Title	Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga Porphyra yezoensis
Author(s)	Li, Lin; Saga, Naotsune; Mikami, Koji
Citation	Journal of Experimental Botany, 59(13), 3575-3586
Issue Date	2008-10
Doc URL	http://hdl.handle.net/2115/39139
Rights(URL)	http://creativecommons.org/licenses/by-nc/2.0/uk/
Type	article
File Information	JEB59-13_p3575-3586.pdf
Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga *Porphyra yezoensis*

Lin Li¹, Naotsune Saga² and Koji Mikami²,*

¹ Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
² Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan

Received 4 June 2008; Revised 17 July 2008; Accepted 18 July 2008

Abstract

The polarized distribution of F-actin is important in providing the driving force for directional migration in mammalian leukocytes and *Dictyostelium* cells, in which compartmentation of phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol phosphatase is critical for the establishment of cell polarity. Since monospores from the red alga *Porphyra yezoensis* are a real example of migrating plant cells, the involvement of the cytoskeleton and PI3K was investigated during their early development. Our results indicate that the asymmetrical localization of F-actin at the leading edge is fixed by the establishment of the anterior–posterior axis in migrating monospores, which is PI3K-dependent and protein synthesis-independent. After migration, monospores adhere to the substratum and then become upright, developing into multicellular thalli via the establishment of the apical–basal axis. In this process, F-actin usually accumulates at the bottom of the basal cell and development after migration requires new protein synthesis. These findings suggest that the establishment of anterior–posterior and apical–basal axes are differentially regulated during the early development of monospores. Our results also indicate that PI3K-dependent F-actin asymmetry is evolutionally conserved in relation to the establishment of cell polarity in migrating eukaryotic cells.

Key words: Cell polarity, cytoskeleton, F-actin, monospore, phosphatidylinositol 3-kinase, *Porphyra yezoensis*.

Introduction

The establishment of cellular and subcellular asymmetries, which are directed by an oriented axis referred to as cell polarity, is critical for growth and development (Cove, 2000). When *Dictyostelium* cells and leukocytes respond to external impulses such as cAMP and cytokinins, they rapidly form a leading edge on the side exposed to the highest concentration of chemotactant, with a trailing edge appearing on the opposite side (Firtel and Chung, 2000; Van Haastert and Devreotes, 2004). Formation of the leading edge occurs in parallel with the polarized localization of F-actin, whereas assembled myosin II is enriched at the trailing edge. Thus, the polarized distribution of cytoskeletal components provides the driving and contractile forces required for directional cell migration during chemotaxis (Affolter and Weijer, 2005). The involvement of the cytoskeleton in the establishment of cell polarity has also been reported in land plants (Staiger, 2000; Hepler et al., 2001; Smith, 2003; Finka et al., 2007). F-actin and microtubules (MTs) have also been shown to play important roles in the establishment of polarity during tip growth of pollen tubes and root hairs (Fu et al., 2001; Sieberer et al., 2005). These findings show that the polarized accumulation of...
cytoskeletal elements, especially F-actin, is important for the establishment of cell polarity in both animals and plants.

The molecular mechanisms regulating the asymmetrical distribution of F-actin have been studied extensively in Dictyostelium cells and leukocytes. One of the first asymmetrical responses to chemoattractants is the localized accumulation of phosphatidylinositol (PI)-3,4,5-trisphosphate [PI(3,4,5)P3], the product of phosphatidylinositol 3-kinase (PI3K) (Merlot and Firtel, 2003; Dormann et al., 2004). In a new leading edge of Dictyostelium cells, preferential activation of PI3K at the side facing the chemoattractant gradient is necessary for polarized F-actin localization and directional movement (Parent and Devreotes, 1999; Firtel and Chung, 2000; Bourne and Weiner, 2002). By contrast, the phosphatase and Tensin homologue (PTEN), which dephosphorylates PI(3,4,5)P3, is localized on the trailing edge where it acts as a negative regulator of PI3K signalling in Dictyostelium cells (Iijima et al., 2002). In addition, Nishio et al. (2007) argued that the Src homology 2 domain-containing inositol-5-phosphatase 1 (SHIP1), not PTEN, is the key regulator of neutrophil migration. The localized distributions of PI3K and PI(3,4,5)P3, phosphatase therefore help cells define their polarity by organizing the polarized localization of F-actin (Charest and Firtel, 2006).

In plants, polar auxin transport contributes to the formation of cell and tissue polarity. For example, the auxin influx carrier AUXIN RESISTANT 1 (AUX1) and the auxin efflux carrier PIN-FORMED 2 (PIN2) play important roles in auxin transport from the root tip to differentiated tissues during the gravitropic response (Rashotte et al., 2001). The functions of AUX1 and PIN2 require clathrin-mediated vesicle trafficking and are regulated by the activities of the small GTPase and phospholipase D2 (Fischer et al., 2006; Kleine-Vehn et al., 2006; Li and Xue, 2007). The involvement of the small GTPase and PI signalling has also been demonstrated during polarized tip growth of pollen tubes and root hairs (Kost, 2008). Rho GTPases belonging to the plant-specific Rac-Rop subfamily are also thought to play a role in tip growth by controlling F-actin organization and vesicle trafficking at the plasma membranes of the apex region (Kost et al., 1999; Li et al., 1999; Molendijk et al., 2001). Similarly, PI-4,5-bisphosphate, PI(4,5)P2, is restricted to the apex of the elongation region in pollen tubes and root hairs (Kost et al., 1999; Helling et al., 2006) by co-localization with PI phosphate 5-kinase, which synthesizes PI(4,5)P2 from PI(4)P (Kusano et al., 2000), had no effect on the polarized localization of PI(4,5)P2 in pollen tubes, indicating that PI(3)P is not involved in the regulation of polarized tip growth in plants. By contrast, the functional involvement of PI(3)P during tip growth in pollen tubes was presented by Lee et al. (2008) using the same technique. At present, the functional significance of D3-phosphorylated PIs in polarity determination in plants cannot be ruled out.

To address this possibility, we focused on the migration and becoming upright (standing for further development) of monospores from the marine red alga Porphyra yezoensis. Monospores, which are produced in monosporangia at the marginal region of the thallus (Miura, 1985), are an example of moving plant cells (Guiry, 1990; Pickett-Heaps et al., 2001; Ackland et al., 2007). The motility of spores released from red algae is thought to be important for adhesion and further development after becoming upright, since unsettled spores either form a callus or die (Nakazawa, 1958; Imada et al., 1971; Polne-Fuller et al., 1984). Recently, it was reported that F-actin and myosin are important in the migration of monospores from the red alga P. pulchella (Ackland et al., 2007); however, the roles of cytoskeletal elements in the determination of cell polarity have not yet been examined. In the present study, the close relationship between asymmetrical accumulation of F-actin and the determination of cell polarity in the early development of monospores from P. yezoensis is demonstrated. Moreover, evidence is also presented of the involvement of PI3K in the establishment of the asymmetrical localization of F-actin in monospores. These results suggest that PI3K-dependent F-actin asymmetry in migrating cells is evolutionally conserved among red algae, slime moulds, and mammals.

Materials and methods

Discharge of monospores

The cultivation of gametophytic blades of P. yezoensis strain TU-1 was performed as described by Fukuda et al. (2008). The medium (enriched sea life; ESL) was renewed weekly until gametophytes...
were 1–2 cm long, and monosporangia had formed. To induce the discharge of a large number of monosporangia, thalli with monosporangia were given a mild osmotic shock in deionized water for 10–15 s as described by Ackland et al. (2007), then transferred into a 90×15 mm Petri dish containing ESL medium and incubated for 0.5–1.0 h at 15 °C under 60 μmol m−2 s−1 light. After removal of the thalli, monosporangia released into the medium were transferred and cultured on 20×20 mm cover glasses in 6-well plates (Iwaki Sci Tech Div., Asahi Techno Glass, Japan) with ESL medium, for the observation of both motility and the staining of F-actin.

Treatment of monosporangia with protein synthesis inhibitor

Unincubation as described above. Assays were repeated three times using 50 monosporangia per experiment.

Treatment of monosporangia with cytoskeleton inhibitors

Working solutions of 0.2 mM for Cytochalasin B (Cyt B; MP Biomedicals, France), 25 μM for Latrunculin B (Lat B; Wako Pure Chemical Industries, Japan), and 3 μM for Nocodazole (Noc; MP Biomedicals) were prepared in ESL medium by the dilution of stock solutions in dimethyl sulfoxide (DMSO; Wako Pure Chemical Industries) and stored at −30 °C. DMSO did not exceed 1% in each dilution. A working concentration of 10 mM for 2, 3-butanedione monoxime (BDM; Sigma, USA) was freshly prepared by resolving in ESL medium. It is well known that Cyt B and Lat B cleave actin filaments into pieces and impair the polymerization of G-actin, respectively (Hartwig and Stossel, 1979; Spector et al., 1989), while Noc and BDM had an inhibitory effect on the MTs and myosin (Kropp et al., 1990; Poulsen et al., 1999). For the evaluation of the effects of these inhibitors on the early development of monosporangia, 6- or 24-well plates (Iwaki Sci Tech Div., Asahi Techno Glass) were used for the treatment of monosporangia with chemicals at the working concentrations indicated above. The percentage of migrating monosporangia or germ cells per well was determined after 3 h and 48 h incubation in 6- and 24-well plates, respectively, with 50 monosporangia per examination and three repetitions per experiment. To identify the renewed cell wall, 0.01% Fluorescent Brightener 28 (Sigma) was used to stain monosporangia directly after 48 h incubation on a cover glass filled with ESL medium with or without inhibitors in 6-well plates.

Treatment of monosporangia with PI3K and PTEN inhibitors

Accumulation of F-actin at the leading edge has also been observed during Ph(3,4,5)P3-dependent migration of Dictyostelium cells and leukocytes (Firtel and Chung, 2000; Bourne and Weiner, 2002). Thus, the effects of PI3K and PTEN inhibitors on monosporangia development were examined. The PI3K inhibitor LY294002 (Promega, USA) and its analogue LY303511 (Calbiochem, USA) were used to treat monosporangia at 1, 2.5, 5, 10, or 15 μM prepared from 50 mM stock solutions in DMSO stored at −30 °C. After incubation for 3 h and 24 h in ESL medium with LY294002 or LY303511, the percentage of migrating monosporangia and germ cells was determined as described above.

It has been established that PTEN and SHIP1 are negative regulators of Ph(3,4,5)P3 production by PI3K in Dictyostelium cells and leukocytes (Iijima et al., 2002; Nishio et al., 2007). Although the possible existence of SHIP1-like activity in monosporangia could not be examined, PTEN-like activity was tested using bpv(pic), a PTEN-specific inhibitor (Schmid et al., 2004). The bpv(pic) (Calbiochem) was used at concentrations of 0.01, 0.1, 1, 10, or 100 μM after resolving in ESL medium. The percentage of migrating monosporangia and germ cells was determined after 3 h and 24 h incubation as described above. Assays were repeated three times using 50 monosporangia per examination.

Treatment of monosporangia with protein synthesis inhibitor

Freshly released and developing monosporangia were treated with cycloheximide (Calbiochem) at a concentration of 18 μM, which was made from 44 mM stock solution stored at −30 °C in DMSO. The assay was repeated three times using 50 monosporangia per experiment.

Visualization of F-actin in freshly released monosporangia

F-actin in freshly released monosporangia was visualized with the fluorescent probe Alex Fluor 488 phalloidin (Molecular Probes, USA) at a concentration of 5 U ml−1. The probe was made by diluting methanol-resolving stock solution (200 U ml−1) with actin buffer (100 mM PIPES, 10 mM EGTA, 5 mM MgSO4, and 0.3 M mannitol, pH 6.9) containing 2% (v/v) glycerol to improve visualization (Olyslaegers and Verbelen, 1998). After incubation in 1.5 ml plastic tubes containing ESL medium with or without cytoskeleton inhibitors, monosporangia were collected by centrifugation at 80 g for 1 min and then resuspended in the phalloidin solution. After incubation for 10 min at room temperature in the dark, monosporangia were gently rinsed with phosphate buffered saline (PBS) by centrifugation at 80 g to remove the phalloidin, and mounted on a slide with 4% n-propyl gallate resolved in 90% glycerol and 10% PBS (Lovy-Wheeler et al., 2005). Actin filaments were observed and photographed using a Leica DM 5000 B fluorescence microscope equipped with a Leica DFC 300 FX camera. All images were obtained using a ×100 oil immersion objective. Excitation (480/40 nm) and emission wavelengths (527/30 nm) were made using filters (Medical Agent Co., Japan) for the Alex Fluor 488 phalloidin. Photomicrographs were taken using a Leica DFC 300 FX camera system and images were collected and processed into plates using the Adobe Photoshop 7.0 software package.

Staining F-actin in monosporangia

Monosporangia were incubated on cover glasses in 6-welled plates containing ESL medium at 15 °C under 60 μmol m−2 s−1 light. When monosporangia were migrating or becoming upright, the cover glasses were transferred into PBS containing 3.7% parafomaldehyde and incubated for 1–5 min at room temperature. The length of fixation was determined by the stage of development. Next, the cover glasses were rinsed three times with PBS, incubated in PBS containing 0.1% Triton X-100 for 1–5 min, and then with 5 U ml−1 Alex Fluor 488 phalloidin dilution for 20–30 min. Actin filaments were observed and photographed as described above.

Results

Migration of monosporangia

It was first found that monosporangia of *P. yezoensis* are motile at two different stages during their early development. After the formation of monosporangia (Fig. 1A, B), somatic cells located at the edge of the thallus changed shape and started to be released (Fig. 1C, D). The shape of the released cells, that is, monosporangia, immediately became rounded (Fig. 1E). This was followed by retractile and amoeboid movement during the second morphological change at which point they had a tapered tail (Fig. 1F, G). After adhering to the substratum, they became upright and the bottom of these cells became elongated (Fig. 1H, I). The first asymmetric cell division occurred perpendicular to the apical–basal axis (Fig. 1J). In the following, the focus is mainly on the second period of movement after release.
Organization of F-actin in the early development of monospores

To clarify the relationship between F-actin and development, the organization of F-actin was observed in monospores during migration and becoming upright. By staining freshly released monospores with Alex Flour 488 phalloidin, actin filaments were observed as bundles in the cell (Fig. 2A). Once monospores moved, F-actin became densely assembled at the leading edge (Fig. 2B–D). When they became upright, it then accumulated at the bottom of the monospores (Fig. 2E, F); this was also observed during further growth (Fig. 2G, H). After the first asymmetrical division, F-actin covered two cells equally, whereas localized F-actin was still observed at the bottom of the germlings (Fig. 2I). Although occurrence of the second cell division was random (Fig. 2J, K), F-actin commonly assembled at the cleavage site prior to division. Pre-positioning of F-actin at the cleavage site was also observed in the third and fourth cell divisions (Fig. 2L, M), and during cell divisions on gametophytic blades (Fig. 2N). Taken together, these findings suggest that F-actin plays roles in the establishment and maintenance of cell polarity by accumulating at the leading edge during movement and at the bottom of germlings, and by

Fig. 1. Discharge, movement, and becoming upright of monospores from *P. yezoensis*. (A) Thallus of *P. yezoensis* (strain TU-1). The square bracket indicates monosporangia formed at the edge of the thallus. (B) Magnified view of monosporangia and vegetative cells. Left of the bracket shows cells in monosporangia. (C, D) Release of monospores. When somatic cells are released from the thallus, they move by changing in shape. (E) Rounding of freshly released monospores in ESL medium. (F, G) Retractile and amoeboid movement of monospores observed 3 h after release. They mainly showed a tapered tail. (H–J) Side views of monospores becoming upright. (H) Monospores attached to substratum observed 5 h after release; at this stage, monospores start to become upright. (I) Growth of monospores observed 8 h after release. (J) First asymmetrical division observed 24 h after release. Scale bars=10 μm.

Fig. 2. F-actin distribution during the early development of monospores. F-actin was stained with Alex Flour 488 phalloidin. Upper and lower photographs in each panel show bright-field and fluorescent images, respectively. (A) Freshly released monospores. (B, C) Migrating monospores. (D–F) Adhering monospores. Accumulation of F-actin was observed at the attachment point. (G, H) Elongating monospores. (I) First asymmetric cell division. (J–N) Pre-position of F-actin at the cleavage site before cell division during growth of germlings. Scale bar=5 μm.
pre-localizing at the division site during the early development of monospores.

Effects of cytoskeleton inhibitors on the early development of monospores

To observe the effects of defects in the cytoskeleton on the motility and becoming upright of monospores, freshly released monospores were collected immediately and incubated with different concentrations of the cytoskeleton inhibitors Cyt B, Lat B, Noc, and BDM. After 3 h incubation, more than 50% of the monospores started migrating and formed the tapered tail in medium without inhibitors (Fig. 3Aa, upper); in these cells F-actin was localized at the leading edge (Fig. 3Aa, lower). However, monospores treated with cytoskeleton inhibitors maintained a spherical shape (Fig.3Ab–e). In these experiments, since

![Image](image_url)

Fig. 3. Effects of cytoskeleton inhibitors on the early development of monospores. (A) Effects of cytoskeleton inhibitors on polarized F-actin accumulation. F-actin was stained with Alex Flour 488 phalloidin after incubation with or without cytoskeleton inhibitors for 3 h. Upper and lower photographs in each panel show bright-field and fluorescent images, respectively. (a) Monospores incubated with ESL medium containing 0.67% DMSO as a control. Leading and trailing edges are indicated by an arrow and an arrowhead, respectively. (b) Monospores treated with 0.2 mM Cyt B. (c) Monospores treated with 25 μM Lat B. (d) Monospores treated with 3 μM Noc. (e) Monospores treated with 10 mM BDM. Scale bar = 5 μm. (B) Effect of cytoskeleton inhibitors on cell wall synthesis. Monospores were treated with cytoskeleton inhibitors for 48 h. Upper and lower photographs in each panel show bright-field and fluorescent images, respectively. (a) Germling grown in ESL medium with 0.67% DMSO as a control. (b) Monospores treated with 0.2 mM Cyt B. (c) Monospores treated with 25 μM Lat B. (d) Monospores treated with 3 μM Noc. (e) Monospores treated with 10 mM BDM. Scale bar = 10 μm. (C) Comparison of the effects of cytoskeleton inhibitors on motility and development of monospores. White and grey bars show the rate of non-development and development of monospores, respectively, after treatment of freshly released monospores with cytoskeleton inhibitors for 48 h (concentrations as in A and B). Data are presented as mean ±SD ($n=3$).
inhibitor-treated cells became too brittle to bear the weight of cover-glass, these cells lost their original spherical shapes and were crushed into the flat shape, which increased the autofluorescence of the chloroplasts especially in the case for the treatment with actin inhibitors (Fig. 3Ab, c). As shown in Fig. 3A, cytoskeleton inhibitors affected the distribution of F-actin. Treatment with 0.2 mM Cyt B and 25 μM Lat B disrupted the organization of F-actin (Fig. 3Ab, c). When monospores were treated with 3 μM Noc, the organization of F-actin was weakened (Fig. 3Ad), although F-actin was cleaved into short fragments by treatment with 30 μM Noc (data not shown). However, F-actin was retained by treatment with 10 mM BDM as in the freshly released monospores (Fig. 3Ae). Moreover, as shown in Fig. 3B and C, after 48 h incubation in control culture 95% of the monospores became upright and developed to the 4-celled stage with a thick cell wall. By contrast, inhibitor-treated monospores were not able to germinate and maintained their round shape without cell wall development after 48 h incubation. These results indicate that F-actin, MTs, and myosin are necessary for movement and becoming upright of monospores, suggesting that the cytoskeleton plays critical roles in the early development of monospores. It was further supported by the observation showing the reversible effects of inhibitors after removal of the drugs by washing (data not shown).

Involvement of PI3K in the migration of monospores

As shown in Fig. 3Aa, migrating monospores formed a tapered shape as in Dictyostelium cells and leukocytes, which prompted us to examine the possible involvement of PI3K and PI(3,4,5)P3-phosphatase in the movement of P. yezoensis monospores. First, monospores were treated with a gradually increasing concentration of LY294002 and LY303511, the specific inhibitor of PI3K and its analogue, respectively. After 3 h incubation, the polarized localization of F-actin was gradually prevented with an increasing concentration of LY294002 along with morphological changes, whereas about 84% of the monospores started movement in the control medium (Fig. 4A). In parallel with this, the migration of monospores and the formation of germlings decreased in a dose-dependent manner during treatment with LY294002 for 3 h and 24 h (Fig. 4Ba, c). By contrast, LY303511 had no effect.
P. yezoensis

PTEN-like activity does not function during directional 3 h or 24 h, no effect was observed (data not shown). Thus, were treated with 18 spores, monospores becoming upright, and germlings purpose, freshly released monospores, migrating mono-

As shown in Figs 2–4, the polarized localization of F-actin near the leading edge was observed in migrating monospores, although actin filaments were randomly observed in freshly released monospores (Fig. 2). It was found that motility of monospores was completely inhibited by the disruption of local F-actin accumulation by Cyt B and Lat B (Fig. 3). These findings support the notion that F-actin plays a role in generating the force for protrusion and directed migration in monospores. Indeed, the importance of polarized F-actin localization in the establishment of cell polarity has also been demonstrated during the directional migration of Dictyostelium cells and mammalian leukocytes (Parent and Devreotes, 1999; Firtel and Chung, 2000; Bourne and Weiner, 2002). It is therefore postulated that the polarized accumulation of F-actin is closely related to the establishment of the anterior–posterior axis during the migration of monospores.

As shown in Figs 2, 3A, and 4A, the organization of F-actin in monospores was analysed using the fluorescent probe phalloidin. Although phalloidin does not penetrate cell walls (Cooper, 1987), it was permeable to freshly released monospores without requiring formaldehyde fixation, which is consistent with the lack of a cell wall in monospores immediately after their release from gameto-

In the present study, it has been demonstrated that motility of P. yezoensis monospores is dependent on the organiza-

Discussion

Discussion

In the present study, it has been demonstrated that motility of P. yezoensis monospores is dependent on the organiza-

Effect of inhibition of protein synthesis on the early development of monospores

Finally, the effects of the inhibition of protein synthesis on the establishment of cell polarity were examined. For this purpose, freshly released monospores, migrating monospores, monospores becoming upright, and germlings were treated with 18 μM cycloheximide. The fate of cycloheximide-treated monospores and germlings was observed after 24 h and 48 h, respectively. When cycloheximide was added to freshly released monospores, they were able to start migrating, but motility was lost after 24 h treatment (Fig. 5A, E, I). In the case of treated migrating monospores, migration was not inhibited by 24 h treatment (Fig. 5B, F, J). It is also notable that they were able to adhere to the substratum, although becoming upright was completely inhibited. Consistent with these findings, asymmetrical localization of F-actin was observed in cycloheximide-treated migrating monospores, but not in freshly released monospores treated with cycloheximide for 6 h and 24 h (Fig. 5M-T). Thus, new protein synthesis is necessary for the maintenance of the asymmetrical distribution of F-actin in freshly released monospores (Fig. 5M, N, Q, R). It was also found that cycloheximide completely inhibited cell division and development in monospores and germlings (Fig. 5C, D, G, H, K, L). In this case, F-actin was not observed in these cells after 6 h treatment (data not shown).

Taken together, these findings indicate that protein synthesis is not important for the establishment of the anterior–posterior axis, but is indispensable for the maintenance of asymmetrical distribution of F-actin, development of germlings after attachment to the sub-

These results indicate that PI3K activity is involved in migration through the formation of the anterior–posterior axis and the regulation of asymmetrical F-actin accumulation at leading edges. However, PI3K does not play a role in adhesion and becoming upright of monospores, since migrating monospores developed to germlings in the presence of LY294002 (Fig. 4Bc).

Finally, the effects of the inhibition of protein synthesis on the establishment of cell polarity were examined. For this purpose, freshly released monospores, migrating mono-

We could not find any direct evidence for the involvement of PI3K activity in the establishment of cell polarity in P. yezoensis monospores. However, our results suggest that PI3K activity is involved in the establishment of cell polarity via the establishment of cell polarity.
polarity (Fig. 4). In *Dictyostelium* and leukocyte cells, the preferential activation of PI3K at the side of the cells facing the chemoattractant is important for establishing a new leading edge, which results in the local production of PI(3,4,5)P3 and the subsequent regulation of cell polarization and directional movement (Parent and Devreotes, 1999; Firtel and Chung, 2000; Bourne and Weiner, 2002). Here, it is demonstrated that the PI3K inhibitor LY294002, but not its analogue LY303511, inactivates the motility of monospores and disorganizes F-actin localization in a dose-dependent manner (Fig. 4A). Thus, although PI(3,4,5)P3 has not yet been observed in

Fig. 5. Effects of a protein synthesis inhibitor on migration, becoming upright and cell division during the early development of monospores. Monospores were treated with 18 μM cycloheximide at various developmental stages: freshly released monospores (A, E, I), migrating monospores (B, F, J), monospores becoming upright (C, G, K), and 2-celled germings (D, H, L). F-actin was stained with Alex Flour 488 phalloidin. (A–D) Monospores before treatment; (E–H) monospores 24 h after treatment; (I–L) monospores 48 h after treatment. (M–T) Effects of cycloheximide on polarized accumulation of F-actin. M, O, Q and S and N, P, R, T show bright-field and fluorescent images, respectively. Abnormal distribution of F-actin when freshly released monospores were treated with cycloheximide for 6 h (M, N). Normal polarized accumulation of F-actin when migrating monospores were treated with cycloheximide for 6 h (O, P). Organization of F-actin was partly weakened after treatment with cycloheximide for 24 h (Q, R). Abnormal distribution of F-actin when migrating monospores were treated with cycloheximide for 24 h (S, T). Scale bars: (A–L) 10 μm; (M–T) 5 μm.
plants (Mueller-Roeber and Pical, 2002), it is hypothesized that D3-phosphorylated PIs such as PI(3)P, PI(3,4)P2, and PI(3,5)P2 have pivotal roles in axis formation in monospores. To identify the D3-phosphorylated PI(s) required for the migration of monospores, synthetic PIs, Di-C8-Ptdlns(3)P, Di-C8-Ptdlns(3,4)P2, Di-C8-Ptdlns(3,5)P2, and Di-C8-Ptdlns(3,4,5)P3 (Echelon) were examined to rescue the ability of movement in LY294002-treated monospores. However, recovery of motility was not observed with any of the above synthetic PIs (data not shown). It is possible that the length of the fatty acids in these synthetic PIs was too short to observe an effect in P. yezoensis in which membrane phospholipids and galactolipids usually carry very long-chain unsaturated fatty acids such as arachidonic acid (20:4) and eicosapentaenoic acid (20:5) (Araki et al., 1987).

Other lines of evidence indicate that PI3K is involved in a variety of physiological phenomena in plants such as root hair growth, production of reactive oxygen species induced by auxin and salt stress, stomatal closure, and vesicle trafficking (Welters et al., 1994; Matsuoka et al., 1995; Jung et al., 2002; Joo et al., 2005; Leshem et al., 2007). Recently, the regulation of actin organization by PI3K was reported in ABA-induced stomatal closure (Choi et al., 2008). Moreover, the functional significance of PI(3)P was recently examined through the ectopic expression of the FYVE domain, which specifically binds PI(3)P (Gillooly et al., 2000), in Arabidopsis thaliana (Helling et al., 2006; Vermeer et al., 2006; Lee et al., 2008). Involvement of PI(3)P in the growth of root hairs was denied by Helling et al. (2006), which is not consistent with Lee et al. (2008) who reported the significance of PI(3)P in tip growth of root hairs. In fact, no expression system of any fluorescent protein has yet been established in multicellular red algae, and thus, it was not possible to monitor subcellular localization using fluorescent proteins in P. yezoensis cells. Development of fluorescent proteins and a system for genetic transformation in P. yezoensis is therefore necessary, although recently a transient gene expression system for the β-glucoronidase reporter gene has been established (Fukuda et al., 2008).

In the present study, it is also demonstrated that new protein synthesis was not required for starting the migration of monospores, whereas the monospores becoming upright was prevented by cycloheximide treatment (Fig. 5). Thus, it is postulated that the establishment of anterior–posterior and apical–basal axes in monospores are differentially regulated in terms of the requirement of new protein synthesis. However, in Dictyostelium cells, inhibition of protein synthesis by the addition of cycloheximide resulted in the prevention of migration via a morphological change to a round shape by retraction of their pseudopodia; localization of actin polymerization

![Fig. 6. A model showing the involvement of the cytoskeleton, PI3K, and protein synthesis in the early development of monospores from P. yezoensis. PI3K is thought to regulate the organization of F-actin, myosin, and MTs, providing the force for migration via the establishment of the anterior–posterior axis. F-actin is asymmetrically localized at the leading edge of migrating monospores. After adherence to the substratum, new protein synthesis is required for becoming upright of the monospores via the establishment of the apical–basal axis. Local accumulation of F-actin at the bottom of the monospores is important for the maintenance of apical–basal polarity.](http://jxb.oxfordjournals.org)
and PI3K was not influenced (Clotworthy and Traynor, 2006). Since, these results are not consistent with our findings whereby monospores were able to continue migration despite morphological changes in the presence of cycloheximide (Fig. 5), it is necessary to determine what kinds of pre-existing factors collaborate with PI3K and the cytoskeleton in *P. yezoensis* monospores.

Using the results obtained, a model is proposed for the early development of monospores (Fig. 6). The start of migration requires the formation of the anterior–posterior axis via PI3K-dependent organization of the cytoskeleton, which may be regulated by pre-existing proteins via post-translational modifications. After attachment to the substratum, monospores become upright and develop via the establishment and maintenance of the apical–basal axis and cell division with new protein synthesis. To confirm this model, subcellular localization of PI3K and D3-phosphorylated PI(s) must be determined and the molecular bases of the relationship between PI3K activity and the polarized localization of F-actin must also be elucidated. In addition, it is necessary to identify newly synthesized proteins required for the establishment of the apical–basal axis. Furthermore, it is important to analyze how monospores recognize cues for the establishment of cell polarity during their early development. In animals, the PAR-aPKC system is a type of molecular machinery that converts initial polarity cues into cellular events, such as the regulation of actin assembly, for the establishment of initial polarity cues into cellular events, such as the establishment and maintenance of the apical–basal axis and cell division with new protein synthesis. To confirm this model, subcellular localization of PI3K and D3-phosphorylated PI(s) must be determined and the molecular bases of the relationship between PI3K activity and the polarized localization of F-actin must also be elucidated. In addition, it is necessary to identify newly synthesized proteins required for the establishment of the apical–basal axis. Furthermore, it is important to analyze how monospores recognize cues for the establishment of cell polarity during their early development. In animals, the PAR-aPKC system is a type of molecular machinery that converts initial polarity cues into cellular events, such as the regulation of actin assembly, for the establishment of cell polarity. In addition, it is necessary to identify newly synthesized proteins required for the establishment of the apical–basal axis. Furthermore, it is important to analyze how monospores recognize cues for the establishment of cell polarity during their early development.

Acknowledgements

We are grateful to Dr Hajime Yasui (Hokkaido University, Japan) for kindly providing the microscopes and to our colleagues for helpful discussions. This study was supported in part by a grant from the Sumitomo Foundation (to KM) and by Grants-in-Aid for the 21st COE (Center Of Excellence) Program ‘Marine Bio-Manipulation Frontier for Food Production’ and the City Area Program in Industry-Academia-Government Joint Research (Hokkaido area) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (to NS).

References

Ackland JC, West JA, Pickett-Heaps J. 2007. Actin and myosin regulate pseudopodia of Porphyra pulchella (Rhodophyta) archeospores. *Journal of Phycolgy* 43, 129–138.

Affolter M, Weijer CJ. 2005. Signaling to cytoskeletal dynamics during chemotaxis. *Development Cell* 9, 19–34.

Araki S, Sakurai T, Kagawachi A, Murata N. 1987. Positional distribution of fatty acids in glycerolipids of the marine red alga, *Porphyra yezoensis*. *Plant and Cell Physiology* 28, 761–766.

Bourne HR, Weiner O. 2002. A chemical compass. *Nature* 419, 21.

Charest PG, Firtel RA. 2006. Feedback signaling controls leading-edge formation during chemotaxis. *Current Opinion in Genetics and Development* 16, 339–347.

Choi Y, Lee Y, Jeon BW, Staiger CJ, Lee Y. 2008. Phosphatidylinositol 3- and 4-phosphate modulate actin filament reorganization in guard cells of day flower. *Plant, Cell and Environment* 31, 366–377.

Clotworthy M, Traynor D. 2006. On the effects of cycloheximide on cell motility and polarization in *Dictyostelium discoideum*. *BMC Cell Biology* 7, 5.

Cooper JA. 1987. Effects of cytochalasin and phalloidin on actin. *Journal of Cell Biology* 105, 1473–1478.

Cove DJ. 2000. The generation and modification of cell polarity. *Journal of Experimental Botany* 51, 831–838.

Das S, Hussain A, Bock C, Keller WA, Georges F. 2005. Cloning of Brassica napus phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol synthase1 (BnPtdIns S1); comparative analysis of the effect of abiotic stresses on the expression of phosphatidylinositol signal transduction-related genes in *B. napus*. *Planta* 220, 777–784.

Dormann D, Weijer CJ, Weijer CJ. 2004. In vivo analysis of 3-phosphoinositide dynamics during *Dictyostelium* phagocytosis and chemotaxis. *Journal of Cell Science* 117, 6497–6509.

Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S. 2006. *Petunia* phospholipase C1 is involved in pollen tube growth. *The Plant Cell* 18, 1438–1453.

Fauré J, Vignais PV, Dagher MC. 1999. Phosphoinositide-dependent activation of Rho A involves partial opening of the RhoA/Rho-GDI complex. *European Journal of Biochemistry* 262, 879–889.

Finka A, Schaefer DG, Saidi Y, Goloubinoff P, Zry¨d J P. 2006. Feedback signaling controls *P. yezoensis* distribution of fatty acids in glycerolipids of the marine red alga, *Porphyra yezoensis*. *Plant and Cell Physiology* 47, 777–784.

Firtel RA, Chung CY. 2000. The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. *BioEssays* 22, 603–615.

Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M. 2006. Vectorial information for *Arabidopsis* planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. *Current Biology* 16, 2143–2149.

Fu Y, Wu G, Yang Z. 2001. Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tube. *Journal of Cell Biology* 152, 1019–1032.

Fukuda S, Mikami K, Uji T, Ohba T, Asada K, Finka A, Schaefer DG, Saidi Y, Goloubinoff P, Zry¨d J P. 2005. Rop GTPase-dependent dynamics of *P. yezoensis* distribution of fatty acids in glycerolipids of the marine red alga, *Porphyra yezoensis*. *Plant and Cell Physiology* 47, 777–784.

Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaulier JM, Parton RG, Stenmark H. 2000. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. *The EMBO Journal* 19, 4577–4588.
Establishment of cell polarity in Porphyra yezoensis monospores

Guiry MD. 1990. The life history of Liagora harveyana (Nemaliales, Rhodophyta) from south-eastern Australia. European Journal of Phycolology 25, 353–362.

Hartwig JH, Stessel TP. 1979. Cytochalasin B and the structure of actin gels. Journal of Molecular Biology 134, 539–553.

Hawkes MW. 1980. Ultrastructure characteristics of monospores formation in Porphyra gardneri (Rhodophyta). Journal of Phycology 16, 192–196.

Helling D, Possart A, Cottier S, Klahre U, Kost B. 2006. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. The Plant Cell 18, 3519–3534.

Hepler PK, Vidali L, Cheung AY. 2001. Polarized cell growth in higher plants. Annual Review of Cell and Developmental Biology 17, 159–187.

Iijima M, Huang YE, Devreotes P. 2002. Temporal and spatial regulation of chemotaxis. Development Cell 3, 469–478.

Imada O, Saito Y, Teramoto K. 2002. Visualisation of peroxisomes in Fucus for fixation of the embryonic axis of Conchocelis-thalli. Journal of Phycology 38, 353–362.

Jedd G, Chua NH. 2002. Polarized cell growth in Fucus. Plant and Cell Physiology 43, 384–392.

Joo JH, Yoo HJ, Hwang I, Lee JS, Nam KH, Bae YS. 2005. Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase. FEBS Letters 579, 1243–1248.

Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JJ, Hwang I, Lee Y. 2002. Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. The Plant Cell 14, 2399–2412.

Kleine-Vehn J, Dhonukshe P, Swapru R, Bennett M, Friml J. 2006. Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway different from PIN1. The Plant Cell 18, 3171–3181.

Kost B. 2008. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends in Cell Biology 18, 119–127.

Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH. 1999. Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. Journal of Cell Biology 145, 317–330.

Krofp DL, Berge SK, Quatrano RS. 1989. Actin localization during Fucus embryogenesis. The Plant Cell 1, 191–120.

Krofp DL, Kloareg B, Quatrano RS. 1988. Cell wall is required for fixation of the embryonic axis of Fucus zygotes. Science 239, 187–190.

Krofp DL, Maddock A, Gard DL. 1990. Microtubule distribution and function in early Pelvetia development. Journal of Cell Science 97, 545–552.

Kusano H, Trestier C, Vermeer JEM, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T. 2008. The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K1 is a key regulator of root hair tip growth. The Plant Cell 20, 367–380.

Lee Y, Bak G, Choi Y, Chuang WI, Cho H, Lee Y. 2008. Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiology 147, 624–635.

Lescham Y, Seri L, Levine A. 2007. Induction of phosphatidylinositols 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. The Plant Journal 51, 185–197.

Li G, Xue HW. 2007. Arabidopsis PLD[delta]2 regulates vesicle trafficking and is required for auxin response. The Plant Cell 19, 281–295.

Li H, Lin Y, Heath RM, Zhu MX, Yang Z. 1999. Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to the tip-localized calcium influx. The Plant Cell 11, 1731–1742.

Lovy-Wheeler A, Wilsen TL, Hepler PK. 2005. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221, 95–104.

Matsuoka K, Bassham DC, Raikhel NV, Nakamura K. 1995. Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. Journal of Cell Biology 130, 1307–1318.

Merlot S, Firtel RA. 2003. Leading the way: directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. Journal of Cell Science 116, 3471–3478.

Miura A. 1985. Genetic analysis of the variant color types of light red, light green and light yellow phenotypes of Porphyra yezoensis (Rhodophyta, Bangiaceae). In: Hara H, ed. Origin and evolution of diversity in plants and plant communities. Academia Scientific Book Inc., 270–284.

Molendijk AJ, Bischoff F, Rajendrakumar CSV, Friml J, Braun M, Gilroy S, Palme K. 2001. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. The EMBO Journal 20, 2779–2788.

Mueller-Roeber B, Pical C. 2002. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiology 130, 22–46.

Nakazawa S. 1958. The predetermined polarity in Porphyra monospores shed from Conchocelis-thalli. Botanical Magazine, Tokyo 71, 144–150.

Nishio M, Watanabe K, Sasaki J, et al. 2007. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nature Cell Biology 9, 36–44.

Olyslaegers G, Verbelen JP. 1998. Improved staining of F-actin and co-localization of mitochondria in plant cells. Journal of Microscopy 192, 73–77.

Parent CA, Devreotes PN. 1999. A cell’s sense of direction. Science 284, 765–770.

Pickett-Heaps JD, West JA, Wilson SM, McBride DL. 2002. Inositol phospholipid metabolism as a consistent feature of the pollen tube. Journal of Cell Biology 158, 469–478.

Polme-Gillor M, Brion J-M, Gilbor A. 2004. Vegetative propagation of Porphyra perforata. Hydrobiologia 116/117, 308–313.

Poulsen NC, Spector I, Spurck TP, Schultz TF, Wetherbee R. 1999. Diatom gliding is the result of an actin-myosin motility system. Cell Motility and the Cytoskeleton 44, 23–33.

Rashotte AM, DeLong A, Muday GK. 2001. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. The Plant Cell 13, 1683–1697.

Samaj J, Peters M, Volkman D, Baluska F. 2000. Effects of myosin ATPase inhibitor 2,3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules, and cortical endoplasmic reticulum in maize root apices. Plant and Cell Physiology 41, 571–582.

Schmid AC, Byrne RD, Vilar R, Woscholski R. 2004. Bisperoxisomal organization and function in early Conchocelis-thalli. Journal of Experimental Botany 55, 3519–3534.
organization and affect cell growth. I. Comparison with cytochalasin D. *Cell Motility and the Cytoskeleton* **13**, 127–144.

Staiger CJ. 2000. Signaling to the actin cytoskeleton in plants. *Annual Review of Plant Physiology and Plant Molecular Biology* **51**, 257–288.

Stenzel I, Ischebeck T, König S, Holubowska A, Sporysz M, Hause B, Heilmann I. 2008. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in *Arabidopsis thaliana*. *The Plant Cell* **20**, 124–141.

Suzuki A, Ohno S. 2006. The PAR-aPKC system: lesson in polarity. *Journal of Cell Science* **119**, 979–987.

Van Haastert PJM, Devreotes PN. 2004. Chemotaxis: signaling the way forward. *Nature Reviews Molecular Cell Biology* **5**, 626–634.

Vermeer JEM, Van Leeuwen W, Toheña-Santamaria R, Laxalt AM, Jones DR, Divecha N, Gadella TWJ, Munnik T. 2006. Visualization of PtdIns3P dynamics in living plant cells. *The Plant Journal* **47**, 687–700.

Welters P, Takegawa K, Emr SD, Chrispeels MJ. 1994. AtVPS34, a phosphatidylinositol 3-kinase of *Arabidopsis thaliana*, is an essential protein with homology to a calcium-dependent lipid binding domain. *Proceedings of the National Academy of Sciences, USA* **91**, 11398–11402.