Gravitational clock compass in General Relativity

Dirk Puetzfeld

University of Bremen, Center of Applied Space Technology and Microgravity (ZARM), 28359 Bremen, Germany

Yuri N. Obukhov

Theoretical Physics Laboratory, Nuclear Safety Institute, Russian Academy of Sciences, B.Tulskaya 52, 115191 Moscow, Russia

Claus Lämmerzahl

University of Bremen, Center of Applied Space Technology and Microgravity (ZARM), 28359 Bremen, Germany and Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany

(Dated: July 26, 2018)

We show how a suitably prepared set of clocks can be used to determine all components of the gravitational field in General Relativity. We call such an experimental setup a clock compass, in analogy to the usual gravitational compass. Particular attention is paid to the construction of the underlying reference frame. Conceptual differences between the clock compass and the standard gravitational compass, which is based on the measurement of the mutual accelerations between the constituents of a swarm of test bodies, are highlighted. Our results are of direct operational relevance for the setup of networks of clocks, for example in the context of relativistic geodesy.

PACS numbers: 04.20.-q; 04.20.Cv; 04.25.-g

Keywords: Clock comparison; Reference frames; Normal coordinates; Approximation methods

I. INTRODUCTION

The question of how the gravitational field can be determined in an operational way, is of fundamental importance in gravitational physics. In this paper, we demonstrate how clocks may be used in a general relativistic context.

In [1] we derived a generalized deviation equation by employing the covariant expansion technique based on Synge’s world function [2, 3]. In particular we showed, how the deviation equation, and one of its generalizations, can be used to measure the curvature – i.e. the gravitational field – by monitoring the mutual accelerations between the constituents of a swarm of test bodies. This led to explicit prescriptions for the setup of the constituents of a device called a “gravitational compass” [4], i.e. a realization of a gradiometer in the context of the theory of General Relativity.

On the experimental side, modern clocks reached an unprecedented level of accuracy and stability [5–10] in recent years. An application of clocks for the determination of the gravitational field represents an interesting issue. In analogy with our previous investigation [1], such an ensemble or network of suitably prepared clocks may also be called a clock compass, or a clock gradiometer. In this work, we show how an ensemble of clocks can be used to determine the gravitational field from the mutual frequency comparison of the clocks.

II. REFERENCE FRAME: INERTIAL AND GRAVITATIONAL EFFECTS

Our previous work [1] on the gravitational compass based on deviation equations made clear that a suitable choice of coordinates is crucial for the successful determination of the gravitational field. In particular, the operational realization of the coordinates is of importance when it comes to actual measurements.

From an experimentalists perspective so-called (generalized) Fermi coordinates appear to be realizable operationally. There have been several suggestions for such coordinates in the literature in different contexts [2, 11–38], for a time line of the corresponding research see table I. In the following we are going to derive the line element in the vicinity of a world line, representing an observer in an arbitrary state of motion, in generalized Fermi coordinates.
TABLE I. Time line of works on coordinates.

Year	Spacetime	Curved Flat Acceleration	
1922	Fermi [11, 12]	x	x
1932	Walker [16]	x	x
1960	Synge [2]	x	x
1963	Manasse & Misner [17]	x	
1973	Misner et al. [18]	x	
1977	Ni [19]	x	x
1978	Ni & Zimmermann [21]	x	x
1978	Li & Ni [22]	x	x
2005	Chicone & Mashhoon [33, 34]	x	
2006	Chicone & Mashhoon [39]	x	
2012	Delva & Angonin [37]	x	x

Results in special backgrounds (PN, Kerr, etc.)

1986 | Ashby & Bertotti [26] | x | x |
1988 | Fukushima [28] | x | x |
1993 | Semerák [29] | x | x |
1993 | Marzlin [30] | x | x |
2005 | Bini et al. [32] | x | x |
2005 | Chicone & Mashhoon [39] | x | x | x |
2006 | Chicone & Mashhoon [33, 34] | x |
2010 | Klein & Collas [36] | x | x |
2012 | Turyshiev et al. [38] | x | x |

A. Fermi normal coordinates

Following [14] we start by taking successive derivatives of the usual geodesic equation. This generates a set of equations of the form (for $n \geq 2$)

$$\frac{d^n x^a}{ds^n} = - \Gamma_{b_1...b_n} a \frac{dx^{b_1}}{ds} \cdots \frac{dx^{b_n}}{ds},$$

where the Γ objects with $n \geq 3$ lower indices are defined by the recurrent relation

$$\Gamma_{b_1...b_n} a := \partial_{(b_1} \Gamma_{b_2...b_n)} a - (n - 1) \Gamma_{c(b_1...b_{n-2}} a \Gamma_{b_{n-1} b_{n}) c}$$

from the components of the symmetric linear connection $\Gamma_{b c} a = \Gamma_{c b} a$. A solution $x^a = x^a(s)$ of the geodesic equation may then be expressed as a series

$$x^a = x^a|_0 + s \frac{dx^a}{ds} \bigg|_0 + \frac{s^2}{2} \frac{d^2x^a}{ds^2} \bigg|_0 + \frac{s^3}{6} \frac{d^3x^a}{ds^3} \bigg|_0 + \cdots$$

$$= q^a + s t^a - \frac{s^2}{2} \Gamma_{b c} a v^b v^c - \frac{s^3}{6} \Gamma_{b c d} a v^b v^c v^d - \cdots,$$

where in the last line we used $q^a := x^a|_0$, $v^a := \frac{dx^a}{ds}|_0$, and $\Gamma_{... a} := \Gamma_{... a}|_0$ for constant quantities at the point around which the series development is performed.

Now let us setup coordinates centered on the reference curve Y to describe an adjacent point X. For this we consider a unique geodesic connecting Y and X. We define our coordinates in the vicinity of a point on $Y(s)$, with proper time s, by using a tetrad $\lambda^{(a)}$ which is Fermi transported along Y, i.e.

$$X^0 = s, \quad X^\alpha = \tau \xi^b \lambda^a_b.$$ (4)

Here $\alpha = 1, \ldots, 3$, and τ is the proper time along the (spacelike) geodesic connecting $Y(s)$ and X. The ξ^b are constants, and it is important to notice that the tetrads are functions of the proper time s along the reference curve Y, but independent of τ. See figure 1 for further explanations. By means of this linear ansatz [15] for the coordinates in the vicinity of Y, we obtain for the derivatives w.r.t. τ along the connecting geodesic ($n \geq 1$):

$$\frac{d^n X^0}{d\tau^n} = 0,$$
$$\frac{dX^\alpha}{d\tau} = \xi^b \lambda^a_b, \quad \frac{d^{n+1} X^\alpha}{d\tau^{n+1}} = 0.$$ (5)

In other words, in the chosen coordinates $\{1\}$, along the geodesic connecting Y and X, one obtains for the derivatives ($n \geq 2$)

$$\Gamma_{b_1...b_n} a \frac{dX^{b_1}}{d\tau} \cdots \frac{dX^{b_n}}{d\tau} = 0.$$ (6)

This immediately yields

$$\Gamma_{\beta_1...\beta_n} a = 0,$$ (7)

along the connecting curve, in the region covered by the linear coordinates as defined above.

The Fermi normal coordinate system cannot cover the whole spacetime manifold. By construction, it is a good way to describe the physical phenomena in a small region around the world line of an observer. The smallness of the corresponding domain depends on the motion of the latter, in particular, on the magnitudes of the acceleration $|a|$ and angular velocity $|\omega|$ of the observer which set the two characteristic lengths: $\ell_{\omega} = c^2/|\omega|$ and $\ell_{\omega} = c/|\omega|$. The Fermi coordinate system X^α provides a good description for the region $|X|/\ell < 1$. For example, this condition is with a high accuracy valid in terrestrial laboratories since $\ell_{\omega} = c^2/|\omega| \approx 10^{16}$m (one light year), and $\ell_{\omega} = c/|\omega| \approx 4 \times 10^{12}$m (27 astronomical units). Note,
however, that for a particle accelerated in a storage ring $\ell \approx 10^{-6}$ m. Furthermore, the region of validity of the Fermi coordinate system is restricted by the strength of the gravitational field in the region close to the reference curve, $\ell_{\text{grav}} \approx \min \{|R_{abcd}|^{-1/2}, |R_{abcd}|/|R_{abce}|\}$, so that the curvature should not yet caused geodesics to cross. We always assume that there is a unique geodesic connecting Y and X.

B. Explicit form of the connection

At the lowest order, in flat spacetime, the connection of a noninertial system that is accelerating with a^α and rotating with angular velocity ω^α at the origin of the coordinate system is

\[
\Gamma^0_{00} = \Gamma_{00} = 0, \quad \Gamma^\alpha_0 = a^\alpha, \\
\Gamma^0_0 = a_0, \quad \Gamma^\alpha_\beta = -\varepsilon^\alpha_{\beta\gamma} \omega^\gamma.
\]

Hereafter $\varepsilon_{\alpha\beta\gamma}$ is the 3-dimensional totally antisymmetric Levi-Civita symbol, and the Euclidean 3-dimensional metric $\delta_{\alpha\beta}$ is used to raise and lower the spatial (Greek) indices, in particular $a_{\alpha} = \delta_{\alpha\beta} a^\beta$ and $\varepsilon_{\alpha\beta\gamma} = \delta^{\alpha\beta} \varepsilon_{\delta\gamma}$. For the time derivatives we have

\[
\partial_t \Gamma^0_{00} = 0, \quad \partial_t \Gamma^\alpha_0 = \partial_t a^\alpha = b^\alpha, \\
\partial_t \Gamma^\alpha_0 = b^\alpha, \quad \partial_t \Gamma^\alpha_\beta = -\varepsilon^\alpha_{\beta\gamma} \partial_t \omega^\gamma =: -\varepsilon^\alpha_{\beta\gamma} \eta^\gamma. \tag{9}
\]

From the definition of the curvature we can express the next order of derivatives of the connection in terms of the curvature:

\[
\partial_\alpha \Gamma^0_{00} = b_\alpha - a_\beta \varepsilon^\beta_{\alpha\gamma} \omega^\gamma, \\
\partial_\alpha \Gamma^\alpha_0 = -R_{00\beta} - \varepsilon^\beta_{\alpha\gamma} \eta^\gamma + a_\alpha a^\beta - \delta^\alpha_{\beta\gamma} \omega^\gamma + \omega^\alpha \omega^\beta, \\
\partial_\alpha \Gamma^\alpha_\beta = -R_{00\beta} - a_\alpha a_\beta, \\
\partial_\alpha \Gamma^\alpha_\beta = -R_{00\beta} + \varepsilon^\gamma_{\alpha\beta} \omega^\delta a_\beta. \tag{10}
\]

Using (10), we derive the spatial derivatives

\[
\partial_\alpha \Gamma^\alpha_\beta = \frac{2}{3} R^{\alpha_\beta} \gamma, \tag{11}
\]

see also the general solution given in the appendix B of [1].

C. Explicit form of the metric

In order to determine, in the vicinity of the reference curve Y, the form of the metric at the point X in coordinates y^α centered on Y, we start again with an expansion of the metric around the reference curve

\[
g_{ab}|_X = g_{ab}|_Y + g_{ab,c}|_Y y^c + \frac{1}{2} g_{ab,cd}|_Y y^c y^d + \ldots. \tag{12}
\]

Of course in normal coordinates we have $g_{ab}|_Y = \eta_{ab}$, whereas the derivatives of the metric have to be calculated, and the result actually depends on which type of coordinates we want to use. The derivatives of the metric may be expressed just by successive differentiation of the metricity condition $\nabla g_{ab} = 0$:

\[
g_{ab,c} = 2 g_{d(a} \Gamma^d_{b)c}, \\
g_{ab,cd} = 2(\partial_d g_{(a|c} \Gamma^e_{b)c} + \partial_d \Gamma^e_{c(a} g_{b)e}). \tag{13}
\]

In other words, we can iteratively determine the metric by plugging in the explicit form of the connection and its derivatives from above.

In combination with (12) one finds:

\[
g_{00,0} = 0, \\
g_{00,\alpha} = 2 a_\alpha, \quad g_{00,\beta} = \varepsilon_{0\beta\gamma} \omega^\gamma. \tag{14}
\]

For the second-order derivatives of the metric we obtain, again using (13) in combination with (9), (10), and (15):

\[
g_{00,00} = g_{00,00} = g_{00,00} = g_{00,00} = 0, \quad g_{00,00} = 2 b_\alpha, \\
g_{00,\beta 0} = -\varepsilon^\gamma_{\beta\gamma} \omega^\delta g_{a\gamma} = \varepsilon_{a\beta\gamma} \omega^\gamma, \\
g_{00,\alpha\beta} = -2 R_{00\beta} + 2 a_\alpha a_\beta - 2 \delta_{0\alpha} \omega^\gamma \omega^\gamma + 2 \omega_{\alpha} \omega_{\beta}, \\
g_{00,\beta\gamma} = -\frac{4}{3} R^{\alpha_\beta} \gamma, \quad g_{00,\beta\gamma} = \frac{4}{3} R^{\alpha_\beta} \gamma. \tag{15}
\]

Note that $R_{0\beta\alpha} + R_{0\alpha\beta} + R_{\beta\alpha} = 0$, in view of the Ricci identity. Since $R_{0\beta\alpha} = 0$, we thus find $R_{0\beta\alpha} = R_{0\beta\alpha} = 0$.

As a result, we derive the line element in the Fermi coordinates (up to the second order):
From (16) we derive the choice of the noninertial observer, and they are servers world line. Recall that, by construction, one has

\[ds^2|_X (y^0, y^\alpha) = (dy^0)^2 \left[1 + 2 a_\alpha y^\alpha + 2 b_\alpha y^\alpha y^0 + (a_\alpha a_\beta - \delta_{\alpha\beta} \omega_\gamma \omega^\gamma + \omega_\alpha \omega_\beta - R_{\alpha\beta\gamma\delta}) y^\alpha y^\beta \right] \]

\[+ 2 dy^0 dy^\alpha [\varepsilon_{\alpha\beta\gamma} y^\gamma y^\beta + \varepsilon_{\alpha\beta\gamma} \eta^\gamma y^0 - \frac{2}{3} R_{\alpha\beta\gamma0} y^\gamma y^\beta] \]

\[- dy^0 dy^\beta [\delta_{\alpha\beta} - \frac{1}{3} R_{\alpha\beta\gamma\delta} y^\gamma y^\delta] + O(3). \]

It is worthwhile to notice that we can recast this result as

\[ds^2|_X (y^0, y^\alpha) = (dy^0)^2 \left[1 + 2 \pi_\alpha y^\alpha + (\pi_\alpha \pi_\beta - \delta_{\alpha\beta} \omega_\gamma \omega^\gamma + \omega_\alpha \omega_\beta - R_{\alpha\beta\gamma\delta}) y^\alpha y^\beta \right] \]

\[+ 2 dy^0 dy^\alpha [\varepsilon_{\alpha\beta\gamma} \omega^\gamma y^\beta + \frac{2}{3} R_{\alpha\beta\gamma0} y^\gamma y^\beta] - dy^0 dy^\beta [\delta_{\alpha\beta} - \frac{1}{3} R_{\alpha\beta\gamma\delta} y^\gamma y^\delta] + O(3), \]

by introducing \(\pi_\alpha = a_\alpha + y^0 \partial_0 a_\alpha = a_\alpha + y^0 b_\alpha \) and \(\omega_\alpha = \omega_\alpha + y^0 \partial_0 \omega_\alpha = \omega_\alpha + y^0 \eta_\alpha \) which represent the power expansion of the time dependent acceleration and angular velocity.

III. APPARENT BEHAVIOR OF CLOCKS

The results from the last section may now be used to describe the behavior of clocks in the vicinity of the reference world line, around which the coordinates were constructed.

There is one interesting peculiarity about writing the metric like in (16), i.e. one obtains clock effects which depend on the acceleration of the clock (just integrate along a curve in those coordinates and the terms with \(a \) and \(\omega \) will of course contribute to the proper time along the curve). This behavior of clocks is of course due to the choice of the noninertial observer, and they are only present along curves which do not coincide with the observers world line. Recall that, by construction, one has Minkowski’s metric along the world line of the observer, which is also the center of the coordinate system in which (16) is written – all inertial effects vanish at the origin of the coordinate system.

A. Flat case

We start with the flat spacetime and switch to a quantity which is directly measurable, i.e. the proper time quotient of two clocks located at \(Y \) and \(X \). It is worthwhile to note that for a flat spacetime, \(R_{ijk}^\ell = 0 \), the interval (16) reduces to the Hehl-Ni (40) line element of a noninertial (rotating and accelerating) system:

\[ds^2|_X (y^0, y^\alpha) = (1 + \pi_\alpha y^\alpha)^2 (dy^0)^2 - \delta_{\alpha\beta} (dy^\alpha + \varepsilon^\alpha_{\mu\nu} \omega^\mu y^\nu dy^0) (dy^\beta + \varepsilon^\beta_{\rho\sigma} \omega^\rho y^\sigma dy^0) + O(3), \]

From (16) we derive

\[\left(\frac{ds|_X}{ds|_Y} \right)^2 = \left(\frac{dy^0}{ds|_Y} \right)^2 \left[1 - \delta_{\alpha\beta} V^\alpha V^\beta + 2 a_\alpha y^\alpha + 2 b_\alpha y^\alpha y^0 + y^\alpha y^\beta (a_\alpha a_\beta - \delta_{\alpha\beta} \omega_\gamma \omega^\gamma + \omega_\alpha \omega_\beta) \right] \]

\[+ 2 \varepsilon^\alpha_{\beta\gamma} \left[(y^\beta \omega^\gamma + y^0 \eta^\gamma) \right] + O(3) \]

\[= 1 + \frac{1}{1 - \delta_{\alpha\beta} V^\alpha V^\beta} \left[2 a_\alpha y^\alpha + 2 b_\alpha y^\alpha y^0 + y^\alpha y^\beta (a_\alpha a_\beta - \delta_{\alpha\beta} \omega_\gamma \omega^\gamma + \omega_\alpha \omega_\beta) \right] \]

\[+ 2 \varepsilon^\alpha_{\beta\gamma} \left[(y^\beta \omega^\gamma + y^0 \eta^\gamma) \right] + O(3). \]

Here we introduced the velocity \(V^\alpha := v^\alpha + \varepsilon^\alpha_{\beta\gamma} \omega^\beta y^\gamma \),

we can rewrite the above relation more elegantly as

\[\left(\frac{ds|_X}{ds|_Y} \right)^2 = \left(\frac{dy^0}{ds|_Y} \right)^2 \left[(1 + \pi_\alpha y^\alpha)^2 - \delta_{\alpha\beta} V^\alpha V^\beta \right] + O(3). \]

Equation (20) is reminiscent of the situation which we encountered in case of the gravitational compass, i.e. we may look at this measurable quantity depending on how we prepare the

\[C (y^0, y^\alpha, v^\alpha, a^\alpha, \omega^\alpha, b^\alpha, \eta^\alpha) := \left(\frac{ds|_X}{ds|_Y} \right)^2. \]

(23)
B. Curved case

Now let us investigate the curved spacetime, after all we are interested in mapping the gravitational field by means of clock comparison. The frequency ratio becomes:

\[
\left(\frac{ds|_X}{ds|_Y} \right)^2 = 1 + \frac{1}{1 - \delta_{\alpha\beta} \delta_{\alpha\gamma} \delta_{\beta\gamma}} [2a_\alpha y^\alpha + 2b_\alpha y^\alpha y^\beta + y^\beta (a_\alpha a_\beta - R_{0\alpha\beta} - \delta_{\alpha\beta} \omega_\gamma \omega_\gamma + \omega_\alpha \omega_\beta)] \\
+ 2v^\alpha \epsilon_{\alpha\beta\gamma} (y^\beta \omega_\gamma + y^\gamma \omega_\beta) - \frac{4v^\alpha y^\beta y^\gamma R_{\alpha\beta\gamma0} + \frac{1}{3} v^\alpha v^\beta y^\gamma y^\delta R_{\alpha\beta\gamma\delta}} + O(3). \tag{24}
\]

Analogously to the flat case in (23), we introduce a shortcut for the measurable frequency ratio in a curved background, denoting its dependence on different quantities as \(C \left(y^\alpha, y^\beta, \epsilon_{\alpha\beta}, \omega^\alpha, \omega^\beta, \epsilon_{\alpha\beta\gamma}, \epsilon_{\alpha\beta\gamma0}, \epsilon_{\alpha\beta\gamma\delta}, \omega_{\alpha\beta} \right)\).

Note that in the flat, as well as in the curved case, the frequency ratio becomes independent of \(b^\alpha\) and \(\eta^\alpha\) on the three-dimensional slice with fixed \(y^0\) (since we can always choose our coordinate time parameter \(y^0 = 0\)), i.e. we have \(C \left(y^\alpha, v^\alpha, a^\alpha, \omega^\alpha \right)\) and \(C \left(y^\alpha, v^\alpha, a^\alpha, \omega^\alpha, R_{\alpha\beta\gamma\delta} \right)\) respectively.

IV. CLOCK COMPASS

We now consider different setups of clocks to measure physical quantities by means of mutual frequency comparisons. For example, we could ask the question: can we detect rotation just by clock comparison, i.e. can we measure all three components of \(\omega^\alpha\), by a suitable setup of clocks w.r.t. to the clock on our reference world line \(Y\)?

Here our strategy is similar to our analysis of the gravitational compass in [1]. We start by labeling different initial values for the clocks:

\[
(1) y^\alpha = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, (2) y^\alpha = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, (3) y^\alpha = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},
\]

\[
(4) y^\alpha = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, (5) y^\alpha = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, (6) y^\alpha = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \tag{25}
\]

and

\[
(1) v^\alpha = \begin{pmatrix} c_{11} \\ 0 \\ 0 \end{pmatrix}, (2) v^\alpha = \begin{pmatrix} 0 \\ c_{22} \\ 0 \end{pmatrix}, (3) v^\alpha = \begin{pmatrix} 0 \\ 0 \\ c_{33} \end{pmatrix},
\]

\[
(4) v^\alpha = \begin{pmatrix} c_{41} \\ c_{42} \\ 0 \end{pmatrix}, (5) v^\alpha = \begin{pmatrix} 0 \\ c_{52} \\ c_{53} \end{pmatrix}, (6) v^\alpha = \begin{pmatrix} c_{61} \\ 0 \\ c_{63} \end{pmatrix}, \tag{26}
\]

and

\[
(1) a^\alpha = \begin{pmatrix} d_{11} \\ 0 \\ 0 \end{pmatrix}, (2) a^\alpha = \begin{pmatrix} 0 \\ d_{22} \\ 0 \end{pmatrix}, (3) a^\alpha = \begin{pmatrix} 0 \\ 0 \\ d_{33} \end{pmatrix},
\]

\[
(4) a^\alpha = \begin{pmatrix} d_{41} \\ d_{42} \\ 0 \end{pmatrix}, (5) a^\alpha = \begin{pmatrix} 0 \\ d_{52} \\ d_{53} \end{pmatrix}, (6) a^\alpha = \begin{pmatrix} d_{61} \\ 0 \\ d_{63} \end{pmatrix}, \tag{27}
\]

Here the \(\epsilon\)’s, \(d\)’s and \(e\)’s are real-valued parameters.

A. Linear acceleration determination

Now let us search for a configuration of clocks which allows for a determination of the three components of the linear acceleration \(a^\alpha\) of the observer. Assuming that all other quantities can be prescribed by the experimentalist, we rearrange (24) as follows:

\[
2a_\alpha y^\alpha + a_\alpha a_\beta y^\alpha y^\beta = B(y^\alpha, v^\alpha, \omega^\alpha), \tag{29}
\]

where all the measured frequency ratios, as well as all prescribed quantities are collected on the rhs

\[
B(y^\alpha, v^\alpha, \omega^\alpha) := (1 - v^2) (C - 1) - y^\alpha y^\beta (\omega_\alpha \omega_\beta - \delta_{\alpha\beta} \omega^2) - 2a_\alpha \epsilon_{\alpha\beta\gamma} y^\beta \omega_\gamma. \tag{30}
\]

Note that for brevity we suppress the functional dependence on parameters of the measured frequency ratios on the rhs. Taking into account (28)–(29), we end up with the system

\[
2a_\alpha (n) y^\alpha + a_\alpha a_\beta (n) y^\alpha (m) y^\beta = B((n)y^\alpha, (m)v^\alpha, (p)\omega^\alpha) = (n, m, p) B. \tag{31}
\]
This system does not allow for an extraction of the linear accelerations, but this can be achieved by the introduction of clocks at the positions

\[
\begin{align*}
(7) y^\alpha &= \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \\
(8) y^\alpha &= \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, \\
(9) y^\alpha &= \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}.
\end{align*}
\]

This yields a set of three equations like (31)-(33), which can be subtracted from each other, leading to

\[
a_\alpha = \frac{1}{4} \left((\alpha,1,1) B - (\alpha+6,1,1) B \right).
\]

In terms of the \(C\)'s, for which we use here and in the following the same shorthand notation as for the \(B\)'s, we have

\[
a_\alpha = \frac{1}{4} \left(1 - c_{11}^2 \right) \left((\alpha,1,1) C - (\alpha+6,1,1) C \right).
\]

Hence we need 6 clocks to determine all components of the linear acceleration \(a_\alpha\); see figure 2 for a symbolical sketch of the solution.

B. Rotational velocity determination

Analogously to the strategy in the preceding section, we rearrange the system (23) as follows:

\[
2 v^\alpha \delta_{\alpha\beta\gamma} y^\beta y^\gamma - y^\alpha y^\gamma (\delta_{\alpha\beta\gamma} \omega^2 - \omega_\alpha \omega_\beta) = B(y^\alpha, v^\alpha, a^\alpha),
\]

or explicitly in terms of the \(C\)'s

\[
\begin{align*}
\omega^1 &= \frac{1 - c_{33}^2}{2c_{33}} \left[\frac{1}{2} - \frac{c_{22}^2}{2c_{22}} \left((2,2,1) C - (2,3,1) C + 1 \right) \right], \\
\omega^2 &= \frac{1 - c_{11}^2}{2c_{11}} \left[\frac{1}{2} - \frac{c_{33}^2}{2c_{33}} \left((3,3,1) C - (3,1,1) C + 1 \right) \right], \\
\omega^3 &= \frac{1 - c_{22}^2}{2c_{22}} \left[\frac{1}{2} - \frac{c_{11}^2}{2c_{11}} \left((1,1,1) C - (1,2,1) C + 1 \right) \right].
\end{align*}
\]

See figure 3 for a symbolical sketch of the solution.

C. Linear velocity determination

Again we rearrange the system (23) as follows:

\[
(1 - v^2) (C - 1) - 2 v^\alpha \delta_{\alpha\beta\gamma} y^\beta y^\gamma = B(y^\alpha, v^\alpha, a^\alpha),
\]

where

\[
B(y^\alpha, a^\alpha, a^\alpha) := 2a_\alpha y^\alpha + y^\alpha y^\beta \left(a_\alpha a_\beta - \delta_{\alpha\beta} \omega^2 + \omega_\alpha \omega_\beta \right).
\]
As many curvature components as possible. The system in (52) yields (please note that only the position and the
observer is denoted by the black circle.

Analogously to our analysis of the gravitational compass [1], we may now consider different setups of clocks to measure
where the common factor is given by

\[A := \frac{d_1^2 + 2d_{11}}{(1,1,1)C - 1} \]

An alternative, and slightly simpler, solution for the velocity reads as

\[v^1 = \frac{1}{2c_{33}} \left[\left((2,1,3)C - 1 \right) A + e_{33}^2 \right], \]
\[v^2 = -\frac{1}{2c_{33}} \left[-\left((1,2,3)C - 1 \right) A + e_{33}^2 \right], \]
\[v^3 = \frac{1}{2c_{22}} \left[\left((1,2,2)C - 1 \right) A + e_{22}^2 \right], \]

In other words, 4 clocks are necessary to determine all components of the linear velocity, see figure 4 for a symbolical sketch of the solution.

D. Curvature determination

Now we turn to the determination of the curvature in a general spacetime by means of clocks. We consider the non-vacuum case first, when one needs to measure 20 independent components of the Riemann curvature tensor R_{abcd}. Again we start by rearranging the system (28):

\[(n) y^\alpha(n) y^\beta \left(-R_{0\alpha\beta0} + \sum 2v^a \varepsilon_{\alpha\beta\gamma} (n) y^\beta(p) \omega^\gamma \right) = B((n) y^\alpha, (m) y^\alpha, (p) y^\alpha, (q) y^\alpha), \]

where $B(y^\alpha, v^\alpha, a^\alpha, \omega^\alpha) := (1 - v^2) (C - 1) - 2a_\alpha y^\alpha - y^\alpha y^\beta (a_\alpha a_\beta - \varepsilon_{\alpha\beta\gamma} \omega^\gamma + \omega_\alpha \omega_\beta) - 2v^\alpha \varepsilon_{\alpha\beta\gamma} y^\beta \omega^\gamma$. (53)

Analogously to our analysis of the gravitational compass [1], we may now consider different setups of clocks to measure as many curvature components as possible. The system in (52) yields (please note that only the position and the velocity indices are indicated):

\[01 : R_{1010} = (1,1)B, \]
\[02 : R_{2110} = \frac{3}{4} c_{22}^{-1} c_{42}^{-1} (c_{22} - c_{42})^{-1} \left((1,1)B_{22} - (1,1)B_{22}^2 + (1,2)B_{42} - (1,4)B_{22}^2 \right), \]
\[03 : R_{1212} = -3c_{22}^{-1} c_{42}^{-1} (c_{22} - c_{42})^{-1} \left((1,1)B_{22} - (1,1)B_{22}^2 + (1,2)B_{42} - (1,4)B_{22} \right), \]
\[04 : R_{3110} = \frac{3}{4} c_{33}^{-1} c_{63}^{-1} (c_{33} - c_{63})^{-1} \left((1,1)B_{33} - (1,1)B_{33}^2 + (1,3)B_{63} - (1,6)B_{33} \right), \]
\[05 : R_{1313} = -3c_{33}^{-1} c_{63}^{-1} (c_{33} - c_{63})^{-1} \left((1,1)B_{33} - (1,1)B_{33} + (1,3)B_{63} - (1,6)B_{33} \right), \]
\[06 : R_{2113} = \frac{3}{2} c_{52}^{-1} c_{13}^{-1} \left(-1.5B + R_{1010} - \frac{4}{3} R_{2110}c_{52} - \frac{4}{3} R_{3110}c_{53} - \frac{1}{3} R_{1212}c_{52} - \frac{1}{3} R_{1313}c_{53} \right), \]
\[07 : R_{2020} = (2,2)B, \]
\[08 : R_{0212} = \frac{3}{4} c_{11}^{-1} \left((2,1)B - R_{2020} + \frac{1}{3} R_{1212}c_{11} \right), \]
\[09 : R_{3220} = \frac{3}{4} c_{33}^{-1} c_{53}^{-1} (c_{33} - c_{53})^{-1} \left((2,2)B_{33}^2 - (2,2)B_{33} + (2,3)B_{53}^2 - (2,5)B_{33} \right), \]
\[10 : R_{2332} = -3c_{33}^{-1} c_{53}^{-1} (c_{33} - c_{53})^{-1} \left((2,2)B_{33} - (2,2)B_{53} + (2,3)B_{53} - (5,2)B_{33} \right), \]
we find the remaining three curvature components

\[K_1 := \frac{3}{4} c_{63} \left[-\left(\frac{2}{3}\right) B + R_{1010} + 2R_{2010} + R_{2020} - \frac{4}{3} \left(R_{4110} + R_{3320}\right) c_{33} - \frac{1}{3} \left(R_{1313} + 2R_{3132} + 2R_{2332}\right) c_{33} \right], \]

\[K_2 := \frac{3}{4} c_{11} \left[-\left(\frac{5}{3}\right) B + R_{2020} + 2R_{3020} + R_{3030} + \frac{4}{3} \left(R_{0212} + R_{0313}\right) c_{11} - \frac{1}{3} \left(R_{1212} + 2R_{1213} + R_{1313}\right) c_{11} \right], \]

\[K_3 := \frac{3}{4} c_{22} \left[-\left(\frac{6}{3}\right) B + R_{1010} + 2R_{3010} + R_{3030} - \frac{4}{3} \left(R_{2110} + R_{0323}\right) c_{22} - \frac{1}{3} \left(R_{1212} + 2R_{3212} + 2R_{2332}\right) c_{22} \right]. \]

See figure[5] for a symbolical sketch of the solution. The B’s in these equations can be explicitly resolved in terms of the C’s
E. Vacuum spacetime

In vacuum the number of independent components of the curvature is reduced to the 10 components of the Weyl tensor C_{abcd}. Replacing R_{abcd} in the compass solution, we obtain the curvature components of the Weyl tensor, which can be determined at best:

$$ C_{2323} = -(1,1) B, $$
$$ C_{0323} = \frac{3}{4} c_{22}^{-1} \epsilon_{c_{42}} (c_{22} - c_{42})^{-1} \left((1,1) B \epsilon_{22}^2 - (1,1) B \epsilon_{42}^2 + (1,2) \epsilon_{c_{22}}^2 - (1,4) B \epsilon_{22}^2 \right), $$
$$ C_{3030} = 3 c_{22}^{-1} \epsilon_{c_{42}} (c_{22} - c_{42})^{-1} \left((1,1) B c_{22}^2 - (1,1) B c_{42}^2 + (1,2) B c_{22}^2 - (1,4) B c_{42}^2 \right), $$
$$ C_{2020} = (2,2) B, $$
$$ C_{3220} = \frac{3}{4} c_{33}^{-1} \left((1,3) B + C_{2323} - \frac{1}{3} C_{2020} c_{33}^2 \right), $$
$$ C_{0313} = -\frac{3}{4} c_{11}^{-1} \left((2,1) B - C_{2020} - \frac{1}{3} C_{3030} c_{11}^2 \right), $$
$$ C_{3020} = -\frac{3}{2} c_{52}^{-1} c_{63}^{-1} \left((1,5) B + C_{2323} + \frac{4}{3} C_{3020} c_{52} - \frac{4}{3} C_{3220} c_{53} - \frac{1}{3} C_{3300} c_{52} - \frac{1}{3} C_{2020} c_{53} \right), $$
$$ C_{3212} = -\frac{3}{2} c_{61}^{-1} c_{63}^{-1} \left((2,6) B - C_{2020} + \frac{4}{3} C_{3013} c_{61} + \frac{4}{3} C_{3220} c_{63} - \frac{1}{3} C_{3030} c_{61}^2 + \frac{1}{3} C_{2323} c_{63}^2 \right), $$
$$ C_{3132} = -\frac{3}{2} c_{41}^{-1} c_{42}^{-1} \left((3,4) B - C_{3030} - \frac{4}{3} C_{3013} c_{41} - \frac{4}{3} C_{3030} c_{42} - \frac{1}{3} C_{2020} c_{41} + \frac{1}{3} C_{2323} c_{42} \right). $$

With the abbreviations

$$ K_1 := \frac{3}{4} c_{33}^{-1} \left[-(4,3) B - C_{2323} + 2 C_{3132} + C_{2020} + \frac{1}{3} (C_{2020} - 2 C_{3132} - C_{2323}) c_{33}^2 \right], $$
$$ K_2 := \frac{3}{4} c_{11}^{-1} \left[-(5,1) B + C_{2020} + 2 C_{3020} - C_{3020} + \frac{1}{3} (C_{3020} - 2 C_{3020} + C_{2020}) c_{11}^2 \right], $$
$$ K_3 := -\frac{3}{4} c_{22}^{-1} \left[(6,2) B + C_{2323} - 2 C_{3212} - C_{3030} - \frac{1}{3} (C_{3030} - 2 C_{3212} - C_{2323}) c_{22}^2 \right], $$

the remaining three curvature components can be determined at best:

$$ C_{1023} = \frac{1}{3} (K_3 - K_1), $$
$$ C_{2013} = \frac{1}{3} (K_2 - K_1), $$
$$ C_{3021} = \frac{1}{3} (K_3 - K_2). $$

A symbolic sketch of the solution is given in figure 6.

F. Constrained clock compass

It is interesting to note that in the case of a constrained compass, when the relative velocities of the clocks to each other are vanishing, only six components of the curvature

$$ 10 : C_{1023} = \frac{1}{3} (K_3 - K_1), $$
$$ 11 : C_{2013} = \frac{1}{3} (K_2 - K_1), $$
$$ 12 : C_{3021} = \frac{1}{3} (K_3 - K_2). $$

V. CONCLUSIONS AND OUTLOOK

Here we proposed an experimental setup which we call a clock compass, in analogy to the usual gravitational compass. We have shown that a suitably prepared set of clocks can be used to determine all components
of the gravitational field, i.e. the curvature, in General Relativity, as well as to describe the state of motion of a noninertial observer.

We have worked out explicit clock compass setups in different situations, and have shown that in general 6 clocks are needed to determine the linear acceleration as well as the rotational velocity, while 4 clocks will suffice in the case of the velocity. Furthermore, we gave explicit setups which allow for a determination of all curvature components in general as well as in vacuum spacetimes by means of 21 and 11 clocks, respectively. In view of possible future experimental realizations it is interesting to note that restrictions regarding the choice of clock velocities in a setup lead to restrictions regarding the number of determinable curvature components. Further special cases should be studied depending on possible experimental setups.

In summary, we have shown how the gravitational field can be measured by means of an ensemble of clocks. Our results are of direct operational relevance for the setup of networks of clocks, especially in the context of relativistic geodesy. In geodetic terms, the given clock configurations may be thought of as a clock gradiometers. Taking into account the steadily increasing experimental accuracy of clocks, the results in the present paper should be combined with those from a gradiometric context, for example in the form of a hybrid gravitational compass – which combines acceleration as well as clock measurements in one setup. Another possible application is the detection of gravitational waves by means of clock as well as standard interferometric techniques. An interesting question concerns the possible reduction of the number of required measurements by a combination of different techniques.

ACKNOWLEDGMENTS

We thank Bahram Mashhoon for fruitful discussions and advice. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant PU 461/1-1 (D.P.). The work of Y.N.O. was partially supported by PIER ("Partnership for Innovation, Education and Research" between DESY and Universität Hamburg) and by the Russian Foundation for Basic Research (Grant No. 16-02-00844-A). We also thank the DFG funded Research Training Group 1260 “Models of Gravity”, as well as the Collaborative Research Center 1128 “Relativistic Geodesy (geo-Q)”.

Appendix A: Notations and conventions

Our conventions for the Riemann curvature are as follows:

\[2 T^{c_1 \ldots c_k} d_1 \ldots d_l [b] = 2 \nabla_b \nabla_a T^{c_1 \ldots c_k} d_1 \ldots d_l \]

\[= \sum_{i=1}^k R_{abc}^i T^{c_1 \ldots c_k} d_1 \ldots d_l - \sum_{j=1}^l R_{abd}^j T^{c_1 \ldots c_k} d_1 \ldots d_l. \]

(A1)

The Ricci tensor is introduced by \(R_{ij} = R_{kij}^k \), and the curvature scalar is \(R = g^{ij} R_{ij} \). The signature of the spacetime metric is assumed to be \((+1, -1, -1, -1)\). Latin indices run from 0, \ldots, 3, and Greek indices from 1, \ldots, 3.
TABLE II. Directory of symbols.

Symbol	Explanation
g_{ab}	Metric
$\sqrt{-g}$	Determinant of the metric
δ^a_b	Kronecker symbol
$\varepsilon_{abcd}, \varepsilon_{\alpha\beta\gamma}$	(4D, 3D) Levi-Civita symbol
x^a, y^a	Coordinates
s, τ	Proper time
Γ^c_{ab}	Connection
R_{abcd}, C_{abc}^d	Riemann, Weyl curvature
$\lambda^a_{(\alpha)}$	(Fermi propagated) tetrad
$Y(s), X(\tau)$	(Reference) world line
ξ^a	Constants in spatial Fermi coordinates
v^a, ω^a, V^a	(Linear, rotational, combined) velocity
a^a	Acceleration
b^a, η^a	Deriv. of (linear, rotational) acceleration
C	Frequency ratio
$A, B, K_{1,2,3}$	Auxiliary quantities

Operators

Expression	Description
∂_i, ∇_i	(Partial, covariant) derivative
$\frac{D}{ds}$	Total covariant derivative
$\frac{d}{ds}$	Total derivative
$\ddot{\nu}$	Power expansion

[1] D. Puetzfeld and Y. N. Obukhov. Generalized deviation equation and determination of the curvature in General Relativity. *Phys. Rev. D*, 93:044073, 2016.

[2] J. L. Synge. *Relativity: The general theory*. North-Holland, Amsterdam, 1960.

[3] B. S. DeWitt and R. W. Brehme. Radiation damping in a gravitational field. *Ann. Phys. (N. Y.)*, 9:220, 1960.

[4] P. Szekeres. The gravitational compass. *J. Math. Phys.*, 6:1387, 1965.

[5] C. W. Chou and et al. Frequency comparison of two high-accuracy Al optical clocks. *Phys. Rev. Lett.*, 104:070802, 2010.

[6] N. Huntemann and et al. High-Accuracy optical clock based on the octupole transition in 171Yb$^+$. *Phys. Rev. Lett.*, 108:090801, 2012.

[7] J. Guéna and et al. Progress in atomic fountains at Inesyrte. *IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control*, 59:391, 2012.

[8] S. Falke and et al. A strontium lattice clock with 3×10^{-17} inaccuracy and its frequency. *New J. Phys.*, 16:073023, 2014.

[9] B. J. Bloom and et al. An optical lattice clock with accuracy and stability at the 10^{-18} level. *Nature (London)*, 506:71, 2014.

[10] M. Schioppo and et al. Ultrastable optical clock with two cold-atom ensembles. *Nat. Photonics*, 11:48, 2017.
[21] W.-T. Ni and M. Zimmermann. Inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. *Phys. Rev. D*, 17:1473, 1978.

[22] W.-Q. Li and W.-T. Ni. On an accelerated observer with rotating tetrad in special relativity. *Chin. J. Phys.*, 16: 214, 1978.

[23] W.-T. Ni. Geodesic triangles and expansion of the metrics in normal coordinates. *Chin. J. Phys.*, 16:223, 1978.

[24] W.-Q. Li and W.-T. Ni. Coupled inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. *J. Math. Phys.*, 20:1473, 1979.

[25] W.-Q. Li and W.-T. Ni. Expansions of the affinity, metric and geodesic equations in Fermi normal coordinates about a geodesic. *J. Math. Phys.*, 20:1925, 1979.

[26] N. Ashby and B. Bertotti. Relativistic effects in local inertial frames. *Phys. Rev. D*, 34:2246, 1986.

[27] A. M. Eisele. On the behaviour of an accelerated clock. *Helv. Phys. Acta*, 60:1024, 1987.

[28] T. Fukushima. The Fermi coordinate system in the post-Newtonian framework. *Celest. Mech.*, 44:61, 1988.

[29] O. Semerák. Stationary frames in the Kerr field. *Gen. Rel. Grav.*, 25:1041, 1993.

[30] K.-P. Marzlin. Fermi coordinates for weak gravitational fields. *Phys. Rev. D*, 50:888, 1994.

[31] C. Chicone and B. Mashhoon. Significance of $c/\sqrt{2}$ in relativistic physics. *Class. Quantum Grav.*, 21:L139, 2004.

[32] D. Bini, A. Geralico, and R. T. Jantzen. Kerr metric, static observers and Fermi coordinates. *J. Math. Phys.*, 22:4729, 2005.

[33] C. Chicone and B. Mashhoon. Explicit Fermi coordinates and tidal dynamics in de Sitter and Gödel spacetime. *Phys. Rev. D*, 74:064019, 2006.

[34] C. Chicone and B. Mashhoon. Tidal dynamics in Kerr spacetime. *Class. Quantum Grav.*, 23:4021, 2006.

[35] D. Klein and P. Collas. General transformation formulas for Fermi-Walker coordinates. *Class. Quant. Grav.*, 25:145019, 2008.

[36] D. Klein and P. Collas. Exact Fermi coordinates for a class of space-times. *J. Math. Phys.*, 51:022501, 2010.

[37] P. Delva and M.-C. Angonin. Extended Fermi coordinates. *Gen. Rel. Grav.*, 44:1, 2012.

[38] S. G. Turyshev, O. L. Minazzoli, and V. T. Toth. Accelerating relativistic reference frames in Minkowski spacetime. *J. Math. Phys.*, 53:032501, 2012.

[39] C. Chicone and B. Mashhoon. Ultrarelativistic motion: inertial and tidal effects in Fermi coordinates. *Class. Quantum Grav.*, 22:195, 2005.

[40] F. W. Hehl and W.-T. Ni. Inertial effects of a Dirac particle. *Phys. Rev. D*, 42:2045, 1990.