The 5 hr pulse period and broadband spectrum of the symbiotic X-ray binary 3A 1954+319

Diana M. Marcu, Felix Furst, Katja Potschmidt, Victoria Grinberg, Sebastian Müller, Jörn Wilms, Konstantin A. Postnov, Robin H. D. Corbet, Craig B. Markwardt and Marion Cadolle Bel

Accepted October 18, 2011

Abstract

We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005–2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries (SyXBs), i.e., systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of ~5.3 hr is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and generally not significantly energy dependent although there is an indication of possible softening during the main pulse. During the outburst a strong spin-up of \(-1.8 \times 10^{-4} \text{ hr}^{-1}\) occurred. Between 2005 and 2008 a long-term spin-down trend of \(2.1 \times 10^{-5} \text{ hr}^{-1}\) was observed for the first time for this source. The 3–80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for SyXBs.

Subject headings: binaries: symbiotic — stars: individual (3A 1954+319) — stars: neutron — X-rays: binaries

1. Introduction

The X-ray source 3A 1954+319 was detected in the Cygnus region in surveys by Uhuru, Ariel V, EXOSAT, and ROSAT (Forman et al 1978; Warwick et al. 1981, 1988; Voges et al. 1999). Pointed observations with EXOSAT (Cook et al. 1985) and Ginga (Tweedey et al. 1989) showed a hard X-ray spectrum as well as intensity variations by an order of magnitude on timescales of minutes. This led to the suggestion that the system might be a High Mass X-ray Binary (HMXB). Only when Masetti et al. (2006) identified the companion as an M4–M5 III star at a distance of \(\lesssim 1.7 \text{ kpc}\) and Corbet et al. (2006) discovered a \(~5 \text{ hr}\) pulse period in early Swift-BAT data, did it become clear that 3A 1954+319 is a Symbiotic X-ray Binary (SyXB). SyXBs constitute a small group of persistent Low Mass X-ray Binaries (LMXBs) in which a neutron star is orbiting in the inhomogeneous medium around an M-type giant star.

SyXBs typically have wide orbits, e.g., the prototype GX1+4 has an orbital period of \(~1161 \text{ days}\) (Hinkle et al. 2006). Their X-ray emission is therefore due to wind accretion, a process not well investigated for late type donors. Two broadbroad spectral studies support the SyXB interpretation for 3A 1954+319: Mattana et al. (2006) modeled the non-simultaneous BeppoSAX and INTEGRAL spectrum with a highly absorbed (N\(_{\text{H}}\) \sim 10^{23} \text{ cm}^{-2}\) cutoff power law with a photon index of 1.1 and a folding energy of 15 keV and a weak Fe K\(_{\alpha}\) line. These authors also confirmed the detection of the \(~5 \text{ hr}\) period in BAT and ISGRI data. In a study of archival data spanning absorbed \(2–10 \text{ keV}\) luminosities from 3.4 \times 10^{34} \text{ erg s}^{-1}\) to 1.8 \times 10^{35} \text{ erg s}^{-1}\) Masetti et al. (2007) confirmed the empirical spectral description for the \(\gtrsim 2 \text{ keV}\) spectrum and determined a best fit using thermal Comptonization, modified by complex absorption (ionized plus partially covering neutral absorption). They also modeled a \(<2 \text{ keV}\) soft excess with a \(~50 \text{ eV}\) hot plasma and interpreted it together with the two-zone absorption, as being due to a diffuse, partly ionized cloud of material around the neutron star.

The \(~5 \text{ hr}\) period is the only period known for this system. As Corbet et al. (2006, 2008) argued (i) the period value itself is inconsistent with being the orbital period of an M-giant, (ii) the large period decline of \((2.6 \pm 0.2) \times 10^{-11} \text{ hr}^{-1}\) observed over the first year of BAT data cannot be due to orbital Doppler modulation, and (iii) the period change is also too large to be supported by a white dwarf accretor. Interpreting the \(~5 \text{ hr}\) period as a neutron star spin period makes 3A 1954+319 the slowest rotating neutron star in an X-ray binary currently known and one of the slowest pulsars in general — with only the 6.67 hr pulsar in the supernova remnant RCW 103 showing a larger value (De Luca et al. 2006). Corbet et al. (2008) also noted that if the neutron star rotated close to its equilibrium period for disk accretion, as usually assumed in accreting sources, the long period would imply a neutron star magnetic field of \(~10^{15} \text{ G}\) rather than of \(~10^{12} \text{ G}\). The latter value is more commonly observed for accreting pulsars and is consistent with a spin-down origin of the long period (Mattana et al. 2006). From the Swift-BAT and RXTE-ASM data available at the time it was not clear whether the strong spin-up observed was associated with the long flaring episode in 2005 and/or whether the source might show a spin-down at lower fluxes, as it is the case for GX1+4 (Corbet et al. 2008).
In this Letter we considerably extend the pulse period history for 3A 1954+319 and present a timing and spectral analysis of a flaring episode in 2008 (Fürst et al. 2011 presented a preliminary analysis of these data). Section 2 describes the observations and data reduction. Section 3 reports the results, including long-term and high time resolution light curves, energy resolved pulse profiles, the pulse period evolution, and the broadband spectrum. In Section 4 the results are summarized and discussed.

2. OBSERVATIONS AND DATA REDUCTION

The upper part of Figure 1 shows the 2005–2009 15–50 keV light curve of 3A 1954+319 observed with Swift–BAT (Barthelmy et al. 2005). Months long flaring episodes are apparent, especially in 2005 and in 2008. The former includes most of the time range analyzed by Corbet et al. (2008), ~MJD 53330–53680. The short tickmarks above the light curve indicate 1163 INTEGRAL (Winkler et al. 2003) pointings (“science windows”, ~2 ks exposures) during which 3A 1954+319 was within the field of view of the ISGRI (Lebrun et al. 2003) of the IBIS instrument, with a pointing offset ≤10°.

Since its launch in 2002 INTEGRAL has performed several extensive monitoring campaigns of the Cygnus region (Pottschmidt et al. 2003; Cadolle Bel et al. 2006; Martin et al. 2009; Laurent et al. 2011; Williams et al. 2011). A Key Program (KP) centered on the black hole X-ray binary Cygnus X-1, located 3°.15 from 3A 1954+319, has been in place since 2008 with annual exposures of several 100 ks (Grinberg et al. 2011). Coincidently these KP observations covered about three weeks of the 2008 flare of 3A 1954+319 in unprecedented detail (Figure 1).

The 201 science windows for which 3A 1954+319 was detected (OSA DETSIG ≥6 in the 20–100 keV science window images) are indicated by long tickmarks in Figure 1. For these pointings the i.iLight tool in version 7 of the Offline Scientific Analysis (OSA; Courvoisier et al. 2003)9 was applied to produce ISGRI light curves of 3A 1954+319 with a time resolution of 100 s in the energy bands 20–40 keV, 40–100 keV, and 20–100 keV. Together with the BAT long-term light curve the 20–100 keV ISGRI light curves were used to determine the pulse period evolution (Section 3.3).

In addition, a more detailed analysis was performed for the flare in 2008. This dataset included science windows from satellite revolutions 739, 741–746, 756, and 758 (one revolution takes about three days). Pulse profiles in the three energy bands were created (Section 3.2). In order to maximize the signal to noise ratio (S/N) all science windows in the phase range of 0.45–0.85, i.e., associated with the main pulse peak, were selected. OSA 9 was used to extract average ISGRI and Joint European X-ray Monitor (JEM-X; Lund et al. 2003) spectra, for source offset angles ≤10° and ≤3°, respectively. The ISGRI spectrum had an exposure of 85 ks, was created by averaging spectra from individual science windows, and was modeled in the 20–80 keV range. The JEM-X spectrum had an exposure of 9.8 ks, was extracted from mosaic images using mosaic_spec and was modeled in the 3–30 keV range (Section 3.4). Response and auxiliary response files were selected or created following the analysis documentation10.

3. RESULTS

3.1. Light Curves

The long-term BAT light curve shown in Figure 1 demonstrates the irregular flaring of 3A 1954+319 on timescales of months, with the 2008 November flare having been one of the brightest since the start of the BAT monitoring. The INTEGRAL observations cover the second half of the flaring episode. The resulting 20–100 keV ISGRI light curve is shown in the upper panel of Figure 2. The 20–100 keV flux during the outburst varied by a factor of ~20 with an average of ~40 mCrab and a peak value of ~130 mCrab.

The insets of Figure 2 show close-ups of two randomly selected parts of the ISGRI outburst light curve with a resolution of 100 s. Individual pulses are directly observed in the light curve for the first time. Also shown are repetitions of the was still undergoing evaluation for OSA 9.

9 Daily light curve from http://heasarc.gsfc.nasa.gov/docs/swift/results/transients/401954p31/.
10 The i.iLight tool was not present in OSA 8 and at the time of writing

Figure 1. From top to bottom: INTEGRAL observations of 3A 1954+319 with an offset angle ≤10° and INTEGRAL-ISGRI detections (blue and brown tickmarks, respectively). The long-term light curve shown was obtained by Swift–BAT in the 15–50 keV range and has been rebinned to a resolution of 5 days. The lower part of the figure shows the pulse period evolution as determined by BAT (black) and ISGRI (red).

(A color version of this figure is available in the online journal.)

Figure 2. Upper panel: INTEGRAL-ISGRI 20–100 keV light curve of 3A 1954+319 observed during the flaring episode in 2008. Each data point represents one science window (~2 ks). The insets show two close-ups with the full 100s resolution light curve (gray), the count rates per science window (magenta), and the average pulse profile (red histogram). Lower panel: The three pulse period measurements obtained with ISGRI during the flare.

(A color version of this figure is available in the online journal.)
The Symbiotic X-ray Binary 3A 1954+319

Figure 3. Upper panel: ISGRI pulse profiles for the flaring episode in 2008, in the energy ranges of 20–40 keV (black) and 40–100 keV (red, multiplied by 3 for better visibility). Middle panel: Hardness ratio obtained by dividing the 40–100 keV by the 20–40 keV profile. The dashed line indicates the mean hardness. Lower panel: Deviation of the hardness ratio from the mean hardness in units of σ. The dashed line indicates no deviation.

(A color version of this figure is available in the online journal.)

P-corrected average pulse profile obtained by folding the high resolution light curve on the pulse ephemeris determined from the outburst data (Section 3.3). Comparing the profiles with the high time resolution light curve and the average science window count rates demonstrates general consistency but allows for moderate pulse-to-pulse variations which are common in accreting X-ray pulsars (Klochkov et al. 2011).

3.2. Pulse Profiles

Pulse profiles in the energy ranges of 20–40 keV and 40–100 keV were obtained by folding the energy resolved high time resolution ISGRI outburst light curves on the pulse ephemeris determined from the 2008 outburst data (Section 3.3), see upper panel of Figure 3. These are the highest quality pulse profiles available for the source to date. They clearly show a double peaked structure, in contrast to the single peaked pulse profile displayed by the prototype SyXB GX 1+4 (Ferrigno et al. 2007). While the possible presence of the secondary peak for 3A 1954+319 was indicated in the <50 keV BAT profiles presented by Corbet et al. (2008), it could not be detected in the 50–100 keV band, possibly due to the comparatively smaller S/N. The lower two panels of Figure 3 show the hardness ratio between the profiles in the two energy bands and its deviation from the average ratio. No significant energy dependence was detected with exception of a possible moderate softening during the brightest part of the main pulse in a narrow phase range ($\sim 0.60 - 0.65$).

3.3. Pulse Period Evolution

Using the epoch folding technique (Schwarzenberg-Czerny 1989) pulse period values were determined for three equally long parts of the 2008 outburst observations with ISGRI. The results are shown in the lower panel of Figure 2. Uncertainties were calculated according to the Monte Carlo method described by Davies (1990): for every segment 10^4 light curves with the same sampling and variance as seen in the observational data were simulated, based on the segment’s average pulse period values for the flare evolved from 5.319 to 5.306 ± 0.0007 hr, i.e., a strong spin-up became apparent. The pulse ephemeris over the 2008 flare was determined to $T_0 = \text{MJD}54782.6897$, $P(T_0) = 5.3060 \pm 0.0007$ hr, and $P(T_0) = (-1.81 \pm 0.17) \times 10^{-4}$ hr$^{-1}$ (uncertainties are given on a 1σ confidence level).

In order to put the ISGRI period values into perspective the pulse period history from the long-term BAT light curve was updated by performing local period determinations for 20 days long segments. The lower part of Figure 1 contains all successful BAT period measurements, the three ISGRI flare measurements, as well as three additional ISGRI measurements that could typically be obtained during times of denser sampling and/or elevated count rates. The long-term results are the following: (i) the spin-up phase during the flaring activity in 2005, analyzed by Corbet et al. (2008) and Mattana et al. (2006), was reproduced, (ii) it was followed by a long spin-down trend between 2005 and 2008, characterized by $\dot{P} \sim 2.1 \times 10^{-5}$ hr$^{-1}$, (iii) the BAT and ISGRI pulse period values are in excellent agreement, especially during the strong spin-up in 2008, (iv) the spin-down trend resumed in 2009, possibly slowed down by continued moderate flaring. Note that while the possibility of a beginning spin-down at the end of 2005 was mentioned by Corbet et al. (2008), a spin-down has now been clearly observed for the first time for 3A 1954+319. Also note that the spin-up in 2008 was an order of magnitude larger than the one in 2005.

3.4. Broadband Spectrum

As described above the 3–80 keV spectrum of 3A 1954+319 was determined for the phase range associated with the peak of the main pulse. This approach was chosen because the source is close to the detection limit during dimmer pulse phases. The spectrum could be well pulse profile modified by Gaussian noise. A successful period search was performed for every simulated light curve and the widths of the emerging distributions were used as uncertainties of the pulse period measurements. The three ISGRI pulse period values for the flare evolved from 5.336 ± 0.003 hr to 5.308 ± 0.003 hr to 5.264 ± 0.006 hr, i.e., a strong spin-up became apparent. The pulse ephemeris over the 2008 flare was determined to $T_0 = \text{MJD}54782.6897$, $P(T_0) = 5.3060 \pm 0.0007$ hr, and $P(T_0) = (-1.81 \pm 0.17) \times 10^{-4}$ hr$^{-1}$ (uncertainties are given on a 1σ confidence level).
which mediates the transfer of angular momentum to A shell of hot material forms around the magnetosphere rate is determined by the ability of the plasma to enter the neutron star by advection and viscous stress. The accretion 2S 0114 The author argues that the 2.7 hr pulse period of the HMXB... (Footnote 4) resulting in \(r^2 \sim 1.3 \). A cutoff power law model as well as the study envy Masetti et al. (2007). For 3A 1954+319 such a detailed study of the \(\nu \cdot F_X \)-relationship is difficult, especially during spin-down since the low flux allowed for only a few \(\nu \) measurements (Figure 1). It is beyond the scope of this Letter. On longer time scales we observe torque reversals and a positive \(\nu \cdot F_X \)-correlation between low (spin-down) and high flux (spin-up) episodes (Figure 1). This is consistent with the behavior predicted by the quasi-spherical accretion model for higher accretion rates within the settling regime (see Figure 1 of Shakura et al. 2011). The strong spin-up in 2008 translates to \(P / P = -0.9 \times 10^{-8} \text{s}^{-1} \). While still high, the absolute value is of the same order of magnitude as the spin-down related \(P / P \) of 3.1 \(\times 10^{-8} \text{s}^{-1} \) observed for the SyXB IGRJ16358−4724 (Patel et al. 2007). The X-ray luminosity required to sustain such a spin-up in 3A 1954+319 in the equilibrium disk accretion case would be \(-5 \times 10^{36} \text{erg s}^{-1}\) (Joss & Rappaport 1984), whereas we obtained an upper limit for the pulse peak flux value of \(-7.4 \times 10^{35} \text{erg s}^{-1}\), again arguing against disk accretion. This conclusion does not change when the possible contribution of a spin-up due to orbital motion is considered: According to Dumm et al. (1998) the measured maximum mass for M giants is \(\sim 3.5 M_\odot \) and the median stellar radii determined for M4 III and M5 III stars are 103 \(R_\odot \) and 1.2 \(R_\odot \), respectively. For neutron star orbits outside of the M giant, the orbital period then has to be \(\gtrsim 80 \) days and \(\gtrsim 100 \) days, translating into a maximum relative change of the pulse period over the orbit of \(\lesssim 4 \times 10^{-4} \) in both cases. The lowest relative uncertainty range of our pulse period measurements is \(\sim 10^{-3} \), considerably bigger than any realistic orbital effect, which will be even smaller than the value above due to a typically lower stellar mass and wider orbit. Therefore the orbital influence is negligible for the 2008 spin-up measurement. The best fit to the broadband spectrum of the 2008 flare describes an optically thick Compton plasma (\(\tau = 4.2 \pm 0.7 \), \(kT_e = 7.5 \pm 0.5 \text{keV} \)) with parameters qualitatively consistent with the results of Masetti et al. (2007). As these authors state the parameters are similar to those commonly seen in LMXBs with an accreting neutron star companion. Most of those sources do not show pulsations, however, and their accretion geometry is most likely different from that of pulsars. Other SyXBs show similar spectra, especially GX 1+4 (\(\tau = 6.8 \pm 0.15 \), \(kT_e = 13.1 \pm 0.2 \text{keV} \); Ferrigno et al. 2007). Furthermore, optically thick Comptonization has also been used to describe the emission from the accretion columns of accreting pulsars in HMXBs, e.g., for the cyclotron line source 4A 1118−61 (Suchy et al. 2011). We tentatively propose a similar origin close to the neutron star surface for the broadband X-ray emission of 3A 1954+319.

We thank the anonymous referee for useful comments. DM and KP acknowledge NASA grants NNX08AE84G, NNX08AY24G, and NNX09AT28G. FF acknowledges support from the DAAD and thanks the NASA-GSFC for its hospitality. The work by KAP is partially supported through RFBR grant 10-02-00599. This research has been partly funded by the European Commission under contract...
ITN215212 “Black Hole Universe” and by the Bundesministerium für Wirtschaft and Technologie under DLR grants 50OR0808 and 50OR1007. It is based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA. We thank the INTEGRAL mission planners for careful scheduling of the Cygnus region Key Program. We also thank Hans Krimm and the Swift-BAT team for making the Swift-BAT light curves available.

Facilities: INTEGRAL, Swift.

REFERENCES

Barthelmy, S. D., Barbier, L. M., Cummings, J. R., et al. 2005, Space Sci. Rev., 120, 143
Cadolle Bel, M., Sizun, P., Goldwurm, A., et al. 2006, A&A, 446, 591
Cook, M. C., Warwick, R. S., & Watson, M. G. 1985, in X-ray Astronomy '84, ed. M. Oda & R. Giacconi, (Komaba: Inst. Space Astronaut. Sci.), 225
Corbet, R., Barbier, L., Barthelmy, S., et al. 2006, Atel, 797
Corbet, R. H. D., Sokoloski, J. L., Mukai, K., Markwardt, C. B., & Tueller, J. 2008, ApJ, 675, 1424
Courvoisier, T. J.-L., Walter, R., Beckmann, V., et al. 2003, A&A, 411, L53
Davies, S. R. 1990, MNRAS, 244, 93
De Luca, A., Caraveo, P. A., Mereghetti, S., Tiengo, A., & Bignami, G. F. 2006, Science, 313, 814
Dumm, T., Schild, H. 1998, New Astronomy, 3, 137
Farrell, S. A., Sood, R. K., O'Neill, P. M., & Dieters, S. 2008, MNRAS, 389, 608
Ferrigno, C., Segreto, A., Santangelo, A., et al. 2007, A&A, 462, 995
Forman, W., Jones, C., Cominsky, L., et al. 1978, ApJS, 38, 357
Fürst, F., Marcu, D. M., Pottschmidt, K., et al. 2011, in 8th INTEGRAL Workshop, The Restless Gamma-ray Universe, POS (INTEGRAL2010), (Trieste: SISSA), 17
González-Galán, A., Kuulkers, E., Kretschmar, P., et al. 2011, in 8th INTEGRAL Workshop, The Restless Gamma-ray Universe, POS (INTEGRAL2010), (Trieste: SISSA), 16
Grinberg, V., Marcu, D. M., Pottschmidt, K., et al. 2011, in 8th INTEGRAL Workshop, The Restless Gamma-ray Universe, POS (INTEGRAL2010), (Trieste: SISSA), 135
Hinkle, K. H., Fekel, F. C., Joyce, R. R., et al. 2006, ApJ, 641, 479
Ikhlasanov, N. R., 2007, MNRAS, 375, 698
Joss, P. C., & Rappaport, S. A. 1984, ARA&A, 22, 537
Klochkov, D., Santangelo, A., Staubert, R., & Rothschild, R. E. 2011, in 8th INTEGRAL Workshop, The Restless Gamma-ray Universe, POS (INTEGRAL2010), (Trieste: SISSA), 61
Laurent, P., Rodriguez, J., Wilms, J., et al. 2011, Science, 332, 438
Lebrun, F., Lefèvre, J. P., Lavocat, P., et al. 2003, A&A, 411, L141
Lund, N., Budz-Jorgensen, C., Westergaard, N. J., et al. 2003, A&A, 411, L231
Martin, P., Knödlseder, J., Diehl, R., & Meynet, G. 2009, A&A, 506, 703
Masetti, N., Orlando, M., Palazzi, E., Amati, L., & Frontera, F. 2006, A&A, 453, 295
Masetti, N., Rigon, E., Maiorano, E., et al. 2007, A&A, 464, 277
Mattana, F., Götz, D., Falanga, M., et al. 2006, A&A, 460, L1
Nelson, R. W., Bildsten, L., Chakrabarty, D., et al. 1997, ApJ, 488, L117
Nespoli, E., Fabregat, J., & Mennickent, R. E. 2010, A&A, 516, 94
Patel, S. K., Zurita, J., Del Santo, M., et al. 2007, ApJ, 657, 994
Pearlman, A. B., Corbet, R. H. D., Pottschmidt, K., & Skinner, G. K. 2011, BAAS, 43, 42.06
Perna, R., Bozzo, E., & Stella, L. 2006, ApJ, 639, 363
Postnov, K., Shokurov, N., González-Galán, A., et al., 2011, in 8th INTEGRAL Workshop, The Restless Gamma-ray Universe, POS (INTEGRAL2010), (Trieste: SISSA), 15
Pottschmidt, K., Wilms, J., Chernyakova, M., et al. 2003, A&A, 411, L383
Schwarzenberg-Czerny, A., 1989, MNRAS, 241, 153
Shakura, N., Postnov, K., Kochetkova, A., & Hjalmarsdotter, L. 2011, MNRAS, in press (arXiv:1110.3701)
Suchy, S., Pottschmidt, K., Rothschild, R. E., et al. 2011, ApJ, 733, 15
Tweedy, R. W., Warwick, R. S., & Remillard, R. 1989, in Two Topics in X-Ray Astronomy, ed. J. Hunt & B. Battrick, ESA SP-296, (Noordwijk: ESA Publications Department), 661
Voges, W., Aschenbach, B., Boller, T., et al. 1999, A&A, 349, 389
Warwick, R. S., Marshall, N., Fraser, G. W., et al. 1981, MNRAS, 197, 865
Warwick, R. S., Norton, A. J., Turner, M. J. L., Watson, M. G., & Willingale, R. 1988, MNRAS, 232, 551
Williams, P. K. G., Tomsick, J. A., Bodaghee, A., et al., 2011, ApJ, 733, L20
Winkler, C., Courvoisier, T. J.-L., Di Cocco, G., et al. 2003, A&A, 411, L1