Evaluation of Different Carrier Substances for the Development of an Effective Pelleted Biofertilizer for Rice (Oryza sativa L.) Using Co-inoculated Bacteria and Arbuscular Mycorrhizal Fungi

B. K. W. Pathirana¹ and P. N. Yapa¹*

¹Department of Biological Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, 50300, Sri Lanka.

Authors’ contributions

This work was carried out in collaboration between both authors. Author PNY designed the study, wrote the protocol, gave scientific suggestions, managed the analyses of the study, interpretation of the results of the study and corrected the first draft of the written manuscript. Author BKWP managed the literature searches, carried out the study and wrote the first draft of the manuscript. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJB2T/2020/v6i130070

Received 20 November 2019
Accepted 24 January 2020
Published 31 January 2020

ABSTRACT

Aims: This study was aimed to compare aquatic weed, biochar and compost carrier substances for the development of effective pelleted biofertilizer for paddy (Oryza sativa L.) using co-inoculated bacteria, Azospirillum sp., Pseudomonas fluorescens and arbuscular mycorrhizal fungi (AMF).

Place and Duration of Study: Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka between November 2018 and May 2019.

Methodology: Pre-sterilized, 1 kg weight of ground carrier material was inoculated with 50 g of AMF propagules and 20 ml of 1.5 x 10⁸ (CFU/ml) of each bacterial inoculant. Different types of pelleted biofertilizers were prepared as; aquatic weed and bioinoculum (P₁), aquatic weed, bioinoculum and nutrient supplement mixture (P₂), biochar and bioinoculum (P₃), biochar, bioinoculum and nutrient supplement mixture (P₄), compost and bioinoculum (P₅), compost, bioinoculum and nutrient supplement mixture (P₆). Rock phosphate and potassium feldspar was...
1. INTRODUCTION

Rice (Oryza sativa L.) is the world’s most important staple food for more than two billion people in Asia and hundreds of millions in Africa and Latin America. Rice provides 21% of energy and 15% of protein requirements of human populations globally providing substantial amounts of the recommended nutrient intake of zinc and niacin [1]. Due to the prominent and valuable role of rice, different fertilizers are being made to increase rice productivity to ensure food security throughout the globe [2]. Environmental degradation has become the major threat confronting the world therefore there is a need for the replacement of synthetic fertilizers with biofertilizers [3,4]. Therefore, ending the indiscriminate use of chemical fertilizers, biofertilizers can be used for sustainable rice farming systems. Biofertilizers have their more advantages over chemical fertilizers and are economically and environmentally friendly [5].

Biofertilizers are the products containing carrier based (solid or liquid) living microorganisms which are useful in agriculture [6]. The core function of carrier material is providing the suitable micro-environment for introduced microbes to enhance the shelf life and efficacy of inoculum as biofertilizers [7]. The co-inoculation of different types of beneficial bacterial strains and AMF create positive effects on growth and yield of plants and soil microbial communities comparing with single microbial inoculant [5,6,7]. Providing suitable nutrient source to microbes by incorporating with carrier materials is a good option to further improve the effectiveness of biofertilizers [7]. Natural element compounds such as rock phosphate and potassium feldspar can be used as nutrient supplements for microorganisms [8]. Among different physical types of biofertilizers, pelleted biofertilizers should be a quality product with several desirable qualities [9,10,11].

This study was focused on evaluating three compatible substances for development of effective pelleted biofertilizer for rice (Oryza sativa L.) using co-inoculated bacteria and arbuscular mycorrhizal fungi. Aquatic weed Salvinia sp., biochar and compost were tested for their effectiveness as carrier materials in pelleted biofertilizer applied rice plants. Findings of this study are helpful to farmers to get high rice yield through an environmentally friendly, easily applicable fertilization.

2. MATERIALS AND METHODS

2.1 Preparation of Bioinoculum

Azospirillum sp. and Pseudomonas fluorescens two bacterial inoculants and mycorrhizal...
inoculum were used as the co-inoculum which used in biofertilizer production.

2.1.1 Preparation of bacterial inoculants

Two required bacterial species were isolated by serial dilution method from randomly selected soil samples which were collected from undisturbed water logged area in Mihintale Sri Lanka. *Azospirillum* sp. and *Pseudomonas fluorescens* were cultured respectively by using standard spread plate technique on *Azospirillum* [12] and King’s B agar media (KB) [13] respectively in triplicates and incubated at 30°C for 2 days.

2.1.2 Characterization of bacterial isolates

Colonies of fluorescent *Pseudomonas* strains were identified under UV illuminator at 366 nm and sub cultured on KB agar plates and pure cultures were made. *Azospirillum* pure cultures were also prepared after characterized by colony morphology, Gram’s staining and biochemical methods described by Bergey’s Manual of Determinative Bacteriology [13]. They were Gram positive, oxidase positive, indole test negative, methyl red positive, catalase positive, motility test positive and the identified *Azospirillum* colonies were sub cultured on *Azospirillum* medium [14].

2.1.3 Preparation of arbuscular mycorrhizal fungal (AMF) inoculum

In order to prepare the inoculums with sufficient indigenous AMF population, trap cultures were established. Composite soil samples with fine root fragments were collected from the upper layer (0-15 cm) of the organically grown rice field at Ranpathwela, Anuradapura district and used as an indigenous AMF inoculum. Such soil with root fragments was thoroughly homogenized with sand (grain size 0.7-1.2 mm) in a ratio of 1:4 (v/v) and added into 1000 ml plastic pots. Before sowing, seeds of maize (*Zea mays* L.) were surface disinfected by immersing them in a 0.5% sodium hypochlorite solution for 15 minutes. These seeds were washed with distilled water and they were sown at 2 cm depth in each pot and covered with autoclaved sand. Approximately 50-60 seeds of maize were sown per pot and were kept in the plant house at Faculty of Applied Sciences, Rajarata University of Sri Lanka for one month. Root fragments of maize together with rhizosphere soil is considered as an AMF inoculum.

2.2 Preparation of Carrier Material

Aquatic fern *Salvinia* sp. were collected from the Mihintale tank, Anuradapura, Sri Lanka. Compost was collected from a home garden at Mihintale and wood chip biochar was prepared by double barrel method. They were air dried and ground to powder and sieved through 2 mm sieve. The prepared carrier materials were packed in autoclavable polythene covers, sealed using an electric sealer and prepared 250 g weight of bags. They were sterilized at 121°C for 20 minutes to destroy contaminated microbes.

2.3 Development of Biofertilizers as Pellets

The pure cultures of isolated bacteria were used to prepare 10^8 bacterial inoculants of relevant cultures by using sterile water according to McFarland method. Each pre-sterilized, 1 kg weight of ground carrier material was inoculated with 50 g of AMF propagules and 20 ml of 1.5 x 10^8 (CFU/ml) of each bacterial inoculant. Then it was mixed by hand or by shaker until the microbial inoculum has been uniformly spread in to the carrier substances. Then microbial inoculants and carrier substance was packed in the polythene bag and was immediately sealed. Prepared biofertilizers were used to make pellets under applied pressure. There were six biofertilizer types and 10 g of rock phosphate (RP) and 10 g of potassium feldspar were used as nutrient supplement mixture in three biofertilizer types among them. The different types of pellets were aquatic weed bioinoculum (*P_1*), aquatic weed, bioinoculum and nutrient supplement mixture (*P_2*), biochar and bioinoculum (*P_3*), biochar, bioinoculum and nutrient supplement mixture (*P_4*), compost and bioinoculum (*P_5*), compost, bioinoculum and nutrient supplement mixture (*P_6*). After the preparation, pelleted biofertilizers were packed properly. The packages were placed under two temperature conditions (0°C and 30°C) for appropriate period (7 days). After 7th day interval, biofertilizer pellets were tested for the microbial survivability with the time by determining viable cell count of bacteria at two storage temperatures of 0°C and 30°C. All the experiments were performed in triplicates.

2.4 Pot Experiment

The pot experiment was conducted from February 2019 to May 2019 inside a plant house under natural light conditions at the Faculty of
Data Collection

2.5.1 Viable cell counts of the applied bacterial inoculants in tested biofertilizer pellets stored at 0°C and 30°C

The survival of Azospirillum sp. and Pseudomonas fluorescens in formed pellets of different carriers at two temperature storage conditions (0°C and 30°C) were determined by standard viable cell counting. Randomly selected three pellets of each biofertilizer types was taken separately for estimating viable cells at 7 days after stored at 0°C and 30°C, using standard dilution plate count method on Azospirillum medium and King’s B medium respectively. Serial dilution was prepared by transfer of 2 g each of pellet into 18 ml sterile water blanks to get 10^{-1} dilution. Similar dilutions were made serially up to 10^{-4} from 10^{-2} dilution. One ml of the diluted bacterial suspensions was pipetted out into sterile glass Petri plates and poured Azospirillum medium or King’s B medium for respective cultures. The plates were rotated clockwise and anticlockwise directions for uniform spread of the dilution mixture and the plates were incubated at 30°C for 2 days. After incubation, Azospirillum sp. and Pseudomonas fluorescens colonies were counted using colony counter and recorded as CFU/ml. The plate count was carried out in duplicates and the mean value was accounted for the analysis.

2.5.2 Agronomic data

Final plant height (cm), relative growth rate, fresh weight of plant (g) and dry weight of plant (g) as growth parameters and number of panicles per plant, number of grains per panicle and weight of 100 grains (g) as yield parameters were measured. Shoot height (cm) was measured as the length from the base of the plant to the tip of the shoot at harvesting stage of rice plants and relative growth rate were calculated. Initial shoot height of plants was obtained on the date of transplanting and final shoot height was obtained at harvesting stage. After harvest total weight of fully-grown plant was recorded as fresh weight of each plant. After recording the fresh weight of plants at harvest, they were air dried naturally and then oven dried at 60°C temperature overnight and dry weight was determined.

2.5.3 Soil pH and electrical conductivity (mS/m)

Ten grams of soil from each treatment type were weighed and 40 ml of distilled water was added to it. The samples were stirred for one hour at 15 rpm in shaker to get uniform mixing of carrier with the distilled water and was allowed to settle for 30 minutes. Then Hanna Multiparameter Water Quality Meter was calibrated and used to measure final pH and electrical conductivity.

Treatments	Amount of soil (g)	No. of pellets (1 pellet = 2 g)	Amount of rock phosphate (g)	Amount of feldspar (g)
T₀ Field soil	2800	-	100	100
T₁ Field soil + biofertilizer type P₁	2740	30	100	100
T₂ Field soil + biofertilizer type P₂	2740	30	100	100
T₃ Field soil + biofertilizer type P₃	2740	30	100	100
T₄ Field soil + biofertilizer type P₄	2740	30	100	100
T₅ Field soil + biofertilizer type P₅	2740	30	100	100
T₆ Field soil + biofertilizer type P₆	2740	30	100	100
2.5.4 Final microbial population count in biofertilizer treated soil (CFU/ml)

The microbial population in the soils of each treatment pots were estimated by serial dilution plate count technique. Soil samples were collected from the rhizosphere of each treated pots after harvesting to observe the final microbial population size. One gram of experimental soil of each treatment was taken to prepare dilution series. Final Azospirillum sp. and colony counts of Pseudomonas fluorescens were estimated by using pour culture technique on Azospirillum medium and King's B medium and were kept for incubation at 30°C for 48 hours. Azospirillum sp. and Pseudomonas fluorescens colonies were counted using colony counter and recorded as CFU/ml.

2.5.5 Observation of AMF colonization in biofertilizer treated rice roots

Biofertilizer applied rice plant roots were screened for potential of AMF colonization following the standard staining procedures [15]. Root sub-samples were rinsed with distilled water and fixed in a formaldehyde-acetic acid-ethanol solution (90:5:5 by volume). After cutting fine roots of a sample into 1 cm long segments, they were washed thoroughly in distilled water and then placed in 10% KOH and heated to 90°C for 15-30 minutes in a water bath and washed in distilled water. The heavily pigmented root samples were bleached by immersing them in alkaline 3% H2O2 solution for 60 minutes at room temperature. The roots were thereafter acidified with 1% HCl for 1 minute before staining. The root segments were stained with preheated 0.05% trypan blue in lactoglycerol for 5 minutes at 75°C. The roots were first rinsed in deionized water and distained in a lactic acid: glycerol: deionized water solution [1: 2: 2 (v: v: v)]. Stained roots were stored in glycerine. Approximately 25-30 segments of 1 cm long root segments were randomly selected from each stained sample and mounted in glycerine on microscopic slide gently squashed under a cover glass and viewed under a compound microscope (Olympus SZH10, China) at x 400 magnification and percentage AMF colonization was determined using modified grid transaction method [15].

3. RESULTS AND DISCUSSION

3.1 Viable Cell Count of Microbes (CFU/ml) in Tested Biofertilizer Pellets after 7 days of Storage at 0°C and 30°C

Viable cell count (CFU/ml) of microbes in tested biofertilizer pellets stored in sealed packets at 0°C and 30°C temperatures after 7 days were presented in Figs. 1 and 2. Initially 10⁸ CFU/ml of each Azospirillum sp. and Pseudomonas fluorescens were used in carrier inoculation and pellet formation. The results revealed that there was no any significant difference (p ≥ 0.05) in Azospirillum and Pseudomonas fluorescens colony counts among different types of pellets as P₁ to P₆ and two storage temperatures of 0°C and 30°C after 7 days respectively.

![Fig. 1. Changes of Azospirillum sp. colony count (×10⁸ CFU/ml) in biofertilizer pellets formed with different carriers after 7 days at 0°C and 30°C](image-url)
However, *Azospirillum* sp. and *Pseudomonas fluorescens* colony counts in biofertilizer pellets were comparatively higher at 30°C temperature than 0°C. Therefore, 30°C can be considered as suitable temperature for biofertilizer storage than 0°C.

3.2 Agronomic Parameters of the Pot Experiment with Added Different Biofertilizer Pellets

Final plant height (cm), relative growth rate, fresh weight of plant (g) and dry weight of plant (g) as growth parameters and number of panicles per plant, number of grains per panicle and weight of 100 grains (g) as yield parameters were measured. There were significant differences (p≤0.05) for shoot height, number of grains per panicle and 100 grains weight were observed in the treatments of different pellet types (Figs. 3, 4 and 5). However, there was no significant difference (p≥0.05) observed for relative growth rate, plant dry and fresh weights, soil pH and electrical conductivity (Table 2). Height of shoots was measured once a month after the transplanting of rice seedlings. Final shoot height of plants was obtained after 75 days of transplanting. Changes of shoot height of plants with different treatments were shown in Fig. 3.

Total number grains per panicle were counted in fully matured panicles after harvesting. Changes of Number of seeds per panicle with different treatments were given in Fig. 4. The 100 grains obtained from each treated rice plants were weighed and the test weight of grains per plant was calculated (Fig. 5).
3.3 Final Microbial Population Count in Biofertilizer Treated Soil (CFU/ml)

After 75 days of growth rice, colony counts of *Azospirillum* sp. and *Pseudomonas fluorescens* were estimated and it was observed that the counts were lower than the initial application in pellets (Figs. 6 and 7).

3.4 Arbuscular Mycorrhizal Fungi Colonization

Arbuscular mycorrhizal fungi colonization was observed in the rice roots after harvesting. However, percentage AMF colonization was very low in the rice roots. Rice was grown in the flooded conditions that may be the reason of very low percentage AMF colonization. The key challenge in the development of effective biofertilizers is supporting regular survival rates of the inoculum. Carrier materials can influence inoculum efficacy and viability by altering the soil structure for making it more beneficial for microbial colonization [16,17]. Most of the carrier materials contain a high organic matter content to increase bacterial survival and enhance the efficacy of bacterial inoculum [18,19]. In the present study, compost with mixed bioinoculant pellets application exceedingly enhanced the rice growth and yield among different pelleted biofertilizers. Compost, bioinoculum and nutrient supplement mixture (P$_6$) added pellets were shown highest bacterial survivability at 30°C for seven days. Compost is an organic soil amendment and served as a good carrier material for the production of efficient biofertilizer [20,21].
Table 2. Mean values of growth parameters, yield parameters and soil parameters for different treatments

Treatment no	Treatment type	Growth parameters	Yield parameters	Soil parameters			
		Relative growth rate	Fresh weight of plant (g)	Dry weight of plant (g)	No. of panicles per plant	Electrical conductivity (mS/m)	Soil pH
T0	Field soil without biofertilizers	0.998±0.03	7.83±3.21	6.79±2.25	2.67±0.70	102.33	6.58
T1	Field soil + biofertilizer type 1	1.091±0.05	5.55±1.98	5.55±1.98	3.00±1.41	154.17	6.41
T2	Field soil + biofertilizer type 2	0.993±0.04	9.06±3.65	7.36±3.07	3.33±0	189.33	6.05
T3	Field soil + biofertilizer type 3	1.100±0.12	5.47±2.29	5.47±2.29	2.33±0.70	194.50	6.49
T4	Field soil + biofertilizer type 4	1.091±0.13	6.83±2.37	6.83±2.37	3.33±0	231.83	6.01
T5	Field soil + biofertilizer type 5	0.993±0.07	11.78±2.55	8.45±6.02	4.33±0.70	146.10	6.46
T6	Field soil + biofertilizer type 6	1.078±0.03	7.64±1.18	7.24±1.86	3.33±0	105.13	6.22

Fig. 6. Changes of *Azospirillum* sp. colony count (CFU/g) in soil with different treatments
4. CONCLUSION

Among tested carriers compost is the most suitable carrier substance in production of pelleted biofertilizers for rice. Although AMF colonization of rice roots were low this was the first report of citing the presence of AMF in lowland flooded rice roots in Sri Lanka. These pelleted biofertilizers have the potential to be used for improved productivity of rice variety Bg 360.

Therefore, developing such bioinoculants as a biofertilizer could be the solution to the many problems associated with the use of chemical fertilizers in rice cultivation in Sri Lanka and worldwide.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Dobermann A, Witt C, Abdulrachman S, Gines HC, Nagarajan R, Son TT, Tan PS, Wang GH, Chien NN, Thoa VTK, Phung CV, Stalin P, Muthukrishnan P, Ravi V, Babu M, Simbahan GC, Adviento MAA. Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia. Agron. J. 2003;95:913-923.

2. Banayo NPM, Pompe CSC, Aguilar EA, Badayos RB, Haefele SM. Evaluation of biofertilizers in irrigated rice: Effects on grain yield at different fertilizer rates. Agriculture. 2012;2:73-86.

3. Mader P. Soil fertility and biodiversity in organic farming. Science. 2002;296(5573):1694-1697.

4. Mehnaz S, Lazarovits G. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoforum on corn plant growth under greenhouse conditions. Microb. Ecol. 2006;51(3):326–335.

5. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255:571–586.

6. Anusha A, Kadali SK, Udayasankar A, Thakur KD. Influence of biofertilizers on uptake of NPK in soils and eggplant. Int. J. Curr. Microbiol. App. Sci. 2017;6(12):1259–1263.

7. Thirumal G, Subhash RR, Triveni S, Bhaveet MV. Effects of irradiated carriers, storage temperatures, on Rhizobium bio inoculant at different intervals. Int. J. Pure and App. Biosci. 2017;5(4):240–1246.

8. Chaney RL. Food safety issues for mineral and organic fertilizers. Adv. Agron. 2012;17:51-116.

9. Trabelsi D, Mhamdi R. Microbial inoculants and their impact on soil microbial communities: A review. J. Adv. Agric. 2013;7(3):1096-1100.

10. Davidson J. Plant beneficial bacteria. Biotechnol. 1988;6:282–286.

11. Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999;17:319–339.

12. Holt JG, Krieg NP, Sneath PHA, Staley JT, Williams ST. Bergey's manual of determinative bacteriology. 9th Ed. Baltimore: Williams and Wilkins; 1994.
13. Lamichhane JR, Varvaro L. A new medium for the detection of fluorescent pigment production by pseudomonads. Plant Pathol. 2013;62:624–632.

14. Bashan Y, Levanony H. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. Microbiol. 1990;36:591–608.

15. McGonigle TP, Miller MH, Evans DJ, Fairchild GL, Swan JA. A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 1990;115:495–501.

16. Cassan F, Diaz-Zorita M. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol. Biochem. 2016;103:117–130.

17. Banayo NPM, Pompe CSC, Aguilar EA, Badayos RB, Haefele SM. Evaluation of biofertilizers in irrigated rice: Effects on grain yield at different fertilizer rates. Agriculture. 2012;2:73-86.

18. Ghazi AA. Potential for biochar as an alternate carrier to peat moss for the preparation of rhizobia bioInoculum. Microbiol. Res. J. 2017;18(4):1–9.

19. Somaratne R, Yapa PI, Yapa PN. Use of different carrier materials for culture and storage of native forest soil microorganisms. In: Proceedings of the 3rd International Conference on Ecological Environmental and Biological Sciences (ICEEBS'2013). Planetary Research Centre, Singapore, 29-30 April; 2013.

20. Kaljeet S, Keyeo F, Amir HG. Influence of carrier materials and storage temperature on survivability of rhizobial inoculant. Asian J of Plant Sci. 2011;10:331-337.

21. Diacono M, Persiani A, Testani E, Montemurro F, Ciaccia C. Recycling agricultural wastes and by-products in organic farming: Biofertilizer production, yield performance and carbon footprint analysis. Sustainability. 2019;3824:1-17.