Age increased the cancer-specific mortality risk of thyroid cancer with lung metastasis

Xiu Huang1,2 | Qing Xia3 | Yueye Huang1 | Aimei Peng3 | Jie Yang4

1Shanghai Center of Thyroid Diseases, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, P.R. China
2Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, P.R. China
3Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, P.R. China
4Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China

Correspondence
Jie Yang, Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433 Shanghai, P.R. China. Email: yjyyhp@126.com
Aimei Peng, Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, P.R. China. Email: someran1@163.com

Funding information
Shanghai Pujiang Program, China, Grant/Award Number: 2019PJJD040; National Natural Science Foundation of China, Grant/Award Number: 81600052

Abstract
Objective: To investigate the relationship between age and cancer-specific mortality in thyroid cancer (TC) with lung-metastasis.

Patients and Methods: A total of 1418 patients with initial distant metastases from Surveillance, Epidemiology, and End Results databases were investigated. Patients with a median follow-up time of 8 months (interquartile range [IQR]: 2–27) and a median age of 66 years (IQR: 55–76) were divided into five groups by age and the association between age and TC-specific mortality was analysed.

Results: The TC-specific mortality rates were 32.78% (118/360), 46.71% (156/334), 53.93% (199/369), 58.96% (158/268) and 82.76% (72/87) in patients aged ≤55 years, >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years and >85 years. Kaplan–Meier curves showed that TC-specific mortality rate was associated with increased age (p < .001). Compared with patients ≤55 years, patients aged >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years and >85 years had significantly higher hazard ratios (HRs) of 1.69 (1.26–2.26), 1.97 (1.47–2.64), 2.18 (1.59–2.99) and 3.24 (2.08–5.06) after adjustments for sex, tumour size and radiation therapy (all p < .001). In TC with initial lung-metastasis, compared with patients ≤55 years, patients aged >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years and >85 years had significantly higher adjusted HRs of 1.68 (1.20–2.36; p = .003), 2.18 (1.57–3.02), 2.16 (1.51–3.08) and 2.91 (1.79–4.75; p < .001). Similar results were obtained in papillary TC.

Conclusions: The TC-specific mortality was increased with age in TC patients with initial lung-metastasis, indicating that further risk stratification based on age was necessary for TC over 55 years with lung-metastasis. Individual treatment strategies maybe recommended for such patients.

Keywords
age, cancer-specific mortality, lung-metastasis, risk stratification, thyroid cancer
INTRODUCTION

Thyroid cancer (TC) is one of the most common endocrine tumours, and its incidence has been increasing over the past four decades. At present, TC has become the sixth most common malignancy for women in the United States. TC is divided into two categories according to the cell origin: endoderm-derived follicular cells and neural crest-derived C-cells. The former includes differentiated TC (DTC) (papillary TC [PTC], follicular TC [FTC] and poorly differentiated TC), and anaplastic TC (ATC). Meanwhile, the latter category is also known as medullary TC (MTC). DTC accounts for approximately 90% of all TC types.

In terms of clinical characteristics, DTC is usually indolent, while ATC is the most aggressive variant, accounting for approximately 40% of all deaths from TC. The most common metastatic site of TC is the lung, followed by the bone, and occasionally the brain and liver. DTC is a unique malignancy because the age at diagnosis can be an independent risk factor for prognosis. In 2016, the American Joint Committee on Cancer (AJCC) released the eighth edition of the AJCC/TNM cancer staging system. According to this edition, the age cut-off used for DTC staging was increased from 45 to 55 years at diagnosis. Indeed, several studies had shown that age over 55 years was an important risk factor for metastasis and prognosis of DTC, as well as for the effect of radioactive iodine (RAI) therapy.

However, in TC patients who were over 55 years with distant metastases, there was no further risk stratification according to age to clarify its impact on TC-specific mortality. As such, our study aimed to investigate the relationship between age and prognosis in TC patients who were over 55 years with lung metastasis at diagnosis and identify more precise risk stratification for this subset of patients, offering personalized treatment therapy to ensure an optimal response.

PATIENTS AND METHODS

2.1 Data source and study subjects

This retrospective study utilized data from the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER). A total of 1418 TC patients with distant metastases at diagnosis from 2010 to 2017 were investigated. Demographic data included race (White, Black, other, and unknown), sex, SEER cause-specific death classification, survival months, and age at diagnosis. The cancer characteristics included histology (defined by International Classification of Disease for Oncology-3), TNM stage (classified according to the 7th AJCC staging system), tumour size and distant metastases. Radiotherapy information was categorized as radiation beam or radioactive implants, radioisotopes or radiation beam plus isotopes or implants, none or refused, and unknown. Patients were divided into five groups based on age: ≤55 years, >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years and >85 years.

RESULTS

3.1 Demographic and clinical characteristics

The demographic and clinical characteristics of 1418 TC patients (645 males and 773 females) with initial distant metastases were displayed in Table 1. The median follow-up time was 8 months (interquartile range [IQR]: 2–27). PTC, FTC, MTC and ATC accounted for 43.51% (617/1418), 15.73% (223/1418), 7.19% (102/1418) and 19.25% (273/1418), respectively. Patients were divided into five groups based on age: ≤55 years (25.39%, 360/1418), >55 but ≤65 years (23.55%, 334/1418), >65 but ≤75 years (26.02%, 369/1418), >75 but ≤85 years (18.90%, 268/1418), >85 years (6.14%, 87/1418). In addition, the 1034 (72.92% [1034/1418]) patients with initial lung metastasis were further analysed (Table 1). The overall TC-specific mortality rate was 49.58% (703/1418). Patients aged >85 years had the highest TC-specific mortality rate (82.76%, 72/87), followed by those aged >75 but ≤85 years (58.96%, 158/268), >65 but ≤75 years (53.93%, 199/369), >55 but ≤65 years (46.71%, 156/334) and ≤55 years (32.78%, 118/360).

3.2 The association between age and TC-specific mortality in patients with distant metastases at diagnosis

In TC patients with distant metastases, the overall TC-specific mortality rate was 49.58% (703/1418). For patients aged >85 years, >75 but ≤85 years, >65 but ≤75 years, >55 but ≤65 years and ≤55 years, their TC-specific mortality rates were 82.76% (72/87), 58.96% (158/268), 53.93% (199/369), 46.71% (156/334) and 32.78% (118/360), respectively. Compared with patients ≤55 years, the crude HRs for
Characteristics	Overall	≤55 years	>55 but ≤65 years	>65 but ≤75 years	>75 but ≤85 years	>85 years
Number	1418	360	334	369	268	87
Gender						
Male	645	45.49	173	48.06	177	52.99
Female	773	54.51	187	51.94	157	47.01
Race						
White	1043	73.55	283	78.61	237	70.96
Black	155	10.93	32	8.89	45	13.47
Others	5	0.35	43	11.94	51	15.27
Unknown	215	15.16	2	0.56	1	0.30
Lymph node stage						
N0	396	27.93	72	20.00	93	27.84
N1a	116	8.18	33	9.17	24	7.19
N1b	432	30.47	142	39.44	114	34.13
N1NOS	83	5.85	28	7.78	19	5.69
NX	141	9.94	13	3.61	28	8.38
Unknown	250	17.63	72	20.00	56	16.77
Distant metastatic site						
Lung	1034	72.92	253	70.28	222	66.47
Bone	543	38.29	134	37.22	156	46.71
Brain	88	6.21	26	7.22	25	7.49
Liver	160	11.28	40	11.11	38	11.38
Thyroid cancer-specific mortality						
Alive	715	50.42	242	67.22	178	53.29
Death	703	49.58	118	32.78	156	46.71
Histology subtype						
PTC	617	43.51	208	57.78	145	43.41
FTC	223	15.73	36	10.00	53	15.87
MTC	102	7.19	36	10.00	40	11.98
ATC	273	19.25	51	14.17	61	18.26
Others	203	14.32	29	8.06	35	10.48
Thyroid cancer-specific mortality						
TC	703	49.58	118	32.78	156	46.71
PTC	184	12.98	31	8.61	45	13.47
FTC	74	5.22	10	2.78	13	3.89
MTC	50	3.53	15	4.17	22	6.59
ATC	246	17.35	46	12.78	52	15.57
Others	149	10.51	16	4.44	24	7.19
TABLE 1 (Continued)

Characteristics	Overall	≤55 years	>55 but ≤65 years	>65 but ≤75 years	>75 but ≤85 years	>85 years
Radiation therapy						
Radiation beam or radioactive implants	425	29.97	105	29.17	113	33.83
Radioisotopes or radiation beam plus isotopes or implants	405	28.56	149	41.39	96	28.74
None or refused	552	38.93	97	26.94	118	35.33
Unknown	36	2.54	9	2.50	7	2.10

Note: According to the American Joint Committee on Cancer (AJCC) Staging Manual 7th edition, lymph node category was classified into five groups as follows: No regional lymph node metastasis (N0); metastases to Level VI (pretracheal, paratracheal and prelaryngeal/delphian lymph nodes) (N1a); metastasis to unilateral, bilateral or contralateral cervical (Levels I, II, III, IV or V) or retropharyngeal or superior mediastinal lymph nodes (Level VII) (N1b); metastasis to regional lymph nodes but not otherwise specified (N1NOS); and regional lymph nodes cannot be assessed (NX).

Abbreviations: ATC, anaplastic thyroid cancer; FTC, follicular thyroid cancer; MTC, medullary thyroid cancer; others, other variants of thyroid cancer; PTC, papillary thyroid cancer; SEER, Surveillance, Epidemiology, and End Results; TC, thyroid cancer.

TABLE 2 The association between age and thyroid cancer-specific mortality in patients with distant metastases

Variants	Mortality n/N (%)	Unadjusted HR (95% CI)	p Value	Adjusted a HR (95% CI)	p Value
TC	703/1418 (49.58)				
Age (years)					
≤55	118/360 (32.78)		Ref.		
>55 but ≤65	156/334 (46.71)	1.61 (1.27–2.05)	<.001	1.69 (1.26–2.26)	<.001
>65 but ≤75	199/369 (53.93)	1.96 (1.56–2.46)	<.001	1.97 (1.47–2.64)	<.001
>75 but ≤85	158/268 (58.96)	2.43 (1.91–3.09)	<.001	2.18 (1.59–2.99)	<.001
>85	72/87 (82.76)	4.99 (3.69–6.76)	<.001	3.24 (2.08–5.06)	<.001
PTC	184/617 (29.82)				
Age (years)					
≤55	31/208 (14.90)		Ref.		
>55 but ≤65	45/145 (31.03)	2.22 (1.41–3.51)	<.001	2.36 (1.38–4.05)	<.001
>65 but ≤75	61/152 (40.13)	2.97 (1.93–4.58)	<.001	3.00 (1.76–5.10)	<.001
>75 but ≤85	35/95 (36.84)	3.28 (2.00–5.37)	<.001	2.97 (1.56–5.66)	.001
>85	12/17 (70.59)	6.72 (3.42–13.19)	<.001	1.68 (0.48–5.85)	.416
FTC	74/223 (33.18)				
Age (years)					
≤55	10/36 (27.78)		Ref.		
>55 but ≤65	13/53 (24.53)	1.15 (0.50–2.65)	.746	2.21 (0.73–6.69)	.159
>65 but ≤75	25/73 (34.25)	1.43 (0.68–2.08)	.346	2.79 (1.08–7.18)	.034
>75 but ≤85	16/48 (33.33)	1.49 (0.67–3.30)	.328	3.29 (1.05–10.32)	.041
>85	10/13 (76.92)	6.55 (2.46–17.44)	<.001	22.80 (3.95–131.78)	<.001

Abbreviations: CI, confidence interval; FTC, follicular thyroid cancer; HRs, hazard ratios; PTC, papillary thyroid cancer; TC, thyroid cancer.

aAdjusted for sex, tumour size and radiation therapy; Surveillance, Epidemiology, and End Results database years of 2010–2017.
patients with age of >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years, and >85 years were 1.61 (1.27–2.05; \(p<0.001\)), 1.96 (1.56–2.46; \(p<0.001\)), 2.43 (1.91–3.09; \(p<0.001\)) and 4.99 (3.69–6.76; \(p<0.001\)), respectively (Table 2). After adjustments for tumour size, sex and radioiodine therapy, the HRs were 1.69 (1.26–2.26; \(p<0.001\)), 1.97 (1.47–2.64; \(p<0.001\)), 2.18 (1.59–2.99; \(p<0.001\)) and 3.24 (2.08–5.06; \(p<0.001\)) for patients aged >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years and >85 years. Compared with patients aged >55 but ≤65 years, >65 but ≤75 years and >75 but ≤85 years, patients >85 years had crude HRs of 3.17 (2.38–4.22; \(p<0.001\)), 2.42 (1.84–3.19; \(p<0.001\)) and 1.99 (1.50–2.64; \(p<0.001\)), respectively. However, after adjusting for tumour size, sex and radioiodine therapy, the HR remained significant only when compared with patients aged >55 but ≤65 years (1.83 [1.20–2.78]; \(p=0.005\); Table S1).

In this cohort, lung was the most common site of metastasis, accounting for 72.92% (1034/1418). In these patients with lung metastases, the overall TC-specific mortality rate was 55.03% (569/1034). For patients aged >85 years, >75 but ≤85 years, >65 but ≤75 years, >55 but ≤65 years and ≤55 years, their TC-specific mortality rates were 85.51% (59/69), 62.32% (129/207), 60.78% (172/283), 54.05% (120/222) and 35.18% (89/253), respectively (Table 3). Compared with patients aged ≤55 years, the crude HRs for patients aged >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years and >85 years were 1.75 (1.33–2.31; \(p<0.001\)), 2.16 (1.67–2.80; \(p<0.001\)), 2.45 (1.87–3.23; \(p<0.001\)) and 4.96 (3.52–6.98; \(p<0.001\)). After adjustments for tumour size, sex and radioiodine therapy, the HRs were 1.68 (1.20–2.36; \(p=0.003\)), 2.18 (1.57–3.02; \(p<0.001\)), 2.16 (1.51–3.08; \(p<0.001\)) and 2.91 (1.79–4.75; \(p<0.001\)) for patients aged >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years and >85 years, respectively. When compared with patients aged >55 but ≤65 years, >65 but ≤75 years, and >75 but ≤85 years, patients aged >85 years had crude HRs of 2.94 (2.14–4.04; \(p<0.001\)), 2.32 (1.72–3.14; \(p<0.001\)) and 2.01 (1.47–2.75; \(p<0.001\)), respectively. After adjustments for tumour size, sex and radioiodine therapy, the HR remained significant only compared when with patients aged >55 but ≤65 years (1.84 [1.18–2.88]; \(p=0.007\); Table S2).

Table 3: The association between age and thyroid cancer-specific mortality in patients with lung metastasis

Variants	Mortality n/N (%)	Unadjusted HR (95% CI)	\(p\) Value	Adjusted\(^a\) HR (95% CI)	\(p\) Value
TC					
Age (years)					
≤55	89/253 (35.18)	Ref.			
>55 but ≤65	120/222 (54.05)	1.75 (1.33–2.31)	<.001	1.68 (1.20–2.36)	.003
>65 but ≤75	172/283 (60.78)	2.16 (1.67–2.80)	<.001	2.18 (1.57–3.02)	.001
>75 but ≤85	129/207 (62.32)	2.45 (1.87–3.23)	<.001	2.16 (1.51–3.08)	<.001
>85	59/69 (85.51)	4.96 (3.52–6.98)	<.001	2.91 (1.79–4.75)	<.001
PTC					
Age (years)					
≤55	25/161 (15.53)	Ref.			
>55 but ≤65	36/104 (34.62)	2.35 (1.41–3.92)	.001	2.54 (1.38–4.66)	.003
>65 but ≤75	54/119 (45.38)	3.34 (2.08–5.38)	<.001	3.31 (1.82–6.01)	<.001
>75 but ≤85	31/79 (39.24)	3.37 (1.96–5.79)	<.001	3.32 (1.61–6.88)	.001
>85	9/12 (75.00)	6.81 (3.15–14.70)	<.001	2.39 (0.66–8.65)	.183
FTC					
Age (years)					
≤55	8/17 (47.06)	Ref.			
>55 but ≤65	7/21 (33.33)	0.86 (0.31–2.38)	.857	2.17 (0.47–9.98)	.321
>65 but ≤75	19/44 (43.18)	1.08 (0.47–2.50)	.611	3.95 (1.15–13.63)	.030
>75 but ≤85	11/27 (40.74)	1.18 (0.45–3.12)	.736	4.88 (1.02–23.29)	.047
>85	7/8 (87.50)	3.46 (1.20–9.96)	.022		b

Abbreviations: CI, confidence interval; FTC, follicular thyroid cancer; HRs, hazard ratios; PTC, papillary thyroid cancer; TC, thyroid cancer.

\(^a\)Adjusted for sex, tumour size and radiation therapy.

\(^b\)Due to the small sample size and relative high mortality in FTC patients of >85 years, the HRs cannot be calculated; Surveillance, Epidemiology, and End Results database years of 2010–2017.
3.3 The association between age and PTC-specific mortality in patients with distant metastases at diagnosis

In PTC patients with initial distant metastases, the overall PTC-specific mortality rate was 29.82% (184/617). For patients aged >85 years, >75 but ≤85 years, >65 but ≤75 years, >55 but ≤65 years and ≤55 years, their PTC-specific mortality rates were 70.59% (12/17), 36.84% (35/95), 40.13% (45/115), 31.03% (45/145) and 14.90% (31/208), respectively (Table 2). Compared with patients ≤55 years, the crude HRs for patients aged >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years, and >85 years were 2.22 (1.41–3.51; \(p < .001 \)), 2.97 (1.93–4.58; \(p < .001 \)), 3.28 (2.00–5.37; \(p < .001 \)) and 6.72 (3.42–13.19; \(p < .001 \)), respectively (Table 2). After adjusting for tumour size, sex and radioiodine therapy, the HRs remained significant in patients aged >55 but ≤65 years (2.36 [1.38–4.05]; \(p < .001 \)), >65 but ≤75 years (3.00 [1.76–5.10]; \(p < .001 \)), >75 but ≤85 years (2.97 [1.56–5.66]; \(p = .001 \)), but the HR for patients aged >85 years group did not reach significance because of the small sample size.

In PTC patients, lung was also the most common site of metastasis, accounting for 76.99% (475/617). In these patients with lung metastases, the overall PTC-specific mortality rate was 32.63% (155/475). For patients aged >85 years, >75 but ≤85 years, >65 but ≤75 years, >55 but ≤65 years and ≤55 years, their PTC-specific mortality rates were 75.00% (9/12), 39.24% (31/79), 45.38% (54/119), 34.62% (36/104), and 15.53% (25/161), respectively (Table 3). Compared with patients ≤55 years, the crude HRs for patients aged >55 but ≤65 years, >65 but ≤75 years, >75 but ≤85 years, and >85 years were 2.35 (1.41–3.92; \(p = .001 \)), 3.34 (2.08–5.38; \(p < .001 \)), 3.37 (1.96–5.79; \(p < .001 \)) and 6.81 (3.15–14.70; \(p < .001 \)), respectively (Table 3). After adjustments for tumour size, sex and radioiodine therapy, the HRs remained significant for patients aged >55 but ≤65 years (2.54 [1.38–4.66]; \(p = .003 \)), >65 but ≤75 years (3.31 [1.82–6.01]; \(p < .001 \)) and >75 but ≤85 years (3.32 [1.61–6.88]; \(p = .001 \)), but the HR of the >85 years group did not reach significance because of the small sample size.

3.4 Kaplan–Meier analyses of TC-specific survival of TC patients with lung metastasis

In TC patients with distant metastases, TC-specific survival curves decreased significantly with increased age (log-rank \(p < .001 \); Figure 1A), and the survival curve of patients over 85 years showed an obvious decline with the worst prognosis. Similar results were observed in PTC (Figure 1B) and FTC (Figure 1C). There were no significant survival differences among all age groups in ATC patients (Figure 1D).

![Figure 1](image.png)

Figure 1 Disease-specific survival of thyroid cancer with distant metastases stratified by age using Kaplan–Meier analysis. (A) All thyroid cancer patients. (B) Papillary thyroid cancer patients. (C) Follicular thyroid cancer patients. (D) Anaplastic thyroid cancer patients (all log-rank \(p < .001 \)).
In TC patients with lung metastasis, the TC-specific survival curves also decreased significantly with increased age (log-rank \(p < .001 \); Figure 2A). Similar results were observed in PTC (Figure 2B) and FTC (Figure 2C), but not in ATC patients (Figure 2D). The survival curve of patients over 85 years showed a sharp decrease and similar trends were also observed when we further divided patients into four groups (>70 but ≤75 years, >75 but ≤80 years, >80 but ≤85 years and >85 years; Figure S1A–C). Still, advanced age had no significant impact on the survival of ATC patients (Figure S1D).

4 | DISCUSSION

In the present study, we demonstrated that the TC-specific mortality rates were increased with age in patients with lung metastasis, especially in patients over 85 years of age. However, since ATC was the most aggressive subtype with the worst prognosis, age has no significant impact on ATC-specific mortality.17 TC was one of the most common endocrine tumours, and its variants had different prognoses due to various reasons.17,18 It was also a special type of malignancy because a patient’s age at diagnosis could be an important risk factor for prognosis.11 As early as 2009, a previous study pointed out that advanced age was related to poor prognosis.10 The eighth edition of the AJCC/TNM cancer staging manual changed the age cut-off from 45 to 55 years for the DTC prognostic staging system.12 DTC patients who were over 55 years and developed distant metastases at diagnosis were considered to be in Stage IVB,12 and had the worst prognosis.

Ito et al.13 found that age over 55 years was an independent risk factor for lung recurrence in a group of PTC patients without initial distant metastasis. Furthermore, it was also the strongest predictor of cancer-related death by a 10 years follow-up. Another study also found that in DTC patients with lung metastasis, age over 45 years was an independent risk factor for disease progression.19 Sabra et al.20 conducted a retrospective study on 199 consecutive patients with follicular cell-derived TC and confirmed that cancer-related progression-free survival was shorter in patients >45 years old. In addition, a 5-year study including 54 patients with DTC-related pulmonary disease indicated that age over 45 years and tumour dedifferentiation were independent risk factors for shorter cancer-specific survival.21 However, nearly none of the previous studies were stratified by age and investigated the prognostic value of age in TC patients with initial distant metastases.

Our study investigated TC patients with distant metastases at diagnosis from the SEER database, and further stratified the risk for patients over 55 years based on their age. Our results showed that age still had a great impact on the prognosis of patients with

![Figure 2](image-url)
the worst prognosis in the TNM staging system (age over 55 years with distant metastases), especially for those over 85 years of age.

The reason why the survival rate of TC patients with distant metastases at diagnosis was strongly age-dependent may be explained as follows: First, TC patients with advanced age were more likely resistant to RAI treatment; second, due to ageing, a decline in immune system functions and an increase in in-cause mortality may also be contributed to the poor prognosis of TC.

In addition to age, BRAF V600E mutation was also an important risk factor for poor prognosis in TC patients. Previous studies have indicated that age was a continuous mortality risk factor in patients with BRAF V600E mutation, especially in patients aged ≥75 years or male patients ≥60 years. Our conclusions were partly in line with these findings. In recent years, some scholars had further pointed out the influence of age on the prognosis of TC. They assumed that whether age and BRAF mutations both could be two independent poor prognostic indicators, and our study results may serve as supporting evidence. However, due to the lack of information on BRAF mutations in our data, we cannot further clarify the impact of BRAF mutations and age on TC-specific prognosis.

In 2015, the American Thyroid Association released management guidelines for DTC patients, recommending that serum thyroglobulin (Tg) and anti-Tg antibodies should be assessed longitudinally during follow-up of DTC. However, the increase of Tg was nonspecific as it only indicated the presence of distant metastases and the exact sites for metastases were usually unknown. Sometimes, it was difficult for clinicians to accurately determine the distant metastatic sites by high Tg levels and other atypical clinical symptoms. Therefore, based on our results, chest computerized tomography (CT) scanning especially of the lung, a common metastatic site, could often be helpful in detecting lung metastasis as early as possible. Moreover, for suspected distant metastases which were iodine-non-avid, fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) could be of particular use. The guidelines recommended CT or FDG-PET imaging for DTC patients with high risk who had elevated Tg (generally >10 ng/ml) or rising Tg antibodies. Herein, we thought that for elderly patients with elevated Tg or Tg antibodies levels, CT or FDG-PET screening could be used as a more common tool for early detection of lung metastasis. Moreover, more radical treatment strategies can be adopted for elderly patients with TC and distant metastases. Seminal studies assessing the role of targeted therapy such as mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitors to enhance radiiodine uptake in RAI refractory TC patients had shown promising results. In vitro and in vivo studies had also identified new tyrosine kinase inhibitors which could enhance endogenous sodium iodide symporter expression and increase radiiodine uptake. In addition, immunotherapy could also be considered to improve their prognosis.

5 | CONCLUSIONS

In conclusion, TC-specific mortality was increased with age in patients with lung metastasis. For elderly TC patients, CT or FDG-PET screening may be of special use in the early detection of lung metastasis, leading to a more precise evaluation of the prognosis and development of more personalized treatment strategies.

ACKNOWLEDGEMENTS

This study was supported by the National Natural Science Foundation of China (Grant No. 81600052); and the Shanghai Pujiang Program, China (Grant No. 2019PJD040).

CONFICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS

Aimei Peng and Jie Yang: Conception and design. Xiu Huang, Yueye Huang and Qing Xia: Collection, assembly, statistical analysis or interpretation of the data. All authors: Drafting of the manuscript, reviewing, and approving the final version of the manuscript.

DATA AVAILABILITY STATEMENT

The data used and analysed during the current study are available from the corresponding author on reasonable request.

ORCID

Jie Yang http://orcid.org/0000-0003-1225-983X

REFERENCES

1. Pereira M, Williams VL, Hallanger Johnson J, Valderrabano P. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations. Thyroid. 2020;30:1132-1140.
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7-34.
3. US Preventive Services Task Force, Bibbins-Domingo K, Grossman DC, et al. Screening for thyroid cancer: US Preventive Services Task Force recommendation statement. JAMA. 2017;317:1882-1887.
4. Fagin JA, Wells SA, Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375:1054-1067.
5. Araque KA, Gubbil S, Kluo-Gwiezdzinska J. Updates on the management of thyroid cancer. Horm Metab Res. 2020;52:562-577.
6. Lin Y-H, Jang C-S, Wu C-S, Hsu L. Unusual presentation of anaplastic thyroid carcinoma with diffuse neck and thoracic nodules and hyperthyroidism. Dermatol Sin. 2017;35:85-87.
7. Lee YK, Kim D, Shin DY, et al. The prognosis of papillary thyroid cancer with initial distant metastasis is strongly associated with extensive extrathyroidal extension: a retrospective cohort study. Ann Surg Oncol. 2019;26:2200-2209.
8. Hirsch D, Levy S, Tsvetov G, et al. Long-term outcomes and prognostic factors in patients with differentiated thyroid cancer and distant metastases. Endocr Pract. 2017;23:1193-1200.
9. Rajabi S, Shabk H, Dastmalchi R, Danesh-Afroz A, Karima S, Hedayati M. Metastatic propagation of thyroid cancer; organ tropism and major modulators. Future Oncol. 2020;16:1301-1319.
10. Haymart MR. Understanding the relationship between age and thyroid cancer. Oncologist. 2009;14:216-221.
11. Shen X, Zhu G, Liu R, et al. Patient age-associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer. J Clin Oncol. 2018;36:438-445.
12. Perrier ND, Brierley JD, Tuttle RM. Differentiated and anaplastic thyroid carcinoma: major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2018;68:55-63.
13. Ito Y, Kudo T, Kobayashi K, Miya A, Ichihara K, Miyauchi A. Prognostic factors for recurrence of papillary thyroid carcinoma in the lymph nodes, lung, and bone: analysis of 5,768 patients with average 10-year follow-up. World J Surg. 2012;36:1274-1278.
14. Li C, Wu Q, Sun S. Radioactive iodine therapy in patients with thyroid carcinoma with distant metastases: a SEER-based study. Cancer Control. 2020;27:1073274820914661.
15. Doll KM, Rademaker A, Sosa JA. Practical guide to surgical data sets: Surveillance, Epidemiology, and End Results (SEER) database. JAMA Surg. 2018;153:588-589.
16. Liu Z, Chen S, Huang Y, et al. Patients aged >/= 55 years with stage T1 N1 M1 differentiated thyroid cancer should be downstaged in the eighth edition AJCC/TNM cancer staging system. Front Oncol. 2019;9:1093.
17. Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36:7-13.
18. Chmielik E, Rusinek D, Oczko-Wojciechowska M, et al. Heterogeneity of thyroid cancer. Pathobiology. 2018;85:117-129.
19. Chen P, Feng HJ, Ouyang W, et al. Risk factors for nonremission and progression-free survival after I-131 therapy in patients with lung metastasis from differentiated thyroid cancer: a single-institute, retrospective analysis in Southern China. Endocr Pract. 2016;22:1048-1056.
20. Sabra MM, Ghossein R, Tuttle RM. Time course and predictors of structural disease progression in pulmonary metastases arising from follicular cell-derived thyroid cancer. Thyroid. 2016;26:518-524.
21. Leite AK, Kulcsar MA, de Godoi Cavalheiro B, et al. Death related to pulmonary metastasis in patients with differentiated thyroid cancer. Endocr Pract. 2017;23:72-78.
22. Liu X, Fan Y, Liu Y, et al. The impact of radioactive iodine treatment on survival among papillary thyroid cancer patients according to the 7th and 8th editions of the AJCC/TNM staging system: a SEER-based study. Updates Surg. 2020;72:871-884.
23. Muller L, Di Benedetto S, Pawelec G. The immune system and its dysregulation with aging. Subcell Biochem. 2019;91:21-43.
24. Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH. Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci. 2019;16:450-460.
25. Ming J, Liu Z, Zeng W, et al. Association between BRAF and RAS mutations, and RET rearrangements and the clinical features of papillary thyroid cancer. Int J Clin Exp Pathol. 2015;8:15155-15162.
26. Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33:42-50.
27. Subash A, Sinha P, Singh A. BRAF mutation and age in differentiated thyroid cancer risk stratification: two sides of the same coin. Oral Oncol. 2020;106:104732.
28. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;2016(26):1-133.
29. Brown SR, Hall A, Buckley HL, et al. Investigating the potential clinical benefit of Selumetinib in resensitising advanced iodine refractory differentiated thyroid cancer to radioiodine therapy (SEL-METRY): protocol for a multicentre UK single arm phase II trial. BMC Cancer. 2019;19:582.
30. Wadsley J, Gregory R, Flux G, et al. SELIMETRY: protocol for a multicentre UK single arm phase II trial. BMC Cancer. 2019;19:582.
31. Oh JM, Baek SH, Gangadaran P, et al. A novel tyrosine kinase inhibitor can augment radioactive iodine uptake through endogenous sodiumiodide symporter expression in anaplastic thyroid cancer. Thyroid. 2020;30:501-518.
32. Mehnernt JM, Varga A, Brose MS, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer. BMC Cancer. 2019;19:196.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher's website.