Studies of 27Al NMR in EuAl$_4$

H Niki1, S Nakamura1, N Higa1, H Kuroshima1, T Toji1, M Yogi1, A Nakamura1, M Hedo1, T Nakama1, Y Ōnuki1 and H Harima2

1 Department of Physics, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
2 Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan

E-mail: niki@sci.u-ryukyu.ac.jp

Abstract. EuAl$_4$ orders antiferromagnetically at $T_N \approx 16$ K with an effective magnetic moment of 8.02 μ_B. In the paramagnetic phase, the magnetic susceptibility of EuAl$_4$ follows the Curie-Weiss law with a positive Curie-Weiss temperature $\theta_P = +14$ K. The antiferromagnetic state is changed into the field induced ferromagnetic state at a critical field H_c of approximately 2 T. In order to microscopically investigate the magnetic and electronic properties in EuAl$_4$, the NMR measurements of EuAl$_4$ have been carried out at temperatures between 2 and 300 K, applying an external magnetic field of approximately 6.5 T. The 27Al NMR spectra corresponding to Al(I) and Al(II) sites are obtained. From the 27Al NMR spectra, the isotropic part K_{iso} and anisotropic part K_{aniso} of Knight shift, and nuclear quadrupole frequency ν_Q are obtained. The K_{iso} and K_{aniso} shift to negative side with decreasing temperature due to the RKKY interaction. These temperature dependences follow the Curie-Weiss law with $\theta_P = +14$ K, which is consistent with that of the magnetic susceptibility. From the $K - \chi$ plot, the values of the hyperfine fields $H_{hf,iso}$ and $H_{hf,aniso}$ are approximately 0.865 and 0.409 MHz, respectively. The 27Al NMR for both sites is almost constant in the paramagnetic phase, while the value of 1/T_1 is abruptly decreased in the ordered ferromagnetic state.

1. Introduction

Eu is a rare-earth element known to have two kinds of valence states: Eu$^{2+}$ ($4f^7$) and Eu$^{3+}$ ($4f^6$). The divalent Eu state is magnetic ($J = S = 7/2, L = 0$), where J is the total angular momentum, S is the spin angular momentum, and L is the orbital angular momentum. Therefore, the compounds with divalent Eu ions tend to order magnetically, following the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. On the other hand, the trivalent Eu state is non-magnetic ($J = 0, S = L = 3$).

The divalent Eu intermetallic compound EuX$_4$ (X = Al and Ga) crystallizes in the BaAl$_4$-type structure ($I4/mmm$) as shown in Fig. 1 [1, 2]. Eu atoms occupy the corners and the center of the body-centered tetragonal lattice with local symmetry ($4/mmm$). X atoms (X = Al and Ga) have two crystallographically inequivalent sites, denoted X(I) and X(II), respectively, as indicated in Fig. 1. EuAl$_4$ and EuGa$_4$ orders antiferromagnetically at $T_N \approx 16$ K with effective magnetic moments of 8.02 and 7.86 μ_B, respectively, which are close to a divalent value of 7.94 μ_B/Eu [3, 4, 5]. In the paramagnetic (PRM) phase, the magnetic susceptibilities of EuAl$_4$ and EuGa$_4$ follow the Curie-Weiss law with positive Curie-Weiss temperatures $\theta_P = +14$ and +3 K, respectively [3, 4, 6]. The antiferromagnetic (AFM) states in EuAl$_4$ and EuGa$_4$ are changed...
into the field induced ferromagnetic (FRM) states at critical fields H_c of approximately 2 and 7 T, respectively [3, 4]. The charge density wave (CDW) transition is occurred around 140 K in EuAl$_4$ [4]. In order to investigate the magnetic property of EuAl$_4$ in the PRM state, NMR measurement has been carried out. In this paper, we report on the magnetic and electronic properties of EuAl$_4$ in the PRM state gained through 27Al NMR measurements.

2. Experimental

Single crystal of EuAl$_4$ was grown by the Al self-flux method. Details of the sample preparation are described elsewhere [1, 2]. The small pieces of the crystal were powdered to facilitate applied rf-field penetration. The 27Al NMR measurements were performed by a spin-echo method using a conventional phase-coherent pulsed spectrometer. A magnetic field of approximately 6.5 T for 27Al NMR measurements was applied by a superconducting magnet with magnetic field homogeneity of 10^{-5}. The NMR spectra were obtained by sweeping the frequency and integrating the spin-echo signal intensity step by step.

3. Results and Discussion

The typical NMR spectra of the 27Al are shown in Fig. 2. The nuclear spin Hamiltonian in the PRM state is given by

$$\mathcal{H} = -\gamma_n \hbar \mathbf{I} \cdot \mathbf{H}_0 - \gamma_n \hbar \mathbf{I} \cdot \mathbf{H}_m + \frac{\hbar \nu Q}{6} \left[3I_z^2 - I^2 \right] = -\gamma_n \hbar \mathbf{I} \cdot \mathbf{H}_0 \left[1 + K (\theta) \right] + \frac{\hbar \nu Q}{6} \left[3I_z^2 - I^2 \right]. \quad (1)$$

The first term of the Hamiltonian represents the Zeeman interaction between the nuclear magnetic moment $\mu_n = \gamma_n \hbar \mathbf{I}$ and the external magnetic field \mathbf{H}_0, where γ_n is the nuclear gyromagnetic ratio and \mathbf{I} is the nuclear spin. The nuclear spin of 27Al is $5/2$. The second term indicates the Zeeman interaction between the nuclear magnetic moment $\mu_n = \gamma_n \hbar \mathbf{I}$ and the...
internal magnetic field H_{int}; this term corresponds to the Knight shift term. If the symmetry of the environment of a nuclear spin is lower than the cubic symmetry, the Knight shift depends on the direction of the applied field with respect to the crystalline axes. In the case of the tetragonal symmetry, the Knight shift is a function of θ, where θ represents the angle between the external magnetic field and the c-axis. The third term indicates the nuclear quadrupole interaction between the electric field gradient (EFG) and the nuclear quadrupole moment Q. As for EuAl$_4$, the EFG of the nuclear quadrupole interaction becomes axially symmetric because the crystal structure of EuAl$_4$ has the tetragonal symmetry. Therefore, the asymmetry parameter of the EFG, η, becomes zero and the EFG along the main principal axis, V_{zz}, is parallel to the c-axis. Thus, ν_Q is the nuclear quadrupole frequency defined as $\nu_Q \equiv 3eQV_{zz}/2I(2I-1)\hbar$. The obtained 27Al NMR spectra have been analyzed using the Hamiltonian in eq. (1). The solid curves in Fig. 2 indicate the theoretical curves for the 27Al spectra.

Figures 3 (a) and (b) indicate the temperature dependences of ν_Q for Al(I) and Al(II) sites, respectively. The atomic sites of Al(I) and Al(II) are identified by comparison with ν_Q obtained from the theoretical calculation, as mentioned below. The experimental values gained from the 27Al spectra shown in Fig. 3 is fitted by using the following empirical equation [7, 8],

$$\nu_Q(T) = \nu_Q(0) \left(1 - \alpha T^\frac{3}{2}\right).$$

The values of $\nu_Q(0)$ and α are $\nu_Q(0) = 0.865$ MHz and $\alpha = 7.75 \times 10^{-6}$ MHz/K$^{3/2}$ for Al(I) site, and $\nu_Q(0) = 0.409$ MHz and $\alpha = 1.91 \times 10^{-6}$ MHz/K$^{3/2}$ for Al(II) site, respectively. The fitting results are shown by the solid lines in Fig. 3. The theoretical values of ν_Q of 27Al in EuAl$_4$ are calculated based on the band calculation by a full potential linear augmented plane wave (FLAPW) method on the basis of a local density approximation (LDA) assuming without spin-orbit interaction [5, 6]. The calculated values of ν_Q of 27Al in EuAl$_4$ are 0.873 MHz for Al(I) site and 0.353 MHz for Al(II) site. Therefore, the obtained $\nu_Q(0)$ values of 0.865 and 0.409 MHz are assigned to the Al(I) and Al(II) sites, respectively.
The Knight shifts K_c and K_{ab} of 27Al NMR for both Al(I) and Al(II) sites have been obtained from the 27Al spectra, as shown in Fig. 4. Here, K_c and K_{ab} are the Knight shifts in the case of $H \parallel c$-axis and $H \perp c$-axis, respectively [9, 10, 11]. The temperature dependences of the Knight shifts K_c and K_{ab} for both sites shift rapidly to negative side with decreasing temperature, following the Curie-Weiss law with $\theta_P = +14$ K.

Next, we discuss the anisotropy of the 27Al Knight shift of EuAl$_4$. The isotropic part K_{iso} and anisotropic part K_{aniso} of the Knight shift are obtained from K_c and K_{ab}, where $K_{iso} = 1/3 \left(K_c + 2 K_{ab} \right)$ and $K_{aniso} = 1/3 \left(K_c - K_{ab} \right)$ [9, 10, 11]. The Knight shift K_{iso} of 27Al NMR spectra for both Al(I) and Al(II) sites shifts to negative side with decreasing temperature, whereas K_{aniso} shifts just a little to negative side with deceasing temperature, as shown in Fig. 5. The temperature dependences of both K_{iso} and K_{aniso} for both Al sites follow the Curie-Weiss law with $\theta_P = +14$ K. The ratio $K_{aniso}(T)/K_{iso}(T)$ is 4.95 % for Al(I) site and 14.90 % for Al(II) site, which corresponds to the ratio of the Curie-Weiss parts of both Knight shifts. The anisotropic part in the Knight shift is small compared with the isotropic part and especially very small for Al(I).

As the magnetic susceptibility in the paramagnetic state is isotropic [2], the temperature dependent terms of Knight shifts K_{iso} and K_{aniso} are expressed in the following equations, respectively,

$$K_{iso}(T) = \frac{H_{hf,iso}}{N\mu_B} \chi(T),$$

$$K_{aniso}(T) = \frac{H_{hf,aniso}}{N\mu_B} \chi(T)$$

where N is an Avogador’s number and $\chi(T)$ is the temperature dependent term of the magnetic susceptibility. Therefore, it is expected that the ratio $K_{aniso}(T)/K_{iso}(T)$ is the same as the ratio $H_{hf,aniso}/H_{hf,iso}$. The $K - \chi$ plots for K_{iso} and K_{aniso} for both Al(I) and Al(II) sites are shown in Fig. 6. The hyperfine fields of 27Al nuclei are obtained from $K - \chi$ plots for K_{iso} and K_{aniso}.
Figure 7. Nuclear longitudinal magnetization recovery $f(t) = 1 - (M(t)/M_0)$ of 27Al NMR in EuAl$_4$. Figs. (a) and (b) correspond to the Al(I) and Al(II) sites, respectively. The solid lines indicate the calculated results by using eq. (5).

Figure 8. Temperature dependence of $1/T_1$ of 27Al NMR in EuAl$_4$. Figs. (a) and (b) correspond to the Al(I) and Al(II) sites, respectively.

The values of hyperfine fields $H_{hf,iso}$ and $H_{hf,aniso}$ are -3.231 and -0.162 kOe/μ_B for Al(I) site and -1.823 and -0.264 kOe/μ_B for Al(II) site, respectively. The ratio $H_{hf,aniso}/H_{hf,iso}$ is 4.99 % for Al(I) site and 14.48 % for Al(II) site, which is consistent with the ratio $K_{aniso}(T)/K_{iso}(T)$, respectively. It is found that the ratio $H_{hf,aniso}/H_{hf,iso}$ for Al(I) site is very small compared with that for Al(II) site and therefore the anisotropy of the Knight shift for Al(I) site is smaller than that for Al(II) site.

Spin-lattice relaxation time T_1 has been measured from 2 to 300 K. The nuclear longitudinal magnetization recovery $f(t) = 1 - (M(t)/M_0)$ can be generally expressed by a single exponential type. However, as the structure is tetragonal symmetry, nuclear magnetic relaxation is affected by nuclear quadrupole interaction because 27Al nuclei has a nuclear spin of 5/2. Therefore, it can be expected that the nuclear magnetization recovery in the case of the transition $+1/2 \leftrightarrow -1/2$ is analyzed by means of the following equation [12]:

$$f(t, T_1) = y \left\{ \frac{1}{35} \exp \left(-\frac{t}{T_1} \right) + \frac{8}{45} \exp \left(-\frac{6t}{T_1} \right) + \frac{50}{63} \exp \left(-\frac{15t}{T_1} \right) \right\},$$

(5)

where y is an arbitrary constant. However, the recovery equation is slightly modified because T_1 is distributed. The recovery curve can be well explained by $g(t, T_1) = cf(t, T_{1S}) + (1-c)f(t, T_{1L})$, consisting of two components of short T_{1S} and long T_{1L} as shown in Fig. 7. The values of c are
about 0.9 for Al(I) site and about 0.8 for Al(II) site. The reason why T_1 is distributed in this material is not clear.

The values of spin-lattice relaxation rate $1/T_1$ for both Al(I) and Al(II) sites are almost constant in the vicinity of 300 K, since the random fluctuation of f-electron spins is fast in the paramagnetic states, while they are gradually decreased because of the slowdown of the fluctuation of the f-electron spins with decreasing temperature. Below 20 K, the $1/T_1$'s for both Al(I) and Al(II) sites are almost proportional to T^3. As the NMR measurements have been carried out in the external magnetic field of about 6.5 T, the antiferromagnetic state of EuAl$_4$ below $T_N = 16$ K is changed into the field induced ferromagnetic state as mentioned above. Therefore, the decay of T^3 in $1/T_1$ would be attributed to the excitation of the f electron spins in the FRM ordered state. The change due to the CDW around 140 K in the 27Al NMR measurements cannot be detected because of the masking by the large magnetic moments of the f electron spins.

In summary, in order to microscopically investigate the magnetic and electronic properties in EuAl$_4$, the 27Al NMR measurements have been carried out at temperatures between 2 and 300 K, applying an external magnetic field of approximately 6.5 T. In the paramagnetic phase, the 27Al NMR spectra for Al(I) and Al(II) sites are obtained. From the 27Al NMR spectra, the isotropic parts K_{iso} and anisotropic part K_{aniso} of the Knight shift, and nuclear quadrupole frequencies ν_Q are obtained for both sites. K_{iso} and K_{aniso} shift to negative side with decreasing temperature due to the RKKY interaction. These temperature dependences follow the Curie-Weiss law with $\theta_P = +14$ K, which is consistent with that of the magnetic susceptibility. From the $K - \chi$ plots, the values of the hyperfine fields $H_{hf,iso}$ and $H_{hf,aniso}$ are -3.231 and -0.162 kOe/μ_B for Al(I) site, and -1.823 and -0.264 kOe/μ_B for Al(II) site, respectively. The values of ν_Q of 27Al nucleus for Al(I) and Al(II) sites are approximately 0.865 and 0.409 MHz, respectively. The values of the nuclear relaxation rate $1/T_1$ of 27Al NMR for both sites is almost constant in the paramagnetic phase, while they are abruptly decreased in the ordered FRM state.

References

[1] Bobev S, Bauer E D, Thompson J D, and Sarrao J L 2004 J. Magn. Magn. Mater. 277 236.
[2] Nakamura A, Hiranaka Y, Hedo M, Nakama T, Miura Y, Tsutsui M, Mori A, Ishida K, Mitamura K, Hirose Y, Sugiyama K, Honda F, Settai R, Takeuchi T, Hagiwara M, Matsuda T D, Yamamoto E, Haga Y, Matsubayashi K, Uwatoko Y, Harima H, and Onuki Y 2013 J. Phys. Soc. Jpn. 82 104703.
[3] Wernick J H, Williams H J, and Gossard A C 1967 J. Phys. Chem. Solids 28 271.
[4] Nakamura A, Hiranaka Y, Hedo M, Nakama T, Tsutsui M, Mori A, Ishida K, Mitamura K, Hirose Y, Sugiyama K, Honda F, Settai R, Takeuchi T, Hagiwara M, Matsuda T D, Yamamoto E, Haga Y, and Onuki Y 2014 J. Phys. Soc. Jpn. Conf. Proc. 3 011012.
[5] Yogi M, Nakamura S, Higa N, Niki H, Hirose Y, Onuki Y, and Harima H 2013 J. Phys. Soc. Jpn. 82 103701.
[6] Niki H, Nakamura S, Higa N, Yogi M, Hirose Y, Onuki Y, and Harima H 2014 J. Phys. Soc. Jpn. Conf. Proc. 3 011015.
[7] Magishi K, Sugawara H, Takahashi M, Saito T, Koyama K, Saito T, Tatsuoka S, Tanaka K, and Sato H 2012 J. Phys. Soc. Jpn. 81 124706.
[8] Yogi M, Niki H, Sugawara H, Takeda N, and Sato H 2011 J. Phys. Soc. Jpn. 80 SA027.
[9] Abragam A 1961 The Principles of Nuclear Magnetism (Oxford, U. K.: Oxford University Press).
[10] Aarts J, de Boer F R, Maclaughlin D E 1983 Physica B + C 121 162.
[11] Ueda K, Kitaoaka Y, Yamada H, Kohori Y, Kohara T, and Asayama K 1987 J. Phys. Soc. Jpn. 56 867.
[12] Narath A 1967 Phys. Rev. 162 320.