Growth and yield of maize as influenced by zinc enrichment through agronomic options

Nandini P, Laxminarayana P, Bhanu Rekha K and Anjaiath T

DOI: https://doi.org/10.22271/chemi.2020.v8.i5ac.10610

Abstract
A field experiment on Agronomic options for zinc enrichment in maize was conducted at College farm, College of Agriculture, PJTSAU, Rajendranagar, Hyderabad during kharif 2019-2020. The experiment was laid out in randomized block design with 10 treatments and replicated thrice. The soil of experimental site was sandy loam type, slightly acidic in pH (6.30), non-saline in EC (0.21 dSm⁻¹), low in organic carbon (0.42%), low in available N (230.60 kg ha⁻¹), medium in available P (24.30 kg ha⁻¹), high in available K (388.40 kg ha⁻¹) and low in available Zn (0.54 ppm). The results revealed that plant growth parameters (plant height and dry matter production), yield attributes (cob length and cob girth), grain (6053 kg ha⁻¹) and stover yield (9084 kg ha⁻¹) were highest with T₅ {RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹] and it was on par with T₇ {RDF + ZSB (1kg/100 kg FYM) + 0.2% foliar spray of ZnSO₄ at Knee-high and Tasseling stages} while the lowest growth and yield parameters were recorded with T₁ {RDF alone (Control-N: P₂O₅: K₂O @ 200:60:50 kg ha⁻¹)}.

Keywords: Enrichment, FYM, grain and stover yield, Zinc, ZSB, ZnSO₄

Introduction
Maize, also known as corn, is a cereal grain that was first grown in Central America. It is now the third most important cereal crop in the world and is called the ‘Queen of Cereals’. Maize or corn (Zea mays) is cultivated globally being one of the most important cereal crops worldwide. In India, maize is cultivated in an area of 93.8 lakh hectares with production and productivity of 2.87 million tonnes and 3.06 t ha⁻¹ respectively. India produces about 2% of the world’s maize produce. (Directorate of Economics and Statistics, GOI, 2017-18). In Telangana, maize is cultivated in an area of 6.3 lakh hectares (Kharif- 4.63 lakh hectares and Rabi- 1.67 lakh hectares) with production and productivity of 2.55 million tonnes (Kharif- 1.59 million tonnes and Rabi- 0.95 million tonnes) and 4.05 t ha⁻¹ (Kharif- 3.45 t ha⁻¹ and Rabi- 5.73 t ha⁻¹), respectively. (Directorate of Economics and Statistics, GOT, 2017-18).

In general attention towards the major nutrients is more than the secondary and micronutrients, but in maize zinc nutrition plays a major role in plant metabolism and yielding potential. However, less awareness about micronutrients application and indiscriminate use of major nutrients led to the imbalance in soil nutrient status and as a result micronutrient deficiency is noticed in many parts in general and among them zinc is particular. According to the recent survey, zinc deficiency in human nutrition is the most widespread nutritional disorder, next to iron, vitamin ‘A’ and iodine. Nearly, 49% of the global population does not meet their daily-recommended intake of 15 mg day⁻¹ of zinc for an adult and is one of the leading risk factors associated with diseases such as diarrhoea and retarded growth contributing to the death of 8,00,000 people each year (Muhammad and Abdul, 2018) [11]. Negative correlation between irrigation and phosphorous was observed with Zn uptake which leads to the reduction of Zn content in kernels, a major cause of Zn malnutrition among maize consumers.

Target of maize enrichment for Zn contents could be achieved through different agronomic strategies. These strategies are discussed subsequently for usefulness to overcome the hidden hunger for Zn. Application of enriched compost with ZnSO₄, zinc solubilising bacteria (ZSB), zinc seed pelleting and foliar spray to growing plants react with native reserves of micronutrient elements and renders them available to the plants.

Materials and Methods
The experiment was conducted during Kharif, 2019-2020 at College farm, Plot no. B-8, Block-B, College of Agriculture, Rajendranagar, Professor Jayashankar Telangana State Agricultural
University, Hyderabad. The geographical location of the experimental site was 17°19’ 19.2” N Latitude, 78°24’ 39.2” E Longitude with an altitude of 542.3 m above mean sea level. Agro-climatologically the area is classified as Southern Telangana Agro Climatic Zone of Telangana State. The total rainfall received during the cropping period was only 680.8 mm.

The treatment details include recommended dose of fertilizer (RDF- 200: 60: 50-N: P₂O₅: K₂O kg ha⁻¹) N was applied in three equal splits (at sowing, knee-high and tasselling stage), total P was applied as basal and K was applied in two equal splits (at sowing and tasselling stage). FYM was enriched with zinc solubilising bacteria (ZSB) @ 1 kg per 100 kg FYM for about 22 days before sowing i.e., T₂ & T₃. Seed pelleting (1kg seed) was done by adding water with 3.6 g of ZnSO₄ after proper dissolving. Polymer was added to above solution and made into slurry by thorough stirring. The slurry was added to 1 kg seed in a polythene cover and thoroughly mixed for 4-5 minutes and shade dried i.e., T₄ & T₅. FYM is enriched with ZnSO₄ @ 50 kg ha⁻¹ with 25 t FYM ha⁻¹ for about 22 days before sowing i.e., T₆ & T₀.

Experimental details

The field was ploughed twice with tractor drawn cultivator followed by levelling with rotavator. FYM alone was applied to T₁ and T₃ treatments, FYM enriched with ZSB was applied to T₂ and T₅ treatments and FYM enriched with ZnSO₄ @ 50 kg ha⁻¹ was applied to T₄ and T₀ treatments. Crop was sown on ridges. The recommended dose of fertilizers applied (N, P, and K @ 200: 60: 50 kg ha⁻¹). Maize hybrid nk-6240 @ 20 kg ha⁻¹ was sown. In present experiment the spacing was 60 cm × 20 cm. Pre-emergence herbicide like atrazine 50% WP was sprayed @ 2-2.5 kg ha⁻¹. Intercultural operations like gap filling, thinning and weeding was done timely. Crop was entirely grown under rainfall. The crop was harvested at proper stage of maturity as determined by visual observations. Border rows from all sides of each plot were first harvested followed by net plot. Fresh and dry weights of cobs and stover were weighed separately. Shelling of cobs was done by tractor operated maize sheller machine. Biometric observations recorded were plant height, dry matter production, cob length, cob girth, grain and stover yield.

Results and Discussion

Plant height (cm)

Plant height has shown a linear increase at all the stages of crop growth period. Plant height was significantly influenced by integrated approach for zinc enrichment at 30 DAS, knee high stage and at harvest except at 60 DAS (Table 1).

At 30 DAS, highest plant height (70.13 cm) was recorded with T₁ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and was on par with all other treatments except T₄, T₅ and T₆. The lowest plant height (56.33 cm) was registered with T₁ (RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹). At knee high stage, tallest plants (82.53 cm) were recorded with T₃ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and was on par with all other treatments except T₁, T₂ and T₅. The lowest plant height (63.53) was registered with T₁ [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹]. Contrary to 30 DAS and knee-high stage plant height at 60 DAS did not vary significantly due to different treatments.

At harvest, highest plant height (184.06) was recorded with T₅ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and it was on par with all other treatments except T₁, T₄ and T₅. The lowest plant height (150.73) was registered with T₁ [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹].

Significant improvement in the plant height with T₃ and T₇ might be due to rapid cell division and elongation as a result of availability of the needed nutrients to the plant at critical growth stages coupled with application of zinc that resulted in improvement of metallo enzyme system regulatory function and growth promoting auxin production. Similar results were reported earlier by Kumar et al. (2017) [⁷], Kumar and Salakinkop (2018) [⁸] and Hekmat et al. (2019) [⁹].

Dry matter production (kg ha⁻¹)

The most important index of plant vigour and yield is the accumulation of the photosynthates during the stipulated growth period. Higher dry matter production per unit area is the pre-requisite for higher yield. Data recorded on dry matter production at different intervals during crop growth are presented in Table 2.

An overview of the data indicated that, dry matter accumulation differed significantly by integrated approach for zinc enrichment at 30, knee high stage, 60 DAS and at Harvest.

At 30 DAS, highest dry matter (518 kg ha⁻¹) was recorded with T₃ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and was on par with T₀ (511 kg ha⁻¹) [RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹ + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasselling stages] and the lowest dry matter (301 kg ha⁻¹) was registered with T₁ [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹].

At knee high stage also, highest dry matter (995 kg ha⁻¹) was registered with T₃ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and it was on par with T₇ (962 kg ha⁻¹) [RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasselling stages] while, the lowest dry matter (679 kg ha⁻¹) was obtained with T₁ (RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹).

Similarly at 60 DAS also, highest dry matter (6301 kg ha⁻¹) accumulation was noticed with T₃ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) which was also on par with T₇ (5846 kg ha⁻¹) [RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasselling stages] while, the lowest dry matter (3555 kg ha⁻¹) was registered with T₁ [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹].

At harvest also similar trend was observed wherein highest dry matter (9334 kg ha⁻¹) was recorded with T₃ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) which was also on par with T₇ (8564 kg ha⁻¹) [RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasselling stages] while, the lowest dry matter (5697 kg ha⁻¹) was registered with T₁ [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹].

Increased dry matter production in T₃ and T₇ treatments might be due to balanced supply of macro and micro nutrients through soil and foliar fertilization which resulted in better crop growth and photosynthetic activity which led to better accumulation of the photosynthates during the stipulated period. Data recorded on dry matter production at different intervals during crop growth are presented in Table 2.

An overview of the data indicated that, dry matter accumulation differed significantly by integrated approach for zinc enrichment at 30, knee high stage, 60 DAS and at Harvest.

At 30 DAS, highest dry matter (518 kg ha⁻¹) was recorded with T₃ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and was on par with T₀ (511 kg ha⁻¹) [RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹ + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasselling stages] and the lowest dry matter (301 kg ha⁻¹) was registered with T₁ [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹].

At knee high stage also, highest dry matter (995 kg ha⁻¹) was registered with T₃ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and it was on par with T₇ (962 kg ha⁻¹) [RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasselling stages] while, the lowest dry matter (679 kg ha⁻¹) was obtained with T₁ (RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹).

Similarly at 60 DAS also, highest dry matter (6301 kg ha⁻¹) accumulation was noticed with T₃ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and was on par with T₇ (5846 kg ha⁻¹) [RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasselling stages] while, the lowest dry matter (3555 kg ha⁻¹) was registered with T₁ [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹].

At harvest also similar trend was observed wherein highest dry matter (9334 kg ha⁻¹) was recorded with T₃ (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) which was also on par with T₇ (8564 kg ha⁻¹) [RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasselling stages] while, the lowest dry matter (5697 kg ha⁻¹) was registered with T₁ [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹].

Increased dry matter production in T₃ and T₇ treatments might be due to balanced supply of macro and micro nutrients through soil and foliar fertilization which resulted in better crop growth and photosynthetic activity which led to better supply of photosynthates. Application of enriched FYM with ZSB showed an increasing trend in dry matter production at different crop growth stages due to growth promoting effect of beneficial microbes. Similar findings were earlier reported by Kumar et al. (2017) [⁷], Kumar and Salakinkop (2018) [⁸] and Hekmat et al. (2019) [⁹].

Yield attributes

Data recorded on yield attributes at different intervals during crop growth period are presented in Table 3.
Cob length (cm)

Cob length was significantly influenced by integrated approach for zinc enrichment. The highest cob length (18.32 cm) was recorded with T3 (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and was on par with T7 (17.24 cm) [RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasseling stages]. The lowest cob length (13.78 cm) was registered with T1 [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹].

Cob girth (cm)

Data on cob girth were significantly influenced by integrated approach for zinc enrichment. The highest cob girth (14.5 cm) was observed with T5 (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and was on par with other treatments viz., T7 and T10. The lowest cob girth (10.53) was registered with T1 [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹]. The increase in yield attributes in T1 and T7 treatments might be due to application of zinc resulted in higher chlorophyll contents, and this had apparently a positive effect on photosynthetic activity, synthesis of metabolites and growth-regulating substances, oxidation and metabolic activities and ultimately better growth and development of crop (Anees et al., 2016)[1].

Yield

Yield is an ultimate end product of many yield contributing components, physiological and morphological processes taking place in plants during growth and development (Chand et al. 2017)[2].

Grain yield (kg ha⁻¹)

Perusal of data on grain yield (Table 4) revealed that significantly higher grain yield (6053 kg ha⁻¹) was recorded with T5 (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) followed by T7 (5631 kg ha⁻¹) [RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ @ Knee-high and Tasseling stages] which were on par with each other. The lowest grain yield (3020 kg ha⁻¹) was registered with T1 [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹]. The percentage of increase in grain yield in T3 and T7 over T1 treatment was 49.9% and 53.6% respectively. Increase in grain yield in T3 and T7 might be due to improved availability of micronutrients which could be attributed to the formation of stable organometallic complexes of micronutrients with organic matter, especially during the enrichment process that last for a longer time and release the nutrients slowly in the soil system in such a way that the nutrients are protected from fixation and made available to the plant root system throughout the crop growth period. Zinc fertilization had showed beneficial effect on physiological process, plant metabolism and plant growth, which might had led to higher yield. These findings are in conformity with the findings of Meena et al. (2013) [9], Anees et al. (2016) [10] and Kumar and Salakinkop (2018)[11].

Stover yield (kg ha⁻¹)

Data on stover yield is presented in Table 4 indicated that significantly higher stover yield (9084 kg ha⁻¹) was registered with T3 (RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹) and was on par with T2, T3, T5, T8 and T10. The lowest stover yield (6021 kg ha⁻¹) was recorded with T1 [RDF alone (Control) N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹]. Results revealed that integrated use of chemical fertilizers, FYM and ZSB showed encouraging results in improving stover yield than applied alone. Increase in stover yield might be due to the enhanced translocation of photosynthates with applied zinc, which resulted higher stover yield in T3 and T7. Increase in grain and stover yield might be due to growth and yield attributes of maize and due to integration of Zn and organic manure with inorganic fertilizers. Organics besides release their own nutrient might have increase in the nutrient use efficiency of applied organic fertilizers. Patil et al. (2017)[12], Kumar et al. (2018) [6] and Mishra et al. (2019)[10] also reported similar findings.

Conclusion

The growth, yield attributes and yield of maize were significantly high with the integrated application of chemical fertilizers, enriched FYM with ZSB or ZnSO₄ along with foliar spray @ 0.2% ZnSO₄.

Future line of work

- Studies on standard procedures of seed pelleting with zinc may be emphasized along with the dosage.
- Research on cropping system may be focused for arriving at the residual effect of zinc application in the succeeding season with inclusion of zinc responsive crops

Table 1: Plant height (cm) as influenced by integrated approach for zinc enrichment in maize

Treatments	30 DAS	Knee-high stage	60 DAS	At harvest
T1 - RDF alone (Control) [N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹]	56.33 c	63.53 c	101.10 c	150.73 c
T2 - RDF + Zinc Solubilising Bacteria (ZSB @ 1kg/100 kg FYM)	59.27 bc	70.00 bc	115.43 c	179.93 ab
T3 - RDF + FYM (25 t ha⁻¹)	68.00 a	76.07 ab	114.40 c	179.47 ab
T4 - RDF + Seed pelleting (3.6 g ZnSO₄ kg⁻¹ seed)	63.73 abc	73.33 abc	112.67 c	178.73 ab
T5 - RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹	67.53 a	82.53 a	120.37 c	184.07 a
T6 - RDF + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	58.33 bc	64.27 c	104.43 c	159.80 c
T7 - RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	65.33 ab	73.80 abc	119.07 c	183.67 a
T8 - RDF + FYM (25 t ha⁻¹) + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	62.67 abc	72.20 abc	111.47 c	162.67 bc
T9 - RDF + Seed pelleting + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	70.13 a	79.73 ab	112.80 c	168.13 abc
T10 - RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹ + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	65.33 ab	76.87 ab	116.07 c	180.20 ab

SEM± 2.61 3.77 4.78 6.08
CD (p=0.05) 7.82 11.29 NS 18.22
Table 2: Dry matter production (kg ha⁻¹) as influenced by integrated approach for zinc enrichment in maize

Treatments	Dry matter production (kg ha⁻¹)			
	30 DAS	Knee-high stage	60 DAS	At harvest
T1 - RDF alone (Control) [N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹]	301 e	679 e	3555 g	6437 e
T2 - RDF + Zinc Solubilising Bacteria (ZSB @ 1kg/100 kg FYM)	419 b	860 c	4791 c	8160 bc
T3 - RDF + FYM (25 t ha⁻¹)	331 d	846 cd	4312 cde	8251 bc
T4 - RDF + Seed pelleting (3.6 g ZnSO₄ kg⁻¹ seed)	413 b	881 c	4593 cd	8450 abc
T5 - RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹	518 a	995 a	6301 a	9334 a
T6 - RDF + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	311 d	783 d	3813 fg	6559 e
T7 - RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	353 cd	962 ab	5846 ab	8860 ab
T8 - RDF + FYM (25 t ha⁻¹) + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	319 de	849 cd	3890 efg	6927 de
T9 - RDF +Seed pelleting + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	400 bc	857 cd	4202 def	7666 cd
T10 - RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹ + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	511 a	916 bc	5460 b	8685 ab
SE±m	17	25	162	307
CD (p=0.05)	52	75	487	919

Table 3: Yield attributes as influenced by integrated approach for zinc enrichment in maize

Treatments	Cob length (cm)	Cob girth (cm)
T1 - RDF alone (Control) [N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹]	13.78 d	10.53 f
T2 - RDF + Zinc Solubilising Bacteria (ZSB @ 1kg/100 kg FYM)	15.89 bc	13.00 b c
T3 - RDF + FYM (25 t ha⁻¹)	15.62 c	12.30 c d e
T4 - RDF + Seed pelleting (3.6 g ZnSO₄ kg⁻¹ seed)	15.64 c	12.57 b c d
T5 - RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹	18.32 a	14.50 a
T6 - RDF + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	13.90 d	11.30 c f
T7 - RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	17.25 ab	14.30 a
T8 - RDF + FYM (25 t ha⁻¹) + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	14.34 cd	11.80 d e c
T9 - RDF +Seed pelleting + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	14.74 cd	12.10 c d e
T10 - RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹ + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	15.31 cd	13.47 abc
SE±m	0.57	0.37
CD (p=0.05)	1.61	1.12

Table 4: Grain and stover yield (kg ha⁻¹) as influenced by integrated approach for zinc enrichment in maize

Treatments	Grain yield (kg ha⁻¹)	Stover yield (kg ha⁻¹)
T1 - RDF alone (Control) [N: P₂O₅: K₂O - 200:60:50 kg ha⁻¹]	3020 d	6021 d
T2 - RDF + Zinc Solubilising Bacteria (ZSB @ 1kg/100 kg FYM)	4686 bc	8570 abc
T3 - RDF + FYM (25 t ha⁻¹)	4506 c	8218 abc
T4 - RDF + Seed pelleting (3.6 g ZnSO₄ kg⁻¹ seed)	3930 cd	7894 bc
T5 - RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹	6053 a	9084 a
T6 - RDF + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	3129 d	6402 d
T7 - RDF + ZSB (1kg/100 kg FYM) + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	5631 ab	8883 ab
T8 - RDF + FYM (25 t ha⁻¹) + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	4418 c	7988 ab
T9 - RDF +Seed pelleting + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	3919 cd	7532 c
T10 - RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹ + 0.2% Foliar spray of ZnSO₄ (Knee-high and Tasseling stages)	4821 bc	8823 ab
SE±m	337	369
CD (p=0.05)	1.010	1.107

References
1. Anees MA, Ali A, Shakoor U, Ahmed F, Hasnain Z, Hussain A. Foliar applied potassium and zinc enhances growth and yield performance of maize under rainfed conditions. International Journal of Agriculture & Biology. 2016; 18(5):1025-1032.
2. Chand SW, Susheela R, Sreelatha D, Shanti M, Hussain SA. Effect of zinc fertilization on yield and economics of baby corn (Zea mays L.). Journal of Pharmacognosy and Phytochemistry. 2017; 6(5):989-992.
3. Directorate of Economics and Statistics Ministry of Agriculture. Government of India, 2016-17.
4. Directorate of Economics and Statistics. Ministry of Agriculture. Government of Telangana, 2016-17.
5. Hekmat AW, Mohammadi NK, Ghosh G. Effect of NPK, biofertilizer and zinc foliar nutrition on growth and growth attributes of baby corn (Zea mays L.). International Journal of Chemical Studies. 2019; 7(4):2432-2436.
6. Kumar N, Salakinkop SR. Agronomic biofortification of maize with zinc and iron micronutrients. Modern Concepts and Developments in Agronomy. 2018; 1(5):87-90.
7. Kumar O, David AA, Kumar R, Yadav B, Narender Kumar SS, Malyan SK. Effect of farm yard manure and zinc ammedments on maize crop yield. Progressive Research – An International Journal. 2017; 12(1):1295-1298.
8. Kumar RR, Kumar N, Rana JB, Rai KN. Effect of integrated nutrient management on yield of maize crop under rain-fed condition in Eastern Part of Uttar Pradesh, India. International Journal of Current Microbiology and Applied Sciences. 2018; 7(9):21-34.

9. Meena MD, Tiwari DD, Chaudhari SK, Biswas DR, Narjary B, Meena AL, et al. Effect of biofertilizer and nutrient levels on yield and nutrient uptake by maize (Zea mays L.). Annals of Agri-Bio Research. 2013; 18(2):176-181.

10. Mishra P, Tiwari US, Pandey HM, Pathak RK, Sachan AK. Impact of INM on growth and yield of maize (Zea mays) crop in central plain zone of Uttar Pradesh, India. International Journal of Current Microbiology and Applied Sciences. 2019; 8(4):138-150.

11. Muhammad AM, Abdul RB. Zinc biofortification of maize (Zea mays L.): Status and challenges. Plant breeding. 2018; 138:1-28.

12. Patil S, Girijesh GK, Nandini KM, Kumar K, Pradeep LS, Kumar TMR. Effect of zinc application through soil and foliar means on bio-fortification of zinc in rainfed maize (Zea mays L.). International Journal of Pure and Applied Bioscience. 2017; 5(1):246-253.