Running head: Spatiotemporal mapping of legume root exudation

*Address correspondence for this author:
Philip S. Poole
Department of Plant Sciences, University of Oxford
South Parks Road, OX1 3RB Oxford, United Kingdom
Telephone: +44 - (0)1865 - 275023
E-mail: philip.poole@plants.ac.ox.uk

Research area: Breakthrough technologies
Title: Bacterial biosensors for in vivo spatiotemporal mapping of root secretion

Francesco Pinia, Alison K. East, Corinne Appia-Ayme, Jakub Tomek, Ramakrishnan Karunakaran, Marcela Mendoza-Suárez, Anne Edwards, Jason J. Terpolilli, Joshua Roworth, J. Allan Downie, and Philip S. Poole

Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK

Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Road, Oxford OX1 3PT, UK

One sentence summary:
Development of a suite of rhizobial lux reporters to map in vivo root exudation, spatially and temporally.

Author Contributions
Conceived and designed the experiments: FP, AKE, and PSP. Performed the experiments: FP, RK, MMS, CAA, AKE, J JT, JR, and AE. Analyzed the data: FP, AKE, and PSP. Software development: JT. Wrote the paper: FP, AKE, JAD, and PSP.
Footnotes:

Financial source: This work was funded by the Biotechnology and Biological Sciences Research Council [grant numbers BB/K001868/1, BB/K001868/2] and a BBSRC Institute Strategic Programme Grant (BIO) at the John Innes Centre.

Address correspondence to philip.poole@plants.ac.ox.uk

The author responsible for distribution of materials integral to the findings presented in this article in accordance with policy described in the Instructions for Authors (www.plantphysiol.org) is:

Philip S. Poole (philip.poole@plants.ac.ox.uk)

Manuscript information:

Word and character count: 219 words in abstract, and 10,069 words in text, comprising Introduction and References
Abstract

Plants engineer the rhizosphere to their advantage by secreting various nutrients and secondary metabolites. Coupling transcriptomic and metabolomic analysis of the *Pisum sativum* rhizosphere, a suite of bioreporters has been developed in *Rhizobium leguminosarum* bv. *viciae* 3841, and these detect metabolites secreted by roots in space and time. Fourteen bacterial *lux*-fusion bioreporters, specific for sugars, polyols, amino acids, organic acids or flavonoids, have been validated *in vitro* and *in vivo*. Using different bacterial mutants (*nodC, nifH*), the process of colonization and symbiosis has been analyzed, revealing compounds important in the different steps of the rhizobial-legume association.

Dicarboxylates and sucrose are the main carbon sources within the nodules; in ineffective (*nifH*) nodules, particularly low levels of sucrose were observed suggesting that plant sanctions affect carbon supply to nodules. In contrast, high *myo*-inositol levels were observed prior to nodule formation and also in *nifH* senescent nodules. Amino-acid biosensors showed different patterns: a GABA biosensor was active only inside nodules, whereas the phenylalanine bioreporter showed a high signal also in the rhizosphere. The bioreporters were further validated in vetch, producing similar results. In addition, vetch exhibited a local increase of *nod*-gene inducing flavonoids at sites where nodules subsequently developed. These bioreporters will be particularly helpful to understand the dynamics of root exudation and the role of different molecules secreted into the rhizosphere.

Additional keywords: Biosensor, Rhizosphere, Root secretion, Legume nodulation, *Pisum, Vicia, Exudate*
Due to root secretion, the narrow zone surrounding roots known as the rhizosphere, is a nutrient-rich region where plants encounter a diversity of microbes, fungi, invertebrates and the roots of other plants (Turner et al., 2013a). The constant improvement of sequencing techniques has rapidly increased acquisition of knowledge about rhizosphere communities (Turner et al., 2013b). It is now evident that there is a two-way dialogue, with plants actively shaping their rhizosphere community; this in turn, profoundly alters plant growth e.g. by improving plant nutrient uptake (Philippot et al., 2013). Secretion patterns from roots differ between plants (Biedrzycki and Bais, 2009) and despite much research on the role of chemical signals in mediating belowground interactions (Huang et al., 2014), many factors have not yet been identified (Badri et al., 2009). In addition, spatial and temporal variations in root secretions have never been clearly elucidated. Plant roots secrete large amounts of different compounds into the soil and about 20% of photosynthate is released through the roots (Kaiser et al., 2015). As a consequence of this, compared to bulk soil, the rhizosphere is a rich source of compounds sustaining bacterial growth. This results in the attraction to the rhizosphere of many different microorganisms, amongst them both pathogens and plant growth-promoting bacteria (Huang et al., 2014). Different techniques have been used to study this complex environment; e.g. proteomics, metabolomics and transcriptomics, (reviewed by: Sørensen et al., 2009; Oburger and Schmidt, 2016), but the results obtained with many of these different methodologies is that they give only a single ‘snapshot’ as it has not been possible to follow the same plant during the course of its development. Current 2D and 3D non-invasive imaging techniques to examine the physical architecture of the plant roots using radiation-based techniques of X-ray microfocus-computed tomography or synchrotron tomography have been described (Mooney et al., 2011). These techniques are powerful at revealing root architecture and development but do not yield information about chemical secretion by roots.

In response to plant secretions, bacteria modify expression of specific genes based on the molecules present in the rhizosphere (Ramachandran et al., 2011). Linking this with a method to monitor gene expression, we have used bacteria as biosensors to detect where and when specific molecules are secreted by plant roots. Bioluminescence is non-invasive and allows measurement of in situ differences in the
secretion of specific compounds in a semi-quantitative way. Lux biosensors have already been successfully used (Darwent et al., 2003), but lack of a simple system for image acquisition and complex experimental settings have so far limited routine use. Improvement of the technologies available and an increased knowledge of the bacterial transcriptomic response to roots, now gives us the chance to develop a suite of biosensors. These biosensors have been constructed using Rhizobium leguminosarum biovar viciae. Rhizobia are alpha-proteobacteria, ubiquitous within soil and able to establish nitrogen-fixing symbioses with specific legumes. Perception of environmental signals plays a pivotal role in association between plants and bacteria (Pini et al., 2011) and R. leguminosarum biovar viciae modifies its transcriptomic profile in different rhizospheres (Ramachandran et al., 2011). Moreover, the association of R. leguminosarum biovar viciae with peas has been studied in depth (Oldroyd et al., 2011; Terpolilli et al., 2012; Udvardi and Poole, 2013), making R. leguminosarum biovar viciae one of the best candidates for biosensor development to investigate the rhizosphere. Pea and vetch plants have been used allowing us to monitor both the rhizosphere and the process of nodulation. Applications of this methodology will be multiple and are not restricted to leguminous plants; e.g. screening plant mutant libraries for those altered in secretion from roots or observing different exudations during seed germination.
RESULTS

Solute Specificity of Biosensors

To spatially and temporally investigate secretion in the rhizosphere, we need biosensors able to detect compounds exuded into this environment. The idea that effective biosensors could be constructed using the control elements for expression of specific bacterial genes, often encoding components of solute transporters or enzymes with precise substrate recognition, has been previously described (Tecon and van der Meer, 2006; Yagi, 2007; Sørensen et al., 2009). Induction of expression of genes encoding transporters in the presence of their transported solute led to the identification of the substrates of many ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporter systems of *Sinorhizobium meliloti* (Mauchline et al., 2006). Building on these data, Ramachandran et al. (Ramachandran et al., 2011) determined which genes of *R. leguminosarum* biovar *viciae* strain 3841 (Rlv3841) are differentially expressed in the rhizospheres of pea, alfalfa and sugar beet, leading to identification of metabolites inducing expression of genes encoding both transport systems and metabolic enzymes. As many of these genes were induced in the rhizosphere in response to specific solutes, we sought to use their expression profiles to develop a suite of biosensors. These biosensors can be grouped by classification of inducer: i) sugars and polyols, ii) organic acids, iii) amino acids and iv) flavonoids (Table I). How each biosensor was selected is described below.

Eleven genes whose expression was induced in the rhizosphere during plant colonization by Rlv3841 of the pea rhizosphere (Ramachandran et al., 2011) were selected for biosensor development (Table I). These include seven solute-specific transport systems (which may transport plant-derived compounds, or those from any source e.g. fungi, other bacteria, within the rhizosphere), and four enzymes from metabolic pathways that are up-regulated during rhizosphere colonization (Table I). To increase the suite of biosensors, an additional two genes were included on the basis of microarray data that show differential expression in response to pea root exudate (Table I) (Ramachandran et al. 2011). The fourteenth biosensor is based on a salicylic acid-inducible export system for salicylic acid (Tett et al., 2014), which is known to be an important signaling molecule in plant defense. Whilst an inducer of gene expression was already known for many of these, the only previous characterization of pRL90085, RL4218, and pRL120556 was that their expression...
was induced either in the rhizosphere or by pea-root exudate (Table II).

To develop the *lux*-based induction biosensors, the promoter regions upstream of the selected genes were used, often including the whole coding sequence of any upstream regulatory gene. Following PCR amplification, each region was cloned into the luminescence vector (pIJ11268, a plasmid stably inherited in rhizobia), in front of the bacterial *luxCDABE* operon (Frederix et al., 2014) (Supplemental Table S1). As these biosensors are plasmid-based it is possible to transfer them into different bacterial backgrounds, e.g. mutant strains of *R. leguminosarum* or other species of bacteria, although their expression in heterologous hosts may be limited by regulatory elements (Galardini et al., 2015).

Each of the fourteen *lux* reporters was tested on 26 different sugars and polyols and/or on a set of 18 selected compounds (organic acids, amino acids and plant metabolites) to establish the specificity of induction of *lux* expression from each of the bioreporters (Table I, Supplemental Table S2). Nine of the biosensors were induced by only a single compound tested: i.e. the polyols erythritol (pRL90085) and myo-inositol (RL4655; *intA*); the organic acids formate (RL4393; *fdsG*), malonate (RL0992; *matA*), tartrate (RL0996) and salicylic acid (RL1329; *sala* encoding an export system for salicylic acid induced by the presence of this molecule (Tett et al., 2014)); the amino acids phenylalanine (RL1860; *phhA*) and GABA (RL0102; *gabT*); and the flavonoid hesperetin (pRL100185; *nodABC*) (Table I). These solutes are considered to be specific inducers, i.e. the specific luminescence is \geq10-fold the specific luminescence induced by the other solutes tested (apart from bioreporters for erythritol, formate, and GABA which have relatively high expression in the presence of a variety of chemically unrelated substrates (background), but show \geq4-fold the specific luminescence of other solutes). However, this definition of specificity, in no way excludes the possibility that these bioreporters may also react with other compounds similar to the molecules which elicit the primary response, but not tested in this work, e.g. it is known that *nod* genes are induced by a variety of different flavonoids (Maj et al., 2010; Maxwell et al., 1989). Another two sugar biosensors were induced by two closely related compounds tested (Table I): i) by two aldopentoses, xylose or lyxose (RL2720; *rbsC*) or ii) induction by the di-saccharide sucrose was also achieved by the tri-saccharide raffinose (pRL120556), presumably because either the biosensor recognizes the sucrose 1-2 β linkage in the di-/tri-
saccharide or raffinose is metabolized to sucrose. A further two bioreporters were
induced by three closely related compounds; i) the C4-dicarboxylic organic acids
succinate, malate and aspartate all cause induction of a single biosensor (RL3424; dctA) and ii) the polyol mannitol (C6) is the main inducer in biosensor (RL4218)
although, a weaker induction is elicited also by its isomer sorbitol, and C5 adonitol
(Table I) Sorbitol and adonitol are not considered specific inducers as their specific
luminescence is < 40% that of mannitol (Table I). One bioreporter was induced by six
of the tested sugars and polyols, with the main inducer being the mono-saccharide
fructose (RL0489; frcB). Induction was also seen with di-saccharides lactulose (4-O-
β-D-galactopyranosyl-β-D-fructofuranose) and sucrose (α-D-glucopyranosyl-(1→2)-
β-D-fructofuranoside). These sugars all share a common structure containing a
molecule of β-D-fructofuranose. Furthermore, this biosensor was induced by the
polyols mannitol and sorbitol and the monosaccharide mannose. In this case, it is
likely that induction occurs due to the catabolism of these compounds to fructose. The
fourteen biosensors were used in the following experiments and are henceforth
referred to by the compound that elicits the highest-fold change in lux expression
(Table I). Provided rhizobial survival is not affected, these biosensors should be able
to detect the presence of the compound/s for which they are specific, not only in the
rhizosphere, whether they are derived from plants, from other bacteria or another
source, but also in many other environments.

To discover the limits of detection for each biosensor, the sensitivity (the
minimum concentration which causes induction) of the main inducer was determined
using a range of different solute concentrations. The sensitivity ranges from the ability
to detect levels of 1 μM for mannitol and hesperetin to 10 mM for formate and
malonate (Table I).

Data Extraction from Images using NightCROP

Plants were analyzed using the NightOWL, a molecular imaging system
linked to a sensitive charged-coupled device (CCD) camera, which allows
measurement of light output from the Lux proteins. Images collected were first
analyzed with the IndiGO software but although it was used to obtain data for nodules
and vetch plants (output in cps / mm²), a limitation of this software is that it is unable
to do an automatic segmentation of the picture, so NightCROP, a custom MATLAB
script, was developed. The script uses the SeNeCA algorithm (Tomek et al., 2013) to segment roots from the background in the light intensity channel, discarding those segments smaller than 1000 pixels. The information on the position of the roots is then used on the luminescence channel to specifically detect the fluorescence signal coming from the roots (Supplemental Fig. S1).

In vivo Mapping of Bacterial Colonization of Pea Roots

Before using the suite of bioreporters to map the rhizosphere, we examined colonization by *R. leguminosarum* bv *viciae* of pea roots *in planta* using Lux mapping. Rlv3841 containing pIJ11282, expressing Lux constitutively under the control of the *nptII* promoter (Frederix et al., 2014), was used to inoculate pea seedling roots and the luminescent images revealed the location on the root of metabolically active Rlv3841. Lux expression relies on the bacteria having enough energy in the form of ATP to drive this energetically expensive production of light. Pea roots were imaged every 3-4 days until 22 dpi, with nodules becoming visible to the naked eye at 11-15 dpi.

At 4 and 8 dpi, luminescence from Rlv3841 colonization was mainly detected in the elongation zone of the lateral and primary roots (Fig. 1). At 11 dpi, overall luminescence was reduced probably due to energy depletion of the bacteria, (Fig. 1), although a signal was still detectable at a lower level (Supplemental Fig. S2). After 15 dpi, there was an increase of the signal concurrent with nodule development, and luminescence was then stable in nodules until 18 dpi, decreasing at 22 dpi, probably due to a general decline of plant health under these growth conditions. This constitutive Lux fusion is an energy sensor that is very effective at showing initial colonization and the total energy available to the bacteria, but must be used with caution in longer-term imaging, due to depletion of bacterial energy reserves resulting in loss of signal.

In vivo Mapping of Metabolites on Pea Roots and in Nodules

The composition of pea root exudate was determined by metabolomic analysis of hydroponically-grown plants. Although plants grown in different conditions may differ in the composition of their root exudates, metabolomic analysis of these exudates is able to give important indications on compounds that it may be possible to retrieve from the rhizosphere. With the exception of formate, salicylic acid, and
hesperetin, the targets of our biosensors were among the 376 compounds detected in exudate from 23 d-old peas (Table II, Supplemental Table S3). A microarray experiment comparing Rlv3841 grown with and without addition of the same 23 d-old pea root exudates used for the metabolomic analysis was also performed. Results
from this are compared to a microarray where *R. leguminosarum* was inoculated into
the pea rhizosphere and then harvested 1 dpi from 21 d-old plants (Ramachandran et
al., 2011) (Table II). Of the fourteen genes used to develop biosensors, eleven (all
except those detecting malonate, salicylic acid and GABA) showed increased (> 3-
fold) expression with added pea root exudate and/or in pea rhizosphere-grown cells
(Ramachandran et al., 2011) (Table II), however, relative increases in expression in
these two experiments do not correlate particularly well. This discrepancy is likely to
be due to differences in concentrations of solutes in the two experiments. Indeed,
compounds collected from the root (exudate sample) and then diluted into liquid
media are very unlikely to be present at the same concentrations as those in the
experimental pea rhizosphere. In addition, the exact chemical composition of root
exudates will also reflect the two different plant growth conditions. Despite these
caveats, expression of approx. 80% of the genes selected to make biosensors are
elevated by the conditions of the microarray experiments with added root exudate
and/or the pea rhizosphere, which suggests that they will be useful in investigating the
pea rhizosphere *in situ*.

We analyzed *lux* expression on roots *in vivo* with each of the fourteen biosensors
in Rlv3841. To ensure that expression of each biosensor is due to chemicals released
from the plant roots, each bioreporter was spotted onto FP agar plates (supplemented
with pyruvate and ammonium chloride) and incubated for 7 days (no growing plant
present). The images (Supplemental Fig. S3) show no luminescence, thus indicating
that the inducing compound is coming from the plant roots. To confirm that the
biosensors respond to the same inducers on roots (*in vivo*) as they do *in vitro*, flooding
experiments were undertaken. Pea roots at 4 dpi with a specific biosensor were
flooded with a solution of a compound shown to induce Lux expression *in vitro*
(Table I). Inoculation with the xylose, sucrose or GABA biosensor and flooding with
xylose, sucrose or GABA, respectively, induced a Lux signal (Supplemental Fig. S4,
A-C). Moreover, flooding the sucrose biosensor-inoculated roots with GABA, and the
GABA biosensor-inoculated roots with sucrose showed no increase in Lux expression
(Supplemental Fig. S4, D-E).

Images representative of those obtained on pea roots for the biosensors for
sucrose (a sugar), *myo*-inositol (a polyol), malonate (an organic acid) and
phenylalanine (an amino acid) are shown in Fig. 2, A-D. Luminescence images
revealed that each of these four biosensors detected target metabolites during the 22
and the results gave not only the location of the detected compound, but also, by following the same plant over time, the changes that occur over the course of an experiment. Bearing in mind that the bacterial cells containing the bioreporter need to be metabolically active to generate a Lux signal, it is possible to get a false negative result, i.e. the inducing compound is present at levels above the minimum sensitivity, but the cells do not have the energy required to produce the signal. The
15 signal from a constitutive Lux fusion fades over several days because it places a substantial energy drain on cells. However, if Lux is detected, it indicates the inducing compound is present. Analysis of the localization of luminescence in the images (4 or more plants) and the different temporal patterns of metabolite detection during the colonization and nodulation process (Fig. 2, E-H, Fig. 3) revealed that there were similar detection profiles which could be grouped to aid analysis, although the scale and maximum values observed are different for each bio-reporter.

The biosensor for the polyol, myo-inositol (able to detect ≥100 μM myo-inositol, Table I), was induced in the rhizosphere, mostly on the primary root and near the tips of lateral roots (Fig. 2, B and F), with a steady decrease in expression over time.
Expression of the myo-inositol reporter that was seen 15 dpi was mostly in nodules. A similar pattern was seen for the reporters detecting xylose (able to detect ≥ 1 mM xylose), fructose (able to detect ≥ 10 μM fructose) and the flavonoid, hesperetin (able to detect ≥ 1 μM hesperetin) (Fig. 3, A-B and F, Supplemental Fig. S5, A-B and F). Biosensors for these compounds were highly expressed in the rhizosphere at 4-8 dpi, usually localized at and above lateral root tips and then, despite a general decrease in luminescence over the whole root, the compounds were then detected almost exclusively in nodules 15-22 dpi (Supplemental Fig. S5, A-B and F). Expression of the organic acid C4-dicarboxylate biosensor indicated that succinate/malate/aspartate (able to detect ≥ 100 μM/ ≥ 10 μM/ ≥ 10 mM of succinate/malate/aspartate, respectively) are present in the rhizosphere and then found specifically localized to nodules at 15-18 dpi, with levels dropping by 22 dpi (Fig 4D, Supplemental Fig. S5C).

A second expression profile, although similar to that described above, is that of biosensors that gave a strong signal on roots but were barely detectable within nodules. For example, the biosensor for malonate (able to detect ≥ 10 mM malonate) (Fig. 2, C and G) was detected only in the rhizosphere (4-8 dpi), both on primary and lateral roots, with the highest levels appearing just before the root tips (Fig. 2C). The expression of this reporter fell over the time course (Fig. 2G) and was barely detectable in early nodules (11-15 dpi) and undetectable in older nodules (18-22 dpi) (Fig. 2, C and G).
A third profile, typified by the phenylalanine biosensor (able to detect $\geq 10 \mu M$ phenylalanine), showed two peaks of total luminescence (Fig. 2H) similar to that seen with the constitutive promoter (Fig. 1B), one at 8 dpi with the signal localized to the root elongation zone of lateral roots, and a second peak both in the rhizosphere and in nodules (15 dpi) (Fig. 2, D and H). Although the total signal from the phenylalanine reporter detection fell over time, at 18-22 dpi the luminescence was confined to nodules. By following the pattern of luminescence of a number of individual nodules, we conclude that the phenylalanine concentration peaks in nodules and then falls as the nodule senesces. As new nodules are being initiated constantly over the time course analyzed, there were numerous bright spots, which got brighter as the nodule developed and then faded as nodules got older (Fig. 2D). The tartrate sensor (able to detect levels $\geq 100 \mu M$ tartrate), was expressed in a temporal pattern similar to that of phenylalanine with a similar dip in total levels of detection as nodules form 11 dpi (Fig. 3D), although, in contrast to the phenylalanine sensor, the tartrate reporter was expressed largely on the primary root (4-15 dpi) (Supplemental Fig. S5D); there may be low levels of expression of the tartrate reporter in mature nodules (22 dpi) (Supplemental Fig. S5D).

A fourth profile was high expression of the reporter in nodules once they are formed, with very weak or no luminescence in the rhizosphere on pea roots in general prior to that. The biosensor for sucrose typifies this group (Fig. 2, A and E). The total levels of expression of the sucrose reporter (able to detect levels $\geq 100 \mu M$ sucrose), did not peak until the nodules were more mature (15-18 dpi) and then fell as the nodules senesced (22 dpi) (Fig. 2E). In the same way, expression of the GABA reporter (able to detect levels $\geq 500 \mu M$ GABA), was hardly detected in the rhizosphere, but was induced specifically in nodules, with total levels peaking at 15-18 dpi (Fig. 3E, Supplemental Fig. S5E).

The fifth profile was seen with a group of biosensors that gave results too low to properly evaluate, because luminescence was routinely detected below a mean intensity per pixel of approx. 30 (Supplemental Fig. S6). The polyol reporters for erythritol (able to detect levels $\geq 1 \text{mM}$ erythritol), and mannitol (able to detect levels $\geq 1 \mu M$ mannitol), were barely detected in either the rhizosphere or in nodules of pea plants (Supplemental Fig. S6, A-B). The reporter for formate (able to detect levels $\geq 10 \text{mM}$ formate), was expressed at very low levels and expression of the salicylic acid
reporter (able to detect levels ≥ 1 mM salicylate), was not detectable (Supplemental Fig. S6, C-D). This last result is not unexpected, because formate and salicylic acid were not found in the metabolomic analysis of pea root exudate (Supplemental Table S3).

Based on the spatial localization on pea roots of the reporters, we can draw conclusions about metabolites found in the rhizosphere prior to nodule formation (Table III). Xylose (≥ 1 mM), fructose (≥ 10 μM), myo-inositol (≥100 μM), phenylalanine (≥ 10 μM) and hesperetin (≥ 1 μM) are largely exuded by the elongation zone of primary and lateral roots (Fig. 2, B and D, Supplemental Fig. S5, A-B and F). Malonate (≥ 10 mM) was detected on both the uppermost portion of the primary root and the elongation zone of primary and lateral roots (Fig. 2C). Tartrate (≥ 100 μM) exudation was exclusively localized to the uppermost portion of the primary root, with little or no tartrate being detectable on the lateral roots (Supplemental Fig. S5D). Although present in the pea rhizosphere, the localization of C4-dicarboxylates was not clear, because detection in different regions varied over time with no clear pattern being observed (Supplemental Fig. S5C).

Between 11 and 15 dpi nodules became visible on pea roots. The reporters indicate that xylose (≥ 1mM), fructose (≥ 10 μM), sucrose (≥ 100 μM), myo-inositol (≥ 100 μM), C4-dicarboxylates (≥ 10 μM -10 mM, see Table I), phenylalanine ((≥ 10 μM), GABA (≥ 500 μM) and hesperetin (≥ 10 μM) were present in nodules at 15 dpi (Table III, Fig. 2 A, B, D-F, and H, Fig. 4 B-E, and Supplemental Fig. S7). Malonate (≥ 10 mM), and tartrate (≥ 100 μM), were detectable in nodules at 15 dpi, but at very low levels of bio-reporter expression (towards the lower limit of detection) (Table III, Fig. 2 C and G, and Supplemental Fig. S5D). For both phenylalanine and hesperetin, levels were highest in nodules at 15 dpi (dropping to 18 dpi, and dropping further to 22 dpi) (Table III, Supplemental Fig. S5F, and Supplemental Fig. S7, C-D). In most of the biosensors, the signal from nodules was strongly reduced by 22 dpi probably due to the general plant growth conditions, the only exception being the fructose reporter where the signal increased until 22 dpi (Table III and Supplemental Fig. S7B).

Effect of Nodulation on Rhizosphere Metabolites

Since wild-type Rlv3841 induces nodule formation on pea roots, the effects of
nodule formation (Fig. 2 and 4, Supplemental Fig. S5, S8 and S9). Notably, in the pre-nodule formation stage, 4-8 dpi, no significant differences occurred between any biosensor in the two different backgrounds, other than with the myo-inositol reporter 8 dpi (Fig. 2F). This suggests that the presence of Nod factor in itself does not alter either the amount or the localization of root secretions prior to nodule formation for the sugars xylose, fructose, and sucrose, the organic acids malonate, C4-dicarboxylates, and tartrate or the amino acids phenylalanine, and GABA.

With the nodC mutant that is unable to form nodules, there was a significant decrease in detection of myo-inositol at 8 dpi relative to wild-type (Fig. 2F). In a wild-type strain at this time point, nodule initiation has begun, although nodules are not yet visible to the naked eye. The conclusion that myo-inositol (at concentrations ≥ 100 μM) is present in developing and very young nodules can be drawn from the relative decrease in lux expression of myo-inositol biosensor on roots inoculated with the nodC mutant. There was also a significant decrease in expression of the myo-inositol reporter in roots inoculated with the nodC mutant at each time point from 8 to 18 dpi, suggesting the myo-inositol detected in the roots inoculated with wild-type is due to nodule formation (Fig. 2F). Indeed, expression of the myo-inositol reporter can be seen clearly localized to nodules (Fig. 2B). Lux output from the sucrose reporter (detecting concentrations ≥ 10 μM sucrose), was reduced significantly at 11-22 dpi in roots inoculated with the nodC mutant compared with wild-type (Fig. 2E); the expression of this reporter in roots inoculated with Rlv3841 was clearly seen localized to nodules at 15-22 dpi and this is consistent with sucrose from the shoot being supplied to nodules to support nitrogen fixation by rhizobial bacteroids (Fig. 2A). Expression of the phenylalanine reporter (detecting concentrations of ≥ 10 μM phenylalanine), was reduced significantly only at 15 dpi in roots inoculated with the nodC mutant compared to wild-type (Fig. 2H), suggesting phenylalanine is abundant.
in nodules of this age. For fructose, C4-dicarboxylates, GABA, and hesperetin bioreporters, levels are significantly lower in the nodC mutant background at 18 dpi, 15 dpi, 15 and 18 dpi, and 18 dpi, respectively (Fig. 3, B-C, and E-F), indicating the presence of these metabolites (fructose ≥ 10 μM, C4-dicarboxylates ≥ 10 μM – 10mM, GABA ≥ 500 μM, hesperetin ≥ 1 μM) in pea nodules.

Effect of Symbiotic Nitrogen Fixation on Nodule Metabolites

Biosensors detecting sucrose (sugar), myo-inositol (polyol), C4-dicarboxylates (organic acid) and GABA (amino acid) were used to examine levels of metabolites within effective and ineffective nodules by transferring each to a nifH mutant background (Karunakaran et al., 2009). The nifH mutant induces normal nodule formation, but is totally defective for nitrogen fixation. Since nifH encodes one of the components of nitrogenase, the enzyme complex that carries out nitrogen fixation, interruption of this gene by mutation means no functional nitrogenase is produced by the bacteria.

Levels of Lux expression from a constitutive promoter were approx. 30% lower in the Rlv3841 nifH mutant background relative to wild-type (Fig. 4A), presumably because ineffective nodules do not contain as many, and/or as metabolically active, bacteroids. Levels of detection of sucrose, myo-inositol, C4-dicarboxylates and GABA in effective (wild-type) and ineffective (nifH mutant-background) nodules were compared 15, 18, and 22 dpi (Fig. 4, B-E). Once corrected for overall lower activity in the nifH-mutant background (Supplemental Fig. S10), lower levels of sucrose (approx. 65% at 15 dpi, approx. 35% at 18 dpi), C4-dicarboxylates (approx. 35% at 15-18 dpi, > 10% at 22 dpi), and GABA (approx. 65% at 15 dpi, approx. 30% at 18 dpi and approx. 50% at 22 dpi) were detected in ineffective nodules. The reduction of sucrose, C4-dicarboxylates and GABA in ineffective nodules suggests that plants sanction nodules that cannot fix nitrogen by decreasing their carbon supply (Fig. 4, B, and D-E). In contrast, the level of myo-inositol detected was higher in ineffective senescing nodules at 22 dpi (approx. 600% at 22 dpi) (Fig. 4C, Supplemental Fig. S10).

Malonate catabolism is not required for nitrogen fixation (Karunakaran et al., 2013). Transcriptomic data did not show a significant change in the expression of matABC genes in the rhizosphere of pea plants, but a significant difference was found
in the alfalfa rhizosphere (Ramachandran et al., 2011). The malonate biosensor indicates that malonate (at concentrations ≥ 10 mM) is present in the pea rhizosphere, although over time its level decreases to being barely detectable in nodules 15 dpi (Fig. 2, C and G). With evidence that ≥ 10 mM malonate is present in the rhizosphere of peas, colonization of roots by *R. leguminosarum* mutants defective for malonate metabolism was explored to see if an inability to metabolize malonate affects this process. Root attachment assays and nodule competition (as a measure of effective root colonization) were assayed using *matC* and *matA* mutants that are impaired in malonate transport and catabolism, respectively (Karunakaran et al., 2013). Although both mutants, defective in either malonate transport or catabolism, are less efficient at root attachment than the wild-type, there were no significant differences in pea root colonization compared with wild-type (Supplemental Fig. S11). We conclude from this that malonate uptake and its subsequent bacterial catabolism play a part in the initial attachment of *R. leguminosarum* to pea roots. However, although attachment might be the first step of bacterial colonization, in overall colonization assays, ability to either take-up or metabolize malonate has no effect.

In vivo Mapping of Metabolites on Roots and within Nodules of *V. hirsuta*

To investigate a different legume root and its rhizosphere, similar analyses were performed with *V. hirsuta*, on which Rlv3841 is also able to form nodules. Images were acquired at similar time points as for pea (up to 22 dpi), but with vetch plants the nodules appear to the naked eye earlier, at about 8 dpi (Fig. 5 and Table IV). With the exception of the polyols, erythritol and mannitol, and the organic acids, formate, tartrate and salicylic acid, all other metabolite were detected in the vetch rhizosphere over the time course (Table IV). For the compounds we failed to detect, we can’t exclude the possibility that they may be present, but at levels too low for their detection, i.e. levels of erythritol at ≤ 1 mM, mannitol at ≤ 1 μM, formate at ≤ 10 mM, tartrate at ≤ 100 μM and salicylic acid at ≤ 1 mM. This differs from pea only in the case of the tartrate, which was detected in the pea rhizosphere but not in that of vetch. Metabolites xylose (≥ 1 mM), fructose (≥ 10 μM), *myo*-inositol (≥ 100 μM), malonate (≥ 10 mM), C4-dicarboxylates (≥ 10 μM -10 mM, Table I), and hesperetin (≥ 1 μM) were detected in the vetch rhizosphere at 4 dpi (Fig. 5, A-B, D-F, and I). These were also all detected on pea roots (Table III), but a difference between these two legume rhizospheres is that phenylalanine was barely detected in the vetch
rhizosphere at 4 dpi (Fig. 5G) (the limit of detection is $\geq 10 \mu M$ phenylalanine). In vetch, as in pea, sucrose (able to detect $\geq 100 \mu M$), and GABA (able to detect ($\geq 500 \mu M$) were hardly detected on the roots prior to nodule formation but were detected within nodules: for sucrose, the maximum level was observed at 11 dpi, while that of GABA peaked at 8 dpi (Fig. 5, C and H). This pattern is similar overall to that seen on pea roots for both sucrose (Fig. 2E) and GABA (Fig. 3E), taking into account that pea nodules form later (>11 dpi). Malonate ($\geq 10 \text{ mM}$) was detected in the vetch rhizosphere prior to nodule formation, but once nodules were formed (> 8 dpi), it was detected only at a very low level (8-22 dpi) (Fig. 5E), again, a similar pattern to that of pea (Fig. 2G). Hesperetin ($\geq 1 \mu M$) was detected in vetch, with levels peaking at 4 dpi, and then falling once nodule development was initiated (8 dpi onwards) (Fig. 5I). Images from 1-22 dpi for detection of hesperetin on vetch roots (Fig. 6) show that, even at 1-4 dpi, prior to any sign of nodule formation, there are foci where hesperetin is detected. At later time points, nodules developed at these exact locations illustrating the power of this technique in pinpointing the spatial and temporal secretion of this flavonoid (Fig. 6).
DISCUSSION

Owing to the hidden nature of the rhizosphere and its complexity, a major problem encountered in its study is the intrinsic difficulty in sampling (Bais et al., 2006). Most of the techniques used require either sacrifice of the specimen, or at least require its manipulation, making it impossible to non-invasively follow the same sample over time. The bacterial lux gene cassette has been widely used in several different applications, including the visualization of gene expression, as a tool for cellular population monitoring and as bioreporter target through activation under specific, predetermined conditions (Close et al., 2012). In this work, we have constructed a suite of Lux biosensors able to detect a variety of key sugars, polyols, organic acids, amino acids and flavonoids that are commonly found in root exudates. The presence of these compounds was confirmed using a metabolomics approach, allowing us to identify 376 compounds present in pea root exudate. Lux-based reporter plasmids have been transferred into Rlv3841, an alpha-proteobacterium, which is generally associated with leguminous plants and is ubiquitous in soil (Udvardi and Poole, 2013). Pea and vetch plants, both hosts of R. leguminosarum, on which it forms nitrogen-fixing nodules, have been used to test the efficiency of this system as a proof-of-concept. However, the ability of rhizobia to colonize non-legume plants (Chabot et al., 1996) should allow the use of these bioreporters in other systems.

A constitutive promoter was used to examine rhizobial colonization of plant
roots. Bacteria colonize the whole of the root system but the strongest Lux signals are visible from the elongation zone of the primary and lateral roots (Fig. 1, Supplemental Fig. S2). Heavy colonization at the root elongation zone is to be expected, as this is an area of actively growing root where many metabolites are secreted and exuded. Low Lux signal from the root cap is probably due to the reduced colonization of this area, which generally secretes antimicrobial phytochemicals (Baetz and Martinoia, 2014). The level of Lux signal detected in the rhizosphere was constant until 11 dpi and then reduced, possibly due to a general decrease in root exudation caused by plant growth conditions and/or to the physiological status of the bacterial population. Constitutive lux expression drains energy reserves in bacterial cells and reduces the light output over time. In a wild-type bacterial background, after 11 dpi the Lux signal was mainly localized in the nitrogen-fixing nodules formed on the legume roots which is densely
populated with metabolically active bacteria. It is important to consider where
bacteria are located. Although the whole root is colonized by rhizobia (Figure S2),
these are unevenly distributed i.e. more bacteria or more metabolically active bacteria
are in the root elongation zone. The overall levels of metabolites detected in the
rhizosphere before 11 dpi and in nodules (after 11 dpi) for pea roots are summarized
in Fig. 7.

On pea and vetch roots, xylose (≥ 1 mM), fructose (≥ 10 μM), myo-inositol (≥
100 μM), phenylalanine (≥ 10 μM) (not detected in the vetch rhizosphere), and
hesperetin (≥ 1 μM) were detected largely at the elongation zone (just behind the root
tip) of lateral roots, while malonate (≥ 10 mM) (at least initially) and tartrate (≥ 100
μM) (not detected on vetch roots) were mainly localized on the primary root (Fig. 2C
and Supplemental Fig. S5D). In Rlv3841, malonate transport and metabolism has
been shown to have no role in nitrogen fixation in peas (Karunakaran et al., 2013), but
does seem to be involved in attachment of Rlv3841 to pea roots as mutants in
malonate uptake and metabolism show a reduced attachment phenotype, although no
change in overall colonization of pea roots is observed. Malonate at ≥ 10 mM is
localized to the primary root at 4 dpi during initial colonization (although levels of ≤
10 mM malonate may well be present on other parts of the root but are below the
levels of detection by this method). Given the role of malonate in attachment, it is
possible that bacteria attach to the primary root before colonizing the lateral roots,
where most of the nodules subsequently appear. C4-dicarboxylates
(succinate/malate/aspartate with detection levels ≥ 100 μM/ ≥ 10 μM/ ≥ 10 mM,
respectively) were detected in the rhizosphere of both pea and vetch, but showed no
clear spatial pattern on pea roots (Supplemental Fig. 3C).

In pea and vetch nodules, xylose (≥ 1 mM), fructose (≥ 10 μM), sucrose (≥
100 μM), myo-inositol (≥ 100 μM), C4-dicarboxylates (succinate/malate/aspartate, (≥
10 μM – 10 mM), phenylalanine (≥ 10 μM), and GABA (≥ 500 μM) were present
(Table III, Table IV, Fig. 7). Although nodules formed on pea and vetch have not
been analyzed by metabolomic studies, MALDI mass spectrometric analysis of
Medicago truncatula nodules formed by S. meliloti (Ye et al., 2013) revealed many of
these same compounds present: sucrose, C4-dicarboxylates (succinate/malate/
aspartate), and GABA, but also salicylic acid was detected, which, if present in pea or
vetch nodules, is below the limits of detection (≤ 1 mM) of Lux-based salicylic acid
detection. In pea, hesperetin (≥ 1 μM) was detected in mature nodules (Fig. 3F), while in vetch it was detected only before nodules could be seen with the naked eye or in very young nodules, with none detected in mature nodules (i.e. levels ≤ 1 μM) (Fig. 6). Sucrose is supplied from the shoot to nodules, where it is converted to C4-dicarboxylates and supplied to bacteroids as their primary energy source for nitrogen fixation (Poole and Allaway, 2000). In the ineffective nodules of a nifH-mutant background, the levels of sucrose and C4-dicarboxylates detected were lower, suggesting that the plant sanctions supply of carbon to nodules unable to provide them with nitrogen. While the nifH-mutant showed lower levels of the constitutive promoter, presumably because of reduced bacteroid numbers and metabolic activity, (Kiers et al., 2003; Berrabah et al., 2015), the levels of sucrose, C4-dicarboxylates and GABA were still substantially reduced when the decrease in activity of the constitutive promoter was accounted for. Furthermore, levels of some metabolites, such as myo-inositol, increased dramatically in the nifH mutant possibly due to environmental/osmotic stress.

Use of these tools has allowed us to draw a spatial and temporal map of key compounds present in the legume rhizosphere and to monitor the relative supply of specific metabolites inside nodules (e.g. sucrose, C4-dicarboxylates, GABA). We have demonstrated that with this system it is possible to follow the same plant for days, gathering data non-invasively and it is relatively easy to set up. Moreover, it will be possible in the future to expand the set of reporters to include many different compounds. We believe that this is an excellent tool, which can be adapted to investigate the role of specific root exudates in many different plant growth conditions (e.g. stress; both abiotic and biotic). As R. leguminosarum spp. colonize root systems of non-leguminous plants (Schloter et al., 1997), it will be possible to monitor root exudates of other plant species using this series of biosensors. By combining this methodology with plant mutant collections, screening specific exudate-related phenotypes in genome-wide association studies could be performed. Finally, by co-inoculating biosensors with other bacteria and/or fungi, it will be possible to observe the effects of other microorganisms on the plant secretome.

MATERIALS AND METHODS
Bacterial Strains and Growth Conditions

The bacterial strains and plasmids used in this study are listed in Supplemental Table S1. *Escherichia coli* strains were grown in liquid or solid Luria–Bertani (LB) medium (Sambrook et al., 1989) at 37°C supplemented with appropriate antibiotics: tetracycline (10 μg ml\(^{-1}\)) and kanamycin (20 μg ml\(^{-1}\)). Rlv3841 carrying nodC128::Tn5 was isolated by transduction using phage RL38 propagated on strain 6015 carrying nodC128::Tn5 on pRL1JI (Downie et al., 1985). Rlv3841 strains were grown in tryptone yeast (TY) agar or broth (Beringer, 1974) or universal minimal salts (UMS) at 28°C. UMS is derived from AMS (Poole et al., 1994) with the changes: EDTA-Na\(_2\) (1 μM), CoCl\(_2\).6H\(_2\)O (4.2 μM), FeSO\(_4\).7H\(_2\)O (0.04 mM) and CaCl\(_2\).2H\(_2\)O (0.51 mM); UMS was supplemented with 30 mM pyruvate and 10 mM ammonium chloride as the carbon and nitrogen sources, unless otherwise stated (Supplemental Table S2). UMA is UMS with the addition of 16 g l\(^{-1}\) agar. Antibiotics were added when necessary at the following concentrations: streptomycin (500 μg ml\(^{-1}\)), tetracycline (2 μg ml\(^{-1}\) in UMS, 5 μg ml\(^{-1}\) in TY), spectinomycin (100 μg ml\(^{-1}\)) and neomycin (20 μg ml\(^{-1}\)).

Strain Construction and General Techniques

The promoter region (often including the complete upstream regulator) of each of the candidate genes was amplified using primers listed in Supplemental Table S9 with Phusion High-Fidelity DNA Polymerase (ThermoFischer, Waltham, MA, USA) according to manufacturer’s instructions. Fragments were purified and double digested with *Kpn*I or *Xho*I (at the 5´-end) and *Xho*I or *Bam*HI (at the 3´-end) (ThermoFischer). Restriction fragments were cloned into pIJ11268 (Frederix et al., 2014) digested with the same enzymes. Plasmids (Supplemental Table S1) were transferred into wild-type (Rlv3841), Rlv3841 nodC128::Tn5, Rlv3841 nifH::ΩSp (Karunakaran et al., 2009), Rlv3841 matA::pK19 and Rlv3841 matC::pK19 (Karunakaran et al., 2013) backgrounds by tri-parental mating according to Figurski and Helinski (Figurski and Helinski, 1979). All plasmids are available from addgene (https://www.addgene.org).

Determining Solute Specificity
Each biosensor was grown for 3 d on an UMA slope with antibiotics, re-suspended in UMS with no added carbon or nitrogen and washed three times. Each was then diluted to an OD$_{600}$ of 0.01 in a final volume of 5 ml UMS with a sugar (10 mM) as sole carbon source, or with pyruvate (30 mM) as carbon source in presence of a specific compound (Supplemental Table S2) for 17 h. Luminescence (in relative luminescence units (RLU)) and OD$_{600}$ were measured using a GloMax®-Multi+ Detection System (Promega, Fichburg, WI, USA). For each compound, the fold-induction is defined as the ratio of RLU/OD$_{600}$, when grown in the presence of that compound (Supplemental Table S2 gives concentrations of each solute), with that obtained in control conditions (UMS with pyruvate and ammonia). The solute(s) that give the highest fold-induction and specific luminescence (Table I) are described as inducer(s). Biosensor induction by a solute is described as specific if the specific luminescence is ≥10-fold that observed from the other solutes tested. The biosensors for erythritol, formate, and GABA have a relatively high expression with a variety of non-related solutes (background) and they are described as being specific for these solutes, respectively, with specific luminescence ≥4-fold values obtained with other solutes. More than one compound is considered inducing when the fold-induction is > 40% of the maximum fold-induction for a biosensor (Table I). For each biosensor grown on each solute, three independent cultures were measured. Supplemental Table S10 shows the expression of each gene used in biosensor construction in microarray experiments performed under seventy-three different conditions.

Plant Growth Conditions

Seeds of *Pisum sativum* cv Avola and *Vicia hirsuta* were surface sterilized and germinated on distilled water agar plates. Plates with pea seedlings were put into black bags and incubated for 6 d at room temperature. Vetch seedlings were incubated overnight at 4°C and for 3 d at room temperature. Seedlings were transferred to 10-cm square Petri dishes containing FP agar (Somasegaran and Hoben, 1994) covered with sterile filter paper (one seedling per plate for peas, six per plate for vetch). Each biosensor was analyzed with at least 4 plates for pea (corresponding to 4 plants) and 1 plate for vetch (corresponding to 6 plants). Biosensors were grown on UMA slopes for 3 d at 27°C, washed 3 times in UMS without any additions and inoculated directly on the seedling root. Each seedling was inoculated with 5 x 107 or 2 x 107 colony forming units (cfu), for vetch and pea plants, respectively. Plates were covered with
aluminum foil to prevent exposure of roots to light and placed in a growth chambers at 23°C with a 16 h/8 h day/night for 22 d. In flooding experiments, peas were grown for 4 dpi with a biosensor before the plate was flooded with 10 ml of 10 mM solution of substrate and poured off. Plates were imaged before, and 5 min, 3 hr, and 21 hr post-flooding. Background luminescence in experiments with plants was evaluated by spotting 2×10^7 cfu ml$^{-1}$ bacteria (the same amount used for pea root inoculation) onto FP plates supplemented with pyruvate and ammonium chloride. Plates were imaged after 7 d.

Image Acquisition

Plates were photographed using a NightOWL camera (Berthold Technologies, Bad Wildbad, Germany) 4, 8, 11, 15, 18, and 22 d post inoculation (dpi). CCD images of light output were exposed for 120 s. Each CCD image consisted of an array 1024 by 1024 pixels, and after acquisition pictures were post-processed for cosmic suppression and background correction. Images were analyzed with the imaging software IndiGO (Berthold Technologies) and with the custom software, NightCROP. NightCROP first segments an image using the SeNeCA algorithm (Tomèk et al., 2013) into roots and background using a bright-field image, discarding objects smaller than 1000 pixels. All subsequent analysis uses the respective fluorescence image. The script subtracts background intensity: background in the image is defined as a set of pixels given by logical inverse of the mask containing roots, subsequently morphologically eroded with a disk structural element of radius 9 to filter out signal from the edges of roots. Then, for each pixel belonging to a root, mean intensity of background pixels in a 200-by-200-pixel square is subtracted. The output from NightCROP for a given image is expressed as mean intensity of pixels labeled as roots after the background subtraction. Exact values of parameters (minimum root size, erosion radius and background size) may be freely selected, based on the resolution and nature of data (Fig. S1). Data are expressed as the ratio of luminescence/surface; cps mm$^{-2}$ (counts per second mm$^{-2}$; IndiGO) or intensity pxt$^{-1}$ (NightCROP).

Software Development and Use

NightCROP was developed as a script for MATLAB environment (MATLAB version 8.5.0 r2015a, (MathWorks Inc., Natick, MA, USA)). Before using the script
an image processing toolbox should be installed in MATLAB. The script is available
upon request to the corresponding author and works on any operating system which
supports MATLAB.

Extraction of Exudate from Roots

Glass jars (0.5 l) were prepared by filling one third of the jar with glass beads
(6 mm diameter; Atlas Ball & Bearing Co. Ltd., Walsall, UK) and adding water
(reverse osmosis highest quality) to cover all except the top layer of beads (approx.
150 ml). Jars were covered with a metal lid containing a foam bung and sterilized by
autoclaving. Six sets of twenty sterilized and germinated peas with 1 cm roots were
transferred into six sterilized glass jars, with each jar (of twenty plants) representing
one biological replicate. The jars were wrapped with black plastic up to the level of
the beads and the peas grown for 21 d at 20°C for 16 h light /18°C for 8 h dark. The
liquid was then decanted into sterile glass bottles and sampled for sterility by plating
100 μl aliquots on TY plates. Samples were filtered through a 0.2-μm nitrocellulose
filter. Samples for metabolite profiling were freeze-dried and re-suspended in 800 μl
of sterile water prior to downstream analysis.

Metabolite Profiling Analysis

The metabolomic profile of six biological replicates of pea root exudates was
analyzed using non-biased, global metabolome profiling technology based on GC/MS
and UHLC/MS/MS² platforms (Lawton et al., 2008; Evans et al., 2009; Terpolilli et
al., 2016) developed by Metabolon (www.metabolon.com). Samples from the six
biological replicates were extracted using the automated MicroLab STAR® system
(Hamilton, www.hamiltoncompany.com). Recovery standards (Evans et al., 2009)
were added prior to the first step in the extraction process for QC purposes. The
protein fraction was removed using methanol extraction, which allows maximum
recovery of small molecules. The resulting extract was divided into two fractions: one
for analysis by LC and one for analysis by GC. Organic solvent was removed by
placing samples on a TurboVap® (Zymark). Each sample was frozen and dried under
vacuum. Samples were then prepared for the appropriate instrument, either LC/MS or
GC/MS.

The LC/MS portion of the platform was based on a Waters ACQUITY
UHPLC and a Thermo-Finnigan LTQ mass spectrometer, which consisted of an
electrospray ionization source and linear ion-trap mass analyzer. The sample extract was split into two aliquots, dried and then reconstituted in acidic or basic LC-compatible solvents, each of which contained 11 or more injection standards at fixed concentrations. One aliquot was analyzed using acidic positive ion optimized conditions and the other using basic negative ion optimized conditions in two independent injections using separate dedicated columns. Extracts reconstituted in acidic conditions were gradient-eluted using water and methanol both containing 0.1% (v/v) formic acid, while the basic extracts, which also used water/methanol, contained 6.5 mM NH₄HCO₃. The MS analysis alternated between MS and data-dependent MS² scans using dynamic exclusion.

Samples destined for GC/MS analysis were re-dried under vacuum desiccation for a minimum of 24 h prior to being derivatized under dried nitrogen using bistrimethyl-silyl-trifluoroacetamide. The GC column was 5% phenyl and the temperature ramp was 40°C to 300°C, over a 16-min period. Samples were analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole gas chromatograph mass spectrometer using electron impact ionization. For metabolite profiling, identification of known chemical entities was based on comparison to metabolomic library entries of purified standards as previously described (Evans et al., 2009; Yobi et al., 2012).

RNA Isolation and Microarray Analysis

Rlv3841 was grown overnight in 10 ml of UMS supplemented with pyruvate/ammonia. Cultures were split in two and concentrated root exudates (5 mg/ml) were added to one culture. After 3 h of induction RNA was extracted from three biological replicates, amplified and hybridized as previously described (Karunakaran et al., 2009). Microarray data were deposited in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-4790.

Root Attachment Assay

Surface-sterilized pea seeds were germinated on distilled water agar plates for 5 d. Bacteria were grown on UMA slopes for 3 d, re-suspended and washed twice in phosphate-buffered saline and then 10 ml of a suspension (OD₆₀₀ = 0.1) was added to 50 ml glass tubes containing 7-10 pea roots. Tubes were incubated on a rocking platform for 1 h at room temperature at 50 rpm. Roots were washed by dipping six
times in PBS and then individual roots were transferred into a 1.5 ml tube, weighed and their luminescence measured using a GloMax®-Multi Jr Single-Tube Multimode Reader (Promega). Luminescence was scored as relative light units. Data are the average of individual roots from at least 3 different experiments; relative light units (RLU) were normalized for the weight of the roots and the average luminescence of roots incubated with bacteria not expressing the lux cassette (LMB542) was subtracted. Luminescence of the pure culture after 1 h was used to calculate the relative luminescence of a single bacterial cell. Differences between the three groups were calculated by one-way ANOVA with post hoc Tukey test.

Root Competition Assay

Pea plants were grown on FP plates as described above (Plant Growth Conditions), with the addition of a wet filter paper to cover the roots. Strains were co-inoculated in 1:1 ratio (1 x 10⁷ cfu of each strain), using combinations of Rlv3841 with either Rlv3841 [pIJ11282] or Rlv3841 matC::pK19 [pIJ11282] and Rlv3841 matC::pK19, with either Rlv3841[pIJ11282] or Rlv3841 matC::pK19 [pIJ11282]. At 7 dpi, plants were imaged using a NightOWL camera and processed using the NightCROP script.

Biosensor Sensitivity Assay

Bacterial biosensors from UMA slopes (with appropriate antibiotics) grown for 3 d at 28°C, were washed three times before re-suspension in 3 ml UMS. Bacteria were added to 50 ml of molten (cooled to 42°C) UMA, to give a final concentration of 1x 10⁸ cfu ml⁻¹. The agar containing bacteria was then poured into a 12-cm square Petri dish and allowed to set. 25 μl droplets (n=5) of 10-fold dilutions of solute, concentrations ranging from 10 mM to 1 μM (including a distilled water control) were spotted onto the agar and incubated at 28°C. Sensitivity of each biosensor was defined as the lowest concentration of solute which gave a signal when imaged using a NightOWL camera at 4 h post-spotting.

ACKNOWLEDGEMENTS

We would like to acknowledge the technical assistance of Elisabeth Nowak in this work.
Figure Legends

Figure 1. In vivo spatial and temporal mapping images of pea root colonization and nodulation with wild-type Rlv3841 luminescently-labelled with a constitutive neomycin phosphotransferase promoter controlling Lux expression in pIJ11282 (Frederix et al., 2014). A, Images were acquired at 4, 8, 11, 15, 18 and 22 dpi, with nodules visible to the naked eye at between 11 and 15 dpi (scale: 300-12,000 cps). B, Mean luminescence (pxl mm⁻²) with standard errors shown by bars.

Figure 2. In vivo spatial and temporal mapping images of pea roots with biosensors detecting: sucrose (A) (scale: 200-65,535 cps), myo-inositol (B) (scale: 150-5,000 cps), malonate (C) (scale: 50-2,000 cps), and phenylalanine (D) (scale: 150-15,000 cps). Images were acquired at 4, 8, 11, 15, 18 and 22 dpi, with nodules visible to the naked eye between 11 and 15 dpi. These images are representative of those from biosensors in wild-type Rlv3841 background which nodulates peas. Comparison of mean luminescence intensity per pixel from pea roots inoculated with biosensors in wild-type Rlv3841 background (dark gray) and Rlv3841 nodC128::Tn5 background (light gray). Only wild-type Rlv3841 can form nodules. The biosensors detect: sucrose (E), myo-inositol (F), malonate (G) and phenylalanine (H). Standard errors are shown by bars, stars indicate significant differences between a biosensor in wild-type Rlv3841 and Rlv3841 nodC128::Tn5 backgrounds (t-test, * = p < 0.05; ** = p < 0.01). Differences between each time point (ANOVA with post hoc Tukey test, p < 0.05) are reported in Supplemental Tables S4 and S5. For representative images from Rlv3841 nodC128::Tn5 background see Supplemental Fig. S8.

Close-up light-field photograph and luminescence of roots showing nodules at 15 dpi inoculated with biosensors detecting: sucrose (I), myo-inositol (J), malonate (K), and phenylalanine (L).

Figure 3. Comparison of mean luminescence intensity per pixel from pea roots inoculated with biosensors in wild-type Rlv3841 (dark gray) or the Rlv3841 nodC128::Tn5 mutant (light gray). Only wild-type Rlv3841 can form nodules. Biosensors detect: xylose (A), fructose (B), C4-dicarboxylates (C) tartrate (D), GABA (E) and hesperetin (F). Standard errors are shown by bars, stars indicate significant differences between a biosensor in wild-type Rlv3841 and Rlv3841 nodC128::Tn5 (t-
test, * = p <0.05; ** = p <0.01). Differences between each time point (ANOVA with
post hoc Tukey test, p<0.05) are reported in Supplemental Tables S4 and S5. For
representative images from Rlv3841 and Rlv3841 nodC128::Tn5 background see
Supplemental Figs. S5 and S9, respectively.

Figure 4. Comparison of mean luminescence (cps mm⁻²) from pea nodules of
different ages with biosensors in wild-type Rlv3841 (dark gray) or Rlv3841
nifH::ΩSp mutant (white) background. Nodules formed by Rlv3841 fix nitrogen
whereas those formed by these mutant strains are unable to do so. Biosensors are
specific for: constitutively active (A), sucrose (B), myo-inositol (C), C4-
dicarboxylates (D) and GABA (E). Standard errors are shown by bars and stars
indicate significant differences between a biosensor in wild-type Rlv3841 and the
Rlv3841 nifH::ΩSp mutant (t-test, * = p <0.05; ** = p <0.01). Differences between
each time point (ANOVA with post hoc Tukey test, p <0.05) are reported in
Supplemental Tables S6 and S7.

Figure 5. Comparison of mean luminescence (cps mm⁻²) from vetch roots inoculated
with biosensors in wild-type Rlv3841 background. Biosensors detect: xylose (A),
fructose (B), sucrose (C), myo-inositol (D), malonate (E), C4-dicarboxylates (F),
phenylalanine (G), GABA (H) and hesperetin (I). Standard errors are shown by bars.
Differences between each time point (ANOVA with post hoc Tukey test, p <0.05) are
reported in Supplemental Table S8. Nodules are visible to the naked eye from 8 dpi.

Figure 6. Time-course of hesperetin detection on a vetch seedling root from 1 to 22
dpi. Arrows indicate spots where luminescence is concentrated and a nodule forms
later.

Figure 7. Summary of metabolite detection on pea roots; in the rhizosphere (≤11 dpi)
and within nitrogen-fixing nodules (≥15 dpi). Lines on the left-hand side group
similar chemicals into; sugars and polyols, organic acids, amino acids, and flavonoids.
Color shows level detected in rhizosphere and nodules: high, red; medium, dark pink;
low, pale pink; barely detected, gray; not detected, black.
Supplemental Data

The following supplemental data are available

Supplemental Figure S1. Workflow of the NightCROP image processing script, the picture is a pea inoculated with a constitutively expressed bioreporter at 15 dpi.

Supplemental Figure S2. *In vivo* spatial and temporal mapping images of pea root colonization and nodulation with wild-type Rlv3841.

Supplemental Figure S3. Luminescence is not detected in the absence of plant roots.

Supplemental Figure S4. *In vivo* spatial and temporal mapping images of pea roots inoculated with the xylose biosensor.

Supplemental Figure S5. *In vivo* spatial and temporal mapping images of pea roots with biosensors detecting: sugars, xylose and fructose.

Supplemental Figure S6. Comparison of pea roots inoculated with biosensors in wild-type Rlv3841 and Rlv3841 *nodC128::Tn5* mutant background.

Supplemental Figure S7. Comparison of mean luminescence (cps mm⁻²) of pea nodules from 15 to 22 dpi, with biosensors in wild-type Rlv3841 background.

Supplemental Figure S8. *In vivo* spatial and temporal mapping images of pea roots with biosensors detecting: sucrose, myo-inositol, malonate and phenylalanine.

Supplemental Figure S9. *In vivo* spatial and temporal mapping images of pea roots with biosensors detecting: sugars, xylose and fructose, organic acids, C4-dicarboxylates and tartrate, amino acid, GABA and flavonoid, hesperetin.

Supplemental Figure S10. Comparison of mean luminescence (cps mm⁻²) from pea roots inoculated with biosensors in wild-type Rlv3841 background (dark gray) and Rlv3841 *nifH::ΩSp* mutant background (white).

Supplemental Figure S11. Investigation of the role of malonate during root attachment.

Supplemental Table S1. Strains and plasmids used in this work. St (streptomycin), Neo (neomycin), Tc (tetracycline) and Sp (spectinomycin).

Supplemental Table S2. Conditions used to test specificity the bioreporter library.

Supplemental Table S3. Metabolomic data from root exudates of *P. sativum*.

Supplemental Table S4. ANOVAs with post hoc Tukey test (p <0.05) on total luminescence for bioreporters in Rlv3841 inoculated onto pea plants (Fig. 2 and 3).
Supplemental Table S5. ANOVAs with post hoc Tukey test (p <0.05) on total luminescence for bioreporters in Rlv3841 *nodC128::Tn5* inoculated onto pea plants (Fig. 2 and 3).

Supplemental Table S6. ANOVAs with post hoc Tukey test (p <0.05) on nodules luminescence for bioreporters in Rlv3841 inoculated onto pea plants (Fig. 4).

Supplemental Table S7. ANOVAs with post hoc Tukey test (p <0.05) on nodules luminescence for bioreporters in Rlv3841 *nifH::ΩSp* inoculated onto pea plants (Fig. 4).

Supplemental Table S8. ANOVAs with post hoc Tukey test (p <0.05) on total luminescence for bioreporters in Rlv3841 inoculated onto vetch plants (Fig. 5).

Supplemental Table S9. Primers used in this work.

Supplemental Table S10. Relative expression in microarray experiments under seventy-three different conditions of the *R. leguminosarum* genes whose promoters were used for construction of biosensors.
Supplemental Figure S1. Workflow of the NightCROP image processing script, the picture is a pea inoculated with a constitutively expressed bioreporter at 15 dpi. A, NightOWL output photographic image of the pea root system. B, NightOWL output luminescent image of same area captured in A. C, NightOWL superimposed image of pictures A and B with false colors. D, NightCROP segmentation of picture A, the program detects difference in light intensity and draws a segmentation mask over the root system. E, Segmentation mask is applied on picture B and luminescence intensity is specifically extracted from the segmented area (pxl/mm²). F, Mean background luminescence is calculated around each segmented pixel and, subtracting this from the intensity value of the pixel.

Supplemental Figure S2. In vivo spatial and temporal mapping images of pea root colonization and nodulation with wild-type Rlv3841 luminescently-labelled with a constitutive neomycin phosphotransferase promoter controlling Lux expression in plJ11282 (Frederix et al., 2014). Images were acquired at 4, 8, 11, 15, 18 and 22 dpi, with nodules visible to the naked eye at between 11 and 15 dpi (scale: 50-12,000 cps).

Supplemental Figure S3. Luminescence is not detected in the absence of plant roots. Luminescence of biosensors on FP media supplemented with pyruvate and ammonium chloride after 7 days’ growth (scale: 50-1,000 cps).

Supplemental Figure S4. In vivo spatial and temporal mapping images of pea roots inoculated with the xylose biosensor, flooded with xylose at 4 dpi (A); the sucrose biosensor, flooded with sucrose at 4 dpi (B); the GABA biosensor, flooded with GABA at 4 dpi (C); the sucrose biosensor, flooded with GABA at 4 dpi (D) and the GABA biosensor, flooded with sucrose at 4 dpi (E) (scale: 500-5,000 cps). For each, images were taken before, and 5 min, 3 hr, and 21 hr post-flooding.

Supplemental Figure S5. In vivo spatial and temporal mapping images of pea roots with biosensors detecting: sugars, xylose (A) (scale: 400-12,000 cps) and fructose (B) (scale: 300-12,000 cps), organic acids, C4-dicarboxylates (C) (scale: 400-65,535 cps) and tartrate (D) (scale: 200-15,000 cps), amino acid, GABA (E) (scale: 500-10,000 cps) and flavonoid, hesperetin (F) (scale: 250-13,000 cps). Images were acquired at 4,
8, 11, 15, 18 and 22 dpi with nodules visible to the naked eye at between 11 and 15 dpi. These images are representative of those from biosensors in wild-type Rlv3841 background.

Supplemental Figure S6. Comparison of pea roots inoculated with biosensors in wild-type Rlv3841 and Rlv3841 *nodC128::Tn5* mutant background. Only wild-type Rlv3841 strains are able to form nodules. Biosensors detect: polyols, erythritol (A, E and I) (scale: 100-1,000) and mannitol (B, F and J) (scale: 50-700), the organic acids, formate (C, G and K) (scale: 100-2,000) and salicylic acid (D, H and L) (scale: 100-2,000). A-D, Images representative of biosensors in Rlv3841 background. E-H, Comparison of mean luminescence (pxl mm⁻²) from pea roots inoculated with biosensors in wild-type Rlv3841 background (dark gray) and Rlv3841 *nodC128::Tn5* background (light gray). Standard errors are shown by bars. I-L, Images representative of biosensors in Rlv3841 *nodC128::Tn5* mutant background.

Supplemental Figure S7. Comparison of mean luminescence (cps mm⁻²) of pea nodules from 15 to 22 dpi, with biosensors in wild-type Rlv3841 background. Biosensors are specific for: xylose (A), fructose (B), phenylalanine (C) and hesperetin (D). Standard errors are shown by bars.

Supplemental Figure S8. In *vivo* spatial and temporal mapping images of pea roots with biosensors detecting: sucrose (A) (scale: 200-65,535 cps), myo-inositol (B) (scale: 50-2,000 cps), malonate (C) (scale: 50-2,000 cps) and phenylalanine (D) (scale: 150-15,000 cps). Images were acquired at 4, 8, 11, 15, 18 and 22 dpi. These images are representative of those from biosensors in Rlv3841 *nodC128::Tn5* background and are unable to nodulate peas.

Supplemental Figure S9. In *vivo* spatial and temporal mapping images of pea roots with biosensors detecting: sugars, xylose (A) (scale: 400-12,000 cps) and fructose (B) (scale: 300-12,000 cps), organic acids, C4-dicarboxylates (C) (scale: 400-65,535 cps) and tartrate (D) (scale: 200-15,000), amino acid, GABA (E) (scale: 500-10,000 cps) and flavonoid, hesperetin (F) (scale: 250-13,000 cps). Images were acquired at 4, 8, 11, 15, 18 and 22 dpi. These images are representative of those from biosensors in Rlv3841 *nodC128::Tn5* background and are unable to nodulate peas.
Supplemental Figure S10. Comparison of mean luminescence (cps mm\(^{-2}\)) from pea roots inoculated with biosensors in wild-type Rlv3841 background (dark gray) and Rlv3841 \textit{nifH}::ΩSp mutant background (white). Values for \textit{nifH}::ΩSp mutant are adjusted for the lower level of constitutive Lux expression in this background (Fig. 4) to show equivalent expression in a wild-type background. Only wild-type Rlv3841 strains are able to form nitrogen-fixing nodules. Biosensors detect: sucrose (A), myo-inositol (B), C4-dicarboxylates (C), and GABA (D). Standard errors are shown by bars and stars indicate significant differences between a biosensor in wild-type Rlv3841 and Rlv3841 \textit{nifH}::ΩSp mutant background (t-test, * = p < 0.05; ** = p < 0.01).

Supplemental Figure S11. Investigation of the role of malonate during root attachment. A, Whole root attachment assay showing the number of bacteria attached after 1 h incubation for wild-type Rlv3841[pIJ11282], Rlv3841 \textit{matC}::pK19 [pIJ11282] and Rlv3841 \textit{matA}::pK19[pIJ11282], mutated in malonate transport and catabolism respectively. Plasmid pIJ11282 has constitutively expressed \textit{lux} genes (Frederix et al., 2014). Standard errors are shown by bars. Different letters are used to indicate significant difference (ANOVA with post hoc HSD Tukey test, p < 0.05) between groups. B, Competition test on pea plants at 7 dpi. Histograms represent luminescence/area of constitutive reporter pIJ11282. Strains Rlv3841[pIJ11282] or Rlv3841 \textit{matC}::pK19 [pIJ11282] were inoculated in ratio 1:1 with Rlv3841 or Rlv3841 \textit{matC}::pK19. Standard errors are shown by bars.

Supplemental Table S1. Strains and plasmids used in this work. St (streptomycin), Neo (neomycin), Tc (tetracycline) and Sp (spectinomycin).

Supplemental Table S2. Conditions used to test specificity the bioreporter library.

Supplemental Table S3. Metabolomic data from root exudates of \textit{P. sativum}.

Supplemental Table S4. ANOVAs with post hoc Tukey test (p < 0.05) on total luminescence for bioreporters in Rlv3841 inoculated onto pea plants (Fig. 2 and 3).
Supplemental Table S5. ANOVAs with post hoc Tukey test (p <0.05) on total luminescence for bioreporters in Rlv3841 nodC128::Tn5 inoculated onto pea plants (Fig. 2 and 3).

Supplemental Table S6. ANOVAs with post hoc Tukey test (p <0.05) on nodules luminescence for bioreporters in Rlv3841 inoculated onto pea plants (Fig. 4).

Supplemental Table S7. ANOVAs with post hoc Tukey test (p <0.05) on nodules luminescence for bioreporters in Rlv3841 nifH::ΩSp inoculated onto pea plants (Fig. 4).

Supplemental Table S8. ANOVAs with post hoc Tukey test (p <0.05) on total luminescence for bioreporters in Rlv3841 inoculated onto vetch plants (Fig. 5).

Supplemental Table S9. Primers used in this work.

Supplemental Table S10. Relative expression in microarray experiments under seventy-three different conditions of the R. leguminosarum genes whose promoters were used for construction of biosensors.
Table I. Characterization of biosensors from *R. leguminosarum*

Biosensor	Inducer(s)	Fold-induction	Sensitivity (mM)	Specific luminescence (RLU/OD$_{600}$)	Gene	Name	Function of protein encoded by gene
Sugars and polyols							
Xylose	Xylose	7.20 (±0.34)	1	1.10 x 107	RL2720b	*rbcC*	Transport, permease of ABC, CUT2
	Lyxose	6.99 (±0.37)		1.12 x 107			
Fructose	Fructose	16.13 (±1.07)	0.01	2.84 x 107	RL0489c	*frcB*	Transport, SBP of ABC, CUT2
	Lactulose	11.10 (±0.87)		1.97 x 107			
	Mannitol	8.94 (±0.26)		1.51 x 107			
	Mannose	8.41 (±0.46)		1.47 x 107			
	Sorbitol	8.94 (±0.58)		1.61 x 107			
	Sucrose	7.00 (±0.21)		1.18 x 107			
	Sucrose	36.35 (±1.77)	0.1	2.94 x 107	pRL120556c		Transport, SBP of ABC, CUT1
	Raffinose	34.19 (±4.43)		2.93 x 107			
Erythritol	Erythritol	4.72 (±0.50)	1	2.47 x 105	pRL90085b		Transport, SBP of ABC, CUT2
Mannitol	Mannitol	1.71 x 106 (±1.50 x 106)	0.001	5.51 x 1012	RL4218b		Transport, solute binding protein (SBP) of ABC, CUT1
	Sorbitola	28.52 (±3.53)		3.45 x 107			
	Adonitola	13.01 (±2.39)		1.45 x 107			
myo-Inositol	*myo*-Inositol	216.84 (±13.80)	0.1	4.00 x 107	RL4655b,c	*intA*	Transport, SBP of ABC, CUT2
Organic acids							
Formate	Formate	27.20 (±2.13)	10	2.02 x 106	RL4393b	*fdsG*	Metabolism, formate dehydrogenase
Malonate	Malonate	540.48 (±155.87)	10	5.69 x 106	RL0990b	*matA*	Metabolism
C4-dicarboxylates	Succinate	87.83 (±3.46)	0.1	2.28 x 107	RL3424b	*dctA*	Transport, dicarboxylate transporter
Solutes	Concentration (μM)	Fold-Induction	Specific Luminescence				
------------	-------------------	----------------	----------------------				
Aspartate	33.18 (±3.02)	10	1.28 x 10⁷				
Tartrate	188.68 (±10.51)	0.1	2.32 x 10⁷				
Salicylic acid	1024.87 (±161.97)	1	1.78 x 10⁷				
Phenylalanine	52.10 (±8.43)	0.01	4.08 x 10⁷				
GABA	3.56 (±1.28)	0.5	5.34 x 10⁴				
Hesperetin	256.44 (±68.68)	0.001	1.63 x 10⁷				

Transport, permease of MFS uptake system

Transport, MFS efflux system

Metabolism, phenylalanine-4-hydroxylase

Metabolism, 4-aminobutyrate aminotransferase

Metabolism, Nod factor synthesis

Abbreviations used: RLU (relative luminescence units), ABC (ATP binding cassette transporter); CUT1, CUT2 (carbohydrate uptake transporter-1 and -2); SBP (substrate binding protein); MFS (major facilitator superfamily). Inducer(s) are solute(s) that give the highest fold-induction and specific luminescence. Biosensor induction by a solute is described as specific if the specific luminescence is ≥10-fold that observed from the other solutes tested. The biosensors for erythritol, formate, and GABA have a relatively high expression with a variety of non-related solutes (background) and they are described as being specific for these solutes, respectively, with specific luminescence ≥4-fold values obtained with other solutes. More than one compound is considered inducing when the fold-induction is > 40% of the maximum fold-induction for a biosensor. Fold-induction is the ratio of RLU/OD₆₀₀ when grown in the presence of solute (Supplemental Table S2 gives solute concentration), to RLU/OD₆₀₀ when grown in absence of solute. Sensitivity is the minimum concentration of substrate spotted onto bacteria growing in agar to give a luminescent signal visible with a NightOWL camera after 4 h incubation. a Fold-induction is <40% that of the best inducer and therefore not considered to be specific induction. b indicates genes induced >3-fold, p ≤ 0.05 in the pea rhizosphere (Ramachandran et al. 2011). c indicates genes induced >3-fold, p ≤ 0.05 by pea exudate (Ramachandran et al. 2011). d indicates genes induced >3-fold, p ≤ 0.05 in the alfalfa rhizosphere (Ramachandran et al. 2011).
Table II. Results from microarrays comparing the effect of pea root exudate and the pea rhizosphere on expression of genes used to develop biosensors

Biosensor	Gene	Fold-expression with added 23 d-old pea root exudate	Fold-expression in 21 d-old pea rhizosphere
Sugars and polyols			
Xylose	RL2720	1.21 †	4.00
Fructose	RL0489	18.52	1.65
Sucrose	pRL120556	3.31	1.03 ‡
Erythritol	pRL90085	1.34 ‡	5.74
Mannitol	RL4218	4.30 ‡	3.18
myo-Inositol	RL4655	26.94	2.71
Organic acids			
Formate	RL4393	0.88 ‡	7.52
Malonate	RL0992	1.48 ‡	1.31 ‡
C4-dicarboxylates	RL3424	0.67 ‡	23.00
Tartrate	RL0996	3.34 ‡	5.70
Salicylic acid	RL1329	1.18 ‡	2.27
Amino acids			
Phenylalanine	RL1860	0.86 ‡	46.28
GABA	RL0102	2.90	1.14 ‡
Flavonoids			
Hesperetin	pRL100185	49.15	2.09

a Microarrays performed in triplicate on free-living Rlv3841 cells grown with and without the addition of pea root exudate (part of the sample used for metabolomic analysis). b p < 0.05, unless marked † when p > 0.05; fold-expression >1 are an increase in expression under the condition tested. c Microarrays performed in triplicate on Rlv3841 extracted from rhizosphere compared with free-living cells grown in glucose/ammonia (Ramachandran et al., 2011). d Compound not found in metabolomic analysis of pea root exudate.
Table III. Summary of compounds detected by biosensors in the pea rhizosphere and within nodules of Rlv3841

Compound	Rhizosphere 4-11 dpi	Location on roots	Nodules 11-22 dpi	Nodule age at which detection peaks (dpi)
Sugars and polyols				
Xylose	Yes	Primary and lateral root tips	Yes	15-18
Fructose	Yes	Primary and lateral root tips	Yes	15-22
Sucrose	No		Yes	15-18
Erythritol	No		No	
Mannitol	No		No	
myo-Inositol	Yes	Primary root and lateral root tips	Yes	15-18
Organic acids				
Formate	No		No	
Malonate	Yes	Uppermost portion of primary root and lateral roots, just before root tips	Low	15
C4-dicarboxylates	Yes	No clear pattern	Yes	15-18
Tartrate	Yes	Uppermost portion of primary root only	Low	15
Salicylic acid	No		No	
Amino acids				
Phenylalanine	Yes	Root elongation zone of lateral roots	Yes	15
GABA	No		Yes	15-18
Flavonoids				
Hesperetin	Yes	Lateral roots	Yes	15

a Luminescence from biosensor detecting this compound was very low throughout the time course examining the pea rhizosphere. b Compound not listed as present in metabolomics analysis of pea exudate. dpi, days post-inoculation.
Table IV. Summary of compounds detected by biosensors in the vetch rhizosphere and within nodules of Rlv3841

Compound	Rhizosphere 4 dpi	Nodules 8-22 dpi	Nodule age at which detection peaks (dpi)^a
Sugars and polyols			
Xylose	Yes	Yes	22
Fructose	Yes	Yes	(8) 11 (14-22)
Sucrose	No	Yes	(8) 11 (14-22)
Erythritol^b	No	No	
Mannitol^b	No	No	
myo-Insitol	Yes	Yes	22
Organic acids			
Formate^b	No	No	
Malonate	Yes	No	
C4-dicarboxylates	Yes	Yes	(8-11) 14 (18-22)
Tartrate^b	No	No	
Salicylic acid^b	No	No	
Amino acids			
Phenylalanine	No	Yes	(18) 22
GABA	No	Yes	8 (11-14)
Flavonoids			
Hesperetin	Yes	No	

^a Brackets indicate when there is less than the maximum detected. ^b Luminescence from biosensor detecting this compound was very low throughout the time course examining the vetch rhizosphere. dpi, days post-inoculation.
Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20: 642-650

Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19: 90-98

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57: 233-266

Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84: 188-198

Berrabah F, Ratet P, Gourion B (2015) Multiple steps control immunity during the intracellular accommodation of rhizobia. J Exp Bot 66: 1977-1985

Biedrzycki ML, Bais HP (2009) Root secretions: from genes and molecules to microbial associations. J Exp Bot 60: 1533-1534

Chabot R, Antoun H, Kloeper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 62: 2767-2772

Close D, Xu T, Smartt A, Rogers A, Crossley R, Price S, Ripp S, Sayler G (2012) The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. Sensors (Basel) 12: 732-752

Darwent MJ, Paterson E, McDonald AJ, Tomos AD (2003) Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration. J Exp Bot 54: 325-334

Downie JA, Knight CD, Johnston AMB, Rosser L (1985) Identification of genes and gene products involved in the nodulation of peas by Rhizobium leguminosarum. Molecular and General Genetics 198: 255-262

Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81: 6656-6667

Figurski DH, Helsinki DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76: 1648-1652

Frederix M, Edwards A, Swiderska A, Stanger A, Karunakaran R, Williams A, Abruscato P, Sanchez-Contreras M, Poole PS, Downie JA (2014) Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins. Mol Microbiol 93: 464-478

Galardini M, Brilli M, Spini G, Rossi M, Roncaglia B, Bani A, Chiancinati M, Moretti M, Engelen K, Bacci G, Pini F, Biondi EG,
Bazzicalupo M, Mengoni A (2015) Evolution of intra-specific regulatory networks in a multipartite bacterial genome. PLoS Comput Biol 11: e1004478

Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92: 267-275

Kaiser C, Kilburn MR, Clode PL, Fuchsleugler L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205: 1537-1551

Karunakaran R, East AK, Poole PS (2013) Malonate catabolism does not drive N(2) fixation in legume nodules. Applied and Environmental Microbiology 79: 4496-4498

Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Mauchline TH, Prell J, Skeffington A, Poole PS (2009) Transcriptomic analysis of Rhizobium leguminosarum biovar vicieae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 191: 4002-4014

Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425: 78-81

Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW, Kalhan SC, Ryals JA, Milburn MV (2008) Analysis of the adult human plasma metabolome. Pharmacogenomics 9: 383-397

Maj D, Welbo J, Marek-Kozaczuk M, Skorupska A (2010) Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiol Res 165: 50-60

Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AH, Poole PS, Finan TM (2006) Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci U S A 103: 17933-17938

Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) A Chalcone and Two Related Flavonoids Released from Alfalfa Roots Induce nod Genes of Rhizobium meliloti. Plant Physiol 91: 842-847

Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ (2011) Developing X-ray Computed Tomography to non-invasively image 3-D root systems architecture in soil. Plant and Soil 352: 1-22

Oburger E, Schmidt H (2016) New Methods To Unravel Rhizosphere Processes. Trends Plant Sci 21: 243-255

Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45: 119-144

Philippot L, Raaijmakers JM, Lernandez P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11: 789-799
Pini F, Galardini M, Bazzicalupo M, Mengoni A (2011) Plant-bacteria association and symbiosis: are there common genomic traits in alphaproteobacteria? Genes (Basel) 2: 1017-1032

Poole P, Allaway D (2000) Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol 43: 117-163

Poole PS, Schofield NA, Reid CJ, Drew EM, Walsh DL (1994) Identification of chromosomal genes located downstream of dctD that affect the requirement for calcium and the lipopolysaccharide layer of Rhizobium leguminosarum. Microbiology 140 (Pt 10): 2797-2809

Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol 12: R106

Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Hofflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63: 2038-2046

Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia: Methods in Legume-Rhizobium Technology. Springer-Verlag, New York

Sørensen J, Haubjerg Nicolaisen M, Ron E, Simonet P (2009) Molecular tools in rhizosphere microbiology—from single-cell to whole-community analysis. Plant and Soil 321: 483-512

Tecon R, van der Meer JR (2006) Information from single-cell bacterial biosensors: what is it good for? Curr Opin Biotechnol 17: 4-10

Terpolilli JJ, Hood GA, Poole PS (2012) What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Adv Microb Physiol 60: 325-389

Terpolilli JJ, Masakapalli SK, Karunakaran R, Webb IU, Green R, Watmough NJ, Kruger NJ, Ratcliffe RG, Poole PS (2016) Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids. J Bacteriol 198: 2864-2875

Tett AJ, Karunakaran R, Poole PS (2014) Characterisation of SaI/RAB: a salicylic acid inducible positively regulated efflux system of Rhizobium leguminosarum bv viciae 3841. PLoS One 9: e103647

Tomek J, Novak O, Syka J (2013) Two-Photon Processor and SeNeCA: a freely available software package to process data from two-photon calcium imaging at speeds down to several milliseconds per frame. J Neurophysiol 110: 243-256
Turner TR, James EK, Poole PS (2013a) The plant microbiome. Genome Biol 14: 209

Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013b) Comparative metatranscriptomics reveals kingdom-level changes in the rhizosphere microbiome of plants. ISME J 7: 2248-2258

Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64: 781-805

Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73: 1251-1258

Ye H, Gemperline E, Venkateswaram M, Chen R, Delaux P-M, Howes-Podill M, Ane J-M, Li L (2013) MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula - Sinorhizobium meliloti symbiosis. The Plant Journal 75: 130-145

Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, Oliver M, Cushman JC (2012) Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. The Plant Journal 72: 983-99