Noguera-Díaz, A., Villarroel-Rocha, J., Ting, V. P., Bimbo, N., Sapag, K., & Mays, T. J. (2019). Flexible ZIFs: probing guest-induced flexibility with CO₂, N₂ and Ar adsorption. *Journal of Chemical Technology and Biotechnology, 94*(12), 3787-3792. https://doi.org/10.1002/jctb.5947
Flexible ZIFs: probing guest-induced flexibility with CO\textsubscript{2}, N\textsubscript{2} and Ar adsorption

Antonio Noguera-Díaz,a,* Jhonny Villarroel-Rocha,b Valeska P Ting,c Nuno Bimbo,d Karim Sapagb and Timothy J Maysa,*

Abstract

BACKGROUND: The effect of framework topology on the guest-induced flexibility of several crystalline zeolitic imidazolate frameworks (ZIF-7, ZIF-9, ZIF-11 and ZIF-12) was investigated via analysis of experimental nitrogen (N\textsubscript{2}), carbon dioxide (CO\textsubscript{2}) and argon (Ar) isotherms at 77 K (N\textsubscript{2} and Ar) and 273 K (CO\textsubscript{2}) for gas pressures up to 0.13 MPa.

RESULTS: The experimental isotherms of these frameworks were analysed in order to investigate their structural flexibility using gases with kinetic diameters equal to or larger than the diameters of their static pore apertures. The results of gas sorption measurements indicate guest-induced phase changes for ZIF-7 and ZIF-9 (SOD topologies). ZIF-12 (RHO topology) also shows uptake for gases, despite its pore-limiting diameter being smaller than the kinetic diameters of the adsorbed molecules.

CONCLUSIONS: This work highlights the ability of ZIFs with different framework topologies to change their structure and increase their pore aperture upon interaction with certain gases. These findings are key in the development of more selective ZIF-based materials for important industrial applications including low-energy gas separations, catalytic nanoreactors and sensor technology.

©2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.

Keywords: gas adsorption; MOF; ZIF; flexibility; breathing structure; nanomaterials

INTRODUCTION

Metal–organic frameworks (MOFs) have been heavily researched as adsorbents in a variety of applications that include gas storage, gas separation and catalysis. This is due mainly to their large accessible surface areas (in comparison to materials such as activated carbons, zeolites and porous polymers), permanent porosities and tuneable structures.1–3 MOFs are crystalline materials composed of organic linkers connecting metal clusters, with open channels that range in size from the micropore (<2 nm diameter) to the mesopore scales (2–50 nm in diameter).4 Due to their crystalline structures, MOFs can be easily characterized using X-ray diffraction (XRD) techniques, making their identification relatively straightforward.2,3

The ZIFs (zeolitic imidazolate frameworks) are a subclass of MOFs that have structures resembling those of zeolites.5,6 They incorporate imidazolates as organic linkers, connected with metal clusters [e.g. zinc (Zn), cobalt (Co)], forming a 145° angle, similar to the 145° silicon (Si) – oxygen (O) – Si angle found in zeolites.5 Almost 30 different zeolite topologies also have been reported for ZIFs.7,8 Materials with certain topologies, such as SOD and RHO, have shown extraordinary thermal and chemical stability, being even able to resist boiling aqueous alkaline solutions and organic solvents.5,9 ZIF materials with SOD topologies are composed of truncated beta cages (cuboctahedrons), comprising windows of four- and six-membered rings having 24 Co or Zn atoms per unit cell, with a cubic arrangement of interconnected beta cages.5,7,8,10 ZIF materials with RHO topologies consist of alpha cages, with windows comprising four-, six- and eight-membered rings, having 48 Zn or Co atoms per unit cell. Each alpha cage is connected to the six neighbouring alpha cages through polyhedral units comprising double eight-membered rings (known as D8R).5,7,8,10 Recently, it was shown that ZIFs could retain their chemical configuration, bonding and porosity when melted, showing that these MOFs also can exist in the liquid state.11

* Correspondence to: A Noguera-Díaz, VTS Schwedt GmbH, Brandenburg, Germany, E-mail: a.j.noguera@hotmail.com; or TJ Mays, Department of Chemical Engineering, University of Bath, Bath, UK. E-mail: t.j.mays@bath.ac.uk

† Present address: VTS Schwedt GmbH, Brandenburg, Germany

a Department of Chemical Engineering, University of Bath, Bath, UK

b Laboratorio de Sólidos Porosos, INFAP, CONICET, Universidad Nacional de San Luis, San Luis, Argentina

c Department of Mechanical Engineering, University of Bristol, Bristol, UK

d Department of Engineering, Lancaster University, Lancaster, UK

© 2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
ZIFs have been the subject of much attention due to the flexible behaviour of the framework structure, which can be induced by either guest molecule adsorption, temperature or pressure changes. Flexible MOFs are interesting in various applications, with the most prominent being gas separation and sensor technology. ZIF-8 has shown notable framework flexibility under very high pressure with adsorption of guest molecules, which has been associated with the rotation of the imidazole linkers. ZIF-7 (SOD topology) also has shown a sorbate-induced gate-opening phenomenon, which was first demonstrated by Agudo et al., with the adsorption of CO$_2$. This gate-opening phenomena involved a narrow-to-large pore phase transition, which was then further confirmed with C$_2$-C$_4$ alkane/alkene adsorption.

In the present paper, we investigate CO$_2$, N$_2$ and Ar adsorption in ZIF-7, ZIF-9, ZIF-11, and ZIF-12. To probe the structure of the ZIFs with different pore diameters, ZIF-8 has shown notable framework flexibility under very high pressure with adsorption of guest molecules, which has been associated with the rotation of the imidazole linkers.

In order to calculate BET surface areas, the standard method consistent with the 2015 IUPAC Technical Report and BS ISO 9277:2010, (which uses the consistency criteria reported by Rouquerol) was applied. To obtain the micropore volume and total pore volume of the materials, Dubinin–Raduskevich (DR) and Gurvich methodologies were used, respectively.

RESULTS AND DISCUSSION

A summary of the different pore diameters of the different materials and kinetic diameters of the different molecules involved in the analyses is shown in Table 1:

Material	Pore Diameter (nm)	Kinetic Diameter (Å)
ZIF-7	0.29	0.29
ZIF-9	0.29	0.29
ZIF-11	0.52	0.52
ZIF-12	0.52	0.52

EXPERIMENTAL

The materials were synthesized according to methodologies reported in the literature, using methanol (ZIF-12) and ethanol (ZIF-7, ZIF-9 and ZIF-11), but with their syntheses scaled-up to ensure that enough material was available for the experimental tests. Powder XRD measurements were run on a DB Advance Diffractometer (Bruker, Billerica, MA, USA) using Cu-K$_\alpha$ radiation, $\lambda = 0.154184$ nm, a lynxeye detector at 40 kV and 40 mA over a 2θ range of 0–40° with a step size of 0.041 °s$^{-1}$ to confirm phase purity. Measurements were done in flat plate mode at 298 K on wet samples (methanol for ZIF-12, and ethanol for ZIF-7, ZIF-9 and ZIF-11), with the solvents used in several cycles to wash the samples. Experimental powder XRD spectra were compared against the original CIF files obtained from the Cambridge Crystallographic Database as well as the literature, in order to ensure the correct synthesis of the materials, details of which can be found in our previous work.

The XRD spectra for ZIF-7 and ZIF-9 are shown in Fig. 1, and the XRD spectra for ZIF-11 and ZIF-12 are shown in Fig. 2. Differences in the calculated and experimental XRD patterns have been attributed to the effect of different solvent washing cycles on the XRD spectra.

We previously investigated the stability of the synthesized materials in order to determine degassing conditions. These were performed on a Setaram TGA 92 16.18 (Setaram, Caluire, France), with the materials heated at 5 K min$^{-1}$ from 293 to 873 K in flowing, dry N$_2$ at 1 bar. Degassing temperatures were thus determined to be 473, 498, 523 and 573 K for ZIF-7, ZIF-9, ZIF-11 and ZIF-12 respectively (see the Supporting Information for a summary of the data).

For adsorption tests using N$_2$ at 77 K, Ar at 77 K and CO$_2$ at 273 K, an Autosorb 1-MP (Quantachrome Instruments, Boynton Beach, FL, USA) and a Micromeritics ASAP 2020 (Micromeritics Instrument Corporation, GA, USA) were used. The gas sorption analyses were performed on ~100 mg samples degassed under dynamic high vacuum (10$^{-7}$ mbar) at the temperatures noted above, before analysis. It should be noted that the Ar characterization was done at 77 K, whereas the IUPAC methodology for characterization of porous materials recommends that Ar analysis should be done at 87 K.

This is due to the sensitivity of the Ar cross-sectional area to the temperature, as at 77 K the Ar monolayer is highly dependent on the structure of the adsorbent surface. The main aim of the present work was to probe the structure of the ZIFs with different gases, investigating the interaction of the adsorbent with different probe gases. Unlike N$_2$, Ar has no quadrupole moment, is less reactive and interacts differently with adsorbents. As no significant adsorption occurred, and the Brunauer–Emmett–Teller (BET) areas for the materials given in SI calculated from Ar are to be taken with this in mind, the fact that the Ar adsorption was done at 77 K is less relevant.

In order to calculate BET surface areas, the standard method consistent with the 2015 IUPAC Technical Report and BS ISO 9277:2010, (which uses the consistency criteria reported by Rouquerol) was applied.

To obtain the micropore volume and total pore volume of the materials, Dubinin–Raduskevich (DR) and Gurvich methodologies were used, respectively.
Figure 1. Powder XRD spectra of ZIF-7 (left) and ZIF-9 (right). The red spectrum is from the synthesized material and the black spectrum is generated from the CIF file from He et al. for ZIF-7 and Li et al. for ZIF-9. Spectra have been offset in the y-axis for clarity.

Figure 2. Powder XRD spectra of ZIF-11 (left) and ZIF-12 (right). The red spectrum is from the synthesized material and the black spectrum is generated from the CIF file from He et al. for both ZIF-11 and ZIF-12. Spectra have been offset in the y-axis for clarity.

Table 1. Summary of pore size and kinetic diameters of the different materials and molecules

Name	Pore size (ZIFs) or kinetic diameter (nm)	Reference
ZIF-7, ZIF-9	0.29	7
ZIF-11	0.30	7
ZIF-12	0.32	30
CO₂	0.33	31
Ar	0.354	31
N₂	0.364	31
Methanol	0.36	32
Ethanol	0.45	32

Adsorption isotherms with CO₂, N₂ and Ar are shown for ZIF-7 (SOD), ZIF-9 (SOD), ZIF-11 (RHO) and ZIF-12 (RHO) in Figs 3–5 and 6.

and ZIF-9 both show hysteresis in their desorption isotherms, and a step that is compatible with a sorbate-induced gate-opening phenomenon, a feature that has been widely reported in the literature. Regarding the N₂ or Ar isotherms of ZIF-7 and ZIF-9 in Figs 3 and 4 (both with similar structural dimensions), these barely show any adsorption, which can be due to the gases’ high kinetic diameters (0.364 and 0.354 nm, respectively, for N₂ and Ar) compared to their pore window size (0.29 nm). CO₂, however, which has a kinetic diameter of 0.330 nm has been shown to be admitted into the framework. It has been shown that ZIF-7 can selectively separate ethane over ethylene, which have even bigger kinetic diameters (0.4163 and 0.4443 nm for ethylene and ethane, respectively), with both molecules inducing phase changes in the structure at different pressures. This indicates the ability of ZIF-7 to adsorb molecules with higher kinetic diameters, due to the existence of specific interactions present between ethane/ethylene and the ZIF-7 structure. Based on the results presented in Fig. 3, these interactions do not seem to be present in N₂ and Ar, as adsorption of these gases does not induce a phase change.

Figures 3, 4 and 6 show that ZIF-7, ZIF-9 and ZIF-12 exhibit similar maximum CO₂ adsorption capacities, with ZIF-7 showing 51 cm³ STP g⁻¹ at c.105 kPa, followed by ZIF-12 with 48 cm³ STP g⁻¹ and ZIF-9 with 44 cm³ STP g⁻¹ at 105 and 120 kPa, respectively.
should not be that the synthesis of ZIF-7, ZIF-9 and ZIF-11 was carried adsorbed by ZIF-7 under long equilibration times of 15 days. We compared to other ZIFs with GME topology (ZIF-68, ZIF-69, ZIF-81 and ZIF-82). The results in Fig. 4 also show the step associated with a phase change of the ZIF-9 framework structure. The only difference between ZIF-7 and ZIF-9 is the metal centre, which suggests a similar mechanism for this phase change, that is, a gate-opening effect upon adsorption of guest molecules. As seen for ZIF-7, this gate-opening is consistent with a rotation of the benzimidazole linkers which increases the diameter of the cavities and allows for increased adsorption of CO₂.

A recent study by Cuadrado-Collados et al. highlighted the importance of complete solvent removal and equilibration times, and showed CO₂ to be less sensitive to the blocking effect of DMF. In that paper, N₂ was shown to be adsorbed by ZIF-7 under long equilibration times of 15 days. We should note that the synthesis of ZIF-7, ZIF-9 and ZIF-11 was carried out with ethanol, and ZIF-12 was synthesized with methanol, and no DMF was used for the synthesis. As noted in the same paper by Cuadrado-Collados et al., an extended solvent exchange process with methanol is essential for a solvent-free structure.

ZIF-11 and ZIF-12 show CO₂ adsorption isotherms increasing progressively (Figs 5 and 6), indicating adsorption in the cavity that occurs without the limitation of the pore window size. The small differences in the biggest pore window are unlikely to explain the large differences seen for Ar and N₂ uptake between ZIF-11 and ZIF-12. As noted above, the differences in uptake are more likely because of the fact that ZIF-11 was exchanged with ethanol and ZIF-12 was exchanged with methanol, which, as noted by Cuadrado-Collados et al., is essential for obtaining a solvent-free structure. Our results further confirm this observation. In addition, these ZIFs, despite having the same topology and similar pore size apertures, present different N₂, Ar and CO₂ adsorption isotherms in terms of capacity and shape. Again, some care should be taken when interpreting these results, because the structure might not be completely solvent-free and, as shown for other ZIFs, there might be specific interactions between the adsorbate molecule and the framework structure. These results reflect the influence of different solvents, as ZIF-12, which was synthesized with methanol, showed considerable uptake of Ar and N₂, whereas ZIF-11, which was synthesized with ethanol, displayed much more modest uptakes. The higher uptake of Ar in comparison with N₂ might be due to the small difference in the kinetic diameters of the gases. The kinetic diameter of Ar is 0.354 nm and the kinetic diameter of N₂ is 0.364 nm, meaning that the difference is only 0.01 nm. However, given that the largest pore window of ZIF-12 is 0.32, such a small difference might be enough to explain the higher uptakes of Ar in comparison with N₂.

ZIF-11 and ZIF-12 have a difference of 0.02 nm in their biggest pore window diameter (eight- versus six- membered rings, 0.30 and 0.32 nm, respectively), which allows them to adsorb N₂ and Ar (0.364 and 0.354 nm). These results indicate that ZIF-11 and ZIF-12 also might possess flexible structures, as seen in ZIF-7 and ZIF-9. The fact that ZIF-11 and ZIF-12 have slightly larger pore sizes that ZIF-7 (0.30 and 0.32 versus 0.29 nm) suggests that the pore windows of ZIF-11 and ZIF-12 can stretch under no/low conditions.
ZIF-7 and ZIF-9 showed CO$_2$ adsorption isotherms with hysteresis and a step, corroborating sorbate-induced gate-opening phenomena as shown in the literature. Although this has been studied and observed for ZIF-7, we observe the same effect for ZIF-9, which also is consistent with the rotation of the benzimidazolate linkers. This allows more CO$_2$ to be adsorbed in the cavities, as opposed to Ar and N$_2$, which showed no significant adsorption. ZIF-12 and ZIF-11 (RHO topology) showed uptake for N$_2$ and Ar, which have larger kinetic diameters than the largest pore diameter in ZIF-11 and ZIF-12, also indicating pore flexibility due to the two additional benzimidazolate linkers in its structure. The differences in uptake of Ar and N$_2$ in ZIF-11 and ZIF-12, which were synthesized with ethanol and methanol respectively, also show the importance of using methanol as the solvent. As noted in the literature, methanol is essential for obtaining a solvent-free structure in ZIFs, and our results further confirm this observation. The similarities in the uptake behaviours between ZIF-7 and ZIF-9 indicate the over-riding influence of topology over the metal species in determining the uptake of different gas species in these ZIFs. The marked differences in framework flexibility between ZIFs with SOD and RHO topologies may aid in identifying other flexible zeolite topologies with similar potential to discriminate between gases of similar molecular size for applications in gas separation.

ACKNOWLEDGEMENTS

The authors thank the University of Bath for a URS studentship for AND and a Prize Research Fellowship for VPT, the support from the UK Engineering and Physical Sciences Research Council (EPSRC) for VPT (EP/R01650X/1), and the SUPERGEN H2FC grant EP/J016454/1, which funded most of this work. NB acknowledges funding from the EPSRC, grant code EP/K021109/1. KS and JVR acknowledge support and funding from ANPCyT, CONICET and UNSL.

Supporting Information

Supporting information may be found in the online version of this article.

REFERENCES

1. Lim KL, Kazemian H, Yaakob Z and Daud WRW, Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol 33:213–226 (2010).
2. Rowson J, and Yaghi OM, Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679 (2005).
3. Durbin DJ and Malardier-Jugroot C, Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrogen Energy 38:14595–14617 (2013).
4. Zuttel A, Hydrogen storage methods. Naturwissenschaften 91:157–172 (2004).
5. Park KS, Ni Z, Cote AP, Choi JY, Huang RD, Uribe-Romo FJ et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–10191 (2006).
6. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M and Yaghi OM, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67 (2010).
7. He M, Yao JF, Liu Q, Zhong ZX and Wang HT, Tolueno-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12. Dalton Trans 42:16608–16613 (2013).
8 Biswal BP, Panda T and Banerjee R, Solution mediated phase transformation (RHO to SOD) in porous Co-imidazolate based zeolitic frameworks with high water stability. Chem Commun 48:11868–11870 (2012).

9 Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M et al., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943 (2008).

10 Ruthven DM, Principles of Adsorption and Adsorption Processes. Wiley, Chichester, UK (1984).

11 Gaillac R, Pullumbi P, Beyer KA, Chapman KW, Keen DA, Bennett TD et al., Liquid metal-organic frameworks. Nat Mater 16:1149–1155 (2017).

12 Fairen-Jimenez D, Moggach SA, Wharmby MT, Wright PA, Parsons S and Duren T, Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902 (2011).

13 Agudo S, Bergeret G, Titus MP, Moizan V, Nieto-Draghi C, Bats N et al., Guest-induced gate-opening of a zeolite imidazolate framework. New J Chem 35:546–550 (2011).

14 Pera-Titus M, Intrinsic flexibility of the zeolitic imidazolate framework ZIF-7 unveiled by CO2 adsorption and Hg intrusion. Chemphyschem 15:1581 –1586 (2014).

15 van den Bergh J, Gucuyener C, Pidko EA, Hensen EJ, Gascon J and Kapteijn F, Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. Chem A Eur J 17:8832–8840 (2011).

16 Zhao P, Lamponti GI, Lloyd GO, Suard E and Redfern SAT, Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7. J Mater Chem A 2:620 (2014).

17 Arami-Niya A, Birkett G, Zhu ZH and Rufford TE, Gate opening effect of zeolitic imidazolate framework ZIF-7 for adsorption of CH4 and CO2 from N2. J Mater Chem A 5:21389–21399 (2017).

18 Zhao P, Lamponti GI, Lloyd GO, Wharmby MT, Faqiq S, Cheetham AK et al., Phase transitions in zeolitic imidazolate framework 7: the importance of framework flexibility and guest-induced instability. Chem Mater 26:1767–1769 (2014).

19 Du Y, Wooner B, Nines M, Kortunov P, Paur CS, Zengel J et al., New high- and low-temperature phase changes of ZIF-7: elucidation and prediction of the thermodynamics of transitions. J Am Chem Soc 137:13603–13611 (2015).

20 Noguera-Diaz A, Binno N, Holyfield LT, Ahmet IY, Ting VP and Mays TJ, Structure-property relationships in metal-organic frameworks for hydrogen storage. Colloid Surface A 496:77–85 (2016).

21 Gucuyener C, van den Bergh J, Gascon J and Kapteijn F, Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J Am Chem Soc 132:17704–17706 (2010).

22 Morris W, He N, Ray KG, Klonowski P, Furukawa H, Daniels IN et al., A combined experimental-computational study on the effect of topology on carbon dioxide adsorption in zeolitic imidazolate frameworks. J Phys Chem C 116:24084–24090 (2012).

23 Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S and Fischer RA, Flexible metal-organic frameworks. Chem Soc Rev 43:6062–6096 (2014).

24 Li Q and Kim H, Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst. Fuel Process Technol 100:43–48 (2012).

25 Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J et al., Physiosorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069 (2015).

26 Brunauer S, Emmett PH and Teller E, Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319 (1938).

27 Rouquerol J, Llewellyn P and Rouquerol F, Is the BET equation applicable to microporous adsorbents? Stud Surf Sci Catal 160:49–56 (2006).

28 Gurvich L, Physico-chemical attractive force II. J Phys Chem Soc Russ 47:805–827 (1915).

29 Dubinin MM, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonlinear surfaces. Chem Rev 60:235–241 (1960).

30 First EL and Floudas CA, MOFomics: computational pore characterization of metal–organic frameworks. Microporous Mesoporous Mater 165:32–39 (2013).

31 Li JR, Kuppler RJ and Zhou HC, Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504 (2009).

32 Borjigin T, Sun FX, Zhang J, Cai K, Ren H and Zhu GS, A microporous metal-organic framework with high stability for GC separation of alcohols from water. Chem Commun 48:7613–7615 (2012).

33 Ryder MR, Civalleri B, Bennett TD, Henke S, Rudić S, Cinque G et al., Identification of the role of terahertz vibrations in metal-organic frameworks: from gate-opening phenomenon to shear-driven structural destabilization. Phys Rev Lett 113:215502-1–215502-6 (2014).

34 Agudo S, Bergeret G, Daniel C and Farrusseng D, Absolute molecular sieve separation of ethylene/ethane mixtures with silver Zeolite A. J Am Chem Soc 134:14635–14637 (2012).

35 Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M and Yaghi OM, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877 (2009).

36 Cuadrado-Collados C, Fernandez-Catala J, Fauth F, Cheng YQ, Daemen LL, Ramirez-Cuesta AJ et al., Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption. J Mater Chem A 5:20938–20946 (2017).

37 Cheng LS and Yang RT, Improved horvath-kawazoe equations including spherical pore models for calculating micropore size distribution. Chem Eng Sci 49:2599–2609 (1994).

38 Horváth G and Kawazoe K, Method for the calculation of effective pore-size distribution in molecular-sieve carbon. J Chem Eng Jpn 16:470–475 (1983).