Investigation of the Itinerant Electron Ferromagnetism of Ni\(_{2+x}\)Mn\(_{1-x}\)Ga and Co\(_2\)VGa Heusler Alloys

Takuo Sakon \(^1,\ast\), Yuhi Hayashi \(^1\), Akihito Fukuya \(^1\), Dexin Li \(^2\), Fuminori Honda \(^2\), Rie Y. Umetsu \(^3\), Xiao Xu \(^4\), Gendo Oomi \(^5\), Takeshi Kanomata \(^6\) and Tetsujiro Eto \(^5\)

\(^1\) Department of Mechanical and Systems Engineering, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520–2194, Japan; t150299@mail.ryukoku.ac.jp (Y.H.); t150289@mail.ryukoku.ac.jp (A.F.)
\(^2\) Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311–1313, Japan; dxli@imr.tohoku.ac.jp (D.L.); honda@imr.tohoku.ac.jp (F.H.)
\(^3\) Institute for Materials Research, Tohoku University, Sendai, Miyagi 980–8577, Japan; rieume@imr.tohoku.ac.jp
\(^4\) Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980–8579, Japan; xu@material.tohoku.ac.jp
\(^5\) Kurume Institute of Technology, Kurume, Fukuoka 830–0052, Japan; geomi@kurume-it.ac.jp (G.O.); teto@kurume-it.ac.jp (T.E.)
\(^6\) Research Institute for Engineering and Technology, Tohoku Gakuin University, Tagajo, Miyagi 985–8537, Japan; kanomata@mail.tohoku-gakuin.ac.jp

\ast Correspondence: sakon@rins.ryukoku.ac.jp; Tel.: +81-77-543-7443

Received: 20 January 2019; Accepted: 12 February 2019; Published: 14 February 2019

Abstract: Experimental investigations into the field dependence of magnetization and temperature dependences of magnetic susceptibility in Ni\(_{2+x}\)Mn\(_{1-x}\Ga \text{Heusler} \) ferromagnets were performed following the spin fluctuation theory of itinerant ferromagnetism, called as “Takahashi theory”\(^\)\). We investigated the magnetic field dependence of magnetization at the Curie temperature \(T_C\), which is the critical temperature of the ferromagnetic–paramagnetic transition, and also at \(T = 5\) K, which concerns the ground state of the ferromagnetic state. The field dependence of the magnetization was analyzed by means of the \(H\) vs. \(M\) dependence, and the field dependence of the ground state at 5 K was investigated by means of an Arrott plot (\(H/M\) vs. \(M^2\)) according to the Takahashi theory. As for Ni\(_{2+x}\)Mn\(_{1-x}\Ga, the spin fluctuation parameter in \(k\)-space (momentum space, \(T_A\)) and that in energy space (\(T_0\)) obtained at \(T_C\) and 5 K were almost the same. On the contrary, as for Co\(_2\)VGa, the \(H\) vs. \(M^2\) dependence was not shown at \(T_C\). We obtained \(T_A\) and \(T_0\) by means of an Arrott plot at 5 K. We created a generalized Rhodes–Wohlfarth plot of \(p_{\text{eff}}/p_S\) versus \(T_C/T_0\) for the other ferromagnets. The plot indicated that the relationship between \(p_{\text{eff}}/p_S\) and \(T_0/T_C\) followed Takahashi’s theory. We also discussed the spontaneous magnetic moment at the ground state, \(p_S\), which was obtained by an Arrott plot at 5 K and the high temperature magnetic moment, \(p_C\), at the paramagnetic phase. As for the localized ferromagnet, the \(p_C/p_S\) was 1. As for weak ferromagnets, the \(p_C/p_S\) was larger than 1. In contrast, the \(p_C/p_S\) was smaller than 1 by many Heusler alloys. This is a unique property of Heusler ferromagnets. Half-metallic ferromagnets of Co\(_2\)VGa and Co\(_2\)MnGa were in accordance with the generalized Rhodes–Wohlfarth plot with a \(k_m\) around 1.4. The magnetic properties of the itinerant electron of these two alloys appeared in the majority bands and was confirmed by Takahashi’s theory.

Keywords: ferromagnetic Heusler alloy; magnetization; itinerant electron ferromagnetism; half-metal
1. Introduction

Spin fluctuation theories have been proposed to explain the physical principles of the itinerant electron system [1–7]. Takahashi proposed the self-consistent renormalization (SCR) theory according to zero-point spin fluctuations, which assimilated both the transverse and longitudinal components of the fluctuations [4–7]. An outstanding characteristic of this theory is the magnetization at T_C. The theory proposed by Takahashi indicates that the magnetic field dependence, H, is proportional to the magnetization, M, at the Curie temperature, T_C. This property was obtained by the differential calculus of the magnetization of the spin fluctuation free energy [7–9].

In this theory, the relation between the magnetic fields H and magnetization M is obtained theoretically by the equation of,

$$ H = c(T_C)M^5 $$

where $c(T_C)$ is the constant value at T_C (refer to the references for the derivation process of Equation (1) [7,9]). MnSi [10], Fe$_x$Co$_{1-x}$Si [11], CoS$_2$ [12], and Ni [13] followed the relationship provided in Equation (1). The Heusler isotropic ferromagnetic alloy Ni$_{2+}^+$MnGa$_{1-x}^-$ ($x = 0.00, 0.02, 0.04$) also followed the relationship mentioned in Equation (1) [8,9,13]. From the spontaneous magnetic moment and magnetization at T_C, we obtained the spin fluctuation parameter in k-space (momentum space, T_A) and in energy space (T_0).

The other approach to obtain T_A and T_0 is the analysis of the field dependence of the magnetization by means of an Arrott plot (H/M vs. M^2) at the ground magnetic state, $T = 5$ K [7,14]. Tateiwa et al. mentioned the derivation method of this approach in detail [14]. The magnetization in the ground state is expressed by the following equation

$$ H = \frac{F_1}{N_0^3(2\mu_B)^4} \times \left(-M_0^2 + M^2 \right) M $$

where g is Lande’s g-factor; N_0 is Avogadro’s number; and F_1 is the mode–mode coupling term defined as

$$ F_1 = \frac{2T_A^2}{15T_0^2} $$

where c is equal to 1/2 and M_0 is the spontaneous magnetization. F_1 is derived from the slope of the Arrott plot (H/M vs. M^2 plot) at low temperatures by Equation (4)

$$ F_1 = \frac{N_0^3(2\mu_B)^4}{k_B\zeta} $$

where k_B is the Boltzmann constant, and ζ is the slope of the Arrott plot. T_A and T_0 are obtained by the following relations of

$$ \left(\frac{T_C}{T_0} \right)^{5/6} = \frac{p_S^2}{5\gamma^2C_{4/3}} \times \left(\frac{15cF_1}{2T_C} \right)^{1/2} $$

$$ \left(\frac{T_C}{T_A} \right)^{5/6} = \frac{p_S^2}{5\gamma^2C_{4/3}} \times \left(\frac{2T_C}{15cF_1} \right)^{1/2} $$

where $C_{4/3} = 1.00608$, and p_S is the spontaneous magnetic moment at the ground state ($T = 0$ K). In the Takahashi theory, it is mentioned that the experimental results of the magnetization measurement can be applied to these equations in units of kOe and emu/g for the magnetic fields H and magnetization M, respectively (p. 66 in Reference [7]). Therefore, we used these units to calculate the T_A and T_0 parameters clearly. Incidentally, the value of the magnetic field H in 10 kOe is equal to the value in T (Tesla), and the value of magnetization M in emu/g is equal to the value in Am2/kg.

Tateiwa et al. evaluated the parameters, T_A and T_0, of actinide 5f electron systems which were analyzed by means of Equations (4)–(6) [14]. Tateiwa et al. also used the units of kOe and emu/g.
The relation between \(p_S, T_C, T_0 \), and the effective magnetic moment \(p_{\text{eff}} \) in the paramagnetic phase was derived from a formula shown in Equation (3.47) in [7], as follows:

\[
\frac{p_{\text{eff}}}{p_S} \approx 1.4 \times \left(\frac{T_0}{T_C} \right)^\frac{2}{3}
\]

Equation (7) can be rewritten as:

\[
k_m = \left(\frac{p_{\text{eff}}}{p_S} \right) \times \left(\frac{T_C}{T_0} \right)^\frac{2}{3}
\]

When \(k_m \) is 1.4, Equation (8) is equal to Equation (7).

In this study, experimental investigations into the field dependence of magnetization and temperature dependences of magnetic susceptibility in \(\text{Ni}_{2+x}\text{MnGa}_{1-x} \) (\(x = 0.00, 0.02, 0.04 \)) and half-metallic ferromagnets (HMFs) of \(\text{Co}_2\text{VGa} \) and \(\text{Co}_2\text{MnGa} \) Heusler alloys were performed following the self-consistent renormalization (SCR) spin fluctuation theory of itinerant electron ferromagnetism by Y. Takahashi [7]. We investigated the magnetic field dependence of magnetization at the Curie temperature \(T_C \), which is the critical temperature of the ferromagnetic–paramagnetic transition, and also at \(T = 5 \) K, which concerns the ground state of the ferromagnetic phase. We created a generalized Rhodes–Wohlfarth plot of \(p_{\text{eff}}/p_S \) versus \(T_C/T_0 \) for the other ferromagnets. The plot indicated that the relationship between \(p_{\text{eff}}/p_S \) and \(T_C/T_0 \) followed Takahashi’s theory. We also discussed the magnetism of Heusler alloys by comparing the spontaneous magnetic moment \(p_S \) at the ground state (\(T = 0 \) K) and paramagnetic magnetic moment \(p_C \).

2. Materials and Methods

The polycrystalline samples of \(\text{Ni}_{2+x}\text{MnGa}_{1-x} \) (\(x = 0.00, 0.02, 0.04 \)) were prepared by arc melting the constituent elements, nominally, 4N Ni, 3N Mn, and 6N Ga, several times in an Ar atmosphere. Each ingot was melted several times to ensure good homogeneity. The products from the arc melting process were sealed in an evacuated silica tube and solution heat-treatment was applied at 1123 K for 3 days. After these treatments, the sample was quenched in water. The polycrystalline sample of \(\text{Co}_2\text{VGa} \) was fabricated by levitation melting after making a 66.6Co–33.4Ga (at.%) binary alloy by induction furnace melting in order to avoid the reaction of the crucible by the V element. The purity of the starting elements were 99.7% V, 3N Co, and 4N Ga. The obtained ingot was annealed at 1373 K for 3 days and quenched in water.

The magnetization measurements were performed up to 5 T by means of a SQUID magnetometer (Quantum Design Inc., San Diego, USA) at the Institute for Materials Research, Tohoku University. The permeability measurement was performed in AC magnetic fields with a frequency of 73 Hz and maximum field of \(\pm 10 \) Oe. The AC magnetic fields were measured by a gaussmeter 410 (Lakeshore Cryotronix Inc., Westerville, Ohio, USA). The magnetic susceptibility measurements were performed by means of a vibrating sample magnetometer (VSM, PASCO Co. Ltd, Roseville, CA, USA), which was installed in a water-cooled electromagnet (Tamagawa Seisakusho Co. Ltd., Sendai, Japan) at Ryukoku University. The magnetic susceptibility \(\chi \) in the paramagnetic phase was obtained from the temperature dependences of magnetization \(M \), measured at the magnetic fields of \(H = 0.10 \) T and the relation of \(\chi = M/H \).

3. Results and Discussion

3.1. Results of the Magnetic Measurements of \(\text{Ni}_{2+x}\text{MnGa}_{1-x} \)

Figure 1 shows the Arrott plot (\(M^2 \) vs. \(H/M \)) of: (a) \(\text{Ni}_2\text{MnGa} \), and (b) \(\text{Ni}_{2.04}\text{MnGa}_{0.96} \) at \(T = 5 \) K. By using the slope value \(\zeta \) of the Arrott plot, the parameter \(F_1 \) was derived by Equation (4). The spontaneous magnetic moment, \(p_S \); effective moment, \(p_{\text{eff}} \); Curie temperature, \(T_C \); and spin
fluctuation parameters T_A and T_0 are listed in Table 1. The obtained T_A and T_0 by the relations of Equations (5) and (6) are also listed in Table 1. Errors of T_A and T_0 were estimated as $\pm 10\%$, which arose from the error of fitting of the Arrott plot. Within these errors, the T_A and T_0 obtained from a low temperature and the values from T_C were the same as each other.

![Figure 1](https://via.placeholder.com/595)

Figure 1. Arrott plot (M^2 vs. H/M) of: (a) Ni$_2$MnGa and (b) Ni$_{2.04}$MnGa$_{0.96}$ at $T = 5$ K.

Table 1. The magnetic parameters of Ni$_{2+x}$MnGa$_{1-x}$ ($x = 0.00, 0.02, 0.04$). The spontaneous magnetic Curie temperature, T_A, and that in energy space, T_0. The parameters T_A (T_C) and T_0 (T_C) were obtained from the M^2 vs. H/M plot at T_C [9]. The p_{eff}, T_A (5 K) and T_0 (5 K) were the obtained values in this work.

Sample	p_S (μ_B/f. u.)	p_{eff} (μ_B/f. u.)	T_C (K)	T_A (K) (5 K)	T_A (K) (T_C) [9]	T_0 (K) (5 K)	T_0 (K) (T_C) [9]
Ni$_2$MnGa	3.93	4.75	375	556	563	254	245
Ni$_{2.02}$MnGa$_{0.98}$	3.79	4.72	372	580	566	269	288
Ni$_{2.04}$MnGa$_{0.96}$	3.64	4.68	366	583	567	316	345

In a previous study, we analyzed the results of Ni$_2$MnGa by means of the generalized Rhodes–Wohlfarth plot (double logarithmic plot of p_{eff}/p_S and T_C/T_0) [9], which was derived to formulate the magnetic moments ratio, p_{eff}/p_S, and the critical temperature ratio, T_C/T_0. Takahashi derived an equation for the relationship between p_S, T_C, T_0 and the effective magnetic moment p_{eff} as Equation (7). As for Ni$_2$MnGa, the measured effective moment p_{eff}, which was measured in this work, was 4.75, which was the same value as the result by Webster et al. [15]. For Ni$_2$MnGa, a value of 1.61 for k_m was obtained by substituting a p_{eff} of 4.75, and p_S, T_C, and T_0 from Table 1 into Equation (8).

In order to investigate the k_m values of Ni$_{2+x}$MnGa$_{1-x}$ ($x = 0.02, 0.04$) and compare them with other ferromagnetic alloy and compounds, we further needed p_{eff} values of these alloys. We measured the magnetic susceptibility of these alloys, and p_{eff} values were obtained from the Curie constant of the Curie law.

Figure 2 shows the inverse magnetic susceptibilities, $1/\chi = H/M$. The gradient of $1/\chi$ vs. T, which is indicated by the dotted lines, is equal to $1/C$, where C is a Curie constant.
where \(P \) is the spin polarization ratio, differentiating the permeability for the temperature, denoted as \(dP/dT \), means of the magnetization process at 5 K in Reference [16]. Umetsu et al. calculated the DOS by means of the LTMO method with the atomic spheres approximation (ASA). From the results of this calculation, the \(P_0 \) value (\(P \) value at \(T = 0 \) K) was 75\% and the \(P_0 \) value of \(L2_1 \)-type Co\(_2\)(V\(_{1-x}\)Mn\(_x\))Ga alloys (\(0 \leq x \leq 1 \)) was also determined. As for \(x = 1 \), Co\(_2\)MnGa, the obtained spin polarization ratio \(P_0 \) was 48\%. This indicates that Co\(_2\)VGa is a higher polarized HMF. The Curie temperatures of Co\(_2\)VGa and Co\(_2\)MnGa were 337 K and 695 K, respectively. We measured the magnetic field dependences of the magnetization to obtain the magnetic moments, \(p_{\text{eff}} \), and the spin fluctuation parameters, \(T_A \) and \(T_0 \), and also measured the magnetic susceptibility to obtain the effective magnetic moment, \(p_{\text{eff}} \), in the paramagnetic phase. We also obtained \(T_A \) and \(T_0 \) of Co\(_2\)MnGa according to the Takahashi theory by means of the magnetization process at 5 K in Reference [16].

Figure 3a shows the permeability of Co\(_2\)VGa around the Curie temperature. From the differentiation of the permeability for the temperature, denoted as \(dP/dT \), the Curie temperature was obtained as \(T_C = 337 \) K. Figure 3b shows the inverse magnetic susceptibility \(1/\chi = H/M \) of Co\(_2\)VGa. The obtained \(p_{\text{eff}} \) was 2.06.
In this study, we tried again with other ingots from the former sample used by Nishihara et al. because the fourth-order expansion of the magnetic-free energy vanishes at the Curie temperature. In this study, Nishihara et al. mentioned that the discrepancy between these experimental magnetization results and the Takahashi theory is supposed to arise from the distribution of the fluctuation parameters of the three-dimensional Heisenberg model. Nishihara et al. also measured the magnetization around T_C [17]. The magnetization process at T_C was almost proportional to H/M with the index $D = 4.15 \pm 0.05$. Their result was the same as in this study. Nishihara et al. mentioned that the discrepancy between these experimental magnetization results and the Takahashi theory is supposed to arise from the distribution of T_C in the sample because the fourth-order expansion of the magnetic-free energy vanishes at the Curie temperature. In this study, we tried again with other ingots from the former sample used by Nishihara et al. As this experiment reproduced the former experiment, there may be an essential reason. Incidentally, other magnetic models have indicated that the molecular field theory denotes the D value as 3.0, the three-dimensional Heisenberg model denotes the D value as 4.8, and the three-dimensional Ising model as 4.82 [18]. None of these matched the analysis in this investigation. In order to obtain the spin fluctuation parameters T_A and T_0 of Co$_2$VGa, we measured the magnetization process of Co$_2$VGa at 5 K. Figure 5 shows the Arrott plot (M^2 vs. H/M) of Co$_2$VGa. The parameter F_1 was obtained by applying the slope value of the Arrott plot to Equation (4). The parameters T_A and T_0 were derived by Equations (5) and (6). The obtained T_A and T_0 were 2258 K and 213 K, respectively.

Figure 3. (a) Permeability of Co$_2$VGa around the Curie temperature. dP/dT indicates the differential of the permeability in the temperature. (b) Inverse magnetic susceptibility $1/\chi = H/M$ of Co$_2$VGa. Dotted line is a fitting line at the paramagnetic phase.

Figure 4 shows the M^3 vs. H/M plot and M^4 vs. H/M plot of Co$_2$VGa around $T_C = 337$ K.

Figure 4. The magnetic field dependences of the magnetization of Co$_2$VGa: (a) M^3 vs. H/M; (b) M^4 vs. H/M. Dotted straight line in (a) is a guide for the eyes.
3.3. Analysis According to the Takahashi Theory

Table 2 indicates the Curie temperature T_C, the effective magnetic moment μ_{eff}, the spontaneous magnetization p_s, the magnetic moment ratio p_{eff}/p_s, the spin fluctuation parameters T_A and T_0, the critical temperature ratio T_C/T_0, and k_m, as obtained from Equation (8).

Table 2. Basic magnetic parameters and k_m as obtained from Equation (8).

Material	T_C (K)	μ_{eff} (μ_B)	p_s (μ_B)	p_{eff}/p_s	T_A (K)	T_0 (K)	T_C/T_0	k_m	Reference
Ni$_2$MnGa	375	4.75 *	3.93	1.21	563	245	1.53	1.61	This work * [9]
Ni$_2$Co$_{0.85}$Al$_{0.15}$	372	4.72 *	3.79	1.25	566	288	1.29	1.48	This work * [9]
Ni$_2$MnGa$_{0.96}$MnGa$_{0.04}$	366	4.68 *	3.64	1.28	567	345	1.06	1.34	This work * [9]
Co$_2$VGa	337	2.06	1.87	1.10	2258	213	1.58	1.50	[16,19]
Co$_2$MnGa	695	4.16	4.09	1.02	1,037	364	1.91	1.57	[9]
Ni	623	3.3	0.6	5.5	1.76 $\times 10^4$	4.83 $\times 10^3$	0.129	1.41	[13]
MnSi	30	2.25	0.4	5.6	2.18 $\times 10^3$	155	0.194	1.88	[7,10]
Ni$_2$Al	41.5	1.3	0.075	17.3	3.67 $\times 10^4$	2.76 $\times 10^3$	0.015	1.06	[7,20]
Y(Co$_{0.45}$Al$_{0.15}$)$_2$	26	2.15	0.138	15.6	7.26 $\times 10^3$	1.41 $\times 10^3$	0.018	1.08	[7,21]
ZrZn$_2$	21.3	1.44	0.12	12	7.4 $\times 10^3$	1390	0.015	0.74	[7,22]
CoS$_2$	120	1.72	0.98	1.76	2.20 $\times 10^3$	294	0.41	0.96	[12,23]
UCoGe	2.4	1.93	0.039	49.5	5.92 $\times 10^3$	362	0.0065	1.74	[7,24]
UGe$_2$	52.6	5.00	1.41	2.13	442	92.2	0.571	1.61	[14]
NpFe$_2$P$_2$	23	1.55	1.35	1.15	285	16.4	1.40	1.44	[14,25]

1 Citations in our published paper [9] are incorrect. The correct citations are listed above. We apologize for this mistake. * These values were obtained by this work.

The k_m value was around 1.4. Figure 6 shows the generalized Rhodes–Wohlfarth plot using the parameters in Table 2 [7,26]. The points of Ni$_2$MnGa$_{1-x}$ are in accordance with the dotted line as $k_m = 1.4$. It is noteworthy that the HMFs, Co$_2$VGa and Co$_2$MnGa, were also in accordance with this line. Originally, the Takahashi theory was applied to weak ferromagnets. It is interesting that this theory can be applied to strongly correlated 5f electron systems as well as Heusler HMFs.
3.4. Comparison between the Spontaneous Magnetic Moment at the Ground State, p_S, and the Paramagnetic Magnetic Moment, p_C, for HMFs

In this subsection, we consider the magnetism of Heusler alloys by comparing the spontaneous magnetic moment at the ground state and paramagnetic magnetic moment.

We rewrote the definitions of p_S, p_{sat}, p_{eff}, and p_C to make the following argument plain. p_S is the spontaneous magnetic moment at the ground state ($T = 0$ K or $T \ll T_C$). p_{sat} is the saturation magnetic moment at the ground state ($T = 0$ K or $T < T_C$). p_{eff} is the effective magnetic moment in the paramagnetic phase. p_C is the magnetic moment in the paramagnetic phase. These four magnetic moments are defined by the unit of μ_B. The relation between p_{eff} and p_C is described as

$$p_{eff} = \sqrt{p_C(p_C + 2)} \tag{11}$$

In HMFs, the band for minority spin electrons has a gap at the Fermi level and indicates semi-metallic bands. On the other hand, for majority spin electrons, the Fermi level intersects the bands and represents metallic bands. Table 3 represents the magnetic parameters of ferromagnetic Heusler alloys, with the paramagnetic moment p_C referred to the magnetic moment in the paramagnetic phase deduced from the Curie constant C. p_{sat}/p_s is 1 for the local moment ferromagnetism. For the weak itinerant electron ferromagnetism, the p_C/p_s is larger than 1 [7].

As for Ni$_2$MnGa, p_{eff} was 4.75, as shown in Table 3. Therefore, the p_c obtained was 3.85 from Equation (11), and the p_C/p_S value was 0.980. As a result, the p_C/p_S was a little smaller than 1. Webster et al. compared the magnetic moment obtained by the saturation magnetization measurement where $p_{sat} = 4.17$ [15]. Then, the p_{sat}/p_s was 0.92. The magnetization of Ni$_2$MnGa in the magnetic field of 5.0 T at 5 K was 4.10 $\mu_B/f.u.$ Therefore, the p_{sat}/p_s was 0.96. Regarding the half-metallic Heusler alloys, Co$_2$VGa and Co$_2$MnGa, which are the focus of this article, the p_{sat}/p_s were 0.70 and 0.80, respectively. The renowned half-metallic Heusler alloys and compounds listed in Table 3 indicate the property of $p_C/p_S < 1$. The magnetic properties of the inter-metallic compounds CoMnSb, NiMnSb, PtMnSb, Pd$_2$MnSn, and Pd$_2$MnSb showed an effective paramagnetic moment above T_C, which was also smaller than the spontaneous and saturation moment of the ground state at $T = 0$ K [27,28].
As above-mentioned, the spin polarization values \(P_0 \) of Co\(_2\)VGa and Co\(_2\)MnGa were 75% and 48%, respectively [16]. This indicates that Co\(_2\)VGa is a higher polarized HMF. The \(P_C / P_S \) values of Co\(_2\)VGa and Co\(_2\)MnGa were 0.70 and 0.80, respectively, as shown in Table 3. The results concerned with these two alloys indicate that the alloy with a larger spin polarization showed a smaller \(P_C / P_S \) value.

Dong et al. studied the spin polarization of Co\(_2\)MnGe experimentally and analyzed the temperature dependence of the spin polarization [29] where the spin polarization of Co\(_2\)MnGe was 27% at 2 K. However, the spin polarization decreased with increasing temperature and vanished at 300 K. It is considered that the magnetic moment decreases at a high temperature with the decrease of the spin polarization. Ott et al. also suggested that this effect could be attributed to a decrease of the conduction electron spin polarization in the paramagnetic phase, which has a higher temperature than \(T_C \) [27]. A simple molecular field model, which took into account both local moments and spin-polarized itinerant electrons, explained that \(P_C / P_S < 1 \) [27]. They introduced an “Enhanced Temperature-independent Pauli susceptibility”, which comes from the itinerant electron bands intersecting the Fermi level [16]. Therefore, the magnetic property of the itinerant electron appeared in the majority bands and was confirmed by Takahashi’s theory.

Table 3. Magnetic parameters of ferromagnetic Heusler alloys. \(P_C \) indicates the magnetic moment at the paramagnetic phase. The relation between \(P_{\text{eff}} \) and \(P_C \) is defined by the equation of \(P_{\text{eff}} = \sqrt{P_C(P_C + 2)} \).

Sample	\(T_C \) (K)	\(P_S \) (\(\mu_B/\text{f.u.} \))	\(P_{\text{sat}} \) (\(\mu_B/\text{f.u.} \))	\(P_C \) (\(\mu_B/\text{f.u.} \))	\(P_C / P_S \)	Reference
Ni\(_2\)MnGa	375	3.93	4.75 *	3.85	0.980	This work * [9]
Ni\(_{2}\)MnGa\(_{1.5}\)	372	3.79	4.72 *	3.82	1.01	This work * [9]
Ni\(_{2}\)MnGa\(_{1.5}\)	366	3.64	4.68 *	3.79	1.04	This work * [9]
Co\(_2\)VGa	337	1.87	2.06	1.30	0.70	This work
Co\(_2\)MnSi	1034	5.01	2.86	2.03	0.41	[30]
Co\(_2\)MnGe	905	4.76	3.70	2.82	0.56	[30]
Co\(_2\)MnSn	825	5.02	5.29	4.38	0.87	[31]
Co\(_2\)MnGa	695	4.09	4.16	3.28	0.80	[19]
Co\(_2\)FeSi	1015	5.42 (300 K)	5.65	4.74	0.875	[32]
Co\(_2\)FeGa	1089	5.05 (300 K)	4.59	3.69	0.730	[32]
CoMnSb	478	4.2	4.0–4.6	3.1–3.7	0.74–0.88	[27]
NiMnSb	728	4.2	2.9–4.2	2.1–3.3	0.69–0.79	[27]
PtMnSb	572	3.96	4.3–4.9	3.4–4.0	0.86–1.01	[27]
Ni\(_2\)MnIn	315	4.4	4.69	3.80	0.86	[33,34]
Rh\(_2\)MnSn	410	4.14	4.83	3.93	0.95	[31]
Pd\(_2\)MnSn	189	4.23	4.70	3.81	0.90	[28]
Pd\(_2\)MnSb	255	4.40	4.8	3.9	0.89	[28]

* These values were obtained by this work.

In Figure 6, the HMFs of Co\(_2\)VGa and Co\(_2\)MnGa were in accordance with the generalized Rhodes–Wohlfarth plot with a \(k_m \) around 1.4. The majority of the bands of these two alloys intersected the Fermi level [16]. Therefore, the magnetic property of the itinerant electron appeared in the majority bands and was confirmed by Takahashi’s theory.

4. Conclusions

In this article, experimental investigations and discussions into the field dependence of magnetization and temperature dependences of magnetic susceptibility in Ni\(_{2+x}\)MnGa\(_{1-x}\) (\(x = 0.00 \),...
As for Ni$_{2+}$MnGa$_{1-x}$, the spin fluctuation parameters in k-space (momentum space, T_A) and that in energy space (T_0) obtained at T_C and 5 K were almost the same within $\pm 10\%$ error. This consequently indicates that the spin fluctuation parameters can be obtained from the H/M vs. M^2 plot at T_C and also from an Arrott plot (H/M vs. M^2) at a low temperature of $T \ll T_C$.

In order to obtain a k_m value as defined in Equation 8, the magnetic susceptibility was measured, and the p_{eff} was obtained by means of Curie law. The k_m of Co$_2$VGa (1.50) and Co$_2$MnGa (1.57) were around 1.4, which was proposed in Takahashi’s theory. The generalized Rhodes–Wohlfarth plot of p_{eff}/p_S versus T_C/T_0 indicated that the relationship between p_{eff}/p_S and T_0/T_C for the ferromagnets, including Ni$_{2+}$MnGa$_{1-x}$ and HMFs of Co$_2$VGa and Co$_2$MnGa, followed Takahashi’s theory. In HMFs, the band for minority spin electrons has a gap at the Fermi level and indicates semi-metallic bands. On the other hand, for majority spin electrons, the Fermi level intersects the bands and represents metallic bands. The magnetic properties of the itinerant electron of these two HMFs alloys appeared in the majority bands and were confirmed by Takahashi’s theory;

As for Ni$_{2+}$MnGa$_{1-x}$ and HFMs, we obtained the spontaneous magnetic moment at the ground state, p_S, by an Arrott plot at 5 K, and the high temperature magnetic moment, p_C, at the paramagnetic phase. The p_C/p_S was smaller than 1 for many Heusler alloys, which is a different property from the localized ferromagnets ($p_C/p_S = 1$), or, for weak itinerant electron ferromagnets ($p_C/p_S > 1$). A comparison between Co$_2$VGa and Co$_2$MnGa indicates that the alloy with a larger spin polarization showed a smaller p_C/p_S value. Further, an experimental investigation into the temperature dependence of spin polarization is needed to clarify the mechanism of shrinkage of the magnetic moment in the paramagnetic phase at a high temperature.

Author Contributions: Sample preparation, D.L., F.H., X.X., R.Y.U., G.O., and T.E.; Investigation, T.S., Y.H., A.F., X.X., R.Y.U., and T.E.; Writing—original draft preparation, T.S, Y.H., and A.F.; Writing—review and editing, T.S. and T.K.; Supervision, T.K.

Funding: This research received no external funding.

Acknowledgments: We would like to thank Hironori Nishihara for participating in fruitful discussions. This project was partly supported by the Ryukoku Extension Center (REC) at Ryukoku University. This research was carried out in part at the International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moriya, T. *Spin Fluctuations in Itinerant Electron Magnetism*; Springer: Berlin, Germany, 1985; ISBN 978-3-642-82499-9.
2. Moriya, T.; Kawabata, A. Effect of Spin Fluctuations on Itinerant Electron Ferromagnetism. *J. Phys. Soc. Jpn.* 1973, 34, 639–651. [CrossRef]
3. Moriya, T.; Kawabata, A. Effect of Spin Fluctuations on Itinerant Electron Ferromagnetism. II. *J. Phys. Soc. Jpn.* 1973, 35, 669–676. [CrossRef]
4. Takahashi, Y. On the origin of the Curie Weiss law of the magnetic susceptibility in itinerant electron ferromagnetism. *J. Phys. Soc. Jpn.* 1986, 55, 3553–3573. [CrossRef]
5. Takahashi, Y. Theoretical Development in Itinerant Electron Ferromagnetism. *J. Phys. Conf. Ser.* 2017, 868, 012002. [CrossRef]
6. Takahashi, Y.; Nakano, H. Magnetovolume effect of itinerant electron ferromagnets. *J. Phys. Cond. Matter.* 2006, 18, 521. [CrossRef]
7. Takahashi, Y. Spin Fluctuation Theory of Itinerant Electron Magnetism; Springer: Berlin, Germany, 2013; ISBN 978-3-642-36666-6.

8. Sakon, T.; Hayashi, Y.; Fujimoto, N.; Kanomata, T.; Nojiri, H.; Adachi, Y. Forced magnetostriction of ferromagnetic Heusler alloy Ni$_2$MnGa at the Curie temperature. J. Appl. Phys. 2018, 123, 213902. [CrossRef]

9. Sakon, T.; Hayashi, Y.; Li, D.X.; Honda, F.; Oomi, G.; Narumi, Y.; Hagiwara, M.; Kanomata, T.; Eto, T. Forced Magnetostriictions and Magnetizations of Ni$_{2-x}$MnGa$_{1-x}$ at Its Curie Temperature. Materials 2018, 11, 2115. [CrossRef]

10. Matsunaga, M.; Ishikawa, Y.; Nakajima, T. Magneto-volume effect in the weak itinerant ferromagnet MnSi. J. Phys. Soc. Jpn. 1982, 51, 1153. [CrossRef]

11. Rizal, C.; Kolthammer, J.; Pokharel, R.K.; Choi, B.C. Magnetic properties of nanostructured Fe-Co alloys. J. Appl. Phys. 2013, 113, 113905. [CrossRef]

12. Nishihara, H.; Harada, T.; Kanomata, T.; Wada, T. Magnetization process near the Curie temperature of an itinerant ferromagnet Co$_{52}$. J. Phys. Conf. Ser. 2012, 400, 032068. [CrossRef]

13. Nishihara, H.; Komiyama, K.; Oguro, I.; Kanomata, T.; Chernenko, V. Magnetization processes near the Curie temperatures of the itinerant ferromagnets, Ni$_2$MnGa and pure nickel. J. Alloys Compd. 2007, 442, 191–193. [CrossRef]

14. Tateiwa, N.; Pospíšil, J.; Haga, Y.; Sakai, H.; Matsuda, TD.; Yamamoto, E. Itinerant ferromagnetism in actinide 5f-electron systems: Phenomenological analysis with spin fluctuation theory. Phys. Rev. B 2017, 96, 035125. [CrossRef]

15. Webster, P.J.; Ziebeck, K.R.A.; Town, S.L.; Peak, M.S. Magnetic order and phase transition in Ni$_2$MnGa. Philos. Mag. B. 1984, 49, 295–310. [CrossRef]

16. Umetsu, R.Y.; Kobayashi, K.; Fijita, A.; Kainuma, R.; Ishida, K.; Fukamichi, K.; Sakuma, A. Magnetic properties, phase stability, electric structure, and half-metallicity of L2$_1$-type Co$_2$ (V$_{1-x}$Mn$_x$)$_2$Ga Heusler alloys. Phys. Rev. B 2008, 77, 104422. [CrossRef]

17. Nishihara, H.; Furuuti, Y.; Wada, T.; Kanomata, T.; Kobayashi, K.; Kainuma, R.; Ishida, K.; Yamachou, T. Magnetization Process near the Curie Temperature of a Ferromagnetic Heusler Alloy Co$_2$VGa. J. Supercond. Nov. Magn. 2011, 24, 679–681. [CrossRef]

18. Seeger, M.; Kaul, S.N.; Kronmüller, H.; Reisser, R. Asymptotic critical behavior of Ni. Phys. Rev. B 1995, 51, 12885. [CrossRef]

19. Ido, H.; Yasuda, S. Magnetic properties of Co-Heusler and related mixed alloys. J. Phys. Colloques (Paris) 1988, 49, C8-141–C8-142. [CrossRef]

20. De Boer, F.R.; Biesterbos, J.; Schinkel, C.J. Ferromagnetism in the intermetallic phase Ni$_3$Al. Phys. Lett. A 1969, 24, 355–357. [CrossRef]

21. Yoshimura, K.; Takigawa, M.; Takahashi, Y.; Yasuoka, H.; Nakamura, Y. NMR Study of Weakly Itinerant Ferromagnetic Y(Co$_{1-x}$Al$_x$)$_2$. J. Phys. Soc. Jpn. 1987, 56, 1138–1155. [CrossRef]

22. Ogawa, S. Electrical Resistivity of Weak Itinerant Ferromagnet ZrZn$_2$. J. Phys. Soc. Jpn. 1976, 40, 1007–1009. [CrossRef]

23. Miyahara, S. Magnetic Properties of FeS$_2$ and CoS$_2$. J. Appl. Phys. 1968, 39, 896–897. [CrossRef]

24. Sato, N.K.; Deguchi, K.; Imura, K.; Kabeya, N.; Tamura, N.; Yamamoto, K. Correlation of Ferromagnetism and Superconductivity in UCoGe. AIP Conf. Proc. 2011, 1347, 132–137. [CrossRef]

25. Aoki, D.; Haga, Y.; Homma, Y.; Sakai, H.; Ikeda, S.; Shiokawa, Y.; Yamamoto, E.; Nakamura, A.; Onuki, Y. First single crystal growth of the Transuranium filled-Skutterudite compound NpFe$_2$P$_{12}$ and its magnetic and electrical properties. J. Phys. Soc. Jpn. 2006, 75, 073073. [CrossRef]

26. Rhodes, P.; Wohlfarth, E.P. The effective Curie-Weiss constant of ferromagnetic metals and alloys. Proc. Roy. Soc. A 1963, 273, 247–258. [CrossRef]

27. Otto, M.J.; van Woerden, R.A.M.; van der Valk, P.J.; Wijngaard, J.; van Bruggen, C.F.; Haas, C.; Buschow, K.H.J. Half-metallic ferromagnets. I. Structure and magnetic properties of NiMnSb and related inter-metallic compounds. J. Phys. Cond. Mater. 1989, 1, 2341–2350. [CrossRef]

28. Webster, P.J.; Ramadan, M.R.I. Magnetic order in Palladium-based Heusler alloys Part 1: Pd$_2$MnIn$_{1-x}$Sn$_x$ and Pd$_2$MnIn$_{1-x}$Sb$_x$. J. Magn. Magn. Mater. 1977, 5, 51–59. [CrossRef]

29. Dong, X.Y.; Adelmann, C.; Xie, J.Q.; Palmstrøm, C.J.; Low, X.; Strand, J.; Crowell, P.A.; Barnes, J-P.; Pettford-Long, A.K. Spin injection from the Heusler alloy Co$_2$MnGe into Al$_{0.1}$Ga$_{0.9}$As/GaAs heterostructures. Appl. Phys. Lett. 2005, 86, 102107. [CrossRef]
30. Ido, H. Induced magnetic moment on Co below T_C in the ferromagnetic Heusler-type alloys Co$_2$MnX (X = Si, Ge and Sn). *J. Magn. Magn. Mater.* **1986**, *54–57*, 937–938. [CrossRef]

31. Uhl, E. Magnetization of two new series of Heusler alloys: (Rh$_{1-x}$Co$_x$)$_2$MnSn and (Rh$_{1-x}$Ni$_x$)$_2$MnSn. *J. Magn. Magn. Mater.* **1985**, *49*, 101–105. [CrossRef]

32. Deka, B.; Chakraborty, D.; Srinivasan, A. Magnetic properties of Co$_2$Fe(Ga$_{1-x}$Si$_x$) alloys. *Physica B* **2014**, *448*, 173–176. [CrossRef]

33. Kanomata, T.; Shirakawa, K.; Kaneko, T. Effect of hydrostatic pressure on the Curie temperature of the Heusler alloys Ni$_2$MnZ (Z = Al, Ga, In Sn and Sb). *J. Magn. Magn. Mater.* **1987**, *65*, 76–82. [CrossRef]

34. Webster, P.J. Heusler alloys. *Contemp. Phys.* **1969**, *10*, 559–577. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).