Amide Activation

Chemoselective Alpha-Deuteration of Amides via Retro-ene Reaction

Vincent Porte,[a] Giovanni Di Mauro,[a] Manuel Schupp,[a, b] Daniel Kaiser,[a] and Nuno Maulide*[a, b]

Abstract: A synthetically convenient approach for the direct α-deuteration of amides is reported. This mechanistically unusual process relies on a retro-ene-type process, triggered by the addition of deuterated dimethyl sulfoxide to a keteniminium intermediate, generated through electrophilic amide activation. The transformation displays broad functional-group tolerance and high deuterium incorporation.

The elucidation of reaction mechanisms has long been at the heart of organic synthesis. In particular, isotopic labelling is a powerful tool that enables the precise monitoring of specific atoms by using them as markers during chemical transformations.[1, 2] Moreover, understanding the fate of a drug candidate is of great importance to drug discovery, especially when studying the absorption, distribution, metabolism and excretion (ADME) properties.[3] The introduction of isotopic labels is also one of the most effective and least invasive methods for monitoring bioactive substances.[4] While radioactive compounds containing T or 14C are frequently used for quantification of metabolites and ADME properties,[5, 6] stable isotopes such as D, 13C, 18O or 15N can also be used as internal standards for bioassays,[7] or for overcoming matrix effects from sample analysis in LC/MS studies.[8] Moreover, life sciences can exploit the deuterium kinetic isotope effect to slow down cytochrome P450 metabolism, optimize pharmacokinetic properties or reduce toxicity.[9–11] Expanding the toolbox to enable cheap, re-gioselective and mild late-stage deuterium incorporation is therefore highly desirable. A prime example of such a transformation was reported by MacMillan, who developed a photo-dox-catalyzed deuteration and tritiation of bioactive compounds using D2O or T2O,[12] while more recently Wasa et al. reported a frustrated Lewis pair-catalyzed α-deuteration of carbonyl compounds.[13] Also, late-stage hydrogen isotope exchange, often mediated by an organometallic complex, has been a method of choice to incorporate a D or T.[14, 15]

While other methods for the α-deuteration of carbonyls are known, many of these suffer from low selectivity, owing to the fact that they are strongly pKₐ-dependent and therefore only allow for the deuteration of aldehydes, ketones or esters, using a large excess of D₂O.[16–20] α-Deuterated amides have occasionally been prepared during the course of mechanistic studies,[24–29] with only few reports of these valuable compounds as the actual targets. The α-deuteration of amides can be accomplished employing a MeO/MeOD system at elevated temperatures. However, this requires several cycles to achieve high levels of labelling.[30, 31] In addition to thwarting any possibility of chemoselective labelling in compounds carrying multiple carbonyl functionalities, any base-sensitive functional groups, or those prone to solvolysis, can be potentially negatively impacted (Scheme 1A). A further straightforward approach to α-deuterated amides involves deprotonation with sec-BuLi and subsequent quenching of the resulting anion with D₂O (Scheme 1B),[32] although the use of a very strong base once more limits potential functional-group tolerance. Recently, Atzrodt and Derdaud described an iridium-catalyzed deuteration of aliphatic amides using gaseous D₂ that was even applicable to small peptides (Scheme 1C).[33]

Our group has developed research programs centered on the chemoselective, electrophilic activation of amides,[34–37] as well as the sigmatropic rearrangement chemistry of aryl and vinyl sulfoxides.[38–43] During ongoing studies into the reactivity of keteniminium ions with various classes of sulfoxides, we noticed that the reaction with the simplest sulfoxide, DMSO (dimethyl sulfoxide), led to recovery of seemingly unreacted starting material. Our interest having been sparked by the unexpected result, we performed the reaction with deuterated dimethyl sulfoxide (D₂DMSO) and, surprisingly, we observed the α-incorporation of a deuterium atom (Scheme 1D). Eyeing the aforementioned potential benefits of a mild and chemoselective α-deuteration, we set out to find optimal reaction conditions using the amide 1a as a model substrate (Table 1).
Our investigations commenced with a broad screening of reaction conditions (Table 1, see the SI for a complete optimization table). The influence of a variety of different bases was evaluated (Table 1, entries 1 to 5), with 2-iodopyridine (2-I-pyr) ultimately proving most suited. [D$_6$]DMSO was found to be the most effective source of deuterium, with D$_2$O and [D$_4$]acetic acid ([D$_3$]AcOD) affording considerably lower degrees of incorporation (Table 1, entries 6 and 7). Introduction of molecular sieves (4 Å MS) led to an increase in deuterium incorporation, while variation of the stoichiometry of the base did not prove beneficial (Table 1, entries 8 to 10).

Apart from the potential synthetic practicability of this method, the mechanistic aspects are highly intriguing. Our initial hypothesis started out with the textbook electrophilic activation of amides with trifluoromethanesulfonic anhydride (Tf$_2$O) in the presence of 2-halopyridines to form a keteninium ion 4 and its stabilized adduct 3 (Scheme 2A). In analogy to the previously described methodologies, we then assumed that addition of [D$_6$]DMSO to the keteninium intermediate 4 generates intermediate 5. At this point, we proposed the latter to undergo a retro-ene fragmentation to yield the deuterated product 2 through simultaneous cleavage of the C–D and the S–O bonds. In studies reported during the preparation of this manuscript, Movassaghi and co-workers proposed a similar mechanistic pathway.

In this mechanistic proposal, the oxygen atom is ultimately transferred from DMSO to the amide. In support of this assumption, when 1a was treated with isotopically labelled [18O]DMSO (Scheme 2B), incorporation into the product 1a-[18O] was observed (Scheme 2B). In a further experiment, [18O]-labelled amide 1c-[18O] was treated with [D$_6$]DMSO following activation, and afforded the 16O/D combination as the main product 2c (Scheme 2C). These results confirm unambiguously that the carbonyl oxygen of the deuterated products stems from DMSO, lending strong support to our mechanistic hypothesis.

To further corroborate the reaction mechanism, we undertook DFT analysis of the reaction system, which showed the proposed pathway to be thermodynamically favorable by 51.0 kcal mol$^{-1}$ (Scheme 3). Starting from 1a, the amide follows a classical amide activation pathway$^{[52]}$ to yield ion pairs A (A$_2$ at 0.7 kcal mol$^{-1}$ and A$_2$ at -1.4 kcal mol$^{-1}$) after addition of dimethyl sulfide to the keteninium ion 4 (see Scheme 2A). Deuterium transfer takes place in a concerted fashion through

Table 1. Optimization table.

Entry	Base	D source	Additive	Incorporation [%]$^{[a]}$
1	pyridine	[D$_6$]DMSO	–	43
2	2-F-pyr	[D$_6$]DMSO	–	40
3	2-Cl-pyr	[D$_6$]DMSO	–	70
4	2-Br-pyr	[D$_6$]DMSO	–	72
5	2-1-pyr	[D$_6$]DMSO	–	73
6	2-I-pyr	D$_2$O$^{[b]}$	–	55
7	2-I-pyr	[D$_6$]AcOD	–	40
8	2-I-pyr	[D$_6$]DMSO	4 Å MS	89
9	2-I-pyr (1.1 equiv)	[D$_6$]DMSO	4 Å MS	26
10	2-I-pyr (3.3 equiv)	[D$_6$]DMSO	4 Å MS	90

[a] Reactions were performed on a 0.2 mmol scale and deuterium incorporation was measured by 1HNMR on the crude mixture after work-up. [b] 5 equiv.

Scheme 1. Different approaches to incorporate a deuterium atom in the a-position of an amide.

Scheme 2. Mechanistic studies. (a) Percentages are relative intensities of the [M$^+$Na$^+$]$^+$ ion measured by HRMS.

Chem. Eur. J. 2020, 26, 15509–15512 www.chemeurj.org 15510 © 2020 The Authors. Published by Wiley-VCH GmbH
our attention to the carbon chain and the tolerance of reactive functional groups. We were pleased to find that the reaction displayed good functional-group tolerance, leaving alkyne (2j), alkene (2k), ester (2l), methyl ketone (2m), nitrile (2n), halide (2o and 2p) and trifluoromethyl (2q) moieties untouched. Satisfyingly, the amide obtained from the natural product dehydrocholic acid (2r) also afforded the desired product with high levels of deuterium incorporation and no noticeable labelling around the ketone functionalities. In terms of limitations, we found that amides bearing bulkier substituents on either side of the central sp² carbon, such as 2s and 2t, were less amenable to this protocol.

Lastly, we were eager to address the question, whether this approach is capable to similarly deliver α-bisdeuterated amides, as such compounds promise more wide-spread applicability in the study of biological and medicinal systems.[10, 11] To this end, monodeuterated amide 2e (97 % D) was subjected to the reaction conditions, providing the desired product 7 in 61 % yield with 78 % of bisdeuteration (Eq. (1)).[53] While a pronounced kinetic isotope effect is not uncommon for enolization,[54] this result must still be highlighted for its high selectivity.

In conclusion, we have presented the highly chemoselective α-deuteration of amides via a retro-ene reaction triggered by the addition of [D₆]DMSO to activated amides. Experimental mechanistic probing and DFT analysis shed light on this intriguing process that is able to tolerate a broad range of functional groups and tertiary amides. Good yields and high levels of deuterium incorporation were obtained throughout. The possibility to perform chemoselective bisdeuteration was established, adding to the potential applicability of this method in the study of reaction mechanisms and in life sciences.

Acknowledgements

This work was supported by the FWF (Project P32206) and the European Research Council Horizon 2020 (ERC CoG 682002 VINCAT). G.D.M. is a fellow of the FWF-funded Doctoral Program MolTag (W1232). We acknowledge strong financial support from the Christian-Doppler Society (CDLab EnODD) and the Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM). D.K. thanks the FWF for an Erwin-Schrödinger Fellowship (J 4202-N28). We additionally thank the University of Vienna for continued support of our research programs and its mass spectrometry department for measurements. We acknowledge C. R. Gonçalves, M. Lemmerer, I. Klose, Dr. M. Riomet, Dr. M. Vayer and Dr. B. Maryasin for stimulating and helpful discussions.

Scheme 3. Computed reaction profile for the amide deuteration through a retro-ene-type reaction at the PBE0/def-2SVP level including solvation factor SMD(CH₂Cl₂) at 298.15 K. Free energies are reported using 1a as the reference point.

Scheme 4. Scope of deuterated amides. Reactions were performed on a 0.2 mmol scale. Deuterium incorporation was determined by ¹H NMR. All yields refer to isolated materials (see the Supporting Information for details). [a] Deuterium incorporation was determined by HRMS.

To this end, monodeuterated amide 2e (97 % D) was subjected to the reaction conditions, providing the desired product 7 in 61 % yield with 78 % of bisdeuteration (Eq. (1)). While a pronounced kinetic isotope effect is not uncommon for enolization,[54] this result must still be highlighted for its high selectivity.

In conclusion, we have presented the highly chemoselective α-deuteration of amides via a retro-ene reaction triggered by the addition of [D₆]DMSO to activated amides. Experimental mechanistic probing and DFT analysis shed light on this intriguing process that is able to tolerate a broad range of functional groups and tertiary amides. Good yields and high levels of deuterium incorporation were obtained throughout. The possibility to perform chemoselective bisdeuteration was established, adding to the potential applicability of this method in the study of reaction mechanisms and in life sciences.
Conflict of interest

The authors declare no conflict of interest.

Keywords: amide activation · chemoselectivity · deuteration · sulfoxide isotopic labelling

[1] G. C. Lloyd-Jones, M. P. Muñoz, J. Labelled Compd. Radiopharm. 2007, 50, 1072–1087.
[2] M. Gómez-Gallego, M. A. Sierra, Chem. Rev. 2011, 111, 4857–4963.
[3] C. S. Elmore, R. A. Bragg, Bioorg. Med. Chem. Lett. 2015, 25, 167–171.
[4] M. Kainosho, T. Torizawa, Y. Iwashita, T. Burrell, H. Gu, C. Titsch, J. Easter, R. Burrell, H. Jiang, J. Zeng, W. Li, M. Bifano, H. Gu, C. Titsch, J. Easter, R. Burrell, H. Gu, C. Titsch.
[5] M. Zhan, T. Zhang, H. Huang, Y. Xie, Y. Chen, J. Org. Chem. 2019, 84, 10031–10037.
[6] W. J. S. Lockley, A. McEwen, R. Cooke, J. Labelled Compd. Radiopharm. 2012, 55, 235–257.
[7] T. Pirali, M. Serafini, A. Genazzani, J. Labelled Compd. Radiopharm. 2019, 62, 5276–5297.
[8] Y. Loh, K. Naga, A. J. Hoover, D. Hesk, N. R. Rivera, I. W. Davies, D. W. C. MacMillan, Science 2017, 358, 1182–1187.
[9] Y. Chang, T. Myers, M. Wasa, Adv. Synth. Catal. 2020, 362, 360–364.
[10] W. J. S. Lockley, J. R. Heys, J. Labelled Compd. Radiopharm. 2010, 53, 635–644.
[11] J. Atzrodt, V. Dedrau, T. Fey, J. Zimmermann, Angew. Chem. Int. Ed. 2007, 46, 7744–7765; Angew. Chem. 2007, 119, 7890–7911.
[12] L. Shao, M. C. Hewitt, Drug News Perspect. 2010, 23, 398–404.
[13] T. G. Gant, J. Med. Chem. 2014, 57, 3595–3611.
[14] T. Pirali, M. Serafini, S. Cargnin, A. A. Gennazzani, J. Med. Chem. 2019, 62, 5276–5297.
[15] Y. Loh, K. Naga, A. J. Hoover, D. Hesk, N. R. Rivera, I. W. Davies, D. W. C. MacMillan, Science 2017, 358, 1182–1187.
[16] Y. Chang, T. Myers, M. Wasa, Adv. Synth. Catal. 2020, 362, 360–364.
[17] W. J. S. Lockley, J. R. Heys, J. Labelled Compd. Radiopharm. 2010, 53, 635–644.
[18] J. Atzrodt, V. Dedrau, T. Fey, J. Zimmermann, Angew. Chem. Int. Ed. 2018, 57, 3022–3047; Angew. Chem. 2018, 130, 3074–3101.
[19] J. J. Gajewski, N. D. Conrad, J. Am. Chem. Soc. 1979, 101, 6693–6704.
[20] A. S. Tracey, X. Zhang, J. Phys. Chem. 1992, 96, 3889–3894.
[21] S. S. Labadie, J. K. Stille, Tetrahedron 1984, 40, 2329–2336.
[22] N. J. Turno, T. J. Lee, J. Am. Chem. Soc. 1970, 92, 7467–7470.
[23] J. A. Deyrup, M. F. Betkouski, J. Org. Chem. 1975, 40, 284–289.
[24] W. Murray, D. L. Shiang, M. Singh, J. Org. Chem. 1991, 56, 3677–3682.
[25] R. W. Alder, R. B. Sessions, J. O. Gmunder, C. A. Grob, J. Chem. Soc. Perkin Trans. 2 1984, 411–417.
[26] M. Zhan, T. Zhang, H. Huang, Y. Xie, Y. Chen, J. Labelled Compd. Radiopharm. 2014, 57, 533–539.
[27] X. Wu, F. A. Cruz, A. Lu, V. M. Dong, J. Am. Chem. Soc. 2018, 140, 10126–10130.
[28] M. Tran, D. H. Hesp, V. Mascitti, J. A. Ellman, Angew. Chem. Int. Ed. 2017, 56, 5899–5903; Angew. Chem. 2017, 129, 5993–5997.
[29] S. Thies, U. Kauzmaier, Eur. J. Org. Chem. 2014, 1695–1707.
[30] X. Zhou, G. Zhang, B. Gao, H. Huang, Org. Lett. 2018, 20, 2208–2212.
[31] S. A. Dandekar, S. N. Green, T. D. Green, S. Mabic, J. S. Merola, J. M. Tanko, J. F. Wolfe, J. Green, Org. Chem. 1999, 64, 1543–1553.