Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

S Noinville, A Garnier, A Courty

Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR8233, MONARIS, Université Pierre et Marie Curie, 4 place Jussieu, F-75005 Paris, France.

E-mail: sylvie.noinville@upmc.fr, alexa.courty@upmc.fr

Abstract. The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

1. Introduction

Tailored interaction between biomolecules and monolayer-protected NPs can be utilized to generate highly organized assemblies with a large structural diversity [1]. These hybrid superstructures combine tunable NP features with conformational flexibility of the biomolecules and, provide a potential route to build nanoscale devices. Proteins such as fibroin have the advantage of a high degree of stiffness and greater stability than DNA, largely used as a ligand for tuning NPs assemblies. In addition fibroin has an average chemical stability as demonstrated by its resistance to proteases and protein denaturants [2].

Silk fibroin is a high-molecular-weight protein consisting of a heavy (390 kDa) and a light (28 kDa) chain linked by a single disulfide bond [3]. The heavy chain accounts for up to 85% wt of the degummed silk fibers. The heavy chain contains highly repetitive hydrophobic domains comprising GAGAGS and GA(V)GAGY amino acids forming the crystalline regions interspersed with more hydrophilic amorphous regions. In the insect gland, the native fibroin in solution undergoes a structural transition from random coil to crystalline β-pleated sheets in solid silk fibers [4]. For our study we used regenerated silk fibroin from the degummed silk cocoons. Based on the properties of self-assembling, regenerated silk fibroin has been processed into a variety of material formats, such as films, electrospun fibers, three-dimensional porous scaffolds, microspheres and hydrogels, mainly for tissue engineering and cell/drug delivery applications [5]. Adsorption of this hydrophobic protein onto hydrophobic nanoparticles should be driven mainly by Van der Waals interactions [6]. Due to their low size distribution the methylated-functionalized Au NCs self organize spontaneously in 2D and 3D superlattices (SLs). The most frequent SL structure is face centered cubic (fcc). The morphology and structure of the SLs is known to depend on the nature of the ligands [7], their solvation [8] and on the nanoparticle size [9]. The silk fibroin bound to the methylated-functionalized monodisperse Au
NCs should act as an interparticle spacer and then should affect the self-organization of the nanoparticles resulting in different SLs morphologies via a different assembly process.

2. Materials and methods:

2.1 Chemicals
All products and solvents were used as purchased without further purification. This includes toluene (>98%, Riedel de Haën), acetone (VWR chemicals), chlorotriphenylphosphine gold(I) (98%, STREM), and 1-dodecanethiol and tert-butylamine borane complex (97%, Aldrich). The water used was purified with a Millipore system (18.2 MΩ). Salts such as lithium bromide (LiBr) and sodium carbonate (Na₂CO₃) were purchased from Sigma-Aldrich.

2.2 Syntheses of Au Nanocrystals
AuNCs were obtained by the reduction of a gold phosphine precursor [10]. Briefly, we first dissolved 0.25 mmol of PPh₃AuCl in 25 mL of toluene, and then 500 µL of dodecanethiols was added to the solution. The metal precursor was reduced by using a solution of tert-butylamine borane complex in toluene (5 mmol dissolved in 2 mL of toluene). During the synthesis, the temperature was fixed at 100°C. At the end of the reduction, the solution was cooled to room temperature and washed with acetone to eliminate byproducts. Finally, the AuNCs were dispersed in toluene. The average NCs diameter was 4.6 nm with 8% in size distribution as determined from TEM measurements (Figure S1).

2.3 Silk Fibroin (SF)
Lyophilized silk fibroin from Bombyx Mori silkworm cocoons was prepared as described elsewhere [11]. Briefly the degummed SF fibers were prepared by immersing fresh cocoons in 23 mmol Na₂CO₃ aqueous solution at 100°C for 2 hours to remove sericin. The degummed silk was then washed with hot deionized water and dried at room temperature. The SF solution was prepared by dissolving degummed SF fibers in aqueous solution containing LiBr at 9.3 mol for 4 hours at 65°C. The aqueous SF solution was dialyzed 5 times against deionized water using a dialysis tubing (Pierce, France) with a 3.5 kDa molecular weight cutoff. The concentration of the final silk fibroin solution was checked before lyophilisation and found to be about 2-3 wt %. Finally, the lyophilized fibroin was dissolved in toluene at a concentration of 0.5 mg/mL under gentle stirring overnight.

2.4 Nanocomposites synthesis
The nanocomposites were prepared by mixing 2 mL of the Au NCs solution at a final concentration of 4 mM with 2 mL of fibroin solution and centrifuged at 2000 rpm for 5 minutes.

2.5 UV-Visible spectroscopy.
All absorbance measurements were performed using a Varian Cary 5000 spectrophotometer. The concentration of Au nanocrystal solution was measured by UV–visible spectroscopy at λ = 520 nm using an extinction coefficient of 3 × 10⁶ mol⁻¹·L·cm⁻¹. For the analysis of the nanocomposites or of Au nanocrystal, the samples were prepared by evaporation of 15 µL of the toluene solution at 2 mM in AuNCs on a 1 cm² piece of carbon/glass substrates [12].

2.6 FTIR spectroscopy
Micro-infrared spectroscopy analyses were performed in reflection mode using a Bruker Equinox 55 spectrometer coupled to an IRscope II microscope equipped with a X35 objective. A liquid nitrogen-cooled MCT detector was used, and a background on pure gold surface was collected before each sample's spectra. 128 scans were accumulated between 4000 and 600 cm⁻¹ with a 4 cm⁻¹ resolution for a window dimension of 20 µm×20µm.

2.7 Field emission scanning electron microscopy (FE-SEM)
The FE-SEM imaging was performed with a Hitachi Su-70 instrument at an acceleration voltage of 5 kV and a working distance of about 8 mm. The carbon-glass were used as substrates.

2.8 AFM microscopy.
For morphological characterization, an Agilent microprobe (5100 System) was used. It was operated in non-contact mode under ambient conditions, using NSC cantilevers with resonant frequency of 118 kHz and spring constant of 5 N/m (Mikromasch, Germany). Image analysis was performed using Gwyddion software. The samples were investigated on carbon-glass supports or on highly oriented pyrolytic graphite (HOPG, Mikromasch, Germany).

2.9 Transmission Electron Microscopy (TEM)
TEM samples were prepared by depositing a drop (10 μL) of Au NCs or nanocomposites solution (2.10^{-3} M) on an amorphous carbon coated TEM grid maintained by an anti-capillary tweezers. The solvent (toluene) evaporation takes place in a glove box under nitrogen flux, at ambient temperature. The samples were then analyzed by a JEOL JEM 1011 electron microscope with an accelerating voltage of 100 kV.

3. Optical Response.

The optical responses of Au NCs dispersed in solution or deposited on a amorphous carbon substrate were monitored. The UV-visible spectra of the solution displayed a strong surface plasmon resonance (SPR) band around 520 ± 1 nm caused by SPR of individual NCs, while the deposited NCs displayed a SPR band red shifted to 565 nm, due to an increased dipolar coupling (figure 1) [13]. Compared to the deposited Au NCs, the λ_{max} of the solid nanocomposites was blue-shifted at 555 nm, and the absorbance is slightly decreased for equivalent amount of Au NCs, indicating a physi-sorption between the fibroin molecules of high hydrophobicity onto the alkylated NCs. Since the refractive index of the protein, around 1.5 [14], is closed to those of the capping agent used with a refractive index of 1.45 [10], no significant effect is expected due to the change of the molecular surroundings of the Au NCs [13]. However, the use of proteins as spacer between metallic nanoparticles has been developed to tune the interparticle distance [15]. The maximum position of the LSPR band being mainly determined by interparticle distance for a given NCs size [16], the formation of hybrid system (Au NCs /silk fibroin) appears thus to be at the origin of the observed blue shift.

![Figure 1: UV-Visible spectra of Au NCs in toluene at a 2mM concentration using a 1 mm optical path quartz cuvette (plain line), of the solid Au NCs (bold line) and the fibroin-Au nanocomposites (dashed line) on carbon substrates at equivalent AuNCs concentration.](image)

4. Morphology studies

The deposit of the AuNCs by evaporation of toluene is controlled by FE-SEM (figure 2A 2B). A spontaneous organization of the Au NCs (4.6 nm in diameter) Ps on amorphous carbon substrates into well-ordered multilayers films is observed in agreement with previous results [9]. In contrast when AuNCs at the same concentration were incubated with the silk fibroin, two main types of assemblies are observed small and large fibrils and individual well-facetted triangular nanocomposites (Au NCs/ silk fibroin) as shown in FigureFigure2C and 2D. From the image collected by FESEM (figure 2C), fibrillar assemblies indicated by arrows have an average width of 66.5 ±16.7 nm as determined from 30 fibrils. These fibrillar forms have length varying from 1 to exceeding 10 μm, and height in the
range of 15-20 nm from AFM analysis. Au NCs recovered the latter and are also inserted in the protein matrix forming nanowires as shown by the TEM image (figure 2E).

Figure 2 : FE-SEM images for the deposit of Au NCs alone at low resolution (A), at high resolution (B) and for the deposit of Fibroin-Au NCs at low resolution (C), at high resolution (D). For sake of clarity the inset in (C) corresponds to the FFT treatment of the image. Detailed TEM image (E) of the fibrils presents in the detailed FFT image in (C).

Larger fibrils having apparent diameter of 200 nm are also observed but in a less extent than the aforementioned nanowires (figure 2D). These larger fibrils are decorated by the nanowires as shown by FESEM images (figure 2D) and AFM images (figure 3A and 3B). Most intriguing is the formation of well-facetted triangular nanocomposites as observed in FESEM (figure 2D) and AFM (figure 3A). The hybrid nanocomposites with 0.5 to 2 µm long edges have height comprised between 300 nm (figure 3D) and exceeding 1 µm as measured from tilted SEM images (data not shown). The surface of the nanohybrids is recovered by fibroin assembled in fibrillar form and spaced by nanocrystals as depicted in FESEM image (figure 2D) and AFM phase image (figure 3B). Their well-defined shape suggests long-range order.

AFM was used to confirm the FE-SEM observations. The formation of both large fibrils of different widths and superimposed triangular nanocomposites are shown in Figure 3A while the morphology of the fibrin alone deposited on an hydrophobic substrates such as HOPG is shown in Figure 3C. Deposition of fibroin in low concentration in toluene yielded formation of globular shapes with height of 7.9 ± 2.6 nm and width of 140 ± 28 nm. Concerning the spatial conformation of native SF molecules only partial data are available in the literature. AFM studies were performed either on directly natural silk fibers [17] or on deposit of regenerated silk fibroin on mica or aminated silica slides [18, 19]. From the study of Huang et al, the fibroin deposited on aminated-surfaces revealed a transformation from rodlike aggregations 100–200 nm long to small globules 50 nm in diameter as the solution concentration decreased [19]. A more recent study reports dimensions of single fibroin molecule in globular shape with diameters in the range of 20-25 nm with an apparent height of around 1.2 nm from deposition of low protein concentrations onto a mica substrate [18].
Figure 3: AFM topographical image of the fibroin-AuNCs (A) and corresponding AFM tapping phase (B) showing 2 types of assemblies. AFM topographical image of the pure fibroin deposited on HOPG (C). Profiles (D) describing fibrils and triangular assemblies from topographical image (A).

5. Fibroin conformational change

The FTIR absorbance spectra of silk fibroin alone and of the deposit of the mixture fibroin-AuNCs are shown in figure 4.

Figure 4: IR spectra of the pure fibroin film (plain line) and the fibroin-gold nanocomposites (bold line). Infrared bands assigned to alkanethiol are marked by an asterisk.

The pure protein spectrum exhibits the main Amide A, Amide I, II and III bands appearing at 3280, 1650, 1530 and 1234 cm⁻¹, respectively. The corresponding attributions of the IR bands are the stretching NH mode, stretching CO, bending NH and more complex bending NH and stretching CC mode of the peptide CONH groups. The most intense Amide I band is sensitive to the protein
conformation [20]. This band is centered at 1650 cm\(^{-1}\) for the pure fibroin indicating a random conformation [21]. Regenerated silk fibroin in solution or frozen at low temperature is generally in a random coil structure as reported previously [11]. The Amide I band is shifted at 1641 cm\(^{-1}\) when the protein is in presence of Au NCs as stated by the presence of the CH stretching bands at 2919 and 2850 cm\(^{-1}\) and the corresponding bending modes at 1461 and 1378 cm\(^{-1}\). The shift of 9 cm\(^{-1}\) of the most sensitive Amide band is significant of a conformational change of the silk fibroin. The strong interaction with the AuNCs induces a conformational change of the fibroin by rearranging its hydrophobic domains towards the NCs surface [22]. It should be noticed that the IR spectrum is an average of the different morphologies fibers and hybrid nanocomposites and the fibroin could adopt different conformation depending on the morphology of the assemblies.

Conclusion

The hybrid assembly of silk fibroin and Au nanocrystals yields to interesting morphologies such as nanowires, larger fibrils and well-faceted triangular nanocomposites. These different structures are obtained by the strong interaction of the hydrophobic fibroin with the Au NCs as demonstrated by a blue-shift of the maximum position of the LSPR band and a protein conformational change. The high tendency of the fibroin to self-assemble modifies the organization of the AuNCs and interestingly gives rise to new hybrid well-ordered nanocomposites. Right now, we are studying the plasmonic and structural properties of such new assemblies differing by their hierarchical ordering.

References

[1] Ofir Y, Samanta B and Rotello V M 2008 Chemical Society Reviews 37 1814.
[2] Kim U-J, Park J, Joo Kim H, Wada M and Kaplan D L 2005 Biomaterials 26 2775.
[3] Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, Takagi T and Mizuno S 1999 BBA-Protein Struct. M. 1432 92.
[4] Li G Y, Zhou P, Shao Z Z, Xie X, Chen X, Wang H H, Chunyu L J and Yu T Y 2001 Eur. J. Biochem. 268 6600.
[5] Yucel T, Cebe P and Kaplan D L 2009 Biophys. J. 97 2044.
[6] Noinville S and Revault M 2006 Conformations of Proteins Adsorbed at Liquid-Solid Interfaces. Déjardin P. (Berlin, Springer Berlin ) pp 119
[7] Henry A I, Courty A, Pileni M P, Albouy P A and Israelachvili J 2008 Nano Letters 8 2000.
[8] Stoeva S I, Prasad B L V, Uma S, Stoimenov P K, Zaikovski V, Sorensen C M and Klabunde K J 2003 J. Phys. Chem. B 107 7441.
[9] Goubet N, Richard J, Albouy P A and Pileni M P 2011 J. Phys. Chem. Lett. 2 417.
[10] Andrieux-Ledier A, Tremblay B and Courty A 2013 Langmuir 29 1340.
[11] Nazarov R, Jin H-J and Kaplan D L 2004 Biomacromolecules 5 718.
[12] Courty A, Araspin O, Fermon C and Pileni M P 2001 Langmuir 17 1372.
[13] Link S, Mohamed M B and El-Sayed M A 1999 J. Phys. Chem. B 103 3073.
[14] Jiang C Y, Wang X Y, Gunawardjaja R, Lin Y H, Gupta M K, Kaplan D L, Naik R R and Tsukruk V V 2007 Adv. Funct. Mat. 17 2229.
[15] Verma A, Srivastava S and Rotello V M 2005 Chem. Mat. 17 6317.
[16] Ghosh S K, Nath S, Kundu S, Esumi K and Pal T 2004 J. Phys. Chem. B 108 13963.
[17] Du N, Liu X Y, Narayanan J, Li L, Lim M L M and Li D 2006 Biophys. J. 91 4528.
[18] Greving I, Cai M, Vollrath F and Schniepp H C 2012 Biomacromolecules 13 676.
[19] Huang T, Ren P and Huo B 2007 J. Appl. Polym. Sci. 106 4054.
[20] Bandekar J 1992 Biochim. Biophys. Acta 1120 123.
[21] Byler D M and Susi H 1986 Biopolymers 25 469.
[22] Servagent-Noinville S, Revault M, Quinquampoix H and Baron M-H 2000 J. Colloid Interf. Sci. 221 273.