MetaFunPrimer: an Environment-Specific, High-Throughput Primer Design Tool for Improved Quantification of Target Genes

Jia Liu,a,f,g Paul Villanueva,a,f Jinlyung Choi,a,g Santosh Gunturu,c,h Yang Ouyang,b,h Lisa K. Tiemann,b,h James R Cole,b,c,h Kathryn R. Glanville,a,g Steven J. Hall,d Marshall D. McDaniel,e,g Jaejin Lee,a,g Adina Howe,a,f,g

aDepartment of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
bDepartment of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
cCenter for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
dDepartment of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
eDepartment of Agronomy, Iowa State University, Ames, Iowa, USA
fBioinformatics and Computational Biology Department, Iowa State University, Ames, Iowa, USA
gCenter for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
dOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA

Jia Liu and Paul Villanueva contributed equally to this work. Author order was determined by amount of leading contribution.

ABSTRACT Genes belonging to the same functional group may include numerous and variable gene sequences, making characterizing and quantifying difficult. Therefore, high-throughput design tools are needed to simultaneously create primers for improved quantification of target genes. We developed MetaFunPrimer, a bioinformatic pipeline, to design primers for numerous genes of interest. This tool also enables gene target prioritization based on ranking the presence of genes in user-defined references, such as environment-specific metagenomes. Given inputs of protein and nucleotide sequences for gene targets of interest and an accompanying set of reference metagenomes or genomes, MetaFunPrimer generates primers for ranked genes of interest. To demonstrate the usage and benefits of MetaFunPrimer, a total of 78 primer pairs were designed to target observed ammonia monooxygenase subunit A (amoA) genes of ammonia-oxidizing bacteria (AOB) in 1,550 publicly available soil metagenomes. We demonstrate computationally that these amoA-AOB primers can cover 94% of the amoA-AOB genes observed in the 1,550 soil metagenomes compared with a 49% estimated coverage by previously published primers. Finally, we verified the utility of these primer sets in incubation experiments that used long-term nitrogen fertilized or unfertilized soils. High-throughput quantitative PCR (qPCR) results and statistical analyses showed significant differences in relative quantification patterns between the two soils, and subsequent absolute quantifications also confirmed that target genes enumerated by six selected primer pairs were significantly more abundant in the nitrogen-fertilized soils. This new tool gives microbial ecologists a new approach to assess functional gene abundance and related microbial community dynamics quickly and affordably.

IMPORTANCE Amplification-based gene characterization allows for sensitive and specific quantification of functional genes. There is often a large diversity of genes represented for functional gene groups, and multiple primers may be necessary to target associated genes. Current primer design tools are limited to designing primers for only a few genes of interest. MetaFunPrimer allows for high-throughput primer design for various genes of interest and also allows for ranking gene targets by their presence and abundance in environmental data sets. Primers designed by this tool improve the characterization and quantification of functional genes in
broad gene amplification platforms and can be powerful with high-throughput qPCR approaches.

KEYWORDS primer design, environment-specific, quantitative PCR, functional gene quantification, nitrification

Diverse microbes in our surrounding environments are key drivers of nutrient cycling and energy conversion necessary for our lives (1–3). To understand the role of these microbes in the environment, we characterize their community composition and structure, their diversity, and their function under various conditions. Efforts for characterizing microbiomes have been aided by the development of molecular techniques to amplify genes of interest in combination with their subsequent sequencing. Specifically, 16S rRNA gene amplicon sequencing has enabled high-throughput characterization of taxa or gene composition to inform community structure (4, 5). These methods are often limited to characterizing phylogenetic markers within a community and are not optimized for functional genes within microbial communities.

To characterize the functional potential of microbes, several approaches can be used. One method is to isolate and enrich representatives of a function of interest to identify and characterize functional traits and their hosts (6, 7). A challenge to this approach is that environmental microbes cultivated in the laboratory may not represent the microbes under actual environmental conditions (8–11). To complement the cultivation of isolates, culture-independent, sequencing-based approaches have been used to characterize functional genes (12–14). Specifically, metagenome sequencing of environmental DNA can be used to characterize diverse functional genes in environmental samples. However, it is often the case that these genes make up only a small fraction of the environmental DNA, which can result in a high cost to obtain desired but insufficient information of targeted functional genes (15). Another method to characterize functional genes is to target amplicons with PCR-based methods. Like 16S rRNA gene sequencing, these methods amplify certain target genes of interest. All amplicon-based approaches rely on the ability of primer sets to amplify these genes of interest. These primer sets and their subsequent amplifications are most effective if they are both sensitive and specific to target genes. Many existing primers have been developed based on gene sequences or genomes (16–19). In recent years, the increasing availability of metagenome sequencing has provided new opportunities for expanding or redesigning primers for target genes, especially for microbes that may not be cultivatable or have genomes available (20).

To capture as diverse a range of genes as possible, universal or degenerate primers have often been designed to quantify genes of interest. However, these primer pairs typically provide poor characterization at high specificity, especially when the target regions are short (21). An example of this limitation is community composition analysis through 16S rRNA amplicon sequencing using degenerate (universal) primer pairs for short variable regions. These primers are often limited to identifying microbes at the phylum, class, or order level and may not be reliable for identifying bacterial species or strains (22). Functional gene quantification using a degenerate primer set can also result in similar constraints, although an advantage to their usage is their ability to detect the presence of broad genes within a single assay.

PCR-based characterization of functional gene targets has recently been expanded with the development of high-throughput qPCR (HT-qPCR) platforms that can process thousands of PCRs in a single run and allows for numerous primer pairs and associated gene targets on a single run. In recent studies, hundreds of primer sets combined with HT-qPCR have been used simultaneously to characterize antibiotic resistance genes in environmental samples (23, 24). The emergence of HT-qPCR platforms increases the scale of PCR-based assays for functional genes of interest. Combined with novel gene information gained from metagenomes and new reference genomes, we can enhance our ability to characterize diverse functional genes in the environment; however, leveraging this technology is limited by a lack of software that allows users to design environment-specific primers for specific functional genes.
To address this need, we developed MetaFunPrimer, a pipeline that performs high-throughput primer design for targeting genes of interest identified in metagenome samples. This tool builds upon existing primer design software for developing PCR or qPCR primers, such as Primer3 (25), which can design primers for specific amplification conditions and product length outputs but are limited to a small number of primers and gene targets. MetaFunPrimer designs primers for targeted environmental-specific functional genes, evaluates these primers against hundreds of environmentally abundant functional genes, and characterizes the number of primer pairs that is required to capture the diversity in a given reference gene set.

Here, we demonstrate the use of MetaFunPrimer by designing primer pairs to target ammonia monooxygenase subunit A gene of ammonia-oxidizing bacteria (amoA-AOB) observed in soil as a specific target gene of interest. amoA-AOB genes were chosen as targets for functional primer design due to their important role in nitrogen cycling. amoA genes encode ammonia monooxygenase, an enzyme that is the main catalyst in ammonia oxidation. Ammonia oxidation is the first and rate-limiting step of the nitrification pathway which converts ammonia to nitrite and then to nitrate, the chemical form of nitrogen that may easily be lost from soils via leaching (26, 27). Generally, AOB species belong to either Betaproteobacteria or Gammaproteobacteria, which are subclasses of the class Proteobacteria, with the majority of AOB associated with genera Nitrosococcus, Nitrosomonas, and Nitrosospira (28, 29). amoA genes have been used previously as functional markers for analyzing AOB diversity (16, 30, 31), and several primer pairs for conserved regions of amoA-AOB genes have been used previously for studying its function (16–19).

In this study, we evaluate the diversity of amoA-AOB genes observed in 1,550 publicly available soil metagenomes, evaluate the sensitivity and specificity of previously published primers to detect these genes, and use MetaFunPrimer to design primers for available amoA-AOB gene sequences identified in these 1,550 soil metagenomes. To test the efficacy of the designed primers, we used them to characterize the amoA-AOB communities in a long-term agricultural experiment by crossing two crops (Zea mays L. and Miscanthus × giganteus Greef et Deu.) with two nitrogen (N) fertilizer rates (0 and 336 kg N ha⁻¹ y⁻¹). While this study focuses on amoA-AOB as a specific target gene of interest, MetaFunPrimer is broadly applicable to various genes of interest. An online tutorial of the use of MetaFunPrimer is available online at https://metafunprimer.readthedocs.io/en/latest/Tutorial.html.

RESULTS
The primer design steps for amoA-AOB genes using MetaFunPrimer include the following: (i) characterization of reference amoA-AOB genes, (ii) weighting of target genes based on their presence and absence in soil metagenomes, (iii) design of primers for selected genes, and (iv) computational primer evaluation through alignment to target genes (Fig. 1, Table 1).

Characterization of reference amoA-AOB genes. A curated set of functional genes for amoA-AOB was obtained from the Ribosomal Database Project Fungene (version 9.6) (32). The set included amino acid sequences, nucleotide sequences, and their corresponding NCBI accession numbers for a total of 1,205 amoA-AOB genes. We aimed to design a minimal set of primer pairs to detect as many target genes as possible based on the presence of these genes in given metagenomes. Thus, the first step was to rank reference genes through alignment against metagenome sequences. Representative sequences of reference genes were first selected by clustering sequences based on their amino acid sequence similarity. Among the 1,205 amoA-AOB protein sequences, many sequences were observed to have a high degree of similarity. When sequences were clustered from 80% to 100% amino acid similarity, we found that clustering sequences at greater than 96% similarity resulted in the largest increase in the resulting total unique clusters (Fig. 2). The choice of clustering by similarity percentage influences the number of primer pairs, assays, and diversity that can be captured for primer design. Users can vary their selection...
of the appropriate number of clusters based on their goals and resources. In our case, we chose clustering at 96% similarity, which resulted in a total of 60 clusters. We found that the representative sequences from each cluster covered a wide diversity of *amoA*-AOB, including the genera *Nitrosomonas*, *Nitrosococcus*, and *Nitrosospira* (see Fig. S1 in the supplemental material).

Weighting target genes based on soil metagenomes. The representative protein sequences from each cluster were aligned to 1,550 publicly available soil metagenomes (see Table S1 in the supplemental material), with high alignment defined as having 97% sequence identity over the length of the reference gene. Each *amoA*-AOB associated gene identified in soil metagenomes was then ranked based on two criteria, as follows: estimated gene abundance (the total number of observations of each gene within all the metagenome sequences) and prevalence (the number of unique metagenomes where the gene was observed) (see Table S2 in the supplemental material). The abundance and prevalence of each representative gene were then normalized separately before taking their mean value to calculate each representative sequence’s representation score (R-score). In our case, the clusters represented by the 10 representative sequences with the highest R-score accounted for a total of 720 *amoA*-AOB genes, comprising a total of 87% of the cumulative abundance of these genes observed in the soil metagenomes (Fig. 3).

Design of primers for selected genes. Given their representation in the soil metagenomes, we selected the nucleotide sequences of these 720 genes for further primer design. Embedded in MetaFunPrimer is EcoFunPrimer, which was developed by the Ribosomal Database Project (RDP) at Michigan State University (https://github.com/rdpstaff/EcoFunPrimer). EcoFunPrimer is a primer design tool which is capable of generating degenerate or nondegenerate primers based on input genes and parameters defined by the user. Using the 720 genes of interest identified above and allowing

TABLE 1 Data associated with MetaFunPrimer in the design of soil-abundant *amoA*-AOB genes

Data associated with MetaFunPrimer	Type	Results for this study
Curated *amoA*-AOB genes from functional gene database	Input	1,205 nucleotide and amino acid sequences
Soil metagenomes	Input	1,550 soil metagenomes
Optimal clustering similarity found (recommended by MetaFunPrimer) (%)	Parameter	96
Gene clusters included (recommended by MetaFunPrimer)	Parameter	10 gene clusters
Prioritized genes based on input 1 and 2; total no. of soil abundant *amoA*-AOB genes	Output	720 genes
Nondegenerate primers	Output	78 primer pairs
Total no. (%) of soil-abundant *amoA*-AOB genes targeted by final primer set	Output	676 (93.89)
at most 6 degenerate forms for each primer resulted in 20 degenerate and 8 nondegenerate primer pairs targeting amoA-AOB genes (see Table S3 in the supplemental material). MetaFunPrimer converted these 28 primer pairs into their nondegenerate forms, resulting in 181 single nondegenerate primer pairs and evaluated their amplification sequentially through in silico PCR against the 720 targeted reference genes. In some cases, EcoFunPrimer may generate multiple primer pairs for the same gene target; thus, our software optimizes and selects the minimal set of primer pairs that can exclusively target the maximal diversity of functional genes of interest. For our gene targets, this resulted in a final set of 78 nondegenerate primer pairs for this primer design (see Table S4 in the supplemental material). Overall, the resulting primer pairs were predicted to in silico amplify a total of 676 of the targeted 720 soil-abundant amoA-AOB genes observed from soil metagenomes.

Finally, to compare our designed primers to preexisting ones (see Table S5 in the supplemental material), we summarized previously published amoA-AOB primers (16–19) to single nondegenerate forms without ambiguity. The MetaFunPrimer in silico amplification procedure was performed using these primer pairs to evaluate their alignment to the 720 soil-abundant amoA-AOB genes. In total, 49% (356/720) of these genes would be detected using pre-existing primer pairs, while the primers designed by MetaFunPrimer resulted in 94% (676/720) detection (Table 2). The computational analysis showed that primers designed using MetaFunPrimer tend to have higher coverage than pre-existing primers within each of the 10 soil-abundant amoA-AOB clusters (Table 2). In cluster 3, for instance, 96% (273/285) of the amoA-AOB genes would be targeted by primers designed using MetaFunPrimer, while pre-existing primers would amplify only 19% (55/285) of these genes (Table 2).

Experimental validation. In order to validate the resulting 78 amoA-AOB primer pairs from MetaFunPrimer, we used 96 soil DNA samples obtained from an incubation experiment using agricultural soils from a long-term cropping system experiment that

![FIG 2](image-url) Number of amoA-AOB clusters found by CD-HIT over a range of percent similarity thresholds. A total of 60 clusters were selected based on 96% amino acid similarity of amoA-AOB genes (indicated by red point). Clusters were found using CD-HIT with a word size of 5 for each of the similarity thresholds indicated, and the 96% threshold was chosen based on first-order difference calculation.
had different nitrogen fertilizer treatment levels (0 and 336 kg N ha\(^{-1}\) y\(^{-1}\)). In total, we found the targets of 70 primer pairs were amplified in at least 3 soil samples, and 93 samples had both 16S rRNA gene amplification and multiple amplifications by amoA-AOB primer pairs. Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis distances (stress, 0.048) and analysis of similarities (ANOSIM) \((R = 0.66; P \leq 0.001)\) showed that amplifications of amoA-AOB genes from the two fertilizer rate groups were significantly different from one other (Fig. 4).

Based on the differences between the two fertilizer rate groups, six primer pairs were selected for further absolute quantifications with comparisons to synthetic standards for each targeted gene (see Table S6 in the supplemental material). The absolute gene copy numbers measured for each of the six primer pairs were significantly greater in soil receiving N fertilizer for 5 years \((t = 2.469, P \leq 0.001)\) (Fig. 5). The organisms associated with the amplified target genes are *Nitrosospira* sp. Wyke8 (amoA_AOB_p35) and *Nitrosolobus multiformis* (amoA_AOB_p31, amoA_AOB_p42, and amoA_AOB_p45).

FIG 3 Known amoA-AOB genes ranked by representation score (R-score, the mean of the scaled abundance and prevalence) and the estimated cumulative abundance of each gene in 1,550 soil metagenomes. The protein sequences in red indicate those amoA-AOB gene clusters and their associated genes that were selected for primer design based on the cumulative R-score in reference metagenomes.

TABLE 2 Comparison of amoA-AOB primers in the literature\(^a\) to those designed in this study

Soil-abundant amoA-AOB cluster	Gene representative	No. of gene sequences within each cluster	Targeting rate\(^b\) of Previously published primers	MetaFunPrimer primers
1	AAB38709	20	3 (15.00)	19 (95.00)
3	SEF68642	285	55 (19.30)	273 (95.79)
4	KO48008	320	255 (79.69)	304 (95.00)
5	AAC25057	65	30 (46.15)	53 (81.54)
6	AAL86637	5	3 (60.00)	3 (60.00)
7	AAL86638	11	10 (90.91)	11 (100.00)
28	ABM54175	2	2 (100.00)	2 (100.00)
29	ADZ75349	8	3 (37.50)	7 (87.50)
52	AFL48355	2	2 (100.00)	2 (100.00)
58	ADZ75355	2	2 (100.00)	2 (100.00)
Total		720	356 (49.44)	676 (93.89)

\(^a\) Detailed information of previously published primer pairs can be found in Table S5.

\(^b\) Target rate is the number of genes within the associated cluster that can be amplified by given primer sets divided by total number of genes in the cluster (%).
DISCUSSION

Amplicon-based approaches for characterizing functional genes provide an approach that strongly complements metagenome sequencing. In comparison to metagenome sequencing, HT-qPCR approaches have the potential to be more affordable and informative due to the targeted amplification of genes of interest and can be used for standardized surveys of microbial communities and their functions (33). The opportunities of HT-qPCR approaches and amplicon-based approaches depend strongly on the reliability of

FIG 4 Nonmetric dimensional scaling ordination (NMDS) plot of C values from 78 primer pairs designed by MetaFunPrimer for amplifying amoA-AOB DNA in 96 soil samples. Stress was 0.048. The color of the points indicates the fertilizer treatment each sample received (red for 0 kg N ha$^{-1}$ y$^{-1}$; blue for 336 kg N ha$^{-1}$ y$^{-1}$), and the dashed ellipses represent the 95% confidence intervals for each treatment group. The arrows indicate the factor loading of 6 primer pairs chosen for further analysis as described in the text.

FIG 5 Stacked bar plot of gene copy numbers amplified by the 6 amoA-AOB primer pairs identified for further analysis. HT-qPCR was used to quantify the gene copy number amplified by each of these 6 primer pairs in 96 soil samples across 2 different levels of fertilization treatment. The abundance of genes in the fertilized samples was significantly higher than that in the unfertilized samples ($t = -4.69, P < 0.001$).
primer design to target genes of interest (34). We introduce the MetaFunPrimer pipeline for high-throughput primer design and demonstrate its effectiveness by capturing a broad diversity of relevant genes associated with ammonia oxidation within soil metagenomes in combination with HT-qPCR.

Nitrogen cycling genes are one of the most challenging targets for amplicon approaches as they are carried by highly diverse microorganisms, including heterotrophic nitrifying microorganisms, denitrifying bacteria, anammox bacteria, nitrifying archaea, and denitrifying fungi (35). Previously, there have been numerous efforts to design primers for amoA and other nitrogen cycling genes (e.g., Table S5), but existing primers detect a limited range of the phylogenetically diverse genes and often result in misinterpretation (36). Our analysis supports these previous observations that currently existing primers capture less than one-half of the amoA-AOB genes in soil metagenomes. Using MetaFunPrimer, we developed 78 nondegenerate primer pairs to improve the quantification of these genes in soil metagenomes and increase the in silico detection of amoA-AOB genes from 49% coverage up to 94% coverage of observed genes in 1,550 soil metagenomes. Moreover, we demonstrate the usage of our designed primers in conjunction with HT-qPCR to detect the potential contributions of specific organisms to ammonia oxidation. By utilizing metagenome-derived sequences for primer design, this approach can expand our ability to detect uncharacterized bacterial species that play important roles in ammonia oxidation in the environment. Notably, in the 1,550 soil metagenomes used in this study, amoA-AOB genes account for less than 0.002% of reads in metagenome libraries and thus comprise only a fraction of each generated metagenome. In such cases where a gene of interest has a very low relative abundance, HT-qPCR approaches or even a conventional qPCR approach combined with MetaFunPrimer would allow a more sensitive detection of target genes.

In our amoA-AOB example, we aimed for a reasonable number of primer pairs (e.g., less than 100 primer pairs) to capture as many amoA-AOB genes in soils as possible. Generally, however, MetaFunPrimer inputs can be used to design primers for any user-inputted number of sequences, and this number could be varied to suit experimental capabilities or user-specific aims. Notably, some functional genes with higher sequence variability may require more primers than others. In cases where high sequence diversity exists, MetaFunPrimer will likely design numerous primer pairs, which may require numerous runs, even on HT-qPCR platforms. We have included various user options, such as the metagenome R-score, to help users rank and select the most relevant primer targets.

Another important attribute of MetaFunPrimer is the ability to rank target genes of primer design based on their presence in metagenomes. This feature allows for the selection of the most relevant genes based on previous observations of abundance and prevalence in reference metagenomes. Additionally, the selection of metagenomes as a reference for selecting primers can also be varied. For example, one could use inputs of metagenomes from only bioenergy-associated soils to prioritize microbial communities within specific agricultural sites. Alternately, genomes could be used as a reference for primer design, allowing users to weight primers for genes from known representatives.

Overall, we developed the MetaFunPrimer pipeline as a high-throughput primer design software and demonstrated its usage combined with HT-qPCR. This tool is appropriate for any targeted amplification platforms where primer design for specific genes of interests can be guided by available data sets, as we demonstrated in a recent paper which designed primers with the same approach and successfully measured microcystin-producing genes in hundreds of lake water samples (37). Within MetaFunPrimer, we also make available workflows for in silico comparisons of primers and gene targets. Similar to any primer design effort, further experimental validation is required, but computational efforts can help determine which candidates to test experimentally.
MATERIALS AND METHODS

MetaFunPrimer takes as inputs the nucleotide and protein sequences of genes of interest, a file containing the mapping between a gene's nucleotide and protein sequence, and gene sequences for prioritization (such as metagenomes). The output of the pipeline is a set of primers that can be used to amplify selected functional genes. The major steps of MetaFunPrimer are to filter and rank genes of interest based on both diversity and representation in inputs and then to design and evaluate primer sequences for genes of interest (Fig. 1).

Identifying environmentally representative gene clusters and determine target genes. The first step in the MetaFunPrimer pipeline is to cluster input protein sequences over a range of amino acid sequence similarity thresholds in order to determine an optimal or user-defined similarity threshold. Specifically, CD-HIT (38, 39) is used to cluster sequences in the range of 80% to 100% (with 1% increments) similarity to determine the number of clusters found at each threshold. MetaFunPrimer will recommend a similarity threshold that optimizes the first-order difference, a criterion based on the symmetric derivative (37) (https://github.com/jialiu232/MetaFunPrimer_paper_info.git). However, users can select the most appropriate cluster similarity threshold based on their needs.

Next, MetaFunPrimer evaluates the presence of these genes in user-input reference sequences, i.e., metagenomes. For each cluster, the representative protein sequence (identified by CD-HIT) is aligned to reference sequences using DIAMOND (version 0.9.14) (40, 41). Each representative protein sequence is then ranked based on their R-score in reference sequences (i.e., in our case study, soil metagenomes). The R-score is defined as the mean of that gene’s normalized abundance and prevalence among reference sequences. The representative genes for each cluster of sequences are ranked subsequently based on R-score in descending order, and gene clusters are included until the user-input threshold of the cumulative R-score (i.e., 80% in the case study) is reached. Genes that are associated with selected ranked clusters are considered genes of interest and consequently target genes for primer design and are converted into their corresponding nucleotide sequences.

Designing and evaluating primers for genes of interest. MetaFunPrimer uses selected gene sequences and user-defined parameters, such as amplicon product length and melting temperature ranges, for the subsequent primer design process (see Table S7 in the supplemental material). Within MetaFunPrimer, EcoFunPrimer is the primary tool used to design thermodynamically stable primer pairs from aligned nucleotide sequences. Depending on user-defined inputs, it is possible for primer outputs from EcoFunPrimer to have multiple degenerate forms. To evaluate primer effectiveness, MetaFunPrimer converts all primer outputs to nondegenerate forms (e.g., all possible primer pairs) of forward and reverse primers. Next, all primer pairs are evaluated via in silico PCR against the original set of reference genes provided by the user. A pair of primers was considered to amplify a gene product successfully if both the forward and reverse primers achieve a 100% match against a sequence. In some cases, a single reference gene may be targeted by multiple pairs of primers, and each primer pair can potentially target more than one gene. Thus, as a final step, MetaFunPrimer outputs the minimal number of primer sets to capture the maximum number of reference gene products (https://github.com/jialiu232/MetaFunPrimer_paper_info.git).

Sample collection and high-throughput quantification of amoA-AOB genes. Soil samples to test the 78 designed amoA-AOB primer pairs were from the Long-term Assessment of Miscanthus Productivity and Sustainability (LAMPS) site in Boone, IA (42°00'N, 97°44'W) (42). The 50-year mean annual temperature and precipitation from the site is 9.5°C and 895 mm, respectively. The soils are predominantly Webster clay loams (Typic Endoaquolls), Canisteo clay loam (Typic Endoaquolls), and Clarion loam (Typic Hapludolls); this information was accessed from Web Soil Survey (http://websoilsurvey.sc.egov.usda.gov; accessed 22 July 2021). Surface soil [0 (to 10 cm)] is characterized as having a wide range in pH (5.3 to 7.8), 11.1 deionized (DI) water, average cation exchange capacity (32.2 ± 1.9 cmol kg⁻¹), and soil organic matter (6.9% ± 2.8%) (43).

The LAMPS field experiment was established in 2015 and is arranged in a split-plot, randomized block design with four replications exposed to various experimental factors, including crop (maize versus Miscanthus) and urea nitrogen fertilizer rates. In the manuscript, we analyzed the effect of urea nitrogen fertilizer rates (0 and 336 kg N ha⁻¹ y⁻¹) on the AOB community. Composite soils were collected from four field replicates with a hammer core to a depth of 10 cm on 10 December to 11 December 2020. All field soil samples were divided into three additional treatment groups that had one of the following three treatments: (i) no additional treatment as control, (ii) 400 mg C kg⁻¹ in the form of glucose, and (iii) 60 mg N kg⁻¹ in the form of ammonium nitrate. Mesocosms were kept at room temperature (~23°C) and moisture (65% water-filled pore space [WFPS]) and vented once a week.

Surface soils were subsampled on days 5 and 87 of the incubation for DNA extraction. For 96 soil samples from the incubations (i.e., 2 crops × 2 fertilizer rates × 4 replicates × 3 additional treatments × 2 time points), genomic DNA was extracted using the epMotion 5075 liquid handler (Eppendorf, USA) following the protocol of MagAttract PowerSoil DNA EP kit (Qiagen, USA). The validation of 78 amoA-AOB primer pairs consisted of two steps using the Biomark HD high-throughput qPCR system (Fluidigm, USA). First, we observed the overall pattern of amplification through relative abundance calculated using the threshold cycle (C_T) values of all target genes. Next, we obtained absolute quantification of target genes using selected primer pairs. For the screening run containing 78 primer pairs and 96 samples, a single Biomark 96.96 dynamic array integrated fluidic circuit (IFC) (Fluidigm) was used, and the relative abundance was calculated using the C_T values of the genes of interest and the reference gene (i.e., 16S rRNA genes). The 96F7 (5'---CAACGGCAGAAACCTTACC-3') and 1194R (5'--ACGTCATCCCAACCTTCC-3') primer pair was used to amplify 16S rRNA genes (44). The assay conditions, including primer concentration, can be found in Text S1 in the supplemental material. Four Biomark Flex Six gene expression IFCs were used to get the absolute quantification of target genes. Each Flex Six IFC contained 4 primer pairs in triplicate,
48 soil DNA samples, and 24 standards (i.e., 6 dilutions for each primer pair). Ten-fold-diluted soil DNA samples were used as the templates without preamplification. To prepare standard DNA templates for the Flex Six runs, each target gene fragment (i.e., linear, 500-bp gene fragments, including target region) was synthesized through Integrated DNA Technologies (IA, USA). The synthesized DNA concentration was adjusted to 0.1 ng/ml, and 10-fold serial dilutions were prepared ranging from 1.62×10^3 to 1.62×10^5 gene copies per reaction. Standard curves were obtained from the Flex Six runs (see Fig. S2 in the supplemental material). The limit of detection for all assays was 5.46×10^4 gene copies per gram of soil. According to the manufacturer’s standard protocol, an IFC Controller HX (Fluidigm) was used for priming and loading the IFC. The default operating conditions were modified to 40 cycles of a 3-step PCR protocol (95°C for 15 s, 60°C for 30 s, and 72°C for 30 s) instead of 30 cycles of a 2-step PCR protocol.

Statistical analysis and selection of primer pairs for absolute quantification. Nonmetric multidimensional scaling (NMDS) with Bray-Curtis distance metrics was run to visualize the relative quantification results (i.e., C_v values of targeted amoA-AOB genes) obtained from the screening run using 96.96 IFCs. An analysis of similarities (ANOSIM) test with Bray-Curtis distance metrics and 9,999 permutations was used to test the effect of different fertilizer levels on the relative abundances. Through a correlation analysis using the envfit function in R, 6 of the 78 primer pairs were selected for absolute quantification, as follows: amoA_AOB_p12, amoA_AOB_p31, amoA_AOB_p35, amoA_AOB_p42, amoA_AOB_p45, and amoA_AOB_p70. Statistical analysis was run with R version 4.0.3. NMDS, ANOSIM tests, and correlation analysis were performed using R package “vegan.”

Data availability. For amoA-AOB primer design, 1,205 curated protein and corresponding nucleotide sequences and a file containing the mapping between each gene’s nucleotide and protein accession identifier (ID) were obtained from the Fungene database (32) by filtering for a Hidden Markov Model (HMM) search score of >400 and HMM coverage over 70.2% amino acid similarity. To prioritize these gene targets for amoA-AOB function in soils, we used 1,550 publicly available soil metagenomes (Table S1) as reference metagenomes for primer design.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TEXT S1, DOCX file, 0.02 MB.

FIG S1, DOCX file, 2.6 MB.

FIG S2, DOCX file, 2.3 MB.

TABLE S1, DOCX file, 0.1 MB.

TABLE S2, DOCX file, 0.02 MB.

TABLE S3, DOCX file, 0.02 MB.

TABLE S4, DOCX file, 0.02 MB.

TABLE S5, DOCX file, 0.02 MB.

TABLE S6, DOCX file, 0.02 MB.

TABLE S7, DOCX file, 0.01 MB.

ACKNOWLEDGMENTS

This work was funded by the DOE Center for Advanced Bioenergy and Bioproducts Innovation (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under award number DE-SC0018420). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Energy.

This work was conducted under the MMPRNT project, funded by the DOE BER Office of Science award DE-SC0014108.

REFERENCES

1. Yadav M, Verma MK, Chauhan NS. 2018. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol 200:203–217. https://doi.org/10.1007/s00203-017-1459-x.

2. Argiroff WA, Zak DR, Upchurch RA, Salley SO, Grandy AS. 2019. Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots. Glob Chang Biol 25:4369–4382. https://doi.org/10.1111/gcb.14770.

3. Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A. 2016. The gut microbiota and host health: a new clinical frontier. Gut 65:330–339. https://doi.org/10.1136/gutjnl-2015-309990.

4. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. https://doi.org/10.1073/pnas.1009801017.

5. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8.

6. Meiklejohn J. 1949. Isolation of Nitrosomonas from rothamsted soil. Nature 164:667. https://doi.org/10.1038/164667a0.

7. Lewis RP, Pramer D. 1958. Isolation of Nitrosomonas in pure culture. J Bacteriol 76:524–528. https://doi.org/10.1128/jb.76.5.524-528.1958.

8. Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169. https://doi.org/10.1128/mr.59.1.143-169.1995.
25. Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386. https://doi.org/10.1385/1-59259-192-365

26. Lehtovirta-Morley LE. 2018. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett 365:fny058. https://doi.org/10.1093/femsle/fny058

27. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinzsky M, Vierheilig J, Bulaev A, Kirkegaard RH, Von Bergen M, Ratté T, Bendinger B, Nielsen PH, Wagner M. 2015. Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

28. Purnhold U, Pommerening-Röser A, Juretschko S, Schnidt MC, Koops HP, Wagner M. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5338–5382. https://doi.org/10.1128/AEM.66.12.5338-5382.2000

29. Norton JM. 2011. Chapter 3 Diversity and environmental distribution of ammonia-oxidizing bacteria. In Ward BB, Arp DJ, Klotz MG (ed), Nitrification. ASM Press, Washington, DC.

30. Junier P, Molina V, Dorador C, Hadas O, Kim OS, Junier T, Witzel KP, Imhoff JF, 2010. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol 85:425–440. https://doi.org/10.1007/s00253-009-2228-9

31. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O. 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. https://doi.org/10.1093/nar/gkn180

32. Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR. 2013. FunGene: the functional gene pipeline and repository. Front Microbiol 4:2921. https://doi.org/10.3389/fmicb.2013.00291

33. Thörback IN, Enwall K, Jarvis A, Hallin S. 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417. https://doi.org/10.1128/femsle.66.1.8040-8040.2000

34. Crane SL, Van Dorst J, Hose GC, King CK, Ferrari BC. 2018. Microfluidic qPCR enables high throughput quantification of microbial functional genes but requires strict curation of primers. Front Environ Sci 6:145. https://doi.org/10.3389/fenvs.2018.00145

35. Nelson MB, Martiny AC, Martiny JBH. 2016. Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci U S A 113:8033–8040. https://doi.org/10.1073/pnas.1601070113

36. Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Otte N, Koba K, Otsuka S, Senoo K. 2015. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J 9:1954–1965. https://doi.org/10.1038/ismej.2015.9

37. Lee J, Choi J, Fatka M, Swanner E, Ikuma K, Liang X, Leung T, Howe A. 2020. Improved detection of mcyG genes and their phylogenetic origins in harmful algal blooms. Water Res 176:15730. https://doi.org/10.1016/j.watres.2020.115730

38. Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158

39. Fu L, Liu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. https://doi.org/10.1093/bioinformatics/bts565

40. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

41. Lange O. 2020. GNU Parallel 20200522 (“Kraftwerk”). Zenodo https://doi.org/10.5281/zenodo.3841377

42. Tejera M, Boersma N, Vanloocke A, Archontoulis S, Dixon P, Miguez F, Heaton E. 2019. Multi-year and multi-site establishment of the perennial biomass crop Miscanthus × giganteus using a staggered start design to elucidate n responses. BioEnergy Res 12:471–483. https://doi.org/10.1007/s12155-019-09985-6

43. Studt JE, McDaniel MD, Tejera MD, Vanloocke A, Howe A, Heaton EA. 2021. Soil net nitrogen mineralization and leaching under Miscanthus × giganteus and Zea mays. GCB Bioenergy 13:1545–1560. https://doi.org/10.1111/gcbb.12875

44. Wu YD, Chen LH, Wu XJ, Wang F, Shang SQ, Lou JT, Du LZ, Zhao ZY. 2008. Gram c-probe-based real-time PCR for diagnosis and differentiation of bacterial neonatal sepsis. J Clin Microbiol 46:2613–2619. https://doi.org/10.1128/JCM.02237-07