Magnetotransport in 2D electron systems with a Rashba spin-orbit interaction

M. V. Cheremisin, A. S. Furman
A.F.Ioffe Physical-Technical Institute, St.Petersburg, Russia
(Dated: July 3, 2018)

The beating pattern of Shubnikov-de Haas oscillations in 2D electron system in the presence of a Rashba zero-field spin splitting is reproduced. It is shown, taking into account the Zeeman splitting, that the explicit formulae for the node position well describes the experimental data. The spin-orbit interaction strength obtained is found to be magnetic field independent in agreement with the basic assumptions of the Rashba model.

PACS numbers: 73.20.At, 71.43.Qt, 72.25.Dc, 73.61.-r

There has been growing interest in the zero-magnetic-field spin splitting\(^1\) of the 2D electron gas (2DEG), associated with the spin-orbit interaction (SOI) caused by the structural inversion asymmetry in heterostructures\(^2\). Application of a gate voltage \(^3\) is known to be the most effective method to control the SOI strength. These 2D systems have been suggested for application in future spintronics devices, such as spin-based field-effect transistors\(^4\), spin-interference devices\(^5\), and nonmagnetic spin filters based on a resonant tunneling structure\(^6\). Usually, the beating-pattern analysis of Shubnikov-de Haas oscillations (SdHO)\(^3\) and the weak antilocalization method\(^7\) are used to determine the SOI strength in 2D systems. However, the former approach is known to lead to a certain controversy in determining the zero-field spin splitting \(\Delta\).

Namely, the spin splitting deduced from the SdHO beating node position at finite fields\(^3\) is different from that \(\Delta\) expected for \(B = 0\). In the present paper, this discrepancy is attributed to the contribution of the nonzero Zeeman spin splitting at finite fields. We support our idea by a rigorous analysis of the SdHO beating pattern caused by SOI spin splitting. The beating node positions reported in\(^3\) agree well with those predicted by the theory. Then, we demonstrate that the SOI strength is independent of the magnetic field.

Let us consider a 2DEG in the x-y plane, subjected to a magnetic field. In the Landau gauge, the one-electron Hamiltonian including the Rashba spin-orbit term\(^8\) is given by

\[
H = \frac{(\mathbf{p} + e\mathbf{A})^2}{2m} + \frac{\alpha}{\hbar}\sigma(\mathbf{p} + e\mathbf{A})|n + \frac{g\mu_B}{2}(\sigma\mathbf{B})
\]

where \(\mathbf{p}\) is the 2D momentum; \(m\), the effective mass; \(g\), the Zeeman factor; \(\mu_B\), the Bohr magneton; and, \(\mathbf{n}\), the unit vector in the z-direction. Then, \(\sigma\) is the Pauli spin matrix; \(\mathbf{B}\), the total magnetic field; and, \(\alpha\), the SOI strength.

It has been shown\(^3\) that the solution to Eq.\(^1\) has an explicit form in the case of a perpendicular magnetic field \(\mathbf{B} = B_z = B\). The spectrum for dimensionless energy \(\varepsilon = E/\mu\) (\(\mu\) is the Fermi energy) is given by\(^8\)

\[
\varepsilon_0 = \eta\beta, \quad \varepsilon_n = \eta(n \pm \sqrt{\gamma^2n + \beta^2}), n \geq 1
\]

where \(\eta = \hbar \omega_c/\mu\) is the dimensionless magnetic field; \(\omega_c = eB/mc\), the cyclotron frequency; \(\beta = \frac{1}{2}(1 - \chi)\), the term containing the Zeeman spin splitting; \(\chi = \frac{2\alpha n}{\hbar c}\), the spin susceptibility; and \(n\), an integer similar to that in the conventional description of the Landau levels (LL). Then, according to Ref.\(^3\)\(\gamma = \sqrt{\frac{\alpha}{\eta}} = \frac{\alpha k_F}{\mu \sqrt{\eta}}\), where \(\delta\) is the dimensionless SOI strength parameter; \(\Delta = 2\alpha k_F\), the zero-field spin-orbit splitting at the Fermi energy; and \(h k_F\), the Fermi momentum. Usually, the typical Fermi energy \(\mu \sim 80\text{meV}\) exceeds the SOI-induced splitting \(\Delta \sim 1\text{meV}\) (see\(^3\)), and, therefore \(\delta \ll 1\). It is noteworthy that the conventional spin-up(down) energy states associated with \(n\)-th LL number correspond to \(\varepsilon_n^+\) and \(\varepsilon_{n+1}^-\) states respectively. In the absence of SOI, Eq.\(^2\) reproduces well-known LL energy spectrum.

In contrast to the conventional formalism extensively used to find the low-B magnetoresistivity, we use the alternative approach\(^9\),\(^10\),\(^11\) which allows to resolve magnetotransport problem in both the SdHO and Integer Quantum Hall Effect (IQHE) modes. Moreover, this method was successfully used in a recent paper\(^12\) to reproduce the SdHO beating structure in the presence of the zero-field valley splitting (Si-MOSFET 2D system), and in both the crossed- and tilted-field configurations. Following the argumentation put forward in Ref.\(^10\), well above the classically strong magnetic field range \(\omega_c \tau \gg 1\), where \(\tau\) is the momentum relaxation time, 2DEG can be assumed dissipationless in strong quantum limit when the cyclotron energy \(\hbar \omega_c\) exceeds both the thermal energy \(kT\) and the energy related to LL-width \(h/\tau\). Here, \(\tau\) is the quantum relaxation time. Under the above assumptions \(\sigma_{xx}, \rho_{xx} \approx 0\). Nevertheless, routine dc measurements yield\(^10\) the finite magnetoresistivity associated with a combination of the Peltier and Seebeck thermoelectric effects. Within the scenario suggested\(^10\), we obtain the above magnetoresistivity in the form

\[
\rho = \rho_{yx} \frac{\alpha_{2D}^2}{L}
\]

where \(\alpha_{2D}\) is the 2DEG thermoelectric power; \(\rho_{yx}^{-1} = Nee/B\), the Hall resistivity; \(N = -(\partial \rho_{yx}/\partial T)\); the 2D den-
system, $\Omega = -kT \sum_n \ln \left(1 + \exp \left(\frac{\mu_n - F_0}{kT} \right) \right)$, the thermodynamic potential; $\Gamma = \frac{eB}{hc}$, the zero-width LL density of states; $L = \frac{\pi^2 k_F^2}{3b^2}$, the Lorentz number; k_B, the Boltzmann constant. In fact, the 2D thermoelectric power in strong magnetic fields is a universal quantity \cite{s}, proportional to the entropy per electron: $\alpha_{2D} = -\frac{S}{N}$, where $S = -\ln(N)$ is the entropy. Both S, N, ρ are universal functions of the dimensionless temperature $\xi = \frac{k}{\mu}$ and the magnetic field $\eta = 2/\nu$, where $\nu = N_0/\Gamma$ is the conventional filling factor, and $N_0 = \frac{m}{\hbar^2} \mu$ is the zero-field density of the strongly degenerate 2DEG in the absence of a SOI-induced splitting.

Using the Lifshitz-Kosevich formalism and, then, neglecting finite LL-width ($h/\tau_\eta \to 0$), we derive in Appendix asymptotic formulae for Ω, and, hence, for N, S, ρ_x, ρ_y which are valid at low temperatures and weak magnetic fields $\xi, \eta \ll 1$:

$$N = N_0 \xi F_0(1/\xi) + 2\pi N_0 \sum_{k=1}^{\infty} \frac{\sin(2\pi k/\eta)}{\sinh(r_k)} R(\eta), \quad (4)$$

$$S = S_0 - 2\pi^2 \xi k_B N_0 \sum_{k=1}^{\infty} \Phi(r_k) \cos(2\pi k/\eta) R(\eta),$$

where $S_0 = k_B N_0(2F_1(1/\xi) - F_0(1/\xi))$ is the entropy at $B = 0$; $F_0(z)$, the Fermi integral; and $\Phi(z) = 1 - e^{\pi i \coth(z)}$.

At $B = 0$ both the thermopower and 2D density are constants, i.e. $\alpha_{2D} = -\frac{\pi^2 k_F^2 k_B}{3b^2}$, hence the magnetoresisitivity is given by zero-field asymptote $\rho = \frac{1}{\eta} \frac{\pi^2 k_F^2}{3b^2}$. According to Eq. (4), for actual first-harmonic case ($k = 1$) the magnetoresistivity can be viewed as the zero-field background, on which the rapid SdHO modulated by long-period beatings (see Fig.2) are superimposed. It’s worthwhile to mention that at the beat nodes (i.e. when the form-factor $k = 1$ vanishes) the magnetoresistivity is given by zero-field asymptote. This is not, however, the case of low temperatures and/or high magnetic fields when the high-order terms ($k > 1$) in Eq. (4) may determine the amplitude of magnetoresistivity at the beat nodes. It turns out that the data reported in the above feature.

We now analyze in detail the form-factor $R(\eta)$ (see Appendix) which determines the beating pattern of S, N and, hence, ρ. For the actual first-harmonic case (i.e., $k = 1$), the beating nodes can be observed when $R(\eta) = 0$ or

$$\sqrt{\beta^2 + \frac{\delta}{\eta^2}} = \frac{j}{4}, \quad (5)$$

where we neglect the small quadratic term $\delta^2/4\eta^2 \ll \delta/\eta^2$ evaluating Eq. (4). Then, $j = 1, 3, \ldots$ is the beating node index. We emphasize that the first node cannot be observed in experiments, performed, for example, in Ref. [3]. Indeed, for real 2D In$_x$Ga$_{1-x}$As/In$_{0.52}$Al$_{0.48}$As system ($m = 0.049 m_0$, $g \simeq 4$) we find $\beta = 0.45$, and, therefore Eq. (5) cannot be satisfied for $j = 1$. With the help of Eq. (5), we analyze the nodes, reported in for three different samples, and then plot the dependence of the zero-field SOI splitting at the Fermi energy Δ against the node index (see Fig.1), starting from $j = 3$. For these samples Δ is nearly constant within the actual range of the magnetic fields, therefore we obtain the respective mean values Δ_0 denoted in Table II. Note that the minor deviation of Δ with respect to its mean value in high-field limit (low-index nodes) can be associated with possible magnetic field dependence of the g-factor. In contrast, the non-parabolicity effects seem to be irrelevant for the actual low-field case $B < 1T$.

We emphasize that the node condition similar to Eq. (5) was previously discussed in literature. Following the analysis done in Ref. [3], the nodes occur when the spin-orbit-split subbands are shifted one with respect another by half a period at the Fermi energy. Namely, $1 \simeq \epsilon_n^+ = (\epsilon_{n+1} + \epsilon_{n+2})/2$, where $s = 0, 1, 2, \ldots$ corresponds to the node index as $j = 1 + 2s$. For actual high LL-number case $n \gg 1$ this condition reproduces Eq. (5).

Let us discuss the conventional method often used to extract the zero-field SOI splitting at the Fermi en-
energy. According to phenomenological arguments put forward by Das et al.\cite{3,4}, the nodes may occur when $\cos \left(\pi \frac{\Delta_{\text{tot}}}{\hbar \omega_c} \right) = 0$ or $\Delta_{\text{tot}} = \pm \frac{\Delta}{\hbar \omega_c}$, where the total spin splitting at the Fermi energy between spin-down ε^-_{n+1} and spin-up ε^+_n states yields $\Delta_{\text{tot}} = \hbar \omega_c - \sqrt{(2 \hbar \omega_c)^2 + \Delta^2}$. As expected, the total spin splitting Δ_{tot} coincides with the zero-field $+ \Delta$ and the Zeeman $\chi \hbar \omega_c$ spin splitting in low (high) magnetic field limit respectively. With the help of the dimensionless units the node condition suggested by Das et al. reads $\sqrt{\beta^2 + \frac{\delta}{\eta}} = \frac{1 + \beta/2}{2}$, hence, reproduces our result if one selects “+” set at $j \geq 1$. We argue that straightforward procedure (see Fig.1) used to extract Δ_0 is, however, preferable compare to zero-field extrapolation method suggested in Ref.\cite{3,4}. Indeed, for low-density samples and (or) under the temperature enhanced conditions the SdHO amplitude is suppressed, hence, the low-field nodes become hidden. In this case the zero-field extrapolation method\cite{3} may lead to a subsequent errors.

Let us now reproduce (see Fig.2) the SdHO beating pattern with the nodes occurred in a typical sample (sample A($x = 0.65$)\cite{3}) at $B = 0.873; 0.46; 0.291; 0.227; 0.183; 0.153T$ using Eq.\cite{4}, and previously extracted value of zero-field SOI splitting $\Delta_0 = 2.34$meV. It’s worthwhile to mention that our results differ with respect to those, which can be obtained within the conventional formalism in the following: (i) the low-field quantum interference, classical magnetoresistivity and 3D substrate parallel resistivity\cite{3} background are excluded within our approach; (ii) in contrast to conventional SdHO analysis, our method determines the absolute value of magnetoresistivity, and moreover, can lead to a gradual transition\cite{16} from the SdHO to the IQHE mode.

We argue that the noticeable increase in SdHO amplitude was observed\cite{3} at $B = 0.37T$. This value satisfies the criterion of the classically strong magnetic field since $\omega_c \tau = 4$ while the corresponding cyclotron energy $\hbar \omega_c = 8.2K$ correlates with that $\sim 9.8K$ expected from T-dependent SdHO-damping factor, i.e. when $2 \pi^2 \xi/\eta \sim 1$. We conclude that the energy associated with LL width $\sim \hbar/\tau_0$ is less or at least equal to the thermal energy. The above estimates point to validity of zero-width LL model in this particular case. Nevertheless, since both the temperature and finite LL width known to suppress the SdHO amplitude in a rather similar manner, we esteem reasonable to reproduce in Fig.4 the SdHO beating pattern using somewhat higher temperature $T = 1.6K$ than that $T = 0.5K$ reported in\cite{3}.

Note that our approach provides a correct number of oscillations between the adjacent nodes. For example, the number of oscillations confined between $j = 3, 5$ nodes\cite{37} correlates with that\cite{35} observed in\cite{3}. A minor point is that our approach predicts a somewhat lower amplitude of SdHO, compared with that in the experiment\cite{3}. For example, for $j = 3$ node ($B = 0.873T$ in Ref.\cite{3}) we obtain $\rho = 0.0035$Ohm. Actually, one would expect the same order of magnitude for SdHO amplitude between the proximate nodes (see $j = 3, 5$ in Fig.2). Our estimation is, however, less than both the absolute magnetoresistivity 400Ohm at $B = 0.873T$ and SdHO amplitude ~ 50Ohm reported in Ref.\cite{3}.

In conclusion, we demonstrated the relevance of the approach\cite{10} regarding the beating pattern of SdHO caused by Rashba spin-orbit interactions. Taking into account the Zeeman splitting, the rigorous analysis of experimental data\cite{3} suggests a B-independent strength of the Rashba SOI. The above finding is consistent with the general theoretical assumptions\cite{3}. Our approach can be helpful for estimation of the SOI strength.

The authors wish to thank Prof. N.Aверкиев and Dr. S.Tarasenko for helpful comments. This study was supported by the Russian Foundation for Basic Research (grant 03-02-17588) and LSF (Weizmann Institute).

APPENDIX

Using the conventional Poisson formulae

$$\sum_{m_0}^{\infty} \varphi(n) = \int_{a}^{\infty} \varphi(n)dn + 2Re \sum_{k=-1}^{\infty} \int_{a}^{\infty} \varphi(n)e^{2\pi i k n}dn, \quad (6)$$

where $m_0 - 1 < a < m_0$, m_0 the initial value of the summation, the thermodynamic potential can be represented as the sum $\Omega = \Omega_0 + \Omega_3$ of the zero-field and oscillating parts as follows

$$\Omega_0 = -N_0 \mu \xi^2 F_1(1/\xi), \quad (7)$$
\[\Omega_{\sim} = -N_0 \mu g \Re \sum_{k=1}^{\infty} \int_{0}^{\infty} e^{2\pi i k n} \ln \left(1 + e^{-\frac{\varepsilon}{\Delta}} \right) \, dn, \]

where \(F_n(z) \) is the Fermi integral. For simplicity, we omit the SOI-induced splitting in the zero-field term \(\Omega_0 \) because \(\delta \ll 1 \). The special interest of the present paper is in the oscillating term \(\Omega_{\sim} \) of thermodynamic potential, which can be strongly affected by spin-orbit-split subbands(\(\pm \)). After a simple integration by parts, the oscillating term yields

\[\Omega_{\sim} = N_0 \mu g \Re \sum_{k=1}^{\infty} \frac{i n k}{2\pi k} \int_{0}^{\infty} e^{2\pi i k n \varepsilon} \left(1 + e^{-\frac{\varepsilon}{\Delta}} \right) \, d\varepsilon \quad (8) \]

Using Eq.\((2) \), for a certain energy we calculate the actual high-order LL-like numbers, associated with both the spin-orbit-split subbands as

\[n^\pm(\varepsilon) = \frac{\varepsilon}{\eta} + \frac{2}{\gamma^2} \pm \sqrt{\beta^2 + \frac{4}{\eta} \varepsilon + \frac{\gamma^4}{4}}. \quad (9) \]

It should be noted that the integrand equation in Eq.\((8) \) is a rapidly oscillating function, which is, in addition, strongly damped when \(\varepsilon > 1 \). The major part of the magnitude of the integral results from the energy range close to the Fermi energy, when \(\varepsilon \sim 1 \). Therefore, \(n^\pm(\varepsilon) \) can be regarded as smooth functions of energy, and, hence, can be re-written as \(n^\pm = n^\pm(1)(\varepsilon - 1) \), where we use the designation \(n^\pm = n^\pm(1) \). Under the above assumption, we can change the lower limit of integration to \(-\infty\) and then use the textbook expression

\[\int_{-\infty}^{\infty} \frac{j^k y}{\sin(\pi k y)} \, dy = \frac{i^k}{\sin(\pi k)} \]

for the integral of the above type. Finally, the thermodynamic potential yields

\[\Omega = \Omega_0 + N_0 \mu g 2\pi^2 \xi^2 \sum_{k=1}^{\infty} \frac{\cos(\pi k(n^+_1 + n^-_1)) R(\eta)}{r_k \sinh(r_k)} \]

where we assume that \((\frac{2n^\pm}{\pi k} \frac{1}{\Delta}) \sim \frac{1}{\Delta} \) is valid for the actual case of high-order Landau levels \(n^\pm \gg 1 \), and \(r_k = 2\pi^2 \xi \eta / \eta \) is a dimensionless parameter related to T-damping of SdH amplitude. Then, \(R(\eta) = \cos(\pi k(n^+_1 + n^-_1)) \) is the form-factor. The oscillatory part of the thermodynamic potential consists of rapid oscillations

\[\cos(\pi k(n^+_1 + n^-_1)) \approx \cos(2\pi k/\eta), \]

on which long-period beatings governed by the form-factor are superimposed. As expected, the form-factor is reduced in absence of SOI to a field-independent constant \(R(\eta) = \cos(2\pi k/\eta) \), and, therefore, the beating structure is absent. Using the conventional thermodynamic definition, we can easily obtain both the entropy and the density of 2D electrons, specified by Eq.\((1) \).

[1] G. Lommer, F. Makler, and U. Ressler, Phys. Rev. B, 32, 6965 (1985).
[2] J. Luo, H. Munekata, F.F. Fang, and P.J. Stiles, Phys. Rev. B 38, 10142 (1988).
[3] B. Das, D.C. Miller, S. Datta, R. Reifenberger, W.P. Hong, P.K. Bhattacharaya, J. Singh, and M. Jaffe, Phys. Rev. B 39, 1411 (1989).
[4] B. Das, S. Datta, R. Reifenberger, Phys. Rev. B 41, 8278 (1990).
[5] E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224, 1960 [Sov. Phys. Solid State 2, 1109 (1960)]; Y.A. Bychkov and E.I. Rashba, J. Phys. C 17, 6039 (1984).
[6] V.A. Bychkov, V.I. Mel’nikov, and E.I. Rashba, Zh. Eksp. Teor. Fiz. 98, 717 (1990), [Sov. Phys. JETP 71, 401 (1990)].
[7] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).
[8] G. Engels, J. Lange, Th. Schpers and H. Lth, Phys. Rev. B 55, R1958 (1997).
[9] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
[10] Tie-Zheng Qian and Zhao-Bin Su, Phys. Rev. Lett. 72, 2311 (1994).
[11] J. Nitta, F.E. Meijer, and H. Takayanagi, Appl. Phys. Lett. 75, 695 (1999).
[12] T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett. 88, 126601 (2002).
[13] T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, Phys. Rev. Lett. 89, 046801 (2002).
[14] C.G.M. Kirby and M.J. Laubitz, Metrologia 9, 103 (1973).
[15] M.V. Cheremisin, Zh. Eksp. Teor. Fiz. 119, 409 (2001), [Sov. Phys. JETP, 92, 357, 2001].
[16] M.V. Cheremisin, Physica E, 28, 393 (2005).
[17] M.V. Cheremisin, Physica E 27, 151 (2005).
[18] S.M. Girvin and M. Jonson, J.Phys.C 15, L1147 (1982).
[19] Can-Ming Hu, J.Nitta, T.Akazaki et al, Phys. Rev. B 60, 7736 (1999).
[20] M. Dobers, K. von Klitzing, G. Weimann, Phys. Rev. B 38, 5453 (1988).
[21] M. Dobers, J.P.Viereit, Y. Guldner et al, Phys. Rev. B 40, 8075 (1989).