Consumo de bebidas açucaradas em pacientes com doença aterosclerótica manifesta

Consumption of sugar-sweetened beverages in patients with established atherosclerosis disease

Abstract This study investigated the association between consumption of sugar-sweetened beverages and anthropometric and biochemical variables in a cross-sectional study conducted with secondary data from the first visit of the randomized clinical trial of the Brazilian Cardioprotective Nutritional Program (BALANCE Program) (2013-2014). Weight, height, waist circumference, lipid profile and fasting glycemia and a 24-hour diet recall were collected. Differences between consumption and non-consumption of sugar-sweetened beverages were evaluated by Student’s t-test. The Chi-square test was employed to analyze the association between consumption and non-consumption of sugar-sweetened beverages and biochemical and anthropometric factors. The sample consisted of 2,172 individuals, mostly men (58.5%), elderly (63.6%), C-rated economic class (57.3%), and overweight (62.7%). A statistically significant difference was found between the consumption of sugar-sweetened beverages and higher BMI values (p=0.029), waist circumference (p=0.004) and triglycerides (p=0.023). These results emphasize the need for nutritional intervention regarding the consumption of sugar-sweetened beverages as part of the dietary treatment of this population.

Key words Cardiovascular diseases, Body mass index, Waist circumference

Resumo O presente estudo investigou a associação entre o consumo de bebidas açucaradas e variáveis antropométricas e bioquímicas em análise transversal, realizado com dados secundários referentes à primeira consulta do ensaio clínico randomizado Dieta Cardioprotetora Brasileira (2013-2014). Foram coletados peso, altura, circunferência da cintura, perfil lipídico e glicemia de jejum e dados de um recordatório alimentar de 24 horas. Diferenças entre o consumo e não consumo de bebidas açucaradas foram avaliadas pelo teste T de student. Para analisar a associação entre o consumo de bebidas açucaradas e fatores bioquímicos e antropométricos foi utilizado o teste qui quadrado. A amostra foi de 2,172 indivíduos, sendo a maioria homens (58,5%), idosos (63,6%), do nível econômico C (57,3%), com ensino fundamental (45,8%) e com excesso de peso (62,7%). Houve associação significativa entre o consumo de bebidas açucaradas e maiores valores de índice de massa corporal (p=0,029), circunferência da cintura (p=0,004) e triglicéridos (p=0,023). Esses resultados reforçam a necessidade de intervenção nutricional quanto ao consumo de bebidas açucaradas como parte do tratamento dietético desta população.

Palavras-chave Doenças cardiovasculares, Índice de massa corporal, Circunferência da cintura
Introdução

Dados publicados pela Organização Mundial da Saúde (OMS) demonstram que as doenças cardiovasculares (DCV) são a principal causa de morte no mundo. Identificar e tratar fatores de risco modificáveis como a dieta inadequada é fundamental na prevenção da mortalidade por estas patologias.

Evidências científicas revelam que o consumo elevado de açúcares na forma de bebidas açucaradas, como refrigerantes, sucos e chás industrializados, tem sido associado a uma dieta não saudável rica em calorias, favorecendo a ocorrência de excesso de peso, elevação de triglicerídeos (TG), lipoproteína de baixa densidade (LDL), hiperglicemia, hipertensão arterial sistêmica (HAS), aumento da pressão arterial sistólica (PAS), aumento da pressão arterial diastólica (PAD), adiposidade visceral, resistência à insulina (RI), síndrome metabólica e DCV. Para uma dieta saudável e equilibrada, o consumo de açúcares livres não deve ultrapassar 10% do valor calórico diário.

Segundo dados da última Pesquisa Nacional de Orçamentos Familiares (POF), realizada pelo Instituto Brasileiro de Geografia e Estatística (IBGE) no ano de 2008/2009, aproximadamente 20% dos brasileiros consomem refrigerantes e quase 40% sucos industrializados, o que é preocupante, pois são alimentos que fornecem muitas calorias e nenhum nutriente específico. Em uma publicação recente do Ministério da Saúde, o percentual de brasileiros que consomem bebidas açucaradas regularmente é de aproximadamente 16% e mais da metade da população está com excesso de peso.

A análise do consumo de bebidas açucaradas em pacientes cardiopatas é relevante, visto que estudos têm encontrado uma associação positiva entre o consumo de açúcar com o aumento do risco de mortalidade por DCV. Diante do exposto, o objetivo do presente estudo foi investigar a associação entre o consumo de bebidas açucaradas e variáveis antropométricas e bioquímicas em pacientes com aterosclerose manifesta, participantes do projeto Dieta Cardioprotetora Brasileira (DICA BR).

Métodos

Este é um estudo transversal, aninhando ao projeto Dieta Cardioprotetora Brasileira (DICA BR), um ensaio clínico randomizado, multicêntrico nacional, conduzido pelo Hospital do Coração (HCor), em parceria com o Programa de Apoio ao Desenvolvimento Institucional do SUS (PROADISUS) do Ministério da Saúde, que tem como objetivo a redução de fatores de risco e eventos cardiovasculares como prevenção secundária dessas patologias. Para este trabalho foram utilizados dados secundários coletados na primeira consulta de todos os participantes do estudo no ano de 2013 a 2014. A pesquisa foi aprovada pelo Comité de Ética em Pesquisa do Hospital do Coração de São Paulo – SP e todos os pacientes assinaram o Termo de Consentimento Livre e Esclarecido (TCLE) antes de serem incluídos.

Os critérios de inclusão do projeto DICA BR foram: idade igual ou superior a 45 anos com evidência de aterosclerose manifesta (doença arterial coronariana, doença cerebrovascular ou doença arterial périferica) nos últimos dez anos. Sendo excluídos indivíduos que apresentavam qualquer um dessas características: condição psiquiátrica ou neurocognitiva que dificultasse a obtenção de dados clínicos fidedignos; expectativa de vida menor que seis meses; gravidez ou lactação; insuficiência hepática com história prévia de encefalopatia ou anasarca; insuficiência renal com indicação de diálise; insuficiência cardíaca congestiva; transplante de órgãos prévio; gastroplastia; ser cadeirante ou ter dificuldade de alimentar-se por oral.

Os dados obtidos para este trabalho foram: sexo, idade, peso, altura, índice de massa corporal (IMC), circunferência da cintura (CC), escolaridade, prática de atividade física, uso de medicamentos (antitrombóticos, anti-hipertensivos, antilipemiantes e hipoglicemiantes), perfil lipídico e glicêmico, além do consumo de bebidas açucaradas.

O peso corporal, em quilogramas (kg), foi obtido utilizando balança tipo plataforma mecânica ou digital (de acordo com a disponibilidade de cada centro) com precisão mínima de 100g, sendo sugeridas as marcas Filizola® PL200 e Plenna®. A medida da estatura, expressa em metros, foi aferida por meio de estadiômetro antropométrico acoplado a balança ou estadiômetro portátil, fixo e tipo trena, com precisão de 0,50cm. A partir dos dados de peso e altura calculou-se o IMC dividindo-se o peso (kg) pelo quadrado da altura (m) e então classificou-se o estado nutricional da amostra de acordo com o preconizado pela OMS para adultos (baixo peso, IMC < 18,49kg/m²; eutrofia, IMC 18,50 - 24,99kg/m²; excesso de peso, IMC ≥ 25,00kg/m²). Para os pacientes idosos (idade igual ou superior a 60 anos), foi utilizado o critério de classificação do estado nutricional da Organização Pan-Americana (baixo peso, IMC <
23kg/m²; eutrofia, IMC 23,00 - 27,99kg/m²; excesso de peso, IMC ≥ 28,00kg/m²)15.

A medida da circunferência da cintura (CC) foi obtida com fita métrica de material resistente, inelástico e flexível, com precisão de 0,1cm, realizada no ponto médio entre a borda inferior do arco costal e a crista iliaca e classificada segundo a OMS (2008) em risco de complicações metabólicas aumentadas quando CC ≥ 94cm para homens e CC ≥ 80cm para mulheres; risco substancialmente aumentado quando CC ≥ 102cm para homens e CC ≥ 88cm para mulheres16.

Para avaliar a escolaridade foram classificados como analfabeto (sem estudo), ensino fundamental completo ou incompleto, ensino médio completo ou incompleto e nível superior completo ou incompleto de forma auto-relatada. O perfil socioeconômico foi classificado de acordo com o propósito pela Associação Brasileira de Empresas de Pesquisa (ABEP) em cinco classes, variando de maior poder aquisitivo (A) ao de menor poder aquisitivo (E)17.

Em relação a prática de atividade física foram utilizados os critérios fornecidos pela National Academy of Sciences (NAS), do Instituto de Medicina (IOM), denominados Ingestões Dietéticas de Referência (Dietary Recommended Intakes – DRI) que classifica o nível de atividade em quatro categorias: sedentário, atividade leve, atividade moderada e atividade intensa18.

Para a avaliação do perfil lípido foram analisados os valores de colesterol total (CT), lipoproteína de alta densidade (High Density Lipoprotein – HDL), lipoproteína de baixa densidade (Low Density Lipoprotein – LDL) e triglicerídeos. O perfil glicêmico foi avaliado por meio da glicemia de jejum. Todos os pacientes foram orientados a realizar jejum mínimo de 12 horas e máximo de 14 horas, evitar o consumo de bebidas alcoólicas nas últimas 72 horas e não realizar esforço físico antes da coleta.

A avaliação do consumo de bebidas açucaradas foi obtida por meio do recordatório 24 horas (R24H), aplicado por nutricionistas previamente treinadas tendo como referência o dia anterior à consulta. Foram consideradas como bebidas açucaradas: refrigerantes, sucos artificiais em pó ou prontos para consumo e chás prontos para consumo. Para auxiliar na coleta das informações foi utilizado um álbum fotográfico com os alimentos e suas respectivas medidas caseiras19. Os recordatórios foram digitados e analisados no software de análise de dietas Nutriquant20.

Os dados foram digitados no Excel e as análises estatísticas foram realizadas no programa GraphPad2 Prism 5. A normalidade dos dados foi testada pelo teste de Kolmogorov-Smirnov. As variáveis numéricas continuas foram expressas em médias ± desvio padrão e as variáveis categóricas em número absoluto e frequência relativa. As diferenças entre o consumo e não consumo de bebidas açucaradas foram avaliadas através do teste T de student. Para analisar a associação entre o consumo e não consumo de bebidas açucaradas e fatores bioquímicos e antropométricos foi utilizado o teste qui quadrado. Nível de significância de 5% foi utilizado.

Resultados

O estudo DICA BR incluiu 2.468 pacientes na pesquisa, porém neste estudo 296 foram excluídos por apresentarem dados incompletos referentes ao não preenchimento do R24H e ausência de dados bioquímicos ou antropométricos totalizando, 2.172 pacientes. A amostra apresentou média de idade de 63,1 ± 8,9 anos IMC de 29,0 ± 5,0kg/m² e CC foi de 101,0 ± 11,4cm entre os homens e de 97,8 ± 13,4cm entre as mulheres.

A Tabela 1 apresenta as características da amostra, de acordo com o consumo ou não consumo de bebidas açucaradas. A maior parte eram homens (58,5%), idosos (63,6%), do nível econômico C (57,3%), estudaram até o ensino fundamental (45,8), estavam com excesso de peso (62,7%), sedentários (65,8%) e utilizavam antitrombóticos, anti-hipertensivos e antilipemiantes. Diferenças significativas foram observadas entre sexo (p = 0,029), nível econômico (p = 0,001), escolaridade (p = 0,004) e estado nutricional (p = 0,014) entre indivíduos que consomem ou não bebidas açucaradas.

Dos 2.172 pacientes do estudo, apenas 28,3%, ou seja, 383 homens e 233 mulheres consumiram bebidas açucaradas. A média de consumo entre aqueles que ingeriram essas bebidas foi de 360,3 ± 268,0ml/dia pelos homens e de 273,4 ± 198,5ml/dia pelas mulheres.

As bebidas açucaradas consumidas pelos homens foram: refrigerantes (51,7%), suco artificial em pó (30,0%), suco artificial pronto para o consumo (17,8%) e chá pronto (0,5%). As mulheres consumiram refrigerantes (43,4%), suco artificial em pó (29,6%), suco artificial pronto para o consumo (26,6%) e chá pronto (0,4%).

Em relação à associação entre o consumo de bebidas açucaradas e variáveis antropométricas e bioquímicas, os resultados evidenciam diferença estatisticamente significativa entre o consumo de

15 Cunha, L. R. M. et al. (2015). Trabalho não publicado.
16 Silva, M. C. et al. (2016). Trabalho não publicado.
17 Sampaio, C. M. et al. (2018). Trabalho não publicado.
18 Cavalcante, A. C. et al. (2019). Trabalho não publicado.
19 Lima, L. C. et al. (2020). Trabalho não publicado.
20 Barros, A. S. et al. (2021). Trabalho não publicado.
Tabela 1. Caracterização da amostra de pacientes com aterosclerose manifesta participantes do DICA BR na visita inicial, 2017, Brasil (n = 2.172).

Variáveis	n (%)	Bebidas Açucaradas n (%)	p *	
		Sim	Não	
Sexo				
Homens	1271	383 (17,6)	888	0,029*
Mulheres	901	233 (10,7)	668	
Idade				
Adultos (<60 anos)	790	232 (37,7)	558	0,432
Idosos (≥ 60 anos)	1382	384 (62,3)	998	
Nível econômico¹, n=1.889				
A/B	555	187 (34,9)	368	0,001*
C	1083	292 (54,6)	791	
D/E	251	56 (10,5)	195	
Escolaridade, n=1.892				
Analfabeto	535	123 (22,9)	412	0,004*
Ensino Fundamental	866	262 (48,9)	604	
Ensino Médio	342	98 (18,3)	244	
Ensino Superior	149	53 (9,9)	96	
Estado Nutricional*				
Baixo Peso	134	30 (4,9)	104	0,014*
Eutrofia	676	171 (27,7)	505	
Excesso de peso	1362	415 (67,4)	947	
Atividade Física¹, n=2.137				
Sedentários	1406	403 (66,0)	1003	0,919
Ativos	731	208 (34,0)	523	
Medicamentos Antitrombóticos				
Sim	1971	558 (90,6)	1413	0,870
Não	201	58 (9,4)	143	
Anti-hipertensivos				
Sim	2071	587 (95,3)	1484	0,936
Não	101	29 (4,7)	72	
Antilipemiantes				
Sim	1873	544 (88,3)	1329	0,077
Não	299	72 (11,7)	227	
Antidiabéticos				
Sim	882	249 (40,4)	633	0,912
Não	1290	367 (59,6)	923	

¹ Teste qui-quadrado p < 0,05. ¹ Crítérios da OMS, 1995 para adultos e OPAS, 2002 para idosos; ² De acordo com o proposto pelo National Academy of Sciences (NAS), do Instituto de Medicina (IOM), 2002.

bebidas açucaradas e maior valores de IMC (p = 0,029), CC (p = 0,004) e TG (p = 0,023). Não foram observadas diferenças significativas para CT (p = 0,137), LDL (p = 0,277), HDL (p = 0,132) e glicemia de jejum (p = 0,147) entre consumo e não consumo dessas bebidas (Tabela 2).

Discussão

O presente trabalho avaliou a associação entre o consumo de bebidas açucaradas e IMC, CC, perfil lipídico e glicêmico. Sabe-se que as bebidas açucaradas contêm alta concentração calórica, favorecendo o ganho de peso e sua ingestão na forma líquida faz com que essas calorias sejam rapidamente absorvidas sem conferir saciedade³,⁵.

Semelhante ao observado em estudo prévio²¹, quanto maior a escolaridade menor o consumo de bebidas açucaradas, evidenciando o papel da educação na escolha de uma alimentação saudável e no comportamento alimentar. Os resultados encontrados quanto a associação do consumo de bebidas açucaradas e estado nutricional neste estudo corroboraram com os achados anteriores²²-²⁵.
Tabela 2. Comparação de variáveis antropométricas, bioquímicas e alimentares na visita inicial dos pacientes do DICA BR consumidores e não consumidores de bebidas açucaradas, Brasil, 2017 (n = 2.172).

Variáveis	Consumidores (> 0 g/d)	Não consumidores	p*		
	Média	DP	Média	DP	
IMC**	29,3	4,9	28,9	4,9	0,029*
Circunferência da cintura	100,8	11,9	99,2	12,5	0,004*
Colesterol Total	171,1	43,6	168,9	44,9	0,137
LDL***	96,0	37,4	94,9	38,9	0,277
HDL****	42,5	11,7	43,3	12,7	0,132
Triglicerídeos	168,6	116,4	153,5	80,2	0,023*
Glicemia de jejun	119,1	49,3	116,6	46,3	0,147

*p Teste t de Student p < 0,05; ** IMC: Índice de massa corporal; *** LDL: Lipoproteína de baixa densidade; **** HDL: Lipoproteína de alta densidade; DP: Desvio Padrão.

que sugeriram que o consumo frequente de bebidas açucaradas tem sido relacionado ao aumento do risco de ganho de peso e obesidade devido à grande quantidade de açúcar adicionado, que, quando consumido sob a forma de líquido, provoca menor saciedade. Este trabalho identificou um menor consumo de bebidas açucaradas entre as mulheres, o que pode ser justificado pela maior preocupação delas em relação à saúde e adoção de hábitos alimentares saudáveis.

As bebidas açucaradas aumentam os fatores de risco para DCV não só devido ao ganho de peso, mas também pelo efeito que o açúcar adicionado nessas bebidas exerce sobre o metabolismo da resistência a insulina (RI) e inflamação. O elevado consumo dessas bebidas ricas em açúcar tem sido associado ao aumento do apetite devido à ocorrência de picos de glicose e insulina no sangue, e essa resposta de insulina pós-prandial pode levar a RI. Ainda, pode promover a lipogênese hepática de novo, aumentar as concentrações de lipoproteína de muito baixa densidade (VLDL) circulante, TG, favorecer o excesso de peso e adiposidade visceral. Essas alterações metabólicas contribuem no processo da aterosclerose, base fisiopatológica para a maioria das DCV.

O excesso de peso na população brasileira cresceu na última década, passando de 42,6% no ano de 2006 para 53,8% em 2016. Fato muito preocupante diante do risco que o peso elevado confere a toda população para DCV. Neste estudo, mais de 60% dos pacientes estão com excesso de peso e aqueles que consumiram bebidas açucaradas apresentaram IMC significativamente maior quando comparados com os que não consumiram (p = 0,029). Os resultados apresentados corroboram com os achados de Larsson et al., em um estudo que utilizou dados de duas coortes suécias com 68.459 homens e mulheres sem histórico de DCV, diabetes e câncer e evidenciou que aqueles indivíduos que consumiam bebidas açucaradas apresentavam significativamente mais excesso de peso.

Em relação à CC, os dados demonstram valores elevados nesta medida em ambos os sexos e associação significativa entre o consumo de bebidas açucaradas e acúmulo de gordura na região abdominal (p = 0,004). Duffey et al. analisaram dados de 2.774 adultos saudáveis participantes de um estudo de coorte nos Estados Unidos que teve por objetivo avaliar o consumo de suco de frutas e bebidas açucaradas e sua associação com fatores de risco cardiométricos, e evidenciaram que pacientes com maior consumo de bebidas açucaradas apresentaram significativamente maior CC que o que reforça os resultados encontrados nesse estudo.

Com relação ao perfil lipídico, os pacientes que consumiram bebidas açucaradas apresentaram valores significativamente maiores de triglicerídeos (p = 0,023), porém, não foi encontrada associação deste consumo com colesterol total, LDL e HDL. É importante ressaltar que os pacientes avaliados estavam em tratamento medicamentoso sendo que a maioria (86,2%) fazia uso de antilipemiantes, o que pode ter mascado os resultados deste estudo. Um estudo de intervenção que buscou investigar o efeito dose-resposta do consumo de bebidas açucaradas fornecendo 10%, 17,5% ou 25% do requerimento energético, durante duas semanas, sob a mudança no perfil lipídico de 85 adultos saudáveis, evidenciou o aumento nas concentrações de triglicerídeos pós-prandial e também de LDL em jejun nas três doses quando comparadas com 0% de forma semelhante, Ferreira-Pêgo et al. avaliaram o consumo de bebidas açucaradas em 1.868 participantes no estudo de Prevenção com Dieta do...
Mediterrâneo (PREDIMED) de indivíduos com elevado risco cardiovascular, e demonstraram que aqueles que mais consumiram bebidas açucaradas apresentaram valores de triglicerídeos mais elevados no início da pesquisa. Não foram encontradas diferenças significativas para glicemia de jejum e o consumo de bebidas açucaradas, resultado que pode ter sido influenciado pelo tratamento recebido pelos pacientes, em que 40% estavam em uso de hipoglicemiantes orais e/ou insulina. Uma análise transversal realizada com 2.596 adultos com dados de duas cohortes que buscaram identificar fatores de risco de DCV (Framingham Heart Study Offspring e Third Generation) também não encontrou diferenças significativas para glicemia de jejum e o consumo de bebidas açucaradas.

Algumas limitações do estudo merecem consideração, como a análise transversal, que não fornece evidência sobre causalidade do efeito do consumo de bebidas açucaradas. Além disso, o uso de R24H para avaliar o consumo alimentar, mesmo aplicado por pesquisadores treinados, apresenta o viés inerente ao método, que pode subestimar as reais porções e falhar em estimar a dieta habitual dos pacientes.

A ausência de algumas das associações propostas, como a associação entre as variáveis bioquímicas e o consumo de bebidas açucaradas, pode ser atribuída ao fato da amostra ser composta por indivíduos em tratamento medicamentoso, podendo ser considerada limitação adicional. No entanto, cabe ressaltar que, por se tratar de população de pacientes com doença aterosclerótica manifesta, o uso de fármacos para prevenção secundária é parte indispensável do tratamento.

O consumo de bebidas açucaradas foi associado ao maior IMC, elevada CC e a valores mais altos de triglicerídeos em pacientes brasileiros com aterosclerose manifesta. Esses resultados reforçam a necessidade de intervenção nutricional quanto ao consumo de bebidas açucaradas como parte do tratamento dietético desta população.

Colaboradores

BLP Ribas participou da coleta de dados em Pelotas, análise e interpretação dos dados, revisão de literatura e redação da versão inicial do manuscrito. A Longo e FV Dobke participaram da coleta de dados em Pelotas, análise e interpretação dos dados. EG Bertoldi, LR Borges e RT Abib participaram da coordenação da coleta de dados em Pelotas e revisão crítica do manuscrito. B Weber é a pesquisadora principal, contribuiu na concepção e coordenação geral do estudo e revisão crítica do manuscrito. Todos os autores participaram da redação e aprovaram a versão final do manuscrito.
Principais Investigadores do Projeto Dieta Cardioprotetora Brasileira

Cristiane Kovacs (Instituto Dante Pazzanese de Cardiologia, São Paulo-SP, Brasil), Annie Seixas Bello Moreira (Hospital Universitário Pedro Ernesto, Rio de Janeiro-RJ, Brasil e Instituto Nacional de Cardiologia, Rio de Janeiro-RJ, Brasil), Rosileide de Souza Torres (Hospital das Clínicas Gaspar Viana, Belém-PA, Brasil), Helyde Marinho (HU Francisa Mendes, Manaus-AM, Brasil), Cristina Henschel de Matos (Universidade Vale do Itajai, Itajaí-SC, Brasil), Renata Torres Abib (Universidade Federal de Pelotas, Pelotas-RS, Brasil), Gabriela Correia Souza (Hospital de Clínicas de Porto Alegre, Porto Alegre-RS, Brasil), Gabriela da Silva Shirmann (Universidade da Região da Campanha, Bagé-RS, Brasil), Francisca Eugenia Zaina Nagano (Hospital de Clínicas da Universidade Federal do Paraná, Curitiba-PR, Brasil), Maria Estela Monserrat Ramos (Hospital Universitário Associação Educadora São Carlos, Canoas-RS, Brasil), Soraia Poloni (Instituto de Cardiologia do Rio Grande do Sul, Porto Alegre-RS, Brasil), Raquel Milani El Kik (Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre-RS, Brasil), Nael El Hassan Feres (Universidade Federal do Mato Grosso, Cuiabá-MT, Brasil), Eliane Said Dutra (Hospital Universitário de Brasília, Brasília-DF, Brasil), Ana Paula Perillo Ferreira Carvalho (Hospital das Clínicas de Goiânia, Goiânia-GO, Brasil), Marta Marques David (Hospital Universitário Maria Aparecida Pedrossian, Campo Grande-MS, Brasil), Isa Galvão Rodrigues (Pronto Socorro Cardiológico Universitário de Pernambuco, Recife-PE, Brasil), Antonio Carlos Sobral Sousa (Hospital São Lucas, Aracaju-SE, Brasil), Amanda Lopes Gonçalves Coura (Hospital Universitário Alcides Carneiro, Campina Grande-PB, Brasil), Josilene Maria Ferreira Pinheiro (Hospital Universitário Ana Bezerra, Santa Cruz-RN, Brasil), Sandra Mary Lima Vasconcelos (Universidade Federal de Alagoas, Maceió-AL, Brasil), Andrea de Matos Penafort (Universidade de Fortaleza, Fortaleza-CE, Brasil), Daniele Maria de Oliveira Carlos (Hospital de Messejana, Fortaleza-CE, Brasil), Viviane Saia de Souza (Hospital Universitário Professor Edgard Santos, Salvador-BA, Brasil), Adriana Barros Luna (Hospital Universitário da Universidade Federal de Sergipe, Aracaju-SE, Brasil), José Albuquerque de Figueiredo Neto (Hospital Universitário da Universidade Federal do Maranhão, São Luís-MA, Brasil), Emílio Hideyuki Moriguchi (Associação Veranense de Assistência em Saúde, Veranópolis-RS, Brasil), Camila Ragne Torreglosa (Hospital do Coração, São Paulo-SP, Brasil), Maria Cristina de Oliveira Izar (Universidade Federal de São Paulo, São Paulo-SP, Brasil), Sônia Lopes Pinto (Universidade Federal de Tocantins, Palmas-TO, Brasil), Luciano Marcelo Backes (Bioserv, Passo Fundo-RS, Brasil), Josefina Bressan (Universidade Federal de Viçosa, Viçosa-MG, Brasil), Simone Raimondi (Instituto Estadual de Cardiologia Aloysio de Castro, Rio de Janeiro-RJ, Brasil), Magali Kumbier (COTENUT, Porto Alegre-RS, Brasil).

Referências

1. World Health Organization (WHO). Cardiovascular diseases (CVDs) [Internet]. 2017 [acessado 2017 Maio 20]. Disponível em: http://www.who.int/mediacentre/factsheets/fs317/en/

2. World Health Organization (WHO). Ingestão de açúcares por adultos e crianças [Internet]. Genebra: WHO; 2015. [acessado 2017 Maio 20]. Disponível em: http://www.paho.org/bra/images/stories/GCC/ingestao%20de%20açucare por%20adultos%20e%20criancas_portugues.pdf?ua=1

3. Malik VS, Hu FB. Fructose and Cardiometabolic Health: What the Evidence from Sugar-Sweetened Beverages Tells Us. J Am Coll Cardiol 2015; 66(14):1615-1624.

4. Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol Behav 2010; 100(1):47-54.

5. Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar-Sweetened Beverages, Obesity, Type 2 Diabetes Mellitus, and Cardiovascular Disease Risk. Circulation 2010; 121(11):1356-1364.

6. Stanhope KL, Medici V, Bremer AA, Lee V, Lam HD, Nunez MV, Chen GX, Keim NL, Havel PJ. A dose-response study of consuming high-fructose corn syrup–sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am J Clin Nutr 2015; 101(6):1144-1154.
