The Effect of Personal Protective Equipment (PPE) and Disinfectants on Skin Health During Covid 19 Pandemia

Dua Cebeci, Seide Karasel, Didem Rifki, Havva Yesildağlı, Mustafa Kalfaoglu

ABSTRACT

Background: Based on the available evidence, the COVID-19 virus is transmitted through close contact and droplets, not in the form of airborne transmission (airborne) among humans. People at risk of infection are those who are in close contact with or looking after COVID-19 patients. Preventive and mitigation measures are key in both the healthcare sector and the community. Personal protective equipment (PPE) is mandatory to protect healthcare workers from the new coronavirus, but healthcare workers may have skin damage especially associated with long-term use of PPE. Objective: The main purpose in this study is to forward the effects of PPE and disinfectants on health care workers skin health. Methods: From March to May 2020, self-administered face to face questionnaires were distributed to 200 individuals, consisting of healthcare workers who served in the designated departments of tertiary hospitals Famagusta /Cyprus. The questionnaire included questions about the condition of skin damage and the frequency or duration of several infection-prevention measures. Results: The most common protection equipment were surgery mask (91.5%), gloves (87.5%) and hand sanitizer (52.0%). In addition, 141 (70.5%) individuals stated take a bath/shower frequently as a protection method from COVID and 135 (67.5%) individuals stated air conditioning. Most individuals use latex gloves with powder (65.0%) or powder free (62.0%). Mean daily duration of wearing mask was 7.32 ± 4.54 (range 0–24) hours, wearing visor or glasses was 3.16 ± 3.97 (range 0–24) hours, wearing protective apron was 4.20 ± 4.57 (range 0–24) hours and wearing gloves was 5.33 ± 4.03 (range 0–24) hours. Eighty (40.0%) individuals bought personal protective equipment for COVID. Most individuals (73.0%) did not see a COVID patient while 18 (9.0%) individuals sampled from a COVID patient. None of the individuals was COVID positive. Mean stress level was 70.24 ± 23.58 (range 0–100). Most individuals (92.0%) stay at home except working times. Fifty-two (26.0%) individuals had hand dryness (xerosis cutis), 38 (19.0%) individuals had body itching or exanthema, 41 (20.5%) individuals had facial wounds because of mask, visor etc. and 68 (34.0%) individuals had rhinitis. Twenty-nine (14.5%) individuals had treatment because of dermal problems. Conclusion: Atopy, winter season, low humidity frequency of hand washing with detergents / disinfectants can disrupt the hydro-lipid cover of the skin surface and also cause irritation and even the development of contact dermatitis. Two-thirds of healthcare workers wash their hands 10 times a day, but only 22% applied skin protective cream. Also, according to a study, prophylactic dressings have been shown to alleviate pressure injuries associated with the device. Also, longer exposure time is an important risk factor. Latex-free gloves are now a mandatory standard in many hospitals and clinics and have the potential to reduce occupational skin diseases.

Keywords: healthcare workers; PPE, personal protective equipment.
prolonged exposure to PPE and excessive personal hygiene. (3)

Almost all types of PPE – face masks, glasses, face shields, gloves – disinfectants (alcohol, chemical agents soaps) can cause skin problems. Many PPE today is designed for single use. Surgical masks are not designed to be worn for more than 4 hours. Different surgical masks must be worn while examining each patient. During the pandemic, excessive and long term usage of PPE’s resulted in serious side effects. Even aprons can cause overheating and excessive sweating, and when combined with friction, it can lead to intertriginous dermatitis and in some case erythema rashes urticaria. (4)

Skin complications in COVID-19 infection are mainly caused by the hyperhydration effect of PPE, friction, epidermal barrier disruption and contact reactions. Also previously existing skin diseases can aggravate. To minimize skin and mucous barrier disruption, healthcare professionals must comply with the standards of wearing protective equipment and prevent the habitation of unnecessary protective actions (5)

2. OBJECTIVE

The main purpose in this study is to forward the effects of PPE and disinfectants on health care workers skin health. We managed to estimate the prevalence and clinical features of skin conditions faced as a result of frequent usage of various disinfectants and long-time wearing of protective equipment (N95 mask, goggles, face shield, and double layers of gloves) during the epidemic period of COVID-19.

3. MATERIAL AND METHODS

From March to May 2020, self-administered face to face questionnaires were distributed to 200 individuals, consisting of healthcare workers who served in the designated departments of tertiary hospitals Famagusta / Cyprus. The questionnaire included questions about the condition of skin damage and the frequency or duration of several infection-prevention measures.

Statistical Analysis

All analysis were performed on SPSS v21 (SPSS Inc., Chicago, IL, USA). Data are given as mean ± standard deviation (minimum–maximum) for continuous variables and frequency (percentage) for categorical variables. Before and after COVID comparisons were performed with the McNemar test or Marginal Homogeneity test depending count of categories. Two-tailed p-values of less than 0.05 were considered statistically significant.

4. RESULTS

We included 200 (62 males and 138 females) individuals into our study, 135 (67.5%) individuals are between the age of 30 and 50. Most common profession was nurse (36.5%) while 31 (15.5%) individuals were officer, 26 (13.0%) individuals were service/polyclinic staff, 24 (12.0%) individuals were doctor and 20 (10.0%) individuals were 112 staff. Seventy-four (37.0%) individuals were university graduate. Most individuals (81.5%) were working at the state hospital. Fifty-seven (28.5%) individ

Table 1. Summary of individuals characteristics

Age	
20–30	33 (16.5%)
30–40	64 (32.0%)
40–50	71 (35.5%)
50–60	32 (16.0%)

Gender	
Male	62 (31.0%)
Female	138 (69.0%)

Profession	
Doctor	24 (12.0%)
Nurse	73 (36.5%)
Officer	31 (15.5%)

Cleaning staff	11 (5.5%)
Radiology staff	9 (4.5%)
Laboratory staff	1 (0.5%)
Service/polyclinic staff	26 (13.0%)
112 Staff	20 (10.0%)
Physical therapy staff	5 (2.5%)

Education status	
Primary school	21 (10.5%)
Secondary school	19 (9.5%)
High school	51 (25.5%)
University	74 (37.0%)
Postgraduate	35 (17.5%)

Hospital	
State	163 (81.5%)
Primary health care	37 (18.5%)
Private hospital	0 (0.0%)

Child(ren)	
None	57 (28.5%)
1–2	128 (64.0%)
3–4	14 (7.0%)
> 4	1 (0.5%)

Living with risky group	69 (34.5%)

Hospital unit	
Polyclinic	85 (42.5%)
Emergency	39 (19.5%)
Service	48 (24.0%)
COVID isolation service	3 (1.5%)
COVID polyclinic	6 (3.0%)
Intensive care	12 (6.0%)
Primary health care	3 (1.5%)
112	17 (8.5%)

Secondment for COVID	67 (33.5%)

Working hours (weekly)	42.77 ± 16.00 (5–100)

Chronic disease	64 (32.0%)
Hypertension	22 (11.0%)
Heart disease	10 (5.0%)
Renal disease	2 (1.0%)
Diabetes mellitus	10 (5.0%)
Lung disease	7 (3.5%)
Cancer	1 (0.5%)
Others	29 (14.5%)

Data are given as mean ± standard deviation (minimum–maximum) for continuous variables and as frequency (percentage) for categorical variables.
The Effect of Personal Protective Equipment (PPE) and Disinfectants on Skin Health During Covid 19 Pandemia

Individuals had no children. Sixty-nine (34.5%) individuals were living with risky group like older than 65 years or with chronic disease. Eighty-five (42.5%) individuals were working at polyclinic, while 48 (24.0%) individuals were working at service and 39 (19.5%) individuals were working at emergency department. Sixty-seven (33.5%) individuals had secondment for COVID. Mean working hours in a week was 42.77 ± 16.00 (range 5–100). Sixty-four (32.0%) individuals had at least one chronic disease, the most common chronic diseases were hypertension (11.0%), heart diseases (5.0%) and diabetes mellitus (5.0%) (Table 1).

The most common protection equipment were surgery mask (91.5%), gloves (87.5%) and hand sanitizer (52.0%). In addition, 141 (70.5%) individuals stated take a bath / shower frequently as a protection method from COVID and 135 (67.5%) individuals stated air conditioning. Most individuals use latex gloves with powder (65.0%) or powder free (62.0%). Mean daily duration of wearing mask was 7.32 ± 4.54 (range 0–24) hours, wea-

Table 2. Summary of individuals answers

Protection Method	Frequency
Surgery mask	183 (91.5%)
FFP1, FFP2, FFP3, N99	26 (13.0%)
N95	27 (13.5%)
Gloves	175 (87.5%)
Cologne / Refreshing towel	72 (36.0%)
Protective apron	101 (50.5%)
Visor / glasses	70 (35.0%)
Hand sanitizer	104 (52.0%)
Gargling with water	38 (19.0%)
Gargling with antiseptic	11 (5.5%)
Avoid handshake	8 (4.0%)
Social distancing	7 (3.5%)
Frequently handwash	3 (1.5%)
Frequently bath / shower	141 (70.5%)
Air conditioning	135 (67.5%)
Cleaning with UV / ozone	12 (6.0%)
Aromatherapy	0 (0.0%)
Gloves type	
Latex with powder	130 (65.0%)
Powder free latex	124 (62.0%)
Nylon	4 (2.0%)
Plastic	11 (5.5%)
Cotton / nitrite	3 (1.5%)
Daily duration (hours) of wearing...	
Mask	7.32 ± 4.54 (0–24)
Visor / glasses	3.16 ± 3.97 (0–24)
Protective apron	4.195 ± 4.57 (0–24)
Gloves	5.33 ± 4.03 (0–24)
Bought personal protective equipment	80 (40.0%)
Relationship with COVID	

Figure 1. Hand wash percentages before and after COVID

Figure 2. Face wash percentages before and after COVID

on (11.0%), heart diseases (5.0%) and diabetes mellitus (5.0%) (Table 1).

The most common protection equipment were surgery mask (91.5%), gloves (87.5%) and hand sanitizer (52.0%). In addition, 141 (70.5%) individuals stated take a bath / shower frequently as a protection method from COVID and 135 (67.5%) individuals stated air conditioning. Most individuals use latex gloves with powder (65.0%) or powder free (62.0%). Mean daily duration of wearing mask was 7.32 ± 4.54 (range 0–24) hours, wea-
The Effect of Personal Protective Equipment (PPE) and Disinfectants on Skin Health During Covid 19 Pandemia

Table 3. Summary of individuals habits and status before and after COVID

Activity	Before	After	p
Hand wash (daily)			
1–4	22 (11.0%)	6 (3.0%)	<0.001
5–9	61 (30.5%)	21 (10.5%)	
10–14	48 (24.0%)	36 (18.0%)	
> 15	69 (34.5%)	137 (68.5%)	
Hand wash (duration)			
0–9 seconds	51 (25.5%)	3 (1.5%)	<0.001
10–19 seconds	59 (29.5%)	59 (29.5%)	
20–29 seconds	59 (29.5%)	59 (29.5%)	
> 30 seconds	31 (15.5%)	79 (39.5%)	
Face wash (daily)			
1–4	10 (5.0%)	16 (8.0%)	0.002
5–9	75 (37.5%)	40 (20.0%)	
10–14	62 (31.0%)	61 (30.5%)	
> 15	53 (26.5%)	83 (41.5%)	
Shower (weekly)			
1–2	7 (3.5%)	12 (6.0%)	<0.001
3–5	46 (23.0%)	25 (12.5%)	
5–7	73 (36.5%)	39 (19.5%)	
> 7	74 (37.0%)	124 (62.0%)	
Hand moisturizer (daily)			
0	43 (21.5%)	31 (15.5%)	<0.001
1–2	87 (43.5%)	61 (30.5%)	
3–5	38 (19.0%)	36 (18.0%)	
> 5	32 (16.0%)	72 (36.0%)	
Hand problems (eczema/dermatitis)	41 (20.5%)	57 (28.5%)	0.053
Face problems (xerosis cutis/dermatitis)	14 (7.0%)	40 (20.0%)	<0.001
Hair loss	53 (26.5%)	66 (33.0%)	0.026
Hand over-sweating	31 (15.5%)	28 (14.0%)	0.710
Acne	25 (12.5%)	32 (16.0%)	0.310
Data are given as frequency (percentage)			

5. DISCUSSION

In this issue of JAAD, Lan et al. Report a high incidence of cutaneous complications related with PPE among healthcare workers treating patients with epidemic coronavirus (COVID-19) infection. It may be difficult to continue wearing protective clothing against cutaneous ulceration, and trying to shift pressure and wear points can reduce the effectiveness of the protective mask.(5) Atopy, winter season, low humidity frequency of hand washing with detergents / disinfectants can disrupt the hydro-lipid cover of the skin surface and also cause irritation and even the development of contact dermatitis.
(3) two-thirds of healthcare workers wash their hands 10 times a day, but only 22% applied skin protective cream. Also, according to a study, prophylactic dressings have been shown to alleviate pressure injuries associated with the device. Also, longer exposure time is an important risk factor.

Latex-free gloves are now a mandatory standard in many hospitals and clinics and have the potential to reduce occupational skin diseases.

6. CONCLUSION

Outbreaks of COVID-19 are now reported worldwide and all physicians must be prepared for cases in their community. The prevalence of skin damage in our study was very high among healthcare professionals. Although it is known exactly what the scope of the problem is, there is very few literature on effective measures to reduce the incidence of occupational skin injuries among healthcare workers. Simple interventions, including the use of adhesive barrier films before wearing protective equipment, moisturising the skin after disinfection can help to maintain a vital workforce for the care of patients with the disease.

• Acknowledgments: We would like to thank Famagusta State Hospital for his suggestions about this paper and the health care workers who participated in our study for their support of this paper. We especially want to express our deep respect to all first-line health care workers for their dedication in the fight against COVID-19.

• Authors contribution: All authors were involved in all steps of preparation this article. Final proofreading was made by the first author.

• Conflict of Interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

• Financial support and sponsorship: There is no founding.

REFERENCES

1. Liu K, Zhang W, Yang Y, Zhang J, Li Y, Chen Y. Respiratory rehabilitation in elderly patients with COVID-19: A randomized controlled study. 2020 May;39:101166.

2. WHO. Coronavirus disease 2019 (COVID-19). Situation Report –59: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200319-sitrep-59-covid-19.pdf?sfvrsn=c3dcdef9_2; 2020

3. Darlenski R, Tsankov N. Covid-19 pandemic and the skin—What should dermatologists know?☆ Clin Dermatol. 2020;

4. A Step-by-Step Guide to Preventing PPE-Related Skin Damage - Medscape - Apr 28, 2020.

5. Elston D.M. Letter from the Editor: Occupational skin disease among healthcare workers during the Coronavirus (COVID-19) epidemic. J Am Acad Dermatol. 2020