Emergence of Usutu virus, an African Mosquito-Borne Flavivirus of the Japanese Encephalitis Virus Group, Central Europe

Herbert Weissenböck,* Jolanta Kolodziejek,† Angelika Url,* Helga Lussy,† Barbara Rebel-Bauder,* and Norbert Nowotny†‡

During late summer 2001 in Austria, a series of deaths in several species of birds occurred, similar to the beginning of the West Nile virus (WNV) epidemic in the United States. We necropsied the dead birds and examined them by various methods; pathologic and immunohistologic investigations suggested a WNV infection. Subsequently, the virus was isolated, identified, partially sequenced, and subjected to phylogenetic analysis. The isolates exhibited 97% identity to Usutu virus (USUV), a mosquito-borne Flavivirus of the Japanese encephalitis virus group; USUV has never previously been observed outside Africa nor associated with fatal disease in animals or humans. If established in central Europe, this virus may have considerable effects on avian populations; whether USUV has the potential to cause severe human disease is unknown.

Usutu virus (USUV) is a relatively unknown member of the mosquito-borne cluster within the Flavivirus genus, closely related to important human pathogens such as Japanese encephalitis virus (JEV), Murray Valley encephalitis virus (MVEV), Dengue virus (DENV), Yellow fever virus (YFV), Saint Louis encephalitis virus (SLEV), and West Nile virus (WNV) (1–3). Isolated for the first time from mosquitoes in South Africa in 1959 and named after a river in Swaziland (4), USUV was sporadically isolated from several mosquito and bird species over the next decades (5–7). Only two isolations have been reported from mammals, one from Praomys sp. (African soft-furred rats) and one from a man with fever and rash (5). The virus has never been associated with severe or fatal diseases in animals or humans, and it has never before been observed outside tropical and subtropical Africa.

From the beginning of August through mid-September 2001, a considerable die-off of Eurasian Blackbirds (Turdus merula) was observed in and around Vienna, Austria. Some observers reported obviously sick blackbirds, which showed signs of apathy and ruffled plumage. Within 5 days in mid-August, five Great Gray Owls (Strix nebulosa) died in the Tiergarten Schönbrunn Vienna Zoo. In addition, many dead Barn Swallows (Hirundo rustica) were observed in the Austrian federal state of Upper Austria, 200 km west of Vienna. Investigating this episode of avian deaths in Austria, we determined USUV as the causative agent.

Methods

In total, we received six blackbirds, five owls, and one swallow for investigation. At necropsy (estimated postmortem times between 24 h and 48 h), tissue samples were fixed in 7% buffered formalin. After embedding in paraffin wax, 4-µm sections were stained with hematoxylin and eosin.

Paraffin-embedded tissue samples were immunostained with a polyclonal mouse antibody to WNV (B. Murgue, Institut Pasteur, Paris) and a polyclonal rabbit antibody to Tick-borne encephalitis virus ([TBEV] strain Neudoerfl, H. Holzmann, Klinisches Institut für Virologie, Vienna) using the Avi- din-Biotin Complex technique (8).

RNA was extracted from 140-µL organ homogenates or cell culture suspensions by using the QIAamp Viral RNA Mini Kit (Qiagen GmbH, Hilden, Germany). After aligning available nucleotide (nt) sequences of various mosquito-borne flaviviruses and determining highly conserved genomic regions, we designed three pairs of oligonucleotide primers (to amplify a wide range of mosquito-borne flaviviruses) and used them in the reverse transcription-polymerase chain reaction (RT-PCR) assays: 5’-TACAACATGATGGGAARAGAGAGA-3’ (nt position 9031–9055 of WNV GenBank accession no. NC 001563) and 5’-AGCATGTCTTCYGTBGTCATCCAYT-3’ (nt position 10115–10091), resulting in a 1,084-bp amplification product; 5’-GARTGGATGACVACRAAGACATGCT-3’ (nt position 10090–10115) and 5’-GGGGTCTCCTCTAACCTCTAGTCCTT-3’ (nt position 10832–10807), amplifying a 743-bp PCR product; and 5’-GCCACCGGAAGTTGAGTAGA-3’ (nt position 10460–10479 of WNV no. NC 001563) and 5’-GCTGGTTGTGCAGAGCAGAA-3’ (nt position 10908–10889), resulting in a 449-bp amplicon. Reverse transcription and amplifications were performed in a continuous RT-PCR

*Institute of Pathology and Forensic Veterinary Medicine, Vienna, Austria; †Institute of Virology, University of Veterinary Medicine, Vienna, Austria; and ‡United Arab Emirates University, Al Ain, United Arab Emirates.
method by using the QIAGEN OneStep RT-PCR Kit (Qiagen GmbH). Each 25-µL reaction mixture contained 5 µL 5X buffer (final MgCl2 concentration 2.5 mM), 0.4 mM deoxynucleoside triphosphate (dTTP), 10 U recombinant RNasin Ribonuclease Inhibitor (Promega, Madison, WI), 40 pmol forward and reverse primers, 1 µL enzyme mix, and 2.5 µL template RNA. Reverse transcription was performed for 30 min at 50°C. Following an initial denaturation for 15 min at 95°C, the reaction mixture was subjected to 45 cycles of heat denaturation at 94°C for 30 s, primer annealing at 60°C for 30 s, and DNA extension at 72°C for 1 min, completed by a final extension of 10 min at 72°C. Following RT-PCR, we performed electrophoresis on 20 µL of the amplicons in a 1.2% Tris acetate-EDTA-agarose gel. The gel was stained with ethidium bromide, and the bands were observed under UV light.

We excised the fragments from gel, extracted DNA, and performed sequencing PCR. The PCR products were sequenced in both directions by using the ABI Prism 310 genetic analyzer automated sequencing system (Perkin Elmer Instruments, Wellesley, MA). The nucleotide sequences were compiled and aligned with the corresponding sequences deposited in the GenBank database. Finally, we constructed a phylogenetic tree based on a 1,035-nt fragment in the NS5 genomic region. The following sequences have been included in the phylogenetic analysis: AF013384, Koutango virus; AF013413, Yaounde virus; D00246, Kunjin virus; AF202541, WNV (New York 1999); M12294, WNV; AF013367, Cacipacore virus; U15763, JEV; AF013360, Alfuy virus; AF013389, MVEV; AF013412, USUV (South Africa); AF452643, USUV (Austria); AF013416, SLEV; M93130, DENV (type 3); and AF013417, YFV. The phylogenetic analysis was carried out by using Phylogeny Interference Program Package (PHYLIP), version 3.57c (available from: URL: http://evolution.genetics.washington.edu/phylip.html). We generated bootstrap resampling analysis of 100 replicates with the SEQBOOT program. Distance matrices were generated with the DNADIST/Neighbor-Joining program; a translation/transversion ratio of 2.0. AF013417 (YFV) was used as outgroup.

Paraffin-embedded tissue samples were processed as described (9). For detection of WNV nucleic acid, an antisense digoxigenin-labeled riboprobe complementary to nt 4966–5439 of WNV strain NY1999 was generated from plasmid pWNNY-88B-14 (W.I. Lipkin, Emerging Diseases Laboratory, Irvine, CA). The final concentration of the probe was approximately 0.5 ng/µL. For detection of USUV nucleic acid, we used a digoxigenin-labeled oligonucleotide probe with the sequence: 5'-TCGCTAACTTTCACCACCTTGTGTTTGAGGTCAGCTC-3', which is complementary to nt 367-328 of the accessible partial sequence of the NS5 gene of USUV (GenBank accession no. AF013412). The final probe concentration was approximately 0.25 ng/µL.

Results

Necropsy showed grossly swollen livers and spleens, as well as seromucous enteritis in all blackbirds and owls; histology showed various degrees of multifocal acute necrosis in liver and spleen. Although the blackbirds did not show...
obvious histologic brain lesions, the owls had encephalitis, 
predominantly shown as multifocal areas of neuronophagia 
and microgliosis (Figure 1, A and D). Pathohistologic and 
immunohistochemical investigation of the swallow did not 
yield useful results because of severe autolysis.

Immunohistochemistry (IHC) with polyclonal antibodies to 
WNV was positive in 10 of 11 brains, showing reaction 
products in neurons and their processes and in the cytoplasm 
of microglial cells in glial nodules (Figure 1, B and E). Posi-
tive reactions were also present in kidney, spleen, liver, lung, 
and autonomous ganglia of the gastrointestinal tract. Brain and 
kidney samples from WNV-infected birds from the United 
States and Israel, respectively, were positive controls; black-
birds that died from trauma were negative controls. IHC with 
polyclonal antibodies to TBEV, another flavivirus found in 
central Europe, showed negative results. RT-PCR with WNV-
specific primers and ISH with a WNV-specific probe were 
negative. Infection with a flavivirus related to WNV would 
account for the cross-reactivity of a polyclonal antibody used 
in IHC and the negative outcome of the WNV-specific assays.

Organ homogenates of blackbirds and owls were added to 
Vero cell cultures. After 24–48 hours, a cytopathic effect of 
cell rounding could be observed; 1 to 2 days later, the affected 
cells detached and floated in the medium.

RT-PCRs with universal flavivirus primers resulted in clear 
PCR amplification products of the expected lengths. The prim-
ers were designed to amplify overlapping PCR products in the 
NS5 genomic region of mosquito-borne flaviviruses. RT-PCRs 
were performed both on the original organ homogenates and 
on cell culture suspensions, with identical results. Despite a 
poor state of preservation, organ homogenates of the swallow 
also proved positive by RT-PCR.

The PCR products (1,084 bp, 743 bp, and 449 bp) were 
directly sequenced in both directions; the compiled nucleotide 
sequences (a stretch of 1,877 bp, representing approximately 
17% of flavivirus genome) were aligned and compared with 
other sequences by using the Basic Local Alignment Search 
Tool (BLAST) search (National Center for Biotechnology 
Information, National Institutes of Health, Bethesda, MD).
The sequence obtained from the Austrian dead birds was 97% 
identical with a 1,035-nt fragment of USUV (GenBank acces-
sion no. AF452643). The partial nucleotide sequence of the 
Austrian USUV isolate used in the phylogenetic tree has been depos-
ited in the GenBank database under accession no. AF452643.

With an oligonucleotide probe specific for USUV, ISH 
showed presence of viral nucleic acid in the cytoplasm of neu-
rons in a distribution pattern closely matching IHC (Figure 1, 
C and F). Regarding other organs, however, kidneys of only 
two birds were positive, probably reflecting RNA degradation 
due to postmortem times >24 h.

Discussion

We demonstrated the presence of a mosquito-borne fla-
vivirus, never before observed outside tropical and subtropical 
Africa, in the continental climate of central Europe, where 
winter temperatures are as low as -20 °C. Since we also 
detected USUV nucleic acid in a Barn Swallow, the virus was 
probably introduced to the Austrian bird population by swal-
lows or other migrating birds. Bird die-offs in various bird spe-
cies in different areas of Austria suggest that the virus has 
already adapted to local mosquito species, which are probably 
transmitting the virus. Isolating the virus from local mosqui-
toes has not been attempted thus far but is planned. During a 
retrospective survey of paraffin-embedded blackbird tissues 
by IHC and RT-PCR, we also detected USUV in a blackbird 
that died a year earlier (2000). A partial nucleotide sequence 
of this USUV proved to be 100% identical to the sequences of 
the 2001 USUV isolates. Although no severe bird die-offs 
were observed in 2000, we think that USUV may already be 
established and be overwintering in Austria (rather than being 
newly introduced in 2 consecutive years). Comparable with 
the introduction of WNV to North America in 1999, where the
The emergence of WNV in the United States in 1999 and USUV in central Europe in 2000–2001 is an indication of future virus activity. The next mosquito-borne flavivirus, which might be introduced to regions far from its original habitats, may be highly pathogenic for humans, farm animals, or pets, as many strains of JEV group are. We could speculate whether global warming or other environmental factors may have contributed to the introduction and maintenance of USUV, formerly restricted to tropical and subtropical areas, in a much colder climate. As a consequence of the introduction of USUV to Central Europe, surveillance programs for mosquito-borne flaviviruses in general (based on virus detection in mosquitoes and dead birds, as well as epidemiologic investigations) should be established in Europe, like those initiated in Israel; this strain is associated with avian deaths in both countries (11–14). Certain other WNV strains, such as those responsible for recent outbreaks in Romania and Russia in humans (15,16) and in Italy and France in equines (17,18), were not associated with avian deaths. Also, the fact that certain avian species, such as Eurasian Blackbirds, Great Gray Owls, and Barn Swallows in Austria, are especially vulnerable to USUV infection, is reminiscent of the observation that WNV in North America has primarily affected American Crows and Blue Jays (19,20).

Acknowledgments

We thank K. Fragner, I. Friedl, and A. Maderner for excellent technical assistance; K. Bittermann for professional help with the photodocumentation; Z. Hubálek for discussion and advice, and K. Truschnert for submitting a dead swallow and providing epidemiologic data.

This study was supported by a grant of the Hochschuljubiläumsstiftung of the City of Vienna (H108/2000).

Dr. Weissenböck is an associate professor at the University of Veterinary Medicine, Vienna. His research interests include neuroepidemiology, neurovirology, and molecular pathology.

References

1. Usutu virus. In: Karabatsos N, editor. International catalogue of arboviruses including certain other viruses of vertebrates. 3rd ed. San Antonio: Am Soc Trop Med Hyg; 1985. p.1059–60.
2. Kuno G, Chang GJ, Tsuichiya KR, Karabatsos N, Cropp CB. Phylogeny of the genus Flavivirus. J Virol 1998;72:73–83.
3. Poidinger M, Hall RA, Mackenije JS. Molecular characterization of the Japanese encephalitis serocomplex of the flavivirus genus. Virology 1996;218:417–21.
4. Woodall JP. The viruses isolated from arthropods at the East Africa Virus Research Institute in the 26 years ending December 1963. Proc E Afr Acad 1964;2:141–6.
5. Adam F, Diguette J-P. Virus d’ Afrique (base de donnees). Centre collaborateur OMS de reference et de recherche pour les arbovirus et les virus de fréques hémorrhagiques (CRORA); Institut Pasteur de Dakar. Available from: URL: http://www.pasteur.fr/recherche/banques/CRORA/.
6. Cornet M, Robin Y, Chateau R, Herne G, Adam C, Valade M, et al. Isolate ment d’arbovirus au Senegal Oriental a partir de moustiques (1972–1977) and notes sur l’épidemiologie des virus transmis par les Aedes en particulier du virus amaril. Cahiers ORSTOM, Série Entomologie médicale et Parasitologique 1979;17:149–63.
7. Odelola FA, Fabiyi A. Antigenic relationships amongst Nigerian strains of West Nile virus by complement fixation and agar gel precipitation techniques. Trans R Soc Trop Med Hyg 1976;70:138–44.
8. Weissenböck H, Suchy A, Holzmann H. Tick-borne encephalitis in dogs: neuropathological findings and distribution of antigen. Acta Neuropathol (Berl) 1998;95:361–6.
9. Graber HU, Muller CF, Van Develde M, Zorbrigg A. Restricted infection with canine distemper virus leads to down-regulation of myelin gene transcription in cultured oligodendrocytes. Acta Neuropathol 1995;90:312–8.
10. Centers for Disease Control and Prevention. Weekly Update: West Nile virus activity—United States, September 26–October 2, 2001. MMWR Morb Mortal Wkly Rep 2001;50:857.
11. Giladi M, Metzkor-Cotter E, Martin DA, Siegman-Igra Y, Korczyn AD, Rosso R, et al. West Nile encephalitis in Israel, 1999: the New York connection. Emerg Infect Dis 2001;7:659–61.
12. Jia XY, Briese T, Jordan I, Bambaut A, Chi HC, Mackenzie JS, et al. Genetic analysis of West Nile New York 1999 encephalitis virus [letter]. Lancet 1999;354:1971–2.
13. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999;286:2333–7.
14. Weinberger M, Piftik SD, Gandacu D, Lang R, Nassar F, Ben David D, et al. West Nile fever outbreak, Israel, 2000: epidemiologic aspects. Emerg Infect Dis 2001;7:686.
15. Platonov AE, Shipulin GA, Shipulina OY, Tyutyunnik EN, Frolochikina TI, Lanciotti RS, et al. Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999. Emerg Infect Dis 2001;7:128–32.
16. Tsai TF, Popovic F, Cermecu C, Campbell GL, Nedelevi NI. West Nile encephalitis epidemic in southeastern Romania. Lancet 1998;352:767–71.
17. Murgue B, Murri S, Zientara S, Durand B, Durand JP, Zeller H. West Nile outbreak in horses in southern France, 2000: the return after 35 years. Emerg Infect Dis 2001;7:692–6.
18. Cantile C, Di Guardo G, Eleni C, Arispici M. Clinical and neuropathological features of West Nile virus equine encephalomyelitis in Italy. Equine Vet J 2000;32:315.
19. Bernard KA, Maffei JG, Jones SA, Kauffman EB, Ebel G, Dupuis AP, et al. West Nile virus infection in birds and mosquitoes, New York State, 2000. Emerg Infect Dis 2001;7:679–85.

20. Eidson M, Kramer L, Stone W, Hagiwara Y, Schmit K. Dead bird surveillance as an early warning system for West Nile virus. Emerg Infect Dis 2001;7:631–5.

Address for correspondence: Norbert Nowotny, Clinical Virology Group, Institute of Virology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria; fax: 43 1 25077 2790; e-mail: Norbert.Nowotny@vu-wien.ac.at