ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article IS THERE A DIFFERENCE IN THE PHTHALATE EXPOSURE BETWEEN ADULTS WITH METABOLIC DISORDERS AND HEALTHY ONES?

DA LI POSTOJI RAZLIKA U IZLOŽENOSTI FTALATIMA IZMEĐU ODRASLIH OSOBA SA METABOLIĈKIM POREMEĆAJIMA I ZDRAVIH OSOBA?

Kristina Stepanović*,†, Bojan Vuković*,†, Maja Milanović*,‡, Nataša Milošević*,‡, Dragana Bosić Živanović§, Aleksandra Stojadinović*,∥, Dragana Tomić Naglić*,†, Sanja Lepić¶,**, Nataša Milić*,‡, Milica Medić Stojanoska*,†, Vojnosanitetski pregled (2020); Online First September, 2020.

UDC:

DOI: https://doi.org/10.2298/VSP200220093S

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
IS THERE A DIFFERENCE IN THE PHTHALATE EXPOSURE BETWEEN ADULTS WITH METABOLIC DISORDERS AND HEALTHY ONES?

DA LI POSTOJI RAZLIKA U IZLOŽENOSTI FTALATIMA IZMEĐU ODRASLIH OSOBA SA METABOLIČKIM POREMEĆAJIMA I ZDRAVIH OSOBA?

Kristina Stepanović*,†, Bojan Vuković*,†, Maja Milanović*,‡, Nataša Milošević*,‡, Dragana Bosić Živanović§, Aleksandra Stojadinović*,‖, Dragana Tomić Naglić*,†, Sanja Lepić*,‡, Nataša Milić*,‡, Milica Medić Stojanoska*,†

*University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
†Clinic for Endocrinology, Diabetes and Metabolic Diseases, Novi Sad, Serbia
‡Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Serbia
§Health Center Ruma, Ruma, Serbia
‖Institute for Children and Youth Health Care of Vojvodina, Novi Sad, Serbia
§Medical Faculty of the Military Medical Academy, University of Defence in Belgrade, Belgrade, Serbia
**Institute for Hygiene, Military Medical Academy, Belgrade, Serbia

Correspondence to:
Milica Medić Stojanoska, MD, Prof. dr. sci. med., PhD
University of Novi Sad, Faculty of Medicine, Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Novi Sad, Serbia
E-mail: milica.medic-stojanoska@mf.uns.ac.rs
Tel: +381214843508
ABSTRACT

INTRODUCTION: Phthalates are recognized as endocrine disrupting compounds and are extensively present in variety of every day products. The chronic exposure to phthalates is suspected to be associated with range of health disorders. The study aim was to examine the abundance of phthalate metabolites in the urine samples among adults in the Province of Vojvodina, Serbia, and to determine the prevalence of phthalate metabolites in healthy individuals and those with metabolic disorders such as obesity and newly diagnosed type 2 diabetes mellitus.

MATERIAL AND METHODS: The first morning urine sample of 308 participants was screened for the presence of 10 phthalate metabolites: mono-ethyl phthalate (MEP), mono-(2-ethylhexyl) phthalate (MEHP), mono-n-butyl phthalate (MBP), mono-iso-allyl phthalate (MiAP), mono-n-allyl phthalate (MnAP), mono-cyclohexyl phthalate (MCHP), mono-benzyl phthalate (MBzP), mono-n-octyl phthalate (MOP), mono-n-propyl phthalate (MPP) and mono-methyl phthalate (MMP).

RESULTS: At least one phthalate metabolite was detected in the first morning urine sample in 50.32% of the examined population. The most frequently detected phthalate metabolites were MEP and MEHP. Out of all phthalate positive participants, 38.3% of them had one, 10.7% had two, while 1.3% of participants had three phthalate metabolites in the first morning urine sample. Significant difference (p<0.05) between groups was observed on MEP and MMP frequency, while borderline significant difference (p<0.1) between groups was observed on MEHP and MCHP frequency.

CONCLUSION: In Vojvodina region, both healthy adults and those with metabolic disorders such as obesity and newly diagnosed type 2 diabetes mellitus are predominantly exposed to Di-ethyl phthalate and Di-(2-ethylhexyl)phthalate since MEP and MEHP were the most frequently detected phthalate metabolites. Further research is required in order to provide more details of the phthalates influence on the adverse health effects.

Key words: Phthalates, Phthalate metabolites, Endocrine disruptors, Metabolic disorders, Healthy individuals
SAŽETAK

UVOD: Ftalati predstavljaju grupu jedinjenja za koje je poznato da se ponašaju kao endokrini disruptori i koji se nalaze u različitim potrošačkim proizvodima. Hronična ekspozicija ftalatima se dovodi u vezu sa nastankom brojnih oboljenja. Cilj ovog istraživanja je bio da se utvrdi zastupljenost ftalatnih metabolita u uzorcima urina odraslih individua u Vojvodini, Srbija, kao i da se utvrdi prevalenca ftalatnih metabolita u zdravih ispitanika i onih sa metaboličkim poremećajima kao što su gojaznost i novootkriveni diabetes mellitus tip 2.

MATERIJAL I METODE: Prvi jutarnji uzorak urina 308 ispitanika je analiziran na prisustvo 10 ftalatnih metabolita: mono-etil ftalata (MEP), mono-2- etilheksil ftalata (MEHP), mono-n-butil ftalata (MBP), mono-izo-amil-ftalata (MiAP), mono-n-amil ftalata (MnAP), mono-cikloheksil ftalata (MCHP), mono-benzil ftalata (MBzP), mono-n-oktil ftalata (MOP), mono-n-propil ftalata (MPP) i mono-metil ftalata (MMP).

REZULTATI: Najmanje jedan ftalatni metabolit je detektovan u uzorku urina 50.32% ispitivane populacije. Najzastupljeniji ftalatni metaboliti bili su MEP i MEHP. Među ispitanicima pozitivnim na prisustvo ftalatnih metabolita, 38.3% ispitanika je imalo detektovan jedan, 10.7% je imalo dva, a 1.3% ispitanika je imalo prisutna 3 ftalatna metabolita u uzorku jutarnjeg urina. Utvrđeno je postojanje značajne razlike ($p<0.05$) između grupa u prisustvu MEP i MMP ftalatnih metabolita, kao i granične značajnosti ($p<0.1$) između grupa u prisustvu MEHP i MHCP ftalatnih metabolita.

ZAKLJUČAK: U populaciji Vojvodine, i zdrave i osobe sa metaboličkim poremećajima kao što su gojaznost i novootkriveni diabetes mellitus tip 2, su dominatno izložene Di-etil ftalatu i Di-2-etilheksil ftalatu, s obzirom da su najzastupljeniji ftalatni metaboliti bili MEP i MEHP. Nepodanu su dalja istraživanja koja će obezbediti bolji uvid u štetan uticaj ftalata na zdravlje.

Ključne reči: Ftalati, Ftalatni metaboliti, Endokrini disruptori, Metabolički poremećaji, Zdrave osobe

INTRODUCTION
Phthalates represent a large group of omnipresent industrial chemicals ordinarily used as plasticizers and can make up to 40-50% of the polyvinyl chloride plastic products weight. They are known to act as endocrine-disrupting chemicals (EDCs). Phthalates can be found in food packaging, furniture, toys, and many other household products, but also in medical devices, such as tubing and intravenous bags. Phthalates are also popular in the cosmetic industry. Since they are not covalently bound to the plastic, phthalates can leach and transfer to the air, food, and water, and thus become inhaled, ingested or absorbed through the skin. After being absorbed in the circulation, phthalates are metabolized in two phases: hydrolysis (monoester phthalates are produced), and conjugation. Phthalates are mainly excreted through urine, but they can be also detected in various fluids like blood (serum and plasma), breast milk, saliva, feces, etc.

Monoester phthalates have a fairly short half-life in humans. Despite this fact, numerous scientific evidence imply that phthalate diesters and monoesters can lead to health disorders such as mental retardation, body composition problems, as well as endocrine, pulmonary and cardiovascular diseases.

Phthalates can activate different pathways, but nuclear receptors (NR) are recognized as a primary target. Acting as a partial or complete agonist or antagonist, phthalates can alter NR signalling that is involved in the regulation of the metabolism and energy homeostasis. The main NRs targeted by phthalates are peroxisome proliferator-activated receptors (PPARα, γ), androgen receptors, thyroid hormone receptors (TRα, β), pregnane X receptor (PXR), estrogen receptors (ERα, β), and estrogen-related receptors.

By binding to the different components of the PPARs involved in the regulation of adipose tissue and lipid homeostasis, phthalates affect the fat distribution and alter the lipid status. Moreover, through the PPAR-γ receptor component, phthalates could induce insulin resistance and impair glucose homeostasis. Besides genetic inheritance and lifestyle, chronic exposure to environmental pollutants, including chronic phthalate exposure, may attribute to the global epidemics of obesity and type 2 diabetes mellitus (T2DM).

The study goal was to examine the presence of phthalate metabolites among adults in the Province of Vojvodina (both healthy and with metabolic disorders) in order to find the most abundant metabolites. An additional aim was to determine the prevalence of phthalate
metabolites in the control group, obese and group of participants with newly diagnosed T2DM.

RESEARCH DESIGN AND METHODS

In total 308 volunteers aged 18-50 years from Vojvodina region, Serbia, were enrolled in a cross-sectional study. The participants were divided into 3 groups: 103 in the control, 104 in the obese (body mass index (BMI) >30kg/m²) and 101 in the group of volunteers with newly diagnosed T2DM (fasting plasma glucose value >7.0mmol/l), without medical treatment.

Participants with a history of chronic diseases such as dyslipidaemia, autoimmune disease, chronic infections, malignant disease, or those with possible or proven pregnancy or lactation were not involved in the study. Volunteers who were treated with any kind of medication that could affect the lipid status or the body composition (such as hypolipidaemia, glucocorticoids, oral contraceptives or immune-suppressive drugs) were not included in the study.

The study participants provided written informed consent and the study protocol was approved by the Ethics Board of the Faculty of Medicine, University of Novi Sad, Serbia. All subjects who decided to withdraw their informed consent were excluded from the study.

Firstly, all participants were surveyed and asked specific questions about their medical and personal history. Afterward, anthropometric values such as weight, height, waist circumference were taken and BMI was calculated using the following formula – weight/height² (kg/m²). Waist circumference was measured in the middle of the line joining anterior superior iliac spine and rib arc.

The first morning urine sample of the volunteers who participated in this study was screened for the presence of 10 phthalate metabolites: mono-ethyl phthalate (MEP), mono-(2-ethylhexyl) phthalate (MEHP), mono-n-butyl phthalate (MBP), mono-iso-allyl phthalate (MiAP), mono-n-allyl phthalate (MnAP), mono-cyclohexyl phthalate (MCHP), mono-benzyl phthalate (MBzP), mono-n-octyl phthalate (MOP), mono-n-propyl phthalate (MPP) and mono-methyl phthalate (MMP).

After enzymatically treatment of collected urine samples, methyl-tert-butyl-ether was used as a solvent for the extraction of phthalate metabolites. The samples were prepared and
analyzed by the previously developed method accurately described by Milošević et al.11 Gas chromatography coupled to mass spectrometric detection (Agilent GC 7890A, 5975C VLMSD) equipped with a fused silica capillary column (30 m, 0.25 mm i.d. and 0.25μm film thickness; J&WScientific, Folsom, CA, USA) was used for the determination of phthalates residues in urine. The limit of detection (LOD) for 10 phthalate metabolites was 0.25 ng/ml.

Separate groups were designed for each phthalate metabolite dividing them between phthalate-free and phthalate positive samples (binary distribution), as the span of positive values was too wide so that standard deviations would exclude valuable patients.

Statistical analysis

The data were analyzed using the Paerson’s Chi-squared test (in cases of low number of positive phthalate values coefficient of contingency was used) with the significant results being recorded at $p<0.05$ and $p<0.1$. The statistical analyses and graphical representation were done using SPSS 23.0 (SPSS Inc., Chicago, Illinois, USA) and MS Excel Package.

RESULTS

General characteristics of the studied group

General characteristics of the analysed population such as male to female ratio, sex, height, age, body weight, waist circumference and BMI values are shown in Table 1. Statistically significant differences in age, body weight, waist circumference and BMI were observed between studied groups.

| Table 1. General characteristics of the entire cluster |
|---------|---------|---------|---------|---------|---------|
| N | Gender | Age | Height | Weight | Waist | BMI |
| | Male | Female | (years) | (cm) | (kg) | (cm) | (kg/m²) |
| Control | 103 | 51 | 52 | 35.91 | 173.37 | 69 | 78.38 | 22.60 |
| | (SD ±8.00) b | (SD ±8.44) | (SD ±10.71) ab | (SD ±7.99) ab | (SD ±2.07) ab |
| Obese | 104 | 51 | 53 | 38.61 | 174.10 | 106.36 | 110.29 | 35.23 |
| | (SD ±8.69) c | (SD ±9.94) | (SD ±20.37) ac | (SD ±14.79) ac | (SD ±6.74) ac |
Phthalate metabolite abundance is shown in Table 2. The most frequently detected phthalate metabolites were MEP and MEHP, while MnAP was the least represented. Out of 308 participants, 155 (50.32%) of them had at least one phthalate metabolite detected in the first morning urine sample.

Table 2. Phthalate metabolites abundance in the examined population

	MEP	MEHP	MBP	MiAP	MnAP	MCHP	MBzP	MOP	MPP	MMP
Control	26	17	4	2	1	0	1	4	2	0
N=103	(25.3%)	(16.5%)	(3.9%)	(1.9%)	(1%)	(0%)	(1%)	(3.9%)	(1.9%)	(0%)
Obese	30	27	4	1	1	0	3	1	2	6
N=104	(28.8%)	(26%)	(3.8%)	(1%)	(1%)	(0%)	(2.9%)	(1%)	(1.9%)	(5.7%)
Diabetes	13	29	5	1	0	3	1	0	9	
N=101	(12.8%)	(28.7%)	(4.9%)	(1%)	(0%)	(2.9%)	(2.9%)	(1%)	(0%)	(8.9%)
Total	69	73	13	4	2	3	7	6	4	15
N=308	(22.4%)	(23.7%)	(4.2%)	(1.2%)	(0.6%)	(0.97%)	(2.2%)	(1.9%)	(1.2%)	(4.8%)

MEP - mono-ethyl phthalate; MEHP - mono-(2-ethylhexyl) phthalate; MBP - mono-n-butyl phthalate; MiAP - mono-iso-allyl phthalate; MnAP - mono-n-allyl phthalate; MCHP - mono-cyclohexyl phthalate; MBzP - mono-benzyl phthalate; MOP - mono-n-octyl phthalate; MPP - mono-n-propyl phthalate; MMP - mono-methyl phthalate

The frequency of the detection for the analyzed phthalate metabolites in each observed group was compared, respectively, and the results are presented in Fig. 1.
Fig. 1. Abundance of phthalate metabolites in each group

In the control group, the most abundant phthalate metabolites were MEP and MEHP, while MCHP and MMP were not detected. Analysing the frequency of all metabolites separately, 26 out of 103 volunteers in the control group (25.3%) had MEP in their urine, 17 of them (16.5%) had MEHP, and 4 participants (3.9%) were MBP or MOP exposed. Additionally, MiAP and MPP were detected in two samples in the control group (1.7%), while MnAP and MBzP were above the limit of the detection in only one sample (0.9%).

In the group of obese participants, MEP and MEHP were also the most abundant phthalate metabolites, while the presence of MCHP again was not determined. In terms of frequency of the detection, MEP was determined in the urine of 30 participants (28.8%), MEHP was found in 27 (25.9%) obese participants, while 4 of them (3.9%) had MBP in their urine sample. Moreover, only one participant was MiAP or MnAP exposed. Three participants (2.9%) were positive with MBzP presence, and 2 of them (1.9%) had MPP in their urine sample. Only 1 participant (0.9%) was positive with MOP presence, while 6 participants (5.7%) had MMP in the urine sample.

In the group of participants with T2DM, MEP and MEHP were again the most frequently detected metabolites in the urine, while the presence of MPP and MnAP was not determined. Out of 101 participants with T2DM, 13 (12.8%) had MEP, while 29 of them (28.7%) had MEHP in their urine sample. MBP was detected in the urine of 5 participants (4.9%), while only one participant was positive with MiAP or MOP presence. Both MCHP and MBzP were detected in the urine of 3 participants, and 9 participants had MMP phthalate metabolite in their urine sample.

The distribution of analysed metabolites in the phthalate positive participants is presented in Fig. 2. Out of 308 participants, 118 (38.3%) had one phthalate metabolite, 33 of them (10.7%) had two, while 4 participants (1.3%) had three phthalate metabolites in their urine sample. There were no participants with four or more phthalate metabolites detected in their urine samples.

Fig. 2. Number of phthalate metabolites detected in the urine samples

All phthalates were tested for significant difference between the control and obese/T2DM groups of volunteers. MEP and MMP had p values less than 0.05, while MEHP and MCHP
had \(p \) values less than 0.1 and therefore were considered as significant and will be further discussed.

MEP

In the examined population of 308 volunteers, a significant difference was seen on MEP frequency between control group and T2DM volunteers (\(\chi^2 = 5.058, \text{df} = 1, \ p=0.025 \)). Precisely, 26 (out of 103) participants in the control group (25.2\%) were MEP positive, exactly double in comparison with the number of exposed T2DM volunteers (13/101; 12.9\%).

MMP

Considering the MMP occurrence in urine samples, a significant difference in frequencies was observed between control group and T2DM volunteers (\(\chi^2 = 8.491, \text{df} = 1, \ p=0.004 \)) and obese group and control group (\(\chi^2 = 6.120, \text{df} = 1, \ p=0.013 \)), but one must stress the relative significance of this finding as T2DM group had 9 positive values (9/101, 8.9\%), obese group 6 (6/104, 5.8\%) and control group had none (0/103, 0\%).

MEHP

MEHP was present in 29 of 101 T2DM volunteers (28.9\%), 27 of 104 in obese group (26\%) and in 17 of 103 control group volunteers (16.5\%) where a borderline significant difference was observed between control and T2DM group (\(\chi^2 = 3.435, \text{df} = 1, \ p=0.064 \)) and between obese and control group (\(\chi^2 = 2.765, \text{df} = 1, \ p=0.096 \)).

MCHP

This metabolite was detected in 3 of 101 T2DM volunteers (3\%) and in none of 103 control group volunteers (0\%) with moderate significant difference observed (\(\chi^2 = 3.105, \text{df} = 1, \ p=0.078 \)).

Again, between the groups, no statistically significant differences were observed between the characteristics of the MBP, MiAP, MnAP, MBzP, MOP, MPP subgroups.

DISCUSSION

Many chemicals which presence in nature has been increased after the industrial revolution can act as endocrine disruptors by interfering with endogenous hormonal pathways. Epidemiological studies\(^{12-14}\) have shown the link between exposure to these chemicals and the development of common disorders and diseases such as obesity and T2DM. Taking into
consideration that pathogenesis of these disorders depends on the combination of lifestyle habits and genetics, it is lately hypothesized that exposure to endocrine disruptors during or after pregnancy can play a significant role in the onset of some diseases15. Phthalates are usually found in large quantities in daily products. The number of publications that investigate the positive linkage between phthalates exposure and adipogenesis and T2DM, some of the largest epidemics of the modern world, increases continuously. Although chemical industry representatives assert that levels of phthalates found in the human body are well below the “safe” concentrations by some regulatory agencies, endocrinologists consider that phthalates exposure even at low doses, during vulnerable periods, can lead to adverse health effects16. Although it is estimated that the average level of human exposure to DEHP is around 0.0024 mg/kg per body weight per day, much below the current DEHP “No Observed Adverse Effect Level” (NOAEL) by the European Food Safety Authority, the chronic exposure even at low doses could be more harmful than single acute exposure to high dose17. Natural hormones are active at pico to nanomolar range. Hence, phthalates as EDCs might ameliorate hormone homeostasis and cause biological impact at low doses18. According to literature data12,19, fetuses, newborns and adolescents are vulnerable groups and particularly susceptible to phthalate exposure, which is explained by the high levels of cell activity in those age groups.

The obtained results showed that the urine sample of 50.32% participants was positive for the presence of at least one phthalate metabolite.

The ubiquitous presence of phthalates in human urine samples is documented in the study published by Zota et al.20. Eleven phthalate metabolites were analysed in the urine sample of more than 11000 adults and children, and data from five cycles of NHANES (National Health and Nutrition Examination Survey) study from 2001-2010 were used. MEP, MBzP, and MnBP were detected in 98% of participants, while MiBP was detected in 72% of participants from 2001-2002 and in 96% of volunteers from 2009-2010.

Earlier, Stahlhut et al. concluded that the urine of more than 95% of participants was positive with the following phthalate metabolites: MEP, MBP and MBzP, while 80% of participants had MEHP in urine. In the same study, MEP metabolite had noticeably the highest level, followed by MBP and MBzP, while MEHP had the lowest level21. In this research, MEHP (detected in 23.7% cases) and MEP (in 22.4%) were the most represented in the urine sample. The high frequency of the detection of MEHP could be due to a wide
use of products that contain Di-(2-ethylhexyl)phthalate (DEHP), such as plastic food packaging, toys, and many other household products, while MEP presence is probably the consequence of the increased use of different cosmetic and beauty products, as well as medications, containing Diethyl phthalate (DEP)22.

Similar to the findings of previous studies, Hoppin et al. found the highest levels of MEP, MBzP, MBP and MEHP in the two consecutive morning urine samples of 46 Afro-American women. There was no significant difference in the level of phthalate metabolites between two urine samples, which indicates that urine is a suitable medium for the measurement of phthalates with a short half-life23. Additionally, high urinary levels of MEP, MnBP, and MBzP were found in a study conducted on 289 adult volunteers by Blount et al., while MEHP was measured in much lower concentrations24.

Similar to this research, detectable levels of MEP, MBP, MBzP, MEHP, MiNP, MOP and MCHP were found in the urine sample of 2540 volunteers, but with the higher frequency of detection (75%). A possible reason for the difference in the distribution is the much smaller sample size in our research (308 versus 2540 volunteers)25.

When exposure to six urinary phthalate metabolites was examined in 370 healthy Czech Preschool and School Children, MEHP, mono (2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono (2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), MBzP, MiBP, and mono-n-butyl phthalate (MnBP) were analysed. Among all samples, the two latter mono-butyl phthalate isoforms dominated26.

Comparable to similar studies were the results obtained by Frederiksen et al. who conducted a research on 60 young men to examine the correlation between 13 phthalates metabolites levels in different mediums, such as urine, semen, and serum. DEHP phthalate metabolites, accompanied by MEP, MiBP, MBzP and MnBP, were detected in the urine samples in the highest amount27.

In this research MEP and MEHP were the most frequently detected metabolites in control, obese and T2DM group. Significant differences were observed for MEP frequency between healthy and T2DM volunteers ($p=0.025$). Regarding MEHP, a borderline significant difference was observed between control and T2DM group ($p=0.064$) and between obese and control group ($p=0.096$).

It is known that activation of PPAR receptors plays an important role in different steps of glucose homeostasis, including insulin secretion and insulin resistance, but also can affect
circulating levels of lipids thereby modulating the quantity of subcutaneous and visceral fat. Phthalate metabolites are well-known ligands to PPAR receptors and therefore could influence both homeostasis of glucose and lipid metabolism. Through the PPAR-signaling pathways deterioration, phthalate metabolites could contribute to the development of obesity, and diabetes. The precise mechanism by which phthalates influence these PPAR-mediated actions is expected to be explained with further experiments.

Limitations and advantages of this study

This study focused only on a middle-aged cluster of white (Caucasian) volunteers, hence, the results cannot be extrapolated to other ethnic and other age groups. Being conducted as a cross-sectional study, this research has a risk of bias of selection. Thereby, further studies are needed to confirm the present data. Further studies are also needed for clustering the geographical, age, ethnic, sexual, and other characteristics.

In the current study, urine was used as a matrix for measurements of phthalate metabolites. The advantage of urinary measurements is that, apart from low cost and non-invasive methods of obtaining samples, usually higher levels are found compared with serum and thereby more phthalate metabolites could be measured above the lower detection limit.

Conclusion

Approximately half of the examined group (50.32%) had at least one phthalate metabolite in their urine sample. Our study showed that the most abundant phthalate metabolite present in the group of obese participants was MEP while MEHP was the most common phthalate metabolite in T2DM group. Group of healthy individuals had the highest percentage of presence of MEP amongst examined phthalate metabolites. The obtained results indicate that in Vojvodina region, both healthy adults and those with metabolic disorders such as obesity and newly diagnosed type 2 diabetes mellitus are predominantly exposed to widespread DEHP and DEP phthalates.

Further research that will provide more detailed insight into phthalate interference with glucose and lipid metabolism and their influence on the endocrinological balance is needed.

Acknowledgements This research has been financially supported by the Provincial Secretariat for Science and Technological Development, AP Vojvodina, Republic of Serbia, Grant No 114-451-2216/2016.
REFERENCES

1. Halden RU. Plastics and health risks. Annu Rev Public Health. 2010;31:179-94.
2. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210(5):623-34.
3. Wittassek M, Angerer J. Phthalates: metabolism and exposure. Int J Androl. 2008;31(2):131-8.
4. Katsikantami I, Sifakis Tzatzakis MN, Vakonaki E, Kalantzi OI, Tsatsakis AM, Rizos AK. A global assessment of phthalates burden and related links to health effects. Environ Int. 2016;97:212-236.
5. Hatch EE, Nelson JW, Stahlhut RW, Webster TF. Association of endocrine disruptors and obesity: perspectives from epidemiological studies. Int J Androl. 2010;33(2):324-32.
6. Grimaldi M, Boulahtouf A, Delfosse V, Thouennon E, Bourguet W, Balaguer P. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors. Front Endocrinol (Lausanne). 2015;6:62.
7. Milošević N, Milanović M, Sudji J, Bosić Živanović D, Stojanoski S, Vuković B, Milić N, Medić Stojanoska M. Could phthalates exposure contribute to the development of metabolic syndrome and liver disease in humans? Environ Sci Pollut Res Int. 2020;27(1):772-784.
8. Shoshtari-Yeganeh B, Zarean M, Mansourian M, Riahi R, Poursafa P, Teiri H, et al. Systematic review and meta-analysis on the association between phthalates exposure and insulin resistance. Environ Sci Pollut Res Int. 2019;26(10):9435-42.
9. Martínez-Ibarra A, Martínez-Razo LD, Vázquez-Martínez ER, Martínez-Cruz N, Flores-Ramírez R, García-Gómez E, et al. Unhealthy Levels of Phthalates and Bisphenol A in Mexican Pregnant Women with Gestational Diabetes and Its Association to Altered Expression of miRNAs Involved with Metabolic Disease. Int J Mol Sci. 2019;20(13):3343.
10. James-Todd TM, Huang T, Seely EW, Saxena AR. The association between phthalates and metabolic syndrome: The National Health and Nutrition
Examination Survey 2001-2010. Environ Health Global Access Sci Sour. 2016;15:52.

11. Milošević N, Milić N, Živanović Bosić D, Bajkin I, Perčić I, Abenovali L, Medić Stojanoska M. Potential influence of the phthalates on normal liver function and cardiometabolic risk in males. Environ Monit Assess. 2017;190(1):17.

12. Stojanoska MM, Milosevic N, Milic N, Abenavoli L. The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders. Endocrine. 2017;55(3):666-681.

13. Radke EG, Galizia A, Thayer KA, Cooper GS. Phthalate exposure and metabolic effects: a systematic review of the human epidemiological evidence. Environ Int. 2019;132:104768.

14. Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J Hazard Mater. 2017;340:360-383.

15. Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002;8:185-92.

16. Wittassek M, Wiesmüller GA, Koch HM, Eckard R, Dobler L, Helm D, et al. Internal phthalate exposure over the last two decades—A retrospective human biomonitoring study. Int J Hyg Environ Health. 2007;210(3-4):319-33.

17. Genuis SJ, Beesoon S, Lobo RA, Birkholz D. Human elimination of phthalate compounds: blood, urine, and sweat (BUS) study. ScientificWorldJournal. 2012;2012:615068.

18. Vandenberg LN, Colborn T, Hayes TB, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33(3):378-455.

19. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293-342.
20. Zota AR, Calafat AM, Woodruff TJ. Temporal Trends in Phthalate Exposures: Findings from the National Health and Nutrition Examination Survey, 2001–2010. Environ Health Perspect. 2014;122(3):235-41.

21. Stahlhut RW, Wijngaarden E, Dye TD, Cook S, Swan SH. Concentrations of Urinary Phthalate Metabolites Are Associated with Increased Waist Circumference and Insulin Resistance in Adult U.S. Males. Environ Health Perspect. 2007;115(6):876-82.

22. CDC (Centers for Disease Control and Prevention) Fourth National Report on Human Exposure to Environmental Chemicals, Updates Tables. 2011. http://www.cdc.gov/exposurereport/ Accessed 11 Nov 2019.

23. Hoppin JA, Brock JW, Davis BJ, Baird DD. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect. 2002;110:515–18.

24. Blount BC, Silva MJ, Caudill SP, Needham LL, Pirkle JL, Sampson EJ, et al. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect. 2000;108(10):979-82.

25. Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect. 2004;112:331–38.

26. Puklová V, Janoš T, Sochorová L. et al. Exposure to Mixed Phthalates in Czech Preschool and School Children. Arch Environ Contam Toxicol. 2019;224:1-9.

27. Frederiksen H, Jorgensen N, Andersson AM. Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol. 2010;34(7):400-10.

28. Ding Y, Liu Y, Fei F, Yang L, Mao G, Zhao T, et al. Study on the metabolism toxicity, susceptibility and mechanism of di-(2-ethylhexyl) phthalate on rat liver BRL cells with insulin resistance in vitro. Toxicology. 2019;422:102-20.
Fig. 1. Abundance of phthalate metabolites in each group

Fig. 2. Number of phthalate metabolites detected in the urine samples

Received on February 20, 2020.
Revised on May 21, 2020.
Accepted September 25, 2020.
Online First September, 2020.