Study of Two-Body $e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$ Production in the Energy Range from 10.77 to 11.02 GeV

A. Abdesselam, I. Adachi, K. Adamczyk, H. Aihara, S. Al Said, K. Arinstein, Y. Arita, D. M. Asner, T. Aso, H. Atmacan, V. Aulchenko, T. Aushev, R. Ayad, T. Aziz, V. Babu, I. Badhrees, S. Bahnipat, A. Bakich, A. Bala, Y. Ban, V. Bansal, E. Barberio, M. Barrett, W. Bartel, A. Bay, I. Bedny, P. Behera, M. Belhorn, K. Belous, M. Berger, D. Besson, V. Bhardwaj, B. Bhuyan, J. Biswal, T. Bloomfield, S. Blyth, A. Bobrov, A. Bondar, G. Bonvicini, C. Bookwalter, C. Boulahouache, A. Bozek, M. Bračko, F. Breibeck, J. Brodzicka, T. E. Browder, E. Waheed, D. Červenkov, M.-C. Chang, P. Chang, Y. Chao, V. Chekelian, A. Chen, K.-F. Chen, P. Chen, B. G. Cheon, K. Chilikin, R. Chistov, R. Cho, V. Chobanova, S.-K. Choi, D. Cinabro, J. Crukovic, J. Dalseno, A. Bobrov, A. Bondar, G. Bonvicini, C. Bookwalter, C. Boulahouache, M. Danilov, N. Dash, S. Di Carlo, J. Dingfelder, Z. Doležal, D. Dossett, Z. Drášal, A. Drutskoy, S. Dubey, D. Dutta, K. Dutta, S. Eidelman, D. Epifanov, S. Esen, H. Farhat, J. E. Fast, M. Feindt, T. Ferber, A. Frey, O. Frost, B. G. Fulsom, V. Gaur, N. Gabyshev, S. Garguly, A. Garmash, D. Getzkow, R. Gillard, F. Giordano, R. Glattauer, Y. M. Goh, P. Goldenzweig, B. Golob, D. Greenwald, M. Grosse Perdekamp, J. Grygier, O. Grzymkowska, H. Guo, J. Haba, P. Hamer, Y. L. Han, K. Hara, T. Hara, Y. Hasegawa, J. Hasenbusch, K. Hayasaka, H. Hayashii, X. H. He, M. Heck, M. T. Hedges, D. Heffernan, M. Heider, A. Heller, T. Higuchi, S. Himori, S. Hirose, T. Horiguchi, Y. Hoshi, K. Hoshina, W.-S. Hou, Y. B. Hsiung, C.-L. Hsu, M. Huschle, H. J. Hyun, Y. Igarashi, T. Iijima, M. Imamura, K. Inami, G. Inguglia, A. Ishikawa, K. Itagaki, R. Itoh, M. Iwabuchi, M. Iwasaki, Y. Iwasaki, S. Ivata, W. W. Jacobs, J. A. Jacobs, I. Jaegle, H. B. Jeon, Y. Jin, D. Joffe, M. Jones, K. K. Joo, T. Julius, H. Kakuno, A. Kamyshkin, H. Kato, K. K. Kang, P. Kapusta, S. Kataoka, E. Kato, Y. Kato, P. Katrenko, H. Kawagoe, T. Kawasaki, T. Keck, H. Kichimi, C. Kiesling, B. H. Kim, D. Y. Kim, H. J. Kim, H.-J. Kim, J. B. Kim, J. H. Kim, K. T. Kim, M. J. Kim, S. H. Kim, S. K. Kim, Y. J. Kim, K. Kinoshita, C. Kleinwort, J. Klucar, B. R. Ko, N. Kobayashi, S. Koblitz,
K. Trabelsi,20,16 V. Trusov,48 Y. F. Tse,54 T. Tsuboyama,20,16 M. Uchida,101 T. Uchida,20 S. Uehara,20,16 K. Ueno,65 T. Uglov,48,58 Y. Unno,18 S. Uno,20,16 S. Uozumi,46 P. Urquijo,54 Y. Ushiroda,20,16 Y. Usov,5,70 S. E. Vahsen,19 C. Van Hulse,2 P. Vanhoefer,53 G. Varner,19 K. E. Varvell,91 K. Vervink,47 A. Vinokurova,5,70 V. Vorobyev,5,70 A. Vossen,29 M. N. Wagner,13 E. Waheed,54 C. H. Wang,64 J. Wang,75 M.-Z. Wang,65 P. Wang,30 X. L. Wang,73,20 M. Watanabe,68 Y. Watanabe,37 R. Wedd,54 S. Wehle,10 E. White,9 E. Widmann,89 J. Wiechczynski,66 K. M. Williams,107 E. Won,44 B. D. Yabsley,91 S. Yamada,20 H. Yamamoto,98 J. Yamaoka,73 Y. Yamashita,67 M. Yamauchi,20,16 S. Yashchenko,10 H. Ye,10 J. Yelton,11 Y. Yook,110 C. Z. Yuan,30 Y. Yusa,68 C. C. Zhang,30 L. M. Zhang,83 Z. P. Zhang,83 L. Zhao,83 V. Zhilich,5,70 V. Zhukova,57 V. Zhulanov,5,70 M. Ziegler,38 T. Zivko,36 A. Zupanc,49,36 N. Zwahlen,47 and O. Zyukova,5,70

(The Belle Collaboration)

1Aligarh Muslim University, Aligarh 202002
2University of the Basque Country UPV/EHU, 48080 Bilbao
3Beihang University, Beijing 100191
4University of Bonn, 53115 Bonn
5Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
6Faculty of Mathematics and Physics, Charles University, 121 16 Prague
7Chiba University, Chiba 263-8522
8Chonnam National University, Kwangju 660-701
9University of Cincinnati, Cincinnati, Ohio 45221
10Deutsches Elektronen–Synchrotron, 22607 Hamburg
11University of Florida, Gainesville, Florida 32611
12Department of Physics, Fu Jen Catholic University, Taipei 24205
13Justus-Liebig-Universität Gießen, 35392 Gießen
14Gifu University, Gifu 501-1193
15II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
16SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
17Gyeongsang National University, Chinju 660-701
18Hanyang University, Seoul 133-791
19University of Hawaii, Honolulu, Hawaii 96822
20High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
21J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
22Hiroshima Institute of Technology, Hiroshima 731-5193
23 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
24 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
25 Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
26 Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
27 Indian Institute of Technology Guwahati, Assam 781039
28 Indian Institute of Technology Madras, Chennai 600036
29 Indiana University, Bloomington, Indiana 47408
30 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
31 Institute of High Energy Physics, Vienna 1050
32 Institute for High Energy Physics, Protvino 142281
33 Institute of Mathematical Sciences, Chennai 600113
34 INFN - Sezione di Torino, 10125 Torino
35 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
36 J. Stefan Institute, 1000 Ljubljana
37 Kanagawa University, Yokohama 221-8686
38 Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
39 Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
40 Kennesaw State University, Kennesaw, Georgia 30144
41 King Abdulaziz City for Science and Technology, Riyadh 11442
42 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
43 Korea Institute of Science and Technology Information, Daejeon 305-806
44 Korea University, Seoul 136-713
45 Kyoto University, Kyoto 606-8502
46 Kyungpook National University, Daegu 702-701
47 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
48 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
49 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
50 Ludwig Maximilians University, 80539 Munich
51 Luther College, Decorah, Iowa 52101
52 University of Maribor, 2000 Maribor
53 Max-Planck-Institut für Physik, 80805 München
54 School of Physics, University of Melbourne, Victoria 3010
55 Middle East Technical University, 06531 Ankara
56 University of Miyazaki, Miyazaki 889-2192
57 Moscow Physical Engineering Institute, Moscow 115409
58 Moscow Institute of Physics and Technology, Moscow Region 141700
59 Graduate School of Science, Nagoya University, Nagoya 464-8602
60 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
61 Nara University of Education, Nara 630-8528
62 Nara Women’s University, Nara 630-8506
63 National Central University, Chung-li 32054
64 National United University, Miao Li 36003
65 Department of Physics, National Taiwan University, Taipei 10617
66 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
67 Nippon Dental University, Niigata 951-8580
68 Niigata University, Niigata 950-2181
69 University of Nova Gorica, 5000 Nova Gorica
70 Novosibirsk State University, Novosibirsk 630090
71 Osaka City University, Osaka 558-8585
72 Osaka University, Osaka 565-0871
73 Pacific Northwest National Laboratory, Richland, Washington 99352
74 Panjab University, Chandigarh 160014
75 Peking University, Beijing 100871
76 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
77 Punjab Agricultural University, Ludhiana 141004
78 Research Center for Electron Photon Science, Tohoku University, Sendai 980-8578
79 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
80 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
81 RIKEN BNL Research Center, Upton, New York 11973
82 Saga University, Saga 840-8502
83 University of Science and Technology of China, Hefei 230026
84 Seoul National University, Seoul 151-742
85 Shinshu University, Nagano 390-8621
86 Showa Pharmaceutical University, Tokyo 194-8543
87 Soongsil University, Seoul 156-743
88 University of South Carolina, Columbia, South Carolina 29208
89 Stefan Meyer Institute for Subatomic Physics, Vienna 1090
Abstract

We report results on the studies of the $e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$ processes. The results are based on a 121.4 fb$^{-1}$ data sample collected with the Belle detector at the center-of-mass energy near the $\Upsilon(10860)$ peak and 16.4 fb$^{-1}$ of data collected at 19 energy points in the range from 10.77 to 11.02 GeV. We observe a clear $e^+e^- \rightarrow \Upsilon(10860) \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$ signal, with no statistically significant signal of $e^+e^- \rightarrow \Upsilon(11020) \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$. The relative production ratio of $B_s^*\bar{B}_s^*$, $B_s\bar{B}_s^*$, and $B_s\bar{B}_s$ final states at $\sqrt{s} = 10.866$ GeV is measured to be $7 : 0.856 \pm 0.106(stat.) \pm 0.053(syst.) : 0.645 \pm 0.094(stat.) ^{+0.030}_{-0.033}(syst.)$. An angular analysis of the $B_s^*\bar{B}_s^*$ final state produced at the $\Upsilon(10860)$ peak is also performed.

PACS numbers: 14.40.Pq, 13.25.Gv, 12.39.Pu
INTRODUCTION

The Belle experiment has recently measured the ratio \(R_b = \frac{\sigma_{e^+e^- \rightarrow b\bar{b}}}{\sigma_{e^+e^- \rightarrow \mu^+\mu^-}} \) in the energy range from 10.60 to 11.02 GeV utilizing an inclusive technique \[1\]. In addition, the energy dependence of the production cross section has been studied for several exclusive channels such as \(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^- \) (\(n = 1, 2, 3 \)) \[1\] and \(e^+e^- \rightarrow h_b(mP)\pi^+\pi^- \) (\(m = 1, 2 \)) \[2\]. The measured energy dependence for the aforementioned exclusive cross sections exhibits substantially different behaviour compared to that for \(R_b \). Measurements of the cross sections for other exclusive final states, such as two-body \(B^{(*)}\bar{B}^{(*)} \), \(B_s^{(*)}\bar{B}_s^{(*)} \), and three-body \(B^{(*)}\bar{B}^{(*)}\pi \), might shed light on the mechanisms of the \(b\bar{b} \) hadronization and on the nature of the \(\Upsilon(10860) \) and \(\Upsilon(11020) \) resonances.

In this paper, we present preliminary results on the analysis of the \(e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)} \) processes in the energy range from 10.77 to 11.02 GeV in the center-of-mass (c.m.) frame using data accumulated with the Belle detector \[3\] operating at the asymmetric-energy \(e^+e^- \) collider KEKB \[4\].

THE BELLE DETECTOR

The Belle detector is a large-solid-angle magnetic spectrometer based on a 1.5 T superconducting solenoid magnet. Charged particle tracking is provided by a four-layer silicon vertex detector and a 50-layer central drift chamber (CDC) that surround the interaction point. The charged particle acceptance covers laboratory polar angle \(\theta \) between 17\(^{\circ}\) and 150\(^{\circ}\), corresponding to about 92% of the total solid angle in the c.m. frame.

Charged hadron identification is provided by \(dE/dx \) measurements in the CDC, an array of 1188 aerogel Cherenkov counters (ACC), and a barrel-like array of 128 time-of-flight scintillation counters (TOF); information from the three subdetectors is combined to form a single likelihood ratio, which is then used in kaon and pion selection. Electromagnetic showering particles are detected in an array of 8736 CsI(Tl) crystals (ECL) that covers nearly the same solid angle as the charged particle tracking system.

Electron identification in Belle is based on a combination of \(dE/dx \) measurements in the CDC, the response of the ACC, and the position, shape and total energy deposition of the shower detected in the ECL. The electron identification efficiency is greater than 92% for tracks with \(p_{lab} > 1.0 \) GeV/c and the hadron misidentification probability is below 0.3%. The magnetic field is returned via an iron yoke that is instrumented to detect muons and \(K_L^0 \) mesons. Muons are identified based on their penetration range and transverse scattering in this KLM detector. In the momentum region relevant to this analysis, the identification efficiency is about 90% while the probability to misidentify a pion as a muon is below 2%.
We use the EvtGen event generator [5] with PHOTOS [6] for radiative corrections and a GEANT-based Monte Carlo (MC) simulation [7] to model the response of the detector and determine the acceptance. The MC simulation includes run-dependent detector performance variations and background conditions.

EVENT RECONSTRUCTION

Charged tracks are selected with a set of track quality requirements based on the number of CDC hits and on the distances of closest approach to the interaction point (IP) along (perpendicular to) the beam axis of $|dz| < 5$ cm ($|dr| < 2.5$ cm). Tracks originating from a B_s candidate are required to have momenta transverse to the beam greater than 0.05 GeV/c. For charged kaon identification, we impose a particle-identification requirement that has an 86% efficiency and a 7% fake rate from misidentified pions. Charged hadron candidates that are positively identified as electrons are excluded.

B_s Reconstruction

Candidate B_s decays are reconstructed in the following channels: $B_s \rightarrow D_s^{(*)-}\pi^+$, $B_s \rightarrow J/\psi K^+K^-$, $B_s \rightarrow J/\psi\pi^+\pi^-$, and $B_s \rightarrow \psi(2S)K^+K^-$. Candidate $D_s^{(*)}$ decays are reconstructed in the $D_s\gamma$ channel, where $D_s \rightarrow K^+K^−\pi^−$ or $K^0_SK^−$. D_s candidates from the $B_s \rightarrow D_s^{-}\pi^+$ decay mode are reconstructed in the $K^+K^−\pi^−$, $K^0_SK^−$, and $K^0_SK^+\pi^−\pi^−$ final states. Neutral kaon (K^0_S) candidates are reconstructed using pairs of oppositely-charged tracks, both treated as pions, with an invariant mass within 15 MeV/c^2 of the nominal K^0_S mass; the IP constraint is not imposed here. The direction of the K^0_S candidate momentum vector is required to be consistent with the direction of its vertex displacement relative to the IP. To identify signal D_s [$D_s^{(*)}$] candidates, we require $|M(D_s) − m_{D_s}| < 2.5\sigma$, $|[(M(D_s\gamma) − M(D_s)) − (m_{D_s} − m_{D_s})]| < 2.5\sigma$, where m_{D_s} [$m_{D_s^{(*)}}$] is the D_s [$D_s^{(*)}$] nominal mass [8], and σ is the Gaussian width for the relevant final state. The invariant mass of the $J/\psi \rightarrow \ell^+\ell^−$ candidates, with ℓ being electron (muon), is required to satisfy 3.01 (3.05) GeV/$c^2 < M(\ell^+\ell^-) < 3.13$ GeV/c^2. The $\psi(2S)$ candidates are reconstructed in the $\psi(2S) \rightarrow J/\psi\pi^+\pi^−$ decay mode. We require $|(M(J/\psi\pi^+\pi^-) − M(J/\psi)) − (m_{\psi(2S)} − m_{J/\psi})| < 8$ MeV/c^2, where $m_{J/\psi}$ and $m_{\psi(2S)}$ are the J/ψ and $\psi(2S)$ nominal masses [8], respectively.

We identify B_s candidates by their reconstructed invariant mass $M(B_s)$ and momentum $P(B_s)$. We do not reconstruct the photon from the $B_s^{*} \rightarrow B_s\gamma$ decay; instead, the individual two-body final states are discriminated based on the reconstructed B_s momentum.
Signal $\Upsilon(10860) \rightarrow B_s^*\bar{B}_s^*$ events produce a narrow peak in the $P(B_s)$ spectrum around 0.442 GeV/c, the $\Upsilon(10860) \rightarrow B_s\bar{B}_s^*$ signal events produce a peak at 0.678 GeV/c, and $\Upsilon(10860) \rightarrow B_s\bar{B}_s$ signal peaks at 0.844 GeV/c. It is important to note here that, due to the very low momentum of the photon from the $B_s^* \rightarrow B_s\gamma$ decays, the $B_s\bar{B}_s^*$ events (where the reconstructed B_s is the one from B_s^*) produce a peak in the $P(B_s)$ distribution at about the same position as $B_s\bar{B}_s^*$ events, where the reconstructed B_s is the prompt one. This is confirmed with the signal MC simulation. Momentum smearing for B_s daughters from B_s^* decays becomes more significant for higher E_{cm} values.

Background Suppression

The dominant source of background arises from $e^+e^- \rightarrow c\bar{c}$ continuum events, where real D mesons produced in e^+e^- annihilation are combined with random particles to form a B candidate. This type of background is suppressed using variables that characterize the event topology. Since the momenta of the $B_s^{(*)}$ and $\bar{B}_s^{(*)}$ mesons produced from the $\Upsilon(10860)$ decay are low in the c.m. frame, their decay products are essentially uncorrelated and the event tends to be spherical. In contrast, hadrons from continuum events tend to exhibit a two-jet structure. We use θ_{thr}, the angle between the thrust axis of the B_s candidate and that of the rest of the event, to discriminate between the two cases. The distribution is strongly peaked near $|\cos \theta_{\text{thr}}| = 1.0$ for $q\bar{q}$ events and is nearly flat in $\cos \theta_{\text{thr}}$ for $B_s^{(*)}\bar{B}_s^{(*)}$ events. We require $|\cos \theta_{\text{thr}}| < 0.80$ for the $B_s \rightarrow D_s^{(*)}\pi$ final states; this eliminates about 83% of the continuum background and retains 79% of the signal events.

ANALYSIS OF THE $\Upsilon(10860)$ DATA

Figures 1(a), (b), and (c) show the combined $M(B_s)$ distribution for the generic $\Upsilon(10860) \rightarrow B^{(*)}\bar{B}^{(*)}$ MC, generic $\Upsilon(10860) \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$ MC (with signal modes removed), and continuum $\Upsilon(10860) \rightarrow q\bar{q}$ ($q = u, d, s, c$) MC, respectively, with a requirement on the B_s candidate momentum of $P(B_s) < 0.95$ GeV/c.

The combined $M(B_s)$ distribution for the selected B_s candidates in data is shown in Fig. 1(d). To determine the B_s signal yield, we perform a binned maximum likelihood fit of the $M(B_s)$ distribution to the non-coherent sum of signal and background components. The signal is parametrized by the sum of two Gaussian functions with a common mean, a ratio of widths fixed from the signal MC at $\sigma_2 = 2.1\sigma_1$, and a relative area of $N_2 = 0.36N_1$. The background component is comprised of the continuum background and the B- and B_s-related background. As evident from Figs. 1(a) and (c), the B-related and continuum backgrounds
FIG. 1: Mass distribution for the selected B_s candidates (all modes combined) in the (a) B_u and B_d generic MC, (b) B_s generic MC except for signal modes, (c) continuum $e^+e^- \rightarrow q\bar{q}$ generic MC, and (d) $\Upsilon(10860)$ data. The black histogram in (d) represents result of the fit with the signal component shown by the open histogram, B- and B_s-related background by the hatched histogram, and the continuum background by the cross-hatched histogram.

are featureless, so we parametrize these by linear functions. The shape of the B_s-related background, shown in Fig. 1(b), is fixed from the generic MC, while the normalization is fixed to be a fraction of the observed B_s signal. The ratio of the number of the background events due to other B_s decays to the number of events in the B_s peak is determined to be 1.87 for the $P(B_s)$ requirement used to select a combination of $B_s^{(*)}\bar{B}_s^{(*)}$ final states and 1.12 for the $B_s^*\bar{B}_s^*$ final state. If the normalization is allowed to float while fitting the data, the fits yield 1.82 ± 0.22 and 1.06 ± 0.13, respectively. The result of the fit to the $M(B_s)$ distribution is shown in Fig. 1(d). The fit yields 2283 ± 63 signal B_s decays.

To distinguish between individual two-body $e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$ processes, we impose a requirement on the invariant mass of the B_s candidate equivalent to a Gaussian 2.5σ efficiency, where σ is a B_s decay mode-dependent parameter. Figures 2(a), (b), and (c) show the
FIG. 2: Momentum distribution for the selected B_s candidates (all modes combined) in the (a) B_u and B_d generic MC, (b) B_s generic MC with signal modes removed, (c) continuum $e^+e^- \rightarrow q\bar{q}$ generic MC, and (d) $\Upsilon(10860)$ data. The black histogram in (d) represents a result of the fit with the signal component shown by the open histogram, B- and B_s-related background by the hatched histogram, and the continuum background by the cross-hatched histogram.

The $P(B_s)$ distribution for the generic $\Upsilon(10860) \rightarrow B^{(*)}B^{(*)}$ MC, generic $\Upsilon(10860) \rightarrow B_s^{(*)}B_s^{(*)}$ MC (with signal modes removed), and continuum $\Upsilon(10860) \rightarrow q\bar{q}$ MC, respectively, with a B_s decay mode-dependent requirement on the $M(B_s)$ that corresponds to a Gaussian 2.5σ efficiency. A peaking structure observed in Fig. 2(b) around $P(B_s) \sim 0.5$ GeV/c is due to misreconstructed B_s candidates, such as $B_s^0 \rightarrow D_s^-\pi^+$, $D_s^- \rightarrow K^+K^-\pi^-$ with double π/K misidentification. Such events produce no peak in the $M(B_s)$ distribution but do peak in $P(B_s)$. The momentum distribution for the selected B_s candidates in data is shown in Fig. 2(d). Three distinct peaks, corresponding to the $B_s\bar{B}_s$, $B_s\bar{B}_s^* + \bar{B}_sB_s^*$, and $B_s^*\bar{B}_s^*$ final states, are apparent.

We perform a binned maximum likelihood fit of the $P(B_s)$ distribution to the non-
coherent sum of three signal components and a background component. The shape of each signal component is determined from MC simulation with the initial state radiation (ISR) effect taken into account. The background component is comprised of the continuum background, the B-related background, and the B_s-related background. The shape of the continuum $P(B_s)$ background is parametrized as

$$B_{qq}(x) \sim x^\alpha e^{-(x/x_0)\beta},$$

(1)

where $x = P(B_s)$; x_0, α, and β are fit parameters. The normalization of the continuum background component is allowed to float. For the B- and B_s-related background components, we use the corresponding MC driven histograms (see Fig. 2) as PDFs. The ratios of the B- and B_s-related backgrounds to the $B_s^{(*)}$ signal yield are fixed from the MC simulation.

Results of the fit to the $P(B_s)$ distribution are shown in Fig. 2(d). The fit yields 1854 ± 51 $B_s^* \bar{B}_s^*$ signal events, 226 ± 27 $B_s \bar{B}_s^*$ + $\bar{B}_s B_s^*$ signal events, and 169 ± 24 $B_s \bar{B}_s$ signal events. Assuming a uniform reconstruction efficiency over the relevant B_s momentum range, this corresponds to relative fractions of $7 : 0.853 \pm 0.106(stat.) \pm 0.053(syst.) : 0.638 \pm 0.094(stat.) \pm 0.033(syst.)$. These can be compared with the current world average results of $7 : 0.537 \pm 0.152 : 0.199 \pm 0.199$ and an expectation of $7 : 4 : 1$ in the heavy-quark spin symmetry (HQSS) approximation [10, 11].

The dominant sources of the systematic uncertainties for the relative fractions of the two-body signals are:

- the fraction of the B- and B_s-related background estimating by repeating the fit to the B_s momentum distribution with the normalization of this background allowed to float;

- the $M(B_s)$ signal region, estimated by repeating the fit to the data with the $M(B_s)$ signal region set to $\pm 3\sigma$ and $\pm 2\sigma$ around the B_s nominal mass;

- the momentum distribution fitting range, estimated by varying the upper boundary of the momentum range from 2.0 to 3.0 GeV/c with a 0.25 GeV/c step;

- the width of the momentum resolution function, estimated by varying the width of the $P(B_s)$ resolution within $\pm 10\%$ of the nominal value and repeating the fit to the data.

These uncertainties are summarized in Table I. The overall systematic uncertainty is estimated to be ± 0.053 for the $B_s \bar{B}_s^* + \bar{B}_s B_s^*$ fraction and ± 0.033 for the $B_s \bar{B}_s$ fraction.
TABLE I: Summary of the systematic studies for the relative $B_s^* \bar{B}_s^* : B_s \bar{B}_s^* + \bar{B}_s B_s^*$: $B_s \bar{B}_s$ yields.

Source	Signal yield, events	Ratio	Uncertainty
	$B_s^* \bar{B}_s^*$	$B_s \bar{B}_s^*$	$B_s \bar{B}_s$
$B & B_s$ background			
floating	1865 219 168	7 : 0.822 : 0.637	
×1.50	1844 227 164	7 : 0.862 : 0.623	
×0.75	1863 221 172	7 : 0.830 : 0.646	
$M(B_s)$ signal region			
±2σ	1780 212 162	7 : 0.834 : 0.637	
±3σ	1897 235 174	7 : 0.867 : 0.642	
$P(B_s)$ range			
< 2.00 GeV/c	1864 226 165	7 : 0.851 : 0.626	
< 2.25 GeV/c	1857 225 167	7 : 0.851 : 0.636	
< 2.75 GeV/c	1859 222 165	7 : 0.838 : 0.628	
< 3.00 GeV/c	1871 231 173	7 : 0.871 : 0.647	
Momentum resolution			
$B_s^* \bar{B}_s^*$: −10%	1842 213 162	7 : 0.811 : 0.622	
$B_s^* \bar{B}_s^*$: +10%	1865 239 177	7 : 0.900 : 0.671	
$B_s \bar{B}_s^*$: −10%	1855 226 169	7 : 0.855 : 0.644	
$B_s \bar{B}_s^*$: +10%	1856 218 162	7 : 0.824 : 0.617	
$B_s \bar{B}_s$: −10%	1854 227 171	7 : 0.860 : 0.652	
$B_s \bar{B}_s$: +10%	1854 224 166	7 : 0.848 : 0.633	
Nominal fit	1854 ± 51 226 ± 27 169 ± 24	7 : 0.853 ± 0.106 : 0.638 ± 0.094	

B_s reconstruction efficiency

To account for the possible dependence of the B_s reconstruction efficiency on the c.m. energy ($P(B_s)$ momentum), we generate 20K $e^+e^- \rightarrow B_s^{(*)} \bar{B}_s^{(*)}$ signal MC events at seven E_{cm} points. Applying the same reconstruction and analysis algorithm, we determine the B_s signal yield. The results are summarized in Fig. 5. No significant variations in the reconstruction efficiency are observed within the relevant B_s momentum range, including the case where the $\cos(\theta_{thr})$ requirement is applied.
FIG. 3: B_s reconstruction efficiency (no intermediate branching fractions included). (a) Momentum dependence of the B_s reconstruction efficiency for the $B_s \to D_s [K^+ K^- \pi] \pi$ decay mode with no $\cos(\theta_{thr})$ cut (red points), with the $|\cos(\theta_{thr})| < 0.8$ cut applied (blue points), and for the $B_s \to J/\psi [\ell^+ \ell^-] K^+ K^-$ decay mode (black points). (b) Correction for the B_s reconstruction efficiency as a function of the B_s polar angle in the c.m. frame. Red points are for the $B_s \to D_s [K^+ K^- \pi] \pi$ decay mode, blue points are for the $B_s \to J/\psi [\mu^+ \mu^-] K^+ K^-$ decay mode. The solid line represents the result of the fit to a linear function.

Angular analysis

The $\cos(\theta_{B_s^*})$ distribution, where $\theta_{B_s^*}$ is the angle between the B_s^* momentum and the z axis in the c.m. frame, provides information on the relative fractions of the $S = 0$ and $S = 2$ states, with S being the total spin of the $B_s^* \bar{B}_s^*$ pair, produced in the $e^+ e^- \to B_s^* \bar{B}_s^*$ process. The angular distribution of the $S = 0$ component is proportional to $1 - \cos^2(\theta_{B_s^*})$ while that for the $S = 2$ component to $(7 - \cos^2(\theta_{B_s^*}))/10$. The differential cross section then reads as

$$\frac{d\sigma}{d\cos(\theta_{B_s^*})} \sim \mathcal{A}_0^2 + \mathcal{A}_2^2,$$

(2)

where $\mathcal{A}_0^2 = a_0^2(1 - \cos^2 \theta_{B_s^*})$ and $\mathcal{A}_2^2 = a_2^2(7 - \cos^2 \theta_{B_s^*})/10$ are the squared amplitudes for the $B_s^* \bar{B}_s^*$ production in a P wave with the total spin of $S = 0$ and $S = 2$, respectively. In the heavy quark spin symmetry, the ratio $a_0^2 : a_2^2$ is expected to be 1:20. However, the proximity of the $B_s^* \bar{B}_s^*$ production threshold might distort this ratio significantly [12].

For the analysis of the B_s^* polar angular distribution in data, we select B_s^* candidates by applying a requirement on the B_s momentum of $0.25 \text{ GeV}/c < P(B_s) < 0.55 \text{ GeV}/c$ and then determine the B_s yield in $\cos(\theta_{B_s^*})$ bins. (In fact, we measure the polar angle of the B_s meson, not B_s^*. The associated absolute uncertainty in $\cos \theta_{B_s^*}$ is below 0.01, which is much smaller than the bin width.) We perform a binned maximum likelihood fit to the $M(B_s)$
FIG. 4: $\cos(\theta_{B_s})$ distribution for the $e^+e^- \to B_s^*\bar{B}_s^*$ events. (a) Test with generic MC events. The solid line – a fit with combinations of the $S = 0$ and $S = 2$ components; the dashed line – a fit with the $S = 0$ component only. (b) $\Upsilon(10860)$ data. Th solid line – a fit with combinations of the $S = 0$ and $S = 2$ components; the dashed line – fit with the $S = 2$ component only. (c) measured r value versus the input one as determined with signal MC; the solid line shows the exact proportionality.

distribution for each $\cos \theta_{B_s}$ bin. The B_s yield as a function of $\cos \theta_{B_s}$ is fit to the following function:

$$
\frac{d\sigma}{d \cos(\theta_{B_s})} \sim r(1 - \cos^2 \theta_{B_s}) + (1 - r)\frac{7 - \cos^2 \theta_{B_s}}{10},
$$

where $r = a_0^2/(a_2^2 + a_0^2)$. We also apply the efficiency corrections described earlier.

As a cross-check of the analysis procedure, we apply it to the generic MC events. Results of this analysis are shown in Fig. 4(a). The fit result of $r = 0.952 \pm 0.029$ is consistent with a pure $S = 0$ component. This agrees with the MC input, where the fraction of the $S = 2$ component is (wrongly) set to zero.

Results of the same analysis applied to the data are shown in Fig. 4(b). The fit yields a fraction of the $S = 0$ component of $r = 0.175 \pm 0.057^{+0.022}_{-0.018}$. We also fit the data with a pure $S = 2$ form, the results are also shown in Fig. 4(b). The statistical significance of the $S = 0$ component, determined as $\sqrt{-2(\ln L_{S=2} - \ln L_{\text{mix}})}$ is 3.1 standard deviations (statistical only).

The dominant sources of the systematic uncertainties for the angular analysis are

- correction for the reconstruction efficiency -0.004: to estimate this uncertainty, we vary the slope of the correction function within its statistical uncertainty;

- binning ±0.010: to estimate this uncertainty, we repeat the fit with bin widths of 0.040, 0.050, 0.080, 0.125, and 0.200, then take the largest positive and negative deviations as the estimation of the systematic uncertainty;

- determination of the B_s signal yield -0.015: here, we vary the fraction of the B_s related component within $\pm25\%$ and fraction of the second Gaussian in the signal PDF within.
±10% (the typical variation of these quantities for various B_s decay chains) and repeat the fit to the angular distribution;

- momentum cuts to select the $B_s^*\bar{B}_s^*$ signal – ±0.012: here, we vary the lower and the higher boundary of the momentum range by ±0.05 GeV/c and repeat the fit to the angular distribution.

We also check for a possible systematic shift in the determination of the r value (linearity check) using signal MC events generated with various inputs for the $S = 0$ fraction. The results of this study are shown in Fig. 4(c).

The overall systematic uncertainty is calculated as the quadratic sum of all contributions and is ± 0.022. This reduces the significance of the $S = 0$ component to 2.6σ.

ANALYSIS OF THE ENERGY SCAN DATA

For this analysis, we use 19 energy points above the B_sB_s production threshold with about one inverse femtobarn of integrated luminosity accumulated at each point. We also split the 121.4 fb$^{-1}$ of data taken near the $\Upsilon(10860)$ peak into three samples with close E_{cm} values according to the KEKB data; see Table III.

At each energy point, we use the same analysis strategy as applied in the analysis of the $\Upsilon(10860)$ data, described in the previous Section. The $M(B_s)$ distributions for selected B_s candidates at each energy point are shown in Fig 5. The relevant information is summarized in Table III.

The visible cross section σ^{vis} shown in Fig. 6(a) is calculated as

$$\sigma_i^{vis} = 0.0585 \frac{N_i}{N_{5S}} \frac{L_{5S}}{L_i};$$

where N_i and $N_{5S} = 2270 \pm 60$ are the B_s yields measured at the i-th energy point and for the full $\Upsilon(10860)$ sample, respectively; L_i and $L_{5S} = 121.4$ fb$^{-1}$ are the corresponding luminosities. The factor (0.0585 ± 0.0106) nb is the product of the total $e^+e^- \rightarrow b\bar{b}$ cross section of 0.340 ± 0.016 nb [13] and the fraction of $e^+e^- \rightarrow b\bar{b}$ events hadronized to a pair of $B_s^{(*)}$ mesons, measured to be $f_s = 0.172 \pm 0.030$ [13]. Both these quantities have been measured by Belle at the $\Upsilon(10860)$.

In addition to the total $e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$ cross section, we also perform a separate measurement of the exclusive $e^+e^- \rightarrow B_s^{*}\bar{B}_s^{*}$ cross section. We select $B_s^{*}\bar{B}_s^{*}$ events by applying a tighter requirement on the momentum of the reconstructed B_s, as summarized in Table III. Results are presented in Fig. 6(b) and in Table III. As a cross check, we apply the same procedure to events selected in a 0.25 GeV/c-wide momentum window above the two-body
TABLE II: Summary of the energy scan results.

#	Energy (GeV)	Lumi. (fb⁻¹)	Total $B_s^{(*)} \bar{B}_s^{(*)}$ $P(B_s)$	B_s Yield (GeV/c)	σ_{vis} (Events)	Only $B_s^{(*)} \bar{B}_s^{(*)}$ $P(B_s)$	B_s Yield (GeV/c)	σ_{vis} (Events)
1	10.7711	0.955	< 0.605	3.0 ± 2.3	9.8 ± 7.5	< 0.461	12.3 ± 3.3	38.7 ± 10.4
2	10.8205	1.697	< 0.793	4.8 ± 4.1	8.8 ± 7.5	< 0.520	15.8 ± 3.4	49.8 ± 10.7
3	10.8497	0.989	< 0.888	14.3 ± 6.2	45.0 ± 19.5	< 0.578	20.6 ± 3.9	65.6 ± 12.4
4	10.8589	0.988	< 0.916	28.6 ± 6.3	84.4 ± 19.9	< 0.622	12.3 ± 3.9	39.2 ± 12.4
5	10.8695	0.978	< 0.947	28.6 ± 6.2	91.0 ± 19.7	< 0.708	3.3 ± 2.8	10.5 ± 8.9
6	10.8785	0.978	< 0.973	13.5 ± 5.4	43.0 ± 17.2	< 0.718	9.8 ± 4.0	21.4 ± 8.7
7	10.8836	1.848	< 0.987	24.5 ± 7.1	41.3 ± 12.0	< 0.644	20.5 ± 5.8	34.5 ± 9.8
8	10.8889	0.990	< 1.003	10.1 ± 5.1	31.8 ± 16.0	< 0.668	4.3 ± 2.8	13.5 ± 8.8
9	10.8985	0.983	< 1.029	11.2 ± 4.7	35.5 ± 14.9	< 0.708	3.3 ± 2.8	10.5 ± 8.9
10	10.9011	1.425	< 1.036	13.7 ± 4.9	30.0 ± 10.7	< 0.718	9.8 ± 4.0	21.4 ± 8.7
11	10.9077	0.980	< 1.053	−2.8 ± 3.8	−8.9 ± 12.1	< 0.744	−1.1 ± 3.5	−3.5 ± 11.1
12	10.9275	1.149	< 1.105	5.6 ± 4.8	12.1 ± 13.0	< 0.815	4.4 ± 3.4	11.9 ± 9.2
13	10.9575	0.969	< 1.178	−0.2 ± 3.6	−0.6 ± 11.6	< 0.912	2.3 ± 3.3	7.4 ± 10.1
14	10.9775	0.999	< 1.224	2.9 ± 4.7	9.0 ± 14.6	< 0.971	2.8 ± 3.2	8.7 ± 10.0
15	10.9919	0.985	< 1.258	−4.5 ± 3.3	−14.2 ± 10.4	< 1.012	−1.0 ± 2.6	−3.1 ± 8.2
16	11.0068	0.976	< 1.290	−2.9 ± 4.2	−9.3 ± 13.4	< 1.052	−3.5 ± 2.7	−11.2 ± 8.6
17	11.0164	0.771	< 1.311	10.4 ± 6.1	42.0 ± 24.6	< 1.077	7.7 ± 4.4	31.1 ± 17.8
18	11.0175	0.859	< 1.314	8.2 ± 5.2	29.7 ± 18.8	< 1.080	1.4 ± 3.4	5.1 ± 12.3
19	11.0220	0.982	< 1.323	0.8 ± 4.2	2.5 ± 13.3	< 1.091	0.4 ± 3.9	1.3 ± 12.4
20	10.8686	22.938	< 0.945	457.5 ± 29.0	62.1 ± 3.9	< 0.573	378 ± 42	51.3 ± 5.7
21	10.8633	47.647	< 0.930	817.7 ± 32.3	53.3 ± 2.1	< 0.545	732 ± 50	47.8 ± 3.3
22	10.8667	50.475	< 0.940	999.0 ± 33.0	61.6 ± 2.0	< 0.563	820 ± 53	50.6 ± 3.3

kinematic limit. The fit returns a B_s yield consistent with zero at each energy point; the measured visible cross section for this sideband region is shown in Fig. (c).

The systematic uncertainty for the measured visible cross sections quoted in Table II is dominated by the common multiplicative part due to the uncertainties in the total $e^+e^- \to b\bar{b}$ cross section and the hadronization fraction f_s. The systematic uncertainty due to the B_s signal yield extraction is determined for each energy point and varies from 6% to 20%.
FIG. 5: $M(B_s)$ distributions for $e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$ candidates for each energy point.

CONCLUSION

In conclusion, the ratio of production cross sections for the two-body $B_s^* \bar{B}_s^* : B_s \bar{B}_s + c.c. : B_s \bar{B}_s$ in e^+e^- annihilation at $\sqrt{s} = 10.866$ GeV is measured to be $7 : 0.853 \pm 0.106 \pm 0.053 : 0.638 \pm 0.094 \pm 0.033$. The fraction of the $S = 0$ component determined from the analysis of
FIG. 6: Cross section for the (a) total $e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$; (b) $e^+e^- \rightarrow B_s^*\bar{B}_s^*$ only; (c) momentum sideband region. Vertical lines show the $B_s\bar{B}_s$, $B_s^*\bar{B}_s^*$, and $B_s^*\bar{B}_s^*$ thresholds, respectively.

The polar angular distribution of B_s^* produced in the $\Upsilon(10860) \rightarrow B_s^*\bar{B}_s^*$ process is $r = 0.175 \pm 0.057^{+0.022}_{-0.018}$. The measured values of the ratio of the production cross sections and fraction of the $S = 0$ component are in strong contradiction with the HQSS prediction. Some possible reasons for such a difference are discussed in Ref. [12]. Analysis of the $\Upsilon(10860) \rightarrow B_s^*\bar{B}_s^*$ cross section in the energy range from 10.77 to 11.02 GeV reveals a strong signal of the $\Upsilon(10860)$ resonance with no statistically significant signal of the $\Upsilon(11020)$ resonance.

ACKNOWLEDGEMENT

We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS, and Nagoyas TLPRC (Japan); ARC and DIISR (Australia); FWF (Austria); NSFC (China); MSMT (Czechia); CZF, DFG, and VS (Germany); DST (India); INFN (Italy); MOE, MSIP, NRF, GSDC of KISTI, and BK21Plus (Korea); MNiSW and NCN (Poland); MES (particularly under Contract No. 14.A12.31.0006) and RFAAE (Russia); ARRS (Slovenia); IKERBASQUE and UPV/EHU (Spain); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (U.S.).

[1] D. Santel et al. (Belle Collaboration), Phys. Rev. D 93, 011101(R) (2016).
[2] R. Mizuk et al. (Belle Collaboration), arXiv:1508.06562 [hep-ex], submitted to PRL.
[3] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 479, 117 (2002); also see detector section in J. Brodzicka et al. Prog. Theor. Exp. Phys. (2012) 04D001.
[4] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res. Sect. A 499, 1 (2003), and
other papers included in this Volume; T. Abe et al. Prog. Theor. Exp. Phys. (2013) 03A001 and following articles up to 03A011.

[5] D. J. Lange, Nucl. Instrum. Methods Phys. Res. A 462, 152 (2001).
[6] E. Barberio and Z. Was, Comput. Phys. Commun. 79, 291 (1994).
[7] R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1, 1984.
[8] K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
[9] S. Brandt et al., Phys. Lett. 12, 57 (1964).
[10] A. De Rujula, H. Georgi and S. L. Glashow, Phys. Rev. Lett. 38, 317 (1977).
[11] M. Voloshin, Phys. Rev. D 85, 034024 (2012).
[12] M. Voloshin, Phys. Rev. D 87, 094033 (2013).
[13] S. Esen et al. (Belle collaboration), Phys. Rev. D 87, 031101(R) (2013).