Down-regulation of microRNA-342-5p or Up-regulation of Wnt3a Inhibits Angiogenesis and Maintains Atherosclerotic Plaque Stability in Atherosclerosis Mice

Haixia Sun1, Jinhua Feng2, Yan Ma3, Ding Cai4, Yulu Luo1, Qinggong Wang1, Fang1,1, Mingyue Zhang1 and Quanzhong Hu4*

Abstract
Evidence has demonstrated that microRNA-342-5p (miR-342-5p) is implicated in atherosclerosis (AS), but little is known regarding its intrinsic regulatory mechanisms. Here, we aimed to explore the effect of miR-342-5p targeting Wnt3a on formation of vulnerable plaques and angiogenesis of AS. ApoE−/− mice were fed with high-fat feed for 16 w to replicate the AS vulnerable plaque model. miR-342-5p and Wnt3a expression in aortic tissues of AS were detected. The target relationship between miR-342-5p and Wnt3a was verified. Moreover, ApoE−/− mice were injected with miR-342-5p antagomir and overexpression-Wnt3a vector to test their functions in serum lipid levels, inflammatory and oxidative stress-related cytokines, aortic plaque stability and angiogenesis in plaque of AS mice. miR-342-5p expression was enhanced and Wnt3a expression was degraded in aortic tissues of AS mice and miR-342-5p directly targeted Wnt3a. Up-regulating Wnt3a or down-regulating miR-342-5p reduced blood lipid content, inflammatory and oxidative stress levels, the vulnerability of aortic tissue plaque and inhibited angiogenesis in plaque of AS mice. Functional studies show that depleting miR-342-5p can stabilize aortic tissue plaque and reduce angiogenesis in plaque in AS mice via restoring Wnt3a.

Keywords: Atherosclerosis, MicroRNA-342-5p, Wnt3a, Vulnerable plaque, Vulnerability index, Microvessel density

Introduction
Atherosclerosis (AS) is an age-related artery disease featured by the thickening, stenosis, hardening and the formation of atherosclerotic plaques of the arteries [1]. It is the prevailing cause of death and morbidity in developed countries [2]. Histopathologic studies of human atherosclerotic lesions have shown that plaque development and rupture are featured by lipid/necrotic core expansion, reduction in smooth muscle cell number, macrophage infiltration and decreased collagen content [3]. The key cellular elements of AS comprise of hyperlipidemia, foam cell formation, differentiation into macrophages, monocyte recruitment and induced inflammation [4]. Although many medicines for the treatment of AS have been widely used in the clinic, some subgroups of patients are still at high risk of myocardial infarction, myocardial ischemia, heart failure and stroke [5]. Therefore, further exploration of potential molecular mechanisms can offer more evidence for AS treatment.

A single microRNA (miRNA) can simultaneously regulate several gene targets [6]. miR-342-5p is investigated to be contained in the imprinted 14q32 miRNA cluster, acts as an innovative Notch downstream molecule [7] and modulates multiple angiogenic pathways, such as transforming growth factor β signaling and
vascular endothelial growth factor [8]. Related immunomodulatory microRNAs, such as miR-342-5p, have multiple important roles in regulating the progression of atherosclerosis [9]. Moreover, some miRNAs have been suggested to involve in the resolution of AS, such as miR-155 and miR-217 [10, 11]. A study has reported that miR-342-5p acts as a new modulator for macrophage activation in AS [12]. Another study has revealed that macrophage-derived miR-342-5p increases the inflammatory stimulation of macrophages [13]. Qu et al. have found that Wnt3a expression is negatively modulated by miR-342-5p in anorectal malformations [14], indicating that there is a target relationship between miR-342-5p and Wnt3a. Wnt signaling serves an essential role during embryogenesis for the modulation of cell polarity, cell proliferation, axis formation and apoptosis [15]. Wnt3a, a key component of the mesoderm gene, plays a crucial role in embryonic development [16]. It has been presented that epigenome-guided analysis of the plaque macrophages transcriptome during AS regression uncovers activation of the Wnt signaling pathway [17]. Moreover, a study has reported that Wnt3a modulates adhesion and migration of vascular smooth muscle cells which contribute to the pathogenesis of AS and restenosis [18]. Therefore, this study for the first time explored the effect of miR-342-5p targeted Wnt3a on formation of vulnerable plaques and angiogenesis of AS.

Materials and Methods

Ethics Statement

Animals were treated humanely using approved procedures in compliance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Institutional Animal Care and Use Committee of Qinghai Provincial People’s Hospital (ethical number: 201870726).

Experimental Animals

Male ApoE−/− mice and C57BL/6J mice (specific pathogen-free grade) aged 8 weeks were available from Beijing Vital Laboratory Animal Technology (Beijing, China). Male ApoE−/− mice were used as the normal group with natural drink and food. ApoE−/− mice had glossy light hair and hair shedding in the back after 12 w. The aortic arch and brachiocephalic artery from 3 model mice were dissected to perform hematoxylin–eosin (HE) staining, and there was no significant plaque deposits on the intima. Another 3 modeled mice were identified again after 4 w, and HE staining showed that there was obvious plaque deposits on the intima of aorta arch, indicating success of the model establishment.

Mice Grouping and Treatment

ApoE−/− mice with AS vulnerable plaque were divided into 6 groups with 12 mice in each group: AS group, negative control (NC) group (injected with normal saline in ApoE−/− mice), miR-342-5p agomir group (injected with miR-342-5p agomir to overexpress miR-342-5p expression in ApoE−/− mice), miR-342-5p antagomir group (injected with miR-342-5p antagomir to reduce miR-342-5p expression in ApoE−/− mice), oe-Wnt3a group (injected with oe-Wnt3a vector to up-regulate Wnt3a expression in ApoE−/− mice) and miR-342-5p agomir + oe-Wnt3a group (injected with miR-342-5p agomir and oe-Wnt3a vector to up-regulate expression of miR-342-5p and Wnt3a in ApoE−/− mice). C57BL/6J mice as the normal group were fed normal diet. The high-fat feed contained 20% fat and 0.25% cholesterol. miR-342-5p agomir, miR-342-5p antagomir and oe-Wnt3a vector were bought from Sangon (Shanghai, China). The oe-Wnt3a vector, miR-342-5p agomir, miR-342-5p antagomir were all dissolved in 0.2 mL of normal saline and injected into mice at a dose of 40 mg/kg via the tail vein every two weeks. After 8 weeks, blood samples were taken from eyeballs, and then, mice were euthanized to collect arterial tissues [19].

In the preliminary experiment, ApoE−/− mice with AS were injected with 10 mg/kg, 20 mg/kg, 40 mg/kg miR-342-5p agomir, miR-342-5p antagomir or oe-Wnt3a vector (once every two weeks; 4 times in total). Then, the expression levels of β-catenin were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR).

Sample Collection and Treatment

Before sampling, mice were fasted for 12 h and anesthetized by ether inhalation and blood samples were collected from eyeballs. The chest of mice was opened, the thoracic aorta was dissociated to the end of the abdominal aorta and the entire vessel was removed. After cleaned by RNA-free phosphate-buffered saline (PBS), the tissues were embedded for HE staining, oil red O, Sirius red staining and immunohistochemical staining. Some of the vascular tissues were preserved at −80 °C for RT-qPCR and Western blot.
Blood Lipid Level Detection
The automatic biochemical analyzer (Roche, Basel, Switzerland) was adopted to detect total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) in serum. The detection was implemented following the specification of the kits (Nanjing JianCheng Biengineering Institute, Nanjing, China).

Enzyme-Linked Immunosorbent Assay (ELISA)
Determination of serum cytokine content: commercial interleukin (IL)-5, IL-12p70, tumor necrosis factor alpha (TNF-α) and interferon (IFN)-γ ELISA kits were used. Finally, the optical density (OD) value of each well was tested by a microplate reader at 450 nm.

Determination of oxidative stress injury: malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in serum were tested by MDA kit (OD value was tested by spectrophotometer at 532 nm) and SOD kit (OD value was determined by a microplate reader at 450 nm). IL-5, IL-12p70, TNF-α, IFN-γ, MDA and SOD ELISA kits were purchased from MultiSciences (LianKe Biotechnology Corporate Limited (Hangzhou, Zhejiang, China)).

Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
The aortic tissues were added to total RNA extraction reagent (TaKaRa, Dalian, China) and then homogenized to extract the total RNA and composed complementary DNA. The primers were all referenced to the sequence provided by Genbank, designed by Primer 5.0 and synthesized by Shanghai Sangon Biotechnology Co. Ltd. MiR-342-5p: forward: 5'-CGGAGG3GTGCTATCTGTGATTTGAG-3', reverse primers were kit universal primers (Qiagen company, Hilden, Germany); Wnt3a: forward: 5'-AGGTAAGGCTACTCCC TCAACTA-3', reverse: 5'-CTGAAGACCCCTCTCATG TATC-3'; β-actin: forward: 5'-GCACCACACCTTCTCA CAATGAGC-3', reverse: 5'-CTGGTGCCTAATGTC ATGCC-3'; β-catenin: forward: 5'-TCAAGAGACAA GCACATATC-3', reverse: 5'-CAGGACACGAGC ACATCTGTG-3'. After reaction, the threshold cycle (Ct) was analyzed by computer. The relative ratio of miR-342-5p to U6 was used as its expression, the relative ratio of Wnt3a to β-actin was used as its expression, and the relative ratio was calculated by 2−ΔΔCt method.

Western Blot Analysis
The total protein was abstracted from the aortic tissues. The protein concentration was measured by bicinchoninic acid method. Polycrylamide gel electrophoresis was performed. Then protein was transferred to the polyvinylidene fluoride membrane and the target band was obtained. The membrane was sealed in 5% skimmed milk for 1 h, added with primary antibodies Wnt3a (1: 500), β-catenin (1: 1000, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), CD34 (1:2500, Abcam, MA, USA) and β-actin (1: 2000, Beyotime Biotechnology Co., Shanghai, China) at 4 °C overnight. The membrane was washed by Tris-buffered saline with Tween 20 (pH = 7.5, 10 mmol/L Tris–HCl, 100 mmol/L NaCl and 0.2% Tween-20) for 10 min × 3 times, and then appended with secondary antibody (1: 1000, ZSGB-Bio, Beijing, China) for 2 h.
Statistical significance was established by value < 0.05.

Immunohistochemical Staining

Slices of 4–5 μm were placed on the slides coated with 100 mg/L polylysine and fixed by acetone. Endogenous peroxidase was blocked by bovine serum albumin. The tissues were dripped with MOMA-2 antibody (1: 200), α-SMA (1:200) and CD34 (1: 200, Abcam Inc., Cambridge, MA, USA) as well as added with secondary antibody working solution (1: 1000). The tissues were developed by diaminobenzidine, counterstained by hematoxylin (1 min), dehydrated, cleared, sealed and observed under the microscope. Three different visual fields were selected for each immunohistochemical section. IPP6.0 software was performed for quantitative analysis. Positive immunohistochemical staining of MOMA-2 and α-SMA, respectively, indicates that macrophages and smooth muscle cells are mainly located in the cytoplasm, which is yellow to brown. The percentages of macrophages and smooth muscle cells were calculated separately, which were combined with the percentage of lipid and collagen in the plaque to calculate the plaque vulnerability index. The vulnerability index of plaque = (positive percentage of macrophages + positive percentage of lipids)/(positive percentage of collagen + positive percentage of smooth muscle cells) [20]. Microvessel density (MVD) was assessed by measurement of CD34 expression and quantified as the number of microvessels/mm2.

Dual Luciferase Reporter Gene Assay

The target gene of miR-342-5p was analyzed by biological prediction website (http://www.microRNA.org). Dual luciferase reporter gene assay was used to verify whether Wnt3a was the target gene of miR-342-5p. The wild-type or mutant sequence of Wnt3a 3′-untranslated region (3′-UTR) was cloned into the GP-miRGLO vector (GenePharma, Shanghai, China). The reporter (0.5 μg) and 1, 10 or 100 pM miR-342-5p agomir were transfected into mouse aortic endothelial cells (No. 506, MingzhouBio, Ningbo, China) for 48 h to test the luciferase activity using dual luciferase assay system (Promega, WI, USA).

Statistical Analysis

All data were interpreted by SPSS 21.0 software (IBM Corp. Armonk, NY, USA). Measurement data were indicated as mean ± standard deviation. Disparities between two groups were formulated by t-test, while those among multiple groups by one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons test. Statistical significance was established by P value < 0.05.

Results

miR-342-5p Increases and Wnt3a Decreases in Aortic Tissues of ApoE$^{-/-}$ mice and miR-342-5p Directly Targets Wnt3a

MicroRNA (miRNA) target genes are associated with atherosclerosis-related functions. miR-342-5p, Wnt3a and β-catenin were tested in aortic tissues of AS model mice by RT-qPCR and Western blot assay. It was revealed that in relation to the normal group, miR-342-5p was raised while Wnt3a and β-catenin were decreased in the AS group (both $P < 0.05$). In comparison with the NC group, miR-342-5p was enhanced as well as Wnt3a and β-catenin were decreased in the miR-342-5p agomir group (both $P < 0.05$), while miR-342-5p was decreased, Wnt3a and β-catenin were heightened in the miR-342-5p antagomir group (both $P < 0.05$). Wnt3a and β-catenin expression were heightened in the oe-Wnt3a group relative to the NC group (both $P < 0.05$). Compared to the miR-342-5p agomir group, Wnt3a and β-catenin expression were raised in the miR-342-5p agomir + oe-Wnt3a group ($P < 0.05$) (Fig. 1A–D). In addition, in the preliminary experiment, β-catenin expression under the treatment of different concentrations of miR-342-5p agomir, miR-342-5p antagomir and oe-Wnt3a was tested and the results showed (Additional file 1: Fig. S1) the higher the miR-342-5p agomir concentration, the lower the β-catenin expression; the higher the miR-342-5p antagomir concentration, the higher the β-catenin expression; and the higher the oe-Wnt3a concentration, the higher the β-catenin expression.

miRNAs could inhibit the translation of specific genes by binding to their messenger RNA 3′UTR. Bioinformatics website predicted that there was a target relationship between miR-342-5p and Wnt3a (Fig. 1E). Dual luciferase reporter gene assay reported that in Wnt3a 3′UTR vector-transfected mouse aortic endothelial cells, the renilla/firefly value of luciferase was dose-dependently decreased by transfection with miR-342-5p agomir, with a significant decrease from 10 to 100 pM miR-342-5p agomir and a 64% decrease occurred at 100 pM miR-342-5p agomir group when compared with the NC group. This indicated the presence of a miR-342-5p target site in the Wnt3a 3′UTR. However, the renilla/firefly value of luciferase activity was not affected in the Wnt3a mutation group (Fig. 1F, G). Thus, it could be confirmed that Wnt3a was a direct target gene of miR-342-5p, and miR-342-5p/Wnt3a could regulate AS progression.

Effects of Up-Regulated Wnt3a or Down-Regulated miR-342-5p on the Lipid Levels in ApoE$^{-/-}$ Mice

Furthermore, to investigate whether miR-342-5p targeting and regulating Wnt3a signaling pathway would affect...
lipid levels of AS mice, automatic biochemical analyzer was utilized to observe the change of lipid levels. The results revealed that (Fig. 2A–D) in contrast with the normal group, TC, TG and LDL-C contents were raised and HDL-C content was decreased in the AS group (all \(P < 0.05 \)). Versus the NC group, TC, TG and LDL-C contents were heightened and HDL-C content was decreased in the miR-342-5p agomir group (all \(P < 0.05 \)), while TC,
TG and LDL-C contents were decreased and HDL-C content was augmented in the miR-342-5p antagomir group and the oe-Wnt3a group (all $P<0.05$). In relation to the miR-342-5p agomir group, TC, TG and LDL-C contents were reduced and HDL-C content was raised in the miR-342-5p agomir + oe-Wnt3a group (all $P<0.05$). These results suggested that miR-342-5p and Wnt3a regulated blood lipid level of AS mice, and further illustrated the targeted regulation relationship between miR-342-5p and Wnt3a. Overexpression of Wnt3a would reverse overexpressed miR-342-5p-induced effects on AS mice.

Effects of Overexpression of Wnt3a or Low Expression of miR‑342‑5p on Inflammatory and Oxidative Stress‑Related Cytokines in Serum of ApoE $^{-/-}$ Mice

Then, the contents of cytokines in serum of AS mice were tested by ELISA, and the results reported that (Fig. 3A–D) versus the normal group, IL-5, IL-12p70, IFN-γ and TNF-α were enhanced in the AS group (all $P<0.05$). Versus the NC group, IL-5, IL-12p70, IFN-γ and TNF-α contents were raised in the miR-342-5p agomir group (all $P<0.05$), while IL-5, IL-12p70, IFN-γ and TNF-α contents were degraded in the miR-342-5p antagomir group and the oe-Wnt3a group (all $P<0.05$). In contrast to the miR-342-5p agomir group, IL-5, IL-12p70, IFN-γ and TNF-α contents were decreased in the miR-342-5p agomir + oe-Wnt3a group (all $P<0.05$). It was hinted that miR-342-5p targeted regulation of Wnt3a signaling pathway further regulated the level of related cytokines in serum of AS mice.

Furthermore, MDA content and SOD activity in serum of mice were tested, and it was revealed that (Fig. 3E, F) in comparison with the normal group, MDA content was raised and SOD activity was depressed in the AS group (both $P<0.05$). Versus the NC group, MDA content was enhanced and SOD activity was decreased in the
miR-342-5p agomir group (both \(P < 0.05\)), while MDA content was decreased and SOD activity was increased in the miR-342-5p antagomir group and the oe-Wnt3a group (all \(P < 0.05\)). Versus the miR-342-5p agomir group, MDA content was depressed and SOD activity was enhanced in the miR-342-5p agomir + oe-Wnt3a group (both \(P < 0.05\)). Therefore, a summary was obtained that depleting miR-342-5p and restoring Wnt3a inhibited oxidative stress in AS mice.

Effects of Depletion of miR-342-5p or Restoration of Wnt3a on Lipid and Collagen Content in Aortic Plaque of ApoE\(^{-/-}\) Mice

In order to explore the effect of miR-342-5p targeted Wnt3a on plaque area in aortic tissue of mice, HE staining was performed and the results revealed that (Fig. 4A, B) except for the normal group, AS plaques formed in all sections of the other groups. In the AS group, the plaque area was large, the fibrous cap was thinner, the lipid core was enlarged, more foam cells and cholesterol crystal precipitation appeared in the plaque, the inner wall of artery and muscle layer were thickened, and the plaque was unstable. The situation in the NC group was similar to those of the AS group. In the miR-342-5p antagonist and the oe-Wnt3a group, the plaque area was small, the intima of the artery was smooth, and fibrous caps had small number and became thinner. There was no rupture but foam cells in different sizes in the plaque. The cholesterol crystal was asymmetrically distributed and partially calcified, the number of smooth muscle cells and collagen fibers was increased, and the plaque tended to be stable. Compared to the NC group, the plaque area was increased and AS lesions was aggravated in the miR-342-5p agomir group (\(P < 0.05\)) while the plaque area was decreased in the miR-342-5p antagomir group and the oe-Wnt3a group with reduced AS lesions (both \(P < 0.05\)).

Oil red O staining and Sirius red staining were adopted to detect the effect of miR-342-5p targeted Wnt3a on lipid content and collagen content in plaque of aortic tissue of mice, and the results demonstrated that (Fig. 4C–F) Oil red O staining showed red fat and blue nucleus

Fig. 3 Effects of overexpression of Wnt3a or low expression of miR-342-5p on inflammatory and oxidative stress-related cytokines in serum of ApoE\(^{-/-}\) mice. **A** Comparison of IL-5 contents in serum of mice group. **B** Comparison of IL-12p70 contents in serum of mice group. **C** Comparison of IFN-\(\gamma\) contents in serum of mice group. **D** Comparison of TNF-\(\alpha\) contents in serum of mice group. **E** Comparison of MDA content in serum of mice group. **F** Comparison of SOD activity in serum of mice group. \(n = 12\). *\(P < 0.05\) vs. the normal group, #\(P < 0.05\) vs. the NC group, &\(P < 0.05\) vs. the miR-342-5p agomir group. Measurement data were indicated as mean ± standard deviation. Comparisons among multiple groups were assessed by one-way ANOVA followed by Tukey’s multiple comparisons test. AS, atherosclerosis; NC, negative control.
while Sirius red staining showed red collagen fibers and blue nucleus. Versus the NC group, the lipid content was raised and collagen content was reduced in the miR-342-5p agomir group as well as lipid content was reduced and collagen content was accumulated in the miR-342-5p antagonir group and the oe-Wnt3a group (all $P < 0.05$). With respect to the miR-342-5p agomir group, the lipid content was decreased and collagen content was elevated.
in the miR-342-5p agomir + oe-Wnt3a group (both \(P < 0.05 \)). The experimental results fully illustrated that miR-342-5p targeted regulation of Wnt3a signaling pathway had a regulatory effect on lipid and collagen content in aortic plaque of AS mice.

Effects of Down-Regulated miR-342-5p or Up-Regulated Wnt3a on Macrophages and Smooth Muscle Cells in Aortic Plaque of ApoE\(^{-/-}\) Mice

The degree of AS is directly proportional to the content of mononuclear macrophages [21]. VSMCs are the main cells in the middle layer of arteries and are essential for maintaining the integrity of the arterial wall. VSMCs are involved in arterial wall reconstruction and play importantly in AS at various stages [22]. α-SMA is a specific marker of smooth muscle cells [23]. In this study, a macrophage marker antibody (MOMA-2) was utilized to label macrophages, and immunohistochemistry was applied detect MOMA-2 and α-SMA expression, respectively.

Under the microscope, positive immunohistochemical staining of MOMA-2 and α-SMA, respectively, indicates that macrophages and smooth muscle cells are mainly located in the cytoplasm, which is yellow to brown. MOMA-2 immune positive indicated that macrophages was mainly located in the cytoplasm with yellow to brown. Determined by immunohistochemistry, it was manifested that versus the NC group, percentage of plaque macrophages (MAMO-2) positive staining was raised and percentage of positive smooth muscle cells was decreased in the miR-342-5p agomir (both \(P < 0.05 \)). Percentage of plaque macrophages (MAMO-2) positive staining was reduced and percentage of positive smooth muscle cells was increased in the miR-342-5p antagonim group and the oe-Wnt3a group (all \(P < 0.05 \)). In comparison with the miR-342-5p agomir group, percentage of plaque macrophages (MAMO-2) positive staining was depressed and percentage of positive smooth muscle cells was raised in the miR-342-5p agomir + oe-Wnt3a group (both \(P < 0.05 \)) (Fig. 5A–D). It was implied that miR-342-5p targeted regulation of Wnt3a signaling pathway directly participated in regulating aggregation of macrophages and smooth muscle cells in arterial tissue plaques of AS mice.

Effects of High Expression of Wnt3a or Poor Expression of miR-342-5p on Aortic Plaque Vulnerability of ApoE\(^{-/-}\) Mice

Plaque vulnerability index was calculated: (positive percentage of macrophages + positive percentage of lipids)/ (positive percentage of smooth muscle cells + positive percentage of collagen). In relation to the NC group, the plaque vulnerability index was raised in the miR-342-5p agomir group (\(P < 0.05 \)) and decreased in the miR-342-5p antagonim group and the oe-Wnt3a group (both \(P < 0.05 \)). Versus the miR-342-5p agomir group, the plaque vulnerability index was decreased in the miR-342-5p agomir + oe-Wnt3a group (\(P < 0.05 \)) (Fig. 5F). Briefly, miR-342-5p targeted regulation of Wnt3a signaling pathway-mediated vulnerability of plaques in arterial tissues of AS mice.

Effects of Low Expression of miR-342-5p or Overexpression of Wnt3a on Angiogenesis in Aortic Plaque of ApoE\(^{-/-}\) Mice

Antibodies against endothelial cell marker CD34 can detect blood vessel density [24]. By immunohistochemistry and Western blot. Versus the NC group, MVD was heightened in the miR-342-5p agomir group and attenuated in the miR-342-5p antagonim group and the oe-Wnt3a group (all \(P < 0.05 \)). In comparison with the miR-342-5p agomir group, MVD was decreased in the miR-342-5p agomir + oe-Wnt3a group (\(P < 0.05 \)) (Fig. 6A–C). Collectively, miR-342-5p targeting and regulating Wnt3a signaling pathway directly participated in regulating the density of neovascularization in plaques of AS mice.

Discussion

AS is an unpredictable disease involving forms of chronic inflammation and vascular remodeling, and is the major cause of mortality and morbidity globally [25]. A previous study has discussed that miR-342-5p is implicated in regulating the progression of AS [26]. Also, it was mirrored that Wnt pathway is involved in facilitating the occurrence and development of diabetic AS [27]. As the related mechanisms of miR-342-5p and Wnt3a in AS remain to be excavated, our study was to inquire the effect of miR-342-5p targeted Wnt3a on formation of vulnerable plaque and angiogenesis of AS.

Our study revealed that highly expressed miR-342-5p and lowly expressed Wnt3a were found in aortic tissues of AS mice. A study has presented that macrophage-derived miR-342-5p is dramatically raised in early atherosclerotic lesions in ApoE\(^{-/-}\) mice [13]. Another study has presented that miR-342-5p is markedly elevated in atrial fibrillation patients [28]. It has been reported that Wnt3a deficiency irreversibly injures hematopoietic stem cell self-renewal and results in defects in progenitor cell differentiation [29]. A study has shown that depletion of Wnt3a leads to defective cardiac function [30]. It has been revealed that Wnt3a expression in hippocampus of Alzheimer’s disease mice is remarkably decreased [31]. Another result from our study is that Wnt3a was directly targeted by miR-342-5p in AS mice. It has been reported that miR-342-5p can target the 3’-UTR of Wnt3a and negatively regulate its expression [14].
In addition, our study has suggested that TC, TG, LDL-C, IL-5, IL-12p70, IFN-γ, TNF-α and MDA contents were increased in serum, and HDL-C content and SOD activity were decreased. In addition, plaque area, lipid content, collagen content and MVD were enhanced as well as MOMA-2 expression was raised and α-SMA expression was decreased in AS mice. IFN-γ is a soluble cytokine with many functions,
including anti-fibrosis, anti-proliferation, immunomodulation, apoptosis and anti-viral activities [32]. It has been revealed that glutamine treatment markedly raises SOD activity and reduces MDA content as well as increases Wnt3a protein levels in Alzheimer’s disease [31]. A study has revealed that the plasma levels of TC, TG and LDL-C are notably elevated and HDL-C is markedly reduced in AS [33]. A study has reported that TEMPOL supplementation, which has a value in suppressing metabolic disorders and raising atherosclerotic plaque stability, enhances plaque collagen content and reduces lipid content [34]. Zhou et al. noted that OPCRR treatments dramatically reduce serum lipid profiles including TC, TG and LDL-C as well as and raises the HDL-C, also decreases MDA content as a product of lipid peroxidation and, moreover, declines serum levels of TNF-α in AS [35]. It has been presented that atherosclerotic samples have obviously reduced expression of α-SMA [36]. A study has presented that raised MVD is found in diseased aortas and especially in ruptured atherosclerotic plaque [37]. Furthermore, our study revealed that poor expression of miR-342-5p and overexpression of Wnt3a decreased he lipid levels, cytokine contents, oxidative stress response, plaque area and lipid content as well as increased collagen content, depleted MOMA-2 expression and restored α-SMA expression in aortic tissues in AS mice. It has been suggested previously that miR-342-5p is found to be positively linked to LDL-C and TNF-α serum levels and has an inverse correlation with HDL-C in coronary artery disease (CAD) patients [12]. Another study has verified that depletion of miR-342-5p inhibits AS [13]. Additionally, an experiment has presented that low serum level of Wnt1 is related to raised TG and LDL-C in premature CAD patient [38]. In addition, a study has showed that up-regulated Wnt3a, enhanced SOD content and decreased MDA content are found in the curcumin groups in Parkinson’s disease rats [39].
Conclusion
In brief, our study for the first time discovered the mechanism of miR-342-5p/Wnt3 axis in AS and revealed that depleting miR-342-5p could reduce formation of vulnerable plaque and angiogenesis in AS mice via restoring Wnt3a, which may be a potential candidate for treatment of AS (Additional file 2: Fig. S2). miR-342-5p may have a synergistic effect with other miRNAs in atherosclerotic vascular disease, but due to time and funding constraints, we did not conduct further relevant discussions, which is also a limitation of this study.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s11671-021-03608-w.

Additional file 1: Fig. S1 Expression levels of β-catenin under treatment of different concentrations of miR-342-5p agonist, miR-342-5p antagonist and oe-Wnt3a in aortic tissues of AS mice. A. Comparison of β-catenin mRNA expression under treatment with different concentrations of miR-342-5p agomir; B. comparison of β-catenin mRNA expression under treatment with different concentrations of miR-342-5p antagonim; C. comparison of β-catenin mRNA expression under treatment with different concentrations of oe-Wnt3a vectors. #P < 0.05 vs. the NC group; measurement data were indicated as mean ± standard deviation. Comparisons among multiple groups were assessed by one-way ANOVA followed by Tukey’s multiple comparisons test with NC, negative control.

Additional file 2: Fig. S2 Mechanism of miR-342-5p/Wnt3 axis in AS, it is revealed that depleting miR-342-5p could reduce formation of vulnerable plaque and angiogenesis in AS mice via restoring Wnt3a.

Declarations
Ethics approval and consent to participate
This study was approved and supervised by the animal ethics committee of Qinghai Provincial People's Hospital. The treatment of animals in all experiments conforms to the ethical standards of experimental animal studies.

Consent for publication
The participant has consented to the submission of the case report to the journal.

Competing interests
The authors have no conflicts of interest to declare that are relevant to the content of this article.

Author details
1 Department of Cardiac Ultrasound, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China. 2 Department of General Practitioner, Qinghai Provincial People's Hospital, Xining 810007, Qinghai, China. 3 Department of Cardiac Ultrasound, Qinghai Provincial People's Hospital, Delingha 817099, Qinghai, China. 4 Department of Neurology, Qinghai Provincial People's Hospital, No. 2 Gonghe Road, East District, Xining 810007, Qinghai Province, China.

Received: 2 September 2020 Accepted: 21 September 2021 Published online: 22 November 2021

References
1. Han Z, Guan Y, Liu B et al (2019) MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci 232:116664
2. Yilmaz SG, Isibar S, Kurut AT, Isibar T (2018) Circulating microRNAs as novel biomarkers for atherosclerosis. In Vivo 32(3):561–565
3. Di Gregoli K, Jenkins N, Salter R, White S, Newby AC, Johnson JL (2014) MicroRNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler Thromb Vasc Biol 34(9):1990–2000
4. Yang Y, Yang L, Liang X, Zhu G (2013) MicroRNA-155 Promotes Atherosclerosis Inflammation via targeting SOCS1. Cell Physiol Biochem 36(4):1371–1381
5. Liu M, Tao G, Li Q, Liu K, Yang X (2017) MicroRNA let-7g alleviates atherosclerosis via the targeting of LOX-1 in vitro and in vivo. Int J Mol Med 40(1):57–64
6. Liu Q, Wang Z, Zhou X et al (2019) miR-342-5p inhibits osteosarcoma cell growth, migration, invasion, and sensitivity to Doxorubicin through targeting Wnt7b. Cell Cycle 18(23):3325–3336
7. Li X, Li K, Yu G, Yu C, Liu C (2019) miR-342-5p inhibits expression of Bmp7 to regulate proliferation, differentiation and migration of osteoblasts. Mol Immunol 114:251–259
8. Yan XC, Cao J, Liang L et al (2016) miR-342–5p is a notch downstream molecule and regulates multiple angiogenic pathways including notch, vascular endothelial growth factor and transforming growth factor beta signaling. J Am Heart Assoc 5(2):e003042
9. Li J, Li K, Chen X (2019) Inflammation-regulatory microRNAs: Valuable targets for intracranial atherosclerosis. J Neurosci Res 97(10):1242–1252
10. Bruen R, Fitzsimons S, Belton O (2019) miR-155 in the resolution of atherosclerosis. Front Pharmacol 10:463
11. de Yebenes VG, Briones AM, Martos-Folgado I et al (2020) Aging-associated miR-217 aggravates atherosclerosis and promotes cardiovascular dysfunction. Arterioscler Thromb Vasc Biol 40(10):2408–2424
12. Ahmadi R, Heidarian E, Fadaei R, Moradi N, Malek M, Fallah S (2018) miR-342-5p expression levels in coronary artery disease patients and its association with inflammatory cytokines. Clin Lab 64(4):603–609
13. Wei Y, Nazari-Jahantigh M, Chan L et al (2013) The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation 127(15):1609–1619
14. Qu Y, Liu D, Jia H, Yang Z (2019) Circular RNA rno_circ_0004002 regulates cell proliferation, apoptosis, and epithelial-mesenchymal transition through targeting miR-342-5p and Wnt3a in anocerat malformations. J Cell Biochem 120(9):15483–15493
15. Aripaka K, Gudey SK, Zang G et al (2019) TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer. EBioMedicine 45:192–207
16. Zheng W, Yao M, Fang M et al (2019) Oncogenic Wnt3a: A Candidate Specific Marker and Novel Molecular Target for Hepatocellular Carcinoma. J Cancer 10(23):5862–5873
17. Ramsey SA, Vengrenyuk Y, Menon P et al (2014) Epigenome-guided analysis of the transcriptome of plaque macrophages during atherosclerosis regression reveals activation of the Wnt signaling pathway. PLoS Genet 10(12):e1004828
18. Wu X, Wang J, Jiang H et al (2014) Wnt3a activates beta1-integrin and regulates migration and adhesion of vascular smooth muscle cells. Mol Med Rep 9(4):1159–1164
19. Qu C, Liu X, Guo Y et al (2020) MiR-128-3p inhibits vascular smooth muscle cell proliferation and migration by repressing FOXO4/MMP9 signaling pathway. Mol Med 26(1):116
20. Shimoi M, Ito T, Hirochi Y, Enomoto M (2001) Fibromuscular cap composition is important for the stability of established atherosclerotic plaques in mature WHHL rabbits treated with statins. Atherosclerosis 157(1):75–83
21. Xiong W, Wang X, Dai D, Zhang B, Lu L, Tao R (2017) The anti-inflammatory vasostatin-2 attenuates atherosclerosis in ApoE−/− mice and inhibits monocyte/macrophage recruitment. Thromb Haemost 117(2):401–414
22. Hu D, Yin C, Luo S, Habenicht AJR, Mohanta SK (2019) Vascular Smooth Muscle Cells Contribute to Atherosclerotic Immunity. Front Immunol 10:1101
23. Li H, Song G, Tian W et al (2020) Motility and proliferation of smooth muscle cells in a silk small-caliber tubular scaffold after replacement of rabbit common carotid artery. Mater Sci Eng C Mater Biol Appl 114:110977
24. Storr SJ, Safuan S, Mitra A et al (2012) Objective assessment of blood and lymphatic vessel invasion and association with macrophage infiltration in cutaneous melanoma. Mod Pathol 25(4):493–504
25. Wang J, Wang WN, Xu SB et al (2018) MicroRNA-214–3p: A link between autophagy and endothelial cell dysfunction in atherosclerosis. Acta Physiol (Oxf) 229(10)
26. Natarelle, Schmitt A (2015) MicroRNAs and the response to injury in atherosclerosis. Handb Exp Pharmacol 352(2):142–150
27. Ye Y, Bu SQ, Shi J, Wei Y (2018) TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. J Mol Med (Berl) 96(6):692–6929
28. Natarelle X, Oake K, Takahashi K et al (2018) Combined analysis of human and experimental murine samples identified novel circulating MicroRNAs as biomarkers for atrial fibrillation. Circ J 82(4):965–973
29. Luis TC, Weerkamp F, Naber BA et al (2019) Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113(3):546–554
30. Sun X, Zhang R, Li C, Xu X (2009) Wnt16a regulates the development of cardiac neural crest cells by modulating expression of cysteine-rich intestinal protein 6. Circ Res 102(7):831–839
31. Wang Y, Wang Q, Du G, Liu Z (2019) Glutamine improves oxidative stress through the Wnt/ β-catenin signaling pathway in Alzheimer’s disease. Biomed Res Int 2019:4690280
32. Lee JW, Lee G, Park KJ et al (2019) Co-treatment with interferon-gamma and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis. Mol Cell Biochem 458(1–2):197–205
33. Wang SZ, Wu M, Chen KJ et al (2019) Hawthorn extract alleviates atherosclerosis through regulating inflammation and apoptosis related factors: an experimental study. Chin J Integr Med 25(2):108–115
34. Kim CH, Mitchell JB, Bursill CA et al (2015) The nitrooxide radical TEMPO prevents obesity, hyperlipidemia, elevation of inflammatory cytokines, and modulates atherosclerotic plaque composition in apoE−/− mice. Atherosclerosis 240(1):234–241
35. Zhou Q, Han X, Li R et al (2018) Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. Phytomedicine 51:171–180
36. Zhang X, Xu B, Su D, Sun L et al (2016) Phenotypic switching of vascular smooth muscle cells in the "normal region" of aorta from atherosclerosis patients is regulated by miR-145. J Cell Mol Med 20(6):1049–1061
37. Phinikaridou A, Andia ME, Lavin B, Smith A, Saha P, Botnar RM (2016) Increased vascular permeability measured with an albumin-binding magnetic resonance contrast agent is a surrogate marker of rupture-prone atherosclerotic plaque. Circ Cardiovasc Imaging 9(12):e004910
38. Go WM, Srivastava R, Hernandez-Oono A et al (2014) The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. Cell Metab 19(2):209–220
39. Wang YL, Ju B, Zhang YZ et al (2017) Protective effect of curcumin against oxidative stress-induced injury in rats with Parkinson’s Disease through the Wnt/β-catenin signaling pathway. Cell Physiol Biochem 43(6):2226–2241

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.