The Use of Cluster and Foresight Technologies in the Design of Strategies for Sustainable Development of Rural Areas of the Region

A Semin1, T Bukhtiyarova2, E Stovba3

1Ural State Mining University, Kuibysheva Str. 30, 620144, Yekaterinburg, Russia
2Chelyabinsk Branch of the Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Komarova Str. 26, 454007, Chelyabinsk, Russia
3Birsk branch of Bashkir State University, International Str. 10, 452450, Birsk, Russia

E-mail: stovba2005@rambler.ru

Abstract. The article justifies the need of the use cluster and foresight technologies in the strategizing of sustainable development of rural areas. A brief analysis of foreign experience in applying the cluster approach and foresight technologies in the development of regional strategic planning programs has been carried out. The strategy design algorithm of sustainable development of rural areas in the region based on the use of cluster and foresight technologies has been presented. It is revealed, that in the modern conditions of rural areas development of the Republic of Bashkortostan, it is necessary to develop strategic programs and anti-crisis measures that should focus on the use of the cluster approach and foresight technologies. As a result of the clustering and foresight research, the “reference” (“leaders”) and “outsiders” (“outliers”) municipalities of the Nonchernozem zones of the Republic of Bashkortostan have been defined. It is summarized, that the use of cluster and foresight technologies helps to make the transition from the actually existing monofunctional model to a multifunctional model of sustainable development of rural areas of the region.

1. Introduction

Today, the global scientific community has a growing understanding of cluster philosophy, and the clusters themselves are becoming a key component of the national strategic plans for the sustainable development of various economy sectors. The use of the cluster approach gives a high importance to the innovative component in the concept of sustainable development and most fully reflects the triunity of "nature - population - economy". In the traditional reflection, clusters form unique competences of rural areas based on the development of a competitive environment and integration relations.

In economically developed countries the formed clusters determine the creation of a kind of framework reflecting the direction of sustainable development of all modern economy sectors [1, 2]. The Declaration on Strengthening Economic Cooperation in Europe, adopted in 1997, declared the development of cluster-based production systems as one of the priorities of sustainable development. In the USA, Canada, Japan, the EU countries, clusters became the basis for the development of regional innovation systems and depressed areas [3, 4, 5].
The use of the cluster approach is more effective if the grouped clusters fit into the wider context of the sustainable development strategies of the regional economy [6]. The regions with the formed clusters become the leaders of the economic development of the country. According to the conducted research, 7 out of 19 European regions, where clusters are effectively developing are innovatively active territories [7].

As world practice shows, the use of cluster and foresight technologies is not only an effective means of achieving the goals of the agricultural policy, but is also a strategic imperative for the sustainability of rural areas [8, 9, 10]. In the 50 OECD member countries, foresight research is considered to be a mandatory tool for the development of science, technology and innovation policy. The foresight methodology is used not only at the level of studying of global trends, but also for the formation of scenarios for a projected sustainable future at the regional level and at the level of urban and rural municipalities [14, 15]. The heuristic and organizational and management potential of foresight is actively used by foreign experts as an effective tool for strategic planning of rural development [11, 12, 13].

2. Results and discussion
The issue of rural areas sustainable growth is determined by the complexity and dynamism of different scientific approaches and methods to solve it [16, 17]. These circumstances determine a special role in the application of cluster and foresight technologies to determine the prospects for rural areas sustainability of the constituent entities of the Russian Federation [18].

For the strategic vision and the future of such a region as the Republic of Bashkortostan, the sustainable development of rural territories representing complex socio-economic systems is important [19]. The rural municipalities system of the republic can be considered as a certain model area from a scientific point of view of the purpose of foresight technologies using for its sustainable growth and development, a set of methodical and practical problems associated with this process and the results achieved.

We have formed an algorithm for a strategy designing for sustainable development of rural areas of the region based on the use of cluster and foresight technologies (Fig. 1). An integral part of the formed algorithm is the clustering of rural municipalities in terms of indicators reflecting basic food self-sufficiency of the population.
The use of cluster and foresight technologies for designing of the strategy for sustainable rural areas development

Cluster Technologies	Foresight Technologies
Preparation of information support for clustering of rural municipalities	Foresight analysis and expert evaluation of the results of the clustering
Clustering of rural municipal formations by indicators reflecting basic food self-sufficiency of the population	Formation of strategic plans for sustainable rural areas development
Verification of reliability and adequacy of the cluster solution results	Identification of “reference” (“leaders”) and “target” (“outsiders”) rural municipalities on production of agricultural food products in the formed clusters

Figure 1. Algorithm of a strategy design for sustainable development of rural areas of the region on the basis of cluster and foresight technologies.

Multidimensional classification of municipalities was carried out taking into account their contribution and the degree of participation in basic food production. Clustering was implemented for all 22 municipalities of the Nonchernozem zone of the Republic of Bashkortostan using statistical indicators for 2005-2018, reflecting the production of grain, potatoes, vegetables, meat, milk and eggs per capita. The use of cluster analysis methods made it possible to group municipalities similar in terms of the characteristics determined in the course of calculations into three homogeneous clusters (Table 1).

Table 1. Brief description of the formed clusters.

Indicators	Cluster number		
	I	II	III
Number of municipalities	6	7	9
Number of rural settlements	74	109	126
Number of rural communities	324	596	685
Population, thousand people	139	340	206
Total annual production of agricultural products, thousand tons			
We conducted a foresight survey of experts (scientists, community leaders and agribusiness representatives) regarding the development prospects of the Chernozem zone rural areas of the republic. On the basis of clustering and complex foresight analysis, “reference” (“leaders”) and “target” (“outsiders”) municipalities in the production of agro-food products were identified. “Reference” territories form the “golden section” or “diamond” of the agricultural and food industry of the area under consideration. They are a strategic benchmark for development and have the highest rates among the entirety of studied objects.

Pointing out the strengths and advantages of the “reference” municipalities allows to determine their competitive attractiveness and makes it possible to assess the promising volumes of food production within their municipal boundaries. At the same time, the subjects interacting in cluster (agricultural organizations and peasant (farmer) farms) can create positive external effects that enhance the competitiveness of other cluster members. The “core” (integrator) of the formed clusters are stable functioning, positioning and successfully developing agroformations. “Points of growth” form a kind of cluster-forming block of agricultural organizations and peasant (farmer) farms. At the same time, “satellites” are enterprises and organizations engaged in the processing of agro-food products and agricultural raw materials.

“Target” municipalities are themselves characterized by an extensive level of agricultural production and the non-effective development of crop farming sectors. If we follow the basic concepts of the P-convergence theory worked out by the scientists R. Barrot and H. Sa-la-Martin, the “poor” (“target”) territories have higher rates of economic growth compared with the “rich” (“reference”) territories, and, therefore, in the long term, this should lead to an equalization of their levels of economic development. That is, the strategic management of rural areas, based on cluster and foresight technologies, will allow to reorient unprofitable agricultural organizations through the spread of innovation to all agroformations located within the formed clusters. This thesis is confirmed by application of the concept of “mutual and cumulative conditionality” of G. Myrdal, according to which an interdependence of economic growth factors is observed and, accordingly, variations of one factor will cause changes in other factors [20]. In this case, the achievement of efficiency is expected in the production of agricultural products increase.

3. Conclusion
It is important to emphasize that the formation of a new sustainable development of rural areas architecture, based on cluster and foresight technologies, should be an integral part of the region long-term development strategy. The cluster approach is one of the fundamental directions in designing a strategy for sustainable growth of rural areas. Foresight monitoring of municipalities helps to provide a forecast assessment of the actual situation development of rural areas with low ratings in the sphere of food supply for rural residents.
Thus, the use of cluster analysis methods combined with foresight technology allows to form an applied base for statistical research of rural areas and contributes to the definition of indicators of for sustainable development strategy of rural areas. The realization of these promising research methods helps to make the transition from the actually existing monofunctional model to the multifunctional model of sustainable development of rural areas of the region.

4. References

[1] Brown R 2000 Cluster dynamics in theory and practice with application to Scotland (Glasgow)
[2] Paija L 2001 The Finnish ICT cluster in the digital economy (Helsinki)
[3] Feser E, Luger M 2003 Cluster analysis as a mode of inquiry: its use in science and technology policy-making in North Carolina European planning studies 11 11-24
[4] Bender Ch, Harms R, Rinderman G 1999 Du clusters matter? Empirical evidence from Germany Vniv. of Muenster
[5] Solvell O 2009 Clusters: balancing evolutionary and constructive forces Stockholm Ivory Tower Pub 140
[6] Belei S I 2014 The cluster approach to the development of rural areas The Genesis of Genius 3-1 32-35
[7] 2006 Innobarometer on cluster’s role in facilitating innovation in Europe Analytical Report The Gallup Organization Hungary 125
[8] Claudio R, Riccardo V 2008 Foresight and Innovation in the context of industrial clusters: The case of some Italian districts Technological Forecasting & Social Change vol 75 6 817-833
[9] Polozhentseva Y, Klevtsova M 2015 Instruments of Development of Cluster Policy: Stages, Models, International Practice Procedia Economics and Finance 27 529-537
[10] Press K A 2006 life cycle for clusters? The dynamics of agglomeration, change, and adaption (Germany) Physica-Verlag A Springer Company 245
[11] Miles I 2010 The development of technology foresight: A review Technological Forecasting and Social Change vol 77 9 1448-1456
[12] Popper R, Georghiou L 2007 Methodology: Common foresight practices & tools International Handbook on Foresight and Science Policy: Theory and Practice, Cheltenham, Ed-ward Elgar
[13] Daheim C, Uerz G 2008 Corporate foresight in Europe: from trend based logics to open foresight Technology Analysis & Strategic Management vol 20 3 321-336
[14] Georghiou L, Cassingena J, Keenan M, Miles I, Popper R 2008 Foresight methodology Handbook of technology foresight Cheltenham Edward Elgar
[15] Hammouda M, Wery J, Darbin T, Belhouchette H 2018 Agricultural activity concept for simulating strategic agricultural production decisions: Case study of weed resistance to herbicide treatments in South-West France Computers and Electronics in Agriculture vol 155 167-179
[16] Semin A N, Bukhtiyarova T I, Gilinskaya I V 2018 The indicative strategy of active growth potential in rural areas in modern conditions of digital economy Scientific Yearbook of Center of analysis and forecasting 1(2) 57-63
[17] Bukhtiyarova T I, Gilinskaya I V 2018 The algorithm achieving sustainable rural development Agricultural and food policy of Russia 1(73) 2-8
[18] Semin A N 2017 Features of the agroclusters organization in rural areas of the Urals Theory and practice of world science 5 52-55
[19] Gusmanov U G, Stovba E V 2015 Strategic planning of social and economic development of rural territory International Scientific Journal 5 65-71
[20] Myrdal G 1972 Modern problems of the “third world” Asian drama Translated from English Under total editorship by R A Ulyanovskiy (Moscow) Progress 767
Acknowledgments
The reported study was funded by RFBR and the Republic of Bashkortostan according to the research project «Strategic Planning of Economic and Social Development of Rural Areas of the Republic of Bashkortostan Based on Foresight Methodology», № 19-410-020016.