INFINITE FAMILIES OF SIMPLE HOLOMORPHIC ETA QUOTIENTS

SOUMYA BHATTACHARYA

ABSTRACT. We address the problem of constructing a simple holomorphic eta quotient of a given level \(N \). Such constructions are known for all cubefree \(N \). Here, we provide such constructions for arbitrarily large prime power levels. As a consequence, we obtain an irreducibility criterion for holomorphic eta quotients in general.

1. INTRODUCTION

The Dedekind eta function is defined by the infinite product:

\[
\eta(z) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n) \quad \text{for all } z \in \mathcal{H},
\]

where \(q = e^{2\pi i z} \) for all \(r \) and \(\mathcal{H} := \{ \tau \in \mathbb{C} | \text{Im}(\tau) > 0 \} \). Eta is a holomorphic function on \(\mathcal{H} \) with no zeros. This function has its significance in Number Theory. For example, \(1/\eta \) is the generating function for the ordinary partition function \(p : \mathbb{N} \rightarrow \mathbb{N} \) (see [1]) and the constant term in the Laurent expansion at 1 of the Epstein zeta function \(\zeta_Q \) attached to a positive definite quadratic form \(Q \) is related via the Kronecker limit formula to the value of \(\eta \) at the root of the associated quadratic polynomial in \(\mathcal{H} \) (see [8]). The value of \(\eta \) at such a quadratic irrationality of discriminant \(-D\) is also related via the Lerch/Chowla-Selberg formula to the values of the Gamma function with arguments in \(D^{-1}\mathbb{N} \) (see [24]). Further, eta quotients appear in denominator formula for Kac-Moody algebras, (see [14]), in "Moonshine" of finite groups (see [12]), in Probability Theory, e.g. in the distribution of the distance travelled in a uniform four-step random walk (see [5]) and in the distribution of crossing probability in two-dimensional percolation (see [16]). In fact, the eta function comes up naturally in many other areas of Mathematics (see the Introduction in [2] for a brief overview of them).

The function \(\eta \) is a modular form of weight \(1/2 \) with a multiplier system on \(\text{SL}_2(\mathbb{Z}) \) (see [17]). An eta quotient \(f \) is a finite product of the form

\[
\prod \eta_{d}^{X_d},
\]

where \(d \in \mathbb{N} \), \(\eta_{d} \) is the rescaling of \(\eta \) by \(d \), defined by

\[
\eta_{d}(z) := \eta(dz) \quad \text{for all } z \in \mathcal{H}
\]

and \(X_d \in \mathbb{Z} \). Eta quotients naturally inherit modularity from \(\eta \). The eta quotient \(f \) in (1.2) transforms like a modular form of weight \(\frac{1}{2} \sum d X_d \) with a

2010 Mathematics Subject Classification. Primary 11F20, 11F37, 11F11; Secondary 11Y05, 11Y16, 11G16, 11F12.
multiplier system on suitable congruence subgroups of SL₂(\(\mathbb{Z}\)): The largest among these subgroups is

\[
\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\},
\]

where

\[
N := \text{lcm}\{d \in \mathbb{N} \mid X_d \neq 0\}.
\]

We call \(N\) the level of \(f\). Since \(\eta\) is non-zero on \(\mathbb{H}\), the eta quotient \(f\) is holomorphic if and only if \(f\) does not have any pole at the cusps of \(\Gamma_0(N)\).

An eta quotient on \(\Gamma_0(M)\) is an eta quotient whose level divides \(M\). Let \(f\), \(g\) and \(h\) be nonconstant holomorphic eta quotients on \(\Gamma_0(M)\) such that \(f = g \times h\). Then we say that \(f\) is factorizable on \(\Gamma_0(M)\). We call a holomorphic eta quotient \(f\) of level \(N\) quasi-irreducible (resp. irreducible), if it is not factorizable on \(\Gamma_0(N)\) (resp. on \(\Gamma_0(M)\) for all multiples \(M\) of \(N\)). Here, it is worth mentioning that the notions of irreducibility and quasi-irreducibility of holomorphic eta quotients are conjecturally equivalent (see [2]). We say that a holomorphic eta quotient is simple if it is both primitive and quasi-irreducible.

\[2. \text{The main result and conjecture}\]

For a prime \(p\) and an integer \(n > 3\), we define the eta quotient \(f_{p,n}\) by

\[
f_{p,n} := \begin{cases}
\frac{\eta_p^n \eta_{p^{n-1}}^{(p-1)^2} \prod_{s=1}^{n/2-1} \eta_p^{2s-3p+1} \eta_p^{2p-2p+2}}{(\eta \eta_p^n)^{p-1}} & \text{if } n \text{ is even,} \\
\frac{(\eta_p \eta_{p^{n-1}})^p \prod_{s=1}^{n-1} \eta_p^{2s-3p+2}}{(\eta \eta_p^n)^{p-1}} & \text{if } n \text{ is odd and } p \neq 2,
\end{cases}
\]

Clearly, \(f_{p,n}\) is invariant under the Fricke involution \(W_{p^n}\). We shall show that:

Theorem 1. For any integer \(n > 3\), \(f_{p,n}\) is a simple holomorphic eta quotient of level \(p^n\).

From Theorem 2 in [2], we recall that any simple holomorphic eta quotient of a prime power level is irreducible. So, in particular, the above theorem implies:

Corollary 1. For any integer \(n > 3\), the eta quotient \(f_{p,n}\) is irreducible.

Also, from Corollary 1 in [2], we recall that given an irreducible holomorphic eta quotient \(f\) of a prime power level, all the rescalings of \(f\) by positive integers are irreducible. Thus we obtain:

Corollary 2 (Irreducibility criterion for holomorphic eta quotients). Given a holomorphic eta quotient \(g\), if there exist \(n, d \in \mathbb{N}\) and a prime \(p\), such that \(g\) is the rescaling of \(f_{p,n}\) by \(d\), then \(g\) is irreducible. Here \(f_{p,n}\) is as defined in (2.1).
With a good amount of numerical evidence, we conjecture that

Conjecture 1. For any integer \(n > 3 \) and for any odd prime \(p \), there are no simple holomorphic eta quotients of level \(p^n \) and of weight greater that of \(f_{p,n} \).

3. Notations and the basic facts

By \(\mathbb{N} \) we denote the set of positive integers. For \(N \in \mathbb{N} \), by \(\mathcal{D}_N \) we denote the set of divisors of \(N \). For \(X \in \mathbb{Z}^{\mathcal{D}_N} \), we define the eta quotient \(\eta^X \) by

\[
\eta^X := \prod_{d \in \mathcal{D}_N} \eta^X_d,
\]

where \(X_d \) is the value of \(X \) at \(d \in \mathcal{D}_N \) whereas \(\eta_d \) denotes the rescaling of \(\eta \) by \(d \). Clearly, the level of \(\eta^X \) divides \(N \). In other words, \(\eta^X \) transforms like a modular form on \(\Gamma_0(N) \). We define the summatory function \(\sigma : \mathbb{Z}^{\mathcal{D}_N} \to \mathbb{Z} \) by

\[
\sigma(X) := \sum_{d \in \mathcal{D}_N} X_d.
\]

Since \(\eta \) is of weight \(1/2 \), the weight of \(\eta^X \) is \(\sigma(X)/2 \) for all \(X \in \mathbb{Z}^{\mathcal{D}_N} \).

Recall that an eta quotient \(f \) on \(\Gamma_0(N) \) is holomorphic if it does not have any poles at the cusps of \(\Gamma_0(N) \). Under the action of \(\Gamma_0(N) \) on \(\mathbb{P}^1(\mathbb{Q}) \) by Möbius transformation, for \(a, b \in \mathbb{Z} \) with \(\gcd(a, b) = 1 \), we have

\[
[a : b] \sim_{\Gamma_0(N)} [a' : \gcd(N, b)]
\]

for some \(a' \in \mathbb{Z} \) which is coprime to \(\gcd(N, b) \) (see [10]). We identify \(\mathbb{P}^1(\mathbb{Q}) \) with \(\mathbb{Q} \cup \{\infty\} \) via the canonical bijection that maps \([\alpha : \lambda] \) to \(\alpha/\lambda \) if \(\lambda \neq 0 \) and to \(\infty \) if \(\lambda = 0 \). For \(s \in \mathbb{Q} \cup \{\infty\} \) and a weakly holomorphic modular form \(f \) on \(\Gamma_0(N) \), the order of \(f \) at the cusp \(s \) of \(\Gamma_0(N) \) is the exponent of \(q^{1/w_s} \) occurring with the first nonzero coefficient in the \(q \)-expansion of \(f \) at the cusp \(s \), where \(w_s \) is the width of the cusp \(s \) (see [10], [23]). The following is a minimal set of representatives of the cusps of \(\Gamma_0(N) \) (see [10], [20]):

\[
S_N := \left\{ \frac{a}{t} \in \mathbb{Q} \mid t \in \mathcal{D}_N, a \in \mathbb{Z}, \gcd(a, t) = 1 \right\} / \sim,
\]

where \(\frac{a}{t} \sim \frac{b}{t} \) if and only if \(a \equiv b \pmod{\gcd(t, N/t)} \). For \(d \in \mathcal{D}_N \) and for \(s = \frac{a}{t} \in S_N \) with \(\gcd(a, t) = 1 \), we have

\[
\text{ord}_s(\eta_d; \Gamma_0(N)) = \frac{N \cdot \gcd(d, t)^2}{24 \cdot d^2 \cdot \gcd(t^2, N)} \in \frac{1}{24} \mathbb{N}
\]

(see [20]). It is easy to check the above inclusion when \(N \) is a prime power. The general case follows by multiplicativity (see (3.13) and (3.16)). It follows that for all \(X \in \mathbb{Z}^{\mathcal{D}_N} \), we have

\[
\text{ord}_s(\eta^X; \Gamma_0(N)) = \frac{1}{24} \sum_{d \in \mathcal{D}_N} \frac{N \cdot \gcd(d, t)^2}{d^2 \cdot \gcd(t^2, N)} X_d.
\]
In particular, that implies
\[(3.7) \quad \text{ord}_{a_1/t}(\eta^X; \Gamma_0(N)) = \text{ord}_{1/t}(\eta^X; \Gamma_0(N))\]
for all \(t \in \mathcal{D}_N\) and for all the \(\varphi(\gcd(t, N/t))\) inequivalent cusps of \(\Gamma_0(N)\) represented by rational numbers of the form \(\frac{a}{t} \in \mathcal{S}_N\) with \(\gcd(a, t) = 1\).

The index of \(\Gamma_0(N)\) in \(\text{SL}_2(\mathbb{Z})\) is given by
\[(3.8) \quad \psi(N) := N \cdot \prod_{p \mid N} \left(1 + \frac{1}{p} \right),\]
(see [10]). The valence formula for \(\Gamma_0(N)\) (see [23]) states:
\[(3.9) \quad \sum_{P \in \Gamma_0(N) \setminus \varnothing} \frac{1}{n_P} \cdot \text{ord}_P(f) + \sum_{s \in \mathcal{S}_N} \text{ord}_s(f; \Gamma_0(N)) = \frac{k \cdot \psi(N)}{24},\]
where \(k \in \mathbb{Z}, f : \mathfrak{h} \to \mathbb{C}\) is a meromorphic function that transforms like a modular forms of weight \(k/2\) on \(\Gamma_0(N)\) which is also meromorphic at the cusps of \(\Gamma_0(N)\) and \(n_P\) is the number of elements in the stabilizer of \(P\) in the group \(\Gamma_0(N)/\{\pm I\}\), where \(I \in \text{SL}_2(\mathbb{Z})\) denotes the identity matrix. In particular, if \(f\) is an eta quotient, then from (3.9) we obtain
\[(3.10) \quad \sum_{s \in \mathcal{S}_N} \text{ord}_s(f; \Gamma_0(N)) = \frac{k \cdot \psi(N)}{24},\]
because eta quotients do not have poles or zeros on \(\mathfrak{h}\).

It follows from (3.10) and from (3.7) that for an eta quotient \(f\) of weight \(k/2\) on \(\Gamma_0(N)\), the valence formula further reduces to
\[(3.11) \quad \sum_{t \mid N} \varphi(\gcd(t, N/t)) \cdot \text{ord}_{1/t}(f; \Gamma_0(N)) = \frac{k \cdot \psi(N)}{24}.\]

Since \(\text{ord}_{1/t}(f; \Gamma_0(N)) \in \frac{1}{27} \mathbb{Z}\) (see (3.5)), from (3.11) it follows that of any particular weight, there are only finitely many holomorphic eta quotients on \(\Gamma_0(N)\). More precisely, the number of holomorphic eta quotients of weight \(k/2\) on \(\Gamma_0(N)\) is at most the number of solutions of the following equation
\[(3.12) \quad \sum_{t \mid N} \varphi(\gcd(t, N/t)) \cdot x_t = k \cdot \psi(N)\]
in nonnegative integers \(x_t\).

We define the order map \(O_N : \mathbb{Z}^{\mathcal{D}_N} \to \frac{1}{27} \mathbb{Z}^{\mathcal{D}_N}\) of level \(N\) as the map which sends \(X \in \mathbb{Z}^{\mathcal{D}_N}\) to the ordered set of orders of the eta quotient \(\eta^X\) at the cusps \(\{1/t\}_{t \in \mathcal{D}_N}\) of \(\Gamma_0(N)\). Also, we define the order matrix \(A_N \in \mathbb{Z}^{\mathcal{D}_N \times \mathcal{D}_N}\) of level \(N\) by
\[(3.13) \quad A_N(t, d) := 24 \cdot \text{ord}_{1/t}(\eta^d; \Gamma_0(N))\]
for all $t, d \in D_N$. For example, for a prime power p^n, we have

$$A_{p^n} = \begin{pmatrix} p^n & p^{n-1} & p^{n-2} & \cdots & p & 1 \\ p^{n-2} & p^{n-1} & p^{n-2} & \cdots & p & 1 \\ p^{n-4} & p^{n-3} & p^{n-2} & \cdots & p & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 1 & p & p^2 & \cdots & p^{n-1} & p^{n-2} \\ 1 & p & p^2 & \cdots & p^{n-1} & p^n \end{pmatrix}. \tag{3.14}$$

By linearity of the order map, we have

$$O_N(X) = \frac{1}{24} \cdot A_N X. \tag{3.15}$$

For $r \in \mathbb{N}$, if $Y, Y' \in \mathbb{Z}^{D_N}$ is such that $Y - Y'$ is nonnegative at each element of D_N, then we write $Y \geq Y'$. In particular, for $X \in \mathbb{Z}^{D_N}$, the eta quotient η^X is holomorphic if and only if $A_N X \geq 0$.

From (3.13) and (3.5), we note that $A_N(t, d)$ is multiplicative in N, t and d. Hence, it follows that

$$A_N = \bigotimes_{p^n \mid N} A_{p^n}, \tag{3.16}$$

where by \otimes, we denote the Kronecker product of matrices.*

It is easy to verify that for a prime power p^n, the matrix A_{p^n} is invertible with the tridiagonal inverse:

$$A_{p^n}^{-1} = \frac{1}{p^n \cdot (p - \frac{1}{p})} \begin{pmatrix} p & -p & & & & \\ -1 & p^2 + 1 & -p^2 & & & \\ & -p & p \cdot (p^2 + 1) & -p^3 & & \\ & & \ddots & \ddots & \ddots & \\ 0 & & & \ddots & \ddots & \ddots \\ 0 & & & & -p^2 & p^2 + 1 & -1 \\ & & & & -p & p \end{pmatrix}, \tag{3.17}$$

where for each positive integer $j < n$, the nonzero entries of the column $A_{p^n}^{-1}(_ , p^j)$ are the same as those of the column $A_{p^j}^{-1}(_ , p)$ shifted down by

*Kronecker product of matrices is not commutative. However, since any given ordering of the primes dividing N induces a lexicographic ordering on D_N with which the entries of A_N are indexed, Equation (3.16) makes sense for all possible orderings of the primes dividing N.
$j - 1$ entries and multiplied with $p^{\min\{j-1,n-j-1\}}$. More precisely,

$$p^n \cdot (p - \frac{1}{p}) \cdot A_{p^n}^{-1}(p^j, p^j) =
\begin{cases}
p & \text{if } i = j = 0 \text{ or } i = j = n \\
-p^{\min\{j,n-j\}} & \text{if } |i - j| = 1 \\
p^{\min\{j-1,n-j-1\}} \cdot (p^2 + 1) & \text{if } 0 < i = j < n \\
0 & \text{otherwise.}
\end{cases}
$$

(3.18)

For general N, the invertibility of the matrix A_N now follows by (3.16). Hence, any eta quotient on $\Gamma_0(N)$ is uniquely determined by its orders at the set of the cusps $\{1/t\}_{t \in \mathcal{D}_N}$ of $\Gamma_0(N)$. In particular, for distinct $X, X' \in \mathbb{Z}^{\mathcal{D}_N}$, we have $\eta^X \neq \eta^{X'}$. The last statement is also implied by the uniqueness of q-series expansion: Let $\eta^\hat{X}$ and $\eta^\hat{X'}$ be the *eta products* (i.e., $\hat{X}, \hat{X'} \geq 0$) obtained by multiplying η^X and $\eta^{X'}$ with a common denominator. The claim follows by induction on the weight of $\eta^\hat{X}$ (or equivalently, the weight of $\eta^\hat{X'}$) when we compare the corresponding first two exponents of q occurring in the q-series expansions of $\eta^\hat{X}$ and $\eta^\hat{X'}$.

4. Proof of Theorem 1

We shall only prove the theorem for the case where n is even. The proof for the case where n is odd is quite similar. Let A_N be the order matrix of level N (see (3.13)). Since all the entries of A_N^{-1} are rational (see (3.16) and (3.17)), for each $t \in \mathcal{D}_N$, there exists a smallest positive integer $m_{t,N}$ such that $m_{t,N} \cdot A_N^{-1}(-, t)$ has integer entries, where $A_N^{-1}(-, t)$ denotes the column of A_N indexed by $t \in \mathcal{D}_N$. We define $B_N \in \mathbb{Z}^{\mathcal{D}_N \times \mathcal{D}_N}$ by

$$(4.1) \quad B_N(-, t) := m_{t,N} \cdot A_N^{-1}(-, t) \text{ for all } t \in \mathcal{D}_N.$$

From the multiplicativity of $A_N^{-1}(d, t)$ in N, d and t (see (3.16)), it follows that $B_N(d, t)$ (see (4.1)) is also multiplicative in N, d and t. That implies:

$$(4.2) \quad B_N = \bigotimes_{p \in \mathcal{P}_N \atop p^n \parallel N} B_{p^n},$$

where \mathcal{P}_N denotes the set of prime divisors of N. For a prime p, from (4.1) and (3.17), we have

$$(4.3) \quad B_{p^n} = \begin{pmatrix}
p & -p & \cdots & 0 \\
-1 & p^2 + 1 & -p & \cdots \\
p & p^2 + 1 & -p & \cdots \\
0 & -p & p^2 + 1 & -p \\
& & & 0
\end{pmatrix}.$$
From [3], we recall that if \(\eta^X \) is an irreducible holomorphic eta quotient on \(\Gamma_0(N) \), then \(X \in \mathbb{Z}_N \cap \mathbb{Z}^{D_N} \), where

\[
Z_N = \left\{ \sum_{d \mid N} C_d v_d \left| C_d \in [0, 1] \text{ for all } d \mid N \right. \right\}
\]

and for all \(d \in \mathcal{D}_N \), \(v_d = m_d u_d \), where \(u_d \) is the column of \(B_N \) indexed by \(d \) and \(m_d \) is the smallest positive integer such that \(v_d \in \mathbb{Z}^{D_N} \). Let \(v := \sum_{d \mid N} v_d \) and let \(F_N = \eta^v \). Again, from [3], we recall that given a holomorphic eta quotient \(g \) on \(\Gamma_0(N) \), the eta quotient \(F_N/g \) on \(\Gamma_0(N) \) is holomorphic if and only if \(g \) corresponds to some point in \(\mathbb{Z}_N \cap \mathbb{Z}^{D_N} \).

In particular, for \(N = p^{2m} \), the eta quotient \(F_{p^{2m}} = \eta^v \) is given by

\[
F_{p^{2m}}(z) = \begin{cases}
\eta(pz)^{p^2-1} & \text{if } m = 1, \\
(\eta(pz)\eta(p^{2m-1}z))^{p(p-1)} \prod_{r=2}^{2m-2} \eta(p^rz)(p-1)^2 & \text{if } m > 1.
\end{cases}
\]

Let \(f_{p,2m} \) be the eta quotient defined in (2.1). Then we have

\[
\frac{F_{p^{2m}}(z)}{f_{p,2m}(z)} = \begin{cases}
\eta(z)^{p-1} \eta(pz)^{p-2} \eta(p^2z)^{p-1} & \text{if } m = 1, \\
\eta(z)^{p-1} \eta(pz)^{p-2} \eta(p^{2m}z)^{p-1} \prod_{r=1}^{m-1} \eta(p^{2r-1}z) \eta(p^{2r+1}z)^{p-1} & \text{if } m > 1.
\end{cases}
\]

Since \(\frac{\eta(z)\eta(p^2z)^{p-1}}{\eta(pz)} \) is a holomorphic eta quotient of level \(p^2 \), it follows that \(\frac{F_{p^{2m}}(z)}{f_{p,2m}(z)} \) is a holomorphic eta quotient of level \(p^{2m} \) for all \(m \in \mathbb{N} \). Let \(X \in \mathbb{Z}^{D_N} \) be such that \(f_{p,2m} = \eta^X \). From (4.6), we conclude that \(X \in \mathbb{Z}_N \). In other words, \(Y := A_N X \) has all its entries in the interval \([0, 1]\). From (2.1), it easily follows that \(\text{ord}_\infty(f_{2m,p}) = 1/24 \). Since \(f_{2m,p} \) is invariant under the Fricke involution on \(\Gamma_0(p^{2m}) \), we also have \(\text{ord}_0(f_{2m,p}) = 1/24 \), since the Fricke involution interchanges the cusps 0 and \(\infty \) of \(\Gamma_0(p^{2m}) \). Since 0 and 1 (resp. \(\infty \) and \(1/p^{2m} \)) represent the same cusp of \(\Gamma_0(p^{2m}) \), from (3.17) we get that both the first and the last entries of \(Y \) are equal to \(\frac{1}{p^{2m-1}(p^2-1)} \).

There exists \(U_N, V_N \in GL_{\sigma_0(N)}(\mathbb{Z}) \) and a diagonal matrix \(D_N \) such that \(D_N = U_N \times B_N \times V_N \). We shall see in the next section that if \(N = p^n \) for some prime \(p \) and some integer \(n > 2 \), then

\[
D_N = \text{diag}(1, 1, \ldots, 1, p^{n-1}, p^{n-1}(p^2-1))
\]

and the last two columns of \(V_N \) are respectively

\[
C_{n,1} := \begin{cases}
(1, 0)^t & \text{if } n = 1, \\
(-1, 0, 1)^t & \text{if } n = 2, \\
(1, 1, p, p^2, \ldots, p^{n-3}, p^{n-2}, 0)^t & \text{if } n > 2.
\end{cases}
\]
and

$$C_{n,2} := \begin{cases} (p, 1)^t & \text{if } n = 1, \\ (p^2, 1)^t & \text{if } n = 2, \\ (p^n, p^{n-2}, p^{n-3}, \ldots, p, 1)^t & \text{if } n > 2. \end{cases}$$

(4.9)

Next we briefly recall an useful tool from Linear Algebra:

By elementary row and column operations [13], one can reduce any matrix $B \in \text{GL}_n(\mathbb{Z})$ to a diagonal matrix D. In other words, there exists $U, V \in \text{GL}_n(\mathbb{Z})$ and $D = \text{diag}(d_1, d_2, \ldots, d_n) \in \text{GL}_n(\mathbb{Z})$ such that $D = U \cdot B \cdot V$. Since $U, V \in \text{GL}_n(\mathbb{Z})$, we have $U^{-1} \cdot Z^n = Z^n$ and $V \cdot Z^n = Z^n$. Therefore,

$$Z^n/(B \cdot Z^n) = U^{-1} \cdot Z^n/(B \cdot V \cdot Z^n) \simeq Z^n/(U \cdot B \cdot V \cdot Z^n) = Z^n/(D \cdot Z^n) = \bigoplus_{i=1}^n \mathbb{Z}/d_i \mathbb{Z}^n.$$

The above isomorphism maps the element $\ell := (\ell_1 \ldots \ell_n)^t$ of $\bigoplus_{i=1}^n \mathbb{Z}/d_i \mathbb{Z}^n$ to the element

$$U^{-1} \cdot \ell \pmod{B \cdot Z^n}$$

of $Z^n/(B \cdot Z^n)$. Since B is invertible, there is a bijection between $Z^n/(B \cdot Z^n)$ and $[0, 1)^n \cap B^{-1} \cdot Z^n$, given by

$$X \pmod{B \cdot Z^n} \mapsto B^{-1} \cdot X \pmod{Z^n}.$$

Composing this bijection with the isomorphism above, we get a bijection between $\bigoplus_{i=1}^n \mathbb{Z}/d_i \mathbb{Z}^n$ and $[0, 1)^n \cap B^{-1} \cdot Z^n$, given by

$$\ell \mapsto B^{-1} \cdot U^{-1} \cdot \ell \pmod{Z^n} = V \cdot D^{-1} \cdot \ell \pmod{Z^n}.$$

Now multiplication by B maps $[0, 1)^n \cap B^{-1} \cdot Z^n$ bijectively to $B \cdot [0, 1)^n \cap Z^n$.

Let $N = p^{2m}$ and suppose, $\eta^X = f_{2m,p}$ is reducible. Let $Y = A_N X$. Since η^X is reducible there exists $Y', Y'' \in \mathbb{Z}P_N \setminus \{0\}$ with $Y' \geq 0$ and $Y'' \geq 0$ such that $Y = Y' + Y''$ and both $B_N Y'$ and $B_N Y''$ have integer entries. Since B_N is an integer matrix with determinant $d_N := p^{2m-1}(p^2 - 1)$, we see that $\frac{1}{d_N}$ is the least possible entry for Y' and Y''. Since $Y' + Y'' = Y$ has $\frac{1}{d_N}$ as its first entry, either the first entry of Y' or that of Y'' is zero. Similarly, either the last entry of Y' or that of Y'' is zero. But it is easy to show that if both the first and the last entries of Y' (resp. Y'') is zero, then Y' (resp. Y'') is entirely zero. So, without loss of generality, we may assume that the first entry of Y' is $\frac{1}{d_N}$ and the last entry of Y' is 0. From the previous section and from the entries of the diagonal matrix D_N, we know that there exists $\ell_1 \in \{0, 1, \ldots, p^{2m-1} - 1\}$ and $\ell_2 \in \{0, 1, \ldots, p^{2m-1}(p^2 - 1) - 1\}$ such that

$$\frac{\ell_1}{p^{2m-1}} \cdot C_{2m,1} + \frac{\ell_2}{p^{2m-1}(p^2 - 1)} \cdot C_{2m,2} \equiv Y' \pmod{Z^n}.$$

(4.10)

Case 1. $(m = 1)$

*From the congruence relation (4.10) (resp. replacing Y' with Y'' in (4.10)).
Equating only the first and the last entries from both sides of (4.10), we obtain
\[\frac{\ell_1}{p} + \frac{p \ell_2}{p^2 - 1} \equiv \frac{1}{dN} \pmod{Z} \quad \text{and} \quad \frac{\ell_1}{p} + \frac{\ell_2}{p(p^2 - 1)} \equiv 0 \pmod{Z}, \]
which together implies that
\[\frac{\ell_1}{p} \equiv \frac{1}{dN} \pmod{Z}. \]
But this modular equation has no solution in \(\ell_1 \in \{0, 1, \ldots, p - 1\} \). Thus we get a contradiction!

Case 2. \((m > 1)\)

Since the last entries of \(Y' \) and \(C_{2m,1} \) are 0, whereas the last entry of \(C_{2m,2} \) is 1, it follows that \(\ell_2 = 0 \). Since the first entry of \(C_{2m,1} \) is 1, we get
\[\frac{\ell_1}{p^{2m-1}} \equiv \frac{1}{dN} \pmod{Z} \]
as in the previous case. Since as before, this has no solution in \(\ell_1 \in \{0, 1, \ldots, p^{2m-1} - 1\} \), we get a contradiction.

Hence, \(f_{2m,p} = \eta^X \) is irreducible. \(\square \)

5. The matrix identities

We continue to prove that the matrix identities \(B = UDV \), \(UU' = 1 \) and \(VV' = 1 \) with \(B = B_{p^n} \) as defined in (4.3) and \(D = D_{p^n} \) as defined in (4.7) holds if we define \(U = U_{p^n} \), \(V = V_{p^n} \), \(U' = U'_{p^n} \) and \(V' = V'_{p^n} \) as follows for \(n = 1, 2, 3 \) or \(n \geq 4 \):

For \(n = 1 \), we define
\[
U := \begin{pmatrix} 0 & -1 \\ 1 & p \end{pmatrix}, \quad V := \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix}, \quad U' := \begin{pmatrix} p & 1 \\ -1 & 0 \end{pmatrix} \quad \text{and} \quad V' := \begin{pmatrix} 1 & -p \\ 0 & 1 \end{pmatrix}.
\]

For \(n = 2 \), we define
\[
U := \begin{pmatrix} 0 & 1 & 0 \\ 0 & p & 1 \\ 1 & p & 1 \end{pmatrix}, \quad V := \begin{pmatrix} 0 & -1 & p^2 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}, \quad U' := \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ -p & 1 & 0 \end{pmatrix} \quad \text{and} \quad V' := \begin{pmatrix} -1 & p^2 + 1 & -1 \\ -1 & p^2 & 0 \\ 0 & 1 & 0 \end{pmatrix}.
\]

For \(n = 3 \), we define
$$U := \begin{pmatrix} 0 & -1 & -p & -p^2 \\ 0 & 0 & -1 & -p \\ 0 & 0 & -p & -(p^2 + 1) \\ 1 & p & p^2 & p^3 \end{pmatrix}, \quad V := \begin{pmatrix} 1 & 0 & 1 & p^3 \\ 0 & 0 & 1 & p \\ 0 & -1 & p & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$U' := \begin{pmatrix} p & 0 & 0 & 1 \\ -1 & p & 0 & 0 \\ 0 & -(p^2 + 1) & p & 0 \\ 0 & p & -1 & 0 \end{pmatrix} \quad \text{and} \quad V' := \begin{pmatrix} 1 & -1 & 0 & -p(p^2 - 1) \\ 0 & p & -1 & -(p^2 - 1) \\ 0 & 1 & 0 & -p \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

For $n > 3$:

We define $U = (U_{i,j})_{0 \leq i,j \leq n}$ by

\[
j = 0 \quad \begin{array}{|c|c|}
\hline
i < n - 1 & 0 \\
\hline
i = n - 1 & 0 \\
\hline
i = n & 1 \\
\hline
\end{array}
\begin{cases}
-j^{j-1} & \text{if } j > i, \\
0 & \text{otherwise.}
\end{cases}
\]

We define $V = (V_{i,j})_{0 \leq i,j \leq n}$ by

\[
\begin{array}{|c|c|c|c|}
\hline
i = 0 & j = 0 & 0 < j < n - 1 & j = n - 1 \\
\hline
0 < i < n & 1 & 0 & 1 \\
\hline
i = n & 0 & 0 & 1 \\
\hline
\end{array}
\begin{cases}
-p^{i-j-1} & \text{if } i > j, \\
0 & \text{otherwise.}
\end{cases}
\]

We define $U' = (U'_{i,j})_{0 \leq i,j \leq n}$ by

\[
\begin{array}{|c|c|c|c|c|}
\hline
i = 0 & j = 0 & 0 < j < n - 2 & j = n - 2 & j = n - 1 & j = n \\
\hline
p & 0 & 0 & 0 & 1 \\
\hline
0 < i < n - 1 & -1 & 0 \\
\hline
i = n - 1 & 0 & -p^{n-j} & -(p^2 + 1) & p & 0 \\
\hline
i = n & 0 & p^{n-j-1} & p & -1 & 0 \\
\hline
\end{array}
\begin{cases}
p & \text{if } i = j, \\
-1 & \text{if } i = j + 1, \\
0 & \text{otherwise.}
\end{cases}
\]

We define $V' = (V'_{i,j})_{0 \leq i,j \leq n}$ by

\[
\begin{array}{|c|c|c|c|}
\hline
i = 0 & j = 0 & 0 < j < n & j = n \\
\hline
1 & -1 & 0 & \ldots & 0 & -p^{n-2}(p^2 - 1) \\
\hline
0 < i < n - 1 \quad & 0 & \{ \begin{array}{l}
p & \text{if } i = j, \\
-1 & \text{if } i = j - 1, \\
0 & \text{otherwise.}
\end{array}
\}
\end{array}
\begin{cases}
p^{n-i-2}(p^2 - 1) & \text{if } i = j, \\
-p^{n-i-2} & \text{if } i = j - 1, \\
1 & \text{otherwise.}
\end{cases}
\]

\[
\begin{array}{|c|c|}
\hline
i = n - 1 & 0 & \ldots & 0 & -p^{n-2} \\
\hline
i = n & 0 & 0 & 1 \\
\hline
\end{array}
\begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } i = j - 1, \\
0 & \text{otherwise.}
\end{cases}
\]

\[
\begin{array}{|c|c|}
\hline
j = 0 & 0 < j < n \\
\hline
1 & -1 & 0 & \ldots & 0 \\
\hline
-p^{n-2}(p^2 - 1) & \text{if } i = j, \\
-p^{n-i-2}(p^2 - 1) & \text{if } i = j - 1, \\
1 & \text{otherwise.}
\end{array}
\]
Proposition 1. Given \(n \in \mathbb{N} \), let \(U, V, U' \) and \(V' \) be the matrices as defined above. For \(N = p^n \), we set the matrices \(B = B_N \) and \(D = D_N \) as in equations equations (4.3) and (4.7). Then we have

\[
UU' = I, \quad VV' = I, \quad \text{and} \quad D = UBV.
\]

Proof. If \(n \leq 3 \), these identities hold trivially. If \(n > 3 \), the proofs of the equalities of the corresponding matrix entries in each of these matrix relations involve (at most) summation of some geometric series. For example, consider the identity \(D = UBV \). It is equivalent to \(DV' = UB \), assuming \(VV' = I \). Now from (4.7) and (5.4), we see that for \(i, j \in \{0, \ldots, n\} \), the \((i, j)\)-th entry of \(DV' \) is given by

\[
\begin{align*}
&\begin{cases}
1 & \text{if } j = 0, \\
-1 & \text{if } j > 0,
\end{cases} \\
&\begin{cases}
0 & \text{if } j < n, \\
p & \text{if } j = n,
\end{cases} \\
&\begin{cases}
-1 & \text{if } j = n - 1,
0 & \text{otherwise}.
\end{cases}
\end{align*}
\]

If we consider the case \(0 < i < n - 1 \) and \(0 < j < n \), then from (5.1) and (4.3) it follows that the product of the \(i \)-th row of \(U \) and the \(j \)-th column of \(B \) is

\[
-\sum_{k=1}^{n} p^{i-k-1} B_k, j = \sum_{k=i+1}^{n} p^{i-k-1}(p^{2(k-1)} - (p^2 + 1) \delta_{k,j})
\]

\[
= \sum_{k=\max\{i+1, j-1\}}^{j+1} p^{i-k-1}(p^{2(k-1)} - (p^2 + 1) \delta_{k,j})
\]

\[
= \begin{cases}
0 & \text{if } j < i, \\
p & \text{if } j = i, \\
-1 & \text{if } j = i + 1, \\
0 & \text{if } j > i + 1,
\end{cases}
\]

where \(\delta \) is the usual Kronecker delta function. So, the claim holds in this case.

Again, if we consider the case \(i = n - 1 \) and \(0 < j < n \), then the product of the \(i \)-th row of \(U \) and the \(j \)-th column of \(B \) is

\[
-\sum_{k=1}^{n} p^{n-k} \left(p^{2(k-1)} - 1\right) B_k, j = \sum_{k=2}^{n} p^{n-k} \left(p^{2(k-1)} - 1\right) \left(p^{2(k-1)} - (p^2 + 1) \delta_{k,j}\right)
\]

\[
= \sum_{k=\max\{2, j-1\}}^{j+1} p^{n-k} \left(p^{2(k-1)} - 1\right) \left(p^{2(k-1)} - (p^2 + 1) \delta_{k,j}\right)
\]

\[
= \begin{cases}
p^{n-1} & \text{if } j = 1, \\
0 & \text{otherwise},
\end{cases}
\]

where the first equality holds since \(p^{2(k-1)} = 1 \) for \(k = 1 \). Thus, the claim also holds in this case. The rest of the proof is quite similar and only requires some more straightforward checks as above. \(\square \)
References

[1] G. E. Andrews and K. Eriksson, *Integer partitions*. Cambridge University Press, Cambridge, 2004, MR 2122332, Zbl 1073.11063, http://dx.doi.org/10.1017/CBO9781139167239.

[2] S. Bhattacharya, “Determination of irreducibility of a holomorphic eta quotient,” preprint, http://arxiv.org/pdf/1602.03087.pdf.

[3] ——, “Finiteness of irreducible holomorphic eta quotients of a given level,” preprint, http://arxiv.org/pdf/1602.02814.pdf.

[4] ——, “Factorization of holomorphic eta quotients,” Ph.D thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2014, hss.ulb.uni-bonn.de/2014/3711/3711.pdf.

[5] J. M. Borwein, A. Straub, J. Wan, and W. Zudilin, “Densities of short uniform random walks.” *Can. J. Math.*, vol. 64, no. 5, pp. 961–990, 2012, Zbl 1296.33011, http://dx.doi.org/10.1007/s11139-011-079-2.

[6] D. Choi, “Spaces of modular forms generated by eta-quotients,” *Ramanujan J.*, vol. 14, no. 1, pp. 69–77, 2007, MR 2298641, Zbl 1197.11052, http://dx.doi.org/10.1007/s11139-006-9007-3.

[7] S. Chowla and A. Selberg, “On Epstein’s zeta-function,” *J. Reine Angew. Math.*, vol. 227, pp. 86–110, 1967, MR 0318157.

[8] H. Cohen, *Number Theory, Volume II: Analytic and Modern Tools*. Springer-Verlag, New York, 2007, Graduate Texts in Mathematics. 240, http://dx.doi.org/10.1007/978-0-387-49894-2.

[9] R. Dedekind, “Schreiben an Herrn Borchardt über die Theorie der elliptischen Modulfunctionen,” *J. Reine Angew. Math.*, vol. 83, pp. 265–292, 1877, MR 1579737, http://dx.doi.org/10.1515/crll.1877.83.265.

[10] F. Diamond and J. Shurman, *A First Course in Modular Forms*. Springer-Verlag, New York, 2005, Graduate Texts in Mathematics. 228, http://dx.doi.org/10.1007/b138781.

[11] V. G. Drinfel’d, “Two theorems on modular curves,” *Funkcional. Anal. i Priložen.*, vol. 7, no. 2, p. 83–84, 1973, MR 0318157.

[12] K. Harada, “Moonshine” of finite groups, ser. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2010, MR 2722318, http://dx.doi.org/10.4171/090.

[13] R. A. Horn and C. R. Johnson, *Topics in Matrix Analysis*. Cambridge University Press, 1994, MR 1288752.

[14] G. Kac, “Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the very strange formula,” *Adv. in Math.*, vol. 30, no. 2, pp. 85–136, 1978, MR 563927, http://dx.doi.org/10.1016/0001-8708(78)90033-6.

[15] L. J. P. Kilford, “Generating spaces of modular forms with η-quotients,” *JP J. Algebra Number Theory Appl.*, vol. 8, no. 2, pp. 213–226, 2007, MR 2406859.

[16] P. Kleban and D. Zagier, “Crossing probabilities and modular forms,” *J. Statist. Phys.*, vol. 113, no. 3–4, pp. 431–454, 2003, MR 2013692, http://dx.doi.org/10.1023/A:1026012600583.

[17] G. Köhler, *Eta products and theta series identities*, ser. Springer Monographs in Mathematics. Springer, Heidelberg, 2011, MR 2766155, http://dx.doi.org/10.1007/978-3-642-16152-0.

[18] W. Kohnen and G. Mason, “On generalized modular forms and their applications,” *Nagoya Math. J.*, vol. 192, pp. 119–136, 2008, MR 2477614.

[19] R. J. Lemke Oliver, “Eta-quotients and theta functions,” *Adv. Math.*, vol. 241, pp. 1–17, 2013, MR 3053701, Zbl 1282.11030, http://dx.doi.org/10.1016/j.aim.2013.03.019.

[20] Y. Martin, “Multiplicative η-quotients,” *Trans. Amer. Math. Soc.*, vol. 348, no. 12, pp. 4825–4856, 1996, MR 1376550, http://dx.doi.org/10.1090/S0002-9947-96-01743-6.

[21] G. Mersmann, “Holomorphe η-produkte und nichtverschwindende ganze modulformen für Γ0(N),” Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 1991, https://sites.google.com/site/soumyabhattacharya/miscellany/Mersmann.pdf.
[22] H. Rademacher, *Topics in analytic number theory*. Springer-Verlag, New York-Heidelberg, 1973, MR 0364103.

[23] R. A. Rankin, *Modular forms and functions*. Cambridge University Press, Cambridge, 1977, MR 0498390.

[24] A. van der Poorten and K. S. Williams, “Values of the Dedekind eta function at quadratic irrationalities,” *Canad. J. Math.*, vol. 51, no. 1, pp. 176–224, 1999, MR 1692895, Zbl 0936.11026, http://dx.doi.org/10.4153/CJM-1999-011-1.

Ramakrishna Mission Vivekananda University, Belur Math, Howrah 711202
E-mail address: soumya.bhattacharya@gmail.com