Fabrication of nanocrystal superlattice microchannels by soft-lithography for electronic measurements of single-crystalline domains

Andre Maier¹,², Ronny Löffler² and Marcus Scheele¹,²

¹ Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, D-72076, Tübingen, Germany
² Center for Light-Matter Interaction, Sensors & Analytics LISA⁺, University of Tübingen, Auf der Morgenstelle 15, D-72076, Tübingen, Germany

E-mail: andre.maier@uni-tuebingen.de

Received 17 April 2020, revised 25 May 2020
Accepted for publication 12 June 2020
Published 14 July 2020

Abstract

We report a high-throughput and easy-to-implement approach to fabricate microchannels of nanocrystal superlattices with dimensions of ~4 µm², thus approaching the size of typical single-crystalline domains. By means of microcontact printing, highly ordered superlattices with microscale dimensions are transferred onto photolithographically prepatterned microelectrodes, obtaining well-defined superlattice microchannels. We present step-by-step guidelines for microfabrication, nanocrystal self-assembly and patterning to archive large quantities of up to 330 microchannels per device for statistically meaningful investigations of charge transport in single-crystalline superlattice domains. As proof-of-concept, we perform conductivity and field-effect transistor measurements on microchannels of PbS nanocrystal superlattices. We find that the electric transport within microchannel superlattices is orders of magnitude more efficient than within conventional large-scale channels, highlighting the advantage of the near single-crystalline microchannels presented in this paper.

Supplementary material for this article is available online

Keywords: nanocrystals, superlattices, microcontact printing, patterning, charge transport

(Some figures may appear in colour only in the online journal)

1. Introduction

Colloidal nanocrystals (NCs) are of high interest in academic research and technological applications, due to their size-tuneable optoelectronic properties [1–3]. The self-assembly of NCs into highly ordered superlattices provides a powerful platform for the development of numerous solution-processed optoelectronic devices [4–8]. These periodic arrays mimic classical crystals in which atoms have been replaced by NCs. In analogy to atomic crystals, electronic coupling between neighbouring NCs can occur, resulting in novel collective properties by design. Superlattices of NCs are commonly fabricated by the self-assembly of NCs from solution, comprising the solvent-evaporation based methods of drop-casting, spin-coating, dip-coating and the assembly at the liquid/air interface [9]. This allows NC arrays to be realized with structures raging from 2D monolayers [10–12] to 3D arrays with standard superlattices structures (e.g. bcc, fcc, hcp lattices) [13–15] and more sophisticated binary lattices [16–18]. Further, superlattices with oriented attachment of atomically connected NCs with honeycomb or square lattice structures can be achieved [19–21]. Despite their vast structural
versatility, all NC assemblies suffer from one major drawback that restricts the exploration of the fundamental electronic properties of these novel artificial solids: the assemblies are rather heterogeneous and typical superlattice grain sizes are yet only a few to tens μm wide [22–25] such that the coupling between NCs is limited to small domains, caused by grain boundaries, cracks, voids and disorder [2, 26, 27]. However, typical devices to investigate the electronic properties of NC superlattices involve active areas with much larger dimensions of ~10^3–10^4 μm² [8, 12, 21, 28–30]. Thus, measuring the electronic properties of these superlattice devices averages over the intrinsic properties of all present domains, concealing the expected collective effects of single-domain NC superlattices. Accordingly, to really pinpoint the intrinsic properties of NC superlattices, the active channel area between two contacts has to be decreased to allow single-grain measurements [9, 21, 31]. In this respect, we explicitly do not refer to contact-less measurement techniques (e.g. terahertz spectroscopy [12, 27, 32, 33]), since an actual implementation of superlattices into real devices requires contacting by electrodes. First indications of the effect of reducing the measuring dimensions have been provided by Mentzel et al [34], where nanopatterned NC films prepared by electron beam lithography have revealed 180× higher conductivities compared to macroscopic films. Evers et al [32] have used scanning tunnelling microscope tips with distances of 500 nm to probe field-effect mobilities of single-grain superlattices, reporting that the absence of long-range order is limiting the mobility.

Here, we demonstrate our high-throughput, low-cost and easy-to-implement approach of fabricating microchannels of lead sulfide (PbS) NC superlattices to define active areas with dimensions close to single domains. By means of microcontact printing (μCP), we transfer periodic stripes of highly ordered NC superlattices with microscale dimensions onto photolithographically prepatterned electrode devices. This leaves most of the substrate area uncoated and is key to obtain well-defined microchannels. In the soft-lithography technique of μCP, a patterned elastomeric stamp is used to transfer an NC superlattices to a substrate while the stamp pattern is maintained [35, 36]. Channels with dimensions of ~1×4 μm² fabricated in this way allow performing electronic measurements of single crystalline superlattice domains. We provide a step-by-step protocol to fabricate devices with several hundreds of microchannels for a statistically meaningful investigation of the electronic properties of single-crystalline superlattices. This protocol is not limited to PbS NCs and applicable for a broad range of NC materials and superlattice types.

2. Methods

2.1. Materials

All required materials and equipment for the fabrication of microchannels are listed below. Positive tone resist (ma-P 1205), negative tone resist (ma-N 405), developer (ma-D 331/S) and remover (mr-Rem 660) were purchased from micro resist technology GmbH, Polydimethylsiloxane (PDMS) Sylgard 184 prepolymer and cross-linker from Dow Corning GmbH and hexamethyldisilazane (HMDS) as well as tridecafluoro-(1,1,2,2)-tetrahydrooctyl-trichlorosilane (F127TCS) from Sigma Aldrich. For the electrode devices, we used (100)-Si wafers with 200 nm SiO2 (Siegrist Wafer GmbH). However, other substrates or wafers can also be used. (100)-Si wafers were used for the stamp master fabrication, ideally with a SiO2 layer of 100–200 nm. Standard chemicals as acetone, isopropanol, ultrapure water, potassium hydroxide (KOH) pellets and buffered oxide etch solution (BOE 7:1, (87.5% NH4F: 12.5% HF)) were used.

Oleic acid stabilized PbS NCs were synthesized according to Weidman et al [37]. Cu-4,4′,4″,4‴-tetraaminophthalocyanine (Cu4APc) was synthesized according to Jung et al [38]. Hexane, octane, acetoniitrile and dimethyl sulfoxide, were purchased from Acros Organics.

2.2. Fabrication process of Au electrode devices with μm-gaps

(100)-Si wafers with a 200 nm SiO2 layer were cut into 15 × 15 mm² pieces. HMDS as an adhesion layer was applied: The samples were heated to 150 °C in a closed glass Petri dish under nitrogen flow. After 15 min, the temperature was set to 120 °C and one drop of HMDS was placed with a syringe next to the wafer pieces while the petri dish was kept closed. After 5 min, the samples were slowly cooled down to room temperature. A thin layer of the negative tone photoresist ma-N 405 was applied (100 μl, maximum spin speed of 10,000 rpm, 30 s), followed by a soft bake at 95 °C for 60 s. The thickness of the resist was 310 nm, measured by profilometry (Bruker, Dektak XT). For exposure, an optical mask with the electrode structures as opaque parts was used. The substrates were exposed for 45 s (365 nm, 325 W, Karl Süss MA6 mask aligner) followed by development for 5–7.5 min in ma-D 331/S to remove the unexposed parts, stopped by placing the sample into ultrapure water. The samples were placed in a thermal evaporation system (Pfeiffer Vacuum PLS 570) under high vacuum conditions (10⁻⁷ mbar). As an adhesion layer, ~2.5 nm of Ti was evaporated, followed by ~8 nm of Au. The thickness and evaporation rate were controlled by a quartz crystal microbalance. Finally, lift-off was performed in mr-Rem 660 assisted by ultrasonication.

2.3. Fabrication of silicon stamp masters

First, the (100)-Si wafers were thermally oxidized for 75 min at 1050 °C to yield a SiO2 layer of around 100 nm. Alternatively, (100)-Si wafers with an initial SiO2 layer can be used. The Si/SiO2 wafer were cut in 15 × 15 mm² pieces, with the cutting line precisely aligned to the <110> Si direction (indicated by the wafer flat). HMDS was applied as an adhesion layer, as described above. A 500 nm thick layer of the positive tone photoresist ma-P 1205 was applied (100 μl, 3000 rpm, 30 s), followed by a soft bake at 90 °C for 60 s. An optical mask with 15 μm wide stripes as transparent parts was used. The stripes were aligned parallel to the [110] direction. Exposure for 1 s and development for 60 s in ma-D 331/S removes the exposed parts (stripe profile). Next, SiO2 etching was performed in a reactive ion etching (RIE) system
Figure 1. Fabrication of prepatterned electrode devices. (a) Optical micrograph of a Si/SiO$_2$ substrate with developed negative tone resist pattern (dark green) of ≤ 1 μm width and a thickness of 310 nm. (b) SEM micrograph of an \sim800 nm wide resist pattern under a tilted view of 85$^\circ$. (c) Optical micrograph of the substrate after metallization and lift-off. Well-defined electrodes with gaps of ≤ 1 μm are formed. The respective schematic drawings are provided at the top of each subfigure. (Oxford Instruments, Plasmalab 80 Plus) with the following process parameters: a mixture of CHF$_3$ and O$_2$ (45 sccm and 5 sccm, respectively), a chamber pressure of 40 mTorr and a power of 150 W were used. The ideal etch time was 180 s (see figure 1). Before and after the CHF$_3$-RIE, the substrates were cleaned with an oxygen plasma (50 sccm O$_2$, 10 s, 100 mTorr, 40 W). Residual resist was removed by acetone. Before KOH etching, the substrates were immersed in 1.2% HF solution for 60 s (1 ml of BOE 7:1 in 10 ml ultrapure water) and then directly mounted in a home-built Teflon holder placed in an 8.8 M (36 wt%) KOH solution (27 g KOH in 48 ml ultrapure water) heated to 60$^\circ$C via a water bath under stirring. The substrates were etched for 20–40 min and rinsed with ultrapure water to stop the etching process. The substrates were immersed into an 1.2% HF bath for 20 min and rinsed with ultrapure water to remove the SiO$_2$ etch mask. For the surface functionalization, the substrates were heated to 150$^\circ$C in a closed Petri dish under nitrogen flow. After 15 min, one drop of F$_{13}$TCS was placed with a syringe in the Petri dish, which was then kept closed for 30 min. The functionalized silicon masters were slowly cooled down to room temperature and rinsed with aceton and isopropanol to remove excess F$_{13}$TCS.

2.4. Fabrication of elastomeric stamps

The functionalized silicon masters were placed into a home-built Teflon chamber (3 \times 3 masters). PDMS base and curing agent (Sylgard 184) were mixed in a 10:1 ratio (33 ml in total to obtain 9 stamps of roughly 10 mm thickness) and stirred thoroughly for 3 min. The mixture was placed in a vacuum desiccator to remove trapped bubbles by multiple evacuation and re-pressurisation steps and final evacuation for 20 min. The degassed PDMS mixture was poured onto the silicon masters in the Teflon well. The well was placed in the desiccator and evacuated for another 5 min to remove air bubbles trapped at the master-PDMS interface. The PDMS was then cured overnight (~16 h) in an oven at 150$^\circ$C. Shorter curing times increase the softness of the PDMS stamps. The cured PDMS block was cooled down to room temperature and carefully released from the Teflon well. Since a small amount of PDMS normally also wetted the backside of the silicon master, this thin layer was removed with a razor blade and the masters were then carefully peeled off (parallel to the trenches) from the PDMS block. The stamps were cut into 10 \times 10 \times 10 mm3 pieces with a razor blade, cleaned by sonication in isopropanol and dried under pressurised nitrogen flow. The cubic shape allows easy handling of the stamps by hand.

2.5. Self-assembly of nanocrystal superlattice films at the liquid/air interface

PbS NCs with a diameter of 5.8 \pm 0.5 nm, stabilized with oleic acid, were dispersed in hexane:octane with ratios from 1:0–0:1 at concentrations of 4–10 μM. A home-built Teflon chamber with an area of 10 \times 10 mm2 was filled with 1 ml acetonitrile and equipped with a lid to seal the Teflon chamber. A needle containing a PbS NC dispersion was mounted just above the acetonitrile subphase and connected to a syringe pump. Another needle containing the ligand solution (Cu4APc in dimethyl sulfoxide), connected to another syringe pump, was mounted within the subphase. The PbS NC dispersion (70–100 μl) was injected on top of the acetonitrile subphase, whereas the injection speed was controlled by the syringe pump. Another needle containing the ligand solution (Cu4APc in dimethyl sulfoxide), connected to another syringe pump, was mounted within the subphase. The PbS NC dispersion (70–100 μl) was injected on top of the acetonitrile subphase, whereas the injection speed was controlled by the syringe pump. The ligand solution (150 μl, \sim0.1 mg ml$^{-1}$) was injected at the bottom of the liquid subphase and ligand exchange was performed over a duration of 4 h.

2.6. Microcontact printing of NC superlattice microchannels

A micropatterned PDMS stamp was parallelly brought into contact with the floating NC superlattice film for ~5 s and excess liquid was removed from the stamp with a tissue. The coated stamp was placed onto the Si/SiO$_2$ substrate with pre-patterned electrodes for ~30 s and then removed in a tilted manner (parallel to the stripe profile). The stamped substrates were vacuum-dried for a few minutes to remove excess liquid. The substrates were then placed on a spin coater and covered
with acetone to remove unbound ligands. After 30 s, the acetonitrile meniscus was removed by spinning at 1200 rpm for 30 s. The washing step was repeated once. This assembly and μCP process was performed in a glovebox in nitrogen atmosphere (level of O₂ < 0.5 ppm and H₂O = 0 ppm).

2.7 Characterization of superlattice stripes and microchannels

Scanning electron microscopy (SEM) imaging was performed with a HITACHI model SU8030 at 30 kV. For sideview investigation of superlattice stripes, devices were analysed under a tilt angle of 85°. The thickness of the transferred superlattice stripes were investigated by atomic force microscopy (AFM), conducted with a Bruker MultiMode 8-HR. Electrical measurements were performed at room temperature in a nitrogen-flushed probe station (Lake Shore, CRX-6.5K). Individual electrode pairs with a connected superlattice stripe were contacted with W-tips, connected to a source-meter-unit. Next, the layout of the finger electrodes is adjusted: The electrodes from opposite directions overlap at their ends. The length of the overlap corresponds to the periodicity of the stamp features. With this device geometry, well-defined microchannels can be realized where an entirely homogeneous electric field is established within the channel and the direction of the electric field vector is well-known. One set of 12 electrodes forms 11 individually addressable microchannels. On one substrate, 30 of these electrode sets are present, yielding a total number of 330 microchannels per device (see figure S1 in the supplementary material).

3. Results

We emphasize that the described process can easily be implemented in any laboratory as long as the following standard microfabrication equipment is generally available: Photolithography equipment like a spin coater, a mask aligner and an optical microscope, a thermal evaporation system, a RIE system with O₂ and CHF₃ as process gases, and other standard laboratory equipment such as Teflon petri dishes and a magnetic hotplate stirrer.

3.1. Microchannel device layout

First, for a μCP process with a high success rate, an elastomeric stamp with an optimal aspect ratio of its relief features has to be designed. Here, the width W of the stripes is set to ~4 µm which is a typical grain size of superlattices. The stamp feature height H and feature distance D are chosen to have an ideal aspect ratio (H/W) according to $0.5 < H/W > 5$ and $H/D > 0.05$ to prevent lateral collapse and pairing of the elastomeric stamp features [39–41]. Accordingly, a feature height of $H = 8 \mu m$ and a feature periodicity of $80 \mu m (D = 76 \mu m)$ is selected.

To warrant high throughput, Au electrodes with ~1 µm gaps are fabricated by UV photolithography (figure 1). The

![Figure 2. Fabrication process of the silicon master. (a) (100) Si wafer with a 100 nm thick SiO₂ layer. (b) Positive tone resist (~500 nm) is applied. (c) UV exposure with an optical mask with transparent stripes of 15 µm width and a periodicity of 80 µm. The stripes are aligned parallel to the <110> Si direction. (d) After development, SiO₂ is exposed and (e) removed via reactive ion etching. (f) Residual resist is removed, exposing the patterned SiO₂, which serves as an etch mask in the anisotropic KOH etching. (g) The 111 plane serves as etch stop, resulting in inclined trenches with an angle of 54.7°, a base width of ~4 µm and a depth of ~8 µm. (h) Removal of the SiO₂ layer with buffered oxide etch yields Si masters. After functionalization with F₁₃TCS as an anti-sticking layer, they can be used as molds for soft-lithography stamps made of PDMS with the negative relief (i,j).](image-url)
The presented guideline for the fabricated Au electrodes with ~1 \(\mu \)m gaps on Si wafers with an SiO\(_2\) layer of 200 nm allows to perform e.g. two- and four-point measurements as well as field-effect transistor measurements. Generally, this approach can easily be adjusted for other substrates, such as glass slides or polyimide membranes.

3.3. Fabrication process of silicon masters and elastomeric stamps

To meet the above-mentioned requirements for the elastomeric stamps, especially the relatively large relief height of 8 \(\mu \)m, a silicon master fabrication by means of anisotropic etching in aqueous KOH solution was chosen. We used (100)-Si wafers for the etching process, as this can produce trenches with inclined 111 walls [43]. The etch rate of silicon differs for the crystal planes, caused by different activation energies. The selectivity of the etch rate of the crystal planes 100:111 is about 100:1 [44]. Thus, the 111 plane effectively serves as an etch stop. This technique provides the advantages of atomically flat defined sidewalls and the possibility to adjust the width of the stamp features by controlling the etching depth/time, while the inclined (non-vertical) sidewalls of the final elastomeric stamps improve their stability. In comparison, photore sist-based masters suffer from only poorly defined side-walls and lower thermal stability. This may alter the shape of the resist profiles during the fabrication and molding (PDMS baking) process. Further, changing the relief width requires a new lithography mask.

The fabrication process of stamp masters of atomically precise silicon relief with dimensions introduced above is schematically illustrated in figure 2 and detailed in the methods. The relief pattern can be changed considering the standard microcontact printing concepts [39] and the process can easily be adjusted.

First, the desired stripe profile pattern is transferred by standard photolithography, using positive tone resist with high stability against dry etching processes (figures 2(a)−(d)). Alternatively, negative tone resist together with an inverted photomask could be used. The photomask contains a stripe pattern with a periodicity of 80 \(\mu \)m, matching the electrode overlaps. Considering the angle of 54.7° between the 100 and 111 silicon planes, the width of the stripes is set to 15 \(\mu \)m (supplementary material and figure S2 for details). This finally results in 4 \(\mu \)m wide trenches after etching to a depth of 8 \(\mu \)m. Since the desired anisotropic etching of Si strongly depends on the orientation of the crystallographic planes, it is crucial that the patterns are parallel to the <110> direction (figure 2(d)).

Figure 3. Etch rate of SiO\(_2\) by CHF\(_3\)-RIE. (a) Measured depth of the etched part as a function of etch time (CHF\(_3\)-RIE). After etching for 150 s, the etch rate declines as the SiO\(_2\) is fully removed and the Si surface is exposed. The etch rate at \(t < 150 \) s is ~42 nm min\(^{-1}\) and corresponds to SiO\(_2\), whereas at \(t > 150 \) s the rate is ~2 nm min\(^{-1}\) and corresponds to Si. The thickness of SiO\(_2\) can be determined to be ~100 nm. Error bars represent the standard deviation of several measurements. The color code indicates the transition from SiO\(_2\) to Si. This step corresponds to figures 2(d)−(f). (b) Optical micrograph of a sample after RIE and resist removal. The trenches in the SiO\(_2\) layer exposing bare Si can easily be identified. This corresponds to the schematic drawing in figure 2(f).
To transfer the pattern into the SiO$_2$, which serves as a mask during KOH etching, the substrates are etched in a RIE system using CHF$_3$ (figure 2(e)) due to its high selectivity between silicon and SiO$_2$ [45]. The residual resist is removed and the depth of the etched trenches are measured by profilometry (figure 2(f)). As apparent in figure 3(a), after etching for 150 s the etch rate declines from ~42 nm min$^{-1}$ for SiO$_2$ to ~2 nm min$^{-1}$ for Si, as the 100 nm thick SiO$_2$ layer is fully removed and the silicon surface is exposed. Thus, an etch time of $t > 150$ s is chosen to ensure a full removal of the exposed SiO$_2$ areas ($t = 180$ s).

The SiO$_2$ pattern prepared in this way serves as an etch mask during the KOH etching, which allows to transfer the pattern into silicon. Before KOH etching, the native ~2 nm thick SiO$_2$ layer formed at ambient conditions [46] needs to be removed by an HF dip.

During anisotropic KOH etching, the substrates are mounted in a home-built Teflon holder that enables to suspend the substrates vertically into the KOH bath, with the line pattern parallel to the flow direction of the stirred KOH solution (figure 2(g)). This facilitates the removal of H$_2$ bubbles formed during etching. After 40 min, trenches with base widths of ~4 µm are observed, corresponding to an etch depth of ~8 µm, as shown in figures 4(a) and (b). The line patterns are oriented parallel to the $<110>$ silicon direction, resulting in well-defined trenches with an inclination angle of 54.7°, caused by the 111 facets serving as an etch stop. The undercut at the edges of the SiO$_2$ etch mask can clearly be identified, as well as residual SiO$_2$ agglomerations accumulated at the base of the trench. The undercut of several hundreds of nm is formed as etching of the 111 facet is marginally present. The experimental etch rate of the 100 facet is calculated to be ~200–250 nm min$^{-1}$. This is in good agreement with the expected etch rate of ~300 nm min$^{-1}$ by Seidel et al for an 8.8M KOH solution at 60 °C, which further shows a SiO$_2$ etch rate of ~0.1 nm min$^{-1}$ [44].

To remove the residual SiO$_2$ etch mask and agglomerations at the base of the trenches, the substrates are treated with BOE (figure 2(h)), resulting in atomically defined side walls (figures 4(c)–(f)).

Finally, the surfaces of the patterned Si substrates are functionalized with F$_1$TCS as an anti-sticking layer, adapted from Beck et al [47], which prevents the sticking of the cured elastomeric stamps to the silicon surface [39, 47]. When showing a highly hydrophobic surface, the modification of the samples was successful. The final silicon masters can be reused dozens of times to serve as molds for PDMS curing (figures 3(i) and (j)). Figures 4(g) and (h) shows a cured PDMS stamp, which is exactly the negative of the stamp master: a stripe relief with a periodicity of 80 µm, where the individual protrusions have an inclination angle of 54.7° and a base width of ~4 µm.

3.4. Microcontact printing of microchannels

We emphasize that the fabrication of superlattice microchannels is neither limited to the nanocrystals/nanoparticles we have used, nor to self-assembly of the NCs at the liquid/air interface.

Here, we use PbS NCs functionalized with the organic π-system Cu4APc as a model system. Cu4APc replaces the native oleic acid ligands, resulting in highly conductive superlattices together with long-range ordered [12]. The organic semiconductor Cu4APc with its functional groups serves as a linker between adjacent NCs and couples them chemically through binding to the NC surface (long range order) and electronically via potentially near-resonant alignment of suitable
Figure 5. Schematic of the self-assembly and ligand exchange of PbS NC superlattices and microcontact printing to form microchannels. (a) A home-built Teflon chamber is filled with acetonitrile as the liquid subphase. (b) A dispersion of oleic acid stabilized PbS NCs is injected on top of the subphase and as the dispersion solvent evaporates, the NCs form a freely floating superlattice film. (c) The ligand solution (Cu4APc in dimethyl sulfoxide) is injected into the bottom of the liquid subphase, the Cu4APc ligands diffuse through the subphase and replace the native oleic acid ligands of the PbS NCs. (d) and (e) A micropatterned PDMS stamp is inked with the superlattice film by parallelly approaching the floating film. (f) and (g) The inked stamp is brought in contact with the electrode device, transferring stripes of the self-assembled superlattice film. (h) Adjacent electrodes are connected by an orthogonal superlattice stripe, forming an individual microchannels with length $L \approx 1 \ \mu m$ and width $W \approx 4 \ \mu m$, respectively. Up to 330 microchannels can be realised per device.

Figure 6. Soft-lithography stamps coated with NC thin films. (a) and (b) Optical micrographs of a PDMS stamp after coating with a NC superlattice film. Both the base of the stripe (a) as well as the space between the stripes (b) are coated. (c) and (d) After stamping the PDMS stamp onto a substrate, the superlattice film is transferred from the stripe base (c), whereas the space between the bases is still covered (d). The respective schematic drawings are drawn at the top of each subfigure. (e) Optical micrograph of three microcontact printed superlattice stripes on a Si/SiO$_2$ substrate. The different colorations indicate the need for microchannels to characterize single-crystalline domains. (f) and (g) Optical micrograph of a Si/SiO$_2$ substrate after microcontact printing with a coated PDMS stamp. (f) Pressure which is too high causes deformation of the elastomeric stamp and parts of the space between the protruding stripes are transferred. (g) The own weight of the PDMS stamp is sufficient for a transfer of the thin film with $\sim 100\%$ success rate. The white arrows indicate the periodicity of 80 μm.
energy levels and reducing the energy barrier between adjacent NCs (enhanced conductivity) \[48, 49].

As the native oleic acid stabilized PbS NCs are soluble in alkanes, the liquid/air interface method developed by Dong et al can be applied \[28\]. This is schematically illustrated in figures 3(a)–(c). The NC dispersion is spread onto the surface of a polar liquid and after evaporation of the solvent, the NCs self-assemble into a floating superlattice film. The thickness and homogeneity of the film can be controlled to a certain degree (e.g. monolayer vs. thick film) by changing the NC dispersion volume, concentration, injection speed, and the evaporation controlled by the adjustable sealing. After injecting a ligand solution into the polar subphase, the Cu4APc ligands diffuse through the liquid subphase to the NC superlattice film and replace the insulating native oleic acid ligands, which renders the highly ordered superlattice conductive \[12\].

The floating superlattice film can now be transferred onto a patterned PDMS stamp by approaching the stamp onto the liquid/air interface (figures 5(d) and (e)). Well-defined stripes of the NC superlattice film are finally printed to a solid substrate with prepatterned electrodes by microcontact printing, as displayed in figures 5(f) and (g). Adjacent electrodes are connected by an orthogonal superlattice stripe, forming an individual microchannel with length $L \approx 1 \mu m$ and width $W \approx 4 \mu m$, respectively (figures 5(h)).

Figures 6(a)–(d) show a PDMS stamp coated with a superlattice film before and after microcontact printing. After stamping onto a substrate, the film is successfully transferred from the base of the stripes, whereas the spaces between the bases are still coated. Accordingly, \mu m-patterned areas of superlattice films can be transferred (figure 6(e)). The own weight of the \(1 \text{cm}^3\) sized PDMS stamp is sufficient for a highly successful transfer rate of the superlattice films. The application of additional pressure deforms the elastomeric PDMS stamp (sagging) and, consequently, parts of the interface between the protruding stripes are transferred, which is undesired (figures 6(f) and (g)).

Figures 7(a) and (b) display microchannels of self-assembled NC superlattices, where one of the transferred well-defined superlattice stripe connects adjacent electrodes. The formed microchannel is defined by the length between two adjacent electrodes ($L \approx 1 \mu m$), the width of the transferred stripe ($W \approx 4 \mu m$) and the thickness h of the NC superlattice (figures 7(c) and (d)). Remarkably, superlattices of different thicknesses (ranging from continuous monolayer to 3D films with thicknesses of up to $2 \mu m$) can be transferred (figure 7(c)), as the film morphology (meaning areas of different thicknesses) is preserved during the stripe stamping process.

3.5. Electronic measurements of superlattice microchannels

Figure 8(a) shows a microchannel, where the NCs within the superlattice are highly ordered over the entire channel dimension (figure S3). In these microchannels, the dimensions of the channel itself and the grain-size of typical superlattices match. Remarkably, the structural order of the micrometer-sized crystalline superlattice domains is preserved, which was not achieved in previous attempts \[50\]. After successful fabrication of superlattice microchannels, a proof of concept of electronic measurements is given in the following.

Figure 8(b) displays a characteristic two-point conductance measurement of one individual microchannel, showing Ohmic behaviour in the range of $\pm 1 \text{V}$. This allows determining the conductance value G, which is the slope of the I–V curve, and the conductivity $\sigma = (G \times L)/(W \times h)$. Measuring approximately two hundred individual microchannels yields a distribution of electric conductivities in the range of $\sigma = 10^{-6}$–10^{-3}S m^{-1}.

In addition to conductivity measurements, field-effect transistor measurements can be performed on individual microchannels, as shown in the exemplary transconductance curve in figure 8(c). The microchannels consisting of PbS NCs functionalized with the organic \pi system Cu4APc show p-type behaviour, which agrees with our previous study on...
the same material [12]. Using the gradual channel approximation (see supplementary material for details), the field-effect hole mobilities $\mu(h^+)$ can be estimated to be in the range of 10^{-6}–10^{-4} cm2V$^{-1}$s$^{-1}$, reaching values of up to 2×10^{-4} cm2V$^{-1}$s$^{-1}$ (figure 8(d)). The transconductance curve exhibit a hysteresis, which is commonly observed in NC transistors and attributed to charge carrier trapping at the dielectric/NC interface or NC trap states [51].

Finally, we compare the tailored microchannels with conventional channels, where interdigitated electrodes probe large areas of $\sim 1-20 \times 10^4 \mu$m2 (with 2.5μm $\leq L \leq 50 \mu$m and W up to 1 cm), as displayed in figure 8(e). Accordingly, using such conventional channel averages over different superlattice domains and their properties present in the channel. Figure 8(f) shows the geometry-normalized conductance values $G_{geom} = G \times (L/W)$ of conventional channels and microchannels. For large conventional electrode devices with inhomogeneous superlattice coatings, the conductivity cannot be calculated due to nonuniform thicknesses. However, the distributions of G_{geom} can clearly be separated, and it is apparent that the normalized conductance of microchannels exceed that of conventional interdigitated electrode devices. Thus, electric transport within microchannel superlattices is orders of magnitude more efficient than within the larger state-of-the-art electrode system. This highlights the advantage of the near single-crystalline microchannels presented in this paper.

However, some limitations should be noted. Here, the superlattice film morphology can only be controlled to a certain degree. As the morphology is preserved during the stripe stamping process, microchannels with different superlattice thicknesses are obtained. Further optimizing the liquid/air interface method could yield more homogeneous thickness distributions.

In addition, to the effect of single-crystallinity, the effect of an increased probability for the formation of percolative networks might play a role.

In a previous report, we have already verified that contact resistance of these materials on the conventional substrates is insignificant compared to the bulk resistance [12]. While we cannot rule out that contact resistance may play a role with the microchannels presented here, its effect would most probably be an increase of the overall resistance. Thus, it cannot explain the improved transport properties shown here in figure 8.

4. Conclusion

To conclude, we have fabricated microchannels of NC superlattices, where the channel dimensions approach the typical
grain size of self-assembled superlattices of a few \(\mu \text{m}^2 \) by using the soft-lithography technique of microcontact printing. This was achieved by combining the top-down processes of anisotropic etching of silicon and photolithography together with the bottom-up process of NC self-assembly and ligand exchange and the liquid/air interface. Step-by-step protocols are provided which are easily adjustable for different NC and superlattice types. We demonstrate proof-of-principle by fabricating microchannels of near single-crystalline domains of highly ordered coupled PbS NCs and measuring the electric conductivities as well as field-effect mobilities. A comparison of the superlattice microchannels with conventional state-of-the-art electrode devices reveals the advantageous effect of the near single-crystalline microchannels, presented in this paper. These microchannel NC superlattices are provided which are easily adjustable for different NC and enable novel opportunities for studying fundamental physical properties of NC ensembles, such as anisotropic electric transport [52].

Acknowledgments

This project has been funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 802822). SEM measurements using a Zeiss SU 8030 SEM were funded by the DFG under contract INST 37/829-1 FUGG. The authors thank Monika Fleischer for providing access to their clean room facility. The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest.

ORCID iD

Andre Maier https://orcid.org/0000-0003-2512-2322

References

[1] Alivisatos A P 1996 Science 271 933–7
[2] Talapin D V, Lee J-S, Kovalenko M V and Shevchenko E V 2010 Chem. Rev. 110 389–458
[3] Kovalenko M V et al 2015 ACS Nano 9 1012–57
[4] Murray C B, Kagan C R and Bawendi M G 1995 Science 270 1335–8
[5] Collier C P, Vossmeier T and Heath J R 1998 Annu. Rev. Phys. Chem. 49 371–404
[6] Tang J and Sargent E H 2011 Adv. Mater. 23 12–29
[7] Kagan C R, Lifshitz E, Sargent E H and Talapin D V 2016 Science 353 aac5523
[8] Talapin D V and Murray C B 2005 Science 310 86–89
[9] Boles M A, Engel M and Talapin D V 2016 Chem. Rev. 116 11220–89
[10] van der Stam W, Rabouw F T, Vonk S J W, Geuchies J J, Ligthart H, Petukhov A V and de Mello Donega C 2016 Nano Lett. 16 2608–14
[11] Bigioni T P, Lin X-M, Nguyen T T, Corwin E I, Witten T A and Jaeger H M 2006 Nat. Mater. 5 265–70
[12] André A et al 2017 Chem. Commun. 53 1700–3
[13] Bian K, Choi J J, Kaushik A, Clancy P, Smilgies D-M and Hanrath T 2011 ACS Nano 5 2815–23
[14] Huang X, Zhu J, Ge B, Deng K, Wu X, Xiao T, Jiang T, Quan Z, Cao Y C and Wang Z 2019 J. Am. Chem. Soc. 141 1198–206
[15] Weidman M C, Nguyen Q, Smilgies D-M and Tisdale W A 2018 Chem. Mater. 30 807–16
[16] Shevchenko E V, Talapin D V, Kotov N A, O’Brien S and Murray C B 2006 Nature 439 55–59
[17] Paik T et al 2017 Nano Lett. 17 1387–94
[18] Redl F X, Cho K-S, Murray C B and O’Brien S 2003 Nature 423 968–71
[19] Evers W H, Goris B, Bals S, Casavola M, de Graaf J, van Roij R, Dijkstra M and vanmaekelbergh D 2013 Nano Lett. 13 2317–23
[20] Boneschanscher M P et al 2014 Science 344 1377–80
[21] Whitham K, Yang J, Savitzky B H, Kourkoutis L F, Wise F and Hanrath T 2016 Nat. Mater. 15 557–63
[22] Diroll B T, Doan-Nguyen V V T, Cargnello M, Gaudel M, Gaudel E A, Kagan C R and Murray C B 2014 ACS Nano 8 12845–50
[23] Mukharamova N et al 2019 Small 15 1904954
[24] Zaluzhnyy I A et al 2017 Nano Lett. 17 3511–7
[25] Choi J J, Bealing C R, Bian K, Hughes K J, Zhang W, Smilgies D-M, Hennig R G, Engstrom J R and Hanrath T 2011 J. Am. Chem. Soc. 133 3131–8
[26] Remacle F and Levine R D 2001 Chem Phys Chem 2 20–36
[27] Mics Z, Nmec H, Rychetsky I, Kuzel P, Formanek M, Malý P and Nmec P 2011 Phys. Rev. B 83
[28] Dong A, Jiao Y and Milliron D J 2013 ACS Nano 7 10978–84
[29] Zarghami M H, Liu Y, Gibbs M, Gehremicheal E, Webster C and Law M 2010 ACS Nano 4 2475–85
[30] Koh W-K, Saudari S R, Fafarman A T, Kagan C R and Murray C B 2011 Nano Lett. 11 4764–7
[31] Williams K J, Tisdale W A, Leschkies K S, Haugstad G, Norris D J, Aydil E S and Zhu X-Y 2009 ACS Nano 3 1532–8
[32] Evers W H et al 2015 Nat. Commun. 6 8195
[33] Sanemira E M, Marshall A R, Christians J A, Harvey S P, Ciesielksi P N, Wheeler L M, Schulz P, Lin L Y, Beard M C and Luther J M 2017 Sci. Adv. 3 eaa04204
[34] Mentzel T S, Wanger D D, Ray N, Walker B J, Strasfeld D, Bawendi M G and Kastner M A 2012 Nano Lett. 12 4404–8
[35] Wilbur J L, Kumar A, Biebuyck H A, Kim E and Whitesides G M 1996 Nanotechnology 7 452–7
[36] Perl A, Reinhardt D N and Huskens J 2009 Adv. Mater. 21 2257–68
[37] Weidman M C, Beck M E, Hoffman R S, Prins F and Tisdale W A 2014 ACS Nano 8 6363–71
[38] Jung S-H, Choi J-H, Yang S-M, Cho W-J and Ha C-S 2001 Mater. Sci. Eng. B 85 160–4
[39] Qin D, Xia Y and Whitesides G M 2010 Nat. Protoc. 5 491–502
[40] Sharp K G, Blackman G S, Glassmaker N J, Jagota A and Hui C-Y 2004 Langmuir 20 6430–8
[41] Delamarche E, Schmid H, Michel B and Biebuyck H 1997 Adv. Mater. 9 741–6
[42] Chuang Y-J, Tseng F-G and Lin W-K 2002 Microsyst. Technol. 8 308–13
[43] Powell O and Harrison B H 2001 J. Micromech. Microeng. 11 217–20
[44] Seidel H, Csepregi L, Heuberger A and Baumgaertel H 1990 J. Electrochem. Soc. 137 3612–26
[45] Jansen H, Gardeniers H and Fluitman J 1996 J. Micromech. Microeng. 6 14–28
[46] Himpel F J, McFeely F R, Taleb-Ibrahim A, Yarmoff J A and Hollinger G 1988 Phys. Rev. B 38 6084–96
[47] Beck M, Graczyk M, Maximov I, Sarwe E-L, Ling T G I, Keil M and Montelius L 2002 *Microelectron. Eng.* **61** 441–8
[48] Scheele M, Brütting W and Schreiber F 2015 *Phys. Chem. Chem. Phys.* **17** 97–111
[49] Maiti S, Maiti S, Maier A, Hagenlocher J, Chumakov A, Schreiber F and Scheele M 2019 *J. Phys. Chem. C* **123** 1519–26
[50] Dayen J-F, Devid E, Kamalakar M V, Golubev D, Guédon C, Faramarzi V, Doudin B and van der Molen S J 2013 *Adv. Mater.* **25** 400–4
[51] Shulga A G, Piveteau L, Bisri S Z, Kovalenko M V and Loi M A 2016 *Adv. Electron. Mater.* **2** 1500467
[52] Maier A *et al* 2020 (arXiv:2003.03266)