Stability and electronic properties of gallenene†

Alex Kutana, Tariq Altalhi, Qiyuan Ruan, Jun-Jie Zhang, Evgeni S. Peneva and Boris I. Yakobson*bc

Two-dimensional metals offer intriguing possibilities to explore the metallic and other related properties in systems with reduced dimensionality. Here, following recent experimental reports of synthesis of two-dimensional metallic gallium (gallenene) on insulating substrates, we conduct a computational search of gallenene structures using the Particle Swarm Optimization algorithm, and identify stable low energy structures. Our calculations of the critical temperature for conventional superconductivity yield values of ~7 K for gallenene. We also emulate the presence of the substrate by introducing the external confining potential and test its effect on the structures with unstable phonons.

1 Introduction

Since their conception, two-dimensional (2D) materials have been of great fundamental and technological interest. Early 2D materials were envisaged as easily exfoliable, weakly coupled 2D layers with strong in-plane binding (e.g., graphene, and transition metal dichalcogenides). More recently, however, there has been growing interest in exploring the possibility of two-dimensional forms where layering is not typical in the bulk form. One of the prominent examples of such a material is monoelemental boron, where none of the natural bulk phases are layered, but can exist in the 2D form. Further examples include silicene, germanene, stanene, and other non-van der Waals materials. Recently, another monoelemental 2D material composed of gallium – gallenene – has been isolated experimentally by solid-melt exfoliation on silica, grown epitaxially on the Si(100) and Si(111) substrates, or achieved by intercalation of epitaxial graphene on SiC. Located two rows down from boron in the periodic table, gallium in its 2D form is metallic, similar to borophene and other monoelemental 2D metals. Unlike borophene, however, which was originally grown on another metal (silver), gallenene was obtained on an insulating substrate, allowing exploration of the interesting properties of 2D metals with minimal interference from the substrate.

2 Results and discussion

Motivated by these advances, we conduct a computational exploration of the structural stability and properties of gallenene. Unlike previous studies, which focused on a limited number of gallenene structures, we aim at carrying out a comprehensive search employing the Particle Swarm Optimization (PSO) algorithm that allows the identification of low energy structures. In the structures with unstable phonon modes, we tested external potential confinement to emulate the stabilizing effect of the substrate, rather than applying an in-plane strain. We also evaluated the critical temperature for the superconducting transition from first-principles density functional theory (DFT) calculations in several gallenenes to study the effects of low dimensionality and nanoconfinement.

The CALYPSO code based on the PSO algorithm has been used extensively for predicting two-dimensional materials, and is adopted here to explore gallenene. Initially, random structures with certain symmetries are constructed with atomic coordinates generated by the crystallographic symmetry operations. To compare formation energies, structural optimization experiments are performed using the Quantum ESPRESSO code. Scalar relativistic ultrasoft pseudopotentials were used to represent ionic cores as provided by the pslibrary. The Perdew–Zunger local-density approximation (LDA) functional was employed. A plane-wave basis set with a kinetic energy cutoff of 60 Ry was used for the wavefunctions, and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was used for structural relaxations. Atomic positions were relaxed until forces on all atoms were less than 0.5 meV Å⁻¹. In each generation, 70% of the structures are generated from the lowest energy structures in the previous generation using particle swarm optimization, while the rest of the structures are randomly generated. Here, we use a typical setting of 30 generations of gallenene structures, each with a population size of 20, yielding 600 structures in total. As shown in Fig. 1, gray
circles correspond to all algorithmically-generated, optimized structures with relatively high energies. These points are shown for completeness and are not noted, since they are never referred to specifically but only as a collective set canvassed by CALYPSO. Among them, the structures with lowest energies, shown with red circles in Fig. 1, were investigated further.

The total energy E_{tot} of a layered material as a function of the number of layers n can be well approximated with the following expression:

$$E_{tot}(n)/A = nE_{2D} + (n-1)E_{bind},$$ \hspace{1cm} (1)

where E_{2D} is the total energy of a single layer per unit area, E_{bind} is the binding energy between layers, and A is the area of the 2D cell. Here, a similar expression is adopted for bulk-like materials such as Ga. Substituting $n-1 = w/t$ and $nA = N/r_0$, where w is the slab width (defined as the difference between the maximum and minimum of its atomic coordinates normal to layers), t is the thickness of a single layer, N is the total number of atoms in the system, and r_0 is the assumed constant areal atom density in a single layer, and one obtains the following expression for the relative energy per unit area per layer:

$$
\frac{E_{tot}(w)r_0}{N} - E_{2D} = E_{bind} - \frac{t}{w+t}E_{bind}
$$ \hspace{1cm} (2)

The first term on the left side of eqn (2) is essentially (within a constant ρ_0) the energy per atom, or chemical potential of Ga at $T = 0$ K. For Ga, the layer thickness t was set to 4.4 Å, equal to the LDA c lattice constant of bulk Ga, giving $\rho_0 = 0.24$ Å$^{-2}$. For a non-layered material such as gallium, E_{2D} is the energy of a hypothetical atomically-thin structure obtained by extrapolating eqn (2) to $n = 1$. To estimate the “degree of 2D-ness” of gallenene, as shown in Fig. 1, we plot the left part of eqn (2) for the 2D Ga structures as a function of $1/n = t/(w+t)$ and compare with both 2D-like and bulk-like prototypical materials such as graphite25 and silicon.26 We also plot the line based on the theoretical surface energy26 of the lowest-energy Ga surface, Ga {100}. The line connecting the lowest-energy gallenene structures and bulk α-Ga is also drawn, with its slope yielding the effective binding energy. Note that the interlayer binding energy E_{bind}, i.e., the energy of cohesion between the two layers, and the conventionally defined surface energy γ are related as $E_{bind} = 2\gamma$. The experimental point is shown for comparison, based on the reported8 thickness of \sim4 nm for exfoliated gallenene.

One can see that in gallenene the energy trend with the thickness is quite close to one that would be obtained by cleavage at the lowest-energy surface, and actually shows a higher slope, i.e., atomically thin Ga displays a bulk-like behavior. The effective binding energy obtained from the slope is 89 meV Å$^{-2}$; this value should be compared with the binding energies of 26 meV Å$^{-2}$ for graphite25 63 meV Å$^{-2}$ for Ga{100}, and 176 meV Å$^{-2}$ for the (2×1)-reconstructed Si{100}26 The large slope may reflect the tendency of freestanding gallenene sheets to assume the bulk form. On the other hand, the low surface energy of bulk Ga may facilitate exfoliation, although the substrate and/or other kinds of confinement may play an important role in obtaining atomically thin layers.

Here the 2D structures are named based on the total Ga coverage, i.e., the total number of atoms per area, taking the Ga honeycomb as a reference, which is assigned a value of 10. The energies of the previously considered8 gallenene structures, honeycomb a_{100} and rectangular b_{010}, here designated as structures 10 and 141, respectively, shown in Fig. 1, are seen to be rather high. Allowing out of plane displacements in the honeycomb a_{100} structure leads to a triangular-like structure with the 6-fold coordination, with an energy similar to that of 141, designated here as 142. Other low-energy structures are found, e.g., 12 and 23, as shown in the ESI.†

We have performed the electron–phonon coupling and evaluated critical temperatures T_c for phonon-mediated superconductivity in several freestanding gallenene structures, as given by the McMillan equation.27 Phonon dispersions and electron–phonon coupling coefficients are calculated with the Quantum ESPRESSO code.23 The parameters and settings used are given in the ESI.† New structures 142, 40, 27, and the honeycomb structure 10, are explored. All of the structures are metallic, as evidenced by their band structures and electron density of states shown in Fig. S2 and S3.† In addition, structure 141 has a crossing of two bands near the Fermi level indicating the presence of a nodal line, as shown in the inset of Fig. S2b.† The Dirac-like band crossings at J_1 and J_2 in structure 141 shown in Fig. S2c† are further below or above the Fermi level and are...
thus of less interest. The evaluation of the critical temperature
is based on the microscopic theory of Bardeen, Cooper, and
Schrieffer (BCS), with the rigorous treatment of electron–
phonon interactions introduced by Migdal and Eliashberg. Pho-
non frequencies and electron–phonon coupling coefficients
were calculated using the density-functional perturbation
theory. The settings used in these calculations are given in the
ESI.† The T_c values were obtained from the analytical approxi-
mation given by the McMillan equation, further modified by
Allen and Dynes:*

$$k_B T_c = \frac{\hbar \omega_{\text{in}}}{1.2} \exp \left(-\frac{1.04(1 + \lambda)}{\lambda - \mu^* - 0.624} \right)$$

The prefactor ω_{in} is the logarithmically averaged phonon
frequency and the effective electron-electron repulsion is
treated as an empirical parameter with the value $\mu^* = 0.1$. The
obtained values of the T_c are in the 4–8 K range, as shown in
Fig. 2, where the corresponding structures are also displayed.
Similar values of the critical temperature are a result of simi-
larities of phonon frequencies and electron–phonon coupling
coefficients in different gallenene structures. A recent relevant
paper brought to our attention after the submission of the
present work has estimated the T_c to be 7–10 K for the structures
taken from ref. 8 (unstable 10 and metastable 14, in our nota-
tions, Fig. 1).

The phonon spectra of structures 40, 14, and 14 are shown in
Fig. 3. The 4-layer structure 40 is stable, whereas structures
14 and 14 show phonon instabilities. Dynamic instabilities
are common in freestanding atomically-thin 2D materials,
manifesting as imaginary frequencies in the phonon disper-
sions obtained with DFT. Using supercells and applying small
in-plane strains are some of the useful approaches for stabiliz-
ing the phonons in such cases. However, larger cell use and
extra optimization are time consuming, while strains on the cell
cannot imitate the stabilization effects from the substrate, as
these strains are applied in the plane of the 2D materials (xy),
but the role of the substrate is much like a confinement in the z
direction. These confinement effects from the substrate can
however be mimicked by applying an external potential.

The full interaction potential between the 2D adsorbate and
the substrate is an unknown function of all the atomic coordi-
nates. In the harmonic approximation however, one only needs
to consider the second order term of the interaction. Therefore,
an external potential of the parabolic form can be used to
represent this interaction in phonon calculations. With the
potential, the nuclear equations of motion are modified as
follows.

In the adiabatic (Born–Oppenheimer) approximation and
classical limit, the lattice-dynamical properties are determined
from the harmonic phonon frequency ω which is the solution of
the following secular equation:

$$\det \left[1 - \frac{\omega^2}{\sqrt{M_i M_j} \partial R_i / \partial R_j} \right] = 0$$

where R_i is the coordinate of the ith nucleus, M_i is its mass, $R \equiv$
{R}3_i is the set of all the nuclear coordinates, and $E(R)$ is the
adiabatic potential energy surface. For monoelemental
compounds such as gallene $M_1 = M_2 = \ldots = M$. After applying
the external potential, the total energy E_{tot} becomes

$$E_{\text{tot}}(R) = E(R) + E_{\text{ext}}(R)$$

where, $E(R)$ is the energy of the system without the external
potential and $E_{\text{ext}}(R)$ is the energy of the external force field. A
quadratic confining potential of the following form is applied:

$$E_{\text{ext}}(R) = \frac{1}{2} k \sum_{i} R_{ij}^2$$

where, k is the force constant and R_{ij} is the coordinate in the
z-direction of the ith nucleus. The corresponding force on the
ith nucleus is given by

$$F_{\text{ext}} = -\frac{\partial E_{\text{ext}}(R)}{\partial R_i} = -k \sum_{j} R_{ij} \hat{k}$$

and its force constant k is added to the appropriate elements of
the energy Hessian matrix. Based on the above equations,
energy, force, and phonon subroutines of the Quantum
ESPRESSO code were modified to implement the quadratic
external potential, by adding the terms in eqn (6) and (7), and
force constant k to the corresponding variables in the code.
In this work, a spring constant $k = 3.7 \text{ kg s}^{-2}$ was used. This value corresponds to a harmonic oscillation frequency of 30 cm$^{-1}$ for the gallium atom, which is also the frequency shift of the ZA branch at the Γ point. The strength of this stabilizing potential should not exceed the interaction strength between gallenene and real substrates. Our DFT calculations show that this condition should hold for most substrates. For example, growth of gallenene on the Si(111) substrate has been reported recently.\cite{9} We carried out calculations for gallenene on the Si(100) substrate and obtained the second order interaction term $k \sim 56 \text{ kg s}^{-2}$, which is ~ 15 times larger than the value used to stabilize the gallenenes. The interaction curve between gallenene and the Si(100) substrate obtained from DFT is shown in the ESI.\footnote{†}

The obtained phonon spectra of structures 141 and 142 with the external confinement are shown in Fig. 4a and b. In the former structure, after re-optimization in the external potential, the imaginary frequencies are removed. The latter structure shows instability even in confinement, with imaginary frequencies existing between Γ and J_1 points. The atomic motions in these unstable modes are in fact in-plane, whereas the forces from the external potential act in the z direction and thus can only stabilize the out-of-plane modes. This is the case for structure 141, where the unstable modes along the Γ–X line are out-of-plane, and are stabilized by the external potential. The visualization of the unstable vibrational modes is provided in the ESI.\footnote{†}

3 Conclusions

In summary, we explored feasibility of two-dimensional gallium (gallenene) by performing a computational search of various two-dimensional polymorphs using the Particle Swarm Optimization algorithm. The stability trend of the structures found in the search points at the bulk-like behavior in few-layer...
gallium. An overall important conclusion seems to be that gal-
lenene is unlikely to maintain the 2D-form, stable only at
a rather thick “4-layer” form (structure 40) and gravitates toward
thin films of bulk Ga. Only in the presence of the substrate can
some thinner polymorphs be stabilized. This suggests that
chemical vapor deposition or molecular beam epitaxy could
possibly produce stable gallenene on substrates. Calculations of
the critical temperature for conventional superconductivity
have yielded values of ~7 K in gallenene. Finally, external
potential imitating the confining effect of the substrate has
been applied to the structures that displayed unstable phonon
modes. The potential is shown to be instrumental in stabilizing
phonon modes with out of plane atomic displacements.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the U.S. Department of Energy (DE-
SC0012547) and by Taif University Research Support Project
(TURSP-HC2021/1, Saudi Arabia), for T. A. and B. I. Y. This
research used resources of the National Energy Research
Scientific Computing Center (NERSC), supported by the DOE
Office of Science under Contract No. DE-AC02-05CH11231, and
resources provided by the NOTS cluster at Rice University
acquired with funds from NSF grant CNS-1338 099.

References

1 A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S.
Roche, P. Boggild, S. Borini, F. H. L. Koppens, V.
Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco,
L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli,
T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi,
L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold,
G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun,
C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis,
M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi,
D. Neumaier, E. Treossi, V. Pellegrini, M. Polini,
A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn,
J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant,
L. Occhipinti, A. Di Matteo, A. K. Inkinloch, T. Seyller,
E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen,
S. R. T. Neil, Q. Tannock, T. Löfwander and J. Kinaret,
Nanoscale, 2015, 7, 4959–4810.

2 K. S. Novoselov, A. Mishchenko, A. Carvalho and A. H. Castro
Neto, Science, 2016, 353, 1–11.

3 E. S. Penev, N. Marzari and B. I. Yakobson, ACS Nano, 2021,
15, 5959–5976.

4 A. J. Mannix, X.-F. Zhou, B. Kiraly, J. D. Wood, D. Alducin,
B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest,
M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam and
N. P. Guisinger, Science, 2015, 350, 1513–1516.

5 B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng,
S. Meng, L. Chen and K. Wu, Nat. Chem., 2016, 8, 563–568.

6 G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das,
D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang,
S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik,
B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu,
D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak,
M. Terrones and J. A. Robinson, ACS Nano, 2015, 9, 11509–
11539.

7 R. Friedrich, M. Ghorbani-Asl, S. Curtarolo and A. V. Krasheninnikov,
2021, arXiv preprint, arXiv:2110.01366.

8 V. Kochat, A. Samanta, Y. Zhang, S. Bhowmick,
P. Manimunda, S. A. S. Asif, A. S. Stender, R. Vajtai,
A. K. Singh, C. S. Tiwary and P. M. Ajayan, Sci. Adv., 2018,
4, 1–11.

9 M.-L. Tao, Y.-B. Tu, K. Sun, Y.-L. Wang, Z.-B. Xie, L. Liu,
M.-X. Shi and J.-Z. Wang, 2D Materials, 2018, 5, 035009.

10 Y. Li, J. Zhang, F. Yin, Y. Wang, H. Feng, S. Zhou and Y. Du,
Nanoscale, 2019, 11, 17201–17205.

11 S. Wundrack, D. Momeni, W. Dempwolf, N. Schmidt,
K. Pierz, L. Michalischyn, H. Spende, A. Schmidt,
H. W. Schumacher, R. Stoch and A. Bakin, Phys. Rev.
Mater., 2021, 5, 024006.

12 E. S. Penev, S. Bhowmick, A. Sadrzadeh and B. I. Yakobson,
Nano Lett., 2012, 12, 2441–2445.

13 E. S. Penev, A. Kutana and B. I. Yakobson, Nano Lett., 2016,
16, 2522–2526.

14 J. Nevalaita and P. Koskinen, Phys. Rev. B: Condens.
Matter Mater. Phys., 2018, 97, 035411.

15 K. G. Steenbergen and N. Gaston, Chem. Commun., 2019, 55,
8872–8875.

16 M. Nakhaee, M. Yagmurcukardes, S. A. Ketabi and F. M. Peeters,
Phys. Chem. Chem. Phys., 2019, 21, 15798–
15804.

17 E. V. Charnaya, C. Tien, K. J. Lin, C. S. Wu and
Y. A. Kumzerov, Phys. Rev. B: Condens. Matter Mater.
Phys., 1998, 58, 467–472.

18 E. V. Charnaya, C. Tien, M. K. Lee and Y. A. Kumzerov, J.
Phys.: Condens. Matter, 2009, 21, 455304.

19 Y. Wang, J. Lv, L. Zhu and Y. Ma, Comput. Phys. Commun.,
2012, 183, 2063–2070.

20 X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang and X. C. Zeng, ACS
Nano, 2012, 6, 7443–7453.

21 L.-M. Yang, V. Bacic, I. A. Popov, A. I. Boldyrev, T. Heine,
T. Frauenheim and E. Ganz, J. Am. Chem. Soc., 2015, 137,
2757–2762.

22 B. Feng, B. Fu, S. Kasamatsu, S. Ito, P. Cheng, C.-C. Liu,
Y. Feng, S. Wu, S. K. Mahatha, P. Sheverdyavea, P. Moras,
M. Arita, O. Sugino, T.-C. Chiang, K. Shimada,
K. Miyamoto, T. Okuda, K. Wu, L. Chen, Y. Yao and
I. Matsuda, Nat. Commun., 2017, 8, 1007.

23 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiocchetti, M. Cococcioni,
I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri,
R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sceluzzero, A. P. Seitsonen,
A. Smogunov, P. Umari and R. M. Wentzcovitch, *J. Phys.: Condens. Matter*, 2009, **21**, 395502.

24 A. Dal Corso, *Comput. Mater. Sci.*, 2014, **95**, 337–350, version 1.0.0, accessed 15 December, 2021, https://dalcorso.github.io/pslibrary/.

25 N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi and N. Marzari, *Nat. Nanotechnol.*, 2018, **13**, 246–252.

26 S. De Waele, K. Lejaeghere, M. Sluydts and S. Cottenier, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2016, **94**, 235418.

27 W. L. McMillan, *Phys. Rev.*, 1968, **167**, 331–344.

28 J. Bardeen, L. N. Cooper and J. R. Schrieffer, *Phys. Rev.*, 1957, **108**, 1175–1204.

29 A. Migdal, *Soviet Physics – JETP*, 1958, **7**, 996–1001.

30 G. Eliashberg, *Soviet Physics – JETP*, 1960, **11**, 696–702.

31 P. B. Allen and R. C. Dynes, *Phys. Rev. B: Solid State*, 1975, **12**, 905–922.

32 P. B. Allen and B. Mitrovic, *Solid State Physics*, Academic Press, New York, 1983, vol. 37, pp. 1–92.

33 F. Marsiglio and J. P. Carbotte, in *Electron-Phonon Superconductivity*, ed. K. H. Bennemann and J. B. Ketterson, Springer, Berlin, Heidelberg, 2008, pp. 73–162.

34 M. Petrov, J. Bekaert and M. V. Milošević, *2D Materials*, 2021, **8**, 035056.