The Exponentiated Half-logistic Odd Burr III-G: Model, Properties and Applications

Broderick Oluyede¹, Peter O. Peter²*, Nkumbuludzi Ndwap³, Huybrechts Bindele⁴

*Corresponding author

¹, ², ³ Department of Mathematics & Statistical Sciences, Faculty of Science, Botswana International University of Science & Technology, Palapye, Botswana. ⁴ Department of Mathematics & Statistics, University of South Alabama, USA.

Abstract

In this article, we develop and study in detail a new family of distributions called exponentiated half-logistic Odd Burr III-G (EHL-OBIII-G). Some of the mathematical and statistical properties for this new family of distributions such as the hazard function, quantile function, moments, probability weighted moments, Rényi entropy and stochastic orders are derived. The model parameters are estimated using the maximum likelihood estimation method. The usefulness of the proposed family of distributions is demonstrated via extensive simulation studies. Finally the proposed model and its special case is applied to real data sets to illustrate its best fit and flexibility. The model is compared to some of the existing non-nested models having equal number of parameters and from these results, the proposed model performed better than other fitted models.

Key Words: Half-logistic distribution; Odd Burr-III distribution; Family of distributions; Maximum likelihood Estimation.

Mathematical Subject Classification: 60E05, 62E15.

1. Introduction

Recently, many researchers have done more work in developing new families by adding extra shape parameters to achieve better fits and more flexibility in modelling practical data. Various families of distributions have been developed and used in the past to model data in different fields such as finance, economics, engineering, reliability analysis, environmental sciences and medical sciences. Some of the well-known families are the Marshall-Olkin-G by (20), the beta-G by (19), odd log-logistic-G by (3), the transmuted-G by (25), the gamma-G by (28), the Kumaraswamy-G by (14), the logistic-G by (27), exponentiated generalized-G by (15), T-X family by (4), the Weibull-G by (7), the exponentiated half-logistic generated family by (12) and the beta odd log-logistic generalized by (13) to mention just a few. (8) developed a system of cumulative distribution functions which have been widely extended by many researchers to generate more flexible and useful distributions. The Burr-XII models have many applications in different areas including acceptance sampling plans, reliability and failure time modeling. (1) developed a new flexible family of distributions called the Odd exponentiated half logistic-G (OEHL-G) family of distributions using the Half-Logistic
In this article, we develop a new family of distributions called exponentiated half-logistic Odd Burr III-G (EHL-OBIII-G) by extending the exponentiated half-logistic generated family by (12) using the Odd Burr III-G by (2). The motivation for developing this new family of distributions arises from its ability to model failure time data with increasing, decreasing, unimodal and bathtub shaped hazard rates. The proposed models represents a good alternative to most of the failure time distributions that lacks flexibility in modeling various forms of real life data problems.

The new family of distributions exhibits reverse-J, J, symmetric, left or right-skewed shapes for the probability density function. The hazard rate function of these new family of distributions is very flexible and has bathtub, upside bathtub, reverse-J, J, increasing and decreasing shapes. Furthermore, the proposed distribution has a desirable tractability property since the distribution can be expressed as an infinite linear combination of exponentiated-G distribution. Finally, the development of this new family of distributions is necessitated by the need to model various forms of lifetime data to include, economics, engineering, survival analysis and finance with models that takes into consideration not only shape and scale but also skewness, kurtosis and tail variation.

This paper is organized as follows: Section 2, develops the proposed model, present the quantile function, series expansion of the probability density function and some of the special cases. The mathematical properties for the EHL-OBIII-G family, namely; moments, probability weighted moments, Rényi entropy, stochastic orders and maximum likelihood estimates are presented under Section 3. We run and present Simulation results under Section 4. Section 5 gives results on model applications using real life datasets to show the efficacy of the fitted model. We finally give concluding remarks under Section 6.

2. Developing the EHL-OBIII-G Model

In this section, we develop the new model, derive its quantile function, present the series expansion of the density function and study some of its special cases.

2.1. The Model

Consider a family of distributions called the exponentiated half-logistic (EHL) family by (12) derived from the gamma-generator by (28). The cumulative distribution function (CDF) of the EHL-G family of distributions is given by

\[F(x; \alpha, \lambda, \xi) = \left\{ \frac{1 - [1 - G(x; \xi)]^\lambda}{1 + [1 - G(x; \xi)]^\lambda} \right\}^\alpha \]

(1)

and the corresponding probability distribution function (PDF) is given by

\[f(x; \alpha, \lambda, \xi) = 2\alpha \lambda g(x; \xi) \frac{[1 - G(x; \xi)]^{\alpha - 1}}{[1 + G(x; \xi)]^{\alpha + 1}} \]

(2)

where \(G(x; \xi) \) and \(g(x; \xi) \) is the CDF and PDF respectively for any baseline distribution, and \(\alpha, \lambda > 0 \) are additional shape parameters with \(\xi \) as the vector of parameters. (2) proposed a new family of distributions called the Odd Burr III-G (OBIII-G) family having the CDF and PDF given by

\[F(x; a, b, \psi) = \int_0^{G(x; \psi)} ab t^{-b-1}(1 + t^{-a})^{-b-1} dt = \left\{ 1 + \left(\frac{1 - G(x; \psi)}{G(x; \psi)} \right)^a \right\}^{-b} \]

(3)

and

\[f(x; a, b, \psi) = ab \frac{[1 - G(x; \psi)]^{a-1}}{G(x; \psi)^{a+1}} \left[1 + \left(\frac{1 - G(x; \psi)}{G(x; \psi)} \right)^a \right]^{-b-1} g(x; \psi) \]

(4)

respectively, for \(a, b > 0 \) and the parameter vector \(\psi \).
If we let equation (3) to be the baseline CDF in equation (1), then the CDF of the EHL-OBIII-G family of distributions can be written as

$$F(x; a, b, \alpha, \psi) = \left(\frac{1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b}{1 - \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-1}} \right)^{\alpha},$$

(5)

and the corresponding PDF is given by

$$f(x; a, b, \alpha, \psi) = 2\alpha ab \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-1} \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-(\alpha+1)}$$

$$\times \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \frac{g(x; \psi)}{(G(x; \psi))^2},$$

(6)

for a, b, \alpha, x > 0 and parameter vector \(\psi\). The hazard rate function (HRF) is given by

$$h(x; a, b, \alpha, \psi) = 2\alpha ab \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-1} \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-(\alpha+1)}$$

$$\times \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \frac{g(x; \psi)}{(G(x; \psi))^2}$$

$$\times \left(1 - \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-1} \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-1} \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-(\alpha+1)}$$

$$\times \left(1 - \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-1} \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-(\alpha+1)}$$

(7)

2.2. Quantile Function

The quantile function for the EHL-OBIII-G family of distributions is derived by inverting the following function

$$\left(\frac{1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b}{1 - \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} - b \right)^{-1}} \right)^{\alpha} = u,$$
for $0 < u < 1$. Note that
\[
\left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)}\right)^{-a}\right)^{-b} = \frac{2u^\frac{1}{\alpha}}{1 + u^\frac{1}{\alpha}},
\]
that is,
\[
\frac{G(x; \psi)}{G(x; \psi)} = \left(\frac{2u^\frac{1}{\alpha}}{1 + u^\frac{1}{\alpha}}\right)^{-\frac{1}{\alpha}} \left(\frac{1}{1} - 1\right)^{-\frac{1}{\alpha}}.
\]
(8)
The expression further simplifies to
\[
G(x; \psi) = \left(\left(\frac{2u^\frac{1}{\alpha}}{1 + u^\frac{1}{\alpha}}\right)^{-\frac{1}{\alpha}} - 1\right)^{-1} + 1
\]
and therefore, the quantile function is given by
\[
Q_{X(\alpha)}(u) = G^{-1}\left[\left(\left(\frac{2u^\frac{1}{\alpha}}{1 + u^\frac{1}{\alpha}}\right)^{-\frac{1}{\alpha}} - 1\right)^{-\frac{1}{\alpha}} + 1\right]^{-1},
\]
(9)
which can be solved using iterative methods.

2.3. Series Expansion of the Density Function

In this section, series expansion of the PDF is presented. The linear representation of the PDF allows for useful mathematical and statistical properties to be derived. Recall that the PDF of EHL-OBIII-G family of distributions is given by
\[
f(x; a, b, \alpha, \psi) = 2\alpha ab \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)}\right)^{-a}\right)^{-b} \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)}\right)^{-a}\right)^{-b-1} \left(\frac{G(x; \psi)}{G(x; \psi)}\right)^{-a-1}
\times \left(1 - \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)}\right)^{-a}\right)^{-b}\right)^{-(\alpha+1)} \left(\frac{g(x; \psi)}{(G(x; \psi))^2}\right).
\]
and using the expansion

\[
\left(1 + \left[1 - \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-b} \right] \right)^{-\alpha - 1} = \sum_{p=0}^{\infty} (-1)^p \frac{\Gamma(\alpha + 1 + p)}{\Gamma(\alpha + 1)p!} \left(1 - \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-b} \right)^p
\]

\[
\times \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-bq}
\]

\[
= \sum_{p,q=0}^{\infty} (-1)^{p+q} \frac{\Gamma(\alpha + 1 + p)}{\Gamma(\alpha + 1)p!} \frac{p}{q} \frac{g(x; \psi)}{G(x; \psi)^{q+1}}.
\]

we can write the EHL-OIII-G PDF as

\[
f(x; a, b, \alpha, \psi) = 2\alpha ab \sum_{p,q=0}^{\infty} (-1)^{p+q} \frac{\Gamma(\alpha + 1 + p)}{\Gamma(\alpha + 1)p!} \frac{p}{q} \frac{g(x; \psi)}{G(x; \psi)^{q+1}}.
\]

Furthermore, by applying the expansion

\[
\left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-bq} = \sum_{l=0}^{\infty} \left(-bq - 1 \right) \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-al},
\]

we get

\[
f(x; a, b, \alpha, \psi) = 2\alpha ab \sum_{p,q,l=0}^{\infty} (-1)^{p+q} \frac{\Gamma(\alpha + 1 + p)}{\Gamma(\alpha + 1)p!} \frac{p}{q} \frac{g(x; \psi)}{G(x; \psi)^{q+1}} \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-al}.
\]

Using the expansion

\[
\left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a(l+1)-1} = \left(1 - \frac{G(x; \psi)}{G(x; \psi)} \right)^{-a(l+1)-1} = \sum_{j=0}^{\infty} \left(-a(l+1) - 1 \right) (-1)^j \frac{G'(x; \psi)}{G(x; \psi)},
\]

we get

\[
f(x; a, b, \alpha, \psi) = 2\alpha ab \sum_{p,q,l=0}^{\infty} (-1)^{p+q} \frac{\Gamma(\alpha + 1 + p)}{\Gamma(\alpha + 1)p!} \frac{p}{q} \frac{g(x; \psi)}{G(x; \psi)^{q+1}} \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-al} \cdot \left(1 - \frac{G(x; \psi)}{G(x; \psi)} \right)^{-a(l+1)-1}.
\]
we have

\[
 f(x; a, b, \alpha, \psi) = 2\alpha ab \sum_{p, q, l, j=0}^{\infty} (-1)^{p+q+j} \frac{\Gamma(\alpha + 1 + p)}{\Gamma(\alpha + 1) p!} \frac{\Gamma(\alpha + 1 + q)}{\Gamma(\alpha + 1) q!} \frac{(-b(q + \alpha) - 1)}{l} \\
 \times \left(-a(l + 1) - 1 \right) \frac{g(x; \psi)}{G(x; \psi)} \left(C(x; \psi) \right)^{a(l+1)-1+j} \\
 = 2\alpha ab \sum_{p, q, l, j, k=0}^{\infty} (-1)^{p+q+j+k} \frac{\Gamma(\alpha + 1 + p)}{\Gamma(\alpha + 1) p!} \frac{\Gamma(\alpha + 1 + q)}{\Gamma(\alpha + 1) q!} \frac{(-b(q + \alpha) - 1)}{l} \\
 \times \left(-a(l + 1) - 1 \right) \frac{g(x; \psi)}{G(x; \psi)} \left(G(x; \psi) \right)^{k} \\
 \times \left(-a(l + 1) - 1 \right) \frac{g(x; \psi)}{G(x; \psi)} \left(G(x; \psi) \right)^{k} \\
 = \sum_{k=0}^{\infty} w_k g_k(x; \psi), \tag{10}
\]

where \(g_k(x; \psi) = (k + 1) \left(G(x; \psi) \right)^k \) \(g(x; \psi) \) is the exponentiated-G (Exp-G) distribution with power parameter \(k \)

and

\[
 w_k = \sum_{p, q, l, j=0}^{\infty} (-1)^{p+q+j+k} \frac{\Gamma(\alpha + 1 + p)}{\Gamma(\alpha + 1) p!} \frac{\Gamma(\alpha + 1 + q)}{\Gamma(\alpha + 1) q!} \frac{(-b(q + \alpha) - 1)}{l} \\
 \times \left(-a(l + 1) - 1 \right) \frac{g(x; \psi)}{G(x; \psi)} \left(G(x; \psi) \right)^{k} \\
 \times \left(-a(l + 1) - 1 \right) \frac{g(x; \psi)}{G(x; \psi)} \left(G(x; \psi) \right)^{k} \\
 = \sum_{k=0}^{\infty} w_k g(x; \psi), \tag{11}
\]

2.4. Some Special Cases

We considered some special cases by changing the baseline distribution function \(G(x; \psi) \) to flexible distributions. The parameter vector space is limited to atmost 2 component vector to avoid over parametrization and redundancy.

2.4.1. EHL-OBIII-Log-Logistic (EHL-OBIII-LLoG) distribution

Consider the log-logistic distribution as the baseline distribution with parameter \(\lambda > 0 \) having CDF and PDF \(G(x; \lambda) = 1 - (1 + x\lambda)^{-1} \) and \(g(x; \lambda) = \lambda x^{-1}(1 + x\lambda)^{-2} \), respectively. The CDF, PDF and HRF of EHL-OBIII-LLoG distribution are given by

\[
 F(x; a, b, \alpha, \lambda) = \left(\frac{\left(1 + \frac{1-(1+x\lambda)^{-1}a^{-1}}{1+x\lambda} \right)^{-b}}{1 + \left(1 + \frac{1-(1+x\lambda)^{-1}a^{-1}}{1+x\lambda} \right)^{-b}} \right)^{\alpha}, \tag{12}
\]
\[
f(x) = 2\alpha ab \left(\left(1 + \frac{1 - (1 + x^{\lambda})^{-1}}{(1 + x^{\lambda})^{-1}} \right)^{-a} \right)^{-b-1} \left(1 + \frac{1 - (1 + x^{\lambda})^{-1}}{(1 + x^{\lambda})^{-1}} \right)^{-b-1} \\
\times \left(1 + \left[1 - \left(1 + \frac{1 - (1 + x^{\lambda})^{-1}}{(1 + x^{\lambda})^{-1}} \right)^{-b} \right]^{-\alpha+1} \right) \left(1 - \left(1 + \frac{1 - (1 + x^{\lambda})^{-1}}{(1 + x^{\lambda})^{-1}} \right)^{-a} \right)^{-a-1} \\
\times \frac{\lambda x^{\lambda-1}(1 + x^{\lambda})^{-2}}{((1 + x^{\lambda})^{-1})^2},
\]

(13)

and

\[
h(x) = 2\alpha ab \left(\left(1 + \frac{1 - (1 + x^{\lambda})^{-1}}{(1 + x^{\lambda})^{-1}} \right)^{-a} \right)^{-b-1} \left(1 + \frac{1 - (1 + x^{\lambda})^{-1}}{(1 + x^{\lambda})^{-1}} \right)^{-b-1} \\
\times \left(1 + \left[1 - \left(1 + \frac{1 - (1 + x^{\lambda})^{-1}}{(1 + x^{\lambda})^{-1}} \right)^{-b} \right]^{-\alpha+1} \right) \left(1 - \left(1 + \frac{1 - (1 + x^{\lambda})^{-1}}{(1 + x^{\lambda})^{-1}} \right)^{-a} \right)^{-a-1} \\
\times \frac{\lambda x^{\lambda-1}(1 + x^{\lambda})^{-2}}{((1 + x^{\lambda})^{-1})^2} \left(1 - \left(1 + \frac{1 - (1 + x^{\lambda})^{-1}}{(1 + x^{\lambda})^{-1}} \right)^{-b} \right)^{\alpha-1},
\]

respectively, for \(a, b, \alpha, \lambda > 0 \).

Figure 1 illustrates the flexible nature of the EHL-OBIII-LLoG distribution for selected parameter values. The PDFs of the EHL-OBIII-LLoG distribution can adopt various shapes that include reverse-J, uni-modal, left or right skewed shapes. In addition, the EHL-OBIII-LLoG distribution exhibit decreasing, increasing, bathtub, upside down bathtub and bathtub followed by upside down bathtub shapes.
2.4.2. EHL-OBIII-Exponential (EHL-OBIII-E) distribution

Let the exponential distribution be the baseline distribution with PDF and CDF given by $g(x; \lambda) = \lambda e^{-\lambda x}$ and $G(x; \lambda) = 1 - e^{-\lambda x}$, respectively, for $\lambda > 0$, then the CDF, PDF and HRF of the EHL-OBIII-E distribution are given by

\[
F(x; a, b, \alpha, \lambda) = \left(\frac{1 + \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a} - b}{1 + \left[1 + \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a} - b \right]} \right)^\alpha,
\]

\[f(x) = 2\alpha ab \left(1 + \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a} - b \right)^{\alpha-1} \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a-1} \times \left(1 + \left[1 - \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a} - b \right] \right)^{-(\alpha+1)} \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-(a+1)} \times \frac{\lambda e^{-\lambda x}}{(e^{-\lambda x})^2},\]

and

\[h(x) = 2\alpha ab \left(1 + \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a} - b \right)^{\alpha-1} \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a-1} \times \left(1 + \left[1 - \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a} - b \right] \right)^{-(\alpha+1)} \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-(a+1)} \times \frac{\lambda e^{-\lambda x}}{(e^{-\lambda x})^2} \times \left(1 - \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a} - b \right)^{-1} \times \left(1 + \left[1 - \left(\frac{1 - e^{-\lambda x}}{e^{-\lambda x}} \right)^{-a} - b \right] \right)^{-1},\]

respectively, for $a, b, \alpha, \lambda > 0$.
Figure 2 demonstrate the efficacy of the EHL-OBIII-E distribution for selected parameter values. The PDFs of the EHL-OBIII-E distribution takes various shapes that include reverse-J, uni-modal, left or right skewed shapes. Furthermore, the EHL-OBIII-E distribution gives decreasing, increasing and bathtub followed by upside down bathtub shapes.

2.4.3. EHL-OBIII-Lomax (EHL-OBIII-Lx) distribution

Suppose that we take the baseline distribution to be a Lomax distribution with CDF and PDF given by

\[G(x; \gamma, \lambda) = 1 - \left(\frac{1 + \lambda x}{1 + \lambda x - \gamma}\right)^{-\gamma} \]

and

\[g(x; \gamma, \lambda) = \gamma \lambda \left(\frac{1 + \lambda x}{1 + \lambda x - \gamma}\right)^{-\gamma - 1}, \]

for \(\gamma, \lambda > 0 \), and \(x > 0 \), then we obtain the EHL-OBIII-Lx distribution with CDF, PDF and HRF given by

\[
F(x; a, b, \alpha, \gamma, \lambda) = \left(1 + \left(1 + \frac{1 + \lambda x - \gamma}{(1 + \lambda x)^{-\gamma}}\right)^{-a} - b\right)^{-\alpha},
\]

for \(a, b > 0, \alpha > 0, \gamma > 0, \lambda > 0 \) (16)

and

\[
f(x) = 2\alpha ab \left(1 + \left(1 + \frac{1 + \lambda x - \gamma}{(1 + \lambda x)^{-\gamma}}\right)^{-a} - b\right)^{-\alpha - 1} \left(1 + \left(1 + \frac{1 + \lambda x - \gamma}{(1 + \lambda x)^{-\gamma}}\right)^{-a} - b\right)^{-b - 1} \times \left(1 + \left(1 + \frac{1 + \lambda x - \gamma}{(1 + \lambda x)^{-\gamma}}\right)^{-a} - b\right)^{-1 - (\alpha + 1)} \left(1 + \frac{1 + \lambda x - \gamma}{(1 + \lambda x)^{-\gamma}}\right)^{-a - 1} \times \frac{\gamma \lambda (1 + \lambda x)^{-\gamma - 1}}{((1 + \lambda x)^{-\gamma})^2}
\]

(17)
\[h(x) = 2\alpha ab \left(1 + \left(\frac{1 - (1 + \lambda x)^{-\gamma}}{(1 + \lambda x)^{-\gamma}} \right)^{-a} \right)^{-b-1} \]

\[\times \left(1 + \left(\frac{1}{\left(1 + \left(\frac{1 - (1 + \lambda x)^{-\gamma}}{(1 + \lambda x)^{-\gamma}} \right)^{-a} \right)^{-b}} \right)^{-\alpha(a+1)} \right) \]

\[\times \left(\frac{\gamma \lambda (1 + \lambda x)^{-\gamma-1}}{(1 + \lambda x)^{-\gamma}} \right)^{-1} \left(1 - \left(\frac{1}{\left(1 + \left(\frac{1 - (1 + \lambda x)^{-\gamma}}{(1 + \lambda x)^{-\gamma}} \right)^{-a} \right)^{-b}} \right)^{\alpha} \right), \]

respectively, for \(a, b, \alpha, \gamma, \lambda > 0 \).

From Figure 3, we note that the EHL-OBIII-Lx distribution can adopt various flexible shapes and these include reverse-J, uni-modal, left or right skewed shapes. It can also be noted that the HRF of the EHL-OBIII-Lx distribution gives decreasing, increasing, bathtub, upside down bathtub and bathtub followed by upside down bathtub shapes.

2.5. EHL-OBIII-Lindley (EHL-OBIII-L) distribution

If we let Lindley distribution be the baseline distribution with PDF and CDF given by
\[g(x; \lambda) = \frac{\lambda^2}{(1+\lambda)} (1+x) e^{-\lambda x} \]
and
\[G(x; \lambda) = 1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}, \]
respectively, for \(\lambda > 0 \), then the CDF, PDF and HRF of the EHL-OBIII-L distribution are given by

\[F(x; a, b, \alpha, \lambda) = \left(\frac{1}{1 + \frac{\lambda x}{1+\lambda}} e^{-\lambda x} \right)^{-a-b} \left(\frac{\lambda^2}{(1+\lambda)} (1+x) e^{-\lambda x} \right)^{-a-b} \]

\[\times \left(1 + \left(\frac{1 - (1 + \lambda x)^{-\gamma}}{(1 + \lambda x)^{-\gamma}} \right)^{-a} \right)^{-b-1} \left(1 + \left(\frac{1 - (1 + \lambda x)^{-\gamma}}{(1 + \lambda x)^{-\gamma}} \right)^{-a} \right)^{-\alpha(a+1)} \]

\[\times \left(\frac{\gamma \lambda (1 + \lambda x)^{-\gamma-1}}{(1 + \lambda x)^{-\gamma}} \right)^{-1} \left(1 - \left(\frac{1}{\left(1 + \left(\frac{1 - (1 + \lambda x)^{-\gamma}}{(1 + \lambda x)^{-\gamma}} \right)^{-a} \right)^{-b}} \right)^{\alpha} \right), \]

respectively.
\[
f(x; a, b, \alpha, \lambda) = 2\alpha ab \left(\frac{1}{1 + \frac{\lambda x}{1+\lambda}} e^{-\lambda x} \right)^{-a} \left(1 + \left(\frac{1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}}{(1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}} \right) \right)^{\alpha-1} \left(1 + \left(\frac{1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}}{(1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}} \right) \right)^{-b-1} \]
\[
\times \left(\frac{1}{1 + \frac{\lambda x}{1+\lambda}} e^{-\lambda x} \right)^{-a-1} \left(\frac{1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}}{(1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}} \right)^{-b} \left(1 + \left(\frac{1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}}{(1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}} \right) \right)^{-(\alpha+1)} \]
\[
\times \left(\frac{1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}}{(1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}} \right)^{-a-1} \frac{\lambda^2}{(1+\lambda x^2)} \left(1 + x e^{-\lambda x} \right) \left(1 + \frac{\lambda x}{1+\lambda} \right) \frac{e^{-\lambda x}}{e^{-\lambda x}} \left((1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x} \right)^{-2} \]
\[
\times \left(1 - \left(\frac{1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}}{(1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}} \right) \right)^{-b} \left(1 + \left(\frac{1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}}{(1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}} \right) \right)^{\alpha-1} \left(1 + \left(\frac{1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}}{(1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}} \right) \right)^{-b} \left(1 + \left(\frac{1 - (1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}}{(1 + \frac{\lambda x}{1+\lambda}) e^{-\lambda x}} \right) \right)^{-(\alpha+1)} \}
\]

respectively, for \(a, b, \beta, \lambda > 0 \).

Figure 4: Density and HRF plots for EHL-OBIII-L distribution
Figure 4 reveals the flexibility of the EHL-OBIII-L distribution. The PDFs of the EHL-OBIII-L distribution can flexibly take different shapes that include reverse-J, uni-modal, left or right skewed shapes. Additionally, the EHL-OBIII-L distribution HRF plots also give decreasing, increasing, bathtub and upside down bathtub shapes and decreasing-increasing-decreasing shapes.

3. Some Mathematical Properties

In this section, we derive some useful mathematical and statistical properties for the EHL-OBIII-G family of distributions such as moments, conditional moments, Lorenz and Bonferroni curves, probability weighted moments, Rényi entropy and maximum likelihood estimates.

3.1. Moments

Let $Y_k \sim \text{Exp-G}(k)$, then using equation (10) the s^{th} raw moment, μ'_s of the EHL-OBIII-G family of distributions is obtained as

$$
\mu'_s = E(X^s) = \int_{-\infty}^{\infty} x^s f(x) \, dx = \sum_{k=0}^{\infty} w_k E(Y_k^s),
$$

where w_k is given by equation (11). We present the first five moments for the EHL-OBIII-E distribution and the corresponding standard deviation (SD), coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) from selected values. These results are given under Table 2. The quantile values are also presented under Table 1.

Table 1: Quantiles for EHL-OBIII-E Distribution for selected parameter values

u	(0.8,5,6,1,0.4)	(1.3,8,3,6,4,0.6)	(1.1,9,5,8,0.8)	(1.6,9,1,6,0.3)	(1.2,8,2,6,2,0.6)	(1.1,8,9,5,7,0.2)
0.1	3.0531	2.0120	1.7548	3.7952	2.1975	7.8777
0.2	2.3981	1.6071	1.3186	3.0811	1.6747	5.3712
0.3	2.1813	1.4615	1.1694	2.8329	1.5039	4.7265
0.4	2.0543	1.3753	1.0823	2.6859	1.4046	4.3598
0.5	1.9664	1.3154	1.0224	2.5836	1.3362	4.1103
0.6	1.9001	1.2702	0.9775	2.5062	1.2847	3.9244
0.7	1.8474	1.2341	0.9419	2.4444	1.2440	3.7779
0.8	1.8040	1.2043	0.9128	2.3933	1.2104	3.6580
0.9	1.7672	1.1791	0.8882	2.3499	1.1821	3.5572

Table 2: Moments for EHL-OBIII-E Distribution for selected parameter values

(a,b,α,λ)	(0.8,1,4,0.6,1,5)	(0.3,1,7,1,1,1.8)	(0.8,2,2,0,7,2.4)	(0.4,2,3,0,7,1.7)	(0.5,1,5,0,7,0.9)
$E(X)$	0.2298	0.0843	0.3063	0.1210	0.1169
$E(X^2)$	0.1378	0.0525	0.1930	0.0746	0.0692
$E(X^3)$	0.0980	0.0384	0.1395	0.0543	0.0493
$E(X^4)$	0.0759	0.0304	0.1088	0.0427	0.0383
$E(X^5)$	0.0619	0.0252	0.0889	0.0352	0.0313
SD	0.2916	0.2131	0.3149	0.2449	0.2356
CV	1.2691	2.5277	1.0280	2.0239	2.0157
CS	1.1002	2.7252	0.6298	2.0916	2.1548
CK	2.9224	9.4740	2.0402	6.2188	6.6049
3.2. Probability Weighted Moments (PWMs)

The \((i, \eta)^{th} \) Probability Weighted Moment (PWM) of \(X \) denoted by \(\kappa_{i,\eta} \) is

\[
\kappa_{i,\eta} = E(X^i (F(X))^\eta) = \int_{-\infty}^{\infty} x^i (F(x))^\eta f(x) \, dx.
\]

Using equations (5) and (6), we can write

\[
f(x)(F(x))^\eta = 2\alpha \eta \left(1 + \frac{G(x; \psi)}{\overline{G}(x; \psi)}\right)^{-a} \left(1 + \frac{G(x; \psi)}{\overline{G}(x; \psi)}\right)^{-b-1} \times \left(1 + \left[1 - \left(1 + \frac{G(x; \psi)}{\overline{G}(x; \psi)}\right)^{-a} \right]^{-b}\right)^{-\alpha(\eta+1)+1} \times \frac{g(x; \psi)}{(\overline{G}(x; \psi))^2}.
\]

Using the series expansion

\[
\left(1 + \left[1 - \left(1 + \frac{G(x; \psi)}{\overline{G}(x; \psi)}\right)^{-a} \right]^{-b}\right)^{-\alpha(\eta+1)+1} = \sum_{p=0}^{\infty} (-1)^p \frac{\Gamma(\alpha(\eta+1)+1+p)}{\Gamma(\alpha(\eta+1)+1)p!} \left[1 - \left(1 + \frac{G(x; \psi)}{\overline{G}(x; \psi)}\right)^{-a} \right]^{-b}\right]^p
\]

we can write

\[
f(x)(F(x))^\eta = 2\alpha \eta \sum_{p,q=0}^{\infty} (-1)^{p+q} \frac{\Gamma(\alpha(\eta+1)+1+p)}{\Gamma(\alpha(\eta+1)+1)p!} \binom{p}{q} \left(1 + \frac{G(x; \psi)}{\overline{G}(x; \psi)}\right)^{-a} \left(1 + \frac{G(x; \psi)}{\overline{G}(x; \psi)}\right)^{-b(q+(\alpha(\eta+1)))+1} \times \frac{g(x; \psi)}{(\overline{G}(x; \psi))^2}.
\]

Furthermore, applying the series expansion

\[
\left(1 + \frac{G(x; \psi)}{\overline{G}(x; \psi)}\right)^{-b(q+(\alpha(\eta+1)))+1} = \sum_{l=0}^{\infty} \frac{(-b(q+(\alpha(\eta+1))))-1}{l!} \left(\frac{G(x; \psi)}{\overline{G}(x; \psi)}\right)^{-al}.
\]
we get
\[
\begin{align*}
f(x)(F(x))^n &= 2\alpha ab \sum_{p,q,l=0}^{\infty} (-1)^{p+q} \frac{\Gamma(\alpha(\eta + 1) + 1 + p)}{\Gamma(\alpha(\eta + 1) + 1)p!} \left(\frac{p}{q} \right) \left(-b(q + (\alpha(\eta + 1))) - 1 \right) \\
&\times \left(G(x; \psi) \right)^{-a(l+1)-1} \frac{g(x; \psi)}{(G(x; \psi))^{-a(l+1)+1}}.
\end{align*}
\]

Using the expansion
\[
(G(x; \psi))^{-a(l+1)-1} = (1 - G(x; \psi))^{-a(l+1)-1} = \sum_{j=0}^{\infty} \left(-a(l+1)-1 \right) \left(-1 \right)^j G^j(x; \psi),
\]
we have
\[
\begin{align*}
f(x)(F(x))^n &= 2\alpha ab \sum_{p,q,l,j=0}^{\infty} (-1)^{p+q+j} \frac{\Gamma(\alpha(\eta + 1) + 1 + p)}{\Gamma(\alpha(\eta + 1) + 1)p!} \left(\frac{p}{q} \right) \left(-b(q + (\alpha(\eta + 1))) - 1 \right) \\
&\times \left(-a(l+1)-1 \right) \left(a(l+1)-1+j \right) g(x; \psi) (G(x; \psi))^k \\
&= \sum_{w=0}^{\infty} w^*g_k(x; \psi),
\end{align*}
\]
where \(g_k(x; \psi) = (k+1) (G(x; \psi))^k g(x; \psi) \) is the exponentiated-G (Exp-G) distribution with power parameter \(k \) and
\[
w^*_k = \sum_{p,q,l,j=0}^{\infty} (-1)^{p+q+j+k} \frac{\Gamma(\alpha(\eta + 1) + 1 + p)}{\Gamma(\alpha(\eta + 1) + 1)p!} \left(\frac{p}{q} \right) \left(-b(q + (\alpha(\eta + 1))) - 1 \right) \\
&\times \left(-a(l+1)-1 \right) \left(a(l+1)-1+j \right) \frac{2\alpha ab}{k+1}.
\]

Finally, the PWMs of the EHL-OBIII-G family of distributions can be written as
\[
k_{i,\eta} = \int_0^\infty x^i \sum_{k=0}^{\infty} w^*_k g_k(x; \psi) dx \sum_{k=0}^{\infty} w^*_k \int_{-\infty}^{\infty} x^i g_k(x; \psi) dx,
\]
which shows that the \((i, \eta)^{th}\) PWMs of EHL-OBIII-G family of distributions can be obtained from the moments of the E-G distribution.

3.2.1. Rényi Entropy

The Rényi entropy ((22)), is an extension of Shannon Entropy ((24)) and is defined as
\[
I_R(v) = \frac{1}{1-v} \log \left(\int_0^\infty [f(x; a, b, \alpha, \psi)]^v dx \right), \quad v \neq 1, v > 0.
\]
Note that as \(v \to 1 \), the Rényi entropy tends to Shannon entropy and \(I_R(v) \) for the EHL-OBIII-G distribution can be written as

\[
I_R(v) = \frac{1}{1-v} \log \left(\int_0^\infty \left(2^{\alpha ab} \left(\frac{G(x; \psi)}{G(x; \psi)} - a \right)^{v-1} \right) \left(\frac{G(x; \psi)}{G(x; \psi)} - a \right)^{v-a-1} dx \right).
\]

Using the generalized binomial series expansion

\[
\left(1 + \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} - a \right)^{-b} \right) \right)^{-v(\alpha+1)} = \sum_{p=0}^{\infty} (-1)^p \frac{\Gamma(v(\alpha+1)+p)}{\Gamma(v(\alpha+1))p!} x^p \]

\[
\times \left[1 - \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} - a \right)^{-b} \right) \right]_p
\]

\[
= \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} (-1)^{p+q} \frac{\Gamma(v(\alpha+1)+p)}{\Gamma(v(\alpha+1)p!q!} \left(\frac{p}{q} \right)
\]

\[
\times \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} - a \right)^{-bq} \right)
\]

we can write

\[
f^v(x; a, b, \alpha, \psi) = (2^{\alpha ab})^v \sum_{p=0}^{\infty} (-1)^{p+q} \frac{\Gamma(v(\alpha+1)+p)}{\Gamma(v(\alpha+1)p!} \left(\frac{p}{q} \right)
\]

\[
\times \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} - a \right)^{-bq+(v(\alpha-v))} \right)
\]

\[
= \sum_{l=0}^{\infty} (-b(q + v + (\alpha - v)) - 1) \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-al}
\]

Furthermore, applying the expansion

\[
\left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} - a \right)^{-bq+(v(\alpha-v))} \right)
\]

we get

\[
f^v(x; a, b, \alpha, \psi) = (2^{\alpha ab})^v \sum_{p=0}^{\infty} (-1)^{p+q} \frac{\Gamma(v(\alpha+1)+p)}{\Gamma(v(\alpha+1)p!} \left(\frac{p}{q} \right)
\]

\[
\times \left(G(x; \psi) \right)^{-a(l+1)-v} \frac{g(x; \psi)}{(G(x; \psi))^{-a(l+1)+v}}.
\]
Using the generalized binomial series expansion

\[(G(x; \psi))^{-a(l+v) - v} = (1 - G(x; \psi))^{-a(l+v) - v} = \sum_{j=0}^{\infty} \frac{(-a(l + v) - v)}{j} (-1)^j G'(x; \psi),\]

we have

\[f^v(x; a, b, \alpha, \psi) = (2\alpha ab)^v \sum_{p,q,j,k=0}^{\infty} (-1)^{p+q+j+k} \frac{\Gamma(v(\alpha + 1) + p)}{\Gamma(v(\alpha + 1)) p!} \left(\frac{p}{q} \right)^l \left(-b(q + v + (\nu - v) - 1) \right) \times \left(a(l + v) - v + j \right) \left(\frac{a(l + v) - v}{j} \right) \frac{1}{[1 + \frac{k}{v}]} \int_0^\infty \left[\frac{1}{[1 + \frac{k}{v}]} G(x; \psi) \frac{1}{k} g(x; \psi) dx \right]^v .\]

Finally, we can write the Rényi entropy for the EHL-OBIII-G family of distributions as

\[I_R(v) = \frac{1}{1 - v} \log \left(\frac{2\alpha ab)^v}{\sum_{k=0}^{\infty} w_k^v \exp((1 - v)I_{REG})} \right),\]

for \(v > 0, v \neq 1\), where \(I_{REG} = \frac{1}{v} \log \left[\int_0^\infty \left[\frac{k}{v} + 1 \right] (G(x; \psi)) \frac{k}{v} g(x; \psi) dx \right]^v \) is the Rényi entropy of Exp-G distribution with power parameter \(\left(\frac{k}{v} + 1 \right)\), and

\[w_k^v = \frac{1}{1 - v} \log \left(\frac{(2\alpha ab)^v}{\sum_{p,q,j,k=0}^{\infty} (-1)^{p+q+j+k} \frac{\Gamma(v(\alpha + 1) + p)}{\Gamma(v(\alpha + 1)) p!} \left(\frac{p}{q} \right)^l \left(-b(q + v + (\nu - v) - 1) \right) \times \left(a(l + v) - v + j \right) \left(\frac{a(l + v) - v}{j} \right) \frac{1}{[1 + \frac{k}{v}]} \right).\]

3.3. Stochastic Ordering

The stochastic ordering for random variables is a common and widely used concept. The usual stochastic order, the hazard rate order and the likelihood ratio order are the commonly known orders of distribution functions. These three orders are defined as below.

Let \(X\) and \(Y\) be the two random variables with the CDFs \(F_x(t)\) and \(F_y(t)\), respectively, and \(\overline{F}_x(t) = 1 - F_x(t)\) is the reliability or survival function. The random variable \(X\) is said to be stochastically smaller than the random variable \(Y\) if \(\overline{F}_x(t) \leq \overline{F}_y(t)\) for all \(t\) or \(F_x(t) \geq F_y(t)\) for all \(t\). This is denoted by \(X <_{st} Y\). The hazard rate order and likelihood ratio order are stronger and are given by \(X <_{hr} Y\) if \(h_x(t) \geq h_y(t)\) for all \(t\), and \(X <_{lr} Y\) if \(\frac{f_x(t)}{\overline{F}_x(t)}\) is decreasing in \(t\). It is well established that \(X <_{hr} Y \implies X <_{lr} Y \implies X <_{st} Y\), (see (23) for additional details).

In this section, the likelihood ratio ordering is presented as follows. If we let \(X_1\) and \(X_2\) be the two independent
random variables following \(EHL - OBIII - G(a, b, \alpha_1, \phi) \) and \(EHL - OBIII - G(a, b, \alpha_2, \phi) \) distributions, then the PDFs are given by

\[
f_1(x) = 2\alpha_1 a b \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{\alpha_1-1} \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-b-1} \\
\times \left(1 + \left[1 - \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-b} \right] \right)^{-(\alpha_1+1)} \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a-1} \left(\frac{g(x; \psi)}{(G(x; \psi))^2} \right)
\]

and

\[
f_2(x) = 2\alpha_2 a b \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{\alpha_2-1} \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-b-1} \\
\times \left(1 + \left[1 - \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-b} \right] \right)^{-(\alpha_2+1)} \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a-1} \left(\frac{g(x; \psi)}{(G(x; \psi))^2} \right).
\]

The ratio, \(\frac{f_1(x)}{f_2(x)} \) takes the form

\[
\frac{f_1(x)}{f_2(x)} = \frac{\alpha_1}{\alpha_2} z^{\alpha_1-\alpha_2} \left(1 + [1 - z] \right)^{-(\alpha_1-\alpha_2+2)},
\]

where

\[
z = \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-b}.
\]

If we differentiate equation (24) with respect to \(x \), we get

\[
d \left(\frac{f_1(x)}{f_2(x)} \right) = \frac{\alpha_1}{\alpha_2} (\alpha_1 - \alpha_2) z^{\alpha_1-\alpha_2} (1 + [1 - z])^{-(\alpha_1-\alpha_2+2)} \left[\frac{1}{z} + (1 + 2(\alpha_1 - \alpha_2)) \right],
\]

where \(z' = ab \left(1 + \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a} \right)^{-b-1} \left(\frac{G(x; \psi)}{G(x; \psi)} \right)^{-a-1} \left(\frac{g(x; \psi)}{(G(x; \psi))^2} \right) \), and finally if \(\alpha_2 < \alpha_1 \), then \(\frac{d}{dx} \left(\frac{f_1(x)}{f_2(x)} \right) < 0 \), and therefore, the likelihood ratio order \(X_1 <_{tr} X_2 \) exists. Consequently, \(X_1 <_{st} X_2 \), since \(X_1 <_{tr} X_2 \implies X_1 <_{hr} X_2 \iff X_1 <_{st} X_2 \), where \(X_1 <_{hr} X_2 \) and \(X_1 <_{st} X_2 \) denote hazard rate order and stochastic order, respectively.

3.4. Maximum Likelihood Estimation

In this section, the method of maximum likelihood estimation (MLE) is used to estimate the model parameters. Let \(X \sim EHL - OBIII - G(a, b, \alpha, \psi) \) and \(\Delta = (a, b, \alpha, \psi)^T \) be the vector of model parameters. The log-likelihood function \(\ell_n = \ell_n(\Delta) \) based on a random sample of size \(n \) from the EHL-OBIII-G family of distributions is given by
\[\ell_n(\Delta) = n \ln (2\alpha b) + (\alpha - 1) \sum_{i=1}^{n} \ln \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right)^{-b} \sum_{i=1}^{n} \ln \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right)^{-b} + \sum_{i=1}^{n} \ln \left(g(x_i; \psi) \right) - 2 \sum_{i=1}^{n} \ln \left(G(x_i; \psi) \right).\]

The elements of the score vector are given in the Appendix A. Note that these system of non-linear equations have no closed form. To obtain the estimates of model parameters denoted by \(\Delta\), the Newton-Raphson procedure is used to solve the system of non-linear equations \((\frac{\partial \ell_n}{\partial a}, \frac{\partial \ell_n}{\partial b}, \frac{\partial \ell_n}{\partial \alpha}, \frac{\partial \ell_n}{\partial \beta})^T = 0\). The multivariate normal distribution \(N_{q+3}(0, J(\Delta)^{-1})\), where the mean vector \(0 = (0, 0, 0, 0)^T\) and \(J(\Delta)^{-1}\) is the observed Fisher information matrix evaluated at \(\Delta\), which is critical in approximating confidence intervals for model parameters.

4. Monte Carlo Simulations

In order to evaluate consistency of the MLEs, simulation experiments were conducted using the EHL-OBIII-E distribution. The MLEs are computed for each sample by generation \(N=1000\) random samples of size \(n\) obtaining average bias and Root Mean Square Error (RMSE) from each sample. The results are presented under Table 3. We note that as the sample size \(n\) increases the values of average bias and RMSE decreases which satisfies convergence properties of consistent and unbiased estimators.

Table 3: Simulation Results for EHL-OBIII-E Distribution; Mean, Average Bias and RMSE

Parameter	Sample Size	\(a\)	\(b\)	\(\alpha\)	\(\beta\)
\(\ell_n(\Delta)\)	50	4.3848	0.5194	1.4738	1.5738
\(\ell_{n+1}(\Delta)\)	100	5.2985	0.3322	3.4377	0.3377
\(\ell_{n+2}(\Delta)\)	200	3.6489	0.2997	5.1527	0.5527
\(\ell_{n+3}(\Delta)\)	400	3.4375	0.2510	2.9376	0.3376
\(\ell_{n+4}(\Delta)\)	800	2.3385	0.2250	2.8365	0.2365
\(\ell_{n+5}(\Delta)\)	1200	1.6028	0.1488	2.6838	0.0838
\(\ell_{n+6}(\Delta)\)	1800	1.4204	0.1325	2.6184	0.0184

5. Applications

We present applications based on the two real-life data sets to evaluate the efficacy of the proposed model and measure its performance in comparison to other non-nested models. The first data set is reported by (6) and relates to the survival times (in years) of a group of patients given chemotherapy treatment alone. The data consists of survival times...
times (in years) for 46 patients and is as follows; 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033. The second data set is a real life example presented by (11) also reported by (21), and consists of 101 data points representing the stress-fatigue life of kevlar 49/epoxy strands that are subjected to constant sustained pressure at the 90% stress level. The data set is as follows; 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.04, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

The EHL-OBIII-E distribution is compared to other known non-nested models namely, the Kumaraswamy Odd Lindley-logistic (KOLLLoG) distribution by (10), Weibull-Lomax (WLx) distribution by (26), the Beta Generalized Exponential (BGE) distribution by (5), the Exponentiated Modified Weibull (EMW) distribution by (18), the Kumaraswamy Weibull (KW) distribution by (16) and Generalized Weibull Log-Logistic (GWLLoG) distribution by (17). To evaluate and measure the model performances, we used the goodness-of-fit statistics namely, -2 log-likelihood function at its maximum, Akaike Information Criterion (AIC) and Consistent Akaike Information Criterion (AICC = AIC + 2(p+1)/(n-p-1)), where L is the value of the likelihood function evaluated at the parameter estimates, n is the number of observations, and p is the number of estimated parameters. We computed results on the Cramer-von Mises (W*) and Anderson-Darling Statistics (A*) proposed by (9), including the Kolmogorov-Smirnov (K-S) statistic and the associated P-values. Note that smaller values are preferred for the log-likelihood function at its maximum. The K-S, smaller values are also preferred. The results from two real life data sets are presented under tables 4 and 5. The R software was used to compute estimates for model parameters and run goodness-of-fit tests. The PDFs of the non-nested models used for comparisons are;

Kumaraswamy Odd Lindley-logistic (KOLLLoG) distribution

\[
f(x; a, b, \lambda, c) = ab \left(\frac{\lambda^2}{(1+\lambda)(1+x^c)} \right) \exp \left\{ -\lambda \frac{1 - (1 + x^c)^{-1}}{(1 + x^c)^{-1}} \right\} \times \left[1 - \frac{\lambda + (1 + x^c)^{-1}}{(1 + \lambda)(1 + x^c)^{1-1}} \exp \left\{ -\lambda \frac{1 - (1 + x^c)^{-1}}{(1 + x^c)^{-1}} \right\} \right]^{a-1} \times \left(1 - \left[1 - \frac{\lambda + (1 + x^c)^{-1}}{(1 + \lambda)(1 + x^c)^{-1}} \exp \left\{ -\lambda \frac{1 - (1 + x^c)^{-1}}{(1 + x^c)^{-1}} \right\} \right]^{b-1}, \right.
\]

for \(a, b, \lambda, c > 0\) and \(x > 0\),

Weibull-Lomax (WLx) distribution

\[
f(x; a, b, \alpha, \beta) = \frac{ab\alpha}{\beta} \left[1 + \left(\frac{x}{\beta} \right) \right]^{b\alpha-1} \left\{ 1 - \left[1 + \left(\frac{x}{\beta} \right)^\alpha \right]^{-\alpha} \right\}^{b-1} \times \exp \left\{ -\alpha \left(1 + \left(\frac{x}{\beta} \right)^\alpha - 1 \right)^b \right\},
\]

for \(a, b, c, \lambda > 0\) and \(x > 0\),

Beta Generalized Exponential (BGE) distribution

\[
f(x; a, b, \alpha, \lambda) = \frac{\alpha \lambda}{B(a, b)} e^{-\lambda x} (1 - e^{-\lambda x})^{a\alpha-1} \left[1 - (1 - e^{-\lambda x})^\alpha \right]^{b-1},
\]
for $a, b, \alpha, \lambda > 0$ and $x > 0$,

Exponentiated Modified Weibull (EMW) distribution

$$f(x; \alpha, \beta, \lambda, \theta) = \theta (\alpha + \lambda \beta x^{\lambda-1}) e^{-\left(\alpha x + \beta x^\lambda\right)} (1 - e^{\alpha x + \beta x^\lambda})^{\theta-1},$$

for $\alpha, \beta, \lambda, \theta > 0$ and $x > 0$.

Kumaraswamy Weibull (KW) distribution

$$f(x; a, b, c, \lambda) = abc \lambda x^{c-1} \exp\left\{-\left(\lambda x\right)^c\right\} \left[1 - \exp\left\{-\left(\lambda x\right)^c\right\}\right]^{a-1} \times \left\{1 - \left[1 - \exp\left\{-\left(\lambda x\right)^c\right\}\right]^{\lambda b - 1}\right\},$$

for $a, b, c, \lambda > 0$ and $x > 0$.

Generalized Weibull Log-Logistic (GWLLoG) distribution.

$$f(x; \alpha, \beta, \gamma, a) = \frac{\alpha \beta \gamma x^{\gamma-1}}{a^\gamma} \left(1 + \left(\frac{x}{a}\right)^\gamma\right)^{-1} \left[\log\left(1 + \left(\frac{x}{a}\right)^\gamma\right)\right]^\beta \exp\left\{-\alpha \left[\log\left(1 + \left(\frac{x}{a}\right)^\gamma\right)\right]\right\},$$

for $\alpha, \beta, \gamma, a > 0$ and $x > 0$.

The estimates of model parameters for the EHL-OBIII-E distribution and the other non-nested models (with standard error in parentheses), AIC, AICC, BIC, and the goodness-of-fit statistics W^*, A^*, Kolmogorov-Smirnov (K-S) and the associated P-values are given in Table 4. The plots of the fitted densities and observed probabilities are given in Figure 5.

Table 4: Model estimates for Survival times data

Model	a	b	α	λ	$-2 \log L$	AIC	AICC	BIC	W^*	A^*	K-S	P-value
EHL-OBIII-E	0.8594 (0.2946)	10.4693 (12.0444)	0.1369	1.1934 (0.5663)	114.5943	122.5943	123.5943	129.821	0.0694	0.4713	0.1059	0.6541
KOLLLoG	1.2521 (0.0839)	0.1422 (0.0839)	5.892	0.9775 (0.1733)	115.8898	123.8898	124.8898	131.1164	0.0735	0.4963	0.1150	0.5521
WLx	5.4516 (1.398)	0.9734 (0.1136)	1.960 \times 104 (3.6605 \times 10$^{-5}$)	17.2670 (4.4017 \times 10$^{-4}$)	115.9419	123.9419	124.9419	131.1685	0.0887	0.5897	0.1114	0.5924
BGE	13.8679 (14.8578)	0.4085 (0.2297)	0.0861	111.0385	124.0496	125.0496	131.2763	0.1080	0.7416	0.1276	0.4217	
EMW	1.0349 (0.2169)	0.7943 (0.1511)	1.7081 (3.8250 \times 10$^{-1}$)	1.0304 \times 10$^{-4}$ (1.3304 \times 10$^{-1}$)	16.1897	124.1897	125.1897	131.4163	0.0783	0.5268	0.1099	0.6094
KW	0.2060 (1.2986)	3.0625 (16.9361)	4.4705 (25.1920)	0.1451 (0.4282)	15.5601	123.5601	124.5601	130.7867	0.0794	0.6443	0.1157	0.5439
GWLLoG	31.7894 (6.6608)	3.0602 (1.2399)	50.5270 (6.1217)	2.9245 (10.0601)	16.2522	124.2522	125.2522	131.4788	0.0813	0.5437	0.1094	0.6145
Figure 5: Fitted PDF and Observed probability Plots for Survival times data

From Table 4 and Figure 5, we note that the EHL-OBIII-E model performs better than other non-nested models looking at its smallest values of W^*, A^*, AIC, AICC, BIC and the higher P-value for the K-S statistic. The fitted density of the EHL-OBIII-E distribution also remain closer to the sample histogram and similarly its fitted probability plot is also closer to the empirical line. Basing on these results, the EHL-OBIII-E provides a better fit compared to these other known non-nested models used for comparison.

The model parameter estimates for the EHL-OBIII-E distribution and other non-nested models (with standard error in parentheses), AIC, AICC, BIC, and the goodness-of-fit statistics W^*, A^*, Kolmogorov-Smirnov (K-S) with P-values are presented under table 5. Plots of the fitted densities and observed probability are given in Figure 6.

Model	a	b	α	λ	$-2 \log L$	AIC	AICC	BIC	W^*	A^*	$K-S$	P-value
EHL-OBIII-E	1.7304	0.7699	0.4634	0.5852	203.2637	211.2637	211.6804	221.7242	0.0650	0.5220	0.0648	0.7886
KOLLLog	0.9437	3.1448	0.6028	0.8224	205.0603	213.0603	213.477	223.5208	0.1480	0.8781	0.0786	0.5591
WLX	0.2306	0.8089	1.3580	0.5302	205.1976	213.1976	213.6143	223.6581	0.1440	0.8627	0.0787	0.5587
BGE	2.3058	0.5961	0.3931	0.5095	205.0858	213.0858	213.4514	223.4979	0.1415	0.8493	0.0775	0.5781
EMW	0.8663	0.8883	17.8940	1.6002	205.6399	213.6399	214.0566	224.1004	0.1786	1.0183	0.0887	0.4045
KW	1.2900	2.0801	2.6150	1.0432	205.0959	213.0952	214.3758	224.4197	0.1991	1.1134	0.0911	0.3714
GWLLoG	3.1309	0.1734	3.0819	5.6675	207.0122	215.0122	215.4289	225.4727	0.2240	1.2327	0.0900	0.3858

From the results presented under Table 5, the EHL-OBIII-E distribution gives the smallest values of W^*, A^*, K-S and higher P-value compared to other competing models which shows its superiority over the other models. Figure 6, also show that the EHL-OBIII-E distribution provides a better fit to the real life data compared with the other non-nested models.

6. Conclusion

In this article a new generalized family of distributions called exponentiated half-logistic Odd Burr III-G (EHL-OBIII-G) was developed. The structural properties of this new family of distributions have been derived and studied. Some
of its special cases have been discussed and the EHL-OBIII-Exponential distribution is applied to two real life data examples together with the other known non-nested models for comparison. Based on the results, the model provides better fits and performs better than the other non-nested models in fitting real life data, see Tables 4 and 5 and also Figures 5 and 6 for more details. From the simulation results, the consistency of the model estimators is indicated by bias and RMSE covering towards zero as the sample size increases. We hope that these new generated family of distributions will find wider applicability in different disciplines such financial modelling, economics, agriculture, engineering, genomics and operations research, to mention just a few.

Acknowledgement

The authors would like to thank the anonymous reviewers and Editors for the recommendations and useful comments that greatly improved this article to its current state.

References

1. Afify, A. Z., Altun, E., Alizadeh, M., Ozel, G., and Hamedani, G. (2017). The odd exponentiated half-logistic-g family: Properties, characterizations and applications. Chilean Journal of Statistics (ChJS), 8(2).
2. Alizadeh, M., Cordeiro, G., Nascimento, A., Lima, M., and Ortega, E. (2017a). Odd-burr generalized family of distributions with some applications. Journal of Statistical Computation and Simulation, 87:367–389.
3. Alizadeh, M., MirMostafee, S., Ortega, E. M., Ramires, T. G., and Cordeiro, G. M. (2017b). The odd log-logistic logarithmic generated family of distributions with applications in different areas. Journal of Statistical Distributions and Applications, 4(1):6.
4. Alzaatreh, A., Lee, C., and Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71(1):63–79.
5. Barreto-Souza, W., Santos, A. H., and Cordeiro, G. M. (2010). The beta generalized exponential distribution. Journal of Statistical Computation and Simulation, 80(2):159–172.
6. Bekker, A., Roux, J., and Mosteit, P. (2000). A generalization of the compound rayleigh distribution: using a bayesian method on cancer survival times. Communications in Statistics-Theory and Methods, 29(7):1419–1433.
7. Bourguignon, M., Silva, R. B., and Cordeiro, G. M. (2014). The weibull-g family of probability distributions. Journal of Data Science, 12(1):53–68.
8. Burr, I. (1942). Cumulative frequency functions. Ann. Math., 13:215–232.
9. Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. Journal of Quality Technology, 27(2):154–161.
10. Chipepa, F., Oloyede, B., and Makubate, B. (2019). A new generalized family of odd lindley-g distributions with application. International Journal of Statistics and Probability, 8(6):1–1.
11. Cooray, K. and Ananda, M. M. (2008). A generalization of the half-normal distribution with applications to lifetime data. *Communications in Statistics—Theory and Methods*, 37(9):1323–1337.
12. Cordeiro, G. M., Alizadeh, M., and Ortega, E. M. (2014). The exponentiated half-logistic family of distributions: Properties and applications. *Journal of Probability and Statistics*, 2014.
13. Cordeiro, G. M., Alizadeh, M., Tahir, M., Mansoor, M., Bourguignon, M., and Hamedani, G. (2016). The beta odd log-logistic generalized family of distributions. *Hacet. J. Math. Stat*, 45:1175–1202.
14. Cordeiro, G. M. and de Castro, M. (2011). A new family of generalized distributions. *Journal of statistical computation and simulation*, 81(7):883–898.
15. Cordeiro, G. M., Ortega, E. M., and da Cunha, D. C. (2013). The exponentiated generalized class of distributions. *Journal of Data Science*, 11(1):1–27.
16. Cordeiro, G. M., Ortega, E. M., and Nadarajah, S. (2010). The kumaraswamy weibull distribution with application to failure data. *Journal of the Franklin Institute*, 347(8):1399–1429.
17. Cordeiro, G. M., Ortega, E. M., and Ramires, T. G. (2015). A new generalized weibull family of distributions: Mathematical properties and applications. *Journal of Statistical Distributions and Applications*, 2(1):13.
18. Elbatal, I. (2011). Exponentiated modified weibull distribution. *Economic Quality Control*, 26(2):189–200.
19. Eugene, N., Lee, C., and Famoye, F. (2002). Beta-normal distribution and its applications. *Communications in Statistics—Theory and methods*, 31(4):497–512.
20. Marshall, A. and Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. *Biometrika*, 84(3):641–652.
21. Oluyede, B. O., Makubate, B., Fagbamigbe, A. F., and Mdlongwa, P. (2018). A new burr xii-weibull-logarithmic distribution for survival and lifetime data analysis: Model, theory and applications. *Stats*, 1(1):77–91.
22. Rényi, A. (1961). On measures of entropy and information. In *Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics*. The Regents of the University of California.
23. Shaked, M. and Shanthikumar, J. G. (2007). *Stochastic Orders*. Springer Science & Business Media.
24. Shannon, C. E. (1951). Prediction and entropy of printed english. *Bell system technical journal*, 30(1):50–64.
25. Shaw, W. T. and Buckley, I. R. (2009). The alchemy of probability distributions: beyond gram-charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. *arXiv preprint arXiv:0901.0434*.
26. Tahir, M. H., Cordeiro, G. M., Mansoor, M., and Zubair, M. (2015). The weibull-lomax distribution: Properties and applications. *Hacetetpe Journal of Mathematics and Statistics*, 44(2):461–480.
27. Torabi, H. and Montazeri, N. H. (2014). The logistic-uniform distribution and its applications. *Communications in Statistics—Simulation and Computation*, 43(10):2551–2569.
28. Zografos, K. and Balakrishnan, N. (2009). On families of beta and generalized gamma generated distribution and associated inference. *Stat. Methods*, 6:344–362.
A. Elements of the score vector

The elements of the score vector, \(U(\Delta) \) are given by

\[
\frac{\partial \ell}{\partial a} = \frac{n}{a} - (\alpha - 1) \sum_{i=1}^{n} b \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right)^{-b-1} \frac{G(x_i; \psi)}{G(x_i; \psi)} \ln \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right) \\
+ (-b - 1) \sum_{i=1}^{n} \frac{G(x_i; \psi)}{G(x_i; \psi)} \ln \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right) \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right) - \sum_{i=1}^{n} \ln \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right) \\
- (\alpha + 1) \sum_{i=1}^{n} b \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right)^{-b-1} \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right) \ln \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right) \\
\left(1 + \left[1 - \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right]^{-b} \right) \right),
\]

\[
\frac{\partial \ell}{\partial b} = \frac{n}{b} + (\alpha - 1) \sum_{i=1}^{n} \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right)^{-b} \ln \left[1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right] \\
- \sum_{i=1}^{n} \ln \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right) \\
+ (\alpha + 1) \sum_{i=1}^{n} \left[1 - \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right]^{-b} \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right) \ln \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right) \\
\left(1 + \left[1 - \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right]^{-b} \right) \right),
\]

\[
\frac{\partial \ell}{\partial \alpha} = \frac{n}{\alpha} + \sum_{i=1}^{n} \ln \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right)^{-b} \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right) \\
- \sum_{i=1}^{n} \ln \left[1 - \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right)^{-b} \right] \right).
\]
and

\[
\frac{\partial \ell}{\partial \psi_k} = (\alpha - 1) ba \sum_{i=1}^{n} \left(1 + \left(\frac{G(x_i; \psi)}{g(x_i; \psi)} \right)^{-a} \left(\frac{G(x_i; \psi)}{g(x_i; \psi)} \right)^{-a-1} \frac{\partial G(x_i; \psi)}{\partial \psi_k} \right) \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right)^{b-1} \frac{G^2(x_i; \psi)}{G(x_i; \psi)}
\]

\[- a (-b - 1) \sum_{i=1}^{n} \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a-1} \frac{\partial G(x_i; \psi)}{\partial \psi_k} \frac{\partial^2 G(x_i; \psi)}{G(x_i; \psi)} + (-a - 1) \sum_{i=1}^{n} \frac{G(x_i; \psi)}{G(x_i; \psi)} \frac{\partial G(x_i; \psi)}{\partial \psi_k} \frac{\partial^2 G(x_i; \psi)}{G(x_i; \psi)}
\]

\[+ \sum_{i=1}^{n} \left(1 + \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a-1} \frac{\partial G(x_i; \psi)}{\partial \psi_k} \right) \left(1 - \left(\frac{G(x_i; \psi)}{G(x_i; \psi)} \right)^{-a} \right)^{b} \frac{G^2(x_i; \psi)}{G(x_i; \psi)}
\]

\[+ \sum_{i=1}^{n} \frac{\partial g(x_i; \psi)}{\partial \psi_k} (g(x_i; \psi)) - 2 \sum_{i=1}^{n} \frac{\partial G(x_i; \psi)}{\partial \psi_k} \frac{\partial G(x_i; \psi)}{G(x_i; \psi)}.\]