Table S1. Genes with most resistance to antimicrobials and hierarchical clustering.

States	Antimicrobial-resistance genes
PA	aadA, aph(3’’), aph(3’’)-Ib, aph(6)-I, aph(6)-Id, bla, blaCMY, sul2, tet, and tet(A)
NY	aadA, aph(3’’), aph(3’’)-Ib, aph(6)-I, aph(6)-Id, blaCMY, blaCMY-2, blaTEM, blaTEM-1, bla, sul2, tet, and tet(A)
MD	aadA, aph(3’’), aph(3’’)-Ib, aph(6)-I, aph(6)-Id, blaCMY, sul2, tet, and tet(A)
NM	aadA, aph(3’’), aph(3’’)-Ib, aph(6)-I, aph(6)-Id, aac(3), aadA1, aph(3’’), aph(3’’)-Ia, blaCMY, and blaCMY-2, blaTEM, blaTEM-1, fos, fosA, qac, qacEdelta1, sul1, sul2, tet(A), and tet(B)
MN	aadA, aadA1, aph(3’’), aph(3’’)-I, aph(3’’)-Ib, aph(6)-I, aph(6)-Id, bla, and blaCMY, blaCMY-2, blaTEM, blaTEM-1, fosA, sul2, tet, tet(A), and tet(B)
CA	aadA, aph(3’’), aph(3’’)-Ib, aph(6)-I, aph(6)-Id, bla, fos, fosA, and qoxB

Table S2. Metabolic functions of the most common antimicrobial-resistance genes.

Genes	Metabolic Functions
aadA	• Aminoglycoside resistance
	• Integration of the plastome-specific aadA cassette into the nuclear genome for a fraction of the resistant cell lines
aph(3’’)	• Aminoglycoside resistance
	• Catalysis of the addition of phosphate from ATP to the 3’-hydroxyl group of a 4,6-disubstituted aminoglycoside
aph(3’’)-Ia	• Origination from enzymes from the metabolic pathway for aminoglycosides and development in order to counteract the toxic effects of these antibiotics in the host bacterial cell
	• Transferase
aph(3’’)-Ib	• Aminoglycoside resistance
	• A transposon-encoded aminoglycoside phosphotransferase
	• Conference of resistance to kanamycin and neomycin
aph(6)-I	• Aminoglycoside resistance
	• Catalysis of ATP-dependent phosphorylation of a hydroxyl group
aph(6)-Id	• Aminoglycoside phosphotransferase encoding by plasmids, transposons, integrative conjugative elements, and chromosomes in Enterobacteriaceae and Pseudomonas spp
	• Phosphotransferase activity, alcohol group as an acceptor
bla	• Hydrolysis of the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillin and cephalosporin
Gene	Description
----------	---
blaCMY • Beta-lactamase • Hydrolysis of the beta-lactam bond in susceptible beta-lactam antibiotics • ampC-related bla gene	
blaCMY-2 • Hydrolysis of beta-lactam bond • Beta-lactamase	
blaTEM, blaTEM-1 • Responsibility of amino acid substitutions for the extended-spectrum beta lactamase (ESBL) phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates.	
tet, tet(A), tet(B) • Tetracycline-resistant protein • Active tetracycline efflux • Decrease of the accumulation of the antibiotic in whole cells • Metal-tetracycline/H+ antiporter	
fos, fos(A) • Fosfomycin-resistant genes • Inactivation of fosfomycin by addition of a glutathione residue	
oqxB • Efflux pump membrane transporter • Component of RND-type multidrug efflux pump that confers resistance to olaquindox	
sul2 • Dihydropteroate synthase activity • High-affinity sulfate permease • Sulfate transmembrane transporter activity	