Síndrome da escápula em ressalto: ensaio iconográfico

Stefane Cajango de Carvalho 1,a, Adham do Amaral e Castro 1,b, João Carlos Rodrigues 1,c, Wagner Santana Cerqueira 2,d, Durval do Carmo Barros Santos 3,e, Laercio Alberto Rosemberg 1,f

1. Hospital Israelita Albert Einstein, São Paulo, SP, Brasil. 2. A.C.Camargo Cancer Center, São Paulo, SP, Brasil. Correpondência: Dr. Adham do Amaral e Castro. Hospital Israelita Albert Einstein – Departamento de Radiologia e Diagnóstico por Imagem. Avenida Albert Einstein, 627, Jardim Leonor, São Paulo, SP, Brasil, 05652-901. E-mail: adham.castro@gmail.com.

As síndromes da escápula em ressalto (SNES) é comumente diagnosticada em pacientes com dor subescapular ou em movimentos do ombro, com a escápula em ressalto ou palpável durante o movimento. A síndrome é definida como a criação de estalidos (SNES) ou palpáveis (SNES de) durante os deslizamentos da escápula sobre o gradil costal durante movimentos do ombro (Figura 1). A síndrome pode ocorrer em pessoas de qualquer idade, mas é mais comum em adultos. A síndrome da escápula em ressalto é geralmente idiopática, mas pode ser causada por condições como artrite reumatoide, artrite crônica, esteatose das escápulas, lesões de músculos escapulares, doenças metabólicas e tumores.

DEFINIÇÃO DA SÍNDROME E ASPECTOS EPIDEMIOLÓGICOS

A síndrome da escápula em ressalto é definida como um estalido audível e/ou palpável durante os movimentos do ombro sobre o gradil costal. Subclasses de SNES incluem SNES de “echographia” e SNES de “claudicação” (Figuras 2 e 3). Esses estalidos podem ser causados por alterações na musculatura periescapular, como o desenvolvimento de uma bursa subescapular ou uma estrutura de simetria que se move. O SNES pode ocorrer durante movimentos do ombro ou durante atividades cotidianas, como levantamento de peso ou movimentos repetitivos.

ANATOMIA E BIOMECÂNICA

A escápula é um osso plano e triangular que se encontra entre a segunda e a sétima costelas. Possui duas superfícies (ventral e dorsal), três bordas (superior, lateral e medial) e três ângulos (superomedial, inferomedial e laterais). A articulação entre a escápula e a caixa torácica é conhecida como articulação escapulotorácica, conhecida como resultado de múltiplos planos de movimento. O SNES é causado por inchaços musculares que se infiltram nas estruturas articulares, como o desenvolvimento de uma bursa subescapular ou uma estrutura de simetria que se move. O SNES pode ocorrer durante movimentos do ombro ou durante atividades cotidianas, como levantamento de peso ou movimentos repetitivos.
VARIAÇÕES ANATÔMICAS E DOENÇAS QUE PODEM CAUSAR A SÍNDROME

Ângulo superomedial da escápula e variações anatômicas

A articulação escapulotorácica é amortecida pelos músculos serrátil anterior, subescapular e pelas bursas\(^7\). Os ângulos superior, inferior e a borda medial da escápula são relativamente menos protegidos por músculos e bursas subjacentes, e a borda superomedial e o polo inferior apresentam ampla variabilidade anatômica\(^4,7\). Quando nenhuma deformidade óbvia é encontrada, deve-se procurar por variações anatômicas, como a curvatura anterior anômala do ângulo superior da escápula, que é considerada uma das principais causas da síndrome. O ângulo superomedial da escápula foi medido em peças anatômicas e variou entre 124° e 162° (144,34° ± 9,09°)\(^7\); quando inferior a 142°, aumentam-se as chances de ressalto escapular\(^8\). A mensuração desse ângulo é feita na superfície anterior da escápula, utilizando-se três pontos anatômicos de referência: o ângulo superior, a espinha e o ângulo inferior, conforme exemplificado nas Figuras 5 e 6. Uma projeção óssea no polo inferior é o segundo local mais comum para os sintomas\(^4\) (Figura 7).

Tubérculo de Luschka

É uma protuberância óssea em forma de gancho na borda superomedial da escápula, que pode reduzir o espaço entre a escápula e o gradil costal e ser fator predisponente para ressalto\(^7\).
Figura 4. Representação esquemática demonstrando o ritmo escapuloumeral de 2:1. Por exemplo, com a abdução do braço em 180°, 60° ocorrem pela rotação da escápula e 120° ocorrem pela rotação do úmero.

Figura 5. Representação esquemática da superfície costal da escápula direita mostrando a medição do ângulo superomedial ABC.

Figura 6. Paciente do sexo masculino, 42 anos, com quadro de dor intermitente na região escapular à esquerda, associada a estalos há 7 anos. Pratica natação, caminhada e bicicleta. RM da escápula esquerda, com cortes sagitais ponderados em T1 (A) e T2 com saturação de gordura (B), mostra redução do ângulo superomedial da escápula (122°) – as linhas pretas em A indicam como é realizada a medida do ângulo –, com redução do espaço entre o segundo arco costal e a borda superior da escápula. Leve edema muscular e tênue edema do segundo arco costal adjacente (seta em B).
Discinesia da escápula, insuficiência do músculo serrátil anterior, lesão do nervo torácico longo

Discinesia escapular significa movimento, posicionamento ou função anormal da escápula durante a movimentação do ombro, sendo achado clínico comum. Pode ser causa ou consequência de muitas formas de dor no ombro e disfunção. Existem múltiplas causas de discinesia. As causas relacionadas às articulações incluem artrose acromioclavicular, instabilidade e distúrbio da articulação glenoumeral. As causas ósseas incluem cifose torácica, fratura clavicular não consolidada, encurtamento, rotação ou angulação clavicular. Causas neurológicas incluem paralisias dos nervos torácico longo, nervo espinhal acessório e radiculopatia cervical (9) (Figuras 8 e 9). Os mecanismos mais comuns envolvem desequilíbrios da musculatura intrínseca, com inflexibilidade ou inibição da ativação muscular normal (9). O ressalto pode estar presente nas discinesias, pois os movimentos anormais fazem com que as extremidades da escápula se aproximem do gradil costal. Independentemente da causa da discinesia, o resultado final na maioria dos casos é uma escápula em pronação, que não é favorável para a função ideal do ombro e resulta em espaço subacromial diminuído, com sintomas de impacto (9).
Sequelas de fraturas da escápula e gradil costal

As sequelas de fraturas da escápula e gradil costal podem causar deformidades ósseas, levando a maior atrito entre as estruturas da articulação escapulotorácica (10).

Bursites

A bursite escapulotorácica pode ocorrer após um único insulto traumático, como resultado de movimentos repetitivos da articulação escapulotorácica ou por discinesia escapular. O movimento escapular anormal pode ser causado pelo uso excessivo da musculatura, pelo desequilíbrio muscular ou condições patológicas da articulação glenoumeral (3). Quando os músculos da face costal da escápula diminuem de tamanho, a escápula inclina-se para frente, aproximando-se do gradil costal, gerando atrito na parede torácica durante o movimento, causando inflamação no espaço escapulotorácico (bursite) (3) (Figuras 7 e 10).

Tumores ósseos

Osteocondroma ou exostose é o tumor ósseo benigno primário mais comum da escápula, sendo geralmente solitário (90%) e podendo ser múltiplo na forma de exostose múltipla hereditária em cerca de 10%. É considerado alteração da placa de crescimento, deixando de aumentar de tamanho após a maturidade esquelética (11). Geralmente envolve a metáfise de ossos longos, e raramente a escápula (4-6%). Pode ser sintomático, principalmente devido ao seu efeito de massa, causar uma pseudoescápula alada, crepitação e alterar o movimento escapulotorácico. Pode também causar compressão neurovascular, fraturas, inflamação da bursa ou transformação maligna (11) (Figuras 10 a 12). O condrossarcoma escapular é raro, mas a escápula é o segundo local mais frequente de acometimento dessa doença, predominando em pacientes do sexo masculino com idade entre 40 e 70 anos (3,4).

Figura 10. Paciente do sexo feminino, 46 anos, em acompanhamento de osteocondroma há 8 anos e com dores constantes há 7 meses. TC da escápula com cortes coronal (A) e axial (B) demonstra osteocondroma pediculado no aspecto anterossuperior da escápula, em proximidade com o contorno posterior do primeiro e segundo arcos costais à esquerda (seta em A). Acentuada distensão líquida na região da bursa suprasserrátil (seta em B).

Figura 11. Adolescente do sexo masculino, 14 anos, com queixa de abaulamento e desconforto na escápula esquerda há 6 meses. Pratica polo aquático. RM da escápula esquerda, com corte sagital e aquisição ponderada em T2 com saturação de gordura, revela osteocondroma com base no ângulo superomedial da escápula, com fina capa cartilaginosa, que se insinua para o espaço entre o primeiro e segundo arcos costais (seta). Edema da musculatura interposta entre o osteocondroma e o gradil costal, sugerindo atrito.

Figura 12. Paciente do sexo masculino, 18 anos, com dor no ombro direito. Estudo radiográfico demonstrou exostose de base larga no terço inferior do corpo escapular (fossa subescapular) (seta).
Elastofibromas

Tumor benigno de partes moles com crescimento lento e prevalência de até 24% nos idosos, é mais frequente em mulheres com idade entre 55 e 70 anos. Acredita-se que ocorra em reação a microtrauma repetitivo por fricção entre a escápula e a parede torácica. Geralmente, se localiza no polo inferior da escápula, profundamente aos músculos serrátil anterior e latíssimo dorsal. Pode se manifestar como aumento de volume subescapular ou infraescapular, desconforto ou dor moderada, crepitações, estalos ou bloqueio escapular (12) (Figuras 13 e 14).

CONCLUSÃO

A síndrome do ressalto escapular é rara, mas pode causar intensa dor e limitação funcional. Portanto, os achados de imagem devem ser prontamente reconhecidos. O presente ensaio iconográfico ilustrou as suas principais condições relacionadas por meio de exames de imagem.

REFERÊNCIAS

1. Morgado S, Antunes F. Síndrome de escápula crepitante. Revista da Sociedade Portuguesa de Medicina Física e de Reabilitação. 2010;19:23–6.
2. Merolla G, Cerciello S, Paladini P, et al. Snapping scapula syndrome: current concepts review in conservative and surgical treatment. Muscles Ligaments Tendons J. 2013;3:80–90.
3. Lazar MA, Kwon YW, Rokito AS. Snapping scapula syndrome. J Bone Joint Surg Am. 2009;91:2251–62.
4. Kuhne M, Boniquit N, Ghadadra N, et al. The snapping scapula: diagnosis and treatment. Arthroscopy. 2009;25:1298–311.
5. Frank RM, Ramirez J, Chalmers PN, et al. Scapulothoracic anatomy and snapping scapula syndrome. Anat Res Int. 2013;2013:635628.
6. Scibek JS, Garcia CR. Assessment of scapulohumeral rhythm for scapular plane shoulder elevation using a modified digital inclinometer. World J Orthop. 2012;3:87–94.
7. Aggarwal A, Wahee P, Harjeet, et al. Variable osseous anatomy of costal surface of scapula and its implications in relation to snapping scapula syndrome. Surg Radiol Anat. 2011;33:135–40.
8. Mozes G, Bickels J, Ovadia D, et al. The use of three-dimensional computed tomography in evaluating snapping scapula syndrome. Orthopedics. 1999;22:1029–33.
9. Roche SJ, Funk L, Sciascia A, et al. Scapular dyskinesis: the surgeon’s perspective. Shoulder Elbow. 2015;7:289–97.
10. Burn MB, McCulloch PC, Lintner DM, et al. Prevalence of scapular dyskinesis in overhead and nonoverhead athletes: a systematic review. Orthop J Sports Med. 2016;4:2325967115627608.
11. Jindal M. Delayed presentation of osteochondroma at superior angle of scapula – a case report. J Orthop Case Rep. 2016;6:32–4.
12. Britto AVO, Rosenfeld A, Yanaguizawa M, et al. Avaliação por imagem dos elastofibromas da cintura escapular. Rev Bras Reumatol. 2009;49:321–7.