Photoelectrocatalytic performance of ilmenite(FeTiO$_3$) doped TiO$_2$/Ti electrode for reactive green 19 degradation in the UV-visible region

T Azis1, M Nurdin1, L S Riadi1, Z Arham2, I Irwan1, L O A Salim1 and Maulidiyah Maulidiyah1*

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Southeast Sulawesi, Indonesia
2Department of Mathematics and Natural Science, Institut Agama Islam Negeri (IAIN), Kendari 93116, Southeast Sulawesi, Indonesia

maulid06@yahoo.com (corresponding author)

Abstract. FeTiO$_3$ doped TiO$_2$/Ti electrode synthesized through a sol-gel and dip-coating methods for Reactive Green 19 (RG-19) degradation under UV-Visible irradiation. The electrode was characterized by Scanning Electron Microscope (SEM), Linear Sweep Voltammetry (LSV), and Multi Pulse Amperometry (MPA). The electrode surface show that a FeTiO$_3$ layer is quite thin and evenly distributed on the surface of the TiO$_2$/Ti electrode. The photocurrent responses of TiO$_2$/Ti and FeTiO$_3$ doped TiO$_2$/Ti showed the TiO$_2$/Ti electrode was active in UV light, while FeTiO$_3$ doped TiO$_2$/Ti was active in the visible light. The optimum condition show that the TiO$_2$/Ti dopedFeTiO$_3$ provided RG-19 degradation activity of 95%.

1. Introduction

Dyes made from Azo compounds and their derivatives such as the benzene group are very difficult to degrade in nature. Where, azo compounds are very dangerous if they accumulate in the environment due to their carcinogenic and mutagenic properties[1–3]. One of these harmful dyes is Reactive Green 19 (RG-19). RG-19 has toxic, carcinogenic and mutagenic effects on the environment and organisms[4,5], so prevention of waste pollution is required by using the photodegradation method[6–8].

The use of TiO$_2$ semiconductor with the photodegradation method received attention by researchers because of the advantages of TiO$_2$, including good optical, environmentally friendly, high activity, more stable, inexpensive and abundant, but has a large band gap of about 3.2 eV or proportional to the length wave 350-380 nm [9–14]. So for wide applications, TiO$_2$ cannot be applied in sunlight because the intensity of UV entering the earth is only around 3-5%[15–21].

Efforts made in improving the performance of TiO$_2$ photocatalysts are by combining the process of photocatalysis with electrochemistry known as photoelectrocatalysis. The metal dopant reported in this study was ilmenite (FeTiO$_3$). FeTiO$_3$ mineral contains iron and titanium with a high percentage so it is being used as a heterogeneous catalyst for the oxidation process against pollutants in wastewater [22]. The focus of this research is to test the use of FeTiO$_3$ which is doped on the surface of TiO$_2$/Ti electrodes by hydrothermal and anodizing methods, and test its photoelectrocatalysis activity in RG-19 degradation.
2. Experimental Methods

2.1. Preparation of Titanium (Ti) Plate
Preparation of TiO$_2$ Plate carried out by cutting Ti foil (99.7%) with a size of 4 × 0.3 cm and cleaned using sandpaper with a size of 1200 cc. Preparation of TiO$_2$ plate is done by cutting Ti foil (99.7%) with a size of 4 × 0.3 cm and cleaned using sandpaper with a size of 1200 cc. TiO$_2$ foil is washed with detergent and rinse with distilled water. Next, the Ti plate was echoed with a mixtures of HF, HNO$_3$ and distilled water in a ratio of 1: 3: 6 in a row for 2 minutes. The Ti plate is then rinsed with distilled water and then dried[23].

2.2. Fabrication of TiO$_2$/Ti by Anodizing
The Ti plate was prepared into a probe that contain of electrolyte solution mixtures NH$_4$F 0.27 M and distilled water in glycerol 98%. The anodizing process carried out by placing the Ti plate as anode and Cu plate as a cathode by giving a potential difference of 25 volts for 4 hours and Ti Plate was calcined for 90 minutes at a temperature of 500°C[17].

2.3 Synthesis of Ilmenite (FeTiO$_3$)
FeTiO$_3$ is synthesized by refluxing a mixture of 4 mL TTIP, 0.5 mL acetyl acetate, 30 mL ethanol, 2 mL distilled water, 1 mL acetic acid 0.1 M and 1 mL Fe (NO$_3$)$_3$ 0.5 M for 3 hours at 50°C to form sol. FeTiO$_3$ sol were stored at room temperature for 48 hours then heated at 500 °C for 30 minutes.[24].

2.4 TiO$_2$/Ti plate coating with FeTiO$_3$ sol-gel
TiO$_2$/Ti plates were stored in a 25 mL beaker containing FeTiO$_3$ sol-gel for 5 minutes and then heated at 150°C for 15 minutes.

2.5 Characterization of FeTiO$_3$ doped TiO$_2$/Ti
FeTiO$_3$ doped TiO$_2$/Ti electrode were characterized using a Scanning Electron Microscope (SEM) and Linear Sweep Voltammetry (LSV).

2.3. Testing of photoelectrocatalyst Activity
The photo electro catalyst activity test was carried out using RG-19 dyes with a concentration of 0.5: 1.0: 2.0: 3.0 ppm in a 0.1 M NaNO$_3$ solution performed by the Multi pulse Amperometry (MPA) method with a duration of 10 minutes and a potential difference 0.5 Volts in the variations of UV lamps and Visible lamps. Every time span of 10 minutes in 1 hour, absorbance measurements were taken using a UV-Vis spectrophotometer to determine the decrease in the concentration of the dye. Measurements were made on FeTiO$_3$-TiO$_2$/Ti electrodes. The results obtained are plotted against the rate of degradation of RG-19 compounds.

3. Results and Discussion

3.1. SEM Characterization
The results of the characterization using SEM provide information about the surface morphology of the TiO$_2$/Ti and FeTiO$_3$-TiO$_2$/Ti layers. The formation of TiO$_2$/Ti on titanium plates is characterized by the distribution of small particles but does not cover the entire surface homogeneously, irregularly so that there are still empty spaces on the surface of the titanium plate as shown in Figure 1B. The surface of the FeTiO$_3$-TiO$_2$/Ti electrode showed a layer of FeTiO$_3$ gel sol which was quite thin and evenly distributed on the surface of the TiO$_2$/Ti electrode (Figure 1B). The role of TiO$_2$/Ti as a template is very good for the sol-gel coating process and provides information on the small possibility of surface covering of TiO$_2$/Ti nanotubes[25–29].
3.2. Electrode activity test using LSV

Figure 2A shows the working electrodes of TiO$_2$/Ti irradiated using UV light have better activity than when irradiated using visible light and without irradiation (dark). This is consistent with the theory that TiO$_2$/Ti with anatase crystal structure is only able to be active under UV light with a wavelength (λ) < 388 nm[30–35]. While irradiation using visible light and without irradiation (dark) does not show good activity in a good measurement process.

Figure 2B shows the performance of FeTiO$_3$ doped TiO$_2$/Ti electrode in visible light radiation is better than of TiO$_2$/Ti electrode. Photocurrent of FeTiO$_3$ doped TiO$_2$/Ti electrode in visible light is very high when compared radiation using UV rays or in the dark condition. The high performance of the electrode in Visible rays is due to the presence of FeTiO$_3$ dopants. where, the dopant shift the absorption area of the working electrode so that it can work optimum in the Visible light. When electrons move from the valence band to the conduction band, the FeTiO$_3$ will trap electrons so that the possibility of recombination is very small even with little energy[5,36,37].
3.3. Photoelectrocatalysis degradation test

3.3.1. Determination of maximum wavelength (λ_{max}) of RG-19
Based on measurements using a UV-Vis spectrophotometer, it is known that the maximum wavelength of RG-19 is 530 nm (Figure 3). This result has previously been reported by [36,38]. Based on this wavelength, the line equation $y = 0.094x + 0.025$ is obtained for the concentration range of 0.5 - 3 ppm (Figure 4).

![Figure 3. Maximum wavelength of RG-19](image)

3.3.2. Photoelectrocatalysis degradation test using FeTiO$_3$ doped TiO$_2$/Ti electrode
Based on this test, FeTiO$_3$ doped TiO$_2$/Ti electrode showed excellent photoelectrocatalysis performance, both in UV and Visible radiation. The RG-19 concentration decreases with increasing degradation time, as shown in Figure 4A. FeTiO$_3$ doping can prevent recombination in the hole, so the degradation process becomes more optimal. The slow recombination rate gives the opportunity of the hole to produce large quantities of hydroxyl radicals. The degradation ability of FeTiO$_3$ doped TiO$_2$/Ti electrode can be seen in Figure 4B, where the highest % degradation is 95%.

![Figure 4. (A)Photoelectrocatalysis performance of FeTiO$_3$ doped TiO$_2$/Ti electrode on RG-19 compounds (B) % degradation](image)

4. Conclusion
TiO$_2$/Ti doped FeTiO$_3$ electrode synthesized using the dip-coating method succeeded in expanding their photoelectrocatalysis performance in the UV-Visible region. FeTiO$_3$ is doped thinly and evenly on the surface of TiO$_2$/Ti. Based on the photoelectrocatalysis performance test, the electrode had excellent performance with 95% degradation for RG-19 by 95%.
Acknowledgment

We acknowledge the financial support from the DRPM-Ministry of Research, Technology and Higher Education of the Republic of Indonesia.

References

[1] Basutkar M R, Mala M, Rashmi P, Gaddad S M and Shivannavar C T 2019 Decolorization of reactive Orange 84 Azo dye by Bacillus cereus CMGS-5 Int. J. Adv. Res. Biol. Sci 98–109
[2] Znad H and Kawase Y 2009 Synthesis and characterization of S-doped Degussa P25 with application in decolorization of Orange II dye as a model substrate J. Mol. Catal. A Chem. 314 55–62
[3] Pamecha K, Mehta V and Kabra B V 2016 Photocatalytic degradation of commercial textile Azo Dye Reactive Blue 160 by heterogeneous photocatalysis Adv. Appl. Sci. Res. 7 95–101
[4] Yilmaz M, Bayramoğlu G and Arca M Y 2005 Separation and purification of lysozyme by Reactive Green 19 immobilised membrane affinity chromatography Food Chem. 89 11–8
[5] Dadigala R, Gangapuram B R, Bandi R, Dasari A and Guttena V 2016 Synthesis and characterization of C–TiO$_2$/FeTiO$_3$ and CQD/C–TiO$_2$/FeTiO$_3$ photocatalysts with enhanced photocatalytic activities under sunlight irradiation Acta Metall. Sin. (Eng. Lett.) 29 17–27
[6] Wibowo D, Ruslan, Maulidiyah and Nurdin M 2017 Determination of COD based on Photoelectrocatalysis of FeTiO$_3$.TiO$_2$/Ti Electrode IOP Conf. Ser. Mater. Sci. Eng. 267
[7] Nurdin M, Muzakkar M Z, Maulidiyah M, Maulidiyah N and Wibowo D 2016 Plasmonic Silver—N/TiO$_2$ Effect on Photoelectrocatalytic Oxidation Reaction J. Mater. Environ. Sci 7 3334–43
[8] Maulidiyah M, Wibowo D, Herlin H, Andarini M, Ruslan R and Nurdin M 2017 Plasmon enhanced by Ag-doped S-TiO$_2$/Ti electrode as highly effective photoelectrocatalyst for degradation of methylene blue Asian J. Chem. 29 2504–8
[9] Maulidiyah M, Natsir M, Fitrianingsih F, Arham Z, Wibowo D and Nurdin M 2017 Lignin Degradation of Oil Palm Empty Fruit Bunches using TiO$_2$ Photocatalyst as Antifungal of Fusarium Oxysporum Orient. J. Chem. 33 3101–6
[10] Nurdin M, Maulidiyah M, Salim L O A, Muzakkar M Z and Umar A A 2018 High performance cypermethrin pesticide detection using anatase TiO$_2$-carbon paste nanocomposites electrode Microchem. J. 145 756–61
[11] Nurdin M, Azis T, Maulidiyah M, Aladin A, Hafid N A, Salim L O A and Wibowo D 2018 Photocurrent Responses of Metanil Yellow and Remazol Red B Organic Dyes by Using TiO$_2$/Ti Electrode IOP Conf. Ser. Mater. Sci. Eng. 367
[12] Maulidiyah M, Azis T, Lindayani L, Wibowo D, Salim L O A, Aladin A and Nurdin M 2019 Sol-gel TiO$_2$/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide J. Electrochem. Sci. Technol. 10 394-401
[13] Behpour M 2012 Ag-doped TiO$_2$ Nanocomposite Prepared by Sol Gel Method: Photocatalytic Bactericidal Under Visible Light and Characterization J. Nanostructures 2 227–34
[14] Lin H, Ji X, Chen Q, Zhou Y, Banks C E and Wu K 2009 Mesoporous-TiO$_2$nanoparticles based carbon paste electrodes exhibit enhanced electrochemical sensitivity for phenols Electrochem. commun. 11 1990–5
[15] Wibowo D, Maulidiyah, Ruslan, Azis T and Nurdin M 2018 A high-performance electrochemical sensor based on FeTiO$_3$ synthesis coated on conductive substrates Anal. Bioanal. Electrochem. 10
[16] Nurhidayani, Muzakkar M Z, Maulidiyah, Wibowo D and Nurdin M 2017 A novel of buton asphalt and methylene blue as dye-sensitized solar cell using TiO$_2$/Ti nanotubes electrode IOP Conf. Ser. Mater. Sci. Eng. 267
[17] Nurdin M, Zaeni A, Rammang E T, Maulidiyah M and Wibowo D 2017 Reactor design
development of chemical oxygen demand flow system and its application Anal. Bioanal. Electrochem. 9
[18] Nurdin M, Ramadhan L O A N, Darmawati D, Maulidiyah M and Wibowo D 2018 Synthesis of Ni, N co-doped TiO2 using microwave-assisted method for sodium lauryl sulfate degradation by photocatalyst J. Coatings Technol. Res. 15 395–402
[19] Liao J, Lin S, Zhang L, Pan N, Cao X and Li J 2011 Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays ACS Appl. Mater. Interfaces 4 171–7
[20] Yang S, Yang D, Kim J, Hong J, Kim H, Kim I and Lee H 2008 Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar Cells Adv. Mater. 201059–64
[21] Zhang L, Zhang L, Yang Y, Zhang W, Lv H, Yang F, Lin C and Tang P 2016 Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes J. Biomed. Mater. Res. Part B Appl. Biomater. 104 1004–12
[22] Maulidiyah M, Wijawan I B P, Wibowo D, Aladin A, Hamzah B and Nurdin M 2018 Photoelectrochemical Performance of TiO2/Ti Electrode for Organic Compounds IOP Conf. Ser. Mater. Sci. Eng. 367
[23] Nurdin M, Azis T, Maulidiyah M, Aladin A, Hafid N A, Salim L O A and Wibowo D 2018 Photocurrent Responses of Metanil Yellow and Remazol Red B Organic Dyes by Using TiO2/Ti Electrode IOP Conference Series: Materials Science and Engineering vol 367 (IOP Publishing) p 12048
[24] Hikmawati, Watoni A H, Wibowo D, Maulidiyah and Nurdin M 2017 Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrochemical System IOP Conf. Ser. Mater. Sci. Eng. 267
[25] Nurdin M 2014 Maulidiyah. Fabrication of TiO2/Ti nanotube electrode by anodizing method and its application on photoelectrochemical system Int. J. Sci. Technol. Res. 3 122–4
[26] Chang H-Y, Tzeng W-J and Cheng S-Y 2009 Modification of TiO2 nanotube arrays by solution coating Solid State Ionics 180 817–21
[27] Roy P, Berger S and Schmuki P 2011 TiO2 nanotubes: synthesis and applications Angew. Chemie Int. Ed. 50 2904–39
[28] Mehmood U, Hussein I A, Harrabi K, Mekki M B, Ahmed S and Tabet N 2015 Hybrid TiO2– multiwall carbon nanotube (MWCNTs) photoanodes for efficient dye sensitized solar cells (DSSCs) Sol. Energy Mater. Sol. Cells 140 174–9
[29] Tribawono D S, Wibowo D and Nurdin M 2016 Electrochemical profile degradation of amino acid by flow system using TiO2/Ti nanotubes electrode
[30] Ritonga H, Salamba R, Wibowo D and Nurdin M 2015 Organic Compound Rhodamine B Degradation by TiO2/Ti Electrode in a New Portable Reactor 8 645–53
[31] Muzakkar M Z, Umar A A, Ilham I, Saputra Z, Zulfikar L, Maulidiyah M, Wibowo D, Ruslan R and Nurdin M 2019 Chalcogenide material as high photoelectrochemical performance Se doped TiO2/Ti electrode: Its application for Rhodamine B degradation J. Phys. Conf. Ser. 1242
[32] Li T C, Góes M S, Fabregat-Santiago F, Bisquert J, Bueno P R, Prasittichai C, Hupp J T and Marks T J 2009 Surface passivation of nanoporous TiO2 via atomic layer deposition of ZrO2 for solid-state dye-sensitized solar cell applications J. Phys. Chem. C 113 18385–90
[33] Rane K S, Mhalsiker R, Yin S, Sato T, Cho K, Dunbar E and Biswas P 2006 Visible light-sensitive yellow TiO2− xNdx and Fe− N co-doped Ti1− yFeO2− yNx anatase photocatalysts J. Solid State Chem. 179 3033–44
[34] Kaviyarasu K, Mariappan A, Neyvasagam K, Ayeshamariam A, Pandi P, Palanichamy R R, Gopinathan C, Mola G T and Maaza M 2017 Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method Surfaces and Interfaces 6 247–55
[35] Sotelo-Vazquez C, Noor N, Kafizas A, Quesada-Cabrera R, Scanlon D O, Taylor A, Durrant J R and Parkin I P 2015 Multifunctional P-doped TiO$_2$ films: a new approach to self-cleaning, transparent conducting oxide materials Chem. Mater. 27 3234–42

[36] Singh J and Uma S 2009 Efficient photocatalytic degradation of organic compounds by ilmenite AgSbO$_3$ under visible and UV light irradiation J. Phys. Chem. C 113 12483–8

[37] Truong Q D, Liu J-Y, Chung C-C and Ling Y-C 2012 Photocatalytic reduction of CO2 on FeTiO$_3$/TiO$_2$ photocatalyst Catal. Commun. 19 85–9

[38] Ong S-A, Min O-M, Ho L-N and Wong Y-S 2013 Solar photocatalytic degradation of mono azo methyl orange and diazo reactive green 19 in single and binary dye solutions: adsorbability vs photodegradation rate Environ. Sci. Pollut. Res. 20 3405–13