INSTABILITY OF VORTEX SOLITONS FOR 2D FOCUSING NLS

TETSU MIZUMACHI

Abstract. We study instability of a vortex soliton \(e^{i(m\theta + \omega t)}\phi_{\omega,m}(r)\) to
\[iu_t + \Delta u + |u|^{p-1}u = 0, \quad \text{for } x \in \mathbb{R}^n, \quad t > 0, \]
where \(n = 2\), \(m \in \mathbb{N}\) and \((r, \theta)\) are polar coordinates in \(\mathbb{R}^2\). Grillakis \cite{11} proved that every radially standing wave solutions are unstable if \(p > 1 + 4/n\). However, we do not have any examples of unstable standing wave solutions in the subcritical case \((p < 1 + n/4)\).

Suppose \(\phi_{\omega,m}\) is nonnegative. We investigate a limiting profile of \(\phi_{\omega,m}\) as \(m \to \infty\) and prove that for every \(p > 1\), there exists an \(m^* \in \mathbb{N}\) such that for \(m \geq m^*\), a vortex soliton \(e^{i(m\theta + \omega t)}\phi_{\omega,m}(r)\) becomes unstable to the perturbations of the form \(e^{i(m+j)\theta}v(r)\) with \(1 \ll j \ll m\).

1. Introduction

In the present paper, we consider instability of radially symmetric vortex solitons to 2-dimensional nonlinear Schrödinger equations
\[
\begin{cases}
iu_t + \Delta u + f(u) = 0 & \text{for } (x, t) \in \mathbb{R}^n \times \mathbb{R}, \\u(x, 0) = u_0(x) & \text{for } x \in \mathbb{R}^2,
\end{cases}
\]
where \(n = 2\) and \(f(u) = |u|^{p-1}u\). Let \(\omega > 0\), \(m \in \mathbb{N} \cup \{0\}\), and let \(e^{i(\omega t + m\theta)}\phi_\omega(r)\) be a standing wave solution of (1) belonging to \(H^1(\mathbb{R}^2)\). Here \(r\) and \(\theta\) denote polar coordinates in \(\mathbb{R}^2\). Then \(\phi_\omega(r)\) is a solution to
\[
\begin{cases}
\phi'' + \frac{1}{r}\phi' - \left(\omega + \frac{m^2}{r^2}\right)\phi + f(\phi) = 0 & \text{for } r > 0, \\
\lim_{r \to 0} \frac{\phi(r)}{r^m} = \lim_{r \to 0} \frac{\phi'(r)}{mr^{m-1}}, \\
\lim_{r \to \infty} \phi(r) = 0.
\end{cases}
\]
We remark that \(e^{im\theta}\phi_\omega(r)\) is a solution to the scalar field equation
\[
\Delta \varphi - \omega \varphi + f(\varphi) = 0 \quad \text{for } x \in \mathbb{R}^2.
\]
A standing wave solution of the form \(e^{i(\omega t + m\theta)}\phi_\omega(r)\) appears in the study of nonlinear optics (see references in \cite{17}). If \(m = 0\) and \(\phi_\omega(r)\) is positive, then \(\phi_\omega\) is a ground state. Existence and uniqueness of the ground state are well known (see \cite{5}, \cite{6}, \cite{16} and reference therein).

If \(m \neq 0\), Iaia and Warchall proved the existence of smooth solutions to (2) with any prescribed number of zeroes. The uniqueness of positive

Key words and phrases. nonlinear Schrödinger equation, standing wave solutions, limiting profile, orbital instability, large spinning number.

This research is supported by Grant-in-Aid for Scientific Research (No. 17740079).
solutions has been proved by [18] by using the classification theorem of positive solutions due to Yanagida and Yotsutani [29].

Let \(c > 0 \) and let \(Q_c \) be a positive solution to

\[
\begin{align*}
Q'' - cQ + f(Q) &= 0 \quad \text{for } x \in \mathbb{R}, \\
\lim_{x \to \pm \infty} Q(x) &= 0, \\
Q(0) &= \max_{x \in \mathbb{R}} Q(x).
\end{align*}
\]

Then

\[
Q_c(x) = \left(\frac{(p+1)c}{2} \right)^{\frac{1}{p-1}} \text{sech}^{p-1} \left(\frac{(p-1)\sqrt{c}}{2} x \right).
\]

In [17], Pego and Warchall numerically observe that as spin index \(m \) becomes larger, a solution \(\phi_{\omega,m} \) to (2) remains small initially and then is approximated by \(Q_c(r - \bar{r}) \) around \(r = \bar{r} \), where \(c = \omega + (m^2/\bar{r}^2) \) and \(\bar{r} \) is a positive number with \(\bar{r} = O(m) \) as \(m \to \infty \) (see also [21] and references in [17]). One of our goals in the present paper is to explain this phenomena.

Benci and D’Aprile [3] studied (2) in a general setting and locate the asymptotic peak of solutions (see also [10]). Recently, Ambrosetti, Malchiodi and Ni [2] have proved the existence of positive radial solutions concentrating on spheres to a class of singularly perturbed problem

\[
\varepsilon^2 \Delta u - V(u) + |u|^{p-1}u = 0,
\]

and obtain their asymptotic profile. Adopting the argument in [2], we obtain the following.

Theorem 1. Let \(p > 1 \) and let \(\phi_{\omega,m} \) be a positive solution to (2). Then there exists an \(m_* \in \mathbb{N} \) such that if \(m \geq m_* \),

\[
\| \phi_{\omega,m}(\cdot) - Q_c(\cdot - \bar{r}) \|_{H^2(\mathbb{R}^2)} = O(m^{-1/2}),
\]

\[
\| \phi_{\omega,m}(\cdot) - Q_c(\cdot - \bar{r}) \|_{L^\infty(\mathbb{R}^2)} = O(m^{-1}),
\]

where \(\bar{r} = 2m/\sqrt{(p-1)\omega} \) and \(c = (p+3)\omega/4 \).

Remark 1. Let \(r = ms, \varepsilon = 1/m \) and \(V(r) = \omega + r^{-2} \). Then (2) is transformed into

\[
\varepsilon^2 \Delta_r \phi - V(r)\phi + f(\phi) = 0.
\]

Though [2] assumes the boundedness of \(V(r) \) and cannot be applied directly to our problem, a maximum point of \(\phi_{\omega,m}(r) \) can be predicted from an auxiliary weighted potential \(rV(r) \) introduced by [2].

Let \(\varphi_\omega \) be a ground state to (3). As is well known, the standing wave solution \(e^{i\omega t} \varphi_\omega \) is stable if \(d\|\varphi_\omega\|_{L^2(\mathbb{R}^n)}^2/\omega > 0 \) and unstable if \(d\|\varphi_\omega\|_{L^2(\mathbb{R}^n)}^2/\omega < 0 \). See e.g. Berestycki-Cazenave [4], Cazenave-Lions [7], Grillakis-Shatah-Strauss [12], Shatah [23], Shatah-Strauss [24] and Weinstein [28]. Namely, the standing wave solution \(e^{i\omega t} \varphi_\omega \) is stable if \(1 < p < 1 + 4/n \) and unstable if \(p \geq 1 + 4/n \). Grillakis [11] proved that every radially symmetric standing wave solution is linearly unstable if \(p > 1 + 4/n \). However, to the best our knowledge, it remains unknown whether there exists an unstable standing wave solution with higher energy in the subcritical case \((1 < p < 1 + 4/n)\).
Using Theorem 1, we find an unstable direction and prove $e^{i(\omega t + m\theta)} \phi_\omega(r)$ is unstable in $H^1(\mathbb{R}^2)$ if $p > 1$ and m is sufficiently large.

Theorem 2. Let $p > 1$ and $\phi_{\omega,m}$ be as in Theorem 1. Then there exists an $m* \in \mathbb{N}$ such that if $m \geq m*$, a standing wave solution $e^{i(\omega t + m\theta)} \phi_\omega$ is linearly unstable.

Remark 2. By Shatah-Strauss Lemma (see [25, 26], see also [20]), we have orbital instability of the linearly unstable standing wave solutions.

Remark 3. If $p < 1 + 4/n$ and $u_0 \in H^1(\mathbb{R}^n)$, a solution to (1) exists globally in time and remains bounded in $H^1(\mathbb{R}^n)$. Thus the mechanism of instability shown in Theorem 2 is quite different from that of [4] where solutions around a standing wave solution blow up in finite time. The instability mechanism we find is close to transversal long-wave instability of 1-dimensional soliton (see Alexander-Pego-Sachs [1] for KP equation and Bridges [8, 9] for nonlinear Schrödinger equation). Theorem 1 shows that a profile of vortex soliton is close to 1D-soliton for large m and thus it becomes possible to find unstable modes by using perturbation method.

Remark 4. If $\phi_{\omega,m}$ is nonnegative, then $e^{i(m\theta + \omega t)} \phi_\omega(r)$ is a ground state in the class $X_m = \{e^{imq} v(r) \mid v \in H^1_{rad}(\mathbb{R}^2), v \in L^2_{rad}(\mathbb{R}^2)\}$ and it follows from Grillakis et al. ([12]) that the standing wave solution $e^{i(m\theta + \omega t)} \phi_\omega(r)$ is stable in the class X_m if $1 < p < 3$ ([10]). Thus the vortex soliton is stable to the symmetric perturbations in the subcritical case.

Our plan of the present paper is as follows. In Section 2, we specify a solution to (2) which is expected to become close to a solution to (1) as m tends to infinity. In Section 3, we investigate some properties of the linearized operator around an approximate solution constructed is Section 2. In Section 4, we prove Theorem 1 following the lines of [2] and using Linearized operator around an approximate solution constructed is Section 2. Finally, we introduce several notations. For Banach spaces X and Y, let $B(X,Y)$ be the space of all bounded linear operators from X to Y and let $\|A\|_{B(X,Y)}$ be the operator norm of an operator A: $X \to Y$. We abbreviate $B(X,X)$ as $B(X)$. We denote by $D(A)$ and $R(A)$ the domain and the range of the operator A, respectively. We use notations $\|f\|_{L^p_2(\mathbb{R}^2)} = (\int_0^\infty |f(r)|^2 2r dr)^{1/2}$, $\|f\|_{H^1_2(\mathbb{R}^2)} = (\int_0^\infty (|f'(r)|^2 + |f(r)|^2) 2r dr)^{1/2}$, $\Delta_r = \partial_r^2 + r^{-1} \partial_r$ and $\|f\|_{H^2_2(\mathbb{R}^2)} = \|(1 - \Delta_r) f\|_{L^2_2(\mathbb{R}^2)}$. Various constants will be simply denoted by C and C_i ($i \in \mathbb{N}$) in the course of calculations.

2. AN APPROXIMATION

In this section, we will construct an approximate solution to (2) for large m. Suppose that a positive solution to (2) is approximated by $Q_c(r - \bar{r})$ around $r = \bar{r}$ for large m. Let $\alpha_0 = \bar{r}/m$, $\varepsilon = m^{-1}$, $s = r - \bar{r}$ and
\(v(s) = \phi_\omega(r) \). Then (2) transforms into (8)
\[
\begin{cases}
\left\{ \begin{array}{l}
v_{ss} + \frac{\varepsilon}{\alpha_0 + \varepsilon s} v_s - \left(\omega + \frac{1}{(\alpha_0 + \varepsilon s)^2} \right) v + f(v) = 0 \quad \text{for } s \in (-\bar{r}, \infty), \\
\lim_{s \to -\bar{r}} \frac{v(s)}{(s+\bar{r})^m} = \lim_{s \to -\bar{r}} \frac{v_s}{m(s+\bar{r})^{m-1}}, \\
\lim_{s \to +\infty} v(s) = 0.
\end{array} \right.
\]

Substituting \(v(s) = v_0(s) + \varepsilon v_1(s) + O(\varepsilon^2) \) into (2) and formally equating the power of \(\varepsilon \), we obtain
\[
\begin{cases}
v''_0 - cv_0 + f(v_0) = 0, \\
\lim_{s \to \pm\infty} v_0(s) = 0,
\end{cases}
\]
and
\[
\begin{cases}
v''_1 - cv_1 + f'(v_0)v_1 = -\alpha_0^{-1}v'_0 - 2\alpha_0^{-3}sv_0, \\
\lim_{s \to \pm\infty} v_1(s) = 0,
\end{cases}
\]
where \(c = \omega + \alpha_0^{-2} \). Let \(v_0(s) = Q_c(s), \ L_c := \partial^2_s - c + f'(Q_c) \) and \(D(L_c) = H^2(\mathbb{R}) \). Since \(\ker(L_c) = \operatorname{span}\{Q_c'\} \), the Fredholm alternative implies that (10) has a solution \(v_1 \in L^2(\mathbb{R}) \) if and only if
\[
\int_\mathbb{R} Q'_c(s) \left(Q'_c(s) + \frac{2s}{\alpha_0^2} Q_c(s) \right) ds = \int_\mathbb{R} \left(Q'_c(s)^2 - \frac{1}{\alpha_0^2} Q_c(s)^2 \right) ds = 0.
\]

Lemma 3. Let \(c = \omega + \alpha_0^{-2} \) and let \(Q_c \) be a solution to (2). If (11) holds, then \(c = (p + 3)\omega/4 \) and \(\alpha_0 = 2/\sqrt{(p - 1)\omega} \).

Proof. By (11),
\[
\left(\frac{dQ_c}{dx} \right)^2 = cQ_c^2 \left(1 - \left(\frac{Q_c}{A} \right)^{p-1} \right),
\]
where \(A^{p-1} = (p + 1)c/2 \). We compute
\[
\int_{-\infty}^{\infty} Q'_c(x)^2 dx = 2 \int_0^A \left(\frac{dQ_c}{dx} \right)^2 \left(-\frac{dx}{dQ_c} \right) dQ_c = 2\sqrt{c} \int_0^A u \sqrt{1 - \left(\frac{u}{A} \right)^{p-1}} du = \frac{2}{p - 1} \sqrt{c} A^2 B \left(\frac{2}{p - 1}, \frac{3}{2} \right),
\]
and
\[
\int_{-\infty}^{\infty} Q_c(x)^2 dx = 2 \int_0^A Q_c^2 \left(-\frac{dx}{dQ_c} \right) dQ_c = \frac{2}{\sqrt{c}} \int_0^A \frac{u}{\sqrt{1 - \left(\frac{u}{A} \right)^{p-1}}} du = \frac{2A^2}{(p - 1)^{3/2}} B \left(\frac{2}{p - 1}, \frac{1}{2} \right).
\]
Combining the above, we have \(c = (p + 3)\omega/4 \) and \(\alpha_0 = 2/\sqrt{(p - 1)\omega} \). \(\square \)
Let $\chi(s)$ be smooth nonnegative functions on \mathbb{R} satisfying $0 \leq \chi(r) \leq 1$ and
\[
\chi(r) = \begin{cases}
1 & \text{if } |r| \leq 2, \\
0 & \text{if } |r| \geq 3,
\end{cases}
\]
and let $\chi_l(s) = \chi(s/l)$, where $l = -\frac{2}{\sqrt{c}} \max(1, \frac{1}{p-1}) \log \epsilon$. Following [2], we put
\begin{align}
(12) \quad & \Phi(\epsilon, \rho)(r) = \chi_l(r - \rho)Q_c(r - \rho), \quad c = \omega + (\epsilon \rho)^{-2}, \\
(13) \quad & \phi_{\omega,m} = \Phi(\epsilon, \rho) + w,
\end{align}
and search for a positive solution to (2) for large m. To fix the decomposition (14), we assume
\begin{equation}
(14) \quad (w, \partial_{\rho} \Phi)_{L^2(\mathbb{R}^2)} = 0.
\end{equation}
Substituting (12) into (2), we obtain
\begin{equation}
(15) \quad \mathcal{L}(\epsilon, \rho)w + R_1(\epsilon, \rho, w) + R_2(\epsilon, \rho) = 0,
\end{equation}
where $R_2 = R_{21} + R_{22} + R_{23}$ and
\[
\mathcal{L}(\epsilon, \rho) = \Delta_r - \omega - \frac{m^2}{r^2} + f'(\Phi(\epsilon, \rho)), \\
R_1 = f(\Phi(\epsilon, \rho) + w) - f(\Phi(\epsilon, \rho)) - f'(\Phi(\epsilon, \rho))w, \\
R_{21} = f(\Phi(\epsilon, \rho)) - \tau_{\rho}(\chi_l f'(Q_c)) \\
R_{22} = \left(c - \omega - \frac{m^2}{r^2} \right) \Phi(\epsilon, \rho) + \frac{1}{r} \tau_{\rho}(\chi_l Q'_c) \\
R_{23} = \tau_{\rho}(\chi''_l Q_c + 2\chi'_l Q'_c) + \frac{1}{r} \tau_{\rho}(\chi'_l Q_c).
\]
Here τ_l denotes the translation, that is, $(\tau_l f)(x) = f(x - h)$. We will search a solution (ρ, w) to (14) and (15) with $\rho \in (\alpha_0/(2\epsilon), 2\alpha_0/\epsilon)$ for large $m \in \mathbb{N}$.

3. Spectrum of the linearized operator $\mathcal{L}(\epsilon, \rho)$

In this section, we examine spectral properties of the linearized operator $\mathcal{L}(\epsilon, \rho)$. To begin with, we recall some properties of the operator $\Delta_r - \omega - \frac{m^2}{r^2}$.

Lemma 4. Let $0 < \epsilon < 1/2$ and $\mathcal{L}_0(\epsilon) : L^2_r(\mathbb{R}^2) \rightarrow L^2_r(\mathbb{R}^2)$ be a closed operator such that
\[
\mathcal{L}_0(\epsilon)u = \Delta_r u - \omega u - (\epsilon r)^{-2} u
\]
for $u \in C_0^\infty(\mathbb{R}_+)$. Then $\mathcal{L}_0(\epsilon)$ is a self-adjoint operator with
\[
D(\mathcal{L}_0(\epsilon)) = \{ u \in H^2_r(\mathbb{R}^2) \mid r^{-2} u \in L^2_r(\mathbb{R}^2) \} \quad \text{and} \quad R(\mathcal{L}_0(\epsilon)) = L^2_r(\mathbb{R}^2).
\]
Proof. Let $X = \{ H^2_r(\mathbb{R}^2) \mid r^{-2} u \in L^2_r(\mathbb{R}^2) \}$ be a Hilbert space equipped with the norm $\| u \|_X = (\| u \|_{H^2_r(\mathbb{R}^2)}^2 + \| r^{-2} u \|_{L^2_r(\mathbb{R}^2)}^2)^{1/2}$.

By Theorem 10.10 and Example 4 in [22, Appendix to X.1], the operator $\mathcal{L}_0(\epsilon)$ is essentially self-adjoint in $C_0^\infty(\mathbb{R}_+)$. Thus for any $u \in D(\mathcal{L}_0(\epsilon))$, there exist $u_n \in C_0^\infty(\mathbb{R}_+) \ (n \in \mathbb{N})$ such that $\mathcal{L}_0(\epsilon)u_n \rightarrow \mathcal{L}_0(\epsilon)u$ and $u_n \rightarrow u$ in $L^2_r(\mathbb{R}^2)$ as $n \rightarrow \infty$.
Integrating by parts, we have
\begin{equation}
\| \mathcal{L}_0(\varepsilon) w \|_{L^2_\varepsilon(\mathbb{R}^2)}^2
= \| (\omega - \Delta_r) w \|_{L^2_\varepsilon(\mathbb{R}^2)}^2 + 2 \mathbb{R} \left((\omega - \Delta_r) w, (\varepsilon r)^{-2} w \right)_{L^2_\varepsilon(\mathbb{R}^2)} + \| (\varepsilon r)^{-2} w \|_{L^2_\varepsilon(\mathbb{R}^2)}^2
\geq \| (\omega - \Delta_r) w \|_{L^2_\varepsilon(\mathbb{R}^2)}^2 + (\varepsilon^{-4} - 4\varepsilon^{-2}) \| r^{-2} w \|_{L^2_\varepsilon(\mathbb{R}^2)}^2
\end{equation}
for every $w \in C_0^\infty(\mathbb{R}_+)$.

Next we prove $D(\mathcal{L}_0(\varepsilon)) \supset X$. For every $u \in X$, there exist $u_n \in C_0^\infty(\mathbb{R}_+)$ ($n = 1, 2, \ldots$) such that $\lim_{n \to \infty} \| u_n - u \|_X = 0$. Since
\[\| \mathcal{L}_0(\varepsilon) w \|_{L^2_\varepsilon(\mathbb{R}^2)} \leq \max(1, \omega) \| w \|_{H^2_\varepsilon(\mathbb{R}^2)} + \varepsilon^{-2} \| r^{-2} w \|_{L^2_\varepsilon(\mathbb{R}^2)}, \]
we see that $\{ \mathcal{L}_0(\varepsilon) u_n \}_{n=1}^\infty$ and $\{ u_n \}_{n=1}^\infty$ are Cauchy sequences in $L^2_\varepsilon(\mathbb{R}^2)$ and that there exists a $v \in L^2_\varepsilon(\mathbb{R}^2)$ such that $\mathcal{L}_0(\varepsilon) u_n \to v$ as $n \to \infty$. Since $\mathcal{L}_0(\varepsilon)$ is closed, it follows that $v = \mathcal{L} u$ and $u \in D(\mathcal{L}_0(\varepsilon))$. Thus we prove $D(\mathcal{L}_0(\varepsilon)) = X$.

Finally, we will show that $R(\mathcal{L}_0(\varepsilon)) = L^2_\varepsilon(\mathbb{R}^2)$. The self-adjointness of $\mathcal{L}_0(\varepsilon)$ and (16) implies
\[R(\mathcal{L}_0(\varepsilon))^\perp = \ker(\mathcal{L}_0(\varepsilon)) = \{ 0 \}. \]
Hence it follows that $R(\mathcal{L}_0(\varepsilon)) = L^2_\varepsilon(\mathbb{R}^2)$ and that for every $v \in L^2_\varepsilon(\mathbb{R}^2)$, there exist $u_n \in X$ and $v_n \in L^2_\varepsilon(\mathbb{R}^2)$ ($n \in \mathbb{N}$) such that
\[\mathcal{L}_0(\varepsilon) u_n = v_n \to v \quad \text{in} \quad L^2_\varepsilon(\mathbb{R}^2) \quad \text{as} \quad n \to \infty. \]
By (16), there exists $u \in X$ such that $\lim_{n \to \infty} u_n = u$ in X. Since $\mathcal{L}_0(\varepsilon)$ is closed we have $v = \mathcal{L}_0(\varepsilon) u \in R(\mathcal{L}_0(\varepsilon))$. This completes the proof of Lemma [1].
Proof. The former part of the lemma can be obtained by a simple computation. Let \(c = 1 \). Weyl’s essential spectrum theorem tells us that the spectrum of \(L_1 \) consists of essential spectrum \((-\infty, -1]\) and discrete eigenvalues. Since \(Q_1' \) has exactly one zero and \(L_1 Q_1' = 0 \), it follows from Strum’s comparison theorem that 0 is a second eigenvalue of \(L_1 \) and that \(\ker(L_1) \) is spanned by \(Q_1' \). Since \(L_1(u(c^{1/2}x)) = c(L_1u)(c^{1/2}x) \) for every \(u \in H^2(\mathbb{R}) \), we have \(\sigma(L_c) = \{c\lambda | \lambda \in \sigma(L_1)\} \). Thus we prove Lemma 5.

Proof of Lemma 5. Let \(\chi_0(s) = 1 - \chi_1(s) \) and \(\chi_1(s) = \chi_1(s) \). By (5) and the fact that \(\text{supp} \chi_0 \subset \{r \in \mathbb{R} | |r| \geq 2l \} \),

\[
(L(\varepsilon, \rho)w, w)_{L^2_\omega(\mathbb{R}^2)} = (L(\varepsilon, \rho)\chi_1 w, \chi_1 w)_{L^2_\omega(\mathbb{R}^2)} + 2(L(\varepsilon)\chi_0 w, \chi_1 w)_{L^2_\omega(\mathbb{R}^2)} + O(\varepsilon^{-2(p-1)}\sqrt{\varepsilon})||w||_{L^2_\omega(\mathbb{R}^2)}^2.
\]

Integrating by parts and substituting \(|\chi_0'(r)| + |\chi_1'(r)| = O(l^{-1})\) into the resulting equation, we have

\[
-(L(\varepsilon)\chi_0 w, \chi_0 w)_{L^2_\omega(\mathbb{R}^2)} = \int_0^\infty \chi_0 \left(\chi_0 w \right)^2 + (\omega + (\varepsilon r)^{-2})\left(\chi_0 w\right)^2 \, dr = \int_0^\infty \chi_0 \chi_1 \left(w_r^2 + \omega w^2 + (\varepsilon r)^{-2}w^2 \right) \, dr + O(l^{-1}\|w\|^2_{H^1(\mathbb{R}^2)}).
\]

and

\[
-(L(\varepsilon)\chi_0 w, \chi_1 w)_{L^2_\omega(\mathbb{R}^2)} = \int_0^\infty \chi_0 \chi_1 \left(w_r^2 + \omega w^2 + (\varepsilon r)^{-2}w^2 \right) \, dr + O(l^{-1}\|w\|^2_{H^1(\mathbb{R}^2)}).
\]

Let \(U : L^2_\omega(\mathbb{R}^2) \to L^2(\mathbb{R}_+) \) be the unitary operator defined by \(U \phi(r) = r^\frac{1}{2} \phi(r) \). Then

\[
\tau_{-\rho} U L(\varepsilon) U^{-1} = \partial_r^2 - \omega - \frac{1 - \frac{1}{4} \varepsilon^2}{(\alpha + \varepsilon r)^2} + f'(\chi_1 Q_c)
\]

\[
= L_c + \left(\frac{1}{\alpha^2} - \frac{1 - \frac{1}{4} \varepsilon^2}{(\alpha + \varepsilon r)^2} \right) + f'(\chi_1 Q_c) - f'(Q_c),
\]

where \(\alpha = \rho/m \) and \(c = \omega + \alpha^{-2} \). Let \(\check{\chi}_1 \) and \(\check{\chi}_2 \) be smooth nonnegative functions on \(\mathbb{R} \) satisfying

\[
\sup_{r \in \mathbb{R}} |\chi_i'(r)| = O(l^{-1}) \quad \text{for } i = 0, 1,
\]

\[
\check{\chi}_0(r) = \begin{cases} 0 & \text{if } |r| \leq l, \\ 1 & \text{if } |r| \geq 2l \end{cases}, \quad \check{\chi}_1(r) = \begin{cases} 1 & \text{if } |r| \leq 3l, \\ 0 & \text{if } |r| \geq 4l \end{cases}.
\]

Put \(\check{w}(r) = (r + \rho)^{1/2} \chi_1(r)(w(r + \rho)). \) Using \(w \perp \partial_r \Phi(\varepsilon, \rho) \) and

\[
\partial_r \Phi(\varepsilon, \rho) = -\tau_\rho (\chi_1 Q_c)' - \frac{2\varepsilon}{\alpha^3} \tau_\rho (\chi_1 \partial_c Q_c),
\]

(20)
we have
\[0 = (w, \partial_p \Phi(\epsilon, \rho))_{L^2(\mathbb{R}^2)} \]
\[= -\int_{-\rho}^{\infty} (\chi_1 Q_2)'(r)w(r + \rho)(r + \rho)dr + O(\epsilon^{1/2} \|w\|_{L^2(\mathbb{R}^2)}) \]
\[= -\int_{\mathbb{R}} (\rho + r)^{1/2} \chi_1 \tilde{w} Q'_1 dr + O \left((\rho^{1/2} e^{-2\sqrt{\epsilon}} + \epsilon^{1/2}) \|w\|_{L^2(\mathbb{R}^2)} \right) \]
\[= -\rho^{1/2} \int_{\mathbb{R}} \tilde{w} Q'_1 dr + O(\epsilon^{1/2} \|w\|_{L^2(\mathbb{R}^2)}). \]
Hence it follows that
\[(\tilde{w}, Q'_1)_{L^2(\mathbb{R})} = O(\epsilon \log \epsilon \|w\|_{L^2(\mathbb{R}^2)}). \]
Similarly, we have
\[(\tilde{w}, Q_{2t}^{\rho,t})_{L^2(\mathbb{R}^2)} = O(\epsilon \log \epsilon \|w\|_{L^2(\mathbb{R}^2)}). \]
Combining Lemma 5 with (19), (21) and (22), we see that there exist positive constants \(C_1 \) and \(C_2 \) such that
\[-(\mathcal{L}(\epsilon, \rho)w, w)_{L^2(\mathbb{R}^2)} \geq C_1 \|\tilde{w}\|_{H^1(\mathbb{R})}^2 \geq C_2 \|\chi_1 w\|_{H^1(\mathbb{R}^2)}^2. \]
Thus by (17), (18) and (23), there exist positive numbers \(c_1 \) and \(\varepsilon_* \) such that
\[-(\mathcal{L}(\epsilon, \rho)w, w)_{L^2(\mathbb{R}^2)} \geq c_1 \|w\|_{H^1(\mathbb{R}^2)}^2 \]
for every \(\varepsilon \in (0, \varepsilon_*) \), \(\rho \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon) \).

Let \(X_1 = Q(\epsilon, \rho)X, Y_1 = Q(\epsilon, \rho)L^2(\mathbb{R}^2) \) and \(\mathcal{A}(\epsilon, \rho) = Q(\epsilon, \rho)\mathcal{L}(\epsilon, \rho)Q(\epsilon, \rho) \).
Lemma 6 yields that \(\mathcal{A}(\epsilon, \rho) : X_1 \to Y_1 \) is isomorphic.

Corollary 7. There exist positive numbers \(\varepsilon_* \) and \(\nu \) such that
\[\|\mathcal{A}(\epsilon, \rho)^{-1}u\|_X \leq \nu \|u\|_{L^2(\mathbb{R}^2)} \]
for every \(u \in Y_1, \varepsilon \in (0, \varepsilon_*) \) and \(\rho \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon) \).

Proof. Let \(Q_1 \) and \(Q_2 \) be orthogonal projections such that
\[Q_1u = \frac{(u, Q(\epsilon, \rho)\Phi(\epsilon, \rho)^{p+1/2})_{L^2(\mathbb{R}^2)}}{\|Q(\epsilon, \rho)\Phi(\epsilon, \rho)^{p+1/2}\|_{L^2(\mathbb{R}^2)}} Q(\epsilon, \rho)^{p+1/2}, \]
\[Q_2 = Q(\epsilon, \rho) - Q_1. \]
Then \(\mathcal{A}(\epsilon, \rho) \) can be written as
\[\mathcal{A}(\epsilon, \rho) = \begin{pmatrix} Q_1 \mathcal{L}(\epsilon, \rho)Q_1 & Q_1 \mathcal{L}(\epsilon, \rho)Q_2 \\ Q_2 \mathcal{L}(\epsilon, \rho)Q_1 & Q_2 \mathcal{L}(\epsilon, \rho)Q_2 \end{pmatrix}. \]
In view of Lemma 6 we see that there exists a \(c_2 > 0 \) such that
\[(\mathcal{L}(\epsilon, \rho)Q(\epsilon, \rho)\Phi(\epsilon, \rho)^{p+1/2}, Q(\epsilon, \rho)\Phi(\epsilon, \rho)^{p+1/2})_{L^2(\mathbb{R}^2)} \geq c_2 \|Q(\epsilon, \rho)\Phi(\epsilon, \rho)^{p+1/2}\|_{L^2(\mathbb{R}^2)}^2. \]
Furthermore, we see that
\[\lim_{\epsilon \downarrow 0} \left(\|Q_1 \mathcal{L}(\epsilon, \rho)Q_2\|_{B(L^2(\mathbb{R}^2))} + \|Q_2 \mathcal{L}(\epsilon, \rho)Q_1\|_{B(L^2(\mathbb{R}^2))} \right) = 0. \]
Combining the above with Lemma 5, we obtain

\[(25) \quad \sup_{\varepsilon \in (0, \varepsilon_*)} \sup_{\rho \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon)} \|A(\varepsilon, \rho)^{-1}\|_{B(L^2(\mathbb{R}^2))} < \infty.\]

Let

\[B(\varepsilon, \rho) = \mathcal{P}(\varepsilon, \rho) \mathcal{L}(\varepsilon, \rho) + \mathcal{L}(\varepsilon, \rho) \mathcal{P}(\varepsilon, \rho) - \mathcal{P}(\varepsilon, \rho) \mathcal{L}(\varepsilon, \rho) \mathcal{P}(\varepsilon, \rho) - f'(\Phi(\varepsilon, \rho)).\]

Then

\[(26) \quad \mathcal{L}_0(\varepsilon) = A(\varepsilon, \rho) + B(\varepsilon, \rho).\]

Using (25), (26) and the fact that

\[\sup_{\varepsilon \in (0, \varepsilon_*)} \sup_{\rho \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon)} \|B(\varepsilon, \rho)\|_{B(L^2(\mathbb{R}^2))} < \infty,\]

we have

\[(27) \quad \|\mathcal{L}_0(\varepsilon) A(\varepsilon, \rho)^{-1} u\|_{L^2(\mathbb{R}^2)} \leq C \|u\|_{L^2(\mathbb{R}^2)}\]

for every \(u \in Y_1, \varepsilon \in (0, \varepsilon_*)\) and \(\rho \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon)\). Combining (16) and (27), we obtain (24).

We will use the lemma below to estimate \(L^\infty\)-norm of \(w\) in the following section.

Corollary 8. Let \(p > 1\). Then there exist positive numbers \(\varepsilon_*\) and \(C\) such that

\[(28) \quad \|A(\varepsilon, \rho)^{-1} u\|_{L^\infty(\mathbb{R}^2)} \leq C \|u\|_{L^\infty(\mathbb{R}^2)}\]

for every \(u \in L^\infty_1(\mathbb{R}^2) \cap Y_1, \varepsilon \in (0, \varepsilon_*)\) with \(\varepsilon^{-1} \in \mathbb{N}\) and \(\rho \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon)\).

Proof. Let \(m = \varepsilon^{-1} \in \mathbb{N}\) and

\[P^\perp u = u - \frac{Q_{c}'}{L^2(\mathbb{R})} (u, Q_{c}')_{L^2(\mathbb{R})} Q_{c}'.\]

\[K(\varepsilon, \rho) = Q(\varepsilon, \rho) \left\{ (\tau_{\rho} \tilde{\chi}_0) \mathcal{L}_0(\varepsilon)^{-1}(\tau_{\rho} \chi_0) + U^{-1} \tau_{\rho} \tilde{\chi}_1 P^\perp L^\perp_{\varepsilon} \chi_{1} \tau_{-\rho} U \right\} Q(\varepsilon, \rho).\]

Noting that \(e^{im\theta} \mathcal{L}_0(\varepsilon) u(r) = (\Delta - \omega)(e^{im\theta} u(r))\), we have

\[\sup_{m \in \mathbb{N}} \|\mathcal{L}_0(\varepsilon)^{-1}\|_{B(L^\infty(\mathbb{R}^2))} < \infty.\]

Furthermore, \(L_{\varepsilon} : P^\perp L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R})\) has a bounded inverse. Hence it follows that

\[(29) \quad \sup_{m \geq \varepsilon^{-1}} \sup_{\rho \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon)} \|K(\varepsilon, \rho)\|_{B(L^\infty(\mathbb{R}^2))} < \infty.\]

We compute

\[A(\varepsilon, \rho) K(\varepsilon, \rho) = A(\varepsilon, \rho)(\tau_{\rho} \tilde{\chi}_0) \mathcal{L}_0(\varepsilon)^{-1}(\tau_{\rho} \chi_0) + A(\varepsilon, \rho) U^{-1} \tau_{\rho} \tilde{\chi}_1 P^\perp L_{\varepsilon}^{-1} P^\perp \chi_{1} \tau_{-\rho} U.\]

\[= I + II.\]
Since $A(\varepsilon, \rho) = L_0(\varepsilon) - B(\varepsilon, \rho)$ and $\|B(\varepsilon, \rho)\tau_\rho \tilde{\chi}_0\|_{B(L^\infty)} = O(e^{-\bar{p} \sqrt{\varepsilon}})$, where $\bar{p} = \min(1, p - 1)$, we have

$$1 = \mathcal{Q}(\varepsilon, \rho) L_0(\varepsilon)(\tau_\rho \tilde{\chi}_0) L_0(\varepsilon)^{-1}(\tau_\rho \chi_0) - B(\varepsilon, \rho)(\tau_\rho \tilde{\chi}_0) L_0(\varepsilon)^{-1}(\tau_\rho \chi_0)$$

$$= \mathcal{Q}(\varepsilon, \rho) \left\{ \tau_\rho (\chi_0 \varepsilon) + [\Delta, \tau_\rho \tilde{\chi}_0] L_0(\varepsilon)^{-1} \tau_\rho \chi_0 - B(\varepsilon, \rho)(\tau_\rho \tilde{\chi}_0) L_0(\varepsilon)^{-1}(\tau_\rho \chi_0) \right\}$$

$$= \tau_\rho \chi_0 + O(l^{-1}) \text{ in } B(\mathcal{Q}(\varepsilon, \rho) L^\infty_r(\mathbb{R}^2)).$$

Let $B_1 = \mathcal{P}(\varepsilon, \rho) \mathcal{L}(\varepsilon, \rho) \mathcal{P}(\varepsilon, \rho) - \mathcal{L}(\varepsilon, \rho) \mathcal{P}(\varepsilon, \rho)$. Then

$$A(\varepsilon, \rho) = \mathcal{Q}(\varepsilon, \rho) \mathcal{L}(\varepsilon, \rho) + B_1(\varepsilon, \rho).$$

In view of the definition of $\mathcal{P}(\varepsilon, \rho)$, [118] and the fact that $L_c Q'_c = 0$, we have

$$\|B_1(\varepsilon, \rho)\|_{B(L^\infty_r(\mathbb{R}^2))} = O(\varepsilon l)$$

for $\varepsilon \in (0, \varepsilon_*)$ and $\rho \in (\alpha_0 / (2 \varepsilon), 2 \alpha_0 / \varepsilon)$. Furthermore [118] implies

$$\left\| \mathcal{Q}(\varepsilon, \rho) - P_1 \right\|_{B(L^\infty_r(\mathbb{R}^2))} = O(\varepsilon).$$

Let

$$\mathcal{R} = \alpha^{-2} - (\alpha + \varepsilon r)^{-2} + f'(\chi_1 Q_c) - f'(Q_c).$$

Then we have $\mathcal{L}(\varepsilon, \rho) = U^{-1}(\tau_\rho L_c) U + \tau_\rho \mathcal{R}$ and

$$\|((\tau_\rho \mathcal{R}) \tilde{\chi}_1)(1 - \Delta_r)^{-1}\|_{B(L^\infty_r(\mathbb{R}^2))} = O(\varepsilon l + e^{-2(p-1)\sqrt{\varepsilon}}).$$

Combining the above, we have

$$\mathcal{I} = \mathcal{Q}(\varepsilon, \rho) U^{-1} \tau_\rho (P_1 \tilde{\chi}_1 L_c) \tilde{\chi}_1 P_1 L_c^{-1} P_1 \chi_1 \tau_\rho \mathcal{R} U + O(\varepsilon l)$$

$$= \mathcal{Q}(\varepsilon, \rho) \tau_\rho (\tilde{\chi}_1 \chi_1) + O(l^{-1})$$

$$= \tau_\rho \chi_0 + O(l^{-1}) \text{ in } B(\mathcal{Q}(\varepsilon, \rho) L^\infty_r(\mathbb{R}^2)).$$

From [118][119], we deduce [118].

4. The method of Liapunov-Schmidt

In this section, we use the method of Liapunov-Schmidt to obtain a solution to [118][119]. Let us translate [118][119] into a system

$$A(\varepsilon, \rho)w + Q(\varepsilon, \rho) R_1(w, \varepsilon, \rho) + Q(\varepsilon, \rho) R_2(\varepsilon, \rho) = 0,$$

$$\mathcal{P}(\varepsilon, \rho)(\mathcal{L}(\varepsilon, \rho)w + R_1(w, \varepsilon, \rho) + R_2(\varepsilon, \rho)) = 0.$$

Lemma 9. Let $p > 1$. Then there exist an $\varepsilon_0 > 0$ and a $C > 0$ such that if $\varepsilon \in (0, \varepsilon_0)$ and $\rho \in (\alpha_0 / (2 \varepsilon), 2 \alpha_0 / \varepsilon)$, Eq. [118] has a unique solution $w(\varepsilon, \rho)$ that is continuous in ε and ρ and satisfies

$$\|w(\varepsilon, \rho)\|_X \leq C \varepsilon^{\frac{1}{2}} \text{ as } \varepsilon \downarrow 0.$$

Proof. Let $T: X_1 \times (0, \varepsilon_0] \times (\alpha_0 / (2 \varepsilon), 2 \alpha_0 / \varepsilon) \to X_1$ be a continuous mapping defined by

$$T(w, \varepsilon, \rho) = -A(\varepsilon, \rho)^{-1} Q(\varepsilon, \rho) \left\{ R_1(w, \varepsilon, \rho) + R_2(\varepsilon, \rho) \right\},$$

and let $\tilde{X} = \{ w \in X_1 \| \|w\|_X \leq r_0 \}$, where r_0 is a positive number to be fixed later.
To begin with, we will show that T maps \tilde{X} into itself. We compute

$$
\|R_1\|_{L^2_x(\mathbb{R}^2)} = \left\| \int_0^1 \left\{ f'(\Phi(\varepsilon, \rho) + \theta w) - f'((\Phi(\varepsilon, \rho)) \right\} d\theta \right\|_{L^2_x(\mathbb{R}^2)}
$$

$$
\leq \delta(r_0) \|w\|_{L^2_x(\mathbb{R}^2)},
$$

where $\delta(r_0)$ is a positive constant with $\lim_{r_0 \downarrow 0} \delta(r_0) = 0$. Eq. (5) and the definition of χ_1 imply

$$
\|R_{21}\|_{L^2_x(\mathbb{R}^2)} = \left\| \tau_{\rho} \left\{ (\chi_1^{-1} - \chi_1) Q_c^{p-1} \right\} \right\|_{L^2_x(\mathbb{R}^2)}
$$

$$
\leq C \rho^{1/2} e^{-2(p-1)\sqrt{\varepsilon}},
$$

and

$$
\|R_{23}\|_{L^2_x(\mathbb{R}^2)} \leq C \rho^{1/2} e^{-2\sqrt{\varepsilon}}.
$$

Since $\rho^{-1} = O(\varepsilon)$ and $l = -\frac{2}{\sqrt{\varepsilon}} \max(1, \frac{1}{p-1}) \log \varepsilon$,

$$
\|R_{21}\|_{L^2_x(\mathbb{R}^2)} + \|R_{23}\|_{L^2_x(\mathbb{R}^2)} \leq C_1 \varepsilon^{\frac{7}{2}}.
$$

Using (5) and $\alpha^{-2} - (\alpha + \varepsilon s)^{-2} = \frac{2}{\alpha^2} \varepsilon + O(\varepsilon^2 s^2)$, we have

$$
\| \left(c - \omega - \frac{m^2}{r^2} \right) \tau_{\rho}(\chi_1 Q_c') \|_{L^2_x(\mathbb{R}^2)}^2
$$

$$
= \varepsilon^{-1} \int_{-3\varepsilon}^{\infty} (\alpha + \varepsilon s) \left\{ \left(\frac{1}{\alpha^2} - \frac{1}{(\alpha + \varepsilon s)^2} \right) \chi_1(s) Q_c(s) \right\}^2 ds
$$

$$
\leq C \varepsilon
$$

for every $\alpha = \varepsilon \rho \in (\alpha_0 / 2, 2\alpha_0)$. Similarly, we have

$$
\left\| \frac{1}{r} \chi_1 Q_c' \right\|_{L^2_x(\mathbb{R}^2)} \leq C \varepsilon^{1/2}.
$$

Thus we obtain

$$
\|R_{22}\|_{L^2_x(\mathbb{R}^2)} \leq C_2 \varepsilon^{1/2}.
$$

Combining (36) and (38), with Corollary 7, we have

$$
\|T(w, \varepsilon, \rho)\|_X \leq \nu(\delta(r_0)) \|w\|_X + C_1 \varepsilon^{7/2} + C_2 \varepsilon^{1/2}).
$$

Put $r_0 = 2\nu C_2 \varepsilon^{1/2}$. Then $T(\cdot, \varepsilon, \rho)$ maps \tilde{X} into itself if ε_0 is sufficiently small.

Next, we will show that $T(\cdot, \varepsilon, \rho)$ is a contraction mapping. For $w_1, w_2 \in \tilde{X}$,

$$
\|T(w_1, \varepsilon, \rho) - T(w_2, \varepsilon, \rho)\|_X
$$

$$
\leq \nu \|R_1(w_1, \varepsilon, \rho) - R_1(w_2, \varepsilon, \rho)\|_{L^2_x(\mathbb{R}^2)}
$$

$$
= \nu \left\| \int_0^1 \left\{ f'(\Phi + \theta w_1 + (1 - \theta)w_2) - f'(\Phi) \right\} d\theta (w_1 - w_2) \right\|_{L^2_x(\mathbb{R}^2)}
$$

$$
\leq \Lambda \|w_2 - w_1\|_{L^2_x(\mathbb{R}^2)}
$$

where $\Lambda = \nu r_0^2 \sup_{\eta \in \tilde{X}} \|f'(\Phi + \eta)\|_{C^0}$ and $\tilde{p} = \min(1, p-1)$. Taking ε_0 smaller if necessary, we see that $T(\cdot, \varepsilon, \rho) : \tilde{X} \to \tilde{X}$ is a contraction mapping. Thus
we prove that there exists a solution \(w(\varepsilon, \rho) \) to (33) with \(\|w\|_\infty \leq 2\nu C_2 \varepsilon^{1/2} \) that is continuous in \(\varepsilon \in (0, \varepsilon_0) \) and \(\rho \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon) \). \(\square \)

Corollary 10. Let \(p > 1 \). Then there exist an \(\varepsilon_0 > 0 \) and a \(C > 0 \) such that if \(\varepsilon \in (0, \varepsilon_0) \), \(\varepsilon^{-1} \in \mathbb{N} \) and \(\rho \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon) \), a solution \(w(\varepsilon, \rho) \) to (33) satisfies

\[
\|w(\varepsilon, \rho)\|_{L^\infty} \leq C\varepsilon. \tag{40}
\]

Proof. Analogously to (36)–(38), we have

\[
\|R_1\|_{L^\infty} \leq \delta(r_0)\|w\|_{L^\infty}, \tag{41}
\]

\[
\|R_2\|_{L^2(\mathbb{R}^2)} \leq \|R_{21}\|_{L^\infty} + \|R_{22}\|_{L^\infty} + \|R_{23}\|_{L^\infty} = O(\varepsilon), \tag{42}
\]

where \(\delta(r_0) \) is a positive number with \(\lim_{r_0\to0} \delta(r_0) = 0 \). Thus by Corollary 10,

\[
\|w(\varepsilon, \rho)\|_{L^\infty} \leq C (\|R_1\|_{L^\infty} + \|R_2\|_{L^\infty}) = C\delta(r_0)\|w\|_{L^\infty} + O(\varepsilon). \tag{43}
\]

Thus we have (40). \(\square \)

Let

\[
F(\varepsilon, \rho) = (\mathcal{L}(\varepsilon, \rho)w(\varepsilon, \rho) + R_1(\varepsilon, \rho), \varepsilon, \rho) + R_2(\varepsilon, \rho), \partial_\rho \Phi(\varepsilon, \rho))_{L^2(\mathbb{R}^2)}. \tag{44}
\]

By Lemma 11, the system of (33) and (34) is reduced to an equation

\[
F(\varepsilon, \rho) = 0. \tag{45}
\]

Lemma 11. Let \(p > 1 \) and let \(\varepsilon_0 > 0 \) be a sufficiently small number. If \(\varepsilon \in (0, \varepsilon_0) \), there exists a \(\rho = \rho(\varepsilon) \in (\alpha_0/(2\varepsilon), 2\alpha_0/\varepsilon) \) satisfying (11). \(\square \)

Proof. Let \(R_c = \frac{\varepsilon}{\alpha + \varepsilon} \partial_\nu + \left(\frac{1}{\alpha} - \frac{1}{(\alpha + \varepsilon)^2}\right) + f'(\chi_1 Q_c) - f'(Q_c) \). Using (3), the definition of \(\chi_1 \) and the fact that \(L_c Q_c = 0 \) and \(\rho = O(\varepsilon^{-1}) \), we compute

\[
\|\mathcal{L}(\varepsilon, \rho)\tau_\rho(\chi_1 Q_c')\|_{L^2(\mathbb{R}^2)} \leq \|\tau_\rho \chi_1 L_c Q_c'\|_{L^2(\mathbb{R}^2)} + \||\partial_\rho^2, \tau_\rho \chi_1|\tau_\rho Q_c'\|_{L^2(\mathbb{R}^2)} + \|\tau_\rho(\mathcal{R}_c(\chi_1 Q_c'))\|_{L^2(\mathbb{R}^2)} = O(\varepsilon^{1/2}). \tag{46}
\]

Similarly, we have

\[
\|\mathcal{L}(\varepsilon, \rho)(\partial_\rho \Phi(\varepsilon, \rho) + \tau_\rho(\chi_1 Q_c'))\|_{L^2(\mathbb{R}^2)} = O(\varepsilon^{1/2}). \tag{47}
\]

By Lemma 11, (46), and (47),

\[
\|\mathcal{L}(\varepsilon, \rho)w, \partial_\rho \Phi(\varepsilon, \rho))_{L^2(\mathbb{R}^2)}\| \leq C\varepsilon^{1/2}\|w\|_{L^2(\mathbb{R}^2)} = O(\varepsilon). \tag{48}
\]

Lemma 9 and Corollary 10 yield

\[
\|R_1\|_{L^2(\mathbb{R}^2)} \leq C\|w\|_{L^\infty} \|w\|_{L^2(\mathbb{R}^2)} = O(\varepsilon^{p+\frac{1}{2}}). \tag{49}
\]
where $\tilde{p} = \min(p - 1, 1)$. Combining (37) and (45) with
\[
\| \partial_\rho \Phi(\varepsilon, \rho) \|_{L^2_\rho(\mathbb{R}^2)} = O(\varepsilon^{-1/2}),
\]
we have
\[
(R_1 + R_{21} + R_{23}, \partial_\rho \Phi)_{L^2_\rho(\mathbb{R}^2)} = O(\varepsilon). \tag{46}
\]
In view of (38) and the fact that
\[
\| \partial_\rho \Phi(\varepsilon, \rho) + \tau_\rho(\chi_1 Q'_c) \|_{L^2_\rho(\mathbb{R}^2)} = O(\varepsilon^{1/2}),
\]
(47) \((R_{22}, \partial_\rho \Phi(\varepsilon, \rho) + \tau_\rho(\chi_1 Q'_c))_{L^2_\rho(\mathbb{R}^2)} = O(\varepsilon)\).

By (44), (46) and (47),
\[
F(\varepsilon, \rho) = -(R_{22}, \tau_\rho(\chi_1 Q'_c))_{L^2_\rho(\mathbb{R}^2)} + O(\varepsilon). \tag{47}
\]
Substituting
\[
1 - \frac{1}{(\alpha + \varepsilon s)^2} = \frac{2\varepsilon}{\alpha^3} s + O(\varepsilon^2 s^2) \quad \text{as } \varepsilon \downarrow 0,
\]
and integrating by parts, we have
\[
(R_{22}, \tau_\rho(\chi_1 Q'_c))_{L^2_\rho(\mathbb{R}^2)} = \frac{1}{\varepsilon} \int_{-\rho}^{\infty} \left(\frac{1}{\alpha^2} - \frac{1}{(\alpha + \varepsilon s)^2} \right) \chi_1(s)^2 Q_c(s) Q'_c(s) (\alpha + \varepsilon s) ds
\]
\[
+ \int_{-\rho}^{\infty} \chi_1(s)^2 Q'_c(s)^2 ds
\]
\[
= \int_{-\rho}^{\infty} \chi_1(s)^2 \left(\frac{2s}{\alpha^2} Q_c Q'_c + Q'_c^2 \right) ds + O(\varepsilon)
\]
\[
= \int_{\mathbb{R}} \left\{ Q'_c^2 - \frac{1}{\alpha^2} Q_c^2 \right\} ds + O(\varepsilon).
\]
Combining the above, we see that
\[
F(\varepsilon, \rho) = \int_{\mathbb{R}} \left(Q'_c(s)^2 - (\varepsilon\rho)^{-2} Q_c(s)^2 \right) ds + O(\varepsilon),
\]
where $c = \omega + (\varepsilon \rho)^{-2}$. Hence it follows from Lemma 9 and the intermediate value theorem that (41) has a solution $\rho = \rho(\varepsilon)$ satisfying
\[
\rho = (\alpha_0 + o(1))\varepsilon^{-1} \quad \text{as } \varepsilon \downarrow 0.
\]
Thus we complete the proof of Lemma 11. \hfill \Box

Now, we are in position to prove Theorem 1.

Proof of Theorem 1. Lemmas 9 and 11 and Corollary 10 imply that there exists a solution ϕ_{ω} to (2) satisfying (6) and (7). Suppose that ϕ_{ω} is a sign-changing solution. Since $\phi''_{\omega} \geq 0$ and $\phi'_{\omega} = 0$ at the minimum point, it follows from (2) that
\[
\min_{r > 0} \phi_{\omega}(r) < -\omega^{1/(p-1)}.
\]
But this contracts to (17) if $\varepsilon > 0$ is sufficiently small. Thus the solution ϕ_{ω} to (2) is nonnegative. Since a nonnegative solution is unique (see [18]), we obtain Theorem 1. \hfill \Box
5. Instability of vortex solitons

In this section, we will prove Theorem 2. Let \(u(x, t) = e^{iωt}(e^{imθ}φ_ω(r) + e^{λt}v) \) and linearize (41) around \(v = 0 \) and \(t = 0 \). Then

\[
iλv + (Δ - ω + β_1(r))v + e^{2imθ}β_2(r)v = 0,
\]

where

\[
β_1(r) = \frac{p + 1}{2}φ_ω(r)p^{-1}, \quad β_2(r) = \frac{p - 1}{2}φ_ω(r)p^{-1}.
\]

Put \(v = e^{i(j+mθ}y_+, \bar{v} = e^{i(j-mθ}y_- \) and complexify (48) into a system

\[
\begin{cases}
\left(Δ_r - ω - \frac{(m+j)^2}{r^2} + iλ + β_1(r)\right)y_+ + β_2(r)y_- = 0, \\
\left(Δ_r - ω - \frac{(m-j)^2}{r^2} - iλ + β_1(r)\right)y_- + β_2(r)y_+ = 0.
\end{cases}
\]

If \(λ \) is an eigenvalue of the linearized operator, there exist a \(j ∈ \mathbb{Z} \) and a solution \((y_+, y_-)\) to (49) that satisfy \((e^{i(j+mθ}y_+, e^{i(j-mθ}y_-) \in H^1(\mathbb{R}^2, \mathbb{C}^2)\). We will show the existence of unstable eigenvalues for \(j \) with \(1 ≪ j ≪ m \).

Let \(w_1 = y_+ - y_- \), \(w_2 = y_+ + y_- \), \(ε = m^{-1} \) and \(δ = jε \). Let \(s = r - α_0m \). Then (49) can be rewritten as

\[
H(ε, δ)w = λw,
\]

where \(w = (w_1, w_2) \),

\[
H(ε, δ) = i\begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix},
\]

and

\[
h_{11} = h_{22} = \frac{-2mj}{r^2},
\]

\[
h_{12} = Δ_r - ω - \frac{m^2 + j^2}{r^2} + φ_ω^{p^{-1}}
\]

\[
h_{21} = Δ_r - ω - \frac{m^2 + j^2}{r^2} + pφ_ω^{p^{-1}}.
\]

We remark that

\[
τ_- h_{11} = τ_- h_{22} = \frac{2δ}{(α_0 + εr)^2}
\]

\[
τ_- h_{12} = ετ_0^2 + \frac{ε}{α_0 + εr}τ_r - ω - \frac{1 + δ^2}{(α_0 + εr)^2} + φ_ω^{p^{-1}}
\]

\[
τ_- h_{21} = ετ_0^2 + \frac{ε}{α_0 + εr}τ_r - ω - \frac{1 + δ^2}{(α_0 + εr)^2} + pφ_ω^{p^{-1}}.
\]

Before we investigate the spectrum of \(H(ε, δ) \), let us consider the spectrum of a linear operator

\[
H(δ) := i\begin{pmatrix} -2α_0^{-2}δ & L_+ - α_0^{-2}δ^3 \\ L_- - α_0^{-2}δ^3 & -2α_0^{-2}δ \end{pmatrix}
\]

where \(L_+ = τ_0^2 - c + pφ_ω^{p^{-1}} \), \(L_- = τ_0^2 - c + Q_c^{p^{-1}} \), \(D(L_+) = D(L_-) = H^2(\mathbb{R}) \) and \(c = ω + α_0^{-2} \).
To begin with, we recall some spectral properties of $H(0)$. Let

$$\Phi_1 = \begin{pmatrix} 0 \\ Q_c \end{pmatrix}, \quad \Phi_2 = -i \begin{pmatrix} \partial_t Q_c \\ 0 \end{pmatrix}, \quad \Phi_3 = \begin{pmatrix} Q_c' \\ 0 \end{pmatrix}, \quad \Phi_4 = -\frac{i}{2} \begin{pmatrix} 0 \\ sQ_c \end{pmatrix},$$

and

$$\Phi_1^* = \theta_1 \sigma_2 \Phi_2, \quad \Phi_2^* = \theta_1 \sigma_2 \Phi_1, \quad \Phi_3^* = \theta_2 \sigma_2 \Phi_4, \quad \Phi_4^* = \theta_2 \sigma_2 \Phi_3,$$

where

$$\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \theta_1 = 2 \left(\frac{d}{dc} \|Q_c\|^2_{L^2(\mathbb{R})} \right)^{-1}, \quad \theta_2 = 4 \|Q_c\|_{L^2(\mathbb{R})}^{-2}.$$

Then we have

$$H(0)\Phi_1 = 0, \quad H(0)\Phi_2 = \Phi_1, \quad H(0)\Phi_3 = 0, \quad H(0)\Phi_4 = \Phi_3,$$

$$H(0)^*\Phi_1^* = \Phi_1^*, \quad H(0)^*\Phi_2^* = 0, \quad H(0)^*\Phi_3^* = \Phi_3^*, \quad H(0)^*\Phi_4^* = 0,$$

and $\langle \Phi_i, \Phi_j^* \rangle = \delta_{ij}$ for $i, j = 1, 2, 3, 4$. Here we denote by $\langle \cdot, \cdot \rangle$ the inner product of $L^2(\mathbb{R}, \mathbb{C}^2)$.

Proposition 12 (see [27]). Let $p > 1$ and $p \neq 5$. Then $\lambda = 0$ is a discrete eigenvalue of $H(0)$ with algebraic multiplicity 4.

Using Proposition 12, we investigate the spectrum of $H(\delta)$.

Lemma 13. Let $1 < p < 5$. Then there exist a positive number ρ_0 and a neighborhood $U \subset \mathbb{C}$ of 0 such that for every $\delta \in (0, \rho_0)$, $\sigma(H(\delta)) \cap U$ consists of algebraically simple eigenvalues $\lambda_i(\delta)$ ($i = 1, 2, 3, 4$) satisfying

$$|\Re \lambda_i(\delta) - \alpha_0^{-1} \gamma \delta| \leq \alpha_0^{-1} \gamma \delta / 4, \quad \lim_{\delta \to 0} \inf_{\delta, \delta} \left(\min_{1 \leq i, j \leq 4} \frac{1}{|i - j|} \left| \lambda_i(\delta) - \lambda_j(\delta) \right| \right) > 0,$$

where

$$\gamma = \left(2 \frac{\|Q_c\|_{L^2(\mathbb{R})}^2}{\frac{d}{dc}\|Q_c\|^2_{L^2(\mathbb{R})}} \right)^{1/2}.$$

Proof. Let $P_H(\delta)$ be a projection defined by

$$P_H(\delta) = \frac{1}{2\pi i} \int_{|\lambda| = \rho_0} (\lambda - H(\delta))^{-1} d\lambda,$$

and let $Q_H(\delta) = I - P_H(\delta)$. In view of Proposition 12, there exist positive numbers ρ_0 and δ_0 such that $X_0 := R(P_H(\delta))$ is 4-dimensional for every $\delta \in (0, \delta_0)$.

Let X_0 be a linear subspace whose basis is $\langle \Phi_1, \Phi_2, \Phi_3, \Phi_4 \rangle$. We decompose $H^2(\mathbb{R}; \mathbb{C}^2)$ and $L^2(\mathbb{R}; \mathbb{C}^2)$ as

$$H^2(\mathbb{R}; \mathbb{C}^2) = X_0 \oplus Q_H(0)H^2(\mathbb{R}; \mathbb{C}^2), \quad L^2(\mathbb{R}; \mathbb{C}^2) = X_0 \oplus Q_H(0)L^2(\mathbb{R}; \mathbb{C}^2).$$

Then

$$H(\delta) = \begin{pmatrix} H_{11}(\delta) & H_{12}(\delta) \\ H_{21}(\delta) & H_{22}(\delta) \end{pmatrix},$$

where

$$H_{11}(\delta) = P_H(0)H(\delta)P_H(0), \quad H_{12}(\delta) = P_H(0)H(\delta)Q_H(0)$$

$$H_{21}(\delta) = Q_H(0)H(\delta)P_H(0), \quad H_{22}(\delta) = Q_H(0)H(\delta)Q_H(0).$$
By a simple computation, we have

\[H_{11}(\delta) = -2i\alpha_0^{-2}\delta I + \begin{pmatrix} 0 & 1 + b_2\delta^2 & 0 & 0 \\ b_1\delta^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 + b_4\delta^2 \\ 0 & 0 & b_3\delta^2 & 0 \end{pmatrix}, \]

\[H_{12}(\delta) = -i\alpha_0^{-2}\delta^2 P_H(0)\sigma_1 Q_H(0), \quad H_{21}(\delta) = -i\alpha_0^{-2}\delta^2 Q_H(0)\sigma_1 P_H(0), \]

where

\[b_1 = \alpha_0^{-2}\theta_1\|Q_c\|_{L^2(\mathbb{R})}^2, \quad b_2 = -\alpha_0^{-2}\theta_1\|\partial_c Q_c\|_{L^2(\mathbb{R})}^2, \]

\[b_3 = -4\alpha_0^{-4}, \quad b_4 = \alpha_0^{-2}\|s Q_c\|_{L^2(\mathbb{R})}^2\|Q_c\|_{L^2(\mathbb{R})}^{-2}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]

First, we investigate the spectrum of \(H_{11}(\delta) \). Suppose \(\lambda \) is an eigenvalue of the matrix \(H_{11}(\delta) \). Then

\[
\det(\lambda I - H_{11}(\delta)) = \{ (\lambda + 2i\alpha_0^{-2}\delta)^2 - b_1\delta^2 - b_2b_4\delta^4 \} \{ (\lambda + 2i\alpha_0^{-2}\delta)^2 - b_3\delta^2 - b_3b_4\delta^4 \} = 0.
\]

Hence there exist eigenvalues \(\hat{\lambda}_i \) (\(i = 1, 2, 3, 4 \)) of \(H_{11}(\delta) \) satisfying

\[\hat{\lambda}_1 = -\delta \left(2i\alpha_0^{-2} - \alpha_0^{-1}\gamma + O(\delta^2) \right), \quad \hat{\lambda}_2 = -\delta \left(2i\alpha_0^{-2} + \alpha_0^{-1}\gamma + O(\delta^2) \right), \]

\[\hat{\lambda}_3 = -4i\alpha_0^{-2}\delta \left(1 + O(\delta^2) \right), \quad \hat{\lambda}_4 = O(\delta^3). \]

Let \(R_{ii}(\lambda, \delta) = (\lambda - H_{ii}(\delta))^{-1} \) for \(i = 1, 2 \) and let

\[
R_0(\lambda, \delta) = \begin{pmatrix} R_{11}(\lambda, \delta) & 0 \\ 0 & R_{22}(\lambda, \delta) \end{pmatrix}, \quad V_0(\lambda, \delta) = \begin{pmatrix} 0 & H_{12}(\lambda, \delta)R_{22}(\lambda, \delta) \\ H_{21}(\lambda, \delta)R_{11}(\lambda, \delta) & 0 \end{pmatrix}.
\]

We remark that \(R_{22}(\lambda, \delta) \) is uniformly bounded for \(\lambda \in U \) and \(\delta \in (0, \delta_0) \). Suppose that \(|\lambda - \hat{\lambda}_i| = c_1\delta \), where \(c_1 \in (0, \alpha_0^{-1}|\gamma|\delta/4) \) is a constant such that \(|\hat{\lambda}_j - \hat{\lambda}_k| \geq c_1\delta \) for every \(j, k = 1, 2, 3, 4 \) with \(j \neq k \). Then in view of the definitions of \(H_{12}(\lambda, \delta) \) and \(H_{21}(\lambda, \delta) \), we have

\[\|V_0(\lambda, \delta)\|_{B(L^2(\mathbb{R}))} = O(\delta), \]

and

\[(\lambda - H(\delta))^{-1} = R_0(\lambda, \delta) \sum_{i=0}^{\infty} V_0(\lambda, \delta)^i. \]

Now let

\[
P_{H,i}(\delta) = \frac{1}{2\pi i} \oint_{|\lambda - \hat{\lambda}_i| = c_1\delta} (\lambda - H(\delta))^{-1} d\lambda, \quad \tilde{P}_{H,i}(\delta) = \frac{1}{2\pi i} \oint_{|\lambda - \hat{\lambda}_i| = c_1\delta} R_0(\lambda, \delta) d\lambda.
\]

Combining (54) and (55) with the fact that

\[
\|R_0(\lambda, \delta)V_0(\lambda, \delta)\|_{B(L^2(\mathbb{R}))} = \left\| \begin{pmatrix} 0 & R_{11}H_{12}R_{22} \\ R_{22}H_{21}R_{11} & 0 \end{pmatrix} \right\|_{B(L^2(\mathbb{R}))} = O(\delta),
\]

We have
we have

\[\| P_{H,i}(\delta) - \hat{P}_{H,i}(\delta) \| = O(\delta) \quad \text{for every } i = 1, 2, 3, 4. \]

Hence it follows that \(R(\hat{P}_{H,i}(\delta)) \) is isomorphic to \(R(P_{H,i}(\delta)) \) and that \(R(P_{H,i}(\delta)) \) is 1-dimensional for \(i = 1, 2, 3, 4 \). Furthermore, we see that eigenvalues of \(H(\delta) \) which lie in \(U \) satisfy \(|\lambda - \hat{\lambda}_i| < c_1 \delta \) for an \(i \in \mathbb{N} \) with \(1 \leq i \leq 4 \).

Since \(d\|Q^c\|_{L^2(R^d)}^2/\delta > 0 \) for \(p \in (1, 5) \), we see that \(\gamma \) is a positive number and that there exist eigenvalues \(\lambda_1 \) and \(\lambda_2 \) satisfying

\[\alpha_0^{-1} \gamma \delta / 2 < \Re \lambda_1 < 3\alpha_0^{-1} \gamma \delta / 2, \quad -3\alpha_0^{-1} \gamma \delta / 2 < \Re \lambda_2 < -\alpha_0^{-1} \gamma \delta / 2. \]

Thus we complete the proof of Lemma 13. \(\square \)

Proposition 14. Let \(j, m \in \mathbb{N}, \varepsilon = m^{-1} \) and \(\delta = j \varepsilon \). Let \(\beta = \min(p - 1, 1)/6 \). Then there exists an \(m_* \in \mathbb{N} \) such that if \(m \geq m_* \), the linearized operator \(\mathcal{H}(\varepsilon, \delta) \) with \(j = [m^{\beta}] \) has an unstable eigenvalue.

Proof. In order to prove Proposition 14 we will show the spectrum of \(\mathcal{H}(\varepsilon, \delta) \) becomes close to the spectrum of \(H(\delta) \) as \(\varepsilon \downarrow 0 \). Let

\[\mathcal{H}_0 = \imath \left(\begin{array}{cc} -2jm / r^2 & \Delta_r - \omega - m^2 / r^2 \\ \Delta_r - \omega - m^2 / r^2 & -2jm / r^2 \end{array} \right), \]

and \(H_0 = U \mathcal{H}_0 U^{-1} \). Let

\[\mathcal{D}(\lambda) = (\tau_r \tilde{\chi}_0)(\lambda - H(\varepsilon, \delta))^{-1} (\tau_r \chi_0) + \tau_r \tilde{\chi}_1 (\lambda - H(\delta))^{-1} \chi_1 \tau_r. \]

Then we have

\[\mathcal{D}(\lambda) U(\lambda - \mathcal{H}(\varepsilon, \delta)) U^{-1} = I + R_3 + R_4, \]

where

\[R_3 = \imath (\tau_r \tilde{\chi}_0)(\lambda - H_0)^{-1} \left(\begin{array}{cc} 0 & \left[\partial_{\tau_r}^2, \tau_r \chi_0 \right] \\ \left[\partial_{\tau_r}^2, \tau_r \chi_0 \right] & 0 \end{array} \right) - (\tau_r \chi_0) \phi_{\omega}^{p-1} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \]

\[R_4 = \imath \tau_r \tilde{\chi}_1 (\lambda - H(\delta))^{-1} \left(\begin{array}{cc} 0 & \left[\partial_{\tau_r}^2, \chi_1 \right] \\ \left[\partial_{\tau_r}^2, \chi_1 \right] & 0 \end{array} \right) - \chi_1 (R_{41} + R_{42}) \]

\[R_{41} = \left(\begin{array}{cc} -2\delta / (\alpha_0 + \varepsilon) & 2\delta / (\alpha_0 + \varepsilon) \\ 1 + \delta^2 / (\alpha_0 + \varepsilon)^2 & 1 + \delta^2 / (\alpha_0 + \varepsilon)^2 \\ 0 & 1 + \delta^2 / (\alpha_0 + \varepsilon)^2 \\ \end{array} \right) \]

\[R_{42} = \left(\begin{array}{cc} 0 & f'(\phi_{\omega}) - f'(Q_c) \\ f'(\phi_{\omega}) - f'(Q_c) & 0 \end{array} \right). \]

We remark that

\[\| \left[\partial_{\tau_r}^2, \chi_i \right] \|_{B(L^2(\mathbb{R}), H^{-1}(\mathbb{R}))} = O(l^{-1}) \quad \text{for } i = 0, 1, \]

\[\| \chi_1 R_{41} \|_{B(L^2(\mathbb{R}))} + \| R_{42} \|_{B(L^2(\mathbb{R}))} = O(\varepsilon^{6\beta}). \]

We have

\[\sup_{\lambda \in \mathbb{C}, |\lambda| \leq \omega/2} \| (\lambda - \mathcal{H}_0)^{-1} \|_{B(H^{-2}(\mathbb{R}), L^2(\mathbb{R}))} < \infty, \]

since

\[\imath \mathcal{H}_0 O = \imath \left(\begin{array}{cc} \Delta_r - \omega - (m+j)^2 / r^2 & 0 \\ 0 & -\Delta_r + \omega + (m-j)^2 / r^2 \end{array} \right), \]
where

\[O = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}. \]

Lemma 13 yields that for \(\delta \in (0, \delta_0) \), there exists a \(c > 0 \) such that

\[\| (\lambda - H(\delta))^{-1} \|_{B(L_2^2(\mathbb{R}^2))} \leq C\delta^{-1} \]

for every \(\lambda \in U \) with \(\min_{1 \leq i \leq 4} |\lambda - \lambda_i(\delta)| \geq c\delta \) and that \(\Re(\lambda_1(\delta) - c\delta) > 0 \).

Let \(l = \delta^{-3} \). Then it follows from the above that

\begin{align*}
\| R_3 \|_{B(L_2^2(\mathbb{R}^2))} &= O(\delta^3 + e^{-2\sqrt{c}\delta^{-3}}), \\
\| R_4 \|_{B(L_2^2(\mathbb{R}^2))} &= O(\delta^2 + \varepsilon^6\delta^{-4}).
\end{align*}

Put

\[\mathcal{P}_{H,1}(\varepsilon, \delta) = \frac{1}{2\pi i} \oint_{|\lambda| = \varepsilon\delta} (\lambda - \mathcal{H}(\varepsilon, \delta))^{-1} d\lambda, \]

\[\mathcal{P}_{H,1}(\varepsilon, \delta) = U^{-1}\tau_r\chi_1 P_{H,1}(\delta)\chi_1 \tau_r U. \]

Making use of Cauchy’s theorem and noting that \(\delta \sim \varepsilon^3 \), we have

\[\| \mathcal{P}_{H,1}(\varepsilon, \delta) - \mathcal{P}_{H,1}(\varepsilon, \delta) \|_{B(L_2^2(\mathbb{R}^2))} \]

\[\leq C\delta^{-1} \sup_{|\lambda| = \varepsilon\delta} \left(\| R_3 \|_{B(L^2(\varepsilon\delta, \infty))} + \| R_4 \|_{B(L^2(\varepsilon\delta, \infty))} \right) \]

\[\leq C(\delta + \varepsilon^6\delta^{-5}) \]

\[= O(\delta). \]

From the above, we conclude that the range of \(\mathcal{P}_{H,1}(\varepsilon, \delta) \) is isomorphic to the range of \(P_{H,1}(\delta) \) and that there exists an eigenvalue \(\lambda \) of \(\mathcal{H}(\varepsilon, \delta) \) with \(\Re \lambda > 0 \). Thus we complete the proof of Proposition 14. \(\square \)

Now we are in position to prove Theorem 2.

Proof of Theorem 2. Let \(\mathcal{L} \) be the linearized operator of \(\mathcal{H} \) around \(e^{i(\omega t + m\theta)}\phi_\omega \).

Then

\[\mathcal{L} = i \begin{pmatrix} \Delta - \omega + \beta_1(r) & e^{2im\theta} \beta_2(r) \\ -e^{-2im\theta} \beta_2(r) & -\Delta + \omega - \beta_1(r) \end{pmatrix}. \]

Proposition 14 tells us that \(\mathcal{L} \) has unstable eigenvalues if \(m \in \mathbb{N} \) is large and \(p \in (1, 5) \). On the other hand, Proposition 15 tells us that \(\mathcal{L} \) has an unstable eigenvalue if \(p > 3 \). Hence it follows that \(\mathcal{L} \) has an unstable eigenvalue if \(p > 1 \) and \(m \in \mathbb{N} \) is sufficiently large. \(\square \)

Acknowledgment

The author would like to express his gratitude to Professor Jaeyoung Byeon for his useful advice.
References

[1] J. C. Alexander, R. L. Pego and R. L. Sachs, On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation, Phys. Lett. A. 226 (1997), 187–192.

[2] A. Ambrosetti, A. Malchiodi and W. M. Ni, Singularly perturbed elliptic equations with symmetry, existence of solutions concentrating on spheres. I, Comm. Math. Phys. 235 (2003), 427–466.

[3] V. Benci and T. D’Aprele, The semiclassical limit of the nonlinear Schroödinger equation in radial potential, J. Diff. Eq. 184 (2002), 109–138.

[4] H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. 293 (1981), 489–492.

[5] H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I. Arch. Rat. Mech. Anal. 82 (1983), 313–345.

[6] H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^N, Indiana University Math. J. 30 (1981), 141–157.

[7] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85 (1982), 549–561.

[8] T. J. Bridges, On the susceptibility of bright nonlinear Schrödinger solitons to long-wave transverse instability, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), 2605–2615.

[9] T. J. Bridges, Transverse instability of solitary-wave states of the water-wave problem, J. Fluid Mech. 439 (2001), 255–278.

[10] T. D’Aprele, On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Diff. Int. Eq. 16 (2003), 349–384.

[11] M. Grillakis, Linearized instability for nonlinear Schrödinger and Klein-Gordon equations. Comm. Pure Appl. Math. 41 (1988), 747–774.

[12] M. Grillakis, J. Shatah and W. A. Strauss, Stability Theory of solitary waves in the presence of symmetry, I. J. Diff. Eq. 74 (1987), 160–197.

[13] M. Grillakis, J. Shatah and W. A. Strauss, Stability Theory of solitary waves in the presence of symmetry, II. J. Funct. Anal. 94 (1990), 308–348.

[14] J. K. Hale, K. Sakamoto, Existence and stability of transition layers, Japan J. Appl. Math. 5 (1988), 367–405.

[15] J. Iaia and H. Warchall, Nonradial solutions of semilinear elliptic equation in two dimensions, J. Diff. Eq. 119 (1995), 533–558.

[16] M. K. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p = 0$ in \mathbb{R}^n, Arch. Rat. Mech. Anal. 105 (1989), 243–266.

[17] R. L. Pego and H. A. Warchall, Spectrally stable encapsulated vortices for nonlinear Schrödinger equations, J. Nonlinear Sci. 12 (2002), 347–394.

[18] T. Mizumachi, Vortex solitons for 2D focusing nonlinear Schrödinger equation, Diff. Int. Equations. 18 (2005), 431–450.

[19] T. Mizumachi, Instability of bound states for 2D nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst. 13 (2005), 413–428.

[20] T. Mizumachi, A remark on linearly unstable standing wave solutions to NLS, Nonlinear Anal. T. M. A. to appear.

[21] D. S. Morgan and T. J. Kaper, Axisymmetric ring solutions of the 2D Gray-Scott model and their destabilization into spots. Phys. D 192 (2004), 33–62.

[22] M. Reed and B. Simon, Methods of modern mathematical physics II. Fourier analysis, self-adjointness Academic Press, New York-London, 1975.

[23] J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations. Comm. Math. Phys. 91 (1983), 313–327.

[24] J. Shatah and W. A. Strauss, Instability of nonlinear bound states. Comm. Math. Phys. 100 (1985), 173–190.

[25] J. Shatah and W. A. Strauss, Spectral condition for instability, Nonlinear PDE’s, dynamics and continuum physics, Contemp. Math., 255, Amer. Math. Soc., Providence, RI, 2000, 189–198.
[26] W. A. Strauss and W. Wang, Guanxiang Instability of traveling waves of the Kuramoto-Sivashinsky equation, Chinese Ann. Math. Ser. B 23 (2002), 267–276.

[27] M. I. Weinstein, Modulational stability of ground states of nonlinear Schrodinger equations, SIAM J. Math. Anal. 16 (1985), 472–491.

[28] M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 (1986), 51–68.

[29] E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta u + K(|x|)u^p = 0$ in \mathbb{R}^n, Arch. Rat. Mech. Anal. 124 (1993), 239–259.

Faculty of Mathematics, Kyushu University, Hakozaki 6-10-1, 812-8581 Japan.
E-mail address: mizumachi@math.kyushu-u.ac.jp