Molecular detection of chloramphenicol-florfenicol resistance (cfr) genes among linezolid resistant MRSA isolates in Sokoto State, Nigeria

Detecção molecular de genes de resistência ao cloranfenicol-florfenicol (cfr) entre isolados de MRSA resistentes a linezolida no estado de Sokoto, Nigéria

Shuaibu Suleiman Adeiza1, Josiah Ademola Onaolapo1, Busayo Olalekan Olayinka1

1. Department of Pharmaceutical Microbiology, Faculty of Pharmaceutical sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria.

Abstract

Objective: we investigated previous literatures for documentation of the trend in Sokoto, Nigeria and found none. We deemed it fit to determine the frequency of linezolid resistance mediated by cfr gene among MRSA isolates from Sokoto State-owned hospitals. Methods: Bacterial species identification was carried out with Microgen™ Staph-Id System kit (Microgen, Surrey, UK). Disc agar diffusion method (Modified Kirby-Bauer’s) following Clinical and Laboratory Standards Institute (CLSI 2018) guidelines was used in antimicrobial susceptibility testing. The results were interpreted and managed using WHONET 5.6 software (WHO, Switzerland). Oscillin resistant screening agar base (ORSAB) culture was used to determine phenotypic methicillin resistance. Polymerase chain reaction (PCR) was carried out to determine the presence of cfr-gene. Results: A total of 81 S. aureus isolates were phenotypically identified. Of this number, 46.91% (38/81) were MRSA; Healthcare workers (39.5%), Outpatient (28.9%), In patient (21%), Security men and Cleaners (5.3% each). Importantly linezolid resistance rate among the MRSA isolates was 44.7%. Analysis of antimicrobial susceptibility profile also showed a multiple antibiotics resistance burden of MDR (5.9%), possible XDR (47.1%), XDR (41.1%) and PDR (5.9%) amongst LR-MRSA. About 52.9% (9/17) of LR-MRSA harbored the cfr gene.

Conclusions: This is the first report to document cfr gene in LR-MRSA strains in Sokoto. The cfr gene was found among the studied LR-MRSA strains and if cfr-mediated linezolid resistance is not properly checked, its phenotypic expression may result in an outbreak of multiple antibiotic resistant strains.

Keywords: Antibiotics resistance. Cfr gene. Linezolid. PCR. MRSA.

INTRODUCTION

Scientists have based a considerable part of the regular prevention and treatment of human diseases in the healthcare settings on the effectiveness of antibiotics. These bacteria-fighting drugs now face immense crisis because of their misuse for both human and livestock1. The incessant antibiotic selective pressure contributes to the mobilization of horizontally acquired antimicrobial resistance genes2. All over the world, methicillin resistant Staphylococcus aureus (MRSA) associated infections are ever more difficult to treat3. Linezolid is classified in the Reserve group of the AWaRe (Access, Watch, and Reserve) category of World Health Organisation’s (WHO’s) Essential Medicines List as last-resource treatments for multidrug-resistant infections4. Decades after its first report, the spread of linezolid resistance (LR) amongst MRSA has been limited. But, some studies have recently reported its swift spread in hospital and community settings5,6, 7. Resistance to oxazolidinone group of antibiotics in MRSA is facilitated by two central mechanisms, either through genetic mutation of genes that code for 23S rRNA which then cause change to the peptidyl transferase centre where conserved residues interact with linezolid or by horizontal acquisition (non-mutational) of the natural cfr (chloramphenicol-florfenicol resistance) gene that codes for 23S rRNA methylase enzyme that targets the adenine residue A25038. The plasmid-carried cfr gene when acquired...
can be transferred to other MRSA strain and ultimately spring resistance to drugs with ribosomal target sites (lincosamides, phenicols, oxazolidinones, streptogramin A, some macrolides and pleuromutilins)9.

The mortality rate arising from antibiotics-resistant infections is estimated to be around fifty-eight thousand monthly and could reach millions by the year 205010. Health-care professionals rely on antibiotics like linezolid as primary treatment for MRSA related infections. Recently, instances of resistance to linezolid has been reported in many studies11,12.

In low and middle-income countries (LMICs) like Nigeria, policies on antibiotics stewardship, sanitation and infection transmission control are inadequately enforced13. Consequently, there is a gradual rise of S. aureus and MRSA strains with reduced susceptibility to linezolid in Nigeria. Until recently linezolid resistance (LR) amongst S. aureus and MRSA strains in the country was largely undocumented14,15. More recent surveys have recognized escalations in the frequency and proliferation of LR-MRSA from 13.3% to 22.4% and 79.1%16-18. The need to uphold the potency of linezolid against strains with LR determinants cannot be overemphasized. We investigated previous literatures for the documentation of the trend in Sokoto, Nigeria and found none. So, we deemed it fit to determine the frequency of linezolid resistance mediated by cfr gene among MRSA isolates from Sokoto State-owned hospitals.

METHODS

Bacterial isolates

Approval for the study was provided by the Sokoto State ministry of health’s Ethical Review Board (Reference number SMH/1580/V. IV.). Samples were obtained from three Sokoto State-owned Hospitals (Maryam Abacha Women and Children Hospital, Specialist Hospital and Orthopedic Hospital Wamakko) between February 2018 and July 2018. The study participants comprised health care workers, inpatients, outpatients, security men and cleaners. By means of commercially available, swab sticks pre-moistened with sterile normal saline, specimens were collected from the nasal cavity of consenting participants and transported in an ice pack to the Central Research laboratory of the Faculty of Veterinary Medicine, Usman Danfodiyo University Sokoto, Nigeria for further processing.

Samples were streaked on mannitol salt agar (Oxoid, UK) and incubated overnight at 37 °C. Bacterial species identification was conducted with Microgen™ Staph-ID System kit (Microgen, Surrey, UK). The isolates were inoculated in Oxacillin resistant screening agar (ORSAB) plate19 and the resultant isolates after overnight culture were further subjected to a panel of ten (10) antibiotics.

Antimicrobial susceptibility test

The susceptibility of emergent isolates to ten commercially available antibiotics was determined by Modified Kirby-Bauer’s Disc agar diffusion method as suggested by Clinical and Laboratory Standards Institute (CLSI, 2018)20. The results were interpreted and managed using WHONET 5.6 software (WHO, Switzerland) with laboratory algorithm set to match CLSI antibiotics breakpoints21. The commercially available 6 mm antibiotic discs (Oxoid, UK) used includes; clindamycin (2µg), erythromycin (15µg), ceftazidime (30µg), trimethoprim/sulfamethoxazole (1.25/23.75 µg), chloramphenicol (30µg), linezolid (30µg), tetracycline (30µg), cefoxitin (30µg), levofloxacin (5µg), gentamicin (120µg). The resistance patterns were described according to the definitions of22, multiple antibiotics resistant strains were divided into MDR (Multiple Drug-Resistant), XDR (Extensively Drug-Resistant) and PDR (Pan drug-resistant). MDR bacteria are defined as resistant to one agent in at least three classes of antibiotics. XDR bacteria are characterized by their sensitivity to only three class of antibiotics or less and the PDR bacteria are resistant to all classes of antibiotics used in the study22.

PCR for cfr (linezolid resistance) gene

Qiagen DNA extraction KIT (Qiagen, Hilden, Germany) was used in the isolation of the total genomic DNA of linezolid resistant MRSA (LR-MRSA) strains as groundwork for Simplex PCR for the detection of cfr gene23. The primers used were designed with Primer3Plus Software24 on a matrix of cfr oligonucleotide sequence (GenBank Accession no.MF579752) that eventually (after production) resulted in a primer (Forward: TAGTGAGGAACGCAGCAAAT, Reverse: CTCAGGTGCACTTATTGTAGGA) with an expected amplicon size of 746 bp. A PCR cocktail comprising 5 µl of template DNA, 12.5 μl of Qiagen master mix, 2.5 µL of Q-reagent, 1 µL of each of each primer pair (2 µL totally) and 3 µl molecular grade water. DNA was amplified with a thermocycler (Applied bio systems 9700). PCR conditions were as follows: denaturation for 2 min at 94 °C, 30 cycles of denaturation for 10 s (94 °C, annealing for 30 s at 55 °C), extension (30 s at 72 °C), and a final extension (7 min at 72 °C). The bands indicative of the presence of cfr gene was visualized in an electrophoretogram after the PCR products were electrophoresed in a 1.5% ethidium bromide pre-stained agarose gel.

RESULTS

Out of 756 nasal samples obtained, a total of 81 S. aureus isolates were phenotypically identified from Maryam Abacha Women and Children Hospital (31.6%), Specialist Hospital (39.5%) and Orthopedic Hospital Wamakko (28.9%). Of this number, 46.91% (38/81) were MRSA; Healthcare workers (39.5%), Outpatient (28.9%), Inpatient (21%), Security men and Cleaners (5.3% each). Importantly, linezolid resistance rate among the MRSA isolates was 44.7% (17/38). The data gathered from this study submits that all the seventeen-linezolid resistant MRSA were multiple antibiotics resistant strains; the isolates were all resistant to a minimum four (4) agents including linezolid, ceftazidime and cefoxitin. As shown in figure 1, we learnt that 70.6% (12/17) of
linezolid-resistant strains were resistant to levofloxacin, 47.1% (8/17) to chloramphenicol, 58.8% (10/17) to erythromycin, 35.3% (6/17) to clindamycin, 29.4% (5/17) to trimethoprim/sulfamethoxazole, 64.7% (11/17) to tetracycline and 70.6% (12/17) to levofloxacin. Analysis of antimicrobial susceptibility profile also showed a multiple antibiotics resistance burden of MDR (5.9%), possible XDR (47.1%), XDR (41.1%) and PDR (5.9%) amongst LR-MRSA.

Genetically (Figure 2), the percentage of linezolid resistant MRSA that harbored the cfr gene was 52.9% (9/17). Almost all of the cfr positive LR-MRSA isolates (66.7%) displayed clindamycin, chloramphenicol and linezolid resistance phenotype.

Figure 1. Antibiotic resistance profile in Linezolid resistant-MRSA strains

![Antibiotic resistance profile in Linezolid resistant-MRSA strains](image1)

KEY:

CAZ = Ceftazidime, FOX = Cefoxitin, GEN = Gentamicin, LVX = Levofloxacin, SXT = Trimethoprim/Sulfamethoxazole, CLI = Clindamycin, ERY = Erythromycin, LNZ = Linezolid, CHL = Chloramphenicol, TCY = Tetracycline

Figure 2. Electrophoretogram for the cfr genes of linezolid resistant isolates. In the figure: cfr (746 bp), M is 100 bp+ DNA ladder, P = Positive control (S. aureus ATCC 25923) Lane 1-17 = Samples

![Electrophoretogram for the cfr genes of linezolid resistant isolates](image2)
DISCUSSION

As a member of the oxazolidinone group of antibiotics, clinicians prefer linezolid in treatment of MRSA because of its therapeutic effectiveness and corresponding reduction in duration patients’ hospitalization. The outcome of linezolid resistance rate among MRSA isolates observed here implicates the rather swift dissemination linezolid resistance of 44% (22/50) reported by21. Our finding is within the spectrum 13.3% to 79.1% resistance rates reported by some Nigerian studies16–18. This may be associated modifications at the binding sites of linezolid on the ribosome (V loop of 23S rRNA). Furthermore, speculations can be made about the possibility of a secondary resistance like cell wall thickness or biofilm formation being responsible for the observed LR23. Conversely, the development of clinically important LR phenotypes require mutation of more than one allele of the wild type 23SrRNA. In MRSA there are multiple copies of these alleles (4 to 6 copies)26. This may explain relatively high linezolid susceptibility rate documented in this study. This may also explain the fairly uniform activity of linezolid over the years.

The discovery that all seventeen-linezolid resistant MRSA were multiple antibiotic resistant is not surprising owing to the fact that the isolates were obtained from a hospital environment, there is high chance that prior antimicrobial use that may have increased the odds of MRSA isolate to become resistant to multiple antibiotics27. However the burden multiple drug resistance profile documented in this study is similar to the work of28 in which almost all the LR-MRSA were MDR.

Furthermore, the band pattern evidenced by our electrophoretogram reveals that cfr gene mediated LR in this study occurred in 52.9% of the isolates. This gives credence to the existing CLSI protocol, which suggest the use of a second method in addition phenotypic method in the confirmation LR in staphylococci20.

The finding that most (66.7%) of the cfr positive LR-MRSA strains exhibited the clindamycin, chloramphenicol and linezolid resistance phenotype validates previous suggestions that the phenotype is an indicator for the likely presence of the cfr gene29. Our findings identify with several previously reported cfr distribution of 100% by30–32 amongst LR-MRSA but contradicts the results of lower rates of 6.25% and 7.1% reported by29,33. The observed contrasts among these studies might be due to variations in sampling technique and phenotypic confirmatory methods30.

All nine (9) of the cfr-positive linezolid-resistant MRSA were phenotypically MDR which agrees with a previous study by34. The difference in hospital drug prescription practices is a potential source of pressure that may contribute the evolution of MDR strains.

The predominance of cfr-positive LR-MRSA strains in Sokoto where linezolid is not frequently prescribed relates to the hypothesis that any antibiotic within the resistance spectrum of cfr gene can trigger its acquisition with relative ease because of the low fitness cost of the multidrug resistant gene35. In other words, the effect of mutation is alleviated by corresponding alterations in group L (Large) ribosomal proteins thus resulting in an increased resistance35.

Presence cfr negative strains (47.1%) in this study may have occurred as a result of mutation of the wild type 23S rRNA36. The cfr gene is typically situated in mobile genetic elements like on multidrug resistant plasmids which enables fast transfer of the gene into other pathogenic bacteria, susceptible population and back again (cycle)37. Therefore, the cfr negative strains may have lost the gene because of its highly mobile nature. Despite the disparity between the results of the phenotypic and genotypic method in terms of LR these MRSA stains clearly did not display wild type susceptibility to linezolid. In essence, the result for this study only confirms the possible mediation of LR by cfr gene in PCR positive strains.

Our study suffered several limitations; Firstly, we did not investigate mutations in the 23SrRNA genes and the predisposition LR-MRSA strains to harbour both cfr and 23SrRNA genes. Secondly, PCR positive strains were not sequenced to gain insight into the clonality of the circulating strains.

CONCLUSIONS

This is the first report to document cfr gene in LR-MRSA strains in Sokoto. The cfr gene was found among LR-MRSA isolates of Sokoto state. Because of the ease of its acquisition by S. aureus, our study emphasizes the necessity of appropriate surveillance for the bacterial strains harboring cfr genes in the hospitals. If cfr-mediated linezolid resistance is not properly checked, its phenotypic expression may result in an outbreak of multiple antibiotic resistant strains.

REFERENCES

1. Smith B, Rivera C, Dierkhising R, Estes L, O’Horo J, Tande A, et al. 1243. Comparative Analysis of Antimicrobial-related Adverse Events in the Outpatient Treatment of Staphylococcal Infections. In: Open Forum Infectious Diseases. Oxford University Press; 2018. p. S378. https://doi.org/10.1093/ofid/ofy210.1076.

2. Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: a global emerging threat to public health systems. Critical reviews in food science and nutrition. 2017 Sep; 2;57(13):2857-76. https://doi.org/10.1080/10408398.2015.1077192.

3. Antonelli A, D’Andrea MM, Galano A, Borchi B, Bencianci A, Vaggelli G, et al. Linezolid-resistant cfr -positive MRSA, Italy. J. Ant Chemoth. 2016 Aug;71(8):2349–51.

4. Sharland M, Gandra S, Huttner B, Moja L, Pulcini C, Zeng M, et al. Encouraging
Molecular detection of chloramphenicol-florfenicol resistance (cfr) genes in Sokoto State, Nigeria

A WaRe-ness and discouraging inappropriate antibiotic use—the new 2019 Essential Medicines List becomes a global antibiotic stewardship tool. The Lancet Infectious Diseases. 2019 Dec 1; 19(12): 1278–80. https://doi.org/10.1016/S1473-3099(19)30532-8.

5. Seedat J, Zick G, Klare I, Konstabel C, Weiler N, Sahly H. Rapid emergence of resistance to linezolid during linezolid therapy of an Enterococcus faecium infection. Antimicrobial agents and chemotherapy. 2006 Dec; 50(12): 4217–4219. https://dx.doi.org/10.1128%2F AAC.00518-06.

6. Mittal G, Bhandari V, Gaidr R, Rani V, Chopra S, Dawar R, et al. Linezolid resistant coagulate negative staphylococci (LRCoNS) with novel mutations causing blood stream infections (BSIs) in India. BMC infectious diseases. 2019 Dec 1;19(1):717. https://doi.org/10.1186/s12879-019-4368-6.

7. Frost I, Van Boeckel TP, Pires J, Craig J, Laxminarayan R. Global geographic trends in antimicrobial resistance: the role of international travel. Journal of travel medicine. 2019 26(8):taz036. https://dx.doi.org/10.1093/ jtm/taz036.

8. Nordmann P, Rodríguez-Villodres A, Poirel L. A selective culture medium for screening linezolid-resistant gram-positive bacteria. Diagnostic microbiology and infectious disease. 2019 Sep. 1;95(1):1-4. https://dx.doi.org/10.1016/j. diagmicrobio.2019.03.006.

9. Sharkey LK, O’Neill AJ. Molecular Mechanisms of Antibiotic Resistance—Part II: Bacterial Resistance to Antibiotics—From Molecules to Man. 1st ed. Wiley; 2019. 27-50 https://dx.doi.org/10.1002/9781119593322.ch2.

10. Felter C. The End of Antibiotics? [Internet]. Council on Foreign Relations; [cited 2019 Oct 4]. Available from: https://www.cfr.org/backgrounder/end-antibiotics.

11. Masaifa F, Kayigi E, Seni J, Bwanga F, Muvuni CM. Antibiotic Resistance Patterns and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus in Clinical Settings in Rwanda. American Journal of Tropical Medicine and Hygiene. 2018 Nov 7; 99(5): 1239–45. https://dx.doi.org/10.4269/ ajtmh.17-0554.

12. Moawad AA, Hotzel H, Awad O, Roesler U, Hafez HM, Tomaso H, et al. Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance. Microorganisms. 2019 Oct; 7(10): 476. https://dx.doi.org/10.3390/microorganisms7100476.

13. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HF, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. The Lancet Infectious diseases. 2013 Dec; 13(12): 1057–1098. https://dx.doi.org/10.1016/S1473-3099(13)70318-9.

14. Ugwu CC, Gomez-Sanz E, Agbo IC, Torres C, Chah KF. Characterization of mannonit-fertilizing methicillin-resistant staphylococci isolated from pigs in Nigeria. Brazilian Journal of Microbiology. 2015 Sep; 46(3): 885–92. https://dx.doi.org/10.1590/S1517-8388201430104644.

15. Hammuel C, Idoko MO, Migap HH, Ambrose N. Occurrence and antibiotic profile of Staphylococcus aureus isolated from some hospital environment in Zaria, Nigeria. African Journal of Microbiology Research. 2015 May 13; 9(19): 1304–11. https://dx.doi.org/10.5897/AJMR2015.7484.

16. Olonitola OS, Fibermann N, Pruden A. Antibiotic resistance profiles among Antibiotic Susceptibility Patterns of Salmonella Typhi in Jakarta and its Trends Within the Past Decade. Journal of Biological Sciences. 2019 Jan 1; 19(1): 40–5. http://dx.doi.org/10.1038/srep32192.

17. Benardiconi D, Vitali LA. Staphylococcus aureus carriage among food handlers in a pasta company: pattern of virulence and resistance to linezolid. Food control. 2019 Feb 1; 96: 351–356. https://dx.doi.org/10.1016/j.foodcont.2018.09.031.

18. Hannan A, Absar M, Usman M, Naeem T, Saleem S, Arshad M. In vitro activity of linezolid against clinical isolates of methicillin resistant Staphylococcus. Journal of Ayub Medical College, Abbottabad. 2009; 21(1): 106–9.

19. Correia S, Silva V, García-Diez I, Teixeira P, Pimenta K, Pereira JE, Oliveira S, Rocha J, Manaia CM, Igrejas G, Poeta P. One Health Approach Reveals the Absence of Methicillin-Resistant Staphylococcus aureus in Autochthonous Cattle and Their Environments.Frontiers in Microbiology. 2019; 10(12) 3421–3423. https://dx.doi.org/10.3389/fmicb.2019.02735.

20. Weinstein MP, Performance standards for antimicrobial susceptibility testing. 2019. https://dx.doi.org/10.1148/ ajr.198164999988009-0.

21. Moeharlo LH, Robertus T, Tjoa E, O. Gunardi W, Nusatta ACHM, Edbert D. Antibiotic Susceptibility Patterns of Salmonella Typhi in Jakarta and its Trends Within the Past Decade. Journal of Biological Sciences. 2019 Jan 1; 19(1): 40–5. http://dx.doi.org/10.3923/jsb.2019.40.45.

22. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol Infect. 2012 Mar;18(3): 268–81. https://dx.doi.org/10.1111/j.1469-0691.2011.03570.x.

23. Zhao Q, Wang Y, Wang S, Wang Z, Du X, Jiang H, et al. Prevalence and Abundance of Florfenicol and Linezolid Resistance Genes in Soils Adjacent to Swine Feedlots. Scientific reports. 2016 Aug 30; 6(1): 1–7. https://dx.doi.org/10.1038/srep32192.

24. Doern CD, Park JY, Gallegos M, Alspaugh D, Burnham C-AD. Investigation of Linezolid Resistance in Staphylococci and Enterococci. Journal of Clinical Microbiology 2016 May; 54(5): 1289–94. https://dx.doi.org/10.1128/jcm.01929-15.

25. Tian Y, Li T, Zhu Y, Wang B, Zou X, Li M. Mechanisms of linezolid resistance in staphylococci and enterococci isolated from two teaching hospitals in Shanghai, China. BMC Microbiology. 2014 Nov 25 ;14(1): 292. https://dx.doi.org/10.1186/s12866-014-0292-5.

26. Jones RN, Ross JE, Castanheira M, Mendes RE. United States resistance surveillance results for linezolid (LEADER Program for 2007). Diagnostic
Molecular detection of chloramphenicol-florfenicol resistance (cfr) genes in Sokoto State, Nigeria

Microbiology and Infectious Disease. 2008 Dec; 62(4): 416–26. https://doi.org/10.1016/j.diagmicrobio.2008.10.010.

34. Li SM, Zhou YF, Li L, Fang LX, Duan JH, Liu FR, Liang HQ, Wu YT, Gu WQ, Liao XP, Sun J. Characterization of the multi-drug resistance gene cfr in methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from animals and humans in China. Frontiers in microbiology. 2018 Nov 27; 9:2925. https://doi.org/10.3389/fmicb.2018.02925.

35. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology. 2014 Jan; 12(1): 35–48. https://doi.org/10.1038/nrmicro3155.

36. Kehrenberg C, Schwarz S. Distribution of Florfenicol Resistance Genes fexA and cfr among Chloramphenicol-Resistant Staphylococcus Isolates. Antimicrobial Agents and Chemotherapy. 2006 Apr; 50(4): 1156–63. https://doi.org/10.1128/AAC.50.4.1156-1163.2006.

37. Gopegui ER, Juan C, Zamorano L, Pérez JL, Oliver A. Transferable Multidrug Resistance Plasmid Carrying cfr Associated with tet(L), ant (4′)-Ia, and dfrK Genes from a Clinical Methicillin-Resistant Staphylococcus aureus ST125 Strain. Antimicrobial Agents and Chemotherapy. 2012 Apr; 56(4): 2139–42. https://dx.doi.org/10.1128%2FAAC.06042-11.

How to cite this article/Como citar este artículo:

Adeiza SS, Onaolapo JA, Olayinka BO. Molecular detection of chloramphenicol-florfenicol resistance (cfr) genes among linezolid resistant MRSA isolates in Sokoto State, Nigeria. J Health Biol Sci. 2020 J; 8(1):1-6.

J. Health Biol Sci. 2020; 8(1):1-6