Deciphering the transcriptional switches of innate lymphoid cell programming: the right factors at the right time

AWY Lim and ANJ McKenzie

Innate lymphoid cells (ILCs) are increasingly recognised as an innate immune counterpart of adaptive T-helper (T\(\text{H}\)) cells. In addition to their similar effector cytokine production, there is a strong parallel between the transcription factors that control the differentiation of T\(\text{H}1\), T\(\text{H}2\) and T\(\text{H}17\) cells and ILC groups 1, 2 and 3, respectively. Here, we review the developmental circuit that specifies the development of a common ILC progenitor and its subsequent programming into distinct ILC groups. Notch, GATA-3 (GATA-binding protein 3), Nfil3 (nuclear factor interleukin-3) and Id2 (inhibitor of DNA-binding 2) are identified as early factors that suppress B- and T-cell potentials and are turned on in favour of ILC commitment. Natural killer cells, which are the cytotoxic ILCs, develop along a pathway distinct from the rest of the helper-like ILCs that are derived from a common progenitor to all helper-like ILCs (CHILPs). PLZF\(^+\) (promyelocytic leukaemia zinc-finger) CHILPs give rise to lymphoid tissue inducer cells, while PLZF\(^-\) CHILPs have multilineage potential and could give rise to ILCs 1, 2 and 3. Such lineage specificity is dictated by the controlled expression of T-bet (T-box expressed in T cells), ROR\(\alpha\) (retinoic acid receptor-related orphan nuclear receptor-\(\alpha\)), ROR\(\gamma\) (retinoic acid receptor-related orphan nuclear receptor-\(\gamma\)) and AHR (aryl hydrocarbon receptor). In addition to the type of transcription factors, the developmental stages at which these factors are expressed are crucial in specifying the fate of the ILCs.

INTRODUCTION

Transcriptional programming of immune cell fate and lineage specificity is essential for the commitment and development of the hematopoietic system.\(^1\)-\(^3\) The recent discovery of innate lymphoid cells (ILCs) has sparked an intriguing question relating to their ontogeny—that is, where do these cells come from? The ILCs are characterised by their lymphoid origin and hence their requirement for the common cytokine receptor \(\gamma\)-chain.\(^4\) Like other innate immune cells, the ILCs lack somatically rearranged antigen-specific receptors and can respond rapidly to stimuli. However, the ILCs mediate their immune effector functions through the secretion of key effector cytokines that were previously primarily associated with a T-helper cell (T\(\text{H}\)) response. Three groups of ILCs have been assigned. Group 1 ILCs (ILC1s) are defined by their production of the signature type 1 cytokine interferon-\(\gamma\) (IFN\(\gamma\)), group 2 ILCs (ILC2s) produce the type 2 cytokines interleukin-4 (IL-4), IL-5 and/or IL-13 and group 3 ILCs (ILC3s) produce the T\(\text{H}17\)-associated cytokines IL-17 and/or IL-22.\(^4\) The ILCs include the previously discovered natural killer (NK) cells\(^5\)-\(^6\) and lymphoid tissue inducer (LTi) cells\(^7\)-\(^8\) and these cells are now reclassified as ILC1 and ILC3, respectively.\(^4\) Importantly, functionally equivalent populations of human ILCs have been identified.\(^9\)-\(^11\)

ILCs have been implicated in immune protective functions and tissue homeostasis, but their release of potent proinflammatory cytokines has also been shown to contribute to inflammatory conditions such as allergic asthma and inflammatory bowel diseases (IBDs).\(^10\)-\(^11\) It is noteworthy that genes required for ILC2 growth and differentiation have been associated with differences in asthma severity in large-scale genome-wide association studies.\(^12\)-\(^13\) ILC3s in mice were first linked to colitis\(^14\) but subsequent studies have implicated human ILC1- and ILC3-like cells in Crohn’s disease as well.\(^15\)-\(^16\) ILC3s are IL-23-responsive cells, and the reported association between polymorphism in the IL-23 receptor with IBD reaffirms the pathological role of ILC3s in IBD.\(^17\) ILC2 and NCR\(\gamma\) (natural cytotoxicity receptor) ILC3 have also been recently implicated in atopic dermatitis and psoriasis, respectively, after these cells were shown to accumulate in the skin lesion of these patients.\(^18\)-\(^19\)

With the discovery of the ILCs, immune functions and pathologies once assumed to be T\(\text{H}\) cell-dependent are now being revisited to determine ILC involvement and this may allow development of more targeted therapies tailored to the ILCs. Understanding the cues for ILC development has therefore become a focus of interest, and major advances have been made within a relatively short period of time. Reviews on the biology of ILCs and its cytokine effector functions have been published elsewhere.\(^4\)-\(^10\),\(^11\) This review will thus focus on the developmental programming of the ILCs and is aimed at consolidating current information on known transcription factors that regulate the development of a common ILC progenitor and its subsequent differentiation into the distinct ILC groups. We will begin with an overview of the development of the three ILC groups, followed by a discussion of some key transcription factors that are required for the functional differentiation/maturation of ILCs.

DEVELOPMENT OF THE DIFFERENT ILC GROUPS

A common ILC progenitor?

The notion of a common ILC progenitor arose from various early observations that the deletion of the transcription factor inhibitor of DNA-binding 2 (Id2) resulted in the ablation of all recognised
ILC groups, suggesting that all the ILCs are developmentally related. Significant progress towards our understanding of the relatedness of the ILCs was made with the description of an Id2⁻ progenitor that was termed the common progenitor to all helper-like ILCs (CHILPs). CHILPs have multi-ILC lineage potential, and with the exception of NK cells, CHILPs give rise to members of all three ILC groups following adoptive transfer (Figure 1). Transcription factor profiling of the CHILP revealed that it was made up of heterogenous populations of cells and could be bisected into those that expressed the transcription factor promyelocytic leukaemia zinc-finger (PLZF⁺) and those that did not (PLZF⁻). Although all the ILCs could arise from the PLZF⁺ population, LTi cells appear to be derived from the PLZF⁻ precursor (Figure 1). This showed that all the other ILCs are more closely related to each other than to LTi cells and even less relatedness of the ILCs was made with the description of an Id2⁺ population, LTi cells appear to be derived from the PLZF⁻ progenitor (Figure 1). This showed that all the other ILCs are more closely related to each other than to LTi cells and even less so to NK cells. However, the heterogeneity of the CHILPs suggests that greater refinement is required to discriminate the ILC progenitors. Indeed, the involvement of GATA-3 (GATA-binding protein 3), and Nfil3 (nuclear factor interleukin-3) at these stages of commitment and the regulation of the downstream ILCs 1, 2 and 3 defining factors remains to be defined fully.

Group 1 ILCs

ILC1s are defined by their production of IFNγ and their requirement for the T-box transcription factor T-bet (T-box expressed in T cells; Tbx21), To date, members of the group include the conventional NK (cNK) and thymic NK (tNK) cells, ex-ILC3s (described later) that have developed the ability to secrete IFNγ and express T-bet, intestinal and tonsillic intraepithelial ILC1 and a recently identified subset of lamina propria-resident ILC1. Although T-bet is considered the signature transcription factor of the ILC1s, NK cells are also dependent on another T-box transcription factor, Eomes (eomesodermin), for their terminal maturation. Eomes is also expressed by intraepithelial ILC1s.

Figure 1. Schematic of the proposed transcriptional circuit regulating ILC development. ILC1s are grouped in blue and are divided into the helper ILC1 and cytotoxic ILC1s (NK cells), ILC2s are grouped in green, ILC3s in red and CHILPs in yellow. IE ILC1, intraepithelial ILC1; LP ILC1, lamina propria ILC1. B cells, T cells and all ILCs are derived from a multipotent CLP, with the decision to differentiate into any of these immune cell types dependent on the transcription factor that is turned on. Expression of EBF1 and Pax5, for example, allows differentiation into a B cell (1). Expression of Nfil3 and Id2/Id3 (2) leads to an NK precursor that then progresses onto a mature cNK cell via a pathway that requires T-bet and Eomes. If Notch and GATA-3 are switched on instead (3), a multipotent ILC/T progenitor may be generated. Expression of TCF-1 by this progenitor (4) leads to a more restricted NK/T progenitor that continues to develop in the thymus. If Bcl11b is switched on, a T cell is generated, but sequential expression of Nfil3, Id2, T-bet and Eomes gives rise to tNK cells instead. ILC/T progenitors that otherwise express Nfil3 and Id2 become CHILPs (5). PLZF⁺ CHILPs develop into LTi cells, whereas PLZF⁻ CHILPs give rise to the remaining helper ILC1s, ILC2s and NCR⁺ ILC3s via the expression of lineage-specific transcription factors. These are T-bet for the ILC1s, GATA-3 and RORα for ILC2s and AHR and RORγt for ILC3s. CCR6⁺ NCR⁺ ILC3s demonstrate plasticity and can further differentiate to become an ILC1 by expressing T-bet. The origin of the IE ILC1 has not been determined.

Transcriptional control of ILC development
AWY Lim and ANJ McKenzie

Genes and Immunity (2015) 177–186 © 2015 Macmillan Publishers Limited
All the identified ILC1s produce IFNγ in response to the proinflammatory cytokine IL-12,23,29,30,32,33 but a combination of IL-12 and IL-18 has been suggested to act synergistically on NK cells.32 With the exception of the intraepithelial ILC1s,30 the development of all the other ILC1s are dependent on IL-15.23,29,34 In fact, IL-15, IL-12 and IL-18 induce T-bet expression,33 and in the case of the ILC3-derived ILC1s, IL-15 and IL-12 are important for the downregulation of the ILC3-defining transcription factor RORγt (retinoic acid receptor-related orphan nuclear receptor-γt)29 (described later) in order for these cells to acquire an ILC1 phenotype.

NK cells possess potent cytolytic activity towards virally infected cells and tumours through their production of perforin and granzymes.38 They are activated via surface NCRs, which are important for both tumour39 and viral antigen recognition.40 NKp44 (NCR2) is only present in human, while NKp46 (NCR1) is conserved in human and mice.41,42 Similar to NK cells, the remaining members of the ILC1s also express NCRs but confer immune protection against non-viral intracellular pathogens such as Salmonella enterica28 and Toxoplasma gondii.25 However, they have also been implicated in immune pathology such as colitis.28–30 Although intraepithelial ILC1s express perforin and granzymes, which is suggestive of their potential cytotoxicity,39 lamina propria ILC1s23 and ex-ILC3s7,29 do not and these latter cells are considered helper-like ILCs rather than cytotoxic ILCs.

Of all members of the ILC1s, the developmental pathways of the NK cells are best characterised. The bone marrow is the primary site of NK cell development at steady state in the adult human and mice, but the liver,43,44 thymus33,45 and lymph nodes46,47 also serve as sites of NK-poiesis. However, it has been suggested that NK cell development in the bone marrow differs from that in the liver—both in the temporal acquisition of the mature NK (mNK) markers, NKp46 and DX5,48 and their dependence on the transcription factor, Eomes.39,49 In mice, mature cNK cells develop from a bone marrow-derived common lymphoid progenitor (CLP) that progressively undergoes three major stages of development, each characterised by a sequential change in the expression of distinct cell surface markers.2,49,50 The expression of surface NK1.1 and DX5 are commonly used to distinguish these different intermediary stages.51–54 The earliest progenitor committed to the NK lineage is a CD122+ NK precursor (NKP) (NK1.1+ DX5+), which then progresses through an immature NK (iNK) cell stage (NK1.1+ DX5–) before becoming a mNK cell (NK1.1+ DX5–). In human, cNK cells develop from a CD34+ hematopoietic progenitor that undergoes four major stages of development characterised by variable expression of the surface markers CD34, CD94 and CD117.55 Mature human cNK cells are then further divided into two subsets based on their levels of CD56 expression.56

In contrast, tNK cells are derived from a bipotent NK/T-cell progenitor found in the thymus of humans and mice.57,58 In mice, tNK cells are distinguished from the BM-derived cNK based largely on the expression of CD12753 but T-cell receptor-y rearrangement was also suggested as a unique marker of these cells.59 The decision of thymocytes to commit into either a T or NK cell is dependent on the expression of the transcription factor Bcl11b at the double-negative 2a stage (Figure 1). Bcl11b was shown to promote the expression of a panel of genes associated with T-cell development, but repress NK cell-associated genes such as Id2, Nvi3, Tbx21 and Eomes, leading to a commitment to the T-cell lineage. Consistent with this, Bcl11b-deficient thymocytes beyond the double-negative 2 stage acquire NK-like properties with a concomitant loss of T-cell features.60,61 Following their development, NK cells migrate to seed other anatomical sites including the lung, liver, peripheral blood and secondary lymphoid organs, although the contribution of NK cells of different origin to these sites may differ.5,62 The development of other ILC1s is distinct from the NK cells. For example, a subset of ILC1 are derived from the redifferentiation of an ILC3 and were defined by being RORγt fate-map positive.27,29 Intraepithelial ILC1 and lamina propria ILC1 are RORγt fate-map negative23,30 indicating that they are not of an ILC3 origin. The lamina propria ILC1s develop directly from the CHILPs.70 However, CHILPs did not give rise to Eomes+ progeny23 and hence may not be the progenitor to intraepithelial ILC1. Both intraepithelial ILC1 and NK cells are T-bet+Eomes+, suggesting that they are more closely related, but unlike the NK cells, intraepithelial ILC1 are independent of IL-15 signalling.30 The developmental pathway for this unique class of ILC1 remains to be fully determined.

Group 2 ILCs Members of the ILC2s were discovered almost concurrently by three independent research groups and were initially termed natural helper cells,20,63,64,66,68 Interestingly, in addition to these two cytokines, ILC2s also produce the growth factor amphiregulin.69 ILC2s are indispensable for conferring innate defence against helminth infection,63,64 and through the release of amphiregulin, ILC2s promote tissue remodelling following influenza virus-induced airway damage.69 However, ILC2s also mediate type 2 immune pathology and have been shown to be the key players in viral,70–72 and allergen-induced airway inflammation.65,66 Functionally equivalent ILC2s have also been identified in the human lung69 and gut and were enriched in the nasal polyps of patients with chronic rhinosinusitis.73 ILC2s could be derived from the PLZF+ fraction of CHILPs,23,24 and require the transcription factors GATA-367 and RORα (retinoic acid receptor-related orphan nuclear receptor-α)74,75 for their commitment. A GATA-3high ILC2 precursor (ILC2P) that has a transcriptional profile similar to that of ILC2s but lacks surface expression of KLRG1 is found on mature ILC2s has also been identified.76 Conditional deletion of GATA-3 in Id2+ cells demonstrated the requirement of GATA-3 for ILC2 development.67 In addition to GATA-3, ILC2s are also dependent on the transcription factor amphiregulin.69 ILC2s also produce the growth factor amphiregulin.69,72 Interestingly, in addition to these type 2 cytokines, ILC2s also produce the growth factors amphiregulin.69,72 and IL-33.66,72 and allergen-induced airway inflammation.65,66 Functionally equivalent ILC2s have also been identified in the human lung69 and gut and were enriched in the nasal polyps of patients with chronic rhinosinusitis.73 ILC2s could be derived from the PLZF+ fraction of CHILPs,23,24 and require the transcription factors GATA-367 and RORα (retinoic acid receptor-related orphan nuclear receptor-α)74,75 for their commitment. A GATA-3high ILC2 precursor (ILC2P) that has a transcriptional profile similar to that of ILC2s but lacks surface expression of KLRG1 is found on mature ILC2s has also been identified.76 Conditional deletion of GATA-3 in Id2+ cells demonstrated the requirement of GATA-3 for ILC2 development.67 In addition to GATA-3, ILC2s are also dependent on the transcription factor amphiregulin.69,72 Interestingly, in addition to these type 2 cytokines, ILC2s also produce the growth factors amphiregulin.69,72 and IL-33.66,72 and allergen-induced airway inflammation.65,66 Functionally equivalent ILC2s have also been identified in the human lung69 and gut and were enriched in the nasal polyps of patients with chronic rhinosinusitis.73 ILC2s could be derived from the PLZF+ fraction of CHILPs,23,24 and require the transcription factors GATA-367 and RORα (retinoic acid receptor-related orphan nuclear receptor-α)74,75 for their commitment. A GATA-3high ILC2 precursor (ILC2P) that has a transcriptional profile similar to that of ILC2s but lacks surface expression of KLRG1 is found on mature ILC2s has also been identified.76 Conditional deletion of GATA-3 in Id2+ cells demonstrated the requirement of GATA-3 for ILC2 development.67 In addition to GATA-3, ILC2s are also dependent on the transcription factor amphiregulin.69,72 Interestingly, in addition to these type 2 cytokines, ILC2s also produce the growth factors amphiregulin.69,72 and IL-33.66,72 and allergen-induced airway inflammation.65,66 Functionally equivalent ILC2s have also been identified in the human lung69 and gut and were enriched in the nasal polyps of patients with chronic rhinosinusitis.73
host-protective IL-17 following Candida albicans infection, and very recently, both ILC2s and ILC3s were shown to be expanded in the peripheral blood of filarial-infected patients. Similar to the ILC2s, ILC3s express IL-7Ra and are dependent on IL-7 for their development. Members of the ILC3s include the LTi cells, and two subsets of ILC3s distinguished by their expression of NCR—the NCR− ILC3s and NCR+ ILC3s.

As their name suggests, LTi cells are the key drivers of secondary lymphoid organogenesis throughout life: in fetal development of lymph nodes and Peyer’s patches, postnatal development of cryptopatches and isolated lymphoid follicles, and in adults, for maintaining the integrity of the secondary lymphoid organs. LTi cells mediate such functions by expressing surface Lympho-associated LTα+ stromal cells expressing the corresponding LTβ receptor. In addition to these established roles, LTi cells were later discovered to contribute to immune defence. CD4+ and CD4− LTi-like cells were shown to secrete IL-17 and IL-22 upon IL-23 and IL-1 but not from CCR6+ CD4+/− NKp46− NK cells, and two subsets of ILC3s distinguished by their expression of NCR+ ILC3s and NCR− ILC3s. This innate population of CD4− to contribute to immune defence. CD4+ and CD4− LTi-like cells were shown to secrete IL-17 and IL-22 upon IL-23 and IL-1β stimulation and mediate the expulsion of the intestinal bacterial pathogen Citrobacter rodentium by providing an early source of the effector cytokine IL-22. Human LTi cells that similarly express LTα and LTβ and produce IL-17 and IL-22 have also been discovered.

This area of cytokine-producing ILCs underwent a rapid burst of expansion with concurrent reports of the identification RORγt-dependent ILCs that are now collectively referred to as NCR− ILC3s. The NCR− ILC3s reside in the lamina propria of mice and were identified as RORγt+ NKp46+ NK.1.1−109 cells that produce only IL-22. Equivalent IL-22 producers were also discovered in human tonsils, Peyer’s patches and uteri. In earlier reports, the NCR+ ILC3s were referred to as NCR+, NK−, NKR-LTi29 and ILC22+ cells. IL-22 has previously been shown to mediate the expulsion of the attaching and effacing pathogen C. rodentium by triggering the release of anti-microbial peptides. Thus, similar to the LTi cells, mouse NCR+ ILC3s were identified to be important sources of IL-22 for defence against C. rodentium infection. Notably, although NCR+ ILC3s express NKp46, they do not exhibit the cytotoxicity characteristic of the NK cells.

In addition to the NCR+ ILC3s, NCR− ILC3s were also described. This innate population of CD4+ LTi-like cells accumulate in the inflamed intestines of Helicobacter hepaticus-infected mice. In addition to IL-17 and IL-22, these cells secrete IFNγ and express the transcription factor T-bet. Like the LTi cells, these innate CD4+ cells express CCR6 but not the Nkp46 NCR that is associated with NK cells despite exhibiting an NK-like phenotype. To distinguish them from the LTi and NK cells, they were initially referred to as NCR− ILC3s. However, to be able to specifically distinguish this subset from the other NCR+ ILC3s (discussed below), we refer to them here as CCR6+ NCR− ILC3s (Figure 1).

The many similarities between NCR+ ILC3s and LTi cells led to initial speculation that LTi cells were precursors to NCR+ ILC3s. However, more elaborate analysis in mice suggested that Nkp46− RORγt+ cells that were thought to be representative of the LTi cells reported in earlier studies actually consisted of a heterogeneous mix of CD4+ and CD4− ILC3 subtypes. Using CCR6, CD4 and Nkp46 surface staining, Sawa et al. and Klose et al. described a more comprehensive subgrouping of the RORγt+ cells where the cells were first divided into two main fractions based on CCR6 expression. The CCR6− fraction included the classical CD4+ LTi cells and CD4− LTi cells both of which were Nkp46+, whereas the CCR6+ fraction was invariably CD4− but could be further divided into Nkp46− and Nkp46+ cells. By adoptive transfer, Klose et al. demonstrated that intestinal NCR− ILC3s arise from a CCR6− Nkp46+ precursor but not from CCR6+ Nkp46− LTi cells. Similar observations were also confirmed in vitro where cultures of CD4+ LTi and CD4− LTi cells failed to give rise to Nkp46+ cells. The CCR6+ precursors to NCR+ ILC3s were also not derived from CCR6− LTi cells. Moreover, depletion of CD4+ cells led to a reduction in only the numbers of CD4+ LTi cells but not NCR− ILC3s, indicating that NCR+ ILC3s originated from a CD4+ parent. This was confirmed by Rankin et al. who reported that only cultures of CD4− Nkp46+ cells differentiated into CD4− Nkp46+ progenies. However, in the absence of CCR6 staining, the population of CD4− Nkp46− precursors identified by Rankin et al. would have included the CCR6− cells described by Klose et al. Taken together, all these findings suggest that in mice, NCR− ILC3s are developmentally distinct from the LTi cells (Figure 1).

The acquisition of Nkp46 by the NCR− ILC3s is accompanied by their expression of the ILC1-defining transcription factor T-bet. In fact, following the expression of T-bet, NCR− ILC3s develop the ability to secrete IFNγ and they downregulate the expression of RORγt over time. Such progressive change in functional ability and transcriptional control marks the transition of the cell from an ILC3 to an ILC1 and eventually gives rise to a population of ILC1 that is identified as RORγt– fate-map positive, as described earlier. To date, this functional plasticity has only been observed in the NCR− ILC3s. The CHILP progenitors of ILCs are characterised as being Lineage− Id2+ a4β7+ RORγt+ cells. Prior to the discovery of CHILPs, a population of a4β7+ RORγt+ progenitors downstream of the CLP was already shown to generate CD4− LTi and CD4− ILC3 cells, while it was proposed that a4β7+ RORγt+ progenitors generated the NCR− ILC3s. However, ablation of Id2 in mice resulted in marked reduction in the frequency of the a4β7+ RORγt+ cells, and hence LTi cells, but did not perturb the frequency of a4β7− RORγt+ cells, although a severe reduction in NCR− ILC3s was observed. Thus, Id2 is required for the development of a4β7+ RORγt+ cells and the subsequent generation of NCR− ILC3s but not for the generation of a4β7− RORγt− precursors. These data also highlighted that the a4β7− RORγt+ cells were not derived from a4β7− RORγt− cells, and may represent an independent branching from the CLP.

COMMON TRANSCRIPTIONAL FACTORS FOR MULTIPLE ILC LINEAGES

In the last section, we have provided an overview of the progenitor–progeny relationship between members of the different ILC groups. Here, we discuss the transcription factors that are needed to programme the CLP into a common ILC precursor and the lineage-defining factors that then induce differentiation into the various ILC branches.

Inhibitor of DNA-binding 2

All ILC groups are dependent on the transcription factor Id2 for development. Id2 is highly expressed in NKP+ and CHILPs but not in hematopoietic stem cells and CLPs, indicating that the expression of Id2 downstream of the CLP is needed for subsequent ILC development (Figure 1). In addition to the ILCs, Id2 has also been implicated for the development of dendritic cells.

The earliest evidence for the importance of Id2 was demonstrated by Id2-deficient mice having significantly reduced NK and LTi cell populations. As a consequence, these mice failed to develop lymph nodes and Peyer’s patches. Subsequent studies then found that Id2−/− mice also lacked ILC2s and NCR− ILC3s. Although the loss of ILC2s and ILC3s could be attributed to the loss of CHILPs, loss of NK cells was not due to failure to generate the NKP s. Indeed, Id2-deficient mice have normal proportions of NKP s and NK cells despite a significant reduction in mNK cells. This ability to generate NKP s in an Id2−/− background was attributed to the compensatory role of Id3, another member of the Id family of transcription factors. The expression patterns of Id2 and Id3 were found to be inversely correlated. While Id3 is highly expressed in CLPs and NKP s, the expression of Id2 is low in CLPs.
but increases significantly in NKPs and mNK cells. The expression of Id3 was also found to be doubling in Id2-deficient NKPs.52 Nevertheless, despite the compensatory role of Id3 in early NK development, Id2 appears to be indispensable for subsequent NK maturation. Ectopic expression of Id3 was also shown to drive the development of human NK cells from a CD34+ bipotent NK/T-cell progenitor. This was accompanied by a concomitant block in TCR gene rearrangement and a loss of T-cell potential.106

Id2 acts by sequestering the E box protein transcription factors, thus preventing their binding to DNA and the induction of E protein target genes.107 Deletion of one of the major E proteins E2A in Id2-deficient mice restored both NK and LTi cell numbers and lymph node and Peyer’s patch development.25 E2A proteins are essential for B-cell development by inducing the B-cell-defining transcription factor Pax5 108,109 and are crucial for early thymocyte commitment to become T-cell precursors.110 Taken together, Id2 appears to drive ILC development by suppressing intrinsic B- and T-cell lineage potentials to allow for the expression of ILC-specific factors.

GATA-binding protein 3

The role of the zinc-finger transcription factor GATA-3 in immunity was first implicated in T cells. GATA-3 is essential for thymocytes to develop beyond the earliest double-negative 1 CD4− CD8− stage,111 and in a mature T cell, GATA-3 is the key driver of Th2 differentiation and to induce the expression of the type 2 cytokines IL-4, IL-5 and IL-13.112 The role of the zinc-finger transcription factor GATA-3 in immunity was first implicated in T cells. GATA-3 is essential for thymocytes to develop beyond the earliest double-negative 1 CD4− CD8− stage,111 and in a mature T cell, GATA-3 is the key driver of Th2 differentiation and to induce the expression of the type 2 cytokines IL-4, IL-5 and IL-13.112 Taken together, Id2 appears to drive ILC development by suppressing intrinsic B- and T-cell lineage potentials to allow for the expression of ILC-specific factors.

GATA-3 regulates NK cell functions. However, GATA-3 also regulates NK cell function. Although GATA-3 deficiency did not affect the frequency of total CD3− NK1.1+ NK cells, the resulting Gata3−/− NK cells displayed an immature phenotype and were characterised by lower T-bet expression and defective IFNy production in response to IL-12 and/or IL-18 stimulation.113 Indeed, collective data derived from various GATA-3 deletion models suggest that GATA-3 has niche roles at various stages of ILC development and that these differ between ILC groups. Deletion of GATA-3 from all hematopoietic cells using Gata3−/−Vav-Cre mice resulted in the most widespread effect on the ILCs. These mice exhibited a marked reduction in all CD127+ ILCs including thymic NK cells (ILC1), ILC2s and RORγt+ ILC3s but not CD127− cNK cells.25 A reduction in RORγt+ ILC3s was also observed following the adoptive transfer of GATA-3-deficient hematopoietic precursors into irradiated recipient mice, and the residual Gata3−/− ILC3s that are formed in these mice failed to produce IL-22 upon IL-23 stimulation.114 This suggest that ILC3s require GATA-3 for both early development and for effector function. However, in another deletion model, GATA-3 ablation in Id2-expressing cells markedly reduced the size of the ILC2 pool but spared the RORγt+ ILC3s,67 suggesting that unlike the ILC2s, RORγt+ ILC3s no longer require GATA-3 for development at the stage where Id2 is turned on. In addition, when GATA-3 was deleted in NKp46-expressing cells, only lamina propria resident ILC1 were reduced in numbers but the cNK cell and NCR+ ILC3 pools remained intact.23

These findings highlight that: (1) GATA-3 is dispensable for cNK cell commitment, and more importantly, (2) GATA-3 is crucial for the generation of a common ILC progenitor and appears to be needed upstream of Id2 (Figure 1). Once a GATA-3-dependent ILC progenitor is formed from the CLP, Id2 becomes crucial for the maintenance of this ILC progenitor, while the role of GATA-3 becomes dispensable until needed again for the development of the lamina propria ILC1 and ILC2, or for the proper functioning of the ILC3s. Thus, the need for GATA-3 occurs in two waves: first, during early progenitor development, and later, during ILC differentiation. The GATA-3-dependent progenitor may represent a multipotent ILC2/7-cell progenitor, with the decision to become an ILC- or a T-cell dependent on the transcriptional programming that follows. Notch, GATA-3 and T-cell factor-1 (TCF-1) are the three transcription factors that are crucial in the early stages of T-cell commitment.115 As will be discussed in the next section, Notch signalling is similarly required for early ILC development. Thus, it seems likely that Notch and GATA-3 may give rise to an ILC7/T-cell progenitor but while TCF-1 would then specify a T-cell lineage, Id2 specifies an ILC lineage.

Notch signalling

Unlike most of the other transcription factors, Notch signalling is not cell intrinsic but is dependent on the engagement of the Notch receptors with extracellular Notch ligands expressed by neighbouring cells. In vertebrates, four Notch receptors (Notch 1, 2, 3 and 4) and five Notch ligands (Delta-like-1, -3 and -4 and Jagged-1 and -2) have been identified.116 Notch signalling is essential for silencing the early B-cell factors, EBF1 and Pax5, allowing commitment to a T-cell fate.117 In vitro cultures of CLPs in the absence of Notch ligands generates mostly B cells, but in the presence of Notch ligands, T cells, ILC2s and ILC3s could be derived.75,101,117 These observations suggest that Notch acts in parallel with GATA-3, being required for facilitating ILC- and T-potential and repressing the B-cell programme (Figure 1). However, Notch signalling is dispensable for cNK96,100 and TNK118 cell development, and indeed, CLPs cultured in the absence of Notch ligands develop NK potential.101,117 These data suggest that cNK cells may have already branched from the other ILC lineages early in development, and that a sub-population of TNK cells may also develop independently of a T/NK progenitor.

Notch signalling is crucial for the development of ILC2s,75,119 NCR− ILC3s96,100 and LTi cells.96 As mentioned previously, the development of NCR− ILC3s is accompanied by T-bet expression, which is dependant on the presence of Notch. Nevertheless, the overall role of Notch signalling in LTi cells appears less straightforward. Notch signalling was reported to be crucial for the generation of an α4β7+ RORγt− LTi progenitor from fetal liver CLPs in vitro, but continued Notch engagement retarded the development of mature LTi cells.101 However, LTi cells were reduced following the ablation of Notch effector protein RBP-Jk in mice,96 indicating that Notch is needed for LTi cell development. This discrepancy between the need for Notch in the fetal and adult stages may be related to LTi cell’s requirement for aryl hydrocarbon receptor (AHR), a key transcription factor that is required for ILC3 development. Notch 1 has been identified as a target gene of AHR96 and fetal LTi cells are AHR-independent, and therefore Notch-independent, while postnatal LTi cells are AHR- and Notch-dependent.96,120,121 Such change in the requirement for Notch was also consistent with another study that showed that Notch signalling was important only for the development of RORγt+ ILC3s from adult bone marrow-derived CLPs but not from fetal liver CLPs.117 These different requirements for Notch may suggest an adaptation of the cells for the differential expression of Notch ligands in the adult and fetal hematopoietic microenvironments.

T-cell factor-1

TCF-1 is induced by Notch signalling and is required for T-cell development.2 TCF-1 is encoded by the Tcf7 gene and is highly expressed in early thymocytes, NK cells, ILC2s and both NCR+ and NCR− ILC3s.122 However, Tcf7−/− mice do not show impairment in the frequency of NK cells or NCR− ILC3s, but they lack ILC2s and NCR− ILC3s.119,122 As a result of the loss of ILC2s, Tcf7−/− mice mount a delayed immune response to helminth infection119 and allergen-induced airway challenge.119,122 GATA-3 and RORα expression was also decreased in heterozygous Tcf7+/- mice, suggesting that TCF-1 may be required for their expression.122 Indeed, overexpression of TCF-1 upregulated the expression of
GATA-3, and GATA-3 was required for TCF-1-mediated upregulation of ILC2-associated genes such as Il17rb and Il12ra.119

Despite the high levels of Tcf7 expression in NCR+ ILC3s, this pool of cells developed normally in TCF-1-deficient mice. This may be indicative of the role of TCF-1 in inducing the transition of NCR- ILC3s to NCR+ ILC3s, consistent with the loss of the latter population in Tcf7−/− mice.122 The diminished numbers of NCR+ ILC3s resulted in increased susceptibility to C. rodentium infection. Thus, while TCF-1 is important to switch off ILC potential early in development, it is required again during ILC2 and NCR+ ILC3 differentiation.

Nuclear factor interleukin-3
Nfi3, known also as E4-binding protein 4 (E4bp4), is essential for NK cell development. Nfi3−/− mice develop normal frequencies of NKPs, but have decreased iNK cells and almost undetectable mNK3,54 and TNK cells.103 However, the NKP cells in these early reports were defined according to an initial definition of Lin− CD3− CD122+ NK1.1− DX5− cells that were enriched for, but did not exclusively contain NKP.50 Using a more refined definition of NKP proposed by Fathman et al.,123 which segregates the NKPs into pre-NKP and refined NKP based on distinct surface markers, Male et al.124 showed that deletion of Nfi3 resulted in a significant reduction of pre-NKP and refined NKP cells. Consistent with this, deletion of Nfi3 also resulted in decreased proportions of Id2+ NKP, demonstrating that Nfi3 is required at the NKP stage.103

The arrest of the majority of NK cells at the immature stage in Nfi3−/− mice may be related to a reduced expression of Eomes, which is crucial for NK cell maturation.31 Nfi3−/− bone marrow progenitor cells had lower expression of Id2 and Eomes and ectopic expression of Id2 and Eomes in Nfi3−/− cells were shown to overcome the need for Nfi3 and restored NK cell development.33,93,102 Nfi3 binding sites have been found both in the transcriptional regulatory region of the Id2 and Eomes genes.124 However, in contrast to the Nfi3−/− bone marrow hematopoietic progenitors, residual NK cells that can develop in an Nfi3-deficient background expressed Id2 at comparable levels with wild-type NK cells. Thus, Id2 expression may be sustained through Nfi3-independent means following NK lineage commitment. Apart from Id2 and Eomes, lower Nfi3 expression was also observed in Nfi3−/− hematopoietic progenitor cells.33 However, overexpression of Gata-3 into Nfi3−/− bone marrow cells did not rescue NK cell development.124

Growing evidence now indicates that Nfi3 contributes to all ILC groups. Indeed, intraepithelial ILC1, lamina propria ILC1, ILC2s, LTi cells and both the NCR+ and NCR− ILC3s are all dependent on Nfi3.73,26,30,125 Consequently, Nfi3−/− mice display defective formation of Peyer’s patches, increased susceptibility to C. rodentium infection and an inability to mediate allergen-induced eosinophil migration to the lung.26,125 Thus, similar to Id2, Nfi3 is important for the generation of a common ILC precursor, and as T and B cells develop normally in Nfi3-deficient mice,53,54 Nfi3 appears to be downstream of the GATA-3 but upstream of Id2.

Promyelocytic leukaemia zinc-finger
The dependence of ILCs on the NK T-cell factor PLZF (Zbtb16)126 was initially discovered when several ILCs were found to be fate-mapped in PLZF fate-mapping reporter mice.24 This led to the identification of a PLZF+ lineage IL-7Ra+ a4b7+ ILC progenitor within the fetal liver and bone marrow. In in vitro cultures, PLZF− ILC progenitors developed into PLZF+ cells in the presence of Notch signalling. Both adoptively transferred and in vitro cultured PLZF+ progenitors gave rise to cells that phenotypically resembled ILC1, 2 and 3 but not cNK, LTi, T and B cells,26 demonstrating for the first time that LTi cells branched from a distinct PLZF+ progenitor. Indeed, the PLZF+ progenitor expressed the transcription factor TOX that has already been implicated in LTi cell development.24,51

PLZF+ and PLZF− progenitors appear to make up the population of CHILPs. CHILPs were characterised by the expression of surface markers that overlapped with the PLZF+/− progenitors such as IL-7Ra, a4b7 and cKit, but more importantly, flow cytometry analysis of the CHILPs demonstrated that it consisted of PLZF+ and PLZF− subset of cells.26 (Figure 1). It remains to be determined whether the PLZF+ CHILPs have multilineage potential or whether heterogeneity exists within the PLZF+ CHILPs for specific ILC1, 2 and 3 precursors.

ILC LINEAGE-DEFINING TRANSCRIPTION FACTORS
T-bet and Eomes
T-bet was first identified as a Tα1 cell commitment factor127 but all known ILC1s are also dependent on T-bet for their development,23,28,30,31,37,100 making T-bet the defining transcription factor of the ILC1s.

In NK cells, T-bet acts in conjunction with another T-box transcription factor Eomes to promote both cell maturation and function.31,103 Consistent with the IL-15 dependence and IL-12-responsive nature of NK cells, both these cytokines were shown to induce the expression of T-bet,127 and T-bet in turn promotes IFNγ expression.127 Thus, T-bet-deficient NK cells are defective in carrying out immune effector functions such as IFNγ secretion and cytosis of target cells.37 A double-deficiency in Eomes and T-bet resulted in the absence of NK cells, but the NKPs could develop at frequencies comparable with wild-type mice.31 This shows that T-bet and Eomes are dispensable for NKP formation but are needed for stable NK cell commitment beyond this stage. However, while Eomes-deficient mice could give rise to iNK cells, T-bet-deficient mice could not, and in fact, T-bet deficiency led to accelerated maturation of the NK cells. This was thought to be due to the increased expression of Eomes in the residual Tbx21−/− NK cells,31 and suggested that T-bet is needed at an earlier developmental stage than Eomes (Figure 1). Besides NK cells, Eomes is also found to be expressed at high levels by the intraepithelial ILC1, but the role of Eomes in its development has not been examined.30

The expression of T-bet provides the drive for the differentiation of CCR6+ NCR− RORγt+ ILC3s into NCR− ILC3s and subsequently into the ex-RORγt ILC1.28,100 This expression of T-bet is accompanied by the expression of NKP46, the ability to secrete IFNγ and the downregulation of RORγt.28 The ablation of T-bet in Tbx21−/− RAg2−/− ulcerative colitis mice resulted in the development of intestinal ILC3s that produce less IFNγ, but were instead poised to produce more IL-17A that exacerbates the development of colitis.128 This highlights the importance of T-bet as an important regulator that maintains the balance of intestinal homeostasis. It has been suggested that gut microbiota may induce T-bet in the dependence on RORγtα-sg/sg bone marrow progenitors were transplanted with RORγtα-sg/sg bone marrow progenitors were impaired in their development of ILC2s, thus confirming their dependence on RORα.75 RORα-deficient mice or recipient mice transplanted with RORα−/− bone marrow were defective in helminthic expulsion and suffer from greater worm burden compared with wild-type mice.75,130
NK cells and RORγt ILC3s also express notable but lower levels of RORα compared with the ILC2s. However, RORα-deficient mice develop similar frequencies of NK cells and RORγt ILC3s, probably due to the redundant role of RORα in these cells.

Retinoic acid receptor-related orphan nuclear receptor-yt
The developmental requirement for RORyt in ILC3s was first observed in LTi cells, before being extended to all the subsequently discovered NCR−/− ILC3s in mice. Human ILC3s also express high levels of RORγt. ROy, ROyβ and the aforementioned ROyB belong to the ROR superfamily of nuclear receptors. ROy (also called ROy2) is one of two isoforms of the ROy subfamily encoded by the Rorc gene and was first found to be highly expressed in CD4+ CD8+ double-positive thymocytes. Both ROy and ROy act in a synergistic manner to promote Tγ, cell function, although ROy appears to be more critical. ROy has been implicated in the expression of IL-23R in both Tγ, cells and ILC3s, thus facilitating the IL-23 responsiveness of these cells. IL-7, upon which both Tγ, cells and ILC3s are dependent, was also shown to stabilise the expression of ROy, and hence the lineage maintenance of these cells.

Aryl hydrocarbon receptor
AHR is a ligand-activated transcription factor that has been proposed as a xenobiotic sensor that is activated upon engagement of environmental antigens such as hydrocarbon pollutants and dietary phytochemicals. Similar to ROy, AHR is also crucial for the differentiation of Tγ, cells, and the recent descriptions of the role of AHR in ILC3s highlights the parallel between these two groups of cells.

Consistent with its activation by environmental cues, AHR is vital for the postnatal development and maintenance of ILC3s. Ahr−/− mice have normal numbers of fetal LTi cells, and equally, newborn Ahr−/− mice have normal number of ROyT ILC3s compared with wild-type mice. However, adult Ahr−/− mice lack all subsets of lamina propria ROyT ILC3s beginning from weaning at 3 weeks of age. Notably, residual ILC3s that developed in the absence of AHR were also unable to produce IL-22. Although AHR could directly induce IL-22 expression, AHR was demonstrated to interact with ROy and they synergise to induce IL-22 production.

Interestingly, the dependence of LTi cells on AHR appears to vary depending on their site of residence. NCR− ILC3s were depleted both in the lamina propria and Peyer’s patches of Ahr−/− mice, but while LTi cells were reduced in the lamina propria, LTi cells within the Peyer’s patches were comparable with wild-type mice. Complementing these findings, Ahr−/− mice have normal development of prenatally primed secondary lymphoid organs such as the lymph nodes and Peyer’s patches but not the postnatally primed cryptopatches and isolated lymphoid follicles. In fact, AHR is dispensable for fetal LTi cell development, and the expression of AHR is important for adult but not fetal intestinal ROyT ILC3s. Taken together, this suggests a degree of heterogeneity within the LTi cells, where AHR-dependent LTi cells that develop/expand after birth are important for the postnatal development of secondary lymphoid organs, whereas AHR-independent LTi cells that develop at the fetal stage are important for prenatal development of secondary lymphoid organs. The AHR-dependent and -independent LTi cells may either represent different subsets of LTi cells altogether or they may represent LTi cells that have migrated from the lymph nodes and Peyer’s patches to the lamina propria after birth and developed the requirement for AHR.

Ligands for the activation of AHR and subsequent ILC3 induction were proposed to be dietary ligands or other food catabolites generated by the gut microbiota. Dietary phytochemicals from cruciferous vegetables, for example, were identified as a source of AHR ligands. However, studies on the effects of dietary plant ligands revealed conflicting conclusions. While one study found that mice fed with phytochemical-free diet resulted in a loss of ILC3s similar to AHR deficiency, another study found that the exclusion of vegetable products in mouse diet did not result in any impairment to ILC3 development. Similarly, the role of commensal microbiota remains debatable. Although earlier findings have demonstrated that germ-free mice do not develop NCR− ILC3s, subsequent reports found intact populations of NCR− ILC3s in germ-free mice. Discrepancies in these studies may be due to the different models of germ-free mice used and the technical difficulties associated with ensuring their germ-free status.

CONCLUDING REMARKS
The discovery of the ILCs in recent years together with a deeper understanding of their biology has led to a major paradigm shift in the study of immunity and hematopoiesis. A striking parallel between the ILCs 1, 2 and 3 and Tγ, Tγ2 and Tγ17 cells, respectively, highlights the possibility that the ILCs may represent the evolutionarily older innate counterparts of the adaptive TH17 cells. Studies of the role of environmental antigens such as hydrocarbon pollutants and dietary phytochemicals.

REFERENCES
1 Moore AJ, Anderson MK. Dendritic cell development: a choose-your-own-adventure story. Adv Hematol 2013; 2013: 949513.
2 Voschenich CA, Di Santo JP. Developmental programming of natural killer and innate lymphoid cells. Curr Opin Immunol 2015; 25: 130–138.
3 Rothenberg EV. Transcriptional control of early T and B cell developmental choices. Annu Rev Immunol 2014; 32: 283–321.
4 Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 2013; 13: 145–149.
5 Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 1975; 16: 230–239.
6 Kessling R, Klein E, Pross H, Wigzell H. ‘Natural’ killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 1975; 5: 117–121.
7 Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3−LTβR+ cells that differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 1997; 7: 493–504.
8 Yoshida H, Honda K, Shinkura R, Adachi S, Nishikawa S, Maki K et al. IL-7 receptor alpha+ CD122− cells in the embryonic intestine induces the organizing center of Peyer’s patches. Int Immunol 1999; 11: 643–655.
9 Hazenberg MD, Spits H. Human innate lymphoid cells. Blood 2014; 124: 700–709.
10 Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 2011; 12: 21–27.
11 Walker JA, Barlow JL, McKenzie ANJ. nri3349. Nat Rev Immunol 2013; 13: 75–87.
12 Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzougin E, Heath S et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 2010; 363: 1211–1221.
13 Savenije OE, Mahachie John JM, Grannel R, Kerkhof M, Dijk FN, de Jongste JC et al. Association of IL33-IL1-receptor like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. J Allergy Clin Immunol 2014; 134: 170–177.
Genes and Immunity (2015) 177 – 186

14 Buonocore S, Ahem PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ et al. Intrinsic lymphoid cells drive interleukin-23-dependent innate pathological infection. Nature 2010; 466: 1371–1375.

15 Geremia A, Arancibia-Cárcamo CV, Fleming MMP, Rust N, Singh B, Mortensen NJ et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 2011; 208: 1127–1133.

16 Takayama T, Kanne K, Chinen H, Okamoto S, Kitazume MT, Chang J et al. Imbalance of NKp44+ (NKp46−) and NKp44− (NKp46+) natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology 2010; 139: S82–892; e1–e3.

17 Duerre RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1431–1434.

18 Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 2013; 5: S10a16.

19 Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, Velde Te A et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol 2014; 134: 2351–2360.

20 Moro K, Yamada T, Tanabe M, Takeuchi T, Kawamoto H et al. Differentiation of peripheral lymphoid organs and natural killer cells depends on IL-7 and IL-15 independently program the differentiation of intestinal CD3−NKp46+ cell subsets from Id2-dependent precursors. J Exp Med 2010; 207: 273–280.

21 Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 1999; 397: 702–706.

22 Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 2014; 157: 340–356.

23 Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature 2014; 508: 397–401.

24 Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S et al. The transcription factor GATA3 is critical for the development of all IL-7Ra-expressing innate lymphoid cells. Immunity 2014; 40: 378–388.

25 Seillett C, Rankin LC, Groom JR, Mielke LA, Tellier J, Chopin M et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med 2014; 211: 1733–1740.

26 Bemknik JH, Peters CP, Munneke M, Velde te AA, Meijer SL, Weijer K et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 2013; 14: 221–229.

27 Klose CSN, Kiss EA, Schweierzek V, Ebert K, Hoyler T, d’Harqueis Y et al. A T-bet gradient controls the fate and function of CD86+CD103+ innate lymphoid cells. Immunity 2014; 40: 378–388.

28 Kuroda K, Takahashi H, Furuichi T, Shiraishi T, Tanaka K et al. T-bet regulates the terminal maturation and homeostasis of NCR(+) NK cells and Valpha14i NKT cells. Immunity 2004; 20: 477–494.

29 Vosshenrich CAJ, García-Ojeda ME, Samson-Villéger SI, Pasqualetto V, Enault L, Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, Velde Te A et al. In vivo activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci USA 2007; 104: 3384–3390.

30 Moros M, Samplin F, Papazan N, Cupto D, van der Laan LIW, Kazemier G et al. NK cells can generate from precursors in the adult human liver. Eur J Immunol 2011; 41: 3340–3350.

31 Takeda K, Cretney E, Hayakawa Y, Ota T, Akiba H, Ogawasawa K et al. TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 2005; 105: 2082–2089.

32 Sánchez MJ, Spits H, Lanier LL, Phillips JH. Human natural killer cell committed thymocytes and their relation to the T cell lineage. J Exp Med 1993; 187: 1857–1866.

33 Morisako K, Yamada T, Tanabe M, Takeuchi T, Kawamoto H et al. Differentiation of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 1999; 397: 702–706.

34 Veinotte LL, Greenwood CP, Mohammadi N, Parachoniak CA, Takei F. Expression of Trull1 is required for the development of all innate lymphoid cell subsets. J Exp Med 2014; 211: 1733–1740.

35 Bemknik JH, Peters CP, Munneke M, Velde te AA, Meijer SL, Weijer K et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 2013; 14: 221–229.

36 Prios S, Kiss EA, Schweierzek V, Ebert K, Hoyler T, d’Harqueis Y et al. A T-bet gradient controls the fate and function of CD86+CD103+ innate lymphoid cells. Immunity 2014; 40: 378–388.
Barlow JL, Bellosi A, Hardman CS, Dryman LF, Wong SH, Cruickshank JP et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol 2012; 129: 191–8 e1–e4.

Halm TYF, Krauss RH, Sun AC, Takei F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunol 2013; 7: 730–740.

Hoyler T, Klose CSN, Souabni A, Turqetiti-Neves A, Pfeifer D, Rawlinns EL et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012; 37: 634–648.

Yu X, Pappu R, Ramirez-Carrozzi V, Ota N, Caplazi P, Zhang J et al. TNF superfamily member TL1A ectips type 2 innate lymphoid cells at mucosal barriers. J Allergy Clin Immunol 2014; 133: 430–438.

Monticelli LA, Sonnenberg GF, Minett LA, Ellioso MM, Fouser LA, Arts CD et al. Type 2 lymphoid tissue-inducer cells promote innate immunity to the gut. Immunity 2011; 34: 122–134.

Cupedo T, Cerrilin NK, Papazian N, Rombouts EZ, Weijer K, Grojan J et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 2009; 10: 66–74.

Cella M, Fuchs A, Vermy W, Facchetti F, Otero K, Lennezi IJK et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009; 457: 722–725.

Hughes T, Becknell B, McClory S, Brierieces E, Freud AG, Zhang X et al. Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH 17 cytokine interleukin-22. Blood 2009; 113: 4008–4010.

Male V, Hughes T, McClory S, Colucci F, Caligiuri MA, Moffett A. Immune NK cells, capable of producing IL-22, are present in human uterine mucosa. J Immunol 2010; 185: 3913–3918.

Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2012; 13: 144–151.

Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282–289.

Cerrilin NK, Trifari S, Kaplan CD, Cupedo T, Spits H. Human NKp44+IL-22+ cells and LTR-like cells constitute a stable RORC− lineage distinct from conventional natural killer cells. J Exp Med 2010; 207: 281–290.

Sawa S, Chemier N, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 2010; 330: 665–669.

Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA, Mielke LA et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol 2013; 14: 389–395.

Cheirrier M, Sawa S, Eberl G, Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med 2012; 209: 729–740.

Carotta S, Pang SHM, Nutt SL, Belz GT. Identification of the earliest NK-cell precursor in the mouse BM. Blood 2011; 117: 5449–5452.

Sellet C, Huntingdon ND, Gangatikar P, Axiolinn I, Minnich M, Brady HM et al. Differential requirement for NFκB during NK cell development. J Immunol 2014; 192: 2667–2676.

Hacker C, Kirsch RD, Ju X-S, Hieronymus T, Gust TC, Kuhl C et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 2003; 4: 380–386.

Jackson JT, Hu Y, Liu R, Masson F, D’Amico A, Carotta S et al. Id2 expression delineates differential checkpoints in the genetic program of CD8+ and CD103+ dendritic cell lineages. EBMB J 2011; 30: 2690–2704.

Heemskerk MH, Blok B, Nolan G, Stegmann AP, Bakker AQ, Weijer K et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 1997; 186: 1597–1602.

Sun XH, Copeland NG, Jenkins NA, Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 1991; 11: 5603–5611.

Bain G, Maandag EC, Izen DJ, Amsen D, Kruisbeek AM, Weintraub BC et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 1994; 79: 885–892.

Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401: 556–562.

Bain G, Engel I, Robanus Maandag EC, Riele te HP, Voland JR, Sharp LL et al. E2A deficiency leads to abnormalities in alpha-beta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997; 17: 4782–4791.

Tong CN, Olson MC, Barton KP, Leiden JM. Transcription factor beta/gamma-3 is required for development of the T-cell lymphoblastoid cell line. Nature 1996; 384: 474–478.

Zhui J, Min B, Hu Li J, Watson CJ, Girneng A, Wang Q et al. Conditional deletion of Gata3 shows its essential function in T(H1)-T(H2) responses. Nat Immunol 2004; 5: 1157–1165.

Samson SI, Richard O, Tavian M, Ranson T, Vosshenrich CAJ, Colucci F et al. Gata-3 promotes maturation, IFN-γ-gamma production, and liver-specific homing of NK cells. Immunity 2003; 19: 701–711.
Transcriptional control of ILC development

AWY Lim and ANJ McKenzie

114 Serafini N, Klein Wolterink RGI, Satoh-Takayama N, Xu W, Vosshenrich CAJ, Hendriks RW et al. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J Exp Med 2014; 211: 199–208.

115 Rothenberg EV. Transcriptional drivers of the T-cell lineage program. Curr Opin Immunol 2012; 24: 132–138.

116 Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006; 7: 678–689.

117 Posset C, Schmutz S, Chea S, Bouconet L, Louise A, Cumanan A et al. Notch signalling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells. Nat Immunol 2011; 12: 949–958.

118 Ribeiro VSG, Hasan M, Wilson A, Bouconet L, Pereira P, Lesjean-Pottier S et al. Cutting edge: Thymic NK cells develop independently from T cell precursors. J Immunol 2010; 185: 4993–4997.

119 Yang Q, Monticelli LA, Saenz SA, AW-S Chi, Sonnenberg GF, Tang J et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 2013; 38: 694–704.

120 Kiss EA, Vonarbourg C, Kopfmann S, Hobbeika E, Finke D, Esser C et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011; 334: 1561–1565.

121 Qiu J, Heller JJ, Guo X, Chen Z-ME, Fish K, Fu Y-X et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 2012; 36: 92–104.

122 Mielke LA, Groom JR, Rankin LC, Seillet C, Masson F, Putoczki T et al. TCF-1 controls IL-2 and Nkx6-1/RORγt+ innate lymphocyte differentiation and protection in intestinal inflammation. J Immunol 2013; 191: 4383–4391.

123 Fathman JW, Bhattacharya D, Inlay MA, Seita J, Karusunky H, Weissman IL. Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 2011; 118: 5439–5447.

124 Male V, Nisoli I, Kostrzewski T, Allan DSJ, Carlyle JR, Lord GM et al. The transcription factor Ebf3/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med 2014; 211: 635–642.

125 Geiger TL, Abt MC, Gasteiger G, Firth MA, O’Connor MH, Geary CD et al. The aryl hydrocarbon receptor: a permissive on potential roles in the immune system. Immunology 2009; 127: 299–311.

126 Savage AK, Constantintides MG, Han J, Picard D, Martin E, Li B et al. The transcription factor PLZF directs the effector program of the NK T cell lineage. Immunity 2008; 29: 391–403.

127 Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655–669.

128 Powell N, Walker AW, Stolarczyk E, Canavan JB, Gökmen MR, Marks E et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 2012; 37: 674–684.

129 Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K et al. Disruption of the nuclear hormone receptor RORα shifts in staggerer mice. Nature 1996; 379: 736–739.

130 Halim TYP, Steer CA, Mathé L, Gold MJ, Martinez-Gonzalez I, McNaghy KM et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 2014; 40: 425–435.

131 Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2004; 5: 64–73.

132 Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A, Zhang F et al. Retinoic-related orphan receptor gamma (RORγt) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA 2000; 97: 10132–10137.

133 Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S et al. Requirement for RORγt in thymocyte survival and lymphoid organ development. Science 2000; 288: 2369–2373.

134 He YW, Defos M, Ojala EW, Bevan MJ. RORγt, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity 1998; 9: 797–806.

135 Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126: 1121–1133.

136 Yang XO, Pappu BP, Nurueva R, Akimzhanov A, Kang HS, Chung Y et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28: 29–39.

137 Zhou L, Ivanov II, Spolski R, Min R, Shenderev K, Egawa T et al. IL-6 programs Th(17) cells differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8: 967–974.

138 Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 2009; 127: 299–311.

139 Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld J-C et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008; 453: 106–109.

140 Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 2011; 147: 629–640.