Anesthesia for Off Pump Coronary Artery Bypass Surgery in a Patient with Brain Tumor

Sarwan K S Rawat1, Battu Kumar Shrestha1, Rajiv Juneja1, Yatin Mehta1, Naresh Trehan2

1Institute of Critical Care and Anesthesiology, Medanta the Medicity, Gurugram, India
2Heart Institute, Medanta the Medicity, Gurugram, India

Corresponding Author: Battu Kumar Shrestha
Department of Anesthesia, Shahid Gangalal National Heart Centre Kathmandu, Nepal
Email: battushrestha@gmail.com
ORCID ID NO: 0000-0002-7939-5951

Cite this article as: Rawat S. K. S., Shrestha B. K., Juneja R., et al. Anesthesia for Off Pump Coronary Artery Bypass Surgery in a Patient with Brain Tumor. Nepalese Heart Journal 2019; Vol 16 (2), 69-71

Submission date: 21st May 2019
Accepted date: 18th October 2019

Abstract

The outcome after off pump coronary artery bypass grafting (OPCAB) surgery has been promising. These good outcomes relate to the benefits of avoiding extra corporeal circulation. Some of the reported advantages include a lower incidence of renal complications, pulmonary complication, adverse neurological event, reduced transfusions requirement and attenuation of the systemic inflammatory response. If the patient has associated preoperative complicated neurological issues, then perioperative management will be more challenging and requires extensive care and precautions. We present a case with symptomatic meningioma and unstable angina who underwent successful urgent OPCAB surgery without further neurological deterioration.

Keywords: coronary artery bypass, meningioma, off pump.

DOI: https://doi.org/10.3126/njh.v16i2.26321

Introduction

Off-pump coronary artery bypass surgery (OPCAB) is newer approach to conventional on pump coronary artery bypass grafting. Main benefits of OPCAB are avoidance of deleterious effects of cardiopulmonary bypass associated inflammatory response leading to renal dysfunction, neurological complications, gastrointestinal stress and myocardial abnormalities. Beside this it has economic advantage as well. OPCAB may be a better option for patients who have significant comorbid conditions that pose an unacceptable risk for cardiopulmonary bypass (CPB). We present a case of symptomatic meningioma and unstable angina who underwent successful OPCAB.

The patient was 65 years diabetic, male, weighing 62 kg who presented with difficulty in walking for 3 years and memory disturbance for 2 years. He had history of seizures for one year. He was admitted in our hospital for retrosternal chest pain and increasing shortness of breath for two days. On investigation his haemogram, liver function, thyroid function, renal function and coagulation profile were normal. Twelve lead electrocardiogram showed ischemic changes on anterolateral leads. Echocardiography reported regional wall motion abnormality on anterior and inferior wall with ejection fraction of 40%. His coronary angiography showed triple vessel disease with left main stenosis of 50%. His carotid doppler was normal and non contrast computed tomography of head showed olfactory groove meningioma. In view of left main disease with ongoing chest pain early cardiac revascularisation was planned. As the patient has significant preoperative neurological issues, he was scheduled for off pump coronary artery bypass. Patient was premedicated with lorazepam 2mg per oral in ward on night before surgery and morphine sulphate 5 mg intramuscular
Discussion

There are two approaches of performing coronary artery bypass grafting (CABG), conventional on pump CABG and newer OPCAB. The use of stabilization devices and intra-coronary shunts has helped to perform complete revascularization on a beating hearts without the need of cardiopulmonary bypass (CPB). It is estimated that ~80% of coronary revascularizations procedures can be performed as OPCAB with the largest reported series coming from the experiences of Benitti et al in Argentina

Meningiomas are slow growing tumors of brain. They are usually benign and may cause a slow increase in the intracranial pressure with mild or no symptoms for a long time. They are most common tumor associated with Parkinsonism. Brain tumors cause structural damage to the cerebral endothelium. They are associated with increased production of vascular endothelial growth factor, a potent angiogenic and peritumoral edema stimulant. When brain tumors are encountered in patients requiring cardiac surgery, the deleterious cerebral consequences of CPB, such as impaired blood brain barrier and impaired cerebral autoregulation, may magnify the disturbances produced by the tumor itself. CPB is associated with many adverse systemic effects like activation of systemic inflammatory response, neurocognitive dysfunction, coagulation abnormalities, myocardial and gastrointestinal dysfunctions. Cerebral edema has been associated with normothermic and hyperthermic CPB. There is higher chances of embolization and neurosurgical injuries due to aortic cannulation during on pump surgery. Studies have shown that incidence of stroke after OPCAB is 1% as compared to 9% in on pump CABG. So we chose OPCAB over on pump in this case.

Surgical priority was given to recent acute coronary syndrome over symptomatic intracranial pathology. There is no recommendation available for specific drugs or technique for induction in case of cardiac patients with brain tumor. We used sodium thiopentone as inducing agents because of its established neuroprotective effects. All anesthetic and vasoactive drugs were titrated to maintain stable hemodynamics and optimal cerebral perfusion. Adequacy of cerebral perfusion was also monitored with the use of NIRS. Ventilation was maintained to target PaCO2 of 30 to 35 mmHg. Trendelenburg position, which is often used to facilitate surgical exposure was deliberately avoided in this patient because of concerns about elevation of intracranial pressure (ICP). CVP was closely monitored as an indirect indicator of ICP. BIS monitoring was used to monitor precise titration of anaesthetic agents. It helps to facilitate earlier awakening and extubation, with early neurological assessment of the patient. Any sudden decrease in BIS readings unexplained by pharmacologic intervention or surgically induced hemodynamic instability could be a sign of intraoperative neurologic deterioration due to further rise in ICP or inadequate cerebral perfusion. They may need hyperventilation, cautious fluid management and anti-edema therapy such as with steroids and mannitol. Hyponatremia or hypervolemia should be avoided.

In conclusion, coronary artery bypass surgery in presence of intracranial pathology may be challenging task for anesthesiologist. Increasing acceptance of OPCAB as revascularization techniques may be beneficial among the high risk patients.

Sources of funding: None
Conflict of Interest: None

References
1. Elahi MM, Khan JS, Matata BM. Deleterious effects of cardiopulmonary bypass in coronary artery surgery and scientific interpretation of off-pump's logic. Acute Card Care. 2006;8(4):196-209. DOI: 10.1080/17482940600981730
2. Prestipino F, Spadaccio C, Nenna A, et al. Off-pump coronary artery bypass grafting versus optimal medical therapy alone: effectiveness of incomplete revascularization in high risk patients. J Geriatr Cardiol. 2016 Jan; 13(1): 23–30. DOI: 10.11909/j.issn.1671-5411.2016.01.008
3. Benetti FJ, Naselli G, Wood M, et al. Direct myocardial revascularization without extracorporeal circulation: Experience in 700 patients. Chests. 1991; 100:312-316. DOI:10.1378/chest.100.2.312
4. Grigore AM, Grocott HP, Newman MF. Anesthetic management of a patient with a brain tumor for cardiac surgery. J CardiothoracVascAnesth 2000; 14: 702-4. DOI: 10.11909/j.issn.1671-5411.2000.18442
5. Chakravarty MR, Prabhakumar D. Anaesthesia for off pump coronary artery bypass grafting - the current concepts. Indian J Anaesth 2007; 51 (4): 334-343.
6. Murphy GJ, Angelini GD. Side effects of cardiopulmonary bypass: what is the reality? J Card Surg. 2004;19(6):481-8. DOI: 10.1111/j.0886-0440.2004.04101.x
7. Harris DN, Oatridge A, Dob D, et al: Cerebral swelling after normothermic cardiopulmonary bypass. Anesthesiology 1998: 88:340-345. DOI: 10.1097/00000542-199802000-00011
8. Trehan N, Mishra M, Sharma OP, et al. Further reduction in stroke after off pump coronary artery bypass grafting: A 10 year experience. The Annals of Thoracic Surgery 2001; 72: 1026 - 1032. DOI: https://doi.org/10.1016/S0003-4975(01)02936-8

9. Hirose H, Amano A. Stroke rate of off pump coronary artery bypass; aortocoronary bypass versus in-situ bypass. Angiology 2003; 54: 647 - 53. DOI: 10.1177/000331970305400603

10. Wang J, Gu C, Gao M, et al. Comparison of the incidence of postoperative neurologic complications after on-pump versus off-pump coronary artery bypass grafting in high-risk patients: A meta-analysis of 11 studies. Int. J. Cardiol. 2015; 185:195-97. DOI: https://doi.org/10.1016/j.ijcard.2015.03.115

11. Bilotta F, Stazi E, Zlotnik A, Gruenbaum SE, and Rosa G. Neuroprotective effects of intravenous anesthetics: A new critical perspective. Curr Pharm Des. 2014; 20(34): 5469–5475. DOI: 10.2174/1381612820666140325110113 Myles PS. Bispectral index monitoring in ischemic–hypoxic brain injury. J Extra Corp Technol. 2009 Mar; 41(1): P15–P19