Cellulitis and transient bacteremia by *Capnocytophaga canis* after a cat scratch in an immunocompetent patient

Domingo Fernández Vecilla1*, Estíbaliz Ugalde Zarraga1, Mikel Joseba Urrutikoechea-Gutiérrez1, Francesco Renzi2 and José Luis Díaz de Tuesta del Arco1

CASE REPORT

A 72-year-old patient presents sudden pain, functional impotence and swelling in his left leg. The patient refers to a cat scratch in the left ankle 3 days before. As relevant medical history, he underwent a total thyroidectomy and bilateral lymph node dissection (VI and VII levels) 15 months before this episode due to a non-angioinvasive follicular variant papillary thyroid carcinoma (pT3a pN0), adjuvated with 3 months of radioactive iodine.

At the examination, the patient had oedema in the left dorsal foot, two little dry wounds (2×5 mm) with no fluctuation and an erythematous area that extended to the knee. He also presented a low-grade fever (37.4 °C). Blood analysis revealed a moderate leucocytosis (13000 /µl [4500–11000 /µl]) with neutrophilia (10790 /µl [2000–5000 /µl]), as well as a high C-reactive protein (73.29 mg l−1 [0–5 mg l−1]). The physicians obtained blood and wound cultures from the patient and then the patient was admitted to the hospital for receiving intravenous broad-spectrum antimicrobial therapy with amoxicillin/clavulanic acid 875 mg/125 mg every 8 h intravenously. An x-ray test was performed in order to rule out periosteal involvement. After a day of treatment, the pain completely disappeared and the oedematous was restricted to the dorsal and inner malleolar area of the foot. Therefore, the patient was discharged with antibiotic therapy consisting of 875/125 mg of amoxicillin/clavulanic acid each 8 h orally, fulfilling 7 more days.

Three days and 8 h after the blood culture was obtained, the blood culture system (BD BACTEC) yielded a positive result in one of the anaerobic bottles (BD BACTEC Lytic/10 Anaerobic/F Culture Vials), whereas the other anaerobic bottle took 12 h more to result positive. In the Gram-staining of both bottles a Gram-negative rod-shaped bacteria could be seen (Fig. 1). The blood culture was inoculated in brucella blood agar, tripticase soy agar with 5% of sheep blood, and chocolate agar in both anaerobic and microaerophilic conditions. There was no growth after 10 days and the blood...
culture was inoculated again in the same agar plates and conditions, but the strain could not be finally recovered. There were no findings in the wound cultures after 7–10 days on incubation in microaerophilic and anaerobic conditions either. Meanwhile, 500 µl of the positive blood culture was extracted on the MagNA Pure Compact System (Roche, Spain) and the 16S rRNA was sequenced as described by Oldham et al. [1]. The obtained sequenced was analysed with the Basic Local Alignment Search Tool (BLAST) and identified as *C. canis* [2].

In order to confirm the species identification and determine if the studied *C. canis* belonged to a known capsular-serovar, the DNA eluate was sent to the ‘Research Unit in Biology of Microorganisms’ of the University of Namur, Belgium. *C. canis* identification was confirmed by 16S rRNA sequencing. The capsular serovar was analysed by the PCR-typing method developed by Hess et al. but the results were negative for all tested serovars (A, B, C, D and E) (Fig. 2) [3], therefore, the strain might belong to another capsular serovar. However, a false negative result due to a low DNA concentration in the eluate cannot be ruled out.

Fig. 1. Gram-negative rod-shaped bacteria could be seen in both anaerobic bottles of the blood culture after 3 days on incubation (scale bar 10×100).

Fig. 2. Capsular typing by PCR performed on the DNA eluate obtained from the patient blood culture. Capsular serovars (a)–(e) detection by PCR was performed as described by Hess et al. Elu: DNA eluate; Cc5: *C. canimorsus* strain five serovar (a); Cc6: *C. canimorsus* strain six serovar (b); Cc9: *C. canimorsus* strain nine serovar (c); Cc12: *C. canimorsus* strain 12 serovar (d); Cc4: *C. canimorsus* strain four serovar (e). The DNA eluate is negative for all serovar PCR.
DISCUSSION

C. canis is a Gram-negative rod-shaped bacteria that may grow in microaerophilic or anaerobic conditions. It belongs to the family Flavobacteriaceae and can be found as commensal oropharyngeal flora of healthy dogs and cats. In 2015, Renzi et al. performed an analysis of 105 strains previously identified as Capnocytophaga canimorsus, which had been isolated from different sources and countries (19 strains were isolated from human infections and 86 from dogs). 16S rRNA sequencing allowed them to build a phylogenetic tree, which revealed two main groups, with one of the groups withholding all the clinical isolates. This suggested the presence of different species that was indeed confirmed by the whole-genome sequencing and comparison of ten strains. This analysis allowed the identification of a novel Capnocytophaga species, named C. canis that appeared to be taxonomically closer to Capnocytophaga cynodegmi than to C. canimorsus [4].

All the 19 strains isolated from human infections belonged to the C. canimorsus species and the C. canis were all isolated from dogs suggesting that this novel species could be less pathogenic than C. canimorsus for humans. Indeed, since its recent description, C. canis has rarely been related to human infections [5–7], this could be explained by the absence of some important virulence factors from C. canimorsus [4, 8], such as the cytochrome-oxidase activity, the ability to acquire iron from transferrin or the capacity to proliferate in human serum [8, 9].

Besides, a capsular polysaccharide (CPS) has recently been described in C. canimorsus as well as the presence of several capsular serovars in the species with three of them (A, B and C) being the most virulent for humans [10, 11]. In addition, Renzi et al. have shown that both C. canis and C. cynodegmi may also be enveloped by a capsule, showing that this feature is not restricted to the C. canimorsus species [8]. In fact, they reported that one strain isolated from a human infection was caused by a capsular serovar B C. canis. Whereas among five C. canis strains isolated from the oropharyngeal flora of healthy dogs, four were serovar A and one serovar F, showing that several C. canimorsus capsular serovars are also present in the closely related C. canis species. However, more studies are needed to fully understand the role of the capsular serovars on the pathogenicity of C. canis nee.

The latest reports have described some human infections by C. canis, with four documented cases of septic shock (being one of them fatal) after cat scratches and bites or contact with a dog [4–6, 12]. In a report of 2018, in which three of the total cases were collected, the strains were preliminarly assigned to through 16S rRNA sequencing with a confidence under 90 % [4]. Nevertheless, with the discovery of the C. canis species, these strains were recovered for repeating the 16S rRNA sequencing collected, the strains were preliminarly assigned to through 16S rRNA sequencing with a confidence under 90 % [4].

In relation to the risk factors in the patients from the cases described above, at least three of them presented risk factors that had already been related to C. canimorsus infections, as chronic and heavy alcohol consumption or splenectomy (one patient presented both) [13–16]. C. canimorsus infections have also been reported in immunocompetent patients [17–19]. However, in the case of C. canis this is to our knowledge the first reported case. The patient of our case presented a medical history of papillary thyroid carcinoma but he actually did not present risk factors for being immunosuppressed.

C. canis remains a rare cause of human infection, but it must be taken into account as other possible causes of infections related to bites, scratches and licks from dogs or cats. Like the other virulent species of Capnocytophaga, C. canimorsus and C. cynodegmi, C. canis can cause fatal outcomes in both immunocompetent and immunosuppressed patients and consequently it is important to alert about the public health risk of this recently described species, in which virulence factors and prevalence in dogs and cats must be better studied.

Funding information
The authors received no specific grant from any funding agency.

Acknowledgements
We are thankful to the ‘Research Unit in Biology of Microorganisms’ and Francesco Renzi for his help in the 16s rRNA sequencing and the study of the capsular serovar of our strain.

Author contributions
D.F.V.: wrote the case report and the discussion. E.U.Z.: helped to write the discussion and reviewed it. F.R.: made the second figure and reviewed the manuscript. J.L.Dde. T.A.: reviewed the manuscript.

Conflicts of interest
The authors declare that there are no conflicts of interest.
Consent to publish was obtained from the patient Consent to Publish code of approval is 12.22 CEIHUB. The clinical research ethics committee of Basurto University Hospital approved the publication of this case report on 26 January 2022. The internal Ethical statement 5.

References
1. Oldham AL, Duncan KE. Similar gene estimates from circular and linear standards in quantitative PCR analyses using the prokaryotic 16S rRNA gene as a model. PLoS One 2012;7:e51931.
2. Madden T. The BLAST Sequence Analysis Tool. 2002 Oct 9 [Updated 2003 Aug 13]. In: McEntyre J and Ostell J (eds). The NCBi Handbook [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2002.
3. Fischer LJ, Weyant RS, White EH, Quinn FD. Intracellular multiplication and toxic destruction of cultured macrophages by Capnocytophaga canimorsus. Infect Immun 1995;63:3484–3490.
4. Renzi F, Dol M, Raymackers A, Manfredi P, Cornelis GR. Only a subset of C. canimorsus strains is dangerous for humans. Emerg Microbes Infect 2015;4:e48.
5. Donner V, Buzzi M, Lazarevic V, Gaia N, Girard M, et al. Septic shock caused by Capnocytophaga canis after a cat scratch. Eur J Clin Microbiol Infect Dis 2020;39:1993–1995.
6. Taki M, Shimojima Y, Nogami A, Yoshida T, Suzuki M, et al. Sepsis caused by newly identified capnocytophaga canis following cat bites: C. canis is the third candidate along with C. canimorsus and C. cynodegmi causing zoonotic infection. Intern Med 2018;57:273–277.
7. Suzuki M, Imaoka K, Haga Y, Mohri M, Nogami A, et al. Characterization of three strains of Capnocytophaga canimorsus isolated from patients with sepsis. Microbiol Immunol 2018;62:567–573.
8. Renzi F, Hess E, Dol M, Koudad D, Carlier E, et al. Capsular serovars of virulent Capnocytophaga canimorsus are shared by the closely related species C. Emerg Microbes Infect 2018;7:126.
9. Fischer LJ, Weyant RS, White EH, Quinn FD. Intracellular multiplication and toxic destruction of cultured macrophages by Capnocytophaga canimorsus. Infect Immun 1995;63:3484–3490.
10. Renzi F, Ittig SJ, Sadovskaya I, Hess E, Lauber F, et al. Evidence for a LOS and a capsular polysaccharide in Capnocytophaga canimorsus. Sci Rep 2016;6:38914.
11. Hess E, Renzi F, Koudad D, Dol M, Cornelis GR. Identification of virulent Capnocytophaga canimorsus isolates by capsular typing. J Clin Microbiol 2017;55:1902–1914.
12. Zangenah S, Abbasi N, Andersson AF, Bergman P. Whole genome sequencing identifies a novel species of the genus Capnocytophaga isolated from dog and cat bite wounds in humans. Sci Rep 2016;6:22919.
13. Butler T. Capnocytophaga canimorsus: an emerging cause of sepsis, meningitis, and post-splenectomy infection after dog bites. Eur J Clin Microbiol Infect Dis 2015;34:1271–1280.
14. Miroslav Prucha RZ. Capnocytophaga canimorsus: rare cause of fatal septic shock. Clin Microbiol 2015;04:217.
15. Markewitz RDH, Graf T. Capnocytophaga canimorsus infection. N Engl J Med 2020;383:1167.
16. Wendt R, Schauf C, Lübbert C. An asplenic with life-threatening Capnocytophaga canimorsus sepsis. IDCases 2020;21:e00828.
17. Tani N, Nakamura K, Sumida K, Suzuki M, Imaoka K, et al. An immunocompetent case of Capnocytophaga canimorsus infection complicated by secondary thrombotic microangiopathy and disseminated intravascular coagulation. Intern Med 2019;58:3479–3482.
18. Mader N, Lührs F, Herget-Rosenthal S, Langenbeck M. Being Licked by a Dog Can Be Fatal: Capnocytophaga canimorsus sepsis with purpura fulminans in an immunocompetent man. Eur J Case Rep Intern Med 2019;5:6001268.
19. O’Riordan F, Ronayne A, Jackson A. Capnocytophaga canimorsus meningitis isolated bacteraemia after a dog bite in an immunocompetent individual. BMJ Case Rep 2021;14:e242432.