On 3–decomposable geometric drawings of K_n

B. Ábrego* S. Fernández–Merchant* J. Leáños† G. Salazar†

February 2, 2008

Abstract

The point sets of all known optimal rectilinear drawings of K_n share an unmistakeable clustering property, the so–called 3–decomposability. It is widely believed that the underlying point sets of all optimal rectilinear drawings of K_n are 3–decomposable. We give a lower bound for the minimum number of ($\leq k$)–sets in a 3–decomposable n–point set. As an immediate corollary, we obtain a lower bound for the crossing number $\overline{\text{cr}}(D)$ of any rectilinear drawing D of K_n with underlying 3–decomposable point set, namely $\overline{\text{cr}}(D) > \frac{15 - \pi^2}{15} \binom{n}{3} + \Theta(n^3) \approx 0.380029 \binom{n}{3} + \Theta(n^3)$. This closes this gap between the best known lower and upper bounds for the rectilinear crossing number $\overline{\text{cr}}(K_n)$ of K_n by over 40%, under the assumption of 3–decomposability.

1 Introduction

Figure 1 shows the point set of an optimal (crossing minimal) rectilinear drawing of K_9, with an evident partition of the 9 vertices into 3 highly structured clusters of 3 vertices each:

```
  ●
  ●
  ●
```

Figure 1: The points in this optimal drawing of K_9 are clustered into 3 sets.

A similar, natural, highly structured partition into 3 clusters of equal size is observed in every known optimal drawing of K_n, for every n multiple of 3 (see [4]). Even for those values of n (namely, $n > 27$) for which the exact rectilinear crossing number $\overline{\text{cr}}(K_n)$ of K_n is not known, the best available examples also share this property [4].

In all these examples, a set S of n points in general position is partitioned into sets A, B, and C, with $|A| = |B| = |C| = n/3$ with the following properties:

(i) There is a directed line ℓ_1 such that, as we traverse ℓ_1, we find the ℓ_1–orthogonal projections of the points in A, then the ℓ_1–orthogonal projections of the points in B, and then the ℓ_1–orthogonal projections of the points in C;

*Department of Mathematics, California State University Northridge.
†Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico. Supported by FAI–UASLP and by CONACYT Grant 45903.
(ii) there is a directed line ℓ_2 such that, as we traverse ℓ_2, we find the ℓ_2–orthogonal projections of the points in B, then the ℓ_2–orthogonal projections of the points in A, and then the ℓ_2–orthogonal projections of the points in C; and

(iii) there is a directed line ℓ_3 such that, as we traverse ℓ_3, we find the ℓ_3–orthogonal projections of the points in B, then the ℓ_3–orthogonal projections of the points in C, and then the ℓ_3–orthogonal projections of the points in A.

Definition A point set that satisfies conditions (i)–(iii) above is 3–decomposable. We also say that the underlying rectilinear drawing of K_n is 3–decomposable.

A possible choice of ℓ_1, ℓ_2, and ℓ_3 for the example in Figure 1 is illustrated in Figure 2.

![Figure 2](image)

Figure 2: The 9–point set S gets naturally partitioned into three clusters A, B, and C. The ℓ_1–, ℓ_2–, and ℓ_3–orthogonal projections of A, B, and C satisfy conditions (i)–(iii), and so $S = A \cup B \cup C$ is 3–decomposable.

1.1 The main result

It is widely believed that all optimal rectilinear drawings of K_n are 3–decomposable. One of our main results in this paper is the following lower bound for the number of crossings in all such drawings.

Theorem 1 Let D be a 3–decomposable rectilinear drawing of K_n. Then the number $cr(D)$ of crossings in D satisfies

$$cr(D) \geq \frac{2}{27} \left(15 - \pi^2\right) \left(\frac{n}{4}\right) + \Theta(n^3) \approx 0.380029 \left(\frac{n}{4}\right) + \Theta(n^3).$$

The best known general lower and upper bounds for the rectilinear crossing number $cr(K_n)$ are $0.37968 \binom{n}{4} + \Theta(n^3) \leq cr(K_n) \leq 0.38054 \binom{n}{4} + \Theta(n^3)$ (see [3] and [2]). Thus the
bound given by Theorem 1 closes this gap by over 40%, under the (quite feasible) assumption of 3–decomposability.

To prove Theorem 1 (in Section 2), we exploit the close relationship between rectilinear crossing numbers and \((\leq k)\)-sets, unveiled independently by Ábrego and Fernández–Merchant [1] and by Lovász et al. [8].

Recall that a \((\leq k)\)-set of a point set \(S\) is a subset \(T\) of \(S\) with \(|T| \leq k\) such that some straight line separates \(T\) and \(S \setminus T\). The number \(\chi_{\leq k}(S)\) of \((\leq k)\)-sets of \(S\) is a parameter of independent interest in discrete geometry (see [6]), and, as we recall in Section 2, is closely related to the rectilinear crossing number of the geometric graph induced by \(S\).

The main ingredient in the proof of Theorem 1 is the following bound (Theorem 2) for the number of \((\leq k)\)-sets in 3–decomposable point sets. The bound is in terms of the following quantity (by convention, \(\binom{r}{s} = 0\) if \(r < s\)),

\[
Y(k, n) := 3\binom{k + 1}{2} + 3\binom{k - n/3 + 1}{2} + 3\sum_{j=2}^{b} j(j+1)\left(k + 1 - \frac{j}{2} - \frac{1}{3j(j+1)}\right)^3n - \frac{1}{3} , \tag{1}
\]

where \(b := b(k, n)\) is the unique integer such that \(\binom{b(k,n)+1}{2} < n/(n-2k-1) \leq \binom{b(k,n)+2}{2}\).

Theorem 2 Let \(S\) be a 3–decomposable set of \(n\) points in general position, where \(n\) is a multiple of 3, and let \(k < n/2\). Then

\[\chi_{\leq k}(S) \geq Y(k, n).\]

The best general lower bound for \(\chi_{\leq k}(S)\) is the sum of the first two terms in (1) (see [3] and [2]). Thus the third summand in (1) is the improvement we report, under the assumption of 3–decomposability.

The proofs of Theorems 1 and 2 are in Sections 2 and 3 respectively. In Section 4 we present some concluding remarks and open questions.

2 Proof of Theorem 1

Let \(D\) be a 3–decomposable rectilinear drawing of \(K_n\), and let \(S\) denote the underlying \(n\)-point set, that is, the vertex set of \(D\). Besides Theorem 2 our main tool is the following relationship between \((\leq k)\)-sets and the rectilinear crossing number (see [1] or [8]):

\[
\text{cr}(D) = \sum_{1 \leq k \leq (n-2)/2} (n-2k-1)\chi_{\leq k}(S) + \Theta(n^3). \tag{2}
\]

Combining Theorem 2 and Eq. (2), and noting that both the \(-1\) in the factor \(n-2k-1\) and the summand \(-1/3\) in (1) only contribute to smaller order terms, we obtain:
\[
\mathfrak{cr}(D_n) \geq \sum_{k=1}^{(n-2)/2} [n - 2k] \left(\frac{3}{2}(k+1) + 3\left(\frac{1}{2}\right)^{k+1} \right) + \Theta(n^3)
\]

\[
\geq 24 \left(\frac{(n-2)/2}{n} \right) \left(\frac{3}{2}(k+1) + 3\left(\frac{1}{2}\right)^{k+1} \right) + \Theta(n^3)
\]

\[
= 24 \left(\frac{(n-2)/2}{n} \right) \left(\frac{3}{2} \left(\frac{1-2k/n}{n} \right) \left(k/n - \left(\frac{1}{3} \right) \right)^2 \right) + \Theta(n^3)
\]

\[
= 24 \left(\frac{(n-2)/2}{n} \right) \left(\int_0^{1/2} (3/2)(1 - 2x) dx + \int_{1/3}^{1/2} (3/2)(1 - 2x)(x - 1/3)^2 dx \right) + \Theta(n^3)
\]

Elementary calculations show that
\[
\frac{3}{2} \int_0^{1/2} (1 - 2x)x^2 dx = \frac{3}{8} \int_{1/3}^{1/2} (1 - 2x)(x - 1/3)^2 dx = \frac{1}{216}, \text{ and } \int_{1/3}^{1/2} (1 - 2x)(x - 1/3)^2 dx = \frac{1}{486}j^4(1 + j)^4.
\]

Thus,
\[
\mathfrak{cr}(D_n) \geq 24 \left(\frac{(n-2)/2}{n} \right) \left(\frac{3}{8} + 1/216 + (3/2)\sum_{j=2}^{\infty} \frac{1}{486j^4(j + 1)^2} \right) + \Theta(n^3).
\]

Since
\[
\sum_{j=2}^{\infty} \frac{1}{j(j + 1)^2} = \sum_{j=2}^{\infty} \left(\frac{1}{j^2} - \frac{3}{j} + \frac{3}{j + 1} - \frac{1}{j + 1} \right) = \frac{79}{8} - \pi^2,
\]

then
\[
\mathfrak{cr}(D_n) \geq \frac{2}{27} \left(15 - \pi^2 \right) \left(\frac{n}{4} \right) + \Theta(n^3).
\]

3 Proof of Theorem 2

The first step to prove Theorem 2 is to obtain an equivalent (actually, more general) formulation in terms of circular sequences (namely Proposition 3 below).

3.1 Circular sequences: reducing Theorem 2 to Proposition 3

All the geometrical information of a point set \(S \) gets encoded in (any halfperiod of) the circular sequence associated to \(S \). We recall that a circular sequence on \(n \) elements is a doubly infinite sequence \(\ldots \pi_{-1}, \pi_0, \pi_1, \ldots \) of permutations of the points in \(S \), where consecutive permutations differ in a transposition of neighboring elements, and, for every \(i \), \(\pi_i \) is the reverse permutation of \(\pi_{n-i} \). Thus a circular sequence on \(n \) elements has period \(2\left(\begin{array}{c} n \\ 2 \end{array}\right) \), and all the information is encoded in an \(n \)-halfperiod, that is, a sequence of \(\left(\begin{array}{c} n \\ 2 \end{array}\right) + 1 \) consecutive permutations.

Each \(n \)-point set \(S \) has an associated circular sequence \(\Pi_S \), which contains all the geometrical information of \(S \). As we observed above, any \(n \)-halfperiod \(\Pi \) of \(\Pi_S \) contains all the information of \(\Pi_S \), and so \(n \)-halfperiods are usually the object of choice to work
with. In an n–halfperiod $\Pi = \pi_0, \pi_1, \ldots, \pi_{\left(\frac{n}{2}\right)}$, the initial permutation is π_0 and the final permutation is $\pi_{\left(\frac{n}{2}\right)}$.

Not every n–halfperiod Π arises from a point set S. We refer the reader to the seminal work by Goodman and Pollack [7] for further details.

Observe that if S is 3–decomposable, then there is an n–halfperiod Π of the circular sequence associated to S, whose points can be labeled $a_1, \ldots, a_{n/3}, b_1, \ldots, b_{n/3}, c_1, \ldots, c_{n/3}$, so that:

(i) The initial permutation π_0 reads $a_{n/3}, a_{n/3} - 1, \ldots, a_1, b_1, \ldots, b_{n/3}, c_1, c_2, \ldots, c_{n/3}$;

(ii) there is an s such that in the $(s + 1)$–st permutation first the b’s appear consecutively, then the a’s appear consecutively, and then the c’s appear consecutively; and

(iii) there is a t, with $t > s$, such that in the $(t + 1)$–st permutation first the b’s appear consecutively, then the c’s appear consecutively, and then the a’s appear consecutively.

Definition An n–halfperiod Π that satisfies properties (i)–(iii) above is 3–decomposable.

A transposition that occurs between elements in sites i and $i + 1$ is an $(i, i + 1)$–transposition. An i–critical transposition is either an $(i, i + 1)$–transposition or an $(n - i, n - i + 1)$–transposition, and a $(\leq k)$–critical transposition is a transposition that is i–critical for some $i \leq k$. If Π is an n–halfperiod, then $\eta(\Pi)$ denotes the number of $(\leq k)$–critical transpositions in Π.

The key result is the following.

Proposition 3 Let Π be a 3–decomposable n–halfperiod, and let $k < n/2$. Then

$$\eta(\Pi) \geq Y(k, n).$$

Proof of Theorem Let S be 3–decomposable, and let Π be an n–halfperiod of the circular sequence associated to S, that satisfies properties (i)–(iii) above. Then Π is 3–decomposable. Now, for any point set T and any halfperiod Π_T associated to T, the $(\leq k)$–critical transpositions of Π_T are in one–to–one correspondence with $(\leq k)$–sets of T. Applying this to Π and S, it follows that $\chi(\Pi) = \eta(\Pi)$. Applying Proposition 3, Theorem follows.

We devote the rest of this section to the proof of Proposition 3.

3.2 Proof of Proposition Throughout this section, $\Pi = (\pi_0, \pi_1, \ldots, \pi_{\left(\frac{n}{2}\right)})$ is a 3–decomposable n–halfperiod, with initial permutation $\pi_0 = (a_{n/3}, a_{n/3} - 1, \ldots, a_1, b_1, \ldots, b_{n/3}, c_1, \ldots, c_{n/3})$.

In order to (lower) bound the number of $(\leq k)$–critical transpositions in 3–decomposable circular sequences, we distinguish between two types of transpositions. A transposition is homogeneous if it occurs between two a’s, between two b’s, or between two c’s; otherwise it is heterogeneous. We let $\eta(\Pi)$ (respectively $\eta(\Pi)$) denote the number of homogeneous (respectively heterogeneous) $(\leq k)$–critical transpositions in Π, so that

$$\eta(\Pi) = \eta_{\text{hom}}(\Pi) + \eta_{\text{het}}(\Pi).$$
3.2.1 Bounding (actually, calculating) $\eta^{\text{het}}_{\leq k}(\Pi)$

Let us call a transposition an ab-transposition if it involves one a and one b. We similarly define ac- and bc-transpositions. Thus, each heterogeneous transposition is either an ab- or an ac- or a bc-transposition.

Since in Π each ab-transposition moves the involved a to the right and the involved b to the left, then (a) for each $i \leq n/3$, there are exactly i i-critical ab-transpositions; and (b) for each i, $n/3 < i < 2n/3$, there are exactly $2n/3 - i$ i-critical ab-transpositions. Since the same holds for ac- and bc-transpositions, it follows that for each $i \leq n/3$, there are exactly $3i$ i-critical heterogeneous transpositions, and for each i, $n/3 < i < 2n/3$, exactly $2n - 3i$ i-critical heterogeneous transpositions.

Therefore, for each $k \leq n/3$, there are exactly $\sum_{i\leq k} 3i = 3\left(\frac{k+1}{2}\right)$ (at least) critical transpositions, and if $n/3 < k < n/2$, then there are exactly $\sum_{i\leq n/3} 3i + \sum_{n/3 < i \leq k} 2n - 3i + \sum_{n-k-1 < i \leq 2n/3-1} 2n - 3i = 3\left(\frac{n/3+1}{2}\right) + (k - n/3)n$ ($\leq k$) critical transpositions.

We now summarize these results.

Proposition 4 Let Π be a 3-decomposable n-halfperiod, and let $k < n/2$. Then

$$\eta^{\text{het}}_{\leq k}(\Pi) = \begin{cases} 3\left(\frac{k+1}{2}\right) & \text{if } k \leq n/3, \\ 3\left(\frac{n/3+1}{2}\right) + (k - n/3)n & \text{if } n/3 < k < n/2, \end{cases}$$

3.2.2 Bounding $\eta^{\text{hom}}_{\leq k}(\Pi)$

Our goal here is to give a lower bound (see Proposition 10) for the number $\eta^{\text{hom}}_{\leq k}(\Pi)$ of homogeneous ($\leq k$)-critical transpositions in a 3-decomposable n-halfperiod Π.

Our approach is to find an upper bound for $\eta^{\text{aa}}_{\leq k}(\Pi)$, which will denote the number of aa-transpositions that are not ($\leq k$)-critical ($\eta^{\text{bb}}_{\leq k}(\Pi)$ and $\eta^{\text{cc}}_{\leq k}(\Pi)$ are defined analogously). Since the total number of aa-transpositions is $\frac{n(n-1)}{2}$, this will yield a lower bound for the contribution of aa-transpositions (and, by symmetry, for the contribution of bb-transpositions and of cc-transpositions) to $\eta_{\leq k}(\Pi)$.

Remark 5 For every $k \leq n/3$, it is a trivial task to construct n-halfperiods Π for which $\eta^{\text{hom}}_{\leq k}(\Pi) = 0$. In view of this, we concentrate our efforts on the case $k > n/3$.

A transposition between elements in positions i and $i + 1$, with $k + 1 \leq i \leq n - k - 1$, is valid. Thus our goal is to (upper) bound the number of valid aa-transpositions.

Let D^a_{Π} be the digraph with vertex set $a_1, \ldots, a_{n/3}$, and such that there is a directed edge from a_i to a_j if and only if $i < j$ and the transposition that swaps a_i and a_j is valid. For $j = 1, \ldots, n/3$, we let $[a_j]_1^\Pi$ (respectively $[a_j]_2^\Pi$) denote the outdegree (respectively indegree) of a_j in D^a_{Π}. We define $D^{bb}_{\Pi}, D^{bc}_{\Pi}, D^{cc}_{\Pi}, [a_1]^{-}_{1}^\Pi, [a_1]^{+}_{1}^\Pi, [a_1]^{-}_{2}^\Pi$, and $[a_1]^{+}_{2}^\Pi$ analogously.

The inclusion of the symbol Π in $D^{aa}_{\Pi}, [a_i]_{\Pi}$, etc., is meant to emphasize the dependence on the specific n-halfperiod Π. For brevity we will omit the reference to Π and simply write $D^{aa}, D^{bb}, D^{cc}, [a_i]^{-}, [a_i]^{+},$ and so on. No confusion will arise from this practice.

The importance of D^{aa}, D^{bb}, and D^{cc} is clear from the following observation.

Remark 6 For each n-halfperiod Π, the number of edges of D^{aa} equals $\eta^{aa}_{\leq k}(\Pi)$. Indeed, to each valid aa-transposition, that is, each transposition that contributes to $\eta^{aa}_{\leq k}(\Pi)$, there corresponds a unique edge in D^{aa}. Analogous observations hold for D^{bb} and D^{cc}.
In view of Remark 6, we direct our efforts to bounding the number of edges in \(D^{aa} \). The essential observation to get this bound is the following:

\[
[a_j]^- \leq \min \{n - 2k - 1 + [a_j]^+, (n/3) - j \}.
\]

(4)

To see this, simply note that \([a_j]^- \leq n - 2k - 1 + [a_j]^+\), since \(n - 2k - 1 + [a_j]^+ \) is clearly the maximum possible number of valid moves in which \(a_j \) moves right, and trivially \([a_j]^- \leq (n/3) - j\), since there are only \((n/3) - j \) \(a_i\)'s with \(\ell < j\).

Proposition 7 If \(\Pi \) is a 3-decomposable \(n\)-halfperiod, and \(n/3 < k < n/2 \), then \(D^{aa} \) has at most \((n/3)^2 - (1/3) \left(Y(k, n) - 3(n/3 + 1) - (k - n/3)n \right) \) edges.

Proof. Let \(D_{k,n} \) denote the class of all digraphs with vertex set \(a_1, \ldots, a_{n/3} \), with every directed edge \(a_i \rightarrow a_j \) satisfying \(\ell < j \) and \([a_j]^- \leq \min \{n - 2k - 1 + [a_j]^+, n/3 - j \} \).

We argue that any graph in \(D_{k,n} \) has at most \((n/3)^2 - (1/3)Y(k, n) - 3(n/3 + 1) - (k - n/3)n \) edges. This clearly finishes the proof, since \(D^{aa} \in D_{k,n} \).

To achieve this, we note that it follows from the work in Section 2 in [5] that the maximum number of edges of such a digraph is attained in the digraph \(D_{k,n} \) recursively constructed as follows. First define that all the directed edges arriving at \(a_{n/3} \) are the edges \(a_j \rightarrow a_{n/3} \) for \(j = (n/3) - 1, \ldots, (n/3) - n - 2k - 2 \). Now, for \(j + 1 \leq n/3 \), once all the directed edges arriving at \(a_{j+1} \) have been determined, fix that (all) the directed edges arriving at \(a_j \) are \(a_{j} \rightarrow a_{j'} \), for all those \(\ell \) that satisfy \(j - \ell \leq n - 2k - 1 + [a_j]^+ \).

Since no digraph in \(D_{k,n} \) has more edges than \(D_{k,n} \), to finish the proof it suffices to bound the number of edges of \(D_{k,n} \). This is the content of Claim 8 below.

Claim 8 \(D_{k,n} \) has at most \((n/3)^2 - (1/3)Y(k, n) - 3(n/3 + 1) - (k - n/3)n \) edges.

Sketch of proof. Since we know the exact indegree of each vertex in \(D_{k,n} \), we know the exact number of edges of \(D_{k,n} \), and so the proof of Claim 8 is no more than a straightforward, but quite long and tedious, calculation.

Corollary 9 If \(\Pi \) is a 3-decomposable \(n\)-halfperiod, and \(n/3 < k < n/2 \), then each of \(D^{bb} \) and \(D^{cc} \) has at most \((n/3)^2 - (1/3)Y(k, n) - 3(n/3 + 1) - (k - n/3)n \) edges.

Proof. In the proof of Proposition 7, the only relevant property about \(D^{aa} \) is that the \(a \)'s form a set of \(n/3 \) points that in some permutation of \(\Pi \) (namely \(\pi_0 \)) appear all consecutively and at the beginning of the permutation. Since \(\Pi \) is 3-decomposable, this condition is also satisfied by the set of \(b \)'s and by the set of \(c \)'s.

We now summarize the results in the current subsection.

Proposition 10 If \(\Pi \) is a 3-decomposable \(n\)-halfperiod, and \(n/3 < k < n/2 \), then

\[
\eta_{\leq k}^{\text{hom}}(\Pi) \geq Y(k, n) - 3(n/3 + 1) - (k - n/3)n.
\]

Proof. By Remark 6, the number \(\eta_{\leq k}^{aa}(\Pi) \) of \(aa \)-transpositions that are \textit{not} (\(\leq k \))-critical equals the number of edges in \(D^{aa} \), which by Proposition 7 is at most \((1/3)Y(k, n) - 3(n/3 + 1) - (k - n/3)n \). Since the total number of \(aa \)-transpositions is \((n/3)^2 \), then the number of \(aa \)-transpositions that contribute to \(\eta_{\leq k}^{aa}(\Pi) \) is at least \((n/3)^2 - (1/3)Y(k, n) - 3(n/3 + 1) - (k - n/3)n \). By Corollary 9, \(bb \)- and \(cc \)-transpositions contribute in at least the same amount to \(\eta_{\leq k}^{\text{hom}}(\Pi) \), and so the claimed inequality follows.
3.2.3 Proof of Proposition 3

Proposition 3 follows immediately from Eq. (3) and Propositions 4 and 10.

4 Concluding remarks

All the lower bounds proved above remain true for point sets that satisfy conditions (i) and (ii) (and not necessarily condition (iii)) for 3-decomposability.

References

[1] B.M. Ábrego and S. Fernández–Merchant, A lower bound for the rectilinear crossing number, *Graphs and Comb.*, 21 (2005), 293–300.

[2] B.M. Ábrego, J. Balogh, S. Fernández–Merchant, J. Leaños, and G. Salazar, An extended lower bound on the number of \((\leq k)\)-edges to generalized configurations of points and the pseudolinear crossing number of \(K_n\). Submitted (2007).

[3] O. Aichholzer, J. García, D. Orden, and P. Ramos, New lower bounds for the number of \((\leq k)\)-edges and the rectilinear crossing number of \(K_n\), *Discr. Comput. Geom.*, to appear.

[4] O. Aichholzer. On the rectilinear crossing number. Available online at http://www.ist.tugraz.at/staff/aichholzer/crossings.html.

[5] J. Balogh and G. Salazar, \(k\)-sets, convex quadrilaterals, and the rectilinear crossing number of \(K_n\), *Discr. Comput. Geom.* 35 (2006), 671–690.

[6] P. Brass, W.O.J. Moser, and J. Pach, *Research Problems in Discrete Geometry*. Springer, New York (2005).

[7] J. E. Goodman and R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, *J. Combin. Theory Ser. A* 29 (1980), 220–235.

[8] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl, Convex Quadrilaterals and \(k\)-Sets. *Towards a Theory of Geometric Graphs*, (J. Pach, ed.), Contemporary Math., AMS, 139–148 (2004).
Appendix: Proof of Claim

Since $D_{k,n}$ is a well-defined digraph, and we know the exact indegree of each of its vertices, Claim 8 is no more than long and tedious, yet elementary, calculation.

The purpose of this Appendix is to give the full details of this calculation.

We prove Claim 8 in two steps. First we obtain an expression for the exact value of the number of edges of $D_{k,n}$, and then we show that this exact value is upper bounded by the expression in Claim 8.

1 The exact number of edges in $D_{k,n}$

The exact number of edges in $D_{k,n}$ is a function of the following parameters. Let i, j be positive integers with $i \leq j$. Then:

- $b(i, j)$ is the (unique) nonnegative integer such that $\left\lfloor \frac{b(i, j)+1}{2} \right\rfloor < j/i \leq \left\lfloor \frac{b(i, j)+2}{2} \right\rfloor$; and
- $q(i, j)$ and $r(i, j)$ are the (unique) integers satisfying $0 \leq q(i, j) < i, 1 \leq r(i, j) \leq b(i, j) + 1$ and such that

$$j = i\left(\frac{b(i, j)+1}{2}\right) + q(i, j)(b(i, j) + 1) + r(i, j) \quad \text{(A-1)}$$

For brevity, in the rest of the section we let $s := n/3$ and $m := n - 2k - 1$.

The key observation is that we know the indegree of each vertex in $D_{k,n}$.

Proposition 1 (Proposition 19 in [5]) For each integer $1 \leq i \leq s$, and each vertex a_i of $D_{k,n}$, $[a_i]^- = b(i, s)m + q(i, s)$.

The number of edges of $D_{k,n}$ equals the sum of the indegrees over all vertices in $D_{k,n}$. Thus our main task is to find a closed expression for the sum $\sum_{1 \leq i \leq s} [a_i]^-$. This is the content of our next statement.

Proposition 2 (Exact number of edges of $D_{k,n}$) The number $\sum_{1 \leq i \leq s} [a_i]^- $ of edges of $D_{k,n}$ is

$$E(k, n) := 2m^2 \left(\frac{b(m, s)}{3} + 1\right) + \binom{b(m, s)}{2} \binom{m}{2} + 2m \cdot q(m, s) \left(\frac{b(m, s)+1}{2}\right) +$$

$$\left(\binom{q(m, s)}{2} \left(\frac{b(m, s)+1}{2}\right) + r(m, s) \left(m \cdot b(m, s) + q(m, s)\right)\right).$$

Proof. We break the index set of the summation $\sum_{1 \leq i \leq s} [a_i]^{-}$ into three parts, in terms of $\alpha := m^{b(m, s)+1}$ and $\beta := q(m, s)(b(m, s) + 1)$. We let $A = \sum_{1 \leq i \leq \alpha} [a_i]^{-}$, $B = \sum_{\alpha+1 \leq i \leq \alpha+\beta} [a_i]^{-}$, and $C = \sum_{\alpha+\beta+1 \leq i \leq s} [a_i]^{-}$ so that

$$\sum_{1 \leq i \leq s} [a_i]^{-} = A + B + C. \quad \text{(A-2)}$$

We calculate each of $A, B, \text{ and } C$ separately.

Calculating A

If ℓ, j are integers such that $0 \leq \ell \leq m - 1$ and $0 \leq j \leq b(m, s)$, we define $S_j := \{i : b(i, m) = j\}$ and $T_{j, \ell} := \{i : b(i, m) = j, q(i, m) = \ell\}$. Note that $S_1, S_2, \ldots, S_{b(m, s)}$ is a
partition of \{1, 2, ..., n\} and that for each \(j \leq b(m, s) - 1, T_{j,0}, T_{j,1}, ..., T_{j,m-1}\) is a partition of \(S_j\).

Note that \(A\) can be rewritten as \(\sum_{0 \leq j \leq b(m, s) - 1} \sum_{i \in S_j} [a_i]^{-}\). By Proposition\[\text{this equals}\] \(\sum_{0 \leq j \leq b(m, s) - 1} \sum_{i \in S_j} (m \cdot b(i, m) + q(i, m))\). That is,

\[
A = \sum_{0 \leq j \leq b(m, s) - 1} \left(m \sum_{i \in S_j} b(i, m) + \sum_{i \in S_j} q(i, m) \right).
\]

Since \(0 \leq q(i, m) \leq m - 1\) for all \(i\), and \(T_{j,0}, T_{j,1}, ..., T_{j,m-1}\) is a partition of \(S_j\), then \(\sum_{i \in S_j} q(i, m) = \sum_{0 \leq i \leq m-1} \sum_{i \in T_{j,\ell}} q(i, m)\). Thus,

\[
A = \sum_{0 \leq j \leq b(m, s) - 1} \left(m \sum_{i \in S_j} b(i, m) + \sum_{0 \leq i \leq m-1} \sum_{i \in T_{j,\ell}} q(i, m) \right). \tag{A-3}
\]

On other hand, for \(0 \leq j \leq b(m, s) - 1\) and \(0 \leq \ell \leq m - 1\), it is not difficult to verify that \(|T_{j,\ell}| = j + 1\). This implies that \(|S_j| = m(j + 1)\).

By definition of \(S_j\) we have

\[
\sum_{i \in S_j} b(i, m) = \sum_{i \in S_j} j = j |S_j| = jm(j + 1). \tag{A-4}
\]

By definition of \(T_{j,\ell}\) we have

\[
\sum_{i \in T_{j,\ell}} q(i, m) = \sum_{i \in T_{j,\ell}} \ell = \ell |T_{j,\ell}| = \ell(j + 1). \tag{A-5}
\]

Substituting (A-4) and (A-5) into (A-3) we obtain

\[
A = \sum_{0 \leq j \leq b(m, s) - 1} \left(m(jm(j + 1)) + \sum_{0 \leq \ell \leq m-1} \ell(j + 1) \right)
\]

\[
= \sum_{0 \leq j \leq b(m, s) - 1} \left(2m^2(j+1) + (j + 1) \sum_{0 \leq \ell \leq m-1} \ell \right)
\]

\[
= \sum_{0 \leq j \leq b(m, s) - 1} \left(2m^2(j+1) + (j + 1)_{\binom{m}{2}} \right)
\]

\[
= 2m^2 \binom{b(m, s)+1}{3} + \binom{b(m, s)+1}{2} \binom{m}{2}. \tag{A-6}
\]

Calculating \(B\):

Since \(b(i, m) = b(m, s)\) for each \(i \geq \alpha + 1\), and \([a_i]^{-} = m \cdot b(i, m) + q(i, m)\), then

\[
B = \sum_{\alpha + 1 \leq i \leq \alpha + \beta} [a_i]^{-} = \sum_{\alpha + 1 \leq i \leq \alpha + \beta} (m \cdot b(i, m) + q(i, m)).
\]
Therefore
\[
B = \sum_{\alpha+1 \leq i \leq \alpha+\beta} m \cdot b(m, s) + \sum_{\alpha+1 \leq i \leq \alpha+\beta} q(i, m)
= m \cdot b(m, s) \sum_{\alpha+1 \leq i \leq \alpha+\beta} 1 + \sum_{\alpha+1 \leq i \leq \alpha+\beta} q(i, m)
= m \cdot b(m, s) + \sum_{\alpha+1 \leq i \leq \alpha+\beta} q(i, m)
= m \cdot b(m, s)q(m, s)(b(m, s) + 1) + \sum_{\alpha+1 \leq i \leq \alpha+\beta} q(i, m).
\]

On other hand it is easy to check that \(|T_{b(m, s), k}| = b(m, s) + 1\) for every \(k\) such that \(0 \leq k \leq q(m, s) - 1\). Since \(0 \leq q(i, m) \leq q(m, s) - 1\) for every \(i\) such that \(\alpha+1 \leq i \leq \alpha+\beta\), then \(T_{b(m, s), 0}, T_{b(m, s), 1}, \ldots, T_{b(m, s), q(m, s) - 1}\) is a partition of \(\{\alpha+1, \alpha+2, \ldots, \alpha+\beta\}\). Thus,
\[
\sum_{\alpha+1 \leq i \leq \alpha+\beta} q(i, m) = \sum_{0 \leq \ell \leq q(m, s) - 1} \sum_{i \in T_{b(m, s), \ell}} q(i, m).
\]

We note that \(\sum_{i \in T_{b(m, s), \ell}} q(i, m) = \ell |T_{b(m, s), k}| = \ell (b(m, s) + 1)\). Using this fact in (A-7) we obtain
\[
\sum_{\alpha+1 \leq i \leq \alpha+\beta} q(i, m) = \sum_{0 \leq \ell \leq q(m, s) - 1} \ell (b(m, s) + 1) = \binom{q(m, s)}{2} (b(m, s) + 1).
\]

Thus,
\[
B = m \cdot b(m, s)q(m, s)(b(m, s) + 1) + \binom{q(m, s)}{2} (b(m, s) + 1)
= 2m \cdot q(m, s)\binom{b(m, s)+1}{2} + \binom{q(m, s)}{2} (b(m, s) + 1).
\]

Calculating \(C \)

Since \(b(i, m) = b(m, s); q(i, m) = q(m, s)\) for each \(i\) such that \(i \geq \alpha+\beta+1\); and \([a_i]^- = m \cdot b(i, m) + q(i, m)\), it follows that
\[
C = \sum_{\alpha+\beta+1 \leq i \leq s} [a_i]^- = \sum_{\alpha+\beta+1 \leq i \leq s} m \cdot b(i, m) + q(i, m)
= \sum_{\alpha+\beta+1 \leq i \leq s} m \cdot b(m, s) + q(m, s)
= (s - \alpha - \beta)\left(m \cdot b(m, s) + q(m, s)\right)
\]

From (A-1) it follows that \(r(m, s) = s - \alpha - \beta\), and so
\[
C = r(m, s)(m \cdot b(m, s) + q(m, s)).
\]

Now from (A-2), (A-8), and (A-9), it follows that \(E(k, n) = A + B + C\), and so Proposition 2 follows from (A-2).
Upper bound for number of edges in $D_{k,n}$:

Proof of Claim 8

First we bound the number of $(\leq k)$-edges in 3-decomposable n-halfperiods in terms of the expression $E(k,n)$ in Proposition 2.

Proposition 3 Let Π be a 3-decomposable n-halfperiod, and let $k < n/2$. Then

$$\eta_{\leq k}(\Pi) \geq \begin{cases} \binom{k+1}{2} & \text{if } k \leq n/3, \\ 3^{\left(\frac{n}{3}+1\right)} + (k-n/3)n + 3\left(\frac{n}{2}\right) - E(k,n) & \text{if } n/3 < k < n/2. \end{cases}$$

Proof. Obviously, $\eta_{\leq k}(\Pi) \geq \eta_{\leq k}^{\text{het}}(\Pi)$ and so the case $k \leq n/3$ follows from Proposition 4. Now suppose that $n/3 < k < n/2$. Recall that $\eta_{\leq k}^{\text{hom}}(\Pi) = \eta_{\geq k}^{bb}(\Pi) + \eta_{\geq k}^{cc}(\Pi) + C_{\leq k}(\Pi)$.

Now the total number of aa- and bb- and cc- transpositions is exactly $\binom{n}{2}$, and so $\eta_{\leq k}^{\text{hom}}(\Pi) = 3\left(\frac{n}{2}\right) - \eta_{\geq k}^{aa}(\Pi) - \eta_{\geq k}^{bb}(\Pi) - \eta_{\leq k}^{cc}(\Pi)$. Thus it follows from Remark 6 and Proposition 2 that $\eta_{\leq k}^{\text{hom}}(\Pi) \geq 3\left(\frac{n}{2}\right) - E(k,n)$. This fact, together with Proposition 4, implies that $\eta_{\leq k}(\Pi) = \eta_{\leq k}^{\text{het}}(\Pi) + \eta_{\leq k}^{\text{hom}}(\Pi) \geq 3\left(\frac{n}{2}\right) + (k-n/3)n + 3\left(\frac{n}{2}\right) - E(k,n)$, as claimed. \[\square\]

Proof of Claim 8. Recall that $s := n/3$ and $m := n-2k-1$. By Remark 5 we know that $k > n/3$, and so $s \geq m$. From (A-11), it follows that

$$q(m,s) = \frac{s - m(b(m,s)+1) - r(m,s)}{b(m,s) + 1}. \quad (A-10)$$

Now by Proposition 3 $\eta_{\leq k}(\Pi) \geq L(k,n)$, where

$$L(k,n) := 3\left(\frac{s+1}{2}\right) + (k-s)n + 3\left(\frac{n}{2}\right) - E(k,n). \quad (A-11)$$

Substituting in $E(k,n)$ the value of $q(m,s)$ given in (A-10), a (long and tedious yet) totally elementary simplification yields

$$L(n,k) - Y(k,n) - 1/3 = \frac{1}{8b(m,s)+1}\left(5b(m,s)^2 + 4b(m,s)^3 + b(m,s)^4 + b(m,s)(-12r(m,s) + 2) + 12r(m,s) - 1) r(m,s) \right).$$

Define $f(b(m,s), r(m,s)) := L(n,k) - Y(k,n) - 1/3$. An elementary calculation shows that $r_0(m,s) := (b(m,s) + 1)/2$ minimizes $f(b(m,s), r(m,s))$. Thus $f(b(m,s), r(m,s)) \geq f(b(m,s), r_0(m,s)) = (b(m,s)+3)(b(m,s)+1)(b(m,s)-1)/8$. Since $b(m,s)$ is a nonnegative integer, it follows that $f(b(m,s), r(m,s)) \geq -1/3$ and therefore $L(n,k) - Y(k,n) \geq 0$. By (A-11), $E(k,n) = (1/3)(b(m,s)+1)(k-s)n + 3\left(\frac{n}{2}\right) - L(k,n))$. Since $-L(n,k) \leq -Y(k,n)$, then $E(k,n) \leq (1/3)(b(m,s)+1)(k-s)n + 3\left(\frac{n}{2}\right) - Y(k,n)) = \frac{1}{2}(1/3)Y(k,n) - (k-s)n$. This proves Claim 8 since $E(k,n)$ is the total number of edges in $D_{k,n}$. \[\square\]