On the admissible families of components of Hamming codes

Alexander M. Romanov
Sobolev Institute of Mathematics
630090 Novosibirsk, Russia
rom@math.nsc.ru

Abstract

In this paper, we describe the properties of the i-components of Hamming codes. We suggest constructions of the admissible families of components of Hamming codes. It is shown that every q-ary code of length m and minimum distance 5 (for $q = 3$ the minimum distance is 3) can be embedded in a q-ary 1-perfect code of length $n = (q^m - 1)/(q - 1)$. It is also shown that every binary code of length $m + k$ and minimum distance $3k + 3$ can be embedded in a binary 1-perfect code of length $n = 2^m - 1$.

Keywords: Hamming codes, 1-perfect codes, q-ary codes, binary codes, i-component.

1 Introduction

Let \mathbb{F}_q^n be a vector space of dimension n over the Galois field \mathbb{F}_q. The Hamming distance between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{F}_q^n$ is the number of coordinates in which they differ and it is denote by $d(\mathbf{x}, \mathbf{y})$. An arbitrary subset C of \mathbb{F}_q^n is called q-ary 1-perfect code of length n, if for every vector $\mathbf{x} \in \mathbb{F}_q^n$ there exists a unique vector $\mathbf{c} \in C$ such that $d(\mathbf{x}, \mathbf{c}) \leq 1$. It is known that q-ary 1-perfect codes of length n exist only if $n = (q^m - 1)/(q - 1)$, where m is a natural number not less than two. We shall assume that the all-zero vector $\mathbf{0}$ is in code. A code is called linear if it is a linear space over \mathbb{F}_q. The linear 1-perfect codes are called Hamming codes. The q-ary Hamming code of length n is denoted by \mathbb{H}.

The weight of a vector $\mathbf{x} \in \mathbb{F}_q^n$ is the number $d(\mathbf{x}, \mathbf{0})$. A vector of weight 3 of the code \mathbb{H} is called triple. Consider the subspace R_i spanned by the set of all triples of the code \mathbb{H} having 1 in the i-th coordinate. All cosets $R_i + \mathbf{u}$ form the set of i-components of the q-ary Hamming code \mathbb{H}, where $i \in \{1, 2 \ldots n\}$, $\mathbf{u} \in \mathbb{H}$. A family of components
$R_{i_1} + \bar{u}_1, R_{i_2} + \bar{u}_2, \ldots, R_{i_t} + \bar{u}_t$ of the \textit{q}-ary Hamming code H is called \textit{admissible} if for $r, s \in \{1, 2, \ldots, t\}$, $r \neq s$, we have $(R_{i_r} + \bar{u}_r) \cap (R_{i_s} + \bar{u}_s) = \emptyset$. See [5].

Let $n_1 \leq n_2$, $C_1 \subseteq F_q^{n_1}$, $C_2 \subseteq F_q^{n_2}$. We lengthen all the vectors of the code C_1 to the length of n_2 by appending a zero vector of length $n_2 - n_1$. They say that the code C_1 can \textit{be embedded} in the code C_2 if all the lengthened vectors of C_1 belong to C_2. We consider all the vectors of the code C_2 in which the last $n_2 - n_1$ coordinates are equal to zero. We delete the last $n_2 - n_1$ coordinate in all such vectors. If the resulting set of shortened vectors coincides with C_1, then we say that the code C_1 can be embedded in the code C_2 in the strong sense.

Avgustinovich and Krotov [2] showed that any binary code of length m and minimum distance 3 can be embedded (in the strong sense) in a binary 1-perfect code of length $2^m - 1$.

In this paper, we describe properties of the i-components of Hamming codes. We suggest constructions of the admissible families of components of Hamming codes. It is shown that every q-ary code of length m and minimum distance 5 (for $q = 3$ the minimum distance is 3) can be embedded in a q-ary 1-perfect code of length $n = (q^m - 1)/(q - 1)$. It is also shown that every binary code of length $m + k$ and distance $3k + 3$ can be embedded in a binary 1-perfect code of length $n = 2^m - 1$.

We present three examples of the admissible families of components of Hamming codes. In Example 1, for an arbitrary q-ary code $(A \cup \{0\}) \subseteq F_q^m$ with minimum distance 5 we construct an admissible family of components of q-ary Hamming code of length $n = (q^m - 1)/(q - 1)$. The admissible family of component is constructed so that switching the components of this family, we obtain a q-ary 1-perfect code T of length n in which can be embedded the q-ary code $A \cup \{0\}$ of length m. In Example 2, for an arbitrary ternary code of length m and distance 3 in exactly the same method as in Example 1 we constructing an admissible family of components of the ternary Hamming code of length $n = (3^m - 1)/2$. In Example 3 for an arbitrary binary code of length $m + k$ and distance $3k + 3$ we constructing an admissible family of component of the binary Hamming code of length $n = 2^m - 1$. The admissible families of components from Examples 2 and 3 have the same properties as the admissible family of components from Example 1 and allow us, by switching the components, to construct the 1-perfect codes in which can be embedded codes of smaller length.

In Section 2 we present theorems describing the properties of the i-components of code H. In Section 3 we describe the constructions of admissible families of components of code H. In Section 4 we give Examples 2 and 3. In Section 5 we prove a theorem on the embeddability.

The parity-check matrix H of the code H of length $n = (q^m - 1)/(q - 1)$ consists of n pairwise linearly independent column vectors \vec{h}_i. The transposed column vector \vec{h}_i belongs to F_q^n, $i \in \{1, \ldots, n\}$. We assume that the columns of the parity-check matrix H
are arranged in some fixed order. The set \(\mathbb{F}_q^m \setminus \{ \vec{0} \} \) generates a projective space \(PG_{m-1}(q) \) of dimension \(m-1 \) over the Galois field \(\mathbb{F}_q \). In this space, points correspond to the columns of the parity-check matrix \(H \) and the three points \(i, j, k \) lie on the same line if the corresponding columns \(\vec{h}_i, \vec{h}_j, \vec{h}_k \) are linearly dependent. We denote by \(l_{xy} \) the line passing through the points \(x \) and \(y \), and we denote by \(P_{xyz} \) the plane spanned by three non-collinear points \(x, y, z \). Let \(\vec{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{F}_q^n \). Then, the support of the vector \(\vec{x} \) is the set \(\text{supp}(\vec{x}) = \{ i : x_i \neq 0 \} \). A triple belongs to the line if the support of this triple belongs to the line. The triples intersect at the point \(i \) if their supports intersect at the point \(i \).

2 Properties of \(i \)-components

Next, we present theorems describing the properties of the \(i \)-components of code \(\mathbb{H} \). Let the subcode \(\mathbb{H}_l \) of code \(\mathbb{H} \) be defined by the line \(l \). We consider the pencil of lines \(l_1, l_2, \ldots, l_{(n-1)/q} \) through a point \(i \). It is known [1] that

\[
R_i = \mathbb{H}_{l_1} + \mathbb{H}_{l_2} + \cdots + \mathbb{H}_{l_{(n-1)/q}}. \tag{1}
\]

Theorem 1. Let a vector \(\vec{u} = (u_1, u_2, \ldots, u_n) \in R_i \) and a component \(u_x \) of the vector \(\vec{u} \) be nonzero, \(x \neq i \). Then on the line \(l_{ix} \) there exists a point \(y \) distinct from the points \(i, x \) and such that component \(u_y \) of the vector \(\vec{u} \) is nonzero.

Proof. The basis of the subspace \(R_i \) is formed by all linearly independent triples of the code \(\mathbb{H} \) having 1 in the \(i \)-th coordinate. Consider representation of the vector \(\vec{u} \) with respect to the basis. From the conditions of the theorem, it follows that in this representation is a triple whose support contains points \(i, x \) and a point which is on the line \(l_{ix} \) and is distinct from the points \(i, x \). From formula (1) it follows that the basis triples belonging to the line \(l_{ix} \) form a subspace \(\mathbb{H}_{l_{ix}} \). The basis triples, that belong to other lines from the pencil of lines containing the point \(i \), intersect with the basis triples, that lie on the line \(l_{ix} \), only at one point \(i \). The theorem is proved.

Theorem 2. Let \(i \neq j \), a vector \(\vec{u} = (u_1, u_2, \ldots, u_n) \in R_i + R_j \), a component \(u_x \) of the vector \(\vec{u} \) be nonzero and the point \(x \) does not lie on \(l_{ij} \). Then on the plane \(P_{ijx} \) there exists a point \(y \) distinct from the points \(i, j, x \) and such that component \(u_y \) of the vector \(\vec{u} \) is nonzero.

Proof. This theorem is proved similarly to the previous one. The basis triples of \(R_i + R_j \) that lie on the plane \(P_{ijx} \) form a subspace. The lines from the pencil of lines containing the point \(i \) either lie on the plane \(P_{ijx} \) or intersect with this plane at only one point \(i \). The lines of the pencil of lines through the point \(j \) have the same property. The theorem is proved.
3 Example 1

Next, we describe the constructions of admissible families of components of code \mathbb{H}.

Example 1.

In the parity-check matrix H of the Hamming code \mathbb{H} of length $n = (q^m - 1)/(q - 1)$, we choose m linearly independent columns. We assume that we have chosen the columns $\vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m$. Let $(\Lambda \cup \{\vec{0}\}) \subset \mathbb{F}_q^m$ be a code containing t nonzero vectors $\vec{\lambda}_1, \vec{\lambda}_2, \ldots, \vec{\lambda}_t$, the weight of each of them be greater than or equal to three. Let the distance between any two distinct vectors from the set $\Lambda = \{\vec{\lambda}_1, \vec{\lambda}_2, \ldots, \vec{\lambda}_t\}$ be greater than or equal to five. With each vector $\vec{\lambda}_s = (\lambda_{s1}, \lambda_{s2}, \ldots, \lambda_{sm})$ of length m we associate a vector \vec{u}_s of length n, where $s \in \{1, \ldots, t\}$. Let

$$\mu_s \vec{h}_i = \lambda_{s1} \vec{h}_1 + \lambda_{s2} \vec{h}_2 + \cdots + \lambda_{sm} \vec{h}_m,$$

where $\mu_s \in \mathbb{F}_q$, $i_s \in \{1, 2, \ldots, n\}$. Then we put

$$\vec{u}_s = (\lambda_{s1}, \lambda_{s2}, \ldots, \lambda_{sm}, 0, \ldots, 0, -\mu_s, 0, \ldots, 0).$$

The support of the vector \vec{u}_s belongs to $\{1, 2, \ldots, m\} \cup \{i_s\}$. Since the Hamming code \mathbb{H} forms a null space of parity check matrix H, we have $\vec{u}_s \in \mathbb{H}$. Thus, based on vectors of length m from the set Λ, we constructed a family of components $R_{i_1} + \vec{u}_1, R_{i_2} + \vec{u}_2, \ldots, R_{i_t} + \vec{u}_t$ of the q-ary Hamming code \mathbb{H} of length $n = (q^m - 1)/(q - 1)$.

Etzion and Vardy [3] used a set of linearly independent columns of the parity-check matrix of the Hamming code for constructing the full-rank binary 1-perfect codes.

Next, we show that the family of components from Example 1 is admissible.

Proposition 1.

Let $s \in \{1, 2, \ldots, t\}$. Then, $\vec{u}_s \notin R_{i_s}$.

Proof. From the construction it follows that the support of the vector $\vec{u}_s = (u_1, u_2, \ldots, u_n)$ belongs to $\{1, 2, \ldots, m\} \cup \{i_s\}$ and column \vec{h}_{i_s} is a linear combination of three or more columns from the set $\{\vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m\}$. Since the columns $\vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m$ are linearly independent, it follows that for $x \in \{1, 2, \ldots, m\}$ no linear combination of columns \vec{h}_{i_s} and \vec{h}_x does not belong to $\{\vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m\} \setminus \{\vec{h}_x\}$. Thus from Theorem 1 we have that $\vec{u}_s \notin R_{i_s}$. The proposition is proved.

Theorem 3.

The family of the component $R_{i_1} + \vec{u}_1, R_{i_2} + \vec{u}_2, \ldots, R_{i_t} + \vec{u}_t$ of the q-ary Hamming code \mathbb{H} of length n is admissible.

Proof. Let $r, s \in \{1, 2, \ldots, t\}$, $r \neq s$. Then, we show that

$$(R_{i_r} + \vec{u}_r) \cap (R_{i_s} + \vec{u}_s) = \emptyset. \quad (2)$$

In order to satisfy the equality [2] it suffices to show that $\vec{u}_r - \vec{u}_s \notin R_{i_r} + R_{i_s}$. We consider several cases.
1. Let \(i_r = i_s \).

Then, the vectors \(\vec{u}_r \) and \(\vec{u}_s \) are linearly dependent. From the construction of vectors \(\vec{u}_r \) and \(\vec{u}_s \), we obtain that the weight of vector \(\vec{u}_r - \vec{u}_s \) is greater than or equal to six. Hence, arguing as in the proof of Proposition 1, we obtain that \(\vec{u}_r - \vec{u}_s \notin \mathbb{R}_{i_r} \).

2. Let \(i_r \neq i_s \).

Then, we show that \(\vec{u}_r - \vec{u}_s \notin \mathbb{R}_{i_r} + \mathbb{R}_{i_s} \). By Theorem 2, it suffices to show that the support of vector \(\vec{u}_r - \vec{u}_s \) contains a point \(x \) not lying on the line \(l_{i_r i_s} \) and such that no other point (distinct from the points \(i_r, i_s, x \)) of the support does not belong to the plane \(P_{i_r i_s x} \).

2.1. Let the columns \(\vec{h}_{i_r} \) and \(\vec{h}_{i_s} \) be such that as a result of any linear combination of these columns, one obtains a column, which can be represented linear combination of three or more columns from the set \(\{ \vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m \} \).

The support of vector \(\vec{u}_r - \vec{u}_s \) belongs to \(\{ 1, 2, \ldots, m \} \cup \{ i_r \} \cup \{ i_s \} \). Consequently, the point \(x \) belong to \(\{ 1, 2, \ldots, m \} \). Since the columns \(\vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m \) are linearly independent, it is obvious that none of the columns of the set \(\{ \vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m \} \setminus \{ \vec{h}_x \} \) is not a linear combination of the columns \(\vec{h}_{i_r}, \vec{h}_{i_s}, \vec{h}_x \). Consequently, \(\vec{u}_r - \vec{u}_s \notin \mathbb{R}_{i_r} + \mathbb{R}_{i_s} \).

2.2. Let the columns \(\vec{h}_{i_r} \) and \(\vec{h}_{i_s} \) be such that as a result of linear combination of these columns, one obtains the column \(\vec{h} \) which can be represented linear combination of two columns \(\vec{h}_{y'}, \vec{h}_{y''} \) from the set \(\{ \vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m \} \).

2.2.1. If at least one of the points \(y', y'' \) do not belong to the support of vector \(\vec{u}_r - \vec{u}_s \), then \(\vec{u}_r - \vec{u}_s \notin \mathbb{R}_{i_r} + \mathbb{R}_{i_s} \).

2.2.2. Let \(y', y'' \) be the points belonging to the support of vector \(\vec{u}_r - \vec{u}_s \). Then, we choose a point in the support of the vector \(\vec{u}_r - \vec{u}_s \) which is distinct from the points \(i_r, i_s, y', y'' \). Such a choice is possible by the construction of vectors \(\vec{u}_r, \vec{u}_s \). The support of the vector \(\vec{u}_r - \vec{u}_s \) belongs to \(\{ 1, 2, \ldots, m \} \cup \{ i_r \} \cup \{ i_s \} \). Hence, the points \(x, y', y'' \) belong to \(\{ 1, 2, \ldots, m \} \) and are not collinear. Consider any other linear combination of columns \(\vec{h}_{i_r}, \vec{h}_{i_s} \) as a result of which, we obtain a column that is linearly independent from the column \(\vec{h} \). Since the distance between the vectors \(\vec{h}_r \) and \(\vec{h}_s \) greater than or equal to five and columns \(\vec{h}_r, \vec{h}_2, \ldots, \vec{h}_m \) are linearly independent, it follows that the distance between the columns \(\vec{h}_s \) and \(\vec{h}_s \) is also greater than or equal to five. Consequently, as a result of the linear combination, we obtain a column which is a linear combination of three or more columns from the set \(\{ \vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m \} \). Thus, \(\vec{u}_r - \vec{u}_s \notin \mathbb{R}_{i_r} + \mathbb{R}_{i_s} \).

2.3. Let the columns \(\vec{h}_{i_r} \) and \(\vec{h}_{i_s} \) be such that as a result of a linear combination of these columns, we obtain the column from the set \(\{ \vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m \} \). Then the same arguments as in the previous case, we obtain that \(\vec{u}_r - \vec{u}_s \notin \mathbb{R}_{i_r} + \mathbb{R}_{i_s} \). The theorem is proved.
4 Examples 2 and 3

Next, we give Examples 2 and 3. The family of components in these examples are constructed in exactly the same way as in Example 1.

Example 2.

Let \((\Lambda \cup \{\vec{0}\}) \subset \mathbb{F}_3^m\) bet a code containing \(t\) nonzero vectors \(\vec{\lambda}_1, \vec{\lambda}_2, \ldots, \vec{\lambda}_t\), the weight of each of them be greater than or equal to three. Let also the distance between any two distinct vectors in \(\Lambda = \{\vec{\lambda}_1, \vec{\lambda}_2, \ldots, \vec{\lambda}_t\}\) be greater than or equal to three. Then, the set \(\Lambda\) corresponds to admissible family of component of the ternary Hamming code of length \(n = (3^m - 1)/2\).

Example 3.

In the parity-check matrix \(H\) of the binary Hamming code \(H\) of length \(n = 2^m - 1\), we choose \(m\) linearly independent columns. We assume that we have chosen the columns \(\vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m\). In the parity-check matrix \(H\), we also choose \(k\) columns which are linear combination of two columns from \(\{\vec{h}_1, \vec{h}_2, \ldots, \vec{h}_m\}\). We assume that these columns are the columns \(\vec{h}_{m+1}, \vec{h}_{m+2}, \ldots, \vec{h}_{m+k}\). Let \((\Lambda \cup \{\vec{0}\}) \subset \mathbb{F}_3^{m+k}\) be a code contains \(t\) nonzero vectors \(\vec{\lambda}_1, \vec{\lambda}_2, \ldots, \vec{\lambda}_t\), the weight of each of them be greater than or equal to \(3k + 3\). Let the distance between any two distinct vectors in \(\Lambda = \{\vec{\lambda}_1, \vec{\lambda}_2, \ldots, \vec{\lambda}_t\}\) be greater than or equal to \(3k + 3\). With each vector \(\vec{\lambda}_s = (\lambda_{s1}, \lambda_{s2}, \ldots, \lambda_{sm+k})\) of length \(m + k\) same way as in Example 1 we associate a vector \(\vec{u}_s\) of length \(n = 2^m - 1\), where \(s \in \{1, \ldots, t\}\). Then, the set \(\Lambda\) corresponds to admissible family of components of the binary Hamming code of length \(n = 2^m - 1\).

The proof of the fact that the families of components in Examples 2 and 3 are admissible is similar to the proof of Theorem 3. In the case of ternary codes, we should take in account the features of the Galois field \(\mathbb{F}_3\). Let \(\vec{x}, \vec{y} \in \mathbb{F}_3^m\). Then, it is obvious that if \(d(\vec{x}, \vec{y}) = m\) and vectors \(\vec{x}, \vec{y}\) does not contain zero components, then they are linearly dependent.

5 Embedding in perfect code

Next, we prove a theorem on the embeddability.

By \(\vec{e}_i\) we denote a vector of length \(n\), where \(i\)-th component is equal to 1 and other components are equal to 0.

Let
\[
\mathcal{T} = \left(\mathbb{H} \setminus \bigcup_{s=1}^{t} (R_{i_s} + \vec{u}_s) \right) \cup \left(\bigcup_{s=1}^{t} (R_{i_s} + \vec{u}_s + \mu_s \cdot \vec{e}_s) \right) .
\]

By Theorem 3 the family of component \(R_{i_1} + \vec{u}_1, R_{i_2} + \vec{u}_2, \ldots, R_{i_t} + \vec{u}_t\) of \(q\)-ary Hamming code \(\mathbb{H}\) is admissible (similar theorems on the admissibility of the family component are
valid for the codes from Examples 2 and 3). Consequently, the set T is q-ary 1-perfect code of length n, see [3, 4]. By Proposition 1, the code T contains the zero vector.

Theorem 4.

Every q-ary code of length m and minimum distance 5 (for $q = 3$ the minimum distance is 3) can be embedded in a q-ary 1-perfect code of length $n = (q^m - 1)/(q - 1)$. Every binary code of length $m + k$ and minimum distance $3k + 3$ can be embedded in a binary 1-perfect code of length $n = 2^{m - 1}$.

Proof. From the construction of the admissible family of component of q-ary code H in Example 1 and formula 3, it follows that every q-ary code $\Lambda \cup \{\vec{0}\}$ of length m and minimum distance 5 can be embedded (in the strong sense) in the q-ary 1-perfect code T of length $n = (q^m - 1)/(q - 1)$.

From the construction of the admissible family of component of ternary code H in Example 2 and Formula 3 it follows that every ternary code $\Lambda \cup \{\vec{0}\}$ of length m and minimum distance 3 can be embedded (in the strong sense) in a ternary 1-perfect code T of length $n = (3^m - 1)/2$.

From the construction of admissible family of component of binary code H in Example 3 and Formula 3 it follows that every binary code $\Lambda \cup \{\vec{0}\}$ of length $m + k$ and minimum distance $3k + 3$ can be embedded in a binary 1-perfect code T of length $n = 2^{m - 1}$, $k \geq 0$. In the case of binary codes of Example 3 the embedding is not strong. The theorem is proved.

References

[1] **Romanov A. M.** On partitions of q-ary Hamming codes into disjoint components. // Discrete Analysis and Operations Research. — 2004. Ser. 1, — V. 11, N 3. — P. 80–87.

[2] **Avgustinovich S. V., Krotov D. S.** Embedding in a perfect code // Journal of Combinatorial Designs. — 2009. — V. 17, N 5. — P. 419-423.

[3] **Etzion T., Vardy A.** Perfect binary codes: Constructions, properties and enumeration // IEEE Trans. Inf. Theory. — 1994. — V. 40, N 3. — P. 754-763.

[4] **Phelps K. T., Villanueva M.** Ranks of q-ary 1-perfect codes // Designs, Codes and Cryptogr. — 2002. — V. 27, N 1–2. — P. 139–144.

[5] **Romanov A. M.** Survey of Methods for Construction of Nonlinear Perfect Binary Codes // Journal of Applied and Industrial Mathematics. — 2008. — V. 2, N 2. — P. 252 — 269.