Supplemental information

m6A demethylase FTO suppresses pancreatic cancer tumorigenesis by demethylating \(PJA2 \) and inhibiting Wnt signaling

Juan Zeng, Heying Zhang, Yonggang Tan, Zhe Wang, Yunwei Li, and Xianghong Yang
Material S1

Sequences for all the siRNAs

Primers	Sequences (5'to3')
FTO (Human) siRNA-1	GAAACUGAGGCCUCUUUGAATT
FTO (Human) siRNA-2	GUACUUUGCUAGAAUUUCATT
FTO (Human) siRNA-3	CACGAAUUUGCCCGAACAUUTT
PJA2 (human) siRNA-100	GAUGAAUGGUAGUACGATT
PJA2 (human) siRNA-122	GCACAUUUCGGAUUUCUTT
PJA2 (human) siRNA-429	GUUCACAGGAAAAUUCCUTT
Negative control (NC)	UUCUCGAACGUGUCAGGUTT

Plasmids construction

The human FTO gene (GenBank Accession No. NM_001080432) was subcloned into pEZ-M90 vector (GeneCopoeia) to generate a Puromycin-tagged fusion protein. The plasmids with site-directed mutants were constructed using Stratagene's QuikChange II site-directed mutagenesis kit. The following pairs of primers were used:

hFTO_H231A/D233A_F: 5'-GAAAAATGCGAGTGAAGTGGTGGACAGGTCAGCGGTGGCAGTGTACAGTTATAGCTGTGAAGGCCCTGAAGAGGAAAGTGAGGATGACTCTC
hFTO_H231A/D233A_R: 5'-ATGCACTATTGCTGCGCCACAAAGATTACGTAACCGAGGCTGAGTGAAGGCCCTGAAGAGGAAAGTGAGGATGACTCTC

The wild-type human FTO gene sequence used for construction:

ATGAAGCGCACCCCGACTGGCGAGGACAGGAGCCGAAGCTAAGAATGGCAGTGAGCTGGGCTCATGCTGAAAATCTGGTGGACAGGTCAGCGGTGGCAGTGTACAGTTATAGCTGTGAAGGCCCTGAAGAGGAAAGTGAGGATGACTCTC

The following pairs of primers were used:

hFTO_H231A/D233A_F: 5'-GAAAAATGCGAGTGAAGTGGTGGACAGGTCAGCGGTGGCAGTGTACAGTTATAGCTGTGAAGGCCCTGAAGAGGAAAGTGAGGATGACTCTC
hFTO_H231A/D233A_R: 5'-ATGCACTATTGCTGCGCCACAAAGATTACGTAACCGAGGCTGAGTGAAGGCCCTGAAGAGGAAAGTGAGGATGACTCTC

The wild-type human FTO gene sequence used for construction:

ATGAAGCGCACCCCGACTGGCGAGGACAGGAGCCGAAGCTAAGAATGGCAGTGAGCTGGGCTCATGCTGAAAATCTGGTGGACAGGTCAGCGGTGGCAGTGTACAGTTATAGCTGTGAAGGCCCTGAAGAGGAAAGTGAGGATGACTCTC
CGAGTTTGAGTGGCTGAGGCAGTTTTGGTTTCAAGGCAATCGATACAGAAA
GTGCACTGACTGGTGGTGTAACCCATGGCTCAAACCTGGAAGCATGTGGA
AGAAGATGAGGGTTGTGACAAATGCTGTCATGGAAGTTAAGAAGAGAG
GGGCTCCTCCGTGGAACAAAAAGGAATGAAATCTTTGACTGCGCCATCTTGCTCG
CTACTGCAAGCCAGAACACTGAGAGAGAATGGCATGCCAGGTGCCAGTC
ACGAATTGCCCCGAACATTACCTGCTGATCGAGCAGCCAGAATGTCGGCCATA
CTGGGAAAAGATGATGCTTCGACTGCTGCGTGTTTGACCTCACAGACAT
CGTTTCAGAACTCAGAGGTTCAGCTTCTGGAAGCAAAACCCTAG

Material S2 All statistic information in this study

Relative m6A RNA modification in total RNA	Position	Comparison	p-Value
Figure 1B	PAAD tissues-vs-para-tumor tissues	0.0314	
Figure 1C	SW1990-vs-HPDE6-C7	0.0279	
Figure 1C	AsPC-1-vs-HPDE6-C7	0.0033	
Figure 1C	PANC-1-vs-HPDE6-C7	0.0004	
Figure 1C	BxPC-3-vs-HPDE6-C7	0.0009	
Figure 1C	Capan-2-vs-HPDE6-C7	0.0183	
Figure 3G	siFTO-1-vs-NC in SW1990 cell	0.0026	
Figure 3G	siFTO-2-vs-NC in SW1990 cell	0.0003	
Figure 3G	siFTO-3-vs-NC in SW1990 cell	0.0028	
Figure 3H	FTO-mut-vs-NC in BxPC-3 cell	0.9331	
Figure 3H	FTO-WT-vs-NC in BxPC-3 cell	0.0024	

Relative PJA2 m6A level	Position	Comparison	p-Value
Figure 6H	FTO-mut-vs-NC in BxPC-3 cell	0.8714	
Figure 6H	FTO-WT-vs-NC in BxPC-3 cell	<0.0001	
Figure 6H	siFTO-1-vs-NC in BxPC-3 cell	0.0013	
Figure 6H	siFTO-2-vs-NC in BxPC-3 cell	0.0001	
Figure 6H	siFTO-3-vs-NC in BxPC-3 cell	0.0061	
Figure 6I	FTO-mut-vs-NC in SW1990 cell	0.3530	
Figure 6I	FTO-WT-vs-NC in SW1990 cell	0.0010	
Figure 6I	siFTO-1-vs-NC in SW1990 cell	<0.0001	
Figure 6I	siFTO-2-vs-NC in SW1990 cell	<0.0001	
Figure 6I	siFTO-3-vs-NC in SW1990 cell	0.0005	

Relative mRNA level of FTO	Position	Comparison	p-Value
Figure 3A	SW1990-vs-HPDE6-C7	0.0447	
Figure 3A	AsPC-1-vs-HPDE6-C7	0.0015	
Figure 3A	PANC-1-vs-HPDE6-C7	0.0006	
Figure 3A	BxPC-3-vs-HPDE6-C7	0.0004	
Relative protein level of FTO

Position	Comparison	p-Value
Figure 3B	SW1990-vs-HPDE6-C7	0.0077
Figure 3B	AsPC-1-vs-HPDE6-C7	0.0007
Figure 3B	PANC-1-vs-HPDE6-C7	0.0006
Figure 3B	BxPC-3-vs-HPDE6-C7	0.0002
Figure 3B	Capan-2-vs-HPDE6-C7	0.0008

FTO expression in PAAD based on individual patient cancer stages

Position	Comparison	p-Value
Figure 4C	StageII-vs-StageI	0.0002
Figure 4C	StageIII-vs-StageI	0.048
Figure 4C	StageIV-vs-StageI	0.0181

FTO expression in PAAD based on nodal metastasis status

Position	Comparison	p-Value
Figure 4D	N1-vs-N0	<0.0001
Figure 4D	N2-vs-N0	<0.0001

Relative mRNA level of PJA2

Position	Comparison	p-Value
Figure 7B	SW1990-vs-HPDE6-C7	0.0022
Figure 7B	AsPC-1-vs-HPDE6-C7	0.0002
Figure 7B	PANC-1-vs-HPDE6-C7	0.0002
Figure 7B	BxPC-3-vs-HPDE6-C7	0.0001
Figure 7B	Capan-2-vs-HPDE6-C7	0.0007
Figure 6C	FTO-mut-vs-NC in BxPC-3 cell	0.8260
Figure 6C	FTO-WT-vs-NC in BxPC-3 cell	<0.0001
Figure 6C	siFTO-1-vs-NC in BxPC-3 cell	0.0002
Figure 6C	siFTO-2-vs-NC in BxPC-3 cell	<0.0001
Figure 6C	siFTO-3-vs-NC in BxPC-3 cell	0.0001
Figure 6D	FTO-mut-vs-NC in SW1990 cell	0.5013
Figure	Comparison	p-Value
--------	------------	---------
6D	FTO-WT-vs-NC in SW1990 cell	<0.0001
6D	siFTO-1-vs-NC in SW1990 cell	0.0002
6D	siFTO-2-vs-NC in SW1990 cell	<0.0001
6D	siFTO-3-vs-NC in SW1990 cell	0.0026
7D	siPJA2-429-vs-NC in BxPC-3 cell	<0.0001
7D	siPJA2-122-vs-NC in BxPC-3 cell	<0.0001
7D	siPJA2-100-vs-NC in BxPC-3 cell	<0.0001
S3A	siPJA2-429-vs-NC in SW1990 cell	<0.0001
S3A	siPJA2-122-vs-NC in SW1990 cell	0.0002
S3A	siPJA2-100-vs-NC in SW1990 cell	0.0004
6J	siYTHDF1-vs-NC in BxPC-3 cell	0.2112
6J	siYTHDF2-vs-NC in BxPC-3 cell	0.0011
6K	siYTHDF1-vs-NC in SW1990 cell	0.8554
6K	siYTHDF2-vs-NC in SW1990 cell	0.0011

Relative protein level of PJA2

Position	Comparison	p-Value
7C	SW1990-vs-HPDE6-C7	0.0012
7C	AsPC-1-vs-HPDE6-C7	0.0015
7C	PANC-1-vs-HPDE6-C7	0.0002
7C	BxPC-3-vs-HPDE6-C7	<0.0001
7C	Capan-2-vs-HPDE6-C7	0.0001
6E	FTO-mut-vs-NC in BxPC-3 cell	0.2109
6E	FTO-WT-vs-NC in BxPC-3 cell	0.0001
6E	siFTO-1-vs-NC in BxPC-3 cell	<0.0001
6E	siFTO-2-vs-NC in BxPC-3 cell	0.0009
6E	siFTO-3-vs-NC in BxPC-3 cell	0.0070
6F	FTO-mut-vs-NC in SW1990 cell	0.6458
6F	FTO-WT-vs-NC in SW1990 cell	<0.0001
6F	siFTO-1-vs-NC in SW1990 cell	<0.0001
6F	siFTO-2-vs-NC in SW1990 cell	<0.0001
6F	siFTO-3-vs-NC in SW1990 cell	<0.0001
6L	siYTHDF1-vs-NC in BxPC-3 cell	0.9532
6L	siYTHDF2-vs-NC in BxPC-3 cell	<0.0001
6M	siYTHDF1-vs-NC in SW1990 cell	0.9472
6M	siYTHDF2-vs-NC in SW1990 cell	0.0006

Remaining mRNA level of PJA2

Position	Comparison	p-Value
6N	siYTHDF2-vs-NC in BxPC-3 cell	<0.0001
6N	FTO-mut-vs-NC in BxPC-3 cell	0.7527
6N	FTO-WT-vs-NC in BxPC-3 cell	0.0010
6N	siFTO-2-vs-NC in BxPC-3 cell	0.0016
6O	siYTHDF2-vs-NC in SW1990 cell	<0.0001
Relative mRNA level in BxPC-3 cell

Position	Gene	Comparison	p-Value
Figure 8E	CTNNB1	FTO-WT-vs-Vector	0.0003
Figure 8E	WNT5A	FTO-WT-vs-Vector	<0.0001
Figure 8E	LEF1	FTO-WT-vs-Vector	0.0011
Figure 8E	GSK3B	FTO-WT-vs-Vector	0.3943
Figure 8E	AXIN1	FTO-WT-vs-Vector	<0.0001
Figure 8E	WIF1	FTO-WT-vs-Vector	<0.0001
Figure 8E	CTNNB1	FTO-WT + siPJA2-429-vs-FTO-WT + siCtrl	0.0007
Figure 8E	WNT5A	FTO-WT + siPJA2-429-vs-FTO-WT + siCtrl	<0.0001
Figure 8E	LEF1	FTO-WT + siPJA2-429-vs-FTO-WT + siCtrl	<0.0001
Figure 8E	GSK3B	FTO-WT + siPJA2-429-vs-FTO-WT + siCtrl	0.6561
Figure 8E	AXIN1	FTO-WT + siPJA2-429-vs-FTO-WT + siCtrl	0.0019
Figure 8E	WIF1	FTO-WT + siPJA2-429-vs-FTO-WT + siCtrl	<0.0001

Phase Object Confluence

Position	Comparison	p-Value
Figure 5A	FTO-mut-vs-NC in BxPC-3 cell	>0.9999
Figure 5A	FTO-WT-vs-NC in BxPC-3 cell	0.0236
Figure 5A	siFTO-1-vs-NC in BxPC-3 cell	0.0022
Figure 5A	siFTO-2-vs-NC in BxPC-3 cell	0.0007
Figure 5A	siFTO-3-vs-NC in BxPC-3 cell	0.0033
Figure S2A	FTO-mut-vs-NC in SW1990 cell	0.9983
Figure S2A	FTO-WT-vs-NC in SW1990 cell	0.0010
Figure S2A	siFTO-1-vs-NC in SW1990 cell	0.0001
Figure S2A	siFTO-2-vs-NC in SW1990 cell	<0.0001
Figure S2A	siFTO-3-vs-NC in SW1990 cell	0.0012
Figure 7E	siPJA2-429-vs-NC in BxPC-3 cell	<0.0001
Figure 7E	siPJA2-122-vs-NC in BxPC-3 cell	<0.0001
Figure 7E	siPJA2-100-vs-NC in BxPC-3 cell	<0.0001
Figure S3B	siPJA2-429-vs-NC in SW1990 cell	0.0009
Figure S3B	siPJA2-122-vs-NC in SW1990 cell	<0.0001
Figure S3B	siPJA2-100-vs-NC in SW1990 cell	0.0021
Figure 8A	FTO-WT-vs-Vector	0.0004
Figure 8A	FTO-WT + siCtrl-vs-FTO-WT	0.9937
Figure 8A	FTO-WT + siPJA2-429-vs-FTO-WT + siCtrl	0.0131

Absorbance of OD 450 nm

Position	Comparison	p-Value
Figure 5A	FTO-mut-vs-NC in BxPC-3 cell	0.3149
Figure 5A FTO-WT-vs-NC in BxPC-3 cell 0.0007
Figure 5A siFTO-1-vs-NC in BxPC-3 cell 0.0183
Figure 5A siFTO-2-vs-NC in BxPC-3 cell 0.0006
Figure 5A siFTO-3-vs-NC in BxPC-3 cell 0.0873
Figure S2A FTO-mut-vs-NC in SW1990 cell 0.4730
Figure S2A FTO-WT-vs-NC in SW1990 cell 0.0045
Figure S2A siFTO-1-vs-NC in SW1990 cell 0.0013
Figure S2A siFTO-2-vs-NC in SW1990 cell 0.0011
Figure S2A siFTO-3-vs-NC in SW1990 cell 0.0207
Figure 7E siPJA2-429-vs-NC in BxPC-3 cell 0.0138
Figure 7E siPJA2-122-vs-NC in BxPC-3 cell 0.0011
Figure 7E siPJA2-100-vs-NC in BxPC-3 cell 0.0319
Figure S3B siPJA2-429-vs-NC in SW1990 cell 0.0020
Figure S3B siPJA2-122-vs-NC in SW1990 cell 0.0027
Figure S3B siPJA2-100-vs-NC in SW1990 cell 0.0336
Figure 8A FTO-WT-vs-Vector 0.0003
Figure 8A FTO-WT+siCtrl-vs-FTO-WT 0.8603
Figure 8A FTO-WT+siPJA2-429-vs-FTO-WT+siCtrl 0.0005

Colony forming efficiency %
Position
Figure 5B
Figure 5B
Figure 5B
Figure 5B
Figure 5B
Figure S2B
Figure S2B
Figure S2B
Figure S2B
Figure S2B
Figure 7F
Figure 7F
Figure 7F
Figure S3C
Figure S3C
Figure S3C
Figure 8B
Figure 8B
Figure 8B

Wound Width
Position
Figure 5C
Figure 5C
Figure 5C
Figure 5C
Figure 5C
Figure S2C
Figure S2C
Figure S2C
Figure S2C
Figure S2C
Figure 7G
Figure 7G
Figure 7G
Figure S3D
Figure S3D
Figure S3D
Figure 8C
Figure 8C
Figure 8C

Transwell invasion results

Position	Comparison	p-Value
Figure 5D	FTO-mut-vs-NC in BxPC-3 cell	0.9895
Figure 5D	FTO-WT-vs-NC in BxPC-3 cell	0.0003
Figure 5D	siFTO-1-vs-NC in BxPC-3 cell	0.0004
Figure 5D	siFTO-2-vs-NC in BxPC-3 cell	0.0001
Figure 5D	siFTO-3-vs-NC in BxPC-3 cell	0.0035
Figure S2D	FTO-mut-vs-NC in SW1990 cell	0.5773
Figure S2D	FTO-WT-vs-NC in SW1990 cell	0.0012
Figure S2D	siFTO-1-vs-NC in SW1990 cell	0.0003
Figure S2D	siFTO-2-vs-NC in SW1990 cell	0.0001
Figure S2D	siFTO-3-vs-NC in SW1990 cell	0.0002
Figure 7H	siPJA2-429-vs-NC in BxPC-3 cell	0.0005
Figure 7H	siPJA2-122-vs-NC in BxPC-3 cell	0.0003
Figure 7H	siPJA2-100-vs-NC in BxPC-3 cell	0.0069
Figure S3E	siPJA2-429-vs-NC in SW1990 cell	0.0008
Figure S3E	siPJA2-122-vs-NC in SW1990 cell	0.0029
Figure S3E	siPJA2-100-vs-NC in SW1990 cell	0.0036
Figure 8D	FTO-WT-vs-Vector	0.0054
Figure 8D	FTO-WT+siCtrl-vs-FTO-WT	0.4033
Figure 8D	FTO-WT+siPJA2-429-vs-FTO-WT+siCtrl	0.0018

Table S1 cBioPortal analysis of the top 20 genes significantly positively or negatively related to FTO in PAAD

Positively correlation	Negatively correlation

Figures 5C, Figure S2C, Figure 7G, Figure S3D, Figure 8C, Figure S2D, Figure 7H, Figure 8D, Figure 8C, Figure S3D, Figure 7H, Figure 8D, Figure S3D, Figure 8D, and Table S1.
Gene	Pearson's Correlation	p-Value	Gene	Pearson's Correlation	p-Value
NEK1	0.78	1.69E-38	TRIM11	-0.73372	1.59E-31
BBS9	0.77	1.14E-36	SIGIRR	-0.72754	8.91E-31
AKT3	0.76	1.66E-34	RASSF7	-0.71859	9.96E-30
CYP2U1	0.74	8.61E-33	YDJC	-0.71014	8.94E-29
PJA2	0.74	2.1E-32	ARRD1C1	-0.70755	1.72E-28
DNAJC18	0.73	4.95E-31	ESRRA	-0.701	8.78E-28
MPDZ	0.73	6.75E-31	POLD4	-0.69942	1.29E-27
MYH10	0.73	1.07E-30	ANO9	-0.6968	2.44E-27
ZYG11B	0.73	1.22E-30	LPAR2	-0.68748	2.21E-26
FAM168A	0.72	6.9E-30	SIRT7	-0.68645	2.81E-26
TENM3	0.72	7.41E-30	NDOR1	-0.68432	4.59E-26
PLEKHM3	0.72	1.11E-29	VPS37B	-0.68073	1.04E-25
PLXNC1	0.72	1.26E-29	EBP	-0.67842	1.74E-25
PKD2	0.71	6.27E-29	GSDMD	-0.67796	1.93E-25
DSYTK	0.71	1.25E-28	POLR2H	-0.67475	3.94E-25
WDR47	0.71	2.77E-28	CIB1	-0.6747	3.99E-25
PEG3	0.70	5.06E-28	BIK	-0.67327	5.46E-25
TBCEL	0.70	5.72E-28	TNIP2	-0.67296	5.85E-25
MBD5	0.70	7.99E-28	NUDT8	-0.6715	8.04E-25
MAP1A	0.70	1.22E-27	ZDHHHC12	-0.67006	1.1E-24

Table S2 LinkedOmics analysis of the top 20 genes significantly positively or negatively related to FTO in PAAD

Gene	Pearson's Correlation	p-Value	Gene	Pearson's Correlation	p-Value
NEK1	0.79	6.7E-40	TRIM11	-0.75011	1.96E-33
BBS9	0.78	2.2E-37	SIGIRR	-0.73969	4.29E-32
CYP2U1	0.77	9.11E-36	ARRD1C1	-0.72265	4.88E-30
AKT3	0.76	2.37E-34	EBP	-0.72036	9E-30
PJA2	0.75	9.5E-34	NUDT8	-0.71752	1.9E-29
MYH10	0.75	1.6E-33	ZDHHHC12	-0.71301	6.12E-29
PLEKHM3	0.74	1.19E-32	YDJC	-0.71284	6.39E-29
ZYG11B	0.74	3.16E-32	NDOR1	-0.70702	2.79E-28
KATNAL1	0.74	1.46E-31	RASSF7	-0.70256	8.43E-28
WDR47	0.73	1.97E-31	ESRRRA	-0.69954	1.76E-27
MPDZ	0.73	4.5E-31	PLEKHM3	-0.69802	2.54E-27
MBD5	0.73	5.36E-31	EFCAB4A	-0.69469	5.64E-27
LOC653653	0.73	8.56E-31	MXD3	-0.6919	1.09E-26
SERINC1	0.73	9.85E-31	GIYD2	-0.69167	1.15E-26
ZNF25	0.72	2.77E-30	CIB1	-0.69059	1.48E-26
UHRF1BP1L	0.72	2.82E-30	POLR2H	-0.69013	1.65E-26
Gene	Pearson's Correlation	p-Value	Gene	Pearson's Correlation	p-Value
--------	------------------------	---------	--------	------------------------	---------
WDR47	0.83	<0.05	COMTD1	-0.5	<0.05
ZNF25	0.83	<0.05	NUDT8	-0.47	<0.05
ZYG11B	0.81	<0.05	TPRN	-0.46	<0.05
ZFP90	0.81	<0.05	EFCAB4A	-0.45	<0.05
AKT3	0.81	<0.05	LPAR2	-0.45	<0.05
RNF11	0.8	<0.05	ADAT3	-0.44	<0.05
PLDN	0.8	<0.05	STAP2	-0.44	<0.05
KIDINS220	0.8	<0.05	TMEM52	-0.43	<0.05
PIGK	0.79	<0.05	LOC100271831	-0.42	<0.05
TRPC1	0.79	<0.05	TCIRG1	-0.42	<0.05
EID1	0.79	<0.05	RASSF7	-0.42	<0.05
GLG1	0.79	<0.05	YDJC	-0.42	<0.05
PLEKHM3	0.78	<0.05	LENG9	-0.42	<0.05
PJA2	0.78	<0.05	KLK1	-0.41	<0.05
KATNAL1	0.78	<0.05	SPINK1	-0.41	<0.05
UBQLN2	0.78	<0.05	PLEKJ1	-0.41	<0.05
CBX1	0.78	<0.05	MPST	-0.4	<0.05
SPIN1	0.78	<0.05	SLC25A10	-0.4	<0.05
DSTYK	0.78	<0.05	FAM195A	-0.4	<0.05
UHRF1BP1L	0.78	<0.05	ANO9	-0.4	<0.05

Table S3 UALCAN analysis of the top 20 genes significantly positively or negatively related to FTO in PAAD

Antibody	Application	Dilution fold	Company	Catalog number
rabbit anti-FTO	WB	1:1000	Abcam	ab126605
rabbit anti-FTO	IHC	1:500	Abcam	ab126605
rabbit anti-YTHDF1	WB	1:1000	Affinity Biosciences	AF0462
rabbit anti-YTHDF2	WB	1:1000	Abcam	ab220163
rabbit anti-PJA2	WB	1:500	Affinity Biosciences	DF4021
rabbit anti-β-catenin	WB	1:1000	Affinity Biosciences	AF6266
rabbit anti-Wnt5a	WB	1:1000	Affinity Biosciences	DF6856
rabbit anti-LEF1	WB	1:1000	Abcam	ab137872
rabbit anti-GSK-3β	WB	1:5000	Abcam	ab32391
rabbit anti-pS9-GSK-3β	WB	1:10000	Abcam	ab75814
Primer name	Primer sequence (from 5' to 3')	Table S5 Primer sequences used in this study		
----------------	--------------------------------	---		
METTL3 FORWARD	TTGTCTCAAACCCTCCGTAGT			
METTL3 REVERSE	CCAGATCAGAGAGTGGTAG			
METTL14 FORWARD	GAGTGTGTTTACGAAAAATGGG			
METTL14 REVERSE	CCGTCTGGCTACCGGTTCA			
WTAP FORWARD	ACTGGCCTAAGAGAGTCGAAG			
WTAP REVERSE	GTTGCTAGTCGCAATTACAAGGA			
VIRMA FORWARD	AAGTGGCCCTGTGTTTGAGT			
VIRMA REVERSE	ACCAGACCATAGATTACCCTCGT			
RBMX FORWARD	TACTCAAGCAGCAGGAGTGG			
RBMX REVERSE	AGGGTACCACCCTTTCCATAG			
RBM15 FORWARD	GGCTGCTAGAGAGGTGGG			
RBM15 REVERSE	CCGCTACTGCTCAATGTCGCCGACTG			
RBM15B FORWARD	ATCTTTCAAGAGTCGCTACGG			
ZC3H13 FORWARD	GATCAAGTAGACGCTAGGAGAC			
ZC3H13 REVERSE	CTCTGCTGATGGTGCTCATATCGA			
FTO FORWARD	GCTGCTATTCCGAGGACCTG			
FTO REVERSE	AGCCTTGATTACCAATGAGG			
ALKBH5 FORWARD	GCAAGGTAGAGAGGCGGCAATCC			
ALKBH5 REVERSE	GTCCACCCTGCTGCTGTTGACTA			
YTHDF1 FORWARD	ACCTGTCAGTCATTACCG			
YTHDF1 REVERSE	TGGTGAGGTATTGCCGAGGAATCGGAG			
YTHDF2 FORWARD	CTTAGTGCGGAGCCATGAGT			
YTHDF2 REVERSE	TCTGCTGATCCACCTTACGT			
AKT3 FORWARD	AATGGACAGAAGCTATCCAGG			
AKT3 REVERSE	TGATGGGTTGAGAGGCATCC			
PJA2 FORWARD	CAGCAGCAATGGAGCCAAGAAT			
PJA2 REVERSE	TGCTTGAATTGTGTGATACCTCT			
PLEKHM3 FORWARD	GTGGGCGATGAGTACTCAG			
PLEKHM3 REVERSE	GTGGTCCTCTGCTGGACCATAA			
ZYG11B FORWARD	GAGGAGGCGCTCCTCTATTCC			
ZYG11B REVERSE	GCATCTGGTGCCCCCTAAAA			
WDR47 FORWARD	CTCTGCTGACCAATCATGCC			
WDR47 REVERSE	AGAAGCCTCAGCTTTCTGTAAT			
NUDT8 FORWARD	CAGTTTCCAGCGGTAAGT			
NUDT8 REVERSE	CACGTTGCGAAGTACTGGGA			
YDJC FORWARD TTTCTTGGAAGATGGGATTC
YDJC REVERSE GGAAGCAGCTTAGTTGGGC
RASSF7 FORWARD TCTGTGGGTCTCAGAGCAG
RASSF7 REVERSE TGCGCTCAGGACAAACTG
CTNNB1 FORWARD CATCTACACAGTGTGATGCT
CTNNB1 REVERSE GCAAGTTTGTCACTTCTCAGGGA
WNT5A FORWARD GCACTATCAATTCCAGTGACATC
WNT5A REVERSE TCACCGCGTATGTGAGGGC
WIF1 FORWARD CACAGAGAATGCCAGCTTCT
WIF1 REVERSE GATCTGCCCATGATGCCCTTTATC
LEF1 FORWARD TGCCAAATATGAAATACGCACCCCA
LEF1 REVERSE GAGAAAGTGCTCGTCAGTCT
AXIN1 FORWARD TGGAAGCCCTGTTACATC
AXIN1 REVERSE GGACACGATGCCATTGTTATC
GSK3B FORWARD GCAGCATGAAAGTTAGCAGA
GSK3B REVERSE GGCGACCAGTTCTCGGAATC
GAPDH FORWARD AAGGGCTCGGGGCTATTG
GAPDH REVERSE AGGGGCATCCACAGTCTTC
HPRT1 FORWARD CCTGGCGCTGTAGTCTGAT
HPRT1 REVERSE AGACGTTCCAGTCCCTCATAA
Figure S1 The impact of FTO and PJA2 expression on the OS of PAAD patients in different stages separately. (A,B) A Kaplan-Meier plot and Log-rank test analyzed the survival data of PAAD patients stage I and II from TCGA separately. Red and black represent the FTO high and low expression groups separately. (C,D) A Kaplan-Meier plot and Log-rank test analyzed the survival data of PAAD patients stage I and II from TCGA separately. Red and black represent the PJA2 high and low expression groups separately. As sample number in stage III and IV was very low for meaningful analysis, only stage I and II cases were evaluated. PAAD, pancreatic adenocarcinoma; TCGA, The Cancer Genome Atlas.
Figure S2 Decreased FTO expression promotes proliferation, migration, and invasion of pancreatic cancer cell SW1990 in vitro. (A,B) IncuCyte Zoom live cell imaging system and clonogenic cell survival assays detected proliferation of SW1990 cells after siRNAs knockdown (siFTO-1, siFTO-2 and siFTO-3) or overexpression of FTO. Simultaneously, CCK8 assay was performed to assess the proliferation potential of these cells at 48 h. (C) Wound healing migration assays revealed the effect of FTO on the migration ability of SW1990 cells. The gap was measured at 0, 24, 48, 72, and 96 h after the scratch was performed. (D) Transwell invasion assays revealed the effect of FTO on the invasion ability of SW1990 cells. CCK8, Cell Counting Kit-8; FTO-WT, wild-type FTO; FTO-mut, loss-of-function mutated FTO; NC, negative control; siRNAs, small interference RNAs. *P < 0.05; **P < 0.01; ***P < 0.001; ns, no statistical significance by unpaired Student’s t-test.
Figure S3 PJA2 inhibits proliferation, migration, and invasion of pancreatic cancer cell SW1990 *in vitro*. (A) RT-qPCR and WB confirmed that PJA2 expression was significantly reduced after siRNAs (siPJA2-429, siPJA2-122, and siPJA2-100) transfection in SW1990 cells. (B,C) IncuCyte Zoom live cell imaging system and clonogenic cell survival assays showed the proliferation of SW1990 cells after PJA2 knockdown. Simultaneously, CCK8 kit was used to assess the proliferation potential of SW1990 cells after PJA2 knockdown at 48 h. (D) Wound healing migration assays revealed the effect of PJA2 on the migration ability of SW1990 cells. The gap was measured at 0, 24, 48, 72, and 96 h after the scratches were performed. (E) Transwell invasion assays revealed the effect of PJA2 on the invasion ability of SW1990 cells. CCK8, Cell Counting Kit-8; NC, negative control; siRNAs, small interference RNAs. *P < 0.05; **P < 0.01; ***P < 0.001; ns, no statistical significance by unpaired Student’s *t*-test.