Automorphic L-Functions and Functoriality

Freydoon Shahidi

Abstract

This is a report on the global aspects of the Langlands-Shahidi method which in conjunction with converse theorems of Cogdell and Piatetski-Shapiro has recently been instrumental in establishing a significant number of new and surprising cases of Langlands Functoriality Conjecture over number fields. They have led to striking new estimates towards Ramanujan and Selberg conjectures.

2000 Mathematics Subject Classification: 11F70, 11R39, 11R42, 11S37, 22E55.

Keywords and Phrases: Automorphic L-function, Functoriality.

1. Preliminaries

Let F be a number field. For each place v of F, let F_v be its completion at v. Assume v is a finite place and let O_v denote the ring of integers of F_v. Denote by P_v its maximal ideal and fix a uniformizing parameter ϖ_v generating P_v. Let $[O_v : P_v] = q_v$ and fix and absolute value $| \cdot |_v$ for which $|\varpi_v|_v = q_v^{-1}$.

Let G be a quasisplit connected reductive algebraic group over F. Fix an F-Borel subgroup $B = TU$, where T is a maximal torus of B and U is its unipotent radical. Let $A_0 \subset T$ be the maximal split subtorus of T. Throughout this article, P is a maximal parabolic subgroup of G, defined over F, with a Levi decomposition $P = MN$, where M is a Levi subgroup of P and N is its unipotent radical. We will assume P is standard in the sense that $N \subset U$. We fix M by assuming $T \subset M$. We finally use W to denote the Weyl group of A_0 in G.

Let A_F denote the ring of adeles of F and for every algebraic group H over F, let $H = H(A_F)$. Considering H as a group over each F_v, we then set $H_v = H(F_v)$.

Let A denote the split component of M, i.e., the maximal split subtorus of the connected component of the center of M. For every group H defined over F, let

*Purdue University, Department of Mathematics, West Lafayette, Indiana 47907, USA. E-mail: shahidi@math.purdue.edu
$X(H)_F$ be the group of F-rational characters of H. We set $a = \text{Hom}(X(M)_F, \mathbb{R})$. Then $a^* = X(M)_F \otimes \mathbb{R} = X(A)_F \otimes \mathbb{R}$ and $a_\mathbb{C}^* = a^* \otimes \mathbb{C}$ is the complex dual of a.

When G is unramified over a place v, we let $K_v = G(O_v)$. Otherwise, we shall fix a special maximal compact subgroup $K_v \subset G_u$ for which $G_v = P_v K_v = B_v K_v$. Let $K = \oplus_v K_v$ Then $G = PK = BK$. Let $K_M = K \cap M$.

For each v, the embedding $X(M)_F \hookrightarrow X(M)_{F_v}$ induces a map

$$a_v = \text{Hom}(X(M)_{F_v}, \mathbb{R}) \to a.$$

There exists a homomorphism $H_M : M \to a$ defined by

$$\exp(\chi, H_M(m)) = \prod_v [\chi(m_v)]_v$$

for every $\chi \in X(M)_F$ and $m = (m_v)$. We extend H_M to H_P on G by making it trivial on N and K.

Let α denote the unique simple root of A in N. It can be identified by a unique simple root of A_0 in U. If ρ is half the sum of F-roots in N, we set $\tilde{\alpha} = \langle \rho, \alpha \rangle^{-1} \rho \in a^*$, where for each pair of non-restricted roots α and β of T, $\langle \alpha, \beta \rangle = 2(\alpha, \beta)/\langle \beta, \beta \rangle$ is the Killing form.

Given a connected reductive algebraic group H over F, let LH be its L-group. Considering H as a group over F_v, we then denote by LH_v its L-group over F_v. Let $^LH^0 = ^LH^0_v$ be the corresponding connected component of 1. We then have a natural homomorphism from LH_v into LH. We let $\eta_v : ^L M_v \to ^L M$ be this map for M (cf. [4]).

Let $^L N$ be the L-group of N defined naturally in [4]. Let $^L n$ be its (complex) Lie algebra, and let r denote the adjoint action of $^L M$ on $^L n$. Decompose $r = \bigoplus_{i=1}^m r_i$ to its irreducible subrepresentations, indexed according to the values $\langle \tilde{\alpha}, \beta \rangle = i$ as β ranges among the positive roots of T. More precisely, $X_{\tilde{\alpha}^*} \subset ^L n$ lies in the space of r_i if and only if $\langle \tilde{\alpha}, \beta \rangle = i$. Here $X_{\tilde{\alpha}^*}$ is a root vector attached to the coroot $\tilde{\alpha}^*$, considered as a root of the L-group. The integer m is equal to the nilpotence class of $^L n$. We let $r_{i, v} = r_i \cdot \eta_v$ for each i (cf. [34,40,41]).

If Δ denotes the set of simple roots of A_0 in U, we use $\theta \subset \Delta$ to denote the subset generating M. Then $\Delta = \theta \cup \{\alpha\}$. There exists a unique element $\tilde{w}_0 \in W$ such that $\tilde{w}_0(\theta) \subset \Delta$, while $\tilde{w}_0(\alpha) < 0$. We will always choose a representative w_0 for \tilde{w}_0 in $G(F)$ and use w_0 to denote each of its components.

2. Eisenstein series and L-functions

Let $\pi = \otimes_v \pi_v$ be a cusp form on M. Given a K_M-finite function φ in the space of π, we extend φ to a function $\tilde{\varphi}$ on G as in Section 2 of [39] as well as in [17], and for $s \in \mathbb{C}$, set

$$\phi_s(g) = \tilde{\varphi}(g) \exp(s\alpha + \rho \rho, H_P(g)).$$

(2.1)
The corresponding Eisenstein series is then defined by

\[E(s, \phi_s, g, P) = \sum_{\gamma \in \mathbf{P}(F) \backslash \mathbf{G}(F)} \phi_s(\gamma g) \]
\[(2.2) \]

(cf. [17,33,34,35]).

Let \(I(s, \pi) = \otimes_v I(s, \pi_v) \) be the representation parabolically induced from \(\pi \otimes \exp(\mathfrak{s}_0, \mathcal{H}_p()) \).

Let \(\mathbf{M}' \) be the Levi subgroup of \(\mathbf{G} \) generated by \(\bar{\omega}(\theta) \). There exists a parabolic subgroup \(\mathbf{P}' \supset \mathbf{B} \) which has \(\mathbf{M}' \) as a Levi factor. Let \(\mathbf{N}' \) be its unipotent radical. Given \(f \) in the space of \(I(s, \pi) \) and \(\text{Re}(s) \gg 0 \), define the global intertwining operator \(M(s, \pi) \) by

\[M(s, \pi)f(g) = \int_{\mathbf{N}'} f(w_0^{-1}n'g)dn' \]
\[(2.3) \]

Observe that if \(f = \otimes_v f_v \), then for almost all \(v \), \(f_v \) is the unique \(K_v \)-fixed functions normalized by \(f_v(e_v) = 1 \). Finally, if at each \(v \) we define a local intertwining operator by

\[A(s, \pi_v, w_0)g_v(g) = \int_{\mathbf{N}_v'} f_v(w_0^{-1}n'g)dn' \]
\[(2.4) \]

then

\[M(s, \pi) = \otimes_v A(s, \pi_v, w_0) \]
\[(2.5) \]

It follows form the general theory of Eisenstein series that the poles of \(E(s, \bar{\varphi}, g, P) \), as \(\bar{\varphi} \) and \(g \) vary, are the same as those of \(M(s, \pi) \), and for \(\text{Re}(s) \geq 0 \), they are all simple and finite in number, with none on the line \(\text{Re}(s) = 0 \) (cf. [17,33,35]).

By construction each \(\phi_s \) belongs to the space of \(I(s, \pi) \). Consequently, one can consider \(M(s, \pi)\phi_s \) which is a member of \(I(-s, w_0(\pi)) \). The Eisenstein series \(E(s, \bar{\varphi}, g, P) \) then satisfies the functional equation

\[E(s, \phi_s, g, P) = E(-s, M(s, \pi)\phi_s, g, P') \]
\[(2.6) \]

Suppose that \(\mathbf{G} \) splits over \(L \), where \(L \) is a finite Galois extension of \(F \). For every unramified \(v \), there exists a unique Frobenius conjugacy class in \(\text{Gal}(L_w/F_v) \), \(\tau_v \) which we denote by \(\tau_v \). Moreover, if \(v \) is such that \(\pi_v \) and \(\mathbf{G} \) are both unramified, then there exists and \(L \mathbf{M} \) semisimple conjugacy class in \(L \mathbf{M} \times \tau_v \) which determines \(\pi_v \) uniquely ([40]). We may identify, as we in fact do, this conjugacy class with an element \(A_v \in LT^0 \) which may be assumed to be fixed by \(\tau_v \) (cf. \S 6.3 and 6.5 of [4]). The local Langlands \(L \)-function defined by \(\pi_v \) and \(r_v, r_v = r \cdot \eta_v \), where \(r \) is a complex analytic representation of \(L \mathbf{M} \), is then defined to be (cf. [4,34,40]),

\[L(s, \pi_v, r_v) = \det(I - r_v(A_v \times \tau_v)q_v^{-1})^{-1} \]
\[(2.7) \]

Let \(S \) be a finite set of places of \(F \), including all the archimedean ones, such that for every \(v \notin S \), \(\pi_v \) and \(\mathbf{G} \) are both unramified. Set

\[L_S(s, \pi, r) = \prod_{v \notin S} L(s, \pi_v, r_v) \]
\[(2.8) \]
The main result of [34, also see 40] is that
\[M(s, \pi)f = \otimes_{v \in S} A(s, \pi_v, w_0)f_v \otimes \otimes_{v \in S} \bar{f}_v \]
\[\times \prod_{i=1}^{m} L_S(is, \pi, \bar{r}_i)/L_S(1 + is, \pi, \bar{r}_i), \]
(2.9)

where \(f = \otimes_v f_v \) is such that for each \(v \notin S \), \(f_v \) is the unique \(K_v \)-fixed function in \(I(s, \pi_v) \) normalized by \(f_v(e_v) = 1 \) and for each \(i \), \(\bar{r}_i \) denotes the contragredient of \(r_i, i = 1, \ldots, m \), the irreducible components of the adjoint action of \({}^k M \) or \({}^k N \). Here \(\bar{f}_v \) is the \(K_v \)-fixed function in the space of \(I(-s, w_0(\pi_v)) \), normalized the same way. Moreover \(f_v \) and \(\bar{f}_v \) are identified as elements in spherical principal series.

3. Generic representations and the non-constant term

Suppose \(F \) is a field, either local or global, and \(G \) is as before, with a Borel subgroup \(B = TU \) over \(F \). Fix an \(F \)-splitting \(\{X_{\alpha}^i\} \), i.e., a collection of root vectors as \(\alpha' \) ranges over simple roots of \(T \) in \(U \) which is invariant under the action of \(\Gamma_F = \text{Gal}(F/F) \). This then determines a map \(\phi \) form \(U \) to \(\Pi G_{\alpha}, \varphi(u) = (x_{\alpha'})_{\alpha'} \), where \(x_{\alpha'} \) is the \(\alpha' \)-coordinate of \(u \) with respect to \(\{X_{\alpha}^i\} \). Let \(\{\kappa_{\alpha'}\} \) be a collection of elements in \(F^\times \) such that \(\sigma(\kappa_{\alpha'}) = \kappa_{\sigma\alpha'} \) for every \(\sigma \in \Gamma_F \). Set \(f(u) = \sum_{\alpha'} \kappa_{\alpha'} x_{\alpha'} \).

Observe that \(f \) is \(F \)-rational. If \(F \) is global, we extend \(f \) to a map on \(U(\mathbb{A}_F) \). Let \(\varphi \) be a non-trivial character of \(F \) (\(F \setminus \mathbb{A}_F \) if \(F \) is global). A character \(\chi \) of \(U(F)(U(F) \setminus U(\mathbb{A}_F) \setminus U(\mathbb{A}_F)) \) if \(F \) is global) is called non-degenerate or generic if \(\chi(u) = \varphi(f(u), u \in U(F)(u \in U(F) \setminus U(\mathbb{A}_F) \) if \(F \) is global).

We now continue to assume \(F \) is a number field. Let \(\chi = \otimes_v \varphi_v \) be a generic character of \(U(F) \setminus U \).

Let \(U^0 = U \cap M \) and let \(\chi \) also denote the restriction of \(\chi \) to \(U^0 \). Choose a function \(\varphi \) in the space of \(\pi = \otimes_v \pi_v \), a cuspidal representation of \(M \), and \(U^0(F) \setminus U^0 \) being compact, set
\[W_\varphi(m) = \int_{U^0(F) \setminus U^0} \varphi(um)\chi(u)du. \]
(3.1)

We shall say \(\pi \) is (globally) \(\chi \)-generic if \(W_\varphi \neq 0 \) for some \(\varphi \). The representation \(\pi \) is (globally) generic if it is \(\chi \)-generic with respect to some generic \(\chi \). Then each \(\pi_v \) will be \(\chi_v \)-generic in the sense that there exists a non-zero Whittaker functional \(\lambda_v \), i.e., a continuous (in the semi-norm topology if \(v = \infty \)) functional satisfying \(\langle \pi_v(u)x, \lambda_v \rangle = \chi_v(u)(x, \lambda_v), x \in \mathcal{H}(\pi_v), u \in U^0_v \). Choosing \(\varphi \) appropriately, i.e., if \(\varphi = \otimes_v \varphi_v, \varphi_v \in \mathcal{H}(\pi_v) \), then \(W_\varphi(m) = \prod_v (\pi_v(m_v)\varphi_v, \lambda_v) \), for \(m = (m_v) \).

Given \(f_v \in V(s, \pi_v) \), the space of \(I(s, \pi_v) \), define
\[\lambda_{\lambda_v}(s, \pi_v)(f_v) = \int_{N_v^0} \langle f_v(w_0^{-1}n'), \lambda_v \rangle du', \]
(3.2)
a canonical Whittaker functional for $I(s, \pi_v)$. Changing the splitting we now assume $\kappa_{\alpha'} = 1$. It now follows from Rodier’s theorem that there exists a complex function (of s), $C_{\chi_v}(s, \pi_v)$, depending on π_v, χ_v and w_0 such that (cf. [41,42,43])

$$\lambda_{\chi_v}(s, \pi_v) = C_{\chi_v}(s, \pi_v) \lambda_{\chi_v}(-s, w_0(\pi_v)) \cdot A(s, \pi_v, w_0). \quad (3.3)$$

This is what we call the Local Coefficient attached to s, π_v, χ_v and w_0. The choice of w_0 is now specified by our fixed splitting as in [43].

Finally, if

$$E_\chi(s, \phi_s, g, P) = \int_{U(F) \backslash U} E(s, \phi_s, ug, P) \chi(u) du \quad (3.4)$$

is the χ-nonconstant term of the Eisenstein series, then ([7,41,42])

$$E_\chi(s, \phi_s, e, P) = \prod_{v \in S} W_v(e) \prod_{i=1}^m L_G(1 + is, \pi, r_i)^{-1}, \quad (3.5)$$

where now S is assumed to have the property that if $v \not\in S$, then χ_v is also unramified.

Applying Definition (3.4) to both sides of (2.6), using (3.5) now implies the crude functional equation ([40,41])

$$\prod_{i=1}^m L_G(is, \pi, r_i) = \prod_{v \in S} C_{\chi_v}(s, \pi_v) \prod_{i=1}^m L_G(1 - is, \pi, \overline{r_i}). \quad (3.6)$$

4. The main induction, functional equations and multiplicativity

To prove the functional equation for each r_i with precise root numbers and L-function, we use (cf. [42]):

Proposition 4.1. Given $1 < i \leq m$, there exists a quasisplit group G_i over F, a maximal F-parabolic subgroup $P_i = M_i N_i$, both unramified for every $v \not\in S$, and a cuspidal automorphic form π' of $M_i = M_i(\mathbb{A}_F)$, unramified for every $v \not\in S$, such that if the adjoint action r' of $L M_i$ on $L n_i$ decomposes as $r' = \bigoplus_{j=1}^{m'} r'_j$, then

$$L_S(s, \pi, r_i) = L_S(s, \pi', r'_i).$$

Moreover $m' < m$.

Remark 4.2. As was observed by Arthur [1], each M_i can be taken equal to M and $\pi' = \pi$. In fact each G_i can be taken to be an endoscopic group for G, sharing M as a Levi subgroup. We shall record this as

Proposition 4.3. Given i, $1 < i \leq m$, there exist a quasisplit connected reductive F-group with M as a Levi subgroup and $m' < m$ for which $r'_i = r_i$.

Using this induction and local-global arguments (cf. Proposition 5.1 of [42]), it was proved in [42] that

Theorem 4.4. (Theorems 3.5 and 7.7 of [42]) a) For each i, $1 \leq i \leq m$, and each v, there exist a local L-function $L(s, \pi_v, r_{i,v})$, which is the inverse of a polynomial in q_v^{-s} whose constant term is 1, if $v < \infty$, and is the Artin L-function attached to $r_i \cdot \varphi'_v$, where $\varphi'_v : W_{F_v} \to L^{M_v}$ is the homomorphism of the Deligne-Weil group into L^{M_v} parametrizing π_v, if either $v = \infty$ or π_v has an Iwahori-fixed vector; and a root number $\varepsilon(s, \pi_v, r_{i,v}, \varphi_v)$ satisfying the same provisions, such that

$$L(s, \pi, r_i) = \prod_v L(s, \pi_v, r_{i,v})$$

(4.1)

and

$$\varepsilon(s, \pi, r_i) = \prod_v \varepsilon(s, \pi_v, r_{i,v}, \psi_v),$$

(4.2)

then

$$L(s, \pi, r_i) = \varepsilon(s, \pi, r_i)L(1 - s, \pi, r_i).$$

(4.3)

b) Let

$$\gamma(s, \pi_v, r_{i,v}, \psi_v) = \varepsilon(s, \pi_v, r_{i,v}, \psi_v)L(1 - s, \pi_v, r_{i,v})/L(s, \pi_v, r_{i,v}).$$

(4.4)

Then each $\gamma(s, \pi_v, r_{i,v}, \psi_v)$ is multiplicative in the sense of equation (2.13) in Theorem 3.5 of [42]. (See below.) If π_v is tempered, then $\gamma(s, \pi_v, r_{i,v}, \psi_v)$ determines the corresponding root number and L-function uniquely and in fact that is how they are defined. Suppose π_v is non-tempered, then each $L(s, \pi_v, r_{i,v})$ is determined by means of the analytic continuation of its quasi-tempered Langlands parameter and multiplicativity of corresponding γ-functions. More precisely, if π_v is the quasitempered Langlands parameter that gives π_v as a subrepresentation, then

$$L(s, \pi_v, r_{i,v}) = \prod_{j \in S_i} L(s, \overline{\pi}_j(\sigma_v), r'_{i(j),v}),$$

(4.5)

where the notation is as in part 3) of Theorem 3.5 of [42], provided that every L-function on the right hand side is holomorphic for $\Re(s) > 0$, whenever π_v is (unitary) tempered (Conjecture 7.1 of [42], proved in many cases [3.6.42]). The set $S_i, \overline{\pi}_j$ and $r'_{i(j)}$ are defined as follows in which we drop the index v. Assume $\pi \subset \text{Ind}_{M_\theta(N_\theta \cap M)}M_{\sigma} \otimes 1$, where $M_{\theta}(N_\theta \cap M)$ is a parabolic subgroup of M defined by a subset $\theta \subset \Delta$, the set of simple roots of A_0. Let $\theta' = \overline{w}_0(\theta) \subset \Delta$ and fix a reduced decomposition $\overline{w}_0 = \overline{w}_{n-1} \cdots \overline{w}_1$ of \overline{w}_0 (Lemma 2.1.1 of [41]). For each j, there exists a unique root $\alpha_j \in \Delta$ such that $\overline{w}_j(\alpha_j) < 0$. For each j, $2 \leq j \leq n - 1$, let $\overline{\pi}_j = \overline{w}_{j-1} \cdots \overline{w}_1$. Set $\overline{w}_1 = 1$. Let $\Omega_j = \theta_j \cup \{\alpha_j\}$, where $\theta_1 = \theta$, $\theta_n = \theta'$, and $\theta_{j+1} = \overline{w}_j(\theta_j), 1 \leq j \leq n - 1$. Then M_{Ω_j} contains $M_{\theta_j}(N_{\theta_j} \cap M_{\Omega_j})$ as a maximal parabolic subgroup and $\overline{w}_j(\sigma)$ is a representation of M_{θ_j}. The L-group $L^{M_{\theta_j}}$ acts on the space of r_i, but no longer necessarily irreducibly. Given an irreducible constituent of this action, there exists a unique j, $1 \leq j \leq n - 1$, which under \overline{w}_j is equivalent to an irreducible constituent of the action of $L^{M_{\theta_j}}$ on the Lie algebra of the L-group of $N_{\theta_j} \cap M_{\Omega_j}$. Let $i(j)$ be the index of this subspace and denote by
$r'_i(j)$ the action of $L^iM_{r'_i}$ on it. Finally, let S_i denote the set of all such j's for a given i. (See Theorem 3.5 and Section 7 of [42]. Also see the discussion just before Proposition 5.2 of [2.8].)

Remark 4.5. If $G = GL_{t+n}, M = GL_t \times GL_n$ and $\pi = \otimes_v \pi_v$ and $\pi' = \otimes_v \pi'_v$ are cuspidal representations of $GL_t(\mathbb{A}_F)$ and $GL_n(\mathbb{A}_F)$, then $m = 1$ and $L(s, \pi \otimes \pi', r_i)$ is precisely the Rankin-Selberg product L-function $L(s, \pi \times \pi')$ attached to (π, π') (cf. [21,43,44]). In this case each of the local L-functions and root numbers are precisely those of Artin through parametrization which is now available for $GL_N(F_v)$ for any N due to the work Harris-Taylor [18] and Henniart [19]. As we explain later, this will also be the case for many of our local factors as a result of our new cases of functoriality which we shall soon explain. This is quite remarkable, since our factors are defined using harmonic analysis, as opposed to the very arithmetic nature of the definition given for Artin factors. This is a perfect example of how deep Langlands' conjectures are.

Remark 4.6. The multiplicativity of local factors, in the sense of Theorem 3.4, are absolutely crucial in establishing our new cases of functoriality throughout our proofs [12,23,28]. In fact, not only do we need them to prove our strong transfers, they are also absolutely necessary in establishing our weak ones.

5. Twists by highly ramified characters, holomorphy and boundedness

While the functional equations developed from our method are in perfect shape and completely general, nothing that general can be said about the holomorphy and possible poles of these L-functions. On the other hand, there has been some remarkable new progress on the question of holomorphy of these L-function, mainly due to Kim [24,25,31]. They rely on reducing the existence of the poles to that of existence of certain unitary automorphic forms, which in turn points to the existence of certain local unitary representations. One then disposes of these representations, and therefore the pole, by checking the corresponding unitary dual of the local group. In view of the functional equation, this needs to be checked only for $\text{Re}(s) \geq 1/2$. In fact, to carry this out, one needs to verify that:

$$\text{Certain local normalized (as in [41]) intertwining operators are holomorphic and non-zero for } \text{Re}(s) \geq 1/2,$$

in each case [24,25,31]. The main issue is that one cannot always get such a contradiction and rule out the pole. In fact, there are many unitary duals whose complementary series extend all the way to $\text{Re}(s) = 1$.

On the other hand, if one considers a highly ramified twist π_η (see Theorem 5.1 below) of π, then it can be shown quite generally that every $L(s, \pi_\eta, r_i)$ is entire (cf. [45] for its local analogue). In fact, if η is highly ramified, then $w_0(\pi_\eta) \not\equiv \pi_\eta$, whose negation is a necessary condition for $M(s, \pi_\eta)$ to have a pole, a basic fact from Langlands spectral theory of Eisenstein series (Lemma 7.5 of [33]). This was used by Kim [24], and in view of the present powerful converse theorems [8,9], that
is all one needs to prove our cases of functoriality [12,23,28,30]. To formalize this, we borrow the following proposition (Proposition 2.1) from [28], in order to state the result. It is a consequence of our general induction (Propositions 4.1 and 4.3) and [24].

Theorem 5.1. Assume (5.1) is valid. Then there exists a rational character \(\xi \in X(M_F) \) with the following property: Let \(S \) be a non-empty finite set of finite places of \(F \). For every globally generic cuspidal representation \(\pi \) of \(M = M(A_F) \), there exist non-negative integers \(f_v, v \in S \), depending only on the local central characters of \(\pi_v \) for all \(v \in S \), such that for every grössencharacter \(\eta = \otimes_v \eta_v \) of \(F \) for which conductor of \(\eta_v, v \in S \), is larger than or equal to \(f_v \), every \(L \)-function \(L(s, \pi_v, r_i), i = 1, \ldots, m \), is entire, where \(\pi_\eta = \pi \otimes (\eta \cdot \xi) \). The rational character \(\xi \) can be simply taken to be \(\xi(m) = \text{det}(\text{Ad}(m)|n), m \in M \), where \(n \) is the Lie algebra of \(N \).

The last ingredient in applying converse theorems is that of boundedness of each \(L(s, \pi_v, r_i) \) in every vertical strip of finite width, away from its poles, which are finite in number, again using the functional equation and under Assumption (5.1). This was proved in full generality by Gelbart-Shahidi [15], using the theory of Eisenstein series via [33] and [36]. The main theorem of [15] (Theorem 4.1) is in full generality, allowing poles for \(L \)-functions. Here we will state the version which applies to our \(\pi_\eta \).

Theorem 5.2. Under Assumption (5.1), let \(\xi \) and \(\eta \) be as in Theorem 5.1. Assume \(\eta \) is ramified enough so that each \(L(s, \pi_\eta, r_i) \) is entire. Then, given a finite real interval \(I \), each \(L(s, \pi_\eta, r_i) \) remains bounded for all \(s \) with \(\text{Re}(s) \in I \).

The main difficulty in proving Theorem 5.2 is having to deal with reciprocals of each \(L(s, \pi_v, r_i) \), \(2 \leq i \leq m \), near and on the line \(\text{Re}(s)=1 \), the edge of the critical strip, whenever \(m \geq 2 \), which is unfortunately the case for each of our cases of functoriality. We handle this by appealing to equations (3.5) and estimating the non-constant term (3.4) by means of [33,36].

6. New cases of functoriality

Langlands functoriality predicts that every homomorphism between \(L \)-groups of two reductive groups over a number field, leads to a canonical correspondence between automorphic representations of the two groups. The following instances of functoriality are quite striking and are consequences of applying recent ingenious converse theorems of Cogdell and Piatetski-Shapiro [8,9] to certain classes of \(L \)-functions whose necessary properties are obtained mainly from our method. (See [20] for an insightful survey.) We refer to [11] for more discussion of these results and the transfer from \(GL_2(A_F) \times GL_2(A_F) \) to \(GL_4(A_F) \), using Rankin-Selberg method by Ramakrishnan [37]. (See [23] for a proof using our method.)

6.a. Let \(\pi_1 = \otimes_v \pi_{1v} \) and \(\pi_2 = \otimes_v \pi_{2v} \) be cuspidal representations of \(GL_2(A_F) \) and \(GL_3(A_F) \), respectively. For each \(v \), let \(\rho_{iv} \) be the homomorphism of Deligne-Weil group into \(GL_{i+1}(\mathbb{C}) \), parametrizing \(\pi_{iv} \), \(i = 1,2 \). Let \(\pi_{1v} \otimes \pi_{2v} \) be the irreducible admissible representation of \(GL_6(F_v) \) attached to \(\rho_{1v} \otimes \rho_{2v} \) via [18,19]. Set \(\pi_1 \boxtimes \pi_2 = \otimes_v(\pi_{1v} \boxtimes \pi_{2v}) \), an irreducible admissible representation of \(GL_6(A_F) \).
Next, let $\pi = \pi_1$, $\pi_v = \pi_{1v}$ and $\rho_v = \rho_{1v}$. Let $\text{Sym}^3(\pi_v)$ be the irreducible admissible representation of $GL_4(F_v)$ attached to $\text{Sym}^3(\rho_v)$ and set $\text{Sym}^3(\pi) = \otimes_v \text{Sym}^3(\pi_v)$, an irreducible admissible representation of $GL_4(\mathbb{A}_F)$. We have:

Theorem 6.1 [28,30]. a) The representations $\pi_1 \boxtimes \pi_2$ and $\text{Sym}^3(\pi)$ are automorphic.

b) $\text{Sym}^3(\pi)$ is cuspidal, unless π is either of dihedral or of tetrahedral type.

In view of [9], one needs to show that $L(s,(\pi_1 \boxtimes \pi_2) \times (\sigma \otimes \eta))$ is nice in the sense that it satisfies the contentions of Theorems 4.4.a, 5.1 and 5.2 for a highly ramified Grössencharacter η, where σ is a cuspidal representation of $GL_n(\mathbb{A}_F)$, $n = 1,2,3,4$, which is unramified in every place v where either π_{1v} or π_{2v} is ramified. In particular for each v, one of π_{1v}, π_{2v}, or σ_v is in the principal series. It then follows from multiplicativity (cf. Theorem 4.4) and the main results of [43,44], that these L-functions are equal to certain L-functions defined from our method. More precisely, we can take (G,M) to be: a) $G = SL_5$, $M_D = SL_2 \times SL_3$; b) $G = \text{Spin}(10)$, $M_D = SL_3 \times SL_2 \times SL_2$; c) $G = E_6^{sc}$, $M_D = SL_3 \times SL_2 \times SL_3$; d) $G = E_7^{sc}$, $M_D = SL_3 \times SL_2 \times SL_4$, according as $n = 1,2,3,4$, respectively.

This leads to a proof that $\pi_1 \boxtimes \pi_2$ is weakly automorphic. The strong transfer requires a lot more work, involving base change, both normal [2] and non-normal [22], and finally a local result [5]. Automorphy of $\text{Sym}^3(\pi)$ is a consequence of applying the first part to $(\pi,\text{Ad}(\pi))$, where $\text{Ad}(\pi)$ is the adjoint of π, established by Gelbart-Jacquet [14]. It does not require the use of [5].

Observe that we have in fact proved that the homomorphisms $GL_2(\mathbb{C}) \otimes GL_3(\mathbb{C}) \subset GL_6(\mathbb{C})$ and $\text{Sym}^3: GL_2(\mathbb{C}) \rightarrow GL_4(\mathbb{C})$ are functorial. Neither are endoscopic.

6.b. Let $\Pi = \otimes_v \Pi_v$ be a cuspidal representation of $GL_4(\mathbb{A}_F)$ and let $\Lambda^2 : GL_4(\mathbb{C}) \rightarrow GL_6(\mathbb{C})$ be the exterior square map. Also with π as in 6.a, let $\text{Sym}^4(\pi) = \otimes_v \text{Sym}^4(\pi_v)$, where $\text{Sym}^4(\pi_v)$ is attached to $\text{Sym}^4(\rho_v)$. Then

Theorem 6.2 (cf. [23]). a) The map Λ^2 is weakly functorial, in the sense that there exists an automorphic form on $GL_6(\mathbb{A}_F)$ whose local components are equal to $\Lambda^2(\Pi_v)$ for all v, except if $v|2$ or $v|3$. Here $\Lambda^2(\Pi_v)$ is defined by the local Langlands conjecture [18,19].

b) $\text{Sym}^4(\pi)$ is an automorphic representation of $GL_6(\mathbb{A}_F)$.

We point out that b) is obtained by applying a) to $\text{Sym}^3(\pi)$. a) is proved by applying our method to Spin groups (Case $D_n - 1$ of [40], $n = k + 4$, $k = 0,1,2,3$).

Proposition 6.3 (cf. [29]). $\text{Sym}^4(\pi)$ is cuspidal unless π is either of dihedral, tetrahedral or octahedral type.

Let $\eta = \otimes_v \pi_v$ be a cuspidal form on $GL_2(\mathbb{A}_F)$. For each unramified v, let α_v and β_v be the Hecke eigenvalues of π_v. Then as corollary to Proposition 6.3 we have the following striking improvements towards Ramanujan and Selberg conjectures.

Corollary 6.4. a) (cf. [29]) Assume F is an arbitrary number field. Then $q_v^{-1/9} < |\alpha_v|$ and $|\beta_v| < q_v^{1/9}$. b) (cf. [27]). Assume $F = \mathbb{Q}$. Then $p^{-7/64} \leq |\alpha_p|$ and $|\beta_p| \leq p^{7/64}$. Similar estimates are valid for the Selberg conjecture. More precisely, the smallest positive eigenvalue $\lambda_1(\Gamma)$ of the Laplace operator on $L^2(\Gamma \mathbb{H})$ for every congruence subgroup Γ satisfies $\lambda_1(\Gamma) \geq 975/4096 \approx 0.2380 \cdots$

6.c. Let $i : Sp_{2n}(\mathbb{C}) \hookrightarrow GL_{2n}(\mathbb{C})$ be the natural embedding. Let $\pi = \otimes_v \pi_v$
be a generic cuspidal representation of $SO_{2n+1}(\mathbb{A}_F)$. For each unramified v, let $\{A_v\} \subset Sp_{2n}(\mathbb{C})$ be the Hecke-Frobenius conjugacy class parametrizing π_v. Let $i(\pi_v)$ be the unramified representation of $GL_{2n}(F_v)$ attached to $\{i(A_v)\}$. Then the main theorem of [12] proves:

Theorem 6.5 [12]. The embedding i is weakly functorial, i.e., there exist an automorphic representation of $GL_{2n}(\mathbb{A}_F)$ whose components are equal to $i(\pi_v)$ for almost all v.

This is proved by applying our method to maximal parabolics of appropriate odd special orthogonal groups (Case B_n of [40]). The strong transfer is now also established by Ginzburg-Rallis-Soudry [16] as well as Kim [26] by building upon Theorem 6.5.

Final Comments. Many other cases are in progress. Among them are a proof of the existence of the Asai transfer [32] using our method, which was originally proved by Ramakrishnan [38], using the Rankin-Selberg method. This is the first case where one needs to use quasisplit groups. Since the issue of stability of root numbers [10] (cf. [11]) seems to be close to being settled by means of our method [46], many others transfers should now be available. A similar approach for nongeneric representations was initiated in [13].

References

[1] J. Arthur, *Endoscopic L-functions and a combinatorial identity*, Dedicated to H.S.M. Coxeter, Canad. J. Math., 51 (1999), 1135–1148.

[2] J. Arthur and L. Clozel, *Simple algebras, Base change, and the Advanced Theory of the Trace Formula*, Annals of Math. Studies, no. 120, Princeton University Press, 1989.

[3] M. Asgari, *Local L-functions for split spinor groups*, Canad. J. Math., (to appear).

[4] A. Borel., *Automorphic L-functions*, Automorphic Forms and Automorphic Representations, Proc. Sympos. Pure Math., vol. 33; II, Amer. Math. Soc., Providence, RI, 1979, 27–61.

[5] C. J. Bushnell and G. Henniart, *On certain dyadic representations*, Annals of Math., Appendix to [28], (to appear).

[6] W. Casselman and F. Shahidi, *On irreducibility of standard modules for generic representations*, Ann. Scient. Éc.Norm.Sup., 31 (1998), 561–589.

[7] W. Casselman and J. A. Shalika, *The unramified principal series of p-adic groups II: The Whittaker function*, Comp. Math., 41 (1980), 207–231.

[8] J. W. Cogdell and I. I. Piatetski-Shapiro, *Converse theorems for GL_n*, Publ. Math. IHES, 79 (1994), 157–214.

[9] ______ *Converse theorems for GL_n II*, J. Reine Angew. Math., 507 (1999), 165–188.

[10] ______ *Stability of gamma factors for SO(2n + 1)*, Manuscripta Math., 95 (1998), 437–461.

[11] ______ *Converse Theorems, Functoriality and Applications to Number Theory*, These Proceedings.
[12] J. W. Cogdell, H. Kim, I. I. Piatetski-Shapiro and F. Shahidi, *On lifting from classical groups to GL_N*, Publ. Math. IHES, 93 (2001), 5–30.
[13] S. Friedberg and D. Goldberg, *On local coefficients for nongeneric representations of some classical groups*, Comp. Math., 116 (1999), 133–166.
[14] S. Gelbart and H. Jacquet, *A relation between automorphic representations of GL(2) and GL(3)*, Ann. Scient. Éc. Norm. Sup., 11 (1978), 471–552.
[15] S. Gelbart and F. Shahidi, *Boundedness of automorphic L-functions in vertical strips*, Journal of AMS, 14 (2001), 79–107.
[16] D. Ginzburg, S. Rallis and D. Soudry, *Generic automorphic forms on SO(2n+1): functorial lift to GL(2n)*, endoscopy and base change, IMRN 14 (2001), 729–764.
[17] Harish-Chandra, *Automorphic forms on semisimple Lie groups*, SLN 62 (1968), Berlin-Heidelberg-New York.
[18] M. Harris and R. Taylor, *On the geometry and cohomology of some simple Shimura varieties*, Annals of Math. Studies, no. 151, Princeton University Press, 2001.
[19] G. Henniart, *Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique*, Invent. Math., 139 (2000), 439–455.
[20] G. Henniart, *Progrès récents en fonctorialité de Langlands*, Seminaire Bourbaki, Juin 2001, Exposes 890, 890-1 to 890-21.
[21] H. Jacquet, I. Piatetski-Shapiro and J. Shalika, *Rankin-selberg convolutions*, Amer. J. Math., 105 (1983), 367–464.
[22] ——— *Relvement cubique non normal*, C. R. Acad. Sci. Paris Sr. I Math., 292, no. 12 (1981), 567–571.
[23] H. Kim, *Functoriality for the exterior square of GL_4 and symmetric fourth of GL_2*, preprint (2000).
[24] ———, *Langlands-Shahidi method and poles of automorphic L-functions: Application to exterior square L-functions*, Can. J. Math., 51 (1999), 835–849.
[25] ———, *Langlands-Shahidi method and poles of automorphic L-functions II*, Israel J. Math., 117 (2000), 261–284.
[26] ———, *Residual spectrum of odd orthogonal groups*, IMRN, 17 (2000), 873–906.
[27] H. Kim and P. Sarnak, *Refined estimates towards the Ramanujan and Selberg conjectures*, Appendix 2 to [23].
[28] H. Kim and F. Shahidi, *Functorial products for GL_2 × GL_3 and the symmetric cube for GL_2*, Annals of Math., (to appear).
[29] ———, *Cuspidality of symmetric powers with applications*, Duke Math. J., 112 (2002), 177–197.
[30] ———, *Functorial products for GL_2 × GL_3 and functorial symmetric cube for GL_2*, C.R. Acad. Sci. Paris, 331 (2000), 599–604.
[31] ———, *Symmetric cube L-functions for GL_2 are entire*, Ann. of Math., 150 (1999), 645–662.
[32] M. Krishnamurthy, The weak Asai transfer to GL(4) via Langlands-Shahidi method, Thesis, Purdue University (2002).
[33] R. P. Langlands, *On the Functional Equations Satisfied by Eisenstein Series,*
Lecture Notes in Math., Vol 544, Springer-Verlag, 1976.

[34] ______, Euler Products, Yale University Press, 1971.

[35] C. Moeglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Math., vol. 113, Cambridge University Press, 1995.

[36] W. Müller, The trace class conjecture in the theory of automorphic forms, Ann. of Math., 130 (1989), 473–529.

[37] D. Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of Math., 152 (2000), 45–111.

[38] ______, Modularity of solvable Artin representations of GO(4)-type, IMRN, 1 (2002), 1–54.

[39] F. Shahidi, Functional equation satisfied by certain L-functions, Comp. Math., 37(1978), 171–207.

[40] ______, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math., 127 (1988), 547–584.

[41] ______, On certain L-functions, Amer. J. Math., 103(1981), 297–355.

[42] ______, A proof of Langlands conjecture on Plancherel measures; Complementary series for p-adic groups, Annals of Math., 132 (1990), 273–330.

[43] ______, Local coefficients as Artin factors for real groups, Duke Math. J., 52 (1985), 973–1007.

[44] ______, Fourier transforms of intertwining operators and Plancherel measures for GL(n), Amer. J. of Math., 106 (1984), 67–111.

[45] ______, Twists of a general class of L-functions by highly ramified characters, Canad. Math. Bull., 43 (2000), 380–384.

[46] ______, Local coefficients as Mellin transforms of Bessel functions; Towards a general stability, preprint (2002).