Seaweed-Associated Fungi from Sepanjang Beach, GunungKidul, Yogyakarta as Potential Source of Marine Polysaccharides-Degrading Enzymes

N E B Hutapea¹,², M T Sibero³,⁴, E P Ayuningtyas²,³, E H Frederick²,³, D P Wijayanti², A Sabdono³, D Pringgenies³, O K Radjasa³, D S Zilda³, R Murwani²,⁵

¹ Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Diponegoro. Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Central Java, Indonesia. Tel.: +62-24-7474698, Fax.: +62-24-7474698
² Natural Product Laboratory, Integrated Laboratory for Research and Services, Universitas Diponegoro, Semarang, Indonesia
³ Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Diponegoro. Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Central Java, Indonesia. Tel.: +62-24-7474698, Fax.: +62-24-7474698
⁴ Research and Development Center for Marine and Fisheries Product, Product Processing and Biotechnology St. KS. Tubun Petamburan VI, Jakarta 10260, Indonesia
⁵ Department of Animal Science, Faculty of Animal Science and Agriculture, Universitas Diponegoro. Jl. Prof. Soedarto S.H., Tembalang, Semarang 50275, Central Java, Indonesia

Abstract. Brown algae (Phaeophyceae) and red algae (Rhodophyta) are a group of seaweed that scattered all over the ocean. In addition, previous studies have reported the biotechnological potential of its associated fungi. However, there are only a few studies related to the extracellular enzyme of seaweed-associated fungi. The purposes of this research were to isolated brown algae and red algae associated fungi from Sepanjang Beach, GunungKidul, Yogyakarta, Indonesia, and screen its enzyme production. Padina sp., Asparagopsis sp., and Chondrophycus sp. were collected from Sepanjang Beach, GunungKidul, Yogyakarta. Swab tap method on PDA medium and STD medium was conducted to isolate seaweed-associated fungi, while starch agar medium, agar medium, alginate agar medium, and carrageenan agar medium, was utilized to screen the enzyme activity with addition of povidone-iodine 10% reagent. The presence of clear zone around the colony indicated enzyme.

1. Introduction
Indonesia with a specific geographic location has an impact on biodiversity, including brown algae (Phaeophyceae) and red algae (Rhodophyta). It is known as marine vegetation that has abundant species diversity in sea waters, one of which is on the south coast of GunungKidul Yogyakarta [1]. In
addition, marine microbial community (bacteria, plankton, and fungi) is also considered an important ecological component in marine environment [2-5]. Seaweed associated-fungi has been explored widely for biotechnology purposes. Some studies studied interesting metabolites and extracellular enzyme that is likely to degrade the polymers in the cell walls [6,7]. However, there are only a few studies related to the extracellular polysaccharide-degrading enzymes (amylase, agarase, alginate, and carrageenase) from seaweed-associated fungi [8,9]. The purposes of this research were to isolated brown algae (Phaeophyceae) and red algae (Rhodophyta) associated fungi from Sepanjang Beach, GunungKidul, Yogyakarta, Indonesia, screen its enzyme production with povidone-iodine 10% reagent [6,10-12], and identify the prospective fungal isolates.

2. Methodology and materials research

2.1. Algae sampling
Brown algae (Phaeophyceae) and red algae (Rhodophyta) samples were collected from Sepanjang Beach, GunungKidul, Yogyakarta, Indonesia. The algae were collected namely Padina sp., Asparagopsis sp., and Chondrophycus sp. The samples were put in a sterilized zip-lock plastic and then transferred to Natural Product Laboratory, Integrated Laboratory for Research and Services, Universitas Diponegoro, Semarang, Indonesia for fungal isolation.

2.2. Fungal isolation
The fungi were isolated using swab tap method on potato dextrose agar (PDA) (HIMEDIA® GM096-500G) [13,14] and standard agar (STD) consisted of agar (Difco™ Marine Agar 2216) (37.4 g/l), glucose (5 g/l), yeast extract powder (10 g/l) (HIMEDIA® RM027-500G), beef extract (5 g/l) as the nitrogen source, peptone (5 g/l) and 2% laboratory agar powder (Wako 146-08675) in order to obtain a variety of fungi [15]. The fungal isolation medium was added with 2% chloramphenicol antibiotic to eliminate the possibility of bacterial contamination. Also, during isolation a petri dish with PDA and STD was provided as an environmental control.

2.3. Purification and refresh
Every single colony was purified on PDA medium and incubated at room temperature (27-28 ºC) until growth was initiated [16,17]. In total twenty-nine (29) fungi were isolated from Padina sp., Asparagopsis sp., and Chondrophycus sp.

2.4. Screening of extracellular enzyme
Screening medium for amylase contained 0,5% of peptone (HIMEDIA); 0,1% of yeast extract (HIMEDIA); 0,2% of soluble starch (Merck); and 2% of agar powder (Difco™) [10]. Screening enzyme for alginate contained peptone 0,5%, yeast extract 0,1%; alginate 0,5%; and agar powder 2%; for agarase contained 0,5% of peptone; 0,1% of yeast extract; and 2% of agar powder. The extracellular enzyme screening for carrageenase contained 0,5% of peptone (HIMEDIA); kappa carrageenan 2%; and yeast extract 0,1%. Each isolate grown in the enzyme screening medium was incubated at 27-28 ºC for 5-7 days then tested for the enzyme using GENERIC povidone-iodine solution (SS-K275/R2). The presence of the clear zone around the colony indicated amylase, carrageenase, alginate, and agarase active on all isolates [6]. The fungus as a new single colony with the widest clear zone was to next step (identified through morphology and molecular test).

2.5. Morphology identification
Fungal isolates were characterized through colony and hyphae morphologies. Hyphae morphology was using a microscope with Lactophenol Cotton Blue (LPCB) addition for cell staining [18]. A single colony of fungus was taken from the culture using a loop and transferred gently onto a glass object. Then observed at a magnification of 40 × 10 to characterized the shape of hyphae, the presence of septa, conidiophores, and spores/conidia [19,20].

2.6. DNA extraction, amplification, and PCR sequencing
For molecular analysis, fungi were grown on PDA medium at room temperature (27-28 ºC) for approximately 7 days. Fresh mycelium was taken from the PDA with a sterile loop and then the DNA
was extracted using the Zymo Research Quick-DNA™ Fungal/Bacterial Miniprep Kit according to the manual [21]. The internal transcribed spacer (ITS) region was amplified with the universal primers ITS1 and ITS4 [22]. The amplification process added 12.5 µL of Promega Go Taq™ Master Mixes, 1 µL of primer ITS1 forward (5’ TCCGTAGGTGAACCTGCGG 3’), ITS4 reverse (5’TCCTCCGCTTATTGATGC 3’) each 1 µL, 9.5 µL nuclease-free water, and 1 µL of template DNA into the microtube and homogenized using micropipettes and optimization of annealing temperature [23]. Electrophoresis was carried out with 2% agarose concentration, then PCR sequencing was carried out using UVITEC Cambridge and were pre-denatured at 95 ºC for 3 min. PCR amplification was performed using the following cycling conditions: 34 cycles of denaturation at 95 ºC for 1 min, annealing at 55 ºC for 1 min, and extension at 72 ºC for 1 min; finally, re-extension at 72 ºC for 7 min and stored at 16 ºC before analysis [24].

3. Results and Discussion

3.1 Algae collection
In total, 3 seaweeds were successfully collected from one location in Sepanjang Beach, Gunung Kidul, Yogyakarta.

3.2 Seaweed-associated fungi
In this work, the isolation of fungi was conducted on PDA and STD media due to its rich nutrients, which are needed by fungi to grow and produce spore. The media should contain sources of carbon, nitrogen, and important minerals during the isolation period [25-27]. The swab isolation method plays an important role to obtain 18 isolates on PDA and 11 isolates from STD. The 29 seaweed-associated fungi isolated from 3 seaweed collections are shown by Table 1.

Table 1. Seaweed-associated fungi from Sepanjang beach, Yogyakarta, Indonesia

No.	Seaweed origin	Fungi isolates	No.	Seaweed origin	Fungi isolates
1.	Asparagopsis sp.	MT.F1	16.	Padina sp.	MT.F2.P
2.	Asparagopsis sp.	MT.F2	17.	Padina sp.	MT.F3.P
3.	Chondrophyccus sp.	MT.F4	18.	Padina sp.	MT.F4.P
4.	Chondrophyccus sp.	MT.F5	19.	Padina sp.	MT.F5.P
5.	Chondrophyccus sp.	MT.F6	20.	Padina sp.	MT.F6.P
6.	Chondrophyccus sp.	MT.F7	21.	Padina sp.	MT.F7.P
7.	Chondrophyccus sp.	MT.F8	22.	Padina sp.	MT.F8.P
8.	Chondrophyccus sp.	MT.F9	23.	Padina sp.	MT.F9.P
9.	Chondrophyccus sp.	MT.F10	24.	Padina sp.	MT.F10.P
10.	Asparagopsis sp.	MT.F11	25.	Padina sp.	MT.F11.P
11.	Asparagopsis sp.	MT.F12	26.	Padina sp.	MT.F12.P
12.	Asparagopsis sp.	MT.F13	27.	Padina sp.	MT.F13.P
13.	Asparagopsis sp.	MT.F14	28.	Padina sp.	MT.F14.P
14.	Asparagopsis sp.	MT.F15	29.	Padina sp.	MT.F15.P
15.	Padina sp.	MT.F1.P			

3.3 Fungal morphology observation
Fungal colonies were characterized according to several aspects as follows colour, form, elevation, margin, colony colour, colony texture, mycelium colour, exudate, reverse, soluble pigment, and sclerotia [28]. The result of the macroscopic characterized were presented in Table 2.

Table 2. Macroscopic characterized of seaweed-associated fungi from Sepanjang Beach

Isolates	Colour	Form	Elevation	Margin	Colony Colour	Colony Texture	Mycelium Colour	Exudate	Reverse	Soluble Pigment	Sclerotia
MT.F1	brownish	circular	raised	entire	white	cottony white	-	brown	-	-	-
MT.F2	white	irregular	flat	entire	white	cottony white	-	brown	-	-	-
MT.F4	glaucous	irregular	flat	undulate	glaucous	velvety white	-	glaucous	-	-	-
Simple identification was done by matching the macroscopic and microscopic characteristics of molds with identification books and comparing these characters with the identification keys on monographs (Figure 1) [29].
Figure 1. Fungi cultured on PDA and STD agar medium

3.4 Screening of enzyme activity

Fungi are known to produce a range of extracellular enzymes and other secondary metabolites. All purified fungal isolates have their respective morphological characteristics. Biological properties such as the ability to produce extracellular enzymes can be seen by the presence of a clear zone after the addition of povidone-iodine. Isolation, purification, characterization, and screening enzyme of all isolates were performed to get the highest specific enzyme activity. Soluble starch agar medium, agarase medium, alginate agar medium, and was kappa carrageenan agar medium aseptically prepared and autoclaved for assays of amylase, agarase, alginate, and carrageenase respectively. According to this test, the results showed that there were 22 isolates showing amylase activity (Figure 2), 21 isolates showing agarase activity (Figure 3), 29 isolates showing alginate activity (Figure 4), and 14 isolates showing carrageenase activity (Figure 5).
Figure 2. Clear zone around isolates grown in starch medium
Figure 3. Clear zone around isolates grown in agar medium
Figure 4. Clear zone around isolates grown in alginate medium
Fungi secrete extracellular enzymes to convert complex compounds into compounds that are simpler to digest their food source. The ability of various types of fungi to produce enzymes such as starch, carrageenan, alginate, and agar continues to be studied to complement various studies. Agar plate method is one of the most commonly used enzyme screening methods, using a medium containing polysaccharides with the addition of chromogenic dyes such as povidone-iodine [30]. The use of povidone-iodine is intended to show a positive reaction in the fungus to excrete the enzyme. Based on the results of the tests carried out, some strains did not give clear zones, the level of clearness is different, ranging from those that are not visible to be very clear with different sizes. For fungi that do not produce clear zones according to the composition of the substrate due to the inability to digest the polysaccharides in the substrate itself. The clearest zone with the largest clear zone size is owned by MT.F8 at temperature (27-28 °C). For amylase, carrageenase, alginate, and agarase enzyme activity were calculated by following formula enzyme activity index (EAI) [31,32]. The mean EAI was calculated from twenty-nine (29) isolated observations (Table 3).

Table 3. Formula enzyme activity index (EAI) values of mold isolates on starch agar medium, agar medium, alginate medium, and κ-carrageenan medium (incubation at 27-28°C °C for 5-7 days)

Isolates Code	Amylase	Isolate Codes	Agarase
MT.F1	0.236414	MT.F1	1.024440
MT.F2	0.208261	MT.F2	0.791154
MT.F6	0.400655	MT.F6	0.462872
MT.F7	0.264901	MT.F9*	1.283375*
MT.F8*	1.170320*	MT.F10	1.133967
MT.F9	0.621349	MT.F11	0.931291
MT.F11	0.759479	MT.F12	0.644942
MT.F12	0.655674	MT.F13	0.450976
MT.F13	0.734373	MT.F14	0.961165
MT.F14	0.357677	MT.F15	0.494885
MT.F15	0.496028	MT.F2.P	0.540795
MT.F1.P	1.059434	MT.F2.P	0.931858
MT.F2.P	0.288885	MT.F3.P	0.723010
MT.F3.P	0.904781	MT.F4.P	0.607733
MT.F4.P	0.048677	MT.F7.P	0.464687
MT.F5.P	0.228968	MT.F8.P	1.092969
MT.F6.P	1.230750	MT.F9.P	0.480247
MT.F8.P	1.108864	MT.F12.P	0.438156
Molecular identification and phylogenetic analysis were carried out on MT.F8 isolates because it showed the largest/prospective clear zone size among all existing isolates using the test media, namely starch agar medium, carrageenan agar medium, alginate agar medium, and agarase medium.

3.5 Molecular identification and phylogenetic analysis

A molecular approach was performed to identify the potential isolate. DNA in \textit{internal transcribed space} (ITS) region was amplified using PCR since it is a conserve region for fungi and usually gives the best result for fungal identification [33,34,35]. The application of ITS1 and ITS4 primers aimed to amplify the ends of the 18S rRNA gene region from DNA, ITS 1, 5.8 S rRNA gene region, and the beginning of the 28S rRNA gene region [22,34,35,36,37,38]. Figure 6 shows the visualization of amplified DNA by ITS primer.

![Figure 6. The presence PCR of fungi MT.F8](image)

The similarities of sequences with other known species were investigated by comparisons with sequence data in the National Center for Biotechnology Information (NCBI). A phylogenetic tree based on the ITS region was constructed using the Molecular Evolutionary Genetics Analysis (MEGA
X) software with the maximum likelihood tree method, and the statistical analysis utilized bootstrapping with 1000 replications [39] (Figure 7). BLAST (basic local alignment search tool) will do to MT.F8 because it showed the biggest clear zone size among all existing isolates. According to the result molecular MT.F8 using the test media was highly similar to *Aspergillus sydowii* NR_131259.1 with 99.80% similarity (Table 4).

Table 4. Homology of potential seaweed associated-fungi.

Fungi isolate	Molecular identification (BLAST closest relatives)	Similarity
MT.F8	*Aspergillus sydowii* NR_131259.1	99.80%

![Figure 7. Phylogenetic tree of fungi MT.F8.](image)

Based on various previous studies, it was stated that *Aspergillus sydowii* was able to produce high yields lignocellulosic enzyme source, manganese peroxidase (Mnp) [40], cellulose and Xylanase [41], catalase, urease, sucrase and alkaline phosphatase [42, 43], proteinase [44], β-glucosidase enzyme [45], acetophenone, p-bromoacetophenone and pnitroacetophenone at minor concentrations from isolate *A. sydowii* [46]. Furthermore, previous work showed that *A. sydowii* not only produce extracellular enzyme but also bioactive red pigment with antibacterial activity against MDR pathogens [47].

4. Conclusion

In total 29 fungal isolates were obtained from brown algae (*Phaeophyceae*) and red algae (*Rhodophyta*). There were 11 isolates gave a positive result for amylase, agarase, alginate, and carrageenase enzyme. Molecular identification was carried out on fungus which emitted the largest enzyme extracellular. Fungus MT.F8 as the prospective isolate was identified as *Aspergillus sydowii*.

Acknowledgements

The first author wish to thank Sibero Project Internship Research Grant for undergraduate students 2020 for the full financial support. This article is an outcome of a research grant from LP2M (Lembaga Penelitian dan Pengabdian kepada Masyarakat) Universitas Diponegoro scheme 2020 with contract No.233-18/UN7.6.1/2020 to Dr. Mada Triandala Sibero.
References

[1] Sodiq A Q and Arisandi A 2020 Identifikasi dan Kelimpahan Makroalga di Pantai Selatan Gunung Kidul Juvenil: Jurnal Ilmiah Kelautan dan Perikanan 1(3) 325-330
[2] He F, Sun Y L, Zhang X Y, Qian P Y, Wang Y F and Qi S H 2012 Indole Alkaloids From Marine-Derived Fungus Aspergillus sydowii SCSIO 00305 The Journal of Antibiotics 65 109-111
[3] Rateb M E and Ebel R 2011 Secondary Metabolites of Fungi From Marine Habitats Natural Product Report 28(2) 290-344
[4] Takagi M, Motohashi K and Shin-ya K 2010 Isolation of 2 New Metabolites, JBIR-74 and JBIR-75, From the Sponge-Derived Aspergillus sp FS14 The Journal of Antibiotics 63 393-395
[5] Bonugli-Santos R C, Dos Santos, Vasconcelos M R, Passarini M R, Vieira G A, Lopes V C, Mainardi P H and Feitosa V A 2015 Marine-Derived Fungi: Diversity of Enzymes and Biotechnological Applications Frontiers in Microbiology 6 269
[6] Sibero M T, Igarashi Y, Radjasa O K, Sabdono A, Trianto A, Zilda D S and Wijaya Y J 2019 Sponge-Associated Fungi From a Mangrove Habitat in Indonesia: Species Composition, Antimicrobial Activity and Enzyme Screening and Bioactive Profiling International Aquatic Research 11(2) 173-186
[7] Zhang M, Wang W L, Fang Y C, Zhu T J, Gu Q Q and Zhu W M 2008 Cytotoxic Alkaloids and Antimicrobial Activity From Marine-Derived Fungus Aspergillus sydowii Journal of Natural Products 71(6) 985-989
[8] Kelecom A 2002 Secondary Metabolites From Marine Microorganisms Annals of the Brazilian Academy Sciences 74(1) 151-70
[9] Proksch P, Edrada-Ebel R and Ebel R 2003 Drugs From the Sea-Opportunities and Obstacles Marine Drugs 1 5-17
[10] Balan S S, Nethaji R, Sankar S and Jayalakshmi, S 2012 Production of Gelatinase Enzyme From Bacillus sp. Isolated From the Sediment Sample of Porto Novo Coastal Sites. Asian Pacific Journal of Tropical Biomedicine 2(3) S1811-S1816
[11] Ghazala I, Haddar A, Romdhane M B and Chaanouni S E 2016 Screening and Molecular Identification of New Microbial Strain for Production of Enzyme of Biotechnological Interest Brazilian Archives of Biology and Technology 59
[12] Sunita V H, Ramesha A, Savitha J and Srinivas C 2012 Amylase Production by Endophytic Fungi Cylindrocephalum sp. Isolated From Medicinal Plant Alpinia calcarata (Haw.) Roscoe Brazilian Journal of Microbiology 47(1) 1213-1221
[13] Francis M, Webb V and Zuccarello G 2016 Marine Yeast Biodiversity on Seaweeds in New Zealand Waters New Zealand Journal of Botany 54(1) 30-47
[14] Kjer J, Debab A, Aly A H and Proksch P 2010 Methods for Isolation of Marine-Derived Endophytic Fungi and Their Bioactive Secondary Products Nature. Protocols 5(3) 479-490
[15] Singh S, Singh S, Bali V, Sharma L and Mangla J 2014 Production of Fungal Amylase Using Cheap, Readily Available Agro Residues, for Potential Application in Textile Industry Biomed Research International
[16] Trianto A, Radjasa O K, Sibero M T, Sabdono A, Haryanti D, Zilullah W A M, Syanindyta A R, Bahry M S, Widiananto P A, Helmi M, Armono H D, Supriadi and Igarashi Y 2020 The Effect of Culture Media on The Number and Bioactivity of Marine Invertebrates Associated Fungi Biodiversity 21(1) 407-412
[17] Macher J M 2001 Review of Methods to Collect Settled Dust and Isolate Culturable Microorganisms Indoor Air, 11(2) 99-110
[18] Sibero M T, Sabdaningsih A, Christianawati O, Nuryadi H, Radjasa O K., Sabdono A and Trianto A 2017 Isolation, Identification and Screening Antibacterial Activity From Marine Sponge-Associated Fungi Against Multidrug-Resistant (MDR) Escherichia coli. In IOP Conference Series: Earth and Environmental Science 55:1 p. 012028 IOP Publishing
[19] Davise HL. Medically Important Fungi: A Guide to Identification. 4th ed. Washington, DC: ASM Press; 2002 304-305
[20] Qiu W Y, Yao Y F, Zhu Y F, Zhang Y M, Zhou P, Jin Y Q and Zhang B 2005 Fungal Spectrum Identified by a New Slide Culture and in Vitro Drug Susceptibility Using Etest in Fungal Keratitis. Current Eye Research 30(12) 1113-1120
Asnani A, Luviriani E and Oedjijono O 2020 Activity of Actinomycetes Isolated From Mangrove Segara Anakan Cilacap Toward Methicillin-Resistant Staphylococcus aureus (MRSA) Journal of Physics: Conference Series 23 1–7

White T J, Bruns T, Lee S J W T and Taylor J 1990 Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics PCR Protocols: a Guide to Methods and Applications 18(1) 315-322

Turan C, Nanni I M, Brunelli A and Collina M 2015 New Rapid DNA Extraction Method With Chalex From Venturia inaequalis Spores Journal of Microbiological Methods 115 139-143

Sibero M T, Tarman K, Radjasa O K, Sabdono A, Trianto A and Bachtiarini, T U 2018 Produksi Pigmen dan Identifikasi Kapang Penghasilnya Menggunakan Pendekatan DNA Barcoding Jurnal Masyarakat Pengolahan Hasil Perikanan Indonesia 21(1) 99-108

Zhang X Y, Bao J, Wang G H, He F, Xu X Y and Qi S H 2012 Diversity and Antimicrobial Activity of Culturable Fungi Isolated From Six Species of the South China Sea Gorgonians Microb. Ecol 64 617-627

Sharma G and Pandey R R 2010 Influence of Culture Media on Growth, Colony Character, and Sporulation of Fungi Isolated From Decaying Vegetable Wastes Journal Yeast Fungal Research 1(8) 157-164

Muggia L, Kopun T and Grube M 2017 Effects of Growth Media on the Diversity of Culturable Fungi From Lichens Molecules 22(5) 1-22

Watanabe, T 2010 Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species. CRC press

Samson R A, Visagie C M, Houbraken J, Hong S B, Hubka V, Klaassen C H W, Perrone G, Seifert K A, Susca A, Tanney J B, Varga J, Kocsube S, Szigeti G, Yaguchi T and Prisvad J C 2014 Phylogeny, Identification and Nomenclature of the Genus Aspergillus Studies in Mycology 78 141-173

Yoon J H, Suh D Y, Hong S B, Ko S and Kim S H 2007 Comparison of Dyes for Easy Detection of Extracellular Enzymes From Aspergillus fumigatus Journal of Clinical Microbiology 40(5) 1811-1813

Blanco J L, Montecillas R, Bouza E, Blanco I, Pelaez T, Muñoz P, Molina J P and Garcia M E 2002 Correlation Between the Elastase Activity Index and Invasiveness of Clinical Isolates of Aspergillus fumigatus Journal of Clinical Microbiology 40(5) 1811-1813

Sangeetha A B, Hadi A A, Hassan A S, Shobana C S, Suresh S, Abirami B, Selvam K P, Al-Baradie R S, Banawas S, Alalardous M, Alshehri B, Dukhyil A A B, Dhanasekaran S and Manikandan P 2020 Evaluation of in Vitro Activities of Extracellular Enzymes From Aspergillus Species Isolated From Corneal ulcer/Keratitis Saudi Journal of Biological Sciences 27(2) 701-705

White T J, Bruns S, Lee S and Taylor J 1990 Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes For Phylogenetics. PCR Protocols: a Guide to Methods and Applications (Cambridge: Academic Press) pp 315-322

Anderson I C, Campbell C D and Prosser J I 2003 Potential Bias of Fungal 18s rDNA and Internal Transcribed Spacer Polymerase Chain Reaction Primers for Estimating Fungal Biodiversity In Soil Environ. Microbiol 5(1) 36-47

Sibero M T, Triningsih D W, Radjasa O K, Sabdono A and Trianto A 2016 Evaluation of Antimicrobial Activity and Identification of Yellow Pigmented Marine Sponge-Associated Fungi from Teluk Awur, Jepara, Central Java Indonesian Journal of Biotechnology 21 1 pp 1-11

Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P and Kauslerud H 2010 ITS as an Environmental DNA Barcode for Fungi: an in Silico Approach Reveals Potential PCR Biases BMC Microbiol10(89) 1-9

Schoch C L, Seifert K A, Huhndorf S, Robert V, Spouge J L, Levesque C A, Chen W and Consortium F B 2012 Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi Proc Natl Acad Sci 109(16) 6241-6246
[39] Kumar S, Stecher G, Li M, Knyaz C and Tamura K 2018 MEGA X: Molecular Evolution Genetics Analysis Across Computing Platforms *Molecular Biology and Evolution* **35**(6) 1547-1549

[40] Cong B, Wang N, Liu S, Liu F, Yin X and Shen J 2017 Isolation, Characterization and Transcriptome Analysis of Novel Antarctic *Aspergillus sydowii* Strain MS-19 as a Potential Lignocellulosic Enzyme Source 2017 *BMC Microbiology* **17**(129)

[41] Nair S G, Sindhu R and Shashidhar 2008 Purification and Biochemical Characterization of Two Xylanases From *Aspergillus sydowii* SBS 45 *Application Biochemical Biotechnology* **149** 229-243

[42] Zhang C, Tao Y, Li S, Ke T, Wang P, Wei S and Chen L 2020 Bioremediation of Cadmium-Trichlorfon Co-Contaminated Soil by Indian mustard (*Brassica juncea*) Associated with the Trichlorfon-Degrading Microbe *Aspergillus sydowii*: Related Physiological Responses and Soil Enzyme Activities *Ecotoxicology and Environmental Safety* **188**

[43] Ghosh M and Nanda G 1994 Physiological Studies on Xylose Induction and Glucose Repression of Xylanolytic Enzyme in *Aspergillus sydowii* MG49 *FEMS Microbiology Letters* **117** 151-156

[44] Osmolovskiy A A, Kurakov A V, Kreyer V G, Baranova N A and Egorov N S 2017 Ability of Extracellular Proteinases of Micromycetes *Aspergillus flavipes*, *Aspergillus fumigatus*, and *Aspergillus sydowii* to Affect Proteins of Human Haemostatic System *Microbiology* **72**(1) pp 20-24

[45] Madhu K M, Beena P S and Chandrasekaran M 2009 Extracellular β-glucosidase Production by a Marine *Aspergillus sydowii* BTMFS 55 under Solid State Fermentation Using Statistical Experimental Design *Biotechnology and Bioprocess Engineering* **14** 457-466

[46] Rocha L C, Ferreira H V, Pimenta E F, Berlinck R G S B, Rezende M O O, Landgraf M D, Seleghim M H R, Sette L D and Porto A L M 2010 Biotransformation of α-Bromoacetophenones by the Marine Fungus *Aspergillus sydowii* *Marine Biotechnology* **12** 552-557

[47] Sibero M T, Sahara R, Syafiqoh N and Tarman K 2017 Antibacterial Activity of Red Pigment Isolated from Coastal Endophytic Fungi Against Multi-Drug Resistant Bacteria **24**(2) 161-172