Conditional Fault Diagnosis of Bubble Sort Graphs under the PMC Model *

Shuming Zhou1,3 Jian Wang2 Xirong Xu2 Jun-Ming Xu3

1Key Laboratory of Network Security and Cryptology, Fujian Normal University, Fuzhou, Fujian, 350007, P.R.China
2Department of Computer Science, Dalian University of Technology, Dalian, 116024, P.R.China
3Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China

May 10, 2014

Abstract: As the size of a multiprocessor system increases, processor failure is inevitable, and fault identification in such a system is crucial for reliable computing. The fault diagnosis is the process of identifying faulty processors in a multiprocessor system through testing. For the practical fault diagnosis systems, the probability that all neighboring processors of a processor are faulty simultaneously is very small, and the conditional diagnosability, which is a new metric for evaluating fault tolerance of such systems, assumes that every faulty set does not contain all neighbors of any processor in the systems. This paper shows that the conditional diagnosability of bubble sort graphs B_n under the PMC model is $4n - 11$ for $n \geq 4$, which is about four times its ordinary diagnosability under the PMC model.

Keywords: Conditional diagnosability; Fault diagnosis; Bubble sort graphs.

1 Introduction

With the rapid development of multi-processor systems, fault diagnosis of interconnection networks has become increasingly prominent. As a significant increase in the number of processors, processor failure is inevitable. In order to ensure the stable running of the systems, we must find out the faulty processors and repair or replace them. System-level diagnosis, as a powerful tool, has been widely used. The basic idea is to design an effective algorithm to find out faulty processors through a comprehensive analysis of test results which are stimulated by adjacent processors. This method does not have to use special equipment to test.

Most of the recent research efforts in system-level diagnosis have focused on enhancing the applicability of system-level diagnosis-based approaches to practical scenarios such as VLSI testing \cite{5}, diagnosis of interconnection networks employed in parallel computers \cite{11, 12}. The classical diagnosability of a system is small owing to the fact that it ignores the unlikelihood of the corresponding processors failing at the same time. Therefore, it is attractive to develop more different measures of diagnosability based on application environment, network topology, network reliability, and statistics related to fault patterns. The self-diagnosis of system is implemented without additional cost which has a very high value in practice.

*The work was supported by NNSF of China (No. 61072080, No.11071233, 60973014), Specialized Research Fund for the Doctoral Program of Higher Education of China (No.200801411073), and the Key Project of Fujian Provincial Universities services to the western coast of the straits-Information Technology Research Based on Mathematics.
The PMC model, proposed by Preparata et al. [15] for dealing with the System’s self-diagnosis, assumed that each node can test its neighboring nodes, and test results are "faulty" or "fault-free". Under this model, the diagnosability of an interconnection network is the maximum number of faulty nodes in the system that can be identified. To grant more accurate measurement of diagnosability for a large-scale processing system, Lai et al. [11] introduce the conditional diagnosability of a system under the PMC model, which suppose the probability that all adjacent nodes of one node are faulty simultaneously is very small. That is, conditional diagnosability is the diagnosability under the condition that all adjacent nodes of any node can’t be faulty simultaneously. They further showed that the conditional diagnosability of \(Q_n \) is \(4(n - 2) + 1 \) for \(n \geq 5 \). Xu et al. [18] established the conditional diagnosability of matching composition networks MCN under PMC model, which generalized the result on BC networks investigated by Zhu [22]. Xu et al. [19] studied the conditional diagnosability of Shuffle-cubes under the PMC model. Zhu et al. [22] showed that the conditional diagnosability of folded hypercubes \(FQ_n \) is \(4n - 3 \) for \(n \geq 8 \). Recently, Fan et al. [22] have derived the diagnosability of \(DCC \) linear congruential graphs under the precise and pessimistic strategies based on the PMC diagnostic model. N.W. Chang, S.Y. Hsieh [3] studied the conditional diagnosability of augmented cubes under the PMC model.

This paper establishes the conditional diagnosability of the bubble sort graph \(B_n \) under the PMC model. The remainder of this paper is organized as follows. In Section 2, we introduce some terminology and preliminaries used through this paper. Section 3 concentrates on the conditional diagnosability of \(B_n \). Section 4 concludes the paper.

2 Terminologies and Preliminaries

For notation and terminology not defined here we follow [20]. A multi-processor system, whose topological structure is an interconnection network, can be modeled as a simple undirected graph \(G(V, E) \), where a vertex \(u \in V \) represents a processor and an edge \((u, v) \in E \) represents a link between vertices \(u \) and \(v \). If at least one end of an edge is faulty, the edge is said to be faulty; otherwise, the edge is said to be fault-free. The connectivity of a graph \(G \), denoted by \(\kappa(G) \), is the minimum number of vertices whose deletion results in a disconnected graph or a trivial graph. The components of a graph \(G \) are its maximal connected subgraphs. A component is trivial if it has no edges; otherwise, it is nontrivial. The neighborhood set of the vertex set \(X \subset V(G) \) is defined as \(N_G(X) = \{ y \in V(G) \mid \exists x \in X \text{ such that } (x, y) \in E(G) \} - X \). For convenience, \(|S| \) denotes the number of elements in the set \(S \). And we also use \(|G| \) to represent the number of vertices in the graph \(G \).

The PMC model requires that \(u \) and \(v \) can test each other for any edge \((u, v) \in E(G) \). When \(u \) tests \(v \), we call \(u \) as testing node, and call \(v \) as tested node. The test output is 0 (or 1) which implies that \(v \) is faulty (or fault-free). \(\sigma(u, v) \) denotes the output of \(u \) testing \(v \). And it is assumed that the test outputs are correct if the testing node is fault-free; otherwise, the outputs are unreliable.

The collection of all outputs is called the syndrome \(\sigma \). For a given syndrome \(\sigma \), a subset of vertices \(F \subset V(G) \) is said to be consistent with \(\sigma \) if the syndrome \(\sigma \) can be produced from the situation that, for all \((u, v) \in E \) such that \(u \in V - F \), \(\sigma(u, v) = 1 \) if and only if \(v \in F \). It means that \(F \) is a possible set of faulty nodes. Since test output produced by a faulty node is unreliable, a given set \(F \) of faulty nodes may produce different syndromes. On the other hand, different faulty sets may produce the same syndrome. Let \(\sigma(F) \) represent the set of all syndromes that could be produced by \(F \). Two distinct sets \(F_1, F_2 \subset V \) are said to be distinguishable if \(\sigma(F_1) \cap \sigma(F_2) = \emptyset \); otherwise, \(F_1 \) and \(F_2 \) are said to be indistinguishable. We say that \((F_1, F_2) \) is a distinguishable pair if \(\sigma(F_1) \cap \sigma(F_2) = \emptyset \); otherwise, \((F_1, F_2) \) is an indistinguishable pair. We also use \(F_1 \Delta F_2 = (F_1 - F_2) \cup (F_2 - F_1) \) to denote the symmetric difference of \(F_1 \) and \(F_2 \).
Definition 1. [11, 15] A system G is said to be t–diagnosable if, a given syndrome can be produced by a unique faulty set, provided that the number of faulty nodes present in the system does not exceed t. The largest value of t, for which a given system G is t–diagnosable, is called the diagnosability of system G, denoted as $t(G)$.

Lemma 1. [11, 15] For any two distinct sets $F_1, F_2 \subseteq V(G)$ of graph $G = (V, E)$, (F_1, F_2) is a distinguishable pair iff there exists a vertex $u \in V(G) - (F_1 \cup F_2)$ and there exists a vertex $v \in F_1 \Delta F_2$ such that $(u, v) \in E(G)$.

So, if two sets F_1 and F_2 are indistinguishable, then there is no edge between $F_1 \Delta F_2$ and $V(G) - (F_1 \cup F_2)$.

Definition 2. [11] A faulty set $F \subseteq V(G)$ is called a conditional fault-set, if $N(v) \notin F$ for any vertex $v \in V(G)$.

Definition 3. [11] A system G is said to be conditionally t–diagnosable, if for any two distinct conditional fault-sets $F_1, F_2 \subseteq V(G)$ with $|F_1| \leq t, |F_2| \leq t$, (F_1, F_2) is a distinguishable pair. The largest value of t which makes system G is conditionally t–diagnosable is called the conditional diagnosability of system G, denoted as $t_c(G)$.

Lemma 2. [11] A system G is said to be t–diagnosable under the PMC model, if and only if $\forall F_1, F_2 \subseteq V(G)$, $F_1 \neq F_2$ with $|F_1| \leq t, |F_2| \leq t$, (F_1, F_2) is a distinguishable pair.

An equivalent way of stating the lemma is the following.

Lemma 3. [11] A system G is said to be t–diagnosable under the PMC model, if and only if for an indistinguishable pair of sets $F_1, F_2 \subseteq V(G)$, it implies that $|F_1| > t$ or $|F_2| > t$.

Lemma 4. Let $G(V, E)$ be a multi-processor system, and (F_1, F_2) be an indistinguishable conditional pair with $F_1 \neq F_2$, then the following two conditions hold:

1. $|N(u) \cap (V - (F_1 \cup F_2))| \geq 1$ for $u \in (V - (F_1 \cup F_2))$;
2. $|N(v) \cap (F_1 - F_2)| \geq 1$ and $|N(v) \cap (F_2 - F_1)| \geq 1$ for $v \in F_1 \Delta F_2$.

Let (F_1, F_2) be an indistinguishable conditional pair, and let $S = F_1 \cap F_2$. By observation, every component of $G - S$ is nontrivial. Moreover, we have

1. for each component C_1 of $G - S$, if $C_1 \cap (F_1 \Delta F_2) = \emptyset$, then $deg_{C_1}(v) \geq 1$ for $v \in V(C_1)$;
2. for each component C_2 of $G - S$, if $C_2 \cap (F_1 \Delta F_2) \neq \emptyset$, then $deg_{C_2}(v) \geq 2$ for $v \in V(C_2)$.

Network reliability is one of the major factors in designing the topology of an interconnection network. The hypercubes and its variants were the first major class of interconnection networks. The n-star graph (S_n for short), which proposed by Akers et al., is an attractive alternative to the hypercube [1]. The bubble-sort graphs similar to the n-star graph [6], which belongs to the class of Cayley graphs, have been attractive alternative to the hypercubes. They have some good topological properties such as highly symmetry and recursive structure. In particular, the n-dimensional bubble-sort graph B_n is vertex transitive, while it is not edge transitive [13]. The connectivity of B_n is $n - 1$ and the diameter is $n(n - 1)/2$.

It was shown that finding a shortest path in B_n can be accomplished by using the familiar bubble-sort algorithm [1]. K. Kaneko, Y. Suzuki [9] proposed a polynomial time algorithm for finding disjoint paths in B_n. Y. Suzuki and K. Kaneko [17] gave an $O(n^3)$-time algorithm that solves the node-to-set disjoint paths problem in B_n. Y. Kikuchi and T. Araki [10] have shown that the bubble sort graph B_n is edge-bipancyclic for $n \geq 5$, and $B_n - F$ is bipancyclic when $n \geq 4$ and $|F| \leq n - 3$, where F is a subset of $E(B_n)$. T. Araki and Y. Kikuchi [2] showed that the bubble-sort graph B_n is hyper-hamiltonian laceable for $n \geq 4$, and B_n is still hamiltonian laceable and strongly hamiltonian laceable if there are at most $n - 3$ faulty edges. L.M. Shih et al. [16] showed that the bubble-sort graph is fault tolerant maximal local connected.
A very important property of the bubble-sort graph is its recursive structure [2]. We decompose B_n into n subgraphs $B^i_n (i = 1, 2, \ldots, n)$ such that each B^i_n fixes i in the last position of the label strings which represents the vertices, and so B^i_n is isomorphic to B_{n-1}. Let $S_i = S \cap B^i_n$ for $i = 1, 2, \ldots, n$. For $1 \leq i \leq n$, the ith element of the label of vertex u in B_n is represented by $u[i]$. An edge $e = xy$ is called a pair-edge if $x[n] = y[n]$ and $x[n-1] = y[n-1]$. $e = x'y'$ is called the coupled pair-edge corresponding to $e = xy$, where $x'[n] = x[n-1]$, and $y'[n] = y[n-1]$. We call two edge, xx' and yy', the coupler or two pair-edge $e = xy$ and $e' = x'y'$. Let S be a faulty set of $V(B_n)$. Denote $A_1 = \{B^i_n \mid B^i_n \text{ contains at least } n - 2 \text{ nodes in } S\}$, and $A_2 = \{B^i_n \mid B^i_n \text{ contains at most } n - 3 \text{ nodes in } S\}$. We also denote A_2 the subgraph of B_n induced by the union of subgraphs in A_2.

Lemma 5. $A_2 - S$ is connected.

Proof. If $|A_2| = 0$ then there is nothing to do, and so assume $|A_2| \geq 1$. If $|A_2| = 1$, then the lemma holds, since B^i_n in A_2 is $n - 2$-connected. Assume $|A_2| \geq 2$ below. To prove the lemma, we only need to show that B^i_n and B^j_n are connected in $A_2 - S$ for any two distinct B^i_n and B^j_n in A_2.

Obviously, each of B^i_n and B^j_n is connected. Since vertex $u = u_1u_2 \ldots u_{n-2}ij \in B^i_n$ links to vertex $v = u_1u_2 \ldots u_{n-2}ji \in B^j_n$ with the same first $n - 2$ positions of the label strings, there are $(n - 2)!$ matching edges between B^i_n and B^j_n, that is to say these edges are non-adjacent. Because $(n - 2)! > 2(n - 3)$ for $n \geq 5$, there exists at least one fault edge between B^i_n and B^j_n. Thus B^i_n is connected to B^j_n, thus $A_2 - F$ is connected. \[\square\]
3 Conditional Diagnosability of B_n

We decompose B_n into n subgraphs $B^i_n (i=1,2,\ldots,n)$ such that all vertices of B^i_n have the same last bit i of the label strings which represents the vertices and $B^i_n \cong B_{n-1}$.

Lemma 6. $t_c(B_n) \leq 4n - 11$.

Proof. Let $e = xy$ be one pair-edge with the coupled pair-edge $e' = x'y'$. These two pair-edges with their coupler constitute a cycle of length of 4. Obviously, $|N_{B_n}(x,y,x',y')| = 4(n-3)$. Let $F_1 = N\{x,y,x',y\} \cup \{x,y\}$, $F_2 = N\{x,y,x',y\} \cup \{x',y\}$. It is easy to check that F_1, F_2 are two indistinguishable conditional fault-sets, and $|F_1| = |F_2| = 4(n-1-2) + 2 = 4n - 10$. Thus, $t_c(B_n) \leq 4n - 11$.

We are now ready to show the conditional diagnosability of B_n is $4n - 11$ for $n \geq 5$. Let $F_1, F_2 \in V(B_n)$, and (F_1,F_2) be an indistinguishable conditional-pair for $n \geq 5$. We shall show our result by proving that either $|F_1| \geq 4n - 10$ or $|F_2| \geq 4n - 10$.

Lemma 7. For any two indistinguishable conditional fault-sets F_1, F_2 in B_n with $n \geq 5$, which satisfies $F_1 \neq F_2$, we have either $|F_1| \geq 4n - 10$ or $|F_2| \geq 4n - 10$.

Proof. Since (F_1,F_2) is an indistinguishable conditional-pair, there exists no edge between $F_1 \Delta F_2$ and $B_n - (F_1 \cup F_2)$ by Lemma 1. Define $S = F_1 \cap F_2$ and let $B_n[F_1 \Delta F_2]$ be the subgraph of B_n induced by the vertex set $F_1 \Delta F_2$. We choose a maximal component C in $B_n[F_1 \Delta F_2]$ when $B_n[F_1 \Delta F_2]$ is not connected; otherwise, let $C = B_n[F_1 \Delta F_2]$. By lemma 4, we have $|C| \geq 4$. Thus, we only need to prove $\frac{|C|}{2} + |S| \geq 4n - 10$, which implies that $|F_1| \geq 4n - 10$ or $|F_2| \geq 4n - 10$.

We decompose B_n into n subgraphs $B^i_n (i=1,2,\ldots,n)$ such that each B^i_n fixes i in the last position of the label strings which represents the vertices. Let $S_i = S \cap B^i_n$ for $i = 1,2,\ldots,n$.

If $|S_i| \geq 4n - 12$, then we have $\frac{|C|}{2} + |S| \geq 4n - 10$ for $|C| \geq 4$, so the lemma holds.

Now, we only consider the situation $|S| \leq 4n - 13$.

Let $A_1 = \{B^i_n \mid B^i_n \text{ contains at least } n-2 \text{ nodes in } S\}$, and $A_2 = \{B^i_n \mid B^i_n \text{ contains at most } n-3 \text{ nodes in } S\}$. Obviously, A_1 has at most three elements by the fact that $4(n-2) > 4n - 12$.

If $A_1 = \emptyset$, by lemma 5 we have $|C| \geq (n-3)[(n-1)! - (n-3)] > 2(4n - 12)$ for $n \geq 5$.

Thus, we have $\frac{|C|}{2} + |S| \geq 4n - 10$. Now, we consider $A_1 \neq \emptyset$ as follows.

Case 1. $C \cap (A_2 - S) \neq \emptyset$.

Since A_1 has at most three subgraphs, we have $|C| \geq (n-3)[(n-1)! - (n-3)] \geq 2(4n-10)$ for $n \geq 5$ and we arrive at the result.

Case 2. $C \cap (A_2 - S) = \emptyset$.

Obviously, $C \subseteq A_1$, $N_{A_2}(C) \subseteq S \cap A_2$, by the maximality of C. Now, we divide this case into three subcases below.

Subcase 2.1. There is exactly one subgraph, say X, in A_1.

Since every vertex of $C \cap X$ has exactly one neighbor outside of X, we have $N_{B_n-X}(C) \subseteq S \cap A_2$; and so $|N_{B_n-X}(C)| = |C|$. Obviously, $N_X(C) \subseteq S \cap X$. Since $|C| \geq 4$, let T be a path of length three in C. Obviously, $N_X(C) \supseteq N_X(T) - (C - T)$, and so

$$|N_X(C)| \geq |N_X(T)| - (|C - T|) \geq 4n - 12 - |C|.$$

Since $S = (S \cap X) \cup (S \cap A_2)$, we have

$$|S| = |S \cap X| + |S \cap A_2| \geq |N_X(C)| + |N_{B_n-X}(C)| \geq 4n - 12.$$

Thus, we have $\frac{|C|}{2} + |S| \geq 4n - 10$.

Subcase 2.2. There are exactly two subgraphs, say X and Y, in A_1.
We assume, without loss of generality, that $|C \cap X| \geq |C \cap Y|$. For any $x \in C \cap X$, $|N_C(x)| \geq 2$ by Lemma 4 and every vertex of B_n^i has exactly one neighbor outside of this subgraph, then we have $|C \cap X| \geq |C \cap Y| \geq 2$. Due to $N_X(C \cap X) \subset S \cap X$, and $C \cap X$ has at least two vertices, $|S \cap X| \geq |N_X(C \cap X)| \geq 2(n-2) - 2$. Similarly, we have $|S \cap Y| \geq |N_Y(C \cap Y)| \geq 2(n-2) - 2$. Since every pair of $S \cap X$, $S \cap Y$, $S \cap A_2$ are disjoint, we have

$$S = (S \cap X) \cup (S \cap Y) \cup (S \cap A_2) \supseteq N_X(C \cap X) \cup N_Y(C \cap Y) \cup S \cap A_2.$$

Then we have

$$|S| \geq |N_X(C \cap X)| + |N_Y(C \cap Y)| + |S \cap A_2| \geq 2(n-2) - 2 + 2(n-2) - 2 + |S \cap A_2|.$$

Thus, we have $\lceil \frac{|C|}{2} \rceil + |S| \geq 4n - 10$.

Subcase 2.3. There are exactly three subgraphs, say X, Y, Z, in A_1.

We assume, without loss of generality, that $|C \cap X| \geq 2$ by the fact that $|C| \geq 4$. We have $|F \cap X| \geq |N_X(C \cap X)| \geq 2(n-2) - 2$. Since every vertex of B_n^i has exactly one neighbor outside of this subgraph, and every pair of $S \cap X$, $S \cap Y$, $S \cap Z$, $S \cap A_2$ are disjoint, we have

$$S = (S \cap X) \cup (S \cap Y) \cup (S \cap Z) \cup (S \cap A_2) \supseteq N_X(C \cap X) \cup (S \cap Y) \cup (S \cap Z) \cup S \cap A_2.$$

Then we have

$$|S| \geq |N_X(C \cap X)| + |S \cap Y| + |S \cap Z| + |S \cap A_2| \geq 2(n-2) - 2 + (n-2) + (n-2) + |S \cap A_2| \geq 4n - 10.$$

Thus, we have $\lceil \frac{|C|}{2} \rceil + |S| \geq 4n - 10$. \hfill \Box

By Lemma 6 and 7, we have

Theorem 1. The conditional diagnosability of bubble sort graph B_n under the PMC model is $t_c(B_n) = 4n - 11$ $(n \geq 5)$. \hfill \Box

Theorem 2. The conditional diagnosability of bubble sort graph B_4 under the PMC model is $t_c(B_4) = 5$.

Proof. Let F_1, F_2 be two distinguishable fault-sets in B_4. Denote $S = F_1 \cap F_2$ and $C \subset F_1 \Delta F_2$ be a connected component in $B_4 - S$. By Lemma 4, we have $|C| \geq 4$.

If $|S| \geq 4$, then $\lceil \frac{|C|}{2} \rceil + |S| \geq 6$. Now we suppose that $|S| \leq 3$. In the worst case, $B_4 - S$ has two components, one of which is an isolated vertex $\{u\}$, then we have $C = B_4 - S - \{v\}$, which implies $|C| = 20$. So, $\lceil \frac{|C|}{2} \rceil + |S| > 10$. Thus $t_c(B_4) \geq 5$, while $t_c(B_4) \leq 5$, hence $t_c(B_4) = 5$. \hfill \Box

4 Conclusion

The issue of identifying faulty processors is important for the design of multiprocessor interconnected systems, which are implementable with VLSI. The process of identifying all the faulty processors is the system-level diagnosis. This paper establishes the conditional fault diagnosability of the bubble sort graphs under the PMC model. The conditional diagnosability is about four times the traditional diagnosability under PMC model. This method can be also applied to other complex network structure.
References

[1] S.B. Akers, B. Kirshnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Transactions on Computers 38(4)(1989) 555-565.

[2] T. Araki, Y. Kikuchi, Hamiltonian laceability of bubble-sort graphs with edge faults, Information Sciences 177(13)(2007) 2679-2691.

[3] N.W. Chang, S.Y. Hsieh, Conditional Diagnosability of Augmented Cubes Under the PMC Model, IEEE Transactions on Dependable and Secure Computing 21 Oct. 2010.

[4] E. Cheng and L. Lipták, Fault resiliency of Cayley graphs generated by transpositions. International Journal of Foundations of Computer Science 18(2007) 1005-1022.

[5] E. Cheng and L. Lipták, Linearly many faults in Cayley graphs generated by transposition trees, Information Science 177(2007) 4877-4882.

[6] K. Day, A. Tripathi, A comparative study of topological properties of hypercubes and star graphs, IEEE Transactions on Parallel and Distributed Systems 9(1)(1994) 31-38.

[7] J. Fan, J. Yang, G.D. Zhou, L. Zhao, W.Z. Zhang, Diagnosable evaluation of DCC linear congruential graphs under the PMC diagnostic model, Information Sciences 179(2009) 1785-1791.

[8] K. Huang, V.K. Agarwal, and K. Thulasiraman, Diagnosis of clustered faults and wafer testing, IEEE Transactions on Computer-Aided Design of Integrated Circuits, 17(2)(1998) 136-148.

[9] K. Kaneko, Y. Suzuki, Node-to-node internally disjoint paths problem in bubble-sort graphs, Proceeding of 10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004, 173-182.

[10] Y. Kikuchi and T. Araki, Edge-bipancyclicity and edge-fault-tolerant bipancyclicity of bubble-sort graphs, Information Processing Letters 100(2006) 52-59.

[11] P. L. Lai, J. J. M. Tan, C. P. Chang, and L. H. Hsu, Conditional diagnosability measures for large multiprocessor systems, IEEE Transactions on Computers 54(2)(2005) 165-175.

[12] P.L. Lai, J.J.M. Tan, C.H.Tsai, and L.H. Hsu, The diagnosability of matching composition network under the comparison diagnosis model, IEEE Transactions on Computers 53(8)(2004) 1064-1069.

[13] S. Lakshmivarahan, J. Jwo and S. K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey, Parallel Computing 19(4)(1993) 361-407.

[14] C. K. Lin, J. J. M. Tan, L. H. Hsu, E. Cheng, and Lipták, Conditional diagnosability of Cayley graphs generalized by transposition tree under the comparison diagnosis model, Journal of Interconnection Networks 9(2008) 83-97.

[15] F.P. Preparata, G. Metze, R.T. Chien, On the connection assignment problem of diagnosable systems, IEEE Transactions on Computers 16(1967) 848-854.

[16] L.M. Shih, et al., Fault tolerant maximal local connectivity on Cayley graphs generated by transposition trees, Journal of Interconnection Networks 10(3)(2009) 253-260.

[17] Y. Suzuki, K. Kaneko, An Algorithm for Disjoint Paths in Bubble-Sort Graphs, Systems and Computers in Japan 37(12)(2006) 27-32.
[18] M. Xu, K. Thulasiraman, and X.D. Hu, Conditional Diagnosability of Matching Composition Networks Under the PMC Model, IEEE Transactions on Circuits and Systems-II: Express Briefs 56(11)(2009) 875-879.

[19] M. Xu, X.D. Hu, S.P. Shang, The conditional diagnosability of shuffle-cubes, Journal of system Science and complexity 23(2010) 81-90.

[20] J.-M. Xu, Toplogical Structure and Analysis of Interconnection Networks. Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.

[21] Q. Zhu, S. Y. Liu, and M. Xu, On conditional diagnosability of the folded hypercubes, Information Sciences 45(2008) 174-184.

[22] Q. Zhu, On conditional diagnosability and reliability of the BC networks, Journal of Supercomputing 45(2)(2008) 173-184.