Comparison of Dietary Acid Load Score Between Celiac Patients and healthy Population

Zeinab Nikniaz
Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Reza Mahdavi
Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Leila Nikniaz
Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Masood Shirmohammadi
Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Mojgan Akhavan Sabbagh (✉️ akhavan_m86@yahoo.com)
Student research committee, Tabriz University of medical sciences, Tabriz, Iran

Research article

Keywords: celiac disease, dietary acid load, gluten-free diet, NEAP, PRAL

DOI: https://doi.org/10.21203/rs.3.rs-49946/v1

License: ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Considering the presence of different complications in celiac patients and also limitations of the gluten-free diet (GFD), we intended to assess the diet quality in patients with celiac disease. In this regard, in the present study, we assessed the dietary acid load in adult celiac patients and compare it with that of the healthy population to provide more specific dietary recommendations for celiac patients.

Methods: This study was a cross-sectional study that includes 130 celiac patients and 462 Non-celiac population. The 80-item semi-quantitative food frequency questionnaire was used to obtain dietary data. Based on dietary data, the dietary acid load (DAL), Potential renal net acid load (PRAL), and net endogenous acid production (NEAP) were calculated.

Results: The mean PRAL value is negative in the celiac group and it was positive in the general population. There was a significant difference in the PRAL score between celiac patients and the general population (p<0.001). The mean NEAP and DAL score were significantly lower in the celiac group compared with the healthy population (P<0.001). There were no significant differences between gluten-free diet adherents and non-adherents regarding the PRAL, NEAP, and DAL values (P>0.05).

Conclusion: We showed that the patients with celiac disease had significantly less acidogenic diet compared with that of the general population. Considering the health benefits of a less acidogenic diet, following a gluten-free diet, could have added value to celiac patients and besides the elimination of symptoms, it could also prevent other complications in these patients.

Background: Celiac disease (CD) is an autoimmune disease of the small intestine that presents in genetically susceptible individuals by consuming prolamin. Prolamins are found in wheat, barley, and rye (1). The disease symptoms are not restricted to the gastrointestinal tract and different extra-intestinal manifestations including anemia, osteopenia, and weight loss occurred (1). Moreover, these patients are at increased risk of developing type-1-diabetes (2), fractures (3), and cancers (4).

Lifelong adherence to the gluten-free diet (GFD) is the only available treatment for celiac patients (1). In this diet, all sources of gluten are omitted from the diet, and alternative gluten-free products are added. Considering the different composition of gluten-free alternatives and also changes in the entire diet of celiac patients, the diet quality of celiac patients is of concern. In this regard, some studies have assessed the diet quality of celiac patients using different indices. Morreale et al showed that the mean score of the Mediterranean diet was significantly lower in celiac patients (5). In our previous study, we showed that in comparison with the healthy population, patients with celiac disease had significantly higher healthy eating index score (6).
The dietary acid load (DAL) is another index that frequently used for evaluation of the diet quality in different populations. In various investigations, DAL has been estimated based on dietary data and calculating the Potential renal net acid load (PRAL) (7) and net endogenous acid production (NEAP) (8). In different studies, the negative effect of high dietary acid load on cardiometabolic risk factors (9–11), serum fasting glucose(9), bone mineral status (12) have been shown.

Considering that the celiac patients are at increased risk of these health-related conditions, it is important to assess the dietary acid load of a gluten-free diet and compare it with that of a healthy population. This could provide pivotal information for physicians and nutritionists to deliver more specific recommendations for celiac patients to increase their diet quality, health-related quality of life, and prevent celiac complications. Thus, for the first time, we aimed to assess the dietary acid load in adult celiac patients and compare it with that of the healthy population.

Materials And Methods:

This investigation was the cross-sectional study in which the celiac patients were randomly selected from the East-Azerbaijan, Iran CD registry database. The inclusion criteria were as follows: age 20-55 years old, diagnosis of celiac according to biopsy report, and following GFD for at least one year. All patients registered in the CD database. The patients who could not communicate with the interviewer or had other concomitant diseases were excluded.

As a general population, we used the data collected in the lifestyle promotion project (LPP) conducted in East Azerbaijan-Iran for the evaluation of lifestyle risk factors. We described the detailed method of participants’ recruitment in our previous publication (13). For this study, the data of 462 healthy participants with the age of 20-55 years old were included in the statistical analysis. The participants with the known diabetes mellitus, CD or other diseases that affect their diet were excluded from the analysis.

Data collection:

The author-designed checklist was used for obtaining demographic characteristics. The same instruments were used for measuring weight (Seca weighing scale) and height (stadiometer fixed to the wall) in both celiac patients and the general population. Body mass index (BMI) was calculated by dividing weight (kg) to height (m²). A BMI of less than 18.5 was considered as underweight, 18.5-24.99 was normal weight, and ≥25 was overweight.

An expert dietitian has obtained the dietary intake of protein, Potassium, Magnesium, Phosphorus, and Calcium using a Semi-quantitative food frequency questionnaire (FFQ). The questionnaire was validated previously in the East-Azerbaijan population (14). For assessing the dietary intake of celiac patients, the gluten-free items were also added to FFQ. The Iranian modified Nutritionist IV software was used for the determination of protein and micronutrient content.
Dietary Acid Load scores estimation:

Three scores of dietary acid load including Net endogenous acid production (NEAP), Potential renal acid load (PRAL), and dietary acid load (DAL) were derived from estimations of several nutrient intakes [17]:

1. **PRAL (mEq/day)=** $0.49 \times \text{protein (g)} + 0.037 \times \text{phosphorus (mg)} - 0.021 \times \text{potassium (mg)} - 0.026 \times \text{magnesium (mg)} - 0.013 \times \text{calcium (mg)}$

2. **NEAP (mEq/day)=** $-10.2 + 54.5 \left(\frac{\text{protein intake [g/d]}}{\text{potassium intake [mEq/d]}} \right)$

3. **DAL (mEq/day)=** PRAL + $(\text{body surface area [m}^2]\times 41 [\text{mEq/day}]/1.73 \text{ m}^2)$

Body surface area was calculated using the following formula: $0.007184 \times \text{height}^{0.725} \times \text{weight}^{0.425}$

Assessing adherence to the CD:

Adherence to the GFD for CD participants was determined by the Persian version of the celiac disease adherence test. This questionnaire was previously validated in our population. Patients with a score of less than 13 were considered good adherents.

Statistical analysis:

For statistical analyses, SPSS V 22 was used. Kolmogorov-Smirnov was used to verify the normality assumption. The independent t-test, chi-square, and Fisher exact tests were used for comparison of the general and anthropometric characteristics between groups. The one-way ANCOVA was used for comparing the dietary acid load scores between groups by adjusting to confounding factors such as age, sex, BMI, and energy intake. A significance level of 0.05 was used.

Results:

In the present study, the data of 14 patients with celiac disease were not included in the final analysis because of incomplete questionnaires (Fig. 1). The demographic and clinical information of participants stratified by the group is presented in Table 1. There were no significant differences between groups regarding age ($p = 0.07$) and sex distribution ($p = 0.45$). However, some anthropometric characteristics including weight and BMI were significantly lower in celiac patients compared with that of the general population ($P < 0.05$).
Variables	Celiac patients (n = 119)	Healthy population (n = 462)	p-value
Age (years)	36.70 ± 9.46	39.75 ± 11.32	0.07
Sex (M:F)	22.7/77.3	44.9/54.9	0.45
Weight (kg)	63.16 ± 11.90	73.56 ± 13.01	< 0.001
Height (cm)	163.01 ± 10.13	163.89 ± 9.95	0.38
BMI (kg/m²)	23.76 ± 3.73	27.35 ± 4.76	< 0.001
Underweight	7.6	1.9	0.04
Normal weight	57.1	31.3	< 0.001
Overweight/obese	35.3	66.8	< 0.001
Disease duration (years)	6.41 ± 8.17	-	-

BMI: Body mass index

P-value of independent t-test

The PRAL, NEAP, and DAS values are reported in Table 2. As can be seen, the mean PRAL value was negative in the celiac group and it was positive in the general population. There was a significant difference in the PRAL score between celiac patients and the general population (p < 0.001).
Table 2
Comparison of dietary diversity score between celiac patients and healthy population

Variables	Celiac patients		Healthy population	p-value*	p-value**	
	Total	adherents	Non-adherents			
PRAL score						
Mean	-36.30	-24.21	-37.55	36.91	0.15	< 0.001
SD	31.34	20.34	34.94	55.59		
Median	-30.18	-21.15	-29.57	32.25		
Min-Max	-204.05, 3.96	-68.77, -1.37	-204.05, 3.96	-326.15, 371.29		
NEAP score						
Mean	23.91	27.59	23.21	63.08	0.55	< 0.001
SD	10.50	8.66	11.25	20.95		
Median	23.23	30.97	23.33	63.27		
Min-Max	0.03, 59.78	14.79, 42.44	0.03, 59.78	-3.96, 137.34		
DAL score						
Mean	18.68	28.49	17.79	57.01	0.11	< 0.001
SD	18.70	11.77	20.74	27.22		
Median	21.78	31.88	21.78	57.19		
Min-Max	-77.55, 47.37	55.53, 40.16	-77.55, 47.37	-147.97, 255.43		

DAL: dietary acid load; PRAL: Potential renal net acid load; NEAP: net endogenous acid production

*P-value of ANCOVA comparing adherent and non-adherent celiac patients adjusted for age, sex, BMI, energy intake, disease duration, and treatment duration.

**P-value of ANCOVA comparing celiac disease and healthy population adjusted for age, sex, BMI, and energy intake.

The mean NEAP and DAL score were significantly lower in the celiac group compared with the healthy population (P < 0.001).
According to ANCOVA analysis, after adjusting for age, sex, BMI, energy intake, disease duration, and treatment duration, there were no significant differences between gluten-free diet adherents and non-adherents regarding the PRAL, NEAP, and DAL values (P > 0.05).

Discussion:

Constringing that the gluten-free diet should be followed strictly lifelong, it is important to assess diet quality in celiac patients and compare it with that of the general population to provide the specific recommendation for this group. In this regard in the present study, we showed that the patients with celiac disease had significantly less acidogenic diet compared with that of the general population. This finding may be due to the high consumption of fruits, vegetables and dairies, and low consumption of protein and grains (15). In our previous study on the same population, we showed that patients with celiac disease had more consumption of fruits, vegetables, dairy products (6). It has been indicated that a high lacto-vegetarian diet was associated with reduced net acid excretion. Although, it has been indicated that animal proteins had significantly more acidogenic properties due to their phosphorus content, dairy products because of their calcium contents, had a more alkalotic effect (16). In addition, celiac patients had a significantly lower amount of seafood and plant protein consumption. Studies showed that protein consumption irrespective of its source (plant or animal) had a significant role in increasing acid production (17). Moreover, due to dietary restrictions of a gluten-free diet, the patients with celiac disease had a significantly lower amount of cereal consumptions.

It has been indicated that the acidogenic diet was associated with insulin resistance, diabetes, hypertension, chronic kidney disease, bone disorders, and low muscle mass (16). Considering that the patients with celiac disease were more at risk of developing these diseases, following a gluten-free diet with its alkalotic properties could prevent complications in celiac patients.

The present study had some limitations. For obtaining the dietary consumption of Potassium, Phosphorus, Magnesium, Calcium, and protein, we used FFQ. The limitations of this questionnaire such as recall bias may have affected some of the results. However, we used the validated FFQ which was also modified to use in celiac patients. Further, instead of recruiting a specific control group, we used the data of the previous study conducted on the general population of East-Azerbaijan, so we are not confident that all participants in the healthy population group, are free of disease.

Conclusion:

According to the results, we showed that the patients with celiac disease had significantly less acidogenic diet compared with that of the general population. Considering the health benefits of a less acidogenic diet, following a gluten-free diet, could have added value to celiac patients and besides the elimination of symptoms, it could also prevent other complications in these patients. However, for a precise conclusion, future studies should apply a more valid instrument for obtaining dietary intake data. Moreover, the control group should be selected at the same time as the study group.
Declarations:

Ethics approval and consent to participate

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving research study participants were approved by the Ethics Committee of Tabriz University of Medical Sciences (Ethics code: IR.TBZMED.REC.1398.1197). Written informed consent was obtained from all participants.

Consent for publication

None required.

Availability of data and materials

The datasets supporting the conclusions of this research are included in the article.

Competing interests

The authors declare no conflict of interest.

Funding

This project was financially supported by the Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. The funder had no role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Authors' contributions

ZN & RM were responsible for the conception and design of the study. LN, MAS, and MSh were responsible for the acquisition of data. ZN was responsible for data analysis. ZN drafted the manuscript; LN, RM, MAS, and MSh revised and commented on the draft, and all authors read and approved the final version of the manuscript.

Acknowledgments

The authors wish to thank Tabriz Health Services Management Research Center of Tabriz University of Medical Sciences and Tabriz Celiac Diseases Registry for their sincere collaboration.
References:

1. Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, Hadjivassiliou M, Kaukinen K, Kelly CP, Leonard JN. The Oslo definitions for coeliac disease and related terms. Gut. 2013;62(1):43–52.

2. Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JH, Howson JM, Stevens H, McManus R, Wijmenga C. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med. 2008;359(26):2767–77.

3. Heikkilä K, Pearce J, Mäki M, Kaukinen K. Celiac disease and bone fractures: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(1):25–34.

4. Marafini I, Monteleone G, Stolfi C. Association Between Celiac Disease and Cancer. Int J Mol Sci. 2020;21(4):14155.

5. Morreale F, Agnoli C, Roncoroni L, Sieri S, Lombardo V, Mazzeo T, Elli L, Bardella M, Agostoni C, Doneda L. Are the dietary habits of treated individuals with celiac disease adherent to a Mediterranean diet? Nutr Metab Cardiovasc Dis. 2018;28(11):1148–54.

6. Nikniaz Z, Mahdavi R, Nikniaz L, Akbari Namvar Z, Shirmohammadi M, Akhavan Sabbagh M. Comparison of diet quality between celiac patients and non-celiac people in East Azerbaijan-Iran. Nutr J. 2020;19:1–6.

7. Remer T, Manz F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr. 1994;59(6):1356–61.

8. Frassetto LA, Todd KM, Morris RC Jr, Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr. 1998;68(3):576–83.

9. Dehghan P, Abbasalizad Farhangi M. Dietary acid load, blood pressure, fasting blood sugar and biomarkers of insulin resistance among adults: Findings from an updated systematic review and meta-analysis. Int J Clin Pract. 2020;74(4):e13471.

10. Chen S-w, Chen Z-h, Liang Y-h, Wang P, Peng J-w. Elevated hypertension risk associated with higher dietary acid load: A systematic review and meta-analysis. Clin Nutr ESPEN. 2019;33:171–7.

11. Abbasalizad Farhangi M, Nikniaz L, Nikniaz Z. Higher dietary acid load potentially increases serum triglyceride and obesity prevalence in adults: An updated systematic review and meta-analysis. PLoS ONE. 2019;14(5):e0216547.

12. Zwart SR, Rice BL, Dlouhy H, Shackelford LC, Heer M, Koslovsky MD, Smith SM. Dietary acid load and bone turnover during long-duration spaceflight and bed rest. Am J Clin Nutr. 2018;107(5):834–44.

13. Tabrizi J, Farahbakhsh M, Sadeghi-Bazargani H, Nikniaz L. Introducing the objectives, procedures and structure of lifestyle promotion project (LPP): phase I. Depiction of health. 2016;7(2):1–7.

14. Nikniaz L, Tabrizi J, Sadeghi-Bazargani H, Farahbakhsh M, Tahmasebi S, Noroozi S. Reliability and relative validity of short-food frequency questionnaire. British Food Journal. 2017;119(6):1337–48.

15. Parmenter BH, Slater GJ, Frassetto LA. Accuracy and precision of estimation equations to predict net endogenous acid excretion using the Australian food database. Nutr Diet. 2017;74(3):308–12.
16. Osuna-Padilla I, Leal-Escobar G, Garza-García C, Rodríguez-Castellanos F. Dietary Acid Load: Mechanisms and evidence of its health repercussions. Nefrología (English Edition). 2019;39(4):343–54.

17. Remer T, Dimitriou T, Manz F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am J Clin Nutr. 2003;77(5):1255–60.

Figures

Figure 1

study enrolment flow chart: A: celiac patients enrolment B: healthy population enrolment