Abstract. In the note we prove that all composition factors of a finite group possessing a Carter subgroup of odd order either are abelian, or are isomorphic to $L_2(3^{2n+1})$.

Keywords: group of induced automorphisms, (rc)-series.

Introduction

A known result by Glauberman and Thompson states, that a finite simple group can not includes a self-normalizing Sylow p-subgroup for $p \geq 5$ (see [1, Theorem X.8.13], for example). Later, in [2, Corollary 1.2] Guralnick, Malle, and Navarro obtain a generalization of this result, proving that in any simple group G for a Sylow subgroup P of odd order the equality

$$N_G(P) = PC_G(P)$$

can not be fulfilled. This result is obtained by the authors as a corollary to the following theorem.

Theorem 1. [2, Theorem 1.1] Let p be an odd prime and P a Sylow p-subgroup of the finite group G. If $p = 3$, assume that G has no composition factors of type $L_2(3^f)$, $f = 3^a$ with $a \geq 1$.

1. If $P = N_G(P)$, then G is solvable.
2. If $N_G(P) = PC_G(P)$, then $G/O_p'(G)$ is solvable.

In the paper we prove a generalization of the first statement of the theorem.

Theorem 2. (Main Theorem) Assume that G possesses a Carter subgroup of odd order, then each composition factor of G either is abelian, or is isomorphic to $L_2(3^{2n+1})$, $n \geq 1$. Moreover, if 3 does not divide the order of a Carter subgroup, then G is solvable.

Clearly, item (1) of Theorem follows from Lemmas [3] and [5] (see the proof in the end of the paper).

1 Notations

In the paper only finite groups are considered, so the term “group” is always used in the meaning “finite group”.

The notation in the paper agrees with that of [3]. Recall that a nilpotent selfnormalizing subgroup is called a **Carter subgroup**. A non-refinable normal series of a group is called a **chief series**. A composition series is called an **(rc)-series** if it is a refinement of a chief series.

Let A, B, H be subgroups of G such that B is normal in A. Define $N_H(A/B) := N_H(A) \cap N_H(B)$ to be the **normalizer** of A/B in H. If $x \in N_H(A/B)$, then x induces

1 this term is introduced by V.A.Vedernikov in [4]
an automorphism on A/B acting by $Ba \mapsto Bx^{-1}ax$. Thus there exists a homomorphism $N_H(A/B) \to \text{Aut}(A/B)$. The image of $N_H(A/B)$ under the homomorphism is denoted by $\text{Aut}_H(A/B)$ and is called the \textit{group of H-induced automorphisms} of A/B, while the kernel of the homomorphism is denoted by $C_H(A/B)$ and is called the \textit{centralizer} of A/B in H. If $B = 1$, then we use the notation $\text{Aut}_H(A)$. Notice that $\text{Aut}_G(A)$ sometimes is called the automizer of A in G. Groups of induced automorphisms are introduced by F.Gross in [5], where the author says that this notion is taken from unpublished Wielandt’s lectures.

Evidently, $C_H(A/B) = C_G(A/B) \cap H$, so $\text{Aut}_H(A/B) = \mathcal{N}_H(A/B)/C_H(A/B) \cong \mathcal{N}_H(A/B)C_G(A/B)/C_G(A/B) \leq \text{Aut}_G(A/B)$, i.e. $\text{Aut}_H(A/B)$ can be naturally considered as a subgroup of $\text{Aut}_G(A/B)$, and we think of $\text{Aut}_H(A/B)$ as a subgroup of $\text{Aut}_G(A/B)$ without additional clarifications.

We need the following result.

Lemma 3. [6, Theorem 1] (Generalized Jordan-Hölder theorem) Let

$$G = G_0 \supset G_1 \supset \ldots \supset G_n = 1$$

be an (rc)-series of G, denote G_{i-1}/G_i by S_i. Assume that

$$G = H_0 \supset H_1 \supset \ldots \supset H_n = 1$$

is a composition series of G and $T_i = H_{i-1}/H_i$. Then there exists a permutation $\sigma \in \text{Sym}_n$ such that for every section T_i the inclusion $\text{Aut}_G(T_i) \leq \text{Aut}_G(S_{i\sigma})$ holds. Moreover, if the second series is also an (rc)-series, then σ can be chosen so that the isomorphisms $\text{Aut}_G(T_i) \cong \text{Aut}_G(S_{i\sigma})$ holds.

2 Proof of the main theorem

We divide the proof of the main theorem into several lemmas.

Lemma 4. Let K be a Carter subgroup of G and

$$G = G_0 \supset G_1 \supset \ldots \supset G_n = 1$$

be an (rc)-series of G. Then for every nonabelian composition factor S of G there exists i such that $G_{i-1}/G_i \cong S$ and $\text{Aut}_K(G_{i-1}/G_i)$ is a Carter subgroup of $\text{Aut}_G(G_{i-1}/G_i)$.

Proof. The claim follows by induction on the length of the chief series, whose refinement is the (rc)-series, and [7, Lemma 3].

Lemma 5. (mod CFSG) Let G be a finite almost simple group, possessing a Carter subgroup K of odd order. Then $G \cong L_2(3^{2n+1}) \wr \langle \varphi \rangle$, where $n \geq 1$ and φ is a field automorphism of G of order $2n+1$.

In particular, if a Sylow 3-subgroup of G is a Carter subgroup, then $G \cong L_2(3^{3n}) \wr \langle \varphi \rangle$, where $n \geq 1$ and φ is a field automorphism of G of order 3^n.

Proof. The claim follows from the classification of Carter subgroups given in [8, Tables 7–10]. Notice that only this lemma in the paper uses the classification of finite simple groups.

2
Now we are ready to proof the main result of the paper (Theorem 2). Assume that a finite group G possesses a Carter subgroup K of odd order. Assume that there exists a nonabelian composition factor S of G. Then by Lemma 3 there exist subgroups A, B of G such that $A/B \simeq S$ and $\text{Aut}_K(A/B)$ is a Carter subgroup of $\text{Aut}_G(A/B)$. By Lemma 5 we obtain $S \simeq L_2(3^{2n+1})$. Notice that by [8, Table 10] it follows that in this case $|\text{Aut}_K(A/B)|$ is divisible by 3, i.e. $|K|$ is divisible by 3 as well. Therefore, if $|K|$ is not divisible by 3, then G is solvable.

Notice that statement (1) in Theorem 1 can be obtained by exactly the same arguments.

References

[1] B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, New York, 1982.

[2] R.M. Guralnick, G. Malle, G. Navarro, Self-normalizing Sylow subgroups, Proc. Amer. Math. Soc., 132, No. 4 (2004), 973979.

[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

[4] V.A. Vedernikov, Finite groups with Hall π-subgroups, Math.Notes, 203 (2012), No3, 326–350.

[5] F. Gross, On the existence of Hall subgroups, J. Algebra, 98, No1 (1986), 1–13.

[6] E.P. Vdovin, Groups of induced automorphisms and their application to studying the existence problem for Hall subgroups, Algebra and logic, 53 (2014), No5, 418–421.

[7] E.P. Vdovin, On the conjugacy problem for Carter subgroups, Siberian Mathematical Journal, 47 (2006), No 4, 597–600.

[8] E.P. Vdovin, Carter subgroups of finite groups, Siberian Advances in Mathematics, 19 (2009), No 1, 24–74. (corrigendum: http://math.nsc.ru/~vdovin/Papers/carter_eng_corrigendum.pdf)