Review Article

Prevalence of patellofemoral joint osteoarthritis after anterior cruciate ligament injury and associated risk factors: A systematic review

Wenhan Huang*, Tim-Yun Ong, Sai-Chuen Fu, Shu-Hang Yung

Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

ARTICLE INFO

Keywords:
Anterior cruciate ligament injury
Patellofemoral joint osteoarthritis
Prevalence
Risk factors

ABSTRACT

Background: The prevalence of patellofemoral joint (PFJ) osteoarthritis (OA) after anterior cruciate ligament (ACL) injury was inconsistently reported in the literature. This review summarises the reported prevalence of PFJ OA and risk factors of PFJ OA after ACL injury.

Methods: PubMed, Embase, WoS, and MEDLINE (OVID) were searched up to 1 March 2019. A modified version of the Coleman methodology score was used to assess the methodological quality of the included studies. Prevalence of PFJ OA was pooled depended on different interventions in ACL injured populations.

Results: Thirty-eight studies were included. Five different radiographic classification methods were used: the Kellgren and Lawrence Grade 2, IKDC Grade B, Fairbank Grade 1, joint space narrowing of Grade 2 based on OARSI, and Ahlbäck Grade 1. One included study used MRI Osteoarthritis Knee Score to evaluate PFJ degenerative changes. The overall prevalence of PFJ OA after ACL injury in included studies varied between 4.5% and 80%. The large variation of PFJ OA prevalence is mainly because of different follow-up period and surgical techniques. The pooled data showed that bone-patellar tendon-bone graft, single-bundle ACL reconstruction (ACLR), and delayed ACLR are likely associated with PFJ degenerative changes after ACL injury. ACLR, delayed ACLR, body mass index (BMI), meniscectomy, patellofemoral chondral lesions, age at surgery, and TFJ OA were identified in the literature inducing PFJ OA after ACL injury.

Conclusions: Large variations of PFJ OA after ACL injury are associated with different follow-up period and surgical techniques. ACL reconstructed population with bone-patellar tendon-bone graft, single-bundle reconstruction, and delayed operation time has a high prevalence of PFJ OA.

The translational potential of this article: This review focuses more on the effect of surgical technique factors on the degenerative changes on PFJ. The results reveal that BPTB, single-bundle reconstruction, and delayed ACLR are more likely associated with PFJ degenerative changes after ACL injury. These findings imply that awareness of PFJ problems after surgical intervention will remind of surgeons taking PFJ into consideration in operations, which is likely to reduce the incidences of anterior knee pain, patellar maltracking, and over-constrained patella in the early stage after surgery.

Introduction

Patellofemoral joint (PFJ) osteoarthritis (OA) is identified on radiographs as osteophytes and loss of articular cartilage on patella or in the femoral trochlear groove [1]. PFJ OA is an important source of knee symptom after ACL injury. Symptoms of anterior knee pain, swelling, and functional limitations such as difficult to go up and down stairs, squatting or rising from a seated position are disabilities found in patients with PFJ OA [2,3]. In recent years, many papers reported that the prevalence of PFJ OA after ACL injury is increased, regardless of whether ACL reconstruction (ACLR) is performed [4,5]. This early onset of OA and its associated pain and functional limitations pose a particular challenge to younger adults when compared with an older OA population. Lee et al. reported that 17.4% of patients had newly developed PFJ OA [4.2].

Abbreviations: PFJ, Patellofemoral Joint; OA, Osteoarthritis; ACL, Anterior Cruciate Ligament; ACLR, Anterior Cruciate Ligament Reconstruction; TFJ, Tibiofemoral Joint; KL, Kellgren and Lawrence; JSN, Joint Space Narrowing; OARSI, Osteoarthritis Research Society International; BPTB, Bone-Patellar Tendon-Bone; HS, Hamstring; CI, Confidence Interval; MOAKS, MRI Osteoarthritis Knee Score; IKDC, International Knee Documentation Committee; CMS, Coleman methodology score; ORs, odd ratios.

* Corresponding author. Room 124007, 10/F, Lui Che Woo Clinical Science Building, Prince of Wales Hospital, Shatin, NT, Hong Kong.
E-mail address: hwh_dr.wong@link.cuhk.edu.hk (W. Huang).

https://doi.org/10.1016/j.jot.2019.07.004
Received 12 March 2019; Received in revised form 23 June 2019; Accepted 9 July 2019
Available online 6 August 2019
2214-031X/© 2019 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Orthopaedic Society. This is an open access article under the
A review by Culvenor et al. reported that radiographic PFJ OA after ACLR, with a prevalence ranging from 11% to 90% (median 36%), 2–15 years after surgery [4]. For comparison, the overall crude prevalence of radiographic PFJ OA was 17% in healthy individuals [8]. These emerging evidences suggest that although less well recognized compared with tibiofemoral joint (TFJ) OA, PFJ OA after ACL injury should be paid more attention to alleviate joint symptoms and functional limitations. However, the modifiable factors in treatment to alleviate degenerative changes in the PFJ after ACL injury remain unknown. Targeted interventions need to be developed to alleviate joint symptoms and functional limitations of PFJ OA after ACL injury. Therefore, we would like to conduct a systematic review to synthesize these evidences, assess the quality of the studies we found, and formulate conclusions and recommendations based on study findings. Besides, the reported prevalence of PFJ OA after ACL deficiency in the literature has large variations and has no consensus, likely reflecting different radiographic diagnostic criteria used, different surgical procedures, different follow-up period after surgery, and heterogeneous populations. Therefore, the overall prevalence of PFJ OA after ACL deficiency based on different radiographic diagnostic criteria, surgical procedures, follow-up period, and populations via systematic search remains unknown.

Many studies have reported the OA outcome in the knee after ACL injury [9–11]. However, many of them either did not specify the OA compartment in the knee, or focused on TFJ only. The PFJ has different biomechanical features from the TFJ and could be affected by ACLR in a different manner. Kim et al. reported that despite a clinically satisfactory ACLR (with negative anteroposterior drawer and pivot shift tests), patients showed at least one region with increased T2 value of the PFJ cartilage 3 years after ACLR, especially at the medial compartment of the trochlear cartilage [12]. The risk factors associated with PFJ OA after ACL injury have not been systematically summarised. Identification of the risk factors may assist in preventing or reducing PFJ OA after ACL injury in future studies to improve clinical outcome. Targeted interventions need to be developed to reduce the burden of early-onset OA following ACLR.

The published paper presented two questions: What is the prevalence of PFJ OA after ACL injury reported in the literature? which risk factors are associated with the development of degenerative changes on the PFJ after ACL injury? This review will do a systematic search, systematically summarise the reported prevalence of PFJ OA in populations on the base of study quality assessment, and identify what risk factors and elements that less recognized in the literature are associated with the development of PFJ OA after ACL injury.

Methods

Search strategies

We performed a comprehensive search in databases including MEDLINE (OVID), Pubmed, Embase, and WoS and up to 1 March 2019. The key search terms are as shown in Table 1. We only included studies evaluating PFJ OA with or without TFJ OA after ACL injury. Whether described the specified compartment of TFJ OA or not would not have an influence in the study selection. Similar search strategies were used in WoS, Embase, and MEDLINE (OVID). In addition, other relevant publications from reference lists were also included.

Table 1

Search strategies in MEDLINE.
1 Anterior cruciate*[tw] OR acl*[tw];
2 injur*[tw] OR tear*[tw] OR ruptur*[tw] OR deficient*[tw] OR tear*[tw];
3 osteoarthritis*[tw] OR osteo-arthritis*[tw] OR osteoarthritis*[tw] OR osteo-arthritis*[tw] OR arthritis*[tw] OR arthrosis*[tw] OR arthrit*[tw] OR gonarth*[tw] OR degener*[tw];
4 (risk*[tw] OR factor*[tw] OR risk factor*[tw] OR population at risk OR populations at risk OR prevalence[MeSH]);

Study selection

The searched studies were assessed based on the following inclusion criteria:

- Full text available;
- Written in English;
- Study design could be as follows: randomised controlled trial, prospective cohort study, and retrospective study;
- ACL reconstructed patients who had accepted primary ACLR; use of an arthroscopic and use of hamstring tendon/bone-patellar tendon-bone (BPTB)/allografts;
- ACL injury patients with conservative treatment;
- The number of included subjects must be more than 20;
- OA outcomes including: radiographic OA, OA findings on MRI during arthroscopy;
- Follow-up period of at least 2 years;
- Animal studies, cadaveric studies, case series, letters, case reports, and reviews were excluded. Studies including patients without skeletally immature knees were also excluded.

Data extraction and analysis

To evaluate the reported prevalence of PFJ OA, results from the radiologic and MRI assessments were extracted from the included studies. For the cut off value in defining PFJ OA, In the present review, after comparing the grading of different classification system, Kellgren and Lawrence (KL) Grade 2, IKDC Grade B, Fairbank Grade 1, Ahlbäck Grade 1, joint space narrowing based on OARSI Grade 2 or higher (or a sum of osteophyte grades of ≥2, or Grade 1 JSN in combination with a Grade 1 osteophyte), and MRI Osteoarthritis Knee Score (MOAKS) Grade 1 was used to define as PFJ degenerative changes. The reason we used such grading to define PFJ OA was that these grading from different system share similar severity of degenerative changes in the PFJ: definite osteophytes and/or possible JSN. Meta-analysis for proportions with random effects model were performed using MedCalc for Windows, V.16.8 to calculate pooled prevalence of PFJ OA and (odd ratios) ORs of associated risk factors. Heterogeneity tests were also conducted and interpreted as follows: I² ≤25%, low heterogeneity; 25% < I² ≤75%, moderate heterogeneity; and I² >75%, high heterogeneity. Data were pooled based on the following study populations: (1) ACL reconstructed population with BPTB graft; (2) ACL reconstructed population with HS graft; (3) ACL reconstructed population with single-bundle graft; (4) ACL reconstructed population with double-bundle graft; (5) ACL deficient population with conservative treatment (non-ACL reconstruction); (6) Early ACL reconstruction; (7) Delayed ACL reconstruction. (8) Follow-up periods: 2–5 years; 6–10 years; over 10 years. We also calculated the pooled ORs of incurring PFJ OA between ACL reconstructed populations and conservative treatment populations. In addition, funnel plots generated by Medcalc (V.16.8) was used to visually inspect the existence of publication biases and/or between study heterogeneity. In the absence of biases and/or between study heterogeneity, funnel plot will be a symmetrical inverted funnel in shape. Funnel plots of ORs of ACLR inducing PFJ OA were made to inspect the existence of publication biases.

Study quality assessment

A modified version of the Coleman methodology score (CMS) was used to assess the methodological quality of the included studies (Appendix 1) [13]. The CMS originally consisted of 10 criteria with a total score ranging from 0 to 100. A score of 100 indicated the most high-quality study with no confounding factors or other biases. The criteria were based on the Consolidated Standards of Reporting Trials
(CONSORT) statement for randomised controlled trials. The CMS was originally developed for surgical treatment of tendinopathy, but modified versions of the CMS have been used in other reviews [14,15]. The following criteria were altered for part A: (1) “Mean of follow-up (yrs)” (question 2) was altered from mean follow up (mths) and the range of follow up is modified accordingly, (2) “type of study” (question 4) was altered to give both prospective cohort studies and randomised controlled trials the highest score, (3) “description of postoperative treatment” (question 7) was removed. Part A gave a total score of 50. The following modifications were included in part B: (1) “Outcome criteria” (question 1) was altered; the original criterion concerning sensitivity was removed, and the score was given to studies that reported interrater or intrarater reliability for the radiologic assessments. Part B gave a total score of 40. The maximum score of the modified CMS was therefore 90. The modified CMS is listed in Appendix 1. The methodological quality of the included studies was assessed by 2 independent reviewers (Wenhao HUANG and Tim-Yung ONG). Conflicting scores for the various items were discussed until consensus was reached. It is suggested in the literature that a score of more than 55% of total score for other checklists is to be considered as a high-quality study [16].

Results

Identification and selection of the literature

The search resulted in 1454 studies, for which all abstracts were reviewed. Twenty-five additional studies from relevant reference lists were also included. After screening of the abstracts, 59 were identified as possibly relevant, and full texts were retrieved. After review of the full texts, 38 met all the inclusion criteria (Figure 1).

There were no disagreements on inclusions. The references of the 2 studies were reviewed and 4 additional studies meeting the inclusion criterion were identified. The characteristics of the included studies are presented in Table 2. Among them, 16 prospective studies and 22 retrospective studies were included in this systematic review. Four of the prospective studies were randomised controlled studies [17–20].

Totally 4254 subjects were included in the studies, with samples ranging from 22 to 589. The mean follow-up time is 9.48 ± 5.67 years. In 5 studies, not only PFJ were radiologically assessed in ACL deficient population with conservative treatment, but radiologically assessed in ACL reconstructed population [17,21–24]. Surgical procedures for the ACLR reported in the studies were using hamstring, BPTB grafts, or iliotibial tract with or without augmentations. Preoperative PFJ OA was reported in 5 studies. Particularly, preoperative radiographic assessment was included in 10 studies.

Methodological quality

The results of the study quality assessments are presented in Table 3. Thirty-one studies can be regarded as high-quality studies based on the modified CMS. For part A, “type of study” and “number of treatment procedures” gave the lowest scores. For part B, the lowest scores were achieved for “outcome criteria” and “description of subject selection process.” None of the studies fulfilled all the criteria (modified CMS of

Figure 1. Flow-chart of studies included in the current systematic review.
Table 2
Summary of the main characteristics of the included studies.

Study Authors	Year	Study Design	Time since ACLR	Grading system	PFJ OA prevalence (%)	Surgical procedure	Reported risk factors
Barenius et al.	2014	ACLR with BPTB	14 years	KL	Mild: 22(≥Mild)	Arthroscopic	BMI; medial meniscus resection; Age at injury; graft type; sex; overweight, time between injury and reconstruction, lateral meniscus resection
		ACLR with HS			Mild: 25(≥Mild)	BPTB + HS	
Culvenor et al.	2013	ACLR with HS	7 years	OARSI	Mild: 47(≥Mild)	Arthroscopic	Articular cartilage lesions; late duration to ACLR
					Moderate: 8.3(≥Mild)	HS	
Øiestad et al.	2012	ACLR with BPTB	12 years	KL	Mild: 3.8(≥Mild)	Arthroscopic	Meniscus injury; intermediate duration to ACLR; Knee laxity; self-reported knee function; quadriceps strength; Hop tests up to two years postoperatively
		ACLR with HS			Mild: 11.8	HS	
Neuman et al.	2008	ACLR with BPTB	15 years	OARSI	Mild: 47(≥Mild)	Arthroscopic	ACLR Meniscal injury; Non-ACLR
		Non-ACLR			Moderate: 8.3(≥Mild)	BPTB + HS	
Lohmander et al.	2004	ACLR with BPTB	12 years	KL	Mild: 3.8(≥Mild)	Arthroscopic	ACLR Symptoms; activity level
		ACLR with HS			Mild: 11.8	HS	
Meer et al.	2016	ACLR with BPTB	12 years	KL	Mild: 8	Arthroscopic	Meniscectomy during the first year after ACL trauma; Age at operation; sex; BMI; Tegner activity score; effusion; meniscal tear ACLR
		Non-ACLR			Moderate: 11.8	HS	
Frobell et al.	2013	Early ACLR	5 years	KL	Mild: 24(≥Mild)	Arthroscopic	ACLR
		Delayed ACLR			Moderate: 21(≥Mild)	HS	
Culvenor et al.	2016	ACLR-15-year follow-up	15 years	KL	Mild: 7.7(≥Mild)	Arthroscopic	ACLR
		ACLR-20-year follow-up			Moderate: 7(≥Mild)	BPTB + HS	
Cantin et al.	2016	ACLR	12 years	IKDC	Mild: 8(≥Mild)	Arthroscopic	ACLR
		ACLR-15-year follow-up			Moderate: 9(≥Mild)	HS	
		ACLR-20-year follow-up			Moderate: 10(≥Mild)		
Ahn et al.	2011	ACLR with BPTB	10 years	IKDC	Mild: 49(≥Mild)	Arthroscopic	ACLR
Breitfuss et al.	1996	ACLR with BPTB	2 years	Fairbank	Mild: 25(≥Mild)	Arthroscopic	ACLR
Cohen et al.	2007	ACLR with BPTB	11 years	Fairbank	Mild: 52(≥Mild)	Arthroscopic	ACLR
Jarvela et al.	2001	ACLR with BPTB	7 years	IKDC	Mild: 34(≥Mild)	Arthroscopic	ACLR
Keays et al.	2007	ACLR with HS	6 years	IKDC	Mild: 41.3	Arthroscopic	ACLR
Murray et al.	2012	ACLR	13 years	IKDC	Mild: 65(≥Mild)	Arthroscopic	ACLR
Sajovic et al.	2006	ACLR with HS	5 years	IKDC	Mild: 17(≥Mild)	Arthroscopic	ACLR
Salmon et al.	2006	ACLR with BPTB	13 years	IKDC	Mild: 26(≥Mild)	Arthroscopic	ACLR
Bourke et al.	2012	ACLR with HS	15 years	IKDC	Mild: 26(≥Mild)	Arthroscopic	ACLR
Hertel et al.	2005	ACLR with BPTB	10 years	IKDC	Mild: 6(≥Mild)	Arthroscopic	ACLR
Karikis et al.	2016	ACLR with single-bundle	5 years	IKDC	Mild: 23(≥Mild)	Arthroscopic	ACLR
Tsoukas et al.	2016	ACLR with BPTB/HS	10.1 years	IKDC	Mild: 64(≥Mild)	Arthroscopic	ACLR
Mascarenhas et al.	2012	ACLR with BPTB	1.1 years	IKDC	Mild: 60(≥Mild)	Arthroscopic	ACLR
Li et al.	2011	ACLR with BPTB	7.8 years	KL	Mild: 10(≥Mild)	Arthroscopic	ACLR
Hui et al.	2011	ACLR with BPTB	15 years	IKDC	Mild: 14(≥Mild)	Arthroscopic	ACLR
Keays et al.	2010	ACLR with HS	6 years	IKDC	Mild: 41.3	Arthroscopic	ACLR
Fithian et al.	2005	Non-ACLR	6.6 years	IKDC	Mild: 57(≥Mild)	Arthroscopic	ACLR

(continued on next page)
90). The mean modified CMS was 58.89 ± 11.54, which corresponds to a CMS of 65.43 when transferred to a 0 to 100 score. The lowest score achieved was 39, and the highest score is 80 found in two studies [9,25]. The prospective studies achieved a mean modified CMS of 70.06, with the highest score of 80 and the lowest score of 52. The retrospective studies correspondingly achieved a mean modified CMS of 58.89, with the lowest score of 39 and the highest score of 80.

Prevalence reported in included studies

Because the definition for PFJ varied in different studies, various cutoff values for defining PFJ OA in the included studies were used to define as PFJ OA. The cut-off values chosen was described in methods section. The cut-off point used in the current systematic review was consistent with previous studies [26,27]. The overall prevalence of PFJ OA in the included studies varied between 4.5% and 80% (Table 2). Only 4 studies reported the PFJ OA alone and rest of the included studies focus on both PFJ and TFJ.

ACL reconstructed population

In ACL reconstructed population with BPTB graft, the overall prevalence of PFJ OA from 20 studies was (mean proportion: (95% CI)) 38.9% (29.4–48.9%) (Figure 2). In ACL reconstructed population with HS graft, the overall prevalence of PFJ OA from 13 studies was 23.0% (15.7–31.3%). In ACL reconstructed population with single-bundle graft, the overall prevalence of PFJ OA from 3 studies was 31.6% (23.3–40.6%). In ACL reconstructed population with double-bundle graft, the overall prevalence of PFJ OA from 3 studies was 19.1% (12.1–27.4%). In early ACL reconstructed population, the overall prevalence of PFJ OA from 3 studies was 15.2%. In delayed ACLT, the overall prevalence of PFJ OA from 78 studies was 8.1% (3.9–13.5%). In delayed ACLT, the overall prevalence of PFJ OA from 78 studies was 42.5%, over 10 years, respectively. In early ACL reconstructed population with HS graft, the overall prevalence of PFJ OA from 3 studies was 40.3% (22.0–58.2%). In late ACL reconstructed population, the overall prevalence of PFJ OA from 7 studies was 21% (9–39.6%). In late ACL reconstructed population, the overall prevalence of PFJ OA from 7 studies was 31.8% (22.0–42.5%, over 10 years). The mean modified CMS was 58.89 ± 11.54, which corresponds to a CMS of 65.43 when transferred to a 0 to 100 score. The lowest score achieved was 39, and the highest score is 80 found in two studies [9,25]. The prospective studies achieved a mean modified CMS of 70.06, with the highest score of 80 and the lowest score of 52. The retrospective studies correspondingly achieved a mean modified CMS of 58.89, with the lowest score of 39 and the highest score of 80.

Prevalence reported in included studies

Because the definition for PFJ varied in different studies, various cutoff values for defining PFJ OA in the included studies were used to define as PFJ OA. The cut-off values chosen was described in methods section. The cut-off point used in the current systematic review was consistent with previous studies [26,27]. The overall prevalence of PFJ OA in the included studies varied between 4.5% and 80% (Table 2). Only 4 studies reported the PFJ OA alone and rest of the included studies focus on both PFJ and TFJ.

ACL reconstructed population

In ACL reconstructed population with BPTB graft, the overall prevalence of PFJ OA from 20 studies was (mean proportion: (95% CI)) 38.9% (29.4–48.9%) (Figure 2). In ACL reconstructed population with HS graft, the overall prevalence of PFJ OA from 13 studies was 23.0% (15.7–31.3%). In ACL reconstructed population with single-bundle graft, the overall prevalence of PFJ OA from 3 studies was 31.6% (23.3–40.6%). In ACL reconstructed population with double-bundle graft, the overall prevalence of PFJ OA from 3 studies was 19.1% (12.1–27.4%). In early ACL reconstructed population, the overall prevalence of PFJ OA from 3 studies was 15.2%. In delayed ACL reconstructed population, the overall prevalence of PFJ OA from 7 studies was 8.1% (3.9–13.5%). In delayed ACL reconstructed population, the overall prevalence of PFJ OA from 78 studies was 42.5%, over 10 years, respectively. In early ACL reconstructed population with HS graft, the overall prevalence of PFJ OA from 3 studies was 40.3% (22.0–58.2%). In late ACL reconstructed population, the overall prevalence of PFJ OA from 7 studies was 21% (9–39.6%). In late ACL reconstructed population, the overall prevalence of PFJ OA from 7 studies was 31.8% (22.0–42.5%, over 10 years). The mean modified CMS was 58.89 ± 11.54, which corresponds to a CMS of 65.43 when transferred to a 0 to 100 score. The lowest score achieved was 39, and the highest score is 80 found in two studies [9,25]. The prospective studies achieved a mean modified CMS of 70.06, with the highest score of 80 and the lowest score of 52. The retrospective studies correspondingly achieved a mean modified CMS of 58.89, with the lowest score of 39 and the highest score of 80.
between 10.7% and 80%, among them the randomised controlled study reported as between 13% and 26%. For the retrospective study, the figure is between 4.5% and 75%. One study evaluated the association between meniscus in ACLR population and PFJ OA and the prevalence reported is 75% [28].

Radiologic classification methods

Five different radiologic classification methods were used in the 37 included studies. Only one reported the PFJ OA prevalence of 11.8% after ACL injury using MOAKS [23]. Seventeen studies used the IKDC classification system (Figure 4). The reported prevalence of PFJ OA in these studies was between 4.5% and 65%. The KL classification system was used in 11 studies. The reported prevalence of PFJ OA in these studies was between 21% and 80%. The OARSI classification system was used to grade JSN and osteophytes in 4 studies and with a reported prevalence of PFJ OA from 20% to 47%, respectively [21, 22, 29–31]. One study used the KL to grade OA in TFJ; however, the researchers did not specify radiologic classification system but used JSN and osteophyte formation [17]. This study reported a prevalence of 17% of PFJ OA. Five studies used the Fairbank classification system with a reported prevalence of PFJ OA between 11.4% and 52% [20, 28, 31–34]. The KL showed variant prevalence of PFJ OA, which made the prevalence inconsistent (21%–80%). JSN by OARSI also exhibited inconsistent prevalence of PFJ OA. Only one study used the Ahlbäck classification system with a reported prevalence of 11.4% in PFJ OA [35]. Most of the studies reported that the radiographs were performed with the patients in the standing position with full weight bearing (n = 27) and with a knee flexion angle of 15°–45° (n = 21).

Risk factors inducing PFJ OA after ACLR

Seven risk factors were identified inducing PFJ OA after ACL injury (Table 2). Among them, ACLR was the most frequently reported risk factors. The odds ratios of risk of incurring PFJ OA varied between 0.81 and 9.62 in five studies that included both ACLR population and non-ACLR population after ACL rupture [17, 21–24]. The pooled ORs of incurring PFJ OA between ACL reconstructed populations and conservative treatment populations is 2.1 (95% CI: 1.1 to 3.9) (Figure 5).

Identification of risk factors using logistic regression analysis was conducted in 6 studies to determine the effect of each potential risk factor on the odds of a patient having PFJ OA. Risk factors identified in these 6 studies were BMI [18], delayed ACLR [29], meniscectomy, patellofemoral chondral lesions, and age at surgery [25], more TFJ OA [29]. In the remaining studies, risk factors were identified using Poisson regression and discriminant analysis. Risk factors reported were ACLR [21], age at the time of operation [25] and presence of chondral injury [29]. One study not only evaluated the odds ratios of PFJ OA in both ACLR population and non-ACLR population after ACL rupture, but performed logistic regression to determine odds ratios of the candidate risk factors in relevant factors [22].

Publication bias was assessed by visual inspection of funnel plots for ORs of ACLR inducing PFJ OA (Figure 6). The plots demonstrate that some asymmetry was found regarding the ORs of ACLR incurring PFJ OA.

Discussion

Prevalence of PFJ OA after ACL injury

The overall prevalence of PFJ OA in included studies varied between 4.5% and 80%. For comparison, the overall crude prevalence of isolated radiographic PFJ OA was 7% in community-based populations in a systematic review [8]. The reported prevalence of PFJ OA is between 11.8% and 80% for the prospective studies with a modified CMS of 49–74. For the retrospective studies, the prevalence varied between 4.5% and 76% with a modified CMS of 37–59. All the 38 included studies reported the PFJ OA for subjects with or without concomitant meniscectomy in ACL reconstructed populations, and none of them reported in an isolated ACLR population. Specially, some studies reveal that menisci in different regions plays a different role in the development of PFJ OA. Meer et al. show that medial meniscal injury/meniscectomy influences PFJ OA while lateral meniscal injury/meniscectomy does not [36].

The pooled prevalence of PFJ OA based on different follow-up period showed that in the early stage, the prevalence is low (20.4%); afterwards, it increased by 10% in the following 5 years. However, the pooled data showed that no obvious increase after that and even a little decrease was shown. It might be caused by the increasing sample size with the increase of follow-up, which enables us to get a smaller margin of error and get the true prevalence.

Radiologic grading systems

Five different radiologic classification methods based on evaluation of osteophyte formation, JSN, or both were used in the 37 included studies. One study graded PFJ OA according to the description of MOAKS with MRI. We admit that there are some mild differences of pathological stages among different classification system. Despite of these variations, the selected cutoff values can be representative of moderate to severe degenerative changes in the PFJ, we believe that the definition for PFJ OA is consistent and may not be a large concern. After we categorising the prevalence of PFJ OA based on different systems, no obvious underestimation or overestimation was found under different systems. It indicates that radiographic classification system variations might not have a great impact on the reporting prevalence of PFJ OA. The cutoff grade for defining PFJ OA using different grading systems is various in the included 38 studies. IKDC was used in 17 included studies, with parameters graded as normal (A), nearly normal (B), abnormal (C), or severely abnormal (D). Only two studies defined PFJ OA clearly [37, 38]. The onset of OA was defined as Grade C or D in patients whose preoperative grade was A or B in the study by Ahn et al. [37], while Grade B, C, and D were
Figure 2. Prevalence of PFJ OA in ACL reconstructed population with BPTB/HS grafts, double-bundle/single-bundle reconstruction, non-ACLR/early ACLR/delayed ACLR. BPTB, bone-patellar tendon-bone; HS, hamstring; CI, confidence interval; PFJ, patellofemoral joint; OA, osteoarthritis; ACL, anterior cruciate ligament; ACLR, anterior cruciate ligament reconstruction.
regarded as degenerative arthritis changes in the study by Sim et al. [38]. The KL classification was used in 11 studies with Grade 0–4. Four studies used Grade 2 as the cutoff for the presence of radiographic PFJ OA [9,18,25,39]. Fairbank was used in 5 studies with Grade 0–4 and no definition for PFJ OA was given in these included studies. Besides, these studies did not report the criteria they used for different grade levels. Osteophytes and JSN were scored in PFJ using the OARSI in four studies [17,22,29,40]. In these four studies, the definition for PFJ OA is consistent and JSN of Grade 2 or higher, sum of osteophyte grades ≥2 or grade 1 JSN in combination with a Grade 1 osteophyte was defined as PFJ OA. Only one study used Alhback with grade classification [35]. Neither definition of PFJ OA nor the classification was given in this study. Particularly, one study identified early degenerative changes by assessment on MRI according to the description of MOAKS reported by Meer et al. [23]. The features are categorized from grad 0 to 3 in cartilage lesions, osteophytes, and bone marrow lesions.

Risk factors inducing PFJ OA after ACL injury

Eight studies identified the risk factors inducing PFJ OA after ACL injury, including ACLR, delayed ACLR, BMI, meniscectomy, patellofemoral chondral lesions, and age at surgery, more TFJ OA. Among them, ACLR was the most frequently reported risk factor. For studies not only evaluating the OR in ACLR population but in non-ACLR population after ACL injury, we found that the OR values varied between 0.81 and 9.62. Moreover, among these studies, the highest quality studies reported that the prevalence of PFJ OA after ACL after 14-years follow-up was 23% (average age at end point: 40 years old) [18] and 2-year follow-up 20.5% (single bundle reconstruction; average age at end point: 38 years old) & 24% (double bundle reconstruction) [41], respectively. The pooled prevalence of PFJ OA in normal subjects aged 40 is not reported in the literature; however, for comparison, the pooled prevalence of PFJ OA in normal subjects aged 60 is 21.9% (95% CI: 16.9%-27.8) [42]. It means that for a same prevalence of PFJ OA, the age of ACLR population is 20 years earlier than that of normal subjects. In addition, all these studies had the subject inclusion criteria including the time from injury to the beginning of the treatment, and thus, the time was the same in the ACLR population and non-ACLR population in each study. It means that the PFJ condition was similar in these two populations before treatment; however, due to surgery, the ACLR population has higher chance for the development of PFJ OA.

Generally, the prevalence of PFJ OA in ACLR group is higher than that in non-ACLR group, which indicates that ACLR is essentially a risk factor inducing PFJ OA (Figure 3-H). As a risk factor, ACLR has many

Figure 3. The overall prevalence scatter plots of included studies with corresponding modified CMS. CMS, Coleman methodology score.

Figure 4. The overall prevalence scatter plots of included studies using different radiologic classification systems: MOAKS, MRI Osteoarthritis Knee Score; YS, years; KL, Kellgren and Lawrence; JSN, joint space narrowing; IKDC, International Knee Documentation Committee; MOAKS, MRI Osteoarthritis Knee Score.

Figure 5. Forest plot of comparison: Risk factors and associations with conservative treatment and ACLR. OR, odds ratio; CI, confidence interval; ACLR, anterior cruciate ligament reconstruction.
The substantial variation of PFJ OA prevalence is mainly due to the use of surgical techniques, and different follow-up periods. The pooled data showed that BPTB, single-bundle reconstruction, and delayed ACLR was more likely to induce PFJ degenerative changes after ACL injury when compared to hamstring tendon, double-bundle reconstruction, and early ACLR. In particular, ACLR itself, which is the main treatment to ACL injury, was a risk factor for the development of PFJ OA after ACL injury. These findings indicated that hamstring graft, double-bundle reconstruction, and early ACLR should be recommended to reduce the potential degenerative changes in the PFJ during ACLR. Modified rehabilitation strategies aimed to reduce PFJ OA after ACL injury should also be investigated in future studies to improve clinical outcome.

Some other findings from this review are that radiographic assessment should be done in standardized radiographic procedures. From this review, although we found that classification system variations did not have a significant impact on the reporting of the prevalence of PFJ OA, the KL should be recommended as a radiologic assessment to make outcome comparison easy based on its high interrater reliability. The X-rays taken, the baseline information of the included subjects, the technical issues with regard to taking patello-femoral X-rays, the results of opposite knee, and the recruitment rate should be reported, and attempts should be made to account for patients who are not included and those who are lost to follow-up. For patients undergone ACLR after ACL injury, the protocols and outcomes of rehabilitation should be reported. Due to lack of randomized controlled studies, future studies on the reported prevalence of PFJ OA should be randomized and controlled. Apart from the proposed improvement listed above, approaches to improve graft healing after ACLR such as intraoperative irrigation should also be systematically reviewed to evaluate if these approaches benefit the PEJ because some researchers found that the intraoperative irrigation had some improvement in knee laxity after ACLR [47].

This systematic review has some limitations. First, a customised definition of PFJ OA was present in this systematic review as there is no consistent criteria in published literature. This may generate selection bias with respect to reporting the prevalence of PFJ OA. Second, as some studies focused on outcome measurement under different kinds of intervention rather than focussing on PFJ OA, the presented risk factors may not be available in different studies. Third, the prevalence of PFJ OA in ACLR with or without meniscectomy or other concomitant injury was not reported. This is because the included studies did not evaluate the concomitant effect from other anatomical structures beside ACLR. Fourth, the methodological quality assessment, modified CMS, has shortages in assessing the methodological quality of studies involving both surgically and nonsurgical treated subjects with ACL injury. Fifth, this systematic review only included English-language studies, which may introduce a language bias and lead to erroneous conclusions.

Summary

Although ACL injury and ACLR are well-established risk factors for the development of TFJ OA, PFJ OA after ACLR has gone largely unrecognised. In the present systematic review, PFJ OA after ACLR deficiency was conducted in terms of epidemiological data, clinical definitions, and associated risk factors. The pooled prevalence of PFJ OA after ACLR deficiency indicated us the prevalence of PFJ OA is a common clinical problem; The associated risk factors identified in this systematic review are crucial findings for the clinicians to reduce the prevalence of PFJ OA after ACLR deficiency. In the present systematic review, the innovations are that the overall prevalence of PFJ OA after ACLR injury in the included studies varied between 4.5% and 80% based on different radiographic classification systems. The pooled prevalence of PFJ OA after ACL injury implied that we underestimated the degenerative changes in the PFJ after ACLR injury with conservative or surgical treatment.

Conflict of interest

The authors have no conflicts of interest to disclose in relation to this article.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jot.2019.07.004.

Appendix 1. Modified Coleman methodology scorea

Section	Number or factor	Score	Criteria
Part A			
Only one score to be given for each section			
Study size: number of patients			
>60		10	Surgical methods and/or nonoperative treatment methods
41–60		7	
20–40		4	
<20, not stated		0	
Mean follow-up, y			
>5		5	
2–5		3	
<2		0	
No. of different treatment procedures included in each reported outcome			
More than 1 method may be assessed, but separate outcomes should be			
reported.			
1 procedure		10	
More than 1 method but >90% of subjects undergoing the 1 procedure		7	
Not stated, unclear, or <90% of subjects undergoing the 1 procedure		0	
Type of study			
Prospective cohort study/randomized controlled trial		15	
Retrospective cohort study/case series		0	Arthroscopy
Diagnostic certainty			
In all		5	
In >80%		3	
In <80%		0	
Description of treatment given			
Adequate (technique stated and necessary details of that type of procedure given)	5		
Fair (technique only stated without 3 elaboration)		3	
Inadequate, not stated, or unclear		0	
Part B			
Scores could be given for each option in each of the 3 sections			
Outcome criteria			
Outcome measures clearly defined		4	Radiologic classification and standing position
Reported either interrater or intrarater 3 reliability		3	Kellgren and Lawrence
Use of outcome criteria that has reported good reliability		3	
Procedure for assessing outcomes			
Subjects recruited (results not taken from surgeons' files)		5	Radiologic assessment performed
Investigator independent of surgeon/therapist		4	Radiologist independent of the authors of the study
Written assessment		3	Use of questionnaires for evaluation of osteoarthritis
Completion of assessment by subjects themselves with minimal investigator assistance	3	WOMAC, KOOS, IKDC, Lysholm, Tegner/return-to-sport questionnaire	
Description of subject selection process			
Selection criteria reported and unbiased		5	Radiologic assessment
Recruitment rate reported >80%		5	Radiologic assessment
Recruitment rate reported <80%		3	Dropout analysis
Eligible subjects not included in the study satisfactorily accounted for, or 100% recruitment	5		
Part B			
Total score		90	

a The modified Coleman methodology score criteria used on the studies reporting PFJ OA after ACLR.

References

[1] Minkowitz RB, Bosco 3rd JA. Patellofemoral arthritis. Bull Hosp Jt Dis 2009;67(1):30–8 [eng].
[2] Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 2006;239(3):811–7 [eng].
[3] Duncan R, Peat G, Thomas E, Wood L, Hay E, Croft P. Does isolated patellofemoral osteoarthritis matter? Osteoarthr Cartil 2009;17(9):1151–5 [eng].
[4] Culvenor AG, Cook JL, Collins NJ, Crossley KM. Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med 2013;47(2):66–70 [eng].
[5] Friel NA, Chu CR. The role of ACL injury in the development of posttraumatic knee osteoarthritis. Clin Sports Med 2013;32(1):1–12 [eng].
[6] Lee DW, Yeom CH, Kim DH, Kim TM, Kim JG. Prevalence and predictors of patellofemoral osteoarthritis after anterior cruciate ligament reconstruction with hamstring tendon autograft. Clin Orthop Surg 2018;10(2):181–90 [eng].
[7] Culvenor AG, Collins NJ, Vicenzino B, Cook JL, Whitehead TS, Morris HG, et al. Predictors and effects of patellofemoral pain following hamstring-tendon ACL reconstruction. J Sci Med Sport 2016;19(7):518–23.
[8] Hart HF, Stefanik JJ, Wyndow N, Machotka Z, Crossley KM. The prevalence of radiographic and MRI-defined patellofemoral osteoarthritis and structural pathology: a systematic review and meta-analysis. Br J Sports Med 2017;51(16):1195–208 [eng].
[9] Risberg MA, Oiestad BE, Gunderson R, Aune AK, Engerbretsen L, Culvenor A, et al. Changes in knee osteoarthritis, symptoms, and function after anterior cruciate ligament reconstruction: a 20-year prospective follow-up study. Am J Sports Med 2016;44(5):1215–24.
bone or hamstring tendon autografts: a retrospective, 7-year radiographic and clinical follow-up study. Arthroscopy : J Arthroplast Surg : Off Publ Arthrot Soc North Am 2008;23(8):909–908 [eng].

[35] Wang CJ, Huang TW, Jih S. Radiographic assessment of the knee after patellar tendon reconstruction for chronic anterior cruciate ligament deficiency. Chang Gung Med J 2004;27(5):85–90 [eng].

[36] van Meir BI, Meulik MJ, van Der Westen WA, Verhaar JA, Biema-Steinma SM, Reijn M. Which determinants predict tibiofemoral and patellofemoral osteoarthritis after anterior cruciate ligament injury? A systematic review. Br J Sports Med 2015;49(2):66–72 [eng].

[37] Ahn JH, Kim KG, Wang JH, Jung CH, Kim LG. Recent outcomes of anterior cruciate ligament reconstruction using bone-patellar tendon-bone: an analysis of the factors affecting the development of osteoarthritis. J Arthroplast Surg : Off Publ Arthrot Soc North Am 2012;28(6):1114–1119 [eng].

[38] Sim JA, Lee YS, Kim KO, Kim JK, Lee BK. Anatomic double-bundle anterior cruciate ligament reconstruction using an outside-in technique: two- to six-year clinical and radiological follow-up. Knee Surg Relat Res 2015;27(1):34–42 [eng].

[39] Colven AV, Oestad B, Holm I, Gunderson R, Crowley K, Risberg MA. Anterior knee pain following anterior cruciate ligament reconstruction does not increase the risk of patellofemoral osteoarthritis at 15- and 20-year follow-ups. Osteoarthr Cartil 2017;25(2):130–3.

[40] Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE. Presence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med 2008;36(9): 1717–25 [eng].

[41] Salenius PE, Moisala AS, Paakkala A, Kannus P, Jarvela T. Double-bundle versus single-bundle anterior cruciate ligament reconstruction: randomized clinical and magnetic resonance imaging study with 2-year follow-up. Am J Sports Med 2011; 39(8):1615–22 [eng].

[42] Szoeke C, Dennerstein L, Guthrie J, Clark M, Cicuttini F. The relationship between prospectively assessed body weight and physical activity and prevalence of radiological knee osteoarthritis in postmenopausal women. J Rheumatol 2006; 33(9):1835–40 [eng].

[43] Jarvela T, Paakkala T, Kannus P, Jarvinen M. The incidence of patellofemoral osteoarthritis and associated findings 7 years after anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft. Am J Sports Med 2001; 29(1):18–24 [eng].

[44] Kim CW, Hosseini A, Lin L, Wang Y, Torriani M, Gill T, et al. Quantitative analysis of T2 relaxation times of the patellofemoral joint cartilage 3 years after anterior cruciate ligament reconstruction. J Orthop Transl 2018;6:35–92 [eng].

[45] Coleman B, Khan K, Maffulli N, Cook J, Wark J. Studies of surgical outcome after osteoarthritis, pain, and functional limitations in female soccer players twelve years postmenstrual age. Sports Med 2016;44(6):1524–1535 [eng].

[46] Sward P, Friden T, Boegard T, Kostogiannis I, Neuman P, Roos H. Association of patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies. Scand J Med Sci Sport 2000;10(1):2–11 [eng].

[47] Bahr R, Engebretsen I, Linnermo T, Engstrom J, Holme I. Risk factors for sports injuries—a methodological approach. Br J Sports Med 2003;37(5):384–92 [eng].

[48] Fu SC, Cheng W-H, Cheok Y-C, Yau T-Y, Culf Y-S, Hing E, et al. Development of vitamins C irrigation saline to promote graft healing in anterior cruciate ligament reconstruction. J Orthop Traumatol 2013;14(1):67–77 [eng].

[49] Cantin O, Lustig S, Rongieras F, Saragaglia D, Lefevre N, Massinon J, et al. A prospective, randomized controlled trial of a treatment algorithm for the management of the anterior cruciate ligament rupture. J ESSKA 2013;21(4):295–301 [eng].

[50] Salmon LJ, Russell VJ, Refshauge K, Kader D, Connolly C, Linklater J, et al. Long-term outcomes of anterior cruciate ligament rupture and the role of surgical intervention: a systematic review. J Bone Jt Surg Br 2009;91(3):252–9 [eng].

[51] Bourke H, Gordon D, Salmon L, Waller A, Linklater J, Pinzvickzki L. The outcome at 15 years of endoscopic anterior cruciate ligament reconstruction using hamstring tendon autograft for isolated anterior cruciate ligament rupture. J Bone Jt Surg Br 2012;94(5 Suppl 1):630–7 [eng].

[52] Hertel P, Behrend H, Ciprienski W, Musahl V, Wijdiaga J. ACL reconstruction using bone-patellar tendon-bone press-fit fixation: 10-year clinical results. Knee Surg Arthrosc Sports Traumatol Arthrosc 2005;13(4):248–55 [eng].

[53] Mascarenhas R, Tranovich MJ, Kropf EJ, Fu FH, Harner CD. Bone-patellar tendon-bone autograft versus hamstring autograft anterior cruciate ligament reconstruction in the young athlete: a retrospective matched analysis with 2-10 year follow-up. Knee Surg Arthrosc Sports Traumatol Arthrosc 2007;15(2):255–62 [eng].
Thompson S, Salmon I, Waller A, Linklater J, Roe J, Pinczewski L. Twenty-year outcomes of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon autografts. Am J Sports Med 2015;43(9):2164–74 [eng].

Ruffilli A, Buda R, Pagliazzi G, Baldassarri M, Cavallo M, Luciani D, et al. Over-the-Top anterior cruciate ligament reconstruction using single-or double-strand hamstrings autograft. Orthopedics 2015;38(7):e635–43.

Holm I, Oiestad BE, Risberg MA, Gunderson R, Aune AK. No differences in prevalence of osteoarthritis or function after open versus endoscopic technique for anterior cruciate ligament reconstruction: 12-year follow-up report of a randomized controlled trial. Am J Sports Med 2012;40(11):2492–8 [eng].