Triangle-free induced subgraphs of polarity graphs

Jared Loucks∗ Craig Timmons†

Abstract

Given a finite projective plane Π and a polarity θ of Π, the corresponding polarity graph is the graph whose vertices are the points of Π. Two distinct vertices p and p′ are adjacent if p is incident to θ(p′). Polarity graphs have been used in a variety of extremal problems, perhaps the most well-known being the Turán number of the cycle of length four. We investigate the problem of finding the maximum number of vertices in an induced triangle-free subgraph of a polarity graph. Mubayi and Williford showed that when Π is the projective geometry PG(2, q) and θ is the orthogonal polarity, an induced triangle-free subgraph has at most \(\frac{1}{2}q^2 + O(q^{3/2}) \) vertices. We generalize this result to all polarity graphs, and provide some interesting computational results that are relevant to an unresolved conjecture of Mubayi and Williford.

1 Introduction

Let Π = (\(\mathcal{P}, \mathcal{L}, \mathcal{I} \)) be a finite projective plane. A polarity θ of Π is a bijection of order two that maps \(\mathcal{P} \) to \(\mathcal{L} \), maps \(\mathcal{L} \) to \(\mathcal{P} \), and has the property that for any point \(p \) and line \(l \),

\[p \mathcal{I} l \quad \text{if and only if} \quad \theta(l) \mathcal{I} \theta(p). \]

Polarities in projective planes have a rich history in finite geometry. For further discussion, we recommend Hughes and Piper ([13], Chapter 12) or Dembowski ([6], Chapter 3). Given a finite projective plane Π and a polarity θ of Π, the corresponding polarity graph, denoted \(G(\Pi, \theta) \), is the graph whose vertex set is \(\mathcal{P} \). Two distinct vertices \(p \) and \(p' \) are adjacent if and only if \(p \mathcal{I} \theta(p') \).

Let \(q \) be a power of a prime. The special case when the plane Π is PG(2, q) and θ is the polarity that maps a subspace to its orthogonal complement appears frequently in combinatorics. This graph, which we denote by \(ER_q \), was introduced to the graph theory community by Erdős, Rényi [8], Brown [4], and Erdős, Rényi, and Sós [9]. Since then, \(ER_q \) has appeared in many different contexts such as Ramsey theory, spectral and structural graph theory, and Turán problems. For instance, \(ER_q \) has the maximum
number of edges among all graphs with \(q^2 + q + 1 \) vertices that have no cycle of length four. This was proved by Füredi \[10\] and is one of the most important results concerning bipartite Turán problems. In fact, any polarity graph \(G(\Pi, \theta) \) where \(\Pi \) has order \(q \) has this same property provided that the number of absolute points of \(\theta \) is \(q + 1 \). Such a polarity is called orthogonal. A classical result of Baer \[3\] states that any polarity of a projective plane of order \(q \) has at least \(q + 1 \) absolute points. Thus, orthogonal polarities are the ones that have the fewest number of absolute points.

A consequence of its significance in graph theory is that different properties of \(ER_q \) have been studied. In \[8, 9\] it is shown that \(ER_q \) has \(\frac{1}{2} q^2 (q + 1) \) edges, has diameter 2, and does not contain a cycle of length four. In general, this is true for any polarity graph \(G(\Pi, \theta) \) for which \(\theta \) is orthogonal. The automorphism group of \(ER_q \) was determined by Parsons \[18\], and then again by Bachratý and Širáň \[2\] who provided simpler proofs. The independence number and chromatic number of \(ER_q \) was studied in \[11, 12, 17, 20\] and \[19\], respectively.

In this note, we consider the following problem of Mubayi and Williford \[17\].

Problem 1.1 Determine the maximum number of vertices in an induced subgraph of \(ER_q \) that contains no cycle of length three.

One of the motivations behind Problem 1.1 comes from Turán theory. Let us write \(\text{ex}(n, \{C_3, C_4\}) \) for the maximum number of edges in an \(n \)-vertex graph with no cycle of length 3 or 4. Note that such a graph has girth at least 5. The incidence graph of a projective plane has girth at least 5. Erdős \[7\] has conjectured that this construction is asymptotically best possible; that is

\[
\text{ex}(n, \{C_3, C_4\}) = \frac{1}{2\sqrt{2}} n^{3/2} + o(n^{3/2})
\]

(1)

It was recently conjectured by Allen, Keevash, Sudakov, and Verstraete \[1\] that \((1) \) can be improved. More precisely, if \(z(n, C_4) \) is the maximum number of edges in an \(n \)-vertex bipartite graph with no cycle of length 4, then Allen et. al. conjecture that

\[
\liminf_{n \to \infty} \frac{\text{ex}(n, \{C_3, C_4\})}{z(n, C_4)} > 1
\]

The best known lower bound on \(\text{ex}(n, \{C_3, C_4\}) \) comes from an induced triangle free subgraph of \(ER_q \) and shows that for infinitely many \(n \),

\[
\text{ex}(n, \{C_3, C_4\}) > z(n, C_4) + \frac{1}{8} n + O(\sqrt{n}).
\]

This construction is due to Parsons \[18\] and will be discussed momentarily.

Let us now return to Problem 1.1 Mubayi and Williford \[17\] showed that for any \(q \), the maximum number of vertices in an induced triangle-free subgraph of \(ER_q \) is at most

\[
\frac{1}{2} q^2 + q^{3/2} + O(q).
\]

Using an approach based on finite geometry, we generalize this upper bound to all polarity graphs.
Theorem 1.2 Let Π be a projective plane of order q, θ be a polarity of Π, and $G(\Pi, \theta)$ be the corresponding polarity graph. If H is an induced triangle-free subgraph of $G(\Pi, \theta)$, then

$$|V(H)| \leq \frac{1}{2}(q^2 + q + 1) + \sqrt{q \left(\frac{q^2 + q + 1}{q + 1}\right)}.$$

As for lower bounds, Parsons [18] showed that when q is a power of an odd prime, ER_q contains an induced triangle-free subgraph on $\binom{q}{2}$ vertices if $q \equiv 1(\text{mod} \ 4)$, and on $\binom{q+1}{2}$ vertices if $q \equiv 3(\text{mod} \ 4)$. By the above mentioned result of Mubayi and Williford [17], the construction of Parsons is asymptotically best possible. The following was conjectured in [17] and asserts that one cannot do better than Parsons’ construction.

Conjecture 1.3 (Mubayi, Williford [17]) Let q be a power of an odd prime. The maximum number of vertices in an induced triangle-free subgraph of ER_q containing no absolute points is $\binom{q}{2}$ if $q \equiv 1(\text{mod} \ 4)$, and $\binom{q+1}{2}$ if $q \equiv 3(\text{mod} \ 4)$.

We remark that the reason for excluding absolute points is that in any polarity graph, a vertex that is an absolute point will not lie in a triangle. We prove this in the next section and it is a known result.

Our computational results show that if Conjecture 1.3 is true, then one must assume some lower bound on q as the conjecture fails for small values of q. These new lower bounds are summarized in the following table where we write $f(ER_q)$ for the maximum number of vertices in an induced triangle-free subgraph of ER_q that contains no absolute points. Those values marked with a * indicate an improvement over Parsons’ construction.

q	$f(ER_q)$
3	$= 6$
5*	$= 16$
7*	≥ 30
9*	≥ 46
11	≥ 66
13*	≥ 80

For comparison with Conjecture 1.3 our lower bound for 7, 9, and 13 exceeds the conjectured bound by 2, 10, and 2, respectively. The lower bound for 5 was done by a simple brute force search argument but for larger q, such a search is impossible. A Mathematica [21] notebook file giving these lower bounds is available on the second listed author’s website [15].

When q is a power of 2, Mattheus, Pavese, and Storme [16] recently proved that ER_q contains an induced subgraph of girth at least 5 with $\frac{q(q+1)}{2}$ vertices. This answers a question of Mubayi and Williford [17]. Another polarity graph of interest is the unitary polarity graph U_q. If q is an even power of a prime, the graph U_q has the same vertex set as ER_q. Let us write (x_0, x_1, x_2) for a vertex in ER_q where (x_0, x_1, x_2) is a nonzero
vector, and two 3-tuples represent the same vertex if one is a nonzero multiple of the other. Two distinct vertices \((x_0, x_1, x_2)\) and \((y_0, y_1, y_2)\) are adjacent if
\[x_0 \sqrt{q} y_0 + x_1 \sqrt{q} y_1 + x_2 \sqrt{q} y_2 = 0.\]

Despite this relatively simple algebraic condition for adjacency, we were unable to find a triangle-free induced subgraph of \(U_q\) with \(\frac{1}{2}q^2 - o(q^2)\) vertices. In general, we conclude our introduction with the following question which generalizes one asked in [17].

Question 1.4 Given a projective plane \(\Pi\) of order \(q\) and a polarity \(\theta\) of \(\Pi\), is it always possible to find a triangle-free subgraph of \(G(\Pi, \theta)\) with \(\frac{1}{2}q^2 - o(q^2)\) vertices?

The rest of this note is organized as follows. In Section 2 we prove Theorem 1.2. In Section 3 we discuss some of our computational results and make some additional remarks.

2 Proof of Theorem 1.2

Throughout this section, \(\Pi\) is a projective plane of order \(q\), \(\theta\) is a polarity of \(\Pi\), and \(G(\Pi, \theta)\) is the corresponding polarity graph.

The first lemma is known but a proof is included for completeness.

Lemma 2.1 No absolute point of \(\theta\) is in a triangle in \(G(\Pi, \theta)\).

Proof. Suppose \(p_1\) is an absolute point that lies in a triangle and the other vertices of the triangle are \(p_2\) and \(p_3\). It must be the case that all three of \(p_1, p_2,\) and \(p_3\) are incident to \(\theta(p_1)\). However, \(p_1\) is incident to \(\theta(p_3)\) and \(p_2\) is incident to \(\theta(p_3)\). As the line through any pair of points is unique, \(\theta(p_1) = \theta(p_3)\) which implies \(p_1 = p_3\), a contradiction. \(\blacksquare\)

Lemma 2.2 If \(p\) is a vertex of \(G(\Pi, \theta)\) and \(p\) is not an absolute point of \(\theta\), then the vertices adjacent to \(p\) can be partitioned into two sets \(A_p\) and \(B_p\) such that

1. the set \(A_p\) is a (possibly empty) subset of the absolute points of \(\theta\), and
2. the vertices in \(B_p\) induce a matching in \(G(\Pi, \theta)\), and no vertex in \(B_p\) is an absolute point of \(\theta\).

Proof. Since \(\Pi\) has order \(q\), there are exactly \(q + 1\) lines that \(p\) is incident to. These lines can be written as \(\theta(p_1), \theta(p_2), \ldots, \theta(p_{q+1})\) for some \(p_1, p_2, \ldots, p_{q+1} \in \mathcal{P}\). By definition, we have that \(p\) is adjacent to \(p_1, p_2, \ldots, p_{q+1}\) in the graph \(G(\Pi, \theta)\). Note that no \(p_i\) is equal to \(p\) since \(p\) is not an absolute point. By relabeling if necessary, we may assume that \(p_1, p_2, \ldots, p_c\) are not absolute points, and that \(p_{c+1}, p_{c+2}, \ldots, p_{q+1}\) are absolute points. Let \(A_p = \{p_{c+1}, p_{c+2}, \ldots, p_{q+1}\}\) and \(B_p = \{p_1, p_2, \ldots, p_c\}\). We have that \(A_p\) is a subset of the absolute points and that \(B_p\) contains no absolute points. To finish the proof of the lemma, we must show that the vertices in \(B_p\) induce a matching.
Let \(p_i \in B_p \) so \(p \) is incident to \(\theta(p_i) \). There is exactly one line \(l \in \mathcal{L} \) such that \(p \) and \(p_i \) are both incident to \(l \). There must be a \(j \in \{1, 2, \ldots, q + 1\} \) such that \(l = \theta(p_j) \) and so \(p, p_i, \) and \(p_j \) form a triangle. By Lemma 2.1, \(p_j \) cannot be an absolute point so \(j \in \{1, 2, \ldots, c\} \). If \(j = i \), then \(p_i \) is an absolute point, but \(p_i \in B_p \) and \(B_p \) contains no absolute points. Therefore, \(j \neq i \) and the vertices \(p, p_i, \) and \(p_j \) are all distinct. Because there is exactly one line \(l \) with both \(p \) and \(p_i \) incident to \(l \), \(p_i \) uniquely determines \(p_j \) and so the vertices in \(B_p \) induce a matching.

The next result is the well-known Expander Mixing Lemma.

Theorem 2.3 Let \(G \) be a \(d \)-regular graph, possibly with loops where a loop adds one to the degree of a vertex. If \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \) are the eigenvalues of the adjacency matrix of \(G \) and \(\lambda = \max_{2 \leq i \leq n} |\lambda_i| \), then for any sets \(X, Y \subseteq V(G) \),

\[
|e(X, Y) - \frac{d|X||Y|}{n}| \leq \lambda \sqrt{|X||Y|}
\]

where \(e(X, Y) = |\{(x, y) \in X \times Y : \{x, y\} \in E(G)\}| \).

Let \(G^\circ(\Pi, \theta) \) be the graph obtained from \(G(\Pi, \theta) \) by adding one loop to each absolute point. It is known that the eigenvalues of \(G^\circ(\Pi, \theta) \) are \(q + 1 \) with multiplicity 1, and all others have magnitude at most \(\sqrt{q} \). For any subset of vertices \(J \subseteq V(G^\circ(\Pi, \theta)) \), we have by Theorem 2.3

\[
|e(J, J) - \frac{(q + 1)|J|^2}{q^2 + q + 1}| \leq \sqrt{q}|J|.
\]

We now have all of the tools that we need in order to prove Theorem 1.2.

Proof of Theorem 1.2. Let \(J \subset V(G(\Pi, \theta)) \) and assume that \(J \) contains no absolute points, and that the subgraph induced by \(J \) contains no triangles. Since \(J \) contains no absolute points, the number of edges in \(G(\Pi, \theta) \) whose endpoints are in \(J \) is the same as the number of edges in \(G^\circ(\Pi, \theta) \) whose endpoints are in \(J \). By Theorem 2.3

\[
e(J, J) \geq \frac{(q + 1)|J|^2}{q^2 + q + 1} - \sqrt{q}|J|.
\]

Note that \(e(J, J) = \sum_{v \in J} d_J(v) \), where \(d_J(v) \) is the number of neighbors of \(v \) in \(J \). Let \(v \in J \). By Lemma 2.2, since \(J \) contains no absolute points, all of the vertices adjacent to \(v \) are contained in \(B_v \), and therefore induce a matching in \(G(\Pi, \theta) \). Since \(J \) contains no triangles, \(d_J(v) \leq \frac{|B_v|}{2} \leq \frac{q^2 + q + 1}{2} \). Combining this inequality with 2), we get that

\[
\frac{(q + 1)|J|^2}{q^2 + q + 1} - \sqrt{q}|J| \leq e(J, J) \leq \sum_{v \in J} d_J(v) \leq |J| \left(\frac{q + 1}{2} \right).
\]

Solving this inequality for \(|J| \) yields

\[
|J| \leq \frac{1}{2}(q^2 + q + 1) + \sqrt{q} \left(\frac{q^2 + q + 1}{q + 1} \right)
\]

completing the proof of the theorem.
3 Concluding Remarks

We begin this section by giving a brief description of how our computational results were obtained. A close look at the proof of Theorem 1.2 suggests that one way to find a large set J that induces a triangle-free graph is to choose an independent set I of size q, and then for each vertex $v \in I$, we choose one vertex from each triangle in the neighborhood v and put it into J. This would give a set of size about $\frac{1}{2}q^2$ which is the size we are aiming for, but of course we need to avoid triangles. This is the main difficulty. Our lower bounds for $q \geq 7$ are, more or less, obtained by following this approach. More details are provided in [15].

In any polarity graph $G(\Pi, \theta)$, the neighborhood of a vertex induces a graph of maximum degree 1, otherwise we find a cycle of length four. If Π has order q, then this provides a trivial lower bound of $\frac{1}{2}(q + 1)$ on the number of vertices in an induced triangle-free subgraph but there may be absolute points in this set. Regardless, this lower bound can be improved by considering the hypergraph $\mathcal{H}(\Pi, \theta)$ whose vertex set is the vertices of $G(\Pi, \theta)$ that are not absolute points. The edges of $\mathcal{H}(\Pi, \theta)$ are the triangles in $G(\Pi, \theta)$. Since a polarity has at most $\frac{q^3}{2} + 1$ absolute points (see [13]), $\mathcal{H}(\Pi, \theta)$ has at least $q^2 + q - \frac{q^3}{2}$ vertices. Furthermore, each vertex in $G(\Pi, \theta)$ is in at most $\frac{q+1}{2}$ triangles and no two triangles share an edge. This implies that $\mathcal{H}(\Pi, \theta)$ has maximum degree $\frac{q+1}{2}$ and maximum codegree 1. By a result of Duke, Lefmann, and Rödl [5], there is positive constant c, not depending on Π or θ, such that the independence number of $\mathcal{H}(\Pi, \theta)$ is at least $cq^{3/2}\sqrt{\log q}$. By definition, such a set induces a triangle-free graph in $G(\Pi, \theta)$. This argument was pointed out to the second author by Jacques Verstraëte.

In the search for induced triangle-free graphs, a related problem arose. Consider the graph ER_q where q is a power of an odd prime. The vertices of ER_q can be partitioned into three sets: the absolute points, the vertices that are adjacent to at least one absolute point, and the vertices not adjacent to any absolute points. This is proved in [18] and [20]. Let us call these sets A_q, S_q, and E_q, respectively. When $q \equiv 1(\text{mod } 4)$, the subgraph induced by E_q is triangle-free, and when $q \equiv 3(\text{mod } 4)$, the subgraph induced by S_q is triangle-free. This is the construction of Parsons [18] which shows Conjecture 1.3 if true, would be best possible. One can ask if this property characterizes $PG(2, q)$? That is, suppose $G(\Pi, \theta)$ is a polarity graph for which the vertex set admits a partition into three sets consisting of the absolute points of θ, the neighbors of the absolute points (which we denote by S), and the vertices not adjacent to absolute points (which we denote by E). If the subgraph induced by S or by E is triangle-free, then must $\Pi = PG(2, q)$ and θ be an orthogonal polarity of $PG(2, q)$?

References

[1] P. Allen, P. Keevash, B. Sudakov, J. Verstraëte, Turán numbers of bipartite graphs plus an odd cycle, J. Combin. Theory Ser. B 106 (2014), 134–162.

[2] M. Bachratý, J. Širáň, Polarity graphs revisited, Ars Math. Contemp. 8 (2015), no. 1, 55-67.
[3] R. Baer, Polarities in finite projective planes, *Bull. Amer. Math. Soc.* 52, (1946). 77–93.

[4] W. G. Brown, On graphs that do not contain a Thomsen graph, *Canad. Math. Bull.* 9 1966 281–285.

[5] R. Duke, H. Lefmann, V. Rödl, On uncrowded hypergraphs, *Random Structures Algorithms* 6 (1995), no. 2-3, 209–212.

[6] P. Dembowski, *Finite Geometries*, Springer-Verlag Berlin Heidelberg, Germany, 1968.

[7] P. Erdős, Some recent progress on extremal problems in graph theory, *Congr. Numer.* 14 (1975), 3-14.

[8] P. Erdős, A. Rényi, On a problem in the theory of graphs. (Hungarian) *Magyar Tud. Akad. Mat. Kutató Int. Közl.* 7 1962 623–641 (1963).

[9] P. Erdős, A. Rényi, V. T. Sós, On a problem of graph theory, *Studia Sci. Math. Hungar.* 1 1966 215–235.

[10] Z. Füredi, On the number of edges of quadrilateral-free graphs, *J. Combin. Theory Ser. B* 68 (1996), no. 1, 1–6.

[11] C. Godsil, M. Newman, Eigenvalue bounds for independent sets, *J. Combin. Theory Ser. B* 98 (2008), no. 4, 721–734.

[12] S. Hobart, J. Williford, The independence number for polarity graphs of even order planes, *J. Algebraic Combin.* 38 (2013), no. 1, 57–64.

[13] D. R. Hughes, F. C. Piper, *Projective Planes*, GTM Vol. 6, Springer-Verlag New-York-Berlin, 1973.

[14] F. Lazebnik, J. Verstraëte, On hypergraphs of girth five, *Electron. J. Combin.* 10 (2003), #R25.

[15] J. Loucks, C. Timmons, Supporting Mathematica notebook file available at http://webpages.csus.edu/craig.timmons/papers

[16] S. Mattheus, F. Pavese, L. Storme, On the independence number of graphs related to a polarity, arXiv:1704.00487v1 3 Apr 2017.

[17] D. Mubayi, J. Williford, On the independence number of the Erdős-Rényi and projective norm graphs and a related hypergraph, *J. Graph Theory* 56 (2007), no. 2, 113-127.

[18] T. D. Parsons, Graphs from projective planes, *Aequationes Math.* 14 (1976), no. 1-2, 167-189.
[19] X. Peng, M. Tait, C. Timmons, On the chromatic number of the Erdős-Rényi orthogonal polarity graph, *Electron. J. Combin.* 22 (2015), no. 2, Paper 2.21, 19 pp.

[20] J. Williford, *Constructions in finite geometry with applications to graphs*, PhD Thesis, University of Delaware, 2004.

[21] Wolfram Research, Inc., *Mathematica*, Version 11.0, Champaign, IL (2016).