The petrostructural characteristics and $^{207}\text{Pb}/^{206}\text{Pb}$ zircon data from the Ngomedzap-Akongo area (Nyong complex, SW-Cameroon)

Sébastien OWONA1,3*, Joseph MVONDO ONDOA2, Marion TICHOMIROWA3, Georges Emmanuel EKODECK1

1Department of Earth Sciences, Faculty of Science, University of Douala, P.O. Box: 24157, Douala, Cameroon; owonas@univ-douala.com
2Department of Earth Sciences, Faculty of Science, University of Yaounde I, P.O. Box: 812, Yaounde, Cameroon
3Institute of Mineralogy, TU-Bergakademie Freiberg, Freiberg D–09596, Germany
*Corresponding author

Herein, we constrain the Ngomedzap–Akongo geodynamic evolution in the eastern part of the Nyong complex (NyC) in SW Cameroon that belongs to the Paleoproterozoic West Central African Fold Belt (WCAF) through petrostructural field observations, laboratory analyses, and $^{207}\text{Pb}/^{206}\text{Pb}$ zircon geochronology. It consists of magnetite bearing quartzite, metagranodiorite, metaanorthosite, metagabbro, and metasyenites that have recorded a polyphase D$_1$–D$_3$ deformation. D$_1$, likely a pure shear-type, has been strongly overprinted by the D$_2$ transpression flow regime that emplaced the Nyong tectonic nappe, transported top–to the East onto the Congo shield. This nappe is dissected by D$_3$ blastomylonitic shear-zones. Both the D$_2$ and D$_3$ have controlled the actual geometry of the Nyong belt, later crosscut by D$_4$ multiple brittle tectonic styles, likely post-orogenic. Zircon geochronology yielded $^{207}\text{Pb}/^{206}\text{Pb}$ zircon geochronology protolith Archean mean ages of 2764$^{+26}_{-26}$ Ma ($MSWD=0.81$) in metagranodiorite; 2816$^{+34}_{-34}$ Ma ($MSWD=1.3$) and 2789$^{+13}_{-13}$ Ma ($MSWD=0.28$) in metasyenites. These new data corroborate old ones and, together, document the Archean origin of the NyC as details of the Nyong fold-and-thrust belts that of WCAFB and South American homologous due to the colliding Congo-San Francisco shields associated with Eburnean/Trans-Amazonian orogeny (~2100–2050 Ma).

Keywords: Archean protoliths, colliding Congo-San Francisco shields, Eburnean/Trans-Amazonian orogeny, Transpression flow, Nyong Complex, SW Cameroon

Received: 10 March 2020; accepted: 31 August 2020; handling editor: M. Svojtka

1. Introduction

The SW Cameroon basement in Central Africa as part of the West Gondwana consists of the Ntem complex (NC), the Nyong complex (NyC) and the Oubanguide complex (OC) (Figs 1a, b) (Castaing et al. 1994; Trompette 1994; de Wit et al. 2008; Owona et al. 2011). The NC corresponds to the Archean NW Congo shield lithostructural unit. The NyC is the Cameroonian Paleoproterozoic unit as part of the West Central African fold belt (WCAFB) that recorded the Eburnean orogeny emplaced during the collision between the Congo and Sao Francisco shields (Fig. 1b) (Feybesse et al. 1998; Pénaye et al. 2004; Neves et al. 2006; de Wit et al. 2008). The OC, also named North Equatorial Fold Belt (NEFB), corresponds to the Neoproterozoic lithostructural unit. It consists of Precambrian to Neoproterozoic sediments reworked during the Pan-African orogeny associated with the collision between the Congo, West African and the Saharan shields (Fig. 1b) (Nzenti et al. 1988; Abdelsalam et al. 2002; Oliveira et al. 2006; de Wit et al. 2008; Saha-Foutsa et al. 2019). The crystalline basement is covered by the Cretaceous to Cenozoic Douala-Kribi-Campo sedimentary basin (Fig. 1b) (Maurizot et al. 1986; Tamfu et al. 1995; Oba 2001). Crystalline rocks have been abundantly explored by petrographical, geochemical, and geochronological studies conducting various models still under discussion. The NyC herein studied and, particularly, its geodynamic models, suffer from the lack of structural studies necessary for their consolidation.

However, such Proterozoic terranes offer possibilities to document the tectonic style associated with crustal growth-reworking during the Eburnean/Trans Amazonian orogeny in comparison with Archean and Phanerozoic terranes as well as vertical and horizontal plate tectonics. Various working hypotheses have been proposed regarding comparisons between Archean and Phanerozoic tectonic styles or between vertical and horizontal plate tectonics associated with crustal growth-reworking. For instance, Hamilton (2011) has demonstrated that Archean, Paleoproterozoic, and Mesoproterozoic rocks and structures differ significantly both from each other and from modern ones. Archean continental crust dominantly tonalite–trondhjemite–granodiorite (TTG), derived mostly by partial melting of protocrust and also from melting of both the subducted oceanic crust (Hamilton 2011) and from the base of thick basaltic plateaux formed above mantle upwellings (Bédard 2006). Contrarily, Paleopro-
terozoic and Mesoproterozoic orogens are largely ensialic. They derived from very thick basin-filling sedimentary and volcanic rocks on thinned Archean or Paleo-terozoic crust and remaining mafic protocrust (Vanderhaeghe et al. 1998; Hamilton 2011). These Proterozoic orogens supposed convergence, collision, and crustal thickening, similar to modern orogens (Vanderhaeghe et al. 1998).

Subduction zones display various horizontal contraction styles subjected to continental crust linked to convergent settings (Pfiffner 2006). They include thin-skinned tectonics that encompasses fold-and-thrust belts such as in the Cordilleran in southern Canadian Rocky Mountains, tectonically prograded over the margin of the continental shields (Price 1981; Pfiffner 2006). They also comprise thick-skinned tectonics in which thrust faults cut across the entire upper crust and possibly the lower crust (Pfiffner 2006). They correspond either to crustal orogenic wedges or to orogenic plateaus but also a gravitational collapse of previously thickened crust, leading to the opening of intermontane and eventually oceanic back-arc associated with subduction zones (Vanderhaeghe 2012). They are also characterized by paired and unpaired metamorphic belts, the low-pressure metamorphic type formed beneath a volcanic chain in the adjacent island arc or continental margin, and the high-pressure metamorphic one, formed beneath a trench zone (Ernst 1973; Miyashiro 1973).

Baratoux et al. (2011) have documented Paleo-terozoic terranes bordering the West African Shield, a crustal thickening due to lateral shortening of volcanic island arcs and concomitant diapiric magmatic inputs associated with compressional regime later overprinted by transpression and thrust fault tectonics. Feybesse et al. (1998) proposed a first solid overview of the WCAFBN and that of the NyC geodynamic evolution further corroborated by structural studies (Pénaye et al. 2004). Loose and Schenk (2018) and Houketchang Bouyo et al. (2019) have recently documented this evolution by characterizing eclogite metametamorphism on MORB rock types emplaced in a subducted environment in addition to the granulite metamorphism previously established on Eseka paragneisses by Nédélec et al. (1993). Moreover, Toteu et al. (1994), Lerouge et al. (2006), Owona (2008), Loose and Schenk (2018), using various U–Pb zircon as Pb/Pb zircon techniques have establish its Archean origin (>2700 Ma). The above authors also agreed that NyC corresponds to the NW Congo shield remobilized and emplaced during the Eburnean/Transamazonian orogeny between ~2400–1800 Ma associated with the collision between the Congo and Sao Francisco shields. Nédélec et al. (1993), Tchameni et al. (2001), and Shang et al. (2004) have established that the NyC derived from the partial melting of Archean protoliths using significant and rare-earth element contents and Sm/Nd isotopic signature showing Archean model ages ~3000 Ma. The NyC was affected by a polyphase deformation induced by a tectonic nappe transported top to the East onto the Congo shield (Feybesse et al. 1998; Pénaye et al. 2004; Owona et al. 2011). Details of the NyC tectonic evolution remain poorly known.

Indeed, the evolution of such orogenies includes classical subduction-collision events characterized by high P–T metamorphisms, tectonic imprints recorded both by sediments during their burial-exhumation and by pre- to orogenic granitoids. Those crustal deformations represent the key-criteria for characterization of orogenic belts. As natural laboratories, ancient terranes helped to answer some fundamental questions about the modes of crustal growth and lithospheric deformation through time (Sanderson and Marchini 1984; Tikoff and Teyssier 1994; Choukroune et al. 1995; Tikoff and Fossen 1995; Chardon and Jajananda 2008; Chardon et al. 2009; Gapaïs et al. 2009; Mvondo et al. 2017; Nakapelyukh et al. 2018). Such terranes display many deep-seated rocks exhumed from various depths inducing fold-and-thrust belts between colliding continental blocks (Price 1981; Pfiffner 2006; Omori et al. 2016; Kooijman et al. 2017). The Paleoproterozoic NyC appears as an excellent example of an old terrane between colliding Congo and Sao Francisco shields. It can thus serve to discuss the Eburnean/Transamazonian orogeny tectonic style.

Herein we provide new (i) petrography data on the Ngomedzup–Akongo area in the eastern part of the NyC; (ii) structure data with its steep tectonic features of a D$_1$–D$_4$ deformation including D$_1$–D$_2$ ductile phases, D$_3$ ductile-brittle and D$_4$ likely a late to post-orogenic brittle segment; and (iii) 207Pb/206Pb zircon ages of metagranodiorite and metasyenites that evidence the Archean origin of their protoliths and the NyC.

2. Tectonic setting

The NyC geodynamic evolution has started with the opening of earliest Archean sedimentary basins such as the Ogooué, Nyong, Ikobe–Waka and includes plutonic rocks dated between 2515–2435 Ma (Feybesse et al. 1998). These sedimentary and plutonic rocks were remobilized during the Eburnean/Transamazonian orogeny associated with the collision between the Congo and Sao Francisco Shields (Fig. 1b) (e.g., Feybesse et al. 1998; Neves et al. 2006; de Wit et al. 2008). Nevertheless, suture zones remain undiscovered.

NyC includes the Kama, Akongo and Gouvayang groups. The Kama group consists of TTG, meta-anorthoclase, metagabbro, charnockite, gneiss, migmatite and amphibolite (Fig. 2). The Akongo group comprises banded iron formations (BIF), amphibolite, garnetite,
Lead-isotopic zircon data from the Ngomedzap-Akongo area (Cameroon)

Ledru et al. (1994), Feybesse et al. (1998), and Pénaye et al. (2004) defined three tectonic events affecting the

Pan-African frontal thrust

Nyong frontal thrust

~2050 Ma

~2050 Ma

NGOMEDZAP

Edea

Douala Basin

Eseka

Kribi

Lolodorf

Yaounde

Fig. 2

Fig. 1 a – South America–Africa fit showing shields and Proterozoic provinces of western Gondwana (modified after Castaing et al. 1994; de Wit et al. 2008; Lerouge et al. 2006; Neves et al. 2006; Owona et al. 2013) – CS: Congo shield, WAS: West African shield, TS: Tanzania shield, KS: Kalahari shield, SFS: Sao Francisco shield, AS: Amazonian shield, UB: Ubende belt, EEB: Eastern Bahia belt, MR–QU: Mineiro Belt-Quadrilátero Ferrifero, BM: Bumu complex. b – South-West Cameroon geological sketch showing its main lithostructural units, the Ngomedzap–Akongo area and sample locations used for geochronology.

eclogite, and alkali metasyenites. The Govayang group contains gneiss, BIF, amphibolite, and metagranitoids. Ledru et al. (1994), Feybesse et al. (1998), and Pénaye et al. (2004) defined three tectonic events affecting the
NyC and marked by the emplacement of the Nyong nappe transported top-to the East onto the Congo Shield. This nappe is dissected by C_s sinistral blastomylonitic shear-zones (Owona et al. 2013). The brittle phase, represented by ~SW–NE faults, was associated with reactivations during the Pan-African orogeny (Pényaye et al. 2004).

The Eburnean metamorphism began early in Gabon where it peaked at ca. 2100 Ma (U/Pb zircon; Caen et al. 1996), this complex was intruded by two dolerite magmatic phases. The first one with the back-arc basin tholeiite character, which occurred between 2628±33 Ma (Rb/Sr, WR) and 2347±210 Ma (Sm/Nd, WR; Tchameni et al. 2001). The Sm and Nd isotopic characteristics established this Archean origin of most protoliths TDM ages at ca. 3000 Ma, (Tchameni et al. 2001). According to Vicat and Pouclet (1995) and Vicat et al. (1996), this complex was intruded by two dolerite magmatic phases. The first one with the back-arc basin tholeiitic and greenstone-belt volcanic character, which occurred between 2628±33 Ma (Rb/Sr, WR) and 2347±210 Ma (Sm/Nd, WR; Tchameni et al. 2001). Vicat et al. (1996) related them to the pre-Eburnean extensional magmatism (Vicat et al. 1996). The second phase, still undated, with typical continental tholeiite character, is linked to the pre-Pan-African extension (Vicat and Pouclet 1995; Vicat et al. 1996, 1997). Similar dolerites are mentioned in the Chaillu complex in Gabon as well as in Lobaye valley in the Central African Republic (Feybesse et al. 1998). Boniface et al. (2012), Loose and Schenk (2018) and Houketchang Bouyo et al. (2019) have recently described an old eclogite facies 800°C, 16 kbar and 850°C, 25 kbar, within the Eburnean-Transamazonian orogeny of southern Cameroon peaking at 2093±45 Ma (U/Pb Zircon).

As Archean klippes encountered within the NyC (Fig. 2), the geochemistry supports field observations of the derivation of NyC rock types from the partial melting of the Archean crust (Nédélec et al. 1993; Toteu et al. 1994; Tchameni et al. 2001). The Sm and Nd isotopic characteristics established this Archean origin of most protoliths TDM ages at ca. 3000 Ma, (Tchameni et al. 2001). According to Vicat and Pouclet (1995) and Vicat et al. (1996), this complex was intruded by two dolerite magmatic phases. The first one with the back-arc basin tholeiitic and greenstone-belt volcanic character, which occurred between 2628±33 Ma (Rb/Sr, WR) and 2347±210 Ma (Sm/Nd, WR; Tchameni et al. 2001). Vicat et al. (1996) related them to the pre-Eburnean extensional magmatism (Vicat et al. 1996). The second phase, still undated, with typical continental tholeiite character, is linked to the pre-Pan-African extension (Vicat and Pouclet 1995; Vicat et al. 1996, 1997). Similar dolerites are mentioned in the Chaillu complex in Gabon as well as in Comba and Sembe Ouesso in the Republic of Congo and Lobaye valley in the Central African Republic (Feybesse et al. 1998). Boniface et al. (2012), Loose and Schenk (2018), and Houketchang Bouyo et al. (2019) defined within the NyC, with MORB-like eclogites that represent the subducted oceanic crust.

3. Samples and analytical methods

3.1. Petrography

We use classical lithopetrographical description from field observations in outcrop, hand sample description until optical microscopy in thin section. This enables us to determine the type of rocks as well as their microstructure, mineral composition, and mineral parageneses used for the deduction of metamorphic facies.

We also applied microtectonic technics in standard thin sections oriented as possible parallel to XZ sections of finite strain ellipsoid (normal to the foliation and parallel to the stretching lineation) to analyze fabrics that record ductile deformation and to identify pre-, syn- and post-tectonometamorphic mineral assemblages in respect of techniques proposed by Passchier and Trouw (2005). These fabrics were typified in the field and thin sections following classical methods (William et al. 1994; Tikoff and Fossen 1995; Passchier and Trouw 2005). We also analyzed blasts to link microstructures to deformation phases and to determine dynamic recrystallization features according to Kurse et al. (2001), Stipp et al. (2002), Passchier and Trouw (2005) and Owona et al. (2013).

3.2. Structural analysis

For the structural analysis, we identified and measured foliation (Sn), lineation (Ln), S–C foliation shear-fabrics, and faults on available outcrops for their geometry. Structural data were treated with Spheristat commercial program for the lower hemisphere and equal area, discriminating stretching (Str) and hornblende (Hbl) lineations. Faults were treated with both Spheristat and FS–Excel program for plotting great circles and fault striae as calculating orientations of principal stress axes (e.g., Angelier 1994) for fault arrays with the computer-program package of Sperner and Ratschbacher (1994). We refer to Appendix B of Ratschbacher et al. (2003) for details.

Kinematic or shear criteria such as S–C fabrics, offset markers, rotated porphyroclasts or porphyroblasts were studied to estimate the sense of ductile flow comprises shear-zones. For confirmation, we plot the dip of the Sn foliation, the plunge, and the pitch of L_s stretching lineation in the ternary diagram of Chardon et al. (2009) modified after Balé and Brun (1989) for discussing the mode of crustal deformation.

Fig. 2 The Ngomedzap-Akongo geological sketches showing mean of S_{Sn} and S_{F} foliations, L_s stretching and mineral lineations, shear zones and faults treated with Speristat (lower hemisphere equal-area projections), location of outcrops and thin sections. a – note the regional folding drawn by the S_{Sn} and S_{F} foliations. b – the overall eastward strike and plunge dominantly parallel to L_s lineations as A_s fold axes of F, folds suggesting the D_2 continuous deformation, highlighting the transport top to the East of the NyC onto the Congo shield. c – multiple trends and kinematic sense of various faults evidencing their anachronous emplacement.
3.3. Pb/Pb zircon geochronology

The zircons for $^{207}\text{Pb}/^{206}\text{Pb}$ single-grain geochronology were separated using the conventional procedure (Fig. 2) (crushing, Wilfley table, Frantz magnetic separator, heavy liquids, final handpicking). Single zircons from Ngomedzap metagranodiorite (OW333), Akongo (OW110), and Mbigame (OW206) metasyenite samples were analyzed at the Isotopenlabor, Technische Universität Bergakademie Freiberg in Germany. The method involves the deposition of Pb and other elements on a second filament, and subsequent measurement of Pb isotope ratios in a mass-spectrometer (Kober 1987). Before zircon evaporation, the second (ionization) filament was heated to 1800°C to strip the filament from possible lead-bearing phases (additional outgassing). The evaporation filament was then heated to 1450°C to remove common lead hosted in less stable phases of the zircon grain. Evaporation was performed at 1600°C after cooling the ionization filament. This was done in one step to obtain high signal intensities for measurement. Data acquisition was performed by peak switching using a secondary electron multiplier equipped with an ion counter with mass sequence 207–206–204–206–207–206 (counting time in seconds 4–4–8–4–4, respectively). Each scan results in two $^{207}\text{Pb}/^{206}\text{Pb}$ and $^{204}\text{Pb}/^{206}\text{Pb}$ ratios. Five blocks (composed of ten scans) were recorded corresponding to 90 scans per measurement. Since $^{204}\text{Pb}/^{206}\text{Pb}$ ratios bear a large uncertainty due to the low intensity of ^{204}Pb, a trend line was defined through subsequently measured $^{207}\text{Pb}/^{206}\text{Pb}$ ratios. Each measured $^{207}\text{Pb}/^{206}\text{Pb}$ ratio was corrected with the according to $^{207}\text{Pb}/^{206}\text{Pb}$ ratio calculated from the trend line of the corresponding scan applying the Pb evolution model of Stacey and Kramers (1975). The obtained $^{207}\text{Pb}*/^{206}\text{Pb}*$ were corrected for mass bias (0.0036 per amu) deduced from NBS 981 and two zircon standards (zircon 91500 reported in Wiedenbeck et al. 1995, and zircon S–2–87, Wenham Monzonite, US Geological Survey). The calculated $^{207}\text{Pb}/^{206}\text{Pb}$ age of one zircon measurement and its 2σ mean error is based on the mean of all measured scans (usually 90) of isotope ratios with those omitted lying outside the 95% confidence level. The 2σ mean error of each measurement was increased by 5 Ma, corresponding to the uncertainty of the applied mass bias (\pm0.0022) determined by repeated measurements of standard zircons by different people over several years. During the course of measurement, the obtained $^{207}\text{Pb}/^{206}\text{Pb}$ ages of standard zircon 91500 (accepted value: 1065.4 ± 0.4 Ma) and S–2–87 (accepted value: 381.5 ± 4 Ma) yield 1064.9 ± 2.1 Ma (2σ mean, n = 13) and 379.7 ± 1.6 Ma (2σ mean, n = 44), respectively. As regards the dating of the evaporation technique, the mean age of several zircons from a sample was determined using the program ISOPLOT/EX 3.1 method (Ludwig 2001) to derive the mean weighted at the 95% confidence level.

4. Results

4.1. Petrography

4.1.1. Magnetite-bearing quartzites

Magnetite-bearing quartzites (OW333) correspond to banded iron formations described in the literature. They are red, foliated, and composed mainly of quartz in hand sample. They consist of quartz (50–55 %), magnetite (55–50 %), muscovite and zircon and display a granoblastic microstructure (Fig. 3a). Quartz shows hypidio- to idiomorphic coarse to stretched blasts (1–3 mm), chessboard polycrystalline fabric with undulose and patchy extinctions with inclusions of zircons. Quartz and muscovite lengthened flakes (1–2 mm) define felsic layers of the S01/2 foliation. Magnetite (0.5–2 mm) forms stretched and isolated, as well as aggregate blasts parallel to the quartz layers and defines a L2 mineral lineation.

4.1.2. Metagranodiorites

Metagranodiorites are pale green and foliated with felsic and mafic layers observable from outcrops to hand sample scales. They consist of plagioclase (50–55 %), quartz (20–25 %), microcline (5–10 %), biotite (<5 %) and green amphibole (<5 %) for a granoblastic microstructure. Oxide, diopside, apatite, and zircon are accessories, while sericite, epidote, and calcite are secondary (Fig. 3b). Plagioclase (An20–40) shows subhedral to euhedral and antiperthitic grains (0.5–1 mm) with quartz, opaques, and zircon inclusions. They are transformed into epidote. Quartz forms polycrystalline ribbon and anhedral blasts (0.5–2 mm) with undulose and patchy extinctions. Flakes of biotite (0.5–1 mm) exhibit subhedral, kinked, rich in opaque. Perthitic microcline consists of recrystallized grains (0.5–1 mm) present in the matrix as the green amphibole, retrograded into epidote, and calcite in its inner zones and along its cracks. Opaques, apatite, calcite, and zircons (<0.5 mm) occur as amoeboid to prismatic bordering green amphibole. They appear as euhedral-aligned microblasts in the matrix, inclusions in amphibole, and inclusions in biotites.

4.1.3. Metaanorthosites

Metaanorthosites (OW119) are white-milky and foliated rocks, containing mainly feldspar. In thin section,
they contain plagioclase (75–80 %), quartz (5–10 %), diopside (5–10 %), green amphibole (<2 %), apatite and zircon. Biotite, sericite, and epidote are secondary phases. They display a porphyro-granoblastic microstructure (Fig. 3c). Plagioclase (An$_{60-80}$) consists of hypidio- to idiomorphic grains (1–2 mm) with ver-
miculated antigrain, deformed twins. It contains inclusions of quartz, opaque minerals and apatite. It is transformed into sericite and epidote. Quartz (0.2–2 mm) shows dynamically recrystallized grains with undulose and patchy extinction. Diopside (<0.5 mm) consists of subhedral grains with opaque and quartz inclusions. Amphibole that derives from ouralization of diopside includes subhedral blasts (<1 mm) bordered by oxides. Biotite develops along plagioclase microcracks. Apatite (<0.5 mm) consists of idiomorphic grains. Zircons (<0.5 mm) are idiomorphic grains in inclusions in plagioclases.

4.1.4. Metasyenites

Metasyenites (OW 310) are pink to pink-clear and massive rocks with amphibole and K-feldspar are recognizable in outcrops and hand samples (Fig. 3c). They display mainly of microcline (60–65 %), actinolite (20–25 %), augite (<5 %), plagioclase (<5 %) and quartz (<5 %) that define a granoblastic microstructure (Figs 3c, d). Poikiloblasts of microcline include old magmatic cores surrounded by recrystallized rims, forming fine-grain fabrics in shear-zones and cracks. Green amphibole consists of magmatic grains (0.05–2 mm) and retromorphic blasts that derive from the uralitization of augite magmatic old cores (0.02–0.1 mm; Fig. 3d). It is pseudomorphosed into calcite. Albites (An0–5) and microcline contain old magmatic cores (0.05–5 mm) bordered by quartz and microcline microblasts. Biotites appear as idiomorphic inclusions (0.05–0.2 mm) in hornblende, the matrix and kinked blasts (0.2–0.5 mm). Apatite includes subhedral to euhedral grains (<0.5 mm). Opaques show subhedral to euhedral grains (<0.5 mm) in inclusion in green hornblende, pyroxene. Zircon occurs as inclusions in microcline and hornblende.

4.1.5. Metagabbros

Metagabbros (OW 321, OW 372) are dark and fractured rocks. They consist of plagioclase (40–45 %), augite (10–15 %), garnet (10–15 %), diopside (10–15 %), amphibole (5–10 %), opaque minerals (<5 %), epidote, sericite and zircon that form a granoblastic to garnet corona microstructure (Figs 3e–f). Plagioclase (An60–70) exhibits euhedral minerals amphibole (<0.2 mm). Garnet (<0.1 mm) shows idiomorphic blasts and the corona around pyroxene and plagioclase.

4.2. Structural analysis

4.2.1. Geometry

We discriminate two phases of ductile deformation, \(D_1 \) and \(D_2 \), from the ductilobrittle \(D_3 \) and brittle \(D_4 \). This corresponds to first increments of crustal thickening, represented by a sub-E–W \(S_{0} \) foliation that results from transposition of \(S_{2} \) (bedding) into a \(S_{1} \), preserved as axial planes (\(S_{1} \)) of \(F_{1} \) fold preserved in magnetite bearing quartzite, metagranodiorite, and metaanorthosite. Under the microscope, the Qtz + Mg1 + Ms1 + Zr1 in metagranodiorite (Fig. 3b, OW 321), Pl1 + Qtz1 + Di1 + Mc1 + Bt1 ± Op1 ± Zr1 in metagranodiorite (Fig. 3b, OW 321), Pl1 + Qtz1 + Di1 + Mc1 + Bt1 ± Op1 ± Zr1 in metagranodiorite (Fig. 3b, OW 321), and Qtz2 + Pl2 + Di2 + Mc2 + Bt2 + Op2 ± Zr2 in metagranodiorite (Fig. 3d; OW 321).

\(D_2 \) marked by sub-vertical structural features strongly overprints \(D_1 \) imprints (Fig. 4a). It transposed \(S_{0/1} \) preserving \(S_{0/1} \) the dominant foliation in magnetite-bearing quartzites and \(S_2 \) foliation in metagranodiorites, metaanorthosites, and metayenites constituting metametaxitic layering in their respective host rocks. Qtz + Mg + Ms, mineral assemblage defines the \(S_{0/1} \) foliation in magnetite-bearing quartzites (Fig. 3a). \(S_2 \) mineral assemblages vary from type of rock to another. \(S_2 \) is represented by Qtz, + Ser + Cal ± Op2 ± Ep in metagranodiorites (Fig. 3b), Qtz2 + Pl2 + Amph2 ± Op2 ± Bt2 in meta-anorthosites (Figs 3c, 4b) and Qtz2 + Pl2 + Mc2 + Hbl2 + Bt2 ± Op2 in metagranodiorites (Figs 3d, 4c–f). \(L_1 \) lineation inferred to \(D_2 \), includes stretching and amphibole types. Both lineations are parallel and oriented WSW–ENE to WNW–ESE for an average strike N078°/30° (Fig. 2). They are parallel to \(A_2 \) axes (Fig. 2). This parallelism indicates the transport top to the East of the Nyong nappe onto the NC (Fig. 2). \(F_2 \) mesofolds are intrafolial with \(S_2 \) axial planes trending WSW–ENE and parallel to the \(S_{0/1} \) and \(S_2 \) foliations (Figs 2, 4a–d). They invariably affect meta-sediments and metapelites. These \(F_2 \) mesofolds are also isoclinal, dissymmetric to upright types suggesting a sub-horizontal shortening (Figs 4a, b).

The \(D_2 \) is represented by \(F_3 \) map-scale fold and \(C_3 \) shear-zones. The synthetic stereographic plot of the above foliations defines two main trends at N037°/29° and N166°/71° that suggest the existence of a regional \(F_3 \) fold oriented N176°/21° (Fig. 2). \(C_3 \) SW–NE blastomylonite shear-zones that dissect whole the NyC, are responsible S–C structures (Fig. 5). \(C_3 \) surfaces define an \(S_3 \) schistosity equivalent to high-strain features represented by Qtz2 + Pl2 + Amph2 ± Mc2 ± Op2 ± Bt2 mineral assemblage that displays quartz, feldspar and amphibole dynamic recrystallizations as well as a S–C fabric (Fig. 5).
4.2.2. Kinematics

D$_1$ represents the brittle deformation. It shows NE–SW, NNE–SSW, ENE–WSW and E–W dip-slip, vertical strike-slip, dextro- and sinistro-normal faults, tension gashes, and tension fractures recorded from map- to microscopic scale (Figs 2, 6a–h). Tension gashes represent the last magmatic events. Tension fractures and inverse
dip-slip, vertical strike-slip, dextro- to sinistro-normal faults correspond to dry brittle tectonic features. The fault type, either reverse or normal faults, indicates a variation of shortening and extensional tectonic regime. The σ_1, σ_2 and σ_3 principal stress axes display these anachronous occurrences (Figs 2, 6a–h). The most dominant strain regime induced wrench fault types. The multiple nature of D4 lithoclases shows that the NyC recorded various post-orogenic brittle tectonic phases.

We used the S(n) foliations, L(n) lineations, F(n+1) meso- to cartographic folds, inter-tectonic and S–C structures, offsets as the $\sigma(n)$ principal stress axes of shear-zones and faults for highlighting the NyC kinematics. The perfect layering $S_{0/1/2}$ in magnetite bearing quartzites represented by the quartzite and magnetite parallel layers indicate the transposition of the S_0 bedding to the earliest $S_{0/1}$ foliation under a D1 pure shear-regime or lateral flow fabric. The occurrence of the sub-vertical S_1 foliation in metagranodiorites, meta-anorthosites and metasyenites indicates their syn-D1 diapiric intrusion shown by sub-vertical magmatic fabric or vertical flow fabric associated with subduction zones.

The eastward and sub-horizontal nature of the transposed $S_{0/1/2}$ foliation in magnetite bearing quartzites specify the transport top to the East of the NyC onto the Congo shield associated with D5 (Figs 1b, 2). The eastern plunging of the L2 stretching and amphibole lineations in para- and ortho-derived rocks (Fig. 2), as well as sub-vertical S2 foliations in metagranodiorite, meta-anorthosite, and metasyenite with western vergences (Figs 2, 4b), corroborated the eastward transport of the Nyong nappe onto the Congo shield (Figs 2, 4a, b). This indicates the transpression nature of D5 (Fig. 7).

Fig. 5 Blastomynolitic shear zones in microscopic scale in the NyC. a – note a blastomynolitic shear zone underlined by the SGAR of quartz and SGR feldspars in the Enguingili metagranodiorites (OW 354). b – type-1 relict porphyroclast of microcline corroded by the SGR shape. c – the elongated ribbons quartz in a fine SGR mantle of microcline (OW 292). d – amphibole fish into a sinistral shear band in Olama metasyenites (OW 284).

Fig. 6 The NyC prototype macro- and microscopic brittle structures showing various types of lithoclases. a, b – sub-N–S strike-slip fault cross-cutting metasyenites on the Nyong River with men as scales. c, d – sub-N–S strike-slip fault cemented by quartzite injections and cross-cutting metasyenites with a pen and compass as scales. e, f – Dextra-normal fault cross-cutting the metagranodiorites on the Nyong River border. g, h – Sinistro-normal fault cross-cutting the magnetite-bearing quartzite.
Eastward and westward ticker hinges of sub-vertical F₃ meso-folds support the continuum transpression tectonic regime for D₃ (Figs 4a, b). This is corroborated by the parallelism between S₀/₁/₂ and S₂ foliations with S₂ axial plane as well as inter tectonic minerals represented by various S₁–S₂ features in metasyenite (Figs 4c, d). They highlight the ductile characters of the D₃ deformation. The amphibole inter-tectonic microstructures evidence the S₂ rotational internal schistosities that may represent the earliest magmatic fabric that has been recorded during D₁ with the S₂ external schistosity corresponding to S₂ foliation. The ura...
the youngest one for the pooled-data from above metasyenite samples (Figs 8g–j). All the three analyzed samples provided mean age of 2793±12 Ma with MSWD = 1.2, calculated as the mean of all fifteen single zircon age. We retained as the best mean age for the three samples, an identical to the mean above syenites and equal to 2789±13 Ma with MSWD = 0.28, calculated from eleven data of the three analyzed samples, rejecting two, the youngest and oldest single zircon ages (Figs 8i–j). These two best mean ages are the same, quite close to individual sample ages and suggest their common Neoarchean origin. Given the spread in individual age data and analytical uncertainties, it is also possible that the three studied rocks are coeval, and their pooled age of ca. 2790 Ma is the best time estimate of their intrusion.

5. Discussion

Using the lithostructural and geochronological data, we discuss in this section how the Ngomdezap-Akongo area in the eastern part of the NyC has recorded the collision between the Congo and Sao Francisco shields as a continent-continent collision type during the Eburnean orogeny (Feybesse et al. 1998; Lopez et al. 2001; Lerouge et al. 2006; Neves et al. 2006; Aguilar et al. 2017).

The lithopetrography of the NyC displays magnetite bearing quartzite, metagranodiorite, metanorthosite, metagabbro, and metasyenite (Figs 1b, 2). Such rocks usually encountered in collision orogenies, record classical plate tectonism during their burial uplift passage as in pre- to syntectonic granitoids defining the modes of lithospheric deformation and crustal growth through time (Choukroune et al. 1995; Chardon and Jajananda 2008; Chardon et al. 2009; Gapais et al. 2009; Hamilton 2011; Nakapelyukh et al. 2018). The NyC seems to obey similar tectonic evolution (Feybesse et al. 1998; Pénaye et al. 2004; Houketchang Bouyo et al. 2019; Loose and Schenk 2018). Baratoux et al. (2011) have documented a similar Paleoproterozoic crust evolution during the Eburnean orogeny around the West African Shield.

Blastic fabrics observed in studied rocks indicate their metamorphic character (Figs 3a–c). Quartz with undulose and patchy extinction (Figs 3a–c, 5a–f, 6d, f), relict feldspar with deformed twins and their dynamic recrystallized microblasts (Figs 3b, c, 4e, f, 5b, c) mark the D1 ductile deformation. The corona microstructure of garnet separating plagioclase to clinopyroxene and amphibole highlights a decompression in NyC metagab-
bros due to their deepest origin, rapid uplift and cooling caused by exhumation (Loose and Schenk 2018; Houketchang Bouyo et al. 2019). This evolution is associated with the collision between the Congo and Sao Francisco shields and likewise be related to the eburnean/Trans Amazonian orogeny (Feybesse et al. 1998; Lopez et al. 2001; Lerouge et al. 2006; Neves et al. 2006; Aguilar et al. 2017). Passchier and Trouw (2005) related such microstructures to retrograde metamorphisms and cooling processes. Such metamorphic segment is documented in the NyC metabasites corresponding to MORB-like (Owona 2008; Boniface et al. 2012; Loose and Schenk 2018; Houketchang Bouyo et al. 2019). The above NyC lithological assemblages in terms of magmatic-tectonic context, including BIF, “MORB-like” rocks and felsic plutonic rocks, indicate the collisional continent-continent tectonic environment in Cameroon (Sahafouotsa et al. 2019).

Moreover, the NyC mineral associations and specific microstructures suggest two primary metamorphic schemes, the high-temperature and the high-pressure types of the Eburnean metamorphism. The uralitization of pyroxene into amphibole indicates the retrograde metamorphism marked by a drop of temperature, from that may range from the granulite to amphibolite facies. These mineral transformations are consistent with isobaric cooling segments. Nédélec et al. (1993) have documented such P–T segments with the garnet–plagioclase–biotite mineral association of the Eburnean metamorphism in Eseka paragneisses. The pyroxene-garnet-plagioclase mineral assemblage and their associated corona microstructure evidenced by overgrowths of plagioclase and clinopyroxene around garnet blasts indicate the brutal decrease of the pressure of our metagabbros. This corresponds to nearly isothermal decompression of the same Eburnean metamorphism. Loose and Schenk (2018) and

Fig. 8 Single zircon grain 207Pb/206Pb evaporation ages (shown as error bars for each measured zircon grain) and calculated weighted mean ages for the three analyzed samples of metagranodiorites and metasyenites. Note the various set of Archean ages that suggest their Archean origin and multiple reactivations.
Houketchang Bouyo et al. (2019) have described such microstructures with P–T paths dropping from the eclogite to the amphibolite facies. Ultimately, feldspar saussuritization and damouritization into epidote and sericite, as well as the chloritization of biotite, highlight subsurface mineral transformations. They represent late cooling stages of the Eburnean metamorphism that drop until the greenschist facies (Owona 2008). These mineral parageneses display various stages of the Eburnean/Trans Amazonian metamorphism recorded by the NyC (Nédélec et al. 1993; Pénaye et al. 2004; Owona 2008; Loose and Schenk 2018; Houketchang Bouyo et al. 2019). They are consistent with low-pressure and high-pressure metamorphic belts usually associated with colliding settings (Ernst 1973; Miyashiro 1973). The occurrence of metasediment and metaplutonite rock types indicate that the NyC has recorded a crustal growth and thickening as continental orogenies (Choukroune et al. 1995; Gapaïs et al. 2009). They highlight its geodynamic processes alike in plate tectonics where exhumed multiple deep-seat-ed rocks from various depths have produced the NyC fold-and-thrust belts between colliding continental blocks (Price 1981; Pfiffner 2006; Omori et al. 2016; Kooijman et al. 2017), herein the Congo and Sao Francisco shields, similar to modern orogens (Vanderhaeghe et al. 1998).

We used NyC tectonic imprints, S (n) surfaces, L (n) lineations, F (n+1) meso- to cartographic folds, inter-tectonic and S–C structures, offsets as the σ (n) principal stress axes of shear-zones and faults for discussing and evaluating geodynamic processes that exhumed NyC rocks and characterized its fold-and-thrust belts. Nédélec et al. (1993), Feybesse et al. (1998), and Pénaye et al. (2004) retained two ductile phases and a third one dedicated to the brittle deformation. Batroux et al. (2011) did the same in West African Paleoproterozoic belts. Our field observations, thin sections, and the stereographic treatment through tectonic imprints and mineral parageneses highlight a dominantly D1 ductile-brittle phase. We interpret brittle features as post-orogenic in a single D1 phase. The S0/1 transposed foliation in magnetite bearing quartzites is typical of a D1 pure shear-regime in pre-orogenic old basins. Such transpositions are described within the WCAF, notably in the NyC of Cameroon and in its homologous, the Ogué and Franceville complexes of Gabon. The nearly-sub-vertical S1 in metagranitoids corresponds to magmatic fabric related to their diapirc occurring mode. The associated relict mineral parageneses Mg ± Ms ± Zr ± Qtz in magnetite-bearing quartzite and Pl ± Di ± Mc ± Qtz ± Amp ± Bt ± Op ± Zr ± Ap in magnetandiorite, meta-anorthosite and metasyenite indicate that the D1 operated under granulitic conditions (Figs 3a–d). Such fabrics are ubiquitous in convergent settings (Price 1981; Pfiffner 2006; Vanderhaeghe 2012).

The NyC displays mineral inter-tectonic and Si–Se rotational or internal microstructures (Figs 4c, d). They highlight the D2 strongest overprinted by D3. Poikiloblasts of D2 that have incorporated inclusions of quartz, opaques, zircons that form Si equivalent to S1 during their crystallization. D3 mineral parageneses that include Qtz2 + Mg2 + Ms2 and Qtz2 + Pl2 + Mc2 + Amph2 + Bt2 represent the S0/12 and S2 foliations in magnetite bearing quartzites and megacrysts, respectively. The ubiquitous presence of amphibole in the above metaplotonites indicates that D2 operated under amphibolite conditions. This is reliable with Pénaye et al. (2004). The sub-vertical character of both S0/12 and S2 foliations, the F2 upright and isoclinal mesofolds with sub-vertical and sub-E–W S2 axial plane, sub-horizontal A1 fold axes parallel to L1 lineations plunging either to the East or to the West (Fig. 2), the thickest eastward or westward hinges and thinned flanks of these meso-fold types (Figs 4a, b) indicate that D3 was dominantly a transpression tectonic regime or parallel orogen strike flow. This is consistent with the diagram of the tectonic model shown in Fig. 6 (Sanderson and Marchini 1984; Tikoff and Teyssier 1994; Chardon et al. 2009; Mvondo et al. 2017). Baratoux et al. (2011) described similar tectonic evolution marked by compressional regime later overprinted by transpression and thrust fault tectonics in the Eburnean orogeny in West Africa as well as Carreras and Druget (2018) and Fossen et al. (2018) when discussing the progressive or multiphase nature of orogenic deformations. The above features corroborate eastward transport of the Nyong nappe top to the East onto the Congo shield as established previously (Nédélec et al. 1993; Feybesse et al. 1998; Pénaye et al. 2004; Lerouge et al. 2006; Owona et al. 2011). It corresponds to the fold-and-thrust belts colliding between continental blocks, as demonstrated by Omori et al. (2016). Continental blocks herein concerned are the Congo and Sao Francisco shields (Feybesse et al. 1998; Lopez et al. 2001; Lerouge et al. 2006; Neves et al. 2006; Aguilar et al. 2017).

D3 induced F1 cartographic folds and S–C structures that affect S0/12 and S1. These megafolds displayed by the synthetic stereographic plot of the above foliations define two main trends at N037°/29° and N166°/71° and form lithostrophic unit of the Nyong nappe (Fig. 2). Shear-zones are blastomylonitic C1 type, oriented SW–NE and differentiated into proto-, meso- and ultra-mylonites (Fig. 5; Owona et al. 2013). They are responsible of S–C structures, dynamic recrystallization features, and the associated low- to high-strain anisotropies. The associated C1 mineral parageneses made of Qtz1 + Pl1 + Amph1 + Ms1 ± Bt1 ± Op1 Owona et al. (2013) have described these shear-zones as a natural laboratory of crystal dynamic recrystallization, consistent with shear-zone microtectonics of Passchier and Trouw (2005), Stipp et al.
The quartz grain boundary area reduction (Fig. 5a), feldspar grain boundary migrations (Figs 5b, c), and the amphibole fish structure (Fig. 5d) indicate that of D3 operated under amphibolite conditions too (Owona et al. 2013). The Ser ± Cal ± Ep mineral paragenesis indicates greenschist facies reached during the uplift cooling-phase.

We interpret all lithoclases as belonging to D4. Tension gashes, tension fractures, and faults oriented NE–SW, NNE–SSW, ENE–WSW, and E–W (Figs 2, 7a, b). This indicates both their anachronism and complicated nature (Angelier 1994; Piquer et al. 2016; Sato 2016; Liu et al. 2017; Labuza et al. 2018). Tension gashes represent last magmatic events emplaced under extensional regime contrarily to tension fractures. Reverse dip-slip and vertical strike-slip, dextro- and sinistral-normal faults correspond to dry brittle tectonic features linkable to shortening and extensional tectonic regime (Fig. 7; Piquer et al. 2016; Sato 2016; Liu et al. 2017; Labuza et al. 2018). These are corroborated by multiple σ1, σ2 and σ3 principal stress axes for multiple origins and certainly. The nature of the above feature indicates the post-orogenic character of D4 (Fig. 2).

Our new 207Pb/206Pb zircon data did not reveal any Paleoproterozoic and Eburnean ages in the NyC as found by, e.g., Toteu et al. (1994) Lerouge et al. (2006), Loose and Schenk (2018). This can be related to the measurement of old zircon specimens (Tab. 1, Fig. 8). On the contrary, they support the NyC origin from the Archean NW Congo shield remobilization during its collision with the Sao Francisco shield associated with the Eburnean/Trans Amazonian orogeny (Toteu et al. 1994; Feybesse et al. 1998). This supposes that NyC rocks derived from Archean protoliths. Such Archean inheritance were established in NyC metasyenites at ~2836 Ma (U–Pb zircon, Lerouge et al. 2006). Our new NyC Pb–Pb zircon ages on metagranodiorite and metasyenites that range between 2816–2764 Ma are consistent with those obtained from Edea gneiss with ages between 3174–2519 Ma (Pb/Pb zircon, Lerouge et al. 2006). They are older to Nyong magnetite bearing quartzite of 2776 ± 34 Ma (SHRIMP U–Pb zircon, Lerouge et al. 2006) and 2699 ± 7 Ma (SHRIMP U–Pb zircon; Chombong et al. 2017). They are reliable to 3245–2526 Ma in Ndjole sandstone in the Paleoproterozoic Franceville and Ogoué complexes in Gabon (Pb/Pb zircon, Feybesse et al. 1998). Typical Paleoproterozoic ages from the Nyong ortho- and para-derived rocks linked to the Eburnean/Trans Amazonian orogeny range between ~2100–2000 Ma (TIMS U–Pb zircon, Toteu et al. 1994; SHRIMP U–Pb zircon, Loose and Schenk 2018; SHRIMP U–Pb zircon, Lerouge et al. 2006) as in the whole West Central African Fold belt, notably in Otoumbi-Abamie orthogneiss (Pb/Pb zircon, Feybesse et al. 1998).

We can, therefore, conclude that the NyC in the chrono-litho-structural point of views, consists of deep-seated Archean rocks, exhumed under the diapiric regime, then evolved and end under a transpression flow regimes from various depths that all produced the Paleoproterozoic Nyong fold-and-thrust belts between colliding Congo-San

Fig. 9 Schematic 3-D diagram of an interpreted general framework of the eastern part of the Paleoproterozoic Nyong Complex transported top to East onto the Archean Congo shield during the Eburnean/Trans Amazonian orogeny under a general D2–D3 transpression regime. D2, induced by the N176 sub-N–S horizontal shortening (σ1) and N084 sub-vertical extension (σ3), emplaced the Nyong tectonic nappe by overprinting and transposing D1 S0/1 foliation into S0/1/2 in meta-sediments coaxial to S2 in meta-granitoids of Archean source. L2 lineations (N078/30) and F2 folds associated with the peak of the Eburnean metamorphism. D3, linked to the Eburnean cooling phase, conferred the ultimate geometry by inducing F3 folds that affected above foliations and cross-cutting the Nyong nappe by C1 blastomylonitic shear zones. Various types of lithoclases dissected the area during Proterozoic time.

216
Francisco shields during the Eburnean/trans Amazonian orogeny. This geodynamic evolution is conceptualized in a 3-D synthetic model shown in Fig. 9.

6. Conclusions

The study of the Ngomedzap–Akongo aimed to constrain the chrono-litho-structural evolution as the eastern part of the NyC, part of the WCAF B. It appears at the end that this area consists of magnetite bearing quartzite, metagranodiorite, meta-anorthoclase, metasyenite, and metagabbro. They recorded a polyphase D_1–D_2, Eburnean/Trans-Amazonian deformation associated with the collision between the Congo and Sao-Francisco shields (2400–1800 Ma). D_1 phase predominantly a pure shear deformation between the Congo and Sao-Francisco shields (2400 orogenic phase. Ages obtained with the $207^{\text{Pb}}/206^{\text{Pb}}$ zircon dating at 2760±26 Ma in metagranodiorite, 2792±13 Ma and 2794±34 Ma metasyenite confirm the Archean origin of the NyC protoliths. The Ngomedzap–Akongo chronolitho-structural characteristics show that the NyC includes deep-seated Archean protoliths, exhumed from various depths that have formed the Nyong fold-and-thrust belts between colliding Congo-San Francisco shields during the Eburnean/trans Amazonian orogeny.

Acknowledgments Authors are indebted to the DAAD (German Academic Exchange Service) for the financial support at the TU-Bergakademie Freiberg (Germany), and reviewers for constructive suggestions. Special thanks go to the Editor-in-Chief for the careful editorial handling.

References

Abdelsalam GM, Lieges L, Stern RJ (2002) The Saharan Metacraton. J Afr Earth Sci 34: 119–136

Aguilar C, Alkmim FF, Lana C, Farina F (2017) Paleoproterozoic assembly of the São Francisco craton, SE Brazil: New insights from U–Pb titanite and monazite dating. Precambr Res 289: 95–115

Angelier J (1994) Faults slips analysis and paleostress reconstruction. In: Hancock PL (Ed) Continental deformation. Univ. Bristol U.K. Pergamon Press, pp 53–77

Balé P, Brun JP (1989) Late Precambrian thrust and wrench zones in northern Brittany (France). J Struct Geol 11: 391–405

Baratoux L, Metelka V, Naba S, Jessell MW, Ganne J (2011) Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (~2.2–2.0 Ga), western Burkina Faso. Precamb Res 191: 18–45

Bédard J (2006) A catalytic delamination-driven model for coupled genesis of Archean crust and sub-continental lithospheric mantle. Geoch Cosm Acta 70: 1188–1214

Bionhomm MG, Gautier-Lafaye F, Weber F (1982) An example of Lower Proterozoic sediments: the Francavillian in Gabon. Precambr Res 18: 87–102

Boniface N, Schenk V, Appel P (2012) Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry. Precambr Res 192–195: 16–33

Caen-Vachette M, Vialette Y, Bassot JP, Vidal P (1988) Apport de la géochronologie à la connaissance de la géologie gabonaise. Chron Recherche Min 491: 35–54

Carreras J, Druguet E (2018) Complex fold patterns developed by progressive deformation. J Struct Geol 125: 195–201

Castaing C, Feybesse JL, Thieblemont D, Triboulet C, Chevremont P (1994) Paleogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks. Precambr Res 69: 327–344

Chardon D, Gapaïs D, Cagnard F (2009) Flow of ultrahot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477: 105–118

Chardon D, Javananda M (2008) Three-dimensional field perspective on deformation, flow, and growth of the lower continental crust (Dharwar craton, India). Tectonics 27: TC1014

Chombong NN, Suh CE, Lehmann B, Vishiti A, Ilouga DC, Shemang EM, Tantoh BS, Kedia AC (2017) Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon. Appl Earth Sci 126: 129–145

Choukroune P, Bouhallier H, Arndt NT (1995) Soft lithosphere during periods of Archean crustal growth or crustal reworking. In: Coward MP, Riess AC (eds) Early Precambrian Processes. Geological Society, London, Special Publications 95, pp 67–86

de Wit MJ, Stankiewicz J, Reeves C (2008) Restoring Pan-African-Brasiliano connections: more Gondwana control, less Trans-Atlantic corrosion. In: Pankurst RJ, Trouw RAJ, Brito Neves BB, de Wit MJ (eds) West Gondwana: Pre-Cenozoic correlations across the South Atlantic region. Geological Society, London, Special Publications 294, pp 399–412

Ernst WG (1974) Metamorphism and Ancient Continental Margins. In: Burk CA, Drake CL (eds) The Geology of Continental Margins. Springer, Berlin, Heidelberg, pp 907–919

Feybesse JL, Johan V, Triboulet C, Guerrot C, Mayaga-Minkolo F, Bouchot V, Eko N‘dong J (1998) The West...
Central African belt: a model of 2.5–2.0 Ma accretion and two-phase orogenic evolution. Precambir Res 87: 161–216
Fossen H, Cawalcante GGC, Pinheiro LRV, Archano JC (2018) Deformation – Progressive or multiphase? J Struct Geol 125: 82–99
Gapais D, Cagnard F, Guéydan F, Barbezy P, Ballèvre M (2009) Mountain building and exhumation processes through time: inferences from nature and models. Terra Nova 21: 188–194
Hamilton WB (2011) Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123: 1–20
Houketchang Bouyo M, Pénaye J, Mouri H, Toteu SF (2018) 2.09 Ga old eclogites in the Central African belt (Bororema Province NE Brazil): Implications for the Eburnean–Transamazonian belt of NE Brazil and the Yaounde belt (Cameroon). J Afr Earth Sci 149: 215–234
Kober B (1987) Single zircon evaporation combined with Pb? emitter bedding for 207Pb/208Pb-age investigations thermal ion mass spectrometry, and implications to zirconology. Contrib Mineral Petro 96: 63–71
Kooijman E, Smit M, Ratschbacher L, Kylander-terzoic time, and plumes from deep mantle have never operated. Lithos 123: 1–20
Kurse R, Stünitz H, Kunze K (2001) Evidence for
Lopez R, Cameron KL, Jones NW (2001) Evidence for Paleoproterozoic, Grenvillian, and Pan-African age Gondwanan crust beneath northeastern Mexico. Precambir Res 107: 195–214
Ludwig KR (2001) User manual for Isoplot/Ex rev 2.49 A geochronological toolkit for Microsoft Excel. Berkeley Geochron Center, Spec Pub 1a, pp 1–55
Maurizot P, Abbasolo A, Feybesse A, Johan JL, Lecompte P (1986) Etude et prospection minière au Sud-Ouest Cameroun. Synthèse des travaux de 1978–1985. Report BRGM, 85 CNRS 066, Orléans
Milasheko A (1973) Paired and unpaired metamorphic Belts. Tectonophysics 17: 241–254
Mvondo H, Lentz D, Bardoux MC (2017) Crustal shortening and thickening in Neoarchean granite-greenstone belts: A case study from the link between the ~2.7 Ga Elu and Hope Bay belts, northeast Slave craton, Canada. J Struct Geol 104: 6–20
Nédelec A, Minyem D, Barbeby P (1993) High P-High T anatexis of Archean tonalitic grey gneisses: the Esoka migmatites, Cameroon. Precambir Res 62: 191–205
Neves SP, Bruguier O, Vauchez A, Bosch D, Rangel da Silva JM, Mariant G (2006) Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Bororema Province NE Brazil): Implications for western Gondwana assembly. Precambir Res 149: 197–216
Nzenti JP, Barbeby P, Macaudiere J, Soba D (1988) Origin and evolution of the late Precambrian high-grade Yaounde gneisses (Cameroon). Precambir Res 38: 91–109
Oba AO (2001) Stratigraphy of Sergipe-alagoas (Brazil), Douala, Rio Muni, and Gabon (West Africa) Sedimentary Basins (Aptian-albian Interval). Columbia, S.C. Dep. Geol. Sci. Univ. South Carolina, pp 16
Oliveira EP, Toteu SF, Araújo MNC, Carvalho MJ, Nascimento RS, Bueno JF, McNaughton N, Basilici G (2006) Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaounde belt (Cameroon, Africa). J Afr Earth Sci 44 (4–5): 470–478
Omor I, Barresi A, Kimura N, Okamoto A, Masuda T (2016) Contrast in stress-strain history during exhumation between high- and ultrahigh-pressure metamorphic units in the Western Alps: Microboudinage analysis of piemontite in metacherts. J Struct Geol 89: 169–180
Owona S (2008) Archaean, Eburnean and Pan-African Features and Relationships in Their Junction Zone in the South of Yaounde (Cameroon). Ph.D Thesis, Univ Douala, pp 1–232
Owona S, Mvondo Ondoa J, Ekodeck GE (2013) Evidence of quartz, feldspar and amphibole crystal plastic deformations in the Paleoproterozoic Nyong complex shear zones under amphibolite to granulite conditions (West Central African Fold Belt, SW Cameroon). J Geogr Geol 5(3): 186–201
Lead-isotopic zircon data from the Ngomedzap-Akongo area (Cameroon)

OWONA S, MVONDO ONDOA J, RATSCHBACHER L, MBOLA NDZANA SP, TCHOUA MF, EKODECK GE (2011) The geometry of the Archean, Paleo- and Neoproterozoic tectonics in the Southwest Cameroon. Compt R Geosci 343: 312–322

PASSCHIER CW, TROUW RAJ (2005) Microtectonics. Springer Science & Business Media, pp 1–366

PÉNAYE J, TOTEU SF, TCHAMENI R, VAN SCHMUS WR, TCHAKOUNTÉ J, GWAN A, MINYEM D, NSHA EN (2004) The 2.1 Ma West Central African Belt in Cameroon: extension and evolution. J Afr Earth Sci 39: 159–164

PEIFFNER O (2006) Thick-skinned and thin-skinned styles of continental contraction. Geol Soc America Special Paper 414: 153–177

PIQUER J, BERRY RF, SCOTT RJ, COOKE DR (2016) Arc-oblique fault systems: their role in the Cenozoic structural evolution and metallogenesis of the Andes of central Chile. J Struct Geol 89: 101–117

PRICE RA (1981) The Cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains. Geol Soc London, Special Publications 9(1): 427–448

RATSCHBACHER L, HACKER BR, CALVERT A, WEBB EL, GRIMMER CJ, McWILLIAMS OM, IRELAND T, DONG S, HU J (2003) Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics 366: 1–53

SAHA-FOOUTSA AN, VANDERHAEGHE O, BARBEX P, ESSLINGER A, TCHAMENI R, ZEH A, TCHUNTE PF, NOMO EN (2019) The geologic record of the exhumed root of the Central African Orogenic Belt in the central Cameroon domain (Mbé – Sassa-Mbersi region). J Afr Earth Sci 151: 286–314

SANDERSON DJ, MARCHINI WR (1984) Transpression. J Struct Geol 6: 449–458

SATO K (2016) A computerized method to estimate friction coefficient from orientation distribution of meso-scale faults. J Struct Geol 89: 44–53

SHANG CK, WOLFGANG S, MUHARREMS, FUNKEN C, MVONDO ONDOA J (2004) Zircon Pb-Pb and U-Pb systemsatics of TGT rocks in the Congo Craton: constraints on crust formation, magmatism, and Pan-African lead loss. Bull Geosci 79(4): 205–219

SPERNER B, RATSCHBACHER L (1994) A Turbo Pascal program package for graphical presentation and stress analysis of calcite deformation. Z Dtsch geol Gesell 145: 414–423

STACEY JS, KRAMERS JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Plan Sci Lett 26: 207–221

STIPP M, STÜNITZ H, HELBRONNER R, SCHMID SM (2002). The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J Struct Geol 24(3): 1861–1884

TAMFU SF, BATUPE M, PAUKEN RJ, BOATWRIGHT DC (1995) Geologic setting, stratigraphy and hydrocarbon habitat of the Douala Basin. Cameroon. Amer Assoc Petr Geol Bull 79 (13), p 1–95

TCHAMENI R, MEZGER K, NSHA NE, POUCLET A (2001) Crustal origin of Early Proterozoic syenites in the Congo craton (Ntem complex), South Cameroon. Lithos 57: 23–42

TIKOFF B, FOSSEN H (1995) The limitations of three-dimensional kinematic vorticity analysis. J Struct Geol 17: 1771–1784

TIKOFF, TEYSSIER C (1994) Strain modeling of displacement-field partitioning in transpressionnal orogens. J Struct Geol 16: 1575–1588

TOTEU SF, VAN SCHMUS WR, PÉNAYE J, NYOBÉ JB (1994) U/Pb and SM/Nd evidence for Eburnean and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambr Res 67: 321–347

TROMPETTE R (1994) Geology of western Gondwana (2000–500 Ma) Pan-African-Braziliano aggregation of South America and Africa. AA Balkema, Rotterdam, Brookfield, p 350

VANDERHAEGHE O, LEDRU L, THÉBLEMENT, EGALE, COCHERE A, TEGUEY M, MÉLÉSI JEAN-PIERRE (1998) Contrasting mechanism of crustal growth geodynamic evolution of the Paleoproterozoic granite–greenstone belts of French Guiana. Precambr Res 92:165–193

VANDERHAEGHE O (2012) The thermal–mechanical evolution of crustal orogenic belts at convergent plate boundaries: A reappraisal of the orogenic cycle. J Geodyn 56–57: 124–145

VICAT JP, LÉGER JM, NSHA KE, PIQUET P, NZENTI JP, TCHAMENI R, POUCLET A (1996) Distinction au sein du craton congolais du Sud-Ouest du Cameroun, de deux épisodes doléritiques initiant les cycles orogéniques éburnéen (Paléoprotérozoïque) et panafricain (Néoprotérozoïque). C R Acad Sci, Paris, 323 (IIa): 575–582

VICAT JP, POUCLET A (1995) Nature du magmatisme lié à une extension pré-panafricaine: les dolérités des bassins de Comba et de Sembé-Ouesso. Bull Soc Géol Fr 166 (4): 355–364

VICAT JP, POUCLET A, NKOUMBOU C, SÉMÉ MOUANGUE A (1997) Le volcanisme fissural panafricain du Dja inférieur, de Yokadouma (Cameroun) et de Nola (RCA)–Signification géotectonique. The fissural Neoproterozoic volcanicism of the Lower Dja, Yokadouma (Cameroon) and Nola (RCA) series–Geotectonic significance. C R Acad Sci, Paris, 325: 671–677

WIEDENBECK M, ALLE P, CORFU F, GRIFFIN WL, MEIER M, OBERLI F, VON QUADT A, RODDICK JC, SPIEGEL W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analysis. Geost Newsletter 19: 1–23

WILLIAM PF, GOODWIN BL, RALSER S (1994) Ductile deformation processes. In: Hancock Pl (ed) Continental deformation. Univ Bristol, UK. Pergamon Press, pp 1–27
