Liver Steatosis is a Driving Factor of Inflammation

Raja Gopal Reddy Mooli, PhD and Sadeesh K. Ramakrishnan, DVM, PhD

Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

See rebuttal on page 1271. See counterpoint on page 1273.

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with comorbidities, such as insulin resistance, cardiovascular, and metabolic diseases. A subset of patients with NAFLD progresses to nonalcoholic steatohepatitis (NASH), characterized by hepatocyte injury, lobular inflammation, and periportal fibrosis, which may progress to cirrhosis. A significant gap in understanding the causative factors and molecular mechanisms involved in liver injury and inflammation limits the progress in treating NASH. Accumulation of excess free fatty acids in hepatocytes as lipid droplets (called hepatic steatosis) is the stepping stone in the spectrum of NAFLD. Hepatic steatosis is mainly triggered by continuous low-fiber high-fat diets, impaired fatty acid metabolism, sustained adipose tissue lipolysis, and de novo lipogenesis. Since the early 1970s, researchers have elegantly demonstrated that the accumulation of oxidizable lipids in hepatocytes increases lipid peroxidation and oxidative stress via peroxisomal β-oxidation. Conversely, the peroxidation of membrane lipids and their products directly contribute to hepatocyte injury by damaging various cellular organelles, such as the endoplasmic reticulum and mitochondria. This leads to activating multiple signaling pathways involved in apoptosis, necrosis, and pyroptosis (inflammmasome), resulting in hepatocyte injury and inflammation. Thus, hepatic lipotoxicity acts as the primary insult for initiating injury and inflammation in NASH pathogenesis.

The casual role of lipotoxicity in promoting inflammation in the context of NASH is unclear because of the coexistence of steatosis in combination with insulin resistance, adipokines, alteration in the immune system, and dysbiosis. It is well acknowledged that intestinal microbial dysbiosis and dysregulated adipokine levels during NASH are closely associated with the severity of hepatic lipotoxicity. However, in the setting up of NASH, they are considered secondary offenders. Supporting this concept, Zhang et al demonstrated that lipotoxicity induced by a cholesterol diet sequentially promotes inflammation and hepatocyte injury, associated with gut microbiota dysbiosis. In contrast, decreasing cholesterol levels restored the gut microbiota and completely prevented the NASH development. Similarly, dysbiosis occurs in steatosis-prone leptin-deficient (Lepob/ob) mice, independent of dietary regimens, indicating that alterations in the host (lipid) metabolism is the primary event in the spectrum of liver diseases. In addition, inhibiting the accumulation of saturated fatty acids in the hepatocytes through pharmacologic or genetic approaches improves insulin sensitivity and attenuates inflammation, suggesting that hepatic lipotoxicity is sufficient to trigger the injury and inflammatory response in the liver.

How does lipotoxicity induce inflammation and injury in NASH? Hepatocytes enriched with mitochondria metabolizes fatty acids into acetyl-CoA via fatty acid β-oxidation. However, increased fatty acid delivery endorses lipotoxicity by generating excess reactive oxygen species, which causes mitochondrial damage. Under physiological conditions, mitophagy removes damaged mitochondria; however, lipotoxicity impairs mitophagy resulting in the accumulation of damaged mitochondrial leading to hepatocellular injury (Figure 1). The injured hepatocytes release danger signals, such as damage-associated molecular patterns (DAMPs), including mitochondrial DNA and high-mobility group box 1. Intracellular DAMPs are recognized by pattern recognition receptors, whereas extracellular DAMPs act through the receptors of advanced glycation end products and toll-like receptor 4 and 9 signaling. Activation of these receptors in hepatocytes and immune cells cooperatively triggers a sterile inflammation through diverse pathways, such as nuclear factor-κB, mitogen-activated protein kinase (p38 MAPK), (p42/44 MAPK), and c-Jun N-terminal kinase signaling cascades (Figure 1). For instance, studies show that ablation of toll-like receptor 4 and 9 signaling in the hepatocytes or immune cells similarly attenuate high-fat-induced hepatic steatosis and inflammation, suggesting toll-like receptor signaling in parenchymal and nonparenchymal cells coordinates obesity-associated fatty liver disease. Thus, lipotoxicity-mediated elevation in reactive oxygen species and mitochondrial damage sets a stage to trigger hepatic inflammation.

Lipotoxicity-mediated mitochondrial dysfunction and reactive oxygen species generation also activate nod-like receptor protein (NLRP3) inflammasome signaling by promoting NLRP3 oligomerization and inflammasome assembly. The NLRP3-inflammasome pathway acts as an adaptive mechanism to restore hepatocellular homeostasis during acute stress; however, its sustained activation from persistent injury promotes liver injury, pyroptosis, and fibrosis (Figure 1). Studies revealed that NLRP3 signaling in parenchymal cells is crucial in NASH pathogenesis because global but not myeloid-specific activation of NLRP3 increases hepatocyte death and injury. Mechanistically, NLRP3 activates caspase-1 in...
Recent studies show that hepatocytes communicate with neighboring cells via extracellular vehicles (EVs), composed of cargo in the form of proteins, lipids, and nucleic acids. Notably, the circulating levels of EVs are significantly elevated in human and mouse models of NASH. It is also evident that the composition of the EVs cargo varies considerably between normal patients and patients with NASH, contributing to the worsening of liver injury and inflammation. Several mechanisms regulate EV release, including inositol-requiring enzyme 1α and death receptor 5. Studies show that lipids control the EV release and its cargo composition. For example, death receptor 5 proapoptotic signaling induced by the saturated fatty acids increases the release of EVs from the hepatocytes, which then activates the release of proinflammatory cytokines from the macrophages. Similarly, EVs with integrin β1 as a cargo released from the lipotoxic hepatocytes mediates monocyte adhesion to liver sinusoidal endothelial cells, promoting hepatic inflammation. Moreover, EVs bearing the proinflammatory miR-1 released from the lipid-laden hepatocytes suppress KLF4 and activates nuclear factor-κB and death receptor 5. Studies show that lipids control the EV release and its cargo composition. For example, death receptor 5 proapoptotic signaling induced by the saturated fatty acids increases the release of EVs bearing tumor necrosis factor-related apoptosis-inducing ligand from the hepatocytes, which then activates the release of proinflammatory cytokines from the macrophages. Therefore, understanding the lipid mediators of inflammasome activation may lead to novel therapeutic targets to treat NASH.
relationship between hepatic lipotoxicity and inflammation. A better understanding of the critical determinants of hepatic injury and inflammation driven by hepatic steatosis could help identify novel therapeutic targets for NASH.

References
1. Hardy T, Oakley F, Anstee QM, Day CP, et al. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu Rev Pathol 2016;11:451–496.
2. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998;114:842–845.
3. Schuster S, Cabrera D, Arrese M, Feldstein AE, et al. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 2018;15:349–364.
4. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Oliveira F, David LA, Hunault G, Berglund ED, Liu C, Tao C, Sun K, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 2021;70:761–774.
5. Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang YX, Chan ALWH, Wei H, Yang X, Sung JYY, Yu J, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 2021;70:761–774.
6. Nagpal R, Newman TM, Wang S, Jain S, Lovato JF, Yadav H, et al. Obesity-linked gut microbiome dysbiosis associated with deregammings in gut permeability and intestinal cellular homeostasis independent of diet. J Diabetes Res 2018;2018:3462092.
7. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018;14:807–823.
8. Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 2018;155:629–647.
9. Yang R, Tonnesen TI. DAMPs and sterile inflammation in drug hepatotoxicity. Hepatol Int 2019;13:42–50.
10. Han H, Desert R, Das S, Song Z, Athatavele D, Ge X, Nieto N, et al. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020;73:933–951.
11. Garcia-Martinez I, Santoro N, Chen Y, Hoque R, Ouyang X, Caprio S, Shlomchik MJ, Coffman RL, Candia A, Mehal WZ, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 2016;126:859–864.
12. Jia L, Chang X, Qian S, Liu C, Lord CC, Ahmed N, Lee CE, Lee S, Gautron L, Mitchell MC, Horton JD, Scherer PE, Elmquist JK, et al. Hepatocyte toll-like receptor 4 deficiency protects against alcohol-induced fatty liver disease. Mol Metab 2018;14:121–129.
13. Jia L, Vianna CR, Fukuda M, Berglund ED, Liu C, Tao C, Sun K, Liu T, Harper MJ, Lee CE, Lee S, Scherer PE, Elmquist JK, et al. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun 2014;5:3878.
14. Wree A, Eguchi A, McGeough MD, Johnson CD, Hoffman HM, Pelegrin P, Laufs U, Feldstein AE, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Clin Invest 2019;129:647–659.
15. Han CY, Rho HS, Kim A, Kim TH, Jang K, Jun DW, Kim JW, Kim B, Kim SG, et al. FXR inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury. Cell Rep 2018;24:2985–2999.
16. Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, Barrieau M, Min SY, Kurt-Jones EA, Szabo G, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 2012;122:3476–3489.
mediate monocyte adhesion and promote liver inflammation in murine NASH. J Hepatol 2019; 71:1193–1205.

24. Jiang F, Chen Q, Wang W, Ling Y, Yan Y, Xia P, et al. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol 2020;72:156–166.

Correspondence
Address correspondence to: Sadeesh K. Ramakrishnan, DVM, PhD, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, 200 Lothrop Street, W1057 BST, Pittsburgh, Pennsylvania 15261. e-mail: ramaks@pitt.edu.

Conflicts of interest
The authors disclose no conflicts.

Funding
This work was supported by funding from the National Institute of Diabetes and Digestive and Kidney Diseases (DK110537) and a Pittsburgh Liver Research Center Pilot and Feasibility grant (P30DK120531) to Sadeesh K. Ramakrishnan.