Closed Yesterday and Closed Minds:
Asking the Right Questions of the Corpus
To Distinguish Thematic from Sentential Relations

Uri Zernik
Artificial Intelligence Laboratory
General Electric - Research and Development Center

Abstract
Collocation-based tagging and bracketing programs have attained promising results. Yet, they have not arrived at the stage where they could be used as pre-processors for full-fledged parsing. Accuracy is still not high enough.

To improve accuracy, it is necessary to investigate the points where statistical data is being misinterpreted, leading to incorrect results.

In this paper we investigate inaccuracy which is injected when a pre-processor relies solely on collocations and blurs the distinction between two separate relations: thematic relations and sentential relations.

Thematic relations are word pairs, not necessarily adjacent, (e.g., adjourn a meeting) that encode information at the concept level. Sentential relations, on the other hand, concern adjacent word pairs that form a noun group. E.g., preferred stock is a noun group that must be identified as such at the syntactic level.

Blurring the difference between these two phenomena contributes to errors in tagging of pairs such as expressed concerns, a verb-noun construct, as opposed to preferred stocks, an adjective-noun construct. Although both relations are manifested in the corpus as high mutual-information collocations, they possess different properties and they need to be separated.

In our method, we distinguish between these two cases by asking additional questions of the corpus. By definition, thematic relations take on further variations in the corpus. Expressed concerns (a thematic relation) takes concerns expressed, expressing concerns, express his concerns etc. On the other hand, preferred stock (a sentential relation) does not take any such syntactic variations.

We show how this method impacts pre-processing and parsing, and we provide empirical results based on the analysis of an 80-million word corpus.

Pre-Processing: The Greater Picture
Sentences in a typical newspaper story include idioms, ellipses, and ungrammatic constructs. Since authentic language defies textbook grammar, we must rethink our basic pars-
Separately, *comma* [Kaneh/nn Services/nn] [said/vb] [holders/nn] [of/pp its/dt Class/nn A/aj preferred/aj stock/nn] *comma* [fallen/vb] [to/pp elect/vb] [two/aj directors/nn] [to/pp the/dt company/nn board/nn] when/cc [the/dt annual/aj meeting/nn] resumed/vb [Tuesday/aj] because/cc there/are/ax [questions/nn] as/cc [to/pp the/dt validity/nn] [of/pp the/dt proxies/nn] [submitted/vb] [for/pp review/nn] [by/pp the/dt group/nn] *period*/cc

The company/nn [adjourned/vb] [its/ps annual/aj meeting/nn] May/nn 12/aj [to/pp allow/vb] [time/nn] [for/pp negotiations/nn] and/cc [expressed/vb] [concern/nn] [about/pp future/aj actions/nn] [by/pp preferred/vb holders/nn] *period*/cc

Figure 1: Pre-processed Text Produced by NLcp

What is Pre-Processing Up Against?

The Linguistic Phenomenon

Consider (Figure 1) a WSJ (August 19, 1987) paragraph processed by NLcp (NL corpus processing) [Zernik et al., 1991]. Two types of linguistic constructs must be resolved by the preprocessor:

Class A preferred/AJ stock/NN *comma*
and expressed/VB concern/NN about

How can a program determine that preferred stock is an adjective-noun, while expressed concern is a verb-noun construct?

The Input

The scope of the pre-processing task is best illustrated by the input to the pre-processor shown in Figure 2.

This lexical analysis of the sentence is based on the Collins on-line dictionary (about 49,000 lexical entries extracted by NLcp) plus morphology. Each word is associated with candidates part of speech, and almost all words are ambiguous. The tagger’s task is to resolve the ambiguity.

For example, ambiguous words such as services, preferred, and expressed, should be tagged as noun (nn), adjective (aj), and verb (vb), respectively. While some pairs (e.g., annual meeting) can be resolved easily, other pairs
Separately, AV said AJ VB its DT preferred AJ VB to PP directors NN company NN annual AJ tuesday NM proxies NN Kaneh NM holders NN Class AJ NN stock NN VB elect VB to PP board NN VB meeting NN VB submitted AJ VB Services NN VB of PP A DT AJ failed AD VB two AJ NN the DT when CC resumed AJ VB validity NN group NN VB

Figure 2: Lexical Analysis of Sentence: Words plus Part of Speech

(e.g., preferred stock and expressed concerns) are more difficult, and require statistical training.

Part-Of-Speech Resolution
The program can bring to bear 3 types of clues:

Local context: Consider the following 2 cases where local context dominates:

1. the preferred stock raised
2. he expressed concern about

The words the and he dictate that preferred and expressed are adjective and verb respectively. This kind of inference, due to its local nature, is captured and propagated by the pre-processor.

Global context: Global-sentence constraints are shown by the following two examples:

1. and preferred stock sold yesterday was ...
2. ... and expressed concern about ...

In case 1, a main verb is found (i.e., was), and preferred is taken as an adjective; in case 2, a main verb is not found, and therefore expressed itself is taken as the main verb. This kind of ambiguity requires full-fledged unification, and it is not handled by the pre-processor. Fortunately, only a small percent of the cases (in newspaper stories) depend on global reading.

Corpus-based preference: Corpus analysis (WSJ, 80-million words) provides word-association preference [Beckwith et al., 1991]

collocation total vb-nn aj-nn preferred stock 2314 100 0 expressed concern 318 1 99

The construct expressed concern, which appears 318 times in the corpus, is 99% a verb-noun construct; on the other hand, preferred stock, which appears in the corpus 2314 times, is 99% an adjective-noun construct.3

Where Is The Evidence?
The last item, however, is not directly available. Since the corpus is not a-priori tagged, there is no direct evidence regarding part-of-speech. All we get from the corpus are numbers that indicate the mutual information score (MIS) [Church et al., 1991] of collocations (9.9 and 8.7, for preferred stock and expressed concern, respectively). It becomes necessary to infer the nature of the combination from indirect corpus-based statistics as shown by the rest of this paper.

3For expository purposes we chose here two extreme, clear-cut cases; other pairs (e.g., promised money) are not totally biased towards one side or another.
Inferring Syntax from Collocations

In this section we describe the method used for eliciting word-association preference from the corpus.

Initial Observation: Co-occurrence Entails Sentential Relations

The basic intuition used invariably by all existing statistical taggers is stated as follows: Significant collocations (i.e., high MIS) predict syntactic word association. Since, for example, preferred stock is a significant collocation (mis 9.9), with all other clues assumed neutral, it will be marked as an integral noun group in the sentence.

However, is high mis always a good predictor? Figure 3 provides mutual information scores for preferred, expressed, and closed right collocations.

The first column (preferred) suggests mis is a perfect predictor. A count in the corpus confirms that a predictor based on collocations is always correct. A small sample of preferred collocations in context is given Figure 4. Notice that in all cases, preferred is an adjective.

Next Observation: Co-occurrence Entails Thematic Relations

While column 1 (preferred) yields good syntactic associations, column 2 (expressed) and column 3 (closed) yield different conclusions. It turns out (see Figure 4) that expressed collocations, even collocations with high mis, produce a bias towards false-positive groupings. 4

If these collocation do not signify word groupings, what do they signify? An observation of expressed right collocates reveals that the words surprise, confidence, skepticism, optimism, disappointment, support, hope, doubt, worry, satisfaction, etc., are all thematic relations of express.

Namely, a pair such as expressed disappointment denotes an action-object relation which could come in many variants. The last part of Figure 4 shows various combinations of express and its collocates.

Using Additional Evidence

In light of this observation, it is necessary to test in the corpus whether collocations are fixed or variable. For a collocation word1-word2, if word1 and word2 combine in multiple ways, then word1-word2 is taken as a thematic relation; otherwise it is taken as a fixed noun group.

This test for express-word is shown in Figure 5. Each row provides the number of times each variant is found. Variants for expressed concerns, for example, are concern expressed, express concern, expresses concern, and expressing concern. Not shown here is the count for split co-occurrence [Smadja, 1991], i.e., express its concern, concern was expressed. The last column sums up the result as a ratio (variability ratio) against the original collocation.

In conclusion, for 12 out of 15 of the checked collocations we found a reasonable degree of variability.

Making Statistics Operational

While the analysis in Figure 5 provides the motivation for using additional evidence, we have two steps to take to make this evidence useful within an operational tagger.

Dealing with Small Numbers

Although the table in Figure 5 is adequate for expository purposes, in practice the different collected figures are spread over too many rubrics, making the numbers susceptible to noise.

To avoid this problem we short-cut the calculation above and collect all the co-occurrence of

4Word associations based on corpus do not dictate the nature of word groupings; they merely provide a predictor that is accounted for with other local-context clues.
the roots of the words under analysis. Instead of asking: "what are the individual variants?" we ask "what is the total co-occurrence of the root pair?". For expressed concerns we check the incidence of express-interest (and of interest-express).

As a result, we get the lump sum without summing up the individual numbers.

Incorporating Statistics in Tagging

Co-occurrence information regarding each pair of words is integrated, as described in Section 2.3, with other local-context clues. Thus, the fact that statistics provide a strong preference can always be overridden by other factors.

they preferred stock ...
the expressed interest by shareholders was ...

In both these cases the final call is dictated by syntactic markers in spite of strong statistical preference.

Conclusions

NLpc processes collocations by their category. In this paper, we investigated specifically the PastParticiple-Noun category (e.g., preferred-stock, expressed-concerns, etc.). Other categories (in particular ContinuousVerb-Noun as in driving cars vs. operating systems) are processed in a similar way, using slightly different evidence and thresholds.

The Figures

- Total cases: 2031
- Applicable cases: 400
- Insufficient data: 23
- Incorrect tagging: 19
- Correct tagging: 358

Evaluation

Out of 2031 tagging cases counted, the algorithm was called in 400 cases. 1631 cases were not called since they did not involve collocations (or involved trivial collocations such as expressed some fears.) Out of 400 collocations the program avoided ruling in 23 cases due to insufficient data. Within the 377 tagged cases, 358 (94.9%) cases were correct, and 19 were incorrect.

90% Accuracy is Not Enough

Existing pre-processors [Church et al., 1989; Zernik et al., 1991] which have used corpus-based collocations, have attained levels of ac-
GE for the 585,000 shares of its ume payments of dividends on the shae but lowered ratings on its n 3 from BAA *hyphen* 2 *comma* 26.65 a share *period* The nes of common for each share of 0 *pc* of Variaty *ap* common and ng of up to *dollar* 260 million ews of the transaction call for al *comma* to swap one share of i *dollar* 2 million annually in p* notes and 7,459 Lori series C a share of newly issued series A ance an adjustable *hyphen* rate he told the house Mr. Dingell ggested that the U.S. Mr. Harper ne tax *period* Some legislators soybeans and feed grains *comma* bid *dash* *dash* *dash* GE unit hallenge *period* Mr. Wright has nt about their bank one also had italy *ap* President Consiga and *comma* saying varner executives secretory Robert Mosbacher have thor on the nature paper *comma* he said *comma* ving gold in the street and then id that National Pizza Co. has r. nixon *comma* Chinese leaders e Bay Area *ap* pastry community presidents also are expected to its predecessor *period* It also related Services Co. people who c chairman Seidman *comma* while * on a tour of ania *comma* also ponsored the senate plan *comma* the nine supreme court justinces nd primerica in his eagerness to st few weeks alone *dash* *dash* literally flipped his wig *comma* that the newspaper company said who no longer feel they have to icoms writing to the hostages to en summoned to chairman Gonzalez riod* Frequently *comma* clients expressed surprise when thieves walk by t expressed renewed interest in acquiring th expressed no regret for the killings *comm express disbelief that Ms. Shere kept on express support for the Andean nations w express its commitment to a free *hyphen* express interest in the certificates rec expressing concerns *comma* also said the expressed a desire to visit China *period* expressed some confidence that his plan w expressed varying degrees of dissatisfact express his linguistic doubts to America expressing their relief after crossing in expressing delight at having an excuse to expresses confidence in the outcome of a express their zeal on the streets *comma* express their grief and support *period* expresses sympathy for Sen. Riegle *comma* express interest in paintings but do not

Figure 4: PREFERRED, EXPRESSED, and (root) EXPRESS collocations in context
accuracy as high as 90%. A simple calculation reveals that a 34-word sentence might contain some 1-2 errors on the average.

This error rate is too high. Since the preprocessor's job is to eliminate from consideration possible parse trees, if the appropriate parse is eliminated by the preprocessor at the outset, it will never be recovered by the parser. As shown in this paper, it is now necessary to investigate in depth how various linguistic phenomena are reflected by statistical data.

	e'sed X	e'sed	e's X	e's X	e'sing X	v. ratio		
	mis	no	no	no	no	n1	n2	r
disappointment	11.9	89	2	1	5	6	14	.89
skepticism	11.6	57	1	2	3	57	.05	
optimism	10.6	49	3	1	4	8	49	.16
reservations	10.8	33	3	2	1	6	33	.18
doubt	10.1	63	2	1	5	4	13	.63
surprise	10.0	69	1	5	2	1	9	.69
satisfaction	10.0	14	1	2		3	14	.21
confidence	9.6	67	1	4	1	6	67	.09
shock	8.9	12	3	1	4	7	46	.15
hope	8.8	46	2	1	4	7	46	.15
concern	8.7	318	30	31	9	25	95	.318
worry	8.7	13	1	6	3	2	12	.13
relief	8.6	23	1	4	2	12	13	.92
interest	8.2	294	4	6	9	11	30	.294
support	7.0	46	1	5		3	9	.46

Figure 5: 5 Variant Collocations for Express

References

R. Beckwith, C. Fellbaum, D. Gross, and G. Miller. Wordnet: A lexical database organized on psycholinguistic principles. In U. Zernik, editor, Lexical Acquisition: Exploiting On-Line Dictionary to Build a Lexicon. Lawrence Erlbaum Assoc., Hillsdale, NJ, 1991.

K. Church, W. Gale, P. Hanks, and D. Hindle. Parsing, word associations, and predicate-argument relations. In Proceedings of the International Workshop on Parsing Technologies, Carnegie Mellon University, 1989.

K. Church, W. Gale, P. Hanks, and D. Hindle. Using statistics in lexical analysis. In U. Zernik, editor, Lexical Acquisition: Using On-Line Resources to Build a Lexicon. Lawrence Erlbaum Associates, Hillsdale, NJ, 1991.

I. Dagan, A. Itai, and U. Schwall. Two languages are more informative than one. In Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics, Berkeley, CA, 1991.

M. Kay. Parsing in Functional Unification Grammar. In D. Dowty, L. Karttunen, and A. Zwicky, editors, Natural Language Parsing: Psychological, Computational, and Theoretical Perspectives. Cambridge University Press, Cambridge, England, 1985.

S. Shieber. An Introduction to Unification-based Approaches to Grammar. Center for the Study of Language and Information, Palo Alto, California, 1986.

F. Smadja. Macrocoding the lexicon with co-occurrence knowledge. In U. Zernik, editor, Lexical Acquisition: Using On-Line Resources to Build a Lexicon. Lawrence Erlbaum Associates, Hillsdale, NJ, 1991.

M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic Publishers, Hingham, Massachusetts, 1986.

U. Zernik and P. Jacobs. Tagging for learning. In COLING 1990, Helsinki, Finland, 1990.

U. Zernik, A. Dietzsch, and M. Charbonneau. Intoolset programmer's manual. Ge-crd technical report, Artificial Intelligence Laboratory, Schenectady, NY, 1991.