Electrochemical Performance of Nanosized Disordered LiVOPO$_4$

Yong Shi,† Hui Zhou,† Ieuan D. Seymour,§ Sylvia Britto,† Jatinkumar Rana,§,V Linda W. Wangoh,§,V Yiqing Huang†, Qiyue Yin,† Philip J. Reeves,† Mateusz Zuba,§ Youngmin Chung,† Fredrick Omenya,† Natasha A. Chernova,§ Guangwen Zhou,‡,V Louis F. J. Piper,§,V Clare P. Grey,† M. Stanley Whittingham.*,†,V

†Chemistry and Materials Science and Engineering, Binghamton University, Binghamton, New York 13902, United States

VNECCES, Binghamton University, Binghamton, New York 13902, United States

‡Department of Mechanical Engineering and Materials Science and Engineering Program, Binghamton University, Binghamton, New York 13902, United States

§Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902, United States

*Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
Figure S1. Rietveld refinement of XRD ($\lambda=1.54$ Å) for the as-synthesized LVPO by solid-state reaction. (space group: $P\bar{1}$, $a = 6.739$ Å, $b = 7.199$ Å, $c = 7.916$ Å, $\alpha = 89.83^\circ$, $\beta = 91.30^\circ$, $\gamma = 116.93^\circ$, $R_{wp} = 4.6\%$)

Table S1. Crystallite size and strain of pristine and ball-milled LVPO calculated by the Double-Voigt approach on TOPAS.

Samples	L_{Vol-IB} (nm)	ε_0
Pristine LVPO	250 (11)	0.00026 (1)
LVPO HEBM 0.2 h	187 (11)	0.00334 (1)
LVPO HEBM 0.3 h	65 (1)	0.00336 (1)
LVPO HEBM 0.4 h	58 (1)	0.00394 (2)
LVPO HEBM 0.5 h	44 (3)	0.00489 (2)
LVPO HEBM 0.6 h	31 (1)	0.00528 (2)
LVPO HEBM 0.7 h	38 (1)	0.00525 (2)
EXAFS analysis:

A theoretical $\chi(k)$ function was generated by performing ab-initio calculations on relevant structural models using the code FEFF8.2,1 which was least-square fitted the data using the software ARTEMIS of the package IFEFFIT.2

Figure S2. EXAFS fits to the data of ball milled ε-LiVOPO$_4$ samples.

Figure S3. Variation in the short vanadyl bond length and its distribution with ball milling time.
EXAFS data of the ball milled samples were explained based on the triclinic structure of LiVOPO$_4$ (space group: $P\overline{1}$). Typical fitting parameters involved an amplitude reduction factor S_0^2 and an overall energy parameter ΔE_0 for each dataset in addition to a fractional change in the bond length, α, and a mean-squared relative distribution parameter, σ^2, for each coordination shell depending on the type of backscattering atoms. Since V atoms are distributed over two distorted octahedral sites in triclinic LiVOPO$_4$, local structures around these two sites were averaged to fit the data. The first coordination shell around V has six oxygen atoms with short (1.626–1.627 Å), medium (1.945-2.099 Å) and long (2.240 Å) bond lengths. Best-fit to the data was achieved when separate fitting parameters were assigned to these bond lengths. A good agreement between the data and fit for all samples can be seen in Figure S2. The refined values of vanadyl bond length and its distribution are plotted against ball milling time in Figure S3. With increasing ball milling time, the short vanadyl bond length increases, which is consistent with reduction of V$^{4+}$ to V$^{3+}$ since the short vanadyl bond exists only for V$^{4+}$. For this reason and since V K-edge XAS in the transmission mode probes the local structure around V$^{4+}$ as well as any V$^{3+}$ resulted from the ball milling-induced reduction, increase in the V$^{3+}$ content with ball milling time gives rise to increased distribution of the short vanadyl bond as shown in Figure S2. Thus, observed changes in the pre-edge region are consistent with variation in the vanadyl bond length and its distribution, confirming increased V$^{3+}$ content with ball milling time.

The 7Li and 31P Fermi contact shifts:

Fermi contact shifts of the pristine LVPO structure and structure-B were calculated with single point energy calculations using BS-II. All calculations (single point and geometry optimizations)
for both structures were performed in the ferromagnetic state with a total energy converge criteria of 2.72×10^{-6} eV, a Monkhorst-Pack mesh of $8 \times 8 \times 8$ and integral tolerances of 10^{-7}, 10^{-7}, 10^{-7}, 10^{-7} and 10^{-14} as defined in the CRYSTAL14 documentation. In order to scale the Fermi contact shifts calculated from DFT at 0 K in the ferromagnetic state into the paramagnetic regime, the approach previously reported was adopted,\(^4\) in which the DFT calculated hyperfine coupling constant A_{iso}, is multiplied by a magnetic scaling factor, Φ, defined as:

$$\Phi = \frac{B_0 \mu_{eff}^2}{3 k_B g_e \mu_B S_{form} (T-\theta)} $$

where B_0 is the external magnetic field, k_B is Boltzmann’s constant, S_{form} is the formal spin angular momentum quantum number of V\(^{4+}\) (equal to 1/2), g_e is the free electron g factor (equal to 2.0023), μ_B is the Bohr magneton, T is the experimental temperature, μ_{eff} is the effective magnetic moment and θ is the Weiss constant. The value of T at 60 kHz MAS was taken as 340 K to account for frictional heating. The values of μ_{eff} and θ were approximated 1.732 μ_B (spin only) and 0 K (Curie spin), respectively, as LiVOPO\(_4\) has previously been shown to adopt weak Curie-Weiss type paramagnetism.\(^5\) The scaling factor at 340 K was calculated as, $\Phi = 9.285 \times 10^{-3}$.

Table S2. Computed \(^7\)Li and \(^{31}\)P Fermi contact shifts for Li and P sites in model LVPO structure (structure-B).

Hybrid Functional	\(^7\)Li Fermi Contact Shift (ppm)	\(^{31}\)P Fermi Contact Shift (ppm)		
	Lia	Lib	Pa	Pb
HYB20	22	55	2194	1608
HYB35	18	37	1604	1238

\(^7\)Li NMR fitting procedure: The \(^7\)Li NMR spectra of the HEBM samples shown in Figure 6(b) were deconvoluted using the DMFIT software.\(^6\) For the 0.5 h HEBM sample, the two distinct Li
environments at 79 ppm (peak 1) and 4 ppm (peak 2) were fit with narrow Lorentzian peaks. A broad Gaussian peak (peak 3) at 43 ppm was also required to adequately fit the spectrum, suggesting the presence of a distribution of Li environments as a result of disorder. The 1st and 2nd order sidebands associated with each peak were also included in the fit. In the final step of the fitting procedure, the peak position, width and intensity of all of the isotropic peaks was allowed to vary, in addition to the peak intensity of the 1st and 2nd order sidebands.

The deconvolution of the 0.5 h HEBM samples was subsequently used as the starting point for the fit of the other spectra at different HEBM times (0.2, 0.3, 0.4, 0.6 and 0.7 h) in Figure 6(b). For each spectrum, a multistep procedure was used in which initially only the peak amplitudes were allowed to vary, with the peak positions and peak widths fixed to the values found for the 0.5 h sample. In the second step only the peak amplitudes and the peak positions were allowed to vary and in the final step, all parameters (peak amplitude, position and width) were allowed to vary. The resulting peak positions and widths are shown in Figure S4. By using the multistep fitting procedure, large, unphysical variations in the peak widths and peak positions were minimized.

![Figure S4](image.png)

Figure S4. Variation in the (a) 7Li NMR shift and (b) peak width of the three Li environments in ball milled LVPO as a function of HEBM time.
\textbf{31P NMR fitting procedure:}

The 31P NMR spectrum of the 0.5 h HEBM sample was deconvoluted using a similar approach to the 7Li NMR spectra. The P1 and P2 environments that were present in the pristine LVPO material (Figure 7(a)) were fit with two Gaussian peaks at 1600 ppm (peak 1) and 1519 (peak 2), respectively, with widths of 123 and 382 ppm, respectively. A very broad (2514 ppm) Gaussian type peak was also included at 1889 ppm (peak 3). 1st and 2nd order sidebands were included in the fit for peak 1 and peak 2, but were omitted for peak 3. In the final step of the fitting procedure, the peak positions, widths and amplitudes of all of the isotropic peaks were allowed to vary, in addition to the amplitudes of the spinning sidebands. A direct comparison of the integrated intensities of the peaks was not attempted due to the very fast relaxation of peak 3, which meant that the majority of the signal was lost during the echo pulse sequence, even at 60 kHz MAS.

\textbf{DFT optimized LVPO structures:}

The structure of pristine LVPO with \textit{P\bar{T}} symmetry from previous reported7 was fully optimized (atomic positions and unit cell parameters) with BS-I. A quasi-Newtonian algorithm was used for the optimization with RMS convergence criteria of 8.16×10^{-3} and 3.27×10^{-2} eV, for forces and displacements respectively. To investigate the effect of Li ordering on the structure, a second structure was created, in which the Li ordering along the [110] direction of the cell was altered. This structure was created by removing two of the Li sites from the lowest energy structure of \textit{\varepsilon}-Li\textsubscript{1.5}VOPO\textsubscript{4} found in previous publication.7 This structure, which will subsequently be referred to as structure-B, was fully optimized with BS-I using the same convergence criteria as the pristine LVPO cell.
Table S3. Values of optimized unit cell parameters for the pristine and metastable (structure-B) structures of LVPO calculated with the HYB20 (20 % Hartree Fock exchange) and HYB35 (35 % Hartree Fock exchange) hybrid functionals.

Structure	Lattice Parameters	Angles				
	a (Å)	b (Å)	c (Å)	α (°)	β(°)	γ(°)
Experimental	6.746	7.207	7.928	89.82	91.28	116.91
Pristine LVPO (HYB20)	6.792	7.147	7.832	89.78	91.85	116.82
Pristine LVPO (HYB35)	6.771	7.109	7.802	89.83	91.81	116.86
LVPO Structure-B (HYB20)	6.741	7.059	7.999	89.89	89.68	115.41
LVPO Structure-B (HYB35)	6.718	7.021	7.972	89.90	89.82	115.37
Table S4. Atomic coordinates for DFT optimized pristine LVPO structures using the HYB20 (20 \% Hartree Fock exchange) and HYB35 (35 \% Hartree Fock exchange) hybrid functionals.

Atom	HYB20	HYB35				
	x	y	z	x	y	z
Li (Li2)	0.7896	0.7022	0.9284	0.7900	0.7038	0.9284
Li (Li1)	0.3080	0.8250	0.4283	0.3078	0.8239	0.4284
Li (Li1)	0.6921	0.1750	0.5717	0.6923	0.1762	0.5716
Li (Li2)	0.2604	0.2978	0.0716	0.2101	0.2962	0.0716
V	0.2442	0.5267	0.7353	0.2442	0.5269	0.7355
V	0.7505	0.9691	0.2330	0.7504	0.9690	0.2332
V	0.2496	0.0309	0.7671	0.2496	0.0310	0.7668
V	0.7558	0.4733	0.2647	0.7558	0.4731	0.2645
P (P2)	0.7327	0.7597	0.5908	0.7328	0.7596	0.5911
P (P2)	0.2673	0.2403	0.4093	0.2672	0.2404	0.4090
P (P1)	0.7702	0.2474	0.9081	0.7702	0.2474	0.9079
P (P1)	0.2298	0.7526	0.0920	0.2298	0.7526	0.0922
O	0.4453	0.9195	0.1774	0.4451	0.9186	0.1777
O	0.9436	0.9197	0.6839	0.9435	0.9189	0.6842
O	0.7244	0.7423	0.1615	0.7248	0.7426	0.1619
O	0.2623	0.5829	0.9908	0.2616	0.5830	0.9907
O	0.9200	0.3449	0.7540	0.9205	0.3452	0.7547
O	0.5731	0.6482	0.7369	0.5729	0.6483	0.7365
O	0.2756	0.2577	0.8385	0.2752	0.2574	0.8381
O	0.3629	0.1201	0.5272	0.3613	0.1198	0.5269
O	0.4269	0.3518	0.2631	0.4271	0.3517	0.2635
O	0.7377	0.4171	0.0093	0.7384	0.4170	0.0094
O	0.0564	0.0803	0.3161	0.0565	0.0811	0.3158
O	0.8758	0.1420	0.0293	0.8741	0.1412	0.0289
O	0.1243	0.8580	0.9707	0.1259	0.8588	0.9711
O	0.2247	0.3987	0.5132	0.2255	0.3991	0.5130
O	0.0800	0.6551	0.2460	0.0795	0.6548	0.2453
O	0.7697	0.2606	0.3320	0.7693	0.2608	0.3319
O	0.5547	0.8085	0.8226	0.5549	0.8014	0.8223
O	0.2303	0.7394	0.6680	0.2307	0.7392	0.6681
O	0.7753	0.6013	0.4868	0.7745	0.6009	0.4870
O	0.6371	0.8799	0.4728	0.6387	0.8802	0.4731
Table S5. Atomic coordinates for DFT optimized metastable LVPO structure (structure-B) using the HYB20 (20 % Hartree Fock exchange) and HYB35 (35 % Hartree Fock exchange) hybrid functionals.

Atom	HYB20			HYB35		
	x	y	z	x	y	z
Li (Lib)	0.6410	0.6380	0.9266	0.6379	0.6368	0.9283
Li (Lib)	0.1408	0.6373	0.4267	0.1380	0.6367	0.4283
Li (Lia)	0.1166	0.1232	0.0543	0.1209	0.1265	0.0562
Li (Lia)	0.6156	0.1225	0.5840	0.6208	0.1265	0.5561
V	0.7370	0.0146	0.2588	0.7372	0.0150	0.2589
V	0.7394	0.5182	0.2337	0.7390	0.5174	0.2335
V	0.2368	0.0146	0.7589	0.2372	0.0151	0.7589
V	0.2394	0.5182	0.7337	0.2390	0.5174	0.7336
P (Pa)	0.7499	0.7364	0.5861	0.7484	0.7377	0.5858
P (Pb)	0.2408	0.2462	0.4084	0.2423	0.2448	0.4078
P (Pa)	0.2500	0.7365	0.0861	0.2484	0.7377	0.0858
P (Pb)	0.7408	0.2463	0.9084	0.7423	0.2448	0.9078
O	0.9310	0.3957	0.7992	0.9290	0.3898	0.7950
O	0.2526	0.7422	0.6586	0.2485	0.7400	0.6597
O	0.3164	0.1122	0.5235	0.3204	0.1143	0.5245
O	0.2305	0.2324	0.8284	0.2334	0.2332	0.8292
O	0.9205	0.8583	0.7196	0.9221	0.8643	0.7150
O	0.5529	0.5763	0.6886	0.5540	0.5798	0.6908
O	0.8428	0.6231	0.4637	0.8380	0.6212	0.4644
O	0.4206	0.8584	0.2196	0.4221	0.8642	0.2150
O	0.1772	0.8836	0.9852	0.1726	0.8815	0.9838
O	0.5598	0.1011	0.7877	0.5586	0.0969	0.7907
O	0.4309	0.3956	0.2991	0.4290	0.3898	0.2949
O	0.0598	0.1011	0.2877	0.0586	0.0969	0.2907
O	0.8165	0.1122	0.0235	0.8204	0.1142	0.0245
O	0.0529	0.5763	0.1886	0.0540	0.5798	0.1908
O	0.1468	0.3728	0.5153	0.1522	0.3746	0.5139
O	0.6772	0.8835	0.4852	0.6725	0.8815	0.4838
O	0.3428	0.6231	0.9637	0.3380	0.6212	0.9644
O	0.6467	0.3729	0.0153	0.6522	0.3746	0.0139
O	0.7306	0.2324	0.3284	0.7334	0.2332	0.3292
O	0.7525	0.7422	0.1586	0.7485	0.7400	0.1597
Table S6. Discharge capacities of ball-milled LVPO in high-voltage (HV, 4.5-2.5 V) and low-voltage (LV, 2.5-1.6 V) regimes.

Discharge capacity in HV (mAh g⁻¹)	Discharge capacity in LV (mAh g⁻¹)	
HEBM 0.2 h	123	141
HEBM 0.3 h	124	152
HEBM 0.4 h	133	151
HEBM 0.5 h	152	151
HEBM 0.6 h	117	140
HEBM 0.7 h	116	135

Figure S5. Morphology of (a) super P carbon, (b) acetylene black, (c) graphene nanoplatelets, (d) graphite; LVPO ball-milled 0.5 hours with (e) acetylene black, (f) graphene nanoplatelets and (g) graphite.
Ionic conductivity (σ_i) and electronic conductivity (σ_e) of LVO:

The pellet of LVO powder was die-pressed and sintered, then coated with Ag conductor paste on both sides to form blocking electrodes. The size of pellet was 1.3 cm diam and 0.08-0.1 cm thick. EIS was performed at room temperature at a frequency range from 200 kHz to 1 mHz with applying amplitude of 5 mV. The impedance spectra are shown in Figure S6. The intercept of the depressed semi-circle with Z_{Re} axis at high frequency is the total resistance R_{total}, corresponding to the electronic and ionic resistance in parallel connection ($R_i R_e / R_i+R_e$). The depressed semi-circle at low frequency is caused by the interfacial resistance. The inclined straight line of Warburg response at low frequency is attributed to stoichiometric polarization in LVO. The electronic resistance R_e was achieved by four-probes d.c. methods, performed on Keithley 2400 sourcemeter. The measured σ_i and σ_e of LVO is 3.6×10^{-7} and 1.3×10^{-8} S cm$^{-1}$, respectively.

Figure S6. The conductive impedance spectra of LVO and the equivalent circuit model.
Figure S7. Charge-discharge curve of LVO at voltage range of 1.6–4.5 V by the rate of C/5.

Figure S8. (a) rate capability and capacity retention (inset), and (b) discharge capacities upon extended cycling at C/5 (0.076 mA cm$^{-2}$) of uncoated LVPO and LVPO/LVO plotted per g of LVPO+LVO.

References:

1. Ankudinov, A.L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Phys. Rev. B. 1998, 58, 7565–7576.
2. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT., J. Synchrotron Radiat. 2005, 12, 537–541.
3. Lavrov, A.V.; Nikolaev, V. P.; Sadikov, G. G.; Porai-Koshits, M. A. Synthesis and the crystal structure of mixed vanadyl and lithium orthophosphate LiVOPO$_4$, Dokl. Akad. Nauk SSSR. 1982, 266, 343–346.
4. Kim, J.; Middlemiss, D. S.; Chernova, N. A.; Zhu, B. Y.; Masquelier, C.; Grey, C. P.
 Linking local environments and hyperfine shifts: A combined experimental and theoretical
 31P and 7Li solid-state NMR study of paramagnetic Fe (III) phosphates. *J. Am. Chem. Soc.*
 2010, *132*, 16825-16840.
5. Ateba Mba, J.-M.; Masquelier, C.; Suard, E.; Croguennec, L. Synthesis and
 crystallographic study of homeotypic LiVPO$_4$F and LiVPO$_4$O. *Chem. Mater.* **2012**, *24*,
 1223-1234.
6. Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli,
 B.; Gan, Z.; Hoatson, G. Modelling one-and two-dimensional solid-state NMR spectra.
 Magn. Reson. Chem. **2002**, *40*, 70-76.
7. Lin, Y.-C.; Wen, B.; Wiaderek, K. M.; Sallis, S.; Liu, H.; Lapidus, S. H.; Borkiewicz, O. J.;
 Quackenbush, N. F.; Chernova, N. A.; Karki, K. Thermodynamics, Kinetics and Structural
 Evolution of ε-LiVOPO$_4$ over Multiple Lithium Intercalation. *Chem. Mater.* **2016**, *28*,
 1794-1805.
8. Jamnik, J. Impedance spectroscopy of mixed conductors with semi-blocking boundaries.
 Solid State Ionics **2003**, *157*, 19-28.
9. Jamnik, J.; Maier, J. Treatment of the impedance of mixed conductors equivalent circuit
 model and explicit approximate solutions. *J. Electrochem. Soc.* **1999**, *146*, 4183-4188.
10. Thangadurai, V.; Huggins, R. A.; Weppner, W. Use of simple ac technique to determine the
 ionic and electronic conductivities in pure and Fe-substituted SrSnO$_3$ perovskites. *J. Power
 Sources* **2002**, *108*, 64-69.
11. Guo, X.; Fleig, J.; Maier, J. Separation of electronic and ionic contributions to the grain
 boundary conductivity in acceptor-doped SrTiO$_3$. *J. Electrochem. Soc.* **2001**, *148*, J50-J53.
12. Jamnik, J.; Maier, J. Generalised equivalent circuits for mass and charge transport:
 chemical capacitance and its implications. *Phys. Chem. Chem. Phys.* **2001**, *3*, 1668-1678.
13. Inaguma, Y.; Liquan, C.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M. High
 ionic conductivity in lithium lanthanum titanate. *Solid State Commun.* **1993**, *86*, 689-693.
14. Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. Nano-network electronic conduction in iron
 and nickel olivine phosphates. *Nature materials* **2004**, *3*, 147-152.