AMELIORATIVE POTENTIAL OF ROSUVASTATIN ON DOXORUBICIN-INDUCED CARDIO TOXICITY BY MODULATING OXIDATIVE DAMAGE IN RATS

Jayaraman Rajangam1*, Navaneetha Krishnan S1, Narahari N Palei2, Shvetank Bhatt3, Manas Kumar Das4, Dr. saumya das5, KRISHNAPILLAI MATHUSOOOTHANAN6

1Department of Pharmacology, Sree Vidyakethan College of Pharmacy – Tirupati, 517 501. Andhra Pradesh, India.
2Department of Pharmaceutics, Sree Vidyakethan College of Pharmacy – Tirupati, 517 501. Andhra Pradesh, India.
3Department of Pharmacology, Amity Institute of Pharmacy, Amity University – Gwalior, 474005. Madhya Pradesh, India.
4Department of Pharmacology, Orlean College of Pharmacy, Greater Noida, Uttar Pradesh–201308
5Department of Pharmacology, NIET College of Pharmacy – Greater Noida, Uttar Pradesh–201308
6Department of Pharmaceutics, Grace College of Pharmacy, Kodunthirapally, Palakkad, Kerala–678004

Corresponding Author Information
Prof. Dr. Jayaraman Rajangam
jayaraam81@gmail.com
0877-2236711
https://orcid.org/0000-0002-6367-0365
02.09.2020
09.04.2021

INTRODUCTION
Incidence rates of cardiovascular disorders (CVDs) are increasing day by day around the globe particularly developing countries like India, the majority of the mortality rates are due to CVDs despite several advances in medical treatments. Among all CVDs, ischemic heart disease (IHD) like angina pectoris, myocardial infarction (MI) is the most alarming clinical conditions and is the main principle cause of mortality even in developed countries also.1

According to the current status of estimation by 2030, around 23.6 million people will die from only CVDs. Moreover, MI is considered as one of the common forms of IHD leads to irreversible necrosis of cardiac myocytes or myocardial tissue damage due to the failure of vasoregulatory or auto regulatory mechanisms.2

In addition to this, despite advances in the management of CVDs, MI remains the leading cause of mortality around the globe with high incidence rates around the age of 35 years were noticed in male patients which may be due to chronic stress, lack physical activity and lifestyle modifications, etc.3-4 Hence, there is a high demand for research, and innovations were in progress in the field of cardio protection by employing various animal models. In the present study, the DOX-induced cardio toxicity model was used to screen the cardio protective potential in Wistar albino rats.

Doxorubicin is a potent broad-spectrum antibiotic used for the treatment of various cancers. However, the clinical usage has been limited due to its serious side effects such as myocardial injury which is mainly due to mitochondrial dysfunction, apoptosis and the excess generation of free radical leads to cardio toxicity.5-7 Free radical-mediated myocardial damage is an important etiological mechanism that is associated with an increased level of reactive oxygen species and inadequate antioxidant defense system.8,9 Hence, Doxorubicin (DOX) induced MI is the most widely used model to evaluate the cardio protective effect of various drugs, and also the administration of DOX in high doses produces myocardial lesions similar to MI in human.

On the other hand, the test drug of this present study rosuvastatin (ROSS) is a well known inhibitor of the rate-limiting enzyme i.e 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA reductase) for in vivo cholesterol biosynthesis. As per the data, apart from antihyperlipidemic effects, statins possess diverse pharmacological effects including lowering the CVDs and exerts neuroprotective and antioxidant actions.10-13 However, the potential of statins on
cardio protection remains to be explored in different animal models. Therefore, we decided to put some effort to screen the cardio protective effect of ROSS on DOXO induced cardio toxicity in Wistar albino rats.

MATERIALS AND METHODS

Animal care and handling

Wistar albino rats with a weight range of 160-180 g were used and housed at 25° ± 5°C until the acclimatization period of about one week at Sree Vidyamikethan College of Pharmacy, A. Rangampet, Tirupati. All the animals were maintained under standard experimental conditions according to the guidelines of the Committee for the purpose of control and supervision on experiments on Animals (CPCSEA) and the experimental protocols were duly approved by IAEC. (Institutional Animal Ethics Committee-SVCP/IAEC/I-003/2019-20).

Drugs, chemicals, and instruments

Doxorubicin was procured from Sigma-Aldrich, U.S.A whereas assay kits like LDH & CK-MB were supplied by Crest Biosystems, Coral clinical systems, Goa, India. Rosuvastatin was received as a gift sample from Dr.N.N.Palei, Faculty of Pharmacy, Sree Vidyamikethan College of Pharmacy. All biochemical estimation was done using a semi-automatic analyzer (Misma-VIVA, Agappe Diagnostics, Kerala, India) following the methods and stepwise procedures described by the manufacturers.

Experimental design

Morphometric analysis

Bodyweight of all experimental animals was recorded at regular intervals whereas relative organ weight was calculated post-experimental period after sacrificing the animals. Heart weight was measured after washing it in ice-cold saline after removal from the body, squeezing out the blood, and blotted on the filter paper.

Induction of cardio toxicity

A total of 24 albino rats (150±10gm) was divided by following a random sampling technique into four groups of six animals each (n=6). All the experimental animals were treated as per the study design and the duration of the treatment was continued up to 21 days.

- **Group I** - Rats were given normal saline (1 ml/kg.s.c)
- **Group II** - Rats were given DOXO on 20th day (10 mg/ kg, i.p.)
- **Group III** - Rats were given ROSS (10 mg/kg,p.o)
- **Group IV** - Rats were given ROSS (10 mg/kg,p.o) + DOXO (10 mg/kg,i.p)

Cardiac toxicity was induced by a single intraperitoneal injection of doxorubicin at the dose of 10 mg/ kg on the 20th day of the experiment.14 At the end of the experimental period, After 48 hours of DOXO injection, rats were anesthetized with mild ether anesthesia and blood samples were collected from retro-orbital plexus, and serum was separated by centrifugation at 10000 rpm for 10 min using a centrifuge (REMI, India).

Estimation of cardiac and liver marker enzymes

The separated serum sample was used to estimate the creatinine kinase-MB (CK-MB, measured by immune inhibition method by determining the rate of NADPH formation at 340 nm) and liver markers enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH), measured by UV kinetic method by observing the rate of nicotinamide adenine dinucleotide reduced form (NADH) formation at 340 nm using an semi-automatic analyzer (Misma-Viva-Agappe Diagnostics) with respective assay kits by following stepwise procedures given by the manufacturer.15-18
Estimation of marker enzymes using post mitochondrial supernatant
Animals were sacrificed and the vital organ like heart was harvested for preparation of post mitochondrial supernatant (PMS). In brief, the harvested heart was per fused with ice-cold normal saline solution and homogenized using a phosphate buffer (0.1 M, pH 7.4) and KCl (1.17%, w/v) solution. Then the homogenate was centrifuged (800 rpm for 5 min at 4°C) to separate the nuclear debris from the mixture. After that, the obtained supernatant was centrifuged at 10500 rpm for 20 min at 4°C to obtain PMS. Collected PMS was used for analyzing for the presence of different enzymes related to myocardial infarction such as creatine kinase-MB fraction (CK-MB) and lactate dehydrogenase (LDH) using an semi-automatic analyzer (Mispa-Viva-Agappe Diagnostics).

Antioxidant activity
Collected post mitochondrial supernatant solution from the heart tissue was used for the measuring superoxide dismutase (SOD) and catalase (CAT) following standard procedures.

Histopathological study
The collected heart tissue was washed with ice-cold normal saline and fixed in formalin (10% neutral) solution followed by embedding in paraffin. Then, it was sectioned (5µm thickness) and stained with hematoxylin and eosin (H.E.) for histopathological examination under a light microscope.

Statistical analysis
The statistical analysis was performed by ANOVA under one-way classification followed by Dunnett's test. p<0.05 was considered statistically significant. Values are expressed as mean ± S.E.M.

RESULTS AND DISCUSSION
Morphometric analysis
Morphometric analysis of all experimental animals is tabulated in Table 1. Results depict that, the body weight of experimental animals was recorded on a weekly interval of drug treatment. From the results, the administration of DOXO had shown significant changes in the bodyweight of animals whereas acute administration of ROSS has shown a remarkable increase (185.39±1.63, p<0.05) in body weight compared to control (171.29±1.36) and DOXO (164.45±2.49) treated group on day 21. On the other hand, Heart weight and relative heart weight of experimental animals are summarized in Table 2. As per the results, heart weight followed by relative heart weight of rats received DOXO were statistically higher than control and ROSS received animals. But, treatment with ROSS significantly (p<0.05) inhibited these weight variation changes influenced by DOXO administration and the obtained results were significantly (p<0.05) comparable with control groups.

Cardiac marker enzymes
The results presented in Figure 1 and Table 3 depict the effect of ROSS on serum CK-MB levels against Doxorubicin-induced cardio toxicity in rats. Results indicate that, doxorubicin received group 2 animals showed a significant raise of CK-MB levels (p<0.05) compared to control animals. However, animals treated in combination with ROSS showed inhibitory action (**p<0.01) on the raising level of CK-MB induced by doxorubicin in rats. Similarly the same trend was noticed in LDH levels too. The results of the effect of ROSS on serum LDH levels were presented in Figure 2 and Table 3. After injection of doxorubicin, we observe that the rats in group II animals showed a marked rise in LDH levels (p<0.05) when compared with control groups. But the results from groups 3 and 4 show the inhibitory action on the toxicity induced by doxorubicin in rats and the results were comparable with control animals.

Post mitochondrial supernatant
The results of the effect of ROSS on heart tissue homogenate CK-MB levels are shown in Figure 3 and Table 3. After the injection of DOXO, we observe that rats in group II animals showed a remarkable rise in CK-MB levels (p<0.05) in tissue homogenate when compared with control groups. But the results from groups III and IV show the inhibitory action (p<0.05) on the toxicity induced by doxorubicin in rats and the results were comparable with control animals.

Liver marker enzymes
The effect of ROSS on serum AST, ALT levels are summarized in Table 4. As per the obtained results, DOXO received animals showed marked rise of both AST (240.34±5.53;***p<0.001) and ALT (103.67±3.44;***p<0.001) whereas acute administration of ROSS significantly reversed these biochemical alterations to a significant extent in case of AST (87.85±4.56; **p<0.01) and ALT (53.72±0.33***; **p<0.01) when compared to DOXO and control animals.

Antioxidant activity
The data depicted in Table 4 & Figure 4,5 reveal that, SOD and CAT levels were reduced in post mitochondrial supernatant solution of heart tissue of DOXO treated group II animals. Administration of DOXO showed marked reduction in SOD (p<0.05) and CAT (p<0.05) at dose level of 10 mg/kg. However, ROSS administration caused a reversal of depleted antioxidants to near normal levels which indicated its protective and antioxidant capabilities.

Histopathological study

Histopathological observations of the cardiac tissues of all experimental groups are shown in Figure 6. From the results, cross section of cardiac tissues of control animals showed normal myocardial architecture without any inflammatory cell infiltration whereas necrotic cardiac tissue damage and like proliferated granulation tissues were seen in doxorubicin received animals. However, administration of ROSS reversed these cellular changes to a remarkable significant extent with mild granulation of tissue and restored the normal cellular architecture which reflects its protective potential against cardio toxicity induced by doxorubicin.

DISCUSSION

Myocardial infarction is an acute necrotic disorder of the heart and one of the most commonly diagnosed forms of CVD in industrialized nations like India. It is a common and life-threatening manifestation of ischemic heart disease leads to mortality.

Myocardial infarction is the technical name for a heart attack, occurring due to myocardial ischemia resulting from irreversible myocardial tissue necrosis because of complete occlusion of blood vessel (coronary artery) supplying blood to the myocardium. Therefore, the development of cardio protective agents to improve myocardial function is of great clinical importance.

Rosuvastatin has been shown significant organ protective properties with diverse pharmacological effects including anti-inflammatory and antioxidative properties. Furthermore, according to studies, Rosuvastatin reduces oxidative stress by mediating many antioxidant effects, including decreased NADPH oxidase, suppression of endothelial nitric oxide synthase (eNOS) uncoupling, up regulation of antioxidant enzymatic defense mechanisms, and inhibition of hydrogen peroxide-induced DNA harm. But the experimental background found to be fertile or seem to have more gap to support the scientific background of diverse pharmacological profile of ROSS. Hence, the study elucidated the possible \textit{in vivo} ameliorative influence of rosuvastatin in doxorubicin-induced cardio toxicity in rats.

Doxorubicin is a well-known cardio toxic agent capable of inducing cardiac injury in experimental animals and it is widely used model to induce cardio toxicity. Doxorubicin Destroys myocardial cell causing it to release cytosolic enzymes such as CK-MB, LDH, AST and ALT into extra cellular fluid and also in serum which indicates the myocardial tissue damage which was reflected in the study.

Results of the present study indicate that, DOXO caused significant myocardial tissue damage as indicated by a marked raise in the levels of cardiac injury markers, oxidative stress, heart weight, and histological changes in myocardial tissue etc.

The same trend was noticed in heart tissue homogenate of DOX treated animals when compared with the control animals demonstrating the necrotic damage of the myocardial membrane by DOX. Whereas Rosuvastatin treated groups at doses of 10mg/kg alone and in combination demonstrated a significant decline in CK-MB and LDH levels (p<0.05) which ultimately reflects its protective activity against doxorubicin-induced cardio toxicity in rats.

On the other hand, in the pathogenesis of various cardiovascular diseases, reports from earlier studies indicated the involvement of reactive oxygen species and the reduction of antioxidants. In this connection, it is well known that, SOD is one of the important antioxidant enzymes to control many pathological progress in vast disease and disorders.

In this study, increased levels of SOD to a significant extent (p< 0.05), which in turn reflects the protective role of ROSS. The same trend was observed in CAT also. CAT is also considered as one of the vital enzyme made of heme protein and used to scavenge the formed ROS, prevents the tissue damages against free radicals. In addition, histopathological reports further corroborated the obtained results of the present investigations. As per the results, the administration of ROSS reversed cellular changes caused by DOXO to a significant extent and restored the normal cellular architecture which reflects its protective potential against cardio toxicity induced by doxorubicin.

CONCLUSION

In conclusion, results from the present study demonstrate that ROSS has shown promising potent cardio protective effects against doxorubicin-induced cardio toxicity in rats as evidenced by the significant reduction of cardiac marker enzymes like CK-MB and LDH both in serum and in heart tissue homogenate along with significant reduction of liver marker enzymes like ALT, AST along with significant beneficial effects were seen in morphometric analysis. On the other hand, it is well recognized that various radical scavengers, such as CAT, SOD,
and GPX, as well as GSH, serve as the first line of defence against oxidative damage, including cardio toxicity. Because reactive oxygen species can cause oxidative damage due to lack of an appropriate endogenous antioxidant defence mechanism. The same were reflected in the present study, which clearly indicated the diminishment of antioxidants such as SOD, CAT in DOXO treated animals. Thus, from the results, oxidative damage was clearly involved in DOXO-induced cardio toxicity. However, the treatment of ROSS remarkably restored DOXO-induced cardio toxicity by up-regulating the antioxidants. Thus, results from invivo antioxidant study reflect that, administration of ROSS significantly raised the level of SOD and CAT along with significant reversal of necrotic tissue damage caused by doxorubicin. Hence it can be concluded that, the cardio protective potential of ROSS may be due to attenuation of cardiac, liver marker enzymes and oxidative stress by modulating oxidative damage by up-regulating the antioxidant defence mechanism.

ACKNOWLEDGEMENTS

The authors are grateful to the Principal and Management of Sree Vidyanikethan College of Pharmacy for providing the necessary facilities, and this research received no particular funding from any government, commercial, or non-profit organization.

Conflicts Of Interest: We have no potential conflict of interest.

REFERENCES

1. Lanaro A, Lalenti A. Anti-inflammatory activity of macrolides antibiotics. J Pharmocol Exp.2000; 292.
2. Singal PK, Pierce GN. Adriamycin stimulates Ca2+ binding and lipid peroxidation but depresses myocardial function. Am J Physiol.1986; 250;419-24.
3. Shanmugavelu, M. Siddha maruthuva Noi naadal Noi Muthal naadal thirattu, Directorate of Indian Medicine and Homeopathy Publications Chennai, India. 2006; 14-18. 3.
4. Arya V and Gupta VK. Chemistry and pharmacology of plant cardio protective: a review International Journal of Pharmaceutical Sciences and Research. 2011; 2(5):1156-1167.
5. Nazish J, Khalil-UR-Shoukat A. Cardioprotective, and Antilipidemic potential of Cyprus rotundas in chemically induced cardiototoxicity. International Journal of Agriculture & Biology. 2012; 14:989-992.
6. Geisberg C, Sawyer DB. Mechanisms of Anthracycline Cardiotoxicity and strategies to decrease cardiac damage. Curr Hypertens Rep. 2010;12:404–10.
7. Octavia Y, Tocchetti CG, Gabrielson KEL, Janssen S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomypathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52;1213–25.
8. Minotti G, Menna P, Salvatortoli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229
9. Konorev EA, Kotamraju S, Zhao H, Kalivendi S, Joseph J, Kalyana Raman B, Paradoxical effects of metalloporphyrins on doxorubicin-induced apoptosis: Scavenging of reactive oxygen species versus induction of heme oxygenase-1. Free Radical Biol. Med. 2002; 33: 988.
10. Monetti M, Canonica M, Camera M, Parente R, Paoletti R, Tremoli E, Corsini A and Bellosta S: Rosuvastatin displays anti-atherothrombotic and anti-inflammator properties in apoE-deficient mice. Pharmacol Res.55: 441-449, 2007.
11. Funderburg N, Chaggett B, Jiang Y, Debanne S, Storer N, Labbato D, Juchnowski S, Ferrari B, Lederman M and McComsey GA: Rosuvastatin reduces immune activation and inflammation in treated HIV infection. Conference on Retroviruses and Opportunistic Infections. Boston, MA, 2014. Poster 335.
12. Misra T, Takahashi A, Ikeuchi T (2007) Prevention of stroke and dementia by statin therapy: Experimental and clinical evidence of their pleiotropic effects. Pharmacol Ther.2007;113: 378-93.
13. Duarte T, da Cruz IB, Barbisan F, Capellete D, Moresco RN and Duarte MM: The effects of rosvastatin on lipid-lowering, inflammatory, antioxidant and fibrinolytics blood biomarkers are influenced by Val16Ala superoxide dismutate manganese dependent gene polymorphism. Pharmacogenomics J . 2016;16: 501-506.
14. Khatib NA, Mediswathi, Patel Jignesh. Evaluation of concomitant treatment of simvastatin and Zingiber Officinale in doxorubicin induced cardio toxicity In waster rats. I J R A P. 2011;2: 660- 664.
15. S. Reitman and A. S. Frankel, “A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases,” American Journal of Clinical Pathology, 1957; vol. 28, no. 1, pp. 56–63.
16. Young DS. Effects of drugs on clinical laboratory tests. 3rd ed. Washington, DC: AACC Press; 1990, Vol.3, p. 356–357.
17. S. H. Tsung, “Creatine kinase activity and isoenzyme pattern in various normal tissues and neoplasms,” Clinical Chemistry. 1983; vol. 29, no. 12, pp. 2040–2043.
18. Lorentz K, Klauke R, Schmidt E. Recommendation for the determination of the catalytic concentration of lactate dehydrogenase at 37 °C. Eur J Clin Chem Clin Biochem. 1993;31: 897–899
19. Kakkar P, Das B, Vishwanathan PN. A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys.1984; 21:130–132
20. Aebi H. Catalase. In: Methods of enzymatic analysis. Bergmeyer HU (ed). Verlag, Chemic Academic Press Inc,1974; 673-85.
21. Talib VH. A handbook of medical laboratory technology. 2nd Ed. New Delhi: CBS Publisher and Distributors; 2007:155-167.
22. Patel V, Upaganlawar A, zalawadia R, Balaraman R. Cardioprotective effect of melatonin against isoproterenol induced myocardial necrosis in rats. a biochemical, electrocardiographic and histoarchitectural evaluation. Eur J Pharmacol 2010;644:160-168.
23. P. Shen, R. N. Zhang, F. Li. Diagnostic value of serum cystatin C in early contrast nephropathy after coronary intervention. Laboratory Medicine and Clin.2018;, vol. 15, no. 16, pp. 2475–2478.
24. Chen Z, Cao Y, Qian J, Ma J, Zou Y and Ge J: Cardiac protection of Rosuvastatin against cardiac dysfunction after coronary micro-embolization via alleviating inflammatory induced micro infarctions. Circulation 2015; 132: A13434.
25. Grosser N, Erdmann, K, Hemmerle A, Berndt G, Hinkelmann U, Smith G, Schroder H. Rosuvastatin upregulates the antioxidant defense protein hemeoxygenase-1. Biochem. Biophys. Res. Commun. 2004;325, 871–876.
26. Habibi J, Whaley-Connell A, Qazi MA, Hayden MR, Cooper SA, Tramontano A, Thiyagarajan H, Stump C, Ferrario C, Munirappa R, Sowers JR. Rosuvastatin a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, decreases cardiac oxidative stress and remodeling in Ren2 transgenic rats. Endocrinology 2007; 148, 2181–2188.
27. Doroshow JH. Doxorubicin-induced cardiac toxicity. N Engl J Med.1991; 324:843–5.
28. Chance B, Greenstein DS, Roughton RJW. The mechanism of catalase action1- steady-state analysis.Arch.Biochem. Biophys 1952;37:301–339.
29. Yan H, Harding JJ. Glycation induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochem. J 1997; 328:599–605.

Table 1. Effect of ROSS on morphometric analysis on DOXO induced cardio toxicity

Treatments (mg/kg, b.w)	Body Weight (gr)		
	Day 7	Day 14	Day 21
CON (1 ml/kg.s.c)	143.39±1.67	162.58±3.29	171.29±1.36
DOXO (10 mg/kg,i.p)	154.81±3.78	157.92±2.18	164.45±2.49
ROSS (10 mg/kg,p.o)	152.68±2.62	165.37±1.79	172.29±1.39
ROSS (10 mg/kg, p.o) + DOXO (10 mg/kg,i.p)	145.73±2.45	173.42±2.56	185.39±1.63*

Values are mean ± SEM, n=5: *p<0.05,**p<0.01,”*p<0.001 When compared to the control group, ns: Non-significant.
Table 2. Effect of ROSS on relative organ weight on DOX-induced cardio toxicity

Treatments (mg/kg, b.w)	Heart weight (mg)	Absolute Heart Weight	Relative Heart Weight
CON (1 ml/kg.s.c)	755±3.29	0.44±0.06	
DOXO (10 mg/kg,i.p)	908±2.53	0.55±0.08	
ROSS (10 mg/kg,p.o)	771±1.49	0.44±0.04	
ROSS (10 mg/kg,p.o) + DOXO (10 mg/kg,i.p)	774±4.56	0.41±0.03	

Values are mean ± SEM, n=5:

Table 3. Effect of ROSS on Creatine Kinase (CK-MB) and Lactate Dehydrogenase (LDH) levels on DOX-induced cardio toxicity

Treatments (mg/kg,b.w)	Marker Enzymes	CK-MB (U/L) (Serum)	CK-MB (U/L) (Heart Tissue homogenate)	LDH (IU/L) (Serum)
CON (1 ml/kg.s.c)	2912.05±4.59	222.05±2.47	1277±3.47	
DOXO (10 mg/kg,i.p)	3157.32±3.62	317.32±4.16	3560±5.29	
ROSS (10 mg/kg,p.o)	1973.37±7.48*	299.37±1.49	2541±4.58*	
ROSS (10 mg/kg,p.o) + DOXO (10 mg/kg,i.p)	1091.62±2.36**	235.62±2.36*	2789±4.39*	

Values are mean ± SEM, n=5: *p<0.05, **p<0.01,***p<0.001 When compared to control and toxic control group, ns: Non-significant.

Table 4. Effect of ROSS on liver marker enzymes on DOXO-induced cardio toxicity

Treatments (mg/kg,b.w)	Liver Marker Enzymes	AST (IU/ml)	ALT (IU/ml)
CON (1 ml/kg.s.c)	64.23±3.45	43.48±2.57	
DOXO (10 mg/kg,i.p)	240.34±5.53***	103.67±3.44***	
ROSS (10 mg/kg,p.o)	131.67±3.49*	73.43±1.29*	
ROSS (10 mg/kg,p.o) + DOXO (10 mg/kg,i.p)	87.85±4.56**	53.72±0.33**	

Values are mean ± SEM, n=5: *p<0.05, **p<0.01,***p<0.001 When compared to control and toxic control group, ns: Non-significant.
Table 5. Effect of ROSS on Antioxidant levels on DOX-induced cardio toxicity

Treatments (mg/kg,b.w)	Antioxidant Enzymes	
	SOD (µg/mg of protein)	CAT (U/mg of protein)
CON (1 ml/kg.s.c)	45.86±1.49	1.37±0.69
DOXO (10 mg/kg,i.p)	32.6±2.32	0.77±0.54
ROSS (10 mg/kg,p.o)	58.7±1.56*	1.41±0.48*
ROSS (10 mg/kg,p.o) + DOXO (10 mg/kg,i.p)	60.9±1.58*	1.67±0.53*

Values are mean ± SEM, n=5: *p<0.05,**p<0.01,***p<0.001 When compared to control and toxic control group, ns: Non-significant.

Figure 1. Effect of ROSS on serum CK-MB levels on DOX-induced cardio toxicity in rats
Figure 2. Effect of ROSS on serum LDH levels on DOX-induced cardio toxicity in rats

Figure 3. Effect of ROSS on CK-MB in heart tissues homogenate on DOX-induced cardio toxicity in rats
Figure 4. Effect of ROSS on SOD levels on DOXO-induced cardio toxicity
Figure 5. Effect of ROSS on CAT levels on DOXO-induced cardiotoxicity.
Figure 6. Histopathological observations of different experimental animals using hematoxylin and Eosin staining (CON-Control animals showed normal myocardial cellular architecture; DOX-Doxorubicin received groups showed noticeable necrotic cellular tissue damage; ROSS-Rosuvastatin treated groups; DOX + ROSS-Doxorubicin plus rosvastatin treated groups showed significant reversal of necrotic tissue damage caused by doxorubicin.)