In silico modification of Zn$^{2+}$ binding group of suberoylanilide hydroxamic acid (SAHA) by organoselenium compounds as Homo sapiens class II HDAC inhibitor of cervical cancer

Usman Sumo Friend Tambunan1, Ridla Bakri1, Arli Aditya Parikesit1, Titin Ariyani1, Ratih Dyah Puspitasari1, Djati Kerami2

1Bioinformatics Group, Department of Chemistry, Faculty of Mathematics and Science University of Indonesia, Jl. Salemba Raya No.4, Depok 16424, Indonesia

2Mathematics Computation Group, Department of Mathematics, Faculty of Mathematics and Science University of Indonesia, Jl. Salemba Raya No.4, Depok 16424, Indonesia

*E-mail: usman@ui.ac.id

Abstract. Cervical cancer is the most common cancer in women, and ranks seventh of all cancers worldwide, with 529000 cases in 2008 and more than 85% cases occur in developing countries. One way to treat this cancer is through the inhibition of HDAC enzymes which play a strategic role in the regulation of gene expression. Suberoyl Anilide Hydroxamic Acid (SAHA) or Vorinostat is a drug which commercially available to treat the cancer, but still has some side effects. This research present in silico SAHA modification in Zinc Binding Group (ZBG) by organoselenium compound to get ligands which less side effect. From molecular docking simulation, and interaction analysis, there are five best ligands, namely CC27, HA27, HB28, IB25, and KA7. These five ligands have better binding affinity than the standards, and also have interaction with Zn$^{2+}$ cofactor of inhibited HDAC enzymes. This research is expected to produce more potent HDAC inhibitor as novel drug for cervical cancer treatment.

1. Introduction

Cervical cancer occurs in the hollow area between the vagina and uterus, precisely in the cervical region [1]. This cancer is the second most common in women [2], as well as ranked seventh of all cancers in the world with as many as 529000 cases in 2008 and more than 85% of cases occur in developing countries. High-risk areas are found in East and West Africa, with a cumulative risk (0-74) of about 3.8%, South Africa (2.9%), South-Central Asia (2.6%), and Central Africa and the South Americas (2.5%) [3].

Cervical cancer is caused by human papilomavirus (HPV). HPV is from the family Papillomaviridae with the core material of double-stranded DNA and does not have a sheath (envelope) [4]. HPV enters the body through mucous membranes, does not circulate in the blood, but localized in the infected place, and cannot be grown in vitro [5].

A drug that used to suppress the growth of cervical cancer cells is an inhibitor of the enzyme histone deacetylase (HDAC). HDAC (EC.3.5.1) is an enzyme that acts as a catalyst for histone deacetylase [6]. It is a medium that can bind with oncogene transcription of genes with the aim of transforming the processes of cells into the media of the viral proliferation [7].
The most often used Inhibitors for class II HDAC activity is Vorinostat or suberoylanilide hydroxamic acid (SAHA). SAHA compound is having carbonyl and hydroxyl amine group. It binds zinc ion, Zn\(^{2+}\), with aliphatic chains as a linker, a hydrophobic group at the other tail. SAHA is a drug that has been sold in the market, but has the side effect as inhibitor of osteoblast maturation [8]. It also raises a variety of symptoms, such as dizziness, diarrhea, vomiting, hyperglycemia, increased levels of protein in urine, to a shortage of platelets (trombocytopenia) [9]. With the side effects of vorinostat or SAHA, it is necessary to modify the group of these compounds to obtain drugs that have toxicity and lower side effects [10].

In a recent study, it was found that the element selenium has an important role in the body, it also acts as an anti-cancer. Organoselenium in the form of compounds of selenometionin and metilselenosistein are proven to be therapeutic compounds on colon cancer cases [11]. In other studies, the organoselenium metabolites can inhibit HDAC in the cases of prostate cancer [11].

An inhibitor of HDAC has at least three sides/regions, namely the attachment of the Zn\(^{2+}\) cofactor/the enzyme active site (Zn\(^{2+}\) chlating/binding region) [12], close to the hydrophobic site (hydrophobic cap) [13,14], and liaison (linker) [15] containing the connecting unit/CU with electronegative group.

This study will construct various ligand models derived from SAHA compounds with organoselenium modifications based on Zinc Binding Group (ZBG).

2. Material and Methods

2.1 Preparation of the 3D structure of class II HDAC Homo sapiens.
The sequence data of *Homo sapiens* Class II HDACs (4, 5, 6, 7, 9, 10) was prepared by downloading them from the protein database at NCBI site (http://www.ncbi.nlm.nih.gov). Furthermore, the sequence was copied and stored with notepad in FASTA format. 3D structure of the *Homo sapiens* Class II HDACs was obtained from the Protein Data Bank (PDB) and stored in .pdb format. If there were proteins that were not available in the PDB, it was modeled by SWISS model and the data was obtained in .pdb format.

2.2 Sequence conservation of Homo sapiens Class II HDAC.
This alignment was done on the NCBI BLAST (Basic Local Alignment Search Tool) server and Clustal W at EMBL-EBI. Sequences of class II HDAC *Homo sapiens* enzymes were uploaded to the server, then performed the BLASTP (BLAST Protein).

2.3 Preparation of Homo Sapiens Class II HDAC enzyme.
HDACs sequence data were obtained and stored with .pdb format in the previous procedure, opened with the MOE (Molecular Operating Environment) 2008.10 software. Furthermore, the removal of amino acids chains, ligands/inhibitors, and unwanted solvents (usually H\(_2\)O) was conducted. Thus, 3D protonate menu was used on the compute section to add the polar hydrogen and led the charge of Zn\(^{2+}\). The addition of polar hydrogen provides partial charge in the enzyme. The determination of the partial load was carried on the menu of compute mode that has been parameterized with AMBER99 forcefield. Then, the menu was utilized to minimize enzyme’s energy to reach the lowest level. Enzymes are stored in .moe or .mdb format and used for molecular docking simulations.

2.3 Design and preparation of Homo sapiens Class II HDAC Ligand inhibitor.
Ligands were drawn in two dimensions using offline software program of ACDLabs ChemSketch 12.0. They are SAHA and its derivatives. Various SAHA modifications were utilized. The ligands were saved in MDL Molfile format. Ligands storage format was converted to MDL Mol using Vegazz software. All ligand then forwarded into MOE database. Ligand molecule was opened within .mol
format using MOE software. Furthermore, the ligand was computed with "wash" menu. Ligand was adjusted with "partial charge" and optimized using MMFF94 forcefield.

2.4 Docking simulation.
Docking process was done by using the menu Compute-Simulation-Dock in MOE 2008.10 software. Docking results were stored in .mdb format. The selected area was the docking residues. The placement method was using a triangle matcher with repetition of energy readings every 1000000 position and other corresponding parameters contained in MOE 2008.10. The next stage of scoring function was using London dG, refinement by using forcefield. The first repetition was done in 30 times, while the latter only just showed one of the best from 30 repetitions.

2.5 Analysis of Molecular Docking.
Results were analyzed using molecular docking of MOE software. Results data is opened in the .mdb format. To make it easier to sort the results based on the $\Delta G_{\text{binding}}$, the data file was converted to .xls format by using the export menu. Ligand conformation that has the lowest binding energy was chosen to determine protein-ligand conformation from docking result. The selected enzyme-ligand complex was having a low binding energy value and the highest inhibition constants for further analysis.

2.6 Visualization of Molecular Interactions.
Visualization of 3D complex interactions with ligands enzyme was done through the rendering process. After going through the process, 3D structure of the enzyme can be illustrated through maps on the navigation of surface and compute menu. Then, the interacting ligand, cofactor, and the enzyme amino acid residues could be displayed. Interaction of amino acid residues in enzymes with ligands can be viewed by using the features of LigX on MOE. Initially, ligand was selected using the browser menu. Enzyme-ligand complex energy was minimized with the LigX Minimize menu, then clicked the Interaction menu. After that, an analysis of the interactions that occurred between amino acid residues in enzymes with ligand inhibitor was conducted.

3. Result and Discussion

3.1 Determination of class II HDAC Homo sapiens.
The results of the *Homo sapiens* Class II HDAC search in the NCBI sites are 91 sequences. The sequences were dowloaded in FASTA format, to conduct multiple sequence alignment for each *Homo sapiens* Class II HDAC. The highest score was chosen as the modeling sequences. The obtained sequences of each enzyme HDAC class II are presented in Table 1.

Enzyme	Sequences code
HDAC4	P56524
HDAC5	Q9UQL6.2
HDAC6	Q9UBN7.2
HDAC7	Q8WU14.2
HDAC9	Q9UKV0.2
HDAC10	Q969S8.1

From the modeling results, the enzyme HDAC5 and HDAC9 structures were quite valid, but HDAC10 showing results that are less valid. HDAC10 protein structure were taken in the absence of structural data that more comparable with the results HDAC10 modeling. After HDAC structure was obtained, then the determination of the active side of the structure was done.

The 3D structure of a protein can be accessed at the database of Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB-PDB) through the website of http://rscb.org/pdb/.
3D structures of HDAC5, HDAC9, and HDAC10 were not found in the database RSCB-PDB, so it needs to conduct modeling with other software. FASTA sequences of HDAC5, HDAC9, and HDAC10 was served into its 3D models by using homology modeling software with online SWISS models (http://swissmodel.expasy.org/) (Table 2 and Figure 1).

Protein	QMEAN4 score	Identity
HDAC5	-2.72	76.90%
HDAC9	-2.20	74.54%
HDAC10	-4.43	39.94%

After HDAC structure is obtained, then the active site of the structure was determined (Figure 2).

Figure 1. 3D structure of *Homo sapiens* class II HDAC: a.HDAC4, b.HDAC5, c. HDAC6, d. HDAC7, e. HDAC9, and f. HDAC10

Figure 2. 3D structure of *Homo sapiens* class II HDAC in MOE software: a.HDAC4, b.HDAC5, c. HDAC6, d.HDAC7, e.HDAC9, and f.HDAC10

Description: purple: H-bonding, green: Hydrophobic region, and blue: Mild Polar
3.2 Determination of the Enzyme Active Side of class II HDAC Homo sapiens. Crystal protein contained in the PDB database is the protein inhibitor compound that has been shown to lower the catalytic activity. From this data, information can be found on the location of amino acid residues that become the catalytic site of enzyme. The PDB 3D structures of the HDAC4, HDAC6, and HDAC7 enzymes were found as well. Thus, the amino acid residues of the active site were obtained (Table 3). The structures of HDAC5, HDAC9, and HDAC10 were the result of homology modeling with SWISS Model.

The existence of Zn$^{2+}$ cofactor became a key factor for inhibition of class II HDAC enzymes. It is designed so that the ligand inhibitor has a group that is able to interact or bind Zn$^{2+}$ ions in order to inhibit the catalytic activity of the enzyme.

Enzyme	Location of The Catalytic site
HDAC4	Ion Zn$^{2+}$ with residu Asp196, His198, dan Asp290
HDAC5	Ion Zn$^{2+}$ with residu Asp870, His872, dan Asp964
HDAC6	Ion Zn$^{2+}$ with residu Cys5, His7, dan Cys78
HDAC7	Ion Zn$^{2+}$ with residu Asp707, His709, dan Asp801
HDAC9	Ion Zn$^{2+}$ with residu Asp820, His822, dan Asp914
HDAC10	Ion Zn$^{2+}$ dengan residu Asp172, His174, dan Asp265

3.3 Design of Class II HDAC Homo sapiens Inhibitor. SAHA was modified to obtain a potential drug candidate with minimal side effects for the treatment of cervical cancer. Modifications were carried out on Zinc Binding Group (ZBG) by substituting organoselenium in the group, while maintained the structure of the CAP and the linker. Organoselenium compounds have been selected in previous studies with the same modification on ZBG selenium compounds to inhibit HDAC on lung cancer cell (Figure 3). In vitro studies proved that the result of this modification provides better performance than the standard compound. Therefore, modification was followed by substituting the variation of organoselenium to obtain the possibility of better results.

![Figure 3. Modification of SAHA ligand. The area within blue circle is the Zinc Binding Group (ZBG).](image)

Total ligands that have been successfully made are 1763, and 2 standard ligand compounds of SAHA and TSA.

3.4 Docking.

Molecular docking simulation process was iterated once on each of the six class II HDAC Homo sapiens enzymes with the same 1165 ligands. Docking process takes 18-50 hours, depending on the number of ligands and the computer processor specifications.

The selected 18 best ligands are HA27, UA28, MB25, UA30, A24, HB29, LA30, SA27, ZA28, UA30, KA7, HB28, CC27, A1A27, ZA25, EB25, IB25, and BA24. Six others were taken from the best ligand structure approach that has a good interaction with the six class II HDAC Homo sapiens enzymes and remain within the below standard criteria of $\Delta G_{\text{binding}}$ value. Those six ligands are B1B25, BB24, BC7, HB20, JA27, and LA26. The binding free energy ($\Delta G_{\text{binding}}$) of the best ligand with HDAC enzymes is presented in Table 4, while the inhibition constant is in Table 5, respectively.
Table 4. The binding free energy ($\Delta G_{\text{binding}}$) of the best ligand with HDAC enzymes

Ligand	HDAC4	HDAC5	HDAC6	HDAC7	HDAC9	HDAC10
SAHA	-29.420	-39.175	-12.562	-45.617	-25.340	-11.079
TSA	-53.710	-4.057	-1.032	-32.101	-17.760	27.276
AIA27	-26.044	-49.282	-14.273	-64.810	-30.377	-89.697
A24	-4.146	-59.975	-14.969	-59.968	-36.873	-10.939
BIB25	-42.219	-58.684	-1.628	-42.561	-42.004	-14.847
BA24	-39.919	-60.331	-17.748	-24.563	-34.751	63.416
BB24	-40.248	-58.882	-13.248	-31.459	-31.459	-82.618
BC7	-24.517	-42.294	-17.277	-44.085	-27.217	-99.316
CC27	-26.108	-36.836	-13.487	-58.605	-33.903	-12.392
EB25	-3.825	-59.831	-16.090	-3.794	-32.282	-13.166
HA27	-54.414	-58.829	-17.251	-41.632	-27.043	11.455
HB20	-25.480	-37.405	-18.655	-31.388	-26.977	-98.902
HB28	-32.076	-46.794	-2.436	-36.847	-45.414	11.430
HB29	-31.434	-51.708	-26.456	-0.375	-29.787	-38.785
IB25	-44.025	-60.535	-15.989	-33.678	-38.057	-12.633
JA27	-22.347	-60.990	-17.564	-46.531	-45.342	-1.163
KA7	-34.164	-36.715	-18.564	-38.382	-22.533	-98.975
LA26	-33.382	-40.031	-17.985	-33.393	-0.271	-98.266
LA30	-31.023	-43.625	-25.909	-43.167	-3.162	-19.152
MB25	-47.377	-57.618	-19.077	-52.978	-38.898	-88.693
SA27	-31.655	-4.733	-25.688	-53.560	-28.638	-88.903
UA28	-57.837	-75.258	-12.381	-99.786	-63.495	0.641
UA29	-28.383	-70.755	-15.962	-42.443	-23.721	-55.034
UA30	-46.946	-75.085	-14.086	-57.256	-2.646	-50.433
ZA25	-27.777	-58.900	-15.961	-17.130	-44.571	-14.146
ZA28	-40.935	-32.213	-25.553	-2.508	-25.874	-33.987

Note: The number in bold is the lowest free energy value

3.5 Interaction Analysis of HDAC with The Best Ligand.
After getting the value of $\Delta G_{\text{binding}}$, molecular docking results, the next step is to analyze the interaction between class II HDAC Homo sapiens enzymes with the ligand inhibitor. From the results of molecular docking database, the selected the file-browser menu would determine the ligand interactions. After the minimization of energy, visualization of the interaction between the enzyme and the ligand was obtained.

In HDAC4, the interaction was formed between Zn$^{2+}$ cofactor ligand compounds with oxygen atoms at hydroxyl groups that bound to the amide group (Figure 4). The Zn$^{2+}$ cofactor coordination complex bonding with oxygen atoms also bind 3 amino acids (His198, Asp196, and Asp290), which is the enzyme active site residues of HDAC4. Zn$^{2+}$ coordination number in these bonds is four. Zn$^{2+}$ electronic charges on oxygen have shown empty p orbitals (n acceptor). Then, the interaction between His872 side chains with a hydroxyl group attached to the Selenium was observed as well.
active sides on the outside, so it should be easier to give a pose that generate the interaction. However, hydrogen bonds.
backbone of Gly1005 was able to donate a proton to the oxygen atom on ZBG fragment and form covalent bond between the Zn$^{2+}$ cofactor with oxygen atoms in the carboxylic group of ZBG, also with the active site amino acid residues (His872, Asp870, and Asp964) (Figure 5). Then H in the amine backbone of Gly1005 was able to donate a proton to the oxygen atom on ZBG fragment and form hydrogen bonds.

The HDAC6 enzyme interaction with ligand CC27 shows that it does not bind Zn$^{2+}$ cofactor, but provide hydrogen bonding interactions with residues Cys78 which became one of the amino acid residues in the enzyme active site (Figure 6). Secondary amine ligands were donating protons to the backbone chain of Cys78 residue. In the hydrophobic stamp or linker, there is no interaction between the ligand with the enzyme.

HDAC6 enzyme has a smaller structure than other class II HDAC enzymes. In addition, there are active sides on the outside, so it should be easier to give a pose that generate the interaction. However, there is also possibility of interactions with the standard SAHA and HDAC6. The Zn$^{2+}$ on enzyme did not show any interaction with the standard compound.

Table 5. Inhibition constant value of the best ligand with HDAC enzymes

Ligand	HDAC4	HDAC5	HDAC6	HDAC7	HDAC9	HDAC10
SAHA	21.4463	28.5574	9.1573	33.2534	18.4721	8.0762
TSA	39.1529	2.9574	0.7523	23.4006	12.9465	-19.8834
A1A27	18.9853	35.9251	10.4046	47.2445	22.1439	65.3863
A24	3.223	43.7199	10.9119	43.7148	26.8793	7.9742
B1B25	30.7763	42.7788	1.1868	31.0257	30.6196	10.8230
BA24	29.0997	43.9794	12.9377	17.9057	25.3324	-46.2283
BB24	29.3395	42.9232	9.6574	22.9326	22.9326	60.2260
BC7	17.8721	30.8310	12.5944	32.1366	19.8404	72.3983
CC27	19.0319	26.8523	9.8316	42.7212	24.7142	9.0334
EB25	2.7883	43.6150	11.7291	2.7657	23.5326	9.5976
HA27	39.6661	42.8845	12.5754	30.3484	19.7135	-8.3503
HB20	18.5741	27.2671	13.5989	22.8809	19.6654	72.0965
HB28	23.3824	34.1114	1.7758	26.8603	33.1054	-8.3321
HB29	22.9144	37.6935	**19.2856**	0.2734	21.7138	28.2731
IB25	32.0929	44.1281	11.6555	24.5502	27.7424	9.2091
JA27	16.2903	44.4598	12.8036	33.9197	33.0529	0.8478
KA7	24.9045	26.7641	13.5326	27.9793	16.4259	72.1497
LA26	24.3344	29.1814	13.1105	24.3425	0.1976	71.6329
LA30	22.6148	31.8013	18.8869	31.4674	2.3050	13.9612
MB25	34.5364	42.0017	13.9065	38.6193	28.4218	64.6545
SA27	23.0755	3.4502	18.7258	39.0436	20.8762	64.8075
UA28	**42.1614**	**54.8608**	9.0254	**72.7409**	**46.2859**	-0.4673
UA29	20.6903	51.5782	11.6358	30.9396	17.2919	40.1181
UA30	34.2222	54.7346	10.2683	41.7379	1.9289	36.7641
ZA25	20.2486	42.9363	11.6351	12.4872	32.4909	10.3120
ZA28	29.8404	23.4823	18.6273	1.8283	18.8613	24.7755

Note: The number in bold is the highest inhibition constant value.

From the visualization of HDAC5 interaction with ligand IB25, there is visible presence of a covalent bond between the Zn$^{2+}$ cofactor with oxygen atoms in the carboxylic group of ZBG, also with the active site amino acid residues (His872, Asp870, and Asp964) (Figure 5). Then H in the amine backbone of Gly1005 was able to donate a proton to the oxygen atom on ZBG fragment and form hydrogen bonds.
Visualization of the interaction between the enzyme HDAC7 with ligand CC27 showed five covalent bond coordination between Zn$^{2+}$ cofactor with three residues of the active sites (Asp707, His709, and Asp801) (Figure 7). His843 side chain residues showed interaction with the hydrophobic cap. Whereas His670 side chain interacts with the carbonyl of ZBG. Then, there is also a hydrogen bonding interaction between the H bonded to nitrogen with side chain residue of Asp707.

Figure 4. Visualization of enzyme HDAC4 enzyme with ligand HA27

Figure 5. Visualization of HDAC5 enzyme interaction with ligand IB25

Figure 6. Visualisation of enzyme HDAC6 interaction with ligand CC27

Figure 7. Visualisation of enzyme HDAC7 with ligand CC27 interaction
Next on the visualization of the interaction between the ligand HB28 and HDAC9 enzyme, the cofactor Zn$^{2+}$ formed four bonds coordination with oxygen atoms at hydroxyl groups with three active site residues (Asp820, His822, and Asp914) (Figure 8). Then the active site of the side chain residues of Asp820 and Asp914 was also forming hydrogen bonding interactions with the hydroxyl groups on the H atom in ZBG, while the side chains of the active site residues His822 also forms a hydrogen bond interactions with the cation H in the aromatic group.

Figure 8. Visualisation of enzyme HDAC9 with ligand HB28

At HDAC10, KA7 ligand formed coordination bond between Zn$^{2+}$ cofactor with the active site residues (His172, His174, and Asp265). Thus, the oxygen atoms in the hydroxyl group were attached to an amide (Figure 9).

Figure 9. Visualisation of enzyme HDAC10 with ligandd KA7

4. Conclusion

The designed compounds were organoselenium-modified version of SAHA at the ZBG. This modification resulted in 1763 ligands, and then advanced to the stage of molecular docking. From the analysis of $\Delta G_{binding}$ between the ligand inhibitor with a class II HDAC enzymes Homo sapiens as well as analysis and visualization of interactions, 24 best ligands were obtained. The interaction analysis between the class II HDAC Homo sapiens enzyme with the ligand inhibitor shows the covalent bond coordination between the Zn$^{2+}$ cofactor and oxygen atom in the carboxylate groups on ZBG, also with amino acid residues active side.

Acknowledgement

The authors would like to thanks Hibah BOPTN Ditjen Dikti No. 0542/UN2.R12/HKP.05.00/2015 for providing research grant. Thanks also goes to Directorate of Research and Community Engagement-University of Indonesia (DRPM-UI) for the sponsorship in project “Pelaksanaan Hibah Penyelenggaraan Pelatihan Penulisan Artikel Untuk Jurnal Internasional Tahun Anggaran 2015”, No.: 2774/UN2.R12/HKP.05.00/2015. Usman Sumo Friend Tambunan, Ridla Bakri, and Arli Aditya Parikesit supervised this research. Titin Aryani and Ratih Dyah Puspitasari worked on the technical
details. Djati Kerami gave important suggestion to improve our pipeline. All authors were credited for writing this manuscript.

References
[1] Tambunan U S F, Bramantya N and Parikesit A A 2011 In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC). BMC Bioinformatics 12 (Suppl 13) S23 doi:10.1186/1471-2105-12-S13-S23
[2] Naus M 2008 HPV vaccine revolutionizes prevention of cervical cancer B C Med J. 50(5)
[3] Ferlay J, Shin H R, Bray F, Forman D, Mathers C and Parkin D M 2008 Estimates of worldwide burden of cancer in GLOBOCAN Int J Cancer 2010 127(12):2893–2917 doi:10.1002/ijc.25516
[4] Ciaran B J, Woodman S I C and L S Y 2007 The natural history of cervical HPV infection unresolved issues Nat Rev Cancer (doi:10.1038/nrc2050)
[5] Beskow A 2003 Genetic risk factors for cervical carcinoma in situ. Uppsala: Uppsala University
[6] Bouchain G and Delorme D 2003 Novel hydroxamate and anilide derivatives as potent histone deacetylase inhibitors: synthesis and antiproliferative evaluation Curr Med Chem 10 2359–2372 doi:10.2174/0929867033456585
[7] Park J S, Kim E J, Kwon H J, Hwang E S, Namkoong S E and Um S J 2000 Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis J Biol Chem. 275 (10) 6764–6769 doi:10.1074/jbc.275.10.6764
[8] Tambunan U S F, Parikesit A A, Prasetia T and Kerami D 2013 In Silico Molecular Interaction Studies of Suberoylanilide Hydroxamic Acid and its Modified Compounds with Histones Deacetylase Class II Homo sapiens as Curative Measure towards Cervical Cancer In: Engineering Vol 5 Scientific Research Publishing 203–206. doi:10.4236/eng.2013.510B043
[9] Matsuoka H, Unami A, Fujimura T, Noto T, Takata Y, Yoshizawa K, Mori H, Aramori I and Mutoh S 2007 Mechanisms of HDAC inhibitor-induced thrombocytopenia. Eur J Pharmaco (doi:10.1016/j.ejphar.2007.06.015
[10] Tambunan U S F and Wulandari E K 2010 Identification of a better Homo sapiens Class II HDAC inhibitor through binding energy calculations and descriptor analysis BMC Bioinformatics 11 Suppl 7:S16. doi:10.1186/1471-2105-11-S7-S16
[11] Lee J I, Nian H, Cooper A J, Sinha R, Dai J, Bisson W H, Dashwood R H and Pinto J T 2009 Alpha-keto acid metabolites of naturally occurring organoselenium compounds as inhibitors of histone deacetylase in human prostate cancer cells Cancer Prev Res (Phil a) 2 (7) 683–93 doi:10.1158/1940-6207.CAPR-09-0047
[12] Thangapandian S, John S, Lee Y, Arulalapperumal V and Lee K W 2012 Molecular Modeling Study on Tunnel Behavior in Different Histone Deacetylase Isosforms. PLoS One. 7 doi:10.1371/journal.pone.0049327
[13] Chen P C, Patil V, Guerrant W, Green P and Oyelere A K 2008 Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group. Bioorg Med Chem. 16 (9) 4839–53 doi:10.1016/j.bmc 03.050
[14] Huang D, Li X, Wei Y and Xiu Z 2012 A novel series of 1-2-benzyloxy carbonylamino-8-(2-pyridyl)-disulfidyl oxanoic acid derivatives as histone deacetylase inhibitors: design, synthesis and molecular modeling study Eur J. Med. Chem. 52 111–22 doi:10.1016/j.ejmech.2012.03.009
[15] Rajak H, Kumar P, Parmar P, Thakur B S, Veerasamy R, Sharma P C, Sharma A K, Gupta A K and Dangi J S 2012 Appraisal of GABA and PABA as linker: design and synthesis of novel benzamide based histone deacetylase inhibitors Eur J. Med. Chem. 53 390–7 doi:10.1016/j.ejmech.2012.03.058