Study on Triple-Hadron Bound States with Gaussian Expansion Method

Received: 10 May 2021 / Accepted: 27 August 2021 / Published online: 9 September 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract In recent years, more and more exotic hadronic states have been discovered successively. Many of them can be explained as hadronic molecules, such as $D^*_s(2317)$, $X(3872)$, and P_c pentaquark states. Analogous to the formation of nuclei, we study three-body hadronic molecules with the Gaussian expansion method, and predict the existence of the DDK, $\Xi_{cc}\Xi_{cc}\bar{K}$, and $BB\bar{K}$ bound states, which are likely to be found in the current and updated facilities.

1 Introduction

In recent years, many new hadronic states beyond the traditional quark model have been found, which are collectively referred to as exotic hadronic states. Among them, quite a large amount can be interpreted as hadronic molecules, that is, bound or resonant states formed by two hadrons via residual strong interactions, such as the $D^*_s(2317)$ and P_c pentaquark states, which can be well interpreted as DK and $\Sigma_{c}\bar{D}^{(*)}$ molecular states [1,2].

This picture of two-body molecular states can be extended to three-body hadronic systems by an accurate few-body method, the Gaussian expansion method [3]. In this work, we study the DDK system based on the DK interaction and one boson exchange model for charmed mesons, and predict the existence of a DDK molecular state [4–7]. Utilizing heavy quark symmetry [8], the $B\bar{K}$ and $\Xi_{cc}\bar{K}$ interactions can be related to the DK interaction, from which the $BB\bar{K}$ and $\Xi_{cc}\Xi_{cc}\bar{K}$ systems are also studied.

These few-body hadronic molecular states can decay in a specific way [6,9], which is expected to be observed in the current or upgraded experimental facilities. If such new hadronic states composed of multiple hadrons are found experimentally, the picture of two-body hadron molecules can be verified.
2 Two-Body Interactions

In order to solve these 3-body systems, namely the DDK, $BB\bar{K}$, and $\Xi_{cc}\Xi_{cc}\bar{K}$ systems, we have to first specify the two-body interactions. All of these three systems are composed of two identical hadrons (mesons or baryons) and a kaon (antikaon). In the following, we use AAB to represent these three systems, with A the D, B mesons or Ξ_{cc} baryon, and B the kaon or antikaon.

For the AB interaction, we refer to chiral perturbation theory, in which the most important contribution is the leading order Weinberg-Tomozawa (WT) term [10]

$$V_{WT}(q) = -\frac{C_W(I)}{2f_\pi^2},$$

where the pion decay constant $f_\pi = 130$ MeV and $C_W(I)$ represents the strength of the WT interaction. This potential can be rewritten in coordinate space by Fourier transformation and we use the same form of the interaction as that adopted in Refs. [5,9,11], which explicitly reads

$$V_{AB}(r; R_c) = C(R_c) e^{-r/R_c}.$$

(2)

Here R_c is a coordinate space cutoff representing the effective interaction range. It is difficult to precisely fix the interaction range. Considering the sizes of the D and K components (about 0.429 and 0.383 fm respectively [12]) and the relatively large binding energy of the DK system of about 45 MeV, we choose R_c ranging from 0.5 to 2.0 fm to study the related uncertainties. We adopt the same R_c to study the $B\bar{K}$ and $\Xi_{cc}\bar{K}$ systems due to heavy quark symmetry. The three-body results turn out to be not very sensitive to the value of R_c. The $C(R_c)$ is a running coupling constant related to R_c. We determine the $C(R_c)$ of the DK interaction by reproducing the $D_s^*(2317)$ state. According to heavy quark symmetry [8], the $B\bar{K}$ and $\Xi_{cc}\bar{K}$ interactions are the same as the DK one.

For the interactions between the two identical hadrons, we resort to phenomenological models, e.g., the one boson exchange (OBE) model developed in Ref. [13]. In Ref. [5], the DD OBE potential has been derived with the exchange of σ, ρ and ω mesons. According to heavy quark flavor symmetry, the BB interaction is the same as the DD one. For the explicit form of the DD OBE potential, see Ref. [5]. For the $\Xi_{cc}\Xi_{cc}\bar{K}$ potential in the OBE model, we can derive from the DD OBE potential and the heavy antiquark-diquark symmetry (HADS) [11].

3 Gaussian Expansion Method

As all the two-body interactions have been specified, we use the GEM to solve the Schrödinger equation. In this section, we explain how to use the Gaussian expansion method (GEM) to study the DDK, $BB\bar{K}$ and $\Xi_{cc}\Xi_{cc}\bar{K}$ systems.

We study the three-body AAB systems by solving the following Schrödinger equation with three Jacobi coordinates shown in Fig. 1

$$\hat{H}\Psi_{JM}^{total} = E\Psi_{JM}^{total},$$

(3)

with the Hamiltonian

$$\hat{H} = \sum_{i=1}^{3} \frac{p_i^2}{2m_i} - T_{c.m.} + V_{AB}(r_1) + V_{AB}(r_2) + V_{AA}(r_3).$$

(4)
where T_{cm} is the kinetic energy of the center of mass and $V(r)$ is the potential between the two relevant particles. The three-body wave functions can be constructed in Jacobi coordinates as

$$\Psi_{JM}^{total} = \sum_{c=1}^{3} \Psi(r_c, R_c),$$

where $c = 1 - 3$ is the label of the Jacobi channels shown in Fig. 1. In each Jacobi channel the wave function $\Psi(r_c, R_c)$ reads

$$\Psi(r_c, R_c) = C_{c,a} H_{T,\alpha}^{\Phi}(r_c, R_c)$$

where $C_{c,a}$ is the expansion coefficient and the $\alpha = \{nN, tT, lL\lambda\}$ labels the basis number with the configuration sets of the Jacobi channels. Here $n(N)$ is the number of Gaussian basis used and $l(L)$ is the orbital angular momentum corresponding to the Jacobi coordinates $r(R), \lambda$ is the total orbital angular momentum coupled from l and L. $H_{T,\alpha}^{\Phi}$ is the three-body isospin wave function where t is the isospin of the subsystem in Jacobi channel c and T is the total isospin.

The three-body spatial wave function $\Phi(r_c, R_c)$ is constructed by two two-body wave functions as

$$\Phi_{IL,\lambda}(r_c, R_c) = \phi_{nlm}^G(r_c) \psi_{NcLc}^G(R_c),$$

where

$$\phi_{nlm}^G(r_c) = N_{nl} r_c^l e^{-\nu_{nl}^2 r_c^2} Y_{lm}^{c}(\hat{r}_c),$$

$$\psi_{NcLc}^G(R_c) = N_{NcLc} R_c^L e^{-\lambda_{Nc} R_c^2} Y_{LM}^{(2)}(\hat{R}_c).$$

Here $N_{nl}(N_{NL})$ is the normalization constant of the Gaussian basis.

Considering that there are two identical particles in these 3-body systems, the total wave function should be symmetric(or antisymmetric) with respect to the exchange of the two identical particles, which requires

$$\hat{P}_{12} \Psi_{JM}^{total} = P_{12} \Psi_{JM}^{total},$$

where \hat{P}_{12} is the exchange operator of particles 1 and 2, $P_{12} = +1$ for mesons and $P_{12} = -1$ for baryons. Considering only S-wave interactions and the constraint of the two identical particles, the quantum numbers of the AAB systems are $I(J^P) = \frac{1}{2}(0^-)$.

4 Results and Discussions

With the interaction inputs presented in Sect. 2, we study the three AAB systems, i.e., the DDK, $BB\bar{K}$, and $\Sigma_c\Xi_c\bar{K}$ systems with the Gaussian expansion method.

Our results show that these three-body systems are indeed bound. In Table 1. We present the binding energies and root mean square (RMS) radii of the DDK bound state. The binding energy of the DDK bound state ranges from 68.8 to 74.6 MeV with the cutoff ranging from 0.5 to 2 fm, from which one can see that it is only weakly cutoff dependent. The RMS radius of DK in the DDK bound state ranges from 1.02 to 1.80 fm and that of DD ranges from 1.08 to 1.80 fm as the cutoff increases. The RMS radii are strongly cutoff dependent because the cutoff R_c represents the effective interaction range.

From heavy quark flavor symmetry, we know that the $B\bar{K}$ interaction is the same as the DK one, as a result, the $BB\bar{K}$ system is analogous to the DDK system. Compared with the DDK system, the heavier mass of the bottom quark causes two differences for the $BB\bar{K}$ system, see Table 2. First, there are two bound states in the $BB\bar{K}$ system. There is also an exited state in the DDK system with $R_c = 2$ fm, but this state vanishes as the cutoff becomes smaller. Second, the binding energy of the $BB\bar{K}$ ground state is larger and strongly

Table 1 Binding energies (in units of MeV) and root mean square radii (in units of fm) of the DDK bound state

R_c	$B_3(DDK)$	r_{DD}	r_{DK}
0.5	74.6	1.08	1.02
1	71.2	1.36	1.32
2	68.8, 45.1	1.80	1.80
Table 2 Binding energies (in units of MeV) and root mean square radii (in units of fm) of the BBK bound states

R_c	$B_3(BBK)$	r_{BB}	r_{BK}
0.5	152.3, 74.2	0.71	0.58
1	108.5, 64.2	1.05	0.83
2	87.3, 63.8	1.53	1.15

Table 3 Binding energies (in units of MeV) and root mean square radii (in units of fm) of the ΞccK bound state

R_c	$B_3(\Xi ccK)$	$r_{\Xi cc}$	$r_{\Xi cK}$
0.5	118.4	0.75	0.80
1	92.8	1.04	1.14
2	79.7, 55.5	1.43	1.63

dependent on the cutoff, which is about 87 to 152 MeV as the cutoff decreases. Correspondingly, the RMS radius of the BK pair is about 0.58 to 1.15 fm and that of the BB pair is about 0.71 to 1.53 fm, in the BBK ground state.

In Table 3, we present the binding energies and RMS radii of the ΞccK bound state we predicted. The Ξcc baryon is the heavy anti-quark diquark symmetry (HADS) partner of the D meson, thus the ΞccK bound state could be viewed as the HADS counterpart of the DK bound state. The binding energy of the ΞccK bound state ranges from 79.7 to 118.4 MeV, of which the RMS radii of ΞccK and Ξcc pairs are 0.80 to 1.63 fm and 0.75 to 1.43 fm, respectively.

There is a remarkable phenomenon that can occur in a 3-body system, the Efimov effect, discovered by Efimov in 1970 [14]. The Efimov effect refers to the appearance of a geometric spectrum in the 3-body system when at least two of the three pairs of particles are in the unitary limit, i.e. their scattering lengths diverge. In this work, the three AAB systems we studied above do not have divergent scattering lengths, but the interactions between the subsystems are cutoff dependent, where the cutoff represents the effective interaction range. This is complementary to the Thomas collapse [15]: reducing the range of the interaction is equivalent to a relative increase of the scattering length when expressed in units of the range. Actually we can use the Efimov effect as a proxy to show the existence of the Thomas collapse in these systems, as proposed in other works [11,16,17].

In the AAB system, where A and B are two different species of particles and the AB interaction is resonant, the condition for having the Efimov effect is

$$\lambda_{\alpha} = \frac{\sin 2\alpha}{2\alpha} \leq \lambda,$$

with $\lambda = 1/2$ a geometric factor depending on the characteristics of the AB interaction and quantum numbers of the system.

For the three AAB systems we studied, λ_{α} of the $\Xi cc\Xi ccK$ and BBK systems are 0.389 and 0.321 respectively (for details, see Ref. [11]), from which we have $\lambda \geq \lambda_{\alpha}$: the conclusion is that for the $\Xi cc\Xi ccK$ and BBK systems the Efimov effect can indeed happen. But of course, from the fact that the AB system is far from the divergence of the scattering length, what we can expect is Thomas collapse [15].

This is what we indeed obtain. Our results show that the binding energies of the $\Xi cc\Xi ccK$ and BBK systems are strongly cutoff dependent. More specifically, the binding energies become divergent as the cutoff R_c goes to 0, see Fig. 2. The results clearly show the Thomas collapse in the $\Xi cc\Xi ccK$ and BBK systems. As a comparison, λ_{α} of the DK system is 0.531, from which we deduce that there is no Thomas collapse in this case, which are consistent with our results shown in Table 1.

5 Summary

Based on the molecular picture of two-body hadronic states and heavy quark symmetry, we studied three-body AAB systems, i.e., DK, BBK, and $\Xi cc\Xi ccK$, and found that they indeed bind. In these AAB systems, if the mass differences of the A and B particles are large enough, such as the $\Xi cc\Xi ccK$ and BBK systems, there could exist Thomas collapse, which indicates that the three-body binding energy become divergent as the interaction range of AB goes to zero.
These predicted bound states are expected to be observed in the current or updated experimental facilities. If they are found, the picture of two-body hadronic molecules can be tested and supported in a highly non-trivial way.

References

1. L.S. Geng, N. Kaiser, J. Martin-Camalich, W. Weise, Phys. Rev. D 82, 054022 (2010). https://doi.org/10.1103/PhysRevD.82.054022
2. M.Z. Liu, Y.W. Pan, F.Z. Peng, M. Sánchez Sánchez, L.S. Geng, A. Hosaka, M. Pavon Valderrama, Phys. Rev. Lett. 122(24), 242001 (2019). https://doi.org/10.1103/PhysRevLett.122.242001
3. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003). https://doi.org/10.1016/S0146-6410(03)90015-9
4. A. Martínez Torres, K.P. Khemchandani, L.S. Geng, Phys. Rev. D 99(7), 076017 (2019). https://doi.org/10.1103/PhysRevD.99.076017
5. T.W. Wu, M.Z. Liu, L.S. Geng, E. Hiyama, M.P. Valderrama, Phys. Rev. D 100(3), 034029 (2019). https://doi.org/10.1103/PhysRevD.100.034029
6. Y. Huang, M.Z. Liu, Y.W. Pan, L.S. Geng, A. Martínez Torres, K.P. Khemchandani, Phys. Rev. D 101(1), 014022 (2020). https://doi.org/10.1103/PhysRevD.101.014022
7. J.Y. Pang, J.J. Wu, L.S. Geng, Phys. Rev. D 102(11), 114515 (2020). https://doi.org/10.1103/PhysRevD.102.114515
8. M. Neubert, Phys. Rep. 245, 259 (1994). https://doi.org/10.1016/0370-1573(94)90091-4
9. T.W. Wu, M.Z. Liu, L.S. Geng, Phys. Rev. D 103(3), L031501 (2021). https://doi.org/10.1103/PhysRevD.103.L031501
10. M. Altenbuchinger, L.S. Geng, W. Weise, Phys. Rev. D 89(1), 014026 (2014). https://doi.org/10.1103/PhysRevD.89.014026
11. T.W. Wu, M.Z. Liu, L.S. Geng, E. Hiyama, M.P. Valderrama, W.L. Wang, Eur. Phys. J. C 80(9), 901 (2020). https://doi.org/10.1140/epjc/s10052-020-08483-w
12. C.W. Hwang, Eur. Phys. J. C 23, 585 (2002). https://doi.org/10.1007/s100520200904
13. M.Z. Liu, T.W. Wu, M. Pavon Valderrama, J.J. Xie, L.S. Geng, Phys. Rev. D 99(9), 094018 (2019). https://doi.org/10.1103/PhysRevD.99.094018
14. V. Efimov, Phys. Lett. B 33, 563 (1970). https://doi.org/10.1016/0370-2693(70)90349-7
15. L.H. Thomas, Phys. Rev. 47, 903 (1935). https://doi.org/10.1103/PhysRev.47.903
16. M.P. Valderrama, Phys. Rev. D 98(3), 034017 (2018). https://doi.org/10.1103/PhysRevD.98.034017
17. M.P. Valderrama, Phys. Rev. D 99(3), 034010 (2019). https://doi.org/10.1103/PhysRevD.99.034010

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.