Nonthermal correction to black hole spectroscopy

Wen-Yu Wen1,2,*

1Department of Physics and Center for High Energy Physics, Chung Yuan Christian University, Chung Li City, Taiwan
2Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 106, Taiwan

Abstract

Area spectrum of black holes have been obtained via various methods such as quasinormal modes, adiabatic invariance and angular momentum. Among those methods, calculations were done by assuming black holes in thermal equilibrium. Nevertheless, black holes in the asymptotically flat space usually have negative specific heat and therefore tend to stay away from thermal equilibrium. Even for those black holes with positive specific heat, temperature may still not be well defined in the process of radiation, due to the back reaction of decreasing mass. Respect to these facts, it is very likely that Hawking radiation is nonthermal and the area spectrum is no longer equidistant. In this note, we would like to illustrate how the area spectrum of black holes is corrected by this nonthermal effect.

*E-mail: steve.wen@gmail.com
A finite size system often displays a discrete energy spectrum for quantum fluctuation. It was suggested that since the dynamics of a black hole is uniquely determined by its charge(s), which is closely related to the finite region enclosed by the horizon, one also expects the mass or area spectrum to display similar discreteness\(^1,^2\). There were many proposals to obtain area spectrum for various black holes since then. Most earlier methods of quantizing horizon area are based on real or imaginary part of quasinormal modes\(^3–10\). Recently the application of adiabatic invariant action variable did not use the quasinormal modes\(^11,^12\) and the idea of quantizing angular momentum to obtain area spectrum first appeared in the study of non-extremal RN black holes\(^13\). The various methods of quantization have settled down to a spectrum of equidistant discreteness

\[
\Delta A = cl_p^2. \quad (1)
\]

In particular, one obtained \(c = 8\pi\) for various kinds of black holes in different spacetime dimensions. Nevertheless, this universal result is closely related to the assumption that the black hole is in the thermal equilibrium state where the Hawking temperature is well defined. Realistic black holes are more likely to be in the nonequilibrium state due to its negative specific heat. Even for those black holes with positive specific heat, temperature may still be ill-defined in the process of radiation, due to the back reaction of decreasing mass. A universal logarithm correction to the Bekenstein-Hawking area law has been predicted in various theories of quantum gravity and modified general relativity, such that

\[
S_{BH} = \frac{A}{4l_p^2} + \alpha \ln(\frac{A}{l_p^2}). \quad (2)
\]

The corresponded correction to the area spectrum was computed for \(\alpha = -\frac{3}{2}\) in the context of adiabatic invariance approach for a constant surface gravity and uneven discreteness was observed\(^11\):

\[
\Delta A \simeq 8\pi l_p^2 - \frac{32\pi \alpha l_p^4}{A}. \quad (3)
\]

While the above logarithmic correction in \(2\) can be regarded as the consequence of loop quantum correction of surface gravity\(^14,^15\), we are looking for the other correction due to back reaction from the Hawking radiation. Among various models of black hole radiation, the tunneling model proposed by Parikh and Wilczek\(^16\) has provided useful insights in the effort to resolve the Information Loss Paradox\(^17\), black hole evolution\(^18,^19\) and black hole remnant\(^20\). The Parikh-Wilczek model regards the Hawking
radiation as a tunneling process in some stationary vacuum. The potential barrier is
dynamically established due to the back reaction which observes energy conservation.
The emission rate in the tunneling model has a universal result

$$\Gamma \sim e^{\Delta S_{BH}},$$

(4)
given the black hole entropy change ΔS_{BH} due to radiation. The back reaction constantly
changes the surface gravity during tunneling process, therefore the black hole is never in
the thermal equilibrium. In the following, we would like to use the Schwarzschild black
hole as an example to argue that the back reaction effect could produce another correction
to area spectrum of order $O(A^{-1})$.

In the case of Schwarzschild black hole of mass M, we have the change of entropy

$$\hbar \Delta S \simeq -8\pi M \omega + 4\pi \omega^2 - \alpha \hbar (2 \frac{\omega}{M} + \frac{\omega^2}{M^2}) + O(\alpha^2).$$

(5)

where the first term is nothing but the thermal spectrum if the inverse of Hawking tem-
perature $T_H^{-1} = 8\pi M$ is identified, and we regard the second term as the nonthermal
correction due to back reaction. Those terms with α inside are the series expansion of
the logarithmic correction with respect to large black hole mass and we reagrd them as
the quantum correction to the spectrum. To see how the area spectrum also receives
correction from those nonthermal and quantum effect, let us recall the derivation of [1]
and then divert to the quantization of area. The tunneling process happens at the horizon
in the following metric [16] in the unit $G = c = k_B = 1$:

$$ds^2 = -(1 - 2\frac{M}{r})dt^2 + 2\sqrt{2\frac{M}{r}}dt dr + dr^2 + r^2 d\Omega_2^2,$$

(6)

which can be obtained from the static Schwarzschild black hole metric by a coordinate
transformation of the Painlevé-type. The WKB approximation states that the emission
rate $\Gamma \sim e^{-2ImS/\hbar}$, where the imaginary part of action reads

$$ImS = Im \int_{r_{in}}^{r_{out}} p_r dr = Im \int_{M}^{M-\omega} \int_{2M}^{2(M-\omega)} \frac{dH}{\dot{r}} dr,$$

(7)

for Hamiltonian $H = M - \omega'$ and trajectory of emission is given by radial null geodesics
$\dot{r} = 1 - \sqrt{\frac{2(M-\omega')}{r}}$. We remark that the emitted mass ω has been substrated from M such

1 We remark that one cannot further set $\hbar = 1$ as in the nature unit. Since in the unit $G = c = 1$, one
has dimension $[L] = [T] = [M]$, and \hbar has dimension $[L]^2$. We are grateful to Otto Kong to point out
this.
that total energy is conserved. Now we can apply the Sommerfeld-Bohr quantization rule and demand that each emission of ω carries away the action quantum \hbar, which corresponds to a decrease of the horizon area. That is,

$$2Im \int_{r_{in}}^{r_{out}} p_r dr = \hbar.$$

(8)

This brings down to a simple quadratic equation of ω:

$$(2 - \frac{\alpha \hbar}{2\pi M^2})\omega^2 - (4M + \frac{\alpha \hbar}{\pi M})\omega + \hbar = 0$$

(9)

Were both nonthermal and quantum effect effects ignorable, one can drop the ω^2 term and obtain the quantum of mass $\omega = \frac{\hbar}{4M}$ by solving (9). The area discreteness can be computed as

$$\Delta A = 8\pi r \frac{dr}{dM} \Delta M \big|_{r=2M, \Delta M=\omega} = 8\pi \hbar$$

(10)

We remark that $\hbar = l_p^2$ in our choice of unit. The universal prefactor 8π agrees with that obtained from previous methods[21]. Now we would like to include the nonthermal and quantum effects by solving (9) honestly and obtain

$$\omega \simeq \frac{\hbar}{4M} + \frac{\hbar^2(\pi - 2\alpha)}{32\pi M^3} + O(\frac{\alpha^2}{M^3}),$$

(11)

where we choose the smaller root for $\omega < M$ and do the Taylor expansion as long as $M \gg l_p$. At last, we have the area discreteness

$$\Delta A = 8\pi \hbar + \frac{(16\pi^2 - 32\pi\alpha)\hbar^2}{A} + \ldots$$

(12)

Due to the nonthermal correction, the area spacing gets larger as the horizon area shrinks as $\alpha < \frac{\pi}{2}$ but gets smaller vice versa. This can be regarded as an important signature for the Parikh-Wilczek tunneling model of Hawking radiation if the area discreteness were ever to be detected in the future. The area discreteness can be easily generalized to the Schwarzschild black hole in arbitrary dimension D[22], where

$$\Delta A = 8\pi \hbar^{D/2 - 1} + \frac{(32\pi^2 - 32\pi(D - 2)\alpha)\hbar^{(D-2)}}{(D-2)A} + \ldots,$$

(13)

where $A = r_0^{D-2}\Omega_{D-2}$ for horizon radius r_0. We remark that in $D = 4$ the nonthermal correction is competitive to the quantum correction, however the former becomes less and less important as D increases.
To obtain correction to black holes with more charges or different topology, one can in principle solve the following algebraic equation as a generalization of (9):

\[S_{BH}(Q_i - q_i) - S_{BH}(Q_i) + 2\pi = 0, \]

given the change of black hole entropy as a function of black hole charges \(Q_i \) and emitted charges \(q_i \). In the following examples, we will solve (14) in the large mass limit, i.e. \(M \gg 0 \), and focus on nonthermal correction but ignore the quantum correction:

- For a Reissner-Nordström black hole of mass \(M \) and electric charge \(Q \), we have metric

\[
ds^2 = -f(r)dt^2 + f^{-1}(r)dr^2 + r^2 d\Omega_2^2,
\]

\[
f(r) = 1 - \frac{2M}{r} + \frac{Q}{r^2},
\]

where the horizon \(r_+ = M + \sqrt{M^2 - Q^2} \). It is convenient to define the extremality \(\Gamma = Q/M \) and charge-mass-ratio of emitted particle \(\gamma = q/\omega \). The area discreteness in generic reads

\[\Delta A = 8\pi \hbar(1 + a(\Gamma, \gamma)) + \frac{16\pi^2 \hbar^2}{A}(1 + b(\Gamma, \gamma)), \]

where functions \(a(\Gamma, \gamma) \) and \(b(\Gamma, \gamma) \) are complicated but can be perturbatively computed. For instance,

\[
a(\Gamma, \gamma) \simeq \frac{1}{2} \gamma \Gamma + O(\Gamma^2), \quad b(\Gamma, \gamma) \simeq -\frac{\gamma^2}{2} + \frac{3}{2} \gamma \Gamma - \frac{3}{4} \gamma^3 \Gamma + O(\Gamma^2),
\]

in the near Schwarzschild limit (\(\Gamma \ll 1 \)). On the other hand, in the near extremal limit where \(\Gamma, \gamma \to 1 \), we obtain

\[
a(x, \gamma) \simeq 3 - 12x + O(x^2), \quad b(x, \gamma) \simeq 3 - 22x + O(x^2),
\]

where \(\Gamma = 1 - 2x^2 \).

- For a BTZ black hole in three dimensions, area spectrum has been discussed in [23, 24], and tunneling rate was discussed in [27]. We begin with the metric

\[
ds^2 = -f(r)dt^2 + f^{-1}(r)dr^2 + r^2 (d\phi - \frac{J}{2r^2} dt)^2,
\]

\[
f(r) = -M + \frac{r^2}{l^2} + \frac{J^2}{4r^2},
\]

\[(19) \]
The entropy function is known

\[S_{BH} = \frac{\pi}{2\hbar} r_+, \]

(20)

where \(r_+^2 = \frac{1}{2} \left(Ml^2 + \sqrt{M^2 l^4 - J^2 l^2} \right) \). Following the (13), one obtains for nonrotating BTZ \((J = 0)\):

\[\Delta A = 8\pi \hbar - \frac{32\pi^2 \hbar^2}{A} + \cdots. \]

(21)

For \(J \neq 0 \), the area spacing in generic depends on the black hole angular momentum \(J \) and spin of the emitted particle \(j \). If one defines the extremality \(\Gamma \equiv J/M \) and emitted particle’s spin-mass-ratio \(\gamma \equiv j/\omega \), then

\[\Delta A = 8\pi \hbar - \frac{32\pi^2 \hbar^2}{A} \left(1 + a(\Gamma, \gamma) \right) + \cdots, \]

(22)

where function \(a(\Gamma, \gamma) \) can be solved by Taylor’s expansion at small \(\Gamma \) and \(\gamma \):

\[a(\Gamma, \gamma) \approx \frac{\gamma^2}{l^2} - 2\frac{\gamma \Gamma}{l^2} - \frac{\Gamma^2}{8l^2} + \cdots. \]

(23)

The constant leading term in (22) agrees with that found in [25, 26], and moreover we observe the nonthermal correction depends on \(\Gamma \) and \(\gamma \) in general.

• For a \(D \)-dimensional AdS black hole of different horizon topologies:

\[ds^2 = -f(r)dt^2 + f^{-1}dr^2 + r^2 d\Omega_{D-2}^2, \]

\[f(r) = k + \frac{r^2}{l^2} - \frac{aM}{r^{D-3}}. \]

(24)

For simplicity, we first examine the one with planar horizon, that is \(k = 0 \). The horizon can be analytically solved as \(r_+ = (a^2 M)^{1/(D-3)} \). We find leading-order equisistant spectrum:

\[\Delta A = 8\pi \hbar^{D/2 - 1} - \frac{32\pi^2 \hbar^{(D-2)}}{(D-2)A} + \cdots. \]

(25)

The leading term agrees with the universal factor \(8\pi \) for any \(D > 3 \), but different from that obtained in the [28]. The nonthermal correction takes same form as that in the Schwarzschild black hole (13) but with opposite sign. We remark that the correction implicitly depends on the AdS radius of curvature \(l \) via the horizon area \(A \). This result cannot be simply compared with (13) in the flat limit \(l \to \infty \) due to different horizon topology \(k = 0 \).
For the spherical near-horizon topology, $k = 1$, we find that correction to area spectrum explicitly depends on l. In particular, at the limit of large mass and weak curvature (but keep M/l small), one obtains

\[\Delta A \simeq 8\pi \hbar + \frac{\pi \hbar^2}{M^2} + l^{-2}(4M\hbar - \frac{\hbar^3}{8M^3}) + \cdots, \tag{26} \]

for $D = 4$. We remark that the result of [13] can be reproduced in the flat limit $l \to \infty$.

- For a D-dimensional Schwarzschild-de Sitter black hole:

\[ds^2 = -(1 - \frac{2M}{r^{D-3}} - \frac{r^2}{l^2})dt^2 + (1 - \frac{2M}{r^{D-3}} - \frac{r^2}{l^2})^{-1}dr^2 + r^2d\Omega_{D-2}^2, \tag{27} \]

First, we would like to examine the case of $D = 3$, where one obtains exact solution

\[\Delta A = 8\pi \hbar \tag{28} \]

Since there is in fact no black hole in three dimensional de Sitter space, this should be identified as the area spectrum of dS_3 space itself\(^2\).

For $D > 3$, one recieves the area spectrum correction. For instance, in $D = 4$ for large M and l:

\[\Delta A \simeq 8\pi \hbar - 2592\pi \hbar 2^{2/3} \left(\frac{M}{l}\right)^{8/3} + \cdots, \tag{29} \]

- For a D-dimensional AdS topological black hole [30]:

\[ds^2 = -(1 - \frac{2M}{r^{D-3}} + \frac{r^2}{l^2})dt^2 + (1 - \frac{2M}{r^{D-3}} + \frac{r^2}{l^2})^{-1}dr^2 + r^2d\Omega_{D-2}^2, \tag{30} \]

We obtain $D = 4$ spectrum for large M and l:

\[\Delta A \simeq 8\pi \hbar - 2592\pi \hbar 2^{2/3} \left(\frac{M}{l}\right)^{8/3} + \cdots, \tag{31} \]

which is the same as [29]. For massless topological black hole, where $M \to 0$, we obtain the universal result $\Delta A = 8\pi \hbar$, which again is half of what was found in [31] where the volume change is included.

\(^2\) As discussed in [29], if additional contribution due to volume change is included, we would obtained twice of discreteness as $\Delta A = 16\pi \hbar$.
For a D-dimensional Gauss-Bonnet black hole, the metric reads:

$$ds^2 = - f(r) dt^2 + f(r)^{-1} dr^2 + r^2 d\Omega_{D-2}^2,$$

$$f(r) = 1 + \frac{r^2}{2\alpha} \left[1 - \left(1 + \frac{4\alpha a M}{r^{D-1}}\right)^{1/2}\right],$$

$$\alpha = (D-3)(D-4)\alpha_{GB}, \quad a = \frac{16\pi G}{(D-2)\Omega_{D-2}}. \quad (32)$$

The tunneling model of the (AdS) Gauss-Bonnet black hole has been studied in \[32, 33\], and the emission rate agrees with that in \[14\], where the entropy is given by

$$S = \frac{r_+^{D-2}\Omega_{D-2}}{4} \left[1 + 2\left(\frac{D-2}{D-4}\right)\frac{\alpha}{r_+^2}\right], \quad (33)$$

where r_+ satisfies

$$aMr_+^{5-D} = r_+^2 + \alpha. \quad (34)$$

The area spectrum was discussed in \[34\], where the conclusion that entropy spectrum is shown to be equally spacing agrees with our assumption \[14\]. In particular, the coefficient α vanishes for $D = 4$ such that

$$\Delta A = 8\pi \hbar + \frac{16\pi^2 \hbar^2}{A} + \cdots \quad (35)$$

which has no effect from the Gauss-Bonnet term. For $D = 5$, the area spectrum correction can be expressed via Taylor’s expansion of α_{GB}/M:

$$\Delta A = 8\pi \hbar \left(1 + a(\alpha_{GB}, M)\right) + \frac{32\pi^2 \hbar^2}{3A} \left(1 + b(\alpha_{GB}, M)\right) + \cdots,$$

$$a(\alpha_{GB}, M) = -\frac{3\pi}{2M} \alpha_{GB} + \frac{9\pi^2}{8M^2} \alpha_{GB}^2 + \cdots,$$

$$b(\alpha_{GB}, M) = -\frac{3\pi}{2M} \alpha_{GB} + \frac{9\pi^2}{16M^2} \alpha_{GB}^2 + \cdots. \quad (36)$$

In summary, we have investigated the nonthermal correction to area spectrum in various kinds of black holes using the quantization rule \[8\]. This semiclassical approximation usually works better for highly excited states, that is, large black hole mass (charges), and the leading term reproduces the universal coefficient 8π. However, if the equidistant spectrum for entropy, $\Delta S_{BH} = 2\pi$, could persist through the lifetime of a black hole, \[8\] predicts an increasing correction to area spectrum toward the end of evaporation. To estimate the nonthermal correction to the lifetime of a Schwarzschild black holes, we observe in \[12\] that nonthermal correction contributes like a quantum correction with $\alpha = -\frac{\pi}{2}$ at
the $\mathcal{O}(1/A)$ order. Therefore, the nonthermal effect could be modeled as radiation at an effective temperature

$$T^{eff}_H = \frac{1}{8\pi M} \left(1 - \frac{1}{8M^2} \right)^{-1}.$$ \hfill (37)

In the figure 1, we plot both thermal radiation and nonthermal radiation for the Schwarzschild black hole. It is expected that black hole speeds up its evaporation in the nonthermal radiation thanks to increasing spacing in area spectrum.

Acknowledgments

We are grateful to useful discussion with Pisin Chen, Feng-Li Lin, Hsien-Chung Kao, Otto Kong and Cheng-Wei Chiang. We thank June-Yu Wei and Mei-Hsian Wang for their participation in early stage. This work is supported in part by the Taiwan’s Ministry of Science and Technology (grant No. 102-2112-M-033-003-MY4) and the National Center for Theoretical Science.

[1] J. D. Bekenstein and V. F. Mukhanov, “Spectroscopy of the quantum black hole,” Phys. Lett. B 360, 7 (1995) [gr-qc/9505012].

[2] J. D. Bekenstein, “Quantum black holes as atoms,” [gr-qc/9710076].
[3] S. Hod, “Bohr’s correspondence principle and the area spectrum of quantum black holes,” Phys. Rev. Lett. 81, 4293 (1998) gr-qc/9812002.

[4] S. Hod, “Kerr black hole quasinormal frequencies,” Phys. Rev. D 67, 081501 (2003) gr-qc/0301122.

[5] A. Barvinsky, S. Das and G. Kunstatter, “Quantum mechanics of charged black holes,” Phys. Lett. B 517, 415 (2001) hep-th/0102061.

[6] M. Maggiore, “The Physical interpretation of the spectrum of black hole quasinormal modes,” Phys. Rev. Lett. 100, 141301 (2008) arXiv:0711.3145 [gr-qc].

[7] E. C. Vagenas, “Area spectrum of rotating black holes via the new interpretation of quasinormal modes,” JHEP 0811, 073 (2008) arXiv:0804.3264 [gr-qc].

[8] A. Lopez-Ortega, “Area spectrum of the d-dimensional Reissner-Nordstrom black hole in the small charge limit,” Class. Quant. Grav. 28, 035009 (2011) arXiv:1003.4248 [gr-qc].

[9] M. R. Setare, “Area spectrum of extremal Reissner-Nordstrom black holes from quasinormal modes,” Phys. Rev. D 69, 044016 (2004)

“Nonrotating BTZ black hole area spectrum from quasinormal modes,” Class. Quant. Grav. 21, 1453 (2004)

“Near extremal Schwarzschild-de Sitter black hole area spectrum from quasinormal modes,” Gen. Rel. Grav. 37, 1411 (2005)

[10] M. R. Setare and E. C. Vagenas, “Area spectrum of Kerr and extremal Kerr black holes from quasinormal modes,” Mod. Phys. Lett. A 20, 1923 (2005) hep-th/0401187.

[11] B. R. Majhi and E. C. Vagenas, “Black hole spectroscopy via adiabatic invariance,” Phys. Lett. B 701, 623 (2011) arXiv:1106.2292 [gr-qc].

[12] X. -X. Zeng and W. -B. Liu, “Spectroscopy of a Reissner-Nordström black hole via an action variable,” Eur. Phys. J. C 72, 1987 (2012) arXiv:1204.1699 [gr-qc].

[13] K. Ropotenko, “Quantization of the black hole area as quantization of the angular momentum component,” Phys. Rev. D 80, 044022 (2009) arXiv:0906.1949 [gr-qc].

[14] J. W. York, Jr., Phys. Rev. D 31, 755 (1985)

[15] C. O. Lousto and N. Sanchez, Phys. Lett. B 212, 411 (1988)

[16] M. K. Parikh and F. Wilczek, “Hawking radiation as tunneling,” Phys. Rev. Lett. 85, 5042 (2000)

[17] B. Zhang, Q. -y. Cai, L. You and M. -s. Zhan, “Hidden Messenger Revealed in Hawking
Radiation: A Resolution to the Paradox of Black Hole Information Loss,” Phys. Lett. B 675, 98 (2009) [arXiv:0903.0893 [hep-th]].

[18] K. K. Kim and W. -Y. Wen, “Charge-mass ratio bound and optimization in the Parikh-Wilczek tunneling model of Hawking radiation,” Physics Letters B 731C (2014), pp. 307-310 [arXiv:1311.1656 [gr-qc]].

[19] A. Chatrabhuti and K. Upathambhakul, “Optimization in the Parikh-Wilczek tunneling model of Hawking radiation for Kerr-Newman Black Holes,” [arXiv:1403.3986 [gr-qc]].

[20] Y. -X. Chen and K. -N. Shao, “Information loss and entropy conservation in quantum corrected Hawking radiation,” Phys. Lett. B 678, 131 (2009) [arXiv:0905.0948 [hep-th]].

[21] Q. -Q. Jiang and Y. Han, “On black hole spectroscopy via adiabatic invariance,” Phys. Lett. B 718, 584 (2012) [arXiv:1210.4002 [gr-qc]].

[22] J. -Y. Wei and W. -Y. Wen, “The small and large D limit of Parikh-Wilczek tunneling model for Hawking radiation,” [arXiv:1403.4351 [gr-qc]].

[23] M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional spacetime,” Phys. Rev. Lett. 69, 1849 (1992) [hep-th/9204099].

[24] C. Martinez, C. Teitelboim and J. Zanelli, “Charged rotating black hole in three space-time dimensions,” Phys. Rev. D 61, 104013 (2000) [hep-th/9912259].

[25] H.-L. Li, R. Lin and L. Y. Cheng, “Spectroscopy via adiabatic covariant action for the Bañados-Teitelboim-Zanelli (BTZ) black hole,” Chin. Phys. B 22 (2013) 050402

[26] Y. Kwon and S. Nam, “Area Spectra of the Rotating BTZ Black Hole from Quasinormal Modes,” Class. Quant. Grav. 27, 125007 (2010) [arXiv:1001.5106 [hep-th]].

[27] A. Ejaz, H. Gohar, H. Lin, K. Saifullah and S. -T. Yau, “Quantum tunneling from three-dimensional black holes,” Phys. Lett. B 726, 827 (2013) [arXiv:1306.6380 [hep-th]].

[28] R. G. Daghigh and M. D. Green, “Highly Real, Highly Damped, and Other Asymptotic Quasinormal Modes of Schwarzschild-Anti De Sitter Black Holes,” Class. Quant. Grav. 26, 125017 (2009) [arXiv:0808.1596 [gr-qc]].

[29] A. Lopez-Ortega, “Area spectrum of the D-dimensional de Sitter spacetime,” Phys. Lett. B 682, 85 (2009) [arXiv:0910.5779 [gr-qc]].

[30] D. Birmingham, “Topological black holes in Anti-de Sitter space,” Class. Quant. Grav. 16, 1197 (1999) [hep-th/9808032].

[31] A. Lopez-Ortega, “Entropy spectrum of the D-dimensional massless topological black hole,”
Gen. Rel. Grav. 42, 2939 (2010) [arXiv:1006.5039 [gr-qc]].

[32] K. Muneyuki and N. Ohta, “Hawking Radiation and Tunneling Mechanism for a New Class of Black Holes in Einstein-Gauss-Bonnet Gravity,” Eur. Phys. J. C 72, 1858 (2012) [arXiv:1111.3426 [gr-qc]].

[33] Y.-M.-Huang, “Hawking Radiation as Tunneling in Gauss-Bonnet Gravity,” Master Thesis, Department of Physics, National Central University (2007)

[34] J.-R. Ren, L.-Y. Jia and P.-J. Mao, “Entropy quantization of d-dimensional Gauss-Bonnet black holes,” Mod. Phys. Lett. A 25, 2599 (2010).

[35] R. Banerjee, B. R. Majhi and E. C. Vagenas, “A Note on the Lower Bound of Black Hole Area Change in Tunneling Formalism,” Europhys. Lett. 92, 20001 (2010)