HIGH SKIN MELANIN CONTENT, VITAMIN D DEFICIENCY AND IMMUNITY: POTENTIAL INTERFERENCE FOR SEVERITY OF COVID-19

MUHAMMAD TOREQUL ISLAM 1,2, BAHARE SALEHI 3*, OANA KARAMPELAS 4*, JAVAD SHARIFI-RAD 5,6, ANCA OANA DOCEA 7, MIQUEL MARTORELL 8, DANIELA CALINA 9

1 Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam 2 Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam 3 Medical Ethics and Law Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran 4 Department of Pharmaceutical Technology and Biopharmaceutics, “Carol Davila” University of Medicine and Pharmacy, 020956, Bucharest, Romania 5 Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador 6 Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran 7 Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania 8 Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile 9 Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania

*corresponding author: javad.sharifirad@gmail.com 2Authors with equal contribution.

Abstract
Due to the strong immunomodulatory effects, vitamin D (Vit-D) may be an option in COVID-19 disease. The skin pigment melanin has the photoprotective capacity, by inhibiting the synthesis of Vit-D in human. Dark skin contains a high level of melanin, which inhibits vit-D synthesis, leading to deficiency of this vitamin in certain people worldwide. It has been reported that the angiotensin II stimulates melanogenesis process. The SARS-CoV-2 uses the ACE2 receptor for the entrance into the human lung epithelial cells. Therefore, there is an interconnection between the ACE2, angiotensin II, melanogenesis and Vit-D levels in our body. An upregulation of angiotensin II is inversely co-related to the Vit-D synthesis in human. Taken together, SARS-CoV-2 may rule over the peoples having high skin melanin contents and its consequence of Vit-D deficiency. This review aims to highlight a correlation between skin melanin content, Vit-D status, immunity and the potential effects on SARS-CoV-2 prevalence in COVID-19 patients. As a novelty of this review, clinical trials on Vit-D aiming to fight against SARS-CoV-2 related pathological conditions or comorbidities in COVID-19 were included. The results of the analysed data showed that there is scientific evidence that a potential synergistic treatment with Vit-D could reduce the risk of SARS-CoV-2 infection and COVID-19 deaths.

Rezumat
Datorită efectelor imunomodulatorie puternice, vitamina D (Vit-D) poate fi o opțiune în tratamentul COVID-19. Melanina pigmentară are capacitatea de a reduce producerea Vit-D, ceea ce poate duce la dezvoltarea unui deficit de Vit-D la o parte a populației. Este cunoscut faptul că angiotensina II activează producerea melaninei. SARS-CoV-2 folosește receptorul ACE2 pentru intrarea în celulele epiteliale pulmonare umane. Prin urmare, există o interconectare între nivelurile ACE2, angiotensină II, melanogeneză și Vit-D în organismul uman. Studiile teoretice împreună cu studiile clinice arătau faptul că, în cazul unei încrezi în concentrația melaninei, este mai probabil să întâmple o infecție cu SARS-CoV-2. În plus, studiile clinice arată faptul că, în cazul unei infecții cu SARS-CoV-2, este mai probabil să apară un efect negativ asupra sistemului imunitar. Prin urmare, studiile arată faptul că, în cazul unei infecții cu SARS-CoV-2, este mai probabil să apară un efect negativ asupra sistemului imunitar. Prin urmare, studiile arată faptul că, în cazul unei infecții cu SARS-CoV-2, este mai probabil să apară un efect negativ asupra sistemului imunitar. Prin urmare, studiile arată faptul că, în cazul unei infecții cu SARS-CoV-2, este mai probabil să apară un efect negativ asupra sistemului imunitar.

Keywords: SARS-CoV-2, immunity, melanin, vitamin D, cytokines storm, COVID-19 severity
ordered inflammatory about the immunological multiple controversies - - to analyze the immune responses to determine rational therapeutic strategies [117]. The exclusion criteria were: studies that also included homoeopathic preparations, abstracts, papers published in languages other than English.

The immune system, severely affected by the attack of SARS-CoV-2 infection

Most patients with a severe form of COVID-19 have elevated levels of proinflammatory cytokines, including interleukin (IL)-6, IL-1β, as well as plasma monocyte chemotactic protein-1 (MCP-1), interferon-gamma-inducible protein-10 (IP-10), and granulocyte colony-stimulating factor (G-CSF). It has been proposed that high levels of proinflammatory cytokines may lead to shock as well as respiratory failure or multiple organ failure and several studies to evaluate inflammatory mediators are still ongoing [119]. In some patients with COVID-19, the expression of proinflammatory cytokines by myeloid cells decreased, whereas there were elevated plasma levels of inflammatory mediators, including the extracellular newly identified receptor for advanced glycation end-products binding protein (EN-RAGE), tumour necrosis factor superfamily member 14 (TNFSF14), and oncostatin-M, which correlated with disease severity and bacterial products increased in human plasma. However, little is known about the immunological mechanisms underlying the severity of COVID-19 and the extent to which they differ from the immune response to other respiratory viruses. Moreover, the answer to the question of whether individuals in different parts of the world respond differently to SARS-CoV-2 remains unknown [106]. Recent reports suggest that patients with COVID-19 are characterized by lymphopenia and an increased number of neutrophils. In the current study, scientists used a biological systems approach to analyse the immune response in 76 patients with COVID-19 and a control group of the same sex and age (approximately 69 years) of two geographically distant cohorts [98]. Thus, the research team followed a systems biology-based approach to determine the immune responses of people affected by COVID-19. Analysis of mass cytometry of peripheral blood leukocytes from two independent cohorts, from Hong Kong and Atlanta, revealed some common features of immune responses induced by SARS-CoV-2 infection. There has been a striking and prolonged increase in the frequencies of plasmablasts and CD8 effector T cells in peripheral blood, consistent with other recent studies. Also, effector T cells continued to grow until 40 days after the onset of symptoms. Other studies have shown that SARS-CoV-2 infection induces depletion and apoptosis (cell death) in T cells [9].

Methodology

A comprehensive search of the literature was performed in the following PubMed and Web of Science databases using the following keywords: immunity, SARS-CoV-2, melanin, vitamin D, mechanisms, viral respiratory diseases. The inclusion criteria for the researched articles were clinical trials on the correlation between melanin, Vit-D, immunity and viral respiratory infections, including those with SARS-CoV-2.
In addition to plasmacytoid-affected interferon-alpha (IFN-α) production, there was a marked decrease in the proinflammatory cytokines IL-6, tumour necrosis factor-alpha (TNF-α) and IL-1β produced by monocytes and myeloid cells. These results suggest an innate impaired response in leukocytes in patients with COVID-19 [94].

Proinflammatory cytokines associated with bacteria of pulmonary origin

Multiples analysis of plasma cytokines revealed increased levels of several proinflammatory cytokines, as previously observed and a strong association of inflammatory mediators EN-RAGE, TNFSF14 and oncostatin-M with the clinical severity of the disease. The proinflammatory cytokines observed in plasma probably come from cells in lung tissue, rather than from cells in peripheral blood. Taken together, plasma cytokine-related data with mass cytometry data can be used to construct an immune profile distinguishing between the severe and moderate form of COVID-19 [25].

In summary, this study suggests that SARS-CoV-2 infection results in a spatial division in the innate immune response, characterized by the suppression of the innate immunity, in the face of reported proinflammatory reactions to the lung. Moreover, there is a temporal change in the cytokine response from an early but transient, type 1 IFN response to a proinflammatory response in later and more severe stages, similar to that seen with other diseases, such as influenza [30].

Surprisingly, there were increased levels of bacterial DNA and lipopolysaccharides (constituents of the cell walls of gram-negative bacteria) in plasma, which were positively correlated with plasma levels of EN-RAGE, TNFSF14, oncostatin-M, and IL-6. This suggests a role for bacterial products, perhaps of pulmonary origin, in increasing the production of inflammatory cytokines in severe COVID-19 disease.

The biological consequence of the affected innate immune response in peripheral blood is not known. Still, it may reflect a homeostatic mechanism to prevent systemic hyperactivation in the face of tissue inflammation. Finally, these results highlight molecules such as EN-RAGE or TNFSF14 and their receptors, which could be a therapeutic target against COVID-19 disease.

Approximately 80% people of the world are pigmented [48]. Among the four significant pigments, melanin and haemoglobin are known skin colour contributors in human [67]. Melanin (brown or black (eumelanin), red or yellow (pheomelanin), dark pigment (neuromelanin) is a biopolymer complex mixture of quinone/indolequinone derivatives [103]. The elliptical melanosomes produce eumelanin, while rounded melanosomes produce the pheomelanin in human [13, 112]. The peoples having dark skin contain a high level of melanin than lighter skin peoples. Melanin protects our skin from the harmful effects of ultraviolet (UV) radiation [1].

Melanocytes present in the basal layer of the epidermis are responsible for melanin production [48]. Among the natural sunlight (e.g., UVA and UVB) UVB is the most biologically active form, which at wavelength 290 - 315 nm synthesizes Vit-D in our skin (Figure 1). Tyrosinase catalyses the hydroxylation of tyrosine and oxidation of dopa, resulting in the formation of melanin through a free radical coupling pathway [121] (Figure 2).

On the other hand, vitamin D (Vit-D) is a prohormone that facilitates calcium absorption from our gut. The deficiency of it causes rickets in children and osteomalacia in older people [14, 68]. Vit-D3 (also called calcitriol), a fat-soluble vitamin, which is mostly found in fish, eggs, liver, butter and margarine [104]. In the liver, Vit-D3 converts into 25-hydroxy-Vit-D3 through hydroxylation, which transfers into 1α,25-dihydroxy-Vit-D3 (calcitriol) in the kidneys [13]. However, left un-exposure of the next day Vit-D3 can’t enter into the bloodstream due to the rapid degradation into suprasterol1, suprasternal and 5,6 trans-Vit-D3 (biologically inactive forms) [51].

Solar radiation triggers a strong seasonal production of Vit-D in the skin; Vit-D deficiency is common in winter, and activated Vit-D, 1,25 (OH) 2D, a steroid hormone, has profound effects on human immunity [108]. Vitamin 1,25 (OH) 2D acts as a modulator of the immune system, preventing the excessive expression of inflammatory cytokines and increasing the potential for “oxidative explosion” of macrophages. Perhaps most important is the drastic stimulation of the expression of strong antimicrobial peptides, which exist in neutrophils, monocytes, natural killer cells and epithelial cells that cover the airways, where they play an essential role in protecting the lungs from infection. Volunteers inoculated with live attenuated influenza virus are more likely to develop fever and serological evidence of an immune response in winter. Vit-D deficiency predisposes children to respiratory infections. UV radiation (either from artificial sources or sunlight) reduces the incidence of viral respiratory infections, as does cod liver oil (which contains Vit-D). An interventional study showed that Vit-D reduces the incidence of respiratory infections in children [127].

The recommended daily amount is 600 IU per day, increasing to 800 IU/day in those over 71 years [40]. Vit-D supplements should be used when dietary and lifestyle recommendations (sunlight) cannot be implemented [110]. Increased intake of fortified foods or sun exposure is not recommended. It appears that up to 4,000 IU of Vit-D3/day are without significant side effects and increase serum 25 (OH) D levels at normal-high physiological concentrations [39].
The link between Vit-D and severity of COVID-19 disease has been enhanced by a recent study which analysed the data of all patients at Vienna General Hospital between 1991 and 2011, whose 25 (OH) D levels were measured, a total of 78,581 patients, with the Austrian National Death Registry [113]. In those 20 years, 11,877 deaths were observed, and the death risk rate was calculated. Values of 25 (OH) D ≤ 10 nmol/L were associated with a risk of death two to three times higher in those under 75 years of age, while values of 25 (OH) D ≥ 90 nmol/L at a 40% lower risk of death in those under 75 years of age compared to the 50 nmol/L reference value. In terms of mortality from specific causes, they found that the strongest association between low Vit-D and the cause of death was for diabetes with a 4 times higher risk, and for infectious diseases and other diseases with a 2 times higher risk, even if not for cancer or cardiovascular disease [42, 113].

According to the scientific reports, the exposure time of the light skin peoples is between 20 and 30 minutes, while it is 2 - 10 fold larger for the dark skin peoples for 2 - 3 times in a week to produce around 20,000 IU of Vit-D3 [95]. An increasing in melanin level in the skin reduces the production of Vit-D3 of the dark skin peoples of high latitude [65].

7-dehydrocholesterol is abundantly in the epidermis that absorbs UVB and induces photoisomerization to a compound pre-vit-D. Skin pigmentation due to melanin deposition affects Vit-D3 synthesis.

Figure 1.
Biosynthesis of vitamin D from sunlight
Legend: UVB: Ultraviolet ray B; PTH: Parathyroid hormone; GH: Growth hormone; FGF-23: Fibroblast growth factor 23
It is due to the melanin absorbs UVB photons, resulting in competition with 7-dehydrocholesterol for the same UV radiation [20]. Black skin requires at least a 6-fold greater UVB dose to synthesize adequate circulating levels of Vit-D3 than the white skin [23]. On the other hand, 1,25(OH)2D3 is evident to regulate mineral homeostasis in our body [96]. Deficiency of certain minerals, such as copper [12], iron [53], selenium [66], sodium [100], magnesium [102], potassium [99], calcium [33] and zinc [19] is evident to increase susceptibility towards infectious agents, including viruses.

The skin colour depends on the complex interplay of UV radiation and hormones upon the genetical interference on the melanogenesis process of the individual [29, 49]. However, irrespective of skin melanin contents, the breastfed infants may have Vit-D deficiency as their Vit-D contents depend on the mother's Vit-D status [121]. On the other hand, the skin of the peoples (including older adults) cannot synthesize sufficient Vit-D, especially who spend more time indoors [70]. Most of the African and Americans having dark skin have the deficiency of Vit-D3 [6]. However, Vit-D deficiency or insufficiency is most common in the UK [95]. Figure 3 shows how melanin inhibits Vit-D synthesis in human skin.
A tie-up between vitamin D, the risk of viral respiratory diseases and COVID-19

It has been demonstrated that the SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor for attaching and entry into the human lung cells [123]. The ACE2 is evident for its lung-protective capacity [63]. Generally, the ACE2 catalyses the hydrolysis of the vasoconstrictor peptide angiotensin II into the vasodilator angiotensin [122]. One study suggests that angiotensin II stimulates the melanogenesis process through the protein kinase C (PKC) pathway [64]. In another study, Vit-D3 was seen to modulate the expression of ACE2 in lipopolysaccharide-induced lung injury Wistar rats [124]. Moreover, it also attenuated angiotensin II-induced nitrogen oxides (NOx) activation and reactive oxygen species (ROS) production [26]. The intracellular signal transduction pathways of cyclic adenosine monophosphate (cAMP), PKC and nitric oxide (NO) have been reported to regulate the melanogenesis process [62]. Therefore, upregulation of ACE2 will negatively affect the melanogenesis process in human.

Vit-D has immunomodulatory effects [52]. Vit-D deficiency or insufficiency implicates about 53% of deaths from pneumonia of viral and bacterial origins in children worldwide [28]. Vit-D deficiency has been linked to increased risk of viral upper and lower respiratory tract infections (especially during winter time), wheezing and asthma-related hospitalizations in infants and children [2, 35].

Normal to high-serum levels of 25(OH)D may reduce in incidence and severity of viral infections [111]. On the other hand, the metabolites of Vit-D do not consistently influence the replication or clearance processes of viruses, including the rhinovirus, respiratory syncytial virus or influenza A virus in human respiratory epithelial cells. Furthermore, these metabolites have been found to modulate the expression and secretion of type 1 interferon, chemokines, including IL-8 or chemokine C-X-C motif chemokine ligand 8 (CXCL8) and IP-10 or CXCL10 and proinflammatory cytokines, such as TNF and IL-6 [41]. SARS-COV-2 infection is evident to upregulate many proinflammatory cytokines, including IL10, IP10 and TNFα in novel COVID-19 patients [46]. However, the effective supplementation of Vit-D needs to start before the onset of respiratory tract infection [2]. A recent study on the effect of Vit-D administration on acute respiratory tract infections showed that Vit-D administration significantly reduces the risk of contracting a respiratory disease [128]. The odds ratio was 0.65 (0.5 - 0.85 at 95%), a rate of 1 indicates that the exposure does not affect the result, while a rate of less than 1 indicates that the exposure the risk of outcome is reduced in this case of infection. Even though ingested Vit-D accumulates in adipose tissue, the study showed that it is more effective in preventing acute respiratory tract infections taken in daily doses than in weekly or monthly doses, and that blood levels should be or for this purpose at least 50 nmol/L. Some studies have shown the beneficial effects of absorption with vitamin D in
association with probiotics [109]. Therefore, Zittermann et al. [128] recommend people at risk of Vit-D deficiency to take a daily dose of 1000 IU throughout the year, and the rest of the population to do so from early autumn to mid-spring. It can reduce the viral loads in our body possibly through the anti-viral immune induction, modulation of immunoregulatory defence processes, induction of autophagy and apoptosis, genetic or epigenetic regulation [43], stimulating the defensins and cathelicidins, thereby decreasing the viral RNA replication. It also increases the levels of anti-inflammatory cytokines, while reducing the pro-inflammatory cytokines those are evident to induce inflammation-related pneumonia. Vit-D-mediated reduced the death rate in COVID-19 patients having comorbidities (e.g., diabetes, hypertension) has been also reported by Kakodkar et al. [56]. It should be noted that the Vit-D deficiency is globally prevalent, particularly in the elders [120]. This high prevalence probably contributes to the first outbreak COVID-19 during winter and the high mortality rate in older adults [21]. Therefore, for people at risk of COVID-19, the goal should be to raise the concentrations of 25(OH)D above 40-60 ng/mL (100 - 150 nmol/L) by considering taking 10,000 IU/day of Vit-D3 for a few weeks to rapidly raise 25(OH)D concentrations, followed by 5000 IU/d [127]. Vit-D is known to mitigate the scope of acquired immunity and regenerate endothelial lining [58], that might be helpful to minimize the alveolar damage caused in acute respiratory distress syndrome (ARDS) in COVID-19 [27]. Vit-D inhibits viral replication [40] and causes dysregulation of the renin-angiotensin system and cytokine storm in the host through modulating the innate and adaptive immune system [7].

Knowing the overall facts, several clinical trials have undergone on the Vit-D aims to defend SARS-CoV-2 infection (Table 1).

Table I

Study Number/ Sponsor	Conditions/ diseases	Dose of Vit-D	Participants (age)/ type of study	Reference
NCT04363840 Louisiana State University Health Sciences Center, New Orleans	COVID-19, Vit-D deficiency, coagulopathy, disseminated intravascular coagulation	50,000 IU, once weekly for 2 weeks	1080 (18 years - older) (Phase 2)	[79]
NCT04407286 Arizona State University with Southwest College of Naturopathic Medicine	COVID-19, Vit-D deficiency	10,000 IU/day/BID (18-69 years) 15,000 IU/day/TID (age 70+) for 2 weeks	100 (18 - 70+ years) (Phase 1)	
NCT04385940 University of Alberta	COVID-19	1000 IU daily for 2 weeks; 50,000 IU for two times during the 1st week and one dose over 2nd and 3rd weeks	64 (17 years) (Phase 3)	[90]
NCT04386044 Tameside General Hospital	COVID-19 Vit-D deficiency	Measurement of Vit-D levels	1000 (18 years to older) (Interventional)	[83]
NCT04370808 University of Lisbon	COVID-19	Investigation of Vit-D polymorphism	500 (18 years to older) (Observational)	
NCT04334005 Universidad de Granada	COVID-19	25,000 IU Vit-D supplement for 10 weeks	200 (40 - 70 years) (Clinical trial)	
NCT04435119 University Hospital, Angers	COVID-19	Vit-D3 supplementation	96 (70 years to older) (Observational)	[84]
NCT04407572 Kanuni Sultan Suleyman Training, Research Hospital with Ayşegül Bestel, Ibrahim Polat, Merve Aldikaçtuğlu Talmaç	COVID-19 Zn deficiency	Measurement of serum Zn, Vit-D and Vit-B12 levels in pregnant women	45 (18 - 45 years) (Observational study)	
NCT04394390 Kanuni Sultan Suleyman Training and Research Hospital with Ayşegül Bestel, Ibrahim Polat and Merve Aldikaçtuğlu Talmaç	COVID-19 Vit-D deficiency		100 (Child to older adults) (Observational)	[81]
It should be mentioned that the Flu or Flu-like transmissions are often coming out in cold and/or dry air [116] when a low UV index has been recorded [47]. Studies suggest that Vit-D levels increase in summer and decrease in winter [59]. It has been also depicted that the seasonal variation may depend on latitude since Vit-D production is more significant in equator [61] and sunny regions [37].

Vitamin-D status and the COVID-19 comorbidities

Vit-D deficiency affects broad gene expression in humans, which is linked to many chronic diseases, including autoimmune and infectious diseases, cancers, type 2 diabetes and cardiovascular disease [45]. Vit-D deficiency is one of the most consequences of secondary hyperparathyroidism, and it is evident to cause coagulopathy in human [34]. Moreover, the deficiency of this vitamin also causes liver diseases [11], cystic fibrosis [97], multiple sclerosis [52], prostate cancer [118], and so on.

Vit-D3 binds to the vitamin D receptor (VDR) which regulates transcription of more than 60 genes involved in anti-proliferative, pro-differentiating, anti-metastatic and pro-apoptotic effects on cells and the cell cycle [3]. The VDR gene polymorphisms influence the risk of occurrence and prognosis of some cancers, such as breast and renal cancer [57]. The VDR also plays an essential role in calcium reabsorption in the kidney [54].

Vit-D is a fat-soluble vitamin, which requires dietary fats such as those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20]. Moreover, peoples having reduced ability to absorb nutritional fats such those are suffering from liver disease, cystic fibrosis, and Crohn’s disease might be required Vit-D supplements [20].
Vit-D has multiple functions in the body, the main one is the regulation of metabolism and calcium levels and for this reason, it was used in the form of cod liver oil to combat rickets in the first half of the twentieth century. Vit-D acts through its receptor, which is a transcription factor that regulates the expression of hundreds of genes, which is why it is involved in many processes. It is an immune system regulator that activates the innate response and regulates the adaptive response [22].

Low levels of Vit-D are associated with many of the comorbidities that predispose to a worse course of COVID-19 disease, such as hypertension, obesity, circulatory diseases and strokes. In addition, they are directly associated with an increased risk of death from several causes, including those caused by respiratory infections. Therefore, it is not surprising that researchers have found an association between mortality due to COVID-19 and Vit-D [10]. The results of recent meta-analyses revealed an association between serum 25 (OH) D levels and the outcome of viral infection levels were lower among critical cases and higher in mild cases. Having some levels of a standard deviation above the average made the chances of having a mild form of the disease to be 8 times higher than a severe one and 20 times higher than critical [126].

Other recent studies showed a strong correlation between severe Vit-D deficiency and mortality rates after studying global data on the COVID-19 pandemic, a disease caused by the new SARS-CoV-2 coronavirus. The researchers found that patients in countries with high mortality rates from COVID-19, such as Italy, Spain, and the United Kingdom, had low levels of Vit-D compared to patients in countries that were not as severely affected, of the pandemic [69]. It was found that there was a solid correlation between Vit-D levels and the “cytokine storm”, a hyperinflammatory condition caused by an extremely active immune system, as well as a correlation between Vit-D deficiency and mortality believes that Vit-D plays a major role in terms of immunity [10]. Vit-D strengthens the innate immune system, but it prevents the immune system from becoming dangerously hyperactive. This means that when we have optimal levels of Vit-D in our body, it could protect patients against severe complications, including death, from COVID-19.

A prospective study in patients with pneumonia reported that severe 25 (OH) - D deficiency was associated with higher mortality rates compared to those with sufficient levels. The increase in mortality was not related to comorbid conditions, age or the severity of the acute disease [4]. In a very recent study led by Raharusun et al. [101], with 780 cases included in the study, it has been highlighted that 98.8% of patients with very low levels of Vit-D (< 20 ng/mL) died, 87.8% of those with low levels (20.9 - 30 ng/mL) and only 4.1% of those with normal levels (> 30 ng/mL). Analysing the correlation of age, sex, and comorbidities in COVID-19 patients, it was found that the probability of dying was 10 times higher in patients with low levels than in patients with normal Vit-D levels [101]. A new study conducted in 20 European countries shows that low levels of Vit-D are linked to the high number of COVID-19 cases, but also high mortality rates. The new data confirm the results of several previous observational studies, which reported an association between low levels of Vit-D and susceptibility to acute respiratory tract infections [50].

Scientists show that Vit-D modulates the response of white blood cells, preventing them from releasing too many inflammatory cytokines. The SARS-CoV-2 virus causes an excess of proinflammatory cytokines [50].

Research shows that the population in Italy and Spain has average levels of Vit-D, lower than the people in most northern European countries. In fact, in Spain and Italy, there were high mortality rates due to COVID-19. One explanation for this would be that people in southern Europe, especially the elderly, avoid the intense sun, while skin pigmentation also reduces the natural synthesis of Vit-D [44]. In contrast, the highest average levels of Vit-D are found in northern Europe, due to the consumption of cod liver oil and Vit-D supplements. Currently, the Scandinavian countries are among the countries with the lowest number of COVID-19 cases and with low mortality rates per capita in Europe.

A significant relationship was thus found between the average levels of Vit-D and the number of cases of COVID-19, and, in particular, between the average level of Vit-D and the mortality rate of COVID-19 [10]. Vit-D has been shown to protect against acute respiratory infections, and older adults, the most deficient group in Vit-D, are most severely affected by COVID-19.

Overall Conclusion and future perspectives

Many studies on Vit-D and the link with COVID-19 are observational studies; and by definition, these studies cannot prove the causal relationship, indicating only simple correlations. Thus, none of the intervention studies conducted to date, in which the effect of Vit-D administration on several diseases was specifically examined, could confirm the previous combination and laboratory studies and the alleged positive impact of Vit-D.

On the other hand, if a coronavirus infection is suspected, the patient's Vit-D level should be checked by clinicians, and an immediate Vit-D deficiency should be remedied immediately. Vit-D deficiency may play a role in reducing the severe symptoms of COVID-19 mourning, but Vit-D should not be given
to all patients. This correlation should be studied in more detail and confirmed by other clinical trials. Therefore, Vit-D can be considered as a new synergic treatment for COVID-19.

A high melanin deposition results in dark colour skin, which is helpful to protect us from many diseases (e.g., skin infections and cancer), however, it inhibits the synthesis of Vit-D in the skin. The angiotensin II stimulates the process of melanogenesis, which could be downregulated by overexpression of ACE2. Although the ACE2 plays a vital role in the entrance of SARS-CoV-2 in our body, ACE2 is evident for its lung-protective capacity. Therefore, the peoples having low levels of ACE2 will not get much defensive power over the high ACE2 content peoples. Further, a reduction of ACE2 may increase the levels of angiotensin II, thereby, upregulates the contents of melanogenesis process, which is inversely related to the Vit-D synthesis in our body. Therefore, the peoples having a dark colour skin or highly pigmented skin, especially who are deficient in Vit-D, might be in the risk zone in COVID-19. Adequate exposure of sunlight along with the taking of food supplements rich in Vit-D might be an option to fight against the pandemic SARS-CoV-2 outbreak of these kinds of peoples.

Abbreviation List

ACE2: angiotensin-converting enzyme 2; ARDS: acute respiratory distress syndrome; cAMP: cyclic adenosine monophosphate; CXCL: chemokine C-X-C motif chemokine ligand; G-CSF: granulocyte colony-stimulating factor; EN-RAGE: an extracellular newly identified receptor for advanced glycation end-products binding protein; IL: interleukin; IP-10: interferon-gamma-inducible protein-10; MCP-1: monocyte chemotactic protein-1; MERS: middle east respiratory syndrome; NO: nitric oxide; NOx: nitrogen oxides; PKC: protein kinase C; ROS: reactive oxygen species; SARS: severe acute respiratory syndrome; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TNF-α: tumour necrosis factor-alpha; TNFSF14: tumour necrosis factor superfamily member 14; UV: ultraviolet; VDR: vitamin D receptor; Vit-D: vitamin D.

Conflict of interest

The authors declare no conflict of interest.

References

1. Abdel-Malek ZA, Swope VB. Epidermal melanocytes: regulation of their survival, proliferation, and function in human skin. Melanoma Development: Springer; 2011: 7-33.
2. Aglipay M, Birken CS, Parkin PC, Loeb MB, Thorpe K, Chen Y, Laupacis A, Mamdani M, Macarthur C, Hoch JS. Effect of high-dose vs standard-dose wintertime vitamin D supplementation on viral upper respiratory tract infections in young healthy children. JAMA, 2017; 318(3): 245-254.
3. Ali MM, Vaidya V. Vitamin D and cancer. J Cancer Res Ther., 2007; 3(4): 225-230.
4. Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health, 2020; 13(10): 1373-1380.
5. Almirall J, Vaqueiro M, Bare ML, Anton E. Association of low serum 25-hydroxyvitamin D levels and high arterial blood pressure in the elderly. Nephrol Dial Transplant., 2010; 25(2): 503-509.
6. Alzaman NS, Dawson-Hughes B, Nelson J, D’Alessio D, Pittas AG. Vitamin D status of black and white Americans and changes in vitamin D metabolites after varied doses of vitamin D supplementation. Am J Clin Nutr., 2016; 104(1): 205-214.
7. Aranow C. Vitamin D and the immune system. J Investig Med., 2011; 59(6): 881-886.
8. Arseni AL, Dumitrescu JB, Dragoi CM, Udeanu DI, Lupuliuas D, Iuga V, Draganescu D, Dimu-Pirvuc CE, Burcea Dragomiroiu GTA, Bleian IE, Moisi RE, Nicolae AC, Moldovan H, Popa DE, Velescu BS, Ruta S. A new era for the therapeutic management of the ongoing COVID-19 pandemic. Farmacia, 2020; 68(2): 185-196.
9. Arunachalam PS, Wimmers F, Mok CKP, Perera RAPM, Scott M, Hagan T, Sigal N, Feng Y, Bristow L, Tak-Yin Tsang O, Wagh D, Coller J, Pellegrini KL, Kazmin D, Alaaeddine G, Leung WS, Chan JMC, Chik TSH, Choi CYC, Huerta C, Paine McCullah M, Ly H, Anderson E, Edupuganti S, Upadhyay AA, Bosinger SE, Maechter HT, Khatiri P, Rouphael N, Peiris M, Pulelordan B, Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science, 2020; 369(6580): 1210-1220.
10. Biesalski HK. Vitamin D deficiency and co-morbidities in COVID-19 patients – A fatal relationship?. NFS Journal, 2020; 20: 10-21.
11. Bjelakovic G, Nikolova D, Bjelakovic M, Gluud C. Vitamin D supplementation for chronic liver diseases in adults. Cochrane Database Syst Rev., 2017; 11(11): CD011564.
12. Borkow G, Sidwell RW, Smee DF, Barnard DL, Morrey JD, Lara-Villegas HL, Shemer-Avi Y, Gabbay J. Neutralizing viruses in suspensions by copper oxide-based filters. Antimicrob Agents Chemother., 2007; 51(7): 2605-2607.
13. Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol., 2008; 84(3): 539-549.
14. Calina D, Docea AO, Golokhvlast KS, Sifakis S, Tsatsakis A, Makrigiannakis A. Management of Endocrinopathies in Pregnancy: A Review of Current Evidence. Int J Environ Res Public Health., 2019; 16(5): 1-25.
15. Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov AG, Shitlman MI, Kostoff R, Carvalho F, Vinceti M, Spandidos DA, Tsatsakis A, Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med., 2020; 46(1): 3-16.
16. Calina D, Hartung T, Docea AO, Spandidos DA, Egorov AM, Shitlman MI, Carvalho F, Tsatsakis A,
COVID-19 vaccines: ethical framework concerning human challenge studies. *Daru*, 2020; 1-6.

17. Calina D, Sarkar C, Arsené AL, Salehi B, Docea AO, Mondal M, Islam MT, Zali A, Sharifi-Rad J. Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development. *Immunol Res.*, 2020; 68(5): 315-324.

18. Catrinoiu D, Ceriello A, Rizzo M, Serafinceanu C, Montano N, Stoian AP, Udeanu DI, Jinga V, Iorgulescu G, Dumitrescu IB, Diabetes and renin-angiotensin-aldosterone system: implications for COVID-19 patients with diabetes treatment management. *Farmaciu*, 2020; 68(3): 377-383.

19. Chai W, Zakrzewski SS, Gunzel D, Pieper R, Wang Z, Twardziok S, Janczyk P, Österreicher N, Burwinkel M, High-dose dietary zinc oxide mitigates infection with transmissible gastroenteritis virus in piglets. *BM Vetr Res.*, 2014; 10: 1-10.

20. Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, Zhang A, Kohn N, Martinello S, Berkowitz R, Holick MF. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. *Arch Biochem Biophys.*, 2007; 460(2): 213-217.

21. Choi R, Kim S, Yoo H, Cho YY, Kim SW, Chung JH, Oh SY, Lee SY. High prevalence of vitamin D deficiency in pregnant Korean women: the first trimester and the winter season as risk factors for vitamin D deficiency. *Nutrients*, 2015; 7(5): 3427-3448.

22. Chun RF, Liu PT, Modlin RL, Adams JS, Hewison M. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. *Front Physiol.*, 2014; 5(151): 1-15.

23. Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. *Lancet*, 1982; 1(8263): 74-76.

24. Compher CW, Badellino KO, Boullata JJ, Vitamin D and the bariatric surgical patient: a review. *Obes Surg.*, 2008;18(2): 220-224.

25. Costela-Ruíz VJ, Iliques-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. *Cytokine Growth Factor Rev.*, 2020; 54: 62-75.

26. Cui C, Xu P, Li G, Qiao Y, Han W, Geng C, Liao D, Yang M, Chen D, Jiang P. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system. *Redox Biol.*, 2019; 26: 1-11.

27. Dancer RC, Parekh D, Lax S, D’Souza V, Zheng S, Bassford CR, Park D, Bartis DG, Mahida R, Turner AM, Sapey E, Wei W, Naidu B, Stewart PM, Fraser WD, Christopher KB, Cooper MS, Gao F, Sansom DM, Martinacu AR, Perkins GD, Thickett DR, Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). *Thorax*, 2015; 70(7): 617-624.

28. Das RR, Singh M, Naik SS, Vitamin D as an adjunct to antibiotics for the treatment of acute childhood pneumonia. *Cochrane Database Syst Rev.*, 2018; 7(7): CD011597.

29. Del Bino S, Duval C, Bernerd F. Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact. *Int J Mol Sci.*, 2018; 19(9): 1-44.

30. Dhama K, Patel SK, Pathak M, Yatoo MI, Tiwari R, Malik YS, Singh R, Sah R, Rabaan AA, Bonilla-Aldana DK, Rodriguez-Morales AJ. An update on SARS-CoV-2/COVID-19 with particular reference to its clinical pathology, pathogenesis, immunopathology and mitigation strategies. *Travel Med Infect Dis.*, 2020; 101755.

31. Docea AO, Tsatsakis A, Albulescu D, Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou M, Drakoulis N, Dumanov JM, Tutelyan VA, Onischenko GG, Aschner M, Spandidos DA, Calina D. A new threat from an old enemy: Re-emergence of coronavirus (Review). *Int J Mol Med.*, 2020; 45(6): 1631-1643.

32. DRIL Institute of Medicine, Food and Nutrition Board, Dietary Reference Intakes: energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. The National Academy Washington; 2005.

33. Dube M, Etienne L, Fels M, Kielian M. Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes. *J Virol.*, 2016;90(14):6303-6313.

34. Elbers LPB, Wijnberge M, Meijers JCM, Poland DCW, Brandjes DPM, Fliers E, Gerdes VEA, Coagulation and fibrinolysis in hyperparathyroidism secondary to vitamin D deficiency. *Endocr Connect.*, 2018; 7(2): 325-333.

35. Esposito S, Lelli M, Vitamin D and respiratory tract infections in childhood. *BM Infect Dis.*, 2015; 15: 1-10.

36. Farsalinos K, Niaura R, Le Hovezec J, Barbouri A, Tsatsakis A, Koutretas D, Vantarakis A, Poulas K, Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. *Toxicology reports*, 2020; 7: 658-663.

37. Fields J, Trivedi NJ, Horton E, Mechanick JI. Vitamin D in the Persian Gulf: integrative physiology and socioeconomic factors. *Cur Osteoporos Rep.*, 2011; 9(4): 243-250.

38. Goumenou M, Sarigiannis D, Tsatsakis A, Anesti O, Docea AO, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii V, Spandidos DA, Aschner M, Calina D, COVID-19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). *Med Mol Rep.*, 2020; 22(1): 20-32.

39. Grant WB, Al Anouti F, Moukayed M, Targeted 25-hydroxyvitamin D concentration measurements and vitamin D3 supplementation can have important patient and public health benefits. *Eur J Clin Nutrit.*, 2020; 74(3): 366-376.

40. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, Bhattao HP, Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. *Nutrients*, 2020; 12(4): 1-19.

41. Greiller CL, Martinacu AR, Modulation of the immune response to respiratory viruses by vitamin D. *Nutrients*, 2015; 7(6): 4240-4270.

42. Grigorie D, Carageaheorgeopol A, Coles D, Săcelnic A, Comparison of long term oral supplementation with two dosages of cholecalciferol on serum 25-hydroxyvitamin D in patients with postmenopausal osteoporosis. *Farmaciu*, 2019; 67(5): 830-835.
43. Gruber-Bzura BM, Vitamin D and Influenza-Prevention or Therapy? Int J Mol Sci., 2018; 19(8): 1-25.
44. Hedlund R, Diamond TK, Uversky VN, The latitude hypothesis, vitamin D, and SARS-CoV-2. J Biomol Struct Dyn., 2020: 1-3.
45. Hossein-Nezhad A, Spira A, Holick MF, Influence of vitamin D status and vitamin D 3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PloS one, 2013; (8): 1-13.
46. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020; 395(10223): 497-506.
47. Ianevski A, Zuzaina E, Shtaida N, Kallio-Kokko H, Valkonen M, Kantele A, Telling K, Lutsar I, Leijuku P, Metelista N, Low temperature and low UV indexes correlated with peaks of influenza virus activity in Northern Europe during 2010–2018. Viruses, 2019; 11(3): 1-10.
48. Ianosi S, Ianosi G, Neagoe D, Ionescu O, Zlatian O, Ageing population, consider N vitamin D for the management of multiple sclerosis. Arch Pharm Res., 2018; 41(4): 1448-1458.
49. Ianevski A, Mol Med Rep., 2016; 49(3): 800-808.
50. Kostoff RN, Pandit VS, Porter AL, Shoenfeld Y, Vitamin D: The “sunshine” vitamin. J Pharmacol Pharmacother., 2012; 3(2): 118-126.
51. Nair R, Maseeh A, Vitamin D in an ageing population, consider N vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev., 2018; 9(9): CD008422.
52. Jagannath VA, Filippini G, Di Pietrantonj C, Asokan GV, Robak EW, Whamond L, Robinson SA, Vitamin D and the management of multiple sclerosis. Cochrane Database Syst Rev., 2018; 9(9). Exp Ther Med., 2010; 10(4): 395-404.
53. Misra M, Kopp M, Nylon and inactivated protein kinase activation. Shock, 2015; 43(4): 395-404.
54. Liu HL, Fan X, Xia ZK, An XX, Yang SY, Vitamin D: The “sunshine” vitamin. J Pharmacol Pharmacother., 2012; 3(2): 118-126.
55. Kakodkar P, Nair R, Maseeh A, Vitamin D in an ageing population, consider N vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev., 2018; 9(9).
56. Misra M, Paudcaud P, Petryk A, Collett D, Kopp M, Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics, 2008; 122(2): 398-417.
57. Mitchell F, Vitamin D and COVID-19: do deficient risk a poorer outcome?. The Lancet Diabetes & Endocrinology, 2020; 8(7): 570.
58. Nair R, Maseeh A, Vitamin D in an ageing population, consider N vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev., 2018; 9(9).
Agnesium is inversely associated with risk of COVID-19 infection. A multicenter randomized controlled trial of high dose versus standard dose vitamin D3 in high-risk COVID-19 patients. ClinicalTrials.gov, 2020.

NCT04351490. Impact of Zinc and Vitamin D3 supplementation on the survival of aged patients infected with COVID-19 (ZnD3-CoVici). ClinicalTrials.gov, 2020.

NCT04360980. The effects of standard protocol with or without colchicine in COVID-19 infection. ClinicalTrials.gov, 2020.

NCT04363840. The LEAD COVID-19 trial: Low-risk, early aspirin and vitamin D to reduce COVID-19 hospitalizations. ClinicalTrials.gov, 2020.

NCT04366900. Prevention and Treatment With Calcifiediol of COVID-19 Induced Acute Respiratory Syndrome (COVIDIOL). ClinicalTrials.gov, 2020.

NCT04370808. VITACOV: Vitamin D polymorphisms and severity of COVID-19 infection (VITACOV). ClinicalTrials.gov, 2020.

NCT04372017. Hydroxychloroquine as post-exposure prophylaxis against COVID-19 infection. ClinicalTrials.gov, 2020.

NCT04385940. Vitamin D and COVID-19 management. ClinicalTrials.gov, 2020.

NCT04386044. Investigating the role of vitamin D in the morbidity of COVID-19 patients. ClinicalTrials.gov, 2020.

NCT04386850. Oral 25-hydroxyvitamin D3 and COVID-19. ClinicalTrials.gov, 2020.

NCT04394390. Do vitamin D levels really correlate with disease severity in COVID-19 patients? (COVIDVIT). ClinicalTrials.gov, 2020.

NCT04395768. International ALLIANCE Study of Hydroxychloroquine and vitamin D in COVID-19 infection. ClinicalTrials.gov, 2020.

NCT04403932. COVID-19 and Vitamin D in high-risk COVID-19 patients (CoVitTrial). ClinicalTrials.gov, 2020.

NCT04407286. Vitamin D testing and treatment for COVID-19. ClinicalTrials.gov, 2020.

NCT04407572. Evaluation of the relationship between zinc vitamin D and b12 levels in the COVID-19 positive pregnant women. ClinicalTrials.gov, 2020.

NCT04411446. Cholecalciferol to improve the outcomes of COVID-19 patients (CARED). ClinicalTrials.gov, 2020.

NCT04435119. Covid-19 and vitamin D in nursing-home (COVITH-EPAD). ClinicalTrials.gov, 2020.

NCT04435084. A study of hydroxychloroquine, vitamin C, vitamin D, and zinc for the prevention of COVID-19 infection (HELPCOVID-19). ClinicalTrials.gov, 2020.

NCT04440401. Covid-19 and Vitamin D supplementation: a multicenter randomized controlled trial of high dose versus standard dose vitamin D3 in high-risk COVID-19 patients (CoVitTrial). ClinicalTrials.gov, 2020.

Pearce SH, Cheetham TD. Diagnosis and management of vitamin D deficiency. BMJ, 2010; 340: b5664, doi: 10.1136/bmj.b5664.

Pike JW, Shevde NK. Vitamin D: Nuclear Receptor for 1,25(OH)2D3. In: Henry HL, Norman AW, editors. Encyclopedia of Hormones. New York: Academic Press; 2003. p. 650-6.

Stan IV, Balanescu A, Codreanu IF, Belivaca AA, Ritivou ME, Drăgoi MM, Marinescu SA, Alić C, Comănici VD, 25(OH) vitamin D deficiency in cystic fibrosis children – a prospective study on prevalence and treatment outcome. Farmacia, 2019; 67(3): 423-429.

Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, Sammartin JL, Fernández-García A, Cruz I, Fernández de Larrera N, Molina M, Rodríguez-Cabrena F, Martín M, Merino-Amador P, León Paniagua J, Muñoz-Montalvo JF, Blanco F, Yotti R. ENe-COVID Study Group, Prevalence of SARS-CoV-2 in Spain (ENe-COVID): a nationwide, population-based seroepidemiological study. The Lancet, 2020; 396(10250): 535-544.

Punch EK,Hover S,Blest HTW,Fuller J,Hewson R,Fontana J,Mankouri J,Barr JN, Potassium is a trigger for conformational change in the fusion spike of an enveloped RNA virus. J Biol Chem., 2018; 293(26): 9937-9944.

Quan FS,Rubino I,Lee SH,Koch B,Choi HJ, Universal and reusable virus deactivation system for respiratory protection. Sci Rep., 2017; 7(1): 1-10.

Raharunsun P, Priambada S, Budiarti C, Agung E, Budi C, Patterns of COVID-19 Mortality and Vitamin D: An Indonesian Study. SSRN Electronic Journal, 2020.

Ravell J, Otim I, Nabalende H, Legason ID, Reynolds SJ, Ogwang MD, Ndugwa CM, Marshall V, Whitby D, Goedert JJ, Engels EA, Bhatia K, Lenardo MJ, Mbulaiteye SM, Plasma magnesium is inversely associated with Epstein-Barr virus load in peripheral blood and Burkitt lymphoma in Uganda. Cancer Epidemiol., 2018; 52: 70-74.

Rees JL, Genetics of hair and skin color. Annu Rev Genet., 2003; 37(1): 67-90.

Salehi B, Rescigno A, Dettori T, Calina D, Docea AO, Singh L, Cebeci F, Ozcelik B, Bhia M, Dowlati Beirami A, Sharifi-Rad J, Sharopov F, Cho WC, Martins N, Avocado Soybean Unsaponifiables: A Panoply of Potentialities to Be Exploited. Biomolecules, 2020; 10(1): 1-20.

Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB, Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA, 2020; 323(18): 1824-1836.

Sarkar C, Mondal M, Torequl Islam M, Martorell M, Docea AO, Maroyi A, Sharifi-Rad J, Calina D, Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives. Front Pharmacol., 2020; 11: 1-30.

Schiller A, Gadalean F, Schiller O, Timar R, Bob F, Munteanu M, Stoian D, Mihaescu A, Timar B, Vitamin D deficiency-prognostic marker or mortality risk factor in end stage renal disease patients with diabetes mellitus treated with hemodialysis - a prospective multicenter study. PLoS One, 2015;10(5): 1-13.
108. Sharifi-Rad J, Rodrigues CF, Sharopov F, Docea AO, Can Karaca A, Sharifi-Rad M, Kahveci Karinaçaglu D, Gulsener G, Senol E, Demircan E, Taheri Y, Suleria HAR, Ozcelik B, Nur Kasapoglu K, Gultekin-Ozguven M, Daskaya-Dikmen C, Cho WC, Martins N, Calina D, Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. Int J Environ Res Public Health., 2020; 17(7): 1-31.

109. Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielinska D, Kołozyn-Krajewska D, Salehi B, Milton Prabu S, Schutz F, Docea AO, Martins N, Calina D, Probiotics: Versatile Bioactive Components in Promoting Human Health. Medicina, 2020; 56(9): 1-30.

110. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Rad J, Sharifi Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh, A novel approach to Cardioprotective Effects of Natural Bioactive Compounds in the context of COVID-19. Front Physiol., 2020; 11(694): 717-721.

111. Shin YH, Yu J, Kim KW, Ahn K, Hong SA, Lee E, Yang SI, Jung YH, Kim HY, Seo JH, Association of age with cord blood 25-hydroxyvitamin D concentrations and respiratory tract infections in the first 6 months of age in a Korean population: a birth cohort study (COCOA). Korean J Pediat., 2013; 56(10): 439-445.

112. Sifaki M, Calina D, Docea AO, Tsouh Rad J, Sifaki M, Calina D, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J, Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol., 2020; 11(694): 1-21.

113. Spirito A, Buttriss JL, Vitamin D: An overview of vitamin D status and intake in Europe. Nutr Bull., 2014; 39(4): 322-350.

114. Suceveanu AI, Mazilu L, Suceveanu AP, Parepa I, Dumitrescu JB, Dragoi CM, Nicolae AC, Botrea F, Vorinea F, Burcea-Dragomiroiu GTA, Assertion for montelukast in the covid-19 pandemics?. Farmacia, 2020; 68(2020): 579-585.

115. Techarang T, Srirachoromvej S, Lanlua P, Nyiyomanch A, Chookliang A, Plangrigit K, Bainmai S, Long-Term Effects of Diabetes Mellitus in Liver Melanocytes in Rats. J Tech Soc Sci., 2017; 1(3): 56-61.

116. Thangavel RR, Bouvier NM, Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods, 2014; 410: 60-79.

117. Torequl Islam M, Nasiruddin M, Khan IN, Mishra SK, Kudrat EZM, Alam Riaz T, Ali ES, Rahman MS, Mubarak MS, Martorell M, Cho WC, Calina D, Docea AO, Sharifi-Rad J, A Perspective on Emerging Therapeutic Interventions for COVID-19. Front Public Health., 2020; 8(281): 1-15.

118. Trump DL, Aragon-Ching JB, Vitamin D in prostate cancer. Asian J Androl., 2018; 20(3): 244-252.

119. Tsatsakis A, Calina D, Falzone L, Petrakis D, Mitruit R, Siokas V, Pennisi M, Lanza G, Libra M, Doukas SG, Doukas PG, Kavali L, Bukhari A, Gadiarpather C, Vageli DP, Kotferidis DP, Spathidos DA, Paoliello MM, Aschner M, Docea AO, SARS-CoV-2 pathophysiology and its clinical implications: An integrative overview of the pharmacotherapeutic management of COVID-19. Food Chem Tox., 2020; 146: 111769, doi: 10.1016/j.fct.2020.111769.

120. Uro M, Beauchet O, Cherif M, Graffe A, Milea D, Annweiler C, Age-related vitamin D deficiency is associated with reduced macular ganglion cell complex: a cross-sectional high-definition optical coherence tomography study. PLoS One., 2015; 10(6): 1-12.

121. Wang KH, Lin RD, Hsu FL, Huang YH, Chang HC, Huang CY, Lee MH, Cosmetic applications of selected traditional Chinese herbal medicines. J Ethnopharmacol., 2006; 106(3): 353-359.

122. Wang W, McKinnie SM, Farhan M, Paul M, McDonald T, McLean B, Llorens-Cortes C, Hazra S, Murray AG, Vederas JC, Angiotensin-converting enzyme 2 metabolizes and partially inactivates pyr-apelin-13 and apelin-17: physiological effects in the cardiovascular system. Hypertension, 2016; 68(2): 365-377.

123. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B., 2020; 10(5): 766-788.

124. Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H, Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the reninangiotensin system. Mol Med Rep., 2017; 16(5): 7432-7438.

125. Zaim S, Chong JH, Sankaranarayanan V, Harky A, COVID-19 and Multiorgan Response. Curr Probi Cardiol., 2020; 100618, doi: 10.1016/j.cpcardiol.2020.100618.

126. Zhou YF, Luo BA, Qin LL, The association between vitamin D deficiency and community-acquired pneumonia: A meta-analysis of observational studies. Medicine, 2019; 98(38): 1-7.

127. Zidi D, Challah A, Makis A, The association between vitamin D status and infectious diseases of the respiratory system in infancy and childhood. Hormones, 2019; 18(4): 353-363.

128. Zittermann A, Pflz S, Hoffmann H, Marz W, Vitamin D and airway infections: a European perspective. Eur J Med Res., 2016; 21(1): 1-10.