Hypogastric Artery Transposition to Restore the Arterial Flow after Resection of the External Iliac Artery

Jin Hyun Joh, Sung-II Choi, Sang-Hyun Kim, and Ho-Chul Park

Department of Surgery, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea

INTRODUCTION

Tumors in the pelvic cavity frequently involve the iliac vessels. Common and external iliac arteries should be reconstructed to restore the flow to the lower extremity if the tumor directly invades these arteries. We report herein a 58-year-old female patient with a 10x11 cm, recurred uterine leiomyosarcoma. We performed en bloc resection of the tumor mass including the sigmoid colon, left ureter and 5 cm of the left external iliac artery. After complete resection, restoration of arterial flow to the lower extremity was made with a novel strategy of hypogastric artery transposition. There was no evidence of tumor recurrence or vascular insufficiency at 12 months after surgery.

Key Words: Transposition, Hypogastric artery, Reconstruction, Leiomyosarcoma

INTRODUCTION

A 58-year-old female patient presented with severe constipation, abdominal pain and hematuria. Four years ago, she underwent radical hysterectomy and bilateral salpingo-oophorectomy due to uterine leiomyosarcoma. She also had three sessions of postoperative adjuvant chemotherapy.

Physical examination revealed a large palpable, nontender, lower abdominal mass on admission. There was no lymphadenopathy or other associated findings. Abdominopelvic computed tomography (CT) scan showed a round shaped, large mass measuring 10x11 cm in the pelvic cavity (Fig. 1A). The tumor mass was heterogeneous, with areas of central necrosis. This mass involved the sigmoid colon and left distal ureter. Due to the mass effect, the left ureter and renal calyces were dilated. No tissue plane was identified between the mass and the sigmoid colon, left ureter and

CASE

...
discharged from the hospital 1 week after surgery. On the follow up visit, CT scan showed a patent arterial reconstruction (Fig. 1D).

DISCUSSION

The most common procedure to restore the circulation is bypass surgery. After removal of the tumor mass, the proximal stump of the iliac artery and distal portion may be connected with a vascular conduit. An artificial conduit such as a polytetrafluoroethylene or Dacron graft may be used frequently. However, if bowel resection is included for curative resection of the tumor, an artificial graft should not be used due to a relatively high risk of graft infection. It is known that artificial graft infections may occur hematogenously or per continuum from surrounding tissues [4]. One of the possible theories suggests that micro-organisms may dwell on the graft from the time of graft implantation and multiply when the condition of the patient deteriorates.

Therefore, an autologous conduit is commonly used in these circumstances because of the relatively low risk of conduit infection [5]. The frequently used autologous conduits are great saphenous veins, small saphenous veins, and arm veins. There are two drawbacks to the use of these veins. Firstly another skin incision should be made to
harvest the vein. Secondly these veins are relatively small in caliber to replace the iliac artery.

Hypogastric artery transposition, not a bypass surgery, is a reasonable option in these circumstances. Here we reported a novel strategy for restoring the blood flow to the lower extremity by hypogastric artery transposition. With this simple technique, we could avoid the use of an artificial graft as well as separate skin incisions for vein harvesting. The hypogastric artery has been used as a bypass conduit in the treatment of fibrodysplastic renovascular disease in pediatric patients and in renal artery stenosis in adults with excellent results [6]. There have been several reports of EIA reconstruction with hypogastric artery transposition [3,7]. All of the cases in these reports involved iatrogenic EIA injury. We could identify one article of hypogastric artery transposition after removal of the EIA due to direct invasion of malignancy [2]. However, in that case, a 2cm defect of the EIA was replaced with hypogastric artery transposition. In our case, 5 cm of EIA was removed for complete resection of malignancy. It required the ligation of multiple hypogastric artery branches and the distal end of hypogastric artery was beveled to make a complete end-to-end anastomosis.

Restoration of the arterial flow to the lower extremity with hypogastric artery transposition in patients with complete resection of the EIA due to cancer invasion may be a rational option.

REFERENCES

1) Ali AT, Clagett GP, Edwards MJ. Complex venous and arterial reconstruction with deep vein after pelvic exenterative surgery: a case report. Am Surg 2006;72:22-24.
2) Bourne AC, Kraiss LW, Holden JA, Mone MC, Barton RG. Radical resection of a malignant mesenchymoma with hypogastric artery transposition. J Surg Oncol 2002;80:214-217.
3) Lazzeri M, Benaim G, Turini D, Beneforti P, Turini F. Iatrogenic external iliac artery disruption during open pelvic lymph node dissection: successful repair with hypogastric artery transposition. Scand J Urol Nephrol 1997;31:205-207.
4) Jones L, Braithwaite BD, Davies B, Heather BP, Earnshaw JJ. Mechanism of late prosthetic vascular graft infection. Cardiovasc Surg 1997;5:486-489.
5) Gibbons CP, Ferguson CJ, Fligelstone LJ, Edwards K. Experience with femoro-popliteal vein as a conduit for vascular reconstruction in infected fields. Eur J Vasc Endovasc Surg 2003;25:424-431.
6) Stanley JC. Renal vascular disease and renovascular hypertension in children. Urol Clin North Am 1984;11:451-463.
7) Cikrit DF, Helikson MA, Nichols WK, Silver D. Complete external iliac artery disruption after percutaneous aortic valvuloplasty in two young children: successful repair with hypogastric artery transposition. Surgery 1991;109:623-626.

http://dx.doi.org/10.5758/vsi.2014.30.3.91