Changes in regional cerebral tissue oxygen saturation during anesthesia induction in female patients undergoing breast cancer surgery

CURRENT STATUS: POSTED

Fang Sheng
the First Hospital of China Medical University

Feng Jin
the First Hospital of China Medical University

Wen-fei Tan
the First Hospital of China Medical University

winfieldtan@hotmail.com Corresponding Author
ORCiD: https://orcid.org/0000-0001-9679-1406

Hong Ma
the First Hospital of China Medical University

DOI: 10.21203/rs.2.19383/v1

SUBJECT AREAS
Anesthesiology & Pain Medicine

KEYWORDS
propofol, regional cerebral tissue oxygen saturation, anesthesia induction, PaO2
Abstract

Background Although the monitoring of regional cerebral oxygen saturation (rScO₂) is widely used for cardiac and non-cardiac surgeries, conflicting reports regarding changes in rScO₂ during anesthesia induction remain. We designed this cohort clinical study to assess precise alterations in rScO₂ and the possible mechanism.

Methods This cohort study was designed to examine changes in rScO₂ with anesthesia induced by a target control infusion of propofol from the beginning of anesthesia to 30 minutes after induction in patients undergoing breast cancer surgery. rScO₂ values from the right and left sides of patients’ foreheads were averaged to directly determine cerebral oxygenation from FORE-SIGHT data. Mean arterial pressure (MAP), heart rate (HR), partial pressure of oxygen in arterial blood (PaO₂), partial pressure of carbon dioxide in arterial blood (PaCO₂), hemoglobin concentration (Hb), and cardiac output (CO) were measured every minute until 30 minutes after anesthesia induction.

Results A total of 30 female patients treated between January 2016 and April 2016 were included in this study. The average rScO₂ at 7 minutes was 81.7%, which was higher than the average rScO₂ at baseline (67.3%) and at 15 minutes (68.3%). Average rScO₂ correlated significantly with PaO₂ during the first 7 minutes of anesthesia induction.

Conclusion During anesthesia induction, changes in rScO₂, which increased to a peak value at 7 minutes, may be correlated with increases in PaO₂, and the return of rScO₂ to baseline at 15 minutes may have occurred due to flow-metabolism coupling and balancing between white matter and gray matter.

1. Background

Near-infrared spectroscopy (NIRS) was introduced as a technique for the noninvasive monitoring of regional cerebral oxygen saturation (rScO₂) in 1977.[1] NIRS measures the relative concentrations of oxyhemoglobin and deoxyhemoglobin within the field of view. Under most circumstances, the contribution from cerebral venous saturation predominates; therefore, rScO₂ does not indicate oxygen delivery but instead provides information regarding the balance between the regional oxygen supply and demand.[2] Some cardiac surgery centers have obtained evidence that rScO₂ monitoring
might lead to better perioperative outcomes.[3, 4] rScO₂ monitoring is also used in many non-cardiac surgeries and provides various types of useful information for these surgeries.[5, 6] However, recent articles have reported conflicting findings regarding changes in rScO₂ during the anesthesia induction period. In 2007, Paisansathan et al. reported that rScO₂ increased from 58% to 68% following fentanyl and thiopental induction and that rScO₂ returned to baseline 20 minutes after desflurane anesthesia maintained using an Oxiplex TS oximeter.[7] In 2009, Nissen et al. used an INVOS Cerebral Oximeter to describe an rScO₂ increase from 67% to 74% following propofol and fentanyl induction, with little change thereafter in rScO₂ until the end of the surgery.[8] In 2013, Meng et al., who utilized an Oxiplex TS oximeter, found that rScO₂ remained stable at 67% following propofol and fentanyl induction.[9] We suspected that changes in rScO₂ were correlated with changes in the partial pressure of oxygen in arterial blood (PaO₂), and we designed this cohort clinical study to test this hypothesis and to determine the possible mechanism.

2. Materials And Methods

2.1 Study design

This cohort study was designed to examine changes in rScO₂ during anesthesia induction among patients undergoing breast cancer surgery. Major assessments were conducted from the onset of anesthesia induction to 30 minutes after induction. We followed recommendations in the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement in designing our study and reporting study findings. This study was approved by the Ethics Committee of the First Hospital of China Medical University (protocol no. 2015110301, Chairman Prof. Xinghua Gao, December 4, 2015) and was registered with the Clinical Trials Registry (NCT02687334). All participants provided written informed consent in accordance with the Declaration of Helsinki.

2.2 Patients

A total of 33 patients undergoing elective radical operations for mastocarcinoma between January 2016 and April 2016 at the First Hospital of China Medical University were enrolled in this study.
Patients were included in the study if they were ethnic Chinese, between 18 and 65 years old, American Society of Anesthesiologists (ASA) physical status I or II, and undergoing a radical operation for carcinoma of the breast. Patients were excluded if they had a body mass index exceeding 30 kg/m$^2$, had a history of hypertension or diabetes mellitus, or were allergic to anesthesia drugs used in the study.

### 2.3 General anesthesia induction procedure

All of the anesthesia inductions in the study were conducted by the same anesthesiologist. Electrocardiography and pulse oximetry were continued throughout the surgery; end-tidal carbon dioxide (EtCO$_2$), invasive arterial pressure (Vigileo-FloTrac; Edwards Lifesciences, Irvine, CA, USA), cardiac output (CO, measured using the Vigileo-FloTrac system) and rScO$_2$ (FORE-SIGHT, CAS Medical Systems, Branford, CT, USA) were monitored throughout the surgery. The nasopharynx temperature was monitored and maintained at 36.0-36.5°C using a warm blanket.

With the administration of an inspired oxygen fraction ($\text{FiO}_2$) of 1.0, general anesthesia was induced with 0.04 mg/kg midazolam, 0.4 $\mu$g/kg sufentanyl, 2-2.5 mg/kg propofol (Fresenius Kabi, Austria GmbH), and 0.2 mg/kg cisatracurium. After 4 minutes of assisted ventilation with 100% oxygen, all patients were intubated within 30 seconds. Patients’ lungs were ventilated with intermittent positive pressure. Tidal volume was adjusted to 6-8 ml/kg, and the ventilator rate was adjusted to maintain $\text{EtCO}_2$ at 35-45 mmHg.

### 2.4 Intervention

The $\text{FiO}_2$ was maintained at 1.0 during the entire 30-minute observation period. To maintain propofol anesthesia, total intravenous anesthesia was achieved by administering propofol at a target plasma concentration of 2.5-4 $\mu$g/ml immediately after induction. Remifentanil (0.2-0.5 $\mu$g/kg/minute) was also administered to all patients during the operation.

During anesthesia induction, bradycardia (heart rate (HR)<45 bpm) and hypotension (mean arterial pressure (MAP)<20% below baseline) were treated with supplemental doses of atropine (0.5-1.0 mg) and ephedrine (5-10 mg), respectively. Tachycardia (HR>110 bpm) and hypertension (MAP>20%
above baseline) were treated with esmolol (5-10 mg) and urapidil (10-25 mg), respectively. Patients who required these vasoactive agent treatments were removed from the study.

2.5 Measures
Sensors to detect rScO\textsubscript{2} were placed on the right and left forehead and covered with opaque tape to prevent light interference. RScO\textsubscript{2} values from the right and left sides were averaged to directly determine cerebral oxygenation from the FORE-SIGHT data. MAP, CO, HR, rScO\textsubscript{2} and peripheral oxygen saturation (SpO\textsubscript{2}) were measured prior to the induction of anesthesia, and the instantaneous values of MAP, HR, rScO\textsubscript{2}, CO and arterial blood gas pressures were measured every minute for 30 minutes, starting from anesthesia induction.

2.6 Study outcomes
The primary outcome was changes in rScO\textsubscript{2} with an FiO\textsubscript{2} of 100% during the first 30 minutes after anesthesia induction. The secondary outcome was correlations between rScO\textsubscript{2} and MAP, HR, CO, partial pressure of carbon dioxide in arterial blood (PaCO\textsubscript{2}), PaO\textsubscript{2}, and hemoglobin (Hb) concentrations.

2.7 Statistical analysis
The sample size was calculated based on the difference of (mean ± standard deviation [SD]=1) rScO\textsubscript{2} between 7 minutes(60%) and 15 minutes (80%) in the pilot study with α = 0.05 and power = 0.8 using PASS11 software (NCSS LLC, Utah, USA). The study was adequately powered with n = 30. Thirty-three patients were originally enrolled to compensate for an estimated 10% dropout rate. Data are expressed as the means±SD, absolute values, or medians. Before statistical testing was performed, the normality of the distribution of each continuous variable was analyzed using the Kolmogorov-Smirnov test. Paired Student’s t-tests were used for statistical analysis of rScO\textsubscript{2} values at different time points. The statistical analysis was performed using the SPSS for Windows software package, version 18 (SPSS, Inc., Chicago, IL). Linear mixed-effects models were used to test whether there was a significant correlation between a measured variable and its explanatory variables. The R package (http://cran.r-project.org/) was used for statistical analysis and figure creation. The threshold...
for significance was p<0.05.

3. Results
Among the 33 potential patients assessed for eligibility, one patient was excluded; thus, 32 patients were initially enrolled in the study. Ultimately, 2 patients were excluded from the analysis due to missing rScO$_2$ data (Figure 1). A total of 30 female patients (mean age: 49 years; range: 25–65 years) were included in the final sample. Basic information for all variables is presented in Table I. The analysis incorporated a total of 900 observation points, which consisted of measurements of the examined variables obtained every minute for the 30 patients. Graphical data exploration suggests that average rScO$_2$ increased from the beginning of the induction to reach its peak value at 7 minutes and then returned to baseline at 15 minutes after induction (Figure 2G). The average rScO$_2$ at 7 minutes was 81.7%, which was higher than the average rScO$_2$ at baseline (67.3%) and at 15 minutes (68.3%) (Table I). Changes in MAP, HR, and CO were prospective as a result of normal effects of anesthesia induction (Figure 2A, B, and C). PaO$_2$ increased with the administration of 100% oxygen. There were no significant changes in PaCO$_2$ and Hb during the 30-minute period (Figure 2D and F). Average rScO$_2$ did not correlate with MAP, HR, CO, Hb, PaCO$_2$, or PaO$_2$ during the 30-minute induction period (Figure 3A-F, p>0.05). Average rScO$_2$ correlated significantly with PaO$_2$ during the first 7 minutes of anesthesia induction (Figure 3G, p<0.01).

4. Discussion
Among the cohort of 30 females who underwent elective radical operations for mastocarcinoma, we found that the average rScO$_2$ at 7 minutes after anesthesia induction was higher than the average rScO$_2$ at baseline but that the average rScO$_2$ returned to baseline at 15 minutes after anesthesia induction. Changes in rScO$_2$ did not correlate with MAP, HR, CO, Hb, PaCO$_2$, and PaO$_2$ during the 30-minute induction period but correlated significantly with PaO$_2$ during the first 7 minutes after anesthesia induction.

Several animal experiments with nearly the same results as our study may support our findings, although they do not directly mention the correlation of PaO$_2$ and rScO$_2$.[10-12] Brain oxygen tension
(PtiO₂) sensing provides a continuous measure of oxygen partial pressure for real-time monitoring of temporal oxygen changes in the cerebral tissue. The PtiO₂ increased after the induction of arterial hyperoxia, and the extent of this increase depended on the initial cerebral blood flow (CBF) value. The response of PtiO₂ demonstrated an early phase of rapid increase followed by an increase in PaO₂.[12] The highest brain tissue oxygen levels were reached in all cases at the end of the increased FiO₂ phase.[11] PaO₂ oscillations were transmitted to the cerebral microcirculation in a porcine model,[13] which may explain our finding that rScO₂ increases with PaO₂ during the first 7 minutes after anesthesia induction.

Two studies have examined the relationship between rScO₂ and PaO₂ in awake patients and general anesthesia patients. When the carotid artery was cross-clamped in awake patients who were undergoing carotid endarterectomy (CEA), ipsilateral rScO₂ was increased by the administration of 100% O₂ compared with 28% O₂. The underlying mechanism of this increase may relate to the associated increase in the O₂ content of the blood or to improvement in cerebral blood flow.[14] In patients undergoing CEA with general anesthesia, rScO₂ was reliably improved by increasing the FiO₂.[15] However, these two studies only described the phenomenon of correlated increases in rScO₂ and PaO₂; neither details regarding nor the exact mechanism underlying this phenomenon have been elucidated.

A study that utilized a regional real-time technique for measuring human cerebral microcirculation and rScO₂ by combined laser-Doppler flowmetry and spectroscopy also supports and explains our results.[16] An increase in the propofol dosage resulted in increased rScO₂ at 2 mm cerebral depth (gray matter) without coupled reductions in capillary venous blood flow. At 8 mm cerebral depth (white matter), the altered propofol dosage produced no observed effects on measured and calculated parameters. These findings suggest that cerebral metabolic demand in cortical regions may be reduced by propofol administration; however, the cerebral blood flow/cerebral metabolic rate of oxygen of white matter remains unaltered.[16] Propofol only affects the coupling of flow and
metabolism in the cerebral microcirculation, resulting in increased capillary venous blood flow and rScO₂. Regardless of whether regional or cortical CBF is the factor that alters the rScO₂, one study determined that rScO₂ does not respond to a 100% increase in blood flow in the middle cerebral artery.[17] We also tested the correlated factors including HR, MAP and CO.

Flow-metabolism coupling remains intact during a stepwise increase in propofol after traumatic brain injury.[18] After 7 minutes of anesthesia induction in a normal brain, the effect-site propofol concentration[19] and PaO₂ become stable, and flow-metabolism coupling may function to balance the cerebral metabolism between gray matter and white matter. All of these responses are aspects of cerebral autoregulation, which we believe is the reason that rScO₂ returned to baseline at 15 minutes in our study.

Using the reasons described above, we can clearly determine exact explanations for changes in rScO₂ during anesthesia induction. The following reasons explain increases in rScO₂. 1) At the beginning of anesthesia induction, with increasing PaO₂, gray matter had regionally greater oxygen supply than demand; as a result, rScO₂ increased along with PaO₂. 2) An increase in propofol dosage resulted in an increased rScO₂ at 2 mm cerebral depth (gray matter) without coupled reductions in capillary venous blood flow. The following reason explains the return of rScO₂ to baseline. 1) At 15 minutes after induction, flow-metabolism coupling of white matter was functional, and cerebral autoregulation created a balance between white matter and NIRS-detected gray matter; as a result, rScO₂ returned to baseline (Figure 4A and B).

The following explanations for differences in the changes in rScO₂ reported by Nissen et al.[8] and Meng et al.[9] were provided by Dr. Meng. First, Meng et al. used frequency-domain NIRS; second, their patients were all intubated for ventilation; and third, they offered a unique interpretation of the mechanism underlying their observations. In our research, we provide additional details about the changes in rScO₂ each minute for 30 minutes for patients, all of whom were intubated, and we used the FORE-SIGHT oximeter to achieve more accurate monitoring.[13, 20] We also offered greater detail
regarding the mechanism underlying our observations. The present study had several limitations. The patients in our study were all female, the sample size was small, and this investigation was a single-center study. Because there was insufficient space to attach both FORE-SIGHT sensors and bispectral index sensors, we did not monitor the bispectral index.

5. Conclusion
We concluded that during anesthesia induction, changes in rScO₂, which increased to a peak value at 7 minutes, may be correlated with PaO₂; the return to baseline at 15 minutes may have occurred due to flow-metabolism coupling and balancing between white matter and gray matter.

Abbreviations
rScO₂: regional cerebral oxygen saturation
MAP: Mean arterial pressure
HR: heart rate
PaO₂: partial pressure of oxygen in arterial blood
PaCO₂: partial pressure of carbon dioxide in arterial blood
Hb: hemoglobin concentration
CO: cardiac output
NIRS: Near-infrared spectroscopy
ASA: American Society of Anesthesiologists
EtCO₂: end-tidal carbon dioxide
FiO₂: inspired oxygen fraction
PtiO₂: Brain oxygen tension
CBF: cerebral blood flow
CEA: carotid endarterectomy

Declarations

Ethics approval and consent to participate
This cohort study was designed to examine changes in rScO₂ during anesthesia induction among patients undergoing breast cancer surgery. Major assessments were conducted from the onset of anesthesia induction to 30 minutes after induction. We followed recommendations in the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement in designing our study and reporting study findings. This study was approved by the Ethics Committee of the First Hospital of China Medical University (protocol no. 2015110301, Chairman Prof. Xinghua Gao, December 4, 2015) and was registered with the Clinical Trials Registry (NCT02687334). Website: https://clinicaltrials.gov/ct2/results?term=NCT02687334&Search=Search. Written informed consent was obtained from the parents or legal guardians of all participants in the trial.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on request.

Conflicts of Interest

The authors have no conflicts of interest.

Funding

This work was funded a grant from the Natural Science Foundation of Liaoning Province (20180551176) to Wen-fei Tan and a grant from the Fund for Scientific Research of The First Hospital
Of China Medical University (FHCMU-FSR) to Wen-fei Tan.

**Contributions**

TWF designed the study, interpretation of results and wrote the manuscript. SF collected data and wrote the manuscript. JF collected data and wrote the manuscript. MH statistical analysis and review of the manuscript. All authors read and approved the final manuscript.

**Acknowledgement**

None.

**References**

1. Jobsis FF: *Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science* 1977, 198(4323):1264-1267.

2. Germon TJ, Evans PD, Barnett NJ, Wall P, Manara AR, Nelson RJ: *Cerebral near infrared spectroscopy: emitter-detector separation must be increased. British journal of anaesthesia* 1999, 82(6):831-837.

3. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, Cleland A, Schaefer B, Irwin B, Fox S: *Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesthesia and analgesia* 2007, 104(1):51-58.

4. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM, 3rd, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K et al: *Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. The Annals of thoracic surgery* 2009, 87(1):36-44; discussion 44-35.

5. Nielsen HB: *Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Frontiers in physiology* 2014, 5:93.

6. Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst Gj: *The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. European journal of vascular and endovascular surgery: the official journal of the European Society for Vascular Surgery* 2009, 38(5):539-545.
7. Paisansathan C, Hoffman WE, Gatto RG, Baughman VL, Mueller M, Charbel FT: *Increased brain oxygenation during intubation-related stress*. European journal of anaesthesiology 2007, 24(12):1016–1020.

8. Nissen P, van Lieshout JJ, Nielsen HB, Secher NH: *Frontal lobe oxygenation is maintained during hypotension following propofol-fentanyl anesthesia*. AANA journal 2009, 77(4):271–276.

9. Meng L, Gelb AW, McDonagh DL: *Changes in cerebral tissue oxygen saturation during anaesthetic-induced hypotension: an interpretation based on neurovascular coupling and cerebral autoregulation*. Anaesthesia 2013, 68(7):736–741.

10. Klein KU, Boehme S, Hartmann EK, Szczyrba M, Heylen L, Liu T, David M, Werner C, Markstaller K, Engelhard K: *Transmission of arterial oxygen partial pressure oscillations to the cerebral microcirculation in a porcine model of acute lung injury caused by cyclic recruitment and derecruitment*. British journal of anaesthesia 2013, 110(2):266–273.

11. Leidolf A, Mader MM, Hecker A, Heimann A, Alessandri B, Mayr P, Kempski O, Wobker G: *Description of the response of a new multi-parametric brain sensor to physiological and pathophysiological challenges in the cortex of juvenile pigs*. Turkish neurosurgery 2014, 24(6):913–922.

12. Rossi S, Stocchetti N, Longhi L, Balestreri M, Spagnoli D, Zanier ER, Bellinzona G: *Brain oxygen tension, oxygen supply, and oxygen consumption during arterial hyperoxia in a model of progressive cerebral ischemia*. Journal of neurotrauma 2001, 18(2):163–174.

13. Moerman A, Vandenplas G, Bove T, Wouters PF, De Hert SG: *Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting*. British journal of anaesthesia 2013, 110(2):258–265.

14. Stoneham MD, Lodi O, de Beer TC, Sear JW: *Increased oxygen administration improves cerebral oxygenation in patients undergoing awake carotid surgery*. Anesthesia and analgesia 2008, 107(5):1670–1675.

15. Picton P, Chambers J, Shanks A, Dorje P: *The influence of inspired oxygen fraction and end-tidal*
carbon dioxide on post-cross-clamp cerebral oxygenation during carotid endarterectomy under general anesthesia. Anesthesia and analgesia 2010, 110(2):581-587.

16.Klein KU, Fukui K, Schramm P, Stadie A, Fischer G, Werner C, Oertel J, Engelhard K: Human cerebral microcirculation and oxygen saturation during propofol-induced reduction of bispectral index. British journal of anaesthesia 2011, 107(5):735-741.

17.Harris DN, Bailey SM: Near infrared spectroscopy in adults. Does the Invos 3100 really measure intracerebral oxygenation? Anaesthesia 1993, 48(8):694–696.

18.Johnston AJ, Steiner LA, Chatfield DA, Coleman MR, Coles JP, Al-Rawi PG, Menon DK, Gupta AK: Effects of propofol on cerebral oxygenation and metabolism after head injury. British journal of anaesthesia 2003, 91(6):781–786.

19.Coppens M, Van Limmen JG, Schnider T, Wyler B, Bonte S, Dewaele F, Struys MM, Vereecke HE: Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration: Performance of three pharmacokinetic-dynamic models. British journal of anaesthesia 2010, 104(4):452–458.

20.Hessel TW, Hyttel-Sorensen S, Greisen G: Cerebral oxygenation after birth - a comparison of INVOS((R)) and FORE-SIGHT near-infrared spectroscopy oximeters. Acta paediatrica (Oslo, Norway: 1992) 2014, 103(5):488–493.

Table

Table 1.

Patient characteristics (n=30).
| Age (years)       | 49.4±9.6   |
|-------------------|------------|
| BMI (kg/m²)       | 23.2±2.5   |
| MAP (mmHg)        | 81.1±11.7  |
| HR (beats/minute) | 77.6±12.3  |
| Body temperature (°C) | 36.3±0.1  |
| PaO₂ (mmHg)       | 86.9±4.9   |
| PaCO₂ (mmHg)      | 42.7±3.3   |
| Hb (g/l)          | 131.1±12.4 |
| CO (l/minute)     | 6.0±0.6    |
| rScO₂ at baseline (%) | 67.3±3.9  |
| rScO₂ at 7 minutes (%) | 81.7±1.6* |
| rScO₂ at 15 minutes (%) | 68.3±2.9  |

BMI, body mass index; MAP, mean arterial pressure; HR, heart rate; PaO₂, partial pressure of oxygen in arterial blood; PaCO₂, partial pressure of carbon dioxide in arterial blood; Hb, hemoglobin; CO, cardiac output; rScO₂, regional cerebral tissue oxygen saturation. *p<0.05 for Student’s t-tests of rScO₂ at 7 minutes vs rScO₂ at baseline and rScO₂ at 7 minutes vs rScO₂ at 15 minutes.

Figures

![Figure 1](image)

Patient flowchart indicating the patients included in the enrollment, allocation, follow-up, and analysis phases of the study.
Figure 2
Time course of analysis for all variables. Thick red lines indicate median values. Thick black lines indicate upper and lower boundaries of 95% confidence intervals. ‘Time 0’ is the beginning of anesthesia induction. Data were collected every minute from induction to 30 minutes. MAP, mean arterial pressure (A); HR, heart rate (B); CO, cardiac output (C); Hb, hemoglobin concentration (D); PaO2, partial pressure of oxygen in arterial blood (E); PaCO2, partial pressure of carbon dioxide in arterial blood (F); rScO2, regional cerebral tissue oxygen saturation (G). The interval between data points for each patient is 1 minute, with time points extending from anesthesia induction to 30 minutes later.

Figure 3
Correlations between regional cerebral tissue oxygen saturation (rScO2) and MAP, mean arterial pressure (A); HR, heart rate (B); CO, cardiac output (C); Hb, hemoglobin concentration (D); PaO2, partial pressure of oxygen in arterial blood (E); PaCO2, partial pressure of carbon dioxide in arterial blood (F) (A-F, p>0.05); and PaO2 for the first 7 minutes (G) (p<0.01). Lightly colored lines represent individual patients, and dark bold lines indicate averages. The interval between data points for each patient is 1 minute.

Figure 4
Theoretical analysis of the mechanism underlying changes in regional cerebral tissue oxygen saturation (rScO2) following anesthesia induction (A). One example of real-time changes in rScO2 following anesthesia induction (B).

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
STROBE_checklist_cohort.doc