Inter and Intra Subpopulation Genetic Variability of Roe Deer
(Capreolus capreolus L.) Assessed by I and II Class Genetic
Markers

Robert Kamieniarz
Poznañ University of Life Sciences

Anna Wolc
Iowa State University, awolc@iastate.edu

Miroslaw Lisowski
National Research Institute of Animal Production

Miroslawa Dabert
Adam Mickiewicz University

Bartosz Grajewski
National Research Institute of Animal Production

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ans_pubs

Part of the Animal Sciences Commons, Biodiversity Commons, and the Genetics and Genomics Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ans_pubs/644. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Animal Science at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Science Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Inter and Intra Subpopulation Genetic Variability of Roe Deer (Capreolus capreolus L.) Assessed by I and II Class Genetic Markers

Keywords
Biodiversity, microsatellites, roe deer

Disciplines
Animal Sciences | Biodiversity | Genetics and Genomics

Comments
This article is published as Kamieniarz, Robert, Anna Wolc, Mirosław Lisowski, Mirosława Dabert, Bartosz Grajewski, Ryszard Steppa, and Tomasz Szwaczkowski. "Inter and intra subpopulation genetic variability of roe deer (Capreolus capreolus L.) assessed by I and II class genetic markers." Folia biologica 59, no. 3-4 (2011): 127-133. doi: 10.3409/fb59_3-4.127-133.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
Robert Kamieniarz, Anna Wolc, Mirosław Lisowski, Mirosława Dabert, Bartosz Grajewski, Ryszard Steppa, and Tomasz Szwaczkowski

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ans_pubs/644
Inter and Intra Subpopulation Genetic Variability of Roe Deer (Capreolus capreolus L.) Assessed by I and II Class Genetic Markers

Robert KAMIENIARZ, Anna WOLC, Mirosław LISOWSKI, Mirosława DABERT, Bartosz GRAJEWSKI, Ryszard STEPPA, and Tomasz SZWACZKOWSKI

Accepted May 19, 2011

KAMIENIARZ R., WOLC A., LISOWSKI M., DABERT M., GRAJEWSKI B., STEPPA R., SZWACZKOWSKI T. 2011. Inter and intra subpopulation genetic variability of roe deer (Capreolus capreolus L.) assessed by I and II class genetic markers. Folia Biologica (Kraków) 59: 127-133.

The material was collected in three regions of Poland and consisted of 105 randomly chosen individuals killed during hunts (49 males, 56 females), out of which 51 were from Wielkopolska, 22 from Podkarpackie and 32 from Warmia. From each animal a blood sample was taken from the chest, stored in a probe with K3EDTA and frozen. The serum was used to establish the genotype for transferrin and albumin whereas the samples with erythrocytes provided information on hemoglobin genotype. DNA was isolated from samples from each individual. Characteristics of eight (from among twelve studied) microsatellite loci and genetic distances were estimated by the use of standard computer package programs. Generally, monomorphism in blood proteins was registered. For the microsatellite loci the number of alleles ranged from 3 in the RT14-4-Falocus (effectively two as the third allele was present only in two subpopulations with a very low frequency) to 10 in RT1-VI. Five loci showed heterozygosity of 0.5 or above which suggests their usefulness in parentage control. Considerable genetic distances (corresponding to geographical mileages) between the subpopulations were observed based on microsatellite markers.

Key words: Biodiversity, microsatellites, roe deer.

Robert KAMIENIARZ, Department of Hunting and Forest Protection, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland. Research Station of Polish Hunting Association, Czempin near Poznań, Poland. E-mail: roberto@asp.poznan.pl

Anna WOLC, Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wodyńska 33, 60-637 Poznań, Poland. Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA.

Tomasz SZWACZKOWSKI, Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wodyńska 33, 60-637 Poznań, Poland.

Mirosław LISOWSKI, Bartosz GRAJEWSKI, National Research Institute of Animal Production, Department of Animal Reproduction Biotechnology Zabrze w. Poznań, 62-606 Pałędzice, Poland.

Mirosława DABERT, Division of Molecular Biology, Biology Faculty, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland. Ryszard STEPPA, Department of Small Mammal Breeding and Animal Materials, Poznań University of Life Sciences, Złotniki, Słoneczna 1, 60-602 Suchy Las, Poland.

Roe deer (Capreolus capreolus) is the most common representative of big free living mammals in Poland. Its population size in 2007 was estimated at about 706000 individuals. The density of the species shows high variability within the country. The highest frequency is registered in western Poland, which is a consequence of high numbers of roe deer in forests as well as the presence of so called field roe deer (KAMIENIARZ & PANEK 2008). This ecological form developed in central Europe probably at the turn of the 19th and 20th century and is characterized by living in open agricultural areas avoiding forests (PIELOWSKI 1999). Consequently, anatomical (KALUZINSKI 1982), behavioral (BRESINSKI 1982) and physiological (MAJEWSKA et al. 1982) differences between ecotypes have been observed.

Roe deer live across the whole area of Poland in very diverse environments. As a consequence subpopulations are formed differing in body weight and quality of antlers (FRUZINSKI et al. 1982; PIELOWSKI 1999). The diversification of the subpopulation is increased by migration barriers such as fenced highways. The length of high speed roads in Poland will increase in the coming years because of modernization and extension of infra-
structure within the Trans-European Transportation Network. As a result, fragmentation of areas occupied by wild animals will increase, even leading to the isolation of some populations. Passages for animals built over highways and express roads are often incorrectly situated and defectively constructed which restricts or even prevents animals from using them (Jędrzejewski et al. 2006).

The objective of the study was to estimate inter- and intra-subpopulation genetic diversity of roe deer including both ecological forms by the use of blood protein polymorphism and microsatellite markers.

Material and Methods

Animals

The study was undertaken on subpopulations of roe deer from three breeding centers located in different provinces: Wielkopolska province – Czempin; Podkarpacie province – Rudnik on San; and Warmia province – Gierloz, denoted as pop1, pop2 and pop3, respectively. The material consisted of 105 randomly chosen individuals killed during hunts (49 males, 56 females), out of which 51 were from Wielkopolska, 22 from Podkarpacie and 32 from Warmia.

From each animal a blood sample was taken from the chest, stored in a probe with K$_2$EDTA and frozen. In the next step DNA was isolated from the samples. If there was a possibility of analysis without freezing, two additional blood samples were taken to test I class markers. The sample from a sterile probe was used to extract serum, and blood conserved with 6% sodium citrate was a source of erythrocytes. In this way material from 46 random individuals (11 males, 35 females) was obtained (20 from Wielkopolska, 17 from Podkarpacie and 9 from Warmia).

Blood markers

Horizontal electrophoresis on starch gels was used in the analysis of first class markers (Smithies 1955). The serum was used to establish the genotype for transferin and albumin whereas the samples with erythrocytes provided information on hemoglobin genotype.

Microsatellite markers

Primers (Table 1) were designed based on bovine sequence. For each primer set, amplification of microsatellite loci was carried out in 10-μl reactions containing: 10 pmol of each primer, 0.4U Taq polymerase (Super-Therm Polymerase, Qia-

Marker	Primer sequences (5’-3’)	Annealing temperature (°C)
RT1	5’TGCCCTTCTTTTCATCACCACA	54
	5’CATCTTCCCATCCTTTTAC	
RT6	5’TCCCTCTTACTCATTTCTTG	50
	5’CGGATTTGGACACTGTTAC	
RT7	5’CTGTGGCTTCATCTCTTCCT	56
	5’ACTTTTCACGGGGCACTGTTT	
RT9	5’TGAATTTTAAATTCCACTCT	56
	5’CATGCACCTTCATCCCCACAT	
RT13	5’GCCCATGTTAGGAAAGAAG	54
	5’ATCCCAAGAACAGGAGTGAG	
RT23	5’CGGATTGGGCTAGTCTCC	54
	5’AGGCTCCCTGAGTGCTCT	
RT27	5’CCAAGAAGCCAACAAGATG	56
	5’TGTAAACACAGCAAAAGCATT	
RT30	5’CACTTGGCTTTTGGACTTA	54
	5’CTGTTGATATGATGACACT	
NVHRT16	5’ATTCTTAAAGCACCATAATCCT	54
	5’TCTAAGGGCTGTGCTCT	
NVHRT21	5’GCAGCGGAGGAGGACAAAAAG	54
	5’GGGAGGAGGCAGGGAAAATC	
NVHRT48	5’CGTGAATCTTAAACAGGTCT	52
	5’GGTCAGCTTCTTTAGAAAAC	
NVHRT73	5’CTTGCCCAATTAGTGTCTTCT	54
	5’TGCCTGTCAITGGATAGGAG	
RESULTS AND DISCUSSION

Class I markers

In this study, low variability was present only in the hemoglobin (only one heterozygous individual was registered). This corresponds with results obtained by other authors for both wild animals and livestock populations. HARTL et al. (1991) found monomorphism for several loci of roe deer in three central Europe countries (Austria, Hungary and Switzerland). On the other hand, some differentiation in the populations has been observed. Furthermore, for different local livestock breeds, the variability of hemoglobin is low or absent. In Kenyan sheep: kwale, makueni and siaja only Hbα allele was found, whereas in kakamega and kajiando breeds also the Hbα allele was present with a respective frequency of 0.006 and 0.017 (MWACHARO et al. 2002). Negligible variation of biochemical markers has been reported for roe deer from five populations in Austria (HARTL & REIMOSER 1988). Unfortunately, the results of the present study confirmed low usefulness of the so-called blood markers in genetic analysis of wild animal populations.

As stated above, the studies on genetic variability in roe deer in Poland based on 1 class markers show low diversity. The homozygous genotype of transferrin confirms previous studies by HERZOG et al. (1993), who reported a lack of genetic variability for this locus in a German population of roe deer. The authors suggested that monomorphism was caused by selection rather than by drift. Studies carried out in Brazil on 147 marsh deer (Blastocerus dichotomus) living in three subpopulations showed monomorphism of transferrin, however at the same time two alleles in albumin were present: A1α i A1β. Allele A1β was detected only in one of three subpopulations with a frequency of 0.079 (de OLIVEIRA et al. 2005). On the other hand, some authors obtained considerable polymorphism for the hemoglobin locus, for instance in Indian Zebu cattle and Indian buffalo (SEN et al. 1966). One must therefore be cautious in making any generalization in animal population studies.

In the case of Polish roe deer monomorphism was also detected in the albumin locus but considering the low frequency of alternative alleles in the related species (Blastocerus dichotomus), this finding could have been caused by a small amount of available data.

Microsatellite markers

Nine (out of twelve) chosen bovine microsatellite markers were successfully amplified for roe deer. However, one of them was basically monomorphic (only one heterozygous individual was registered). Hence, this locus has been omitted in the present study. Finally, eight loci were analysed. The description of allele frequencies and a measure of their informativeness is included in Table 2. The number of alleles ranged from 3 in...
RT27-6-Fa (effectively two as the third allele was present only in two subpopulations with a very low frequency) to 10 in RT1-VI. Five loci (NVHRT16-VI, NVHRT21-NE, RT7-6-Fa, RT1-VI, RT13-PE) exhibited a heterozygosity of 0.5 or above, which suggests their usefulness in parentage control. Similar levels of heterozygosity were estimated within subpopulations despite a higher number of alleles segregating in subpopulation 2. The non-exclusion probability was high for single loci, however, if the information was combined across loci, reliable information about parentage was obtained for both the total population and subgroups. No deviations from Hardy-Weinberg equilibrium were estimated at the population level, the significant results in subpopulation 2 were caused by the presence of some rare gene variants. The mean frequency of private alleles was equal to 0.125,

Locus	k	N	HOb	HExp	PIC	NE-1P	NE-2P	NE-SI	HW	F(Null)
NVHRT48-VI	4	46	0.457	0.512	0.448	0.867	0.733	0.572	NS	0.061
RT27-6-Fa	3	46	0.522	0.405	0.342	0.920	0.816	0.654	NS	-0.144
NVHRT16-VI	6	46	0.870	0.740	0.698	0.663	0.481	0.411	NS	-0.091
NVHRT21-NE	8	46	0.848	0.843	0.813	0.501	0.330	0.345	NS	-0.007
RT7-6-Fa	9	44	0.750	0.832	0.800	0.522	0.349	0.352	NS	0.050
RT1-VI	9	45	0.867	0.870	0.845	0.441	0.281	0.329	ND	-0.008
NVHRT73-NE	5	46	0.565	0.580	0.531	0.820	0.655	0.519	NS	0.003
RT13-PE	9	48	0.792	0.845	0.818	0.487	0.318	0.343	NS	0.035
Combined						0.024	0.002	0.001		
Population 2						0.024	0.002	0.001		
NVHRT48-VI	4	32	0.438	0.454	0.409	0.897	0.756	0.613	NS	-0.015
RT27-6-Fa	3	32	0.344	0.298	0.265	0.957	0.858	0.735	ND	-0.089
NVHRT16-VI	6	31	0.710	0.753	0.697	0.667	0.491	0.407	NS	0.025
NVHRT21-NE	7	32	0.906	0.761	0.712	0.648	0.469	0.400	*	-0.112
RT7-6-Fa	7	30	0.633	0.682	0.636	0.725	0.544	0.451	NS	0.022
RT1-VI	8	30	0.700	0.770	0.722	0.631	0.453	0.395	NS	0.034
NVHRT73-NE	5	31	0.387	0.563	0.513	0.831	0.668	0.533	NS	0.195
RT13-PE	7	30	0.933	0.800	0.753	0.599	0.421	0.376	NS	-0.088
Combined						0.085	0.010	0.003		
Population 3						0.085	0.010	0.003		
NVHRT48-VI	4	20	0.250	0.315	0.291	0.951	0.833	0.720	ND	0.085
RT27-6-Fa	2	20	0.400	0.328	0.269	0.949	0.866	0.718	ND	-0.110
NVHRT16-VI	6	20	0.600	0.695	0.650	0.713	0.526	0.444	NS	0.031
NVHRT21-NE	8	20	0.900	0.862	0.820	0.490	0.321	0.341	ND	-0.036
RT7-6-Fa	5	20	0.650	0.709	0.634	0.734	0.569	0.442	NS	0.023
RT1-VI	9	20	0.900	0.871	0.831	0.467	0.301	0.336	ND	-0.030
NVHRT73-NE	4	20	0.250	0.235	0.220	0.973	0.878	0.786	ND	-0.059
RT13-PE	9	21	0.762	0.763	0.712	0.640	0.461	0.402	NS	-0.020
Combined						0.067	0.008	0.004		
Total						0.067	0.008	0.004		
NVHRT48-VI	4	98	0.408	0.458	0.414	0.892	0.753	0.606	NS	0.052
RT27-6-Fa	3	98	0.439	0.354	0.306	0.938	0.838	0.690	NS	-0.119
NVHRT16-VI	6	97	0.763	0.740	0.703	0.657	0.475	0.408	NS	-0.018
NVHRT21-NE	8	98	0.878	0.844	0.820	0.490	0.320	0.341	ND	-0.024
RT7-6-Fa	9	94	0.691	0.778	0.743	0.602	0.424	0.384	NS	0.058
RT1-VI	10	95	0.821	0.860	0.840	0.450	0.288	0.331	NS	0.020
NVHRT73-NE	5	97	0.443	0.524	0.495	0.847	0.676	0.553	NS	0.083
RT13-PE	9	99	0.828	0.819	0.793	0.530	0.356	0.357	NS	-0.006
Combined						0.033	0.003	0.001		
which when corrected for population size gives an estimate of 0.338 migrants between populations. A 114bp allele in the RT7-6-Fam locus was the only taxon (pop1) specific allele.

Estimates of genetic distances are listed in Table 3. Although genetic diversity was observed within the subpopulations, the results of paired subpopulation comparisons were considerably affected by the criteria used. The methodological aspects are not discussed in the present study. It should be stressed that the phylogenetic tree based on a standard Nei method (NEI 1972) indicates the largest genetic distance between subpopulation 1 and 2 (see Fig. 1). Phylogenetic trees were similar for the

Measurement od distance	pop1-pop2	pop1-pop3	pop2-pop3
D1: average square	23.949	21.110	19.752
Gst - Nei standard transogramed by ln	0.073	0.019	0.062
Gst - Nei standard transogramed by 1-Gst	0.071	0.019	0.060

Table 3

Genetic distances between subpopulations derived by various methods

Locus	Population pair	P-value	S.E.
NVHRT48-VI	pop1-pop2	0.7177	0.0039
NVHRT48-VI	pop1-pop3	0.0656	0.0022
NVHRT48-VI	pop2-pop3	0.3114	0.0037
RT27-6-Fa	pop1-pop2	0.3403	0.0045
RT27-6-Fa	pop1-pop3	0.3637	0.0023
RT27-6-Fa	pop2-pop3	0.3781	0.0023
NVHRT16-VI	pop1-pop2	0.0935	0.0030
NVHRT16-VI	pop1-pop3	0.6813	0.0045
NVHRT16-VI	pop2-pop3	0.0694	0.0024
NVHRT21-NE	pop1-pop2	0.0000	0.0000
NVHRT21-NE	pop1-pop3	0.2168	0.0051
NVHRT21-NE	pop2-pop3	0.0150	0.0012
RT7-6-Fa	pop1-pop2	0.0017	0.0004
RT7-6-Fa	pop1-pop3	0.0146	0.0013
RT7-6-Fa	pop2-pop3	0.0423	0.0020
RT1-VI	pop1-pop2	0.0000	0.0000
RT1-VI	pop1-pop3	0.1295	0.0043
RT1-VI	pop2-pop3	0.0002	0.0001
NVHRT73-NE	pop1-pop2	0.0008	0.0003
NVHRT73-NE	pop1-pop3	0.0091	0.0007
NVHRT73-NE	pop2-pop3	0.0425	0.0018
RT13-PE	pop1-pop2	0.0098	0.0010
RT13-PE	pop1-pop3	0.3043	0.0058
RT13-PE	pop2-pop3	0.1295	0.0037

Table 4a

Genetic differentiation for each population pair (exact G test)

Taxon	Fst Het	Avg Het	Tot Het	Avg var	Tot Var	Avg All	Tot All	Avg Ran	Tot Ran	Avg Max	Tot Max	Avg Ent	Tot Ent
pop1	0.27	0.696	0.954	12.287	1017	6.625	39	11.25	115	102	155	0.617	0.701
pop2	0.33	0.625	0.938	11.326	1008	5.875	38	10.75	115	102	155	0.536	0.650
pop3	0.38	0.582	0.939	7.125	1010	5.875	38	8.88	115	100	155	0.586	0.655
Average	0.33	0.634	0.944	10.246	1012	6.125	38	10.29	115	102	155	0.580	0.669

Table 4b

Diversity indices for populations studied
three distance measures. Across all loci each pair of subpopulations showed highly significant intra loci differentiation, for within locus differentiation. The P-values for paired groups are listed in Table 4a. For five loci differentiation in the analyzed populations was highly significant (P<0.01). This concerned seven pairwise subpopulation combinations. In the case of subpopulations 1 and 2, differences for all five loci were significant whereas differences between population 1 and 3, as well as 2 and 3, were significant within locus NVHRT73-NE and RT1-VI, respectively.

Generally, the obtained results indicate a relatively large similarity of these subpopulations (Table 4b). Despite some natural barriers and geographic distance, gene flow between these groups was possible, ensuring genetic variation. By contrast to some species of livestock (e.g. LEMUS-FLORES et al. 2001), roe deer do not tend to differentiate genetically in one geographic region. This is likely to be connected with directional selection with controlled mating. On the other hand some authors (VERNESI et al. 2002; ROYO et al. 2007) using molecular (microsatellites and mitochondrial) markers reported relatively large genetic variability in roe deer in western and southern Europe. Also ZACHOS et al. (2006) reported the results of a genetic analysis of roe deer populations in different European countries. Relatively small genetic differentiation of the species can be explained by the demographic history of roe deer in some parts of Europe. In the 19th century, roe deer populations were nearly driven to extinction through relentless persecution (ZACHOS et al. 2006). A similar historical background for the populations in Poland can be hypothesized. The animals recorded from these three regions are relatively distant. However, they can cross rivers and a number of industrial barriers.

Comprehensive knowledge of genetic diversity is the first step for conservation of a given population (Li et al. 2008). The results of the present work indicate a similarity of the subpopulations. However, it should be emphasized that this conclusion was based on only twelve loci. Further study should cover more loci, including mitochondrial ones as well.

References

BREŠNIK W. 1982. Grouping tendencies in roe deer under agrogenosis conditions. Acta Theriol. 27: 27-447.

CAVALLI-SFORZA L. L., EDWARDS A. W. F. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 32: 550-570.

FELSENSTEIN J. 1989. PHYLP – Phylogeny Inference Package (Version 3.2). Cladistics 5: 164-166.

FRUZINSKI B., KALUZINSKI J., BAKSALY J. 1982. Weight and body measurement of forest and field roe deer. Acta Theriol. 27: 479-488.

HARTL G., REIMOSER F. 1988. Biochemical variation in roe deer (Capreolus capreolus L.): are r-strategists among deer genetically less variable than K-strategists? Heredity 60: 221-227.

HARTL G., REIMOSER F., WILLING R., KOLLER J. 1991. Genetic variability and differentiation in roe deer (Capreolus capreolus L.) of Central Europe. Genet. Sel. Evol. 23: 281-299.

HERZOG S., MUSHÓVEI C., HERZOG A. 1993. Lack of genetic transferin variation in European roe deer (Capreolus capreolus Linneé). Z. Sütetüerkunde 58: 155-159.

JEĐRZEWSKI W., NOWAK S., KUREK R., MYSLAJEK R. W., STACHURA K., ZAWADZKA B. 2006. Animals and roads. Methods to reduce the negative impact of roads on animal population. Zakład Badania Ssaków PAN, Białowiezka. Pp. 1-95. (In Polish).

KALUZINSKJ J. 1982. Composition of the food of roe deer living in fields and the effects of their feeding on plant production. Acta Theriol. 27: 457-470.

KAMENIARZ R., PANEK M. 2008. Game animals in Poland at the turn of the 20th and 21st century. Stacja Badawcza – OHiZ PZL, Czempini. (In Polish with English summary).

LEMUS-FLORES C., ULLAO-ARIZUZ R., RAMOS-KURI, ESTRADA F. J., ALONSO R. A. 2001. Genetic analysis of Mexican hairless pig populations. J. Animal Sci. 79: 3021-3026.

LI J. Y., CHEN H., LAN X. Y., KONG X. J., MIN L. J. 2008. Genetic diversity of five Chinese goat breeds assessed by microsatellite markers. Czech J. Animal Sci. 8: 315-319.

MAJEWSKA B., PIELOWSKI Z., LABUÐZKI L. 1982. The level of some energy metabolism indices in forest and field populations of roe deer. Acta Theriol. 27: 471-477.

MARSHALL T. C., SLATE J., KREUZ L. E. B., PEMBERTON J. M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655.
MINCH E., RUIZ-LINARES A., GOLDSTEIN D. B., FELDMAN M. W., CAVALI-SIORZA L. L. 1997. MICRO SAT: A Computer Program for Calculating Various Statistics on Microsatellite Allele Data (Stanford Univ., Palo Alto, CA), Version 1.5c.

MWACHARO J. M., OTIENO C. J., OKEYO A. M. 2002. Genetic variations between indigenous fat-tailed sheep populations in Kenya. Small Ruminant Res. 44: 173-178.

NEI M. 1972. Genetic distance between populations. Am. Nat. 106: 283-292.

OLIVEIRA de E. J. F., GARCIA J. E., CONTEL E. P. B., DUARTE J. M. B. 2005. Genetic structure of Blastocerus dichotomus populations in the Parana River Basin (Brazil) based on protein variability. Biochem. Genet. 43: 211-222.

PAGE R. D. M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358.

PIELOWSKIZ. 1999. Roe Deer. Oficyna Wydawnicza „Wydawnictwo Świat”, Warszawa. (In Polish).

REYNOLDS J. B., WEIR B. S., COCKERHAM C. C. 1983. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105: 767-779.

ROUSSELet. 2008. Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Res. 8: 103-106.

ROYO L. J., PAJARES G., ALVAREZ L., FERNANDEZ J., GOWNEC F. 2007. Genetic variability and differentiation in Spanish roe deer (Capreolus capreolus): A phylogeographic reassessment within the European framework. Mol. Phylogenet. Evol. 42: 47-61.

SEN A., DEBUDDUTA ROY S., BHATTACHARYA DEB N. C. 1966. Hemoglobin of Indian Zebu Cattle and the Indian Buffalo. J. Animal Sci. 25: 445-448.

SMITHIES O. 1955. Zone electrophoresis in starch gels. Group variations in the serum proteins of normal human adults. Biochem. J. 61: 629-641.

VERNESI C., PECCHIOLI E., CARAMELLI D., TIEDEMANN R., RANDI E., BERTORELLE G. 2002. Genetic structure of natural and reintroduced roe deer (Capreolus capreolus) populations in the Alps and central Italy, with reference to the mitochondrial DNA phylogeography of Europe. Mol. Ecol. 11: 1285-1297.

ZACHOS F. E., HMWE S. S., HARTL G. B. 2006. Biochemical and DNA markers yield strikingly different results regarding variability and differentiation of roe deer (Capreolus capreolus, Artiodactyla; Cervidae) populations from northern Germany. J. Zool. Syst. Evol. Res. 44: 167-174.