Independent Normalization for γ-ray Strength Functions: The Shape Method

M. Wiedeking,$^{1, 2, 4}$ * M. Guttermann,3 A.C. Larsen,3 F. Zeiser,3
A. Görgen,3 S. N. Liddick,$^{4, 5}$ D. Mücher,$^{6, 7}$ S. Siem,3 and A. Spyrou$^{4, 8, 9}$

1Department of Subatomic Physics, iThemba LABS,
P.O. Box 722, Somerset West 7129, South Africa
2School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
3Department of Physics, University of Oslo, NO-0316 Oslo, Norway
4National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
5Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
6Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
7TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
8Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
9Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA

(Dated: October 30, 2020)

The Shape method, a novel approach to obtain the functional form of the γ-ray strength function (γSF) in the absence of neutron resonance spacing data, is introduced. When used in connection with the Oslo method the slope of the Nuclear Level Density (NLD) is obtained simultaneously. The foundation of the Shape method lies in the primary γ-ray transitions which preserve information on the functional form of the γSF. The Shape method has been applied to 56Fe, 92Zr, 164Dy, and 240Pu, which are representative cases for the variety of situations encountered in typical NLD and γSF studies. The comparisons of results from the Shape method to those from the Oslo method demonstrate that the functional form of the γSF is retained regardless of nuclear structure details or J^π values of the states fed by the primary transitions.

I. Introduction

The number of nuclear levels per energy interval, the nuclear level density (NLD), and the γ-ray strength function (γSF), which is a measure of the average reduced γ-ray decay probability, have received significant experimental and theoretical attention over the last decade. The necessity for reliable γSF data has compelled the International Atomic Energy Agency to establish a dedicated γSF database together with recommendations [1]. The demand for γSFs and NLDs is driven in part due to their relevance to astrophysical nucleosynthesis via capture processes [2–5]. Recent experimental results have clearly demonstrated that capture cross sections can be reliably obtained using NLDs and γSFs as input into reaction models [6–9], which are based on the Hauser-Feshbach approach [10].

Several experimental methods exist [1] to extract γSFs from experimental data, and of those the Oslo method [11] has been extensively used. The advantage of the Oslo method lies in its ability to simultaneously extract the γSF and NLD from particle-γ coincident data. The NLD and γSF are traditionally normalized by three external parameters: i) the NLD is normalized to the level densities of discrete states at low excitation energies, ii) the NLD at the neutron separation energy (S_n) is constrained to the s-wave neutron resonance spacing (D_0), and iii) the absolute value of the γSF is determined from the average total radiative width of s-wave resonances ($\langle \Gamma_0 \rangle$). The functional form of the NLD is linked to that of the γSF and can be fully constrained by normalization i) and ii) above. The γSFs extracted with the Oslo method have been shown to be reproduced using the alternative χ^2 and Ratio methods, which do not rely on external models or normalization [12–14].

Difficulties in normalizing NLD and γSF data from the Oslo method emerge for nuclei without available D_0 and/or $\langle \Gamma_0 \rangle$ values. This is the case for many nuclei A when $A - 1$ targets are difficult or even impossible to be manufactured, due to the physical or chemical properties of the isotopes and elements, respectively. The lack of D_0 and $\langle \Gamma_0 \rangle$ data present challenges for the normalization of NLDs and γSFs. In the absence of normalization data, no coherent prescription is currently available as case-specific approaches [7, 8, 15–17] do not appear to be consistently applicable. Even in cases where D_0 is known, the normalization procedure introduces a model dependence, which can lead to large uncertainties [1]. A reliable approach is highly desirable, especially since the required data needs driven by nucleosynthesis studies primarily involve nuclei for which direct measurements of capture cross sections as well as D_0 and $\langle \Gamma_0 \rangle$ values are not possible. Experimentally, γSF and NLD data for nuclei away from the line of stability are readily reachable however, in particular with recent advances in extending the Oslo method to previously inaccessible regions through the β-Oslo [7, 15, 18] and inverse-Oslo [19] methods.

In this paper, the Shape method is introduced, which is a novel and mostly model independent approach to determine the slope of NLDs and γSFs extracted with the Oslo method in the absence of measured D_0 values. We have also applied the Shape method to β-decay data

*wiedeking@tlabs.ac.za
on \(^{76}\text{Ge}\) and \(^{88}\text{Kr}\) to explore the extraction of model-independent NLDs away from stability [20]. In section II the Oslo method and the normalization for NLDs and \(\gamma\)SFs are reviewed. Section III presents the concepts and details of the Shape method, which allows for the normalization of NLDs and \(\gamma\)SFs. Section IV focuses on the Shape method analysis and results on \(^{56}\text{Fe}, {92}\text{Zr}, {164}\text{Dy}\) and \(^{240}\text{Pu}\). The discussion of results together with recommendations on the use and applicability of the Shape method is provided in section V. Summarizing remarks are made in section VI.

II. Review of the Oslo Method and Normalizations

Fermi’s golden rule [21] states that the decay rate \(\lambda_{if}\) from an initial \((i)\) state to a distribution of final \((f)\) states is given by a product of the density of final states \(\rho_f\) and the transition probability \(|\langle f | H' | i \rangle|^2\):

\[
\lambda_{if} = \frac{2\pi}{\hbar} |\langle f | H' | i \rangle|^2 \rho_f, \tag{1}
\]

where \(H'\) is the electromagnetic transition operator.

The Oslo method [11] extracts the \(\gamma\)SF and NLD simultaneously through the following procedure: States in the quasi-continuum (below the particle threshold) are typically populated with charged-particle direct and scattering reactions or following \(\beta\) decay. The \(\gamma\)-ray spectrum is unfolded with the detector response function using an iterative subtraction technique [22]. From the unfolded spectra, and with the assumption that the residual nucleus reaches a compound state, the primary \(\gamma\)-ray spectrum is obtained through the first-generation method [23]. The first-generation matrix \(P(E_i, E_f)\) is proportional to the \(\gamma\)-ray decay probability and can be factorized according to the expression that is derived from Fermi’s golden rule (details are found in App. C of Ref. [24])

\[
P(E_i, E_f) \propto \rho(E_f) T(E_f), \tag{2}
\]

where \(\rho(E_f)\) is the nuclear level density and \(T(E_f)\) is the transmission coefficient, which is independent of excitation energy \((E_i)\) and hence nuclear temperature. This follows from the generalized Brink-Axel hypothesis [25], which states that collective excitation modes built on excited states have the same properties as those built on the ground state. The hypothesis has been validated in the quasi-continuum with the Oslo method [26]. The theoretical matrix \(P_{th}(E_i, E_f)\) is given by [11]

\[
P_{th}(E_i, E_f) = \frac{\rho(E_f) T(E_f)}{\sum_{E_f} \rho(E_f) T(E_f)}, \tag{3}
\]

The \(\rho(E_f)\) and \(T(E_f)\) can be simultaneously extracted by performing a \(\chi^2\) minimization between the theoretical \(P_{th}(E_i, E_f)\) and experimental \(P(E_i, E_f)\) first-generation matrices [11].

From Eq. (3) an infinite number of solutions are obtained, and the physical solution is found by normalizing \(T(E_f)\) and \(\rho(E_f)\) to experimental data [11] with

\[
\tilde{\rho}(E_f) = A \rho(E_f) e^{\alpha E_f}, \tag{4}
\]

and

\[
\tilde{T}(E_f) = B T(E_f) e^{\alpha E_f}, \tag{5}
\]

where \(A\) and \(B\) are constants and \(\alpha\) is the common slope. The slope \(\alpha\) and constant \(A\) are determined by the NLD of the known discrete states at lower excitation energies and the total NLD at \(S_n\). The functional form of \(\rho(E_f)\) and \(T(E_f)\) is defined from the \(\chi^2\) fit to the primary \(\gamma\)-ray matrix \(P(E_i, E_f)\). For a detailed discussion and implementation of the Oslo method, see Ref. [24].

In this work, data from \(^{56}\text{Fe}\) [27], \(^{92}\text{Zr}\) [28], \(^{164}\text{Dy}\) [29], and \(^{240}\text{Pu}\) [30] have been reanalysed with the Oslo method using an intrinsic spin-distribution for the absolute normalization at \(S_n\). The \(\gamma\)SFs of those nuclei may therefore deviate slightly from results presented in previous publications. The form of the spin-distribution is assumed to follow [31]

\[
g(E, J) \approx \frac{2J + 1}{2\sigma^2(E)} \exp [- (J + 1/2)^2 / 2\sigma^2(E)], \tag{6}
\]

where \(E\) is the excitation energy, \(J\) the spin, and the spin cutoff parameter \(\sigma(E)\) is assumed to have the functional form

\[
\sigma^2(E) = \sigma_n^2 + \frac{E - E_d}{S_n - E_d} \left[\sigma^2(S_n) - \sigma_n^2 \right], \tag{7}
\]

determined by two excitation energies. At the lower excitation energy \(E = E_d\), we determine the spin cutoff parameter \(\sigma_d\) from known discrete levels. The second point at \(E = S_n\) is estimated assuming a rigid moment of inertia [32, 33]

\[
\sigma^2(S_n) = 0.0146 A^{5/3} \frac{1 + \sqrt{1 + 4aU_n}}{2a}, \tag{8}
\]

where \(A\) is the mass number, \(a\) is the NLD parameter, \(U_n = S_n - E_1\) is the intrinsic excitation energy, and \(E_1\) is the energy-shift parameter.

At \(S_n\), normalization is achieved from NLDs calculated with [11]

\[\footnote{This is an additional slope transforming \(\rho(E_f)\) and \(T(E_f)\) in the same way as for \(\tilde{\rho}(E_f)\) and \(\tilde{T}(E_f)\). Note however, that the slopes of \(\rho(E_f)\) and \(T(E_f)\), and \(\tilde{\rho}(E_f)\) and \(\tilde{T}(E_f)\) are in general different.} \]
\(\rho(S_n) = \frac{2\sigma^2(S_n)}{D_0} \frac{1}{(J + 1)c^{[2\sigma^2(S_n)]} + Jc^{[2\sigma^2(S_n)]}}. \)

The experimental \(D_0 \) value is obtained from \(\ell = 0 \) (s-wave) neutron resonance spacing data which are typically retrieved from Refs. \[34, 35\] and \(J \) is the initial spin of the target nucleus. Generally, NLDs can only be extracted to excitation energies well below \(S_n \) with the Oslo method. The absolute normalization at \(S_n \), which sensitively depends on the spin distribution, is achieved by extrapolating the NLDs using a variety of level density models, such as the back-shifted Fermi-gas \[36\], the constant temperature \[37\], or the Hartree-Fock-Bogoliubov-plus-combinatorial \[38\] models.

The absolute normalization parameter \(B \) in Eq. 5 is obtained by constraining the experimental data to \((\Gamma_{\gamma 0}) \) for s-wave resonances by \[24, 39\]

\[
(\Gamma_{\gamma 0}(S_n)) = \frac{1}{2\pi\rho(S_n, J_{\pm 1/2}, \pi_t)} \times \sum_{J_f}^{S_n} B T(E_{\gamma}) \rho(S_n - E_{\gamma}, J_f)dE_{\gamma},
\]

where \(\pi_t \) is the parity of the target nucleus in the \((n, \gamma) \) reaction, \(J_f \) and \(J_t \) are the spins of the levels in the final and target nucleus, respectively.

The essential parameters used here for the extraction of the NLDs and \(\gamma \)SFs are listed in Table I. More details on the extraction of NLDs and \(\gamma \)SFs for \(^{56}\)Fe, \(^{92}\)Zr, \(^{164}\)Dy, and \(^{240}\)Pu are discussed in Refs. \[27–30\].

The relationship between \(T(E_{\gamma}) \) and the \(\gamma \)SF \((f_{XL}(E_{\gamma})) \) with \(XL \) being the type and multipolarity of the radiation, respectively, is \[34\]

\[
T_{XL}(E_{\gamma}) = 2\pi E_{\gamma}^{2L+1} f_{XL}(E_{\gamma}).
\]

With the assumption that statistical \(\gamma \)-ray decay is dominated by dipole transitions, the total \(\gamma \)SF \((f(E_{\gamma})) \) becomes

\[
f(E_{\gamma}) = f_{E1}(E_{\gamma}) + f_{M1}(E_{\gamma}) = \frac{T(E_{\gamma})}{2\pi E_{\gamma}^3}.
\]

The values of \(D_0 \) and \((\Gamma_{\gamma 0}) \) from s-wave resonance and to a limited extent \(D_1 \) and \((\Gamma_{\gamma 1}) \) values from p-wave resonance measurements\(^2\) are generally available for nuclei which are populated through \((n, \gamma) \) reactions on stable targets. For the majority of nuclei the information required by the Oslo method to determine \(A, B, \) and \(\alpha \) has not been measured mostly due to the unavailability of targets. This led to many non-standardized approaches to estimate the values \(D_0 \) and \((\Gamma_{\gamma 0}) \) \[7, 8, 15–17\].

The development of a method with no or only very limited model dependencies, which can be systematically applied to nuclei, is of utmost importance to obtain the normalization when \(D_0 \) and \((\Gamma_{\gamma 0}) \) values are not available. A new method, the Shape method, will now be described, which provides a prescription for the normalization of the slope of the NLD and \(\gamma \)SF in the absence of \(D_0 \). Software for the Oslo and Shape (diablo.c) methods are available from Refs. \[24, 41\].

III. The Shape Method

In this section, the Shape method, which is a technique to obtain the slope of \(\gamma \)SF in the absence of measured values of resonance spacing, is presented. The method utilizes concepts from \(\gamma \)SF measurements using the average resonance proton capture approach and from the Ratio and \(\chi^2 \) methods using particle-\(\gamma \)-\(\gamma \) coincident data. These approaches are briefly summarized before we continue with a detailed description of the Shape method.

A. Average Resonance Proton Capture

Experimental data from \((p, \gamma)\) reactions have been used to deduce the \(\gamma \)SFs for several \(45 < A < 91 \) nuclei for which the proton separation energy \((S_p) \) is located below \(S_n \) \[1\]. The methodology is similar to the neutron average resonance capture approach \[42\] where several resonances are populated and combined in specific excitation-energy ranges. The use of high-resolution detectors allows for the identification of individual primary \(\gamma \)-ray transitions to low-lying levels, see for example Refs. \[43, 44\]. The relative intensities of primary transitions (corrected by \(E_{\gamma}^3 \)), which originate from a given excitation energy region and decay to low-lying levels with the same spin and parity, preserve the shape and hence the energy dependence of the \(\gamma \)SF. The proton beam energies, together with the target thicknesses, provide an unambiguous assignment of specific excitation energies. Data of primary transitions to low-lying states of different spins and parities \((J^P) \) are normalized by weighting the different contributions through the Hauser-Feshbach formalism. Regardless this normalization, the energy dependence of the \(\gamma \)SF remains completely independent of any model input.

B. Ratio and \(\chi^2 \) Methods

The Ratio method \[12\] is a model-independent approach to obtain the energy dependence of the \(\gamma \)SF from correlated particle-\(\gamma \)-\(\gamma \) events following direct reactions.

\(^2\) A similar treatment as for \(D_0 \) can be applied to p-wave neutron resonance spacing data \((D_1) \) and if available may be used to provide additional constraints.
The γ-γ coincidence is between the primary γ-ray transition, originating from the region of the quasi-continuum populated in the reaction, and the transition from low-lying discrete states, which are fed by the primary γ rays. When a discrete transition from a low-lying state is detected in coincidence with a charged particle, additional stringent requirements are applied to the primary γ ray, so that the energy sum of the discrete and primary transitions is equal to the excitation energy within the energy resolutions of the detectors. Any particle-γ transitions is equal to the excitation energy within the energy resolutions of the detectors. Any particle-γ event satisfying these conditions provides an unambiguous determination of the origin and destination of the observed primary transition. As long as the primary γ rays feed discrete states of the same J^π the shape of the γSF remains independent of model input by analogy with the (p,γ) average resonance proton capture method. The ratio R of intensities N for two different primary γ-ray energies from the same initial excitation energy E_i to discrete low-lying levels of same J^π at energies E_{i1} and E_{i2} is

$$R = \frac{f(E_{i1} - E_{i2})}{f(E_{i2} - E_{i2})} = \frac{N_{i1}(E_i)(E_i - E_{i1})^3}{N_{i2}(E_i)(E_i - E_{i1})^3}. \quad (13)$$

When the ratios from different excitation energies are compared, information on the energy dependence of the γSF is obtained as demonstrated from (d,p$\gamma\gamma$) [12], (p,p$'\gamma\gamma\gamma$) [14], ($\gamma,\gamma\gamma$) [45], and (p,$\gamma\gamma$) [46] reactions.

Data of primary γ-ray intensities from an excitation energy range to different discrete levels of the same J^π and corrected for E^3_{γ}, can also be fitted with a χ^2 minimization procedure [12–14]. The set of data from different initial excitation energies are independent of each other and following the χ^2 minimization, which combined the sets from different excitation energy bins, yields information on the shape of the γSF.

C. Shape Method

In the previous descriptions discrete γ-ray lines were studied with high-resolution germanium detectors. When the total γSF extending across larger excitation and γ-ray energy ranges is to be measured, the Oslo method with high-efficiency detectors is regularly used. In the following, we will extend the previous techniques and replace the identification of γ-ray lines from discrete levels l_j with diagonals D_j in a particle-γ matrix.

The diagonals D_j are directly related to the first-generation (or primary) $P(E_i, E_f)$ matrix provided by the Oslo method. Figure 1 illustrates the concepts of diagonals and symbols used where one may define a final excitation energy E_f fed from an initial excitation energy E_i by a γ transition with energy E_γ. This is given by $E_i(E_{\gamma}) = E_{\gamma} + E_f$ with E_f fixed and the diagonals D_j with different E_f are parallel to each other as schematically shown in Fig. 1. Here, the direct γ-ray decay from E_i to the ground state is simply given by $E_i(E_{\gamma}) = E_{\gamma}$ (within the resolutions of the detectors). The diagonals may appear in three variants containing (i) one final state with given J^π, (ii) two or more specific final states, or in case of high level density, (iii) a large number of final states (typically > 20) with a corresponding average E_f and J^π. The number of counts along a D_j relates to the γSF for a given E_γ originating from E_i. The intensities (counts) given by the content of the pixel (E_γ, E_i) for two diagonals are exploited to obtain a pair of data points which are proportional to the γSF.

In the following, we assume a symmetric parity distribution with the spin distribution $g(E_{\gamma}, J_i)$ of Eq. (6). Furthermore, we assume the population of a typical state at excitation E_i and spin J_i is given by the cross section $\sigma(E_i, J_i)$. The number of counts in a diagonal D_j at (E_γ, E_i) with one or more final J^π states included, can then be expressed as a sum of products

$$N_D \propto \sum_{[J_f]} \sum_{J_i = J_f - 1}^{J_f + 1} \sigma(E_i, J_i)g(E_i, J_i)G(E_i, E_\gamma, J_i, J_f), \quad (14)$$

where we define $[J_f]$ as the spins of the final levels within the diagonal, e.g. $[J_f] = \{1^-, 2^+, 2^-, 3^-\}$ includes the summing of four terms. The second sum is restricted to the available J^π populated by dipole transitions con-

###TABLE I. Parameters used for the extraction of NLDs and γSFs (see text for details).

Nucleus	S_o	D_o	a^r	E_{1^+}	E_d	σ_d	$\rho(S_o)$	T_{CT}	$I(\gamma)$	
56Fe	11.197	-	6.196	0.94	2.70	2.5	4.05	2870(680)a	1.35(5)	1900(600)
92Zr	8.635	514(15)a	10.4	0.66	3.0	3.0	4.50	16640(490)	0.90(2)	131(56)
164Dy	7.658	6.8(6)b	18.12	0.31	1.09	3.6	6.91	2.35(52)$\times 10^6$	0.59(2)	113(13)
287Pu	5.343	22.0(9)b	25.16	0.12	0.87	3.2	8.43	32.7(66)$\times 10^6$	0.44(3)	43(4)

aEstimated from systematics corresponding to norm-2 in Ref. [40]. b Value from [34]. c Value from [32, 33].

† The total γ-ray matrix (all γ rays in a cascade) may be utilized, as long as it is certain that the diagonals contain only primary transitions.
ncting initial and final states, which generally includes three initial spins. However, in the case of $J_f = 0$, only the $J_i = 1$ spin is included and for $J_f = 1/2$, only the $J_i = 1/2$ and $J_i = 3/2$ spins are included.

The third factor G in Eq. (14) is proportional to the γ-decay width given by

$$G(E_i, E_\gamma, J_i, J_f) \propto \int_{E_\gamma - \Delta/2}^{E_\gamma + \Delta/2} T(E_i, E'_\gamma, J_i, J_f) \delta(E_i - E'_\gamma, J_f) dE'_\gamma,$$

(15)

where Δ is the energy width of the diagonal which includes the specific final level J_f at $E_f = E_i - E_\gamma$. The δ function assures that one specific level is counted giving $\int \delta \, dE'_\gamma = 1$. With the assumption that the transmission coefficient is almost constant within this energy bin, it can be placed outside the integral with a value of $T(E_i, E_\gamma, J_i, J_f)$.

According to the generalized Brink-Axel hypothesis, the transmission coefficient $T(E_i, E_\gamma, J_i, J_f)$ is assumed to be independent of spin and excitation energy. Thus, we replace the expression for the transmission coefficient by $T(E_\gamma)$, i.e. a function only dependent of E_γ. Furthermore, if we assume the dominance of dipole transitions in the quasi-continuum region, the transmission coefficient can be replaced by the γSF through $T(E_\gamma) = 2\pi f(E_\gamma)E_\gamma^3$ from Eq. (12).

With the considerations above, Eq. (14) can be written as

$$N_D \propto f(E_\gamma)E_\gamma^3 \sum_{[J_f]} \sum_{J_i=J_f-1}^{J_i=J_f+1} \sigma(E_i, J_i)g(E_i, J_i).$$

(16)

In the following we will assume that the probability to populate a certain initial state with spin J_i at a given E_i is approximately independent of spin, i.e. $\sigma(E_i, J_i) \approx \sigma(E_i, J)$.

The Shape method applies for the same E_i but for two different diagonals D_1 and D_2, see Fig. 1. We choose diagonal D_1 to represent a lower final excitation energy E_{f1} and D_2 a higher final excitation energy E_{f2}. At the initial excitation energy E_i, the γ-ray energies are $E_{\gamma1} = E_i - E_{f1}$ and $E_{\gamma2} = E_i - E_{f2}$ for diagonals D_1 and D_2, respectively.

The strength functions at $E_{\gamma1}$ and $E_{\gamma2}$ are determined by the number of counts at the diagonals D_1 and D_2 for the same initial excitation energy E_i, using Eq. (16)

$$f(E_{\gamma1}) \propto \frac{N_{D1}}{E_{\gamma1} \sum_{J_f=J_{f1}}^{J_f=J_{f1}+1} \sum_{J_i=J_{f1}-1}^{J_i=J_{f1}+1} g(E_i, J_i)}$$

(17)

In synergy with the methods introduced above, such a pair of γSF data points is internally normalized and we can determine a γSF data-point pair for each E_i. The double sum can be omitted if the two diagonals include one final level each of the same J^π. However, such diagonals are often difficult to identify in the data, and it is more common to observe different spins for two diagonals, such as the 0^+ ground state and the first-excited 2^+ state in even-even nuclei.

Figure 2 illustrates a sewing technique that allows to connect pairs of γSF data points and is the final step of the Shape method to obtain the functional form of the γSF. In this example, we show three different pairs, each from a different E_i, marked by filled circle, square and triangle data points. The second and third γSF pairs are scaled as explained in the figure caption. In detail, this is accomplished by finding the average γ-ray energy $E_{\gamma\text{ave}}$ (location of arrow) in between the lowest and highest γSF data points of the two pairs under study. Then we use a logarithmic interpolation of the γSF data points for each pair to $E_{\gamma\text{ave}}$. The resulting sewed γSF is represented by the black line to guide the eye in panel (c) and exhibits the shape of the γSF.

IV. Shape Method Analysis and Results

In the following, when referring to discrete final levels within the diagonals, we always refer to levels in the data base from the National Nuclear Data Center (NNDC) [47]. For each application of the Shape Method we use a first-generation matrix with $\approx 30 - 40$ keV/ch
on both axes from which the number of counts are determined through integration. These are then further compressed into bins of \(\approx 120 \text{ keV/ch} \) unless otherwise noted. Detailed discussions on the comparisons of the results from the Shape and Oslo methods are deferred to Sec. V.

\section*{A. Diagonals with the same final \(J^\pi \): \(^{56}\text{Fe} \)}

We utilize data from the \(^{56}\text{Fe}(p,p'\gamma)^{56}\text{Fe} \) reaction previously presented in Refs. [27, 40], where the \(\gamma \) rays were measured with six large-volume LaBr\(_3\)(Ce) detectors from the HECTOR\(^+ \) array [48] and the charged particles with the SiRi silicon telescope [49]. Figure 3a shows the resulting \(P(E_\gamma, E_i) \) matrix of \(^{56}\text{Fe} \). Gates were set on the diagonals and correspond to the direct decays to the \(2^+ \) (diagonal \(D_1 \)) and \(2^+ \) (diagonal \(D_2 \)) levels at 847 keV and 2658 keV in \(^{56}\text{Fe} \), respectively. As the spins and parities for the two final levels are equivalent, it is reasonable to assume that the initial level density \(\rho(E_i) \) and the population-depopulation factor \(\sigma(E_i, J_i)g(E_i, J_i) \) of the initial levels that feed the final states in the diagonals are also the same. Therefore, the number of counts in the diagonals for a given \(E_i \) only needs to be corrected by the \(E_i^2 \) factor. Following the sewing steps outlined above for the pairs of intensities for each \(E_i \), the shape of the \(\gamma \)SF is obtained and compared to the results of the Oslo method in Fig. 3b.

Due to the lack of neutron-resonance spacing data for \(^{55}\text{Fe} \), as \(^{55}\text{Fe} \) is unstable, previous works have relied on systematics to obtain the slope of the NLD and \(\gamma \)SF [27, 40]. Comparing the previous results with those of the new Shape method, we can conclude that the two normalizations previously used are indeed reasonable. However, as there is only a \(\approx 30\% \) relative change in the estimated NLD at \(S_n (\rho(S_n) = 2.18(59) \text{ MeV}^{-1} \) and \(2.87(68) \text{ MeV}^{-1} \) between the two normalizations, we are not in a position to confirm which normalization is correct. If there was a more pronounced discrepancy in slope between the different normalizations, the present method may enable a discrimination between the input spin-distribution models. Although the systematics used in \(^{56}\text{Fe} \) is appropriate there is no compelling reason to assume that systematic approaches can be extended to all nuclei. Hence, if no reliable systematics can be made, such as for nuclei far away from stability, the present method, which is based on a sound foundation, clearly provides a significant constraint on the slope of the NLD and \(\gamma \)SF. The low and high-energy discrepancies observed in Fig. 3b are further explored in Sec. V.

\section*{B. Several Diagonals with different final \(J^\pi \) combinations: \(^{92}\text{Zr} \)}

Data from the (p,p') reaction populating \(^{92}\text{Zr} \) [28] were used with the \(\gamma \) rays detected in the NaI(Tl) CACTUS array [50] and the charged particles in SiRi. With \(N = 52 \), \(^{92}\text{Zr} \) is close to the magic \(N = 50 \) shell closure and is characterized by few low-lying levels. With the present experimental resolution it is possible to identify four diagonals. With the six combinations \(D_1D_2, D_1D_3, D_1D_4, D_2D_3, D_2D_4, \) and \(D_3D_4 \) one can investigate the consistency between the various \(\gamma \)SFs from the Shape and Oslo-method results.

Figure 4a shows the primary matrix with the diagonals \(D_j \) which include the following discrete states:

\begin{align*}
D_1: & \quad 0^+ (0 \text{ keV}) \\
D_2: & \quad 2^+ (934 \text{ keV}) \\
D_3: & \quad 0^+ (1383 \text{ keV}) \text{ and } 4^+ (1495 \text{ keV}) \\
D_4: & \quad 3^- (2340 \text{ keV}), 4^+ (2398 \text{ keV}), \text{ and } 5^- (2486 \text{ keV})
\end{align*}

The lower part of the matrix shows that many non-statistical \(\gamma \)-ray transitions connect discrete levels and it is important to point out that these should not be taken into account when extracting the average \(\gamma \)SF for \(^{92}\text{Zr} \). Thus, the results for the Oslo method in Fig. 4b was extracted for \(E_i > 4.5 \text{ MeV} \).

The same caution should be taken when applying the Shape method with the requirement that the final levels are well-defined states such as the ground state or first-excited states. Moreover, to maintain the statistical
properties there should be enough initial states within the energy bin at E_i that feed the levels contained by the diagonals. For 92Zr we obtain erratic fluctuations for $E_i < 5$ MeV and this data is not shown.

It is gratifying that the six extracted γSFs from the Shape method are all in rather good agreement with the functional form between each other and the one obtained with the Oslo method. Since the combination of diagonals represent a variety of final J^π values, yet they provide consistent functional forms, the spin distribution $g(E, J)$ applied in Eq. (6) with spin cutoff parameters of Table I is supported.
For rare earth nuclei the level density becomes high enough that it is difficult to identify final levels in the $P(E, E')$ matrix within the experimental resolutions. However, the known levels of 164Dy group into the ground band between 0 – 0.5 MeV and two-quasiparticle band structures around 1.1 MeV. Figure 5 illustrates the level density obtained with the Oslo method which displays these two relatively well-defined structures. This makes 164Dy a feasible case for applying the Shape method to the 164Dy(3He,3He') experimental data, measured with the CACTUS and SiRi arrays, from Refs. [29, 51, 52]. Furthermore, there are two interesting features in the previous findings of the γSF: (i) a scissors resonance at $E_\gamma = 2.83(8)$ MeV is built on the tail of the giant dipole resonance and (ii) it has been speculated if an enhancement exists around $E_\gamma = 6 – 7$ MeV due to the $E1$-pygmy resonance [29]. From the matrix in Fig. 6a we immediately recognise the diagonals corresponding to the ground and two-quasiparticle bands by inspecting the distribution of known levels. Here, diagonal D_1 includes the 0^+, 2^+, 4^+ and 6^+ levels of the ground state band in the excitation region of 0 – 0.5 MeV. Diagonal D_2 includes 14 levels in the excitation region of 0.76 – 1.39 MeV, all with known J^+ [47]. Figure 6b shows the γSF extracted with the Oslo method [29] together with the Shape method results.

It is interesting to note that the scissors resonance is rather exciting that the same information is also contained in the two diagonals used in the Shape method, resulting in a similar enhancement for $E_\gamma \sim 2 – 3$ MeV. Furthermore, the Shape method provides data up to S_n with an apparent deviation in slope at $E_\gamma \sim 5.5$ MeV which may signal the presence of a resonance located in the $E_\gamma \sim 6 – 7$ MeV region. The previous results using the Oslo method were hampered by low statistics at the highest energies, as indicated by the large uncertainties for $E_\gamma > 6.6$ MeV, and therefore did not allow for a strong statement regarding the existence of an enhancement [29].

D. Diagonals with many final levels of different J^+:

The 240Pu isotope was populated in the (d, p) reaction with a beam energy of 12 MeV and the γ rays detected with the CACTUS and charged particles with the SiRi arrays. The excitation energy range analyzed here was restricted to $E_\gamma < 4.5$ MeV due to the onset of fission; a limit much lower than the neutron separation energy of $S_n = 6.534$ MeV. Further details of the experimental set-up and considerations are given by Ref. [30] and all results presented here are based on a reanalysis of the data.

The low-spin transfer of this sub-Coulomb barrier reaction is responsible for the population of only a fraction of the total intrinsic levels. An iterative procedure was developed [30] that aims to correct for the bias introduced in the Oslo method. The populated J^+ distributions were estimated by the Green’s function transfer formalism and applied in γ-decay simulations to obtain consistent results [30, 53, 54]. In the following, we explore the possibility to apply the Shape method, even though the calculated J^+ distribution may not fulfill the assumptions on $\sigma(E_\gamma, J_i)$ specified in Sec. III. If the Shape method can be used to reliably extract the slope of the γSF, it would be significantly easier to apply it than the iterative procedure proposed in Ref. [30].

A reduced spin population may be a challenge for the Oslo method since it is not clear what effect a varying J^+ population $\sigma(E_i, J_i)$ has on the first-generation method [30, 55, 56]. Nonetheless, we will now assume that $\sigma(E_i, J_i)$ does not significantly impact the overall results of the first-generation matrix $P(E_{\gamma}, E_i)$. To account for the fact that high-spin levels are rarely populated in the sub-Coulomb barrier reaction, the level density $\rho(S_n)$ used in the decomposition of $P(E_{\gamma}, E_i)$, see Eq. (2) and Eq. (4), has to be reduced by a factor r. This factor is directly linked to the slope of the γSF through the normalization Eqs. (4) and (5), such that it can be determined by a comparison of the γSF from the Oslo and the Shape methods.

The key for an investigation with the Shape method is

FIG. 5. Level densities of 164Dy [52]. The solid line represents the NLD of known levels. The filled square symbols show the results of the Oslo method. The data points are connected to the NLD at S_n (open square) through extrapolation with the constant temperature (CT) model.
to identify two diagonals in the $P(E_i, E_f)$ matrix which include a known number of final levels with proper spin assignments. The ^{240}Pu isotope is one of the best studied nuclei in this mass region with a complete level scheme up to ≈ 1 MeV. Figure 7 shows the known levels of spin $J < 5$, which can be used to define the diagonals. The diagonal D_1 includes the first $0^+, 2^+$ and 4^+ levels with an average final excitation energy of $E_f = 62$ keV. The second diagonal D_2 has nine levels between $0.6 - 1.0$ MeV with an average energy of $E_f = 849$ keV and an average spin of $2.3\hbar$. Figure 8a shows the two diagonals chosen and the resulting γSF pairs are presented in Fig. 8b. The slope of the γSF obtained with the Shape method is in agreement to the slope obtained with the Oslo method when a reduction factor of ≈ 0.1 is applied to $\rho(S_n)$. We also display the γSF if one assumes that all spins are populated in the reaction, which displays a significantly steeper slope. The corresponding NLDs used to extract the γSFs are shown in Fig. 7.

It is difficult to make rigorous conclusions on the reduction factor r since diagonal D_2 may have missing levels. In addition, there are uncertainties at the upper limit of 1 MeV to determine which levels are included within the experimental detection resolution. Thus, the case of ^{240}Pu is meant to highlight the possibilities that may exist if reliable diagonals can be defined with high experimental resolution.

It can be seen that the resulting γSF is relatively flat between $E_i \sim 2 - 4.5$ MeV. Further investigations are needed to probe whether this feature is due to the assumptions on $\sigma(E_i, J_i)$, or whether there is a strong enough contribution of e.g. the scissors resonance between 2 and 4 MeV that leads to an almost constant tail of the γSF within the narrow E_i range considered.

V. Discussion

The shapes of the γSFs extracted with the Oslo method are well reproduced with the Shape method, in particular for excitation energies for which the total NLD of initial states is high. With reduced excitation energies discrete structures may become dominant and the concepts of γSF and NLD are no longer applicable. This situation is apparent when inspecting the γSF of ^{56}Fe in Fig. 3b where the γSF below $E_i \sim 5.5$ MeV ($E_i \sim 6.5$ MeV) exhibits significant fluctuations. The NLD at $E_i = 6$ MeV has been measured to be $\rho \sim 100$ MeV$^{-1}$ [57]. For ^{92}Zr the Shape method has been applied from $E_i = 4.5$ MeV where $\rho \sim 180$ MeV$^{-1}$ [28]. For the heavier nucleus ^{164}Dy the level density reaches $\rho \sim 800$ MeV$^{-1}$ at $E_i = 3$ MeV and for ^{240}Pu $\rho \sim 1000$ MeV$^{-1}$ at $E_i = 2.5$ MeV as evident from Figs. 5 and 7, respectively. The relatively high NLDs found in ^{164}Dy and ^{240}Pu allow for the Shape method to be applied to low enough E_i values to cover the range of the scissors resonance. It is important to emphasize that careful considerations have to be given to identify appropriate E_i regions for the Shape method to be applicable. Discrete states and/or structures may become dominant features which lie outside the statistical regime. This is particularly the case for light A nuclei or those which are located near closed shells. From our investigation, a minimum of $\rho \sim 100$ MeV$^{-1}$ appears to be appropriate, or more specifically, one should have more than ≈ 10 transitions connecting the initial and final excitation energy bins. It is nonetheless recommended that each nucleus is being investigated carefully to determine the lowest reliable E_i and hence lowest γ-ray energy to be used.
FIG. 7. Level densities of 240Pu. The solid line shows the NLD of known levels. The open squares represent the results of the Oslo method when ρ is normalized to the total level density at S_n, while the filled squares show the results when the reduced population of high-spin levels is taken into account. The reduction factor 0.1 is obtained from a comparison of the γSFs from the Oslo and the Shape method. The data points are extrapolated to the corresponding NLDs at S_n with a constant temperature (CT) model (dashed lines). Note that the error bars are less than the size of the data points.

At higher E_i, the data points from the Shape method follow the functional form of the γSFs from the Oslo method rather well. At the highest E_i, the Oslo method may underestimate the γSF due to reduced statistics whereas the Shape method remains robust in this regime. As demonstrated for the four nuclei under consideration, it is in the region of higher γ-ray energies where the slope of the γSF can be reliably obtained with the Shape method and provides the necessary constraints if alternative normalization procedures are not possible due to the absence of neutron resonance data.

Nuclei such as 56Fe, for which two low-lying discrete states of the same J^π can be separated experimentally, represent the most fundamental application of the Shape method and can be treated with the fewest assumptions and without any model input. In such cases, the NLD and cross section dependencies of primary transitions feeding the states are eliminated.

The Shape method remains applicable even when the discrete levels differ in J^π or if the states cannot be resolved experimentally. This is clearly demonstrated for 92Zr where six different combinations of final levels all yield strikingly similar functional forms of the γSF. This illustrates the robustness of the applied spin distributions and the assumption that the population cross-section is proportional to the spin distribution over the E_i ranges considered for the extraction of γSF below the particle thresholds.

The results from 164Dy further reveal that the inclusion of many final levels of widely varying J^π values or even distinctive nuclear structures still leads to an energy dependence which is in agreement with that of the γSFs from the Oslo method. The 164Dy Oslo method results show the presence of the scissors resonance. The same information is retained in both diagonals and the resonance is reproduced by the Shape method. This may imply that this resonance is a collective mode obeying the Brink-Axel hypothesis. A suspected pygmy resonance at $E_\gamma \sim 6 - 7$ MeV is apparent through the changing slope in 164Dy, while previous results were inconclusive [26], highlighting the complementary nature of the Shape method.

240Pu represents an extreme case due to the reaction proceeding below the Coulomb barrier yielding a very limited spin-distribution. This requires $\rho(S_n)$ to be modified through the Oslo method, which propagates to the normalization of the γSF, in order to reproduce the Shape method results. It is important to note, once the appropriate corrections are performed that both methods yield a similar energy dependence of the γSFs despite the selectivity of the reaction. The reduced strength at $E_\gamma \sim 3.7$ MeV from the Shape method may be indicative of a feature which depends on the population/reaction mechanism.

It is interesting to note that the results from the Shape method clearly yield very similar γSFs, regardless if the γSFs are built on different nuclear structures or J^π states of a given nucleus. This confirms the validity of the generalized Brink-Axel hypothesis, supporting previous results [26]. Another appealing aspect of the Shape method is the fact that it can be applied to the same set of experimental data as that used to extract the NLD and γSF with the Oslo method. This is highly beneficial when the Shape method is used to specifically determine the slope for the NLD and γSF from the Oslo method since it avoids unnecessary additional systematic uncertainties which would arise when performing different experiments.

VI. Summary

It has long been a challenging endeavour to estimate the slope of the γSF in the absence of neutron resonance data which is compounded by the fact that no standardized approach exists which is applicable to all nuclei. The Shape method provides a solution to the γSF normalization conundrum when D_0 values are not available. It provides a standardized approach to determine the slope of
the γSF and NLD (if extracted simultaneously through the Oslo method), which is not only universally applicable but will also provide consistency for analyses and results.

The Shape method makes use of concepts from the Average Resonance Proton Capture, Ratio, and χ^2 methods and is based on the unambiguous experimental identification of the origin and destination of primary γ-ray transitions. Through their intensities, pairs of primary transitions retain the information on the functional form of the γSF.

The Shape method has been applied to four nuclei which are representative of the various situations encountered: i) low-mass 56Fe, ii) 92Zr located in the vicinity of shell closures, iii) 164Dy with scissors and pygmy resonances, and iv) high-Z nucleus 240Pu where the reaction proceeds below the Coulomb barrier. These four nuclei further represent a variety of J^π combinations for low-lying states which are fed by the primary transitions.

In 56Fe, the primary transitions feed two well-separated and experimentally-resolved states of the same J^π, while in 92Zr some of the low-lying states cannot be resolved and are of different J^π. For 164Dy the low-lying states can only be identified through clusters of specific nuclear structures in the form of the ground and two-quasiparticle bands. The 240Pu case has an even larger number of final states which cannot be resolved experimentally. Regardless of the intricacies and details of the individual nuclei considered, the Shape method extracts functional forms of γSFs which are consistent with those from the Oslo method. This highlights the robustness of the method and, where applicable, the appropriateness of the assumptions made regarding the spin distributions. While the Shape method provides a universal prescription to determine the slope of the γSF (and for the NLD in the case of the Oslo method) in the absence of experimentally measured neutron resonance spacing it does not provide the absolute values of the γSFs when neutron resonance widths are not available. Further work is highly desirable to explore alternate approaches to determine the absolute values of γSFs.

Complementary to this work, we have also applied the Shape method to 76Ge and 88Kr for the extraction of model-independent nuclear level densities away from stability [20].

Acknowledgments

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number: 118846), by the Research Council of Norway (Grant Number: 263030), and the National Science Foundation (Grant Number: PHY 1913554). A. C. L. acknowledges funding of this research by the European Research Council through ERC-STG-2014 under grant agreement no. 637686, support from the “ChETEC” COST Action (CA16117), COST (European Cooperation in Science and Technology), and from JINA-CEE through the National Science Foundation under Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements).
[1] S. Goriely, P. Dimitriou, M. Wiedeking, T. Belgya, R. Firestone, J. Kopecky et al., Eur. Phys. J. A 55, 172 (2019).
[2] M. Arnould, S. Goriely, and K. Takahashi, Physics Reports 450, 97 (2007).
[3] M. Mumpower, R. Surman, G. McLaughlin, and A. Aprahamian, Prog. Part. Nucl. Phys. 86, 86 (2016).
[4] A. C. Larsen, A. Spyrou, S. N. Liddick, and M. Guttormsen, Prog. Part. Nucl. Phys. 107, 69 (2019).
[5] M. Arnould and S. Goriely, Prog. Part. Nucl. Phys. 112, 103766 (2020).
[6] B. V. Kheswa, M. Wiedeking, F. Giacoppo, S. Goriely, M. Guttormsen, A. C. Larsen et al., Phys. Lett. B 744, 268 (2015).
[7] A. Spyrou, S. N. Liddick, A. C. Larsen, M. Guttormsen, K. Cooper, A. C. Dombos et al., Phys. Rev. Lett. 113, 232502 (2014).
[8] A. C. Larsen, M. Guttormsen, R. Schwengner, D. L. Bleuel, S. Goriely, S. Harissopulos et al., Phys. Rev. C 93, 045810 (2016).
[9] K. L. Malatji, M. Wiedeking, S. Goriely, C. P. Brits, B. V. Kheswa, F. L. B. Garrote et al., Phys. Lett. B 791, 403 (2019).
[10] W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
[11] A. Schiller, L. Bergholt, M. Guttormsen, E. Melby, J. Rekstad, and S. Siem, Nucl. Instr. Meth. A 447, 498 (2000).
[12] M. Wiedeking, L. A. Bernstein, M. Krtička, D. L. Bleuel, J. M. Allmond, M. S. Basumia et al., Phys. Rev. Lett. 108, 162503 (2012).
[13] M. Krtička, M. Wiedeking, F. Bečvár, and S. Valenta, Phys. Rev. C 93, 054311 (2016).
[14] M. D. Jones, A. O. Macchiaveli, M. Wiedeking, L. A. Bernstein, H. L. Crawford, C. M. Campbell et al., Phys. Rev. C 97, 024327 (2018).
[15] S. N. Liddick, A. Spyrou, B. P. Crider, F. Naqvi, A. C. Larsen, M. Guttormsen et al., Phys. Rev. Lett. 116, 242502 (2016).
[16] B. V. Kheswa, M. Wiedeking, J. A. Brown, A. C. Larsen, S. Goriely, M. Guttormsen et al., Phys. Rev. C 95, 045805 (2017).
[17] C. P. Brits, K. L. Malatji, M. Wiedeking, B. V. Kheswa, S. Goriely, F. L. B. Garrote et al., Phys. Rev. C 99, 054330 (2019).
[18] S. N. Liddick, A. C. Larsen, M. Guttormsen, A. Spyrou, B. P. Crider, F. Naqvi et al., Phys. Rev. C 100, 024624 (2019).
[19] V. W. Ingeberg, S. Siem, M. Wiedeking, K. Sieja, D. L. Bleuel, C. P. Brits et al., Eur. Phys. J. A 56, 68 (2020).
[20] D. Müller, A. Spyrou, H. Berg, M. Wiedeking, M. Guttormsen, A. C. Larsen et al., Phys. Rev. Lett. (submitted).
[21] E. Fermi, Nuclear Physics (University of Chicago Press, Chicago, 1950).
[22] M. Guttormsen, T. S. Tveter, L. Bergholt, F. Ingebritsen, and J. Rekstad, Nucl. Instr. Meth. A 374, 371 (1996).
[23] M. Guttormsen, T. Ramsøy, and J. Rekstad, Nucl. Instr. Meth. A 255, 518 (1987).
[24] J. E. Midtbø, F. Zeiser, E. Lima, A.-C. Larsen, G. M. Tveten, M. Guttormsen et al., A new software im-

plemetation of the Oslo method with rigorous statistical uncertainty propagation, (2020), arXiv:1904.13248 [physics.comp-ph].
[25] D. M. Brink, Nuclear Physics 4, 215 (1957).
[26] M. Guttormsen, A. C. Larsen, A. Gérö, T. Renström, S. Siem, T. G. Tornyi, and G. M. Tveten, Phys. Rev. Lett. 116, 012502 (2016).
[27] A. C. Larsen, N. Blasi, A. Bracco, F. Camera, T. K. Eriksen, A. Gérö et al., Phys. Rev. Lett. 111, 242504 (2013).
[28] M. Guttormsen, S. Goriely, A. C. Larsen, A. Gérö, T. W. Hagen, T. Renström et al., Phys. Rev. C 96, 024313 (2017).
[29] T. Renström, H. Utsumo, H. T. Nyhus, A. C. Larsen, M. Guttormsen, G. M. Tveten et al., Phys. Rev. C 98, 054310 (2018).
[30] F. Zeiser, G. M. Tveten, G. Potel, A. C. Larsen, M. Guttormsen, T. A. Laplace et al., Phys. Rev. C 100, 024305 (2019).
[31] T. Ericson, Advances in Physics 9, 425 (1960).
[32] T. von Egidy and D. Bucurescu, Phys. Rev. C 72, 044311 (2005).
[33] T. von Egidy and D. Bucurescu, Phys. Rev. C 73, 049901(E) (2006).
[34] R. Capote, M. Herman, P. Ohložinský, P. G. Young, S. Goriely, T. Belgya et al., Nucl. Data Sheets 110, 3107 (2009).
[35] S. Mughabghab, Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections $Z = 1–100$, 5th ed. (Elsevier, 2006).
[36] A. Gilbert and A. G. W. Cameron, Canadian Journal of Physics 43, 1446 (1965).
[37] T. Ericson, Nucl. Phys. 11, 481 (1959).
[38] S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C 78, 064307 (2008).
[39] J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).
[40] A. C. Larsen, M. Guttormsen, N. Blasi, A. Bracco, F. Camera, L. C. Campo, T. K. Eriksen et al., J. Phys. G: Nucl. Part. Phys. 44, 064005 (2017).
[41] M. Guttormsen, F. Zeiser, J. E. Midtbø, V. W. Ingeberg, and A. C. Larsen, Oslo method software v1.1.4, (2020).
[42] J. Kopecky, S. Goriely, S. Péru, S. Hilaire, and M. Martin, Phys. Rev. C 95, 054317 (2017).
[43] Z. Szeflinski and G. Szeflinski, Z. Wilhelmi, T. Rzacz-Urban, H. Klapdor, E. Anderson, K. Grotz, and J. Metzinger, Nucl. Phys. A 323, 253 (1979).
[44] B. Erlandsson, K. Nilson, and A. Marcinkowski, Nucl. Phys. A 329, 1 (1979).
[45] J. Isaak, D. Savran, B. Löher, T. Beck, M. Bhike, U. Gayer et al., Phys. Lett. B 788, 225 (2019).
[46] P. Scholz, M. Guttormsen, F. Heim, A. C. Larsen, J. Mayer, D. Savran et al., Phys. Rev. C 101, 045806 (2020).
[47] Data extracted from NuDat database on the National Nuclear Data Center, Brookhaven National Laboratory, USA, as of September 2018.
[48] A. Giaz, L. Pellegrini, S. Riboldi, F. Camera, N. Blasi, C. Boiano et al., Nucl. Instr. Meth. A 729, 910 (2013).
[49] M. Guttormsen, A. Bürger, T. E. Hansen, and N. Lietaer, Nucl. Instr. Meth. A 648, 168 (2011).
[50] M. Guttormsen A. Atac, G. Lovhøiden, S. Messelt, T. Boiano et al.
Ramsøy, J. Rekstad, T. F. Thorsteinsen, T. S. Tvetet, and Z. Zelazny, Physica Scripta T32, 54 (1990).

[51] H. T. Nyhus, S. Siem, M. Guttormsen, A. C. Larsen, A. Bürger, N. U. H. Syed, G. M. Tveten, and A. Voinov, Phys. Rev. C 81 (2010).

[52] H. T. Nyhus, S. Siem, M. Guttormsen, A. C. Larsen, A. Bürger, N. U. H. Syed, H. K. Toft, G. M. Tveten, and A. Voinov, Phys. Rev. C 85 (2012).

[53] G. Potel, F. M. Nunes, and I. J. Thompson, Phys. Rev. C 92 (2015).

[54] G. Potel, G. Perdikakis, B. V. Carlson, M. C. Atkinson, W. H. Dickhoff, J. E. Escher et al., Eur. Phys. J. A 53 (2017).

[55] A. C. Larsen, M. Guttormsen, M. Krtička, E. Běták, A. Bürger, A. Görgen et al., Phys. Rev. C 83 (2011).

[56] F. Zeiser, G. Potel, G. M. Tveten, A. C. Larsen, M. Guttormsen, T. A. Laplace et al., Proceedings of the Compound Nuclear Reactions Workshop, Berkeley 2018. (2018), submitted, arXiv:1902.02966.

[57] E. Algin, U. Agvaanluvsan, M. Guttormsen, A. C. Larsen, G. E. Mitchell, J. Rekstad, A. Schiller, S. Siem, and A. Voinov, Phys. Rev. C 78, 054321 (2008).