Effect of vitamin D3 supplementation on 25 OHD plasma levels in the presence of VDR gene polymorphisms

Ivone Freires de Oliveira Costa Nunes1*, Marcelo Macedo Rogero2, Joyce Ramalho Sousa3, Erica Patrícia Cunha Rosa3, Marcos David Figueiredo de Carvalho4, Francisco Erasmo de Oliveira5, Leopoldo Fabricio Marçal do Nascimento6, Maria do Socorro Pires e Cruz6, Cecilia Maria Resende Gonçalves de Carvalho1.

1. Federal University of Piauí, Program in Food and Nutrition, Teresina, Piauí, Brazil; 2. University of São Paulo, Faculty of Public Health, Sao Paulo, Brazil; 3. Federal University of Piauí, Department of Nutrition, Teresina, Piauí, Brazil; 4. Federal University of Piauí, Department of Animal Science, Teresina, Piauí, Brazil; 5. Biochemist and Pharmacist, Laboratory Med Imagem, Teresina, Piauí, Brazil; 6. Federal University of Piauí, Program in Animal Science, Teresina, Piauí, Brazil;

*Corresponding author: Ivone Freires de Oliveira Costa Nunes. Federal University of Piauí, University Campus Minister Petrônio Portella, Ininga neighborhood, 64049-550 Teresina, Piauí, Brazil; Phone: 55 86 99968 3998. E-mail: ivonefreirescosta@ufpi.edu.br

Este trabajo fue recibido el 13 de febrero de 2019. Aceptado con modificaciones: 23 de septiembre de 2019. Aceptado para ser publicado: 10 de octubre de 2019.

ABSTRACT
The objective of this review was to investigate the effect of vitamin D3 supplementation on serum 25-hydroxyvitamin D concentration in individuals with single-nucleotide polymorphisms in the vitamin D receptor gene. The research was conducted on 241 articles found in the PubMed, Scopus, Science Direct, and Cochrane Library databases between November and December 2018. After article screening, three randomized double-blind placebo-controlled clinical trials were identified as eligible for this review. Participants were Australian, Brazilian, and Chinese individuals, who ingested doses of vitamin D, ranging from 2000 IU to a megadosis of 200,000 IU. The presence of the BB/Bb genotype of the BsmI polymorphism and the FokI G allele caused an increase in the serum concentrations of vitamin D after supplementation. Nonetheless, the few studies on this subject are not unanimous in their results. It is possible that differences among populations, sample sizes, doses, and time of supplementation have an impact on data and outcomes.

Keywords: BsmI; FokI; Randomized clinical trial; Vitamin D receptor; 25(OH) D.

RESUMEN
El objetivo de esta revisión fue investigar el efecto de la suplementación con vitamina D3 sobre la concentración sérica de 25-hidroxivitamina D en individuos con los polimorfismos de un solo nucleótido en el gen del receptor de la vitamina D. La investigación se realizó en 241 artículos encontrados en las bases de datos PubMed, Scopus, Science Direct y Cochrane Library entre noviembre y diciembre de 2018. Después de la selección del artículo, se identificaron tres ensayos clínicos aleatorizados, controlados con placebo, doble ciego, como elegibles para esta revisión. Los participantes fueron australianos, brasileños y chinos, quienes ingirieron dosis de vitamina D, que iban desde las 2000 UI hasta una megadosis de 200,000 UI. La presencia del genotipo BB / Bb del polimorfismo BsmI y el alelo FokI G causó un aumento en las concentraciones séricas de vitamina D después de la suplementación. No obstante, los pocos estudios sobre este tema no son unánimes en sus resultados. Es posible que las diferencias entre poblaciones, tamaños de muestra, dosis y tiempo de suplementación tengan un impacto en los datos y resultados de la investigación.

Palabras clave: BsmI; Ensayo clínico aleatorizado; FokI; Receptor de vitamina D; 25 (OH) D.

INTRODUCTION
Vitamin D (25-hydroxyvitamin D: 25(OH) D) deficiency is a worldwide public health problem, affecting several population groups in various parts of the world1. It is considered a significant etiological factor in the pathogenesis of clinical conditions related to bone metabolism and chronic diseases such as obesity, type 2 diabetes mellitus, cardiovascular and autoimmune diseases, and some types
of cancer. In the evaluation of vitamin D status, despite the controversies, 25(OH)D has been found to be inversely associated with many diseases and with mortality, especially in extraskelatal diseases, whose mechanisms have not yet been fully elucidated, thus rendering the establishment of causality difficult.

The biological actions of vitamin D occur when the active form, 1,25-dihydroxyvitamin D₃, binds to the nuclear vitamin D receptor (VDR), a member of the superfamily of steroid hormone receptors found in the nuclei of almost all cells and in all tissues. The VDR gene is located in chromosomal region 12q12.14 and is composed of eight exons coding for proteins (exons 2–9) and of six nontranslated, alternately spliced exons. Hence, more than 25 genetic variants of VDR are possible, among which those caused by single-nucleotide polymorphisms (SNPs) may have significant consequences for health.

In the VDR gene, SNPs—such as rs1544410 (BsmI), located in an intron and involving a substitution of adenine for guanine (A>G), and rs2228570 (FokI), located in exon 2 and resulting in the synthesis of a protein with three extra amino acid residues—appear to impair the mechanism of action of vitamin D₃. BsmI and FokI possibly alter the concentrations of 25(OH)D and an individual’s sensitivity to vitamin D₃ supplementation. The objective of this review was to investigate the positive effect of vitamin D₃ supplementation on the serum concentration of 25(OH)D in individuals with VDR gene polymorphisms.

MATERIALS AND METHODS

This systematic review was performed through analysis of double-blind placebo-controlled randomized clinical trials (RCTs), with no restriction by publication year, conducted exclusively in healthy humans, regardless of gender, age, and ethnicity of the individuals, via the PICO strategy (patient, intervention, comparison, and outcomes) to answer the guiding question of whether vitamin D₃ supplementation has different effects on individuals with the VDR SNPs.

In each PICO dimension, the following elements were defined: (P) patients with VDR polymorphisms, (I) supplementation with vitamin D₃, (C) placebo, and (O) differences in concentrations of 25(OH)D.

The online search for the articles was performed between November and December 2018, in the PubMed, Scopus, Science Direct, and Cochrane Library databases. We used two groups of keywords: 1) polymorphism, VDR, supplementation, and vitamin D₃; 2) polymorphism, VDR, supplementation, and cholecalciferol.

Publications were excluded from this study if they met one or more of the following criteria: the publication was not available as full text, the publication was not in English, the study was based on animal or in vitro tests, the study did not analyze serum concentrations of 25(OH)D, the intervention was based only on food enrichment with vitamin D₃, and studies that included children, adolescents, and pregnant women. Included in the research were studies conducted on healthy adults and seniors, without references to autoimmune diseases, osteoporosis, cancer, diabetes, tuberculosis, and other diseases and pre- and postmenopausal periods.

The titles and abstracts of the articles selected were independently analyzed by two researchers. In the case of divergence, a third and fourth researcher were consulted to verify the adequacy of the eligibility criteria. Nevertheless, to make the choice even more stringent, a fifth researcher also analyzed the articles to assist with the consensual decision.

The quality of the systematic review was ensured via the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. In the qualitative classification of publications, the Jadad scale was employed independently and by blinded researchers. RCTs were assumed to have good quality when they reached 3–5 points, and the risk of bias was analyzed using the Cochrane Collaboration Tool.

RESULTS

The bibliographic research, which was carried out from March to November 2018 according to the pre-established strategy, resulted in 241 articles. The distribution of articles by database was as follows: 37 in PubMed, 120 in Scopus, 21 in Science Direct, and 63 in the Cochrane Library.

After selection and removal of duplicate trials, three randomized, double-blind, placebo-controlled trials met the predefined high-quality criteria for this systematic review. Figura 1 shows the flowchart of the search results on the sources of information and the selection and inclusion of the original articles for this systematic review, according to the PRISMA statement protocol.

The research showed homogeneous methodological quality in the evaluation of bias risk (Table 1). The low risk ratios were 100% (n= 3) for random generation sequence, concealment of allocation, blinding of participants and professionals, selective reporting of outcomes, and other sources of bias and 1:3 (n= 2) for blinding of outcome assessors and incomplete outcomes. Table 2 summarizes the results of the reviewed articles and lists the authors, year of publication, research site, sample size, sex, dose, duration of vitamin D supplementation, and main outcomes, as well as quality evaluations on the Jadad scale.

There is still a shortage of data in the literature on this subject. The studies analyzed originated in different countries and different continents (South America, Australia, and Asia), were published in the last 3 years, and included genotyping of VDR SNPs (BsmI and FokI) and included both sexes. The lowest number of participants was 20 and the highest was 448. The age of participants ranged from 20 to 84 years, i.e., the studies included adults and the elderly. The weekly doses of vitamin D₃ supplementation ranged from 2000 IU/day for 20 weeks (and monthly doses ranged from 30,000 to 60,000 IU/month for a year) to a single megadose of 200,000 IU.
Effect of vitamin D3 supplementation on 25 OHD plasma levels in the presence of VDR gene polymorphisms

Table 1. Analysis of the methodological quality and risk of bias proposed by the Cochrane collaboration.

Evaluated item	Waterhouse et al18	Cavalcante et al19	Yao et al20
Random sequence generation	Low risk	Low risk	Low risk
Allocation concealment	Low risk	Low risk	Low risk
Blinding of participants and personnel	Low risk	Low risk	Low risk
Blinding of outcome evaluators	Uncertain	Low risk	Low risk
Incomplete outcome data	Low risk	Low risk	Uncertain
Selective outcome reporting	Low risk	Low risk	Low risk
Other sources of bias	Low risk	Low risk	Low risk

Figura 1: Flowchart of the search. Legends: RCT- Randomized controlled trials.
Waterhouse et al.18 reported a beneficial effect of monthly supplementation for 12 months. Serum levels of 25(OH) D increased from 42.0 ± 13.0 nmol/L (16.8 ± 5.2 ng/mL) to 64.0 ± 17.0 nmol/L (25.6 ± 6.8 ng/mL) in the group receiving 30,000 IU of vitamin D3 and from 42.0 ± 4.0 nmol/L (16.8 ± 5.6 ng/mL) to 78.0 ± 20.0 nmol/L (31.2 ± 8.0 ng/mL) in the group receiving 60,000 IU of vitamin D3. In the comparison between the supplementation and control groups in relation to VDR polymorphism (FokI), the differences in responses to supplementation were not significant among Australians.

Cavalcante et al.19 evaluated the effect of the BsmI VDR gene polymorphism and observed that the mean values of 25(OH) D in Brazilian individuals with the BB/Bb genotype rose from 63.75 ± 7.25 nmol/L (25.5 ± 2.9 ng/mL) to 80 ± 17.75 nmol/L (32.0 ± 7.1 ng/mL) after supplementation with a megadose of 200,000 IU.

Yao et al.20 observed an increase in 25(OH) D levels (p=0.009) in Chinese individuals with the G allele of rs2228570 (FokI) after the 20th week of supplementation with 2,000 IU of vitamin D3.

DISCUSSION

This systematic review was conducted to investigate the effects of vitamin D supplementation in humans. Regarding the effect of the intervention due to the presence of VDR gene polymorphisms, there were divergent effects among clinical trials. In addition, few studies investigated the subject, and there was no research evaluating the joint influence of these two SNPs on response to supplementation.

Vitamin D supplementation has been used as a strategy for reducing the causes of disease-associated mortality in different populations around the world, but the mechanisms that account for the actions of the supplements are still a subject of speculation. Intervention with vitamin D supplements is relatively low risk and without major drawbacks, provided it is at the tolerable level of ingestion because the excess can lead to intoxication, hypercalcemia, and soft tissue calcification21.

The clinical trial by Waterhouse et al.18 evaluated the effect of vitamin D supplementation at serum concentrations of 25(OH) D in healthy elderly Australians, mostly of European descent (93%), men (n=206) and women (n=179), aged 60–84 years, using monthly doses of 30,000 IU (n=189) or 60,000 IU (n=196). The supplementation groups had higher serum concentrations of 25(OH) D as compared to the placebo control group (n=207).

The results of the abovementioned study18 did not show any differences in 25(OH) D levels (within the groups that received the two types of vitamin D supplementation relative to the control group) with respect to SNPs rs10766197 (CYP2R1), rs12203592 (IRF4), rs1805009 (MC1R), rs10877012 (CYP27B1), rs1408799 (TYRP1), rs182549 (MCM6), and rs1667394 (HERC2), as well as the VDR gene SNP rs2228570 (FokI). In contrast, the SNPs of CYP2R1, which encodes the enzyme responsible for the hydroxylation of vitamin D to 25(OH) D, yielded statistically significant differences (p<0.05).
The response to vitamin D supplementation could be explained in 24% of the cases by the supplementary dose and the initial serum concentration of 25(OH) D. Regression analyses performed by Waterhouse et al18 confirmed the hypothesis that genetic variation among individuals determines the differences seen after supplementation, thus explaining why some people require higher doses to reach normal values of 25(OH) D as well as the inter-individual variation of values that can be considered physiologically normal.

The findings of Waterhouse et al18 revealed that the variation observed in the response to vitamin D\textsubscript{3} supplementation is also due to familial predisposition to deficiency and saturation of the process of conversion of vitamin D\textsubscript{3} to 25(OH) D in the liver21. In addition, baseline values of 25(OH) D and body–mass index (BMI) negatively correlated with the change in serum concentrations of 25(OH) D although they made little contribution.

Women with ideal BMI had a greater response to vitamin D supplementation than did overweight and obese women, probably owing to the volumetric dilution of vitamin D18. It is believed that the amount of body fat affects serum concentrations of 25(OH) D, suggesting that supplementation with this vitamin should be planned by assessing total body fat mass22.

Baseline serum level of 25(OH) D, BMI, and ambient UV radiation (RUV) negatively correlated with the change in the serum 25(OH) D level. Persons who received the highest dose and those with a self-reported health status of “fair” or “poor” experienced a greater change than did those who received the lowest dose and those with good self-reported health, respectively18.

The increase in the serum 25(OH) D level was 1.7 to 2.5 nmol/L for every 100 IU/d, although the mean increase per 100 IU of vitamin D per day in the 60,000 IU group was slightly lower than in the 30,000 IU group (1.7 vs 2.2 nmol/L). It seems that the process by which vitamin D\textsubscript{3} is converted to 25(OH) D is saturable, a factor that may explain the weaker response per 100 IU per day in the group receiving a higher dose than in those randomized to the lowest dose23. Thus, it should be reiterated that the only polymorphism of the VDR gene evaluated by the authors of ref18—FokI—did not influence serum vitamin D concentrations in the evaluated Australian elderly.

Waterhouse’s18 study has limitations such as the small sample size and the 25(OH) D dosing method, because the mean baseline level was somewhat lower than expected—a possible influence of specific medications or pathologies—and study participants represented an older population of predominantly European-descent (95%), making the results not generalizable to other populations.

The study by Yao et al20 lasted for 20 weeks and was conducted on 411 Han Chinese adults with baseline 25(OH) D levels between 12.5 and 50 nmol/L and BMI between 18.5 and 28 kg/m2. Patients were randomized into two groups to receive doses of vitamin D, in capsules (placebo=0 and group 2=2,000 IU) at weeks 0 and 20 of treatment. The results showed that the three FokI genotypes, AA, GA, and GG, were associated with an increase in 25(OH) D levels to 28.2 ± 3.6 ng/mL, 33.8 ± 2.1 ng/mL, and 39.6 ± 3.0 ng/mL, respectively, indicating that the G allele actually had a greater, statistically significant effect on vitamin D\textsubscript{3} supplementation efficacy.

In this randomized trial20, authors evaluated the effects of genetic and non-genetic factors on 25(OH) D and on 25(OH) DBio, which represents both free forms and those bound to albumin and appears to be biologically more active in tissues. It can be calculated using the equation proposed by Bhan et al24 from the concentrations of 25(OH) D, vitamin D–binding protein, and albumin.

Daily supplementation with 2,000 IU of vitamin D, for 20 weeks significantly increased total concentrations of 25(OH) D in 75% of the sample, where vitamin D deficiency was not corrected. In this case, genetic factors were found to have a stronger impact than non-genetic factors on responses to supplementation. The GF allele of the FokI SNP was assumed to pose a risk, and when it co-occurs with other polymorphisms, such as CYP27B1 and CYP24A1 SNPs, there is an additional need for vitamin D to achieve adequate serum concentration20.

Regarding non-genetic determinants, the increase in 25(OH) D concentration was much lower in overweight participants, confirming the importance of taking weight into account for the most reliable evaluation of vitamin D in the effects of genetic and non-genetic factors on the responses in terms of serum 25(OH) D and 25(OH)-DBio to identify a better intervention strategy20.

It is worth mentioning that the study by Yao et al20 has some limitations: all participants were Chinese adults (20–45 years of age), and therefore the findings may not be generalizable to other ethnic groups or different age groups; 25(OH) DBio concentrations were calculated instead of direct measurement and only the current Tolerable Upper Intake Level (UL) in China was used for supplementation, and thus the effects of other doses on responses after vitamin D\textsubscript{3} supplementation should be evaluated.

Another VDR SNP evaluated for 25(OH) D upregulation after supplementation in this systematic review was BsmI, a polymorphism located in the 3¢UTR region of intron 8; this polymorphism does not alter the structure and function of VDR but is strongly related to the poly(A) tail, potentially affecting mRNA stability25.

In this context, Cavalcante et al19 evaluated 40 Brazilian women randomly distributed into two groups: the treatment group (where the women received a megadose of 200,000 IU of vitamin D\textsubscript{3} [69.3 ± 6.6 years]) and a placebo group (67.3 ± 5.0 years). The intervention did not cause renal disorders, because levels of alanine amino transferase, aspartate amino transferase, urea, creatinine, and uric acid did not differ statistically significantly before and after supplementation. In addition, serum 25(OH) D levels increased significantly in the supplementation group (31.48 ± 6.0 ng/mL) compared to placebo (24.42 ± 3.8 ng/mL) after the intervention (p=
In a survey conducted on Arabs regarding the FokI and BsmI SNPs, only rs2228570 was associated with low concentrations of 25(OH) D32. However, in an African-American or Hispanic population the FokI SNP did not influence the level of vitamin D33. In studies in the Chinese population, results were less promising: Li et al34 and Robien et al35 found no interaction between 25(OH) D and the genetic variations FokI and BsmI.

It is important to highlight that two of the studies analyzed earlier were conducted in the elderly, a population group that has a higher risk of vitamin D deficiency compared to younger populations. This age-specific occurrence could be due to the unique characteristics of the aging process, which is marked by reduced skin synthesis, low food intake, increased body adiposity, lower sun exposure, decreased calcium absorption, reduced VDR, and renal production of 1,25(OH)2D18. Furthermore, it is possible to design experiments for a systematic exploration of any potential association between low levels of 25(OH) D and aging-related diseases, such as depression, osteoporosis, cardiovascular disease, type 2 diabetes, cancer, and hypertension37.

Therefore, observations from the present research is envisioned to enhance knowledge about the specific subject, particularly with respect to the insights on VDR genetic variants and supplementation effects. However, the study has some limitations, such as the exclusive use of works in the English language and the limited number of available electronic databases for this purpose.

Acknowledgments. The authors thank the Postgraduate Program in Food and Nutrition of the UFPI.
Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press (US); 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK56070/. doi: 10.17226/13050.

7. OMIM. Online Mendelian Inheritance in Man. Johns Hopkins University, Baltimore, MD, MIM Number: 601769. Available from: http://www.ncbi.nlm.nih.gov/omim/.

8. Nezbedova P, Brtko J. 25-dihydroxyvitamin D3 inductible transcription factor and its role in the vitamin D action. Endocr Regul. 2004; 38(1): 29-38.

9. Santoro D, Lucisano S, Gagliostro G, Alibrandi A, Benvenga S, Gentile R, Bellinghieri G, Buemi M, Caccamo D. Vitamin D receptor polymorphism in chronic kidney disease patients with complicated. J Ren Nutr. 2015; 25(2): 187-193.

10. Palomer X, González-Clemente JM, Blanco-Vaca F, Mauricio D. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes Obes Metab. 2008; 10(3): 185-197.

11. Nejentsev S, Cooper JD, Godfrey L, Howson JM, Rance H, Nutland S, Walker NM, Guja C, Ionescu-Targoviște C, Savage DA, et al. Analysis of the vitamin D receptor gene sequence variants in type 1 diabetes. Diabetes. 2004; 53(10): 2709-2712.

12. Mory DB, Rocco ER, Miranda WL, Kasamatsu T, Crispim F, Dib SA. Prevalence of vitamin D receptor gene polymorphisms FokI and BsmI in Brazilian individuals with type 1 diabetes and their relation to beta-cell autoimmunity and to remaining beta-cell function. Hum Immunol. 2009; 70(6): 447-451.

13. Morange PE, Saut N, Alessi MC, Frere C, Hawe Y, Yudkin JS, Tremoli E, Margaglione M, Di Minno G, Hamsten A, et al. Interaction between the C-260T polymorphism of the CD14 gene and the plasma IL-6 concentration on the risk of myocardial infarction: the HIFMECH study. Atherosclerosis. 2005; 179(2): 317-323.

14. Santos CMC, Pimenta CM, Nobre MRC. The PICO strategy for the research question construction and evidence search. Rev Lat Am Enfermagem. 2007; 15(3): 508-511.

15. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6(7): e1000097.

16. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, McQuay HJ. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996; 17(1): 1-12.

17. De Carvalho APV, Silva V, Grande AJ. Bias risk assessment of randomized controlled trials by the Cochrane collaboration tool. Diagn Treatment. 2013; 18(1): 38-44.

18. Waterhouse M, Tran B, Armstrong BK, Baxter C, Ebeling PR, English DR, Gebski V, Hill C, Kinlin MG, Lucas RM, et al. Environmental, personal, and genetic determinants of response to vitamin D supplementation in older adults. J Clin Endocrinol Metab. 2014; 99(7): e1332-1340.

19. Cavalcante IGM, Silva AS, Costa MC, Persuhn DC, Issa CTMI, Freire TLL, Gonçalves MCR. Effect of vitamin D supplementation and influence of BsmI polymorphism of the VDR gene of the inflammatory profile and oxidative stress in elderly women with vitamin D insufficiency: vitamin D3 megadose reduces inflammatory markers. Exp Gerontol. 2015; 66: 10-16.

20. Yao P, Sun L, Lu L, Ding H, Chen X, Tang J, Xu X, Liu G, Hu Y, Ma Y, et al. Effects of genetic and non-genetic factors on total and bioavailable 25(OH)D responses to vitamin D supplementation. J Clin Endocrinol Metab. 2017; 102(1): 100-110.

21. Mitchell RN, Kumar V, Abbasi AK, Fausto N, Aster JC, Robbins & Cotran: Fundamentals of Pathology. Elsevier Brazil, Sep. 27, 2017. 9 th ed. 896p.

22. Drinic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring). 2012; 20(7): 1444-1448.

23. Heaney RP, Armas LA, Shary JR, Bell NH, Binkley N, Hollis BW. 25-Hydroxylation of vitamin D3: relation to circulating vitamin D3 under various input conditions. Am J Clin Nutr. 2008; 87(6): 1738-1742.

24. Bhan I, Powe CE, Berg AH, Ankers E, Wenger JB, Karumanchi SA, Thadhani RJ. Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int. 2012; 82(1): 84-89.

25. Vuolo L, Di Somma C, Faggiano A, Colao A. Vitamin D and cancer. Front Endocrinol (Lausanne). 2013; 3(58): 1-13.

26. Elhenein MO, Chandra R, Mangion T, Moniz C. Genomic and metabolic patterns segregate with responses to calcium and vitamin D supplementation. Br J Nutr. 2011; 105(1): 71-79.

27. Poon AH, Gong L, Brasch-Andersen C, Litonjua AA, Raby BA, Hamid Q, Laprise C, Weiss ST, Altman RB, Klein TE. Very important pharmacogene summary for VDR. Pharmacogenet Genomics. 2012; 22(10): 758-763.

28. Kato N. Genetics analysis in human hypertension. Hypertens Res. 2002; 25(3): 319-327.

29. Pludowski P, Holick MF, Grant WB, Konstantinowicz J, Mascarenhas MR, Haq A, Povoroznyuk V, Balatska N, Barbosa AP, Karoonova T. et al. Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol 2018; 175: 125-135.

30. Sari DK, Tala DD, Lestari L, Hutagalung SV, Ganie RA. Vitamin D Supplementation in Women with Vitamin D Receptor Gene Polymorphisms: A Randomized Controlled Trial. Asian J Clin Nutr 2017; 9(2): 89-96.

31. Gill T. Epidemiology and health impact of obesity: an Asia Pacific perspective. Asia Pac J Clin Nutr. 2006; 15 Suppl: 3-14.

32. Sadat-Ali M, Al-Turki HA, Azam MQ, Al-Qel AH. Genetic influence on circulating vitamin D among Saudi Arabians. Saudi Med J. 2016; 37(9): 996-1001.

33. Engelman CD, Meyers KJ, Ziegler JT, Taylor KD, Palmer ND, Haffner SM, Fingerlin TE, Wagenknecht LE, Rotter JI, Bowden DW, et al. Genome-wide association study of vitamin D concentrations in Hispanic Americans: the IRAS family study. J Steroid Biochem Mol Biol. 2010; 122(4): 186-192.

34. Li LH, Yin XY, Wu XH, Zhang L, Pan SY, Zheng ZJ, Wang JG. Serum 25(OH)D and vitamin D status in relation to VDR, GC and CYP2R1 variants in Chinese. Endocr J 2014; 61(2): 133-141.

35. Robien K, Butler LM, Wang R, Beckman KB, Walek D, Koh WP, Yuan JM. Genetic and environmental predictors of serum 25(OH)D concentrations among middle-aged and elderly Chinese in Singapore. Br J Nutr 2013; 109(3): 493-502.

36. Gallagher JC. Vitamin D and aging. Endocrinol Metab Clin North Am 2013; 42(2): 319-332.

37. Meehan M, Penckofer S. The role of vitamin D in the aging adult. J Aging Gerontol 2014; 2(2): 60-71.