Association of 5p15.2 and 15q14 with High Myopia in Tujia and Miao Chinese Populations

Junwen Wang
The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture
https://orcid.org/0000-0002-7379-3692

Fang Liu
Wuhan University Renmin Hospital

Xiusheng Song
The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture

Tuo Li (✉️ 13986840088@139.com)
https://orcid.org/0000-0002-4764-882X

Research article

Keywords: Myopia, Single-nucleotide polymorphism, 5p15.2 region, 15q14 region, Association study

Posted Date: June 12th, 2020

DOI: https://doi.org/10.21203/rs.2.21557/v3

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on June 26th, 2020. See the published version at https://doi.org/10.1186/s12886-020-01516-8.
Abstract

Background: The polymorphisms rs6885224 and rs634990 have been reported to be associated with high myopia in many populations. As there is still no report on whether these two SNPs are associated with myopia in the Tujia and Miao minority areas of China, we conducted a replication study to evaluate the association of single-nucleotide polymorphisms in the regions 5p15.2 and 15q14 with high myopia in Tujia and Miao Chinese populations.

Methods: We performed a comprehensive meta-analysis of 5831 cases and 7055 controls to assess whether rs6885224 in the 5p15.2 region and rs634990 in the 15q14 region are associated with high myopia. Our replication study enrolled 804 individuals. Genomic DNA was extracted from venous leukocytes, and these two SNPs were genotyped by Sanger sequencing. Allele and genotype frequencies were analysed using χ^2 tests, and ORs and 95% CIs were calculated.

Results: According to the results of the meta-analysis, rs6885224 in the CTNND2 gene showed no association with myopia ($p=0.222$, OR=1.154, 95% CI (0.917-1.452)). Conversely, rs634990 in the 15q14 region did exhibit a significant correlation with myopia ($p=7.270\times10^{-7}$, OR=0.817, 95% CI (0.754-0.885)). In our replication study, no association with high myopia in the Tujia and Miao populations was found for rs634990 or rs6885224. The following were obtained by allele frequency analysis: rs6885224, $p=0.175$, OR=0.845, and 95% CI=0.662-1.078; rs634990, $p=0.087$, OR=0.84, and the 95% CI=0.687-1.026. Genotype frequency analysis yielded $p=0.376$ for rs6885224 and $p=0.243$ for rs634990.

Conclusions: Our meta-analysis results show that rs634990 was significantly associated with myopia but that rs6885224 was not. Nevertheless, in our replication study, these two SNPs showed no association with myopia in the Tujia and Miao Chinese populations. This is the first report involving Tujia and Miao ethnic groups from Enshi minority areas. However, the sample size needs to be expanded and more stringent inclusion and exclusion criteria need to be formulated to verify the findings.

Background

Myopia is a common and frequently occurring disease, with a high prevalence in both children and adults. Myopia is a type of refractive error that is mainly determined by corneal curvature, lens adjustment and axial length[1]. Myopia is prevalent worldwide, at approximately 28.3%[2]. Furthermore, the situation is severe in East Asia, especially among students and young adults, with a prevalence of almost 90%[2-9]. A recent meta-analysis showed that the number of patients with myopia worldwide has increased from 1406 million in 2000 to 1950 million in 2010; it is predicted that the number of myopia patients will reach 4758 million by 2050[10]. Myopia can be classified as follows: high myopia, with a spherical equivalent refraction equal to or less than -6 D; moderate myopia, with a spherical equivalent refraction between -6 D and -3 D; and low myopia, with a spherical equivalent refraction equal to or greater than -3 D. It is worth noting that high myopia is a pathological condition that can lead to many diseases, such as presenile cataracts, glaucoma, macular degeneration, retinal detachment and posterior scleral staphyloma, which are the leading causes of blindness in high myopia[11-15].

Currently, it is believed that the occurrence of myopia is influenced by both environmental and genetic factors[16-19]. Near work, socioeconomic and educational pressures, and reduced time spent outdoors have all been linked to myopia[20-22]. Although the molecular genetic mechanisms involved in the development of myopia are not well understood, many studies, such as genome-wide association studies (GWASs) and pedigree analyses, have revealed many single-nucleotide polymorphisms (SNPs) in different chromosomal regions that are associated with myopia[23-25]. In addition, linkage analysis has mapped approximately 26 Mendelian myopia susceptibility loci (MYP1-26)[26-48]. Despite these results, most of the genes important for myopia have not yet been determined.

In 2011, Yi-Ju Li et al[49], performed a meta-analysis using the Singapore Cohort Study of the Risk factors for Myopia (SCORM) and the Singapore Prospective Study Program (SP2) genotyped datasets, with a replication study in a Japanese population, and Boyu Lu et al[50], recently carried out a case-control study in a Chinese population. Both studies identified a strong association between rs6885224 in the 5p15.2 region and myopia. Another SNP, rs634990, in the 15q14 region has been demonstrated to have a significant association in Dutch, Japanese, Han Chinese and Guangzhou Chinese populations[25, 51-53]. According to the sixth national census in 2010, the Tujia ethnic group comprises a population of approximately 8 million, accounting for approximately 45% of the total population in Enshi Tujia and Miao Autonomous Prefecture[54]. To date, there is no report on whether these two SNPs are associated with myopia in this minority area. Therefore, we conducted a replication study to examine the association in Enshi Tujia and Miao Autonomous Prefecture.

Methods

Ethics statement

All procedures for this study followed the tenets of the Declaration of Helsinki. The ethics committee of The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei, China, approved our study. All the patients were informed of the purpose and procedures of the study and provided informed consent prior to the start of the study.

Meta-analysis

We performed a comprehensive meta-analysis following the Cochrane Handbook to assess whether rs6885224 and/or rs634990 are associated with high myopia. The MEDLINE, EMBASE and Cochrane Library databases were searched for the following keywords: “rs6885224”, “rs634990”, “CTNND2”, “GJD2”, “GOLGA8B” and “myopia”. The search deadline was March 2020. We extracted data, including author, country, year, study design, ethnicity of the subjects, sex, genotyping method and number of alleles and genotypes in cases and controls or the odds ratio (OR) and 95% confidence interval (95% CI), from the included literature. We used these data to perform a comprehensive meta-analysis by using Comprehensive Meta-Analysis Software Version 2.0 (Copyright ©2006-
Sensitivity analysis was completed by the "One Study Remove" program of the software. Potential publication bias was assessed using funnel plots and fail-safe N.

Patients

A total of 804 unrelated subjects recruited from The Central Hospital of Enshi Autonomous Prefecture were enrolled in our study, including 322 healthy controls and 482 high myopia cases. The patients all belonged to the Tujia and Miao ethnic groups. The criteria for the high myopia group were as follows: 1. a spherical equivalent refraction \(\leq -6.0 \) D; and 2. exclusion of other known ocular or systemic diseases. The criteria for the control group were as follows: 1. a spherical equivalent refraction between -0.5 D and +1.0 D and best unaided visual acuity \(\geq 0.8\); and 2. exclusion of other known ocular or systemic diseases. The patients were tested for visual acuity and refractive error by autorefraction (Topcon KR-8000, Paramus, NJ, USA) before being enrolled in the study. The case group also underwent ocular biometric axial length examination using IOL Master (Carl Zeiss Meditec AG, Jena, Germany), fundus photography (Canon CF-60UD, Tokyo, Japan) and optical coherence tomography (Heidelberg Engineering HRA+OCT, Heidelberg, Germany).

DNA extraction

All subjects provided 5 ml of venous blood, which was drawn from the cubital vein. Genomic DNA for all patients and some of the control participants was isolated from leukocytes using the phenol-chloroform method[55]. For the other groups, genomic DNA was extracted from leukocytes using a blood DNA extraction kit (Promega, Madison, Wisconsin, USA) and stored in TE buffer.

Genotyping

The two SNPs (rs6885224 and rs634990) were genotyped by Sanger sequencing. The Primer3 online tool (http://primer3.ut.ee) was used to design primers for amplification. For rs6885224, the forward primer was 5’-TGGTGGATGGCTATGCTA-3’, and the reverse was 5’-TCTTCTCATAGGTTGCTTTGCT-3’; for rs634990, the forward primer was 5’-GCTCACTGATCTTAGGGA-3’, and the reverse was 5’-AGCTTGGAAACCTTGTGCT-3’. The target fragment was amplified by polymerase chain reaction. The purified amplicons were sequenced with an ABI BigDye Terminator v3.1 Cycle Sequencing kit using an ABI 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). The sequencing results were compared with consensus sequences (National Center for Biotechnology Information, GRCh37.p13 NC_000005.9 and NC_000015.9) using the SeqMan program of DNASTar software (DNASTar Inc., Madison, WI, USA).

Statistical analysis

Statistical analyses were performed using a commercial statistical software program (SPSS ver. 25.0; SPSS Science, Chicago, IL, USA). We applied \(\chi^2\) tests to evaluate Hardy-Weinberg equilibrium (HWE) for the two SNPs in the case and control groups. The frequencies of alleles and genotypes in the case and control groups were tested by using \(\chi^2\) tests; additionally, ORs and 95% CIs were calculated. A two-tailed \(p\) value of <0.05 was considered statistically significant.

Results

The main features of the studies included in the meta-analysis are shown in Table 1. Eight published English-language studies from among 11 studies, including 5831 cases and 7055 controls, were evaluated[49-53, 56-58]. According to the results of the meta-analysis, rs6885224 in the CTNND2 gene showed no association with myopia \(p=0.222, OR=1.154, 95\% CI (0.917-1.452)\), whereas rs634990 in the 15q14 region did display a significant association with myopia \(p=7.270 \times 10^{-7}, OR=0.817, 95\% CI (0.754-0.885))\] (Figure 1, Additional file 1). For sensitivity analysis, “One Study Remove” was invoked, deleting each included study step by step, and based on this analysis, no single study significantly changed the pooled estimate when it was removed. (Figure 2) In two funnel plots, the scatter points representing each included study were almost all distributed in the middle and upper part of the inverted funnel. (Figure 3) The fail-safe N test revealed \(Z=2.342\) and \(p=0.019\) for rs6885224 and \(Z=4.952\) and \(p=7.345 \times 10^{-7}\) for rs634990. All these results indicate no significant publication bias among the included studies.

The basic information of the study participants is shown in Table 2. A total of 804 participants were enrolled in the study, including 482 patients with high myopia and 322 normal controls. Of the total, 758 belonged to the Tujia ethnic group, and the remaining 46 belonged to the Miao ethnic group. The axial length in the case group ranged from 26.0 mm to 37.46 mm, with a mean ± standard deviation (SD) of 28.58 ± 2.27 mm.

Allele frequency analysis indicated the following: \(p=0.175, OR=0.845,\) and 95\% CI \(0.662-1.078\) for rs6885224, and \(p=0.087, OR=0.84,\) and 95\% CI \(0.687-1.026\) for rs634990 (Table 3). In the genotype frequency analysis, \(p=0.376\) and \(p=0.243\) were obtained for rs6885224 and rs634990, respectively. The two SNPs were in HWE in each group \(p>0.05\) (Table 4). Therefore, we conclude that although there was a suggestive trend towards an association, neither rs6885224 in 5p15.2 nor rs634990 in 15q14 showed significant differences in allele and genotype frequencies between the high myopia and control groups.

Discussion

We performed this comprehensive meta-analysis to assess whether rs6885224 and rs634990 are associated with myopia. Our results showed that rs634990 was significantly associated with myopia but that rs6885224 was not. Nevertheless, we do not recommend a conclusion on this point. Indeed, the development of myopia is affected by both genetic and environmental factors. In general, different results will be obtained for people from different regions and ethnic groups due to genetic heterogeneity. This makes it necessary to conduct verification studies among different ethnicities. However, as there are, to our knowledge, no relevant reports on Tujia or Miao populations, we performed a replication study to assess the correlation of two potential SNPs associated with high myopia in the Tujia and Miao populations. These SNPs have been reported to be associated with high myopia in Han Chinese, Singaporean Chinese,
Japanese and Dutch populations[49-53, 56, 57]. The Enshi Tujia and Miao Autonomous Prefecture is the only autonomous prefecture with ethnic minorities in Hubei Province. It is an ethnic minority area mainly characterized by Tujia, Miao, Dong, Bai, Mongolian, Hui and other ethnic minorities, with Tujia and Miao accounting for the majority. The Enshi minority region is located in southwest Hubei Province and is considered a low-income area. Although the quality of life in this area has been somewhat improved by the development of railways and highways in recent years, living habits are still relatively conservative, and migration into and out of the region is limited. No studies to date have been conducted in the populations in this area. According to our results, neither rs6885224 nor rs634990 is associated with high myopia in these populations. The SNP rs6885224 is located in region 5p15.2 within the Catenin Delta 2 gene (CTNND2), which belongs to the beta-catenin family, is 932 kb in length, and includes 26 exons (Figure 4-A). This gene encodes an adhesion junction-associated protein in the armadillo/beta-catenin subfamily that is involved in the development of the brain and eyes as well as the development of cancer[59-62]. Expression of the CTNND2-encoded protein is stimulated by hepatocyte growth factor, which then promotes the destruction of E-cadherin-based adherens junctions[63]. It was previously reported that this gene is located in a region on the short arm of chromosome 5, and hemizygosity of CTNND2 is associated with cri du chat syndrome[64]. Furthermore, Matter et al.[65] reported attenuated cortical responses to visual stimulation in 10-week-old mice with homozygous loss of CTNND2. Some have speculated that rs6885224 in CTNND2 might regulate mRNA transcription and affect expression of the gene, thereby affecting the occurrence of myopia[50]. Others have speculated that CTNND2 may regulate the structure and function of the sclera by breaking down E-cadherins in scleral fibroblasts, which may lead to myopia[56].

In our study, neither rs634990 nor rs6885224 showed an association with high myopia in the Tujia and Miao populations. Additionally, HWE p values >0.05 were observed for both the experimental and control groups, indicating that the alleles carried by the subjects were in HWE and that the subjects are from a population with random mating and little influx of new genetic material. Although it appears that our sample was reliable, our results differed from those of previous studies[25, 49-52]. The reasons for the conflicting results may be because the pathogenesis of myopia is complex and is influenced by both environmental and genetic factors. First of all, myopia is a multifactorial genetic disease, which is determined by a combination of environment and genetic factors, and neither can be ignored. The genetic backgrounds of the Tujia and Miao populations differ from other ethnic groups in China and the world, and our research is designed to explore these differences in relation to myopia. In fact, few genetic studies have been carried out on the Tujia and Miao populations, and we feel that those differences we have found are worth being further analyzed, even if we cannot completely account for environmental factors due to practical limitations of the study. Secondly, in terms of environmental factors, these environmental factors, such as educational level, near-work, outdoor activities, work in artificial light and the use of digital electronic products, are also important risk factors for myopia. Especially for education level and outdoor activity time, longer education means more near-work and less outdoor activities. Many scholars around the world are doing relevant studies. A large number of studies have shown that overwork learning burden, long hours of near-work and less outdoor activities can increase the risk of disease[70-73]. The Enshi ethnic minority area belongs to poor mountainous area with backward traffic and communication conditions, which prevents us from making return visits to the participants. Nevertheless, we are still trying to get in touch with them. In our efforts, only 52 cases and 26 controls were contacted. The education years of 52 cases are 8.63±3.29 and that of the controls are 6.65±3.71, which means that there is significant difference between the two groups (t=2.402, p=0.019). Unfortunately, this number of responses is not enough to serve as covariates in our study. Thirdly, there are also some studies that have reported the interaction of genetic and environmental factors on the risk of myopia[71, 72, 74-76]. For example, the study of Fan et al. found that three genome-wide associated loci, AREG, GABRR1 and PDE10A, showed strong interaction with education in Asian populations, but this interaction was not significant in European populations[77]. This study not only showed the interaction between genetics and environment, but also showed that the interaction is different in different ethnic groups. Although the SNPs in these studies are different from those we studied, they do suggest that interactions between genetics and environment have impact on the risk of myopia. The study by Pozarickij et al. does show an interaction for the 15q14 region, although not for the specific SNPs we used[74]. For now, no paper has reported on the interaction of genetic and environmental factors in Tujia and Miao populations, so it is worth collecting more data about Tujia and Miao populations for further analysis and research, but that is beyond the scope of this report.

Of course, we have to admit that there are some limitations in our study. First of all, this is a population-based study which requires a large enough sample size to provide more forceful evidence. However, our research involves a relatively small sample size, which leads to the fact that our study evidence seems unconvincing. Secondly, we chose the two SNPs that have been studied on the previous reports. More pathogenic SNPs should be found through GWAS study in the future. What’s more, in future studies, we should include environmental factors such as education years, outdoor activity time and electronic product frequency etc. and conduct stratified analysis on them to give a further analysis on the association between SNP and myopia in Tujia and Miao populations.

Conclusions

In our replication study, we found that neither rs6885224 in the CTNND2 gene nor rs634990 in the 15q14 region was associated with high myopia in the Tujia and Miao populations in Enshi Tujia and Miao Autonomous Prefecture. This is the first report involving Tujia and Miao ethnic groups in the Enshi minority
areas and provides reference data for future studies needed to verify the study result.

List Of Abbreviations

GWASs: genome-wide association studies; SNPs: single-nucleotide polymorphisms; SCORM: Singapore Cohort Study of the Risk factors for Myopia; SP2: the Singapore Prospective Study Program; OR: odds ratio; CI: confidence interval; HWE: Hardy-Weinberg equilibrium; CTNND2: Catenin Delta 2; GJD2: gap junction protein delta-2; GOLGA8B: golgin A8 family member B; CX36: connexin-36. MAF: minor allele frequency.

Declarations

Ethics approval and consent to participate

All procedures performed were in accordance with the ethical standards of the Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei, China and the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was funded by the National Natural Science Foundation of China under Grant [NO. 81362138]. The funding body provides the necessary funding to conduct this study, including the cost for study design and collection, analysis, and writing of this manuscript.

Authors’ contributions

JWW and FL are joint first authors. TL designed this study. Data collection, experiments and data analysis were performed by JWW, FL and XSS. The first draft of the manuscript was written by JWW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank the ophthalmology department of The Central Hospital of Enshi Tujia And Mia Autonomous Prefecture for collecting clinical data.

Authors’ information

1 Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Mia Autonomous Prefecture, Enshi, China

2 Department of Eye Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.

*Corresponding Author: Prof. Tuo Li, Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Mia Autonomous Prefecture, No.158, Wuyang Road, Enshi, Hubei Provence, 445000, China. Tel: +86-13986840088, E-mail: 13986840088@139.com

References

1. Tedja MS, Wojciechowski R, Hysi PG, Eriksson N, Furlotte NA, Verhoeven VJM, Iglesias AI, Meester-Smoor MA, Tompson SW, Fan Q et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. *Nature genetics* 2018, 50(6):834-848.

2. Hopf S, Pfeiffer N: [Epidemiology of myopia]. *Ophthalmologe* 2017, 114(1):20-23.

3. Wong TY, Foster PJ, Hee J, Ng TP, Tielsch JM, Chew SJ, Johnson GJ, Seah SK: Prevalence and risk factors for refractive errors in adult Chinese in Singapore. *Investigative ophthalmology & visual science* 2000, 41(9):2486-2494.

4. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram MK, Congdon NG, O'Colmain BJ: The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. *Archives of ophthalmology (Chicago, Ill : 1960)* 2004, 122(4):495-505.

5. He M, Zheng Y, Xiang F: Prevalence of myopia in urban and rural children in mainland China. *Optometry and vision science : official publication of the American Academy of Optometry* 2009, 86(1):40-44.

6. Morgan IG, Ohno-Matsui K, Saw SM: Myopia. *Lancet (London, England)* 2012, 379(9827):1739-1748.
7. Williams KM, Verhoeven VJ, Cumberland P, Bertelings G, Wolfram C, Buitendijk GH, Hofman A, van Duijn CM, Vingerling JR, Kuipers RW et al. Prevalence of refractive error in Europe: the European Eye Epidemiology (E3) Consortium. European journal of epidemiology 2015, 30(4):305-315.

8. Wu PC, Huang HM, Yu HJ, Fang PC, Chen CT: Epidemiology of Myopia. Asia-Pacific journal of ophthalmology (Philadephia, Pa) 2016, 5(6):386-393.

9. Zhang Y, Qiu K, Zhang Q: Ametropia prevalence of primary school students in Chinese multi-ethnic regions. Strabismus 2019:1-4.

10. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S: Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthamology 2016, 123(5):1036-1042.

11. Pruitt RC: Complications associated with posterior staphyloma. Current opinion in ophthalmology 1998, 9(3):16-22.

12. Saw SM, Gazzard G, Shih-Yen EC, Chua WH: Myopia and associated pathological complications. Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians (Optometrists) 2005, 25(5):381-391.

13. Saw SM: How blinding is pathological myopia? The British journal of ophthalmology 2006, 90(5):525-526.

14. Fujimoto M, Hangai M, Suda K, Yoshimura N: Features associated with foveal retinal detachment in myopic macular retinoschisis. American journal of ophthalmology 2010, 150(6):863-870.

15. Verhoeven VJ, Wong KT, Buitendijk GH, Hofman A, Vingerling JR, Klaiver CC: Visual consequences of refractive errors in the general population. Ophthalmology 2015, 122(1):101-109.

16. Saw SM, Chua WH, Wu HM, Yap E, Chia KS, Stone RA: Myopia: gene-environment interaction. Annals of the Academy of Medicine, Singapore 2000, 29(3):290-297.

17. Hammond CJ, Snieder H, Gilbert CE, Spector TD: Genes and environment in refractive error: the twin eye study. Investigative ophthalmology & visual science 2001, 42(6):1232-1236.

18. Feldkamper M, Schaeffel F: Interactions of genes and environment in myopia. Developments in ophthalmology 2003, 37:34-49.

19. Wojciechowski R: Nature and nurture: the complex genetics of myopia and refractive error. Clinical genetics 2011, 79(4):301-320.

20. Wongs TY, Foster PJ, Johnson GJ, Seak SK: Education, socioeconomic status, and ocular dimensions in Chinese adults: the Tanjong Pagar Survey. The British journal of ophthalmology 2002, 86(9):963-968.

21. Lopes MC, Andrew T, Carbonaro F, Spector TD, Hammond CJ: Estimating heritability and shared environmental effects for refractive error in twin and family studies. Investigative ophthalmology & visual science 2009, 50(1):126-131.

22. He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J, Smith W, Rose K, Morgan IG: Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial. JAMA 2015, 314(11):1142-1148.

23. Nakanishi H, Yamada R, Gotoh N, Hayashi H, Yamashiro K, Shimada N, Ohno-Matsui K, Mochizuki M, Saito M, Iida T et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1. PLoS genetics 2009, 5(9):e1000660.

24. Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Mederas A, Solouki AM, Hewitt AW, Macgregor S, Vingerling JR, Li YJ et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nature genetics 2010, 42(10):902-905.

25. Solouki AM, Verhoeven VJ, van Duijn CM, Verkerk AJ, Ikram MK, Hysi PG, Despriet DD, van Koolwijk LM, Ho L, Ramdas WD et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nature genetics 2010, 42(10):897-901.

26. Naiglin L, Gazagne C, Dallongeville F, Thalamas C, Idder A, Rascol O, Malecaze F, Calvas P: A genome wide scan for familial high myopia suggests a novel locus on chromosome 7q36. Journal of medical genetics 2002, 39(2):118-124.

27. Paluru P, Ronan SM, Heon E, Devoto M, Wildenberg SC, Scavello G, Holleschau A, Makitte O, Cole WG, King RA et al. New locus for autosomal dominant high myopia maps to the long arm of chromosome 17. Investigative ophthalmology & visual science 2003, 44(5):1830-1836.

28. Stambolian D, Iaby G, Reider L, Dana D, Moy C, Schilfka M, Holmes T, Ciner E, Bailey-Wilson JE: Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 22q12. American journal of human genetics 2004, 75(3):448-459.

29. Hammond CJ, Andrew T, Mak YT, Spector TD: A susceptibility locus for myopia in the normal population is linked to the PAX6 gene region on chromosome 11: a genomewide scan of dizygotic twins. American journal of human genetics 2004, 75(2):294-304.

30. Paluru P, Nallasamy S, Devoto M, Rappaport EF, Young TL: Identification of a novel locus on 2q for autosomal dominant high-grade myopia. Investigative ophthalmology & visual science 2005, 46(7):2300-2307.

31. Zhang Q, Guo X, Xiao X, Jia X, Li S, Heitjancik JF: A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612. Molecular vision 2005, 11:554-560.

32. Wojciechowski R, Moy C, Ciner E, Iaby G, Reider L, Bailey-Wilson JE, Stambolian D: Genomewide scan in Ashkenazi Jewish families demonstrates evidence of linkage of ocular refraction to a QT loc on chromosome 1p36. Human genetics 2006, 119(4):389-399.

33. Zhang Q, Guo X, Xiao X, Jia X, Li S, Heitjancik JF: Novel loci for X linked recessive high myopia maps to Xq23-q25 but outside MYP1. Journal of medical genetics 2006, 43(5):e20.

34. Nallasamy S, Paluru PC, Devoto M, Wasserman NF, Zhou J, Young TL: Genetic linkage study of high-grade myopia in a Hutterite population from South Dakota. Molecular vision 2007, 13:229-236.

35. Lam CY, Tam PO, Fan DS, Fan BJ, Wang DY, Lee CW, Pang CP, Lam DS: A genomewide scan maps a novel high myopia locus to 5p15. Investigative ophthalmology & visual science 2008, 49(9):3768-3778.

36. Yang Z, Xiao X, Li S, Zhang Q: Clinical and linkage study on a consanguineous Chinese family with autosomal recessive high myopia. Molecular vision 2009, 15:312-318.
37. Ma JH, Shen SH, Zhao GW, Zhao DS, Xu C, Pan CM, Jiang H, Wang ZQ, Song HD: Identification of a locus for autosomal dominant high myopia on chromosome 5p13.3-p15.1 in a Chinese family. *Molecular vision* 2010, 16:2043-2054.

38. Shi Y, Qu J, Zhang D, Zhao P, Zhang Q, Tam POS, Sun L, Zuo X, Zhou X, Xiao X et al: Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. *American journal of human genetics* 2011, 88(6):805-813.

39. Shi Y, Li Y, Zhang D, Zhang H, Li Y, Lu F, Liu X, He F, Gong B, Cai L et al: Exome sequencing identifies ZNF644 mutations in high myopia. *PLoS genetics* 2011, 7(6):e1002084.

40. Shi Y, Gong B, Chen L, Zuo X, Liu X, Tam PO, Zhou X, Zhao P; Lu F, Qu J et al: A genome-wide meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population. *Human molecular genetics* 2013, 22(11):2325-2333.

41. Zhao F, Wu J, Xue A, Su Y, Wang X, Lu X, Zhou Z, Qu J, Zhou X: Exome sequencing reveals CDC111 mutation associated with high myopia. *Human genetics* 2013, 132(8):913-921.

42. Aldahmeh MA, Khan AQ, Alkurraya H, Adly N, Anazi S, Al-Saleh AA, Mohamed JY, Hijazi H, Prabakaran S, Tacke M et al: Mutations in LRPAP1 are associated with severe myopia in humans. *American journal of human genetics* 2013, 93(2):313-320.

43. Guo H, Jin X, Zhu T, Wang T, Tong P, Tian L, Peng Y, Sun L, Wan A, Chen J et al: SLC39A5 mutations interfering with the BMP/TGF-beta pathway in non-syndromic high myopia. *Journal of medical genetics* 2014, 51(8):518-525.

44. Guo H, Tong P, Liu Y, Xiu L, Wang T, Tian Q, Li Y, Hu Y, Zheng Y, Jin X et al: Mutations of P4HA2 encoding prolyl 4-hydroxylase 2 are associated with nonsyndromic high myopia. *Genetics in medicine : official journal of the American College of Medical Genetics* 2015, 17(4):300-306.

45. Xiao X, Li S, Jia X, Guo X, Zhang Q: X-linked heterozygous mutations in ARR3 cause female-limited early onset high myopia. *Molecular vision* 2016, 22:1257-1266.

46. Bartsocas CS, Kastrantas AD: X-linked form of myopia. *Human heredity* 1981, 31(3):199-200.

47. Young TL, Ronan SM, Drahozal LA, Wildenberg SC, Alvear AB, Getting WS, Atwood LD, Wilkin DJ, King RA: Evidence that a locus for familial high myopia maps to chromosome 18p. *American journal of human genetics* 1998, 63(1):109-119.

48. Young TL, Ronan SM, Alvear AB, Wildenberg SC, Getting WS, Atwood LD, Wilkin DJ, King RA: A second locus for familial high myopia maps to chromosome 12q. *American journal of human genetics* 1998, 63(5):1419-1424.

49. Li YJ, Goh L, Khor CC, Fan Q, Yu M, Han S, Sim X, Ong RT, Wong TY, Vithana EN et al: Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. *Ophthalmology* 2011, 118(2):368-375.

50. Lu B, Jiang D, Wang P, Gao Y, Sun W, Xiao X, Li S, Jia X, Guo X, Zhang Q: Replication study supports CTNND2 as a susceptibility gene for high myopia. *Investigative ophthalmology & visual science* 2011, 52(11):8258-8261.

51. Hayashi H, Yamashiro K, Nakanishi H, Nakata I, Kurashige Y, Tsujikawa A, Moriyama M, Ohno-Matsui K, Mochizuki M, Ozaki M et al: Association of 15q14 and 15q25 with high myopia in Japanese. *Investigative ophthalmology & visual science* 2011, 52(7):4853-4858.

52. Jiao X, Wang P, Li S, Li A, Guo X, Zhang Q, Hjelmancik JF: Association of markers at chromosome 15q14 in Chinese patients with moderate to high myopia. *Molecular vision* 2012, 18:2633-2646.

53. Qiang Y, Li W, Wang Q, He K, Li Z, Chen J, Song Z, Qu J, Zhou X, Qin S et al: Association study of 15q14 and 15q25 with high myopia in the Han Chinese population. *BMC genetics* 2014, 15:51.

54. Wang HD, Feng Q, Shen CM, Guo QN, Dai PF, Zhang YD, Guo YX, Yan JW, Zhu BF, Zhang L: Study of genetic diversity of killer cell immunoglobulin-like receptor loci in the TuJia ethnic minority. *Human immunology* 2016, 77(10):869-875.

55. Wang Q, Wang P, Li S, Xiao X, Jia X, Guo X, Kong QP, Yao YG, Zhang Q: Mitochondrial DNA haplogroup distribution in Chaoshanese with and without myopia. *Molecular vision* 2010, 16:303-309.

56. Yu Z, Zhou J, Chen X, Zhou X, Sun X, Chu R: Polymorphisms in the CTNND2 gene and 11q24.1 genomic region are associated with pathological myopia in a Chinese population. *Ophthalmologica Journal international d'ophthalmologie International journal of ophthalmology Zeitschrift fur Augenheilkunde* 2012, 228(2):123-129.

57. Wang H, Su S, Yang M, Hu N, Yao Y, Zhu R, Zhou J, Liang C, Guan H: Association of ZNF644, GRM6, and CTNND2 genes with high myopia in the Han Chinese population. *Jiangsu Eye Study*. *Eye (London, England)* 2016, 30(7):1017-1022.

58. Liu J, Zhang R, Sun L, Zhong Y, Chen S, Chen SL, Xu Y, Pang CP, Zhang M, Ng TK: Genotype-phenotype correlation and interaction of 4q25, 15q14 and MIEP variants with myopia in southern Chinese population. *The British journal of ophthalmology* 2019.

59. Duparc RH, Boutteminne D, Champagne MP, Tetreault N, Bernier G: Pax6 is required for delta-catenin/neurojugin expression during retinal, cerebellar and cortical development in mice. *Developmental biology* 2006, 300(2):647-655.

60. Zeng Y, Abdallah A, Lu JP, Wang T, Chen YH, Terriam DM, Kim K, Lu Q: delta-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles. *Molecular cancer* 2009, 8:19.

61. Lu Q: delta-Catenin dysregulation in cancer: interactions with E-cadherin and beyond. *The Journal of pathology* 2010, 222(2):119-123.

62. Bonne S, van Hengel J, van Roy F: Chromosomal mapping of human armadillo genes belonging to the p120(ctn)/plakophilin subfamily. *Genomics* 1998, 51(3):452-454.

63. Jun G, Moncaster JA, Kouras C, Seshadri S, Buros J, McKee AC, Levesque G, Wolf PA, St George-Hyslop P, Goldstein LE et al: delta-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes. *PloS one* 2012, 7(9):e43728.
Table 1. Characteristics of including studies for meta-analysis

Author	Country	Year	Region	Gene	SNP	Age	Case	Control	Male	Female	Male	Female	Male	Female	Male	Female
Boyu Lu	China	2011	5p15.2	CTNND2	rs6885224	18.53±6.64	593	610	558	3						
Zhiqiang Yu	China	2012	5p15.2	CTNND2	rs6885224	27.50±7.10	158	164	168	14						
Wang H	China	2016	5p15.2	CTNND2	rs6885224	65.72±7.49	153	277	165	2						
Yijun Li (USA)	USA	2011	5p15.2	CTNND2	rs6885224	10.83±0.83	65	238								
Yijun Li (SP2)	USA	2011	5p15.2	CTNND2	rs6885224	47.90±11.18	222	455								
Yijun Li (Replication)	USA	2011	5p15.2	CTNND2	rs6885224	/	959	2128								
Junbin Liu	China	2019	5p15.2/15q14	CTNND2	rs6885224/rs634990	29.8±15.8	297	291	138							
Yu Qiang*	China	2014	15q14	/	rs634990	36.00±14.95	200	321	139	1						
Xiaodong jiao 1	China	2012	15q14	/	rs634990	22.19±1.67	148	152	196	11						
Xiaodong jiao 2	China	2012	15q14	/	rs634990	21.80±1.27	63	33	63	3						
Hisako Hayashi	Japan	2011	15q14	/	rs634990	57.57±14.57	377	748	573	3						

*In this study, the control group consisted of two parts.
Table 3. The allele frequencies of the two SNPs

SNP	Allele	Group	Patient	Allele	P	OR	95% CI	Minor Allele	MAF
rs6885224	C>T	Case	482	190	0.175	0.845	0.662-1.078	C	0.197
		Control	322	145					0.225
rs634990	T>C	Case	482	473	0.087	0.84	0.687-1.026	C	0.491
		Control	322	288					0.447

MAF, minor allele frequency

Table 4. Genotyping and HWE of the two SNPs

SNP	Allele	Group	Patient	Genotype	P	HWE
rs6885224	C>T	Case	482	CC	0.376	0.615
		Control	322	CC	0.179	0.672
rs634990	T>C	Case	482	CC	0.243	0.520
		Control	322	CC	0.344	0.557

HWE, Hardy-Weinberg equilibrium

Figures

Meta-analysis of rs6885224

Study name	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
Boyu Lu	0.692	0.591	0.812	-4.538	0.000
Zhiquang Yu	1.225	0.925	1.624	1.414	0.157
Wang H	1.086	0.863	1.366	0.703	0.482
Yiju Li(SCORM)	2.250	1.473	3.437	3.752	0.000
Yiju Li(SP2)	1.500	1.115	2.018	2.677	0.007
Yiju Li(Replication)	1.140	1.022	1.272	2.343	0.019
Junbin Liu	0.981	0.769	1.251	-0.155	0.877
	1.154	0.917	1.452	1.221	0.222

Meta-analysis of rs634990

Study name	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
Qiang Yu	1.135	0.974	1.323	1.625	0.104
Xiaojing Jiao1	0.571	0.454	0.718	-4.786	0.000
Xiaojing Jiao2	0.809	0.540	1.212	-1.030	0.303
Hisako Hayashi	0.734	0.649	0.831	-4.893	0.000
Junbin Liu	0.811	0.660	0.997	-1.991	0.046
	0.817	0.754	0.885	-4.954	0.000

Figure 1
Meta-analysis of association between SNP and myopia. A: rs6885224, B: rs634990. The OR of each study is shown with a square, the pooled OR is shown with a red diamond.

Figure 2

Sensitivity analysis for the polymorphisms. A: rs6885225, B: rs634990. Each square represents the pooled estimate of the remaining studies after the study is removed, the red diamond represents the pooled estimate of not removing any study.
Figure 3

Funnel plots of publication bias analysis for the polymorphisms. A: rs6885224, B: rs634990. Each small circle represents a study.
Figure 4

Schematic diagram of SNP location A: rs6885224 located in the chromosome 5p15.2 region within the CTNND2 gene. B: rs634990 located in the chromosome 15q14 region, which is the intergenic region near the GOLGA8B gene and GJD2 gene.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfile1.pdf
- PRISMAChecklist.doc
- PRISMA2009flowdiagramnew.doc
- Additionalfile2.pdf