Review
Forensic Entomology in China and Its Challenges

Yu Wang †, Yinghui Wang †, Man Wang, Wang Xu, Yanan Zhang and Jiangfeng Wang *

Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China; yuw@suda.edu.cn (Y.W.); ganyuchengge@163.com (Y.W.); wm1585051476@163.com (M.W.);
20194221067@stu.suda.edu.cn (W.X.); 20204221029@stu.suda.edu.cn (Y.Z.)
* Correspondence: jfwang@suda.edu.cn; Tel.: +86-181-5111-6801
† These authors contributed equally to this work.

Simple Summary: Forensic entomologists utilize sarcosaprophagous insect species to estimate the postmortem interval to aid death investigations. In this paper, we present the recent chronology of forensic entomology in China and illustrate how identification, development, and succession data are obtained and applied at the scale of such a large country. To overcome the difficulties and challenges forensic entomology faces in China, a number of countermeasures are provided.

Abstract: While the earliest record of forensic entomology originated in China, related research did not start in China until the 1990s. In this paper, we review the recent research progress on the species identification, temperature-dependent development, faunal succession, and entomological toxicology of sarcosaprophagous insects as well as common applications of forensic entomology in China. Furthermore, the difficulties and challenges forensic entomologists face in China are analyzed and possible countermeasures are presented.

Keywords: forensic entomology; postmortem interval; development; succession; species identification

1. Origin and Development of Forensic Entomology in China

The book Washing Away of Wrongs, published during the Song dynasty, describes the earliest case report of forensic entomology [1]. No obvious progress was achieved in forensic entomology in China until the 1990s. In the 1990s, influenced by the boom of forensic entomology across Europe, North America, and Australia, Cui Hu and Hongzhang Zhou started exploratory research in southern and northern China, respectively [2]. With the publishing of Forensic Entomology by Hu [3], forensic entomology began to attract extensive attention in China. An array of studies focusing on species identification, temperature-dependent development, insect succession, and entomological toxicology have been conducted since then.

1.1. Species Identification

Forensic entomology represents the application of the study of insects (and other arthropods) to legal issues [4]. The most common use of entomological evidence in medicolegal investigations is the estimation of the time that has passed since death, which is referred to as the postmortem interval (PMI) [5]. The proper identification of forensically important species constitutes the first step and also the most crucial element in forensic entomology [6]. Species identification allows the application of the proper developmental data and insect succession patterns in an investigation [7]. If species determination is incorrect, the estimated PMI will also be incorrect [5]. Without the accurate identification of forensically important insect species, basic forensic entomology research is also not possible [2]. In China, entomologists conducted comprehensive and systematic work on the identification of sarcosaprophagous insects [8–17]. Most of their peer-reviewed findings have been absorbed into books. The Key to the Common Flies of China (2nd Edition)
by Fan [18], published in 1992, contains 1547 common fly species in nine families and 250 genera. *Flies of China* by Xue and Zhao [19], published in 1996, contains 4209 fly species of 30 families and 660 genera. *Fauna Sinica Insecta Diptera: Calliphoridae* by Fan [20], published in 1997, contains five subfamilies, 48 genera, and 232 species of blow fly. These books lay a solid foundation for both research and application of forensic entomology. *Beetles Associated with Stored Products in China* by Zhang et al. [21], *Carrion Beetles of China (Coleoptera: Silphidae)* by Ji [22], and *Atlas of Chinese beetles: Staphylinidae* by Li [23] have laid the foundation for the identification of forensically important beetle species. However, research on the larval morphology of sarcosaprophagous beetles is still insufficient.

Chinese forensic entomologists have conducted many studies on the molecular identification of forensically important insect species and a wide range of mitochondrial and nuclear DNA markers has been identified [24–31]. Many taxa have been studied including Calliphoridae [26,27], Sarcophagidae [28–30], Muscidae [32], and several Coleoptera species [25]. Because the sole reliance on single DNA fragments for defining closely related species is perilous, multiple gene regions have been used for a more reliable diagnosis of forensically important flies [29]. Single-nucleotide polymorphisms (SNPs) have been used to aid the molecular identification of sarcosaprophagous flies [24]. The availability of complete mitochondrial genomes also offers an important basis for the identification and phylogenetic analysis of forensically important species [33,34]. Moreover, researchers found that cuticular hydrocarbon composition in the puparium can also be used for taxonomic differentiation of sarcosaprophagous flies [35].

In other countries, forensic entomologists have established useful keys for the morphological identification of forensically important insects [36–39]. These identification keys facilitate more detailed and species-specific knowledge of relevant species for forensic entomology experiments and real cases [36]. Although identification keys for forensically important insects were already established for taxonomic purposes in China [18–23], a more rigorous taxonomic foundation is still required for forensic purposes. In addition, molecular identification studies still need to sample taxa from different geographical regions and take better account of genetic intra- and interspecific variabilities.

1.2. Temperature-Dependent Development of Sarcosaprophagous Insects

Accurate and reliable temperature-dependent development data of insects form the basis for PMI estimation [40]. In China, the earliest developmental studies from the perspective of forensic entomology were launched in the 1990s. Ma et al. [41] and Wang [42] studied four and five common sarcosaprophagous fly species, respectively. For estimations of larval age, changes in body length and changes of morphological features (e.g., larval cuticle, cephalopharyngeal skeleton, and posterior spiracles) have been studied [42,43]. The results suggested that larval age can be estimated not only from the number of spiracular slits and changes of body length but also from the presence, thickness, color [42], and sclerotized area of the posterior peritreme [43]. In addition, the sclerotized area of the cephalopharyngeal skeleton is also a promising indicator for the estimation of larval age [43–45] (Table 1).

The concept of the minimum PMI (PMI$_{\text{min}}$), as proposed by Amendt et al. [46], eliminates the uncertainty of the pre-colonization interval and provides a guideline for researchers to study the post-colonization interval of sarcosaprophagous insects. Consequently, they can establish more reliable development data for PMI$_{\text{min}}$ estimation. To obtain more reliable and scientific results for the determination of the developmental patterns of sarcosaprophagous flies, recent studies of Chinese forensic entomologists have assessed wider temperature ranges and narrower sampling and observation intervals [47,48]. Moreover, forensic entomologists in China have also adopted more accurate temperature control devices and established additional developmental models for the estimation of PMI [49,50]. Investigated species include *Hemipyrellia ligurriens* (Wiedemann, 1830) [50], *Chrysomya megacephala* (Fabricius, 1794) [48], *Lucilia illustris* (Meigen, 1826) [47], *Parasarcophaga similis* (Meade, 1876) [51], *Boettcherisca peregrina* Robineau-Desvoidy, 1830 [52], *Calliphora grahami*
In insects, the intrapuparial period includes quiescent developmental stages that account for about half of the development time of the life cycle, which has important implications for accurate PMI estimation [60,61]. Chinese researchers have conducted several studies on morphological changes during the intrapuparial period and have divided this period into several events based on morphological and color changes [42,51,62–68]. The aim was to improve the accuracy of age estimation when using puparial samples. The investigated flies and other species include C. megacephala [63], C. ruffiacies [68], Ca. grahami [42], L. sericata [42], M. domestica [42], P. similis [51], L. cuprina (Wiedemann, 1830) [62], Megaselia spiracularis [67], Megaselia scalaris (Loew, 1866) [66], Dohrniphora cornuta (Bigot, 1857) [64], and Hermetia illucens (Linnaeus, 1758) [65]. In particular, Wang et al. [69] conducted a study on the morphological changes of L. illustris during the intrapuparial period, which further identified detailed changes in various structures. The age of intrapuparial forms cannot only be estimated from overall morphological changes but also be more accurately identified by the developmental processes of compound eyes, mouthparts, antennae, thorax, legs, wings, and the abdomen. These changes offer the potential to increase the accuracy of age estimation during the intrapuparial period [69].

In recent years, researchers worldwide have broadened the scope of their research in development biology. Particularly forensically important beetles have been gradually incorporated in their studies [70–72] as these beetles can be used to extend the estimation range of PMI when primary colonizers are no longer associated with the corpse or have emerged from puparia [73]. Chinese researchers also carried out temperature-dependent developmental studies on several forensically important beetles (e.g., Creophilus maxillosus (Linnaeus, 1758) [73], Necrobia rufipes (De Geer, 1755) [74], Omosita colon (Linnaeus, 1758) [75], and Dermestes tessellatocollis Motschulsky, 1860 [76]).

In addition to morphological observations, hemolymph soluble proteins [77], cuticular hydrocarbons [78], and differential gene expression [69,79–81] have also been applied to estimate the age of immature stages. Cuticular hydrocarbons in fly puparium were found to significantly change with weathering time, indicating their potential use for PMI estimation [82,83]. The use of gene expression level changes to estimate the age of stages has proven to be an effective approach to estimate the PMI. The most prominent advantage of differential gene expression technology is that the obtained data represent quantitative results that can be subjected to error analysis, better conform to the Daubert test in forensic science, and are therefore more readily accepted by courts [84]. Notably, the combination of morphological observations with differential gene expression technology achieves higher estimation accuracy than either method alone [69,85]. Recently, researchers have studied the gene expression changes of L. illustris [69], C. megacephala [79], Ca. grahami [80], and B. peregrina [81] during the intrapuparial period and have further explored the gene expression changes of additional species at different stages. These studies lay a sound foundation for the molecular age estimation of sarcosaprophagous insects. Previous studies merely focused on establishing a connection between gene expression changes and development time. However, these studies commonly did not provide deep insight into the function of each differentially expressed gene and the molecular mechanism of phenotypic changes during growth and development [86]. In response to the rapid development of transcriptome sequencing technology and the increasing maturation of sequencing and data analysis techniques, research can now focus on developing transcriptome sequencing, gene screening, and bioinformatics analyses [86]. The generated data can be used to identify more optional, high-sensitivity genetic markers as candidates for molecular age estimation studies in forensic entomology [86]. These technologies can be expected to help establish more scientific and accurate methods for estimating the age of sarcosaprophagous insects.
The importance of a rigorous approach for the acquisition of reference development data for forensic applications has been highlighted by several researchers [46,87]. A standard approach that can be used to guide the development study is still missing in forensic entomology. Researchers in different regions or even within the same country often apply very different methods in their development studies. The divergence of these methodologies obstructs comparison of the results, thus limiting the exchange of data that may otherwise be helpful in forensic cases [88]. The studies of Bernhardt et al. [89] showed that not all tissues are similarly suitable for the gathering of sound growth data for sarcosaprophagous Diptera. Bernhardt et al. [89] suggested using minced pork as a non-human nutrition medium, since there are no developmental differences in this diet compared with human tissue. Bugelli et al. [90] found that the killing and storing methods of entomological samples can affect larval age estimation and suggested that the storing of maggots in 96% ethanol does not affect age estimation, or the specimen measurements should be done right after killing. The studies of Bernhardt et al. [89] and Bugelli et al. [90] provided important guidelines for the development of studies on forensic entomology. Further studies are needed to explore the effect of other factors with regard to the development of forensically important insects, such as fluctuating temperature and population competition between species, humidity, and photoperiod.

Table 1. Summary of studies that reported the development of sarcosaprophagous insects in China.

| Order         | Species                                  | Citation                  | City (Province)           | Temperatures (°C) | Indicators       |
|---------------|-------------------------------------------|---------------------------|---------------------------|-------------------|-----------------|
| Diptera       | Boettcherisca peregrina Robineau-Desvoidy, 1830 | Wang et al. [42]          | Hangzhou (Zhejiang)       | 16, 20, 24, 28, 32 | Dd, Lbl, T0, K, Imc, Lmc |
|               |                                            | Wang et al. [91]          | Guangzhou (Guangdong)     | 15, 20, 25, 30, 35 | Dd, Lbl, Lbw, Lbwi, Wp |
|               |                                            | Wang et al. [52]          | Suzhou (Jiangsu)          | 16, 19, 22, 28, 28, 31, 34 | Dd, Ihen, Lbl, llen, T0, K |
|               |                                            | Shang et al. [85]         | Changsha (Hunan)          | 15, 20, 25, 35    |                 |
|               | Calliphora graminata (Aldrich, 1930)       | Ma et al. [41]            | Hangzhou (Zhejiang)       | 12,15, 18, 21, 24, 27, 30 | Dd               |
|               |                                            | Wang et al. [42]          | Hangzhou (Zhejiang)       | 12, 16, 20, 24, 28 | Dd, Lbl, T0, K, Imc, Lmc |
|               |                                            | Zhao et al. [92]          | Shijiazhuang (Hebei)      | 16, 20, 24, 28, 32 | Lmc               |
|               |                                            | Wang et al. [53]          | Suzhou (Jiangsu)          | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, llen, T0, K |
|               |                                            | Liu et al. [84]           | Changsha (Hunan)          | 15, 22, 27        | Ige               |
|               |                                            | Chen et al. [93]          | Changsha (Hunan)          | Constant vs. fluctuating temperature (8 vs. 6–12; 12 vs. 10–16; 16 vs. 14–20) | Dd, Ihen, Lbl, llen, T0, K |
| Chrysomya megacephala (Fabricius, 1794) | Ma et al. [41]          | Hangzhou (Zhejiang)       | 18, 21, 24, 27, 30, 33    | Dd               |
|               |                                            | Wang et al. [42]          | Hangzhou (Zhejiang)       | 16, 20, 24, 28, 32 | Dd, Lbl, T0, K, Imc, Lmc |
|               |                                            | Zhao et al. [92]          | Shijiazhuang (Hebei)      | 16, 20, 24, 28, 32 | Lmc               |
|               |                                            | Yang et al. [48]          | Chongqing (municipality)  | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, llen, T0, K |
|               |                                            | Zhang et al. [63]         | Suzhou (Jiangsu)          | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, llen, T0, K |
|               |                                            | Wang et al. [83]          | Suzhou (Jiangsu)          | 22.5, 27.5, 32.5   | Imc               |
| Chrysomya nigripes Aubélin, 1952 | Li et al. [94]           | Guangzhou (Guangdong)     | 20, 24, 28, 32            | Dd, Lbl, Lbw      |
| Chrysomya nigripes (Fabricius, 1794) | Zhang et al. [55]        | Suzhou (Jiangsu)          | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, llen, T0, K |
| Chrysomya ruficollis (Macquarti, 1842) | Ma et al. [68]           | Guangzhou (Guangdong)     | 20, 24, 28, 32            | Imc               |
|               |                                            | Hu et al. [58]            | Suzhou (Jiangsu)          | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, llen, T0, K |
| Dohrniphora cornuta (Bigot, 1857) | Feng et al. [64]         | Shenyang (Liaoning)       | 15, 18, 21, 24, 27, 30, 33, 36 | Imc               |
| Hemiperrella liguriensis (Wiedmann, 1830) | Yang et al. [80]        | Chongqing (municipality)  | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, llen, T0, K |
| Hermetia illucens Linnaeus, 1758 | Li et al. [65]           | Guangzhou (Guangdong)     | 20, 24, 28, 32            | Dd, Imc            |
| Hydrotaea spinigera Stein, 1910 | Wang et al. [59]        | Suzhou (Jiangsu)          | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, llen, T0, K |
| Lucilia cuprina (Wiedmann, 1830) | Wang et al. [62]        | Shijiazhuang (Hebei)      | 16, 20, 24, 28, 32        | Imc               |
| Lucilia illustris (Meigen, 1826) | Wang et al. [47]        | Suzhou (Jiangsu)          | 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35 | Dd, Ihen, Lbl, llen, T0, K |
|               |                                            | Wang et al. [69]          | Suzhou (Jiangsu)          | 20, 25, 30        | Imc, Ige         |
### Table 1. Cont.

| Order       | Species                          | Citation            | City (Province)       | Temperatures (°C) | Indicators |
|-------------|----------------------------------|---------------------|-----------------------|-------------------|------------|
| Diptera     | Lucilia sericata (Meigen, 1826)  | Ma et al. [41]      | Hangzhou (Zhejiang)   | 18, 21, 24, 27, 30, 33 | Dd         |
|             |                                  | Wang et al. [42]    | Hangzhou (Zhejiang)   | 16, 20, 24, 28, 32 | Dd, Lbl, T₀, K, Imc, Lmc |
|             |                                  | Li [43]             | Shijiazhuang (Hebei)  | 16, 20, 24, 28, 32 | Lmc        |
|             |                                  | Wang et al. [57]    | Suzhou (Jiangsu)      | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, Ilen, T₀, K |
|             | Megasia scalaris (Loew, 1866)    | Feng and Liu [66]   | Shenyang (Liaoning)   | 18, 21, 24, 27, 30, 33, 36 | Lmc        |
|             | Megaselia spiracularis (Schmitz, 1938) | Wang et al. [57]   | Shenyang (Liaoning)   | 18, 21, 24, 27, 30, 33, 36 | Imc        |
|             | Musca domestica (Linnaeus, 1758) | Wang et al. [42]    | Hangzhou (Zhejiang)   | 16, 20, 24, 28     | Dd, Lbl, T₀, K, Imc, Lmc |
|             |                                  | Wang et al. [54]    | Shijiazhuang (Hebei)  | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, Ilen, T₀, K |
|             | Muscina stabulans (Fallén, 1817) | Wang et al. [56]    | Suzhou (Jiangsu)      | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, Ilen, T₀, K |
|             | Parasarcophaga cruziplus (Macquart, 1836) | Ma et al. [41]     | Hangzhou (Zhejiang)   | 18, 21, 24, 27, 30, 33 | Dd         |
|             |                                  | Wang et al. [44]    | Shijiazhuang (Hebei)  | 16, 20, 24, 28     | Lmc        |
|             | Parasarcophaga similis (Macquart, 1836) | Yang et al. [51]   | Suzhou (Jiangsu)      | 16, 19, 22, 25, 28, 31, 34 | Dd, Ihen, Lbl, Ilen, T₀, K, Imc |
| Coleoptera  | Creophilus maxillosus (Linnaeus, 1758) | Wang et al. [73]   | Suzhou (Jiangsu)      | 17.5, 20, 22.5, 25, 27.5, 30, 32.5 | Dd, Ihen, Lbl, Ilen, T₀, K |
|             | Necrobia rutacea (De Geer, 1755) | Hu et al. [74]      | Suzhou (Jiangsu)      | 22, 25, 28, 31, 34, 36 | Dd, Ihen, Lbl, Ilen, T₀, K, LD |
|             | Omosia colon (Linnaeus, 1758)    | Wang et al. [75]    | Suzhou (Jiangsu)      | 16, 19, 22, 25, 28, 31 | Dd, Ihen, T₀, K |
| Hymenoptera | Nasonia vitripennis (Walk, 1836)  | Zhang et al. [96]   | Suzhou (Jiangsu)      | 16, 19, 22, 25, 28, 31 | Dd, Ihen, Lbl, T₀, K |

Abbreviations: Dd: developmental duration; Ihen: isomorphen diagram; Lbl: larval body length; Ilen: isomegalen diagram; Lbw: larval body weight; Lbwi: larval body width; Wp: weight of puparia; T₀: developmental threshold temperature; K: thermal summation constant; Imc: intrapuparial morphological changes; Ige: intrapuparial gene expression; LD: larval instar determination; Lmc: larval morphological changes.

### 1.3. Faunal Succession of Insects

Different insect species visit and leave human remains in different orders and time sequences [97]. These regular insect activities are referred to as the faunal succession of insects and can be used to estimate the range of PMI [97]. Succession studies also provide information on the insects that occur in particular geographical regions or during particular seasons, which can be used to estimate the seasons and regions in which particular cases have taken place [2]. China has a vast territory with wide latitudinal coverage, complex geographical environments, and diverse climatic conditions. However, so far, only 20 insect succession studies have been published in 13 provinces (17 cities), accounting for about 1/3 of the total number of provincial-level administrative regions in China (Table 2).

Initially, most studies only addressed the species composition on remains in outdoor environments [98,99]. Later, researchers began to investigate the insect succession patterns under different environmental conditions [100–102]. The effects of indoor/outdoor environments [100], enclosed/unenclosed environments [103], exposure time [101], cadaver types [102], and toxicants [104] were explored with regard to body decomposition and insect succession. In particular, studies conducted in South China and the Yangtze River Delta region included not only the succession of adult insects but also the dynamic change processes of sarcosaprophagous insects on remains (such as egg laying, hatching, wandering, pupariation, eclosion, and disappearance) [102,105]. Insect succession matrixes of different seasons were obtained containing the residence times of different insects and their developmental stages [102,105].

Researchers used different types of models in insect succession studies [102,106,107]. Pig and rabbit carcasses were the most commonly used experimental remains, both of which were in nine studies. Three studies used animal tissues or organs to attract forensically important insects (Table 2). Human remains were used by four studies [98,99,102,108]. For instance, Zhou et al. [98] and Yang et al. [99] identified 38 species of sarcosaprophagous
beetles and 14 species of sarcosaprophagous flies on human remains in Beijing. Chen [108] studied the body decomposition patterns and insect compositions on four human remains for four seasons under field conditions in Guizhou. Chen [108] applied the same method as used at the Anthropological Research Facility of the University of Tennessee, also known as the “Body Farm”. However, such a “body farm” does not exist in China yet. A study conducted in Shenzhen found that large pig carcasses, with similar weight to human corpses, also decomposed in a similar manner to human corpses; moreover, the species composition and succession pattern of insects were similar to that of human corpses. The carcasses of small pigs decomposed faster, attracted less insect species, and had a simpler succession pattern [102]. Rabbit carcasses could not fully reflect either the body decomposition or the changes of insects that occurred on a human corpse [102].

Research on the succession patterns of insects constitutes a number of the most fundamental tasks of forensic entomology [5,102], and the significance of such research is mainly embodied in the following three aspects: First, important basic data on species composition and succession patterns of sarcosaprophagous insects can be obtained via insect succession studies, which can be used to estimate the PMI [109,110]. Second, during succession studies, live insects with forensic importance can be collected and supplied as important colony sources for developmental research [53]. Third, researchers can accumulate precious practical experience, which cannot be otherwise obtained via laboratory studies. After weeks or months of body decomposition and insect succussion observations, forensic entomologists will have gained a clearer understanding of the decomposition processes of remains and will have acquired a basic time frame of the arrival orders of insects [2]. In addition, forensic entomologists will learn how to collect insect samples and where certain species of insects can be found [3]. With such knowledge and understanding, forensic entomologists can be more efficient and confident when dealing with real cases.

Forensic entomologists in different countries have conducted comprehensive work on the faunal succession of insects. Succession patterns have been identified under different types of environments (e.g., burying [111], vehicle environments [112], and dry environments [113]) and treatments (e.g., burning [114], hanging [115], and clothing [116]). Although these studies provided an important database, the difference between the insect fauna of China and other countries, as well as differences in other factors (e.g., climate and flora) justify the need for establishing patterns of insect succession for different regions of China [102]. Currently, insect succession data are not available for most parts of China. Most existing studies only concentrated on investigating species composition while failing to meet the requirements for establishing a succession matrix, which is required for PMI estimations. Considerable opportunity still remains for studying the faunal succession of insects in all parts of China.

| Citation       | City (Province)     | Experimental Model (Numbers of Remains) | Season/Month                        | Insect Species/Other Information                  |
|----------------|---------------------|----------------------------------------|-------------------------------------|---------------------------------------------------|
| Zhou et al. [98] | Beijing (capital)   | Human corpse (NS)                      | March to August                      | Coleoptera: 38 species                            |
| Yang et al. [99] | Beijing (capital)   | Human viscera (NS)                     | March to November                    | Diptera: 14 species                               |
| Ma et al. [117]  | Hangzhou (Zhejiang) | Pork meat (NS)                         | All seasons                          | Diptera: 12 species                               |
| Li et al. [118]  | Harbin (Heilongjiang) | Pork meat (NS)                        | Spring, summer, and autumn          | Coleoptera: 16 species                             |
| Chen et al. [119]| Twelve sites (Guizhou) | Pork lung (NS)                        | All seasons                          | Coleoptera: 2 species                              |
| Wang et al. [120]| Chengdu (Sichuan)  | Rabbit (28)                            | 1st year: May to November           | Diptera: 5 species                                |
|                 |                     |                                        | 2nd year: March to September        |                                                   |
| Chen [121]       | Zhongshan (Guangdong)| Pig (4)                               | Autumn and winter                    | Total: 38 species                                 |
| Chang et al. [106]| Hohhot (Inner Mongolia) | Rabbit (25), Dog (1)                 | July to October                      | Diptera: 10 species                               |
### Table 2. Cont.

| Citation          | City (Province)                  | Experimental Model (Numbers of Remains) | Season/Month                  | Insect Species/Other Information |
|-------------------|----------------------------------|----------------------------------------|------------------------------|-----------------------------------|
| Wang et al. [105] | Pearl River Delta (Guangdong)    | Pig (18)                               | All seasons                  | Diptera: 17 species               |
|                   |                                  |                                        |                              | Coleoptera: 16 species            |
|                   |                                  |                                        |                              | Other: 9 species                  |
| Wu et al. [122]   | Guangzhou (Guangdong)            | Rabbit (NS)                            | Spring and summer            | Diptera: 10 species               |
|                   |                                  |                                        |                              | Coleoptera: 7 species             |
| Dong et al. [123] | Sanmenxia (Henan)                | Rabbit (5)                             | July to October              | Three families, 13 species        |
| Chen et al. [108] | Guiyang (Guizhou)                | Human corpse (4)                       | All seasons                  | Diptera: 11 species               |
| Nie et al. [124]  | Xi’an (Shanxi)                   | Rabbit (4)                             | Spring                       | Diptera: 10 species               |
|                   |                                  |                                        |                              | Coleoptera: 4 species             |
|                   |                                  |                                        |                              | Other: 2 species                  |
| Shi et al. [104]  | Guangzhou (Guangdong)            | Rabbit (4)                             | Summer                       | Effects of malathion on the       |
|                   |                                  |                                        |                              | insect succession                 |
| Jiang et al. [125]| Yongzhou (Hunan)                 | Rabbit (9)                             | July to September            | Total: 26 species                 |
| Yin et al. [100]  | Shenzhen (Guangdong)             | Pig (4)                                | Summer                       | Indoor: 14 species                |
|                   |                                  |                                        |                              | Outdoor: 18 species               |
| Jiang et al. [126]| Qingdao (Shandong)               | Pig (12)                               | All seasons                  | Diptera: 23 species               |
| Lv [127]          | Chongqing (municipality)         | Pig (11)                               | All seasons                  | Insecta: 94 species               |
| Li et al. [103]   | Guangzhou (Guangdong)            | Pig (2)                                | Summer                       | Comparative study of carcasses     |
|                   |                                  |                                        |                              | between enclosed and              |
|                   |                                  |                                        |                              | open-air conditions               |
| Yang [128]        | Suzhou (Jiangsu)                 | Pig (22)                               | Summer and autumn            | Diptera: 16 species               |
|                   |                                  |                                        |                              | Coleoptera: 12 species            |
|                   |                                  |                                        |                              | Other: 5 species                  |
| Wu et al. [107]   | Xinxiang (Henan)                 | Rabbit (5), rat (6)                    | July to August               | Diptera: 7 species                |
| Wang et al. [101] | Guangzhou (Guangdong)            | Pig (6)                                | Summer                       | Insect succession on pig          |
|                   |                                  |                                        |                              | carcasses using different         |
|                   |                                  |                                        |                              | exposure times                    |
| Wang et al. [102] | Shenzhen (Guangdong)             | Human corpse (1), large pig (2),       | August to December           | Total: 42 species; insect         |
|                   |                                  | small pig (2), rabbit (2)              |                              | assemblages are more              |
|                   |                                  |                                        |                              | complex on larger                 |
|                   |                                  |                                        |                              | carcasses, following              |
|                   |                                  |                                        |                              | the order of human = large        |
|                   |                                  |                                        |                              | pig > small pig > rabbit          |

NS: not specified.

### 1.4. Forensic Entomotoxicology in China

Chinese research on forensic entomotoxicology primarily focused on the effects of toxicants/drugs on the growth and development of insects. Tian [129] and Zhao et al. [130] found that morphine accelerated the development of flies and resulted in increased larval body length and weight [129], which caused a PMI deviation of up to 84 h [130]. Dai et al. [131] and Wang et al. [132] reported that diazepam accelerated fly development and shortened the larval development periods of *L. sericata* and *C. megacephala* by 55 and 60 h, respectively. Lv et al. [133] showed that ketamine inhibited the larval development rate of *C. megacephala* in a both dose-dependent and time-dependent manner. Zou et al. [134] showed that ketamine shortened the larval development period of *L. sericata*; the authors further showed that the development period of *L. sericata* larvae feeding on muscles and receiving ketamine at twice the lethal dose was 24 h shorter than that of control larvae. Liu et al. [135] reported that malathion inhibited the growth of larvae and puparia of *C. megacephala*, extended their developmental period by 36 h, and shortened their maximum body length by 1.1 mm. The study by Shi et al. [136] indicated that malathion and white arsenic affected the decomposition of carcasses by inhibiting insect colonization. Wang et al. [137] showed that the larval developmental time of *Ca. grahami* was significantly shorter on rabbit mince containing methamphetamine and further reported that methamphetamine can increase larval body length.

The effects of various toxicants/drugs on the growth and development of insects have also been studies by forensic entomologists in other countries. The results indicate that
a number of toxicants/drugs, e.g., paracetamol [138], diazepam [139], cocaine [140], and codeine [141], can accelerate the development of forensically important insects. Other toxicants/drugs inhibited insect development, e.g., methamphetamine [142], malathion [143], alcohol [144], and amitriptyline [145]. Desmethyldiazepam [146], nandrolone [147], and gentamicin [148] did not significantly change the growth and development of sarcosaprophagous insects. The results obtained by Chinese researchers were consistent with the above results, and the same effects were found on insect development in the same toxicants/drugs. Forensic entomotoxicology was once extensively studied as a branch of forensic entomology from the end of the 20th century to the beginning of the 21st century; however, studies in this field have been declining over recent years. One of the main reasons restricting the development of forensic entomotoxicology is that although qualitative detection has been achieved, quantitative analyses still remain problematic [149]. Further studies are still required to overcome existing bottlenecks.

2. Applications of Forensic Entomology in China

The Regulations on the Classification of the Practice of Forensic Judicial Appraisal, released by the Chinese Ministry of Justice on 9 May 2020, stipulates that insects can serve as evidence for PMI estimation. This regulation establishes the legal status of forensic entomology. However, Chinese judicial or police departments have no full-time forensic entomology positions. Forensic entomologists are mainly researchers working at institutions of higher education or employees of research institutions, who may participate in cases as expert witnesses similar to other countries. When forensic entomologists are asked to provide expert opinions that may ultimately decide how cases are adjudicated, they will be invited to attend field investigations. In most circumstances, the police will only mail specimens or send photos of related insects to forensic entomologist, combined with brief details of the case. The resulting PMI estimated is then only used to narrow the scope of the police investigation. China has not yet established specialized academic institutions for forensic entomology research, and researchers are most commonly members of the Entomological Society of China or the Forensic Medicine Association of China. A few universities are offering forensic entomology education to M.Sc. and Ph.D. students, while undergraduate education is still not available. Because of this lack of full-time forensic entomology posts, most interested postgraduates have to consider career changes. So far, fewer than a dozen researchers are qualified to present judicial expertise on forensic entomology in the entirety of China.

Currently, forensic entomology is only applied in a few regions of China. The identification of insect species is largely based on morphological identification keys provided by entomologists [150,151]. Peer-reviewed development and succession data are used to estimate the PMI [54,150,151]. Plasticity of developmental rates has been reported between different colonies of the same species [152,153]; therefore, in applications with multiple literature reports on the development of one species, the development data obtained from the same or a nearby geographical region will be prioritized [154]. Succession data from the same or similar regions and months will be used to estimate the PMI [155].

More than 23 case reports of the application of forensic entomology in China have been published [54,58,150,151,154–164]. The most widespread application of forensic entomology is the provision of PMI clues for criminal investigators [58,150,151,154–160,163,164]. Forensic entomology also played an important role in an insurance compensation case [54]. There were 14 reported cases in the outdoor environment [58,150,151,154–157,160–164] and nine cases occurred indoors [54,151,155,158,159]. The development duration and larval body length of flies were the most commonly used indicators for the PMI estimation, both of which were utilized in 10 cases [54,58,150,151,154–156,159,161,162]. Three cases utilized the thermal summation constant of flies to estimate the PMI [158,160]. The development and succession patterns of beetles were only utilized for PMI estimation in one case [155]. Other cases used the biological characteristics of forensically important blow flies to estimate the PMI. On the basis of the seasonal distribution characteristics of C. pinguis and Ca. grahami, Li et al. [162] inferred
the initial occurrence time of two fly species (from the end of February to the beginning of March) as the most likely time frame of PMI of the deceased. The actual result confirmed this inference. In a case reported by Hu et al. [164], a cadaver, found in a suitcase, contained *H. illucens*, *Me. scalaris*, and *Fannia canicularis*, while blow flies were absent. Analysis indicated that the deceased likely began to decompose during winter, and that, as the weather warmed, the cadaver was already highly decomposed and no longer attracted calliphorid species (as these prefer fresh remains). On this basis, it could be inferred that the PMI of the corpse started at the beginning of winter, which was later confirmed by investigation results.

3. Challenges for Forensic Entomology in China and Proposed Countermeasures

Forensic entomology faces many challenges in China. First, new technologies, such as video surveillance technology, DNA technology, and big data technology, have developed rapidly over the past few years [165]. These technologies contribute to the increase of police detection rates, and many of them can help to estimate the PMI [2,165]. For example, if the decedent was identified by the technology of DNA, his/her debit and credit card expenditures and telephone, accommodation, and traffic records can provide a clue for PMI. Impacted by various newly emerging case-solving technologies, the demand of criminal investigators for forensic entomology has decreased [2]. Second, forensic entomologist usually cannot provide a precise PMI result as forensic entomology is limited and can only provide a PMI$_\text{min}$ or a PMI range [166]. These usually deviate by days or even months from the real PMI [151], thus making it difficult for criminal investigators to fully accept the value of forensic entomology. Third, a number of criminal investigators do not have the basic knowledge of forensic entomology and might not follow the recommended standards and practices in forensic entomology. This potentially limits the accuracy of the obtained PMI estimations. For example, the insect evidence provided may not include the first arriving species or the oldest immature insects. Without reliable and sufficient insect evidence, forensic entomologists cannot provide an accurate result. Therefore, it would be advisable if forensic entomologists could be present at the scene for specimen collection, as no one else can fully understand the importance of each piece of insect evidence.

However, forensic entomologists cannot attend every case. Consequently, education and training need to be strengthened to enhance the ability and understanding of the criminal investigators who are frequently involved in cases that would benefit from forensic entomology. Most investigators do not consider using forensic entomology when encountering death cases. The reason most often is that they are not familiar with forensic entomology or think that the application of forensic entomology is too complex. Therefore, an urgent need for education and training exists to help these investigators to understand the theory of forensic entomology, e.g., why temperature data is so important, under which circumstances forensic entomology can be utilized, and how entomological evidence is collected correctly. To achieve this, Soochow University has offered a course of 36 credit hours to undergraduate students with specialization in forensic sciences. The purpose of this course is not for students to become competent forensic entomologists but to enable them to correctly collect insect evidence or at least to induce their proactivity for asking for forensic entomologists in their future work. Forensic entomology researchers should also be trained. Some researchers cannot correctly identify the species of sarcosaprophagous insects, especially when these are immature. Some researchers have never performed basic experimental studies and/or lack the required expertise to analyze the entomological evidence associated with a case. Hence, more comprehensive training should be offered to help them overcome application barriers.

In the application, forensic entomologists should try their best to provide a scientifically informed PMI estimate. Although the PMI estimate may not absolutely coincide with the actual PMI, it is better if the real PMI falls within the scope of the estimated PMI. To improve the accuracy of PMI estimation, the following conditions must be met: (1) all entomological evidence must be collected systematically and comprehensively; (2) case information and environmental information must be understood systematically and com-
prehensively; furthermore, weather data must be retrieved, and accurate environmental
data must be obtained through field measurements and corrections; (3) the species and
stages of all insects present at the scene must be correctly identified; (4) adequate labora-

tory work must be conducted and accurate reference data on insect development must
be obtained; (5) investigations of insect succession must be conducted in similar regions;
(6) various types of cases need to be studied to accumulate experience; (7) all cases should
be pre-appraised by forensic entomologists. If the insect evidence is not provided correctly
and appropriately by criminal investigators, forensic entomologists should request an
additional collection. Otherwise, PMI estimation should be refused. Cases that exceed the
scope of forensic entomology should also be rejected to avoid mistakes.

4. Conclusions

Over nearly 30 years of exploration and development, forensic entomology has begun
to play an increasingly important role in forensic practices; however, it is still far from
the ultimate goal of achieving universal application in China. Faced with the challenge of
various newly emerging case-solving technologies, if forensic entomology wants to further
develop and progress, basic research must be strengthened. Further studies should be
conducted to establish more accurate development data, based not only on morphological
methods but also on techniques of differential gene expression, biochemical properties,
and artificial intelligence. Moreover, basic data of succession patterns of insects should
be obtained in more environments and regions, to further probe into the mechanisms of
colonization of corpses by insects. Both training and education of criminal investigators
should be strengthened to promote the application of forensic entomology.

Author Contributions: Writing—original draft preparation, Y.W. (Yu Wang), Y.W. (Yinghui Wang),
M.W., W.X., and Y.Z.; writing—review and editing, Y.W. (Yu Wang) and J.W.; supervision, J.W.;
funding acquisition, Y.W. (Yu Wang) and J.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (grant
numbers 31872258, 32070508, and 82002007) and the Priority Academic Program Development of
Jiangsu Higher Education.

Institutional Review Board Statement: Not available.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tzu, S. Washing Away of Wrongs; Shanghai Classics Publishing House: Shanghai, China, 1981.
2. Wang, J. Practical Forensic Entomology; Xi’an Jiaotong University Press: Xi’an, China, 2019.
3. Hu, C. Forensic Entomology; Chongqing Publishing House: Chongqing, China, 2000.
4. Goff, M.L. A Fly for the Prosecution: How Insect Evidence Helps Solve Crimes; Harvard University Press: Cambridge, UK, 2000.
5. Byrd, J.H.; Castner, J.L. Forensic Entomology: The Utility of Arthropods in Legal Investigations; CRC Press: New York, NY, USA, 2009.
6. Harvey, M.L.; Gaudieri, S.; Villet, M.H.; Dadour, I.R. A global study of forensically significant calliphorids: Implications for
identification. Forensic Sci. Int. 2008, 177, 66–76. [CrossRef]
7. Chen, W.Y.; Hung, T.H.; Shiao, S.F. Molecular identification of forensically important blow fly species (Diptera: Calliphoridae) in
Taiwan. J. Med. Entomol. 2004, 41, 47–57. [CrossRef] [PubMed]
8. Gan, Y. Chrysomya in China. Acta Entomol. Sin. 1958, 8, 340–350.
9. Fan, Z. The identification keys of common fly larvae in Shanghai. Acta Entomol. Sin. 1957, 1, 405–422.
10. Ma, D.; Fan, Z. Studies on flies in Xinjiang: Calliphoridae and Muscidae. Bull. Dis. Control Prev. 1998, 13, 33–37.
11. Fan, Z. Calliphora in China. Acta Entomol. Sin. 1957, 5, 321–348.
12. Zhang, M. Studies on the common larvae of flesh flies in China. Entomotax 1982, 6, 99–112.
13. Xue, W. One new species and three new records of the genus Hydrotæa (Diptera: Muscidae) from China. Acta Entomol. Sin. 1976,
1, 109–111.
14. Xue, W.; Verves, Y.G.; Du, J. A review of subtribe Böethingiina Verves 1990 (Diptera: Sarcophagidae), with descriptions of a new
species and genus from China. Ann. Soc. Ent. Fr. 2011, 47, 303–329. [CrossRef]
15. Guo, F. Sarcophagidae in Shanghai. Acta Entomol. Sin. 1952, 1, 60–86.
16. Zhang, S.F.; Liu, Y.P. A study on six species of Dermestidae. Acta Zhengzhou Grain Coll. 1985, 3, 76–80.
73. Wang, Y.; Yang, J.B.; Wang, J.F.; Li, L.L.; Wang, M.; Yang, L.J.; Tao, L.Y.; Chu, J.; Hou, Y.D. Development of the forensically important beetle Creophilus maxillosus (Coleoptera: Staphylinidae) at constant temperatures. J. Med. Entomol. 2017, 54, 281–289.

74. Hu, G.; Wang, M.; Wang, Y.; Tang, H.; Chen, R.; Zhang, Y.; Zhao, Y.; Jin, J.; Wang, Y.; Wu, M.; et al. Development of Necrobia rufipes (De Geer, 1775) (Coleoptera: Cleridae) under constant temperatures and its implication in forensic entomology. Forensic Sci. Int. 2020, 311, 110275. [CrossRef] [PubMed]

75. Wang, Y.; Wang, M.; Hu, G.; Xu, W.; Wang, Y.; Wang, J. Temperature-dependent development of Omosita colon at constant temperature and its implication for PMImin estimation. J. Forensic Leg. Med. 2020, 72, 101946. [CrossRef]

76. Wang, Y.; Hu, G.; Liu, N.; Wang, M.; Chen, R.; Zhu, R.; Wang, Y.; Ren, X.; Wang, Y.; Xu, W.; et al. Development of Dermentes tessellatocollis Motschulsky under different constant temperatures and its implication in forensic entomology. Forensic Sci. Int. 2021, 321, 107223. [CrossRef] [PubMed]

77. Zhu, G.; Ye, G.; Hu, C. Development profile of hemolymph soluble proteins during the larval and pupal stages in Aldrichina grahami. J. Zhejiang Univ. 2004, 30, 69–72.

78. Xu, H.; Ye, G.; Xu, Y.; Hu, C.; Zhu, G. Age-dependent changes in cuticular hydrocarbons of larvae in Aldrichina grahami (Aldrich) (Diptera: Calliphoridae). Forensic Sci. Int. 2014, 242, 236–241. [CrossRef]

79. Wang, Y.; Gu, Z.; Li, L.; Wang, J. Gene expression during the intra-puparial stage of Chrysomya megacephala: Implications for postmortem interval estimation. J. Asia-Pac. Entomol. 2019, 22, 841–846. [CrossRef]

80. Liu, Z.; Han, H.; Chen, W.; Wang, S.; Meng, F.; Cai, J.; Guo, Y. Evaluation of reference genes and age estimation of forensically useful Aldrichina grahami (Diptera: Calliphoridae) during intrapupal period. J. Med. Entomol. 2021, 58, 47–55.

81. Shang, Y.; Ren, L.; Yang, L.; Wang, S.; Chen, W.; Dong, J.; Ma, H.; Qi, X.; Guo, Y. Differential gene expression for age estimation of forensically important Sarcophaga peregrina (Diptera: Sarcophagidae) intrapupal. J. Med. Entomol. 2020, 57, 65–77. [CrossRef] [PubMed]

82. Zhu, G.; Jia, Z.; Yu, X.; Wu, K.; Chen, L.; Lv, J.; Benbow, M.E. Predictable weathering of puparial hydrocarbons of necrophagous flies for determining the postmortem interval: A field experiment using Chrysomya rufifacies. Int. J. Legal Med. 2017, 131, 885–894. [CrossRef] [PubMed]

83. Zhu, G.H.; Xu, X.H.; Xiao, J.Y.; Zhang, Y.; Wang, J.F. Puparial case hydrocarbons of Chrysomya megacephala as an indicator of the postmortem interval. Forensic Sci. Int. 2007, 169, 1–5. [CrossRef]

84. Baqué, M.; Amendt, J.; Verhoff, M.A.; Zehner, R. Descriptive analyses of differentially expressed genes during larval development of Calliphora vicina (Diptera: Calliphoridae). Int. J. Legal Med. 2015, 129, 891–902. [CrossRef]

85. Tarone, A.M.; Foran, D.R. Gene expression during blow fly development: Improving the precision of age estimates in forensic entomology. J. Forensic Sci. 2011, 56, S112–S122. [CrossRef]

86. Zajac, B.K.; Amendt, J.; Horres, R.; Verhoff, M.A.; Zehner, R. De novo transcriptome analysis and highly sensitive digital gene expression profiling of Calliphora vicina (Diptera: Calliphoridae) pupae using MACE (Massive Analysis of cDNA Ends). Forensic Sci. Int. Genet. 2015, 15, 137–146. [CrossRef]

87. Catts, E.P.; Goff, M.L. Forensic entomology in criminal investigations. Annu. Rev. Entomol. 1992, 37, 253–272. [CrossRef] [PubMed]

88. Tomberlin, J.K.; Benbow, M.E. Forensic Entomology: International Dimensions and Frontiers; CRC Press: Boca Raton, FL, USA, 2015.

89. Bernhardt, V.; Schomerus, C.; Verhoff, M.A.; Amendt, J. Of pigs and men—Comparing the development of Calliphora vicina (Diptera: Calliphoridae) on human and porcine tissue. Int. J. Legal Med. 2017, 131, 847–853. [CrossRef]

90. Bugelli, V.; Campobasso, C.P.; Verhoff, M.A.; Amendt, J. Effects of different storage and measuring methods on larval length values for the blow flies (Diptera: Calliphoridae) Lucilia sericata and Calliphora vicina. Sci. Justice 2016, 57, 159–164. [CrossRef]

91. Wang, H.; Shi, Y.; Liu, X.; Zhang, R. Growth and development of Boettcherisca peregrine under different temperature conditions and its significance in forensic entomology. J. Environ. Entomol. 2010, 32, 166–172.

92. Zhao, B.; Wang, H.; Wang, L.; Wang, W.; Li, Z. Chronometric morphological change of larvae of two species of necrophagous flies and its implication in forensic medicine. Chin. Bull. Entomol. 2010, 40, 360–367.

93. Chen, W.; Yang, L.; Ren, L.; Wang, S.; Guo, Y. Impact of constant versus fluctuating temperatures on the development and life history parameters of Aldrichina grahami (Diptera: Calliphoridae). Insects 2019, 10, 184. [CrossRef] [PubMed]

94. Li, L.; Wang, Y.; Yang, J.; Ma, M.; Lai, Y. Temperature-dependent development and the significance for estimating postmortem interval of Chrysomya nigriceps Aubertin, a new forensically important species in China. Int. J. Legal Med. 2016, 130, 1363–1370. [CrossRef]

95. Wang, Y.; Zhang, Y.; Hu, G.; Wang, M.; Zhu, R.; Zhai, Y.; Sun, J.; Li, X.; Wang, L.; Wu, M.; et al. Development of Megastigmus spiracularis (Diptera: Phoridae) at different constant temperatures. J. Therm. Biol. 2020, 93, 102722. [CrossRef] [PubMed]

96. Zhang, Y.; Wang, Y.; Liu, C.; Wang, J.; Hu, G.; Wang, M.; Yang, L.; Chu, J. Development of Nasonia vitripennis (Hymenoptera: Pteromalidae) at constant temperatures in China. J. Med. Entomol. 2018, 56, 368–377. [CrossRef] [PubMed]

97. Smith, K.G.V. A Manual of Forensic Entomology; Cornell University Press: Ithaca, NJ, USA, 1986.

98. Zhou, H.; Yang, Y.; Ren, J.; Lu, L.; Wang, S.; Yan, R.; Li, Y. Studies on forensic entomology in Beijing district I: Sarcosaprophagous beetles and their local specificity. Acta Entomol. Sin. 1997, 40, 62–70.

99. Yang, Y. Study on necrophagous mucoid flies living on human corpses in Beijing and its application on forensic medicine practice. Chin. J. Forensic Med. 1998, 13, 159–162.

100. Yin, X.; Ma, M.; Zhou, H.; Lai, Y.; Wang, J. The community succession of sarcosaprophagous insects on pig carcasses in summer indoor and outdoor environment in Shenzhen area. Fa Yi Xue Za Zhi 2014, 30, 172–177.
101. Wang, Y.; Wang, J.; Wang, Z.; Tao, L. Insect succession on pig carcasses using different exposure time—A preliminary study in Guangzhou, China. J. Forensic Leg. Med. 2017, 52, 24–29. [CrossRef] [PubMed]

102. Wang, Y.; Ma, M.; Jiang, X.; Wang, J.; Li, L.; Yin, X.; Wang, M.; Lai, Y.; Tao, L. Insect succession on remains of human and animals in Shenzhen, China. Forensic Sci. Int. 2017, 271, 75–86. [CrossRef]

103. Li, L.; Wang, J.; Wang, Y. A comparative study of the decomposition of pig carcasses in a methyl methacrylate box and open air conditions. J. Forensic Leg. Med. 2016, 42, 92–95. [CrossRef] [PubMed]

104. Shi, Y.; Liu, X.; Wang, H.; Zhang, R. Seasonality of insect succession on exposed rabbit carrion in Guangzhou, China. Insect Sci. 2009, 16, 425–439. [CrossRef]

105. Wang, J.; Li, Z.; Chen, Y.; Chen, Q.; Yin, X. The succession and development of insects on pig carcasses and their significances in estimating PMI in south China. Forensic Sci. Int. 2008, 179, 11–18. [CrossRef] [PubMed]

106. Chang, Y.F.; Zhang, J.L.; Zhou, X.R.; Liao, Z.G.; Cai, J.F.; Deng, Z.H.; Lan, L.M.; Wang, Z.X.; Liang, W.B.; Deng, R.L. The constitution and succession of sarcosaphagous flies community in hohhot. Forensic Sci. Technol. 2006, 4, 15–18.

107. Wu, H.; Yang, L.; Wang, B.; Yuan, H.; Zhai, Y. Study on the community succession of sarcosaphagous insects at summer in Xinxiang area. Chin. J. Forensic Med. 2017, 32, 13–15.

108. Chen, L.; Qiu, L.; Guo, J.; Lin, Y. Initial research on process of necrophagous flies participating in decomposing corpse parenchyma in four seasons. Chin. J. Forensic Med. 2009, 24, 188–190.

109. Matuszewski, S.; Bajerlein, D.; Konwerski, S.; Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: Composition and residency patterns of carrion fauna. Forensic Sci. Int. 2010, 195, 45–51. [CrossRef]

110. Matuszewski, S.; Bajerlein, D.; Konwerski, S.; Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: Succession of carrion fauna. Forensic Sci. Int. 2011, 207, 150–163. [CrossRef]

111. Aballay, F.H.; Murua, A.F.; Acosta, J.C.; Centeno, N.D. Succession of carrion fauna in the arid region of San Juan Province, Argentina and its forensic relevance. Neotrop. Entomol. 2012, 41, 27–31. [CrossRef]

112. Heo, C.C.; Mohamad, A.M.; Ahmad, F.M.; Jeffery, J.; Kurahashi, H.; Omar, B. Study of insect succession and rate of decomposition on a partially burned pig carcass in an oil palm plantation in Malaysia. Trop. Biomed. 2008, 25, 202–208. [PubMed]

113. Lynch-Aird, J.; Moffatt, C.; Simmons, T. Decomposition rate and pattern in hanging pigs. J. Forensic Sci. 2015, 60, 1155–1163. [CrossRef]

114. Voss, S.C.; Forbes, S.L.; Dadour, I.R. Decomposition and insect succession on cadavers inside a vehicle environment. Forensic Sci. Med. Pathol. 2008, 4, 22–32. [CrossRef]

115. Pastula, E.C.; Merritt, R.W. Insect arrival pattern and succession on buried carrion in Michigan. J. Med. Entomol. 2013, 50, 432–439. [CrossRef]

116. Voss, S.C.; Cook, D.F.; Dadour, I.R. Decomposition and insect succession of clothed and unclothed carcasses in Western Australia. Forensic Sci. Int. 2011, 211, 67–75. [CrossRef]

117. Ma, Y.; Hu, C. A preliminary study on the species and biological characters of necrophagous insects in Hangzhou area. J. Zhejiang Agric. Univ. 1997, 23, 375–380.

118. Li, L.; Zhang, Y.; Ma, Y. The major necrophagous insects and their regular activity on carcass in Harbin. J. Northeast Forest. Univ. 2002, 30, 93–96.

119. The species and distribution of the necrophagous flies in Guizhou Province. Acta Entomol. Sin. 2004, 47, 849–853.

120. Wu, D.; Mao, R.; Guo, M.; Zhou, J.; Jia, F.; Ou, G.; Zhang, R. Species and succession of necrophagous insect community in spring and summer seasons in Guangzhou. Acta Sci. Nat. Univ. Sunyatseni 2008, 47, 56–60.

121. Dong, Y.; Zhu, Y.; Wang, L. Primary study on common species sarcosaphagous flies. Forensic Sci. Technol. 2009, 2, 14–16.

122. Nie, T.; Wei, Z.; Tian, Y.; Tian, F.; Lian, Z. Primary study on sarcosaphagous insects on rabbit carcass in Xi’an. Chin. Bull. Entomol. 2010, 47, 587–591.

123. Jiang, Y.; Cai, J.; Yang, L.; Yi, W.; Lan, L.; Li, X.; Li, J. A study of sarcosaphagous insects from arthropod in Yongzhou district of Hunan Province. Chin. J. Applied Entomol. 2011, 48, 191–196.

124. Jiang, D.; Zhan, X.; Sun, K.; Gu, Y.; Ren, W.; Li, B.; Zhang, P.; Li, W. Study on the common species and seasonal succession of necrophagous flies in Qingdao region. Chin. J. Forensic Med. 2014, 29, 460–463.

125. Zhou, L. Insect Succession on Carcasses in Southern Chongqing City and Its Forensic Application; Chongqing Medical University: Chongqing, China, 2015.

126. Yang, L. Succession and Development of Sarcosaphagous Insects and Their Significances in Estimating PMI in Yangtze River Delta Region; Soochow University: Suzhou, China, 2017.

127. Tian, J. Effect of Morphine in Tissues on Development of Chrysomya megacephala (Diptera) and Implication of This Effect on Estimation of Postmortem Intervals Using Arthropod Successional Patterns; Hebei Medical University: Shijiazhuang, China, 2004.

128. Zhao, W.; Wang, B.; Hu, S.; Feng, X. The relationship between the postmortem interval and effects of morphine on the growth stage of Lucilia sericata. J. Pathog. Biol. 2008, 3, 612–615.
131. Dai, J. Effect of Diazepam on the Growth and Development of Lucilia Sericata (Diptera Calliphoridae) and Its Forensic Importance; Hebei Medical University: Shijiazhuang, China, 2005.

132. Wang, L. Effect of Diazepam in Tissues on Development of Chrysomya Megacephala (Diptera) and Implication of This Effect on Estimation of Postmortem Intervals Using Arthropod Development Patterns; Hebei Medical University: Shijiazhuang, China, 2006.

133. Lv, Z.; Zhai, X.D.; Zhou, H.M.; Li, P.; Ma, J.; Guan, L.; Mo, Y. Effect of ketamine on the development of Chrysomya megacephala (Diptera:Calliphoridae). Chin. J. Parasitol. Parasitic Dis. 2012, 30, 361–366. [CrossRef] [PubMed]

134. Zou, Y.; Huang, M.; Huang, R.; Wu, X.; You, Z.; Lin, J.; Huang, X.; Qiu, X.; Zhang, S. Effect of ketamine on the development of Lucilia sericata (Meigen) (Diptera: Calliphoridae) and preliminary pathological observation of larvae. Forensic Sci. Int. 2013, 226, 273–281. [CrossRef] [PubMed]

135. Liu, X.; Shi, Y.; Wang, H.; Zhang, R. Determination of Malathion levels and its effect on the development of Chrysomya megacephala (Fabricius) in South China. Forensic Sci. Int. 2009, 192, 14–18. [CrossRef] [PubMed]

136. Shi, Y.; Liu, X.; Wang, H.; Zhang, R. Effects of malathion on the insect succession and the development of Chrysomya megacephala (Diptera: Calliphoridae) in the field and implications for estimating postmortem interval. Am. J. Forensic Med. Pathol. 2010, 31, 46–51.

137. Wang, S.; Zhang, C.; Chen, W.; Ren, L.; Ling, J.; Shang, Y.; Guo, Y. Effects of methamphetamine on the development and its determination in Aldrichina grahami (Diptera: Calliphoridae). J. Med. Entomol. 2020, 57, 691–696. [CrossRef] [PubMed]

138. Brien, C.; Turner, B. Impact of paracetamol on Calliphora vicina larval development. Int. J. Legal Med. 2004, 118, 188–189.

139. Carvalho, L.M.; Linhares, A.X.; Trigo, J.R. Determination of drug levels and the effect of diazepam on the growth of necrophagous flies of forensic importance in southeastern Brazil. Forensic Sci. Int. 2001, 120, 140–144. [CrossRef]

140. De Carvalho, L.M.L.; Linhares, A.X.; Palhares, F.A.B. The effect of cocaine on the development rate of immature and adults of Chrysomya albiceps and Chrysomya putoria (Diptera: Calliphoridae) and its importance to postmortem interval estimate. Forensic Sci. Int. 2012, 220, 27–32. [CrossRef] [PubMed]

141. Kharbouche, H.; Ausageberger, M.; Cherix, D.; Sporkert, F.; Giroud, C.; Wyss, C.; Champod, C.; Mangin, P. Codeine accumulation and elimination in larvae, pupae, and image of the blowfly Lucilia sericata and effects on its development. Int. J. Legal Med. 2008, 122, 205–211. [CrossRef]

142. Goff, M.L.; Brown, W.A.; Omori, A.I. Preliminary observations of the effect of methamphetamine in decomposing tissues on the development rate of Parasarcophaga ruficornis (Diptera: Sarcophagidae) and implications of this effect on the estimations of postmortem intervals. J. Forensic Sci. 1992, 37, 867–872. [PubMed]

143. Rashid, R.A.; Osman, K.; Ismail, M.I.; Zuha, R.M.; Hassan, R.A. Determination of malathion levels and the effect of malathion on the growth of Chrysomya megacephala (Fabricius) in malathion-exposed rat carcass. Trop. Biomed 2008, 25, 184–190.

144. Tabor, K.L.; Fell, R.D.; Brewster, C.C.; Pelzer, K.; Behonick, G.S. Effects of antemortem ingestion of ethanol on insect successional patterns and development of Phormia regina (Diptera: Calliphoridae). J. Med. Entomol. 2005, 42, 481–489. [CrossRef] [PubMed]

145. Goff, M.L.; Brown, W.A.; Omori, A.I.; LaPointe, D.A. Preliminary observations of the effects of amitryptyline in decomposing tissues on the development of Parasarcophaga ruficornis (Diptera: Sarcophagidae) and implications of this effect to estimation of postmortem interval. J. Forensic Sci. 1993, 38, 316–322. [CrossRef]

146. Pien, K.; Laloup, M.; Pipeleers-Marichal, M.; Grootaert, P.; De Boeck, G.; Samyn, N.; Boonen, T.; Vits, K.; Wood, M. Toxicological data and growth characteristics of single post-feeding larvae and puparia of Calliphora vicina (Diptera: Calliphoridae) obtained from a controlled nordiazepam study. Int. J. Legal Med. 2004, 118, 190–193. [CrossRef]

147. Souza, C.M.; Thyssen, P.J.; Linhares, A.X. Effect of nandrolone decanoate on the development of three species of Chrysomya (Diptera: Calliphoridae), flies of forensic importance in Brazil. J. Med. Entomol. 2014, 48, 111–117. [CrossRef] [PubMed]

148. Ferraz, A.C.; Dallavecchia, D.L.; Silva, D.C.; Figueiredo, A.L.; Proença, B.; Silva-Filho, R.G.; Aguiar, V.M. Effects of the antibiotics Gentamicin on the postembryonic development of Chrysomya megacephala (Fabricius) and implications for this effect on the estimations of postmortem intervals. Int. J. Legal Med. 2014, 128, 709–717. [CrossRef] [PubMed]

149. Da Silva, E.I.T.; Wilhelmi, B.; Villet, M.H. Forensic entomotoxicology revisited—Towards professional standardisation of study designs. Int. J. Legal Med. 2017, 13, 1399–1412. [CrossRef]

150. Guo, Y.; Cai, J.; Tang, Z.; Feng, X.; Lin, Z.; Yong, F.; Li, J.; Chen, Y.; Meng, F.; Wen, J. Application of Aldrichina grahami (Diptera, Calliphoridae) for forensic investigation in central-south China. Rom J. Leg. Med. 2011, 19, 55–58.

151. Wang, J.F.; Chang, P.; Liao, M.Q.; Li, Z.G.; Ma, T.; Gui, L.F.; Yu, L.C. Application of forensic entomology in indoor, outdoor and poisoning death cases in Guangdong Province. J. Political Sci. Law 2012, 29, 116–121.

152. Owings, C.G.; Spiegelman, C.; Tarone, A.M.; Tomberlin, J.K. Developmental variation among Cochliomyia macellaria Fabricius (Diptera: Calliphoridae) populations from three ecoregions of Texas, USA. Int. J. Legal Med. 2014, 128, 709–717. [CrossRef] [PubMed]

153. Zhou, F.; Tomberlin, J.K.; Zheng, L.; Yu, Z.; Zhang, J. Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. J. Med. Entomol. 2013, 50, 1224–1230. [CrossRef] [PubMed]

154. Liao, M.Q.; Li, Z.G.; Wang, J.F.; Luo, S.M.; Ma, T. Insects can also be found on bodies that are severely burned in winter. J. Political Sci. Law 2012, 29, 112–115.

155. Wang, M.; Chu, J.; Wang, Y.; Li, F.; Liao, M.; Shi, H.; Zhang, Y.; Hu, G.; Wang, J. Forensic entomology application in China: Four case reports. J. Forensic Leg. Med. 2019, 63, 40–47. [CrossRef]

156. Peng, J.F.; Xia, Y.F. The application of forensic entomology in three cases. Fa Yi Xue Za Zhi 1999, 15, 122.
157. Wang, C.Y. Application of forensic entomology in solving a case. *Forensic Sci. Technol.* **2003**, *5*, 60.

158. Chen, L.S. Estimating the postmortem interval using the accumulated degree days. *Forensic Sci. Technol.* **2007**, *5*, 236–237.

159. Yu, L.C.; Lv, G.L.; Wang, J.F. Using entomology to estimate the time of death: A case report. *J. Trop. Med.* **2008**, *8*, 519–520.

160. Gu, J.M.; Zhang, J.Z.; Sun, Z.; Zhang, W.J.; Qin, B.L.; Cao, S.Y.; Zhou, L. Estimation of the discarding time of a dismembered corpse. *Forensic Sci. Technol.* **2009**, *4*, 75–76.

161. Liu, Y.; Chen, Y.Q.; Guo, Y.D.; Zha, L.; Li, L.J. Estimation of post-mortem interval for a drowning case by using flies (Diptera) in Central-South China: Implications for forensic entomology. *Rom. J. Leg. Med.* **2013**, *21*, 293–298.

162. Li, X.B.; Gong, Q.; Wan, L.H.; Jiang, D.; Jiao, Y.G. A case of estimating the time of death by necrophagous flies. *Chin. J. Forensic Med.* **2013**, *3*, 248–249.

163. Wei, Z.W.; Huang, A.H. Estimating the postmortem interval of a composed body by regression equation of maggot. *Chin. J. Forensic Med.* **2016**, *31*, 316–317.

164. Hu, G.; Wang, M.; Wang, Y.; Liao, M.; Hu, J.; Zhang, Y.; Yu, Y.; Wang, J. Estimation of post-mortem interval based on insect species present on a corpse found in a suitcase. *Forensic Sci. Int.* **2020**, *306*, 110046. [CrossRef] [PubMed]

165. Wang, Q.; Lin, H.; Xu, J.; Huang, P.; Wang, Z. Current research and prospects on postmortem interval estimation. *Fa Yi Xue Za Zhi* **2018**, *34*, 459–467. [PubMed]

166. Amendt, J.; Campobasso, C.P.; Grassberger, M. *Current Concepts in Forensic Entomology*; Springer: Dordrecht, The Netherlands, 2010.