Title
Isolation and initial characterization of tumoricidal monokine(s) from the human monocytic leukemia cell line THP-1.

Permalink
https://escholarship.org/uc/item/0kq395z7

Journal
Journal of the National Cancer Institute, 74(1)

ISSN
0027-8874

Authors
Armstrong, CA
Klostergaard, J
Granger, GA

Publication Date
1985

DOI
10.1093/jnci/74.1.1

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
ABSTRACT—A cloned subline of the human monocytic leukemia cell line, THP-1, was induced to produce high levels of cytotoxic activity following an 18-hour phorbol myristate acetate (CAS: 16561-29-8) stimulation in vitro. This activity, termed monocyte cell line cytotoxin(s) (MCCT), was tested in vitro on different human continuous cell lines (Chang, ESH-7, GM3104A, HeLa, HT-1080, K562, Mel, T-24) and on primary human fibroblasts (GM3468, Manz). The continuous cell lines exhibited a spectrum of sensitivity to MCCT-containing supernatants whereas the primary fibroblasts were resistant to lysis. Enzymatic degradation and heat denaturation studies indicate that MCCT is a protein. Its bioactivity can be resolved into three lytic peaks after molecular sieving on Ultrigel AcA 44. The major peak, designated αMCCT, eluted with a molecular weight of 100,000-140,000 daltons. A minor peak, βMCCT, was seen at 60,000-80,000 daltons, and a third, unstable minor peak, γMCCT, eluted at less than 10,000 daltons. The α-lytic peak was examined further and was found to migrate as a single peak in 7% native polyacrylamide gel electrophoresis tube gels with an r1 of 0.25-0.30. None of the MCCT forms were immunologically cross-reactive with human α-lymphotoxin. Various protease inhibitors known to inhibit monokine- and macrophage-mediated direct cell lysis in vitro were tested for their inhibitory effects on αMCCT activity. The irreversible binding inhibitor Na-p-tosyl-L-lysyl chloromethyl ketone inhibited the biologic activity of αMCCT. The reversible binding inhibitors Na-p-tosyl-L-arginine methyl ester and soybean trypsin inhibitor were able to block in vitro lytic activity when added to αMCCT in the presence of the target cell. In contrast, the inhibitors phenylmethylsulfonyl fluoride, l-1-tosylamide, 2-phenylethyl chloromethyl ketone, and Na-acetyl-L-lysine methyl ester were not effective in blocking cytolysis. Finally, the hydrogen peroxide scavenger catalase inhibited αMCCT lytic activity in vitro; however, the hypochlorous acid scavengers alanine, serine, and valine were without effect.—JNCI 1985; 74:1-9.

Human peripheral blood monocytes and alveolar macrophages can be raised to a cell-lytic state by treatment in vitro with lymphokines and/or bacterial components (1-5). These activated human mononuclear cells exhibit a greater capacity to lyse neoplastic cells rather than primary cells in vitro. In addition, recent reports have demonstrated the release of CLM from peripheral blood monocytes and alveolar macrophage cultures (6-8); Klostergaard J: In preparation; Sone S, Lopez-Dertein G, Fidler IJ: In preparation). Supernatants containing CLM from these cultures were also found in general to preferentially lyse continuous cells over primary cells in vitro.

For the in-depth investigation of CLM, the production of large amounts of human supernatant would be necessary from a homogeneous monocyte-macrophage source, preferably from a single donor. Primary cultures of monocytes from many individual donors do not fulfill these criteria. To circumvent these problems, attention has been focused on recently derived human cell lines of monocytic and histiocytic origin as possible sources of these cytolytic monokines. The U937 line has proven to be a valuable model for several aspects of human monocytes-macrophages following lymphokine activation (9-11). Other cell lines appear to be arrested at a very early stage in monocyte-macrophage differentiation and attempts to activate them with lymphokines or LPS have not resulted in release of CLM (12-14). However, two well-characterized human monocytic cell lines in the presence of PMA will differentiate in vitro into cells that express many of the functional characteristics of mature macrophages. Specifically, the HL-60 (12) and THP-1-0 (14) cell lines have been shown to stop cell division, become class adherent, increase phagocytosis, and express increased cell surface esterase staining. In addition, the HL-60 cell line becomes lytically active after incubation with PMA (15, 16).

In the present study, we describe the isolation of a clone of the THP-1 cell line termed AY-23, which, upon PMA stimulation in vitro, releases high levels of CLM activity. This activity, termed MCCT, exhibits the functional ability to lyse continuous cells and not primary...
fibroblasts in vitro. The biologic activity of MCCT can be attributed to distinct proteins that can be obtained in sufficient quantity for purification and for future functional and biochemical studies.

MATERIALS AND METHODS

Culture media and cell lines.—Culture media used in these studies consisted of RPMI-1640 medium (GIBCO, Grand Island, NY) supplemented with RPMI-3% or RPMI-10% (GIBCO), 100 µg streptomycin/ml (Sigma Chemical Co., St. Louis, MO), and 100 U penicillin/ml (Sigma Chemical Co.).

Target cells were grown in 16-ounce prescription bottles in either RPMI-3% for murine cells or in RPMI-10% for human cells at 37°C in 5% CO₂ and passed biweekly. The adherent continuous lines used were L-929 cells, referred to as L-cells (17); HeLa, human cervical carcinoma; HT-1080, human skin fibrosarcoma; Chang, human liver carcinoma; T-24, human bladder carcinoma; ESH-7, a cell line derived from the fusion between HeLa cells and WIL-2, a human B-cell lymphoma; and Mel, human melanoma. The adherent human primary cell strains used were GM3468, primary fetal foreskin fibroblasts, and Manz, primary skin fibroblasts. The primary strains were passed at confluence and were replated from frozen (−80°C) stock after 30 passages. Nonadherent human target cells were also employed; they were, GM3104A, a human B-cell lymphoma, and K562, a human erythroblastoma. These lines were maintained in RPMI-10% at 37°C in 5% CO₂ atmosphere and passed biweekly.

Human monocytic cell line.—The human monocytic cell line THP-1 (13), a gift from Dr. Jun Minowada, New York State Department of Health, Buffalo, NY, was used as the source of cell-lytic materials in these studies. This cell line was cultured in RPMI-10% in Corning T-75 cm² flask (Corning, NY) in an atmosphere of 5% CO₂ at 37°C and subcultured every third day at an initial density of 3X10⁵ cells/ml. A clone of this cell line was isolated by the limiting dilution method in the presence of a feeder layer of 2X10⁴ BALB/c peritoneal macrophages per microtiter well in 96 flat-bottomed well microtiter plates in RPMI-10% (Flow Laboratories, Inglewood, CA). After 3 weeks in culture, several wells from the limiting dilution step contained single colonies of cells. These colonies were selected and the cells recloned in 96-well microtiter plates by the limiting dilution step contained single colonies of cells. These colonies were selected and the cells recloned in 96-well microtiter plates by the limiting dilution step contained single colonies of cells. These colonies were then transfected into 1-ml cultures in Costar 24-well plates containing 50% preconditioned media and 50% fresh RPMI-10%. These clones were subsequently expanded in RPMI-10% and tested for production of cytopathic material.

Production of cytopathic material from THP-1 and clones.—THP-1 cells and clones were grown to a cell density of 5X10⁶ cells/ml in RPMI-10%. These cultures were then pelleted by centrifugation at 450Xg for 8 minutes and 5X10⁶ cells/ml were resuspended in 40 ml of fresh RPMI-10% in 32-ounce prescription bottles in a 5% CO₂ atmosphere. Varying amounts of PMA (Sigma Chemical Co.) at an initial concentration of 50 µg/ml dissolved in 95% ethanol were then added to the cultures. After incubation at 37°C for various time intervals, the PMA-containing media was discarded and the remaining adherent monolayer was washed three times with RPMI-0% to remove any residual PMA. At this point, 40-50 ml of RPMI-LAH (GIBCO), which served as a serum substitute, was added to the culture. After incubation for an additional 2-72 hours at 37°C, supernatants were collected, and cell debris was removed by centrifugation at 500Xg for 10 minutes, filter sterilized, then used immediately or stored at −70°C. Concentration of supernatants or partially purified fractions was achieved by ultrafiltration in an Amicon 8200 Stirred Cell (Amicon Corp., Danvers, MA) with the use of a 62-mm PM-10 Diaflo ultrafiltration membrane (Amicon Corp.).

Cytolytic cell assays.—Two types of assays were employed: One determined quantitatively the amount of cytopathic activity present in a given supernatant, and the other indicated only the presence or absence of activity in the supernatant as percent lysis. a) Tube assay: The details of this method have been reported previously (17). Briefly, 1X10⁶ mitomycin target cells in 1.0 ml were established as nondoning monolayers in 16X125-mm culture tubes. Either serial dilutions of the test or control medium (quantitative assay) or a single aliquot of a sample (qualitative assay) was added to duplicate tubes. After an additional 24-hour incubation at 37°C, the remaining adherent cells were trypsinized and enumerated in a Model F Coulter Counter (Coulter Electronics, Hialeah, FL). Units of cell-lytic activity per milliliter of a given supernatant were determined by determining the reciprocal of the dilution killing 50% of the target cells.

b) Microplate assay: Mitomycin-treated cells at a density of 1X10⁶ cells/100 µl were dispensed into flat-bottomed 96-well microtiter plates (Corning) and incubated at 37°C in a humidified air and 5% CO₂-containing incubator. After 24 hours, serial dilutions of MCCT-containing supernatants or fractions and control media were added to triplicate wells. After an additional 24 hours of incubation, the media were aspirated and the remaining viable adherent targets fixed to the substrate and stained with a 1:1000 crystal violet solution (18). Percent lysis was calculated according to the formula:

\[
\text{Percent lysis} = \left(\frac{\text{cell No. control well} - \text{cell No. well}}{\text{cell No. control well}}\right) \times 100
\]

Where cell No. control well is the number of viable adherent targets fixed to the substrate in a control well, and cell No. well is the number of viable adherent targets fixed to the substrate in the sample well. Percent cytolysis in these cultures was determined as follows: Percent lysis = [% viable cells in control well] - (% viable cells in well + MCCT)/(% viable cells in control well).
Isolation and Initial Characterization of Tumoricidal Monokine(s)

viable cells in control well)] × 100, where the average percent was determined by the mean of triplicate wells. L-cells were used only in tube assays; HeLa cells were used in both tube assays and in microplate assays, as indicated. All other target cells were used only in microplate assays.

Antiserum neutralization assays.—Production, characterization, and testing of rabbit antisera that neutralize LT forms in vitro have been previously reported (20). All antiseras were heat inactivated for 1 hour and centrifuged at 20,000 × g for 30 minutes before use. Neutralization of MCCT activity was performed by adding 25–50 μl of antiserum or NRS to 10 U of MCCT activity from a supernatant or fraction, preincubation for 30 minutes at 25°C, then testing the remaining activity on L-cells. The percent neutralization of MCCT activity was determined by the following formula: Percent neutralization = [(cell No. + MCCT + antibody) − (cell No. + MCCT + NRS)]/(cell No. + NRS) × 100.

Molecular sieving.—Two milliliters of twentyfold concentrated supernatant was chromatographed on an Ultrogel AcA 44 molecular sieving column (LKB, Rockville, MD) poured to a bed height of 95–100 cm in a 2.5×120-cm silica gel column equilibrated in 10 mM potassium phosphate, pH 7.2, and 10−4 M EDTA buffer. The column was calibrated with the molecular weight markers BD, 2×106 daltons; IgG, 150,000 daltons; Hb, 64,000 daltons; α-Cr, 23,000 daltons; and PR, 364 daltons. Fractions of 6.5 ml were collected at a flow rate of 26 ml/hour at 4°C.

Discontinuous PAGE.—A 150-μl sample of MCCT in 20% sucrose and 0.001% bromphenol blue was applied to a 0.5×8-cm gel column consisting of a 1-cm 3% acrylamide stacking gel in 50 mM Tris–glycine, pH 9.0, and a 7-cm 7% acrylamide separation gel according to the method of Davis (21). The gels were then cut in 1-mm slices, and cytolytic material was eluted by incubation for 10–12 hours in 250 μl RPMI-1640 at 4°C. A 100- to 200-μl sample was then tested for cytolytic activity.

Protease inhibitors.—Pooled molecular sieving fractions containing active aMCCT buffered with a potassium phosphate (100 mM PO4, pH 7.2) buffer were employed in these studies. The methods employed for protease inhibitor treatment have been described previously (29). The irreversible binding inhibitors used were TLCK, TPCK, and PMSF, all from Sigma Chemical Co. A 1.5-ml sample containing approximately 10–20 U of aMCCT/ml was reacted for 1 hour at 37°C with varying concentrations (0.4–10 mM) of the different inhibitors. The sample was then dialyzed against approximately 1,000 volumes of PBS for 10–12 hours at 4°C. After dialysis, the lytic activity of each sample was determined. Samples with aMCCT activity were also incubated for 1 hour at 37°C without inhibitor, dialyzed against 500 volumes of PBS for 10–12 hours, and assayed for toxicity. As a control, 10 mM TLCK, 1 mM PMSF, or 1 mM TPCK was added to RPMI-LAH, incubated for 1 hour, dialyzed against PBS overnight, and assayed for toxicity.

The reversible inhibitors TAME (Sigma Chemical Co.) and ALME (Sigma Chemical Co.) were added with 10–20 U of aMCCT directly to the target cells. After 20 hours, the level of lysis in these cultures was compared to levels of aMCCT-induced lysis in the absence of inhibitor. Extensive testing revealed that neither drug was toxic to the target cells at levels up to 10 mM. SBTI (grade 4; Sigma Chemical Co.) at 0.1 and 1.0 mM was incubated directly with 10–20 U of MCCT for 30 minutes at room temperature. The samples were then assayed directly on target cells. As a control, the same amount of SBTI in 100 mM phosphate buffer was added directly to target cells. The percent inhibition of lysis in all studies was determined by the following formula: Percent lysis = [(cell No. + MCCT + inhibitor) − (cell No. + MCCT)/ (cell No. + inhibitor) − (cell No. + MCCT)] × 100.

Inhibitors of active oxygen radicals.—Catalase (33,900 U/ml, beef liver extract; Sigma Chemical Co.) at a known level of enzymatic units per milliliter was added to L-cell assays simultaneously with aMCCT or with control supernatants containing no MCCT. The percent inhibition of aMCCT activity by catalase was determined with the same formula used with the protease inhibitors described above.

The amino acids alanine, serine, and valine (Sigma Chemical Co.) were dissolved in PBS, pH 7.2. These solutions were added simultaneously with aMCCT from molecular sieving to L-cell assays, and the percent inhibition was calculated. The final concentration of added amino acid was 30 mM.

RESULTS

Release of CLM in vitro.—THP-1 cells grown to a density of 5×106 cells/ml were exposed to a lymphokine-rich supernatant from 5-day cultures of phytohemagglutinin-stimulated human tonsillar and adenoid lymphocytes (23) with a procedure similar to that used by Fisher et al. (4) to produce cytoxin(s) from human peripheral blood monocytes in vitro. This supernatant was added to THP-1-0 cell cultures at ratios of 1:5 or 1:10 (vol/vol). After 24 hours, 500 ng LPS/ml was added directly to the cultures for either 1 or 2 hours, the LPS was removed by washing the cells in serum-free medium, and the cells were resuspended in fresh RPMI-10% for an additional 24 hours. Samples from both the lymphokine-enriched supernatant without LPS and the supernatant obtained 24 hours after LPS removal were collected and assayed on L-cells for cytocidality. No cytolytic activity was detected in either of these supernatants.

THP-1 cells were reported to differentiate into cells expressing the characteristics of mature macrophages after exposure to PMA in vitro (14). When cultures of 2×106 THP-1 cells/ml were exposed to 10 ng PMA/ml, the cells were observed to become glass adherent after 3 hours while maintaining high (≥90%) viability as determined by eosin Y-dye exclusion. However, 24-hour supernatants from these cultures were not cytotoxic. We subsequently tested various levels of PMA and found that supernatants from THP-1 cultures after exposure to 100 ng PMA/ml for 24 hours exhibited cytocidal effects when
tested on L-cells. In contrast, no toxicity was detected when 100 ng PMA/ml was added to either RPMI-10% or RPMI-0% and these media were assayed on L-cells. The results shown in Table 1 summarize these initial data. It is obvious that cytotoxic activity was found in the supernatants only after PMA was added to the THP-1 cultures.

Kinetics of cytotoxic release.—Cell density, dosage of PMA, and incubation times necessary to achieve maximum MCCT release were examined. We first tested various cell numbers and found that a density of 5x10⁵ cells/ml gave the optimal levels of MCCT production; this cell density was used throughout further experiments. Subsequently, we incubated the cells in RPMI-10% with various concentrations of PMA for the indicated time periods. The levels of MCCT were quantified on L-cells; data from these studies are presented in Table 2. The lowest concentration of PMA that induced MCCT release was 50 ng/ml. At this and higher levels of PMA, lytic activity appeared between 18 and 24 hours and increased to greater than 1,000 U/ml after 48 hours. To facilitate biochemical studies, it was important to establish if MCCT would be released into a serum-free medium. Cells were incubated with PMA for 18 hours in RPMI-10% as described above; then the cultures were transferred into RPMI-LAH without PMA. Under these conditions LAH serves as a serum substitute. Supernatants from these cultures were assayed for levels of MCCT activity at various intervals. The results are presented in Table 3. The data show that MCCT activity plateaued at 48 hours after removal of PMA. Also, 100 ng PMA/ml induced higher levels of MCCT release than 50 ng/ml. In all following experiments, 100 ng PMA/ml was used to stimulate the cells for 18 hours followed by a 48-hour release period.

PMA stimulation of nonlymphoid cell lines.—Studies were performed to determine if PMA would induce cytotoxic release from continuous and primary cell lines of nonlymphoid origin. Different cell lines were stimulated under the conditions that were found optimum for CLM production from the THP-1 cells. The continuous cell lines tested were Chang, Mel, HT-1080, HeLa, and T-24. The primary line tested was the GM3468. There was no detectable lysis of L-cells with any of the supernatants except those from the T-24 cells which gave approximately 10-15 U/ml on L-cells.

Cloning of a high-MCCT-producing cell subline.—Clones of the THP-1 cell were isolated by limiting dilution with the intent of isolating a subline that produces high levels of MCCT activity. With the use of the methods that induced optimal release with the parent THP-1 cells, we found four clones, termed AY-16, AY-23, AY-56, and AY-84 that released high levels of MCCT. The data presented in Table 4 are the means ± standard errors of three separate experiments. The AY-23 clone was the highest MCCT-producing subline and was used in all further experiments.

Lytic effects of MCCT on various human continuous and primary cell lines in vitro.—Supernatants containing

![Table 2: Induction of MCCT activity from THP-1 cells by incubation with different levels of PMA in vitro](attachment:table2.png)

![Table 3: Kinetics of the appearance of MCCT lytic activity in serum-free, PMA-free medium following PMA stimulation](attachment:table3.png)

4 Armstrong, Klostergaard, and Granger

JNCI, VOL. 74, NO. 1, JANUARY 1985
100–300 U/ml of MCCT activity were generated, collected, concentrated twentyfold to thirtyfold, filter sterilized, and supplemented with 10% fetal calf serum. The concentrates were then simultaneously tested on L-cells to determine the number of units of bioactivity per milliliter and assayed in triplicates on different target cell types previously treated with mitomycin. The percent lysis of the continuous and primary adherent targets was determined in the microtiter assay employing 10,000 cells/well. Additional studies revealed that more than 90% of detached cells were nonviable judged by staining with 0.1% eosin Y-dye. Lysis of the suspension target cells was measured by detachment, changes in shape, or viability staining with 0.1% eosin Y-dye.

Antibody neutralization.—MCCT activity was also tested to determine if it could be neutralized by rabbit antiserum made against LT. The anti-LT used was of two types: a) anti-WS, a polyspecific antiserum known to block the effects of most LT forms and b) anti-α2 made against highly purified α2-LT from phytohemagglutinin-stimulated human tonsils and adenoids (20, 23). Neither of these antisera significantly neutralized (>20%) MCCT activity.

Determination of molecular weight of MCCT.—The supernatant from AY-23 cells was collected, concentrated twentyfold, and chromatographed on Ultragel AcA 44 molecular sieving columns. Samples from each fraction were assayed on L-cells for cytolysis. Molecular weight markers employed were: BD > 200,000, IgG the 400,000–500,000 range, and PR 364 daltons. As the data in text-figure 1 indicate, the major peak of lytic activity eluted within a molecular weight range of 100,000–140,000 daltons and was designated as the α-form. A second lytic peak, termed β-form, chromatographed with an approximate molecular weight of 60,000–80,000 daltons. A third peak of activity, termed γ-form, was occasionally detected just in front of PR. We found that the γ-peak was unstable and lost all activity within 48 hours after sieving.

Fractions were also assayed on HeLa cells in tube cultures. Text-figure 2 shows a representative elution profile with this target cell. As with the elution profile on the L-cell, both the α- and β-sizes of MCCT activity were detected; however, no γMCCT activity was observed.

Electrophoretic mobility on native PAGE.—Fractions from molecular sieving containing αMCCT activity, as indicated by the bars in text-figure 1, were pooled, concentrated 20 times and run on 7% native polyacrylamide tube gels. Gel slices were eluted with RPMI-3%, and eluates were then assayed on L-929 and HeLa cells in tube cultures. The data for these target cells are shown in text-figure 3. One peak of lytic activity was found on both the L-929 and HeLa targets. The R_f values ranged from 0.15 to 0.30 with the major peak at an R_f of 0.24–0.28 on both the L-929 and HeLa cells.

Effects of protease inhibitors on MCCT activity.—The reversible inhibitors tested were SBTI, TAME, and ALME; the irreversible inhibitors used were TLCK, TPCK, and TLCHA.

Table 5.—In vitro lytic effects of MCCT on continuous and primary target cells of human origin

Cell line	Origin	Units needed to produce 50% cell lysis
Continuous cells		
HeLa	Cervical carcinoma	18 (15–25)
IT-1080	Skin fibrosarcoma	100 (70–125)
CHANG	Liver carcinoma	73 (63–94)
T-24	Bladder carcinoma	115 (85–140)
MEL	Melanoma	75 (66–85)
ESH-7	Hela-Wil-2 fusion	100 (75–120)
K562	Erythroleukosoma	No lysis with 150 U
GM3104A	B-cell lymphoma	No lysis with 150 U
Primary cells		
GM3648	Fetal foreskin fibroblast	No lysis with 150 U
MANZ	Skin fibroblast	No lysis with 150 U

"Target cells were established in microplates and described in "Materials and Methods" and then treated with various amounts of a concentrate of supernatant from AY-23 cells. After 24 hr the number of viable cells in each well was determined as described in "Materials and Methods."

The number of units of bioactivity determined on L-929 target cells necessary to induce 50% cell lysis of the indicated target cell(s). Data are expressed as the mean of 4 experiments. Values in parentheses indicate the range of values obtained in the 4 expts."
TEXT-Figure 1.—Ultrogel AcA 44 chromatography of MCCT-containing supernatants obtained from in vitro PMA-stimulated AY-23 cells: L-929 target cells. A 2-ml sample of a twentyfold concentrated supernatant from PMA-stimulated AY-23 cells was chromatographed over a 95-cm gel bed on Ultrogel AcA 44 in a 2.5×120-cm column; 6.5-ml fractions were collected at 26 ml/hr and 20-μl samples were tested for MCCT activity in tube assays, as described in “Materials and Methods.” The toxic activity of each sample is expressed as percent viability. Molecular weight markers: BD, > 200,000 daltons; IgG, 150,000 daltons; Hb, 64,000 daltons; α-Ct, 23,000 daltons; and PR, 364 daltons. Columns were equilibrated and eluted with 10 mM phosphate, pH 7.2, containing 10⁻⁴ EDTA.

TEXT-Figure 2.—Ultrogel AcA 44 chromatography of MCCT-containing supernatants obtained from in vitro PMA-stimulated AY-23 cells: HeLa target cells. Supernatant from PMA-stimulated AY-23 cells was chromatographed on AcA 44 column according to the procedure outlined in text-fig. 1. Samples of each fraction were assayed on HeLa cells as described in “Materials and Methods.” Toxic activity is expressed as percent viability. Molecular weight markers employed were the same as in text-fig. 1. Columns were equilibrated and eluted with 10 mM phosphate, pH 7.2, containing 10⁻⁴ EDTA.

TEXT-Figure 3.—Native PAGE analysis of an αMCCT preparation after molecular sieving employing L-929 and HeLa target cells. Fractions from molecular sieving showing αMCCT activity on L-cells (see bar on text-fig. 1) were pooled, concentrated fifteenfold, and adjusted to 28% sucrose plus 0.001% Bromophenol Blue (BPB). Samples of 150 μl were applied to 0.5×8-cm tube gels consisting of a 1×3 cm acrylamide stacking gel in 50 mM Tris-glycine, pH 9.0, and a 7% acrylamide separation gel and electrophoresed as explained in “Materials and Methods.” One-millimeter gel slices were incubated in RPMI-3% at 4°C for 12 hr to recover lytic activity. Samples of 200 μl were tested for lytic activity on both L-929 (•••••) and HeLa cells (○○○○○) in tube assays. Toxic activity of each sample is expressed as percent viability.

Effects of active oxygen scavengers on αMCCT activity.—Different levels of catalase activity were coincubated with αMCCT and target L-cells. The results of a single experiment are shown in table 7. In multiple experiments, however, we found that catalase at a

TPCK, and PMSF. The results of a single experiment are presented in table 6. Tests with the reversible inhibitors showed that 10mM TAME quite effectively blocked lytic activity. In contrast, ALME, which has a lysyl group in place of the arginyl group in TAME, did not block MCCT activity. BTI, which inhibits trypsin and trypsin-like proteases, showed an intermediate level of inhibition. Since TAME was incubated with αMCCT and target cells, the possibility existed that TAME could block an L-cell membrane-associated protease that was required for MCCT action. Therefore, αMCCT was incubated with the irreversible inhibitors TLCK, TPCK, and PMSF for 1 hour before addition to the L-cells. Samples were then dialyzed for 10-12 hours against PBS to remove unbound inhibitor. As the data in table 6 show, treatment with TLCK readily blocked αMCCT activity. This finding is especially interesting in light of the results with ALME, since both TLCK and ALME contain lysyl groups. Identical experiments conducted with TPCK as the inhibitor showed only minimal inhibition of αMCCT activity. Finally, when PMSF was employed as the inhibitor, we did not detect any decrease in the lytic effectiveness of αMCCT. In additional experiments we found that these levels of inhibitors had no effect on target cell viability.

JNCI, VOL. 74, NO. 1, JANUARY 1985
concentration of 4,000 enzyme U/ml inhibited 75% of the αMCCT activity. The enzyme at this level had no detectable effect on L-cells. As a control, the enzyme preparation was dialyzed against 500 volumes of PBS for 24 hours; this preparation was equally effective in inhibiting αMCCT lysis (data not shown). As a further control, catalase was heated to 90°C for 10 minutes before addition to αMCCT. This treatment destroyed all enzymatic activity and removed the inhibitory effect on αMCCT activity.

Hyochlorous acid (HOCI) is formed from hydrogen peroxide (H₂O₂) and chloride ion (Cl⁻) by the enzyme myeloperoxidase and is scavenged by the amino acids alanine, serine, and valine (25). As table 7 illustrates, these amino acids at a concentration of 30 mM did not block lytic activity successfully when incubated simultaneously with αMCCT on L-cells.

DISCUSSION

Monocytes–macrophages can be promoted to a tumoricidal state by an appropriate combination of in vivo and/or in vitro priming and triggering events (1-5, 24, 26). Most studies have revealed that this state is characterized by a selective cytotoxic effect preferentially manifested on neoplastic–transformed targets compared to their normal counterparts (1-5, 24-27). The molecular basis for the target injury phase of the lytic mechanism is currently unresolved; however, numerous mechanisms have been proposed, some of which invoke the extracellular release of a cell-lytic mediator by the macrophage into the fluid phase (6-8, 17, 22, 28-32).

The lack of a large-scale source of these monokines has been a major impediment to the complete functional and biochemical characterization of some of the candidate mediators and to a definition of their possible role in the lytic mechanism. In the murine system, the identification of the P388D₁ macrophage line as a source of lymphocyte activating factor (LAF-interleukin 1) has facilitated biochemical and functional studies of this important monokine (33). Recently, promising models of human monocyte-mediated tumor-cell killing in vitro have been forthcoming on the basis of phorbol ester-induced differentiation of monocytic cell lines (12-16). Concomitant with differentiation, typical macrophage characteristics are acquired, such as a reduced replicative potential, increased adherence to substratum and phagocytic capacity, expression of Fc receptors for IgG, detectable staining for cell-surface esterase, and tumor cytolytic capacity. In this study, we have isolated and initially characterized a cell-lytic mediator or mediators from PMA-treated THP-1 monocytic leukemia cells.

As a biologic assay for cell-lytic molecules, we have employed mitomycin-treated target cells. Drug treatment increases the sensitivity of most targets to lytic effects of the mediators. This increased sensitivity has been reported in numerous cell-lytic systems and may reflect perturbed repair mechanisms and/or cell cycle-linked sensitivity of the targets to the mediators (34-37).

A similar assay has recently been employed as a rapid, sensitive assay for human monocyte cytotoxicity (38). Furthermore, the use of nondividing targets in our bioassay allows the discrimination between cytolytic and cytokstatic effects of the mediators. In this regard, Gaffney and colleagues (39) have described growth inhibitory substances released by merzerein-treated THP-1 cells. The major component described by them was in the 20,000- to 30,000-dalton range, and it is apparently distinct from the

| Table 6—Effects of reversible and irreversible protease inhibitors on in vitro cell-lytic activity of αMCCT |
|-----------------|-----------------|-----------------|-----------------|
Inhibitor	Inhibitor concentration, mM	Reaction conditions	Inhibition, %
Irreversible inhibitors			
TLCK	1	1 hr 37°C, dialysis	2
	5	12 hr against PBS	65
	10	PBS	100
TPCK	0.4	1 hr 37°C, dialysis	0
	1	12 hr against PBS	16
PMSF	1	1 hr 37°C, dialysis	0
	2	12 hr against PBS	0
Reversible inhibitors			
TAME	0.4	Simultaneous	2
	2	incubation on L-cells	10
	10	L-cells	76
SBTI	0.1	Simultaneous	23
	1	incubation on L-cells	54
ALME	0.4	Simultaneous	0
	2	incubation on L-cells	0
	10	L-cells	0

αMCCT was partially purified by molecular sieving as described in “Materials and Methods.” The L-929 cell was used as a target in these studies.

Additional information in table 7 describes active oxygen scavengers on in vitro cell-lytic activity of αMCCT.

| Table 7—Effects of active oxygen scavengers on in vitro cell-lytic activity of αMCCT |
|-----------------|-----------------|-----------------|-----------------|
| Scavenger | Concentration, U/ml | Inhibition, % |
|-----------------|-----------------|-----------------|-----------------|
| Catalase | 200 | 0 |
| | 2,000 | 30 |
| | 4,000 | 75 |
| | 0 U/ml | 0 |
| Alanine | 30 mM | 0 |
| Serine | 30 mM | 0 |
| Valine | 30 mM | 0 |

αMCCT was partially purified by molecular sieving as described in “Materials and Methods.” The toxin was coincubated with the scavenger and L-929 target cells.

Data presented are from a representative experiment.

These studies were conducted with 18.8 U/ml αMCCT.

Catalase at 4,000 U/ml subjected to 90°C for 10 min before assay with αMCCT. All enzymatic activity was destroyed by this process.

These studies were conducted with 3.5 U/ml αMCCT.
major lytic component in our study (αMCCT=120,000 daltons).

A number of laboratories have reported the detection of cytotoxic molecules released by human monocytes obtained from peripheral blood or from alveolar lavage ([6–8]; Klostergaard J: In preparation]. Nissen-Meyer and Hammerstrom (40) have initially characterized cytostatic factors termed CstF I and CstF II, of molecular weights 55,000 and 40,000, respectively, obtained from cultured peripheral blood monocytes. On the basis of molecular weight, these factors appear to be distinct from those released by the THP-1 cell line; however, given the high level of protease activity associated with the culture conditions used for the elicitation of CstF I and CstF II, one could not exclude their derivation from a higher molecular weight precursor. Furthermore, although Nissen-Meyer and Hammerstrom (40) did not detect cytolytic activity, only cytostatic activity, they employed the K562 erythroleukemia target in their assays. In our study, this target was highly resistant to lysis by activated, THP-1 supernatant compared to the L-929 target cell'. This finding is similar to our results.

Matthews (6) has used a bioassay for cytolyis similar to that in our study in the isolation and characterization of an antitumor cytotoxin from cultured human peripheral blood monocytes. The toxin has a molecular weight of 34,000 by molecular sieving and 140,000 by gradient PAGE. In standard PAGE, this toxin appears to have mobility similar to that of αMCCT. It is noteworthy that the K562 target is substantially less susceptible to lysis by the toxin than the actinomycin-D-treated L-929 cell; this finding is similar to our results.

Recently, Sone et al. (8) have reported the release of a cytolytic factor(s) from human alveolar macrophages. Although only initially characterized, their factor(s) could not be inhibited in lysis of the A375 melanoma by TAME or SBTI, which were effective in blocking the αMCCT-mediated lysis of L-929 targets (table 6). This raises the possibility that their CstF I and CstF II would be lytically active in a bioassay that uses a more sensitive target.

We have determined in our laboratory that human peripheral blood monocytes, isolated from plateletpheresis residues by Ficoll-Hypaque sedimentation and counterflow elutriation, can be induced to release cell-lytic molecules active in the L-929 bioassay (Klostergaard J: In preparation). We have initially characterized these molecules and found two distinct molecular weight forms with biologic activity: The larger is approximately 100,000–140,000 daltons and represents approximately 20% of the total activity; the smaller is about 65,000 daltons and is the predominant form. The sizes agree very closely with those reported here for αMCCT and βMCCT, although the proportions are nearly inverted. Further characterization of these toxins from peripheral blood monocytes and comparison to the THP-1-derived toxins are under way.

Williams et al. (41) have reported that human B-cell lines release a factor that is active in the in vivo assay for tumor necrosis factor. Although these investigators have tentatively defined this as the human counterpart to tumor necrosis factor, we believe there is a strong likelihood that this factor is human α-class lymphotoxin, α-LT, on the basis of a number of characteristics including the molecular weight, the B-cell origin, and the augmentation in production with PMA (23, 41–43). It is noteworthy that in our studies a highly specific anti-α-LT antiserum did not block αMCCT activity (data not shown). We propose that α-LT may well be active in the tumor necrosis factor in assay, but is distinct from monocyte-macroage-derived cell toxins, some of which may be the more appropriate human counterparts to tumor necrosis factor. This hypothesis should be testable in the near future.

Finally, it is an intriguing possibility that αMCCT can mediate target cell lysis by both protease-dependent and oxidative mechanisms. These mechanisms have been proposed by a number of investigators as operative in monocyte-macrophage-mediated cell lysis (22, 24, 28, 29, 44–47). Indeed, in the murine system, Adams et al. (47) have shown that a macrophage-derived cytolytic protease and hydrogen peroxide may act synergistically in mediating target cell destruction. In the current studies, although any proposed model would have significant untested aspects to it, we can certainly eliminate the trivial possibility that $\mathrm{H}_{2}\mathrm{O}_{2}$ is present in the 120,000-dalton molecular sieving fractions. Furthermore, since PMA is only added during the initial 18-hour phase during which the THP-1 cells become adherent and activated, and thereafter PMA-free media are replaced for the 48-hour release period, any residual PMA is most likely present at very low levels. This PMA could only arise by release from pretreated THP-1 cells and must not be degraded by esterases during the subsequent culture. Thus after the serum-free supernatants are concentrated and subjected to molecular sieving, we expect any PMA to be below the threshold for most PMA-inducible events. Therefore, in the absence of direct quantitation of residual PMA levels, we tentatively exclude the role of PMA in eliciting peroxide from the target cells on which αMCCT activity is expressed. Further resolution of this mechanism, for example, to determine if αMCCT induces $\mathrm{H}_{2}\mathrm{O}_{2}$ production by the target cell subsequent to binding, will be possible when this mediator can be sufficiently purified.

In this context, this report is an initial phase of our studies of models for human monocyte-macrophage cytotoxicity. To some extent the THP-1 cell line satisfies the necessary criteria for such models and will provide sufficient sources for isolation, purification, characterization, and, if justified, gene cloning of molecular mediators of tumoricidal mechanisms.

REFERENCES

(1) CAMERON DJ, CHURCHILL WH. Cytotoxicity of human macrophages for tumor cells: Enhancement by human lymphocyte mediators. J Clin Invest 1979; 65:977-984.

(2) MANTOVANI A, JERRELLS TR, DIAN JH, HERBERMAN RB. Cytolytic and cytostatic activity on tumor cells of circulating human monocytes. Int J Cancer 1979; 23:18-27.
Isolation and Initial Characterization of Tumoricidal Monokine(s)

(3) Sone S, Fidler IJ. Synergistic activation by lymphokines and muramyl dipeptide of tumoricidal properties in rat alveolar macrophages. J Immunol 1980; 125:2454-2460.

(4) Fischer DG, Hubbard WJ, Koren HS. Tumor cell killing by freshly isolated peripheral blood monocytes. Cell Immunol 1981; 58:426-435.

(5) Sone S, Moriguchi S, Shimizu E, Ogushi F, Tsubura E. In vitro generation of tumoricidal properties in human alveolar macrophages following interaction with endotoxin. Cancer Res 1982; 42:2489-2491.

(6) Matthews N. Production of an anti-tumor cytotoxic by human monocytes. Immunology 1981; 44:135-142.

(7) HamsterK J. Soluble cytotoxic factor(s) released from human monocytes. Production and effect on normal and transformed human target cells. Scand J Immunol 1982; 5:311-318.

(8) Sone S, Tachibana K, Ishii K, Ogawa M, Tsubura M. Production of a tumor cytolytic factor(s) by activated human alveolar macrophage and its action. Cancer Res 1984; 44:646-651.

(9) Koren HS, Anderson SJ, Larrick JW. In vitro activation of a human macrophage-like cell line. Nature 1979; 279:328-330.

(10) Anderson CL, Abraham GN. Characterization of the Fc receptor for IgG on a human macrophage cell line, U937. J Immunol 1977; 119:2779-2781.

(11) Arveux J, Rebuff A, Bensa J-C, Colom MG. Characterization of the C3 receptor on a human macrophage cell line, U937. Biochem J 1984; 218:547-555.

(12) Rovera G, Santoli D, Damsky C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci USA 1982; 79:2779-2783.

(13) Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980; 26:171-176.

(14) Tsuchiya S, Kobayashi Y, Goto Y, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 1982; 42:1530-1536.

(15) Weinberg JB. Tumor cell killing by phorbol ester-differentiated human leukemia cells. Science 1981; 213:655-658.

(16) Hall RE, Muchmore AV, Decker JM, Blake RM. Induction of cytotoxic effector activity in the HL-60 promyelocytic cell line by incubation with phorbol myristate acetate. A model system of human spontaneous monocyte-mediated cytotoxicity. Cell Immunol 1983; 76:58-68.

(17) Kramer JJ, Granger GA. The in vitro induction and release of cell toxins by immune C57Bl/6 mouse peritoneal macrophages. Cell Immunol 1972; 15:287-291.

(18) Reidarson TH, Levy WE III, Klostergaard J, Granger GA. Inducible macrophage cytotoxins. I. Biochemistry of activation and release in vitro. JNCI 1982; 69:889-897.

(19) Yamanoto RS, Hiserodt JC, Lewis JE, Carmack CE, Granger GA. The human LT system. II. Immunological roles of LT molecules released by mitogen activated human lymphocytes in vitro. Cell Immunol 1978; 38:405-416.

(20) Darzynkiewicz Z, Williams DL, Masunaka IK, Granger GA. The human LT system. IV. Inducible macrophage cytotoxins. II. Tumor lysis mechanism involving target cell-binding proteins. JNCI 1982; 69:889-894.

(21) Granger GA, Yamanoto RS, Fair DS, Hiserodt JC. The human LT system. I. Physical-chemical heterogeneity of LT molecules released by mitogen activated human lymphocytes in vitro. J Immunol 1978; 121:404-427.

(22) Hocker JB Jr, Tainton RR, Chapman HA, Weinberg JB. Macrophage tumor killing: Influence of the local environment. Science 1977; 197:279-282.

(23) Weiss SJ, Silvka A. Monocyte and granulocyte-mediated tumor cell destruction. J Clin Invest 1982; 69:255-262.

(24) Rocu IP, Meltzer MS. Macrophage activation for tumor cytotoxicity. Tumoricidal activity by macrophages from C57/HeJ mice requires at least two activation stimuli. Cell Immunol 1978; 41:35-46.

(25) Keller R. Cytostatic and cytotoxic effects of activated macrophages. In: Nelson DS, ed. Immunobiology of the macrophage. New York: Academic Press, 1975:487-508.

(26) Adams DO, Kao KJ, Farr B, Pizzo SV. Effector mechanisms of cytolically activated macrophages. II. Secretion of a cytolytic factor by activated macrophages and its relationship to secreted neutral proteases. J Immunol 1980; 124:293-300.

(27) Nathans CF, Silverstein SC, Brukner LH, Cohn ZA. Extraglottic tumor by activated macrophages and granulocytes. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med 1979; 149:100-113.

(28) Feur I, Scholer J, Hsu BP, Mathias L, Allison GC. Production of the complement cleavage product, C3a, by activated macrophages and its tumoricidal effects. Clin Exp Immunol 1978; 31:512-517.

(29) Currie GA. Activated macrophages kill tumor cells by releasing arginase. Nature 1978; 275:758-759.

(30) Carthew EA, Old L, Raulet RL, Green S, Fiore N, William­ son R. An endotoxin induced serum factor that causes neurosis of tumors. Proc Natl Acad Sci USA 1975; 72:3666-3670.

(31) Mizel S, Mizel D. Purification to apparent homogeneity of murine interleukin 1. J Immunol 1981; 126:403-416.

(32) Eifel PJ, Walker SM, Lucas ZJ. Standardization of a sensitive rapid assay for lymphokinin. Cell Immunol 1975; 15:208-221.

(33) Wagner SJ, Chian H. Tumor cell lipid composition and sensitivity to humoral immune killing. I. Modification of cellular lipid and fatty acid content by metabolic inhibitors and hormones. J Immunol 1980; 124:626-634.

(34) Ruff MR, Gifford GE. Tumor necrosis factor. In: Pick E, ed. Lymphokines. Vol 2. New York: Academic Press, 1981:85-90.

(35) Darzynkiewicz Z, Williamson B, Carthew EA, Old LJ. Cell cycle-specific effects of tumor necrosis factor. Cancer Res 1984; 44:83-90.

(36) Ziegler-Heitbrock HW, Riethmüller G. A rapid assay for cell toxicity of unstimulated human monocytes. JNCI 1984; 72:25-29.

(37) Gaffney EV, Tsai S-C, Dill AQUILA ML, Lingenfelter SE. Production of growth-inhibitory activity in serum-free medium by human monocytic leukemia cells. Cancer Res 1983; 43:3686-3673.

(38) Nissen-Meyer J, Hamermesh J. Physicochemical characterization of cytostatic factors released from human monocytes. Infect Immun 1982; 38:67-73.

(39) Williams BD, Carthew EA, Rubin BY, Prendergast JS, Old LJ. Human tumor necrosis factor produced by human B-cell lines: Synergistic cytotoxic interaction with human interferon. Proc Natl Acad Sci USA 1983; 80:5397-5401.

(40) Fair DS, Jeffes EW III, Granger GA. Release of LT molecules with restricted physical heterogeneity by a continuous human lymphoid cell line in vitro. Mol Immunol 1979; 16:185-192.

(41) Yamamoto RS, Johnson DL, Masunaka IR, Granger GA. Phorbol myristate acetate induction of lymphokinin from continuous human B lymphoid cell lines in vitro. J Biol Response Mod 1984; 3:76-87.

(42) Adams DO. Effector mechanisms of cytolically activated macrophages. I. Secretion of neutral protease effectors. Cell Immunol 1980; 124:296-302.

(43) Piessens WF, Sharma SO. Tumor cell killing by macrophages activated in vitro with lymphocyte mediators: Role of proteases, inhibitors, and substrates. Cell Immunol 1981; 56:286-291.

(44) Weiss SJ, Lobiglio AF. Biology of disease. Phagocyte-generated oxygen metabolites and cellular injury. (Review.) Lab Invest 1982; 47:5-18.

(45) Adams DO, Johnson WJ, Fiorito E, Nathans CF. Hydrogen peroxide and cytolytic factor can interact synergistically in effecting cytolyis of neoplastic targets. J Immunol 1981; 127:1975-1977.