Fabrication of piezoelectric laminate for smart material and crack sensing capability

Rattanachan, Sirirat (Institute of Engineering, Suranaree University of Technology); Miyashita, Yukio; Mutoh, Yoshiharu Source: Science and Technology of Advanced Materials, v 6, n 6, September, 2005, 21st Century COE Program, University of Tsukuba Promotion of Interdisciplinary Materials Science for Novel Functions, p 704-711

Abstract: Piezoelectric laminate composite has been successfully fabricated as a smart material by a spark plasma sintering process. Fully or nearly fully dense BaTiO$_3$/MgO (pre-sintered)/BaTiO$_3$, BaTiO$_3$/MgO with 10 vol% BaTiO$_3$/BaTiO$_3$ laminates were sintered at 1300 °C with a holding time of 5 min under a pressure of 35 MPa. From EDS analysis, no reaction between BaTiO$_3$ and MgO layers was observed along the interface. Effects of cycle stress and stress intensity factor on the voltage response of the proposed laminates were investigated for confirmation of a crack detecting capability. The resultant relationship between crack length and voltage response range clearly showed that the proposed laminates have a crack sensing capacity.