Chemoselective synthesis of diaryl disulfides via a visible light-mediated coupling of arenediazonium tetrafluoroborates and CS₂

Jing Leng, Shi-Meng Wang and Hua-Li Qin*

Abstract
A highly efficient and chemoselective method for the synthesis of diaryl disulfides is developed via a visible light-promoted coupling of readily accessible arenediazonium tetrafluoroborates and CS₂. This practical and convenient protocol provides a direct pathway for the assembly of a series of disulfides in an environmentally friendly manner with good to excellent yields.

Findings
The development of methods for the functionalization of peptides and proteins under mild conditions is a current frontier in the fields of chemistry, biology and drug discovery [1-4]. Most of the pharmaceutically relevant proteins contain disulfide bonds, furthermore, the disulfide ligation and its established chemoselectivity is of great advantage for proteins’ functionalization [5]. In addition, disulfides also play valuable roles as versatile building blocks for industrial applications [6-8]. Thus, the development of methodologies for the synthesis of disulfides is rather desirable and many research groups have made great contributions to the synthesis of diaryl disulfides such as the Chandrasekaran group [9] and the Wacharasindhu group [10]. Indeed, the design of sustainable and useful transformations with applications in industry is considered of high practical value. In this context, carbon disulfide, a cheap and abundant chemical, has been widely used as reactant and solvent in both industry and materials science. For example, Batanero and co-workers reported an electrochemical transformation of carbon disulfide into diaryl disulfides [11]. Sunlight as abundant and almost infinitely available energy resource has been widely used for chemical transformations in the sense of cost, safety, availability, and environmental friendliness [12-15]. Herein, we report a visible light-mediated coupling of arenediazonium tetrafluoroborates and CS₂ for the chemoselective assembly of diaryl disulfides as our continuing endeavor of utilizing arenediazonium tetrafluoroborates [16] for synthetic applications (Scheme 1).

We conducted our initial study with benzenediazonium tetrafluoroborate (1a) and CS₂ (2) as model substrates to examine...
Scheme 1: Chemoselective assembly of diaryl disulfides.

Scheme 1: Chemoselective assembly of diaryl disulfides.

the feasibility of the formation of diphenyl disulfide (3a) (Table 1). Various solvents were screened and to our delight, it was found that the reaction of 1a and 2 in DMF and DMSO gave the desired product in a moderate yield of 54% and 53%, respectively (Table 1, entries 7 and 8). Unfortunately, under the applied conditions, the chemoselectivity of the reaction was poor, affording a mixture of unexpected diphenyl sulfide (4a) and diphenyl polysulfides (5a) as byproducts. Thus, a study to optimize the reaction conditions with regard to chemoselectivity and to minimize the formation of the byproducts was conducted.

As recently surveyed, photoredox catalysts are widely employed for the generation of radicals for diverse radical reactions [19]. Further, the application of aryl radicals generated from aryl diazonium salts under visible light irradiation has also been studied [14,15] by taking advantage of visible light as an abundant and environmentally friendly energy source for organic syntheses. The photochemistry of diazonium salts has been widely studied since the early 19th century, at which time, it was noticed that benzenediazonium nitrate turns red upon exposure to sunlight due to decomposition and formation of radical species [20]. Subsequently, the photodecomposition of diazonium salts by loss of nitrogen upon exposure to light has been utilized in organic synthesis for example to remove amino groups from anilines [21] or for arylation reactions [15,22].

Based on the above research results, we envisioned that a radical pathway may facilitate the formation of diaryl disulfides. Therefore the photocatalyst Ru(bpy)$_3$(PF$_6$)$_2$ (bpy = 2,2'-

\[\text{Scheme 1: Chemoselective assembly of diaryl disulfides.} \]

\[\begin{align*}
\text{Scheme 1: Chemoselective assembly of diaryl disulfides.} \\
R & \quad \text{DMF or DMSO} \\
R & \quad \text{visible light, DMSO, rt} \\
\text{high selectivity}
\end{align*} \]

Table 1: Solvent screening for the coupling of benzenediazonium tetrafluoroborate (1a) and CS$_2$ (2).

Entry	Solvents	Yield 3a (%)b	Yield 4a (%)b	Yield 5a (%)b
1	MeOH	n.d.	n.d.	n.d.
2	THF	36	5	n.d.
3	dioxane	n.d.	14	n.d.
4	acetone	n.d.	n.d.	n.d.
5	DCM	n.d.	n.d.	19
6	acetonitrile	n.d.	n.d.	n.d.
7	DMF	54	3	31
8	DMSO	53	3	27
9	hexane	n.d.	n.d.	24

aReaction conditions: 1a (0.1 mmol), 2 (0.2 mmol), solvent (2 mL), rt, 6 h; byields were determined by HPLC using 3a and 4a as the external standards; the yield of 5a is based on the integration of the corresponding HPLC peaks [17,18]; n.d. = not determined.
bipyridine) [23] and a 20 W blue-light LED were chosen as catalyst and the source of visible light, respectively for our model reaction (Table 2). A variety of solvents was evaluated and eventually, it was found that the coupling of benzene-diazonium tetrafluoroborate (1a) and CS₂ (2) in ethanol as the solvent gave the desired product diphenyl disulfide (3a) in 77% yield accompanied by only 8% of the undesired diphenyl polysulfides (Table 2, entry 4). Switching to DMSO as the solvent for the reaction afforded exclusively the desired product 3a in excellent yield (88%, Table 2, entry 6). Next, other sulfur sources were also examined, such as S₈, NaSH, Na₂S, Na₂S₂O₅, Na₂S₂O₃, and K₂S₂O₈, however, none of them provided the desired product in an acceptable yield (Table 2, entries 7–13).

In order to maximize the yields, varying amounts of CS₂ (2) were also tested (Table 3) and it was found that the CS₂ loading had a considerable influence on the reaction. By decreasing the loading of CS₂ from 2 equiv to 0.5 equiv, the yield of the product 3a dropped to 42%, whereas increasing amounts of CS₂ had a considerable influence on the reaction. By decreasing the loading of CS₂ from 2 equiv to 0.5 equiv, the yield of the product 3a dropped to 42%, whereas increasing amounts of CS₂ did not significantly increase the yield of the product. Subsequently, different photocatalysts were investigated and it turned out that the choice of catalyst also had a significant impact on our model reaction. Ru(bpy)₃Cl₂ catalyzed this coupling to afford the desired product 3a in a moderate yield of 65% (Table 3, entry 8). However, when the iridium-based photocatalysts Ir(ppy)₃ [24], [Ir(ppy)₃(bpy)]PF₆ and [Ir(ppy)₃(dtbbpy)]PF₆ (bpy = 2,2'-bipyridine, ppy = 2-phenylpyridine, dtbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine) [25,26] were used, the product yield of diphenyl disulfide (3a) was much lower compared to reactions performed in the presence of ruthenium catalysts (Table 3, entries 9–11).

A plausible reaction mechanism has been proposed and is depicted in Scheme 2. We envision that the phenyl radical I was initially generated under visible light irradiation [14,15]. Subsequently, the radical I attacked the sulfur atom of carbon disulfide to provide the intermediate II which can be converted to radical intermediate III through the cleavage of the carbon–sulfur bond accompanied with the release of a carbon sulfide [11]. The active radical intermediate III can transform into three types of products through different pathways. Firstly, diaryl disulfide 3 is obtained through a dimerization of radical intermediates III, whereas the reaction of radical III with phenyl radical I is leading to byproduct 4. Finally, radical III can react with various equivalents of CS₂ with release of carbon sulfide to generate aryl-polysulphio radicals IV and V. The combination of the latter intermediates with radical I then finally affords polysulfides 5.

Table 2: Screening of the solvents and sulfur sources for the visible light-mediated coupling of benzene-diazonium tetrafluoroborate (1a) and CS₂ (2) and other sulfur sources in the presence of Ru(bpy)₃(PF₆)₂ as the photocatalyst.

Entry	Solvent	Sulfur source	Yield 3a (%)^b	Yield 4a (%)^b	Yield 5a (%)^b
1	MeOH	CS₂	88	<1	10
2	H₂O	CS₂	47	5	20
3	THF	CS₂	87	<1	8
4	EtOH	CS₂	77	n.d.	8
5	acetone	CS₂	79	7	3
6	DMSO	CS₂	88	n.d.	<1
7	DMSO	S₈	14	9	67
8	DMSO	Na₂S	n.d.	43	11
9	DMSO	Na₂S₂O₃	n.d.	n.d.	n.d.
10	DMSO	Na₂S₂O₄	n.d.	n.d.	n.d.
11	DMSO	K₂S₂O₈	n.d.	n.d.	4
12	DMSO	NaSH	22	28	14
13	DMSO	(NH₄)₂S₂O₈	n.d.	n.d.	4

^aReaction conditions: 1a (0.1 mmol), sulfur sources (0.2 mmol), Ru(bpy)₃(PF₆)₂ (0.001 mmol), blue light (20 W), solvents (2 mL), rt, 6 h. ^bYields were determined by HPLC using 3a and 4a as the external standards, the yield of 5a is based on the integration of the corresponding HPLC peaks [17,18]; n.d. = not determined.
Table 3: Screening of photocatalysts for the visible light-mediated coupling of benzenediazonium tetrafluoroborate (1a) and CS₂ (2).^a

Entry	2 (equiv)	photocatalyst	solvent	Yield 3a (%)^b
1	0.5	Ru(bpy)₃(PF₆)₂	DMSO	42
2	1	Ru(bpy)₃(PF₆)₂	DMSO	47
3	1.5	Ru(bpy)₃(PF₆)₂	DMSO	53
4	2	Ru(bpy)₃(PF₆)₂	DMSO	88
5	2.5	Ru(bpy)₃(PF₆)₂	DMSO	55
6	3	Ru(bpy)₃(PF₆)₂	DMSO	57
7	—	Ru(bpy)₃(PF₆)₂	CS₂	n.d.
8	2	Ru(bpy)₂Cl₂	DMSO	65
9	2	Ir(ppy)₃	DMSO	57
10	2	Ir(ppy)₂(bpy)(PF₆)	DMSO	73
11	2	Ir(ppy)₂(dtbbpy)(PF₆)	DMSO	8
12	2	none	DMSO	53

^aReaction conditions: 1a (0.1 mmol), photocatalyst (0.001 mmol), blue light (20 W), solvent (2 mL), rt, 6 h; ^byields were determined by HPLC using 3a as the external standard.

Scheme 2: A plausible reaction mechanism.

To demonstrate the scope of the reaction, a series of arenediazonium tetrafluoroborates was utilized in the reaction with CS₂ to generate the corresponding diaryl disulfides (Table 4). Arenediazonium tetrafluoroborates 1b–p with both, electron-withdrawing and donating groups successfully underwent transformation, affording the corresponding coupling products 3b–p in good to excellent yields (42–99%). Also sterically demanding substrates gave the desired products in good yields (3d, 3f, 3g, 3i, 3m and 3n) and functional groups such as chloro, bromo, ester, methyl, nitro, and phenyl groups were also compatible with the reaction conditions.

Conclusion

In conclusion, we have developed an efficient method for the synthesis of diaryl disulfides through the coupling of arenediazonium tetrafluoroborates and CS₂. This straightforward
Table 4: Reaction scope of the visible light-mediated coupling of arenediazonium tetrafluoroborates 1 with CS$_2$ (2).

Substrate 1a	Product 3, yieldb	Substrate 1a	Product 3, yieldb
1a	3a, 80%, 50%c	1i	3i, 94%, 82%c
1b	3b, 81%, 78%c	1j	3j, 99%, 85%c
1c	3c, 85%, 72%c	1k	3k, 70%
1d	3d, 94%	1l	3l, 76%
1e	3e, 90%	1m	3m, 56%
1f	3f, 88%	1n	3n, 42%
1g	3g, 88%	1o	3o, 56%
visible light-promoted process proceeds under mild reaction conditions and is applicable for the assembly of a wide range of diaryl disulfides. Further studies to clearly understand the reaction mechanism and the synthetic applications are ongoing in our laboratory.

Supporting Information

Supporting Information File 1
Experimental procedures, characterization data and copies of 1H and 13C NMR spectra for final compounds. [http://www.beilstein-journals.org/bjoc/content-supplementary/1860-5397-13-91-S1.pdf]

Acknowledgements
This work was supported by the Wuhan University of Technology.

References
1. Bode, J. W. Curr. Opin. Drug Discovery Dev. 2006, 9, 765–775.
2. Pratt, M. R.; Bertozzi, C. R. Chem. Soc. Rev. 2005, 34, 58–68. doi:10.1039/b405939g
3. Prescher, J. A.; Dube, D. H.; Bertozzi, C. R. Nature 2004, 430, 873–877. doi:10.1038/nature02791
4. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021. doi:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
5. Wojtowarkowsky, K. J.; Raines, R. T. Curr. Opin. Chem. Biol. 2000, 4, 533–539. doi:10.1016/S1367-5931(00)00128-9
6. Oae, S. Organic Sulfur Chemistry; Structure and Mechanism; CRC Press: Boca Raton, FL, 1991.
7. Cremlyn, R. J. An Introduction to Organosulfur Chemistry; John Wiley and Sons: New York, 1996.
8. Jocelyn, D. C. Biochemistry of the Thiol Groups; Academic Press: New York, 1992.
9. Bhar, D.; Chandrasekaran, S. Synthesis 1994, 785–786. doi:10.1055/s-1994-255731
10. Tankam, T.; Poochampa, K.; Vilaivan, T.; Sukwattanasinitt, M.; Wacharasindhu, S. Tetrahedron 2016, 72, 788–793. doi:10.1016/j.tet.2015.12.036
11. Barba, F.; Ranz, F.; Batanero, B. Tetrahedron Lett. 2009, 50, 6798–6799. doi:10.1016/j.tetlet.2009.09.102
12. Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97–113. doi:10.1039/C2CS35250H
13. Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473–486. doi:10.1039/C3CS60188A
14. Hari, D. P.; König, B. Angew. Chem., Int. Ed. 2013, 52, 4734–4743. doi:10.1002/anie.201210276
15. Hofmann, J.; Heinrich, M. R. Tetrahedron Lett. 2016, 57, 4334–4340. doi:10.1016/j.tetlet.2016.08.034
16. Qin, H.-L.; Zheng, Q.; Bare, G. A. L.; Wu, P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2015, 55, 14155–14158. doi:10.1002/anie.201608807
17. Arisawa, M.; Tanaka, K.; Yamaguchi, M. Tetrahedron Lett. 2005, 46, 4797–4800. doi:10.1016/j.tetlet.2005.05.024
18. Zysman-Colman, E.; Harpp, D. N. J. Org. Chem. 2003, 68, 2487–2489. doi:10.1021/jo0265481
19. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322–5363. doi:10.1021/cr300503r
20. Horspool, W. M.; Lenci, F. CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; CRC press: Boca Raton, 2003; Vol. 1 & 2.
21. He, L.; Qiu, G.; Gao, Y.; Wu, J. Org. Biomol. Chem. 2014, 12, 6965–6971. doi:10.1039/C4OB01286K
22. Xue, D.; Jia, Z.-H.; Zhao, C.-J.; Zhang, Y.-Y.; Wang, C.; Xiao, J. Chem. – Eur. J. 2014, 20, 2960–2965. doi:10.1002/chem.201304120
23. Dedeyan, K.; Djurovich, P. I.; Garces, F. O.; Carlson, G.; Watts, R. J. Inorg. Chem. 1991, 30, 1685–1687. doi:10.1021/ic00008a003
24. Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohli, R.; Bernhard, S.; Mailliaras, G. G. J. Am. Chem. Soc. 2004, 126, 2763–2767. doi:10.1021/ja0345221
25. Schank, K.; Leider, R.; Lick, C.; Glock, R. Helv. Chim. Acta 2004, 87, 869–924. doi:10.1002/hc.200400085
26. Carnell, A. J.; Johnstone, R. A. W.; Parsy, C. C.; Sanderson, W. R. Tetrahedron Lett. 1999, 40, 8029–8032. doi:10.1016/S0040-4039(99)01610-X

Table 4: Reaction scope of the visible light-mediated coupling of arenediazonium tetrafluoroborates 1 with CS$_2$ (2). (continued)

Reagents	Conditions	Yield
	1 (0.1 mmol), CS$_2$ (0.2 mmol), Ru(bpy)$_3$(PF$_6$)$_2$ (0.001 mmol), blue light (20 W), DMSO (2 mL), rt, 6 h; 6isolated yields after chromatography on silica gel; 7the reactions were carried out with the diazonium salts 1 at a 5 mmol scale; 8acetone was used as the solvent.	
License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at:
doi:10.3762/bjoc.13.91