Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus

Karsten Becker, Sarah van Alen, Evgeny A. Idelevich, Nina Schleimer, Jochen Seggewiß, Alexander Mellmann, Ursula Kaspar, Georg Peters

During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orX junction region. The isolate was found to carry a mecB gene previously described for Macroccocus caseolyticus but not for staphylococcal species. The gene is flanked by β-lactam regulatory genes similar to mecR, mecl, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne β-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of β-lactams as a main therapeutic application against staphylococcal infections.

Staphylococcal cassette chromosome mec (SCCmec)—mediated β-lactam resistance resulting from production of an additional penicillin-binding protein (PBP) 2a drastically limits the treatment options in cases of hospital- and community-related infections by staphylococci, leading to increased illness, death, and socioeconomic costs (1,2). Besides methicillin-resistant coagulase-negative staphylococci, notorious for foreign body–associated infections, methicillin-resistant Staphylococcus aureus (MRSA) strains are a global public health priority, despite some countries in Europe reporting stabilizing or decreasing MRSA rates (3–5). Since the initial reports of MRSA in 1961, several epidemic waves have resulted in threats of healthcare-, community-, and livestock-associated MRSA (6–9).

For staphylococci, 2 PBP 2a-encoding genes, mecA and mecC, including several allotypes, have been described as chromosomally located genetic bases for phenotypic methicillin resistance (10–14). In contrast, mecB, originally described as mecA∗, was reported as part of a probable primordial form of a methicillin resistance gene complex often found in a transposon mec complex (Tn6045) in Macroccocus caseolyticus, a colonizer of animal skin (15,16). Just recently, a mecD gene, most closely related to mecB, has been detected in bovine and canine M. caseolyticus isolates (17).

The impact of plasmidborne resistance for staphylococci is abundantly demonstrated for β-lactamase–mediated penicillin resistance. Resistance rates are >60% in human S. aureus isolates from the general population and >90% from hospital-related cases, regardless of the clinical background (18,19). In contrast to frequent interstrain and interspecies transmission of resistance plasmids by conjugation or transduction, only a relatively low rate of spontaneous horizontal transfer of SCCmec elements is assumed, resulting in still-manageable and controllable MRSA rates if prevention measures are adequate (20–24). However, transferable methicillin resistance might bear the consequence of an almost complete loss of β-lactam drugs as the most efficient class of antibacterial drugs for treatment of staphylococcal infections. Here, we report both a plasmid-encoded, and thereby transferable, methicillin resistance encoded by mecB and the occurrence of this gene in an isolate of the genus Staphylococcus.

Methods

Strain Detection and Identification

At the University Hospital of Münster, Germany, MRSA is generally cultured, identified, and differentiated by routine microbiological diagnostic methods using dextrose broth enrichment; chromID MRSA selective agar (bioMérieux, Marcy-l’Étoile, France), which contains cefoxitin; VITEK 2 automated system (bioMérieux) applying the antimicrobial susceptibility test card AST-P632; PBP2a detection kit (PBP2a Culture Colony Test, Alere, San Diago, CA, USA); S. aureus–specific PCR targeting mecA/mecC (GenoType MRSA, Hain-Lifescience, Nehren, Germany); and matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (Microflex-LT system, MALDI-Biotyper 3.0; Bruker Daltonik, Bremen, Germany). In February 2016, an *S. aureus* isolate (which we numbered UKM4229) was recovered during routine MRSA screening. The isolate displayed a β-lactam–resistant phenotype without carrying the methicillin resistance genes *mecA* or *mecC*. For further characterizations, isolate UKM4229 was stored at –80°C and was cultivated on chromID MRSA agar (bioMérieux) at 37°C.

Genetic Analysis

We extracted genomic DNA from *S. aureus* isolate UKM4229 using the QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. We isolated plasmid DNA with the PrepEase Mini Spin Plasmid Kit (Affymetrix USB, Santa Clara, CA, USA) following the protocol standards. For both plasmid and genomic DNA, we applied lysostaphin (20 µg/mL) (Wackerchemie, Steinbach, Germany) for bacterial cell lysis. We performed multilocus sequence typing and spa gene typing initially as described elsewhere (25,26) and confirmed our results later by analysis of whole-genome sequencing (WGS) and DNA microarray data (discussed later in this article). We analyzed DNA sequences using RidomStaphyType and SeqSphere+ (Ridom GmbH, Münster, Germany). Applying DNA microarray analysis (IdentiBAC Microarray; Alere Technologies GmbH, Jena, Germany), we identified resistance and virulence determinants and checked genotyping results.

Molecular Confirmation of Methicillin Resistance

Using PCR, we tested for the presence of methicillin resistance genes *mecA* and *mecC* (27,28) as well as *mecB*. DNA sequences of PCR oligonucleotides are given in Table 1. Oligonucleotides for *mecB* were made on basis of the plasmid pMCCl2 of *M. caseolyticus* (GenBank accession no. NC_011996.1). We performed PCR reactions using the following protocol for *mecA*: 5 min at 95°C; 40 cycles of 0.5 min at 95°C, 0.5 min at 55.5°C, and 0.75 min at 72°C; and final elongation of 7 min at 72°C. The protocol for *mecB* was 5 min at 95°C; 35 cycles of 0.5 min at 95°C, 0.5 min at 57°C, and 2.5 min at 72°C; and final elongation of 7 min at 72°C. The protocol for *mecC*: 5 min at 95°C; 40 cycles of 0.5 min at 95°C, 0.5 min at 59.3°C, and 2 min at 72°C; and final elongation of 7 min at 72°C.

Antibiotic Drug Susceptibility Testing

We determined the MIC of cefoxitin for *S. aureus* isolate UKM4229 by the reference broth microdilution method according to the International Organization for Standardization (ISO) 20776-1 guideline (https://www.iso.org/standard/41630.html), as required by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and Laboratory Standards Institute (CLSI). Cefoxitin (Sigma Aldrich, Taufkirchen, Germany) was tested in 2-fold concentrations (0.25–128 µg/mL). We subcultured the isolate and incubated it overnight before testing.

We investigated the susceptibility profile of UKM4229 by determining MICs of various β-lactam and non–β-lactam antibiotic drugs (Table 2) using the gradient diffusion method (Etest; bioMérieux) according to the manufacturer’s instructions. As recommended, the inoculated plates were incubated at 35°C for 18 ± 2 hours. In addition, we tested oxacillin using conditions for increased expression of methicillin resistance, as reported for *mecA* isolates (30): Mueller-Hinton agar supplemented with 2% saline, incubation at 30°C, and prolonged incubation up to 48 h. We investigated the applicability of a commercial automated susceptibility testing device to recognize methicillin resistance due to presence of *mecB* in *S. aureus* by using the VITEK 2 system. We evaluated the in vitro activity of the endolysin HY-133 against UKM4229 using the broth microdilution method in accordance with ISO 20776-1 guidance (https://www.iso.org/standard/41630.html), as described elsewhere (31,32). In brief, we tested 2-fold final concentrations of HY-133 ranging from 0.06 µg/mL to 8 µg/mL using 1–5 × 10⁶ CFU/mL suspension of UKM4229 in cation-adjusted Mueller-Hinton broth. The MICs were read after incubation at 35°C for 18 ± 2 h.

We performed all experiments in triplicate on different days and calculated the median MIC values. We used *S. aureus* ATCC 29213 as a quality control strain on every testing day. For the antibiotic drugs we used, the MICs for the quality control strain were within acceptable limits throughout the testing.

Whole-Genome Sequencing

For the PacBio RS II platform (Pacific Biosciences, Menlo Park, CA, USA), we extracted staphylococcal DNA using the Genomic-tip 20/G Kit (QIAGEN) according to the manufacturer’s instructions, except that we

Table 1. Oligonucleotides used in study of methicillin resistance genes in *Staphylococcus aureus*
Gene
mecA
mecC
mecB

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 24, No. 2, February 2018 243
applied lysostaphin (20 µg/mL) (Wakchemie) for bacterial cell lysis. We sequenced the extracted high-quality, double-stranded DNA (5 µg) using P6-C4 chemistry on the PacBio RS II instrumentation using 4-hour movie collection and 110 pmol/L of complexed 20-kb SMRTbell library. We performed the initial de novo assembly using the HGAP3 v2.3.0 Assembler (Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA). We annotated the assembled genome through the GenDB pipeline (33). We verified questionable sequences within the plasmids by applying PCR (LA-Taq-DNA-Polymerase; Takara, Frankfurt am Main, Germany) and Sanger sequencing (Eurofins Genomics, Ebersberg, Germany).

Results

During routine MRSA screening, we recovered an *S. aureus* isolate UKM4229 from a combined nasal-throat swab of a 67-year-old male cardiology inpatient who had no signs of infection. We isolated colonies with typical appearance for presumptive MRSA from a chromogenic MRSA selective agar and identified them as *S. aureus* by VITEK 2, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and PCR. Discrepancies between phenotypic detection of methicillin resistance by VITEK 2 and negative results of a PBP2a detection kit, as well as negative mecA and mecC test results, by commercial and in-house PCRs led to the detection of a mecB-encoded methicillin resistance.

S. aureus isolate UKM4229 showed a median MIC of 32 µg/mL for cefoxitin, as determined by broth microdilution and gradient diffusion tests. The MICs of other antibiotics, as well as correspondent interpretative categories, are shown in Table 2; the resistance gene profile is given in online Technical Appendix Table 1 (https://wwwnc.cdc.gov/EID/article/24/2/17-1074-Techapp1.pdf). Optimal oxacillin testing conditions previously reported to increase expression of methicillin resistance in mecC isolates (30) unexpectedly led to lower oxacillin MIC values for UKM4229 (Table 2). A novel anti–*S. aureus* agent in development, the recombinant phage endolysin HY-133 (Hy-Fusidic acid Mupirocin Gentamicin Trimethoprim/sulfamethoxazole Tetracycline Tetracyclines Tigeclycline Folate pathway inhibitors Trimetoprim/sulfamethoxazole Aminoglycosides Gentamicin Pseudomonic acids Mupirocin Fusidines Fusidic acid Bacteriophage endolysins HY-133

Antimicrobial class and agent	Median MIC, µg/mL	Category
β-lactams		
Penicillins		
Benzylpenicillin	1.5	R
Ampicillin	3	R
Ampicillin/sulbactam	2	R
Piperacillin	6	R
Piperacillin/tazobactam	3	R
Oxacillin	12	R
Oxacillin†	4/4	
Cephalosporins		
Cefoxitin	32	R
Cephalothin	2	R
Cefuroxime	3	R
Ceftriaxone	24	R
Cefepime	6	R
Ceftobiprole	2	S
Ceftarolone	0.5	S
Carbapenems		
Imipenem	0.032	
Non-β-lactams		
Glycopeptides		
Vancomycin	1	S
Lipoglycopeptides		
Telavancin	0.012	S
Lipopeptides		
Daptomycin	0.19	S
Fluoroquinolones		
Levofloxacin	0.19	S
Macrolides		
Erythromycin	>256	R
Lincosamids		
Clindamycin	>256	R
Oxazolidones		
Linezolid	1	S
Rifamycins		
Rifampin	0.008	S
Phosphonic acid derivatives		
Fosfomycin	<0.064	S
Streptogramins		
Quinupristin/dalfopristin	0.5	S
Tetracyclines		
Tetracycline	12	R
Glycylcyclines		
Tigeclycline	0.125	S
Folate pathway inhibitors		
Trimethoprim/sulfamethoxazole	0.047	S
Aminoglycosides		
Gentamicin	24	R
Pseudomonic acids		
Mupirocin	0.19	S
Fusidines		
Fusidic acid	0.094	S
Bacteriophage endolysins		
HY-133	0.25	

*Tested by using the gradient diffusion method. S, susceptible; R, resistant (according to EUCAST [www.eucast.org] for antibiotic drugs with available breakpoints).†Conditions: 2% NaCl, 30°C; 18 h/48 h. MIC at regular reading after 18 ± 2 h/MIC after 48 h.
mecB-Mediated Methicillin Resistance in *S. aureus*

From other *mecB* database entries, the highest nucleotide identity was shared with the sequence of *mecD* (68.7%), whereas the reported allotypes of *mecC* and *mecA* were more distantly related (online Technical Appendix Figure 1). WGS revealed that the UKM4229 genome consists of a 2,851,374-bp circular chromosome and 2 different plasmids, a 20,725-bp plasmid (pSAWWU4229_2) and an 84,599-bp plasmid (pSAWWU4229_1; Figure); the latter carried *mecB* (GenBank accession no. PRJE19527). The pSAWWU4229_1 plasmid backbone showed the highest similarity with the plasmid pMCLL2 of *M. caseolyticus* JCSC5402 (GenBank accession no. AP009486.1; blastn [https://blast.ncbi.nlm.nih.gov/Blast.cgi] 2.7.0+ maximum score 27,835; query coverage 71%; identity 99%) (33). These 2 plasmids shared 73.3% nucleotide identity (global alignment using Stretcher [Emboss], Matrix EDNAFULL; gap penalty 16, extend penalty 4). Whole plasmid comparative analysis of the sequences of pSAWWU4229_1 and pMCLL2 showed homologous regions between the mec gene complex, the downstream part of the mec complex, and the other antibiotic drug resistance genes (online Technical Appendix Figure 2).

Within the pSAWWU4229_1 plasmid, *mecB* was flanked by β-lactam regulatory genes similar to *mecR*, *mecI*, and *blaZ* (nucleotide identities: 99.9%, *mecRm* from *M. caseolyticus* JCSC7096; 100%, *mecIm* from *M. caseolyticus* JCSC7096 and 100%, *blaZm* from *M. caseolyticus* JCSC7096). pSAWWU4229_1 contained additional antibiotic drug resistance genes encoding resistance to aminoglycosides (*aacA-aphD*, *aphA*, and *aadK*), as well as macrolides (*ermB*), tetracyclines (*tetS*), and streptothricin (*sat*), all located in the same gene section. This particular region of the plasmid showed similarities with the transposon Tn551 of *S. aureus* 4578 (Genbank accession no. LC125350.1; blastn 2.7.0+ maximum score 11,064; query coverage 10%; identity 99%) (34). The sequences shared 48.9% nucleotide identity (global alignment using Stretcher [Emboss], Matrix EDNAFULL; gap penalty 16, extend penalty 4). Mating-pore genes or genes responsible for the DNA transfer suggesting self-transmission or mobilization properties of pSAWWU4229_1 were not detected. Genotyping revealed that *S. aureus* isolate UKM4229 belonged to multilocus sequence typing type ST7 and spa-type t091 (spa-CC 091).

Figure. Circular map of the mecB-carrying plasmid pSAWWU4229_1 from *Staphylococcus aureus* isolate UKM4229, obtained from a 67-year-old cardiology inpatient who had no signs of infection, Münster, Germany. Arrows indicate annotated genes: the mec-complex is noted in green, antibiotic resistance genes in red, transposase/integrase genes in orange, other genes with known function in violet, and other genes with unknown function in gray.
DNA microarray analysis and WGS revealed the isolate possessed the leucotoxin genes lukF, lukS, lukD, lukE, lukX, and lukY. The isolate belonged to capsule type 8, and the biofilm-associated genes icaA, C, and D were detected. Furthermore, the hlb-converting bacteriophage of immune evasion cluster type G comprising the enterotoxin encoding genes sep, sak, and scn was present in the genome. Additional information about the virulence profile of this isolate is given in online Technical Appendix Table 2.

Discussion
Recent studies have shown that mobile SCCmec elements have been imported more frequently by different S. aureus clonal lineages than previously assessed (35). Nevertheless, in contrast to the huge diversity of non-MRSA S. aureus clonal lineages (36), comparatively few clonal lineages still dominate the global MRSA population (37). However, an increased transferability of methicillin resistance by a plasmid-encoded course of action would have the capacity to drastically change the MRSA epidemiology. In staphylococci and other members of the phylum Firmicutes, plasmids have contributed enormously to the emergence and spread of antimicrobial resistance, and plasmid-encoded penicillin resistance has reached or exceeded 80% of clinical staphylococcal isolates (38).

In M. caseolyticus, mecB genes have been found within the chromosome as part of an SCCmec element as well as on a plasmid (15,16,39). For S. aureus UKM4229, it was shown that the mecB carrying plasmid pSAWWU4229_1 was distantly related to a macrococcal plasmid (pMCLL2 of M. caseolyticus JCS5402), substantiating a possible gene transfer between the two genera. Because macrococcal and staphylococcal species may share the same hosts, mammalian skin and food, an exchange of mobile genetic elements between members of both closely related genera is likely and transmission to mammal-adapted staphylococci is generally to be feared (3). Genotyping of S. aureus UKM4229 revealed spa type t091, which is relatively common, as 0.92% of the >370,000 submitted spa sequences assigned to ≈17,000 spa types (as of February 2017) of the RIDOM SpaServer database (http://spa.ridom.de/spatypes.shtml) belong to this spa type.

Routine phenotypic methods for susceptibility testing cannot distinguish between methicillin resistance determinants; thus, mecB-encoded methicillin resistance can remain undiscovered. Moreover, mecB detection is not part of molecular screening approaches. Certain clonal lineages of S. aureus, including MRSA, have emerged as zoonotic pathogens colonizing farm and wild animals (40). Tetracycline resistance frequently observed in staphylococci associated with husbandry is another indication for a possible livestock origin of the isolate (41). A putative livestock source of the mecB-encoding plasmid underlines the importance of the One Health concept in combating the spread of antimicrobial drug resistance.

Although the mecB isolate has been tested susceptible toward several agents of non–β-lactam antibiotic drug classes, the generally increased risk, compared to that of a SCCmec transfer, should be taken into consideration in that a mecB-encoding plasmid will be transmitted through horizontal gene transfer to other staphylococcal strains, even to already multidrug-resistant strains. In S. aureus, 2 major means of horizontal gene transfer for plasmids have been described: conjugation and bacteriophage transduction. Here, pSAWWU4229_1 did not harbor the typical genes responsible for conjugation or mobilization, which is, however, a common lack in S. aureus, affecting ≈95% of plasmids (42). In contrast, for most staphylococcal plasmids, a transfer through bacteriophage generalized transduction has been suggested (43,44). Further studies are warranted to underpin this putative threat and to investigate how a plasmidborne methicillin resistance would affect the SCCmec-based methicillin resistance. For UKM4229, the WGS data revealed that the SCCmec chromosomal attachment site (attB) locus and the neighboring orfX (rlmH) gene were intact, and no integration of an SCCmec element was found.

The mecB isolate was tested to be susceptible to cefotibiprole and ceftaroline. Although cephalosporins with anti-MRSA activity are still active against the majority of MRSA isolates, nonsusceptibility has been already associated with certain MRSA lineages ranging between 3.9% and 33.5% of all MRSA isolates (45–48).

The discovery of plasmid-encoded methicillin resistance in S. aureus of probably macrococcal origin in a healthcare setting reveals a novel level of risk of the transfer of broad β-lactam resistance in staphylococci. Further studies are needed to clarify the real prevalence of mecB-caused methicillin resistance among MRSA and methicillin-resistant coagulase-negative staphylococci in human and animal populations, whether mecA and mecC genes could be found integrated on plasmids, and how the answers to these questions may affect human and animal health.

Acknowledgments
We thank the Technology Development group, in particular Robert Sebra from the Icahn Institute for Genomics and Multiscale Biology at the Icahn School of Medicine at Mount Sinai, for PacBio sequencing and assembly, as well as Christian Ruckert from the Institute of Genomics at the University Hospital of Münster for bioinformatics support. We thank the GenDB support team for technical assistance and access to resources financially supported by the German Federal Ministry of Education and Research (BMBF) (FKZ 031A533) within the de.NBI network. Furthermore, we thank Jörg Wüllenweber for
supervising the routine diagnostics leading to the isolation and presumptive identification of the isolate, as well as Melanie Bach and Martina Schulte for excellent technical assistance.

This work was supported in part by the BMBF within the frameworks of the Infect Control 2020 consortium [03ZZ0820H to K.B. and G.P.], #1Health-PREVENT (01KJ1727A to K.B. and A.M.) and the German Center for Infection Research TTU 08.807 (8037808809 to K.B. and G.P.); and by the European Regional Development Fund within the EurHealth-1Health project (EU/INTERREG VA-681377 to K.B.).

About the Author
Dr. Becker is a professor of medical microbiology at the Institute of Medical Microbiology, University Hospital Münster, Münster, Germany. His research is focused on the epidemiology, pathogenesis, diagnosis, prevention, and therapy of staphylococcal infections. In particular, he has done extensive research on the characterization of MRSA and the staphylococcal small colony-variant phenotype.

References
1. de Kraker ME, Davey PG, Grundmann H; BURDEN study group. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med. 2011;8:e1001104. http://dx.doi.org/10.1371/journal.pmed.1001104
2. Lee BY, Singh A, David MZ, Bartsch SM, Slayton RB, Huang SS, et al. The economic burden of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Clin Microbiol Infect. 2013;19:528–36. http://dx.doi.org/10.1111/cmii.12010
3. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27:870–926. http://dx.doi.org/10.1128/CMR.00109-13
4. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61. http://dx.doi.org/10.1128/CMR.00134-14
5. Johnson AP. Methicillin-resistant Staphylococcus aureus: the European landscape. J Antimicrob Chemother. 2011;66(Suppl 4):iv43–8. http://dx.doi.org/10.1093/jac/dkr076
6. Chambers HF, Deleo FR. Waves of resistance: mechB-Mediated Methicillin Resistance in S. aureus

specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int J Med Microbiol. 2014;304:794–804. http://dx.doi.org/10.1016/j.ijmm.2014.06.007
7. Shore AC, Deasy EC, Slickers P, Brennan G, O’Connell B, Mo- necke S, et al. Detection of staphylococcal cassette chromosome mec type X carrying highly divergent mecA, mecC, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55:7365–73. http://dx.doi.org/10.1128/AAC.00187-11
8. Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11:595–603. http://dx.doi.org/10.1016/S1473-3099(11)70126-8
9. Beck WD, Berger-Bächi B, Kayser FH. Additional DNA in methicillin-resistant Staphylococcus aureus and molecular cloning of mec-specific DNA. J Bacteriol. 1986;165:373–8. http://dx.doi.org/10.1128/jb.165.2.373-378.1986
10. Baba T, Kuwahara-Arai K, Uchiyama I, Takeuchi F, Ito T, Hiramatsu K. Complete genome sequence of Macrococcus caseolyticus strain JCSS5402, reflecting the ancestral genome of the human-pathogenic staphylococci. J Bacteriol. 2009;191:1180–90. http://dx.doi.org/10.1128/JB.01058-08
11. Tsabakishita S, Kuwahara-Arai K, Baba T, Hiramatsu K. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob Agents Chemother. 2010;54:1469–75. http://dx.doi.org/10.1128/AAC.00575-09
12. Schwendener S, Cotting K, Perreten V. Novel methicillin resistance gene mecQ in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci Rep. 2017;7:43797. http://dx.doi.org/10.1038/srep43797
13. Köck R, Werner P, Friedrich AW, Fegeler C, Becker K, Bindevol O, et al. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population. New Microbes New Infect. 2016;9:24–34. http://dx.doi.org/10.1016/j.nmn.2015.11.004
14. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003;111:1265–73. http://dx.doi.org/10.1172/JCI18535
15. Stojanov M, Morellon P, Sakwinska O. Excision of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus assessed by quantitative PCR. BMC Res Notes. 2015;8:828. http://dx.doi.org/10.1186/s13104-015-1815-3
16. Borg MA, Hulscher M, Seicluna EA, Richards J, Azanovsky JM, Xuereb D, et al. Prevention of methicillin-resistant Staphylococcus aureus bloodstream infections in European hospitals: moving beyond policies. J Hosp Infect. 2014;87:203–11. http://dx.doi.org/10.1016/j.jhin.2014.05.003
17. Junke A, Köck R, Becker K, Thole S, Hendrix R, Rossen J, et al. Reduction of the nosocomial methicillin-resistant Staphylococcus aureus incidence density by a region-wide search and follow-strategy in forty German hospitals of the EURREGIO, 2009 to 2011. Euro Surveill. 2013;18:20579. http://dx.doi.org/10.2807/1560-7917.ES2013.18.36.20579
18. Liu P, Wu Z, Xue H, Zhao X. Antibiotics trigger initiation of SCCmec transfer by inducing SOS responses. Nucleic Acids Res. 2017;45:3944–52. http://dx.doi.org/10.1093/nar/gdx153
19. Humphreys H, Becker K, Dohmen PM, Petrosillo N, Spencer M, van Rijen M, et al. Staphylococcus aureus and surgical site infections: benefits of screening and decolonization before surgery. J Hosp Infect. 2016;94:295–304. http://dx.doi.org/10.1016/j.jhin.2016.06.011
20. Mellmann A, Friedrich AW, Rosenkötter N, Rothgänger J, Karch H, Reintjes R, et al. Automated DNA sequence-based early warning system for the detection of methicillin-resistant
RESEARCH

Staphylococcus aureus outbreaks. PLoS Med. 2006;3:e33. http://dx.doi.org/10.1371/journal.pmed.0030033

26. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of *Staphylococcus aureus*. J Clin Microbiol. 2000;38:1008–15.

27. Becker K, Pagnier I, Schuhen B, Wenzelburger F, Friedrich AW, Kipp F, et al. Does nasal colonization by methicillin-resistant coagulase-negative *staphylococci* and methicillin-susceptible *Staphylococcus aureus* strains occur frequently enough to represent a risk of false-positive methicillin-resistant *S. aureus* determinations by molecular methods? J Clin Microbiol. 2006;44:229–31. http://dx.doi.org/10.1128/JCM.44.1.229-231.2006

28. Kriegeskorte A, Ballhausen B, Idelevich EA, Köck R, Friedrich AW, Karch H, et al. Human MRSA isolates with novel genetic homolog, Germany. Emerg Infect Dis. 2012;18:1016–8. http://dx.doi.org/10.3201/eid1806.110910

29. Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H, Watanabe S. Identification of methicillin-resistant strains of *staphylococci* by polymerase chain reaction. J Clin Microbiol. 1991;29:2240–4.

30. Peters G, Becker K. Epidemiology, control and treatment of

31. Idelevich EA, Schaumburg F, Knaack D, Scherzinger AS, Mutter W, Peters G, et al. The recombinant bacteriophage endolysin HY-133 exhibits in vitro activity against different african clonal lineages of the *Staphylococcus aureus* complex, including *Staphylococcus schwitzeieri*. Antimicrob Agents Chemother. 2016;60:2551–3. http://dx.doi.org/10.1128/AAC.02859-15

32. Idelevich EA, von Eiff C, Friedrich AW, Iannelli D, Xia G, Peters G, et al. In vitro activity against *Staphylococcus aureus* of a novel antimicrobial agent, PRF-119, a recombinant chimeric bacteriophage endolysin. Antimicrob Agents Chemother. 2011;55:4416–9. http://dx.doi.org/10.1128/AAC.00217-11

33. Meyer F, Goessmann A, McHardy AC, Bartels D, Béké T, Clausen J, et al. GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 2003;31:2187–95. http://dx.doi.org/10.1093/nar/gkg312

34. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–14. http://dx.doi.org/10.1089/10665270030001478

35. Nübel U, Roumagnac P, Feldkamp M, Song JH, Ko KS, Huang YC, et al. Frequent emergence and limited geographic dispersal of methicillin-resistant *Staphylococcus aureus*. Proc Natl Acad Sci U S A. 2008;105:14130–5. http://dx.doi.org/10.1073/pnas.0804178105

36. Becker K, Schaumburg F, Feigl C, Friedrich AW, Köck R; Prevalence of Multiresistant Microorganisms PMM Study. *Staphylococcus aureus* from the German general population is highly diverse. Int J Med Microbiol. 2017;307:21–7. http://dx.doi.org/10.1016/j.ijmm.2016.11.007

37. Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to panicule, epidemic and sporadic clones of methicillin-resistant *Staphylococcus aureus*. PLoS One. 2011;6:e17936. http://dx.doi.org/10.1371/journal.pone.0017936

38. Lanza VF, Tedin AP, Martinez JL, Baquero F, Coque TM. The plasmidome of *Firmicutes*: impact on the emergence and the spread of resistance to antimicrobials. Microbiol Spectr. 2015;3:PLAS-0039–2014. http://dx.doi.org/10.1128/microbiolspec.PLAS-0039-2014

39. Gómez-Sanz E, Schwendener S, Thonnann A, Gobeli Bravand S, Perreten V. First staphylococcal cassette chromosome containing a mec8-carrying gene complex independent of transposon Tn6045 in a *Macrococcus caseolyticus* isolate from a canine infection. Antimicrob Agents Chemother. 2015;59:4577–83. http://dx.doi.org/10.1128/AAC.00564-14

40. Harrison EM, Paterson GK, Holden MT, Larsen J, Stegger M, Larsen AR, et al. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol Med. 2013;5:509–15. http://dx.doi.org/10.1002/emmm.201202413

41. Larsen J, Claesen J, Hansen JE, Paulander W, Petersen A, Larsen AR, et al. Copresence of tet(K) and tet(M) in livestock-associated methicillin-resistant *Staphylococcus aureus* clonal complex 398 is associated with increased fitness during exposure to sublethal concentrations of tetracycline. Antimicrob Agents Chemother. 2016;60:4401–3. http://dx.doi.org/10.1128/AAC.00426-16

42. Ramsay JP, Kwong SM, Murphy RJ, Yui Eto K, Price KJ, Nguyen QT, et al. An updated view of plasmid conjugation and mobilization in *Staphylococcus*. Mob Genet Elements. 2016;6:e1208317. http://dx.doi.org/10.1008/2159256X.2016.1208317

43. McCarthy AJ, Lindsay JA. The distribution of plasmids that carry virulence and resistance genes in *Staphylococcus aureus* is lineage associated. BMC Microbiol. 2012;12:104. http://dx.doi.org/10.1186/1471-2180-12-104

44. Shearer JE, Wireram J, Hostetter J, Forberger H, Borman J, Gill J, et al. Major families of multiresistant plasmids from geographically and epidemiologically diverse staphylococci. G3 (Bethesda). 2011;1:581–91. http://dx.doi.org/10.1534/g3.111.000760

45. Chan LC, Basuino L, Diep B, Hamilton S, Chatterjee SS, Chambers HF. Cefotibiprope- and cefotibiro-resistant methicillin-resistant *Staphylococcus aureus*. Antimicrob Agents Chemother. 2015;59:2960–3. http://dx.doi.org/10.1128/AAC.05004-14

46. Schaumburg F, Peters G, Alabi A, Becker K, Idelevich EA. Missense mutations of PBP2a are associated with reduced susceptibility to cefotibipro and cefotibiro in African MRSA. J Antimicrob Chemother. 2016;71:41–4. http://dx.doi.org/10.1093/jac/dkv325

47. Farrell DJ, Castanheira M, Mendes RE, Sader HS, Jones RN. In vitro activity of ceftaroline against multidrug-resistant *Staphylococcus aureus* and *Streptococcus pneumoniae*: a review of published studies and the AWARE Surveillance Program (2008–2010). Clin Infect Dis. 2012;55(Suppl 3):S206–14. http://dx.doi.org/10.1093/cid/cis563

48. Zhang H, Xiao M, Kong F, O’Sullivan MV, Mao LL, Zhao HR, et al. A multicentre study of metillin-resistant *Staphylococcus aureus* in acute bacterial skin and skin-structure infections in China: susceptibility to cefotibiro and molecular epidemiology. Int J Antimicrob Agents. 2015;45:347–50. http://dx.doi.org/10.1016/j.ijantimicag.2014.12.014

Address for correspondence: Karsten Becker, University Hospital Münster—Institute of Medical Microbiology, Domagkstr. 10, D-48149 Münster, Germany; email: kbecker@uni-muenster.de
Plasmid-Encoded Transferable *mecB*-Mediated Methicillin Resistance in *Staphylococcus aureus*

Technical Appendix

Technical Appendix Table 1. Resistance profile of *S. aureus* UKM4229 determined by microarray and whole genome sequencing

Gene	Description†	Microarray	UKM4229 genome	pSAWWU229-1	pSAWWU229-2
mecA	Alternate penicillin binding protein 2, defining MRSA	–	–	–	–
mecB	Beta-lactam-inducible penicillin-binding protein	ND†	–	+	–
mecC	Novel *mecA* homologue, also associated with beta-lactam resistance	–	–	–	+
mecD	Beta-lactam-inducible penicillin-binding protein	ND†	–	–	–
blaZ	Beta-lactamase gene	+	–	+	+
blaZ-SCCmecXI	Beta-lactamase gene associated with SCCmec XI elements	–	–	–	–
blaI	Beta lactamase repressor (inhibitor)	+	–	–	+
blaR	Beta-lactamase regulatory protein	+	–	–	+
erm(A)	rRNA methyltransferase associated with macrolide/lincomamide resistance	–	–	–	–
erm(B)	rRNA methyltransferase associated with macrolide/lincomamide resistance	+	–	+	–
erm(C)	rRNA methyltransferase associated with macrolide/lincomamide resistance	–	–	–	+
lnu(A)	Lincosaminide nucleotidyltransferase (=lnA)	–	–	–	–
msr(A)	Macrolide efflux pump	–	–	–	–
mep(A)	Macrolide efflux protein A	–	–	–	–
mph(C)	Macrolide phosphotransferase II (=mpbBM)	–	–	–	–
vat(A)	Virginiamycin A acetyltransferase	–	–	–	–
vat(B)	Acetyltransferase inactivating streptogramin A	–	–	–	–
vga(A)	ABC transporter conferring resistance to streptogramin A and related compounds	–	–	–	–
vga(A) (BM 3327)	vga(A) allele from strain BM 3327	–	–	–	–
vqB(A)	Virginiamycin B hydrolase (=vgb)	–	–	–	–
aacA-aphD	Aminoglycoside adenyl-/phosphotransferase (gentamicin, tobramycin)	+	–	+	–
aadD	Aminoglycoside adenyltransferase (neo-/ kanamycin, tobramycin)	–	–	–	–
aphA3	Aminoglycoside phosphotransferase (neo-/ kanamycin)	+	–	+	–
sat	Streptothricin acetyltransferase	–	–	+	–
dfrS1	Dihydrofolate reductase mediating trimethoprim resistance (=dfrA)	–	–	–	–
fusB	Fusidic acid resistance gene (=farA)	–	–	–	–
fusC	Fusidic acid resistance gene (=Q6GD50)	–	–	–	–
mupA	Isoleucyl-tRNA synthetase associated with mupirocin resistance (=mupR)	–	–	–	–
tet(K)	Tetracycline efflux protein	–	–	–	–
tet(M)	Ribosomal protection protein associated with tetracycline resistance	–	–	–	–
tetS	Tetracycline resistance protein TetS	ND	–	+	–
cat (total)	Chloramphenicol acetyltransferase	–	–	–	–
clf	23S rRNA methyltransferase (phenicols, lincomamides, oxazolidinones, pleuromutilins, streptogramin A)	–	–	–	–
faxA	Chloramphenicol/florfenicol exporter	–	–	–	–
fosB	Metallothiol transferase	–	–	–	–
Technical Appendix Table 2: Virulence profile of *S. aureus* UKM4229 determined by microarray and whole genome sequencing

Gene	Description†	Microarray	WGS	PSUWWU4229-1	PSUWWU4229-2
fusB (plasmid)		-	+	-	-

Resistance genotype: efflux systems

Gene	Description	Result by
qacA	Quaternary ammonium compound/multidrug efflux protein A	+
qacC	Quaternary ammonium compound/multidrug efflux protein C	+
sdrM	Multidrug efflux pump	+

Resistance genotype: glycopeptides

Gene	Description	Result by
vanA	Vancomycin resistance gene	-
vanB	Vancomycin resistance gene from enterococci and *Clostridium*	-
vanZ	Teicoplanin resistance gene from enterococci	-

†Description as provided by the manufacturer (S. aureus Genotyping Kit 2.0 manual, Alere Technologies GmbH, Jena, Germany), except for ND cases

Technical Appendix Table 2: Virulence profile of *S. aureus* UKM4229 determined by microarray and whole genome sequencing

Gene	Description†	Microarray	WGS	PSUWWU4229-1	PSUWWU4229-2
sea	Enterotoxin A (= *entA*)	-	-	-	-
sea (320E)	Enterotoxin A, allele from strain 320E	-	-	-	-
seb	Enterotoxin B (= *entB*)	-	-	-	-
sec	Enterotoxin C (= *entC*)	-	-	-	-
sed	Enterotoxin D (= *entD*)	-	-	-	-
see	Enterotoxin E (= *entE*)	-	-	-	-
seg	Enterotoxin G (= *entG*)	-	-	-	-
seh	Enterotoxin H (= *entH*)	-	-	-	-
sei	Enterotoxin I (= *entI*)	-	-	-	-
seq	Enterotoxin J (= *entJ*)	-	-	-	-
seq / *selj*	Enterotoxin gene cluster, consisting of seg, sei, seq, selm, seln, selo, seleu	-	-	-	-
selj	Enterotoxin K (= *entK*)	-	-	-	-
selj / *sell*	Enterotoxin-like gene/protein M (= *sem*, *entM*)	-	-	-	-
selm	Enterotoxin-like gene/protein N (= *sen*, *entN*)	-	-	-	-
selo	Enterotoxin-like gene/protein O (= *seo*, *entO*)	-	-	-	-
selp / *sea* (N315)	Enterotoxin A, allele from strain N315 (= *entP*, *entP*)	-	-	-	-
egc	Enterotoxin gene cluster, consisting of seg, sei, seq, selm, selo, seleu	-	-	-	-
ser	Enterotoxin R (= *entR*)	-	-	-	-
seu	Enterotoxin-like gene/protein U (= *seu*, *entU*)	-	-	-	-

Virulence: hemolysin gamma and leucocidins

Gene	Description†	Result by	
hlgA	Hemolysin gamma, component A	-	
lukF/PV	Panton Valentine leucocidin F component	-	
lukS-PV	Panton Valentine leucocidin S component	-	
lukF-PV (P83)	F component of leucocidin from ruminants	-	
lukM	S component of leucocidin from ruminants	-	
lukD	Leucocidin D component	-	
lukE	Leucocidin E component	-	
lukK	Leucocidin/leucocidin hemolysin toxin family protein (= *lukA* or *lukG*)	-	
lukY	Leucocidin/leucocidin hemolysin toxin family protein (= *lukB* or *lukH*)	-	
Gene	Description†	Result by Microarray	WGS
------------	--------------	----------------------	--
hla / hly	Hemolysin alpha	+ + – –	
hib	Hemolysin beta	+ + – –	
undiscrupted hib	Hemolysin beta without phage insertion	– – – –	
hld	Hemolysin delta	ND + – –	
			Virulence: hib-converting phage
sak	Staphylokinase	+ + – –	
chp	Chemotaxis-inhibiting protein (CHIPS)	– + – –	
scn	Staphylococcal complement inhibitor	+ + – –	
			Virulence: exfoliative toxins
etA	Exfoliative toxin serotype A	– – – –	
etB	Exfoliative toxin serotype B	– – – –	
etD	Exfoliative toxin D	– – – –	
			Virulence: epidermal cell differentiation inhibitors
edinA	Epidermal cell differentiation inhibitor	– – – –	
edinB	Epidermal cell differentiation inhibitor B	– – – –	
edinC	Epidermal cell differentiation inhibitor C	– – – –	
			Virulence: ACME locus
			Virulence: proteases
aur (consensus)	Aureolysin	+ + – –	
aur (other than MRSA252)	+ + – –		
aur (MRSA252)	+ + – –		
splA	Serinprotease A	+ + – –	
splB	Serinprotease B	+ + – –	
splC	Serinprotease C	ND + – –	
splE	Serinprotease E	+ + – –	
splF	Serinprotease F	ND + – –	
sspA	Glutamylendopeptidase	+ + – –	
sspB	Staphopain B, protease	+ + – –	
sspP (consensus)	Staphopain A (staphylopain A), protease	+ + – –	
			Capsule- and biofilm-associated genes
cap 1 (total)	Capsule type 1	– – – –	
cap 5 (total)	Capsule type 5	– – – –	
cap 8 (total)	Capsule type 8	+ + – –	
capH8	Capsular polysaccharide synthesis enzyme	+ + – –	
capI8	Capsular polysaccharide biosynthesis protein	+ + – –	
capJ8	O-antigen polymerase	+ + – –	
capK8	Capsular polysaccharide biosynthesis protein	+ + – –	
iczA	Intercellular adhesion protein A	+ + – –	
iczC	Intercellular adhesion protein C	+ + – –	
iczD	Biofilm PIA synthesis protein D	+ + – –	
bap	Surface protein involved in biofilm formation	– – – –	
			Adhesion factors/MSCRAMM genes
bbp (total)	Bone sialoprotein-binding protein	+ + – –	
clfA (total)	Clumping factor A	+ + – –	
clfB (total)	Clumping factor B	+ + – –	
cna	Collagen-binding adhesin	– – – –	
eth (consensus)	Cell wall associated fibronectin-binding protein	+ + – –	
ebpS (total)	Cell surface elastin binding protein	+ + – –	
eno	Enolase	+ + – –	
fnb (total)	Fibrinogen binding protein (19 kDa)	+ + – –	
fnbA (total)	Fibrinectin-binding protein A	+ + – –	
Gene	Description†	Result by Microarray	Result by WGS
-----------	---	----------------------	-----------------
fnbB (total)	Fibronectin-binding protein B	+	+
map (total)	Major histocompatibility complex class II analog protein (= Extracellular adherence protein, eap)	+	–
sasG (total)	Staphylococcus aureus surface protein G	–	–
sdrC (total)	Ser-Asp rich fibrinogen-/bone sialoprotein-binding protein C	–	–
sdrD (total)	Ser-Asp rich fibrinogen-/bone sialoprotein-binding protein D	+	–
sdrE	Ser-Asp rich fibrinogen-/bone sialoprotein-binding protein E	ND	–
sdrF	Ser-Asp rich fibrinogen-/bone sialoprotein-binding protein F	ND	–
vwb (total)	Van Willebrand factor binding protein	+	–

†Description as provided by the manufacturer (S. aureus Genotyping Kit 2.0 manual, Alere Technologies GmbH, Jena, Germany), except for ND cases.

Technical Appendix Figure 1. Phylogenetic relationships of mec genes conferring methicillin resistance and overview of characteristic features. Evolutionary history was inferred by using the maximum likelihood method based on the Tamura-Nei model (1) in MEGA7 (2). Nucleotide sequences were aligned using MUSCLE (3). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Nucleotide identity (nt ID) between the mecB gene in strain UKM4229 and other mec genes was determined by sequence alignment using Clustal OMEGA (http://www.ebi.ac.uk/Tools/msa/clustalo/).
Technical Appendix Figure 2. Structural comparison of pSAWWU4229_1 and pMCCL2 (M. caseolyticus JCSC5402; NC_011996.1) performed by Easyfig software (49). Gray areas represent regions with nucleotide sequence similarities ranging between 69% and 100%. The mec-complex is colored in green, antibiotic resistance genes in red, and transposase/integrase genes in orange.

References

<jrn>1. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–26.</jrn>

<jrn>2. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. http://dx.doi.org/10.1093/molbev/msw054</jrn>

<jrn>3. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. http://dx.doi.org/10.1093/nar/gkh340</jrn>