Trading amino acids at the aphid–Buchnera symbiotic interface

Honglin Fenga,1, Noel Edwardsb,1, Catriona M. H. Andersonb,1, Mike Althausc, Rebecca P. Duncanb,2, Yu-Ching Hsua, Charles W. Luetjed, Daniel R. G. Pricee, Alex C. C. Wilsona,3,5, and David T. Thwaitesb,4,5

*Department of Biology, University of Miami, Coral Gables, Fl 33146; †Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle upon Tyne, United Kingdom; ‡School of Natural & Environmental Sciences, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom; and §Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136

Edited by Michael R. Strand, University of Georgia, Athens, GA, and approved June 21, 2019 (received for review April 11, 2019)

Plant sap-feeding insects are widespread, having evolved to occupy diverse environmental niches despite exclusive feeding on an impoverished diet lacking in essential amino acids and vitamins. Success depends exquisitely on their symbiotic relationships with microbial symbionts housed within specialized eukaryotic bacteriocyte cells. Each bacteriocyte is packed with symbionts that are individually surrounded by a host-derived symbiosomal membrane representing the absolute host–symbiont interface. The symbiosomal membrane must be a dynamic and selectively permeable structure to enable bidirectional and differential movement of essential nutrients, metabolites, and biosynthetic intermediates, vital for growth and survival of host and symbiont. However, despite this crucial role, the molecular basis of membrane transport across the symbiosomal membrane remains unresolved in all bacteriocyte-containing insects. A transport protein was immunolocalized to the symbiosomal membrane separating the pea aphid Acyrthosiphon pisum from its intracellular symbiont Buchnera aphidicola. The transporter, A. pisum nonessential amino acid transporter 1, or ApNEAAT1 (gene: ACYP00897), was characterized functionally following heterologous expression in Xenopus oocytes, and mediates both inward and outward transport of small dipolar amino acids (serine, proline, cysteine, alanine, glycine). Electroneutral ApNEAAT1 transport is driven by amino acid concentration gradients and is not coupled to transmembrane ion gradients. Previous metabolite profiling of hemolymph and bacteriocyte, alongside metabolic pathway analysis in host and symbiont, enable prediction of a physiological role for ApNEAAT1 in bidirectional host–symbiont amino acid transfer, supplying both host and symbiont with indispensable nutrients and biosynthetic precursors to facilitate metabolic complementarity.

Amino acids | Metabolic integration

Animals and plants live in symbiosis with a complex microbiota. Such symbioses are ubiquitous and impact the biology of all multicellular organisms (1–3). While symbioses are pervasive, the cellular and molecular mechanisms that function at the interface of hosts and symbionts remain largely unknown. One particularly intriguing and intimate type of symbiotic interaction is endosymbiosis, involving one partner, the symbiont, living inside the cells of the other partner, the host. Endosymbiotic partnerships are prevalent in groups of insects that feed on plant sap and vertebrate blood (4–8).

The insect order Hemiptera, including aphids, mealybugs, and whiteflies, is highly successful and widespread despite feeding exclusively on nutrient-deficient plant sap (9–11). To enable optimal utilization of diet, sap-feeding Hemipterans exist in a state of endosymbiosis with microbial symbionts (4, 7, 12). The ancient cooperation between the pea aphid Acyrthosiphon pisum and its intracellular symbiont Buchnera aphidicola is an exemplar insect endosymbiosis, being obligate and mutualistic, with each partner required for survival and reproduction of the other (7, 13–17). The symbiont is located within specialized insect cells, called bacteriocytes (Fig. L4), in a larger organ-like structure, known as the bacteriome, that lines the abdomen and surrounds the aphid gut (4, 7, 16, 18, 19). Endosymbiont-containing bacteriocytes are found in up to 20% of all insect species (14). The boundary between aphid and Buchnera (Fig. 1 B and C) exists as a series of membrane barriers: (i) the bacteriocyte cell membrane (separating hemolymph from bacteriocyte cytosol); (ii) the aphid-derived symbiosomal membrane (surrounding individual symbionts, enabling separation from bacteriocyte cytosol); and (iii) the outer and inner membranes of Buchnera. The symbiosomal membrane defines the absolute host–symbiont interface (Fig. 1 B and C).

The eukaryotic host and prokaryotic symbiont exist in an interdependent state of complementary nutritional and metabolic symbiosis (20). Metazoans are unable to synthesize certain amino acids in quantities to satisfy growth and development and these essential amino acids (EAAs) are obtained usually from diet. However, phloem sap is a particularly poor source of EAAs.

Significance

Plant sap-feeding insects thrive despite feeding exclusively on a diet lacking in essential amino acids. This nutritional deficit is countered through endosymbiotic relationships with microbial symbions. Nonessential amino acids, vital for microbial symbionts, are utilized by symbiont metabolic pathways and yield essential amino acids required by their eukaryotic hosts. Symbionts are completely dependent on their host to meet nutritional requirements. The endosymbionts are surrounded individually by host-derived symbiosomal membranes and are housed within specialized host bacteriocyte cells. The transport capabilities of the symbiosomal membrane remain unknown. Here, we identify a transport system that mediates a crucial step in this metabolic complementarity: a transporter capable of transporting nonessential amino acids across the symbiosomal membrane of the pea aphid Acyrthosiphon pisum.

Author contributions: C.M.H.A., D.R.G.P., A.C.C.W., and D.T.T. designed research; H.F., N.E., C.M.H.A., M.A., R.P.D., Y.-C.H., C.W.L., and D.T.T. performed research; D.R.G.P. contributed new reagents/analytic tools; H.F., N.E., C.M.H.A., M.A., R.P.D., D.R.G.P., A.C.C.W., and D.T.T. analyzed data; and C.M.H.A., A.C.C.W., and D.T.T. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

H.F., N.E., and C.M.H.A. contributed equally to this work.

1Present address: Department of Integrative Biology, University of California, Berkeley, CA 94720.

2Present address: Moredun Research Institute, Pentlands Science Park, EH26 0PZ, Edinburgh, United Kingdom.

3A.C.C.W. and D.T.T. contributed equally to this work.

4To whom correspondence may be addressed. Email: acwilson@miami.edu or d.t.thwaites@ncl.ac.uk.

This article contains supporting information online atwww.pnas.org/lookup/suppl/doi:10.1073/pnas.1906223116/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1906223116

PNAS Latest Articles | 1 of 9
but is relatively rich in other nonessential amino acids (NEAAs) (9–11). The microbial symbiont lacks most NEAAs biosynthetic pathways but possesses many key components in EAA synthesis (15, 16, 20, 21). A paradigm has evolved where the insect is considered to supply the symbiont with NEAAs and, in return, the symbiont provides the insect with EAAs, or critical bio-
synthetic intermediates to occur across the host/symbiont boundary (Fig. 1C), the symbiosis is dependent exclusively upon each membrane expressing a unique repertoire of transport proteins to enable movement in one direction or the other, as required. In particular, understanding the dynamic function of the symbiosomal membrane is crucial for uncovering the role of this symbiont–host interface in the success of each symbiosis and the wider Hemipteran order. How is material transferred across the symbiosomal membrane from host to symbiont, and vice versa, in aphids or any other insect?

The transport of NEAAs across the symbiosomal membrane is absolutely key to the success of the symbiosis to support growth and development of the symbiont and to provide biosynthetic precursors to enable synthesis and supply of EAAs to the host. The current investigation had one primary objective: to identify the amino acid transporter involved in NEAA transport across the absolute host–symbiont interface, the symbiosomal mem-
bane (Fig. 1 B and C). To achieve that goal, an integrated computational and experimental approach was utilized. A prime candidate amino acid transporter (ACYP1008971) was identified from the pea aphid *A. pism* based on gene expression, sequence alignment, and prediction of 3D structure. The amino acid transport protein was localized to the *A. pism* symbiosomal membrane by immunocytochemistry. The functional character-
istics of this transport system were determined following heter-
ologous expression in *Xenopus laevis* oocytes, resulting in the transporter being named *A. pism* nonessential amino acid transporter 1 (ApNEAAT1). Elucidation of the functional characteristics of ApNEAAT1 transport enables prediction of the likely fundamental role played by this carrier in bidirectional amino acid transfer between host and symbiont, and thus the success of the symbiosis as a whole.

Results

Identification of the Candidate Symbiosomal Amino Acid Transporter ApNEAAT1 (ACYP1008971). Bacteriocytes (Fig. 1A) function as specialized amino acid-producing factories with aphid and *Buchnera* cooperating to synthesize a complete gamut of amino acids (20). To produce this single integrated metabolic network (20), the symbiosomal membrane (Fig. 1C) must allow the selective ex-
change of amino acids and intermediates between compartments to supply the enzymatic steps in each compartment. The molecular mechanisms responsible for such transmembrane exchanges are unknown. However, candidate transporters have been identified from transcript information, expression of some being up-regulated in bacteriocytes (20, 24, 28–31). Interrogation of the *A. pism* and *Buchnera* genomes, and measurements of metabolic pathway gene and protein expression in bacteriocyte tissues, have enabled the direction of net flow of individual NEAAs and EAAs to be predicted (16, 20, 23, 29, 32–35). Net movement of individual amino acids will be controlled, to an extent, by the expression and substrate specificity of the amino acid transporters at each of the membranes (Fig. 1). Some NEAAs (e.g., glutamine, asparagine, and glutamate) are abundant in hemolymph and bacteriocyte cytosol. Therefore, effective transfer of less abundant NEAAs (e.g., proline, alanine, glycine, serine, and cysteine) is likely via a separate carrier that will exclude those abundant NEAAs to avoid competition.

The Transporter Classification Database (36) groups the largest collection of amino acid transporters across all forms of life within the amino acid-polypeptide-organocarboxyl (APC) superfam-
ily (37). Within the APC superfamily, many eukaryotic amino acid transporters are grouped within the important amino acid/auxin permease (AAAP, TC# 2.A.18) family, expressed ubiquitously in animals, fungi, yeast, and plants (37–39). In mammals, 4 members of the AAAP family are found within the solute carrier (SLC) family SLC36 (38). Mammalian PAT1 (SLC36A1) and PAT2 (SLC36A2) are important in trans-
membrane transport of the small NEAAs proline, alanine, and

![Fig. 1](https://www.pnas.org/cgi/doi/10.1073/pnas.1906223116)
glycine in neural, intestinal, and renal tissues across both the plasma membrane and intracellular organelles (40–48). The SLC36 family is evolutionarily very old and likely had a single founding member conserved through evolution with duplications before the teleost lineage, before the separation of reptiles and birds, and a third, which is probably mammalian-specific (49). In invertebrates, this SLC36-related AAAP family has undergone extensive expansion with duplications in the common arthropod ancestor and more recent aphid-, psyllid-, whitefly-, and arthropod-specific expansions in Hemiptera (30, 31, 39, 50). The small, zwitterionic, NEAA glutamine clades (28, 30) demonstrates variable expression in total bacteriocyte tissue. High gene expression is observed for ACYPI000356, ACYPI000108 (A. pisum glutamine transporter 1, ApGLNT1) and ACYPI008971 (Fig. 2A).

Transports within the AAAP family are predicted to have a 3D structure (known as the LeuT-fold) consisting of a 10-transmembrane (TM) core organized into a 5 + 5 inverted structural repeat (51). The substrate binding pocket of the carrier is formed by TM1, TM3, TM6, and TM5 (51, 52). Recently, we determined the importance of a single position in TM3 of the LeuT-fold in AAAP transporters, with the residue in that position shaping the bottom of the hydrophobic substrate binding pocket into which the substrate side-chain fits (39). The size of the residue occupying that single position in TM3, in exemplar mammalian and arthropod AAAP amino acid transporters, determines substrate selectivity by limiting the space available for the amino acid substrate side-chain (39). For example, the mammalian amino acid transporter PAT2 (SLC36A2) has a large aromatic phenylalanine at this position, which severely restricts the accessible space within the binding pocket and limits substrate selectivity to proline, alanine, and glycine (39). Replacement of phenylalanine (191.9 Å³) in the substrate binding pocket with the smaller branched side-chain of isoleucine (163.9 Å³) (53) increases the accessible space and creates the PAT2-F159I gain-of-function mutant (39). In addition to proline, alanine, and glycine, PAT2-F159I transports serine and cysteine but excludes amino acids with larger side-chains such as glutamine, glutamate, and arginine (39). Application of that observation suggests that an _A. pisum_ SLC36-like AAAP transporter with an isoleucine residue at that key position in TM3 would most likely be a transporter of serine, proline, alanine, cysteine, and glycine, as observed with PAT2-F159I (39). The 14 _A. pisum_ SLC36-like AAAP transporters were multialigned with rat PAT2 using PROMALS3D (54). Fig. 2A shows part of TM3. From the sequence logo (55) in Fig. 2A, it is clear that only 1 position in TM3 in these putative aphid AAAP carriers is completely conserved [a tyrosine, being equivalent to LeuT Y108, which forms part of the hatch in the outward-occluded substrate-bound LeuT crystal (51)]. In contrast, the residues equivalent to PAT2 F159 (those highlighted in bold in Fig. 2A) show the greatest variability in this section of TM3, consistent with this position being important in determining variable substrate selectivity across this group of carriers.

ACYPI008971 is the only _A. pisum_ SLC36-like carrier to have an isoleucine residue (I161) at the position equivalent to PAT2 F159 (39). Models of both ACYPI008971 and PAT2 were generated using I-TASSER (56). When both models were superposed upon the highest scoring APC superfAMILY/LeuT-fold crystal [the outward-occluded, arginine-bound AdiC crystal (3L1L) (52)], the predicted position for ACYPI008971 I161 and PAT2 F159 overlapped (SI Appendix, Fig. S1), which was consistent with predictions using HHPred/Modeller (39, 57, 58) and PROMALS3D (54) (Fig. 2A). The small, zwitterionic, NEAA serine was superposed upon the arginine backbone (within the binding pocket of the AdiC crystal, 3L1L) (Fig. 2B). The model shows that serine is predicted to fit within the binding pocket and is presumably transported, whereas the longer side-chain of the NEAA glutamine clashes with ACYPI008971 I161, suggesting that glutamine will be excluded and not transported by ACYPI008971 (Fig. 2B) as observed with PAT2-F159I (39).

Two other SLC36-related AAAP transporters are highly expressed in bacteriocyte tissues (Fig. 2A). ApGLNT1 (ACYPI000108) is expressed at the bacteriocyte, but not symbiosomal, membrane (28). ApGLNT1 has a cysteine (C198) at the position equivalent to PAT2 F159 (Fig. 2A). The smaller cysteine (103.3 Å³) (53) suggests that there is greater accessible space within the...
ApGLNT1 binding pocket, suitable for transport of amino acids with longer side-chains. Indeed, ApGLNT1 is highly selective for the larger NEAA glutamine (with arginine being a non-transported inhibitor) but does not transport smaller NEAAs, such as proline, serine, alanine, cysteine, and glycine (28). ACYP100536 has a glycine (G159) at the position equivalent to PAT2 F159 (Fig. 2A). The predicted accessible space within the ACYP100536 binding pocket suggests that it would not favor small NEAAs as substrates (this has been observed in other AAAP transporters as the binding pocket space is increased) (39) but would more likely transport amino acids with much longer side-chains.

Thus, based upon the predicted structure and key binding pocket residue, combined with high expression in bacteriocyte tissue, ACYP1008971, an uncharacterized, putative transport protein, was identified as the prime candidate to be the symbiosomal small NEAA transporter, fundamental to the symbiosis as a whole, where it will mediate selective movement of small NEAAs across the aphid/Buchnera symbiotic interface. Based upon this predicted function, the transporter is henceforth referred to as ApNEAAT1.

Immunolocalization of ApNEAAT1 at the Symbiosomal and Bacteriocyte Membranes. To date, no transport protein has been immunolocalized to the symbiosomal membrane in any insect. Immunolocalization of ApNEAAT1 protein to the *A. pisum* bacteriocyte using an anti-ApNEAAT1 antibody reveals abundant expression of ApNEAAT1 throughout the bacteriocyte (Fig. 3). Extensive punctate staining (green) is evident surrounding each of the densely packed *Buchnera* cells (Fig. 3 A–A′). Staining was absent in control panels performed with either peptide-preadsorbed primary anti-ApNEAAT1 antibody (Fig. 3 B–B′) or secondary-only antibodies (*SI Appendix*, Fig. S2), confirming the specificity of the ApNEAAT1 immunolocalization. Identical localization patterns were consistent in 3 independent experiments (*SI Appendix*, Fig. S2). Nuclei and *Buchnera* are identified by DAPI (blue) (Fig. 3). Normally, each individual *Buchnera* cell is surrounded by its own symbiosomal membrane. However, the symbiosomal membrane is a dynamic structure that undergoes fission events to accommodate the growth and propagation of the bacterial symbiont (15, 19). During cell division, the symbiosomal membrane becomes stretched and 2 *Buchnera* can be observed within a single extended symbiosomal compartment (as shown in the transmission electron microscope [TEM] image in Fig. 3C) (18, 19, 59). The continuous punctate staining on the distended symbiosomal membrane enclosing 2 *Buchnera* demonstrates that ApNEAAT1 is localized to the symbiosomal membrane and not *Buchnera* cell membranes (Fig. 3D). Furthermore, the immunolocalization of ApNEAAT1 also reveals punctate staining on the bacteriocyte plasma membrane (Fig. 3A′), demonstrating that the ApNEAAT1 transport protein is expressed at both the symbiosomal and bacteriocyte membranes within the *A. pisum/Buchnera* symbiotic boundary, where we predict it plays an essential role in amino acid movement between key compartments in the endosymbiotic structure.

ApNEAAT1 Is a Transporter of the Small Dipolar NEAAs Proline, Alanine, Serine, Cysteine, and Glycine. When expressed in *X. laevis* oocytes, as predicted, ApNEAAT1 transports dipolar NEAAs, with relatively small side-chains, such as proline, alanine, serine, and glycine (Fig. 3B). ApNEAAT1 is saturable, with a relatively high affinity (proline uptake, *Km* = 179 ± 33 μM) (Fig. 4B). Competition experiments (Fig. 4C) complement the uptake measurements (Fig. 4A) and suggest that ApNEAAT1 substrates include a broad range of the smaller dipolar L- and D-amino acids (including proline, alanine, serine, cysteine, and glycine).
serine, cysteine, and glycine) but also weaker interactions with amino acids of slightly larger side-chain (e.g., threonine) or the straight-chain amino acid β-alanine (Fig. 4A and C). Amino acids with even larger side-chains are excluded (Fig. 4A and C). Importantly, ApNEAAT1 avoids unnecessary competition between its substrates and other amino acids by excluding those abundant in phloem and hemolymph (glutamine and asparagine) and those, such as glutamate, synthesized at high levels in the bacteriocyte, all of which have no significant ($P > 0.05$) effect on ApNEAAT1-mediated proline uptake (Fig. 4C). ApNEAAT1 can transport

![Graphs and data showing amino acid uptake](image)

Fig. 4. The aphid amino acid carrier ApNEAAT1 transports the NEAAs proline, serine, alanine, glycine, and cysteine. (A) Uptake of various radiolabeled amino acids (10 μM) into ApNEAAT1-expressing and water-injected (control) oocytes measured in the absence of extracellular Na$^+$ at pH 5.5. $n = 20$. ***$P < 0.001$; ***$P < 0.01$; NS (not significant); $P > 0.05$ vs. water (2-way, unpaired t test). (B) ApNEAAT1-specific, concentration-dependent proline uptake. Uptake into water-injected oocytes was subtracted from total uptake. Curve is fitted to Michaelis–Menten kinetics ($K_m = 179 \pm 33 \mu M$; $V_{max} = 120 \pm 6 \text{ pmol.oocyte}^{-1}(40 \text{ min})^{-1}$); $r^2 = 0.986$. $n = 20$. (C) Proline uptake in the absence (control) and presence of amino acids or analogs (all 10 mM except Tyr which is 2.5 mM). All are L-isomers unless indicated otherwise. ApNEAAT1-specific uptake is calculated by subtraction of uptake into water-injected oocytes and is expressed as percent control (that in the absence of inhibitor). Tau, taurine. $n = 16–20$. ***$P < 0.001$ vs. control; all other bars are $P > 0.05$ vs. control (1-way ANOVA with Sidak’s posttest). (D) Trans-stimulation of proline (15 mM) efflux via ApNEAAT1 and PAT2 (rat slc36a2) by various extracellular amino acids (10 mM) was measured under Na$^+$-free conditions at extracellular pH 5.5 (10 min). $n = 4–5$. ***$P < 0.001$; NS, $P > 0.05$ vs. water (2-way ANOVA with Tukey’s posttest). (E) Proline-associated inward current in PAT2-expressing but not ApNEAAT1-expressing or uninjected (control) oocytes as measured by 2-electrode voltage clamp. Oocytes were clamped at resting V_m (–30 mV), superfused with Na$^+$-free, pH 5.5 buffer and exposed to proline (0.1 to 1 mM). Mean data are shown in (SI Appendix, Table S1) and for ApNEAAT1 in the Inset. (Inset) As a direct comparison, proline uptake via ApNEAAT1 was measured under the same conditions as current measurement. ***$P < 0.001$.

Feng et al. PNAS Latest Articles | 5 of 9
amino acids in either inward or outward directions (Fig. 4D). [3H]Proline efflux was limited from control (water-injected) oocytes under all conditions (Fig. 4D). However, in ApNEAAT1-expressing oocytes, [3H]proline efflux was markedly increased in the presence of the extracellular substrates alanine or cysteine but not in the presence of the nonsubstrate leucine (Fig. 4D). The trans-stimulation is observed because alanine and cysteine are transported into the cell by ApNEAAT1, which increases the availability of the transporter for [3H]proline efflux. Generally, fully loaded carriers move through their transport cycles more rapidly than empty carriers (60, 61). Cysteine is thus demonstrated to be an ApNEAAT1 substrate by its ability to trans-stimulate [3H]proline efflux (Fig. 4D). In PAT2-expressing oocytes, alanine trans-stimulation of [3H]proline efflux was evident but, in contrast to ApNEAAT1, there was no trans-stimulation by cysteine (Fig. 4D) (consistent with cysteine and leucine not being substrates for wild-type PAT2) (44, 62, 63).

Unlike other mammalian and arthropod SLC36-related AAAP transporters characterized to date (mammalian PAT1 and PAT2, and the arthropod carriers A. pisum ApGLNT1, Aedes aegypti AaePAT1, and Drosophila melanogaster CG1139) (36, 28, 39, 42, 63, 64), ApNEAAT1-mediated amino acid transport is not driven by the H⁺/electrochemical gradient, as demonstrated by the lack of pH dependence over pH range 5.0 to 9.0 (Fig. 4E and SI Appendix, Fig. S3). ApNEAAT1-mediated amino acid transport is independent of ionic gradients for H⁺, Na⁺, K⁺, and Cl⁻ (Fig. 4E and SI Appendix, Fig. S3). The mammalian PAT1 (SLC36A1) and PAT2 (SLC36A2), transporters both function as H⁺/amino acid cotransporters with 1:1 stoichiometry (42, 65). The protonophore FCCP diminishes the H⁺/electrochemical gradient and reduces H⁺/amino acid cotransport via PAT1 but has no effect on ApNEAAT1-mediated amino acid transport (SI Appendix, Fig. S3). H⁺/amino acid symport by PAT2 is associated with inward, amino acid-coupled, H⁺ transport in voltage-clamped Xenopus oocytes (as demonstrated by the downward deflection of the trace during exposure to extracellular proline in Fig. 4F). In contrast, no inward currents were detected in control (uninjected) or ApNEAAT1-injected oocytes even though ApNEAAT1-mediated, concentration-dependent, [3H]proline uptake was observed in parallel experiments performed under the same conditions (Fig. 4F). Thus, in contrast to PAT1 and PAT2, both of which are H⁺/amino acid symporters, ApNEAAT1 transports amino acids by a mechanism that is not dependent on extracellular pH, is not rheogenic, and is not driven by the H⁺/electrochemical gradient (Fig. 4E and F and SI Appendix, Fig. S3). Interestingly, when voltage-clamped at more hyperpolarized membrane potentials, small, poorly reversing, inward deflections during exposure to saturating ApNEAAT1 substrate concentrations were observed (SI Appendix, Fig. S4 and Table S1). These were disproportionally small, relative to amino acid transport, and perhaps represent nonstoichiometric slippage currents described in other members of the AAAP transporter family and wider APC superfamily (66–69).

In summary, ApNEAAT1 is an amino acid transport system localized to both the symbiosomal and bacteriocyte membranes (Fig. 3). ApNEAAT1 is an electroneutral transporter of small NEAAs (such as glycine and L- and D-proline, serine, alanine, and cysteine) capable of transport in both inward and outward directions (Fig. 4). The membrane localization and functional characteristics of ApNEAAT1 enable the prediction that ApNEAAT1 will mediate amino acid transport across the symbiosomal membrane in both host-to-symbiont and symbiont-to-host directions (Fig. 5), with net transport of any particular amino acid driven by local transmembrane amino acid concentration gradients. We propose that the transporter be named ApNEAAT1 to reflect its origin and primary function.

Discussion

Life forms have evolved to occupy unique environmental niches. The ability of eukaryote and microbial endosymbiotic partnerships, in both animal and plant hosts, to exploit such habitats reflects a triumph of cooperation, coordination, and compartmentalization. Metabolic cooperation, the complementation of pathways using genes encoded in host and symbiont genomes, is a signature of host/symbiont coevolution (70). The small, highly reduced genome of Buchnera retains genes for the biosynthesis of 13 amino acids and some B vitamins, nutrients that are in short dietary supply (32, 71). Remarkably, the biosynthesis of many nutrients provisioned to the aphid requires complementation of Buchnera metabolic pathways by enzymes encoded in the host genome (23, 33). The evolution of such metabolic complementarity occurs across a breadth of diverse insect species in a handful of metabolic pathways, the most notable including the branched-chain amino acids (21, 25–27, 29) and the B vitamin pantothenate (70, 72). The need for nutrient and metabolite transport across the endosymbiotic membranes is absolute. However, except for a glutamine-specific transporter (ApGLNT1) localized to the bacteriocyte membrane (28), the roles of transporters in mediating and controlling these endosymbiotic nutrient movements remain a mystery.

The symbiosomal membrane forms a physical barrier that separates the 2 halves of this integrated metabolic network. However, it is not an impenetrable impediment to free movement between the 2 compartments but rather a dynamic and selectively permeable structure that enables bidirectional movement of nutrients, metabolites, and biosynthetic intermediates between organisms. The transport mechanisms that reside within the symbiosomal membrane remain unidentified, in any insect, and their functional capabilities uncharacterized. ApNEAAT1 was localized to both the symbiosomal (confirmed by the immunocytochemical pattern observed in the extended symbiosomes) and bacteriocyte membranes (Fig. 3). This pattern is consistent with quantitative proteomic analysis that identified ApNEAAT1 protein in the bacteriocyte-residual fraction (the bacteriocyte fraction lacking Buchnera) but not in the proteome recovered from isolated Buchnera (29).
Functional prediction using homology modeling identified ApNEAAT1 (gene name: ACYP1008971) as a candidate for the small NEAA transport that is necessary at the symbiosomal membrane (Fig. 2). The functional characterization of ApNEAAT1 in Xenopus oocytes demonstrates that it is an amino acid transport system with an importance for the small dipolar NEAAs proline, serine, alanine, cysteine, and glycine but excludes amino acids with larger side-chains, such as asparagine, glutamine, and glutamate (Fig. 4). This electroneutral transporter can work in both inward and outward directions and is driven by prevailing amino acid concentration gradients rather than ionic gradients (Fig. 4), making it an ideal portal for bidirectional movement of amino acids across membrane barriers (Fig. 5). What physiological and endosymbiotic roles might ApNEAAT1 perform?

At the symbiosomal membrane, there is a requirement for inward (bacteriocyte-to-symbiont) movement of serine, proline, and alanine, potential bidirectional movement of glycine, and symbiont-to-bacteriocyte efflux of cysteine (Fig. 5). *Buchnera* possess most enzymes for synthesis of EAAs, but those for synthesis of 7 NEAAs (including serine, alanine, and proline) are absent (20, 23, 29, 33). Aphid genes involved in biosynthesis of 5 of the NEAAs (including serine and alanine) are not synthesized by *Buchnera* (20). Genes involved in proline biosynthesis are highly expressed in both symbiotic bacteriocyte and bacteriocyte, indicating that proline is synthesized at high levels in the host as a whole (20). Thus, ApNEAAT1 could transport host-synthesized serine, alanine, and proline from the bacteriocyte to *Buchnera* to be utilized directly (e.g., protein synthesis) or in further symbiotic metabolic pathways. For example, serine is 1 of the 4 NEAAs required by *Buchnera* as an amino group donor (20, 23, 29) for synthesis of host-required EAAs, such as methionine (16, 20). Serine must also be transported into *Buchnera* for conversion into 2 other NEAAs, cysteine and glycine (20, 29), which are utilized directly by *Buchnera* but which could also be effluxed back into the bacteriocyte (20, 23, 24), a role that ApNEAAT1 could fulfill. Indeed, the predicted flux of cysteine across the symbiosomal membrane is in the symbiont-to-bacteriocyte direction where it is anticipated to lead to bacteriocyte-mediated homocysteine production followed by synthesis of the EAA methionine in bacteriocyte (Fig. 5) (20). Thus, key roles for ApNEAAT1 might be in enabling metabolic complementarity where host-derived serine is transported across the symbiosomal membrane to symbiont, converted to cysteine, and returned (via ApNEAAT1-mediated symbiosomal transport) to the bacteriocyte for the final stages of methionine synthesis (Fig. 5) (16, 20, 33). Similarly, *Buchnera*-derived glycine is predicted to efflux across the symbiosomal membrane (24) to be a cofactor in bacteriocyte conversion of THF into 5,10-methylene THF (20, 35). Threonine is synthesized within *Buchnera* from host-derived aspartate and is predicted to exit the symbiont to be utilized in glycine biosynthesis within the bacteriocyte cytosol (16, 20, 24). Although threonine is transported relatively poorly by ApNEAAT1 (Fig. 4), it could still mediate symbiont-to-host threonine transfer (Fig. 5).

The second key role of ApNEAAT1 within the endosymbiotic organ will occur at the bacteriocyte membrane (Fig. 5). Metabolic profiling of hemolymph enables metabolic modeling of the likely flux of amino acids across the bacteriocyte membrane into the bacteriocyte (13, 24). The predicted flux estimates suggest that the 4 major amino acid fluxes into the bacteriocyte are asparagine (51.6 units), glutamine (16.2 units), proline (6.5 units), and alanine (4.9 units) (24). Proline and alanine influx could be mediated via ApNEAAT1. The exclusion of asparagine and glutamine by ApNEAAT1 is crucial as they are the 2 most abundant amino acids in hemolymph and would, if transported by ApNEAAT1, create unnecessary competition for proline and alanine transport (13). In addition, the bacteriocyte, functioning as an amino acid biosynthetic factory, could generate NEAA concentrations that are higher than those in hemolymph. Under those circumstances, ApNEAAT1-mediated amino acid efflux across the bacteriocyte membrane could support other processes, for example, during embryogenesis.

These observations suggest that ApNEAAT1 has dual roles in amino acid transport and key challenges within the endosymbiosis, mediating bidirectional amino acid transport across the bacteriocyte (between hemolymph and bacteriocyte) and symbiosomal (between bacteriocyte and symbiont) membranes (Fig. 5). The one-to-one orthology of ApNEAAT1 and related orthologs across many Hemipteran species (including aphids, psyllids, mealybugs, and whiteflies) suggests that this carrier retains an evolutionarily conserved housekeeping function (28, 30, 31, 50) and that bacteriocyte and symbiosomal membrane expression have been acquired to maximize the success of the endosymbiosis (70). ApNEAAT1 is a highly unusual transporter as, unlike the other characterized mammalian and arthropod AAAP carriers (28, 36, 39, 42, 63, 64), its function is not driven by the H+-electrochemical gradient (Fig. 4 and SI Appendix, Fig. S3). Rather, ApNEAAT1 transport is directed by local transmembrane amino acid concentration gradients. The acquisition of this particular AAP transporter into the symbiosomal membrane thus likely provides both an evolutionary and an energetic advantage enabling bidirectional amino acid movement without energetic cost to local transmembrane ionic gradients. Efficient utilization of their challenging food source, requires coordination of the aphid*/Buchnera* genomes to produce complementary and integrated, rather than overlapping, biosynthetic pathways to produce vital components absent from diet (e.g., essential amino acids, vitamins) (20). Spatial separation of enzyme expression and activity within bacteriocyte compartments ensures that individual steps in metabolic pathways are partitioned between host and symbiont so that pathway completion is beneficial to both. Structural differences within the binding pockets of each transporter, a form of functional compartmentalization, produce distinct substrate selectivity (Fig. 4) (28), partitioning movement of different amino acids between diverse transport systems, reducing competition, and enabling selective provision of amino acids to discrete compartments to feed various biosynthetic and metabolic networks (20, 21, 28).

The symbiosomal membrane, now known commonly as the symbiosomal or symbiosome membrane, was originally identified as the cytoplasmic or M3 membrane (as in the third membrane surrounding the symbiont) in the cabbage aphid *Brevicoryne brassicae* and pea aphid *Aphis pisum* (14, 33). The symbiosomal membrane is a common feature in insects, with up to 20% of all species considered to house endosymbiont-containing bacteriocytes (14). However, despite the key role played by this membrane in many endosymbioses, knowledge of how it enables transmembrane nutrient movement remains unknown. Here we report the localization and functional characteristics of the amino acid transporter ApNEAAT1. Ultimately, understanding the roles of ApNEAAT1, and the other transporters expressed in the symbiosomal membrane, in endosymbiosis, and the dynamic function of the symbiosomal membrane, are crucial for elucidating the cellular and molecular mechanisms that integrate hosts and endosymbionts, mechanisms that are foundational to the ecological and evolutionary success of many insect pests and vectors of human disease.

Materials and Methods

Materials. [3H] and [13C] radiochemicals were from Hartmann Analytic, American Radiolabeled Chemicals, and PerkinElmer.

Sequence and Threading Analyses. PROMALS3D (54) was used (with default settings) for multialignment of full-length sequences. A sequence logo was
Preparation of Anti-ApNEAAT1 Antibody. A monospecific anti-ApNEAAT1 antibody was produced as a custom antibody by Pacific Immunology Corp. A synthetic peptide corresponding to amino acids 356 to 370 of ApNEAAT1, plus a C-terminal cysteine (NTYMKKRVQNWDKTT-C), was synthesized and conjugated to maleimide-activated keyhole limpet hemocyanin (KLH). The KLH-coupled peptide was injected into New Zealand white rabbits for antibody production. Following a standard immunization protocol, monospecific anti-ApNEAAT1 antibodies were purified from rabbit serum using an affinity column with immobilized ApNEAAT1 peptide.

Immunolocalization of ApNEAAT1 in Isolated Bacteriocyte Cells. A. pisum clone LSR1 was maintained as a pathogenetic lineage on *Vicia fabae* at 20 °C under a long-day photoperiod of 16 h of light to 8 h of darkness. Bacteriocytes were dissected from 10 to 15 young adult females in 0.9% (wt/vol) NaCl and fixed in 4% (vol/vol) formaldehyde (Thermo Scientific) overnight at 4 °C. Bacteriocytes were washed 5x (5 min per wash) in PBS at room temperature and then blocked with 5% (vol/vol) normal donkey serum (NDS; Jackson Immunoresearch Laboratories) in PBS with 0.3% (vol/vol) Triton X-100 (PBST) for 1 h at room temperature. Samples were then incubated with primary anti-ApNEAAT1 antibody 1:500 in 5% NDS in PBST overnight at 4 °C. Bacteriocytes were washed 5x (5 min per wash), in PBS at room temperature and incubated with secondary Alexa-Fluor 680 donkey anti-rabbit IgG (H+L) antibody (Life Technologies) 1:1,000 in 5% NDS in PBST overnight at 4 °C. Bacteriocytes were washed 5x (5 min per wash) in PBS, and nuclei stained with DAPI (Life Technologies) at 300 nM for 30 min at room temperature. Bacteriocytes were mounted in 2,2-dimethoxyethanol (Sigma-Aldrich) on a glass slide. Fluorescence images were acquired using a Leica TCS SP5 laser scanning confocal microscope. Control treatments were run in parallel and included localizations with peptide-peptides adsorbed primary antibody (using a 20-fold molar excess of peptide) and localizations with the secondary antibody only. The localization experiment with control treatments was repeated 3 times. In each experiment, multiple individual bacteriocytes were imaged in a single confocal plane.

Functional Expression in X. laevis Oocytes. The cloning of aphid transporter ApNEAAT1 (ACYP008971) into plasmid pcDNA3.1 has been described previously (28). ApNEAAT1 was also amplified using Phusion High Fidelity DNA polymerase (Thermo Scientific) and directed to be inserted into pCS2+-as a BamHI/ XhoI fragment. The use of PAT2 (rat slc3a2a) in pSPORT has been described previously (39, 44). All constructs were sequenced fully. Plasmid DNA was linearized using HindIII (PAT2), NsiI (pCS2+-ApNEAAT1), or BamH1 (pcDNA3.1-ApNEAAT1) and used as a template for *cRNA* synthesis. In vitro transcription was carried out using mMessage Machine SP6 (pCS2+-ApNEAAT1), T7 (PAT2), or T7 Ultra (pcDNA3.1-ApNEAAT1) kits (Thermo Fisher). cRNA from either ApNEAAT1 construct gave equivalent levels of ApNEAAT1-functional expression in X. laevis oocytes. Female X. laevis were obtained from Xenopus1 and killed humanely in accordance with UK Home Office Schedule 1 directives. Alternatively, ovaries were purchased from the European Xenopus Resource Centre. Individual oocytes were recovered from ovarian tissue, as described previously (39, 63). Healthy stage VV oocytes were injected with 50 nL water or cRNA (0.5–1 μg/mL) using a Nanoinject II automated injector (Drummond Scientific Company). After injection, oocytes were maintained in Barth’s solution at 18 °C for 2 to 3 d before use in radiotracer uptake or electrophysiology experiments (39, 63).

Transport Assays. Amino acid uptake was measured, as described previously (39, 63). Negative control experiments were run in parallel, consisting of uptake into water-injected oocytes under identical conditions to those being tested with the cRNA-injected oocytes. Oocytes were washed in transport solution (39), then uptake of various [3H]- or [14C] radiolabeled (1–5 μCi/mL) amino acids (10 μM unless stated otherwise) was measured at room temperature, over 20 to 40 min at pH 5.5, and in the absence of extracellular Na*+* (choline chloride replacing NaCl in the transport solution) unless stated otherwise (see figure legends). These conditions give the greatest fold-uptake in other SLC36 AAAP transporters and here gave the greatest fold-uptake over water-injected (control) oocytes. Oocytes were then washed 3 times in ice-cold transport solution, lysed in 10% SDS, and radioactivity quantified by scintillation counting. For efflux experiments (62), oocytes were preloaded with proline by microinjection of 50 nL [3H] proline (30 mM, 0.1 μCi/μL) resulting in [proline]∼ 5 μM (assuming an effective oocyte volume of 250 nL). After a 10-min recovery period in modified Barth’s solution (18 °C), oocytes were washed in transport solution and [3H]proline efflux measured (10 min) in the presence or absence of various extracellular amino acids (10 μM). The incubation solution was then removed for scintillation counting.

Two-Electrode Voltage-Clamp Recordings. Oocytes were placed in a Lucite chamber and perfused with Na*+*-free pH 5.5 solution via a gravity-driven perfusion system. Chlorided silver wires served as recording electrodes. Intracellular microelectrodes (1–10 MΩ resistance) were pulled from borosilicate glass capillaries and filled with 1 M KCl. To allow direct comparison with uptake experiments, the membrane potential (VM) was clamped to resting VM, which in Na*+*-free, pH 5.5 conditions was −130 mV, with a 2-mV ramp rate (150 ms). Main current recording. Intracellular currents (IM) were low-pass filtered at 1 kHz (LPF-202, Warner Instruments) and recorded with a chart-recorder (Kipp & Zonen). Current traces were digitized using Inkscape (v0.91). All recordings were performed at room temperature. The current induced by various amino acids was calculated as the difference between IM before amino acid exposure (baseline) and IM 60 s into amino acid exposure.

Data and Statistical Analysis. Transport data are mean ± SEM and are typically expressed as pmol.oocyte−1.[duration]−1. For transporter-specific uptake, uptake into water-injected oocytes (measured under identical conditions) was subtracted from the total uptake. Curve fitting (Michaelis–Menten kinetics), statistical analysis and graph preparation were carried out using GraphPad Prism 6. Two-way ANOVA was used to compare mean values with Tukey’s or Sidak’s multiple comparisons posttests, unless stated otherwise. Statistics are described in the figure legends.

ACKNOWLEDGMENTS. H.F. was supported by a University of Miami Maytag Fellowship. This work was supported by National Science Foundation Awards 1121847 (to A.C.C.W. and D.R.G.P.) and 1354154 (to A.C.C.W. and C.W.L.). N.E. was supported by a PhD studentship from the Biotechnology and Biological Sciences Research Council.

1. A. E. Douglas, *The Symbiotic Habit* (Princeton University Press, 2010).
2. R. Desalle, S. L. Perkins, *Welcome to the Microbiome: Getting to Know the Trillions of Bacteria and Other Microbes in, on, and Around You* (Yale University Press, 2015).
3. E. Yong, *I Contain Multitudes: The Microbes Within Us and a Grander View of Life* (WarnerCollins, 2016).
4. A. E. Douglas, *Multiorganismal insects: Diversity and function of resident microorganisms.* *Annu. Rev. Entomol.* 60, 17–34 (2015).
5. N. A. Moran, J. P. McCutcheon, A. Nakabachi, Genomics and evolution of heritable bacterial symbionts. *Annu. Rev. Genet.* 42, 165–190 (2008).
6. M. J. Gosalbes, A. Latorre, A. Lamelas, A. Moya, Genomes of intracellular symbionts in insects. *Int. J. Med. Microbiol.* 300, 271–278 (2010).
7. P. Buchner, *Endosymbiosis of Animals with Plant Microorganisms* (John Wiley and Sons, 1965).
8. B. W. M. Rio, G. M. Attardo, B. L. Weiss, Grantee alliances: Symbiotic metabolic integration and obligate aberrant morphogenesis. *Parasitol. Parasitol.* 32, 739–749 (2016).
9. I. Sandström, J. Pettersson, Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (*Aphisathornus plinus*) performance. *J. Insect Physiol.* 40, 947–955 (1994).
10. J. Sandström, N. Moran, How nutritionally imbalanced is phloem sap for aphids? *Entomol. Exp. Appl.* 91, 203–210 (1999).
11. A. E. Douglas, Phloem-sap feeding by animals: Problems and solutions. *J. Exp. Bot.* 57, 747–754 (2006).
12. N. A. Moran, A. Telang, Bacteriocyte-associated symbionts of insects—A variety of insect groups harbor ancient prokaryotic endosymbionts. *Bioscience* 48, 295–304 (1998).
13. T. Sasaki, H. Ishikawa, Production of essential amino acids from glutamate by mycoplasm symbionts of the pea aphid, *Aphisathorpus plinus*. *J. Insect Physiol.* 41, 41–46 (1995).
14. A. E. Douglas, Lessons from studying insect symbioses. *Cell Host Microbe* 10, 359–367 (2011).
15. A. E. Douglas, Molecular dissection of nutrient exchange at the insect-microbial interface. *Curr. Opin. Insect Sci.* 4, 23–28 (2014).
16. S. Shigenobu, A. C. C. Wilson, Genomic revelations of a mutualism: The pea aphid and its obligate bacterial symbiont. *Cell. Mol. Life Sci.* 68, 1297–1309 (2011).
