ON PREMET CONJECTURE FOR FINITE W-SUPERALGEBRAS

HUSILENG XIAO

Abstract. Let \bullet^\dagger be the map in sense of the Losev, which sends the set of two sided ideals of a finite W-algebras to that of the universal enveloping algebra of corresponding Lie algebras. The Premet conjecture which was proved in [Lo11], says that, restricted to the set of primitive ideals with finite codimension, any fiber of the map \bullet^\dagger is a single orbit under an action of a finite group. In this article we formulate and prove a similar fact in the super case.

1. Introduction

Let $g = g_0 \oplus g_1$ be a basic Lie superalgebra over an algebraically closed field \mathbb{K}, U and U_0 be the enveloping algebra of g and g_0 respectively. Denote by (\cdot, \cdot) the Killing form on it. Let $e \in g_0$ and $\chi \in g_0^*$ be the corresponding element to e via the the Killing form. Pick an sl_2-triple $\{f, h, e\} \subset g_0$ and let \tilde{W} be the extended W superalgebra defined in \mathcal{A}_\dagger §3 [SX] (or §6 [Lo15]). It was obtained in [SX] that there is a following relation among the three kind of W algebras. (1), we have embedding $W_0 \hookrightarrow \tilde{W}$ and the later is generated over the former by $\dim(g_1)$ odd elements. (2), we have decomposition $\tilde{W} = Cl(V_1^\circ) \otimes W$ of associative algebras, where $Cl(V_1^\circ)$ is the Clifford algebra over a vector space V_1 with a non-degenerate symmetric two form, see Theorem 2.3 for the details. Essentially, this makes W_0 to \tilde{W} as U_0 to U.

For a given associative algebra A, denote by $id(A)$ the set of two sided ideals of A and by $Prim^{fin}(A)$ the set of primitive ideals of A with finite codimension in A. It is well known that $Prim^{fin}(A)$ is bijective with the set $Ir^{fin}(A)$ of isomorphism classes of finite dimensional irreducible A modules. In [Lo10] Losev constructed a ascending map $\bullet^\dagger : id(W_0) \rightarrow id(U_0)$ and descending map $\bullet^\downarrow : id(U_0) \rightarrow id(W_0)$. Those two maps are crucial to his study for representations of W_0. The ascending map \bullet^\dagger sends $Prim^{fin}(W_0)$ to the set $Prim_0(U_0)$ of primitive ideals of U_0 supported on the Zariski closure of the adjoint orbit $O = G_0 \cdot e$. Denote by $Q = Z_{G_0}\{e, h, f\}$ the stabilizer of the triple $\{e, h, f\}$ in G_0 under the adjoint action. Let $C_e = Q/Q^\circ$, where Q° is the identity component of Q. The Premet conjecture which was proved in [Lo11], is saying that for any $I \in Prim_0(U_0)$ the set $\{J \mid J \in Prim^{fin}(W) \quad and \quad J^\dagger = J\}$ is a single C_e orbit. This gives an almost complete classification of $Ir^{fin}(W_0)$.

In this paper we generalize the above fact to the super case. The super analogue of the maps \bullet^\dagger and \bullet^\downarrow were established in [SX]. By abuse of notation, we also
denote it by $\mathbf{\cdot}^*$ and $\mathbf{\cdot}$ from now on. Denote by $\text{Prim}_0(\mathcal{U})$ the set of primitive ideals of \mathcal{U} supported on the Zariski closure of the adjoint orbit $\mathcal{O} = G_0 \cdot e$, see §2 for the precise definition of term ‘supported’ in the super context. In §2 we will construct an action of Q on \mathcal{W} with a property that Q^g leaves any two sided ideal of \mathcal{W} stable, see Proposition 2.4. This provide us an action of C_e on $\mathfrak{i}(\mathcal{W})$. The main result of the present paper is following.

Theorem 1.1. For any $\mathcal{J} \in \text{Prim}_0(\mathcal{U})$, the set $\{ \text{Cl}(V_f) \otimes \mathcal{J} \mid \mathcal{J} \in \text{Prim}^\text{fin}(\mathcal{W}) \text{ and } \mathcal{J}^\dagger = \mathcal{J} \}$ is a single C_e-orbit.

Our strategy to prove the theorem is that we apply [Theorem 4.1.1 [Lo11]] to the Harish-Chandra bimodule module \mathcal{U} over \mathcal{U}_0 and the relation among $\mathcal{W}, \mathcal{W}_0$ and \mathcal{W} obtained in Theorem 3.11 [SX]. Our approach is highly inspired by §6 [Lo15].

Since we can recover \mathcal{J} from $\text{Cl}(V_f) \otimes \mathcal{J}$ by the procedure of Case 1 in the proof of Theorem 1.6 [SX]. It was proved in Theorem 4.8 [SX] that the map $\mathbf{\cdot}^*$ sends $\text{Prim}^\text{fin}(\mathcal{W})$ to $\text{Prim}_0(\mathcal{U})$. Thus Theorem 1.1 almost completely reduced the problem of classification of $\text{Prim}_0^\text{fin}(\mathcal{W}) = \text{Irr}^\text{fin}(\mathcal{W})$ to that of $\text{Prim}(\mathcal{U})$. For the recent studies on the later, see [CM] and [Mu], for example.

2. Proof on the main result

We first recall the Poisson geometric realization of finite W-(super)algebra in the sense of Losev. Denote by A_0 (resp. \tilde{A}) the Poisson (resp. super) algebra $S[g_0]$ (resp. $S[g]$) with the standard bracket $\{,\}$ given by $\{x, y\} = [x, y]$ for all $x, y \in g_0$ (resp. g). Let \tilde{A}_0 (resp. \tilde{A}) be the completion of A_0 (resp. \tilde{A}) with respect to the point $\chi \in g_0^*(\text{resp. } g)$. Denote by \mathcal{U}_h^0 (resp. \mathcal{U}_h^\dagger) the formal quantization of \tilde{A}_0 (resp. \tilde{A}) given by $x * y - y * x = \hbar^2 [x, y]$ for all $x, y \in g_0$. Equip all the above algebras the Kazdan \mathbb{K}^* actions arise from the good \mathbb{Z}-grading on g and $t : \hbar = \theta \hbar$ for all $t \in \mathbb{K}^*$.

Denote by ω the super even symplectic form on $[f, g]$ given by $\omega(x, y) = \chi([x, y])$. Let $V = V_0 \oplus V_1$ be the superspace $[f, g]$ if $\dim(g(-1))$ is even. If $\dim(g(-1))$ is odd, let $V \subset [f, g]$ be a super space with a standard basis v_i with $\omega(v_i, v_j) = \delta_{i, -j}$ for all $i, j \in \{ \pm 1, \ldots, \pm (\dim([f, g]) - 1)/2 \}$. We chose such a V in the present paper for considering the definition of W superalgebra given in [ZS]. All the statements in the present paper still valid even if we just take $V = [f, g]$.

For a superspace V with an even symplectic form, we denote by $A_h(V)$ the corresponding Weyl superalgebra, see Example 1.5 [SX] for the definition. Specially, if V is pure odd, we denote by $\text{Cl}_h(V)$ the Weyl algebra $A_h(V)$.

It is (§2.3 [Lo11]) proved in that there is a $Q \times \mathbb{K}^*$-equivariant

$$\Phi_{0, h} : A_h^\dagger(V_0) \otimes W_0^\dagger \longrightarrow \mathcal{U}_{0, h}^\dagger$$

isomorphism of quantum algebras.

Proposition 2.1.

1. We have a $Q \times \mathbb{K}^*$-equivariant

$$\Phi_h : A_h^\dagger(V_0) \otimes \mathcal{W}_h^\dagger \longrightarrow \mathcal{U}_h^\dagger$$
and \(K^*\)-equivariant isomorphism

\[
\Phi_{1,h} : \text{Cl}_h(V_1) \otimes \mathcal{W}^\wedge_h \rightarrow \tilde{\mathcal{W}}_h
\]

of quantum algebras. Finally this give us a \(K^*\)-equivariant isomorphism

\[
\Phi_h : A^\wedge_h(V) \otimes \mathcal{W}^\wedge_h \rightarrow \mathcal{U}^\wedge_h
\]

of quantum algebras.

(2) There are isomorphisms

\[
(W^\wedge_h)^{K^* - \text{lf}}/(h-1) = \tilde{\mathcal{W}}; \quad \left(W^\wedge_{0,h}\right)^{K^* - \text{lf}}/(h-1) = \mathcal{W}_0 \quad \text{and} \quad \left(W^\wedge_h\right)^{K^* - \text{lf}}/(h-1) = \mathcal{W}
\]

of associative algebra. Where, for a vector space \(V\) with a \(K^*\)-action, we denote by \(V^{K^* - \text{lf}}\) the sum of all finite dimensional \(K^*\)-stable subspaces of \(V\).

(3) There is an embedding \(q := \text{Lie}(Q) \hookrightarrow \tilde{\mathcal{W}}\) of Lie algebras such that the adjoint action of \(q\) coincides with the differential of the \(Q\)-action.

Proof. (1) Suppose that \(V_0\) has a basis \(\{v_i\}_{1 \leq i \leq L}\) with \(\omega(v_i, v_j) = \delta_{i,j} - h\). The isomorphism \(\Phi_{0,h}\) gives us \(Q\)-equivariant embedding \(\Phi_h : V \hookrightarrow \mathcal{U}^\wedge_h\) with \([\Phi_h(v_i), \Phi_h(v_j)] = \delta_{i,j} - h\). Now the isomorphism \(\Phi_h\) can be constructed as in the proof of Theorem 1.6 [SX]. For the construction of isomorphism \(\Phi_{1,h}\), see Case 1 in the proof of Theorem 1.6 [SX]. The isomorphism \(\Phi_h\) can be constructed from the embedding \(\Phi_h : V \hookrightarrow \mathcal{U}^\wedge_h\) given by \(\Phi_h|_{V_0} = \tilde{\Phi}_h\) and \(\Phi_h|_{V_1} = \Phi_{1,h}\).

(2) The first isomorphism was proved in [Lo11]. The remaining statements follow by a similar argument as in the proof of Theorem 3.8 [SX].

(3) View \(\mathcal{U}\) as Harish-Chandra \(\mathcal{U}_0\) bimodule and use §2.5 [Lo11]. \(\square\)

Remark 2.2. In the proposition above we are not claiming that \(\Phi_h\) is \(Q\)-equivariant, although this is probably true.

The above decompositions give us

Theorem 2.3 (Theorem 4.1 [SX]). (1) We have an embedding \(\mathcal{W}_0 \hookrightarrow \tilde{\mathcal{W}}\) of associative algebras. The later is generated over the former by \(\dim(g_1)\) odd elements.

(2) Moreover we have isomorphism

\[
\Psi : \tilde{\mathcal{W}} \rightarrow \text{Cl}(V_1) \otimes \mathcal{W}
\]

of algebras. Here \(\text{Cl}(V_1)\) is the Clifford algebra on the vector space \(V_1 = [g, f]_1\) with symmetric two from \(\chi([\cdot, \cdot])\).

For the proof of second statement of (1), see the proof of Theorem 4.1 [SX].

2.1. The maps \(\bullet^\dagger\) and \(\bullet_\downarrow\). Now we recall the construction of maps \(\bullet^\dagger\) and \(\bullet_\downarrow\) maps between \(i\mathfrak{d}(\mathcal{W})\) and \(i\mathfrak{d}(\mathcal{U})\) in [SX].

For \(J \in i\mathfrak{d}(\mathcal{W})\), we denote by \(R_h(J) \subset \mathcal{W}_h\) the Rees algebra associated with \(J\) and \(R_h(J)^\wedge \subset \mathcal{W}_h\) by completion of \(R_h(J)\) at 0. Let \(A(J)^\wedge_h = A_h(V) \otimes R_h(J)^\wedge\) and set \(J^\dagger = (\mathcal{U}_h \cap \Phi_h(A(J)^\wedge_h))/(h - 1)\). For an ideal \(J \in i\mathfrak{d}(\mathcal{U})\), denote by \(\bar{J}_h\) the closure of
R\textsubscript{\(h\)}\((J)\) in \(U\wedge_{h}\). Define \(I_{t}\) to be the unique (by Proposition 3.4(3) \[SX\]) ideal in \(W\) such that

\[R\textsubscript{\(h\)}(J_{t}) = \Phi_{h}^{-1}(\tilde{J}_{h}) \cap R\textsubscript{\(h\)}(W). \]

A \(g\textsubscript{0}\) bimodule \(M\) is said to be Harish-Chandra(HC)-bimodules if \(M\) is finitely generated and the adjoint action of \(g\) on \(M\) is locally finite. For any two sided ideal \(J \subset \mathfrak{u} (\text{resp. } J \subset \tilde{W})\), we denote by \(J_{t} (\text{resp. } \tilde{J}_{t})\) image of \(J\) under the functor \(\bullet_{t} (\text{resp. } \bullet^{\dagger})\) in \(\mathfrak{g}(\mathfrak{u})\). Here we view \(J\) and \(J\) as a (HC)-bimodules over \(\mathfrak{g}_{0}\) and \(W_{0}\) respectively. The following lemma is a direct result of the above construction and Theorem 2.3.

Lemma 2.4. We have that \((\text{Cl}(V_{1}) \otimes J)^{\dagger} = J^{\dagger}\) and \(I_{t} = \text{Cl}(V_{1}) \otimes J_{t}\).

2.2. Properties of \(\bullet^{\dagger}\) and \(\bullet\) after \[SX\].

For an associative algebra \(A\), we denote by \(GK\text{dim}(A)\) the Gelfand-Kirillov dimension of \(A\) (for the definition, see \[KL\]). The *associated variety* \(V(J)\) of a two sided ideal \(J \in \mathfrak{m}(\mathfrak{u})\), is defined to be the associated variety \(V(J)\) of \(J = J \cap \mathfrak{u}\). We say that \(J\) is supported on \(V(J)\).

Lemma 2.5. For any two sided ideal of \(J \subset \mathfrak{u}\), we have

\[GK\text{dim}(\mathfrak{u}/J) = GK\text{dim}(\mathfrak{u}(\mathfrak{g}_{0})/J_{0}) = \text{dim}(V(J)). \]

Proof. Note that we have embedding \(\mathfrak{u}(\mathfrak{g}_{0})/J_{0} \hookrightarrow \mathfrak{u}/J\). The first equality follows from the definition of Gelfand-Kirillov dimension (see P14 Definition \[KL\] and the remark following it) and the PBW base theorems for \(\mathfrak{u}(\mathfrak{g}_{0})\) and \(\mathfrak{u}\). The second equality follows form Corollary 5.4 \[BK\].

The following Proposition and it’s proof are super version of Theorem 1.2.2 (vii) \[Lo10\] in a special case.

Proposition 2.6. For any \(J \in \text{Prim}_{0}(\mathfrak{g})\), the preimage of \(J\) under \(\bullet^{\dagger}\) is exactly the minimal prime ideals containing \(J_{t}\).

Proof. Suppose that \(\tilde{J}\) is prime ideal of \(\tilde{W}\) with \(J^{\dagger} = \tilde{J}\). Proposition 4.5 \[SX\] implies that \(J_{t} \subset \tilde{J}\). So \(\tilde{J}\) has finite codimension in \(\tilde{W}\). Hence we deduce that \(\tilde{J}\) is minimal by Corollary 3.6 \[BK\]. Now suppose that the minimal prime ideal \(J \subset W\) with \(J_{t} \subset \tilde{J}\). It is follows from Proposition 4.6 \[SX\] that \(J_{t}\) has finite codimension in \(W\). It is easy to check that \(\tilde{J} = \text{Cl}(V_{1}) \otimes J\) has finite codimension in \(\tilde{W}\). Whence \(\tilde{J}_{0} = \mathfrak{W}_{0} \cap \tilde{J}\) has finite codimension in \(\mathfrak{W}_{0}\). Since \(J^{\dagger} \cap \mathfrak{u}_{0} = (\tilde{J}_{0})^{\dagger}\), we obtain that \(J^{\dagger}\) is supported on \(G_{0} \cdot \chi\) by the proof of Theorem 1.2.2 (vii) \[Lo10\]. Thus by Lemma 2.5 and Corollary 3.6 \[BK\], we have \(J^{\dagger} = J\).

2.3. Proof of the main result.

Theorem 2.7. We have \((J^{\dagger})_{t} = J\) if and only if \(\text{Cl}(V_{1}) \otimes J\) is \(C_{e}\)-invariant.

Proof. Pick \(J \in \mathfrak{m}(\mathfrak{W})\) with finite codimension. Theorem 2.3(3) implies that \(J\) is stable under the adjoint action of \(\mathfrak{q}\). Hence \(J\) is stable under the \(C_{e}\) action. Thus the ‘only if’ part follows. Note that \(\mathfrak{u}\) is a HC \(\mathfrak{g}_{0}\)-bimodule. So by the pure even
result, Theorem 4.1.1 [Lo11], we have \((\mathrm{Cl}(V_1) \otimes \mathcal{J})_\mathfrak{f}) = \mathrm{Cl}(V_1) \otimes \mathcal{J}\). So the ‘if’ part follows by Lemma 2.3.

□

Now we are ready to prove the main result.

Proof of Theorem 1.1

By Theorem 2.7 and Proposition 2.6, the theorem follows by similar argument as in the proof of [Conjecture 1.2.1 [Lo11]. Indeed, let \(I_1, \ldots, I_l\) be the minimal prime ideal containing \(J_{\mathfrak{f}}\), for a fixed \(\mathcal{J} \in \text{Prim}_\mathfrak{f}(\mathfrak{U})\). Since \(\mathrm{Cl}(V_1) \otimes I_1\) is stable under \(Q^\circ\), \(\bigcap_{\gamma \in C_\mathfrak{f}} \gamma(\mathrm{Cl}(V_1) \otimes I_1)\) is \(Q\)-stable. Set \(J_1 = (\bigcap_{\gamma \in C_\mathfrak{f}} \gamma(\mathrm{Cl}(V_1) \otimes I_1))_\mathfrak{f}\), then by Theorem 4.1.1 [Lo11] we have \((J_1)_\mathfrak{f} = \bigcap_{\gamma \in C_\mathfrak{f}} \gamma(\mathrm{Cl}(V_1) \otimes I_1)\). This implies \(J = J_1\) and hence \(J_1 = \bigcap_{\gamma \in C_\mathfrak{f}} \gamma(\mathrm{Cl}(V_1) \otimes I_1)\). We have that \(\gamma(\mathrm{Cl}(V_1) \otimes I_1) = \mathrm{Cl}(V_1) \otimes I_{\gamma(1)}\) for some \(\gamma(1) \in \{1, \ldots, l\}\) by Proposition 3.1.10 [Di] and Case 1 in the proof of Theorem 1.6 [SX]. Thus we have \(J = \bigcap_{\gamma \in C_\mathfrak{f}} J_{\gamma(1)}\) by Proposition 3.1.10 [Di] and Lemma 2.4. Thus the proof is completed by Proposition 2.6. □

Acknowledgements

The author is partially supported by NFSC (grant No.11801113) and RIMS, an international joint usage/research center located in Kyoto university. This work is motivated by communications with Arakawa and is written during the author’s visit to him at RIMS. The author indebted much to Arakawa for many helpful discussions. The author also thank the helpful communications from Bin Shu and Yang Zeng.

References

[BL] W. Borho, H. Kraft, *Über die Gelfand-Kirillov-Dimension*, Math. Ann. 220(1976), 1-24.

[CM] K. Coulembier, I. Musson, *The primitive spectrum for \(\mathfrak{gl}(m|n)\)*, Tohoku Math. J. (2)70 (2018), no. 2, 225-266.

[Di] J. Dixmier, *Enveloping algebras*. North-Holland Mathematical Library, Vol. 14.

[KL] G. R. Krause, T. H. Lenagan, *Growth of algebras and Gelfand-Kirillov dimension*, revised edition, Graduate Studies in Mathematics, vol. 22(2000), American Mathematical Society, Providence.

[Lo08] I. Losev, *On the structure of the category O for W-algebras*, Semin. Congr. 24 (2012), 351-368.

[Lo10] I. Losev, *Quantized symplectic actions and W-algebras*, J. Amer. Math. Soc., 23 (2010), 35-59.

[Lo11] I. Losev, *I. Losev, Finite dimensional representations of W-algebras*, Duke Math. J. 159 (2011), 99C143

[Lo15] I. Losev, *Dimensions of irreducible modules over W-algebras and Goldie ranks*, Invent. Math, 200(3)(2015), 849-923.

[Mu] I. Musson *The enveloping algebra of the Lie superalgebra \(\mathfrak{osp}(1|2r)\)*, Repr. Theory 1(97), 405–423.

[SX] B. Shu, H. Xiao *Super formal Darboux-Weinstein theorems and finite W superalgebras*, J. Algebra 550(2020), 242-265.

[ZS] Y. Zeng, B. Shu, *Finite W-superalgebras for basic Lie superalgebras*, J. Algebra, 438 (2015), 188-234.
SCHOOL OF MATHEMATICAL SCIENCE, HARBIN ENGINEERING UNIVERSITY, HARBIN, 15001, CHINA

E-mail address: hslxiao@hrbeu.edu.cn