Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3

Pedro Amaro,1, ² Beatrice Franke,2, ³ Julian J. Krauth,2 Marc Diepold,2 Filippo Fratini,3 Laleh Safari,4 Jorge Machado,1, 5 Aldo Antognini,6, 7 Franz Kottmann,6 Paul Indelicato,5 Randolf Pohl,2 and José Paulo Santos1

1Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal.
2Max-Planck-Institute of Quantum Optics, D-85748 Garching, Germany.
3Atominstitut, Vienna University of Technology, A-1020 Vienna, Austria
4IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria.
5Laboratoire Kastler Brossel, École Normale Supérieure, CNRS, Université P. et M. Curie – Paris 6, Case 74, 4, Place Jussieu, F-75252 Paris CEDEX 05, France.
6Institute for Particle Physics, ETH Zurich, CH-8093 Zurich, Switzerland.
7Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.

(Dated: Received: September 4, 2015)

Quantum interference between energetically close states is theoretically investigated, with the state structure being observed via laser spectroscopy. In this work, we focus on hyperfine states of selected hydrogenic muonic isotopes, and on how quantum interference affects the measured Lamb shift. The process of photon excitation and subsequent photon decay is implemented within the framework of nonrelativistic second-order perturbation theory. Due to its experimental interest, calculations are performed for muonic hydrogen, deuterium, and helium-3. We restrict our analysis to the case of photon scattering by incident linear polarized photons and the polarization of the scattered photons not being observed. We conclude that while quantum interference effects can be safely neglected in muonic hydrogen and helium-3, in the case of muonic deuterium there are resonances with close proximity, where quantum interference effects can induce shifts up to a few percent of the linewidth, assuming a pointlike detector. However, by taking into account the geometry of the setup used by the CREMA collaboration, this effect is reduced to less than 0.2% of the linewidth in all possible cases, which makes it irrelevant at the present level of accuracy.

PACS numbers: 32.70.Jz, 36.10.Ee, 32.10.Fn, 32.80.Wr

I. INTRODUCTION

Quantum interference (QI) corrections were introduced in the seminal work of Low [1], where the quantum electrodynamics (QED) theory of the natural line profile in atomic physics was formulated. These corrections go beyond the resonant approximation and set a limit for which a standard Lorentzian line profile can be used to describe a resonance. Often referred to as nonresonant corrections [2–4], they contain the full quantum interference between the main resonant channel and other non-resonant channels, which leads to an asymmetry of the line profile. Therefore, the fitting of spectroscopy data with Lorentzian profiles becomes ambiguous, since it leads to energy shifts that depend on the measurement process itself [2–5]. A careful analysis of the limits of the resonance approximation is thus mandatory for high-precision optical and microwave spectroscopy experiments.

The first calculation of QI was made for the Lamb shift in hydrogen-like (H-like) ions and for the photon scattering case [1]. It was found to be relatively small, of the order of δ_{QI}/Γ ≈ α(αZ)^2, compared to the linewidth Γ. Here δ_{QI} is the line shift due to QI, α is the fine structure constant and Z is the atomic number. Thus, for some time, little interest has been addressed to these corrections in optical measurements of H-like ions. Since the late 1990s, high-precision measurements of the 1s – 2s transition frequency in hydrogen renewed the interest in these corrections [6–8]. Numerous theoretical calculations of QI were then made for H-like ions [3, 4, 9–10] with astrophysical interest [11] and application to laser-dressed atoms [12]. QI has also been studied in other atomic systems and processes during the last decades, mainly because near and crossed resonances of hyperfine states can enhance the QI effects [13–19]. QI effects have been shown to be responsible for discrepant measurements of the helium fine structure [20, 21] and the lithium charge radii determined by the isotope shift [5].

The lithium experiment [5] gives a beautiful experimental demonstration of the geometry dependence of the QI effect. Very recently, QI effects in two-photon frequency-comb spectroscopy have been investigated, too [22].

In this work, we calculate the QI shifts for 2s→2p transitions in H-like muonic atoms with hyperfine structure. The physical process considered here is the photon scattering of initial 2s states to final 1s states, with an in-
Photon scattering is a two-step process consisting of photon excitation with subsequent photon decay, which is formally equivalent to Raman anti-Stokes scattering. It is described by second-order theories (e.g. Kramers-Heisenberg formula [35, 36], or S-matrix [36], which overall converge to the following scattering amplitude (velocity gauge and atomic units) from initial to final states [20, 35, 36],

$$\mathcal{M}_{i\rightarrow f} = \sum_\nu \left[\frac{(f | \alpha \mathbf{p} \cdot \varepsilon_2 | \nu) (| \alpha \mathbf{p} \cdot \varepsilon_1 | i)}{\omega_{\nu i} - \omega_2 - i\Gamma_2/2} \right] + \frac{(f | \alpha \mathbf{p} \cdot \varepsilon_1 | | \nu) (| \alpha \mathbf{p} \cdot \varepsilon_2 | i)}{\omega_{\nu i} - \omega_1 - i\Gamma_1/2}, \tag{1}$$

where $| i \rangle$, $| \nu \rangle$, and $| f \rangle$ represent the initial, intermediate and final hyperfine states of the muonic atom or ion. $\omega_{\nu i} = E_\nu - E_i$ is the transition frequency between $| \nu \rangle$ and $| i \rangle$. The dipole approximation, $\alpha \mathbf{p} \cdot \varepsilon_\gamma$ (\(\gamma = 1, 2 \)) is used, where, \mathbf{p} is the linear momentum operator and ε_γ is the incident (scattered) photon polarization. The summation over the intermediate states $| \nu \rangle$ runs over all solutions

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{State} & \textbf{Energy Differences (GHz)} & \textbf{Widths (meV)} \\
\hline
$2s_{1/2}$ & 2.5520 & 22.83 \\
$2p_{1/2}$ & 5.1631 & 213.53 \\
$2p_{3/2}$ & 5.5416 & 225.88 \\
$2p_{3/2}$ & 5.5410 & 229.12 \\
Γ_{2p} & 18.5 & 0.0765 \\
\hline
$2s_{1/2}$ & 1.485 & 6.143 \\
$2p_{1/2}$ & 4.9680 & 205.46 \\
$2p_{3/2}$ & 5.0182 & 207.54 \\
$2p_{3/2}$ & 5.2016 & 215.12 \\
$2p_{3/2}$ & 5.2104 & 215.49 \\
$2p_{3/2}$ & 5.2286 & 216.24 \\
Γ_{2p} & 19.5 & 0.0806 \\
\hline
$2s_{1/2}$ & 4.4143 & 171.40 \\
$2p_{1/2}$ & 3.1145 & 1288.08 \\
$2p_{1/2}$ & 3.2563 & 1346.71 \\
$2p_{3/2}$ & 3.4786 & 1438.63 \\
$2p_{3/2}$ & 3.5373 & 1462.92 \\
Γ_{2s} & 318.7 & 0.1318 \\
\hline
\end{tabular}
\end{table}

a Calculated in the present work.
where the second summation over \(F_k \) uniquely defined by \(\nu \). The scattered photon’s polarization is not observed in our measurements and is thus not illustrated.

of the Dirac spectrum of the muonic atom (ion) with hyperfine structure. All states are considered with a well-defined total atomic angular momentum \(F \), projection along the quantified axis \(m \), and total orbiting particle angular momentum \(J \) \[37\], thus the contribution of off-diagonal terms (mixing between the \(2p_{1/2}^F \) and \(2p_{3/2}^F \) states) \[38\] is considered null. \(\Gamma_\nu \) is the full width at half maximum for an isolated Lorentzian line of the excited \(\nu \) states) \[38\] is considered null. \(\Gamma_\nu \) is the full width at half maximum for an isolated Lorentzian line of the excited state, where we assume \(\Gamma_{2p_f} = \Gamma_{2p} \).

The incident photon energies studied in this work comprise the near-resonant region of the \(2s \rightarrow 2p \) transitions. This includes only the resonances illustrated in Fig. 1. Hence, we restrict the summation \(\nu \) to the \(2p \) states of the \(\nu_2 \nu_3 \nu \) first part of the right side of Eq. (1).

Energy conservation leads to \(E_i - E_f = \omega_2 - \omega_1 \) between the initial (\(E_i \)) and final (\(E_f \)) energy states and the energy of the incident (\(\omega_i \)) and scattered (\(\omega_f \)) photons; thus only one of the photon energies is independent. Using this relation, it is convenient to introduce the energy sharing parameter \(u = \omega_i/\omega_f \) defined by the fraction of the incident photon energy relative to the lowest resonant energy \(\omega_r \) of a given muonic atom with initial \(F_i \) (see Fig. 1).

Motivated by the experimental configuration, we consider incident photons having linear polarization and non-observation of scattered photon’s polarization, as illustrated in Fig. 2 \[39\]. If we define the scattering plane, containing both photon momenta (\(k_1 \) and \(k_2 \)), then a single polar angle \(\theta \) is sufficient for describing the angular distribution of \(k_2 \).

The corresponding differential cross section of the amplitude in Eq. (1) for all the mentioned approximations is given by \[36\]

\[
\frac{d\sigma}{d\Omega}(u, \theta, \chi) = \frac{1}{(2F_i + 1)} \sum_{m, F_i, m_f, J_f} \left| \mathcal{M}_{F_i \rightarrow F_f} \right|^2 \approx \frac{\omega_i^2 u^2 f_i^2}{(2F_i + 1)} \sum_{m, F_i, m_f, J_f} \sum_{F_i, m_i, J_i} \left| \frac{\bar{S}_{m_f J_f} \left(\frac{\bar{\omega}_f u_f}{u - i\Gamma_f/2} \right)}{\bar{\omega}_i - u - i\Gamma_i/2} \right|^2,
\]

where \(\bar{\omega}_i = \omega_i/\omega_r \), \(\bar{\Gamma}_i = \Gamma_i/\omega_r \), and \(u_f = u + \omega_f \). In Eq. (2), it is assumed that the initial state of the atom is unpolarized and that the level and magnetic sub-levels of the final state, as well as the scattered photon’s polarization (\(\varepsilon_2 \)) remains unobserved in the scattering process. \(D_{F_i m_i J_i}^{F_f m_f J_f} \) are the dipole matrix elements (length gauge). Equation (2) can be further rearranged as a sum of Lorentzian components \(\Lambda^{F_i F_f}_{J_i J_f}(\theta, \chi) \), and cross terms \(\Xi^{F_i F_f}_{J_i J_f}(\theta, \chi) \), similar to Ref. \[35\]. For our particular geometry and atomic system, the result is given by

\[
\frac{d\sigma}{d\Omega}(u, \theta, \chi) = \frac{\omega_i^2 u^2 f_i^2}{(2F_i + 1)} \sum_{\nu_2 \nu_3 \nu} \sum_{J_f, J_f'} \left(\sum_{F_i, m_i, J_i} \frac{\Lambda^{F_i F_f}_{J_i J_f}(\theta, \chi)}{(\bar{\omega}_i - u - i\Gamma_i/2)(\bar{\omega}_i + u - i\Gamma_i/2)} \right) \left(\frac{\bar{\omega}_f u_f}{u - i\Gamma_f/2} \right),
\]

where the second summation over \(F'_i \) and \(J'_i \) runs for non-repeated values of \(F_i \) and \(J_i \) of the first summation.
contain all the polarization and geometrical dependencies. $D^{F_{m_j},J_{i},J_{f_i}}_{F_{j_i},J_{j_i}}(\theta, \chi, \varepsilon_2)$ and $S_{J_f i}$ are given in the Appendix.

The differential cross section of Eqs. (2) and (3) contains a coherent summation over resonant excitation channels; thus it takes into account channel-interference between neighboring resonances. However, as can be observed in Eq. (3), if cross terms Ξ were removed, it reduces to an incoherent sum of independent Lorentzian profiles. The QI effects are thus included in those cross terms.

III. RESULTS AND DISCUSSION

In this section, we present and discuss results for the QI contribution in several muonic atoms taking into account Eqs. (3) and (4), first assuming a pointlike detector and later the CREMA geometry. The influence of the geometric and polarization conditions on the QI is well described in Ref. [5] and is reproduced in the present work. We thus restrict our geometrical settings to the perpendicular observation ($\theta = 90^\circ$) of scattered photons and to the case of horizontally and vertically polarized photons with respect to the scattering plane ($\chi = 0^\circ$ and $\chi = 90^\circ$). Figure 3 displays the scattering cross section for the $2s \rightarrow 2p \rightarrow 1s$ processes in μ^1H and μ^2H, on one hand, having the full coherent summation of Eq. (2) (i.e. with QI), on the other hand, having the summation restricted to only the Lorentzian terms [neglecting cross-terms in Eq. (3)]. The peaks correspond to the respective transitions shown in Fig. 1. As it is observed, the influence of QI is more noticeable in regions between resonances, where no dominant excitation channels exist. Close to resonances, the influence of QI is approximately equivalent to shifting the peak position, as shown in the zoom plot of Fig. 3.

We determine this shift in each resonance by generating a pseudo spectrum that follows the theoretical profile of Eq. (3) and fitting it with an incoherently sum of Lorentzians (as performed in the data analysis of the CREMA experiments). Fits are done using the ROOT/MINUIT package [40]. All fit parameters (position, amplitude, and linewidth) are free fit parameters for each transition. The fit range is chosen sufficiently large, such that the fit results do not depend on it. The shifts of the fitted resonance position, δ_{fit}, normalized to Γ_{2p}, for each resonance and muonic atoms are given in Table II. Overall, with the exception of some resonances in μ^2H, QI produces relative shifts δ_{fit} less than 3% of Γ_{2p}. For μ^1H and μ^3He^+, the shifts are of the order of $\sim 0.2\% - 1.7\%$ (~ 36 MHz–310 MHz) and $\sim 0.2\% - 3.2\%$ (~ 0.6 GHz–10 GHz) of their linewidths, respectively.

The observed discrepancy (proton radius puzzle) of ~ 75 GHz (0.31 meV) [31, 32] at the $2p_{3/2}^F=1$ resonance corresponds to 4 linewidths. Hence, it is much larger than any possible QI contribution. Moreover, this resonance is ~ 7 times more intense than the closest resonance $2p_{3/2}^F=1/2$ (see Fig. 3), which minimizes the QI shift in this resonance. The values presented in Table II for μ^1H and μ^3He^+ have the same order as the respective ones given by the rule-of-thumb for distant resonances ($\delta_{\text{fit}} \sim \Gamma_{2p}^2/4\Delta$ with Δ being the energy difference between two resonances) [10]. Apart from this, relatively low intensity resonances, like $2p_{3/2}^F=1$ in μ^3He^+, can have higher QI contributions due to a high intensity resonance nearby.

On the other hand, the resonances $2p_{3/2}^F=1/2$ and $2p_{3/2}^F=3/2$ in μ^2H are more sensitive to QI effects not only due to their close proximity (87 GHz), but also due to the intensities being comparable within a factor of ~ 0.7. In this case, the QI shifts can be up to 12% of Γ_{2p} (~ 2 GHz).

Applying the previously calculated cross sections to the geometry of the CREMA setup leads to considerable cancellations of the quantum interference effect.

Figure 4 sketches the experimental geometry. Muonic atoms (ions) are formed in an elongated gas volume.
the observed QI effect. Again, we create pseudo data for stopping volume results in a considerable reduction of accepted by the detector, while averaging over the muon polarization (ξ_1). Integrating Eq. (3) over all possible angles in the muon stop volume, and the photons of the $2^s \rightarrow 2^p$ transitions are detected by two x-ray detectors (14×150 mm2 active area each) placed 8 mm above and below the muon beam axis.

The simplest situation is that the $2^s \rightarrow 2^p$ excitation takes place anywhere in the muon stop volume, and the photons of the $2^p \rightarrow 1^s$ decay are detected anywhere on the detectors surfaces. We consider here the laser’s propagation (k_1) and polarization (ε_1) directions being along e_1 and e_3, respectively. Integrating Eq. (3) over all possible angles χ accepted by the detector, while averaging over the muon stopping volume results in a considerable reduction of the observed QI effect. Again, we create pseudo data for the real geometry, fit the resonances with a simple sum of Lorentzians, and determine the resulting shift δ_{QI} of the line centers. We notice that taking into account the scattered photons at $\theta \neq 90^\circ$ and also the inhomogeneous muon stop probability, hardly affects the final results. As can be seen in Table II these shifts are much lower than the experimental accuracy of a few % of the linewidth for all muonic atoms considered here [31, 32].

| μ^1H | $|\xi\rangle$ | $|\nu\rangle$ | δ^\perp_{QI} (%) | δ^\parallel_{QI} (%) | δ_{QI} (%) |
|---------|---------|---------|----------------|----------------|----------------|
| $2s_{1/2}$ | $2p_{1/2}$ | $2p_{1/2}$ | $2p_{3/2}$ | $2p_{3/2}$ |
| $2s_{1/2}$ | $2p_{3/2}$ | 0.4 | -1.7 | 0.01 |
| $2s_{1/2}$ | $2p_{3/2}$ | 0.8 | 1.6 | -0.02 |

| μ^3He$^+$ | $|\xi\rangle$ | $|\nu\rangle$ | δ^\perp_{QI} (%) | δ^\parallel_{QI} (%) |
|---------|---------|---------|----------------|----------------|
| $2s_{3/2}$ | $2p_{1/2}$ | $2p_{3/2}$ | $2p_{5/2}$ | $2p_{5/2}$ |
| $2s_{3/2}$ | $2p_{3/2}$ | 0.3 | -1.2 | 0.01 |
| $2s_{3/2}$ | $2p_{3/2}$ | 0.5 | 0.09 | -0.01 |

| μ^2H | $|\xi\rangle$ | $|\nu\rangle$ | δ^\perp_{QI} (%) | δ^\parallel_{QI} (%) |
|---------|---------|---------|----------------|----------------|
| $2s_{3/2}$ | $2p_{1/2}$ | $2p_{3/2}$ | $2p_{5/2}$ | $2p_{5/2}$ |
| $2s_{3/2}$ | $2p_{3/2}$ | 0.3 | 0.7 | -0.01 |
| $2s_{3/2}$ | $2p_{3/2}$ | 0.5 | 1.0 | -0.01 |

IV. CONCLUSION

We quantified the line shift caused by quantum interference for μ^1H, μ^3He$^+$ and μ^3H$^+$ resonances, assuming first a pointlike detector. For μ^1H, the resulting shifts are small. Hence, quantum interference cannot be the source of the proton radius puzzle, which requires a shift of the resonance in μ^1H by four linewidths [31, 32]. On the other hand, the influence of quantum interference for some resonances of μ^3H$^+$ can be as large as 12% of the linewidth for a pointlike detector.

However, we verified that even for those large QI shifts, obtained assuming a pointlike detector, the angular averaging caused by the large acceptance angle of the photon detector and the size of the muon stop volume in the CREMA experiment significantly reduces this effect to negligible values at the present level of accuracy.

ACKNOWLEDGMENTS

This research was supported in part by Fundação para a Ciência e a Tecnologia (FCT), Portugal, through the projects No. PEstOE/FIS/UI0303/2011 and of 5×12×190 mm3 that is illuminated from the side using a pulsed laser [11, 12] and a multipass cavity [13]. The 2p → 1s photons emitted after laser-induced 2s → 2p transitions are detected by two x-ray detectors (14×150 mm2 active area each) placed 8 mm above and below the muon beam axis.

![Image](https://via.placeholder.com/150)

FIG. 4. (Color online) Simplified view of the CREMA target volume. Muons enter the gas target from the left (blue arrow). The gray cuboid indicates the muon stop volume which is illuminated by a laser pulse propagating inside a multipass cavity (red arrows). The incoming direction and polarization are indicated by k_1 and ε_1. The pointlike detector assumption treats the case where the muonic atom is at the center (red circle) and the scattered photon k_3 is emitted along ε_2 and hits the top detector in the center (black circle).
with the photon can start by simply expanding the product of the photon averaged using standard angular reduction methods, which for illuminating discussions.

The dipole matrix elements $D_{FmJ'}^{FmJ}$ in Eq. (2) are evaluated using standard angular reduction methods, which can start by simply expanding the product of the photon polarization and the position vector $(\varepsilon_\gamma \cdot \mathbf{r})$ in a spherical basis, i.e.,

$$D_{FmJ'}^{FmJ} = \langle \beta' F' m' J' | \varepsilon_\gamma \cdot \mathbf{r} | \beta F m J \rangle =
\sum_{\lambda=-1}^{1} (-1)^\lambda \varepsilon_{\gamma}^{\lambda} \langle \beta' F' m' J' | r_\lambda | \beta F m J \rangle .$$

(A1)

where β contains all additional quantum numbers of the atomic state besides F, m and J. Following the geometry and nomenclature of Fig. 2, the spherical form of the (normalized) polarization vectors are given by

$$\varepsilon_{\gamma}^{(±1)} = \mp \frac{(\cos \chi_1 ± i \sin \chi_1)}{\sqrt{2}}, \quad \varepsilon_{i}^{(0)} = 0,$$

$$\varepsilon_{2}^{(±1)} = \mp \frac{(\cos \chi_2 \cos \theta ± i \sin \chi_2)}{\sqrt{2}}, \quad \varepsilon_{2}^{(0)} = -\cos \chi_2 \sin \theta ,$$

(A2)

where $\chi \equiv \chi_1$.

The matrix elements of r_λ can be further simplified by making use of the Wigner-Eckart theorem [47] and considering the overall atomic state being the product coupling of the nucleus and electron angular momenta, i.e.,

$$|\beta F m \rangle = \sum_{m_{1}m_{J}} \langle J m_{1} I m_{1} | F m \rangle |I m_{1} | \langle \beta J m_{J} \rangle .$$

(A3)

Here, the quantities $\langle j_{1} m_{1} j_{2} m_{2} j_{3} m_{3} \rangle$ stand for the Clebsch-Gordan coefficients. After employing sum rules of Clebsch-Gordan coefficients [47], we get

$$\langle \beta' J' | r_\lambda | \beta J \rangle = (-1)^{J' - 1/2} \sqrt{J' J} \begin{pmatrix} J & I & F' \\ 1/2 & 0 & -1/2 \end{pmatrix} \langle j' | r | n \rangle ,$$

(A5)

provided that $L' + L + 1$ is even, where L is the orbital angular momentum of the atomic state. Combining Eqs. (A4) and (A5) and rearranging the terms, the quantities $S_{J_{f} \nu_{i}}$ and $\Omega_{J_{f} J_{i} J_{f}'} (\theta, \chi, \eta, \varepsilon_{2})$ of Eqs. (3) and (4) can be written as

$$S_{J_{f} \nu_{i}} = \langle n_{j} | r | n_{\nu} \rangle \langle n_{\nu} | r | n_{i} \rangle = \int r^{3} R_{f} R_{\nu} dr \int r^{3} R_{\nu} R_{i} dr = -\frac{128 \sqrt{2}}{27 (m_{2} n_{2} Z)^{2}} ,$$

(A6)

and

$$\Omega_{J_{f} J_{i} J_{f}'} (\theta, \chi, \eta, \varepsilon_{2}) = |J_{f}, \nu_{f} \rangle \begin{pmatrix} J_{f} & 1/2 & 0 \\ J_{i} & 1/2 & 0 \end{pmatrix} \begin{pmatrix} J_{i} & 1/2 & 0 \\ -1/2 & 0 & -1/2 \end{pmatrix} \begin{pmatrix} F_{f} & 1 \nu_{f} \\ J_{f} & I \ J_{i} \end{pmatrix} \begin{pmatrix} F_{\nu} & 1 \nu \ \\ J_{\nu} & I \ J_{\nu} \end{pmatrix} \theta_{F_{f} F_{i}} ,$$

(A7)

with

$$\theta_{F_{f} F_{i}} = \sum_{\lambda_{1}, \lambda_{2}} \sum_{m_{\nu}} (-1)^{\lambda_{1} + \lambda_{2} + m_{\nu} + m_{J} + 1} \varepsilon_{1}^{\lambda_{1}} \varepsilon_{2}^{\lambda_{2}} \begin{pmatrix} F_{\nu} & 1 \nu \\ -m_{\nu} & m_{\nu} \end{pmatrix} \begin{pmatrix} F_{\nu} & 1 \nu \\ -m_{\nu} & m_{\nu} \end{pmatrix} \theta_{F_{f} F_{i}} .$$

(A8)

The functions R in Eq. (A6) stand for the radial non-relativistic wavefunctions, which for the case of $2s \rightarrow
2p → 1s gives the numerical result shown on the right side of Eq. (A6). The quantity \(m_\mu \gamma \) on the angle radiation pattern of the scattered photon depends only the muon-nucleus reduced mass and the electron mass.

In case of incident linear polarized photons, the dipole radiation pattern of the scattered photon depends only on the angle \(\gamma \) between the incident polarization and the direction of the scattered photon, which is related to the previous angles by \(\cos \gamma = \cos \chi \sin \theta \). \(\Lambda_{J_i,\nu_i}^{F_i,F_i'}(\theta, \chi) \) and \(\Xi_{J_i,\nu_i}^{F_i,F_i'}(\theta, \chi) \) are parametrized in terms of this angle \(\gamma \) by \(a_0 + a_2 P_2(\cos \gamma) \) and \(b_0 P_2(\cos \gamma) \), respectively. The respective coefficients calculated using Eq. (A7) are listed in Table III.

Table III. Values of the coefficients \(a_0, a_2 \) and \(b_2 \) corresponding to the parametrizations \(\Lambda_{J_i,\nu_i}^{F_i,F_i'}(\theta, \chi) = a_0 + a_2 P_2(\cos \gamma) \) and \(\Xi_{J_i,\nu_i}^{F_i,F_i'}(\theta, \chi) = b_2 P_2(\cos \gamma) \).

\(I \)	\(F_i \)	\(F_i' \)	\(J_i \)	\(\nu_i \)	\(J_i' \)	\(\nu_i' \)	\(a_0 \)	\(a_2 \)	\(b_2 \)
1/2	0	1	1/2	1	3/2	2/81	0	-4/81	
0	1	3/2	-	-	4/81	-2/81	-		
1	1	1/2	1	3/2	4/81	0	-2/81		
1	1	1/2	2	3/2	4/81	0	-2/27		
1	1	3/2	2	3/2	2/81	1/162	-1/27		
1	2	3/2	1	3/2	10/81	-7/162	-		
1	1/2	1/2	3/2	3/2	4/729	0	-8/729		
1/2	1	3/2	3/2	1/2	32/729	0	-32/729		
1/2	3/2	3/2	-	-	40/729	-4/729	-		
3/2	1/2	1/2	3/2	3/2	32/729	0	-32/405		
3/2	1/2	1/2	5/2	3/2	32/729	0	-32/405		
3/2	1/2	3/2	3/2	1/2	4/729	0	-4/729		
3/2	3/2	3/2	3/2	3/2	4/729	0	-16/3645		
3/2	3/2	3/2	5/2	3/2	4/729	0	-16/3645		
3/2	3/2	1/2	5/2	3/2	4/729	0	-16/3645		
3/2	3/2	3/2	5/2	3/2	4/729	0	-16/3645		
3/2	3/2	3/2	5/2	3/2	4/729	0	-16/3645		
3/2	5/2	3/2	-	-	4/27	-28/675	-		

1. F. Low, Phys. Rev., 88, 53 (1952)
2. L. Labzowsky, V. Karasiev, and I. Goidenko, J. Phys. B, 27, L439 (1994)
3. L. N. Labzowsky, D. A. Solovyev, G. Plunien, and G. Soff, Phys. Rev. Lett., 87, 143003 (2001)
4. L. Labzowsky, G. Schedrin, D. Solovyev, E. Cher-novskaya, G. Plunien, and S. Karshenboim, Phys. Rev. A, 79, 052506 (2009)
5. R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, Phys. Rev. A, 87, 032504 (2013)
6. A. Huber, B. Gross, M. Weitz, and T. W. Hänsch, Phys. Rev. A, 59, 1844 (1999)
7. M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, Phys. Rev. Lett., 84, 5496 (2000)
8. C. G. Parthey, A. Matveev, J. Alins, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem, T. Wilken, N. Kolachesky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, and T. W. Hänsch, Phys. Rev. Lett., 107, 203001 (2011)
9. U. D. Jentschura and P. J. Mohr, Can. J. Phys., 80, 633 (2002)
10. L. N. Labzowsky, G. Schedrin, D. Solovyev, and G. Plunien, Can. J. Phys., 85, 585 (2007)
11. S. G. Karshenboim and V. G. Ivanov, Astron. Lett., 34, 289 (2008)
12. U. D. Jentschura, J. Evers, M. Haas, and C. H. Keitel, Phys. Rev. Lett., 91, 253601 (2003)
13. P. A. Franken, Phys. Rev., 121, 508 (1961)
14. R. Walkup, A. L. Migdall, and D. E. Pritchard, Phys. Rev. A, 25, 3114 (1982)
15. C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, Phys. Rev. Lett., 107, 023001 (2011)
16. M. Horbatsch and E. A. Hessels, Phys. Rev. A, 82, 052519 (2010)
17. A. Marsman, M. Horbatsch, and E. A. Hessels, Phys. Rev. A, 86, 012510 (2012)
18. A. Marsman, M. Horbatsch, and E. A. Hessels, Phys. Rev. A, 86, 040501 (2012)
19. A. Marsman, E. A. Hessels, and M. Horbatsch, Phys. Rev. A, 89, 043403 (2014)
20. A. Marsman, M. Horbatsch, and E. A. Hessels, Phys. Rev. A, 91, 062506 (2015)
21. A. Marsman, M. Horbatsch, and E. A. Hessels, Journal of Physical and Chemical Reference Data, 44, 031207 (2015)
22. D. C. Yost, A. Matveev, E. Peters, A. Beyer, T. W.
