Combined nifuroxazide and SAT05f therapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation

Huijie Jia1,6, Tiesuo Zhao2,6, Yinghua Ji3, Xiaolong Jia3, Wenjing Ren4, Chen Li2, Minming Li2, Yali Xiao2, Hui Wang*2 and Kailin Xu*5

Acute graft-versus-host disease (aGvHD) is the major barrier to the broader use of allogeneic hematopoietic stem cells. However, currently these are no highly specific and efficient drugs. Monotherapy is not sufficient and more efficient and safe therapeutic regimen are urgent need. Studies demonstrated TLR9 and Stat3 signal pathways are critical for antigen-presenting cell maturation and T-cell activation, which are important mediators in aGvHD. Specific block these two critical signal pathways using their inhibitors SAT05f and nifuroxazide may be the novel strategies for aGvHD therapy. The results showed combined therapy significantly decreased the severity of aGvHD and prolonged the survival rate. Furthermore, after treatment, the activation of CD4+ effect T cells was reduced, whereas Treg cells was increased, and the cytokine release was inhibited. In conclusion, combined therapy of nifuroxazide with SAT05f may be potential for the prevention or treatment of aGvHD, providing theoretic and experimental basis.

Cell Death and Disease (2016) 7, e2507; doi:10.1038/cddis.2016.399; published online 1 December 2016

Graft-versus-host disease (GvHD) is a potentially devastating complication with high morbidity and patients after allogeneic hematopoietic stem cell transplantation (HSCT).1–2 In spite of great development has been made, the treatment progress of this disorder has been slow in recent years. Corticosteroids are standard first-line therapy for GvHD, however, significant morbidity rates are even more than 40%.2,3 As the complication and multistep in GvHD development, deep understanding of the mechanisms involved in the pathogenesis could yield novel therapeutic targets. The pathogenesis of GvHD can be conceptualized in three phases,4 in which the donor T cells activation in the second phase plays a central role. Therefore, the main strategies nowadays to prevent and treat GvHD are applications of agents deleted T cells or suppressed critical molecular pathways involved in T-cell activation and proliferation, including monoclonal antibodies,5–7 immunosuppressive drugs8–10 or cytotoxic drugs.11,12 Although these new therapies have been proposed to treat GvHD, the outcome was still not satisfactory, and various side effects were seen.13 What's more, monotherapeutic strategy has failed to yield great clinical benefits,14,15 thus apply combined agents that against multiple vital targets may achieve more effective control of GvHD. The cytokines, such as IL-6, IL-21 and IL-23, that activate STAT3 are necessary for the onset in the second phase of acute GvHD (aGvHD)16–18 and the prolonged activation of STAT3 was found in donor T cells and GvHD-targeted organs.19 In contrast, murine recipients of allo-BMT with CD4+ T cells lacking STAT3 did not exhibit the typical symptoms of GvHD and exhibited conspicuously persistent survival20 illustrating that STAT3 signaling played a critical role in the activation and maturation of CD4+ T cell during aGvHD.21–23 Furthermore, knockout of SOCS3, the negative regulator of the JAK2/Stat3 signaling pathway, has been shown to markedly increase the incidence of aGvHD.24 Correspondingly, blockade of the upstream signaling pathway of STAT3, such as JAK2 or IL-6, using the specific antagonists or antibodies, have showed protective effects against GvHD in several murine models.25–28 Nifuroxazide was initially used as an intestinal broad-spectrum antibiotic and has been demonstrated that it could specifically inhibit STAT3 phosphorylation by suppressing the JAK family kinases Jak2 and Tyk2, and caused a decrease in viability of myeloma cells recently.29 Additionally, no cytotoxic effect of nifuroxazide has been showed by experimental and clinical evidences, illustrating the security in clinical practice.30,31 Increasing evidences from experimental HSCT suggested that conditioning-mediated tissue damage also played an important role in initiating and amplifying GvHD by propagating the cytokine storm characteristics.32 As the activation of CpG motif in TLR9 plays a vital role in the first phase via inducing inflammatory cytokine and activating antigen-
presenting cell (APC) involved in innate and adaptive immunity, it would be an interesting target for the treatment of GvHD. Previous studies have shown that treatment with TLR9 agonistic CpG ODN (cytosine-phosphate-guanine oligodeoxynucleotide) aggravated GvHD lethality in the mouse model on the contrary, deficiency in TLR9 could lead to increasing of GvHD survival. SAT05f, an inhibitory ODN of TLR9 inhibitor, have been exhibited great protective effects in various mouse models of immunologic diseases. In this study, we wondered that if a combination of nifuroxazide and SAT05f therapy would improve curative effect and prognosis in a murine model of aGVHD.

Results

Combined of nifuroxazide with SAT05f markedly decreased severity and prolonged the survival rate from aGVHD. Body weight changes of mice in each group after different treatment were shown in Figure 1a. After total body irradiation (TBI), all the recipient mice showed sharp body weight loss in the first week and never started to make a weight again until death (data not shown). The average body weight of mice in PBS-treated group was heavily decreased more than that in the two single treatment groups and the combination group (Figure 1a). It was noteworthy that the body weight of mice treated with combined nifuroxazide and SAT05f was less decreased than that treated with either the nifuroxazide or SAT05f (Figure 1a), whereas there is no statistic difference of body weight change between the two single treatment group. In addition, treatment of aGVHD with either nifuroxazide alone or in combination with SAT05f prolonged the survival time of the recipient mice compared with treatment with PBS (Figure 1b). Moreover, throughout the entire 25 days observation, the mean survival time of mice in the combination treatment group was longer than either of the monotherapy group (Figure 1b). Nevertheless, there was no significant difference of the mean survival time between the nifuroxazide group and the SAT05f group. Furthermore, the white blood cell (WBC) count was tested to detect the hematopoietic reconstruction. The total number of WBCs was significantly decreased after TBI and gradually increased after transplantation. The nifuroxazide plus SAT05f treatment showed a significant WBC gain than the other three groups (Figure 1c), and the single treatment with nifuroxazide or SAT05f also showed WBC restore than PBS-treated group.

Combination therapy with nifuroxazide and SAT05f significantly decreases histopathologic damage of aGVHD target organs in mice with aGVHD. After 2 weeks from transplantation, PBS-treated mice exhibited high degree edema, hepatic congestion and even necrosis of hepatocyte in liver, whereas mice in the monotherapy group showed low degree edema, hepatic congestion and the necrosis scarcely seen. When compared with the combination group, the less injury and the better liver morphology were seen than the other three groups (Figure 2a). In addition, the small intestines from mice with vehicle group have severe blunting of villi, glandular organ rupture and an inflammatory infiltrate. Less villous blunting and fusion were showed in the nifuroxazide and SAT05f-treated group. Significant restoration of the small intestinal villous architecture with little inflammatory infiltration was seen in the combination group (Figure 2b).

STAT3 or TLR9 expression were corresponding inhibited after injection with nifuroxazide or SAT05f. Immunoblotting was taken to assess the expression of Stat3 and TLR9. The results showed that both monotherapy of nifuroxazide and combined therapy inhibited Stat3 and p-Stat3.
expression. Subsequently, we measured TLR9 expression and found that treatment with SAT05f or combination of nifuroxazide and SAT05f inhibited TLR-9 expression, respectively, (Figure 3).

Combination of nifuroxazide with SAT05f treatment reduced the activation of T lymphocytes and increased the ratio of regulatory T cells. We evaluated whether the combination treatment altered the relative proportions of...
Combination therapy regulated T-cell differentiation after allogeneic BMT. On day 14 after transplantation, splenocytes were collected, determined with an automated cell counter, stained with appropriate T cells antibodies and quantified by flow cytometry.

(a) The level of CD4, CD8 and T reg was evaluated in splenic T lymphocytes.
(b) The percentage of T cells was analyzed (n=5). *P<0.05 versus PBS group, **P<0.01 versus PBS group, #P<0.05 versus nifuroxazide group, &&P<0.05 versus SAT05f group.
CD4+/CD25+ Treg cells in nifuroxazide and SAT05f-treated group, whereas the percentage of T cells was similar among the PBS-treated group. This compartment illustrated the greatest increment of Treg expression possibly in response to T cell inhibition for both CD4+ and CD8+ T cells compared with that in the PBS-treated group (Figure 4c). This compartment further analyzed the population of CD4+/CD25+ Treg cells in the combination groups was increased significantly when compared with that in the other three groups, whereas the numbers of CD4+/CD25+ Treg cells in nifuroxazide and SAT05f-treated group reminded at a higher lever than that in the PBS-treated group (Figure 4c). This compartment illustrated the greatest increment of Treg expression possibly in response to T cell inhibition for both CD4+ and CD8+ T cells.

Nifuroxazide plus SAT05f treatment significantly inhibited cytokine release after allogeneic BMT. It has been revealed that the 'cytokine storm' fuels GvHD pathogenesis and in particular, TNF-α and IFN-γ were shown to play important role in determining the severity of aGvHD. Combination of nifuroxazide with SAT05f significantly suppressed serum levels of the two proinflammatory cytokines compared with the PBS-treated group (Figure 5). Furthermore, compared with PBS-treated allo-recipients, the nifuroxazide or SAT05f-treated mice also showed cytokine release inhibition (Figure 5). Therefore, we reasoned that the two proinflammatory cytokines secreted by nifuroxazide.

Discussion

The induction of aGvHD is a direct consequence of the donor T cell recognizes and responses to the host alloantigens, and STAT3 has been recognized to play a vital role in T cells activation during the pathogenesis of aGvHD. However, the progress of aGvHD involves multisteps and extremely complicated. Once donor T cells activated, the injury induced by aGvHD could hardly be reversed. Therefore, it is probable that an early step should be blocked to enhance the treatment of T-cell inhibition. The initiation of aGvHD stems from original conditioning regimen and accompanying intestinal tract damage, leading to the abundant release of inflammatory cytokines and TLR ligands, which act as an immune adjuvant on subsequent crucial host APC-donor T-cell interaction. Recent studies point toward the important role of TLR9-mediated sensing of bacterial DNA in the initiation and the aggravation of aGvHD.

Several TLRs have been point toward the important role in the initiation and progress of GvHD. However, recent research described that during these TLRs, the activation of TLR9 downstream signaling activated a complicated response cascade, leading to host resistance by inducing inflammatory cytokine storm as well as enhancing antigen presentation by APCs, which was the critical target of the effector T cells in GvHD. As an inhibitory ODN, SAT05f is a TLR9 inhibitor and constitutes of CCT repeated in eight times.

In this study, we showed that the scarcity of aGvHD attenuation was potency since the combination of nifuroxazide with SAT05f decreased the histologic GvHD injury in liver and intestinal tract, as well as improved the survival of lethally irradiated mice. Moreover, the decrease of T-cell activation in spleen and infiltration in target tissues after treatment have been demonstrated in the study, illustrating that the protective effect is elicited by inhibiting donor effector T cells activation, migration and increasing Treg cells. In this context, the combined nifuroxazide with SAT05f therapy might synergistically affect T-cell function, in terms of inhibition of both proliferation and activation.

After transplantation, the activation of donor T cells permissive of the generation of cytokine storm, resulting in high levels of inflammatory factors, together with cytotoxic T cells, damage host target tissues. Thus we have developed an
interest in analyzing the production of the proinflammatory cytokines IFN-γ and TNF-α after combination treatment. Alternatively, the release of both IFN-γ and TNF-α were reduced after treatment.

The immunoregulation network should be complex, cross-talk with each other and might be interplayed as a circle. TLR9 induces MyD88 dependent and independent pathways, resulting in activation of the several signal pathways, such as NF-κB, and subsequent secretion of inflammatory cytokines such as IL-6, TNF-α, IFN-γ and so on, leading to activation of host APCs. In response to such proinflammatory cytokines like IL-6, JAK2/STAT3 was activated, and subsequently mediated alloactivation of donor T cells by host APCs. Moreover, the pathway of IL-6/JAK2/STAT3 results in more secretion of proinflammatory cytokines, amplifying the immunologic injury.

We illustrated in this study that the nifuroxazide combined with SAT05f would inhibit STAT3 and TLR9 activation, resulting in the decrease of production of proinflammatory cytokines, and would reduce donor T-cell response to host APC, and therefore lead to attenuated aGvHD (Figure 6). The data give new insight into the co-treatment of aGvHD with and nifuroxazide and other immunosuppressants, and suggest that combination therapy of nifuroxazide with SAT05f may be potential therapeutic drugs for the prevention or treatment of aGvHD.

Material and Methods

Mice and reagents. Eight-week-old male C57BL/6 and BALB/c mice were purchased from Experimental Animal Center of Zhengzhou University (Zhengzhou, Henan, China). Nifuroxazide was obtained from Sigma (St. Louis, MO, USA), and was dissolved in DMSO. SA T05f, an inhibitory ODN used in this and previous studies, has a sequence of 5′-CCTCCTCCTCCTCCTCCTCCTC-3′ and was provided by Sangon Biotech (Shanghai, China).

Induction and treatment of aGvHD. BALB/c mice were used as recipients and C57BL/6 mice were used as donors. Before allo-BMT, the recipients were fed with sterile food and acidifier water for 1 week. Briefly, recipients were irradiated with TBI (7.5 Gy, 60Co source). Four hours after TBI, these mice were injected intravenously with the mixture of 5 × 10^6 bone marrow cells and 5 × 10^5 splenocytes.
per mouse prepared from allogeneic donors via tail vein. For the treatment, the
recipient mice were randomly divided into four groups (n = 12). At day 4 after allo-
BMT model, the mice in the monotherapy of nifuroxazide or SAT05f group were
continued injected i.p. (intraperitoneal) with nifuroxazide (200 μg/mouse) or SAT05f
(10 μg/mouse), respectively, for 1 week, and the mice in combination group were
injected i.p. with both nifuroxazide and SAT05f, whereas the mice in the vehicle
group were injected i.p. with PBS. Regularly, the peripheral WBC count was
determined, the body weight changes, clinical behaviors and the survival time of
aGVHD were recorded.

Histology and immunoblotting. At the day 14 after transplantation, the
mice were killed and the liver and small intestine were collected and then frozen
in liquid nitrogen or fixed in 4% paraformaldehyde immediately. Immunoblotting was
performed as previously described.32 For immunoblotting, cell lysates were obtained
after cell debris discarded. Proteins were separated in 12% SDS-PAGE gels,
transferred to polyvinylidene difluoride (PVDF) membranes (Millipore Corp, Billerica,
MA, USA) and immunoblotted with appropriate primary antibodies specific for total
Stat3, p-Stat3, β-actin (Cell Signaling Technology, Danvers, MA, USA) or TLR-9
(Santa Cruz Biotechnology, Delaware Ave Santa Cruz, CA, USA). Sections (5 μm)
were subjected to standard hematoxylin and eosin (H&E) staining.

Flow cytometry. Spleens were collected 2 weeks after allo-BMT, passed
through a 40-mm nylon cell strainer and then collected in PBS. RBCs were removed
with Red Blood Cell Lysis Buffer (Beyotime Biotechnology, Shanghai, China). Cells
were washed and resuspended at 1 × 107 cells/ml in PBS. Aliquots (0.1 ml) were
placed on ice and labeled with appropriate fluorescent-labeled Anti-Mouse CD3,
Anti-Mouse CD4, Anti-Mouse CD6 and Anti-Mouse CD25 (Biogems international,
Westlake Village, CA, USA) for 30 min in the dark. Three-color staining was
performed for detecting CD4+, CD25+ T cells and Treg cells using Mouse Regulatory
T cell staining kit (Alzymetrix, Santa Clara, CA, USA), according to the manufacturer's
protocol. Stained cells were washed with ice-cold PBS and resuspended in PBS
containing 1% paraformaldehyde. The fluorescence intensity was measured with a
dual laser benchtop flow cytometer (Guava easyCyte HT (EMD Millipore
Corporation, USA)) with a minimum of 10 000 events collected.

Measurement of serum cytokines. Cytokines concentration of
TNF-α and IFN-γ in serum samples were detected using mouse enzyme-linked
immunosorbent assay (ELISA) kits (Raymentech, Norcross, GA, USA) according to
the experimental procedure.

Statistical analysis. Data were calculated by the GraphPad Prism 4.0
software and were presented as the means ± S.D. of at least three independent
experiments. The methods including Mann–Whitney U-test, log-rank test, Student’s
T-test or one-way ANOVA was used when appropriate. In all experiments, P < 0.05
was considered to be statistically significant.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements. This study was supported by the National Natural
Science Foundation of China (Grant Nos. 8100442 and 81301947) and grants from
the Scientific Research Fund of Xinxiang Medical University (2014QN115) and the
doctor launch fund of Xinxiang Medical University.

1. Gratwohl A, Baldomero H, Passweg J. Hematopoietic stem cell transplantation
activity in Europe. Curr Opin Hematol 2013; 20: 485–493.
2. Choi SW, Levine JE, Ferrara JL. Pathogenesis and management of graft-versus-host
disease. Immunol Allergy Clin North Am 2010; 30: 75–101.
3. Ferrara JL, Levine JE, Reddy P, Holter E. Graft-versus-host disease. Lancet 2009; 373:
1520–1531.
4. Shlomchik WD, Couzens MS, Tang CB, McIntrye JJ, Robert ME, Liu J et al. Prevention of
graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.
5. Chakrapani G, Garcia-Marquez MA, Shimabukuro-Vornhagen A, Theurich S, Holtj U,
Haliek M et al. Immune effects in patients with steroid-refractory graft-versus-host
disease following treatment with basiliximab, a CD25 monoclonal antibody. Eur J Haematol 2016; 97: 121–127.
6. Blank G, Weiker C, Sipos B, Sonnata K, Muller F, Eckert F et al. Preemptive administration
of human alpha-beta T cell receptor-targeting monoclonal antibody GZ-alpha/betaIIC
potently abrogates aggressive graft-versus-host disease in vivo. Ann Hematol 2015; 94:
1907–1919.
7. Li U, Zhang C, Chen W, Pan B, Kong F, Zheng K et al. Protective effect of neutralizing anti-
IL-18 antibody on a mouse model of acute graft-versus-host disease. Oncol Rep 2015; 34: 2031–2039.
8. Xi X, Zhang KH, Xu LP, Wang Y, Yan CH, Chen H et al. Salvage chemotherapy followed by
granulocyte colony-stimulating factor-primed donor leukocyte infusion with graft-vs-host
disease control for minimal residual disease in acute leukemia/myelodysplastic syndrome
after allogeneic hematopoietic stem cell transplantation: prognostic factors and clinical
outcomes. Eur J Haematol 2016; 96: 297–308.
9. Li U, Chen HL, Bannick N, Henry M, Holm AM, Metwali A et al. Intestinal helminths regulate
lateral acute graft-versus-host disease and preserve the graft-versus-tumor effect in mice. J
Immunol 2015; 194: 1011–1020.
10. Fujino M, Li XK. Role of STAT3 in regulatory T lymphocyte plasticity during acute
graft-versus-host disease. Bone Marrow Transplant 2009; 43: 511–517.
11. Armitage A, Sudres M, Tanga Q, Maury S, Charlotte F, Grégoire S et al. Ex vivo expanded CD4+
CD25+ immunoregulatory T cells prevent graft-versus-host disease by inhibiting activation/
differentiation of pathogenic T cells. J Immunol 2006; 176: 1266–1273.
12. Blazar BR, Murphy WL, Abed M. Advances in graft-versus-host disease biology and therapy.
Nat Rev Immunol 2012; 12: 443–458.
13. Ahnui AM, Weidorf DJ, Logan BR, Bolanos-Meade J, Carter S, Difronzo N et al. Etanercept,
mycophenolate, denileukin, or pentostatin plus corticosteroids for acute
graft-versus-host disease: a randomized phase 2 trial from the Blood and Marrow Transplant
Clinical Trials Network. Blood 2009; 114: 511–517.
14. Artin JH, Weidorf D, Neuberg D, Nickow R, Clouthier S, Lee SJ et al. Interleukin-1 blockades
do not prevent acute graft-versus-host disease: results of a randomized, double-blind,
placebo-controlled trial of interleukin-1 receptor antagonist in allogeneic bone marrow
transplantation. Blood 2002; 100: 3479–3482.
15. Buccheri C, Koch L, Vogtenhuber C, Goren S, Mungar M, Panoskaltsis-Mortari A et al. IL-21
blockade reduces graft-versus-host disease mortality by supporting inducible T regulatory
cell generation. Blood 2009; 114: 5375–5384.
16. Chen X, Das R, Komorowski R, Beres A, Hessel MJ, Minhara M et al. Blockade of interleukin-6
signaling augments regulatory T-cell reconstitution and attenuates the severity of
graft-versus-host disease. Blood 2006; 114: 891–900.
17. Das R, Chen X, Komorowski R, Hessel MJ, Drobsky WR. Interleukin-23 secretion by donor
antigen-presenting cells is critical for organ-specific pathogenesis in graft-versus-host
disease. Blood 2009; 113: 2352–2362.
18. Gore ME, Kim TH, Quinlan DM, Best WR, Haughey SJ, Smith SA et al. STAT3 signaling in
CD4+ T cells is critical for the pathogenesis of chronic sclerosing dermatomyositisgraft-versus-host disease in a murine model. J Immunol 2010; 184: 764–774.
19. Hill GR, Kons RD, Raftert RC, Don AL, Ouer SD, Markey KA et al. SOCS3 regulates graft-
versus-host disease. Blood 2010; 116: 287–296.
20. Lee SH, Moon SJ, Park MJ, Kim KI, Lee JW, Cho ML. PI3AS suppresses acute
graft-versus-host disease by modulating effector T and B cell subsets through inhibition of
STAT3 activation. Immunol Lett 2016; 160: 79–88.
21. Carniti C, Gimondi S, Vendramin A, Recordati C, Contaferroni D, Bermema A et al.
Pharmacologic inhibition of JAK1/2,24 SAR2 pegol reduces experimental murine acute gVHD
while preserving GVT effects. Clin Cancer Res 2013; 21: 3740–3749.
22. Jaekel N, Behne G, Behning A, Wickenhauser C, Lange T, Niederwieser D et al. Allelic
hematopoietic cell transplantation for myelofibrosis in patients pretreated with the
JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant 2014; 49: 179–184.
23. Tawara I, Koyama M, Liu C, Toubai T, Thomas D, Evers R et al. Interleukin-6 modulates
graft-versus-host responses after experimental allogeneic bone marrow transplantation.
Clin Cancer Res 2011; 17: 77–88.
24. Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H et al. Nifuroxazide
blocks survival of multiple myeloma cells by directly inhibiting STAT3 activation.
Immunol Lett 2016; 140: 96–104.
25. Coppi BJ, Havouis R, Moulinoux JP. Polymyositis contents in current foods: a basis for
polyamine reduced diet and a study of its long term observance and tolerance in prostate
carcinoma patients. Amino Acids 2007; 33: 203–212.
31. Cipolla BG, Havouci R, Moulignon JP. Polyamine reduced diet (PRD) nutrition therapy in hormone refractory prostate cancer patients. *Biomed Pharmacother* 2010; 64: 363–368.

32. Heidegger S, van den Brink MR, Haas T, Pоеck H. The role of pattern-recognition receptors in graft-versus-host disease and graft-versus-leukemia after allogeneic stem cell transplantation. *Front Immunol* 2014; 5: 337.

33. Holler E, Landfried K, Meier J, Hausmann M, Rogler G. The role of bacteria and pattern recognition receptors in GVHD. *Int J Inflamm* 2010; 2010: 814328.

34. Durakov N, Radojcic V, Skarica M, Bezak KB, Powell JD, Fuchs EJ et al. Factors governing the activation of adoptively transferred donor T cells infused after allogeneic bone marrow transplantation in the mouse. *Blood* 2007; 109: 4564–4574.

35. Taylor PA, Ehrhardt MJ, Lees CJ, Panoskaltsis-Mortari A, Krieg AM, Sharpe AH et al. TLR agonists regulate alloreponses and uncover a critical role for donor APCs in allogeneic bone marrow rejection. *Blood* 2008; 112: 3508–3516.

36. Heimesaat MM, Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C et al. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD); delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. *Blood* 2005; 106: 3293–3299.

37. Calcaterra C, Sfondrini L, Rossini A, Sommariva M, Rumio C, Menard S et al. An oligodeoxynucleotide capable of CpG oligodeoxynucleotide and alterations in T-cell cytokine production. *Biol Blood Marrow Transplant* 2002; 8: 648–655.

38. He C, Zhou L, Sun R, Zhao T, Zhang Y, Fu Y et al. Effects of oligodeoxynucleotide with CCT repeats on chronic graft versus host disease induced experimental lupus nephritis in mice. *Clin Immunol* 2011; 140: 300–306.

39. Sun R, Sun L, Bao M, Zhang Y, Wang L, Wu X et al. A human microsatellite DNA-mimicking oligodeoxynucleotide with CCT repeats negatively regulates TLR7/9-mediated innate immune responses via selected TLR pathways. *Clin Immunol* 2010; 134: 262–276.

40. Fars M, Wan M, Guo S, Sun R, Yang M, Zhao T et al. An oligodeoxynucleotide capable of lessening acute lung inflammatory injury in mice infected by influenza virus. *Biochem Biophys Res Commun* 2011; 415: 342–347.

41. Perini A, Strober W, Moffett C, Baker J, Nishikii H, Alvarez M et al. TNFalpha priming enhances CD4+FoxP3+ regulatory T cell suppressive function in murine GvHD prevention and treatment. *Blood* 2016; 128: 866–871.

42. Murphy S, Nguyen VN. Role of gut microbiota in graft-versus-host disease. *Leuk Lymphoma* 2011; 52: 1844–1856.

43. Delisle JS, Gaboury L, Belanger MP, Tasse E, Yagita H, Perreault C. Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts. *Blood* 2008; 112: 2111–2119.

44. Burman AC, Banovic T, Kuns RD, Clouston AD, Stanley AC, Morris ES et al. IFNgamma differentially controls the development of idiopathic pneumonia syndrome and GVHD of the gastrointestinal tract. *Blood* 2007; 110: 1064–1072.

45. Sun K, Wilkins DE, Arver MR, Sayers TJ, Panoskaltsis-Mortari A, Blazar BR et al. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD); delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. *Blood* 2005; 106: 3293–3299.

46. Duffner UA, Maeda Y, Cooke KR, Reddy P, Ordemann R, Liu C et al. Host dendritic cells alone are sufficient to initiate acute graft-versus-host disease. *J Immunol* 2004; 172: 7393–7398.

47. Menad M, Hoffmann P, Ranheim E, Stenmaker S, Manz MG, Lira SA et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. *Nat Med* 2004; 10: 510–517.

48. Teshima T, Ordemann R, Reddy P, Gagin S, Liu C, Cooke KR et al. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. *Nat Med* 2002; 8: 575–581.

49. Couriel D, Saliba R, Hicks K, Ippoliti C, de Lima M, Hosing C et al. Tumor necrosis factor-alpha blockade for the treatment of acute GVHD. *Blood* 2004; 104: 649–654.

50. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. *Immunol Rev* 2009; 228: 273–287.

51. Ja H, Li Y, Zhao T, Li X, Hu J, Yin D et al. Antitumor effects of Stat3-siRNA and endostatin combined therapies, delivered by attenuated Salmonella, on orthotopically implanted hepatocarcinoma. *Cancer Immunol Immunother* 2012; 61: 1977–1987.