Supplementary material

Synthesis of C₃-symmetric cinchona-based organocatalysts and their application in asymmetric Michael and Friedel–Crafts reactions

Péter Kisszékelyi 1,*, Zsuzsanna Fehér 1, Sándor Nagy 1, Péter Bagi 1, Petra Kozma 1, Zsófia Garádi 2,3, Miklós Dékány 4, Péter Huszthy 1, Béla Mátravölgyi 1, and József Kupai 1,*

1 Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
2 Department of Inorganic & Analytical Chemistry, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
3 Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
4 Spectroscopic Research Department, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary

* Correspondence: kupai.jozsef@vbk.bme.hu, kisszekelyi.peter@vbk.bme.hu; Tel.: +36-1-463-2229

Keywords: cinchona, organocatalysis, C₃-symmetry, size-enlargement, nanofiltration, asymmetric reaction
Table of contents

1. Structures of the prepared C₃-symmetric hub-cinchonas 2
2. NMR spectra of Hub¹⁻⁴-cinchonas .. 3
3. MS spectra of Hub¹⁻⁴-cinchonas .. 19
4. HPLC chromatograms ... 24
1. Structures of the prepared C₃-symmetric hub-cinchonas

![Structures of the prepared hub-cinchonas](image)

Figure S1. Structures of the prepared hub-cinchonas.
2. NMR spectra of Hub1-4-cinchonas

![Figure S2. 1H NMR spectrum of Hub1-cinchona (DMSO-d\textsubscript{6}).](image)

![Figure S3. Selected 1H NMR spectral regions of Hub1-cinchona (DMSO-d\textsubscript{6}).](image)
Figure S4. 13C NMR spectrum of Hub1-cinchona (DMSO-d$_6$).

Figure S5. COSY spectrum of Hub1-cinchona (DMSO-d$_6$).
Figure S6. HSQC spectrum of Hub1-cinchona (DMSO-d₆).

Figure S7. HMBC spectrum of Hub1-cinchona (DMSO-d₆).
Figure S8. 15N – 1H HMBC spectrum of Hub1-cinchona (DMSO-d$_6$).
Figure S9. 1H NMR spectrum of Hub2-cinchona (DMSO-d$_6$).

Figure S10. Selected 1H NMR spectral regions of Hub2-cinchona (DMSO-d$_6$).
Figure S11. 13C NMR spectrum of Hub2-cinchona (DMSO-d$_6$).

Figure S12. COSY spectrum of Hub2-cinchona (DMSO-d$_6$).
Figure S13. HSQC spectrum of Hub²-cinchona (DMSO-d₆).

Figure S14. HMBC spectrum of Hub²-cinchona (DMSO-d₆).
Figure S15. 15N – 1H HMBC spectrum of Hub2-cinchona (DMSO-d$_6$).
Figure S16. 1H NMR spectrum of Hub^3-cinchona (DMSO-d$_6$).

Figure S17. Selected 1H NMR spectral regions of Hub^3-cinchona (DMSO-d$_6$).
Figure S18. 13C NMR spectrum of Hub3-cinchona (DMSO-d$_6$).

Figure S19. COSY spectrum of Hub3-cinchona (DMSO-d$_6$).
Figure S20. HSQC spectrum of Hub₁-cinchona (DMSO-d₆).

Figure S21. HMBC spectrum of Hub₁-cinchona (DMSO-d₆).
Figure S22. 15N – 1H HMBC spectrum of Hub3-cinchona (DMSO-d_6).
Figure S23. 1H NMR spectrum of Hub^4-cinchona (DMSO-d$_6$).

Figure S24. Selected 1H NMR spectral regions of Hub^4-cinchona (DMSO-d$_6$).
Figure S25. 13C NMR spectrum of Hub4-cinchona (DMSO-d$_6$).

Figure S26. COSY spectrum of Hub4-cinchona (DMSO-d$_6$).
Figure S27. HSQC spectrum of Hub4-cinchona (DMSO-d$_6$).

Figure S28. HMBC spectrum of Hub4-cinchona (DMSO-d$_6$).
Figure S29. 15N – 1H HMBC spectrum of Hub4-cinchona (DMSO-d$_6$).
3. MS spectra of \textbf{Hub1-4-cinchonas}

\textbf{Figure S30.} HPLC-MS spectrum of \textbf{Hub1-cinchona}.

\textbf{Figure S31.} HRMS spectrum of \textbf{Hub1-cinchona} triflate salt.
Figure S32. HPLC-MS spectrum of Hub^2-cinchona.

Figure S33. Full scan HRMS spectrum of Hub^2-cinchona.
Figure S34. HRMS spectrum of Hub²-cinchona.

Figure S35. HPLC-MS spectrum of Hub³-cinchona.
Figure S36. HPLC-MS spectrum of Hub⁴-cinchona.

Figure S37. Full scan HRMS spectrum of Hub⁴-cinchona.
Figure S38. HRMS spectrum of Hub4-cinchona.
4. HPLC chromatograms

Figure S39. Products of the organocatalytic Michael and Friedel–Crafts-reactions.

Figure S40. Chiral HPLC chromatogram of racemic 18 (Phenomenex Lux Cellulose-1 column (5 μm, 250 × 4.6 mm), eluent water (0.1 % NH₄OAc)/MeCN = 30/70, isocratic mode; 0.8 mL min⁻¹, temperature 20 °C, UV detector 222 nm. Retention time for (S)-18: 7.6 min, for (R)-18: 8.9 min)

Figure S41. Chiral HPLC chromatogram of non-racemic 13 (Phenomenex Lux Cellulose-1 (5 μm, 250 x 4.6 mm) column, eluent water (0.1% NH₄OAc)/MeCN = 40/60, 0.8 mL min⁻¹, UV detector 222 nm. Retention time for (R)-13 and (S)-13 are 6.5 min and 7.2 min, respectively).
Figure S42. Chiral HPLC chromatogram of racemic 16 (Phenomenex Lux Cellulose-1 column (5 μm, 250 × 4.6 mm), eluent hexane/ethanol = 85/15, isocratic mode; 0.8 mL min⁻¹; temperature 20 °C, UV detector 254 nm. Retention time for (S)-16: 16.1 min, for (R)-16: 17.6 min).