Microcomb-driven silicon photonic systems

Microcombs have sparked a surge of applications over the past decade, ranging from optical communications to metrology. Despite their diverse deployment, most microcomb-based systems rely on a large amount of bulky elements and equipment to fulfill their desired functions, which is complicated, expensive and power consuming. By contrast, foundry-based silicon photonics (SiPh) has had remarkable success in providing versatile functionality in a scalable and low-cost manner, but its available chip-based light sources lack the capacity for parallelization, which limits the scope of SiPh applications. Here we combine these two technologies by using a power-efficient and operationally simple aluminium-gallium-arsenide-on-insulator (AlGaAsOI) microcomb source to drive complementary metal–oxide–semiconductor (CMOS) SiPh engines. We present two important chip-scale photonic systems for optical data transmission and microwave photonics, respectively. A microcomb-based integrated photonic data link is demonstrated, based on a pulse-amplitude four-level modulation scheme with a two-terabit-per-second aggregate rate, and a highly reconfigurable microwave photonic filter with a high level of integration is constructed using a time-stretch approach. Such synergy of a microcomb and SiPh integrated components is an essential step towards the next generation of fully integrated photonic systems.
wide range of applications (Fig. 1). On the basis of this approach, system-level demonstrations are presented for two major integrated photonics fields. (1) As a communications demonstration, we present a microcomb-SiPh transceiver-based data link with 100-Gbps pulse-amplitude four-level modulation (PAM4) transmission and 2-Tbps aggregate rate for data centres. (2) For microwave photonics, a compact microwave filter is demonstrated with tens-of-microseconds-level reconfiguration speed by an on-chip multitap delay-line processing scheme, whose tunable bandwidth and flexible centre frequency are capable of supporting fifth-generation (5G), radar and on-chip signal processing. This work paves the way towards the full integration of a wide range of optical systems, and will significantly accelerate the proliferation of microcombs and SiPh technologies for the next generation of integrated photonics.

Building blocks

AlGaAsOI microcombs

The integrated comb source used in this work is based on an AlGaAsOI platform37 by heterogeneous integration, as shown in Fig. 2a. Combined with the extremely high third-order nonlinear coefficient of AlGaAs (\(n_2 = 2.6 \times 10^{-12} \text{ m}^2 \text{ W}^{-1}\)), Kerr comb generation from the AlGaAsOI microresonators (Fig. 2a, right) with a moderate quality (Q) factor (one million to two million) exhibits a record-low parametric oscillation threshold down to tens of microwatts and coherent comb-state generation under pump power at the few-milliwatts level, which can be satisfied by a commercial indium phosphide (InP) DFB laser chip (Fig. 2a, left).

Besides efficiency, the operation simplicity and stability of the comb source are also critical for practical applications. In the anomalous dispersion regime, a special type of bright soliton, termed ‘soliton crystals’38, exhibits these features to support system-level demonstrations without relying on electronic control.41 In this paper, a dark-pulse state is used to achieve coherent microcombs. This state works in the normal dispersion regime with the assistance of the avoided mode-crossing effect (Supplementary Note I). The dark-pulse operation experiences a much smaller power step during the transition to the coherent comb state (Supplementary Note II). More importantly, owing to the thermo-induced self-stable equilibrium mechanism of microcavities, the strong thermo-optic effects of AlGaAs (2.3 \times 10^{-4} \text{ K}^{-1}) here can be leveraged to significantly extend the accessibility window of the coherent comb state42. Such behaviour is experimentally characterized in Fig. 2b, where the comb power versus pump detuning is recorded, showing the accessible frequency range of the dark pulse to tens of gigahertz, about ten times wider than that with bright solitons33. Together, these traits make coherent comb generation efficient and robust in AlGaAsOI microresonators, with greatly simplified operation. Figure 2c, d shows the dark-pulse spectra pumped by an external cavity laser and a DFB laser chip, respectively, with the same on-chip power of 10 mW. Such a state can be deterministically triggered by simply turning on the laser without relying on any tuning control of electronics, thus showing ‘turnkey’ behaviour (Methods). Moreover, benefiting from the self-stabilization enabled by the strong thermo-optic effect, the comb is able to maintain stable operation without feedback loops. Figure 2d shows the spectral power versus time in a free-running AlGaAs dark pulse, with small power fluctuations over 7 h. The simplicity of both generation and stabilization facilitates seamless implementation of AlGaAsOI microcombs in current optoelectronic systems and are well suited for practical applications.

Silicon photonic engines

A monolithic SiPh circuit is used to process the generated comb lines for diverse optoelectronic systems. Such ‘silicon photonic engines’...
provide functionality such as filtering, modulation, multiplexing, time delay and detection on the same chip. Figure 2fk shows the essential photonic building blocks of the optical processing engines and their key performance metrics. For signal encoding, Mach–Zehnder interferometer (MZI) travelling-wave PN depletion modulators with >33-GHz electro-optical bandwidth are used (Fig. 2f). Heaters are used to match up the modulators with the comb channels by thermal tuning (Fig. 2g). A representative result for such phase compensation in a modulator at different channel wavelengths is shown in Fig. 2g (left). To implement on-chip true-time delays, spiral waveguides with adiabatic bends are designed, as shown in Fig. 2h. The deviation of 60-ps delay lines is within 3 ps. Figure 2i shows the germanium (Ge) photodetector (PD) with about 0.5–0.8 A W–1 at different on-chip power levels, and with a saturation power of approximately 20 mW. A microring filter array is used here to control the comb lines individually, as shown in Fig. 2j. A 180-GHz-wide (2 free spectral range (FSR)) channel-selecting range can be obtained with 20-mW heater power (Methods). In addition, the SiPh devices support system-level assembly with electronic integrated chips (Fig. 2k), allowing future integration of low-noise trans-impedance amplifiers and high-speed drivers.

System demonstrations

Next, two pivotal system-level demonstrations are presented: (1) a microcomb-based integrated photonic data link with a greatly increased data rate compared with traditional Si-based transceivers
(2) a rapidly reconfigurable microcomb-based microwave photonics filter with a high level of integration.

Parallel optical data link

A schematic of the PAM4 WDM transmission system is shown in Fig. 3a. The channel spacing of the AlGaAsO1 dark-pulse comb can be reconfigured from 1-FSR to multi-FSR via appropriate pre-calibration of the start-up setup (for example, laser detuning, temperature and so on)41. To achieve a higher average optical carrier-to-noise ratio while providing sufficient channel counts within the operation band, a 2-FSR spacing comb is selected as the WDM source here owing to its higher comb-line power. For pumps, a DFB laser chip and a commercially available external cavity laser (ECL) pump source are used, respectively. After the comb generation, an amplifier is needed to compensate the extra penalty brought by the demultiplexing and coupling loss. The spectrum, after amplification, is shown in Fig. 3b, in which 20 consecutive comb modes (from 1,537 nm to 1,567 nm, about 3.75-THz wide) are displayed with <5-dB power difference with proper thermal pre-setting (Methods). A simplified scheme is used to verify the chip-scale data transmission capability for carrying multi-terabits per second. The comb lines are filtered out and split into odd and even test bands by a wavelength selective switch (WSS) and then launched into the SiPh transmitting-receiving (T/R) chip, including Si modulators and Ge photodiodes. On each WDM channel, the SiPh modulators encode the carrier into PAM4 signal format at symbol rates from 32 Gbaud to 50 Gbaud. Figure 3c shows representative examples of eye diagrams after traversing 2-km-fibre links. At the receiving side, the signal is partly coupled to an on-chip Ge photodiode, whereas the remaining part is sent into a commercial PD for performance comparison. The bit-error ratio (BER) of each channel is calculated after direct detection (Methods).

Such a dense wavelength division multiplexing scheme can greatly improve the aggregate bit rate while maintaining excellent scalability.
In our proof-of-concept demonstrations, 20 comb lines in the C-band are used as the source. Figure 3d shows the BER results under three scenarios: (1) 32-Gbaud and (2) 50-Gbaud PAM4 with an ECL pump, and (3) 32-Gbaud PAM4 with a DFB pump. Considering the ECL-pumped microcomb, 7 (4) channels are below the 7% hard-decision forward error correction (HD-FEC) threshold at the symbol rate of 32 (50) Gbaud, with the remaining channels below the 20% soft-decision forward error correction (SD-FEC) threshold. In this case, the microcomb-based SiPh transmitter enables a baud rate of 50 Gbaud per single lane, corresponding to an aggregate bit rate of 2 Tbit s⁻¹ (1.65 Tbit s⁻¹ net rate after FEC overhead subtraction). For a higher-level integrated system, the commercial ECL pump is replaced by a DFB laser chip. With the integrated pump source, the transmitter achieves a total data transmission rate of 448 Gbit s⁻¹, with 7 channels under the FEC threshold. Another advantage of SiPh is the possibility of integrating the transmitter and receiver. BER results after optical to electrical (O/E) conversion by both commercial III–V photodiodes and on-chip Ge photodiodes are shown in Fig. 3e. At the 20% SD-FEC threshold, the penalty between two devices is approximately 2.3 dB at 32 Gbaud (Methods).

Reconfigurable microwave photonic filter
The reconfigurable microwave photonic filter (MPF) is constructed using a tapped delay line (TDL)⁴³. It is worth mentioning that TDL-based MPFs can follow two approaches depending on whether the tap delays are produced by non-dispersive (true-time) delay lines⁴⁴ or dispersive delay lines¹³,⁴⁵–⁴⁷. In this work, both approaches are implemented. A schematic of the experimental setup is shown in Fig. 4a. The 180-GHz-spacing microcomb served as taps for the MPF. The comb lines are then manipulated by a SiPh signal processor containing a high-speed Mach–Zehnder modulator (MZM), an eight-channel add-drop microring array (MRA) and spiral delay lines. The input radio frequency (RF) signal is loaded by the MZM. The MRA here acts as an...
on-chip optical spectral shaper (OSS) for the comb lines, performing spectrum slicing, line-by-line pulse shaping (weighting on taps) and spectrum recombination in sequence. A cluster of spiral waveguides offers a fixed time delay (ΔT) between adjacent taps. Finally, the processed comb lines are beaten in an off-chip fast PD to synthesize the RF filtering profiles.

The system shows flexible reconstruction features in terms of passband bandwidth (BW) and RF FSR. Figure 4b depicts the optical spectra using Gaussian apodization on comb lines for passband BW reconfigurability. The corresponding RF filtering responses are shown in Fig. 4c, with non-dispersive delay (top) and dispersive delay (bottom) configurations, respectively. The 3-dB BW of the MPF in the non-dispersive delay scheme can be continuously adjusted within a range of about 1.97–2.42 GHz by tuning the Gaussian parameter σ from 2.4 to 1.6. The main-to-sidelobe suppression ratio is about 10 dB. Better performance (>20-dB main-to-sidelobe suppression ratio) is achieved using the dispersive delay scheme, with a subgigahertz-level filtering BW tunability. The results in Fig. 4e, f show the reconfigurability of RF FSR by modifying the comb line spacing; comb line spacings of 3.6 nm, 2.8 nm and 1.4 nm result in RF filtering response FSRs of 1.8 GHz, 3.6 GHz and 7.2 GHz, respectively. In contrast with other state-of-the-art microcomb-based MPFs using either bulk OSS or changing soliton states, this work significantly advances the degree of reconfigurability by modifying the comb line spacing: comb line spacings of 5.6 nm, 2.8 nm and 1.4 nm result in RF filtering response FSRs of 1.8 GHz, 3.6 GHz and 7.2 GHz, respectively. Changing states of tap channels used in the finite impulse response configurations mainly limited by the relatively high noise floor of the free-running DFB laser (Methods), which lowers the optical signal-to-noise ratio (OSNR).

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-022-04579-3.
36. Yi, X., Yang, Q.-F., Youl Yang, K. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).
37. Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).
38. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).
39. Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020).
40. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).
41. Shu, H. et al. Sub-milliwatt-level coherent microcomb generation in AlGaAs-on-insulator microresonators. Preprint at https://arxiv.org/abs/2112.08804 (2021).
42. Capmany, J., Ortega, B. & Pastor, D. A tutorial on microwave photonic filters. J. Lightwave Technol. 24, 201–229 (2006).
43. Liao, S. et al. Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper. Opt. Express 23, 12161–12173 (2015).
44. Sancho, J. et al. Integrable microwave filter based on a photonic crystal delay line. Nat. Commun. 3, 1017 (2012).
45. Xu, X. et al. Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source. J. Lightwave Technol. 37, 1288–1295 (2019).
46. Xue, X. et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microcoring. J. Lightwave Technol. 32, 3557–3565 (2014).
47. Tran, M. et al. Extending the spectrum of fully integrated photonics. Preprint at https://arxiv.org/abs/2112.02923 (2021).
48. Davenport, M. L. et al. Heterogeneous silicon/III–V semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
49. Xie, W. et al. Silicon-integrated nonlinear III–V photonics. Photon. Res. 10, 535–541 (2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022
The ring waveguides of the AlGaAsOI resonators were designed to work within the normal dispersion regime in the C band, with dimensions of 400 nm × 1,000 nm. The width of the bus waveguide at the facet was designed to be 200 nm for efficient chip-to-fibre coupling. The fabrication of the AlGaAs microresonators was based on heterogeneous wafer bonding technology. The process is currently realized at the 100-mm-wafer scale without any strict fabrication processes such as chemical-mechanical polishing or high-temperature annealing that are not compatible with the CMOS process. It can therefore be directly adopted by current III–V/Si photonic foundries. A Q factor >2 million can be obtained in the AlGaAsOI resonator, corresponding to a waveguide loss of <0.3 dB cm⁻¹. The fraction of aluminium is 0.2, which corresponds to a two-photon absorption wavelength of around 1,480 nm. The epitaxial wafer growth was accomplished using molecular-beam epitaxy. A 248-nm deep-ultraviolet stepper was used for the lithography. A photoresist reflow process and an optimized dry etch process were applied in waveguide patterning to minimize waveguide scattering loss. More fabrication details can be found in refs. 52, 53. The SiPh PIC, including its Si modulators and Si–Ge PDs, was fabricated on a 200-mm SOI wafer with a Si-layer thickness of 220 nm and a buried oxide layer thickness of 2 μm using CMOS-compatible processes at CompoundTek Pte in a one-to-one 200-mm-wafer run and a buried oxide layer thickness of 2 μm using CMOS-compatible processes at CompoundTek Pte in a one-to-one 200-mm-wafer run with its standard 90-nm lithography SOI process. The waveguide loss in this SiPh PIC is approximately 1.2 dB cm⁻¹ in the C band. In our experiment, lensed fibres with different mode field diameters were selected for the AlGaAsOI and SOI chips; the coupling loss is about 3–5 dB per facet for AlGaAsOI waveguides and about 2–3 dB per facet for SOI waveguides.

Characterizations of the building-block units

The FSR of the 144-μm-radius rings utilized in this study is about 90 GHz. The microcomb shows advances both in start-up and stabilization. During the dark-pulse generation, a much smaller abrupt power change occurs when the comb transits from continuous-wave states to dark-pulse states, indicating the elimination of the well-known triggering problem in bright soliton generation. Compared with general bright solitons, the dark pulse is inherently tolerant to thermal effects that usually make bright soliton states difficult to access. A 60-ps Si delay line, the total loss is <0.3 dB, with a delay-time variation of <3% among 8 tested devices. For the vertical epitaxial Ge PD, the responsivity declines with the increasing on-chip power. A saturated point of about 20 mW could be reached when the power is further increased. Microring filters employed for WDM could be tuned by microheaters, with which a 180-GHz channel spacing can be obtained under 20-mW power dissipation. The CMOS drivers for signal amplification before injection into the SiMZM (not used in the high-bit-rate (>50 Gbps) signal transmission experiment) show a 3-dB gain BW of about 24 GHz.
AIGaAs microresonator can be thermally pre-set to obtain a coherent microcomb with a less disparate power distribution across the operation band. Thus, only a notch filter is required to attenuate the central three comb lines for the subsequent equalized comb amplification. The comb is amplified by an EDFA and then split into odd and even test bands, with a wavelength-selective switch (Finisar Wave-shaper 4000s). A Si modulator and a lithium niobate (LN) modulator (EOspace, 35-GHz BW) are deployed at the odd and even bands, respectively. Ten comb lines in each test band are simultaneously modulated. The modulators are driven at a 32-Gb/aud or 50-Gb/aud symbol rate. The differential PAM-4 signal is generated by a commercial pulse pattern generator (Anritsu PAM4 PPG MU196020A). The insertion loss of the SiPh (LN) modulator is 13(8) dB. The SiPh modulator undergoes a relatively high loss (including the edge coupling loss of about 2 dB per facet), which results in a power difference between the two test bands. The modulated test bands are then combined by a 50:50 power coupler and launched into another WSS for comb power equalization. At the receiving side, each WDM channel encoded by the Si modulator is sequentially filtered out and measured. Eye diagrams are produced by a sampling oscilloscope (Anritsu MP 2110A) with a 13-tap transmitter and dispersion eye closure quaternary (TDECQ) equalizer (accumulation time, 8 s). The BERs are measured online by an error detector (Anritsu PAM4 ED MU196040B) with 1-dB low-frequency equalization and a decision-feedback equalization. Extended Data Fig. 3b shows the 100-Gbps PAM4 eye diagrams for each of the 20 channels.

It is worth noting that the performance is underestimated. In our proof-of-concept test configuration, ten channels in each test band are modulated at the same time. Considering two-photon absorption in Si waveguides, the maximum input power for the Si modulator is about 13 dBm, which results in only 3 dBm optical power per single lane. Moreover, considering the extra penalty introduced by the WSS for power equalization, unnecessary in real-word transmission scenarios, the OSNR for each channel can be at least 10 dB higher. Thus, a better transmission result is attainable.

Noise analysis of different pump schemes

The noise floor of the DFB and the ECL are roughly characterized in an OSA, as shown in Extended Data Fig. 4a. The laser spectra indicate that the noise of the DFB is evidently higher than that of the ECL. The combs in our experiments are pumped by the free-running DFB laser and the ECL separately, as shown in Extended Data Fig. 4b, c. With the almost same pumping power of about 10 mW, the DFB chip holds a 10-dB-higher noise floor compared with the ECL, corresponding to an equivalent OSNR reduction in each comb line. Moreover, the amplification after the comb generation would also result in OSNR degradation, which could be a potential problem when replacing the current EDFA with integrated SOAs (about 4–5-dB-noise-floor increment in a commercial EDFA and about 7 dB in commercial on-chip SOAs). The OSNR of the DFB-pumped microcomb can be further improved by employing an on-chip optical filter for comb distillation or introducing optical injection locking between the microcomb and slave lasers for low-noise amplification. Also, increasing the pump power will lead to a higher average OSNR and more stable long-term behaviour, which is an advantage over the injection-locking-based dark-pulse generation.

Setup of the dispersive delay-line MPF scheme

As the non-uniformity of delays owing to the inevitable fabrication errors will degrade the filtering performance, the second TDL-MPF approach is also implemented to further determine the optimal filtering performance: a spool of single-mode fibre (SMF) is used instead of the on-chip spiral delay lines to produce dispersive delay. Extended Data Fig. 5 shows the experimental setup of the reconfigurable MPF carried out in a dispersive delay-line configuration. Compared with Fig. 4a, most of the MPF system remains unchanged and has one main difference, which is that the on-chip true-time spiral delay lines are removed from the SiPh signal processor. The processed comb lines will propagate through a spool of 5-km SMF (as a dispersive element) to obtain a solid delay unit between adjacent taps, which can be expressed as $T = 6 \Delta DL$ (ignoring the high-order dispersion of SMF), where ΔDL represents the comb line spacing. D is the dispersion coefficient of SMF and L is the length of SMF. In this scheme, the basic delay T among comb lines is generated by a single dispersive element, which can be kept as uniform value and not influenced by fabrication errors. Besides, this system is more flexible; for instance, the centre frequency of the filtering passband can be adjusted by simply change the length or dispersion coefficient of SMF.

Details of RF filter experiments

The DFB-driven dark-pulse Kerr comb exhibits 2-FSR (180-GHz) comb spacing. The initial comb source is amplified by an EDFA, and 8 comb lines in the range of 1,547–1,560 nm are selected using an optical bandpass filter before injection into a SiPh signal processor chip. The input and output coupling are achieved via grating couplers of about 40% coupling efficiency. Frequency-swept RF signals with 9-dBm power from a vector network analyzer are applied to the Si MZM in double-sideband format. The tap weighting coefficients are set by adjusting the relative detuning among the comb lines and their corresponding resonance wavelengths in the Si MRA with TiN microheaters placed on the waveguides. The output light of the Si chip is split by a 10:90 optical power coupler: 10% of the light is sent into an optical spectrum analyser (Yokogawa AQ6370C) for spectral monitoring, whereas the other 90% of the light propagates through the follow-up optical link. In the dispersive delay scheme, a spool of 5-km SMF is used to acquire the dispersive delay between adjacent comb lines (taps). Finally, the processed comb lines are beat in a 50-GHz PD (Finisar 2150R) to convert the optical signal into electrical domain. A low-noise EDFA is placed before the PD to compensate for the link insertion loss and coupling loss. For the practical demonstrations of RF signal filtering, a 50 Gsamples s$^{-1}$ arbitrary waveform generator (AWG, Tektronix AWG70001) is used to produce the desired RF input signals. To validate the BW reconfigurability of this filter, an ultrawideband RF signal is generated, spanning from 5.5 GHz to 9 GHz. To validate the FSR reconfigurability of this filter, a complex RF signal is produced that contains a 50-Mb s$^{-1}$ QPSK spectrum modulated at 3.6 GHz and a 50-Mb s$^{-1}$ QPSK spectrum modulated at 7.2 GHz. The RF outputs from the AWG are amplified by a linear electrical driver (SHF 807C) before routing to the Si MZM. The filtered RF signals are detected by a signal analyser (Keysight N9010B) for spectrum measurement. A similar FSR multiplication of the MPF has been reported previously and explained by temporal Talbot effects. However, the crucial Talbot processor used in these MPF systems is based on more complex discrete devices, which will increase the power dissipation and make the system less stable.

Unlike the conventional waveshaper based on bulky liquid-crystal spatial light modulators, one of the remarkable advantages of the chip-scale add-drop microring resonator (MRR) array used in our work is the rapid reconfiguration of RF filtering responses. The reconfiguration operation on filtering spectra is realized by adjusting the shaping profiles of comb lines, through the TiN microheater placed on the waveguides. To explore the maximum reconfiguration speed, a standard electrical square-wave waveform is generated by a function waveform generator (RIGOL, DG2102) to drive a single MRR channel. The output of the MRR is received by a photodetector (Thorlabs DET08CF/C/M), and then recorded by a digital oscilloscope (RIGOL, DS7014 10 GSa s$^{-1}$). Extended Data Fig. 6 shows the measured switching temporal response. As seen in Extended Data Fig. 6b, c, the 90/10 rise and fall times are 15 μs and 53 μs, respectively. Therefore, the fastest response speed for the reconfiguration operation is approximately 19 kHz.
Data availability
The data that supports the plots within this paper and other findings of this study are available on Zenodo (https://doi.org/10.5281/zenodo.6092678). All other data used in this study are available from the corresponding authors upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

Acknowledgements
We thank Shenzhen PhotonX Technology Co., Ltd, for laser packaging support, J. Wang and W. Zou for help in layout design, J. Shi for discussion and T. J. Morin for commentary on the manuscript. The UCSB nanofabrication facility was used.

Author contributions
The experiments were conceived by H.S., L.C., Y.T. and B.S. The devices were designed by H.S., L.C. and Y.T. The microcomb simulation and modelling was conducted by B.S. The system-level experiments were performed by H.S. and Y.T., with assistance from L.C., B.S., M.J., Z.T., X.Z., Q.J., R.C. and B.B. The AlGaAsOI microresonators were fabricated by W.X. and L.C. The results were analysed by H.S., Y.T., B.S. and A.N. All authors participated in the writing of the manuscript. The project was supervised by L.C., S.Y., X.W. and J.E.B.

Competing interests
The authors declare no competing interests.

Acknowledgements
The experiments were conceived by H.S., L.C., Y.T. and B.S. The devices were designed by H.S., L.C. and Y.T. The microcomb simulation and modelling was conducted by B.S. The system-level experiments were performed by H.S. and Y.T., with assistance from L.C., B.S., M.J., Z.T., X.Z., Q.J., R.C. and B.B. The AlGaAsOI microresonators were fabricated by W.X. and L.C. The results were analysed by H.S., Y.T., B.S. and A.N. All authors participated in the writing of the manuscript. The project was supervised by L.C., S.Y., X.W. and J.E.B.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-022-04579-3.

Correspondence and requests for materials should be addressed to Xingjun Wang or John E. Bowers.

Peer review information Nature thanks David Moss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | Performance of building block devices. a, Measured linewidth of the DFB laser. b, The measured 3dB bandwidth of the Si-Ge PD photodiode. c, Design, fabrication and measurement results of the 10:90 asymmetric MMI as on-chip monitor for silicon photonics engines. d, Optical image of the grating coupler (left) and its normalized transmission.
Extended Data Fig. 2 | Turnkey AlGaAs dark-pulse microcomb generation. a, Experimental setup. b, ECL and c, DFB laser chip driven comb spectra and the comb power variations along with the control signal in five consecutive switching tests.
Extended Data Fig. 3 | Detailed information for data transmission. a, Detailed experimental set-up for the odd/even test band for the comb-based silicon photonics data link. b, measured 100 Gbps PAM-4 eye diagrams from the sampling oscilloscope for each channel at receiving end.
Extended Data Fig. 4 | Microcomb generation with different pump schemes.

a. Measured linewidth of the DFB laser. Comparison of the comb spectra pumped by

b, a commercial external cavity laser and

c, a DFB laser chip.
Extended Data Fig. 5 | Dispersive delay-line MPF. Experimental setup of the second dispersive delay-line scheme based TDL-MPF.
Extended Data Fig. 6 | The response time measurement for the reconfiguration of RF filtering profiles. **a**, Measured temporal response of the MRR under a square-wave electrical signal driving. **b**, MRR switched from minimum to maximum transmission, and **c**, maximum to minimum transmission. 90/10 rise/fall times are 15 μs and 53 μs, respectively.