Ocular morphology of the fruit bat, Eidolon helvum, and the optical role of the choroidal papillae in the megachirotteran eye: a novel insight

Authors: I. K. Peter-Ajuzie, I. C. Nwaogu, L. O. Majesty-Alukagberie, A. C. Ajaebili, F. A. Farrag, M. A. Kassab, K. Morsy, M. Abumandour

DOI: 10.5603/FM.a2021.0072
Article type: Original article
Submitted: 2021-06-26
Accepted: 2021-07-08
Published online: 2021-07-21

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Ocular morphology of the fruit bat, *Eidolon helvum*, and the optical role of the choroidal papillae in the megachiropteran eye: a novel insight

I.K. Peter-Ajuzie et al., The megachiropteran eye

I.K. Peter-Ajuzie¹, I.C. Nwaogu¹, L.O. Majesty-Alukagberie², A.C. Ajaebili¹, F.A. Farrag³, M.A. Kassab⁴, K. Morsy⁵,⁶, M. Abumandour⁷

¹Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
²Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
³Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
⁴Department of Cytology and Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
⁵Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
⁶Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
⁷Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Egypt

Address for correspondence: Iheanyi K. Peter-Ajuzie, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria, e-mail: iheanyi.peter-ajuzie@unn.edu.ng

ABSTRACT

Background: This work was designed to provide a morphologic, morphometric and histochemical description of the eye of the African straw-coloured fruit bat (*Eidolon helvum*). An explanation of the optical role of the choroidal papillae in the vision of megachiropteran bats was provided.

Materials and methods: Enucleated eyes of captured fruit bats were measured and processed for light microscopy.
Results: Typical gross features of the mammalian eye including an anterior transparent cornea, posterior whitish sclera and a golden-brown iris surrounding a round pupil were observed in the eye. Presence of undulating retina typically found in megachiropterans were also seen. The ratio of mean corneal diameter to mean axial eye diameter was 0.58 ± 0.08. The histochemical investigation of the eye indicated the presence of mucins, proteoglycans, hyaluronic acid, glycogen and/or glycoproteins in the corneal, scleral, choroidal and retinal tissues.

Conclusions: The presence of reflective materials of the tapetum lucidum on the undulating retina was shown to be a morphological adaptation for increased light sensitivity as each parabolic surface of the choroidal papillae served as a convex mirror, reflecting the light rays to the adjacent parabolic surface, thus sensitizing photoreceptors in affected regions. This phenomenon thus empowers megachiropteran bats with improved scotopic visual capability and could explain why most of them are reliant on their vision without the need for echolocation.

Key words: *Eidolon helvum*, eye, choroidal papillae, retina, megachiroptera

INTRODUCTION

The eye of an organism enables it to perceive the myriad of emitted and reflected light rays in its environment. This perception is required for the survival of the organism especially during its periods of peak activity. The activity pattern of an animal is therefore related to its ocular morphological characteristics and has been reported by many ocular scientists 1–10.

The African straw-coloured fruit bat, *Eidolon helvum*, is a megabat that is widely distributed in sub-Saharan Africa 11. The bats are nocturnal, live in large colonies, and can be found roosting on trees close to human habitation 12. Some African communities use these bats for certain ritual purposes. Their frugivorous, arboreal and migratory nature enable them to function in plant pollination and plant geographical distribution 13. The species has been identified as a natural reservoir of a number of zoonotic viral diseases.
such as those caused by the Ebola subtype Zaire and Lagos bat viruses11. Their close proximity and association with humans create a need for a comprehensive body of knowledge on their biology especially since they have been associated with some epidemics. This study therefore investigated the morphological features of the eyes of this species which were hitherto scarce in literature in order to expound its ocular biology and determine any relationship between its ocular characteristics and activity pattern. It also provided an explanation on the role of the choroidal papillae in the vision of megachiropterans which hitherto had been a subject of controversy among scientists. The results of this study might be helpful in the recognition of ocular pathology in this species and related species and in the determination of its corneal xenotransplantation potential in humans as well as the possible application of the eye morphology in technology.

MATERIALS AND METHODS

Sample collection

No animals were killed exclusively for this study. The six bats (3 males and 3 females) with mean body weight of 247.44 ± 45.77 g used for this study were part of the experimental animals approved by the Institutional Animal Care and Use Committee of the Faculty of Veterinary Medicine, University of Nigeria, Nsukka (Approval number - FVM-UNN-IACUC-2019-0350) for the PhD studies of Dr. L. O. Obodoechi of the Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria. Dr. Obodoechi needed only the brain sample of the captured animals for her PhD studies while the eye samples were obtained for this study. The animals were reportedly captured from the wild between January and February in Obiagu, Awgu L.G.A., Enugu State, Nigeria. Following euthanasia of the bats using 50 mg/kg ketamine hydrochloride, horizontal and vertical corneal diameters were obtained from each eye using Vernier caliper. Eyes were bilaterally enucleated3, and the horizontal, vertical, and axial eye diameters were obtained as well as its gross anatomical and topographical characteristics.

Histology
Whole enucleated eyes were fixed in Davidson’s fixative \(^{14}\) for 18 hours and postfixed in 10% neutral buffered formalin. They were subsequently dehydrated in increasing concentrations of ethanol, cleared in xylene, infiltrated with paraffin and embedded in paraffin blocks. 5 µm thick meridional sections were cut, mounted on glass slides, and routinely stained with haematoxylin and eosin (H&E) \(^{15}\), Masson’s trichrome \(^{16}\) and Periodic Acid Schiff-Alcian Blue (PAS-AB) (pH 2.5) \(^{17}\) stains. Photomicrographs were captured using Moticam Images Plus 2.0 digital camera (Motic China Group Ltd., China). Corneal and retinal thicknesses were measured using the camera software.

Statistics

Data were analyzed using SPSS Statistics 17.0 software. Mean corneal diameter was taken as the mean of the horizontal and vertical corneal diameters while mean eye diameter was taken as the mean of the horizontal and vertical eye diameters. Data were presented as mean ± Standard deviation. Data was tested for normality and Paired samples t-test statistic (2-tailed) was used to determine any significant differences between the axial and horizontal eye diameters, vertical and horizontal eye diameters, vertical and axial eye diameters, and vertical and horizontal corneal diameters. Statistical significance was accepted at p < 0.05.

RESULTS

Gross anatomy

The eyes were located dorsolaterally in the orbital cavities of the skull and were separated by a flat frontal region (Fig. 1). They exhibited typical gross features of the mammalian eye including an anterior transparent cornea and a posterior whitish sclera as well as a golden-brown iris surrounding a round pupil which were visible through the cornea.

The vertical and horizontal corneal diameters were 0.57 ± 0.10 cm and 0.56 ± 0.10 cm respectively (n = 12). Both diameters were not significantly different (p < 0.05) from each other. The vertical, horizontal and axial eye diameters were 0.98 ± 0.10 cm, 0.99 ± 0.11 cm and 0.98 ± 0.06 cm respectively (n = 12). They were also not significantly different (p < 0.05) from each other. The ratio of mean corneal diameter to mean eye diameter was 0.58
± 0.09 (n = 12; range = 0.42-0.70) while the ratio of mean corneal diameter to mean axial eye diameter was 0.58 ± 0.08 (n = 12; range = 0.43-0.72).

Histology

Fibrous tunic. The cornea was lined anteriorly by non-keratinized stratified squamous corneal epithelium and posteriorly by simple squamous corneal endothelium, between which was dense regular fibrous connective tissue of the corneal stroma (Fig. 2). The basement membrane of the corneal endothelium known as the Descemet’s membrane was thicker than that of the corneal epithelium. Both membranes were strongly PAS-positive while the corneal stroma which was bluish purple in colour was PAS-AB-positive. The sclera was a dense irregular fibrous connective tissue (Fig. 3). Its numerous collagen fibers were continuous with those of the corneal stroma.

Uvea. The iris was a heavily pigmented, vascularized, tissue process that was attached to the ciliary body (Fig. 4b). The ciliary body which did not seem well-developed comprised a posterior pars plana and anterior ciliary processes (or pars plicata) both of which were composed of ciliary epithelia overlying ciliary stroma (Fig. 4a and 4c). The ciliary epithelia comprised an outer pigmented epithelium and an inner non-pigmented simple cuboidal epithelium. The epithelia was continuous with the retina at the ora serrata. The vascularized pigmented choroid lay between the retina and the sclera. Its numerous projections, the choroidal papillae, projected markedly perpendicularly or obliquely towards the retina in the direction of the pupil (Fig. 3 Fig. 4 and Fig. 5). These papillae caused undulations in the retinal tissues.

Retina. Undulating outer layers and non-undulating inner layers were observed in the retina (Fig. 3). The undulating layers comprised the retinal epithelium, photoreceptor layer, outer nuclear layer and outer plexiform layer while the non-undulating layers comprised the inner nuclear layer, inner plexiform layer, ganglion cells and nerve axons (Fig. 5). Some areas of the retina especially towards the ora serrata where choroidal papillae were absent lacked these retinal undulations (Fig. 5d). The photoreceptor layer was AB-positive and was composed of photoreceptor outer segment and photoreceptor inner segment. The outer segment was more deeply AB-positive than the inner segment while the outer and
inner plexiform layers were weakly AB-positive (Fig. 5c). The retinal epithelium, inner
nuclear layer and ganglion cell layers were weakly PAS-AB-positive. The retinal
epithelium was simple cuboidal epithelium containing pigmented or non-pigmented
mononuclear cells with basally-located nuclei and clear cytoplasm. It was tightly attached
to the choroid, following all of its undulating contours. From the ora serrata to the
posterior pole, the pigmented retinal epithelium gradually lost its apical melanin pigments
such that towards the posterior pole, the epithelium lacked pigments. The nuclei of the
photoreceptor cells in the outer nuclear layer were heterochromatic unlike the nuclei in the
outer nuclear and ganglion cell layers which were euchromatic.

DISCUSSION

Histochemistry

The PAS-AB histochemical stain which is used for the detection of some categories of
carbohydrates and glycoconjugates was employed in this study to determine if the
carbohydrate composition of the fruit bat eye was similar to those reported for other
animals. The PAS-AB histochemical reactions indicated the presence of glycoproteins,
proteoglycans, hyaluronic acid and/or glycogen in the corneal, scleral, choroidal and
retinal tissues. Different shades of blue colouration as seen in the inner and outer
segments of the photoreceptor layer as well as in the outer and inner plexiform layers of
the retina indicated a positive Alcian blue reaction which affirmed the presence of acid
mucins, proteoglycans and/or hyaluronic acid in those regions of the retina. Magenta
colour as seen in the Descemet’s membrane and basement membrane of the corneal
epithelium indicated a positive Periodic Acid Schiff reaction which affirmed the presence
of glycogen and/or glycoproteins in the corneal membranes. The different shades of bluish
purple colouration observed in the corneal stroma, sclera, choroid, retinal epithelium, inner
nuclear layer and ganglion cell layer indicated positive reactions to both Alcian blue and
Periodic Acid Schiff. The blue colouration of the nuclei in the outer nuclear layer of the
retina were as a result of the haematoxylin counterstain used for the PAS-AB staining
procedure.
Online literature search on Google Scholar (www.scholar.google.com) using different keywords showed the absence of published work on the histochemical detection of glycoproteins, proteoglycans, hyaluronic acid or glycogen in the eye of bat as at the time of writing this paper. This study may thus be the first scientific attempt to describe the carbohydrate composition of the chiropteran eye. Though immunohistochemical staining would have been more specific in determining carbohydrate composition, the PAS-AB staining however gives a relatively general idea of the carbohydrate composition. Proteoglycans have already been isolated from retinal tissues of other mammals where they were reported to play roles in retinal neuronal growth, repairs and synapse formation. Hyaluronic acid has been detected in the sclera, choroid and retinal pigment epithelium of humans where it was said to maintain tissue fluidity, permeation and hydration as well as function in the creation of retinal neural networks through its complexes with proteoglycans. Glycoproteins, which also include mucins, have been demonstrated in the cornea, sclera, ciliary body and retina of humans and in the retina of cattle while glycogen which serves as cellular energy reserve has been reported in the corneal endothelium of man and rabbit; retina, vitreous, lens, choroid, iris and cornea of cattle and rabbit; retina of cat; corneal epithelium of rabbit; and retina of guinea pig, rabbit, man, cat, cattle, hamster and fish.

Morphometry

The mean corneal diameter to mean axial eye diameter ratio observed in *Eidolon helvum* in this study was at variance with those reported for most nocturnal mammals and birds which have higher ratios. The ratio was rather similar to those reported for most diurnal and cathemeral animals. The authors had postulated that the scotopic environment of nocturnal animals necessitated a higher mean corneal diameter to mean axial eye diameter ratio to enable the animals capture as much light rays as is possible from the environment while the photopic environment of diurnal animals necessitated lower ratios so as to limit the amount of light rays entering the eyes from the light-rich environment. The possession of a relatively low ratio by the nocturnal fruit bat therefore suggests that its retina has higher sensitivity to light rays than those of most nocturnal animals. Such a situation therefore eliminates the need for a high mean corneal diameter to mean axial eye diameter ratio and might provide explanations for the unusual retinal morphology of the fruit bat. In
addition, the relatively low ratio could also indicate an adaptation for vision in both scotopic and photopic environments as has been reported for cathemeral animals.\(^1,7\)

Choroidoretinal undulations

The unusual choroidal and retinal morphology observed in this study for *Eidolon helvum* have since been reported for other megachiropteran, and in particular, pteropodid bats \(^10,29,30\). The role of the choroidal papillae in blood supply to retinal tissues has been well documented \(^31,32\) but their role in vision has been a matter of controversy among scientists with some scientists asserting that the presence of the choroidal papillae led to improved visual sensitivity through an increase in the photosensitive area and number of photoreceptors \(^32,33\). This assertion has however been refuted by Suthers \(^34\) who clarified that the choroidal papillae couldn’t lead to an increase in the photosensitive area and number of photoreceptors without a decrease in photoreceptor diameter or decrease in the space between photoreceptors or a rearrangement of the long axis of all photoreceptors to be perpendicular to the plane of undulating choroidal surface. The author however didn’t provide an explanation for the role of the papillae in vision.

Though we did not directly check for the presence of tapetum lucidum in the *Eidolon helvum*, the absence of melanin pigments in the retinal epithelium of the central retina strongly suggests the existence of tapetum lucidum in the bat. This is because the presence of tapetum lucidum in mammals is generally characterized by the absence of melanin pigments in the retinal epithelium of the central retina \(^8,35\). Available evidence in other megachiropterans and pteropodids nevertheless show that bats of these clades contain retinal tapetum lucidum in the cells of the retinal epithelium \(^33,35,36\). The presence of reflective materials of the tapetum lucidum on an undulating surface is therefore a major and unique morphological adaptation for increased light sensitivity as each parabolic surface serves as a convex mirror, reflecting the light rays to the adjacent parabolic surface (Fig. 6). Photoreceptors associated with both papillae therefore get sensitized. This implies that a higher number of photoreceptors get sensitized in a megachiropteran eye than in a non-megachiropteran eye if both are exposed to the same incident light rays. It could also provide the much needed explanation why most megachiropterans are heavily reliant on their vision without the need for echolocation \(^11,29–32,36\) and why the relatively low mean corneal diameter to mean axial eye diameter ratio was observed in the fruit bat unlike the
case in most nocturnal animals. It is however worth noting that the plane of orientation of the reflective materials of the tapetum in the retinal epithelium will influence the angle of reflection of the light rays. Thus, further investigations on the plane of orientation of these materials may be required to determine the angle of reflection.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Project under grant number (R.G.P.2/47/42).

Authorship

Work was conceptualized by IKPA, designed by IKPA and LOMA, and executed by IKPA, LOMA and ACA. Results were analysed by IKPA and ACA and the first draft of the study was written by ACA. Various revisions of the article was done by IKPA, ICN, FAF, MAK, KM and MA.

Conflict of interest

Authors declare no conflict of interest

REFERENCES

1. Kirk EC. Comparative Morphology of the Eye in Primates. *Anat Rec*. 2004;281A:1095-1103. doi:10.1002/ar.a.20115
2. Hall MI, Ross CF. Eye shape and activity pattern in birds. *J Zool*. 2007;271:437-444. doi:10.1111/j.1469-7998.2006.00227.x
3. Hall MI. Comparative analysis of the size and shape of the lizard eye. *Zoology*. 2008;111:62-75. doi:10.1016/j.zool.2007.04.003
4. Hall MI. The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds. *J Anur*. 2008;212:781-794. doi:10.1111/j.1469-7580.2008.00897.x
5. Iwaniuk AN, Heesy CP, Hall MI. Morphometrics of the eyes and orbits of the nocturnal Swallow-tailed Gull (Creagrus furcatus). *Can J Zool*. 2010;88:855-865. doi:10.1139/Z10-051
6. Corfield JR, Gsell AC, Brunton D, et al. Anatomical Specializations for Nocturnality in a Critically Endangered Parrot, the Kakapo (Strigops habroptilus). *PLoS One*. 2011;6(8):e22945-e22945. doi:10.1371/journal.pone.0022945
7. Hall MI, Kamilar JM, Kirk EC. Eye shape and the nocturnal bottleneck of mammals. *Proc R Soc B*.

9
8. Peter-Ajuzie IK, Nwaogu IC, Igwebuike UM. Anatomical Assessment of the Eye of the African Grasscutter (Thryonomys swinderianus). *J Appl Life Sci Int*. 2019;20(2):1-8. doi:10.9734/JALSI/2019/v20i230077

9. Peter-Ajuzie IK, Nwaogu IC, Ajaebili AC. Preliminary Anatomical Assessment of the Eye of the African Giant Rat (Cricetomys gambianus). *Agric Sci Dig*. 2020;40(2):218-220. doi:10.18805/ag.D-183

10. Aboelnour A, Noreldin AE, Massoud D, Abumandour MMA. Retinal characterization in the eyes of two bats endemic in the Egyptian fauna, the Egyptian fruit bat (Rousettus aegyptiacus) and insectivorous bat (Pipistrellus kuhlii), using the light microscope and transmission electron microscope. *Microsc Res Tech*. 2020;83:1391–1400. doi:10.1002/jemt.23530

11. Almeida FC, Giannini NP, Simmons NB. The Evolutionary History of the African Fruit Bats (Chiroptera: Pteropodidae). *Acta Chiropterologica*. 2016;18(1):73-90. doi:10.3161/15081109ACC2016.18.1.003

12. Magloire NCJ, Noel DD, Blaise K, Inza K, Eliézer NK. Spatiotemporal Activities of Eidolon helvum (Kerr ,1792) a Near-Threatened Species (Côte D’Ivoire ,West Africa). *Res Zool*. 2018;8(1):6-11. doi:10.5923/j.zoology.20180801.02

13. Ossa G, Kramer-schadt S, Peel AJ, Scharf AK, Voigt CC. The Movement Ecology of the Straw-Colored Fruit Bat, Eidolon helvum, in Sub-Saharan Africa assessed by Stable Isotope Ratios. *PLoS One*. 2012;7(9):e45729. doi:10.1371/journal.pone.0045729

14. Agrawal RN, He S, Spee C, Cui JZ, Ryan SJ, Hinton DR. In vivo models of proliferative vitreoretinopathy. *Nat Protoc*. 2007;2(1):67-77. doi:10.1038/nprot.2007.4

15. Bancroft JD, Layton C. The hematoxylins and eosin. In: Suvarna SK, Layton C, Bancroft JD, eds. *Bancroft’s Theory and Practice of Histological Techniques*. 7th ed. Elsevier Ltd; 2013:172-186.

16. Bancroft JD, Layton C. Connective and mesenchymal tissues with their stains. In: Suvarna SK, Layton C, Bancroft JD, eds. *Bancroft’s Theory and Practice of Histological Techniques*. 7th ed. Elsevier Ltd; 2013:187-214.

17. Layton C, Bancroft JD. Carbohydrates. In: Suvarna SK, Layton C, Bancroft JD, eds. *Bancroft’s Theory and Practice of Histological Techniques*. 7th ed. Elsevier Ltd; 2013:215-238.

18. Aquino DA, Margolis RU, Margolis RK. Immunocytochemical Localization of a Chondroitin Sulfate Proteoglycan in Nervous Tissue. I. Adult Brain, Retina, and Peripheral Nerve. *J Cell Biol*. 1984;99:1117-1129.

19. Inatani M, Tanihara H, Oohira A, Honjo M, Kido N, Honda Y. Upregulated Expression of Neurocan, a Nervous Tissue Specific Proteoglycan, in Transient Retinal Ischemia. *Invest Ophthalmol Vis Sci*. 2000;41(9):2748-2754.

20. Inatani M, Tanihara H. Proteoglycans in retina. *Prog Retin Eye Res*. 2002;21:429-447.

21. Tate DJ, Oliver PD, Miceli M V, Stern R, Shuster S, Newsome DA. Age-Dependent Change in the Hyaluronic Acid Content of the Human Chorioretinal Complex. *Arch Ophthalmol*. 1993;111:963-967.

22. Gabriel LAR, Wang LW, Bader H, et al. ADAMTSL4, a Secreted Glycoprotein Widely Distributed in the Eye, Binds Fibrillin-1 Microfibrils and Accelerates Microfibril Biogenesis. *Invest Ophthalmol Vis Sci*. 2012;53(1):461-469. doi:10.1167/iovs.10-5955

23. Fong S-L, Liou GI, Landers RA, Alvarez RA, Bridges CD. Purification Synthesized and Characterization of a Retinol-binding and Secreted by Bovine Neural Retina * Glycoprotein. *J Biol Chem*. 1984;259(10):6534-6542. doi:10.1016/S0021-9258(20)82174-7

24. Aon MA, Curtino JA. Evidence for the glycoprotein nature of retina glycogen. *Eur J Biochem*. 2012;279:4962-4968. doi:10.1098/rspb.2012.2258
25. Malinin GI, Bernstein H. Histochemical Demonstration of Glycogen in Corneal Endothelium. *Exp Eye Res.* 1979;28:381-385.

26. Wassilewa P, Hockwin O, Korte I. Glycogen Concentration Changes in Retina, Vitreous Body and Other Eye Tissues Caused by Disturbances of Blood Circulation. *Albr von Graefes Arch fur Klin und Exp Ophthalmol.* 1976;199(2):115-120.

27. Friend J, Kioreps T, Kinoshita S. Glycogen and DNA Content of Corneal Epithelium: Comparison of Preparation Methods. *Invest Ophthalmol Vis Sci.* 1983;24:203-207.

28. Kuwabara T, Cogan DG. Retinal Glycogen. *Trans Am Ophthalmol Soc.* 1961;59:106-110.

29. Kwiecinski GG, Griffiths TA. Rousettus egyptiacus. *Mamm Species.* 1999;611:1-9.

30. Farina LL, Lankton JS. *Chiroptera.* Elsevier Inc.; 2014. doi:10.1016/B978-0-12-805306-5/00025-0

31. Brudenall DK, Schwab IR, Lloyd III W, Giorgi PP, Graydon ML. Optimized Architecture for Nutrition in the Avascular Retina of Megachiroptera. *Anat Histol Embryol.* 2007;36:382-388. doi:10.1111/j.1439-0264.2007.00779.x

32. El-Mansi AA, Al-Kahtani MA, Al-Sayyad KM, Ahmed AE, Rady AM. Visual adaptability and retinal characterization of the Egyptian fruit bat (Rousettus aegyptiacus, Pteropodidae): New insights into photoreceptors spatial distribution and melanosomal activity. *Micron.* 2020;137:1-12. doi:10.1016/j.micron.2020.102897

33. Pedler C, Tilley R. The Retina of a fruit bat (Pteropus giganteus Brunnich). *Vision Res.* 1969;9:909-922.

34. Suthers RA. A comment on the role of Choroidal Papillae in the Fruit Bat Retina. *Vision Res.* 1970;10:921-922.

35. Ollivier FJ, Samuelson DA, Brooks DE, Lewis PA, Kallberg ME, Komáromy AM. Comparative morphology of the tapetum lucidum (among selected species). *Vet Ophthalmol.* 2004;7(1):11-22.

36. Bojarski C, Bernard RTF. Comparison of the morphology of the megachiropteran and microchiropteran eye. *South African J Zool.* 1988;23(3):155-160.
Figure 1. The African straw-coloured fruit bat showing the dorsolaterally-located eyes separated by a flat frontal region (1a). The golden-brown-coloured iris is visible through its transparent cornea as the bat hangs upside down in the cage (1b).
Figure 2. Photomicrographs of the cornea of the African straw-coloured fruit bat stained with Periodic Acid Schiff-Alcian Blue stain at pH 2.5 (2a) and haematoxylin and eosin (2b). Corneal epithelium (A) with its thin PAS positive basement membrane (white arrows), corneal stroma (B), corneal endothelium (arrow heads) with its thick PAS-positive Descemet’s membrane (black arrows). Scale bars = 50 µm.
Figure 3. Photomicrographs of the eye of the African straw-coloured fruit bat stained with haematoxylin and eosin (3a) and Masson’s trichrome (3b). Sclera (S), choroid (C) with its choroidal papillae (P), retina (R) with its undulating (UL) and non-undulating (NUL) layers. Scale bars = 100 µm.
Figure 4. Photomicrographs of the ciliary body (4a), iris (4b) and ciliary process (4c) of the African straw-coloured fruit bat. Ciliary process (CP), pars plana (PL), ciliary stroma (CS), non-pigmented epithelium (N), pigmented epithelium (P). Scale bar and stain for 4a and 4b = 100 µm, Masson’s trichrome. Scale bar and stain for 4c = 10 µm, haematoxylin and eosin.
Figure 5. Photomicrographs of the retina, choroid and sclera of the African straw-coloured fruit bat. Choroidal papillae (P) with its consequent retinal undulations are present in 5a, 5b and 5c; absent in 5d; and inconspicuous in 5e. Melanin pigments of the retinal epithelium (RE) were absent in 5a but gradually increased in quantity from 5c to 5b to 5e to 5d. Choroid (C), blood vessel (BV), photoreceptor layer (PL) comprising the inner segment (IS) and outer segment (OS), outer nuclear layer (ON), outer plexiform layer (OP), inner nuclear layer (IN), inner plexiform layer (IP), ganglion cell layer (GL), axon layer (AL), sclera (S). Haematoxylin and eosin stain (5a, 5b and 5d). Periodic Acid Schiff-Alcian Blue stain, pH 2.5 (5c and 5e). Scale bars = 10 µm.
Figure 6. Schematic representation of the visual role of the choroidal papillae in the megachiropteran eye. The figure above shows a retinal tapetum lucidum-lined choroidal papilla with the incident rays (solid blue lines), reflected rays (green arrows) and the tracing of the reflected rays (dotted blue lines) from the focal point (f). The figure below shows the megachiropteran eye where incident light rays (solid blue lines) passes through the pupil (p) to become reflected (green arrows) on hitting the retinal tapetum lucidum-lined choroidal papillae. Refraction of light rays were not taken into consideration in this schematic representation.