Complex multimorbidity and mortality in Japan: a prospective propensity-matched cohort study

Daisuke Kato, Ichiro Kawachi, Junko Saito, Naoki Kondo

ABSTRACT

Objectives There are limitations to defining multimorbidity (MM) based on a simple count of diseases. To address these limitations, the concept of complex MM (CMM) focuses on how many body systems are affected in a single patient, rather than counting comorbid conditions. This study compared the prediction of mortality among older Japanese adults between CMM and conventional MM.

Design A population-based prospective cohort study.

Setting The Japan Gerontological Evaluation Study, a nationwide longitudinal cohort study, which ran from 2010 to 2016.

Participants Functionally independent individuals who were older than 65 and had complete illness data at the time of baseline survey were eligible.

Outcomes measure CMM was defined as the coexistence of 3 or more body system disorders at baseline. We calculated the propensity for each individual to develop CMM based on a wide array of characteristics, including socioeconomic status and health behaviours. Individuals with and without CMM were then matched on their propensity scores before we estimated overall survival using a log-rank test.

Results Our 6-year follow-up included 38 889 older adults: 20 233 (52.0%) and 7565 (19.5%) adults with MM and CMM, respectively. In the MM-matched cohort (n=15 666 pairs), the presence of MM was significantly associated with increased mortality (HR 1.07; 95% CI 1.01 to 1.14; p=0.02 by the log-rank test). A similar mortality association was found in the CMM-matched cohort (n=7524 pairs, HR, 1.07; 95% CI 0.99 to 1.16; p=0.08 by the log-rank test).

Conclusion This is the first study to report the association between CMM and mortality among older adults in Japan. MM and CMM predict mortality in older adults to a similar degree. This finding needs to be replicated with more precision in larger samples.

INTRODUCTION

There are limitations in defining multimorbidity (MM; the co-occurrence of diseases in the same person) based on a simple count of diseases, and a new concept of ‘complex MM’ (CMM) has thus been proposed. CMM focuses on the impact across the different body systems rather than counting comorbid conditions.

In CMM, diseases are categorised by the body system they affect. Because impairments of the same body system often have similar interventions, their impacts on patient prognosis are expected to be similar. Therefore, it makes biological sense to combine closely related diseases (eg, osteoporosis and fractures) as affecting a single body system (ie, musculoskeletal and connective disorders) rather than counting them as two separate diseases when evaluating the impact of multiple comorbid conditions. In turn, disorders of different body systems should be counted separately because they need more complex and extensive treatment, and the treatment of one disease may adversely affect another. Furthermore, from a methodological perspective, focusing on body system disorders may be more reliable method for collecting patient self-report data as patients are apt to misclassify individual conditions (eg, osteoarthritis vs rheumatoid arthritis or asthma vs COPD (chronic obstructive pulmonary disease)) but they are unlikely to mistake the affected body system. CMM is also likely to be a more reliable method as it may avoid issues of whether a clinician sees two very similar diseases as distinct and thereby avoids the issue of some clinicians recording a single condition while others record two.
A growing number of studies have demonstrated the negative impact of MM on patient outcomes, showing that MM is associated with mortality, reduced quality of life, lower physical functioning and so on.1,3-6 In many reports claiming these associations, researchers have attempted to weight diseases according to severity. Although the MM approach is better than conventional medical care that tends to focus on a single disease at a time, the new concept of CMM that focuses on multiple body system disorders is expected to result in stronger predictions of patient outcomes.

There is little evidence on the impact of CMM on mortality.7 Although functional disability is associated with mortality, no previous studies have evaluated the impact of CMM by considering baseline activities of daily living status. Furthermore, previous reports that include both MM and CMM mainly performed descriptive statistics, not inferential statistics.8-11 Against this background, we used CMM and conventional MM to compare the predictions of mortality among older Japanese adults.

METHODS

Data sources

We conducted this study using the longitudinal nationwide cohort data from the Japan Gerontological Evaluation Study (JAGES),12 which was established in 2010. This study focuses on adults in Japan over 65 years of age and aims to establish a society of healthy longevity.

Study population

Self-administered questionnaires for the baseline survey were mailed to 95 827 older adults in Japan between August 2010 and January 2012. Adults were sampled from 13 municipalities in 7 of the 47 prefectures in Japan. All adults were functionally independent, which was defined as not receiving public long-term care (LTC) insurance. The municipalities were from three of the four major islands of Japan (Hokkaido, Honshu, Kyushu).

Among the target population, 62 426 individuals responded to the survey (response rate, 65.1%). We included individuals who were functionally independent and not receiving any nursing care or home care assistance to avoid reverse causality between MM and functional disability, which is a key factor in mortality. We included individuals who had valid ID, sex, and age information, and who were linked to LTC insurance certification registers. We excluded individuals whose functional disability status at baseline was unknown, or who were already receiving nursing care or home care assistance, or whose data on the history of present illness was missing. Finally, we identified a cohort of 38 889 individuals. Further details of the cohort flow diagram are shown in figure 1.
Characteristic	With MM	Without MM	With CMM	Without CMM
Sample size	20 233	18 656	7565	31 324
Age				
65–69	4087	5328	1205	8210
70–74	5673	5745	1955	9463
75–79	5413	4134	2162	7385
80–84	3418	2352	1485	4285
85–89	1322	870	605	1587
90+	320	227	153	394
Missing	0	0	0	0
Sex				
Male	8803	9038	3051	14 790
Female	11 430	9618	4514	16 534
Missing	0	0	0	0
No of natural teeth				
20 or more	5979	6313	2020	10 272
10–19	4946	4686	1807	7825
1–9	5478	4582	2170	7890
No natural teeth	3174	2484	1311	4347
Missing	656	591	257	990
Formal education years				
Less than 6 years	582	412	296	698
6–9 years	9812	8297	3818	14 291
10–12 years	6234	6250	2247	10 237
13 years or more	3091	3208	997	5302
Other	125	122	52	195
Missing	389	367	155	601
Marital status				
Married	13 555	13 328	4772	22 111
Widowed	5124	3944	2171	6897
Divorced	652	594	255	991
Never married	413	331	157	587
Other	108	107	48	167
Missing	381	352	162	571
Living arrangement				
Live alone	17 195	16 169	6300	27 064
Not alone	2730	2138	1159	3709
Missing	308	349	106	551
Financial insecurity (worries about unexpected expenses)				
None at all	1858	2018	608	3268
Slight	8218	8357	2817	13 758
Moderate	5556	4701	2144	8113
Severe	3431	2494	1554	4371
Missing	1170	1086	442	1814

Kato D, et al. BMJ Open 2021;11:e046749. doi:10.1136/bmjopen-2020-046749
At baseline, 19 diseases were surveyed in the JAGES. Among them, as noted in table 1, we analysed the following 17 diseases to calculate MM and CMM: heart disease (including arrhythmia), stroke, high blood pressure, diabetes (including mild type), obesity, dyslipidaemia, impaired vision, gastrointestinal disease, liver disease, impaired hearing, mental disease, sleep problems, osteoporosis, joint disease/neuralgia, injury/fracture, cancer and respiratory disease. The remaining two symptoms, difficulty swallowing and difficulty with bowel movements, were excluded from the disease list in this study because they have aspects of dysfunction not disease. The JAGES did not survey diseases of the nervous system.

MM was defined as having two or more of the aforementioned diseases concurrently. For CMM, the diseases surveyed were categorised according to the body system they affected. For example, heart disease and diabetes were individually categorised into disorders of the circulatory system and endocrine system. Next, CMM was defined as the coexistence of 3+ body system disorders at baseline (see table 1).

Outcome
The outcome of this study was the 6-year incidence of mortality. We ascertained vital status from 2010 to 2016 by linking the cohort participants to the mortality records of the national LTC insurance database (follow-up rate=96.2%). The mean follow-up period was 5.6 years, and we observed 5183 (13.3%) deaths during the period.

Table 2

Characteristic	With MM	Without MM	With CMM	Without CMM
No	19 191	17 779	7162	29 808
Yes	277	209	109	377
Missing	765	668	294	1139

Current employment status

Has a paid job	3259	4055	952	6362
Retired	11 344	10 040	4315	17 069
Never had a job	2623	2043	1125	3541
Missing	3007	2518	1173	4352

Alcohol consumption

Yes	5640	6164	1868	9936
Used to drink	840	628	354	1114
No	12 498	10 733	4844	18 387
Missing	1255	1131	499	1887

Smoking status

Never smoked	10 990	9842	4195	16 637
Stopped smoking 5 or more years ago	4499	4086	1609	6976
Stopped smoking within the past 4 years	913	899	334	1478
Current smoker	1632	1918	546	3004
Missing	2199	1911	881	3229

CMM, complex multimorbidity; MM, multimorbidity

Statistical analysis

Estimation of missing data

Given that the missing data was missing at random, we conducted multiple imputations using a bootstrapping Expectation-Maximisation algorithm. We analysed 20 multiply imputed datasets, taking the low missing rate of the cohort (approximately 5%) into consideration. Lastly, we combined all estimators by Rubin’s rule.

Propensity score matching

We used propensity score matching to compare overall survival among individuals with and without MM/CMM. To address potential confounding bias, we conducted propensity score matching within a logistic regression framework. The participant information included in estimating the propensity score consisted of 44 variables: age, sex, smoking status, alcohol consumption, marital status, pension, dental health, employment status, consumption of meat/fish/fruits or vegetable, education, city code and so on (see online supplemental table S1).

We performed a 1:1 matching between individuals with and without MM/CMM using the nearest-neighbour
Characteristic	MM SMD in multiply imputed data	MM SMD in matching data	CMM SMD in multiply imputed data	CMM SMD in matching data
Age	0.24	0.002	0.327	0.025
Sex	0.099	0.001	0.139	0.004
Previous health check-up	0.01	0.015	0.02	0.005
No of natural teeth	0.11	0.019	0.16	0.005
Consumption of meat and fish	0.009	0.017	0.017	0.016
Consumption of fruits and vegetables	0.003	0.006	0.035	0.012
Formal educational years	0.093	0.045	0.151	0.004
Marital status	0.072	0.015	0.118	0.002
Living arrangement	0.06	0.033	0.1	0.011
Residence type	0.025	0.055	0.058	0.008
Architectural type of home	0.005	0.086	0.02	0.006
Financial insecurity	0.123	0.004	0.21	0.012
Receiving pension	0.023	0.022	0.022	0.006
Current working status	0.147	0.002	0.225	0.004
Eats meals alone	0.089	0.02	0.17	0.014
Alcohol consumption	0.107	0.015	0.145	0.013
Smoking status	0.079	0.014	0.098	0.016
Falls	0.223	0.004	0.307	0.013
Worries about falls	0.266	0.001	0.396	0.005
Goes upstairs without support	0.265	0.009	0.348	0.005
Gets up out of a chair without support	0.251	0.02	0.343	0.01
Average time to walk	0.16	<0.001	0.203	0.001
Frequency of going out	0.151	0.015	0.207	0.003
Decrease in the frequency of going out	0.243	0.001	0.352	0.006
Engagement in leisure activities	0.105	0.016	0.145	0.008
Trust in neighbours	0.079	0.027	0.135	0.009
Support from neighbours	0.074	0.015	0.109	0.002
Attachment to residence	0.053	0.036	0.086	0.002
Contribution to residence	0.095	0.009	0.129	0.007
Uneasiness about safety in residence	0.073	0.011	0.105	0.01
Participation in local events	0.085	0.009	0.114	0.008
Interactions with neighbourhood	0.02	0.031	0.049	0.007
Residential environment:				
Presence of graffiti or garbage	0.009	0.02	0.019	0.014
Parks or footpaths	0.059	0.045	0.097	<0.001
Locations difficult for walking	0.076	0.012	0.132	0.007
Risky roads or crossroads for traffic accidents	0.044	0.005	0.061	0.002

Continued
method within a calliper (0.2 of the SD of the logit of the propensity score).17,18 We evaluated the covariate balance after matching using standardised differences. An absolute standardised difference of less than 0.1 was considered negligible in the groups (see tables 2 and 3).

Survival data analysis

We estimated the overall survival using Kaplan-Meier curves.18 We also compared overall survival between matched with and without MM/CMM groups using a log-rank test.

Sensitivity analysis

While the definition of MM we adopted in this study is one of the most commonly used definitions in previous studies,2 we analysed this cohort data with a more sensitive approach. Specifically, we analysed the association between the number of diseases or body system disorders and the mortality by multivariate analysis with the covariates used in the propensity score calculation. The results of this analysis did not change the direction or significance of the MM/CMM effect (data not shown).

We used R software packages (V.4.0.1) for all statistical analyses, and the statistical significance level was 0.05 for all analyses.

Patient and public involvement

This was a nationwide cohort study focusing on community-dwelling individuals. No patients and the public were involved in this research.

RESULTS

Baseline population characteristics

Among the current cohort study, 20 233 (52.0%) participants out of 38 889 had MM and 7565 (19.5%) had CMM. Table 2 presents the demographic characteristics of the participants.

Aesthetic views or buildings	MM SMD in multiply imputed data	MM SMD in matching data	CMM SMD in multiply imputed data	CMM SMD in matching data
Shops selling fresh fruits and vegetables	0.074	0.023	0.091	0.001
Dangerous place to walk alone at night	0.013	0.019	0.016	<0.001
Comfortable house or facilities	0.066	0.024	0.107	0.011
Someone who listens to your concerns	0.019	0.01	0.075	0.007
Someone to provide care in case of illness	0.049	0.023	0.094	0.026
Sports group or club	0.063	0.008	0.117	0.031
Leisure activity group	0.06	0.006	0.088	0.007

CMM, complex multimorbidity; MM, multimorbidity; SMD, standardised mean difference

Table 3 Continued

![Figure 2](image)

Figure 2 Kaplan-Meier curve for overall survival comparing patients with and without MM. MM, multimorbidity.

![Figure 3](image)

Figure 3 Kaplan-Meier curve for overall survival comparing patients with and without CMM. CMM, complex multimorbidity.
cohort study. Table 3 summarises the background characteristics of the participants between the two groups before and after matching. Populations with MM/CMM were more likely to be older, were more likely to have fewer teeth, and were more vulnerable to financial insecurity (worries about unexpected expenses) compared with those without MM/CMM. Furthermore, compared with populations with MM, populations with CMM were more likely to be female, to have lower education, to eat meals alone and to be unmarried.

MM outcome

After the 1:1 propensity score matching, 31 332 patients were recruited and evenly classified into propensity-matched MM and propensity-matched non-MM groups. The C-statistics before matching for evaluation of the discriminatory ability of the propensity score model was 0.64 (95% CI 0.63 to 0.64). The two matched cohorts were well balanced. The populations with MM had a 7% higher mortality than those without MM as shown in figure 2 (HR 1.07; 95% CI 1.01 to 1.14; p=0.02 by the log-rank test).

CMM outcome

After the 1:1 propensity score matching, 15 048 patients were recruited and evenly classified into propensity-matched CMM and propensity-matched non-CMM groups. The C-statistics before matching for evaluation of the discriminatory ability of the propensity score model was 0.69 (95% CI 0.68 to 0.69). The two matched cohorts were well balanced. The populations with CMM had slightly higher mortality than those without CMM as shown in figure 3 (HR 1.07; 95% CI 0.99 to 1.16; p=0.08 by the log-rank test).

DISCUSSION

To the best of our knowledge, this is the first study to report the association between CMM and mortality among older adults in Japan. MM and CMM predict mortality in older adults to a similar degree.

MM is both an individual and a social issue. Low socioeconomic status (SES) individuals develop MM roughly 10–15 years earlier compared with high SES individuals. Therefore, to evaluate whether the presence of MM/CMM is causally related to mortality, SES should be considered as a confounding factor. There were larger intergroup differences in baseline variables for the CMM-matched cohort compared with the MM-matched cohort. Although CMM was already known to be associated with lower SES, the current findings indicate that CMM may be more closely related to social factors than MM.

We found that the impact of MM and CMM on mortality was similar. Furthermore, CMM was marginally statistically significantly associated with mortality. This may be partly because the current study did not consider disease severity or disease status except in the baseline survey. That is, it may not sufficiently represent body system disorders in terms of the number of disease groups affected. This finding needs to be replicated with more precision in larger samples.

There are several limitations to this study. First, the self-administered questionnaire was the basis for disease information, which may have led to recall bias. This reporting error may lead to bias in either direction because its extent depends on the type of disease and age. Second, although the results are based on a nationwide cohort study, the participants were not nationally representative, and hence external generalisability is not assured. The response rate (around 65%) was comparable to that of other cohort studies for community-dwelling individuals. Third, because this study was observational, our findings cannot be interpreted as indicating causality. Nonetheless, we attempted to minimise confounding bias through the use of propensity score matching.

CONCLUSION

Both MM and CMM predicted future mortality among older adults in Japan. These findings indicate the importance of the interactive effects of multiple diseases.
includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs Daisuke Kato http://orcid.org/0000-0002-2449-0548 Junko Saito http://orcid.org/0000-0002-6923-7298

REFERENCES
1 Violan C, Foguet-Boreu Q, Flores-Mateo G, et al. Prevalence, determinants and patterns of multimorbidity in primary care: a systematic review of observational studies. PLoS One 2014;9:e102149.
2 Johnston MC, Crilly M, Black C, et al. Defining and measuring multimorbidity: a systematic review of systematic reviews. Eur J Public Health 2019;29:182–9.
3 Wei MY, Mukamal KJ. Multimorbidity, mortality, and long-term physical functioning in 3 prospective cohorts of community-dwelling adults. Am J Epidemiol 2018;187:103–12.
4 John PDS, Tyas SL, Menec V. Multimorbidity, disability, and mortality in community-dwelling older adults. Can Fam Physician 2014;60:272–80.
5 Tooth L, Hockey R, Byles J, et al. Weighted multimorbidity indexes predicted mortality, health service use, and health-related quality of life in older women. J Clin Epidemiol 2008;61:151–9.
6 Nunes BP, Flores TR, Mielke GI, et al. Multimorbidity and mortality in older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr 2016;67:130–8.
7 Storeng SH, Vinjerui KH, Sund ER, et al. Associations between complex multimorbidity, activities of daily living and mortality among older Norwegians. A prospective cohort study: the HUNT study, Norway. BMC Geriatr 2020;20:1–8.
8 Harrison C, Henderson J, Miller G, et al. The prevalence of diagnosed chronic conditions and multimorbidity in Australia: a method for estimating population prevalence from general practice patient encounter data. PLoS One 2017;12:e0172935.
9 Singer L, Green M, Rowe F, et al. Social determinants of multimorbidity and multiple functional limitations among the ageing population of England, 2002–2015. SSM - Popul Heal 2019;8:1–9.
10 Harrison C, Henderson J, Miller G, et al. The prevalence of complex multimorbidity in Australia, Aust NZ J Public Health 2016;40:239–44.
11 Lujic S, Simpson JM, Zwar N, et al. Multimorbidity in Australia: comparing estimates derived using administrative data sources and survey data. PLoS One 2017;12:e0183817.
12 Kondo K. Progress in aging epidemiology in Japan: the JAGES project. J Epidemiol 2016;26:331–6.
13 Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc 1968;16:622–6.
14 Honaker J, King G, Blackwell M. A program for missing data. J Stat Softw 2011;45:1–47.
15 Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? some practical clarifications of multiple imputation theory. Prev Sci 2007;8:206–13.
16 Rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc 1996;91:473–89.
17 Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983;70:41–55.
18 Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med 2014;33:1242–58.
19 Westreich D, Cole SR, Funk MJ, et al. The role of the c-statistic in variable selection for propensity score models. Pharmacoepidemiol Drug Saf 2011;20:317–20.
20 Barnett K, Mercer SW, Norbury M, et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 2012;380:37–43.
21 Vinjerui KH, Bjerkset O, Bjørgaard JH, et al. Socioeconomic inequalities in the prevalence of complex multimorbidity in a Norwegian population: findings from the cross-sectional HUNT study. BMJ Open 2020;10:e038851.
22 Fortin M, Haggerty J, Sanche S, et al. Self-Reported versus health administrative data: implications for assessing chronic illness burden in populations. A cross-sectional study. CMAJ Open 2017;5:E729–33.