Numerical Evaluation of a Novel Development Mode for Challenging Oceanic Gas Hydrates Considering Methane Leakage

Shuaishuai Nie 1,2, Chen Chen 1,2, Min Chen 1,3,∗, Jian Song 4, Yafei Wang 1,2 and Yingrui Ma 1,2

1 College of Construction Engineering, Jilin University, Changchun 130026, China
2 Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China
3 Shanghai Geotechnical Engineering Detecting Centre Co., Ltd., Shanghai 200436, China
4 Sulige Gas Field Development Company, PetroChina Changqing Oilfield, Xi’an 710018, China
∗ Correspondence: cm@sigee.com.cn

Abstract: The exploitation of challenging oceanic gas hydrate reservoirs with low permeability and permeable boundary layers faces the challenges of methane leakage and low production. Considering this aspect, a novel five-spot injection–production system combined with hydraulic fracturing was proposed. In particular, the potential of this development mode, including hydrate dissociation, gas production, and gas capture, was evaluated in comparison with a three-spot injection–production system. The results showed that increasing the fracture conductivity cannot prevent CH4 leakage in the three-spot, and the leakage accounted for 5.6% of the total gas production, even at the maximum fracture conductivity of 40 D·cm. Additionally, the leakage amount increased as the well spacing increased, and the leakage accounted for 36.7% of the total gas production when the well spacing was 140 m. However, the proposed development mode completely addressed CH4 leakage and significantly increased gas production. The average gas production rate reached 142 m3/d per unit length of the horizontal section, which was expected to reach the commercial threshold. The variance analysis indicated that optimal plans for the challenging hydrates in the Shenhu area were well spacing of 100–120 m and fracture conductivity greater than 20 D·cm.

Keywords: natural gas hydrate; development mode; methane leakage; gas recovery; hydraulic fracturing; injection-production well pattern

1. Introduction

Natural gas hydrate (NGH) is a cage-structured crystalline solid formed by natural gas (primarily methane) and water under high pressure and low temperature [1]. The global natural gas reserves in NGH are approximately 2.5×1015 stm3, nearly twice the total carbon content of fossil fuels [2–4]; thus, NGH is generally considered to play a crucial role in future energy supply and climate management [5,6].

NGH is contended to be a challenging natural gas reservoir because its development faces complex phase transition, heat transfer, multiphase flow, formation deformation, and many other challenges, compared with conventional natural gas development [6–10]. According to the reservoir properties and occurrence environment, the challenging NGH reservoirs are characterized by low initial reservoir temperature (CH-k), lack of impermeable boundary layers (CH-b), high hydrate stability (CH-s), and low reservoir permeability (Ch-k) [11]. A vast majority of global oceanic NGH reservoirs have both low reservoir permeability and permeable boundary layers (CH-kb) [12,13], which is the main type of oceanic NGH and the primary target for commercial development.

The premise of efficient gas recovery from NGH reservoirs is to obtain a considerable hydrate decomposition rate. However, the depressurization method, which is generally
considered to be the most promising, exhibits a low hydrate decomposition rate and poor gas production in CH-kb [11,14,15]. This is caused by two mechanisms: first, the low reservoir permeability and permeable boundaries inhibit pressure drop transmission and fluid flow [16–18]; second, insufficient reservoir sensible heat further reduced the hydrate decomposition capacity [19,20]. Therefore, exploring the efficient development mode of CH-kb has recently become an urgent topic.

Depressurization combined with thermal fluid injection could provide extra heat for hydrate dissociation, which is a promising improved scheme for NGH development [21,22]. In particular, the injection–production system with multiple wells, such as two-spot [23] and three-spot (TS) well patterns [24], significantly increases drainage area and enhances gas recovery, and has been envisaged by Japan for the commercial development of NGH [25]. However, its direct applicability in CH-kb is problematic because the gas released by hydrate thermal decomposition is difficult to pass through the inter-well hydrate undisassociated zones where hydrates fill in pores and thereby form barriers to gas production. At present, using hydraulic fracturing (HF), a key stimulation technology in the commercial development of shale and tight gas, to create high conductivity artificial fractures between the injection well (well\textsubscript{i}) and production well (well\textsubscript{p}) is a promising solution. Several numerical simulations confirmed that fractures significantly enhanced hydrate decomposition and gas production capacity, wherein hydraulic fracturing combined with a three-spot well pattern (HF + TS) was used [26–28]. However, existing studies have not yet focused on the risk of methane leakage in hydraulic fractured CH-kb. When the hydrate decomposition front breaks through to the permeable boundaries, the gas released by hydrate thermal decomposition escapes into boundary layers under the drive of high injection pressure [29]. This is unfavorable for gas recovery and potentially pollutes the oceanic and atmospheric environment. Recently, methane released by oceanic hydrate dissociation is considered to play an important role in the global carbon cycle, as it is leaking through permeable seabed or natural fractures [30–34]. Furthermore, the massive release of methane induced by NGH development in the future may affect the atmospheric CH\textsubscript{4} budget and exacerbate the greenhouse effect [35–37]; therefore, there is an urgent need to evaluate the risk of methane leakage in hydraulic fractured CH-kb.

In our previous studies, we successfully addressed methane leakage in the non-fractured CH-kb using a novel five-spot well pattern, wherein two capture wells (well\textsubscript{c}) were arranged at the boundary layers to recover the escaped gas [29]. However, because the low reservoir permeability weakens the inter-well interaction, the spacing between injection and production wells is limited to 50 m. Small space well pattern significantly increases the drilling cost, reduces economic benefits, and is not conducive to the commercial development of CH-kb. Given this, a novelty development mode combining hydraulic fracturing and the five-spot injection-production system (HF + FS) is proposed here to address the aforementioned challenges. In this study, the production potential of the proposed development mode (HF + FS) for CH-kb at the SH2 site in the Shenhua area, South China Sea, was evaluated by comparing it with HF + TS. Specifically, the impacts of fracture conductivity (F\textsubscript{c}) and well spacing (W\textsubscript{s}) on hydrate decomposition, gas production, methane escape, and gas recovery under the two development modes were thoroughly discussed, and ideal development plans were obtained through variance analysis (ANOVA). These findings provide valuable references for the safe and efficient development of CH-kb.

2. Modeling

2.1. Development Plan Design

The implementation of HF + FS includes the following steps: deploying the five-spot well pattern, performing hydraulic fracturing between the well\textsubscript{i} and well\textsubscript{p}, and production with depressurization combined with thermal fluid injection.

As shown in Figure 1, all wells are horizontal and extend along the Y direction. The well\textsubscript{i} and well\textsubscript{p}, are arranged by drilling a three-branch horizontal well, wherein the middle section is used for injection, and the upper and lower sections are used for gas capture.
Additionally, well \(i \) and well \(p \) are connected through a horizontal artificial fracture created by hydraulic fracturing, and its width is 10 mm \([38,39]\). Due to the lack of engineering cases, the injection pressure and temperature in existing simulations are 16–22 MPa and 30–90 °C, respectively \([21–24,26–29]\). For comparison, we adopted the same injection–production scheme as that in our previous study \([29]\), that is, the injection temperature and pressure were 60 °C and 16 MPa, and the bottom hole pressures of well \(p \), upper well \(c \), and lower well \(c \) were 4, 10, and 11 MPa, respectively. Additionally, geomechanical issues are not considered in the model, because current research mainly focuses on CH\(_4\) migration and hydrate decomposition behavior under the two development modes.

Figure 1. (a) FS under the 3D view; (b) HF + FS and (c) HF + TS under the cross-sectional view of x-z.

2.2. Generalization of the Fracture

In this study, the fracture is generalized as porous media with high conductivity, and the multi-flow in the fracture is described as a continuous flow that follows Darcy’s law \([40]\). Therefore, the two-phase seepage in the matrix and fracture that considers the gravity and capillary forces can be given by Ref. \([41]\):

\[
F^l = -k^l \frac{k^l_r}{\mu^l} \left(\nabla P^l - \rho^l g \right),
\]

\[
F^g_i = -k^g \frac{k^g_r \rho^g C^g_i}{\mu^g} \left(1 + \frac{\omega}{P^g} \right) \left(\nabla P^g - \rho^g g \right),
\]

where \(F^l \) and \(F^g_i \) are the fluxes of the liquid and gas phases, respectively, wherein \(l, g, \) and \(i \) represent the liquid phase, gas phase, and gas component, respectively; \(k \) is the absolute permeability of the matrix, \(m^2 \); \(k^l_r \) and \(k^g_r \) are the relative permeabilities; \(\mu^l \) and \(\mu^g \) are the fluid viscosities, \(Pa\cdot s \); \(P^l \) and \(P^g \) are the fluid pressures, \(Pa \); \(\rho^l \) and \(\rho^g \) are the fluid densities, \(kg/m^3 \); \(g \) is the gravitational acceleration, \(m/s^2 \); \(C^g_i \) is the mass friction; and \(\omega \) is the Klinkenberg factor, \(Pa \).
The k^l and k^g are expressed as [41]:

\[
k^l = \left(\frac{S^l - S^l_{ir}}{1 - S^l_{ir}} \right)^{n^l},
\]

(3)

\[
k^g = \left(\frac{S^g - S^g_{ir}}{1 - S^g_{ir}} \right)^{n^g},
\]

(4)

where S^l and S^g are the water and gas saturation, S^l_{ir} and S^g_{ir} are the irreducible saturation of liquid and gas, n^l and n^g are the stone indexes of liquid and gas.

The value of P_l can be obtained by Ref. [42]:

\[
P_l = P_g + P_c,
\]

(5)

where P_c is the capillary pressure, Pa, and is expressed as [43]:

\[
P_c = -P_t \left[\left(\frac{S^l - S^l_{ir}}{1 - S^l_{ir}} \right)^{-1/\vartheta} - 1 \right]^{1-\vartheta},
\]

(6)

where P_t is threshold pressure, Pa; and ϑ is the pore structure index.

2.3. Numerical Code

To simulate the production behavior of CH-kb during depressurization and thermal fluid injection, the hydrate reaction based on thermodynamic conditions, mass conservation, energy conservation, and the flux of possible components and phases should be considered. The details of these governing equations have been given in previous studies [23,41]. Several simulators have been developed to solve these governing equations, such as Tough + Hydrate (T + H), and MH21-Hydrate [38]. T + H is developed by Lawrence Berkeley Laboratory and is popular in simulating field-scale hydrate reservoir development [41]. Three forms of heat exchange, heat conduction, heat convection, and heat radiation, are considered in T + H. Heat sources include hydrate reaction heat, phase change latent heat, the sensible heat of the reservoir itself, etc. The fluid flow in T + H follows Darcy’s law, and the convection and molecular diffusion of dissolved gases and inhibitors in water are considered. The code includes four components, including water, CH$_4$, CH$_4$ hydrate, and inhibitor, and four phases, including gas, liquid, ice, and hydrate. Hydrate decomposition is based on the equilibrium model or kinetic model [44]. Therefore, T + H is powerful in modeling non-isothermal hydrate decomposition, phase behavior, heat exchange, and fluid flow in hydrate reservoirs. Furthermore, the reliability of this code has been verified both at the laboratory and field scales [45,46]; thus, T + H is employed in this study.

2.4. Initial Conditions and Model Parameters

Post-drilling data at the SH2 site indicates that hydrates occur in argillaceous silt sediment below 185 mbsf (meter below seafloor), with thickness, porosity, and hydrate saturation of 0–40 m, 0.33–0.48, and 26–48%, respectively (40 m, 0.38, and 44%, respectively, in this study) [47]. Core testing revealed that the absolute permeabilities of the overburden, hydrate-bearing layer (HBL), and underburden were 10 mD [48]. Assuming that the reservoir properties are homogeneous along the Y direction, horizontal wells with long production sections are used for gas recovery and fluid injection, thus the thickness of the model in the Y direction could be set to 1 m, as shown in Figure 1.

The reservoir temperature and geothermal gradients were 14.87 °C and 0.047 °C/m, respectively [49]; therefore, the domain temperature can be obtained. The pore water is assumed to be interconnected due to the permeable boundary layers, and the pressure distribution was derived from the reservoir pressure of 14.97 MPa and pressure gradient.
of 0.01 MPa/m [49]. The temperature and pressure at the upper and lower boundaries of the model are considered constant because HBL is covered by seawater and underlain by enough thick sediment. Based on this, the initial equilibrium state of the reservoir is obtained (Figure 2). The values of other model parameters are listed in Table 1.

Figure 2. The initial equilibrium of the reservoir, including reservoir temperature (a), pressure (b), and hydrate distribution (c).

Table 1. Model parameters.

Parameters	Value
Formation thickness (Overlayer, HBL, and underlayer)	30, 40, 30 m [26]
Intrinsic permeability of wells	1×10^{-9} m2 ($=1000$ D) [11]
Intrinsic porosity of wells	1 [11]
Initial water saturation (Overlayer, HBL, and underlayer)	1, 0.56, 1
Porewater salinity (Overlayer, HBL, and underlayer)	0.03
Gas composition	CH$_4$ 100%
Dry thermal conductivity (All deposits)	1 W/m/K
Wet thermal conductivity (All deposits)	3.10 W/m/K
Grain density (All deposits)	2600 kg/m3
Grain-specific heat (All deposits)	1000 J/K/kg
Threshold pressure P_t	1×10^5 Pa [27]
pore structure index ϑ	0.45
Index for liquid phase n^l	3.50
Index for gas phase n^g	3.50
Irreducible aqueous saturation S_{lir}	0.30
Irreducible gas saturation S_{gir}	0.03

2.5. Simulation Scenarios

The fracture conductivity depends on the stress condition, proppant performance, etc., mostly in dozens of D cm [34–37]. To obtain an ideal development plan, four levels of fracture conductivity are set at 5, 10, 20, and 40 D-cm, and four levels are set at 80, 100, 120, and 140 m for well spacing, as presented in Table 2.

Table 2. Simulation scheme.

Scenario Number	Development Mode	W_s (m)	F_c (D-cm)	Scenario Number	Development Mode	W_s (m)	F_c (D-cm)
01#	TS	100		13#	HF + FS	80	10
02#	HF + TS	100	5	14#	HF + FS	100	10
03#	HF + TS	100	10	15#	HF + FS	120	10
04#	HF + TS	100	20	16#	HF + FS	140	10
05#	HF + TS	100	40	17#	HF + FS	80	20
06#	HF + TS	80	20	18#	HF + FS	100	20
07#	HF + TS	120	20	19#	HF + FS	120	20
08#	HF + TS	140	20	20#	HF + FS	140	20
09#	HF + FS	80	5	21#	HF + FS	80	40
Table 2. Cont.

Scenario Number	Development Mode	W_s (m)	F_c (D·cm)	Scenario Number	Development Mode	W_s (m)	F_c (D·cm)
10#	HF + FS	100	5	22#	HF + FS	100	40
11#	HF + FS	120	5	23#	HF + FS	120	40
12#	HF + FS	140	5	24#	HF + FS	140	40

3. Results

3.1. Comparison of Different Development Modes

Based on the simulation results of scenarios 01, 04, and 18#, we compared the production potential of different development modes (TS, HF + TS, HF + FS) for CH-kb.

3.1.1. Spatial Evolution of the Physical Properties

1. Reservoir temperature evolution

Figure 3 depicts the reservoir temperature evolution in different development modes. In TS, the high-temperature (higher than 30 °C) zone initially spreads circularly around well i (Figure 3a,b). At 1800 d, the thermal decomposition front advanced to the boundaries (Figure 3c), and hot water flowed into the boundary layers, resulting in non-uniform heat diffusion (Figure 3c). Compared to that in TS, the temperature evolution in HF + TS differed considerably. First, hot water mainly flowed into the fracture, resulting in a faster horizontal heat diffusion rate. Second, the hot water injection was strengthened by the fracture, leading to a larger heating area. At 360 d, the horizontal and vertical heating radii are 68 and 9 m, respectively (Figure 3d), which are higher than that at 300 d (7 m) in TS. At 600 d, the high temperature around the well p indicates that hot water has flowed into it (Figure 3e). This is a phenomenon known as water-flooding in the petroleum industry that dramatically increases the water yield, and the time of occurrence is T_f. At 1800 d, the vertical heating radius reached 44 m (Figure 3f). In HF + FS, vertical heat diffused faster at 600 d (Figure 3h). This is because the low pressure of well c induces more hot water to migrate vertically. Moreover, since the well c prevents hot water from passing through the permeable boundaries, the vertical heating radius is still 20 m at 1800 d (Figure 2i). Therefore, the heating efficiency is significantly enhanced by the fracture, and hot water infiltration into the boundary layer is avoided by well c.

![Figure 3](image-url)
2. Reservoir pressure evolution

Figure 4 shows the reservoir pressure evolution in different development modes. In TS, two low-pressure (≤13 MPa) zones and a high-pressure (≥15 MPa) zone are formed around well \(p \) and well \(i \) (Figure 4a–c), respectively. As the pressure transmission and fluid injection are inhibited by the low reservoir permeability, both the low- and high-pressure zones exhibit a slow diffusion rate. In HF + TS, the high-pressure zone diffuses faster along the fracture (Figure 4d). Moreover, the radius of the low-pressure zone is 48 m at 1800 d (Figure 4f), which is 2.09 times that in TS. At 1800 d, the radius of the high-pressure zone shrinks to 15 m due to the pressure relief (Figure 4f). In HF + FS, the low-pressure transmission of well \(p \) is the same as that in HF + TS, and two low-pressure zones are also formed around well \(c \), which intersect with the low-pressure zones formed by well \(p \) (Figure 4i). This indicates that the gas is well recovered, thereby relieving the reservoir pressure.

![Figure 4](image)

Figure 4. Reservoir pressure evolution: in TS at (a) 300, (b) 600, and (c) 1800 d; in HF + TS at (d) 300, (e) 600, and (f) 1800 d; and in HF + FS at (g) 300, (h) 600, and (i) 1800 d. The fracture is located at \(Z = 50 \) m in subgraph (d–i).

3. Hydrate saturation evolution

Figure 5 shows the hydrate saturation evolution in different development modes. In TS, the depressurization decomposition zone and thermal decomposition zone expand circularly with a slow expansion rate (Figure 5a,b). At 1800 d, the decomposition radii of the thermal stimulation and depressurization are 13 and 21 m (Figure 5c), respectively, indicating that thermal stimulation has a better hydrate decomposition efficiency. Moreover, the gas leaking into the overburden recombines with free water and re-form hydrates (Figure 5c). In HF + TS, hydrates dissociate rapidly along the fracture, while more hydrates are generated in the overburden (Figure 5d–f). In HF + FS, the hydrate saturation evolution is similar to that in HF + TS, but no hydrate in the overburden (Figure 5g–i). Therefore, the arrangement of well \(c \) effectively avoids the secondary formation of hydrate in the overburden.
Figure 5. Hydrate saturation evolution: in TS at (a) 300, (b) 600, and (c) 1800 d; in HF + TS at (d) 300, (e) 600, and (f) 1800 d; and in HF + FS at (g) 300, (h) 600, and (i) 1800 d. The fracture is located at $Z = 50$ m in subgraph (d–i).

4. Gas saturation evolution

Figure 6 displays the gas saturation evolution in different development modes. In TS, gas saturation evolution is similar to that of hydrate saturation. The gas released by thermal stimulation accumulated at the decomposition front, and cannot be produced (Figure 6a–c). Thus, there is no synergy effect between well$_i$ and well$_p$, and thermally decomposed gas migrates into the boundary layer (Figure 6c). In HF + TS, the gas released by thermal stimulation migrates to well$_p$ through the fracture (Figure 6d–f). However, more gas leaked into the boundary layers (Figure 6d–f), and the farthest vertical escape position was 46 m away from well$_i$ (Figure 6f), which was higher than that in TS (35 m). In HF + FS, the gas saturation evolution is similar to that in HF + TS, but there is no methane in the boundary layers (Figure 6g–i). Therefore, methane leakage is addressed by well$_c$.

Figure 6. Gas saturation evolution: in TS at (a) 300, (b) 600, and (c) 1800 d; in HF + TS at (d) 300, (e) 600, and (f) 1800 d; and in HF + FS at (g) 300, (h) 600, and (i) 1800 d. The fracture is located at $Z = 50$ m in subgraph (d–i).
3.1.2. Hydrate Dissociation Behavior

Figure 7 shows the variation of the CH$_4$ released rate (Q_r) and hydrate dissociation ratio (D_r) in different development modes, wherein D_r is the ratio between the cumulative decomposed hydrate mass (M_d, kg) and the original hydrate mass (M_o, kg) in the reservoir, and is expressed as:

$$D_r = \frac{M_d}{M_o}$$ \hfill (7)

![Figure 7. Q_r and D_r variation in different development modes.](image)

In TS, Q_r is minimum and stable at approximately 50 m3/d. In HF + TS, the variation of Q_r exhibited three stages. In the first stage (0–50 d), the stable state of the hydrates was broken instantaneously; thus, the initial Q_r value was the highest. In the second stage (50–450 d), Q_r stabilized around 200 m3/d. In the third stage (450–1800 d), Q_r gradually decreases. This is caused by two factors: first, hot water bursts into the well along the fracture, which reduces the heating efficiency. Second, the hydrate decomposition front gradually moves away from the fracture. In HF + FS, the evolution of Q_r was similar to that in HF + TS, but it was higher in the first two stages and declined faster in the third stage. This is because the presence of the well further strengthened the initial injection, while the subsequent water-flooded further reduced the heating efficiency. The final D_r in TS, HF + TS, and HF + FS is 31%, 93%, and 95%, respectively. This indicates that the final D_r is improved by the fracture, whereas it is barely affected by the existence of well$_c$.

3.1.3. Gas Production Behavior

Figure 8 displays the variation of the gas production rate (Q_p) and cumulative gas production (V_p) in different development modes. In TS, Q_p is minimum and totally contributed by depressurization. In HF + TS, affected by Q_r, Q_p also presents three stages. In the first stage (0–85 d), Q_p decreases rapidly. Subsequently (85–374 d), gas migrates to well$_p$; thus, Q_p increases and reaches its peak of 143 m3/d, which is 5.72 times that in TS. In the third stage (374–1800 d), the decrease of Q_r leads to a decrease in Q_p. For HF + FS, the variation of Q_p is similar to that in HF + TS. Attributed to the gas recovery by well$_c$, the maximum Q_p reaches 203 m3/d, which is 1.43 times that in HF + TS. The final V_p in HF + FS is 20.75×10^4 m3, which is 5.47 and 1.18 times of TS and HF + TS, respectively. Therefore, well$_c$ and the fracture synergistically enhance the production.
3.1.4. Methane Leakage, Gas Capture, and Recovery Efficiency

The volume of methane leakage \(V_l \), \(m^3 \) consists of two parts: the volume of free gas in the boundary layers \(V_f \), \(m^3 \) and the volume of gas trapped in re-formed hydrates \(V_h \), \(m^3 \), and is expressed as:

\[
V_l = V_f + V_h, \tag{8}
\]

To characterize the methane capture ability of well \(c \), the cumulative gas production of well \(c \) was defined as the volume of captured gas \(V_c \). Recovery efficiency \(R_e \) is defined as the ratio between cumulative gas production \(V_p \), \(m^3 \) and the volume of gas released by hydrate decomposition \(V_r \), \(m^3 \), and is expressed as:

\[
R_e = \frac{V_p}{V_r}, \tag{9}
\]

Figure 9 depicts \(V_l \) in TS and HF + TS, \(V_c \) in HF + FS, and \(R_e \) in different development modes at 1800 d. The \(V_l \) in TS and HF + TS are 15,080 and 18,389 \(m^3 \), respectively, indicating that \(CH_4 \) leakage is aggravated by the fracture. The \(V_c \) in HF + FS is 40,750 \(m^3 \) and there is no \(CH_4 \) leakage, which is consistent with the gas distribution shown in Figure 7i. Moreover, \(V_c \) is higher than \(V_l \), indicating that well \(c \) also enhances \(V_p \). The \(R_e \) in HF + FS is 0.93, an increase of 0.14 and 0.42 relative to TS and HF + TS, respectively. Therefore, HF + FS is a better development mode for CH-kb. It is important to note that 7% of the gas was trapped in the reservoir at 1800 d (Figure 6i). To avoid methane leakage, depressurized production can be maintained until free gas is completely produced.
3.2. The Effect of Fracture Conductivity

Scenarios 02–05, 10, 14, 18, and 22# simulated the production behavior of the two development modes (HF + TS, HF + FS) with different fracture conductivity at the well spacing of 100 m. By comparing these simulation results, the effect of fracture conductivity on production behavior is analyzed.

3.2.1. Hydrate Dissociation Behavior

Figure 10 depicts the variation of Q_r in HF + TS and HF + FS at different F_c. In HF + TS, Q_r varies gently around 90 m3/d when F_c is 5 D·cm, which is similar to that in TS, indicating that an F_c value of 5 D·cm is insufficient for gas migration. When F_c is 10 D·cm, T_f is 1000 d. For F_c of 20 and 40 D·cm, T_f further increases to 400 and 70 d, respectively. Additionally, Q_r at 1800 d is lower when $F_c \geq 20$ D·cm than that when $F_c \leq 10$ D·cm. This is attributed to the inadequacy of remaining hydrates for the gas supply when $F_c \geq 20$ D·cm.

In HF + FS, Q_r is higher at the early stage of production and lower at the later stage of production. The final D_r values in HF + TS are 0.51, 0.82, 0.93, and 0.96 for F_c of 5, 10, 20, and 40 D·cm, respectively (Figure 11), indicating that D_r increases as F_c increases, but the increased rate gradually decreases. The final D_r in HF + FS and HF + TS are almost the same, thus the existence of wellc has little effect on hydrate decomposition.

Figure 10. The variation of Q_r in HF + TS and HF + FS at different F_c.

Figure 9. V_t in TS and HF + TS, V_c in HF + FS, and R_c in the different development modes.
3.2.2. Gas Production Behavior

Figure 12 depicts the variation of Q_p in HF + TS and HF + FS at different F_c. In HF + TS, Q_p is lower than 50 m3/d and gradually decreases when the F_c is 5 D·cm. When F_c is 10 D·cm, Q_p shows a downward trend in the first 750 d as the gas released by thermal stimulation does not migrate to the well. Subsequently, Q_p increases and peaks at 85 m3/d. When F_c is 20 and 40 D·cm, the gas migration speed is faster; thus, Q_p starts to rise at 100 and 45 d, showing peak values of 143 and 232 m3/d, respectively. In HF + FS, Q_p is higher and shows a period of increase even at a low F_c value. Figure 13 shows that the final V_p values in HF + TS and HF + FS are 5.64 and 10.52, 12.93 and 17.56, 17.46 and 20.75, and 19.94 and 22.26 × 104 m3 for F_c values of 5, 10, 20, and 40 D·cm, respectively. That is, the final V_p increases with increasing F_c. Compared to HF + TS, the final V_p values in HF + FS increased by 86%, 35%, 18%, and 11%, respectively, indicating that the contribution of well to V_p is greater at a lower F_c value.
3.2.3. Methane Leakage, Gas Capture, and Recovery Efficiency

Figure 14 displays the variation of \(V_l \), \(V_c \), and \(R_e \) with \(F_c \). Notably, \(V_l \) and \(V_c \) initially increase and subsequently decrease with the increase in \(F_c \). This can be explained by the impacts of \(F_c \) on hydrate decomposition and gas migration. In particular, increasing \(F_c \) in the range of 5–10 D·cm significantly improved the hydrate decomposition efficiency, while the gas migration capacity was insufficient, thereby exacerbating the \(\text{CH}_4 \) leakage. When \(F_c > 20 \) D·cm, the improvement of the gas migration capacity is more significant than the increase in \(Q_r \); thus, more gas was produced by well\(p \), which decreased the \(V_l \) and \(V_c \) values. However, a leakage volume of 11,236 m\(^3\) still exists at the highest \(F_c \), indicating that the reduction of \(V_l \) by increasing the \(F_c \) is unsatisfactory. Additionally, \(V_c \) was higher than \(V_l \), indicating that all escaped gas was recovered by well\(c \).

\[R_e \] increases with increasing \(F_c \) while the increased rate decreases gradually. Additionally, the \(R_e \) values in HF + FS increased by 0.31, 0.21, 0.14, and 0.10 compared to those in HF + TS at \(F_c \) of 5, 10, 20, and 40 D·cm, respectively. This indicated that the contribution of well\(c \) to \(R_e \) decreases as \(F_c \) increases.
3.3. The Effect of Well Spacing

Based on the simulation results of scenarios 04, 06–08, and 17–20#, we compared the impacts of W_s on the production potential of HF + TS and HF + FS.

3.3.1. Hydrate Dissociation Behavior

Figure 15 displays the variation of Q_r in HF + TS and HF + FS at different W_s. In the first 450 days, Q_r decreased as W_s increased. This is attributed to the lower pressure gradient in the fracture, which reduces the fluid flow velocity. Under the same W_s, the Q_r in HF + FS in the first 450 days was higher than that in HF + TS, but it dropped sharply after 450 days. Figure 16 shows that the final D_r values in HF + TS and HF + FS are 0.98 and 0.98 ($W_s = 80$ m), 0.93 and 0.95 ($W_s = 100$ m), 0.83 and 0.87 ($W_s = 120$ m), and 0.70 and 0.72 ($W_s = 140$ m), respectively. This indicated that the D_r decreases as W_s increases, whereas the existence of wellc negligibly affected the final D_r.

![Figure 15](image1.png)

Figure 15. The variation of Q_r in HF + TS and HF + FS at different W_s.

![Figure 16](image2.png)

Figure 16. The variation of D_r in HF + TS and HF + FS at different W_s.
3.3.2. Gas Production Behavior

Figure 17 shows the variation of Q_p in HF + TS and HF + FS at different W_s. When W_s is 80 m, Q_p increased the fastest at the initial production stage, while it declines the most rapidly after 450 days. This is because when W_s is too small, production wells are flooded earlier and there is not enough hydrate to maintain long-term production. In HF + FS, the variation in Q_p presents three phases. However, in HF + TS, the pressure gradient in the fracture was insufficient for gas migration when $W_s \geq 120$ m, thus, Q_p is lower and there is no rising phase. The final V_p values in HF + FS were 18.62, 20.75, 21.19, and 18.70×10^4 m3 at W_s values of 80, 100, 120, and 140 m, respectively. These values were 1.05, 1.19, 1.47, and 1.67 times those in HF + TS (Figure 18), indicating that the enhancement of the V_p increases as W_s increases. Additionally, the reasonable W_s should be 100–120 m because V_p under this condition is more attractive.

Figure 17. The variation of Q_p in HF + TS and HF + FS at different W_s.

Figure 18. The variation of V_p in HF + TS and HF + FS at different W_s.
3.3.3. Methane Leakage, Gas Capture, and Recovery Efficiency

Figure 19 depicts the variation of V_l, V_c, and R_e with W_s. Notably, V_l and V_c increase with increasing W_s, indicating that the methane leakage is aggravated after increasing the W_s. Furthermore, V_c is higher than V_l even at W_s of 140 m, indicating no CH$_4$ leakage in HF + FS. The R_e values in HF + TS and HF + FS are 0.91 and 1, 0.79 and 0.93, 0.6 and 0.86, and 0.54 and 0.79 at W_s values of 80, 100, 120, and 140 m, respectively. Thus, with increasing W_s, more gas is trapped, and the contribution of well_c to R_e is greater.

Figure 19. The variation of V_l, V_c, and R_e with W_s.

3.4. Variance Analysis

Analysis of variance (ANOVA) can examine the significance of the difference between the means of the factors [50]. In this study, a two-factor mixed variance model is established through the “aov” function in the “R language” (https://www.r-project.org/ (accessed on 18 June 2022)). The V_p, V_c, and R_e values of 300, 600, 900, 1200, 1500, and 1800 d in HF + FS are considered evaluation indicators, and F_c and W_s are the independent variables. Thus, the significance of F_c and W_s are obtained, as shown in Figure 20. Additionally, the main effect and interaction effect of F_c and W_s were visualized, as shown in Figure 21.

Figure 20. The evolution of significance levels of W_s and F_c for (a) V_p, (b) V_c, and (c) R_e. Significance levels and their codes: most “***”; moderate “**”; significant “*”; insignificant ‘_’ and ‘’.
Figure 21. Main effect and interaction effect of W_S and F_c to V_p at (a) 300, (b) 900, and (c) 1800 d; to V_c at (d) 300, (e) 900, and (f) 1800 d; and to R_e at (g) 300, (h) 900, and (i) 1800 d. In each subgraph, the up-left and down-right describe the interaction effect, and the up-right and the down-left describe the main effect.

3.4.1. Gas Production

As shown in Figure 20a, the significance of F_c to V_p is highest in the entire production period, and the significance level of W_S is lower and gradually decreases as the production progresses. Thus, F_c has a more significant impact on V_p. Moreover, F_c has a positive effect on V_p, whereas W_S has a negative effect on it, except at W_S of 80 m (Figure 21a–c). Thus, it is necessary to further improve F_c to overcome the negative effects of W_S to enhance production. For the current simulations, the average Q_p per unit horizontal section length is higher than 100 m3/d when $F_c \geq 20$ D·cm, and a horizontal section length of 600 m can reach the commercial threshold of 60,000 m3/d [25,48,49].

3.4.2. Gas Capture

Figure 20b exhibits the significance level of F_c to V_c is highest at 300 d, which subsequently becomes insignificant at 900 d. The significance level of W_S increases gradually and reaches the maximum at 1200 d. Thus, the initial and final V_c values are mainly controlled...
by F_c and W_s, respectively. As shown in Figure 21d, F_c has a positive effect on V_c at 300 d, indicating that the rapid decomposition of hydrate caused by the fracture increased the risk of CH$_4$ leakage. After 900 d (Figure 21e,f), W_s exhibited a positive effect on V_c. Furthermore, the effect of F_c on V_c changed from positive to negative as the production progresses. This is because the thermal decomposition front gradually moves away from well c, and more gas is produced when F_c is higher. Therefore, a higher F_c reduces V_c, while the necessity of deploying well c increases under larger W_s.

3.4.3. Recovery Efficiency

As shown in Figure 20c, both F_c and W_s are insignificant to R_e at the initial stage, and their significance levels were enhanced as the production progresses. Moreover, the significance level of W_s is higher than that of F_c, indicating that W_s have a more significant impact on R_e. Additionally, the negative effect of W_s on R_e and the positive effect of F_c on R_e become increasingly clear as the production progresses (Figure 21g–i). Therefore, a higher R_e can be obtained with a smaller W_s and a greater F_c, e.g., R_e values were higher than 0.85 for $W_s \leq 120$ m and $F_c \geq 20$ D·cm.

4. Discussion

The previous study has obtained the optimal development plan of FS for non-hydraulically fractured reservoirs [29]. To evaluate the production potential of the proposed development mode in this study, the development indicators of the two are compared, as shown in Figure 22. The fracture conductivity and well spacing of the proposed development mode used for comparison here are 40 D·cm and 120 m, respectively. It can be seen that the well spacing is 50 m in a non-hydraulically fractured reservoir, which is only 41.7% of that in a hydraulically fractured reservoir. The cumulative gas production in hydraulically fractured reservoir is 243.2×10^3 m3, which is 3.1 times of non-hydraulically fractured reservoir. The volume of captured gas increases from 22.9 to 43.1×10^3 m3, indicating that there is a greater risk of gas escape in hydraulically fractured reservoir. Additionally, the recovery efficiency increases by 6.3% after fracturing, and the horizontal well section length required to reach the commercial gas production level is reduced from 1362 m to 444 m. Therefore, the proposed development mode is helpful to reduce drilling costs and improve the economics of challenging hydrate development.

![Figure 22. Comparison of development indicators between the non hydraulically fractured reservoir and hydraulically fractured reservoir using FS.](image-url)
It is important to note that the present simulations were conducted under an ideal fracture morphology as field trials of hydraulic fracturing in hydrate reservoirs have not yet been carried out. In fact, for weakly consolidated hydrate reservoirs, it is generally considered that hydraulic fracturing is challenging, and the fracture propagation patterns are complex due to the inhomogeneous hydrates in sediments [51–53]. Thus, it is necessary to further evaluate the effect of fracturing morphology on reservoir stimulation and methane leakage. Additionally, various injection-production well patterns, such as two-, three-, five-, seven-, and nine-spot, have been designed in conventional oil and gas development, and there is an optimal matching relationship between fracture distribution and injection–production system [54–56]. Unlike conventional oil and gas, the design of hydrate development mode needs to consider the methane leakage due to the lack of impermeable boundaries. Furthermore, the methane escape behavior is affected by reservoir-cover conditions and injection–production parameters. Consequently, to safely and efficiently recover methane from challenging hydrates, the applicability of different development modes to challenging hydrates with various occurrence conditions should be further explored.

5. Conclusions

In this study, we compared the production potential of the three-spot and five-spot well patterns for hydraulically fractured CH-kb reservoirs. The effects of fracture conductivity and well spacing on methane leakage and gas production were investigated. The main conclusions are as follows.

1. For the three-spot well pattern, there was considerable methane leakage into the permeable boundary layers. The leakage volume increases as the well spacing increases and reaches 46,341 m3 when the well spacing is 140 m. The impact of fracture conductivity on methane leakage shows two opposite stages: when the fracture conductivity is lower than 20 D·cm, the leakage volume increases as the fracture conductivity increases; when the fracture conductivity is higher than 20 D·cm, the opposite is true. However, enhancing the fracture conductivity can not prevent methane leakage, as a leakage volume of 11,236 m3 was observed at the greatest fracture conductivity of 40 D·cm.

2. The proposed five-spot well pattern combined with hydraulic fracturing could realize the safe development of CH-kb under a large well spacing. Even at the well spacing of 140 m, there is still no methane leakage. Additionally, increasing the well spacing increased the risk of methane leakage. Consequently, deploying capture wells is crucial for expanding safe well spacing.

3. Compared with the three-spot, the five-spot further increases the gas production and recovery and is expected to meet the commercial production threshold of hydrates. In the current simulations, the five-spot maximizes total gas production and recovery efficiency by 87 and 31%, respectively, compared to the three-spot. The average gas production rate reached 142 m3/d per unit horizontal section length, and a horizontal section length of 425 m was estimated to meet the commercial threshold.

4. The development mode of hydraulic fracturing combined with the five-spot well pattern enhances the production potential of CH-kb while addressing methane leakage, which is safe and efficient for the development of low-permeable hydrate reservoirs with permeable boundary layers. In particular, a comprehensive analysis of gas production, methane capture, and gas recovery indicates that the CH-kb hydrate reservoir at the SH2 site in the Shenhu area is suitable for a well spacing of 100–120 m and fracture conductivity greater than 20 D·cm.

Author Contributions: Conceptualization, S.N. and C.C.; methodology, S.N. and M.C.; software, S.N. and M.C.; validation, M.C. and J.S.; formal analysis, S.N. and M.C.; investigation, J.S.; resources, C.C.; data curation, J.S. and Y.W.; writing—original draft preparation, S.N.; writing—review and editing,
Sustainability 2022, 14, 14460

Funding: This research was funded by National Natural Science Foundation of China, grant number 41672361.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sloan, E.D., Jr.; Koh, C.A. Clathrate Hydrates of Natural Gases; Taylor & Francis Group: New York, NY, USA, 2008.
2. Miklov, A.V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Sci. Rev. 2004, 66, 183–197. [CrossRef]
3. Klauda, J.B.; Sandler, S.I. Global Distribution of Methane Hydrate in Ocean Sediment. Energy Fuels 2005, 19, 459–470. [CrossRef]
4. Kvenvolden, K.A. Methane hydrate—A major reservoir of carbon in the shallow geosphere? Chem. Geol. 1988, 71, 41–51. [CrossRef]
5. Makogon, Y.F. Natural gas hydrates—A promising source of energy. J. Nat. Gas Sci. Eng. 2010, 2, 49–59. [CrossRef]
6. Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [CrossRef]
7. Kayen, R.E.; Lee, H.J. Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort sea margin. Mar. Geotechnol. 1991, 10, 125–141. [CrossRef]
8. Liu, L.; Ryu, B.; Sun, Z.; Wu, N.; Cao, H.; Geng, W.; Zhang, X.; Jia, Y.; Xu, C.; Guo, L.; et al. Monitoring and research on environmental impacts related to marine natural gas hydrates: Review and future perspective. J. Nat. Gas Sci. Eng. 2019, 65, 82–107. [CrossRef]
9. Sun, H.; Chen, B.; Yang, M. Effect of multiphase flow on natural gas hydrate production in marine sediment. J. Nat. Gas Sci. Eng. 2020, 73, 103066. [CrossRef]
10. Zhu, H.; Xu, T.; Yuan, Y.; Feng, G.; Xia, Y.; Xin, X. Numerical analysis of sand production during natural gas extraction from unconsolidated hydrate-bearing sediments. J. Nat. Gas Sci. Eng. 2020, 76, 103229. [CrossRef]
11. Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K. Evaluation of the Gas Production Potential of Some Particularly Challenging Types of Oceanic Hydrate Deposits. Transp. Porous Media 2011, 90, 269–299. [CrossRef]
12. Dai, S.; Santamarina, J.C. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications; Report DOE-GT-0009897-1; Georgia Institute of Technology: Atlanta, GA, USA, 2017. Available online: https://wwwosti.gov/servlets/purl/1417303 (accessed on 7 July 2022). [CrossRef]
13. Boswell, R.; Collett, T.S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011, 4, 1206–1215. [CrossRef]
14. Li, X.-S.; Xu, C.-G.; Zhang, Y.; Ruan, X.-K.; Li, G.; Wang, Y. Investigation into gas production from natural gas hydrate: A review. Appl. Energy 2016, 172, 286–322. [CrossRef]
15. Yang, M.; Gao, Y.; Zhou, H.; Chen, B.; Li, Y. Gas production from different classes of methane hydrate deposits by the depressurization method. Int. J. Energy Res. 2019, 43, 5493–5505. [CrossRef]
16. Sun, J.; Ning, F.; Li, S.; Zhang, K.; Liu, T.; Zhang, L.; Jiang, G.; Wu, N. Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurising: The effect of burden permeability. J. Unconv. Oil Gas Resour. 2015, 12, 23–33. [CrossRef]
17. Gao, Y.; Yang, M.; Zheng, J.-N.; Chen, B. Production characteristics of two class water-Excess methane hydrate deposits during depressurization. Fuel 2018, 232, 99–107. [CrossRef]
18. Wang, B.; Fan, Z.; Zhao, J.; Lv, X.; Pang, W.; Li, Q. Influence of intrinsic permeability of reservoir rocks on gas recovery from hydrate deposits via a combined depressurization and thermal stimulation approach. Appl. Energy 2018, 229, 858–871. [CrossRef]
19. Bhade, P.; Pirhani, J. Gas production from layered methane hydrate reservoirs. Energy 2015, 82, 686–696. [CrossRef]
20. Ahmadi, G.; Ji, C.; Smith, D.H. Production of natural gas from methane hydrate by a constant downhole pressure well. Energy Convers. Manage. 2007, 48, 2053–2068. [CrossRef]
21. Wan, Q.-C.; Si, H.; Li, B.; Li, G. Heat transfer analysis of methane hydrate dissociation by depressurization and thermal stimulation. Int. J. Heat Mass Transf. 2018, 127, 206–217. [CrossRef]
22. Ma, X.; Sun, Y.; Liu, B.; Guo, W.; Jia, R.; Li, B.; Li, S. Numerical study of depressurization and hot water injection for gas hydrate production in China’s first offshore test site. J. Nat. Gas Sci. Eng. 2020, 83, 103530. [CrossRef]
23. Li, B.; Liang, Y.-P.; Li, X.-S.; Zhou, L. A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system. Appl. Energy 2016, 176, 12–21. [CrossRef]
24. Jin, G.; Xu, T.; Xin, X.; Wei, M.; Liu, C. Numerical evaluation of the methane production from unconfined gas hydrate-bearing sediment by thermal stimulation and depressurization in Shenhu area, South China Sea. J. Nat. Gas Sci. Eng. 2016, 33, 497–508. [CrossRef]

25. Methane Hydrate Resource Development Research Consortium. MH21-S R&D Consortium for Pore Filling Hydrate in Sand 2017. Available online: http://www.mh21japan.gr.jp/mh21wp/wp-content/uploads/mh21form2017_doc01.pdf (accessed on 3 May 2022).

26. Chen, C.; Meng, Y.; Zhong, X.; Nie, S.; Ma, Y.; Pan, D.; Liu, K.; Li, X.; Gao, S. Research on the Influence of Injection–Production Parameters on Challenging Natural Gas Hydrate Exploitation Using Depressurization Combined with Thermal Injection Stimulated by Hydraulic Fracturing. Energy Fuels 2021, 35, 15589–15606. [CrossRef]

27. Zhong, X.; Pan, D.; Zhai, L.; Zhui, Y.; Zhang, H.; Zhang, Y.; Wang, Y.; Li, X.; Chen, C. Evaluation of the gas production enhancement effect of hydraulic fracturing on combining depressurization with thermal stimulation from challenging ocean hydrate reservoirs. J. Nat. Gas Sci. Eng. 2020, 83, 103621. [CrossRef]

28. Ju, X.; Liu, F.; Fu, P.; White, M.D.; Settgast, R.R.; Morris, J.P. Gas Production from Hot Water Circulation through Hydraulic Fractures in Methane Hydrate-Bearing Sediments: THC-Coupled Simulation of Production Mechanisms. Energy Fuels 2020, 34, 4448–4465. [CrossRef]

29. Nie, S.; Zhong, X.; Ma, Y.; Pan, D.; Liu, K.; Wang, Y.; Li, X.; Chen, C. Numerical simulation of a new methodology to exploit challenging marine hydrate reservoirs without impermeable boundaries. J. Nat. Gas Sci. Eng. 2021, 96, 104249. [CrossRef]

30. Skarke, A.; Ruppel, C.; Kodis, M.; Brothers, D.; Lobecker, E. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 2014, 7, 657–661. [CrossRef]

31. Pillsbury, L.; Weber, T.C. Fate of methane gas bubbles emitted from the seafloor along the Western Atlantic Margin as observed by active sonar. J. Acoust. Soc. Am. 2015, 137, 2361. [CrossRef]

32. McGinnis, D.F.; Greinert, J.; Artemov, Y.; Beaubien, S.E.; Wäst, A. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? J. Geophys. Res. 2006, 111, C09007. [CrossRef]

33. Daigle, H.; Bangs, N.L.; Dugan, B. Transient hydraulic fracturing and gas release in methane hydrate settings: A case study from southern Hydrate Ridge. Geochim. Geophys. Geosyst. 2011, 12, 12022–12036. [CrossRef]

34. Jin, Z.-H.; Johnson, S.E.; Cook, A.E. Crack extension induced by dissociation of fracture-hosted methane gas hydrate. Geophys. Res. Lett. 2015, 42, 8522–8529. [CrossRef]

35. Zhang, Y.; Zhai, W.-D. Shallow-ocean methane leakage and degassing to the atmosphere: Triggered by offshore oil-gas and methane hydrate explorations. Front. Mar. Sci. 2015, 2, 34. [CrossRef]

36. Brown, P.; Sanders, R.; McDonagh, E.; Henson, S.; Best, A.I.; Poulton, A.J.; Mayor, D.J. Impacts and effects of ocean warming on carbon management including methane hydrates. In Explaining Ocean Warming: Causes, Scale, Effects and Consequences. Full Report; Baxter, J.M., Laffoley, D., Eds.; IUCN The World Conservation Union: Gland, Switzerland, 2016; pp. 373–388.

37. Pierce, B.S.; Collett, T.S. Energy resource potential of natural gas hydrates. In Proceedings of the 5th Conference & Exposition Geophysics, Hyderabad, India, 15–17 January 2004; pp. 899–903.

38. Chen, C.; Yang, L.; Jia, R.; Sun, Y.; Guo, W.; Chen, Y.; Li, X. Simulation Study on the Effect of Fracturing Technology on the Production Efficiency of Natural Gas Hydrate. Energies 2017, 10, 1241. [CrossRef]

39. Yang, L.; Chen, C.; Jia, R.; Sun, Y.; Guo, W.; Pan, D.; Li, X.; Chen, Y. Influence of Reservoir Stimulation on Marine Gas Hydrate Conversion Efficiency in Different Accumulation Conditions. Energies 2018, 11, 339. [CrossRef]

40. Zhong, X.; Pan, D.; Zhai, L.; Zhui, Y.; Wang, Y.; Li, X.; Tu, G.; Chen, C. Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns. Energy 2021, 228, 120601. [CrossRef]

41. Moridis, G.; Kowalsky, M.; Pruess, K. TOUGH+ Hydrate V1.0 User’s Manual; Report LBNL-0149E; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008; pp. 37–41.

42. Sondergeld, C.H.; Newsham, K.E.; Comisky, T.; Rice, M.C.; Rai, C.S. Petrophysical Considerations in Evaluating and Producing Methane Hydrate Resource Development Research Consortium. MH21-S R&D Consortium for Pore Filling Hydrate in Sand 2017. Available online: http://www.mh21japan.gr.jp/mh21wp/wp-content/uploads/mh21form2017_doc01.pdf (accessed on 3 May 2022).

43. Van Gennuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [CrossRef]

44. Moridis, G.J. Numerical Studies of Gas Production from Methane Hydrates. SPE J. 2003, 8, 359–370. [CrossRef]

45. Yu, T.; Guan, G.; Abudula, A. Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan. Appl. Energy 2019, 251, 113338. [CrossRef]

46. Yu, T.; Guan, G.; Abudula, A.; Wang, D. 3D investigation of the effects of multiple-well systems on methane hydrate production in a low-permeability reservoir. J. Nat. Gas Sci. Eng. 2020, 76, 103213. [CrossRef]

47. Wu, N.; Zhang, H.; Yang, S.; Zhang, G.; Liang, J.; Lu, J.; Su, X.; Schultheiss, P.; Holland, M.; Zhi, Y. Gas Hydrate System of Shenhu Area of South China Sea: Geochemical Results. J. Geol. Res. 2011, 2011, 370298. [CrossRef]

48. Li, G.; Moridis, G.J.; Zhang, K.; Li, X. Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in Shenhu Area of South China Sea. Energy Fuels 2010, 24, 6018–6033. [CrossRef]
49. Zhang, W.; Liang, J.; Wei, J.; Lu, J.; Su, P.; Lin, L.; Huang, W.; Guo, Y.; Deng, W.; Yang, X.; et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea. *Mar. Pet. Geol.* **2020**, *114*, 104191. [CrossRef]

50. MacFarland, T.W. *Two-Way Analysis of Variance. Statistical Tests and Graphics Using R*. Springer Briefs in Statistics; Springer: New York, NY, USA, 2012; p. 139.

51. Nie, S.; Zhong, X.; Song, J.; Tu, G.; Chen, C. Experimental study on hydraulic fracturing in clayey-silty hydrate-bearing sediments and fracability evaluation based on multilayer perceptron-analytic hierarchy process. *J. Nat. Gas Sci. Eng.* **2022**, *106*, 104735. [CrossRef]

52. Ma, X.; Jiang, D.; Sun, Y.; Li, S. Experimental study on hydraulic fracturing behavior of frozen clayey silt and hydrate-bearing clayey silt. *Fuel* **2022**, *322*, 124366. [CrossRef]

53. Yang, L.; Shi, F.; Yang, J. Experimental Studies on Hydraulic Fracturing in Hydrate Sediment. *Chem. Technol. Fuels Oils* **2020**, *56*, 107–114. [CrossRef]

54. Wang, Y.; Feng, J.-C.; Li, X.-S.; Zhang, Y.; Li, G. Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods. *Energy* **2015**, *90*, 1931–1948. [CrossRef]

55. Wang, S.P.; Yu, R.Z.; Bian, Y.A. Numerical Simulation Study on Diamond-Shape Inverted Nine-Spot Well Pattern. *Adv. Mater. Res.* **2012**, *594–597*, 2632–2635. [CrossRef]

56. Xu, Q.; Liu, X.; Yang, Z.; Wang, J. The model and algorithm of a new numerical simulation software for low permeability reservoirs. *J. Pet. Sci. Eng.* **2011**, *78*, 239–242. [CrossRef]