(9.3±4.8 and 7.1±4.2 months, respectively), here we aimed to compare the QoL between the AS and OP groups after 18 months (22.8±4.0 and 22.3±4.3 months, respectively) of follow-up.

Methods: QoL of 108 participants who chose AS, 101 who underwent OP, twelve who changed from AS to OP was evaluated using a thyroid-specific QoL questionnaire at diagnosis and during follow-up (median 23 months).

Results: The mean ages of the participants in the AS and OP groups were 47.7±11.0 and 45.1±10.0 years (p=0.075), respectively. At baseline, better physical (8.2±1.4 vs. 7.6±1.8, p=0.032), psychological (7.4±1.2 vs. 6.7±1.6, p=0.005) and total health (7.4±1.0 vs. 6.7±1.3, p=0.005) were observed in the AS group than in the OP group. After a mean follow up of 22.7±4.2 months, better physical (8.1±1.5 vs. 7.4±1.7, p=0.008), psychological (7.7±1.3 vs. 7.0±1.5, p=0.002) and total health (7.5±1.2 vs. 6.8±1.3, p=0.001) were observed in the AS group than in the OP group, whereas spiritual health was comparable between the two groups: compared with the AS group, the OP group experienced more alterations in appetite, sleep, menstrual cycle, voice, motor skill, weight, appearance, cold or heat tolerance, and body swelling. Furthermore, better QOL scores were observed in the AS group in self-concept, personal relationships, sexual life, work motivation, productivity and quality of work, feeling of isolation, driving, doing household chores, preparing meals and doing leisure activities after long term follow up.

Conclusion: Patients who underwent AS had better QOL even after long term follow up. Low risk papillary thyroid microcarcinomas do not influence survival, however surgery related deterioration of QOL lasted long and did not improve even in late post-operative stages when patients were fully recovered from surgery.

Keywords: Quality of life; papillary thyroid microcarcinoma; active surveillance; immediate surgery

SAT-LB60 Introduction: Acromegaly is a rare disease due to growth hormone (GH)-secreting pituitary adenoma. GH and IGF-1 levels are usually congruent, indicating either remission or active disease, however a discrepancy between GH and IGF-1 may occur. We aimed to evaluate the outcome of acromegalic comorbidities in patients with congruent GH and/or IGF-1 levels vs discordant biochemical parameters.

Methods: Retrospective analysis of the data of 3173 patients from the Liège Acromegaly Survey (LAS) allowed to include 190 patients from 8 tertiary referral centers across Europe, treated by surgery, with available data concerning diabetes mellitus (DM) and hypertension (HT) both at diagnosis and at last follow-up. We recorded for all the patients the number of antihypertensive and anti-diabetic drugs used at the first evaluation and at last follow-up.

Results: Ninety-nine patients belonged to the REM group (Concordant parameters), sixty-five patients were considered as GH₁[−] and 26 patients were considered as IGF-1₁[−]. At diagnosis, 63 patients (33.1%) had HT and 54 patients had DM (28.4%). There was no statistically significant difference in terms of number of anti-HT and anti-diabetic drugs at diagnosis versus last follow-up (mean duration=7.3±4.5years) between all 3 groups.

Discussion: The results highlight that the long-term outcome of acromegaly does not tend to be more severe in patients with biochemical discordance in comparison with patients considered as in remission on the basis of concordant biological parameters, suggesting that patients with biochemical discordance do not require a closer follow-up.

Neuroendocrinology and Pituitary HYPOTHALAMIC-PITUITARY DEVELOPMENT AND FUNCTION

Molecular Investigation of Recessive Inheritance by Exome Sequencing of Patients With Congenital Hypopituitarism

Nathalia Garcia Bianchi Pereira Ferreira, MD¹, Joao Luiz do Oliveira Madeira, MD², Renata Kertz, Master Student³, Peter Gergics, MD, PhD⁴, Anna Flavia Figuereado Benedetti, MSc⁵, Isabela Peixoto Biscotto, MD⁶, Qing Fang, MD⁷, Qiyan Ma, MD⁸, Bilge Ayse Ozel, MD⁹, Jun Li, MD¹⁰, Sally Ann Camper, PhD¹¹, Alexander Augusto Lima Jorge, MD, PhD¹², Berenice Bilharinho Mendonca, MD¹³, Ivo J. Arnhold, PhD¹⁴, Luciani Renata Silveira Carvalho, MD, PhD¹⁵.

¹Medical School of University of Sao Paulo, Sao Paulo, Brazil.
²University of Michigan Dept. of Human Genetics, Ann Arbor, MI, USA.
³University of Sao Paulo School of Medicine, Sao Paulo, Brazil.

SAT-LB58 Background: Growth hormone deficiency (GHD) occurs in ~1/8000 individuals, and 14% of the patients have mutations in five major candidate genes. However, over 30 genes have been implicated in hypopituitarism. WES (Whole Exome Sequencing) is a promising approach for molecular diagnosis of patients with GHD because it offers the opportunity to screen for all known genes in
addition to novel disease gene discovery. **Methods:** WES was performed for 13 unrelated patients with congenital hypopituitarism born from consanguineous parents. The variants were filtered assuming autosomal recessive inheritance, rare variants in population databases, in silico analysis predicted as deleterious and pituitary and/or hypothalamus gene expression. To determine whether variants in **CDH2** that were predicted to be deleterious were functionally significant, L1 fibroblast lines that have no endogenous **CDH2** protein were stably transfected with either human wild type or variant **CDH2**, the transfected cells were labelled with lipophilic dyes, and cell adhesion properties were assessed.

Results: Homozygous pathogenic or likely pathogenic allelic variants were found in 2 of the 13 patients. First, a female patient with GH, TSH, ACTH and LH/FSH deficiencies presenting ectopic posterior pituitary lobe, non-visualized stalk, and hypoplastic anterior pituitary lobe had two homozygous rare variants predicted as deleterious: **PLA2G4A** p.Asn703Lys and **CDH2** c.865G>A (p.Val289Ile). Only **CDH2** is known to be expressed in the pituitary, and **Pla2g4a** null mice have a pleiotropic phenotype without obvious hypopituitarism. The **CDH2** variant is rare and classified as deleterious. Sanger sequencing of **CDH2** in four family members of the affected proband revealed that the unaffected parents and two unaffected siblings were heterozygous carriers. The effect of the **CDH2** variant on cell aggregation was assessed in cell culture. Large cell aggregates formed in cells transfected with wild type **CDH2**, but cell aggregates were small or absent in cells that were either non-transfected or transfected with the **CDH2** variant. Second, a patient with isolated GHD and no MRI abnormalities was identified with a rare, likely deleterious, homozygous **GH1** c.171delT (p. Phe 57Leufs*43) variant. He had a sister who died at the age of 5 and had features of GHD. **Conclusion:** In a cohort of congenital hypopituitarism from consanguineous parents we had 15% molecular diagnosis using WES. We identified a variant in a known gene, **GH1** c.171delT and a variant in a novel gene, **CDH2** p.Val289I.

Cardiovascular Endocrinology

VASCULAR DISEASE AND PATHOPHYSIOLOGY

MiRNA-99a and mTOR2 Mediate Enhanced Endothelial Mineralocorticoid Receptor Signaling-Induced Activation of Sodium Channel and Endothelium Stiffness

Guanghong Jia, PhD1, Annaya A. Aroor, MD, PhD1, Javad Habibi, PhD1, Yan Yang, MD1, Vincent G. DeMarco, PhD1, Michael A. Hill, PhD1, Adam T. Whaley-Connell, DO, MSPH1, Frederic Jaisser, PhD2, Iris Zamir Jaffe, MD, PhD3, James R. Sowers, MD3.

1University of Missouri, Columbia, MO, USA 2Sorbonne University, Paris, France 3Tufts Medical Center, Boston, MA, USA 4University of Missouri - Columbia, Columbia, Columbia, MO, USA.

SAT-LB97

In diet induced obesity enhanced endothelial cell (EC) mineralocorticoid receptor (MR) (ECMR) and downstream sodium channel (EnNaC) activity increases oxidative stress and inflammation, thereby promoting vascular stiffness and associated impaired endothelial mediated relaxation. For example, consumption of a Western diet (WD) containing excess fat (46%) and fructose (17.5%) for 16 weeks elevated plasma aldosterone levels and increased vascular MR expression in conjunction with increased endothelial and vascular stiffness in female mice. EC specific deletion of either the ECMR or EnNaC significantly attenuated this diet induced endothelial/vascular stiffness. Emerging information suggests that abnormal expression of miR-99a may be involved in these processes. To this point, we recently observed that aldosterone (10⁻⁷ mol/L) causes a reduction in miR-99a that was prevented by the MR antagonist, spironolactone (10µM) in in vitro ECs. By using RNA sequencing, we also demonstrated that ECMR activation reduced arterial miR-99a expression in diet induced obesity. Since the mammalian target of rapamycin (mTOR2)/SGK1 signaling pathway is involved in aldosterone activation of EnNaC we then explored the effects of miR-99a on mTOR2 expression. Indeed, miR-99a reduced mTOR2. We further observed that inhibition of mTOR2 with PP242 inhibited EnNaC activity as determined by patch clamping of ECs. Collectively these data suggest that consumption of a WD induced ECMR activation and increased EnNaC activity and endothelial stiffness, in part, by reducing the tonic inhibitory effects exerted by miR-99a on mTOR2 mediated EnNaC activation.

Genetics and Development (including Gene Regulation)

GENETICS AND DEVELOPMENT AND NON-STEROID HORMONE SIGNALING I

Analysis of Clinical Characteristics and Gene Mutation in Four Cases of Gitelman Syndrome

Bin Yao, Professor.
The Third Affiliated Hospital of Sun Yat-sen university, Guangzhou, China.

SUN-LB133

Analysis of Clinical Characteristics and Gene Mutation in four Cases of Gitelman Syndrome
Department of Endocrinology, the Third Affiliated Hospital of Sun Yat Sen University
Professor BinYao

Abstract: Gitelman syndrome is an autosomal recessive renal tubular disorder characterized by renal salt wasting with secondary hyperreninemia and hyperaldosteronism, chronic hypokalemia with renal K wasting and metabolic alkalosis, and hypomagnesemia, and hypocalcuria. GS was found to be caused by mutations in SLC12A3 encoding the thiazide-sensitive sodium chloride cotransporter (NCC) on the apical membrane of distal convoluted tubule. The prevalence worldwide is estimated at approximately 1:40,000, making it one of the most frequent inherited renal tubular disorders. To date, over 400 mutations scattered throughout SLC12A3 have been identified in GS patients. The majority of patients are compound heterozygous for SLC12A3 mutations, but a significant number of GS patients are found to carry only a single SLC12A3 mutation. The type of the SLC12A3 mutation may be a determinant factor in the severity of GS. The purpose of this