Dynamical inference for transitions in stochastic systems with α-stable Lévy noise

To cite this article: Ting Gao et al 2016 J. Phys. A: Math. Theor. 49 294002

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2016 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.
Dynamical Inference for Transitions in Stochastic Systems with α–stable Lévy Noise

Ting Gao1, Jinqiao Duan1, Xingye Kan2 & Zhuan Cheng1

1. Department of Applied Mathematics, Illinois Institute of Technology
 Chicago, IL 60616, USA
 E-mail: tinggao0716@gmail.com, duan@iit.edu

2. School of Mathematics, University of Minnesota
 Minneapolis, MN 55414, USA
 E-mail: xkan@umn.edu

May 22, 2016

Abstract

A goal of data assimilation is to infer stochastic dynamical behaviors with available observations. We consider transition phenomena between metastable states for a stochastic system with (non-Gaussian) α–stable Lévy noise. With either discrete time or continuous time observations, we infer such transitions between metastable states by computing the corresponding nonlocal Zakai equation (and its discrete time counterpart) and examining the most probable orbits for the state system. Examples are presented to demonstrate this approach.

Short Title: Transitions in Non-Gaussian Stochastic Systems

Key Words: Nonlocal Zakai equation; nonlocal Laplace operator; infer mean exit time; transitions between metastable states; most probable orbits

PACS (2010): 05.40.Ca, 02.50.Fz, 05.40.Fb, 05.40.Jc

1 Introduction

Random fluctuations in nonlinear systems in engineering and science are often non-Gaussian [32]. For instance, it has been argued that diffusion by geophysical turbulence [28] corresponds to a series of “pauses”, when the particle is trapped by a coherent structure, and “flights” or “jumps” or other extreme events, when the particle moves in the jet flow. Paleoclimatic data

*This work was partly supported by the NSF Grant 1025422.
[9, 10] also indicate such irregular processes. There are also experimental demonstrations of Lévy flights in foraging theory and rapid geographical spread of emergent infectious disease. Humphries et. al. [15] used GPS to track the wandering black bowed albatrosses around an Island in Southern Indian Ocean to study the movement patterns of searching food. They found that by fitting the data of the movement steps, the movement patterns obeys the power-law property with power parameter $\alpha = 1.25$. To get the data set of human mobility that covers all length scales, Brockmann [5] collected data by online bill trackers, which give successive spatial-temporal trajectories with a very high resolution. When fitting the data of probability of bill traveling at certain distances within a short period of time (less than one week), he found power-law distribution property with power parameter $\alpha = 1.6$, and observed that α–stable Lévy motions are strikingly similar to practical data of human influenza.

Lévy motions are thought to be appropriate models for a class of important non-Gaussian processes with jumps [26, 4, 25]. Recall that a Lévy motion $L(t)$, or L_t, is a stochastic process with stationary and independent increments. That is, for any s, t with $0 \leq s < t$, the distribution of $L_t - L_s$ only depends on $t - s$, and for any $0 \leq t_0 < t_1 < \cdots < t_n$, the random variables $L_{t_i} - L_{t_{i-1}}$, $i = 1, \cdots, n$, are independent. A Lévy motion has a version whose sample paths are almost surely right continuous with left limits.

Stochastic differential equations (SDEs) with non-Gaussian Lévy noises have attracted much attention recently [11, 2, 27]. To be specific, let us consider the following n-dimensional stochastic state system:

$$dX_t = f(X_t, t)dt + dL_t^\alpha, \quad X_0 = x_0,$$

where f is a vector field (also called a drift), and L_t^α is a symmetric α–stable Lévy motion ($0 < \alpha < 2$), defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that we have either

(i) a discrete time m-dimensional stochastic observation system:

$$y_k = h(x_k, t_k) + \sqrt{R_k}v_k, \quad k = 0, 1, \cdots,$$

where v_k is a white sequence of Gaussian random variables, i.e. v_k’s are mutually independent standard normal random variables, and R_k is a sequence of nonnegative numbers;

or

(ii) a continuous time m-dimensional stochastic observation system:

$$dY_t = h(X_t, t)dt + \sqrt{\varepsilon} dW_t, \quad Y_0 = y_0,$$

where h is a given vector field (sometimes called a sensor), ε is the noise intensity and W_t is a Brownian motion.

In the present paper, we estimate system states, with help of observations, and in particular, we try to capture transitions between metastable
states by examining most probable paths for system states. We also infer
mean exit time from metastable region, using available observations. Our
data assimilation approach allows the state system (1) to be a stochastic
system with non-Gaussian Lévy noise L_α^α, while most existing works involve
with (Gaussian) Brownian noise \[3\]. Moreover, the observation system (3)
can also contain non-Gaussian Lévy noise, because this will only introduce a
random term in the Zakai equation (16) which does not involve a numerical
difficulty. For recent works on data assimilation and stochastic filtering for
state systems with non-Gaussian noise, see \[24, 29, 14, 23\]. A limitation of
our approach is that the state systems need to be low dimensional, because
we use a finite difference scheme \[13, 31\] to simulate the Zakai equation (16)
which is a stochastic partial differential equation.

This paper is organized as follows. We consider state estimates with
discrete time and continuous time observations in Sections 2 and 3, re-
information about the system state X_t, and hence will be useful in our investigation of state estimation. Also note that the non-Gaussianity of the Lévy noise manifests as nonlocality (an integral term) in the generator. The adjoint operator for the generator A is

$$A^*p = -\partial_x(f(x,t)p(x,t)) + \sigma \int_{\mathbb{R}^1 \setminus \{0\}} [p(x+y,t) - p(x,t) - I_{\{|y|<1\}} y \partial_x p(x,t)] \nu_\alpha(dy).$$

(7)

The Fokker-Planck equation for the SDE (4) is ([2, 11]):

$$p_t = A^*p.$$

(8)

Let Y_{t_k} be the sigma-field generated by \{y_0, y_1, \ldots, y_k\}. Similarly as in [17], we have the following theorem which determines the time evolution of the conditional probability density function $p(x, t \mid Y_{t_k})$. For convenience, we often write $p(x, t)$ for $p(x, t \mid Y_{t_k})$.

Theorem 1. (Conditional Density for Continuous-discrete Problems). Let system (4) satisfy the hypotheses that f is Lipschitz in space and the initial state X_0, with the property $E(|X_0|^2) < \infty$, is independent of \{L_t^\alpha, t \in [t_0, T]\}. Suppose that the prior density $p(x, t)$ for (4) exists and is once continuously differentiable with respect to t and twice with respect to x. Let h be continuous in both arguments and bounded for each t_k with probability 1.

Then, between observations, the conditional density $p(x, t \mid Y_t)$ satisfies the Fokker-Planck equation

$$dp(x, t \mid Y_{t_k}) = A^*p dt, \quad t_k \leq t < t_{k+1}, \quad p(x, t_0 \mid Y_{t_0}) = p(x_{t_0}).$$

(9)

where A^* is the operator in (7). At an observation (at t_k), the conditional density satisfies the following difference equation

$$p(x, t_k \mid Y_{t_k}) = \frac{p(y_k \mid x)p(x, t_k \mid Y_{t_k})}{\int_{\mathbb{R}^1} p(y_k \mid \xi)p(\xi, t_k \mid Y_{t_k})d\xi},$$

(10)

where $p(y_k \mid x)$ is

$$p(y_k \mid x) = (1/(2\pi)^{1/2}|R_k|^{1/2})exp\{-\frac{1}{2}[y_k - h(x, t_k)]^TR_k^{-1}[y_k - h(x, t_k)]\}.$$

(11)

Proof. The conditional density in the absence of observation, satisfies the Fokker-Planck equation. Therefore, between observations, conditional density $p(x, t \mid Y_{t_k})$ satisfies the Fokker-Planck equation (9).

Thus, it remains to determine the relationship between $p(x, t_k \mid Y_{t_k})$ and

$$p(x, t_k \mid Y_{t_k}) \equiv p(x, t_k \mid Y_{t_{k-1}}).$$
Since \(p(x, t_k|Y_{t_k}) = p(x, t_k|y_k, Y_{t_k-1}) \), we have by Bayes’ rule
\[
p(x, t_k|Y_{t_k}) = \frac{p(y_k|x, t_k, Y_{t_k-1})P(x, t_k|Y_{t_k-1})}{p(y_k|Y_{t_k-1})} = \frac{p(y_k|x, Y_{t_k-1})P(x, t_k|Y_{t_k-1})}{p(y_k|Y_{t_k-1})}.
\]

Now, since the noise \(\{v_k\} \) is white,
\[
p(y_k|x, t_k, Y_{t_k-1}) = p(y_k|x_k).
\]

Similarly, we compute
\[
p(y_k|Y_{t_k-1}) = \int p(y_k|x)p(x, t_k|Y_{t_k-1})dx.
\]

Therefore,
\[
p(x, t_k|Y_{t_k}) = \frac{p(y_k|x)p(x, t_k|Y_{t_k-1})}{\int_{R^1} p(y_k|\xi)p(\xi, t_k|Y_{t_k-1})d\xi}.
\]

This completes the proof. \(\square \)

This theorem provides the foundation for computing conditional density for system state of SDE (4), under discrete time observations.

Define \(x_m(t) \triangleq \text{maximizer for } \max_{x \in R^1} p(x, t) \).

This provides the most probable orbit ([11, 8]) starting at \(x_0 \). These most probable orbits are the maximal likely orbits for a dynamical system under noisy fluctuations.

Let us consider an example.

Example 1. Let us consider a scalar system with state equation
\[
dX_t = 4(X_t - X_t^3)dt + dL_t^\alpha, \quad X_0 = x_0.
\]

The discrete-time scalar observation is:
\[
y_k = h(x_k, t) + \sqrt{R_k}v_k,
\]

with \(h(x, t) = x \), and \(R_k \equiv 0.1 \). We take the magnitude \(\sigma = \sqrt{0.24} \) for the jump measure in \(L_t^\alpha \).

In the absence of Lévy noise, this system has two stable states: \(-1\) and \(+1\). When the noise kicks in, these two states are no longer fixed. The random system evolution near these two states, together with possible transitions between them, is sometimes called a metastable phenomenon [22]. For convenience, we call \(-1\) and \(+1\) (and random motions nearby) metastable states.

The corresponding nonlocal Fokker-Planck equation is computed on \((-2.5, 2.5)\) with a finite difference scheme ([12, 13]). The nonlocal Laplacian operator (see (6)) in this equation involves an integral on the whole space (including the
Figure 1: Example 1 – Conditional probability and state estimation when $\alpha = 1.5$. The initial density for x_0 is a Gaussian distribution centered at -1 with variance $\frac{1}{20}$. Online version: The red curve in the right panel is the estimated state orbit (i.e., most probable orbit).

part outside the computational domain); the value of p in this external domain is specified via an extrapolation ([13]). Space stepsize $\Delta x = 0.05$ and time stepsize $\Delta t = 0.001$. The initial probability density is taken either as a Gaussian distribution or a uniform distribution.

In Figures 1 and 2, we show the conditional density $p(x, t)$, together with the corresponding most probable orbit (taken as the state estimation for X_t), together with observations y_k and a state path X_t. The sample paths for L^α_t is generated by a direct method in [16, Ch. 3], and the state path X_t is generated by a Euler scheme as reviewed in [11, Ch. 7]. The initial density for x_0 is Gaussian in Figure 1 and uniform in Figure 2. In the numerical simulations, we take y_0 as defined in (13) via x_0. Notice that the estimated state captures multiple transitions from -1 to $+1$, during the time period $0 < t < 50$.

3 Inferring transitions with continuous time observations

We consider the following scalar state system with a symmetric α—stable Lévy motion

$$dX_t = f(X_t)dt + dL^\alpha_t, \quad X_0 = x_0, \quad (14)$$

together with a continuous time scalar observation system:

$$dY_t = h(X_t)dt + \sqrt{\varepsilon} \, dW_t, \quad Y_0 = y_0, \quad (15)$$

where h is a given vector field (sometimes called a sensor function), ε is the noise intensity and W_t is a Brownian motion. We assume the drift f and
Figure 2: Example 1 – Conditional probability and state estimation when $\alpha = 1.5$. The initial density for x_0 is a uniform distribution on $(-1.5, -0.5)$. Online version: The red curve in the right panel is the estimated state orbit (i.e., most probable orbit).

the sensor function h are autonomous (i.e., do not depend on time explicitly) for simplicity. When the drift depends on time explicitly, see [6] about tools quantifying stochastic dynamics (without observation).

Let \mathcal{Y}_t be the sigma-field generated by Y_s, for $0 \leq s \leq t$. The unnormalized conditional probability density $p(x, t | \mathcal{Y}_t)$ satisfies a nonlocal Zakai equation ([24, 14, 23]):

$$dp(x, t | \mathcal{Y}_t) = A^* p(x, t | \mathcal{Y}_t) \, dt + h(x) p(x, t | \mathcal{Y}_t) \, dY_t,$$ \hspace{1cm} (16)

where A^* is the adjoint operator (7) of the generator A in (6), and $p(x, 0 | Y_0)$ is the initial density of X_t (say a uniform distribution near the metastable state -1, or a Gaussian distribution centered at -1). The Zakai equation (16) may be numerically solved with a finite difference method based on [12, 13] together with a discretization of the noisy term at the current space-time point and $dY_t \approx Y_{t+\Delta t} - Y_t$. The initial probability density is taken either as a Gaussian distribution or a uniform distribution. For other numerical methods, see, for example, [19, 3, 18, 7, 34].

Remark 1. The normalized conditional probability density $p(x, t | \mathcal{Y}_t)$ satisfies the nonlinear Kushner’s equation [3, 18],

$$dp(x, t | \mathcal{Y}_t) = A^* p(x, t | \mathcal{Y}_t) \, dt + (h(x) - \hat{h}(x))(dZ_t - \hat{h}(x)dt)p(x, t | \mathcal{Y}_t)$$

$$= A^* p(x, t | \mathcal{Y}_t) \, dt + h(x)p(x, t | \mathcal{Y}_t)dZ_t - \hat{h}pdt - \hat{h}pdZ_t + \hat{h}pdZ_t,$$

where $\hat{h}(x)$ is the mathematical expectation of $h(X_t)$, with respect to p.

The conditional density $p(x, t | \mathcal{Y}_t)$ provides information for the system evolution. With the observation, we can infer possible transitions from the
metastable state -1 to the metastable state $+1$, within a time range $(0, T)$. If the system starts with a probability distribution $p_0(x)$ near the metastable state $x = -1$, then the conditional density $p(x, t|\mathcal{Y}_t)$ helps us to infer whether the system will get near the other metastable state $+1$, and vice versa. This may be achieved by examining the most probable orbits for the system, under the observation. Define $x_m(t) \triangleq \text{maximizer for } \max_{x \in \mathbb{R}} p(x, t|\mathcal{Y}_t)$. This provides the most probable orbit ([11, 8]) starting at x_0. The most probable orbit depends on observational samples, as it is computed from conditional probability density $p(x, t|\mathcal{Y}_t)$. We take this as our state estimation for X_t, as in [20].

We have also tried to infer the mean exit time for orbit X_t, starting at x_0, from a domain D. Define the first exit time $\tau(x_0, \omega)$ of X_t from a bounded domain D as

$$\tau(x_0, \omega) \triangleq \inf\{t \geq 0, X_t(x_0, \omega) \notin D\}.$$

Similarly, the first exit time of the most probable orbit $x_m(t, x_0, \omega)$ (starting at x_0), with extra information provided by observation Y_t, is then

$$\tilde{\tau}(x_0, \omega) \triangleq \inf\{t \geq 0, x_m(t, x_0, \omega) \notin D\}.$$

The mean exit time, without or with the observation Y_t, is then respectively denoted by

$$u(x_0) = \mathbb{E}[\tau(x_0, \omega)],$$

$$v(x_0) = \mathbb{E}[\tau(x_0, \omega)|\mathcal{Y}_t],$$

denoted by $u(x_0)$ and $v(x_0)$ for starting point $x_0 \in D$. These are computed via ensemble averaging on first exit time, with simulated sample-wise orbits X_t and $x_m(t)$. However, we have noted that our ‘filter’, the most probable orbit $x_m(t)$, appears not to reproduce the mean exit time accurately. See Example 2 below.

The conditional probability density $p(x, t|\mathcal{Y}_t)$ can also be used to infer other dynamical information, e.g., the likelihood that the system will get to the neighborhood $(0.75, 1.25)$ of the metastable state $x = +1$, at time T. This is can be computed via (after normalizing $p(x, t|\mathcal{Y}_t)$)

$$\mathbb{P}(X_T \in (0.75, 1.25)) = \int_{0.75}^{1.25} p(x, T|\mathcal{Y}_t) dx.$$

Let us illustrate our approach by an example.

Example 2. Let us consider the following scalar SDE state equation with a symmetric α–stable Lévy motion:

$$dX_t = 4(X_t - X_t^3) dt + dL^\alpha, \quad X_0 = x_0.$$

The scalar observation equation is given by

$$dY_t = X_t dt + \sqrt{\varepsilon} dW_t,$$
Figure 3: Example 2 – Conditional probability (top), state estimation (middle) and rms error (bottom) for $\alpha = 1.5$, $T = 50$ and $\varepsilon = 0.1$. The initial density is Gaussian centered at -1 with variance $\frac{1}{20}$.
Figure 4: Example 2 – Conditional probability (top), state estimation (middle), and rms error (bottom) for $\alpha = 1.5$, $T = 50$ and $\varepsilon = 0.05$. The initial density is uniform on $(-1.6, -0.4)$.
Figure 5: Example 2 – Conditional probability (top), state estimation (middle) and rms error (bottom) for $\alpha = 0.5$, $T = 10$ and $\varepsilon = 0.1$. The initial density is Gaussian centered at -1 with variance $\frac{1}{20}$.
with ε the noise intensity. When noise is absent, the state system has two
stable states: -1 and $+1$. In this example, the vector field $f(x) = 4(x - x^3)$
and the sensor is $h(x) = x$. We take the magnitude $\sigma = \sqrt{0.24}$ for the jump
measure in L_α^t.

The corresponding nonlocal Zakai equation is solved by a finite difference
scheme with space stepsize, satisfying the time-space stepsize relation in [13,
Proposition 1], such as space stepsize $\Delta x = 0.2$ and time stepsize $\Delta t =
0.0025$. We have conducted numerous numerical experiments with various
parameters α, ε, and time interval $0 < t < T$.

In Figures 3-5, we show the conditional density $p(x, t)$, the corresponding
most probable orbit $x_m(t)$ (taken as the state estimation for the state orbit
X_t), and the root-mean-square (rms) error, for various parameters α, ε and
time interval length T. The sample paths for L^x_α is generated by a direct
method in [16, Ch. 3], and the state orbit X_t is generated by a Euler scheme
as reviewed in [11, Ch. 7]. The initial density for x_0 is either Gaussian or
uniform. In these simulations, we take y_0 to be the same as x_0.

In these figures, the state orbit X_t and the most probable orbit $x_m(t)$
are shown with a single sample. The rms error at time t, between a state
orbit (‘a true orbit’) X_t and the most probable orbits $x_m(t)$ is defined by
$\sqrt{E[(X_t - x_m(t))^2]}$. It is generated by ensemble averaging multiple sample
paths (typically 30 sample paths in our simulations). Note that only the
most probable orbits (which correspond to sample-wise solutions of the Zakai
stochastic partial differential equation) are varied.

Notice that the estimated state orbit captures the transitions between
metastable states -1 and $+1$, during the time period $0 < t < T$. The state
orbit X_t has jumps and our estimated state orbit does not always reproduce
large jumps (which are finite in number); see Figures 3 (middle) and Figure
4 (middle). This is more so for $\alpha < 1$ when there are more frequent large
jumps; see Figure 5 (middle). This also shows up in the error estimation,
where larger discrepancies are contributed by larger jumps in state orbit X_t.
This is one limitation of our method, as we use most probable orbit as our
state estimation.

We have further tested whether our ‘filter’ , the most probable orbit
$x_m(t)$, can reproduce the mean exit time, and found that it appears not to
reproduce it accurately. For example, taking $\alpha = 1.5$ with the starting point
$x_0 = -1$ (a metastable state) and its neighborhood $D = (-1.15, -0.85)$, the
original state system’s mean exit time is $u(-1) = 7.0812$, while the mean
exit time for the most probable orbit is $v(-1) = 7.4221$ (with 30 samples in
simulating the mean). When changing to different domain D, together with
other starting points x_0 with various number of samples, we have noted simi-
lar discrepancies. This is likely due to the following reason: The original
state orbit X_t have countable jumps (which facilitate ‘exits’ from D) of size
smaller than the distance between the metastable states (-1 and $+1$), while
the most probable orbit $x_m(t)$ have much fewer small jumps (see the middle
plot in Figure 3) and thus have different (perhaps longer) exit time. A related evidence for this comment is from our recent work [8]: When a scalar state system only involves Brownian motion, the most probable orbit $x_m(t)$ is solution of an ordinary differential equation and thus is indeed one order more smooth than the state orbit X_t (Here $x_m(t)$ has derivative in time, while X_t is only continuous in time and does not have time derivative).

Acknowledgements. We would like to thank Xiaofan Li, Xiao Wang and Huijie Qiao for helpful discussions and comments.

References

[1] N. U. Ahmed, Linear and Nonlinear Filtering for Engineers and Scientists. World Scientific, 1999.

[2] D. Applebaum, Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge, UK, 2004.

[3] A. Bain and D. Crisan, Fundamentals of Stochastic Filtering. Springer, New York, 2009.

[4] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, U.K., 1998.

[5] D. Brockmann, Human Mobility and Spatial Disease Dynamics, in Reviews of Nonlinear Dynamics and Complexity, Volume 2, 2009, pp.1 - 24. doi: 10.1002/9783527628001.ch1

[6] J. Brannan, J. Duan and V. Ervin, Escape Probability and Mean Residence Time in Random Flows with Unsteady Drift, Math Problems in Engineering 7 (2001), 55-65.

[7] Z. Cai, F. Le Gland and H. Zhang, An Adaptive Local Grid Refinement Method for Nonlinear Filtering. [Research Report] RR-2679, 1995.

[8] Z. Cheng, J. Duan and L. Wang, Most probable dynamics of some nonlinear systems under noisy fluctuations. Commun. Nonlinear. Sci. Numer. Simulat, 30(2016)108-114.

[9] P. D. Ditlevsen, Observation of α–stable noise induced millennial climate changes from an ice record. Geophys. Res. Lett. 26 (1999), 1441-1444.

[10] P. D. Ditlevsen, Anomalous jumping in a double-well potential. Phys. Rev. E 60 (1999), No. 1, 172-179.

[11] J. Duan, An Introduction to Stochastic Dynamics, Cambridge University Press, New York, 2015.
[12] T. Gao, J. Duan, X. Li and R. Song, Mean exit time and escape probability for dynamical systems driven by Lévy noise. *SIAM J. Sci. Comput.* 36 (3) (2014) A887–A906.

[13] T. Gao, J. Duan and X. Li, Fokker-Planck equations for stochastic dynamical systems with symmetric Lévy motions. *Appl. Math. Comput.* 278 (2016) 1 - 20.

[14] B. Grigelionis and R. Mikulevicius, Nonlinear filtering equations for stochastic processes with jumps. In *The Oxford handbook of nonlinear filtering*, D. Crisan and B. L. Rozovskii (Eds.), Oxford University Press, p. 95-128, 2011.

[15] N. E. Humphries, H. Weimerskirch, N. Queiroz E. J. Southall and D. W. Sims, Foraging success of biological Lévy flights recorded in situ, *Proc. Natl. Acad. Sci.* 109(19):7169-7174 (2012).

[16] A. Janicki and A. Weron, *Simulation and Chaotic Behavior of α−Stable Stochastic Processes*, Marcel Dekker, Inc., 1994.

[17] A. H. Jazwinski, *Stochastic Processes and Filtering Theory*. Academic Press, New York, 1970.

[18] K. Law, A. Stuart and K. Zygalakis, *Data Assimilation: A Mathematical Introduction*. Springer, New York, (2015).

[19] S. Lototsky, R. Mikulevicius and B. L. Rozovskii, Nonlinear Filtering Revisited: A Spectral Approach. *SIAM Journal on Control and Optimization*, 1997, Vol. 35, No. 2, pp. 435-461.

[20] R. N. Miller, E. F. Carter, Jr and S. T. Blue, Data assimilation into nonlinear stochastic models *Tellus* (1999), 51A, 167194.

[21] B. Oksendal, *Stochastic Differential Equations*. Sixth Ed., Springer-Verlag, New York, 2003.

[22] E. Olivieri and M. Eulalia Vares, *Large Deviations and Metastability*. Cambridge University Press, New York, 2004.

[23] S. Popa and S. S. Sritharan, Nonlinear Filtering of Ito-Levy Stochastic Differential Equations with Continuous Observations. *Communications on Stochastic Analysis*, Vol. 3, No. 3, (2009), pp. 313-330.

[24] H. Qiao and J. Duan, Nonlinear Filtering of Stochastic Dynamical Systems with Lévy Noises. *Adv. in Appl. Probab.* Volume 47, Number 3 (2015), 902-918.

[25] G. Samorodnitsky and M. S. Taqqu, *Stable Non-Gaussian Random Processes*, Chapman and Hall, 1994.
[26] K.-I. Sato, *Lévy Processes and Infinitely Divisible Distributions*, Cambridge University Press, Cambridge, 1999.

[27] D. Schertzer, M. Larcheveque, J. Duan, V. Yanovsky and S. Lovejoy, Fractional Fokker–Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises. *J. Math. Phys.*, 42 (2001), 200-212.

[28] M. F. Shlesinger, G. M. Zaslavsky and U. Frisch, Lévy Flights and Related Topics in Physics (Lecture Notes in Physics, 450. Springer-Verlag, Berlin, 1995).

[29] X. Sun, J. Duan, X. Li and X. Wang, State estimation under non-Gaussian Levy noise: A modified Kalman filtering method. *Banach Center Publications*, Vol. 105, 2015, pp. 239-246.

[30] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. *Phys. Rev. Lett.* 71, 3975 - 3978 (1993).

[31] X. Wang, J. Duan, X. Li and Y. Luan, Numerical methods for the mean exit time and escape probability of two-dimensional stochastic dynamical systems with non-Gaussian noises. *Appl. Math. Comput.* Volume 258, 1 May 2015, Pages 282 - 295.

[32] W. A. Woyczynski, Lévy processes in the physical sciences. In *Lévy Processes: Theory and Applications*, O. E. Barndorff-Nielsen, T. Mikosch and S. I. Resnick (Eds.), 241-266, Birkhäuser, Boston, 2001.

[33] Z. Yang and J. Duan, An intermediate regime for exit phenomena driven by non-Gaussian Lévy noises. *Stochastics and Dynamics*, Vol.8, No.3, 583-591, 2008.

[34] S. Yau, New algorithm in real time solution of the nonlinear filtering problem. *Communications in Information and Systems*, Vol.8, No.3, 303-332, 2008.