STAR-FORMING OR STARBURSTING? THE ULTRAVIOLET CONUNDRUM

M. BOQUIN1, D. CALZETTI1, R. KENNICUTT2,3, D. DALE4, C. ENGLERBRACHT5, K. D. GORDON5, S. HONG1, J. C. LEE6,7, and J. PORTOU3

1 University of Massachusetts, Department of Astronomy, LGRT-B 619E, Amherst, MA 01003, USA; boquien@astro.umass.edu
2 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
3 Steward Observatory, University of Arizona, Tucson, AZ 85721, USA
4 Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA
5 STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA
6 Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA

1 Received 2009 July 17; accepted 2009 October 9; published 2009 November 2

ABSTRACT

Compared to starburst galaxies, normal star-forming galaxies have been shown to display a much larger dispersion of the dust attenuation at fixed reddening through studies of the IRX–β diagram (the IR/UV ratio “IRX” versus the UV color “β”). To investigate the causes of this larger dispersion and attempt to isolate second parameters, we have used GALEX UV, ground-based optical, and Spitzer infrared imaging of eight nearby galaxies, and examined the properties of individual UV and 24 μm selected star-forming regions. We concentrated on star-forming regions, in order to isolate simpler star formation histories than those that characterize whole galaxies. We find that (1) the dispersion is not correlated with the mean age of the stellar populations; (2) a range of dust geometries and dust extinction curves are the most likely causes for the observed dispersion in the IRX–β diagram, (3) together with some potential dilution of the most recent star-forming population by older unrelated bursts, at least in the case of star-forming regions within galaxies; and (4) we also recover some general characteristics of the regions, including a tight positive correlation between the amount of dust attenuation and the metal content. Although generalizing our results to whole galaxies may not be immediate, the possibility of a range of dust extinction laws and geometries should be accounted for in the latter systems as well.

Key words: galaxies: spiral – infrared: galaxies – ultraviolet: galaxies

Online-only material: color figures, machine readable table

1. INTRODUCTION

Star formation is a fundamental process that governs the evolution of the baryonic matter in galaxies. It can deeply affect the host galaxy, its properties and appearance. The newly formed star populations in galaxies change the galaxy’s spectral energy distribution (SED); the metals formed in the most massive stars pollute the interstellar medium and, in the presence of mechanical feedback from episodes of intense star formation, can be ejected from the galaxy and pollute the intergalactic medium. It is important to accurately measure star formation both as a function of spatial position within a galaxy and as a function of a galaxy’s temporal evolution. The cosmic star formation rate (SFR) density has become a classic comparison benchmark, and a challenge, for both semi-analytic and hydrodynamical models of structure formation and evolution (e.g., Katz et al. 1996; Hopkins et al. 2006). For over a decade now, studies of galaxies at cosmological distances have employed the “starburst attenuation curve” (Calzetti et al. 1994, 2000; Meurer et al. 1999)—see next paragraph for a description of the physical conditions leading to such a law and Equation (4) from Calzetti et al. (2000)—to correct their rest-frame UV measurements for the effects of dust extinction (e.g., Steidel et al. 1996, 1999; Giavalisco et al. 2004; Daddi et al. 2005, 2007, to name a few). This curve is a powerful tool, in that it only requires information on the UV colors (or UV spectral slope) of a galaxy to provide an extinction correction, and recover the intrinsic UV flux. Assuming this curve, the typical UV extinction correction at redshift 3 is a factor ~5 in luminosity (Steidel et al. 1999). However, in recent years, evidence has been accumulating that the starburst attenuation curve is not applicable to all galaxies (Buat et al. 2002, 2005; Noll et al. 2009) and that the UV extinction is dependent on the age of the stellar populations (Cortese et al. 2008). More quiescently star-forming galaxies show characteristics in their UV SED that do not lend themselves to the same extinction “treatment” as more active starbursts. Applying the starburst attenuation curve to these more quiescent galaxies leads to an order of magnitude overestimate of the UV luminosity (and of the SFR),
This result clearly represents a problem as deeper observations probe past the most powerful starburst to more normal galaxies with relatively lower SFR at increasingly higher redshifts. Along these lines, current determinations of UV luminosity functions at cosmological distances may be viewed with some suspicion, as all of them need some form of extinction correction (Steidel et al. 1999; Giavalisco et al. 2004; Sawicki & Thompson 2006; Teplitz et al. 2006).

One of the prescriptions of the starburst attenuation curve is based on a very simple, fully empirical result. The ratio $L_{\text{IR}}/L_{\text{UV}}$ is strongly correlated with the measured UV spectral slope β (or the UV color) in local, UV-bright starburst galaxies (Meurer et al. 1999; Calzetti et al. 2000). The $L_{\text{IR}}/L_{\text{UV}}$ ratio is a measure of the total dust opacity that affects the UV emission in a galaxy, or more generally, in a stellar system; the UV light absorbed by dust is re-emitted in the IR, independently of the details of the star–dust distribution, the dust properties, the metallicity, the stellar initial mass function (IMF), or the star formation history of the system (Gordon et al. 2000; Buat et al. 2005). Meurer et al.’s result, commonly called the IRX–β relation, together with a host of previous results that showed strong correlations between β and a number of dust reddening measures, forms the basis for an extinction correction prescription that obviously applies to local (and possibly distant) starburst galaxies (Calzetti et al. 1994, 1996; Calzetti 1997, 2001). The properties of the starburst attenuation curve imply specific conditions for the distribution of dust and stars within the starburst region (Calzetti et al. 1994, 1996; Witt & Gordon 2000; Charlot & Fall 2000; Calzetti 2001).

The geometry that can account for all observed properties at UV, optical, near-IR, and far-IR wavelengths is that of a dust distribution foreground to the stellar population responsible for the bulk of the UV emission. The term foreground is here loosely used to indicate any geometry that puts the stars in the center of a shell-like dust distribution, and does not make any inference on the dust distribution (which can be homogeneous or clumpy). Starbursts provide a mechanism for creating such specific dust–star geometry: massive star wind and supernova feedback can create expanding bubbles of hot gas that sweep away a significant fraction of the dust and gas that resides in the starburst site itself. Within this scenario, the gas and dust end up at the “edges” of the starburst site thus creating an inhomogeneously distributed “shell.” In addition, the starburst extinction curve also requires a specific type of dust grains lacking the 2175 Å bump (Gordon et al. 1997) like that found in the SMC bar (Gordon & Clayton 1998; Gordon et al. 2003).

The starburst attenuation curve may thus not apply to a generic galaxy, as the coherent feedback mechanism present in starbursts may be missing in other galaxies. A number of studies have confirmed that more quiescent star-forming galaxies, although they generally trace a correlation in the IRX–β plane, are also up to an order of magnitude less obscured than starbursts for similar β values, and can have a larger dispersion, with a factor up to \sim5 larger spread around the mean correlation (Buat et al. 2002, 2005; Bell 2002; Kong et al. 2004; Gordon et al. 2004; Seibert et al. 2005; Calzetti et al. 2005; Boissier et al. 2007; Dale et al. 2007; Muñoz-Mateos et al. 2009). UltraLuminous Infrared Galaxies (ULIRGs) also deviate from the starburst IRX–β correlation (Goldader et al. 2002), and are located above it, i.e., opposite to the star-forming galaxies. ULIRGs are dustier, more compact, and denser systems than the UV-bright starbursts; therefore, their location in the IRX–β diagram is plausibly accounted for by an “homogeneous” mixture of dust and stars (Calzetti 2001). ULIRGs likely represent less concern for the use of the UV emission as a SFR tracer, as in general they will not be detectable at rest-frame UV wavelengths in cosmological samples. Quiescent star-forming galaxies are a far larger concern, as they are relatively bright in the UV and become increasingly detected as surveys go deeper and, by the nature of the luminosity function, are more numerous than starbursts. Alas, for these galaxies, the next step in the investigation, understanding and quantifying the nature of the deviation from the starbursts’ IRX–β correlation, has so far eluded any attempt. Bell (2002) suggested that a combination of variations in the dust geometry and the characteristics (age, etc.) of the stellar populations could be the reason for the deviation observed in the H II regions of the Large Magellanic Cloud. The sparse data available, however, prevented further insights into the problem. Similar limitations were encountered by Gordon et al. (2004) in their analysis of the star-forming regions in M 81. Kong et al. (2004), using a non-homogeneous UV data set, suggested that the deviations of a large sample of quiescent star-forming galaxies from the starburst relation could be parameterized by the b-parameter, the ratio of the current to past average SFR. However, neither Seibert et al. (2005), using the more homogeneous GALEX All-sky Imaging Survey sample plus IR data from IRAS, nor Johnson et al. (2007), using SDSS data, Spitzer, and spectroscopic observations, confirmed Kong et al.’s suggestion. Some of these works have also produced “mean” obscuration curves for quiescent star-forming galaxies, but the intrinsic spread of the data around these mean curves is more than an order of magnitude, versus \sim2–3 typical of the starbursts. This suggests the existence of a “second parameter” for the star-forming galaxies (Kong et al. 2004), which needs to be identified and understood if the UV is going to be used as a tracer of SFR.

In this paper, we investigate the possible reason for the deviation from the starburst IRX–β relation concentrating on sub-kpc star-forming regions within galaxies, which provide simpler samples of stellar population than whole galaxies. We use GALEX observations to measure the UV luminosity, Spitzer ones to derive the total infrared luminosity and optical ones to estimate the age.

In Section 2, we present the sample of galaxies selected for this study; in Section 3, we present the UV, IR, and optical observations; in Section 4, we present the data processing and photometry methods carried out; in Section 5, we present how we model the star-forming regions; in Section 6, we proceed on to test the validity of the age as the “second parameter”; in Section 7, we test different extinction laws; in Section 8, we test the metallicity; in Section 9, we discuss the results presented; and in Section 10, we finally conclude.

2. SAMPLE OF GALAXIES

Since we wish to investigate individual star-forming regions within galaxies, we select galaxies where such regions can be resolved. Indeed the typical resolution in mid-infrared at 24 μm with Spitzer MIPS or ultraviolet with GALEX—where star formation— is about 5″–6″. The typical size of a giant H II complex, about 300 pc can be resolved at a distance up to 10 Mpc at this resolution. Within this size at most a few stellar clusters may reside and contribute to the ultraviolet and infrared emission. Thus this constraint on the distance ensures that there are as few clusters as possible in an individual giant H II region. On the other hand, we also exclude very nearby galaxies that
would provide a very high level of detail. We have applied the following criteria to select the sample of galaxies for this study: (1) a distance closer than 10 Mpc, (2) to be star-forming spiral galaxies, (3) to cover a wide range in total SFR and SFR surface density, (4) not to be too inclined (minor axis/major axis > 0.5), and (5) have GALEX data available.

The final sample consists of eight star-forming galaxies, details are given in Table 1. Their SFRs range from 0.004 to 0.046 M⊙ yr⁻¹, with an average of 0.020 ± 0.021 M⊙ yr⁻¹ calculated over the area defined by R₂₅.

3. OBSERVATIONS

3.1. GALEX

We have obtained far- and near-ultraviolet processed count and intensity maps from the GALEX archive. Thanks to its large field of view of 1°24, it can encompass the full extent of the selected galaxies with a single pointing. The far ultraviolet band is centered on λ_eff = 151 nm whereas the near ultraviolet one is centered on λ = 227 nm. Detailed information about the instruments are provided in Martin et al. (2005).

Galaxies have been observed as part of the Nearby Galaxy Survey (NGC 0628, NGC 2403, NGC 5055, NGC 5194, NGC 5457 and NGC 7793) and Guest investigators programs (program 71 cycle 1 for NGC 3031 and program 5 in cycle 3 for NGC 5236).

3.2. Ground-based Optical

Ground-based optical images consist of narrowband Hα observations as well as broadband U, B, and R observations.

Most Hα images have been obtained from the Spitzer Infrared Nearby Galaxies Survey (SINGS; Kennicutt et al. 2003) archives, fifth delivery, final enhanced products released on 2007 April 10. Observations have been carried out at the National Optical Astronomy Observatory, in 2001 on the Kitt Peak National Observatory (KPNO) 2.1 m and Cerro Tololo Inter-American Observatory (CTIO) 1.5 m telescopes. More details are available in the SINGS “User’s Guide.” For NGC 5236, the data were obtained on the Bok 2.3 m telescope on 2005 May 10.

Continuum emission has been subtracted from the Hα image using the corresponding scaled R-band image following the method described in S. Hong et al. (2010, in preparation).

SINGS spectroscopic observations (J. Moustakas et al. 2010, in preparation) have been used to infer the mean [N II]/Hα ratio within the galaxies. The measured fluxes have been corrected for contamination by the [N II] lines accordingly. As no spectrum was available for the high-metallicity galaxy NGC 5236, we have assumed [N II]/Hα = 0.5, close to 0.53 found by Kennicutt et al. (2008) that has been estimated based on a scaling relationship between M(B) and [N II] as described in Appendix B of that paper. Although the relative strength of the [N II] lines can change from one H α region to another and can evolve as a function of the radial distance, we have assumed a constant ratio for each galaxy. Indeed very super-metallic and sub-metallic star-forming regions—in which the relative strength of the [N II] lines may deviate significantly from the mean observed values—are less likely to be detected in the UV for the former and in the mid-infrared for the latter.

Images in the U, B, and R bands have been obtained either from the SINGS archives—as mentioned in the previous section—or observed in the context of the Steward Nearby U-band GaLyax (SNUGL) survey, using 90prime (Williams et al. 2004).

3.3. Spitzer

Spitzer is a key observatory to estimate the total infrared luminosity. Indeed its two imagers cover a large range of infrared emission, from 3.6 μm to 8.0 μm for IRAC and 24 μm to 160 μm for MIPS. The relations to estimate the bolometric infrared luminosity routinely used the IRAC 8.0 μm and the MIPS 24 μm bands (see for instance Calzetti et al. 2005; Pérez-González et al. 2006; Boquien et al. 2009, and references therein). All galaxies but two have been observed as part of SINGS. We used the processed legacy data provided by the SINGS team. The only galaxies that are not observed by SINGS are NGC 5236 (also observed by Engelbracht et al. 2008) and NGC 5457 (observed by Gordon et al. 2008) are part of the Spitzer Local Volume Legacy Survey (Dale et al. 2009).

3.4. Summary

Images of the galaxies in FUV, Hα, and 24 μm are presented in Figures 1 and 2. For NGC 5236, the missing Hα image has been substituted with the R-band one.

Table 1

Name	Morphology	θ°C (12000.0)	θ°C (2000.0)	Distance (Mpc)	P.A.°	Major Axis°	Minor Axis°	ρ25° (°)	[O/II]°	[N/II]°/Hα
NGC 0628 (M 74)	SAbc	01 36 41.8	+15 47 01	7.3	0	10.5	9.5	5.24	9.16	-0.58
NGC 2403 (M 81)	SAbd	09 55 33.2	+69 36 55	3.5	123	21.9	12.3	10.94	8.88	-0.27
NGC 5055 (M 63)	SAbc	13 15 49.3	+42 01 45	7.8	107	12.6	7.2	6.30	9.27	-0.54
NGC 5457 (M 101)	SAbc	13 29 52.7	+47 11 43	7.62	22	11.2	6.9	5.61	9.30	-0.49
NGC 5236 (M 83)	SAbc	13 37 00.9	-29 51 56	4.5	0	12.9	11.5	5.9	9.24	-0.19
NGC 7793	SAd	14 03 12.6	+54 20 57	7.2	39	28.8	26.9	14.1	8.89	-0.93

Notes.

a Data from the NASA/IPAC Extragalactic Database.

b The position angle is calculated manually adjusting an ellipse to the galaxy in the R-band image (if available).

c Radius of the major axis at the μ = 25 mag arcsec⁻² isophote.

d Data obtained from Zaritsky et al. (1994) and J. Moustakas et al. (2010, in preparation).

http://data.spitzer.caltech.edu/popular/sings/20070410_enhanced_v1/Documents/sings_fifth_delivery_v2.pdf
Figure 1. Combined FUV (blue channel), Hα (green channel), and 24 μm (red channel). The top-left image in NGC 0628, the top-right one NGC 2403, the bottom-left one NGC 3031, and the bottom-right one NGC 5055. Note that the Hα image of NGC 3031 does not cover all the galaxy and is the combination of several pointings that have slightly different background levels as can be clearly seen in the image. (A color version of this figure is available in the online journal.)

A summary of the bands, telescopes used, observing dates, exposure times, and sensitivities of all observations are presented in Table 2.

4. DATA PROCESSING AND PHOTOMETRY

4.1. Definition of the Apertures

Given the multi-wavelength nature of this study, we have selected the star-forming regions using the GALEX FUV and the Spitzer MIPS 24 μm images. Indeed, not only do those wavelengths trace star formation but they also have a similar resolution (~5′–6′), which ensures that the totality of the region is encompassed in other wavelengths that provide a better resolution such as the IRAC 8.0 μm and the optical bands. Given that they offer a complementary view of star formation—far ultraviolet emission absorbed by the dust is re-emitted in the infrared—the selection of the star-forming regions has been performed independently in those bands. This allows us not to miss regions that have a very low or a very high extinction, the former being mainly visible in FUV while the latter are primarily detected in the infrared.

Even at a resolution of ~5′–6′, star-forming regions complexes are sufficiently resolved such that their shape have to be taken into account using polygonal apertures. Visual inspection shows that the irregular shapes are mainly due to the overlap of very close star-forming regions. The apertures have been made as small as possible to reduce the number of star-forming regions inside an individual aperture to limit the contamination by nearby sources. The goal is to select star-forming regions as simple as possible, and to avoid the most complex ones composed of stellar populations of different ages. To achieve this goal, we have defined apertures using polygons. Each polygon is defined manually to encompass as few star-forming regions as possible within a single aperture as well as to avoid artifacts, and background and foreground objects.

Even if some regions are most likely selected in the UV and in the IR but with different apertures, no attempt has been made to make a link between the two. This is made difficult by the fact that for a given region the apertures can be quite different, cover only a part of the region, or be split into several apertures. However, a visual inspection of the apertures shows that some regions have an aperture defined only from either UV or IR even if it is visible in both bands. This is due to the fact that the apertures for each band are built mainly for the most prominent regions.

The background flux is defined on a per-aperture basis using an annulus around the aperture. The radius and the width of this annulus is defined for each galaxy depending on the surface density of star-forming regions. Local background subtraction has been performed in all bands. The background flux is defined on a per-aperture basis using an annulus around the aperture. The radius and the width of this annulus is defined for each galaxy depending on the surface density of star-forming regions.
level is then calculated using the mode of the pixels enclosed in the background annulus. To improve the determination of the galactic background level, for some wavelengths we have invalidated emission above a given threshold in the background annulus. This threshold has been manually determined to eliminate as much emission as possible from the nearby sources while keeping the genuine background emission. This was done for the GALEX bands as well as the Spitzer IRAC 8.0 μm and MIPS 24 μm bands. This threshold was not applied to broadband optical images where young star-forming regions are much less prominent; in the U, B, and R bands, the local background is dominated by an evolved stellar population.

The raw fluxes and the errors have been calculated using the IRAF procedure polyphot.

Following the aforementioned criteria, we have selected a total of 1146 star-forming regions in the eight galaxies constituting the sample. In order to increase the significance of the results we have subsequently selected only star-forming regions that have flux uncertainties of at most 20% in the GALEX FUV, NUV, and the Spitzer MIPS 24 μm band, leaving us with a total sample of 324 regions. The number of UV-selected and infrared-selected regions is presented in Table 3, for each galaxy in our sample.

4.2. Aperture Correction

We have performed an aperture correction on the infrared fluxes. As the method routinely used is not tailored for non-circular apertures, we have proceeded as described in Boquien et al. (2007). We have calculated an “equivalent radius”: $r = \sqrt{S/\pi}$, r being the equivalent radius and S the surface of the aperture in units of pixels. The flux has then been corrected using this equivalent radius combined with the formulas provided in the Spitzer handbook for extended sources.

![Figure 2. Combined FUV (blue channel), Hα (green channel), and 24 μm (red channel). The top-left image in NGC 5194, the top-right one NGC 5236, the bottom-left one NGC 7793, and the bottom-right one NGC 5457. (A color version of this figure is available in the online journal.)](image-url)
Table 2

Galaxy	Band	Telescope	Date	Exposure Time (s)	1σ Sensitivity (mJy arcsec$^{-2}$)
NGC 0628	FUV	GALEX	2003 Oct 7	1636	31
	NUV			28	
	U	Bok 2.3 m	2004 Dec 12	600	42
	B	CTIO 1.5m	2001 Oct 20	480	50
	R		2001 Oct 20	180	189
	$H\alpha$		2001 Oct 21	600	1.36×10^{-20}
	8 μm	Spitzer/IRAC	2004 Jul 28	240	1245
	24 μm	Spitzer/MIPS	2005 Jan 23	160	2515
NGC 2403	FUV	GALEX	2003 Dec 5	3317	22
	NUV			18	
	U	Bok 2.3 m	2004 Dec 9	600	35
	B		2004 Dec 10	300	47
	R	KPNO 2.1m	2001 Nov 16	180	74
	$H\alpha$		2001 Nov 15	600	6.70×10^{-21}
	8 μm	Spitzer/IRAC	2004 Oct 12	240	790
	24 μm	Spitzer/MIPS	2004 Oct 12	160	1404
NGC 3031	FUV	GALEX	2006 Jan 5	11112	23
	NUV		2005 Jan 12	17	
	U	Bok 2.3 m	2004 Dec 12	600	42
	B		2004 May 10	300	48
	R	KPNO 2.1m	2001 Mar 30	420	146
	$H\alpha$		2001 Mar 30	900	1.33×10^{-20}
	8 μm	Spitzer/IRAC	2004 May 1	240	1219
	24 μm	Spitzer/MIPS	2004 Oct 16	160	1597
NGC 5055	FUV	GALEX	2004 Mar 31	1655	23
	NUV			23	
	U	Bok 2.3 m	2005 Feb 9	600	47
	B		2005 May 10	300	60
	$H\alpha$		1999 Apr 20	420	
	8 μm	Spitzer/IRAC	2004 Dec 15	240	1399
	24 μm	Spitzer/MIPS	2005 Jan 26	160	1750
NGC 5194	FUV	GALEX	2003 Jun 19	2520	27
	NUV		2005 May 28	20	
	U	Bok 2.3 m	2004 Jun 20	600	20
	B	KPNO 2.1m	2001 Mar 28	720	37
	R		2001 Mar 28	360	61
	$H\alpha$		2001 Mar 28	900	5.04×10^{-21}
	8 μm	Spitzer/IRAC	2004 May 22	240	1007
	24 μm	Spitzer/MIPS	2004 Jun 22	160	1701
NGC 5236	FUV	GALEX	2003 Jun 7	1343	50
	NUV			35	
	U	Bok 2.3m	2005 May 9	600	88
	B		2005 May 10	300	125
	R		2005 May 10	600	1.37×10^{-20}
	$H\alpha$		2008 Mar 5	240	1496
	8 μm	Spitzer/IRAC	2006 Feb 18	160	2005
	24 μm	Spitzer/MIPS	2003 Jun 20	1040	38
NGC 5457	FUV	GALEX	2003 Jun 20	1040	38
	NUV			30	
	U	Bok 2.3 m	2005 May 9	600	49
	B		2005 May 10	300	31
	8 μm	Spitzer/IRAC	2004 Mar 8	85	1212
	24 μm	Spitzer/MIPS	2004 May 10	200	1398
NGC 7793	FUV	GALEX	2003 Sep 13	1553	26
	NUV			26	
	U	Danish 1.54m	1997 Jun 9	900	63
	B	CTIO 1.5m	2001 Oct 18	480	73
	R		2001 Oct 18	180	143
	$H\alpha$		2001 Oct 18	600	1.43×10^{-20}
	8 μm	Spitzer/IRAC	2004 Jun 10	240	1115
	24 μm	Spitzer/MIPS	2004 Jul 10	160	1829

Note. a In units of W m$^{-2}$ s$^{-1}$ arcsec$^{-2}$ for $H\alpha$ images.
for IRAC9 and in Engelbracht et al. (2007) for MIPS. For the 8.0 μm (24 μm) band, the average correction factor was 0.94 ± 0.17 (resp. 1.70 ± 2.11). No aperture correction has been performed neither on UV images—as the corrections are very small—nor on optical images, thanks to their higher angular resolution.

4.3. Correction of the Galactic Extinction

We have corrected our UV and optical data for the effect of foreground Galactic extinction using the Cardelli et al. (1989) attenuation curve along with the differential extinction $E(B-V)$ provided by the NASA/IPAC Extragalactic Database.

4.4. Fluxes and Main Properties of the Sample

The observed fluxes in all bands are presented in Table 4. The luminosities of the star-forming regions span a factor ~ 200 in FUV (5.15 \times 1032–1.00 \times 1035 W) and a factor \sim2000 in 24 μm (5.81 \times 1031–1.23 \times 1035 W). We can see in Figure 3 that those two star formation tracers are strongly correlated with a Pearson correlation coefficient $r = 0.75$ between log ($L_{(24)}$) and log ($L_{(FUV)}$).

9 Also available at the following address: http://ssc.spitzer.caltech.edu/irac/calib/extcal/.

We observe that especially at higher luminosities, the 24 μm luminosity increases faster than the FUV one. This is most likely an extinction effect, as can be seen in infrared luminous galaxies for instance. The fit of the sample gives $\log L_{(FUV)} - \log L_{(24)} = 16.55 \pm 0.85 + (0.52 \pm 0.03) \times \log L_{(24)}$. The slope is as expected, significantly smaller than 1.

While the correlation between the FUV and the 24 μm star formation tracers is good, the UV bands are impacted by the dust. The distribution of UV colors is presented in Figure 4.

There is a clear distinction in the UV colors distribution among the galaxies. The bluest one NGC 5457 peaks 0.2 dex bluer than the reddest one, NGC 5236. This may be a consequence of the presence of older UV-emitting stars unrelated to the current star formation episode or the extinction, which affects UV luminosities (a range of 0.2 dex corresponds to an extinction range $A_V \approx 1$ for the stellar component assuming a starburst attenuation curve). This is supported by the fact that very few star-forming regions have an UV color that is compatible with an ionizing population even though Hα is detected in most of them, which indicates a reddening unrelated to the age of the current episode. Indeed, assuming a Kroupa (2001) IMF, and a solar metallicity, a simple stellar population will still have EW(Hα) $\simeq 1$ Å after 20 × 106 years.

Among the 324 selected star-forming regions, we have suitable Hα imaging information for 228 and we measure their fluxes. The lack of Hα observations for NGC 5055 (we do not have the corresponding suitable R-band image to perform continuum subtraction making the Hα fluxes too unreliable to be used here) and NGC 5457 is responsible for this difference. Among those regions, 213 (respectively 184) are detected with S/N > 3 (resp. S/N > 5). It shows that the star-forming regions are young and have recently formed stars. Indeed, the Hα equivalent width is a good tracer of the age of a single star-formation episode for the first \sim10–5 × 106 years. We will see in Section 6.2 that the $U - B$ color is also a good tracer of the age.

4.5. Estimation of the Extinction

In order to estimate attenuation values for our regions, we have made use of the 24 μm and the Hα images. Indeed Calzetti

\begin{table}[h]
\centering
\caption{Number of Selected Star-forming Regions}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Galaxy & \multicolumn{2}{|c|}{UV-selected Regions} & \multicolumn{2}{|c|}{IR-selected Regions} & \multicolumn{2}{|c|}{Regions} \\
\hline & Total & Selected & Total & Selected & Total & Selected \\
\hline NGC 0628 & 57 & 26 & 36 & 8 & 93 & 34 \\
NGC 2403 & 80 & 28 & 24 & 12 & 104 & 40 \\
NGC 3031 & 135 & 23 & 64 & 13 & 199 & 36 \\
NGC 5055 & 51 & 7 & 40 & 5 & 91 & 12 \\
NGC 5194 & 74 & 32 & 63 & 25 & 137 & 57 \\
NGC 5236 & 67 & 30 & 52 & 22 & 119 & 34 \\
NGC 5457 & 143 & 50 & 124 & 34 & 267 & 84 \\
NGC 7793 & 66 & 6 & 70 & 3 & 136 & 9 \\
\hline Total & 673 & 202 & 473 & 122 & 1146 & 324 \\
\hline
\end{tabular}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Far ultraviolet luminosity vs. the 24 μm one. The regions selected in ultraviolet (resp. mid-infrared) are represented by diamonds (resp. by asterisks). The color indicates in which galaxy the star-forming regions are located—NGC 0628: red; NGC 2403: brown; NGC 3031: green; NGC 5055: blue; NGC 5194: magenta; NGC 5236: Orange; NGC 5457: black; NGC 7793: cyan. The black solid line represents the fit for the whole sample. (A color version of this figure is available in the online journal.)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Distribution of the UV colors as defined by log $F_{(FUV)}/F_{(NUV)}$. The dashed line histogram represents the whole sample. The colored lines represent the histogram for each galaxy. The bin width is 0.04 dex. Histograms are slightly offset horizontally from each other by a small fraction of their bin width for better readability. The colors are the same as defined in Figure 3. (A color version of this figure is available in the online journal.)}
\end{figure}
Table 4

Apertures Positions and Fluxes

ID	αb (J2000.0)	δb (J2000.0)	FUVc (mJy)	NUVc (mJy)	Uc (mJy)	Bc (mJy)	Rc (mJy)	8 µm d,e (mJy)	24 µm d (mJy)	Ha d (10^{-17} W m^{-2} s^{-1})	R_e (arcsec)
NGC 0628-U-01	01 36 28.0	+15 46 59.8	0.14 ± 0.02	0.13 ± 0.03	0.20 ± 0.05	0.17 ± 0.13	2.81 ± 0.52	4.52 ± 0.66	3.74 ± 0.74	15.3	
NGC 0628-U-02	01 36 29.1	+15 48 21.0	0.19 ± 0.01	0.21 ± 0.02	0.38 ± 0.04	0.34 ± 0.06	11.96 ± 0.40	32.47 ± 0.61	11.86 ± 0.62	10.0	
NGC 0628-U-03	01 36 30.3	+15 49 22.0	0.29 ± 0.05	0.35 ± 0.05	0.86 ± 0.10	1.64 ± 0.14	7.24 ± 1.01	8.67 ± 1.48	5.49 ± 1.68	11.9	
NGC 0628-U-04	01 36 36.1	+15 48 06.0	0.17 ± 0.03	0.22 ± 0.03	0.31 ± 0.06	0.41 ± 0.11	6.30 ± 0.89	9.81 ± 1.12	3.06 ± 0.74	7.3	
NGC 0628-U-05	01 36 36.2	+15 47 26.0	0.42 ± 0.07	0.48 ± 0.08	0.69 ± 0.18	0.97 ± 0.39	21.41 ± 2.32	18.28 ± 2.04	5.95 ± 1.67	12.3	
NGC 0628-U-06	01 36 36.4	+15 50 17.0	0.55 ± 0.10	0.57 ± 0.10	0.95 ± 0.18	1.03 ± 0.31	13.90 ± 2.61	24.61 ± 4.09	22.13 ± 2.90	12.8	
NGC 0628-U-07	01 36 37.1	+15 48 09.0	0.35 ± 0.05	0.34 ± 0.05	0.55 ± 0.12	0.70 ± 0.24	26.09 ± 3.14	45.01 ± 2.90	13.02 ± 1.38	8.1	
NGC 0628-U-08	01 36 37.8	+15 45 01.0	0.55 ± 0.06	0.66 ± 0.07	0.85 ± 0.12	0.95 ± 0.22	21.96 ± 1.70	70.66 ± 2.14	17.26 ± 1.56	16.2	
NGC 0628-U-09	01 36 38.8	+15 44 12.0	1.97 ± 0.18	2.14 ± 0.19	2.60 ± 0.30	3.02 ± 0.58	26.32 ± 2.94	76.63 ± 2.64	37.59 ± 4.51	8.5	
NGC 0628-U-10	01 36 38.8	+15 49 13.0	0.69 ± 0.04	0.83 ± 0.04	1.05 ± 0.08	1.50 ± 0.13	7.95 ± 0.82	13.19 ± 0.83	6.45 ± 1.18	17.1	

Notes. Units of right ascension are hours, minutes, and seconds; and units of declination are degrees, arcminutes, and arcseconds. Aperture correction has only been applied to infrared bands. Galactic extinction correction has been performed on UV and optical fluxes.

a Format: names of the galaxy band of selection number. U (respectively I) indicates that the aperture has been defined from the FUV (resp. 24 µm) image.
b Position of the barycenter of the apertures.
c Stellar and ionized gas fluxes have been corrected for the Galactic foreground extinction using the Cardelli et al. (1989) law.
d Infrared fluxes have been corrected for aperture effects.
e Stellar emission in the 8 µm has been subtracted using the relation presented in Helou et al. (2004): \(F_8(\text{PAH}) = F_8 - 0.232 \times F_v \) (3.6).

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)
et al. (2007) showed that there is a very good correlation between the extinction-corrected Paα and a combination of the 24 μm and dust-obscured Hα leading to an estimate of the intrinsic Hα luminosity:

\[
L\left(\text{H}\alpha\right)_{\text{intrinsic}} = L\left(\text{H}\alpha\right)_{\text{observed}} + 0.031 \times L\left(24\right).
\]

This permits to derive the extinction of the gas:

\[
A_{\text{V}}^{\text{gas}} = 3.06 \times \log \left[1 + \frac{0.031 \times L\left(24\right)}{L\left(\text{H}\alpha\right)_{\text{observed}}} \right].
\]

As the extinction of the stars is smaller, we assume here that \(A_V = 0.44 \times A_{\text{V}}^{\text{gas}}\) (Calzetti et al. 2000). We obtain an extinction ranging from \(A_V = 0.06\) to \(A_V = 1.28\) with a mean \((A_V) = 0.44 \pm 0.28\).

Note that as this method, to estimate the extinction, is dependent on the Hα, NGC 5055 and NGC 5457 fluxes cannot be corrected for the extinction and are therefore excluded from any subsequent analysis involving extinction correction.

5. MODELING

5.1. Spectral Synthesis

To model the SED of individual star-forming regions, we have used the Pégase II evolutionary spectral synthesis code (Fioc & Rocca-Volmerange 1997). We have assumed an instantaneous starburst having an age ranging from \(1 \times 10^6\) years to \(300 \times 10^6\) years with a constant metallicity of \(Z = 0.02\) and a Kroupa (2001) IMF from 0.1 \(M_\odot\) to 120 \(M_\odot\). The impact of assuming solar metallicity in the models on our results will be examined in Section 6.2.

Fluxes and colors are determined convolving the generated SED—taking into account the nebular emission lines as well as the nebular continuum, which is important for young regions (Anders & Fritz-v. Alvensleben 2003)—with the spectral response function of the filters for the FUV, NUV, U, and B bands. The infrared luminosity is obtained calculating the absorbed flux by the dust. See the section hereafter for details about the dust models.

5.2. Dust Models

We use different dust models in order to probe the effect of dust–stars geometry: (1) the starburst attenuation curve (Calzetti et al. 2000); classically used in deep surveys with the IRX–β relation; (2) the foreground dust screen Small Magellanic Cloud attenuation curve (Gordon et al. 2003); and (3) the mixed stars and dust Small Magellanic Cloud attenuation curve using the relation: \(I_{\text{observed}}/I_{\text{intrinsic}} = 0.921 \times (1 - 10^{-0.4A(\beta)})/A(\lambda)\) adapted from Natta & Panagia (1984).

The dust extinction is applied to the unexinguished SED with \(A_V\) ranging from 0 to 3 by steps of 0.1. In this paper, conventionally, \(A_V\) designates the extinction of the stars. The extinction of the gas is noted \(A_{\text{V}}^{\text{gas}}\). The nebular emission accounts for a small fraction of the total flux in the broad bands, and the same extinction law has been applied to the stellar and the nebular emissions in these cases.

A comparison with the models generated by Calzetti et al. (2005) using STARBURST99 shows that the results are nearly identical.

6. THE AGE AS THE “SECOND PARAMETER”?'

In order to probe the driving parameters for the spread of the normal star-forming galaxies in the IRX–β diagram, we need to derive the following quantities for our galaxies: the ultraviolet slope, the total infrared luminosity (Section 6.1), which will be used to derive the FIR/FUV ratio, and estimators for the age of the stellar populations. In the present work, we use two estimators: the \(U - B\) color and the equivalent width of Hα emission line (Section 6.2).

6.1. Estimation of the Bolometric Infrared Luminosity

In order to determine the total infrared emission of the selected star-forming region, we use the Spitzer IRAC 8.0 μm and MIPS 24 μm emission. While the exploitation of the MIPS 70 μm and 160 μm bands would yield better results, their resolution (17′′ and 38′′) is too low to separate individual star-forming regions. For this study, we estimate the total infrared emission using the Calzetti et al. (2005) relation that was derived in a preliminary study on NGC 5194:

\[
\log L(\text{IR}) = \log [L(24)] + 0.908 + 0.793 \log [L_v(8)/L_v(24)].
\]

The scatter around the relation within a galaxy is about 40% (Calzetti et al. 2005), which is the accuracy level we can expect for the determination of the total infrared flux of individual star-forming regions. Pérez-González et al. (2006) also derived a similar relation. Practically, the difference between the Calzetti et al. (2005) and the Pérez-González et al. (2006) IRX estimates for the selected star-forming regions is \(-0.07 \pm 0.03\) dex, which is only a few percent of the total range and does not alter the results presented in this study.

6.2. Stellar Population Age Estimators

To test if the age is the “second parameter” we are looking for, an accurate determination of the stellar population ages is needed. Given the large number of star-forming regions involved, a direct spectral observation of the age sensitive 4000 Å break, as measured by the \(D_{4000}\) parameter, is not available for the majority of regions in our sample. We have decided to exploit the \(U - B\) color as a proxy to the 4000 Å break. Indeed the \(U\)-band is centered around 360 nm while the \(B\)-band is centered around 440 nm, on each side of the break. A simple Pégase II model using a Kroupa (2001) IMF from 0.1 \(M_\odot\) to 120 \(M_\odot\) and a metallicity of \(Z = 0.02\) shows that for an instantaneous burst, the \(U - B\) color ranges from \(-1.18\) after \(1 \times 10^6\) years to 0.04 after \(300 \times 10^6\) years (Figure 5, left panel).

While the \(D_{4000}\) parameter is essentially extinction free thanks to the narrow wavelength range probed, extinction is strong at short wavelengths, inducing an important uncertainty regarding the broadband \(U\) and \(B\) fluxes. However, this problem is mitigated on using the \(U - B\) color. Indeed, when averaged on a number of dust geometries and extinction curves, an extinction of \(A_V = 1\) yields only \(E(U - B) \sim 0.1 \times A_V\) mag. We will see in Section 6.3 that the stellar extinction—assuming \(A_{V}^{\text{gas}} = 0.44 \times A_{V}^{\text{gas}}\)—ranges from \(A_V = 0.06\) and \(A_V = 1.28\), with a mean extinction of 0.44 magnitude, which yields an average uncertainty of 0.04 mag (0.1 mag if we assume a starburst attenuation law).

Young star-forming regions are the main source of Hα emission in star-forming galaxies. As the population ages, the Hα drops dramatically as stars emitting ionizing photons have a life expectancy typically under \(20 \times 10^6\) years. A standard way to estimate the age is the equivalent width of the Hα emission line, which decreases as the most massive stars die. The exact estimation would necessitate spectroscopic observations. Indeed, even if the \(R\)-band emission is not only constituted
of the continuum—it is “polluted” by the Hα and [N II] lines and the nebular emission in general—it is the best possible approximation with the available data. Another advantage is to limit the differential extinction as the Hα line and the R-band central wavelength are close.

A comparison of the evolution of $U - B$ and Hα equivalent width age tracers against time is plotted in Figure 5, left panel, and they are compared with observations in Figure 5, right panel.

We see in Figure 5, right panel, that for all star-forming regions, the Hα equivalent width is reasonably high, ranging typically from $\sim 15 \, \AA$ to $\sim 600 \, \AA$. This indicates a young age, typically less than 10×10^6 years. The $U - B$ color ranges typically from -1.3 to -0.1. There is a clear correlation between the Hα equivalent width and the $U - B$ color with a Pearson correlation coefficient $r = -0.52$. NGC 5194 star-forming regions are significantly offset from the mean correlation, having a much lower Hα equivalent width for their $U - B$ color (or having a much bluer $U - B$ color for their Hα equivalent width). The instantaneous burst model with a Kroupa (2001) IMF and a metallicity of $Z = 0.02$ can reproduce most star-forming regions that have a $U - B$ color redder than -0.9 assuming an extinction such as $E(U - B) = 0.24 \times A_V$ mag and EW(Hα) $\propto 10^{-0.4 \times 0.6 \times A_V}$ with $0.04 < A_V < 1.28$. This shows that while the $U - B$ color is only weakly sensitive to the extinction, the inclusion of extinction effects is nevertheless needed to reproduce most of the observations. However, for the bluest $U - B$ star-forming regions, the model significantly overpredicts the observations of the Hα equivalent width. One possible explanation is an insufficient background removal in the R-band image within each region, artificially decreasing the EW(Hα) values for blue $U - B$ colors. An alternative explanation is a strong contamination of the R band by the Hα and [N II] lines, which would lead to significantly overestimate the continuum in the R band. However, the mean EW(Hα) is $195 \pm 193 \, \AA$ and the typical width of a R-band filter is $\sim 1500 \, \AA$. This means the contamination is at most about 25%, insufficient to reproduce the observations. In Section 6.3, we will see that the characteristics of most of the star forming can be reproduced by a simple model in the IRX–β diagram. An important fraction of them, however, should not present any significant Hα emission—73% (resp. 60%) should be older than 12×10^6 years (resp. 20×10^6 years)—if the underlying hypotheses (the star formation history can be modeled as an instantaneous burst and the trend observed as a function of the perpendicular distance is an age effect) are correct.

A parameter that may affect the age estimate is the metallicity. Indeed, higher metallicity stars have a significantly redder $U - B$ color due to the presence of a high number of metallic absorption lines in their atmosphere. An illustration of this effect on the $U - B$ and the ultraviolet colors is presented in Figure 6.

While the metallicity has an influence, it is small as the oxygen abundances are typically in the relatively narrow range $12 + \log O/H = 8.6 - 9.2$, except NGC 5457 whose outermost regions have a metallicity down to 8.2. As a reference, Asplund et al. (2005) determined the solar metallicity as $Z = 0.0122$ or $12 + \log O/H = 8.66$.

Figure 5. Left panel: $U - B$ color (blue line) and the Hα equivalent width (red line) vs. the time elapsed since an extinction-free instantaneous starburst with a Kroupa (2001) IMF and a metallicity $Z = 0.004$ (dashed line), $Z = 0.02$ (solid line), and $Z = 0.01$ (dotted line). Note that practical measurements of equivalent widths smaller than a few Å are uncertain. Right panel: equivalent width of the Hα line defined as $L(H\alpha) / L_\odot (R)$ in units of Å. The colors are the same as defined in Figure 3. The solid colored line represents the track of an extinction-free instantaneous starburst with a Kroupa (2001) IMF and a metallicity $Z = 0.02$. The age ranges from 10^8 years to 20×10^8 years by increments of 10^8 years. It is indicated by the color bar. The black solid lines departing from the colored solid line represent the effect of the extinction, assuming that $E(U - B) = 0.24 \times A_V$ mag and EW(Hα) $\propto 10^{-0.4 \times 0.6 \times A_V}$ mag which takes into account the differential extinction between the gas and the R-band emitting population. Each intersecting line represents an increment of the extinction by 0.1 mag.

(A color version of this figure is available in the online journal.)

Figure 6. Effect of the metallicity on the $U - B$ and ultraviolet colors. The solid lines represent the $U - B$ colors, while the dashed ones represent the $\log (F_\lambda (FUV) / F_\lambda (NUV))$ colors. The red lines give the difference between $Z = 0.02$ and $Z = 0.1$, while the blue ones give the difference between $Z = 0.02$ and $Z = 0.004$. For an ionizing population ($U - B)_{Z=0.02} - (U - B)_{Z=0.004}$ (resp. $\log (F_\lambda (FUV) / F_\lambda (NUV))_{Z=0.02} - \log (F_\lambda (FUV) / F_\lambda (NUV))_{Z=0.004}$) reaches a maximum of 0.26 (resp. 0.16).

(A color version of this figure is available in the online journal.)
Another uncertainty is due to the synthesis of the U-band luminosities. Indeed, even in simple $U - B, B - V$ color–color diagrams, the model tracks are not consistent with integrated photometry of dwarf galaxies (see Lee 2006, for more details).

6.3. IRX–β Diagram

In Figure 7, we present the IRX–β diagram of the selected star-forming regions compared with the model presented in Section 5.

Several results have to be noted. We see that most of the star-forming regions are in general agreement with the models though a number of regions have a conspicuously blue UV color or a particularly low IRX. We also see that the selected star-forming regions describe a clear envelope mostly circumscribed in its upper part by the modeled starburst IRX–β relation of a very young starburst. We retrieve here the well-known result that quiescent star-forming galaxies lay under the starburst IRX–β curve.

A visual inspection shows an expected qualitative trend to have younger regions where the UV color is the bluest while on the right part there are predominantly older regions which have a redder UV color. Interestingly, the younger regions have a trend closer to the modeled IRX–β starburst relation. One explanation could be that it marks the locus of both constant star formation and young stellar regions. Indeed, in addition to their young age, the dust–stars geometry is likely to be similar to that of starburst galaxies (star-forming regions inside a dust shell). Another explanation could be that these regions are still relatively enshrouded in their birth cloud. However, as shown by Prescott et al. (2007), only 3% of regions are completely enshrouded in dust.

6.4. Age Sensitive Tracers as a Function of the Perpendicular Distance

Here we quantify whether age may be the parameter accounting for the deviations of our regions from the starburst attenuation curve in the IR–β diagram.

A standard tool to evaluate the distance of a star-forming region (or a galaxy as a whole) from the standard starburst attenuation law is the perpendicular distance in the IRX–β diagram (Kong et al. 2004, for instance). The distance is simply defined as the Euclidean distance:

$$d = \sqrt{(x - x_{EL})^2 + (y - y_{EL})^2},$$

where x (resp. x_{EL}) and y (resp. y_{EL}) are the β and IRX values of the individual star-forming regions (resp. of the extinction law locus that is the closest to the observed value) and d is the dimensionless distance in the IRX–β plot. The starburst and SMC IRX–β relations are obtained from the model presented above. The SMC extinction law will be studied more in detail in Section 7. We assume an age of 6×10^6 years, which gives an intrinsic $\log F_\beta (F_{\nu})/F_{\nu} = 0.37$. The IRX–β relation is obtained varying the extinction applied to this population. Following the Kong et al. (2004) convention, star-forming regions which have a higher (resp. lower) than expected IRX given their UV slope will have a redder (resp. bluer) color as a function of the perpendicular distance.

As expected, the mean $H\alpha$ equivalent width increases as a function of the perpendicular distance with a slope of 385 and a large 1σ scatter around the linear fit: 150 Å. The perpendicular distance and the $H\alpha$ equivalent width are weakly correlated with a Pearson correlation coefficient $r = 0.18$. The most surprising result is that even at large negative perpendicular distances, a significant $H\alpha$ emission is detected. This result shows that the age as measured by the $H\alpha$ equivalent width is not the “second parameter” we are seeking. From the point of view of star formation, it could mean that the assumption of an instantaneous starburst is not valid. We will explore if variations of the star formation history can explain the observations in Section 6.5.

In Figure 9, the extinction-corrected $U - B$—assuming a starburst attenuation law: $E(U - B) = 0.24 \times A_V$—is plotted as a function of the perpendicular distance.

While a trend of the $U - B$ color as a function of the perpendicular distance could be expected, it is particularly weak, with a slope of only -0.62 ± 0.20. The perpendicular

Figure 7. IRX–β diagram of individual star-forming regions. The regions represented by a diamond (resp. star) are FUV (resp. 24 µm) selected. The color of the symbols indicates the actual $U - B$ color (i.e., the age) following the scale defined by the color bar on the right corner. The error bars are plotted in light gray. The grid is the model described in Section 5 using a starburst attenuation curve (left panel) and the SMC extinction curve (right panel). The color of each vertex corresponds to that of starburst galaxies (star-forming regions inside a dust shell). Another explanation could be that those regions are still to that of starburst galaxies (star-forming regions inside a dust shell). Another explanation could be that those regions are still

(A color version of this figure is available in the online journal.)

(A color version of this figure is available in the online journal.)
distance and the $U - B$ color are correlated with a Pearson correlation coefficient $r = -0.17$. The weakness of the trend combined with the important scatter hints that another physical phenomenon than the age plays a much more important role.

We have shown here that the age, which was a prime candidate to explain the deviation from the starburst attenuation law in the IRX–β diagram does not seem to play a major role. Indeed, using two different age tracers, the $U - B$ color and the Hα line equivalent width, the large dispersion around the relation shows that the influence of the age is at most minimal under the current assumptions and for the timescales probed by those two tracers.

6.5. Influence of the Star Formation History and Dilution by an Older Stellar Population

We have shown that an instantaneous starburst cannot simultaneously reproduce the large perpendicular distances and a non-negligible Hα emission. In particular, there are a number of regions in our sample that are too red in UV colors. We now consider the possibility that the stellar populations in those star-forming regions are more complex than a simple instantaneous burst description. We thus introduce a model of the stellar population of a galactic disk that considers an exponentially decreasing SFR of the form:

$$\text{SFR}(t) = a \times \exp\left(-\frac{t}{\tau}\right),$$

where a is an arbitrary normalization constant in units of M_\odot yr$^{-1}$, t is the time in years, and τ is the time constant in years.

First of all, we want to see if an exponentially decreasing SFR is able to reproduce the observations. To take into account different cases of star formation history, we test three models which differ by the ratio SFR(12×10^9/SFR(0)). SFR(0) is the SFR at $t = 0$ year and SFR(12×10^9) is the SFR at $t = 12 \times 10^9$ years, both from Equation (5). The values of this ratio are 1/10, 1/100, and 1/1000 (which correspond to a birthrate parameter of 2.6×10^{-1}, 4.7×10^{-2}, and 6.9×10^{-3} and a timescale of 5.2×10^5 years, 2.6×10^6 years, and 1.73×10^7 years, respectively). It turns out that this star formation history can be readily excluded as it cannot reproduce at all the observations. The reason is that even for SFR(12×10^9)/SFR(0) = 1/1000, the current SFR is high enough to overwhelm ultraviolet emission from older stellar populations.

A more realistic model for a galactic star-forming region is a small burst on top of the galactic stellar population. To model the galactic stellar population, we use an exponentially decreasing SFR as described in Equation (5) for $0 \leq t \leq 11.95 \times 10^9$ years, no star formation for $11.95 \times 10^9 < t < 12 \times 10^9$ years and an
instantaneous burst at \(t = 12 \times 10^9 \) years. The rationale is that in the area of the star-forming region, due to the diffusion of the stars over time, the stellar population is made of stars born in different regions of the galaxy subsequently mixed. However, stars younger than a few \(10 \times 10^6 \) years are too young to have migrated long distances. In addition, we assume that in the last \(50 \times 10^6 \) years, no star formation has taken place at the location of the current star-forming region and no significant migration from nearby star-forming regions has occurred. The mass of the instantaneous starburst at \(t = 12 \times 10^9 \) years is defined as \(M_{\text{stars}}/300 \) following Calzetti et al. (2005), were \(M_{\text{stars}} \) is the mass of the stars constituting the background galactic population. The model is plotted in Figure 10 along with the observations in an IRX–\(\beta \) diagram.

While this model reproduces a much larger range of ultraviolet colors as a whole, it still cannot explain the H\(\alpha \) emission of such regions. Indeed, initially the instantaneous starburst emission dominates over the older population until it fades away after a few tens of millions years, after which the older population dominates and is responsible of the redder ultraviolet colors compared to the model presented in Section 5.

While a continuous star formation does not account for the observations, we can take into account a more stochastic nature of the star formation history by considering a single, still UV emitting, older burst. Indeed, the presence of a significant old stellar population can have an influence on the UV color. Individual star-forming regions with local backgrounds subtracted are less affected by this effect than integrated galaxies. Some of the observed regions are redder than what can be reproduced by an ionizing population and a SMC extinction law (see Figure 7 and Section 7, the SMC extinction law is already extreme in that it has a very steep slope in the UV, this means that for a given IRX, it reddens the UV color more than any other extinction law considered in this study). That there are some regions, which have an even redder color, hints about the possibility of a dilution by older stellar populations. In order to test this, we have made a simple model assuming two instantaneous bursts, the one we are currently observing and another one which is \(300 \times 10^6 \) years old. The star formation history is undoubtedly more complex but cannot be precisely retrieved with the current observations. However, NUV emitting populations have a life expectancy of about \(10^9 \) years. We take here a \(300 \times 10^6 \) years old instantaneous burst as an approximation of the real star formation history. The mass ratio of the more evolved stellar population to the younger one varies from 0 to 300. We have selected all star-forming regions that have a redder UV color than a \(20 \times 10^6 \) years old starburst extinguished with the SMC extinction law. We then have calculated what dilution would be necessary to redden the UV color, if those regions were actually \(20 \times 10^6 \) years old to account for the fact that they still emit in H\(\alpha \). There is a total of 67 star-forming regions which have a UV color redder than a SMC-extincted \(20 \times 10^6 \) years old burst. The model shows that the mean mass ratio is \(7.8 \pm 7.1 \) with a median of 5. This is much smaller than the ratio for integrated galaxies which reach up to few hundreds. This corresponds to a mean flux ratio of 0.15 in FUV and 0.29 in NUV. Note however that 64% of those star-forming regions have flux uncertainties such that the observations could be reproduced without needing an older stellar population.

The dilution by an old stellar population has an influence not only on the UV color but also simultaneously on the \(U - B \) color, as we can see in Figure 11.

We see that even a relatively small mass ratio can have a significant influence on the colors. The influence fades away as the older population gets older. Indeed, the intrinsic UV luminosity drops quickly with age. Hence, even if the older population gets redder, a higher mass ratio is needed to offset its smaller UV luminosity. On the other hand, the life expectancy of \(U \)- and \(B \)-emitting stars is much longer than those which predominate the UV luminosity. That is why an older population has significantly more influence on the \(U - B \) color than on the UV color.

7. Extinction Laws

We will explore here the effect of varying our assumptions on the dust attenuation law and dust geometry. We add to the starburst attenuation curve the case of an SMC extinction curve (Gordon et al. 2003) for both foreground and mixed dust.
geometries. We will not consider curves like the Milky Way one, as Calzetti et al. (2005) showed that this curve cannot reproduce the observed trend of the data in the IRX–β diagram, for any dust geometry. Conversely, the SMC extinction law, coupled with a foreground screen seems effective at reproducing part of the observed trend (Figure 7).

We observe that most of the star-forming regions can be reproduced by one or more models but no model can reproduce all observations. Because the SMC extinction law has a sharper rise compared to the starburst attenuation law, the UV color is more sensitive to the extinction in the former case than in the latter one, thus producing redder UV colors for equal FIR/UV ratios.

While the model using the SMC extinction law fails to reproduce the youngest regions that could be explained with a starburst attenuation curve, it can however reproduce a number of UV red regions with a younger inferred age. The question of the reproducibility of the Hα emission remains, in fact, open as most of the selected star-forming regions are detected in Hα. In order to address this question, we plot the UV colors that can be reproduced by Hα emitting populations as a function of the extinction in Figure 12. For each model, we plot two lines, one for a 10^6 year old starburst and one for an age of 12 × 10^6 years (the oldest age that can still produce a reasonably high number of ionizing photons).

We observe that, as expected, a single extinction law cannot reproduce all of the observations. For instance, for a given extinction, in the case of the starburst attenuation law, the ultraviolet color is too blue. Regarding the SMC extinction law, the behavior is very different depending on the assumption made on the stellar extinction. If we assume A_V = A_V^SMC, only the least extinguished star-forming regions can be reproduced. Diminishing the extinction of the stars relative to the extinction of the gas, more star-forming regions can be reproduced by the model, but only a fraction of the total number at a time (i.e., by each model).

So far, we have always inspected the evolution of age tracers assuming the starburst attenuation law. As stated above, if the actual extinction law in quiescent star-forming galaxies is different, it can emulate an age effect. As we have already specified, star-forming regions in the IRX–β diagram are bracketed by the starburst attenuation law and foreground SMC extinction law.

In Figure 8, right panel, we plot the Hα equivalent width versus the perpendicular distance from the SMC IRX–β law. The trend between the Hα equivalent width and the perpendicular distance is even weaker than in the case of a starburst attenuation curve: the slope is similar (410 versus 385) as well as the Pearson correlation coefficient (r = 0.13 in the SMC case, and r = 0.18 in the starburst one).

In Figure 9, right panel, we plot the U – B age tracer versus the perpendicular distance from the SMC IRX–β law. The trend between the U – B and the perpendicular distance is approximately as weak as in the case of a starburst attenuation curve: the slope is similar (−0.74 versus −0.62) as well as the Pearson correlation coefficient (r = −0.22 versus r = −0.17).

The standard IRX–β relation is based on the starburst attenuation law. However, the physical conditions for such a law to be valid are not necessarily always met in the case of star-forming regions. In this section, we have investigated different extinction laws. We have shown that no single law is able to reproduce the observations. Conversely, a range of extinction laws between the starburst attenuation law and the foreground SMC extinction law can explain the observations, in line with what was found by Burgarella et al. (2005).

8. METALLICITY

The metallicity can significantly affect the ultraviolet and U – B colors, as we have seen in Section 6.2. In Figure 13, we plot three models (using the same parameters as the ones described in Section 6.2), which differ only by the metallicity: Z = 0.1, Z = 0.02, and Z = 0.004.

The most metal-poor model spans a small UV color range, slightly more than 0.2 dex. The most metal-rich model conversely has a much faster evolving ultraviolet color. While this may explain the presence of Hα emission in a number of regions, it, nevertheless, still cannot account for the most UV-red regions, assuming a starburst attenuation law.
As we see, the metallicity has an important effect on the location of a star-forming region on the IRX–β diagram. Another effect of the metallicity is the extinction (Calzetti et al. 1994). Indeed, it is well known that star-forming regions with a higher metallicity tend to be more extinguished on average (Heckman et al. 1998; Boissier et al. 2004; Muñoz-Mateos et al. 2009). An accurate determination of the metallicity of 324 star-forming regions in eight different galaxies would necessitate long spectroscopic observations that are not available. However, we also know that there is a metallicity gradient in spiral disks. While this does not provide the exact metallicity of a star-forming region from its deprojected galactocentric distance, it statistically provides a precious information. In order to evaluate the metallicity, we use the metallicity gradients provided by J. Moustakas et al. (2010, in preparation) and additional data provided in Table 1. The position angles have been calculated from optical images. The corresponding IRX–β diagram is presented in Figure 14.

It appears there is indeed a strong correlation between the metallicity and the extinction. The low metallicity regions have a blue ultraviolet color and a low IRX, while regions with the highest metallicity have the reddest ultraviolet color and a high IRX. This is consistent with the models presented in Figure 13 where for a given age, a star-forming region with a higher metallicity would have a redder ultraviolet color. The Pearson correlation coefficient between the metallicity and IRX is \(r = 0.80 \). The relation is tighter than the one found by Cortese et al. (2006) for optically selected, integrated normal star-forming galaxies; they derived a Spearman correlation coefficient \(r_s = 0.59 \).

In order to quantitatively test the dependence of the extinction on the metallicity, we plot in Figure 15 the IRX value of each star-forming region versus the oxygen abundance 12 + \(\log(O/H) \). The Pearson correlation coefficient between the metallicity and IRX is \(r = 0.80 \).

In this section, we have examined whether the metallicity can explain the deviation from the IRX–β relation. We have shown that the metallicity however is an important parameter to determine the location of the star-forming regions in the IRX–β diagram. The more metallic they are, the higher IRX and the redder β they have, closely following IRX–β relations but showing no obvious trend with the perpendicular distance.

9. DISCUSSION

Understanding the deviation from the starburst attenuation law in the IRX–β diagram is essential in our understanding of star-forming galaxies as they provide important insights into the attenuation and reprocessing of starlight. We have shown that the age of the star-forming regions—a debated parameter—has very little influence on the deviation, which actually necessitates a range of geometries and extinction laws. In addition, the influence of the star formation history and in particular any dilution by an older population should not be neglected. If these parameters are not taken into account properly, the error on the determination SFRs can be severely impacted.

9.1. Age of Star-forming Regions

We have shown in Section 6.4 that there is a weak correlation between the perpendicular distance from the IRX–β relation and the age as traced by the H\(\alpha \) equivalent width and the \(U - B \) color. In all cases, the trends with the age are too weak relative to the scatter in the data to support the notion of aging stellar populations as an important “second parameter,” at least for the timescales probed by the \(U - B \) color and the H\(\alpha \) equivalent width. We have seen in Figures 8 and 9 that neither the \(U - B \) color nor the H\(\alpha \) equivalent width strongly correlate with the perpendicular distance. The absence of correlation is independent of the “reference” attenuation curve, be it the starburst or the SMC extinction law. The reddening of the SED is therefore not due to age effects but is a consequence of another parameter.

It appears that, contrary to what has been found studying integrated galaxies by Kong et al. (2004) for instance—but in agreement with Johnson et al. (2007)—there is no obvious trend between the perpendicular distance and the age in the case of individual star-forming regions.

9.2. Necessity of a Range of Extinction Laws

In this study we have tested three different kinds of extinction laws: starburst (Calzetti et al. 1994, 2000; Meurer et al. 1999), foreground SMC (Gordon et al. 2003), and mixed SMC.
Conventionally, the perpendicular distance is derived from the IRX–β starburst relation (Kong et al. 2004; Cortese et al. 2006, for instance). There are several indications that there is a range of extinction laws at work in quiescent star-forming galaxies.

As inferred from Figures 7, 12, and 14, both a starburst attenuation curve and an SMC extinction curve with foreground dust are required to span the locus occupied by the data points. Neither curve individually is a perfect match to the data, and both (plus combinations of the two) are required to span a large range of the data locus. Likely this indicates a variation in the applicable dust geometries to the individual regions.

In Section 7, we have shown that assuming a range of models (starburst, foreground SMC assuming $A_V = A_V^{\text{gas}}$ or $A_V = 0.44 \times A_V^{\text{gas}}$—this ratio is prominently dependent on the dust–stars geometry—and mixed SMC), it is possible to reproduce simultaneously the UV color and the Hα emission of most star-forming galaxies. We assume that the starburst and foreground SMC are the two most “extreme” laws at work in quiescent star-forming galaxies and that there is a range of dust–stars geometries in between. The two curves (and the SMC needs to be implemented with differential extinction between stellar and nebular emission) bracket most of the range of observed values. A variation of the extinction curve has also been detected for UV-luminous galaxies at $z \sim 2$ by Noll et al. (2009).

9.3. Influence of the Star Formation History and Dilution by an Older Population

Dilution of actively (Hα emitting) star-forming regions by an older ($\sim 300 \times 10^6$ years) instantaneous burst population is a necessary requirement for a few of the reddest (in UV colors) regions but not for all.

We remove local background from all our star-forming regions, thus removing Hubble-time-averaged stellar populations. However, the typical region sampled by our apertures is around 300–500 pc. In this physical region, we can expect multiple populations to be present and possibly contribute to the observed colors. Indeed for the reddest UV color regions, the required mass ratio between an ionizing stellar population and an older, 300×10^6 years old stellar population is about 1/5. This indicates the possibility of five to six generations of stars over the past 300×10^6 years, within a 500 pc region. However, our data cannot discriminate between this possibility and the alternative of yet more complex star–dust geometries and extinctions than what considered here.

Interestingly, we note that very few regions that are detected in the UV do not have any Hα counterpart. One of the possible reasons is that regions that are sufficiently old do not emit in Hα anymore and tend to dissolve to become part of the diffused UV emission from the galaxy. Hence, they were not selected and only acted as a contaminant. The fact that we do not find the trend that can be found in integrated galaxies hints that it may be due, in reality, to the contamination by older stellar populations. Indeed, as we have seen in this paper, the age or the latest generation of stars does not seem to play any significant role. We think the birthrate parameter is not appropriate either in the sense that it is inaccurate as it averages the SFR over the life of the galaxy whereas the typical lifespan of the UV is about 10^9 years. We therefore think that the fact that few regions are not detected in Hα hints in favor of the scenario of the contamination.

Finally, it can be noted that Dale et al. (2009) found a trend between the perpendicular distance and the Hα equivalent width calculated using the same method as the one described in this paper. The most likely explanation is that the trend is due to the pollution of the underlying continuum by evolved stellar populations. Indeed, their average Hα equivalent widths are averaged over the galaxy. If we assume that the mean age of star-forming regions is the same in all galaxies—which is a reasonable assumption for quiescent star-forming galaxies—the differing amount of underlying stellar populations can create such a correlation: they simultaneously increase the perpendicular distance reddening the UV color and lower the Hα equivalent width by increasing the flux of the continuum. In addition, as the R-band emitting and the UV-emitting stars have a different life expectancy, it induces some scatter in the relation.

9.4. Caveats of Star Formation Rate Derivations

From what we have shown previously, the usual SFRs estimates based on the assumption of the starburst IRX–β relation are unreliable in the case of quiescent star-forming galaxies. To estimate the SFR, one approach can be to derive an empirical law from a sample of galaxies, like has been done by Cortese et al. (2006), for instance; however the scatter remains important.

To determine accurately the actual law, it is crucial to estimate the fraction of the UV color that is contributed by an older population as we have shown in Section 6.5. Taking into account the age of the stellar population, Cortese et al. (2008), for instance, have provided some recipes to correct for the UV extinction, assuming a Large Magellanic Cloud extinction law. Another critical point to derive the actual SFR is the choice of an extinction law. Indeed, as we have already mentioned, the effect of the extinction is much more dramatic on the UV color in the case of a SMC law. This can be seen in Figure 12 for instance. In Figure 16, we plot the ratio of the estimated SFR assuming a starburst attenuation law to the estimated SFR assuming a SMC extinction law as a function of the UV color.

We see that indeed the effect on the derived star formation law can be quite dramatic. If we assume a starburst attenuation law, for $A_V = 1$ we can overestimate the SFR by a factor up ~7.
if the actual extinction law is foreground SMC-like. Conversely, a similar error, but in the sense of underestimating the SFR, will be made if the foreground SMC extinction is adopted, but the actual extinction is described by a starburst attenuation curve.

As we have shown, the age seems to be only a minor factor regarding the location on the IRX–β diagram. However, standard SFR estimators are significantly age-dependent. Indeed, the Kennicutt (1998) estimators for instance are based on the assumption of a constant SFR during 100 × 10^6 years. However, if it is sensible for a galaxy-averaged luminosity, it is unlikely that small individual star-forming regions undergo such a star formation history. If we assume a foreground SMC, the best-fit age is 6 × 10^6 years.

9.5. Completeness of the Parameter Space Sampling

Even if we have selected over 300 star-forming regions, the location of each of the region is dependent on the galaxy metallicity, for instance. As no such study has been performed before, we can only compare to samples of integrated galaxies. In Figure 7, we plot the IRX–β diagrams along with data points from SINGS and LVL (Dale et al. 2009).

We see that the IRX range is very similar to that of individual star-forming regions in galaxies. Regarding the UV color, it tends to be redder. This is particularly striking for galaxies which have a small IRX lower than −0.3, but have red UV colors of 0.24 ± 0.07 compared to 0.37 ± 0.05 for galactic star-forming regions. This can be explained by the influence of an older stellar population. Indeed, photometry of integrated galaxies is particularly influenced by a near-ultraviolet emitted older stellar population which reddens the UV color. Conversely, individual star-forming regions are relatively less affected by older populations as (1) the specific SFR in a star-forming region is higher than for an integrated galaxy hence lowering the relative luminosity of any older population; and (2) the way the background level is measured naturally subtracts the contribution of an older populations in the aperture (see Section 4.1). Therefore, rather than an undersampling of the parameter space, the fact that we have not detected regions, which have simultaneously a red UV color and a low IRX, is a consequence of a bias introduced by the emission of older stellar populations in the case of integrated galaxies. As we can see in Figure 7, the envelope of SINGS and LVL galaxies is shifted toward redder colors compared to the individual star-forming regions; and there is a significant number of galaxies with extremely red UV colors: 9.6% of the galaxies in the combined LVL and SINGS sample and 1.2% of the individual star-forming regions have a log Fα (FUV) / Fβ (NUV) redder than 0.

10. SUMMARY AND CONCLUSIONS

We have performed an analysis of over 300 star-forming regions in eight local quiescent star-forming galaxies to garner new insights on the IRX–β relation by using Spitzer infrared, GALEX ultraviolet, and ground-based optical broadband and narrowband Hα data. Specifically, we investigate the deviations of star-forming regions in normal star-forming galaxies from the locus identified by the starburst attenuation curve, in hope of obtaining information on similar deviations by normal star-forming galaxies.

The mean age of the stellar population, as traced by the U − B color and by the equivalent width of Hα, is shown to be relatively uncorrelated or only weakly correlated with the perpendicular distance of the data from the starburst attenuation curve in the IRX–β diagram. Stellar population ages have been suggested as a potential culprit for the deviations in the case of normal star-forming galaxies (e.g., Kong et al. 2004, via the b-parameter), but we do not find evidence for such trend in H ii knots of galaxies. Our results are in agreement with similar results, obtained for whole galaxies, by Seibert et al. (2005) and Johnson et al. (2007), but disagree with recent findings by Dale et al. (2009), also derived for whole galaxies.

We find that a range of dust extinction/attenuation curves and dust/star geometries are actually required to account for the location on the IRX–β plot of most of our H ii knots. Specifically, we find that the starburst attenuation curve and the SMC extinction with foreground geometry bracket the location of most of the data points, not only on the IRX–β diagram but also on other plots reporting colors and other properties of the regions. For the reddest (in UV color) regions, we need to include contributions to the observed colors and fluxes of underlying older (∼300 Myr) stellar populations to account for the observed UV and U − B colors. The mass ratio between the young (ionizing) stellar population and the older one is about 1/5.

Individual star-forming regions and integrated galaxies do not populate the same locus in the IRX–β diagram. Indeed, the former have a bluer UV color and are more tightly correlated. The most likely explanation is that older stellar populations up to 1 × 10^9–2 × 10^9 years old, which have a redder UV color, redden the observed UV color of star-forming galaxies. To accurately determine the SFR, it is crucial to take into account this older population.

Finally, a strong correlation is found with the metallicity, in the sense that the more metal-rich regions tend to display redder UV colors and larger IR/UV values, as expected metallicity and dust content correlate with each other.

This work has been supported by NASA ADP grant NNX07AN90G.

Facilities: Spitzer, GALEX
APPENDIX

APERTURES

In Figure 17, we see the apertures overplotted on a section of NGC 3031. This illustrates the fact that some regions are selected in FUV only or 24 μm only. Some regions though are selected from both bands, but the shape of the aperture may vary depending on the actual shape of the star-forming region in a given band.

REFERENCES

Anders, P., & Fritze-v. Alvensleben, U. 2003, A&A, 401, 1063
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in ASP Conf. Ser. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. T. G. Barnes, III & F. N. Bash (San Francisco, CA: ASP), 25
Bell, E. F. 2002, ApJ, 577, 150
Boissier, S., Boselli, A., Buat, V., Donas, J., & Milliard, B. 2004, A&A, 424, 465
Boquien, M., et al. 2007, ApJ, 664, L5
Buat, V., Boselli, A., Gavazzi, G., & Bonfanti, C. 2002, A&A, 383, 801
Buat, V., et al. 2005, ApJ, 619, L51
Burgarella, D., Buat, V., & Iglesias-Páramo, J. 2005, MNRAS, 360, 1413
Calzetti, D. 1997, ApJ, 113, 162
Calzetti, D. 2001, PASP, 113, 1449
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1996, ApJ, 458, 132
Calzetti, D., et al. 2000, ApJ, 533, 682
Calzetti, D., et al. 2005, ApJ, 633, 871
Calzetti, D., et al. 2007, ApJ, 666, 870
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Cattaneo, A., et al. 2007, MNRAS, 377, 63
Charlot, S., & Fall, S. M. 2000, ApJ, 539, 718
Cortese, L., et al. 2006, A&A, 453, 847
Cortese, L., et al. 2008, MNRAS, 386, 1157
Daddi, E., et al. 2005, ApJ, 631, L13
Daddi, E., et al. 2007, ApJ, 670, 156
Dale, D. A., et al. 2007, ApJ, 655, 863
Dale, D. A., et al. 2009, ApJ, 703, 517
Donas, J., & Deharveng, J. M. 1984, A&A, 140, 325
Engelbracht, C. W., et al. 2007, PASP, 119, 994
Engelbracht, C. W., et al. 2008, ApJ, 678, 804
Fioc, M., & Rocca-Volmerange, B. 1997, A&A, 326, 950
Giavalisco, M., et al. 2004, ApJ, 600, L103
Goldader, J. D., et al. 2002, ApJ, 568, 651
Gordon, K. D., Calzetti, D., & Witt, A. N. 1997, ApJ, 487, 625
Gordon, K. D., & Clayton, G. C. 1998, ApJ, 500, 816
Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U., & Wolf, M. J. 2003, ApJ, 594, 279
Gordon, K. D., Clayton, G. C., Witt, A. N., & Misselt, K. A. 2000, ApJ, 533, 236
Gordon, K. D., et al. 2004, ApJS, 154, 215
Gordon, K. D., et al. 2008, ApJ, 682, 336
Heckman, T. M., Robert, C., Leitherer, C., Garnett, D. R., & van der Rydt, F. 1998, ApJ, 503, 646
Helou, G., et al. 2004, ApJS, 154, 253
Hopkins, A. M., & Beacom, J. F. 2006, ApJ, 651, 142
Hopkins, P. F., et al. 2006, ApJ, 652, 864
Johnson, B. D., et al. 2007, ApJS, 173, 177
Katz, N., Weinberg, D. H., & Hernquist, L. 1996, ApJS, 105, 19
Kennicutt, R. C., Jr. 1998, ARAA, 36, 189
Kennicutt, R. C., Jr., Lee, J. C., Funes, José, S. J., Sakai, S., & Akiyama, S. 2008, ApJS, 178, 247
Kennicutt, R. C. Jr., et al. 2003, PASP, 115, 928
Kong, X., Charlot, S., Brinchmann, J., & Fall, S. M. 2004, MNRAS, 349, 769
Kroupa, P. 2001, MNRAS, 322, 231
Lee, J. C. 2006, PhD thesis, Univ. Arizona
Madau, P., et al. 1996, MNRAS, 283, 1388
Martin, D. C., et al. 2005, ApJ, 619, L1
Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ, 521, 64
Mobasher, B., et al. 2005, ApJ, 635, 832
Muñoz-Mateos, J. C., et al. 2009, ApJ, 701, 1965
Natta, A., & Panagia, N. 1984, ApJ, 287, 228
Noll, S., et al. 2009, A&A, 499, 69
Pérez-González, P. G., et al. 2006, ApJ, 648, 987
Prescott, M. K. M., et al. 2007, ApJ, 668, 182
Savicki, M., & Thompson, D. 2006, ApJ, 642, 653
Seibert, M., et al. 2005, ApJ, 619, L55
Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M. 1999, ApJ, 519, 1
Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., & Adelberger, K. L. 1996, ApJ, 462, L17
Stiavino, G., et al. 2006, MNRAS, 373, 1074
Teplitz, H. I., et al. 2006, AJ, 132, 853
Williams, G. G., Olszewski, E., Lesser, M. P., & Burge, J. H. 2004, Proc. SPIE, 5492, 787
Witt, A. N., & Gordon, K. D. 2000, ApJ, 528, 799
Zaritsky, D., Kennicutt, R. C., Jr., & Huchra, J. P. 1994, ApJ, 420, 87