Targeting DNA repair pathway in cancer: Mechanisms and clinical application

Manni Wang | Siyuan Chen | Danyi Ao

Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China

Correspondence
Manni Wang, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No 37 Guoxue Alley, Wuhou District, Chengdu, 610041 Sichuan, China.
Email: wangmanni@scu.edu.cn

Abstract
Over the last decades, the growing understanding on DNA damage response (DDR) pathways has broadened the therapeutic landscape in oncology. It is becoming increasingly clear that the genomic instability of cells resulted from deficient DNA damage response contributes to the occurrence of cancer. On the other hand, these defects could also be exploited as a therapeutic opportunity, which is preferentially more deleterious in tumor cells than in normal cells. An expanding repertoire of DDR-targeting agents has rapidly expanded to inhibitors of multiple members involved in DDR pathways, including PARP, ATM, ATR, CHK1, WEE1, and DNA-PK. In this review, we sought to summarize the complex network of DNA repair machinery in cancer cells and discuss the underlying mechanism for the application of DDR inhibitors in cancer. With the past preclinical evidence and ongoing clinical trials, we also provide an overview of the history and current landscape of DDR inhibitors in cancer treatment, with special focus on the combination of DDR-targeted therapies with other cancer treatment strategies.

KEYWORDS
Cancer, combination therapy, DNA damage response, PARP

1 | INTRODUCTION

As early as 1914, a German scientist Theodor Boveri published his work on the origin of malignant tumors, which suggested the “specific and abnormal chromosome constitution” could attribute to the onset of cancer. Through out the century, compelling data are emerging to support the role of genomic instability in cancer, including the alteration in chromosome number and structure, and moreover, in DNA compositions. These changes may lead to oncogenic transformation and confer resistance to anticancer therapies. Alongside direct damage caused by genetic alterations, some mutations have been characterized as collateral damage from the loss of genome integrity caused by carcinogens. Common oncogenic factors that result in genomic instability include chemical carcinogens in the environment, genotoxic anticancer drugs, and endogeneous carcinogens such as microbial metabolism products and free radicals produced by ionizing radiation.

To limit the progression of DNA lesions, cells have evolved complex DNA repair machinery, which triggers...
cell-cycle checkpoints and allows DNA damage repair before it further interferes with the replication process. Excessive DNA damage or deficient DNA repair would thus result in accumulating genomic disorders that ultimately contribute to cell death. Thus, the fate of a cell following critical DNA damage is largely decided by the amount of DNA damage and its repair capacity. On the other hand, the misrepair of single-strand breaks (SSBs) and double-strand breaks (DSBs) of DNA may result in genome rearrangement. The DNA repair capacity varies among different cell types, with some tumor cells exhibit significantly enhanced DNA repair following replication and genotoxic stress. 5

In parallel with the advances in tumor biology that introduce DDR as potential therapeutic targets, a range of inhibitors targeting DDR components have emerged, some of which are now under clinical investigation. Moreover, emerging evidence suggests the sensitization effect of DDR inhibitors to conventional cancer therapies, and the correlation between DDR pathways and immune checkpoint inhibitor (ICI) response, which together encourages the design DDR inhibitor-based combination treatments. In this review, we sought to summarize the complex network of DNA repair machinery in cancer cells and to discuss the underlying mechanism for the application of DDR inhibitors in cancer. With the past preclinical evidence and ongoing clinical trials, we especially summarized the ongoing clinicals that involve DDR inhibitors, with special focus on the combination therapy of DDR inhibitors including chemotherapy, radiotherapy, immunotherapies, and combinations DDR inhibitors, hopefully providing an overview of the history and current landscape of DDR inhibitors.

2 | DNA DAMAGE AND THE DNA DAMAGE RESPONSE

To maintain genomic integrity, an intricate DNA repair system is evolved to counteract various forms of DNA lesions, and these mechanisms are referred to as the DNA damage response (DDR). Here we classified DDR pathways into three functionally interwoven parts: the sensor that detects DNA damage, signal transducer that triggers signaling cascades, and effector that impedes DNA repair. Numerous efforts have been undertaken to elucidate the machinery for the repair of genotoxic lesions in mammalian cells. These pathways are not mutually exclusive processes, but rather coordinated with each other to form a precise regulation network of DNA repair. Figure 1 presents an overview of major pathways for the repair of different DNA damage.

2.1 | Base excision repair (BER) and nucleotide excision repair (NER)

The genome of all organisms are continuously experiencing subtle changes due to various genotoxicants generated endogenously such as reactive oxygen species (ROS), or environmental insults such as ionizing radiation and alkylating agents. The majority of these subtle changes in DNA such as SSBs are repaired through the base excision repair (BER) pathway. BER is initiated with damaged bases, which are then excised and replaced with newly synthesized DNA. 6 In the next step, the apurinic/apyrimidinic (AP)-endonuclease (APE) cleaves the AP site to form 3’ OH terminus at the damage site. 7 Finally, the DNA polymerase and DNA ligase are recruited at the nucleotide gap produced by lesion base removal, thereby sealing the nick. Whereas BER is responsible for the repair of small lesions, the nucleotide excision repair (NER) is needed for bulkier SSBs that deform the DNA helical structure. 8 The NER machinery involves a crucial protein, the excision repair cross-complementing protein 1 (ERCC1), which takes an active part in the excision of DNA surrounding the lesion followed by replacement with normal DNA replication. 9

2.2 | Homologous recombination (HR) and nonhomologous end joining (NHEJ)

In mammalian cells, HR and NHEJ represent the two major pathways for repairing DSBs. 10, 11 Since a homologous sister chromatid is required as a template for new DNA synthesis, HR pathways arguably repair DSBs during the S/G2 cell-cycle phase, whereas NHEJ are active through all cell-cycle phases except M phase. The HR analyses the homologous sequences from other parts of genome and thus collects the lost information at break sites. The HR pathway is initiated with the resection of break ends, followed by the formation of Rad51 nucleoprotein filament by Brca2 and Rad51, which retrieves the homologous sequence and promotes the formation of a joint molecule between the broken DNA and the homologous template. 12 With minimal processing on DNA break ends, NHEJ is believed to be mechanistically simpler than HR, which directly rejoins the break ends together. The fundamental factor required for NHEJ is the heterodimer composed of Ku70/Ku80 and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) which recognizes DSBs and facilitates downstream signaling factors for NHEJ, such as XRCC4, XLF, and DNA ligase IV. 13 Although simpler among these repair mechanisms, NHEJ sometimes leads to rearrangements, especially the slow resection-dependent NHEJ process, whereas HR is...
FIGURE 1 Overview of major pathways for the repair of different DNA damage. Single-strand breaks (SSBs) are repaired by direct and indirect base excision repair (BER) and double-strand breaks (DSBs) are repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). Replication error is repaired by mismatch repair (MMR) and DNA adducts by nucleotide excision repair (NER). Figure was created with Biorender

believed to be error free. However, in some cases, crossovers are formed in HR pathways, resulting in potential chromosomal rearrangements. These scenarios contribute to the preference of cells to NHEJ over HR in the absence of sister chromatid.

In addition to HR and NHEJ, a group of DSB repair pathways that share similar mechanisms to the two major DSB repair pathways, but are genetically distinct, are collectively known as alternative end-joining (α-EJ) pathways. The α-EJ pathway can either share similar initiation process or constitute factors with HR, but also with NHEJ in terms of DNA ends joining without homologous templates. Growing body of literature has reported that α-EJ can cause gene deletions, translocations, and rearrangements in cancer cells. Growing interest has been attached to α-EJ pathways as potential therapeutic targets in cancer cells with compromised NHEJ or HR activities.

2.3 Mismatch repair (MMR)

Apart from those produced by cells exposed to genotoxins, DNA damage can also derive from aberrant DNA processing. A DNA repair pathway targeting replication-associated errors is known as MMR. During DNA synthesis, MMR corrects nucleotide misincorporation and thereby prevents permanent DNA change in dividing cells. Thus, defects in MMR either by gene mutation or epigenetic silencing may contribute to increased incidence of spontaneous mutation, which is typically associated with inherited and sporadic cancers.

2.4 Translesion synthesis and template switching

As an essential bypass mechanism for the repair of replication-stalling DNA lesions, DNA damage tolerance (DDT) allows DNA replication across the obstructing element. The translesion synthesis (TLS) is one of the two distinct DDT modes that depends on the function of a special TLS polymerase, rather than replicative DNA polymerases, and directly replicates across the lesions. The TLS mechanism has been characterized as error-prone due to the deficient proofreading activity of the TLS polymerase, which increases the risk of mutation. Not surprisingly, TLS is a major source of cellular mutagenesis.
In contrast, another mode of DDT, the template-switching (TS), involves recombination to a homologous DNA template on a sister chromatid, which is similar to the HR process and is believed to be more accurate in the outcome than TLS. The repair activities of TLS and TS start behind the replication fork, suggesting that they could occur during or after DNA replication, with TS beginning earlier in the S cell-cycle phase and TLS in the late S phase.

2.5 The Fanconi anemia (FA) pathway

Fanconi anemia is a rare genetic disease resulting from biallelic mutations of FANC genes, and affected patients are accompanied by deficient response to DNA damage. Affected patients have deficient ICL repair. The Fanconi anemia (FA) has been identified as a DNA repair pathway for its removal of a barrier that impedes DNA replication and transcription, the DNA interstrand crosslink (ICL). ICLs can be formed by aldehydes during multiple metabolic reactions such as lipid peroxidation and alcohol metabolism, and chemotherapies such as platinum. Whereas intrastrand crosslinks are repaired by NER pathway as described above, the highly toxic ICL is primarily repaired by the FA pathway. Following the detection of ICL by UHRF1 protein and the FANCM–MHF1–MHF2 complex, the FA core complex is recruited to chromatin and monoubiquitylates FANCD2-I incorporating with UBE2T/FANCT E2 conjugating enzyme. Ubiquitylated FANCD2-I recruits scaffolding protein for various DNA endonucleases, which split the strands near the ICL and facilitate the production of ICL-derived double-strand breaks. Given the considerable role that the FA pathway plays in DNA repair, it is not surprising that the FA pathway is also extensively studied in the context of cancer and that targeting the FA pathway is a potential cancer intervention strategy.

2.6 O6-methylguanine-DNA methyltransferase pathway

DNA methylating agents are known for their ability to inhibit DNA methylation and produce a wide range of DNA adducts, such as O6-methylguanine (O6MeG) and O4-methylthymine, which may result in base mispairing and subsequent point mutations. Given the smaller incidence of O4-methylthymine production by methylating agents (< 0.3% compared with 8% of O6MeG), O6MeG is referred to as major source of methylating agents-induced DNA adducts that cause mutagenesis and carcinogenesis. O6MeG can be repaired by O6-methylguanine-DNA methyltransferase, also known as MGMT, in a single-step suicide reaction. MGMT transfers the methyl at O6 site of damaged guanine to its cysteine residues, and thus prevents gene mutation. It is conceivable that MGMT reduces the efficacy of alkylating agents in cancer cells, potentially contributing to chemoresistance. Because DNA methylation can inhibit transcription, the methylation of MGMT promoter, which hampers its transcription, could be used to increase cell sensitivity to alkylating agents. A wide breadth of recent literature has identified the methylation of MGMT promoter as a response predictor for alkylating agents in gliomas.

3 MECHANISMS UNDERLYING THE THERAPEUTIC APPLICATION OF DDR

As DNA-damaging chemotherapies and ionizing radiation are used as the backbone of many therapeutic regimens in cancer, it is intriguing to speculate whether DNA repair deficiency represents a good source of anticancer therapeutic targets. Moreover, in some cases, the DDR deficiency is characterized as predicting biomarkers both for prognosis and treatment responses. A typical example has been discussed earlier in the review that MGMT promoter methylation can be used to predict the response to temozolomide in glioblastoma multiforme. The underlying mechanisms for increased sensitivity of tumor cells to DNA-damaging agents relative to normal cells lie in the three differentiating aspects: loss of at least one DDR pathway, elevated replication stress, and increased endogenous DNA damage.

3.1 DDR defects

Although DDR defects are implicated in the initiation and progression of cancers, defects in DDR pathways also provide therapeutic opportunities to target tumor cells with minimum impact on normal cells. Tumor cells carrying DDR deficiency leads to enhanced genomic instability and its dependency on remaining DDR pathways for survival. The combinational targeting of the remaining DNA repair pathways as a therapeutic approach reflects a concept known as synthetic lethality. The concept of synthetic lethality was based on two concurrent loss-of-function genetic events, either of which alone does not cause lethality but collectively contribute to cell death. As one genetic alteration on DDR pathways that are unique to cancer cells occurs, the second loss-of-function event caused by pharmacological inhibition with DDR inhibitor
then becomes synthetic lethal to a cancer cells without affecting normal cells.58,61–63 DNA-damaging agents such as chemotherapies and radiotherapies have been used for years as the keystone of many anticancer therapeutics. Although these agents have demonstrated potent activity in a wide range of cancers, treatment resistance occurs through a variety of mechanisms and presents ongoing challenges including the upregulation of DDR components.64 DDR inhibitors were first developed as a combination partner for with platinum compounds, but later presented difficulty in application due to overlapping toxicities.65 Targeting DDR components as monotherapies is largely based on the concept of synthetic lethality.66 This approach would deliver considerable benefit to cancer patients compared with conventional treatments such as cytotoxic chemotherapies. Small-molecule inhibitors targeting DDR are often DDR components that demonstrate enzymatic activities, including the PIKK family kinases, ChK1/2 and PARP-1.

3.2 Replication stress

The intricate DNA replication system of Eukaryotic cells is tightly regulated during cell division by various proteins in cell cycles.66,67 This is an issue that is particularly prominent in the early S-phase due to the fact that replication stress can be induced by untimely entry into S cell-cycle phase before necessary molecules required for replication are generated.68 Numerous DNA nucleotides need to be accurately polymerized to ensure cellular homeostasis. Endogenous or exogenous obstacles that retard or terminate the progression of replication forks activate conserved cellular response pathways, which is referred to as replication stress. The molecular mechanism for replication stress is the stalled progression of DNA polymerase and the subsequent uncoupling of DNA polymerization from DNA helicases.69 One example of replication stress inducers are deficient G1/S cell-cycle checkpoints, either caused by the loss of retinoblastoma tumor suppressor (pRb) function, deletion of the CDKN2A,70 or amplification of Cyclin D1 or Cyclin E.71,72

Early stages of tumorigenesis is characterized with chronic replication stress and the subsequent collision of replication forks.73,74 Some of collapsed replication forks are resolved by DDR pathways such as HR75 or mitotic DNA synthesis.76 However, increased genomic instability and mutagenesis can not be rescued in regions where the DNA replication process is not resumed. In order to accomplish bulk genome replication, cells often recruit error-prone DNA polymerases. On the other hand, the replication failures and the subsequent presence of incompletely-replicated DNA in mitosis would further lead to chromosomal entanglements between sister chromatids77 or the generation of micronuclei.78 Finally, if replication stress is not eliminated after mitosis, nuclear bodies, characterized by the DNA damage response protein p53 binding protein 1 (53BP1), are formed in daughter cells as protective machinery.79 Recent evidence has revealed an important role of RNA in DDR, particularly in human cells. Two subtypes of RNA were identified, damage-induced long noncoding RNAs (dilncRNAs) and small DDR RNAs (DDRNAs).80,81 The dilncRNAs potentially forms DNA–RNA hybrids and attracts DNA repair-associated proteins such as BRCA1, BRCA2, RAD51, and MRE11 to the DNA damage sites and thus promotes DNA repair.82

Apart from being a crucial etiologic factor for cancer,71,83,84 elevated replication stress has also been observed during cancer therapies. Nucleoside analogues are widely used as chemotherapies such as acute myeloid leukemia (AML) induction therapy, which decrease the amount of dNTPs and delay DNA synthesis, and thus promote replication stress. For example, fluorouracil (5-FU) is a pyrimidine analogue, which is incorporated into RNA following its conversion to 5-fluoro-deoxyuridine monophosphate (5-FdUMP).85 In addition to RNA metabolism, 5-FU has also been found to hamper DNA metabolism according to reported genetic screening results, which suggested increased 5-FU sensitivity in cells deficient in the ATR-Chk1 signaling pathway and homologous recombinational repair.86 Oxaliplatin, a platinum-type chemotherapeutic drugs, inhibits DNA replication and G2/M cell-cycle progression independent of ATM and ATR.87,88 The underlying mechanism for the independence of oxaliplatin on DDR pathway lies in its ability to induce ribosome biogenesis stress by suppressing the transcription of deoxyuridine triphosphatase and the enzymes required for thymidylate biosynthesis.89,90 Similar inhibitory effect on DNA synthesis can also be observed on TFTD (TAS-102), a novel anticancer drug that suppresses dTTP biosynthesis91 and accelerates its incorporation into DNA.92

4 INHIBITORS TARGETING DNA REPAIR PATHWAYS

The current anticancer strategies that exploit DDR defects have largely been addressed by the development of targeted agents that inhibit molecules involved in DNA repair process. We herein summarized single-agent DDR inhibitors currently under clinical trial development (Table 1).
TABLE 1 Single-agent DDR inhibitors currently under clinical trial development

Target	Conditions	Interventions	Phase	Clinical trial
PARP	Metastatic breast cancer	Drug: PARP inhibitor 2X-121	Phase II	NCT03562832
	Breast cancer	Talazoparib	Phase II	NCT03990896
	Ovarian cancer	AK112	Phase I/II	NCT04999605
	Breast cancer	Rucaparib	Phase I	NCT03911453
	BRCA-positive advanced breast cancer	KU-0059436 (AZD2281)	Phase II	NCT00494234
	Ovarian cancer	EP0057 olaparib	Phase II	NCT04669002
	Pancreatic cancer	Niraparib	Phase II	NCT03601923
	Neoplasms	Talazoparib	Phase I	NCT03343054
	Ovarian carcinoma, breast cancer	AZD2281	Phase II	NCT00679783
	Advanced breast cancer	Talazoparib tosylate	Phase II	NCT02401347
	Advanced malignant solid neoplasm	Talazoparib	Phase II	NCT04550494
	HRR mutated solid tumors (VASTUS)	IDX-1197	Phase I/II	NCT04174716
	Ovarian cancer	Niraparib	Phase II	NCT02354586
	Advanced tumors with ATM/BRCA1/2 gene mutation	Talazoparib	Phase II	NCT02286687
	Ovarian neoplasms	Niraparib	Phase III	NCT01847274
	Advanced/metastatic solid tumors	NMS-03305293	Phase I	NCT0482516
	Solid tumor	RP12146	Phase I	NCT05002868
	Platinum sensitive BRCAm Serous ovarian cancer	Olaparib, Cediranib,AZD2281	Phase I	NCT02855697
	Ovarian neoplasms	KU-0059436 (AZD2281)	Phase I	NCT00516373
	Ovarian cancer (neoadjuvant setting)	Niraparib	Phase II	NCT04284852
	Advanced tumors with HRR gene mutations	Olaparib oral capsule	Phase II	NCT03967938
	Ovarian cancer	Fluzoparib capsules	Phase III	NCT03863860
	Advanced malignant solid neoplasm	Olaparib	Phase II	NCT03212274
	Ovarian cancer	IMP4927	Phase III	NCT04169997
	Ovarian cancer	ZL-2306 (niraparib)	Phase III	NCT03709316
	Ovarian, breast cancer	Lynparza (olaparib)	Phase I	NCT04041128
	Ovarian cancer	ZL-2306 (niraparib)	Phase II	NCT04392102
	Ovarian cancer	Talazoparib oral capsule	Phase I	NCT04598321
	Digestive cancers	Individualized PARP inhibitor	Not applicable	NCT04584008
	gBRCA mutated pancreatic cancer	Olaparib	Phase III	NCT02184195
	BRCAm pancreatic cancer	Olaparib	Phase II	NCT04858334
	Pancreatic cancer	RUCAPARIB	Phase II	NCT03140670
	Metastatic breast cancer	Olaparib	Phase III	NCT03534453
	Relapsed ovarian cancer	Olaparib tablets	Phase III	NCT03375307
	Metastatic bladder urothelial carcinoma	Olaparib	Phase II	NCT04672460
	Advanced solid tumors	TALZENNA capsule	Phase I	NCT03843453
	Relapsed ovarian cancer	Olaparib tablets	Phase III	NCT01874353
	Stage IV pancreatic cancer	Olaparib	Phase II	NCT02677038
Target Conditions	Interventions	Phase	Clinical trial	
--	---------------	-----------	----------------	
HER2-negative, germline BRCA mutation-positive breast cancer	Niraparib	Phase III	NCT01905592	
Ovarian, fallopian tube, primary peritoneal cancer	Niraparib	Phase II	NCT03891576	
Metastatic castration-resistant prostate cancer	Rucaparib	Phase III	NCT02975934	
Ovarian, fallopian tube, primary peritoneal cancer	Rucaparib	Phase III	NCT01968213	
Ovarian, fallopian tube, primary peritoneal cancer	Rucaparib	Phase III	NCT04539327	
Prostatic neoplasms	Niraparib	Phase II	NCT02854436	
Breast cancer patients with chest wall recurrences	Olaparib	Phase I	NCT03955640	
gBRCAm breast cancer	Olaparib	Phase III	NCT02000622	
Biliary tract cancer with aberrant DNA repair gene mutations	Olaparib	Phase II	NCT04042831	
Solid tumors and with deleterious mutations in HRR genes	Rucaparib	Phase II	NCT04171700	
Ovarian, fallopian tube, or primary peritoneal cancer	Oral rucaparib	Phase II	NCT01891344	
Advanced malignant solid neoplasm	Olaparib	Phase II	NCT03233304	
Castration-resistant prostate carcinoma	Olaparib	Phase II	NCT03516812	
Advanced malignant neoplasm	AMX1-5001	Phase I/II	NCT04503265	
Metastatic carcinoma of the cervix	Niraparib	Phase I/II	NCT03644342	
Solid tumor, adult	RBN-2397	Phase I	NCT04053673	
Recurrent solid tumor	Olaparib	Phase II	NCT01078662	
Prostate, ovarian cancer	Rucaparib	Phase III	NCT04676334	
IDH1/2-mutant Grade I–IV gliomas	Drug: PARP Inhibitor BGB-290	Phase I	NCT03749187	
Advanced gastric adenocarcinoma	Olaparib	Phase II	NCT04209686	
Malignant mesothelioma	Rucaparib	Phase II	NCT03654833	
Acute myeloid leukemia	Olaparib	Phase II	NCT03953898	
Advanced or inoperable gastric cancer	Pamiparib (BGB-290)	Phase II	NCT03427814	
Endometrial serous carcinoma	Niraparib	Phase II	NCT04716686	
Small cell lung carcinoma	IDX-1197	Phase II	NCT03672773	
Urothelial carcinoma	Olaparib+EP0057	Phase I/II	NCT02769962	
Neoplasms	Niraparib tablet/capsule	Phase I	NCT03329001	
Advanced ovarian cancer	Olaparib tablets	Phase III	NCT01844986	
Head and neck squamous cell carcinoma	Niraparib	Phase II	NCT04681469	
Advanced solid tumors	JPI-547	Phase I	NCT04335604	
Metastatic melanoma with HR mutation	Niraparib	Phase II	NCT03925350	
ATM				
Advanced solid tumors	M4076	Phase I	NCT04882917	
Neoplasms	BAY1895344	Phase I	NCT03188965	
NSCLC	VX-970 (M6620)	Phase I/II	NCT02487095	

(Continues)
4.1 Poly (ADP-ribose) polymerase (PARP)

4.1.1 Mechanisms underlying the application of PARP inhibitors

The development of PARP inhibitors represents the paradigm of the concept discussed earlier, known as synthetic lethality.\(^{93}\) PARP1 and PARP2 are key DDR enzymes that sense DNA damage and pass on signals by modifying target proteins with negatively charged poly(ADP-ribose) (PAR) chains, known as PARylation.\(^{94}\) The structural changes of PARP1 following its binding to damaged DNA activate its catalytic function,\(^{95,96}\) which facilitates the recruitment of DNA repair effector molecules and the structural remodeling of chromatin around DNA damage sites. In this way, PARP1 PARylates itself, a process known as autoPARylation, which potentially contributes to its release from repaired DNA.\(^{97}\) Recent advances in epigenetics have revealed the correlation of specific chromatin remodeling factors with DDR.\(^{98}\) One such example is PARP1, which PARylates MORC2 and increases its ability to induce chromatin remodeling. Since eukaryotic DNA is surrounded by condensed chromatin, the dynamic remodeling of chromatin would largely affect the efficiency of DNA repair.\(^{99,100}\) More studies are thus warranted to shed light on the collaborative interplay between chromatin-associated enzymes and DDR. Given the pivotal role of PARP in promoting the effective repair of DNA, PARP inhibitors selectively kill tumor cells with homologous recombination deficiency. Conflicting results were reported regarding whether PARP is required for BER,\(^{101}\) with some evidence suggesting the increased sensitivity of PARP1-deficient cells to base-damaging agents,\(^{102-104}\) whereas some studies found that PARP was not necessary for the repair of base.\(^{105}\)

Alongside the inhibition on enzymatic activities of PARP, the process referred to as PARP trapping provides an additional mechanism for PARP inhibitors, where PARP1 and PARP2 are trapped at the site of DNA damage.
and block the recruitment of proteins involved in DNA repair. Since a complete set of repair-associated proteins is the prerequisite for accurate DNA repair, PARP-inhibited cells lost the capacity to properly repair their DNA during replication, eventually inducing mitotic catastrophe and subsequent cell death.94 Multiple PARP inhibitors have demonstrated comparable antitumor efficacy and selective inhibition on PARP1 and PARP2, but their abilities to induce PARP trapping vary, which contributes to the difference of recommended doses among PARP inhibitors.106,107

PARPi is a promising therapeutic strategy for BRCA-mutant tumors, which is a typical setting of synthetic lethality.108 BRCA gene has long been identified as crucial components of the HR pathway.109 In cells harboring BRCA mutation, alternate DNA repair mechanisms such as the PARP pathway are initiated to fix the damage. Thus, PARP inhibition in a BRCA-deficient setting likely causes the accumulation of DNA damage and thereby leads to cell death. However, as cells with BRCA1 or BRCA2 germline mutation are unable to fix treatment-induced DSBs, toxicity caused by PARP inhibitor has received considerable attention. Previous studies investigated the association between myelosuppression occurrence and BRCA1 or BRCA2 mutation status in patients receiving platinum-based chemotherapy and revealed no significant correlation between BRCA mutation status and hematological toxicities.110 However, it remains unclear whether PARPi toxicity could also be used as a predictive biomarker for PARPi treatment response.

4.1.2 PARP inhibitors as the first-line therapy

Ovarian cancer is the leading cause of gynecologic cancer-related deaths in women worldwide,111 and the standard care for the newly diagnosed advanced ovarian cancer (NADOC) patients in the last two decades is the surgical debulking followed by platinum–taxanes-based systemic chemotherapy. Unfortunately, an estimated number of 70% of patients with advanced ovarian cancer experience relapsed disease within 3 years posttreatment.112 The concurrent and maintenance anti-VEGF bevacizumab was later recommended for the standard first-line systemic treatment of epithelial ovarian cancer, which improves PFS in patients with higher risk of recurrence (International Federation of Gynecology and Obstetrics FIGO stage IV or suboptimally debulked stage III ovarian cancer—OC).113 However, the efficacy of the combinational treatment diminishes over time with a 5-year survival rate being around 35%, and adverse effects accumulate as chemotherapy cycles proceed.114–116 Thus, recent research of this field aims to identify more efficient drug combinations to aid the systemic treatment of ovarian cancer patients.

In a recent European Society for Medical Oncology (ESMO) Congress, research teams reported preliminary results from clinical trials of three different PARP inhibitors in patients with ovarian cancer, including the PAOLA-1/ENGOT-OV25 Phase III trial where the combination of PARP-inhibitor olaparib and bevacizumab was assessed for the first time as maintenance therapy following platinum-based chemotherapy in the overall population regardless of the BRCA status.114–116 The mechanism underlying the application of PARP inhibitors in patients with advanced ovarian cancer is illustrated in Figure 2. Following the promising results from these trials, the oncology community starts to review the practice regime of PARP inhibitors in first-line treatment of NADOC and the selection criterion for patients that would receive the maximum benefits. The defined subset of patients based on their molecular diagnosis include those with BRCA-mutation, HR-deficiency, and HR-proficiency.117 Here, we discuss the updated data from the ongoing as well as previous clinical trials regarding the application of PARP inhibitors.

Olaparib

The first human clinical trials of PARPi evaluated the chemopotentiation effect of low-dose rucaparib in patients with metastatic melanoma.118 Currently, four PARP inhibitors, olaparib, rucaparib, niraparib, and talazoparib, have been approved by the US Food and Drug Administration (FDA). Based on accumulating research results on synthetic lethality observed between PARP inhibition and BRCA mutation status,119,120 a clinical evaluation of olaparib was initiated in 2005, where 63% of patients with BRCA-mutation, HR-deficiency, and HR-proficiency.117 The treatment of olaparib later extended to patients with gynecological malignancies and reported a favorable response to olaparib in patients who respond better to prior platinum chemotherapies. This finding accorded with the hypothesis that platinum-based therapies and PARPi shared similar molecular targets.122 Phase II trials further supported significant clinical benefit in multiple gBRCAm cancer types including breast, ovarian, pancreatic, or prostate cancers.123–125 In 2014, olaparib was approved as maintenance therapy for platinum-sensitive advanced ovarian cancer with germline BRCA1 or BRCA2 mutations (gBRCAm).126 More recently, a randomized Phase III trial reported improved survival outcomes in gBRCAm/HER2-negative breast cancer patients receiving olaparib than those with standard chemotherapy.127

A growing number of clinical trials have been conducted since 2009 to investigate the efficacy and safety of
PARP inhibitors in multiple cancer types irrespective of the BRCA status. A Phase II trial metastatic investigated the treatment response to olaparib in patients with castrate-resistant prostate cancer (mCRPC) by evaluating clinical parameters including PSA decline and radiologic responses. Notably, the overall response rate in unsselected CRPC population to PARP inhibitors was only 33%, possibly attributed to the observed tumor mutations in other DDR members. The team then conducted next-generation sequencing on enrolled patients and the genetic map of these patients revealed homozygous deletions or mutations in DRR-associated genes including ATM, PALB2, CHEK2, FANCA, and HDAC2. This trial not only granted olaparib approval for the treatment of BRCA1/2- or ATM-mutant mCRPC patients, but also provided additional application of PARPi in DDR-defective patients beyond BRCA mutations. Thus, it may be insufficient only to use BRCA1 or BRCA2 mutations as predictive biomarker for PARPi responders. Based on the observation that ATM gene alteration resulted in increased sensitivity of cells to PARP inhibition, ATM gene mutation was included as a predictive biomarker for PARPi response in the FDA breakthrough therapy designation. It has to be addressed that the ideal predicting factor for PARPi response would be recombination deficiency, which does not exist in practice.

Rucaparib

The combination of rucaparib and temozolomide were the first clinical trial containing PARPi treatment regimens. Rucaparib was first indicated for the treatment of advanced ovarian cancer with either germline or somatic BRCA1/2 mutations, and was then approved in 2018 for the maintenance treatment of platinum-sensitive ovarian, fallopian tubal, and peritoneal cancer regardless of the BRCA status. In the maintenance setting (ARIEL 2, NCT01891344), advanced ovarian cancer patients were divided into three groups based on the genomic features of their tumors including the germline or somatic BRCA status and chromosomal loss of heterozygosity (LOH). The longest progression-free survival (PFS) was observed in the BRCA mutant group, followed by the high LOH group. BRCA status appeared to be a significant predictor in the maintenance setting of rucaparib, given that the proportion of BRCA wild-type patients displaying durable responses was smaller than that of patients receiving standard platinum-based chemotherapies. Thus, the following Phase III trial (NCT01968213) aimed to investigate the potential of the genome-wide LOH to be transformed into a clinically applicable biomarker for patients’ responses to rucaparib 27908593. Along with the promising results from an additional Phase II trial HGSOvCa (NCT01482715), rucaparib was approved for chemotherapy-pretreated patients with gBRCAm or sBRCAm advanced ovarian cancer. However, rucaparib has been reported as the least selective clinical PARPi inhibitor with simultaneous inhibition on multiple PARPs ranging from PARP1, PARP2 to mono(ADP-ribosyl) transferases PARP3, PARP4, PARP10, PARP15, and PARP16.

Veliparib and niraparib

Some PARPi/2 inhibitors are not highly selective such as rucaparib discussed earlier. For example, niraparib has been reported to interact with non-PARP targets such as
as deoxycytidine kinase (DCK).143 The cross-inhibition on DCK, which is fundamental for the activation of nucleoside analogs, would decrease the efficacy of niraparib/gemcitabine synergy.143 On the other hand, due to its formation of a PARP1/2–unique water-mediated hydrogen bond that interacts with a highly conservative subdomain D766, veliparib has been identified as the most selective clinical inhibitors targeting PARP1/2, with 100-fold higher affinities to PARP1/2 relative to olaparib and talazoparib.144 In a Phase III clinical trial, the median duration of PFS was significantly increased in ovarian cancer patients receiving niraparib, irrespective of gBRCA status (NCT01847274).145 Though non-gBRCA mutant, these tumors were identified with a unique mutational profile similar to the genome of gBRCAm tumors, which is referred to as BRCAness DNA scar.146 Though BRCAness DNA-scar positive patients appeared to have improved prognosis compared to BRCAness-scar negative patients, the prognostic value of BRCAness-scar as a predictive biomarker remains incompletely defined and requires further clarification in larger cohorts.139,145

Though effective in the clinical practice, PARP inhibitors have also demonstrated certain limitations like any other novel development in history. Predominantly, the varying PARP trapping ability by different PARP inhibitors potentially lead to the off-target PARP trapping on the DNA of normal cells.147 Besides, the emerging resistance to PARP inhibitors also poses challenges to their clinical application, the underlying mechanisms of which include loss of PARP trapping,148,149 upregulated drug efflux protein expression,150,151 stabilized replication fork stabilization,152–154 and the restoration of HR pathway.155–163

4.2 Poly(ADP-ribose) glycohydrolase (PARG)

The above limitations of PARP inhibitors motivated the design of additional therapeutic targets for BRCA-proficient and deficient tumors, or PARPi-resistant tumors. PARG reverses the action of PARP enzymes by hydrolyzing the ribose–ribose bonds in PAR following DNA damage.164–166 Likewise, the active role of PARG in DNA replication and repair leads to increased sensitivity to DNA damaging agents in PARG-deficient cells. Though extensive studies have suggested the correlation between PARP inhibitors and synthetic lethality, research on therapeutic mechanisms of PARG inhibition has lagged behind. It has been reported that depletion of the HR proteins such as BRCA1/2 in breast cancer cells could stimulate synthetic lethality in PARP-inhibited cells,167,168 and that COH34, a PARG inhibitor, is able to induce cell death of ovarian and breast cancers with BRCA mutations or resistance to olaparib.169 However, conflicting results were reported in other cancer cells.170 Of the six tested breast cancer lines, only one BRCA-proficient cell line was sensitive to PARG inhibitor PDD00017273, whereas five cell lines failed to respond to PDD00017273 including those with BRCA mutations.171

PDD00017273 is a quinazolinedione-type PARG inhibitor with improved specificity, efficiency, and cell permeability, but lacks bioavailability.172 Unlike cytotoxic PARP inhibitors, the major effect by PDD00017273 is cytostasis where the replication catastrophe does not progress into mitosis but rather remains static in interphase.171 However, the exposure to ionizing radiation enhanced centrosome amplification and the subsequent multipolar spindle formation and chromosome missegregation caused by PARG deficiency.173,174 Thus, it is intriguing to speculate that under some circumstances such as PARG inhibition coupled with cell-cycle checkpoint blockades or DNA-damaging agents, mitotic abnormalities would occur.175–177

Neither of the first-generation PARG inhibitor (GPI 16552 and gallotannin) demonstrates sufficient activity in vitro and its frequent off-target effects in cells makes it a less than ideal strategy.178,179 Another early PARG inhibitor, rhodanine-based PARG inhibitor (RBPI) is more selective than previous generation PARGs, with limited cell permeability.180,181 The recently reported COH34 is a novel small-molecule PARG inhibitor with nanomolar potency both in vitro and in vivo, and notably, with efficiently killing effect on PARP inhibitor-resistant cancer cells, which makes it a good candidate for clinical studies.169 Chemical library screening identified methylxanthine derivatives JA2–4 and JA2131 as selective bioavailable PARG inhibitors, which showed comparable killing on PARP inhibitor-resistant A172 glioblastoma cells.182

4.3 Ataxia telangiectasia mutated (ATM)

The DDR signaling cascades are driven by serial protein phosphorylation. ATM, ATR, and DNA-PKs are the key kinases involved in this process and are similar in molecular structure, the C-terminus of which is responsible for phosphorylation activity especially on serine or threonine residue (Ser/Thr).183–185 Activated by DNA double-strand breaks, ATM is recruited to DSB sites by the MRE11-RAD50-NBS1 (MRN) complex.186 Substrates of ATM include p53, CHK1, and CHK2, the phosphorylation of which would lead to intra-S or G2/M cell-cycle arrest.187,188 Despite its canonical role in a wide variety of molecular processes such as DNA repair, ATM also...
been characterized with noncanonical functions including spliceosome displacement.189 As ATM is rightly considered as a tumor suppressor, ATM deficiency or deleterious alterations are commonly seen in solid tumors and B-cell lymphoma.190 Germline ATM mutation likely contributes to Ataxia Telangiectasia (A-T), a neural degeneration disorder characterized by increased predisposition to cancer.191

The main reason for ATM deficiency in cancer cells is hypermethylation of the ATM promoter,192 with multiple cancer types including brain cancer, breast cancers, lung cancer, and head and neck squamous cell carcinoma exhibiting hypermethylated ATM promoter region.193–196 However, ATM signaling can also be advantageous to tumors, increasing their risks of therapeutic resistance to radiation and chemotherapies.197 Several ATM inhibitors are now under investigation for cancer therapy.198, 199 The loss of ATM occurs in prostate cancer and was recently suggested to increase cell sensitivity to ATR inhibition.200

The first reported selective ATM inhibitor, 2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one, (KU-55933), was developed by screening the PIKK family-targeting compound library and exhibited 100-fold higher selectivity for ATM over ATR, DNA-PK, and PI3K.199, 201 Exposure to KU-55933 sensitizes cells to cytotoxic agents that cause DSB, by blocking HR repair signals and thereby increasing γ-H2AX and RAD51 foci accumulation.202 In response to chemotherapy, KU-55933 inhibits ATM-mediated repair signals in the presence of inositol polyphosphate-4-phosphatase type II (INPP4B), which has contradictory roles in cancer progression.203 In colon cancer cells, INPP4B acts as an oncogenic factor that positively regulates AKT 26411369, whereas INPP4B suppresses cancer progression in prostate cancer cells by reducing tumor migration, invasion, and angiogenesis.204

KU-60019 is an analogue of KU-55933 with improved pharmacokinetics and bioavailability and is reported to interrupt radiation-induced ATM phosphorylation in glioma cells.205 Given that PTEN is an active participant of DNA repair process, it is not surprising that KU-60019 was specifically toxic to PTEN mutant cancer cells.206 Besides, the combination of KU-60019 and cisplatin would induce synthetic lethality in PTEN-deficient cells,207, 208 the underlying mechanism of which involves increased PARP cleavage and γ-H2AX formation.209 Thus, PTEN-deficiency is a potential biomarker for predicting repines to DDR-targeting agents. KU59403 is the first ATM inhibitor tested in preclinical trials with improved solubility, bioavailability, and selectivity.210 KU-59403 potentiates the efficacy of chemotherapies and IR at low doses in cancer cells irrespective of TP53 mutation status.210 However, KU-59403 monotherapy failed to demonstrate antitumor effects either in vitro or in vivo, which largely limited its clinical application and was not widely used thereafter. CP466722 was identified as a ATM kinase inhibitor by screening targeted compound library, which does not display inhibitory activities on PI3K family members. Noteworthy, even transient inhibition of ATM by CP466722 is sufficient to induce radiosensitization in cells and suggests that therapeutic radiosensitization, indicating that ATM is required for early stage of the DDR process.211

The major limitations of earlier developed ATM inhibitors are their bioavailability in central nervous system via the blood brain barrier (BBB). Modified ATM inhibitors AZ31 and AZ32 have higher free brain concentrations and their radiosensitization effects were more prominent in p53 mutant cells than p53 wild-type glioma cells.212 In contrary to this finding, previous evidence suggested increased sensitivity of wild-type p53 glioblastoma cells to radiation than p53 mutant cells.213 AZD0156 has been reported to enhance the efficacy of DSBs in mouse xenograft models but lack BBB penetration.214 The further optimized compound, AZD1390, is now under investigation as a radiosensitizer for nervous system malignancies.215

4.4 Ataxia telangiectasia and Rad3-related protein (ATR)

In contrast to ATM, which is triggered by DSBs, ATR is activated by and recruited to replication protein A (RPA)-coated single-strand DNA (ssDNA).216, 217 Single-strand DNA can be produced by nucleolytic processing of DSBs as well as the uncoupling of the replicative DNA helicase from the DNA polymerase machinery. The intracellular ATR signaling involves the phosphorylation of a series of downstream molecules, triggering a wide array of responses including blocking cell-cycle checkpoints, DDR, and cell apoptosis.218 In response to genotoxic stress, Chk1 is phosphorylated on serines 317 (S317) and 345 (S345) by ATR, thereby activating WEEl,219, 220 which in turn phosphorylates CDK1 on tyrosine 15 and suppresses mitotic entry.221 CDC25A is responsible for removing the inactivated phosphates on CDK2. Once CDC25A is phosphorylated by CHK1, the activation of intra-S phase checkpoints impairs the rate of CDC25-mediated replication, allowing cells to repair DNA damage. In addiction, as CDK1 is fundamental for the progression via G2/M checkpoints, ATR has been described colloquially as the apex of DDR signaling that acts on both S and G2/M cell-cycle checkpoints, preventing the entry of damaged DNA into replication process before it has been properly repaired.187, 222–224

Cancer-associated inflammation and cytotoxic treatments such as chemotherapies and radiotherapies are known to cause replication stress, which increases cell reliance on the ATR-mediated S and G2/M checkpoints...
activation as countermeasures. Thus, it is intriguing to speculate whether inhibition of ATR would sensitize cells to DNA damaging agents such as chemotherapy, encouraging the development of selective ATR inhibitors. However, compared with other DDR proteins such as PARP, development of ATR inhibitors has lagged behind. Contributing factors may include the large size of the ATR molecule and the lack of knowledge on its crystal structure. In addition, its highly homologous active sites in all PIKKs and the demand for coactivating proteins further restrict its drug design.

The first chemicals reported to inhibit ATR were natural molecules caffeine and schisandrin B, the inhibition of which was nonspecific and only worked at high concentrations. This finding further confirmed the potential of natural compound for future synthesis of DDR-regulating drugs. Several approaches were used to identify potentially potent ATR inhibitors. One such example is the cell-based high-throughput microscopy that enables the screening of compounds, investigating their specific activity on ATR, where they identified a highly selective compound, ETP-46464 with specific action on ATR, rather than ATM or DNA-PKcs. Recent advancement in gene editing suggests that CRISPR DDR screens can also be used to identify drug candidates.

Another identification strategy is the in vitro use of recombinant ATR to test its kinase reactions, through which researchers were able to characterize compounds that directly and specifically targeted ATR, such as VE-82. With further modification on pharmacological properties, VE-821 was later named VE-822 and is now under clinical investigation as VX-970 (M6620) (NCT0309150, NCT03022409, NCT02723864, etc.). Interestingly, some ATR inhibitors were discovered during research on inhibitors developed for other targets. NU6027 was originally selected for CDK2 inhibition and was later found to impair HR pathway, thereby sensitizing cells to DNA-damaging agents and PARP inhibitors. The new-generation ATR inhibitors include AZD6738, an derivate of the compound AZ20, which is currently under clinical investigations (NCT02567422, NCT03022409, NCT0157792, BAY1895344 (NCT03188965), berzosertib (NCT0157792), and a recently reported pyrazolopyrimidine-containing inhibitor of ATR.

4.5 CHK1

As described earlier, CHK1 is actively involved in the ATR- and ATM-initiated DNA damage response by phosphorylating and recruiting a series of regulatory proteins. CHK1 regulates the intra-S checkpoint by phosphorylating CDC25A, leading to the degradation of CDC25A and the subsequent decrease of cyclin-dependent kinase 2 (CDK2) activity in S cell-cycle phase, and the phosphorylation of CDC25C and WEE1 by CHK1 regulates mitotic entry and G2/M checkpoints. Moreover, CHK1 also phosphorylates RAD51 on Thr-309 promoting its interaction with BRCA2 during HR. Noteworthy, CHK1 also acts on a number of physiological processes that are critical to cell survival. For example, the suppression of CHK1 leads to p53-induced death domain (PIDD) signaling and the associated caspase 2-mediated cell death. It has been recently reported that the phosphorylation of nucleophosmin (NPM) by CHK1, a chaperone protein involved in various cellular functions including, disrupts its interaction with PIDD, thus protecting cells from caspase 2-mediated cell death. Further studies are warranted to clarify the importance, yet poorly defined role, of CHK1 in other cellular processes independent of DDR.

Though CHK1 deficiency has been reported to induce early embryonic lethality in vivo, the knockdown of which is preferentially more deleterious in tumor cells than in normal cells, suggesting the potential of Chk1 as a therapeutic target in cancer treatments. On the other hand, increased CHK1 levels have been reported to correlate to worse prognosis, disease recurrence, and therapeutic resistance, further supporting the therapeutic potential of CHK1 inhibition. In circumstances where cells harbor certain genetic alterations, such as c-MYC, CHK1 inhibitors are able to induce synthetic lethality in malignancies driven by oncogene c-MYC. Likewise, CHK1 inhibitor PF-0047736 exhibited cytotoxic effects on mantle cell lymphoma (MCL) and myeloma with translocation (t(11;14)-mediated Cyclin D1 overexpression. Cells with acquired PF-0047736-resistant cells displayed enriched prosurvival and proliferation-associated gene patterns, suggesting that inhibition of prosurvival signaling pathways could potentially sensitize cells to CHK1 inhibitors.

The first-generation CHK1 inhibitors were used as chemosensitizing agents, the majority of which were nonspecific due to their high affinity to plasma protein 1-acid glycoprotein, with a long half-life and low bioavailability. The early CHK1 inhibitors were mostly used as combinational partners with cytotoxic agents in cancer, the clinical development of which was largely restricted by their unacceptable toxicities and suboptimal pharmacological profiles. With significantly improved selectivity toward CHK1, the second-generation CHK1 inhibitors such as LY2606368, LY2880070, SRA737, and GDC-0575 are now under intense clinical studies. These CHK1-targeting agents potently synergize with drugs that produce DNA damage including cytotoxic chemotherapies and antimetabolites. One such example is the combinational treatment of low-dose gemcitabine with
GDC-0575, which induced promising objective response rates in patients with advanced sarcoma. \(^\text{263}\)

Recently, clinical trials (NCT02797977, NCT02797964) reported promising results that the combination of a novel CHK1 inhibitor SRA737 with low-dose gemcitabine led to partial responses in 6 patients and stable disease for at least 4 months in 32 patients. SRA737 has also demonstrated synergistic effect with PARP1 inhibitors in cancer both in vitro and in vivo.\(^\text{264}\) Despite intense interest in CHK1 inhibitors, no known agents have reached Phase III clinical trial or received FDA approval. According to preclinical results, though the single use of CHK1 inhibitors did not usually cause significant toxicities, the unacceptable cytotoxic effects on normal cells caused by the combination therapy with DNA damaging agents outweighed the modest gains.

4.6 WEE1

In response to DNA damage, the activated ATR phosphorylates Chk1, which in turn phosphorylates WEE1 and CDC25.\(^\text{265–267}\) In contrast to CDC25 whose activity is suppressed by the phosphorylation, WEE1 is activated and then phosphorylates downstream CDK1 on Tyr15 and Thr14 to inhibit its activity, leading to G2/M cycle arrest and allowing time for DNA damage repair. In addition, by phosphorylating CDK1 on Tyr15, WEE1 also prevents the progression of S phase to G2 phase before DNA replication is completed.\(^\text{268}\) Moreover, WEE1 has also been reported to phosphorylate histone H2B on Tyr37, thereby blocking the transcription of certain histone genes that reduce the burden of the histone mRNA turnover machinery.\(^\text{269}\)

G1/S and G2/M checkpoints are regulated by p53 gene, which is frequently absent or deficient in cancer cells. Under this circumstance, cancer cells become highly dependent on WEE1-mediated G2/M checkpoint control for DNA repair.\(^\text{270,271}\) It is thus not surprising that some cancers are accompanied by WEE1 overexpression, which decreases their sensitivity to radiotherapy and chemotherapy.\(^\text{272,273}\) Besides, results from whole-genome characterization of chemoresistant ovarian cancer suggested the feasibility of WEE1 inhibition in multiple tumor-related pathways.\(^\text{21,274}\) These evidence support the early therapeutic rationale of WEE1 inhibitors in p53-deficient tumors. It is becoming increasingly clear that neither p53 deletion nor the loss of G1 checkpoint is a predictor for WEE1 sensitivity.\(^\text{275–277}\) Currently, most clinical studies focus on the combinational use of WEE1 inhibition with chemotherapeutic drugs, which will be discussed further in the review.

The first generation of small-molecule WEE1 inhibitors, represented by PD0166285, was rather unspecific with an inhibitory activity against multiple kinases such as EGFR, CHK1, and c-Src.\(^\text{278–280}\) The first selective WEE1 inhibitor, adavosertib (AZD1775), was obtained from screening a small-molecule compound library.\(^\text{281}\) Though more selective than previous-generation WEE1 inhibitors, from kinase profiling results, AZD1775 was found to target other kinases as well with reduced potency.\(^\text{282,283}\) For example, the unspecific targets of AZD1775 include PLK, the role of which in cell-cycle progression has been described as antagonistic to WEE1. This multiple binding may contribute to the difficulty in interpreting experimental results, but it was recently suggested that therapeutic concentrations of AZD1775 were not sufficient to suppress PLK1 activities.\(^\text{284}\) Noteworthy, AZD1775 exhibits potent antitumor activity even as monotherapy.\(^\text{285}\) Given that single-agent therapy is believed to be almost equally toxic to normal and cancer cells, the antitumor activity of WEE1 inhibitors monotherapy potentially arises from the increased replication stress in cancer cells.\(^\text{286–288}\)

Whereas the rationale for WEE1 inhibitors is clear, its clinical application is restricted by its demand for appropriate therapeutic windows. The substantial > grade 3 adverse effects caused by AZD1775 are often a concern (NCT02341456, NCT02666950, NCT01357161, NCT00648648). As WEE1 is required for a number of physiological processes in normal cells, adverse events are usually expected to impact cells undergoing frequent divisions such as the hematopoietic system and intestinal epithelium.\(^\text{289}\) For this reason, numerous efforts have been undertaken to optimize dosing and therapeutic schedule of AZD1775,\(^\text{290}\) with its analogues being developed, which remained effective but brought lower toxicity.\(^\text{291}\) Another research attempt is to identify additional biomarkers for AZD1775 to reduce the off-target effects. AZD1775 is able to induce synthetic lethality in cells with defects in the Fanconi Anemia or HR pathways,\(^\text{285,292}\) suggesting that the efficacy of AZD1775 may be enhanced by further inhibiting additional factors that downregulate DNA replication.

4.7 DNA-PK inhibitors

DNA-dependent protein kinase was initially discovered by chance in 1985 when scientists added double-stranded DNA (dsDNA) into the cell extracts and identified this protein with enhanced phosphorylation.\(^\text{293}\) Later in 1990, the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) was identified.\(^\text{294,295}\) Encoded by the PRKDC/XRCC7 gene, DNA-PKcs is abundantly present in human cells with no fewer than 50,000 molecules per cell and the largest PIKK family member.\(^\text{296–300}\) DNA-PKcs shares similar domain
compositions with two other PIKK family members involved in DDR, ATM, and ATR, such as the kinase domain and the conserved FRAP-ATM-TRRAP (FAT) domain.301

Loss of the key factors in the NHEJ pathway has long been considered as a hallmark for tumor progression and increased sensitivity to DSB-inducing agents, possibly due to increased genomic instability.298,302,303 The upregulation of DNA-PK expression was observed in various tumor types including the gastrointestinal cancer, lung cancer, and hepatocellular carcinoma and was associated with higher tumor grades and poor prognosis.304–306 In melanoma, increased DNA-PKcs expression was related to a progressed phenotype with tumor microenvironment favoring metastasis.307 In addition, DNA-PKcs upregulation has been reported to promote resistance to radiotherapy and chemotherapy in thyroid,308 nasopharynx,309 cervix cancers,310 and leukemia.310,311 Moreover, DNA-PK has been reported to transcriptionally regulate pro-tumorigenic genes, leading to tumor progression and metastasis.312,313 These findings have encouraged the design of multiple DNA-PK inhibitory strategies.

Giving the structural similarity between DNA-PK and PI3K, early attempts to block DNA-PK were based on pharmacological approaches that directly targeted PI3K or its derivatives. Development of DNA-PK inhibitors mainly focuses on the catalytic activity of DNA-PKcs, whereas novel anti-DNA-PK approaches such as DNA-PKcs-inhibiting microRNAs314,315 or inhibitors targeting the Ku heterodimers were based on the homology model of the ATP-binding site.316,317 The first reported DNA-PK inhibiting compound was caffeine, which was identified with in vitro kinase activities on two other DDR master kinases ATM and ATR, and later with inhibition on DNA-PK.318 Further application of these early DNA-PK inhibitors such as wortmannin226 and vanillin319 was limited due to poor selectivity and complexed structure. With the advent of a lead compound LY294002, more specific and potent derivate compounds were later developed such as NU7441, NU7427, NU7026, and NU7163.320–323

In preclinical studies, NU7427 and NU7026 potentiated the therapeutic effect of IR and topoisomerase II inhibitor chemotherapy in cancer cells,321,324 whereas NU7441 substantially delayed the repair of IR- and chemotherapy-induced DSBs both in vitro and in vivo.325 There were compelling preclinical data studies suggesting NU7441 as a potent DNA-PK inhibitor in cancer models.326–330 Another class of DNA-PK-targeting compounds studied in preclinical studies are a series of arylmorpholine-containing compounds derived from IC60211,331 which include IC86621, IC486154, IC87102, and the most intensively used IC87361.322,333 Despite extensive research, clinical evaluation and application of these inhibitors could not be achieved due to their undesirable pharmacokinetics.334

VX-984 and M3814 are the new-generation DNA-PK selective inhibitors, which have already progressed into clinical trials in combination with IR or chemotherapy. VX-984 is known for its potential to cross the blood brain barrier based on the observation that VX-984 enhanced the response to radiotherapy in glioblastoma mouse models.335 M3814 has been reported to suppress NHEJ repair induced by chemotherapies and radiation, and to enhance the treatment efficacy in multiple cancer types.356,337 In addition, clinical studies supported the use of peposertib (formerly M3814) with desirable safety profile as monotherapy.338 but most ongoing clinical trials investigate its effects in combination with chemotherapies or radiotherapy in cancer. LY3023414 and CC-115 are dual inhibitors that simultaneously target DNA-PK and the mammalian target of rapamycin (mTOR), selectively blocking class I PI3K isoforms at low nanomolar concentrations.339,340 CC-115 was initially designed for mTOR, but was later reported to inhibit DNA repair and become particularly active in ATM-deficient tumors.341 Recently Phase I trial on LY3023414 reported that LY3023414 was well tolerated as single agent in advanced cancers.342

5 | DDR INHIBITOR-BASED COMBINATION THERAPY

The combined treatment of DDR inhibitors with other treatment modalities including chemotherapy, radiotherapy, immunotherapy, or other targeted therapies. Moreover, recent data also supported the therapeutic value of concomitant targeting against nonredundant DDR components.343,344 Here we summarized the ongoing combination trials on DDR inhibitors with chemotherapy, radiotherapy, target therapy (Table 2), with other DDR inhibitors (Table 3), and with immunotherapy (Table 4).

5.1 | Combinations with DNA-damaging agents

5.1.1 | DDR inhibitor–chemotherapy combinations

As discussed, synergistic treatment of DDR inhibitors with cytotoxic chemotherapy has been performed, with schedules based on sequential chemotherapy administration followed by DDR inhibitor being proved clinically more beneficial and more tolerable.145,345–347 The underlying mechanism for the synergy is that the rapidly dividing cancer cells are more likely to be affected by DNA
Conditions	Interventions	Phase	Clinical trial
Chemotherapy			
PARP			
Cancer	Veliparib + VX-970 + cisplatin	I	NCT02723864
Metastatic breast cancer	Veliparib + carboplatin/paclitaxel	III	NCT02163694
Ovarian, breast, pancreatic, prostate cancer	AZD5305 + Carboplatin/paclitaxel	I /II	NCT04644068
Ovarian cancer	Veliparib + carboplatin/paclitaxel	III	NCT02470585
Metastatic pancreatic adenocarcinoma	Veliparib + fluorouracil/irinotecan hydrochloride	II	NCT02890355
SCLC			
Advanced solid tumors	Veliparib + topotecan	I	NCT03227016
Triple negative breast cancer, ovarian cancer	IMP4297 + temozolomide	I	NCT04434482
Breast cancer	KU-0059436 (AZD2281) + carboplatin/paclitaxel	I	NCT00516724
Metastatic BRCA-associated breast cancer	ABT-888 + temozolomide	II	NCT01009788
HR deficient advanced solid tumor malignancies	Niraparib + carboplatin	I	NCT03209401
Prostate carcinoma	Niraparib + chemotherapy	II	NCT04592237
Breast cancer	Olaparib + paclitaxel/carboplatin	II/III	NCT03150576
Adrenal gland pheochromocytoma, paraganglioma	Olaparib + temozolomide	II	NCT04394858
Advanced (stage IIIB-C-IV) ovarian, primary peritoneal and fallopian tube cancer	Rucaparib + paclitaxel/carboplatin	I /II	NCT03462212
BRCA-mutated ovarian carcinoma	Olaparib + chemotherapy	I	NCT03943173
Gastric cancer	Olaparib + paclitaxel	II	NCT01063517
Ovarian cancer	Olaparib + carboplatin/paclitaxel	II	NCT01081951
Ovarian, fallopian tube, or primary peritoneal cancer	Rucaparib + chemotherapy	III	NCT02855944
Recurrent solid tumors and ewing sarcoma	Talazoparib + onivyde	I /II	NCT04901702
Uterine leiomyosarcoma	Olaparib + temozolomide	II	NCT03880019
Ovarian cancer	Talazoparib + chemotherapy	III	NCT03642132
Acute leukemia	Veliparib + temozolomide	I	NCT01139970
Recurrent ovarian carcinoma	Niraparib + chemotherapy + atezolizumab	III	NCT03598270
Metastatic malignant solid neoplasm	Veliparib + topotecan hydrochloride	I	NCT01012817
IDH1 mutation	BGB-290 + temozolomide	I /II	NCT03914742
Recurrent glioma	Talazoparib + carboplatin	II	NCT04740190
Refractory lymphomas undergoing stem cell transplant	Olaparib + chemotherapy	I	NCT03259503

(Continues)
Conditions	Interventions	Phase	Clinical trial
ATM			
Refractory cancer	AZD6738 + paclitaxel	I	NCT02630199
Advanced cancer	ART0380 + gemcitabine	I/II	NCT04657068
ATR			
Esophageal cancer	M6620 + cisplatin	I	NCT03641547
Advanced stage solid tumors	BAY 1895344 + chemotherapy	I	NCT04514497
Ovarian serous tumor	M6620 + gemcitabine	I	NCT02595892
NSCLC, SCLC	VX-970 (M6620) + topotecan	I/II	NCT02487095
Cancer	AZD6738 + gemcitabine	I	NCT03669601
Metastatic malignant solid neoplasm	M6620 + irinotecan hydrochloride	I	NCT02595931
Refractory cancer	AZD6738 + paclitaxel	I	NCT02630199
Advanced solid tumors	BAY 1895344 + cisplatin	I	NCT04491942
Small cell cancers outside of the lungs	M6620 + topotecan	II	NCT03896503
CHK1			
Brain tumor	LY2606368 + cyclophosphamide/gemcitabine	I	NCT04023669
WEE1			
Metastatic pancreatic adenocarcinoma	MK-1775 + paclitaxel/gemcitabine hydrochloride	I/II	NCT02194829
Ovarian, primary peritoneal, or fallopian tube cancer	MK-1775 + paclitaxel/gemcitabine hydrochloride	II	NCT02101775
Radiotherapy			
PARP			
Triple negative breast cancer	Niraparib + radiation therapy/dostarlimab	II	NCT04837209
Triple negative breast cancer	Niraparib + radiation therapy	I	NCT03945721
Breast inflammatory carcinoma	Olaparib + radiation therapy	II	NCT03598257
Malignant glioma without H3 K27M or BRAFV600 mutations	Veliparib + radiation therapy + temozolomide	II	NCT03581292
Head and neck neoplasms	Olaparib + radiotherapy	I	NCT02229656
Malignant gliomas	Temozolomide (TMZ) + radiotherapy	I/II	NCT03212742
ATM			
Brain cancer	AZD1390 + radiation therapy	I	NCT03423628
Advanced cancer	XRD-0394 + palliative radiotherapy	I	NCT05002140
WEE1			
Esophageal adenocarcinoma	Adavosertib + radiation therapy	I	NCT04460937
Cervical carcinoma	Adavosertib + cisplatin/radiation therapy	I	NCT03345784
DNA-PK			
Rectal cancer	Pepsosertib + capecitabine/radiotherapy	I/II	NCT03770689

(Continues)
Conditions	Interventions	Phase	Clinical trial
Solid tumors	M3814 + radiotherapy	I	NCT03724890
Advanced solid tumors	M3814 + fractionated RT/cisplatin	I	NCT02516813
Glioblastoma, gliosarcoma	Nedisertib + radiation therapy/temozolomide	I	NCT04555577
Advanced solid tumor	XRD-0394 + palliative radiotherapy	I	NCT05002140
Other target therapy			
PARP			
BRCA1/2 gene mutated tumors	Niraparib + copanlisib (PI3Ki)	I	NCT03586661
HER2 positive breast carcinoma	Niraparib + trastuzumab	I/II	NCT03368729
Ovarian cancer	Olaparib + cediranib (VEGFR inhibitor)	N/A	NCT02681237
Ovarian cancer patients	Niraparib + bevacizumab	II	NCT04734665
Advanced solid tumors	Olaparib + CYH33 (PI3Kα inhibitor)	II	NCT04586335
Breast cancer	Talazoparib + sacituzumab govetteca	I/II	NCT04039230
Advanced breast carcinoma	Olaparib + cediranib(VEGFrI)	II	NCT04090567
Metastatic breast cancer	Talazoparib + belinostat (HDACi)	I	NCT04703920
Metastatic malignant solid neoplasm	Olaparib + onalespib (Hsp90 inhibitor)	I	NCT02898207
Ovarian cancer	Niraparib + bevacizumab	I/II	NCT02354131
High-grade serous ovarian cancer	Olaparib + paclitaxel	II	NCT04261465
Ovarian cancer	Olaparib + anlotinib (VEGFRI)	II	NCT04566952
Breast cancer metastatic	Olaparib + vorinostat (HDACi)	I	NCT03742245
Endometrial and ovarian cancer	Olaparib + AZD5363 (AKTi)	I/II	NCT02208375
Metastatic prostate carcinoma, malignant neoplasm in the bone	Olaparib + cediranib (AZD-2171) (VEGFrI)	II	NCT02893917
EGFR-mutated advanced lung cancer	Niraparib + osimertinib (EGFRi)	I	NCT03891615
Ovarian cancer	Olaparib + cediranib	III	NCT03278717
Advanced malignant solid neoplasm	Talazoparib tosylate + axitinib/ crizotinib (VEGFrI)	I	NCT04693468
Endometrial serous adenocarcinoma	Olaparib + DS-8201a (HER2i)	I	NCT04585958
Ovarian cancer with no germline BRCA mutation	Olaparib + alpelisib (PIK3i)	III	NCT04729387
Pancreatic cancer	Olaparib + cobimetinib (MEK/ERK inhibition)	I	NCT04005690
Recurrent ovarian, primary peritoneal, or fallopian tube cancer	Olaparib + cediranib maleate	II	NCT02345265
Recurrent ovarian, fallopian tube, or peritoneal cancer	Olaparib + cediranib maleate	I/II	NCT01116648

(Continues)
TABLE 2 (Continued)

Conditions	Interventions	Phase	Clinical trial
Gastric or gastroesophageal junction cancer	Olaparib + ramucirumab (VEGFRi)	I/II	NCT03008278
Metastatic NSCLC	Olaparib + cediranib	I	NCT02498613
Ovarian, fallopian tube, or primary peritoneal cancer	Olaparib + cediranib maleate	II/II	NCT02502266

ATR

Conditions	Interventions	Phase	Clinical trial
Chronic lymphocytic leukemia	AZD6738 + acalabrutinib (BTK inhibitor)	I/I	NCT03328273

Other treatments

Conditions	Interventions	Phase	Clinical trial
Neuroendocrine tumors	Talazoparib + 177Lu-DOTA-octreotate PRRT	I	NCT05053854
Prostate cancer with ATM/BRCA1/2 gene mutation	Niraparib + radical prostatectomy	II	NCT04030559
Prostate cancer	Olaparib + radium Ra223 dichloride	I	NCT03317392
Neuroendocrine tumors, thymoma, mesothelioma	Olaparib + 177Lu-DOTA-TATE	I	NCT04375267
Prostate carcinoma	Talazoparib + androgen deprivation therapy	II	NCT04734730
Metastatic castration-resistant prostate cancer	Rucaparib + Enzalutamide/zbiraterone	I	NCT04179396
Prostate cancer	Talazoparib + enzalutamide	III	NCT04821622

ATR

Conditions	Interventions	Phase	Clinical trial
SCLC, neuroendocrine cancers	Berzosertib + lurbinitedtin	I/II	NCT04802174

*Data from https://clinicaltrials.gov.

damage directly caused by chemotherapy or indirectly from reactive oxygen species. For example, platinum derivatives (carboplatin, cisplatin, and oxaliplatin) produce intrasand DNA cross-links repaired by NER or the Fanconi anemia pathway. Antimetabolites result in stalling of the replication fork, whereas alkylating agents such as temozolomide lead to both single- and double- DNA strand breaks. Topoisomerase (Top) inhibitors include Top 1 inhibitors that generate SSBs, and Top 2 inhibitors that result in DSBs. Meanwhile, epigenetics regulation also plays an important role in DDR, with the hypomethylation of DDR genes significantly associated with worse prognosis in glioblastoma patients. The epigenetics silencing of PRPF19 and TERT genes in glioblastoma cells overcomes their resistance to temozolomide treatment.

Combining cytotoxic chemotherapies and PARP inhibitors has long been proposed based on the capability of PARP inhibitors to eliminate DNA lesions caused by chemotherapy. An early study suggested that a PARP inhibitor 3-AB reversed tumor resistance to temozolomide (TMZ) in glioma models. The combination of TMZ and PARP inhibitor NU1025 was later found to suppress tumor growth and improve overall survival of central nervous system lymphoma. These successful preclinical results urged the clinical evaluation of the TMZ/PARPi combination in patients with advanced gliomas, where the combination regimen demonstrated modest antitumor efficacy and overall tolerability. A randomized Phase II/III study (NCT02152982) investigated the combination of PARPi veliparib and TMZ, which improved disease outcome in tumors with MGMT promoter hypermethylation. Interestingly, the combination was previously found to be ineffective in MGMT-unmethylated cell lines, suggesting the predicting value of MGMT promoter methylation status in tumor response to TMZ/veliparib combination therapy. The combination was further tested in other cancer types (NCT01009788, NCT01638546), but failed to induce significant survival benefits in patients with small cell lung cancer. Early PARP inhibitors 3-AB and PJ34 were shown to overcome tumor resistance to cisplatin in several cancer types, and olaparib was later suggested to enhance the therapeutic effect of cisplatin in lung cancer cells.
TABLE 3 Ongoing combination trials of concomitant targeting against nonredundant DDR components

Combination	Conditions	Interventions	Phase	Clinical trial
PARPi + ATRi	Advanced solid tumor	Talazoparib + RP-3500	I	NCT04497116
PARPi + ATRi	Advanced solid tumors (excluding prostate cancer)	Niraparib + BAY1895344	I	NCT04267939
PARPi + ATRi	High-grade serous carcinoma	Olaparib pill + AZD6738	II	NCT03462342
PARPi + ATRi	Advanced solid tumor	Niraparib/Olaparib + RP-3500	I/I	NCT04972110
PARPi + ATRi	Gynaecological cancers	Olaparib + AZD6738	II	NCT04065269
PARPi + ATRi	Cancer	AZD2281 + AZD5363 + AZD1775 + AZD6738	II	NCT02576444
PARPi + ATRi	Advanced solid tumors	Niraparib + M1774	I	NCT04170153
PARPi + ATRi	Malignant solid neoplasm	Olaparib + Ceralasertib	II	NCT03878095
PARPi + ATRi	Recurrent ovarian, primary peritoneal, or fallopian tube cancer	Olaparib + Adavosertib	II	NCT03579316
PARPi + ATRi	Prostate cancer	Olaparib + AZD6738	II	NCT03787680
PARPi + ATRi	Clear cell renal cell carcinoma	AZD6738 + Olaparib	II	NCT03682289
PARPi + ATRi	Advanced solid tumor	RP-3500 + Niraparib/Olaparib	I/II	NCT04972110
PARPi + BETi	Advanced malignant solid neoplasm	Olaparib + Adavosertib	I	NCT04197713
PARPi + BETi	Ovarian cancer	Olaparib + Adavosertib	I	NCT04633239
PARPi + BETi	Triple negative breast cancer	Talazoparib + ZEN003694	II	NCT03901469
PARPi + CDK4/6i	Breast cancer	Niraparib + Abemaciclib	I	NCT04481113
PARPi + ATMi	Advanced solid tumours	Olaparib + AZD0156	I	NCT02588105
Other	Ovarian cancer	Olaparib + AsiDNATM	I/II	NCT04826198

Data from https://clinicaltrials.gov.

preclinical success allowed the initiation of clinical studies on olaparib in patients with platinum-sensitive ovarian cancer (NCT01081951), where olaparib increased PFS in patients receiving platinum/paclitaxel monotherapy, but failed to improve overall survival.65,347 The combination of PARP inhibitor veliparib with carboplatin and paclitaxel was tested in patients with triple-negative breast cancer patients (NCT02032277) but did not bring survival benefits.364

The ATR inhibitor M6620 demonstrated strong efficacy in combination with cisplatin, which later entered clinical trial and resulted in objective responses in clinical trial either as single agent or cotherapy with carboplatin.365,366 Other DDR inhibitors used along with definitive chemotherapy are underway, including DNA-PK inhibitor M9831, the Phase I evaluation of which was completed in 2019 to determine the maximum tolerated dose of M9831 and its efficacy with or without doxorubicin in advanced cancer patients (NCT02644278).

5.1.2 DDR inhibitor–radiotherapy combinations

The systematic delivery of chemotherapy poses a challenge to its the combinatorial therapy with DDR inhibitors. The overlapping toxicities, predominantly myelosuppression, have led to the termination of many clinical trials.367,368 To date, DNA-damaging agents still remain the mainstay of nonoperative cancer treatment, and besides chemotherapy, radiation therapy is an optional treatment. The ionization effect of radiation producing oxygen free radicals causes DNA damage in cells with 1 Gy of ionizing radiation being able to generate 1000 SSBs and 35 DSBs.369 While radiation has been proved effective by accumulating evidence in combating tumors, an important question is how to reduce the amount of radiation delivered to normal tissues and thus prevent the acute and chronic toxicities. A strategy to intensify the efficacy and at the same time reduce toxicity of radiotherapy is the combination with
DDR	Conditions	Interventions	Phase	Clinical trial
PARP	Endometrial neoplasms	Olaparib + durvaluma	II	NCT03951415
	Solid tumor	Rucaparib + atezolizumab	II	NCT04276376
	Biliary tract cancer	Rucaparib + nivolumab	II	NCT03639935
	Lung small cell carcinoma, neuroendocrine carcinoma	Niraparib + dostarlimab	II	NCT04701307
	Cervical cancer	Olaparib + pembrolizumab	II	NCT04483544
	Breast cancer	Olaparib + pembrolizumab	II	NCT03025035
	Ovarian, breast, gastric cancer, SCLC	Olaparib + durvaluma	I/II	NCT02734004
	Ovarian neoplasms	Niraparib + TSR-042	II	NCT03574779
	Ovarian, fallopian tube, peritoneal cancer	Olaparib + tremelimumab	I/II	NCT02571725
	Metastatic pancreatic adenocarcinoma	Olaparib + pembrolizumab	II	NCT04548752
	Advanced malignant solid neoplasm	Niraparib + atezolizumab	I	NCT03830918
	Advanced malignant solid neoplasm	Olaparib + durvaluma/copanlisib	I	NCT03842228
	Metastatic breast carcinoma	Olaparib + atezolizumab	II	NCT02849496
	LSCL	Olaparib + durvaluma	I	NCT04728230
	Platinum-sensitive ovarian cancer	OSE2101 + pembrolizumab	II	NCT04713514
	Advanced malignant solid neoplasm	Talazoparib + paclitaxel	I	NCT02317874
	Colorectal, breast neoplasms	Olaparib + durvaluma	I/II	NCT02484404
	Prostate carcinoma	Olaparib + durvaluma	II	NCT04336943
	Breast cancer	Niraparib + TSR-042 (dostarlimab)	I	NCT04673448
	Triple negative breast cancer	Olaparib + durvaluma	II	NCT03167619
	Extensive SLSC	Talazoparib + atezolizumab	II	NCT04334941
	Fallopian tube mucinous adenocarcinoma	Olaparib + cediranib + durvaluma	II	NCT04739800
	Metastatic triple negative breast cancer	Olaparib + durvaluma	II	NCT03801369
	Breast, ovarian cancer	Niraparib + pembrolizumab	I/II	NCT02657889
	BRCAm ovarian, fallopian tube or primary peritoneal cancer	Olaparib + durvaluma	II	NCT02953457
	Ovarian, fallopian tube, or primary peritoneal cancer	Rucaparib + nivolumab	III	NCT03522246
	Ovarian carcinosarcoma	Niraparib + TSR-042 (dostarlimab)	II/III	NCT03651206
	Pancreatic adenocarcinoma	Niraparib + nivolumab/iplumlumab	I/II	NCT03404960
	Endometrial cancer	Olaparib + durvaluma	II	NCT03660826
	Metastatic solid tumors	Talazoparib + avelumab	II	NCT03330405
	BRCA1/2 and PALB2 mutated metastatic pancreatic cancer	Niraparib + dostarlimab	II	NCT04493060
	Advanced solid neoplasm	Veliparib + nivolumab	I	NCT03061188
	Metastatic melanoma with HR mutation	Olaparib + pembrolizumab	II	NCT04633902
ATM	Advanced solid tumors	Drug: BAY1895344 + pembrolizumab	I	NCT04095273
ATR	Advanced solid tumors	BAY1895344 + pembrolizumab	I	NCT04095273

Data from https://clinicaltrials.gov.
novel targeted therapies, which increases the radiosensitivity of cancer cells to a greater extent than normal cells.370 Given that radiation causes different DNA lesions including base damaging, SSBs, and DSBs, the simultaneous inhibition of key DDR enzymes thus becomes a promising strategy.371 Furthermore, the clear correlation between radioresistance and increased DNA repair capacities further justify the combinational use of radiotherapy and DDR inhibition.372 However, early efforts on DDR blockade such as PARP inhibitors failed to achieve consistent results.373–375 The suboptimal synergistic effect might be attributed to the fact that DSBs caused by conventional radiation are repaired predominately through the NHEJ pathway, rather than PARP-regulated BER pathway. Moreover, compared with conventional photon-based radiation, HR repair pathway is more engaged in the repair of heavy ion (carbon and iron)-induced DNA damage.375,376 The radiosensitization approaches include inhibitors that prevent S and G2/M cell-cycle arrest that allows DNA damage repair, such as such as PARP, CHK1, WEEI, ATR, and DNA-PK inhibitors.

VE-821 is a ATR inhibitor with potent inhibitory activities on the phosphorylation of H2AX and CHK1 by ATR, and sensitizing effect on cancer cells to radiotherapy and genotoxic chemotherapeutics.56,231,377–379 Notably, the radiosensitization of VE-821 was even more profound in hypoxic cells.377 M6620 (VX-970) is the improved analogue of VE-821 and its synergistic potential with radiotherapy has been widely studied in preclinical settings.232 In esophageal cancer, M6620 was shown to enhance radiation-induced tumor growth arrest both in vitro and in vivo.380,381 The concurrent treatment of M6620 and radiation was recently reported to improve the overall survival in mouse models, supporting the ongoing clinical trial (NCT02589522) assessing the sensitizing effects of M6620 to whole brain irradiation in NSCLC patients with brain metastases.382 AZD6738 was intensively investigated in various cancers, especially ATM-deficient cancers as a monotherapy; recent attempt has converged on its combination therapies.286,383–385 The multiparametric cell-based assays measuring DNA damage and cell-cycle transition are induced by the treatment of AZD6738, and the in vivo mouse xenograft studies provide strong rationale for the design of Phase I clinical trials.386 The accumulating promising results from preclinical studies encouraged the assessment of AZD6738 in more than 25 clinical trials including monotherapies in hematological malignancies (NCT01955668, NCT03770429) and in refractory solid tumors (NCT02223923, NCT03022409), and in combination with radiotherapy (NCT02223923).

WEE1 is involved in the initiation of G2 checkpoint, and the inhibition of Wee1 would subsequently cause unscheduled mitotic entry and increased replication stress.281 It has been reported that increased sensitivity to WEE1 inhibition through mechanisms outside of cell-cycle checkpoint defects, such as DDR aberrations and nucleotide resource starvation, with single-agent activity observed even in TP53-wild-type cancer cells.387–390 The critical role of p53 in the regulation of G1 checkpoints provides a strong rationale for the use of WEE1 inhibitors in p53-deficient cells.391 A WEE1 inhibitor, adavosertib (AZD1775 or MK-1775), was shown to sensitize p53-deficient cells to DNA-damaging radiotherapy via the induction of mitotic lethality.281,392 Thus, recent clinical development has focused to the concurrent treatment of WEE1 inhibitors and DNA-damaging treatments such as radiation therapy in TP53 mutant tumors. Following the evaluation of Phase I study as single agent,393 AZD1775 has demonstrated overall survival benefits when combining radiation in patients with advanced pancreatic cancer.290

As NHEJ is the predominant pathway for the repair of traditional radiotherapy,394 the specific targeting of NHEJ by DNA-PK inhibitors is thus considered as a potential combination partner for radiation. Currently, three DNA-PK inhibitors are under clinical trials: M9831 (VX-984), nedisertib (M3814), and CC-115. In addition to monotherapy, CC-115 is now being investigating in combination with androgen-deprivation therapy (ADT) in castrate-resistant prostate cancer patients (NCT02833883) and with radiation in glioblastoma patients (NCT02977780). Inspired by results from a Phase I trial involving patients with tumors in the head and neck or thorax,395 a growing number of trials are underway to assess the efficacy of nedisertib monotherapy or with radiation.

5.2 DDR inhibitor–DDR inhibitor combinations

The initial purpose of cotargeting key DDR elements was to overcome the acquired resistance to a single DDR inhibitor, predominantly PARP inhibitors. In the light of the variety of DNA repair mechanisms, the combination of one or more of DDR inhibitors to induce synthetic lethality is biologically applicable, even in HR-proficient cells.396 An exciting example was the coinhibition of PARP and WEE1 inhibitor. The combination of adavosertib and olaparib synergistically promoted radiosensitivity of pancreatic cancer cells by impairing their HR repair capacity to achieve synthetic lethality, which led to the initiation of multiple clinical trials (NCT02723864, NCT02576444, and NCT02511795).397 In PARPi-resistant cells with SLFN11 deficiency, the additional ATR inhibition would overcome the resistance due to the fact that SLFN11-inactive cells were more reliant on the ATR pathway for DNA repair.398 Likewise, ATR blockade further disrupted HR repair
pathway in BRCA-deficient cancer cells. In lymphoma models, ATR inhibitor AZD6738 displayed a strong synergistic cytotoxic effect when combined with Chk1 inhibitor or WEE1 inhibitor, further expanding the repertoire of DDR–DDR therapeutic combinations.

In addition to ATR, HR-deficient tumor cells are also increasingly reliant on other alternative repair pathways such as a type of a-EJ, named microhomology-mediated end joining (MMEJ) for survival, suggesting the potential of cotargeting PARP and key members of MMEJ. Other combination partners for PARP inhibitors include the antagonists of PI3K-AKT pathway and BRD4 protein, which has been shown to downregulate several DDR genes and increase the sensitivity of HR-proficient tumors to PARP inhibition. Previous work shows that recently, the combined inhibition of PARP1 and DNA-PK was found to suppress HNSCC tumor growth in vitro and in vivo compared to either agent used alone. The underlying mechanism may be the cooperation between PARP1 and DNA-PKcs to recruit XRCC1 to mediate DNA repair.

5.3 | DDR inhibitor–immunotherapy combinations

The alteration in immune environment caused by DDR deficiency may be used to facilitate the sensitization of immunotherapies. Deficient DDR results in accumulated DNA damage in cells and increases their mutational burden, particularly in tumor cells that normally experience high level of endogenous or exogenous DNA damage. It is becoming increasingly clear that DNA damage could induce the production of immune-regulatory cytokines such as type I IFNs. DNA normally resides in the nucleus or mitochondria, and once it is released to the cytoplasm, it triggers a series of immune response. DNA binds to cyclic guanosine monophosphate (GMP)—adenosine monophosphate (AMP) synthase (cGAS), which leads to the conformational change of the catalytic subunit of cGAS allowing the formation of the second messenger cyclic GMP–AMP (cGAMP). cGAMP then activates STING and its downstream transcription factors IRF3 and NF-κB via kinases TBK1 and IKK, respectively. As shown in Figure 3, IRF3 and NF-κB then translocate into the nucleus and induce the expression of multiple cytokines such as IFNs. DDR dysfunction or the combination therapy with DDR inhibitors further enhances DNA damage, which when transfers into cytosolic DNA and triggers the stimulator of interferon genes (STING) pathway to activate innate immune responses.

Tumors harboring mutations in BRCA1/2 or ATM were identified with high level of cytosolic DNA, which stimulated the innate immune activities and correlated with a durable response to ICIs. In addition, the induced neoantigens of tumor cells could stimulate the host immune response including the intratumoral infiltration of CD8+ T cells, which have long been characterized as a predictive marker for cell response to ICIs. Recent evidence suggested that deleterious DDR-related gene mutations are a frequent event in NSCLC, which indicates improved clinical outcomes in NSCLC patients with PD-(L)1 antibody treatment. Thus, it is conceivable that DDR inhibitors may be able to convert immunologically “cold” into “hot” tumors and sensitize tumor cells to ICIs. A growing number of clinical trials evaluating this drug combination in cancer patients are underway. Figure 3 presents a simplified scheme of the interaction between DNA damage with immune responses.

PARP inhibitors are one of the most extensively studied DDR inhibitors in clinical development and in the context of synthetic lethality such as cells with BRCA1/2 mutations, PARP inhibition is considered proinflammatory. Cells treated with PARP inhibitors exhibited an increased level of PD-L1 expression, supporting the concomitant use of PARP inhibitors and ICIs. Interestingly, cancer stem cells (CSCs) displayed higher expression of PD-L1 compared to nonstem cell cancer cells, which might contribute to the long-term survival improvement by immunotherapy and make ICIs a potential strategy to overcome resistance of CSCs to PARP inhibitors. However, PARP inhibition has recently been shown to attenuate immune response in mice by suppressing thymocyte maturation. It is thus intriguing to speculate whether toxicity of ICIs could be reduced when used in combination with PARP inhibitors.

CDK4/6 inhibitors could convert HR into NHEJ mechanism in cells treated with ionizing radiation in several tumor models, which was likely attributed to the active involvement of cyclin D-CDK4/6-RB pathway in DDR. Besides their radiosensitization effects, CDK4/6 inhibitors were also reported to reduce the T-cell exclusion and immune evasion in ICI-resistant melanoma cells. It is therefore not surprising that the combination of CDK4/6 inhibitors and anti-PD-L1 therapy led to substantial tumor regression in xenograft mouse models. Clinical trials sought to determine the efficacy of FDA-approved CDK4/6 inhibitors such as palbociclib and abemaciclib combined with pembrolizumab in patients with HR-positive breast cancer (NCT02779751, NCT02778685), where the drug combination induced a higher objective response rate than either monotherapy and later entered clinical trials on other cancer types.

Other combination partner for ICI includes the CHK1 inhibitor prexasertib (LY2606368), which potently activated the STING/TBK1/IRF3 innate immune pathway and upregulated tumor expression of PD-L1, suggesting its
synergistical potential with ICIs.436,437 Several action mechanisms of the combination therapy have been proposed. For example, ATR inhibitor (BAY1895433) targeting the ATR-CHK1 signaling could activate CDK1-SPOP axis, which results in the destabilization of PD-L1, proving a strong rationale for the concomitant use of ATRi with anti-PD-L1 therapy.438 Adavosertib is currently the only WEE1 inhibitor under clinical trials and its combination with anti-PD-L1 monoclonal antibody durvalumab is under assessment in a Phase I trial (NCT02617277).439

6 REMAINING CHALLENGES AND FUTURE PERSPECTIVES

Cell response to DNA damage is a complex process involving various signal networks and proteins, which are differentially activated or inactivated in specific cancer types. For instance, breast, ovarian, and bladder cancers are likely accompanied with alterations in HR genes, whereas some gastric and colorectal tumor subgroups present a hypermutator phenotype lacking aneuploidy. Furthermore, the DNA repair capacity also varies among different cell types. For example, the repair efficiency of human embryonic stem cells is the higher than differentiated cell types,440 and some tumor cells present upregulated damage repair such as the high level of MGMT repair activity in gliomas.441,442 Thus, characterization of every single type of tumor to identify its specific profile of deregulated DDR components will facilitate personalized treatment of cancer patients. Next-generation sequencing provides an opportunity for precision medicine by analyzing the whole-genome alterations associated with DNA repair across different cancer types. It is recently found through next-generation sequencing that epigenetic regulators also appear to play a particularly important role in cancer events.443 For example, epigenetic silencing of genes leads to loss-of-function events of DDR proteins.

The initial idea for the DDR inhibitor-based combination therapy was to enhance the efficacy of conventional treatments. Although DDR inhibitors have been widely conducted on unselected patients, recent research interest tends to use these drug combinations in tumors with specific genetic backgrounds such as p53 mutation and BRCA alterations, which make cells more susceptible to DDR inhibitors. Emerging clinical trials are ongoing to explore
the potential predictive markers for patients’ response to combinational therapy, including alterations in genes such as ATM, BRCA1, BRCA2, CDK12, CHEK1, MYC, PARP1, PIK3CA, and PTEN (NCT03842228, NCT02546661).

The early knowledge that DNA repair deficiency leading to increased neoantigen and tumor mutational load makes ICI a potential combination partner for DDR inhibitors. However, high mutational burden is a not a guarantee for efficient ICI response, given the varying level of immunogenicity induced by different DNA repair-deficient backgrounds. The immune score and mutational signature have been proved feasible in evaluating the response of ovarian cancer patients to niraparib and pembrolizumab. Reliable predictive biomarkers are needed to identify the specific subset of patients responsive to ICI and DDR inhibitor combinations. One such strategy is to integrate indexes from multiple platforms, such as combining tumor mutational burden with immune activity marker. The immune activity can be reflected by intratumor immune infiltrations and STING pathway.

Targeting methylation pathways is a promising anti-cancer strategy. Accumulating evidence has suggested the epigenetics regulation on DDR. Multiple histone methyltransferases and demethylases have been described to facilitate chromatin remodeling and chromatin-based DDR activities. However, mechanisms of how histone methylation is involved in DDR remains to be elucidated. Given the correlation between PARP and histone methylation, identifying the involvement of methylation signaling in DDR would bring new therapeutic approaches for cancer treatment.

Finally, the increased replication stress and DNA repair defects in tumors provide a therapeutic opportunity that makes cancer cells more vulnerable to DDR inhibition than normal cells. However, the rapid development of clinical DDR inhibitors has raised a concern on toxicity, which is frequently accompanied with other anticancer therapies. It is rather imperative to identify optimal doses, combinations, and schedules of DDR inhibitors to minimize their adverse effects and more ideally, enhance the efficacy. It has to be addressed that DDR proteins initially possess essential physiological functions that recognize and fix DNA damage in normal cells, the repression of which may be deleterious due to the increased mutagenic load in normal tissues. Surveillance on long-term toxicity of DDR inhibition may thus be added into clinical trial design.

ACKNOWLEDGMENTS
This work is supported by The National Postdoctoral Science Foundation of China (No. 2021M702347).

CONFLICT OF INTEREST
The authors declare no conflict of interests.

AUTHOR CONTRIBUTIONS
Wang Manni offered the main direction and significant guidance of this manuscript. Wang Manni, Siyuan Chen and Danyi Ao drafted the manuscript and illustrated the figures for the manuscript.

ETHICS APPROVAL
Not Applicable

DATA AVAILABILITY STATEMENT
The authors confirm that the data supporting the findings of this study are available within the review.

REFERENCES
1. Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sc. 2008;12(1):1-84.
2. Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 2013;332(2):237-248.
3. Voulgaridou GP, Anastopoulos I, Franco R, Panayiotidis MI, Pappa A. DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res. 2011;711(1-2):13-27.
4. Cadet J, Ravanat JL, TavernaPorro M, Menoni H, Angelov D. Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett. 2012;327(1-2):5-15.
5. Kauffmann A, Rosselli F, Lazar V, et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 2008;27(5):565-573.
6. David SS, O’Shea VL, Kundra S. Base-excision repair of oxidative DNA damage. Nature. 2007;447(7147):941-950.
7. Doetsch PW, Cunningham RP. The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res. 1990;236(2-3):173-201.
8. Cleaver JE, Lam ET, Revet I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet. 2009;10(11):756-768.
9. McNeil EM, Melton DW. DNA repair endonuclease ERCCI-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res. 2012;40(20):9990-10004.
10. Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010;11(3):196-207.
11. Lieber MR. NHEJ and its backup pathways in chromosomal translocations. Nat Struct Mol Biol. 2010;17(4):393-395.
12. Forget AL, Kowalczykowski SC. Single-molecule imaging brings Rad51 nucleoprotein filaments into focus. Trends Cell Biol. 2010;20(5):269-276.
13. Shibata A, Jeggo P, Lobrich M. The pendulum of the Ku-Ku clock. DNA Repair (Amst). 2018;71:164-171.
14. Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999;63(2):349-404.
15. Orr-Weaver TL, Szostak JW. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc Natl Acad Sci USA. 1983;80(14):4417-4421.
16. Bhargava R, Onyango DO, Stark JM. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. 2016;32(9):566-575.

17. Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495-506.

18. Boboila C, Jankovic M, Yan CT, et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci U S A. 2010;107(7):3034-3039.

19. Simsek D, Jasim M. Alternative end-joining is suppressed by the canonical NHEJ component Xrc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol. 2010;17(4):410-416.

20. Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature. 2015;518(7538):254-257.

21. Ceccaldi R, Liu JC, Amunugama R, et al. Homologous-recombination-deficient tumours are dependent on Polbeta-mediated repair. Nature. 2015;518(7538):258-262.

22. Tobin LA, Robert C, Rapoport AP, et al. Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias. Oncogene. 2013;32(14):1784-1793.

23. Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev. 1999;9(1):89-96.

24. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74:681-710.

25. Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101-133.

26. Tiraby JG, Fox MS. Marker discrimination in transformation and mutation of pneumococcus. Proc Natl Acad Sci U S A. 1973;70(12):3541-3545.

27. Espanol T, Caragol I, Bertran JM. Postnatal transmission of HIV infection. N Engl J Med. 1992;326(9):642. author reply 643–4.

28. Banzaert D, Szakal B. DNA damage tolerance by recombination: molecular pathways and DNA structures. DNA Repair (Amst). 2016;44:68-75.

29. Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev. 2009;73(1):134-154.

30. Bi X. Mechanism of DNA damage tolerance. World J Biol Chem. 2015;6(3):48-56.

31. Waters LS, Walker GC. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G(2)/M phase rather than S phase. Proc Natl Acad Sci U S A. 2006;103(24):8971-8976.

32. Lang GI, Murray AW. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol. 2011;3:799-811.

33. Daigaku Y, Davies AA, Ulrich HD. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature. 2010;465(7300):951-955.

34. Sawyer SL, Tian L, Kahkonen M, et al. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov. 2015;5(2):135-142.

35. Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics. 2015;9:32.

36. Ceccaldi R, Sarangi P, D’Andrea AD. The Fanconi anemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016;17(6):337-349.

37. Bluteau D, Masliah-Planchon J, Clairmont C, et al. Biallelic inactivation of REV7 is associated with Fanconi anemia. J Clin Invest. 2016;126(9):3580-3584.

38. Knies K, Inano S, Ramirez MJ, et al. Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J Clin Invest. 2017;127(8):3013-3027.

39. Kim H, D’Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 2012;26(13):1393-1408.

40. Stone MP, Cho YJ, Huang H, et al. Interstrand DNA cross-links induced by alpha,beta-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc Chem Res. 2008;41(7):793-804.

41. Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. Fancd2 counters the toxic effects of naturally produced aldehydes in mice. Nature. 2011;475(7354):53-58.

42. O’Donovan A, Davies AA, Moggs JG, West SC, Wood RD. XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature. 1994;371(6496):432-435.

43. Liu W, Palovcak A, Li F, Zafar A, Yuan F, Zhang Y. Fanconi anemia pathway as a prospective target for cancer intervention. Cell Biosci. 2020;10:39.

44. Clauson C, Scharer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol. 2013;5(10):a012732.

45. Niraj J, Farkkila A, D’Andrea AD. The Fanconi anemia pathway in cancer. Annu Rev Cancer Biol. 2019;3:457-478.

46. Rodriguez A, D’Andrea A. Fanconi anemia pathway. Curr Biol. 2017;27(18):R986.

47. Swann PF. Why do O6-alkylguanine and O4-alkylthymine miscode? The relationship between the structure of DNA containing O6-alkylguanine and O4-alkylthymine and the mutagenic properties of these bases. Mutat Res. 1990;233(1-2):81-94.

48. Beranek DT. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res. 1990;231(1):11-30.

49. Fang Q, Kanugula S, Pegg AE. Function of domains of human O6-alkylguanine-DNA alkyltransferase. Biochemistry. 2005;44(46):15396-15405.

50. Kaina B, Christmann M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst). 2019;78:128-141.

51. Criniere E, Kaloshi G, Laigle-Donadey F, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997-1003.
53. Reifenberger G, Hentschel B, Felsberg J, et al. Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer. 2012;131(6):1342-1350.

54. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350-1354.

55. Hegi ME, Diserens AC, Godard S, et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res. 2004;10(6):1871-1874.

56. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987-996.

57. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501(7467):338-345.

58. O’Connor MJ, Martin NM, Smith GC. Targeted cancer therapy: based on the inhibition of DNA strand break repair. Oncogene. 2007;26(56):7816-7824.

59. Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26(22):3785-3790.

60. Lucchesi JC. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanogaster. Genetics. 1968;59(1):37-44.

61. Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12(12):801-817.

62. Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5(5):689-698.

63. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287-294.

64. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 2007;33(1):9-23.

65. Oza AM, Cibula D, Benzaquen AO, et al. Olaparib combined to chemotherapy for recurrent platinum-sensitive ovarian cancer. Lancet Oncol. 2015;16(12):1070-1077.

66. Reaper PM, Griffiths MR, Long JM, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol. 2011;7(7):428-430.

67. Sung P, Klein H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol. 2006;7(10):739-750.

68. Buisson R, Boisvert JL, Benes CH, Zou L. Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S phase. Mol Cell. 2015;59(6):1011-1024.

69. Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16(1):2-9.

70. Bester AC, Roniger M, Oren YS, et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 2011;145(3):435-446.

71. Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015;10:425-448.

72. Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 2005;19(9):1040-1052.

73. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010;37(4):492-502.

74. Macheret M, Halazonetis TD. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature. 2018;555(7694):112-116.

75. Costantini I, Sorioiu SK, Rantala JK, et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science. 2014;343(6166):388-91.

76. Minocherhomji S, Ying S, Bjerregaard VA, et al. Replication stress activates DNA repair synthesis in mitosis. Nature. 2015;528(7581):286-290.

77. Gisselsson D, Petterson L, Hoglund M, et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci U S A. 2000;97(10):5357-5362.

78. Crasta K, Ganem NJ, Dagher R, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482(7383):53-58.

79. Lukas C, Savic V, Bekker-Jensen S, et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol. 2011;13(3):243-253.

80. Michelin F, Pitchaya S, Vitelli V, et al. Damage-induced IncRNAs control the DNA damage response through interaction with DDRRNAs at individual double-strand breaks. Nat Cell Biol. 2017;19(12):1400-1411.

81. Michelin F, Jalilah AP, Francia S, et al. From “cellular” RNA to “smart” RNA: multiple roles of RNA in genome stability and beyond. Chem Rev. 2018;118(8):4365-4403.

82. D’Alessandro G, Whelan DR, Howard SM, et al. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat Commun. 2018;9(1):5376.

83. Bartkova J, Hamerlik P, Stockhausen MT, et al. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene. 2010;29(36):5095-5102.

84. Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434(7035):907-913.

85. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330-338.

86. Fujinaka Y, Matsuoka K, Limmori M, et al. ATR-Chkl signaling pathway and homologous recombinational repair protect cells from 5-fluorouracil cytotoxicity. DNA Repair (Amst). 2012;11(3):247-258.

87. Voland C, Bord A, Peleraux A, et al. Repression of cell cycle-related proteins by oxaliplatin but not cisplatin in human colon cancer cells. Mol Cancer Ther. 2006;5(9):2149-2157.

88. Kiyonari S, Limmori M, Matsuoka K, et al. The 1,2-diaminocyclohexane carrier ligand in oxaliplatin induces p53-dependent transcriptional repression of factors involved in thymidylate biosynthesis. Mol Cancer Ther. 2015;14(10):2322-2342.

89. Wilson PM, Fazzzone W, LaBonte MJ, Lenz HJ, Ladner RD. Regulation of human dUTPase gene expression and p53-mediated
transcriptional repression in response to oxaliplatin-induced DNA damage. *Nucleic Acids Res.* 2009;37(1):78-95.
90. Bruno PM, Liu Y, Park GY, et al. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. *Nat Med.* 2017;23(4):461-471.
91. Tanaka N, Sakamoto K, Okabe H, et al. Repeated oral dosing of TAS-102 confers high trifluridine incorporation into DNA and sustained antitumor activity in mouse models. *Onco1 Rep.* 2014;32(6):2319-2326.
92. Matsuoka K, Limori M, Niimi S, et al. Trifluridine induces p53-dependent sustained G2 phase arrest with its massive misincorporation into DNA and few DNA strand breaks. *Mol Cancer Ther.* 2015;14(4):1004-1013.
93. Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. *Cancer Discov.* 2017;7(1):20-37.
94. Satoh MS, Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. *Nature.* 1992;356(6367):356-358.
95. De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. *Biochem Pharmacol.* 2012;84(2):137-146.
96. Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. *Mol Cell.* 2010;39(1):8-24.
97. Eustermann S, Wu WF, Langelier MF, et al. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1. *Mol Cell.* 2015;60(5):742-754.
98. Soria G, Polo SE, Almouzni G. Prime, repair, restore: the active role of chromatin in the DNA damage response. *Mol Cell.* 2012;46(6):722-734.
99. Ziv Y, Bielopolski D, Galanty Y, et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. *Nat Cell Biol.* 2006;8(9):870-876.
100. Murga M, Jiao I, Fan Y, et al. Global chromatin compaction limits the strength of the DNA damage response. *J Cell Biol.* 2007;178(7):1101-1108.
101. Dantzer F, Schreiber V, Niedergang C, et al. Involvement of poly(ADP-ribose) polymerase in base excision repair. *Biochimie.* 1999;81(1-2):69-75.
102. de Murcia JM, Niedergang C, Trucco C, et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. *Proc Natl Acad Sci U S A.* 1997;94(14):7303-7307.
103. Vodenicharov MD, Sallmann FR, Satoh MS, Poirier GG. Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. *Nucleic Acids Res.* 2000;28(20):3887-3896.
104. Pachkowski BF, Tano K, Afonin V, et al. Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS. *Mutat Res.* 2009;671(1-2):93-99.
105. Strom CE, Johansson F, Uhlen M, Szigarto CA, Erixon K. Poly Helleday T. ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. *Nucleic Acids Res.* 2011;39(8):3166-3175.
106. Murai J, Huang SY, Das BB, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. *Cancer Res.* 2012;72(21):5588-5599.
107. Murai J, Huang SY, Renaud A, et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. *Mol Cancer Ther.* 2014;13(2):433-443.
108. Pommier Y, O’Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. *Sci Transl Med.* 2016;8(362):362ps17.
109. Langelier MF, Planck JL, Roy S, Pascal JM. Structural basis for DNA damage-dependent poly(ADP-ribose)ylation by human PARP-1. *Science.* 2012;336(6082):728-732.
110. Kotsopoulos J, Willows K, Trat S, et al. BRCA mutation status is not associated with increased hematologic toxicity among patients undergoing platinum-based chemotherapy for ovarian cancer. *Int J Gynecol Cancer.* 2018;28(1):69-76.
111. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2018;68(6):394-424.
112. Ledermann JA, Raja FA, Fotopoulou C, et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol.* 2013;24(6):vi24-vi32. Suppl.
113. Franzese E, Diana A, Centonze S, et al. PARP inhibitors in first-line therapy of ovarian cancer: are there any doubts? *Front Oncol.* 2020;10:782.
114. Ray-Coquard I, Pautier P, Pignata S, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. *N Engl J Med.* 2019;381(25):2416-2428.
115. Gonzalez-Martin A, Pothuri B, Vergote I, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. *N Engl J Med.* 2019;381(25):2391-2402.
116. Coleman RL, Fleming GF, Brady MF, et al. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. *N Engl J Med.* 2019;381(25):2403-2415.
117. Banerjee S, Gonzalez-Martin A, Harter P, et al. First-line PARP inhibitors in ovarian cancer: summary of an ESMO Open—Cancer Horizons round-table discussion. *ESMO Open.* 2020;5(6):e001110.
118. Plummer R, Lorigan P, Steven N, et al. A phase II study of the potent PARP inhibitor, Rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. *Cancer Chemother Pharmacol.* 2013;71(5):1191-1199.
119. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. *Nature.* 2005;434(7035):917-921.
120. Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. *Nature.* 2005;434(7035):913-917.
121. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. *N Engl J Med.* 2009;361(2):123-134.
122. Fong PC, Yap TA, Boss DS, et al. Poly(ADP-ribose) polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. *J Clin Oncol.* 2010;28(15):2512-2519.
123. Audeh MW, Carmichael J, Pensiot RT, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. *Lancet.* 2010;376(9737):245-251.
124. Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244-250.

125. Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21(1):162-174.

126. Kim G, Ison G, McKee AE, et al. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA1/2 mutations. N Engl J Med. 2017;377(18):1792-1793.

127. Sonnenblick A, de Azambuja E, Azim HA, Piccart M. An update on PARP inhibitors—moving to the adjuvant setting. Nat Rev Clin Oncol. 2015;12(1):27-41.

128. Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21(1):162-174.

129. Frazer S, Helleday T. PARP inhibitor receives FDA breakthrough therapy designation in platinum-sensitive, recurrent ovarian cancer. J Clin Oncol. 2015;23(19):4257-4261.

130. Robson M, Goessl C, Domchek S. Olaparib for metastatic germline BRCA-mutated breast cancer. N Engl J Med. 2017;377(18):1792-1793.

131. Pilie PG, Gay CM, Byers LA, O'Connor MJ, Yap TA. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Nat Rev Clin Oncol. 2016;13(1):27-41.

132. Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;162(2):454.

133. Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;162(2):454.

134. Helleday T. PARP inhibitor receives FDA breakthrough therapy designation in castration resistant prostate cancer: beyond germline BRCA mutations. Ann Oncol. 2016;27(5):755-757.

135. Bryant HE, Helleday T. Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res. 2006;34(6):1685-1691.

136. McCabe N, Turner NC, Lord CJ, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly (ADP-ribose) polymerase inhibition. Cancer Res. 2006;66(16):8109-8115.

137. Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol. 2014;32(13):1302-1308.

138. Swisher EM, Lin KK, Oza AM, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18(1):75-87.

139. Gonzalez Martin A. Progress in PARP inhibitors beyond BRCA mutant recurrent ovarian cancer? Lancet Oncol. 2017;18(1):3-9.

140. Shapira-Frommer R, Oza AM, Domchek SM, et al. A phase II open-label, multicenter study of single-agent rucaparib in the treatment of patients with relapsed ovarian cancer and a deleterious BRCA mutation. J Clin Oncol. 2015;33(15):5513-5513. suppl.
158. Goodall J, Matej J, Yuan W, et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 2017;7(9):1006-1017.

159. Dev H, Chiang TW, Lesocale C, et al. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat Cell Biol. 2018;20(8):954-965.

160. He YJ, Meghani K, Caron MC, et al. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nat. 2018;563(7732):522-526.

161. Mirman Z, Lottersberger F, Takai H, et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polalpha-dependent fill-in. Nature. 2018;560(7716):112-116.

162. Ter Brugge P, Kristel P, van der Burg E, et al. Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer. J Natl Cancer Inst. 2016;108(11).

163. Noordermeer SM, Adam S, Setiaputra D, et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature. 2018;560(7716):117-121.

164. Hatakeyama K, Nemoto Y, Ueda K, Hayaishi O. Purification and characterization of poly(ADP-ribose) glycohydrolase. Different modes of action on large and small poly(ADP-ribose). J Biol Chem. 1986;261(32):14902-14911.

165. Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H. Characterization of poly(ADP-ribose) glycohydrolase by adenosine diphosphate (hydroxymethyl)pyrrolidinediol. J Biol Chem. 1995;338(2):389-393.

166. Finch KE, Knezevic CE, Notbohm AC, Partlow KC, Hergenrother PJ. Selective small molecule inhibition of poly(ADP-ribose) glycohydrolase (PARG). ACS Chem Biol. 2012;7(3):563-570.

167. Houl JH, Ye Z, Brosey CA, et al. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat Commun. 2019;10(1):5654.

168. Bannister AJ, Gottlieb TM, Kouzardes T, Jackson SP. c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro; definition of the minimal kinase recognition motif. Nucleic Acids Res. 1993;21(5):1289-1295.

169. Bockstahler LE, Lytle CD, Hellman KB. A review of photodynamic therapy for herpes simplex: benefits and potential risks. N Y J Dent. 1975;45(5):148-157.

170. Kim ST, Lim DS, Caneman CE, Kastan MB. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem. 1999;274(53):37538-37543.

171. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Eur J Cell Sci. 2010;31(12):2058-2065.

172. Dai Y, Grant S. New insights into checkpoint kinase 1 in the DNA damage response: benefits and potential risks. Curr Opin Cell Biol. 2014;6(6):442-457.

173. Min W, Cortes U, Herceg Z, Tong WM, Wang ZQ. Deletion of the nuclear isoform of poly(ADP-ribose) glycohydrolase (PARG) reveals its function in DNA repair, genomic stability and tumorigenesis. Carcinogenesis. 2010;31(12):2058-2065.

174. Gravells P, Neale J, Grant E, et al. Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: a comparison with the PARPi/2/3 inhibitor olaparib. DNA Repair (Amst). 2018;61:25-36.

175. Koh DW, Lawler AM, Poitras MF, et al. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci U S A. 2004;101(31):17699-17704.
194. Mehdipour P, Karami F, Javan F, Mehrazin M. Linking ATM omotor methylation to cell cycle protein expression in brain tumor patients: cellular molecular triangle correlation in ATM territory. Mol Neurobiol. 2015;52(1):293-302.

195. Safar AM, Spencer H, Su X, et al. Methylation profiling of archived non-small cell lung cancer: a promising prognostic system. Clin Cancer Res. 2005;11(12):4400-4405.

196. Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzingter DG, Brown KD. The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene. 2004;23(58):9432-9437.

197. Cremona CA, Behrens A. ATM signalling and cancer. Oncogene. 2014;33(26):3351-3360.

198. Choi M, Kipps T, Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016;15(8):1781-1791.

199. Stracker TH, Roig I, Knobel PA, Marjanovic M. The ATM signaling network in development and disease. Front Genet. 2013;4:37.

200. Rafiei S, Fitzpatrick K, Liu D, et al. ATM loss confers greater radiosensitivity of PTEN-deficient tumor cells with inhibitors of the DNA damage response kinase ATM. Cancer Res. 2020;80(11):2094-2100.

201. Lito P, Solomon M, Li LS, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science. 2016;351(6273):604-608.

202. Herrero AB, Gutierrez NC. Targeting ongoing DNA damage in multiple myeloma: effects of DNA damage response inhibitors on plasma cell survival. Front Oncol. 2017;7:98.

203. Wang P, Ma D, Wang J, et al. INPP4B-mediated DNA repair pathway confers resistance to chemotherapy in acute myeloid leukemia. Tumour Biol. 2016;37(9):12513-12523.

204. Chen H, Li H, Chen Q. INPP4B overexpression suppresses migration, invasion and angiogenesis of human prostate cancer cells. Clin Exp Pharmacol Physiol. 2017;44(6):700-708.

205. Herrero AB, Gutierrez NC. Targeting ongoing DNA damage in multiple myeloma: effects of DNA damage response inhibitors on plasma cell survival. Front Oncol. 2017;7:98.

206. McCabe N, Hanna C, Walker SM, et al. Mechanistic rationale to target PTEN-deficient tumor cells with inhibitors of the DNA damage response kinase ATM. Cancer Res. 2015;75(11):2159-2165.

207. Konig G, Remberker K, Hofling B, Erdemann E, Fruhmann G. A 45-year-old patient with a progressive, currently therapy-resistant disease of the lung. Internist (Berl). 1986;27(1):65-69.

208. Mansour WY, Tussidetl P, Volquardsen J, et al. Loss of PTEN-assisted G2/M checkpoint impedes homologous recombination repair and enhances radio-curability and PARP inhibitor treatment response in prostate cancer. Sci Rep. 2018;8(1):3947.

209. Li K, Yan H, Guo W, et al. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin. Exp Cell Res. 2018;366(1):24-33.

210. Batey MA, Zhao Y, Kyle S, et al. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol Cancer Ther. 2013;12(6):959-967.

211. Rainey MD, Charlton ME, Stanton RV, Kastan MB. Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res. 2008;68(18):7466-7474.
230. Su D, Feng X, Colic M, et al. CRISPR/CAS9-based DNA damage response screens reveal gene-drug interactions. DNA Repair (Amst). 2020;57:102803.

231. Charriére JD, Durrant SJ, Golec JM, et al. Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem. 2011;54(7):2320-2330.

232. Fokas E, Prevo R, Pollard JR, et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis. 2012;3:e441.

233. Peasland A, Wang LZ, Rowling E, et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer. 2011;105(3):372-381.

234. Foote KM, Blades K, Cronin A, et al. Discovery of 4-[(3R)-3-Methylmorpholin-4-yl]-6-[(1-methylsulfonyl)cyclopropyl] pyrimidin-2-y l]-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J Med Chem. 2013;56(5):2125-2138.

235. Gatei M, Sloper K, Sorensen C, et al. The cell-cycle and selective inhibitors of ataxia telangiectasia and rad3 related protein (ATR). Bioorg Med Chem Lett. 2017;27(4):750-754.

236. Terranova N, Jansen M, Falk M, Hendriks BS. Population pharmacokinetics of ATR inhibitor berzosertib in phase I studies for different cancer types. Cancer Chemother Pharmacol. 2021;87(2):185-196.

237. Ramachandran SA, Jadhavar PS, Singh MP, et al. Discovery of pyrazolopyrimidine derivatives as novel inhibitors of ataxia telangiectasia and rad3 related protein (ATR). Bioorg Med Chem Lett. 2017;27(4):750-754.

238. Sorensen CS, Hansen LT, Dziegielewski J, et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol. 2005;7(2):195-201.

239. Sorensen CS, Hansen LT, Dziegielewski J, et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol. 2005;7(2):195-201.

240. Pan Y, Ren KH, He HW, Shao RG. Knockdown of Chk1 sensitizes human colon carcinoma HCT116 cells in a p53-dependent manner to lidamycin through abrogation of a G2/M checkpoint and induction of apoptosis. Cancer Biol Ther. 2009;8(16):1559-1566.

241. Higromoto D, Naick H, Rao BJ. ATR signalling mediates the prosurvival function of phospho-NPM against PIDDosome mediated cell death. Cell Signal. 2020;71:109602.

242. David L, Fernandez-Vidal A, Bertoli S, et al. CHK1 as a therapeutic target to bypass chemoresistance in AML. Sci Signal. 2016;9(445):ra90.

243. Wang WJ, Wu SP, Liu JB, et al. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res. 2013;73(3):1219-1231.

244. Zeng P, Wei Y, Wang L, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16(9):864-875.

245. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-760.

246. Morton NE. Gene maps and location databases. Ann Hum Genet. 1991;55(3):235-241.

247. Cole KA, Huggins J, Laquaglia M, et al. RNAi screen of the protein kinase identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma. Proc Natl Acad Sci U S A. 2011;108(8):3336-3341.

248. Ferrao PT, Bukczynska EP, Johnstone RW, McArthur GA. Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene. 2012;31(13):1661-1672.

249. Rowden M, Harrison S, Ashfield R, Kingsman AJ, Kingsman SM. Multiple cooperative interactions constrain BPV-1 E2 dependent activation of transcription. Nucleic Acids Res. 1989;17(8):2959-2972.

250. Barker HE, Patel R, McLaughlin M, et al. CHK1 inhibition radiosensitizes head and neck cancers to paclitaxel-based chemoradiotherapy. Mol Cancer Ther. 2016;15(9):2042-2054.

251. Walton MI, Eve PD, Hayes A, et al. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Emicro-MYC driven B-cell lymphoma. Oncotarget. 2016;7(3):2329-2342.

252. Fuse E, Tanih H, Kurata N, et al. Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human alpahal acid glycoprotein. Cancer Res. 1998;58(15):3248-3253.

253. McNeely S, Beckmann R, Bence Lin AK. CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther. 2014;142(1):1-10.

254. Sakurikar N, Eastman A. Will targeting Chk1 have a role in the future of cancer therapy? J Clin Oncol. 2015;33(9):1075-1077.

255. Daud AI, Ashworth MT, Strosberg J, et al. Phase I dose escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol. 2015;33(9):1060-1066.

256. Infante JR, Hollebecque A, Postel-Vinay S, et al. Phase I study of GDC-0425, a checkpoint kinase 1 inhibitor, in combination...
with gemcitabine in patients with refractory solid tumors. Clin Cancer Res. 2017;23(10):2423-2432.

263. Laroche-Clary A, Lucchesi C, Rey C, et al. CHK1 inhibition in soft-tissue sarcomas: biological and clinical implications. Ann Oncol. 2018;29(4):1023-1029.

264. Booth L, Roberts J, Poklepovic A, Dent P. The CHK1 inhibitor SRA737 synergizes with PARPi inhibitors to kill carcinoma cells. Cancer Biol Ther. 2018;19(9):786-796.

265. Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol. 2017;18(10):622-636.

266. Ma M, Rodriguez A, Sugimoto K. Activation of ATR-related protein kinase upon DNA damage recognition. Curr Genet. 2020;66(2):327-333.

267. Sorensen CS, Syljuasen RG. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res. 2012;40(2):477-486.

268. Mahajan K, Mahajan NP. WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet. 2013;29(7):394-402.

269. Mahajan K, Fang B, Koomen JM, Mahajan NP. H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat Struct Mol Biol. 2012;19(9):930-937.

270. Mir SE, De Witt Hamer PC, Krawczyk PM, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010;18(3):244-257.

271. Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell. 2007;11(2):175-189.

272. Wang F, Zhu Y, Huang Y, et al. Transcriptional repression of WEE1 by Kruppel-like factor 2 is involved in DNA damage-induced apoptosis. Oncogene. 2005;24(24):3875-3885.

273. Mak JP, Man WY, Chow JP, Ma HT, Poon RY. Pharmacological inactivation of CHK1 and WEE1 induces mitotic catastrophe in nasopharyngeal carcinoma cells. Oncotarget. 2015;6(25):21074-21084.

274. Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489-494.

275. Kreehaling JM, Gemmer JY, Reed D, Letson D, Bui M, Altio S. MK1775, a selective Wee inhibitor, shows single-agent antitumor activity against sarcoma cells. Mol Cancer Ther. 2012;11(1):174-182.

276. Rajeshkumar NV, De Oliveira E, Ottenhof N, et al. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res. 2011;17(9):2799-2806.

277. Van Linden AA, Baturin D, Ford JB, et al. Inhibition of Wee1 sensitizes cancer cells to antimitobolite chemotherapeutics in vitro and in vivo, independent of p53 functionality. Mol Cancer Ther. 2013;12(12):2675-2684.

278. Li C, Andrake M, Dunbrack R, Enders GH. A bifunctional regulatory element in human somatic Weel mediates cyclin A/Cdk2 binding and Crml-dependent nuclear export. Mol Cell Biol. 2010;30(1):116-130.

279. Palmer BD, Smaill JB, Rewcastle GW, et al. Structure-activity relationships for 2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones as inhibitors of the cellular checkpoint kinase Weel. Bioorg Med Chem Lett. 2005;15(7):1931-1935.

280. Panek RL, Lu GH, Klutcho SR, et al. In vitro pharmacological characterization of PD166285, a new nanomolar potent and broadly active protein tyrosine kinase inhibitor. J Pharmacol Exp Ther. 1997;283(3):1433-1444.

281. Hirai H, Iwasawa Y, Okada M, et al. Small-molecule inhibition of Weel kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther. 2009;8(11):2992-3000.

282. Zhu JY, Cuellar RA, Berndt N, et al. Structural basis of Wee kinases functionality and inactivation by diverse small molecule inhibitors. J Med Chem. 2017;60(18):7863-7875.

283. Wright G, Golubeva V, Rensmig RIX LL, et al. Dual targeting of WEE1 and PLK1 by AZD1775 elicits single agent cellular anti-cancer activity. ACS Chem Biol. 2017;12(7):1883-1892.

284. Serpico AF, D’Alterio G, Vetrei C, et al. Weel rather than PLK1 is inhibited by AZD1775 at therapeutically relevant concentrations. Cancers (Basel). 2019;11(6).

285. Leijen S, van Geel RM, Pavlick AC, et al. Phase I study evaluating WEE1 inhibitor AZD1775 as monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol. 2016;34(36):4371-4380.

286. Bukhari AB, Lewis CW, Pearce JI, Luong D, Chan GK, Gamper AM. Inhibiting Weel and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis. J Clin Invest. 2019;129(3):1329-1344.

287. Hauge S, Naucke C, Hasvold G, et al. Combined inhibition of Weel and Chk1 gives synergistic DNA damage in S-phase due to distinct regulation of CDK activity and CDC45 loading. Oncotarget. 2017;8(7):10966-10979.

288. Aarts M, Bajrami I, Herrera-Abreu MT, et al. Functional genetic screen identifies increased sensitivity to WEE1 inhibition in cells with defects in fanconi anemia and HR pathways. Mol Cancer Ther. 2015;14(4):865-876.

289. Elbaek CR, Petrosius V, Sorensen CS. WEE1 kinase limits CDK activities to safeguard DNA replication and mitotic entry. Mutat Res. 2020;819-820:111694.

290. Cuneo KC, Morgan MA, Sahai V, et al. Dose escalation trial of the weel inhibitor adavosertib (AZD1775) in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer. J Clin Oncol. 2019;37(29):2643-2650.

291. Matheson CJ, Venkataraman S, Amani V, et al. A WEE1 inhibitor analog of AZD1775 maintains synergy with cisplatin and demonstrates reduced single-agent cytotoxicity in medulloblastoma cells. ACS Chem Biol. 2016;11(4):921-930.

292. Kausar T, Schreiber JS, Karnak D, et al. Sensitization of pancreatic cancers to gemcitabine chemoradiation by WEE1 kinase inhibition depends on homologous recombination repair. Neoplasia. 2015;17(10):757-766.

293. Walker AI, Hunt T, Jackson RJ, Anderson CW. Double-stranded DNA induces the phosphorylation of several proteins including the 90 000 mol. wt. heat-shock protein in animal cell extracts. EMBO J. 1985;4(1):139-145.

294. Carter T, Vancurova I, Sun I, Lou W, DeLeon S. A DNA-activated protein kinase from HeLa cell nuclei. Mol Cell Biol. 1990;10(12):6460-6471.
295. Lees-Miller SP, Chen YR, Anderson CW. Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. *Mol Cell Biol.* 1990;10(12):6472-6481.

296. Blunt T, Finnie NJ, Taccioli GE, et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. *Cell.* 1995;80(5):813-823.

297. van der Burg M, Ijspeert H, Verkaik NS, et al. A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. *J Clin Invest.* 2009;119(1):91-98.

298. Woodbine L, Neal JA, Sasi NK, et al. PRKDC mutations in a radiosensitive T-B- SCID patient with profound neurological abnormalities. *J Clin Invest.* 2013;123(7):2969-2980.

299. Miller RD, Hogg J, Ozaki JH, Gell D, Jackson SP, Riblet R. Gene for the catalytic subunit of mouse DNA-dependent protein kinase maps to the scid locus. *Proc Natl Acad Sci U S A.* 1995;92(23):10792-10795.

300. Chang HH, Lieber MR. Structure-specific nuclease activities of Artemis and the Artemis: DNA-PKcs complex. *Nucleic Acids Res.* 2016;44(11):4991-4997.

301. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. *Mol Cell.* 2017;66(6):801-817.

302. van der Burg M, van Dongen JJ, van Gent DC. DNA-PKcs plays role in nonhomologous end-joining. *J Clin Invest.* 2013;123(7):2969-2980.

303. Schwartz CR, Rohr O, Wallet C. Targeting the DNA-PK complex: its rationale use in cancer and HIV-1 infection. *Biochem Pharmacol.* 2019;160:30-91.

304. Cornell L, Munck JM, Alsinet C, et al. DNA-PKcs deficiency in human: long predicted, finally found. *Curr Opin Allergy Clin Immunol.* 2009;9(6):503-509.

305. Schwartz C, Rohr O, Wallet C. Targeting the DNA-PK complex: its rationale use in cancer and HIV-1 infection. *Biochem Pharmacol.* 2019;160:30-91.

306. Abdel-Fatah TM, Arora A, Moseley P, et al. ATM, ATR and DNA-PK: the trinity at the heart of the DNA damage response. *Mol Cell.* 2017;66(6):801-817.

307. Ihara M, Ashizawa K, Shichijo K, Kudo T. Expression of the DNA-dependent protein kinase catalytic subunit. *Proc Natl Acad Sci U S A.* 1995;92(23):10792-10795.

308. Shintani S, Mihara M, Li C, et al. Up-regulation of DNA-dependent protein kinase protein in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. *J Clin Invest.* 2009;119(1):91-98.

309. Yan D, Ng WL, Zhang X, et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. *PLoS One.* 2010;5(7):e11397.

310. Weterings E, Gallegos AC, Dominick LN, et al. A novel small molecule inhibitor of the DNA repair protein Ku70/80. *DNA Repair (Amst).* 2016;43:98-106.

311. Xiong H, Lee RJ, Haura EB, Edwards JG, Dyansen WS, Li S. Intranuclear delivery of a novel antibody-derived radiosensitizer targeting the DNA-dependent protein kinase catalytic subunit. *Int J Radiat Oncol Biol Phys.* 2012;83(3):1023-1030.

312. Willmore E, Merkle D, Meek K, Lees-Miller SP. Selective inhibition of the DNA-dependent protein kinase (DNA-PK) by the radiosensitizing agent caffeine. *Nucleic Acids Res.* 2004;32(6):1967-1972.

313. Durant S, Karran P. Vanillin—a novel family of DNA-PK inhibitors. *Nucleic Acids Res.* 2003;31(19):5501-5512.

314. Griffin RJ, Fontana G, Golding BT, et al. Selective benzopyranone and pyrimido[2,1-a]isoquinolin-4-one inhibitors of DNA-dependent protein kinase: synthesis, structure-activity studies, and radiosensitization of a human tumor cell line in vitro. *J Med Chem.* 2005;48(2):569-585.

315. Hardcastle IR, Cockcroft X, Curtin NJ, et al. Discovery of potent chromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK) using a small-molecule library approach. *J Med Chem.* 2005;48(24):7829-7846.

316. Hollick JJ, Golding BT, Hardcastle IR, et al. 2,6-disubstituted pyran-4-one and thiopyran-4-one inhibitors of DNA-dependent protein kinase (DNA-PK). *Bioorg Med Chem Lett.* 2003;13(18):3083-3086.

317. Leahy JJ, Golding BT, Griffin RJ, et al. Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromone libraries. *Bioorg Med Chem Lett.* 2004;14(24):6083-6087.

318. Willmore E, de Caux S, Sunter NJ, et al. A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. *Blood.* 2004;103(12):4659-4665.

319. Zhao Y, Thomas HD, Batey MA, et al. Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. *Cancer Res.* 2006;66(10):5354-5362.

320. Ciszewski WM, Tavecchio M, Dastych J, Curtin NJ. DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. *Breast Cancer Res Treat.* 2014;143(1):47-55.

321. Cowell IG, Durack BW, Tilby MJ. Sensitization of breast carcinoma cells to ionizing radiation by small molecule inhibitors of DNA-PK catalytic subunit.
of DNA-dependent protein kinase and ataxia telangiectasia mutated. *Biochem Pharmacol.* 2005;71(1-2):13-20.

328. Yanai M, Makino H, Ping B, et al. DNA-PK inhibition by NU7441 enhances chemosensitivity to topoisomerase inhibitor in non-small cell lung carcinoma cells by blocking DNA damage repair. *Yonago Acta Med.* 2017;60(1):9-15.

329. Tichy A, Durisova K, Salovska B, et al. Radio-sensitization of human leukemic MOLT-4 cells by DNA-dependent protein kinase inhibitor, NU7441. *Radiat Environ Biophys.* 2014;53(1):83-92.

330. Yang C, Wang Q, Liu X, et al. NU7441 enhances the radiosensitivity of liver cancer cells. *Cell Physiol Biochem.* 2016;38(5):1897-1905.

331. Kashishian A, Douangpanya H, Clark D, et al. DNA-dependent protein kinase inhibitors as drug candidates for the treatment of cancer. *Mol Cancer Ther.* 2003;2(12):1257-1264.

332. Knight ZA, Chiang GG, Alaimo PJ, et al. Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. *Bioorg Med Chem.* 2004;12(17):4749-4759.

333. Shinohara ET, Geng L, Tan J, et al. DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. *Cancer Res.* 2005;65(12):4987-4992.

334. Nutley BP, Smith NF, Hayes A, et al. Preclinical pharmacokinetics and metabolism of a novel prototype DNA-PK inhibitor NU7026. *Br J Cancer.* 2005;93(9):1011-1018.

335. Timme CR, Rath BH, O’Neill JW, Camphausen K, Tofilon PJ. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. *Mol Cancer Ther.* 2018;17(6):1207-1216.

336. Wang M, Chen S, Wei Y, Wei X. DNA-PK inhibition by M3814 enhances chemosensitivity in non-small cell lung cancer. *Acta Pharmaceutica Sinica B.* 2021.

337. Zenke FT, Zimmermann A, Sirrenberg C, et al. Abstract 1658: m3814, a novel investigational DNA-PK inhibitor: enhancing the effect of fractionated radiotherapy leading to complete regression of tumors in mice. *Cancer Res.* 2016;76:1658. Supplenment.

338. van Bussel MTJ, Awada A, de Jonge MJA, et al. A first-in-man phase 1 study of the DNA-dependent protein kinase inhibitor pепosertib (formerly M3814) in patients with advanced solid tumours. *Br J Cancer.* 2021;124(7):728-735.

339. Smith MC, Mader MM, Cook JA, et al. Characterization of LY3023414, a novel PI3K/mTOR dual inhibitor eliciting transient target modulation to impede tumor growth. *Mol Cancer Ther.* 2016;15(10):2344-2356.

340. Mortensen DS, Perrin-Ninkovic SM, Shevlin G, et al. Optimization of a series of triazole containing mammalian target of rapamycin (mTOR) kinase inhibitors and the discovery of CC-115. *J Med Chem.* 2015;58(14):5599-5608.

341. Tsuji T, Sapinsoo LM, Tran T, et al. CC-115, a dual inhibitor of mTOR kinase and DNA-PK, blocks DNA damage repair pathways and selectively inhibits ATM-deficient cell growth in vitro. *Oncotarget.* 2017;8(43):74688-74702.

342. Bendell JC, Varghese AM, Hyman DM, et al. A first-in-human phase 1 study of LY3023414, an oral PI3K/mTOR dual inhibitor, in patients with advanced cancer. *Clin Cancer Res.* 2018;24(14):3253-3262.

343. Carrassa L, Chila R, Lupi M, et al. Combined inhibition of Chk1 and Wee1: in vitro synergistic effect translates to tumor growth inhibition in vivo. *Cell Cycle.* 2012;11(13):2507-2517.

344. Sanjiv K, Hagenkort A, Calderon-Montano JM, et al. Cancer-specific synthetic lethality between ATR and CHK1 kinase activities. *Cell Rep.* 2016;14(2):298-309.

345. Ledermann J, Harter P, Gourtley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. *Lancet Oncol.* 2014;15(8):852-861.

346. Pujade-Lauraine E, Ledermann JA, Selle F, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. *Lancet Oncol.* 2017;18(9):1274-1284.

347. Lheureux S, Lai Z, Dougherty BA, et al. Long-term responders on olaparib maintenance in high-grade serous ovarian cancer: clinical and molecular characterization. *Clin Cancer Res.* 2017;23(15):4086-4094.

348. Biau J, Chautard E, Verrelle P, Dutreix M. Altering DNA repair to improve radiation therapy: specific and multiple pathway targeting. *Front Oncol.* 2019;9:1009.

349. Jung Y, Lippard SJ. Direct cellular responses to platinum-induced DNA damage. *Chem Rev.* 2007;107(5):1387-1407.

350. Kamchatnov RA, Shul’gin VS. Raising the qualifications of physicians and of paramedical personnel in the medical service troop team. *Voen Med Zh.* 1979(12):19-21.

351. Caldecott KW. Single-strand break repair and genetic disease. *Nat Rev Genet.* 2008;9(8):619-631.

352. Kessler T, Berberich A, Sadik A, et al. Methylome analyses of three glioblastoma cohorts reveal chemotheraphy sensitivity markers within DDR genes. *Cancer Med.* 2020;9(22):8373-8385.

353. Cheng CL, Johnson SP, Keir ST, et al. ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft. *Mol Cancer Ther.* 2005;4(9):1364-1368.

354. Wedge SR, Porteous JK, Newlands ES. 3-aminobenzamide and/or O6-benzylguanine evaluated as an adjuvant to temozolomide and BCNU treatment in cell lines of variable mismatch repair status and O6-alkylguanine-DNA alkyltransferase activity. *Br J Cancer.* 1996;74(7):1030-1036.

355. Tentori L, Leonetti C, Scarsella M, et al. Combined treatment with temozolomide and poly(ADP-ribose) polymerase inhibitor enhances survival of mice bearing hematologic malignancy at the central nervous system site. *Blood.* 2002;99(6):2241-2244.

356. Hussian M, Carducci MA, Slovin S, et al. Targeting DNA repair with combination veliparib (ABT-888) and temozolomide in patients with metastatic castration-resistant prostate cancer. *Invest New Drugs.* 2014;32(5):904-912.

357. Gupta SK, Kizilbash SH, Carlson BL, et al. Delineation of specific synthetic lethality between ATR and CHK1 kinase activities. *Cell Rep.* 2016;14(2):298-309.

358. Pietanza MC, Krug LM, Waqar SN, et al. A multi-center, randomized, double-blind phase II study comparing temozolomide (TMZ) plus either veliparib (ABT-888), a PARP
inhibitor, or placebo as 2nd or 3rd-line therapy for patients (Pts) with relapsed small cell lung cancers (SCLCs). J Clin Oncol. 2016;34(5):8512-8512. suppl.

359. Nguewa PA, Fuertes MA, Cepeda V, et al. ADP-ribose polymerase-1 inhibitor 3-aminobenzamide enhances apoptosis induction by platinum complexes in cisplatin-resistant tumor cells. Med Chem. 2006;2(1):47-53.

360. Hastak K, Alli E, Ford JM. Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res. 2010;70(20):7970-7980.

361. Huang SH, Xiong M, Chen XP, Xiao ZY, Zhao YF, Huang ZY. PI34, an inhibitor of PARP-1, suppresses cell growth and enhances the suppressive effects of cisplatin in liver cancer cells. Oncool Rep. 2008;20(3):567-572.

362. Cheng H, Zhang Z, Borczuk A, et al. PARP inhibition selectively increases sensitivity to cisplatin in ERCC1-low non-small cell lung cancer cells. Carcinogenesis. 2013;34(4):739-749.

363. Michels J, Vitale I, Galluzzi L, et al. Cisplatin resistance associated with PARP hyperactivation. Cancer Res. 2013;73(7):2271-2280.

364. Loibl S, O’Shaughnessy J, Untch M, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrightTNess): a randomised, phase 3 trial. Lancet Oncol. 2018;19(4):497-509.

365. Yap TA, O’Carrigan B, Penney MS, et al. Phase I trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J Clin Oncol. 2020;38(27):3195-3204.

366. Gorecki L, Andrs M, Rezacova M, Korabecny J. Discovery of ATR kinase inhibitor berzosertib (VX-970, M6620): clinical candidate for cancer therapy. Pharmacol Ther. 2020;210:107518.

367. Bendell J, O’Reilly EM, Middleton MR, et al. Phase I study of olaparib plus gemcitabine in patients with advanced solid tumours and comparison with gemcitabine alone in patients with locally advanced/metastatic pancreatic cancer. Ann Oncol. 2015;26(4):804-811.

368. Rajan A, Carter CA, Kelly RJ, et al. A phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors. Clin Cancer Res. 2012;18(8):2344-2351.

369. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003;100(9):5057-5062.

370. Berbis P, Hesse S, Privat Y. Essential fatty acids and the skin. Allerg Immunol (Paris). 1990;22(6):225-231.

371. Reuvers TGA, Kanaar R, Nonnemann J. DNA damage-inducing anticancer therapies: from global to precision damage. Cancers (Basel). 2020;12(8).

372. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239-253.

373. Chabot P, Hsia TC, Ryu JS, et al. Veliparib in combination with whole-brain radiation therapy for patients with brain metastases from non-small cell lung cancer: results of a randomized, global, placebo-controlled study. J Neurooncol. 2017;131(1):105-115.

374. Reiss KA, Herman JM, Armstrong D, et al. A final report of a phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy (LDFWAR) in patients with advanced solid malignancies and peritoneal carcinomatosis with a dose escalation in ovarian and fallopian tube cancers. Gynecol Oncol. 2017;144(3):486-490.

375. Blumenthal DT, Rankin C, Stelzer KJ, et al. A Phase III study of radiation therapy (RT) and O(6)-benzylguanine + BCNU versus RT and BCNU alone and methylation status in newly diagnosed glioblastoma and gliosarcoma: Southwest Oncology Group (SWOG) study S0001. Int J Clin Oncol. 2015;20(4):650-658.

376. Bhattacharya S, Sriniwasan K, Abdisalaam S, et al. RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res. 2017;45(8):4590-4605.

377. Prevo R, Fokas E, Reaper PM, et al. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol Ther. 2012;13(11):1072-1081.

378. Huntoon CJ, Flatten KS, Wahner Hendrickson AE, et al. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status. Cancer Res. 2013;73(12):3683-3691.

379. Pires IM, Olicna MM, Anbalagan S, et al. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br J Cancer. 2012;107(2):291-299.

380. Leszcynska KB, Dobbyn G, Leslie RE, et al. Preclinical testing of an Atr inhibitor demonstrates improved response to standard therapies for esophageal cancer. Radiother Oncol. 2016;121(2):232-238.

381. Shi Q, Shen LY, Dong B, et al. The identification of the ATR inhibitor VE-822 as a therapeutic strategy for enhancing cisplatin chemosensitivity in esophageal squamous cell carcinoma. Cancer Lett. 2018;432:56-68.

382. Baschnagel AM, Elnaggar JH, VanBeek HJ, et al. ATR inhibitor M6620 (VX-970) enhances the effect of radiation in non-small cell lung cancer brain metastasis patient-derived xenografts. Mol Cancer Ther. 2021;20.

383. Dillon MT, Barker HE, Pedersen M, et al. Radiosensitization by the ATR inhibitor AZD6738 through generation of acentric microchromosomes. Mol Cancer Ther. 2017;16(1):25-34.

384. Wallez Y, Dunlop CR, Johnson TI, et al. The ATR inhibitor AZD6738 synergizes with gemcitabine in vitro and in vivo to induce pancreatic ductal adenocarcinoma regression. Mol Cancer Ther. 2018;17(8):1670-1682.

385. Jin J, Fang H, Yang F, et al. Combined inhibition of ATR and WEE1 as a novel therapeutic strategy in triple-negative breast cancer. Neoplasia. 2018;20(5):478-488.

386. Checkley S, MacCallum L, Yates J, et al. Bridging the gap between in vitro and in vivo: dose and schedule predictions for the ATR inhibitor AZD6738. Sci Rep. 2015;5:13545.

387. Pfister SX, Markkanen E, Jiang Y, et al. Inhibiting Weel selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell. 2015;28(5):557-568.

388. Mizuara S, Yamanaka K, Itadani H, et al. Discovery of gene expression-based pharmacodynamic biomarker for a ps3 context-specific anti-tumor drug Weel inhibitor. Mol Cancer. 2009;8:34.

389. Pfister SX, Ahrabi S, Zalmas LP, et al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep. 2014;7(6):2006-2018.
390. Guertin AD, Li J, Liu Y, et al. Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy. Mol Cancer Ther. 2013;12(8):1442-1452.

391. Aarts M, Sharpe R, Garcia-Murillas I, et al. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov. 2012;2(6):524-539.

392. Bridges KA, Hirai H, Buser CA, et al. MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res. 2011;17(17):5638-5648.

393. Do K, Wilsker D, Ji J, et al. Phase I study of single-agent AZD1775 (MK-1775), a Wee1 kinase inhibitor, in patients with refractory solid tumors. J Clin Oncol. 2015;33(30):3409-3415.

394. Willers H, Dahm-Daphi J, Powell SN. Repair of radiation damage to DNA. Br J Cancer. 2004;90(7):1297-1301.

395. Van Triest B, Damstrup L, Falkenius J, et al. A phase Ia/Ib trial of the DNA-dependent protein kinase inhibitor (DNA-PK) M3814 in combination with radiotherapy in patients with advanced solid tumors. Journal of Clinical Oncology. 2017;35(15):e14048-e14048. suppl.

396. O'Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60(4):547-560.

397. Karnak D, Engelke CG, Parsels LA, et al. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer. Clin Cancer Res. 2014;20(19):5085-5096.

398. Murai J, Feng Y, Yu GK, et al. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget. 2016;7(47):76534-76550.

399. Yazineski SA, Comaillls V, Buisson R, et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017;31(3):318-332.

400. Restelli V, Lupi M, Chila R, et al. DNA damage response inhibitor combinations exert synergistic antitumor activity in aggressive B-cell lymphomas. Mol Cancer Ther. 2019;18(7):1255-1264.

401. Yap TA, Krstelevit R, Michalarev A, et al. Phase I trial of the PARP inhibitor olaparib and AKT inhibitor capivasertib in patients with BRCA1/2- and non-BRCA1/2-mutant cancers. Cancer Discov. 2020;10(10):1528-1543.

402. Karakashev S, Zhu H, Yokoyama Y, et al. BET bromodomain inhibition synergizes with PARP inhibitor in epithelial ovarian cancer. Cell Rep. 2017;21(12):3398-3405.

403. Yang L, Zhang Y, Shan W, et al. Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci Transl Med. 2017;9(399).

404. Sun C, Yin J, Fang Y, et al. BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency. Cancer Cell. 2018;33(3):401-416. e8.

405. Fok JHL, Ramos-Montoya A, Vazquez-Chantada M, et al. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy, and olaparib activity. Nat Commun. 2019;10(1):5065.

406. Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH. Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res. 2012;40(9):4168-4177.

407. Azad A, Bukczynska P, Jackson S, et al. Co-targeting deoxyribonucleic acid-dependent protein kinase and poly(adenosine diphosphate-ribose) polymerase-1 promotes accelerated senescence of irradiated cancer cells. Int J Radiat Oncol Biol Phys. 2014;88(2):385-394.

408. Ying S, Chen Z, Medhurst AL, et al. DNA-PKcs and PARP1 bind to unresected stalled DNA replication forks where they recruit XRCC1 to mediate repair. Cancer Res. 2016;76(5):1078-1088.

409. Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 2017;7(7):675-693.

410. Erdal E, Haider S, Rehwinkel J, Harris AL, McHugh PJ. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev. 2017;31(4):353-369.

411. Gluck S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol. 2017;19(9):1061-1070.

412. Mackenzie KJ, Carroll P, Martin CA, et al. cGAS surveillance of microculeon links genome instability to innate immunity. Nature. 2017;548(7668):461-465.

413. Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339(6121):826-830.

414. Corrales L, Gajewski TF. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin Cancer Res. 2015;21(21):4774-4779.

415. Corrales L, McWhirter SM, Dubensky TW, Gajewski TF. The host STING pathway at the interface of cancer and immunity. J Clin Invest. 2016;126(7):2404-2411.

416. Hartlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the type 1 interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity. 2015;42(2):332-343.

417. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15(12):760-770.

418. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69-74.

419. Anagnostou V, Smith KN, Forde PM, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7(3):264-276.

420. McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463-1469.

421. Ricciuti B, Recono G, Spurr LF, et al. Impact of DNA damage response and repair (DDR) gene mutations on efficacy of PD-L1 immune checkpoint inhibition in non-small cell lung cancer. Clin Cancer Res. 2020;26(15):4415-4424.

422. Prasanna T, Wu F, K Hanna KK, et al. Optimizing poly (ADP-ribose) polymerase inhibition through combined epigenetic and immunotherapy. Cancer Sci. 2018;109(11):3383-3392.

423. Pantelidou C, Sonzogni O, De Oliveria Taveira M, et al. PARP inhibitor efficacy depends on CD8(+)T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 2019;9(6):722-737.

424. Brown JS, Sundar R, Lopez J. Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br J Cancer. 2018;118(3):312-324.

425. Wu Y, Chen M, Wu P, Chen C, Xu ZP, Gu W. Increased PD-L1 expression in breast and colon cancer stem cells. Clin Exp Pharmacol Physiol. 2017;44(5):602-604.
426. Friedlander M, Meniawy T, Markman B, et al. Pamiparib in combination with tislelizumab in patients with advanced solid tumours: results from the dose-escalation stage of a multicentre, open-label, phase Ia/b trial. *Lancet Oncol*. 2019;20(9):1306-1315.

427. Navarro J, Gozalbo-Lopez B, Mendez AC, et al. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. *Sci Rep*. 2017;7:41962.

428. Dean JL, McClendon AK, Knudsen ES. Modification of the DNA damage response by therapeutic CDK4/6 inhibition. *J Biol Chem*. 2012;287(34):29075-29087.

429. Salvador-Barbero B, Alvarez-Fernandez M, Zapatero-Solana E, et al. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma. *Cancer Cell*. 2020;37(3):340-353.e6.

430. Pesch AM, Hirsh NH, Chandler BC, et al. Short-term CDK4/6 inhibition radiosensitizes estrogen receptor-positive breast cancers. *Clin Cancer Res*. 2020;26(24):6568-6580.

431. Pestell RG. New roles of cyclin D1. *Am J Pathol*. 2013;183(1):3-9.

432. Jerby-Arnon L, Shah P, Cuoco MS, et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. *Cell*. 2018;175(4):984-997. e24.

433. Schaer DA, Beckmann RP, Dempsey JA, et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. *Cell Rep*. 2018;22(11):2978-2994.

434. Teo ZL, Versaci S, Dushyanthen S, et al. Combined CDK4/6 and PI3Kalpha inhibition is synergistic and immunogenic in triple-negative breast cancer. *Cancer Res*. 2017;77(22):6340-6352.

435. Comorosan S. On a possible biological spectroscopy. *Bull Math Biol*. 1975;37(4):419-425.

436. Sen T, Rodriguez BL, Chen L, et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. *Cancer Discov*. 2019;9(5):646-661.

437. Sen T, Della Corte CM, Milutinovic S, et al. Combination treatment of the oral CHK1 inhibitor, SRA737, and low-dose gemcitabine enhances the effect of programmed death ligand 1 blockade by modulating the immune microenvironment in SCLC. *J Thorac Oncol*. 2019;14(12):2152-2163.

438. Tang Z, Pilie PG, Geng C, et al. ATR inhibition induces CDK1-SPOP signaling and enhances anti-PD-L1 cytotoxicity in prostate cancer. *Clin Cancer Res*. 2021;27(17):4989-4909.

439. Patel MR, Falchook GS, Wang JS-Z, et al. Open-label, multicenter, phase I study to assess safety and tolerability of adavosertib plus durvalumab in patients with advanced solid tumors. *J Clin Oncol*. 2019;37(15):2562-2562_.suppl.

440. Maynard S, Swistowska AM, Lee JW, et al. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. *Stem Cells*. 2008;26(9):2266-2274.

441. Christmann M, Verbeek B, Roos WP, Kaina B. O(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. *Biochim Biophys Acta*. 2011;1816(2):179-190.

442. Weller M, Stupp R, Reifenberger G, et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? *Nat Rev Neurol*. 2010;6(1):39-51.

443. Klinakis A, Karagiannis D, Rampias T. Targeting DNA repair in cancer: current state and novel approaches. *Cell Mol Life Sci*. 2020;77(4):677-703.

444. Farkkila A, Gulhan DC, Casado J, et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. *Nat Commun*. 2020;11(1):1459.

445. Cleary JM, Aguirre AJ, Shapiro GI, D’Andrea AD. Biomarker-guided development of DNA repair inhibitors. *Mol Cell*. 2020;78(6):1070-1085.

446. Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. *J Pathol*. 2014;232(2):199-209.

447. Hojfeldt JW, Agger K, Helin K. Histone lysine demethylases as targets for anticancer therapy. *Nat Rev Drug Discov*. 2013;12(12):917-930.

How to cite this article: Wang M, Chen S, Ao D. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. *MedComm*. 2021;2:654–691. https://doi.org/10.1002/mco2.103