An Overview of Rodent Toxicities: Liver and Kidney Effects of Fumonisins and Fusarium moniliforme

Kenneth A. Voss,1 Ronald T. Riley,1 W.P. Norred,1 Charles W. Bacon,1 Filmore I. Meredith,1 Paul C. Howard,2 Ronald D. Plattner,3 Thomas F.X. Collins,4 Deborah K. Hansen,2 and James K. Porter1

1Toxicology and Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Richard Russell Agricultural Research Center, Athens, Georgia, USA; 2National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA; 3National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA; 4Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA.

Fumonisins are produced by Fusarium moniliforme (= F. verticillioides) and other Fusarium that grow on corn worldwide. They cause fatal toxicoses of horses and swine. Their effects in humans are unclear, but epidemiologic evidence suggests that consumption of fumonisin-contaminated corn contributes to human esophageal cancer in southern Africa and China. Much has been learned from rodent studies about fumonisin B1 (FB1), the most common homologue. FB1 is poorly absorbed and rapidly eliminated in feces. Minor amounts are retained in liver and kidneys. Unlike other mycotoxins, fumonisins cause the same liver cancer promotion and subchronic (studies ≤90 days) liver and kidney effects as F. moniliforme. FB1 induces apoptosis of hepatocytes and of proximal tubule epithelial cells. More advanced lesions in both organs are characterized by simultaneous cell loss and replacement, a condition favorable for carcinogenesis. On the molecular level, fumonisins inhibit ceramide synthase, and disrupt sphingolipid metabolism and, theoretically, sphingolipid-mediated regulatory processes that influence apoptosis and mitosis. Liver sphingolipid effects and toxicity are correlated, and ceramide synthase inhibition occurs in liver and kidney at doses below their respective no-observed-effect levels. FB1 does not cross the placenta and is not teratogenic in vivo in rats, mice, or rabbits, but is embryotoxic at high, maternally toxic doses. These data have contributed to preliminary risk evaluation and to protocol development for chronic toxicity studies and chronic toxicity studies of FB2 in rats and mice. Key words: developmental toxicology, fumonisins, Fusarium moniliforme (= F. verticillioides), hepatotoxicity, nephrotoxicity, sphingolipids. — Environ Health Perspect 109(supp 2):259–266 (2001).

http://ehpnet1.niehs.nih.gov/docs/2001/suppl-2/259-266voss/abstract.html

Fumonisins are produced by Fusarium moniliforme Sheldon (= F. verticillioides), F. proliferatum, and other Fusarium species (1–4). They were discovered by Gelderblom et al. (5) in 1988, and their natural occurrence in corn was discovered soon thereafter (6–10). Fumonisin B1 (FB1) is the most common homologue (Figure 1); however, a growing number of other homologues and derivatives have been described. Fumonisins have worldwide distribution in corn and occur in corn-based feeds and foods. A comprehensive review of this subject by Dutton has been published (11). Equine leukoencephalomalacia (ELM) and porcine pulmonary edema, fatal toxicoses associated with the consumption of (F. moniliforme) moldy feed by horses (12,13) and swine (13), respectively, have been experimentally reproduced using purified FB1 (14–18).

The impact of fumonisins on human health remains unclear but is of concern. Consumption of F. moniliforme-molded, home-grown corn has been correlated with high esophageal cancer rates in areas of southern Africa (19–23) and central China (22), and comparatively high fumonisin concentrations are found in the corn from these high esophageal cancer areas (4,23–28). It has also been suggested that fumonisins are a risk factor for liver cancer (29), and FB1, like some F. moniliforme isolates (30,31), was hepatocarcinogenic when fed (50 ppm) to male BD IX rats (32). Studies are limited, but hepatotoxicity and atherogenic serum lipid profiles, perhaps secondary to liver dysfunction, were found in nonhuman primates fed diets containing fumonisin (13,33,34). Finally, a possible link between fumonisin exposure and neural tube defects in humans has been proposed (35).

In vivo investigations using rodents and rabbits have contributed significantly to F. moniliforme and fumonisin research. Fumonisins were misnamed using an in vivo liver bioassay (5). Data from subchronic toxicity studies have been used in preliminary risk evaluations (36,37), have been useful for developing protocols for chronic studies, and have otherwise increased our understanding of these compounds. An overview of toxicity and other important data obtained during in vivo investigations follows.

Absorption, Biodistribution, and Pharmacokinetics

Fumonisins are poorly absorbed and rapidly eliminated; small amounts accumulate in liver and kidneys (Table 1). Norred et al. (38) recovered 80% of the radiolabel from feces within 48 hr and ≤3% from urine within 96 hr after giving a single oral dose of [14C]FB1 (0.045 µCi) to rats. Small but relatively constant amounts of radiolabel were found in liver (about 0.4% of the dose) and kidney (about 0.1% of the dose) up to 96 hr postsedation. After administering the same dose for 3 consecutive days to rats, more than 75% of the [14C] was excreted in feces and about 4% in urine within 72 hr of the last dose. Liver- and kidney-specific activities peaked 24 hr after the last dose, but persisted for another 48 hr. Like FB1, fumonisin B2 (FB2) is also rapidly cleared from plasma and excreted (82% within 72 hr, mostly during the first 24 hr), predominantly in the feces (39). Only about 1% of the dose was recovered in the urine.

Liver and kidney accumulated relatively high amounts of [14C]FB1 following intraperitoneal (ip) or intravenous (iv) dosing to rats (Table 1). Up to 66% of the radiolabel appeared in feces, suggesting that FB1 (or possibly a metabolite) is excreted in bile. This was confirmed by Shephard et al. (40) who, within 4 hr of giving 7.5 mg/kg body weight (bw) [14C]FB1 ip to cannulated rats, recovered about 67% of the dose as unchanged FB1 in the bile. In contrast, only 0.2% of the radiolabel was recovered in bile following oral administration of the same dose (7.5 mg/kg bw [14C]FB1), further suggesting that gastrointestinal absorption of FB1 by rats is low.

Little pharmacokinetic data is available. Shephard et al. calculated time of plasma maximum concentration (Tmax) of about 20 min, peak plasma concentration (Cmax) of 8.6 µg/mL, and a serum elimination half-life of...

This article is based on a presentation at the International Conference on the Toxicology of Fumonisin held 28–30 June 1999 in Arlington, Virginia, USA.

Address correspondence to K.A. Voss, Toxicology and Mycotoxin Research Unit, Agricultural Research Service, USDA, Richard Russell Agricultural Research Center, 850 College Station Rd., Athens, GA 30605 USA. Telephone: (706) 546-3116. Fax: (706) 546-3116. E-mail: kvoss@ars.usda.gov

The expert technical assistance of N. Brice, P. Malcolm, M. Nelms, J. Showker, P. Stancel, E. Way, and many others are gratefully acknowledged. Special thanks to W. Chamberlain. The consultations and contributions of A. Merrill, Jr. and W. Marassas are appreciated. Received 10 April 2000; accepted 1 December 2000.
Toxicology: Subchronic Effects of Fumonisins in Rats

Fumonisins, *F. moniliforme*, and *in Vivo* Toxicity

Fumonisins are fungal products. Therefore, the relationship between fumonisin toxicity and toxicity of the fungi should be kept in perspective. Not all fungi identified as *F. moniliforme* are toxic. For example, culture material (0, 4, 8, or 16% w/w in the diet) of isolate MRC 826 caused significant dose-related toxicity and liver pathology (kidney was not examined) when fed to rats for 4 weeks, whereas isolate RRC 415 culture material was without effect (44). Similarly, only 3 of 11 *F. moniliforme* isolates induced γ-glutamyl transpeptidase (GGT)-positive liver foci in rats (45). MRC 826 culture material (0.5% in the diet), but not a 10-fold higher dietary concentration of isolate MRC 1069 culture material, caused hepatocarcinomas in rats (30). It has been shown that MRC 826 is a fumonisin producer (46), but that both MRC 1069 (30) and RRC 415 (47) produce predominantly fusarin C.

Additionally, *F. moniliforme* produces other biologically active, potentially toxic compounds including fusariocins (48), the mutagen fusarin C, other fusarins (49-50), and fusaric acid (51). None of these have reproduced the *in vivo* effects of toxic *F. moniliforme* isolates (30,52-54). Conversely, the link between *F. moniliforme* and fumonisin has been independently established by several research groups; that is, the *in vivo* toxicities of corn (involved in ELEM outbreaks) naturally contaminated with *F. moniliforme* (9,55), culture materials of (toxic) *F. moniliforme* isolates, polar culture material extracts, and purified FB₁ are qualitatively the same (5,32,45,56-61). FB₁, fumonisin B₁ (FB₁), and probably also hydrolyzed FB₂ (HFB₁) exert the same *in vivo* effects (62-64).

Hepatotoxicity

Histopathologic effects in rats, which have been referred to by various terms such as hepatopathy, hepatosis, or toxic hepatitis, have been reported by several research groups. Their descriptions are consistent, differing only in detail and nomenclature (5,56-58,61,65-67). The initial finding is small, rounded, eosinophilic hepatocytes that appear to have pulled away from neighboring cells. The chromatin of these cells is irregularly condensed and marginated or may be fragmented. Inflammatory response is absent to minimal. Although their appearance is consistent with apoptosis, these cells were commonly described as single-cell necrosis until their apoptotic nature was histochemically confirmed by Tollefson et al. (61) and Howard et al. (68,69). This does not mean, however, that necrosis (oncotic necrosis in the traditional sense, as opposed to programmed cell death or apoptosis) does not play a role in fumonisin-induced hepatotoxicity. Necrotic hepatocytes are also present early-on. Serum chemical indications of hepocellular injury, including increased alanine and aspartate transaminase, alkaline phosphatase, and lactate dehydrogenase activities, as well as increased cholesterol and triglyceride concentrations (Figure 2), are routine, early findings. As tissue injury progresses, both apoptotic and necrotic cells increase in number, mitotic figures appear with increasing frequency, hepatocellular cytoplast becomes increasingly vacuolated, and cytomegaly with variability in cell and nuclear size becomes obvious. Bile duct and oval cell proliferation, foci of cellular alteration, cholangiomyomatous lesions, and fibrosis occur in long-standing or advanced lesions, giving a picture of nodular regeneration or cirrhosis (32). Females are generally more sensitive than males (Table 2). Along with the aforementioned clinical chemical indicators, which continue to rise, serum GGT activity and bilirubin concentration increase as liver injury becomes more severe.

Fumonisins induced both GGT and the placental form of glutathione S-transferase (GSTP)-positive foci in BD IX and Fischer rats (5,62,70,71). Foci induction in diethylnitrosamine-pretreated Fischer rats was dose related, and GSTP was a more sensitive marker than GGT (Figure 3) (70). From these and other data, Gelderblom et al. (72) proposed that FB₁ was a tumor promoter at doses not causing significant liver pathology, but when given at overtly hepatotoxic doses, it was also a weak initiator. FB₁ (50 ppm) caused marked nonneoplastic changes (cirrhosis) and hepatocellular carcinomas when fed to BD IX males for 20 months or more (32). Relatively

![Figure 1. Chemical structure of FB₁](image)

![Figure 2. Selected serum chemical effects of FB₁](image)

| Table 1. Selected studies on the bioavailability of fumonisins in rats following iv or ip dose administration. |
| --- | --- | --- | --- |
| Strain (sex) | Dosing | Findings | Reference |
| BD IX (male) | 7.5 mg/kg [¹⁴C]FB₁, single dose, ip | After 24 hr: 66% of dose recovered in feces; 32% recovered in urine; 1% found in liver, traces remained in kidney and blood cells. | (120) |
| Wistar (male), bile duct cannulated single dose, ip | 7.5 mg/kg [¹⁴C]FB₁, single dose, ip | After 24 hr: about 87% of dose recovered in bile, mostly (approximately 80% of dose) within the first 4 hr. | (127) |
| Sprague-Dawley (male) | 0.0045 µCi [¹⁴C]FB₁, single dose, iv | γC appears in gastrointestinal tract (peaking at approximately 10% of dose after 1 hr); feces (approximately 25% of dose recovered after 96 hr); urine (approximately 10% recovered after 12–96 hr); liver (approximately 45 and 25% of dose found after 1 and 96 hr, respectively); and kidney (approximately 10% of dose from 10 min to 96 hr). | (38) |
| Sprague-Dawley (female), pregnant | 0.145 µCi [¹⁴C]FB₁, single dose, iv on GD 15 | After 1 hr: about 45% of dose recovered in gastrointestinal tract, mostly in feces; liver and kidney contain about 14.5 and 4.0% of dose, respectively; only 1.2% of dose found in blood. | (108) |
| BD IX (males) | 7.5 mg/kg FB₁, single dose, ip | t_{1/2max} approximately 20 min; C_{max} = 3.5 µg/mL; serum T_{1/2} of approximately 26 min. Concentration peaks in plasma 10 min after injection, followed by rapid elimination; approximately 1 and 84% of dose recovered from urine and feces, respectively, through 72 hr, mostly within first 24 hr. | (29) |
and detached from adjacent cells and the medullary junction" in some publications). Many of the apoptotic cells appear rounded and appear as "cortico-medullary junction" in some publications. Environmental Health Perspectives • Volume 109 | Supplement 2 | May 2001

Table 2. Dose response* in liver and kidney: subchronic feeding studies of FB1 in rats.

Strain	Study duration	Doses (ppm FB1)	Liver	Kidney			
		Males	Females	Males	Females	Reference	
Sprague-Dawley	28 days	0, 15, 50, 150	50 < NOEL < 150	50 < NOEL < 150	NOEL < 15	15 < NOEL < 50	(58)
Fischer 344	90 days	0, 1, 3, 9, 27, 81	81 < NOEL	27 < NOEL < 81	3 < NOEL < 9	27 < NOEL < 81	(57)
Fischer 344	20 days	0, 99, 163, 234, 484	163 < NOEL < 234	99 < NOEL < 163	NOEL < 99	99 < NOEL < 163	(67)

*NOEL (no-observed-effect level) as defined by histopathology and other findings.

Figure 3. Dose-related induction of GGT and the placental form of GSTP-positive foci in liver of male Fischer 344 rats (n = 5/group). The animals were fed diets with up to 500 ppm FB1 for 2 weeks, beginning 2 weeks after pretreatment with 200 mg/kg diethylthiourea (ip injection). The number of GGT and GSTP foci per square centimeter was significantly increased (p < 0.05) at ≥ 250 ppm and ≥ 100 ppm FB1, respectively. The percent area involved per liver section was significantly increased (p < 0.05) at ≥ 250 ppm and ≥ 100 ppm FB1, respectively. Figure adapted from the data of Gelderblom et al. (70).

Figure 4. Relative (% bw) kidney weight was significantly (p < 0.05) decreased in male Sprague-Dawley rats (n = 5/group) fed 15, 50, or 150 ppm FB1 for 4 weeks. Significant differences in relative kidney weight were not found in females; however, absolute kidney weight (g) of females fed 150 ppm was significantly lower than control values (not shown). Data from Voss et al. (58).

Nephrotoxicity

The kidney was the most sensitive target organ in Sprague-Dawley and Fischer 344 rats fed FB1 for up to 90 days (Table 2) (57,58,64,74) or given FB1 by gavage or ip injection for 4–11 days (65–67,75). Males were more sensitive than females. In contrast, Gelderblom et al. (5,32) described hydropic degeneration, occasional necrosis, and a few other renal abnormalities in their studies in BD IX rats, but did not refer to the kidney as a target organ. This suggests that significant differences in response to fumonisins may exist among various rat strains.

As in liver, apoptosis is the initial microscopic finding in kidney. Apoptotic cells are initially found almost exclusively in tubules of the outer medulla (designated “cortico-medullary junction” in some publications). Many of the apoptotic cells appear rounded and detached from adjacent cells and the basement membrane. Mitotic figures appear, and the number of apoptotic cells increases in the tubule epithelium as injury progresses. Cytoplasmic vacuolation and basophilia, decreased cellular height, and alterations in nuclear size and staining become evident. At this point, lesions may extend deeper into the medulla or into the cortex, and epithelial cells are sloughed into the tubular lumen. Thus, there is simultaneous cell loss and replacement revealed on three levels: on the cellular level by apoptosis and mitosis, on the histologic level by tubular atrophy and hyperplasia (regeneration), and grossly by decreased kidney weight (Figure 4). The failure of regeneration to keep pace with cell loss may be quite important, as imbalances between cell loss and replacement may exist among various rat strains.

Other in Vivo Toxicologic Findings in Rats

There are indications that the immune system may be a target. Bondy et al. (60) found disseminated thymic necrosis with decreased thymic weight and increased serum IgM concentrations in FB1-exposed rats. Others found that the immune responses to sheep red blood cells and to splenic clearance of Listeria monocytogenes were slightly decreased in rats given 15 (L. monocytogenes) or 25 (sheep red blood cells) mg/kg bw FB1 for 14 days (81). Testicular tubule epithelial degeneration (59), decreased heart weight (54), adrenal cortex hypertrophy, and cytoplasmic vacuolation (consistent with Zona fasciculata lipidosis and probably a nonspecific stress response) (64), cytoplasmic vacuolation of myeloid precursor cells in bone marrow, and other hematologic findings (66) have been found in rats given fumonisins or F. moniliforme culture materials. Little toxicologic importance has yet been given to any of these observations.

Because of the human health implications, esophageal effects of fumonisins are of special interest. Maras et al. (31) found basal cell hyperplasia of the esophagus in rats fed F. moniliforme culture material. Others have noted a transient increase in the 5-bromo-2’-deoxyuridine labeling index in esophageal epithelium 3 days following an iv injection of 1.25 mg/kg bw (82), which suggests that FB1 may be mitogenic under some conditions. However, there is no evidence from subchronic (5,57,58,61) or chronic (32,73) feeding studies of purified FB1 that the esophagus is a target organ. Furthermore, FB1 (5 mg/kg bw/day for 5 weeks) had no effect on the...
number of esophageal papillomas produced in rats concurrently given the esophageal carcinogen N-methylbenzyl-nitrosamine (83). Thus, there is no evidence from rodent studies that FB is an esophageal carcinogen, and the possibility that F. moniliforme produces other potentially (esophageal) carcinogenic compounds should not be dismissed.

Hepatic and Renal Toxicity in Other Laboratory Species

Liver and kidney are also targets in mice (74,84,85). The pathology is similar to that seen in rats, and females are more sensitive to hepatotoxicity than males. Apoptosis, hepatocellular hyperplasia, bile canalicular hyperplasia, and Kupffer cell hyperplasia were the principal findings in females (B6C3F1) fed ≥ 99 ppm FB1, and males fed 484 ppm FB1, for 4 weeks (68,73). A hepatocellular cytoplasmic alteration described as reduced cytoplasm, basophilic, and loss of cytoplasmic vacuoles was found in both sexes fed ≥ 99 ppm. Histopathology findings (hepatopathy) in female B6C3F1 mice fed 81 ppm FB1 for 90 days (57) were characterized by apoptosis (= single-cell necrosis), cytomegaly, increased mitotic figures, scant inflammatory infiltrates, and pigmented macrophages. Serum chemical indications of hepatic injury of the same type found in rats also occurred.

Compared to rats, mice are resistant to nephrotoxicity. No kidney lesions were found in mice fed diets with 81 ppm FB1, for 90 days (57) or diets with 484 ppm FB1, for 28 days (68). However, when given at relatively high doses by oral or parenteral routes, FB1 is nephrotoxic, as illustrated by the findings of Sharma et al. (84). They found terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL)-positive cells in the renal tubules of male but not male B6C3F1 mice given 15–75 mg/kg FB1 by gavage for 14 days.

Rabbits are quite sensitive to FB1 (86). As in male rats, the kidney is a more sensitive target organ than liver. Morphologic, serum chemical, and tissue sphingolipid findings were similar to those seen in rodents.

Fumonisins and Sphingolipids: Mechanistic Considerations

The preponderance of experimental evidence, including evaluations of unscheduled DNA synthesis, Salmonella typhimurium mutagenicity, SOS response in Escherichia coli, mitotic index, and micronucleus formation [reviewed by Howard (87)], suggests that fumonisins exert their effects through a nongenotoxic mode of action. A significant breakthrough in understanding these compounds occurred when Wang et al. (88) discovered that fumonisins inhibit the enzyme ceramide synthase [sphinganine (spingo)-N-acetyltransferase], leading to disruption of de novo sphingolipid biosynthesis. The immediate consequence thereof are accumulation of the sphingoid bases sphinganine (Sa) and sphingosine (So), an increase in the Sa to So ratio (Sa/So), and depletion of complex sphingolipids (CSLs) in tissues (Figure 6).

Recognizing the importance of sphingolipids in cell regulatory processes, including those related to proliferation and apoptosis (76,89–91), investigators have proposed that ceramide synthase inhibition is the critical mechanistic step in fumonisin toxicity, starting a cascade of molecular events eventually leading to cytotoxicity or neoplasia. Fumonisins, sphingolipid effects, and toxicity are correlated in vivo. Liver and kidney Sa, So, and Sa/So were increased in Sprague-Dawley rats and Sa/So were increased in B6C3F1 mice given 15–150 ppm FB1 for 4 weeks (Figure 7) (80), and increases occurred at doses equal to or less than those causing microscopic lesions (apoptosis). Importantly, liver and kidney Sa/So increases were correlated with the severity of hepatopathy and nephropathy in rats fed F. moniliforme culture material (71 ppm FB1), water-extracted culture material (11 ppm FB1), or an alkali-treated (nixtamalized) culture material containing 58 ppm HFB1, but no measurable FB1 (92,93).

Figure 6. Simplified depiction of the de novo synthesis of sphingolipids. Abbreviations: CSL, complex sphingolipids FBx; fumonisins B; SM, sphingomyelin. FBx inhibit incorporation of the sinto ceramide (Cer), thus increasing sphingoid bases Sa and So g cellular Sa and So, disrupting CSL, and otherwise disrupting sphingolipid metabolism. Data from You et al. (124).
Although liver Sa/So of the dams fed 55 ppm FB1 was significantly increased, no differences in the Sa/So of control and high-dose (55 ppm) fetuses were found on GD 15 (abdominal slices containing liver and kidney), indicating that fumonisins did not cross the placenta. This was corroborated in a second study in which no radiolabel (<0.02% of the dose) was found in the fetuses following iv injection of [14C]FB1 to pregnant females on GD 15 (106).

Pregnant rats were given 1.875–15 mg/kg bw fed FB1 on GD 3–16 (107) and examined on GD 17 and GD 20. FB1 had no effect on maternal reproductive variables. The high dose (15 mg/kg FB1) was maternally toxic, causing decreased weight gain on GD 17, decreased kidney weights, and increased Sa/So of liver, kidney, and serum. Sa/So was also increased in livers of dams given ≥7.5 mg/kg; kidneys of dams given ≥1.875 mg/kg, and serum of dams given 7.5 mg/kg FB1. Decreased length and weight of female fetuses were noted on GD 20. Otherwise, there was no evidence of fetal toxicity or teratogenicity. The study was repeated at doses ranging from 6.25 to 50 mg/kg FB1 (108). Apoptosis and other microscopic findings typical of fumonisins were found in kidney (≥6.25 mg/kg) and liver (25 or 50 mg/kg). Increased Sa/So was found in maternal liver (≥25 mg/kg), kidney (≥6.25 mg/kg), and serum (≥25 mg/kg). Fetal deaths were increased at 25 and 50 mg/kg, and the number of viable fetuses/dam (12.0 ± 1.1 vs control value of 14.0 ± 0.5), fetal length, and fetal weight were decreased at 30 mg/kg. The incidence of hydrocephalic fetuses and skeletal anomalies such as wavy rib and reduced ossification was increased somewhat at 50 mg/kg, but no teratogenic effects were found. Sa/So of fetal tissues were unchanged at any of the doses studied, suggesting that the fetal effects were indirect and secondary to maternal toxicity.

Results of other developmental toxicity studies (Table 3) generally agree and likewise suggest that FB1 is not teratogenic but may be embryotoxic at maternally toxic doses (109,110). In contrast, Floss et al. (111,112) concluded that FB1 was a developmental toxin in hamsters at dosages that were not maternally toxic. It is possible that there are species-related differences in maternal response. However, detailed serum chemical, histopathologic, or fetal and maternal tissue sphingolipid evaluations, which may have revealed maternal toxicity in the hamsters, were not undertaken. Collins et al. (107,108), LaBorde et al. (110), and Voss et al. (106) have shown that organ weight, pathology, and sphingolipid effects in dams that otherwise appear unaffected by FB1.

Table 3. Summary of selected developmental toxicity studies of FB1 in laboratory species.

Species	Dosing	Findings and comments	References
Fischer 344 rats	0, 30, 60 mg/kg FB1; by gavage; GD 8–12	Fetal: decreased litter weight (approximately 20% reduction at high dose); hypoplasia (delayed or incomplete ossification) of sternebrae and vertebral bodies at 30 and 60 mg/kg. Maternal: no significant weight gain effects. Comment: other data relevant to maternal toxicity such as pathology, serum chemistry, or sphingolipid profiles not reported.	(122)
Syrian hamsters	0, 12, 18 mg/kg FB1; by gavage; GD 8 and 9	Fetal: increased fetal death and resorption; decreased fetal weight; one litter had fetuses with hooked/curled tails; one litter had fetuses with ectodactyly. Maternal: no weight gain effects. No differences in serum AST and bilirubin. Reference to some hepatic and placental pathologic changes. Comment: dose response of liver and placental pathology not described. Kidney pathology or sphingolipid profiles (indicators of maternal toxicity) not reported.	(112)
New Zealand white rabbits	0, 0.1, 0.5, 1 mg/kg FB1; by gavage; GD 3–9	Fetal: 13–16% decrease in body weight and decreased kidney and liver weight at 0.5 and 1 mg/kg. Otherwise, no significant findings. Fetal tissue Sa/So unaffected. Maternal: mortality increased at ≥0.5 mg/kg. Increased Sa/So of liver, kidney, serum, and urine. Comment: no evidence of teratology or significant developmental toxicity in presence of maternal toxicity.	(113)
CD-1 mice	0, 12.5, 25, 50, 100 mg/kg FB1; by gavage; GD 7–15	Fetal: increased fetal death (resorptions), decreased fetal weight and increased incidence of hydrocephalus at ≥25 mg/kg. No increase in fetal hepatic Sa/So. Maternal: mortality at two highest doses. Significantly reduced maternal weight gain at 100 mg/kg. Significant hepatic pathology, increased serum ALT and increased liver Sa/So in dams given ≥25 mg/kg. Comment: fetal toxicity secondary to maternal toxicity; Sa/So indicates that FB1 does not cross placenta. Corroborates results of study on developmental toxicity of F. moniliforme culture material extracts (106)	(109,123)

Abbreviations: AST, aspartate aminotransferase activity; ALT, alanine aminotransferase activity.
It has been suggested that fusaric acid, another mycotoxin commonly produced by *F. moniliforme* (51, 113), exacerbates fumonisin toxicity (114, 115). It demonstrated synergistic embryotoxicity by simultaneous injection of FB1 and fusaric acid in vivo. Diets containing *F. moniliforme* MRC 826 culture material providing low (3.4 ppm), slightly higher (18 ppm), or very high (437 ppm) amounts of FB1 and, at each fumonisin level, 0, 20, 100, or 400 ppm fusaric acid were fed to rats for 4 weeks (54). Dose-related body weight, serum chemical, liver and kidney pathologies, and renal sphingolipid effects typical of fumonisins were caused by the culture material. No evidence of synergism was found. Fusaric acid alone up to 400 ppm in the diet was not toxic, and its presence did not modify the response of the animals to the culture material.

Masa flour is made from nixtamalized corn. During nixtamalization, corn is boiled under alkaline conditions sufficient to convert fumonisins to their hydrolyzed forms (117, 118). A study by Hendrich et al. (63) showed that nixtamalization did not reduce hepatotoxicity or cancer-promoting activity of *F. proliferatum* culture material, even though FB1 and FB2 were converted to HFB1 and HFB2. However, others reported that although cytotoxicity in vitro, purified HFB1 had no effect in vivo, and they proposed that it was not gastrointestinally absorbed (62). To further study nixtamalization and in vivo toxicity, Voss (92) fed rats *F. moniliforme* culture material providing 71 ppm FB1, water-extracted culture material providing about 11 ppm FB1, or a nixtamalized culture material providing 58 ppm HFB1, but no measurable FB1. After 4 weeks the culture material and the nixtamalized culture material caused the hepatic and renal lesions typical of fumonisins, though the nixtamalized material was somewhat less potent. The water-extracted culture material elicited a noticeably lesser nephrototoxic response and was not hepatotoxic. Sa and Sa/So increases in liver and kidney were increased in all three groups, and the increases were correlated with the severity of liver and kidney injury (93). These results agree with the in vitro findings of Norred et al. (119), who reported that HFB1 inhibited ceramide synthase in precision-cut rat liver slices, but less potently than FB1. The consequences of chronic HFB1 exposure remain unknown, and, given the popularity of masa-based food products, additional investigations on its occurrence in foods and its toxicity are needed.

Summary and Conclusions

In vivo studies of *F. moniliforme* and fumonisins in rodents have shown that FB1 and probably FB2, FB5, and HFB1 cause the toxic and pathologic effects of *F. moniliforme*. These studies have provided other important data including the following: a) Gastrointestinal absorption is low, absorbed fumonisins are rapidly eliminated, and only minor amounts are retained in liver and kidney. b) Liver and kidneys are the two major target organs, although differences in response occur between sexes, strains, and species. c) Fumonisins may have other, more subtle organ-specific effects; however, there is no compelling evidence that the esophagus is a target organ. d) Apoptosis is the initial and presumably critical event in the pathogenesis of liver and kidney lesions characterized by simultaneous cell loss and regeneration. e) A key molecular event in fumonisin cytotoxicity is inhibition of ceramide synthase, leading to disruption of sphingolipid metabolism and probably of sphingolipid regulatory function. f) FB1 does not cross the placenta and is not teratogenic in laboratory species; however, fumonisins may be embryotoxic at maternally toxic doses.

REFERENCES AND NOTES

1. Nelson PE, Desjardins AE, Plattner RD. Fumonisins, mycotoxins produced by *Fusarium* species: biology, chemistry and significance. Ann Rev Phytopathol 31:233–252 (1993).
2. Nelson PE, Plattner RD, Shackelford DD, Desjardins AE. Fumonisin B1 production by *Fusarium* species other than *F. moniliforme* in section Liseola and by some related species. Appl Environ Microbiol 56:884–889 (1990).
3. Nelson PE, Plattner RD, Shackelford DD, Desjardins AE. Production of fumonisins by *Fusarium* moniliforme strains from various substrates and geographic areas. Appl Environ Microbiol 58:2410–2412 (1992).
4. Marasas WFO. Fumonisins: history, world-wide occurrence and occurrence in foods and its toxicity are needed. Pharmacol Ther 70:137–161 (1987).
5. Marasas WFO. Fumonisins—implications for human and animal health. Nat Toxins 3:193–198 (1995).
6. Bacon CW, Bennett RM, Hinton DM, Voss KA. Scanning electron microscopy of *Fusarium* moniliforme moniliforme in asymptomatic corn kernels and kernels associated with equine leukoencephalomalacia. Plant Dis 76:144–148 (1992).
7. Norred WP, Plattner RD, Voss KA, Bacon CW. Apoptosis of equine leukoencephalomalacia (ELEM) [Abstract]. Toxicologist 9:258 (1998).
8. Plattner RD, Norred WP, Bacon CW, Voss KA, Peterson R, Shackelford DD, Weisleder D. A method of detection of fumonisins in corn samples associated with field cases of leukoencephalomalacia. Mycologia 82:792–796 (1990).
9. Voss KA, Norred WP, Plattner RD, Bacon CW. Hepatotoxicity and renal toxicity in rats of corn samples associated with field cases of leukoencephalomalacia. Food Chem Toxicol 27:95–98 (1988).
10. Shiel PJ, Voss KA, Plattner RD, Bacon CW. Fumonisins in *Fusarium* moniliforme moniliforme culture material. J Natl Cancer Inst 82:25–32 (1990).
11. Dutton MF. Fumonisins, mycotoxins of increasing importance: their nature and their effects. Pharmacol Ther 70:137–161 (1998).
41. Shephard GS, Thiel PG, Sydenham EW. Initial studies on the environmental health perspectives.

35. Stevens VL, Tang J. Fumonisin B1-induced sphingolipid depletion and sphingomyelinosis in rats. Adv Exp Med Biol 330:265–274 (1992).

45. Gelderblom WCA, Marasas WFO, Jaskiewicz K, Combrinck S, Gelderblom WCA, Marasas WFO, Jaskiewicz K, Combrinck S. Structure-activity relationships of fumonisins in corn and maize. Adv Exp Med Biol 392:369–393 (1996).

50. Gelderblom WCA, Marasas WFO, Steyn PS, Thiel PG, van der Merwe KJ, van Rooyan PH, Vleggaar R, Wessels PL. Structure-activity relationships of fumonisins in maize and interactions with fusarin C. Mutat Res 199:207–214 (1988).

53. Gelderblom WCA, Thiel PG, van der Merwe KJ. The chemical toxicokinetics of fumonisin B1 in rats. Food Chem Toxicol 33:591–595 (1995).

55. Nelson PE, Wilson TM. Hepatocarcinogenicity of corn screenings naturally contaminated with Fusarium moniliforme. J Nutr 6:159–164 (1988).

70. Gelderblom WCA, Snyman SD, Lebepe-Mazur S, van der Merwe KJ, van Rooyan PH, Suzuki C. Fumonisin B1 toxicity in cultured human cells and in livers and kidneys of rats. Adv Exp Med Biol 382:237–250 (1995).

71. Gelderblom WCA, Thiel PG, van der Merwe KJ, van Rooyan PH, Suzuki C. The effects of fumonisin B1 on several markers of nephrotoxicity and sphingomyelinosis in rats. Toxicol Appl Pharmacol 133:207–214 (1995).

73. Howard PC, Eppley RM, Stack ME, Warbritton A, Voss KA. The induction of apoptosis in the liver and kidneys of male and female F344 rats after 28 days containing the mycotoxin fumonisin B1. J Biol Chem 268:14486–144490 (1991).

76. Hunnan YA, Obeid LM. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 20:73–77 (1995).

80. Riley RT, Hinton DM, Chamberlain WJ, Bacon CW, Wang E, Thompson JH, McGuire P, Fernie S, Miller D, Hayward S. Effects of fumonisin B1 on the Cancer Lett 109:101–108 (1996).

85. Tryphonas H, Bondy G, Miller JD, Lacroix F, Hodgen M, McPherson L, Zablocki T, Edelstein D, Tryphonas H, Bondy G, Miller JD, Lacroix F, Hodgen M, McPherson L, Zablocki T, Edelstein D. Approaches to the risk assessment of fumonisins in corn, corn oil and maize (Zea mays L.) feedstuffs. Food Chem Toxicol 35:647–656 (1997).

86. Gumprecht LA, Marcucci A, Weigel RM, Vesonder RF, Riley RT, Flynn TJ, Stack ME, Troy AL, Chirtel SJ. Assessment of the potential of fumonisin B1 or hydrolyzed FB1 to induce apical membrane defects in mice. Food Chem Toxicol 34:623–632 (1996).

89. Merrill AH Jr, Schmelz E-M, Dillehay DL, Shayman JA, Schneider JJ, Riley RT, Voss KA. Sphingolipids—the emerging lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142:203–225 (1997).

90. Riley RT, Voss KA, Yoo H-S, Gelderblom WCA, Merrill AH Jr. Mechanism of fumonisin toxicity and carcinogenesis. J Food Prot 57:639–646 (1994).

91. Merrill AH Jr. Cell regulation by sphingosine and more complex sphingolipids. J Biogenic Biomembr 23:83–104 (1994).

92. Voss KA, Bacon CW, Meredith F, Norred WP. Comparative subchronic toxicological studies of nixtamalized and water-extracted Fusarium moniliforme mycotoxin cultures. Food Chem Toxicol 34:623–632 (1996).

93. Voss KA, Riley RT, Bacon CW, Meredith F, Norred WP. Toxicity and sphingolipide levels are correlated in rats fed fumonisin B1 or B2 or hydrolyzed FB1. Environ Toxicol Pharmacol 5:101–104 (1998).

94. Gelderblom WCA, Smuts CM, Abel S, Snyman SD, Camweed, W. Approaches to the risk assessment of fumonisins in corn, corn oil and maize (Zea mays L.) feedstuffs. Food Chem Toxicol 36:785–795 (1998).

95. Smuts CM, Abol BM, Abel S, Snyman SD, van der Westhuizen L, Swanesveld E. Effect of fumonisins B1 on protein and lipid synthesis in primary rat hepatocytes. Food Chem Toxicol 34:361–369 (1996).

96. Gelderblom WCA, Smuts CM, Abel S, Snyman SD, van der Westhuizen L, Huber HW, Swanesveld E. Effect of fumonisin B1 on the levels and fatty acid composition of selected lipids in rat liver in vivo. Food Chem Toxicol 35:647–656 (1997).

97. Aboud-Becqegne C, Mobola TA, Eramany R, Feurat-Lessard F, Chen WT, Bara F. Creapy EE. Cytotoxicity of fumonisin B1 and implication of lipid peroxidation and inhibition of protein and DNA synthesis. Arch Toxicol 72:233–236 (1998).

98. Abel S, Gelderblom WCA. Oxidative damage and fumonisin B1-induced toxicity in primary rat hepatocytes and rat liver in vivo. Toxiconology 131:121–131 (1998).

99. Yin, J, Smith MJ, Eppley RM, Page SW, Sphon JA. Effects of fumonisin B1 on lipid peroxidation in membranes. Biochim Biophys Acta 1371:134–142 (1997).

100. Saheh SC, Eppley RM, Page SW, Gray GC, Barton CN, D'Orell MW, Kanagy NA, Kanagy NA, Kanagy NA. Permeability of membrane lipids and mediated apoptosis of cultured cells by apoptotic and in isolated rat liver nuclei. Cancer Lett 125:117–121 (1998).

101. Merrill AH Jr. Sphingolipid biosynthetic pathways and their role in signal transduction. Environ Health Perspect 109(suppl 2):293–299 (2001).

102. Riley RT, Voss KA, Norred WP, Sharma RP, Merrill AH Jr. Sphingolipid perturbations as mechanisms for fumonisin carcinogenicity. Environ Health Perspect 109(suppl 2):300–308 (2001).

103. Gelderblom WCA, Abel S, Smuts CM, Manneck J, Marasas WFG, Lemmer ER, Ramadj D. Fumonisin-induced hepatic ceramide biosynthesis: mechanisms related to cancer initiation and promotion. Environ Health Perspect 109(suppl 2):291–300 (2001).

104. Jewell F, Richard JL, Bennett GA, Dombrink-Kurman MA, Burne RM, Koczekew KB, Kote LM, Buck W. Embryotoxic and embryonic effects of purified fumonisin B1, or Fusarium proliferatum culture material extract on chicken embryos. Mycopathologia 123:185–193 (1991).

105. Flynn TJ, Pritchard D, Bradshaw JA, Eppley R, Page S. In vitrombryotoxicity of fumonisin B1, evaluated with cultured postembryonic-staged embryos. Toxicol in Vitro 9:271–279 (1995).

106. Flynn TJ, Stack ME, Troy AL, Chirlet SJ. Assessment of the embryotoxic potential of the total crude extract of fumonisin B1, using organogenesis-staged rat embryos. Food Chem Toxicol 35:1135–1141 (1997).

107. Voss KA, Bacon CW, Norred WP, Chapman RE, Chamberlain WJ, Phenion RD, Meredith F, Smith S. Studies on the potential of Fusarium moniliforme culture material in rats and the biodistribution of [14C]fumonisin B1, in pregnant rats. Nat Toxins 4:24–33 (2001).

265
107. Collins TFX, Shackelford ME, Sprando RL, Black TN, LaBorde JB, Hansen DK, Epplje PA, Truexes MW, Howard PC, Bryant MA, et al. Effects of fumonisin B1 in pregnant rats. Food Chem Toxicol 36:697–408 (1998).

108. Collins TFX, Sprando RL, Black TN, Shackelford ME, LaBorde JB, Hansen DK, Epplje PA, Truexes MW, Howard PC, Bryant MA, et al. Effects of fumonisin B1 in pregnant rats. Part 2. Food Chem Toxicol 36:673–685 (1998).

109. Reddy RV, Johnson G, Rottinghaus GE, Casteel SW, Reddy CS. Developmental effects of fumonisin B1 in mice. Mycopathologia 134:161–166 (1996).

110. LaBorde JB, Terry KK, Howard PC, Chen JJ, Collins TFX, Shackelford ME, Hansen DK. Lack of embryotoxicity of fumonisin B1 in New Zealand white rabbits. Fundam Appl Toxicol 40:120–128 (1997).

111. Floss JL, Casteel SW, Johnson GC, Rottinghaus GE, Krause GF. Developmental toxicity in hamsters of an aqueous extract of Fusarium moniliforme culture material containing known quantities of fumonisin B1. Vet Hum Toxicol 38:5–10 (1996).

112. Floss JL, Casteel SW, Johnson GC, Rottinghaus GE, Krause GF. Developmental toxicity of fumonisin B1 in Syrian hamsters. Mycopathologia 128:33–39 (1994).

113. Porter JK, Bacon CW, Wray EM, Hagler WM, Jr. Fusaric acid in Fusarium moniliforme cultures, corn, and feeds toxic to livestock and the neurochemical effects in the brain and pineal gland of rats. Nut Toxins 3:91–100 (1995).

114. Porter JK, Wray EM, Rimando AM, Stancil PC, Bacon CW, Voss KA. Lactational passage of fusaric acid from the feed of nursing dams to the neonate rat and effects on pineal neurochemistry in the F1 and F2 generations at weaning. J Toxicol Environ Health 49:161–175 (1996).

115. Rimando AM, Porter JK. Fusaric acid increases melatonin levels in the weanling rat and in pineal cell cultures. J Toxicol Environ Health 56:275–284 (1997).

116. Bacon CW, Porter JK, Norred WP. Toxic interaction of fumonisin B1 and fusaric acid measured by injection into fertile chicken eggs. Mycopathologia 129:29–35 (1995).

117. Doko MB, Canet C, Brown N, Sydenham EW, Mpuanche S, Siame BA. Natural co-occurrence of fumonisins and zearalenone in cereals and cereal-based foods from eastern and southern Africa. J Agric Food Chem 44:2240–2243 (1996).

118. Sydenham EW, Stockenstrom S, Theil PG, Shepherd GE, Koch KR, Marasas WFO. Potential of alkaline hydrolysis for the removal of fumonisins from contaminated corn. J Agric Food Chem 43:1198–1201 (1995).

119. Norred WP, Platter RB, Dombirnk-Kurtzman MA, Meredith RI, Riley RT. Mycotoxin-induced elevation of free sphingosid bases in precision-cut rat liver slices: specificity of the response and structure–activity relationships. Toxicol Appl Pharmacol 147:63–70 (1997).

120. Shepherd GS, Theil PG, Sydenham EW, Alberts JP, Gelderblom WCA. Fate of a single dose of the 14C-labelled mycotoxin fumonisin B1 in rats. Toxicol 30:768–770 (1992).

121. Shepherd GS, Theil PG, Sydenham EW, Alberts JP, Cawood ME. Distribution and excretion of a single dose of the mycotoxin fumonisin B1 in a non-human primate. Toxicol 32:435–441 (1994).

122. Lebepe-Marur S, Bal H, Hopmans E, Murphy F, Hendrich S. Fumonisin B1 is fetotoxic in rats. Vet Hum Toxicol 37:126–130 (1995).

123. Gross SM, Reddy RV, Rottinghaus GE, Johnson G, Reddy CS. Developmental effects of fumonisin B1 containing Fusarium moniliforme culture extract in CD-1 mice. Mycopathologia 128:111–118 (1995).

124. Yoo HS, Norred WP, Showler J, Riley RT. Elevated sphingoid bases and complex sphingolipid depletion as contributing factors in fumonisin-induced cytotoxicity. Toxicol Appl Pharmacol 138:211–218 (1996).