Contact tracing efficiency, transmission heterogeneity, and accelerating COVID-19 epidemics

Billy J. Gardner, A. Marm Kilpatrick

Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America

*akilpatr@ucsc.edu

Abstract

Simultaneously controlling COVID-19 epidemics and limiting economic and societal impacts presents a difficult challenge, especially with limited public health budgets. Testing, contact tracing, and isolating/quarantining is a key strategy that has been used to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 and other pathogens. However, manual contact tracing is a time-consuming process and as case numbers increase a smaller fraction of cases’ contacts can be traced, leading to additional virus spread. Delays between symptom onset and being tested (and receiving results), and a low fraction of symptomatic cases being tested and traced can also reduce the impact of contact tracing on transmission. We examined the relationship between increasing cases and delays and the pathogen reproductive number R_t, and the implications for infection dynamics using deterministic and stochastic compartmental models of SARS-CoV-2. We found that R_t increased sigmoidally with the number of cases due to decreasing contact tracing efficacy. This relationship results in accelerating epidemics because R_t initially increases, rather than declines, as infections increase. Shifting contact tracers from locations with high and low case burdens relative to capacity to locations with intermediate case burdens maximizes their impact in reducing R_t (but minimizing total infections may be more complicated). Contact tracing efficacy decreased sharply with increasing delays between symptom onset and tracing and with lower fraction of symptomatic infections being tested. Finally, testing and tracing reductions in R_t can sometimes greatly delay epidemics due to the highly heterogeneous transmission dynamics of SARS-CoV-2. These results demonstrate the importance of having an expandable or mobile team of contact tracers that can be used to control surges in cases. They also highlight the synergistic value of high capacity, easy access testing and rapid turn-around of testing results, and outreach efforts to encourage symptomatic cases to be tested immediately after symptom onset.

Author summary

Contact tracing is a key tool in the control of infectious diseases. However, to successfully contact and quarantine individuals with traditional methods requires time and is limited by available capacity. As cases rise, limited capacity results in only a fraction of contacts...
being reached each day before the next set of cases is detected. Here we examine the relationships between increasing case numbers, contact tracing efficiency, and the pathogen reproductive number R_t (the number of cases infected by each case) and how these relationships vary with delays between symptom onset and tracing initiation, and incomplete participation in the testing and tracing process. We found that under conditions found throughout much of the world, where only 20–40% of symptomatic cases are detected, contact tracing can reduce R_t by a maximum of 20%, and this benefit quickly dissolves as contacts needing tracing exceed capacity. Increases in the fraction of symptomatic people being tested and reductions in the time between symptom onset and initiating tracing substantially increase the potential impact of tracing in reducing R_t to 60%, but this benefit is also lost as cases rise and contacts needing tracing exceed capacity to do so. Maintaining excess contact tracing capacity and the ability to shift it to areas most in need can substantially reduce pathogen transmission and limit epidemics.

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019, spread globally in early 2020, and resulted in rapidly growing local epidemics, large scale mortality, and strains on hospital capacity in many countries [1–4]. Initial outbreaks in most countries were limited only by severe control measures including closing all but essential businesses as well as schools, churches, and other organizations [5,6]. Only a few countries were able to limit transmission with less disruptive public health measures [7–9]. The combination of severe disease control measures and the disease itself have had devastating impacts on economies and societies [10,11]. Following control with strict lockdown measures, most countries attempted to re-open as many business sectors and activities as possible while avoiding a rapid rise in infections.

Although self-isolation of symptomatic individuals, social distancing, and mask wearing have reduced the transmission of SARS-CoV-2, additional interventions, including business closures and working from home, have often been required to keep the pathogen reproductive number R_t below 1 [10,12,13]. One public health strategy that has been used to reduce transmission in some countries is testing symptomatic individuals, tracing their contacts to people they may have infected, isolating infected individuals, and quarantining people that may have become infected but have yet to show symptoms or test positive for the virus (hereafter abbreviated TTIS) [8,13,14]. If contacts of cases can be found and quarantined or isolated before or during their infectious period, this can limit onward spread of the virus [15].

Numerous studies have examined the effectiveness and limitations of TTIS on transmission of SARS-CoV-2 and other pathogens [14–27]. Many studies have shown that TTIS can substantially reduce the pathogen reproductive number, R_t, but its efficacy depends on the importance of pre-symptomatic and asymptomatic transmission, delays between symptom onset and being tested, and the fraction of infections that are tested and traced [14,19,22,24]. Previous studies have explored various parameter values for contact tracing efficacy by varying the fraction isolated, the fraction symptomatic, and the contribution to transmission of undetected infections [14,19,22]. A key unexplored challenge in implementing TTIS is that tracing contacts and ensuring they can safely quarantine or isolate is a time-consuming process which results in only a fraction of contacts being reached if cases and their contacts exceed case investigation and contact tracing capacity. This reduces the effectiveness of contact tracing as cases increase. Previous studies have assumed fixed values for contact tracing parameters, or have simulated epidemics with models that do not describe the links between cases and their
contacts, or use models that don’t include the interactions between rising cases, delays between symptom onset and tracing, and reductions in the pathogen reproductive number R_t.

Our aim was to examine the relationship between increasing cases, contact tracing efficacy, and the pathogen reproductive number, R_t, and to examine the potential outcomes for disease dynamics. We built a compartment model of SARS-CoV-2 transmission, parameterized it with data from the literature, and examined how R_t varied with number cases traced, delays between symptom onset and the start of contact tracing, the numbers of contacts per case, and different fractions of symptomatic cases being tested and traced. We also simulated a stochastic version of the model with variable numbers of initial infections and with and without contact tracing to examine how reductions in R_t and initial conditions affected variation in the timing of epidemics.

Methods

We built a susceptible-exposed-infected-recovered (SEIR) compartment model of SARS-CoV-2 that included two compartments for infected individuals that reflect the presence of symptoms (pre-symptomatic, I_{ps}, and symptomatic, I_s) (S1 Fig). For simplicity, we omitted asymptotically infected individuals (i.e. those that never develop any symptoms) because meta-analyses [28,29], as well as subsequent studies [30], showed that asymptomatic individuals infect a much smaller fraction of their contacts than individuals that eventually develop symptoms. We also omitted severely symptomatic individuals because they are likely to be hospitalized and thus cause very few infections in the community. In addition, contact tracing severely symptomatic cases is ineffective because, by the time an infection progresses to severe symptoms 6–8 days after symptom onset [31,32], many of their contacts will already have finished most of their infectious period, and quarantining or isolating these contacts would have little effect. We note that models that included both of these classes of infected hosts produced results that were very similar to those described below. We also omitted more complex population structure (e.g. household clustering) in order to develop a more transparent relationship between rising cases, delays, and contact tracing efficacy.

The equations of the model (S1 Fig) are:

\[
\frac{dS}{dt} = -\kappa \beta S / N (\sigma_{I_{ps}} I_{ps} + \sigma_s I_s) \\
\frac{dE}{dt} = \kappa \beta S / N (\sigma_{I_{ps}} I_{ps} + \sigma_s I_s) - (q_{E\rightarrow I_{ps}} + f_s \epsilon_{E\rightarrow I_{ps}} + f_{I_{ps}\rightarrow I_s}) E \\
\frac{dI_{ps}}{dt} = q_{E\rightarrow I_{ps}} E - (q_{I_{ps}\rightarrow I_s} + f_s \epsilon_{I_{ps}\rightarrow I_s} + f_{I_{ps}\rightarrow I_s}) I_{ps} \\
\frac{dI_s}{dt} = q_{I_{ps}\rightarrow I_s} I_{ps} - (\tau_{I_s} + \gamma_{I_s} + f_s \epsilon_{I_{ps}\rightarrow I_s} + f_{I_{ps}\rightarrow I_s} \alpha_q) I_s \\
\frac{dQ}{dt} = f_s (\epsilon_{E\rightarrow I_{ps}} + \epsilon_{E\rightarrow I_s}) E + f_{I_{ps}\rightarrow I_s} (\epsilon_{I_{ps}\rightarrow I_s} + \epsilon_{I_{ps}\rightarrow I_s}) I_{ps} + (\tau_{I_s} + \gamma_{I_s} (\epsilon_{I_{ps}\rightarrow I_s} + \epsilon_{I_{ps}\rightarrow I_s})) I_s - \gamma_q Q - \sigma_q Q \\
\frac{dR}{dt} = \gamma_{I_s} I_s + \gamma_q Q
\]

Parameter values are given in Table 1. κ is a social distancing factor between 0 and 1 that scales the transmission rate β (and directly scales the reproductive rate R_t). σ is the relative infectiousness for the two I classes. q are the transition rates between classes given by the subscripts separated by the arrow ($q_{E\rightarrow I_{ps}}$ is the transition rate between the E and I_{ps} classes). τ_{I_s} is the rate of testing and removal of symptomatic infected individuals I_s. The terms $f_s \epsilon$ are the removal rate of individuals by contact tracing, with the ϵ values being the maximum rate of removal by contact tracing from the first subscripted class, due to infections that were caused by the second subscript (e.g. $E_{E\rightarrow I_{ps}}$ is the rate that individuals in the E class are removed by contact tracing that were infected by I_{ps} individuals), and $f_{I_{ps}}$ is the fraction between 0 and 1 that are actually removed, due to limited contact tracing capacity (see below). Q is the quarantine/isolation class, α are the disease-caused death rates, and γ is the recovery rate to the R class.
The fraction of contacts that can be reached and placed in quarantine each day, \(f_{tr} \), is simply the contact tracing capacity (the number of contact tracers, \(N_{CT} \)) multiplied by the number of calls they can make per day \(N_{CTD} \), divided by the number of contacts that need to be reached each day (the number of symptomatic cases detected by testing, \(I_{s} \alpha_{Q} \) multiplied by the number of close contacts per case, \(N_{cpc} \)):

\[
f_{tr} = \frac{N_{CT} N_{CTD}}{I_{s} \alpha_{Q} N_{cpc}} \quad [\text{Eq 2}]
\]

If tracing capacity exceeds contacts requiring tracing, all contacts are traced, so max \(f_{tr} = 1 \). We note that contact tracing includes both case investigation to obtain information on contacts, and successfully reaching contacts and ensuring they can safely quarantine or isolate themselves. The capacity of a given public health jurisdiction reflects whichever part of this process is limiting.

The maximum contact tracing removal rates \(\varepsilon \) are derived from the fact that all infected individuals in the E, I_{ps}, and I_{s} classes were infected by individuals in the I_{ps} and I_{s} classes, at some time in the past. The maximum removal rates \(\varepsilon \) are the product of three terms:

Table 1. Parameter values and descriptions.

Parameter	Value/Range	Unit	Description	Reference or Derivation
\(\kappa \)	0–1		Social distancing factor Adjusted to produce \(R_0 \approx 1.2–1.7; \) consistent with data post-lockdown: [56]	
\(\beta \)	0.35	d\(^{-1}\)	Transmission rate Set to give plausible pre-lockdown \(R_0 \approx 3 \) [56]	
\(\sigma_{ps} \)	1.81		Relative infectiousness pre-symptomatic:mildly symptomatic [52]	
\(\sigma_{s} \)	1		Relative infectiousness (reference level)	
\(\eta_{ps-Is} \)	0.35 d\(^{-1}\)		1/(duration latent period)	
\(N_{CTD} \)	12	d\(^{-1}\)	Number of contacts reached per contact tracer per day One contact reached each 40 min	
\(N_{cpc} \)	5, 10, 20, 30		Number of contacts per case [39,57]	
\(\epsilon_{x-y} \)	0.1–1 d\(^{-1}\)		6 maximal contact tracing removal rates; one for each infected class x infected by infected class y See Eq 7; product of: fraction of symptomatic cases detected by testing; fraction of individuals infected by \(I_{ps} \) or \(I_{s} \) and fraction of infected contacts still in that infectious class	
\(q_{ps-Is} \)	0.2–3	d\(^{-1}\)	1/(duration pre-symptomatic period) [52]	
\(\tau_{tr} \)	1/5, d\(^{-1}\)		Recovery rate	
\(\alpha_{Q} \)	0.0025 d\(^{-1}\)		Disease caused death rates estimated using infection fatality ratio (IFR), adjusted for excluding asymptomatics; IFR = 0.0066/0.8; [58–60]; \(\alpha_{Q} = q_{ps-Is} \alpha_{I}/(1-IFR); \) \(\alpha_{Q} = \tau_{tr} \alpha_{I}/(1-IFR) \)	
\(\gamma_{Q} \)	1/14 d\(^{-1}\)		Quarantined recovery rate Does not affect dynamics	
\(f_{tr} \)	Eq 3		Fraction of symptomatic cases that are tested before they recover Eq 4; ratio of testing rate to sum of testing rate and recovery rate	
\(f_{ps} \)	Eq 4		Fraction of infected individuals that were infected by pre-symptomatic or symptomatic individuals Eq 4; relative infectiousness multiplied by infectious period divided by sum of all infections	
\(\delta_{ps} \)	Eq 5	d	Delay from infection until being traced Eq 5; the sum of testing delays, time for tracing (0.5d) and for \(\delta_{ps} \) the time between being infected by pre-symptomatic individuals and those individuals being detected by testing as symptomatic cases	
\(f_{x-y} \)	Eq 6		Fraction of infected contacts infected by class y still in infected class x Eq 6; Exponentially decaying fraction of individuals that have reached a given class x and still remain there after a given delay \(\delta \)	

https://doi.org/10.1371/journal.pcbi.1009122.t001
1. the fraction of symptomatic cases I_s that are tested, f_{ts}, before they recover:

\[
f_{ts} = \tau_t / (\tau_t + \gamma_t),
\]

[Eq 3]

2. the fraction of individuals in a given class that were infected by pre-symptomatic, I_{ps} or symptomatic, I_s individuals,

\[
f_{Ips} = (\sigma_{Ips}/q_{Ips-Is})/[\sigma_{Ips}/q_{Ips-Is} + \sigma_{Is}/(\tau_{Is} + \gamma_{Is})]
\]

\[
f_{Is} = [\sigma_{Is}/(\tau_{Is} + \gamma_{Is})]/[\sigma_{Ips}/q_{Ips-Is} + \sigma_{Is}/(\tau_{Is} + \gamma_{Is})],
\]

[Eq 4]

and

3. the fraction of individuals that are still in infected class x (E, I_{ps}, or I_s) by the time they are traced (S2 Fig), $f_{x-y} = e^{-\lambda\delta}$, where y is the class they were infected by (I_{ps} or I_s), λ is the average rate that individuals leave a class (or a series of host classes), and δ is the delay from infection until being traced, which is the sum of the average time to test and trace individuals after symptom onset, $1/\tau_{Is}$, the average time to trace contacts (0.5 days, since each day a new set of contacts arise), and, for infections caused by I_{ps} individuals, the delay between I_{ps} individuals infecting the contacts, and when I_{ps} individuals are identified by testing in the I_s class, $1/q_{Ips-Is}$:

\[
\delta_{Is} = 1/\tau_{Is} + 0.5 + 1/q_{Ips-Is}
\]

\[
\delta_{Is} = 1/\tau_{Is} + 0.5
\]

[Eq 5]

The fraction remaining in each of the 3 infected classes, E, I_{ps}, I_s that were infected by each of the two infectious classes, I_{ps} and I_s, respectively, is thus given by six equations:

\[
f_{E-Is} = e^{-(q_{E-Is}+\delta_{Is})}
\]

\[
f_{E-Ips} = e^{-(q_{E-Ips}+\delta_{Is})}
\]

\[
f_{Ips-Is} = (1-f_{E-Ips})\left(e^{-\delta_{Is}/(1/q_{Ips-Is}+1/q_{Ips-Is})}\right)
\]

\[
f_{Ips-Is} = (1-f_{E-Ips})\left(e^{-\delta_{Is}/(1/q_{Ips-Is}+1/q_{Ips-Is})}\right)
\]

\[
f_{Is-Is} = (1-f_{E-Ips}-f_{Ips-Is})\left(e^{-(q_{Ips-Is}+1/q_{Ips-Is})}\right)
\]

\[
f_{Is-Is} = (1-f_{E-Ips}-f_{Ips-Is})\left(e^{-(q_{Ips-Is}+1/q_{Ips-Is})}\right)
\]

[Eq 6]

The fraction of infections remaining in each class for variable delays in case symptom onset to testing positive, τ_{Is}, is shown in S2 Fig. The maximum removal rates ϵ are simply the product of these three quantities:

\[
\epsilon_{E-Is} = f_{ts}f_{Ips}f_{E-Is}
\]

\[
\epsilon_{E-Ips} = f_{ts}f_{Is}f_{E-Ips}
\]

\[
\epsilon_{Ips-Is} = f_{ts}f_{Ips}f_{Ips-Is}
\]

\[
\epsilon_{Ips-Is} = f_{ts}f_{Is}f_{Ips-Is}
\]

\[
\epsilon_{Is-Is} = f_{ts}f_{Ips}f_{Is-Is}
\]

[Eq 7]
We parameterized the model with data from the literature (Table 1). We note that spatial or temporal variability in contact rates (e.g. from social distancing or other non-pharmaceutical interventions) have direct linear impacts on R_t and shift the curves in Figs 1 and 2 vertically (S3 Fig), but do not change their shape and thus don’t affect the proportional impact of contact tracing on R_t. Increased transmissibility of viral variants such as B.617.2, B.1.1.7 or P.1 [33,34] would similarly shift the curves vertically without changing their shape unless the temporal dynamics of infectiousness are substantially different [35]; at present, data on viral load dynamics for viral variants are sparse [36]. Although the compartmental model above results in exponential distributions for the duration that hosts remain in each host class, the combination of an exposed class E and a pre-symptomatic class I_{ps} results in an incubation period that is approximately lognormally distributed with mean and dispersion similar to the empirically observed values [37]. We explored models with multiple compartments for other classes (e.g. I_s) to investigate the implications of non-exponentially distributed durations and obtained very similar results to those described below.

Fig 1. Pathogen reproductive number, R_t, plotted against the ratio of contacts needing tracing to contact tracing capacity for variable delays ($1/\tau_{Is}$) of 1–5 and 10 days between case symptom onset and the start of contact tracing (including getting tested and receiving result). With testing, but no contact tracing, R_t increases 35% from 1.7 to 2.3 as the delay $1/\tau_{Is}$ increases from 1 to 5 days, which is evident in the y-axis difference between black and green curves in the upper right of the graph where new case burdens are so high contact tracing is ineffective. The delays ($1/\tau_{Is}$) are indicated by the small numbers on each curve in the left of the plot. Curves are horizontal where capacity exceeds contacts needing tracing. The number of contacts per case, N_{cpc}, was 10.

https://doi.org/10.1371/journal.pcbi.1009122.g001
We note that while notifying individuals that they have had contact with a case can be done quickly (especially with using a cell-phone tracing app; [22]), successfully ensuring a contact has their needs met (including food, medicine, clothing) to quarantine in a safe space where they won’t infect their household members requires substantially more time (https://www.cdc.gov/coronavirus/2019-ncov/php/notification-of-exposure.html). Thus, we assumed the approximate duration required for a successful contact tracing call was 40 min, resulting in the number of contacts reached by a contact tracer per day, \(N_{CCTD} \), of 12.

We derived an expression for the pathogen reproductive number \(R_t \) for the equations above using the next generation matrix [38]:

\[
R_t = \frac{S}{N} \left[\frac{q_{E_{lps}}}{(q_{E_{lps}} + f_{E_{lps}}e_{lps} + f_{E_{lps}}e_{lps_{lps}})} \right]^{[\sigma_{lps}/(q_{lps_{lps}} + f_{lps_{lps}}e_{lps_{lps}} + f_{lps_{lps}}e_{lps_{lps_{lps}}})] + [\left(\frac{\gamma_{lps}}{\gamma_{lps} + f_{lps_{lps}}e_{lps_{lps}} + f_{lps_{lps}}e_{lps_{lps_{lps}}} + \gamma_{lps}} \right) q_{lps_{lps}}/(q_{lps_{lps}} + f_{lps_{lps}}e_{lps_{lps}} + f_{lps_{lps}}e_{lps_{lps_{lps}}})]}.
\]

[Eq 8]

This expression can be understood as the fraction of the population that is susceptible, \(S/N \), multiplied by the contact rate \(\beta \) (which is scaled by the social distancing factor \(\kappa \)), multiplied...
by the fraction of hosts that pass through the E class to the I_{ps} class without being removed by contact tracing (1st row), multiplied by the sum of the infections arising from I_{ps} (row 2) and the infections arising from I_s (row 3). The infections arising from I_{ps} (row 2) are the product of their infectiousness, σ_{Ips}, and the infectious period of the I_{ps} class (the inverse of the losses from the I_{ps} class). The infections arising from I_s are the product of their infectiousness, σ_{Is}, and the infectious period of the I_s class (the inverse of the losses from the I_s class) all multiplied by the fraction of hosts in the I_{ps} class that pass into the I_s class without being contact traced.

We examined how R_t varied with different numbers of new symptomatic cases detected (τ_{Is}), delays of 1 to 10 days (which captures the range observed during the epidemic) between symptom onset and the start of contact tracing ($1/\tau_{Is}$ in Eq 2), and numbers of contacts per case (N_{ntr} in Eq 2) [39]. Rapid tests taken on the day of symptom onset, as used by the United Kingdom starting in April 2021, could result in delays as short as 1 day, whereas the time from symptom onset until test results were returned often exceeded 10 days in the US in 2020 [24,40]. In some figures we used the baseline contact tracing capacity standards suggested by the US National Association of County and City Health Officials (15 contact tracers per 100,000 people; https://www.naccho.org/uploads/full-width-images/Contact-Tracing-Statement-4-16-2020.pdf), but note that because the fraction of contacts traced (Eq 2) is a ratio of four quantities, any combination of values that produce the same number of contacts per contact tracer calls per day will produce the same value of R_t. Thus, the results are not geographically specific; all that is needed to apply the results to a new setting is the ratio of contacts needing tracing to tracing capacity. We performed a simple sensitivity analysis of this relationship by determining how much R_t varied with a ten percent increase or decrease in each model parameter (S3 Fig).

We examined the effect of decreasing contact tracing efficiency as infections increased on disease dynamics and R_t by simulating a deterministic version of the model in Eq 1 and plotted R_t in real time as an epidemic swept through a population over one year. We note that SARS-CoV-2 epidemics in most countries have consisted of multiple surges or waves [15,41] as restrictions have limited contact rates. However, the relative relationships we show between the reproductive number R_t and contact tracing demand relative to capacity are time-insensitive and depend only on infections, contacts and contact tracing capacity, and can be scaled by adjusting the fraction of the population that is susceptible.

Finally, we explored the implications of stochastic variability and contact tracing on infection dynamics in a scenario based on a moderate size city (100,000 people) with partly effective non-pharmaceutical interventions/social distancing ($\kappa = 0.6$), resulting in $R_t = 1.33$ with moderately effective testing and contact tracing (equivalent to $1/\tau_{Is} = 10$ days which results in $\approx 25\%$ of infected individuals being tested or quarantined), or $R_t = 1.57$ without contact tracing. We simulated a stochastic version of the model given by Eq 1 where the number of new infections was drawn from a negative binomial distribution with mean equal to R_t and dispersion parameter 0.16 which is intermediate between available estimates for COVID-19 [42–44]. We examined different initial numbers (5 and 50) of latently infected individuals, E, at the start of the epidemic to understand how stochastic variation in transmission could impact the timing of epidemics when the number of initial infections was small or moderately large.

R code to reproduce all results is available from: https://github.com/marmkilpatrick/Contact-Tracing-Efficiency

Results

The effectiveness of contact tracing in reducing the pathogen reproductive number, R_t, was dependent on synergistic interactions among three factors: the number of cases being traced
(given a fixed number of contact tracers), the delay between symptom onset and the start of tracing, $1/\tau_{ts}$, (including getting tested and receiving result), and the fraction of symptomatic cases that get traced (Figs 1 and 2).

First, the relationship between R_t and the number of cases per contact tracer calls per day was approximately sigmoid (Figs 1 and 2); at both high and low case numbers adding or removing contact tracers had smaller effects, whereas at intermediate case numbers relative to capacity, shifting contact tracers had a much larger impact. When the ratio of contacts needing tracing to capacity was high (i.e. 10 or higher), contact tracing had relatively little effect in reducing R_t no matter how long the delay was between symptom onset and the start of tracing, $1/\tau_{ts}$ (right side of Fig 1; this pattern is also evident in Fig 2). This is because <10% of the contacts needing tracing and isolation were reached and isolated.

Contact tracers in regions with very high new case numbers relative to contact tracing capacity (＞10 on Fig 1) would have a larger reduction on R_t if they were tracing calls in locations with intermediate numbers of cases (ratios of contacts needing tracing to capacity of 1–5). In order to reverse an increase in cases (i.e. to reduce $R_t < 1$), the analyses in Figs 1 and 2 suggest that when new case burdens are high relative to capacity, population-wide interventions (e.g. social distancing or different levels of shelter-in-place or lockdown orders which reduce contact rates, β or κ, and shift the entire curves in Figs 1 and 2 downward proportionately and S3 Fig), or orders of magnitude increases in contact tracing capacity are needed until R_t can be effectively reduced by contact tracing. Conversely, and intuitively, when there is excess contact tracing capacity (to the left of 1 on the x-axis in Fig 1), contact tracing was as effective as it could be in reducing R_t, but excess capacity is underutilized. Shifting a subset of contact tracers to areas where cases and contacts needing tracing exceed capacity could substantially reduce R_t in those areas.

Second, increasing delays, $1/\tau_{ts}$, between symptom onset and the start of tracing had a synergistic effect on the efficacy of contact tracing (Fig 1). With a 10 day delay, contact tracing could only reduce R_t by 20% (from 2.6 to 2.1 in Fig 1; compare the right and left heights of the yellow curve). In contrast, if all symptomatic individuals got tested within 4 days of symptom onset and results were returned within the next 24 hours ($1/\tau_{ts} = 5$ days), contact tracing could reduce R_t by 40% from 2.2 to 1.3 (Fig 1 green curve). The maximum benefit of contact tracing (the difference between the maximum and minimum of each curve) is relatively constant for short delays of 1-3d between symptom onset and testing ($1/\tau_{ts}$) because most infected contacts are still in the E class or have just entered the I_{ps} class (S2 Fig). As these delays increase further, more contacts have moved into the infectious classes and have transmitted the pathogen to other hosts (S2 Fig). With a 10 day delay, 96% of contacts have left the E class, and 49% have already reached the R class (S2 Fig). The number of contacts per case obviously also influences the time required to trace these contacts (Fig 2). If allowable (or illegal) gathering sizes increase, this increases the number of contacts per case, which reduces contact tracing efficacy if contact tracing capacity is exceeded.

Thirdly, if contacts for a substantial fraction of all symptomatic cases do not get traced and quarantined, TTIS is far less effective. Figs 1 and 2 primarily showed optimistic scenarios where the fraction of symptomatic infections that are tested and traced is determined only by the delay between symptom onset and testing results being returned ($1/\tau_{ts}$) and the rate of recovery. With a 5 day delay ($1/\tau_{ts} = 5$) (Fig 2), this results in 50% of infections being detected by testing in the mildly symptomatic state (I_s) which is higher than some estimates of case under-ascertainment based on seroprevalence studies, especially early in the pandemic [47,48]. In contrast, if only half of symptomatic cases are tested (and their contacts traced), this is similar to a 10 day delay ($1/\tau_{ts} = 10$) between symptom onset and tracing, which has a far lower impact in reducing R_t at both high and low case burdens (the yellow curve in Fig 1). If
quarantining contacts is only partly effective (e.g. they stay home but infect household members who go on to infect others) this will similarly reduce the effectiveness of contact tracing.

Limited contact tracing can also produce unexpected dynamics. Reduced contact tracing efficiency with increasing cases results in a transient accelerating epidemic where R_t actually increases over time leading to a much larger epidemic size and an accelerated epidemic (Fig 3E and 3F). A decrease in contact tracing efficiency as cases rise can, initially, outweigh the depletion of susceptible individuals which leads to a spike in R_t over time, until depletion of susceptibles overwhelms this effect (compare rightmost panels, Fig 3E and 3F, which have limited contact tracing (15 contact tracers) R_0 is the same value as in panels D and E ($R_0 = 1.35$), but R_t increases as cases increase and contact tracing becomes inefficient, which overwhelms the decrease in the fraction of the population that is susceptible. In all panels, the delay from symptom onset to receiving test results, $1/\tau_{Is}$, is 5d. All populations start with 100,000 individuals. Note the identical epidemic sizes (final fraction susceptible 0.53) for panels A (social distancing) and B (effectively unlimited contact tracing), but much larger epidemic size for limited contact tracing in panel C (final fraction susceptible 0.14).

https://doi.org/10.1371/journal.pcbi.1009122.g003
to very different timing of epidemics if the initial number of infected individuals is low (Fig 4A and 4C; epidemic peaks can vary by 6 months by chance), and variation is larger if R_T is lower (Fig 4A vs Fig 4C and Fig 4B vs Fig 4D). Finally, heterogeneity in individual transmission can result in local fadeout of the pathogen and fadeout is more likely when contact tracing reduces R_T closer to 1, and if the number of initially infected individuals is lower (compare the Fraction of epidemics established in panels A vs B-D).

Discussion

The two main strategies that have been used to control SARS-CoV-2 transmission before the development of vaccines were TTIS and society-wide social distancing interventions (including closing businesses, banning gatherings, wearing masks, etc.) [12]. Closing businesses has had devastating impacts on employment and economies, as well as cascading impacts on society. TTIS has far smaller economic and societal costs, but its efficacy in controlling epidemics is not fully understood, and some studies suggest that it is insufficient to keep R_T below 1 in
many settings, especially without widespread testing and digital contact tracing [13,14,22,49]. We examined how the efficacy of contact tracing decreases with increasing case burden. As case burdens increased relative to contact tracing capacity, contact tracing reached a small fraction of contacts and had little effect on R_t, leading to accelerating epidemics. Conversely, when case numbers were very low relative to contact tracing capacity, there was excess capacity and, all else being equal, contact tracers could be used more effectively in higher case burden settings with negligible impacts on local transmission. We note that the exact number of contact tracers needed to reduce R_t depends on the number of contacts per case and the number of calls each tracer can make each day (Fig 2). However, this key quantity appears as a ratio of case-contacts per contact tracer calls per day. Thus, each contact tracing team (e.g. a county or local jurisdiction) can use local estimates of contacts per case and the number of calls each tracer can make each day to determine where they are on the modelled relationships (Figs 1 and 2).

Allocating contact tracers among populations to most effectively reduce total infections is a non-trivial problem. A smaller reduction in R_t (e.g. 10%) in one population can prevent more infections (especially over multiple generations of transmission) than a larger (e.g. 20%) reduction in R_t in a second population if R_t in the second location is lower (especially when $R_t>1$ in the first population), or when there is a larger number of infected individuals in the first population. Thus, transferring contact tracers from a region with a high case burden relative to contact tracing capacity to maximize their efficacy in reducing R_t should only be done if other measures (e.g. social distancing) can be put into place to reduce R_t where case numbers are high. More generally, allocation of contact tracers to maximize the number of cases prevented given an array of tools would require a complex dynamic analysis beyond that examined here. However, the results shown here show the quantitative impact that shifts in contact tracers can have in reducing R_t, which can be critical, especially if the goal is to use contact tracing to reduce $R_t<1$ in a given population.

We also found that the efficacy of contact tracing itself, regardless of capacity, was strongly influenced by delays between the onset of symptoms and the beginning of tracing, as well as the fraction of symptomatic infections that were traced. Unless delays were short and the fraction of symptomatic cases that were traced was high, contact tracing had limited effects in reducing R_t. This finding of synergistic effects between testing delays and contact tracing efficiency parallels results from other studies demonstrating the large effects of delays in reducing efficacy of isolating infections by testing alone [50]. We note that in the model considered here, only symptomatic individuals were removed by testing (pre-symptomatic individuals were not detected by testing) which leads to a smaller impact of testing on R_t than is possible if all individuals are tested [40]. Our results emphasize the importance of encouraging people to get tested as soon as possible after mild symptom onset, and having sufficient testing capacity to return their results quickly [40]. Similarly, the fraction of symptomatic infections that get tested and traced is poorly known, but if the ratio of infections to cases from seroprevalence studies in some locations is approximately correct (e.g. 10:1 to 4:1; [47,48]), then contact tracing will have limited effects in reducing transmission.

Allocation of contact tracing resources can be most efficiently deployed in two ways. First, contact tracing is much more effective when infections are detected soon after symptom onset. One should prioritize these individual cases for tracing since their contacts are likely to be earlier in their infections and quarantining/isolating them will cut off most or all of their infectious period (S2 Fig). If one knows the date of contact between the case and the contact, one could also prioritize tracing more recent contacts and those that had contact with the case during the case’s days of peak infectiousness just before and after symptom onset [51,52]. Second, if one is attempting to limit transmission in multiple regions (e.g. counties within a state) one
could deploy contact tracers to counties where they will be able to have the most impact: from places with excess capacity to those with intermediate numbers of cases per contact tracer calls per day. Conversely, if contact tracers cannot quarantine the contacts of cases within 10–12 days of the case’s symptom onset, they will be unlikely to effectively reduce transmission from those contacts.

Our results also demonstrate two phenomena observed in COVID-19 epidemics. First, epidemic dynamics sometimes differ enormously between places that seem otherwise similar which is well understood by mathematical modelers [15,53–55], but sometimes forgotten in considering spatial variation in epidemic outcomes. Spatial variation in disease dynamics may be due to differences in social behavior or contact patterns, but we showed that stochastic chance may also play a large role in shifting the timing of epidemics by up to six months. The impact of stochasticity is largest when the initial number of cases is low and \(R_t \) is close to 1 (i.e. when lockdowns are first lifted), because this results in populations spending longer periods of time with few cases where stochastic variation is most important. Second, staged business re-openings and the emergence of new virus variants have sometimes led to accelerating or runaway epidemics. These may be due to sudden changes in social behavior, but we showed that accelerating epidemics can also result from decreases in contact tracing efficiency [26]. Increasing contact tracing capacity could limit this epidemic acceleration as cases increase, which suggests that training a reserve capacity of tracers and being able to deploy a mobile tracing force could help limit runaway epidemics.

More broadly, contact tracing could play an important role in limiting transmission of SARS-CoV-2 and other pathogens [49]. However, we found that its efficacy depends on participation in seeking testing immediately following symptom onset, quick return of test results, and sufficient contact tracing capacity if case numbers surge. Shortcomings in each of these factors greatly limit its efficacy, especially as cases increase, which could necessitate much more damaging measures to control transmission, including widespread business and school closures. Investments in public health, including testing, contact tracing, and public outreach to encourage health seeking when symptomatic, is likely a much more cost-effective approach to control COVID-19, and other diseases.

Supporting information

S1 Fig. Compartmental model of SARS-CoV-2. See text for equations and Table 1 for parameter values. Boxes represent Susceptible (S), Exposed (E), Infected (I), recovered (R), and Quarantined/Isolated (Q) classes. There are two compartments for infected individuals that reflect the presence of symptoms (pre-symptomatic, \(I_{ps} \), and symptomatic, \(I_s \)). \(\kappa \) is a social distancing factor between 0 and 1 that modifies the contact rate \(\beta \). \(\sigma \) are infectiousness for each of the \(I_{ps} \) and \(I_s \) classes, \(q \) are transition rates between classes given by the subscripts separated by the arrow (e.g. \(q_{E!ps} \) is the transition rate between the E and \(I_{ps} \) classes), \(\varepsilon \) are the rates of removal by contact tracing from the E or I classes to the quarantined class Q based on which class infected those individuals (e.g. \(\varepsilon_{E!I_{ps}} \) is the contact tracing removal rate of E individuals that were infected by \(I_{ps} \) individuals), \(\tau_{fs} \) is the removal rate by testing of symptomatic infected individuals, \(\alpha \) is the disease-caused death rate, and \(\gamma \) are the recovery rates to the R class. The dashed lines indicate that both classes of infected individuals contribute to transmission. (TIF)

S2 Fig. The impact of delays between individuals becoming infected and being traced and removed on the host class that that infected individual will be in before being removed. For example, if the delay between infection and quarantine/isolation is 6 days, then 15% of infected individuals will still be in the latently infected class, E, 28% in the pre-symptomatically
infected class, I_{ps}, 33% in the symptomatically infected class, I_s, and 24% will have already recovered, R.

(TIF)

S3 Fig. Sensitivity analysis. The plot shows how much R_t changes from a 10% increase (red) or 10% decrease (blue) in that model parameter relative to values in Table 1 (with \(\tau_{Is} = 0.2\) and \(\kappa = 1\)). R_t scales linearly with \(\beta\) and \(\kappa\), whereas transition parameters \(q_{E\rightarrow I_{ps}}\), \(q_{I_{ps}\rightarrow Is}\), the testing rate \(\tau_{Is}\), and pre-symptomatic infectiousness \(\sigma_{I_{ps}}\) have approximately 50–75% as large an effect as \(\beta\) or \(\kappa\). The recovery rate, \(\gamma_{Is}\), and symptomatic infectiousness \(\sigma_{Is}\) are less influential, and the death rate \(\alpha_{Is}\) has very little effect on R_t.

(TIF)

Acknowledgments
We thank the dozens of scientists and public health practitioners who have informed this work through comments and discussions, and helpful comments from Odo Diekmann and Hans Heesterbeek.

Author Contributions
Conceptualization: Billy J. Gardner, A. Marm Kilpatrick.
Formal analysis: Billy J. Gardner, A. Marm Kilpatrick.
Funding acquisition: A. Marm Kilpatrick.
Investigation: Billy J. Gardner, A. Marm Kilpatrick.
Writing – original draft: Billy J. Gardner, A. Marm Kilpatrick.
Writing – review & editing: Billy J. Gardner, A. Marm Kilpatrick.

References
1. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020; 395(10225):689–97. https://doi.org/10.1016/S0140-6736(20)30260-9 WOS:000516755200027. PMID: 32014114
2. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020; 395(10231):1225–8. https://doi.org/10.1016/S0140-6736(20)30627-9 WOS:000526814200032. PMID: 32178769
3. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270+. https://doi.org/10.1038/s41586-020-2012-7 WOS:000518098100001. PMID: 32015507
4. Zhu N, Zhang DY, Wang WL, Li XW, Yang B, Song JD, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382(8):727–33. https://doi.org/10.1056/NEJMo2001017 WOS:000517119800008. PMID: 31978945
5. Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenčiak T, et al. Inferring the effectiveness of government interventions against COVID-19. Science. 2021; 371(6531):eabd9338. https://doi.org/10.1126/science.abd9338 PMID: 33323424
6. Dehning J, Zierenberg J, Spitzner FP, Wirbal M, Pinheiro J, Wilczek M, et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science. 2020; 369(6500):160+. https://doi.org/10.1126/science.abb979 WOS:000548753100036. PMID: 32414780
7. Ng YX, Li ZB, Chua YX, Chaw WL, Zhao Z, Er B, et al. Evaluation of the Effectiveness of Surveillance and Containment Measures for the First 100 Patients with COVID-19 in Singapore—January 2-February 29, 2020. MMWR-Morb Mortal Wkly Rep. 2020; 69(11):307–11. https://doi.org/10.15585/mmwr.mm6911e1 WOS:000536000700007. PMID: 32191691
8. Pung R, Chiew CJ, Young BE, Chin S, Chen MIC, Clapham HE, et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet. 2020; 395
Contact tracing efficiency, transmission heterogeneity and accelerating COVID-19 epidemics

Koo JR, Cook AR, Park M, Sun Y, Sun H, Lim JT, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet Infect Dis. 2020; 20:678–88. https://doi.org/10.1016/S1473-3099(20)30162-6 PMID: 32213332

Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellon TA, Coupland H, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 15. https://doi.org/10.1038/s18465740 WOS:000562393000001. PMID: 14423077

Baldwin R, Mauro BWD, editors. Economics in the Time of COVID-19. London, UK: CEPR Press; 2020.

Cowling BJ, Aliello AE. Public Health Measures to Slow Community Spread of Coronavirus Disease 2019. J Infect Dis. 2020; 221(11):1749–51. https://doi.org/10.1093/infdis/jiaa123 WOS:000537458000003. PMID: 32193550

Cowling BJ, Ali ST, Ng TWY, Tsang TK, Li JCM, Fong MW, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health. 2020; 5(5):E279–E88. https://doi.org/10.1016/s2468-2667(20)30090-6 WOS:000531073600021. PMID: 32311320

Hellewell J, Abbott S, Gimma A, Bosse NJ, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Global Health. 2020; 8(4):E488–E96. https://doi.org/10.1016/S2214-109X(20)30074-7 WOS:000521078600021. PMID: 32191825

Aleta A, Martin-Corrall D, Piontti APY, Ajelli M, Litvinova M, Chinazzi M, et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat Hum Behav. 2020; 4(9):964–+. https://doi.org/10.1038/s41562-020-0931-9 WOS:000562442000001. PMID: 32759985

Firth JA, Hellewell J, Klepac P, Kissler S, Kucharski AJ, Spurgin LG, et al. Using a real-world network to model localized COVID-19 control strategies. Nat Med. https://doi.org/10.1038/s41591-020-1036-8 WOS:000557134700008. PMID: 32770169

Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat Med. https://doi.org/10.1038/s41591-020-0883-7 WOS:000528109400001. PMID: 32222102

Marcel S, Christian LA, Richard N, Silvia S, Emma H, Jacques F, et al. COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation. Swiss Medical Weekly. 2020; 150. https://doi.org/10.4414/smw.2020.07.22.2015835 2. https://doi.org/10.1126/science.abb6936 PMID: 33712416

Kerr CC, Mistry D, Stuart RM, Rosenfeld K, Hart GR, Núñez RC, et al. Controlling COVID-19 via test-trace-quarantine. medRxiv. 2021:2020.07.15.20154765. https://doi.org/10.1038/s41467-021-23276-9 PMID: 34017008

24. Kretzschmar ME, Rozhnova G, Bootsma MCJ, van Boven M, van de Wijgerd J, Bonten MJM. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. Lancet Public Health. 2020; 5(8):E452–E9. https://doi.org/10.1016/s2468-2667(20)30157-2 WOS:000557426000015. PMID: 32982487

25. Moreno López JA, Arregui-García B, Bentkowski P, Bioglio L, Pinotti F, Boëlle P-Y, et al. Anatomy of digital contact tracing: role of age, transmission setting, adoption and case detection. medRxiv. 2021:2020.07.22.20158352. https://doi.org/10.1126/sciadv.abd8750 PMID: 33712416

26. Contreras S, Dehnig J, Loidolt M, Zierenberg J, Spitzner FP, Urrea-Quintero JH, et al. The challenges of containing SARS-CoV-2 via test-trace-and-isolate. Nat Commun. 2021; 12(1):13. https://doi.org/10.1038/s41467-020-20169-1 WOS:000609614100002. PMID: 33397885
27. Grantz KH, Lee EC, McGowan LDA, Lee KH, Metcalf CJE, Gurley ES, et al. Maximizing and evaluating the impact of test-trace-isolate programs. medRxiv. 2020;2020.09.02.20186916. https://doi.org/10.1371/journal.pmed.1003585 PMID: 33930019

28. Madwell ZJ, Yang Y, Longini IM, Halloran ME, Dean NE. Household Transmission of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020; 3(12):17. https://doi.org/10.1001/jamanetworkopen.2020.31756 WOS:000600982200011. PMID: 33315116

29. Qiu X, Nergiz AI, Maraoe AE, Bogoch II, Low N, Cevik M. Defining the role of asymptomatic and pre-symptomatic SARS-CoV-2 transmission—a living systematic review. Clinical Microbiology and Infection. 2021. https://doi.org/10.1016/j.cmi.2021.01.011

30. Bi Q, Lessler J, Eckerle I, Lauer SA, Kaiser L, Vuilleumier N, et al. Household Transmission of SARS-CoV-2: Insights from a Population-based Serological Survey. medRxiv. 2021:2020.11.04.20225573. https://doi.org/10.1101/2020.11.04.20225573

31. Zhou F, Yu T, Du RH, Fan GH, Liu Y, Liu ZB, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229):1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3 WOS:000226501000033. PMID: 32171076

32. Lewnard JA, Liu VX, Jackson ML, Schmidt MA, Jewell BL, Flores JP, et al. Incidence, clinical outcomes, and transmission dynamics of severe coronavirus disease 2019 in California and Washington: prospective cohort study. BMJ-British Medical Journal. 2020; 369:10. https://doi.org/10.1136/bmj.m1923 WOS:000538363860001. PMID: 32444358

33. Van Zandvoort K, Gimma A, Prem K, Klepac P, Rubin GJ, et al. Quantifying the impact of asymptomatic and pre-symptomatic SARS-CoV-2 transmission—a living systematic review. Clinical Microbiology and Infection. 2021. https://doi.org/10.1016/j.cmi.2021.01.011

34. Madwell ZJ, Yang Y, Longini IM, Halloran ME, Dean NE. Household Transmission of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020; 3(12):17. https://doi.org/10.1001/jamanetworkopen.2020.31756 WOS:000600982200011. PMID: 33315116

35. Qiu X, Nergiz AI, Maraoe AE, Bogoch II, Low N, Cevik M. Defining the role of asymptomatic and pre-symptomatic SARS-CoV-2 transmission—a living systematic review. Clinical Microbiology and Infection. 2021. https://doi.org/10.1016/j.cmi.2021.01.011

36. Bi Q, Lessler J, Eckerle I, Lauer SA, Kaiser L, Vuilleumier N, et al. Household Transmission of SARS-CoV-2: Insights from a Population-based Serological Survey. medRxiv. 2021:2020.11.04.20225573. https://doi.org/10.1101/2020.11.04.20225573

37. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infection in Netherlands: a living systematic review and meta-analysis. Eurosurv. 2020; 25(5):10–5. https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062 WOS:000438600000003. PMID: 32046819

38. Kirschner D, van den Driessche P, Moghadas S. A Simple SARS Transmission Model. J R Soc Interface. 2010; 7(47):873–85. https://doi.org/10.1098/rsif.2009.0386 WOS:000276992100002. PMID: 19892718

39. Madwell ZJ, Yang Y, Longini IM, Halloran ME, Dean NE. Household Transmission of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020; 3(12):17. https://doi.org/10.1001/jamanetworkopen.2020.31756 WOS:000600982200011. PMID: 33315116

40. Althouse BM, Wenger EA, Miller JC, Scarponi SV, Allard A, Hébert-Dufresne L, et al. Test sensitivity is secondary to physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020; 18(1):10. https://doi.org/10.1186/s12916-019-1485-4 WOS:000533909400001. PMID: 32006571
46. Zhang JJ, Litvinova M, Liang YX, Wang Y, Wang W, Zhao SL, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. 2020; 368(6498):1481++. https://doi.org/10.1126/science.abb8001 WOS:000545264600042. PMID: 32350060

47. Rosenberg ES, Tesoriero JM, Rosenthal EM, Chung R, Barranco MA, Styer LM, et al. Cumulative incidence and diagnosis of SARS-CoV-2 infection in New York, Ann Epidemiol. 2020; 48:23–9. https://doi.org/10.1016/j.amepi.2020.06.004

48. Reese H, Iuliano AD, Patel NN, Garg S, Kim L, Silk BJ, et al. Estimated Incidence of Coronavirus Disease 2019 (COVID-19) Illness and Hospitalization—United States, February—September 2020. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa1780 PMID: 33237993

49. Wymant C, Ferretti L, Tsallis D, Charalambides M, Abeler-Dörner L, Bonsall D, et al. The epidemiological impact of the NHS COVID-19 App. Nature. 2021. https://doi.org/10.1038/s41591-020-0869-5 PMID: 33979832

50. Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, et al. Surveillance testing of SARS-CoV-2. medRxiv. 2020: doi.org/10.1101/2020.06.22.20136309.

51. Wilson AM, Aviles N, Beamer PI, Szabo Z, Ernst KC, Masel J. Quantifying SARS-CoV-2 infection risk within the Apple/Google exposure notification framework to inform quarantine recommendations. medRxiv. 2020. https://doi.org/10.1101/2020.07.17.20156539

52. He X, Lau EHY, Wu P, Deng XL, Wang JA, Hao XX, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020; 26(5):672–+. https://doi.org/10.1038/s41591-020-0869-5 WOS:000549231500020. PMID: 32296168

53. Bitthun P, Golestanian R. Stochastic effects on the dynamics of an epidemic due to population subdivision. Chaos. 2020; 30(10):12. https://doi.org/10.1063/5.0028972 WOS:00058485400001. PMID: 33138468

54. Kucharski AJ, Klepac P, Conlan AJK, Kissler SM, Tang ML, Fry H, et al. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infect Dis. 2020; 20(10):1151–60. https://doi.org/10.1016/S1473-3099(20)30457-6 WOS:000580053900038. PMID: 32559451

55. Lloyd-Smith JO, Cross PC, Briggs CJ, Daugherty M, Getz WM, Latto J, et al. Should we expect population thresholds for wildlife disease? Trends Ecol Evol. 2005; 20(9):511–9. ISI:000232128900013. PMID: 16701428

56. Abbott S, Hellewell J, Thompson RN, Sherratt K, Gibbs HP, Bosse NI, et al. Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts [version 1; peer review: awaiting peer review]. Wellcome Open Research. 2020; 5:112. https://doi.org/10.12688/wellcomeopenres.16006.1

57. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008; 5(3):381–91. https://doi.org/10.1371/journal.pmed.0050074 ISI:000254928900013. PMID: 18366252

58. Verity R, Okell LC, Dorligatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020; 20(6):669–77. https://doi.org/10.1016/S1473-3099(20)30434-7 WOS:000537391000043. PMID: 32240634

59. Russell TW, Hellewell J, Jarvis CI, Zandvoort Kv, Abbott S, Ratnayake R, et al. Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. Eurosurv. 2020; 25:12. https://doi.org/10.2807/1560-7917.ES.2020.25.12.2000256 PMID: 32654121

60. Buitrago-Garcia DC, Egli-Gary D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. Asymptomatic SARS-CoV-2 infections: a living systematic review and meta-analysis. medRxiv. 2020. https://doi.org/10.1371/journal.pmed.1003440 PMID: 32960881