Research Article

Photosynthetic physiological and ecological responses of the invasive *Sphagneticola trilobata* and the native *Sphagneticola calendulacea* to experimental shading

Jun-jie Zhang1,2, Ming-ling Cai1,2, Li-hua Chen1, Xiao-hua Lin1, Jin-di Peng1, Jun-dong Huang1, Ling Shao2 and Chang-lian Peng1,*

1Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
2College of Life Science, Zhao Qing University, Zhaoqing, Guangdong, China

#These authors contributed equally to this work
*Corresponding author
E-mail: pengchl@scib.ac.cn

Abstract

Affected by global climate change and human activities, biological invasion has become a serious global problem that not only occurs in cities and wastelands but also in forests, severely endangering biodiversity. *Sphagneticola trilobata* (L.) Pruski, 1996, is a common invasive plant in South China that can adapt to high light and high temperature environments, but its photosynthetic physiological response to shaded environments, such as forest margins, remains unclear. This study investigates the photosynthetic physiology and oxidative damage of *S. trilobata* and the native species *Sphagneticola calendulacea* (L.) Pruski, 1996, in a low-irradiance environment. The results show that, compared with the full-light group, photosynthetic gas exchange parameters (including net photosynthetic rate, stomatal conductance and transpiration rate) and chlorophyll fluorescence parameters (maximal quantum yield and actual quantum yield of PSII) of plants in the low-light group significantly decreased after shading, while intercellular CO2 and nonphotochemical quenching increased; of note, *S. trilobata* experienced smaller changes. The malonaldehyde content of *S. calendulacea* increased, while phenols and the total antioxidant capacity of *S. trilobata* declined more significantly than those of the native species tested. These results further indicate that, compared with *S. calendulacea*, *S. trilobata* exhibited a lower loss in photosynthesis and less oxidative damage under shading. This may explain why *S. trilobata* tends to spread to forests in South China.

Key words: invasion, photosynthesis, chlorophyll fluorescence parameters, oxidative damage, shade

Introduction

Climate change caused by increased human activity and globalization has exacerbated biological invasion over time (Paini et al. 2016; Horvitz et al. 2017). Biological invasion is the spread of native species to and throughout non-native areas as a result of competitive advantages afforded by the absence of otherwise natural obstacles, such that the invading species dominantly populate these new areas (Valéry et al. 2008), seriously
undermine biodiversity, and hinder the normal function of ecosystems, resulting in significant economic losses (Vilà et al. 2011). Light is one of the necessary resources for plants and they use light to maintain their lives through photosynthesis. Alien plant invasion, a specific kind of biological invasion, occurs not only in urban green areas and wilderness but also in environments that lack of light resources, such as forest edges and understories (Chmura and Sierka 2006; Tan et al. 2012).

However, different types of plants have different requirements and adaptability to light, and each species can regulate, to some extent, their morphology and physiological functions to adapt to different levels of light in their environments (Franklin 2008). External light intensities lower than normal conditions can result in modifications to the photosynthetic process, which are generally assessed by indices including photosynthetic pigment content, photosynthetic gas exchange parameters and chlorophyll fluorescence. Photosynthetic pigment is the material basis for plant photosynthesis, and the chlorophyll \(a+b \) content and chlorophyll \(a/b \) ratio decrease in plant leaves under long-term shading (Mu et al. 2010). The physiological and ecological characteristics of plant photosynthesis in different light environments can be assessed by photosynthetic parameters (Nedbal et al. 2000; Yokoya et al. 2006). Shading significantly decreases the net photosynthetic rate (\(P_n \)) of plant leaves (Dong et al. 2019), and stomatal conductance (\(G_s \)) gradually decreases, while intercellular \(CO_2 \) concentration (\(C_i \)) increases, with increased shading time and intensity (Yang et al. 2020). Chlorophyll fluorescence parameters like the maximal quantum yield of photosystem II (PSII) (\(F_{v}/F_{m} \)), the actual quantum yield of PSII (\(\Phi_{PSII} \)) and the nonphotochemical quenching (NPQ) are indicators that sensitively reflect the absorption-transmission-dissipation-distribution of light energy in the photosystem during photosynthesis (Genty et al. 1989; Schreiber et al. 1995), thereby showing the adaptation of plants to their external environments. While shading stress can cause a drop in photochemical quenching (\(qP \)) and \(\Phi_{PSII} \) and a rise in NPQ, meaning absorbed light energy flux to photosynthesis reduces and converts into nonphotochemical quenching such as heat energy (Yao et al. 2017).

The reduction in photosynthesis under shading is not only due to PSII malfunction caused by factors like decreased chlorophyll content but is also closely related to excessive accumulation of reactive oxygen species (ROS). Although ROS is well known to accumulate in plants under high irradiance, Ding et al. (2012) have shown that shading also causes ROS accumulation; in a low-light environment, excessive closure of stomata decreases \(CO_2 \) absorption, thereby limiting regeneration of \(NADP^+ \) in the Calvin cycle. Thus, a drop in \(NADP^+ \) decreases the usage of light energy received from low-light environments such that surplus light energy and an increase in the photosynthetic electron transport branch reaction finally lead to ROS generation and accumulation (Yu et al. 2021). When the
balance between ROS and the antioxidant system is broken, lipid peroxidation of cell membranes occurs (Jaleel et al. 2009), damaging the membranes. Consequently, the content of malondialdehyde (MDA), the product of membrane peroxidation, can reflect the degree of injury (Ayala et al. 2014). To alleviate ROS damage to plants, emergency mechanisms, such as nonenzyme antioxidant systems including flavonoids and total phenols, are activated and play a key role in stress tolerance (Wahid et al. 2007). Flavonoids can be oxidized by peroxidase and works in H_2O_2-scavenging while phenols can scavenge ROS directly (Sarker and Oba 2018).

Listed in the 100 of the World’s Worst Invasive Alien Species (Lowe et al. 2000), *Sphagneticola trilobata* (L.) Pruski, 1996, is a perennial herb of the Asteraceae family originating from tropical regions of South and Central America, which was introduced in 1970’s as a groundcover and escaped into the wild, mainly occurs at urban green areas and wilderness in present, becoming a troublesome weed in South China (Wu et al. 2004, 2012). Compared with native species in the same genus, *Sphagneticola calendulacea* (L.) Pruski, 1996, *S. trilobata* is highly adaptable to environmental changes and, due to its strong reproductive ability, can easily form monodominant populations after invading a new habitat. Once its cover exceeds 10%, it decreases plant community diversity (Qi et al. 2014). Studies have shown that *S. trilobata* has a larger leaf area and biomass, stronger photosynthetic capacity (Cai et al. 2020b) and greater tolerance against high irradiance stress, heat stress and cold stress than native species (Song et al. 2009a; Cai et al. 2020a, 2021). Several recent studies report that *S. trilobata* has a tendency to spread to forests in South China (Cao et al. 2007; Song et al. 2009b), but the mechanism by which *S. trilobata* protects itself against shading in low-light environments, such as forest edges, is still not clear. Li et al. (2016) studied changes in morphology, relative growth rate and photosynthesis of *S. trilobata*, *S. calendulacea* and their natural hybrids; however, the physiology, particularly the responses of photosynthetic physiology and oxidative stress under shading remain unknown. Therefore, we have compared *S. trilobata* and *S. calendulacea* in terms of photosynthetic physiology, chlorophyll fluorescence and antioxidants under shading to obtain a more comprehensive understanding of their responses and ecological adaptability to low-light environments. This study provides a theoretical basis for the responses of *S. trilobata* against low-light stress and enables predictions of potential areas of invasion.

Materials and methods

Materials and experimental design

Sphagneticola trilobata and *S. calendulacea*, grew under full sunlight, and were collected from a botanical garden in the School of Life Science (Figure 1), South China Normal University (23°08′N; 113°20′E). Five defoliated stems
of each *Sphagneticola* species were trimmed into 20 pieces (for each species) with two internodes, about 10 cm in length, with asextual propagation conducted in a thermostat with a light intensity of 100–200 μmol m$^{-2}$ s$^{-1}$ and 28 °C/25 °C day/night. After 4 weeks of rooting, uniform cuttings of two species, having 4 pairs of leaves and stem lengths reaching 15 cm, were transplanted into pots for treatment, one plant per pot and 20 pots for each species.

To study the responses of the two *Sphagneticola* species under shading, two light intensities, full sunlight and low light (30% full light) provided by a two-layer black shade cloth covered at a height of 2 m above the ground, were applied for 15 days, 5 pots per treatment per species, in January 2020. Leaves at the second to fourth leaf positions were used as experimental samples, and five repeats of each species were selected from different light intensities.
Measurement of photosynthetic pigment content

Samples (0.025 g) were collected at the end of the treatment to determine photosynthetic pigment content. Samples were frozen in liquid nitrogen, crushed into powder, and soaked in 80% acetone for 12 hours. After centrifugation, the supernatants were analyzed by spectrophotometry (UV-2450, Shimadzu, Kyoto, Japan) at 663 and 646 nm. Chlorophyll a (Chl a), Chlorophyll b (Chl b) and Chlorophyll $a+b$ (Chl $a+b$) sample contents were calculated using the methodology of Lichtenthaler and Buschmann (2001).

Assay of photosynthetic gas exchange parameters and chlorophyll fluorescence parameters

Photosynthetic gas exchange parameters, including net photosynthetic rate (P_{n}), intercellular CO$_2$ concentration (C_i), stomatal conductance (G_s) and transpiration rate (T_r), of each material were assayed using a programmable, open-flow gas exchange system (Li-6400, Li-Cor, USA) after 15 days of treatment.

A chlorophyll fluorescence imaging system (CF Imager, Technological Ltd. Colchester, UK) was used to determine the chlorophyll fluorescence parameters at the end of the 15-day treatment. After dark-adaptation in a dark chamber for 20 min, fresh samples (8 mm leaf disc) were positioned in the previously selected area of interest (AOI). Kinetics curves of the chlorophyll fluorescence parameters of the samples were displayed in the kinetics window of the software, while corresponding data like the maximal quantum yield of photosystem II (PSII) (F_{v}/F_{m}), the actual quantum yield of PSII (Φ_{PSII}) and the nonphotochemical quenching (NPQ) were directly derived from the report window. Fluorescence spectra of plants were obtained every 4 days from the third day of treatment using a fluorescence spectrophotometer (F-4600, HITACHI, Japan) and an excitation wavelength of 436 nm, and the energy distribution photosystem I/ photosystem II (PSI/PSII) was calculated based on the methodology of Li et al. (2002).

Estimation of cell membrane injury

Lipid peroxidation of the cell membrane was estimated from cellular malondialdehyde (MDA) content using methodology modified from Xu et al. (2013). Leaf samples (0.1 g) were ground in 1.5 mL of extracting solution containing 10% trichloroacetic acid (TCA). After centrifugation, 1 mL of supernatant was mixed with 1 mL 0.6% thibabituric acid (TBA), and the resulting mixture was bathed in boiling water for 15 min, after which the cooled mixtures were analyzed spectrophotometrically at 450, 532, and 600 nm. MDA concentrations (c_{MDA}) were calculated using the equation $c_{MDA} = 6.45 \times (A_{532} - A_{600}) - 0.56 \times A_{450}$.

Zhang et al. (2022), *Management of Biological Invasions* 13(2): 274–287, https://doi.org/10.3391/mbi.2022.13.2.02
Determination of antioxidants

Samples (0.1 g) were triturated in 1.5 mL of 95% methyl alcohol. After centrifugation, the supernatant of the samples was used to detect flavonoid and total phenol contents and total antioxidant capacity (TAC).

To measure the flavonoid content in the samples, 0.2 mL 5% NaNO₂, 0.3 mL 10% AlCl₃ and 1 mL 1 mol L⁻¹ NaOH were successively added to the 8-fold diluted supernatant above, and the mixture was analyzed spectrophotometrically at 510 nm, following the methodology of Ainsworth and Gillespie (2007). A standard curve was created to calculate flavonoid content using catechins.

We determined the total phenol content using the methodology described by Ainsworth and Gillespie (2007). The supernatants above were diluted with 95% methanol to 1 mL, after which 1 mL 10% foline-phenol and 2 mL 0.7 mol L⁻¹ Na₂CO₃ were added to the solution in turn. The solution was then analyzed spectrophotometrically at 765 nm. A standard curve was created to calculate the content of total phenols using gallic acid.

Using the method amended by Gangwar et al. (2014), the TAC of the samples was estimated by means of the radical scavenging reaction of 1,1-diphenyl-2-picrylhydrazyl (DPPH). Then, 0.15 mL of the resulting supernatant above was mixed with 3 mL 120 μmol L⁻¹ DPPH, and the mixture was analyzed spectrophotometrically at 517 nm. A standard curve was created to calculate the TAC of the samples via gradient dilution of the DPPH solution.

Statistical analysis

The data in this study are presented as means ± standard deviations (SD). Statistical analysis and comparison of differences between control and treatment groups were performed using SPSS 19.0 (IBM SPSS, Chicago, USA), with significance defined by a p-value of < 0.05. Graphs were produced using Origin Pro 8.0 (OriginLab, Northampton, MA, USA) and Adobe Photoshop CC 2014 (Adobe Systems Inc., USA).

Results

Changes in photosynthetic pigment in S. calendulacea and S. trilobata under shading

Photosynthetic pigment is the material basis for capturing light energy and, therefore, can be used as an indicator of the photosynthetic capability of plants. As shown in the Figure 2A and 2B, the contents of Chl a+b and Chl a of *S. calendulacea* under shading were significantly reduced (by 9.85% and 12.31%, respectively) compared to the control group, while no significant changes were observed in *S. trilobata*. The Chl b content significantly rose by 20.12% in *S. trilobata*, while the native species displayed no significant
Figure 2. The effect of shading on chlorophyll \(a+b \) content (A), chlorophyll \(a \) content (B), chlorophyll \(b \) content (C) and the ratio of chlorophyll \(a \) to chlorophyll \(b \) (D) of \(S. \) calendulacea and \(S. \) trilobata after the shading treatment. The data in this figure was presented as mean ± SD (\(n = 5 \)). Asterisks above columns indicate a statistical significance for comparisons between control group and shading group (Fm: fresh mass, ns: no significance, **\(p < 0.01 \) and ***\(p < 0.001 \)).

Changes after shading (Figure 2C). The ratio of Chl \(a \) to Chl \(b \) in \(S. \) trilobata declined significantly by 27.04%, but \(S. \) calendulacea showed no significant changes (Figure 2D).

Changes in photosynthetic gas exchange parameters in \(S. \) calendulacea and \(S. \) trilobata due to shading

After shading treatment, the \(P_n \) of both species investigated presented significant declines, with \(S. \) trilobata showing a smaller decrease (70.07%) than \(S. \) calendulacea (81.22%) (Figure 3A). The \(G_c \) and \(T_r \) of the two \textit{Sphagenticola} species also decreased, but in this case, the native species demonstrated a greater decrease (\(G_c: 86.04\%; T_r: 80.10\%) than the invasive species (\(G_c: 78.64\%; T_r: 77.15\%) (Figure 3B, C). The \(C_i \) of the materials showed no significant differences between control and shading groups (Figure 3D).

Changes in chlorophyll fluorescence parameters in \(S. \) calendulacea and \(S. \) trilobata due to shading

After shading, \(F_v/F_m \) dropped significantly, with a greater change in \(S. \) calendulacea (9.28%) than \(S. \) trilobata (4.02%) (Figure 4A). \(\Phi_{PSII} \), representing the activity of PSII, significantly decreased after treatment, and a sharper drop (by 23.17%) was observed for the native species (Figure 4B). A significant increase was detected in the NPQ of the materials, with...
Response of *S. trilobata* under shading

Figure 3. The change of photosynthetic parameters including P_n (*A*), G_s (*B*), T_r (*C*) and C_i (*D*) of *S. calendulacea* and *S. trilobata* under shading. The data in this figure was presented as mean ± SD ($n = 5$). Asterisks above columns indicate a statistical significance for comparisons between control group and shading group (ns: no significance, *p* < 0.05, **p** < 0.01 and ***p** < 0.001).

Figure 4. The chlorophyll fluorescence parameters including F_v/F_m (*A*), Φ_{PSII} (*B*), NPQ (*C*) and fluorescence spectra (*D*) of *S. calendulacea* and *S. trilobata* during the shading treatment. CK-*S.c*, CK-*S.t*, S-*S.c* and S-*S.t* in (*D*) stand for *S. calendulacea* of control group, *S. trilobata* of control group, *S. calendulacea* of shading group and *S. trilobata* of shading group respectively. The data in this figure was presented as mean ± SD ($n = 5$). Asterisks above columns in (*A*), (*B*) and (*C*) indicate a statistical significance for comparisons between shading and control (**p** < 0.01 and ***p** < 0.001).

S. calendulacea exhibiting a greater increase (26.27%) than *S. trilobata* (22.87%) (Figure 4C).
During treatment, the PSI/PSII of the material from the shading group was always higher than that of the control group, but the trend was different between the two species. *S. trilobata* showed a downward trend from the third day and then leveled off on the eleventh day, while *S. calendulacea* decreased after ascending to a peak on the seventh day, leveled off on the eleventh day and became higher than the invasive species on the seventh day (Figure 4D).

Oxidative damage and changes in antioxidant substances and capacity in *S. calendulacea* and *S. trilobata* due to shading

Variations in content of MDA, a product of lipid peroxidation in the cell membrane, can indicate structural and functional cell membrane damage. After shading treatment, the MDA content in *S. calendulacea* significantly rose by 139.67%, but no significant change was observed in *S. trilobata* (Figure 5A).

Flavonoids and phenols are antioxidants that scavenge ROS from plants. Under shading, the flavonoid content of *S. calendulacea* decreased by 21.34% (Figure 5B). The total phenol content dropped significantly by 45.01% in *S. trilobata*, but no significant difference was observed in *S. calendulacea* after treatment (Figure 5C). The TAC of the invasive species demonstrated a significant and sharper decrease (78.61%), which was approximately 1.15 times that of the native species (67.95%, Figure 5D).
Discussion

Alien species not only colonize nutrient-rich habitats but, due to their high resource-use efficiency, can also survive in resource-poor environments (Funk and Vitousek 2007). Originating in middle South America, *S. trilobata* is now widespread in South China and has demonstrated the propensity to establish monodominant populations in wastelands due, in large part, to its high tolerance to high temperatures (Cai et al. 2021) and high irradiance (Song et al. 2009a). Nevertheless, *S. trilobata* has been discovered at the edge of the forest (Cao et al. 2007; Song et al. 2009b), indicating that this invader is adaptable to low-light environments. Recent examinations of the effects of different light levels on multi-invasive plants and noninvasive plants in South China (Hou et al. 2014) and invasive *Impatiens glandulifera* under shading (Gruntman et al. 2019) indicate that invasive alien plants are more capable of using light under different levels of irradiance than noninvasive plants. Here, *S. trilobata* and *S. calendulacea* have been used to investigate differences in oxidative damage and physiological and ecological responses of photosynthesis in low-light versus normal-light habitats in order to better understand this species’ biological invasion mechanism(s).

Stronger photosynthetic capacity of *S. trilobata* under low-light conditions

Decreases in irradiance cause physiological changes in plants, including changes in photosynthetic capacity. Studies have shown that higher levels of Chl \(a+b\) and Chl \(b\) and lower Chl \(a/b\) levels improve the ability of plants to absorb scattered light and survive under low-irradiance conditions (Valladares and Niinemets 2008; Kume et al. 2018). Here, the invader, *S. trilobata*, exhibited a stronger light-harvesting ability than the indigen. Although Chl \(a+b\) levels of the two *Sphagmecola* species both decreased after shading, the Chl \(b\) content of *S. trilobata* rose, leading to a significant drop in Chl \(a/b\) (Figure 2), suggesting *S. trilobata* might have a greater light-harvesting ability in low-light environments, making them using light resources more efficiently. Similarly, research on physiological changes in the invasive aliens *Ageratina adenophora* and *Chromolaena odorata* and in the noninvasive alien *Gynura* sp. under different levels of light suggest that invasive species possess superior resource-capture-related traits and light adaptability than noninvasive species (Feng et al. 2007). Variations in gas exchange parameters can infer differences in photosynthetic capacity, and previously published literature has shown that reductions in gas exchange parameters in shade-tolerant genotypes are smaller than those observed in shade-sensitive genotypes in the same species (Sundari 2009). In the present study, we observed lower reductions in \(P_o\), \(G_s\), and \(T_r\) in *S. trilobata* (Figure 3), indicating its greater photosynthetic capacity and protection against shading compared to *S. calendulacea*. The advantage in light-harvesting and photosynthetic capacity enables the invader to defeat the
indigen in the competition for light energy, thus expanding its invasion in low light environment.

Chlorophyll fluorescence is closely related to photosynthesis and can reflect physiological changes in photosynthesis. \(F_v/F_m \) values decrease under stress (Murchie and Lawson 2013); and, because Chl \(a+b \) declines under severe shading, the activity of PSII will also decrease, thereby further reducing \(\Phi_{\text{PSII}} \) (Miralles et al. 2011). Under stress, excess light energy, which is not involved in photochemical reactions due to decreasing \(\Phi_{\text{PSII}} \), will transform into heat dissipation or chlorophyll fluorescence to prevent internal cell damage, after which NPQ levels will increase (Maxwell and Johnson 2000; Fu et al. 2012). Both \(F_v/F_m \) and \(\Phi_{\text{PSII}} \) decreased, while NPQ increased in the two \textit{Sphagmaticola} species investigated in the present study, but the invasive species demonstrated slighter change (Figure 4A, B, C). This result indicates that \textit{S. trilobata} was not only less affected by shading, but also had a higher light utilization efficiency rather than \textit{S. calendulacea}, further revealing a tendency to invade low light environment. Moreover, PSI/PSII values enhancement in \textit{S. calendulacea} were larger than those in \textit{S. trilobata} (Figure 4D), a lower PSI/PSII ratio indicates higher photosynthetic capacity (Li et al. 2002).

\textit{Lower oxidative damage in \textit{S. trilobata} under low light}

Shading can give rise to oxidative damage in plant cells, leading to increased MDA content (Zhang et al. 2018). In our experiments, shading elevated MDA content in \textit{S. calendulacea}, while \textit{S. trilobata} remained unchanged (Figure 5A). These results demonstrate that oxidative damage occurs in the native species in low-light environments but not in the invasive species, supporting the increased survival rates observed in shade for invader versus native species.

Flavonoids and phenols are nonenzymatic antioxidants that can scavenge ROS (Fini et al. 2011; Agati and Tattini 2010), and their contents and TAC are both effective indicators for assessing oxidative damage in plants (Boo et al. 2011). Compared with \textit{S. calendulacea}, \textit{S. trilobata} displayed greater decreases in total phenol content and TAC (Figure 5C, D). This phenomenon and the slight change in MDA both indicate less oxidative damage in \textit{S. trilobata}, which enables the invader to devote more resources to photosynthesis, explaining its greater photosynthetic capacity and protection against shading and enhancing its growth in low-irradiance environments compared to the indigene. Similar finding was also reported in invasive weed \textit{Mikania micrantha} (Jiang et al. 2021), the synthesis of photoprotective substance like flavonoid was decreased and more resources were allocated into the growth of stem under shading environment. Therefore, we hypothesize that \textit{S. trilobata} is better able to utilize light under different levels of irradiance than \textit{S. calendulacea}, which may be the key to its invasion in low-light environments.
In conclusion, S. trilobata appears to possess a survival advantage in low-light environments. Compared to S. calendulacea, S. trilobata exhibited less inhibition of photosynthesis and less oxidative damage due to shading treatment. Although these results provide a theoretical basis for predicting potential invasion areas of S. trilobata and the prevention in low-light environments such as forest margins, further study is needed to understand molecular mechanism in photosynthesis under different light conditions.

Acknowledgements

Our most sincere gratitude goes to the anonymous reviewers and the editors for their careful work and thoughtful suggestions that have helped improve this paper substantially.

Funding declaration

This work was funded by the National Natural Science Foundation of China (31870374, 32171493). This study was also supported by Special Project for Serving Rural Revitalization Priority area of Department of Education of Guangdong Province, No.2019KZDZX2011.

Authors’ contribution

Jun-jie Zhang: data curation, formal analysis, investigation, writing – original draft; Min-ling Cai: investigation, methodology, writing – original draft; Li-hua Chen: writing – review and editing, validation; Xiao-hua Lin and Jin-di Peng: investigation; Jun-dong Huang: software; Ling Shao: writing – review and editing; Chang-lian Peng: funding acquisition, project administration, resources, supervision, writing – review and editing.

References

Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytologist 186: 786–793, https://doi.org/10.1111/j.1469-8137.2010.03269.x

Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2: 875–877, https://doi.org/10.1038/nprot.2007.102

Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity 2014: 360438, https://doi.org/10.1155/2014/360438

Boo HO, Heo BG, Gorinstein S, Chon SU (2011) Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Science 181: 479–484, https://doi.org/10.1016/j.plantsci.2011.07.013

Cai ML, Ding WQ, Zhai JJ, Zheng XT, Yu ZC, Zhang QL, Lin XH, Chow WS, Peng CL (2020a) Photosynthetic compensation of non-leaf organ stems of the invasive species Sphagneticola trilobata (L.) Pruski at low temperature. Photosynthesis Research 149: 121–134, https://doi.org/10.1007/s11120-020-00748-5

Cai ML, Zhang QL, Zhang JJ, Ding WQ, Huang HY, Peng CL (2020b) Comparative physiological and transcriptomic analyses of photosynthesis in Sphagneticola calendulacea (L.) Pruski and Sphagneticola trilobata (L.) Pruski. Scientific Reports 10: 1–12, https://doi.org/10.1038/s41598-020-74289-1

Cai M, Lin X, Peng J, Zhang J, Chen M, Huang J, Chen L, Sun F, Ding W, Peng C (2021) Why is the invasive plant Sphagneticola trilobata more resistant to high temperature than its native congener? International Journal of Molecular Sciences 22: 748, https://doi.org/10.3390/ijms22020748

Cao F, Song X, He Y, Qiang S, Jiang MK (2007) Huizhou hong shu lin zi ran bao hu qu wai lai ru qin zhi wu diao cha [Investigation of alien invasive plants in Huizhou Mangrove Natural Reserve]. Journal of Plant Resources and Environment 16: 61–66, https://doi.org/10.3969/j.issn.1674-7895.2007.04.013

Chmura D, Sierka E (2006) Relation between invasive plant and species richness of forest floor vegetation: A study of Impatiens parviflora DC. Polish Journal of Ecology 54: 417–428, https://doi.org/10.1016/0015-6264(71)90069-9

Ding X, Jiang Y, Wang H, Jin H, Zhang H, Chen C, Yu J (2012) Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiologiae Plantarum 35: 1427–1438, https://doi.org/10.1007/s11738-012-1182-9
Dong B, Yang H, Liu H, Qiao Y, Zhang M, Wang Y, Xie Z, Liu M (2019) Effects of Shading Stress on Grain Number, Yield, and Photosynthesis during Early Reproductive Growth in Wheat. Crop Science 59: 363–378, https://doi.org/10.1038/cropsci.2018.06.0396

Feng Y, Wang J, Sang W (2007) Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecologica 31: 40–47, https://doi.org/10.1016/j.actao.2006.03.009

Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal & Behavior 6: 709–711, https://doi.org/10.4161/psb.6.5.15069

Franklin KA (2008) Shade avoidance. New Phytologist 179: 930–944, https://doi.org/10.1111/j.1469-8137.2008.02507.x

Fu W, Li P, Wu Y (2012) Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae 135: 45–51, https://doi.org/10.1016/j.scienta.2011.12.004

Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446: 1079–1081, https://doi.org/10.1038/nature05719

Gangwar M, Gautam MK, Sharma AK, Tripathi YB, Goel RK, Nath G (2014) Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippensis fruit extract on human erythrocytes: an in vitro study. The Scientific World Journal 2014: 279451, https://doi.org/10.1155/2014/279451

Gentz B, Briantijs J, Baker N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990: 87–92, https://doi.org/10.1016/0304-4168(89)90016-3

Gruntman M, Segev U, Tielbörger K (2019) Shade‐induced plasticity in invasive Mikania micrantha populations. Weed Research 60: 16–25, https://doi.org/10.1111/wre.12394

Horvitz N, Wang R, Wan FH, Nathan R (2017) Pervasive human-mediated large-scale invasion: analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. Journal of Ecology 105: 85–94, https://doi.org/10.1111/1365-2745.12692

Hou YP, Peng SL, Lin ZG, Huang QQ, Ni GY, Zhao N (2014) Fast-growing and poorly shade-tolerant invasive species may exhibit higher physiological but not morphological plasticity compared with non-invasive species. Biological Invasions 17: 1555–1567, https://doi.org/10.1007/s10530-014-0815-x

Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, Al-Juburi HJ, Zhao CX, Shao HB, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum 31: 427–436, https://doi.org/10.1007/s11738-009-0275-6

Jiang Z, Wang Y, Zheng Y, Cai M, Peng C, Li W (2021) Physiological and transcriptomic responses of Mikania micrantha stem to shading yield novel insights into its invasiveness. Biological Invasions 23: 2927–2943, https://doi.org/10.1007/s10530-021-02546-z

Kume A, Akitsu T, Nasahara KN (2018) Why is chlorophyll b only used in light-harvesting systems? Journal of Plant Research 131: 961–972, https://doi.org/10.1007/s10265-018-1052-7

Li HB, Hu YY, Bai KZ, Kuang TY, Lin JX (2002) Xiao mai mang he qi ye ye lv ti jie xiao suo yan jiu [Comparison of chloroplast ultrastructure and 77K fluorescence emission spectra between awns and flag leaves in wheat]. Journal of Chinese Electron Microscopy Society 21: 97–101, http://doi.org/10.3969/j.issn.1000-6281.2002.02.002

Li T, Huang LX, Yi L, Hong L, Shen H, Ye WH, Wang ZM (2016) Comparative analysis of growth and physiological traits between the natural hybrid Sphagneticola trilobata × calendulacea and its parental species. Nordic Journal of Botany 34: 219–227, https://doi.org/10.1080/0368002X.2015.1085877

Lichtenthaler HK, Buschmann C (2001) Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current protocols in food analytical chemistry 1: F4.3.1–F4.3.8, https://doi.org/10.1002/0471142913.fab0403d01

Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the World’s Worst Invasive Alien Species Database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), School of Geography and Environmental Sciences (SGES), University of Auckland (Tamaki Campus), Auckland, New Zealand, 12 pp

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51: 659–668, https://doi.org/10.1093/jxb/51.345.659

Miralles J, Martinez-Sánchez JJ, Franco JA, Bañón S (2011) Rhamnus alaternus growth under four simulated shade environments: Morphological, anatomical and physiological responses. Scientia Horticulturae 127: 562–570, https://doi.org/10.1016/j.scienta.2010.12.005

Mu H, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W (2010) Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat. Journal of Agronomy and Crop Science 196: 38–47, https://doi.org/10.1111/j.1439-037X.2009.00394.x

Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64: 3983–3998, https://doi.org/10.1093/jxb/ert208
Nedbal L, Soukupová J, Kaftan D, Whitmarsh J, Trtilek M (2000) Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynthesis Research 66: 3–12, https://doi.org/10.1023/A:1010729821876

Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB (2016) Global threat to agriculture from invasive species. Proceedings of the National Academy of Sciences of the United States of America 113: 7575–7579, https://doi.org/10.1073/pnas.1602205113

Qi SS, Dai ZC, Zhai DL, Chen SC, Si CC, Huang P, Wang RP, Zhong QX, Du DL (2014) Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagnetetica trilobata. PLoS ONE 9: e113964, https://doi.org/10.1371/journal.pone.0113964

Sarker U, Oba S (2018) Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amananthus tricolor. Applied Biochemistry & Biotechnology 186: 999–1016, https://doi.org/10.1007/s12010-018-2784-5

Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll Fluorescence as a Noninvasive Indicator for Rapid Assessment of In Vivo Photosynthesis. Ecophysiology of Photosynthesis 100: 49–70, https://doi.org/10.1007/978-3-642-79354-7_3

Song L, Sun L, Shu Z, Li W, Peng C (2009a) Xia ji gao guang xia ru qin zhi wu san lie ye pian bian hong de sheng li gong neng [Physiological functions of the red leaves of Wedelia trilobata induced by high irradiance in summer]. Biodiversity Science 17: 188–194, https://doi.org/10.3724/SP.J.1003.2009.09007

Song X, Cao F, He Y, Qiang S, Qin W, Jiang M (2009b) Guang dong sheng ding hu shan guo jia ji zi ran bao hu qu wai lai ru qin zhi wu diao cha [A survey of invasive alien plant species in Dingshushan National Nature Reserve]. Journal of Zhejiang Forestry College 26: 538–543, http://doi.org/10.3969/j.issn.2095-0756.2009.04.015

Sundari T (2009) Morphological and Physiological Characteristics of Shading Tolerant and Sensitive Mungbean Genotypes. HAYATI Journal of Biosciences 16: 127–134, https://doi.org/10.4308/hjb.2009.16.4.127

Tan D, Thu P, Dell B (2012) Invasive Plant Species in the National Parks of Vietnam. Forests 3: 997–1016, https://doi.org/10.3390/f3040997

Valéry L, Fritz H, Lefeuvre JC, Simberloff D (2008) In search of a real definition of the biological invasion phenomenon itself. Biological Invasions 10: 1345–1351, https://doi.org/10.1007/s10530-007-9209-7

Valladares F, Niinemets Ü (2008) Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237–257, https://doi.org/10.1146/annurev.ecolsys.39.110707.173306

Vilà M, Espinar JL, Hejda M, Hulme PE, Pyek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14: 702–708, https://doi.org/10.1111/j.1461-0248.2011.01628.x

Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environmental and Experimental Botany 61: 199–223, https://doi.org/10.1016/j.envexpbot.2007.05.011

Wu W, Zhou RC, Ni GY, Shen H, Ge XJ (2012) Is a new invasive herb emerging? Molecular confirmation and preliminary evaluation of natural hybridization between the invasive Sphagnetetica trilobata (Asteraceae) and its native congener S. calidentulacea in South China. Biological Invasions 15: 75–88, https://doi.org/10.1007/s10530-012-0269-y

Wu Y, Hu Y, Liao F (2004) Cong yin jin dao qian zai ru qin zhi wu - nan mei peng qi ju [Wedelia trilobata - A species from introduced to potential invasive]. Guihaia 25: 413–418, http://doi.org/10.3969/j.issn.1000-3142.2005.05.004

Xu C, Yin Y, Cai R, Wang P, Ni Y, Guo J, Chen E, Cai T, Cui Z, Liu T, Yang D, Wang Z (2013) Responses of photosynthetic characteristics and antioxidative metabolism in winter wheat to post-anthesis shading. Photosynthetic 51: 139–150, https://doi.org/10.1007/s10530-013-0110-9

Yang H, Dong B, Wang Y, Qiao Y, Shi C, Jin L (2020) Photosynthetic base of reduced grain yield by shading stress during the early reproductive stage of two wheat cultivars. Scientific Report 10: 1–15, https://doi.org/10.1038/s41598-020-71268-4

Yao X, Li C, Li S, Zhu Q, Zhang H, Wang H, Yu C, Martin SKS, Xie F (2017) Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regulation 83: 409–416, https://doi.org/10.1007/s10725-017-0307-y

Yokoya NS, Necchi O, Martins AP, Gonzalez SF, Plastino EM (2006) Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta). Journal of Applied Phycology 19: 197–205, https://doi.org/10.1007/s10530-005-0265-6

Yu ZC, Lin W, Zheng XT, Cai ML, Zhang TJ, Luo YN, Peng CL (2021) Interpretation of the difference in shade tolerance of two subtropical forest tree species of different successional stages at the transcriptome and physiological levels. Tree Physiology 41: 1669–1684, https://doi.org/10.1093/treephys/tpab030

Zhang Y, Liu A, Zhang X, Huang S (2018) Effects of Shading on Some Morphological and Physiological Characteristics of Begonia semperflorens. Pakistan Journal of Botany 50: 2173–2179, https://doi.org/10.1002/0471684228.epg01280

Zhang et al. (2022), Management of Biological Invasions 13(2): 274–287, https://doi.org/10.3391/mbi.2022.13.2.02