Long non-coding RNAs (lncRNAs) are RNA transcripts larger than 200 nucleotides that do not code for proteins. The aberrant expression of lncRNAs has been documented in various types of cancer, including prostate cancer. Unlike miRNAs, lncRNAs are able to fold into secondary and tertiary structures both in the nucleus and the cytoplasm, where they interact with proteins and other RNA molecules. The interaction of lncRNAs with protein-coding RNAs and other molecules enables gene expression regulation. Aberrant expression of lncRNAs may affect cell morphology, cell proliferation, motility and invasion, cell cycle, cell apoptosis, cell metabolism, and cell migration, which are all critical for disease progression. Therefore, lncRNAs are promising novel biomarkers as well as therapeutic targets for the disease.

Key words
Androgen, androgen receptor, castration resistant prostate cancer, long non-coding RNA, prostate cancer.

Non-coding RNAs, which are RNA transcripts that do not code for proteins, can be divided into two major groups: small ncRNAs between 18 and 200 nt in length, and lncRNAs, which are larger than 200 nt. miRNAs are evolutionally conserved and single-stranded small non-protein coding transcripts of approximately 18–22 nt that post-transcriptionally regulate gene expression. Aberrant expressions of miRNAs have been well documented in most types of cancer. Unlike miRNAs, lncRNAs are able to fold into secondary and tertiary structures by which they carry out their function. Several studies have shown the importance of lncRNAs as modulators of key cellular processes not only in normal physiology but also in diseases such as cancer, including prostate cancer. It is assumed that many of these transcripts could serve as future cancer biomarkers.

Prostate cancer is one of the leading causes of cancer morbidity and mortality in developed countries. It is currently diagnosed based on the measurement of serum PSA, also known as KLK3, and DRE. Treatment of localized prostate cancer takes into account clinicopathological factors including Gleason score, initial PSA level, patient’s age and clinical tumor stage. Active surveillance may be best for patients with low-risk disease (i.e. Gleason score of 6 or less), whereas men with high-risk disease (i.e. Gleason score >7, PSA levels >20 ng/mL and clinical tumor stage >pT2c, i.e. tumor involving both prostate lobes) will instead benefit from radical prostatectomy or radiotherapy. AR and its downstream signaling are fundamental for the development and progression of both localized and advanced metastatic prostate cancer. Therefore, nowadays, the recommended therapy for locally advanced prostate cancer consists of long-term ADT in combination with radiotherapy. ADT decreases circulating testosterone levels to a very low amount (<50 ng/mL), a condition called chemical castration of men. However, some tumors will become hormone refractory following ADT, featured by increasing PSA levels in blood and upregulation of the AR in cancer cells. Over a period of 12–36 months, a disease state called CRPC evolves in many patients. The ineffectiveness of conventional ADT in these CRPC is a result of activation of AR and its downstream pathways. Past studies have shown the importance of lncRNAs as modulators of key cellular processes not only in normal physiology but also in diseases such as cancer, including prostate cancer.
regulation of the mesenchymal marker vimentin.\(^{(19)}\)

such as E-cadherin, claudin-3 and cytokeratin-18, and down-

PCA3

nary

ty(16) and development of AR variants(17) are observed in the

ways.(8) Thus, lncRNAs have the potential to be applicable for

progression or efficiently sustain tumor-related signaling path-

of certain stages of cancer progression, and may predict early

tissues and cell lines. (18) Its expression was shown to be

most specific prostate cancer biomarkers, which was originally

adhesion and mitogen-activated kinase kinase 1. (19) In addition,

involved in apoptosis, angiogenesis, signal transduction, cell

regulates the expression of important cancer-related genes

2017 The Authors.

revealed that elevated AR expression,\(^{(15)}\) enhanced AR activ-

ity;\(^{(16)}\) and development of AR variants\(^{(17)}\) are observed in the

progression of CRPC. Therefore, identification of AR down-

stream signals and new molecular mechanisms for AR activa-

tion are important to improve the treatment of advanced prostate cancer.

LncRNAs are aberrantly expressed in a variety of human
diseases, contributing to pathogenesis or maintaining diseased conditions.\(^{(8)}\) Aberrantly expressed lncRNAs can be indicative of certain stages of cancer progression, and may predict early progression or efficiently sustain tumor-related signaling pathways.\(^{(8)}\) Thus, lncRNAs have the potential to be applicable for the diagnosis of prostate cancer, as well as being potential criteria in the choice of therapy and potential new therapeutic targets of CRPC. The present review attempts to summarize the current knowledge of lncRNA expression patterns in prostate cancer and the mechanisms that contribute to prostate carcinogenesis focusing on AR-regulated lncRNAs and lncRNAs expressed in CRPC (Fig. 1).

LncRNAs and Prostate Cancer

LncRNAs as biomarkers in prostate cancer. PCA3 is one of the most specific prostate cancer biomarkers, which was originally discovered in 1999 by differential display analysis of prostate tissues and cell lines.\(^{(18)}\) Its expression was shown to be 60–100-fold higher in more than 95% of prostate tumors compared to adjacent non-neoplastic tissues, and is undetectable in other tumor types. PCA3 knockdown inhibits AR signaling, cell growth and viability, suggesting that overexpression of PCA3 may modulate AR signaling in tumor cells. Knockdown of PCA3 leads to partial upregulation of epithelial markers such as E-cadherin, claudin-3 and cytokeratin-18, and down-regulation of the mesenchymal marker vimentin.\(^{(19)}\) PCA3 also regulates the expression of important cancer-related genes involved in apoptosis, angiogenesis, signal transduction, cell adhesion and mitogen-activated kinase kinase 1.\(^{(19)}\) In addition, a working model of PCA3 has been proposed, in which PCA3 acts as a dominant-negative oncogene that downregulates the unrecognized tumor suppressor Prune Homolog 2 (PRUNE2), a human homolog of the Drosophila prune gene, through a process that involves RNA editing by the formation of PRUNE2/PCA3 double-stranded RNA.\(^{(20)}\) Combination of urinary PCA3 and fusion gene TMPRSS2-ERG can increase specificity in prostate cancer diagnosis compared with serum PSA, and has the potential to substantially reduce unnecessary prostate biopsies. (Functions of lncRNAs in prostate cancer and references are summarized in Table 1 and Fig. 2).

Second chromosome locus-associated with prostate-1 (SChLAP1) is a lncRNA highly expressed in 25% of prostate cancer.\(^{(21)}\) Its expression is more frequent in CRPC and it is significantly associated with risk of biochemical recurrence, clinical progression, metastasis and prostate cancer-specific mortality.\(^{(21,22)}\) SChLAP1 interacts with Switch-Sucrose Non-Fermentable (SWI/SNF) complex for chromatin remodeling countering the tumor-suppressor effects of SWI/SNF.\(^{(23)}\) Analysis of SChLAP1 expression by ISH showed that this lncRNA independently predicts biochemical recurrence after radical prostatectomy.\(^{(23)}\) Furthermore, SChLAP1 expression also correlated with prostate cancer lethal progression, which makes this lncRNA a useful tissue-based biomarker for identifying PCA patients at higher risk of CRPC progression.\(^{(24)}\)

SPRY4 intronic transcript 1 (SPRY4-IT1) is one of the lncRNAs highly upregulated in PC3 cells and in patient samples compared to non-malignant prostate epithelial cells and matched normal prostate tissues.\(^{(25)}\) siRNA knockdown of SPRY4-IT1 inhibited PC3 cellular proliferation and invasion, and increased apoptosis.\(^{(25)}\) SPRY4-IT1 was easily detected in prostate cancer samples with different Gleason scores (6–10) in an RNA chromogenic ISH assay.\(^{(25)}\) Prostate cancer specificity and easy detection with standard clinical staining procedures of tissue samples makes this lncRNA a useful candidate as a diagnostic biomarker.

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA originally found to be overexpressed in non-small-cell lung cancer tissues with a high risk of metastasis.\(^{(26)}\) Recent studies showed that MALAT1 was also overexpressed in other human cancers, including breast, pancreas, colon, prostate, and liver cancers.\(^{(27,28)}\) In prostate cancer, MALAT1 overexpression was associated with indicators of poor prognosis such as high Gleason score, higher tumor-node-metastasis stage and serum PSA >20 ng/mL, and its expression was significantly higher in CRPC than in hormone-sensitive prostate cancer.\(^{(29)}\) In a study comparing the expression of MALAT1 in urinary samples of biopsy-positive and biopsy-negative prostate cancer patients, this lncRNA was significantly higher in biopsy-positive samples,\(^{(30)}\) suggesting that urinary MALAT1 may be a promising diagnostic biomarker. Furthermore, using EZH2 antibody-based RNA immunoprecipitation coupled with high throughput sequencing analysis, it was demonstrated that MALAT1 binds to EZH2.\(^{(31)}\) It was indicated that MALAT1 plays a crucial role in EZH2-enhanced migration and invasion in CRPC cell lines, and a positive correlation between MALAT1 and EZH2 has been documented.\(^{(31)}\)

Transient receptor potential cation channel, subfamily M, member 2-antisense transcript (TRPM2-AS) is an antisense lncRNA transcribed from the opposite strand of the TRPM2 gene that is overexpressed in prostate cancer.\(^{(32)}\) High TRPM2-AS was associated with poor prognosis and in vitro TRPM2-AS knockdown led to prostate cancer cell apoptosis and activation of the TRPM2 gene. Microarray analysis was carried out using PC3 cells which were transfected with an siRNA ablatting TRPM2-AS RNA or control siRNA to analyze the mechanisms by which TRPM2-AS maintains cell survival in prostate cancer cells.\(^{(33)}\) Results showed that TRPM2-AS coordinates the expression of a large number of genes involved in controlling survival, unfolded protein response and cell cycle in prostate cancer cells. Moreover, targets of existing drugs and treatments
were found to be consistently regulated by \textit{TRPM2-AS} knockdown. Thus, the essential role of \textit{TRPM2-AS} as a key regulator of survival in prostate cancer makes this lncRNA a suitable therapeutic target for further clinical studies.

\textit{Estrogen receptor alpha (ER\textalpha)} is expressed in prostate cancer, independent of AR status and, in CRPC, ER\textalpha
classifying constitutes an effective mechanism to bypass the androgen/AR axis. In a study combining ChIP- and RNA-seq data in prostate cancer cells, an \textit{ER\textalpha}-specific non-coding transcriptome signature was identified, where the lncRNA, \textit{NEAT1}, \textit{nuclear enriched abundant 1}, was the most significantly overexpressed lncRNA in prostate cancer.34 \textit{NEAT1} expression was associated with prostate cancer progression, and prostate cancer cells expressing high levels of this lncRNA were resistant to androgen deprivation or AR antagonists. \textit{NEAT1} is recruited to the promoter regions of target genes and alters their epigenetic status to favor transcription and drive oncogenic growth. \textit{NEAT1} levels increase after long-term androgen-deprivation therapies, and its expression is significantly higher in CRPC compared to hormone-sensitive prostate cancer, which indicates that ER\textalpha-\textit{NEAT1} interaction may promote castration resistance. Elevated \textit{NEAT1} levels are associated with early biochemical recurrence and metastatic spread, making this lncRNA both a potential therapeutic target and a reliable prognostic biomarker.

\textbf{LncRNAs related with AR signaling.} Prostate cancer gene expression marker 1 (\textit{PCGEM1}) and prostate cancer-associated ncRNA transcript 1 (\textit{PCAT1}) are highly prostate-specific lncRNAs and considered attractive biomarkers. \textit{PCGEM1} was one of the oncogenic lncRNAs identified in prostate cancer and regulated by androgen.35 \textit{PCGEM1} is expressed in at least half of prostate tumors and functional analysis revealed oncogenic properties such as promotion of cell proliferation and colony formation.36 It was demonstrated that \textit{PCGEM1} promotes cancer cell proliferation by regulating \textit{c-Myc}.37 \textit{PCAT1} is a lncRNA which is expressed highly specifically in prostate and upregulated in high-grade localized (Gleason score >7) and metastatic prostate cancer. \textit{PCAT1} induces cell

\textbf{Table 1. LncRNAs implicated in PCa}

Expression in PCa	LncRNAs	Role	Implications in PCa	References
↑	PCA3	Biomarker	Enhances AR signaling, cell growth and viability. Regulates the expression of important cancer-related genes	18-20
↑	SCHLAP1	Overexpression is associated with risk of biochemical recurrence, clinical progression, metastasis and PCa-specific mortality	21,24	
↑	SPRY4-IT1	siRNA knockdown inhibits cell proliferation and invasion, and increases apoptosis	25	
↑	MALAT1	Overexpression is associated with indicators of poor prognosis. Binds to EZH2 to enhance migration and invasion	26-31	
↑	TRPM2-AS	Transcribed from the antisense strand of \textit{TRPM2}, which is activated with \textit{TMPR2-AS} knockdown. Overexpression associated with poor prognosis	32,33	
↑	NEAT1	Expression associated with PCa cell progression. Alters the epigenetic status of target genes to drive oncogenic growth	34	
↑	PCGEM1	AR-related	Promotes cell proliferation by regulating \textit{c-Myc}	35,37,46,47
↑	PCAT1	Upregulated in high-grade localized and metastatic PCa. Promotes cell proliferation by regulating \textit{c-Myc}. Represses \textit{BRCA2}	38,39	
↑	PCAT6	Predictive of tumor progression by AR signaling. Overexpressed in primary and metastatic PCa	8,40,41	
↑	PCAT7	PCa. siRNA-mediated knockdown reduces cell growth	8,42	
↑	PCAT18	Predictive of tumor progression by AR signaling. Metastatic PCa specific. Induced by AR. siRNA-mediated knockdown reduces cell growth	8,42	
↑	PRNCR1	Associated with prostate cancer susceptibility. siRNA knockdown attenuates cell viability and AR activity. Could be involved in prostate carcinogenesis through AR	44,45	
↑	CTBP1-AS	Transcribed from the antisense strand of \textit{CTBP1}. Promotes castration-resistant prostate tumor growth by regulating epigenetically cancer-associated genes	46,49	
↑	HOTAIR	Repressed by androgen and upregulated in CRPC after deprivation therapies. Binds to AR to prevent its degradation. Overexpression increases cell growth and invasion	58	
↑	SOCS2-AS	Transcribed from the antisense strand of \textit{SOCS2}. Promotes cell proliferation, migration and anti-apoptosis.	59	
↑	POTEF-AS	Transcribed from the antisense strand of \textit{POTEF}. Promotes cell proliferation and anti-apoptosis	60	
↓	GASS	Tumor suppressor	Represses AR action and promotes apoptosis. Downregulated in CRPC. Reciprocal regulation of \textit{GASS} levels and mTOR inhibitor action	62-64
↓	H19	Repression of \textit{H19} represses cell migration. \textit{H19}-derived miR-675 targets \textit{TGF-\beta1} to repress cell migration	69	
↓	PCAT29	First AR-repressed lncRNA that functions as a tumor suppressor. Low \textit{PCAT29} expression correlated with poor prognostic outcomes. Overexpression suppresses cell growth and metastasis	43	

\begin{tabular}{p{4cm}p{2cm}p{12cm}}
AR, androgen receptor; BRCA2, breast cancer susceptibility gene 2; CRPC, castration-resistant prostate cancer; CTBP1, C-terminal binding protein 1; EZH2, enhancer of zeste homolog 2; \textit{GASS}, growth arrest-specific 5; \textit{lncRNAs}, long non-coding RNAs; \textit{mTOR}, mammalian target of rapamycin; PCa, prostate cancer; POTEF, prostate, ovary, testis expressed protein family member-F gene; \textit{SOCS2}, suppressor of cytokine signaling 2; \textit{TGF-\beta1}, transforming growth factor beta 1; \textit{TRPM2-AS}, transient receptor potential cation channel, subfamily M, member 2-antisense transcript. & & \\
\end{tabular}
proliferation in vitro and has repressive effects on a broad range of genes, including the tumor suppressor gene, breast cancer susceptibility gene 2 (BRCA2). PCAT1 also promotes cell proliferation by interaction with c-Myc by acting as a decoy for c-Myc-targeting miRNAs. Other PCAT-family members, PCAT6, PCAT 7, and PCAT 18 were predictive of tumor progression by modulation of AR signaling. Expressions of PCAT6 and PCAT7 were higher in primary and metastatic prostate cancer, and siRNA-mediated knockdown of either of them reduced cell growth and soft agar colony formation in both androgen-dependent LNCaP and -independent LNCaP sublines. PCAT18 is highly prostate-specific and expressed especially in metastatic prostate cancer tissues. Expression level of PCAT18 is regulated by AR signaling. siRNA-mediated knockdown of PCAT18 also reduced cell growth. PCAT29 was identified as an AR-repressed IncRNA that functions as a tumor suppressor. PCAT29 was suppressed by androgen and upregulated by castration in a prostate cancer xenograft model. PCAT29 knockdown significantly increased proliferation and migration of prostate cancer cells, whereas PCAT29 overexpression conferred the opposite effect. In prostate cancer patient specimens, low PCAT29 expression correlated with poor prognostic outcomes, suggesting that decrease of this IncRNA may identify a subset of patients at higher risk for disease recurrence.

Prostate cancer noncoding RNA-1 (PRNCR1) was initially identified as a novel IncRNA transcribed from 8q24, the genomic locus most significantly associated with prostate cancer susceptibility found in a genome-wide association study. Knockdown of PRNCR1 by siRNA attenuated prostate cancer cell viability and AR transactivation activity, indicating that PRNCR1 could be involved in prostate carcinogenesis possibly through AR. In another study, PRNCR1 and PCGEM1 were found to successively bind to AR and strongly enhance AR-mediated gene activation programs and proliferation in prostate cancer cells. Later, it was shown that PCGEM1 and PRNCR1 do not interact with AR and that neither gene was a prognostic factor for prostate cancer. A study using AR+/ - androgen-dependent prostate cancer xenograft models revealed that PRNCR1 was scarcely expressed and that PCGEM1 expression was lower in metastatic prostate cancer compared to primary tumors. Thus, the roles of these IncRNAs in prostate cancer are still being debated, and further studies are necessary to elucidate the relation of PCGEM1 and AR, and its clinical significance.

Our study analyzing a global AR transcriptional network by mapping genome-wide androgen-regulated TTS using CAGE and ARBS using ChIP-seq has revealed comprehensive AR-regulated transcripts from intergenic or AS regions of genes in prostate cancer cells. Based on this study, a IncRNA located at the AS region of the C-Terminal Binding Protein 1 (CTBP1) gene, CTBP1-AS, was found to promote tumor growth of both hormone-sensitive prostate cancer and CRPC models by regulating cancer-associated genes epigenetically. These studies revealed the importance of androgen-regulated IncRNAs in prostate cancer progression.

HOX Transcript Antisense RNA (HOTAIR) is a well-known IncRNA found to play important roles in several tumors. In prostate cancer, HOTAIR was reported as a lncRNA repressed by androgen. It was markedly upregulated in CRPC after androgen deprivation therapies. HOTAIR was found to bind to AR protein to block its interaction with E3 ubiquitin ligase Mouse double minute 2 homolog (MDM2), preventing AR ubiquitination and degradation. HOTAIR overexpression increased prostate cancer cell growth and invasion. Consequently, HOTAIR expression was sufficient to induce androgen-independent AR activation and drive an AR-mediated transcriptional program in the absence of androgen. HOTAIR may drive androgen-independent AR activity and CRPC progression, being a potential therapeutic target.

Our comprehensive analysis of AR-regulated lncRNAs in two prostate cancer cell lines and CRPC model cells by directional RNA-seq analysis identified an androgen-regulated lncRNA, suppressor of cytokine signaling 2-antisense transcript 1 (SOCS2-AS1), located at the antisense strand of SOCS2. Expressions of SOCS2-ASI and SOCS2 expression were androgen-dependent and their expression was suppressed by AR knockdown as well as by an anti-androgen,
miR-675 repressed TGFβ1 translation by directly binding to the 3′UTR.

Clinical Use of lncRNAs and Limitations

lncRNAs still remain uncharacterized RNA molecules as a result of their low expression levels, poor conservation, and high tissue/cell specificity. In prostate cancer diagnosis, the main priority is identifying novel biomarkers to reliably distinguish between low-risk and high-risk patients who need definitive treatment. Although the majority of studies have focused on the intracellular roles of lncRNAs, there is an increasing interest in the potential roles of extracellular circulating lncRNAs. Urinary PCA3 is now widely used as a biomarker for detection of cancer and has been approved by the United States Food and Drug Administration. Measuring PCA3 was shown to be superior to serum PSA test and digital rectal examination in the sensitivity and specificity for prostate cancer diagnosis. However, its utility as a first-line test or to detect high-grade prostate cancer remains under investigation. Therefore, other methods for prostate cancer diagnosis using lncRNAs have been developed, such as MALAT1-derived (MD) mini-RNA (MD-mini-RNA). Plasma MD-mini-RNA was found to improve diagnostic accuracy for predicting the results of prostate biopsy in patients with high PSA levels (>4 ng/mL). These circulating lncRNAs have shown promise as non-invasive biomarkers across a wide spectrum of diseases and altered physiological states. Release of cellular RNA species into circulation may reflect disease-specific tissue injury and/or remodeling, or potential intercellular signaling. However, the biological functions and the mechanisms of circulating lncRNAs have not been elucidated. Uniform normalization protocol of sample collection, lncRNAs extraction, endogenous control selection, quality assessment, and quantitative data analysis has not been established. To adopt circulating lncRNA into
clinical practice, the following aspects should be investigated: normalization of sample preparation such as temperature, volume, and reagents used to extract and store lncRNAs, selection of reliable endogenous controls, method to assess the quality of lncRNA and reduction of bias by increasing the size of the research cohort.

FANTOM Projects to Investigate the Functional Role of lncRNAs

Recent advances in transcriptomics have improved coverage as well as detection accuracy of profiled RNA molecules. The FANTOM project, starting in early 2000, is one of the longest running collaborative projects in genomics that aims to functionally characterize mammalian genomes.\(^{(7)}\)\(^{(8)}\) FANTOM1 and FANTOM2 generated more than 100 000 mouse full-length cDNAs that showed that the portion of the genome encoding proteins is small, whereas the majority of it is involved in producing non-coding RNAs. FANTOM3 uncovered the promoter landscape of the mammalian genome, allowing precise identification of TSS, and the existence of antisense transcription, by combining CAGE and full-length cDNA isolation.\(^{(8)}\) FANTOM4 adopted CAGE and 454 Life Sciences sequencing combined with Illumina microarrays to study a model of differentiation in human THP-1 (myeloid leukemia) cells, and to define the transcriptional regulatory network based on TSS activity that explained such a timely process.\(^{(7)}\)

Within the FANTOM5 project, the consortium profiled nearly 2000 human and 1000 mouse samples, representative of the majority of cell types and tissues, using CAGE followed by next-generation single molecule sequencing (HeliScope).\(^{(7)}\)\(^{(8)}\) A current limitation of FANTOM5, besides the coverage of species, lies in the approaches taken to explore RNAs. As the CAGE protocol is designed to capture only the 5’-end of capped long RNA molecules, the internal structure of long RNAs and small regulatory RNAs remains unexplored. To complement the CAGE profiles, CAGEscan, RNA-seq and small RNA sequencing data are being analyzed to be added to the FANTOM web resource, and existing databases and interfaces are being upgraded. The consortium is already developing the sixth FANTOM project which aims to uncover the function of long non-coding RNAs by high-throughput screening coupled with CAGE.

FANTOM projects revealed that the human genome is widely transcribed, producing thousands of lncRNAs. Most lncRNAs lack typical signatures of selective constraints. Given their diversity in biogenesis and their low expression and conservation levels, the functional relevance of most lncRNAs remains unclear. Future studies will enable understanding of lncRNA functions and to identify relevant lncRNA in diseases including prostate cancer.

Conclusion

The main priority in clinical prostate cancer research is identifying novel biomarkers to reliably distinguish between low-risk patients and high-risk patients who need definitive treatment. Strong evidence has been presented about the significance of lncRNAs in prostate cancer, and the challenge is now to determine lncRNAs functionally relevant with oncogenic changes. Although recent studies showed that measuring these transcripts in clinical samples could improve the prediction of prognosis, identification of more molecular mechanisms that lead to metastatic prostate cancer would enable us to determine treatment modalities at the time of diagnosis.

Disclosure Statement

Authors declare no conflicts of interest for this article.

Abbreviations

- ADT: androgen deprivation therapy
- AR: androgen receptor
- ARBS: androgen receptor binding site
- ARE: androgen responsive element
- AS: antisense
- CAGE: cap analysis of gene expression
- ChIP-seq: chromatin immunoprecipitation sequencing
- CRPC: castration-resistant prostate cancer
- DRE: digital rectal examination
- EZH2: enhancer of zeste homolog 2
- ISH: in situ hybridization
- KLK3: kallikrein-related peptidase 3
- lncRNAs: long non-coding RNAs
- miRNAs: microRNAs
- ncRNAs: non-coding RNAs
- nt: nucleotide
- PCA3: prostate cancer antigen 3
- PSA: prostate-specific antigen
- RNA-seq: RNA sequencing
- TLR: Toll-like receptor
- TTS: transcriptional stat site

References

1. Ambros V. The functions of animal microRNAs. *Nature* 2004; 431: 350–5.
2. Garzon R, Calif GA, Croce CM. MicroRNAs in cancer. *Ann Rev Med* 2009; 60: 167–79.
3. Gibb J, Hayles S, Poulter MO, Anisman H. Effects of stressors and immune activating agents on peripheral and central cytokines in mouse strains that differ in stressor responsivity. *Brain Behav Immun* 2011; 25: 468–82.
4. Feng S, Yao J, Chen Y *et al.* Expression and functional role of reprogramming-related long noncoding RNA (lincRNA-ROR) in glioma. *J Mol Neurosci* 2015; 56: 623–30.
5. Hu L, Wu Y, Tan D *et al.* Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. *J Exp Clin Cancer Res* 2015; 34: 7.
6. Kandoh C, McLellan MD, Vandin F *et al.* Mutational landscape and significance across 12 major cancer types. *Nature* 2013; 502: 333–9.
7. Ciriello G, Miller ML, Aksoy BA, Sibengaolug Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. *Nat Genet* 2013; 45: 1127–33.
8. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. *Cancer Discov* 2011; 1: 391–407.
9. Iyer MK, Niknafs YS, Malik R *et al.* The landscape of long noncoding RNAs in the human transcriptome. *Nat Genet* 2015; 47: 199–208.
10. Attard G, Parker C, Eeles RA *et al.* Prostate cancer. *Lancet* 2016; 387: 70–82.
11. Bill-Axelson A, Holmberg L, Garmo H *et al.* Radical prostatectomy or watchful waiting in early prostate cancer. *N Engl J Med* 2014; 370: 932–42.
12. Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. *J Clin Oncol* 2005; 23: 8253–61.
13. Smith MR, Cook R, Lee KA, Nelson JB. Disease and host characteristics as predictors of time to first bone metastasis and death in men with progressive castration-resistant nonmetastatic prostate cancer. *Cancer* 2011; 117: 2077–85.
14. Chen CD, Welsbie DS, Tran C *et al.* Molecular determinants of resistance to antiandrogen therapy. *Nat Med* 2004; 10: 33–9.
15. Chen G, Shuker N, Potti A *et al.* Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenic and prognostic implications. *Cancer* 2004; 101: 1345–56.
16 Waltering KK, Helenius MA, SAhu B et al. Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 2009; 69: 8141–9.

17 Sun S, Sprenger CC, Vesella RL et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120: 2715–30.

18 Bussemakers MJ, van Bokhoven A, Verhaegh GW et al. A novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 2011; 102: 245–52.

19 Yang L, Lin C, Jin C et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 2013; 500: 598–602.

20 Prensner JR, Sahu A, Iyer MK et al. The IncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget 2014; 5: 1434–8.

21 Prensner JR, Hori-Inoue K, Katayama S et al. Androgen-responsive long non-coding RNA CTBP1-AS promotes prostate cancer. EMBO J 2013; 32: 1665–80.

22 Gupta RA, Shah N, Wang KC et al. Long non-coding RNA HOTAIR programs chromatin state to promote cancer metastasis. Nature 2010; 464: 1071–6.

23 Kego R, Shimamura T, Mimori K et al. Long non-coding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 2011; 71: 6320–6.

24 Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large interconnecting non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res 2011; 39: 219–28.

25 Ren S, Liu Y, Xu W et al. A large noncoding RNA is a marker for murine prostate cancer. J Biol Chem 2014; 289: 1651–62.

26 Ji P, Diederichs S, Wang W et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early stage non-small cell lung cancer. Oncogene 2003; 22: 8031–7.

27 Lin R, Maeda S, Liu C et al. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 2007; 26: 851–8.

28 Konishi H, Ichikawa D, Yamamoto Y et al. Plasma level of metastasis-associated lung adenocarcinoma transcript 1 is associated with liver damage and predicts development of hepatocellular carcinoma. Cancer Sci 2010; 107: 149–54.

29 Ren S, Liu Y, Xu W et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol 2013; 190: 2278–87.

30 Wang F, Ren S, Chen R et al. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget 2015; 6: 11091–102.

31 Wang D, Ding L, Wang L et al. LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget 2015; 6: 71015–27.

32 Orfanelli U, Jachetti E, Chiciąceri F et al. Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene 2015; 34: 2094–102.

33 Lavorgna G, Chiciąceri F, Briganti A, Montorsi F, Pasini D, Salonia A. Expression-profiling of apoptosis induced by ablation of the long ncRNAs TRPM2-AS in prostate cancer cell. Genom Data 2014; 3: 4–5.

34 Chakravarty D, Sboner A, Nair SS et al. The oestrogen receptor alpha-regulated IncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 2015; 4: 5388–9.

35 Srikantam V, Zhou Z, Petrovics G et al. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci USA 2000; 97: 12216–21.

36 Petrovics G, Zhang W, Makarem M et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 2004; 23: 605–11.

37 Hung CL, Wang LY, Yu YL et al. A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci USA 2014; 111: 18697–702.

38 Prensner JR, Chen W, Iyer MK et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Cell 2014; 74: 1651–60.

39 Prensner JR, Chen W, Han S et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 2014; 16: 900–8.

40 Ronnau CG, Verhaegh GW, Luna-Velez MV, Schalken JA. Noncoding RNAs as novel biomarkers in prostate cancer. Biomed Res Int 2014; 2014: 591703.

41 Du Z, Fei T, Verhaak RG et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 2013; 20: 908–13.

42 Crea F, Watahiki A, Quagliata L et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget 2014; 5: 764–74.
71 Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics 2013; 193: 651–69.
72 Groskopf J, Aubin SM, Deras IL et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem 2006; 52: 1089–95.
73 Ouyang B, Bracken B, Burke B et al. A duplex quantitative polymerase chain reaction assay based on quantification of alpha-methylacyl-CoA racemase transcripts and prostate cancer antigen 3 in urine sediments improved diagnostic accuracy for prostate cancer. J Urol 2009; 181: 2508–13.
74 Hesdenreich A, Bastian PJ, Bellmunt J et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 2014; 65: 124–37.
75 Roobol MJ, Schroder FH, van Leeuwen P et al. Performance of the prostate cancer antigen 3 (PCA3) gene and prostate-specific antigen in prescreened men: exploring the value of PCA3 for a first-line diagnostic test. Eur Urol 2010; 58: 475–81.
76 Ren S, Wang F, Shen J et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer 2013; 49: 2949–59.
77 Tong YS, Wang XW, Zhou XL et al. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol Cancer 2015; 14: 3.
78 Zhou X, Yin C, Dung Y et al. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep 2015; 5: 11516.
79 FANTOM Consortium. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009; 41: 553–62.
80 Carninci P, Kasukawa T, Katayama S et al. The transcriptional landscape of the mammalian genome. Science 2005; 309: 1559–63.
81 Lizio M, Harshbarger J, Abugessaisa I et al. Update of the FANTOM web resource: high resolution transcriptome of diverse cell types in mammals. Nucleic Acids Res 2017; 45(D1): D737–43.
82 Thompson JF, Steinmann KE. Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol 2010; https://doi.org/10.1002/0471142727.mb0710s92.