Clinical value of MLH1-negative circulating tumor cells in lung cancer patients

Jin-Yan Liang, MDa, Qi-Fan Yang, MDa, Yu-Lan Zeng, MDb, Yang-Yang Liu, MDa, Yu-Ting Liu, MDa, Fei-Fei Gu, MD, PhDa, Yue Hu, MD, PhDa, Kai Zhang, MD, PhDa, Hao Zhong, MDb,∗, Li Liu, MD, PhDa,∗

Abstract
Circulating tumor cells (CTCs) serve as valuable biomarkers. However, MutL homolog 1 (MLH1)-negative CTCs and their clinical significance in lung cancer are nearly unknown.

Here, bioinformatic analysis of MLH1 expression and its clinical significance was conducted using the Oncomine, Ualcan, and Kaplan-Meier plotter websites. Size-based isolation and RNA in situ hybridization assays were used to identify CTCs and evaluate MLH1 and mesenchymal marker expression in CTCs. MLH1 was downregulated in lung cancer patients. Patients with lower MLH1 expression levels had worse prognoses. In a cohort of 32 randomly selected patients with lung cancer, the patients with poorer treatment responses had more MLH1-negative CTCs. The total CTCs, MLH1-negative CTCs and mesenchymal markers-expressing CTCs levels were negatively correlated with prognosis in the lung cancer patients.

Our data showed the clinical significance of MLH1 expression in lung cancer tissues. The characterization and numeration of CTCs based on the expression of MLH1 and mesenchymal markers may be a convenient approach for predicting treatment response and prognosis in lung cancer.

Abbreviations: CTCs = circulating tumor cells, E CTCs = epithelial CTCs, FP = first progression, H CTCs = hybrid CTCs, M CTCs = mesenchymal CTCs, M + H CTCs = mesenchymal marker-expressing CTCs, MLH1 = MutL homolog 1, MMR = mismatch repair, OS = overall survival, PFS = progression-free survival, PPS = post-progression survival, T CTCs = total CTCs.

Keywords: circulating tumor cells, lung cancer, mesenchymal markers, MutL homolog 1, prognosis

1. Introduction
Lung cancer is one of the most malignant cancers and causes the most cancer-related deaths worldwide.\cite{1} Despite the breakthroughs in treatment strategies for lung cancer in the past decade, the overall survival (OS) of lung cancer, especially advanced lung cancer, is still unfavorable, with a 5-year survival rate of less than 15\%.\cite{2,3} Therefore, there is an urgent need to identify novel biomarkers for predicting both the treatment response and the prognosis of lung cancer patients.

MutL homolog 1 (MLH1) is a member of the mismatch repair (MMR) gene family. Previous studies have reported that MLH1 is downregulated in many cases of lung cancer, and its downregulation may be related to platinum resistance.\cite{4,5,6} However, some studies have illustrated that only a small proportion of lung cancer patients lose MLH1 expression.\cite{7} There have even been studies showing that MLH1 expression is lower in normal bronchial epithelial cells.\cite{8,9} Furthermore, the relationship between MLH1 expression and lung cancer outcomes is controversial. Many studies suggest that the loss of MLH1 expression may lead to platinum resistance and worse outcomes.\cite{6,10} Other studies have reported no link between MLH1 expression and outcome in lung cancer patients.\cite{11,12,13} Therefore, we explored MLH1 expression and its clinical significance in lung cancer in a larger number of patients by summarizing data from bioinformatic websites.

Compared to tumor biopsy, the enumeration and characterization of circulating tumor cells (CTCs) are considered to be a more convenient, noninvasive approach for predicting treatment response and outcome in cancer patients.\cite{14,15} Our bioinformatic analysis has shown the clinical significance of MLH1 in lung cancer tissues. However, the clinical value of MLH1 expression in CTCs in lung cancer patients is still unknown. Our study is the first to evaluate the number and the clinical significance of MLH1-negative CTCs in patients with lung cancer.

Studies have demonstrated that in breast cancer, CTCs express epithelial and/or mesenchymal markers, and reductions in total CTCs (T CTCs) and mesenchymal CTCs (M CTCs) were
correlated with poor outcomes.\(^{16,17}\) Although some studies clarified that it was necessary to classify CTCs based on epithelial and mesenchymal markers in lung cancer, data on M CTCs and their correlation with treatment response and outcome are lacking.\(^{18,19}\) In our study, we also analyzed whether CTCs expressing epithelial and/or mesenchymal markers, are correlated with the clinical characteristics, treatment response, and prognosis.

2. Methods

2.1. Bioinformatic analysis

MLH1 expression was analyzed within Oncomine and Ualcan. The relationship between survival and MLH1 expression in lung cancer patients was analyzed using the Kaplan–Meier plotter website.

2.2. Patient samples

From June 2015 to November 2016, we enrolled 32 patients who were diagnosed with lung cancer at the Cancer Center of Union Hospital in Wuhan, P.R. China. For each patient, 5 ml of peripheral blood was collected. Blood samples were collected from 16 patients before therapy and from 16 patients during treatment. Blood samples were collected for a second time from 8 patients after a period of treatment. Serial blood samples from 2 patients were analyzed. This study was approved by the Ethical Review Board of the Union Hospital in Wuhan, P.R. China, and performed according to the Declaration of Helsinki Principles. Written informed consents were obtained from the patients who were enrolled in this study.

2.3. Isolation of CTCs

Red blood cell lysis buffer was used to remove erythrocytes. The remaining cells were fixed with 4% formaldehyde for 8 minutes. CTCs were isolated and filtered by size using an epithelial tumor cell device with a calibrated membrane with 8-μm diameter pores (SurExam, Guangzhou, China). After filtration, the CTCs were fixed with 4% formaldehyde for 1 hour.

2.4. RNA in situ hybridization assay

The assays were conducted in 24-well plates. After the cells on the membrane were treated with 0.1 mg/ml protease K (Qiagen, Hilden, Germany) for 1 hour, capture probes (the sequences are shown in Table S1, http://links.lww.com/MD/D40 and Table S2, http://links.lww.com/MD/D40) were used. The capture probe, preamplifier, and amplifier sequences are listed in Table S1, http://links.lww.com/MD/D40 and Table S2, http://links.lww.com/MD/D40. The fluorescent dye for MLH1 was Alexa Fluor 647.

CTCs were isolated and amplified into 4 groups according to their MLH1 expression: MLH1-negative, MLH1-low, MLH1-median, and MLH1-high CTCs. According to the fluorescent signals, we classified the CTCs into 3 groups: epithelial CTCs (E CTCs), only red fluorescence, hybrid CTCs (H CTCs, both red and green fluorescence), and M CTCs (only green fluorescence) (Fig. S1A, http://links.lww.com/MD/D40). CTCs expressing mesenchymal markers, including M CTCs and H CTCs, were defined as mesenchymal marker-expressing CTCs (M + H CTCs), including M CTCs and H CTCs. CTCs were classified into 4 groups according to their MLH1 expression: MLH1-negative, MLH1-low, MLH1-median, and MLH1-high CTCs (Fig. S1B, http://links.lww.com/MD/D40).

2.5. Statistical analysis

Differences in CTCs numbers between 2 groups were tested by the Mann–Whitney test. The survival analysis was tested by the log-rank (Mantel-Cox) test. All data were analyzed using SPSS v19.0 software. A P-value less than .05 was considered statistically significant.

3. Results

3.1. The expression and clinical significance of MLH1 expression in lung cancer patients

We searched for MLH1 data in Oncomine datasets and Ualcan. The data suggested that the expression of MLH1 was down-regulated in lung cancer patients (Fig. 1A). Additional analysis in Ualcan showed no difference in MLH1 expression between normal lung tissues and adenocarcinoma (ADC), while MLH1 expression was down-regulated in SCC (Fig. 1B). Survival comparison of patients without chemo- or radiotherapy using the Kaplan–Meier plotter website showed no significant difference in OS between the low and high MLH1 groups (85.7 vs 128.8 months, P = .25) (Fig. 2A). However, among all patients, including those receiving chemo- or radiotherapy, OS was significantly better in the high MLH1 group than in the low MLH1 group (114 vs 54 months, P < .001) (Fig. 2B). Among all patients, the first progression (FP) (14 vs 35 months, P < .001) and post-progression survival (PPS) (13 vs 21.9 months, P < .001) were significantly better in the high MLH1 group (Fig. 2C and D).

3.2. Patient demographics

From June 2015 to November 2016, a total of 32 patients diagnosed with lung cancer were enrolled. The patients’ clinical characteristics are listed below (Table 1). At the time of analysis,
10 patients had died and 18 patients had progressed. The average follow-up time for the 22 patients still alive was 17.7 ± 1.6 months (range, 11.9–18.2 months).

3.3. The relationship between MLH1-negative CTCs counts and clinical characteristics

Analysis of the relationship between MLH1-negative CTCs and the clinical characteristics showed that fewer MLH1-negative CTCs were found in small cell lung cancer patients than in ADC and SCC patients (6.6 vs 18.2 vs 11.7 per 5 ml; $P_{\text{ADC vs SCC}} = .0123$). Elevated T CTCs counts were found in patients with a smoking history (15.0 vs 5.5 per 5 ml; $P = .0203$). A positive smoking history was also related to more M + H CTCs (11.5 vs 3.0 per 5 ml; $P_{\text{older vs younger}} = .0104$). Compared with older patients, patients younger than 60 years old had fewer M CTCs (0.0 vs 1.0 per 5 ml; $P_{\text{older vs younger}} = .0035$) and M + H CTCs (3.0 vs 7.0 per 5 ml; $P = .0318$). (Table 2).

3.4. Predictive significance of MLH1-negative CTCs numbers in anticancer treatments

To determine the predictive significance of MLH1-negative CTCs numbers in anticancer treatments, we analyzed the relationship...
between CTCs counts and treatment response. Patients with worse treatment responses had more MLH1-negative CTCs than those with better responses (8.5 vs 1.5 per 5 ml; \(P = .0102 \)) (Fig. 3A). Although T CTCs, M CTCs, and M + H CTCs counts were elevated in patients with progression, the differences were not statistically significant (Fig. 3B). Serial evaluation of CTCs illustrated that the changes in MLH1-negative CTCs, T CTCs, and M + H CTCs counts were consistent with the treatment responses (Fig. 3C).

3.5. Predictive significance of MLH1-negative CTCs numbers in lung cancer patient survival

To determine the prognostic significance of MLH1-negative CTCs numbers in lung cancer patients, we analyzed the progression-free survival (PFS) and OS in patients with high and low CTCs counts. The Kaplan–Meier curves showed that the median PFS was significantly worse for patients with higher MLH1-negative CTCs counts than those with lower MLH1-negative CTCs counts (1.6 vs 18.2, \(P = .0138 \)) (Fig. 4A). Although the median PFS of patients with lower T CTCs and M + H CTCs counts were still undefined, the prognosis of patients with higher T CTCs and M + H CTCs counts was worse, and the \(P \)-values of the log-rank test were lower than 0.05 (Fig. 4B and C). The OS of patients with lower MLH1-negative CTCs counts and lower M + H CTCs counts were also significantly better (Fig. 4D and F). Patients with lower T CTCs counts had a better OS than those with lower T CTCs counts, but the difference was not statistically significant (\(P = .0735 \)) (Fig. 4E).
4. Discussion

The MMR system recognizes and corrects DNA mismatches generated during DNA replication and recombination. An MMR deficiency may increase mutations and result in microsatellite instability and carcinogenesis. Defective MLH1 has been reported in many cancers. Xinarianos found that 58.6% of non-small cell lung cancer specimens had reduced MLH1 expression. A similar observation was reported in Wang's study. However, some studies have clarified that the majority of lung cancer patients have normal MLH1 expression. Meanwhile, other studies have found increased MLH1 expression in lung cancer cell lines and epidermal growth factor receptor (EGFR)-mutated lung cancer patients. In addition, previous studies have enrolled only a small number of patients. The data of normal and lung cancer samples from bioinformatic websites were summarized in our study. The clinical value of MLH1 expression in lung cancer also remains controversial. Previous research has shown that MLH1 expression loss may be responsible for platinum resistance and worse prognosis in lung cancer. In contrast, the loss of MLH1 expression was associated with significantly improved survival compared to normal MLH1 expression in Mario Scartozzia’s study. We summarized data from the bioinformatic website Kaplan–Meier plotter, which included more than a thousand lung cancer patients with or without chemo- or radiotherapy. Among all patients, including those with or without chemo- or radiotherapy, OS, FP, and PPS were significantly better in patients with higher MLH1 expression. No difference was observed among patients without chemo- or radiotherapy. These findings suggest that MLH1 can predict prognosis in lung cancer patients, especially those receiving chemo- or radiotherapy.

Although traditional biopsy is the gold standard for diagnosing lung cancer, liquid biopsy, including CTCs and circulating tumor DNA, is attracting increasing attention because of its convenience, noninvasion, and ability to reflect heterogeneity.

Table 1	Patient demographics and clinical characteristics.	
Characteristic	N	Proportion (%)
Age		
<60	16	50.0
>=60	16	50.0
Gender		
Male	22	68.8
Female	10	31.3
Smoking history		
Yes	12	37.5
No	20	62.5
Histology		
ADC	16	50.0
SCC	7	21.9
SCLC	5	15.6
Unknown	4	12.5
EGFR mutation		
19+	4	12.5
21+	6	18.8
–	7	21.9
Unknown	15	46.9
TNM stage		
Early	4	12.5
III	7	21.9
IV	20	62.5
Unknown	1	3.1

ADC = adenocarcinoma, EGFR = epidermal growth factor receptor, SCLC = small cell lung cancer.

Table 2	Relationships between CTCs and clinical characteristics.				
Characteristic	N	T CTCs	M CTCs	M + H CTCs	MLH1 – CTCs
Age					
<60	16	6.5	0	3.0	2.0
>=60	16	11.0	1.0	7.0	2.5
P-value	.1158	.0035	.0318	.9773	
Gender					
Male	22	9.0	1.0	7.0	2.0
Female	10	5.0	0	3.0	2.0
P-value	.1205	.1318	.0553	.6189	
Smoking history					
Yes	12	15.0	1.0	11.5	2.0
No	20	5.5	0	3.0	2.5
P-value	.0203	.2177	.0104	.7928	
Histology					
ADC	16	12.4	1.188	8.125	6.688
SCC	7	11	1.3	6.285	3.3
SCLC	5	7.6	1.8	5.2	0.6
P-value	.8294	.4312	.9272	.0123	
EGFR mutation					
19+	4	8	0	3.5	3.75
21+	6	13	1.5	8	9.333
–	7	13	1.4	10	5.4
P-value	.7159	.3270	.5386	.4058	
TNM stage					
Early	4	5.5	0.5	3.75	4
III	7	9.8571	1	6.1429	2.7143
IV	20	11.15	1.5	7.75	4.4
P-value	.4624	.8935	.5477	.8207	

ADC = adenocarcinoma, CTCs = circulating tumor cells, EGFR = epidermal growth factor receptor, H CTCs = hybrid CTCs, M CTCs = mesenchymal CTCs, M + H CTCs = mesenchymal marker-expressing CTCs, MLH1 = MutL homolog, SCLC = small cell lung cancer, T CTCs = total CTCs.
clinical value of biomarkers, including EGFR mutations and others in CTCs, has been reported.\[30,31\] Previous studies on MLH1 have focused on only cancer tissues. According to our bioinformatic analysis, MLH1 downregulation in lung cancer was negatively correlated with prognosis. Therefore, we hypothesized that MLH1 expression may also have clinical value at the CTCs level. To the best of our knowledge, this is the first study to explore MLH1-negative CTCs. Our results show that MLH1-negative CTCs are more common in ADC and SCC patients, which is consistent with previous work on MLH1 expression based on specimens.\[11,32,33\] Although there was no relationship between M CTCs or M + H CTCs and treatment response, the increased number of MLH1-negative CTCs predicted a poor response to treatment. This result indicated that MLH1-negative CTCs could better predict treatment responses in lung cancer.

The characterization and classification of CTCs based on epithelial–mesenchymal transition markers have been reported to be necessary in many studies.\[18,19\] In Wu’s research, more M CTCs were observed in patients with advanced cancer.\[34\] However, this study did not analyze the prognostic significance. Another study on breast cancer showed that reductions in T CTCs and M CTCs were related to better treatment responses. In addition, mesenchymal markers were more common in the CTCs cluster, which was proven to be associated with metastasis and progression.\[17\] However, data on lung cancer are lacking, especially regarding patient prognosis. Our results showed no relationships between the number of M CTCs and stage or treatment response. One reason may be that we enrolled only 32 patients in our study. In addition, some patients had experienced different treatment regimens at the time of blood drawing. Although there was no significant prognostic value in the M CTCs level, the levels of M + H CTCs were negatively correlated with OS and PFS. Simple survival analysis based on T CTCs showed no significant difference in OS. Therefore, the characterization and numeration of CTCs according to mesenchymal marker expression may better predict patient survival than T CTCs. In addition, classifying CTCs into E CTCs and M + H CTCs may be more appropriate for predicting prognosis than classifying CTCs into 3 classes: E CTCs, H CTCs, and M CTCs. CTCs expressing mesenchymal markers, but not those expressing only mesenchymal markers, may have an impact on tumor metastasis and progression.

However, further research involving more patients is needed. The relationship between baseline CTCs and clinical characteristics should be analyzed, along with the relationship between their dynamic changes and treatment response. Furthermore, tumors with MLH1 hypermethylation, which regulates MLH1
Figure 4. The relationship between MLH1-negative CTCs counts and the prognosis of lung cancer patients. (A) Kaplan–Meier curves for the PFS of patients with high and low levels of MLH1-negative CTCs. (B–C) PFS comparison between groups with high or low levels of T CTCs (B), M CTCs and M + H CTCs (C). (D) Comparison of OS between patients with high or low levels of MLH1-negative CTCs. (E and F) Kaplan–Meier curves for the OS of patients with high and low levels of T CTCs (E), M CTCs and M + H CTCs (F). CTCs = circulating tumor cells, H CTCs = hybrid CTCs, M CTCs = mesenchymal CTCs, M + H CTCs = mesenchymal marker-expressing CTCs, MLH1 = MutL homolog, OS = overall survival, PFS = progression-free survival, T CTCs = total CTCs.
expression, have been shown to have higher programmed cell death-ligand 1 (PD-L1) levels. This suggests the predictive value of MLH1 in immunotherapy. Therefore, further exploration can be conducted by enrolling patients who accept anti-PD-L1 immunotherapy.

5. Conclusions

In summary, we found a reduction in MLH1 expression and a correlation with prognosis in lung cancer patients. We reported for the first time the MLH1-negative CTCs and their clinical value in lung cancer. Our study provides evidence for the analysis of MLH1 and mesenchymal markers in CTCs as predictive and prognostic biomarkers in lung cancer.

Author contributions

Data curation: Yu-Lan Zeng.
Formal analysis: Yang-Yang Liu.
Investigation: Yue Hu, Kai Zhang.
Methodology: Fei-Fei Gu.
Project administration: Hao Zhong.
Resources: Yu-Ting Liu.
Software: Qi-Fan Yang.
Writing—original draft: Jin-Yan Liang.
Writing—review and editing: Li Liu.
Li Liu orcid: 0000-0003-2314-8756.

References

[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017;67:7–30.
[2] Chen W, Zheng R, Zeng H, et al. Epidemiology of lung cancer in China. Thorac Cancer 2015;6:209–15.
[3] Travis WD. Pathology of lung cancer. Clin Chest Med 2011;32:669–92.
[4] Wang YC, Lu YP, Tseng RC, et al. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest 2003;111:887–95.
[5] Xinarianos G, Llouglou T, Prime W, et al. bMLH1 and bMSSH2 expression correlates with allelic imbalance on chromosome 3p in non-small cell lung carcinomas. Cancer Res 2000;60:4216–21.
[6] Strathdee G, Mackean MJ, Illand M, et al. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 1999;18:2333–41.
[7] Seng TJ, Carrey N, Cooper WA, et al. DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. Br J Cancer 2008;99:375–82.
[8] Gomes A, Reis-Silva M, Alarcão A, et al. Promoter hypermethylation of DNA repair genes MLH1 and MSH2 in adenocarcinomas and squamous cell carcinomas of the lung. Rev Port Pneumol 2014;20:20–30.
[9] Ma Y, Chen Y, Petersen I. Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer. Pathol Res Pract 2017;213:333–8.
[10] Kinsella TJ, Gurkan-Cavusoglu E, Du W, et al. Integration of principles of systems biology and radiation biology: toward development of in silico models to optimize BiBE-mediated radiosensitization of DNA mismatch repair-deficient (damage tolerant) human cancers. Front Oncol 2011;1:20.
[11] Cooper WA, Kohonen-Corish MR, Chan C, et al. Prognostic significance of DNA repair protein MLH1, MSH2 and MGMT expression in non-small-cell lung cancer and precursor lesions. Histopathology 2008;52:613–22.
[12] Koush H, Yoshino I, Miura N, et al. Expression of mismatch repair proteins, hMLH1/hMSH2, in non-small cell lung cancer tissues and its clinical significance. J Surg Oncol 2008;98:377–83.
[13] Skarda J, Friedman E, Plevova P, et al. Prognostic value of bMLH1 and bMSSH2 immunohistochemical expression in non-small cell lung cancer.