Oxidation of methane by a biological dicopper centre

Ramakrishnan Balasubramanian¹,²*, Stephen M. Smith¹,²*, Swati Rawat³, Liliya A. Yatsunyk¹,², Timothy L. Stemmler³ & Amy C. Rosenzweig¹,²

Vast world reserves of methane gas are underutilized as a feedstock for the production of liquid fuels and chemicals owing to the lack of economical and sustainable strategies for the selective oxidation of methane to methanol. Current processes to activate the strong C–H bond (104 kcal mol⁻¹) in methane require high temperatures, are costly and inefficient, and produce waste. In nature, methanotrophic bacteria perform this reaction under ambient conditions using metalloenzymes called methane mono-oxygenases (MMOs). MMOs thus provide the optimal model for an efficient, environmentally sound catalyst. There are two types of MMO. Soluble MMO (sMMO) is expressed by several strains of methanotroph under copper-limited conditions and oxidizes methane with a well-characterized catalytic di-iron centre. Particulate MMO (pMMO) is an integral membrane metalloenzyme produced by all methanotrophs and is composed of three subunits, pmoA, pmoB and pmoC, arranged in a trimeric a³b³c³ complex. Despite 20 years of research and the availability of two crystal structures, the metal composition and location of the pMMO metal active site are not known. Here we show that pMMO activity is dependent on copper, not iron, and that the copper active site is located in the soluble domains of the pmoB subunit rather than within the membrane. Recombinant soluble fragments of pmoB (spmoB) bind copper and have propylene and methane oxidation activities. Disruption of each copper centre in spmoB by mutagenesis indicates that the active site is a dicopper centre. These findings help resolve the pMMO controversy and provide a promising new approach to developing environmentally friendly C–H oxidation catalysts.

Three distinct metal centres were identified in the 2.8 Å-resolution structure of pMMO from Methylococcus capsulatus (Bath). Two copper centres are located in the soluble regions of the pmoB subunit, which form two cupredoxin domains. A dicopper centre with a short Cu–Cu distance of 2.5–2.7 Å is coordinated by the highly conserved residues His 33, His 137 and His 139 and is also observed in pMMO from Methylosinus trichosporium OB3b. The second site, a monocopper centre coordinated by His 48 and His 72, is not conserved in pMMO from M. trichosporium OB3b. A third metal centre, occupied by zinc from the crystallization buffer, is located within the membrane and is ligated by Asp 156, His 160 and His 173 from pmoC and possibly Glu 195 from pmoA. The amino-terminal cupredoxin domain of pmoB (spmoBd1) is shown in purple, the carboxy-terminal cupredoxin domain of pmoB (spmoBd2) is shown in green and the two transmembrane helices are shown in blue. In the recombinant spmoB protein, spmoBd1 and spmoBd2 are connected by a Gly-Lys-Leu-Gly-Gly-Gly sequence linking residues 172 and 265 (indicated), rather than the two transmembrane helices. Copper ions are shown as cyan spheres and ligands are shown as ball-and-stick representations. The location of the zinc ion (grey sphere) has been proposed to contain a di-iron centre. A hydrophilic patch of residues, marked with an asterisk, is the site of a proposed tricopper centre.

Figure 1 | Structure of the M. capsulatus (Bath) pMMO protomer.

The nature of the pMMO metal active site is not established and has been intensely controversial. On the basis of electron paramagnetic resonance spectroscopic data, pMMO was initially proposed to contain multiple trinuclear copper clusters. In light of the crystallographic data, this model was revised to a single catalytic tricopper cluster located at an intramembrane site composed of conserved hydrophilic residues. This model also includes the binding of an additional ten copper ions to the C-terminal soluble domain of pmoB. Both this intramembrane site and the C-terminal domain of pmoB are devoid of metal ions in the crystal...
also tested the ability of pMMO reconstituted with copper to oxidize propylene oxide (Fig. 3b). By contrast, addition of iron, aerobically in combine with copper, resulted in lower propylene epoxidation activity (Fig. 3b). These results indicate that copper, not iron, is the metal required for activity, as proposed previously.

Figure 2 | Metal analysis. a, Metal content of as-isolated pMMO and apo-pMMO prepared by cyanide treatment. Metal content is expressed per 100 kDa pMMO protomer, with copper in blue and iron in red. b, Copper content of refolded spmoB variants. Reported values and errors represent the average and standard deviation of at least four independent measurements for pMMO samples and at least six independent refolding experiments for each spmoB variant.

To determine the metal requirement for pMMO activity, we first removed the metals from as-isolated M. capsulatus (Bath) pMMO membranes by treatment with cyanide (Fig. 2a). Before cyanide treatment, as-isolated samples had propylene epoxidation activities of 50–200 nmol propylene oxide mg⁻¹ min⁻¹. These values are comparable to or higher than values reported by other researchers for as-isolated membranes processes (Supplementary Table 1). We used membranes rather than purified pMMO to resemble the natural environment more closely and to avoid activity loss typically observed upon solubilization and purification. Cyanide treatment completely abolished pMMO activity as measured by the propylene epoxidation assay.

We then titrated stoichiometric amounts of copper and/or iron into the apo pMMO samples and assessed the effects on activity. Addition of 2–3 equiv. of copper per 100 kDa pMMO protomer restored ~70% of the propylene epoxidation activity (Fig. 3a). We also tested the ability of pMMO reconstituted with copper to oxidize methanol to methanol. As-isolated pMMO has a specific activity of 22.9 ± 6.1 nmol methanol mg⁻¹ min⁻¹, and apo-pMMO reconstituted with 3 equiv. of copper had an activity of 21.7 ± 3.5 nmol methanol mg⁻¹ min⁻¹, restoring greater than 90% of the methane oxidation activity (Fig. 3b). By contrast, addition of iron, aerobically or anaerobically, does not restore or improve activity if added alone or in combination with copper.

These experiments demonstrate that copper, not iron, is the metal at the active site of pMMO. The requirement for only 2–3 equiv. of copper indicates that large numbers of copper ions may not be necessary for activity, as proposed previously. Some of the copper associated with the as-isolated membranes may instead be bound adventitiously. Notably, addition of copper beyond three equiv. inhibits pMMO activity. Repeating the cyanide treatment and adding back 2–3 equiv. of copper can reverse this inhibition (Supplementary Fig. 1a). The excess copper ions probably react with reductant to generate hydrogen peroxide, which reversibly inhibits pMMO. This phenomenon has been studied for pMMO from M. trichosporium OB3b. In support of this explanation, catalase prevents inhibition on addition of excess copper, with maximal activity still observed at 2–3 equiv. (Supplementary Fig. 1b).

To probe the coordination environment of copper in pMMO, we collected X-ray absorption spectroscopic (XAS) data. As-isolated pMMO is a mixture of Cu(I) and Cu(II) as shown by both a 1s→4p transition and a weak 1s→3d feature in the near-edge spectra (Supplementary Fig. 2). Apo-pMMO reconstituted with 3 equiv. of CuSO₄ and treated with duroquinol to mimic the activity assay conditions has a stronger Cu(I) 1s→4p transition consistent with the presence of reductant (Supplementary Fig. 2). Fourier transforms (Fig. 4b, d) of the extended X-ray absorption fine structure (EXAFS) data for both samples show two scattering interactions corresponding to nearest-neighbour ligands at approximately 2 Å and 2.5 Å. Long-range ligand scattering (>3 Å) is also evident. The as-isolated pMMO EXAFS data were best fitted with two Cu–O/N environments at 1.92 Å and 2.09 Å and a Cu–Cu interaction centred at 2.66 Å. The reconstituted pMMO EXAFS data were best fitted with a single set of O/N ligands at 1.95 Å. Most important, there was a significant improvement in fit when a Cu–Cu scattering environment was included (Supplementary Table 2). Debye–Waller factors, which are measures of the metal–ligand bond disorder, were high in both Cu–Cu interaction simulations (>5.5 × 10⁻³ Å²), whereas the coordination numbers were consistently low (<0.25). These results indicate either a near-stoichiometric population of distinct, but non-resolvable, Cu–Cu interactions with destructively overlapping scattering centred at 2.66 Å and 2.53 Å or low populations (less than 25%) of bound copper coordinated in a multinuclear cluster. Regardless, restoration of activity on copper addition is accompanied by formation of a copper cluster, which is probably the dinuclear copper centre observed in the crystal structures.

Figure 3 | Restoration of activity to apo-pMMO by the addition of copper. Copper equivalents added are expressed per 100 kDa pMMO protomer. Representative titrations are shown. Addition of 2–3 equiv. of copper restored ~70% of the propylene epoxidation activity (a) and ~90% of the methane oxidation activity (b). Reported values represent the average and standard deviation of at least two measurements.
bodys in the presence of CuSO₄. Copper analysis by the bicinchoninic-
spmoBd1, although the mononuclear site lies at the domain interface.
(Fig. 1). All ligands to the two copper centres are contained within
Gly linker, which replaces the two transmembrane helices (spmoB-
dues 265–414) and both domains tethered by a Gly-Lys-Leu-Gly-Gly-
172), the carboxy (C)-terminal cupredoxin domain (spmoBd2, resi-
domains of the pmoB subunit. These proteins include
the two copper centres in the soluble regions of pmoB, the intramem-
brane zinc site and the intramembrane hydrophilic patch proposed
introduction of all these interactions probably affects both copper
centres and accounts for the reduced copper binding by spmoBd1.

In spite of loading with Cu(II), and possibly owing to photoreduc-
tion, the X-ray absorption near-edge spectrum of spmoB (Sup-
plementary Fig. 2) is typical of three- to four-coordinate Cu(II) on
the basis of the low intensity of the 1s→4p transition, the overall
dge structure and the lack of any discernible 1s→3d feature. The
EXAFS data for spmoB (Fig. 4e, f) were best fitted with a Cu–O/N
environment at 1.95 Å and a Cu–Cu interaction at 2.53 Å, the inclu-
sion of which significantly improved the fit (Supplementary Table 2).
The combined copper binding and XAS data indicate that spmoB can
assemble copper centres similar to those in pMMO.

To determine whether the copper active site is located within
spmoB, we performed activity assays. The spmoB protein is indeed
active and can oxidize propylene with a specific activity of
30.2 ± 10.5 nmol propylene oxide μmol⁻¹ min⁻¹, as compared with
51.1 ± 11.3 nmol propylene oxide μmol⁻¹ min⁻¹ for as-isolated,
membrane-bound pMMO measured under similar experimental
conditions (Fig. 5a). Some activity is also detected for spmoBd1,
8.1 ± 3.7 nmol propylene oxide μmol⁻¹ min⁻¹, whereas spmoBd2
is inactive. No activity is detected for spmoB refolded in the presence
of iron. Although propylene epoxidation is routinely used for mea-
suring MMO activity, the bond dissociation energies of the C=C
bond in propylene (63 kcal mol⁻¹) and the C–H bond in
104 kcal mol⁻¹) differ significantly. Therefore, we also tested the
ability of spmoB to oxidize methane to methanol. Under similar
experimental conditions, the specific activity of as-isolated pMMO is

Possible locations for the active site in M. capsulatus (Bath) include
the two copper centres in the soluble regions of pmoB, the intramem-
brane zinc site and the intramembrane hydrophilic patch proposed
to contain a trinuclear copper site (Fig. 1)¹¹. We cloned and expressed
in Escherichia coli several proteins corresponding to the soluble
cupredoxin domains of the pmoB subunit. These proteins include
the amino (N)-terminal cupredoxin domain (spmoBd1, residues 33–
172), the carboxy (C)-terminal cupredoxin domain (spmoBd2, resi-
dues 265–414) and both domains tethered by a Gly-Lys-Leu-Gly-Gly-
linker, which replaces the two transmembrane helices (spmoB)
(Fig. 1). All ligands to the two copper centres are contained within
spmoBd1, although the mononuclear site lies at the domain interface.

These recombinant proteins were refolded from solubilized inclusion
bodies in the presence of CuSO₄. Copper analysis by the bicinchoninic-
acid method¹² indicates the presence of 2.84 ± 0.66 copper ions per
protein for pmoB, 1.59 ± 0.84 copper ions per protein for spmoBd1
and 0.24 ± 0.09 copper ions per protein for spmoBd2 (Fig. 2b). These
values, which are an average from at least six independent refolding
experiments, are consistent with the crystal structure of M. capsulatus
(Bath) pMMO⁶, in which spmoB binds three copper ions and spmoBd2
binds no copper ions. Despite the excess of copper present during the
refolding procedure, we do not observe the binding of approximately
ten copper ions to spmoBd2 reported previously¹⁶. Refolding of spmoB
in the presence of iron yields 0.17 ± 0.1 iron ions per protein.

The spmoBd1 protein is extremely unstable, probably owing to the
removal of spmoBd2. In the M. capsulatus (Bath) structure⁴, the
interface between the two soluble domains is extensive, with a buried
surface area of ~1,400 Å² for each chain. The loop region connecting
dicopper ligand His33 with monocopper ligand His48 is heavily
involved in this interface, with a number of hydrogen bonds
(Supplementary Fig. 3a) and hydrophobic contacts with residues
from the C-terminal cupredoxin domain. Increased flexibility on
disruption of all these interactions probably affects both copper
centres and accounts for the reduced copper binding by spmoBd1.

Figure 4 | Copper EXAFS data and simulations for pMMO and spmoB
variants. Raw k²-weighted EXAFS data and phase-shifted Fourier
transforms are shown for as-isolated pMMO (a, b), copper reconstituted
pMMO (c, d), spmoB (e, f), spmoB_H48N (g, h), and spmoB_H137,139A
(i, j). Raw unfiltered data are shown in black and best-fit simulations are
shown in grey. χ, EXAFS region of the XAS spectrum; Δ, apparent shift in
Fourier transform displayed bond distance (by ~−0.5 Å) due to a phase
shift during calculation of the transform; k, photoelectron wavevector; R,
metal-ligand bond length.

Figure 5 | Catalytic activity of spmoB proteins. a, Epoxidation of propylene
to propylene oxide expressed as a percentage of the activity of as-isolated,
membrane-bound M. capsulatus (Bath) pMMO. b, Oxidation of methane to
methanol expressed as a percentage of the activity of as-isolated, membrane-
bound M. capsulatus (Bath) pMMO. All values are the average of at least two
independent refolding preparations, with error bars representing standard
deviations. The activity of each spmoB protein was compared with the
activity of membrane-bound pMMO measured under the same
experimental conditions.
325.1 nmol methanol μmol$^{-1}$ min$^{-1}$ and that of spmoB is 203.1 \pm 20.2 nmol methanol μmol$^{-1}$ min$^{-1}$ (Fig. 5b). Consistent with the trend observed for propylene epoxidation activity, spmoBd1 has a specific activity of 19.3 \pm 4.7 nmol methanol μmol$^{-1}$ min$^{-1}$ and spmoBd2 is inactive. The reduced activity for spmoBd1 is consistent with increased lability of the copper sites on removal of spmoBd2. These combined activity data indicate that the pMMO copper active site is located within spmoB, and rule out the possibility of the active site being a di-iron centre located at the crystallographic zinc site17 or a trinuclear copper centre located at the intramembrane hydrophilic patch12. In addition, the active site is not located in the pmoA subunit as suggested by radio-labeling experiments with the suicide substrate acetylene14,20.

To pinpoint the active-site location within spmoB, we generated site-specific variants. These variants were designed to disrupt binding at the mononuclear copper site (spmoB_H48N), the dinuclear copper site (spmoB_H137,139A) and both copper sites (spmoB_H48N_H137,139A). Proteins were refolded and the copper content was measured using the same procedures as for spmoB (Fig. 2b). The spmoB_H48N variant (asparagine was selected to mimic the site in the same procedures as for spmoB (Fig. 2b). The spmoB_H48N variant (asparagine was selected to mimic the site in

To pinpoint the active-site location within spmoB, we generated site-specific variants. These variants were designed to disrupt binding at the mononuclear copper site (spmoB_H48N), the dinuclear copper site (spmoB_H137,139A) and both copper sites (spmoB_H48N_H137,139A). Proteins were refolded and the copper content was measured using the same procedures as for spmoB (Fig. 2b). The spmoB_H48N variant (asparagine was selected to mimic the site in the same procedures as for spmoB (Fig. 2b). The spmoB_H48N variant (asparagine was selected to mimic the site in

METHODS SUMMARY

We cultivated M. capsulatus (Bath) as described previously5, with minor modifications. Cells were lysed by sonication and ultracentrifuged with multiple washing/homogenization steps to obtain pMMO-containing membranes. Metals were removed from as-isolated pMMO by treatment with KCN. Genes encoding spmoBd1 (residues 33–172), spmoBd2 (residues 265–414) and spmoB (residues 33–172 and residues 265–414 connected by a Gly-Lys-Leu-Gly-Gly-Gly transition and a weak 1d expression vector. We generated site-directed variants using common commercial kits. All proteins expressed as inclusion bodies, which were centrifuged and treated with Triton X-100 to obtain $>$90% pure samples. Purified inclusion bodies were solubilized with urea and refolded by a stepwise dialysis procedure in the presence of CuSO$_4$. Folding was assessed by circular dichroism spectroscopy and size exclusion chromatography. We determined metal content by the biarchinoxinic-acid method13 or by inductively coupled plasma optical emission spectroscopy. Propylene epoxidation and methane oxidation activities were measured by gas chromatography using Porapak Q packed columns and Rt-Q-BOND capillary columns, respectively. XAS data were collected at the Stanford Synchrotron Radiation Lightsource on beamline 9-3 (ref. 6).

Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.

Received 21 November 2009; accepted 5 March 2010.

Published online 21 April 2010.

1. Hermans, I., Spier, E. S., Neuenenschwander, U., Turra, N. & Baiker, A. Selective oxidation catalysis: opportunities and challenges. Top. Catal. 52, 1162–1174 (2009).
2. Hames, T., Spier, E. S., Neuenschwander, U., Turra, N. & Baiker, A. Selective oxidation catalysis: opportunities and challenges. Top. Catal. 52, 1162–1174 (2009).
3. Que, L. & Tolman, W. B. Biologically inspired oxidation catalysis. Chem. Rev. 953–996 (2000).
4. Que, L. & Tolman, W. B. Biologically inspired oxidation catalysis. Chem. Rev. 953–996 (2000).
5. Que, L. & Tolman, W. B. Biologically inspired oxidation catalysis. Chem. Rev. 953–996 (2000).
6. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound radical oxygenase. Science 223–241 (2007).
7. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound radical oxygenase. Science 223–241 (2007).
8. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyzes the biological oxidation of methane. Nature 434, 177–182 (2005).
9. Lieberman, R. L. & Rosenzweig, A. C. Characterization of the particulate methane monoxygenase metal centers in multiple redox states by X-ray absorption spectroscopy. Inorg. Chem. 45, 8372–8381 (2006).
10. Lieberman, R. L. & Rosenzweig, A. C. Structural and mechanistic insights into methane oxidation by particulate methane monoxygenase. Acc. Chem. Res. 40, 573–580 (2007).
11. Lieberman, R. L. & Rosenzweig, A. C. Structural and mechanistic insights into methane oxidation by particulate methane monoxygenase. Acc. Chem. Res. 40, 573–580 (2007).
12. Lieberman, R. L. & Rosenzweig, A. C. Characterization of the particulate methane monoxygenase metal centers in multiple redox states by X-ray absorption spectroscopy. Inorg. Chem. 45, 8372–8381 (2006).
13. Lieberman, R. L. & Rosenzweig, A. C. Structural and mechanistic insights into methane oxidation by particulate methane monoxygenase. Acc. Chem. Res. 40, 573–580 (2007).
10. Hakemian, A. S. et al. The metal centers of particulate methane monoxygenase from Methylosinus trichosporum OB3b. Biochemistry 47, 6793–6801 (2008).

11. Rosenzweig, A. C. The metal centres of particulate methane monoxygenase. Biochim. Biophys. Acta 1780, 1018–1029 (2008).

12. Chan, S. I. & Yu, S. S. F. Controlled oxidation of hydrocarbons by the membrane-bound methane monoxygenase: the case for a trinuclear copper cluster. Acc. Chem. Res. 41, 969–979 (2008).

13. Chen, K. H.-C. et al. The copper clusters in the particulate methane monoxygenase (pMMO) from Methylococcus capsulatus (Bath). J. Mol. Catal. B 43, 167–176 (2007).

14. Nguyen, H.-H. T. et al. X-ray absorption and EPR studies on the copper ions associated with the particulate methane monoxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications. J. Am. Chem. Soc. 118, 12766–12776 (1996).

15. Chan, S. I. et al. Redox potentiometry studies of particulate methane monoxygenase: support for a trinuclear copper cluster active site. Angew. Chem. Int. Ed. 46, 1992–1994 (2007).

16. Yu, S. S. F. et al. The C-terminal aqueous-exposed domain of the 45 kDa subunit of the particulate methane monoxygenase in Methylococcus capsulatus (Bath) is a Cu(I) sponge. Biochemistry 46, 13762–13774 (2007).

17. Martinho, M. et al. Mössbauer studies of the membrane-associated methane monoxygenase from Methylococcus capsulatus Bath: evidence for a diron center. J. Am. Chem. Soc. 129, 15783–15785 (2007).

18. Choi, D. W. et al. The membrane-associated methane monoxygenase pMMO and pMMO-NADH:quinone oxidoreductase complex from Methylococcus capsulatus Bath. J. Bacteriol. 185, 5755–5764 (2003).

19. Kitmitto, A., Myronova, N., Basu, P. & Dalton, H. Characterization and structural analysis of an active particulate methane monoxygenase trimer from Methylococcus capsulatus Bath: evidence for a diron center. J. Am. Chem. Soc. 129, 15783–15785 (2007).

20. Yatsunyk, L. A. & Rosenzweig, A. C. Copper(I) binding and transfer by the N-terminus of the Methylococcus capsulatus Bath. J. Biol. Chem. 282, 8622–8631 (2007).

21. Prior, S. D. & Dalton, H. Acetylene as a suicide substrate and active site probe for methane monoxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 29, 105–109 (1985).

22. Zahn, J. A. & DiSpirito, A. A. Membrane-associated methane monoxygenase from Methylococcus capsulatus (Bath). J. Bacteriol. 178, 1018–1029 (1996).

23. Zahn, J. A. & DiSpirito, A. A. Membrane-associated methane monoxygenase from Methylococcus capsulatus (Bath). J. Bacteriol. 178, 1018–1029 (1996).

24. Shiota, Y. & Yoshizawa, K. Comparison of the reactivity of bis(µ-oxo)CuIIICuIII and CuIIICuIIICuIII species to methane. Inorg. Chem. 48, 838–845 (2009).

25. Miller, K. W., Hammond, L. & Porter, E. G. The solubility of hydrocarbon gases in lipid bilayers. Chem. Phys. Lipids 20, 229–241 (1977).

26. Batiwala, H., Somasundaram, T., Uzgiris, E. E. & Makowski, L. Methane-induced hemolysis of human erythrocytes. Biochem. J. 307, 433–438 (1995).

27. Myronova, N., Kitmitto, A., Collins, R. F., Miyaji, A. & Dalton, H. Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Biochemistry 45, 11905–11914 (2006).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements This work was supported by US National Institutes of Health (NIH) grants GM070473 (A.C.R.) and DK068139 (T.L.S.). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL). The SSRL is a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the NIH, National Center for Research Resources, Biomedical Technology Program.

Author Contributions R.B., S.M.S., S.R. and L.A.Y. performed experiments. R.B., S.M.S., S.R., T.L.S. and A.C.R. contributed to experimental design, data analysis and manuscript preparation.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to T.L.S. (tstemml@med.wayne.edu) or A.C.R. (amyr@northwestern.edu).

©2010 Macmillan Publishers Limited. All rights reserved
METHODS

Growth of *M. capsulatus* (Bath). *M. capsulatus* (Bath) was cultivated as described previously, with a few modifications. Briefly, 121 of nitrate mineral salts media was supplemented with a trace-element solution, 50 μM CuSO₄ and 80 μM FeEDTA. The pH of the culture was maintained at 6.8 using a 100 mM phosphate buffer. Adjustments to the pH during growth were made using NaOH and H₂SO₄. Before growth, methane gas was bubbled through the media for ~30 min. Approximately 5–10 g of highly active cell paste stock was used as the inoculum after resuspension in sterile nitrate mineral salts media at 45°C. Fermentations were conducted at 45°C with an air:methane gas ratio of 4:1 and a constant agitation of 300 r.p.m. Cells were harvested at mid-exponential phase (~0.6 at 37°C) and centrifuged for 10 min at 8,000g. Pelleted cells were washed by resuspension in 25 mM PIPES (pH 6.8), re-centrifuged, flash frozen in liquid nitrogen and stored at ~80°C.

Isolation of pMMO-containing membranes. Frozen cells were resuspended in lysis buffer (25 mM PIPES (pH 6.8), 250 mM NaCl) and sonicated on ice. Cell debris was removed by centrifugation at 20,000g for 1.5 h. The lysate was then ultracentrifuged at 160,000g for 1 h to pellet intracytoplasmic membranes. These membranes were resuspended in fresh lysis buffer using a Dounce homogenizer. Ultracentrifugation and resuspension were repeated three times to remove contaminating soluble proteins. SDS–polyacrylamide gel electrophoresis (PAGE) analysis of the as-isolated membranes showed that the predominant component is pMMO. The homogenized crude membranes at ~10–20 mg ml⁻¹ were flash frozen in liquid nitrogen and stored at ~80°C.

Preparation of apo-pMMO. Active as-isolated pMMO membranes were incubated with 50 mM MOPS (pH 8.0) and 250 mM NaCl supplemented with a tenfold molar excess (based on copper concentration) of KCN and concentrated to ~50% of the total volume. The addition of ascorbate did not affect the pH of the solution. After a 1-h incubation at room temperature (~25°C) with stirring, the solution was ultracentrifuged at 160,000g for 30 min to pellet the pMMO membranes. The apo-pMMO membranes were resuspended and washed three times with fresh lysis buffer to remove excess KCN and ascorbate. Cyanide treatment does not alter the integrity of the subunits according to SDS–PAGE. Moreover, apo-pMMO stored at 4°C has higher activity on copper reactivation than as-isolated pMMO stored at 4°C for the same time period. This observation suggests that the strict anaerobic protocols used by other researchers might serve to protect against oxidative damage caused by excess metal ions.

Cloning of *spmoB*, *spmoBd1* and *spmoBd2*. Three constructs of the soluble domain of *spmoB* (*spmoB*) were generated: *spmoBd1* (residues 33–172), *spmoBd2* (residues 265–414) and *spmoB* (residues 265–414 connected by a Gly-Lys-Leu-Gly-Gly-Gly linker rather than by the two transmembrane helices) (Fig. 1). This linker was designed by inspection of the pMMO structure, and the glycine residues were selected to impart flexibility. Primers *spmoBd1F* (5’-GGATCTACGACGGTGATGATCCTTCCTCGGTGATTG-3’) and *spmoBd1R* (5’-GGTCTACGGATGATGATCCTTCCTCGGTGATTG-3’) were used to amplify *spmoBd1* from *M. capsulatus* (Bath) genomic DNA. The Ndel–HindIII-digested PCR product encoding *spmoBd1* was then ligated into a Ndel–HindIII-digested pET21b (+) vector (Novagen) to generate the *spmoBd1* (5’-GGACGACGGTGATGATCCTTCCTCGGTGATTG-3’) and *spmoBd2R* (5’-GGTCTACGGATGATGATCCTTCCTCGGTGATTG-3’) were used to amplify *spmoBd2*. The pET21b (+)–*spmoBd2* vector was generated by ligation of the PCR product encoding *spmoBd2* at the Ndel–HindIII sites. To generate the *spmoB* construct, HindIII–HindIII-digested PCR product encoding *spmoBd2* amplified using primers *spmoBd2F* (5’-GGAGACGGTGATGATCCTTCCTCGGTGATTG-3’) and *spmoBd2R* (5’-GGTCTACGGATGATGATCCTTCCTCGGTGATTG-3’) was inserted into the HindIII-digested pET21b (+)–*spmoBd1* vector. Authenticity of the coding sequence and full construct were verified by DNA sequencing. There is a silent mutation in the *spmoB* DNA sequence at position 1,076 that changes C to G (ACC→ACG coding for Thr). The site-directed variants *spmoB* H48N, *spmoB* H137,139A and *spmoB* H48N H137,139A were generated using either a traditional single mutagenesis kit or a multisite-directed mutagenesis kit from Stratagene and verified by DNA sequencing.

Protein expression, purification and refolding. For protein expression, plasmids were transformed into either the BL21(DE3) or the Rosetta (DE3) strain of *E. coli*. Ten millilitres of an overnight culture of freshly transformed cells were transferred to 11 of LB supplemented with 50 μg ml⁻¹ ampicillin. After reaching an attenuation of A₆₀₀nm=0.6 at 37°C, 0.5 μM IPTG was added and followed by 4 h of induction. After the expression constructs tested produced proteins that formed inclusion bodies (Supplementary Fig. 4). Alterations to the growth temperature, incubation times, inducer concentrations and growth media had no effect on the protein solubility. Cells from 41 of growth were collected by centrifugation at 5,000g for 10 min, washed and resuspended in 200 ml of 20 mM TrisCl (pH 8.0) and 50 mM NaCl, flash frozen in liquid nitrogen and stored at ~20°C until further processed.

Frozen cells were thawed in lukewarm water and lysed by a 10-min sonication cycle of 10 s on/30 s off pulses on ice at 50% output power. Inclusion bodies were separated from cell debris and other soluble proteins by centrifuging for 30 min at 3,000g. The inclusion bodies were then washed three times with 20 mM TrisCl (pH 8.0), 50 mM NaCl and 1% Triton X-100, and once more with the same buffer lacking Triton X-100. Inclusion bodies isolated using this procedure were >90% pure and required no additional purification steps (Supplementary Fig. 4). Typically, 1–3 g of inclusion bodies can be isolated from 1 l of cell culture. Purified inclusion bodies were solubilized in 8 M urea (20 ml urea per 1 g). This mixture was left stirring at room temperature for 1 h and then centrifuged at 15,000g for 30 min at room temperature. Urea-solubilized inclusion bodies were aliquoted and stored at ~80°C for further use.

All attempts to express even partly soluble protein were unsuccessful. Therefore, a refolding procedure was developed. Urea-solubilized inclusion bodies were diluted to ~5 mg ml⁻¹ protein concentration. Protein refolding was performed using a stepwise dialysis procedure against buffers containing a stepwise reduction in the urea concentration. Each dialysis was performed for at least 3 h. After a 3-h dialysis against 7 M urea, the protein was dialysed against 6 M urea and then against 3 M urea for 3 h. Dialysis was performed against a buffer containing 0.5 M urea, at least two rounds of dialysis were performed against a buffer containing either 20 mM TrisCl (pH 8.0) or 20 mM PIPES (pH 7.0), and 250 mM NaCl (no urea). On the basis of SDS–PAGE band intensities, we estimate that about 0.2–5% of the total protein was folded after this procedure. Precipitates were removed by centrifugation at 20,000g for 10 min at 4°C using a tabletop centrifuge. The *spmoBd1* variant was generally less stable and more susceptible to precipitation during these procedures.

Copper loading of recombinant proteins. The *spmoB* protein contains the ligands to the two copper sites observed in the *M. capsulatus* (Bath) crystal structure (Fig. 1). Complete precipitation occurred on copper addition to refolded *spmoB*. Therefore, a refolding procedure in the presence of copper was developed and used for all *spmoB* variants. The 6 M urea dialysis buffer included 1 mM CuSO₄ and the stepwise reduction in urea concentration was accompanied by a reduction in copper concentration. Excess copper was then removed from Cu(ii)-refolded proteins by dialysis against a buffer containing either 20 mM TrisCl (pH 8.0) or 20 mM PIPES (pH 7.0), and 250 mM NaCl, with no CuSO₄ or urea. Proteins refolded following this procedure contained no detectable iron. For refolding of *spmoB* and its variants in the presence of iron, 1 mM Fe(NH₄)₂(SO₄)₃ was added during dialysis instead of CuSO₄. All other procedures were identical to those used for refolding in the presence of copper.

Determination of metal content. The copper contents of *spmoB* variants were measured using the bichiniconinic-acid (BCA) method. Standards of 0–40 μM copper were prepared by diluting commercially available copper atomic absorption spectroscopy standard solutions (Sigma Aldrich) in water. The Cu(i)–BCA complex has absorbance peaks at 360 and 562 nm. The iron contents of *spmoB* variants were determined using the ferrozine assay. A solution containing 150 μl 1 M HCl, 150 μl freshly prepared 1.7 M ascorbate and 250 μl 0.1% ferrozine (Acros Organics) prepared in 50% ammonium acetate was added to 150 μl protein. The reaction mixture was incubated at 30°C for 15 min, centrifuged and the absorbance at 570 nm of the supernatant measured. A standard curve was also prepared against iron standard (Aldrich) for a range of 0–40 μM iron concentration range. The copper, iron and zinc contents of isolated pMMO membranes and apo-pMMO membranes were determined by inductively coupled plasma optical emission spectroscopy (ICP–OES) using a
Samples were then centrifuged briefly and 3 is shaken in a 45
then initiated by replacing 2 ml of the headspace gas with propylene and the vial
duroquinol is added to 50
shown in Fig. 3 were reproduced more than four times. For experiments with
and/or Fe(NH4)2(SO4)2 for 30 min and measurements performed as above.
Bradford reagent or detergent-compatible Bio-Rad
sured in triplicate. Protein concentrations were determined using either
absorption standards diluted in 5% nitric acid (TMG). All samples were mea-

doi:10.1038/nature08992

Methane oxidation assay. Methanol production by both pMMO and the spmoB
variants was measured by gas chromatography using a Rt-Q-BOND capillary
column (Restek). The procedure for the propylene epoxidation assay was used with
the following modifications. Methane (2 ml) was added to the headspace
instead of propylene as the substrate. The procedure was performed at 3 min at
45 °C for pMMO (Fig. 3) and for at least 1 h at 45 °C for spmoB and its variants
(Fig. 5). For comparisons of the spmoB activity with that of as-isolated pMMO,
the pMMO assay was also carried out for 1 h (Fig. 5). All activity assays were per-
duplicate. To account for the differences in molecular masses when
comparing activities of pMMO (~100 kDa) with those of spmoB and its variants
(16–32 kDa), the activities of spmoB and its variants are reported per mole
instead of per milligram.

Methane oxidation assay. Methanol production by both pMMO and the spmoB
variants was measured by gas chromatography using a Rt-Q-BOND capillary
column (Restek). The procedure for the propylene epoxidation assay was used with
the following modifications. Methane (2 ml) was added to the headspace
instead of propylene as the substrate. The reaction was performed for 3 min at
45 °C for pMMO (Fig. 3) and for at least 1 h at 45 °C for spmoB and its variants
(Fig. 5). For comparisons of the spmoB activity with that of as-isolated pMMO,
the pMMO assay was also carried out for 1 h (Fig. 5). After this procedure, the
samples were then centrifuged briefly and 3 μl of the clear supernatant injected
onto the capillary column at a constant oven temperature of 75 °C. Quantitation
was performed using standard curves generated by analysing methanol standards
(Sigma Aldrich; spectrophotometric grade >99%). For both propylene epoxi-
dation and methane oxidation assays, numerous control assays in which
duroquinol, substrate or enzyme was eliminated systematically from the reaction
mixture were performed.

X-ray absorption spectroscopy. XAS data were collected on the following five
samples as-isolated pMMO (sample 1), apo-pMMO reconstituted with CuSO4
in the presence of duroquinol (sample 2), spmoB (sample 3), spmoB_H48N
(sample 4) and spmoB_H137,139A (sample 5). As-isolated and apo-pMMO
membranes were ultracentrifuged and resuspended in 25 mM PIPES (pH 6.8),
250 mM NaCl and 50% glycerol before loading into Kapton-tape-wrapped
Lucite cells and flash freezing in liquid nitrogen. The samples were stored in
liquid nitrogen until data collection was performed. For reconstituted pMMO
membranes, apo samples were incubated with 3 equiv. of CuSO4 for 30 min; this
was followed by addition of excess duroquinol, ultracentrifugation, resus-
pen, cell loading and freezing. The final copper concentrations were 0.7–2 mM.
For spmoB and its variants, all samples were prepared in 10 mM TrisCl (pH 8.0),
250 mM NaCl and 50% glycerol. The final copper concentrations were
0.3–0.9 mM. All XAS results were reproduced using two independent samples.

XAS data were collected at the SSRL on beamline 9-3 using a Si(220) double-
crystal monochromator equipped with a harmonic rejection mirror. Samples
were maintained at 10 K using an Oxford Instruments continuous-flow liquid
helium cryostat. Protein fluorescence excitation spectra were collected using a
30-element germanium solid-state array detector. A nickel filter (0.3 μm wide)
was placed between the cryostat and the detector to filter scattering fluorescence
not associated with protein copper signals. XAS spectra were measured using
5-eV steps in the pre-edge region (8,750–8,960 eV), 0.25-eV steps in the edge
region (8,986–9,050 eV) and 0.05 Å⁻¹ increments in the EXAFS region (to
k = 13.0 Å⁻¹), integrating from 1 s to 20 s in a k²-weighted manner for a total
scan length of approximately 45 min. X-ray energies within the protein spectra
were internally calibrated by simultaneously collecting copper foil absorption
spectra; the first inflection point in the copper foil spectra was assigned as
8,980 eV. Each fluorescence channel of each scan was examined for spectral
anomalies before averaging, and spectra were closely monitored for photoreduc-
tion. The represented data are the average of seven or eight scans.

XAS data were processed using the Macintosh OS X version of the EXAFSPAK
program suite31 integrated with the FEFF 7 software32 for theoretical model
generation. Data reduction followed a previously published protocol for a spec-
tral resolution in bond lengths of 0.13 Å (ref. 8). EXAFS fitting analysis was
performed on raw/unfiltered data. Protein EXAFS data were fitted either using
single-scattering FEFF 7 theoretical models, calculated for carbon, oxygen, sul-
phur and copper coordination to simulate copper-ligand environments, or a
multiple-scattering imidazole model, and values for the scale factors (Sc) and
E₀, calibrated by fitting crystallographically characterized copper model com-
pounds, as outlined previously9. Criteria for judging the best-fit EXAFS simula-
tions used both the lowest mean square deviation between data and fit corrected
for the number of degrees of freedom (F²)9 and reasonable Debye–Waller factors
(σ² < 0.006 Å²). First-shell fits with a single set of O/N ligands gave significantly
better F² values than fits with a single Cu–S or Cu–Cu environment for all
samples. Long-range scattering (>3 Å) evident for all five samples could not be
fitted with a multiple-scattering Cu-imidazole model, as shown by the large
F² values for these fits (Supplementary Table 2, fits 1.3, 2.3, 3.3, 4.3 and 5.3).

31. Stoekey, L. L. Ferrozine - a new spectrophotometric reagent for iron. Anal. Chem.
42, 779–781 (1970).
32. George, G. N., George, S. J. & Pickering, I. J. EXAFSPAK (http://www-
ssrl.slac.stanford.edu/~george/exafspak/exafs.htm) (2001).
33. Ankudinov, A. L. & Rehr, J. J. Relativistic calculations of spin-dependent X-ray
absorption spectra. Phys. Rev. B 56, R1712–R1716 (1997).
34. Riggs-Gelasco, P. J., Stemmler, T. L. & Penner-Hahn, J. E. XAFS of dinuclear metal
sites in proteins and model compounds. Coord. Chem. Rev. 144, 245–286 (1995).