ON THE \((C, \alpha)\)-MEANS WITH RESPECT TO THE WALSH SYSTEM

I. BLAHOTA AND G. TEPHNADZE

Abstract. As main result we prove strong convergence theorems for Cesáro means \((C, \alpha)\) on the Hardy spaces \(H_{1/(1+\alpha)}\), where \(0 < \alpha < 1\).

2000 Mathematics Subject Classification. 42C10.

Key words and phrases: Walsh system, Cesáro means, martingale Hardy space.

1. INTRODUCTION

It is well-known that Walsh-Paley system does not form a basis in the space \(L_1(G)\). Moreover, there is a function in the dyadic Hardy space \(H_{1}(G)\), such that the partial sums of \(F\) are not bounded in \(L_1\)-norm. However, in Simon [17] the following estimation was obtained for all \(F \in H_{1}(G)\):

\[
\frac{1}{\log n} \sum_{k=1}^{n} \frac{\|S_k F\|_1}{k} \leq c \|F\|_{H_1},
\]

where \(S_k F\) denotes the \(k\)-th partial sum of the Walsh-Fourier series of \(F\).

(For the trigonometric analogue see in Smith [19], for the Vilenkin system in Gát [5]). Simon [14] (see also [31]) proved that there is an absolute constant \(c_p\), depending only on \(p\), such that

\[
\frac{1}{\log |p|} \sum_{k=1}^{n} \frac{\|S_k F\|^p}{k^{2-p}} \leq c_p \|F\|^p_{H_p}, \quad (0 < p \leq 1),
\]

for all \(F \in H_p\) and \(n \in \mathbb{N}\), where \([p]\) denotes integer part of \(p\).

The second author [23] proved that sequence \(\{1/k^{2-p}\}_{k=1}^{\infty}\) \((0 < p < 1)\) in \(H_1\) is given exactly.

Weisz [32] considered the norm convergence of Fejér means of Walsh-Fourier series and proved that the following is true:

Theorem W1. Let \(F \in H_p\). Then

\[
\|\sigma_k F\|_{H_p} \leq c_p \|F\|_{H_p}, \quad \left(1/2 < p < \infty\right)
\]
This theorem implies that
\[\frac{1}{n^{2p-1}} \sum_{k=1}^{n} \|\sigma_k F\|_{H_p}^p \leq c_p \|F\|_{H_p}^p, \quad (1/2 < p < \infty). \]

If Theorem W1 held for \(0 < p \leq 1/2\), then we would have
\[(3) \quad \frac{1}{\log^{1/2+p}[1/n]} \sum_{k=1}^{n} \|\sigma_k F\|_{H_p}^p \leq c_p \|F\|_{H_p}^p, \quad (0 < p \leq 1/2), \]

but the second author \[20\] proved that the assumption \(p > 1/2\) is essential. In particular, he proved that there exists a martingale \(F \in H_p\) \((0 < p \leq 1/2)\), such that
\[\sup_n \|\sigma_n F\|_p = +\infty. \]

However, the second author \[24\] prove that (3) holds, though (2) is not true for \(0 < p \leq 1/2\).

The weak \((1,1)\)-type inequality for the maximal operator of Fejér means
\[\mu(\sigma^* f > \lambda) \leq \frac{c}{\lambda} \|f\|_1, \quad (\lambda > 0) \]
can be found in Schipp \[12\] (see also \[11\]). Fuji \[3\] and Simon \[16\] verified that \(\sigma^*\) is bounded from \(H_1\) to \(L_1\). Weisz \[27\] generalized this result and proved the boundedness of \(\sigma^*\) from the martingale space \(H_p\) to the space \(L_p\) for \(p > 1/2\). Simon \[15\] gave a counterexample, which shows that boundedness does not hold for \(0 < p < 1/2\). The counterexample for \(p = 1/2\) due to Goginava \[7\], (see also \[1\] and \[20\]). Weisz \[28\] proved that \(\sigma^*\) is bounded from the Hardy space \(H_{1/2}\) to the space \(L_{1/2,\infty}\).

The second author \[21, 22\] proved that the following is true:

Theorem T1. The maximal operators \(\tilde{\sigma}_p^*\) defined by
\[(4) \quad \tilde{\sigma}_p^* := \sup_{n \in \mathbb{N}} \frac{|\sigma_n|}{n^{1/p-2} \log^{2(1/2+p)}[1/n]} \], \quad (0 < p \leq 1/2, \ n = 2, 3, ...)

where \([1/2 + p]\) denotes integer part of \(1/2 + p\), is bounded from the Hardy space \(H_p\) to the space \(L_p\). Moreover, there was also shown that sequence \(\left\{ n^{1/p-2} \log^{2(1/2+p)}[1/n] : n = 2, 3, ... \right\}\) in (4) can not be improved.

The maximal operator \(\sigma^{\alpha,*}\) \((0 < \alpha < 1)\) of the Cesáro means means of Walsh-Paley system was investigated by Weisz \[30\]. In his paper Weisz proved that \(\sigma^{\alpha,*}\) is bounded from the martingale space \(H_p\) to the space \(L_p\) for \(p > 1/(1 + \alpha)\). Goginava \[8\] gave counterexample, which shows that boundedness does not hold for \(0 < p \leq 1/(1 + \alpha)\). Recently, Weisz and Simon \[18\] show that in case \(p = 1/(1 + \alpha)\) the maximal operator \(\sigma^{\alpha,*}\) is bounded from the Hardy space \(H_{1/(1+\alpha)}\) to the space \(L_{1/(1+\alpha),\infty}\).

In \[9\] Goginava investigated the behaviour of Cesáro means of Walsh-Fourier series in detail. For some approximation properties of the two dimensional case see paper of Nagy \[10\].
The main aim of this paper is to generalize Theorem T1 and estimation (3) for Cesáro means, when \(p = 1/(1 + \alpha) \).

2. Definitions and Notations

Let \(\mathbb{N}_+ \) denote the set of the positive integers, \(\mathbb{N} := \mathbb{N}_+ \cup \{0\} \). Denote by \(Z_2 \) the discrete cyclic group of order 2, that is \(Z_2 := \{0, 1\} \), where the group operation is the modulo 2 addition and every subset is open. The Haar measure on \(Z_2 \) is given so that the measure of a singleton is 1/2.

Define the group \(G \) as the complete direct product of the group \(Z_2 \) with the product of the discrete topologies of \(Z_2 \)'s. The elements of \(G \) are represented by sequences \(x := (x_0, x_1, \ldots, x_j, \ldots) \) \((x_k \in \{0, 1\}) \).

It is easy to give a base for the neighbourhood of \(G \)

\[I_0(x) := G, \quad I_n(x) := \{y \in G \mid y_0 = x_0, \ldots, y_{n-1} = x_{n-1}\} \quad (x \in G, \ n \in \mathbb{N}). \]

Denote \(I_n := I_n(0) \) for \(n \in \mathbb{N} \) and \(I_n := G \setminus I_n \).

\[e_n := (0, \ldots, 0, x_n = 1, 0, \ldots) \in G \quad (n \in \mathbb{N}) \]

It is evident

\[\bigcup_{M=2}^{\infty} \bigcup_{k=0}^{M-1} I_{k+1} \left(e_k + e_l \right) \bigcup \left(\bigcup_{k=0}^{M-1} I_M \left(e_k \right) \right) = \bigcup_{n=0}^{\infty} I_M \left(e_k \right) \]

The norm (or quasi-norm) of the space \(L_p(G) \) is defined by

\[\|f\|_p := \left(\int_G |f(x)|^p \, d\mu(x) \right)^{1/p}, \quad (0 < p < \infty). \]

The space \(L_{p,\infty}(G) \) consists of all measurable functions \(f \) for which

\[\|f\|_{L_{p,\infty}(G)} := \sup_{\lambda>0} \lambda \mu(f > \lambda)^{1/p} < +\infty. \]

If \(n \in \mathbb{N} \) then for every \(n \) can be uniquely expressed as \(n = \sum_{j=0}^{\infty} n_j 2^j \) where \(n_j \in Z_2 \) \((j \in \mathbb{N}) \) and only a finite number of \(n_j \)'s differs from zero.

Let \(|n| := \max \{j \in \mathbb{N}, n_j \neq 0\} \), that is \(2^{|n|} \leq n \leq 2^{|n|+1} \).

Next, we introduce on \(G \) an orthonormal system which is called the Walsh system. At first define the Rademacher functions as

\[r_k(x) := (-1)^{x_k} \quad (x \in G, \ k \in \mathbb{N}). \]

Now define the Walsh system \(w := (w_n : n \in \mathbb{N}) \) on \(G \) as:

\[w_n(x) := \prod_{k=0}^{\infty} r_k^n (x) = r_{|n|} (x) (-1)^{\sum_{k=0}^{n_j-1} n_k x_k} \quad (n \in \mathbb{N}). \]

The Walsh system is orthonormal and complete in \(L_2(G) \). (see [13]).
If \(f \in L_1(G) \) we can establish the Fourier coefficients, the partial sums of the Fourier series, the Fejér means, the Dirichlet and Fejér kernels in the usual manner:

\[
\hat{f}(k) := \int_G f w_k d\mu \quad (k \in \mathbb{N}),
\]

\[
S_n f := \sum_{k=0}^{n-1} \hat{f}(k) w_k \quad (n \in \mathbb{N}_+, \ S_0 f := 0),
\]

\[
\sigma_n f := \frac{1}{n} \sum_{k=1}^{n} S_k f \quad (n \in \mathbb{N}_+),
\]

\[
D_n := \sum_{k=0}^{n-1} w_k \quad (n \in \mathbb{N}_+),
\]

\[
K_n := \frac{1}{n} \sum_{k=1}^{n} D_k \quad (n \in \mathbb{N}_+),
\]

respectively.

Recall that

\[
D_{2^n} (x) = \begin{cases} 2^n, & \text{if } x \in I_n, \\ 0, & \text{if } x \notin I_n. \end{cases}
\]

For the \(2^n\)-th Fejér kernel we have the following equality (see [4]):

\[
K_{2^n} (x) = \begin{cases} 2^{t-1}, & \text{if } x \in I_n(e_t), \\ \left(2^A + 1\right)/2, & \text{if } x \in I_n, \\ 0, & \text{otherwise}. \end{cases}
\]

for \(n > t, t, n \in \mathbb{N}, x \in I_t \setminus I_{t+1}\).

The Cesáro means, \(((C, \alpha) \text{ means})\) and it’s kernel with respect to the Walsh-Fourier series are defined as

\[
\sigma_{n\alpha} f := \frac{1}{A_{\alpha}^n} \sum_{k=1}^n A_{\alpha-k}^{\alpha-1} S_k f, \quad K_{\alpha}^n f := \frac{1}{A_{\alpha}^n} \sum_{k=1}^n A_{\alpha-k}^{\alpha-1} D_k f,
\]

respectively, where

\[
A_{\alpha}^0 := 0, \quad A_{\alpha}^n := \frac{(\alpha + 1) \ldots (\alpha + n)}{n!}, \quad \alpha \neq -1, -2, \ldots
\]

It is well known that

\[
A_{\alpha}^n = \sum_{k=0}^n A_{\alpha-k}^{\alpha-1}, \quad A_{\alpha}^n - A_{\alpha-1}^n = A_{\alpha-1}^0, \quad A_{\alpha}^n \sim n^\alpha,
\]

and

\[
\sup_n \int_G |K_{\alpha}^n (x)| \, d\mu (x) \leq c < \infty.
\]
The \(\sigma \)-algebra is generated by the intervals \(\{ I_n(x) : x \in G \} \) will be denoted by \(F_n (n \in \mathbb{N}) \). The conditional expectation operators relative to \(F_n (n \in \mathbb{N}) \) are denoted by \(E_n \).

A sequence \(F = (F_n, n \in \mathbb{N}) \) of functions \(F_n \in L_1(G) \) is said to be a dyadic martingale if (for details see e.g. [26])

(i) \(F_n \) is \(F_n \) measurable for all \(n \in \mathbb{N} \),

(ii) \(E_n F_m = F_n \) for all \(n \leq m \).

The maximal function of a martingale \(F \) is defined by

\[
F^* = \sup_{n \in \mathbb{N}} |F_n|.
\]

In case of \(f \in L_1(G) \), the maximal functions are also be given by

\[
f^*(x) = \sup_{n \in \mathbb{N}} \frac{1}{\mu(I_n(x))} \left| \int_{f_n(x)} f(u) d\mu(u) \right|.
\]

For \(0 < p < \infty \) the Hardy martingale spaces \(H_p(G) \) consist of all martingales for which

\[
\|F\|_{H_p} := \|F^*\|_p < \infty.
\]

A bounded measurable function \(a \) is a \(p \)-atom, if there exists a dyadic interval \(I \), such that

\[
\int_I a d\mu = 0, \quad \|a\|_{\infty} \leq \mu(I)^{-1/p}, \quad \text{supp}(a) \subset I.
\]

The dyadic Hardy martingale spaces \(H_p(G) \) for \(0 < p \leq 1 \) have an atomic characterization. Namely, the following theorem is true (see [29]):

Theorem W: A martingale \(F = (F_n, n \in \mathbb{N}) \) is in \(H_p(0 < p \leq 1) \) if and only if there exists a sequence \((a_k, k \in \mathbb{N}) \) of \(p \)-atoms and a sequence \((\mu_k, k \in \mathbb{N}) \) of real numbers such that for every \(n \in \mathbb{N} \)

\[
\sum_{k=0}^{\infty} \mu_k S^{2^k} a_k = F_n
\]

and

\[
\sum_{k=0}^{\infty} |\mu_k|^p < \infty,
\]

Moreover, \(\|F\|_{H_p} \sim \inf (\sum_{k=0}^{\infty} |\mu_k|^p)^{1/p} \), where the infimum is taken over all decompositions of \(F \) of the form \((10) \).

It is easy to check that for every martingales \(F = (F_n, n \in \mathbb{N}) \) and every \(k \in \mathbb{N} \) the limit
(11) \[\hat{F}(k) := \lim_{n \to \infty} \int_G F_n(x)w_k(x)\,d\mu(x) \]
exists and it is called the \(k \)-th Walsh-Fourier coefficients of \(F \).

If \(F := (E_n f : n \in \mathbb{N}) \) is a regular martingale generated by \(f \in L_1(G) \), then
\[\hat{F}(k) = \int_G f(x)w_k(x)\,d\mu(x) =: \hat{f}(k), \quad k \in \mathbb{N}. \]

For \(0 < \alpha < 1 \) let consider maximal operators
\[\sigma_{\alpha,*} F := \sup_{n \in \mathbb{N}} |\sigma_n^\alpha F|, \quad \sigma_{\alpha,*}^* F := \sup_{n \in \mathbb{N}} \frac{|\sigma_n^\alpha F|}{\log^{1+\alpha} n}. \]

For the martingale
\[F = \sum_{n=0}^{\infty} (F_n - F_{n-1}) \]
the conjugate transforms are defined as
\[\widehat{F(t)} = \sum_{n=0}^{\infty} r_n(t) (F_n - F_{n-1}), \]
where \(t \in G \) is fixed. We note that \(\widehat{F(0)} = F \). As it is well known (see \[26\])
\[\| \widehat{F(t)} \|_{H_p} = \| F \|_{H_p}, \quad \| F \|_{H_p}^p \sim \int_G \| \widehat{F(t)} \|_p^p \, dt. \]

3. FORMULATION OF MAIN RESULTS

Theorem 1. a) Let \(0 < \alpha < 1 \) and \(f \in H_{1/(1+\alpha)} \). Then there exists absolute constant \(c_\alpha \), depending only on \(\alpha \), such that
\[\| \sigma_{\alpha,*}^* F \|_{H_{1/(1+\alpha)}} \leq c_\alpha \| F \|_{H_{1/(1+\alpha)}}. \]

b) Let \(0 < \alpha < 1 \) and \(\varphi : \mathbb{N}_+ \to [1, \infty) \) be a non-decreasing function satisfying the condition
\[\lim_{n \to \infty} \frac{\log^{1+\alpha} n}{\varphi(n)} = +\infty, \]
then there exists a martingale \(f \in H_{1/(1+\alpha)}(G) \), such that
\[\sup_{n \in \mathbb{N}} \left\| \sigma_n^\alpha f \right\|_{\varphi(n)^{1/(1+\alpha)}} = \infty. \]

Theorem 2. Let \(0 < \alpha < 1 \) and \(f \in H_{1/(1+\alpha)} \). Then there exists an absolute constant \(c_\alpha \), depending only on \(\alpha \), such that
\[\frac{1}{\log n} \sum_{m=1}^{n} \left\| \sigma_m^\alpha F \right\|_{H_{1/(1+\alpha)}^{1/(1+\alpha)}}^m \leq c_\alpha \| F \|_{H_{1/(1+\alpha)}^{1/(1+\alpha)}}. \]
4. AUXILIARY PROPOSITIONS

Lemma 1. [26] Suppose that an operator T is σ-sub-linear and for some $0 < p \leq 1$

$$\int |Ta|^p \, d\mu \leq c_p < \infty,$$

for every p-atom a, where I denotes the support of the atom. If T is bounded from L_∞ to L_∞, then

$$\|Tf\|_{L_p(G)} \leq c_p \|f\|_{H_p(G)}.$$

Lemma 2. [6] Let $0 < \alpha < 1$. Then

$$|K_n^\alpha| \leq \frac{c_\alpha}{A_{n-1}^\alpha} \left\{ \sum_{j=0}^{\lfloor n \rfloor} 2^{ja} K_{2j} \right\},$$

where K_n and K_n^α are kernels of Fejér and Cesáro means, respectively.

Lemma 3. Let $0 < \alpha < 1$ and $n > 2M$. Then

$$\int_{I_M} |K_n^\alpha (x + t)| \, d\mu (t) \leq \frac{c_\alpha 2^{\alpha l + k}}{n^\alpha 2^M}, \text{ for } x \in I_{l+1} (e_k + e_l),$$

$(k = 0, \ldots, M - 2, \ l = k + 1, \ldots, M - 1)$ and

$$\int_{I_M} |K_n^\alpha (x + t)| \, d\mu (t) \leq \frac{c_\alpha}{2^M}, \text{ for } x \in I_M (e_k), (k = 0, \ldots, M - 1).$$

Proof. Let $x \in I_{l+1} (e_k + e_l)$. Then applying (7) we have

$$K_{2A} (x) = 0, \text{ when } A > l.$$

Suppose that $k < A \leq l$. Using (7) we get

$$|K_{2A} (x)| \leq c2^k.$$

Let $A \leq k < l$. Then

$$|K_{2A} (x)| = |K_{2A} (0)| = \frac{2^A + 1}{2} \leq c2^k.$$

If we apply Lemma 2 we conclude that

$$A_n^\alpha \ |K_n^\alpha (x)| \leq c_\alpha \sum_{A=0}^{l-1} 2^{\alpha A} |K_{2A} (x)| \leq c_\alpha \sum_{A=0}^{l-1} 2^{\alpha A + k} \leq c2^{\alpha l + k}.$$

Let $x \in I_{l+1} (e_k + e_l)$, for some $0 \leq k < l \leq M - 1$. Since $x + t \in I_{l+1} (e_k + e_l)$, for $t \in I_M$ and $n \geq 2M$ from (15) we obtain

$$\int_{I_M} |K_n^\alpha (x + t)| \, d\mu (t) \leq \frac{c_\alpha 2^{\alpha l + k}}{n^\alpha 2^M}.$$
Let $x \in I_M (e_k)$, $k = 0, \ldots, M - 1$, then applying Lemma 2 and (7) we have

\begin{equation}
\int_{I_M} A_n^\alpha |K_n^\alpha (x + t)| d\mu (t) \leq \sum_{A=0}^{\lfloor n \rfloor} 2^{\alpha A} \int_{I_M} |K_{2^A} (x + t)| d\mu (t).
\end{equation}

(17)

Let $x \in I_M (e_k)$, $k = 0, \ldots, M - 1$, $t \in I_M$ and $x_q \neq t_q$, where $M \leq q \leq \lfloor n \rfloor - 1$. Using (7) we get

\begin{equation}
\int_{I_M} A_n^\alpha |K_n^\alpha (x + t)| d\mu (t) \leq c_\alpha \sum_{A=0}^{q-1} 2^{\alpha A} \int_{I_M} 2^k d\mu (t) \leq \frac{c_\alpha 2^{k+\alpha q}}{2^M}.
\end{equation}

(18)

Hence

\begin{equation}
\int_{I_M} |K_n^\alpha (x + t)| d\mu (t) \leq \frac{c_\alpha 2^{k+\alpha q}}{n^\alpha 2^M} \leq c_\alpha 2^{k-M}.
\end{equation}

(19)

Let $x \in I_M (e_k)$, $k = 0, \ldots, M - 1$, $t \in I_M$ and $x_M = t_M, \ldots, x_{\lfloor n \rfloor - 1} = t_{\lfloor n \rfloor - 1}$. Applying (7) we have

\begin{equation}
\int_{I_M} |K_n^\alpha (x + t)| d\mu (t) \leq c_\alpha \sum_{A=0}^{\lfloor n \rfloor - 1} 2^{\alpha A} \int_{I_M} 2^k d\mu (t) \leq c_\alpha 2^{k-M}.
\end{equation}

(19)

Combining (16), (18) and (19) we complete the proof of Lemma 3.

5. PROOF OF THE THEOREMS

Proof of Theorem 1. By Lemma 1 and (9) the proof of first part of theorem 1 will be complete, if we show that

\begin{equation}
\int_{I_M} \left| \sigma_n^a * F(x) \right|^{1/(1+\alpha)} d\mu (x) < \infty,
\end{equation}

for every $1/(1+\alpha)$-atom a. We may assume that a be an arbitrary $1/(1+\alpha)$-atom with support I, $\mu (I) = 2^{-M}$ and $I = I_M$. It is easy to see that $\sigma_n^a (a) = 0$, when $n \leq 2^M$. Therefore we can suppose that $n > 2^M$.

Let $x \in I_M$. Since σ_n^a is bounded from L_∞ to L_∞ (the boundedness follows from (9)) and $\|a\|_\infty \leq c_2 M/(1+\alpha)$ we obtain

\begin{align*}
|\sigma_n^a a (x)| &\leq \int_{I_M} |a (t)| |K_n^\alpha (x + t)| d\mu (t) \leq \|a (x)\|_\infty \int_{I_M} |K_n^\alpha (x + t)| d\mu (t) \\
&\leq c_\alpha 2^{M(1+\alpha)} \int_{I_M} |K_n^\alpha (x + t)| d\mu (t).
\end{align*}

Let $x \in I_{l+1} (e_k + e_l)$, $0 \leq k < l < M$. From Lemma 3 we get

\begin{equation}
|\sigma_n^a a (x)| \leq \frac{c_\alpha 2^{(a l+k)2\alpha M}}{n^\alpha}.
\end{equation}

(20)
Let \(x \in I_M(e_k), 0 \leq k < M \). From Lemma 3 we have

(21) \[|\sigma_n^\alpha(x)| \leq c_\alpha 2^{\alpha M + k}. \]

Combining (5) and (20-21) we obtain

\[
\mathbf{I}_M \left[\left(\sum_{l=k+1}^{M} \int_{I_{l+1}(e_k+e_l)} \sup_{\log^{1/\alpha} n > 2^m} |\sigma_n^\alpha(x)|^{1/(1+\alpha)} \right) \right] d\mu(x)
\]

\[
\leq \frac{1}{M} \sum_{k=0}^{M-1} \sum_{l=k+1}^{M} \int_{I_{l+1}(e_k+e_l)} \sup_{\log^{1/\alpha} n > 2^m} |\sigma_n^\alpha(x)|^{1/(1+\alpha)} d\mu(x)
\]

\[
\leq \frac{c_\alpha}{M} \sum_{k=0}^{M-1} \sum_{l=k+1}^{M} 2^{(ak+l)/(1+\alpha)} 2^{\alpha M/(1+\alpha) 2^{k/(1+\alpha)}} + \frac{c_\alpha}{M} \sum_{k=0}^{M-1} 2^{\alpha M/(1+\alpha) 2^{k/(1+\alpha)}}
\]

\[
\leq \frac{c_\alpha}{M} \sum_{k=0}^{M-1} \sum_{l=k+1}^{M} 2^{(ak+l)/(1+\alpha)} 2^{\alpha M/(1+\alpha) 2^{k/(1+\alpha)}} + \frac{c_\alpha}{M} \sum_{k=0}^{M-1} 2^{\alpha M/(1+\alpha) 2^{k/(1+\alpha)}} \leq c_\alpha < \infty.
\]

Now, we prove second part of Theorem 1. Let \(\{\lambda_k, k \in \mathbb{N}_+\} \) be an increasing sequence of positive integers such that

\[
\lim_{k \to \infty} \frac{\log^{1+\alpha} (\lambda_k)}{\varphi(\lambda_k)} = \infty.
\]

It is easy to show that for every \(\lambda_k \) there exists a positive integer \(\{n_k, k \in \mathbb{N}_+\} \subseteq \{\lambda_k, k \in \mathbb{N}_+\} \) such that

\[
\lim_{k \to \infty} \frac{n_k^{1+\alpha}}{\varphi(2^{2n_k+1})} = \infty.
\]

Let

\[
f_{n_k} = D_{2^{2n_k+1}} - D_{2^{2n_k}}.
\]

It is evident

\[
\hat{f}_{n_k}(i) = \begin{cases}
1, & \text{if } i = 2^{2n_k}, \ldots, 2^{2n_k+1} - 1, \\
0, & \text{otherwise}.
\end{cases}
\]
Then we can write

\begin{equation}
S_i f_{n_k} = \begin{cases}
D_i - D_{2^{2n_k}}, & \text{if } i = 2^{2n_k}, \ldots, 2^{2n_k+1} - 1, \\
0, & \text{otherwise.}
\end{cases}
\tag{22}
\end{equation}

From (22) we get

\begin{equation}
\|f_{n_k}\|_{H^{1/(1+\alpha)}} = \left\|f_{n_k}^*\right\|_{H^{1/(1+\alpha)}} = \|D_{2^{2n_k+1}} - D_{2^{2n_k}}\|_{1/(1+\alpha)} \leq c 2^{-2\alpha n_k}.
\tag{23}
\end{equation}

Let \(q^s_{n_k} = 2^{2n_k} + 2^{2s} \), \(s = 0, \ldots, n_k - 1 \). By (22) we can write:

\begin{equation}
\frac{\left|\sigma^\alpha q^s_{n_k} f_{n_k}\right|}{\varphi (q^s_{n_k})} = \frac{1}{\varphi (q^s_{n_k})} \left| A_{q^s_{n_k}}^\alpha \sum_{j=2^{2n_k+1}}^{q^s_{n_k}} A_{q^s_{n_k}}^{\alpha-1} (D_j - D_{2^{2n_k}}) \right| = \frac{1}{\varphi (q^s_{n_k})} \left| A_{q^s_{n_k}}^{\alpha-1} \sum_{j=1}^{2^{2s}} (D_{j+2^{2n_k}} - D_{2^{2n_k}}) \right|.
\tag{24}
\end{equation}

Since

\begin{equation}
D_{j+2^{2n_k}} - D_{2^{2n_k}} = w_{2^{2n_k}} D_j, \quad j = 1, 2, \ldots, 2^{2n_k} - 1,
\end{equation}

we obtain

\begin{equation}
\frac{\left|\sigma^\alpha q^s_{n_k} f_{n_k}\right|}{\varphi (q^s_{n_k})} \geq \frac{1}{\varphi (q^s_{n_k})} \left| \sum_{j=0}^{2^{2s}} A_{2^{2s-j}}^{\alpha-1} D_j \right|.
\tag{26}
\end{equation}

Let \(x \in I_{2s} \setminus I_{2s+1} \). It is easy to show that

\begin{equation}
\frac{\left|\sigma^\alpha q^s_{n_k} f_{n_k} (x)\right|}{\varphi (q^s_{n_k})} \geq \frac{A_{2^{2s-1}}^{\alpha-1}}{\varphi (q^s_{n_k})} \sum_{j=0}^{2^{2s}} \frac{c 2^{4s} A_{2^{2s-1}}^{\alpha-1}}{\varphi (q^s_{n_k})} \geq \frac{c 2^{2s(1+\alpha)}}{\varphi (2^{2n_k})}. \tag{27}
\end{equation}

Using (27) we have

\[
\int_{G^s} \left|\sigma^\alpha q^s_{n_k} f_{n_k} (x)\right|^{1/(1+\alpha)} \, d\mu (x) \geq c_{\alpha} \sum_{s=1}^{n_k-1} \int_{I_{2s} \setminus I_{2s+1}} \left| \frac{\sigma^\alpha q^s_{n_k} f_{n_k} (x)}{\varphi (q^s_{n_k})} \right|^{1/(1+\alpha)} \, d\mu (x) \geq c_{\alpha} \frac{2^{2s}}{(2^{2n_k+1})^{1/(1+\alpha)}}.
\]

\[
\geq c_{\alpha} \frac{2^{2s}}{(2^{2n_k+1})^{1/(1+\alpha)}} \geq c_{\alpha} n_k.
\]
From (23) we have
\[
\frac{\left(\int_{G\alpha} |\sigma_{n}^{\alpha} f_{n}^{1/(1+\alpha)} \right)^{1+\alpha}}{\|f_{n}\|_{H_{1/(1+\alpha)}}} \geq \frac{c_{\alpha} n^{1+\alpha}}{\varphi(2^{n_{k}+1})} \rightarrow \infty, \text{ when } k \rightarrow \infty.
\]

Theorem 1 is proved.

Proof of Theorem 2. Suppose that
\[
\frac{1}{\log n} \sum_{m=1}^{n} \left\|\sigma_{m}^{\alpha} F_{m}\right\|_{H_{1/(1+\alpha)}}^{1/(1+\alpha)} \leq c_{\alpha} \left\|F\right\|_{H_{1/(1+\alpha)}}^{1/(1+\alpha)}.
\]

Using (12) we have
\[
1 \frac{1}{\log n} \sum_{m=1}^{n} \left\|\sigma_{m}^{\alpha} F_{m}\right\|_{H_{1/(1+\alpha)}}^{1/(1+\alpha)} = \frac{1}{\log n} \sum_{m=1}^{n} \int_{G} \left\|\sigma_{m}^{\alpha} F(t)\right\|_{H_{1/(1+\alpha)}}^{1/(1+\alpha)} dt.
\]

We obtain
\[
= \frac{1}{\log n} \sum_{m=1}^{n} \int_{G} \sigma_{m}^{\alpha} F(t) dt \leq \frac{1}{\log n} \sum_{m=1}^{n} \sigma_{m}^{\alpha} F(t) dt \sim c_{\alpha} \int_{G} F^{1/(1+\alpha)} dt = c_{\alpha} \left\|F\right\|_{H_{1/(1+\alpha)}}.
\]

By Theorem W and (28) the proof of theorem 2 will be complete, if we show that
\[
\frac{1}{\log n} \sum_{m=1}^{n} \left\|\sigma_{m}^{\alpha} a\right\|_{H_{1/(1+\alpha)}}^{1/(1+\alpha)} \leq c_{\alpha} < \infty,
\]
for every 1/ (1 + \alpha)-atom \(a\). We may assume that \(a\) be an arbitrary 1/ (1 + \alpha)-atom with support \(I\), \(\mu(I) = 2^{-M}\) and \(I = I_{M}\). It is easy to see that \(\sigma_{n}(a) = 0\), when \(n \leq 2^{M}\). Therefore we can suppose that \(n > 2^{M}\).

Let \(x \in I_{M}\). Since \(\sigma_{n}\) is bounded from \(L_{\infty}\) to \(L_{\infty}\) (the boundedness follows from (29)) and \(\|a\|_{\infty} \leq c_{2^{M/(1+\alpha)}}\) we obtain
\[
\int_{I_{M}} |\sigma_{m}^{\alpha} a(x)|^{1/(1+\alpha)} d\mu \leq \|a(x)\|_{\infty}^{1/(1+\alpha)} / 2^{M} \leq c_{\alpha} < \infty.
\]

Hence
\[
\frac{1}{\log n} \sum_{m=1}^{n} \int_{I_{M}} |\sigma_{m}^{\alpha} a(x)|^{1/(1+\alpha)} d\mu \leq \frac{c_{\alpha}}{\log n} \sum_{m=1}^{n} \frac{1}{m} \leq c_{\alpha} < \infty.
\]

Combining (5) and (20,21) we obtain
\[\frac{1}{\log n} \sum_{m=2^M+1}^{n} \int_{I_m} \left| \sigma_m^\alpha a(x) \right|^{1/(1+\alpha)} d\mu(x) \]\n\[= \frac{1}{\log n} \sum_{m=2^M+1}^{n} \sum_{l=k+1}^{M-1} \int_{I_{l+1}(e_k+e_l)} \left| \sigma_m^\alpha a(x) \right|^{1/(1+\alpha)} d\mu(x) \]
\[+ \frac{1}{\log n} \sum_{m=2^M+1}^{n} \sum_{k=0}^{M-1} \int_{I_{l+1}(e_k)} \left| \sigma_m^\alpha a(x) \right|^{1/(1+\alpha)} d\mu(x) \]
\[\leq \frac{1}{\log n} \left(\sum_{m=2^M+1}^{n} \frac{c_\alpha 2^{\alpha M/(1+\alpha)}}{m^{\alpha/(1+\alpha)+1}} + \sum_{m=2^M+1}^{n} \frac{c_\alpha}{m} \right) < c_\alpha < \infty. \]
which completes the proof of Theorem 2.

REFERENCES

[1] I. BLAHOTA, G. GÁT and U. GOGINA, Maximal operators of Fejér means of Vilenkin-Fourier series, JIPAM. J. Inequal. Pure Appl. Math., 7 (2006), no. 4, Article 149.
[2] N.J. FINE, On the Walsh function, Trans. Amer. Math. Soc. 65 (1949), 372-414.
[3] N. J. FUJII, A maximal inequality for \(H^1 \)-functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), no. 1, 111–116.
[4] G. GÁT, Cesáro means of integrable functions with respect to unbounded Vilenkin systems. (English summary) J. Approx. Theory, 124 (2003), no. 1, 25–43.
[5] G. GÁT, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hung., 61 (1993), 131-149.
[6] G. GÁT, U. GOGINA, A weak type inequality for the maximal operator of \((C, \alpha)\)-means of Fourier series with respect to the Walsh-Kaczmarz system, Acta Math. Hungar. 125 (2009), no. 1-2, 65–83.
[7] U. GOGINA, Maximal operators of Fejér means of double Walsh-Fourier series, Acta Math. Hungar., 115 (2007), no. 4, 333-340.
[8] U. GOGINA, The maximal operator of the \((C, \alpha)\) means of the Walsh-Fourier series, Ann. Univ. Sci. Budapest. Sect. Comput., 26 (2006), 127–135.
[9] U. GOGINA, On the approximation properties of Cesáro means of negative order of Walsh-Fourier series, (English summary) J. Approx. Theory, 115 (2002), no. 1, 9–20.
[10] K. NAGY, Approximation by Cesáro means of negative order of Walsh-Kaczmarz-Fourier series. (English summary) East J. Approx., 16 (2010), no. 3, 297–311.
[11] J. PÁL and P. SIMON, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar., 29 (1977), no. 1-2, 155–164.
[12] F. SCHIPP, Certain rearrangements of series in the Walsh system, (Russian) Mat. Zametki, 18 (1975), no. 2, 193–201.
[13] F. SCHIPP, W.R. WADE, P. SIMON, J. PÁL, Walsh series, An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, (Budapest-Adam Hilger (Bristol-New-York)), 1990.
[14] P. SIMON, Strong convergence theorem for Vilenkin-Fourier series, (English summary) J. Math. Anal. Appl., 245 (2000), no. 1, 52–68.
[15] P. SIMON, Cesáro summability with respect to two-parameter Walsh systems, (English summary) Monatsh. Math., 131 (2000), no. 4, 321–334.
ON THE \((C,\alpha)\)-MEANS... 13

[16] P. Simon, Investigations with respect to the Vilenkin system. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 27 (1984), 87–101 (1985).

[17] P. Simon, Strong convergence of certain means with respect to the Walsh-Fourier series., Acta Math. Hungar., 49 (1987), no. 3-4, 425–431.

[18] P. Simon and F. Weisz, Weak inequalities for Cesáro and Riesz summability of Walsh-Fourier series, (English summary) J. Approx. Theory, 151 (2008), no. 1, 1–19.

[19] B. Smith, A strong convergence theorem for \(H^1(T)\). Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981), 169–173, Lecture Notes in Math., 995, Springer, Berlin-New York, 1983.

[20] G. Tephnadze, Fejér means of Vilenkin-Fourier series, Studia Sci. Math. Hungar., 49 (2012), no. 1, 79–90.

[21] G. Tephnadze, On the maximal operators of Vilenkin-Fejér means, Turkish J. Math., 37 (2013), no. 2, 308–318.

[22] G. Tephnadze, On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal. Appl, 16 (2013), no. 1, 301–312.

[23] G. Tephnadze, A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series, Acta Math. Acad. Paedagog. Nyházi., (N.S.) 28 (2012), no. 2, 167–176.

[24] G. Tephnadze, Strong convergence theorem of one dimensional Walsh-Fejér means, Acta Math. Hungar., 10.1007/s10474-013-0361-5, (in press).

[25] N. Ya. Vilenkin, On a class of complete orthonormal systems, Amer. Math. Soc. Transl., (2) 28 1963 1–35.

[26] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Mathematics, 1568, Springer-Verlag, Berlin, 1994.

[27] F. Weisz, Cesáro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math., 22 (1996), no. 3, 229–242.

[28] F. Weisz, Weak type inequalities for the Walsh and bounded Cesieński systems, Anal. Math. 30 (2004), no. 2, 147-160.

[29] F. Weisz, Hardy spaces and Cesáro means of two-dimensional Fourier series, Approximation theory and function series, (Budapest, 1995), 353-367.

[30] F. Weisz, \((C,\alpha)\) summability of Walsh-Fourier series, Anal. Math., 27 (2001), 141-156.

[31] F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, (English summary) Studia Math., 117 (1996), no. 2, 173–194.

[32] F. Weisz, Summability of multi-dimensional Fourier series and Hardy spaces, Mathematics and its Applications, 541. Kluwer Academic Publishers, Dordrecht, 2002.

I. Blahota, Institute of Mathematics and Computer Sciences, College of Nyíregyháza, P.O. Box 166, Nyíregyháza, H-4400, Hungary
E-mail address: blahota@nyf.hu

G. Tephnadze, Department of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia
E-mail address: giorgitephnadze@gmail.com