Kinematical contributions to the transverse asymmetry in semi-inclusive DIS

K. A. Oganessyana, b, P. J. Muldersc, E. De Sanctisa, and L. S. Asilyana

aINFN-Laboratori Nazionali di Frascati I-00044 Frascati, via Enrico Fermi 40, Italy
bDESY, Notkestrasse 85, 22603 Hamburg, Germany
cDivision of Physics and Astronomy, Vrije Universiteit De Boelelaan 1081, NL-1081 HV Amsterdam, the Netherlands

We discuss the contributions of the transverse spin component of the target to the double-spin asymmetries in semi-inclusive deep inelastic scattering of longitudinally polarized electrons off longitudinally polarized protons.

In the studies of semi-inclusive charged and neutral pion production off a longitudinally polarized protons, the HERMES collaboration has observed a single target-spin asymmetry (SSA) \cite{1}. This asymmetry could either result from twist-3 chiral-odd effects \cite{2,3} and/or could be a reflection of the Collins effect \cite{4}. Which of the two is relevant is an open issue. For a further understanding of “transverse asymmetry contribution” we discuss here the double-spin and double-spin azimuthal asymmetries, where those contributions are well defined.

A target with an anti-parallel (parallel) polarization with respect to the beam has a transverse spin component in the virtual photon frame which can only have azimuthal angle π (0) (Fig.1). The value of this transverse spin component is

\begin{equation}
|S_T| = |S| \sin \theta_{\gamma},
\end{equation}

where S is target polarization. The quantity $\sin \theta_{\gamma}$ is of order $1/Q$ and is given by

\begin{equation}
\sin \theta_{\gamma} = \sqrt{\frac{4M^2x^2}{Q^2 + 4M^2x^2(1 - y - \frac{M^2x^2y^2}{Q^2})}},
\end{equation}

where M is the nucleon mass.
Fig. 1. (a) – The kinematics of semi-inclusive DIS: \(k_1 (k_2) \) is the 4-momentum of the incoming (outgoing) charged lepton, \(Q^2 = -q^2 \), where \(q = k_1 - k_2 \), is the 4-momentum of the virtual photon. The momentum \(P (P_h) \) is the momentum of the target (observed) hadron. The scaling variables are \(x = Q^2 / 2 (P \cdot q) \), \(y = (P \cdot q) / (P \cdot k_1) \), and \(z = (P \cdot P_h) / (P \cdot q) \). The momentum \(k_{1T} (P_{h\perp}) \) is the incoming lepton (observed hadron) momentum component perpendicular to the virtual photon momentum direction, and \(\phi \) is the azimuthal angle between \(P_{h\perp} \) and \(k_{1T} \). (b) – The definition of the azimuthal angle \(\phi_S \) and the target polarization components in virtual photon frame.

First, we give an estimate of the \(\cos \phi \) moment of the semi-inclusive DIS cross section, which is the following weighted integral of a cross section asymmetry \(^5\).

\[
A_{LL}^{\cos \phi} = \frac{1}{\langle P_{h\perp} \rangle} \int d^2 P_{h\perp} |P_{h\perp}| \cos \phi (\sigma^{++} + \sigma^{-+} - \sigma^{+-} - \sigma^{-+}) \int d^2 P_{h\perp} (\sigma^{++} + \sigma^{-+} - \sigma^{+-} - \sigma^{-+}).
\]

(3)

Here the subscript \(LL \) denotes the longitudinal polarization of the beam and target respectively, \(\sigma \) is a shorthand notation for \(d\sigma^{eN \rightarrow ehX}/dx dy dz d^2 P_{h\perp} \), the superscripts \(++, -,+-,-- \) denote the helicity states of the beam and target respectively, corresponding to antiparallel (parallel) polarization\(^4\). Assuming 100% beam and target polarization and using the Wandzura-Wilczek (WW) approximation \(^6\), where only the twist-2 distribution and fragmentation functions are used, i.e. the interaction-dependent twist-3 parts are set to zero, one obtains (for more details see Ref. \(\cite{5} \))

\[
A_{LL}^{\cos \phi} = \frac{4}{\langle P_{h\perp} \rangle} \frac{\Delta \sigma_{LL} - d\sigma_{LT}}{\sigma_{UU}},
\]

(4)

\(^1\)It leads to positive \(g_1(x) \).
where
\[\Delta \sigma_{LL}^{WW} \approx -4\lambda e S_L \frac{Q}{\sqrt{1-y}} M^2 g_1(x) z D_1(z), \] (5)
\[d\sigma_{LT}^{WW} \approx \lambda e |S_T| (2-y) M \left[\int_x^1 du \frac{g_1(u)}{u} \right] z D_1(z), \] (6)
\[\sigma_{UU} = \frac{[1+(1-y)^2]}{y} f_1(x) D_1(z), \] (7)

being \(f_1 \) and \(g_1 \) \((D_1)\) the well-known leading twist distribution (fragmentation) functions. Notice that the cross section \(d\sigma_{LT}\) is positive but gives a negative contribution to the asymmetry \(|\vec{A}\)| because of the dependence on the azimuthal angle \(\phi_S\): \(\sigma^+ - \sigma^- = -d\sigma_{LT}\) and \(\sigma^- - \sigma^+ = d\sigma_{LT}\) at \(\phi_S = \pi(0)\) (see Fig.1 (b)).

It is important to point out that in the WW approximation the \(\cos \phi\) asymmetry reduces to a kinematical effect conditioned by intrinsic transverse momentum of partons similar to the \(\cos \phi\) asymmetry in unpolarized semi-inclusive DIS [7].

In Fig.2 (a), the asymmetry \(A_{LL}^{\cos \phi}\) of Eq.(3) for \(\pi^+\) production as a function of \(x\). The dashed line corresponds to contribution of the \(\Delta \sigma_{LL}\), dot-dashed one to \(d\sigma_{LT}\) and the solid line is the difference of those two; (b) – Double-spin asymmetry, defined by Eq.(8), as a function of \(x\). The full-curve corresponds to \(\Delta \sigma_{LL}'\) contribution and the dashed one is the total asymmetry.

In Fig.2(a), the asymmetry \(A_{LL}^{\cos \phi}\) for \(\pi^+\) production on a proton is shown as a function of \(x\). The curves are calculated by integrating over the HERMES kinematical ranges [5]. As it can be seen, the WW approximation gives the large negative double-spin \(\cos \phi\) asymmetry; the "kinematic" contribution coming from the transverse component of the target polarization is small (up to 25% at large \(x\)).
Let us now consider the following asymmetry

$$A = \frac{\int d^2P_{h\perp} (\sigma^{++} - \sigma^{-+})}{\int d^2P_{h\perp} (\sigma^{++} + \sigma^{-+})},$$

which can be written as [2,8]

$$A = \frac{\Delta \sigma'_{LL} + d\sigma'_{LT}}{\sigma_{UU}},$$

with

$$\Delta \sigma'_{LL} = \lambda eS_L (2 - y) g_1(x) D_1(z),$$

$$d\sigma'_{LT} \approx \frac{4M}{Q} |S| y \sqrt{1 - y x^2} [\int_x^1 du \frac{g_1(u)}{u}] D_1(z).$$

In Fig.2(b), this asymmetry is given as a function of x. As it is shown, the contribution from the target transverse component is negligible. Another possibility for studying the “kinematical” contributions is considering of $\sin(2\phi - \phi_S)$ – weighted asymmetry, $A_{LT}^{\sin(2\phi - \phi_S)}$, and its contribution to the target longitudinally polarized case.

In summary, the double-spin and the double-spin azimuthal asymmetries of semi-inclusive DIS of longitudinally polarized electrons off longitudinally polarized protons at twist-two level was investigated. A sizable negative $\cos \phi$ asymmetry is found for HERMES kinematics; the ‘kinematical’ contribution from target transverse component (S_T) to the $\cos \phi$ asymmetry, $A_{LL}^{\cos \phi}$, is small and that to the double-spin asymmetry, A, is negligible. Then, the measurements of SSA with transversely polarized target could help to understand the transverse asymmetry effects in the longitudinally polarized target case.

This work is part of the research performed under the European Commission IHP program under contract HPRN-CT-2000-00130.

REFERENCES

1. HERMES Collaboration, A. Airapetian, et al., Phys. Rev. Lett. 84 (2000) 4047; Phys. Rev. D 64 (2001) 097101.
2. P.J. Mulders and R.D. Tangerman, Nucl. Phys. B 461 (1996) 197 and Nucl. Phys. B 484 (1997) 538, Erratum.
3. A. Kotzinian, Nucl. Phys. B 441 (1995) 234.
4. J. Collins, Nucl. Phys. B 396 (1993) 161.
5. K. A. Oganessyan, P. J. Mulders, E. De Sanctis, Phys. Lett. B532 (2002) 87.
6. S. Wandzura and F. Wilczek, Phys. Lett. B72, 195 (1977).
7. R.N. Cahn, Phys. Lett. B 78 (1978) 269; Phys. Rev. D 40 (1989)
8. R. L. Jaffe, X. Ji, Phys. Rev. Lett., 71 (1993) 2547.