Demonstrating backflow in classical two beams’ interference

Anat Daniel1∗, Bohnishikha Ghosh1,∗, Bernard Gorzkowski2,∗ and Radek Lapkiewicz1∗

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland

1 These authors contributed equally to this work.

∗ Authors to whom any correspondence should be addressed.

E-mail: anat.daniel@gmail.com, b.ghosh@uw.edu.pl, bernard.gorzkowski@gmail.com and radek.lapkiewicz@fuw.edu.pl

Keywords: interference, backflow, optical beams, local momentum, wavefront

Supplementary material for this article is available online

Abstract

The well-known interference pattern of bright and dark fringes was first observed for light beams back in 1801 by Thomas Young. The maximum visibility fringes occur when the irradiance of the two beams is equal, and as the ratio of the beam intensities deviates from unity, fringe visibility decreases. An interesting outcome that might not be entirely intuitive, however, is that the wavefront of such unequal amplitude beams’ superposition will exhibit a wavy behavior. In this work, we experimentally observe the backflow phenomenon within this wavy wavefront. Backflow appears in both optics (retro-propagating light) and in quantum mechanics (QM), where a local phase gradient is not present within the spectrum of the system. It has become an interesting subject for applications as it is closely related to superoscillations whose features are used in super resolution imaging and in a particle’s path manipulations. The first successful attempt to observe backflow was made only recently in an assembly of optical fields, by synthesizing their wavefront in a complex manner. Yet, backflow is perceived as hard to detect. Here, by utilizing interference in its most basic form, we reveal that backflow in optical fields is robust and surprisingly common, more than it was previously thought to be.

The phenomenon of backflow was discovered more than 50 years ago by quantum physicist G.R Allcock [1] while studying the problem of arrival times in QM. In his theoretical work, he uncovered a counterintuitive effect that occurs when a forward propagating particle, with only positive momenta, has a non-zero probability of propagating backwards during specific time intervals. Bracken and Melloy, following his study, provided an upper limit to the probability of backflow, giving a broader perspective on the phenomenon [2]. Despite the strange nature of the effect or perhaps due to it, backflow has appeared in a volume of research spanning over myriad disciplines such as, Bose–Einstein Condensate (BEC) [3], black holes [4], quantum mechanical particles [5–9], etc. The common understanding in all of these works is that backflow is, just as in the double slit interference of matter waves, a manifestation of the wave nature of quantum particles. Other theoretical studies [10, 11] show that backflow is a versatile phenomenon that occurs in any system supporting coherent waves interference, including quantum mechanical wave-functions (where the probability density flows backwards) and classical waves (where the energy density flows backwards). Here, we shed light on the classical wave-like picture of backflow by introducing a simple experimental demonstration with electromagnetic waves.

Effectively, backflow is present when the local Fourier components of the superposition are not contained within its Fourier spectrum [5], an outcome often referred to as superoscillation [10, 12–14]. In the latest experimental demonstration of backflow in optical systems, Eliezer et al [12], designed a beam of light which manifests backflow in the transverse momentum by creating a complex superposition of plane waves with only negative Fourier components using a spatial light modulator (SLM). The authors found positive local Fourier components by scanning a slit in the Fourier plane of the SLM. In their work, the observation of backflow requires precise control over the input state of the beam. In our work, on the other hand, backflow in the transverse momentum arises naturally from an optical interference of two beams with unequal amplitudes, in free space. The first advantage of this approach is that the maximum amount of backflow is no longer limited by the spatial resolution of the SLM. The second advantage is its generic nature; in order to
observe backflow, one does not need to tailor a complex wavefront but only superpose two wavepackets—a requirement fulfilled in various physical systems such as classical electromagnetic waves, neutrons [15], molecules [16], electrons [17], and BEC [18].

We initially show analytically how backflow arises from the wavy wavefront that is a result of the superposition of two unequal beams. Figure 1 depicts the intensity distribution and the wavefront (yellow curves) of superposition of two plane waves with unequal amplitudes, equally inclined to the z-axis $\psi(x, z) = a\psi_1(x) + b\psi_2(x)$, where a is the ratio between the amplitudes, $2a$ is a measure of the angle between the propagation direction of the plane waves, and z and x are the transverse and longitudinal directions respectively (all parameters are dimensionless). The wavy nature of the wavefront [19, 20] (figure 1(a)) leads to strong phase gradients $\vec{k} = \vec{\nabla} \arg \{\psi(x, z)\}$ in the dark fringes, and thus, a higher x-component of the local wave vector (red arrows, orthogonal to the wavefronts) than those of the component plane waves in these regions (white arrows). The dark fringes are hence the regions in which backflow can be detected (see for example, region marked by the green box). In the case of perfectly equal amplitudes however, backflow does not occur (figure 1(b)). We note that the longitudinal i.e. z components of the constituent plane waves are assumed to be equal. This assumption could be violated, and would lead to the observation of backflow in the longitudinal direction. However, in our demonstration, we focus on backflow in the transverse direction only.

At this point, we would like to outline the equivalence between the definition of backflow in electromagnetic waves in free space and the aforementioned definition in the wave vector picture. Backflow in electromagnetism [11, 21], is the counterintuitive direction of the Poynting vector. Specifically, in some regions of space the resultant Poynting vector points in a direction not contained among the directions of the constituent plane waves, i.e. the Fourier components of the electromagnetic field. In our experiment, given that we consider scalar fields in free space, the Poynting vector $\mathbf{P}(\mathbf{r}) = \Im \{ \psi^*(\mathbf{r}) \nabla \psi(\mathbf{r}) \} = |\psi(\mathbf{r})|^2 \nabla \arg \{\psi(\mathbf{r})\}$, is merely the local wave vector scaled by intensity [19, 20], thereby making the demonstration in wave vector picture, which we adopt here, an indication of the direction of energy flow.

Plane waves are infinite in extent and are therefore experimentally infeasible. Hence, we prepare the superposition of two Gaussian beams which are made to interfere at their waists (figure 2(a)), wherein their wavefronts are planar. Additionally, the region of interference is magnified, thus emulating a superposition of plane waves, up to a small but finite width of the spectrum of each beam (for further details on backflow in Gaussian beams see supplementary material B).
Figure 2. Experiment setup for demonstrating backflow. (a) Concept of the setup. Two magnified Gaussian beams of unequal amplitudes intersect at their waists (simulated). Owing to unequal intensities of the beams, the wavefront of the resultant superposition is wavy (not flat). Following the Shack–Hartmann technique, by finding the centroids of the spot-field and measuring their displacement Δx with respect to a reference, the wavefront of the beams’ superposition is reconstructed. The local wave vector is derived for each lenslet. (b) A polarization-based Mach–Zehnder interferometer for superposing two beams. Half wave plate (HWP) sets the ratio between the two beams. A polarized beam displacer (PBD1; unrotated w.r.t. the lab frame) separates the initial beam into its horizontal and vertical components. A second polarizing beam displacer (PBD2) together with a half wave plate rotated by 45 degrees compensate for the path difference of the two beams and set them with a fixed transverse separation. Two additional beams that emerge from PBD2 are blocked (BB). A polarizer (POL) is inserted to enable the interference of the two orthogonally polarized parallel beams that emerge from PBD2, followed by a lens (L1, $f = 150$ mm) that combines them. The inset is a simulation the interference pattern of two beams along the axis of propagation $-z$. A 4 f imaging system (L2, $f = 35$ mm and L3, $f = 1000$ mm), with a magnification of 28.6, images the a xy cross section of the interference pattern on to the wavefront sensor. ϕ_1 and ϕ_2 indicate the wavefronts of beam 1 and beam 2 respectively, the beams’ wavefronts and their resultant superposition wavy wavefront are measured by the wavefront sensor. The spectrum of beam 1 and 2 is measured at the focal plane of lens L2 by placing the CMOS camera without the microlens array at this plane. (c) The spot field of the xy cross section of the interference fringes, given by the microlens array.

Figure 2(b) illustrates the experimental setup. A superposition of two Gaussian beams is prepared by using a polarization based Mach–Zehnder interferometer. A 780 nm polarized laser beam passes through a polarizing beam displacer (PBD, ThorLabs BD40) that separates its orthogonal polarizations. In order to control the amplitude ratio between the beams (i.e. controlling b in $\psi(x, z)$), a half wave plate is placed prior to the PBD1. A second polarizing beam displacer (PBD2), together with a half wave plate rotated by 45 degrees in the basis of PBD1, compensates for the path difference of the two beams and allows us to control the transverse separation between them. The beam separation determines the angle of intersection (i.e. controlling a in $\psi(x, z)$). Vertical orientation of fringes is ensured for every beam separation by rotating the optical axis of PBD1 w.r.t. the z axis. A polarizer set to 45 degrees in the basis of PBD2, is inserted to enable the interference of the two orthogonally polarized parallel beams that emerge from PBD2. A lens (L1, $f = 150$ mm) combines the beams at its focal plane and a cross-section of the interference pattern is imaged onto a Shack-Hartmann wavefront sensor, consisting of a microlens array (ThorLabs-MLA-150-5C-M) attached to the CMOS camera (mvBlueFOX-200wG). The initial beam waist of 0.14 mm is magnified by a factor: $M = 28.6$, to make the beams’ spectrum narrower, such that the CMOS sensor of dimension 4 mm intercepts approximately the waist. The local wave vectors of the superposition are measured by the Shack–Hartmann wavefront sensor technique [22].

By virtue of vertical fringes on the camera, we ensure that there is only one transverse component of the wave vector. Yet, in general, in case of two transverse components, the predicted backflow remains unchanged (for further details see supplementary material A).

As expected from the wavy wavefront, the plot in figure 3 shows the oscillating local wave vector of the superposition (magenta curves). Backflow is observed in the transverse x direction, in regions where the local wave vector of the superposition $k_{s,x}$ exceeds its constituent Gaussian momentum distributions, i.e. the spectrum of beam 1 (centered at $k_{1,x}$, width 3σ) and of beam 2 (centered at $k_{2,x}$, width 3σ). This result can be associated with figure 1, where k_s exceeds the triangle formed by the mean directions of beam 1, k_1, and beam 2, k_2, thus leading to backflow. We estimate $k_{s,x}$, $k_{1,x}$ and $k_{2,x}$ by finding the centroids of the spot-field [23].
(figure 2(c)) and measuring their displacement with respect to a reference. The reference in our setting is not measured directly, but calculated: corresponding to each lenslet, the centroid position of the spot given by each beam is obtained, and their mean position is assigned as the reference position. The diffraction spread induced by each lenslet does not change the position of the centroid thereby assuring that it is determined only by the local momentum.

The value of a is extracted by fitting the intensity cross section to a sinusoidal function with a Gaussian envelope (details in the caption figure 3). The amplitude ratio between the beams, b, is obtained by fitting the Gaussian function to the images of the constituent beams and taking the ratio of the Gaussian amplitudes. These parameters are then used to calculate the theoretical prediction of $k_{s,x}$. The experimentally measured $k_{s,x}$ is in excellent agreement with the theoretical prediction. It may be observed that the heights of the peaks corresponding to backflow are slightly different across the x position, this is owed to a slight shift between the centers of the constituent Gaussian beams; see supplementary material C where we derived the theoretical $k_{s,x}$ including the aforementioned correction. Next, we obtain the spectrum of the superposition by taking its Fourier transform (figure 3 inset), using a lens (lens L2 in figure 2). We note that due to measuring the spread of the constituent Gaussian beams, $k_{s,x}$ is extracted by fitting the intensity cross section to a sinusoidal function with a Gaussian envelope (details in the caption figure 3). The amplitude ratio between the beams, b, is obtained by fitting the Gaussian function to the images of the constituent beams and taking the ratio of the Gaussian amplitudes. These parameters are then used to calculate the theoretical prediction of $k_{s,x}$. The experimentally measured $k_{s,x}$ is in excellent agreement with the theoretical prediction. It may be observed that the heights of the peaks corresponding to backflow are slightly different across the x position, this is owed to a slight shift between the centers of the constituent Gaussian beams; see supplementary material C where we derived the theoretical $k_{s,x}$ including the aforementioned correction. Next, we obtain the spectrum of the superposition by taking its Fourier transform (figure 3 inset), using a lens (lens L2 in figure 2). We note that due to measuring the spread (local transverse momentum) by implementing the Fourier transform with a lens (lenslet), the demonstration is confined to the paraxial approximation [24].

In order to confirm that we observed backflow, it is required to estimate the contribution of the momentum values which lie in the tail of the Gaussian spectrum of the individual beams, and show that it is
Figure 4. The effect of the amplitude ratio and the angle between the beams on the observation of backflow. (a)–(c) Ratio, b, is constant (up to the second digit after the decimal point) and the angle between the beams is increasing. As the angle increases, the displacement due to the backflow is higher and its appearance is more frequent. Namely, the observed backflow has a better chance to exceed the spectrum for higher angles, but simultaneously, its detection requires finer sampling in the x direction and therefore higher spatial resolution. (d)–(f) The angle between the beams, a, is constant and the amplitude ratio is increasing. Note how the interference contrast changes. As a is the same in all the cases, backflow appears with the same frequency across the interval of x. On the other hand, the displacement due to backflow is greater as the ratio between the beams increases. When b is closer to unity (but $b \neq 1$; otherwise, we reach a singularity in the dark fringe) the x-component of the local wave vector is more likely to exceed the spectrum (i.e. backflow) as the peaks are higher, but might not be sampled owing to the spatial resolution of the measuring device. A case where backflow is not observed is (a,d), where the displacements do not exceed the spectrum. In order to observe it, one can magnify further the Gaussian beams and accordingly shrink their spectra. In (f) the changing heights of the theoretically predicted peaks are due to the non-overlapping beams as mentioned in the main text and in the supplementary material C. Yet, the observation of backflow is not affected.

negligible compared to the ‘anomalous’ local momentum values arising from interference. For this estimation, the backflow probability P_{BF} is given by integrating the intensity over the regions of x positions within one fringe where anomalous momentum values are observed, and dividing by the intensity over one period of the fringe. The probability of finding the anomalous values within the Gaussian tails of the spectrum P_{SP} is given by integrating the spectrum over the part of its tail that can lead to such anomalous momentum values, and dividing by the integral over the full spectrum. For the data presented in figure 3 we find that P_{BF} is bigger than P_{SP} by at least three orders of magnitude, hence confirming backflow.

The finite width of the individual beams’ spectra may obscure and limit the observation of backflow, however this is not a fundamental limitation as we can further magnify the Gaussian beams thereby narrowing their spatial spectra.

As a further insight, we experimentally study the dependence of backflow on the amplitude ratio (b) and the angle between the two superposed beams (a). Figure 4 shows the features of backflow in a given interval of x. Figures 4(a)–(c) is a comparison between cases wherein the ratio b is constant (in practice, up to the second digit after the decimal point) but the angle between the beams is altered. As expected from an increased angle, the number of dark fringes per unit distance increases. Hence, the appearance of backflow is more frequent but the spatial extent of each peak is smaller. That is to say, for large angles the x-component of the local wave vector has a better chance to exceed the spectrum (i.e. backflow), but its detection requires finer sampling in the x direction. Figures 4(d)–(f) is a comparison between cases wherein the angle between the beams is constant but the ratio b is altered. Here, regardless of the ratio, the backflow appears with the same frequency across the interval of x. However, when b is closer to unity (but $b \neq 1$; otherwise, we reach a singularity in the dark fringe) there is still a better chance that the backflow exceeds the spectrum as the peaks are higher; simultaneously they get narrower and might not be sampled owing to the spatial resolution of the measuring device. We repeat the procedure of confirming backflow for the data in figures 4(a)–(f) and find that in all the cases except (a) and (d) P_{BF} is bigger than P_{SP} by at least three orders of magnitude; while in (a) and (d) we do not confirm backflow, as seen clearly from the plots.
It is important to note that the sampling in the x direction is determined by the size of the lenslet. An interesting question would then be the following—how does the finite size of each lenslet limit the maximum value of backflow that one can measure? For a fixed angle between the beams, extreme values of $k_{x,z}$ are obtained for b ratios close to 1. Under such circumstances, the wavefront passing through a single lenslet cannot be approximated as constant, and the measured centroid offset cannot be associated with a single wavefront slope anymore. In the supplementary material E we provide detailed comparison between the theoretical prediction of measured $k_{x,z}$ with infinitely small lenslets and that with lenslets of finite size.

In summary, we demonstrate backflow by measuring the local transverse component of the wave vector of the superposition of two wide Gaussian beams, and show that, in the dark intensity regions, it exceeds the spectrum of its constituents. The interference takes place in free space thereby excluding effects related to anisotropy or dispersion of media. Our study on optical waves makes use of a simple experimental configuration and can possibly be extended to various types of systems including matter waves [15–18], single photons [25, 26], and mechanical waves. Apart from preparing a superposition of two wavepackets, observation of backflow requires a measurement of local momentum, which is relatively straightforward and involves only spatial filtering and detection in the far field. In the case of single photons, for example, we could repeat the experiment and expect the results to be consistent with the current ones achieved using classical beams.

Backflow thus far was considered to be exotic and difficult to observe. Here, on the contrary, we show that it would be hard not to observe backflow as it is experimentally infeasible to satisfy the criterion of equal intensity of the interfering beams. Additionally, we can control the parameters (i.e. amplitude ratio and angle) and understand their physical relevance in observing the effect. Unlike the previous study [12] which involves constraints on state preparation (for example the resolution of the SLM), we show that it is not necessary to engineer a state that manifests backflow a priori, as such an engineering might be difficult in particular physical systems. The two-dimensional single shot local momentum measurement using a Shack–Hartmann wavefront sensor, devoid of scanning, can be advantageous in systems manifesting backflow in any two transverse directions, for example in beams containing orbital angular momentum or any azimuthal degree of freedom [20, 27–30]. Moreover, our setup enables studying backflow for partially coherent superpositions (corresponding to mixed quantum states) as local transverse momenta of partially coherent light can be measured with a Shack–Hartmann wavefront sensor [31]. This however, awaits further theoretical investigations.

As a transition from being merely a fundamental phenomenon under study, to also having possible applications, backflow can be found to be useful, for instance, in tailoring electromagnetic beams with non-conservative forces [32, 33], and in sub-diffraction limit imaging technologies [34, 35]. Once the effect is accessible and easy to achieve in the lab, as we have demonstrated here, it opens pathways for other potential applications involving interference of classical and quantum mechanical wavepackets.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

We are indebted to Yaron Silberberg for inspiring the research on wavy wavefronts and Tomasz Paterek for introducing us to the concept of backflow and for insightful comments on our manuscript. We thank Arseni Goussiev and Iwo Białynicki–Birula for valuable insights and discussions that broadened our understanding of the field. This work was supported by the Foundation for Polish Science under the FIRST TEAM project ‘Spatiotemporal photon correlation measurements for quantum metrology and super-resolution microscopy’ co-financed by the European Union under the European Regional Development Fund (POIR.04.04.00-00-3004/17-00), and by the National Laboratory for Photonics and Quantum Technologies—NLPQT (POIR.04.02.00-00-B003/18).

Author contribution

Bohnishikha Ghosh (B G), Bernard Gorzkowski (B A G) and Anat Daniel (A D) have equally contributed to this work. Conceptualization of this work: A D, R L, B G, B A G. Experiment’s design: B G, A D, R L. Building the set up: B G, A D. Data Analysis: B A G, B G, A D. Supporting theoretical calculations: B G. Visualization: A D, B G. Writing—original draft: A D, B G. Writing—review & editing: R L, B G, B A G, A D. Project supervision: R L.
ORCID iDs

Anat Daniel ♂ https://orcid.org/0000-0001-7124-7041
Bohnishikha Ghosh ♂ https://orcid.org/0000-0001-9272-8864
Bernard Gorzkowski ♂ https://orcid.org/0000-0002-1350-721X
Radek Łapkiewicz ♂ https://orcid.org/0000-0002-7026-7275

References

[1] Alcock G R 1969 The time of arrival in quantum mechanics I, II, and III Ann. Phys., NY 53 253–348
[2] Bracken A and Melloy G 1994 Probability backflow and a new dimension-less quantum number J. Phys. A 27 2197
[3] Palmero M, Torrontegui E, Muga J G and Modugno M 2013 Detecting quantum backflow by the density of a Bose-Einstein condensate Phys. Rev. A 87 053618
[4] Biswas D and Ghosh S 2021 Quantum backflow across a black hole horizon in a toy model approach Phys. Rev. D 104 104061
[5] Yearsley J and Halliwell J 2013 An introduction to the quantum backflow effect. J. Phys.: Conf. Ser. 442 012055
[6] Barbier M 2020 Quantum backflow for many-particle systems Phys. Rev. A 102 023334
[7] Miller M, Woo C Y, Dumke R and Paterek T 2021 Experimentally friendly formulation of quantum backflow Quantum 5 379
[8] Goussev A 2020 Probability backflow for correlated quantum states Phys. Rev. E 2 033206
[9] Goussev A 2021 Quantum backflow in a ring Phys. Rev. A 103 022217
[10] Berry M V 2010 Quantum backflow, negative kinetic energy, and optical retro-propagation J. Phys. A: Math. Theor. 43 415302
[11] Białynicki-Birula I, Białynicka-Birula Z and Augustynowicz S 2022 Backflow in relativistic wave equations J. Phys. A: Math. Theor. 55 235702
[12] Eliezer Y, Zacharias T and Bahabad A 2020 Observation of optical backflow Optica 7 72–76
[13] Yuan G, Rogers E T F and Zeludev N 2019 "Plasmonics" in free space: observation of giant wave-vectors, vortices, and energy backflow in super-oscillatory optical fields Light Sci. Appl. 8 2
[14] Berry M V and Popescu S 2006 Evolution of quantum superoscillations and optical superresolution without evanescent waves J. Phys. A 39 6965
[15] Klepp J et al 2014 Fundamental phenomena of quantum mechanics explored with neutron interferometers Prog. Theor. Exp. Phys. 2014 082A01
[16] Fein Y Y, Geyer P, Zwick P, Kialka F, Pedalino S, Mayor M, Gerlich S and Arndt M 2019 Quantum superposition of molecules beyond 25 kDa Nat. Phys. 15 1242–5
[17] Ehberger D, Hammer J, Eisele M, Krüger M, Nej J, Hägele A and Hommelhoff P 2015 Highly coherent electron beam from a laser-triggered tungsten needle tip Phys. Rev. Lett. 114 227601
[18] Schum T, Hofferberth S, Andersson I M, Wildermuth S, Groth S, Bar-Joseph I, Schniedmayer J and Krüger P 2005 Matter-wave interferometry in a double well on an atom chip Nat. Phys. 1 57–62
[19] Berry M V and McDonald K T 2008 Exact and geometric optical energy trajectories in twisted beams J. Opt. A: Pure Appl. Opt. 10 053005
[20] Berry M V 2009 Optical currents J. Opt. A: Pure Appl. Opt. 11 094001
[21] Saari P and Besieris I 2021 Backward energy flow in simple four-wave electromagnetic fields Eur. J. Phys. 42 055301
[22] Nirmalai T, Pudasainii G and Bille J 2003 Very fast-front measurements at the human eye with a custom CMOS-based Hartmann–Shack sensor Opt. Express 11 2704–16
[23] Kong F, Polo M C and Lambert A 2017 Centroid estimation for a Shack–Hartmann wavefront sensor based on stream processing Appl. Opt. 56 6466–75
[24] Goodman J W 1988 Introduction to Fourier Optics 2nd edn (New York: McGraw-Hill)
[25] Białynicki-Birula I 1994 On the wave function of the photon Acta Phys. Pol. A 86 97
[26] Yuan G, Vezzoli S, Altuzarra C, Rogers E T, Couteau C, Soci C and Zeludev N 1 2016 Quantum super-oscillation of a single photon Light Sci. Appl. 5 e16127
[27] Leach J, Keen S, Padgett M J, Saunter C and Love G D 2006 Direct measurement of the skew angle of the Poynting vector in a helically phased beam Opt. Express 14 11919–24
[28] Kotlyar V V, Staferov S S and Nalimov A G 2019 Energy backflow in the focus of a light beam with phase or polarization singularity Phys. Rev. A 99 033840
[29] Zacharias T and Bahabad A 2020 Light beams with volume superoscillations Opt. Lett. 45 3482–5
[30] Shi Z 2015 Scan-free direct measurement of an extremely high-dimensional photonic state Optica 2 388–92
[31] Zheng Y, Yang M, Liu Z-H, Xu J-S, Li C-F and Guo G-C 2021 Detecting momentum weak value: Shack–Hartmann versus a weak measurement wavefront sensor Opt. Lett. 46 5352–5
[32] Sukhov S and Dogariu A 2010 On the concept of "tractor beams" Opt. Lett. 35 8487–9
[33] Forgacs P, Lukács Á and Romáczukiewicz T 2013 Plane waves as tractor beams Phys. Rev. D 88 125007
[34] Zeludev N I and Yuan G 2022 Optical superoscillation technologies beyond the diffraction limit Nat. Rev. Phys. 4 16–32
[35] Chen G, Wen Z-Q and Qiu C-W 2019 Superoscillation: from physics to optical applications Light Sci. Appl. 8 56
[36] Akondi V, Steven S and Dubra A 2019 Centroid error due to non-uniform lenslet illumination in the Shack–Hartmann wavefront sensor Opt. Lett. 44 17
[37] Bara S 2003 Measuring eye aberrations with Hartmann–Shack wave-front sensors: should the irradiance distribution across the eye pupil be taken into account? J. Opt. Soc. Am. A 20 2237
[38] Akondi V and Dubra A 2019 Accounting for focal shift in the Shack–Hartmann wavefront sensor Opt. Lett. 44 4151