Research Article

Association of β-Catenin, APC, SMAD3/4, Tp53, and Cyclin D1 Genes in Colorectal Cancer: A Systematic Review and Meta-Analysis

Hongfeng Yan, Fuquan Jiang, and Jianwu Yang

Department of General Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China

Correspondence should be addressed to Fuquan Jiang; jackiee1978@sina.com and Jianwu Yang; yangjianwu3006@sina.com

Received 21 March 2022; Accepted 27 June 2022; Published 17 August 2022

Academic Editor: Ying-Kun Xu

Copyright © 2022 Hongfeng Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objectives. Accumulating evidence indicates that the expression and/or variants of several genes play an essential role in the progress of colorectal cancer (CRC). The current study is a meta-analysis undertaken to estimate the prognosis and survival associated with CTNNB1/β-catenin, APC, Wnt, SMAD3/4, TP53, and Cyclin D1 genes among CRC patients. Methods. The authors searched PubMed, EMBASE, and Science Direct for relevant reports published between 2000 and 2020 and analyzed them to determine any relationship between the (immunohistochemically/sequencing-detected) gene expression and variants of the selected genes and the survival of CRC patients. Results. The analysis included 34,074 patients from 64 studies. To evaluate association, hazard ratios (HRs) were estimated for overall survival (OS) or disease-free survival (DFS), with a 95% confidence interval (CIs). Pooled results showed that β-catenin overexpression, APC mutation, SMAD-3 or 4 loss of expression, TP53 mutations, and Cyclin D1 expression were associated with shorter OS. β-Catenin overexpression (HR: 0.137 (95% CI: 0.131–0.406)), loss of expression of SMAD3 or 4 (HR: 0.449 (95% CI: 0.146–0.753)), the mutations of TP53 (HR: 0.179 (95% CI: 0.126–0.485)), and Cyclin D1 expression (HR: 0.485 (95% CI: 0.772–0.198)) also presented risk for shorter DFS. Conclusions. The present meta-analysis indicates that overexpression or underexpression and variants of CTNNB1/β-catenin, APC, SMAD3/4, TP53, and Cyclin D1 genes potentially acted as unfavorable biomarkers for the prognosis of CRC. The Wnt gene was not associated with prognosis.

1. Introduction

Globally, cancer is the second leading cause of death after heart disease, and it is a prominent health issue. More specifically, colorectal cancer (CRC) is the third leading cause of death among men and women [1]. Unlike many other types of cancer, the survival rate for CRC has not changed a great deal. Recent studies showed that the prognostication of CRC depends upon the clinicopathological factors and the stages of tumor characteristics and reported the association with survival times and clinical outcomes [2–4]. Several susceptibility studies on the association of a genetic variant and CRC have been reported [5]. The solid tumors of CRC have served as genetic and biological paradigms and instigated to conduct studies on early detection [6], prevention [7], risk stratification [8], and treatments [9]. However, a greater understanding and identification of genetic biomarkers involving molecular and genetic pathways with improved sensitivity and specificity could improve screening for and expedite the diagnosis of CRC, yielding better outcomes. Currently, the prediction of outcomes in CRC relies heavily on traditional cancer characterization methods, including clinicopathological characteristics, such as staging, tumor size, invasion, tumor sidedness, and metastasis. It contributes to CRC’s high mortality rate and tendency for poor prognosis with disappointing survival rates [10].

The uses of molecular prognostic biomarkers to forecast the progression of the condition and likely survival have interested scholars for some time [11]. However, CRC is
a very diverse disease, and it is associated with complex interactions between genetic biomarkers and environmental risk factors. In addition, transduction pathways, namely transforming growth factor β-suppressor of mothers against decapentaplegic (TGFB-SMADs), wingless/integrated (Wnt), and tumor suppressor protein (p53), play an essential role in the initiation and development of CRC [4]. The tumor protein p53 gene (Tp53) located at chromosome 17p13 consists of 90% of missense mutations. Furthermore, studies have reported that genetic variations, particularly at codon 72 Pro/Arg gene polymorphism of the Tp53 gene, could affect the prognosis and treatment of CRC [12]. The Wnt signaling pathway is of particular interest because of its vital function in embryogenesis and tissue homeostasis. Many studies have identified the excessive activation of Wnt signaling as playing a major role in CRC [13]. A genome-scale analysis has recognized that 90% of patients with CRC carried genetic variations in the Wnt signaling pathway, particularly the loss-of-functional variations of adenomatous polyposis coli (APC) and variations that activate the mutations of β-catenin [14].

The membranous expression of β-catenin applies a restrictive impact on the movements of tumor cells and their growth. The increases in cell motility, growth, and transformation promote tumorigenesis because of the loss of β-catenin expression on the cell surface [12]. Pre-existing intracellular β-catenin can cause abnormality in Wnt/β-catenin-TCF signaling, leading to the progression of CRC. The hyperactivation of Wnt/β-catenin signaling enhances the invasive and metastatic possibility of CRC cells, while the knockdown of β-catenin in CRC cells reduces cell proliferation and further invasion [15]. Studies have reported the detection of nuclear β-catenin expression using immunohistochemical methods, and they have reported an association with a high burden of tumor and poor CRC survival [15].

Somatic mutations at the APC gene are found in approximately 75% of CRC cases. Several studies have suggested worse outcomes for CRC patients with wild-type APC (APC-WT) in comparison to mutant-type APC (APC-MT) [16]. However, the prognostic implication of this genomic alteration is not well-defined, especially in metastatic CRCs. SMAD4/DPC4 is a tumor suppressor gene that regulates cell growth and a common intracellular mediator that could alter the TGFB signaling to promote tumor progression. Studies have reported an association of SMAD4 genetic variation with tumor invasion, metastasis, and prognosis in various cancers [17].

In light of inconsistent results in the literature, the authors perceived a need for a meta-analysis that would explore the prognostic value of selected genes in CRC. The objectives were to estimate the pooled risk (hazard ratio, HR) identified (between the years 2000 and 2020) for each of these genes for overall survival (OS) and disease-free survival (DFS) in CRC patients. Thus, this meta-analysis comprehensively explores the prognostic role of selected genes in the β-catenin and related pathway implicated in the development and progression of CRC.

2. Methods

2.1. Publication Search and Inclusion Criteria. The authors searched the databases of PubMed, EMBASE and Science Direct for relevant published articles. Search terms included medical phrases related to SMAD 3, SMAD 4, β-catenin, Catenin beta 1 (CTNNB1), APC, Wnt, Cyclin D1, Tp53, or p53 genes and their variants/polymorphisms, in combination with words related to CRC (tumor, neoplasms, carcinoma, CRC, colon cancer, or rectal cancer). In addition, terms related to prognosis (outcome or survival) were used to retrieve eligible studies from 2000 through to the end of 2020. Furthermore, the references in the selected published articles were searched to identify potentially relevant studies.

Eligible studies were selected based on the following criteria: (a) pathologically confirmed (i.e., via tissue samples) patients with CRC, (b) immunohistochemical/sequencing detection methods for the selected genes and OS, DFS, cancer-specific survival (CSS), or recurrence-free survival (RFS), (c) English language, and (d) full-text articles. Editorial letters, reviews, case reports, studies with duplicated/repeated data, and studies lacking essential information and animal studies were excluded.

2.2. Data Extraction. In accordance with the meta-analysis of observational studies in epidemiology (MOOSE) guidelines [18] and in compliance with PRISMA guidelines, the data were evaluated and extracted by two independent researchers, who entered them all onto the data extraction form. For data extraction, the details recorded were as follows: the first author, publication year, country, total number of cases, type of cancer, stages, reported genes, gene detection method, cut-off values used, hazard ratios (HRs) with their 95% confidence intervals (CIs), and P values. For inconsistencies, a consensus was reached on each item among the authors. The Newcastle–Ottawa scale (NOS) was used to evaluate the quality of the eligible studies.

2.3. Statistical Analysis. The meta-analysis was executed based on HRs calculated by the log-rank test for OS and RFS differences with different gene expression levels. Calculations were based on HRs from the original publications, including 95% CI, and subsequent back-calculation to log (HR) and standard error (SE) for overall estimates. Wherever available, HRs based on a multivariate analysis were used. Log (HR) and SE were entered in statistical software NCSS (NCSS, LLC, Kaysville, UT, https://www.ncss.com/), and meta-analyses were validated in the software Comprehensive Meta-Analysis (CMA; Biostat, Inc., Englewood, NJ, https://www.meta-analysis.com/). The heterogeneity of pooled results was analyzed using Cochran’s Q test and the Higgins I-squared statistic. The absence of heterogeneity is based on the Q test revealed P heterogeneity > 0.1 and I² < 50%. To estimate the summary HRs/ORs, a fixed-effects model (the Mantel–Haenszel method) was used [19]. Elsewhere, the arandom-effects model (the DerSimonian and Laird method) [20] was used. To examine the publication bias, Begg’s funnel plot and
Egger’s linear regression test were used, and $P < 0.05$ was considered statistically significant (i.e., an asymmetrical distribution). All of the results were presented with HRs, upper and lower limits, and P values and were illustrated in forest plots for the individual studies with the weighted and pooled effects.

3. Results

3.1. Study Characteristics. Figure 1 shows the comprehensive process used to select articles in this study, which was based on PRISMA guidelines. After the removal of duplicates, the database search yielded 4,112 articles. Based on the inclusion criteria and after screening the titles, abstracts, figures, and key data, 82 articles were finalized for literature studies [21–40], [41–60], [61–80], [81–102]. However, only 64 articles [21–31, 33–36, 38–40, 42–56, 59–61, 64, 66, 68–70, 72, 73, 75, 76, 78, 81–86, 88, 90, 91, 93, 95, 97–102] were retrieved for meta-analysis with 105 data points of the selected genes. Of these, four studies had evaluated the prognostic value for RFS [47, 81, 88, 101]. Six studies included cancer-specific survival [26, 46, 48, 65, 98, 103], whereas three reported progression-free survival (PFS) [32, 76, 84]. All others reported either OS and/or DFS. Since the number of studies for the first three indicators was small, the data for CSS, PFS, and RFS were combined with DFS. Thus, 64 studies involving 34,074 patients evaluating OS and DFS were analyzed in the current meta-analysis.

3.2. Review of Eligible Studies. The 82 studies identified as having presented data on baseline genes and prognosis in CRC are listed in Table 1 [21–40], [41–60], [61–80], [81–102]. Most of these studies were from the USA ($n = 18$), followed by China ($n = 11$), Korea ($n = 7$), Sweden ($n = 6$), Japan and Greece ($n = 5$), Australia and Austria ($n = 4$), Norway ($n = 3$), Taiwan, Egypt, Germany, Hungary, Italy, Netherlands and Turkey ($n = 2$), and one each from Brazil,
No.	Author et al.	Year	Region	Sample size	Male %	Sample type	Tumor type	Clinical stage of tumor	Tumor side (right %)	Gene	Method of gene expression	Elevated levels/abnormality	Cut-off value	Outcome	NOS rating	
1	Rafael et al.	2014	Spain	345	53.3	Tissue	CRC	Duke A-D	NA	Wnt	SSCP	Mutations	NA	β-Catenin mutation not associated with OS	5	
2	Yoshida et al.	2015	Japan	201	59.7	Tissue	CRC	Stage 1,2,3	NA	Wnt	IHC	High, low	>50%	Nuclear β-catenin associated with poor OS and DFS	6	
3	Ting et al.	2013	Taiwan	282	52.4	Tissue	CRC	AJCC	NA	Wnt	Genomic DNA sequencing, tagger algorithm	NA	NA	Wnt polymorphism associated with high risk in OS	6	
4	Tzaloumis et al.	2017	Greece	57	NA	Tissue	Colon and rectal adenocarcinoma	TNM 1-4	33.3	Wnt	IHC	Negative, weak, intermediate, strong	Median	Nuclear β-catenin associated with poor OS	4	
5	Kim et al.	2018	Korea	194	65.5	Tissue	CRC	NA	22.2	Wnt	Genomic DNA extraction	Methylated/nonmethylated	NA	Methylation observed in 32%, not associated with OS	7	
6	Wangefjord et al.	2011	Austria	527	47.6	Tissue	CRC	TNM 1-4	NA	Cyclin D1	IHC	weak, moderate, strong	0-75%	High Cyclin D1 expression associated with poor survival in men	7	
7	Bao et al.	2005	Italy	160	47.5	Tissue	CRC	Duke A-D	NA	TP53	PCR-SSCP	Mutation	NA	Associated with poor OS	6	
8	Khan et al.	2018	USA	1825	56.7	Tissue	CRC	NA	37.2	TP53	Genomic sequencing	Mutation	5-10%	Associated with poor OS	5	
9	Brandstedt et al.	2014	Sweden	304	0	Tissue	CRC	TNM 1-4	NA	p53	IHC staining and gene sequencing	Positive/negative	p53: >50%; β-catenin: 0-2; Cyclin D1: 0-75%	Associated with poor OS	6	
10	Huemer et al.	2018	Austria	181	39.7	Tissue	CRC	Grade 1-3	24	TP53	Genomic DNA sequencing	Mutation	NA	TP53 mutation not associated with shorter OS compared with TP53 wild type tumor. TP53 mutation not associated with shorter OS in right-sided tumors	5	
11	Sun et al.	2014	China	197	64.4	Tissue	CRC	TNM 0-4	NA	TP53	IHC	High/low	150	Associated with poor OS p53+ > 65.3% tumors. Advanced T stage associated with p53 expression	4	
12	Theodoropoulos et al.	2008	Greece	165	67.8	Tissue	Colorectal adenocarcinoma	TNM stage 1-4	NA	TP53	Nuclear immunostaining of positive cells	Overexpression	>10%	Associated with poor OS	5	
13	Warren et al.	2013	USA	607	55.5	Tissue	Colon cancer	Stage 3	NA	TP53	Direct sequencing and hybridization	Mutation	NA	TP53 mutations- 45%	4	
14	Netter et al.	2014	France	68	75	Tissue	Colon ca., metastatic	NA	67.6	TP53	PSA and sanger sequencing	Mutation	NA	10-15%	Associated with poor OS	5
15	Kandolfer et al.	2015	Austria	389	53.1	Tissue	Colon cancer	Stage 3	NA	TP53	Sanger sequencing	Mutations	<75%	Associated with poor OS	4	
16	Chen et al.	2013	China	203	42.3	Tissue	CRC	AJCC	NA	TP53	TP53	Negative, positive, strong	>10%	Associated with poor OS	5	
17	Russo et al.	2014	USA	222	26.12	Tissue	CRC	Stage 1-4	NA	TP53	Clinical tumor genotyping	IHC and next generation sequencing	Weak expression associated with poor OS	6		
18	Oh et al.	2019	Korea	621	59.9	Tissue	CRC	AJCC 2 and 3	NA	TP53	Negative, positive, strong	Weak expression associated with poor OS	0%	Weak expression associated with poor OS	6	
No.	Author et al.	Year	Region	Sample size	Male %	Sample type	Tumor type	Clinical stage of tumor	Tumor side (right %)	Gene	Method of gene expression	Elevated levels/abnormality	Cut-off value	Outcome	NOS rating	
-----	---------------	------	--------	-------------	--------	-------------	------------	------------------------	---------------------	------	--------------------------	------------------------	--------------	----------	------------	
19	Wang et al.	2017	China	124	50.8	Tissue	CRC	TNM 1–4	NA	TP53	IHC	Expression	>10%	P53 positive: 58.8%	7	
20	Zhang et al.	2014	China	185	42.7	Tissue	CRC	AJCC 1–4	40	TP53	IHC	Negative/positive	Negative; >10% cells with +ve nuclei: Positive	Associated with poor OS	7	
21	Godai et al.	2009	Japan	211	57.8	Tissue	CRC	Duke Stage A-D	NA	TP53	Genomic DNA Sequencing	Mutations	NA	TP53 mutations: 70%	6	
22	Chun et al.	2019	USA	408	55.6	Tissue	CRC	AJCC	24.6	TP53	APC, SMAD-4	Low or high risk (EAp53 score)	NA	Associated with poor OS	8	
23	Tiung et al.	2014	China Taiwan	NA	NA	Tissue	CRC	NA	NA	TP53	IHC	Overexpression	NA	Associated with poor survival	4	
24	Li et al.	2018	China	315	57.1	Tissue	CRC	TNM	NA	TP53	Next gen mutational analysis	Mutation	NA	Double mutated P53 with PIK3CA associated with poor survival	6	
25	Iacopetta et al.	2006	Multinational	3583	52.3	Tissue	CRC	Dukes Stage A-D	NA	TP53	PCR	Mutation	NA	TP53 mutation associated with distal colon cancer	6	
26	Morikawa et al.	2012	USA	1060	39	Tissue	Colon and rectal cancer	Stages 1–4	NA	TP53	IHC	Moderate and strong	Associated with poor OS	8		
27	Kawaguchi et al.	2019	USA	490	58.3	Tissue	CRC	AJCC Cat. T	NA	TP53	TP53/SMAD-4	Expression	>10%	Associated with poor OS	7	
28	Samowitz et al.	2002	USA	1464	50.2	Tissue	Colon cancer	AJCC	NA	TP53	NA	NA	Associated with poor survival	7		
29	Soong et al.	2000	Australia	995	NA	Tissue	CRC	Dukes Stage B & C	34	TP53	NA	Mutation	NA	39% mutations	5	
30	Jurach et al.	2006	Brazil	83	56.6	Tissue	Rectal Cancer	Coller B & C	NA	TP53	IHC	>20%	Associated with poor OS	5		
31	Loses et al.	2016	Norway	151	60.2	Tissue	CRC	NA	TP53	Sanger sequencing	Mutations	NA	TP53 mutations: 60.4%	4		
32	Iacopetta et al.	2006	Multinational	3583	52.3	Tissue	CRC	Dukes Stage A-D	NA	TP53	PCR	Mutation	NA	TP53 mutation associated with distal colon cancer	6	
33	Salim et al.	2013	Sweden	85	NA	Tissue	Colon cancer	NA	β-Catenin (CRC)	IHC	Less expression	<50%	Associated with poor OS	4		
34	Kampaosktas et al.	2013	Greece	106	61.3	Tissue	CRC	NA	NA	β-Catenin (CRC)	IHC	Overexpression	Moderate	Associated with poor OS	7	
35	Gao et al.	2014	China	181	58	Tissue	CRC	TNM stages 1–4	NA	β-Catenin	IHC	Overexpression	>50%	Associated with poor OS	6	
36	Jang et al.	2012	Korea	218	61.4	Tissue	Colon cancer	NA	23.3	β-Catenin, Cyclin D1	IHC	Overexpression	>30%	Associated with poor survival	5	
37	Lee et al.	2013	Korea	305	61.9	Tissue	CRC	AJCC stages 1–4	NA	β-Catenin	IHC	Overexpression	>30%	Associated with poor OS	6	
38	Wong et al.	2003	China	60	65	Tissue	CRC	NA	NA	β-Catenin (CRC)	IHC	Overexpression	>300	Associated with poor survival	4	
39	Chung et al.	2001	USA	543	NA	Tissue	CRC	NA	NA	β-Catenin	IHC	Overexpression	Moderate	Associated with poor survival	4	
No.	Author et al.	Year	Region	Sample size	Male %	Sample type	Tumor type	Clinical stage of tumor	Tumor side (right %)	Gene	Method of gene expression	Elevated levels/abnormality	Cut-off value	Outcome	NOS rating	
-----	---------------	------	--------	-------------	--------	-------------	------------	-------------------------	-------------------	------	--------------------------	------------------------	--------------	----------	------------	
40	Fernebro et al. [60]	2004	Sweden	257	67.3	Tissue	Rectal cancer	NA	NA	β-Catenin, p53	IHC	Abnormal expression	Weak	Associated with poor survival	5	
41	Bondi et al. [61]	2004	Norway	162	45.6	Tissue	colon cancer	NA	NA	β-Catenin	IHC	overexpression	>1%	Associated with poor survival	4	
42	Kim et al. [62]	2005	Korea	124	NA	Tissue	CRC	Duke A-D	NA	β-Catenin	IHC	Abnormal expression	>5%	Associated with poor survival	6	
43	Filiz et al. [63]	2010	Turkey	138	60.1	Tissue	CRC	NA	NA	β-Catenin, p53	IHC	Expression levels	Weak	Associated with poor survival	5	
44	Jung et al. [64]	2013	Korea	349	59.5	Tissue	CRC	NA	21.7	β-Catenin, p53	IHC	Overexpression	>0%	Associated with poor survival	7	
45	Wangelund et al. [65]	2013	Sweden	527	47.4	Tissue	CRC	TNM stages 1-4	NA	β-Catenin	IHC	Overexpression	Moderate	Associated with poor survival	5	
46	Balci et al. [66]	2015	Italy	321	53.2	Tissue	CRC	NA	NA	β-Catenin	IHC	Overexpression	Moderate	Associated with poor survival	5	
47	Youssef et al. [67]	2015	Egypt	72	48.1	Tissue	CRC	TNM stages 1-4 and dukes A-C	69.4	β-Catenin	IHC	Overexpression	>10%	Associated with poor survival	6	
48	Togo et al. [68]	2008	USA	183	62.8	Tissue	CRC	TNM stages 1-4	33.3	β-Catenin, p53	IHC	Overexpression	Moderate/strong expression	Associated with poor survival	5	
49	Matsuoka et al. [69]	2011	Japan	156	63.4	Tissue	CRC	TNM stages 1-4	NA	β-Catenin	IHC	Overexpression	>20%	Associated with poor survival	7	
50	Morikawa et al. [70]	2011	USA	955	39.9	Tissue	CRC	NA	NA	β-Catenin	IHC	Overexpression	Moderate/strong expression	Associated with poor survival	8	
51	Orguen et al. [71]	2011	Turkey	60	33.3	Tissue	CRC	NA	NA	β-Catenin	IHC	overexpression	>0%	Associated with poor survival	5	
52	Stanczak et al. [72]	2011	Poland	66	66.6	Tissue	CRC	NA	NA	β-Catenin	IHC	Overexpression	>10%	Associated with poor survival	6	
53	Toth et al. [73]	2012	Hungary	79	50.6	Tissue	CRC	NA	NA	β-Catenin	IHC	Overexpression	>10%	Associated with poor survival	7	
54	Sun et al. [74]	2011	China	67	64.2	Tissue	Colon cancer	NA	NA	β-Catenin	IHC	Decreased expression	>10%	Associated with poor survival	8	
55	Wang et al. [75]	2020	USA	341	56.3	Tissue	COAD	NA	30.7	APC TP53 CTNNB1	DNA sequencing	Mutations	NA	APC mutations: 74.8%	8	
56	Mondaca et al. [76]	2020	USA	471	52.9	Tissue	CRC	NA	26.1	APC TP53 CTNNB1	DNA sequencing	Mutations	NA	APC mutations: 74.8%	8	
57	Schell et al. [77]	2016	USA	407	NA	Tissue	CRC	NA	41	APC	DNA sequencing	AG vs. AA genotype	NA	AG genotype associated with poor survival	5	
58	Gerami et al. [78]	2020	Iran	57	77.2	Frozen tissue	CRC	TNM stage 1 to 4	36.8	APC	DNA sequencing	AG vs. AA genotype	NA	AG genotype associated with poor survival	5	
59	Conlin et al. [79]	2005	Scotland	107	60.7	Tissue	CRC	Duke stage A-D	14.9	APC p53	Genomic DNA extraction and sequencing	Mutations	NA	APC mutations: 56%; p53 mutations: 61%; not associated	4	
60	Wang et al. [80]	2020	USA	331	NA	Microsatellite stable, tissue	CRC	4	NA	APC	Next-gen genomic analysis	APC-WT or APC-MT	NA	APC-WT associated with poor survival	7	
No.	Author et al.	Year	Region	Sample size	Male %	Sample type	Tumor type	Clinical stage of tumor	Tumor side (right %)	Gene	Method of gene expression	Elevated levels/abnormality	Cut-off value	Outcome	NOS rating	
-----	--------------	------	--------	-------------	--------	-------------	-----------	-------------------------	-------------------	------	--------------------------	----------------------------	--------------	----------	------------	
61	Jorissen et al. [81]	2015	Australia	746	55.4	CRC MSI (unstable) and MSS (stable); validation cohort, tissue	CRC	Stage 1 to 4	42.2	APC TP53	DNA sequencing	APC-WT or APC-MT	NA	TP55: 55.4%; APC-WT associated with poor survival	6	
62	Voorneveld et al. [82]	2012	Netherlands	209	NA	Tissue	CRC	NA	NA	SMAD-4	IHC	Expression	NA	Associated with poor survival	5	
63	Li et al. [83]	2011	China	147	NA	Tissue	CRC	NA	NA	SMAD-4	IHC	Expression	NA	Associated with poor survival	5	
64	Yoo et al. [84]	2019	Korea	1370	NA	Tissue	CRC	NA	NA	SMAD-4	NA	SMAD-4 high vs. low	NA	Associated with poor survival	5	
65	Su et al. [85]	2016	China	251	57.37	Tissue	CRC	Stages 1–4	NA	SMAD-4	IHC	Expression	NA	No association	5	
66	Isaksson et al. [86]	2006	Sweden	86	42	Tissue	CRC	Duke A-C	35	SMAD-4	NA	Expression	NA	Associated with poor survival	6	
67	Fleming et al. [87]	2013	Australia	744	55.6	Sporadic CRCs, tissue	CRC	AJCC stages 1–4	Stage 2 (18%) and 3 (23%)	NA	SMAD-4	IHC detection	Loss of expression	NA	Associated with poor survival	6
68	Roth et al. [88]	2012	Switzerland	1404	NA	Tissue	CRC	NA	Stage 1 to 4	NA	SMAD-4	IHC	Expression	NA	Associated with poor survival	6
69	Lampropoulos et al. [89]	2012	Greece	195	NA	Tissue	CRC	Stage 1 to 4	Stage 1 to 4	SMAD-4	NA	Expression	NA	Associated with poor survival	4	
70	Isaksson et al. [90]	2011	Sweden	441	NA	Tissue	CRC	Stage 1 to 4	SMAD-4	NA	IHC	Weak expression, high	0-5%	Loss of SMAD-4 associated with poor OS	5	
71	Jia et al. [91]	2017	US	209	53.7	Tissue	CRC	Stage 1–4	SMAD-4	Genomic DNA sequencing	High, low	NA	Expression	NA	Associated with poor survival	7
72	Oyanagi et al. [92]	2019	Japan	208	117	Tissue	CRC	TNM 1–4	56	SMAD-4	NA	IHC	Loss of expression	NA	Associated with poor survival	6
73	Ionescu et al. [93]	2014	Romania	39	66.6	Tissue	CRC	Duke A-D	25.6	SMAD-3	q-RT-PCR	Overexpression, under-expression	NA	No association with OS	6	
74	Fukushima et al. [94]	2003	Japan	100	NA	Sporadic CRC and normal tissue	Sporadic CRC	NA	NA	SMAD3/SMAD4	PCR-SSCP	Abnormal	NA	SMAD-3: no abnormality; SMAD-4: abnormal 5 cases	4	
75	Chun et al. [95]	2014	Korea	201	65.7	Tissue	Rectal cancer	3	NA	SMAD4	PCR	Nuclear or cytoplasmic expression	NA	SMAD-3 and SMAD-4 in tumor, effects on TGFβR2 pathway downregulation	5	
76	Bacman et al. [96]	2007	Germany	310	61	Tissue	Colon cancer	Stage 2 (57.4%) and 3 (42.6%)	NA	SMAD3/SMAD4	PCR	Expression	NA	SMAD-3 and SMAD-4 in tumor high or low	4	
77	Meskar et al. [97]	2009	Netherlands	135	54.4	Tissue	CRC	Stage 1 (17.8%), 2 (77.8%), and 3 (4.4%)	SMAD4	NA	Stroma high vs. stroma low	NA	Stroma high SMAD-4 associated with poor prognosis	7		
78	Horst et al. [98]	2009	Germany	142	50	Tissue	CRC	UICC stage 2A	SMAD4	NA	β-Catenin	IHC staining	Nuclear β-catenin	NA	Associated with poor survival	6
79	Bondi et al. [99]	2005	Norway	219	47.9	Tissue	Colon cancer	Duke A-D	NA	Cyclin D1	Real time q-PCR and IHC	Low, high	Grade +2	Cyclin not associated with survival	6	
No.	Author et al.	Year	Region	Sample size	Male %	Sample type	Tumor type	Clinical stage of tumor	Tumor side (right %)	Gene	Method of gene expression	Elevated levels/abnormality	Cut-off value	Outcome	NOS rating	
-----	---------------	------	--------	-------------	--------	-------------	------------	-------------------------	---------------------	------	--------------------------	----------------------------	--------------	---------	-----------	
80	Bahnassy et al. [100]	2004	Egypt	60	60.0	Tissue	CRC	TNM 1–4	NA	Cyclin D1	DNA extraction and gene amplification, IHC	>75%	Associated with poor survival	7		
81	Saridaki et al. [101]	2010	Greece	144	56.94	Tissue	CRC	Stages 1–4	NA	Cyclin D1	DNA extraction and IHC	≥50% with weak and ≥20% with strong staining	Overexpression is not associated with poor outcomes	6		
82	Ogino et al. [102]	2009	USA	602	43	Tissue	Colon cancer	AJCC stages 1–4	NA	Cyclin D1	IHC	No, weak, moderate, strong	Overexpression not associated with poor survival	8		

NA: not applicable; CRC: colon rectal cancer; COAD: colon adenocarcinoma; IHC: immunohistochemical; OS: overall survival.
Table 2: Hazard ratios of studies included in meta-analysis.

No.	Author	Year	Gene	Outcome	HR	95% CI	
						Lower	Upper
1	Wang et al. (COH/UCD) [75]	2020	APC	OS	0.62	0.44	0.86
	Wang et al. (MSKCC) [75]		APC	OS	0.63	0.49	0.81
	Wang et al. (COH/UCD) [75]		CTNNB1	OS	0.95	0.35	2.55
	Wang et al. (COH/UCD) [75]		CTNNB1	OS	1.67	0.86	3.26
	Wang et al. (COH/UCD) [75]		TP53	OS	1.33	0.93	1.88
	Wang et al. (MSKCC) [75]		TP53	OS	1.00	0.77	1.30
	Mondaca et al. [76]	2020	APC	Progression-free survival	0.68	0.54	0.86
	Gerami et al. [78]	2020	APC	OS	0.56	0.42	0.75
	Jorissen et al. (MSI) [81]	2015	APC	RFS	1.63	0.97	2.74
	Jorissen et al. (MSS) [81]	2015	APC	RFS	1.18	0.64	2.19
	Jorissen et al. (Validation cohort, MSS) [81]	2015	APC	RFS	3.24	1.21	8.68
	Voorneveld et al. [82]	2012	SMAD-4	OS	0.56	0.37	0.84
	Li et al. [83]	2011	SMAD-4	OS	2.47	1.02	5.48
	Yoo et al. [84]	2019	SMAD-4	Cancer-free survival	7.04	3.88	12.82
	Su et al. [85]	2016	SMAD-4	DFS	0.92	0.69	1.22
	Roth et al. [88]	2012	SMAD-4	DFS	0.87	0.64	1.18
	Isaksson et al. [90]	2011	SMAD-4	RFS	1.58	1.23	2.01
	Chun et al. [95]	2014	SMAD-4 (nuclear)	OS	1.47	1.19	1.81
	Chun et al. [95]	2014	SMAD-4 (cytoplasmic)	OS	1.81	1.09	3.00
	Meskar et al. [97]	2009	SMAD4	OS	1.71	0.83	3.51
	Salim et al. [53]	2013	β-catenin (membrane)	OS	1.15	0.57	2.30
	Kamposioras et al. [54]	2013	β-Catenin (membrane)	OS	7.98	4.12	15.44
	Gao et al. [55]	2014	β-Catenin (nucleus)	DFS	6.57	3.43	12.56
	Jang et al. [56]	2012	β-Catenin	OS	1.98	1.01	3.89
	Jang et al. [56]	2012	Cyclin D1	DFS	0.33	0.14	0.77
	Chung et al. [59]	2001	β-Catenin, nuclear	OS	0.11	0.06	2.05
	Fernebro et al. [60]	2004	β-Catenin, phosphonuclear	OS	0.71	0.38	1.70
	Fernebro et al. [60]	2004	β-Catenin (cytoplasm)	OS	0.41	0.19	0.85
	Bondi et al. [61]	2004	β-Catenin (nucleus)	OS	1.26	0.62	2.56
	Bondi et al. [61]	2004	p53	OS	1.11	0.50	2.50
	Bondi et al. [61]	2004	C-Myc	OS	5.26	1.93	14.36
	Jung et al. [64]	2013	β-Catenin, combined with C-Myc	OS	0.68	0.39	1.19
	Wangefjord et al. [65]	2013	β-Catenin	OS	1.39	0.82	2.28
	Balzi et al. [66]	2015	β-Catenin	OS	0.70	0.51	0.97
	Togo et al. [68]	2008	p53	OS	1.99	0.75	5.32
	Matsuoka et al. [69]	2011	β-Catenin	OS	1.94	0.86	4.38
	Togo et al. [68]	2008	p53	OS	1.70	0.83	3.48

Note: The table includes hazard ratios (HR) and 95% confidence intervals (CI) for various genes and outcomes across multiple studies.
No.	Author	Year	Gene	Outcome	HR	95% CI Lower	95% CI Upper
25	Morikawa et al. [70]	2011	β-Catenin (cytoplasm)	Cancer-specific mortality	0.82	0.64	1.06
			β-Catenin (nucleus)	Cancer-specific mortality	0.80	0.62	1.03
26	Stanzak et al. [72]	2011	β-Catenin	OS	2.48	1.30	4.74
				OS	0.58	0.14	2.28
27	Toth et al. [73]	2012	β-Catenin (membrane)	OS	2.25	0.61	8.32
			β-Catenin (nucleus)	DFS	2.92	1.30	6.53
28	Horst et al. [98]	2009	β-Catenin	Cancer-specific mortality	7.46	2.08	26.72
29	Bazan et al. [27]	2005	TP53	OS	2.26	1.21	4.21
				DFS	2.14	1.06	4.32
30	Khan et al. [28]	2018	CTNNB1, SMAD-4, APC,	OS	0.88	0.78	1.00
			p53	OS	0.79	0.44	1.44
				OS	1.31	1.09	1.57
				OS	0.89	0.79	1.01
31	Brandstedt et al. [29]	2014	β-Catenin	CRC risk	0.97	0.66	1.41
			Cyclin D1	CRC risk	0.07	0.01	0.88
				OS	1.22	0.84	1.78
32	Huemer et al. [30]	2018	TP53	OS	2.05	1.26	3.34
				DFS	0.71	0.65	0.76
33	Sun et al. [31]	2014	TP53	OS	0.60	0.54	0.66
				DFS	0.99	0.53	1.55
34	Warren et al. [33]	2013	TP53	OS	1.04	0.60	1.79
				OS	0.78	0.47	1.28
35	Netter et al. [34]	2014	TP53	OS	1.88	1.17	3.04
				DFS	1.73	1.04	2.86
36	Loes et al. [51]	2016	TP53	OS	1.58	0.97	2.56
				DFS	1.71	1.03	2.86
37	Kandioler et al. [35]	2015	TP53	OS	0.47	0.27	0.83
				OS	0.42	0.24	0.73
38	Chen et al. [36]	2013	TP53	OS	1.66	0.88	3.14
				OS	1.65	0.81	3.38
39	Oh et al. [38]	2019	TP53	OS	2.62	1.41	4.87
				OS	1.50	1.05	2.14
				OS	1.93	1.17	3.19
40	Wang et al. [39]	2017	TP53	OS	2.02	1.04	3.91
				OS	1.68	0.98	2.87
41	Zhang et al. [40]	2014	TP53 (and CTNNB1)	Cancer-specific survival	1.30	1.02	1.65
			Wnt 5A	OS	2.21	1.49	3.28
42	Chun et al. [42]	2019	TP53 (double mutation	Cancer-specific survival	1.40	1.11	1.78
			with PIK3CA)	OS	1.82	1.17	2.83
				OS	1.62	1.20	2.20
				OS	1.34	1.07	1.63
43	Tiong et al. [43]	2014	TP53 (and CTNNB1)	Cancer-specific survival	1.10	0.91	1.34
			Wnt 5A	OS	1.40	0.89	2.21
44	Li et al. [44]	2018	TP53	Cancer-specific survival	2.32	1.34	4.03
				OS	2.64	1.19	5.83
45	Morikawa et al. [46]	2012	TP53	Cancer-specific survival	2.52	1.28	4.93
				OS	0.61	0.50	0.73
46	Kawaguchi et al. [47]	2019	SMAD-4	Cancer-specific survival	0.69	0.49	0.96
47	Samowitz et al. [48]	2002	TP53	Cancer-specific survival	4.57	1.17	17.8
48	Soong et al. [49]	2000	TP53	Cancer-specific survival	0.47	1.17	17.8
49	Jurach et al. [50]	2006	TP53	Cancer-specific survival	1.52	1.28	4.93
				OS	0.61	0.50	0.73
50	Iacopetta et al. [45]	2006	TP53	Cancer-specific survival	0.69	0.49	0.96
				OS	4.57	1.17	17.8
The table represents 105 data points on genes where HR data were available. OS: overall survival, RFS: relapse-free survival, CFS: cancer-free survival, DFS: disease-free survival, PFS: progression-free survival, CRC risk: colorectal cancer risk.

Table 2: Continued.

No.	Author	Year	Gene	Outcome	HR	95% CI
54	Tonescu et al. [93]	2014	SMAD-3	OS	1.09	0.30
55	Jia et al. [91]	2017	SMAD-4 (nuclear)	OS	1.70	0.96
56	Kim et al. [25]	2018	Wnt	OS	1.25	0.87
57	Veloudis et al. [24]	2017	Wnt/β-catenin	OS	3.86	1.24
58	Ting et al. [23]	2013	Wnt	DFS	1.50	0.80
59	Yoshida et al. [22]	2015	β-Catenin	DFS	2.10	1.10
60	Rafael et al. [21]	2014	Wnt	OS	0.36	0.05
61	Bondi et al. [99]	2005	Cyclin D1	OS	0.57	0.33
62	Bahnassy et al. [100]	2004	Cyclin D1	OS	10.86	1.05
63	Saridaki et al. [101]	2010	Cyclin D1	OS	1.1	0.6
64	Ogino et al. [102]	2009	Cyclin D1	OS	0.74	0.57

Figure 2: Forest plot of β-catenin gene and overall survival in CRC (a). Forest plot of β-catenin gene and disease-free survival in CRC (b).
Sixty-five studies, with 105 data points on Colorectal Cancer. 3.4. Prognostic Value of Gene Expression and Mutations in Colorectal Cancer. Sixty-five studies, with 105 data points on genes where HR data was available, were included in the meta-analysis. These are shown in Table 2. Twenty-eight enrolled studies provided the HRs, and 95% CI directly or indirectly reported the correlation between β-catenin overexpression and OS. The pooled HR of β-catenin overexpression in the nucleus, cytoplasm, or membranous with OS was 0.257 (95% CI: 0.003–0.511; Q = 51.76; P = 0.000) (Figure 2(a)), however, heterogeneity existed. The association of β-catenin overexpression with shorter DFS was analyzed. The pooled HR was 0.137 (95% CI: 0.131–0.406; Q = 48.832; P = 0.000) (Figure 2(b)). The above results suggested that β-catenin overexpression in the nucleus, membrane, or cytoplasm was associated with lower OS and DFS.

For the APC gene, the pooled HR for OS based on 8 studies was 0.035 (95% CI: 0.308–0.377; Q = 51.76; P = 0.000) (Figure 3(a)). This value suggested the association of the mutant variant with a lower OS compared with the wild type but not for DFS, where pooled HR = 0.387 (95% CI: 0.483–1.256; Q = 22.624; P = 0.000) (Figure 3(b)). For the SMAD3/4 genes, 13 studies were included. The pooled HR was 0.688 (95% CI: 0.403–0.974; Q = 47.689; P = 0.000) (Figure 4(a)). Their pooled HR for DFS was 0.449 (95% CI: 0.146–0.753; Q = 32.012; P = 0.000) (Figure 4(b)). These results implied a worse prognosis of CRC in the event of the loss of expression of SMAD-3 or SMAD-4.

Studies reporting the mutations of the Tp53 gene (n = 24) had a pooled HR of 0.319 (95% CI: 0.133–0.504; Q = 201.339;

Study name	Log HR	Standard error	95% Lower CI	95% Upper CI	Percent Random Effects
Wang et al. (COH/UCD)	-0.478	0.171	-0.813	-0.143	14.980
Wang et al. (MSKCC)	-0.462	0.128	-0.713	-0.211	15.985
Mondaca et al.	-0.580	0.148	-0.870	-0.290	15.542
Gerami et al.	1.176	0.503	0.190	2.161	7.139
Khan et al.	-0.117	0.063	-0.239	0.006	17.108
Jorissen et al. (MSI)	-0.105	0.611	-1.303	1.092	5.567
Jorissen et al. (MSS)	0.698	0.274	0.160	1.236	12.125
Jorissen et al. (Validation cohort, MSS)	1.105	0.303	0.512	1.698	11.464

| Combined Average | 0.035 | 0.175 | -0.308 | 0.377 |

Study name	Log HR	Standard error	95% Lower CI	95% Upper CI	Percent Random Effects
Jorissen et al. (Validation cohort, MSS)	0.761	0.341	0.093	1.428	26.867
Jorissen et al. (MSS)	0.997	0.340	0.330	1.666	26.870
Jorissen et al. (MSI)	0.231	0.831	-1.398	1.860	15.057
Mondaca et al.	-0.386	0.119	-0.618	-0.153	31.206

| Combined Average | 0.387 | 0.444 | -0.483 | 1.256 |

Figure 3: Forest plot of APC gene and overall survival in CRC (a). Forest plot of APC gene and disease-free survival in CRC (b).

Study name	Log HR	Standard error	95% Lower CI	95% Upper CI	Percent Random Effects weights
Isaksson et al.	1.520	0.694	0.158	2.881	3.265
Tonein et al.	0.086	0.694	-1.275	1.447	3.265
Voomneved et al.	0.904	0.358	0.203	1.606	7.130
Li et al.	1.952	0.358	1.250	2.653	7.130
Su et al.	-0.132	0.305	-0.730	0.465	8.086
Roth et al.	0.457	0.125	0.212	0.703	11.459
Isaksson et al.	0.593	0.258	0.087	1.100	8.984
Chun et al.	0.538	0.356	-0.179	1.256	6.993
Chun et al.	0.136	0.356	-0.561	0.834	7.168
Meskar et al.	2.077	0.337	1.416	2.737	7.497
Kawaguchi et al.	0.599	0.337	-0.062	1.259	7.497
Khan et al.	0.270	0.225	-0.172	0.712	9.634
Jia et al.	0.531	0.093	0.348	0.713	11.911

| [Combined] | Average| 0.688 | 0.146 | 0.403 | 0.974 |

Study name	Log HR	Standard error	95% Lower CI	95% Upper CI	Percent Random Effects weights
Meskar et al.	1.883	0.331	1.234	2.531	10.664
Roth et al.	0.385	0.107	0.176	0.595	18.933
Su et al.	-0.086	0.146	-0.371	0.200	17.571
Yoo et al.	-0.239	0.117	0.009	0.469	18.591
Yoo et al.	0.372	0.161	0.057	0.686	17.003
Kawaguchi et al.	0.482	0.153	0.179	0.785	17.237

| [Combined] | Average| 0.449 | 0.155 | 0.146 | 0.753 |

Figure 4: Forest plot of SMAD3/4 gene and overall survival in CRC (a). Forest plot of SMAD3/4 gene and disease-free survival in CRC (b).

$P = 0.000)$ (Figure 5(a)) for OS and 0.179 (95% CI: 0.126–0.485; $Q = 143.796; P = 0.000$) (Figure 5(b)) for DFS ($n = 14$). The results were widely heterogenous but implied significantly poor prognosis overall, as well as DFS, in CRC cases. Five studies showed a pooled HR of 0.671 (95% CI: 0.116–1.458; $Q = 10.746; P = 0.030$) (Figure 6) for the Wnt gene with OS, thereby showing no association of Wnt gene expression/mutation with survival in CRC. Since only one study [14] reported the hazard ratio for DFS, meta-analysis was not performed for the Wnt gene with shorter DFS. Five studies on Cyclin D1 were included in the meta-analysis. The pooled HR for OS was 0.362 (95% CI: 0.944–0.221; $Q = 5.421; P = 0.253$) (Figure 7(a)) and that for DFS was 0.485 (95% CI: 0.772–0.198; $Q = 5.810; P = 0.214$) (Figure 7(b)). High Cyclin D1, therefore, produced a worse prognosis in CRC, both in terms of OS and DFS.

3.5. Publication Bias. We assessed the publication bias for APC, SMAD, β-catenin, and Tp53 gene studies by constructing funnel plots (Figure 8(a)–8(f)) as more than ten studies were included in the meta-analysis. Egger's test indicated that publication bias existed for the evaluation of the impact of β-catenin, APC, and Tp53 with OS, however, Begg's test showed no significant publication bias (β-catenin and OS: $I^2 = 65.83%$, tau (τ) = 0.047 ($P = 0.76$), β-catenin and DFS: $I^2 = 71.33%$, τ = 0.21 ($P = 0.25$), TP53 and OS: $I^2 = 88.82%$, τ = 0.153 ($P = 0.28$), TP53 and DFS: $I^2 = 89.12%$, $\tau = 0.25$ ($P = 0.13$), APC and OS: $I^2 = 86.48%$; $\tau = 0.28$ ($P = 0.32$), SMAD and OS: $I^2 = 83.17%$, and $\tau = 0.23$ ($P = 0.27$). It is notable that with Egger’s test, there is insufficient power of testing when the number of selected studies is below 20. It was, therefore, not attempted for the remaining genes.

4. Discussion

Colorectal carcinogenesis is a complex multistage process that involves multiple genetic variations. The aberrant activation of the Wnt/β-catenin pathway has been identified as being involved in the progression of CRC [104] and early colorectal tumorigenesis [103]. In several studies, the β-catenin accumulation in the nucleus or cytoplasm was identified as a marker for poor prognosis. The variations of the APC or CTNNBI genes are the main causes of the
accumulation of nuclear β-catenin [105]. In contrast, β-catenin expression in the nucleus was associated with noninvasive tumors and more favorable outcomes [106] but remains controversial.

The current meta-analysis has explored the cumulative prognostic significance of the different subcellular localizations of β-catenin expression among CRC subjects. The results indicated that the nuclear expression or decreased expression of β-catenin in the membrane was associated with lower OS, which is consistent with the published articles. Pooled data from a study [107] found that the reduced expression of β-catenin in the membrane to be significantly associated with poor survival among CRC patients, thus the majority of the selected studies are from nuclear β-catenin overexpression.

Wnt2 is an oncogene with the potential to activate canonical Wnt signaling during CRC tumorigenesis [21, 22]. The role of Wnt5 in the progression of CRC is quite complex and appears to be inconsistent in findings. Several studies [21–25] proved that Wnt5a was silenced in most CRC cell lines because of recurrent methylation in the promoter region. Wnt5a acts as a tumor suppressor by interfering with the canonical β-catenin signaling. However, it activates the noncanonical signaling pathways [100]. In this study, there

Study name	Log HR	Standard error	95% Lower CI	95% Upper CI	Percent Random Effects weights
Bazan et al.	0.761	0.358	0.058	1.463	6.215
Brandstedt et al.	-1.661	0.811	-3.250	-0.072	2.643
Warem et al.	-0.511	0.051	-0.611	-0.410	9.163
Netter et al.	0.039	0.279	-0.507	0.586	7.141
Loes et al.	-0.248	0.256	-0.749	0.252	7.412
Kandiolser et al.	0.549	0.256	0.047	1.050	7.406
Chen et al.	0.536	0.261	0.026	1.047	7.354
Oh et al.	0.997	0.269	0.469	1.525	7.251
Wang et al.	0.863	0.281	-1.413	-0.312	7.116
Zhang et al.	0.506	0.363	-0.206	1.218	6.159
Morikawa et al.	0.262	0.123	0.022	0.503	8.753
Kawaguchu et al.	0.336	0.120	0.100	0.573	8.770
Samowitz et al.	0.095	0.099	-0.098	0.289	8.923
Jurach et al.	0.971	0.405	0.176	1.765	5.693

| [Combined] Average | 0.179 | 0.156 | -0.126 | 0.485 |

Figure 5: Forest plot of TP53 gene and overall survival in CRC (a). Forest plot of TP53 gene and disease-free survival in CRC (b).
was no significant association of Wnt (2 and 5) to OS or DFS found among CRC patients, and it is well in accordance with the contradictory studies reported [23–25].

In our meta-analysis pertaining to SMAD genes, we found that the loss of SMAD 3 or SMAD4 staining was strongly associated with a worse prognosis for OS and DFS (including CSS/RFS). Several other individual reports are in alignment with our findings [87, 92, 93]. These studies reported SMAD-4 to have a stronger association compared with SMAD-3 or other SMAD genes.

Most studies have shown the predictive value of Tp53 for overall survival in CRC to be poor. Dong et al. [108] reported 53% of Tp53 gene variation as the susceptibility for the development of CRC. Another study reported that, in mouse models, a high rate of spontaneous tumors was noted because of p53-deficiency [109]. Moreover, the deletion of p53 and the Tp53 gene variation led to tumor progression and tumor cell death.

A meta-analysis of Asian patients indicates that an association between Tp53 Arg72Pro polymorphism CC genotype might contribute to an increased risk of CRC [110]. The current meta-analysis included diverse populations, and the results pertaining to the association of Tp53 with shorter overall and DFS in CRC may, therefore, be considered more generalizable.

In an independent study of 331 patients, the prognostic value of APC was evaluated, and the findings were validated on a public database of stage IV colon cancer from Memorial Sloan Kettering Cancer Center (MSKCC) [75]. The study found that APC-WT was present in 26% of metastatic CRC patients, and it was more prevalent in patients of younger age and those with right-sided tumors. APC-WT tumors
have been shown to be associated with other Wnt-activating alterations, including CTNNB1, FBXW7, RNF43, ARID1A, and SOX9. APC-WT patients in a study were found to have a worse overall survival (OS) than APC-MT pts (HR = 1.809, 95% CI: 1.260–2.596) [75]. Overall, in most studies, APC-WT is associated with poor OS. Additionally, APC-WT tumors were associated with other activating alterations of the Wnt pathway, including RNF43 and CTNNB1.

Cyclin D1 overexpression has been reported to occur in 40–70% of colorectal tumors [111]. Despite the well-established role of Cyclin D1 in cell cycle progression, previous data on Cyclin D1 and clinical outcomes in CRC have been conflicting. Cyclin D1 overexpression has also been significantly related to poor OS in Asian and non-Asian CRC patients [112]. Two mechanisms have been implicated, namely nuclear expression and cytoplasmic expression, wherein most studies found an association of the nuclear expression of Cyclin D1 with OS and DFS. Moreover, Cyclin D1 also has been shown as a poor prognosis marker when co-expressed with other genes, notably p53 [113]. These results are consistent with the present meta-analysis’s findings that shortened overall survival and DFS are associated with Cyclin D1 among CRC patients.

We acknowledge that this study has several limitations. Firstly, the element of bias cannot be ruled out because of the inclusion of retrospective studies. Secondly, all of the selected studies measured gene expression by immunohistochemistry and sequencing methods. Moreover, the cut-offs used in various studies differed between and across the genes studied. However, there was no subgroup analysis performed to investigate the potential effect of the technique on the combined results. Thirdly, some heterogeneity has been found because of location and the types of cancer. To eliminate variations across studies, a random-effects model was performed accordingly. Limited databases were used for article search, and only freely available full-text articles in the English language were used, which might affect the persuasive power of the pooled estimate, although to a limited extent. In addition, publication bias existed because only studies generating positive results or significant outcomes were suitable for publication. Future research might helpfully contribute further relevant analyses and well-designed extensive prospective studies, since they will address the limitations of the current meta-analysis.

5. Conclusion

The present meta-analysis has found that the genes associated with worst OS in CRC were β-catenin (cytoplasmic, membranous, and nuclear overexpression), APC (mutant type), Tp53 (mutated), SMAD-3 and SMAD-4 (loss of expression), and Cyclin D1 (high). The gene associated with shorter DFS in CRC patients was APC (mutant type). In
contrast, Wnt (2 and 5) genes were not associated with prognosis in CRC in this meta-analysis.

Abbreviations

APC: Adenomatous polyposis coli
ARID1A: AT-rich interaction domain 1A
CIs: Confidence intervals
CRC: Colorectal cancer
CSS: Cancer-specific survival
DFS: Disease-free survival
CTNNB1: Catenin beta 1
FBXW7: F-box and WD repeat domain containing 7
HRs: Hazard ratios
OS: Overall survival
p53: Tumor suppressor protein
PFS: Progression-free survival
RFS: Recurrence-free survival
SMAD: Suppressor of mothers against decapentaplegic
SOX9: SRY-box transcription factor 9
Tp53: Tumor protein p53 gene
TGFβ: Transforming growth factor β
Wnt: Wingless/integrated.

Data Availability

The data extraction sheets used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

Hongfeng Yan took part in conceptualization, methodology, resources, writing-original draft, writing-review, and editing. Jianwu Yang took part in conceptualization, methodology, data curation, resources, writing-original draft, writing-review, and editing. Fuquan Jiang took part in conceptualization, resources, writing-review, editing, and supervision. All authors have read and approved the manuscript. Fuquan Jiang and Jianwu Yang shared equal correspondence.

References

[1] P. Rawla, T. Sunkara, and A. Barsouk, “Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors,” *Przegląd Gastroenterologiczny*, vol. 14, no. 2, pp. 89–103, 2019.

[2] Y. Mohd, B. Balasubramanian, A. Meyyazhagan et al., “Extricating the association between the prognostic factors of Colorectal Cancer,” *Journal of Gastrointestinal Cancer*, vol. 52, no. 3, pp. 1022–1028, 2021.

[3] J. Li, X. Ma, D. Chakravarti, S. Shalapour, and R. A. DePinho, “Genetic and biological hallmarks of colorectal cancer,” *Genes & Development*, vol. 35, no. 11-12, pp. 787–820, 2021.

[4] X. J. Luo, Q. Zhao, J. Liu et al., “Novel genetic and epigenetic biomarkers of prognostic and predictive significance in stage ii/iii colorectal cancer,” *Molecular Therapy*, vol. 29, no. 2, pp. 587–596, 2021.

[5] J. D. Labadie, S. Savas, T. A. Harrison et al., “Genome-wide association study identifies tumor anatomical site-specific risk variants for colorectal cancer survival,” *Scientific Reports*, vol. 12, no. 1, 2022.

[6] N. El Kadmiri, “Advances in early detection of colorectal cancer: a focus on non-invasive biomarkers,” *Current Drug Targets*, vol. 22, no. 9, pp. 1043–1053, 2021.

[7] S. G. Patel, J. J. Karlitz, T. Yen, C. H. Lieu, and C. R. Boland, “The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection,” *The Lancet Gastroenterology & Hepatology*, vol. 7, no. 3, pp. 262–274, 2022.

[8] A. N. Archambault, J. Jeon, Y. Lin et al., “Risk stratification for early-onset colorectal cancer using a combination of genetic and environmental risk scores: an international multi-center study,” *Journal of the National Cancer Institute*, vol. 114, no. 4, pp. 528–539, 2022.

[9] L. H. Biller and D. Schrag, “Diagnosis and treatment of metastatic colorectal cancer: a review,” *Journal of the American Medical Association*, vol. 325, no. 7, p. 669, 2021.

[10] M. R. A. Hassan, M. A. M. Suan, S. A. Soelar, N. S. Mohammed, I. Ismail, and F. Ahmad, “Survival analysis and prognostic factors for colorectal cancer patients in Malaysia,” *Asian Pacific Journal of Cancer Prevention: Asian Pacific Journal of Cancer Prevention*, vol. 17, no. 7, pp. 3575–3581, 2016.

[11] E. Koncina, S. Haan, S. Rauh, and E. Letellier, “Prognostic and predictive molecular biomarkers for colorectal cancer: updates and challenges,” *Cancers*, vol. 12, no. 2, p. 319, 2020.

[12] R. Ahmad, J. K. Singh, A. Wunnava, O. Al-Obeed, M. Abdulla, and S. Srivastava, “Emerging trends in colorectal cancer: dysregulated signaling pathways (review),” *International Journal of Molecular Medicine*, vol. 47, no. 3, p. 14, 2021.

[13] Z. Steinhart and S. Angers, “Wnt signaling in development and tissue homeostasis,” *Development*, vol. 145, no. 11, Article ID dev146589, 2018.

[14] E. M. Schatoff, B. I. Leach, and L. E. Dow, “Wnt signaling and colorectal cancer,” *Current Colorectal Cancer Reports*, vol. 13, no. 2, pp. 101–110, 2017.

[15] X. Cheng, X. Xu, D. Chen, F. Zhao, and W. Wang, “Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer,” *Biomedicine & Pharmacotherapy*, vol. 110, pp. 473–481, 2019.

[16] J. Bruun, M. Kolberg, J. M. Nesland, A. Svindland, A. Nesbakken, and R. A. Lothe, “Prognostic significance of β-catenin, E-cadherin, and SOX9 in colorectal cancer: results from a large population-representative series,” *Frontiers in Oncology*, vol. 4, p. 118, 2014.

[17] S. Liu, S. Chen, and J. Zeng, “TGFβ signaling: a complex role in tumorigenesis (review),” *Molecular Medicine Reports*, vol. 17, pp. 699–704, 2018.

[18] D. F. Stroup, J. A. Berlin Ja, S. C. Mortan et al., “Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in...
epidemiology (MOOSE) group,” *Journal of the American Medical Association*, vol. 283, no. 15, p. 2008, 2000.

[19] N. Mantel and W. Haenszel, “Statistical aspects of the analysis of data from retrospective studies of disease,” *Journal of the National Cancer Institute*, vol. 22, no. 4, pp. 719–748, 1959.

[20] R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” *Controlled Clinical Trials*, vol. 7, no. 3, pp. 177–188, 1986.

[21] S. Rafael, S. Veganzones, M. Vidaurreta, V. de la Orden, and M. L. Maestro, “Effect of β-catenin alterations in the prognosis of patients with sporadic colorectal cancer,” *Journal of Cancer Research and Therapeutics*, vol. 10, no. 3, pp. 591–596, 2014.

[22] N. Yoshida, T. Kinugasa, K. Oshshima et al., “Analysis of Wnt and beta-catenin expression in advanced colorectal cancer,” *Anticancer Research*, vol. 35, no. 8, pp. 4403–4410, 2015.

[23] W. C. Ting, L. M. Chen, J. B. Pao et al., “Common genetic variants in wnt signaling pathway genes as potential prognostic biomarkers for colorectal cancer,” *PloS One*, vol. 8, no. 2, Article ID e56196, 2013.

[24] G. Veloudis, A. Pappas, S. Gourgiotis et al., “Assessing the clinical utility of wnt pathway markers in colorectal cancer,” *Journal of BUON*, vol. 22, no. 2, pp. 431–436, 2017.

[25] S. H. Kim, K. H. Park, S. J. Shin et al., “CpG island methylator phenotype and methylation of wnt pathway genes together predict survival in patients with colorectal cancer,” *Yonsei Medical Journal*, vol. 59, no. 5, p. 588, 2018.

[26] S. Wangeford, J. Manjer, A. Gaber, B. Nodin, J. Eberhard, and K. Jirstrom, “Cyclin D1 expression in colorectal cancer is a favorable prognostic factor in men but not in women in a prospective, population-based cohort study,” *Biology of Sex Differences*, vol. 2, no. 1, p. 10, 2011.

[27] V. Bazan, V. Agnese, S. Corsale et al., “Specific TP53 and/or Ki-ras mutations as independent predictors of clinical outcome in sporadic colorectal adenocarcinomas: results of a 5-year group oncologico dell’Italia meridionale (GOIM) prospective study,” *Annals of Oncology*, vol. 16, no. 4, pp. 50–55, 2005.

[28] M. Khan, J. M. Loree, S. M. Advani et al., “Prognostic implications of mucinous differentiation in metastatic colorectal carcinoma can be explained by distinct molecular and clinicopathologic characteristics,” *Clinical Colorectal Cancer*, vol. 17, no. 4, pp. 699–709, 2018.

[29] J. Brandstedt, S. Wangeford, B. Nodin, J. Eberhard, K. Jirstrom, and J. Manjer, “Associations of hormone replacement therapy and oral contraceptives with risk of colorectal cancer defined by clinicopathological factors, beta-catenin alterations, expression of cyclin D1, p53, and microsatellite-instability,” *BMC Cancer*, vol. 14, no. 1, p. 371, 2014.

[30] F. Huemer, J. Thaler, G. Piringer et al., “Sidedness and TP53 mutations impact OS in anti-EGFR but not anti-VEGF treated mCRC-an analysis of the KRAS registry of the AGMT (arbeitsgemeinschaft medikamentöse tumortherapie),” *BMC Cancer*, vol. 18, no. 1, p. 11, 2018.

[31] R. Sun, X. Wang, H. Zhu et al., “Prognostic value of LAMP3 and TP53 overexpression in benign and malignant gastrointestinal tissues,” *Oncotarget*, vol. 5, no. 23, pp. 12398–12409, 2014.

[32] G. E. Theodoropoulos, E. Karafoka, J. G. Papaiou et al., “p53 and egfr expression in colorectal cancer: a reappraisal of ‘old’ tissue markers in patients with long follow-up,” *Anticancer Research*, vol. 29, no. 2, pp. 785–791, 2009.

[33] R. S. Warren, C. E. Atreyea, D. Niedzwiecki et al., “Association of TP53 mutational status and gender with survival after adjuvant treatment for stage III colon cancer: results of CALGB 89803,” *Clinical Cancer Research*, vol. 19, no. 20, pp. 5777–5787, 2013.

[34] J. Netter, J. Lehmann-Che, J. Lambert et al., “Functional TP53 mutations have no impact on response to cytotoxic agents in metastatic colon cancer,” *Bulletin du Cancer*, vol. 102, no. 2, pp. 117–125, 2015.

[35] D. Kandoler, M. Mittlböck, S. Kappel et al., “TP53 mutational status and prediction of benefit from adjuvant 5-fluorouracil in stage III colon cancer patients,” *EBioMedicine*, vol. 2, no. 8, pp. 825–830, 2015.

[36] J. Chen, H. Tang, Z. Wu et al., “Overexpression of RBBP6, alone or combined with mutant TP53, is predictive of poor prognosis in colon cancer,” *PloS One*, vol. 8, no. 6, Article ID e66524, 2013.

[37] A. L. Russo, D. R. Borger, J. Szymonifka et al., “Mutational analysis and clinical correlation of metastatic colorectal cancer,” *Cancer*, vol. 120, no. 10, pp. 1482–1490, 2014.

[38] H. J. Oh, J. M. Bae, X. Wen et al., “p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy,” *British Journal of Cancer*, vol. 120, no. 8, pp. 797–805, 2019.

[39] P. Wang, J. Liang, Z. Wang, H. Hou, L. Shi, and Z. Zhou, “The prognostic value of p53 positive in colorectal cancer: a retrospective cohort study,” *Tumor Biology*, vol. 39, no. 5, Article ID 101042831770365, 2017.

[40] M. Zhang, F. Cui, S. Lu et al., “Increased expression of prothymosin-α independently or combined with TP53, correlates with poor prognosis in colorectal cancer,” *International Journal of Clinical and Experimental Pathology*, vol. 7, no. 8, pp. 4867–4876, 2014.

[41] T. I. Godai, T. Suda, N. Sugano et al., “Identification of colorectal cancer patients with tumors carrying the TP53 mutation on the codon 72 proline allele that benefited most from 5-fluorouracil (5-FU) based postoperative chemotherapy,” *BMC Cancer*, vol. 9, no. 1, p. 420, 2009.

[42] Y. S. Chun, G. Passot, S. Yamashita et al., “Deleteorous effect of RAS and evolutionary risk-high TP53 double mutation in colorectal liver metastases,” *Annals Of Surgery*, vol. 269, no. 5, pp. 917–923, 2019.

[43] K. L. Tiong, K. C. Chang, K. T. Yeh et al., “CSNK1E/CTNNB1 are synthetic lethal to TP53 in colorectal cancer and are markers for prognosis,” *Neoplasia*, vol. 16, no. 5, pp. 441–450, 2014.

[44] A. J. Li, H. G. Li, E. J. Tang et al., “PIK3CA and TP53 mutations predict overall survival of stage II/III colorectal cancer patients,” *World Journal of Gastroenterology*, vol. 24, no. 5, pp. 631–640, 2018.

[45] B. Iacopetta, A. Russo, V. Bazan et al., “Functional categories of TP53 mutation in colorectal cancer: results of an International collaborative Study,” *Annals of Oncology*, vol. 17, no. 5, pp. 842–847, 2006.

[46] T. Morikawa, A. Kuchiba, X. Liao et al., “Tumor TP53 expression status, body mass index and prognosis in colorectal cancer,” *International Journal of Cancer*, vol. 131, no. 5, pp. 1169–1178, 2012.

[47] Y. Kawaguchi, S. Kopetz, T. E. Newhook et al., “Mutation status of RAS, TP53, and SMAD4 is superior to mutation status of RAS alone for predicting prognosis after resection of colorectal liver metastases,” *Clinical Cancer Research*, vol. 25, no. 19, pp. 5843–5851, 2019.
[48] W. S. Samowitz, K. Curtin, K. N. Ma et al., “Prognostic significance of p53 mutations in colon cancer at the population level,” International Journal of Cancer, vol. 99, no. 4, pp. 597–602, 2002.

[49] R. Soong, B. Powell, H. Elsahed et al., “Prognostic significance of TP53 gene mutation in 995 cases of colorectal carcinoma,” European Journal of Cancer, vol. 36, no. 16, pp. 2053–2060, 2000.

[50] M. T. Jurach, L. Meurer, and L. F. Moreira, “Expression of the p53 protein and clinical and pathologic correlation in adenocarcinoma of the rectum,” Arquivos de Gastroenterologia, vol. 43, pp. 14–19, 2006.

[51] I. M. Loes, H. Immervoll, H. Sorbye et al., “Impact of KRAS, BRAF, PIK3CA, TP53 status and intranuclear mutation heterogeneity on outcome after liver resection for colorectal cancer metastases,” International Journal of Cancer, vol. 139, no. 3, pp. 647–656, 2016.

[52] B. Iacopetta, A. Russo, and V. Bazan, “TP53-CRC Collaborative Study Group. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment,” Journal Of Clinical Oncology, vol. 23, no. 30, pp. 7518–7528, 2005.

[53] N. J. H. K. Jirstrom, and J. Eberhard, “Expressions of beta-catenin expression predicts for disease-free survival,” Anticancer Research, vol. 33, no. 10, pp. 4573–4584, 2013.

[54] Z. H. Gao, C. Lu, M. X. Wang, Y. Han, and L. J. Guo, “Differentiation beta-catenin expression levels are associated with morphological features and prognosis of colorectal cancer,” Oncology Letters, vol. 8, no. 5, pp. 2069–2076, 2014.

[55] K. Y. Jang, Y. N. Kim, J. S. Bae et al., “Expression of Cyclin D1 is associated with beta-catenin expression and correlates with good prognosis in colorectal adenocarcinoma,” Translational Oncology, vol. 5, pp. 370–378, 2012.

[56] S. J. Lee, S. Y. Choi, W. J. Kim et al., “Combined aberrant expression of E-cadherin and S100A4, but not beta-catenin is associated with disease-free survival and overall survival in colorectal cancer patients,” Diagnostic Pathology, vol. 8, no. 1, 2013.

[57] S. C. C. Wong, E. S. Lo, A. K. Chan, K. C. Lee, and W. L. Hsiao, “Nuclear beta-catenin as a potential prognostic and diagnostic marker in patients with colorectal cancer from Hong Kong,” Molecular Pathology, vol. 56, no. 6, pp. 347–352, 2003.

[58] G. G. Chung, E. Provost, E. P. Kielhorn, L. A. Charette, B. L. Smith, and D. L. Rimm, “Tissue microarray analysis of beta-catenin in colorectal cancer shows nuclear phospho-beta-catenin is associated with a better prognosis,” Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, vol. 7, no. 12, pp. 4013–4020, 2001.

[59] E. Fernebro, P. O. Bendahl, M. Dictor, A. Persson, M. Ferno, and M. Nilbert, “Immunohistochemical patterns in rectal cancer: application of tissue microarray with prognostic correlations,” International Journal of Cancer, vol. 111, no. 6, pp. 921–928, 2004.

[60] J. Bondi, G. Bukholm, J. M. Nesland, and I. R. K. Bukholm, “Expression of non-membranous beta-catenin and gamma-catenin, c-Myc and Cyclin D1 in relation to patient outcome in human colon adenocarcinomas,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 112, no. 1, pp. 49–56, 2004.

[61] C. J. Kim, Y. G. Cho, Y. G. Park et al., “Pin1 overexpression in colorectal cancer and its correlation with aberrant beta-catenin expression,” World Journal of Gastroenterology, vol. 11, no. 32, p. 5006, 2005.

[62] I. M. Løes, H. Immervoll, H. Sorbye et al., “Impact of KRAS, BRAF, PIK3CA, TP53 status and intranuclear mutation heterogeneity on outcome after liver resection for colorectal cancer metastases,” International Journal of Cancer, vol. 139, no. 3, pp. 647–656, 2016.

[63] B. Iacopetta, A. Russo, and V. Bazan, “TP53-CRC Collaborative Study Group. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment,” Journal Of Clinical Oncology, vol. 23, no. 30, pp. 7518–7528, 2005.

[64] T. Salim, A. Sjolander, and J. Sand-Dejmek, “Nuclear expression of glycogen synthase kinase-3β and lack of membranous β-catenin is correlated with poor survival in colon cancer,” International Journal of Cancer, vol. 133, no. 4, pp. 807–815, 2013.

[65] K. Kampinos, A. Konstantara, V. Kotoulas et al., “The prognostic significance of WNT pathway in surgically-treated colorectal cancer: beta-catenin expression predicts for disease-free survival,” Anticancer Research, vol. 33, no. 10, pp. 4573–4584, 2013.

[66] Z. H. Gao, C. Lu, M. X. Wang, Y. Han, and L. J. Guo, “Differentiation beta-catenin expression levels are associated with morphological features and prognosis of colorectal cancer,” Oncology Letters, vol. 8, no. 5, pp. 2069–2076, 2014.

[67] K. Y. Jang, Y. N. Kim, J. S. Bae et al., “Expression of Cyclin D1 is associated with beta-catenin expression and correlates with good prognosis in colorectal adenocarcinoma,” Translational Oncology, vol. 5, pp. 370–378, 2012.

[68] S. J. Lee, S. Y. Choi, W. J. Kim et al., “Combined aberrant expression of E-cadherin and S100A4, but not beta-catenin is associated with disease-free survival and overall survival in colorectal cancer patients,” Diagnostic Pathology, vol. 8, no. 1, 2013.

[69] S. C. C. Wong, E. S. Lo, A. K. Chan, K. C. Lee, and W. L. Hsiao, “Nuclear beta-catenin as a potential prognostic and diagnostic marker in patients with colorectal cancer from Hong Kong,” Molecular Pathology, vol. 56, no. 6, pp. 347–352, 2003.

[70] G. G. Chung, E. Provost, E. P. Kielhorn, L. A. Charette, B. L. Smith, and D. L. Rimm, “Tissue microarray analysis of beta-catenin in colorectal cancer shows nuclear phospho-beta-catenin is associated with a better prognosis,” Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, vol. 7, no. 12, pp. 4013–4020, 2001.
cancer,” *Journal of Clinical Oncology*, vol. 38, no. 4, p. 223, 2020.

[76] S. Mondaca, H. S. Walch, S. Nandakumar et al., “Influence of WNT and DNA damage response pathway alterations on outcomes in patients with unresectable metastatic colorectal cancer,” *Journal of Clinical Oncology*, vol. 37, no. 15, p. 3585, 2019.

[77] M. Schell, M. Yang, and J. Teer, “A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC,” *Nature Communication*, vol. 7, Article ID 11743, 2016.

[78] S. Mir Najd Gerami, M. Hossein Somi, L. Vahedi, F. Farassati, and R. Dolatkhah, “The APC gene rs41115 polymorphism is associated with survival in Iranian colorectal cancer patients,” *Biomedical Research and Therapy*, vol. 7, no. 9, pp. 3962–3970, 2020.

[79] A. Conlin, F. Smith, A. Carey, C. R. Wolf, and R. J. Steele, “The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma,” *Gut*, vol. 54, no. 9, pp. 1283–1286, 2005.

[80] C. Wang, C. Ouyang, M. Cho et al., “Wild-type APC is associated with poor survival in metastatic microsatellite stable colorectal cancer,” *The Oncologist*, vol. 26, no. 3, pp. 208–214, 2021.

[81] R. N. Jorissen, M. Christie, D. Mouradov et al., “Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer,” *British Journal of Cancer*, vol. 113, no. 6, pp. 979–988, 2015.

[82] P. W. Voorneveld, R. J. Jacobs, N. F. De Miranda et al., “Analysis of TGF-beta type II receptor, SMAD2, SMAD3, SMAD4, SMAD6 and SMAD7 genes in colorectal cancer,” *Journal of Experimental & Clinical Cancer Research: Climate Research*, vol. 22, no. 2, pp. 315–320, 2003.

[83] H. K. Chun, K. U. Jung, Y. L. Choi et al., “Low expression of transforming growth factor-beta-1 in cancer tissue predicts a poor prognosis for patients with stage III rectal cancers,” *Oncology*, vol. 86, no. 3, pp. 159–169, 2014.

[84] D. Bacman, S. Merkx, R. Croner, T. Papadopoulos, W. Brueckl, and A. Dimmler, “TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study,” *BMJ Cancer*, vol. 7, no. 1, p. 156, 2007.

[85] W. E. Mesker, G. J. Liefers, J. M. C. Jungeburt et al., “Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients,” *Analytical Cellular Pathology*, vol. 31, no. 3, pp. 169–178, 2009.

[86] D. Horst, S. Reu, L. Kriegl, J. Engel, T. Kirchner, and A. Jung, “The intratumoral distribution of nuclear beta-catenin is a prognostic marker in colon cancer,” *Cancer*, vol. 115, no. 10, pp. 2063–2070, 2009.

[87] J. Bondi, A. Husdal, G. Bukholm, J. M. Nesland, B. Arne, and I. R. K. Bukholm, “Expression and gene amplification of primary (A, B1, D1, D3, and E) and secondary (C and H) cyclins in colon adenocarcinomas and correlation with patient outcome,” *Journal of Clinical Pathology*, vol. 58, no. 5, pp. 509–514, 2005.

[88] A. A. Bahnassy, A. R. N. Zekri, S. El-Houssine et al., “Cyclin A and Cyclin D1 as significant prognostic markers in colorectal cancer patients,” *BMC Gastroenterology*, vol. 4, no. 1, p. 22, 2004.

[89] Z. Saridaki, D. Papadatos-Pastos, M. Tzardi et al., “BRAF mutations, microsatellite instability status and cyclin D1 expression predict metastatic colorectal patients’ outcome,” *British Journal of Cancer*, vol. 102, no. 12, pp. 1762–1768, 2010.

[90] S. Ogin, K. Nosho, N. Irahara et al., “A cohort study of cyclin D1 expression and prognosis in 602 colon cancer cases,” *Clinical Cancer Research*, vol. 15, no. 13, pp. 4431–4438, 2009.

[91] M. Bienz and H. Clevers, “Linking colorectal cancer to Wnt signaling,” *Cell*, vol. 103, no. 2, pp. 311–320, 2000.

[92] N. R. Gough, “Focus issue: wnt and β-catenin signaling in development and disease,” *Science Signaling*, vol. 5, no. 206, p. 2, 2012.
[105] P. J. Morin, A. B. Sparks, V. Korinek et al., “Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC,” Science, vol. 275, no. 5307, pp. 1787–1790, 1997.

[106] Z. Chen, X. He, M. Jia et al., “β-catenin overexpression in the nucleus predicts progress disease and unfavorable survival in colorectal cancer: a meta-analysis,” PLoS One, vol. 8, no. 5, Article ID e63854, 2013.

[107] S. Zhang, Z. Wang, J. Shan et al., “Nuclear expression and/or reduced membranous expression of β-catenin correlate with poor prognosis in colorectal carcinoma-a meta-analysis,” Medicine, vol. 95, no. 49, Article ID e5546, 2016.

[108] Z. Dong, L. Zheng, W. Liu, and C. Wang, “Association of mRNA expression of TP53 and the TP53 codon 72 Arg/Pro gene polymorphism with colorectal cancer risk in Asian population: a bioinformatics analysis and meta-analysis,” Cancer Management Research, vol. 10, pp. 1341–1349, 2018.

[109] L. A. Donehower, M. Harvey, B. L. Slagle et al., “Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours,” Nature, vol. 356, no. 6366, pp. 215–221, 1992.

[110] X. Tian, S. Dai, J. Sun, S. Jiang, and Y. Jiang, “The association between the TP53 Arg72Pro polymorphism and colorectal cancer: an updated meta-analysis based on 32 studies,” Oncotarget, vol. 8, no. 1, pp. 1156–1165, 2017.

[111] N. Arber, H. Hibshoosh, S. F. Moss et al., “Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis,” Gastroenterology, vol. 110, no. 3, pp. 669–674, 1996.

[112] Y. Li, J. Wei, C. Xu, Z. Zhao, and T. You, “Prognostic significance of Cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies,” PLoS One, vol. 9, no. 4, Article ID e94508, 2014.

[113] J. A. McKay, J. J. Douglas, V. G. Ross, S. Curran, G. I. Murray, and J. Cassidy, “Cyclin D1 protein expression and gene polymorphism in colorectal cancer,” International Journal of Cancer, vol. 88, no. 1, pp. 77–81, 2000.