ARTIGO DE REVISÃO

Genetic and genomics in congenital heart disease: a clinical review

Aline Saliba a, b, c, ∗, Ana Carolina Vaqueiro Figueiredo a, b, José Eduardo Baroneza d, Jorge Yuseff Afiune e, c, Aline Pic-Taylor e, Silviene Fabiana de Oliveira e e Juliana Forte Mazzeu d

a Universidade de Brasília, Programa de Pós-Graduação em Ciências da Saúde, Brasília, DF, Brasil
b Secretaria de Saúde do Distrito Federal, Brasília, DF, Brasil
c Instituto de Cardiologia do Distrito Federal, Brasília, DF, Brasil
d Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
e Universidade de Brasília, Instituto de Biologia, Departamento de Genética e Morfologia, Brasília, DF, Brasil

Recebido em 3 de fevereiro de 2019; aceito em 22 de julho de 2019

KEYWORDS
Heart defects; Congenital/epidemiology; Embryology; Genetic predisposition to disease; Aneuploidy; CNVs

Abstract
Objective: Discuss evidence referring to the genetic role in congenital heart diseases, whether chromosomal alterations or monogenic diseases.
Data source: LILACS, PubMed, MEDLINE, SciELO, Google Scholar, and references of the articles found. Review articles, case reports, book chapters, master’s theses, and doctoral dissertations were included.
Summary of findings: Congenital heart diseases are among the most common type of birth defects, afflicting up to 1% of the liveborn. Traditionally, the etiology was defined as a multifactorial model, with both genetic and external contribution, and the genetic role was less recognized. Recently, however, as the natural evolution and epidemiology of congenital heart diseases change, the identification of genetic factors has an expanding significance in the clinical and surgical management of syndromic or non-syndromic heart defects, providing tools for the understanding of heart development.
Conclusions: Concrete knowledge of congenital heart disease etiology and recognition of the genetic alterations may be helpful in the bedside management, defining prognosis and anticipating complications.
© 2020 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

DOI se refere ao artigo:
https://doi.org/10.1016/j.jped.2019.07.004

∗ Como citar este artigo: Saliba A, Figueiredo AC, Baroneza JE, Afiune JY, Pic-Taylor A, Oliveira SF, et al. Genetic and genomics in congenital heart disease: a clinical review. J Pediatr (Rio J). 2020;96:279–88.
∗ Autor para correspondência.
E-mail: dra.saliba@gmail.com (A. Saliba).

2255-5536/© 2020 Sociedade Brasileira de Pediatria. Publicado por Elsevier Editora Ltda. Este é um artigo Open Access sob uma licença CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introdução

As doenças cardíacas congênitas (DCCs) são anomalias estruturais do coração e dos grandes vasos intratorácicos presentes ao nascimento; afetam 0,8-1 criança por 100 nascidos vivos e é o tipo mais comum de defeito congênito,1 responsável por aproximadamente um terço de todas as principais anomalias congênitas.4

De acordo com as lesões anatômicas e hemodinâmicas, as DCCs são clinicamente classificadas em diferentes subtipos dentro de um espectro de gravidade, como defeitos conotruncais, defeitos na via de saída (OFT, do inglês out flow tract), relações esquerda-direita anormais (heterotaxia), defeitos que afetam o influxo cardíaco e cardiomiopatias.1

Aproximadamente um terço dos pacientes com DCCs têm anomalias categorizadas como graves e potencialmente letais e necessita de intervenção clínica ou cirúrgica no primeiro ano de vida, exige muitas vezes procedimentos cirúrgicos múltiplos.1 Portanto, as DCCs têm um efeito significativo sobre a morbidade, mortalidade e cuidados de saúde e apesar dos avanços nos tratamentos e nos cuidados intensivos, continuam a ser a principal causa de mortalidade infantil nos países desenvolvidos.3

A medida que os cuidados de saúde melhoram nos países mais pobres do mundo, as mortes secundárias a doenças infecciosas diminuem e as DCCs aumentam como importante causa de morbidade e mortalidade. Em 2007, as DCC foram responsáveis por 6% das mortes das crianças com menos de um ano no Brasil.3 As melhorias nas técnicas cirúrgicas e no cuidado perioroperatório mudaram drasticamente a história natural das DCCs, permitiram a sobrevida de até 95%5 dos pacientes, resultou em uma população cada vez maior de adultos que atingem a idade fértil e vivem com DCCs e as consequências das anomalias e tratamentos,5 alterações que no passado levavam à morte em idade muito jovem.

O manejo dos pacientes sobreviventes representa um novo desafio: 13,6% dos pacientes com DCCs submetidos a reparo ou tratamento paliativo apresentam malformações estruturais extracardiácas associadas,1 além do aumento do risco de arritmias, disfunção miocárdica e deficiências do neurodesenvolvimento, que são potencialmente as comorbidades com maior impacto na qualidade de vida em pacientes com DCCs: eles afetam 10% a 50% dos pacientes, de acordo com a gravidade da doença coronariana.1

A complexidade e a heterogeneidade das DCCs têm sido tradicionalmente atribuídas a etiologias multifatoriais, decorrentes de interações entre múltiplos genes e fatores ambientais.3,4 De fato, não é fácil definir com precisão a contribuição genética subjacente aos defeitos cardíacos, devido à complexidade da rede genética que controla a organogênese do coração. Entretanto, muitos estudos apontam para uma importante contribuição genética para DCCs, como maior concordância em gêmeos monozigóticos, risco de recorrência de formas relacionadas de DCCs em irmãos e a presença de formas mendelianas raras de defeitos cardíacos.1

Base do desenvolvimento do coração

O coração é o primeiro órgão funcional a se desenvolver em embriões de vertebrados e esse processo é estritamente controlado por uma rede de regulação gênica,2,6 que inclui fatores de transcrição, vias de sinalização, microRNAs e fatores epigenéticos.

Em mamíferos, três linhagens celulares colaboram no curso da morfogênese cardíaca: células do mesoderma cardiogênico (CMC), o proepicárdio (PE) e células cardiogênicas da crista neural (CCCN).7 O primeiro campo cardiaco (PCC) e o segundo campo cardiaco (SCC) que formam a maior proporção de miocárdio ventricular, atrial e da via de saída, além de endocárdio, sistema de condução e coxins pulmonares e aórticos, abrigam-se no mesoderma cardiogênico.6,7 Inicialmente, o PCC forma o crescente cardiaco, que evolui para o coração tubular ou
tubo cardíaco, que é o principal contribuinte para o ventrículo esquerdo inicial.

A medida que o tubo cardíaco se forma, o SCC migra para a linha média e se posiciona dorsalmente ao tubo cardíaco, compreendendo o aspecto dorsal-medial da placa cardíaca, enquanto o PCC compreende o aspecto ventral. O PCC diferencia-se como o crescente cardíaco, enquanto a diferenciação do SCC é atrasada pela sinalização inibitória de Wnt que emana da linha média.2,4. Entretanto, ele cresce e povoia grande parte do OFT, do ventrículo direito primário e dos átrios. Fatores secretados da porção anterior do tubo cardíaco funcionam como quimiotractivos para as células do SCC, embora esse mecanismo permaneça desconhecido.2,8

Ambas as linhagens parecem ser controladas por sinais positivos e negativos intrinsecos de vias como proteínas morfogenéticas ósseas (BMPs, do inglês bone morphogenetic proteins), fatores de crescimento de fibroblastos (FGF, do inglês fibroblast growth factors), vias de sinalização Sonic Hedgehog (SHH), WNT e NOTCH.2,7 O comprometimento cardíogenético inicial depende da expressão do fator de transcrição Nkx2.5 em células mesenquimais, como consequência da expressão de BMP2/4 associada a inibidores da via Wnt.9,10

As células progenitoras que surgem do PE compreendem o epicárdio e se diferenciam em fibroblastos, músculo liso dos vasos e células endoteliais das coronárias e alguns miócitos formam o septo atroventricular (AV). A interação entre o epicárdio e o miocárdio é crucial para a maturação da câmara e o crescimento do músculo ventricular.7 Essa interação é proporcionalizada por uma matriz extracelular denominada geleia cardíaca, que favorece a sinalização recíproca entre o miocárdio externo e o endocárdio interno.9

Finalmente, as CCCNs originam-se do tubo neural dorsal e migram para os arcos faringeos 3, 4 e 6, compreendendo células distais do OFT e de músculo liso da crista aorticopulmonar, bem como a inervação autonômica do coração.7,9 As CCCNs são essenciais para a maturação e septação do polo arterial do coração e contribuem para a formação do sepo e da válvula.6 O coração é o primeiro órgão a romper a simetria embrionária, à medida que o tubo inicia o looping para a direita, reflete o estabelecimento global da assimetria esquerda-direita (ED), envolve a conversa cruzada complexa entre vias como Notch, Nodal, SHH, FGF, BMP e, finalmente, restringe a sinalização Nodal ao lado esquerdo do embrião.2,6 através da atividade de células ciliares que geram um fluxo de sentido direcional de fluido extraembrionário.1,4

O estabelecimento da assimetria ED é seguido pela formação dos coxins endocárdicos dentro do OFT e do canal AV que contribui para dividir o coração nas quatro câmaras cardíacas, inicia a divisão do OFT na aorta e na via pulmonar e precede a formação das válvulas em cada extremidade do tubo cardíaco.2,4

Alterações genéticas subjacentes à DCC

A maioria das DCCs ocorre como malformações isoladas, enquanto 25 a 30% delas estão associadas a anormalias extracardíacas, e alguns defeitos específicos são frequentemente encontrados em associação com síndromes genéticas conhecidas.11 Vários dados apontam que a genética contribui para a maioria das DCCs,1 embora padrões clássicos de herança mendeliana não sejam geralmente observados.12,13

As principais anormalias cromossômicas têm sido associadas a DCCs por mais de meio século. As aneuploidias são as causas genéticas mais precocemente identificadas nas DCCs e a contribuição das anormalidades citogenéticas varia de 9% a 18%.1 O grande número de genes afetados resulta em fenótipos pleiotrópicos e graves e 98% dos fetos afetados têm pelo menos uma anormalidade extracardíaca.1

Ferramentas de investigação genética mais recentes, como o array-CGH, foram cruciais para revelar a presença de anormalias estruturais submicroscópicas associadas a síndromes genéticas identificáveis, inclusive fenótipos de DCCs.12,14 As mutações somáticas não são uma causa comum de DCC, mas existe a possibilidade de que tenham um papel no desenvolvimento da doença em um ambiente poligênico ou multifatorial.14

Anormalidades cromossômicas e DCCs

Anomalias cromossômicas clássicas detectáveis pelo cariótipo padrão normal incluem trissomia do 21 (síndrome de Down, OMIM 190685), trissomia do 13 (síndrome de Patau) trissomia do 18 (síndrome de Edwards), monossomia do X (síndrome de Turner).1,11 As DCCs são observadas em até 50% dos nascidos vivos com trissomia do 21, 60% a 80% dos nascidos vivos com trissomia do 13 e 13% com monossomia do X.1 Cada anormalidade cromossômica está preferencialmente associada a tipos específicos de DCC, como a que ocorre com defeitos AV e síndrome de Down ou lesões obstrutivas do ventrículo esquerdo e síndrome de Turner.1,11

Anomalias cromossômicas submicroscópicas são detectáveis por hibridização fluorescente in situ (FISH), amplificação de múltiplas sondas dependente de ligação (MLPA) e microarranjos cromossômicos (CMA). Essas técnicas aumentaram o conhecimento sobre as variações do número de cópias (CNVs): variações genômicas comuns na população que incluem deleções e duplicações com diferentes consequências genômicas. As CNVs geralmente surgem a partir de rearranjos genômicos em pontos de quebra cromossômicos comuns devido à arquitetura genômica e que não são necessariamente patológicos. Entretanto, raras CNVs podem levar a um aumento, ruptura ou redução da expressão de um ou mais elementos genômicos, levar a patologias e problemas de desenvolvimento, e são constantemente ligadas a DCCs sindrômicas e não sindrômicas.15,16

A fim de compreender a contribuição das anormalidades cromossômicas estruturais para a etiologia da doença corona- riana, detalhamos a seguir os principais distúrbios genômicos (síndromes associadas à CNVs) relacionados à DCC, resumidos na tabela 1.

Deleção de 22q11.2

A microdeleção humana mais comum varia de 0,7 a 3 Mbp, que afeta cerca de uma em 4.000 pessoas, resulta em um amplo espectro de fenótipos característicos da síndrome de DiGeorge (OMIM 188400), síndrome velocardiofacial (OMIM 192430) e síndrome de Shprintzen (OMIM 182212), abrange DCC, especialmente defeitos conotruncais, anormalidades do palato, hipocalcemia, imunodeficiência, características faciais distintas e anormalidades do desenvolvimento neurológico.1

A síndrome da deleção de 22q11.2 (22q11del) inclui alterações no fator de transcrição de T-Box TBX1, o que evidencia a importância da regulação da transcrição de SHF, uma vez que o gene TBR1 é peça central no desenvolvimento adequado da OFT do miocárdio8,17 e é expressa apenas na SHF, não na FHF.
Deleção/Duplação de 22q11.2
d 22q11.2del distal
Deleção/Duplação de 1q21.1
1p36del
8p23.10DEL
Síndrome de de
Wolf-Hirschhorn
Síndrome de Williams
Beuren
Síndrome de Kleeftstra
Síndrome de Noonan
Síndrome de Adams Oliver
Síndrome de Holt-Oram
Síndrome de Alagille

Condição	Gene(s)	Localização no cromossomo
Deleção/Duplação de 22q11.2	TBX1	22q11.2
22q11.2del distal	CRKL, ERK2/MAPK1	22q11.22
Deleção/Duplação de 1q21.1	GJA5	1q21.1
1p36del	PRDM16	1p36.32
8p23.10DEL	GATA4	8p23.1
Síndrome de de	WHSC1, FGFR1	4p16.3
Wolf-Hirschhorn	ELN, WSTF	7q11.23
Síndrome de Kleeftstra	EHM1, NOTCH1	9q34.3
Síndrome de Noonan	PTPN11 (50%)	12q24.12
	RIT1 (alta incidência de DCC)	1q22
Síndrome de Adams Oliver	RBPI	4p12.2
	NOTCH1	9q34.3
Síndrome de Holt-Oram	TBX5	12q24.21
Síndrome de Alagille	JAG1	20p12.2
	NOTCH2	1p12

Síndrome da duplicação de 22q11.2 (OMIM 608363)

Fenotipicamente semelhante à microdeleção correspondente, é difícil estabelecer qualquer correlação clara genôtipo-fenótipo para a microduplicação de 22q11.2; entretanto, os defeitos parecem pertencer a diferentes vias patogênicas: defeitos septais e lesão obstutiva do ventrículo esquerdo, geralmente associada a distúrbios neurológicos e retardo de crescimento. A prevalência de DCC na duplicação de 22q11.2 é menor em comparação com a deleção da mesma região, mas a base molecular também considera o gene TBX1 como candidato, pois é superexpresso e pode interagir com outros genes dentro e fora da região cromossômica afetada.^{11} A patogenicidade da microduplicação ainda é difícil de definir, pois a maioria dos portadores parentais tem um fenótipo normal.

Mas o notório enriquecimento dessa microduplicação em pacientes com deficiências do desenvolvimento neurológico e a maior ocorrência de uma segunda CNV em portadores afetados sugerem que as microduplicações de 22q11 distais podem atuar como um fator de susceptibilidade para a deficiência do desenvolvimento neurológico.^{19}

Deleção e duplicação de 1q21.1

A DCC é uma característica importante da síndrome de deleção do 1q21.1 (OMIM 612474), com um fenótipo heterogêneo, inclusive incapacidade intelectual leve a moderada, microcefalia e DCC, como obstruções no lado esquerdo (40%), defeitos septais (27%) e defeitos conotruncais (20%).^{11} Não houve diferenças fenotípicas significativas entre portadores de deleções com diferentes pontos de ruptura.^{20} A síndrome de dupulação do 1q21.1 (OMIM 612475) é muito menos comum e inclui o GJA5, descrito como um gene de suscetibilidade para DCC, notadamente a tetralogia de Fallot, e foi descrito como tendo sofrido mutação em pacientes com DCC não sindrômica.^{4,18,21} O gene GJA5, que codifica a conexina Cx40 (Cx40),^{12} é uma proteína da junção do gap cardíaco – proteína do canal da membrana celular que interconecta o citoplasma das células vizinhas e é responsável pela condução celular a nível do potencial de ação. A conexina Cx40 é ricamente expressa no miocárdio atrial e no sistema de condução atrioventricular. O desequilíbrio na expressão dessa conexina está associado com maior propensão a arritmias. Além disso, pacientes com formas mutadas também apresentam atraso no desenvolvimento e características dismoríficas.^{21,22}

Síndrome da deleção de 1p36

A síndrome de 1p36Del (OMIM 607872) é o segundo distúrbio de microduplicação mais comum e é caracterizada por deficiência intelectual, epilepsia, características dismoríficas, distúrbios metabólicos e neuromusculares. Deleções terminais e intersticiais são observadas com pontos de quebra altamente variáveis. A DCC está presente em 50% dos casos, principalmente cardiomipatia e alta prevalência de não compactação do ventrículo esquerdo.^{23} O gene que codifica o fator de transcrição PRDM16 localiza-se dentro da região crítica da síndrome 1p36 e está ligado à não compactação do ventrículo esquerdo não sindrômica.^{14,24}

Deleção de 8p23.1

Deleções que envolvem o cromossomo 8p23.1 variam de grandes deleções que incluem o telômero 8p e detectáveis por cariotipagem de rotina a pequenas deleções intersticiais que resultam em diferentes fenótipos, particularmente hérnia diafragmática e DCC.^{4,24} Defeitos cardíacos são observados em 94% dos casos, variam de defeitos septais isolados a DCC mais complexas, como a tetralogia de Fallot e a síndrome do coração esquerdo hipoplasico.^{4}

A alta incidência de DCC é devida principalmente à ausência ou à expressão desequilibrada do fator de transcrição GATA4, que é conhecido por ter um papel importante no desenvolvimento do coração em humanos. A haploinsuficiência do gene GATA4 tem sido descrita como a etiologia da DCC não sindrômica em modelos animais e em famílias, especialmente defeitos septais.^{4,11,13} Pacientes com deleções...
de 8p23.1 podem ter doença coronariana mais grave e complexa quando comparados com pacientes com mutações no gene GATA4 isoladas, sugere que outros genes localizados na região podem ter um papel no fenótipo da DCC. Entre esses genes, a haploinsuficiência do gene do fator de transcrição SOX7 é um dos mais prováveis de exacerbar os efeitos da deleção do GATA4.25

Síndrome de Wolf-Hirschhorn (Deleção 4pter)

A síndrome de Wolf-Hirschhorn (WHS, OMIM 194190) é causada pela perda da porção distal da região 4p, com o ponto de ruptura geralmente entre 4p15 e 4p16.26 A frequência estimada é em torno de 1:50.000 nascidos vivos.26 O fenótipo inclui características faciais distintas (conhecidas como fácies "capacete grego"), com nariz distinto, hipertelorismo ocular, filtro labial curto, testa alta, sobrancelhas arqueadas, atraso neurológico e de crescimento e convulsões. A DCC é descrita em 50% dos casos, particularmente defeitos septais leves e persistência do ductus arteriosus, embora tenham sido relatados defeitos cardíacos mais graves.26,27 O gene mais provavelmente implicado no fenótipo de DCC é oWHSC1, uma histona metiltransferase de lisina, que interage com o fator de transcrição cardíaca Nkx2.5 especialmente durante a formação de septo cardíaco.4 Outro candidato é o gene FGFR1, que codifica um membro da família de receptores de crescimento de fibroblastos expresso no cérebro, placódios cranianos, arcos faringeos e coração.

Síndrome de Williams-Beuren

A síndrome de Williams-Beuren (WBS, OMIM 194050) é causada por uma deleção típica de 1,5-1,8 Mbp na região 7q11.23, envolve cerca de 28 genes, afeta 1:7500 a 1:10.000 indivíduos. A maioria dos pacientes é heterogêntica para a deleção, com frequência de 1,5-1,8 Mbp.4 Anormalias cardiovasculares estão presentes em 75% dos indivíduos, geralmente estenose aórtica supravalvar e estenose pulmonar, o que pode ser explicado pela haploinsuficiência do gene da elastina (ELN), causa deficiência em substituição de elastina em paredes arteriais, levando à proliferação de células de músculo liso arterial e subsequente hiperplasia intimal.28 Mutações de ponto no gene ELN foram relatadas em pacientes com estenose aórtica supravalvar não síndromica.4 Outras DCCs, como defeitos septais e tetralogia de Fallot, são descritas em 6-10% dos pacientes e não podem ser explicadas pela deleção do gene ELN. Modelos animais indicam que a deleção de outro gene na região 7q11.23 - BAZ1B, também conhecido como fator de transcrição da síndrome de Williams (WSFTF), pode ser responsável por esses defeitos.29 O gene WSFTF codifica uma subunidade em três complexos de remodelação da cromatina dependentes de ATP que é crucial para as cascadas de transcrição gênicas normais no coração em desenvolvimento.29

Síndrome de Kleefstra

A síndrome de Kleefstra (KLEFS1, OMIM 610253) é causada pela microdeleção da região 9q34.3 ou, menos comum, por mutações de ponto no gene histona-lisina N-metiltransferase 1 eucomicrônica (EHMT1). A síndrome de Kleefstra é uma doença clínica reconhecível com características típicas da face (face plana com hipertelorismo ocular, sinofris, lábio inferior evertido, macroglossia e narinas anteverdidas) e DCC em aproximadamente 40% dos pacientes,4,20 inclusive defeitos septais, coarcação de aorta, estenose pulmonar ou tetralogia de Fallot.16 Um importante aspecto do desenvolvimento, alterações genitourinárias, constipação crônica e epilepsia também são descritos.20

Mutação de gene único e DCC

O sequenciamento de próxima geração (NGS, do inglês next generation sequencing) abriu as portas para o entendimento da genética de doenças complexas, como as DCCs, além de grandes variações estruturais, permitiu a identificação de mutações que, de outra forma, seriam indetectáveis.1

A rede de controle do desenvolvimento cardíaco é vasta e intrincada e mutações genéticas, inclusive aquelas com ganho de função e perda de função, que afetam esse complexo processo desempenham um papel significativo na genética das DCCs.2

Genes mutados em DCC são geralmente agrupados de acordo com a função e o envolvimento em vias específicas, uma vez que isso esclarece a compreensão desses genes na formação cardíaca.

Abaxo mencionamos algumas das vias/mecanismos importantes e síndromes associadas relacionadas à DCC.

Síndrome de Noonan e RASopatias

As RASopatias são um grupo de síndromes causadas por mutações em genes da via Ras-MAPK, que é essencial para o ciclo celular, com papéis reguladores na proliferação, diferenciação, crescimento e metabolismo celular. Portanto, sua desregulação nessa cascata é responsável por profundas consequências no desenvolvimento.11 Elas incluem a síndrome de Noonan (NS) e outras doenças relacionadas à síndrome de Noonan (DRSN), inclusive a síndrome cardio-facio-cutânea (CFC; OMIM 115150), síndrome de Costello (SC; OMIM 218040) e SNL (também conhecida como síndrome LEOPARD; OMIM 151100). Essas são distúrbios do desenvolvimento que se sobrepõem clinicamente e que compartilham muitos traços característicos, como dismorfismo facial, baixa estatura e anormalidades cardíacas, com fenótipos que são amplíssimos e heterogêneos, e o diagnóstico diferencial entre eles pode ser difícil.11

A síndrome de Noonan é uma das síndromes genéticas mais comuns associadas à DCC, com uma prevalência estimada de 1:1000 a 1:2500 nascidos vivos. É um distúrbio clinicamente heterogêneo, transmitido como um traço autosômico dominante.13 As características clínicas incluem baixa estatura, características dismórficas (como face triangular, hipertelorismo, baixa implantacão das orelhas e pote) defeitos linfáticos, hematológicos, esqueléticos e ectodérmicos. Além disso, os pacientes podem apresentar comprometimento neurológico variável, variam de incapacidade intelectual moderada a capacidade superior; no entanto, crianças com doença cardíaca grave tendem a apresentar capacidade cognitiva mais baixa.30 Perda auditiva, falta de coordenação, distúrbios do humor, hiperatividade e déficit de atenção também foram descritos.11,12,32

DCC ocorre em 60-90% dos pacientes com RASopatias, com menor ocorrência em SNL. As anormalidades cardíacas mais frequentes são estenose da válvula pulmonar, defeito do septo atrioventricular (DSAV), defeitos septais e cardiomiopatia hipertrófica.8,11,31
Diferentes genes foram identificados como responsáveis pelo fenótipo da síndrome de Noonan ou condições correlacionadas. Mutações *missense* no gene PTPN11 – localizado na região 12q24.1 – são responsáveis por aproximadamente 50% dos casos. Outros 12 genes estão envolvidos e junto com o PTPN11 respondem por aproximadamente 90% dos casos afetados: KRAS, SOS1, RAF1, NRAS, BRAF, SHOC2, PPP1CB, CBL, RRAS, RIT1, LZTR1 e SOS2. A maioria desses genes codifica proteínas que estão envolvidas na via de sinalização da proteína quinase ativada por mitógeno RAS (MAPK). A via RAS/MAPK é uma importante cascata de sinalização que permite às células responder adequadamente a múltiplos estímulos extracelulares, inclusive fatores de crescimento, hormônios e citocinas, controla praticamente todos os processos celulares. A maioria dessas mutações leva a um aumento da transdução de sinal ao longo dessa via, causa ativação contínua da MAPK durante o desenvolvimento.13,33 SOS1, RIT1, eRAF1 são os genes que mais frequentemente sofrem mutações e a prevalência de DCC em pacientes com mutações no gene RIT1 é particularmente alta (90%).11,13

Defeitos do septo atrioventricular (SAV) são encontrados especialmente em pacientes com mutações nos genes *PTPN11* e *RAF1* e *DSAV* parcial associada a obstrução do lado esquerdo, estenose valvar pulmonar ou cardiomiopatia hipertrófica devem ser consideradas como marcadores para Noonan ou síndromes correlacionadas.11

Síndrome de Adams-Oliver

A síndrome de Adams-Oliver (AOOS, OMIM 100300) é um distúrbio de desenvolvimento raro, caracterizado por aplasia cutânea congênita do vértice do couro cabeludo, defeito transverso terminal do membros, com alta variabilidade intra- e interfamiliar.11,34 As malformações cardiovasculares ocorrem em 13% a 20% dos pacientes e diferentes aspectos anatômicos tipos têm sido relatados: lesões obstrutivas do lado esquerdo, defeitos septais e conotruncais e atresia tricúspide. As lesões do lado esquerdo são predominantes e ocorrem em múltiplos níveis.34

Os genes clássicos envolvidos na síndrome de Adams-Oliver incluem ARHGAP31, DOCK6, RBPJ e EGOT e apenas 9% dos pacientes com essas mutações têm DCC, particularmente, defeitos do septo.34

O gene RBPJ foi proposto como candidato à síndrome de Adams-Oliver com DCC mais complexa, pois codifica uma proteína altamente preservada que coordena a ativação transcricional dos genes-alvo da via NOTCH, é uma chave importante para a formação de células mesenquimais, esqueléticas, vasculares e formação da epiderme e foliculos pilosos.35 Demonstrou-se que as variantes do gene NOTCH1, pertencentes à via de sinalização NOTCH, estão relacionadas à síndrome de Adams-Oliver com DCC e foi proposto que os defeitos nos membros e no couro cabeludo são secundários à vasculopatia causada pela haploinsuficiência do NOTCH1.11 O gene NOTCH1 não foi apenas implicado na DCC não sindrômica, mas também é conhecido por ser essencial para a transformação da epiderme em células mesenquimais migratórias, definição do território valvar, além de ser amplamente expresso na OFT.35

Síndrome de Holt-Oram

A síndrome de Holt-Oram (SHO, OMIM 142900) afeta 1:100.000 indivíduos e pode ser esporádica ou hereditária, transmitida como doença autossômica dominante causada por mutações *non sense* ou *frameshift* no gene TBX5,13,16 ou até mesmo duplicações que envolvem esse gene na região 12d.15 TBX5 é um fator de transcrição que é um conhecido regulador-chave da organogênese do coração, especialmente quando em combinação com outros fatores de transcrição, como NKX2.5 e GATA4.13,17

Esta síndrome é caracterizada por malformações dos membros superiores e DCC, especialmente defeitos do septo e distúrbios de condução. As anormalidades dos membros superiores estão sempre presentes, envolvem estruturas derivadas do raio radial e são mais comumente bilaterais e assimétricas, variam de achados radiológicos subclínicos a focomelia. Os defeitos cardíacos são tipicamente defeitos septais, mas doenças cardíacas mais complexas já foram descritas. Anormalidades da condução cardíaca também são usualmente encontradas. Nenhuma correlação pode ser feita entre a gravidade das malformações cardíacas e nos membros.36

Síndrome de Alagille

A síndrome de Alagille (ALGS1, OMIM 118450) é um distúrbio multisistêmico com prevalência estimada de 1:70.000 recém-nascidos, que afeta o coração, fígado, olhos, face e esqueleto, e a DCC está presente em 90% dos casos. O envolvimento da via de saída pulmonar é o tipo mais comum de DCC descrita, entre os quais a estenose pulmonar valvar e/ou arterial e a tetralogia de Fallot são usualmente mencionadas. A escassez de ductos biliares interlobulares e a consequente colestease também são uma característica clínica importante.13

A grande maioria dos pacientes com síndrome de Alagille (> 90%) tem mutações no gene JAG1, que codifica uma ligante sinalizadora de NOTCH. Casos selecionados (< 1%) têm mutações no gene NOTCH2.37 O gene JAG1 está fortemente correlacionado com malformações cardiovasculares e é subjetivo à DCC não sindrômica, mais frequentemente a tetralogia de Fallot.1

Como as DCCs podem ser uma manifestação isolada da síndrome de Alagille, pacientes com histórico familiar de tetralogia de Fallot ou aqueles com estenose ou hipoplasia de ramo de artéria pulmonar devem ter direito a testes genéticos, mesmo que outras características fenotípicas estejam ausentes.1,13

Genes envolvidos no controle epigenético

Novas abordagens têm sido usadas na busca pela compreensão da etiologia e variabilidade fenotípica de doenças genéticas complexas. O estudo da epigenética – alterações genômicas que não envolvem modificações na sequência de DNA – sugere que a estrutura da cromatina e/ou os distúrbios epigenéticos podem levar a alterações na transcrição de múltiplos genes e vias metabólicas que podem desempenhar um papel fundamental nas DCC. Diversos estudos têm demonstrado a importância de vários mecanismos de regulação epigenética durante a cardiogênese.38

Diversos estudos demonstram a importância de vários mecanismos de regulação epigenética durante a cardiogênese. Alterações da metilação do DNA, especialmente nas ilhas CpG próximas a fatores de transcrição, foram identificadas em pacientes com malformações cardíacas.38 Estudos com sequenciamento de próxima geração identificaram enriquecimento significativo para mutações em genes que envolvem
modificação de histonas em pacientes com DCC, especialmente H3K4, H2K7, H3K9 e H3K27, sugere que a modificação de histonas pode ser significativa na patologia da doença isolada.1,4

A investigação do remodelamento da cromatina em organismos modelo mostrou que a modificação dinâmica da estrutura da cromatina desempenha um papel importante na regulação da expressão génica durante o desenvolvimento do coração.13 Mutações de novo que afetam os genes de regulação da cromatina contribuem para cerca de 3% das DCCs. Além disso, os genes reguladores da cromatina incluem cerca de 600 genes que regulam a expressão génica dinâmica e alteram fatores epigenéticos ou catalisam alterações na estrutura da cromatina.1 Portanto, genes que codificam proteínas que modificam ou se ligam a histonas têm sido implicados como a etiologia de síndromes que causam DCCs, como:

Síndrome de Kabuki

A síndrome de Kabuki (KABUK1, OMIM 147920) é um distúrbio genético que afeta 1:30.000 recém-nascidos e causa atraso no desenvolvimento, dismorfismo facial e lesões obstrutivas do lado esquerdo, que inicialmente levantaram uma suspeita de envolvimento do cromossomo X, embora defeitos do sexo e conversoconrnuais também possam ser detectados.11 De fato, apesar da identificação do gene MLL2 – uma histona metiltransferase – como causa primária da síndrome de Kabuki através do sequenciamento do genoma completo, deleção de novo parcial ou completa de genes do cromossomo X, que codifica as modificações de histonas KMT2D e KDM6A que interagem com o gene MLL2 também podem resultar em um fenótipo da síndrome de Kabuki.11,13

Síndrome Charge

A síndrome Charge (OMIM 214800) é um acrônimo que significa coloboma, cardiopatia, atresia coanal, atraso do crescimento e desenvolvimento, hipoplasia dos genitais, anomalias dos pavilhões auriculares/surdez (do inglês iris Coloboma, Heart malformation, choanal Atresia, Retarded growth and development, Genital hypoplasia and Ear anomalies and deafness), embora outras malformações e alterações comportamentais possam estar presentes e os critérios diagnósticos tenham sido refinados várias vezes.19 Ela afeta 1:8.000 a 1:10.000 recém-nascidos, cerca de 70% dos pacientes têm DCC e cerca de metade deles apresenta defeitos conversoconrnuais maiores, como a tetralogia de Fallot e dupla via de saída do ventrículo direito, embora outros defeitos da OFT, como a síndrome do coração esquerdo hipoplásico, também sejam descritos.13,39 Mais de dois terços dos casos são causados por mutações não sense ou frame shift no gene CHD7, que codifica uma proteína modifica- dor da cromatina, embora alterações no gene da semaforina (SMA3E) possam resultar em fenótipo semelhante.40 A proteína CHD7 é essencial para a migração da crista neural, o que pode explicar a alta frequência de defeitos da OFT.13,39

Síndrome de Koolen-De Vries

A Síndrome de Koolen-De Vries (KDVS, OMIM 610443) é causada pela deleção do locus 17q21.31 ou mutação do gene KANSL1, localizado no lobo supracórtico, caracteriza-se por grave déficit intelectual, hipotonia, convulsões e dismorfismo facial. A DCC está presente em 27% dos casos, com defeitos marcadamente septais, embora a estenose pulmonar também possa ser descrita.1,4 Estudos recentes identificaram que o gene KANSL1 desempenha um papel como gene modificador em pacientes com 22q11.2DS.42

DCC não síndромica

A grande maioria das DCCs ~ cerca de 70% ~ ocorre como malformações isoladas,11,12,43 inclusive as mais complexas: atresia da tricúspide, transposição das grandes artérias, síndrome do coração esquerdo hipoplásico e atresia pulmonar. Vários novos genes com herança mendeliana foram identificados e estudos de famílias afetadas não só lançaram luz sobre os padrões de herança, mas também têm sido essenciais para a compreensão da complexa organogênese do coração, uma vez que os genes etiologicamente ligados às DCCs afetam diretamente o desenvolvimento embriológico e também podem desempenhar um papel na regulação do coração durante toda a vida.12 A tecnologia de sequenciamento de próxima geração (NGS) abriu as portas para se descobrir a importância das variáveis de novo sem herança mendeliana clara, variantes com penetrância reduzida e alterações somáticas, entre outras.12,13

A maioria das mutações identificadas é família-específica e não pode ser considerada uma causa comum de DCC, mas é possível que múltiplas variantes possam ter um papel no desenvolvimento da doença como ambiente poligênico, embora a interpretação dessas variantes possa ser muito desafiadora e não é sempre possível estabelecer sua patogenidade. Essas associações podem ser altamente significativas do ponto de vista estatístico e de pesquisa, mas têm relevância clínica baixa.43

Em muitas famílias e indivíduos com DCC, as variações nos genes expressos durante a formação do coração estão presentes com diferentes perfils de herança, sugere um continuum entre formas mendelianas e complexas das doenças, além de distúrbios de gene único, como exemplificado abaixo e listados na tabela 2.13

Mutações na família NK2

A família NK2 é constituída por genes homeobox que desempenham papéis críticos no desenvolvimento do coração, regulam processos essenciais, como a expressão gênica espacial e temporal.3,9,44 O gene NKX2-5 é expresso em ambos, o primeiro e o segundo campos cardíacos, como um dos primeiros marca- dores da diferenciação cardiomiogênica e é fundamental para a hierarquia reguladora cardíaca.1 Várias mutações foram descritas, levaram principalmente a defeitos septais e anormalidades da condução atrioventricular,2 mas também foram descritas DCC mais complexas, como a tetralogia de Fallot e a hipoplasia do coração esquerdo.45 Estudos recentes têm se concentrado na região reguladora do gene NKX2-5, propõem que essas variantes não codificantes podem melhorar a transcrição e alterar a rede que controla a morfogênese cardíaca. Também foi postulado que essas versões mutantes podem se ligar a promotores de genes não específicos e permitir que os cofatores induzam um efeito mais forte do que o usual, o que pode explicar as grandes variações de fenótipos em indivíduos afetados.35

O gene NKX2-6 se sobrepõe parcialmente ao NKX2-5 nos perfis de expressão temporal e espacial e nas características funcionais durante a embriogênese. As mutações que causam perda de função do NKX2-6 já foram identificadas em pacientes...
Mutações na família TBX

A família do fator de transcrição toolbox (TBX) é um grupo de seis proteínas que compartilham um domínio de ligação de DNA altamente conservado e com papel significativo no desenvolvimento de células progenitoras cardíacas – especialmente no segundo campo cardíaco – bem como na padronização das câmaras e OFT.2,17

O gene TBX1 é expresso no mesênquima e no epitélio da faringe e é um dos principais determinantes genéticos de distúrbios cardíacos e craniofaciais, é incluído no conjunto de genes deletados na síndrome de 22q11del. Mutações no gene TBX5 foram associadas à síndrome de Holt-Oram, como descrito. Existem muitos poucos casos de doença coronariana isolada relacionados a mutações nesses dois genes.44

Mutações no gene TBX20, por outro lado, têm sido associadas com defeitos do septo atrial e ventricular e valvulogênese aberrante: o TBX20 é necessário nas linhagens endoteliais para septação, regulação do versican, um proteoglicano da matriz extracelular e a proliferação e diferenciação dos cardiomócitos nos septos.4,44 Mutações no TBX20 aumentam a susceptibilidade da dupla via de saída do ventrículo direito em humanos e também têm sido associadas de maneira causal à cardiomiopatia dilatada.2

Mutações na família GATA

A família dos fatores de transcrição de "dedos de zinco" GATA compreende seis membros: GATA 1 a GATA 6, que se ligam à sequência de bases (A/T) GATA (A/G) na região reguladora de vários genes. A maioria dos tecidos de origem mesodérmica ou endodérmica expressa pelo menos um dos seguintes: GATA4, GATA5 ou GATA6 e todos os três estão presentes no mesoderma pré-cardíaco.2,17 Experimentos em modelos animais mostraram que o silenciamento dos genes GATA pode resultar em DCC, varia de defeitos valvulares-septais a acardia.44 GATA4 é o membro mais investigado e também um dos primeiros fatores de transcrição expressos no desenvolvimento de células cardíacas.17,47 Uma diminuição na expressão do gene GATA4 leva a várias formas de DCC, como defeitos do septo atrio-ventricular, dupla via de saída do ventrículo direito e formas familiares da tetralogia de Fallot.2,17,47

O gene GATA5 pode promover o destino dos cardiomócitos a partir de células-tronco embrionários murina.6 Pouco se sabe sobre as mutações do GATA5 em humanos, mas três mutações em heterozigose foram identificadas em famílias com malformações anatômicas cardíacas ou fibrilação atrial familiar1,17 e na tetralogia de Fallot esporádica.2

O gene GATA6 é altamente expresso não apenas no coração em desenvolvimento – mesoderme pré-cardíaca, tubo cardíaco – mas também em cardiomócitos adultos em ventrículos e âtrios humanos e células de músculo lisovascular.2,47 A deleção do GATA6 em células de músculo liso derivadas da crista neural pode resultar em defeitos na OFT, como arco aórtico interrompido e persistência do truncus arteriosus, fenótipos associados à expressão gravemente diminuída do SEMA3C.17,47 A formação do coxin endocárdico também é afetada pelo GATA6, portanto mutações nesse gene têm sido implicadas na tetralogia de Fallot não sindrômica e no defeito do septo atriocárdico.2

Mutações no gene ZIC3

O gene ZIC3 codifica um fator de transcrição do "dedo de zinco" que está envolvido no desenvolvimento do eixo esquerdo-direito (ED), conhecido como gene da heterotaxia. Localizado no cromossomo X, as mutações que causam a perda de função em ZIC3 levam à heterotaxia ligada ao X e DCC isolada,2,14 como a transposição-D das grandes artérias e a dupla via de saída do ventrículo direito.45

Mutações no gene PITX2

O gene PITX2 pertence à família homeobox de fatores de transcrição da pituitária que desempenha um papel tanto na ligação do DNA quanto do RNA e consiste em três isoformas: PITX2a, PITX2b e PITX2c. A assimetria esquerda-direita do coração depende da expressão de PITX2 na via nodal do lado esquerdo, com ativação de vias de ciclo celular wnt-dependente downstream e sua repressão à direita.1,47 A perda de função do PITX2 de qualquer isoforma causa isomerismo atrial grave, ventrículo esquerdo com dupla via de entrada, transposição-D de grandes artérias e persistência do truncus arteriosus.49
Genes que codificam componentes do sarcômero cardíaco

Genes sarcoméricos são amplamente reconhecidos como candidatos a diversas cardiomiopatias familiares, mas alguns genes também têm sido associados a doenças cardíacas estruturais. Mutações no gene MYH6 (cadeia pesada da miosina 6) foram identificadas em formas familiares de comunicação intercelular (CIA) e a regulação molecular envolve fatores de transcrição como GATA4 e TBX5. A incidência de CIA também pode estar super-representada na não compactação do ventrículo esquerdo, causada pela mutação do gene MYH7, que também está relacionada à anomalia de Ebstein.\(^{30,51}\)

Genes da via de Notch

A sinalização de Notch é uma via altamente conservada que faz a mediação da comunicação intercelular e regula o padrão celular e é crucial com órgãos com arquitetura complexa. A via Notch é particularmente importante durante a formação e morfogênese do canal atriocoronar e da OLF e mutações dos genes envolvidos em seres humanos resultam em deficiências e síndromes de desenvolvimento cardiovascular muito específicas, como a de Alagille ou Adams-Oliver. Mutações no gene JAG1 podem estar implicadas em casos isolados de DCC, especialmente na tetralogia de Fallot. As mutações do NOTCH1 foram associadas, dentro de uma única família, com uma variação de DCC de válvula aórtica biventricular a síndrome da coração esquerdo hipoplásico. O gene GALNT11 foi associado à heterotaxia em seres humanos.\(^{1}\)

Genes ciliares

Os genes ciliares têm múltiplas funções, inclusive sinalização, propulsão de fluido extracelular e controle do ciclo celular, e mutações nesses genes podem causar diversos distúrbios humanos com fenótipos pleiotrópicos. No desenvolvimento do coração, o papel mais bem compreendido para os cílios é o estabelecimento da assimetria esquerda-direita, portanto mutações que afetam a motilidade ciliar podem resultar em heterotaxia e DCC. Em modelos animais, mutações em genes que codificam componentes do complexo motor de dineína (Dnah11/LRD e Dnah5) resultam em anormalidades DE cardíacas e viscerais. Não surpreendentemente, 12,1% dos pacientes com discinesia ciliar primária apresentam algum tipo de defeito de lateralidade, com ou sem defeitos cardíacos.\(^{32}\)

Conclusão

O desenvolvimento do coração é extremamente complexo e exige interações entre inúmeros fatores moleculares e epigenéticos. A medida que o cuidado do paciente com DCC evolui e permite que ele cresça e se reproduza, a compreensão do papel genético, particularmente na DCC esporádica, aumenta. No tratamento à beira do leito, o reconhecimento das alterações genéticas subjacentes à cardiopatia pode ser útil na definição do prognóstico e na antecipação de complicações, como resposta inflamatória sistêmica, arritmias e insuficiência cardíaca precoce.

Com a tecnologia de sequenciamento de próxima geração, nossa compreensão da biologia da DCC se expandiu rapidamente, mas ainda há muitas questões a serem respondidas, pois os fundamentos genéticos de mais de 50% dos casos permanecem desconhecidos. A extrema heterogeneidade genética e clínica e a fraca correlação genotipo-fenotipo tornam esse caminho ainda mais desafiador.

Financiamento

Ministério da Ciência e Tecnologia/Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT-CNPF), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Fundação de Amparo à Pesquisa do Distrito Federal (FAP-DF).

Conflitos de interesse

Os autores declaram não haver conflitos de interesse.

Referências

1. Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res. 2017;120:923–40.
2. Li Y, Yang Y. An update on the molecular diagnosis of congenital heart disease: focus on loss-of-function mutations. Expert Rev Mol Diagn. 2017;17:393–401.
3. Pinto VC Jr, Branco KM, Cavalcante RC, Carvalho WC Jr, Lima JR, Freitas SM, et al. Epidemiology of congenital heart disease in Brazil: approximation of the official Brazilian data with the literature. Rev Bras Cir Cardiovasc. 2015;30:219–24.
4. Andersen TA, Troelsen KL, Larsen LA. Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci. 2013;71:1327–52.
5. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo K, Dendukuri N, Kouauch M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130:749–56.
6. Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006;126:1037–48.
7. Brade T, Pane LS, Moretti A, Chien KR, Laugwitz KL. Embryonic heart progenitors and cardiogenesis. Cold Spring Harb Perspect Med. 2013;3:a013847.
8. Vincent SD, Buckingham ME. How to make a heart: the origin and development of cardiac progenitor cells. Curr Top Dev Biol. 2010;90:1–41.
9. Zhang L, Kitabayashi-Nomura A, Sultana N, Cai W, Cai X, Moon AM, et al. Mesodermal nkx2.5 is necessary and sufficient for early second heart field development. Dev Biol. 2014;390:68–79.
10. Harvey RP, Lai D, Elliot D, Biben C, Soloway M, Prall O, et al. Homeodomain factor nkx2-5 in heart development and disease. Cold Spring Harb Perspect Med. 2002;6:107–14.
11. Digilho MC, Marino B. What is new in genetics of congenital heart defects? Front Pediatr. 2016;4:120.
12. Chaix MA, Andelfinger G, Khairy P. Genetic testing in congenital heart disease: a clinical approach. World J Cardiol. 2016;8:181–90.
13. Calgani G, Unolt M, Digilho MC, Baban A, Versacci P, Tartaglia M, et al. Congenital heart disease and genetics syndromes: new insights into molecular mechanisms. Expert Rev Mol Diagn. 2017;17:861–70.
14. Blue GM, Kirk EP, Giannolatou E, Sholler GF, Dunwoodie SL, Harvey RP, et al. Advances in the genetics of congenital heart disease: a clinician’s guide. J Am Coll Cardiol. 2017;69:859–70.
15. Costain G, Silversides CK, Basset AS. The importance of copy number variation in congenital heart disease. NPJ Genom Med. 2016;1:16031.
16. Geng J, Picker J, Zheng Z, Zhang X, Wang J, Hisama F, et al. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics. 2014;15:1127.

17. Kodo K, Yamagishi H, Amagishi H. Current insights into genetics of congenital heart diseases: GATA and T-box cardiac transcription factors as the hotspot pathogenesis. J Pediatr Cardiol Card Surg. 2017;1:18–27.

18. Mckusick VA, Hamosh A. Online Mendelian Inheritance in Man Entry #188400 – DiGeorge Syndrome; 2018. Available from: https://www.omim.org/entry/188400 [cited 3.11.18].

19. Pinchfesky E, Laneuville L, Srou M. Distal 22q11.2 microduplication: case report and review of the literature. Child Neurol Open. 2017;4:2329048X17737651.

20. Mckusick VA, Kniffin CL. Online Mendelian Inheritance in Man Entry #612474 – Chromosome 1q21.1 deletion Syndrome; 2018. Available from: https://www.omim.org/entry/612474 [cited 2.02.19].

21. Soemedi R, Topf A, Wilson J, Darlay R, Rahman T, Glen E, et al. Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJAX duplications in 2436 congenital heart disease patients and 6760 controls. Hum Mol Genet. 2012;21:1513–20.

22. Guida V, Ferese R, Rocchetti M, Bonetti M, Sarkozy A, Cecchetti S, et al. A variant in the carboxyl-terminus of connexin 40 alters gap junctions and increases risk for tetralogy of Fallot. Eur J Hum Genet. 2013;21:69–75.

23. Arndt AK, Schafer S, Drenckhahn JD, Sebeh MK, Plovie ER, Caliebe A, et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy. Am J Hum Genet. 2013;93:67–77.

24. Ting TW, Januaur SS, Brett MS, Tan ES, Cham BW, Lim JY, et al. Left ventricular non-compaction: is it genetic? Pediatr Cardiol. 2015;36:1565–72.

25. Wat MJ, Shchelochkov OA, Holder AM, Breman AM, Dagli A, Bacino C, et al. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A. 2009;149A:1661–77.

26. Elten K, Sawyer T, Lentz-kapua S, Kanis A, Studer M. A case of Wolf-Hirschhorn syndrome and hypoplastic left heart syndrome. Pediatric Cardiol. 2013;34:1244–6.

27. Battaglia A, Filippi T, Carey JC. Update on the clinical features and natural history of Wolf–Hirschhorn (4p-) syndrome: experience with 87 patients and recommendations for routine health supervision. Am J Med Gen C Semin Med Genet. 2008;148C:246–51.

28. Del Psqua A, Rinelli G, Toscano A, Iacobelli R, Digilio C, Marino B, et al. New findings concerning cardiovascular manifestations emerging from long-term follow-up of 150 patients with the Williams-Beuren-Beuren syndrome. Cardiol Young. 2009;19:563–7.

29. Yoshimura K, Kitagawa H, Fujiki R, Tanabe M, Takewaza S, Takada I, et al. Distinct function of 2 chromatin remodeling complexes that share a common subunit Williams syndrome transcription factor (WSTF). Proc Natl Acad Sci U S A. 2009;106:9280–5.

30. Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet. 2006;79:370–7.

31. Jhang WK, Choi JH, Lee BH, Kim GH, Yoo HW. Cardiac manifestations and associations with gene mutations in patients diagnosed with RASopathies. Pediatr Cardiol. 2016;37:1539–47.

32. Pierpont EI, Pierpont ME, Mendelsohn NJ, Roberts AE, Tworog-Dube E, Seidenberg MS. Genotype differences in cognitive functioning in Noonan syndrome. Genes Brain Behav. 2011;8:275–82.

33. Tidyman WE, Rauen KA. The RASopathies: developmental syndromes of RAS/MAPK pathway. Curr Opin Genet Dev. 2009;19:230–6.

34. Digilio MC, Marino B, Baban A, Dallapiccola B. Cardiovascular malformations in Adams–Olliver syndrome. Am J Med Genet A. 2015;167A:1175–7.

35. De la Pompa JL, Epstein JA. Coordinating tissue interactions: NOTCH signaling in cardiac development and disease. Dev Cell. 2014;22:244–54.

36. Patel C, Silcock L, McMullan D, Brunet L, Cox H. TBX5 intragenic duplication: a family with an atypical Holt–Oram syndrome phenotype. Eur J Hum Genet. 2012;20:863–9.

37. Turpenny PD, Eldard S. Aplagig syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. 2012;20:251–7.

38. Moore-Morris T, Van Vliet PP, Andelfinger G, Puceat M. Role of epigenetics in cardiac development and congenital diseases. Physiol Rev. 2018;98:2453–75.

39. Jongmans MC, Admaa RJ, Van der Donk KP, Visser LE, Bass AF, Kapusta L, et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006;43:306–14.

40. Lalani S, Safiullah AM, Molinari LA, Fernbach SD, Martin DM, Belmont JW. SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet. 2004;41:e94.

41. Mckusick VA, Kniffin CL. Online Mendelian Inheritance in Man Entry #610443 – Koelen-De Vries Syndrome; 2018. Available from: https://www.omim.org/entry/610443 [cited 31.01.19].

42. Leon LE, Benavides F, Espinoza K, Vial C, Alvarez P, Palomares M, et al. Partial microduplication in the histone acetyltransferase complex member KANSL1 is associated with congenital heart defects in 22q11.2 microdeletion syndrome patients. Sci Rep. 2017;7:1795.

43. Calgani G, Digilio MC, Sarkozy A, Dallapiccola B, Marino B. Familial recurrence of congenital heart disease: an overview and review of the literature. Eur J Pediatr. 2007;166:111–6.

44. Fahed AC, Nemer GM. Genetic causes of syndromic and non-syndromic congenital heart disease. In: Cooper D, editor. Mutations in human genetic disease. InterchOpen; 2012. p. 119–48.

45. Chung I, Rajakumar G. Genetics of congenital heart defects: the NKX2.5 gene, a key player. Genes (Basel). 2016;7: pii: E6.

46. Boogerd CJ, Zhu X, Aneas I, Sakabe N, Zhang L, Sobreira DR, et al. Tbx20 is required in mid-gestation cardiomyocytes and plays a central role in atrial development. Circ Res. 2018;123:428–42.

47. Lentjes MH, Niessen HE, Yoshihitsu A, Brüüne AP, Melotte V, Van Engeland M. The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med. 2016;18:e3.

48. Li S, Liu S, Chen W, Yuan Y, Gu R, Song Y, et al. A novel ZIC3 gene mutation identified in patients with heterotaxy and congenital heart disease. Sci Rep. 2018;8:12386.

49. Franco D, Campione P. The role of PITX2 during cardiac development: linking left–right signaling and congenital heart diseases. Trends Cardiovasc Med. 2003;13:157–63.

50. Posh MG, Waldmüller S, Müller M, Scheffold T, Fournier D, Andrade-Navarro MA, et al. Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PloS ONE. 2011;6:e28872.

51. Postma AV, Van Engelen K, Van de Meerakker J, Rahman T, Probst S, Baars MK, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet. 2011;4:43–50.

52. Shapiro AJ, Davis ST, Ferkol T, Dell SD, Rosenfeld M, Olivier KN, et al. Lateality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguous and heterotaxy. Chest. 2014;1136–8.