The Limits of Linked Suppression for Regulatory T Cells

Citation
Ito, Toshiro, Akira Yamada, Ibrahim Batal, Melissa Y. Yeung, Martina M. McGrath, Mohamed H. Sayegh, Anil Chandraker, and Takuya Ueno. 2016. “The Limits of Linked Suppression for Regulatory T Cells.” Frontiers in Immunology 7 (1): 82. doi:10.3389/fimmu.2016.00082. http://dx.doi.org/10.3389/fimmu.2016.00082.

Published Version
doi:10.3389/fimmu.2016.00082

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26318631

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
The Limits of Linked Suppression for Regulatory T Cells

Toshiro Ito1, Akira Yamada1, Ibrahim Batal2, Melissa Y. Yeung2, Martina M. McGrath2, Mohamed H. Sayegh2, Anil Chandraker2 and Takuya Ueno1,2*

1 Transplantation Unit, Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, 2 Transplantation Research Center, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, MA, USA

Background: We have previously found that CD4+CD25+ regulatory T cells (Tregs) can adoptively transfer tolerance after its induction with costimulatory blockade in a mouse model of murine cardiac allograft transplantation. In these experiments, we tested an hypothesis with three components: (1) the Tregs that transfer tolerance have the capacity for linked suppression, (2) the determinants that stimulate the Tregs are expressed by the indirect pathway, and (3) the donor peptides contributing to these indirect determinants are derived from donor major histocompatibility complex (MHC) antigens (Ags).

Methods: First heart transplants were performed from the indicated donor strain to B10.D2 recipients along with costimulatory blockade treatment (250 μg i.p. injection of MR1 on day 0 and 250 μg i.p. injection of CTLA-4 Ig on day 2). At least 8 weeks later, a second heart transplant was performed to a new B10.D2 recipient who had been irradiated with 450 cGy. This recipient was given 40 × 10^6 naive B10.D2 spleen cells + 40 × 10^6 B10.D2 spleen cells from the first (tolerant) recipient. We performed three different types of heart transplants using various donors.

Results: (1) Tregs suppress the graft rejection in an Ag-specific manner. (2) Tregs generated in the face of MHC disparities suppress the rejection of grafts expressing third party MHC along with tolerant MHC.

Conclusion: The limits of linkage appear to be quantitative and not universally determined by either the indirect pathway or by peptides of donor MHC Ags.

Keywords: costimulation, indirect pathway, MHC class II, tolerance, regulatory T cells

INTRODUCTION

The physiologically unusual stimulation of T cells by donor antigen-presenting cells (APCs) has been called “direct” recognition, whereas stimulation by self-APCs, presenting peptides of donor origin, has been called “indirect” recognition. Direct recognition has been believed to be the major pathway involved in allograft rejection due to three basic observations, namely, (1) direct stimulation is very strong in a primary allogenic mixed lymphocyte reaction, (2) depletion of donor APCs can

Abbreviations: Ags, antigens; APCs, antigen-presenting cells; MHC, major histocompatibility complex; MST, median survival time; Tregs, regulatory T cells.
sometimes prolong allograft survival, and (3) donor major histo-
compatibility complex (MHC) antigens (Ags) are more important
than minor Ags in causing graft rejection (1). Matching for MHC
Ags achieves better allograft survival. Lechler and Batchelor
showed the importance of MHC class II matching compared
to MHC class I matching at least in the long-term survival (2).
However, there are several remarkable reports of consequences
of T cells responding via the indirect pathway. These reports
showed the indirect pathway (a) helps for priming alloreactive
CD8 T cells (3, 4), (b) is essential for tolerance induction in some
models (5, 6), and (c) is involved in chronic transplant rejection
(7, 8). In addition, several papers have shown the importance of
an indirect response in allograft rejection (1, 3, 9, 10). Indirect
allorecognition contributes not only to acute graft rejection
(2, 9) but also possibly to the continuing response to the allograft
in the long term after transplantation (11). Previously, we tested
the role of costimulatory blockade for prolonging allograft sur-
vival with using class II-deficient mice when only one or the other
pathway of graft rejection was available. We found that to achieve
long-term survival after costimulatory blockade requires that
the recipient expresses MHC class II molecules (12). This result
indicated that indefinite cardiac transplant survival could not
be achieved in the absence of an intact indirect pathway. These
results are consistent with the fact that at least a component of
the regulatory T cell (Treg) response must involve recognition
of peptides of donor Ags presented by recipient MHC molecules.
Ags, even to MHC-encoded Ags, provided they are expressed on the same graft as the tolerated Ags in some models (14–17). Thus, its mechanism of immunoregulation in transplantation is very important. In addition, understanding interactions between linked suppression and Tregs can potentially be great advantage in the setting of transplantation to propagate the development of specific unresponsiveness once the process has been initiated.

Our preliminary data showed that Tregs suppress the graft rejection in an Ag-specific manner and Tregs generated in the face of MHC disparities suppress the rejection of grafts expressing third party MHC along with tolerant MHC.

METHODS AND RESULTS

First, we made B10.D2 (H-2^d) mice tolerant to B6 (H-2^b) with costimulatory blockade [250 μg intraperitoneal (i.p.) injection of MR1 on day 0 and 250 μg i.p. injection of CTLA-4 Ig on day 2] (Figure 1A). At least 8 weeks later, a second heart transplant was performed to a new B10.D2 recipient who had been irradiated with 450 cGy. All recipient received intravenous (i.v.) injection of naive 40 × 10^6 splenocytes + 40 × 10^6 splenocytes that are taken from the tolerant mice (tolerized splenocytes: Tol.) significantly prolonged graft survival compared to recipient received only naive splenocyte (12 ± 1 days compared to >100, p < 0.001) (Figure 1B). After these results, we considered linkage of Tregs. Next, we performed a second transplant from B6 mice to irradiated B10.D2 mice. The second donors express the same MHC and minor Ags as the first graft or B10.BR heart grafts differ from the first graft in their MHC Ags or (B6 × B10.BR) F1 mice, which express both H-2^d and H-2^k Ags. After transplant, the mice received i.v. injection of naive and tolerized splenocytes. All B6 hearts survived over 100 days. But B10.BR hearts expressing third party MHC were rejected by 23 days (Figure 1C). (B10.BR × B6) F1 hearts expressing third party MHC with tolerant MHC showed 80% survival of over 100 days; however, CAV was observed in some specimen. The institutional subcommittee on research animal care at Massachusetts General Hospital approved all animal experiments.

DISCUSSION

Linked suppression has often been associated with Tregs, and its mechanisms must be important ones, as tolerance can be extended to whole MHC disparities when applied to cardiac transplantation. Tolerance was extended to third party transplant Ags, even to MHC-encoded Ags, provided they are expressed on the same graft as the tolerated Ags in some models (14–17). Thus, its mechanism of immunoregulation in transplantation is very important. In addition, understanding interactions between linked suppression and Tregs can potentially be great advantage in the setting of transplantation to propagate the development of specific unresponsiveness once the process has been initiated.

REFERENCES

1. Gould DS, Auchincloss H Jr. Direct and indirect recognition: the role of MHC antigens in graft rejection. *Immunol Today* (1999) 20:77–82. doi:10.1016/S0167-5699(98)01394-2
2. Lechler RI, Batchelor JR. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. *J Exp Med* (1982) 155:31–41. doi:10.1084/jem.155.1.31
3. Auchincloss H Jr, Sultan H. Antigen processing and presentation in transplantation. *Curr Opin Immunol* (1996) 8:681–7. doi:10.1016/S0952-7915(96)80086-0
4. Valuyshikh A, Lantz O, Celli S, Matzinger P, Heeger PS. Cross-primeed CD8(+) T cells mediate graft rejection via a distinct effector pathway. *Nat Immunol* (2002) 3:844–51. doi:10.1038/nri831
5. Kishimoto K, Yuan X, Auchincloss H Jr, Sharpe AH, Mandelbrot DA, Sayegh MH. Mechanism of action of donor-specific transfusion in inducing tolerance: role of donor MHC molecules, donor co-stimulatory molecules, and indirect antigen presentation. *J Am Soc Nephrol* (2004) 15:2423–8. doi:10.1097/01.ASN.0000137883.20961.2D
6. Lehmann PV, Matesci D, Benichou G, Heeger PS. Induction of T helper 2 immunity to an immunodominant allopeptide. *Transplantation* (1997) 64:292–6. doi:10.1097/00007890-199707270-00020
7. Horvick PL, Mason PD, Baker RJ, Hernandez-Fuentes M, Facsa L, Lombardi G, et al. Significant frequencies of T cells with indirect anti-donor specificity in heart graft recipients with chronic rejection. *Circulation* (2000) 101:2405–10. doi:10.1161/01.CIR.101.2.2405
8. Yamada A, Lafer TM, Gerth AJ, Chase CM, Colvin RB, Russell PS, et al. Further analysis of the T-cell subsets and pathways of murine cardiac allograft rejection. *Am J Transplant* (2003) 3:23–7. doi:10.1034/j.1600-6143.2003.30105.x
9. Auchincloss H Jr, Lee R, Shea S, Markowitz JS, Grusby MJ, Glimcher LH. The role of “indirect” recognition in initiating rejection of skin grafts from major histocompatibility complex class II-deficient mice. *Proc Natl Acad Sci U S A* (1993) 90:3373–7. doi:10.1073/pnas.90.8.3373
10. Sayegh MH, Carpenter CB. Role of indirect allogeneic recognition in allograft rejection. *Int Rev Immunol* (1996) 13:221–9. doi:10.3109/08830189609061749
11. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. *Nat Rev Immunol* (2003) 3:199–210. doi:10.1038/nri1027
12. Yamada A, Chandraker A, Laufer TM, Gerth AJ, Sayegh MH, Auchincloss H Jr. Recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. J Immunol (2001) 167:5522–6. doi:10.4049/jimmunol.167.10.5522

13. Wise MP, Bemelman F, Cobbold SP, Waldmann H. Linked suppression of skin graft rejection can operate through indirect recognition. J Immunol (1998) 161:5813–6.

14. Adeegbe D, Levy RB, Malek TR. Allogeneic T regulatory cell-mediated transplantation tolerance in adoptive therapy depends on dominant peripheral suppression and central tolerance. Blood (2010) 115:1932–40. doi:10.1182/blood-2009-08-238584

15. Chen Z, Morgan R, Berger CS, Sandberg AA. Application of fluorescence in situ hybridization in hematological disorders. Cancer Genet Cytogenet (1992) 63:62–9. doi:10.1016/0165-4608(92)90066-H

16. Davies JD, Leong IY, Mellor A, Cobbold SP, Waldmann H. T cell suppression in transplantation tolerance through linked recognition. J Immunol (1996) 156:3602–7.

17. Wong W, Morris PJ, Wood KJ. Pretransplant administration of a single donor class I major histocompatibility complex molecule is sufficient for the indefinite survival of fully allogeneic cardiac allografts: evidence for linked epitope suppression. Transplantation (1997) 63:1490–4. doi:10.1097/00007890-199705270-00020

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.