The H_2^+ ion in a strong magnetic field.

Lowest excited states

A. V. Turbiner and J. C. López Vieyra

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
Apartado Postal 70-543, 04510 México, D.F., Mexico.

(Dated: October 29, 2003)

Abstract

As a continuation of our previous work (Phys. Rev. A 68, 012504 (2003)) an accurate study of the lowest $1\sigma_g$ and the low-lying excited $1\sigma_u$, $2\sigma_g$, $1\pi_{u,g}$, $1\delta_{g,u}$ electronic states of the molecular ion H_2^+ is made. Since the parallel configuration where the molecular axis coincides with the magnetic field direction is optimal, this is the only configuration which is considered. The variational method is applied and the same trial function is used for different magnetic fields. The magnetic field ranges from 10^9 G to 4.414×10^{13} G where non-relativistic considerations are justified. Particular attention is paid to the $1\sigma_u$ state which was studied for an arbitrary inclination. For this state a one-parameter vector potential is used which is then variationally optimized.

PACS numbers: 31.15.Pf,31.10.+z,32.60.+i,97.10.Ld

*On leave of absence from the Institute for Theoretical and Experimental Physics, Moscow 117259, Russia;

Electronic address: turbiner@nuclecu.unam.mx

†Electronic address: vieyra@nuclecu.unam.mx
I. INTRODUCTION

In our previous paper [1] (cited below as I) we carried out an accurate detailed study of the ground state 1_g of the molecular ion H_2^+ placed in a constant uniform magnetic field ranging from zero up to $4.414 \times 10^{13} \text{G}$ for all inclinations $0^\circ - 90^\circ$. The goal of that study was to investigate the domain of existence of the H_2^+ ion. We showed that for all magnetic fields studied the molecular ion H_2^+ exists for moderate (not very large) deviations of the molecular axis from the magnetic field direction (moderate inclinations). Furthermore it was found that for each magnetic field the most stable configuration of minimum total energy corresponded to zero inclination, where the molecular axis coincides with magnetic field direction. We called this configuration the ‘parallel configuration’. To this configuration the standard spectroscopic notation $1\sigma_g$ can be assigned. A major feature of this configuration is that with magnetic field growth the system becomes more and more bound (binding energy grows) and more and more compact (equilibrium distance decreases).

The aim of the present paper is to continue the study initiated in I and to explore several low-lying excited states. At first we re-examine the ground state for the parallel configuration $1\sigma_g$ in the region $10^9 - 4.414 \times 10^{13} \text{G}$. A detailed study of the $1\sigma_u$ state which is anti-bonding without a magnetic field is presented. Then the lowest states of different magnetic quantum numbers are investigated as well as the $2\sigma_g$ state.

Atomic units are used throughout ($\hbar=m_e=e=1$), although energies are expressed in Rydbergs (Ry). The magnetic field B is given in a.u. with $B_0 = 2.35 \times 10^9 \text{G}$ [18].

II. GENERALITIES

The Hamiltonian which describes two infinitely heavy protons and one electron placed in a uniform constant magnetic field directed along the z–axis, $\mathbf{B} = (0, 0, B)$ is given by (see e.g. [2])

$$\mathcal{H} = \hat{p}^2 + \frac{2}{R} - \frac{2}{r_1} - \frac{2}{r_2} + (\hat{p}\mathcal{A} + \mathcal{A}\hat{p}) + \mathcal{A}^2,$$

(see Fig.1 for notations), where $\hat{p} = -i\nabla$ is the momentum, \mathcal{A} is a vector potential which corresponds to the magnetic field \mathbf{B} and is chosen in the symmetric gauge to be

$$\mathcal{A} = \frac{B}{2}(-y, x, 0).$$
Hence the total energy E_T of H_2^+ is defined as the total electronic energy plus the Coulomb energy of proton repulsion. In turn, the binding energy is defined as an affinity to having the electron as well as both protons being infinitely separated, $E_b = B - E_T$. The dissociation energy is defined as an affinity to having one proton at infinity, $E_d = E_H - E_T$, where E_H is the total energy of the hydrogen atom in a magnetic field B. Spin degrees of freedom can be separated out and their analysis is straightforward.

The problem is characterized by two integrals of motion: (i) angular momentum projection on the magnetic field direction (z-direction) and (ii) spatial parity p. Sometimes the parity σ corresponding to interchange of charged centers $1 \leftrightarrow 2$ is used, which is connected with the magnetic quantum number and spatial parity, $p = \sigma(-1)^{|m|}$.

If the case m is even, both parities coincide, $p = \sigma$. Thus, any eigenstate has two definite quantum numbers: the magnetic quantum number m and the parity p with respect $z \to -z$. Therefore the space of eigenstates is split into subspaces (sectors) each of them is characterized by definite m and σ. Notation for the state we are going to use is based on the following convention: the first number corresponds to the number of excitation - "principal quantum number", e.g. the number 1 is assigned to the ground state, then a Greek letter σ, π, δ corresponds to $m = 0, -1, -2$, respectively, with subscript g/u (gerade/ungerade) describing positive/negative parity with respect $z \to -z$.

Most of the excited states we study are the lowest states (of the type of the ground state) of the sectors with different magnetic quantum numbers m and p. It is quite obvious from the physical point of view that the ground states of the sectors with $m > 0$ always have larger total energies than those with $m \leq 0$. Therefore we restrict our consideration to the states with $m = 0, -1, -2$.

Conservation of the z-component of the angular momentum assumes the wave function of the electron (in cylindrical coordinates (ρ, φ, z)) can be taken in the representation:

$$
\Psi = e^{im\varphi} \rho^{|m|} \psi_m,
$$

where m is magnetic quantum number. Let us gauge rotate the Hamiltonian (1),

$$
\begin{align*}
\mathcal{H}_m &= e^{-im\varphi} \rho^{-|m|} \mathcal{H} e^{im\varphi} \rho^{|m|} = \hat{p}_m^2 + \frac{2}{\rho} \frac{2}{r_1} - \frac{2}{r_2} + mB + \frac{B^2 \rho^2}{4},
\end{align*}
$$

(2)
FIG. 1: Geometrical setting for the \(H_2^+ \) ion placed in a magnetic field directed along the \(z \)-axis. The protons are situated in the \(y-z \) plane at a distance \(R \) from each other and marked by bullets.

where

\[
\hat{p}_m = e^{-im\varphi} \rho^{-|m|} \hat{p} e^{im\varphi} \rho^{|m|},
\]

is the gauge rotated momentum (covariant momentum). The constant term \(mB \) describes the linear Zeeman effect splitting. It can be absorbed to a definition of total energy. The representation (2) is rather convenient since each Hamiltonian for fixed \(m \) describes the family of eigenstates with quantum number \(m \) and can be treated independently of the states with \(m' \) different from \(m \). Now the Hamiltonian (2) has only the invariance corresponding to the spatial parity conservation.

We are going to use the variational method in a way similar to what was done in I. The recipe of choice of trial function is based on physical arguments and is described in full generality in [3] (see for details the article I). Eventually, the ground state trial function for fixed \(m \) and \(\sigma \) is chosen in a form

\[
\psi^{(trial)}_m = A_1 \psi_1 + A_2 \psi_2 + A_3 \psi_3,
\]
where

\[\psi_1 = \begin{cases} e^{-\alpha_1 r_1} e^{-\beta_1 \rho^2}, & \text{if } \sigma = +1, \\ 0, & \text{if } \sigma = -1, \end{cases} \]

\[\psi_2 = (e^{-\alpha_3 r_1 + \sigma e^{-\alpha_3 r_2}}) e^{-\beta_3 \rho^2}, \]

\[\psi_3 = (e^{-\alpha_3 r_1 - \alpha_4 r_2 + \sigma e^{-\alpha_3 r_2 - \alpha_4 r_1}}) e^{-\beta_3 \rho^2}, \]

and \(\sigma = \pm 1, \ m = 0, \pm 1, \pm 2 \ldots \). Here \(A_{1,2,3} \) and \(\alpha_{1,2,3,4}, \beta_{1,2,3} \) as well as \(R \) are variational parameters, which are certainly different for different \(m \) [19]. The functions \(\psi_{1,2,3} \) carry a certain physical meaning. They describe coherent (incoherent) interaction of the electron with the protons as well as their non-linear interpolation, respectively. Calculations were performed using the minimization package MINUIT from CERN-LIB. Numerical integrations were carried out with a relative accuracy of \(\sim 10^{-9} \) by use of the adaptive NAG-LIB (D01FCF) routine. All calculations were performed on dual PC Pentium-4, with two processors of 2.8 GHz each. Every particular calculation of given eigenstate at fixed magnetic field including minimization has taken in total about an hour of CPU time. However, when the variational parameters are found it take a few seconds of CPU time to calculate the variational energy.

It is necessary to mention two technical difficulties we encountered. Calculation of two-dimensional integrals with high accuracy which appeared in the problem has required a development of a very sophisticated numerical technique. We created a ‘dynamical partitioning’ of the domain of integration, which depend on values of variational parameters similar to what was done in I. The domain partitioning was changed with a change of the parameters. Sometimes the number of sub-domains was around 50. Another technical problem is related with very complicated profile of variational energy as the function of variational parameters which is characterized by many local minima, saddle points and valleys. Localization of the global minimum numerically of such a complicated function with high accuracy is difficult technical problem which becomes even more difficult in the case of ten or more variational parameters. Examining the physical relevance of trial functions allows one to avoid spurious minima. The parameters obtained in [3] at every step of minimization were always examined from the physical point of view. Such considerations are always something of an art.
III. $m = 0$

The $m = 0$ subspace consists of two subspaces, $\sigma = 1$ (even states) and $\sigma = -1$ (odd states).

A. $1\sigma_g$ state ($\sigma = 1$)

The state 1_g was thoroughly investigated in the paper I for the whole range of inclinations $\theta = 0^\circ - 90^\circ$ (for settings see below Fig.2). At $\theta = 0^\circ$ this state becomes the state $1\sigma_g$ and our variational anzatz $\psi_{1\sigma_g}$ describing this state depends on ten parameters. As was mentioned above, the search for the global minimum numerically with high accuracy in the case of so many variational parameters is a difficult technical task. Although this state was thoroughly studied in [4] we decided to repeat the calculations using a more sophisticated strategy for localizing the minimum. The essential new element of the strategy was to impose an extra (natural) condition that the variational parameters change smoothly with B. Finally, it led to an improvement of the results in comparison to I and to previous calculations. It is worth mentioning that this recalculation is very important for calculation of the excited $2\sigma_g$ state, where the orthogonality condition on trial functions must be imposed, $(\psi_{1\sigma_g}, \psi_{2\sigma_g}) = 0$. It is evident that an intrinsic inaccuracy in $\psi_{1\sigma_g}$ due to the approximate nature of the trial function $\psi_{1\sigma_g}$ as a function of x is a source of inaccuracy in the energy of the $\psi_{2\sigma_g}$ state. Thus, a reduction of this inaccuracy requires knowledge of the function $\psi_{1\sigma_g}$ as accurately as possible. The above-mentioned strategy allowed us to improve our previous results reported in [4] on total and binding energies (see Table I) and also on lowest rotational-vibrational energies (see Table II). Qualitative conclusions obtained in [4] remain unchanged.
TABLE I: Total E_T and binding E_b energies, and equilibrium distance R_{eq} for the state $1\sigma_g$, which is the global ground state of the H_2^+ ion. Error bars for the equilibrium distance indicate a domain in R where the value of binding energy remains the same within the indicated number of their digits shown in the table.

B	E_T (Ry)	E_b (Ry)	R_{eq} (a.u.)	Ref.
	1.9971	1.20525	-1.20525	
	1.923 ± 0.003	1.57623	1.15070	
	1.924	1.57625	-1.15072	Wille [5]
	1.752 ± 0.003	1.94992	-0.94992	Present
	1.752	1.9498	-0.94642	Larsen [6]
	1.76	1.94642	-0.94642	Kappes et al [7]
10^9 G	1.246 ± 0.002	3.16488	1.09044	Present
	1.246	3.16502	1.09031	Wille [5]
10^10 G	0.957 ± 0.002	4.34976	5.65024	Present
	0.950	4.35	-4.35	Wille [5]
	0.958	4.35	-4.3346	Larsen [6]
	0.950	4.35	-4.3346	Vincke et al [8]
10^11 G	0.593 ± 0.001	7.5100	35.0432	Present
	0.593	7.5104	35.0428	Wille [5]
10^12 G	0.448 ± 0.001	10.2910	89.7090	Present
	0.446	10.2892	-10.2778	Wille [5]
	0.448	10.270	-10.2778	Larsen [6]
	0.446	10.2778	-10.2778	Vincke et al [8]
10^13 G	0.283 ± 0.001	17.1425	408.3894	Present
	0.28	17.0588	-17.0588	Lai et al [9]
10^14 G	0.2197 ± 0.0005	22.7786	977.2214	Present
	0.219	22.7694	-22.7694	Vincke et al [8]
10^15 G	0.1472 ± 0.0002	35.7539	4219.565	Present
	0.15	35.74	-35.74	Lai et al [9]
10^16 G	0.1183 ± 0.0002	45.7972	9954.203	Present
	0.1016 ± 0.0002	54.5018	18728.477	Present
4.414×10^{13} G	0.1016 ± 0.0002	54.5018	18728.477	Present
TABLE II: Energies of the lowest vibrational (E_{vib}) and rotational (E_{rot}) electronic states associated with the $1\sigma_g$ state.

B	E_{vib} (Ry)	E_{rot} (Ry)	Reference
10^9 G	0.011	0.0053	Present
	0.011	0.0038	Wille [10]
1 a.u.	0.014	0.0110	Present
	0.014	0.0091	Larsen [6]
	0.014	0.0238	Le Guillou et al (b) [11]
10^{10} G	0.026	0.0408	Present
	0.026	0.0308	Wille [10]
10 a.u.	0.040	0.0790	Present
	0.040	0.133	Larsen[6]
	0.040	0.0844	Le Guillou et al (b) [11]
10^{11} G	0.085	0.2151	Present
100 a.u.	0.132	0.4128	Present
	0.141	0.365	Larsen[6]
	0.13	—	Wunner et al [12]
	0.132	0.410	Le Guillou et al (b) [11]
10^{12} G	0.266	1.0926	Present
	0.198	1.0375	Khersonskij [13]
1000 a.u.	0.390	1.9273	Present
	0.38	1.77	Larsen [6]
	0.39	—	Wunner et al [12]
	0.388	1.916	Le Guillou et al (b) [11]
10^{13} G	0.714	4.875	Present
	0.592	6.890	Khersonskij [13]
10000 a.u.	0.993	—	Present
4.414×10^{13} G	1.248	12.065	Present
B. $2\sigma_g$ state ($\sigma = 1$)

This is the first excited state in the family of states with quantum numbers $m = 0, \sigma = 1$. Here the trial function is taken in the form

$$\psi_{2\sigma_g} = \tilde{A}_1 \psi_1 + \tilde{A}_2 \psi_2 + \tilde{A}_3 \psi_3,$$

(4)

with

$$\psi_1 = (r_1 + r_2 - C_1) e^{-\tilde{a}_1(r_1+r_2)-\tilde{\beta}_1 B \rho^2/4},$$

$$\psi_2 = [(r_1 - C_2) e^{-\tilde{a}_2 r_1} + (r_2 - C_2) e^{-\tilde{a}_2 r_2}] e^{-\tilde{\beta}_2 B \rho^2/4},$$

$$\psi_3 = [(r_1 + ar_2 - C_3) e^{-\tilde{a}_3 r_1 - \tilde{\alpha}_4 r_2} + (r_2 + ar_1 - C_3) e^{-\tilde{a}_3 r_2 - \tilde{\alpha}_4 r_1}] e^{-\tilde{\beta}_3 B \rho^2/4},$$

(cf. (3)), where $\tilde{A}_{1,2,3}$ and $\tilde{a}_{1,2,3,4}, \tilde{\beta}_{1,2,3}, a, C_{1,2,3}$ as well as R are variational parameters [20]. This eigenfunction should be orthogonal to the $\psi_{1\sigma_g}$ state trial function found in the previous Section. The total number of variational parameters in (4) is 13.

The results obtained are presented in Table III. This state is characterized by much smaller binding energy compared to the $1\sigma_g$ state and is much more extended. The binding energy displays a rather slow increase while the equilibrium distance decreases slowly as the magnetic field grows. This excited state is unstable with respect to dissociation to $H + p$.

9
TABLE III: Total E_T and binding E_b energies, and equilibrium distance R_{eq} for the state $2\sigma_g$ ($m = 0, \sigma = 1$).

B	E_T (Ry)	E_b (Ry)	R_{eq} (a.u.)	Reference
$B = 0$	-0.350032	0.350032	8.8	Present
	-0.34936	—	8.8	Kappes [7]
	-0.350098	—	8.834	Peek-Katriel [14]
10^8 G	-0.121343	0.546875	7.55	Present
	-0.081824	—	7.792	Peek-Katriel [14]
1 a.u.	0.34912	0.65088	6.640	Present
	0.34918	0.65082	6.632	Alarcon et al [15]
	0.34928	—	6.64	Kappes et al [7]
10^{10} G	3.39938	0.85594	5.2	Present
10 a.u.	9.02452	0.97548	4.6	Present
10^{11} G	41.4090	1.1442	3.91	Present
100 a.u.	98.7822	1.2178	3.65	Present
10^{12} G	424.2277	1.3042	3.40	Present
1000 a.u.	998.6620	1.3380	3.30	Present
10^{13} G	4253.937	1.382	3.21	Present
10000 a.u.	9998.608	1.392	3.145	Present
4.414×10^{13} G	18781.576	1.402	3.120	Present
C. $1\sigma_u$ state ($\sigma = -1$)

In the absence of a magnetic field the $1\sigma_u$ state ($m = 0, \sigma = -1$) is essentially repulsive and antibonding. However, in a strong magnetic field this state becomes bound. Due to this fact we want to study this state in full generality, for different magnetic fields and inclinations.

In the absence of a magnetic field, the $1\sigma_u$ state is characterized by a shallow minimum in the total energy situated at large internuclear distance (see, for example, [7](a), [14]). Also this state is a weakly bound state with respect to dissociation and it becomes even unbound if nuclear motion is taken into account. So far not many studies have been carried out for this state. Our major finding is that in the presence of a magnetic field of the magnitude $10^9 < B \lesssim 4.414 \times 10^{13}$ G the total energy surface of the system (ppe) in the state $1\sigma_u$ exhibits a well-pronounced minimum. Similar to the $1\sigma_g$ state, both total (E_T) and binding (E_b) energies of the $1\sigma_u$ state increase as the magnetic field grows, while the equilibrium distance decreases. However, the accuracy of our calculations does not allow us to make a definitive conclusion about the stability of the system in this state with respect to dissociation and nuclear motion effects. In the case of non-zero inclination $\theta \neq 0^\circ$ (for definition see Fig. 2) we denote this state as 1_u reflecting the fact that the only parity conservation exists. In I it was shown that for $B \gtrsim 10^{11}$ G and large inclinations the 1_g state disappears and hence the molecular ion H_2^+ does not exist. Thus, it seems it makes no sense to study the 1_u state in this domain. We checked a consistency of this statement verifying that always inequality $E_T^{1\sigma_g}(R) < E_T^{1\sigma_u}(R)$ holds.

To study the 1_u state we use the following form of the vector potential corresponding to a constant magnetic field $\mathbf{B} = (0, 0, B)$

$$\mathbf{A} = B((\xi - 1)y, \xi x, 0),$$

where ξ is a parameter, which later will be considered as variational. If $\xi = 1/2$ we get the well-known and widely used gauge which is called symmetric or circular. If $\xi = 0$ or 1, we get the asymmetric or Landau gauge (see [2]). By substituting (5) into (1) we arrive at a Hamiltonian of the form

$$\mathcal{H} = -\nabla^2 + \frac{2}{R} - \frac{2}{r_1} - \frac{2}{r_2} - 2iB[(\xi - 1)y\partial_x + \xi x\partial_y] + B^2[\xi^2x^2 + (1 - \xi)^2y^2].$$

(6)
The trial function is chosen in the form

$$\psi_{1u} = A_1 \psi_1 + A_2 \psi_2 ,$$ \hspace{1cm} (7)

with

$$\psi_1 = (e^{-\alpha_1 r_1} - e^{-\alpha_1 r_2})e^{-B[\beta_{1x}\xi x^2 + \beta_{1y}(1-\xi)y^2]} ,$$

$$\psi_2 = (e^{-\alpha_2 r_1 - \alpha_3 r_2} - e^{-\alpha_2 r_2 - \alpha_3 r_1})e^{-B[\beta_{2x}\xi x^2 + \beta_{2y}(1-\xi)y^2]} ,$$

where A_1, A_2 are parameters and one of them is kept fixed by a normalization condition. All parameters $\alpha_{1,2,3}, \beta_{1x,1y,2x,2y}, A_1, A_2$ and ξ are variational parameters. It is evident that if $\theta = 0^\circ$, the rotational invariance along z-axis exists and the vector potential should be taken in a form supporting this invariance. Hence the parameter ξ in (5) takes value $\xi = 1/2$ and the parameters $\beta_{1x} = \beta_{1y}, \beta_{2x} = \beta_{2y}$.

Numerical study for the 1_u state was carried out for different inclinations with the results at $0^\circ, 45^\circ$ and 90° for magnetic fields $B = 0 - 4.414 \times 10^{13}$ G as shown in Tables IV-VI. The immediate conclusion is that

$$E_T(0^\circ) < E_T(45^\circ) < E_T(90^\circ)$$

for all magnetic fields, where this comparison makes sense (see below). Hence, similar to the 1_g state, the highest molecular stability of the 1_u state occurs for the parallel configuration, at $\theta = 0^\circ$ (see I). Also, the binding energy growth is maximal as a function of magnetic field for the parallel configuration. Therefore, the stability of H_2^+ in the parallel configuration in the 1_u state increases as the magnetic field grows, again similarly to what happens for the 1_g state. These results suggest the following picture for appearance of a bound state for
the $1\sigma_u$ state: for small magnetic fields the minimum in the total energy arises at very large internuclear distances \[21\], then, as the magnetic field grows, the position of the minimum moves to smaller and smaller internuclear distances.

Our results for $B > 0$ and $\theta = 0^\circ$ give the lowest total energies compared to other calculations. In general, they are in a good agreement with those by Kappes–Schmelcher \(1^{(a)}\) as well as by Peek–Katriel \(14\) for $B = 0, 10^9$ G, although for $B = 10^{10}$ G a certain disagreement is observed (see Table IV). However, for $\theta = 90^\circ$ our results are in striking, qualitative contrast with those by Wille \(5\), where even the optimal configuration is attached.

TABLE IV: $1\sigma_u$ state in the parallel configuration, $\theta = 0^\circ$. Total (E_T) and binding (E_b) energies are in Ry and equilibrium distance R_{eq} in a.u.

B	E_T (Ry)	E_b (Ry)	R_{eq} (a.u.)	Source
$B = 0$	-1.00010	1.00010	12.746	Lopez et al [4]
	-1.00012	1.00012	12.55	Peek-Katriel [14]
10^9 G	-0.92103	1.34656	11.19	Present
	-0.917134	—	10.55	Peek-Katriel [14]
1 a.u.	-0.66271	1.66271	9.73	Present
	-0.66	1.66	9.6	Kappes et al [7]
10^{10} G	1.63989	2.61500	7.18	Present
	2.1294	—	4.18	Peek-Katriel [14]
10 a.u.	6.52362	3.47638	6.336	Present
10^{11} G	36.8367	5.7165	4.629	Present
100 a.u.	92.4257	7.5743	3.976	Present
10^{12} G	413.6175	11.9144	3.209	Present
1000 a.u.	984.6852	15.3148	2.862	Present
10^{13} G	4232.554	22.765	2.360	Present
10000 a.u.	9971.727	28.273	2.134	Present
4.414×10^{13} G	18750.07	32.912	2.021	Present
TABLE V: Total E_T, binding E_b energies and equilibrium distance R_{eq} for the 1_u state in the configuration $\theta = 45^\circ$. Optimal value for the gauge parameter ξ is shown (see text).

B	E_T (Ry)	E_b (Ry)	R_{eq} (a.u.)	ξ
10^9 G	-0.870391	1.295923	8.053	0.9308
1 a.u.	-0.509041	1.509041	6.587	0.9406
10^{10} G	2.267998	1.987321	4.812	0.9671
10 a.u.	7.692812	2.307188	4.196	0.9808
10^{11} G	39.71061	2.84258	3.538	0.9935
100 a.u.	96.88464	3.11536	3.278	0.9968
10^{12} G	422.0074	3.5245	3.020	0.9991
1000 a.u.	996.3044	3.6956	2.894	0.9996

TABLE VI: Total E_T, binding E_b energies and equilibrium distance R_{eq} for the 1_u state at $\theta = 90^\circ$. Optimal value for the gauge parameter ξ is shown (see text).

B	E_T (Ry)	E_b (Ry)	R_{eq} (a.u.)	ξ
10^9 G	-0.867234	1.292766	8.784	0.9692 Present
1 a.u.	-0.49963	1.49963	7.264	0.9737 Present
	-0.65998	1.65998	5.45	Kappes et al [7](b)
10^{10} G	2.29365	1.96167	5.517	0.9866 Present
10 a.u.	7.72998	2.27002	4.872	0.9923 Present
10^{11} G	39.76500	2.78819	4.154	0.9975 Present
100 a.u.	96.93497	3.06503	3.875	0.9988 Present

to $\theta = 90^\circ$, contrary to our conclusion. For instance, at $B = 10^{10}$ G in [5] the values $E_b = 2.593$ Ry and $R_{eq} = 2.284$ a.u. are given, while our results are $E_b = 1.9617$ Ry and $R_{eq} = 5.517$ a.u., respectively (see Table VI). Similar, but less drastic disagreement, is observed with the results in [7](b). We can only guess this disagreement is due to the
shallow nature of the minimum, but a real explanation of this fact is missing. Independent calculations are needed in order to resolve this contradiction.

The analysis of Tables IV-VI shows that for $\theta > 0^\circ$ and fixed magnetic field the total energy of H_2^+ in the 1_u state is always larger than the total energy of the hydrogen atom [10]. It means that the H_2^+-ion in the 1_u state is unstable towards dissociation to $H + p$. For $\theta \sim 0^\circ$ the total energies presented for the H_2^+ ion and the most accurate results for the hydrogen atom [10] are comparable within the order of magnitude $10^{-4} - 10^{-5}$. We estimate that the accuracy of our calculations is of the same order of magnitude $10^{-4} - 10^{-5}$. This prevents us from making a conclusion about the stability of H_2^+ in the 1_u state with respect to dissociation. Thus, the only reliable conclusion can be drawn that the minimum is very shallow.

The 1_u state is much more extended than the 1_g state: for fixed magnetic field the equilibrium distance of the 1_g state is much smaller than that for the 1_u state. This picture remains the same for any inclination. It is quite impressive to observe the much lower rate of decrease of R_{eq} in the range $B = 0 - 4.414 \times 10^{13}$ G with magnetic field growth. For example, in the case of the parallel configuration, $\theta = 0^\circ$, for the state 1_u the equilibrium distance falls ~ 6 times compared to the 1_g state, where it falls ~ 20 times.

The behavior of the equilibrium distance R_{eq} of the 1_u state as a function of inclination is quite non-trivial (see Tables IV-VI). As in the 1_g state, the H_2^+-ion in the 1_u state for $B \lesssim 10^{12}$ G is most extended in the parallel configuration.

IV. $m = -1$

The subspace consists of two subspaces, $\sigma = 1$ (even states) and $\sigma = -1$ (odd states).

A. $1\pi_u$ state ($\sigma = 1$)

In order to study the $1\pi_u$ ($m = -1$ and $\sigma = 1$) state we take the trial function [8]. The results are presented in Table VII. In general, our results are more accurate than those obtained in other calculations giving lower total (and correspondingly, the higher binding) energies with the only exception of the magnetic field $B = 10$ a.u. where the result for binding energy from [8] is better in the fourth digit. The results for $B = 1$ a.u. obtained
TABLE VII: Total E_T, binding E_b energies and equilibrium distance R_{eq} for the excited state $1\pi_u$ ($m = -1, \sigma = 1$).

B	E_T (Ry)	E_b (Ry)	R_{eq} (a.u.)	Source
10^9 G	-0.293592	0.719123	4.940	Present
1 a.u.	-0.020150	1.020150	3.676	Present
	-0.02014	–	3.68	Kappes et al [7]
	-0.02011	–	3.75	Wille [5]
10^{10} G	2.371845	1.883474	2.130	Present
10 a.u.	7.29682	2.70318	1.526	Present
			2.6862	Vincke-Baye [8]
			2.7046	Wille [5]
10^{11} G	37.6490	4.9042	0.887	Present
100 a.u.	93.1127	6.8873	0.651	Present
			6.8774	Vincke-Baye [8]
			6.8548	Wille [5]
10^{12} G	413.6306	11.902	0.395	Present
1000 a.u.	983.874	16.126	0.301	Present
10^{13} G	4229.183	26.136	0.195	Present
10000 a.u.	9965.932	34.068	0.154	Present
4.414×10^{13} G	18741.89	41.09	0.130	Present

In [5], are not very precise in R_{eq} (see Table I therein), which explain their difference with the results by others. The binding energy at $B = 10$ and 100 a.u. in [5] is calculated for the same equilibrium distances as those found in [8] (see Table IV in Ref. [5]). Like for all studied states the binding energy grows steadily with magnetic field increase while the equilibrium distance shrinks in a quite drastic manner. If for small magnetic fields the equilibrium distance R_{eq} is several times larger than this distance for the $1\sigma_g$ state, for large magnetic fields these equilibrium distances become comparable. Among $m = -1$ states the state $1\pi_u$ has the smallest total energy.
TABLE VIII: Total E_T, binding E_b energies and equilibrium distance R_{eq} for the state $1\pi_g$ ($m = -1, \sigma = -1$).

B	E_T (Ry)	E_b (Ry)	R_{eq} (a.u.)	Reference
10^9 G	-0.232060	0.65759	20.10	Present
1 a.u.	0.086868	0.91313	14.05	Present
	0.0866	13.5		Kappes et al [7]
10^{10} G	2.641122	1.61420	9.370	Present
10 a.u.	7.749819	2.25018	7.622	Present
10^{11} G	38.67642	3.87677	5.622	Present
100 a.u.	94.73386	5.26614	4.791	Present
10^{12} G	416.9354	8.59654	3.767	Present
1000 a.u.	988.7286	11.2714	3.321	Present
10^{13} G	4238.038	17.2810	2.708	Present
10000 a.u.	9978.175	21.8254	2.420	Present
4.414×10^{13} G	18757.273	25.7054	2.237	Present

B. $1\pi_g$ state ($\sigma = -1$)

In order to study the $1\pi_g$ state ($m = -1$ and $\sigma = -1$) we take the trial function [5]. The results are presented in Table VIII. For $B = 1$ a.u. our total energy deviates from [7] in the third digit and an independent calculation would be desirable.
V. \(m = -2 \)

The subspace consists of two subspaces, \(\sigma = 1 \) (even states) and \(\sigma = -1 \) (odd states).

A. 1\(\delta_g \) state \((\sigma = 1) \)

In order to study the 1\(\delta_g \) state \((m = -2 \text{ and } \sigma = 1) \) we take the trial function (3). The results are presented in Table IX. In [5] for \(B = 1 \) a.u. the equilibrium distance is simply placed equal to 5.0 a.u. (see Table I therein). For \(B = 10, 100 \) a.u. the energies computed in [8] were calculated for the same equilibrium distances as those found in [8] (see Table IV in [8]). Among \(m = -2 \) states the 1\(\delta_g \) state has the smallest total energy. It is worth mentioning a drastic decrease of \(R_{eq} \) with magnetic field growth similar to what appears for 1\(\sigma_g \) and 1\(\pi_u \) states.
TABLE IX: Total E_T, binding E_b energies and equilibrium distance R_{eq} for the state $1\delta_g$ ($m = -2, \sigma = +1$).

B	E_T (Ry)	E_b (Ry)	R_{eq} (a.u.)
10^9 G	-0.107945	0.533477	6.865 Present
1 a.u.	0.221163	0.778837	4.872 Present
	0.22112	4.87	Kappes et al [7]
	0.22126	5.0	Wille [5]
10^{10} G	2.77538	1.47994	2.694 Present
10 a.u.	7.85113	2.14887	1.907 Present
	2.1306	1.880	Vincke-Baye [8]
	2.1496	1.880	Wille [5]
10^{11} G	38.58470	3.9685	1.080 Present
100 a.u.	94.38093	5.6191	0.782 Present
	5.6058	0.778	Vincke-Baye [8]
	5.510	0.778	Wille [5]
10^{12} G	415.6710	9.8609	0.470 Present
1000 a.u.	986.5119	13.4881	0.353 Present
10^{13} G	4233.125	22.194	0.225 Present
10000 a.u.	9970.802	29.198	0.176 Present
4.414×10^{13} G	18747.572		
	35.407	0.148	Present
TABLE X: Total E_T, binding E_b energies and equilibrium distance R_{eq} for the state 1δ_u ($m = -2, \sigma = -1$).

B	E_T (Ry)	E_b (Ry)	R_{eq} (a.u.)	Reference
10^9 G	-0.06873	0.49426	23.902	Present
1 a.u.	0.29410	0.70590	16.377	Present
	0.2936	—	16.0	Kappes et al [7]
10^{10} G	2.97742	1.27790	11.475	Present
10 a.u.	8.19892	1.80108	9.458	Present
10^{11} G	39.40596	3.14723	6.858	Present
100 a.u.	95.69542	4.30458	5.619	Present
10^{12} G	418.4335	7.0984	4.071	Present
1000 a.u.	990.6416	9.3584	3.406	Present
10^{13} G	4240.834	14.485	2.625	Present
10000 a.u.	9981.587	18.413	2.391	Present
4.414×10^{13} G	18761.18	21.80	2.230	Present

B. 1δ_u state ($\sigma = -1$)

In order to study the 1δ_u state ($m = -2$ and $\sigma = -1$) we take the trial function [3]. The results are presented in Table X.
VI. DISCUSSION

In Table XI a summary of total energies of eigenstates explored in this article for magnetic fields ranging from 10^9 G to 4.414×10^{13} G is presented. An analysis of Table IX allows to draw a certain immediate conclusions:

1. The state $1\sigma_g$ is the global ground state for all magnetic fields. It is rather evident that this statement remains valid in general, when even the states other than studied are taken into account (Perron theorem);

2. For the states with fixed m the lowest total energy corresponds to the state of positive parity $\sigma = +1$. We guess that this statement remains correct in general;

3. For the same parity σ ground states are ordered following the value of m,

$$E_T^{1\sigma_g} < E_T^{1\pi_u} < E_T^{1\delta_g},$$

$$E_T^{1\sigma_u} < E_T^{1\pi_g} < E_T^{1\delta_u}.$$

4. There exist several true level crossings,

- For $B \lesssim 10^{12}$ G

$$E_T^{1\sigma_u} < E_T^{1\pi_u},$$

while for $B > 10^{12}$ G

$$E_T^{1\sigma_u} > E_T^{1\pi_u},$$

- For $B \lesssim 10000$ a.u.

$$E_T^{1\sigma_u} < E_T^{1\delta_g},$$

while for $B > 10000$ a.u.

$$E_T^{1\sigma_u} > E_T^{1\delta_g},$$

- For $B \lesssim 10$ a.u.

$$E_T^{1\pi_g} < E_T^{1\delta_g},$$

while for $B > 10$ a.u.

$$E_T^{1\pi_g} > E_T^{1\delta_g},$$
For $B \lesssim 1$ a.u.

$$E_T^{1\delta_g} \geq E_T^{2\sigma_g},$$

while for $B > 1$ a.u.

$$E_T^{1\delta_g} < E_T^{2\sigma_g},$$

For $B \lesssim 1$ a.u.

$$E_T^{1\delta_u} \geq E_T^{2\sigma_u},$$

while for $B > 1$ a.u.

$$E_T^{1\delta_u} < E_T^{2\sigma_u}.$$

TABLE XI: Comparison of the total energies E_T (in Rydbergs) for the low-lying states of the H_2^+ molecular ion for magnetic fields 10^9 G - 4.414×10^{13} G.

B	$1\sigma_g$	$1\sigma_u$	$1\pi_u$	$1\pi_g$	$1\delta_g$	$1\delta_u$	$2\sigma_g$
10^9 G	-1.15070	-0.92103	-0.29359	-0.232060	-0.107945	-0.068727	-0.121343
1 a.u.	-0.94992	-0.66271	-0.20150	0.086868	0.22117	0.29410	0.34912
10^{10}G	1.09044	1.63989	2.371845	2.641122	2.77538	2.977418	3.39938
10 a.u.	5.65024	6.52362	7.296816	7.749819	7.85113	8.198922	9.02452
10^{11}G	35.04320	36.83671	37.64895	38.67642	38.58470	39.40596	41.4090
100 a.u.	89.7090	92.4257	93.11267	94.7339	94.38093	95.69542	98.7822
10^{12}G	408.3894	413.6175	413.6306	416.9354	415.6710	418.4335	424.2278
1000 a.u.	977.2214	984.685	983.874	988.7286	986.5119	990.6416	998.662
10^{13}G	4219.565	4232.554	4229.183	4238.038	4233.126	4240.834	4253.937
10000 a.u.	9954.203	9971.727	9965.932	9978.175	9970.802	9981.587	9998.608
4.414×10^{13}G	18728.477	18750.070	18741.889	18757.273	18747.572	18761.180	18781.576
VII. CONCLUSION

We have carried out an accurate, non-relativistic calculation in the Born-Oppenheimer approximation for the low-lying states of the H_2^+ molecular ion in the parallel configuration at equilibrium in the framework of a unique computational approach. The $1\sigma_u$ state is considered in full generality for all inclinations of the molecular axis vs. magnetic field direction. We studied constant uniform magnetic fields ranging from $B = 10^9 G$ up to $B = 4.414 \times 10^{13} G$, where non-relativistic considerations hold, although our method can be naturally applied to study the domain $B < 10^9 G$. We used a variational method with a very simple trial function with a few variational parameters inspired by the underlying physics of the problem. Thus our trial function can be easily analyzed and in contrast to other approaches our results can be easily reproduced. The trial function (3) can be easily modified to explore other excited states.

The present study of several low-lying excited states complements a study of the ground state performed in I. Usually the total, binding, dissociation and transition energies grow with increase in the magnetic field, reaching values of several hundred eV at magnetic fields of $10^{12} - 10^{13} G$. These results can be used to construct a model of the atmosphere of an isolated neutron star 1E1207.4-5209 (see [17]). This will be done elsewhere.

Acknowledgments

This work was supported in part by CONACyT grants 25427-E and 36600-E (Mexico).

[1] A.V. Turbiner and J.-C. Lopez Vieyra, Phys.Rev. A68(1), 012504 (2003)
[2] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press (Oxford - New York - Toronto - Sydney - Paris - Frankfurt), 1977
[3] A.V. Turbiner,
 ZhETF 79, 1719 (1980); Soviet Phys.-JETP 52, 868 (1980) (English Translation);
 Usp. Fiz. Nauk. 144, 35 (1984); Sov. Phys. – Uspekhi 27, 668 (1984) (English Translation);
 Yad. Fiz. 46, 204 (1987); Sov. Journ. of Nucl. Phys. 46, 125 (1987) (English Translation);
Doctor of Sciences Thesis, ITEP, Moscow, 1989 (unpublished), ‘Analytic Methods in Strong Coupling Regime (large perturbation) in Quantum Mechanics’

[4] J.C. Lopez, P.O. Hess and A. Turbiner, Phys.Rev. A56, 4496 (1997) [astro-ph/9707050]

[5] U. Wille, Phys. Rev. A38, 3210-3235 (1988)

[6] D. Larsen, Phys.Rev. A25, 1295 (1982)

[7] U. Kappes and P. Schmelcher,
 (a) Phys. Rev. A51, 4542 (1995);
 (b) Phys. Rev. A53, 3869 (1996);
 (c) Phys. Rev. A54, 1313 (1996);

[8] M. Vincke and D. Baye, Journ.Phys. B18, 167 (1985)

[9] D. Lai, E. Salpeter and S. L. Shapiro, Phys. Rev. A45, 4832 (1992)

[10] U. Wille, J. Phys. B20, L417-L422 (1987)

[11] J. C. Le Guillou and J. Zinn-Justin, Ann. Phys. 154, 440-455 (1984)

[12] G. Wunner, H. Herold and H. Ruder, Phys. Lett. 88 A, 344 (1982)

[13] V. Khersonskij, Astrophys. Space Sci. 117, 47 (1985)

[14] J.M. Peek and J. Katriel, Phys. Rev. A21, 413 (1980)

[15] F.B. Alarcon, A. V. Turbiner and J.C. Lopez Vieyra,
 ‘Sobre el estado excitado $2\sigma_g$ del ion molecular H_2^+ en un campo magnético intenso’,
 Preprint ICN-UNAM 07-03 (2003)
 Rev.Mex.Fis., (2003) (to be published)

[16] Yu. P. Kravchenko, M. A. Liberman and B. Johansson, Phys. Rev. A 54, 287 (1996)

[17] D. Sanwal et al., ‘Discovery of absorption features in the X-ray spectrum of an isolated neutron star’,
 ApJL, 574, L61 (2002)
 [astro-ph/0206195]

[18] In the absence of convention, majority of results presented in literature are obtained for $B_0 = 2.35 \times 10^9$ G, although sometimes another convention is used $B_0 = 2.3505 \times 10^9$ G. Thus, in making a comparison of the high accuracy results obtained by different authors especially for high magnetic fields this fact should be taken into account

[19] Due to normalization of wave function one of A’s should be kept fixed. Usually, we put $A_3 = 1$

[20] Due to normalization of wave function one of \tilde{A}’s can be kept fixed. Usually, we put $\tilde{A}_3 = 1$
[21] It is natural to assume that for $B = 0$ a minimum exists at infinite (or almost infinite) internuclear distance.