感光性放射性試薬によるリン分配合位体の分析

著者

Ehama Makoto, Hashihama Fuminori, Kinouchi Shinko, Kanda Jota, Saito Hiroaki

表1

項目	内容
著者	Ehama Makoto, Hashihama Fuminori, Kinouchi Shinko, Kanda Jota, Saito Hiroaki
項目	内容
権利	再利用を制限する権利は、著作権権利者に帰属します。
科学研究費研究課題	天然放射性リン同位体による亜熱帯海域のリン供給過程の解明
研究課題番号	01020202

doi: https://doi.org/10.1016/j.talanta.2016.02.058
Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry

Makoto Ehama,*, Fuminori Hashihama, Shinko Kinouchi, Jota Kanda, Hiroaki Saito

a Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 108–8477, Japan

b Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277–8564, Japan

*Corresponding author: Tel./Fax: +81 3 5463 0448; Email: minami_iwakuni@yahoo.co.jp
Abstract

Determining the total particulate phosphorus (TPP) and particulate inorganic phosphorus (PIP) in oligotrophic oceanic water generally requires the filtration of a large amount of water sample. This paper describes methods that require small filtration volumes for determining the TPP and PIP concentrations. The methods were devised by validating or improving conventional sample processing and by applying highly sensitive liquid waveguide spectrophotometry to the measurements of oxidized or acid-extracted phosphate from TPP and PIP, respectively. The oxidation of TPP was performed by a chemical wet oxidation method using 3% potassium persulfate. The acid extraction of PIP was initially carried out based on the conventional extraction methodology, which requires 1 M HCl, followed by the procedure for decreasing acidity. While the conventional procedure for acid removal requires a ten-fold dilution of the 1 M HCl extract with purified water, the improved procedure proposed in this study uses 8 M NaOH solution for neutralizing 1 M HCl extract in order to reduce the dilution effect. An experiment for comparing the absorbances of the phosphate standard dissolved in 0.1 M HCl and of that dissolved in a neutralized solution [1 M HCl : 8 M NaOH = 8:1 (v:v)] exhibited a higher absorbance in the neutralized solution. This indicated that the improved procedure completely removed the acid effect, which reduces the sensitivity of the phosphate measurement. Application to an ultraoligotrophic water sample showed that the TPP
concentration in a 1075 mL-filtered sample was 8.4 nM with a coefficient of variation (CV) of 4.3% and the PIP concentration in a 2300 mL-filtered sample was 1.3 nM with a CV of 6.1%.

Based on the detection limit (3 nM) of the sensitive phosphate measurement and the ambient TPP and PIP concentrations of the ultraoligotrophic water, the minimum filtration volumes required for the detection of TPP and PIP were estimated to be 15 and 52 mL, respectively.

Keywords

Total particulate phosphorus; Particulate inorganic phosphorus; Liquid waveguide spectrophotometry
1. Introduction

Phosphorus (P) is an essential element for all life forms. P is a constituent of genetic materials (DNA and RNA) and cellular compounds (phosphoproteins and phospholipids), and it is essential for energy transmission in living cells (in the form of ATP). P in natural water exists in both particulate and dissolved forms. These fractions can be defined operationally by filtration through 0.2–0.7 μm filters [1, 2]. Total particulate P (TPP) retained on the filter consists of particulate inorganic P (PIP) and particulate organic P (POP). PIP exists in mineral phases, as P adsorbed onto particles [3] and as intracellular storage products [4] such as orthophosphate, pyrophosphate and polyphosphate [5]. In contrast, POP comprises P incorporated in organic molecules of biochemical origin, and it is generally defined as the difference between the TPP and PIP concentrations [6, 7]. Because inorganic and organic forms of both particulate and dissolved P transform each other through biological activity [2, 8], understanding the size and the dynamics of each pool is necessary to characterize their role in the P cycle.

Oligotrophic oceans occupy nearly 60% of the global ocean [9]. The oligotrophic regions are characterized by low chlorophyll a (Chl a) concentrations (\(\leq 0.1 \, \mu g \, L^{-1}\)) [10] as well as low TPP concentrations (<30 nM) [5, 11–13]. Despite these low concentrations of particulate matter prevail, the integrated dynamics of particulate P over oligotrophic regions are likely to
have a significant impact on global oceanic P cycling because of the vastness of the oligotrophic
habitats. However, few studies exist on particulate P dynamics in oligotrophic regions (e.g. [5,
11–15]), as opposed to the large number of recent studies on dissolved P dynamics (e.g. [16–
19]). Furthermore, information on the POP and PIP fractions is particularly limited among the
particulate P studies [5, 14]. This is mainly due to the large amount of water sample required
for filtration (1–12 L) [5, 11–15], which hampers the accumulation of data on particulate P pools.

The chemical methods for TPP measurements are based on the oxidative and acid
hydrolytic liberation of organically bound inorganic P and the subsequent determination of
phosphate with the phosphomolybdenum blue method [20, 21]. TPP digestion has been
carried out by various methods, including chemical wet oxidation (CWO) [22] and
high-temperature dry combustion (HTDC) [7]. Although the CWO method is simpler and less
time consuming than the HTDC method, it was reported that P recovery was generally lower in
the CWO method than in the HTDC method [23, 24]. Suzumura [24] improved the CWO
method by using 3% potassium persulfate (K$_2$S$_2$O$_8$). The P recovery in this method is the same
as that in the HTDC method when measuring the samples from oceanic and riverine suspended
particulate matters, plankton, and marine sediments with exception of clay minerals. Although
high contents of clay minerals in samples potentially decrease the P recovery in the improved
CWO method, mineral supplies from landmass to oceanic water are generally very small and
the decrease in the P recovery due to minerals is likely unobservable in oceanic water [24].
The analytical protocol of Aspila et al. [6] has been used for the determination of PIP in
seawater [5, 14, 25]. In this protocol, phosphate is extracted from particulate P by acid
treatment with 1 M HCl, and its concentration is determined by the phosphomolybdenum blue
method. While the acid treatment successfully extracts most of the PIP compounds in seawater,
it is not so effective with the decomposition of many POP compounds [25]. In the original
protocol of Aspila et al. [6], the 1 M HCl extract is diluted ten-fold with purified water before
phosphate determination, because the development of color through the phosphomolybdenum
blue reaction is inhibited in the highly acidic conditions [6, 26, 27]. However, in the
oligotrophic regions where PIP concentrations are frequently below 5 nM [5, 14], considerable
amounts of seawater are needed for filtration, in order to compensate for the dilution.
A liquid waveguide capillary cell (LWCC) has been recently used for the automated
analysis of phosphate in natural water [19, 28–31]. With the use of a long-pathlength flow cell,
ranging from 1–2.5 m, the LWCC system performed the measurement of nanomolar
concentration of phosphate with a low detection limit (DL) ranging from 0.5–3 nM. The
application of the LWCC system to the determination of trace particulate P could decrease the
filtration volume. However, to the best of our knowledge, the LWCC system has never been utilized for the determination of particulate P.

In this study, the LWCC system was applied in order to measure the concentration of TPP and PIP. Sample processing for TPP was based on the method of Suzumura [24]. For the PIP procedure, the sample processing method of Aspila et al. [6] was modified by using 8 M NaOH instead of purified water for decreasing acidity, in order to minimize the dilution effect.

Contamination of trace P in the filter and the reagents of sample processing was carefully monitored, because the highly sensitive LWCC system can potentially detect such a contamination. The established methods were applied to TPP and PIP determination in ultraoligotrophic seawater.

2. Experimental

All reagents used in this study were of analytical reagent grade obtained from Wako Pure Chemical Industries (Osaka, Japan) and Sigma Aldrich (St Louis, MO, USA). The purified water for preparing the reagents and diluting the samples was obtained with the use of a reverse osmosis and deionization system (Millipore Auto Pure WEX3 and WR600A, Yamato, Tokyo, Japan). All instruments were washed using Merck Extran MA03 detergent (Merck Ltd, Tokyo, Japan) and then rinsed with 0.3 M HCl and purified water prior to use.
2.1. Spectrophotometric measurement of nanomolar phosphate

The analysis for phosphate concentration was based on a LWCC method devised by Hashihama et al. [19, 32]. A gas-segmented continuous flow analytical system (AutoAnalyzer II, Technicon, now Seal Analytical, Hampshire, UK) was used for an automated analysis of phosphate. A schematic diagram of this system was previously shown in Fig. 1 of Hashihama et al. [32]. Spectrophotometric analysis was performed by using a tungsten fiber optic light source (L7893, Hamamatsu Photonics, Shizuoka, Japan), a 1 m long path LWCC (LWCC-2100; World Precision Instruments, Sarasota, FL, USA), and a miniature fiber optic spectrometer (USB4000, Ocean Optics, Dunedin, FL, USA). The spectrometer was connected to a computer, and an absorbance at 708 was operated using Spectra Suite software (Ocean Optics, Dunedin, FL, USA). The analytical reagents (molybdate and ascorbic acid solutions) were prepared by using the methodology of Hansen and Koroleff [21], with the exception of the ascorbic acid solution [32]. Acetone and 15% sodium dodecyl sulfate solution were added to the ascorbic acid solution to eliminate baseline drift [32, 33]. Potassium dihydrogen phosphate was used to prepare standard solutions. The DL of this method was 3 nM [32].

2.2. TPP protocol
A pre-combusted, acid-washed glass fiber filter (Whatman GF/F, 2.5 cm in diameter, Kent, UK) was used to collect particulate P. Filtration was carried out with the use of an aspirator (A-3S, TOKYO RIKAKIKAI, Tokyo, Japan) under vacuum at <0.02 MPa. Just after filtration, the filter was rinsed with ~5 mL of 0.17 M Na2SO4 to remove any dissolved P that was absorbed onto it. Then, the filter was dried and placed into a digestion glass bottle (GL32, Duran, Wertheim/Main, Germany). The TPP on the filter was digested with 20 mL of 3% K2S2O8 at 120°C for 30 minutes using an autoclave (KTS-2322, ALP, Tokyo, Japan) [24]. The bottle was shaken before and after autoclaving. The residue in the digested solution was removed using a 0.45 μm syringe filter (Millex-HV, Millipore, Massachusetts, USA). Because >2% K2S2O8 inhibits color development in the sample after autoclaving [24], the digested solutions were diluted to 1.5% K2S2O8 with purified water. Phosphate concentration in the diluted solution was determined by the LWCC method.

The absorbances of procedural blank (GF/F filter + 3% K2S2O8 + purified water) and reagent blank (3% K2S2O8 + purified water) were compared to check P contamination of GF/F filter. In this case, the absorbance of purified water (+colorimetric reagent) was set to zero. The procedural blank was prepared by filtering 1L of purified water and it was processed following the outlined digestion procedure.

The absorbance of standard solutions (20, 50, 100, 200, 500 and 1000 nM) was measured
in order to draw a calibration curve. Each standard that was dissolved in 1.5% K$_2$S$_2$O$_8$ was
prepared by mixing phosphate standards dissolved in purified water (40, 100, 200, 400, 1000
and 2000 nM) with 3% autoclaved K$_2$S$_2$O$_8$ [1:1 (v:v)].

The reproducibility of TPP determination was obtained by analyzing field samples.

Sampling was conducted at a station (30°00′S, 120°00′W), which is found within the
ultraoligotrophic eastern South Pacific, on January 11 2011 during the KH-11-10 cruise of R/V
Hakuho-maru. This area has one of the lowest oceanic Chl a concentrations in the world [34].

During the cruise, low surface concentrations of Chl a at the station were confirmed (0.021 µg
L$^{-1}$). Given the Chl a concentrations, extremely low TPP concentrations were expected.

Seawater samples for TPP were collected at surface layer using an acid-clean bucket. The
samples were poured into five polycarbonate bottles (Thermo Scientific Nalgene, Rochester, NY,
USA). Each sample with a volume of 1075 mL was filtered. The filters were stored at –20°C
until ashore analysis.

2.3. PIP protocol

Particulate P was collected on the GF/F filter through the same sampling procedure as that
carried out for the obtainment of TPP samples. The filter was placed in a 30 mL
polypropylene tube and 20 mL of 1 M HCl was added. The tube was placed in the dark on a
shaker bath (EP-1; TAIITEC, Saitama, Japan) for 24 h at 20°C. The residue that was found in
the extract was removed using the Millex-HV 0.45 μm syringe filter. To neutralize the extract,
2.5 mL of 8 M NaOH were added [1 M HCl : 8 M NaOH = 8:1 (v:v)]. Phosphate
concentration of the neutralized solution was measured by the LWCC method.
The absorbances of the procedural blank (GF/F filter + 1 M HCL + 8 M NaOH) and the
reagent blank (1 M HCL + 8 M NaOH) were compared to check P contamination on the filter.
In this case, the absorbance of purified water (+colorimetric reagent) was set to zero. The
procedural blank was prepared by filtering 1L of purified water and it was processed through the
outlined extraction procedure.
The absorbances of standard solutions (20, 50, 100, 200, 500 and 1000 nM) were measured
to draw a calibration curve. Each standard was prepared by dissolving phosphate standards in
a mixed solution of 1 M HCl and 8 M NaOH [8:1 (v:v)]. To confirm the difference between
absorbances of phosphate in the conventional and improved protocols, the absorbances of the
phosphate standards (20, 50, 100, 200, 500 and 1000 nM), which were dissolved in 0.1 M HCl
(prepared by diluting 1 M HCl by 10% with purified water, i.e. the conventional protocol of
Aspila et al. [6]), were also measured.
In order to compare the ambient PIP concentrations as determined through the conventional
and improved protocols, the two protocols were applied to the water samples collected around a
station (34°36′N, 139°06′E) from the Sagami Bay on May 30, 2013 during the SE-13-05 cruise of RT/V Seiyo-maru. Five samples were collected at the surface at different times using an acid-clean bucket, and then filtered. The filtration volume of each sample was 1230 mL. The filter was extracted with 1 M HCl and the extract was dispensed into duplicate tubes, one for the conventional protocol (ten-fold dilution with purified water) and another for the improved protocol (neutralization with 8 M NaOH). After the ten-fold dilution and neutralization, the two types of solutions were analyzed by the LWCC method.

The reproducibility of PIP determination through the improved protocol was obtained by analyzing field samples, which were collected at the same station as the TPP samples. Sample collection and filtration were done in the same way as for the TPP samples, apart from the filtration volume, which was 2300 mL ($n = 4$). The filters were stored at −20°C until ashore analysis.

3. Results and discussion

3.1. TPP determination

3.1.1. Filter blank

The mean ± standard deviation (SD) of the absorbances of the procedural and reagent blanks were 0.009 ± 0.001 and 0.009 ± 0.003, respectively ($n = 3$) (Table 1). The mean absorbances between two blanks were not significantly different (t test, $p > 0.05$), indicating that
P contamination in the GF/F filter was negligible. This result was consistent with the results of Suzumura [24], Labry et al. [25], and Raimbault et al. [35], who reported that P contamination in the GF/F filter was substantially low. Furthermore, this study confirmed that there was no significant contamination even for nanomolar phosphate determination. The absorbance of reagent blank was higher than that of purified water. Labry et al. [25] reported significant P contamination of K$_2$S$_2$O$_8$ in their CWO method. P contamination of K$_2$S$_2$O$_8$ used in the present study was probably responsible for the higher absorbance. As a result, it was necessary to include the absorbance derived from the K$_2$S$_2$O$_8$ in the analytical blank.

3.1.2. Calibration curve

A calibration curve was obtained from the absorbance of each duplicate standard dissolved in 1.5% K$_2$S$_2$O$_8$ (Fig. 1). The regression equation obtained is $y = 0.0010x - 0.0089$, with $r^2 = 0.9997$ ($n = 14$), where y is the absorbance and x is the concentration of phosphate. The wide linear dynamic range could be applicable to various oceanic samples. For example, if a 100 mL filtration volume is used, then 3–1000 nM phosphate corresponds to 1.2–400 nM of ambient TPP, according to the following equation:

$$C_a = C_p \times V_r \times DR / V_f$$ \hspace{1cm} (1)

where C_a is the ambient TPP concentration (1.2–400 nM), C_p is the phosphate concentration (3–
1000 nM, \(V_r \) is the reagent volume (20 mL), \(DR \) is the dilution ratio (2) and \(V_f \) is the filtration volume (100 mL).

3.1.3. Concentration and reproducibility of the field sample

TPP concentrations of the field samples were \(8.4 \pm 0.36 \text{ nM (mean \pm SD,} \ n = 5) \) (Table 2).

Because of the low coefficient of variation (CV) (4.3%), this method provides high-precision measurements even for ultraoligotrophic water. Moutin et al. [12] investigated surface TPP concentrations in the eastern South Pacific (26°05’S, 114°00’W) and reported concentrations of 5–10 nM, which is consistent with the results of this study. Given the DL of the LWCC method (3 nM) and the low concentrations of ambient TPP (8.4 nM), the minimum filtration volume required is estimated to be 15 mL, according to the following equation:

\[
V_f = \frac{DL \times V_r \times DR}{C_a} \tag{2}
\]

The filtration volume estimated was 67–800 times lower than that of previous studies (1–12 L) [5, 11–13, 15].

3.2. PIP determination

3.2.1. Filter blank

Mean \(\pm \) SD of the absorbances of procedural and reagent blanks were \(-0.016 \pm 0.002 \) and \(0.018 \pm 0.002 \), respectively \((n = 3) \) (Table 1). The mean absorbance between the two blanks
was not significantly different (t test, $p > 0.05$), as was the case for the filter blank test for TPP. This indicates that P contamination of the GF/F filter was also negligible in the case of PIP determination. The absorbances of both procedural and reagent blanks were lower than that of purified water. This is probably due to the difference in refractive index between ionic solutions (1 M HCl + 8 M NaOH) and purified water [28]. Therefore, it is necessary to use the neutralized solution as an analytical blank.

3.2.2. Calibration curve

A calibration curve was obtained from the absorbances of each duplicate standard dissolved in the neutralized solution (Fig. 2). The regression equation obtained is $y = 0.0011x - 0.0034$, with $r^2 = 1.0000$ ($n = 7$), where y is the absorbance and x is the concentration of phosphate. The strong correlation of the linear regression line indicates a wide linear dynamic range of up to 1000 nM phosphate, which is able to measure the PIP concentrations in various oceanic waters. For example, if 100 mL of the filtration volume is assumed, 3–1000 nM phosphate corresponds to 0.68–225 nM PIP according to equation 1 (C_a: 0.68–225 nM, C_p: 3–1000 nM, V_r: 20 mL, DR: $9/8$, and V_f: 100 mL).

3.2.3. Absorbance comparison with the conventional protocol
A calibration curve for the conventional protocol was also obtained from the absorbances of each pair of phosphate standards that were dissolved in 0.1 M HCl (Fig. 2). The curve showed a strong linear correlation up to 1000 nM ($r^2 = 0.9998$), which was the same as that by the improved protocol. However, the absorbances of the standards in the conventional protocol were significantly lower than those of the improved protocol (paired t test, $p < 0.05, n = 7$). Aspila et al. [6] used the ten-fold dilution of 1M HCl with purified water to remove the effect of acidity on phosphate analysis. However, the incomplete removal of acid could be the reason behind the lower absorbances in the conventional protocol [26, 27]. In addition to 8.9 times higher sensitivity in the improved protocol than the conventional protocol by decreasing dilution ratio from 10 to 9/8, sensitivity of the improved protocol further increased by 2.3% compared to that of the conventional protocol when taking into account a slope ratio of two regression lines ($0.001069/0.001045$).

3.2.4. Comparison with the conventional protocol using natural samples

The PIP concentrations of the natural samples derived from the conventional and improved protocols are shown in Fig.3. These concentrations were not significantly different from each other (paired t test, $p > 0.05, n = 5$). The result confirmed that the use of NaOH had no influence on PIP determination for the natural samples.
3.2.5. Concentration and reproducibility of the field sample

PIP concentrations of the field samples were 1.3 ± 0.08 nM (mean ± SD, $n = 4$) (Table 2). Because of the low CV (6.1%), this method provides high-precision measurements even for ultraoligotrophic water. Yoshimura et al. [5] reported that typical proportions of PIP to TPP in subtropical and subarctic regions range between 10 and 20%. In this study, the proportion of PIP to TPP was 15%, which is within the typical range, and the concentration of POP (which is obtained by subtracting PIP from TPP) was estimated to be 7.1 nM. Taking into account the DL of the LWCC method (3 nM), the low PIP concentration ($C_o = 1.3$ nM), the reagent volume ($V_r = 20$ mL), and the dilution ratio (DR = 9/8), the minimum filtration volume required (V_f) is estimated to be 52 mL according to equation 2. The estimated filtration volume is 38 times lower than that used in the previous PIP studies in the oligotrophic ocean (2 L) [5].

4. Conclusions

The present study established sensitive methods for the determination of TPP and PIP in the oligotrophic oceans. The proposed methods possess two distinct advantages over the conventional methods. Firstly, significant decreases in filtration volumes for TPP and PIP were performed through the application of the LWCC method. Secondly, the improved PIP
protocol was more sensitive than the conventional protocol in terms of the decrease in the
dilution ratio of 1 M HCl extract and the increase in the absorbance of the colorimetric
determination of phosphate. This also contributes to the decrease in the filtration volume.
The small filtration volumes enable rapid sample accumulation in the field. Field observations
revealed that the methods could detect very low concentrations of TPP and PIP with high
precisions even in ultraoligotrophic water. The methods are considered to be valuable in
understanding the role of particulate P in the oceanic P cycle.
Acknowledgments

We thank the officers, crew members, and members of the scientific party of the RT/V Seiyo-maru and R/V Hakuho-maru cruises for their cooperation at sea. This work was financially supported by Grant-in-Aid Nos. 22710006 and 24710004 for Young Scientists (B) from the Japan Society for Promotion of Science, and Grant-in Aid No. 24121003 for Scientific Research in Innovative Areas (New Ocean Paradigm on Its Biogeochemistry, Ecosystem and Sustainable Use, NEOPS) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
References

[1] P.J. Worsfold, P. Monbet, A.D. Tappin, M.F. Fitzsimons, D.A. Stiles, I.D. McKelvie, Anal. Chim. Acta 624 (2008) 37–58.

[2] A. Paytan, K. McLaughlin, Chemical Rev. 107 (2007) 563–576.

[3] S.A. Sañudo-Wilhelmy, A. Tovar-Sanchez, F.-X. Fu, D.G. Capone, E.J. Carpenter, D.A. Hutchins, Nature 432 (7019) (2004) 897–901.

[4] E.D. Orchard, C.R. Benitez-Nelson, P.J. Pellechia, M.W. Lomas, S.T. Dyhrman, Limnology and Oceanography 55 (5) (2010) 2161–2169.

[5] T. Yoshimura, J. Nishioka, H. Saito, S. Takeda, A. Tsuda, M.L. Wells, Mar. Chem. 103 (2007) 112–121.

[6] K.I. Aspila, H. Agemian, A.S.Y. Chau, Analyst 101 (1976) 187–197.

[7] L. Solórzano, J.H. Sharp, Limnol. Oceanogr. 25 (1980) 754–758.

[8] K.C. Ruttenberg, D.H. Heinrich, K.T. Karl, The Global Phosphorus Cycle, in Treatise on Geochemistry, Pergamon, Oxford, 2003, pp. 585–643.

[9] R.W. Eppley and B.J. Peterson, Nature 282 (1979) 677–680.

[10] D. Antoine, J.M. Andre, A. Morel, Global Biogeochem. Cycles 10 (1996) 57–69.

[11] M. Suzumura, E.D. Ingall, Deep-Sea Res. I 51 (2004) 1113–1130.

[12] T. Moutin, D.M. Karl, S. Duhamel, P. Rimmelin, P. Raimbault, B.A.S. Van Mooy, H.
Claustre, Biogeosciences 5 (2008) 95–109.

[13] M.W. Lomas, A.L. Burke, D.A. Lomas, D.W. Bell1, C. Shen, S.T. Dyhrman, J.W. Ammerman, Biogeosciences 7 (2010) 695–710.

[14] A.N. Loh, J.E. Bauer, Deep-Sea Res. I 47 (2000) 2287–2316.

[15] D.M. Karl, K.M. Björkman, J.E. Dore, L. Fujieki, D.V. Hebel, T. Houlihan, R.M. Letelier, L.M. Tupas, Deep-Sea Res. II 48 (2001) 1529–1566.

[16] D.M. Karl, G. Tien, Mar. Chem. 56 (1997) 77–96.

[17] J. Wu, W. Sunda, E.A. Boyle, D.M. Karl, Science 289 (2000) 759–761.

[18] R. Mather, S. Reynolds, G. Wolff, R.G. Williams, S. Torres-Valdes, E.M.S. Woodward, A. Landolfi, X. Pan, R.W. Sanders, E. Achterberg, Nature Geosci. 1 (2008) 439–443.

[19] F. Hashihama, K. Furuya, S. Kitajima, S. Takeda, T. Takemura, J. Kanda, Geophys. Res. Lett. 36 (2009) L03610.

[20] J.D.H. Strickland, T.R. Parsons, A Practical Handbook of Seawater Analysis, 2nd ed., Fisheries Research Board of Canada, Ottawa, 1972, p 310.

[21] H.P. Hansen, F. Koroleff, in: K. Grasshoff, M. Kremling, M. Ehrhardt (Eds.), Methods of Seawater Analysis, 3rd ed., Wiley-VCH, Weinheim, 1999, pp. 159–228.

[22] D.W. Menzel, N. Corwin, Limnol. Oceanogr. 10 (1965) 280–282.

[23] G.G. Lampman, N.F. Caraco, J.J. Cole, Mar. Ecol. Prog. Ser. 217 (2001) 59–65.
[24] M. Suzumura, Limnol. Oceanogr. Methods 6 (2008) 619–629.

[25] C. Labry, A. Youenou, D. Delmas, P. Michelon, Cont. Shelf Res. 60 (2013) 28–37.

[26] X.-L. Huang, J.-Z. Zhang, Talanta. 77 (2008) 340–345.

[27] E.A. Nagul, I.D. McKelvie, P.J. Worsfold, S.D. Kolev, Anal. Chim. Acta, 890 (2015) 60–82.

[28] J.Z. Zhang, J. Chi, Environ. Sci. Technol. 36 (2002) 1048–1053.

[29] Q.P. Li, D.A. Hansell, J.Z. Zhang, Limnol. Oceanogr. Methods 6 (2008) 319–326.

[30] J. Ma, D. Yuan, M. Zhang, Y. Liang, Talanta 78 (2009) 315–320.

[31] L.A. Zimmer, G.A. Cutter, Limnol. Oceanogr. Methods 10 (2012) 568–580.

[32] F. Hashihama, S. Kinouchi, S. Suwa, M. Suzumura, J. Kanda, J. Oceanogr. 69 (2013) 357–367.

[33] L. J. Gimbert, P. J. Worsfold, Trends Anal. Chem. 26 (2007) 914-930.

[34] H. Claustre, A. Sciandra, D. Vaulot, Biogeoosciences 5 (2008) 679–691.

[35] P. Raimbault, F. Diaz, B. Boudjellal, Mar. Ecol. Prog. Ser. 180 (1999) 289–295.
Table 1

Absorbances of procedural and reagent blanks in the determinations of TPP and PIP (improved protocol).

Type of blank	Absorbance ± SD (n = 3)
TPP procedural blank (GF/F filter + K₂S₂O₈ + pure water)	0.009 ±0.001
TPP reagent blank (K₂S₂O₈ + pure water)	0.009 ±0.003
PIP procedural blank (GF/F filter + HCl + NaOH)	–0.016 ±0.002
PIP reagent blank (HCl + NaOH)	–0.018 ±0.002
Table 2

TPP and PIP concentrations in the ultraoligotrophic eastern South Pacific, and the minimum filtration volume calculated from the DL of the LWCC (3 nM), and ambient particulate P concentrations.

P pool	Mean concentration ± SD (nM)	CV (%)	Minimum filtration volume (mL)
TPP	8.4 ± 0.36 ($n = 5$)	4.3	15
PIP	1.3 ± 0.08 ($n = 4$)	6.1	52
Figure captions

Figure 1. Calibration curve ranging from 0 to 1000 nM phosphate dissolved in 1.5\% \text{K}_2\text{S}_2\text{O}_8. Concentrations of the assumed TPP indicate the estimated values if filtration volume was 100 mL.

Figure 2. Calibration curve ranging from 0 to 1000 nM phosphate dissolved in the neutralized solution (open circle) and 0.1 M HCl (closed circle). The assumed concentrations of PIP indicate the ambient PIP concentrations if the filtration volume was 100 mL in the improved protocol.

Figure 3. PIP concentrations of the natural samples (Sagami Bay) derived from the improved and the original protocols (nM).
Concentration of phosphate (nM) vs. Absorbance

- $y = 0.0010x - 0.0089 \quad r^2 = 0.9997$

Ehama et al. Fig. 1
Assumed PIP in the improved protocol (nM)

Concentration of phosphate (nM)

Absorbance

\[y = 0.0011x - 0.0034 \quad r^2 = 1.0000 \]

\[y = 0.0010x - 0.0080 \quad r^2 = 0.9998 \]
PIP concentration derived from the original protocol (nM)

PIP concentration derived from the improved protocol (nM)

\[y = 1.0119x - 0.7064 \quad r^2 = 0.9998 \]