Integration of solid-oxide fuel cells and absorption refrigeration for efficient combined cooling, heat and power production

Krzysztof Matuszny¹, Tohid N. Borhani², Seyed A. Nabavi¹ and Dawid P. Hanak¹,*

¹Energy and Power, School of Water, Energy and Environment, Cranfield University, Bedford, Bedfordshire, MK43 0AL, UK
²School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

*Corresponding author. E-mail: d.p.hanak@cranfield.ac.uk

Abstract

Combined cooling, heating and power (CCHP) systems are characterized by a substantially higher energy-utilization efficiency compared to standalone systems. In this study, an integrated system comprising a solid-oxide fuel cell (SOFC), hot-water storage tank (HWST) and absorption refrigeration (AR) cycle is considered. The SOFC model was developed in Aspen Plus®. It was used to determine the thermodynamic properties of the exhaust gas that was then used to provide heat for the HWST and to drive the AR cycle. Thermodynamic models for the AR cycles were developed in Engineering Equation Solver, considering LiBr–H₂O and NH₃–H₂O as working fluids. The sensitivity analysis of a number of SOFC output parameters has been carried out. The most optimal case was characterized with the coefficient of performance (COP) and CCHP efficiency of 0.806 and 85.2% for the LiBr–H₂O system, and 0.649 and 83.6% for the NH₃–H₂O system, respectively. Under such optimal operating conditions, the SOFC was characterized by the net electrical efficiency of 57.5% and the net power output of 123.66 kW. Data from the optimal solution were used to perform the thermodynamic study and sensitivity analysis to assess the influence of different absorption cycle operating conditions and to identify possible applications for the considered integrated systems.
Keywords: solid-oxide fuel cell; absorption refrigeration; hot-water storage tank; process integration; tri-generation

Introduction

With the rising global mean temperature, which is primarily caused by global warming, the heating and cooling profile is forecasted to change. The demand for cooling is expected to approximately be the same as that for heating by 2030 [1]. For this reason, innovative concepts that combine the production of cooling, heating and power from one energy source, which are known as tri-generation or combined cooling, heating and power (CCHP) plants, are being developed [2]. Compared to standalone generation systems, a tri-generation system is characterized primarily by a higher total efficiency, reduced fuel and energy costs, and lower greenhouse-gas emissions. A tri-generation system generally includes the prime mover, the heat-recovery system, the cold-production system, and the management and control system.

The most common prime movers utilized in tri-generation systems are gas or steam turbines, internal-combustion or Stirling engines and high-temperature fuel cells, such as a solid-oxide fuel cell (SOFC) [3, 4]. A micro-gas turbine (MGT) is considered as one of the best existing primary movers for application in combined systems [5]. Vera et al. [6] considered an MGT integrated with an organic Rankine cycle (ORC) for combined heat and power generation based on biomass gasification. This system was then used as a basis for the development of a tri-generation system, which included an NH₃–H₂O adsorption chiller, by El-Sattar et al. [7, 8]. Although the overall efficiency of the CCHP system was reported to be 42–47%, the net electrical efficiency was only 20–22% with the ORC. The study by Ozcan and Dincer [9] showed that using the SOFC as the prime mover can increase the net electrical efficiency of the tri-generation system based on biomass gasification to 36.5% while achieving high CCHP efficiency (42.2%). The SOFC is a high-temperature fuel cell that typically operates at 600–1000°C and converts the chemical energy of a fuel, such as carbon monoxide, methane or other hydrocarbons and energy vectors, such as hydrogen, into electrical energy [10]. The main advantages of the SOFC over other prime movers are its high electrical efficiency (50–60%) and the high temperature of the exhaust gas that can be further used for heating purposes or/and cooling purposes by passing hot gases via an absorption refrigeration (AR) cycle. Despite these advantages, the current literature indicates that such tri-generation systems have not been thoroughly evaluated. Sulaiman et al. [11] examined the thermodynamic performance of the integration of the SOFC fuelled by methane and the ORC system for cooling, heating and power production. Their work has shown that the tri-generation system can result in a 3–25% point increase in exergy efficiency compared to the standalone power-cycle system.
[12] presented a tri-generation system based on the SOFC fuelled by natural gas and a double-effect LiBr–H₂O absorption chiller. The system can achieve a total efficiency of at least 84%. Zhao et al. [13] proposed an integrated SOFC–CCHP system that was fuelled by coke oven gas containing a large amount of hydrogen. The SOFC operated at 6–13 bar and was integrated with a gas turbine. The flue gas at the exit of the heat-recovery steam generator, which produced steam for a steam Rankine cycle, was used for district heating. The latent heat of the steam leaving the steam turbine was used for cooling in a single-effect LiBr–H₂O absorption chiller. Such a tri-generation system was characterized by the electrical efficiency of the SOFC of >60%. The total electrical efficiency and the total efficiency of the SOFC–CCHP system were about 70% and 90%, respectively.

Venkataraman et al. [14] proposed a system that integrates the SOFC fuelled by hydrogen and the NH₃–H₂O system in a truck to produce cooling for food refrigeration (transportation storage) and electricity to power truck auxiliary devices. The excess electricity was assumed to charge the truck’s battery. The considered systems were coupled with thermal oil and a gas–oil heat exchanger in which the oil was heated to the temperature required by the desorber. That study demonstrated that the SOFC with a power output of <10 kW was sufficient to provide cooling for small (0.7-ton), medium (12-ton) and large (40-ton) trucks, considering a maximum temperature inside the refrigeration cabinet of –20°C. Elmer et al. [15] experimentally investigated a tri-generation system based on the SOFC fuelled by natural gas, LiBr–H₂O system and hot-water cylinder. The SOFC was connected to the natural-gas grid and to the electricity grid to export electricity. The exhaust gas from the SOFC supplied heat to the AR system via a liquid-desiccant system feeding hot flue gases to a hot-water cylinder. Due to the technical issue with the SOFC, the study was performed using empirical data for the SOFC and liquid-desiccant systems. Nevertheless, the study demonstrated that the integration of a 1.5- and a 2-kW SOFC with AR and a hot-water cylinder resulted in a total efficiency of the tri-generation system of 68.9 and 71.1%, respectively. The economic assessment of such a system, however, indicated that it was only feasible if additional incentives, such as feed-in tariffs, were considered. This was mainly due to a high capital cost of the SOFC and the necessity for replacing the fuel-cell stack every 5 years. Hou et al. [16] presented a distributed energy system based on a solar methanol-reforming SOFC that combined gas turbine–steam turbine (GT–ST) power-generation system with absorption heat pump–absorption regeneration (AHP–AR). The results showed that the efficiency of the SOFC, total electrical efficiency and total efficiency were 35%, 66% and 90%, respectively.

The AR systems that are mostly considered for integration with the SOFC are based on NH₃–H₂O and LiBr–H₂O working fluids. However, the SOFC–CCHP systems considering these AR systems have not been directly compared in the current literature. Therefore, this study aims to compare the performance of the SOFC–CCHP systems based on the NH₃–H₂O and LiBr–H₂O working fluids and to determine the optimum application. To achieve this, the SOFC is integrated with a hot-water storage tank (HWST) and AR system using a different pair of working fluids. The optimal output parameters of the SOFC, which was modelled in Aspen Plus®, for AR systems are determined. The thermodynamic assessment is then performed using Engineering Equation Solver (EES) to evaluate the performance of the LiBr–H₂O and NH₃–H₂O absorption cycles under different operating conditions. Finally, the sensitivity analysis is performed to evaluate the effect of the key parameters of AR on the tri-generation system performance. The LiBr–H₂O and NH₃–H₂O systems are compared and analysed.

1 Model development and validation

1.1 The SOFC model

A SOFC model used in this study was developed by Hanak et al. [17] based on the work presented by Zhang et al. [18]. This model has been revised to incorporate the electrochemical model of Doherty et al. [19] and enables the utilization of different fuels. The thermodynamic model has been described in detail by Hanak et al. [17]. The schematic diagram of the SOFC is shown in Fig. 1.
The considered electrochemical model utilizes the Nernst equation, which is defined in Equation (1) to determine the reversible Nernst voltage. Furthermore, to account for the irreversibilities in the SOFC, the Ohmic \((V_{\text{Ohmic}}) \) [20], activation \((V_{\text{Activation}}) \) [21] and concentration \((V_{\text{Concentration}}) \) [22] losses are determined in Equations (1)–(4), respectively. Finally, Equation (5) is used to estimate the actual voltage \((V)\) of the SOFC.

\[
V_{\text{Nernst}} = -\frac{\Delta g_i}{2 \cdot F} + \frac{R_g \cdot T_{\text{avg}}}{2 \cdot F} \ln \left(\frac{P_{\text{H}_2} \cdot P^{0.5}_{\text{O}_2}}{P_{\text{H}_2O}} \right) \tag{1}
\]

\[
V_{\text{Ohmic}} = \frac{j \cdot \rho_i (A \cdot \pi \cdot D_m)^2}{8 \cdot t_A} + \frac{j \cdot \rho_i (A \cdot \pi \cdot D_m)^2}{8 \cdot t_A} \cdot A (A + 2 (1 - A - B)) \tag{2}
\]

\[
V_{\text{Activation}} = \frac{2 \cdot F}{R_g \cdot T_{\text{SOCF}}} \ln \left(\frac{-E_A}{R_g \cdot T_{\text{SOCF}}} \right) + \frac{4 \cdot F}{k_C} \ln \left(\frac{E_C}{R_g \cdot T_{\text{SOCF}}} \right) \tag{3}
\]

\[
V_{\text{Concentration}} = \frac{-R_g \cdot T_{\text{SOCF}}}{4 \cdot F} \ln \left(\frac{\gamma_{\text{H}_2O}}{\gamma_{\text{O}_2}} - \frac{\gamma_{\text{H}_2O}}{\gamma_{\text{O}_2}} \cdot \frac{T_{\text{SOCF}}}{\gamma_{\text{H}_2O}} \right) \tag{4}
\]

\[
V = V_{\text{Nernst}} - (V_{\text{Ohmic}} + V_{\text{Activation}} + V_{\text{Concentration}}) \tag{5}
\]

In Equations (1)–(4), \(\Delta g_i \) is the molar Gibbs free energy of formation at 1 bar (J/mol); \(T_{\text{avg}} \) and \(T_{\text{SOCF}} \) are the averages of the temperatures between the SOFC inlet and outlet streams and the SOFC operating temperature, respectively (K); \(F \) is the Faraday constant (96 485 C/mol); \(R_g \) is the molar gas constant (8.314 J/mol K); \(\rho_i \) is the partial pressure of component \(i \); \(P_{\text{H}_2}, P_{\text{O}_2}, P_{\text{H}_2O} \) are the reference pressures (1 bar); \(\gamma \) is the thermodynamic term (\(\Omega m \)) that is a function of temperature [23]; \(D_m \) is the mean diameter of a cell (m); \(t_i \) is the cell component thickness (m); \(k_A \) and \(k_C \) are pre-exponential factors \(\left(\text{A/m}^2 \right) \) and are 2.13 \(\times \) 10\(^6\) and 1.49 \(\times \) 10\(^{16}\), respectively; \(m \) is the slope and is equal to 0.25; \(E_A \) and \(E_C \) are activation energy (J/mol) with values of 110 000 and 160 000, respectively; \(T_{\text{SOCF}} \) is the SOFC operating temperature (K); \(D_{\text{eff}} \) is the effective diffusion coefficient (m\(^2\)/s); \(j \) is the mole fraction of gaseous component \(i \) in bulk flow; \(j_i \) is the current density (A/m\(^2\)). \(A \) and \(B \) are pre-exponential factors (A/m\(^2\)) and \(\delta_0 \) are constants [19]; and \(w_{\text{int}} \) is the interconnection width \((0.009 \text{ m}) \). The SOFC model has been validated with the data presented by Veyo et al. [24–26], Zhang et al. [19] and Doherty et al. [18] (see the online Supplementary Data).

1.2 The AR model

Thermodynamic models for AR cycles have been developed using EES, as it comprises built-in external libraries for LiBr–H\(_2\)O and NH\(_3\)–H\(_2\)O. In each of the considered AR systems, the HWST has been implemented for waste-heat utilization. The AR models have been developed considering the following assumptions [27, 28]:

- the system is in steady state;
- temperature variations in the evaporator, condenser, absorbtion, and generator are negligible;
- the throttling devices are adiabatic;
- the pressure drop and heat loss to the environment in all components and connecting pipes and fittings are negligible;
- the refrigerant leaving the condenser and the evaporator is considered to be saturated liquid and saturated vapour, respectively;
- the temperature difference between the outlet and inlet of heat-rejection devices is 5°C (for both absorber and condenser);
- the temperature approach between the outlets of the heating circuit and the generator solution/refrigerant is 10°C;
- the temperature approach between the evaporator inlet and cooling air supply (to the cooling application) is 5°C;
- the temperature decrease through the condenser is assumed to equal to 4°C (for NH\(_3\)–H\(_2\)O);
- the equilibrium at high and low pressure corresponds to the temperature and mass fraction of the NH\(_3\)–H\(_2\)O solution in the condenser and evaporator, respectively (for NH\(_3\)–H\(_2\)O);

Table 1: Input data for the SOFC simulation in Aspen[18, 19] Plus*

Parameter	Value
Fuel-inlet composition (%vol)	
CH\(_4\)	81.3
C\(_3\)H\(_8\)	2.9
C\(_2\)H\(_6\)	0.4
C\(_2\)H\(_4\)O	0.2
N\(_2\)	14.3
CO	0.9
Fuel flow rate (kg/s)	0.0056
Lower heating value of natural gas (MJ/kg)	38.45
Cell operating pressure (bar)	1.08
Power output (kW, DC)	120
Active area (m\(^2\))	96.1
Cell-exhausts temperature (°C)	910
Inlet air temperature (°C)	630
Inlet fuel temperature (°C)	200
DC-to-AC inverter efficiency (-)	0.92
Overall fuel-utilization factor (-)	0.85
S/C ratio (-)	2.5
Temperature difference between the outlet of the cold and hot streams in the recuperator (°C)	10
SOFC thermal losses (%)	2
• negligible difference between the molar and mass fraction of the ammonia–water mixture (for NH₃–H₂O); and
• the vapour quality of the evaporator outlet (state 13) is 0.975 (for NH₃–H₂O).

1.2.1 The LiBr–H₂O system
A single-effect LiBr–H₂O system, the thermodynamic model for which has been developed in EES, is presented in Fig. 2. The AR system is integrated with the SOFC. Since exhaust gas leaves the SOFC at a high temperature (>180°C), which depends on the operating conditions of the SOFC, it is necessary to reduce its temperature to meet the temperature requirements of the generator in the LiBr–H₂O system. This is achieved in the gas–water heat exchanger (GWHX) where heat from the exhaust gas is used to heat up the water in a storage tank. The exhaust gas leaves GWHX at state 17 and transfers its remaining thermal energy to the generator at the required temperature. It is then released into the environment at state 18. Heat is removed from the condenser and the absorber using ambient air, which enters the condenser and the absorber at states 11 and 15, respectively. The cooling effect is produced in the evaporator and is used to cool the return air at state 13. The resulting colder air is supplied to the cooling or refrigeration application at state 14.

The input parameters to the LiBr–H₂O model, the thermodynamic equations and constraints for which are presented in Table 2, are:
• mass flow rate and temperature of flue gases leaving the SOFC;
• supply and return temperature of the HWST (water_{in}, water_{out});
• the temperature of components in the internal loop, including absorber (state 1), condenser (state 8) and evaporator (state 10);
• inlet temperatures of the external coils, including the condenser (state 11) and absorber (state 15), which are equal to the assumed ambient air temperature;
• the temperature approach for the generator (between states 18 and 4) and evaporator (states 14 and 10);
• the temperature difference between the inlet and outlet of the absorber (states 15 and 16) and condenser (states 11 and 12);
• pump efficiency; and
• the effectiveness of the heat exchangers.

1.2.2 The NH₃–H₂O system
Fig. 3 shows the integration of the NH₃–H₂O system with the SOFC. As in the case of the LiBr–H₂O system, the temperature of the SOFC exhaust gas has been reduced in the GWHX to meet the requirement of the generator. The exhaust gas leaves the GWHX at state 14 and transfers its remaining thermal energy to the generator at the required temperature. It is then released into the environment at state 15. Heat is removed from the condenser and the absorber using ambient air, which enters the condenser and the absorber at states 16 and 20, respectively. The cooling effect is produced in the evaporator and is used to cool the return air at state 18. The resulting colder air is supplied to the cooling or refrigeration application at state 19. In contrast to the LiBr–H₂O system, the NH₃–H₂O system needs a rectifier as the superheated vapour leaving the generator at state 8 comprises water droplets that need to be removed before entering the condenser at state 10.
Model equations

Equation	Description
\(p_{\text{high}} = p_{\text{sat}}(t_h) \)	High-side pressure
\(p_{\text{low}} = p_{\text{sat}}(t_l) \)	Low-side pressure
\(h_8 = h_{\text{water}}(t_8, p_8) \)	Enthalpy at the condenser outlet
\(h_{10} = h_{\text{steam,IPWS}}(t_10, p_{10}) \)	Enthalpy at the evaporator outlet
\(h_7 = h_{\text{steam, IAPWS}}(t_7, p_7) \)	Enthalpy at the generator outlet
\(\varepsilon_{\text{GWHX}} = \frac{t_{\text{SOFC}} - t_{\text{inlet}}}{t_{\text{SOFC}} - t_{\text{outlet}}} \)	Effectiveness of GWHX
\(Q_{\text{SOFC}} = m_{\text{SOFC}} \cdot c_{\text{SOFC}} \cdot (t_{\text{SOFC}} - t_{\text{inlet}}) = \hat{Q}_{\text{tank}} \)	Heat-transfer rate of SOFC (equal to that of HWST)
\(\varepsilon_{\text{GHX}} = \frac{t_{\text{e}} - t_{\text{out}}}{t_{\text{e}} - t_{\text{in}}} \)	Effectiveness of the generator heat exchanger
\(\Delta T_{\text{app,g}} = t_{\text{e}} - t_4 \)	Temperature approach between flue gas outlet and generator outlet
\(Q_a = m_{\text{SOFC}} \cdot c_{\text{SOFC}} \cdot (t_7 - t_{\text{inlet}}) = \dot{m}_7 \cdot h_7 + \dot{m}_4 \cdot h_4 - \dot{m}_3 \cdot h_3 \)	Heat supplied to generator component
\(X_{\text{weak}} = X_{\text{LiBr-H}_2\text{O}}(t_1, p_1) = X_1 = X_2 = X_3 \)	Weak and strong concentration of LiBr–H\(_2\)O
\(X_{\text{strong}} = X_{\text{LiBr-H}_2\text{O}}(t_4, p_4) = X_4 = X_5 = X_6 \)	Specific heat for each stream
\(\rho_1 = \rho_{\text{LiBr-H}_2\text{O}}(t_1, p_1) \)	Maximum heat-transfer rate
\(\dot{Q}_{\text{actual}} = \dot{Q}_{\text{SHX}} \cdot \dot{Q}_{\text{max}} \)	Actual heat-transfer rate
\(t_3 = t_2 + \frac{Q_{\text{actual}}}{C_2} \) and \(t_5 = t_4 - \frac{Q_{\text{actual}}}{C_4} \)	Outlet temperatures at states 3 and 5
\(h_5 = h_{\text{LiBr-H}_2\text{O}}(t_5, p_5) \)	Enthalpy at states 3 and 5
\(h_6 = h_5 \) and \(h_9 = h_8 \)	Enthalpy at states 6 and 9
\(m_2 \cdot h_2 + \dot{m}_4 \cdot h_4 - \dot{m}_3 \cdot h_3 - \dot{m}_5 \cdot h_5 = 0 \)	Enthalpy at state 2
\(Q_a = m_{10} \cdot h_{10} + \dot{m}_6 \cdot h_6 - \dot{m}_1 \cdot h_1 \)	Heat-transfer rate at the absorber, condenser and evaporator
\(\dot{Q}_c = \dot{m}_7 \cdot (h_7 - h_8) \)	Required pump work within solution cycle
\(\dot{Q}_s = \dot{m}_9 \cdot (h_9 - h_8) \)	Density at state 1
\(\rho_1 = \rho_{\text{LiBr-H}_2\text{O}}(t_1, p_1) \)	Coefficient of performance (COP) of the system
\(\eta_{\text{CCP}} = \frac{\dot{Q}_{\text{out}} + \dot{Q}_s}{m_{\text{fuel}} \cdot LHV} \) and \(\eta_{\text{CCHP}} = \frac{\dot{Q}_{\text{out}} + \dot{Q}_s + \dot{Q}_{\text{weak}}}{m_{\text{fuel}} \cdot LHV} \)	Efficiency of combined cooling and power plant (CCP) and combined cooling, heating and power plant (CCHP)

Model constraints

Constraint	Description
\(t_{\text{min}} = 2 \cdot t_e - t_c \)	Minimum allowable generator temperature
\(X_{\text{c1}} = \frac{0.0809 + t_4 + 61.341}{100} \)	Critical LiBr–H\(_2\)O concentrations for the weak and strong solutions [29]
\(X_{\text{c4}} = \frac{0.0809 + t_4 + 61.341}{100} \)	
The input parameters to the NH\textsubscript{3}–H\textsubscript{2}O model, the thermodynamic equations and constraints for which are presented in Table 3, are:

- mass flow rate and temperature of flue gases leaving the SOFC;
- supply and return temperature of the hot-water storage tank (water\textsubscript{in}, water\textsubscript{out});
- the temperature of components in the internal loop, including the absorber (state 1), condenser (state 11) and evaporator (state 12);
- inlet temperatures of the external coils: condenser (state 16) and absorber (state 20), which are equal to the assumed ambient air temperature;
- the temperature approach for the generator (between states 18 and 7) and evaporator (states 14 and 10);
- the temperature difference between the inlet and outlet of the absorber (states 20 and 21) and condenser (states 16 and 17);
- pump efficiency; and
- the effectiveness of the heat exchangers.

1.2.3 Validation of the AR models

The thermodynamic models for the LiBr–H\textsubscript{2}O and NH\textsubscript{3}–H\textsubscript{2}O systems were validated using the data presented in the literature. The LiBr–H\textsubscript{2}O model was validated using data presented by Rubio-Maya et al. [30] and the NH\textsubscript{3}–H\textsubscript{2}O model was validated using data presented by Keith et al. [31]. The input parameters used to validate the AR models are listed in Table 4. Validation of the AR models focused only on the internal loop of the AR cycles, as the reference data (temperature, pressure, flow rates) are independent of the external loop. The coefficient of performance (COP) was used as the key performance indicator to assess the performance of the AR system. As the comparison model did not consider the heat recovery from the rectifier, the heat-transfer rate in the rectifier was included in the COP calculations, as shown in Equation (6):

\[
\text{COP} = \frac{\dot{Q}_r}{\dot{Q}_g + \dot{Q}_r + \dot{W}_p}
\]

Table 5 reveals the performance prediction of the models developed in this work and its comparison with the reference data. Overall, the prediction of both AR models was found to be close to that reported in the literature. The prediction of the LiBr–H\textsubscript{2}O model is consistent with that presented by Rubio-Maya et al. [30]. The difference in the COP and the generator heat-transfer rate resulted from the calculation method used in this work. Namely, this work assumed that the temperature of the vapour refrigerant was in equilibrium with the concentration of the weak LiBr solution. On the contrary, the reference model assumed that the generator-outlet temperatures of the weak LiBr solution and refrigerant were the same. Furthermore, the difference in the pressure and LiBr concentration were due to different sources of thermodynamic properties used in this work and in the reference model.

The prediction of the NH\textsubscript{3}–H\textsubscript{2}O model developed in this work was observed to closely reflect the prediction of the model presented by Keith et al. [31]. The largest deviation was observed for the rectifier heat-transfer rate, which was <5% lower than that in the reference model. Similarly to the LiBr–H\textsubscript{2}O system, this can be associated with different sources of thermodynamic properties used in this work and in the reference model.
Table 3: Equations and constraints for the NH₃–H₂O model

Model equations
Heat applied to the generator from the external circuit
Mass fraction of vapour at state 10
High-side pressure at state 11 (calculations involve iterative technique)
Converged value of p_{11} fixes other high pressures inside a system
Enthalpy of liquid solution at state 11
Mass fraction of liquid and vapour
Enthalpy of liquid and vapour solutions
Enthalpy of liquid and vapour
Enthalpy before and after the expansion valve
Enthalpy equality between liquid and vapour solution
Actual mass fraction at state 12
Low-side pressure in the system (the new value of p_{12} is used in a repeat loop of calculations to find a new estimate for a mass fraction at state 12)
Convergence criteria
Mass fractions and enthalpy for the known outlet temperature of the absorber
Applying mass-fraction equilibrium for a rich solution (x_i = x_j = x_k = x_s) as well as assuming that the mass fraction of a dripped solution is in equilibrium with an incoming rich solution (x_s = x), the temperature and enthalpy at state 9
Since t_9 = t_s, the mass fraction of the vapour solution at state 8
Mass-fraction equality exists for a weak solution (x_i = x_k = x_s)
Converged mass fraction of liquid solution at state 12 is in equilibrium with the vapour solution leaving the evaporator (x_{12} = y_{13}). With that equality and assumption, that vapour quality at this state is 0.975
Mass flow rates in a system (\omega is the mass fraction of ammonia in liquid or vapour state)
Mass flow-rates equality for rich, weak and refrigerant solutions
Relation governing the mass balance around the generator that links the heat input to the generator with mass fractions
Table 3: Continued

Model equations

Mass and energy balance for the rectifier
\[\dot{m}_8 \cdot h_8 + \dot{m}_2 \cdot h_2 - \dot{m}_3 \cdot h_3 - \dot{m}_9 \cdot h_9 - \dot{m}_{10} \cdot h_{10} = 0 \]
\[\dot{m}_8 = \dot{m}_{10} + \dot{m}_9 \]
\[\dot{Q}_p = \dot{m}_8 \cdot h_8 - \dot{m}_{10} \cdot h_{10} - \dot{m}_9 \cdot h_9 \]

Mass balance for the absorber
\[\dot{m}_{13} + \dot{m}_y = \dot{m}_1 = f \cdot \dot{m}_{13}, \quad f = \frac{\gamma_{LiBr}-\gamma_{H_2O}}{\gamma_{LiBr} - \gamma_{H_2O}} \]

Heat-transfer rate for the rectifier
\[\dot{Q}_r = \dot{m}_2 \cdot c_{p_2} \cdot (t_3 - t_2) \]

Specific heat of the NH₃–H₂O solution
\[c_{p_2} = \frac{x_2 \cdot c_{pNH_3} + (1 - x_2) \cdot c_{pH_2O}}{x_2 + (1 - x_2)} \]

Enthalpy at state 6
\[h_6 = h_{NH_3,O}(t_6, x_6, Q_6 = 0) \]

Energy balance for the SHX
\[\dot{m}_3 \cdot h_3 + \dot{m}_5 \cdot h_5 - \dot{m}_4 \cdot h_4 - \dot{m}_6 \cdot h_6 = 0 \]

Heat-transfer rate for the remaining absorption refrigeration components
\[\dot{Q}_a = \dot{m}_{13} \cdot h_{13} + \dot{m}_7 \cdot h_7 - \dot{m}_1 \cdot h_1 \]
\[\dot{Q}_c = \dot{m}_{10} \cdot (h_{10} - h_{11}) \]
\[\dot{Q}_e = \dot{m}_{12} \cdot (h_{13} - h_{12}) \]
\[\dot{Q}_{SHX} = \dot{m}_3 \cdot (h_4 - h_6) \]

Solution pump work
\[W_p = (p_2 - p_1) \cdot v_1 \cdot \frac{\dot{m}_1}{\eta_p} \cdot 1000 \]
\[v_1 = v_{NH_3,O}(t_1, p_1, Q_1 = 0) \]

COP of the system
\[\text{COP} = \frac{\dot{Q}}{\dot{W}_p + \dot{W}_f} \]

Efficiency of the CCP and CCHP
\[\eta_{\text{CCP}} = \frac{\dot{Q} + \dot{Q}_{\text{fuel}}}{\eta_{\text{fuel}} \cdot \text{LHV}} \quad \text{and} \quad \eta_{\text{CCHP}} = \frac{\dot{Q} + \dot{Q}_{\text{fuel}} + \dot{Q}_{\text{tank}}}{\eta_{\text{fuel}} \cdot \text{LHV}} \]

Model constrains

Restriction in a mass fraction
\[\Delta X = X_1 - X_3 > 0 \]

Table 4: Process conditions as input to the AR systems

Parameter	LiBr–H₂O	Value	NH₃–H₂O	Value
Absorber temperature (°C)	t₁	35.5	t₁	40
Condenser temperature (°C)	t₅	39.8	t₅₁	40
Inlet cooling temperature of absorber and condenser	t₁₅ = t₅₅	25	t₁₅ = t₅₅	25
Evaporator temperature	t₁₀	8.6	t₁₀	-10
Generator-outlet temperature	t₅	84.8	t₅	124
Mass flow rate of weak solution (kg/s)	m₅	–	m₁	1
Effectiveness of generator and solution heat exchanger	ε_{SHX} = ε_{GHX}	0.707	ε_{SHX} = ε_{GHX}	0.8
Effectiveness of evaporator and gas–water heat exchanger	ε_{SHX}	0.64	ε_{GHX}	0.64
Evaporator cooling load (kW)	Qₑ	201.29	–	–
Difference in mass fraction between strong and weak solutions	ΔX	–	ΔX	0.1
Vapour quality at the evaporator outlet	Q₄₃	–	Q₄₃	0.975
Temperature approach for generator	ΔTₑ = ΔTₐ	10	ΔTₑ = ΔTₐ	10
Temperature difference for condenser and absorber	ΔTₑ = ΔTₐ	5	ΔTₑ = ΔTₐ	5
Water-storage-tank inlet/outlet temperature	t_{water,in}/t_{water,out}	40/90	t_{water,in}/t_{water,out}	40/90
Pump efficiency	ηₚ	0.95	ηₚ	0.95

2 Results and discussion

The SOFC model was used to generate 15 cases by varying the fuel utilization between 75% and 95% and the current density between 100 and 300 mA/cm² (Table 6). The output from the SOFC model was used as an input to the considered AR systems. The combined results were used to examine the COP of cold production and CCHP efficiency of the integrated system. For each of the considered AR systems,
the most optimal operating conditions of the SOFC, which yield the highest CCHP efficiency, have been determined. The results for the most favourable operating conditions of the AR systems were used to perform the sensitivity analysis to evaluate the effect of the operating conditions on the AR-system performance. Different cooling applications were also investigated to determine the required evaporator temperature and corresponding COP for each cooling and refrigeration application for both considered AR systems.

2.1 SOFC performance

The performance of the SOFC under varying operating conditions is presented in Table 6, including the thermodynamic performance and the characteristics of the SOFC exhaust gas (state 15 in Fig. 1). This analysis revealed that Case 6, in which the SOFC operated with a fuel-utilization factor of 0.85 and a current density of 100 mA/cm², was characterized with the highest net power output and the electrical efficiency of 123.66 kW and 57.5%, respectively. In Cases 6–15, an increase in the current density resulted in a reduction in the net power output and, subsequently, the electrical efficiency of the SOFC. Conversely, an increase in the fuel-utilization factor at constant current density led to an increase in the SOFC power output and, subsequently, electrical efficiency. Because fuel utilization of >85% can be difficult to achieve, Case 6 was considered in further analysis. It also needs to be emphasized that the lower the current density, the higher the SOFC area required. This will subsequently lead to a higher capital cost of the SOFC. The economic assessment is out of the scope of this work. Moreover, determination of the optimum operating conditions for the combined SOFC–AR system needs to consider the CCHP performance.

2.2 Integrated-system performance

As the models developed in this work were shown to accurately represent both LiBr–H₂O and NH₃–H₂O systems, these were used to assess the performance of the AR integrated with the SOFC and HWST.

Table 7 presents the performance of the integrated LiBr–H₂O system. The best operating conditions for the AR cycle and the integrated system have been observed in Case 6 that is characterized by a COP of 0.8058 and CCHP efficiency of 85.2%. It can be observed that Case 1, for which the temperature and mass flow rate of the exhaust gas from the SOFC were higher than those in Case 6, achieved similar COP and CCHP efficiency. Conversely, if the temperature of the SOFC exhaust gas fell to <150°C, the performance of the AR cycle and the integrated system was substantially affected. This can be clearly seen in Case 5 in which the exhaust-gas temperature is 123.3°C and the corresponding COP and CCHP efficiency are 0.3869 and 72.2%, respectively. Moreover, the minimum generator-outlet temperature for the integrated LiBr–H₂O system is 71°C. This
Table 6: SOFC simulation results for selected output parameters

Parameter/case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fuel-utilization factor (–)	0.75	0.8	0.85	0.9	0.95	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
Current density (mA/cm²)	180	180	180	180	180	100	120	140	160	200	220	240	260	280	300
Temperature (°C)	538.5	378.5	284.6	224.1	182.5	427.1	372.4	333.9	306.3	267.9	254.1	242.8	233.3	225.3	218.3
Pressure (bar)	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
Mass flow rate (kg/s)	0.18	0.26	0.34	0.43	0.53	0.17	0.21	0.26	0.30	0.39	0.43	0.48	0.53	0.57	0.62
CO₂ mass fraction (–)	0.065	0.046	0.035	0.028	0.023	0.070	0.056	0.047	0.040	0.031	0.028	0.025	0.023	0.021	0.019
H₂O mass fraction (–)	0.052	0.036	0.028	0.022	0.018	0.056	0.045	0.037	0.032	0.024	0.022	0.020	0.018	0.017	0.015
O₂ mass fraction (–)	0.133	0.163	0.180	0.190	0.125	0.147	0.161	0.172	0.186	0.191	0.195	0.198	0.201	0.203	
N₂ mass fraction (–)	0.750	0.755	0.758	0.760	0.761	0.749	0.753	0.755	0.757	0.759	0.760	0.761	0.761	0.762	0.762
Specific heat (kJ/kg°C)	1.17	1.11	1.08	1.05	1.08	1.15	1.12	1.10	1.09	1.07	1.07	1.06	1.06	1.05	1.05
Net electrical efficiency (%)	45.5	47.7	49.7	51.4	52.8	57.5	55.6	53.7	51.7	47.7	45.6	43.5	41.5	39.3	37.2
Net power output (kW)	97.68	102.47	106.76	110.49	113.47	123.66	119.54	115.33	111.07	102.41	98.01	93.57	89.09	84.55	79.74

Table 7: Performance of the integrated LiBr–H₂O system

Parameters	Case	t₁ (°C)	t₄ (°C)	Nel (kW)	Q_HSHT (kW)	Q_HS (kW)	Q_HS (kW)	COP (−)	η_CCMP (−)	η_CCHP (−)
Most optimal	6	211.4	89.1	123.66	42.18	21.95	17.69	0.8058	0.6565	0.8524
Optimal	1	251.5	97.1	97.68	60.45	30.41	24.38	0.8017	0.5669	0.8476
7	191.7	85.1	119.54	42.51	22.71	18.29	0.8056	0.6401	0.8375	
8	177.8	82.4	115.33	44.65	24.44	19.63	0.8031	0.6268	0.8341	
2	193.8	85.6	102.47	53.28	28.37	22.86	0.8057	0.582	0.8295	
9	167.9	80.4	111.07	45.26	25.34	20.25	0.7989	0.6099	0.8201	
3	160	78.8	106.76	45.73	26.16	20.75	0.7932	0.5922	0.8046	
10	154	77.6	102.41	47.51	27.73	21.80	0.7863	0.5769	0.7975	
Average	11	149.1	76.6	98.01	48.33	28.75	22.36	0.7780	0.559	0.7835
4	138.3	74.4	110.49	39.12	24.54	18.22	0.7424	0.5977	0.7794	
12	145	75.8	93.57	49.75	30.13	23.15	0.7683	0.5421	0.7732	
13	141.6	75.1	89.09	51.54	31.74	24.04	0.7573	0.5254	0.7648	
Poor	14	138.7	74.5	84.55	51.81	32.42	24.14	0.7446	0.5048	0.7454
15	136.2	74.0	79.94	53.47	33.96	24.80	0.7301	0.4864	0.7347	
Marginal	5	123.3	71.5	113.47	32.96	23.3	9.08	0.3896	0.5691	0.7222
means that, in Case 5, the AR cycle operates under marginal conditions with a generator-outlet temperature (t_4) of 71.5°C. Since Case 6 achieved the most optimal operating conditions among the considered cases, it will be used in further analysis of the integrated LiBr–H₂O system.

The performance of the integrated NH₃–H₂O system is presented in Table 8. The best performance of the NH₃–H₂O system has been observed in Case 1, for which the COP was 0.6571. Yet, considering the combined heat and power (CHP) efficiency of the integrated NH₃–H₂O system, which comprises the SOFC and the GWHX, Case 6 has been shown to yield the best performance, with a COP equal to 0.6490 and CCHP efficiency of 83.6%. Therefore, Case 6 is considered in further analysis of the integrated NH₃–H₂O system. Similarly to the integrated LiBr–H₂O system, if the temperature of the SOFC exhaust gas fell to <150°C, the performance of the NH₃–H₂O cycle and the integrated system was substantially affected. In Case 5, in which the exhaust-gas temperature was 123.3°C, the COP and CCHP efficiency of the integrated NH₃–H₂O system were only 0.1466 and 69.6%, respectively. It can be noted that the same operating conditions of the SOFC resulted in the most optimum case for both considered AR systems, enabling a direct comparison.

2.3 Effect of absorber and condenser temperature on integrated-system performance

In the considered AR cycles, heat rejection takes place in the absorber and the condenser, with both units being cooled using ambient air. The effect of the operating temperature of these unit operations on the performance of the AR cycles and the integrated systems was assessed by varying the initial value (35.5°C for the absorber and 39.8°C for the condenser) by ±15%. The effects of the absorber temperature on the COP and heat-transfer rate in the evaporator and the generator for the integrated LiBr–H₂O and NH₃–H₂O systems are shown in Fig. 4. In both AR cycles, an increase in the absorber temperature resulted in a decrease in the COP, leading to subsequent reductions in the CCHP efficiency and the heat-transfer rates in the evaporator and the generator. Importantly, for each 5% variation in the absorber temperature, the COP changed by ±0.7% and ±1.1% for the LiBr–H₂O system and the NH₃–H₂O system, respectively. In the NH₃–H₂O system, a sharp drop in the COP was observed when the absorber temperature was equal to the condenser temperature (39.8°C). It also needs to be highlighted that the CCHP efficiency was not as significantly influenced by the absorber temperature as was the CHP efficiency. Yet, operation at lower absorber temperatures, which depend on the inlet temperature of the cooling air, would result in maximizing the overall system efficiency.

Furthermore, the effect of the absorber temperature on the concentration of weak and strong solutions in both integrated systems is presented in Fig. 5. For the LiBr–H₂O system (Fig. 5a), an increase in the absorber temperature led to a nearly linear increase in the solution concentration. Consequently, the solution concentrations were shown to

Table 8: Performance of the integrated NH₃–H₂O system

Parameters	Case	t_2 (°C)	t_3 (°C)	N_{el} (kW)	\dot{Q}_{ev} (kW)	\dot{Q}_{gw} (kW)	\dot{Q}_{e} (kW)	COP	ηCCHP
Most optimal	6	211.4	89.6	123.66	42.18	21.89	14.26	0.6490	0.8364
Optimal	1	251.5	97.8	122.66	60.45	30.39	20.00	0.6405	0.8273
	7	191.7	85.1	119.54	42.51	22.63	14.35	0.6307	0.8142
	2	177.8	82.4	115.33	44.65	24.35	18.35	0.6209	0.8079
	9	167.9	78.8	112.17	47.33	26.94	20.54	0.6082	0.7984
	10	160	74.4	106.76	49.73	28.29	22.75	0.5982	0.7881
	11	154	70.9	102.41	51.51	30.04	24.88	0.5887	0.7775
	12	149.1	67.6	98.01	53.31	31.79	27.13	0.5790	0.7672
	13	145	64.4	93.94	55.15	33.55	29.69	0.5702	0.7570
	14	141.6	61.1	89.80	56.93	35.29	32.23	0.5522	0.7472
	15	138.7	57.9	85.55	58.64	37.86	34.74	0.5342	0.7374

Downloaded from https://academic.oup.com/ce/advance-article/doi/10.1093/ce/zkaa019/6044462 by guest on 27 December 2020
gradually approach the crystallization limit. It needs to be emphasized, therefore, that the absorber temperature in the LiBr–H₂O system needs to be carefully monitored to prevent the precipitation of LiBr crystals. The inverse correlation was observed for the NH₃–H₂O system (Fig. 5b), as an increase in the absorber temperature resulted in a reduction in the solution concentration. This can be associated with the increased volatility of NH₃ at higher temperatures.

A variation in the condenser temperature has been shown to influence the performance of both integrated systems in a similar manner as does a variation in the absorber temperature. Namely, for each 5% variation in the condenser temperature, the COP changed by ±0.5% and ±1.2% for the LiBr–H₂O system and the NH₃–H₂O system, respectively, as shown in Fig. 6. However, the opposite trends for the concentration of strong solutions were observed. In the LiBr–H₂O system, a 5% increase in the condenser temperature resulted in a decrease in the LiBr concentration in the strong solution from 0.6183 to 0.6160. Conversely, in the NH₃–H₂O system, a 5% increase in the condenser temperature resulted in an increase in the NH₃ concentration in the strong solution from 0.4579 to 0.4610. A variation in the condenser temperature resulted only in variation in the concentration of the strong solution, as the high pressure in the AR cycle is dictated by the saturation temperature in the condenser that, in turn, influences the rich-solution concentration. It is important to emphasize that, in the NH₃–H₂O system, the COP is more significantly influenced when the temperature of the condenser falls below the temperature of the absorber. The effect of the condenser temperature on the CCHP efficiency is small, as in the case of the absorber temperature. This is because the cooling output in the evaporator accounts for ~10% of the total output of the integrated system (Table 8). Nevertheless, in both integrated systems, the condenser temperature should be maximized to avoid challenges with solution crystallization (LiBr–H₂O) and volatility (NH₃–H₂O).

2.4 Effect of evaporator temperature on integrated-system performance

The evaporator is a key unit operation in the AR system, as it produces the cooling effect. Therefore, a sensitivity analysis was performed to evaluate the effect of the evaporator...
temperature on the performance of the integrated systems. It is important to emphasize that the evaporator temperature is dictated by the working fluid used in the AR cycle, as, depending on its composition, the minimum evaporator temperature can be determined. For the LiBr–H$_2$O system, the evaporator temperature needs to be kept >0°C to avoid freezing of the water. Fig. 7 reveals the effect of the evaporator temperature on the performance of the integrated LiBr–H$_2$O system. It has been shown that a 1°C decrease in the evaporator temperature results in a reduction in the COP and CCHP efficiency of 0.6% and 0.13%, respectively. The decrease in the evaporator temperature also resulted in a subsequent increase in the LiBr concentration in both strong and weak solutions. The substantial concentration difference was shown to be maintained at all evaporator temperatures considered in this sensitivity analysis. This implies that no operational issues should occur in the LiBr–H$_2$O system.

Conversely to the LiBr–H$_2$O system, the NH$_3$–H$_2$O system can operate with negative evaporator temperatures, providing a cooling effect at substantially lower temperatures. Therefore, the sensitivity analysis was performed by varying the evaporator temperature between -20°C and 20°C. The effect of the evaporator temperature on the performance of the integrated NH$_3$–H$_2$O system is shown in Fig. 8. The sensitivity analysis has revealed the near-linear correlation between the evaporator temperature and the performance of the integrated NH$_3$–H$_2$O system. A 1°C reduction in the evaporator temperature resulted in a subsequent reduction in the COP and CCHP efficiency by 1.1% and 0.7%, respectively. Such a drop in the performance is sharper than that in the integrated LiBr–H$_2$O system. Moreover, comparing the results for both considered integrated systems, it can be concluded that the performance of the integrated NH$_3$–H$_2$O system (i.e. COP of 0.665 at 10°C) is inferior to the integrated LiBr–H$_2$O system (i.e. COP of 0.815 at 10°C) for evaporator temperatures >0°C. However, the benefit of the former integrated system is that it can operate with negative evaporator temperatures. Nevertheless, it is important to highlight that the COP of the NH$_3$–H$_2$O system decreases from 0.554 at 0°C to 0.341 at -20°C, leading to a subsequent reduction in the CCHP efficiency from 82.3% to 79.6%. Therefore, the selection of the integrated system will depend on the cooling application and the evaporator temperature requirement.

2.5 System-pressure analysis

Each considered AR cycle comprises two pressure levels that are determined from the desired operating conditions.
of the specific AR cycle. Namely, a high-pressure side is determined by the saturation temperature of the condenser and a low-pressure side is influenced by the saturation temperature of the evaporator. A sensitivity analysis has been performed by varying the operating temperature by ±15% to determine the influence of the operating temperature of the condenser and the evaporator on the system pressure. The results for the integrated LiBr–H₂O system
and the integrated NH$_3$–H$_2$O system are presented in Fig. 9a and 9b. For both considered systems, a decrease in the evaporator temperature (low-pressure side) resulted in a small reduction in the pressure. Namely, a 5% increase in the evaporator temperature resulted in a pressure increase of 1.5% (the LiBr–H$_2$O system) and 3% (the NH$_3$–H$_2$O system). In contrast, a 5% increase in the condenser temperature (high-pressure side) resulted in a pressure increase of 11% and 6% in the LiBr–H$_2$O system and the NH$_3$–H$_2$O system, respectively. Importantly, the pressure at
The low-pressure side of the AR cycles was shown to be more stable within the considered temperature range and would remain constant for a specific cooling application. Conversely, the condenser temperature is influenced by ambient conditions, which could be subject to seasonal variability. This implies the importance of maintaining the condenser temperature at the optimal operating point, especially for the NH₃–H₂O system. This is because excessive pressure can result in system failure and toxic NH₃ release.

2.6 Heat-exchanger analysis

The integrated system comprises three main heat exchangers: (i) the GWHX, which recovers high-grade heat from the SOFC exhaust gas for HWST and conditions the exhaust gas to meet the temperature required by the AR cycle; (ii) the generator heat exchanger (GHX) in which heat from the SOFC exhaust gas is transferred to the AR cycle; and (iii) the solution heat exchanger (SHX), which preheats the weak solution in the LiBr–H₂O system (or strong solution in the NH₃–H₂O system) by exchanging heat with the return solution from the generator. All heat exchangers were modelled using a specified heat-exchanger effectiveness. This parameter has been varied between 0 (no heat transfer) and 1 (maximum heat transfer) for the SHX to assess the influence of the heat-exchanger effectiveness on the integrated-system performance. For the GWHX and GHX, the effectiveness has been varied by ±15% (5% interval) with respect to the initial values in Table 4.

Fig. 10 reveals that that effectiveness of the SHX has a significant impact on the COP, especially in the NH₃–H₂O system. This analysis confirmed the need for the SHX in the AR cycles. The COP in the systems without the SHX was 16% and 31% lower for the LiBr–H₂O system and the

![Effect of the heat-exchanger effectiveness the performance of (a) the integrated LiBr–H₂O system and (b) the integrated NH₃–H₂O system](https://example.com/image.png)
NH$_3$–H$_2$O system, respectively, as compared to that in the systems with the SHX at an effectiveness of 0.8. It is important to emphasize that the effectiveness of the SHX had a small influence on the CCHP efficiency. An increase in the SHX effectiveness from 0.8 to 0.95 resulted in a CCHP efficiency increase from 85.2% to 85.3% for the integrated LiBr–H$_2$O system and 83.7% to 84.3% for the integrated NH$_3$–H$_2$O system. Such an increase would not be justified from an economic standpoint, as it would need an increase in the heat-transfer area of the SHX, leading to a higher capital cost. The performance of the integrated systems was shown to be more influenced by the variation in the effectiveness of the GHX and the GWHX. In the latter case, an increase in the effectiveness resulted in a marginal variation in the COP in the LiBr–H$_2$O system and a decrease in the COP in the NH$_3$–H$_2$O system (i.e. a 10% increase in the effectiveness from 0.640 to 0.704 resulted in a COP decrease from 0.649 to 0.638). However, such a change in the GWHX resulted in 0.7–0.8% increase in the CCHP efficiency in both systems, because more heat was transferred from the SOFC exhaust gas to the HWST. In turn, the temperature of the SOFC exhaust gas at the inlet to the generator in the AC cycles was lower, influencing the COP. Furthermore, a nearly linear correlation between the GHX effectiveness and the performance of the integrated system was observed. Namely, a 10% increase in the GHX effectiveness from 0.8 to 0.88 resulted in an increase in the COP of the LiBr–H$_2$O system and the NH$_3$–H$_2$O systems by 0.6% and 0.7%, respectively. In this vein, the CCHP efficiency increased by 0.7% and 0.3%, respectively.

2.7 Industrial applications

A cooling effect produced in the evaporator of the AR cycle is absorbed by an external coil that supplies cold air to the specific cooling or refrigeration application. Each application is characterized not only with different storage-temperature requirements, but also with specific relative humidity associated with the specific product attributes. These parameters determine the temperature difference that is a design parameter for a refrigeration system. It represents the difference between the temperature of return air from the cooling application, which can be assumed to be the same as the storage temperature under steady-state conditions, and the evaporator temperature. To assess the feasibility of using the considered integrated systems, the following product classes have been distinguished based on the evaporator temperature [32, 33]:

- frozen products (−35°C to −7°C);
- low-temperature (LT) products (−6°C to 0°C);
- medium-temperature products (0°C to 7°C); and
- high-temperature (HT) products (7°C to 16°C).

Considering different cooling and refrigeration products, and thus the required evaporator temperature, the performance of the considered integrated systems has been assessed in terms of the COP and evaporator heat-transfer rate. Fig. 11b reveals that the NH$_3$–H$_2$O system can meet the requirements for all considered cooling and refrigeration applications. However, a substantial drop in the COP has been observed for the very LT applications (i.e. frozen products). Application of the integrated LiBr–H$_2$O system (Fig. 11a) has been restricted to HT and MT products to avoid freezing of the refrigerant to <0°C. Given its higher COP, the integrated LiBr–H$_2$O system would be preferred over the integrated NH$_3$–H$_2$O system for all cooling applications that require an evaporator temperature of >0°C. The latter system, however, will be preferred for applications that require an evaporator temperature of <0°C. However, with a very low heat-transfer rate in the evaporator operating at very low temperatures, this system can be limited to refrigeration applications with a small capacity (i.e. defined by the total volume occupied by the products) such as refrigeration trucks or small-scale cold rooms. The large-scale application may be limited by the capacity and capital cost of the SOFC, and therefore further economic evaluation is required.

3 Conclusion

This study aimed to assess the performance of AR systems integrated with the HWST and the SOFC. The thermodynamic models for the LiBr–H$_2$O and NH$_3$–H$_2$O systems have been developed in EES and integrated with the SOFC model developed in Aspen Plus®. The most optimal operating conditions of the integrated system resulted in the COP and the CCHP efficiency of 0.806 and 85.2% for the LiBr–H$_2$O system and 0.649 and 83.6% for the NH$_3$–H$_2$O system, respectively. Under the optimal operating conditions, a net electrical efficiency of 57.5% and a net power output of 123.66 kW from the SOFC has been obtained. The most optimal case has been used to carry out a sensitivity study. The outputs of the sensitivity study have revealed that:

- increasing the heat-rejection temperature led to a lower COP in both AR systems. A drop equal to ~1% was observed for each 5% temperature growth in both AR models;
- in the LiBr–H$_2$O system, attention must be paid to the absorber and generator temperatures to avoid the precipitation of LiBr crystals that can occur at high operating temperatures;
- the evaporator temperature showed an almost linear correlation with the COP of the AR systems. A decrease of 0.6% and 1.1% per 1°C temperature drop was observed for the LiBr–H$_2$O and NH$_3$–H$_2$O systems, respectively;
- the pressures within a system are determined by the evaporator and condenser temperatures. The high-pressure side was shown to be more sensitive to the temperature changes than the low-pressure side. Approximately ±11% pressure change for the LiBr–H$_2$O system and ±6% in the NH$_3$–H$_2$O system for each 5% temperature variation was observed. This indicated the need for monitoring of the condenser temperature;
• the heat-exchanger effectiveness for the main heat exchangers of the integrated system has been analysed. The effectiveness of the SHX had the largest influence on the AR-cycle performance. A comparison has been made between the COP with and without the SHX and a drop in the COP of 16% for the LiBr–H2O system and 31% for the NH3–H2O system has been observed, implying the importance of the SHX; and

Fig. 11: The COP and evaporator heat-transfer rate for different cooling and refrigeration applications of (a) the integrated LiBr–H2O system and (b) the integrated NH3–H2O system
· the application of the integrated LiBr–H₂O system is restricted to applications that require cooling to >0°C.

Overall, this study has revealed that the integrated LiBr–H₂O system will be characterized by better performance than that of the integrated NH₃–H₂O system for all cooling applications that require an evaporator temperature of >0°C. For refrigeration applications that require cooling to <0°C, the integrated NH₃–H₂O system will be preferred. Further work should be carried out to compare the economic performance of the considered systems and to consider AR systems using alternative working fluids.

Supplementary data
Supplementary data is available at Clean Energy online.

Conflict of Interest
None declared.

References
[1] Pardo N, vatopoulos K, Krook-Riekkola A, et al. Heat and Cooling Demand and Market Perspective. Petten: Joint Research Centre, Institute for Energy and Transport, 2012.
[2] Ranjbar F, Chitsaz A, Mahmoudi SMS, et al. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell. Energy Convers Manage 2014, 87:318–27.
[3] Zabihian F, Fung AS. Performance analysis of hybrid solid oxide fuel cell and gas turbine cycle: application of alternative fuels. Energy Convers Manage 2013, 76:571–80.
[4] Akkaya AV, Sahin B. A study on performance of solid oxide fuel cell-organic Rankine cycle combined system. Int J Energ Res 2009, 33:553–64.
[5] Vera D, Jurado F, Carpio J. Study of a downdraft gasifier and externally fired gas turbine for olive industry wastes. Fuel Process Technol 2011, 92:1970–9.
[6] Vera D, Jurado F, Carpio J, et al. Biomass gasification coupled to an EGFT-ORC combined system to maximize the electrical energy generation: a case applied to the olive oil industry. Energy 2018, 144:41–53.
[7] El-Sattar HA, Kamel S, Vera D, et al. Tri-generation biomass system based on externally fired gas turbine, organic Rankine cycle and absorption chiller. J Clean Prod 2020, 260:121068.
[8] El-Sattar HA, Kamel S, Jurado F. Fixed bed gasification of corn stover biomass fuel: Egypt as a case study. Biofuel Bioprod Biorefin 2020, 14:7–19.
[9] Ozcan H, Dincer I. Performance evaluation of a SOFC based trigeneration system using various gaseous fuels from biomass gasification. Int J Hydrogen Energ 2015, 40:7798–807.
[10] Kendall K, Kendall M. High-temperature Solid Oxide Fuel Cells for the 21st Century, 2nd edn. London: Elsevier, 2015.
[11] Al-Sulaiman FA, Dincer I, Hamdullahpur F. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. J Power Sources 2010, 195:2346–54.
[12] Yu Z, Han J, Cao X. Investigation on performance of an integrated solid oxide fuel cell and absorption chiller trigeneration system. Int J Hydrogen Energ 2011, 36:12561–73.
[13] Zhao H, Jiang T, Hou H. Performance analysis of the SOFC–CCHP system based on H₂O/Li–Br absorption refrigeration cycle fueled by coke oven gas. Energy 2015, 91:983–93.
[14] Venkataraman V, Pacek AW, Steinberger-Wilckens R. Coupling of a solid oxide fuel cell auxiliary power unit with a vapour absorption refrigeration system for refrigerated truck application. Fuel Cells 2016, 16:273–93.
[15] Elmer T, Woralla M, Wua S, Riffat S. Assessment of a novel solid oxide fuel cell tri-generation system for building applications. Energy Convers Manage 2016, 124:29–41.
[16] Hou Q, Zhao H, Yang X. Thermodynamic performance study of the integrated MR-SOFC-CCHP system. Energy 2018, 150:434–50.
[17] Hanak DP, Jenkins BG, Kruger T, et al. High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner. Appl Energy 2017, 205:1189–201.
[18] Zhang W, Croiset E, Douglas PL, et al. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models. Energy Convers Manage 2005, 46:181–96.
[19] Doherty W, Reynolds A, Kennedy D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus. Energy 2010, 35:4545–55.
[20] Song TW, Sohn JL, Kim JH, et al. Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model. J Power Sources 2005, 142:30–42.
[21] Achenbach E. Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. J Power Sources 1994, 49:333–48.
[22] Chan SH, Khor KA, Xia ZT. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J Power Sources 2001, 93:130–40.
[23] Bessette NF, Wepfer WJ, Winnick J. A mathematical model of a solid oxide fuel cell. J Electrochem Soc 1995, 142:3792–800.
[24] Veyo S, Forbes C. Demonstrations based on Westinghouse’s prototype commercial. In: Stevens P (ed.). Proceedings of the Third European Solid Oxide Fuel Cell Forum, Nantes, France, 2–5 July 1998, 79–86. European Fuel Cell Forum.
[25] Veyo S. The Westinghouse solid oxide fuel cell program—a status report. In: Chetty, PRK (ed.), Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, Washington, DC., 11–16, August 1996, 1138–43. Institute of Electrical and Electronic Engineers.
[26] Veyo S, Lundberg W. Solid oxide fuel cell power system cycles. In: ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, Indianapolis, IN, 7–10 June 1999, V002T02A058. American Society of Mechanical Engineers.
[27] Habibollahzade A, Gholamian E, Behzadi A. Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents. Appl Energ 2019, 233–234:985–1002.
[28] Hauck M, Herrmann S, Spiethoff H. Simulation of a reversible SOFC with ASPen Plus. Int J Hydrogen Energ 2017, 42:10329–40.
[29] Gilani SIUH, Ahmed MSMS. Solution crystallization detection for double-effect LiBr–H₂O steam absorption chiller. Energy Procedia 2015, 75:1522–8.
[30] Rubio-Maya C, Pacheco-Ibarra JJ, Belman-Flores JM, et al. NLP model of a LiBr–H₂O absorption refrigeration system for the minimization of the annual operating cost. Appl Therm Energ 2012, 37:10–8.
[31] Herold KE, Radermacher R, Klein SA. Absorption Chillers and Heat Pumps, 1st edn. Boca Raton, London, New York, NY and Washington, DC: CRC Press, 1996.
[32] ASHRAE. ASHRAE Handbook—Refrigeration: Commodity Storage Requirements. Atlanta, GA: American Society of Heating and Air-Conditioning Engineers, 2014.
[33] HRP. Commercial Refrigeration Cooling and Freezing Load Calculations and Reference Guide. Stone Mountain, GA: Heatcraft Refrigeration Products LLC, 2008.
Nomenclature

Symbol	Description
\dot{m}	Mass flow rate (kg/s)
\dot{n}	Molar flow rate (kmol/s)
Q	Heat-transfer rate (kW)
W	Work input to the pump (kW)
\dot{C}	Heat capacity (W/°C)
f	Circulation ratio
F	Faraday constant (C/kmol)
h	Specific enthalpy (kJ/kg)
I	Current density (mA/cm²)
N_{el}	Electricity production from SOFC (kW)
p	Pressure (MPa)
q	Vapour quality
S/C	Steam/carbon ratio
T	Temperature (K)
t	Temperature (°C)
U	Cell voltage (V)
ϕ_f	Fuel-utilization factor
u	Specific volume (m³/kg)
X	Composition of LiBr–H₂O/NH₃–H₂O solution
x	Mass fraction of liquid NH₃ solution
y	Mass fraction of vapour NH₃ solution
ε	Heat-transfer/heat-exchanger effectiveness
η	Efficiency
ρ	Density (kg/m³)
ω	Mass fraction of NH₃ in liquid or vapour state