Characterization of the first mitogenomes of the smallest fish in the world, *Paedocypris progenetica*, from peat swamp of Peninsular Malaysia, Selangor, and Perak

NorJasmin Hussin1,2, Izzati Adilah Azmir2*, Yuzine Esa3, Amirrudin Ahmad4,5, Faezah Mohd Salleh6, Puteri Nur Syahzanani Jahari6, Kaviarasu Munian7, Han Ming Gan8

1Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Malaysia
2School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Malaysia
3Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Malaysia
4School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia
5Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia
6Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
7Forest Biodiversity Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia
8GeneSEQ Sdn Bhd, Bukit Beruntung, 48300 Rawang, Malaysia

Received: December 20, 2021
Revised: February 28, 2022
Accepted: March 17, 2022

*Corresponding author:
E-mail: izzati_adilah@uitm.edu.my

The two complete mitochondrial genomes (mitogenomes) of *Paedocypris progenetica*, the smallest fish in the world which belonged to the Cyprinidae family, were sequenced and assembled. The circular DNA molecules of mitogenomes P1-*P. progenetica* and S3-*P. progenetica* were 16,827 and 16,616 bp in length, respectively, and encoded 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region. The gene arrangements of *P. progenetica* were identical to those of other *Paedocypris* species. BLAST and phylogenetic analyses revealed variations in the mitogenome sequences of two *Paedocypris* species from Perak and Selangor. The circular DNA molecule of *P. progenetica* yield a standard vertebrate gene arrangement and an overall nucleotide composition of A 33.0%, T 27.2%, C 23.5%, and G 15.5%. The overall AT content of this species was consistent with that of other species in other genera. The negative GC-skew and positive AT-skew of the control region in *P. progenetica* indicated rich genetic variability and AT nucleotide bias, respectively. The results of this study provide genomic variation information and enhance the understanding of the mitogenome of *P. progenetica*. They could later deliver highly valuable new insight into data for phylogenetic analysis and population genetics.

Keywords: mitogenome, *Paedocypris progenetica*, Peninsular Malaysia
Introduction
The *Paedocypris* populations are rapidly declining worldwide due to anthropogenic and environmental actions that pose a threat to their survival [1]. According to Sam et al. [2], the evolution of small sizes, or miniaturization, is extensively seen in vertebrate species and is most commonly documented in amphibians and fishes. Southeast Asia harbors highly acidic blackwater peat swamps that serve as habitats for miniature fish, which are nearly all endemic to these habitats. The features of miniature phenotypes exhibit morphological novelty and increased morphological variability and are mostly unique combinations of ancestral phenotypes that are derived through structural simplification and reduction [3].

Interestingly, the smallest fish in the world, *Paedocypris progenetica*, is found in Peninsular Malaysia. However, the lack of its genomic data in GenBank could hinder the extensive study of this remarkable species. The mitochondrial genome (mitogenome) contains multiple genes that are noteworthy for ecological and evolutionary studies to investigate the phylogeny and biodiversity of complex species by using high-throughput sequencing technologies [4]. Hence, this study provided the whole mitogenome of *P. progenetica* from Peninsular Malaysia for the first time.

Methods
DNA sampling and sequencing
The samples of *P. progenetica* were collected from North Peat Swamp Selangor (3.39°N, 101.15°E) and Pondok Tanjung Perak (5.04°N, 100.4°E), Peninsular Malaysia in February 2021. Genomic DNA was extracted from the tissue of *P. progenetica* specimens by using a ReliaPrep gDNA Tissue Miniprep system (Promega, Madison, WI, USA), fragmented with a Bioruptor system, and the remaining tissue is currently deposited at University Putra Malaysia (UPM). The library was prepared by using a NEBNext Ultra II DNA Library Prep Kit for Illumina in accordance with the manufacturer’s protocol. The sample was then sequenced by using an Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA) with 150 paired-end modes (PE150) [5].

Mitogenome assembly, annotation, and sequence analysis
Sequencing adapters, low-quality stretches, and leading/tailing Ns were trimmed from the raw reads of the sequences by using AdapterRemoval V2.2.2 [6]. Forward and reverse reads were interleaved into single file and the assembly were carried out using two different softwares, NOVOPlasty v4.2 [5] and Megahit v1.2.9 [7], both using default k-mer sizes. For the assembly using NOVOPlas-
Table 1. The reported mitogenome of *Paedocypris progenetica* from Peninsular Malaysia

Sample ID	Genbank accession number	Origin	Length (bp)	Sex	GC%	AT%
P1	OK356905	Pondok Tanjung Perak, Malaysia	16,827	Male	38.3	61.7
S3	OK413207	North Peat Swamp Selangor, Malaysia	16,616	Female	38.5	61.5

Table 2. Gene features of the mitochondrial genome of *Paedocypris progenetica*

Gene	Position	Size (bp)	Start/Stop codon	Strand	
tRNA-Phe	1-69	69		+	
12S rRNA	70	1018		+	
tRNA-Val	1019	1090		+	
16S rRNA	1091	2762	1,672	+	
tRNA-Leu	2763	2837	75	+	
ND1	2838	3812	975	ATG/TAA	+
tRNA-Ile	3813	3882	70	+	
tRNA-Gln	3881	3951	71	–	
tRNA-Met	3952	4020	69	+	
ND2	4021	5059	1,039	ATG/T	+
tRNA-Trp	5060	5130	71	+	
tRNA-Ala	5133	5201	69	–	
tRNA-Asn	5203	5275	73	–	
tRNA-Cys	5310	5374	65	–	
tRNA-Tyr	5375	5444	70	–	
COI	5446	6990	1,545	GTG/TAG	+
tRNA-Ser	6994	7064	71	–	
tRNA-Asp	7066	7138	73	+	
COII	7152	7842	691	ATG/T	+
tRNA-Lys	7843	7915	73	+	
ATPase-8	7917	8084	168	ATG/TAA	+
ATPase 6	8075	8757	683	ATG/T(A)	+
COIII	8758	9541	784	ATG/T	+
tRNA-Gly	9542	9613	72	+	
ND3	9614	9959	346	ATG/TAG	+
tRNA-Arg	9960	10030	71	+	
ND4L	10031	10327	297	ATG/TAA	+
ND4	10321	11702	1,382	ATG/T(A)	+
tRNA-His	11703	11771	69	+	
tRNA-Ser	11772	11840	69	+	
tRNA-Leu	11842	11914	73	+	
ND5	11915	13750	1,836	ATG/TAG	+
ND6	13747	14268	522	ATG/TAA	–
tRNA-Glu	14270	14338	69	–	
Cyt b	14341	15477	1,137	ATG/TAA	+
tRNA-Thr	15480	15550	71	+	
tRNA-Pro	15549	15618	70	–	
Control Region	15619	16728	1,209	–	
tionships between fish species. The stipulated data in Table 2 indicated that the ND6 and seven tRNA genes (tRNA^A^, tRNA^Ala^, tRNA^Asn^, tRNA^Cys^, tRNA^Ser^, tRNA^Glu^, and tRNA^Pro^) were encoded on the L-strand, whereby, most of P. progenetica mitochondrial genes were encoded on the H-strand. This finding was consistent with the result reported by Sam et al. [2] on the mitogenomes of P. micromegethes and P. carbunculus as there were no significant changes found between the populations of P. progenetica between the conserved genes (PCGs, tRNAs and rRNAs). However, the mitogenome length of P. micromegethes and P. carbunculus were clearly different from those of P. progenetica, presumably because of the variations in the control region (D-loop).

Phylogenetic relationship

The mitogenomic phylogeny analysis clustered the two mitogenomes of P. progenetica (OK356905 and OK413207) with the mitogenome of P. progenetica from Indonesia (AP011287) [17] and rooted them with the mitogenomes of other Paedocypris species [2,18] (Fig. 1) with the high support of 100% bootstrap and 1.00 posterior probability. GenBank revealed that the closest match (>96% similarity) was between the newly sequenced mitogenomes of P. progenetica from Peninsular Malaysia and the mitogenomes of P. progenetica (AP011287) from a peat swamp in Sumatra, Indonesia [18] (Table 1). Moreover, <96% similarity was found among Paedocypris species. The molecular evidence strongly indicated that Clade 1, which included the P. micromegethes (NC_051487.1) subclade-1, comprised a stable monophyletic group. The latest research has found identical ancestral patterns for Cirrhinus reba, which aligned in the same clade containing the same species [19].

Protein-coding genes

The prominent features of Paedocypris mitochondrial genes are listed in Table 3, which indicates that all PCGs, except for the COI gene that began with GTG, began with the start codon (ATG). The seven PCGs including nad1, cox1, atp8, atp6, nad4l, nad4, and nad5 were terminated by a complete and canonical stop codon (TAA or TAG). However, the genes encoding cox2, cox3, nad2, and nad3 had a truncated stop codon. Similar to the finding reported by Sam et al. [2], except for the COI gene that was terminated by GTG, most PCGs in the mitogenomes of P. carbunculus and P. micromegethes were terminated by the codon TAR (TAA/TAG) or an incomplete codon (TA-/T--). According to Zhong et al. [20], a truncated stop codon (T) is commonly found in the mitochondrial gene of metazoans, such as the spider Habronattus oregonensis, and does not affect mitochondrial gene transcription or

> Fig. 1. The phylogenetic tree of Paedocypris progenetica mitogenomes (OK356905 and OK413207) and other Paedocypris species available in GenBank. The bootstrap values were indicated in each branch of the tree representing the result of neighbor-joining probability. Schimatorhynchos nukta was selected as an outgroup.
translation because the complete stop codon is presumably obtained through post-transcriptional polyadenylation [21].

Gene arrangements

The remarkable species *Paedocypris progenetica* of both samples (S3 and P1) from Peninsular Malaysia were aligned with 96% similarity of *P. progenetica* collected from Indonesia (AP011287) retrieved in GenBank entry. The overall nucleotide composition of *P. progenetica* was 33.0% A, 27.2% T, 23.5% C, and 15.5% G and showed a slightly AT-rich region (60.25%); these results were consistent with the patterns found in most fish mitogenomes [22]. The nucleotide composition of the *P. progenetica* mitogenome was highly biased toward A + T and had similar values as other *Paedocypris* species, such as *P. carbunculus* from Banka. The PCGs had a slightly higher A + T content (61.7%) compared to ribosomal RNA genes (59.8%). Based on Table 3, the AT and GC skew of *P. progenetica* showed 0.10 and −0.20, respectively. The GC skews of all genes, except for those of NAD6 and tRNA, which were positive for both populations, were negative and indicated a regular pattern of base composition behavior in the *P. progenetica* mitogenome. This result agreed well with that of Sam et al. [2], who discovered the AT-skew was mainly positive and the GC-skew were mostly negative values in distinct gene regions of the *P. micromegethes* and *P. carbunculus* mitogenomes.

Meanwhile, a vast difference in nucleotide composition in the control region (D-loop region) located between *trnP* (tRNA²⁵⁶) and *trnF* (tRNA³⁴) can be seen in this genus. The lengths of PCGs, tRNAs, and rRNAs were conserved, and the variations were mainly attributed to the control region. The lengths of the D-loop region in *P. micromegethes* and *P. carbunculus* were 1,590 and 1,662 bp, respectively, whereas we found the considerably shorter D-loop region length of 1,209 bp (OK356905 and OK413207). These results differed because the D-loop region exhibits a rapid evolutionary rate and tends to possess lower purifying selection compared to PCGs that amass variations in length [23]. According to Li et al. [24], noncoding regions in metazoan mitogenomes frequently vary in length from species to species. However, the D-loop region of the reference species collected from Indonesia (AP011287) was not recorded in GenBank. Eventually, future studies on the non-coding region may contribute genetic data and enhance studies on the genomic data of *P. progenetica*.

Table 3. The composition and skewness between *Paedocypris progenetica* from P.M, Malaysia and Sumatera, Indonesia

Feature	A + T%	AT skew	GC skew			
	Indonesia	PM	Indonesia	PM	Indonesia	PM
Whole genome	61.22	61.1	0.1	0.1	-0.20	-0.20
PCGs	61.8	61.7	0.04	0.03	-0.28	-0.22
nad1	59.1	59.3	0.05	0.05	-0.29	-0.29
nad2	65.1	64.5	0.18	0.18	-0.40	-0.41
cox1	59.9	59.4	-0.05	-0.05	-0.10	-0.10
cox2	62.1	61.2	0.09	0.1	-0.18	-0.18
atp8	64.3	65.5	0.11	0.1	-0.37	-0.64
atp6	64.3	63.1	-0.06	0.06	-0.31	-0.30
cox3	57.7	57.9	0.03	0.02	-0.23	-0.22
nad3	61.3	61.2	-0.02	0.00	-0.22	-0.24
nad4l	61	59.9	-0.01	-0.02	-0.30	-0.29
nad4	63.1	64.2	0.10	0.11	-0.22	-0.23
nad5	62.5	62.6	0.11	0.12	-0.27	-0.29
nad6	59.4	60.6	-0.52	-0.52	0.38	0.42
cytb	62.9	62.5	-0.02	-0.02	-0.21	-0.23
tRNAs	59.5	60.36	0.02	0.02	0.08	0.07
rmA	59.9	59.8	0.25	0.25	-0.07	-0.07

P.M, Peninsular Malaysia.
and phylogenetic relationships of Paedocypris species provided fundamental information for evolutionary biology and are particularly important for future studies using the D-loop region and whole-genome sequences to resolve the relationship among Paedocypris species fully.

ORCID
NorJasmin Hussin: https://orcid.org/0000-0002-8355-728X
Izzatı Adilah Azmir: https://orcid.org/0000-0002-2829-2741
Yuzine Esa: https://orcid.org/0000-0002-4774-5574
Amirrudin Ahmad: https://orcid.org/0000-0002-7775-1289
Faezah Mohd Salleh: https://orcid.org/0000-0001-7492-583X
Puteri Nur Syahzanani Jahari: https://orcid.org/0000-0002-5485-6088
Kaviarasu Munian: https://orcid.org/0000-0001-8425-2675
Han Ming Gan: https://orcid.org/0000-0001-7987-738X

Authors’ Contribution
Conceptualization: IAA, YE, AA. Formal analysis: FMS, HMG, KM. Methodology: PNSJ, HMG. Writing - original draft: NH, PNSJ. Writing - review & editing: IAA, FMS.

Conflicts of Interest
No potential conflict of interest relevant to this article was reported.

Acknowledgments
This study was fully funded by the Ministry of Higher Education, Malaysia, under the Fundamental Research Grant Scheme (Ref. No: RACER/1/2019/STG05/UiTM//5) through Universiti Teknologi Mara (UiTM) (Ref No: 600-IRMI/FRGS-RACER 5/3 (058/2019). The authors would like to thank everyone from UPM, UiTM, UMT, Selangor Forestry Department, and local communities who were involved in sample collection. The authors would also like to thank the Fish Genetics and Breeding Laboratory, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM) for providing facilities and chemicals for molecular work as well as University Technology Malaysia (UTM) aided in conducting the analysis for mitogenome. Lastly, the first author would like to thank the Jabatan Perkhidmatan Awam (JPA) for providing a scholarship for her postgraduate study.

References
1. Hamid ZA. Peatlands threatened. Kuala Lumpur: New Straits Times, 2019. Accessed 2020 Jan 12. Available from: https://www.nst.com.my/opinion/columnists/2019/02/459026/peatlands-threatened.
2. Sam KK, Lau NS, Shu-Chien AC, MuchlisinZA, Nugroho RA. Complete mitochondrial genomes of Paedocypris micromegethes and Paedocypris carbunculus reveal conserved gene order and phylogenetic relationships of miniaturized cyprinids. Front Ecol Evol 2021;9:662501.
3. Britz R, Conway KW, Ruber L. Miniatures, morphology, and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes). Zool J Linn Soc 2014;172:556-615.
4. Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res 2019;47:e63.
5. Miga M, Jahari PNS, Veı Siang C, Kamarudin KR, Shamsir MS, Tokiman L, et al. The complete mitochondrial genome data of the Common Rose butterfly, Pachliopta aristolochiae (Lepidoptera, Papilionoidea, Papilionidae) from Malaysia. Data Brief 2022;40:107740.
6. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 2016;9:88.
7. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674-1676.
8. Sato Y, Miya M, Fukunaga T, Sado T, Iwasaki W. MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol Biol Evol 2018;35:1553-1555.
9. Wang J, Lin Y, Xi M. Analysis of codon usage patterns of six sequenced Brachypodium distachyon lines reveals a declining CG skew of the CDSs from the 5’-ends to the 3’-ends. Genes (Basel) 2021;12:1467.
10. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-1874.
11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-425.
12. Ranwez V, Harispe S, Delucifer DJ, Douzery EJ. MACSE: Multiple Alignment of Coding Sequences accounting for frameshifts and stop codons. PLoS One 2011;6:e22594.
13. Zhang D, Gao F, Jakovlic I, Zou H, Zhang J, Li WX, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 2020;20:348-355.

14. Sun CH, Liu HY, Xu N, Zhang XL, Zhang Q, Han BP. Mitochondrial genome structures and phylogenetic analyses of two tropical characidae fishes. Front Genet 2021;12:627402.

15. Alexander Kenechukwu N, Li M, An L, Cui M, Wang C, Wang A, et al. Comparative analysis of the complete mitochondrial genomes for development application. Front Genet 2018;9:651.

16. Mullens N, Sonet G, Decru E, Virgilio M, Snoeks J, Vreven E. Mitogenomic characterization and systematic placement of the Congo blind barb Caecobarbus geertsii (Cypriniformes: Cyprinidae). Int J Biol Macromol 2020;161:292-298.

17. Tang KL, Agnew MK, Hirt MV, Sado T, Schneider LM, Freyhof J, et al. Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Mol Phylogenet Evol 2010;57:189-214.

18. Xu S, Wu Y, Liu Y, Zhao P, Chen Z, Song F, et al. Comparative mitogenomics and phylogenetic analyses of Pentatomoidea (Hemiptera: Heteroptera). Genes (Basel) 2021;12:1306.

19. Islam MN, Sultana S, Alam MJ. Sequencing and annotation of the complete mitochondrial genome of a threatened labeonine fish, Cirrhinus reba. Genomics Inform 2020;18:e32.

20. Zhong J, Ma L, Guo K, Du Y. Complete mitochondrial genome of Scincella modesta (Squamata: Scincidae) and phylogenetic analysis. Mitochondrial DNA B Resour 2020;5:373-374.

21. Masta SE, Boore JL. The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Mol Biol Evol 2004;21:893-902.

22. Wang IC, Lin HD, Liang CM, Huang CC, Wang RD, Yang JQ, et al. Complete mitochondrial genome of the freshwater fish Onychostoma lepturum (Teleostei, Cyprinidae): genome characterization and phylogenetic analysis. Zookeys 2020;1005:57-72.

23. Resch AM, Carmel L, Marino-Ramirez L, Ogurtsov AY, Shabali-na SA, Rogozin IB, et al. Widespread positive selection in synonymous sites of mammalian genes. Mol Biol Evol 2007;24:1821-1831.

24. Li R, Shu X, Li X, Meng L, Li B. Comparative mitogenome analysis of three species and monophyletic inference of Catantopinae (Orthoptera: Acridoidea). Genomics 2019;111:1728-1735.