MogR is a ubiquitous transcriptional repressor affecting motility, biofilm formation and virulence in the Bacillus cereus group

Veronika Smith1,2, Malin Josefsen1, Toril Lindbäck3, Ida K. Hegna1, Sarah Finke1,2, Nicolas J. Tourasse4, Christina Nielsen-LeRoux5, Ole Andreas Økstad1,2*, Annette Fagerlund1,6*

1Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway

2Centre for Integrated Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway

3Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway

4University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France

5Paris-Saclay University, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France

6Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway

* Correspondence:
Annette Fagerlund
annette.fagerlund@nofima.no
Ole Andreas Økstad
aloechen@farmasi.uio.no

Keywords: Bacillus cereus group, MogR, motility regulator, virulence, biofilm
Abstract

Flagellar motility is considered an important virulence factor in a range of different pathogenic bacteria. In *Listeria monocytogenes* the transcriptional repressor MogR regulates motility in a temperature-dependent manner by directly repressing flagellar- and chemotaxis genes. The only other bacteria known to carry a *mogR* homolog are members of the *Bacillus cereus* group, which includes both motile and non-motile species. Furthermore, the motility locus in *B. cereus* group bacteria appears to be more closely related to *L. monocytogenes* than to *Bacillus subtilis*. In this study we show that in *Bacillus thuringiensis*, overexpression of MogR results in non-motile host cells devoid of flagella. Global gene expression profiling showed that 110 genes were differentially regulated by MogR overexpression, including flagellar motility genes, but also genes associated with virulence, stress response and a biofilm lifestyle. Accordingly, phenotypic assays showed that MogR also affects cytotoxicity and biofilm formation in *B. thuringiensis*. Overexpression of a MogR variant mutated in two key amino acids within the putative DNA binding domain restored phenotypes to those of a wild type empty vector control strain. In line with this, the introduction of these mutations resulted in complete loss in the ability of MogR to bind to its putative target site within the flagellar motility locus *in vitro*. In contrast to *L. monocytogenes*, MogR appears to be regulated in a growth-phase dependent and temperature-independent manner in *B. thuringiensis* 407. Interestingly, *mogR* was found to be conserved also in non-motile *B. cereus* group species with highly reduced motility loci, such as *Bacillus mycoides* and *Bacillus pseudomycoides*, and is expressed in non-motile *Bacillus anthracis*, providing further indications of an expanded and unexpected set of functions for MogR in *B. cereus* group species, in addition to motility regulation. In conclusion, MogR constitutes a novel *B. cereus* group pleiotropic transcriptional regulator, acting as a repressor of motility genes, and affecting the expression of a variety of additional genes involved in biofilm formation and virulence.
1 Introduction

In many bacterial species, flagella have been demonstrated to be important to virulence functions, including reaching the optimal host site, colonization or invasion, maintenance at the infection site, post-infection dispersal, protein secretion and more (Chaban et al., 2015). Temperature-dependent regulation of motility in the human pathogen *Listeria monocytogenes* has been described in a series of studies published by Higgins and co-workers, in which motility was shown to be regulated by the transcriptional repressor MogR and its anti-repressor GmaR (Gründling et al., 2004; Shen and Higgins, 2006; Shen et al., 2006; Kamp and Higgins, 2009; Shen et al., 2009; Kamp and Higgins, 2011), the genes for which are widely distributed among different *Listeria* spp. (Smith and Hoover, 2009). *L. monocytogenes* is a foodborne facultative intracellular pathogen, which uses flagellum-based motility when present in its extracellular environmental niche. During mammalian infection however, motility genes are downregulated by MogR-dependent repression upon sensing of mammalian physiological temperature (37 °C in the human). In this system, the GmaR anti-repressor functions as the temperature sensor, by antagonizing MogR repression activity at temperatures below 37 °C (Shen et al., 2006). The activity of GmaR is dependent on the transcriptional activation by DegU at low temperatures, and a temperature-dependent, post-transcriptional mechanism limits GmaR production to temperatures below 37 °C (Kamp and Higgins, 2009). This system allows *L. monocytogenes* to switch from an environmental and extracellular motile bacterium to an intracellular pathogen. Inside host cells, flagella are not required as *L. monocytogenes* cells instead move by actin-based motility, and downregulation of flagella during infection is thought to aid bacterial evasion of the host innate immune system (Hayashi et al., 2001; Li et al., 2017).

The only other known bacteria carrying a homolog to *Listeria* spp. *mogR* are species from the *Bacillus cereus* group (*B. cereus sensu lato*) (Gründling et al., 2004; Fagerlund et al., 2010), which is a group of closely related Gram-positive spore-forming bacteria of considerable medical and economic importance. The group comprises at least seven species, including *B. cereus* (*sensu stricto*), *Bacillus anthracis*, *Bacillus thuringiensis*, *Bacillus weihenstephanensis*, *Bacillus mycoides*, *Bacillus pseudomycoides*, and *Bacillus cytotoxicus*, which, like *L. monocytogenes*, can be isolated from the environment, e.g. soil, air and water. In contrast to *L. monocytogenes* however, *B. cereus* is an extracellular opportunistic pathogen. The majority of strains of *B. cereus sensu stricto*, *B. thuringiensis*, *B. weihenstephanensis* and *B. cytotoxicus* are motile by peritrichous flagella, while *B. anthracis*, *B. mycoides*, and *B. pseudomycoides* are described as non-motile (Twine et al., 2009; Guinebretière et al., 2013). *B. cereus* group bacteria can cause foodborne disease (emetic or diarrhoeal syndrome) and serious opportunistic infections in man, but also encompasses strains that are used as probiotics (Stenfors Arnesen et al., 2008; Bottone, 2010; Cutting, 2011), some of which have been suggested to have separate species status (e.g. *Bacillus toyonensis*; Jimenez et al., 2013). The obligate mammalian pathogen *B. anthracis* is the cause of anthrax disease, being endemic in several parts of the world, and has been used as a biological terror agent. *B. thuringiensis* is an entomopathogenic bacterium, frequently used as a biopesticide to protect crops against insect pests, however this species also carries virulence factors shared with *B. cereus sensu stricto* (Damgaard, 1995; Gaviria Rivera et al., 2000; Swiecicka et al., 2006; Celandroni et al., 2014; Kim et al., 2015) and has caused human infections similar to those caused by *B. cereus* (Samples and Buettner, 1983; Jackson et al., 1995; Damgaard et al., 1997; Hernandez et al., 1998; Ghelardi et al., 2007b). Although strains in the *B. cereus* group to a certain degree follow ecological diversification patterns through evolutionary time (Guinebretière et al., 2008), *B. cereus* and *B. thuringiensis* isolates are intermingled in global MLST- or k-mer-
Bacillus cereus group MogR regulator

Based phylogenetic analyses of a high number of non-biased isolates (Kolstø et al., 2009; Bazinet, 2017), while the thermotolerant species *B. cytotoxicus* forms a separate and phylogenetically remote clade within the *B. cereus* group population.

The bacterial flagellum is a complex molecular structure made up of about 25 different proteins. In most bacteria studied to date, expression of flagellar genes is subject to hierarchical regulation to ensure the sequential expression required for proper flagellum assembly (Smith and Hoover, 2009; Erhardt et al., 2010). In contrast, *L. monocytogenes* and *B. cereus* group strains appear to lack this transcriptional cascade control of flagellar biosynthesis (Smith and Hoover, 2009; Chiara et al., 2015). *B. cereus* group bacteria also lack σ^D^, a common key regulator of motility genes in bacteria, indicating a different mode of transcriptional regulation for the motility genes. In this study, we aimed to investigate functional roles of the MogR homolog identified in *B. cereus* group bacteria, and whether motility regulation in the *B. cereus* group more closely resembles that of *L. monocytogenes* rather than other *Bacillus* species.

2 Materials and Methods

2.1 Sequence analysis

Motility proteins that were orthologs between species were identified by amino acid sequence searches (BLASTP) performed using BLAST v.2.6.0+ (Altschul et al., 1990; Altschul et al., 1997) between all pairwise combinations of the motility loci from *B. thuringiensis* 407, *L. monocytogenes* EGD-e, and *B. subtilis* 168 (RefSeq accession numbers NC_018877.1, NC_003210.1, and NC_000964.3, respectively; Glaser et al., 2001; Barbe et al., 2009; Sheppard et al., 2013). Results for reciprocal best BLASTP hits between each pair were included in Supplementary Table S1 if the BLASTP alignments had a percentage of identical matches above 20%, a bit score greater than 30 and covered at least 25% of each amino acid sequence. Comparisons between the motility locus in different *B. cereus* group strains were obtained using the Integrated Microbial Genomes (IMG) browser (Markowitz et al., 2010; http://img.jgi.doe.gov), by searching for orthologous genome neighborhoods to genes from the *B. thuringiensis* 407 motility operon. Annotations for the *B. cereus* ATCC 10987 motility cluster and the *B. mycoides* DSM 2048 mogR gene were corrected using EasyGene (Larsen and Krogh, 2003). To perform an exhaustive comparative analysis of the genetic structure of the motility locus, genome sequences of 106 subgroup I strains of the *B. cereus* group that had been sequenced to a minimum of scaffold level were downloaded from NCBI (November 25, 2019), and a local BLAST database was indexed from the corresponding subgroup I proteomes. The corresponding protein sequence from each of the 50 genes in the main *B. thuringiensis* 407 motility locus (genes with locus tags ranging from AFV17362.1 to AFV17411.1, found within coordinates 1608289 to 1653756 in the closed *B. thuringiensis* 407 genome sequence, accession number CP003889) were used as queries in BLASTP searches (parameters: -num_threads 10 -evalue 1.0e-05 -seg no -outfmt 0) for homologous proteins among the subgroup I strains. Output files were parsed using custom-made shell scripts, and sed/awk. Candidate MogR binding sites in the *B. thuringiensis* 407 genome were identified by searching the intergenic regions upstream of candidate genes using CLC Main Workbench (Qiagen), with the *L. monocytogenes* consensus MogR binding sequence (TTTTWWNWAAAA [IUPAC nucleotide codes]; Shen et al., 2009) as query, allowing for up to two mismatches to identify candidate hits.
2.2 Strains and growth conditions

The strains used in this study are presented in Table 1. *B. thuringiensis* 407 Cry[−] (also sometimes referred to as Bt407) is an acrystalliferous strain cured of its cry plasmid (Lereclus et al., 1989). It is genetically close to the *B. cereus* type strain ATCC 14579 (Tourasse et al., 2006).

Unless otherwise stated, *B. thuringiensis* 407 cultures were inoculated with 1% of an overnight culture and grown at 30 °C and 200 rpm in Luria Bertani (LB) broth or in bactopeptone medium (1% w/v bactopeptone, 0.5% w/v yeast extract, 1% w/v NaCl). For cloning and expression in *Escherichia coli*, ampicillin at 50 or 100 µg ml^{−1}, kanamycin at 50 µg ml^{−1} and/or erythromycin at 400 µg ml^{−1} was used. Erythromycin at 10 µg ml^{−1} was used to maintain the pHT304-P_{xyl} plasmid constructs in *B. thuringiensis* 407. For induction of gene expression from the xyl_A promoter on pHT304-P_{xyl}, xylose was added to the growth medium at 1 mM or as otherwise stated. For induction of MBP-MogR in *E. coli* BL21(DE3), 0.3 mM isopropyl-β-D-thiogalactopyranoside (IPTG) was used. Growth curves were prepared in bactopeptone medium, pH 7.0 with cultures grown with shaking at 220 rpm, using 50 ml culture volumes in 250 ml baffled flasks.

Table 1. Strains and plasmids used in this study

Strain or plasmid	Description	Reference or source
PLASMIDS		
pHT304-P_{xyl}	Low copy number expression/shuttle vector; xyl_A promoter (Ap⁺, Ery^R)	(Arantes and Lereclus, 1991; Salamitou et al., 1997)
pHT304-P_{xyl-mogR}	wild type mogR in pHT304-P_{xyl}	This study
pHT304-P_{xyl-mogR_{QN→AA}}	Q119A, N120A mutant mogR in pHT304-P_{xyl}	This study
pMAL-p5X	Expression vector for production of MBP fusions, IPTG promoter (Ap⁾	New England Biolabs
pMAL-p5X-mogR	wild type mogR in pMAL-p5X	This study
pMAL-p5X-mogR_{QN→AA}	Q119A, N120A mutant mogR in pMAL-p5X	This study
STRAINS		
B. cereus group		
407	*B. thuringiensis* 407 Cry[−]	(Lereclus et al., 1989)
407/pHT304-P_{xyl}	pHT304-P_{xyl} in 407	This study
407/MogR⁺	pHT304-P_{xyl-mogR} in 407	This study
407/MogR_{QN→AA}	pHT304-P_{xyl-mogR_{QN→AA}} in 407	This study
407^{Δ}fla_{AB}	*B. thuringiensis* 407^{Δ}fla_{AA}^{Δ}fla_{AB} (Km⁾	(Houry et al., 2010)
407^{Δ}fla_{AB}/pHT304-P_{xyl}	pHT304-P_{xyl} in 407^{Δ}fla_{AB}	This study
407^{Δ}fla_{AB}/MogR⁺	pHT304-P_{xyl-mogR} in 407^{Δ}fla_{AB}	This study
407^{Δ}fla_{AB}/MogR_{QN→AA}	pHT304-P_{xyl-mogR_{QN→AA}} in 407^{Δ}fla_{AB}	This study
E. coli		
BL21(DE3)	*E. coli* BL21(DE3)	New England Biolabs
BL21/MogR⁺	pMAL-p5X-mogR in BL21(DE3)	This study
BL21/MogR_{QN→AA}	pMAL-p5X-mogR_{QN→AA} in BL21(DE3)	This study

2.3 Reverse transcription quantitative PCR (RT-qPCR)

For analysis of mogR, flaA and flaB expression throughout the bacterial growth phase, RT-qPCR was performed essentially as described by Fagerlund et al. (2016). Briefly, cells grown in bactopeptone medium at 30 °C were incubated in an equal volume of ice-cold methanol for 5 minutes before harvesting by centrifugation. Cells were lysed using a Precellys 24 Tissue Homogenizer (Bertin) and RNA was isolated using the RNeasy Mini or Midi Kits (Qiagen). After treatment with DNase and further purification, cDNA synthesis was performed in
duplicate for each sample using SuperScript III Reverse Transcriptase (Invitrogen). For all samples, a negative control reaction without reverse transcriptase was included. RT-qPCR was carried out with a LightCycler 480 Real-Time PCR System (Roche) using primers listed in Supplementary Table S2. The three genes gatB, rpsU, and udp, shown to be stably expressed throughout the B. cereus life cycle (Reiter et al., 2011), were used as reference genes, and were included for each sample and on each plate. The second derivative maximum method in the LightCycler 480 software (Roche) was utilized to obtain a quantification cycle (Cq) value for each reaction. The expression of each target gene in each biological replicate was converted into E_{Cq} values (Pfaffl, 2001) and then normalized to the geometric mean of the E_{Cq} values obtained for the three reference genes. Finally, averages and standard deviations were calculated from the normalized expression values from the biological replicates.

For analysis of flaA and flaB expression in the B. thuringiensis 407 strains overexpressing MogR and MogR$^{\text{QN} \rightarrow \text{AA}}$ (see below), the same procedure was used except that gatB and rpsU were used as reference genes.

2.4 Cloning of mogR for expression in B. thuringiensis 407

The low-copy number E. coli/Bacillus shuttle vector pHT304-P$_{xyl}$, in which xylR and the xylA promoter from B. subtilis was inserted into the pHT304 cloning site (Arantes and Lereclus, 1991) allowing xylose-inducible expression of downstream cloned genes, was used for overexpression studies. The sequence encoding MogR from B. thuringiensis 407 (BTB_RS08390) was PCR-amplified using primers 5’-gtagcactggcagtttggcgggaatcgcgg-3’ and 5’-taaggccatctctctctcggccg-3’ and genomic DNA as the template. The PCR product was inserted into pHT304-P$_{xyl}$ using the primer-incorporated BamHI and KpnI restriction sites (underlined), creating pHT304-P$_{xyl}$-mogR and placing mogR under transcriptional control of the xylA promoter.

The plasmid pHT304-P$_{xyl}$-mogR$^{\text{QN} \rightarrow \text{AA}}$, containing mogR with amino acid substitutions in two of the six conserved amino acid residues predicted to make base-specific contacts with the MogR recognition site (Shen et al., 2009) was created by site-directed mutagenesis of pHT304-P$_{xyl}$-mogR using the QuikChange II Site-Directed Mutagenesis Kit (Stratagene) and primers 5’-tccaaaaacagaagtaattgccgctgctgtttggtttgccg-3’ and 5’-cacgtttttttaaattttatatcagtcggctggttggatatggtttttggtttttgcg-3’ (mutated bases underlined). The introduced mutations were Q119A and N120A.

The plasmids were verified by sequencing. The constructed pHT304-P$_{xyl}$ plasmids and the empty vector were introduced by electroporation into B. thuringiensis 407 (Masson et al., 1989).

2.5 Motility assay

Swimming ability was determined on 0.3% LB soft agar plates with 1 mM xylose and 10 µg ml$^{-1}$ erythromycin added. A 5 µl drop of culture grown in LB broth overnight at 30 °C was spotted on each agar plate. The plates were wrapped in plastic and incubated for 7 hours at 30 °C. Each independent assay was performed with two or three technical replicates.
2.6 Atomic force microscopy (AFM)

AFM imaging and analysis was performed using a Nanowizard AFM microscope (JPK Instruments). Bacterial cell culture was grown in LB broth with erythromycin (10 µg ml⁻¹) and xylose (10 mM) at 37 °C to an OD₆₀₀ of 3. One ml of culture was washed three times and finally resuspended in 0.9% NaCl. Cells were then diluted (15:50) in a 10 mM magnesium/Tris buffer, pH 7.5. Ten µl was applied onto freshly cleaved mica surfaces mounted on a glass slide, and allowed to adhere for 10 minutes followed by washing (10x100 µl) using sterile dH₂O. Excess water was carefully removed, and the slide gently dried using a nitrogen gas jet stream. Images were recorded in intermittent-contact mode at room temperature in air using a MicroMasch NSC35/AIBS cantilever. AFM images were analyzed using The NanoWizard IP Image Processing Software (JPK Instruments).

2.7 SDS-PAGE and Western immunoblotting

For detection of flagellin, for each strain analyzed, two parallel bacterial culture samples (10 ml LB broth) were harvested by centrifugation (4100 × g, 4 °C) after 3.5 hours growth at 30 °C (OD₆₀₀ ∼1.2) – one for extraction of surface proteins, and one for whole cell protein extraction. The cell pellets were resuspended in 1 ml PBS (pH 7.1) and kept on ice. For extraction of surface proteins, the washed cells were centrifuged for 5 minutes at 16,000 × g and 4 °C and resuspended in an equal volume of 2×SDS-PAGE sample buffer before incubation at 95 °C for 5 minutes. The supernatant was collected by centrifugation as before. The whole cell fraction was prepared by washing the cell pellet in PBS followed by centrifugation for 5 minutes at 16,000 × g and 4 °C. The pellet was then resuspended in 500 µl PBS and lysed using a Precellys 24 Tissue Homogenizer (Bertin). The supernatant was collected by centrifugation for 8 minutes as before. Whole cell supernatant (21 µl) with 7 µl 4×SDS-PAGE buffer and 5 µl of the surface protein fraction were separated on 12% SDS-PAGE gels as described below.

For detection of Hbl, Nhe and CytK, cultures were harvested after 4.5 hours growth. Supernatant samples were collected by centrifugation, concentrated 40-fold by precipitation with four volumes of ice-cold acid acetone:methanol (1:1 v/v), stored at -20 °C overnight, and harvested by centrifugation for 30 minutes at 16,000 × g and 4 °C. Then, pellets were left to evaporate at 4 °C overnight and resuspended in 2×SDS-PAGE sample buffer. Samples were diluted 20-fold with MQ H₂O. Concentrated supernatant samples (10 µl) were separated on 10% SDS-PAGE gels.

SDS-PAGE was carried out using a Bio-Rad Mini-Protean II Dual Slab Cell, using 10 µl Prestained Protein Marker, Broad range (New England Biolabs) as the molecular weight marker. Western blot analysis was performed using Immun-Blot PVDF membranes (Bio-Rad) according to standard protocols (Harlow, 1988). Blocking was performed for 1 hour in 5% non-fat dry milk in TBST. Flagellin proteins were detected using a rabbit antiserum raised against flagellin from Bacillus mojavensis, used at a 1:300 dilution, and a HRP-conjugated donkey-anti-rabbit antibody (Santa Cruz Biotechnology) diluted 1:10,000 as secondary antibody. CytK was detected using rabbit antiserum (Fagerlund et al., 2004) diluted 1:2000, followed by HRP-conjugated donkey anti-rabbit (Santa Cruz Biotechnology) diluted 1:5000. Hbl B and NheA were detected using monoclonal antibodies 2A3 against Hbl B (Dietrich et al., 1999) and 1A8 against NheA (Dietrich et al., 2005) (both diluted 1:15), followed by HRP-conjugated AffiniPure Goat-anti-mouse IgG (H+L) (Jackson Immuno Research Laboratories) at 80 µg ml⁻¹. SuperSignal West Femto Substrate (Pierce) was used to develop the blots. Western blots were photographed in a Chemi Genius Bio Imaging System (Syngene), and sub-saturation images were saved as jpeg files in ImageJ (Abràmoff et al., 2004).
2.8 Microarray analysis

Cultures of *B. thuringiensis* 407 harboring either pHT304-P*xyl* or pHT304-P*xyl*-mogR were grown in LB broth containing 10 mM xylose at 37 °C for 3 hours, and then incubated in an equal volume of ice-cold methanol for 5 minutes before pellets were harvested by centrifugation at 2800 × g for 20 minutes. For extraction of RNA, cells were lysed using a Precellys 24 Tissue Homogenizer (Bertin) and RNA was isolated using the RNeasy Mini Kit (Qiagen) and subjected to on-column DNase-treatment using the RNase-Free DNase Set (Qiagen). cDNA synthesis, labelling and purification was performed as described (Gohar et al., 2008). Microarray slides were printed at The Microarray core facility of the Norwegian University of Science and Technology (NTNU). Design, printing, prehybridization, hybridization and scanning of the slides and analysis of the data was performed as described (Gohar et al., 2008). Each microarray experiment was based on four slides, all biological replicates. *P*-values were computed using a false discovery rate (FDR) of 0.05.

The microarray slides contain 70-mer oligonucleotide probes designed to detect open reading frames (ORFs) in the following strains: *B. anthracis* Ames, *B. anthracis* A2012, and *B. cereus* ATCC 14579, in addition to selected genes from *B. cereus* ATCC 10987 (Kristoffersen et al., 2007). All probe sequences on the microarray were analyzed by BLAST for hits to the annotated genes of a *B. thuringiensis* 407 draft genome sequence (as of April 30, 2009; the gene lists are based on the GenBank annotations as of this date; accession no. ACMZ00000000.1). Only probes with 93% identity or greater to a transcript/feature sequence of *B. thuringiensis* 407 were included in the analysis. Of the predicted *B. thuringiensis* 407 genes, 1719 genes, most of which were hypothetical genes, did not have corresponding probes on the array (these include the 761 genes on contigs 00213 and 00060, which appear to be plasmid-borne). COG categories were obtained for the analysed genes as reported in the IMG database (http://img.jgi.doe.gov).

2.9 Cytotoxicity assay

The Vero cell cytotoxicity assay was performed as described by Lindbäck and Granum (2006), and measures the percentage inhibition of C14-leucine incorporation in cells due to the cells being subjected to toxins, calculated relative to a negative control where cells were not subjected to toxin sample. Samples of early stationary phase cultures grown to an OD600 of 2.4 were collected and 100 µl or 150 µl samples (for deletion mutants and overexpression strains, respectively) were applied to the cytotoxicity assay. The assays were performed for three independent biological replicates with two technical replicates in each assay.

2.10 *In vivo* toxicity in insect larvae

The virulence-related properties of MogR were assessed by comparing the killing effect of the *B. thuringiensis* 407 MogR overexpression and empty vector control (pHT304-P*xyl* plasmid) strains, in both wild type and ΔflaAB backgrounds, by infection (force feeding) in 5th instar *Galleria mellonella* larvae. *G. mellonella* eggs were hatched at 28 °C and the larvae reared on beeswax and pollen. For infection experiments, groups of 20 to 25 *G. mellonella* larvae, weighing about 200 mg each, were used. As MogR overexpression is activated from the pHT304-P*xyl* promoter by the addition of xylose, we tried for the first time to evaluate if activation could occur in the insect intestine as well. Therefore, xylose (20 mM) was both added to the LB growth medium of the four strains, as well as to the bacterial inoculums and the toxin alone control (Cry1C) at time zero (time point of force feeding). Larvae were force fed a second time with 10 µl 20 mM xylose 5 hours later (in order to again activate MogR expression from the plasmid). Infections were otherwise performed as previously described...
(Fedhila et al., 2006), by force feeding with 10 µl of a mixture containing 4-5×10^6 of vegetative bacteria (exponential growth OD_{600} ~1 in LB) with 20 mM xylose and 3 µg of activated Cry1C toxin to overcome the *B. thuringiensis* 407 strain being cry negative. The larvae in the control group were fed PBS buffer or Cry1C toxin and xylose in corresponding amounts to the samples containing bacterial inocula. The chosen dose was expected to result in about 70% (± 5%) mortality at 37 °C after 48 hours.

2.11 Biofilm assays

The ability to form biofilms was determined using a glass tube screening assay (Houry et al., 2010). Briefly, exponential phase cultures were diluted into HCT medium (Lecadet et al., 1980; Lereclus et al., 1982) to an OD_{600} of 0.01, and 2 ml was inoculated into sterile 6 ml glass tubes. The tubes were incubated for 72 hours at 37 °C. The biofilm was subsequently collected by removing the culture medium with a Pasteur pipette and thoroughly vortexing in 2 ml PBS before measuring the OD_{600} of the suspension of biofilm cells. Each strain was tested in five biological replicates, each with 3 or 4 technical replicates.

The ability to form biofilms in polyvinylchloride (PVC) microtiter plates was determined using a crystal violet biofilm screening assay (Auger et al., 2006). Briefly, fresh bactopeptone medium was inoculated with 0.5% exponential phase culture, transferred to 96-well plates (Falcon #359111) and incubated for 24, 48 and 72 hours at 30 °C. The biofilm was subsequently washed using PBS, stained using 0.3% crystal violet, solubilized with acetone:methanol (1:3 v/v), and transferred to flat-bottomed microtiter plates (Falcon #359115) for determination of the absorbance of the solubilized dye at 570 nm. Each strain was tested in triplicate. Statistical analyses were performed separately for each time point, as described under “Statistical analyses” below.

2.12 Expression of MBP-tagged MogR in *E. coli*

The sequence encoding MogR from *B. thuringiensis* 407 (BTB_RS08390) was PCR amplified using primers 5'-atgtatatcaccacaccaataagtattag-3' and 5'-gcgcgcatccttattacctgtgtacatctataactgtcc-3' and genomic DNA as the template. The PCR product was cloned into the pMAL-p5x vector (New England Biolabs) using the XmnI and BamHI restriction sites (underlined) according to the manufacturer’s instructions, allowing expression of MBP-MogR. A construct expressing the MBP-MogR^{QN→AA} protein was created by site-directed mutagenesis of pMAL-p5x-mogR using the QuikChange II Site-Directed Mutagenesis Kit (Stratagene) with the same primers as for pHT304-Pxy-MogR^{QN→AA}. Constructs were transformed into *E. coli* BL21(DE3) cells. The plasmids were verified by sequencing. MBP-MogR and MBP-MogR^{QN→AA} proteins were expressed in *E. coli* BL21(DE3) and purified using the manufacturer’s manual “Method I – Total cell extract”. In short, 100 ml LB broth was inoculated with a 1 ml overnight culture containing cells harbouring fusion plasmid. Cells were grown at 37 °C with shaking to an OD_{600} of ~0.5. IPTG was added to a final concentration of 0.3 mM and cells were induced for 2 hours. The cells were harvested by centrifugation at 4500 × g for 10 minutes and frozen at -20 °C overnight, sonicated in an ice-water bath, and then centrifuged at 20,000 × g for 20 minutes at 4 °C. The supernatants were diluted 1:6 in Column Buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA). MBP-MogR proteins were purified by amylose affinity chromatography (Poly-Prep Chromatography column, 0.8 x 4 cm, Bio-Rad). The identity and purity of proteins was confirmed by SDS-PAGE (Coomassie stain) and the quantity determined by Bradford assay.
2.13 Electrophoretic mobility shift assay (EMSA)
DNA probes were generated by PCR using chromosomal DNA from *B. thuringiensis* 407 and the following primer combinations: 5'-'cgggtgtcaactaaaaattcg-3' / 5'-'caactatcatatactttcgg-3' (P_{flaA} probe), 5'-'ttccagaaatgaaatttacggatac-3' / 5'-'cttctatctttctgtctggtc-3' (P_{hblC} probe), 5'-'tccgtatgtaattccgtttcaag-3' / 5'-'atttcctgcttgacccctt-3' (P_{ctrl1} probe). Corresponding 5' biotinylated probes were generated for *flaA* and *hblC* with the same primers with biotin labelling. *ctrl1* was chosen as a control for binding to *B. thuringiensis* DNA and is a PCR product from inside a randomly chosen gene from *B. thuringiensis* 407 (*BTB_RS08990* encoding an elongation factor G-binding protein). A commercial EMSA kit (LightShift Chemiluminescent, Thermo Scientific) was used to detect the binding of MogR protein to DNA following the manufacturer's instructions. Unlabelled Epstein Barr nuclear antigen DNA supplied with the kit was used as negative non-*Bacillus* DNA control. DNA binding reactions were conducted in 20 ml of 10×Binding Buffer (100 mM TrisHCl, 500 mM KCl, 10 mM DTT, pH 7.5) with 50 ng µl⁻¹ polydeoxyinosinic-deoxycytidylic acid (poly dI-dC). 1 µg of MBP-MogR or MBP-MogR^{QN→AA} were added to approximately 2 fmol biotinylated DNA probe and incubated for 20 minutes at room temperature. A total of 20 ml of each binding reaction was loaded on a 5% SDS-PAGE gel (0.5×TBE) and resolved for 1 hour at 100 V.

2.14 Quantification of cyclic di-GMP by LC-MS/MS
LC-MS/MS analysis was based on a method described by Spangler et al. (2010), with some modifications, as previously described (Fagerlund et al., 2016), using a Thermo Scientific LTQ XL Linear Ion Trap Mass Spectrometer (Thermo Scientific) and separation on a 5 mm × 1 mm I.D. Nucleodur C18 Pyramid precolumn and a 50 mm × 1 mm I.D. Nucleodur C18 pyramid analytical column (both from Marchery-Nagel), with an electrospray ionization (ESI) source operated in the positive ionization mode to interface the HPLC and the MS.

2.15 Statistical analyses
Minitab v.17 software was used for statistical analysis. Unless stated otherwise, all data were analyzed using analysis of variance (ANOVA) followed by Tukey’s *post hoc* test for pairwise comparisons. *P*-values <0.05 were regarded as significant.

3 Results

3.1 The motility gene loci in *B. thuringiensis* and *L. monocytogenes* are closely related
A cluster of approximately 45-50 genes with homology to flagellar-based motility- and chemotaxis genes is present in most *B. cereus* group strains. Although *B. cereus* group bacteria are phylogenetically more closely related to *B. subtilis* than to *L. monocytogenes*, some aspects of organization of the *B. thuringiensis* 407 motility gene cluster were found to more closely resemble that of *L. monocytogenes*. Bidirectional BLAST analysis showed that a greater number of motility protein orthologs is shared between *B. thuringiensis* 407 and *L. monocytogenes* EGD-e (41 orthologous proteins, average alignment percentage identity 46%) than between *B. thuringiensis* 407 and *B. subtilis* 168 (31 orthologous proteins, 37% average sequence identity) (Supplementary Table S1). Furthermore, only other *Listeria* spp. and species of the *B. cereus* group are known to have orthologs to the *L. monocytogenes* motility gene repressor MogR (Gründling et al., 2004; Smith and Hoover, 2009), potentially indicating that elements of motility regulation may be shared between these species (Figure 1 and Supplementary Table S1).
3.2 Non-motile B. anthracis and B. pseudomycoïdes have retained mogR

As has previously been noted (Klee et al., 2010), comparative alignments between the motility loci of different B. cereus group strains indicate that the flagellin gene locus is an evolutionary hotspot, as the number of flagellin genes in each strain varies between one and five copies, and several strains also contain additional sets of genes in this locus. Isolates belonging to the B. cereus group may be divided into seven phylogenetic subgroups (I to VII) and for which, with the exception of B. pseudomycoïdes (group I) and B. cytotoxicus (group VII), species designations do not strictly follow the phylogenetic group designations. Instead, isolates belonging to the different phylogenetic subgroups have distinct ecotypes and preferred growth temperature ranges (Guinebretière et al., 2008). An analysis of B. cereus group genomes revealed striking differences between the motility gene clusters in strains belonging to the various phylogenetic groups (Figure 2). The motility gene clusters of strains in phylogenetic subgroups III, IV and V were overall highly similar to that of B. thuringiensis 407, with a few exceptions mainly related to insertion of transposable elements and variation in the number of flagellin genes. Of note, strains of B. anthracis, which constitutes a highly clonal lineage within subgroup III, all carry an 11.5 kb insertion in place of the second flagellin gene (flaB), as well as nonsense mutations in a series of the conserved motility genes (motP, cheA, flgL, flIF, BAS1560 [ortholog to BTB_RS08355], flIK, BAS1570 [ortholog to BTB_RS08380], cheV, BAS1584 [ortholog to BTB_RS08410], flIM, and flhF). B. anthracis strains are thus non-motile, however still carry an intact mogR gene (Figure 2).

Phylogenetic subgroup I corresponds to the species B. pseudomycoïdes, but also includes strains for which an original identification as B. cereus or B. mycoïdes has not yet been revised (Guinebretière et al., 2008). BLASTP searches were performed against available subgroup I proteomes using the corresponding protein sequences for the genes from the motility locus of B. thuringiensis 407 as query (Figure 2). Among six fully sequenced strains (single scaffold per replicon or closed genome) belonging to subgroup I (219298, BTZ, Rock 3-44, DSM 12442, Rock 1-4 and Rock 3-17), all contained a severely reduced motility gene cluster, and strikingly, the only conserved motility-related gene in the motility locus of these strains is mogR (Figure 2). The absence of all motility genes except mogR in all six fully sequenced group I strains analyzed, as well as in all except for one (AFS092012) of the 100 additional group I strains annotated as B. pseudomycoïdes at the NCBI and for which a
Bacillus cereus group MogR regulator

Figure 2. Comparison of motility gene loci in selected B. cereus group strains. Loci from different strains are aligned with respect to MogR, shown in red in the central part of the alignment. For each strain, the first and last gene (shown in red) are conserved genes outside of the motility gene locus itself (orthologs to BTB_RS08235 and BTB_RS08480, respectively). These are included to indicate that the flanking regions and location of the motility locus are generally conserved between strains. The last gene of the intact locus with a predicted function mapping within motility, flgG (light blue), is indicated by a filled square above the gene. For genes shown in a color other than red, identical color indicates that genes are from the same orthologous group (top COG hit), except light yellow which indicates no COG assignment. The gmaR gene is indicated with a red box. In the B. anthracis strain, the filled triangles above genes indicate the location of nonsense or frameshift mutations. The brackets in the representation of the Bc Rock 3-44 sequence indicates that this locus is split between two contigs. Roman numerals next to the strain names indicate the phylogenetic subgroup within the B. cereus group to which the strain belongs (Guinebretière et al., 2008). Bm Rock 1-4, Bm Rock 3-17, Bm 219298 og Bp DSM 12442 from subgroup I had identical loci; only Bp DSM 12442 is shown. The figure was assembled from images obtained from the Conserved Neighbourhood Viewer of the Integrated Microbial Genomes system (Markowitz et al., 2010), using B. thuringiensis 407 proteins BTB_RS08235, BTB_RS08390 (mogR), and BTB_RS08480 as query sequences. Abbreviations: Bc, B. cereus; Bt, B. thuringiensis; Ba, B. anthracis; Bw, B. weihenstephanensis; Bm, B. mycoides; Bp, B. pseudomycoides; Bcy, B. cytotoxicus; Bg, Bacillus gaemokensis.

Genome sequence at scaffold level was available, indicates that absence of motility is likely a general characteristic of this genetic group, in line with the description of B. pseudomycoides as a nonmotile species (Nakamura, 1998). The predicted MogR proteins of the B. pseudomycoides group show ~56% and ~30% pairwise identity to the corresponding orthologs in B. thuringiensis 407 and L. monocytogenes EGD-e, respectively. A multiple sequence alignment demonstrated that the L. monocytogenes MogR residues predicted to make base-specific DNA contacts in L. monocytogenes (Shen et al., 2009) have been conserved in the MogR proteins from all examined B. cereus group strains, including those belonging to non-motile species (Supplementary Figure S1). Interestingly, an ortholog of gmaR, encoding a temperature-controlled antirepressor of MogR in L. monocytogenes (Kamp and Higgins, 2009), is found in B. cytotoxicus strains (cluster VII), but is absent in most B. cereus group strains belonging to other phylogenetic clusters.

3.3 Flagellin gene expression drops following a sharp increase in mogR expression

B. thuringiensis 407 produces two flagellins, structural proteins building the flagellum main filament, from chromosomal genes flaA and flaB (Lövgren et al., 1993). Expression of mogR (BTB_RS08390), flaA (BTB_RS08400) and flaB (BTB_RS08395) was followed at the transcriptional level throughout the bacterial growth phase using RT-qPCR. In contrast to
previous proteomics studies which indicated that in *B. thuringiensis* 407 only the first flagellin gene (*flaA*) was expressed in early stationary phase (Gohar et al., 2005), results showed that both *flaA* and *flaB* are indeed expressed at the RNA level, although expression of *flaA* was approximately four-fold higher than that of *flaB* (Figure 3). The two *fla* genes reached maximum expression at 3.5 hours, at the transition between exponential and stationary growth phase, in agreement with corresponding data obtained using a transcriptional fusion between *lacZ* and the *flaA* promoter (Houry et al., 2010). These data also corresponded well with microscopic observations of cultures sampled throughout the growth phase. The expression of *mogR* increased 64-fold between the 2.5 hour and 3.5 hour time-point (Figure 3), peaking at 4 hours, at which time *flaA* and *flaB* expression was rapidly decreasing. This is in parallel with the expression pattern found for *mogR* in *B. anthracis* (Bergman et al., 2006). While downregulation of motility-related genes upon entry to the stationary phase is common in both Gram-negative and Gram-positive bacteria (Ramirez Santos et al., 2005; Han et al., 2017), it was nevertheless interesting to note that expression of the *flaA* and *flaB* genes dropped after 3.5 hours, subsequent to the sharp increase in *mogR* transcription (Figure 3).

3.4 Overexpression of MogR renders *B. thuringiensis* 407 non-flagellated and non-motile

A MogR overexpression strain was constructed using the pHT304-P_{xyl} expression vector carrying a xylose-inducible promoter, as well as an isogenic strain overexpressing a version of MogR where two mutations were introduced: Q119A and N120A (plasmids and strains used are listed in Table 1). In the mutated protein (referred to as MogR^{Q119A→N120A}), alanine substitutions were made for two of the six amino acids corresponding to residues in *L. monocytogenes* MogR that were shown to make base-specific contacts with DNA, in cognate DNA recognition sites positioned upstream of *L. monocytogenes* genes that were subject to direct MogR transcriptional repression (Shen et al., 2009; Supplementary Figure S1). Cellular growth rates were not affected by MogR or MogR^{Q119A→N120A} overexpression (relative to an empty vector control) at 25 °C, 30 °C or 37 °C (Supplementary Figure S2).
Motility of the MogR overexpression strain was investigated by swimming assays employing 0.3% LB agar plates, showing that cells overexpressing MogR were non-motile, and that the repression of motility was dependent on the two amino acid residues (Q119 and N120) mutated in MogRQN→AA, at 30 °C (Figures 4A,B), as well as at 25 °C and 37 °C. Swimming

Figure 4: Analysis of motility and expression of flagella upon MogR overexpression in \textit{B. thuringiensis} 407. Assays were conducted using the following strains: \textit{B. thuringiensis} 407 pHT304-P\textsubscript{xyl} empty vector control strain (pHT304-P\textsubscript{xyl}); \textit{B. thuringiensis} 407 pHT304-P\textsubscript{xyl}-mogR (MogR+), overexpressing MogR; and \textit{B. thuringiensis} 407 pHT304-P\textsubscript{xyl}-mogRQN→AA (MogRQN→AA), overexpressing a mutated form of MogR (see Table 1). Expression was induced with 1 mM xylose and cells were grown at 30 °C. (A,B) Swimming motility was determined following growth on 0.3% LB agar for 7 hours. In (A), the mean and corresponding standard error values obtained from three independent experiments are shown. (C) Gene expression analysis of \textit{flaA} and \textit{flaB} by RT-qPCR. The relative expression of \textit{flaA} and \textit{flaB} in the MogR or MogRQN→AA strains was normalized to the expression level of each respective gene in the empty vector control strain. Averages and standard errors of the means from three experiments are shown. (D,E,F) Atomic Force Microscopy images of bacterial cells grown to an OD\textsubscript{600} of 3. (G) Western immunoblots showing the level of flagellin protein present in cell surface and whole cell extracts. Here, the \textit{B. thuringiensis} 407 wild type (wt) and \textit{B. thuringiensis} 407 \textit{ΔflaAB} strains were included as controls.
motility was also monitored by light microscopy and found to be completely lost upon MogR overexpression at all time points and temperatures examined (every half hour between 1 and 7 hours of cultivation, at 25 °C, 30 °C and 37 °C). To determine whether the reduced motility was due to a loss of flagellar structure or flagellar rotation, strains were analyzed by Atomic Force Microscopy (AFM). AFM analyses showed that the MogR overexpression strain was completely devoid of flagellar structures, while overexpression of MogRQN→AA restored the empty vector control phenotype (Figures 4D,E,F). In accordance, a Western blot of the MogR overexpression strain using anti-flagellin antibodies showed that flagellin proteins were below the level of detection in whole cell extracts and severely attenuated in outer cell surface extracts compared to in the vector control strain, while being expressed at comparable levels in the \textit{B. thuringiensis} 407 wild type strain and in \textit{B. thuringiensis} 407 overexpressing MogRQN→AA (Figure 4G). In a Δ\textit{flaAB} negative control strain in which the genes encoding the FlaA and FlaB flagellins had been deleted, no flagellin proteins could be detected neither in the whole cell extract nor on the cell surface. In \textit{L. monocytogenes}, flagellin genes were previously found to be directly repressed by MogR, and in order to investigate if MogR function was conserved in \textit{B. thuringiensis} 407, the expression of flagellin genes was investigated in the MogR overexpression strain relative to the empty vector and MogRQN→AA control strains, by quantitative RT-PCR. A 30-fold (\textit{flaA}) and 50-fold (\textit{flaB}) reduction in transcription, respectively, was seen in the MogR overexpression strain relative to the empty vector control, while no difference was observed relative to the empty vector strain when overexpressing MogRQN→AA (Figure 4C).

3.5 Overexpression of MogR affects the expression of genes not related to motility functions

Global microarray-based transcriptional profiling was used to identify genes whose expression was affected by MogR overexpression in \textit{B. thuringiensis} 407 relative to the empty vector control strain. Samples were taken in the early stationary growth phase (3 hours), and a total of 110 genes were identified to be differentially regulated by MogR (FDR-corrected \(p<0.05\)), either directly or indirectly. Selected genes are listed in Table 2 (see Supplementary Table S3 for complete list). Of the differentially expressed genes, 87 were repressed by MogR overexpression, while 23 genes exhibited higher transcriptional levels compared to the control. In total, 21 motility genes were downregulated by MogR overexpression, including flagellin genes \textit{flaA} and \textit{flaB} (Supplementary Figure S3). Overexpression of MogR affected genes widely dispersed in the motility loci, including the \textit{motAB} operon located separately in the chromosome. Interestingly, the microarray analysis revealed that MogR also affected the expression of 89 non-motility-related genes, including six virulence genes which were downregulated. The latter genes included \textit{inhA} encoding immune inhibitor A, \textit{hblA} and \textit{hblD} encoding enterotoxin binding component B and lytic component L1, respectively, \textit{sfp} encoding a subtilase family serine protease, as well as genes encoding phosphatidyl-choline specific phospholipase C and sphingomyelinase. Also downregulated were five stress-related genes: the \textit{groES}, \textit{groEL} and \textit{grpE} chaperonin genes, \textit{sigB} encoding the \(\sigma^B\) alternative sigma factor, and \textit{hrcA}. The gene encoding the pleiotropic transcriptional regulator NprR (Dubois et al., 2012) was also downregulated. Among the 23 genes upregulated in the MogR overexpression strain were \textit{sinI}, encoding a protein inducing biofilm formation by direct interaction and sequestration of the biofilm repressor SinR, and a putative capsular polysaccharide biosynthesis protein-encoding gene (BTB_RS26935) corresponding to BC5278 in \textit{B. cereus} strain ATCC 14579. The genes BC5267 to BC5278 constitute a conserved locus in \textit{B. cereus} and \textit{B. thuringiensis} and are homologous to the epsAO locus of \textit{B. subtilis} involved in the synthesis of the exopolysaccharide component of the biofilm matrix (Branda et al., 2001; Ivanova et al., 2003; Kearns et al., 2005; Fagerlund et al., 2014). Genes
in this locus have been found to be implicated in biofilm formation in *B. cereus* in a pellicle biofilm model (Hayrapetyan et al., 2015; Okshevsky et al., 2017). Another upregulated gene was *cbpA*, encoding a collagen adhesion protein positively regulated by c-di-GMP (Finke et al., 2019).

Table 2. Genome-wide gene expression analysis of *B. thuringiensis* 407 overexpressing MogR relative to an empty vector control strain using oligonucleotide microarrays

Gene	Locus tag in *B. thuringiensis* 407	Locus tag in *B. cereus* ATCC 14579	Predicted function	log2(fold change) in MogR overexpression strain relative to control
Motility-related gene function				
cheA	BTB_RS08255	BC1628	Chemotaxis protein, histidine kinase CheA	-1.80
flgK	BTB_RS08295	BC1636	Flagellar hook-associated protein 1, FlgK	-1.67
fliS	BTB_RS08310	BC1639	Flagellar biosynthesis protein FliS	-0.68
flgC	BTB_RS08325	BC1642	Flagellar basal-body rod protein FlgC	-2.87
fltF	BTB_RS08335	BC1644	Flagellar M-ring protein FltF	-2.31
fliG	BTB_RS08340	BC1645	Flagellar motor switch protein Flig	-1.09
fliK	BTB_RS08355	BC1649	Flagellar hook-length control protein FlIK	-1.47
cheV	BTB_RS08385	BC1654	Chemotaxis signal transduction protein CheV	-1.80
flaB	BTB_RS08395	BC1656	Flagellin FlaB	-1.04
flaA	BTB_RS08400	BC1657	Flagellin FlaA	-3.45
fliN	BTB_RS08425	BC1661	Flagellar motor switch protein (fliN-homolog)	-0.99
fliP	BTB_RS08430	BC1665	Flagellar biosynthesis protein FliP	-1.86
fliQ	BTB_RS08435	BC1666	Flagellar export apparatus protein FliQ	-1.23
fliR	BTB_RS08440	BC1667	Flagellar biosynthesis protein FliR	-1.02
fliB	BTB_RS08445	BC1668	Flagellar biosynthesis protein FliB	-1.60
fliA	BTB_RS08450	BC1669	Flagellar biosynthesis protein FliA	-1.43
motB	BTB_RS22905	BC4512	Flagellar motor protein MotB (H⁺-coupled stator)	-3.01
motA	BTB_RS22910	BC4513	Flagellar motor protein MotA (H⁺-coupled stator)	-1.74
mcpA	BTB_RS02175	BC0422	Methyl-accepting chemotaxis protein (carrying upstream “off” c-di-GMP riboswitch)	-1.31
Virulence-related gene function				
nprR	BTB_RS03040	BC0598	Transcriptional activator NprR (necrotrophism regulator)	-0.89
inhA	BTB_RS03410	BC0666	Immune inhibitor A	-1.03
plcB	BTB_RS03430	BC0670	Phospholipase C (PC-PLC)	-2.32
sph	BTB_RS03435	BC0671	Sphingomyelinase C (Smase)	-1.47
hblA	BTB_RS12545	BC3102	Hbl component B	-1.13
hblD	BTB_RS12540	BC3103	Hbl component L1	-1.59
xfp	BTB_RS18825	BC3762	Serine protease (subtilase family)	-0.84
cbpA	BTB_RS05575	BC1060	Collagen adhesion protein (carrying upstream c-di-GMP "on" riboswitch)	3.02
Putative biofilm-related gene function				
sinl	BTB_RS06545	BC1283	Sinl biofilm repressor antagonist	1.08
ywgC	BTB_RS26935	BC5278	Putative capsular polysaccharide biosynthesis protein	0.71

3.6 *Q119 and N120 are critical for MogR binding to specific sites in the* *B. thuringiensis* *407 genome in vitro*

DNA regions upstream of genes differentially expressed in the *B. thuringiensis* 407 MogR overexpression strain were investigated for candidate MogR binding sites, based on sequence searches using the *L. monocytogenes* consensus MogR binding sequence (TTTTTWWNNWWAAAA; Shen et al., 2009). Three putative binding sites were predicted in the intergenic region upstream of the flagellin (*flaAB*) operon, two potential sites upstream of *cheY*, while four putative binding sites were predicted in the promoter region of the *hbl* operon (Lindbäck et al., 1999), all overlapping the -10 promoter element (Figure 5A). Among
the other genes downregulated by MogR overexpression, multiple binding sites were found upstream of \textit{inhA}, as well as upstream of the biofilm-promoting gene \textit{sinI} and \textit{mogR} itself.

\textbf{Figure 5: MogR binding to promoter regions in \textit{B. thuringiensis} 407.} (A) Putative MogR binding sites in the intergenic regions of \textit{flaA}, \textit{cheY}, \textit{inhA}, \textit{mogR}, \textit{sinI} and \textit{hblC} genes, allowing up to two mismatches from the sequence TTTTWWNWAAAA, with the number of mismatches in parentheses. Putative PlcR boxes, TATGNANNNTNCATA, are included in red (only perfect matches included). Broken arrows indicate transcriptional start sites where applicable. Location of primers used for generating \textit{fla} and \textit{hbl} promoter sequence probes for the electrophoretic mobility shift assay (EMSA) in (B,C) are indicated with orange arrows. (B,C) EMSAs of purified MBP-MogR fusion protein binding to purified PCR products representing the promoter regions of \textit{flaA} (B) and \textit{hblC} (C), as indicated in (A). Biotin-labeled \textit{flaA} or \textit{hblC} DNA fragments (2 µM) were incubated with 1 µg purified MBP-MogR protein, in the presence or absence of unlabeled competitor DNA (50x or 1000x): \textit{flaA} or \textit{hblC} fragment, ctrl1 (\textit{B. thuringiensis} 407 BTB_RS08990), and ctrl2 (gene encoding Epstein Barr virus nuclear antigen). In (B), MBP-MogRQN→AA was included as an extra control of binding of the mutated protein to the promoter DNA.

To investigate whether MogR may affect the expression of candidate genes in \textit{B. thuringiensis} 407 by directly binding to upstream regulatory regions, we carried out electrophoretic mobility shift assays (EMSA) with a purified maltose-binding protein (MBP)-MogR fusion protein, and purified DNA fragments constituting PCR-amplified candidate regulatory regions (Figure 5A). Results showed that MogR could bind the promoter regions upstream of both
Bacillus cereus group MogR regulator

flaAB and the hbl enterotoxin locus in vitro (Figures 5B,C), while for MogR\textsubscript{QN→AA} DNA binding was abolished (Figure 5B), demonstrating the essentiality of the Q119 and N120 residues for DNA-binding. The binding reactions to which competing cold DNA were added (labelled ctrl1 and ctrl2 in Figures 5B,C) indicated that MogR exhibits sequence specific binding to flaAB and hbl upstream regions in vitro.

3.7 Cytotoxin production and in vivo virulence are reduced upon MogR overexpression

Western blot analyses were performed to measure the effect of MogR overexpression on the amount of secreted enterotoxins. Hbl, CytK and Nhe enterotoxins were all present but at clearly reduced levels in the culture supernatant from the MogR overexpression strain, compared to that of empty vector and MogR\textsubscript{QN→AA} control strains (Figure 6A). To further assess the effect of MogR on virulence capacity, supernatants collected from mutant and overexpression strains grown to exponential phase were tested in an in vitro Vero cell toxicity assay (Lindbäck and Granum, 2006). Supernatants from the MogR overexpressing strain, which synthesized lower amounts of the Hbl, Nhe and CytK toxins (Figure 6A), were less cytotoxic than those of the empty vector control (p=0.059) and the MogR\textsubscript{QN→AA} strain (Figure 6B). In order to more confidently assess the effect of MogR on virulence, an in vivo model was used, where the strains were tested in an oral infection model using Galleria mellonella larvae. In accordance with the in vitro toxicity data, the MogR overexpressing strain was severely attenuated in virulence compared to the empty vector control strain in vivo (p=0.02; Figure 6C).

3.8 Biofilm formation is increased upon MogR overexpression in a flaAB negative background

The MogR overexpression strain was compared to the empty vector and MogR\textsubscript{QN→AA} strains both in glass tube and microtiter plate biofilm assays (Figure 7A,B). The glass tube assay showed similar development of a biofilm pellicle at the air-liquid surface in all three strains: After 72 hours the pellicle in the MogR overexpression strain was only slightly (14%) thicker than that of the empty vector and MogR\textsubscript{QN→AA} strains (Figure 7A). In the microtiter plate assay, no significant effect of MogR overexpression on biofilm formation was observed at 48 or 72 hours, with a slight decrease in biofilm formation at 24 hours compared to MogR\textsubscript{QN→AA} and empty vector controls (Figure 7B). Overexpression in a ΔflaAB background however allowed examination of the effect of the MogR protein on biofilm formation, independently of any effect conferred through flagella. Interestingly, in the ΔflaAB host, overexpression of MogR led to a substantial increase in biofilm formation relative to the MogR\textsubscript{QN→AA} and empty vector controls (Figure 7C), while biofilm formation in the control strain overexpressing MogR\textsubscript{QN→AA} was comparable to that of the strain carrying empty vector. Intriguingly, LC-MS/MS quantitation of the biofilm-related second messenger cyclic di-GMP (c-di-GMP) in cellular extracts indicated slightly increased levels of c-di-GMP in the MogR overexpression strain (wild type background; three measurements: 8.38 ng ml-1; 6.0 ng ml-1; 9.0 ng ml-1) compared to the B. thuringiensis 407 empty vector strain (two measurements: < LOD; 6.0 ng ml-1) (Limit of detection, LOD: 0.8 ng ml-1; Limit of quantitation, LOQ: 3.5 ng ml-1).
Bacillus cereus group MogR regulator

A) Western immunoblots

Antibody	Bt407 wild type	Bt407ΔflaAB
CytK	pHHT304-P_{xyl} MogR⁺ MogR^{QN→AA}	pHHT304-P_{xyl} MogR⁺ MogR^{QN→AA}
Nhe	pHHT304-P_{xyl} MogR⁺ MogR^{QN→AA}	pHHT304-P_{xyl} MogR⁺ MogR^{QN→AA}
Hbl	pHHT304-P_{xyl} MogR⁺ MogR^{QN→AA}	pHHT304-P_{xyl} MogR⁺ MogR^{QN→AA}

B) Vero cell cytotoxicity assay

C) In vivo virulence in Galleria mellonella

Figure 6. Analysis of the effect of overexpression of MogR on virulence and toxicity phenotypes. (A) Immunoblots against CytK, Nhe and Hbl enterotoxins using culture supernatants from B. thuringiensis 407 carrying the empty vector (pHT304-P_{xyl}), a MogR overexpression strain (MogR⁺), and a strain overexpressing a mutated form of MogR (MogR^{QN→AA}). Constructs were analysed in B. thuringiensis 407 wild type and flaAB deletion (ΔflaAB) backgrounds. Cultures were grown for 4.5 hours with 1 mM xylose induction prior to harvest. (B) Vero cell cytotoxicity assay using supernatants from cultures of the same strains as in (A). The median and first and third quartiles (25th percentile and 75th percentile) of three independent experiments are shown, as well as whiskers indicating the data variability outside the upper and lower quartiles. (C) In vivo toxicity in Galleria mellonella insect larvae (oral force-feeding infection model), using empty vector and MogR overexpression strains, in B. thuringiensis 407 wild type and ΔflaAB backgrounds, respectively. Bacteria were in all cases mixed with Cry 1C toxin and xylose. Also, a control with no bacteria but fed with Cry toxin and xylose was included. The means and standard errors of the mean (bars) of seven independent experiments are shown. Statistically significant differences (Tukey’s post hoc test, p<0.02) are indicated with asterisks.
Discussion

Overexpression of MogR leads to repression of a range of motility genes in *B. thuringiensis* 407, including the flagellins, rendering the bacteria non-flagellated and non-motile. In addition, amino acids in *B. thuringiensis* MogR which correspond to those shown to constitute DNA backbone-interacting residues in *L. monocytogenes* MogR are clearly essential for *B. thuringiensis* MogR DNA binding *in vitro*. In accordance, overexpression of the mutated variant of MogR restores phenotypes to those of a vector control strain. Collectively these results, and analyses of MogR binding to predicted regulatory sites *in vitro*, strongly support the role of *B. thuringiensis* MogR as a DNA-binding transcriptional regulator and that the role of MogR as a key motility regulator in *B. thuringiensis* is conserved with that in *L. monocytogenes*. Global gene expression profiling however showed that in *B. thuringiensis* a large number of non-motility genes were also affected by MogR overexpression, including genes involved in stress response, virulence and biofilm formation. This was paralleled by an observed decrease in cytotoxin production, Vero cell toxicity and *in vivo* toxicity, indicating that MogR can affect additional phenotypes in *B. cereus* group bacteria. This is in apparent contrast to *L. monocytogenes*, where the primary function of MogR during intracellular infection is to repress flagellar motility gene expression, and where deletion of the flagellin gene (*flaA*) in a mogR deletion strain (producing ΔmogR ΔflaA) restores the LD$_{50}$ values to wild type levels in a mouse model of infection (Shen and Higgins, 2006).

In bacteria, motility and virulence can be subject to coordinated downregulation, e.g. as is observed for intracellular signaling networks involving the second messenger c-di-GMP (Fagerlund et al., 2016). Flagellar motility and virulence appears to be co-regulated in *B. cereus* group bacteria (Zhang et al., 1993; Ghelardi et al., 2002; Bouillaut et al., 2005; Ghelardi et al., 2007a; Fagerlund et al., 2010; Salvetti et al., 2011; Mazzantini et al., 2016), and a *B. cereus* strain deleted in *flhA*, which encodes a component of the flagellum-formation apparatus, is impaired in adhesion (Ramarao and Lereclus, 2006), expression of virulence factors (Ghelardi et al., 2002; Fagerlund et al., 2010), and in cytotoxicity and *in vivo* virulence independently of PlcR (Bouillaut et al., 2005). Similarly, deletion of the gene encoding the
Bacillus cereus group MogR regulator

signal recognition particle-like GDPase FlhF, located directly downstream of flhA, resulted in a marked reduction in the number of flagella, and a reduction in secretion of several virulence-related proteins with attenuation of in vivo virulence (Salvetti et al., 2007; Mazzantini et al., 2016; Mazzantini et al., 2020). A link between synthesis of the flagellar apparatus and the production of virulence factors has also been observed for flhA deletion mutants in other bacteria that do not carry a mogR ortholog (Fleiszig et al., 2001; Carrillo et al., 2004). The observed effects of MogR on toxin production and virulence-related phenotypes may thus be conferred through direct regulation, as potentially indicated through in vitro binding to the hbl upstream region, or indirectly through repression of genes in the motility locus, such as e.g. flhA and/or flhF, or both. MogR appears to function independently of the virulence gene activator PlcR, as plcR expression was not affected by MogR overexpression, and only six out of the 28 genes comprising the PlcR regulon were differentially expressed in the microarray analysis. Clearly, the effect on toxin production observed following deletion of flhA or flhF was not replicated in the flaAB deletion mutant, showing that not all deletions in the motility locus affect toxin synthesis and/or transport.

When employing a ΔflaAB genetic background to compare the effect of MogR overexpression on biofilm formation, relative to empty vector and MogRQN→AA overexpression controls, a significant increase in biofilm formation was observed by MogR overexpression. In line with this, the transcriptional profiling experiments showed upregulated expression of the biofilm anti-repressor sinI, and BTB_RS26935 located in a putative polysaccharide locus previously shown to be implicated in the formation of the biofilm matrix in some B. cereus strains (Hayrapetyan et al., 2015; Okshevsky et al., 2017). Moreover, LC-MS/MS quantitation indicated a slight increase in cellular c-di-GMP upon MogR overexpression, which is linked to increased biofilm formation in B. thuringiensis 407 (Fagerlund et al., 2016; Fu et al., 2018). A microarray experiment analyzing the effect of B. thuringiensis 407 overexpressing the c-di-GMP synthetizing protein CdgF relative to an empty vector control strain (Fagerlund et al., 2016; A. Fagerlund, unpublished data deposited in the ArrayExpress database, accession no. E-MTAB-8898) showed that the expression of the biofilm regulators spo0A and sinI were upregulated and the transcriptional regulator codY was downregulated at high levels of c-di-GMP, all paralleling an increase in biofilm formation (Pflughoeft et al., 2011; Lindbäck et al., 2012; Fagerlund et al., 2014). Taken together, these experiments provide strong indication that MogR, directly or indirectly promotes biofilm formation in B. thuringiensis 407, a phenotype in line with the role of the protein in promoting sessility and repressing toxicity.

In L. monocytogenes, MogR activity is controlled by its anti-repressor GmaR (Kamp and Higgins, 2009). GmaR expression is halted when L. monocytogenes experiences 37 °C, which allows MogR to repress flagellar synthesis during human infection. The gmaR gene is not present in most B. cereus group genomes, in line with mogR appearing to be regulated in a growth-dependent but temperature-independent manner in B. thuringiensis 407. It is however interesting to note that a gmaR ortholog is found in at least twelve sequenced B. cereus group strains, including all hitherto characterized strains of the thermotolerant species B. cytotoxicus, perhaps reflecting a need for strains in this phylogenetic group (group VII) to regulate flagellin synthesis at different temperatures. Most B. anthracis strains also harbor a copy of gmaR, which however is truncated and rendered non-functional due to mutation. Uncharacteristically, an apparently full-length gmaR copy was identified in the genome of B. cereus VD184, an environmental soil isolate belonging to phylogenetic cluster IV (Hoton et al., 2009; Jalasvuori et al., 2013), as well as B. cereus strains RU36C, F528-94, MB.22, B4118 and FSL W8-0932, and Bacillus wiedmannii FSL P4-0569, for which optimal growth temperatures are not known.

21
In conclusion, MogR is a key regulator of motility in *B. thuringiensis* 407, a function which is probably conserved across the motile species in the *B. cereus* group. Most importantly however, both microarray experiments, protein expression analyses, biofilm screening results, and the fact that the *mogR* gene is evolutionary retained in the non-motile *B. mycoides*, *B. pseudomycoides*, and the highly virulent *B. anthracis*, as well as expressed in *B. anthracis*, speaks to the MogR transcriptional regulator serving additional functions in *B. cereus* group bacteria, beyond those identified in *L. monocytogenes*. In this respect it is interesting to note that all attempts to produce a gene deletion mutant in *mogR* in *B. thuringiensis* 407 were unsuccessful, and we cannot rule out the possibility of *mogR* constituting an essential gene in the *B. cereus* group. From the analyses performed in this study, it is tempting to speculate that MogR may serve as part of a molecular system coordinating motility, virulence, and biofilm formation, and possibly additional phenotypes. Biofilm formation and motility are reciprocally regulated in a number of bacterial species, including *B. cereus* group bacteria, by the second messenger c-di-GMP (Hengge, 2009; Fagerlund et al., 2016; Jenal et al., 2017; Fu et al., 2018), and several transcriptional regulators in both the *B. cereus* group and *L. monocytogenes* are known to have overlapping functions in regulation of virulence and biofilm formation (Hsueh et al., 2006; Lemon et al., 2010; Pflughoeft et al., 2011; Frenzel et al., 2012; Lindbäck et al., 2012; Fagerlund et al., 2014; Slamti et al., 2015; Böhm et al., 2016). It thus appears that, in the *B. cereus* group, there is substantial cross-regulation between motility, virulence, and biofilm formation, involving a multitude of regulatory networks based on both c-di-GMP and transcription factors (PlcR, MogR, NprR).

5 **Data availability statement**

The microarray data comparing overexpression of MogR with the empty vector control is available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-7633.

6 **Author Contributions**

OØ and AF contributed to conception and design of the study. VS performed EMSA, motility assays, Western immunoblotting, and biofilm assays. VS and AF performed RT-qPCR. VS, MJ and AF performed cloning and mutagenesis. MJ performed the microarray experiment, SF performed growth experiments, IH performed AFM, TL performed cytotoxicity assays, and CN performed the *in vivo* toxicity assays. AF performed bioinformatic, microarray, and statistical analyses and NT performed bioinformatic analysis of the subgroup I genomes. VS, OØ, and AF wrote the first draft of the manuscript. TL, IH, and CN wrote sections of the manuscript. All authors contributed to data analysis, read and approved the final manuscript.

7 **Funding**

This work was funded by a project grant from the Research Council of Norway to OAØ through the FUGE II Programme (channel 3 grant; project number 183421), the Jahre Foundation, and by internal grants from the Department of Pharmacy, University of Oslo to OAØ.

8 **Conflict of Interest**

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be interpreted as a potential conflict of interest.
9 Acknowledgements

We are very grateful to Erwin Märtlbauer, Ludwig-Maximilians-Universität, Germany, for monoclonal antibodies against Hbl and Nhe, and to Cecilie From, Norwegian University of Life Sciences, Norway, for anti-flagellin antibodies. We gratefully thank Didier Lereclus, INRA, France for the E. coli/Bacillus shuttle vector pH304-Pxyl, and Michel Gohar, INRA, France, for the B. thuringiensis 407 ΔflaAB strain. We thank Christophe Buisson, INRA, France, for performing force-feeding of insect larvae, and Marthe P. Parmer and Leon Reubsaet, School of Pharmacy, University of Oslo, Norway, for quantitation of cellular c-di-GMP levels.

10 References

Abràmoff, M.D., Magalhães, P.J., and Ram, S.J. (2004). Image processing with ImageJ. Biophotonics Int. 11, 36-42.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410. doi: 10.1016/s0022-2836(05)80360-2

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. doi: 10.1093/nar/25.17.3389

Arantes, O., and Lereclus, D. (1991). Construction of cloning vectors for Bacillus thuringiensis. Gene 108, 115-119. doi: 10.1016/0378-1119(91)90495-w

Auger, S., Krin, E., Aymerich, S., and Gohar, M. (2006). Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl. Environ. Microbiol. 72, 937-941. doi: 10.1128/aem.72.1.937-941.2006.

Barbe, V., Cruveiller, S., Kunst, F., Lenoble, P., Meurice, G., Sekowska, A., Vallenet, D., Wang, T., Moszer, I., Médigue, C., Danchin, A. (2009). From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 155, 1758-1775. doi: 10.1099/mic.0.027839-0

Bazinet, A.L. (2017). Pan-genome and phylogeny of Bacillus cereus sensu lato. BMC Evol. Biol. 17, 176. doi: 10.1186/s12862-017-1020-1

Bergman, N.H., Anderson, E.C., Swenson, E.E., Niemeyer, M.M., Miyoshi, A.D., and Hanna, P.C. (2006). Transcriptional profiling of the Bacillus anthracis life cycle in vitro and an implied model for regulation of spore formation. J. Bacteriol. 188, 6092-6100. doi: 10.1128/jb.00723-06

Böhmer, M.E., Krey, V.M., Jeßberger, N., Frenzel, E., and Scherer, S. (2016). Comparative bioinformatics and experimental analysis of the intergenic regulatory regions of Bacillus cereus hbl and nhe enterotoxin operons and the impact of CodY on virulence heterogeneity. Front. Microbiol. 7, 768. doi: 10.3389/fmicb.2016.00768

Bottone, E.J. (2010). Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23, 382-398. doi: 10.1128/cmr.00073-09
Bacillus cereus group MogR regulator

Bouillaut, L., Ramaroa, N., Buisson, C., Gilois, N., Gohar, M., Lereclus, D., et al. (2005). FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl. Environ. Microbiol. 71, 8903-8910. doi: 10.1128/aem.71.12.8903-8910.2005

Branda, S.S., González-Pastor, J.E., Ben-Yehuda, S., Losick, R., and Kolter, R. (2001). Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 98, 11621-11626. doi: 10.1073/pnas.191384198

Carrillo, C.D., Taboada, E., Nash, J.H., Lanthier, P., Kelly, J., Lau, P.C., Mykytczuk, O., Sy, J., Findlay, W.A., Amoako, K., Gomis, S., Willson, P., Austin, J.W., Potter, A., Babuk, L., Allan, B., and Szymanski, C.M. (2004). Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279, 20327-20338. doi: 10.1074/jbc.M401134200

Celandroni, F., Salvetti, S., Senesi, S., and Gheardi, E. (2014). Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells. FEMS Microbiol. Lett. 361, 95-103. doi: 10.1111/1574-6968.12615

Chaban, B., Hughes, H.V., and Beeby, M. (2015). The flagellum in bacterial pathogens: For motility and a whole lot more. Semin. Cell Dev. Biol. 46, 91-103. doi: 10.1016/j.semcdb.2015.10.032

Chiara, M., Caruso, M., D'Erchia, A.M., Manzari, C., Fraccalvieri, R., Goffredo, E., Latorre, L., Angela Miccolupo, A., Padalino, I., Santagada, G., Chiocco, D., Pesole, G., Horner, D.S., and Parisi A. (2015). Comparative genomics of Listeria sensu lato: Genus-wide differences in evolutionary dynamics and the progressive gain of complex, potentially pathogenicity-related traits through lateral gene transfer. Genome Biol. Evol. 7, 2154-2172. doi: 10.1093/gbe/evv131

Cutting, S.M. (2011). Bacillus probiotics. Food Microbiol. 28, 214-220. doi: 10.1016/j.fm.2010.03.007

Damgaard, P.H. (1995). Diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis-based insecticides. FEMS Immunol. Med. Microbiol. 12, 245-250. doi: 10.1111/j.1574-695X.1995.tb00199.x

Damgaard, P.H., Granum, P.E., Bresciani, J., Torregrossa, M.V., Eilenberg, J., and Valentino, L. (1997). Characterization of Bacillus thuringiensis isolated from infections in burn wounds. FEMS Immunol. Med. Microbiol. 18, 47-53. doi: 10.1111/j.1574-695X.1997.tb01026.x

Dietrich, R., Fella, C., Strich, S., and Märtlbauer, E. (1999). Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus. Appl. Environ. Microbiol. 65, 4470-4474. doi: 10.1128/AEM.65.10.4470-4474.1999

Dietrich, R., Moravek, M., Bürk, C., Granum, P.E., and Märtlbauer, E. (2005). Production and characterization of antibodies against each of the three subunits of the Bacillus cereus nonhemolytic enterotoxin complex. Appl. Environ. Microbiol. 71, 8214-8220. doi: 10.1128/aem.71.12.8214-8220.2005
Dubois, T., Faegri, K., Perchat, S., Lemy, C., Buisson, C., Nielsen-LeRoux, C., Gohar, M., Jacques, P., Ramarao, N., Kolsø, A.B., and Lereclus D. (2012). Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathog. 8, e1002629. doi: 10.1371/journal.ppat.1002629

Erhardt, M., Namba, K., and Hughes, K.T. (2010). Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb. Perspect. Biol. 2, a000299. doi: 10.1101/cshperspect.a000299

Fagerlund, A., Dubois, T., Økstad, O.A., Verplaetse, E., Gilois, N., Bennaceur, I., Perchat, S., Gominet, M., Aymerich, S., Kolstø, A.B., Lereclus, D., and Gohar, M. (2014). SinR controls enterotoxin expression in Bacillus thuringiensis biofilms. PLoS One 9, e87532. doi: 10.1371/journal.pone.0087532

Fagerlund, A., Smith, V., Røhr, Å.K., Lindbäck, T., Parmer, M.P., Andersson, K.K., Reubsaet, L., and Økstad, O.A. (2016). Cyclic diguanylate regulation of Bacillus cereus group biofilm formation. Mol. Microbiol. 101, 471-494. doi: 10.1111/mmi.13405

Fagerlund, A., Ween, O., Lund, T., Hardy, S.P., and Granum, P.E. (2004). Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150, 2689-2697. doi: 10.1099/mic.0.26975-0

Fedhila, S., Daou, N., Lereclus, D., and Nielsen-LeRoux, C. (2006). Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol. Microbiol. 62, 339-355. doi: 10.1111/j.1365-2958.2006.05362.x

Finke, S., Fagerlund, A., Smith, V., Krogstad, V., Zhang, M.S., Saragliadis, A., Linke, D., Nielsen-LeRoux, C., and Økstad, O.A. (2019). Bacillus thuringiensis CbpA is a collagen binding cell surface protein under c-di-GMP control. Cell Surf. 5, 100032. doi: 10.1016/j.tcsw.2019.100032

Fleiszig, S.M., Arora, S.K., Van, R., and Ramphal, R. (2001). FlhA, a component of the flagellum assembly apparatus of Pseudomonas aeruginosa, plays a role in internalization by corneal epithelial cells. Infect. Immun. 69, 4931-4937. doi: 10.1128/iai.69.8.4931-4937.2001

Frenzel, E., Doll, V., Pauthner, M., Lücking, G., Scherer, S., and Ehling-Schulz, M. (2012). CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Mol. Microbiol. 85, 67-88. doi: 10.1111/j.1365-2958.2012.08090.x

Fu, Y., Yu, Z., Liu, S., Chen, B., Zhu, L., Li, Z., Chou, S.H., and He, J. (2018). c-di-GMP regulates various phenotypes and insecticidal activity of Gram-positive Bacillus thuringiensis. Front. Microbiol. 9, 45. doi: 10.3389/fmicb.2018.00045

Gaviria Rivera, A.M., Granum, P.E., and Priest, F.G. (2000). Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol. Lett. 190, 151-155. doi: 10.1111/j.1574-6968.2000.tb09278.x
Ghelardi, E., Celandroni, F., Salvetti, S., Beecher, D.J., Gominet, M., Lereclus, D., Wong, A.C.L., and Senesi, S. (2002). Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. J. Bacteriol. 184, 6424-6433. doi: 10.1128/jb.184.23.6424-6433.2002

Ghelardi, E., Celandroni, F., Salvetti, S., Ceragioli, M., Beecher, D.J., Senesi, S., and Wong, A.C.L. (2007a). Swarming behavior of and hemolysin BL secretion by Bacillus cereus. Appl. Environ. Microbiol. 73, 4089-4093. doi: 10.1128/aem.02345-06

Ghelardi, E., Celandroni, F., Salvetti, S., Fiscarelli, E., and Senesi, S. (2007b). Bacillus thuringiensis pulmonary infection: critical role for bacterial membrane-damaging toxins and host neutrophils. Microbes Infect. 9, 591-598. doi: 10.1016/j.micinf.2007.02.001

Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Økstad, O.A., Gominet, M., Kolstø, A.B., and Lereclus, D. (2008). The PlcR virulence regulon of Bacillus cereus. PLoS One 3, e2793. doi: 10.1371/journal.pone.0002793

Gohar, M., Gilois, N., Graveline, R., Garreau, C., Sanchis, V., and Lereclus, D. (2005). A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5, 3696-3711. doi: 10.1002/pmic.200401225

Gründling, A., Burrack, L.S., Bouwer, H.G., and Higgins, D.E. (2004). Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc. Natl. Acad. Sci. U.S.A. 101, 12318-12323. doi: 10.1073/pnas.0404924101

Guinebretière, M.H., Auger, S., Galleron, N., Contzen, M., De Sarrau, B., De Buyser, M.L., Lamberet, G., Fagerlund, A., Granum, P.E., Lereclus, D., De Vos, P., Nguyen-The, C., and Sorokin, A. (2013). Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int. J. Syst. Evol. Microbiol. 63, 31-40. doi: 10.1099/ijs.0.030627-0

Guinebretière, M.H., Thompson, F.L., Sorokin, A., Normand, P., Dawyndt, P., Ehling-Schulz, M., Svensson, B., Sanchis, V., Nguyen-The, C., Heyndrickx, M., and De Vos, P. (2008). Ecological diversification in the Bacillus cereus Group. Environ. Microbiol. 10, 851-865. doi: 10.1111/j.1462-2920.2007.01495.x

Han, L.L., Shao, H.H., Liu, Y.C., Liu, G., Xie, C.Y., Cheng, X.J., Wang, H.Y., Tan, X.M., and Feng, H. (2017). Transcriptome profiling analysis reveals metabolic changes across various growth phases in Bacillus pumilus BA06. BMC Microbiol. 17, 156. doi: 10.1186/s12866-017-1066-7

Harlow, E.D.L. (1988). Antibodies: A laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M., and Aderem, A. (2001). The innate immune response to Bacillus cereus group MogR regulator
bacterial flagellin is mediated by Toll-like receptor 5. *Nature* 410, 1099-1103. doi: 10.1038/35074106

Hayrapetyan, H., Tempelaars, M., Nierop Groot, M., and Abee, T. (2015). *Bacillus cereus* ATCC 14579 RpoN (sigma 54) is a pleiotropic regulator of growth, carbohydrate metabolism, motility, biofilm formation and toxin production. *PLoS One* 10, e0134872. doi: 10.1371/journal.pone.0134872

Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. *Nat. Rev. Microbiol.* 7, 263-273. doi: 10.1038/nrmicro2109

Hernandez, E., Ramisse, F., Ducoureau, J.P., Cruel, T., and Cavallo, J.D. (1998). *Bacillus thuringiensis* subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. *J. Clin. Microbiol.* 36, 2138-2139. doi: 10.1128/JCM.36.7.2138-2139.1998

Horton, F.M., Fornelos, N., N’Guessan, E., Hu, X., Swiecicka, I., Dierick, K., Jääskeläinen, E., Salkinoja-Salonen, M., and Mahillon, J. (2009). Family portrait of *Bacillus cereus* and *Bacillus weihenstephanensis* cereulide-producing strains. *Environ. Microbiol. Rep.* 1, 177-183. doi: 10.1111/j.1758-2229.2009.00028.x

Houry, A., Briandet, R., Aymerich, S., and Gohar, M. (2010). Involvement of motility and flagella in *Bacillus cereus* biofilm formation. *Microbiology* 156, 1009-1018. doi: 10.1099/mic.0.034827-0

Hsueh, Y.H., Somers, E.B., Lereclus, D., and Wong, A.C.L. (2006). Biofilm formation by *Bacillus cereus* is influenced by PlcR, a pleiotropic regulator. *Appl. Environ. Microbiol.* 72, 5089-5092. doi: 10.1128/aem.02182-06

Ivanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V., et al. (2003). Genome sequence of *Bacillus cereus* and comparative analysis with *Bacillus anthracis*. *Nature* 423, 87-91. doi: 10.1038/nature01582

Jackson, S.G., Goodbrand, R.B., Ahmed, R., and Kasatiya, S. (1995). *Bacillus cereus* and *Bacillus thuringiensis* isolated in a gastroenteritis outbreak investigation. *Lett. Appl. Microbiol.* 21, 103-105. doi: 10.1111/j.1472-765x.1995.tb01017.x

Jalasvuori, M., Palmu, S., Gillis, A., Kokko, H., Mahillon, J., Bamford, J.K., and Fornelos, N. (2013). Identification of five novel tectiviruses in *Bacillus* strains: analysis of a highly variable region generating genetic diversity. *Res. Microbiol.* 164, 118-126. doi: 10.1016/j.resmic.2012.10.011

Jenal, U., Reinders, A., and Lori, C. (2017). Cyclic di-GMP: second messenger extraordinaire. *Nat. Rev. Microbiol.* 15, 271-284. doi: 10.1038/nrmicro.2016.190

Jiménez, G., Urdiai, M., Cifuentes, A., López-Lopez, A., Blanch, A.R., Tamames, J., Kämpfer, P., Kolstø, A.B., Ramón, D., Martínez, J.F., Codoñer, F.M., and Rosselló-Móra R. (2013). Description of *Bacillus toyonensis* sp. nov., a novel species of the *Bacillus cereus* group, and pairwise genome comparisons of the species of the group by means of ANI calculations. *Syst. Appl. Microbiol.* 36, 383-391. doi: 10.1016/j.syapm.2013.04.00
Bacillus cereus group MogR regulator

Kamp, H.D., and Higgins, D.E. (2009). Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes. Mol. Microbiol. 74, 421-435. doi: 10.1111/j.1365-2958.2009.06874.x

Kamp, H.D., and Higgins, D.E. (2011). A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes. PLoS Pathog. 7, e1002153. doi: 10.1371/journal.ppat.1002153

Kearns, D.B., Chu, F., Branda, S.S., Kolter, R., and Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55, 739-749. doi: 10.1111/j.1365-2958.2004.04440.x

Kim, M.J., Han, J.K., Park, J.S., Lee, J.S., Lee, S.H., Cho, J.I., Kim, K.S. (2015). Various enterotoxin and other virulence factor genes widespread among Bacillus cereus and Bacillus thuringiensis strains. J. Microbiol. Biotechnol. 25, 872-879. doi: 10.4014/jmb.1502.02003

Klee, S.R., Brzuszkiewicz, E.B., Nattermann, H., Brüggemann, H., Dupke, S., Wollherr, A., et al. (2010). The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One 5, e10986. doi: 10.1371/journal.pone.0010986

Kolstø, A.B., Tourasse, N.J., and Økstad, O.A. (2009). What sets Bacillus anthracis apart from other Bacillus species? Annu. Rev. Microbiol. 63, 451-476. doi: 10.1146/annurev.micro.091208.073255

Kristoffersen, S.M., Ravnum, S., Tourasse, N.J., Økstad, O.A., Kolstø, A.B., and Davies, W. (2007). Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14579. J. Bacteriol. 189, 5302-5313. doi: 10.1128/jb.00239-07.

Larsen, T.S., and Krogh, A. (2003). EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance. BMC Bioinformatics 4, 21. doi: 10.1186/1471-2105-4-21.

Lecerclus, D., Lecadet, M.M., Blondel, M.O., and Ribier, J. (1980). Generalized transduction in Bacillus thuringiensis var. berliner 1715 using bacteriophage CP-54Ber. J. Gen. Microbiol. 121, 203-212. doi: 10.1099/00221287-121-1-203

Lemon, K.P., Freitag, N.E., and Kolter, R. (2010). The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes. J. Bacteriol. 192, 3969-3976. doi: 10.1128/jb.00179-10

Lecerclus, D., Arantès, O., Chaufaux, J., and Lecadet, M. (1989). Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 51, 211-217. doi: 10.1016/0378-1097(89)90511-9

Lecerclus, D., Lecadet, M.M., Ribier, J., and Dedonder, R. (1982). Molecular relationships among plasmids of Bacillus thuringiensis: conserved sequences through 11 crystalliferous strains. Mol. Gen. Genet. 186, 391-398. doi: 10.1007/BF00729459

Li, B., Yue, Y., Yuan, Z., Zhang, F., Li, P., Song, N., Lin, W., Liu, Y., Yang, Y., Li, Z., and Gu, L. (2017). Salmonella STM1697 coordinates flagella biogenesis and virulence by
restricting flagellar master protein FlhD4C2 from recruiting RNA polymerase. *Nucleic Acids Res.* 45, 9976-9989. doi: 10.1093/nar/gkx656

Lindbäck, T., Mols, M., Basset, C., Granum, P.E., Kuipers, O.P., and Kovács, A.T. (2012). CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in *Bacillus cereus*. *Environ. Microbiol.* 14, 2233-2246. doi: 10.1111/j.1462-2920.2012.02766.x

Lindbäck, T., Økstad, O.A., Rishovd, A.L., and Kolstø, A.B. (1999). Insertional inactivation of *hblC* encoding the L2 component of *Bacillus cereus* ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. *Microbiology* 145, 3139-3146. doi: 10.1099/0022-1287-145-1-3139

Lindbäck, T., and Granum, P.E. (2006). "Detection and purification of *Bacillus cereus* enterotoxins," in *Food-Borne Pathogens. Methods in Biotechnology* vol 21, ed. C.C. Adley. (Totowa, NJ: Humana Press Inc), 15-26. doi: 10.1385/1-59259-990-7:015

Lövgren, A., Zhang, M.Y., Engström, A., and Landén, R. (1993). Identification of two expressed flagellin genes in the insect pathogen *Bacillus thuringiensis* subsp. *aletsi*. *J. Gen. Microbiol.* 139, 21-30. doi: 10.1099/00221287-139-1-21

Markowitz, V.M., Chen, I.M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Anderson, I., Lykidis, A., Mavromatis, K., Ivanova, N.N., and Kyrsides, N.C. (2010). The integrated microbial genomes system: an expanding comparative analysis resource. *Nucleic Acids Res.* 38(Database issue), D382-D390. doi: 10.1093/nar/gkp887

Masson, L., Préfontaine, G., and Brousseau, R. (1989). Transformation of *Bacillus thuringiensis* vegetative cells by electroporation. *FEMS Microbiol. Lett.* 51, 273-277. doi: 10.1016/0378-1097(89)90409-6

Mazzantini, D., Celandroni, F., Salvetti, S., Gueye, S.A., Lupetti, A., Senesi, S., and Ghelardi, E. (2016). FlhF is required for swarming motility and full pathogenicity of *Bacillus cereus*. *Front. Microbiol.* 7, 1644. doi: 10.3389/fmicb.2016.01644

Mazzantini, D., Fonnesu, R., Celandroni, F., Calvigioni, M., Vecchione, A., Mrusek, D., Bange, G., and Ghelardi, E. (2020). GTP-dependent FlhF homodimer supports secretion of a hemolysin in *Bacillus cereus*. *Front. Microbiol.* 11, 879. doi: 10.3389/fmicb.2020.00879

Nakamura, L.K. (1998). *Bacillus pseudomycoides* sp. nov. *Int. J. Syst. Bacteriol.* 48, 1031-1035. doi: 10.1099/00207713-48-3-1031

Okshevsky, M., Louw, M.G., Lamela, E.O., Nilsson, M., Tolker-Nielsen, T., and Meyer, R.L. (2017). A transposon mutant library of *Bacillus cereus* ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation. *MicrobiologyOpen.* 7, e00552. doi: 10.1002/mbo3.552

Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res.* 29, e45. doi: 10.1093/nar/29.9.e45

Pflughoeft, K.J., Sumby, P., and Koehler, T.M. (2011). *Bacillus anthracis sin* locus and regulation of secreted proteases. *J. Bacteriol.* 193, 631-639. doi: 10.1128/jb.01083-10
Bacillus cereus group MogR regulator

Ramarao, N., and Lereclus, D. (2006). Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect. 8, 1483-1491. doi: 10.1016/j.micinf.2006.01.005

Ramírez Santos, J., Contreras Ferrat, G., and Gómez Eichelmann, M.C. (2005). [Stationary phase in Escherichia coli]. Rev. Latinoam. Microbiol. 47, 92-101.

Reiter, L., Kolstø, A.B., and Piehler, A.P. (2011). Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle. J. Microbiol. Methods 86, 210-217. doi: 10.1016/j.mimet.2011.05.006

Salamitou, S., Agaisse, H., and Lereclus, D. (1997). A genetic system that reports transient activation of genes in Bacillus. Gene 202, 121-126. doi: 10.1016/s0378-1119(97)00462-9

Salvetti, S., Faegri, K., Ghelardi, E., Kolstø, A.B., and Senesi, S. (2011). Global gene expression profile for swarming Bacillus cereus bacteria. Appl. Environ. Microbiol. 77, 5149-5156. doi: 10.1128/aem.00245-11

Salvetti, S., Ghelardi, E., Celandroni, F., Ceragioli, M., Giannessi, F., and Senesi, S. (2007). FlhF, a signal recognition particle-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour and protein secretion in Bacillus cereus. Microbiology 153, 2541-2552. doi: 10.1099/mic.0.2006/005553-0

Samples, J.R., and Buettner, H. (1983). Corneal ulcer caused by a biologic insecticide (Bacillus thuringiensis). Am. J. Ophthalmol. 95, 258-260. doi: 10.1016/0002-9394(83)90028-4

Shen, A., and Higgins, D.E. (2006). The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog. 2, e30. doi: 10.1371/journal.ppat.0020030

Shen, A., Higgins, D.E., and Panne, D. (2009). Recognition of AT-rich DNA binding sites by the MogR repressor. Structure 17, 769-777. doi: 10.1016/j.str.2009.02.018

Shen, A., Kamp, H.D., Gründling, A., and Higgins, D.E. (2006). A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev. 20, 3283-3295. doi: 10.1101/gad.1492606

Sheppard, A.E., Poehelein, A., Rosenstiel, P., Liesegang, H., and Schulenburg, H. (2013). Complete genome sequence of Bacillus thuringiensis strain 407 Cry. Genome Announc. 1, e00158-12. doi: 10.1128/genomeA.00158-12

Slamti, L., Lemy, C., Henry, C., Guillot, A., Huillet, E., and Lereclus, D. (2015). CodY regulates the activity of the virulence quorum sensor PlcR by controlling the import of the signaling peptide PapR in Bacillus thuringiensis. Front. Microbiol. 6, 1501. doi: 10.3389/fmicb.2015.01501

Smith, T.G., and Hoover, T.R. (2009). Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv. Appl. Microbiol. 67, 257-295. doi: 10.1016/s0065-2164(08)01008-3
Spangler, C., Böhm, A., Jenal, U., Seifert, R., and Kaever, V. (2010). A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. *J. Microbiol. Methods* 81, 226-231. doi: 10.1016/j.mimet.2010.03.020

Stenfors Arnesen, L.P., Fagerlund, A., and Granum, P.E. (2008). From soil to gut: *Bacillus cereus* and its food poisoning toxins. *FEMS Microbiol. Rev.* 32, 579-606. doi: 10.1111/j.1574-6976.2008.00112.x

Swiecicka, I., Van der Auwera, G.A., and Mahillon, J. (2006). Hemolytic and nonhemolytic enterotoxin genes are broadly distributed among *Bacillus thuringiensis* isolated from wild mammals. *Microb. Ecol.* 52, 544-551. doi: 10.1007/s00248-006-9122-0

Tourasse, N.J., Helgason, E., Økstad, O.A., Hegna, I.K., and Kolstø, A.B. (2006). The *Bacillus cereus* group: novel aspects of population structure and genome dynamics. *J. Appl. Microbiol.* 101, 579-593. doi: 10.1111/j.1365-2672.2006.03087.x

Twine, S.M., Reid, C.W., Aubry, A., McMullin, D.R., Fulton, K.M., Austin, J., et al. (2009). Motility and flagellar glycosylation in *Clostridium difficile*. *J. Bacteriol.* 191, 7050-7062. doi: 10.1128/jb.00861-09

Zhang, M.Y., Lövgren, A., Low, M.G., and Landén, R. (1993). Characterization of an avirulent pleiotropic mutant of the insect pathogen *Bacillus thuringiensis*: reduced expression of flagellin and phospholipases. *Infect Immun* 61, 4947-4954. doi: 10.1128/IAI.61.12.4947-4954.1993