Dendritic cell tumor in a salivary gland lymph node: a rare differential diagnosis of salivary gland neoplasms

Schraven et al.
Dendritic cell tumor in a salivary gland lymph node: a rare differential diagnosis of salivary gland neoplasms

Sebastian P Schraven1,5*, Stefan K Plontke2, Roland Syha3, Falko Fend4, Hartwig Wolburg4 and Patrick Adam4

Abstract

Dendritic cell tumors are extremely rare neoplasms arising from antigen-presenting cells of the immune system. We report a case of a 69-year-old man with an unremarkable medical history who presented with a 2-months history of a gradually enlarging painless, firm, mobile, 2 × 2-cm swelling at the caudal pole of the left parotid gland without systemic symptoms. Histologically, the tumor consisted of a spindle cell proliferation in an intraparotideal lymph node. Based on the histopathologic, immunohistochemical and electron microscopic findings, a dendritic cell tumor, not otherwise specified (NOS) in an intraparotideal lymph node was diagnosed. The patient underwent complete tumor resection, and is currently free of disease, 2 years after surgery. These extremely rare tumors must be distinguished from other more common tumors in the salivary glands. Awareness that dendritic cell tumors may occur in this localization, careful histologic evaluation and ancillary immunohistochemical and electron microscopical analyses should allow for recognition of this entity.

Keywords: Dendritic cell tumor, salivary gland lymph node

Background

Dendritic cell sarcomas (DCS) are exceedingly rare entities, arising from antigen-presenting cells of the immune system. DCS are subclassified into the better characterized follicular (FDCS) [1] and interdigitating (IDCS) [2] dendritic cell sarcomas and other rare and less well classifiable dendritic cell tumors like fibroblastic reticular cell tumors, indeterminate dendritic cell tumors and dendritic cell tumors, not otherwise specified (DCT, NOS) [2]. DCS was first described in 1986 by Monda et al. [3]. Since then, nearly 300 cases, most of them FDCS, have been described in the literature. Although most DCS evolve in cervical, mediastinal, axillary and inguinal lymph nodes, also extranodal manifestations have been described [4]. The clinical behaviour of DCS is similar to that of low-grade soft tissue sarcoma, with an approximately 30% overall risk for developing local recurrences and metastases [5]. Because of the rareness of the disease a standardized treatment is lacking.

We herein report a case of a dendritic cell tumor, NOS of an intraparotideal lymph node, emphasizing the important role of ancillary immunohistochemical and molecular studies in establishing this extraordinarily rare diagnosis.

Case report

A 69-year-old man presented with a 2-months history of a gradually enlarging painless, firm, mobile, 2 × 2 × 2 cm swelling at the caudal pole of the left parotid gland without systemic symptoms. His medical history was unremarkable.

Magnet resonance imaging (MRI) showed a 2 × 2 × 2 cm mass with hyperintense signal on T2-weighted images and hypointense signal on T1-weighted sequences and a contrast enhancement which bordered directly to the lateral part of left sternocleidomastoid muscle and displaced the external jugular vein dorsally. Cranially there was no clear demarcation to the left parotid gland (Figure 1). The patient underwent surgical excision of the swelling by a partial left parotidectomy with preservation of the facial nerve. Because of insecure R0-status a follow-up resection with extended partial...
parotidectomy and ipsilateral selective neck dissection (levels II and III) was conducted. A primary tumor of the upper aerodigestive tract was excluded by panendoscopy. Subsequent total body positron emission tomography with 18-F-fluorodesoxyglucose and computed tomography scan 6 months after surgery were unremarkable. The patient is currently disease free, 2 years after surgery.

Material and methods

The specimen was fixed in 10% buffered formalin, paraffin-embedded, and histologic sections were obtained. Sections were routinely stained with hematoxylin and eosin. Immunohistochemical staining was performed on formalin-fixed, paraffin-embedded tissue sections on an automated immunostainer (Ventana Medical Systems©, Tucson AZ) following the manufacturer’s protocols. The monoclonal antibodies used are listed in Table 1.

For electron microscopical (EM) evaluation, small pieces of tissue were dissected out of the paraffin bloc, rehydrated stepwise and postfixed in 1% OsO₄ in 0.1 M cacodylate buffer (pH 7.4) and then again dehydrated in an ethanol series (50, 70, 96, 100%). The 70% ethanol was saturated with uranyl acetate for contrast enhancement. Dehydration was completed in propylene oxide. The specimens were embedded in Araldite (Serva©, Heidelberg, Germany). Ultrathin sections were produced on a FCR Reichert Ultracut ultramicrotome (Leica©, Bensheim, Germany), mounted on pioloform-coated copper grids, contrasted with lead citrate and analyzed and documented with an EM10A electron microscope (Carl Zeiss©, Oberkochen, Germany). The pictures were digitized and processed with Adobe Photoshop.

Antibody	Company	Dilution	Tumor cells
Vimentin	DAKO	1:1000	positive
HLA-DR	DAKO	1:200	part.positive
Fascin	Abcam	1:100	positive
Langerin	eBioscience	1:50	negative
Lysozym	DAKO	1:400	negative
S100	DAKO	1:5000	negative
AE1/3	DAKO	1:100	negative
HMB45	DAKO	1:50	negative
MITF	Zytomed	1:100	negative
PMZ	Zytomed	1:50	negative
LCA	DAKO	1:500	negative
Calponin	DAKO	1:200	negative
Caldesmon	DAKO	1:50	negative
Clusterin	Menarini	1:30	negative
EMA	DAKO	1:100	negative
SMA	DAKO	1:500	negative
CK5/6	DAKO	1:100	negative
CK8/18	Zytomed	1:100	negative
OSCAR	Zytomed	1:200	negative
Synaptophysin	DCS	1:200	negative
Chromogranin	DAKO	1:500	negative
Factor XIIIa	DCS	1:100	negative
CD1a	DAKO	1:50	negative
CD3	Santa Cruz	1:200	negative
CD4	Zytomed	1:200	negative
CD20	DAKO	1:500	negative
CD21	Zytomed	1:50	negative
CD23	Novocastra	1:30	negative
CD30	DAKO	1:50	negative
CD31	DAKO	1:100	negative
CD34	DAKO	1:50	negative
CD35	Novocastra	1:50	negative
CD56	Cell Marque	1:100	negative
CD68 (PG-M1)	DAKO	1:200	negative
CD117	DAKO	1:200	negative
CD123	BD Pharmingen	1:50	negative
Mib1	DAKO	1:200	40-50%

Figure 1 Axial MR image (T2-weighted) of a 2 × 2 cm mass with hyperintense signal (arrow) directly bordering the lateral part of left sternocleidomastoid muscle (asterisk) and displacing the extern jugular vein (arrow head) dorsally. Cranially there was no clear demarcation to the left parotid gland.
Results

Gross and histological findings
The specimen consisted of parotid gland tissue containing a single firm, nodule 2.3 cm in diameter. The cut surface was soft and homogeneous light-grey. Microscopic examination revealed a spindle cell neoplasia in an intraparotideal lymph node. Tumor cells featured moderate nuclear pleomorphism, bulked chromatin and a clearly perceptible nucleolus (Figure 2A, B). Furthermore an elevated mitotic rate (up to 27 mitoses per 10 high power fields) was found.

Immunohistochemical Findings
To further characterize the histogenesis of this tumor, immunohistochemical stainings were performed. The tumor cells were positive for vimentin, fascin and HLA-

Figure 2 Morphology and immunohistochemical stainings (A) H&E (original magnification 100x) and (B) H&E (original magnification 400x) show a spindle cell proliferation in an intraparotideal lymph node with moderate cellular pleomorphy (C) Vimentin (original magnification 400x) and (D) HLA-DR (original magnification 400x) were strongly expressed by the tumor cells. (E) Clusterin (original magnification 400x) and (F) S100 protein (original magnification 400x) were negative in the tumor cells. (G) CD20 showed only very few reactive small B-cells (original magnification 400x) and (H) CD3 some reactive T-lymphocytes (original magnification 400x). Virtual Slides: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=1316777507, http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=1316777681, http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=1316777716, http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=1316777754, http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=1316777781
DR (Figure 2B, D). In contrast, the neoplastic cells were negative for all epithelial, melanocytic, lymphoid, histiocytic and follicular dendritic cell markers used. The proliferation, as assessed by Mib1 index was 40-50%. The results of the immuohistochemical stainings are shown in table 1.

Electron Microscopic Findings
The electron microscopical aspect of the tissue was characterized by cells which were devoid of characteristic structures as desmosomes or Birbeck granules. There was a certain heterogeneity of nuclei concerning their amount of heterochromatin. However, the cytoplasm of the cells (size, content of mitochondria or endoplasmatic reticulum) was less well differentiated (Figure 3A). The most prominent finding was the large number of slender long-spacing collagen fibers dividing the tissue in many compartments (Figure 3A). Fibrous long-spacing collagen the period length of which was in the order of 200 nm in this case (Figure 3B), is not described in the literature to be specific for any disease, but has been found in a variety of normal and pathological tissues. Therefore, it cannot be used as a pathognomonic marker here.

In summary, the morphological and immunophenotypic features were consistent with a dendritic cell tumor, not otherwise specified (NOS) originating in an intraparotideal lymph node. A differentiation towards a follicular or interdigitating dendritic cell sarcoma could not be demonstrated.

Conclusions
Dendritic cell sarcomas (DCS) are rare neoplasms arising from antigen-presenting cells of the immune system [2]. DCS are being recognized with an increasing frequency. These tumors can occur, where dendritic cells are located. One of the most common manifestation sites are the head and neck region. Under-recognition of this entity may contribute to its rarity. The WHO subclassifies DCS into five groups [2]: Langerhans cell histiocytosis, Langerhans cell sarcoma, interdigitating dendritic cell sarcoma (IDCS), follicular dendritic cell sarcoma (FDCS) and other rare and less well classifiable dendritic cell tumors like fibroblastic reticular cell tumors, indeterminate dendritic cell tumors and dendritic cell tumors, not otherwise specified (DCT, NOS) [2]. FDCS is the most common subtype followed by IDCS.

The clinical course of this neoplasia is similar to that of soft tissue sarcomas [3,6]. Since only 306 cases of DCS have been reported worldwide (table 2), there is no general consensus on the treatment of this rare disease. Surgery has remained the gold standard in localized disease, but a recurrence rate up to 50% has been reported [5]. Alternatively some DCS have also been treated additionally by radiotherapy and or chemotherapy [7]. For our patient we chose the option of surgical therapy and

Figure 3 Electron microscopy (EM) Most prominent feature was the large number of slender long-spacing collagen fibers dividing the tissue in many compartments (A). Fibrous long-spacing collagen the period length of which was in the order of 200 nm in this case (B), is not described in the literature to be specific for any disease, but has been found in a variety of normal and pathological tissues. Well-formed desmosomes or Birbeck granules were not found in this case.
he is well and free of disease for 2 years after surgery now.

For establishing the diagnosis a large number of immunohistochemical stainings and ultrastructural analyses has been performed. Other rare differential diagnosis of salivary glands, like lipomatous pleomorphic adenoma [8] or sebaceous adenoma [9], were excluded. Despite this extensive work-up a definite assignment to an established entity of dendritic cell tumors could not be achieved. Therefore a diagnosis of dendritic cell tumor, NOS was made.

In summary, we report on the clinical, pathologic, and immunohistochemical features of a dendritic cell tumor, NOS in an intraparotid lymph node. Metastatic disease was ruled out by PET- and CT imaging. Recognition of this extremely rare tumor, and its distinction from more common malignant tumors of lymph nodes and salivary glands largely depends on judicious application of immunohistochemical and ultrastructural techniques. The precise histogenesis of these extraordinarily rare tumors remains to be established.

Consent
Written informed consent was obtained from the patient for publication of this Case Report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Acknowledgements
This publication was funded by the German Research Foundation (DFG) and the University of Wuerzburg in the funding programme Open Access Publishing.

Author details
1Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany.
2Department of Otolaryngology, Head and Neck Surgery, University of Halte-Wittenberg, Magdeburger Straße 12, D-06112 Halle (Saale), Germany.
3Department of Diagnostic and Interventional Radiology, University of Tübingen, Hoppe-Seyler-Straße 3, D-72076 Tübingen, Germany.
4Institute of Pathology and Comprehensive Cancer Center (CCC), University of Tübingen, Liebermeisterstraße 8, D-72076 Tübingen, Germany.
5University of Wuerzburg, Department of Otolaryngology, Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany.

Schraven et al. Diagnostic Pathology 2011, 6:94
http://www.diagnosticpathology.org/content/6/1/94
Page 5 of 7

Table 2 Overview of dendritic cell sarcoma case reports.

Year	Nodal	Extranodal	Total
1986-4/2007*	77	33	110
2007-08/2011	68	33	101

FDACS, follicular dendritic cell sarcoma; IDCS, interdigitating cell sarcoma. * Modified from [5]. A total of 145 nodal FDACS cases, 85 extranodal FDACS cases, 47 nodal IDs cases and 29 extranodal cases have been reported until 08/2011. 2 cases FDACS and 2 cases of IDs occurred in the parotid gland.

References
1. Chan JKC. Follicular dendritic cell sarcoma. WHO Classification of tumors of haematopoietic and lymphoid tissue WHO, 2008, 363-364.
2. Weiss LM, T M, Chan JKC. Interdigitating dendritic cell sarcoma, 2008.
3. Monda L, Wanne R, Rosai J. A primary lymph node malignancy with features suggestive of dendritic reticulum cell differentiation. A report of 4 cases. Am J Pathol 1986, 122(3):562-572.
4. Li L, Shi YH, Guo ZJ, Qiu T, Guo L, Yang HY, Zhang X, Zhao XM, Su Q: Clinicopathological features and prognosis assessment of extranodal follicular dendritic cell sarcoma. World J Gastroenterol 2010, 16(20):2504-2519.
5. De Pas T, Spitaleri G, Pruneri G, Curigliano G, Noberasco C, Luini A, Andreoni B, Testori A, de Braud F: Dendritic cell sarcoma: an analytic overview of the literature and presentation of original cases. Crit Rev Oncol Hematol 2008, 65(1):1-7.
6. Perez-Ordonez B, Erlandson RA, Rosai J. Follicular dendritic cell sarcoma. report of 13 additional cases of a distinctive entity. Am J Surg Pathol 1996, 20(3):944-955.
7. Efune G, Sumer BD, Sarode VR, Wang HY, Myers LL: Interdigitating dendritic cell sarcoma of the parotid gland: case report and literature review. Am J Otolaryngol 2009, 30(4):264-268.
8. Kondo T. A case of lipomatous pleomorphic adenoma in the parotid gland: a case report. Diagn Pathol 2009, 4:16.
9. Bensch C, Back W: Primary sebaceous adenoma of the salivary glands - a rare differential diagnosis: report of a case. Diagn Pathol 2007, 2(Suppl 1):16.
10. Aboujadeur O, Alvarez JR, Alvarez M, Al-Khan A: Follicular dendritic cell sarcoma in pregnancy: case report and review of the literature. Am J Perinatol 2006, 23(8):459-461.
11. Amiri-Kordestani L, Prieat D, Cha SH: Follicular dendritic cell sarcoma of the neck: case report and review of current diagnostic and management strategies. Ear Nose Throat J 2010, 89(7):E14-17.
12. Androulaki A, Lapis G, Alexandrou P, Lazaris AC. Retropertioneal follicular dendritic cell sarcoma. Int J Hematol 2006, 84(1):2.
13. Aydin E, Ozluoglu LN, Demirhan B, Arikan U. Follicular dendritic cell sarcoma of the tonsil: case report. Eur Arch Otorhinolaryngol 2006, 263(12):1155-1157.
14. Azmi HA, Elseediwy E, Azmi HA Jr. Imatinib in the treatment of follicular dendritic sarcoma: a case report and review of literature. Onkologie 2007, 30(7):381-384.
15. Boldin I, Brix-Gruenwald G, Scarpatti MM, Beham-Schmid C, Klein A: Interdigitating dendritic cell sarcoma of the eyelid with a rapidly fatal course. Arch Ophthalmol 2008, 126(5):738-740.
16. Cano JR, Cerezo F, Gonzalez A, Marchal T, Salvatierra A: [Follicular dendritic cell tumour in the anterior mediastinum]. Cir Esp 2009, 85(4):254-256.
17. Chera BS, Orlando C, Villaret DB, Mendenhall WM: Follicular dendritic cell sarcoma of the head and neck: case report and literature review. Laryngoscope 2008, 118(9):1607-1612.
18. Choi JW, Lee JH, Kim A, Kim CH, Chae YS, Kim I. Follicular dendritic cell sarcoma arising in the dura mater of the spine. Arch Pathol Lab Med 2006, 130(11):1716-1721.
19. Choi BS, Baek JH, Shin YM, Kim JH, Kim HW, Lee SJ, Cha HJ: Follicular dendritic cell sarcoma: a case report and review of the literature. Cancer Res Treat 2010, 42(2):121-124.
Soriano AO, Thompson MA, Admimrand JH, Fayad LE, Rodriguez AM, Romaguera JE, Hagermeister FB, Pro B. Follicular dendritic cell sarcoma: a report of 14 cases and a review of the literature. Am J Hematol 2007, 82(8):725-728.

Suhail Z, Musani MA, Afzaq S, Zafar A, Ahmed Ashrafi SK. Follicular dendritic cell sarcoma of tonsil. J Coll Physicians Surg Pak 2010, 20(1):55-56.

Suzuki N, Katsushihama H, Takeuchi K, Nakamura S, Ishizawa K, Ishii S, Moriya T, DeCoteau JF, Muira I, Ichinohasama R. Cytogenetic abnormality 46, XX, add(21)(q11.2) in a patient with follicular dendritic cell sarcoma. Cancer Genet Cytogenet 2008, 186(1):54-57.

Tokyc C, Yilmaz MD, Ikici O, Akstepe F. Follicular dendritic cell sarcoma: a case report. Acta Cytol 2008, 52(2):235-239.

Tu XY, Sheng WQ, Lu HF, Wang J. [Clinicopathologic study of intraabdominal extranodal follicular dendritic cell sarcoma]. Zhonghua Bing Li Xue Za Zhi 2007, 36(10):660-665.

Vaideeswar P, George SM, Kane SJ, Chatunvedi RA, Pandit SP. Extranodal follicular dendritic cell sarcoma of the tonsil - case report of an epithelioid cell variant with osteoclastic giant cells. Pathol Res Pract 2009, 205(2):149-153.

Vives S, Fernandez MT, Lopez de Castro PE, Ribera JM. [Interdigitating dendritic cell sarcoma with localization to the lung]. Med Clin (Barc) 2006, 126(14):599.

Voigt LP, Hrindi A, Pastores SM, Maki RG, Carlson DL, Bains MS, Halpern NA. Management dilemmas due to a paratracheal follicular dendritic cell tumor. Ann Thorac Surg 2006, 82(5):1898-1900.

Wang LF, Wang RF, Wang ZC, Han W, Mei HL, Liu M. [Follicular dendritic cell sarcoma of stomach: report of a case]. Zhonghua Bing Li Xue Za Zhi 2008, 37(3):210-211.

Wang X, Zhang S, Thomas JD, Adegooyega PA. Cytomorphology, ultrastructural, and cytogenetic findings in follicular dendritic cell sarcoma: a case report. Acta Cytol 2010, 54(5 Suppl):759-763.

Wang H, Su Z, Hu Z, Wen J, Liu B. Follicular dendritic cell sarcoma: a report of six cases and a review of the Chinese literature. Diagn Pathol 2010, 5:67.

Wang Q, An L, Cui N, Sha J, Zhu D. [Follicular dendritic cell sarcoma: a case report and review of literature]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2011, 25(3):100-102.

Wu Q, Liu C, Lei L, Yan X, Wang B, Liu X, Yu L, Lv Y. Interdigitating dendritic cell sarcoma involving bone marrow in a liver transplant recipient. Transplant Proc 2010, 42(5):1963-1966.

Yakushijin Y, Shikata H, Kito K, Ohshima K, Kojima K, Hato T, Hasegawa H, Yasukawa M. Follicular dendritic cell tumor as an unknown primary tumor. Int J Clin Oncol 2007, 12(1):56-58.

Yamada Y, Haga H, Hernandez M, Kubota KC, Orii F, Nagashima K, Matsuno Y. Follicular dendritic cell sarcoma of small intestine with aberrant T-cell marker expression. Pathol Int 2009, 59(11):809-812.

Yang GC, Wang J, Yee HT. Interwoven dendritic processes of follicular dendritic cell sarcoma demonstrated on ultrafast papanicolaou-stained smears: a case report. Acta Cytol 2006, 50(5):534-538.

Yu L, Yang SJ. Primary Follicular Dendritic Cell Sarcoma of the Thyroid Gland Coexisting With Hashimoto’s Thyroiditis. Int J Surg Pathol 2009.

Zhang ZX, Cheng J, Shi QL, Ma J, Zhou XJ, Zhou HB, Ma HH. [Follicular dendritic cell sarcoma: a clinicopathologic study of 8 cases]. Zhonghua Bing Li Xue Za Zhi 2008, 37(6):395-399.

Zhong GP, Sun WY, Gan MF, Yuan MC. [Follicular dendritic cell sarcoma: a clinicopathologic study of five cases]. Zhonghua Bing Li Xue Za Zhi 2006, 35(10):612-615.