FAST TRACK COMMUNICATION

Finding gaps in a spectrum

Hector Giacomini and Amaury Mouchet

Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais de Tours—CNRS (UMR 6083), Fédération Denis Poisson, Parc de Grandmont 37200 Tours, France

E-mail: giacomin@phys.univ-tours.fr and mouchet@phys.univ-tours.fr

Received 20 June 2007, in final form 21 August 2007
Published 11 September 2007
Online at stacks.iop.org/JPhysA/40/F921

Abstract
We propose a method for finding gaps in the spectrum of a differential operator. When applied to the one-dimensional Hamiltonian of the quartic oscillator, a simple algebraic algorithm is proposed that, step by step, separates with a remarkable precision all the energies even for a double-well configuration in a tunnelling regime. Our strategy may be refined and generalized to a large class of 1D-problems.

PACS numbers: 03.65.Db, 02.30.Tb, 02.60.Gf, 02.60.Pn

1. Introduction

Obtaining some physically interesting piece of information on a spectrum of a differential operator is generically a difficult problem. For systems in low dimension, say one or two, though numerical approaches can usually compute the spectrum to a high precision, very few is usually known when demanding the standard criterions of rigour of mathematical physics.

The aim of the present communication is to propose a method for finding gaps in the spectrum of a differential operator. We will mainly focus on the stationary one-dimensional non-magnetic Schrödinger equation with a smooth potential \(V(x) \) defined on the whole real axis,

\[
-\frac{1}{2} \frac{d^2 \psi}{dx^2} + V \psi = E \psi,
\]

(1)

but it can be easily understood that our ideas, which will be explained in the first part of this communication (section 2), can be extended to a wider family of ordinary differential equations. For the sake of definiteness, in the second part (section 3) we will illustrate more concretely our method on the quartic oscillator (11) where the numerical ‘exact’ spectrum will serve us as a touchstone. We will show that we are able to obtain gaps in the energy spectrum, i.e. intervals where there is no eigenenergy, with purely algebraic manipulations involving no integrals. An algorithm is explicitly constructed in the case of the quartic oscillator—but it remains robust under any kind of smooth perturbations—and provides more and more...
non-trivial gaps. As far as we know, in the huge mathematical physics literature (Bender and Orszag (1978), Voros (1983) for instance and their references) on the quartic oscillator no such gaps have been found. We will present strong evidence that, for still unknown reasons, this algorithm allows us to resolve all the eigenenergies with a surprising precision even though, remaining stuck to the simplest means, we are far from having exhausted all the possibilities that our method offers. Actually, some very subtle information on the spectrum can be gained since we can find a gap in between the tunnelling doublets, i.e. when the energies are below the height of the intermediate barrier in a double-well configuration.

2. Guideline of the method

2.1. General strategy

The key idea of our method is to construct, for a given integer \(N \geq 1 \), a real function \(J_N(\phi', \phi, x, E) \) from a possible real square-integrable solution \(\phi \) of (1) with energy \(E \) (the prime stands for the derivative \(\frac{d}{dx} \)) such that

\[
(i) \quad \frac{d}{dx} (J_N(\phi'(x), \phi(x), x, E)) = (\phi(x))^N F_N(x, E),
\]

\[
(ii) \quad \lim_{|x| \to +\infty} J(\phi'(x), \phi(x), x, E) = 0.
\]

The real function \(F_N \) of both the spatial coordinate \(x \) and the energy \(E \) is \(\phi \)-independent and is constructed from the potential \(V \) and its derivatives. An example of \(J_N \) is given by equation (2) and some \(F_N \)'s are given by (5)–(8). Condition (i) is the cornerstone of our method and, before justifying how it can be obtained (we will see that condition (ii) is not so restrictive), let us first explain how gaps in the spectrum may be obtained.

When conditions (i) and (ii) are simultaneously fulfilled, an immediate consequence is that the integral \(\int_{-\infty}^{+\infty} (\phi(x))^N F_N(x, E) \, dx \) vanishes. This implies that if \(E \) is truly an eigenenergy, the function \(x \mapsto (\phi(x))^N F_N(x, E) \) should change its sign. If \(N \) is even, we obtain a \(\phi \)-independent condition: for any fixed energy \(x \mapsto F_N(x, E) \) must change its sign on the real axis. We will see that for such a one-dimensional problem, and for a given \(N \), we still can choose \(F_N \) in a wide continuous set of smooth functions on the real axis. A forbidden value of \(E \) (i.e. \(E \) cannot be an eigenenergy) is obtained if we are able to construct an \(F_N \) that remains positive on the whole \(x \)-axis. Once this property is achieved, it remains stable under small perturbations within the set of \(F_N \)'s, and we obtain a whole interval where no eigenenergy can exist.

When \(N \) is odd, a priori some non-trivial information can be extracted for the ground state only, if there is any. Indeed, it is known that its wavefunction can be chosen positive for any Schrödinger equation of the form (1) with a nonsingular potential (see for instance (Reed and Simon (1978), XIII.12)) whereas all the excited eigenfunctions do change their sign. No gap can be found but one can use this strategy to find upper and lower bounds on the ground state energy even in a multidimensional situation. The differential method presented in (Mouchet 2005) corresponds to \(N = 1 \).

2.2. Obtaining condition (i) and determination of \(F_N \)

In order to obtain condition (i), let us start with \(J \) being a homogeneous polynomial of degree \(N \) with respect to its first two variables \((\phi', \phi) \):

\[
J_N(\phi'(x), \phi(x), x, E) = \sum_{n=0}^{N} a_n(x, E)(\phi'(x))^{N-n}(\phi(x))^n.
\]
The smooth functions $\{a_n\}_{n \in [0,\ldots,N]}$ will be constructed in order to get condition (i): equation (1) allows us to eliminate ψ'' from the total derivative of J_N and then the systematic cancellation of the coefficients of $(\psi')^{N-n}$ for $N - n > 0$ leads to the relations

$$\forall n \in [0,\ldots,N-1], \quad a_{n+1} = -\frac{1}{n+1}a'_n - \frac{N-n+1}{n+1}2(V - E)a_{n-1},$$

(3)

(to get a unified expression, we define $a_{-1} \equiv 0$) with

$$F_N(x, E) = a'_N(x, E) + 2(V(x) - E)a_{N-1}(x, E).$$

(4)

The recurrence relation (3) uniquely determines all a_n’s and F_N from a_0, which remains a free smooth function. For instance, we have

$$F_1 = -a''_0 + 2(V - E)a_0,$$

(5)

$$F_2 = \frac{1}{2}a'''_0 - 4(V - E)a'_0 - 2V'a_0,$$

(6)

$$F_3 = -\frac{1}{6}a''''_0 + \frac{10}{3}(V - E)a''_0 + \frac{10}{3}V'a'_0 + (V'' - 6(V - E)^2)a_0,$$

(7)

$$F_4 = \frac{1}{24}a''''''_0 - \frac{5}{3}(V - E)a''''_0 - \frac{5}{2}V'a'''_0 + \left(\frac{3}{2}V'' + \frac{32}{3}(V - E)^2\right)a'_0$$

$$+ \left(-\frac{1}{3}V''' + \frac{32}{3}V'(V - E)\right)a_0.$$

(8)

The only condition on a_0 is that it must not increase too rapidly when $|x| \to +\infty$ in order to get condition (ii). From the standard semiclassical analysis (Messiah (1991), for instance chapter VI), we know that if a bound state of V exists, its wavefunction decreases exponentially as $\exp \left[-\int \sqrt{2(V(x') - E)} \, dx'\right]$ when $|x| \to +\infty$; therefore, the ansatz (2) will vanish at infinity as soon as $|a_0|$ becomes negligible compared to $|\psi|$. The condition

$$|a_0(x)| \ll \exp \left|\int x \sqrt{2(V(x') - E)} \, dx'\right| \quad \text{when} \quad |x| \to +\infty$$

(9)

is sufficient and not too demanding.

We do not loose generality with the form (2). In fact any smooth function $J(\psi', \psi, x, E)$ will inevitably lead to the hierarchy of functions $\{F_N\}_{N \geq 1}$. To understand this, consider one monomial $c(\psi')^m\psi^n$, where c is a function of x, in the Taylor expansion of $\frac{d}{dx} J(\psi', \psi, x, E)$ with respect to (ψ', ψ) once ψ'' has been substituted by $2(V - E)\psi$. This monomial can be written as

$$c(\psi')^m\psi^n = -\frac{1}{m+1}(c(\psi')^{m-1})'\psi^{m+1} + \frac{1}{m+1} \frac{d}{dx} (c(\psi')^{m-1}\psi^{m+1})$$

$$= -\frac{1}{m+1}[c'(\psi')^{m-1}\psi^{m+1} + 2(n - 1)(V - E)c(\psi')^{m-2}\psi^{m+2}]$$

$$+ \frac{1}{m+1} \frac{d}{dx} (c(\psi')^{m-1}\psi^{n+1}).$$

(10)

By using this type of identity an adequate number of times we can systematically absorb all the powers of ψ' in a total derivative while keeping the homogeneity in (ψ', ψ). This procedure can be pursued until we obtain $c(\psi')^m\psi^n$ of the form $\tilde{c}\psi^{n+m} + \frac{d}{dx} (J(\psi', \psi, x, E))$ where \tilde{c}
and \(j \) are smooth functions. A redefinition of \(J \to J - j \) for each monomial of degree \(n + m = N \) leads to condition (i). Rather than the starting point (2), we could have started from \(J_N(\psi', \psi, x, E) = a_0(\psi')^N \) and, working modulo a total derivative, repetitions of procedure (10) would have led to condition (i). For small \(N \), it can been checked that \(F_N \) thus obtained are also given by (5)–(8).

3. Application to the quartic oscillator and generalizations

To illustrate the efficiency of our approach, in this section we will consider a quartic potential, which can always be reduced in appropriate units to

\[
V(x) \equiv \frac{s}{2} x^2 + \frac{1}{4} x^4, \tag{11}
\]

for \(s \) real. The associated energy spectrum is purely discrete and bounded from below by the minimum \(\min(V) \). The energies can been computed numerically without any difficulty by diagonalizing the Hamiltonian in the standard basis of the eigenstates of a harmonic oscillator. They are given by the continuous black lines in figure 1. For large positive \(s \), the bottom of the spectrum \(\{E_n | n = 0, 1, 2, \ldots\} \) tends to the harmonic spectrum \((n + 1/2)\sqrt{s}\). For \(s < 0 \), we get a double-well configuration where the central barrier reaches its maximum at 0. When \(s \) decreases from 0, we observe the pairing of the energies \((E_{2n}, E_{2n+1})\) into doublets that characterize tunnelling from one well to the other. For \(s \leq s_0 \simeq -2.0481 \) the two first states \(E_0 \) and \(E_1 \) are both negative, therefore below the energetic barrier, and \(1/(E_1 - E_0) \) represents the tunnelling oscillation period (recall that we are working in units where \(\hbar = 1 \)). This exponentially small splitting is a highly non-trivial piece of spectral information to obtain by approximate methods. Nevertheless, we will show that for a given positive or negative \(s \), we actually can exhibit a gap between \(E_0 \) and \(E_1 \).

For simplicity, and in order to keep the computation tractable with elementary algebraic manipulations, we will work with \(N = 2 \) and take \(a_0 \) of the form

\[
a_0(x) = P(x) e^{-\lambda x^2/2}, \tag{12}
\]

where \(\lambda \) is real (not necessarily positive, see (9)) and \(P \) is a real polynomial in \(x \). (To lighten the notations we leave the \(E \)-dependence implicit. Note that \(P \) may depend on \(\lambda \) as well) Condition (9) is largely satisfied. From expression (6), we have

\[
F_2(x) = Q(x) \exp(-\lambda x^2/2)
\]

where \(Q \) is the polynomial,

\[
Q(x) = P''(x) - 3\lambda x P''(x) - (2x^4 + (4s - 3\lambda^2)x^2 + 3\lambda - 8E)P'(x)
+ (2\lambda x^5 - (\lambda^3 - 4s\lambda + 4)x^3 + (3\lambda^2 - 8E\lambda - 4s)x)P(x), \tag{13}
\]

that must change its sign if \(E \) is an eigenenergy. To find a forbidden value for the energy we construct an even \(Q \) and therefore start from an odd \(P \):

\[
P(x) = \sum_{m=0}^{M} p_m x^{2m+1}. \tag{14}
\]
Then
\[Q(x) = \sum_{m=0}^{M+3} q_m x^{2m}, \]
where the coefficients \(\{q_m\} \) are expressed in terms of \(\{p_m\} \) via the recurrence relation
\[q_m = (2m+3)(2m+2)(2m+1)p_{m+1} -(2m+1)(3\lambda(2m+1)-8E)p_m + (2m(3\lambda^2 -4s) -8E\lambda)p_{m-1} - (\lambda^3 -4s\lambda + 4m -2)p_{m-2} + 2\lambda p_{m-3}, \]
for \(m \in \{0, \ldots, M+3\} \). (we define \(p_m = 0 \) for \(m < 0 \) or \(m > M \)). The simplest way to control the sign of \(Q \) is to reduce it to a polynomial of degree two in \(x^2 \): \(Q(x) = x^{2M+2}R(x) \) where
For a given value of E \mapsto x by the quartic oscillator, the numerical results are shown for several values of M the algebraic equations to solve and the more gaps are expected to be found. For the quartic global analysis that can be pursued numerically. The larger the M of the gaps for a given positive integer M, are included in the solutions of (18) since they cancel simultaneously for the quartic potential using the zeroes of the discriminants $\Delta_M(E, s)$ of E and s only. For a given s, all the values of E, where $\Delta_M < 0$, are forbidden. The boundaries of the gaps are given by the zeroes of $E \mapsto \Delta_M(E, s)$. For instance, when $M = 0$ we have

$$
\Delta_0(E, s) = 65536E^6 - 73728E^4s - 41472E^3 + 20736E^2s^2 + 7776Es + 6561.
$$

(17)

For a given value of s, the real roots of this polynomial define intervals of forbidden values of E. The degree of the polynomial $\Delta_M(E, s)$ increases with M.

We can generalize and reformulate these algebraic manipulations to any kind of polynomial potential of even degree deg V (not necessarily symmetric). With the choice (12), the expression (6) shows that $F_2 e^{x^{2}/2}$ is a polynomial $Q(x, \lambda, E)$ of degree deg $V + deg P + 1$ in x. For any (λ, E) the coefficients of P can be chosen to cancel all the coefficients of $x \mapsto Q(x, \lambda, E)$ but the (deg $V + 2$) th higher powers. The cancellation of the coefficient $q(\lambda, E)$ of $x^{deg P}$ allows the factorization $Q(x, \lambda, E) = x^{deg P+1} R(x, \lambda, E)$ where the degree of $x \mapsto R(x, \lambda, E)$ is precisely deg V. Now, if deg P is odd and $x \mapsto R(x, \lambda, E)$ has no root of odd multiplicity for a given couple (λ, E) such that $q(\lambda, E) = 0$, we are sure that E cannot be an eigenvalue. In the (x, λ, E)-space, the two equations $q(\lambda, E) = 0$, $R(x, \lambda, E) = 0$ define generically a curve C (possibly made of disjoint smooth pieces) that can be parameterized by x, namely $(E(x), \lambda(x))$, where the Jacobian $J = |\partial_x q \partial_E R - \partial_x R \partial_E q|$ does not vanish. The projection of C on the E-axis defines some intervals outside which no eigenenergy can be found. The borders of these intervals are the projections of some points (not necessarily of all points) of C where the tangent is normal to the E-axis. Using the implicit function theorem these points are to be found among the solutions of $0 = dE/dx = -\partial_x q \partial_x R/J$. To sum up, the boundaries of the gaps are to be found from the solutions—if there are any—of the three equations

$$
q(\lambda, E) = 0, \quad R(x, \lambda, E) = 0, \quad \partial_x q(\lambda, E) \partial_x R(x, \lambda, E) = 0.
$$

(18)

The boundaries obtained above for the quartic potential using the zeroes of the discriminants Δ_M are included in the solutions of (18) since they cancel simultaneously q, R and $\partial_x R$ but some others boundaries may be obtained if $\partial_x q$ vanishes instead of $\partial_x R$. Determining which values represent boundaries of gaps from all the solutions of (18) may require some global analysis that can be pursued numerically. The larger the M, the larger the degree of the algebraic equations to solve and the more gaps are expected to be found. For the quartic oscillator, the numerical results are shown for several values of M in figure 1 and table 1 illustrates the precision of our method.

Let us also consider the even potential $V(x) = x^6$. The polynomial R is now of third degree in the variable x^2. As explained above, a necessary condition to obtain the boundaries of the gaps for a given positive integer M is to solve simultaneously the three equations (18). The last step consists in verifying that the polynomial $R(x)$ does not have real roots of odd multiplicity. The results obtained are qualitatively similar to those showed above for the quartic oscillator (see table 2).
For, say, Dirichlet boundary conditions equation (ii) is replaced by the vanishing of \(J_N \). Cases be adapted straightforwardly to many other situations. We also let for future investigations the from what precedes it is clear that our method is not specific to the quartic potential but can if some convergence behaviour is observed, as it appears in the case of the quartic oscillator.

This method can also be applied to a spectral problem with different boundary conditions. Even though our method cannot provide a rigorous proof of the existence of an eigenenergy vanishes.

\[
M \leq M_E \quad (\text{given in the left table}) \quad |E_n - E_m| < 2 \quad (\text{given in the upper table})
\]

\[
\begin{array}{cccccccc}
M & E_0 < \cdots < E_1 & E_1 < \cdots < E_2 & E_2 < \cdots < E_3 & E_3 < \cdots < E_4 & E_4 < \cdots < E_5 & E_5 < \cdots < E_6 \\
\leq 4 & - & - & - & - & - & - \\
5 & - & [0.0399, 0.4582] & - & - & - & - \\
6 & - & [-0.1108, 0.4359] & - & - & - & - \\
7 & - & [-0.1836, 0.3908] [1.1734, 1.4748] & - & - & - & - \\
8 & [-0.4614, -0.4281] & [-0.2001, 0.3408] [1.0601, 1.5156] & - & - & - & - \\
15 & [-0.4994, -0.4865] & [-0.2414, 0.0507] [0.9845, 1.2930] & [2.1214, 2.3143] [3.7509, 4.3535] [5.3268, 6.0726] & [2.3789, 2.7014] \\
16 & [-0.5006, -0.4369] & [-0.247, -0.24] [0.9903, 1.2652] & [2.1318, 2.3167] [3.6068, 3.7792] [5.3426, 6.0835] & [2.3307, 2.6590] [3.9847, 4.3128] \\
\end{array}
\]

\[
\bigcup_{M=0}^{16} [-0.5006, -0.4211] \bigcup [-0.2497, 0.4582] [0.9726, 1.5156] [2.1214, 2.8710] [3.6068, 4.0428] [5.3268, 6.0835]
\]

\[
\begin{array}{cccc}
E_n & 0.6807 & 2.5797 & 5.3948 \\
\hline
n & 0 & 1 & 2
\end{array}
\]

\[
\begin{array}{cccc}
M & E_0 < \cdots < E_1 & E_1 < \cdots < E_2 \\
0 & - & - & - \\
1 & [0.967, 1.041] & - & - \\
2 & [0.736; 1.122] & - & - \\
3 & [0.710, 1.081] & [3.016, 3.624] & - \\
4 & [0.715, 1.036] & [2.724, 3.702] & - \\
5 & [0.723, 0.995] & [2.674, 3.642] & - \\
\end{array}
\]

4. Conclusions

From what precedes it is clear that our method is not specific to the quartic potential but can be adapted straightforwardly to many other situations. We also let for future investigations the cases \(N > 2 \).

This method can also be applied to a spectral problem with different boundary conditions. For, say, Dirichlet boundary conditions equation (ii) is replaced by the vanishing of \(J_N \) at the two points where the function \(\psi \) vanishes.

Even though our method cannot provide a rigorous proof of the existence of an eigenenergy in a given range, it offers some precise clues where some possible energies may lie, specially if some convergence behaviour is observed, as it appears in the case of the quartic oscillator. Therefore, we are able to obtain this way a substantial piece of physical information.

Acknowledgments

We would like to thank Jérémy Ledeunff for helping us to check the eigenenergies for the \(x^6 \)-potential.

Table 1. Comparison between the exact energies \(\{E_n \mid n = 0, 1, 2, \ldots\} \) (given in the upper table) and the gaps for \(s = -2.3 \) and several values of \(M \). The two lowest energies \((E_0, E_1) \), being negative though below the central barrier, form a tunnelling doublet. There are two gaps for \(M = 15 \) and one gap for \(M = 16 \). The last line sums up the best bounds when comparing the gaps obtained for each \(M \) up to 16. We did not retain the lowest bounds that are below the trivial bound \(V \).

Table 2. Comparison between the exact energies \(\{E_n \mid n = 0, 1, 2\} \) (given in the left table) and the gaps for \(V(x) = x^6 \).
References

Bender C M and Orszag S A 1978 *Advances Mathematical Methods for Scientists and Engineers* (New York: Springer) (Reprinted by Springer-Verlag (1999))

Garg A 2000 *Am. J. Phys.* 68 430

Messiah A 1991 *Quantum Mechanics* (New York: Wiley)

Mouchet A 2005 *J. Phys. A: Math. Gen.* 38 1039–47

Mouchet A 2006a *Nucl. Phys.* A 765 319–41

Mouchet A 2006b *J. Math. Phys.* 47 022109

Reed M and Simon B 1978 *Analysis of operators* *Methods of Modern Mathematical Physics* vol 4 (New York: Academic)

Voros A 1983 *Ann. Inst. H. Poincaré. Phys. Théor.* 39 211–338

Voros A 2000 *J. Phys. A: Math. Gen.* 33 7423–50