Generating Method Based on Conformal Invariance of the Maxwell Field

J Hruška and M Žofka

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8 - Holešovice, Czech Republic
E-mail: bukikeh@seznam.cz

Abstract. We use conformal transformation to generate solutions of Einstein-Maxwell equations from other seed electro-vacuum spacetimes. We utilize the fact that the source-free Maxwell field is conformally invariant in four dimensions. Although the transformation is necessarily identical for most seed spacetimes, the \(pp \)-waves can be non-trivially transformed and may, therefore, play an analogous role as in the Birkhoff theorem.

1. General Background

Finding exact solutions to Einstein equations is very difficult. Therefore, much attention has been paid to methods of generating new solutions from existing ones. One of them is to use a conformal transformation.

Our approach in this article is very simple—we start from a seed metric, which does not even have to represent a physically viable solution to Einstein equations. We define a positive scalar conformal factor varying across the manifold and produce the resulting metric by multiplying the original metric by the conformal factor. We now require the new metric to satisfy Einstein equations. In our case, we actually used a non-vacuum solution to Einstein-Maxwell equations as our seed. This has the advantage that the resulting metric also represents an electrovacuum solution as Maxwell equations are conformally invariant. Therefore, we do not need to deal with the electromagnetic part of Einstein-Maxwell equations. However, it may still happen that we actually do not obtain a new solution but the seed spacetime in a new coordinate system. Therefore, we must carefully check our solutions to make sure they cannot be coordinate-transformed back into the original spacetime.

2. Existing Theorems

There are a number of theorems on conformally related spacetimes. Brinkmann [1] dealt with conformally related Einstein spaces \(R_{\mu\nu} = a g_{\mu\nu} \) with \(a \) a constant. He showed that any two distinct (properly) conformally related Einstein spaces are either two vacuum \(pp \)-waves, or Minkowski and (anti) de Sitter. His theorems were later generalized by Daftardar-Gejji [2] who generalized this theorem to the cases where the two Einstein tensors are equal and where they differ by a cosmological constant term. In the former case, both spaces are (not necessarily vacuum) \(pp \)-waves; in the latter, for perfect fluids with \(\mu = 0 \), both spaces are Robertson-Walker with equations of state \(\mu + 3p = 0 \) or \(\mu = p \). Van den Bergh [3] established that the only null Einstein-Maxwell fields obtainable by a conformal transformation of a Ricci-flat solution are
pp-waves. In all cases, the seed metric is Ricci-flat. We are interested in a case where the two spacetimes are solutions of full Einstein-Maxwell equations. Physically, this means that the causal structure of both spacetimes is identical in the corresponding regions. Yet, in general, it turned out that generating new solutions via a conformal transformation does not produce any interesting, non-trivial results. In our paper, we present the first non-trivial explicit example of two, non-vacuum solutions to Einstein equations that are conformally related. Moreover, we show that the two spacetimes are not isometric.

3. The generating method

We exploit the fact that, in a 4-dimensional spacetime, the action of a source-free Maxwell field is conformally invariant and we thus generate solutions of Einstein-Maxwell equations. The invariance tells us that if \(F_{\mu\nu}\) is a solution of source-free Maxwell equations on a seed spacetime \((M, g_{\mu\nu})\), then it is also a solution on \((M, \Omega^2 g_{\mu\nu})\). It implies that if we begin with a solution of Einstein-Maxwell equation, then after applying a conformal transformation, it is only Einstein equations we have to worry about, Maxwell equations are satisfied automatically.

3.1. Apparatus

Let us consider a conformal transformation of the seed metric

\[
\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu},
\]

where \(\Omega\) is a function on \(M\). Then the following equation holds for conformally rescaled Ricci tensor \(\tilde{R}_{\mu\nu}\) computed from the new metric \(\tilde{g}_{\mu\nu}\)

\[
\tilde{R}_{\mu\nu} = R_{\mu\nu} - \frac{2}{\Omega} \nabla_{\mu\nu} \Omega - \frac{4}{\Omega^2} \nabla_{\mu} \Omega \nabla_{\nu} \Omega - \frac{1}{\Omega} \nabla_{\mu} \nabla_{\nu} \Omega - \frac{1}{\Omega^2} \|d\Omega\|^2 g_{\mu\nu},
\]

where all covariant derivatives are taken with respect to the seed metric, \(\nabla\Omega := g^{\mu\nu} \nabla_{\mu} \Omega_{\nu}\) and \(\|d\Omega\|^2 := g^{\mu\nu} \Omega_{\mu} \Omega_{\nu}\).

The stress-energy tensor of a source-free Maxwell field has the form

\[
T_{\mu\nu} = F_{\mu\rho} F_{\nu}{}^{\rho} - \frac{1}{4} g_{\mu\nu} F_{\rho\sigma} F^{\rho\sigma},
\]

and so it transforms as

\[
\tilde{T}_{\mu\nu} = \Omega^{-2} T_{\mu\nu}.
\]

Suppose we have a triplet \((M, g_{\mu\nu}, F_{\mu\nu})\) which is a solution of Einstein-Maxwell equations. We can now write Einstein equations\(^2\) for \((M, \tilde{g}_{\mu\nu}, F_{\mu\nu})\):

\[
\tilde{R}_{\mu\nu} = 8\pi \tilde{T}_{\mu\nu} = 8\pi \Omega^{-2} T_{\mu\nu} = \Omega^{-2} R_{\mu\nu},
\]

so the equations we will solve are \(\Omega^2 \tilde{R}_{\mu\nu} - R_{\mu\nu} = 0\) or

\[
(\Omega^2 - 1) R_{\mu\nu} - 2\nabla_{\mu} \nabla_{\nu} \Omega + 4\Omega_{\mu} \nabla_{\nu} \Omega - \Omega \nabla_{\mu} \nabla_{\nu} \Omega - \|d\Omega\|^2 g_{\mu\nu} = 0
\]

in detail. This system is generally overdetermined, we have 10 equations for a single function \(\Omega\), however, in a special case, we might (and will) be able to solve it\(^3\). The trace of (6) yields a necessary condition \(\nabla \Omega = 0\), so \(\Omega\) has to be a harmonic function.

\(^1\) Our signature is \((-;++;+\)).

\(^2\) Note that the stress-energy tensor of a Maxwell field is traceless, so the Ricci scalar vanishes.

\(^3\) Actually, there is always the solution \(\Omega^2 \equiv 1\), but then the transformation is trivial.
3.2. Application

As could be expected, equation (6) does not allow for a non-trivial solution in most cases. We explicitly checked the Reissner-Nordström, Bonnor-Melvin, Bertotti-Robinson, Tariq-Tupper, and Ozsváth solutions and showed that none of these spacetimes are suitable seeds. However, let us now turn our attention to pp-waves, which are spacetimes admitting a covariantly constant null vector field k^μ. The metric can be written in the form

$$ds^2 = -2H(u, \xi, \tilde{\xi})du^2 - 2dudv + 2d\xi d\tilde{\xi}.$$ \hspace{1cm} (7)

where $\xi = \frac{1}{\sqrt{2}}(x + iy)$ is a complex coordinate. In these coordinates, the covariantly constant null vector field is simply $\partial/\partial u$. Not all pp-waves carry a non-zero Maxwell field. In order for them to do so, the function H has to satisfy

$$H = f(\xi, u) + f(\bar{\xi}, u) + 8\pi F(\xi, u)\bar{F}(\bar{\xi}, u)$$ \hspace{1cm} (8)

and the Maxwell field is then $F_{\mu\nu} = k_{[\mu}F_{\nu]} + c.c$. The Ricci tensor of a pp-wave is given by $R_{\mu\nu} = 2H \xi \xi k_{\mu}k_{\nu}$. Having all the necessary ingredients, we can try to solve (6) for Ω. It turns out that this generally overdetermined system has a nontrivial solution if and only if H can be written as

$$H = \xi \xi \Phi^2(u) + (\xi + \bar{\xi})h(u) + g(u)$$ \hspace{1cm} (9)

where Φ^2, h, g are arbitrary real functions of u only. Thus, except for the flat case, the spacetimes we are interested in have a non-zero Ricci tensor. There is a transformation of coordinates [4] (p. 383) that preserves the metric in the form (7) which allows us to get rid of the last two terms. A pp-wave with such a form of H is called a plane wave and is conformally flat. In fact, McLenaghan et al. [5] proved that such a pp-wave is the only conformally flat null Einstein-Maxwell field. Then, Ω has to be a function of u only, too, and has to satisfy a second order ODE

$$\Omega\ddot{\Omega} - 2\dot{\Omega}^2 + \Phi^2(1 - \Omega^2) = 0$$ \hspace{1cm} (10)

where $\dot{\Omega} := d\Omega/du$. With Ω depending only on u, it can be shown, that the vector field $\partial/\partial u$ is covariantly constant in the new spacetime $(\tilde{M}, \tilde{g}_{\mu\nu})$ as well, so the generated spacetime is again a pp-wave, undoubtedly a conformally flat one, in agreement with McLenaghan’s results. A question naturally arises, whether the generated wave is generally different from (non-isometric to) the original one or we just generate different coordinate expressions of the same wave. To answer this question, let us examine the equivalence problem for an explicit pair of the seed and the generated wave. A good choice, that will allow us to solve (10) particularly easily is to start with the following pp-wave

$$ds^2 = -4\xi\bar{\xi}du^2 - 2dudv + 2d\xi d\bar{\xi},$$ \hspace{1cm} (11)

so $H = 2\xi$ and $\Phi^2 = 2$. A particular solution of (10) is then $\Omega = \tanh(u)$ and so the generated wave has the following line element

$$\bar{ds}^2 = \tanh^2(u)(-4\xi\bar{\xi}du^2 - 2dudv + 2d\xi d\bar{\xi}).$$ \hspace{1cm} (12)

In our case, the first covariant derivative of the Ricci tensor is sufficient to prove the non-equivalence. The original spacetime has $R_{\mu\nu} = 4k_{\mu}k_{\nu}$ and its covariant derivative vanishes, i.e. $R_{\mu\nu;\rho} = 0$. However, the new spacetime has $\tilde{R}_{\mu\nu} = 4\Omega^{-6}\tilde{k}_{\mu}\tilde{k}_{\nu}$ and the covariant derivative no longer vanishes because of the non-zero gradient of the conformal factor Ω, which proves the non-equivalence of ds^2 and \bar{ds}^2. It follows, that all the pp-waves with (9) split into equivalence classes defined by their Maxwell fields.
4. Conclusions and Outlook
To our knowledge, this is the only non-trivial example of applying a conformal transformation to a seed spacetime to produce a non-vacuum solution to Einstein equations. Furthermore, due to the properties of conformal transformations, it is clear that the source remains in the form of an (vacuum) electromagnetic field. The original and resulting spacetimes are explicitly shown not to be identical. Thus, our solutions form the only known pair of conformally related non-vacuum spacetimes. The prospects of using conformal transformations to produce new solutions to Einstein equations may be dim but at least we provided a specific example where this approach works although the resulting solution belongs to the same class as the seed spacetime.

It might be of interest to see whether there may be any other non-trivial example that would not involve \(pp \)-waves. Note that previous literature always relies exactly on this type of spacetimes. Are there any suitable seeds other than \(pp \)-waves? Can the method be generalized to be less restrictive?

Acknowledgments
The authors acknowledge funding and support by the following grants of the Czech Grant Agency GAČR-205/09/H033 and GAČR-202/08/0187, of the Charles University Grant Agency GAUK 135409, the project SVV 261301 of the Charles University in Prague, and by the Czech Ministry of Education under the projects MSM0021610860 and LC06014 GAČR-202/09/0772.

References
[1] Brinkmann H W 1925 Einstein spaces which are mapped conformally on each other. Math. Ann. 18 119–45
[2] Daftardar-Gejji V 1998 A generalization of Brinkmann’s theorem Gen. Rel. Grav. 30 695–700
[3] Van den Bergh N 1986 Conformally Ricci flat Einstein-Maxwell solutions with a null electromagnetic field. Gen. Rel. Grav. 18 1105–10
[4] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein’s Field Equations 2nd edn (Cambridge University Press)
[5] McLenaghan R G, Tariq N and Tupper B O J 1975 Conformally flat solutions of the Einstein-Maxwell equations for null electromagnetic fields J. Math. Phys. 16 829–31