Synthesis and Detection of Oxygen-18 Labeled Phosphate

Eric S. Melby, Douglas J. Soldat*, Phillip Barak

Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America

Abstract

Phosphorus (P) has only one stable isotope and therefore tracking P dynamics in ecosystems and inferring sources of P loading to water bodies have been difficult. Researchers have recently employed the natural abundance of the ratio of 18O/16O of phosphate to elucidate P dynamics. In addition, phosphate highly enriched in oxygen-18 also has potential to be an effective tool for tracking specific sources of P in the environment, but has so far been used sparingly, possibly due to unavailability of oxygen-18 labeled phosphate (OLP) and uncertainty in synthesis and detection. One objective of this research was to develop a simple procedure to synthesize highly enriched OLP. Synthesized OLP is made up of a collection of species that contain between zero and four oxygen-18 atoms and, as a result, the second objective of this research was to develop a method to detect and quantify each OLP species. OLP was synthesized by reacting either PCl$_5$ or POCl$_3$ with water enriched with 97 atom % oxygen-18 in ambient atmosphere under a fume hood. Unlike previous reports, we observed no loss of oxygen-18 enrichment during synthesis. Electrospray ionization mass spectrometry (ESI-MS) was used to detect and quantify each species present in OLP. OLP synthesized from POCl$_3$ contained 1.2% P18O$_3^{16}$O$_3$, 18.2% P18O$_2^{16}$O$_4$, 67.7% P18O$_4^{16}$O$_0$, and 12.9% P18O$_6$. and OLP synthesized from PCl$_5$ contained 0.7% P16O$_4$, 9.3% P18O$_3^{16}$O$_0$, and 90.0% P18O$_4$. We found that OLP can be synthesized using a simple procedure in ambient atmosphere without the loss of oxygen-18 enrichment and ESI-MS is an effective tool to detect and quantify OLP that sheds light on the dynamics of synthesis in ways that standard detection methods cannot.

Introduction

The lack of multiple stable isotopes of P has led researchers to study the ratio of 16O and 18O in phosphate, the dominant form of P in the natural environment. The naturally occurring ratio of 16O/18O bonded to phosphorus in phosphate, expressed as δ^{18}O$_p$, has been used to infer the source of P in water bodies [1–6]. Gruau et al. [7] found substantial variability of δ^{18}O$_p$ within P sources and considerable overlap of δ^{18}O$_p$ among different P sources and therefore questioned the value of this method as a research tool. Based on the variability and overlap of δ^{18}O$_p$ in natural sources, some researchers have used a method that enriches phosphate in oxygen-18, making it very distinct from any other P sources. The synthesis of oxygen-18 labeled phosphate (OLP) is generally carried out by hydrolyzing either PCl$_5$ or POCl$_3$ with water enriched with oxygen-18. This reaction is typically carried out in an atmosphere devoid of moisture to prevent the highly reactive PCl$_5$ or POCl$_3$ from reacting with atmospheric water [8–11]. Middleboe and Saaby Johansen [12] reported that up to one-half of the 18O enrichment was sacrificed when POCl$_3$ was hydrolyzed with H$_2$18O in ambient atmosphere.

Analysis of the 16O/18O ratio of OLP has been previously carried out through the use of optical emission spectroscopy [9,13,14], in which the OLP present in solution, plant tissue (after being extracted with 0.5 M HCl), or soil (after being extracted with anion exchange resin) is precipitated as struvite (MgNH$_4$PO$_4$$\cdot$6H$_2$O) [9,14]. This precipitate is pyrolyzed to carbon monoxide, which is analyzed for its 18O/16O ratio by optical emission spectroscopy [14]. Synthesized OLP is made up of a collection of species that contain between zero to four oxygen-18 atoms. Optical emission spectroscopy is only capable of determining an overall 18O/16O ratio and is not able to distinguish between the various OLP species. The use of electrospray ionization mass spectrometry (ESI-MS) has also been presented as a viable means to determine the 18O/16O ratio of OLP and as a detection tool that can differentiate between OLP species. OLP dissolved in water was analyzed by ESI-MS and the results were compared to those obtained with 31P NMR analysis. The authors reported good agreement between the ESI-MS and 31P NMR results [11]. However, ESI-MS is sensitive at mg L$^{-1}$ P levels, which is lower than 31P NMR limits of detection.

The first objective of this research was to develop a simpler, efficient technique for the synthesis of OLP. The second objective was to use ESI-MS to quantify the individual OLP species present in synthesized OLP compounds. A final objective included determining the stability of OLP stored in sterile conditions over a period of several months.

Methods

The synthesis of OLP was carried out after consultation with the University of Wisconsin-Madison Environment, Health and Safety

Citation: Melby ES, Soldat DJ, Barak P (2011) Synthesis and Detection of Oxygen-18 Labeled Phosphate. PLoS ONE 6(4): e18420. doi:10.1371/journal.pone.0018420

Editor: Meni Wanunu, University of Pennsylvania, United States of America

Copyright: © 2011 Melby et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded by the University of Wisconsin-Madison Graduate School. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: djsoldat@wisc.edu
Department (Madison, Wisconsin) as POCl3 and PCl5 are both highly toxic chemicals. A chemical resistant suit, chemical resistant gloves, and a positive pressure, self-contained breathing apparatus (Scott Health and Safety, Monroe, North Carolina) were worn during the handling of these chemicals and during their reaction with water to prevent any contact or inhalation of fumes.

OLP Synthesis from POCl3

The synthesis of OLP from POCl3 was carried out in a 25×200 mm glass test tube contained within a 250 mL Erlenmeyer flask filled with 150 mL of water to moderate the temperature. The flask and test tube were placed on a combination stir/thermal plate within a fume hood. OLP was synthesized through the following spontaneous and highly exothermic reaction:

\[
\text{POCl}_3 + 3\text{H}_2\text{O} \rightarrow \text{H}_3\text{PO}_4 + 3\text{HCl}
\]

2.00 g of water with 97 atom % 18O (Sigma-Aldrich, St. Louis, Missouri) were added to the test tube, followed by 4.87 g of POCl3 (Pfaltz and Bauer Inc., Waterbury, Connecticut) added dropwise while stirring with a magnetic stir bar. Labeled water was added in 10% excess to ensure that POCl3 reacted completely with water containing 18O. After the vigorous reaction subsided, the test tube was allowed to cool to room temperature and 5 M KOH was added to raise the pH to 4.7. The KH2PO4 product was diluted with ultrapure water, and the P concentration of this solution was determined using an IRIS Advantage inductively coupled plasma optical emission spectrometer (ICP-OES) (Thermo Jarrell Ash, Franklin, Massachusetts). The reaction was carried out with freshly opened POCl3, and POCl3 stored for a period of 6 and 17 months after it was initially opened.

OLP Synthesis from PCl5

The synthesis of OLP from PCl5 was carried out using the same procedure as described above, but this time reacting 2.50 g of PCl5 (Sigma-Aldrich, St. Louis, Missouri) with 1.00 g of water containing 97 atom % 18O (Sigma-Aldrich, St. Louis, Missouri) through the following spontaneous and highly exothermic reaction:

\[
\text{PCl}_5 + 4\text{H}_2\text{O} \rightarrow \text{H}_3\text{PO}_4 + 5\text{HCl}
\]

The reaction was carried out with freshly opened PCl5, and PCl5 that was stored for a period of 17 months after it was initially opened.

Quantification of Species Using ESI-MS and Long-Term Stability of OLP in Sterile Water

Electrospray ionization mass spectrometry (ESI-MS) was used to establish a ratio of each of the species present in the synthesized OLP. All samples were analyzed using an Agilent 1100 LC-MSD SL single-quadrupole model 1946D mass spectrometer (Agilent Technologies, Santa Clara, California). Table 1 lists the liquid chromatography (LC) and mass spectrometer (MS) conditions used for this analysis. The samples were diluted to approximately 60 mg L⁻¹ P prior to analysis and analyzed in duplicate injections. Oxygen labeled phosphate eluted from the LC beginning at ~4.2 min and ending at 4.5 min after injection. During OLP analysis by ESI-MS, the m/z range monitored was 90–120, as the peaks of interest were m/z 97 (H₂P₁₆O₄⁻), 99 (H₂P₁₆O₁₈O⁻), 101 (H₂P₁₆O₂₁₈O⁻), 103 (H₂P₁₆O₂₂₁₈O⁻), and 105 (H₂P₁₆O₂₃⁻). All other peaks within this range were negligible (Fig. 1). The area of each spectra for individual phosphate species were compared to the cumulative area of all the phosphate species allowing for the calculation of the relative contribution of each phosphate species shown in Figure 1. This relative information was used with the total P concentration of the sample to calculate the concentration of phosphate species in solution.

To monitor the stability of OLP solutions in a sterile environment, aqueous OLP solutions were diluted with autoclaved ultrapure water, placed in autoclaved polypropylene containers, and stored in darkness at 4°C.

Table 1. Liquid chromatography and mass spectrometry conditions used for electrospray ionization mass spectrometer analysis of oxygen-18 labeled phosphate.

Parameter	Condition
Column	Waters IC-Pak Anion HR, 4.6×75 mm, 6 µm particle size (Waters Corp., Milford, Massachusetts)
Mobile phase	Isocratic: 25% acetonitrile, 75% 50 mM ammonium bicarbonate (pH 10)
Flow rate	0.5 mL min⁻¹
Column temperature	30°C
Injection volume	15 µL
Source voltage	2250 V
Drying gas	Nitrogen, 350°C, 40 L min⁻¹, 40 psi
Ionization	Electrospray
MS detection	Single ion recording (SIR mode)

doi:10.1371/journal.pone.0018420.t001
assuming completely random arrangement of the oxygen atoms from labeled water and assuming no P-O bonds of POCl₃ were broken. We observed almost no loss of oxygen-18 enrichment when synthesizing OLP from pure POCl₃ (Table 2). However, OLP synthesized from POCl₃ stored six months had an oxygen-18 content of 62.2% and POCl₃ stored 17 months had an oxygen-18 content of 55.3%. This enrichment loss can probably be attributed to water vapor entering the POCl₃ container either when the bottle was opened or throughout the storage period. There was no loss of oxygen-18 enrichment when synthesizing OLP from PCl₅ that had been stored for 17 months after it was initially opened (Table 3).

Based on the results from the reaction of PCl₅ with 97 atom % ¹⁸O water carried out in ambient atmosphere (Table 3) in

Figure 1. Electrospray ionization spectra of labeled and unlabeled phosphate species. Relative abundance of (a) unlabeled phosphate (m/z = 97) and (b) ¹⁸O-labeled phosphate species (m/z = 99, 101, 103, and 105) as determined by ESI-MS. doi:10.1371/journal.pone.0018420.g001
December 2008, completely labeled 118O made up 90.0% of the species present and the overall oxygen-18 content of the OLP was 97.0%.

There was very little deviation between the theoretical values and actual values of the OLP species present in OLP synthesized from POCl$_3$ (Table 3). However, large differences between the theoretical values and actual values of the amount of each OLP species present in OLP synthesized from POCl$_3$ were observed (Table 2). One unexpected result of the synthesis of OLP from POCl$_3$ was the formation of a significant amount of P18O$_4$ (*Table 2*). One unexpected result of the synthesis of OLP from POCl$_3$ was the formation of a significant amount of P18O$_4$ (m/z 105), which made up 13.0% of the OLP synthesized from fresh POCl$_3$. This is noteworthy because the POCl$_3$ starting material contains one oxygen atom that was expected to remain bonded to the P atom, preventing the formation of P18O$_4$. The natural abundance of oxygen-18 at 0.2% does not explain this level of production. After observing these results, we hypothesized that the amount of energy released during the reaction between POCl$_3$ and water was enough to break the P-O bond in POCl$_3$, thus resulting in a random assortment of the oxygen-16 and oxygen-18 atoms bonded to the P atoms. We predicted the expected synthesis outcome based on all the P-O bonds in POCl$_3$ breaking and the total amount of oxygen-18 (73.0%) and oxygen-16 (27.0%) contained in the synthesized OLP, (Table 4). Based on the differences between the expected and actual results, especially the OLP species at m/z 103 (31PO$_3$18O$^+$) and 105 (33PO$_3$19O$^+$), it appears that some of the O atoms present in the POCl$_3$ starting material remained bonded to the P atom during the reaction with water, while the bond between other POCl$_3$ O atoms and P was broken.

The extent of broken P-O bonds in POCl$_3$ during OLP synthesis was calculated using an implicit equation that reduced the overall 97% oxygen-18 enrichment by an amount equal to the extent of broken bonds supplying additional oxygen-16. This calculation allowed those POCl$_3$ molecules with broken P-O bonds to react with four O atoms from the O isotop pool and those with no broken P-O bonds to react with three O atoms. Solutions to the equation were iterated comparing the measured isotopic ratios with those predicted until the sum of squares of the differences was minimized. The results show close agreement between the actual amount of each OLP species synthesized and the predicted values (Table 5). The results of the calculations suggest that 17.9% of the P-O bonds in POCl$_3$ were broken during the December 2008 synthesis, while 38.4% of the bonds were broken during the May 2010 synthesis.

The OLP solutions were synthesized with fresh POCl$_3$ and PCl$_5$ in December 2008 and they were analyzed by ESI-MS 16 months later in April 2010. After the 16 month period, the total oxygen-18 content of the OLP solutions synthesized from POCl$_3$ and PCl$_5$ were 73.0% and 97.0%, respectively. This indicates that there was no O exchange between phosphate and water, which is in agreement with Blake et al. [15] and McLaughlin and Paytan [16].

Discussion

These synthesis reactions were carried out in ambient air under a fume hood using a fairly simple procedure as compared to previous synthesis attempts. Middleboe and Saaby Johansen [12] reported a loss of about one-half of the expected oxygen-18 enrichment when synthesizing OLP in ambient atmosphere from POCl$_3$, which they suggested should be expected for any OLP synthesis carried out in ambient atmosphere. Based on the reaction of POCl$_3$ with water that contains 97 atom % 18O, it would be expected that the maximum amount of oxygen atoms being oxygen-18 would be 72.8% (assuming that 0.2% of the POCl$_3$ oxygen atoms are oxygen-18 based on the natural abundance of oxygen-18). Additionally, based on the reaction between PCl$_5$ and 97 atom % 18O water, one would expect the maximum amount of oxygen-18 atoms to be 97%. Following Middleboe and Saaby Johansen [12], we would have expected only 36.5% of the phosphate oxygen atoms in the OLP synthesized from POCl$_3$ and 48.5% of the phosphate oxygen atoms in the OLP synthesized from PCl$_5$ would be oxygen-18. However, our enrichment levels were substantially greater for both POCl$_3$ and PCl$_5$ (Table 2). In fact, we observed almost no loss of oxygen-18 enrichment by performing the reactions in ambient air. It is possible that the loss of oxygen-18 enrichment reported by Middleboe and Saaby Johansen [12] when synthesizing OLP in ambient atmosphere was the result of decreased POCl$_3$ purity as the result of reaction with atmospheric water prior to synthesis, as
we noted after running the reactions with POCl₃ that had been opened and stored for several months.

Ray [10] carried out a reaction of water and PCl₅ in dioxane and took extreme care to exclude atmospheric water from the reaction; he reported a yield of 85±6 with 6% P₁₁₈O₄. The results obtained using the current procedure resulted in a yield of P₁₁₈O₄ that was equal to or greater than that reported using the more difficult procedure of Ray [10] (Table 3). Similarly, Risley and Van Etten [8] also carried out this reaction, this time excluding atmospheric water using drying tubes, and obtained an overall oxygen-1₈ enrichment of 90%. This enrichment is 9% less than what would be expected from the reaction as 99 atom %₁₈O water was used. Again, the simpler procedure detailed in this study resulted in an improved oxygen-1₈ enrichment of 97.0%, which represents no loss of enrichment as 97 atom %₁₈O water was used in this study.

Natural abundance methods rely on a δ₁₈O range of about 10 to 25% between different phosphate sources, which represents a narrow range. Additionally, the δ₁₈O ranges of many phosphate sources overlap one another, making it very difficult to infer sources of phosphate. The OLP synthesized from fresh POCl₃ and PCl₅, on the other hand, had a δ₁₈O value around 1,350,000 and 16,120,000, respectively. This huge separation from other potential phosphate sources should make it possible to differentiate between OLP and other phosphate sources.

Our use of ESI-MS proved to be an effective means to quantify the products of OLP synthesis. ESI-MS analysis provides information about the individual OLP species composition, which sheds light on reaction dynamics that would not be known by simply analyzing an overall O₁₈/O₁₆ ratio. For example, we determined that although the total 1₈O composition of our synthesized compounds matched the predicted amount, the 1₈O composition of the individual species differed, indicating that the assumptions of either complete, or no P-O bond-breakage in POCl₃ were not met. Bond breakage ranged from 18 to 38%, possibly due to different reaction temperatures during the very violent and exothermic reaction caused by drop wise additions of labeled water.

There have been several previous reports on the stability or decay of OLP in an aqueous solution. Results have ranged from the exchange of oxygen between water and phosphate reaching equilibrium in 3 h [17] to reports of a much slower half-life period of 100 months [12]. The latter result is in closer agreement with more recent publications that state oxygen exchange between phosphate and water under standard environmental conditions does not occur in the absence of biological mediation [15,16]. Our results support the findings of the later studies.

The results from the reactions carried out in ambient atmospheric conditions between POCl₃ or PCl₅ and 97 atom % ₁₈O water show that over 99% of the OLP molecules contained at

Table 4. Calculation of the expected amount of each oxygen labeled phosphate (OLP) species formed with completely random assortment of the oxygen atoms and comparison to the actual results from OLP synthesized with fresh POCl₃ in December 2008.

OLP species	¹⁶O	¹⁸O	Combinations†	Probability‡	Expected composition§	Observed composition
m/z	# of atoms					
97	4	0	1	0.00531	0.53	0.00
99	3	1	4	0.01437	5.75	1.18
101	2	2	6	0.03885	23.31	18.18
103	1	3	4	0.10504	42.01	67.69
105	0	4	1	0.28398	28.39	12.95

†Number of different ways this combination of oxygen-1₆ and oxygen-1₈ atoms can be arranged around the phosphorus atom.
‡Probability was calculated by taking the amount of each oxygen atom (62.2 and 37.8% for oxygen-1₈ and oxygen-1₆, respectively) to the power of the number of that atom contained in the OLP species (e.g., the probability for m/z 99 is 0.378³ * 0.622¹ = 0.033594).
§Calculated by multiplying the number of combinations by the probability.

![Table 4](https://doi.org/10.1371/journal.pone.0018420.t004)

Table 5. Comparison between synthesis results and theoretical values of P-O bonds in POCl₃ broken during the synthesis of oxygen-1₈ labeled phosphate (OLP) using POCl₃.

OLP species	December 2008	May 2010		
	Theoretical†	Actual	Theoretical‡	Actual
m/z				
97	0.1	0.0	0.2	0.0
99	1.7	1.2	3.5	3.7
101	18.1	18.2	22.4	23.6
103	67.5	67.7	52.8	52.6
105	12.7	13.0	21.1	20.2

†Calculated assuming 17.9% of the POCl₃ P-O bonds were broken.
‡Calculated assuming 38.4% of the POCl₃ P-O bonds were broken.

![Table 5](https://doi.org/10.1371/journal.pone.0018420.t005)
least one oxygen-18 atom, and would therefore be potentially useful for creating and tracing compounds in the laboratory or possibly the environment. Overall, the results indicate that OLP highly enriched in oxygen-18 can be synthesized under ambient atmosphere using a simple procedure and this product does not lose its label over time in the absence of microbial mediation. ESI-MS can be used to easily and effectively gain information about the individual OLP species composition.

References
1. Markel D, Kolodny Y, Luz B, Nishri A (1994) Phosphorus cycling and phosphorus sources in Lake Kinneret: Tracing by oxygen isotopes in phosphate. Israel J Earth Sci 43: 165–178.
2. Coleman AS, Blake RE, Karl DM, Fogel ML, Turekian KK (2005) Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. Proc Nail Acad Sci USA 102: 13023–13028.
3. McLaughlin K, Cade-Menau BJ, Paytan A (2006a) The oxygen isotopic composition of phosphate in Eelkorn Slough, California: a tracer for phosphate sources. Estuar Coast Shelf S 70: 499–506.
4. McLaughlin K, Kendall C, Silva SR, Young M, Paytan A (2006b) Phosphate oxygen isotopic ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California. J Geophys Res 111: G00303.
5. Young M, McLaughlin K, Kendall C, Stringfellow W, Rollog M, et al. (2009) Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems. Environ Sci Technol 43: 5190–5196.
6. Elbury KE, Paytan A, Ostron NE, Kendall C, Young MB, et al. (2009) Using oxygen isotopes of phosphate to trace phosphate sources and cycling in Lake Erie. Environ Sci Technol 43: 3108–3114.
7. Gruau G, Legeas M, Riou C, Gallacier E, ois Martinau F, et al. (2005) The oxygen isotope composition of dissolved anthropogenic phosphates: a new tool for eutrophication research? Water Res 39: 232–238.
8. Ridley JM, Van Etten RL (1978) A convenient synthesis of crystalline potassium phosphate-18O4 (monobasic) of high isotopic purity. J Labelled Compd 15: 543–538.
9. Larsen S, Middleboe V, Saaby Johansen H (1989) The fate of 18O labelled phosphate in soil/plant systems. Plant Soil 117: 143–145.
10. Ray WJ (1992) A simple procedure for producing oxygen-labelled inorganic phosphate from isotopically labelled water that optimizes yield based on isotope. J Labelled Compd 31: 637–639.
11. Alvarez R, Evans LA, Milham P, Wilson M (2000) Analysis of oxygen-18 in ortho-phosphate by electrospray ionization mass spectrometry. Int J Mass Spectrom 200: 177–186.
12. Middleboe V, Saaby Johansen H (1992) Facile oxygen-18 labelling of phosphate and its delabelling under various conditions. Appl Radiat Isot 43: 1167–1168.
13. Saaby Johansen H (1988) Determination of oxygen-18 abundances by analysis of the first negative emission spectrum of CO2. Appl Radiat Isot 39: 1059–1063.
14. Saaby Johansen H, Larsen S, Middleboe V (1989) The stability of oxygen-18 labelled phosphate in aqueous solution. Appl Radiat Isot 40: 641.
15. Blake RE, O’Neil JR, Surkov AV (2005) Biogeochemical cycling of phosphorus: Insights from oxygen isotope effects of photoenzymes. Am J Sci 305: 596–620.
16. McLaughlin K, Paytan A (2007) The oceanic phosphorus cycle. Chem Rev 107: 563–576.
17. Blumenthal E, Herbert JBM (1937) Interchange reactions of water. 1. Interchange of oxygen between water and potassium phosphate in solution. T Faraday Soc 33: 849.

Acknowledgments
The authors thank Cameron Scarlett and the University of Wisconsin-Madison School of Pharmacy Mass Spectrometer Facility for assistance with sample analysis.

Author Contributions
Conceived and designed the experiments: DJS PB. Performed the experiments: ESM DJS PB. Analyzed the data: ES DJS PB. Contributed reagents/materials/analysis tools: DJS PB. Wrote the paper: ES DJS PB.