Electronic Raman response in electron-doped cuprate superconductors

Zhihao Genga and Shiping Fengb

aDepartment of Physics, Beijing University of Chemical Technology, Beijing 100029, China
bDepartment of Physics, Beijing Normal University, Beijing 100875, China

E-mail: zhhgeng@mail.bnu.edu.cn

Abstract. The electronic Raman response in the electron-doped cuprate superconductors is studied based on the t-t'-J model. It is shown that although the domelike shape of the doping dependent peak energy in the B_{2g} symmetry is a common feature for both electron-doped and hole-doped cuprate superconductors, there are pronounced deviations from a cubic response in the B_{1g} channel and a linear response in the B_{2g} channel for the electron-doped case in the low energy limit. It is also shown that these pronounced deviations are mainly caused by a nonmonotonic d-wave gap in the electron-doped cuprate superconductors.

For the p-doped cuprate superconductors, the results of Raman scattering measurements show that the electronic Raman response (ERR) depends linearly on energy in the B_{2g} channel in the low energy limit, and depends cubically on energy in the B_{1g} channel\cite{2, 3, 4}. However, in the n-doped counterparts \cite{1}, where although the low-energy behaviors of the B_{1g} and B_{2g} channels approach very specific power laws consistent with the presence of lines nodes in the superconducting (SC) gap, the pair-breaking peak energy values in the B_{1g} and B_{2g} channels can be different in some instances, while in some others they are virtually identical \cite{5, 6, 7, 8, 9}. The investigating similarities and differences of ERR between the p-doped and n-doped cuprate superconductors would be crucial to understanding physics of superconductivity in doped cuprates.

It has been shown that the essential physics of the n-doped cuprate superconductors is contained in the t-t'-J model on a square lattice,

$$H = t \sum_{\sigma} PC_{i\sigma} P_{i+\gamma} + t' \sum_{\sigma} P C_{i\sigma} P_{i+\gamma} + \mu \sum_{\sigma} PC_{i\sigma} C_{i\sigma} + J \sum_{i\gamma} S_i \cdot S_{i+\gamma}, \quad (1)$$

The nontrivial part of the t-t'-J model (1) resides in the projection operator P which restricts the Hilbert space to exclude the zero occupancy, i.e., $\sum_{\sigma} C_{i\sigma} C_{i\sigma} \geq 1$. We have developed a charge-spin separation (CSS) fermion-spin theory to incorporate the single occupancy constraint[10].

We have made a series of calculations for the ERR function. The results of (a) the B_{1g} and (b) B_{2g} spectra at the overdoping $p = 0.17$ in temperature $T = 3K$ are plotted in Fig. 1. We have also fitted the low-energy tails to an ω^3 power law in the B_{1g} response and linearly with ω in the B_{2g} response, there are pronounced deviations from a cubic response in the B_{1g} channel and a linear response in the B_{2g} channel. Our present results show that these pronounced deviations in the n-doped counterparts are mainly caused by the nonmonotonic d-wave gap. For
the temperature dependence, the B_{2g} spectrum as a function of energy with $T = 5.2\text{K}$ (solid line), $T = 8.2\text{K}$ (dotted line), and $T = 10.5\text{K}$ (dashed line) for $p = 0.17$ are plotted in Fig. 2. For the doping dependence, the (a) B_{1g} and (b) B_{2g} spectra as a function of energy with $p = 0.165$ (solid line) and $p = 0.17$ (dashed line) at $T = 3\text{K}$ are plotted in Fig. 3. We employ the shift of the leading-edge mid-point as a measurement of the magnitude of the gap at each doping concentration. The results for the extracted (a) B_{1g} and (b) B_{2g} peak energies as a function of doping with $T = 3\text{K}$ are plotted in Fig. 4. It is shown the maximum values of the peak energy for the B_{2g} channel throughout the SC dome are very similar to the single particle spectroscopy gap values [1], and therefore continuously follows the SC transition temperature as $\omega_{\text{peak}}^{B_{2g}} \propto T_c$. Furthermore, incorporating with our previous results of ERR for the p-doped case [11], our present results also show that the domelike shape of the doping dependent peak energy in the B_{2g} symmetry is a common feature for both electron-doped and hole-doped cuprate superconductors.

In summary, we have studied the doping and temperature dependence of ERR in the n-doped cuprate superconductors. Our results show that the pair-breaking peak energy in the B_{2g} symmetry continuously follows the SC transition temperature T_c throughout the SC dome as $\omega_{\text{peak}}^{B_{2g}} \propto T_c$, and therefore is a common feature for both n-doped and p-doped cuprate superconductors. Our results also show that these pronounced deviations from a cubic response in the B_{1g} channel and a linear response in the B_{2g} channel in the low energy limit are mainly caused by a nonmonotonic d-wave gap in the n-doped cuprate superconductors.
Figure 3. (a) B_{1g} and (b) B_{2g} spectra as a function of energy at $p = 0.165$ (solid line) and $p = 0.17$ (dashed line) for $T = 3K$. Inset: the corresponding experimental results of Pr$_{2-x}$Ce$_x$CuO$_{4-\delta}$ taken from Ref. [9].

Figure 4. (a) B_{1g} and (b) B_{2g} peaks as a function of doping for $T = 3K$. Inset: the corresponding experimental results of Pr$_{2-x}$Ce$_x$CuO$_{4-\delta}$ taken from Ref. [9].

Acknowledgements
The authors would like to thank Dr. Zheyu Huang for helpful discussions. This work was supported by the National Natural Science Foundation of China under Grant No. 11074023, and the funds from the Ministry of Science and Technology of China under Grant No. 2011CB921700.

References
[1] A. Damascelli, Z. Hussain, and Z. X. Shen 2003 Rev. Mod. Phys. 75 473
[2] X. K. Chen, J. C. Irwin, H. J. Trodahl, M. Okuya, T. Kimura, and K. Kishio 1998 Physica C 295 80
[3] W. Guyard, A. Sacuto, M. Cazayous, Y. Gallais, M. LE Tacon, D. Colson and A. Forget 2008 Phys. Rev. Lett 101 097003
[4] M. LE Tacon, A. Sacuto, A. Georges, G. Kotliar, Y. Gallais, D. Colson and A. Forget 2006 Nature Physics 2 537
[5] N. P. Armitage, P. Fournier, and R. L. Greene 2010 Rev. Mod. Phys. 82 2421
[6] B. Stadlober, G. Krug, R. Nemetschek, and R. Hackl, J. L. Cobb, and J. T. Markert 1995 Phys. Rev. Lett. 74 4911
[7] C. Kendziora, B. Nachumi, P. Fournier, Z. Y. Li, R. L. Greene, D. G. Hinks 2001 Physica C 364-365 541
[8] G. Blumberg, A. Koitzsch, A. Gozar, B. S. Dennis, C. A. Kendziora, P. Fournier, and R. L. Greene 2002 Phys. Rev. Lett. 88 107002
[9] M. M. Qazilbash, A. Koitzsch, B. S. Dennis, A. Gozar, Hamza Balci, C. A. Kendziora, R. L. Greene, and G. Blumberg 2005 Phys. Rev B 72 214510
[10] Shiping Feng, Jihong Qin, and Tianxing Ma 2004 J. Phys. Condens. Matter 16 343
[11] Zhihao Geng and Shiping Feng 2010 Phys. Lett. A 375 214