JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks

Jian Kang* Qinghai Zhou* Hanghang Tong

*: equal contribution
Applications of Graph Neural Networks

Node classification [1]

Network A: Facebook

Network B: Twitter

Link prediction [2]

Network alignment [3]

Graph classification [4]

[1] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. In arXiv 2016.
[2] Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. In NeurIPS 2018.
[3] Zhang, S., Tong, H., Xia, Y., Xiong, L., & Xu, J. (2020, August). Nettrans: Neural cross-network transformation. In KDD 2020.
[4] Errica, F., P odda, M., Bacci, D., & Micheli, A. (2019). A fair comparison of graph neural networks for graph classification. In arXiv 2019.
Uncertainty in Model Prediction

Examples

Regression
- certain
- uncertain

Classification

Quantifying the uncertainty is important in high-risk applications
- E.g., medical

Training points

[1] Peterson, J. C., Battleday, R. M., Griffiths, T. L., & Russakovsky, O. (2019). Human uncertainty makes classification more robust. In ICCV 2019.
[2] Xiao, Y., & Wang, W. Y. (2019, July). Quantifying uncertainties in natural language processing tasks. In AAAI 2019.
Uncertainty in Graph Learning

- **Examples**

- **Questions:**
 - Q1: How uncertain is a GCN in its own predictions?
 ➔ Uncertainty quantification (UQ)
 - Q2: How to improve GCN predictions by leveraging uncertainty?
 ➔ Application of UQ

[1] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907.*
Existing Solutions: Bayesian-based

- Motivation: address over-smoothing/fitting

- Key idea:
 - adaptively drop edges
 - Monte Carlo estimation for posterior uncertainty [1].

- Limitations: not explicitly quantify the uncertainty on model prediction (ad-hoc)

[1] Hasanzadeh, A. et al. Bayesian graph neural networks with adaptive connection sampling. In ICML 2020.
[2] Zhao, X., Chen, F., Hu, S., & Cho, J. H. (2020). Uncertainty aware semi-supervised learning on graph data. In NeurIPS 2020.
Existing Solutions:

Deterministic Quantification-based

- Motivation: estimate multi-source uncertainty for GNNs

- Key idea: a graph-based Dirichlet distribution to reduce errors in quantifying uncertainties [2].

- Limitations: changing the training procedure, e.g., additional parameters (e.g., Dirichlet distribution) or architectures (e.g., teacher network)

[1] Hasanzadeh, A. et al. Bayesian graph neural networks with adaptive connection sampling. In ICML 2020.
[2] Zhao, X., Chen, F., Hu, S., & Cho, J. H. (2020). Uncertainty aware semi-supervised learning on graph data. In NeurIPS 2020.
Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms
- JuryGCN Applications
- Experimental Results
- Conclusion
Problem Definition

Given:

(1) an undirected graph $G = \{V, A, X\}$;
(2) an L-layer GCN with parameter Θ;
(3) a task-specific objective $R(G, Y, \Theta)$ (Y: ground-truth)

Find:

An uncertainty score $U_\Theta(u)$ for any node u in graph G w.r.t. parameters Θ and objective $R(G, Y, \Theta)$.

JuryGCN

Uncertainty score

labeled

2 : 0.1
4 : 0.8
6 : 0.1
Preliminaries: Jackknife+ Resampling

- Key idea: leaving out an observation \(\Rightarrow\) evaluating prediction error (LOO)
- Given: training data: \(D = \{(x_i, y_i) | i = 1, \ldots, n\}\); a test point \((x^*, y^*)\); a trained model \(f_\theta()\); target coverage \(\alpha\);
- Confidence interval: \([C^-(x^*), C^+(x^*)]\)
 - \(C^+(x^*) = Q_{1-\alpha}(P^+), C^-(x^*) = Q_{\alpha}(P^-)\)
 - \(P^+ = \{f_{\theta_i}(x^*) + |y_i - f_{\theta_i}(x_i)| | i = 1, \ldots, n \}\)
 - \(P^- = \{f_{\theta_i}(x^*) - |y_i - f_{\theta_i}(x_i)| | i = 1, \ldots, n \}\)

Larger interval \(\Rightarrow\) less confident

[1] Barber, Rina Foygel, et al. "Predictive inference with the jackknife+." The Annals of Statistics 49.1 (2021): 486-507.
Regression task: training set, \(\{(x_1, y_1), \ldots, (x_5, y_5)\} \), a test point, \((x^*, y^*) \) where \(y^* = 10 \), coverage, \(\alpha = 0.2 \)

\[f_\theta(x^*) = 9.8 \]

\[f_{\theta-i}(x^*) = \{9.9, 9.7, 9.6, 10.1, 10.2\} \]

\[P^+ = \{f_{\theta-i}(x^*) + |y_i - f_{\theta-i}(x_i)||i\} \]
\[P^- = \{f_{\theta-i}(x^*) - |y_i - f_{\theta-i}(x_i)||i\} \]

\[P^+ = \{9.9, 10.1, 10.2, 9.9, 10\} \]
\[P^- = \{9.7, 9.5, 9.4, 9.7, 9.6\} \]

Applying quantile: \(Q_{1-\alpha}(P^+), Q_\alpha(P^-) \)

\[C^+(x^*) = 10.1, C^-(x^*) = 9.4 \]

Confidence interval width = 0.7

[1] Barber, Rina Foygel, et al. "Predictive inference with the jackknife+." The Annals of Statistics 49.1 (2021): 486-507.
Challenges

C1: How to formally define the Jackknife uncertainty for GNNs?
 • Non-IID graph data
C2: How to efficiently compute the node uncertainty?
 • Avoid re-training

w.l.o.g, considering a node-level tasks (e.g., node classification)

\[\Theta^* = \arg\min_{\Theta} R(G, Y_{\text{train}}, \Theta) = \arg\min_{\Theta} \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_v, \Theta) \]

- Training labels
- Training set
- Node-specific loss (cross-entropy)

\[r(v, y_v, \Theta) = -\sum_{i=1}^{c} y_v[i] \log(GCN(v, \Theta)[i]) \]
Jackknife Uncertainty: Definition

- Confidence interval: $U_\Theta(u) = C^+_\Theta(u) - C^-_\Theta(u)$

- Compute C^+, C^-:

 $C^-_{\Theta^*}(u) = Q_\alpha(\{\|\text{GCN}(u, \Theta^*_{\epsilon,i})\|_2 - \text{err}_i | \forall i \in V_{\text{train}}\})$

 $C^+_{\Theta^*}(u) = Q_{1-\alpha}(\{\|\text{GCN}(u, \Theta^*_{\epsilon,i})\|_2 + \text{err}_i | \forall i \in V_{\text{train}}\})$

- Why Jackknife+: stable coverage

Question: How to obtain $\Theta^*_{\epsilon,i}$ without re-training?

Error residual: $\text{err}_i = \|y_i - \text{GCN}(i, \Theta^*_{\epsilon,i})\|_2$

Upweighting the loss of node i:

$\Theta^*_{\epsilon,i} = \arg\min_{\Theta} r(i, y_i, \Theta) \frac{1}{|V_{\text{train}}|} \sum_v r(v, y_v, \Theta)$

[1] Barber, Rina Foygel, et al. "Predictive inference with the jackknife+." The Annals of Statistics 49.1 (2021): 486-507.
Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms
- JuryGCN Applications
- Experimental Results
- Conclusion
Jackknife Uncertainty: Efficient Computation

- Key idea: efficiently estimate $\Theta_{\epsilon,i}^*$ with influence function [1]
- Taylor expansion over parameters
 \[\Theta_{\epsilon,i}^* \approx \Theta^* + \epsilon I_{\Theta^*}(i) \] (1) where \(I_{\Theta^*}(i) = \frac{d\Theta_{\epsilon,i}^*}{d\epsilon} \bigg|_{\epsilon \to 0} \)
- The influence function can be further computed as [2],
 \[I_{\Theta^*}(i) = (H_{\Theta}^{-1}) \nabla_r r(i, y_i, \Theta^*) \] (2) Hessian matrix w.r.t. model parameters

By setting $\epsilon = -\frac{1}{|V_{\text{train}}|}$, the leave-one-out parameters, $\Theta_{\epsilon,i}^*$ (Eq. (1)) can be computed efficiently.

[1] Pang Wei Koh and Percy Liang. 2017. Understanding Black-Box Predictions via Influence Functions. In ICML 2017.
[2] Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman and Hall.
Proposition: First-order derivative of GCN [1] w.r.t. the parameters in the \(l\)-th layer, i.e., \(W^{(l)} \leftarrow \nabla_{W^{(l)}} r(i, y_i, \Theta)\)

- Key idea: apply chain rule on layer parameters.

\[
\nabla_{W^{(l)}} r(i, y_i, \Theta) = \left(\tilde{A}E^{(l-1)}\right)^T \left(\frac{\partial r(i, y_i, \Theta)}{\partial E^{(l)}} \odot \sigma'(\tilde{A}E^{(l-1)}W^{(l)})\right)
\]

Hidden representations

\[E^{(l)} = \sigma(\tilde{A}E^{(l-1)}W^{(l)})\]

Normalized graph Laplacian

\[I_{\Theta^*}(i) = H_{\Theta^*}^{-1} \nabla_{\Theta} r(i, y_i, \Theta^*)\]

[1] Kang, J. et al. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. In WWW 2022.

[2] Alaa, A. et al. Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions. In ICML 2020.
Theorem: Computing the Hessian tensor of GCN (the i-th and l-th layer) \[S_{l,i} = \frac{\partial^2 R}{\partial W(l) \partial W(i)} \]

- vectorize the first-order
- compute the element-wise second-order

> Flattened Hessian matrix
> Applying Hessian-vector product \[2\] using power iteration

\[\mathbf{I}_{\Theta^*}(i) = \mathbf{H}_{\Theta^*}^{-1} \nabla_\Theta r(i, y_i, \Theta^*) \]

Theorem 1. (The Hessian tensor of GCN) Following the settings of Proposition 2, denoting the overall loss $R(G, \mathcal{M}_{train}, \Theta)$ as R and σ^l_i as $\sigma^l(\hat{A}^{l-1}W^{(l)})$, the Hessian tensor $S_{l,i} = \frac{\partial^2 R}{\partial W^{(l)} \partial W^{(i)}}$ of R with respect to $W^{(l)}$ and $W^{(i)}$ has the following forms.

Case 1. $i = l$, $S_{l,i} = 0$

Case 2. $i = l - 1$

\[
S_{l,i}[\sigma, \zeta, c, d] = \left(A - \nabla E^{(l-1)}(\sigma, c) \right)^\top \left(\frac{\partial R}{\partial E^{(l)}(\sigma)} \circ \sigma^l \right)\]

where $\frac{\partial E^{(l-1)}}{\partial W^{(i)}}(\sigma, c)$ is the matrix whose entry at the a-th row and the b-th column is

\[
\frac{\partial E^{(l-1)}}{\partial W^{(i)}}(\sigma, c)[a, b] = \sigma^l_{a-1}[a, b] \hat{A}^{l-1}(\sigma^l_{a-1})[a, b]\]

Case 3. $i < l - 1$

- Apply Eq. (12) for the i-th hidden layer.
- Forward to the $(l - 1)$-th layer iteratively with

\[
\frac{\partial E^{(l-1)}}{\partial W^{(i)}}(\sigma, c) = \sigma^l_{i-1} \circ \left(A - \nabla E^{(l-2)}(\sigma, c) W^{(l-1)} \right)\]

- Apply Eq. (11).

Case 4. $i = l + 1$

\[
S_{l,i}[\sigma, \zeta, c, d] = (A - \nabla E^{(l+1)})^\top \left(\frac{\partial R}{\partial W^{(l)}(\sigma)} \circ \sigma^l \right)\]

where $\frac{\partial E^{(l+1)}}{\partial W^{(i)}}(\sigma, c) = [b, c] \hat{A}^l(\sigma^l_{i-1} \circ \sigma^l_{i-1})[b, c]$.

Case 5. $i > l + 1$

- Compute $\frac{\partial R}{\partial E^{(l+1)}(\sigma, c)}$ where (a, b)-th entry has the form

\[
\frac{\partial R}{\partial E^{(l+1)}(\sigma, c)}[a, b] = [b, c] \hat{A}^l(\sigma^l_{i-1} \circ \sigma^l_{i-1})[a, b]\]

- Backward to $(l + 1)$-th layer iteratively with

\[
\frac{\partial R}{\partial E^{(l+1)} W^{(l)}(\sigma, c)} = \hat{A}^l \left(\frac{\partial R}{\partial E^{(l+1)}(\sigma, c)} \circ \sigma^l_{i-1} \right)\]

- Apply Eq. (14).

[1] Kang, J. et al. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. In WWW 2022.

[2] Alaa, A. et al. Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions. In ICML 2020.
Algorithm: JuryGCN

- Goal: to estimate uncertainty $U_\theta(u)$ of node u.

- Initialize: $\epsilon = -\frac{1}{|V_{\text{train}}|}$, a GCN with parameter Θ

- Key steps (for each training node):
 - Compute node-wise loss $r_{i,\Theta}$ and derivative $\nabla_\Theta r_{i,\Theta}$
 - Evaluate the influence w.r.t. training node
 - Compute LOO parameters/predictions/errors
 - Compute lower and upper bound

- Return: confidence interval of node u.

![Graph with nodes and edges representing the training and testing sets.](image_url)
Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms
- JuryGCN Applications
- Experimental Results
- Conclusion
Applications: Active Learning on Node Classification

- Task: query the nodes for true labels ➔ node classifier
- General idea: select the most informative nodes

Our idea: iteratively query the nodes with the largest uncertainty

\[
\text{Acq}(V_{\text{train}}) = \arg\max_{u \in V_{\text{train}}} U_\Theta(u)
\]
Applications: Semi-supervised Node Classification

- Existing objective: mean of loss from all training nodes

\[R = \frac{1}{|V_{\text{train}}|} \sum_{i \in V_{\text{train}}} r(i, y_i, \Theta) \]

- Uncertainty-aware node-specific objective

\[r_u = -\beta_u^\tau \log(p_u^{(i)}) \quad \beta_u = \frac{|U_\Theta(u)|}{\sqrt{\sum_{i \in V_{\text{train}}} |U_\Theta(u)|^2}} \]

normalizing over all training nodes

- i-th class predictive probability

(1) u is misclassified & $p_u^{(i)}$ is small.
(2) u is well classified & $p_u^{(i)}$ is large.

[1] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In ICCV 2017.
Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms
- JuryGCN Applications
- Experimental Results
- Conclusion
Experiment Settings

- Datasets: 4 widely-adopted datasets
- Evaluation metric: micro-F1
- Comparison methods
 - Active learning-based: AGE[1], ANRMAB[2], Coreset[3], SOPT-GCN[4], Centrality, Random
 - Semi-supervised: S-GNN[5], GPN[6], GCN[7], GAT[8]
- Parameters
 - Active node classification (Cora, Citeseer, Pubmed and Reddit)
 - Query budget: 100, 100, 50, 250, step size: 20, 20, 10, 50
 - Semi-supervised node classification
 - hyperparameter: $\tau = 2$, coverage: $\alpha = 0.025$

Datasets	Cora	Citeseer	PubMed	Reddit
# nodes	2,708	3,327	19,717	232,965
# edges	5,429	4,732	44,338	114,615,892
# features	1,433	3,703	500	602
# classes	7	6	3	41

[1] Cai, H. et al. Active Learning for Graph Embedding. In arXiv 2017.
[2] Gao, L. et al. Active Discriminative Network Representation Learning. In IJCAI 2018.
[3] Sener, O. et al. Active Learning for Convolutional Neural Networks: A Core-set Approach. In arXiv 2017.
[4] Ng, Y. et al. Bayesian Semi-Supervised Learning with Graph Gaussian Processes. In NeurIPS 2018.
[5] Zhao, X. et al. Uncertainty Aware Semi-Supervised Learning on Graph Data. In NeurIPS 2020.
[6] Stadler, M. et al. Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification. In NeurIPS 2021.
[7] Kipf, T. et al. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR 2016.
[8] Veličković, P. et al. Graph Attention Networks. In ICLR 2017.
Experimental Results:
Active Learning on Node Classification

Observation: JuryGCN achieves the best query performance

Data	Query size	JURYGCN (Ours)	ANRMAB	AGE	Coreset	Centrality	Degree	Random	SOPT-GCN
Cora	20	51.1 ± 1.2	46.8 ± 0.5	49.4 ± 1.0	43.8 ± 0.8	41.9 ± 0.6	38.5 ± 0.7	40.5 ± 1.6	48.8 ± 0.7
	40	64.7 ± 0.8	61.2 ± 0.8	58.2 ± 0.7	55.4 ± 0.5	57.3 ± 0.7	48.4 ± 0.3	56.8 ± 1.3	62.6 ± 0.8
	60	69.9 ± 0.9	67.8 ± 0.7	65.7 ± 0.8	62.2 ± 0.6	63.1 ± 0.5	58.8 ± 0.6	64.5 ± 1.5	67.9 ± 0.6
	80	74.2 ± 0.7	73.3 ± 0.6	72.5 ± 0.4	70.2 ± 0.5	69.1 ± 0.4	67.6 ± 0.4	69.7 ± 1.6	73.6 ± 0.5
	100	75.5 ± 0.6	74.9 ± 0.4	74.2 ± 0.3	73.8 ± 0.4	74.1 ± 0.3	73.0 ± 0.2	74.2 ± 1.2	75.5 ± 0.7
Citeseer	20	38.4 ± 1.5	35.9 ± 1.0	33.1 ± 0.9	30.2 ± 1.2	35.6 ± 1.1	31.5 ± 0.9	30.3 ± 2.3	36.1 ± 0.7
	40	51.1 ± 0.9	46.7 ± 1.3	49.5 ± 0.6	42.1 ± 0.8	49.8 ± 1.3	39.8 ± 0.7	41.1 ± 1.8	49.2 ± 0.5
	60	58.2 ± 0.8	55.2 ± 0.9	56.1 ± 0.5	52.1 ± 0.9	57.1 ± 0.7	50.1 ± 1.1	49.8 ± 1.3	56.4 ± 0.5
	80	63.8 ± 1.1	63.2 ± 0.7	61.5 ± 0.8	59.9 ± 0.6	63.3 ± 1.0	58.8 ± 0.6	58.1 ± 1.1	63.2 ± 0.8
	100	64.3 ± 1.2	64.1 ± 0.5	63.2 ± 0.7	62.8 ± 0.4	63.9 ± 0.6	61.8 ± 0.5	62.9 ± 0.8	63.8 ± 0.6
Pubmed	10	61.8 ± 0.9	60.5 ± 1.3	58.9 ± 1.1	53.1 ± 0.7	55.8 ± 1.2	56.4 ± 1.5	52.4 ± 1.7	59.5 ± 0.6
	20	70.2 ± 0.6	66.8 ± 1.1	68.7 ± 0.7	62.8 ± 0.5	67.2 ± 1.4	64.3 ± 1.0	60.5 ± 1.4	67.9 ± 0.9
	30	73.9 ± 0.3	71.6 ± 0.8	72.8 ± 1.0	68.9 ± 0.3	73.5 ± 0.9	70.1 ± 0.7	68.9 ± 1.1	72.3 ± 0.8
	40	74.6 ± 0.4	73.2 ± 0.6	74.7 ± 0.8	72.8 ± 0.8	74.1 ± 0.7	72.0 ± 0.8	71.8 ± 1.2	73.8 ± 0.7
	50	75.4 ± 0.5	74.7 ± 0.4	75.1 ± 0.5	73.5 ± 0.6	74.2 ± 0.6	72.9 ± 0.5	73.1 ± 1.0	75.2 ± 0.5
Reddit	50	69.7 ± 1.7	67.8 ± 0.9	64.2 ± 1.1	62.1 ± 0.6	65.5 ± 1.2	62.5 ± 1.4	63.7 ± 2.4	68.1 ± 1.2
	100	82.9 ± 1.5	81.3 ± 1.0	79.5 ± 0.8	81.2 ± 1.0	78.2 ± 0.9	81.1 ± 1.2	80.5 ± 1.6	80.4 ± 1.3
	150	86.0 ± 1.4	84.3 ± 0.7	83.2 ± 0.4	84.8 ± 0.9	84.1 ± 1.1	82.5 ± 1.2	81.5 ± 1.4	85.0 ± 1.5
	200	88.1 ± 0.9	86.1 ± 0.8	85.8 ± 0.5	85.5 ± 0.8	87.5 ± 0.8	85.4 ± 0.7	83.1 ± 1.8	87.2 ± 0.9
	250	89.2 ± 0.8	87.6 ± 0.7	87.1 ± 0.4	86.6 ± 1.1	88.7 ± 0.6	86.1 ± 1.0	87.3 ± 1.5	87.8 ± 1.1
Experimental Results:
Semi-supervised Node Classification

Observation: achieving better performance when #labels is smaller
Experimental Results: Efficiency

- Metrics: running time, memory usage

- Observation: JuryGCN can achieve the best efficiency performance.
Experimental Results: Parameter Study

- coverage, α; hyperparameter, τ

Observation: constantly achieving good performance.
Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms
- JuryGCN Applications
- Experimental Results
- Conclusion
Conclusion

❑ Problem: Jackknife Uncertainty Quantification on GCN
❑ Solution:
 • Jackknife+ estimation
 • Influence-based approach
❑ Applications:
 • Active learning on node classification
 • Semi-supervised node classification
❑ Results: outperforming other comparison method
 • Improve node classification accuracy
 • Select the most informative nodes
 • Efficient computation compared to re-training

Title: JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks
Authors: Jian Kang, Qinghai Zhou, Hanghang Tong
Email: jiank2@illinois.edu, qinghai2@illinois.edu