Case Report

Aspergillosis ball graft as complication of Covid-19 infection: Case report

Mohammed Aabdi, MDa,∗, Oun ci Es-Saad, MDa, Youssef Moti a, MDa, Smail Labib, MDab, Hicham Sbai, MDab

aIntensive Care Unit, Tanger Tetouan Al hoceima University Hospital Center, Faculty of Medicine and Pharmacy, Abdelmalek Essaâdi University, Tangier, Morocco
bSimulation Center for Medical Formation, Faculty of Medicine and Pharmacy, Abdelmalek Essaâdi University, Tangier, Morocco

Abstract

Invasive pulmonary aspergillosis is a severe presentation of aspergillosis fungal infection, with a high mortality rate. Many Covid-19-associated pulmonary aspergillosis cases have been described in the literature giving rise to a major dilemma for physicians: discriminate a simple colonization from an invasive infection. In this paper, we will describe the case of a 40-year-old immunocompetent man with no medical history was admitted to the intensive care unit for Covid-19 infection with lung damage initially estimated at 50%-75%. Two weeks later, patient condition got worse, with a thoracic CT showing a newly developed, well limited lung cavitation indicative of an aspergillosis fungus ball.

© 2022 Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

Covid-19-associated pulmonary aspergillosis (CAPA) is a co-fungal infection that was reported along with Candida, Cryptococcus, and Mucorales [1].

Aspergillosis infection comes in many clinical presentations including invasive pulmonary aspergillosis (IPA), chronic pulmonary aspergillosis, allergic bronchopulmonary aspergillosis, chronic rhinosinusitis, and fungal asthma and bronchitis [2,3]. Many risk factors are identified for co-fungal and viral infection [4,5].

In this case report we present a 40-year-old immunocompetent man admitted to the intensive care unit for Covid-19 infection complicated during his hospitalization with a newly formed and well limited lung cavitation: aspergillosis cross-infection.

Case report

A 40-year-old man with no medical history, not vaccinated against Covid-19, was admitted to the intensive care unit for Covid-19 infection.

Competition Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

E-mail address: med.aabdi@gmail.com (M.Aabdi).

https://doi.org/10.1016/j.radcr.2022.10.071

1930-0433/© 2022 Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Initial clinical findings were as follow: 85% pulsed oxygen saturation in ambient air, 95% on oxygen 12 L/min, heart rate at 88 beats per minute, blood pressure at 120/80 mmHg.

Initial thoracic CT scan showed signs of Covid-19 infection with lung damage estimated between 50% and 75% CORADS VI (Fig. 1).

Initial treatment consisted of vitamin C; zinc; corticosteroids (methylprednisolone 120 mg/day) and anticoagulation (low molecular weight heparin).

After initial improvement, his oxygen needs decreased to 5 L/min, the patient condition worsened gradually later on; he was put initially under high flow nasal oxygen therapy and non-invasive ventilation on the fifteenth day of his admission. Biological assessment showed increased white cells count, C-reactive proteins, and procalcitonin.

A second CT scan was performed 2 weeks after admission showed stable Covid-19-related lung damage, no pulmonary embolism. However, a new, well-limited lung cavitation indicative of tuberculosis or aspergillosis (Fig. 1) was described.

The blood cultures showing fungal growth in blood cultures. The patient was then started on intravenous voriconazole for subacute invasive pulmonary aspergillosis.

He was transferred on the 25th day to the Medicine – Infectious diseases department without any other complications.

Discussion

Viral pneumonia increases the risk of co-fungal infection including IPA, and worsens the prognosis of critically ill patients with acute respiratory distress syndrome [6-8]. This causality can be explained by:

- Direct airway damages caused by respiratory virus leading to aspergillosis cross-infection [9].
- Immune dysfunction or dysregulation [10].
- Corticosteroids use [11]. As a matter of fact, the risk of developing co-fungal infection is increased with the use of corticosteroids, which was proved in the previous viral pandemics: influenza B, influenza H1N1, and SARS-COV1 in 2003 [7,12,13].

Many studies have been published during Covid-19 pandemic showing the association of this latter and aspergillosis...
co-infection [1,6,14–19]. This study confirmed that CAPA is a serious underrated problem in critically ill patients especially with invasive ventilation requiring regular surveillance.

Radiological findings of IPA include multiple pulmonary nodules or lung cavitation, halo sign, ground-glass opacities, crazy paving pattern, pleural effusion, and pulmonary cysts [1,17–19].

In this paper, we report of invasive pulmonary aspergillosis in a patient with Covid-19 infection, who had no risk factors for potential aspergillosis cross-infection (pulmonary tuberculosis, sarcoidosis, or preexistent lung cavitations).

Conclusion

Subacute invasive pulmonary aspergillosis cross-infection in patients with SARS-CoV-2 is a rare entity. It is associated with a high mortality rate especially among patient with invasive ventilation requiring routinely surveillance.

Patient consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal on request.

REFERENCES

[1] Lai CC, Yu WL. COVID-19 associated with pulmonary aspergillosis: a literature review. J Microbiol Immunol Infect 2021;54(1):46–53. doi:10.1016/j.jmii.2020.09.004.

[2] Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax 2015;70:270–7.

[3] Li E, Knight JM, Wu Y, Luong A, Rodriguez A, Kheradmand F, et al. Airway mycosis in allergic airway disease. Adv Immunol 2019;142:85–140.

[4] Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, et al. Detectable serum SARS-CoV-2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis 2020;71:1937–42.

[5] Zhu X, Ge Y, Wu T, Zhao K, Chen Y, Wu B, et al. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res 2020;11:198005.

[6] Koehler P, Bassetti M, Chakrabarti A, Chen SCA, Colombo AL, Hoenigl M, et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect Dis 2021;21(6):e149–62. doi:10.1016/S1473-3099(20)30847-1.

[7] Schauwvliege A, Rijnders BJA, Philips N, Verwijs R, Vanderbeke L, Van Tienen C, et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir Med 2018;6:782–92.

[8] Vehreschild JJ, Bröckelmann PJ, Bangard C, Verheyen J, Vehreschild MJ, Michels G, et al. Pandemic 2009 influenza A(H1N1) virus infection coinciding with invasive pulmonary aspergillosis in neutropenic patients. Epidemiol Infect 2012;140:18–52.

[9] Short KR, Kasper J, van der Aa S, Andeweg AC, Zaaraoui-Boutahar F, Goeijenbier M, et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J 2016;47:954–66.

[10] Herold S, Becker C, Ridge KM, Budinger GR. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur Respir J 2015;45:1463–78.

[11] Wauters J, Baar I, Meersseman P, Meersseman W, Dams K, De Paep R, et al. Invasive pulmonary aspergillosis is a frequent complication of critically ill H1N1 patients: a retrospective study. Intensive Care Med 2012;38:1761–8.

[12] Garcia-Vidal C, Barba P, Arnan M, Moreno A, Ruiz-Camps I, Gudiol C, et al. Invasive aspergillosis complicating pandemic influenza A (H1N1) infection in severely immunocompromised patients. Clin Infect Dis 2011;53:e16–19.

[13] Hwang DM, Chamberlain DW, Poutanen SM, Low DE, Asa SL, Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol 2005;18:1–10.

[14] Arastehfar A, Carvalho A, van de Veerendonk FL, Jenks JD, Koehler P, Krause R, et al. COVID-19 associated pulmonary aspergillosis (CAPA)-from immunology to treatment. J Fungi (Basel) 2020;6(2):91. doi:10.3390/jof6020091.

[15] Machado M, Valerio M, Álvarez-Uría A, Olmedo M, Veintimilla C, Padilla B, et al. Invasive pulmonary aspergillosis in the COVID-19 era: an expected new entity. Mycoses 2021;64(2):132–43. doi:10.1111/myc.13213.

[16] Chong WH, Neu KP. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): a systematic review. J Hosp Infect 2021;113:115–29. doi:10.1016/j.jhin.2021.04.012.

[17] Sasoni N, Rodriguez Müller M, Posse G, González J, Leonardelli F, García-Effron G. SARS-CoV-2 and aspergillosis section fumigatus coinfection in an immunocompetent patient treated with corticosteroids. Rev Iberoam Micol 2021;38(1):16–18. doi:10.1160/r.i.ramo.2020.11.001.

[18] Patti RK, Dalsania NR, Somal N, Sinha A, Mehta S, Chitman M, et al. Subacute aspergillosis “fungal balls” complicating COVID-19. J Investig Med High Impact Case Rep 2020;8. doi:10.1177/2324096209664475.

[19] Cadenas J, Thompson GR 3rd, Patterson TF. Aspergillosis: epidemiology, diagnosis, and treatment. Infect Dis Clin North Am 2021;35(2):415–34. doi:10.1016/j.cid.2021.03.008.