EXAMPLES OF DOMAINS WITH NON-COMPACT AUTOMORPHISM GROUPS

Siqi Fu, A. V. Isaev, and S. G. Krantz

Abstract. We give an example of a bounded, pseudoconvex, circular domain in \mathbb{C}^n for any $n \geq 3$ with smooth real-analytic boundary and non-compact automorphism group, which is not biholomorphically equivalent to any Reinhardt domain. We also give an analogous example in \mathbb{C}^2, where the domain is bounded, non-pseudoconvex, and not equivalent to any Reinhardt domain, and the boundary is smooth real-analytic at all points except one.

Let D be a bounded or, more generally, a hyperbolic domain in \mathbb{C}^n. Denote by $\text{Aut}(D)$ the group of biholomorphic self-mappings of D. The group $\text{Aut}(D)$, with the topology given by uniform convergence on compact subsets of D, is in fact a Lie group [Kob].

A domain D is called Reinhardt if the standard action of the n-dimensional torus \mathbb{T}^n on \mathbb{C}^n,

$$z_j \mapsto e^{i\phi_j}z_j, \quad \phi_j \in \mathbb{R}, \quad j = 1, \ldots, n,$$

leaves D invariant. For certain classes of domains with non-compact automorphism groups, Reinhardt domains serve as standard models up to biholomorphic equivalence (see e.g. [R], [W], [BP], [GK1], [Kod]).

It is an intriguing question whether any domain in \mathbb{C}^n with non-compact automorphism group and satisfying some natural geometric conditions is biholomorphically equivalent to a Reinhardt domain. The history of the study of domains with non-compact automorphism groups shows that there were expectations that the answer to this question would be positive (see [Kra]). In this note we give examples that show that the answer is in fact negative.

While the domain that we shall consider in Theorem 1 below has already been noted in the literature [BP], it has never been proved that this domain is not biholomorphically equivalent to a Reinhardt domain. Note that this domain is circular, i.e. it is invariant under the special rotations

$$z_j \mapsto e^{i\phi}z_j, \quad \phi \in \mathbb{R}, \quad j = 1, \ldots, n.$$

Our first result is the following
Theorem 1. There exists a bounded, pseudoconvex, circular domain $\Omega \subset \mathbb{C}^3$ with smooth real-analytic boundary and non-compact automorphism group, which is not biholomorphically equivalent to any Reinhardt domain.

Proof. Consider the domain

$$\Omega = \{ |z_1|^2 + |z_2|^4 + |z_3|^4 + (\overline{z_3}z_3 + \overline{z_2}z_2)^2 < 1 \}.$$

The domain Ω is invariant under the action of the two-dimensional torus T^2

$$z_1 \mapsto e^{i\phi_1}z_1, \quad \phi_1 \in \mathbb{R},$$

$$z_j \mapsto e^{i\phi_2}z_j, \quad \phi_2 \in \mathbb{R}, \quad j = 2, 3,$$

and therefore is circular. It is also a pseudoconvex, bounded domain with smooth real-analytic boundary. The automorphism group $\text{Aut}(\Omega)$ is non-compact since it contains the following subgroup

$$z_1 \mapsto z_1 - a \overline{z_1},$$

$$z_2 \mapsto \frac{(1 - |a|^2)\frac{4}{3}z_2}{(1 - |a|^2)^{\frac{1}{2}}},$$

$$z_3 \mapsto \frac{(1 - |a|^2)\frac{4}{3}z_3}{(1 - |a|^2)^{\frac{1}{2}}},$$

for a complex parameter a with $|a| < 1$.

We are now going to explicitly determine $\text{Aut}(\Omega)$. Let $F = (f_1, f_2, f_3)$ be an automorphism of Ω. Then, since Ω is bounded, pseudoconvex and has real-analytic boundary, F extends smoothly to $\overline{\Omega}$ [BL]. Therefore, F must preserve the rank of the Levi form $L_{\partial \Omega}(q)$ of $\partial \Omega$ at every $q \in \partial \Omega$. The only points where $L_{\partial \Omega} \equiv 0$ are those of the form $(e^{i\alpha}, 0, 0)$, $\alpha \in \mathbb{R}$. These points must be preserved by F. This observation implies that $f_j(e^{i\alpha}, 0, 0) = 0$ for all $\alpha \in \mathbb{R}$, $j = 2, 3$. Restricting f_2, f_3 to the unit disc $\Omega \cap \{ z_2 = z_3 = 0 \}$, we see that $f_j(z_1, 0, 0) = 0$ for all $|z_1| \leq 1$, $j = 2, 3$. Therefore, $F(0) = (b, 0, 0)$ for some $|b| < 1$. Taking the composition of F and the automorphism G of the form (1) with $a = b$, we find that the mapping $G \circ F$ preserves the origin. Since Ω is circular, it follows from a theorem of H. Cartan [C] that $G \circ F$ must be linear. Therefore, any automorphism of Ω is the composition of a linear automorphism and an automorphism of the form (1).

The above argument also shows that any linear automorphism of Ω can be written as

$$z_1 \mapsto e^{i\phi_1}z_1,$$

$$z_2 \mapsto az_2 + bz_3,$$

$$z_3 \mapsto cz_3 + dz_3,$$

where $\phi_1 \in \mathbb{R}$, $a, b, c, d \in \mathbb{C}$, and the transformation in the variables (z_2, z_3) is an automorphism of the section $\Omega \cap \{ z_1 = 0 \}$. Further, since the only points of $\partial \Omega$ where rank $L_{\partial \Omega} = 1$ are those of the form $(z_1, w, \pm w)$ with $w \neq 0$ and since automorphisms of Ω preserve such points, it follows that any linear automorphism of Ω is in fact given by

$$z_1 \mapsto e^{i\phi_1}z_1,$$

$$z_2 \mapsto e^{i\phi_2}z_{\sigma(2)},$$

$$z_3 \mapsto e^{i\phi_3}z_{\sigma(3)},$$
where $\phi_1, \phi_2 \in \mathbb{R}$, and σ is a permutation of the set $\{2, 3\}$.

The preceding description of $\text{Aut}(\Omega)$ implies that $\dim \text{Aut}(\Omega) = 4$. That is to say, each of the four connected components of $\text{Aut}(\Omega)$ is parametrized by the point a from the unit disc and by the rotation parameters ϕ_1, ϕ_2.

Suppose now that Ω is biholomorphically equivalent to a Reinhardt domain $D \subset \mathbb{C}^3$. Since Ω is bounded, it follows that D is hyperbolic. It follows from [Kru] that any hyperbolic Reinhardt domain $G \subset \mathbb{C}^n$ can be biholomorphically mapped onto its normalized form \tilde{G} for which the identity component $\text{Aut}_0(\tilde{G})$ of $\text{Aut}(G)$ is described as follows. There exist integers $0 \leq s \leq t \leq p \leq n$ and $n_i \geq 1$, $i = 1, \ldots, p$, with $\sum_{i=1}^p n_i = n$, and real numbers $\alpha_i, \beta_i, \gamma_i, \delta_i$ such that if we set $z^i = (z_{n_1+\ldots+n_{i-1}+1}, \ldots, z_{n_1+\ldots+n_i})$, $i = 1, \ldots, p$, then $\text{Aut}_0(\tilde{G})$ is given by the mappings

$$
\begin{align*}
 z^i &\mapsto \frac{A^i z^i + b^i}{c^i z^i + d^i}, & i = 1, \ldots, s, \\
 z^j &\mapsto B^j z^j + e^j, & j = s + 1, \ldots, t, \\
 z^k &\mapsto C^k \frac{\prod_{j=s+1}^t \exp \left(-\beta_j \left(2\exp(z^j) + |e^j|^2 \right) \right) z^k}{\prod_{i=1}^s (c^i z^i + d^i)^2 \alpha_i}, & k = t + 1, \ldots, p,
\end{align*}
$$

where

$$
\begin{align*}
 &\begin{pmatrix} A^i & b^i \\ c^i & d^i \end{pmatrix} \in SU(n_i, 1), & i = 1, \ldots, s, \\
 &B^j \in U(n_j), & e^j \in \mathbb{C}^{n_j}, & j = s + 1, \ldots, t, \\
 &C^k \in U(n_k), & k = t + 1, \ldots, p.
\end{align*}
$$

The normalized form \tilde{G} is written as

$$
G = \left\{ |z^1| < 1, \ldots, |z^n| < 1, \begin{array}{c}
 \frac{z^{t+1}}{\prod_{i=1}^s (1 - |z^i|^2)^{\alpha_i}} \\
 \prod_{j=s+1}^t \exp \left(-\beta_j \left(2\exp(z^j) + |e^j|^2 \right) \right)
\end{array}, \ldots, \begin{array}{c}
 \frac{z^p}{\prod_{i=1}^s (1 - |z^i|^2)^{\alpha_p}} \\
 \prod_{j=s+1}^t \exp \left(-\beta_j \left(2\exp(z^j) + |e^j|^2 \right) \right)
\end{array} \right\} \subset \tilde{G}_1,
$$

where $\tilde{G}_1 := \tilde{G} \cap \{ z^i = 0, i = 1, \ldots, t \}$ is a hyperbolic Reinhardt domain in $\mathbb{C}^{n+1} \times \ldots \times \mathbb{C}^{n_p}$.

It is now easy to see that, for any hyperbolic Reinhardt domain $D \subset \mathbb{C}^3$ written in a normalized form \tilde{D}, $\text{Aut}_0(\tilde{D})$ given by formulas (2) cannot have dimension equal to 4.

This completes the proof.

\[\blacksquare \]

Remark. The theorem can be easily extended to \mathbb{C}^n for any $n \geq 3$ (just replace $|z^i|^2$ in the defining function of Ω by $\sum_{i=1}^{n-2} |z^i|^2$, α_i by α_{i+2}, β_i by β_{i+2}).
There is considerable evidence that, in complex dimension two, an example such as that constructed in Theorem 1 does not exist. Certainly the example provided above depends on the decoupling, in the domain Ω, of the variables z_2, z_3 from the variable z_1. Such decoupling is not possible when the dimension is only two.

The work of Bedford and Pinchuk (see [BP] and references therein) suggests that the only smoothly bounded domains in \mathbb{C}^2 with non-compact automorphism groups are (up to biholomorphic equivalence) the complex ellipsoids $\Omega_\alpha = \{ (z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^{2\alpha} < 1 \}$, where α is a positive integer. It is also a plausible conjecture that any bounded domain in \mathbb{C}^2 with non-compact automorphism group and a boundary of finite smoothness C^k for $k \geq 1$, is biholomorphically equivalent to some Ω_α, where $\alpha \geq 1$ and is not necessarily an integer. Of course all the domains Ω_α are pseudoconvex and Reinhardt.

However, as the following theorem shows, if we allow the boundary to be non-smooth at just one point, then the domain may be non-pseudoconvex and be non-equivalent to any Reinhardt domain.

Theorem 2. There exists a bounded, non-pseudoconvex domain $\Omega \subset \mathbb{C}^2$ with non-compact automorphism group such that $\partial \Omega$ is smooth real-analytic everywhere except one point (this exceptional point is an orbit accumulation point for the automorphism group action), and such that Ω is not biholomorphically equivalent to any Reinhardt domain.

For the proof of Theorem 2, we first need the following lemma.

Lemma A. If $\Omega \subset \mathbb{C}^2$ is a bounded, non-pseudoconvex, simply-connected domain such that the identity component $\text{Aut}_0(\Omega)$ of the automorphism group $\text{Aut}(\Omega)$ is non-compact, then Ω is not biholomorphically equivalent to any Reinhardt domain.

Proof of Lemma A. Suppose that Ω is biholomorphically equivalent to a Reinhardt domain D. Since Ω is bounded, it follows that D is hyperbolic. Also, since $\text{Aut}_0(\Omega)$ is non-compact, then so is $\text{Aut}_0(D)$. We are now going to show that any such domain D is either pseudoconvex, or not simply-connected, or cannot be biholomorphically equivalent to a bounded domain. This result clearly implies the lemma.

We can now assume that the domain D is written in its normalized form \tilde{D} as in (3), and $\text{Aut}_0(\tilde{D})$ is given by formulas (2). Then, since $\text{Aut}_0(\tilde{D})$ is non-compact, it must be that $t > 0$. Next, if $p = t$, then \tilde{D} is either non-hyperbolic (for $s < t$), or (for $s = t$) is the unit ball or the unit polydisc and therefore is pseudoconvex. Thus we can assume that $t = 1$, $p = 2$, $n_1 = n_2 = 1$.

Let $\tilde{D}_1 \subset \mathbb{C}$ be the hyperbolic Reinhardt domain analogous to \tilde{G}_1 that was defined above (see (3)). Clearly, there are the following possibilities for \tilde{D}_1:

(i) $\tilde{D}_1 = \{ 0 < |z_2| < R \}, 0 < R < \infty$;
(ii) $\tilde{D}_1 = \{ r < |z_2| < R \}, 0 < r < R \leq \infty$;
(iii) $\tilde{D}_1 = \{ |z_2| < R \}, 0 < R < \infty$.

For the cases (i), (ii), \tilde{D} is always not simply-connected, and therefore we will concentrate on the case (iii). If $s = 0$, then \tilde{D} is not hyperbolic since it contains the complex line $\{ z_2 = 0 \}$. Thus we can assume that $s = 1$. Next observe that, for
\[\alpha_1^2 \geq 0, \] the domain \(\tilde{D} \) is always pseudoconvex. Thus we may take \(\alpha_1^2 < 0 \). Then the domain \(\tilde{D} \) has the form

\[
\tilde{D} = \left\{ |z_1| < 1, |z_2| < \frac{R}{(1 - |z_1|^2)\gamma} \right\}, \quad \gamma > 0.
\]

We will now show that the above domain \(\tilde{D} \) cannot be biholomorphically equivalent to a bounded domain. More precisely, we will show that any bounded holomorphic function on \(\tilde{D} \) is independent of \(z_2 \).

Let \(f(z_1, z_2) \) be holomorphic on \(\tilde{D} \) and \(|f| < M \) for some \(M > 0 \). For every \(\rho \) such that \(|\rho| \leq \frac{R}{2} \), the disc \(\Delta_\rho = \{ |z_1| < 1, z_2 = \rho \} \) is contained in \(\tilde{D} \). We will show that \(\partial f/\partial z_2 \equiv 0 \) on every such \(\Delta_\rho \), which implies that \(\partial f/\partial z_2 \equiv 0 \) everywhere in \(\tilde{D} \).

Fix a point \((\mu, \rho) \in \Delta_\rho \) and restrict \(f \) to the disc \(\Delta'_\mu = \{ z_1 = \mu, |z_2| < R_\mu \} \), where \(R_\mu = R/2(1 - |\mu|^2)^{\gamma} \). Clearly, \((\mu, \rho) \in \Delta'_\mu \) and \(\Delta'_\mu \subset \tilde{D} \). By the Cauchy Integral Formula

\[
f(\mu, z_2) = \frac{1}{2\pi i} \int_{\partial \Delta'_\mu} \frac{f(\mu, \zeta)}{\zeta - z_2} d\zeta,
\]

for \(|z_2| < R_\mu \), and therefore

\[
\frac{\partial f}{\partial z_2}(\mu, \rho) = \frac{1}{2\pi i} \int_{\partial \Delta'_\mu} \frac{f(\mu, \zeta)}{(\zeta - \rho)^2} d\zeta.
\]

Hence

\[
\left| \frac{\partial f}{\partial z_2}(\mu, \rho) \right| \leq \frac{MR_\mu}{(R_\mu - |\rho|)^2}.
\]

Letting \(|\mu| \to 1 \) and taking into account that \(R_\mu \to \infty \), we see that \(|\partial f/\partial z_2(\mu, \rho)| \to 0 \) as \(|\mu| \to 1 \). Therefore, \(\partial f/\partial z_2 \equiv 0 \) on \(\Delta_\rho \).

The lemma is proved.

Proof of Theorem 2. We will now present a domain that satisfies the conditions of the lemma. Set

\[
\Omega = \left\{ |z_1|^2 + |z_2|^4 + 8|z_1| - 1|^2 \left(\frac{z_2^2}{z_1 - 1} - \frac{3}{2} \frac{|z_2|^2}{|z_1| - 1} + \frac{2z_2^2}{z_1 - 1} \right)^2 < 1 \right\}.
\]

The domain \(\Omega \) is plainly bounded since the third term on the left is non-negative. Next, the identity component \(\text{Auto}_0(\Omega) \) of its automorphism group is non-compact since it contains the subgroup

\[
\begin{align*}
 z_1 &\mapsto \frac{z_1 - a}{1 - az_1}, \\
 z_2 &\mapsto \frac{(1 - a^2)^{\frac{1}{2}} z_2}{(1 - az_1)^{\frac{1}{2}}},
\end{align*}
\]

where \(a \in (-1, 1) \).
Further, Ω is simply-connected, since the family of mappings $F_\tau(z_1, z_2) = (z_1, \tau z_2)$, $0 \leq \tau \leq 1$, retracts Ω inside itself, as $\tau \to 0$, to the unit disc $\{|z_1| < 1, z_2 = 0\}$ (which is simply-connected).

To show that Ω is not pseudoconvex, consider its unbounded realization. Namely, under the mapping

$$
\begin{align*}
z_1 &\mapsto \frac{z_1 + 1}{z_1 - 1}, \\
z_2 &\mapsto \frac{\sqrt{2}z_2}{\sqrt{z_1 - 1}},
\end{align*}
$$

the domain Ω is transformed into the domain

$$
\Omega' = \left\{ \Re z_1 + \frac{1}{4}|z_2|^4 + 2 \left(z_2^2 - \frac{3}{2}|z_2|^2 + \frac{3}{2}z_2^2 \right)^2 < 0 \right\}.
$$

It is easy to see that at the boundary point $(-\frac{3}{4}, 1) \in \partial\Omega'$ the Levi form of $\partial\Omega'$ is equal to $-|z_2|^2$, and thus is negative-definite. Therefore, Ω is non-pseudoconvex.

Hence, by Lemma A, Ω is not biholomorphically equivalent to any Reinhardt domain.

Next, if ϕ denotes the defining function of Ω, the following holds at every boundary point of Ω except $(1, 0)$:

$$
\frac{\partial \phi}{\partial z_1} = \frac{1}{z_1 - 1} \left(-\frac{z_2}{2} \frac{\partial \phi}{\partial z_2} + 1 - \frac{1}{z_1} \right),
$$

and therefore $\text{grad} \phi$ does not vanish at every such point. Hence, $\partial \Omega$ is smooth real-analytic everywhere except at $(1, 0)$.

The theorem is proved.

Remarks.

1. The hypothesis of simple connectivity in Lemma A is automatically satisfied if, for example, the boundary of the domain is locally variety-free and smooth near some orbit accumulation point for the automorphism group of the domain (see e.g. [GK2]). For a smoothly bounded domain it would follow from a conjecture of Greene/Krantz [GK3].

2. Tedious calculations show that the boundary of the domain Ω in Theorem 2 is quite pathological near the exceptional point $(1, 0)$. It is not Lipschitz-smooth of any positive degree. It would be interesting to know whether there is an example with Lipschitz-1 boundary at the bad point.

In fact, many more examples similar to that in Theorem 2 can be constructed in the following way. Let

$$\Omega' = \{ (z_1, z_2) \in \mathbb{C}^2 : \Re z_1 + P(z_2) < 0 \},$$

where $P = |z_2|^{2m} + Q(z_2)$ is a homogeneous non-plurisubharmonic polynomial, m is a positive integer, and $Q(z_2)$ is positive away from the origin. Then, by a mapping analogous to (4), Ω' can be transformed into a bounded domain Ω. The domain Ω is simply-connected, non-pseudoconvex, $\text{Aut}(\Omega)$ is non-compact, and $\partial\Omega$ is smooth.
real-analytic everywhere except at the point \((1, 0)\). For all such examples, \(\partial \Omega\) is not Lipschitz-smooth of any positive degree at \((1, 0)\).

It is also worth noting that, in the example contained in Theorem 2, the point \((-1, 0)\) is also an orbit accumulation point, but \(\partial \Omega\) is smooth real-analytic at this point.

3. It is conceivable that the domain \(\Omega\) as in Theorem 2 has an alternative, smoothly bounded realization, but it looks plausible that if in formula (5) we allow \(P(z_2)\) to be an arbitrary homogeneous polynomial positive away from the origin with no harmonic term, then domain (5) does not have a bounded realization with \(C^1\)-smooth boundary, unless \(P(z_2) = c|z_2|^{2m}\), where \(c > 0\) and \(m\) is a positive integer.

Acknowledgements. This work was completed while the second author was an Alexander von Humboldt Fellow at the Research at MSRI by the third author supported in part by NSF Grant DMS-9022140. University of Wuppertal.

References

[BL] Bell, S., Ligocka, E., A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283–289.

[BP] Bedford, E., Pinchuk, S., Domains in \(\mathbb{C}^{n+1}\) with non-compact automorphism groups, J. Geom. Anal. 1 (1991), 165–191.

[C] Cartan, H., Les transformations analytiques des domaines cercles les uns dans les autres, Compt. Rendus de l’Académie des Sciences de Paris 190 (1930), 718–720.

[GK1] Greene, R. E., Krantz, S. G., Characterization of certain weakly pseudoconvex domains with non-compact automorphism groups, Lecture Notes in Mathematics 1268, Springer-Verlag, 1987, 121–157.

[GK2] Greene, R. E, Krantz, S. G., Invariants of Bergman geometry and the automorphism groups of domains in \(\mathbb{C}^n\), Proceedings of a Conference on Complex Analysis and Geometry held in Cetraro, 1989, Mediterranean Press, 1992, 107–136.

[GK3] Greene, R. E., Krantz, S. G., Techniques for studying automorphisms of weakly pseu
doconvex domains, in J. E. Fornaess (Ed.) Several Complex Variables: Proceedings of the Mittag-Leffler Institute, 1987-1988, Math. Notes, Vol. 38, Princeton University Press, 1993, 389–410.

[Kob] Kobayashi, S., Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357–416.

[Kod] Kodama, A., A characterization of certain domains with good boundary points in the sense of Greene-Krantz, Kodai. Math. J. 12 (1989), 257–269.

[Kra] Krantz, S. G., Convexity in complex analysis, Several Complex Variables and Complex Geometry, Part 1 (Santa Cruz, CA, 1989), Proc. Symp. Pure Math. 52, Part 1 (1991), 119–137.

[Kru] Kruzhilin, N. G., Holomorphic automorphisms of hyperbolic Reinhardt domains (translated from Russian), Math. USSR-Izv. 32 (1989), 15–38.

[R] Rosay, J. P., Sur une caractérisation de la boule parmi les domaines de \(\mathbb{C}^n\) par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), 91–97.

[W] Wong, B., Characterization of the unit ball in \(\mathbb{C}^n\) by its automorphism group, Invent. Math. 41 (1977), 253–257.
Siqi Fu
Department of Mathematics
University of California, Irvine, CA 92717
USA
E-mail address: sfu@math.uci.edu

A. V. Isaev
Centre for Mathematics and Its Applications
The Australian National University
Canberra, ACT 0200
AUSTRALIA
E-mail address: Alexander.Isaev@anu.edu.au
and
Bergische Universität
Gesamthochschule Wuppertal
Mathematik (FB 07)
Gaussstrasse 20
42097 Wuppertal
GERMANY
E-mail address: Alexander.Isaev@math.uni-wuppertal.de

S. G. Krantz
Department of Mathematics
Washington University, St. Louis, MO 63130
USA
E-mail address: sk@math.wustl.edu
and
MSRI
1000 Centennial Drive
Berkeley, California 94720
USA
E-mail address: krantz@msri.org