Position and sequence conservation in Amniota of polymorphic enhancer HS1.2 within the palindrome of IgH 3’Regulatory Region

Pietro D’Addabbo1, Moira Scascitelli2, Vincenzo Giambra3, Mariano Rocchi1, Domenico Frezza4*

Abstract

Background: The Immunoglobulin heavy chain (IgH) 3’ Regulatory Region (3’RR), located at the 3’ of the constant alpha gene, plays a crucial role in immunoglobulin production. In humans, there are 2 copies of the 3’RR, each composed of 4 main elements: 3 enhancers and a 20 bp tandem repeat. The single mouse 3’RR differs from the two human ones for the presence of 4 more regulative elements with the double copy of one enhancer at the border of a palindromic region.

Results: We compared the 3’RR organization in genomes of vertebrates to depict the evolutionary history of the region and highlight its shared features. We found that in the 8 species in which the whole region was included in a fully assembled contig (mouse, rat, dog, rabbit, panda, orangutan, chimpanzee, and human), the shared elements showed synteny and a highly conserved sequence, thus suggesting a strong evolutionary constraint. In these species, the wide 3’RR (~30 kb in human) bears a large palindromic sequence, consisting in two ~3 kb complementary branches spaced by a ~3 kb sequence always including the HS1.2 enhancer. In mouse and rat, HS3 is involved by the palindrome so that one copy of the enhancer is present on each side. A second relevant feature of our present work concerns human polymorphism of the HS1.2 enhancer, associated to immune diseases in our species. We detected a similar polymorphism in all the studied Catarrhini (a primate parvorder). The polymorphism consists of multiple copies of a 40 bp element up to 12 in chimpanzees, 8 in baboons, 6 in macaque, 5 in gibbons, 4 in humans and orangutan, separated by stretches of Cytosine. We show specific binding of this element to nuclear factors.

Conclusions: The nucleotide sequence of the palindrome is not conserved among evolutionary distant species, suggesting pressures for the maintenance of two self-matching regions driving a three-dimensional structure despite of the inter-specific divergence at sequence level. The information about the conservation of the palindromic structure and the settling in primates of the polymorphic feature of HS1.2 show the relevance of these structures in the control and modulation of the Ig production through the formation of possible three-dimensional structures.

Background

The immunoglobulin genes appeared, during evolution, in vertebrates. Because of their increasing physiological relevance, the evolution of these genes in fish, amphibians, birds and mammals witnessed several series of duplications that ended in adding copies and complexity to these genes. The class switch, in particular, was of importance in producing diversity [1], and constituted a crucial step in B cell maturation [2]. The region involved by the somatic rearrangements, allowing the class switch, is the Immunoglobulin heavy chain (IgH) locus. This domain is in a single copy in the genome of most extant species (as example, see the mouse locus in Figure 1A). Hominoidea (human, chimpanzee, gorilla and gibbon) are an exception, because the constant genes of the IgH locus underwent duplication in their common ancestor [3]. Studies in humans have shown that the duplication of the IgH locus included the
Regulatory Region (3'RR) located immediately downstream of the constant alpha exons [2]. Portions of the 3'RR were first cloned in 1990 and 1991 [4,5] but only later were fully assembled as a complete contig sequence. They are repeats-rich unstable regions, moreover later were fully assembled as a complete contig sequence. Portions of the stream of the constant alpha exons [2]. Only the two copies of the 3'RR in humans do not have three enhancers. In fact, the human loci do not harbor both the duplicated HS3.B enhancer and the insulators present in the mouse loci.

Figure 1 Schematic map of the mouse and human IgH genetic cluster. The IgH cluster and the closest genes (dark blue) are highly conserved in the mouse and human chromosomes. The same transcription direction was also detected in both species, with a "telomere towards centromere" transcription versus. The mouse IgH cluster harbors 8 constant genes and one copy of the 3' Regulatory Region (3'RR) with 7 enhancers, 3 of them (HS5, HS6, HS7) with possible insulator function at the 3' boundary of the cluster. The human IgH region has some differences for the constant genes since a wide duplication of gamma, epsilon and alpha genes occurred in the ancestor of Hominoidea. This duplication included also the 3'RR at the 3' of the constant alpha gene. Both the two copies of the 3'RR in humans have just three enhancers. In fact, the mouse loci do not harbor both the duplicated HS3.B enhancer and the insulators present in the mouse locus.

Little is known on the presence and organization of the 3'RR in Amniota other than human and mouse [22,23]. Comparative studies of this regulatory region can provide hypotheses on which elements are crucial with respect to their function [24]. To fill the gap, we investigated the genomic organization of this region taking advantage of the sequence data present in GenBank and Trace Archive (see Methods below). The most relevant achievement of the analysis was the discovering that the palindrome surrounding the HS1.2 enhancer is present in every mammal species for which enough sequence data were available. This finding has important implication on the understanding of HS1.2 functioning. In addition, our data supports the view that HS1.2 polymorphisms are widely spread in the primate parvorder (Cercopithecoidea and Hominoidea). The improvement on the comparative studies on the non-coding genome is a relevant task for new insight in the epigenetic and mechanisms of genome regulation [25].

Results

3'RR genomic organization

The mouse 3'RR region contains 7 enhancers (HS3.A-HS1.2-HS3.B-HS4-HS5-HS6-HS7), while human has only three enhancers (Figure 1). For this reason the mouse was used as the reference genome for the preliminary analysis. The IgA class exons are the transcribed sequence closest to the 3'RR, so we included a portion of this DNA in our analysis. It is to keep in mind that the IgA was the last class to appear during the evolution of IgH, because it is just shared among Amniota species (reptiles, bird and mammals) [26]. Finally, we surveyed also a satellite repeat. This is a conserved stretch of DNA (812 bp in human) composed of tandemly repeated 20 bp element and located inside the 3'UTR of the IgA gene, close to the 3'RR enhancer.

The "Comparative Genomics" tracks of the UCSC mouse genome browser http://genome.ucsc.edu/cgi-bin/
hgGateway?org=Mouse report graphical representations of Lastz comparison http://www.bx.psu.edu/miller_lab/between mouse and each one of 19 Amniota genomes (rat, guinea pig, rabbit, human, chimpanzee, orangutan, hors

Results of our search for the mouse 3′RR main elements in Amniota genomes are summarized in Figure 3. The full set of elements present in mouse (IgH alpha exons, 20 bp tandem repeat and 7 enhancers) was detected only in the rat genome. The HS5, HS6, and HS7 were always absent in all the remaining species. The HS3, HS1.2, and HS4 set was detected with certainty in mouse, rat, dog, rabbit, panda, human, chimpanzee, and orangutan. HS3 and the 20 bp repeat, were present in 12 mammals, but were undetected in cow, elephant, opossum, and platypus. The region delimited by the alpha exons and HS3.A enhancer and encompassing the 20 bp repeat, appeared to be highly conserved in placental mammals. We remark that, at the contrary, the Alpha marker remains entirely undetected in chicken and pig, because the similarity versus rodent IgA is low even at the level of peptide sequence.

As expected, the search in the Neanderthal genome [27] by inspection of related track in the UCSC human genome browser demonstrated that HS3, HS1.2 and HS4 were also present in the genome of our extinct relative (data not shown).

Enhancers in the sequenced species

Figure 3 shows comparisons among assembled genome drafts. If the sequence of a specific region is still missing in the genome draft of a particular species, then the comparison versus the mouse genome will not find any
match, even though it is expected. These missing sequences, however, can be present in the shot-gun sequences databases, as unassembled short sequences. We searched in GenBank genome-related databases, by BLAST, for the presence of murine (data not shown) and human IgH alpha exons (Table 1). Querying for this transcribed sequence, we tested the method limits. All the 35 positive species were mammals (8 primates). Then we BLASTed the murine (data not shown) and human IgH alpha exons (Table 1). Querying for this transcribed sequence, we tested the method limits.

Figure 3 Contig sequence alignment of the 3’RR of vertebrate species with completed genome sequence. This figure shows the region chr12:114,645,657-114,647,890 of the UCSC Mouse Genome Browser (mm9 draft). The comparative genomic tracks were inspected and the graphic was edited as in this figure. The species common names are listed in the first column on the left. The black blocks in the “Mouse main elements” section localize the positions of the chosen tags, mapped by the BLAT tool of the site. The colored blocks in the “Comparative Genomics” section show the most similar region in each genome of the species listed, versus the mouse genome. The color of each block represents a portion of a chromosome (see the chromosome color legend below the graphic) of the species similar to that portion of the mouse chromosome 12. The “RepeatMasker” and “Tandem Repeat Finder” sections show the position of repeats identified by the two homonymous algorithms in this portion of mouse genome.

Dot plot analysis of the 3’RR
It has been already reported, in man and mouse, that each HS1.2 enhancer is flanked, at some distance on both sides, by a 3 kb segment, and that these segments are in opposite orientation (palindromic), as evident from the dot plot analysis reported in Figure 4 (palindromic sequence in light blue). Very interestingly, we found that this organization is shared by 8 species in which the whole region was included in a fully assembled contig. The human versus non-primate dot-plots are reported in Figure 5. It is worth noting that, while the similarity between the two components of the same palindrome is always very high (94% in human, Figure 4), the sequence itself almost completely varied among species (Figure 5). Interestingly, HS1.2 always lies in the center of the palindrome. In the human 3’RR1, the region internal to the two components of the palindromes is inversely oriented with respect to the corresponding sequence of 3RR2, as shown by the secondary diagonal line present at the core of the light blue frame (Figure 4). In addition, sequence comparisons of the human 3RRs with non-primate mammals harboring a single copy of 3’RR (panda, rabbit, mouse, and dog) showed that in 3 of them, with the exception of the mouse, the orientation of the region internal to the palindrome (containing the HS1.2) was identical to the human 3’RR2 (Figure 5). This finding suggests that the 3’RR2 is ancestral with respect to the 3’RR1. The mouse showed an opposite orientation of the region internal to the palindrome. Moreover the mouse palindrome is larger than the human one, including the HS3 and the 20 bp repeat, thus originating HS3.A and HS3.B (Figure 5).

Very likely, an inversion event was triggered by the palindrome both in the mouse 3’RR and in the human 3’RR1.

HS1.2 enhancer in Trace Archive
While no polymorphisms have been reported for the enhancers HS3 and HS4 [28], the 2 human HS1.2 copies share a set of variant forms (Figure 2) [21,29]. The main polymorphic feature of human HS1.2 consists of a tandem repeated pair of elements, i.e. a 40 bp sequence (40 mer, yellow boxes in Figure 2) and a ~15 bp cytosine-rich stretch (green boxes), that can or cannot be separated from the enhancer core (purple boxes) by a 29 bp sequence (red boxes). The HS1.2 human variants with more copies of the 40 mer showed an increasing effect on the transcription of a reporter gene in transfected cells [30]. In mouse there is just one copy of HS1.2 that constantly harbors a single copy of the 40 mer.

The Trace Archive databases of primate species sequences was searched by BLAST using the human HS1.2 sequence as query, to investigate the evolutionary history of this enhancer and to search for potential
polymorphisms. Figure 6 summarizes the obtained results, along with all the available data from previous works [21] and from our previously unpublished sequencing data. This figure shows the organization of the HS1.2 in the different species. The highly conserved core of the enhancer (113 bp, purple) is constantly flanked, in the 11 non-primate mammalian species (olive green background), by a partial 29 mer stretch (red element). The 102 bp terminal element (blue in Figure 6), constantly found in primates, was entirely detected only in panda when searched in non-primate mammals.

The most interesting finding of this analysis is the presence of a variable number of copies of the 40 mer (yellow in Figure 6) in all Catarrhini parvorder species, i.e. in both Hominoidea and Cercopithecoidea superfamilies. On the contrary, the duplication of the whole locus of the constant genes was found only in Hominoidea [3]. This observation strongly suggests that the

Species / Name	MI	QC	MI	QC	MI	QC	MI	QC
Gorilla gorilla - Gorilla (P)	94%	100%	93%	100%	97%	100%	94%	78%
Pongo abelli - Orangutan (P)	94%	62%	88%	99%	92%	100%	92%	100%
Pan troglodytes - Chimpanzee (P)	93%	87%	87%	100%	99%	100%	95%	100%
Macaca mulatta - Macaque (P)	89%	100%	82%	100%	93%	100%	90%	80%
Felis catus - Cat	88%	75%	76%	100%	77%	66%	76%	46%
Canis familiaris - Dog	72%	99%	75%	99%	74%	90%	76%	47%
Microcebus murinus - Lemur (P)	72%	57%	67%	98%	81%	84%	-	-
Ovis aries - Sheep	72%	43%	-	-	76%	75%	77%	36%
Ailuropoda melanoleuca - Panda	71%	99%	79%	99%	75%	82%	75%	86%
Tupaia belangeri - Tree shrew	69%	97%	81%	99%	77%	80%	-	-
Monodelphis domestica - Opossum	68%	99%	76%	99%	66%	79%	66%	52%
Rattus norvegicus - Brown rat	68%	99%	65%	98%	78%	84%	76%	34%
Mus musculus - Mouse	67%	98%	97%	99%	72%	76%	77%	40%
Procavia capensis - Hyrax	67%	97%	-	-	76%	75%	77%	42%
Tupaia belangeri - Tree shrew	67%	26%	64%	99%	-	-	-	-
Macropus eugenii - Wallaby	66%	28%	-	-	-	-	-	-
Ochotona princeps - Pika	65%	99%	71%	99%	-	-	-	-
Cavia porcellus - Guinea pig	65%	98%	67%	99%	75%	82%	74%	42%
Monodelphis domestica - Opossum	65%	45%	65%	80%	-	-	-	-
Erinaceus europaeus - European hedgehog	63%	64%	62%	91%	72%	68%	-	-
Dasyurus novemcinctus - Armadillo	62%	29%	71%	99%	-	-	-	-
Dipodomys ordii - Kangaroo rat	61%	34%	65%	99%	-	-	-	-
Loxodonta africana - Elephant	61%	29%	64%	98%	-	-	-	-
Total	35	30	21	17	10			

MI, Max Identity (i.e. the higher value among the identity values of the BLAST output); QC, Query Coverage (i.e. portion of the query sequence that was recognized by some subject sequence of that species); P, Primate. Alpha, [GenBank:NC_000014:106053245-106054732] (1488 bp); repeat, [GenBank:NC_000014:106048991-106049802] (812 bp); HS3, [GenBank:NC_000014:106048351-106048676] (326 bp); HS1.2, [GenBank:NC_000014:106041545-106042009] (465 bp); HS4, [GenBank:NC_000014:106032614-106032974] (361 bp).
emergence of the polymorphism occurred earlier with respect to the duplication. The number of the 40 mer varies from the 12 copies found in chimpanzee HS1.2, to a single one, as detected in some alleles in human, chimpanzee, and gorilla and in all the non-primate mammals. An additional variability found in Hominoidea is the occasional absence of the 29 mer, replaced by an 18 bp stretch of cytosine (green in Figure 6).

HS1.2 Transcription Factor Binding Sites (TFBS)
All the HS1.2 forms found in the different species (Figure 6) were searched for transcription factor binding sites, using Alibaba2 software. Relevant results are summarized in Additional file 1 (full list in Additional file 2). Four TFBS (C/EBPα, AP-2α, SP1, Oct1) are present in all the analyzed species; moreover, the NF variants are almost ubiquitous. The Additional file 1 clearly indicates that, while the number of C/EBPα and Oct1 TFBS is substantially constant in different HS1.2 forms, the number of AP-2α and SP1 TFBS is proportional to the copies of the 40 mer present in that specific HS1.2 form. Note that c-myc containing 40 mers appears only in the Catarrhini HS1.2 forms and in dog.

Phylogenetic analysis
The four structures clustered in the 3’RR were analyzed for their sequence variation in 9 species comprising human, gorilla, orangutan, mouse, rat, rabbit, panda, dog and cat (see Additional file 3). The phylogenetic analysis obtained with the maximum likelihood method for C-alpha, HS3, HS1.2 and HS4 (Figure 7A, B, C and 7D respectively), showed in all cases a similar variation from the standard reconstruction of mammals’ phylogeny. Rodents and lagomorphs diverged from each other and from primates and carnivores, confirming at the nucleotide level the hypothesis of different evolutionary routes taken from the different groups, as shown after structural analysis. The concordance between the coding region (C-alpha) and the three enhancers in the observed divergence furthermore indicates that similar forces shaped the evolution of the whole 3’ regulatory region, suggesting potential functional constrains also for the non coding sections.

Discussion
In the present article we have compared the genomic structure of the 3’RR domain of the IgH gene cluster in various species. We have confirmed that in all the analyzed species the 3’RR elements order is largely maintained. Two main results were also achieved: (i) a palindromic structured sequence flanks each HS1.2 enhancer; (ii) HS1.2 is polymorphic in all analyzed Catarrhini species and therefore rose before of the IgH locus duplication.
Figure 5 Dot plot of the human 3'RR-2 against 4 species. The comparison of the human regulatory region against the homologous sequences of *Ailuropoda melanoleuca* (panda), *Canis familiaris* (dog), *Mus musculus* (mouse) and *Oryctolagus cuniculus* (rabbit) shows the conservation of the enhancer positions and the high similarity in the sequence spanning from the alpha gene to the other extreme enhancer HS4. In the mouse the two copies of the enhancer HS3 A and B have in the neighbor region also the 20 bp repeat. In the mouse palindrome (light blue frame) are shown by the black segments with inverted orientation three copies of a region that is in two copies in humans. The wider extension of the palindrome in mouse includes the two HS3 enhancers on the boundaries. The same structures are conserved along the homologues 3'RR in these species and the palindrome is present in the cluster of all species as evidenced by the pale blue rectangle with the central region represented by the HS1.2 enhancer. The black lines depict the internal repeats present in more than one copy. The lines when parallel to the major diagonal have the same orientation, when are perpendicular have inverted orientation, as in the palindrome sequence.
Palindromic sequences flanking the HS1.2

The most relevant result of our analysis was the finding that each HS1.2 enhancer, in all the examined species, is flanked by two 3 kb segments forming a palindromic structure (see Figures 4 and 5). Impressively, while the similarity of each pair of segments is extremely high, the similarity of the palindromic sequences among the different species is strikingly low. These findings suggest that the evolutionary pressure was much higher in maintaining the palindromic structure rather than the sequence conservation. As a consequence, it can be concluded that the palindrome plays a conformational role in the 3’RR functioning. The fact that the HS1.2 enhancer is constantly placed in the middle of the sequence spacing the two inverted elements, further supports the crucial role of the conformation of the region. We hypothesize that the palindrome triggers the formation of a hairpin structure externally exposing the HS1.2 enhancer (Figure 8). The orientation of HS1.2 is therefore irrelevant for the enhancer function. Indeed, it was found in different orientation in different species and also in different orientation in the two 3’RR human domains. Moreover, the opposite orientations of the two HS1.2 in human add support to the actual formation of the hairpin in vivo. The paired inverted sequences could form the stem of the hairpin. This is a fragile site that could be involved in rearrangements and translocation effect as in c-myc relocation [31]. An exchange involving the stem may result in the inversion of the loop region, changing the HS1.2 orientation. We can hypothesize that an inversion occurred at least two times since the divergence between Homo sapiens and Mus musculus (as suggested by dot plot analysis, see Figure 5 and above in Results). The inversions limits at least partially spanned the two palindromic regions, suggesting a cause/effect relationship. The palindrome could facilitate the inversion event, and the latter could contribute to perpetuate the palindrome.

HS1.2 polymorphisms

Population genetics of HS1.2 polymorphisms is available only in humans, for which six distinct variants have been sequenced (AY530201, AY530200, AJ544220, AJ544219, AJ544218 [21]; HM756255, our previously unpublished data). The human variants result from (i) a variable number of the 40 mer and its flanking cytosine-rich box (yellow and green, respectively, in Figure 6); (ii) the sequence connecting the constant core of the HS1.2 (purple in Figure 6) to the stretches of 40 mer repeats, that is constituted by a 18 bp cytosine-rich box or by a 29 mer (green and red, respectively, in Figure 6). HS1.2 polymorphisms have been detected also in 6 out of 8
non-human primates for whom this enhancer was identified in genomic databases (Figure 6). We acknowledge that the number of individuals for each species present in these archives is not known, as well as the sequence coverage. We can suppose that very few individuals, maybe a single one, are present in GenBank or Trace Archive. The variants we have detected are, therefore, very likely just the most frequent ones of each species. Nevertheless, it is worth noting that the two Platyrhini (marmoset and titi) share the same HS1.2 form of the panda. We then hypothesize that this shared form of the enhancer was also at the base of all the Catarrhini variants.

IgA and 3’RR have relevance in response to infections and in diseases [3,16-18,20,32]. The more remarkable polymorphism found in 3’RR lies within the HS1.2 that has the central position in the palindromic structure, on top of the hairpin (Figure 8). We hypothesize that it can influence the modulation of the Ig switch through an interaction between the extruded enhancer and peptidic factors. The resulting molecular complexes may affect the mobility of the entire 3’RR and finally the formation of loops joining different constant and variable Ig portions. It could be interesting to investigate the role of the variants we have found in differently modulating the Ig switch and production in different species, especially in animal models such as macaque and mouse.

Conclusions

We remark that both coding sequences and wide non-coding regulatory regions have undergone to some evolutionary pressure, and that part of this pressure was
aimed to preserve the 3′RR three-dimensional structure for the conservation of the regulatory function necessary for class switch recombination [12].

Methods

Conserved syntenic screening
We used the following list of mouse sequence tags from [GenBank:NC_000078.5]: a 20 bp tandem repeat (114493451-114493793), an alpha locus portion (114496952-114497890) and seven enhancers, that is HS1.2 (114483000-114483159), HS3.A (114470545-114470747), HS3.B (114492057-114492261), HS4 (114466607-114466729), and HSS, HS6 and HS7. Those last three were localized by their primers sequences, listed in previous paper [33].

These sequences were aligned by BLAT (BLAST-Like Alignment Tool, http://genome.ucsc.edu/cgi-bin/hgBlat) versus the 2007 release of the Mus musculus (mouse) genome, to identify the limits of the mouse 3′RR contig (chr12:114,459,657-114,497,890 in mmu9 draft; size 38234 bp)(Figure 3). This region was used to investigate the Amniota species of which the sequenced genome was available in the UCSC mouse genome browser site http://genome.ucsc.edu/cgi-bin/hgGateway?db=hg18, we searched the tracks related to the Neanderthal genome [27] for the presence of HS3, HS1.2 and HS4.

Database searches for enhancers
We searched for clones with the mouse (see previous section) and human version of the Alpha portion, repeat and enhancers (Alpha, GenBank:NC_000014:106053245-106054732, 1488 bp; repeat, GenBank:NC_000014:106048991-106049802, 812 bp; HS3, GenBank:NC_000014:106048351-106048676, 326 bp; HS1.2, GenBank:NC_000014:106045145-106042009, 465 bp; HS4, GenBank:NC_000014:1060326214-106032974, 361 bp), using the nucleotide version of BLAST (Basic Local Alignment Search Tool, http://blast.ncbi.nlm.nih.gov/Blast.cgi). The asked databases were from the “Others” group (i.e. limiting results to non-human and non-mouse records), further specifying in the Taxonomy field to exclude “Homo (taxid:9605)”. The three checked databases were: refseq_genomic (fully-sequenced genome entries from NCBI’s Reference Sequence project); wgs (whole genome shotgun sequence); htgs (high throughput genomic sequences). To allow a better matching among so divergent species, especially among their 3′end tails, we chose a non-standard set of parameters: Match/Mismatch Scores 1/-1; Existence/Exten- tion Gap Costs 0/2. Then we chose from the BLAST output the relevant sequences (see Table 1 for the list of species with sequences similar to the human queries) by empirically setting the “Expect” threshold-value to 1e-05.

Dot plot analysis
We identified 2 genomic contigs of Homo sapiens (3′RR1, GenBank:NC_000014:8:106152458-106175002, and 3′RR2, GenBank:NC_000014:8:106032614-10604732), and one contig of Mus musculus [GenBank: NC_000078.5:114466607-114497890], Oryctolagus cuni- culus [GenBank:AY386698.1:7160-21816] and Canis lupus familiaris [GenBank:AC187024.23:146314-165755]. Finally, we assembled a contig of Ailuropoda melanoleuca, sewing the scaffold3005_4 [GenBank:ACTA01092430.1:1574-6589] and the scaffold3005_5 [GenBank:ACTA01100430.1:7968] by a stretch of 600 N. We performed a series of pairwise comparisons among these six genomic contigs, by use of two dot plot
analysis softwares: Gepard http://mips.gsf.de/services/analysis/gepard [34] for the human versus human dot plots (Figure 4), and Blast2seq http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi for the human versus others species dot plots (Figure 5). Graphics were edited using Adobe Illustrator.

Database hunting for HS1.2 polymorphisms
The search for HS1.2 polymorphisms was refined using the specialized alignment tool Trace-Archive BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi?BLAST_SPEC=-TraceArchive&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch. The Trace Archive http://www.ncbi.nlm.nih.gov/Traces/trace.cgi is a repository of sequencing data from gel/capillary platforms, partitioned by genome and sequencing methods. There is a daily-growing amount of available reads from thousands of WGS projects. We performed a BLAST search on every available database referring to species identified in the previous analysis for the presence of this enhancer and to the 24 primates available in the previous analysis for the presence of Transcription Factor Binding Sites. The search for HS1.2 polymorphisms was refined using the specialized alignment tool Trace-Archive BLAST.

Transfac analysis for transcription factors
The search for the transcription factor consensus was performed on the variant sequences of HS1.2 by the software AliBaba2.1 http://www.gene-regulation.com/pub/programs/alibaba2/index.html. Additional file 1 lists the transcription factors detected at least in ten loci. The full list can be inspected as Additional file 2.

Phylogenetic analysis
Sequences of IgH constant alpha genes and of the enhancers HS3, HS1.2, HS4 retrieved after BLAST search, were used for the phylogenetic analysis (Figure 7; accession numbers and limits reported in Additional file 3). Multiple alignments of the sequences were obtained with Opal [37] and the results were manually inspected. The best-fitting substitution model was selected using ModelGenerator [38], under the Akaike information criterion (AIC1), as implemented in MultiPhyl online [39]. The following models were integrated in the phylogenetic analysis: GTR + I + G for C-alpha; HKY + I for HS3 and HS4; HKY + G for HS1.2.

An unrooted tree was constructed using the maximum likelihood method applied to nucleotides, as implemented in Garli version 0.96 http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html, with bootstrap percentages obtained as a consensus after 100 replicates.

Additional files
Note: in the three additional files, the Accessions including just one letter are picked from GenBank http://www.ncbi.nlm.nih.gov/Entrez/, the others including just numbers from the Trace Archive database http://www.ncbi.nlm.nih.gov/Traces/trace.cgi.

Acknowledgements
We thank Giovanna Carignani for her suggestions and discussion on the results about evolution, Marcello Brancato, Pasquale Mancini and Arteo Ciancarelli for administration of funds. Part of the work was supported by the MIUR PRIN N.20073RH73W003 (D. Frezza). We are also grateful to Lynell Bates, Francesca Antonacci and Giuliana Giannuzzi for critical reading and English improvement of the manuscript.

List of nonstandard abbreviations
IgH: Immunoglobulin heavy chain; 3RR: 3′ Regulatory Region; TRBS: Transcription Factor Binding Sites.

Authors’ contributions
PD’A was the main researcher and performed comparative genomics analysis, database searches, dot plot analysis and data interpretation and participated in manuscript writing and editing. MS carried out phylogenetic analysis, data interpretation, and participated in manuscript editing. VG sequenced the DNA samples, investigated the presence of Transcription Factor Binding Site, and participated in manuscript editing. MR participated in planning the experiment, in data interpretation, and in manuscript writing and editing. DF ideated the work and planned the experiments, and participated in manuscript writing and editing. All authors read and approved the final manuscript.

Received: 30 November 2010 Accepted: 15 March 2011 Published: 15 March 2011
References
1. Stavnezer J, Amemiya CT. Evolution of isotype switching. Semin Immunol 2004, 16(4):257-275.
2. Cogné M, Brüttner BK. Regulation of Class Switch Recombination. In Molecular biology of B cells: Edited by: Honjo T, Alt FW, Neuberger MS. New York Elsevier, 2004:289-305.
3. Woof JM, Kerr MA. IgA function–variations on a theme. Immunology 2004, 113(2):175-177.
4. Pettersson S, Cook GP, Bruggemann M, Williams GT, Neuberger MS. A second B cell-specific enhancer 3' of the immunoglobulin heavy-chain locus. Nature 1990, 346(6262):165-168.
5. Liebenon R, Giannini SL, Brüttner BK, Eckhardt LA. An enhancer at the 3' end of the mouse immunoglobulin heavy chain locus. Nucleic Acids Research 1991, 19(4):933-937.
6. Chauveau C, Cogné M. Palindromic structure of the IgH 3' locus control region. Nature genetics 1996, 14(15):153.
7. Saleque S, Singh M, Little RD, Giannini SL, Michaelson JS, Birshtein BK. Dyad symmetry within the mouse 3' IgH regulatory region includes two virtually identical enhancers (C alpha3E and hs3). Journal of immunology 1997, 158(10):4780-4787.
8. Chen C, Brüttner BK. Virtually identical enhancers containing a segment of homology to murine 3'IgH-Ehs1,2) lie downstream of human Ig C alpha 1 and C alpha 2 genes. Journal of immunology 1997, 159(3):1310-1318.
9. Laurenciènes J, Tamossinas V, Severinson E. Regulation of epsilon germline transcription and switch region mutations by Ig locus 3' enhancers in transgenic mice. Blood 2007, 109(1):159-167.
10. Gostissa M, Yan CT, Bianco JM, Cogne M, Pinaud E, Alt FW. Long-range oncogenic activation of IgH-c-myc translocations by the IgH 3' regulatory region. Nature 2009, 462(7274):803-807.
11. Vincent-Fabert C, Fiancette R, Pinaud E, Truffinet V, Cogne N, Cogne M, Gostissa M, Yan CT, Bianco JM, Cogne M, Pinaud E, Alt FW. Long-range oncogenic activation of IgH-c-myc translocations by the IgH 3' regulatory region. Nature 2009, 462(7274):803-807.
12. Wuerffel R, Wang L, Girgera F, Manis J, Selsing E, Perlot T, Alt FW, Cogné M, Pinaud E, Kenter AL. SS synopsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity 2007, 27(3):711-722.
13. Dunning WA, Collins JT, Shi J, Westfield G, Fontaine C, Hakimpour P, Papavasiou FN. Switch recombination and somatic hypermutation are controlled by the heavy chain 3' enhancer region. J Exp Med 2009, 206(12):2613-2626.
14. Vincent-Fabert C, Fiancette R, Pinaud E, Truffinet V, Cogné N, Cogné M, Denizot Y. The IgH 3' regulatory region and its implication in lymphomagenesis. Eur J Immunol 40(12):3306-3311.
15. Wuerffel R, Wang L, Girgera F, Manis J, Selsing E, Perlot T, Alt FW, Cogné M, Pinaud E, Kenter AL. SS synopsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity 2007, 27(3):711-722.
16. Frezza D, Giambra V, Mattioli C, Piccoli K, Massoud R, Siracusano A, Di Addabbo et al. Palindromic structure of the IgH 3' locus control region. Nature genetics 1996, 14(15):153.
17. Saleque S, Singh M, Little RD, Giannini SL, Michaelson JS, Birshtein BK. Dyad symmetry within the mouse 3' IgH regulatory region includes two virtually identical enhancers (C alpha3E and hs3). Journal of immunology 1997, 158(10):4780-4787.
18. Sepulveda MA, Garrett FE, Price-Whelan A, Birshtein BK. Comparative analysis of human and mouse 3' IgH regulatory regions identifies distinctive structural features. Mol Immunol 2005, 42(5):605-615.
19. Meireles-Filho AC, Stark A. Comparative genomics of gene regulation-conservation and divergence of cis-regulatory information. Curr Opin Genet Dev 2009, 19(6):355-360.
20. Gambero-Orea F, Sanchez-Espinel C, Magadan-Mompo S. The immunoglobulin heavy chain locus in the platypus (Ornithorhynchus anatinus). Mol Immunol 2009, 46(13):2515-2523.
21. Green RE, Krause J, Briggs AW, Matric C, Stenzel U, Kicher M, Patterson N, Li H, Zhai W, Fritz MH, et al. A draft sequence of the Neandertal genome. Science. 2010, 328(5979):710-722.
22. Guillemie L, Truffinet V, Magnoux E, Cogné M, Denizot Y. The polymorphism of the locus control region lying downstream the human IgG locus is restricted to hs1,2 but not to hs3 and hs4 enhancers. Immunol Lett 2004, 94(1-2):77-81.
23. Mills FC, Hanndrnanath N, Mitchell M, Max EE. Enhancer complexes located downstream of both human immunoglobulin Calpha genes. J Exp Med 1997, 186(5):945-958.
24. Denizot Y, Pinaud E, Aupert C, Le Morvan C, Magnoux E, Aldigier JC, Cogné M. Polymorphism of the human alpha1 immunoglobulin gene 3' enhancer hs1,2 and its relation to gene expression. Immunology 2001, 103(1):35-40.
25. Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Carcoran AE, Frazer P. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 2007, 5(8):e192.
26. Aupert C, Drouet M, Pinaud E, Denizot Y, Aldigier JC, Birloux F, Cogné M. Alleles of the alpha1 immunoglobulin gene 3' enhancer control evolution of IgA nephropathy toward renal failure. Kidney Int 2000, 58(3):966-971.
27. Garrett FE, Emeleyanov AV, Sepulveda MA, Fanagan P, Volpi S, Li F, Loukinov D, Eckhardt LA, Lobanenkov VW, Birshtein BK. Chromatin architecture near a potential 3' end of the igh locus involves modular regulation of histone modifications during B-cell development and in vivo occupancy at CTCF sites. Mol Cell Biol 2005, 25(4):1511-1525.
28. Green RE, Krause J, Briggs AW, Stenzel U, Kicher M, Patterson N, Li H, Zhai W, Fritz MH, et al. A draft sequence of the Neandertal genome. Science. 2010, 328(5979):710-722.
29. Yuan CY, Zeng SQ, Li X, Xu Y, Wang Y. Comparative genomics of gene regulation-conservation and divergence of cis-regulatory information. Curr Opin Genet Dev 2009, 19(6):355-360.
30. Gambero-Orea F, Sanchez-Espinel C, Magadan-Mompo S. The immunoglobulin heavy chain locus in the platypus (Ornithorhynchus anatinus). Mol Immunol 2009, 46(13):2515-2523.
31. Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Carcoran AE, Frazer P. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 2007, 5(8):e192.
32. Aupert C, Drouet M, Pinaud E, Denizot Y, Aldigier JC, Birloux F, Cogné M. Alleles of the alpha1 immunoglobulin gene 3' enhancer control evolution of IgA nephropathy toward renal failure. Kidney Int 2000, 58(3):966-971.
33. Garrett FE, Emeleyanov AV, Sepulveda MA, Fanagan P, Volpi S, Li F, Loukinov D, Eckhardt LA, Lobanenkov VW, Birshtein BK. Chromatin architecture near a potential 3' end of the igh locus involves modular regulation of histone modifications during B-cell development and in vivo occupancy at CTCF sites. Mol Cell Biol 2005, 25(4):1511-1525.
34. Krumsiene J, Arnold R, Tarter T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007, 23(8):1026-1028.
35. Thompson JO, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002, Chapter 2: Unit 2 3.
36. Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT, Methodol Mol Biol 2009, 537:39-64.
37. Wheeler TJ, Kecsk靐iolo JD. Multiple alignment by alignment alignments. Bioinformatics 2007, 23(15):1598-1608.
38. Keane TM, Greenev CJ, Pentony MM, Naughton TJ, McInerney JO. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 2006, 6:29.
39. Keane TM, Naughton TJ, McInerney JO. MultiPhyl: a high-throughput phylogenomics webserver using distributed computing. Nucleic Acids Res 2007, 35(Web Server):W33-37.