Personal Recommender System based on Agglomerative Clustering together with User-based and Item-based Collaborative Filtering Methods

Ratawan Phantunin and Nivet Chirawichitchai

Faculty of Information Technology, Sripatum University 241/2 Phaholyothin Road, Jatjak, Bangkok 10900, Thailand

*Corresponding author e-mail: aor.tv5@gmail.com, nivet.ch@spu.ac.th

The objective of this study is to develop and increase efficiency of Personal Integrated Recommender System. The Recommender System plays an important role and is crucial to our everyday lives in online shopping and online services. We will find that the thing that comes with when shopping for products or using services is to recommend products or services. A good Recommender System helps generate more sales. In the meantime, various problems could be found with the system, e.g. scalable data, data sparsity, data accuracy, and having a lot of new users. Therefore, new techniques have been introduced and integrated with the recommender system in order to solve the problems and improve for greater recommender system efficiency. In this study, an Agglomerative Clustering together with a User-base and Item-base Collaborative Filtering Method is proposed. By combining the strengths of each method, we can improve the recommender system efficiency and accuracy. This combination helps to solve the problems of scalable data, data sparsity, and having a lot of new users. The results show that it reduces the processing time and increases precision. Therefore, we can conclude that
the Personal Recommender System developed based on Agglomerative Clustering together with User-based and Item-based Collaborative Filtering Method has the ability to increase system efficiency and is applicable. It also helped to solve the problems of scalable data, data sparsity, and having a lot of new users. When modern technology arrives in the future, we may be able to use cloud computing for data analysis in order to expand the capacity to process the information efficiently.

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาและเพิ่มประสิทธิภาพของระบบจ่ายยาส่วนบุคคล ด้วยเทคนิคการจัดกลุ่มแบบล่าดับชั้นร่วมกับวิธีการคัดกรองผู้ใช้และการคัดกรองสิ่งของร่วม เนื่องมาจากในปัจจุบันระบบแนะนำได้มีบทบาทในชีวิตประจำวันในการเพิ่มยอดขายสินค้าและบริการออนไลน์เป็นอย่างมาก แต่ในขณะเดียวกันกลั่นเปรียบปัญหาต่าง ๆ ที่เกิดขึ้นกับระบบแนะนำเช่น ปัญหาของขนาดข้อมูล (Scalability Problem) ความแม่นยำของข้อมูล และการมีผู้ใช้รายใหม่เพิ่มขึ้นเป็นจำนวนมาก (First-rater Problem) ดังนั้นจึงได้มีการคิดค้นเทคนิคใหม่ ๆ มาผสมผสานกับระบบแนะนำ เพื่อเป็นการแก้ปัญหาและปรับปรุงประสิทธิภาพของระบบแนะนำให้ดีและตรงกับความต้องการของผู้ซื้อซึ่งยิ่งขึ้น โดยในงานวิจัยนี้ได้นำเสนอแบบจำลองวิธีการจัดกลุ่มแบบล่าดับชั้น (Agglomerative Clustering) ทำงานร่วมกับวิธีการคัดกรองผู้ใช้และวิธีแบบคัดกรองสิ่งของร่วม (User-based and Item-based Collaborative Filtering Method) โดยอาจจุดเด่นของแต่ละวิธีตามมาสู่กัน เพื่อปรับปรุงประสิทธิภาพของระบบแนะนำให้มีความแม่นยำมากยิ่งขึ้น จากผลการทดลองพบว่าแบบจำลองที่พัฒนาขึ้นพิจารณาจากคำINCLUDEที่ได้เล่าถึงผลNormalized discounted cumulative gain และคำของความแม่นยำ คำว่าใหม่ได้ข้อสรุปว่าระบบแนะนำที่พัฒนาขึ้นโดยใช้วิธีการจัดกลุ่มแบบล่าดับชั้นร่วมกับวิธีการคัดกรองผู้ใช้และการคัดกรองสิ่งของร่วม ไม่เพียงแต่ตอบสนองต่อปัญหาขนาดข้อมูล (Scalability Problem) ที่มีจำนวนมากและปัญหาการให้ Rating ต่อข้อมูลที่มีประโยชน์ต่อการค้นหาข้อมูล (Sparsity Problem) ที่สูง แต่ยังสามารถนำไปใช้ในการออกแบบและพัฒนาระบบแนะนำข้อมูลให้สู่การใช้งานในอนาคตเมื่อมีเทคโนโลยีที่ทันสมัยมากขึ้นจะสามารถใช้คลาวด์คอมพิวเตอร์ในการวิเคราะห์ข้อมูล เพื่อขยายขีดความสามารถในการประมวลผลข้อมูลได้อย่างมีประสิทธิภาพ

คำสำคัญ: ระบบแนะนำ วิธีการจัดกลุ่มแบบล่าดับชั้น วิธีแบบคัดกรองผู้ใช้ร่วม วิธีแบบคัดกรองสิ่งของร่วม

บทนำ

เนื่องจากในปัจจุบันโลกกำลังก้าวเข้าสู่ยุคของข้อมูลขนาดใหญ่ (Big Data) ซึ่งเราจะเห็นได้ว่า ข้อมูลต่าง ๆ ที่เข้ามาในระบบฐานข้อมูลมีจำนวนเพิ่มมากขึ้นแบบก้าวกระโดด จึงทำให้เกิดปัญหาขนาดข้อมูล (Scalability Problem) ที่มีจำนวนมากและปัญหาการให้ Rating ต่อข้อมูล (Sparsity Problem) ที่สูง ไม่เพียงแต่ต้องการคำว่า ทำให้ผู้ใช้ยังมีความคิดที่จะเพิ่มพัฒนาระบบแนะนำข้อมูลที่มีพยายามต่อข้อมูลส่วนบุคคล (Recommender System) โดยให้การจัดกลุ่มแบบล่าดับชั้นร่วมกับขั้นตอนวิธีแบบคัดกรองผู้ใช้ร่วมและวิธีแบบคัดกรองสิ่งของขึ้นเพื่อแก้ไขปัญหาดังกล่าวข้างต้น
ระบบแนะนำข้อมูล (Recommender System) (1) เป็นการทำงานประยุกต์ใช้เทคนิคการค้นหาความรู้จากข้อมูลเพื่อนำความรู้เหล่านั้นไปประกอบการตัดสินใจให้กับผู้ใช้งาน เพื่อเพิ่มโอกาสให้กับผู้ซื้อหรือผู้ใช้งานได้รับสินค้าหรือข้อมูลที่ตรงตามความต้องการ บริษัทที่ประสบความสุขใจ เช่น Amazon Netflix และ Spotify ทุกบริษัทดังนี้ใช้ ระบบที่เรียกว่า Recommender Systems โดยใช้เทคนิค Collaborative Filtering ซึ่งเป็นเทคนิคที่ประสบความสำเร็จและได้รับความนิยมอย่างสูงสำหรับการพัฒนาระบบแนะนำ (2) เช่น ระบบแนะนำภาพยนตร์ เช่นจากผู้ใช้งานไม่สามารถศึกษารายละเอียดของภาพยนตร์ทุก ๆ เรื่องที่มีอยู่ในฐานข้อมูลได้ภายในระยะเวลาที่จำกัด ทั้งนี้เป็นการสร้างประสบการณ์ที่ดีให้กับผู้ใช้ เพิ่มความพึงพอใจ รวมไปถึงเพิ่มยอดขายได้อย่างเห็นผลจริง นอกจากนี้แล้ว จากการศึกษาระบบแนะนำข้อมูล พบว่าหากผู้ใช้มีจานวนมากขึ้นจะทำให้เกิดปัญหาของอัลกอริทึม เช่น ลำดับข้อมูลซึ่งมีวิธีแก้ปัญหานี้โดยใช้วิธีการจัดกลุ่ม (Clustering) ในการแบ่งกลุ่มผู้ใช้งานเก่าสู่กลุ่มทำงานของระบบเพื่อให้ได้ค่าแนะนำกันผู้ใช้ได้เร็วขึ้น และปัญหาต่อมาคือปัญหาการให้ค่าอันดับคะแนน (Rating) ต้องข้อมูล เพราะเมื่อข้อมูลมีจานวนมากขึ้นจะทำให้ผู้ใช้ไม่สามารถให้คะแนนได้อย่างทั่วถึงทำให้มีค่าอันดับคะแนน (Rating) ไม่เพียงพอต่อการคำนวณ ทำให้มีผลกระทบต่อความพึงพอใจของผู้ใช้ที่มีต่อระบบ (3) จากการศึกษาพบว่า มีงานวิจัยหลายชิ้นที่นำเสนอแนวทางในการแก้ปัญหาดังกล่าวโดยใช้เทคนิคทางการทำเหมืองข้อมูล (Data mining) เช่น เทคนิค Clustering เทคนิค Classification เป็นต้น

จากความเป็นมาข้างต้น ผู้วิจัยจึงพัฒนาแบบจำลองระบบแนะนำบุคคลโดยใช้การจัดกลุ่มแบบลัทธิขึ้น (Agglomerative Clustering) รวมกับวิธีการคัดกรองผู้ใช้กับการคัดกรองสิ่งของ (User-based and Item-based Collaborative Filtering Method) โดยนำข้อมูลของแต่ละยี่ห้อผสมสถานกันและนำมาทดลองใช้ในการแนะนำภาพยนตร์ต่อผู้ใช้งานระบบเพื่อให้ผู้ใช้งานได้รับการแนะนำที่มีประสิทธิภาพตามต้องการ ถูกต้องและพึงพอใจที่สุด

วิธีดำเนินการวิจัย

ศึกษาและวิเคราะห์ปัญหา โดยแบบจำลองที่นำเสนอในงานวิจัยนี้มุ่งเน้นการพัฒนาระบบแนะนำแบบผสมผสาน (Hybrid) โดยใช้การจัดกลุ่มแบบลัทธิขึ้น (Agglomerative Clustering) รวมกับวิธีการคัดกรองผู้ใช้และการคัดกรองสิ่งของ โดยวิธีการคัดกรองผู้ใช้ (User-based Collaborative Filtering) มีจุดเด่นคือจะพิจารณาความเหมือนของผู้ใช้งานในระบบกับความชอบที่เคยมีก่อนและวิธีการคัดกรองสิ่งของ (Item-based Collaborative Filtering) มีจุดเด่นคือจะพิจารณาความสัมพันธ์ระหว่างสิ่งของที่เด็กกว่า User-based โดยปกติระบบแนะนำประเภทนี้จะมีขั้นตอนในการประมวลผล 3 ขั้นตอนใหญ่ ๆ ดังนี้ 1. สร้างประวัติผู้ใช้หรือข้อมูลที่จะใช้เป็นพื้นฐานของระบบ 2. คัดเลือกผู้ใช้ที่เคยเลือกข้อมูลนั้น (co-rated item) หรือข้อมูลที่เคยเลือกจากผู้ใช้คนเดียวกัน (co-user rate) ที่มีความใกล้เคียงหรือคล้ายคลึงกันขึ้นมาตามจานวนที่กำหนดไว้โดยการปรียานิยมประวัติผู้ใช้ หรือข้อมูลที่จะใช้เป็นพื้นฐานของระบบซึ่งอาจใช้ความเหมือนโคไซน์ (Cosine Similarity) เพื่อคำนวณว่าผู้ใช้และข้อมูลนั้นมีความเหมือนกันมากน้อยเพียงใด

ข้อมูลในการทดลองงานวิจัยครั้งนี้เป็นขุดข้อมูลพื้นฐานสำหรับใช้สร้างฐานข้อมูลของระบบและใช้ในการจัดกลุ่มผู้ใช้ โดยนำข้อมูลมาจาก MovieLens Project 1M Dataset มาใช้ ชุดข้อมูลประกอบด้วย

1. ชุดข้อมูลเกี่ยวกับคะแนนการจัดอันดับภาพยนตร์ (Rating) จำนวน 1,000,209 Records จากการเก็บรวบรวมข้อมูลผู้ใช้งาน จำนวน 6,040 คน และภาพยนตร์จำนวน 3,883 เรื่อง

2. ชุดข้อมูลผู้ใช้ระบบ (User Profile) ประกอบด้วย เพศ อายุ อายุ (21 อายุ) รหัสไปรษณีย์
3. ประเภทของภาพยนตร์ (Item Feature)
ประกอบไปด้วย ชื่อเรื่อง วันที่ฉาย วันที่เป็นวีดีโอ รหัสภาพยนตร์ และประเภทภาพยนตร์ (19 ประเภท) เช่น แอ็คชั่น ผจญภัย ตลก ดราม่า เป็นต้น

ซึ่งข้อมูลที่ใช้ในการทดสอบเป็นกลุ่มตัวอย่างที่เกิดจากการเก็บข้อมูลจริง โดยผู้ใช้งานได้เข้าไปให้ข้อมูลใน MovieLens Project เช่นกับภาพยนตร์ที่เคยชมแล้ว โดยข้อมูลนี้ประกอบด้วยไฟล์ข้อมูลที่ใช้การเข้ารหัสอักษรแบบ ANSI จำนวน 3 ไฟล์ได้แก่ Ratings.dat, Movies.dat และ Users.dat จากนั้นจึงทำการออกแบบและศึกษาการทำงานของอัลกอริทึม Collaborative Filtering ลำดับขั้นตอนการทำงาน การประยุกต์ใช้วิธีทางท่าทางของข้อมูลและวิทยาศาสตร์มาช่วยในการหาความคล้ายคลึงกันของผู้ใช้แต่ละคน โดยใช้ขั้นตอนวิธีแบบคัดกรองผู้ใช้รวมกับแบบคัดกรองสิ่งของรวม นอกจากนี้ยังได้ศึกษาปัญหาที่เกิดจาก Collaborative Filtering แบบดั้งเดิมว่ามีปัญหาใหญ่ที่เรื่องของขนาดของข้อมูลขนาดใหญ่ (Big Data) และการท่วมท้นของข้อมูล (Information overload) ที่ทำให้ประสิทธิภาพและความแม่นยำในการทำงานลดลง ผู้พัฒนาจึงได้ศึกษาอัลกอริทึม User-based and Item-based Collaborative Filtering เพิ่มเติมเพื่อทำช่วยแก้ปัญหานี้ รวมถึงอัลกอริทึม Agglomerative Clustering แบบผสมผสานซึ่งจัดเป็นเทคนิคใหม่ในการนำเสนอระบบแนะนำข้อมูลส่วนบุคคลที่มีประสิทธิภาพสูงและมีความแม่นยำมากขึ้นจากการศึกษาปัญหาและรวบรวมข้อมูล ผู้พัฒนาได้ออกแบบขั้นตอนวิธีในการทำวิจัยดังรูปที่ 1

รูปที่ 1 ขั้นตอนวิธีระบบแนะนำส่วนบุคคลโดยใช้การจัดกลุ่มแบบลัมเบอร์รวมกับวิธีการคัดกรองผู้ใช้กับการคัดกรองสิ่งของร่วม
ผลการศึกษาและอภิปรายผล

งานวิจัยการพัฒนาระบบแนะนำส่วนบุคคลโดยใช้การจัดกลุ่มแบบลำดับชั้นร่วมกับวิธีการคัดกรองผู้ใช้กับการคัดกรองสิ่งของนี้ ด้านการประสิทธิภาพของการจัดลำดับโดยวัดจากค่า AUC (Area Under the Curve), prec (Precision), ค่า NDCG (Normalized Discounted Cumulative Gain), ค่า MAP (Mean Average Precision) ซึ่งจะอธิบายดังต่อไปนี้ (4-6)

1. คำว่าที่ได้ส่งกราฟ (Area under the Curve: AUC) เป็นการวัดประสิทธิภาพการทำงานของแบบจําลองโดยที่เส้นในแกนนอนจะเป็นอัตราบวกจริง (True Positive Rate) ส่วนในแกนตั้งจะเป็นอัตราบวกเท็จ (False positive rate) ค่าการวัดโดยใช้ AUC นี้จะเริ่มที่ 0 ถึง 1 โดยที่ 0 หมายถึง แบบจําลองนั้นมีประสิทธิภาพต่ํา ส่วน 1 หมายถึง แบบจําลองนั้นมีประสิทธิภาพสูงที่สุด ซึ่งผลการวัดจะจ่ายค่าตามเจาะจง

2. ค่าความแม่นยา (Precision: prec) (6) กล่าวว่าเป็นการวัดความแม่นยำของระบบในการค้นหาเอกสารที่เกี่ยวข้องที่ได้ผลตามตารางที่ 1

ตารางที่ 1 ผลการสืบค้น

Doc	Action	Retrived	Not Retrieved
Relevant	tp	fn	
Not Relevant	fp	tn	

\[\text{Precision} = \frac{tp}{tp+fp} \]

3. ค่า Normalized Discounted Cumulative Gain: NDCG เป็นทฤษฎีที่ใช้ในการประเมินผล Search Engine มีการให้รับคะแนนความถี่ของเอกสารรวมที่จัดการลำดับของผลการค้นหา (Ranking) และ DCG เป็นการวัดความเหมาะสมของเอกสารโดยสนใจค่าคะแนนที่ได้รับจะสะสมจากลำดับของรายการผลลัพธ์การค้นหาไปยังลำดับสูงสุดของผลลัพธ์การค้นหา โดยค่าคะแนนจะลดลงเมื่อผลความพึงพอใจอยู่ในลำดับที่ต่ํา (7, 8) โดยสมการ NDCGเป็นดังนี้

\[\text{NDCG}_q = \frac{M_q \sum_{j=1}^{k} \left(\frac{2^{r(j)}-1}{\log(1+j)} \right)}{M_q} \] (1)

เมื่อ \(k \) คือ ระดับหรือเกณฑ์ที่ใช้ \(r(j) \) คือ ค่าลำดับความถี่ของเอกสารที่ได้จากการประเมินโดยผู้ใช้ \(M_q \) คือ ค่าตั้งที่เกิดจากความสมบูรณ์ในการจัดลำดับโดยมีค่ามากที่สุด คือ 1

พื้นฐาน NDCG จะให้รางวัลกับเอกสารที่เกี่ยวข้องที่ปรากฏในลำดับของการจัดอันดับผลการค้นหาและลงโทษเอกสารที่ไม่เกี่ยวข้องโดยการลดคะแนน NDCG

4. ค่าเฉลี่ยของความแม่นยำ (Mean Average Precision: MAP) เป็นค่าเฉลี่ยของความแม่นยำ ของค่าเฉลี่ยของความเกี่ยวข้อง (Relevance) ของเอกสารที่เกี่ยวข้องกัน (Relevance) และนำไปจัดอันดับโดยมีสูตรดังนี้

\[\text{MAP} = \frac{\sum_{q=1}^{Q} \text{Ave} P(q)}{Q} \] (2)

ตารางที่ 2 ผลการทดลองในกรณีจริงในตอบวิธีการจัดกลุ่มแบบลำดับชั้นร่วมกับวิธีการคัดกรองผู้ใช้กับแบบคัดกรองสิ่งของ จำแนกแบบตาราง

Metrics	User k-NN	Item k-NN	Model Combiner
AUC	0.913	0.912	0.928
Prec@5	0.398	0.272	0.415
Prec@10	0.338	0.252	0.358
Prec@15	0.301	0.234	0.320
NDCG	0.591	0.530	0.604
MAP	0.223	0.167	0.241
ผลการทดลองการจัดกลุ่มแบบลำดับชั้นร่วมกับวิธีการคัดกรองผู้ใช้กับการคัดกรองสิ่งของร่วม

จากการทดลองพบว่าวิธีผสมผสานระหว่างเทคนิคโดยใช้การจัดกลุ่มแบบลำดับชั้นร่วมกับวิธีการคัดกรองผู้ใช้กับการคัดกรองสิ่งของร่วม (Model Combiner) พบว่าได้ค่าที่สูงที่สุดในแบบกราฟ (Area Under the Curve: AUC) มีค่าเท่ากับ 0.928 ค่าความแม่นยำ (Precision: prec) ที่ k@5 มีค่าเท่ากับ 0.415 ที่ k@10 มีค่าเท่ากับ 0.358 ที่ k@15 มีค่าเท่ากับ 0.320 ค่า Normalized discounted cumulative gain: NDCG มีค่าเท่ากับ 0.604 ค่าเฉลี่ยของความแม่นยำ (Mean Average Precision: MAP) มีค่าเท่ากับ 0.241 ซึ่งทุกค่าที่ได้มาจากว่าค่าที่มาจากวิธีการคัดกรองผู้ใช้ร่วม (User-based Collaborative Filtering) และวิธีการคัดกรองสิ่งของร่วม (Item-based Collaborative Filtering) เพียงอย่างเดียวอย่างชัดเจน

สรุปผล

งานวิจัยนี้ได้พัฒนาระบบแนะนำโดยใช้เทคนิคการผสมผสานกันโดยใช้การจัดกลุ่มแบบลำดับชั้น (Agglomerative Clustering) ร่วมกับวิธีการคัดกรองผู้ใช้และวิธีการคัดกรองสิ่งของร่วม (User-based and Item-based Collaborative Filtering) เป็นการเอาจุดเด่นของแต่ละวิธีมาผสมผสานกัน เพื่อให้ระบบแนะนำข้อมูลที่น่าสนใจมีประสิทธิภาพสูงขึ้นในทุกด้านได้ดังนั้นจึงสรุปได้ว่าการจัดกลุ่มแบบลำดับชั้น (Agglomerative Clustering) ร่วมกับวิธีการคัดกรองผู้ใช้และวิธีการคัดกรองสิ่งของร่วม (User-based and Item-based Collaborative Filtering) สามารถสนับสนุนการตัดสินใจของผู้ใช้ระบบได้แม่นยำ สูงขึ้นกว่าระบบแนะนำส่วนบุคคลที่ใช้เทคนิคคัดกรองผู้ใช้ร่วมหรือคัดกรองสิ่งของร่วมเพียงอย่างเดียว และช่วยแก้ปัญหาขนาดของข้อมูล (Scalability Problem) ที่มีจำนวนมากปัญหาข้อมูลที่ไม่มีการให้ Rating ไว้ (First-rater Problem) ปัญหาการแยกแยะ Rating (Transparency Problem) และปัญหาการให้ Rating ต่อชิ้นข้อมูล (Sparsity Problem) ซึ่งสามารถนำมาประยุกต์ใช้ได้อย่างมีประสิทธิภาพอีกด้วย

เอกสารอ้างอิง

1. Adomavicius G, Tuzhilin A. Recommendation Technologies: Survey of Current Methods and Possible Extensions: Stern School of Business, New York University; 2004.IS-03-06.
2. Sarwar BM, Karypis G, Konstan JA, Riedl JT. Analysis of Recommendation Algorithms for E-commerce: ACM. In: Proceedings of the 2nd ACM; 2000 October; Minneapolis Minnesota USA, New York: Association for Computing Machinery; 2000. p. 158-67.
3. Shyu ML, Haruechayitasak C, Chen SC, Zhao N. Collaborative filtering by mining association rules from user access sequences. In: Proceedings - International Workshop on Challenges in Web Information Retrieval and Integration, WIRI'05; 2005 April 8-9; Tokyo, Japan. 2005. p. 128-33.
4. Aljumily R. Agglomerative Hierarchical Clustering: An Introduction to Essentials (1)
Proximity Coefficients and Creation of a Vector-Distance Matrix and (2) Construction of the Hierarchical Tree and a Selection of Methods. Global Journal of Human Social Science Research. 2016;16(3-G):23-50.

5. Janpla S, Wanapiron P. System framework for an intelligent question bank and examination system. International Journal of Machine Learning and Computing. 2018; 8(5):488-94.

6. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8): 861–74.

7. Smoot BJ, Wong JF, Dodd MJ. Comparison of Diagnostic Accuracy of Clinical Measures of Breast Cancer–Related Lymphedema: Area Under the Curve. Arch Phys Med Rehab. 2011;92(4): 603-10.

8. Chirawichitchai N. Developing term weighting scheme based on term occurrence ratio for sentiment analysis. In: Kim, Kuinam J, editor. Information Science and Applications. 1st ed. Springer eBook: Springer Nature; 2015. p. 737–44.