How Many of the Observed Neutrino Events Can Be Described by Cosmic Ray Interactions in the Milky Way?

Jagdish C. Joshi1*, Walter Winter2†, Nayantara Gupta1‡

1 Raman Research Institute, Sadashivanagar, Bangalore 560080, India
2 Institut für theoretische Physik and Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

28 January 2014

\textbf{ABSTRACT}

Cosmic rays diffuse through the interstellar medium and interact with matter and radiations as long as they are trapped in the Galactic magnetic field. The IceCube experiment has detected some TeV-PeV neutrino events whose origin is yet unknown. We study if all or a fraction of these events can be described by the interactions of cosmic rays with matter. We consider the average target density needed to explain them for different halo sizes and shapes, the effect of the chemical composition of the cosmic rays, the impact of the directional information of the neutrino events, and the constraints from gamma ray bounds and their direction. We do not require knowledge of the cosmic ray escape time or injection for our approach. We find that, given all constraints, at most 0.1 of the observed neutrino events in IceCube can be described by cosmic ray interactions with matter. In addition, we demonstrate that the currently established chemical composition of the cosmic rays contradicts a peak of the neutrino spectrum at PeV energies.

\textbf{Key words:} Milky Way : Cosmic Rays – Neutrinos – Gamma rays

Cosmic ray propagation in our Galaxy has been studied in the past several decades using many models and with increasing complexities to explain the observational results successfully. The transport equation written by Ginzburg & Syrovatskii (1964) contains various terms to include the possible gains and losses in the flux of cosmic rays. The simple leaky box model and its variants were widely used to explain the observed secondary to primary GeV cosmic ray flux ratios (Shapiro & Silberberg 1970; Cowsik & Wilson 1973). Cosmic rays diffuse through the Galaxy, interact with matter and background radiations producing secondary particles of lower atomic numbers (Z). More complex models of cosmic ray propagation including the effects of energy dependent diffusion coefficient (D) and re-acceleration were subsequently introduced by Gupta & Webber (1989); Gaisser (1991); Berezinskii et al. (1990); Letaw, Silberberg & Tsao (1993).

In the present work we consider the steady state flux of cosmic rays for the calculation of the diffuse neutrino flux produced in cosmic ray interactions, directly based on cosmic ray observations. Thus our results neither depend on the unknown injection spectrum, nor on the escape time of very high energy cosmic rays.

The detection of very high energy and ultrahigh energy cosmic rays by air shower experiments (Apel et al. 2013; Chou et al. 2005; The Pierre Auger Collaboration et al. 2013; Evoli, Grasso & Maccione 2007; Gupta 2012, 2013) have an enormous impact on our understanding of the high energy phenomena in the universe. The compilation of cosmic ray data from various air-shower experiments show a knee region near 3 PeV and ankle region near 10^4 PeV in the all particle cosmic ray spectrum (Gaisser, Stanev & Tilav 2013).

If we consider the propagation of these cosmic rays within the Galaxy, secondary gamma rays and neutrinos will be produced by their interactions with Galactic matter (Stecker 2013; Evoli, Grasso & Maccione 2007; Gupta 2012, 2013). The IceCube experiment has detected some neutrino events in TeV-PeV energies which are unlikely to be of atmospheric origin (IceCube Collaboration et al. 2013; Aartsen et al. 2013). The implication of the IceCube neutrinos for cosmic ray transition models has been studied in Anchordoqui et al. (2013), assuming that these could be of Galactic origin. Cosmic ray interactions in the inner Galaxy have been considered as the possible origin of the some of the IceCube detected events and Fermi/LAT observed gamma rays in Neronov, Semikoz & Tchernin (2013). The five shower-like events correlated with the Galactic centre region (Razzaque 2013) could have originated from cosmic ray accelerations in SNR (supernova remnants). The correlation of the gamma ray and the neutrino fluxes and the Galactic origin of the IceCube events have been studied in Ahlers & Murase (2013). They point out that within wide angular uncertainties off the Galactic plane, it is plausible that about 10 events are of Galactic origin. Recently the sub-PeV and PeV neutrinos have been correlated with...
the cosmic rays above the second knee in the very high energy cosmic ray spectrum, for various sources within hadronic interaction (Murase, Ahlers & Lacki 2013) and hypernova remnants have been suggested as their sources (Liu et al. 2013). The Neutrino events discovered by Ice-Cube can also come from $\gamma\gamma$ interactions, as it is, for instance, discussed by Winter (2013); Murase & Ioka (2013); Stecker (2013).

In this work we study if the TeV-PeV neutrino events detected by IceCube above the atmospheric background have originated from interactions of very high energy cosmic rays (VHECRs) with Galactic matter or gas. The interactions of cosmic rays with Galactic matter also lead to the production of high energy gamma rays which contribute to the background measured by Fermi/LAT.

1 PROTON INTERACTIONS AND TARGET GEOMETRY

VHECRs interacting with Galactic matter give charged and neutral pions. The charged pions decay to muons and muon type neutrinos ($\pi^\pm \to \mu^\pm + \nu_\mu$). The muons subsequently decay to electrons, electron type neutrinos and muon type neutrinos ($\mu^\pm \to e^\pm + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu$). The ratio of the neutrino fluxes of different flavors produced in this way is $\nu_e : \nu_\mu : \nu_\tau : \nu_\bar{\mu} : \nu_\bar{\tau} = 1 : 2 : 0$.

The fluxes of neutrinos of each flavor are expected to be roughly equal on Earth after flavor mixing $\nu_e : \nu_\mu : \nu_\tau : \nu_\bar{\mu} : \nu_\bar{\tau} \simeq 1 : 1 : 1$ (Gaisser 1991). For the numerical calculations, however, we compute the flavor mixing precisely using the current best-fit values from Gonzalez-Garcia et al. (2012) (first octant solution).

For the description of the pp interactions, we follow Kelner, Aharonian & Bugayov (2006). The pp interaction time is given by $t_{pp}(E_p) = 1/(n_H \sigma_{pp}(E_p) c)$, where n_H is the mean hydrogen number density of Galactic matter and the cross section of the interaction is $\sigma_{pp}(E_p) = 34.3 + 1.88 \ln(E_p/1 \text{TeV}) + 0.25 (\ln(E_p/1 \text{TeV}))^2 \text{mb.}$

The neutrino injection spectra $Q_\nu \text{[cm}^{-3}\text{s}^{-1}\text{GeV}^{-1}]$ are given by

$$Q_\nu(E_\nu) = \int_0^{n_H} \sigma_{pp}(E_\nu/x) N_p(E_\nu/x) \times f(x, E_\nu/x) \frac{dx}{x} \text{(1)}$$

for the appropriate flavor-dependent parameterizations of the distribution functions given in Eqs. (62) and (66) of Kelner, Aharonian & Bugayov (2006), which include the proper pion multiplicities. The integration over $x \equiv E_\nu/E_p$ is carried out to include the contributions from all protons having energy equal to or higher than E_p. However, on the average 5% of a proton’s energy goes to a secondary neutrino, which means that the maximum contribution to the neutrino flux at energy E_ν comes from the protons of energy twenty times E_p. Note that the neutrino injection is computed from the proper density $n_H \text{[cm}^{-3}]$ and the steady state density $N_p \text{[cm}^{-3}\text{GeV}^{-1}]$ obtained from solving the cosmic ray transport equation. If we assume that the cosmic ray density is the same everywhere in the galaxy (or hydrogen halo), we can directly use the observed cosmic ray flux to compute $N_p = 4\pi/c J_{\nu}$, where the fluxes are given in units $[\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}\text{GeV}^{-1}]$. That is, the neutrino production neither relies on the cosmic ray injection, nor on the cosmic ray escape time. The observed neutrino flux can be computed by

$$J_\nu = \frac{1}{4\pi} \int dV \frac{Q_\nu}{4\pi r^2} \text{(2)}$$

where r is the distance between Earth and production region. For a (hypothetical) spherical hydrogen halo with radius R centred at Earth and a homogeneous target density, it is easy to show that $J_\nu = Q_{\nu} R/(4\pi)$. For an arbitrary halo shape, we can rewrite Eq. (1) as

$$J_\nu(E_\nu) = R_{\text{eff}} n_H \int_0^1 \sigma_{pp}(E_\nu/x) J_p(E_\nu/x) \times f \left(x, \frac{E_\nu}{E_p} \right) \frac{dx}{x} \text{(3)}$$

Here the effective radius $R_{\text{eff}} \equiv \int dV/(4\pi r^2)$ for a homogeneous halo, integrated over the appropriate production region; for a halo centered at Earth, one recovers $R = R_{\text{eff}}$. If the hydrogen density or cosmic ray density depends on the location, this effect can be also expressed in terms of the effective radius R_{eff} in a more complicated scheme; for a detailed study of the spatial distribution of hydrogen and cosmic rays, see Evoli, Grassi & Maccione (2007).

In some models (Evoli, Grassi & Maccione 2007) the average atomic hydrogen density in the Galaxy modelled with radii 10's of kpc and height 100's of pc calculated to be $\sim 0.5 \text{cm}^{-3}$. The density of ionized, neutral and molecular hydrogen as a function of the height from the Galactic plane relative to the Earth’s location and the radial distance from the Galactic centre have been calculated in Feldmann, Hooper & Gnedin (2013) using the gamma ray data observed by Fermi gamma ray space telescope. Relative to the Earth’s location the density of atomic and molecular hydrogen gas drops from 1cm^{-3} to 0.1cm^{-3} within a distance of 1-1.5 kpc above the Galactic plane. The density of ionized hydrogen gas steeply falls from 0.3 cm^{-3} to 0.001 cm^{-3} within the same distance. The hydrogen densities of 1cm^{-3} are unlikely for the 10's kpc of spherical halo as discussed in Dickey & Lockman (1990); Kalberla & Kerr (2005); Blitz & Robishaw (2000).

It is expected to be much higher closer to the Galactic centre. Please note that they have used a time dependent injection spectrum proportional to $E_p^{-2.4}$ and solved the diffusion equation to derive the steady state cosmic ray proton spectrum. We are using the observed cosmic ray spectrum in our calculations. We completely independently derive the average hydrogen density from the neutrino observations, assuming that the observed events come from interactions between cosmic rays and hydrogen within the halo. We consider different shapes of the hydrogen halo. The effective radii from Eq. (3) for the different geometries and the Earth 8.33 kpc off the Galactic centre are listed in Table II where we denote the radius of the spherical region around the Galactic centre by R_{GC}.

In the following, we use $R_{\text{eff}} = 10 \text{ kpc}$ or $R_{\text{eff}} = 1 \text{ kpc}$ for different extreme models, but our results can be easily re-scaled with Table II. While for the spherical halo around the Galactic centre and extending beyond Earth $R_{\text{eff}} \sim 7-13 \text{ kpc}$ seems plausible, smaller values are obtained for the cylindrical halos: For realistic scale heights $h \lesssim 250 \text{ pc}$, $R_{\text{eff}} \simeq 1 \text{ kpc}$.
How Many of the Observed Neutrino Events Can Be Described by Cosmic Ray Interactions in the Milky Way?

2 EFFECT OF COSMIC RAY COMPOSITION

The observed cosmic ray flux contains protons, helium, carbon, oxygen, iron and heavier nuclei. In Gaisser, Stanev & Tilav (2013), the helium nuclei flux exceeds the proton flux above 10 TeV and at 1 PeV helium ion and iron nuclei fluxes are comparable (shown with curves of different colors in Fig. 4 of Gaisser, Stanev & Tilav (2013)). At 100 PeV the cosmic ray flux contains mostly iron nuclei and at 1 EeV protons dominate over iron nuclei. Each nucleon in the nucleus interact with a Galactic hydrogen atom and pions are produced which subsequently decay to neutrinos and gamma rays. In the case of composite nucleus, the observed cosmic ray flux of nuclei with mass number A is $\nu(E_A) = dN_A(E_A)/dE_A$.

We tested two different approaches to compute the neutrino flux for heavier compositions. One is essentially the superposition model: we assume that the nucleus with mass number A and energy E_A behaves as A nucleons with energy E_A/A. As a consequence, we can use Eq. (3) to compute the neutrino flux by replacing $J_p(E_p) = dN_p(E_p)/dE_p \rightarrow A^2 J_A(AE_p) = A^2 dN_A(AE_p)/dE_A$. For a simple power law with spectral index α, one has $J_p(E_p) \propto E_p^{\alpha -1}$, and as a consequence, the result is identical to protons for $\alpha = 2$. As another approach, we rather follow Anchordoqui et al. (2007) and take into account that the cross section σ_{Ap} is higher by a factor of $A^{3/2}$ than σ_{pp}. In this case, we can re-write Eq. (3) as

$$J_\nu(E_\nu) = R_{\text{eff}} n_h \int_0^{A x_A} \sigma_{Ap} \left(\frac{E_\nu}{x_A} \right) J_A \left(\frac{E_\nu}{x_A} \right) \times A f \left(\frac{A x_A}{A x_A} \right) \frac{dx_A}{x_A},$$

where $x_A = x/A$ is the fraction of the nucleus’ energy going into the neutrino. For a simple power law, this yields a neutrino flux $\propto A^{1.75 - \alpha}$, which is about a factor of $A^{0.25}$ smaller than the one of the superposition model, with some compensation by the slightly higher cross section. The reason is, roughly speaking, that the cross section of the nucleus is somewhat smaller than that of A nucleons, because of the surface area/volume ratio $\sim A^{2/3}$. Note that these differences are very small (at the level of 20%), and we use the (more realistic) model in Eq. (4) in the following, which allows us to implement variable compositions easily.

Our predicted neutrino fluxes after flavor mixing for different cosmic ray compositions, $n_H = 1\,\text{cm}^{-3}$, and $R_{\text{eff}} = 1\,\text{kpc}$ can be found in Fig. 1. The Gaisser et al. composition has been adopted from Fig. 4 in Gaisser, Stanev & Tilav (2013), where we interpret $A(E_A)$ as a function of cosmic ray energy E_A in Eq. (4). In that case, we linearly interpolate A between $A = 4$ at $5 \times 10^4\,\text{GeV}$, $A = 4$ at $4 \times 10^5\,\text{GeV}$, $A = 56$ at $8 \times 10^7\,\text{GeV}$, and $A = 1$ at $10^9\,\text{GeV}$. For the “hypothetical model”, a helium composition between $5 \times 10^4\,\text{GeV}$ and $4 \times 10^6\,\text{GeV}$ has been chosen, then proton between 10^7 and $10^9\,\text{GeV}$, and then iron at $10^9\,\text{GeV}$ (and higher), linearly interpolated among these values.

First of all, since the flux roughly scales as $A^{2-\alpha}$, it is clear that the pure proton composition gives the highest flux and the pure iron composition the lowest. The Gaisser et al. model shows a iron composition at about $10^8\,\text{GeV}$, which leads to a dip in the neutrino flux at PeV energies, exactly where the excess is observed. For comparison, we show a hypothetical model with a transition from heavier to lighter elements at these energies, with iron at the highest energies. This model produces a peak at exactly the right position, and therefore provides an especially good fit, but it contradicts the iron knee in the cosmic ray composition observed by the KASCADE experiment (Kampert et al. 2004). Note that all cases with a composition heavier than hydrogen at 100 TeV lead to a predicted neutrino flux about one order of magnitude below the flux required to describe the IceCube observation (IceCube Collaboration et al. 2013).

We note that analytical estimates are not very accurate because a) the usual energy conservation arguments do not hold for spectra much steeper than E^{-2}, b) the cross section increases with energy which induces a small spectral tilt, and c) the distribution functions do have an impact.

3 RESULTS FOR THE TARGET DENSITY

The fluxes in Fig 1 depend on the product $R_{\text{eff}} \times n_H$. Here we fit the computed neutrino spectra to the data in order to see what values can reproduce that, and what can be said about the fraction of neutrinos from cosmic ray interactions. We follow the method described in Winter (2013) updated by IceCube Collaboration et al. (2013). The neutrino events detected by the IceCube detector are binned in four energy intervals $30-200\,\text{TeV}$, $0.2 \text{-} 1\,\text{PeV}$, $1-2\,\text{PeV}$ and $2-100\,\text{PeV}$. We use two different approaches: (1) Ignoring direction,

Shape	$R_{\text{GC},\text{kpc}}$	h_{kpc}	$R_{\text{eff},\text{kpc}}$
Spherical	10	7.2	
Spherical	15	13.3	
Cylindrical	10.25	4.7	
Cylindrical	10.15	3.5	
Cylindrical	10.05	1.7	
Cylindrical	10.25	1.0	
Cylindrical	15.25	6.5	
Cylindrical	15.05	2.1	
Cylindrical	15.01	0.58	

Table 1. The effective halo radius R_{eff}, calculated for different halo shapes and parameters. Here R_{GC} refers to the radius around the Galactic centre, and h_{kpc} to the extension of the cylinder beyond the Galactic plane for the cylindrical shape.
Table 2. Best-fit hydrogen density for different cosmic ray compositions (first column) and two different composition and halo models. Here also the 1σ errors from the fit to neutrino data are given, as well as the χ² per degree of freedom for the fit. The errors are non-Gaussian because of Poissonian statistics.

Composition	All sky $R_{\text{eff}} = 10 \text{kpc}$	Directional inf. $R_{\text{eff}} = 1 \text{kpc}$		
	$n_{\text{H}} \left[\text{cm}^{-3} \right]$	χ^2/d.o.f.	$n_{\text{H}} \left[\text{cm}^{-3} \right]$	χ^2/d.o.f.
Hydrogen ($A = 1$)	$1.6^{+0.3}_{-0.2}$ 1.9	72 $^{+48}_{-42}$	0.8	
Helium ($A = 4$)	$5.9^{+1.3}_{-1.7}$ 2.1	280^{+170}_{-150}	0.8	
Iron ($A = 56$)	130^{+38}_{-34} 2.5	6000^{+4300}_{-3800}	0.9	
Gaisser, Stanev & Tilav (2013)	$9.3^{+2.1}_{-1.8}$ 5.1	370^{+350}_{-300}	1.3	
Hypothetical	$4.5^{+1.3}_{-1.2}$ 1.4	230^{+150}_{-130}	0.7	

Note that the statistics are good enough to derive lower bounds for the hydrogen density in the all sky case. In the directional model, the statistics are much poorer and the error bars therefore much larger. Because of the small solid angle coverage of the signal, the required target densities are extremely large, which is unlikely. However, the event rates in IceCube from the direction of the Galactic plane can be well reproduced, see Fig. 2. For the Gaisser et al. 2013 cosmic ray composition (left panel), we obtain a relatively poor fit because of the dip at PeV (middle bins), exactly where the neutrino data require a peak (compare to Fig. 1). A better fit of the shape is, as expected, obtained for our hypothetical cosmic ray composition model, see right panel. Although this model is incompatible with cosmic ray composition data, it may serve as a proof of principle that one can produce a peak at PeV with composition changes only. Note again that there is no direct dependence on the cosmic ray injection and escape time in our calculation.

We have calculated the secondary very high energy gamma ray flux expected from π^0 decays produced in pp interactions directly with Kelner, Aharonian & Bugayov (2006). We show two different cases in Fig. 3. $A = 1$ all sky model versus Gaisser et al. composition model with directional information. Note that this result is shown for the best-fit of the models to neutrino data, i.e., the normalization is determined by the neutrino observation, and does not depend on n_{H} or R_{eff} individually. For illustration, we also show the curves for the gamma ray fluxes corrected for absorption due to the background radiation with the mean free paths calculated in Protheroe & Biermann (1996) for $d = 10 \text{kpc}$. The upper limits on the diffuse gamma ray flux from various experiments are compared with our results. One strong constraint comes from the KASCADE and CASAMIA limits at a few hundred TeV. On the other hand, the Fermi-LAT observation at 100 GeV [Ackermann et al. (2012)] does not impose a problem for the $A = 1$ "All sky" model, whereas the directional model clearly exceeds the bound. The data above a few hundred TeV can be circumvented away by the attenuation of the gamma rays over long distances. The information given in Fig. 3 can be used to infer the fraction of neutrino events which can come from the interactions in our Galaxy by rescaling the event rates to satisfy the bounds.
How Many of the Observed Neutrino Events Can Be Described by Cosmic Ray Interactions in the Milky Way?

Figure 3. Unattenuated gamma ray flux for two different models ($A = 1$, All sky versus Gaisser et al. composition, directional information) compared with the limits from CASA-MIA-I (Chantell et al. 1997), KASCADE (Schatz et al. 2003), HEGRA (Karle et al. 1995), GRAPES-3, GRAPES-3 Collaboration, 2009) and UMC (Matthews et al. 2003).

In addition, bounds from the Fermi-LAT Galactic plane diffuse emission (Ackermann et al. 2012) (Fig. 17) and CASA-MIA (Borione et al. 2009) are shown (CASA-MIA-I). The “10 kpc” curves show the effect of absorption due to the background radiation for a distance of 10 kpc (Protheroe & Biermann 1996). The required hydrogen densities are tabulated in Table 2.

4 CONCLUSIONS

Taking into account the spectral shape of the observed neutrino spectrum, we have tested if it is plausible to describe the observed neutrino flux in the TeV-PeV range by interactions between cosmic rays and matter in the interstellar medium. We have discussed several composition models for the cosmic rays and several geometries for the target matter halo. For the directional information on the neutrino events, we have chosen two possibilities: either all events above the atmospheric backgrounds are to be described by the matter interactions, or only the events compatible with the directions from the Galactic plane – whereas the rest forms an isotropic (atmospheric and extragalactic) background. In the latter case, we have also taken into account a probable correlation with the diffuse gamma ray emission from the Galactic plane.

We have demonstrated that strong constraints arise from a) the expected target densities obtained from cosmic ray propagation models, b) bounds on the diffuse gamma ray emission from the Galactic plane, c) the measured cosmic ray composition contradicting the flux shape observed in IceCube, and d) the directional correlation with the diffuse gamma ray emission from the Galactic plane, limiting the expected solid angle of the signal flux. In the most plausible scenario (directional information used, cosmic ray composition model by Gaisser, Stanev & Tilav (2013)), the required target density is about a factor of 100 above current expectations to describe the neutrino events from the direction of the Galactic plane. This means that only $\mathcal{O}(0.1)$ event from the current IceCube observation would come from cosmic ray interactions for realistic target densities. Ignoring the directional information, a larger contribution $\mathcal{O}(1)$ event is possible, taking into account the cosmic ray composition data, plausible halo sizes, and the gamma ray constraints – which may serve as an upper limit for the estimate. However, this scenario requires unrealistically large target densities.

In conclusion, we have demonstrated that, taking into account the known constraints, only a small fraction of the observed neutrino events may originate from the Galactic plane.

5 ACKNOWLEDGMENT:

NG acknowledges local hospitality during her visit to Universität Würzburg. WW acknowledges support from DFG grants WI 2639/3-1 and WI 2639/4-1, the FP7 Invisibles network (Marie Curie Actions, PTN-GA-2011-289442), and the “Helmholtz Alliance for Astroparticle Physics HAP”, funded by the Initiative and Networking fund of the Helmholtz association. We are grateful to M. Ahlers for constructive comments.

REFERENCES

Aartsen M. G. et al., 2013, Physical Review Letters, 111, 021103
Abbasi R. U. et al., 2010, ApJ, 713, L64
Ackermann M., et al., 2012, Astrophys.J., 750, 3
Ahlers M., Murase K., 2013, ArXiv e-prints 1309.4077
Anchordoqui L. A., Beacon J. F., Goldberg H., Palomares-Ruiz S., Weiler T. J., 2007, Phys. Rev. D, 75, 063001
Anchordoqui L. A., Goldberg H., Lynch M. H., Olinto A. V., Paul T. C., Weiler T. J., 2013, ArXiv e-prints 1306.5021v3
Apel W. D. et al., 2013, Astroparticle Physics, 47, 54
Berezinskii V. S., Bulanov S. V., Dogiel V. A., Ptuskin V. S., 1990, Astrophysics of cosmic rays
Blitz L., Robishaw T., 2000, ApJ, 541, 675
Borione A. et al., 1998, ApJ, 493, 175
Chantell M. C. et al., 1997, Physical Review Letters, 79, 1805
Chou A. S., Arisaka K., Pernas M. D. A., Barnhill D., Biloir P., Tripathi A., Yamamoto T., 2005, 29th ICRC, 2005, Pune, India, 7, 319
Cowls R., Wilson L. W., 1973, in International Cosmic Ray Conference, Vol. 1, International Cosmic Ray Conference, p. 500
Dickey J. M., Lockman F. J., 1990, ARA&A, 28, 215
Evoli C., Grasso D., Maccione L., 2007, J. Cosmology Astropart. Phys., 6, 3
Feldmann R., Hooper D., Gnedin N. Y., 2013, ApJ, 763, 21
Gaisser T. K., 1991, S&T, 82, 46
Gaisser T. K., Staniev T., Tilav S., 2013, Frontiers of Physics, ArXiv e-prints 1303.3565
Ginzburg V. L., Syrovatskii S. I., 1964, The Origin of Cosmic Rays
Gonzalez-Garcia M. C., Maltoni M., Salvado J., Schwetz T., 2012, Journal of High Energy Physics, 12, 123
GRAPES-3 Collaboration, 2009, Proceedings of the 31st ICRC, Lodz, Poland
Gupta M., Webber W. R., 1989, ApJ, 340, 1124
Gupta N., 2012, Astroparticle Physics, 35, 503
Gupta N., 2013, Astroparticle Physics, 48, 75
IceCube Collaboration et al., 2013, ArXiv e-prints 1311.5238
Kalberla P. M. W., Kerp J., 2009, ARA&A, 47, 27
Kampert K.-H. et al., 2004, Nuclear Physics B Proceedings Supplements, 136, 273
Karle A. et al., 1995, Physics Letters B, 347, 161
Keher S. R., Aharonian F. A., Bugayov V. V., 2006, Phys. Rev. D, 74, 034018
Kourenko S. P., Sabourova A., 2013, in European Physical Journal Web of Conferences, Vol. 53, European Physical Journal Web of Conferences, p. 4004
Letaw J. R., Silberberg R., Tsao C. H., 1993, ApJ, 414, 601
Liu R.-Y., Wang X.-Y., Inoue S., Crocker R., Aharonian F., 2013, ArXiv e-prints 1310.1263
Matthews J. et al., 1991, ApJ, 375, 202
Murase K., Ahlers M., Lacki B. C., 2013, Phys. Rev. D, 88, 123101
Murase K., Ioka K., 2013, Physical Review Letters, 111, 121102
Neronov A., Semikoz D. V., Tchernin C., 2013, ArXiv e-prints 1307.2158
Joshi et al.

Protheroe R. J., Biermann P. L., 1996, Astroparticle Physics, 6, 45
Razzaque S., 2013, ArXiv e-prints 1309.2756
Risse M., Homola P., Engel R., Góra D., Heck D., Pękala J., Wilczyńska B., Wilczyńska H., 2005, Physical Review Letters, 95, 171102
Schatz G. et al., 2003, in International Cosmic Ray Conference, Vol. 4, International Cosmic Ray Conference, p. 2293
Shapiro M. M., Silberberg R., 1970, Annual Review of Nuclear and Particle Science, 20, 323
Stecker F. W., 2013, Phys. Rev. D, 88, 047301
The Pierre Auger Collaboration et al., 2013, ArXiv e-prints 1307.5059
Winter W., 2013, Phys. Rev. D, 88, 083007