Towards resolving the enigma of the dichotomy of resveratrol: *cis*- and *trans*-resveratrol have opposite effects on TyrRS-regulated PARP1 activation

Megha Jhanji · Chintada Nageswara Rao · Mathew Sajish

Received: 21 July 2020 / Accepted: 28 October 2020 / Published online: 27 November 2020
© American Aging Association 2020

Abstract Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the *cis*-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of *trans*-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-PARylation of PARP1. Therefore, we proposed that *cis*-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that *trans*-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to *cis*-RSV. Interestingly, most recent studies also confirmed the conversion of *trans*-RSV and its metabolites to *cis*-RSV in the physiological context. Therefore, the finding that *cis*-RSV and *trans*-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its *cis* and *trans* isomers and *cis*-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.

Keywords Resveratrol (RSV) · Aminoacyl-tRNA synthetases (aaRSs) · Tyrosyl-tRNA synthetase (YARS · TyrRS) · Nicotinamide adenine nucleotide (NAD⁺) · Poly-ADP-ribose polymerase (PARP) · Sirtuins (SIRT) · AMP-activated protein kinase (AMPK) · Nicotinamide (NAM)

Introduction

Natural resveratrol (RSV or 3,5,4’-trihydroxystilbene) is an important constituent of the ayurvedic medicine “Drakshasava,” a well-known Indian herbal preparation from grapes prescribed as a cardiotonic [1]. (Draksha is the Sanskrit word for grape. “Asava” means “distillate,”...
“juice,” or “extract.” Thus, “Drakhasava” means “extract from grapes.”) Similarly, RSV is also considered responsible for the fundamental principle behind the “French Paradox” [2, 3]. It is produced by many different plant species, especially grapevines, pines, and legumes and therefore is abundant in peanuts, soybeans, blueberries, and pomegranates [4]. RSV is produced in plants as a protective agent in response to stressful conditions such as injury or attack by bacterial/fungal pathogens or UV exposure and believed to activate the innate defense mechanism of plants against fungal/microbial pathogens [5]. Interestingly, Botrytis cinerea infection in grapes leads to the exclusive synthesis of RSV in the leaf epidermis and grape skins [5–7]. Since grape skins are fermented during red wine production, they contain higher amounts of RSV than white wines.

RSV was first isolated in 1939 by Takaoka from Veratrum grandiflorum Loes (the root of the white hellebore) [8]. Hence, it is speculated that the name “resveratrol”: was created based on its chemical structure and the source of the plant used for its isolation (a resorcinol derivative or polyphenol in resin from a Veratrum species). Despite being a protective molecule in plants, the ingestion of RSV could also evoke similar protective stress responses in animals and was widely expected to overcome stressful/harmful conditions [9], including auto-immune disorders [10]. Unfortunately, despite being one of the widely studied small molecules, the in vivo animal models of diseases and human clinical studies using RSV brought out inconclusive results [11, 12], indicating our understanding of the mechanism of action of natural RSV is not yet complete.

The enigma of the dichotomic and pro-aging effects of RSV

Natural RSV captured widespread scientific and public interest due to its reported anti-cancer [13] and anti-aging effects [14], supported by further longevity demonstrations in other organisms [15–18]. However, unlike widely perceived, RSV decreased the normal (chronological) lifespan in yeast [19–21], and it extended only the replicative lifespan which is calculated based on the number of daughter cells an individual yeast mother cell produces before dying [14]. Moreover, the replicative lifespan effect of RSV in yeast was immediately questioned as it was not reproducible [22] indicating that the mechanism of action of the anti- and pro-aging effects of RSV is not yet understood. Similarly, higher doses of RSV decreased the normal lifespan in mice as well (mice died within 3–4 months) [23] and resulted in kidney toxicity in rats [24]. Consistent with the pro-aging effects of RSV [19–21, 23], it is known to evoke toxic effects such as induction of neurite degeneration [25], atherosclerosis [26], premature senescence [27–32], genotoxicity [33–38], and inhibition of hippocampal neurogenesis [39]. These observations suggest that the mechanism of action of RSV that promoted longevity in other organisms [15–18] is not yet completely understood. Consistently, research works using RSV showed dichotomic effects resulting in inconsistent therapeutic outcomes. For example, while RSV shows protective effects against experimental models of multiple sclerosis (MS) and autoimmune encephalomyelitis (EAE) in some studies [40–42], it exacerbated the progression of MS and EAE in another study [43]. Similarly, RSV protects against peripheral neuropathy in some studies [44, 45] while it exacerbates the disease condition in another study [46]. Likewise, while RSV is known to protect against anxiety and depression [47], it is also shown to exacerbate anxiety and depression [48]. Interestingly, acute RSV treatment enhanced cocaine-induced dopamine neurotransmission and behavioral responses suggesting that RSV promotes drug addiction [49, 50]. However, RSV is also shown to protect against drug addiction through an unknown mechanism [51, 52]. Consistent with the dichotomic effects discussed above, RSV protects against Wallerian degeneration [53], but it also abolishes neuroprotection mediated through Wallerian-slow degeneration mutants [25]. Similarly, RSV acts as an antagonist on aryl hydrocarbon receptor (AhR) [54] and estrogen receptor alpha (ERα) [55], but it also acts as an agonist of AhR [40] and ERα [56, 57]. The dichotomic effect of RSV is also observed in the induction of autophagy. While RSV stimulates autophagy [17, 27, 58], it is also known to inhibit autophagy [59, 60]. Interestingly, although RSV inhibits nuclear factor kappa B (NF-κB) in some studies [61, 62], RSV instead activates NF-κB in other studies [63–66]. Moreover, although RSV exacerbates atherosclerosis [26], it is also shown to prevent atherosclerosis [67, 68]. Consistently, RSV also exacerbated inflammation state and superoxide production and diminishing aortic distensibility in aged mice [69]. Likewise, RSV protects against oxidative stress in some studies [70–72] while it exacerbates oxidative stress in other studies [73, 74]. Consistently, RSV exhibits both pro-oxidant and antioxidant effects [75, 76].
Interestingly, the pro-oxidant activity of RSV inhibits hydrogen peroxide (H$_2$O$_2$)-induced apoptosis [77] and evokes cardiac protection [78] and anti-tumor effects [38]. Although RSV induces premature senescence [27–32], RSV is also known to inhibit senescence through an unknown mechanism [79]. RSV is widely believed to enhance mitochondrial function [80], despite being a potent inhibitor of mitochondria [81–85]. RSV inhibits oxidative phosphorylation (OXPHOS) activity at two sites: mitochondrial complex I and complex III of the electron transport chain [82, 83]. Consistently, RSV increases the mitochondrial H$_2$O$_2$ production [84] and decreases ATP production [83, 85]. Therefore, RSV induces mitochondria-driven apoptosis [86] through the elevation in intracellular Ca$^{2+}$, resulting in the collapse of the membrane potential with mitochondrial permeability transition pore (mPTP) opening and cytochrome c release into the cytosol [87]. Although RSV is known to evoke anti-tumor effects [13, 88–91], it is also known to exacerbate cancer proliferation [56, 92, 93] and shows dichotomic effects in angiogenic response as well [94, 95]. Similarly, despite being reported to evoke anti-obesity effects [96–98], intriguingly, higher doses of RSV rather had a weight-promoting effect when mice were fed with a high-fat diet [89]. Although RSV is shown to evoke anti-diabetic effects [98] and restore insulin sensitivity [99] through inhibition of gluconeogenesis [100], and by facilitating cellular glucose uptake [101–103] through GLUT4 translocation [102, 104, 105], enigmatically, RSV is also known to inhibit cellular glucose uptake [106–108], potentially through the inhibition of class I phosphoinositide 3-kinase (PI3K) [109] and glucose transporter 1 (GLUT1) [110] or through the downregulation of GLUT4 translocation [108, 111]. Furthermore, RSV inhibits coronaviral replication [112, 113] but facilitates herpes simplex virus (HSV) [114], hepatitis B virus (HBV) [115], and hepatitis C virus [116] replication. Therefore, studies spanning over the last two decades show that treatment with RSV can evoke dichotomic effects resulting in either unfavorable or beneficial outcomes.

RSV elicits favorable and unexpected outcomes in human clinical trials

Consistent with the dichotomous effects of RSV, as discussed above, human clinical trials using RSV also ended up in favorable and unexpected outcomes [11, 12]. For example, despite numerous animal models showing neuroprotective effects [80, 98, 117–120], intriguingly, a previous human Alzheimer’s disease (AD) clinical trial using high-dose RSV (2000 mg/day) resulted in the upregulation of amyloid-beta (Aβ) levels with exacerbation of the brain volume loss [121]. However, another recent human AD clinical trial using low-dose RSV (5 mg/day) showed beneficial effects [122] and human clinical trial using low-dose RSV (75 mg twice daily) enhanced cognitive benefits in postmenopausal women [123, 124]. Consistently, RSV improved memory performance and increased the functional connectivity of the hippocampus in older human adults [125], but worsened episodic memory in a human clinical trial for schizophrenia (SZ) [126]. Although extensive data show RSV protects against nephropathy [70, 127, 128], renal oxidative DNA damage [129], and kidney diseases [130], a phase 2 clinical trial of RSV targeting multiple myeloma was terminated due to patients developing kidney failure [131]. Similarly, despite known to improve several cardiovascular health parameters [98] and suggested to evoke an anabolic function in exercise-induced adaptations of older persons to reverse sarcopenia [132], RSV supplementation in humans also resulted in the reduction of high-density lipoprotein (HDL) cholesterol concentrations [133] and blunted exercise-mediated effects [134, 135] and impaired the improvements in markers of oxidative stress and inflammation in skeletal muscle [135]. Therefore, for unknown reasons, studies in humans have shown that RSV may reduce training-induced adaptations [95, 134, 135] and lead to bicytopenia in patients treated for non-alcoholic fatty liver disease (NAFLD) [136] and caused an elevation of biomarkers of cardiovascular disease (CVD) risk in overweight older adults [137]. Although some studies did not show any improvement in the glucose intolerance in older adults [138] and type 2 diabetic patients [139, 140], however, RSV has a positive impact on blood pressure [141, 142], improves insulin sensitivity [143], and reduces blood glucose levels [144] in type 2 diabetic patients and patients with non-alcoholic fatty liver disease [145], in the treatment of pre-eclampsia [146] and obese people [97]. Consistently, most recent meta analysis also indicates that RSV improves cardiometabolic health by decreasing some risk factors (HOMA-IR, LDL-C, and T-Chol) associated with cardiovascular disease (CVD) [147, 148] and significantly reduced total cholesterol and increased gamma-glutamyl transferase (GGT) concentrations in patients with metabolic syndrome (MetS) and related disorders.
Low-dose beneficial effects versus high-dose detrimental effects of RSV

Beyond the unexpected outcomes in multiple models of diseases, it is apparent that low doses of RSV evoke health-promoting effects and detrimental effects are generally observed only upon treatment with high doses of RSV as observed in the cases of human AD clinical trials [121, 122]. Therefore, RSV often displays a biphasic dose-response [151] with features consistent with the hormetic dose-response, a phenomenon that is characterized by low-dose stimulation and a high-dose inhibition [152]. RSV inhibits DNA type II topoisomerase [153], and histone deacetylases (HDACs) [154], enzymes that are critical for the maintenance of chromosomal stability [155], and neuronal survival [156, 157], resulting in genotoxic effects. Consistently, treatment with high-dose RSV induces DNA double-strand breaks (DSBs) [153, 158, 159] along with downregulation of DNA repair proteins [160], while low-dose RSV rather upregulates DNA repair proteins [161, 162]. Furthermore, a lower dose of RSV significantly reduced chromosomal instability (CIN) as well as defective spindle assembly checkpoint (SAC), while higher doses of RSV significantly induced them [36]. Therefore, RSV reduces cell growth and induces apoptosis in healthy cells in a dose-dependent manner triggering biphasic effects over low to high concentrations [163, 164]. For example, low-dose RSV enhances self-renewal of stem cells through inhibition of senescence whereas higher dose RSV instead inhibits self-renewal and induces senescence [165–168] through cell cycle arrest at S/G2 phase [36, 169, 170]. Hence, at a lower concentration, RSV can have a positive impact on the proliferation, survival of neuronal progenitor cells (NPCs), and rat hippocampal neurogenesis [167], which is also consistent with its angiogenic effects at a lower dose [94]. Consistently, low-dose RSV protected against amyotrophic lateral sclerosis (ALS) [171] and Huntington’s disease (HD) [172], but a higher dose of RSV rather failed to improve motor deficits associated with the HD phenotype in a transgenic mouse model [173]. Intriguingly, pre-treatment with low-dose RSV, however, failed to reduce amyloid beta-mediated elevation of H2O2 production [174]. Although RSV was identified as an anti-inflammatory compound [175, 176], RSV modulates the inflammatory response in an ERα-dependent manner [57]. At medium concentrations (10–25 μM), RSV acts as a superagonist of estradiol [177], while at lower concentrations, RSV relatively inhibited the estradiol-driven transcription through a yet unknown mechanism [177]. Similarly, RSV binds directly to mitochondrial complex I and induces oxidative stress in aged mice in a dose-dependent manner [73]. At low doses, RSV stimulated complex I and F0/F1 ATPase activities, whereas, at high doses, it inhibited them [73, 178]. Therefore, low concentrations of RSV trigger and high concentrations inhibit respiratory chain complexes [179]. Similarly, low doses of RSV promoted in vitro muscle regeneration and attenuated the impact of reactive oxygen species (ROS), while high doses exacerbated the reduction in plasticity and metabolism induced by oxidative stress [180]. Intriguingly, lower doses of RSV generate ROS, and higher doses of RSV act as an anti-oxidant in erythrocytes [181] and pro-oxidant properties of low-dose RSV inhibit caspase activation and DNA fragmentation induced by oxidative stress [182]. However, in indomethacin-induced gastric ulcers, high-dose RSV instead exacerbated ulcerative damage in mice [183]. Similarly, a low-dose RSV administration partly improved renal function in mice with kidney damage caused by a unilateral ureteral obstruction (UOO) while high dose of RSV lost its anti-fibrotic effect and exacerbated kidney fibrosis [184]. Likewise, RSV induced a dose-dependent pro-oxidant effect in hepatic stellate cells (HSC) with the highest dose of RSV inducing oxidation-related damage and drastically reducing cell viability [185, 186]. Similarly, high-dose RSV upregulated genes involved in gluconeogenesis [100] and inhibited insulin signaling [108, 187, 188], but low-dose RSV rather downregulated gluconeogenesis [100] and improved insulin sensitivity [99, 103, 143, 145, 189, 190].

RSV attains high micromolar levels in human tissues and plasma after oral ingestion

Although approximately 75% of RSV is absorbed after oral consumption [191], it is rapidly metabolized by the
liver, intestinal tract, and gut microbiota into the sulfated and glucuronidated forms such as RSV-3’-O-β-d-glucuronide (RSV3G), RSV-4’-O-d-glucuronide (RSV4G), and RSV-3-O-sulfate (RSV3S). Interestingly, RSV is more stable in human plasma compared to rat plasma [192], and RSV crosses the blood-brain barrier (BBB) and accumulates in the brain tissue as well [117]. Therefore, the concentrations of these RSV metabolites far exceed the concentrations of their parent compound (free RSV) in human serum [27, 193] and ocular tissues [194]. For example, human oral ingestion of low dose (5 mg) RSV daily can achieve the plasma concentrations of 0.12–0.6 μM RSV [89], and human clinical trials receiving 5–1000 mg daily dose resulted in average peak concentrations of blood levels between 0.6 and 137 μM [89, 194]. Furthermore, sustained intake of 1 g of RSV as a food supplement resulted in a concentration of 50–640 μM RSV in human colonic tissues [27]. Moreover, sulfate metabolites of RSV contribute to the in vivo activity of these metabolites by regenerating free RSV in colorectal cell lines, supporting the hypothesis that RSV metabolites potentially serve as a reservoir for the parent compound [27, 195]. These paradigm shifting studies have not only challenged the classical notion that low bioavailability of RSV is the reason for the lack of therapeutic effects in human clinical trials but have also provided a potential molecular basis for the unexpected effects of high-dose RSV in human clinical trials such as adverse gastrointestinal effects [196, 197]. The recent results from clinical trials and in vivo studies also support the hormonal response of RSV with lower doses retarding age-related cardiac dysfunction [198], preventing cancer [89], slowing down AD symptoms [122], and improving cardiovascular and cerebrovascular functions [23, 196] more potently than higher doses [89].

trans-RSV is a direct activator of SIRT1 at higher micromolar concentrations

Although there are many known targets for trans-RSV [199], the most well-studied target is SIRT1 [14]. Later studies also indicated a direct link between trans-RSV and 5’-adenosine monophosphate-activated protein kinase (AMPK) and SIRT1 by showing RSV’s inhibitory effect on several phosphodiesterases (PDE) that increased cyclic AMP (cAMP) levels to enhance the intracellular Ca2+ to activate Ca2+/calmodulin-dependent protein kinase β (CaMKKβ), which phosphorylates AMPK, finally leading to SIRT1 activation [200, 201]. Although, the attempts to modulate the activity and specificity of RSV through different targets or signaling cascades failed to reproduce the complete spectrum of its activity, [202, 203] highlighting some technical problems associated with the “Fluor-de-Lys” substrate (FdL) assay used to determine RSV-mediated SIRT1 activation [20, 22, 204, 205], subsequent works finally concluded that trans-RSV is indeed a direct activator of SIRT1 [206–208] with a potency of RSV against SIRT1 in the FdL assay (EC50 ~ 30–100 μM) [14, 207] whereas the Km value of SIRT1 for NAD+ was found to be 94 ± 5 μM [203]. Finally, patients who received 500 mg/day RSV demonstrated the activation of SIRT1 in peripheral blood mononuclear cell (PBMC), suggesting that oral administration of higher doses of RSV achieve sufficient cellular concentrations to activate SIRT1 (≥ 30 μM) in humans as well [209]. This finding is also consistent with other human clinical trials that used 5–1000 mg/day RSV resulted in average peak concentrations of blood levels between 0.6 and 137 μM [89, 194].

RSV is also an indirect inhibitor of SIRT1

Intriguingly, in mammalian cells, RSV is also known to inhibit SIRT1 [14], and this inhibitory effect of RSV on SIRT1 is required for its longevity effects in Caenorhabditis elegans [15]. Moreover, RSV decreases yeast chronological lifespan in a Sir2-dependent manner [19]. This apparent contradictory observation was termed as the “dichotomy” of RSV’s action, and the mechanism remained unknown. Furthermore, later studies also demonstrated that RSV inhibits SIRT1 to mediate part of its biochemical and functional outcomes. For example, while SIRT1 activates vascular endothelial growth factor (VEGF) expression [210, 211], treatment with RSV rather downregulates it [212, 213]. Likewise, activation of SIRT1 inhibits muscle differentiation and mitochondrial biogenesis [214–217], whereas RSV rather potentiates muscle differentiation [218, 219] and acts as an exercise mimic [220]. Activation of SIRT1 sensitizes neurons to oxidative stress [221, 222] and inhibits neurogenesis [223] while RSV protects neurons against oxidative stress [224, 225] and enhances neurogenesis [226, 227]. Similarly, activation of SIRT1 promotes mitochondrial fission [228], and treatment with RSV rather enhances mitochondrial fusion [229]. Similarly, although brain-specific activation of
SIRT1 drives anxiety and exploratory drive [48, 230]. RSV rather protects against autistic features [231–234]. Interestingly, SIRT1 activates monoamine oxidase A (MAO-A) in the brain [230], but RSV inhibits it [235, 236]. Furthermore, RSV is known to exert metabolic benefits by increasing metabolic rate, insulin sensitivity, mitochondrial biogenesis, and physical endurance, and reduce fat accumulation in mice [80, 98, 201]. Although lower doses of RSV (≥ 25 μM) fail to inhibit PDEs [207], RSV is also shown to upregulate the cellular levels of cyclic AMP (cAMP) through phosphodiesterases (PDEs) [201]. However, increasing cAMP levels via the Epac pathway retards the clearance of autophagy substrates and inhibits α-synuclein clearance, and enhances polyglutamine aggregation in the Parkinson’s disease (PD) mouse model [237]. Intriguingly, RSV rescues mutant polyglutamine cytotoxicity [118] and alleviates motor and cognitive deficits in the A53T α-synuclein mouse model of PD [238], whereas SIRTuin inhibition also rescues polyglutamine cytotoxicity [239], and PD [240] and motor deficits after peripheral nerve injury [241]. Similarly, SIRT1 inhibits p53 [242], a known anti-tumor protein, and RSV is known to exert anti-cancer effects through p53 activation [13, 243]. Although SIRT1 is essential for coronavirus replication and survival [113], RSV instead inhibits coronavirus replication [112, 113], and the acetylation of p53 is a critical mediator of antiviral response [244]. Interestingly, RSV treatment is known to activate p300 acetyltransferase to protect against rat spinal cord affected by sciatic nerve injury [245] and is also known to activate AMPK independent of SIRT1 in neurons [246] through yet unknown mechanisms. However, RSV activates AMPK in a poly-ADP-ribose polymerase 1 (PARP1)-dependent manner [71], which is also a potent inhibitor of SIRT1 [247]. Although the mechanism of RSV-mediated inhibition of SIRT1 [14, 15] and activations of p53 in human PBMC [209] and AMPK in neurons [246] remain an enigma, the observations mentioned above suggest that the inhibitory effects of RSV on SIRT1 [14, 15] through PARP1 activation [71] may also contribute to the observed physiological functions of RSV.

cis-RSV is present in the commercial wines

RSV exists as a mixture of its diastereomeric *cis* (Z) and *trans* (E) isomers in wines [248–250] (Fig. 1a), and both isomers are stable when protected from light for at least 6 weeks at 4 °C and are not prone to oxidation within at least 48 h of exposure to air [248]. Although *cis*-RSV has not been detected in fresh grapes [5–7], it is nevertheless a significant component of commercial wines from every wine-producing region of the world as well [248, 250]. This observation suggests that *cis*-RSV is produced during fermentation through an unknown mechanism. Wines that are high in *trans*-RSV tend to be also high in *cis*-RSV, and their concentrations may be subject to the same variables such as cultivar, climate, soil composition, and drainage characteristics, fungal pressure, and wine-making techniques [248]. In general, the absorbance of *cis*-RSV is lower than that of *trans*-RSV [250], and the accurate quantitation of *cis* forms showed that the concentration of *cis*-RSV could sometimes be the predominant form in specific grape varieties such as Pinot noir [248, 250]. *cis*-RSV exerts anti-inflammatory and anti-oxidant effects

Although *cis*-RSV is not well-explored, the limited amount of scientific literature shed light on its biological effects. *cis*-RSV inhibits both canonical and non-canonical inflammasome activation in macrophages resulting in the downregulation of caspases 1 and 4 and reduction in the secretion of the pro-inflammatory cytokine, interleukin-1β (IL-1β) [251]. Interestingly, the reduction of IL-1β secretion was more pronounced with *cis*-RSV pre-treatment than *trans*-RSV [251]. *cis*-RSV also scavenges intracellular reactive oxygen species (ROS) and downregulates mRNA and protein levels of NOS-2 and COX-2, resulting in the attenuation of the pro-inflammatory responses [252]. *cis*-RSV modulates the pro-inflammatory transcription factor, NF-κB, reducing the expression of chemokines such as monocyte chemoattractant protein-1 (MCP-1) and regulated on activation normal T cell expressed and secreted (RANTES), pro-inflammatory cytokines that attract monocyte–granulocyte cells such as M-CSF (colony-stimulating factor 1), GM-CSF (colony-stimulating factor 2) and G-CSF (colony-stimulating factor 3), the cytokine tumor growth factor-beta (TGF-β), and the extracellular ligand IL-1α [253]. The methylated forms of both isomers have anti-tumorogenic properties, but the *cis*-RSV-derived methylated forms have a higher anti-tumor effect than the *trans* derivatives [254]. In contrast, for the unmodified isomers, *trans*-RSV has greater anti-cancer activity [255]. RSV has vasorelaxant...
properties, and in this aspect, both isomers showed similar effects on the reduction of intracellular calcium levels when pre-treated in vascular myocytes, although co-treatment with angiotensin II, cis-RSV showed more potent effects [256, 257]. However, when tested in mice model against angiotensin II (AngII)-mediated vascular inflammation, only the trans-isomer was found to be effective, although it is not clear whether such a result is caused by a difference in potency or is due to different mechanisms [258]. Interestingly, both cis-RSV and trans-RSV suppress the platelet aggregation induced by pro-aggregatory stimuli such as collagen, ADP, and thrombin [259, 260]. Although one study showed the potency of the cis-RSV was lower than that of the trans-RSV [260], an earlier study showed that cis-RSV is more potent than trans-RSV to inhibit the platelet aggregation [259]. Despite early indications of the physiological effects, cis-RSV did not gain much scientific attention in terms of the number of publications (Fig. 1b) majorly due to the lack of commercial availability of cis-RSV in early days [261].

cis-RSV is metabolized faster than its trans counterparts in humans

Although glucuronidation of RSV is done preferentially by different UDP-glucuronosyltransferase (UGT) isoenzymes resulting in the formation of two glucuronides (RSV 3-O- and 4*-O-glucuronides (RSV3G and RSV4G)), interestingly, this enzymatic action can be selective with different reaction rates and occurs at a faster rate with the cis-RSV [262, 263]. For example, trans-RSV is glucuronidated by bilirubin conjugating UGT1A1 and cis-RSV is glucuronidated by the phenol conjugating UGT1A6 [262, 264]. However, both cis- and trans-RSV isomers are actively glucuronidated by enzymes like UGT1A9 and 1A10 [262, 264] and the biological significance of faster glucuronidation of cis-

Fig. 1 a Natural resveratrol (RSV or 3,5,4'-trihydroxystilbene) exists as two diastereomeric forms (cis (Z)- and trans(E)-RSV). b Number of PubMed publications on RSV. Graphical representation of the total number of publications obtained by searching in PubMed using the term “resveratrol” and “cis-resveratrol” in the titles of the publications as of 15th September, 2020.
RSV remains to be evaluated. Moreover, the gastrointestinal (GI) tract contributes significantly to the first pass metabolism of these naturally occurring polyphenols [263] and cis-RSV sulfates and glucuronides (cis-RSV3G, cis-RSV4G, and cis-RSV3S) are found in higher concentrations than their trans counterparts in urine of subjects given a 250-ml single dose of red wine [265].

trans-RSV and its metabolites convert to cis-RSV in the physiological context

Interestingly, *trans*-RSV is known to be converted to *cis*-RSV in the physiological context [78, 195], and both *trans*– and *cis*-RSV metabolites with a preference for *cis*-isomer are detected in the profiles of culture media and lysates of cells exposed to *trans*-RSV [195]. Importantly, in endothelial cells, when the RSV metabolites (RSV3G, RSV4G, and RSV3S) were converted back to their parent form, i.e., free RSV, they were preferentially converted to cis-RSV through a yet unknown mechanism [195]. Similarly, another recent study also showed that *trans*-RSV is converted to *cis*-RSV in the physiological context to evoke cardioprotective functions [78]. This *trans* to *cis*-RSV conversion exploits a novel thiol-dependent mechanism to activate protein kinase 1α (PKG1α) that mediates the beneficial actions of RSV. However, the thiol oxidation-mediated activity of RSV is restricted to the pro-oxidative environment of tissues [78]. In light of the new findings that *trans*-RSV converts to *cis*-RSV and RSV reaches high micromolar concentrations in target tissues [27, 89, 194], and RSV metabolites potentially serve as a reservoir for the parent compound [27, 195] and *cis*-RSV is glucuronidated faster than *trans*-RSV [262–264, 266] and *cis*-RSV sulfates and glucuronides are found in higher concentrations than their *trans* counterparts in humans [265], it is critical to explore whether a combination of *cis*– and *trans*-RSV would elicit synergistic or antagonistic effects in future studies.

“Moonlighting” functions of aminoacyl-tRNA synthetases (aaRSs)

Aminoacyl-tRNA synthetases (aaRSs) are ancient proteins that activate L-amino acids for protein synthesis (translational function) [267]. However, during evolution, aaRSs also progressively accrued “moonlighting” functions activated under conditions of diminished protein synthesis, such as cellular stress, which is well reviewed in many recent publications [268]. These functions beyond protein synthesis (non-translational “moonlighting” functions) enable aaRSs to play critical roles in various cellular functions, including metabolic homeostasis and modulation of signal transduction pathways [268]. However, the molecular mechanisms by which aaRSs “switch ON” their “moonlighting” functions and “switch OFF” their role in protein synthesis are not very well understood. Intriguingly, knocking down aaRSs enhances longevity in *C. elegans* [269] but decreases it in *Drosophila* [270], indicating that the non-canonical functions of aaRSs are probably significant only in higher eukaryotic organisms [271]. Each aaRS has a unique active site that precisely differentiates closely related amino acids. Interestingly, the depletion of tryptophan from the active site of tryptophanyl-tRNA synthetase (TrpRS) activates its “moonlighting” nuclear function poly-ADP-ribose-polymerase 1 (PARP1)-dependent activation of p53 [272]. Therefore, potential binding of natural amino acid analogs (metabolites, neurotransmitters, and bioactive compounds) to the active sites of aaRSs could “switch ON” their “moonlighting” functions by temporarily transforming them to catalytic nulls [273].

cis-RSV evokes a tyrosine-free (apo) conformation in human tyrosyl-tRNA synthetase (TyrRS)

We astutely observed structural similarities between RSV and tyrosine (RSV harbors a tyrosine-like phenolic ring), and interestingly, human serum levels of L-tyrosine remain elevated under conditions that drive various metabolic dysfunctions [274–282], including cancer [283, 284]. Therefore, we tested if RSV would behave as an “active site-directed inhibitor” of TyrRS and consistently found that RSV is a direct inhibitor of TyrRS catalytic activity with an inhibition constant (Ki) value of 22 μM [285]. Unlike other known biological targets of RSV (F0/F1 ATPase, ERα, SIRT3, COX-1/2) that bind to its *trans*-isomer [57, 286–288], intriguingly, we found that despite using *trans*-RSV, we obtained the crystal structure of TyrRS bound with only the *cis*-isomer of RSV. Therefore, TyrRS is the first and so far, the only biological target that binds to the *cis*-RSV. While the phenolic ring of RSV and tyrosine have the same disposition in the respective co-crystals, accommodation of the *cis* conformation of the dihydroxy ring of RSV forces a local structural change near the linker to
the C-terminal domain of TyrRS. Based on the structural information, we proposed that RSV-triggered conformational switch in the active site of TyrRS might drive the predominant trans-RSV into a cis conformation in the physiological context. Consistently, downregulation of the cellular protein levels using siRNA against the mRNA of TyrRS mitigated the signaling effects of low-dose trans-RSV and overexpression of TyrRS was sufficient to mimic at least in part, the signaling events evoked by low dose (≥ 10 μM) trans-RSV. Therefore, we concluded that while high-dose RSV (≥ 25 μM) inhibits tyrosine-AMP formation [285] and activates SIRT1 [14, 207], at lower concentrations of RSV (≤ 15 μM), TyrRS protein would instead facilitate the conversion of trans-RSV to cis-RSV in the physiological context, providing an underappreciated contribution of TyrRS in the biological effects of natural RSV. Moreover, a structural comparison between cis-RSV bound TyrRS, and its the tyrosine-free (apo) form demonstrated that cis-RSV mimics a tyrosine-free “apo” state of TyrRS (Fig. 2a) and the physiological significance of this observation remains to be explored in the future. Because mutations in human TyrRS are known to cause neuropathy [289] and multi-system diseases [290–292] in a protein synthesis function-independent manner [293], our findings suggested that RSV would be a potent modulator of the emerging “moonlighting functions” of TyrRS [46, 294–296]. In this context, it is interesting to note that inflammation drives the matrix metalloproteinase (MMP)-mediated cleavage of TyrRS [297] and RSV is a known inhibitor of MMP-2 and MMP-9 [298, 299]. Therefore, it is apparent that RSV would contribute to the systemic protein levels of TyrRS and vice versa, TyrRS would contribute to the distinct physiological outcomes of RSV, if any that are mediated through the cis and trans isomers of RSV.

cis- and trans-RSV have opposite effects on TyrRS-regulated PARP1 activation

Although RNA does not activate PARP1 [300], broken DNA ends are the best-known activators of PARP1 [301]. Intriguingly, the presence of PARP1 on the broken DNA impairs efficient DNA repair [302, 303], suggesting that eviction of PARP1 from the DNA through auto-poly-ADP-ribose(PAR)ylation is required for efficient DNA repair [304, 305]. Consistently, NAD+ supplementation that enhances auto-PARylation of PARP1 facilitates PARP1-dependent DNA repair [306]. Interestingly, our work demonstrated that nuclear localization of TyrRS after either serum starvation, heat shock, or endoplasmic reticulum (ER) stress stimulates the auto-PARylation of PARP1 suggesting that eukaryotic TyrRS activates PARP1 in a DNA-independent manner [285] to facilitate TyrRS-mediated DNA repair [295, 296]. Because our previous work [272] provided the structural basis of amino acids mediated inhibition of the “moonlighting” functions of aaRSs, we hypothesized that RSV that binds to TyrRS would modulate its PARP1-activating “moonlighting” function as well. Importantly, RSV was previously shown to activate PARP1-dependent protection against oxidative stress and mitochondrial dysfunctions [71]. As expected, we found that binding of cis-RSV induced conformational switch promoted the interaction of TyrRS with PARP1 and stimulated the generation of nicotinamide (NAM) and ADP-ribose (ADPR)-two potent inhibitors of SIRT1 [285]. Most significantly, RSV potentiated TyrRS-mediated auto-PARylation of PARP1 in vitro at nanomolar (nM) levels with a half-maximal effect (EC50) at roughly 10 nM, indicating that TyrRS/PARP1 complex is the biological target of RSV rather than TyrRS by itself. TyrRS-cis-RSV-PARP1-driven NAD+ signaling thus upregulated the expression and activation of a battery of genes, proteins, and signaling cascades that elicit a protective stress response. Most importantly, we observed significant upregulation of the acetylome of proteins, including p53, upon treatment with RSV in vitro and in vivo [285]. This observation was also consistent with RSV-mediated stimulation of the acetylation of nuclear proteins that drives autophagy [58] and CR stimulated upregulation of acetylome, including p53 [307]. However, TyrRS-regulated auto-PARylation of PARP1 was lost in the presence of broken DNA [285], suggesting that factors that induce DNA damage would abolish TyrRS/PARP1-mediated protective stress response.

Because cis-RSV and tyrosine evoke two distinct conformations in TyrRS, treatment with a higher affinity tyrosine-adenylate analog (Tyr-SA, (5'β-O-[N-(9 L-tyrosyl)sulfamoyl] adenosine)) resulted in the inhibition of cis-RSV/TyrRS-regulated auto-PARylation of PARP1 both in vitro and in vivo in mice; however, we were intrigued by the observation that despite using the commonly available trans-RSV, we obtained only the cis-isomer of RSV bound to TyrRS. To better understand it, we performed in silico modeling using the trans-RSV in the active of TyrRS. This modeling
showed that the binding of \textit{trans}-RSV to TyrRS did not induce any conformational change and is identical to its tyrosine-bound form \cite{285}. This data indicated that unlike \textit{cis}-RSV, retension of \textit{trans}-RSV in the active site of TyrRS by higher concentrations of RSV (\(\geq 25 \) \(\mu M \)) would prevent the interaction of TyrRS with PARP1, leading to inhibition of PARP1 and an apparent activation of SIRT1 (due to the absence of PARP1 activation) (Fig. 2b). Thus, our previous work for the first time suggested that the “\textit{cis}” and the “\textit{trans}” isomers of RSV and lower (\(\leq 15 \) \(\mu M \)) and higher (\(\geq 25 \) \(\mu M \)) doses of RSV would have opposite effects on TyrRS-regulated PARP1 activation and associated NAD\(^+\) signaling \cite{285} and indicated a potential molecular basis to resolve the “\textit{dichotomy}” of RSV.

PARP1 maintains genomic stability and inflammation inhibits PARP1-mediated DNA repair

PARP1 senses and responds to DNA damage \cite{305, 308–310}, oxidative, and environmental stresses by transcriptionally activating cytoprotective and DNA repair pathways \cite{303, 311}. To protect cells from damage, PARP1 metabolizes NAD\(^+\) to nicotinamide and ADP-ribose resulting in the activation of cellular cytoprotective pathways \cite{312–319} along with rapid nuclear ATP synthesis that sustains the transcriptional upregulation of stress response genes \cite{318, 320}. PARP1 modulates the function of the CCCTC-binding factor (CTCF) \cite{321, 322} and feeding behavior \cite{323} in a circadian transcription-dependent manner \cite{311, 324}. Consistently, dopamine activates the PARP1/CTCF-regulated transcriptional network to trigger morphological remodeling in astrocytes \cite{325}. PARP1 is not only a potent modulator of SIRTuin activity \cite{326} but also protects against genotoxic stress \cite{315, 327, 328}, optimizes efficient DNA repair \cite{303}, and facilitates long-term memory formation \cite{329–332} and neuronal survival under stress \cite{333–335}. PARP1 plays a critical role in induced pluripotent stem cells (iPSCs) generation \cite{336} and neuronal differentiation \cite{337}. Interestingly, PARP1 knock out mice exhibited decreased neurogenesis with a concomitant increase in gliosis \cite{338}, exacerbates diet-induced obesity \cite{339}, induces
schizophrenia-like symptoms such as anxiety, depression, social interaction deficits, and cognitive impairments in mice [340]. Interestingly, treatment with nerve growth factor (NGF) [341, 342] and NAD$^+$ supplementation [343] activate PARP1 and protect neuron-like PC-12 cells from H$_2$O$_2$-mediated cell death [344, 345], despite the accumulation of poly-ADP-ribose (PAR) [343]. Furthermore, activation of PARP1 is required for nuclear proteasome function [346, 347] that prevents the accumulation of misfolded protein aggregates, a hallmark of neurodegenerative diseases. Basal PARP1 activation is higher in the CNS of young mice [348], and it is downregulated in AD [349]. PARylation protects against coronavirus [350] and modulates glucose metabolism [351], and consistently, PARylation is downregulated in an age-dependent manner [352, 353]. Interestingly, naked mole-rat (NMR) has higher basal PARylation levels than the mouse [354] and is resistant to Alzheimer’s disease (AD) [355]. Most significantly, inhibition of PARP1 leads to the induction of DNA damage and cytotoxicity [356, 357] and mitochondrial dysfunction [358] through the upregulation of aerobic glycolysis [359–361], which are implicated in the etiology of various metabolic disorders and cancer. Moreover, inflammation inhibits PARP1-dependent DNA repair [359, 362, 363] and depletion of PARP1 not only triggers sustained induction of interferon-stimulated genes (ISGs) [364] and senescence [365] but also exacerbates autoimmune diseases [366–368] and spontaneous cancer formation through accelerated aging [369]. In this context, it is interesting to note that inflammation also drives the cleavage of TyrRS [297], indicating a potential role of full-length TyrRS in PARP1-mediated DNA repair [359, 362, 363]. Consistently, emerging works suggest that inhibition of PARP1 induces DNA damage-dependent pro-inflammatory response [362, 363, 370–372] and results in cancer metastasis [373] and dampens the anti-cancer immune response through the induction of programmed death-ligand 1 (PD-L1) [374]. These observations suggested that activation of PARP1 not only enhances DNA repair but also triggers an anti-inflammatory signaling cascade [362–365] to maintain genomic stability. Consistent with the inhibitory role of PARP1 on DNA repair [302, 303], recently, PARP “trapping” has gained much attention in the anti-cancer treatment regimen [375]. Intriguingly, PARP1 inhibition protects neurons from toxic effects [376–382], suggesting that PARP-dependent DNA repair and survival are context dependent.

Human serum L-tyrosine level is circadian regulated and RSV has circadian effects

Physiologically, human serum L-tyrosine level is modulated in a circadian manner with a peak of serum tyrosine in the morning to noon (at light) and a drop in the night (at dark) [383, 384]. Therefore, during deep sleep, humans have low serum tyrosine levels [385]. Likewise, there is a daily rhythm in the content and utilization of tyrosine in the whole mouse [386]. Interestingly, tyrosine transaminase that modulates the serum tyrosine levels [387] is regulated by vagal cholinergic nerves, which in turn, is regulated by the central nervous system (CNS) [388, 389]. Consistent with RSV being a modulator of L-tyrosine-mediated signaling [285] and tyrosine kinases [390], RSV also restores circadian rhythm in mice [391] and upregulates circadian gene expression in fibroblasts [392, 393]. Because rhythmic histone acetylation regulates circadian gene transcription [394], these studies are also consistent with RSV’s role as a modulator of histone acetyltransferases (HDACs) [154, 207]. Intriguingly, when administered during the activity phase (at dark) in rat, RSV behaved as a potent antioxidant in the heart, the liver, and the kidney [395], but, when administered during the rest phase (at light), RSV instead exerted pro-oxidant effects in the organs for unknown reasons [395]. Furthermore, RSV supplementation significantly increased the proportion of active-wake time, occurring mainly during the resting phase of the sleep-wake cycle (+163%) of adult mouse lemurs. The increase in active-wake time with RSV supplementation was accompanied by a significant reduction of both paradoxical sleep (−95%) and slow-wave sleep (−38%). Therefore, RSV can act as a potent modulator of sleep-wake rhythms [396, 397]. Furthermore, the nocturnal administration of RSV sharply decreased tumor frequency up to 40% and lowered tumor incidence [398]. However, daytime administration of RSV in the same N-methyl-N-nitrosourea (NMU) rat model was significantly less effective with no change in tumor incidence [398]. These observations are consistent with the recent finding that different circadian cycles in nocturnal rodents versus diurnal humans may contribute to the failure in human translational studies [399]. Therefore, an important consideration should be given to the timing of RSV administration (day vs. night) in the future clinical trials to make the best out of the circadian effects of L-tyrosine and RSV.
Calorie restriction (CR) lowers serum L-tyrosine, a biomarker for metabolic dysfunctions and aging

The most recent human metabolomic analysis demonstrated that serum L-tyrosine level is upregulated during aging [400, 401], and its downregulation is an indicator of CR in humans [402, 403]. However, the potential mechanisms for an association between reduced serum levels of L-tyrosine and improvement in metabolic dysfunctions during CR remain unclear. Nevertheless, recent studies have confirmed the long-standing observation that elevated L-tyrosine level is a biomarker for various metabolic dysfunctions including the development of type 2 diabetes, obesity [274–282], cancer [283, 284], and memory dysfunction in human Alzheimer’s disease (AD) [404, 405]. Moreover, serum L-tyrosine level has also emerged as a novel marker that links diabetes and cardiovascular disease (CVD) susceptibility [406]. Interestingly, L-tyrosine influences developmental decisions and longevity in Caenorhabditis elegans [407, 408] and potentiates the detrimental effects of oxidative stress either by decreasing glutathione and stimulating lipid and protein oxidation in rat cerebral cortex [409] or by increasing the thiobarbituric acid reactive species levels in the hippocampus and the carboxyl levels in the cerebellum, hippocampus, and striatum [410]. Moreover, chronic administration of L-tyrosine increased DNA damage frequency and damage index in the hippocampus, striatum, cerebral cortex, and blood [411, 412]. Recent studies demonstrated that chronic administration of L-tyrosine inhibited the activity of complex I, II–III, and IV in the striatum, which can be prevented by antioxidant treatment [413, 414]. Consistently, oral supplementation of L-tyrosine impairs glucose uptake and insulin secretion in rats [415], and the capacity to detoxify excess L-tyrosine is an essential life trait for the blood-sucking arthropods [416, 417]. Quite interestingly, L-tyrosine was negatively correlated with hypothalamic transcriptional levels of Drd5, a dopamine receptor expressed in the limbic regions of the brain [418] that not only activates memory formation [419] but also evokes anti-tumor effects through autophagy induction [420]. Moreover, unlike branched-chain amino acids (BCAA) that upregulate BDNF levels [421], the acute administration of L-tyrosine instead decreased BDNF levels in the hippocampus and striatum of rats [422]. Consistently, the administration of L-tyrosine exacerbates the cognitive decline in aged people [423]. Most significantly, a tyrosine-restricted diet stimulates human immunocompetence [424], and CR significantly downregulates tyrosine biosynthesis and serum tyrosine levels in mice [418] as well as in humans [402, 403]. Intriguingly, similar to RSV-mediated antiatherogenic effects modulated through the focal adhesion kinase (FAK) [425] and anti-tumor effects [426, 427], a tyrosine-free diet is also known to evoke anti-tumor effects against melanoma [428–430] in a FAK-dependent manner [431].

\textit{cis-} and \textit{trans-RSV} would exert opposite effects in the physiological contexts

Although a significant bottleneck in tapping the therapeutic potential of RSV is the lack of a proven physiologically relevant mechanism of action, our previous work addressed some fundamental aspects of this issue and laid a foundation to bridge the gap between the observed in vitro and in vivo effects of RSV. Moreover, our discovery of TyrRS being a biologically significant and physiologically relevant target of RSV that facilitates the conversion of \textit{trans-RSV} to \textit{cis-RSV} suggests that the \textit{cis}-isomer of RSV is also a major isomer that evokes protective stress response. Other recent studies have also confirmed the TyrRS-PARP1 signaling in mediating the protective effects of RSV [120, 229, 296, 432–434]. However, there are still critical gaps in our knowledge. The biological significance of the two distinct conformations induced by \textit{cis-} and \textit{trans-RSV} in TyrRS (Fig. 2) [285] has not been explored extensively. Moreover, the biological significance of \textit{cis-RSV} has not gained scientific attention in terms of the number of publications (Fig. 1b) despite showing significant physiological effects, as mentioned above. In light of the new findings that RSV attains high micromolar levels in human tissues and plasma after oral ingestion [27, 89, 193, 194] and \textit{trans-RSV} converts to \textit{cis-RSV} in the physiological context [78, 195], and \textit{cis-RSV} has anti-inflammatory [251–253] and anti-platelet [259] and anti-cancer activities [88] and \textit{cis-RSV} sulfates and glucuronides are found in higher concentrations in humans [265], future studies should determine if \textit{cis-} and \textit{trans-RSV} would evoke distinct physiological outcomes in various experimental paradigms.

\textbf{Acknowledgments} The authors acknowledge funding from NIH (2P20GM109091-06) and NSF (Award Number: 1755670) and American Cancer Society (ACS)-Institutional Research Grant (IRG).
Funding This study received funding from NIH (2P20GM109091-06) and NSF (Award Number: 1755670) and American Cancer Society (ACS)-Institutional Research Grant (IRG).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Paul B, Masih I, Deopujari J, Charpentier C. Occurrence of resveratrol and pterostilbene in age-old Draksha
casa, an ayurvedic medicine from India. J Ethnopharmacol. 1999;68(1-3):71–6.
2. Wu JM, Wang ZR, Hsieh TC, Bruder JL, Zou JG, Huang YZ. Mechanism of cardioprotection by resveratrol, a pheno
colic antioxidant present in red wine (review). Int J Mol Med. 2001;8(1):3–17. https://doi.org/10.3892/imjmm.8.1.3.
3. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339(8808):1523–6. https://doi.org/10.1016/0140-6736(92)91277-f.
4. Burns J, Yokota T, Ashihara H, Lean ME, Crozier A. Plant foods and herbal sources of resveratrol. J Agric Food Chem. 2002;50(11):3373–40. https://doi.org/10.1021/jf0112973.
5. Langcake P, Pryce RJ. Production of resveratrol by Vitis Vinifera and other members of Vitaceae as a response to infection or injury. Physiol Plant Pathol. 1976;9(1):77–86. https://doi.org/10.1016/0048-4059(76)90077-1.
6. Jeandet P, Bessis R, Gautheron B. The production of resveratrol (3,5,4′-Trihydroxystilbene) by grape berries in different developmental stages. Am J Enol Vitic. 1991;42(4):1–6.
7. Jeandet P, Bessis R, Baghi M, Meunier P. Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J Phytopathol. 1995;143(3):135–9. https://doi.org/10.1111/j.1439-0433.1995.tb00246.x.
8. Takaoka M. Resveratrol, a new phenolic compound, from Veratrum grandiflorum. J Chem Soc Jpn. 1939;60:1090–
100.
9. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6): 493–506. https://doi.org/10.1038/nrd2060.
10. Oliveira ALB, Monteiro VVS, Navegantes-Lima KC, Reis JF, Gomes RS, Rodrigues DVS, et al. Resveratrol role in autoimmune disease-a mini-review. Nutrients. 2017;9(12). https://doi.org/10.3390/nu9121306.
11. Kjaer TN, Ornstrup MJ, Poulsen MM, Stokdilde-Jorgensen H, Jessen N, Jorgensen JOL, et al. No beneficial effects of resveratrol on the metabolic syndrome: a randomized placebo-controlled clinical trial. J Clin Endocrinol Metab. 2017;102(5):1642–51. https://doi.org/10.1210/jc.2016-2160.
12. Vang O, Ahmad N, Baile CA, Baur JA, Brown K, Csiszar A, et al. What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS One. 2011;6(6):e19881. https://doi.org/10.1371/journal.pone.0019881.
13. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275(5297):218–20. https://doi.org/10.1126/science.275.5297.218.
14. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–6. https://doi.org/10.1038/nature01960.
15. Viswanathan M, Kim SK, Berdichevsky A, Guarente L. A role for SIR-2.1 regulation of ER stress response genes in determining C-elegans life span. Dev Cell. 2005;9(5):605–15. https://doi.org/10.1016/j.devcel.2005.09.017.
16. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate, Curr Biol. 2008;16(3):296–300. https://doi.org/10.1016/j.cub.2005.12.038.
17. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 2010;1:e10. https://doi.org/10.1038/cddis.2009.8.
18. Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev. 2007;128(10):546–52. https://doi.org/10.1016/j.mad.2007.07.007.
19. Orlandi I, Stammerra G, Strippoli M, Vai M. During yeast chronological aging resveratrol supplementation results in a short-lived phenotype Sir2-dependent. Redox Biol. 2017;12:745–54. https://doi.org/10.1016/j.redox.2017.04.015.
20. Ramos-Gomez M, Olivares-Marín IK, Canizal-Garcia M, Gonzalez-Hernandez JC. Nava GM, Madrigal-Perez LA. Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner. J Bioenerg Biomembr. 2017;49(3):241–51. https://doi.org/10.1007/s10863-017-9709-9.
21. Orozco H, Matallana E, Aranda A. Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions. Microb Cell Factories. 2012;11:104. https://doi.org/10.1186/1475-2859-11-104.
22. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280(17):17038–45. https://doi.org/10.1074/jbc.M500655200.
23. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskiy N, et al. Resveratrol delays age-related deteriora
tion and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8(2): 157–68. https://doi.org/10.1016/j.cmet.2008.06.011.
24. Crownell JA, Korytko PI, Morrissey RL, Booth TD, Levine BS. Resveratrol-associated renal toxicity. Toxicol Sci. 2004;82(2):614–9. https://doi.org/10.1093/toxsci/kfh263.

25. Suzuki K, Koike T. Resveratrol abolishes resistance to axonal degeneration in slow Wallerian degeneration (Wlds) mice: activation of SIRT2, an NAD-dependent tubulin deacetylase. Biochem Biophys Res Commun. 2007;359(3):665–71. https://doi.org/10.1016/j.bbrc.2007.05.164.

26. Wilson T, Knight TJ, Beitz DC, Lewis DS, Engen RL. Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits. Life Sci. 1996;59(1):PL15–21. https://doi.org/10.1016/0024-3205(96)00260-3.

27. Patel KR, Andreadi C, Britton RG, Horner-Glister E, Karmokar A, Sale S, et al. Sulfate metabolites provide an intracellular pool for resveratrol generation and induce autophagy with senescence. Sci Transl Med. 2013;5(205):205ra133. https://doi.org/10.1126/scitranslmed.3005870.

28. Yang Q, Wang B, Zang W, Wang X, Liu Z, Li W, et al. Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLoS One. 2013;8(11):e70627. https://doi.org/10.1371/journal.pone.0070627.

29. Gao Z, Xu MS, Barnett TL, Xu CW. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells. Biochem Biophys Res Commun. 2011;407(2):271–6. https://doi.org/10.1016/j.bbrc.2011.02.008.

30. Faragher RG, Burton DG, Majchea P, Fong NS, Davis T, Sheerin A, et al. Resveratrol, but not dihydroresveratrol, induces premature senescence in primary human fibroblasts. Age (Dordr). 2011;33(4):555–64. https://doi.org/10.1007/s11357-010-9201-5.

31. Li B, Hou D, Guo H, Zhou H, Zhang S, Xu X, et al. Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells. Sci Rep. 2017;7(1):208. https://doi.org/10.1038/s41598-017-00315-4.

32. Eren MK, Kilinci A, Eren O. Resveratrol induced premature senescence is associated with DNA damage mediated SIRT1 and SIRT2 down-regulation. PLoS One. 2015;10(4):e0124837. https://doi.org/10.1371/journal.pone.0124837.

33. Schmitt E, Lehmann L, Metzler M, Stopper H. Hormonal and genotoxic activity of resveratrol. Toxicol Lett. 2002;136(2):133–42. https://doi.org/10.1016/s0378-4274(02)00290-4.

34. Fukuhara K, Nagakawa M, Nakamichi I, Ohkubo K, Imai K, Urano S, et al. Structural basis for DNA-cleaving activity of resveratrol in the presence of Cu(II). Bioorg Med Chem. 2006;14(5):1437–43. https://doi.org/10.1016/j.bmc.2005.09.070.

35. Fukuhara K, Miyata N. Resveratrol as a new type of DNA-cleaving agent. Bioorg Med Chem Lett. 1998;8(22):3187–92. https://doi.org/10.1016/S0960-894x(98)00585-X.

36. Guo XH, Ni J, Dai XQ, Zhou T, Yang GF, Xue JL, et al. Biphasic regulation of spindle assembly checkpoint by low and high concentrations of resveratrol leads to the opposite effect on chromosomal instability. Mutat Res-Gen Tox En. 2018;825:19–30. https://doi.org/10.1016/j.mrgentox.2017.11.004.

37. Azmi AS, Bhat SH, Hadi SM. Resveratrol-Cu(II) induced DNA breakage in human peripheral lymphocytes: implications for anticancer properties. FEBS Lett. 2005;579(14):3131–5. https://doi.org/10.1016/j.febslet.2005.04.077.

38. Azmi AS, Bhat SH, Hanif S, Hadi SM. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett. 2006;580(2):533–8. https://doi.org/10.1016/j.febslet.2005.12.059.

39. Park HR, Kong KH, Yu BP, Mattson MP, Lee J. Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. J Biol Chem. 2012;287(51):42588–600. https://doi.org/10.1074/jbc.M112.406413.

40. Singh NP, Hegde VL, Hofseth LJ, Nagarkatti M, Nagarkatti P. Resveratrol (trans-3,5,4’-trihydroxy stilbene) ameliorates experimental allergic encephalomyelitis, primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Mol Pharmacol. 2007;72(6):1508–21. https://doi.org/10.1124/mol.107.038984.

41. Imler TJ, Petro TM. Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17(+)IL-10(+) T cells, CD4(-) IFN-gamma(+) cells, and decreased macrophage IL-6 expression. Int Immunopharmacol. 2009;9(1):134–43. https://doi.org/10.1016/j.intimp.2008.10.015.

42. Fonseca-Kelly Z, Nassrahall M, Uribe J, Khan RS, Dine K, Dutt M, et al. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol. 2012;3:84. https://doi.org/10.3389/fneur.2012.00084.

43. Sato F, Martinez NE, Shahid M, Rose JW, Carlson NG, Tsunoda I. Resveratrol exacerbates both autoimmune and viral models of multiple sclerosis. Am J Pathol. 2013;183(5):1390–6. https://doi.org/10.1016/j.ajpath.2013.07.006.

44. Cassereau J, Chevrollier A, Codron P, Goizet C, Gueguen M, Verny C, et al. Oxidative stress contributes differentially to the pathophysiology of Charcot-Marie-Tooth disease type 2K. Exp Neurol. 2020;323:113069. https://doi.org/10.1016/j.expneurol.2019.11.069.

45. Pan PT, Lin HY, Chuang CW, Wang PK, Han WC, Lee MC, et al. Resveratrol alleviates nuclear factor-kappaB-mediated neuroinflammation in vasculitic peripheral neuropathy induced by ischaemia-reperfusion via suppressing endoplasmic reticulum stress. Clin Exp Pharmacol Physiol. 2019;46(8):770–9. https://doi.org/10.1111/1440-1681.13105.

46. Bervoets S, Wei N, Erfurth ML, Yusein-Myashkova S, Ermanoska B, Mateiu L, et al. Transcriptional dysregulation associated with the pathophysiology of Charcot-Marie-Tooth disease type 2K. Exp Neurol. 2020;323:113069. https://doi.org/10.1016/j.expneurol.2019.11.069.

47. Finnell JE, Lombard CM, Melson MN, Singh NP, Nagarkatti M, Nagarkatti P, et al. The protective effects of resveratrol on social stress-induced cytokine release and depressive-like behavior. Brain Behav Immun. 2017;59:147–57. https://doi.org/10.1016/j.bbi.2016.08.019.
53. Calliari A, Bobba N, Escande C, Chini EN. Resveratrol
55. Bowers JL, Tyulmenkov VV, Jernigan SC, Klinge CM.
56. Gehm BD, McAndrews JM, Chien PY, Jameson JL.
57. Nwachukwu JC, Srinivasan S, Bruno NE, Parent AA,
58. Morselli E, Marino G, Bennetzen MV, Eisenberg T,
59. Armour SM, Baur JA, Hsieh SN, Land-Bracha A, Thomas
60. Lin CJ, Lee CC, Shih YL, Lin TY, Wang SH, Lin YF, et al.

https://doi.org/10.1016/j.freeradbiomed.2011.10.487.
91. https://doi.org/10.1016/j.freeradbiomed.2011.10.487.
72. Jackson JR, Ryan MJ, Alway SE. Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice. J Gerontol a-Biol. 2011;66(7):751–64. https://doi.org/10.1093/gerona/glr047.

73. Gueguen N, Desquiret-Dumas V, Leman G, Chupin S, Baron S, Nivet-Antoine V, et al. Resveratrol directly binds to mitochondrial complex I and increases oxidative stress in brain mitochondria of aged mice. PLoS One. 2015;10(12):e0144290. https://doi.org/10.1371/journal.pone.0144290.

74. Miki H, Uehara N, Kimura S, Taji R, Yoshihara K, et al. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int J Oncol. 2012;40(4):1020–8. https://doi.org/10.3892/ijo.2012.1325.

75. de la Lastral CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc T. 2007;35:1156–60. https://doi.org/10.1042/BST0351156.

76. Plauth A, Geikowski A, Cichon S, Wowro SJ, Liedgens L, de la Lastral CA, et al. Mitochondrial dysfunction and protection by resveratrol in human beings. Br J Pharmacol. 2000;130(5):1115–22. https://doi.org/10.1038/sj.bjp.0703397.

77. Ahmad KA, Clement MV, Pervaiz S. Pro-oxidant activity of low doses of resveratrol inhibits hydrogen peroxide-induced apoptosis. Ann N Y Acad Sci. 2003;1010:365–73. https://doi.org/10.1196/annals.1299.067.

78. Prysyazhna O, Wolhuter K, Switzer C, Santos C, Yang XP, Lynham S, et al. Blood pressure-lowering by the antioxidant resveratrol is counterintuitively mediated by oxidation of cGMP-dependent protein kinase. Circulation. 2019;140(2):126–37. https://doi.org/10.1161/Circulationaha.118.037398.

79. Demidenko ZN, Blagosklonny MV. At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence. Cell Cycle. 2009;8(12):1901–4. https://doi.org/10.4161/cc.8.12.8810.

80. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22. https://doi.org/10.1016/j.cell.2006.11.013.

81. Olivares-Marín IK, González-Hernández JC, Madrigal-Perez LA. Resveratrol cytotoxicity is energy-dependent. J Food Biochem. 2019;43(9):e13008. https://doi.org/10.1111/jfbc.13008.

82. Zini R, Morin C, Bertelli A, Bertelli AA, Tillement JP. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp Clin Res. 1999;25(2–3):87–97.

83. Zheng J, Ramirez KD. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol. 2000;130(5):1115–23. https://doi.org/10.1038/sj.bjp.0703397.

84. Moreira AC, Silva AM, Santos MS, Sardao VA. Resveratrol affects differently rat liver and brain mitochondrial bioenergetics and oxidative stress in vitro: investigation of the role of gender. Food Chem Toxicol. 2013;53:18–26. https://doi.org/10.1016/j.fct.2012.11.031.

85. Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci U S A. 2007;104(34):13632–7. https://doi.org/10.1073/pnas.0706290104.

86. Sareen D, Darjatmoko SR, Albert DM, Polans AS. Mitochondria, calcium, and calpain are key mediators of resveratrol-induced apoptosis in breast cancer. Mol Pharmacol. 2007;72(6):1466–75. https://doi.org/10.1124/mol.107.039040.

87. Ma X, Tian X, Huang X, Yan F, Qiao D. Resveratrol-induced mitochondrial dysfunction and apoptosis are associated with Ca2+ and mICR-mediated MPT activation in HepG2 cells. Mol Cell Biochem. 2007;302(1–2):99–109. https://doi.org/10.1007/s11010-007-9431-8.

88. Jayatilake GS, Jayasuriya H, Lee ES, Koonchanok NM, Geahlen RL, Ashendel CL, et al. Kinase inhibitors from Polygonum cuspidatum. J Nat Prod. 1993;56(10):1805–10. https://doi.org/10.1021/np50100a021.

89. Cai H, Scott E, Kholghi A, Andreadi C, Rufini A, Karmokar A, et al. Cancer chemoprevention: evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci Transl Med. 2015;7(298):298ra117. https://doi.org/10.1126/scitranslmed.aaa7619.

90. Huang H, Lin H, Zhang X, Li J. Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-kappaB-dependent pathway. Oncol Rep. 2012;27(6):2050–6. https://doi.org/10.3892/or.2012.1715.

91. Yuan Y, Xue X, Guo RB, Sun XL, Hu G. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway. CNS Neurosci Ther. 2012;18(7):536–46. https://doi.org/10.1111/j.1755-5949.2012.00319.x.

92. Andreani C, Bartolacci C, Wijnant K, Crinelli R, Bianchi M, Magnani M, et al. Resveratrol fuels HER2 and ER alpha-positive breast cancer cell lines behaving as proteasome inhibitor. Aging-Us. 2017;9(2):508–23. https://doi.org/10.18632/aging.101175.

93. Klink JC, Tewari AK, Masko EM, Antonelli J, Febbo PG, Fong Y, et al. Resveratrol modulates angiogenesis through the VEGF-A/VEGFR2/PI3K-Akt pathway. Aging-Us. 2017;9(2):508–23. https://doi.org/10.18632/aging.101175.

94. Wang H, Zhou HB, Zou YX, Liu QA, Guo CH, Gao GM, et al. Resveratrol modulates angiogenesis through the GSK3 beta/beta-catenin/TCF-dependent pathway in human endothelial cells. Biochem Pharmacol. 2010;80(9):1386–95. https://doi.org/10.1016/j.bcp.2010.07.034.

95. Gliemann L, Olesen J, Bienso RS, Schmidt JF, Akerstrom G, Nyberg M, et al. Calorie restriction-like effects of resveratrol on metabolic profile in obese human skeletal muscle. J Physiol. 2013;591(Pt 2):463–76. https://doi.org/10.1111/j.1469-7580.2012.00168.x.

96. Jimoh A, Tanko Y, Ahmed A, Mohammed A, Ayo JO. Resveratrol prevents high-fat diet-induced obesity and oxidaive stress in rabbits. Pathophysiology. 2012;19(4):226–32. https://doi.org/10.1016/j.pathophys.2012.07.003.

97. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Sci. 2017;104(34):13632–7. https://doi.org/10.1073/pnas.0706290104.
98. Baur JA, Pearson KJ, Price NL, Jamieson HA, Liner C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42. https://doi.org/10.1038/nature05354.

99. Gonzalez-Rodriguez A, Santamaria B, Mas-Gutierrez JA, Rada P, Fernandez-Millon E, Pardo V, et al. Resveratrol treatment restores peripheral insulin sensitivity in diabetic mice in a sirt1-independent manner. Mol Nutr Food Res. 2015;59(8):1431–42. https://doi.org/10.1002/mnfr.201400933.

100. Zhao H, Shu L, Huang W, Song G, Ma H. Resveratrol affects hepatic glucoseogenesis via histone deacetylase 4. Diabetes Metab Syndr Obes. 2019;12:401–11. https://doi.org/10.2147/DMSO.S198830.

101. Su HC, Hung LM, Chen JK. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2006;290(6):E1339–46. https://doi.org/10.1152/ajpendo.00487.2005.

102. Deng JY, Hsieh PS, Huang JP, Lu LS, Hung LM. Activation of estrogen receptor is crucial for resveratrol-stimulating muscular glucose uptake via both insulin-dependent and -independent pathways. Diabetes. 2008;57(7):1814–23. https://doi.org/10.2337/db07-1750.

103. Patel MI, Gupta A, Dey CS. Potentiation of neuronal insulin signaling and glucose uptake by resveratrol: the involvement of AMPK. Pharmacol Rep. 2011;63(5):1162–8. https://doi.org/10.1515/s1374-11170635-1.

104. Tan Z, Zhou LJ, Mu PW, Liu SP, Chen SJ, Fu XD, et al. Caveolin-3 is involved in the protection of resveratrol against high-fat-diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats. J Nutr Biochem. 2012;23(12):1716–24. https://doi.org/10.1016/j.jnutbio.2011.12.003.

105. Kang BB, Chiang BH. Amelioration of insulin resistance using the additive effect of ferulic acid and resveratrol on vesicle trafficking for skeletal muscle glucose metabolism. Phytother Res. 2020;34(4):808–16. https://doi.org/10.1002/ptr.6561.

106. Park JB. Inhibition of glucose and dehydroascorbic acid uptakes by resveratrol in human transformed myelocytic cells. J Nat Prod. 2001;64(3):381–4. https://doi.org/10.1021/jn000411t.

107. Varshney P, Dey CS. Resveratrol regulates neuronal glucose uptake and insulin sensitivity via P21-activated kinase 2 (PAK2). Biochem Biophys Res Commun. 2017;485(2):372–8. https://doi.org/10.1016/j.bbrc.2017.02.070.

108. Lee H, Kim JW. High-dose resveratrol inhibits insulin signaling pathway in 3T3-L1 adipocytes. J Lifestyle Med. 2013;3(1):41–7.

109. Frojdo S, Cozzone D, Vidal H, Pirola L. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J. 2007;406:511–8. https://doi.org/10.1042/Bj20070236.

110. Salas M, Obando P, Ojeda L, Ojeda P, Perez A, Vargas-Uribe M, et al. Resolution of the direct interaction with and inhibition of the human GLUT1 hexose transporter by resveratrol from its effect on glucose accumulation. Am J Physiol Cell Phys. 2013;305(1):C90–9. https://doi.org/10.1152/ajpcell.00387.2012.

111. Breen DM, Sanli T, Giacca A, Tsiani E. Stimulation of muscle glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Co. 2008;374(1):117–22. https://doi.org/10.1016/j.bbrc.2008.06.104.

112. Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17(1):144. https://doi.org/10.1186/s12879-017-2253-8.

113. Weston S, Matthews KL, Leng R, Vlk A, Haupt R, Kingsbury T, et al. A yeast suppressor screen used to identify mammalian SIRT1 as a proviral factor for Middle East Respiratory Syndrome coronavirus replication. J Virol. 2019;93(16):e00197–19. https://doi.org/10.1128/JVI.00197-19.

114. Ding L, Jiang P, Xu X, Lu W, Yang C, Zhou P, et al. Resveratrol promotes HSV-2 replication by increasing histone acetylation and activating NF-kappaB. Biochem Pharmacol. 2020;171:113691. https://doi.org/10.1016/j.bcp.2019.113691.

115. Shi YX, Li YJ, Huang CJ, Ying LX, Xue JH, Wu HC, et al. Resveratrol enhances HBV replication through activating Sirt1-PGC-1 alpha-PPAR alpha pathway. Sci Rep-Uk. 2016;6:24744. https://doi.org/10.1038/srep24744.

116. Nakamura M, Saito H, Ikeda M, Hokari R, Kato N, Hibi T, et al. An antioxidant resveratrol significantly enhanced replication of hepatitis C virus. World J Gastroenterol. 2010;16(2):184–92. https://doi.org/10.3748/wjg.v16.i2.184.

117. Wang Q, Xu J, Rottinghaus GE, Simony I, Lubahn D, Sun GY, et al. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. 2002;958(2):439–47.

118. Parker JA, Arango M, Abderrahmane S, Lambert E, Kodali M, Parihar VK, Hattiangady B, Mishra V, Shuai B, TyrsRS-PARP1-SIRT1 signaling pathway. Neurochem Res. 2016;41(9):2367–79. https://doi.org/10.1007/s11064-016-1950-9.

119. Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383–91. https://doi.org/10.1212/WNL.0000000000002035.

120. Deng HY, Mi MT. Resveratrol attenuates a beta(25-35) caused neurotoxicity by inducing autophagy through the TyrRS-PARPI-SIRT1 signaling pathway. Neurochem Res. 2016;41(9):2367–79. https://doi.org/10.1007/s11064-016-1950-9.

121. Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383–91. https://doi.org/10.1212/WNL.0000000000002035.
123. Thaung Zaw JI, Howe PR, Wong RH. Long-term effects of resveratrol on cognition, cerebrovascular function and cardio-metabolic markers in postmenopausal women: a 24-month randomised, double-blind, placebo-controlled, crossover study. Clin Nutr. 2020. https://doi.org/10.1016/j.clnu.2020.08.025.

124. Thaung Zaw JI, Howe PRC, Wong RHX. Sustained cerebrovascular and cognitive benefits of resveratrol in postmenopausal women. Nutrients. 2020;12(3). https://doi.org/10.3390/nu12030828.

125. Witte AV, Kerti L, Margulies DS, Floel A. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci. 2014;34(23):7862–70. https://doi.org/10.1523/JNEUROSCI.0385-14.2014.

126. Zortea K, Franco VC, Guimaraes P, Belmonte-de-Abreu PS. Resveratrol supplementation did not improve cognition in patients with schizophrenia: results from a randomized clinical trial. Front Psychiatry. 2016;7:159. https://doi.org/10.3389/fpsyg.2016.00159.

127. Morales AI, Rodriguez-Barbero A, Vicente-Sanchez C, Mayoral P, Lopez-Novoa JM, Perez-Barriocanal F. Resveratrol inhibits gentamicin-induced mesangial cell contraction. Life Sci. 2006;78(20):2373–7. https://doi.org/10.1016/j.lfs.2005.09.045.

128. Morales AI, Buitrago JM, Santiago JM, Fernandez-Tagarro M, Lopez-Novoa JM, Perez-Barriocanal F. Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxid Redox Signal. 2002;4(6):893–8. https://doi.org/10.1089/152308602762197434.

129. Cadenas S, Barja G. Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3. Free Radic Biol Med. 1999;26(11):1531–7. https://doi.org/10.1016/s0891-5849(99)00019-2.

130. Den Hartogh DJ, Tsiani E. Health benefits of resveratrol in patients with schizophrenia: results from a randomized clinical trial. Front Psychiatry. 2016;7:159. https://doi.org/10.3389/fpsyg.2016.00159.

131. Alway SE, McCrory JL, Kearcher K, Vickers A, Frear B, Gilliland DL, et al. Resveratrol enhances exercise-induced cellular and functional adaptations of skeletal muscle in older men and women. J Gerontol A Biol Sci Med Sci. 2017;72(12):1595–606. https://doi.org/10.1093/gerona/glx089.

132. Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P, et al. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol. 2013;160(5):714–7. https://doi.org/10.1111/bjh.12154.

133. Alway SE, McCrory JL, Kearcher K, Vickers A, Frear B, Gilliland DL, et al. Resveratrol enhances exercise-induced cellular and functional adaptations of skeletal muscle in older men and women. J Gerontol A Biol Sci Med Sci. 2017;72(12):1595–606. https://doi.org/10.1093/gerona/glx089.

134. Sahebkar A, Serban C, Ursoniu S, Wong ND, Muntner P, Gilleland DL, et al. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol. 2013;160(5):714–7. https://doi.org/10.1111/bjh.12154.

135. Olesen J, Gliemann L, Bienso R, Schmidt J, Hellsten Y, Pilegaard H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol. 2014;592(8):1873–86. https://doi.org/10.1113/jphysiol.2013.270256.

136. Hecboll S, Kreuzfeldt M, Hamilton-Dutoit S, Kjaer Poulsen M, Stodkilde-Jorgensen H, Moller JJ, et al. Placebo-controlled, randomised clinical trial: high-dose resveratrol treatment for non-alcoholic fatty liver disease. Scand J Gastroenterol. 2016;51(4):456–64. https://doi.org/10.3109/00365521.2015.1107620.

137. Mankowski RT, You L, Buford TW, Leeuwenburgh C, Manini TM, Schneider S, et al. Higher dose of resveratrol elevated cardiovascular disease risk biomarker levels in overweight older adults - a pilot study. Exp Gerontol. 2020;131:110821. https://doi.org/10.1016/j.exger.2019.110821.

138. Pollack RM, Bartzilai N, Anghel V, Saba F, Goitre I, et al. Six months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind, placebo-controlled trial. Pharmacol Res. 2016;111:896–905. https://doi.org/10.1016/j.phrs.2016.08.010.

139. Jeyaraman MM, Al-Yousif NSH, Singh Mann A, Dolinski VW, Rabbani R, Zarychanski R, et al. Resveratrol for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2020;1:CD011919. https://doi.org/10.1002/14651858.CD011919.pub2.

140. Moghaddam MR, Pardavat M, Khorasani AA, Zakerzade A, Mousavi B, Badiei F, et al. The effects of resveratrol on blood glucose without changing the circulating CD14 (+) monocytes in type 2 diabetes mellitus patients: a randomized, double-blind, placebo-controlled trial. Pharmacol Res. 2019;131:110821. https://doi.org/10.1016/j.phrs.2016.08.010.

141. Fotacci F, Moghaddam MR, Pardavat M, Khorasani AA, Zakerzade A, Mousavi B, et al. The effects of resveratrol on blood glucose without changing the circulating CD14 (+) monocytes in type 2 diabetes mellitus patients: a randomized, double-blind, placebo-controlled trial. Pharmacol Res. 2019;131:110821. https://doi.org/10.1016/j.phrs.2016.08.010.

142. Alkabari M, Tantajir OR, Lankarani KB, Tabrizi R, Dadgostar E, Kolahdooz F, et al. The effects of resveratrol supplementation on endothelial function and blood pressures among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. High Blood Press Car. 2019;26(4):305–19. https://doi.org/10.1007/s40292-019-00324-6.

143. Bratsnyo P, Molnar GA, Mohas M, Marko L, Laczky B, Cseh J, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr. 2011;106(3):383–9. https://doi.org/10.1017/S0007114511000316.

144. Khodabandehloo H, Seyyedebrahimi S, Esfahani EN, Razi M, Farnood M, et al. Resveratrol supplementation decreases blood glucose without changing the circulating CD14 (+) CD16 (+) monocytes and inflammatory cytokines in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Nutr Res. 2018;54:40–51. https://doi.org/10.1016/j.nutres.2018.03.015.

145. Chen S, Zhao X, Ran L, Wang J, Wang X, Qin Y, et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig Liver Dis. 2019;51:233–9. https://doi.org/10.1016/j.dld.2018.11.019.
146. Sridharan K, Sequeira RP. Drugs for treating severe hypertension in pregnancy: a network meta-analysis and trial sequential analysis of randomized clinical trials. Br J Clin Pharmacol. 2018;84(9):1906–16. https://doi.org/10.1111/bjp.13649.

147. Sergi C, Chiu B, Feulefack J, Shen F, Chiu B. Usefulness of resveratrol supplementation in decreasing cardiometabolic risk factors comparing subjects with metabolic syndrome and healthy subjects with or without obesity: meta-analysis using multinational, randomised, controlled trials. Arch Med Sci Atheroscler Dis. 2020;5:e98–e111. https://doi.org/10.5114/amsad.2020.95884.

148. Dyck GJB, Raj P, Zieroth S, Dyck JRB, Ezekowitz JA. The effects of resveratrol in patients with cardiovascular disease and heart failure: a narrative review. Int J Mol Sci. 2019;20(4). https://doi.org/10.3390/ijms20049004.

149. Akbari M, Tamtaji OR, Lankarani KB, Tabrizi R, Dadgostar E, Highghat N, et al. The effects of resveratrol on lipids profiles and liver enzymes in patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2020;19(1):25. https://doi.org/10.1186/s12944-020-1198-x.

150. Pezzuto JM. Resveratrol: twenty years of growth, development and controversy. Biomol Ther (Seoul). 2019;27(1):1–14. https://doi.org/10.4062/biomolther.2018.176.

151. Calabrese EJ, Mattson MP, Calabrese V. Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol. 2010;29(12):980–1015. https://doi.org/10.1177/096037710383625.

152. Calabrese EJ, Bachmann KA, Bailor AJ, Bolger PM, Borak J, Cai L, et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hermetic dose-response framework. Toxicol Appl Pharmacol. 2007;222(1):122–8. https://doi.org/10.1016/j.taap.2007.02.015.

153. Leone S, Cornetta T, Basso E, Cozzi R. Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Lett. 2010;295(2):167–72. https://doi.org/10.1016/j.canlet.2010.02.022.

154. Venturelli S, Berger A, Bocker A, Busch C, Weiland T, Noor S, et al. Resveratrol as a Pan-HDAC inhibitor alters the acetylation status of jistone proteins in human-derived hepatoblastoma cells. PLoS One. 2013;8(8):e73097. https://doi.org/10.1371/journal.pone.0073097.

155. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol. 2010;17(9):1144–51. https://doi.org/10.1038/nsmb.1899.

156. Pao PC, Pataiiek D, Watson LA, Gao F, Pan L, Wang J, et al. HDAC1 modulates OGl1-initiated oxidative DNA damage repair in the aging brain and Alzheimer's disease. Nat Commun. 2020;11(1):2484. https://doi.org/10.1038/s41467-020-16361-y.

157. Wu CC, Jin LW, Wang IF, Wei WY, Ho PC, Liu YC, et al. HDAC1 dysregulation induces aberrant cell cycle and DNA damage in progress of TDP-43 proteinopathies. EMBO Mol Med. 2020;12(6):e10622. https://doi.org/10.15252/emmm.201910622.

158. Gatz SA, Keimling M, Baumann C, Dork T, Dehavin KM, Fulda S, et al. Resveratrol modulates DNA double-strand break repair pathways in an ATM/ATR-p53- and -Nbs1-dependent manner. Carcinogenesis. 2008;29(3):519–27. https://doi.org/10.1093/carcin/bgm283.

159. Tyagi A, Gu M, Takahata T, Frederick B, Agarwal C, Sirriwardana S, et al. Resveratrol selectively induces DNA damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma. Clin Cancer Res. 2011;17(16):5402–11. https://doi.org/10.1158/1078-0432.CCR-11-1072.

160. Leon-Galicia I, Diaz-Chavez J, Garcia-Villa E, Urbet-Figueroa L, Hidalgo-Miranda A, Herrera LA, et al. Resveratrol induces downregulation of DNA repair genes in MCF-7 human breast cancer cells. Eur J Cancer Prev. 2013;22(1):11–20. https://doi.org/10.1097/CEJ.0b013e32835edcb.

161. Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr. 2010;140(9):1607–14. https://doi.org/10.3945/jn.110.123422.

162. Fustier P, Le Corre L, Chalabi N, Vissac-Sabatier C, Communual Y, Bignon YJ, et al. Resveratrol increases BRCA1 and BRCA2 mRNA expression in breast tumour cell lines. Br J Cancer. 2003;89(1):168–72. https://doi.org/10.1038/sj.bjc.6600983.

163. Ferry-Dumazet H, Garnier O, Maman-Matsuura M, Vercauteren J, Bello F, Billiard C, et al. Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells. Carcinogenesis. 2002;23(8):1327–33. https://doi.org/10.1093/carcin/bcg34.

164. Fujiimoto A, Sakasnashi Y, Matsui H, Oyama T, Nishimura Y, Masuda T, et al. Cytoometric analysis of cytotoxicity of polyphenols and related phenolics to rat thymocytes; potent cytotoxicity of resveratrol to normal cells. Basic Clin Pharmacol Toxicol. 2009;104(6):455–62. https://doi.org/10.1111/j.1742-7843.2009.00386.x.

165. Peltz L, Gomez J, Marquez M, Alencastro F, Atashpanjeh N, Quang T, et al. Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PLoS One. 2012;7(5):e37162. https://doi.org/10.1371/journal.pone.0037162.

166. Wang X, Ma S, Meng N, Yao N, Zhang K, Li Q, et al. Resveratrol exerts dosage-dependent effects on the self-renewal and neural differentiation of hUC-MSCs. Mol Cell. 2016;39(5):418–25. https://doi.org/10.14348/molcells.2016.2345.

167. Kumar V, Pandey A, Jahan S, Shukla RK, Kumar D, Srivastava A, et al. Differential responses of trans-resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis. Sci Rep. 2016;6:28142. https://doi.org/10.1038/srep28142.

168. Komienko JS, Smirnova IS, Pugovkina NA, Ivanova JS, Shilina MA, Grinchuk TM, et al. High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci Rep. 2019;9(1):1296. https://doi.org/10.1038/s41598-018-37972-y.
169. Della Ragione F, Cucciolla V, Borriello A, Della Pietra V, Racioppi L, Soldati G, et al. Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem Biophys Res Co. 1998;250(1):53–8. https://doi.org/10.1006/bbrc.1998.9263.

170. Sui XX, Zhang CJ, Zhou JN, Cao SX, Xu C, Tang F, et al. Resveratrol inhibits extranodal NK/T cell lymphoma through activation of DNA damage response pathway. J Exp Clin Cancer Res. 2017;36:133. https://doi.org/10.1186/s13046-017-0601-6.

171. Mancuso R, del Valle J, Modol L, Martinez A, Granado-Serrano AB, Ramirez-Nunez O, et al. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics. 2014;11(2):419–32. https://doi.org/10.1007/s13311-013-0253-y.

172. Naia L, Rosenstock TR, Oliveira AM, Oliveira-Sousa SI, Della Ragione F, Cucciolla V, Borriello A, Della Pietra V, Sui XX, Zhang CJ, Zhou JN, Cao SX, Xu C, Tang F, et al. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics. 2014;11(2):419–32. https://doi.org/10.1007/s13311-013-0253-y.

173. Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF. Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease. Exp Neurol. 2010;225(1):74–84. https://doi.org/10.1016/j.expneurol.2010.05.006.

174. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, et al. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer's disease neurons. J Alzheimers Dis. 2010;20(Suppl 2):S609–31. https://doi.org/10.3233/JAD-2010-100564.

175. Srinivasan S, Nwachukwu JC, Parent AA, Cavett V, Nowak J, Hughes TS, et al. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington's disease models. Mol Neurobiol. 2017;54(7):5385–99. https://doi.org/10.1007/s12035-016-0404-3.

176. Yanez M, Jhanji M, Murphy K, Gower RM, Sajish M, Basly JP, Marre-Fournier F, Parent AA, Cavett V, Nowak J, Hughes TS, et al. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington's disease models. Mol Neurobiol. 2017;54(7):5385–99. https://doi.org/10.1007/s12035-016-0404-3.

177. Serrano AB, Ramirez-Nunez O, et al. Resveratrol improves mitochondrial mass increment through activation of DNA damage response pathway. J Alzheimers Dis. 2010;20(Suppl 2):S609–31. https://doi.org/10.3233/JAD-2010-100564.

178. Basly JP, Marre-Fournier F, Le Bail JC, Habrioux G, Chulia AJ, Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol. Life Sci. 2000;66(9):769–77. https://doi.org/10.1016/s0024-3205(00)00650-5.

179. Kipp JL, Ramirez VD. Effect of estradiol, diethylstilbestrol, and resveratrol on F0F1-ATPase activity from mitochondrial preparations of rat heart, liver, and brain. Endocrine. 2001;15(2):165–75. https://doi.org/10.1385/ENDO:15:2:165.

180. Madreiter-Sokolowski CT, Sokolowski AA, Gnaier WF. Dosis Facit Sanitatem-concentration-dependent effects of resveratrol on mitochondria. Nutrients. 2017;9(10). https://doi.org/10.3390/nu9101117.

181. Bosutti A, Degens H. The impact of resveratrol and hydrogen peroxide on muscle cell plasticity shows a dose-dependent interaction. Sci Rep-Uk. 2015;5:8093. https://doi.org/10.1038/srep08093.

182. Ahmad KA, Clement MV, Hanif IM, Pervaiz S. Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res. 2004;64(4):1452–9. https://doi.org/10.1158/0008-5472.can-03-2414.

183. Guha P, Dey A, Chatterjee A, Chattopadhyay S, Bandypadhyay SK. Pro-ulcer effects of resveratrol in mice with indomethacin-induced gastric ulcers are reversed by L-arginine. Br J Pharmacol. 2010;159(3):726–34. https://doi.org/10.1111/j.1476-5381.2009.00572.x.

184. Liu S, Zhao M, Zhou Y, Wang C, Yuan Y, Li L, et al. Resveratrol exerts dose-dependent anti-fibrotic or pro-fibrotic effects in kidneys: a potential risk to individuals with impaired kidney function. Phytomedicine. 2019;57:223–35. https://doi.org/10.1016/j.phymed.2018.12.024.

185. Martins LA, Coelho BP, Grivichich I, Guaragna RM, Gottfried C, et al. Resveratrol induces pro-oxidant effects and time-dependent resistance to cytotoxicity in activated hepatic stellate cells. Cell Biochem Biophys. 2014;68(2):247–57. https://doi.org/10.1007/s12031-013-9703-8.

186. Souza IC, Martins LA, Coelho BP, Grivichich I, Guaragna RM, Gottfried C, et al. Resveratrol inhibits cell growth by inducing cell cycle arrest in activated hepatic stellate cells. Mol Cell Biochem. 2008;315(1–2):1–7. https://doi.org/10.1007/s11010-008-9781-x.

187. Zhang JD. Resveratrol inhibits insulin responses in a SirT1-independent pathway. Biochem J. 2006;397:519–27. https://doi.org/10.1042/Bj20050977.

188. Li S, Bouzar C, Cottet-Rousselle C, Zagotta I, Lamarche F, Wabitsch M, et al. Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase. Biochim Biophys Acta. 2016;1857(6):643–52. https://doi.org/10.1016/j.bbabio.2016.03.009.

189. Kang W, Hong HJ, Guan J, Kim DG, Yang EJ, Koh G, et al. Resveratrol improves insulin signaling in a tissue-specific manner under insulin-resistant conditions only: in vitro and in vivo experiments in rodents. Metabolism. 2012;61(3):424–33. https://doi.org/10.1016/j.metabol.2011.08.003.

190. Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH, Sossong AM, et al. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab. 2013;18(4):533–45. https://doi.org/10.1016/j.cmet.2013.09.004.

191. Cheeda VS, Vicas SI, Sticozzi C, Pessina F, Frosini M, Chedea VS, Vicas SI, Sticozzi C, Pessina F, Frosini M, et al. Resveratrol: from diet to topical usage. Food Funct. 2017;8(11):3879–92. https://doi.org/10.1039/c7fo01086a.

192. Robinson K, Mock C, Liang D. Pre-formulation studies of resveratrol. Drug Dev Ind Pharm. 2015;41(9):1464–9. https://doi.org/10.3109/03639045.2014.958753.

193. Sergides C, Chirila M, Silvestro L, Pitta D, Pittas A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp Ther Med. 2016;11(1):164–70. https://doi.org/10.3892/etm.2015.2895.
194. Wang S, Wang Z, Yang S, Yin T, Zhang Y, Qin Y, et al. Tissue distribution of trans-resveratrol and its metabolites after oral administration in human eyes. J Ophthalmol. 2017;2017:4052094. https://doi.org/10.1155/2017/4052094.

195. Fernandez-Castillejo S, Macia A, Motilva MJ, Catalan U, Sola R. Endothelial cells deconjugate resveratrol metabolites to free resveratrol: a possible role in tissue factor modulation. Mol Nutr Food Res. 2019;63(3):e1800715. https://doi.org/10.1002/mnfr.201800715.

196. Shukla Y, Singh R. Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci. 2011;1215:1–8. https://doi.org/10.1111/j.1749-6632.2010.05870.x.

197. Brown VA, Patel KR, Viskaduraki M, Crowell JA, Perloff AM, Booth TD, et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. 2010;70(22):9003–11. https://doi.org/10.1158/0008-5472.CAN-10-2364.

198. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. 2008;3(6):e2264. https://doi.org/10.1371/journal.pone.0002264.

199. Pirola L, Frojdo S. Resveratrol: one molecule, many targets. IUBMB Life. 2008;60(5):323–32. https://doi.org/10.1002/iub.47.

200. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega MW, et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes. 2010;59(3):556–60. https://doi.org/10.2337/diabetes.a0084.

201. Park SJ, Ahmad F, Baar K, Philp A, McBurney MW, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148(3):421–33. https://doi.org/10.1016/j.cell.2012.01.017.

202. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Cell. 2010;59(3):554–63. https://doi.org/10.2337/db09-0482.

203. Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2009;284(7241):1056–60. https://doi.org/10.1038/nature07813.

204. Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. 2009;74(6):619–24. https://doi.org/10.1111/j.1747-0285.2009.00901.x.

205. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280(17):17187–95. https://doi.org/10.1074/jbc.M501250200.

206. Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90. https://doi.org/10.1016/j.cmet.2012.04.003.

207. Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013;339(6124):1216–9. https://doi.org/10.1126/science.1231097.

208. Sinclair DA, Guarente L. Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol. 2014;54:363–80. https://doi.org/10.1146/annurev-pharmtox-010611-134657.

209. Bo S, Togliatto G, Gambino R, Ponzo V, Lombardo G, Rosato R, et al. Impact of sirtuin-1 expression on H3K56 acetylation and oxidative stress: a double-blind randomized controlled trial with resveratrol supplementation. Acta Diabetol. 2018;55(4):331–40. https://doi.org/10.1007/s00592-017-1097-4.

210. Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007;21(20):2644–58. https://doi.org/10.1101/gad.435107.

211. Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schwartz MB, et al. Impairment of an endothelial NAD(+)-H2S signaling network is a reversible cause of vascular aging. Cell. 2018;173(1):74. https://doi.org/10.1016/j.cell.2018.02.008.

212. Zhang M, Li W, Yu L, Wu S. The suppressive effect of resveratrol on HIF-1alpha and VEGF expression after warm ischemia and reperfusion in rat liver. PLoS One. 2014;9(10):e109589. https://doi.org/10.1371/journal.pone.0109589.

213. Yu HB, Zhang HF, Zhang XA, Li DY, Xue HZ, Pan CE, et al. Resveratrol inhibits VEGF expression of human hepatocellular carcinoma cells through a NF-kappa-B mediated mechanism. Hepato-Gastroenterol. 2010;57(102–03):1241–6.

214. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Namlp. Dev Cell. 2008;14(5):661–73. https://doi.org/10.1016/j.devcel.2008.02.004.

215. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12(1):51–62. https://doi.org/10.1016/S1097-2765(03)00226-0.

216. Gurd BJ, Yoshida Y, Lally J, Holloway GP, Bonen A. The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J Physiol-London. 2009;587(8):1817–28. https://doi.org/10.1113/jphysiol.2008.168096.

217. Boutant M, Kulkarni SS, Joffraud M, Raymon F, Metairon S, Descombes P, et al. SIRT1 gain of function reduces mitochondrial biogenesis. J Physiol-London. 2010;592(3):513–22. https://doi.org/10.1113/jphysiol.2009.175574.

218. Montesano A, Luzi L, Senesi P, Mazzocchi N, Terruzzi I. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J Transl Med. 2013;11:310. https://doi.org/10.1186/1479-5876-11-310.
244. Munoz-Fontela C, Gonzalez D, Marcos-Villar L, Campagna M, Gallego P, Gonzalez-Santamaria J, et al. Acetylation is indispensable for p53 antiviral activity. Cell Cycle. 2011;10(21):3701–5. https://doi.org/10.4161/cc.2011.17899.

245. Ding Z, Cao J, Shen Y, Zou Y, Yang X, Zhou W, et al. Resveratrol promotes nerve regeneration via activation of p300 acetyltransferase-mediated VEGF signaling in a rat model of sciatic nerve crush injury. Front Neurosci. 2018;12:341. https://doi.org/10.3389/fnins.2018.00341.

246. Goldberg DM, Karumanchiri A, Ng E, Yan J, Diamandis A, Cvejic JM, Djekic SV, Petrovic AV, Atanackovic MT, Ding Z, Cao J, Shen Y, Zou Y, Yang X, Zhou W, et al. Resveratrol maintains cytoplasmic calcium levels in A7r5 vascular smooth muscle cells. Mol Nutr Food Res. 2005;49(5):396–404. https://doi.org/10.1002/mnfr.200400108.

247. Campos-Toimil M, Elies J, Alvarez E, Verde I, Orallo F. Effects of trans- and cis-resveratrol on Ca2+ handling in A7r5 vascular myocytes. Eur J Pharmacol. 2007;577(1–3):91–9. https://doi.org/10.1016/j.ejphar.2007.08.003.

248. Rius C, Abu-Tahia M, Hermenegildo C, Piqueras L, Cerda-Nicolás J.M, Issekutz AC, et al. Trans- but not cis-resveratrol impairs angiotensin-II-mediated vascular inflammation through inhibition of NF-kappa B activation and peroxisome proliferator-activated receptor-gamma up-regulation. J Immunol. 2010;185(6):3718–27. https://doi.org/10.4049/jimmunol.2010043.

249. Bertelli AA, Giovannini L, Bernini W, Migliori M, Fregoni M, Bavarecos L, et al. Antiplatelet activity of cis-resveratrol. Drugs Exp Clin Res. 1996;22(2):61–3.

250. Kim H, Oh SJ, Liu Y, Lee MY. A comparative study of the anti-platelet effects of cis- and trans-resveratrol. Biomol Ther. 2011;19(2):201–5. https://doi.org/10.4062/biomolther.2011.19.2.201.

251. Orallo F. Comparative studies of the antioxidant effects of cis- and trans-resveratrol. Curr Med Chem. 2006;13(1):87–98.

252. Aumont V, Krisa S, Battaglia E, Netter P, Richard T, Merillon J, et al. Regioselective and stereospecific glucuronidation of trans- and cis-resveratrol in human. Arch Biochem Biophys. 2001;393(2):281–9. https://doi.org/10.1006/abbi.2001.2496.

253. Sabolovic N, Humbert AC, Radominska-Pandya A, Magdalou J. Resveratrol is efficiently glucuronidated by UDP-glucuronosyltransferases in the human gastrointestinal tract and in Caco-2 cells. Biopharm Drug Dispos. 2006;27(4):181–9. https://doi.org/10.1002/bdd.498.

254. Iwuchukwu OF, Nagar S. Cis-resveratrol glucuronidation kinetics in human and recombinant UGT1A sources. Xenobiotica. 2010;40(2):102–8. https://doi.org/10.3109/0198250903406754.

255. Urpi-Sardà M, Zamora-Ros R, Lamuela-Raventos R, Cherubini A, Jauregui O, de la Torre R, et al. HPLC-tandem mass spectrometric method to characterize resveratrol metabolism in humans. Clin Chem. 2007;53(2):292–9. https://doi.org/10.1373/clinchem.2006.071936.

256. Sabolovic N, Heurtaux T, Humbert AC, Krisa S, Magdalou J. cis- and trans-resveratrol are glucuronidated in rat brain, olfactory mucosa and cultured astrocytes. Pharmacology. 2007;80(2–3):185–92. https://doi.org/10.1159/000104149.

257. Ibba M, Soll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem. 2000;69:617–50. https://doi.org/10.1146/annurev.biochem.69.1.617.

258. Guo M, Schimmel P. Essential nontranslational functions of tRNA synthetases. Nat Chem Biol. 2013;9(3):145-53. https://doi.org/10.1038/nchembio.1158.

259. Anderson LL, Mao XR, Scott BA, Crowder CM. Survival from hypoxia in C-elegans by inactivation of aminoacyl-tRNA Synthetases. Science. 2009;323(5914):630–3. https://doi.org/10.1126/science.1166175.

260. Suh YS, Yeom E, Nam JW, Min KJ, Lee J, Yu K. Methionyl-tRNA synthetase regulates lifespan in Drosophila. Mol Cell. 2020;43(3):304–11. https://doi.org/10.14348/molcells.2019.0273.
271. Guo M, Yang XL, Schimmel P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol. 2010;11(9):668–74. https://doi.org/10.1038/nrm2956.

272. Sajish M, Zhou Q, Kishi S, Valdez DM Jr, Kapoor M, Guo M, et al. Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-gamma and p53 signaling. Nat Chem Biol. 2012;8(6):547–54. https://doi.org/10.1038/nchembio.937.

273. Lo WS, Gardiner E, Xu Z, Lau CF, Wang F, Zhou JJ, et al. Human tRNA synthetase catalytic nulls with diverse functions. Science. 2014;345(6194):328–32. https://doi.org/10.1126/science.1252943.

274. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolete profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53. https://doi.org/10.1038/nm.2307.

275. Tilin T, Hughes AD, Wang Q, Wurtz P, Ala-Korpela M, Sattar N, et al. Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall and Brent REvisited) study. Diabetologia. 2015;58(5):968–79. https://doi.org/10.1007/s00125-015-3517-8.

276. Hellmuth C, Kirchberg FF, Lass N, Harder U, Peissner W, Koletzko B et al. Tyrosine is associated with insulin resistance in longitudinal metabolomic profiling of obese children. J Diabetes Res. 2016. 2108909 https://doi.org/10.1155/2016/2108909.

277. Hellmuth C, Kirchberg FF, Brandt S, Moss A, Walter V, Rothenbacher D, et al. An individual participant data meta-analysis on metabolomics profiles for obesity and insulin resistance in European children. Sci Rep. 2019;9(1):5053. https://doi.org/10.1038/s41598-019-41449-x.

278. Moran-Ramos S, Ocampo-Medina E, Gutierrez-Aguilar R, Macias-Kauffer L, Villamil-Ramirez H, Lopez-Contreras BE, et al. An amino acid signature associated with obesity predicts 2-year risk of hypertriglyceridemia in school-age children. Sci Rep. 2017;7(1):5607. https://doi.org/10.1038/s41598-017-05765-4.

279. Li J, Cao YF, Sun XY, Han L, Li SN, Gu WQ, et al. Plasma tyrosine and its interaction with high-density lipoprotein cholesterol and the risk of type 2 diabetes mellitus in Chinese. J Diabess Investig. 2019;10(2):491–8. https://doi.org/10.1111/jdi.12898.

280. Newgard CB, An J, Bain JR, Muehlaber MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and Lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26. https://doi.org/10.1016/j.cmet.2009.02.002.

281. Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 1969;281(15):811–6. https://doi.org/10.1056/NEJM196910092811503.

282. Kawanaka M, Nishino K, Oka T, Urata N, Nakamura J, Suehiro M, et al. Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease. Hepat Med. 2015;7:29–35. https://doi.org/10.2147/HMER.S79100.
for protection against DNA damage. Mol Cell. 2014;56(2):322–32. https://doi.org/10.1016/j.molcel.2014.09.006.

296. Cao X, Li C, Xiao S, Tang Y, Huang J, Zhao S, et al. Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage. Proc Natl Acad Sci U S A. 2017;114(4):687–92. https://doi.org/10.1073/pnas.1606488114.

297. Jobin PG, Solis N, Machado Y, Bell PA, Rai SK, Kwon NH, et al. Moonlighting matrix metalloproteinase substrates: enhancement of proinflammatory functions of extracellular tyrosyl-tRNA synthetase upon cleavage. J Biol Chem. 2020;295(8):2186–202. https://doi.org/10.1074/jbc.RA119.010486.

298. Chen J, Bai Q, Zhao Z, Sui H, Xie X. Resveratrol improves delayed r-tPA treatment outcome by reducing MMPs. Acta Neurol Scand. 2016;134(1):54–60. https://doi.org/10.1111/ane.12511.

299. Pandey AK, Bhattacharya P, Shukla SC, Paul S, Patnaik R. Nonspecific binding of RNA to PARP1 and PARP2 does not lead to catalytic activation. Biochemistry-U.S. 2019;58(51):5107–11. https://doi.org/10.1021/acs.biochem.9b00986.

300. Nakamoto MY, Rudolph J, Wuttke DS, Luger K. Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage. Proc Natl Acad Sci U S A. 2017;114(4):687–92. https://doi.org/10.1073/pnas.1606488114.

301. Ray Chaudhuri A, Nussenzwieg A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610–21. https://doi.org/10.1038/nrm.2017.53.

302. Strom CE, Johansson F, Uhlen M, Szigyarto CA, Erixon K, Roberts MN, Wallace MA, Tomilov AA, Zhou Z, Marcotte GR, Tran D, et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 2017;26(3):539–46.e5. https://doi.org/10.1016/j.cmet.2017.08.005.

303. Roberts MN, Wallace MA, Tomilov AA, Zhou Z, Marcotte GR, Tran D, et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 2017;26(3):539–46.e5. https://doi.org/10.1016/j.cmet.2017.08.005.

304. Suskiewicz MJ, Zobel F, Ogden TEH, Fontana P, Ariza A, Yang JC, et al. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature. 2020;579(7800):598–602. https://doi.org/10.1038/s41586-020-2013-6.

305. Zandarashvili L, Langelier MF, Velagapudi UK, Hancock MA, Steffen JD, Billur R, et al. Structural basis for allosteric PARP-1 retention on DNA breaks. Science. 2020;368(6486). https://doi.org/10.1126/science.aax6367.

306. Langelier MF, Planck JL, Roy S, Pascal JM. Structural basis for DNA damage-dependent poly(ADP-ribose)ylation by human PARP-1. Science. 2012;336(6082):728–32. https://doi.org/10.1126/science.1216338.

307. Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, Lin H, et al. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science. 2016;353(6294):45–50. https://doi.org/10.1126/science.aaf7865.

308. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A. 1997;94(14):7303–7.

309. Ishizuka S, Martin K, Booth C, Potten CS, de Murcia G, Burkle A, et al. Poly(ADP-ribose) polymerase-1 is a survival factor for radiation-exposed intestinal epithelial stem cells in vivo. Nucleic Acids Res. 2003;31(21):6198–205. https://doi.org/10.1093/nar/gkg840.

310. Schuhlwerk H, Bruhn C, Siniuk K, Min W, Erener S, Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, Lin H, et al. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science. 2016;353(6294):45–50. https://doi.org/10.1126/science.aaf7865.

311. Robu M, Shah RG, Paroohi NK, Zhou P, Naegeli H, Shah GM. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair. Proc Natl Acad Sci U S A. 2017;114(33):E6847–E65. https://doi.org/10.1073/pnas.1706981114.

312. Schulhwerk H, Bruhn C, Siniuk K, Min W, Erener S, Schuhlwerk H, Bruhn C, Siniuk K, Min W, Erener S, Griffiths C, et al. Kinetics of poly(ADP-ribose)ylation, but not PARP1 itself, determines the cell fate in response to DNA damage in vitro and in vivo. Nucleic Acids Res. 2017;45(19):11174–92. https://doi.org/10.1093/nar/gkx717.

313. Chung JW, Lin WL, Chen Z, Liu HW. PARP-1-dependent recruitment of condensin-1A RNA-binding protein promotes double-strand break repair and genome stability. Proc Natl Acad Sci U S A. 2018;115(8):E1759–E68. https://doi.org/10.1073/pnas.1713912115.

314. Ronson GE, Fibiger AL, Higgs MR, Olsen AL, Stewart GS, McHugh PJ, et al. PARP1 and PARP2 stabilize replication forks at base excision repair intermediates through Fh1-dependent Rad51 regulation. Nat Commun. 2018;9:746. https://doi.org/10.1038/s41467-018-03159-2.

315. Wright RHG, Lioutas A, Le Dily F, Soronellas D, Pohl A, Bonet J, et al. ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodelling. Science. 2016;352(6367):1221–26. https://doi.org/10.1126/science.1216338.

316. Navarro J, Gozalbo-Lopez B, Mendez AC, Danzer F, Schreiber V, Martinez C, et al. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Sci Rep. 2017;7:41962. https://doi.org/10.1038/srep41962.
Yu W, Ginjala V, Pant V, Cherikhin I, Whitehead J, Docquier F, et al. Poly(ADP-ribose)ylation regulates CTCF-dependent chromatin insulation. Nat Genet. 2004;36(10):1105–10. https://doi.org/10.1038/ng1426.

Zhao HL, Sifakis EG, Sumida N, Millan-Arino L, Scholz BA, Svensson JP, et al. PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription. Mol Cell. 2015;59(6):984–97. https://doi.org/10.1016/j.molcel.2015.07.019.

Asher G, Reineke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell. 2010;142(6):943–53. https://doi.org/10.1016/j.cell.2010.08.016.

Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell. 2004;119(2):803–14. https://doi.org/10.1016/j.cell.2004.11.002.

Galloway A, Adelya U, O’Donovan B, Fisher ML, Rao CN, Critchfield P, et al. Dopamine triggers CTCF-dependent morphological and genomic remodeling of astrocytes. J Neurosci. 2018. https://doi.org/10.1523/JNEUROSCI.3349-17.2018.

Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Galloway A, Adeluyi A, O’Donovan B, Fisher ML, Rao CN, Critchfield P, et al. Dopamine triggers CTCF-dependent morphological and genomic remodeling of astrocytes. J Neurosci. 2018. https://doi.org/10.1523/JNEUROSCI.3349-17.2018.

Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature. 2012;488(7413):652–5. https://doi.org/10.1038/nature11333.

Ju BG, Solum D, Song EJ, Lee KJ, Rose DW, Glass CK, et al. Activating the PARP-1 sensor component of the grouch/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell. 2004;119(6):815–29. https://doi.org/10.1016/j.cell.2004.11.017.

Plane JM, Grossenbacher SK, Deng W. PARP-1 deletion promotes subventricular zone neural stem cells toward a glial fate. J Neurosci Res. 2012;90(8):1489–506. https://doi.org/10.1002/jnr.23040.

Devalaraja-Narashimha K, Padanilam BJ. PARP1 deficiency exacerbates diet-induced obesity in mice. J Endocrinol. 2010;205(3):243–52. https://doi.org/10.1677/JOE-09-0402.

Hong S, Yi JH, Lee S, Park CH, Ryu JH, Shin KS, et al. Defective neurogenesis and schizophrenia-like behavior in PARP-1-deficient mice. Cell Death Dis. 2019;10(12):943. https://doi.org/10.1038/s41467-019-11333-0.

Wang SH, Liao XM, Liu D, Hu J, Yin YY, Wang JZ, et al. NGF promotes long-term memory formation by activating poly(ADP-ribose)polymerase-1. Neuropharmacology. 2012;63(6):1085–92. https://doi.org/10.1016/j.neuropharm.2012.06.050.

Cohen-Armon M, Visochek L, Rozenzal D, Almeida A, Geistrikh I, Klein R, et al. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell. 2007;25(2):297–308. https://doi.org/10.1016/j.molcel.2006.12.012.

Alano CC, Garnier P, Ying WH, Higashi Y, Kauppinen TM, Swanson RA. NAD(+) depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci. 2010;30(8):2967–78. https://doi.org/10.1523/JNEUROSCI.5552-09.2010.

Kamata H, Tanaka C, Yagisawa H, Hirata H. Poly-ADP ribose polymerase activates nuclear PARP-1 enzymatic activity. Cell. 2006;125(2):371–83. https://doi.org/10.1016/j.cell.2006.02.039.

Diaz-Hernandez JJ, Moncada S, Bolanos JP, Almeida A. Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death Differ. 2007;14(6):1211–21. https://doi.org/10.1038/sj.cdd.4402117.

Naumann M, Pal A, Goswami A, Lojewski W, Japtok J, Vehlow A, et al. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat Commun. 2018;9(1):335. https://doi.org/10.1038/s41467-017-02299-1.

Alano CC, Garnier P, Ying WH, Higashi Y, Kauppinen TM, Swanson RA. NAD(+) depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci. 2010;30(8):2967–78. https://doi.org/10.1523/JNEUROSCI.5552-09.2010.
from AIF-independent parthanathans by downregulation of PARP1 expression, induction of SOD2 expression, and a metabolic shift to aerobic glycolysis. Free Radic Biol Med. 2019;131:184–96. https://doi.org/10.1016/j.freeradbiomed.2018.11.034.

340. Fouquerel E, Goellner EM, Yu Z, Gagne JP, Barbì de Moura M, Feinstein T, et al. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep. 2014;8(6):1819–31. https://doi.org/10.1016/j.celrep.2014.08.036.

341. Andrabì SA, Umanah GKE, Chang C, Stevens DA, Karuppagounder SS, Gagne JP, et al. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. P Natl Acad Sci USA. 2014;111(28):10209–14. https://doi.org/10.1073/pnas.1405158111.

342. Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature. 2018;563(7729):131–6. https://doi.org/10.1038/s41586-018-0629-6.

343. Malireddi RKS, Ippagunta S, Lamanfì K, Kanneganti TD. Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase I by the Nr1p3 and Nr4f inflammasomes. J Immunol. 2010;185(6):3127–30. https://doi.org/10.4049/jimmunol.1001512.

344. Ghosh R, Roy S, Franco S. PARP1 depletion induces RIG-I-dependent signaling in human cancer cells. PLoS One. 2018;13(3):e0194611. https://doi.org/10.1371/journal.pone.0194611.

345. Nassour J, Martien B, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399. https://doi.org/10.1038/ncomms10399.

346. Kiss B, Szanto M, Hegeduš C, Antal D, Szödenyi A, Marton J, et al. Poly(ADP-ribose) polymerase-1 deletion enhances the severity of inflammation in an imiquimod-induced model of psoriasis. Exp Dermatol. 2020;29(1):79–85. https://doi.org/10.1111/exd.14061.

347. Tepper S, Mortusewicz O, Czlonka E, Bello A, Schmidt A, Jeschke J, et al. Restriction of AID activity and somatic hypermutation by PARP-1. Nucleic Acids Res. 2019;47(14):7418–29. https://doi.org/10.1093/nar/gkz466.

348. Selvaraj V, Soundararapandian MM, Chechneva O, Williams AJ, Sidorov MK, Soulika AM, et al. PARP-1 deficiency increases the severity of disease in a mouse model of multiple sclerosis. J Biol Chem. 2009;284(38):26070–84. https://doi.org/10.1074/jbc.M109.013474.

349. Piskunova TS, Yurova MN, Ovsyannikov AI, Semenchenko AV, Zabezhinski MA, Popovich IG, et al. Deficiency in poly(ADP-ribose) polymerase-1 (PARP-1) accelerates aging and spontaneous carcinogenesis in mice. Curr Gerontol Geriatr Res. 2008;754190. https://doi.org/10.1155/2008/754190.

350. Pantelidou C, Sonzogni O, De Oliveria TM, Mehta AK, Kothari A, Wang D, et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 2019. https://doi.org/10.1158/2159-8290.CD-18-1218.
371. Ding L, Kim HJ, Wang Q, Kearns M, Jiang T, Ohlson CE, et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian Cancer. Cell Rep. 2018;25(11):2972–80 e5. https://doi.org/10.1016/j.celrep.2018.11.054.

372. Parkes EE, Walker SM, Taggart LE, McCabe N, Knight LA, Wilkinson R et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst. 2017;109(1). https://doi.org/10.1093/jnci/djw199.

373. Zuo H, Yang D, Yang Q, Tang H, Fu YX, Wan Y. Differential regulation of breast cancer bone metastasis by PARP1 and PARP2. Nat Commun. 2020;11(1):1578. https://doi.org/10.1038/s41467-020-15429-z.

374. Ding L, Chen X, Xu X, Qian Y, Liang G, Yao F, et al. PARP1 suppresses the transcription of PD-L1 by poly(ADP-Ribosyl)ating STAT3. Cancer Immunol Res. 2019;7(1):136–49. https://doi.org/10.1158/2326-6066.CIR-18-0071.

375. Pommier Y, O'Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8(362):362ps17. https://doi.org/10.1126/scitranslmed.aaf9246.

376. Hoch NC, Hanzlikova H, Rulten SL, Tetreault M, Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly(ADP-ribose) synthetase in neurodegeneration. J Physiol. 2002;541(7635):87. https://doi.org/10.1038/2018nature20790.

377. Eliasson MJ, Sampeki K, Mandir AS, Hum PD, Traysman RJ, Bao J, et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med. 1997;3(10):1089–95.

378. Lee Y, Karuppagounder SS, Shin JH, Lee YI, Ko HS, Swing D, et al. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat Neurosci. 2013;16(10):1392–400. https://doi.org/10.1038/nn.3500.

379. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 2002;297(5579):259–63. https://doi.org/10.1126/science.1072221.

380. Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science. 1994;263(5147):177–80. https://doi.org/10.1126/science.75075.

381. Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, et al. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A. 1999;96(10):5774–9. https://doi.org/10.1073/pnas.96.10.5774.

382. Mandir AS, Poitras MF, Berliner AR, Herring WJ, Guastella DB, Feldman A, et al. NMDA but not non-NMDA excitotoxicity is mediated by poly(ADP-ribose) polymerase. J Neurosci. 2000;20(21):8005–11.

383. Wurtman RJ, Chou C, Rose CM. Daily rhythm in tyrosine concentration in human plasma: persistence on low-protein diets. Science. 1967;158(3801):660–2. https://doi.org/10.1126/science.158.3801.660.

384. Wurtman RJ, Rose CM, Chou C, Larin FF. Daily rhythms in the concentrations of various amino acids in human plasma. N Engl J Med. 1968;279(4):171–5. https://doi.org/10.1056/NEJM196807252790401.

385. Zir LM, Parker DC, Smith RA, Rossman LG. The relationship of human growth hormone and plasma tyrosine during sleep. J Clin Endocrinol Metab. 1972;34(1):1–6. https://doi.org/10.1210/jcem-34-1-1.

386. Rose CM, Wurtman RJ. Daily rhythms in content and utilization of tyrosine in the whole mouse. Nature. 1970;226(5244):454–5. https://doi.org/10.1038/226454a0.

387. Wurtman RJ, Shoemaker WJ, Larin F. Mechanism of the daily rhythm in hepatic tyrosine transaminase activity: role of dietary tryptophan. Proc Natl Acad Sci U S A. 1968;59(3):800–7. https://doi.org/10.1073/pnas.59.3.800.

388. Black IB. Induction of hepatic tyrosine aminotransferase mediated by a cholinergic agent. Nature. 1970;225(5233):648. https://doi.org/10.1038/225648a0.

389. Black IB, Reis DJ. Central neural regulation by adrenergic nerves of the daily rhythm in hepatic tyrosine transaminase activity. J Physiol. 1971;219(2):267–80. https://doi.org/10.1113/jphysiol.1971.sp009661.

390. Palmieri L, Mamelí M, Ronca G. Effect of resveratrol and some other natural compounds on tyrosine kinase activity and on cytolysis. Drugs Exp Clin Res. 1999;25(2–3):79–85.

391. Sun L, Wang Y, Song Y, Cheng XR, Xia S, Rahman MR, et al. Resveratrol restores the circadian rhythmic disorder of lipid metabolism induced by high-fat diet in mice. Biochem Biophys Res Commun. 2015;458(1):86–91. https://doi.org/10.1016/j.bbrc.2015.01.072.

392. Oike H, Kobori M. Resveratrol regulates circadian clock genes in Rat-1 fibroblast cells. Biosci Biotechnol Bioch. 2008;72(11):3038–40. https://doi.org/10.1271/bbb.80426.

393. Okada Y, Okada M. Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. Mol Biol Rep. 2020;47(2):1021–32. https://doi.org/10.1007/s11033-019-05194-8.

394. Etchebarry JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature. 2003;421(6919):177–82. https://doi.org/10.1038/nature01314.

395. Gadacha W, Ben-Atta M, Bonnefont-Rousselot D, Aouani E, Ghem-Haboummi N, Toutou Y. Resveratrol opposite effects on rat tissue lipoperoxidation: pro-oxidant during day-time and antioxidant at night. Redox Rep. 2009;14(4):154–8. https://doi.org/10.1179/13510009x466131.

396. Pifferi F, Rahman A, Languille S, Auffret A, Babiloni C, Blin O, et al. Effects of dietary resveratrol on the sleep-wake cycle in the non-human primate gray mouse lemur (Microcebus murinus). Chronobiol Int. 2012;29(3):261–70. https://doi.org/10.3109/07420528.2011.654019.

397. Pifferi F, Dal-Pan A, Menaker M, Aujard F. Resveratrol dietary supplementation shortens the free-running circadian period and decreases body temperature in a prosimian primate. J Biol Rhythm. 2011;26(3):271–5. https://doi.org/10.1177/0748730411401788.

398. Kiskova T, Demeckova V, Vendzelovska Z, Kinktava M, Venglovská K, Bohndorfer M, et al. Nocturnal resveratrol administration inhibits chemically induced breast cancer formation in rats. J Physiol Pharmacol. 2017;68(6):867–75.
410. Macedo LG, Carvalho-Silva M, Ferreira GK, Vieira JS, Olegario N, Goncalves RC, et al. Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats. Neurochem Res. 2013;38(12):2625–30. https://doi.org/10.1007/s11064-013-1803-3.

411. De Pra SD, Ferreira GK, Carvalho-Silva M, Vieira JS, Scaini G, Leffa DD, et al. L-tyrosine induces DNA damage in brain and blood of rats. Neurochem Res. 2014;39(1):202–7. https://doi.org/10.1007/s11064-013-1207-9.

412. Streck EL, De Pra SDT, Ferro PR, Carvalho-Silva M, Gomes LM, Agostini JF, et al. Role of antioxidant treatment on DNA and lipid damage in the brain of rats subjected to a chemically induced chronic model of tyrosinemia type II. Mol Cell Biochem. 2017;435(1–2):207–14. https://doi.org/10.1007/s10017-017-3070-5.

413. Teodorak BP, Scaini G, Carvalho-Silva M, Gomes LM, Teixeira LJ, Rebelo J, et al. Antioxidants reverse the changes in energy metabolism of rat brain after chronic administration of L-tyrosine. Metab Brain Dis. 2017;32(2):557–64. https://doi.org/10.1007/s11011-016-9936-5.

414. Ferreira GK, Carvalho-Silva M, Gomes LM, Scaini G, Teixeira LJ, Mota IT, et al. The characterization of neuroenergetic effects of chronic L-tyrosine administration in young rats: evidence for striatal susceptibility. Metab Brain Dis. 2015;30(1):215–21. https://doi.org/10.1007/s11011-014-9615-3.

415. Korner J, Cline GW, Slištejn M, Barba P, Rayat GR, Febres G, et al. A role for foregut tyrosine metabolism in glucose tolerance. Mol Metab. 2019;23:37–50. https://doi.org/10.1016/j.molmet.2019.02.008.

416. Sterkel M, Perdomo HD, Guizzo MG, Barletta ABF, Nunes RD, Dias FA, et al. Tyrosine detoxification is an essential trait in the life history of blood-feeding arthropods. Curr Biol. 2016;26(16):2188–93. https://doi.org/10.1016/j.cub.2016.06.025.

417. Sterkel M, Oliveira PL. Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus. Proc Biol Sci. 2017;284(1854). https://doi.org/10.1098/rspb.2016.2607.

418. Green CL, Soltow QA, Mitchell SE, Derous D, Wang Y, Chen L, et al. The effects of graded levels of calorie restriction: XIII. Global Metabolomics Screen Reveals Graded Changes in Circulating Amino Acids, Vitamins, and Bile Acids in the Plasma of C57BL/6 Mice. J Gerontol A Biol Sci Med Sci. 2019;74(1):16–26. https://doi.org/10.1093/gerona/gly058.

419. Shetty MS, Gopinadhan S, Sajikumar S. Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA1 pyramidal neurons via sustained ERK1/2 activation. Hippocampus. 2016;26(2):137–50. https://doi.org/10.1002/hipo.22497.

420. Leng ZG, Lin SJ, Wu ZR, Guo YH, Cai L, Shang HB, et al. Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy. 2017;13(8):1404–19. https://doi.org/10.1080/15548627.2017.1328347.

421. Scaini G, Morais MO, Furlanetto CB, Kist LW, Pereira TC, Schuck PF, et al. Acute administration of branched-chain amino acids increases the pro-BDNF/total-BDNF ratio in the rat brain. Neurochem Res. 2015;40(5):885–93. https://doi.org/10.1007/s11064-015-1541-1.

422. Ferreira GK, Scaini G, Jeremias IC, Carvalho-Silva M, Goncalves CL, Pereira TC, et al. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain. Mol Neurobiol. 2014;49(2):734–40. https://doi.org/10.1007/s12035-013-8552-1.
van de Rest O, Bloemendaal M, de Heus R, Aarts E. Dose-dependent effects of oral tyrosine administration on plasma tyrosine levels and cognition in aging. Nutrients. 2017;9(12). https://doi.org/10.3390/nu9121279.

Norris JR, Meadows GG, Massey LK, Starkey JR, Sylvester DM, Liu SY. Tyrosine- and phenylalanine-restricted formula diet augments immunocompetence in healthy humans. Am J Clin Nutr. 1990;51(2):188–96. https://doi.org/10.1093/ajcn/51.2.188.

Seo Y, Park J, Choi W, Ju Son D, Sung Kim Y, Kim MK, et al. Antiatherogenic effect of resveratrol attributed to decreased expression of ICAM-1 (intercellular adhesion molecule-1). Arterioscler Thromb Vasc Biol. 2019;39(4):675–84. https://doi.org/10.1161/ATVBAHA.118.312201.

Zhao HL, Han LM, Jian Y, Ma YT, Yan WY, Chen XW, et al. Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis. Oncotargets Ther. 2018;11:8995–9006. https://doi.org/10.2147/Ott.S186247.

Gong CH, Xia HL. Resveratrol suppresses melanoma growth by promoting autophagy through inhibiting the PI3K/AKT/mTOR signaling pathway. Exp Ther Med. 2020;19(3):1878–86. https://doi.org/10.3892/etm.2019.8359.

Meadows GG, Pierson HF, Abdallah RM, Desai PR. Dietary influence of tyrosine and phenylalanine on the response of B16 melanoma to carbidopa-levodopa methyl ester chemotherapy. Cancer Res. 1982;42(8):3056–63.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.