thus we have $t = \sigma_{i,j} \circ (i, j)$. \(\Box\)

From Lemma 2.3 and Lemma 2.4, the universal covering map μ induces a local isomorphism
\[
\mu_*^{[n]} : \text{Blow}_{\cup U} K_{s\mu}^n / H \to \text{Blow}_{E} E_s^n / S_n = E_*^{[n]}.
\]
Here Blow$_A B$ is the blow up of B along $A \subset B$.

Lemma 2.5. For every $x \in E_*^{[n]}$, $|\mu_*^{[n]}(x)| = 2$.

Proof. For $(x_l)_{l=1}^{n} \in \Delta^n_0 \subset E^n$ with $x_1 = x_2$, there are n elements y_1, \ldots, y_n of K such that $y_1 = y_2$ and $\mu(y_i) = x_i$ for $1 \leq i \leq n$. Then
\[
(\mu^n)^{-1}((x_l)_{l=1}^{n}) = \{y_1, \sigma(y_1)\} \times \ldots \times \{y_n, \sigma(y_n)\}.
\]
Since H is generated by S_n and $\{\sigma_{i,j}\}_{1 \leq i < j \leq n}$, for $(z_l)_{l=1}^{n} \in (\mu^n)^{-1}((x_l)_{l=1}^{n})$, if the number of i with $z_i = y_i$ is even, then
\[
(z_l)_{l=1}^{n} = \{\sigma(y_1), \sigma(y_2), y_3, \ldots, y_n\} \text{ on } K_{s\mu}^n / H,
\]
if the number of i with $z_i = y_i$ is odd, then
\[(z_i)_{i=1}^n = \{ \sigma(y_1), y_2, y_3, \ldots, y_n \} \text{ on } K^*_n/H.\]

Furthermore since $\sigma_i \not\in H$ for $1 \leq i \leq n$,
\[\{ \sigma(y_1), \sigma(y_2), y_3, \ldots, y_n \} \neq \{ \sigma(y_1), y_2, y_3, \ldots, y_n \}, \text{ on } K^*_n/H.\]

Thus for every $x \in E^*_n$, we get $| [\mu^*_n]^{-1}(x) | = 2$. ☐

Proposition 2.6. $\mu^*_n : \text{Blow}_{T \cup U} K^*_n/H \to \text{Blow}_{\Delta^2} E^*_n/S_n$ is the universal covering space, and $X \setminus \pi^{-1}(F) \simeq \text{Blow}_{T \cup U} K^*_n/H$. When $n = 2$, we have $X \simeq \text{Blow}_{T \cup U} K^2/H$.

Proof. Since μ^*_n is a local isomorphism, from Lemma 2.5 we get that μ^*_n is a covering map. Furthermore $\pi : X \setminus \pi^{-1}(F) \to E^*_n$ is the universal covering space of degree 2, $\mu^*_n : \text{Blow}_{T \cup U} K^*_n/H \to \text{Blow}_{\Delta^2} E^*_n/S_n$ is the universal covering space. By the uniqueness of the universal covering space, we have $X \setminus \pi^{-1}(F) \simeq \text{Blow}_{T \cup U} K^*_n/H$. When $n = 2$, since $E^*_2 = E^2$, $K^*_2 = K^2$ and $\text{Blow}_{\Delta^2} E^2/S_2 \simeq E^2$, we have $X \simeq \text{Blow}_{T \cup U} K^2/H$. ☐

Theorem 2.7. For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and $\pi : X \to E^{[n]}$ the universal covering space of $E^{[n]}$. Then there is a birational morphism $\varphi_X : X \to K^n/H$ such that $\varphi_X^{-1}(\Gamma/H) = \pi^{-1}(D)$.

Proof. When $n = 2$, this is proved by Proposition 2.6. From here we assume that $n \geq 3$. From Proposition 2.6, we have $X \setminus \pi^{-1}(F) \simeq \text{Blow}_{T \cup U} K^*_n/H$. Since the codimension of F is 2, there is a meromorphic f of X to K^n/H which satisfies the following commutative diagram:

\[
\begin{array}{ccc}
E^{[n]} \setminus F & \xrightarrow{\pi_E} & E^{[n]} \\
\uparrow \pi & & \downarrow \quad p_H \quad & \\
X \setminus \pi^{-1}(F) & \xrightarrow{f} & K^n/H
\end{array}
\]

where $\pi_E : E^{[n]} \to E^{[n]}$ is the Hilbert-Chow morphism, and $p_H : K^n/H \to E^{(n)}$ is the natural projection. For an ample line bundle L on $E^{(n)}$, since the natural projection $\pi^*_H : K^n/H \to E^{(n)}$ is finite, $p_H^* L$ is ample. From the above diagram, we have $\pi^*(\pi^*_E L) |_{X \setminus \pi^{-1}(F)} = f^*(p^*_H L)$. Since $\pi^{-1}(F)$ is an analytic closed subset of codimension 2 in X and $p_H^* L$ is ample, there is a holomorphism $\varphi_X \mid_{X \setminus \pi^{-1}(F)}$ such that $\varphi_X \mid_{X \setminus \pi^{-1}(F)} = f \mid_{X \setminus \pi^{-1}(F)}$. Since $f : X \setminus \pi^{-1}(D) \cong (K^n \setminus \Gamma)/H$, this is a birational morphism. ☐

3. Proof of Theorem 1.1. Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and $\pi : X \to E^{[n]}$ the universal covering space of $E^{[n]}$.

Proposition 3.1. For $n \geq 2$, we have $\dim \mathbb{C} H^1(E^{[n]}, \Omega^{2n-1}_{E^{[n]}}) = 0$.

Proof. For a smooth projective manifold S, we put
\[h^{p,q}(S) := \dim \mathbb{C} H^q(S, \Omega^p_S)\]
and
\[h(S, x, y) := \sum_{p,q} h^{p,q}(S) x^p y^q.\]
By [7, Theorem 2] and [6, page 204], we have the equation (1):

\[
\sum_{n=0}^{\infty} \sum_{p,q} h^{p,q}(E[n]) x^p y^q t^n = \prod_{k=1}^{\infty} \prod_{p,q=0}^{2} \left(\frac{1}{1 - (-1)^{p+q} x^p k^{-1} y^q k^{-1} t^k} \right) (-1)^{p+q} h^{p,q}(E).
\]

Since an Enriques surface E has Hodge numbers $h^{0,0}(E) = h^{2,2}(E) = 1$, $h^{1,0}(E) = h^{0,1}(E) = 0$, $h^{2,0}(E) = h^{0,2}(E) = 0$, and $h^{1,1}(E) = 10$, the equation (1) is

\[
\sum_{n=0}^{\infty} \sum_{p,q} h^{p,q}(E[n]) x^p y^q t^n = \prod_{k=1}^{\infty} \left(\frac{1}{1 - x^k y^k t^k} \right) \left(\frac{1}{1 - x^{k-1} y^{k-1} t^k} \right) \left(\frac{1}{1 - x^{k+1} y^{k+1} t^k} \right).
\]

It follows that

\[
h^{p,q}(E[n]) = 0 \text{ for all } p, q \text{ with } p \neq q.
\]

Thus we have $\dim_{\mathbb{C}} H^1(E[n], \Omega^{2n-1}_{E[n]}) = 0$ for $n \geq 2$. \qed

Theorem 3.2. For $n \geq 2$, let E be an Enriques surface, $E[n]$ the Hilbert scheme of n points of E, and X the universal covering space of $E[n]$. Then every small deformation of X is induced by that of $E[n]$.

Proof. In [4, Proposition 4.2 and Theorems 0.3], Fantechi showed that for a smooth projective surface with $H^0(S, T_S) = 0$ or $H^1(S, O_S) = 0$, and $H^1(S, O_S(-K_S)) = 0$, where K_S is the canonical divisor of S, then we get

\[
\dim_{\mathbb{C}} H^1(S, T_S) = \dim_{\mathbb{C}} H^1(S[n], T_{S[n]}).
\]

Since an Enriques surface E satisfies $H^0(E, T_E) = 0$ or $H^1(E, O_E) = 0$, and $H^1(E, O_E(-K_E)) = 0$, we have $\dim_{\mathbb{C}} H^1(E[n], T_{E[n]})) = 10$. Since $K_{E[n]}$ is not trivial and $2K_{E[n]}$ is trivial, we have

\[
T_{E[n]} \simeq \Omega^{2n-1}_{E[n]} \otimes K_{E[n]}.
\]

Therefore we have $\dim_{\mathbb{C}} H^1(E[n], \Omega^{2n-1}_{E[n]} \otimes K_{E[n]})) = 10$. Since K_X is trivial, then we have $T_X \simeq \Omega^{2n-1}_X$. Since $\pi : X \to E[n]$ is the covering map, we have

\[
H^k(X, \Omega^{2n-1}_X) \simeq H^k(E[n], \pi_* \Omega^{2n-1}_X).
\]

Since $X \simeq \text{Spec} O_{E[n]} \oplus O_{E[n]}(K_{E[n]})$ ([11, Theorem 3.1]), we have

\[
H^k(E[n], \pi_* \Omega^{2n-1}_X) \simeq H^k(E[n], \Omega^{2n-1}_{E[n]} \oplus (\Omega^{2n-1}_{E[n]} \otimes K_{E[n]}))).
\]

Thus

\[
H^k(X, \Omega^{2n-1}_X) \simeq H^k(E[n], \Omega^{2n-1}_{E[n]} \oplus (\Omega^{2n-1}_{E[n]} \otimes K_{E[n]}))) \simeq H^k(E[n], \Omega^{2n-1}_{E[n]} \oplus H^k(E[n], \Omega^{2n-1}_{E[n]} \otimes K_{E[n]})))
\]

Combining this with Proposition 3.1, we obtain

\[
\dim_{\mathbb{C}} H^1(X, \Omega^{2n-1}_X) = \dim_{\mathbb{C}} H^1(E[n], \Omega^{2n-1}_{E[n]} \otimes K_{E[n]})) = 10.
\]
Let \(p : \mathcal{Y} \to U \) be the universal family of \(E[n] \) and \(f : \mathcal{X} \to \mathcal{Y} \) be the universal covering space. Then \(q : \mathcal{X} \to U \) is a flat family of \(X \) where \(q := p \circ f \). Then we have a commutative diagram:

\[
\begin{array}{ccc}
T_{U,0} & \xrightarrow{\rho^*} & H^1(\mathcal{Y}_0, T_{\mathcal{Y}_0}) \\
\downarrow \rho_q & & \downarrow \pi \\
H^1(\mathcal{X}_0, T_{\mathcal{X}_0}) & \xrightarrow{\pi^*} & H^1(X, T_X).
\end{array}
\]

Since \(H^1(E[n], T_{E[n]}) \simeq H^1(X, T_X) \) by \(\pi^* \), the vertical arrow \(\tau \) is an isomorphism and

\[
\dim_{\mathbb{C}} H^1(\mathcal{X}_u, T_{\mathcal{X}_u}) = \dim_{\mathbb{C}} H^1(\mathcal{X}_u, \Omega_{\mathcal{X}_u}^{2n-1})
\]

is a constant for some neighborhood of \(0 \in U \), it follows that \(q : \mathcal{X} \to U \) is the complete family of \(\mathcal{X}_0 = X \), therefore \(q : \mathcal{X} \to U \) is the versal family of \(\mathcal{X}_0 = X \). Thus every small deformation of \(X \) is induced by that of \(E[n] \).

4. Proof of Theorem 1.4. For \(n \geq 2 \), let \(E \) be an Enriques surface, \(E[n] \) the Hilbert scheme of \(n \) points of \(E \), \(\pi : X \to E[n] \) the universal covering space of \(E[n] \), and \(D \) the exceptional divisor of the Hilbert-Chow morphism \(\pi_E : E[n] \to E(n) \). First we show that for an automorphism \(f \) of \(E[n] \), \(f(D) = D \) if and only if \(f^*(\mathcal{O}_{E[n]}(D)) = \mathcal{O}_{E[n]}(D) \) in \(H^2(E[n], \mathbb{C}) \). Next, we show Theorem 1.4.

Proposition 4.1. For any positive integer \(l \in \mathbb{N} \) we have

\[
\dim_{\mathbb{C}} H^0(E[n], \mathcal{O}_{E[n]}(lD)) = 1.
\]

Proof. Since \(D \) is effective, we obtain \(\dim_{\mathbb{C}} H^0(E[n], \mathcal{O}_{E[n]}(lD)) \geq 1 \). Since \(E[n] \setminus D \simeq E(n) \setminus \Delta(n) \), and \(\mathcal{O}_{E[n]}(lD) \simeq \mathcal{O}_{E[n]} \) on \(E[n] \setminus D \), we have

\[
(\pi_E)_*(\mathcal{O}_{E[n]}(lD)) \simeq \mathcal{O}_{E(n)} \text{ on } E(n) \setminus \Delta(n),
\]

where \(\pi_E : E[n] \to E(n) \) is the Hilbert-Chow morphism. Since the codimension of \(\Delta(n) \) is 2, and \(E(n) \) is normal, we have \(\Gamma(E(n) \setminus \Delta(n), \mathcal{O}_{E(n)}) = \Gamma(E(n), \mathcal{O}_{E(n)}) \). Since \(\mathcal{O}_{E(n)}(lD) \) is a local free sheaf, the restriction map:

\[
\Gamma(E[n], \mathcal{O}_{E[n]}(lD))) \to \Gamma(E[n] \setminus D, \mathcal{O}_{E[n]}(lD)))
\]

is injective. Thus we obtain \(\dim_{\mathbb{C}} H^0(E[n], \mathcal{O}_{E[n]}(lD)) = 1 \).

Remark 4.2. Since \(H^1(E[n], \mathcal{O}_{E[n]}) = 0 \), the map \(\text{Pic}(E[n]) \to H^2(E[n], \mathbb{C}) \) is injective. By Proposition 4.1, and \(D \) is effective, we have that for an automorphism \(\varphi \in \text{Aut}(E[n]) \), the condition \(\varphi^*(\mathcal{O}_{E[n]}(D)) = \mathcal{O}_{E[n]}(D) \) in \(H^2(E[n], \mathbb{C}) \) is equivalent to the condition \(\varphi(D) = D \).

Recall that \(\sigma \) is the covering involution of \(\mu : K \to E, \pi \circ \omega : K^n \setminus \Gamma \to E[n] \setminus D \) is the universal covering space, and \(G := \{ g \in \text{Aut}(K^n \setminus \Gamma) : \pi \circ \omega \circ g = \pi \circ \omega \} \) is the covering transformation group of \(\pi \circ \omega \).

Proposition 4.3. Let \(f \) be an automorphism of \(E[n] \setminus D \), and \(g_1, \ldots, g_n \) automorphisms of \(K \) such that \((\pi \circ \omega) \circ (g_1 \times \cdots \times g_n) = f \circ (\pi \circ \omega) \), where \((g_1 \times \cdots \times g_n) \) is the automorphism of \(K^n \). Then we have \(g_i = g_1 \) or \(g_i = g_1 \circ \sigma \) for each \(1 \leq i \leq n \). Moreover \(g_1 \circ \sigma = \sigma \circ g_1 \).
Proof. We show the first assertion by contradiction. Without loss of generality, we may assume that $g_2 \neq g_1$ and $g_2 \neq g_1 \circ \sigma$. Let h_1 and h_2 be two morphisms of K where $g_i \circ h_i = \operatorname{id}_K$ and $h_i \circ g_i = \operatorname{id}_K$ for $i = 1, 2$. We define two morphisms $H_{1,2}$ and $H_{1,2,\sigma}$ from K to K^2 by

$$H_{1,2} : K \ni x \mapsto (h_1(x), h_2(x)) \in K^2$$

$$H_{1,2,\sigma} : K \ni x \mapsto (h_1(x), \sigma \circ h_2(x)) \in K^2.$$ Let $S_\sigma := \{(x, y) : y = \sigma(x)\}$ be the subset of K^2. Since $h_1 \neq h_2$ and $h_1 \neq \sigma \circ h_2$, $H_{1,2}(\Delta^2) \cup H_{1,2,\sigma}(S_\sigma)$ do not coincide with K. Thus there is $x' \in K$ such that $H_{1,2}(x') \notin \Delta^2$ and $H_{1,2,\sigma}(x') \notin S_\sigma$. For $x' \in K$, we put $x_i := h_i(x') \in K$ for $i = 1, 2$. Then there are some elements $x_3, \ldots, x_n \in K$ such that $(x_1, \ldots, x_n) \in K^n \setminus \Gamma$. We have $g((x_1, \ldots, x_n)) \notin K^n \setminus \Gamma$ by the assumption of x_1 and x_2. It is contradiction, because g is an automorphism of $K^n \setminus \Gamma$. Thus we have $g_i = g_1$ or $g_i = g_1 \circ \sigma$ for $1 \leq i \leq n$.

We show the second assertion. Since the covering transformation group of $\pi \circ \omega$ is G, the liftings of f are given by

$$\{g \circ u : u \in G\} = \{u \circ g : u \in G\}.$$ Thus for $\sigma_1 \circ g$, there is an element $\sigma_{i_1 \ldots i_k} \circ s$ of G where $s \in S_n$ and $t \in \{\sigma_{i_1 \ldots i_k}\}_{1 \leq k \leq n, 1 \leq i_1 < \cdots < i_k \leq n}$ such that $\sigma_1 \circ g = g \circ \sigma_{i_1 \ldots i_k} \circ s$. If we think about the first component of $\sigma_1 \circ g$, we have $s = \operatorname{id}$ and $t = \sigma_1$. Therefore $g \circ \sigma_1 \circ g^{-1} = \sigma_1$, we have $\sigma \circ g_1 = g_1 \circ \sigma$. \(\blacksquare\)

Theorem 4.4. For $n \geq 2$, let E be an Enriques surface, D the exceptional divisor of the Hilbert-Chow morphism $\pi_E : E^{[n]} \rightarrow E^{(n)}$. An automorphism f of $E^{[n]}$ is natural if and only if $f(D) = D$, i.e. $f^*(\mathcal{O}_{E^{[n]}}(D)) = \mathcal{O}_{E^{[n]}}(D)$ in $H^2(E^{[n]}, \mathbb{C})$.

Proof. Let f be an automorphism of $E^{[n]}$ with $f(D) = D$. Then f induces an automorphism of $E^{[n]} \setminus D$. Since the uniqueness of the universal covering space, there is an automorphism g of $K^n \setminus \Gamma$ such that $\pi \circ \omega \circ g = f \circ \pi \circ \omega$:

$$
\begin{array}{ccc}
E^{[n]} \setminus D & \xrightarrow{f} & E^{[n]} \setminus D \\
\pi \circ \omega \downarrow & & \pi \circ \omega \\
K^n \setminus \Gamma & \xrightarrow{g} & K^n \setminus \Gamma.
\end{array}
$$

Since Γ is an analytic set of codimension 2, and K^n is projective, g can be extended to a birational automorphism of K^n. By Oguiso [10, Theorem 4.1], g is an automorphism of K^n, and there are some automorphisms $g_1, \ldots, g_n \in \operatorname{Aut}(K)$ and $s \in S_n$ such that $g = s \circ g_1 \times \cdots \times g_n$. Since $S_n \subset G$, we can assume that $g = g_1 \times \cdots \times g_n$. By Proposition 4.3, we have $g_i = g_1$ or $g_i \circ \sigma$ for $1 \leq i \leq n$ and $g_1 \circ \sigma = \sigma \circ g_1$. We denote $g_1^{[n]}$ the induced automorphism of $E^{[n]}$ given by g_1. Then $g_1^{[n]}|_{E^{[n]} \setminus D} = f|_{E^{[n]} \setminus D}$. Thus $g_1^{[n]} = f$, i.e. f is natural. The other implication is obvious. \(\blacksquare\)

5. Proof of Theorem 1.7. Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and $\pi : X \rightarrow E^{[n]}$ the universal covering space of $E^{[n]}$.

In Proposition 5.2, we shall show that for $n \geq 3$, the covering involution of $\pi : X \rightarrow E^{[n]}$ acts on $H^2(X, \mathbb{C})$ as the identity. In Proposition 5.5, by using Theorem
2.7 and 1.4, we shall show that for \(n \geq 2 \), if an automorphism \(\varphi \) of \(X \) acts on \(H^2(X, \mathbb{C}) \) as the identity, then \(\varphi \) is a lift of a natural automorphism of \(E[\nu] \). In Proposition 5.9, by using Proposition 5.5 and checking the action to \(H^1(X, \Omega_2^{2n-1}) \cong H^{2n-1,1}(X) \), we classify involutions of \(X \) which act on \(H^2(X, \mathbb{C}) \) as the identity. We prove Theorem 1.7 using those results.

Lemma 5.1. Let \(X \) be a smooth complex manifold, \(Z \subset X \) a closed submanifold whose codimension is 2, \(\tau : X_{\mathbb{Z}} \rightarrow X \) the blow up of \(X \) along \(Z \), \(E = \tau^{-1}(Z) \) the exceptional divisor, and \(h \) the first Chern class of the line bundle \(O_{X_{\mathbb{Z}}}(E) \). Then \(\tau^* : H^2(X, \mathbb{C}) \rightarrow H^2(X_{\mathbb{Z}}, \mathbb{C}) \) is injective, and

\[
H^2(X_{\mathbb{Z}}, \mathbb{C}) \simeq H^2(X, \mathbb{C}) \oplus Ch.
\]

Proof. Let \(U := X \setminus Z \) be an open set of \(X \). Then \(U \) is isomorphic to an open set \(U' = X_{\mathbb{Z}} \setminus E \) of \(X_{\mathbb{Z}} \). As \(\tau \) gives a morphism between the pair \((X_{\mathbb{Z}}, U')\) and the pair \((X, U)\), we have a morphism \(\tau^* \) between the long exact sequence of cohomology relative to these pairs:

\[
\begin{array}{cccc}
H^k(X, U, \mathbb{C}) & \rightarrow & H^k(X, \mathbb{C}) & \rightarrow & H^k(U, \mathbb{C}) & \rightarrow & H^{k+1}(X, U, \mathbb{C}) \\
\downarrow \tau_{X, U} & & \downarrow \tau_X & & \downarrow \tau_U & & \downarrow \tau_{X, U} \\
H^k(X_{\mathbb{Z}}, U', \mathbb{C}) & \rightarrow & H^k(X_{\mathbb{Z}}, \mathbb{C}) & \rightarrow & H^k(U', \mathbb{C}) & \rightarrow & H^{k+1}(X_{\mathbb{Z}}, U', \mathbb{C}).
\end{array}
\]

By Thom isomorphism, the tubular neighborhood Theorem, and Excision theorem, we have

\[
H^q(Z, \mathbb{C}) \simeq H^{q+4}(X, U, \mathbb{C}), \quad \text{and}
\]

\[
H^q(E, \mathbb{C}) \simeq H^{q+2}(X_{\mathbb{Z}}, U', \mathbb{C}).
\]

In particular, we have

\[
H^l(X, U, \mathbb{C}) = 0 \text{ for } l = 0, 1, 2, 3, \quad \text{and}
\]

\[
H^l(X_{\mathbb{Z}}, U', \mathbb{C}) = 0 \text{ for } l = 0, 1.
\]

Thus we have

\[
\begin{array}{cccc}
0 & \rightarrow & H^1(X, \mathbb{C}) & \rightarrow & H^1(U, \mathbb{C}) & \rightarrow & 0 \\
\downarrow \tau_{X, U} & & \downarrow \tau_X & & \downarrow \tau_U & & \downarrow \tau_{X, U} \\
0 & \rightarrow & H^1(X_{\mathbb{Z}}, \mathbb{C}) & \rightarrow & H^1(U', \mathbb{C}) & \rightarrow & H^0(E, \mathbb{C}),
\end{array}
\]

and

\[
\begin{array}{cccc}
0 & \rightarrow & H^2(X, \mathbb{C}) & \rightarrow & H^2(U, \mathbb{C}) & \rightarrow & 0 \\
\downarrow \tau_{X, U} & & \downarrow \tau_X & & \downarrow \tau_U & & \downarrow \tau_{X, U} \\
H^0(E, \mathbb{C}) & \rightarrow & H^2(X_{\mathbb{Z}}, \mathbb{C}) & \rightarrow & H^2(U', \mathbb{C}) & \rightarrow & H^3(X_{\mathbb{Z}}, U', \mathbb{C}).
\end{array}
\]
Since $\tau|_{U'} : U' \xrightarrow{\sim} U$, we have isomorphisms $\tau^*_v : H^k(U, \mathbb{C}) \simeq H^k(U', \mathbb{C})$. Thus we have
\[
\dim_C H^2(X_Z, \mathbb{C}) = \dim_C H^2(X, \mathbb{C}) + 1, \quad \text{and}
\]
\[
\tau^* : H^2(X, \mathbb{C}) \to H^2(X_Z, \mathbb{C}) \text{ is injective},
\]
and therefore we obtain
\[
H^2(X_Z, \mathbb{C}) \simeq H^2(X, \mathbb{C}) \oplus \mathbb{C}.
\]

PROPOSITION 5.2. Suppose $n \geq 3$. For the covering involution ρ of the universal covering space $\pi : X \to E^{[n]}$, the induced map $\rho^* : H^2(X, \mathbb{C}) \to H^2(X, \mathbb{C})$ is the identity.

Proof. Since the codimension of $\pi^{-1}(F)$ is 2, we get
\[
H^2(X, \mathbb{C}) \cong H^2(X \setminus \pi^{-1}(F), \mathbb{C}).
\]
By Proposition 2.6, $X \setminus \pi^{-1}(F) \simeq \text{Blow}_{T \cup U} K^n_{s^*} / H$.

Let $\tau : \text{Blow}_{T \cup U} K^n_{s^*} \to K^n_{s^*}$ be the blow up of $K^n_{s^*}$ along $T \cup U$,
\[
h_{ij} \text{ the first Chern class of the line bundle } \mathcal{O}_{\text{Blow}_{T \cup U} K^n_{s^*}}(\tau^{-1}(U_{ij})),
\]
and
\[
k_{ij} \text{ the first Chern class of the line bundle } \mathcal{O}_{\text{Blow}_{T \cup U} K^n_{s^*}}(\tau^{-1}(T_{ij})).
\]
By Lemma 5.1, we have
\[
H^2(\text{Blow}_{T \cup U} K^n_{s^*}, \mathbb{C}) \cong H^2(K^n, \mathbb{C}) \oplus \left(\bigoplus_{1 \leq i < j \leq n} \mathbb{C} h_{ij} \right) \oplus \left(\bigoplus_{1 \leq i < j \leq n} \mathbb{C} k_{ij} \right).
\]
Since $n \geq 3$, there is an isomorphism
\[
(j, j+1) \circ \sigma_{ij} \circ (j, j+1) : U_{ij} \xrightarrow{\sim} T_{ij}.
\]
Thus we have $\dim_C H^2(\text{Blow}_{T \cup U} K^n_{s^*} / H, \mathbb{C}) = 11$, i.e. $\dim_C H^2(X, \mathbb{C}) = 11$. Since $H^2(E^{[n]}, \mathbb{C}) = H^2(X, \mathbb{C}) \rho^*$, ρ^* is the identity.

PROPOSITION 5.3. For any positive integer $l \in \mathbb{N}$ we have
\[
\dim_C H^0(X, \mathcal{O}_X(l \pi^*(D))) = 1.
\]

Proof. From Propositin 4.1 we obtain $\dim_C H^0(X, \mathcal{O}_X(l \pi^*(D))) \geq 1$. Like the proof of Proposition 4.1, we have $\dim_C H^0(X, \mathcal{O}_X(l \pi^*(D))) = 1$. from Theorem 2.7.

REMARK 5.4. Since $H^1(X, \mathcal{O}_X) = 0$, the map $\text{Pic}(X) \to H^2(X, \mathbb{C})$ is injective. By Proposition 5.3, and $\pi^{-1}(D)$ is effective, for an automorphism $\varphi \in \text{Aut}(X)$, the condition $\varphi^*(\mathcal{O}_X(\pi^*D)) = \mathcal{O}_X(\pi^*D)$ in $H^2(X, \mathbb{C})$ is equivalent to the condition $\varphi(\pi^{-1}(D)) = \pi^{-1}(D)$.
Recall that \(\omega : K^n \setminus \Gamma \to X \setminus \pi^{-1}(D) \) is the universal covering space.

Proposition 5.5. For \(n \geq 2 \), let \(E \) be an Enriques surface, \(E^{[n]} \) the Hilbert scheme of \(n \) points of \(E \), \(\pi : X \to E^{[n]} \) the universal covering space of \(E^{[n]} \), and \(D \) the exceptional divisor of the Hilbert-Chow morphism \(\pi_E : E^{[n]} \to E^{(n)} \).

For an automorphism \(\varphi \) of \(X \) with \(f^*(\Omega^*(\pi^*D)) = \Omega^*(\pi^*D) \) in \(H^2(X, \mathbb{C}) \), there is an automorphism \(\phi \) of \(E \) such that \(\varphi \) is a lift of \(\phi^{[n]} \) where \(\phi^{[n]} \) is the natural automorphism of \(E^{[n]} \) induced by \(\phi \). Furthermore, if the order of \(\varphi \) is 2, then the order of \(\phi \) is at most 2.

Proof. Let \(\varphi \) be an automorphism of \(X \) with \(\varphi^*(\Omega^*(\pi^*D)) = \Omega^*(\pi^*D) \) in \(H^2(X, \mathbb{C}) \). By Remark 5.4, \(\varphi|_{X \setminus \pi^{-1}(D)} \) is automorphism of \(X \setminus \pi^{-1}(D) \). By the uniqueness of the universal covering space, there is an automorphism \(g \) of \(K^n \setminus \Gamma \) such that \(\varphi \circ \omega = \omega \circ g \):

\[
\begin{array}{c}
X \setminus \pi^{-1}(D)
\xrightarrow{\varphi} X \setminus \pi^{-1}(D) \\
\omega \uparrow & \uparrow \omega \\
K^n \setminus \Gamma
\xrightarrow{g} K^n \setminus \Gamma.
\end{array}
\]

Like the proof of Proposition 4.3, we can assume that there are some automorphisms \(g_i \) of \(K \) such that \(g = g_1 \times \cdots \times g_n \), for each \(1 \leq i \leq n \), \(g_i = g_1 \) or \(g_i = g_1 \circ \sigma \), and \(g_1 \circ \sigma = \sigma \circ g_1 \). Since \(g_1 \circ \sigma = \sigma \circ g_1 \), \(g_1 \) induces an automorphism \(\phi \) of \(E \). Let \(\phi^{[n]} \) be the natural automorphism of \(E^{[n]} \) induced by \(\phi \). Then we have \(\pi \circ \omega \circ g = \phi^{[n]} \circ \pi \circ \omega \):

\[
\begin{array}{c}
E^{[n]} \setminus D
\xrightarrow{\phi^{[n]}} E^{[n]} \setminus D \\
\pi \circ \omega \uparrow & \uparrow \pi \circ \omega \\
K^n \setminus \Gamma
\xrightarrow{g} K^n \setminus \Gamma.
\end{array}
\]

Since \(\varphi \circ \omega = \omega \circ g \), we have \(\phi^{[n]} \circ \pi = \pi \circ \varphi \):

\[
\begin{array}{c}
E^{[n]} \setminus D
\xrightarrow{\phi^{[n]}} E^{[n]} \setminus D \\
\pi \uparrow & \uparrow \pi \\
X \setminus \pi^{-1}(D)
\xrightarrow{\varphi} X \setminus \pi^{-1}(D).
\end{array}
\]

We assume that the order of \(\varphi \) is 2. Since \(\omega = \varphi^2 \circ \omega = \omega \circ g^2 \), we get \(g^2 \in H \). Now \(g = g_1 \times \cdots \times g_n \), for each \(1 \leq i \leq n \), \(g_i = g_1 \) or \(g_i = g_1 \circ \sigma \), and \(g_1 \circ \sigma = \sigma \circ g_1 \). Thus we have \(g_1^2 = \text{id}_K \) or \(\sigma \). By [9, Lemma 1.2], we have \(g_1^2 = \text{id}_K \). Therefore the order of \(\phi \) is at most 2.

Definition 5.6. Let \(S \) be a smooth surface. An automorphism \(\varphi \) of \(S \) is numerically trivial if the induced automorphism \(\varphi^* \) of the cohomology ring over \(\mathbb{Q} \), \(H^*(S, \mathbb{Q}) \) is the identity.

We suppose that an Enriques surface \(E \) has numerically trivial involutions. By [9, Proposition 1.1], there is just one numerically trivial involution of \(E \), denoted \(\nu \). Now \(\nu \) is a lifting of \(\nu \), one acts on \(H^0(K, \Omega^2_K) \) as the identity, and another acts on \(H^0(K, \Omega^2_K) \) as \(-\text{id}_{H^0(K, \Omega^2_K)} \), we denote by \(\nu^+ \) and \(\nu^- \), respectively. Then they satisfies \(\nu^+ = \nu^- \circ \sigma \).
Let \(\nu^{[n]} \) be the automorphism of \(E^{[n]} \) which is induced by \(\nu \). For \(\nu^{[n]} \), there are just two automorphisms of \(X \) which are liftings of \(\nu^{[n]} \), denoted \(\varsigma \) and \(\varsigma' \), respectively:

\[
\begin{array}{c}
E^{[n]} \xrightarrow{\nu^{[n]}} E^{[n]} \\
\pi \Downarrow \quad \Downarrow \pi \\
X \xrightarrow{\varsigma} X \quad X \xrightarrow{\varsigma'} X.
\end{array}
\]

Then they satisfies \(\varsigma = \varsigma' \circ \sigma \). As the proof of Proposition 5.5, each order of \(\varsigma \) and \(\varsigma' \) is 2. From here, we classify involutions acting on \(H^2(X, \mathbb{C}) \) as the identity by checking the action to \(H^{2n-1,1}(X, \mathbb{C}) \).

Lemma 5.7. \(\dim_{\mathbb{C}} H^{2n-1,1}(K^n/H, \mathbb{C}) = 10 \).

Proof. Let \(\sigma \) be the covering involution of \(\mu : K \to E \). Put

\[
H_{\pm}^{p,q}(K, \mathbb{C}) := \{ \alpha \in H^{p,q}(K, \mathbb{C}) : \sigma^*(\alpha) = \pm \alpha \}
\]

and

\[
h_{\pm}^{p,q}(K) := \dim_{\mathbb{C}} H_{\pm}^{p,q}(K, \mathbb{C}).
\]

Since \(K \) is a K3 surface, we have

\[
h^{0,0}(K) = 1, \ h^{1,0}(K) = 0, \ h^{2,0}(K) = 1, \ h^{1,1}(K) = 20,
\]

\[
h_+^{0,0}(K) = 1, \ h_+^{1,0}(K) = 0, \ h_+^{2,0}(K) = 0 \ h_+^{1,1}(K) = 10,
\]

\[
h_-^{0,0}(K) = 0, \ h_-^{1,0}(K) = 0, \ h_-^{2,0}(K) = 1, \ and \ h_-^{2,0}(K) = 10.
\]

Let

\[
\Lambda := \{(s_1, \ldots, s_n, t_1, \ldots, t_n) \in \mathbb{Z}_{\geq 0}^n : \sum_{i=1}^{n} s_i = 2n - 1, \ \sum_{j=1}^{n} t_j = 1\}.
\]

From the Künneth Theorem, we have

\[
H^{2n-1,1}(K^n, \mathbb{C}) \cong \bigoplus_{(s_1, \ldots, s_n, t_1, \ldots, t_n) \in \Lambda} \left(\bigotimes_{i=1}^{n} H^{s_i, t_i}(K, \mathbb{C}) \right).
\]

We take a base \(\alpha \) of \(H^{2,0}(K, \mathbb{C}) \) and a base \(\{ \beta_i \}_{i=1}^{20} \) of \(H^{1,1}(K, \mathbb{C}) \) such that \(\{ \beta_i \}_{i=1}^{10} \) is a base of \(H_+^{1,1}(K, \mathbb{C}) \) and \(\{ \beta_i \}_{i=11}^{20} \) is a base of \(H_-^{1,1}(K, \mathbb{C}) \). Let

\[
\tilde{\beta}_i := \bigotimes_{j=1}^{n} \epsilon_j
\]

where \(\epsilon_j = \alpha \) for \(j \neq i \) and \(\epsilon_j = \beta_i \) for \(j = i \), and

\[
\gamma_i := \bigoplus_{j=1}^{n} \tilde{\beta}_j.
\]

Then \(\{ \gamma_i \}_{i=1}^{20} \) is a base of \(H^{2n-1,1}(K^n, \mathbb{C}) \). Since \(\sigma^* \alpha = -\alpha, \ \sigma^* \beta_i = -\beta_i \) for \(1 \leq i \leq 10 \), and \(\sigma^* \beta_i = \beta_i \) for \(11 \leq i \leq 20 \), we obtain

\[
\sigma_{ij}^* \gamma_i = \gamma_i \text{ for } 1 \leq i \leq 10, \text{ and}
\]

\[
\sigma_{ij}^* \gamma_i = 0 \text{ for } 11 \leq i \leq 20.
\]
σ^1_{ij} γ_i = -γ_i for 11 ≤ i ≤ 20.

Since H^{2n-1,1}(K^n/H, C) ∼ H^{2n-1,1}(K^n, C)^H and H = ⟨S_n, {σ_{ij}}⟩_{1≤i<j≤n}, we obtain

\[H^{2n-1,1}(K^n/H, C) = \bigoplus_{i=1}^{10} \mathbb{C}γ_i. \]

Thus we get dimC H^{2n-1,1}(K^n/H, C) = 10. □

Remark 5.8. By Theorem 2.7, there is a resolution φ_X : X → K^n/H. Then φ^*_X : H^{p,q}(K^n/H, C) → H^{p,q}(X, C) is an injective (see [13]). By Lemma 5.7, φ^*_X : H^{2n-1,1}(K^n/H, C) → H^{2n-1,1}(X, C) is an isomorphism.

Recall that π ◦ ω : K^n \ Γ → E[n] \ D is the universal covering space.

Proposition 5.9. We suppose that E has a numerically trivial involution, denoted υ. Let v^n be the natural automorphism of E[n] which is induced by υ. Since the degree of π : X → E[n] is 2, there are just two involutions ζ and ζ' of X which are lifts of v^n. Then ζ and ζ' do not act on H^{2n-1,1}(X, C) as −id_{H^{2n-1,1}(X, C)}.

Proof. Since v^n(D) = D, v^n|_{E[n] \ D} is an automorphism of E[n] \ D. By the uniqueness of the universal covering space, there is an automorphism g of K^n \ Γ such that v^n ◦ π ◦ ω = π ◦ ω ◦ g:

\[\begin{array}{ccc}
E[n] \ D & x_n \rightarrow & E[n] \ D \\
\pi ◦ ω & \uparrow & \pi ◦ ω \\
K^n \ Γ & \xrightarrow{g} & K^n \ Γ.
\end{array} \]

By Proposition 4.3, there are some automorphisms g_i of K such that g = g_1 × ··· × g_n for each 1 ≤ i ≤ n, g_i = g_1 or g_i = g_1 ◦ σ, and g_1 ◦ σ = σ ◦ g_1. By Theorem 2.7, we get K^n \ Γ/H ∼ X \ π^{-1}(D). Put

\[v_{+,even} := u_1 × ··· × u_n \]

where

\[u_i = v_+ or u_i = v_- and the number of i with u_i = v_+ is even. \]

v_{+,even} is an automorphism of K^n and induces an automorphism v_{+,even} of K^n \ Γ/H. We define automorphisms v_{+,odd}, v_{-,even}, and v_{-,odd} of K^n \ Γ/H in the same way. Since σ_{ij} ∈ H for 1 ≤ i < j ≤ n, and v_+ = v_- ◦ σ, if n is odd,

\[v_{+,odd} = v_{-,even}, \ v_{-,even} = v_{-,odd}, \ and \ v_{+,odd} ≠ v_{+,even}, \]

and if n is even,

\[v_{+,odd} = v_{-,odd}, \ v_{-,even} = v_{-,even}, \ and \ v_{+,odd} ≠ v_{+,even}. \]

Since v^n ◦ π_E = π_E ◦ v^n and K^n \ Γ/H ∼ X \ π^{-1}(D), we have v^n ◦ π = π ◦ v_{+,odd} and v^n ◦ π = π ◦ v_{+,even} where π_E : E[n] → E(n) is the Hilbert-Chow morphism, and v^n is the automorphism of E(n) induced by υ. Since the degree of π is 2, we have
\[\{\varsigma, \varsigma'\} = \{\nu_{+, odd}, \nu_{+, even}\}.\] By \cite[page 386-389]{H}, there is an element \(\alpha_{\pm} \in H^{1,1}_1(K, \mathbb{C})\) such that \(\nu_{+}^*(\alpha_{\pm}) = \pm \alpha_{\pm}\). We fix a basis \(\alpha\) of \(H^{0,2}(K, \mathbb{C})\), and let

\[\tilde{\alpha}_{\pm} := \bigotimes_{j=1}^n \epsilon_j\]

where \(\epsilon_j = \alpha\) for \(j \neq i\) and \(\epsilon_j = \alpha_{\pm}\) for \(j = i\), and

\[\tilde{\alpha}_{\pm} := \bigoplus_{j=1}^n \tilde{\alpha}_{\pm}\]

Since \(K^n \setminus \Gamma/H \simeq X \setminus \pi^{-1}(D)\), and by the definition of \(\nu_{+, odd}\) and \(\nu_{+, even}\), we have

\[\nu_{+, odd}^*(\varphi_X^*(\alpha_{\pm})) = \varphi_X^*(\tilde{\alpha}_{\pm})\] and \(\nu_{+, even}^*(\varphi_X^*(\tilde{\alpha}_{\pm})) = \varphi_X^*(\tilde{\alpha}_{\pm}).\]

Thus \(\varsigma\) and \(\varsigma'\) do not act on \(H^{2n-1,1}(X, \mathbb{C})\) as \(-\text{id}_{H^{2n-1,1}(X, \mathbb{C})}\). \(\square\)

Definition 5.10. For \(n \geq 1\), let \(E\) be an Enriques surface, \(E^{[n]}\) the Hilbert scheme of \(n\) points of \(E\), and \(X\) the universal covering space of \(E^{[n]}\). A variety \(Y\) is called an Enriques surface type quotient of \(X\) if there is an Enriques surface \(E'\) and a free involution \(\tau\) of \(X\) such that \(Y \simeq E'^{[n]}\) and \(E'^{[n]} \simeq X/\langle \tau \rangle\). Here we call two Enriques surface type quotients of \(X\) distinct if they are not isomorphic to each other.

Theorem 5.11. For \(n \geq 3\), let \(E\) be an Enriques surface, \(E^{[n]}\) the Hilbert scheme of \(n\) points of \(E\), and \(X\) the universal covering space of \(E^{[n]}\). Then the number of distinct Enriques surface type quotients of \(X\) is one.

Proof. Let \(\rho\) be the covering involution of \(\pi : X \to E^{[n]}\) for \(n \geq 3\). Since for \(n \geq 3\) \(\dim_{\mathbb{C}}H^{2}(E^{[n]}, \mathbb{C}) = \dim_{\mathbb{C}}H^{2}(X, \mathbb{C}) = 11\), \(\dim_{\mathbb{C}}H^{2n-1,1}(E^{[n]}, \mathbb{C}) = 0\), and \(\dim_{\mathbb{C}}H^{2n-1,1}(X, \mathbb{C}) = 10\), we obtain that \(\rho^*\) acts on \(H^{2}(X, \mathbb{C})\) as the identity, and \(H^{2n-1,1}(X, \mathbb{C})\) as \(-\text{id}_{H^{2n-1,1}(X, \mathbb{C})}\).

Let \(\varphi\) be an involution of \(X\), which acts on \(H^{2}(X, \mathbb{C})\) as the identity and on \(H^{2n-1,1}(X, \mathbb{C})\) as \(-\text{id}_{H^{2n-1,1}(X, \mathbb{C})}\). By Proposition 5.5, for \(\varphi\), there is an automorphism \(\phi\) of \(E\) such that \(\varphi\) is a lift of \(\phi^{[n]}\) where \(\phi^{[n]}\) is the natural automorphism of \(E^{[n]}\) induced by \(\phi\). Furthermore since the order of \(\phi\) is at most 2, the order of \(\varphi\) is 2. Since \(\phi^{[n]} \circ \pi = \pi \circ \varphi\), \(\phi^{[n]}\) acts on \(H^{2}(E^{[n]}, \mathbb{C})\) as the identity. Thus \(\phi^*\) acts on \(H^{2}(E, \mathbb{C})\) as the identity. If \(E\) does not have numerically trivial automorphisms, then \(\phi = \text{id}_E\). Thus \(\varphi = \rho\).

We assume that \(\phi\) does not act on \(H^{2n-1,1}(X, \mathbb{C})\) as \(-\text{id}_{H^{2n-1,1}(X, \mathbb{C})}\). This is a contradiction. Thus \(\phi = \text{id}_E\), and we get \(\varphi = \rho\). This proves the theorem. \(\square\)

Theorem 5.12. For \(n \geq 2\), let \(\pi : X \to E^{[n]}\) be the universal covering space. For any automorphism \(\varphi\) of \(X\), if \(\varphi^*\) is acts on \(H^{*}(X, \mathbb{C}) := \bigoplus_{i=0}^{2n} H^{i}(X, \mathbb{C})\) as the identity, then \(\varphi = \text{id}_X\).

Proof. By Proposition 5.5, for \(\varphi\), there is an automorphism \(\phi\) of \(E\) such that \(\varphi\) is a lift of \(\phi^{[n]}\) where \(\phi^{[n]}\) is the natural automorphism of \(E^{[n]}\) induced by \(\phi\). Since \(\varphi^*\) acts on \(H^{2}(X, \mathbb{C})\) as the identity, \(\phi^*\) acts on \(H^{2}(E, \mathbb{C})\) as the identity. From \cite[page 386-389]{H} the order of \(\phi\) is at most 4.
If the order of ϕ is 2, by Proposition 5.9 φ does not act on $H^{2n-1,1}(X, \mathbb{C})$ as the identity. This is a contradiction.

If the order of ϕ is 4, there is an element $\alpha' \in H^{1,1}_-(K, \mathbb{C})$ such that $g_1^*(\alpha'_\pm) = \pm \sqrt{-1}\alpha'$ from [9, page 390-391]. Like the proof of Proposition 5.9, φ does not act on $H^{2n-1,1}(X, \mathbb{C})$ as the identity. This is a contradiction. Thus we have $\phi = \text{id}_E$ and $\varphi \in \{\text{id}_X, \rho\}$. Since ρ does not act on $H^{2n-1,1}(X, \mathbb{C})$ as the identity, we have $\varphi = \text{id}_X$. □

Corollary 5.13. For $n \geq 2$, let $\pi : X \to E^{[n]}$ be the universal covering space. For any two automorphisms f and g of X, if $f^* = g^*$ on $H^*(X, \mathbb{C})$, then $f = g$.

Theorem 5.14. For $n \geq 3$, let E be an Enriques surfaces, $E^{[n]}$ the Hilbert scheme of n points of E, $\pi : X \to E^{[n]}$ the universal covering space. Then there is an exact sequence:

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \text{Aut}(X) \to \text{Aut}(E^{[n]}) \to 0.$$

Proof. Let f be an automorphism f of X. We put $g = f^{-1} \circ \rho \circ f$. Since for $n \geq 3$ ρ^* acts on $H^2(X, \mathbb{C})$ as the identity and on $H^{2n-1,1}(X)$ as $-\text{id}_{H^{2n-1,1}(X)}$, we get that $g^* = \rho^*$ as automorphisms of $H^2(X, \mathbb{C}) \oplus H^{2n-1,1}(X)$. Like the proof of Theorem 5.12, we have $g = \rho$, i.e. $f \circ \rho = \rho \circ f$. Thus f induces an automorphism of $E^{[n]}$, and we have an exact sequence:

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \text{Aut}(X) \to \text{Aut}(E^{[n]}) \to 0.$$

□

6. Appendix A. We compute the Hodge number of the universal covering space X of $E^{[2]}$. Let σ be the covering involution of $\mu : K \to E$, and $\tau : \text{Blow}_{\Delta \cup T} K^2 \to K^2$ the natural map, where $T = \{(x, y) \in K^2 : y = \sigma(x)\}$ and $\Delta = \{(x, x) \in K^2\}$. By Proposition 2.6, we have

$$X \simeq \text{Blow}_{\Delta \cup T} K^2 / H.$$

We put

$$D_\Delta := \tau^{-1}(\Delta) \quad \text{and} \quad D_T := \tau^{-1}(T).$$

For two inclusions

$$j_{D_\Delta} : D_\Delta \hookrightarrow \text{Blow}_{\Delta \cup T} K^2, \quad \text{and}$$

$$j_{D_T} : D_T \hookrightarrow \text{Blow}_{\Delta \cup T} K^2,$$

let j_{*D_Δ} be the Gysin morphism

$$j_{*D_\Delta} : H^p(D_\Delta, \mathbb{C}) \to H^{p+2}(\text{Blow}_{\Delta \cup T} K^2, \mathbb{C}),$$

and

$$j_{*D_T} : H^p(D_T, \mathbb{C}) \to H^{p+2}(\text{Blow}_{\Delta \cup T} K^2, \mathbb{C}),$$

the Gysin morphism
From \(K\sigma \in H\beta \in H^{k-2}(\Delta, \mathbb{C}) \oplus H^{k-2}(T, \mathbb{C}) \oplus H^{k}(\text{Blow}_{\Delta UT}K^{2}, \mathbb{C}).\) From [14, Theorem 7.31], we have isomorphisms of Hodge structures by \(\psi:\)

\[
H^{k}(K^{2}, \mathbb{C}) \oplus H^{k-2}(\Delta, \mathbb{C}) \oplus H^{k-2}(T, \mathbb{C}) \simeq H^{k}(\text{Blow}_{\Delta UT}K^{2}, \mathbb{C}).
\]

Furthermore, for automorphism \(f\) of \(K\), let \(\bar{f}\) (resp. \(\bar{f}_{\sigma}\)) be the automorphism of \(\text{Blow}_{\Delta UT}K^{2}\) which is induced by \(f \times f\) (resp. \(f \times (f \circ \sigma)\)). \(f_{\Delta}\) is the automorphism of \(\Delta\) which is induced by \(f \times f\), \(f_{T}\) the automorphism of \(T\) which is induced by \(f \times f\), and \(\bar{f}\) the isomorphism from \(T\) to \(\Delta\) which is induced by \(f \times (f \circ \sigma)\). For \(\alpha \in H^{*}(K^{2}, \mathbb{C}), \beta \in H^{*}(\Delta, \mathbb{C}), \) and \(\gamma \in H^{*}(T, \mathbb{C})\), we obtain

\[
\bar{f}^{*}(\tau^{*}\alpha) = \tau^{*}((f \times f)^{*}\alpha),
\]

\[
\bar{f}^{*}(j_{*}D_{\Delta} \circ \tau|_{D_{\Delta}} \beta) = j_{*}D_{\Delta} \circ \tau|_{D_{\Delta}}(f_{\Delta}^{*}\beta),
\]

\[
\bar{f}^{*}(j_{*}D_{T} \circ \tau|_{D_{T}} \gamma) = j_{*}D_{T} \circ \tau|_{D_{T}}(f_{T}^{*}\gamma),
\]

\[
\bar{f}_{\sigma}^{*}(\tau^{*}\alpha) = \tau^{*}((f \times (f \circ \sigma)^{*}\alpha),
\]

\[
\bar{f}_{\sigma}^{*}(j_{*}D_{\Delta} \circ \tau|_{D_{\Delta}} \beta) = j_{*}D_{T} \circ \tau|_{D_{T}}(f_{\sigma}^{*}\beta),
\]
in \(H^{*}(\text{Blow}_{\Delta UT}K^{2}, \mathbb{C}).\)

Theorem 6.1. For the universal covering space \(\pi: X \rightarrow E^{[2]}\), we have \(h^{0,0}(X) = 1, h^{1,0}(X) = 0, h^{2,0}(X) = 0, h^{1,1}(X) = 12, h^{3,0}(X) = 0, h^{2,1}(X) = 0, h^{4,0}(X) = 1, h^{3,1}(X) = 10, \) and \(h^{2,2}(X) = 131.\)

Proof. Since \(X \simeq \text{Blow}_{\Delta UT}K^{2}/H\), we have

\[
h^{p,q}(X) = \dim_{\mathbb{C}}\{\alpha \in H^{p,q}(\text{Blow}_{\Delta UT}K^{2}, \mathbb{C}) : h^{*}\alpha = \alpha \text{ for } h \in H\}.
\]

Let \(\sigma\) be the covering involution of \(\mu: K \rightarrow E\). We put

\[
H^{p,q}_{\pm}(K, \mathbb{C}) := \{\alpha \in H^{p,q}(K, \mathbb{C}) : \sigma^{*}(\alpha) = \pm \alpha\}
\]

and

\[
h^{p,q}_{\pm}(K) := \dim_{\mathbb{C}}H^{p,q}_{\pm}(K, \mathbb{C}).
\]

From \(E = K/\langle \sigma \rangle\), we have

\[
H^{p,q}(E, \mathbb{C}) \simeq H^{p,q}_{+}(K, \mathbb{C}).
\]

Since \(K\) is a K3 surface, we have

\[
h^{0,0}(K) = 1, h^{1,0}(K) = 0, h^{2,0}(K) = 1, \text{ and } h^{1,1}(K) = 20, \text{ and}
\]

\[
h^{0,0}_{+}(K) = 1, h^{1,0}_{+}(K) = 0, h^{2,0}_{+}(K) = 0, \text{ and } h^{1,1}_{+}(K) = 10, \text{ and}
\]

\[
h^{0,0}_{-}(K) = 0, h^{1,0}_{-}(K) = 0, h^{2,0}_{-}(K) = 1, \text{ and } h^{2,0}_{-}(K) = 10.
\]
Recall that H is generated by S_2 and $\sigma_{1,2}$. Since $\sigma \times \sigma(\Delta) = \Delta$ and $\sigma \times \sigma(T) = T$, from $E = K/\langle \sigma \rangle$ we have $\Delta/H \simeq E$ and $T/H \simeq E$. Thus we have

$$h^{0,0}(\Delta/H) = 1, h^{1,0}(\Delta/H) = 0, h^{2,0}(\Delta/H) = 0, h^{1,1}(\Delta/H) = 10,$$

$$h^{0,0}(T/H) = 1, h^{1,0}(T/H) = 0, h^{2,0}(T/H) = 0, \text{ and } h^{1,1}(T/H) = 10.$$

From the Künneth Theorem, we have

$$H^{p,q}(K^2, \mathbb{C}) \simeq \bigoplus_{s+u=p,t+v=q} H^{s,t}(K, \mathbb{C}) \otimes H^{u,v}(K, \mathbb{C}),$$

and

$$H^{p,q}(K^2/H, \mathbb{C}) \simeq \{ \alpha \in H^{p,q}(K^2, \mathbb{C}) : s^\ast(\alpha) = \alpha \text{ for } s \in S_2 \text{ and } \sigma_{1,2}^\ast(\alpha) = \alpha \}.$$

Thus we obtain

$$h^{0,0}(K^2/H) = 1, h^{1,0}(K^2/H) = 0, h^{2,0}(K^2/H) = 0, h^{1,1}(K^2/H) = 10,$$

$$h^{3,0}(K^2/H) = 0, h^{2,1}(K^2/H) = 0, h^{4,0}(K^2/H) = 1,$$

$$h^{3,1}(K^2/H) = 10, \text{ and } h^{2,2}(K^2/H) = 111.$$

We fix a basis β of $H^{2,0}(K, \mathbb{C})$ and a basis $\{\gamma_i\}_{i=1}^{10}$ of $H^{1,1}(K, \mathbb{C})$, then we have

$$H^{3,1}(K^2/H, \mathbb{C}) \simeq \bigoplus_{i=1}^{10} \mathbb{C}(\beta \otimes \gamma_i + \gamma_i \otimes \beta).$$

By the above equation, we have

$$h^{0,0}(\text{Blow}_{\Delta \cup T} K^2/H) = 1, h^{1,0}(\text{Blow}_{\Delta \cup T} K^2/H) = 0,$$

$$h^{2,0}(\text{Blow}_{\Delta \cup T} K^2/H) = 0, h^{1,1}(\text{Blow}_{\Delta \cup T} K^2/H) = 12,$$

$$h^{3,0}(\text{Blow}_{\Delta \cup T} K^2/H) = 0, h^{2,1}(\text{Blow}_{\Delta \cup T} K^2/H) = 0,$$

$$h^{4,0}(\text{Blow}_{\Delta \cup T} K^2/H) = 1, h^{3,1}(\text{Blow}_{\Delta \cup T} K^2/H) = 10, \text{ and }$$

$$h^{2,2}(\text{Blow}_{\Delta \cup T} K^2/H) = 131.$$

Thus we obtain $h^{0,0}(X) = 1, h^{1,0}(X) = 0, h^{2,0}(X) = 0, h^{1,1}(X) = 12, h^{3,0}(X) = 0, h^{2,1}(X) = 0, h^{4,0}(X) = 1, h^{3,1}(X) = 10, \text{ and } h^{2,2}(X) = 131.$
7. Appendix B. Now we show that the conjecture in [2, Conjecture 1] is not established for Y an Enriques surface and $L = \Omega^2_Y$.

Let Y be a smooth compact Kähler surface. Recall that $Y^{[n]}$ is the Hilbert scheme of n points of Y, $\pi_Y : Y^{[n]} \to Y^{(n)}$ the Hilbert-Chow morphism, and $p_Y : Y^n \to Y^{(n)}$ the natural projection. For a line bundle L on Y, there is a unique line bundle L on $Y^{(n)}$ such that $p^*_Y L = \bigotimes_{i=1}^n p^*_i L$. By using pull back we have the natural map

$$\text{Pic}(Y) \to \text{Pic}(Y^{[n]}), \quad L \mapsto L_n := \pi^*_Y L,$$

we put

$$h^{p,q}(Y^{[n]}, L_n) := \dim_{\mathbb{C}} H^q(Y^{[n]}, \Omega^p_{Y^{[n]}} \otimes L_n),$$

$$h^{p,q}(Y, L) := \dim_{\mathbb{C}} H^q(Y, \Omega^p_Y \otimes L),$$

$$A := \sum_{n,p,q=0}^\infty h^{p,q}(Y^{[n]}, L_n) x^p y^q t^n, \quad \text{and}$$

$$B := \prod_{k=1}^2 \prod_{p,q=0}^2 \left(\frac{1}{1 - (-1)^{p+q} x^p y^q k^k} \right) (-1)^{p+q} h^{p,q}(Y, L).$$

Then in [2, Conjecture 1] S. Boissière conjectured that

$$A = B.$$

For Y an Enriques surface and $L = \Omega^2_Y$, as in the proof on Theorem 3.2 and the Serre duality, we have

$$h^{2n-1,1}(Y^{[n]}, (\Omega^2_Y)_n) = \dim_{\mathbb{C}} H^1(Y^{[n]}, \Omega^{2n-1}_{Y^{[n]}} \otimes \Omega^{2n}_{Y^{[n]}})$$

$$= \dim_{\mathbb{C}} H^1(Y^{[n]}, T_{Y^{[n]}})$$

$$= 10.$$

for $n \geq 2$. It follows that the coefficient of $x^3 y t^2$ of A is 10.

We show that the coefficient of $x^3 y t^2$ of B is not 10.

$$h^{0,0}(Y, \Omega^2_Y) = \dim_{\mathbb{C}} H^0(Y, \mathcal{O}_Y \otimes \Omega^2_Y) = \dim_{\mathbb{C}} H^0(Y, \Omega^2_Y) = 0.$$

$$h^{0,1}(Y, \Omega^2_Y) = \dim_{\mathbb{C}} H^1(Y, \mathcal{O}_Y \otimes \Omega^2_Y) = \dim_{\mathbb{C}} H^1(Y, \Omega^2_Y) = 0.$$

$$h^{0,2}(Y, \Omega^2_Y) = \dim_{\mathbb{C}} H^2(Y, \mathcal{O}_Y \otimes \Omega^2_Y) = \dim_{\mathbb{C}} H^2(Y, \Omega^2_Y) = 1.$$

By Serre duality, we get

$$\Omega_Y \otimes \Omega^2_Y \simeq T_Y.$$

Since Y is an Enriques surface, we have

$$h^{1,0}(Y, \Omega^2_Y) = \dim_{\mathbb{C}} H^0(Y, \Omega_Y \otimes \Omega^2_Y) = \dim_{\mathbb{C}} H^0(Y, T_Y) = 0.$$
Thus we obtain

\[h^{1,1}(Y, \Omega_Y^2) = \dim \mathbb{C} \text{H}^1(Y, \Omega_Y \otimes \Omega_Y^2) = \dim \mathbb{C} \text{H}^1(Y, T_Y) = 10. \]

\[h^{1,2}(Y, \Omega_Y^2) = \dim \mathbb{C} \text{H}^2(Y, \Omega_Y \otimes \Omega_Y^2) = \dim \mathbb{C} \text{H}^2(Y, T_Y) = 0. \]

Since \(Y \) is an Enriques surface, we obtain

\[\Omega_Y^2 \otimes \Omega_Y^2 \simeq \mathcal{O}_Y. \]

\[h^{2,0}(Y, \Omega_Y^2) = \dim \mathbb{C} \text{H}^0(Y, \Omega_Y^2 \otimes \Omega_Y^2) = \dim \mathbb{C} \text{H}^0(Y, \mathcal{O}_Y) = 1. \]

\[h^{2,1}(Y, \Omega_Y^2) = \dim \mathbb{C} \text{H}^1(Y, \Omega_Y^2 \otimes \Omega_Y^2) = \dim \mathbb{C} \text{H}^1(Y, \mathcal{O}_Y) = 0. \]

\[h^{2,2}(Y, \Omega_Y^2) = \dim \mathbb{C} \text{H}^2(Y, \Omega_Y^2 \otimes \Omega_Y^2) = \dim \mathbb{C} \text{H}^2(Y, \mathcal{O}_Y) = 0. \]

Thus we obtain

\[
B = \prod_{k=1}^{\infty} \prod_{p,q=0}^{2} \left(\frac{1}{1 - (-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k} \right) (-1)^{p+q} h^{p,q}(E, \Omega_E^2) \\
= \prod_{k=1}^{\infty} \left(\frac{1}{1 - x^{k-1} y^{k+1} t^k} \right) \left(\frac{1}{1 - x^k y^k t^k} \right)^{10} \left(\frac{1}{1 - x^{k+1} y^{k-1} t^k} \right) \\
= \prod_{k=1}^{\infty} \left(\sum_{a=0}^{\infty} (x^{k-1} y^{k+1} t^k)^a \right) \left(\sum_{b=0}^{\infty} (x^k y^k t^k)^b \right)^{10} \left(\sum_{c=0}^{\infty} (x^{k+1} y^{k-1} t^k)^c \right).
\]

Thus we have

\[
B \equiv \prod_{k=1}^{2} (1 + x^{k-1} y^{k+1} t^k + x^{2k-2} y^{2k+2} t^{2k}) \times (1 + x^k y^k t^k + x^{2k} y^{2k} t^{2k})^{10} \times \\
(1 + x^{k+1} y^{k-1} t^k + x^{2k+2} y^{2k-2} t^{2k}) \pmod{3^3} \\
\equiv \left(1 + y^2 t + y^4 t^2 \right) \times (1 + x y^3 t^2) \\
\times \left(1 + 10(xyt + x^2 y^2 t^2) + 45(xyt + x^2 y^2 t^2)^2 \right) \times (1 + x^2 y^2 t^2) \\
\times \left(1 + x^2 t + x^4 t^2 \right) \pmod{3^3} \\
\equiv \left(1 + y^2 t + (xy^3 + y^4) t^2 \right) \times \left(1 + 10 xyt + 56 x^2 y^2 t^2 \right) \times \\
\left(1 + x^2 t + (x^3 y + x^4) t^2 \right) \pmod{3^3} \\
\equiv \left(1 + (10 xyt + y^2) t + (56 x^2 y^2 + 11 xy^3 + y^4) t^2 \right) \times \\
\left(1 + x^2 t + (x^3 y + x^4) t^2 \right) \pmod{3^3} \\
\equiv 1 + (x^2 + 10 xyt + y^2) t + (x^4 + 11 x^3 y + 56 x^2 y^2 + 11 xy^3 + y^4) t^2 \pmod{3^3}.
\]

Therefore the coefficient of \(x^3 y t^2 \) of \(B \) is 11. The conjecture in [2, Conjecture 1] is not established for \(Y \) an Enriques surface and \(L = \Omega_Y^2 \).
REFERENCES

[1] A. Beauville, Variétés Kählériennes dont la première classe de Chern est nulle, J. Differential Geom., 18:4 (1983), pp. 755–782.
[2] S. Boissière, Automorphismes naturels de l’espace de Douady de points sur une surface, Canad. J. Math., 64:1 (2012), pp. 3–23.
[3] S. Boissière and A. Sarti, A note on automorphisms and birational transformations of holomorphic symplectic manifolds, Proc. Amer. Math. Soc., 140:12 (2012), pp. 4053–4062.
[4] B. Fantechi, Deformation of Hilbert schemes of points on a surface, Compositio Math., 98 (1995), pp. 205–217.
[5] J. Fogarty, Families on an Algebraic Surface, American Journal of Mathematics, 90:2 (Apr., 1968), pp. 511–521.
[6] L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann., 286 (1990), pp. 193–207.
[7] L. Göttsche and W. Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann., 296 (1993), pp. 235–245.
[8] S. Mukai, Numerically trivial involutions of Kummer type of an Enriques surface (English summary), Kyoto J. Math., 50:4 (2010), pp. 889–902.
[9] S. Mukai and Y. Namikawa, Automorphisms of Enriques surfaces which act trivially on the cohomology groups, Invent. Math., 77:3 (1984), pp. 383–397.
[10] K. Oguiso, On automorphisms of the punctual Hilbert schemes of K3 surfaces, Eur. J. Math., 2:1 (2016), pp. 246-261.
[11] K. Oguiso and S. Schröer, Enriques Manifolds, J. Reine Angew. Math., 661 (2011), pp. 215–235.
[12] H. Ohashi, On the number of Enriques quotients of a K3 surface, Publ. Res. Inst. Math. Sci., 43:1 (2007), pp. 181–200.
[13] J. Steenbrink, Mixed Hodge structures on the vanishing cohomology, in “Real and Complex Singularities”, Oslo, 1976, Sijthoff-Noordhoff, Alphen a/d Rijn, pp. 525–563 (1977).
[14] C. Voisin, Hodge Theory and Complex Algebraic Geometry, I, Cambridge Studies in Advanced Mathematics 76, Cambridge University Press, 2003.