Pancreatic cancer in 2021: What you need to know to win

Valeria Tonini, Manuel Zanni

Valeria Tonini, Department of Medical Sciences and Surgery, University of Bologna-Emergency Surgery Unit, IRCCS Sant’Orsola Hospital, Bologna 40121, Italy

Manuel Zanni, University of Bologna, Emergency Surgery Unit, IRCCS Sant’Orsola Hospital, Bologna 40121, Italy

Corresponding author: Valeria Tonini, MD, PhD, Professor, Surgeon, Surgical Oncologist, Department of Medical Sciences and Surgery, University of Bologna- Emergency Surgery Unit, IRCCS Sant’Orsola Hospital, Via Massarenti 9, Bologna 40121, Italy. valeria.tonini@unibo.it

Abstract

Pancreatic cancer is one of the solid tumors with the worst prognosis. Five-year survival rate is less than 10%. Surgical resection is the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage of the disease and surgery could be performed in a very limited number of patients. Moreover, surgery is still associated with high post-operative morbidity, while other therapies still offer very disappointing results. This article reviews every aspect of pancreatic cancer, focusing on the elements that can improve prognosis. It was written with the aim of describing everything you need to know in 2021 in order to face this difficult challenge.

Key Words: Pancreatic cancer treatment; Advanced pancreatic cancer; Metastatic pancreatic cancer; Pancreatic cancer surgery; Pancreatic cancer chemotherapy; Pancreatic cancer screening

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Pancreatic cancer is a very dangerous enemy and the results are still very unsatisfactory. But we have not given up. Research is running fast on many paths, without losing its enthusiasm. The number of articles published on this subject in the last two years is impressive. I have tried to summarize all the most significant data from the different lines of research, ranging from screening and early diagnosis to new developments in surgery and associated therapies. I hope I have succeeded in the task of describing as comprehensively as possible the most promising fields of research available to us today, in order to achieve the improved results we desire.

Citation: Tonini V, Zanni M. Pancreatic cancer in 2021: What you need to know to win. World
INTRODUCTION

Pancreatic cancer is currently the seventh leading cause of cancer death worldwide and the fourth following lung, colorectal and breast cancers in the United States and Europe. It will become the third by 2030. It is an age-related neoplasm and this trend is similar between males and females. In particular the number of both deaths and incident cases peaked at the ages of 65-69 years in males, whereas the peak in females was observed at the ages of 75-79 years[1-4]. The commonly used term "pancreatic cancer" usually refers to ductal adenocarcinoma (PDAC), which represents 85% of all pancreatic tumors[4]. Complete surgical resection significantly prolongs survival, but the tumor is often diagnosed at an advanced stage and only a small percentage of patients are therefore candidates for surgery. Moreover, surgery is still associated with high post-operative morbidity. Despite ongoing developments, PDAC remains one of the most difficult tumors to treat, and the five-year survival rate is less than 10%[5]. There are four fundamental challenges that underlie the high mortality. First, the retroperitoneal location of the pancreas, deep in the abdomen, protects growing tumors from detection. The symptoms are late and therefore the diagnosis is made when the tumor is already in an advanced stage. Second, PDAC has an aggressive biology characterized by early metastasis and 50% of patients has metastatic disease at presentation. In addition, a large number of patients undergoing surgery develop metastases within 4 years. This suggests the presence of micrometastasis in apparently localized cases[6]. Third, pancreatic cancer dramatically weakens patients, limiting their ability to withstand aggressive treatments. Finally, it shows resistance to many antineoplastic therapies[7,8]. Advances in prevention, screening, early detection, and therapy, particularly on new frontiers, are essential to improve outcomes. This article has been written with the aim of describing everything you need to know in 2021 in order to face this difficult challenge.

NON-FAMILIAL RISK FACTORS AND PREVENTION

Identification of risk factors, high-risk populations and early detection markers is the first and crucial step to change the pancreatic cancer horizon[9]. PDAC incidence rates are nearly four times higher in high-income countries such as the United States and Western European countries than in middle- and low-income countries[3]. The different incidence seems to be related with different lifestyles.

Obesity, smoking, alcohol consumption and type 2 diabetes are considered non-familial risk factors for pancreatic cancer. Chronic pancreatitis, cystic fibrosis and intraductal papillary mucinous neoplasm (IPMN) should also be considered. An increased risk of pancreatic cancer has been observed following gastrectomy[10-17]. One-third of all cancers could have been prevented through lifestyle correction[18].

A 2020 European prospective study (EPIC) evaluated the association between the healthy lifestyle index score and PDAC[19-22]. Healthy lifestyle habits were inversely related to the risk of PDAC. Adherence to healthy behaviors, corresponding to a three-point increase in the score, was associated with a 16%-23% lower risk. The result summarizes many previous studies[23-29] and support the adoption of healthy lifestyles in PDAC prevention.

A recent nutrigenomic study has highlighted nutrients capable of preventing cancer through epigenetic modifications. An optimal diet should include omega 3 fatty acids, polyphenols, folic acid, selenium and zinc. Particularly important for PDAC prevention could be the epigallocatechin, a polyphenol from tea and green tea[30,31].

Data linking type 2 diabetes with pancreatic cancer suggest that the new onset of diabetes in a lean older adult should prompt consideration of PDAC. This is even more valid if new-onset diabetes is associated with unintentional weight loss[32-34]. A Mayo Clinic study evaluated the use of computed tomography (CT) at the time of diabetes diagnosis in otherwise asymptomatic patients. A higher likelihood of showing potentially resectable tumors was observed compared with scans performed six months later[32]. However, CT screening of all elderly subjects with new-onset
diabetes is not feasible\cite{33}. With the identification of these characteristics that differentiate pancreatic cancer-associated diabetes from other cases of new-onset diabetes, perhaps the guidelines will update\cite{35}.

HEREDITARY RISKS FACTORS

PDAC can be hereditary. There are two categories of inherited risk for PDAC: Genetic syndromes (20\% of cases) and familial pancreatic cancer (80\%). Familial pancreatic cancer is defined as a predisposition that is based on familial clustering in families in which there is at least one pair of first-degree relative (FDR) relatives with PDAC in the absence of a known genetic syndrome. Genetic syndromes that predispose to pancreatic cancer are listed in Table 1. Table 1 also shows in parentheses the frequencies of mutated genes in PDAC patients\cite{36-42}.

Knowledge of inherited risk factors is important because it allows us an effective stratification and management of patients. According to American Society of Clinical Oncology and National Comprehensive Cancer Network guidelines, all patients diagnosed with PDAC should be evaluated to understand if there is a risk of familial predisposition to cancer. All patients should undergo risk assessment for syndromes associated with an increased risk of PDAC. Germline genetic testing is recommended for patients with PDAC and an unremarkable family history\cite{43,44}.

SCREENING

Screening aims to detect preinvasive lesions (IPMNs and pancreatic intraepithelial neoplasias) with high-grade neoplastic changes and early invasive tumors that are more amenable to potentially curative resection\cite{45-49}.

Candidates for screening

(1) Patients with Peutz-Jeghers syndrome or CDKN2A mutation, regardless of family history; (2) BRCA2 mutation with at least one affected FDR or at least two affected relatives of any degree; (3) BRCA1, partner and localizer of BRCA2 (PALB2), ataxia-telangiectasia mutated (ATM), and Lynch syndrome mutation carriers with one or more affected FDRs; (4) Hereditary pancreatitis with a PRSS1 mutation; and (5) Regardless of gene mutation status: (a) At least three affected relatives on the same side of the family, of whom at least one is an FDR of the individual being considered for surveillance; (b) At least two affected relatives who are FDRs of each other, of whom at least one is an FDR of the individual being considered for surveillance; and (c) At least two affected relatives on the same side of the family, of whom at least one is an FDR of the individual being considered for surveillance.

General population-based screening for average-risk patients is not recommended\cite{33} because the average lifetime risk for developing PDAC is too low\cite{49}.

Screening modality

The current recommendation provides for the execution of endoscopic ultrasonography (EUS) or magnetic resonance imaging (MRI)/magnetic resonance cholangiopancreatography (MRCP). It has been demonstrated that they detect more lesions as compared with CT scan\cite{50}. Screening is recommended at age 50 years or 10 years younger than the youngest relative with PDAC in familial pancreatic cancer relatives. In other cases, screening is carried out between 35 and 45 years. For patients with a normal pancreas on imaging, repeat the procedure every year alternating EUS and MRCP. The age for stopping screening should be individualized based on each patient's medical status, life expectancy, and preferences.

SURGICAL RESECTION FOR IPMNS AND OTHER CYSTIC LESIONS

Surgical resection is indicated in patients with any of the following\cite{45}: (1) Solid pancreatic lesion \(\geq 5 \) mm of indeterminate pathology or if additional evaluation does not yield a definitive preoperative diagnosis; (2) Any positive fine-needle aspiration (FNA) result, except for a pancreatic neuroendocrine tumor; (3) Main-duct IPMNs with any one of the following: (a) Main pancreatic duct dilation of \(\geq 10 \) mm; (b) Main pancreatic duct stricture; or (c) Mural nodules; (4) Branch duct IPMNs (BD-IPMNs)
Table 1 Genetic syndromes predisposing to pancreatic cancer (the frequency of mutated genes among patients with pancreatic ductal adenocarcinoma is indicated in brackets)

Genetic syndrome	Mutated genes
Hereditary breast/ovarian cancer syndrome[36,37]	BRCA1 (0.7%), BRCA2 (1.4%), PALB2 (1%)
Familial atypical multiple mole melanoma syndrome[38]	CDKN2A (0.7%)
Peutz-Jeghers syndrome[39]	STK11
Familial adenomatous polyposis	APC (0.4%)
Lynch syndrome[40]	MLH1, MSH2 (0.4%), PMS2 (0.3%)
Hereditary pancreatic[41]	PRSS1, SPINK1
Li-Fraumeni syndrome[42]	ATM (1.4%)

with any one of the following: (a) Rapid growth (> 5 mm over six months); (b) Mural nodules or an enhancing solid component; (c) Abrupt main pancreatic duct caliber change with distal atrophy (even if no mass is visible); (d) Main pancreatic duct dilation of ≥ 10 mm; (e) Positive cytology; or (f) Associated symptoms of pancreatitis, jaundice, or pancreatic-type pain; or (5) Asymptomatic main pancreatic duct stricture with an associated suspicious mass.

For patients who do not meet these criteria for surgery, repeat imaging in three months if worrisome features are present[47,51]. Worrisome features include the following: (1) Solid lesion with main pancreatic duct size of 5 mm to 9 mm in diameter; (2) Main pancreatic duct stricture and/or dilation ≥ 6 mm of unknown etiology without an associated mass; and (3) Solid lesion < 5 mm of uncertain significance.

Repeat imaging in six months is recommended for patients who have the following imaging abnormalities: (1) Cystic lesion (presumed BD-IPMN) ≥ 3 cm in size; (2) Cystic lesion with associated main pancreatic duct 5 mm to 9 mm; (3) Cystic lesion associated with lymphadenopathy; (4) Cyst growth rate of ≥ 5 mm in two years; and (5) Increased serum carbohydrate antigen 19-9 (CA 19-9).

Individuals without worrisome features of malignancy should undergo repeat imaging in 12 mo[47,51].

Screening/surveillance should be continued until the patient is no longer a surgical candidate.

A 2020 paper analyzed the benefits of screening. Nine out of 10 screen-detected PDAC were resectable, with a three-year survival of 85%, compared with 25% in PDAC detected outside surveillance. With continued follow-up of patients with resectable PDAC, the five-year overall survival (OS) rate was 60%[49].

BIOMARKERS AND EARLY DETECTION

Different biomarkers are being evaluated to improve early diagnosis of tumor not detectable by imaging and to differentiate cancer and high-grade dysplasia from benign disease[52].

Blood tests

The most useful serum tumor marker for PDAC is CA 19-9. It is recommended adding this test when there are worrisome features on abdominal imaging. The sensitivity and the specificity of elevated CA 19-9 to detect PDAC are 79% and 82%, respectively[53-55]. It becomes more precise when used in combination with CA 125[56,57]. Other carbohydrate markers, such as CA 50, CA 72.4 and CA 242, were extensively analyzed in PDAC patients. Although they exhibited less sensitivity than CA 19-9 for the diagnosis, they improved specificity[58-61]. Satake and Takeuchi[62] also studied SPan-1 and DUPAN-2. SPan-1 has a high sensitivity for PDAC (81.4%), but the specificity (67.5%) and diagnostic accuracy (71%) are lower than those of CA19-9. SPan-1 may be considered as an additional useful serum marker, but it does not significantly improve the diagnostic accuracy obtained with CA 19-9. In contrast, DUPAN-2 has a high specificity (85.3%) and low sensitivity (47.7%). Furthermore, it seems that serum levels of DUPAN-2 are influenced by liver function. SPan-1 and DUPAN-2 unfortunately have not yet shown the sensitivity and specificity needed to
be used for early detection[62,63].

A huge step forward in the early detection of pancreatic cancer could come from studying cell-free DNA (cfDNA), which consists of circulating double-stranded DNA molecules that can be found in plasma or blood serum. From the analysis of these molecules, it is possible to understand if we are in the presence of a tumor DNA and to go back to the tissue of origin. By analyzing the methylation status of two genes in cfDNA, ADAMTS1 and BNC1, early stage cancer can be identified with a sensitivity of 94.8% and a specificity of 91.6%[64].

Innovative discoveries have also been made in the field of RNA. Abnormal microRNA expressions are potential diagnostic markers for several cancers, including PDAC. Multiple microRNA tests performed in combination with CA 19-9 can improve diagnostic accuracy, particularly miR-216[65-69]. Permuth et al[70] demonstrated that a combination of eight IncRNAs helps in the differential diagnosis between malignant and non-malignant IPMNs. Furthermore, three IncRNAs (HAND2-AS1, CTD-2033D15.2, and IncRNA-TGF) could be exploited as early diagnostic biomarkers of IPMN[71,72].

Pancreatic juice and pancreatic cyst fluid

Pancreatic juice collected at the time of ERCP and cyst fluid obtained by EUS-guided FNA can be analyzed for molecular markers. These procedures also have broad potential in terms of early diagnosis of PDAC. Next-generation sequencing can be performed at low cost to detect low-frequency mutations. Potential markers include mutant GNAS (specific for IPMNs) and mutant KRAS. TP53, SMAD4, PIK3CA, PTEN, and AKT1 mutants are also useful as they correlate with IPMN-associated tumors[73-75]. According to Suenaga et al[76], a pancreatic juice collection, to ensure optimal yield of mutations for pancreatic screening assays, should be performed 10 min after secretin administration. The authors detected 40 patients with KRAS mutations in pancreatic juice out of 45 undergoing surveillance with EUS, reconfirming the usefulness of these analyses[76].

There are many other biomarkers that are currently being validated for clinical use, such as mucins (MUC). Normal pancreatic ductal epithelium expresses low levels of MUC, while an upregulation of MUC occurs in BD-IPMNs and more pronounced changes in expression in PDAC. Normal pancreatic ductal epithelium expresses low levels of MUC, while upregulation of MUC occurs in BD-IPMN and PDAC[77-83]. The analysis of mucin changes in the fluid of pancreatic cysts allows us to differentiate mucinous from non-mucinous pancreatic cysts with high sensitivity and specificity and to diagnose PDACs associated with IPMN at an early stage[84]. MUC4 and MUC16 have been reported to be 100% specific for PDAC, while associated with sensitivities of 63% and 67%, respectively[85].

Interesting data were reported about interleukins (IL). Higher concentrations of IL-1b, IL-5, and IL-8 have been identified in cystic lesions with high grade dysplasia or malignancy[86]. IL-1b is a potentially useful factor in differentiating high-risk from low-risk pancreatic cysts.

The Das-1 monoclonal antibody is also capable of detecting pancreatic cysts at risk of malignancy with high levels of sensitivity (88%) and specificity (98%)[87,88]. Das-1, IL and MUC could be used in conjunction with clinical guidelines to identify patients at risk for malignancy.

Saliva

Saliva is a suitable substance for screening because it is obtained in a simple and noninvasive manner. In addition, salivary mRNA is relatively stable and informative for disease diagnosis, including cancer. Zhang et al[89] identified 7 up-regulated genes (MBD3L2, KRAS, STIM2, DMXL2, ACRV1, DMD, and CABLES1) and 5 down-regulated genes (TK2, GLITSCR2, CDKL3, TPT1, and DPM1) in subjects with PDAC compared with healthy controls or those with chronic pancreatitis. A combination of 4 mRNAs (MBD3L2, KRAS, ACRV1, and DPM1) can discriminate diseased patients from healthy ones with sensitivity and specificity over 90%[89]. Xie et al[90] worked on miR-3679-5p and miR-940. The former is down-regulated, while the latter is up-regulated in PDAC patients compared to controls. The combination of the two miRNAs identifies diseased subjects with sensitivity and specificity of 70%. The same group evaluated the expression of salivary long non-coding RNAs (lncRNAs). They identified HOTAIR and PVT1 as significantly up-regulated lncRNAs in the PDAC group compared with controls and benign pancreatic tumors. The combination of salivary HOTAIR and PVT1 differentiated PDAC from healthy controls with a sensitivity of 78.2% and specificity of 90.9% and PDAC from benign tumors with a sensitivity of 81.8% and specificity of 95%[90,91]. Another important mRNA studied in...
serum, urine, and saliva is MIR1246. Salivary expression of miR-1246 is related to serum CA19-9 levels\[92\]. Significantly higher expression of MIR1246 in serum and urine was observed in patients with cancer compared with healthy controls. Ishige \textit{et al} [93] observed an AUC for MIR1246 in serum of 0.87 (sensitivity, 92.3%; specificity, 73.3%), for MIR1246 in urine of 0.90 (sensitivity, 90.2%; specificity, 83.3%). Combining the expression of MIR1246 in serum and urine resulted in a sensitivity of 85%. These results indicate that MIR246 may be a useful diagnostic biomarker for pancreatic cancer. The accuracy further increases if we consider miR-1246 and miR-4644 simultaneously\[92\].

\textbf{Urine}

Several biomarkers have also been evaluated in urine. Radon \textit{et al}[94] used three protein biomarkers (REG1A, TFF1 and LYVE1) to form a powerful urinary panel that can detect patients with stages I-II PDAC, with over 90% accuracy. Brezgyte \textit{et al}[95] found four miRNAs (miR-143, miR-204 and miR-223) in significantly higher amounts and one miRNA (miR-30e) in lower amounts in the urine of PDAC Stage I patients compared to the healthy population. These miRNAs (except for miR-204) also showed a decreased expression in Stage II-IV compared to Stage I\[95\]. However, more studies are needed to validate the clinical utility of these biomarkers.

\section*{CLINICAL FEATURES}

The presenting symptoms in patients with PDAC varies according to location. Tumors in the body and tail present with pain and weight loss, while tumor of the head cause jaundice and steatorrhea\[96\]. Pain associated with PDAC is usually insidious, visceral, generally epigastric, radiating to the sides or straight through to the back. It is worse by eating or lying supine at night. Rarely, it develops acutely on account of acute pancreatitis due to tumoral occlusion of the main pancreatic duct\[97\]. Pancreatic cancer may result in an onset of diabetes mellitus\[98,99\]. The hypercoagulable state that accompanies PDAC can result in Trousseau syndrome, which consists of superficial, sometimes migratory thrombophlebitis\[100\]. Thromboembolic complications occur more commonly in patients with tumors arising in the tail or body of the pancreas\[101\]. Skin manifestations could occur as paraneoplastic phenomena\[102\]. Rarely, erythematous subcutaneous areas of nodular fat necrosis (pancreatic panniculitis), typically located on the legs, may be evident. It is more frequent in patients with the acinar cell variant of PDAC. It is not pathognomonic for an PDAC, because it has also been described in associated with pancreatic neuroendocrine tumors, IPMNs and chronic pancreatitis\[103\].

When assessing symptoms, it should be borne in mind that PDAC tends to infiltrate nearby organs and structures and to give distant metastases very early. Local extension typically involves adjacent structures, such as the duodenum, the portal vein (PV), or the superior mesenteric vessels. PDAC also show a striking tendency toward perineural invasion, both within and beyond the pancreas. The difficulty in achieving a wide resection margin due to the proximity to the vessels accounts for the fact that the retroperitoneal tissue behind the head of the pancreas represents the most common site of disease recurrence. Sometimes the tumor extends to the spleen, adrenal glands, vertebral column, transverse colon, and/or stomach. In these cases, tumors are not resectable. Tumor may metastasize to regional peripancreatic lymph nodes or less often to distant lymph node, peri-gastric, mesenteric, omental or porta-hepatic nodes. Distant metastasis may affect the liver, peritoneum, lungs, and less frequently, bone. Signs of advanced, incurable disease include an abdominal mass, ascites, Virchow’s node, Sister Mary Joseph’s node or a palpable rectal shelf. Pancreatic cancer is the origin of a cutaneous metastasis to the umbilicus in 7% to 9% of cases\[104\].

\section*{DIAGNOSIS}

\textbf{CT}

CT is considered the gold standard for pancreatic cancer’s diagnosis. Protocol pancreatic CT is performed for evaluation of suspected PDAC or if a routine CT scan was not sufficient for initial staging\[105,106\]. This protocol consists of evaluating the patient at different stages of contrast injection. The arterial phase provides excellent opacification of the celiac axis, superior mesenteric artery (SMA), and peripancreatic
arteries. An attenuation difference between tumor and normal pancreas is best achieved after peak enhancement of the aorta in the arterial phase but before the one of the liver, in the portal venous phase. This is sometimes termed the "pancreatic phase". The portal venous phase provides better enhancement of the superior mesenteric vein (SMV), splenic and PVs. In addition, peak hepatic enhancement, which optimizes the detection of hepatic metastases, also occurs in the portal venous phase\cite{107,108}.

The typical CT appearance of a PDAC is an ill-defined hypoattenuating mass within the pancreas. Smaller lesions may be iso-attenuating, making difficult their identification\cite{109}. Secondary signs of PDAC include a dilatation of the pancreatic duct or common bile duct, parenchymal atrophy, and contour abnormalities. Dilation of both the pancreatic duct and the common bile duct, commonly referred to as the "double duct sign" is not diagnostic for a pancreatic head malignancy\cite{110}. Routine preoperative CT helps to identify hepatic vascular anatomy and prepares the surgeon for any potential vascular anomalies. It can detect hemodynamically significant arterial stenosis\cite{111}. The contrast-enhanced CT scan is the best technique for PDAC staging\cite{112} and it is essential to detect vascular invasion. CT criteria for vascular invasion include arterial embedment in the tumor mass or venous obliteration, tumor involvement exceeding one-half the circumference of the vessel, vessel wall irregularity, vessel caliber stenosis, or a "teardrop" sign of the SMV\cite{113}. Classic CT criteria for vascular involvement are not reliable in patients who have undergone neoadjuvant therapy with a highly active chemotherapy combination such as mFOLFIRINOX (mFFX). In such cases, surgical exploration may be the only method to assess resectability\cite{114}.

MRI

Contrast-enhanced MRI of the pancreas may be useful in staging patients at initial presentation. MRI is the best technique for detection of small liver metastases\cite{115}. The importance of MRI also lies in the ability to diagnose pancreatic cancer by identifying changes in the body that indicate systemic effects of PDAC. It has been well recognized that anorexia, sarcopenia, and weight loss are hallmarks of PDAC. Consequently, it can be used to measure adipose and muscle mass in high-risk populations to identify early disease\cite{116-118}.

EUS

EUS is considered the most sensitive method to detect early neoplasia in the pancreas. PDAC on EUS appears as a hypoechoic mass, typically with dilation of the proximal pancreatic duct and the border of the lesion may have an irregular contour. This is the best accurate technique for local T and N staging, and for predicting vascular invasion. However, EUS is inferior to CT for evaluation of distant metastases. In addition, the specificity of EUS for excluding vascular invasion in small tumors is limited, particularly when inflammatory changes are present\cite{119}.

EUS is mainly used as part of the workup to obtain fine needle aspiration or biopsy material in patients suspected of having a PDAC\cite{120}. EUS is not readily accessible and as a result is considered a complementary modality to the pancreatic protocol CT. Emerging area for endoscopic ultrasound includes the incorporation of elastography. Elastography shows significantly lower elasticity values for PDAC than for normal pancreatic tissue\cite{121}. Incorporation of elastography in the evaluation of solid pancreatic lesions improves diagnostic accuracy\cite{122,123}.

Endoscopic retrograde cholangiopancreatography

A meta-analysis demonstrated a 92% sensitivity and 96% specificity of endoscopic retrograde cholangiopancreatography (ERCP) in the diagnosis of PDAC\cite{124}. Findings suggestive of a malignant tumor of the pancreatic head include stenosis or obstruction of the common and pancreatic bile ducts (the "double duct" sign), a pancreatic duct stenosis greater than 1 cm in length, and pancreatic duct obstruction. In addition, ERCP provides an opportunity to collect tissue samples for cytologic analysis\cite{124}.

Some early-stage pancreatic tumors are not detected by CT, MRI, or EUS. Especially for carcinoma in situ, localized stenosis of the main pancreatic duct is often the only imaging finding. Pancreatic duct imaging evaluation by ERCP and subsequent pancreatic juice cytology are critical for diagnosis.

On the other hand, ERCP is an invasive procedure that can cause acute pancreatitis, bleeding, and cholangitis. Consequently, it has purely therapeutic value for patients with cholestasis due to tumor obstruction of the biliary system and require placement of a biliary stent\cite{125}.
Positron emission tomography
The role of positron emission tomography (PET) is limited for PDAC due to the high number of false positives and false negatives\[126\]. However, the degree of fluorodeoxyglucose (FDG) uptake correlates with histopathology, aggressiveness, and metastatic potential\[127,128\]. According to a meta-analysis, PET/CT is more accurate than CT in detecting distant metastases. Preoperatively, it may therefore be useful in avoiding unnecessary resection if unexpected metastases are found\[129,130\]. After treatment, FDG-PET is instead used to detect residual or recurrent cancer. It can also be applied to assess and monitor response to therapy in unresectable or metastatic disease\[127,131\].

Other molecular imaging agents including overexpressed proteins, signaling pathways, and tumor stroma may also be used\[132\]. Among these, promising results appear to involve 68Ga-cicratide, an integrin αvβ6-specific radiotracer, which has favorable pharmacokinetics and is capable of detecting pancreatic cancer lesions and monitoring response to therapy\[133\]. Another molecular imaging method that is of interest for early detection is hyperpolarized MRI. It can identify metabolic aberrations in the pancreas that indicate preneoplasia\[134\].

Staging laparoscopy
Sub-centimeter metastases of the liver or peritoneum that are rarely visible by CT, MRI or PET may be visualized laparoscopically. Up to one-third of patients thought to be resectable by imaging will be found to be unresectable based upon laparoscopic findings\[135,136\].

Some experts suggest a selective approach to staging laparoscopy, limiting the procedure to those with the highest likelihood of occult metastatic disease\[137,138\]. First, this includes tumors of the body or tail of the pancreas that appear potentially resectable by CT scan. Second, it includes large (> 3 cm) primary tumors and patients with a high initial CA 19-9 level (> 100 units/mL)\[139\].

Biopsy
Biopsy of a pancreatic mass can be performed either percutaneously or via EUS. EUS-guided FNA is the best modality for obtaining a tissue diagnosis. EUS-FNA is a safe method with a 0.98% morbidity and a 0.02% mortality. Although the most common adverse events of EUS-FNA include pancreatitis and postprocedural pain, there is also some concern regarding tumor cell seeding\[140\]. According to a study by Yane et al \[141\] the cumulative needle tract seeding rate at five years was 3.8%. However the preoperative EUS-FNA has no negative effect on recurrence-free survival and OS.

In many cases, the diagnosis will not yet be histologically confirmed. Once PDAC is suspected on imaging studies, the next step is generally a staging evaluation rather than biopsy. Patients who are fit for major surgery and who appear to have potentially resectable PDAC, they do not necessarily need a biopsy before surgery. Biopsy could be indicated if there is evidence of systemic spread or local evidence of unresectability on staging studies. It is also indicated if the patient is unfit for major surgery or if other diagnoses need to be excluded\[142,143\].

Pancreatic incidentaloma
A 2014 systematic review\[144\] evaluated 5 studies enrolling patients with incidentalomas and concluded that most solid lesions are malignant. Histologic definition of a solid lesion of the pancreas should be the first option, as opposed to radiologic monitoring alone. It is important to avoid operating on benign solid lesions such as chronic focal pancreatitis or autoimmune pancreatitis.

In case of cystic lesion, surgery is the first option for cystadenomamucinous and IPMN with high-risk stigmata. A recent review defined high-risk stigmata as the presence of obstructive jaundice, vascularized mural nodules ≥ 5 mm, main duct diameter ≥ 10 mm\[145\].

STAGING
The goal of the staging workup is to delineate the extent of disease spread and to identify patients who are eligible for resection with curative intent. Patients with PDAC can be staged according to the eighth edition of TNM system of American Joint Committee on Cancer (AJCC). However, most clinicians use a four-tiered staging system including resectable, borderline resectable, locally advanced (LA), and
metastatic cancer\cite{146,147} (Table 2). In 2017, a classification was published, by the International Association of Pancreatology, which redefines the concept of resectability in relation to biological risk and patient conditions\cite{148}. Table 3 summarizes the different resectability criteria assumed by the different scientific societies.

SURGERY

Surgical resection is the only potentially curative treatment. Unfortunately, PDAC is often diagnosed at an advanced stage and radical surgery could be performed in a very limited number of patients. The surgical interventions that can be performed are different depending on the tumour location and extension. In all cases the operation involves the removal of the tumour with free margins and at least twelve lymph nodes, which are necessary for staging. Tumors of the head require more complex operations, which still have a high operative morbidity. In high-frequency surgical centres mortality after pancreateoduodenectomy (PD) is now less than 2%, but post-operative morbidity remains high, 30%-50%. Anastomotic dehiscences, are the most serious post-operative complication. They are difficult to manage and are unfortunately associated with a still high mortality rate. Tumors of the tail and body require easier operations than head tumors, with a low operative morbidity and mortality. Unfortunately, because of their late symptomatology, they are more frequently unresectable.

Pancreatectoduodenectomy

PD is the classic operation performed for pancreatic tumors of the head or uncinate process. Conventional pancreatectoduodenectomy involves removal of the pancreatic head, duodenum, first 15 cm of the jejunum, common bile duct, gallbladder, and a partial gastrectomy. It is a complex procedure and patients may experience several complications. These complications could be intra-operative or post-operative\cite{149,150}.

The most important intraoperative complication of PD is bleeding. Most patients undergoing PD for PDAC have an obstructive jaundice with associated coagulopathy. Bleeding can occur from multiple sites during the various phases of mobilization and resection, so hemostasis must be monitored and assured before reconstruction begins.

Postoperative complications can be further divided into short-term and long-term complications. The short-term ones are pancreatic fistula, delayed gastric emptying, and postoperative bleeding. The long-term ones are biliary stenosis and cholangitis, pancreatitis, peptic ulcer disease, small bowel obstruction, and incisional hernia\cite{149,150}.

Modifications of the conventional PD procedure have been developed in an attempt to improve outcomes or minimize the morbidity associated with this operation. The pylorus-preserving pancreatectoduodenectomy preserves the gastric antrum, pylorus, and proximal 3 cm to 6 cm of the duodenum. It can decrease the incidence of post-operative dumping, marginal ulceration, and bile reflux gastritis, without negative effect on the morbidity, mortality and long-term survival\cite{151}. Instead, the subtotal stomach-preserving pancreatectoduodenectomy is performed with the aims to preserve as much stomach as possible, minimizing the delayed gastric emptying that are associated with preserving the pyloric ring in the face of vagal denervation. In this procedure, the duodenum, pylorus, and 1 cm to 2 cm of stomach are resected with the pancreatic specimen. Although described, this modification has yet to be validated, and it is uncommonly performed\cite{152}.

The "Artery-first" approach is a surgical technique or set of techniques that have in common the dissection of the main arterial vasculature involved in pancreatic cancer, prior to performing any irreversible surgical step (transection of the pancreatic neck or bile duct division). The "Artery-first" approach has the potential to reduce blood loss and increase R0 resection rates and OS, as demonstrated in a recent meta-analysis\cite{153}.

Modified child reconstruction aims to reduce the incidence of cholangitis due to digestive reflux through hepatic-digialunal anastomosis. In case of pancreatico-digialunal anastomosis, the hepatic-digialunal anastomosis is made downstream of the previous one. In case of pancreatico-gastric anastomosis, the hepatico-digialunal anastomosis is made near the previously closed loop. Whatever the type of pancreatico-digestive anastomosis, the digestive anastomosis (gastro-digialunal or duodeno-digialunal) is made 60 cm downstream of the hepatico-digialunal anastomosis, to reduce digestive reflux into the biliary tract.
Table 2 Resectability criteria

Resectability status	Resectable	Borderline resectable	Locally advanced
Arterial involvement	Celiac artery	≤ 180°; > 180°, without involvement of aorta or GDA (body/tail)	> 180° (head/uncinate); Solid tumor contact with CA and aorta
SMA common hepatic artery	None	≤ 180°; Solid tumor contact without extension into CA or hepatic artery biforciation	> 180°
Venous involvement (portal vein/smv)	None	> 180°; ≤ 180° with contour irregularity or thrombosis, with reconstructible PV/SMV; Solid tumor contact with IVC	Unreconstructible PV/SMV due to tumor involvement or occlusion

CA: Celiac artery; GDA: Gastroduodenal artery; IVC: Inferior vena cava; PV: Portal vein; SMA: Superior mesenteric artery; SMV: Superior mesenteric vein.

Table 3 Resectability criteria and societies

Vessel involvement	NCCN 2019	MDACC	ACTO	AHPBA/SSAT/SSO
CA abutment (≤ 180°)	Borderline	Borderline	Borderline	Unresectable
CA encasement (> 180°)	Borderline (body/tail); locally advanced (head/uncinate)	Unresectable	Unresectable	Unresectable
SMA abutment (< 180°); SMA encasement (> 180°); CHA abutment or encasement	Borderline; Locally advanced; Borderline;	Borderline; Unresectable; Borderline; Borderline; Unresectable; Borderline	Borderline; Unresectable; Borderline	
PV/SMV encasement (> 180°) or abutment (≤ 180°) with contour abnormality	Borderline	Borderline	Borderline	Borderline

ACTO: Alliance for Clinical Trials in Oncology; AHPBA: American Hepato-Pancreato-Biliary Association; CA: Celiac artery; CHA: Common hepatic artery; MDACC: The University of Texas MD Anderson Cancer Center; NCCN: National Comprehensive Cancer Network; PV: Portal vein; SMA: Superior mesenteric artery; SMV: Superior mesenteric vein; SSAT: Society for Surgery of the Alimentary Tract; SSO: Society for Surgical Oncology.

Post-operative pancreatic fistula (POPF) is the main and most frequent complication after pancreatic resection surgery. It is caused by leakage of pancreatic juice into the abdominal cavity, which is collected and conveyed to the outside by the drains normally placed at the end of surgery or during postoperative care if necessary. The diagnosis is made on the basis of the quality of the drainage fluid (varying from transparent to coffee-colored to brown) and the value of amylase in the fluid itself, greater than three times the normal limit of serum amylase\cite{149,150}.

POPFs are classified into three grades based on clinical impact. Grade A fistulas do not involve any special intervention and do not significantly modify the postoperative hospital stay. Grade B fistulas require a longer postoperative stay, the retention of surgical drains, the possible placement of additional drains under radiological guidance, antibiotic therapy and the use of artificial nutrition (enteral or parenteral). In grade C fistulas, reoperation is required to resolve the complication.

Several methods have been used to reduce the risk of pancreatic fistula, including the use of octreotide, pancreatic duct occlusion, pancreatic duct stenting, pancreatocjejunostomy, anastomosis modification, and pancreaticogastrostomy. The efficacy of octreotide in preventing POPF is still a hotly debated topic. According to a 2020 meta-analysis\cite{154}, somatostatin analogs did not affect POPF after PD, but rather appeared to be associated with a lower rate of POPF after distal pancreatectomy. Therefore, reconstruction technique is the most important factor in reducing the risk of this complication. Recently, interesting results concern the blumgart anastomosis (BA), which combines the duct-mucosal principle with the transpancreatic U-suture technique. Unlike other duct-mucosal anastomoses such as Cattell-Warren anastomosis and Kakita anastomosis, U-shaped sutures and horizontal mattress suture technique are used in BA. The difference is that Blumgart's technique involves the placement of 3 to 6 transpancreatic and digestive seromuscular U-sutures to bring the pancreatic stump and jejunum closer together. A meta-analysis conducted by Ricci et al \cite{155} demonstrated the ability of BA to reduce the risk of pancreatic fistula compared with non-blumgart duct-to-mucosal anastomoses (non-BA DtoM). The reduction seems clinically significant, with a number needed to treat of 9 which means that one pancreatic fistula can be avoided every ten patients treated with BA instead of non-BA.
Indications for the preoperative treatment of jaundice in patients who are candidates for surgery are still under debate. It increases post-operative complications and should be reserved to patients with cholangitis or with bilirubin levels greater than 15 mg/dL[157].

Distal pancreasectomy
Distal pancreasectomy with splenectomy is the conventional operation for PDAC located in the body or tail of the pancreas. It can provide a margin-negative resection and ensure a sampling of at least 12 regional lymph nodes. A systematic review, that included 29 observational studies, found less blood loss and reduced length of hospital stay in patients operated with laparoscopic approach. However, the laparoscopic technique has some disadvantages that may lead to inadequate resection margins: Technical difficulties, inability to palpate the gland, difficulty in closing the pancreatic stump. Generally, surgeons advocate an open approach when the concern for malignancy is high, reserving laparoscopic resection for benign or premalignant indications[158-160].

Petrucciani et al[161] evaluated the prognosis of patients with positive surgical margin (R1). A better OS was observed in patients with R0 margin vs R1. However, an extension of the surgical resection following R1 pancreasectomy did not improve long term survival.

Total pancreasectomy
Sometimes, because of the extent or location of the tumor, a total pancreasectomy is required to achieve microscopically negative resection margins[162,163]. However, the metabolic consequences of this procedure, which include permanent exocrine insufficiency and brittle diabetes, have a detrimental impact on the quality of life and long-term survival[164]. A recent study showed a moderately reduced summary score of 76%, compared with a general population score of 86% using the EORTC QLQ-C30 questionnaire to evaluate the overall quality of life. Diarrhea is the most important symptom[165].

Lymphadenectomy
Tomlinson et al[166] evaluated the minimum number of lymph nodes removed during pancreasectomy that are essential for proper staging. They consider a number of 15 Lymph nodes as the optimal cut-off. Therefore, the cut-off of 12 lymph nodes reported by Schwarz, represents a more easily threshold value, but sufficient for correct staging.

Standard lymphadenectomy should strive to resect lymph node stations 5, 6, 8a, 12b1, 12b2, 12c, T3a, 13b, 14a, 14b, 17a, and 17b[167].

In some centres, mainly in Japan, surgeons routinely perform extensive lymph node dissection, including all 8, 9, all 12, all 14, 16a2, and 16b1 lymph nodes. A systematic review comparing standard vs extended lymphadenectomy demonstrated that there are no differences in OS between the two groups at one, three, or five years. However, the risk of complications was significantly increased after extended lymphadenectomy[168].

Vascular resection
If the pancreatic tumor involves the PV or SMV, pancreatic resection with PV or SMV resection may be considered: (1) When the vascular resection allows for adequate vascular flow; (2) When the tumor does not involve the SMA or hepatic artery; and (3) When an R0 resection can be accomplished. Nevertheless, many surgeons prefer to treat patients with PV or SMV involvement with neoadjuvant systemic chemotherapy before surgery.

A systematic review of 12 single-center reports concluded that pancreasectomy with PV/SMV resection is a safe and feasible procedure. It increases the number of patients who can undergo curative surgery and improves long term prognosis in a selected group of patients[169]. However, post-operative morbidity and mortality increase markedly when arterial resections are performed and few data are available to support these procedures[170-172].

Open vs minimally invasive approach
A systematic review identified 27 retrospective studies, including close to 7000 patients who underwent pancreasectomy (1306 minimally invasive, 5603 open)[173]. The laparoscopic approach was associated with longer operative times [mean difference (MD) 71 min], but lower intraoperative blood loss (MD ~300 mL). The rate of
lymph node retrieval was significantly higher in the minimally invasive group (MD 1.34 nodes), and the likelihood of an R0 resection was also higher (odds ratio 1.45). Hospital stay, postoperative hemorrhage and wound infection were significantly lower in the laparoscopic group, while the rate of overall mortality, reoperations, vascular resection, pancreatic fistula, delayed gastric emptying and bile leak were similar between the two groups[174-176].

In some high-volume surgical centres, robotic-assisted pancreatic resection has been adopted. Experienced surgeon reported the same morbidity and mortality of open surgery. Decreased blood loss, higher number of adequate lymphadenectomy and improved gastric emptying are reported in some studies. These results may improve OS, but, because robotic-assisted pancreactectomy is still in its infancy, available long-term oncologic outcomes are limited[177-181].

CHEMOTHERAPY FOR RESECTABLE AND BORDERLINE RESECTABLE PANCREATIC CANCER

The only treatment with curative potential for pancreatic cancer is surgery. Five-year survival ranges from 10% to 25%.

For patients with PDAC resectable or borderline resectable, surgical resection is followed by adjuvant chemotherapy. Some high-volume centers also use neoadjuvant therapy in these categories of patients[182,183].

Adjuvant chemotherapy

Several adjuvant chemotherapy regimens have been evaluated in randomized controlled trials[184-190]. Currently, mFFX is the recommended therapy for patients with a good performance status. Gemcitabine (+/- capcitabine) remains a treatment option for patients not sufficiently fit or with contraindications to mFFX[182,191]. Because mFFX has a high toxicity, Brown University Oncology Research Group suggests FOLFOX + nab-paclitaxel (FOLFOX-A) as an alternative[192].

According to a meta-analysis[193], S1 was ranked best for overall and disease-free survival followed by mFFX. Whilst there was no significant difference between S1 and mFFX for OS, S1 had significantly longer disease-free survival (MD 2.8 mo) and was ranked best for lowest overall and haematological grade 3/4 toxicities[194]. However, the results should be interpreted with care, as S-1 has shown good results in the Asian population, but its performance in Caucasians remains unclear due to the different expression of cytochrome P-450.

Adjuvant chemotherapy should be administered between 28 and 59 d after surgery. This timing appears to provide better survival than administering before 28 or after 59 d[182,194].

A 2020 study compared the efficacy between adjuvant chemotherapy and chemoradiation therapy in relation to AJCC stage. Monochemotherapy and combination chemotherapy + chemoradiotherapy (CRT) showed better OS and disease free survival than CRT alone in patients with AJCC stage III, whereas there was no significant difference in OS in patients with AJCC stage I/II[195].

Neoadjuvant chemotherapy

The main purpose of neoadjuvant chemotherapy (NACT) differs according to the stage. For patients with BR-PDAC the objective of the therapy is to decrease tumor size and to control the micro metastases. For patients with primary resectable PDAC the purpose is to increase the proportion of patients receiving chemotherapy, because half of patients undergoing surgery, do not receive adjuvant chemotherapy due to postoperative morbidity or poor general condition[196].

In 2020, important advances were made in this field. For patients with BR-PDAC several studies confirmed the benefits on R0 resection rates and survival of NACT with mFFX[197-200] or multi-agent gemcitabine[201]. Moreover, in the PREOPANC-1 trial, patients receiving neoadjuvant CRT with gemcitabine obtained the same benefits of mFFX[202]. A study of the University of Texas showed that patients who received neoadjuvant CRT obtained significantly improved R0 resection rates, lymph node resection rates, and locoregional recurrence rates, compared with those who received NACT[203]. Although early data suggest the importance of integrating both NACT and CRT into the treatment, large prospective trial data are lacking[204]. New evidence for a standard regimen for BR-PDAC will be established by the result of the ESPAC-5F trial (ISRCTN89500674)[205].
For primary resectable cancer, the potential benefit of NACT has been validated, particularly when initiated within 6 wk of diagnosis[206]. The SWOG S1505 study observed that patients who received gemcitabine and nab-paclitaxel had a greater pathologic response and median survival comparable to those who received mFFX [207]. Several chemotherapeutic agents for resectable pancreatic cancer are currently being studied in several RCTs[208]. The NorPACT-1 study[209] and the Panache-01 study[210] are evaluating the effect of NACT with mFFX, and the NEONAX study [211] of NACT with 2 cycles of nab-paclitaxel/ gemcitabine.

In the Asian population, treatment regimens differ. The Prep-02/JASAP-05 study study demonstrated, in patients with resectable PDAC, that NACT with gemcitabine plus S-1 (GS therapy) improves median OS compared with initial surgery (37 mo vs 27 mo). The resection rate and morbidity of surgery remain the same[212].

Based on these results, the latest Japanese guidelines recommend GS therapy as standard neoadjuvant therapy for patients with resectable PDAC. In this regimen, patients receive intravenous gemcitabine at a dose of 1000 mg/m2 on days 1 and 8, plus oral S-1, twice daily, at a dose based on body surface area (80, 100, 120 mg/d) on days 1-14 every 3 wk for 2 cycles. For patients with BR-PDAC, they recommend NACT, but have refrained from recommending any specific regimens[212-214]. Among several ongoing RCTs on treatments for borderline resectable pancreatic cancer, a Japanese trial is comparing neoadjuvant therapy with gemcitabine plus nab-paclitaxel and CRT therapy with S-1[215]. A subset of patients does not respond to NACT. There is therefore a need to find markers that can predict response to NACT. At the moment the best ones seem to be GRP78, CADM1, PGES2 and RUXF[216] (Table 4).

CHEMOTHERAPY FOR METASTATIC PDAC

Half of patients have metastatic disease at the time of diagnosis. The primary treatment is systemic chemotherapy, with the goal of increasing survival and palliating cancer-related symptoms. Both mFFX and gemcitabine plus nab-paclitaxel improve median OS compared to gemcitabine monotherapy[226,227]. In clinical practice, for patients who are fitter, mFFX is generally preferred, reserving gemcitabine plus nab-paclitaxel as a second-line option if they have adequate performance status[228,229]. For patients who have received first-line gemcitabine and
Table 4 Phase of trial and level of evidence of trial about chemotherapy for resectable and borderline resectable pancreatic ductal adenocarcinoma

Ref.	Phase of trial	Level of evidence
Neoptolemos et al[185]	III	II
Oettle et al[186]	III	I
Neoptolemos et al[187]	III	I
Neoptolemos et al[188]	III	I
Conroy et al[189]	III	I
You et al[195]	III	II
van Roessel et al[198]	IV	II
Versteijne et al[202]	III	II
Ghaneh et al[205]	II	II
Sohal et al[207]	IV	II
Labori et al[209]	III	II
Schwarz et al[210]	II	I
Ettrich et al[211]	II	II
Motoi et al[212]	III	II
UMIN-CTR Clinical Trial[215] (UMIN000026858)	III	II

have progressed, a good option might be the combination of fluorouracil plus leucovorin with nanoliposomal irinotecan[230]. Golan et al[231] evaluated patients with metastatic PDAC and BRCA1-2 germline mutation. In these patients, disease progression had not occurred during at least 4 mo of first-line platinum derivative-based chemotherapy. Patients were randomized to receive olaparib or placebo. Olaparib showed a benefit in terms of PFS and a relatively safe toxicity profile. Although AIFA has not yet approved the indication, this study suggests a role for olaparib as maintenance therapy[231].

Finally, we look forward to the results of the AVENGER 500 trial (NCT03504423) to evaluate the efficacy of mFFX with or without CPI-613. CPI613 (devimistat) is an inhibitor of pyruvate dehydrogenase and a-ketoglutarate, key enzymes of the Krebs cycle. It has already shown good results in a phase I study[232].

STROMA-TARGETING THERAPY

Although chemotherapy is the recommended treatment for patients with advanced PDAC, its efficacy is not satisfactory. The major hurdle is considered the dense dysplastic stroma. The stroma components occupy more than 70% of the total tumor volume. The dense desmoplastic stroma of PDAC leads to vascular compression and a hypoxic microenvironment, which in turn influences drug pharmacokinetics/pharmacodynamics. It also prevents proper action of immune system cells, which are unable to reach the target site. The result is a chemoresistant and immuno-resistant tumor[233,234].

One of the major components of the PDAC stroma is hyaluronic acid (HA). HA promotes the survival, proliferation, and migration of tumor cells[235]. HA is a potential therapeutic target using pegylated hyaluronidase (PEGPH20). The HALO-109-202 study demonstrated that PEGPH20, combined with Abraxane (nab-paclitaxel) and gemcitabine, improves progression-free and OS in patients with high HA levels[236]. However, poor results were obtained from the subsequent HALO-109-301 study (NCT02715804). Another element to be acted upon is the Hedgehog signaling pathway, which is generally overactivated in pancreatic cancer. Vismodegib, in combination with gemcitabine or erlotinib, was studied for this purpose. It did not significantly affect survival compared with these two drugs administered as monotherapy[237,238].
In tumors, Angiotensin II activates transforming growth factor-β through the AT1R and stimulates proliferation, so several angiotensin system inhibitors have been used to target PDAC stroma[233]. One study evaluated the efficacy of mFFX combined with losartan in a neoadjuvant regimen in patients with LA PDAC. The therapy was associated with an increased R0 resection rate[239].

A clinical trial evaluated the efficacy of focused ultrasound combined with gemcitabine microbubble delivery in PDAC patients. Patients treated with the combination tolerated multiple chemotherapy cycles of gemcitabine. A prolongation of median survival by almost 9 mo and, in 50% of cases, a reduction in tumor size were observed[240].

Poor results were obtained from stroma depletion in clinical settings. They are due to the fact that, although stroma-targeting therapy enhances the delivery of chemotherapeutic agents, it might also promote tumor chemoresistance and metastasis (a double-edged sword)[241]. According to several experts, future research should focus on the tumor ECM biology, biomarkers correlated with treatment benefit (as ADAM12)[242] and pharmacological agents able to alter the tumor microenvironment (TME). One of the most interesting discoveries in this regard involves clodronate liposomes. They prevent metastasis formation by inhibiting the activity of PDAC-associated macrophages and altering the microenvironment of key organs that are sites of metastatic invasion. They are therefore valuable candidates to be evaluated in combination with target therapy against stroma[243].

IMMUNOTHERAPY

Immune checkpoint inhibitors

Checkpoint inhibitors activates the function “kill the tumor” of the immune system, targeting immune checkpoint molecules (PD-1, PD-L1, CTLA-4) that negatively regulate T-cell function. Although they resulted in remarkable successes in other cancers, ipilimumab, BMS-936559 and tremelimumab showed little efficacy in PDAC[244-247]. The reasons of failure of immune checkpoint inhibitors are the low baseline PD-1+ T-cell infiltration into the tumor and a paucity of neoepitopes[248,249]. Indeed, in a very small subset of PDAC patients with a high burden of microsatellite instability (MSI-high) PD-1 inhibitor is effective and was recently FDA approved[250,251].

Currently, the development of immune checkpoint inhibitors for PDAC is focused on combination therapy with chemotherapeutic agents[252-255].

Therapeutic cancer vaccines

Therapeutic cancer vaccines present of immunogenic tumor antigens to the immune system, resulting in activation of the anti-cancer response. GVAX is an allogeneic vaccine irradiated with tumor cells engineered to express GM-CSF. It was studied alone and in combination with CRS-207 and cyclophosphamide, however it didn’t correlate with improved survival[256,257].

More promising results were instead obtained with KIF20A-66[258-260]. K-RAS vaccines have been tested in the past, but data remain unclear and with no prominent advantages in metastatic patients[261-264].

We are currently awaiting the results of some studies: (1) TLPO-001, a phase III study of a dendritic cell (DC) vaccine loaded with WT1 peptides in patients with advanced PDAC refractory to standard chemotherapy[265,266]; (2) A clinical trial using GV1001 with GM-CSF in patients with LA-PDAC in combination with gemcitabine chemotherapy, tadalfil and radiation therapy (NCT01342224); and (3) NCT01836432, NCT02405585 and NCT01072981 evaluating algenpantucel-L in combination with chemotherapy and CRT therapy. They involve patients with borderline resectable and LA unresectable PDAC.

CAR-T cell

CAR-T cell therapy is a type of adoptive cell therapy. CAR-T cells are T lymphocytes that are extracted from a patient’s blood sample or from a donor by apheresis, genetically modified to express the receptor for chimeric antigen (CAR), and cultured in the laboratory. They are then re-infused into the patient. The resulting T cells are able to recognize tumor cells and activate the immune system response against the disease[267]. The target antigens of CAR-T cells include mesothelin, prostate stem cell antigen (PSCA), CEA, HER2, MUC-1, and CD133[268,269]. In a study of metastatic PDAC, autologous mesothelin-specific T lymphocytes improved PFS in two patients of the six examined. An additional patient had complete remission of all liver metastases
Tonini V et al. Pancreatic cancer in 2021

Recent studies have shown the gut microbiota (GM) may play a role in the

Oncolytic viruses

Oncolytic viruses are modified therapeutic drugs that selectively infect and self-replicate in tumor cells with tumor-dissolving effect. They also activate the anti-tumor immunity and change the TME from an immunosuppressed state to an immune-activated state. Furthermore, oncolytic viruses have the advantages of specificity, low toxicity, and low drug resistance[276]. Adenovirus, Herpes Simplex Virus, Protovirus, Reovirus and Vaccinia Virus have been tested. However most of the studies have shown unsatisfactory results. The only positive results derive from ParvOryx02 (NCT02653313). A single-arm study published in 2020 showed an encouraging efficacy of pembrolizumab in combination with Pelareorep and chemotherapy in patients progressed after first-line treatment[277-281] (Table 5).

GENETIC MUTATION AND TARGET THERAPY

Some genetic alterations produce cellular changes in neoplastic cells that are potentially therapeutically targetable. BRAF mutations occur in 1%-3% of PDAC. They showed to be targetable in metastatic colon cancer where the combination of Encorafenib and Cetuximab has recently been approved[282,283]. Encorafenib and Cetuximab should also be evaluated in PDAC. Furthermore, pancreatic tumors with NTRK gene fusions can be treated with tropomyosin receptor kinase inhibitors[284,285]. Similarly, some wild-type Kras pancreatic tumors hosting somatic NRG1 gene fusions respond to treatment with a kinase inhibitor of the HER family[286,287].

However, the results of the targeted therapies have been unsatisfactory, mainly due to the low life expectancy. There is no time to sequence the tumors and develop a treatment based on mutations[288].

The exceptions were the germline alterations. Patients with mutations of BRCA1, BRCA2 or PALB1 are remarkably sensitive to treatment with DNA cross-linking agents, such as platinum-based drugs, and poly(ADP-ribose) polymerase (PARP) inhibitors[289-291]. Patients with Lynch syndrome (MSI-high) respond well to treatment with immune checkpoint inhibitors[292-294] and those with ATM mutations could respond to the drugs, targeting the ATR-checkpoint kinase 1 (Chk1) pathway[295,296].

The elephant in the targeted therapy room remains Kras[297]. It has been considered "undrinkable"[297-299] because the protein lacks an efficient small-molecule binding pocket and has a high affinity for cellular guanosine triphosphate (GTP), which is highly concentrated in the cytoplasm. Furthermore, other than the GTP/GDP binding pocket, KRAS has no other pockets for small-molecule inhibitor binding. A druggable variant of Kras appears to be G12C. Enormous progress has been made in this regard and several drugs (AMG 510, MRTX849, INJ-74699157 and LY3499446) are currently in clinical trials[299]. The importance of these can be deduced from the fact that 95% of pancreatic cancers harbor mutations in the Kras gene (the four Kras mountains, TP53, CDKN2A and SMAD4 present in > 50% of tumors)[300,301]. Although Kras G12C mutations are only a small fraction of Kras mutations in PDAC, these drugs represent a chance to take down a previously thought invincible adversary.

PANCREATIC CANCER AND GUT MICROBIOTA

Recent studies have shown the gut microbiota (GM) may play a role in the
Table 5 Phase and level of evidence of trials about immunotherapy for pancreatic ductal adenocarcinoma

Ref.	Phase of trial	Level of evidence
Royal et al[245]	II	II
Brahmer et al[246]	I	I
O'Reilly et al[247]	II	II
Tumeh et al[248]	II	III
Le et al[250]	II	II
Le et al[251]	II	II
Wainberg et al[252]	I	II
Weiss et al[253]	II	II
National Institute of Public Health[254] (JapicCTI-184230,ONO-4538)	II	II
Wang-Gillam et al[255]	II	II
Le et al[257]	III	I
Asahara et al[258]	I/II	II
Suzuki et al[259]	II	III
Miyazawa et al[260]	II	II
Weden et al[261]	III	I
Toubaji et al[262]	II	III
Abou-Alfa et al[263]	I/II	III
Cohn et al[264]	I	III
Katsuda et al[265]	III	I
Katsuda et al[266]	I/II	II
Beatty et al[270]	III	I
Le et al[271]	III	II
Chung et al[272]	I	III
Wang-Gillam et al[273]	I	III
Reiss et al[274]	III	III
Desai et al[275]	III	III
Chang et al[276]	III	III
Noonan et al[279]	II	II
Mahalingam et al[280]	III	III
National Institute of Public Health[254] (JapicCTI-184230,ONO-4538)	III	III

Development of PDAC and its response to therapy. GM alterations result in reduced mucus thickness, leading to decreased antimicrobial defenses and increased exposure to bacterial components such as LPS, flagellin, single or doubled DNA and CpG DNA. These agents activate Toll-like-receptors and trigger chronic inflammation that are related to carcinogenesis. Moreover, inflammation and dysbiosis lead to mutation of Kras, that accelerates carcinogenesis, activating nuclear factor-κB pathway[302-304].

Several bacterial products are considered potential carcinogens. Cyclodulin promotes tumorigenesis through active interference with host cell cycles. Colibactin and Bacteroides fragilis toxin act synergistically with Escherichia coli to create double-stranded DNA damage[305]. E. coli cytotoxic necrotizing factor and CagA lead to uncontrolled cell proliferation, while cytolytic distending toxin and cycle inhibitory factor participate in genetic alterations and induce hyperploidy even in the absence of cell division[306]. The presence of an Helicobacter pylori infection and high concentrations of Fusobacterium spp and Porphyromonas gingivalis (bacteria generally present in the oral cavity) are associated with an increased risk of pancreatic cancer [307-310].
Moreover, other studies correlated a large number of microbes with immune suppression, downregulation of tumor suppressive pathways and the upregulation of oncogenic pathways[311].

Dysbiosis is also related to obesity, chronic pancreatitis and diabetes, well-established risk factors of PDAC[312,313].

Because it participates in drug metabolism and biotransformation and immune regulation, the GM is implicated in the efficacy of chemotherapeutic agents[314]. The innate immune response activated by the GM potentiates the action of oxaliplatin [315]. Gentamicin activity may be reduced by the enzymes pyrimidine nucleoside phosphorylase and cytidine deaminase, which are produced by Gamma-proteobacteria and mycoplasmas within PDAC. Thus, these data suggest the possibility of modulating GM to counteract the chemoresistance characteristic of pancreatic cancer [316].

Intratumoral microorganisms can play a key role in anticancer therapy[317]. Indeed, they can stimulate host immune responses with positive or negative impacts on therapy. *Gammaproteobacteria, Escherichia Coli and Fusobacteria* are most commonly present in PDAC. Gamma proteobacteria contain the enzyme CDD which could be responsible for the ineffectiveness of gemicitabine[318]. Escheria Coli is capable of inducing chemical changes in the structure of gemicitabine, fludarabine, cladribine, and CB1954[319]. The desmoplastic response induced by tumor cells is dependent on MyD88. It is activated by Fusobacterium species.

The intratumoral microbiota thus emerges as a major proponent of the chemoresistant phenotype of pancreatic cancer and is related to long-term survival in PDAC patients.

PROGNOSIS

The most important prognostic factor is tumor stage. The median survival time after resection for patients with stage IA, IB, IIA, IIB, and III was 38, 24, 18, 17, and 14 mo, respectively[320]. Other factors may influence the prognosis of PDAC after surgery: Surgical margin status, tumor grading, presence of lymphatic invasion, preoperative and postoperative serum levels of CA 19-9, and cigarette smoking[321-329]. Squamous subtypes have a poor prognosis. They are enriched with TP53 and KDM6A mutations, upregulation of TP63AN transcriptional network, hypermethylation of pancreatic endoderm cell fate determining genes[330].

Several studies have investigated novel factors influencing prognosis: (1) Increased expression of CDK1 and CCNA2 is associated with poor prognosis, although they may be potential therapeutic targets[331]; (2) The autophagy regulatory genes MET and RIPK2 play a prognostic role in PDAC[332]; (3) High expression of GPDAC2, GPDAC3 and GPDAC5 has been significantly associated with favorable survival[333]; (4) High expression of Hic-5 is negatively correlated with postoperative survival time, as Hic-5 stimulates tumor proliferation, migration, and invasion[334]; (5) PRMT1 promotes pancreatic cancer growth by increasing cellular β-catennin levels and predicts poor prognosis[335]; (6) Patients with first recurrence in the lung have a better prognosis than patients with first recurrence in the liver[336]; (7) Increased levels of ZIP4 correlate with poorer survival. ZIP4 inhibits the expression of the gemicitabine transporter ENT1, so that cells take up smaller amounts of the drug. Activation of this pathway participates in the chemoresistance of pancreatic cancer[337]; (8) The highly upregulated in liver cancer (HULC) IncRNA distinguishes patients with pancreatic cancer, patients with benign pancreatic disease, and healthy subjects and correlates with TNM stage. Subjects with low HULC expression have significantly higher 3- and 5-year OS than those with high expression. Therefore, HULC IncRNA could be considered an effective marker for the diagnosis and prognosis of PDAC[338]; (9) Upregulation of TYMS leads to unfavorable OS and RFS[339]; and (10) The GINS complex has four subunits, encoded by the GINS1, GINS2, GINS3, and GINS4 genes, all of which are overexpressed in PDAC. The expression of each member is associated with the histological grade of PDAC and is a negative prognostic marker[340].

CONCLUSION

Pancreatic cancer is a very treacherous, dangerous enemy and the results are still very unsatisfactory. But we have not given up. Research is running fast on many paths, without losing its enthusiasm. It is proof that we are encircling it, and at the end, we...
will win. The success of a fight is linked to the ability to move from one failure to another without losing one's enthusiasm.

REFERENCES

1. GBD 2017 Pancreatic Cancer Collaborators. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet Gastroenterol Hepatol* 2019; 4: 934-947 [PMID: 31648972 DOI: 10.1016/S2468-1253(19)30347-4]

2. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet* 2016; 388: 1459-1544 [PMID: 27733281 DOI: 10.1016/S0140-6736(16)31012-1]

3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/caac.21492]

4. Ilic M, Ilic I. Epidemiology of pancreatic cancer. *World J Gastroenterol* 2016; 22: 9694-9705 [PMID: 27956793 DOI: 10.3748/wjg.v22.i44.9694]

5. Oldfield LE, Connor AA, Gallinger S. Molecular Events in the Natural History of Pancreatic Cancer. *Trends Cancer* 2017; 3: 336-346 [PMID: 28718411 DOI: 10.1016/j.trecan.2017.04.005]

6. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. *CA Cancer J Clin* 2020; 70: 7-30 [PMID: 31912902 DOI: 10.3322/caac.21590]

7. Grasso C, Jansen G, Giovannetti E. Drug resistance in pancreatic cancer: Impact of altered energy metabolism. *Crit Rev Oncol Hematol* 2017; 114: 139-152 [PMID: 28477742 DOI: 10.1016/j.critrevonc.2017.03.026]

8. He J, Blair AB, Groot VP, Javed AA, Burkhart RA, Gemenetzis G, Hruban RH, Waters KM, Poling J, Zheng L, Lahteru D, Herman JM, Makary MA, Weiss MJ, Cameron JL, Wolfgang CL. Is a Pathological Complete Response Following Neoadjuvant Chemoradiation Associated With Prolonged Survival in Patients With Pancreatic Cancer? *Ann Surg* 2018; 268: 1-8 [PMID: 29334562 DOI: 10.1097/SLA.S0000000000002672]

9. Singhi AD, Koay EJ, Chari ST, Maitra A. Early Detection of Pancreatic Cancer: Opportunities and Challenges. *Gastroenterology* 2019; 156: 2024-2040 [PMID: 30721664 DOI: 10.1053/j.gastro.2019.01.259]

10. Bosetti C, Lucenteforte E, Silverman DT, Petersen G, Bracci PM, Ji BT, Negri E, Li D, Risch HA, Olson SH, Gallinger S, Miller AB, Bueno-de-Mesquita HB, Talani M, Polesel J, Ghadirian P, Baghurst PA, Zatonski W, Fontham ET, Beral CW, Boffetta P, Gao YT, Hassan M, Yu H, Kurtz RC, Cotterchio M, Su J, Maisonneuve P, Duell EJ, Boffetta P, La Vecchia C. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). *Ann Oncol* 2012; 23: 1880-1888 [PMID: 22104574 DOI: 10.1093/annonc/mdr541]

11. Carreras-Torres R, Johansson M, Gaborieau V, Haycock PC, Wade KH, Relton CL, Martin RM, Davey Smith G, Brennan P. The Role of Obesity, Type 2 Diabetes, and Metabolic Factors in Pancreatic Cancer: A Mendelian Randomization Study. *J Natl Cancer Inst* 2017; 109 [PMID: 28954281 DOI: 10.1093/jnci/djx012]

12. Li D, Morris JS, Liu J, Hassan MM, Day RS, Bondy ML, Abbruzzese JL. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. *JAMA* 2009; 301: 2535-2562 [PMID: 19549972 DOI: 10.1001/jama.2009.886]

13. O’Rorke MA, Cantwell MM, Cardwell CR, Mulholland HG, Murray LJ. Can physical activity modulate pancreatic cancer risk? *Int J Cancer* 2010; 126: 2957-2968 [PMID: 19856317 DOI: 10.1002/ijc.24997]

14. Huang J, Magnusson M, Törner A, Ye W, Duberg AS. Risk of pancreatic cancer among individuals with hepatitis C or hepatitis B virus infection: a nationwide study in Sweden. *Br J Cancer* 2013; 109: 2917-2923 [PMID: 24178755 DOI: 10.1038/bjc.2013.689]

15. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA, Bueno-de-Mesquita HB, Gross M, Helzlsouer K, Jacobs EJ, LaCroix A, Zheng W, Albans D, Bamlet WR, Berg CD, Berrino F, Bingham S, Buring JE, Bracci PM, Canzian F, Clavel-Chapelon F, Clipp S, Cotterchio M, de Andrade M, Duell EJ, Gallinger S, Ganziano JM, Giovannucci EL, Goggins M, González CA, Hallmans G, Hankinson SE, Hassan M, Holly EA, Hunter DJ, Hutchinson A, Jackson R, Jacobs KB, Jenab M, Kaaks R, Klein AP, Kooperberg C, Kurtz RC, Li D, Lynch SM, Mandelson M, McWilliams RR, Mendelsohn JB, Michaud DS, Olson SH, OVERA D, Patel AV, Peeters PH, Rajkovic A, Riboli E, Risch HA, Shu XO, Thomas G, Tobias GS, Trichopoulos D, Van Den Eeden SK, Virtamo J, Wactawski-Wende J, Wolpin BM, Yu H, Yu K, Zeleniuch-Jacquotte A, Channock SJ, Hartge P, Hoover RN. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. *Nat Genet* 2009; 41: 986-990 [PMID: 19648918 DOI: 10.1038/ng.429]

16. Yamada A, Komaki Y, Komaki F, Micic D, Zullo J, Sakuraba A. Risk of gastrointestinal cancers in patients with cystic fibrosis: a systematic review and meta-analysis. *Lancet Oncol* 2018; 19: 758-
27100409 DOI: 10.1097/MD.0000000000002850

22 Saudatian-Elahi M, Slimani N, Chajés V, Jenab M, Guédy J, Biessy C, Ferrari P, Byrnes G, Autier P, Peeters PH, Ocké M, Bueno de Mesquita B, Johansson I, Hallmans G, Manjer J, Wirfält E, González CA, Navarro C, Martínez C, Amiano P, Suárez LR, Ardanaz E, Tjonneland A, Halkajer J, Overvad K, Jakobsen MU, Berrino F, Pala V, Palli D, Tumino R, Vineis P, Santuccci de Magistris M, Spencer EA, Crowe FL, Bingham S, Khaw KT, Beral J, Lissiën J, Rohrmann S, Boeing H, Noréthling U, Olsen KS, Skeie G, Lund E, Trichopoulo A, Zilis D, Oustoglou E, Clavel-Chapelon F, Riboli E, Slimani N. Ecological-level associations between highly processed food intakes and plasma phospholipid elaidic acid concentrations: results from a cross-sectional study within the European Prospective Investigation into cancer and nutrition (EPIC). *Nutr Cancer* 2011; 63: 1235-1250 [PMID: 22043987 DOI: 10.1080/01635581.2011.617530]

23 Jiao L, Mitrou PN, Reedy J, Graubard BI, Hollenbeck AR, Schatzkin A, Stolzenberg-Solomon R. A combined healthy lifestyle score and risk of pancreatic cancer in a large cohort study. *Arch Intern Med* 2009; 169: 764-770 [PMID: 19398688 DOI: 10.1001/archinternmed.2009.46]

24 Ferrari P, Licaj I, Muller DC, Krauth Andersen P, Johansson I, Boeing H, Weiderpass E, Dossus L, Dartois L, Fagherazzi G, Bradbury KE, Khaw KT, Wareham N, Duell EJ, Barriartc A, Molina-Montes E, Sanchez CN, Arriola L, Wallström P, Tjonneland A, Olsen A, Trichopoulo A, Benetou V, Trichopoulo A, Tumino R, Agnoli C, Sacerdote C, Palli D, Li K, Kaaks R, Peeters P, Beulens JW, Nune FL, Garner M, Norat T, Overvad K, Brennan P, Riboli E, Romeu I. Lifetime alcohol use and overall and cause-specific mortality in the European Prospective Investigation into Cancer and nutrition (EPIC) study. *BMJ Open* 2014; 4: e005245 [PMID: 24993766 DOI: 10.1136/bmjopen-2014-005245]

25 Naudin S, Li K, Jouven T, Assi N, Kyos C, Tjonneland A, Overvad K, Bouton-Ruault MC, Rebeurs V, Védié AL, Boeing H, Kaaks R, Katske V, Bamia C, Naska A, Trichopoulo A, Berrino F, Tagliabue G, Palli D, Panico S, Tumino R, Sacerdote C, Peeters PH, Bueno de Mesquita HBA, Weiderpass E, Gram JT, Skeie G, Chirlaque MD, Rodriguez-Barranco M, Barriartc A, Quirós JR, Dorronsoro M, Johansson I, Sund M, Sternby H, Bradbury KE, Wareham N, Riboli E, Gunter M, Brennan P, Duell EJ, Ferrari P. Lifetime and baseline alcohol intakes and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition cohort. *Br J Cancer* 2017; 116: 811-820 [PMID: 28170373 DOI: 10.1038/bjc.2017.14]

26 Molina-Montes E, Sánchez MJ, Buckland G, Bueno de Mesquita HB, Weiderpass E, Amiano P, Wark PA, Kühn T, Katske V, Huerta JM, Ardanaz E, Quirós JR, Affret A, His M, Bouton-Ruault MC, Peeters PH, Ye W, Sund M, Boeing H, Iqbal K, Ohihson B, Sonesstedt E, Tjønneland A, Petersen KE, Trichopoulo A, Skeie G, Agnoli C, Panico S, Palli D, Tumino R, Sacerdote C, Freising H, Huybrechts I, Overvad K, Trichopoulo A, Bamia C, Vasilopoulou E, Wareham N, Khaw KT, Cross AJ, Ward HA, Riboli E, Duell EJ. Mediterranean diet and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition cohort. *Int J Cancer* 2018; 143: 801-812 [PMID: 29524225 DOI: 10.1002/ijc.31367]

27 Rawla P, Tiandra KC, Sunkara T. Pancreatic cancer and obesity: epidemiology, mechanism, and...
Stoffel EM, McKernin SE, Brand R, Canto M, Goggins M, Moravek C, Nagarajan A, Petersen GM, Lacey JV Jr, Linet MS, Liu JJ, Park Y, Peters U, Purdue MP, Robien K, Schaier C, Sesso HD, Visvanathan K, White E, Wolk A, Wolpin BM, Zeleniuch-Jacquotte A, Jacobs EJ. Central adiposity, obesity during early adulthood, and pancreatic cancer mortality in a pooled analysis of cohort studies. *Ann Oncol* 2015; 26: 2257-2266 [PMID: 26347100 DOI: 10.1093/annonc/mdv355]

Song S, Wang B, Zhang X, Hao L, Hu X, Li Z, Sun S. Long-Term Diabetes Mellitus Is Associated with an Increased Risk of Pancreatic Cancer: A Meta-Analysis. *PLoS One* 2015; 10: e0134321 [PMID: 26222906 DOI: 10.1371/journal.pone.0134321]

Binomte S, Cascella M, Leongtio M, Palaia R, Caliendo D, Izzo F, Cuoio A. An overview of preclinical studies on the effects of (-)-epigallocatechin-3-gallate, a catechin found in green tea, in treatment of pancreatic cancer. *Recenti Prog Med* 2017; 108: 282-287 [PMID: 28631776 DOI: 10.1701/2715.2717S]

Nasir A, Bullo MMH, Ahmed Z, Imitiaz A, Yaqoob E, Jadoon M, Ahmed H, Afreen A, Yaqoob S. Nutrigenomics: Epigenetics and cancer prevention: A comprehensive review. *Crit Rev Food Sci Nutr* 2020; 60: 1375-1387 [PMID: 30729798 DOI: 10.1080/10408398.2019.1571480]

Pelaez-Luna M, Takahashi N, Fletcher JG, Chari ST. Resectability of presymptomatic pancreatic cancer and its relationship to onset of diabetes: a retrospective review of CT scans and fasting glucose values prior to diagnosis. *Am J Gastroenterol* 2007; 102: 2157-2163 [PMID: 17897335 DOI: 10.1111/j.1572-0241.2007.01480.x]

US Preventive Services Task Force. Owens DK, Davidson KW, Krist AH, Burzy MJ, Cabana M, Caughey AB, Curry SJ, Doubeni CA, Epling JW Jr, Kubik M, Landefeld CS, Mangione CM, Pfert L, Silverstein M, Simon MA, Tseng CW, Wong JB. Screening for Pancreatic Cancer: US Preventive Services Task Force Reaffirmation Recommendation Statement. *JAMA* 2019; 322: 438-444 [PMID: 31386141 DOI: 10.1001/jama.2019.10232]

Yuan C, Babic A, Khalaf N, Nowak JA, Braik LS, Robinson DA, Ng K, Aguirre AJ, Pandharipande PV, Fuchs CS, Giovannucci EL, Stampfer MJ, Rosenthal MH, Sander C, Kraft P, Wolpin BM. Diabetes, Weight Change, and Pancreatic Cancer Risk. *JAMA Oncol* 2020; 6: e202948 [PMID: 32789511 DOI: 10.1001/jamaoncol.2020.2948]

Naudin S, Viallon V, Hashim D, Freising H, Jenab M, Weiderpass E, Perrier F, McKenzie F, Bueno-de-Mesquita HB, Olsen A, Tjønneland A, Dahm CC, Overvad K, Mancini FR, Rebours V, Bueno-de-Mesquita HB, Chirlaque López MD, Sánchez MJ, Ardanaz E, Quirós JR, Amiano E, Exezerrepta R, Sund M, Drake I, Regnéri S, Travis RC, Wareham N, Aune D, Riboli E, Gunter MJ, Duell EJ, Brennan P, Ferrari P. Healthy lifestyle and the risk of pancreatic cancer in the EPIC study. *Eur J Epidemiol* 2020; 35: 975-986 [PMID: 31256405 DOI: 10.1007/s10654-019-00559-z]

Lal G, Liu G, Schnoeker B, Kaurah P, Ozcelik H, Narod S, Redston M, Gallinger S. Inherited predisposition to pancreatic adenocarcinoma: role of family history and germline p16, BRCA1, and BRCA2 mutations. *Cancer Res* 2020; 60: 409-416 [PMID: 30667585]

Holter S, Borgsida A, Dodd A, Grant R, Semotiuk K, Hedley D, Dhan I, Narod S, Akbari M, Moore M, Gallinger S. Germline BRCA Mutations in a Large Clinic-Based Cohort of Patients With Pancreatic Adenocarcinoma. *J Clin Oncol* 2015; 33: 3124-3129 [PMID: 25940717 DOI: 10.1200/JCO.2014.59.7401]

Goldstein AM, Fraser MC, Struwing JP, Hussussian CJ, Ranade K, Zamekkin DP, Fontaine LS, Organic SM, Dracopoli NC, Clark WH Jr. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16NK4 mutations. *N Engl J Med* 1995; 333: 970-974 [PMID: 7669196 DOI: 10.1056/NEJM199510123331504]

van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leendam ME. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. *Am J Gastroenterol* 2010; 105: 1258-64; author reply 1265 [PMID: 20051941 DOI: 10.1038/aajg.2009.725]

Park JG, Park YJ, Wijnen JT, Vasen HF. Gene-environment interaction in hereditary nonpolyposis colorectal cancer with implications for diagnosis and genetic testing. *Int J Cancer* 1999; 82: 516-519 [PMID: 10404064 DOI: 10.1002/(SICI)1097-0215(19990812)82:4<516::AID-IJC8>3.0.CO;2-u]

Whitcomb DC. Inflammation and Cancer. V. Chronic pancreatitis and pancreatic cancer. *Am J Physiol Gastrointest Liver Physiol* 2004; 287: G315-G319 [PMID: 15246966 DOI: 10.1152/ajpgi.00115.2004]

Yurgelun MB, Chittenden AB, Morales-Oyarvide V, Robinson DA, Dunne RF, Kozak MM, Qian YR, Welch MW, Brais LR, Da Silva A, Bui JL, Yuan C, Li T, Li W, Masuda A, Gu M, Bullock AJ, Chang DT, Clancy TE, Linehan DC, Findeis-Hosey JJ, Doyle LA, Thorner AR, Ducar MD, Wollison BM, Khalaf N, Perez K, Syngal S, Aguirre AJ, Hahn WC, Meyerson ML, Fuchs CS, Ogino S, Hornick JI, Hezel AF, Koong AC, Nowak JA, Wolpin BM. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. *Genet Med* 2019; 21: 213-223 [PMID: 29981768 DOI: 10.1038/s41436-018-0009-3]
Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer.

Khomiak A

10.1016/j.ejso.2004.09.007

Ni XG

analysis.

Risk Factors.

[PMID: 13087871]

DOI: 10.1007/s00595-019-01931-5

Hirono S

Surgical strategy for intraductal papillary mucinous neoplasms of the pancreas. Surg Today 2020; 50: 50-55 [PMID: 31807871]

DOI: 10.1007/s00595-019-01931-5

Canto MI, Hruban RH, Fishman EK, Kamel IR, Vyskocil L, Khan MA, Edmonson JH, Lichter AS, Crist WM, Hruban RH. The early detection of pancreatic cancer: what will it take to diagnose and treat curable pancreatic neoplasia? Gastroenterology 2015; 148: 141-150 [PMID: 25853369]

DOI: 10.1053/gastro.2020.04.044

Canto MI, Kersdsricharait T, Yeo CJ, Hruban RH, Shin EJ, Almario JA, Blackford A, Ford M, Klein AP, Javed AA, Lennon AM, Zaheer A, Kamel IR, Fishman EK, Burkhart R, He J, Makary M, Weiss MJ, Schuldick RD, Goggins MG, Wolfgang CL. Surgical Outcomes After Pancreatic Resection of Screening-Detected Lesions in Individuals at High Risk for Developing Pancreatic Cancer. J Gastrointest Surg 2020; 24: 1101-1110 [PMID: 31197699]

DOI: 10.1007/s11665-019-04230-z

Lennon AM, Wolfgang CL, Canto MI, Klein AP, Herman JM, Goggins M, Fishman EK, Kamel I, Weiss MJ, Diaz LA, Papadopoulos N, Kinzler KW, Vogelstein B, Hruban RH. The early detection of pancreatic cancer: what will it take to diagnose and treat curable pancreatic neoplasia? Cancer Res 2014; 74: 3381-3389 [PMID: 24924775]

DOI: 10.1158/0008-5472.CAN-14-0734

Goonetilleke KS, Sircadwena AK. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol 2007; 33: 266-270 [PMID: 17997848]

DOI: 10.1016/j.ejso.2006.10.004

Rawla P, Sunkara T, Gudupati V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol 2019; 10: 10-27 [PMID: 30834048]

DOI: 10.1470/wjon1166

Meng Q, Shi S, Liang C, Liang D, Xu W, Ji S, Zhang B, Ni Q, Xu J, Yu X. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: a systematic review and meta-analysis. Onco Targets Ther 2017; 10: 4591-4598 [PMID: 28979147]

DOI: 10.2147/OTT.S145708

Ni XG, Bai XF, Mao YL, Shao YF, Wu JX, Shan Y, Wang CF, Wang J, Tian YT, Liu Q, Xu DK, Zhao P. The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. Eur J Surg Oncol 2005; 31: 164-169 [PMID: 15698733]

DOI: 10.1016/j.ejso.2004.09.007

Khomiak A, Brunner M, Kordes M, Lindblad S, Miksch RC, Öhland D, Regel I. Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers (Basel) 2020; 12 [PMID: 33147766]

DOI: 10.3390/cancers12113234
Satake K, Takeuchi T. Comparison of CA19-9 with other biomarkers in the diagnosis of cancer of the pancreas. *Pancreas* 1994; 9: 720-724 [PMID: 7846015 DOI: 10.1097/00006676-199410000-00008]

Bussom S, Saif MW. Methods and rationale for the early detection of pancreatic cancer. Highlights from the "2010 ASCO Gastrointestinal Cancers Symposium". Orlando, FL, USA: January 22-24, 2010. *JOP* 2010; 11: 128-130 [PMID: 20208319]

Eissa MAI, Lerner L, Abdelfatah E, Shankar N, Canner JK, Hasan NM, Yaghboobi V, Huang B, Kerner Z, Takaesu F, Wolfgang C, Kwak R, Ruiz M, Tam M, Pisanic TR 2nd, Iacobuzio-Donahue CA, Hruban RH, He J, Wang TH, Wood LD, Sharma A, Ahuja N. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. *Clin Epigenetics* 2019; 11: 59 [PMID: 30953539 DOI: 10.1186/s13148-019-0650-0]

Shen SY, Singhania R, Fehringer G, Chakravarthly A, Roehrl MHA, Chadwick D, Zuzarte PC, Borgida A, Wang TT, Li T, Kis O, Zhao Z, Spreafico A, Medina TDS, Wang Y, Rohoulo D, Tacketti C, Chen Z, Chow S, Murphy T, Arruda A, O'Kane GM, Liu J, Mansour M, McPherson JD, O'Brien C, Leighl N, Bedard P, Fleshner N, Liu G, Minden MD, Gallerling S, Goldenberg A, Pugh TJ, Hoffman MM, Bratman SV, Hunt RJ, De Carvalho DD. Sensitive tumour detection and classification using plasma cell-free DNA methylation. *Nature* 2018; 563: 579-583 [PMID: 30429608 DOI: 10.1038/s41586-018-0703-0]

Cirrmena G, Dameri M, Ravaer F, Fregatti P, Ballestrero A, Zoppoli G. Assessment of Circulating Nucleic Acids in Cancer: From Current Status to Future Perspectives and Potential Clinical Applications. *Cancers* (Basel) 2021; 13 [PMID: 34298675 DOI: 10.3390/cancers1314460]

Bloomberg M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioni C, Croce CM. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. *JAMA* 2007; 297: 1901-1908 [PMID: 17473360 DOI: 10.1001/jama.297.17.1901]

Duell EJ, Lujan-Barroso L, Sala N, Deitz McElyea S, Overaud K, Tjonneland A, Olsen A, Weiderpass E, Busund LT, Moi L, Muller D, Vineis P, Aune D, Matullo G, Naccarati A, Panicco S, Tagliabue G, Tumino R, Palli D, Kaaks R, Katzke VA, Boeing H, Bueno-de-Mesquita HBA, Peeters PH, Trichopoulou A, Lagiou P, Kotanidou A, Travis RC, Wareham N, Khaw KT, Ramon Quiros J, Toniolo G. Risk factors for intraductal papillary mucinous neoplasms of the pancreas and chronic pancreatitis. *Cancers (Basel)* 2014; 6: 3840-3851 [PMID: 25284740 DOI: 10.1002/ijc.30790]

Liu J, Gao J, Du Y, Li Z, Ren Y, Gu J, Wang X, Gong Y, Wang W, Kong X. Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. *Int J Cancer* 2012; 131: 683-691 [PMID: 21913185 DOI: 10.1002/ijc.26422]

Permutt JB, Chen DT, Yoder SJ, Li J, Smith AT, Choi JW, Kim J, Balagurunathan Y, Jiang K, Coppola D, Centeno BA, Klajman J, Hodul P, Karreth FA, Trevino JG, Merchant N, Magliocco A, Malafa MP, Gillies R. Line-4 induction of circulating Long non-coding RNAs to the Diagnosis and Malignant Prediction of Intraductal Papillary Mucinous Neoplasms of the Pancreas. *Sci Rep* 2017; 7: 10484 [PMID: 28874676 DOI: 10.1038/s41598-017-09754-5]

Ding J, Li Y, Zhang Y, Fan B, Li Q, Zhang J. Identification of key IncRNAs in the tumorigenesis of intraductal pancreatic mucinous neoplasm by coexpression network analysis. *Cancer Med* 2020; 9: 3840-3851 [PMID: 32239802 DOI: 10.1002/cam4.2927]

Nasca V, Chiaravalli M, Piro G, Esposito A, Salvatore L, Tortora G, Corbo V, Carbone C. Intraductal Pancreatic Mucinous Neoplasms: A Tumor-Biology Based Approach for Risk Stratification. *Int J Mol Sci* 2020; 21 [PMID: 32887490 DOI: 10.3390/ijms21178636]

Kanda M, Knight S, Topazian M, Syngal S, Farrell J, Lee J, Kamel I, Lennon AM, Borges M, Young A, Fujiwara S, Seike J, Eshleman J, Hruban RH, Canto MI, Goggins M. Mutant GNAS detected in duodenal collections of secretin-stimulated pancreatic juice indicates the presence or emergence of pancreatic cysts. *Gut* 2013; 62: 1024-1033 [PMID: 22859495 DOI: 10.1136/gutjnl-2012-302823]

Kanda M, Sadakari Y, Borges M, Topazian M, Farrell J, Syngal S, Lee J, Kamel I, Lennon AM, Knight S, Fujiwara S, Hruban RH, Canto MI, Goggins M. Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. *Clin Gastroenterol Hepatol* 2013; 11: 719-30.e5 [PMID: 23208990 DOI: 10.1016/j.cgh.2012.11.016]

Singh AD, McGrath K, Brand RE, Khalid A, Zeh HJ, Lerner L, Abdelfatah E, Shankar N, Canner JK, Hasan NM, Yaghboobi V, Huang B, Kerner Z, Takaesu F, Wolfgang C, Kwak R, Ruiz M, Tam M, Pisanic TR 2nd, Iacobuzio-Donahue CA, Hruban RH, He J, Wang TH, Wood LD, Sharma A, Ahuja N. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. *Clin Epigenetics* 2019; 11: 59 [PMID: 30953539 DOI: 10.1186/s13148-019-0650-0]

Garcia-Carracedo D, Chen ZM, Qi W, Huang AS, Tang SM, Hruban RH, Su GH. PIK3CA mutations in mucinous cystic neoplasms of the pancreas. *Pancreas* 2014; 43: 245-249 [PMID: 24518503 DOI: 10.1097/MPA.0000000000000034]

Garcia-Carracedo D, Turk AT, Fine SA, Akhvan N, Tewel BC, Parsons R, Chabot JA, Allendorf JD, Genkinger JM, Remotti HE, Su GH. Loss of PTEN expression is associated with poor prognosis
in patients with intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 2013; 19: 6830-6841 [PMID: 24132918 DOI: 10.1158/1078-0432.CCR-13-0624]

79 Kaur S, Kumar S, Morni N, Sasson AR, Batra SK. Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 2013; 10: 607-620 [PMID: 2385688 DOI: 10.1038/nrgastro.2013.120]

80 Nagata K, Horinouchi M, Saitou M, Higashi M, Nomoto M, Goto M, Yonezawa S. Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepatobiliary Pancreat Surg 2007; 14: 243-254 [PMID: 17520199 DOI: 10.1007/s00534-006-1169-2]

81 Moniaux N, Chaturvedi P, Varshney GC, Meza JL, Rodriguez-Sierra JF, Aubert JP, Batra SK. Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. Br J Cancer 2007; 97: 345-357 [PMID: 17595659 DOI: 10.1038/sj.bjc.6603868]

82 Gold DV, Modrak DE, Ying Z, Cardillo TM, Sharkey RM, Goldenberg DM. New MUC1 serum immunoassay differentiates pancreatic cancer from pancreatitis. J Clin Oncol 2006; 24: 252-258 [PMID: 16344318 DOI: 10.1200/JCO.2005.02.8282]

83 Haab BB, Porter A, Yue T, Li L, Scheiman J, Anderson MA, Barnes D, Schmidt CM, Feng Z, Simeone DM. Glycoylation variants of mucins and CEACAMs as candidate biomarkers for the diagnosis of pancreatic cystic neoplasms. Ann Surg 2010; 251: 937-945 [PMID: 20395854 DOI: 10.1097/SLA.0b013e3181d7738d]

84 Sinha J, Cao Z, Dai J, Tang H, Partyka G, Hostetter G, Simeone DM, Feng Z, Allen PJ, Brand RE, Haab BB. A Gastric Glycoform of MUC5AC Is a Biomarker of Mucinous Cysts of the Pancreas. PLoS One 2016; 11: e0167070 [PMID: 27992432 DOI: 10.1371/journal.pone.0167070]

85 Horn A, Chakraborty S, Dey P, Haridas D, Souchek J, Batra SK, Lele SM. Immunochemistry for MUC4 and MUC16 is a useful adjunct in the diagnosis of pancreatic adenocarcinoma on fine-needle aspiration cytology. Arch Pathol Lab Med 2013; 137: 546-551 [PMID: 23544493 DOI: 10.5858/arpa.2011-0229-OA]

86 Maker AV, Katabi N, Qin LX, Klimstra DS, Schattner M, Brennan MF, Jarnagin WR, Allen PJ. Cyst fluid interleukin-1beta (IL1beta) levels predict the risk of carcinoma in intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 2011; 17: 1502-1508 [PMID: 21266527 DOI: 10.1158/1078-0432.CCR-10-1561]

87 Hao S, Takahashi C, Snyder RA, Parikh AA. Stratifying Intraductal Papillary Mucinous Neoplasms by Cyst Fluid Analysis: Present and Future. Int J Mol Sci 2020; 21 [PMID: 32050465 DOI: 10.3390/ijms21031147]

88 Das KK, Geng X, Brown JW, Morales-Oyarvide V, Huyhn T, Pergolini I, Pitman MB, Ferrone C, Al Ezisat M, Haviland D, Thompson E, Wolkof C, Lennon AM, Allen PJ, Brand RE, Hao S. A Gastric Glycoform of MUC5AC Is a Biomarker of Mucinous Cysts of the Pancreas. PLoS One 2016; 11: e0167070 [PMID: 27992432 DOI: 10.1371/journal.pone.0167070]

89 Huang J, Zhang L, Hao S. Mucins in pancreatic cancer and the precursor lesions. Transl Oncol 2013; 6: 878-886 [PMID: 23544933 DOI: 10.1016/j.tranon.2012.07.004]

90 Satoh K, Molecular Approaches Using Body Fluid for the Early Detection of Pancreatic Cancer. Diagnostics (Basel) 2021; 11 [PMID: 33671729 DOI: 10.3390/diagnostics11120375]

91 Setti G, Pezzi ME, Viani MV, Pertinhez TA, Cassi D, Magnoni C, Bellini P, Musolino A, Vescovi A, Meleti M. Salivary MicroRNA for Diagnosis of Cancer and Systemic Diseases: A Systematic Review. Int J Mol Sci 2020; 21 [PMID: 32019170 DOI: 10.3390/ijms21030907]

92 Ishige F, Hoshino I, Iwatake Y, Chiba S, Arimitsu H, Yanagibashi H, Nagase H, Takayama W. MIR1246 in body fluids as a biomarker for resectable pancreatic cancer. Sci Rep 2020; 10: 8723 [PMID: 32457495 DOI: 10.1038/s41598-020-65695-6]

93 Radon TP, Massat NJ, Jones R, Alrawashdeh W, Damartin L, Ennis D, Duffy SW, Kocher HM, Pernira SP, Guarner posthumous L, Murta-Nascimento C, Real FX, Malats N, Neoptolemos J, Costello E, Grobnal W, Lemoine NR, Cnogorac-Jurevic T. Identification of a Three-Biomarker Panel in Urine for Early Detection of Pancreatic Adenocarcinoma. J Clin Cancer Res 2015; 21: 3512-3521 [PMID: 26240291 DOI: 10.1158/1078-0432.CCR-14-2467]

94 Bregyte G, Shah V, Jach D, Cnogorac-Jurevic T. Non-Invasive Biomarkers for Earlier Detection of Pancreatic Cancer-A Comprehensive Review. Cancers (Basel) 2021; 13 [PMID: 34072842 DOI: 10.3390/cancers13112722]

95 Porta M, Fabregat X, Malats N, Guarner L, Carrato A, de Miguel A, Ruiz L, Jariol M, Costafreda S, Coll S, Alguacil J, Corominas J, Solà R, Salas A, Real FX. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. Clin Transl Oncol 2005; 7: 189-197 [PMID: 15960930 DOI: 10.1007/BF02717216]

96 Mujica VR, Barkin JS, Go VL. Acute pancreatitis secondary to pancreatic carcinoma. Study Group Participants. Pancreas 2000; 21: 329-332 [PMID: 11075985 DOI: 10.1097/00006676-200011000-00001]

97 Charri ST, Leibson CL, Rabe KG, Ransom J, de Andrade M, Petersen GM. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology 2005; 129: 504-511 [PMID: 16075985]
diagnosis for tumours of the pancreas.

Leverson G, Smith MA, Winslow ER. Utilization of preoperative endoscopic ultrasound for pancreatic adenocarcinoma.

Schmocker RK

DOI: 10.1002/jso.24538

Motosugi U

DOI: 21406627

Xia BT

DOI: 29189329

Shukla PJ, Barreto SG, Kulkarni A, Nagarajan G, Fingerhut A. Vascular anomalies encountered during pancreaticoduodenectomy: do they influence outcomes? Ann Surg Oncol 2010; 17: 186-193

Chu LC, Goggins MG, Fishman EK. Diagnosis and Detection of Pancreatic Cancer. Cancer J 2017; 23: 333-342 [PMID: 29183929 DOI: 10.1097/PPO.0000000000000290]

Li H, Zeng MS, Zhou KR, Jin DY, Lou WH. Pancreatic adenocarcinoma: the different CT criteria for periampullary major arterial and venous invasion. J Comput Assist Tomogr 2005; 29: 170-175 [PMID: 15772532 DOI: 10.1097/01.rct.0000155060.73107.83]

Xia BT, Fu B, Wang J, Kim Y, Ahmad SA, Dhar VK, Levinsky NC, Hansenman DJ, Habib DA, Wilson GC, Smith M, Olowokure OO, Karfaro I, Al Humaidi AH, Choe KA, Abbott DE. Does radiologic response correlate to pathologic response in patients undergoing neoadjuvant therapy for borderline resectable pancreatic malignancy? J Surg Oncol 2017; 115: 376-383 [PMID: 28105634 DOI: 10.1002/jso.24538]

Holzapfel K, Reiser-Erkan C, Fingerle AA, Erkan M, Eiber MJ, Rummenny EJ, Friess H, Kleeff J, Gaa J. Comparison of diffusion-weighted MR imaging and multidetector-row CT in the detection of liver metastases in patients operated for pancreatic cancer. Abdom Imaging 2011; 36: 179-184 [PMID: 20563686 DOI: 10.1007/s00261-010-9633-5]

Motosugi U, Ichikawa T, Morisaka H, Sou H, Muhi A, Kimura K, Sano K, Araki T. Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT. Radiology 2011; 260: 446-453 [PMID: 21693662 DOI: 10.1148/radiol.11101133]

Carrara G, Pecorelli N, De Cobelli F, Cristel G, Damascelli A, Beretta L, Braga M. Preoperative sarcopenia determinants in pancreatic cancer patients. Clin Nutr 2017; 36: 1649-1653 [PMID: 27789123 DOI: 10.1016/j.clnu.2016.01.014]

Ozola Zalite I, Zykus R, Francisco Gonzalez M, Saygili F, Pukitis A, Gaujoux S, Charnley RM, Lyadov V. Influence of cachexia and sarcopenia on survival in pancreatic ductal adenocarcinoma: a systematic review. Pancreatology 2015; 15: 19-24 [PMID: 25524483 DOI: 10.1016/j.pan.2014.11.006]

Prado CM, Lieffers JR, McCargar LJ, Reitman T, Sawyer MB, Martin L, Baracos VE. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 2008; 9: 629-635 [PMID: 18539529 DOI: 10.1016/S1470-2045(08)70153-0]

Schmocker RK, Vanness DJ, Greenberg CC, Havlena JA, LoConte NK, Weiss JM, Neuman HB, Levenson G, Smith MA, Winslow ER. Utilization of preoperative endoscopic ultrasound for pancreatic adenocarcinoma. HPB (Oxford) 2017; 19: 465-472 [PMID: 28237627 DOI: 10.1016/j.hpb.2017.01.017]

Hartwig W, Schneider L, Dierer MK, Bergmann F, Büchler MW, Werner J. Preoperative tissue diagnosis for tumours of the pancreas. Br J Surg 2009; 96: 5-20 [PMID: 19016272 DOI: 10.1002/bjs.6354]
seeding after endoscopic ultrasound-guided fine-needle aspiration for patients undergoing distal pancreatic cancer. *World J Gastrointest Endosc* 2017; 9: 506-513 [PMID: 28083556] DOI: 10.4253/wjg.v9.i10.506.

Okahe SH, Elkholy S, El-Sayed R, Wiin MN, El-Nabawi W, El-Dawary WA, Radwan MI, Farag A, El-Sherif Y, Al-Gemeie E, Salman A, El-Sherbiny M, El-Mazny A, Mahdy RE. Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions. *World J Gastroenterol* 2017; 23: 5962-5968 [PMID: 28932088] DOI: 10.3748/wjg.v23.i32.5962.

Niederauer C, Grendell JH. Diagnosis of pancreatic carcinoma. Imaging techniques and tumor markers. *Pancreas* 1992; 7: 66-86 [PMID: 1557348] DOI: 10.1097/00006676-199210000-00011.

Vozzo CF, Sanaka MR. Endoscopic Management of Pancreaticobiliary Disease. *Surg Clin North Am* 2020; 100: 1151-1168 [PMID: 33128885] DOI: 10.1016/j.suc.2020.08.006.

Alaauddin MM, De Palatis L. Current and Future Trends in Early Detection of Pancreatic Cancer: Molecular Targets and PET Probes. *Curr Med Chem* 2015; 22: 3370-3389 [PMID: 26295468] DOI: 10.2174/0929867322666150821094015.

Moradi F, Jagaru A. The Role of Positron Emission Tomography in Pancreatic Cancer and Gallbladder Cancer. *Semin Nucl Med* 2020; 50: 434-446 [PMID: 32768007] DOI: 10.1053.j.semnuclmed.2020.04.002.

Li XX, Liu NB, Zhu L, Yuan XY, Yang CW, Ren P, Gong LL, Zhao LJ, Xu WG, Wang P. Consequences of additional use of contrast-enhanced 18F-FDG PET/CT in target volume delineation and dose distribution for pancreatic cancer. *Br J Radiol* 2015; 88: 20140590 [PMID: 25939819] DOI: 10.1259/bjr.20140590.

Wang L, Dong P, Wang WG, Tian BL. Positron emission tomography modalities prevent futile radical resection of pancreatic cancer: A meta-analysis. *Int J Surg* 2017; 46: 119-125 [PMID: 28890410] DOI: 10.1016/j.ijsu.2017.09.003.

Santhosh S, Mittal BR, Bhaskar DN, Rana SS, Gupta R, Das A, Nada R. Fluorodeoxyglucose positron emission tomography/computed tomography performs better than contrast-enhanced computed tomography for metastasis evaluation in the initial staging of pancreatic adenocarcinoma. *Ann Nucl Med* 2017; 31: 575-581 [PMID: 28689356] DOI: 10.1007/s12149-017-1193-0.

Daamen LA, Groot VP, Goense L, Wessels FJ, Borel Rinkes IH, Intveld MPW, van Santvoort HC, Molenar IQ. The diagnostic performance of CT vs FDG PET-CT for the detection of recurrent pancreatic cancer: A systematic review and meta-analysis. *Eur J Radiol* 2018; 106: 128-136 [PMID: 30150034] DOI: 10.1016/j.ejrad.2018.07.010.

England CG, Hernandez R, Eddeine SB, Cai W. Molecular Imaging of Pancreatic Cancer with Antibodies. *Mol Pharm* 2016; 13: 8-24 [PMID: 26620581] DOI: 10.1021/acs.molpharmaceut.6b00620.

Feng X, Wang Y, Lu D, Xu X, Zhou X, Zhang H, Zhang T, Zhu H, Yang Z, Wang F, Li N, Liu J. Clinical Translation of a 68Ga-Labeled Integrin αvβ6-Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. *J Nucl Med* 2020; 61: 1461-1467 [PMID: 32086242] DOI: 10.2967/jnumed.119.237347.

Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis BD, Hernandez R, Eddine SB, Cai W. Molecular Imaging of Pancreatic Cancer with 68Ga-Labeled Integrin αvβ6 Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. *J Nucl Med* 2020; 61: 1461-1467 [PMID: 32086242] DOI: 10.2967/jnumed.119.237347.

Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis BD, Hernandez R, Eddine SB, Cai W. Molecular Imaging of Pancreatic Cancer with 68Ga-Labeled Integrin αvβ6 Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. *J Nucl Med* 2020; 61: 1461-1467 [PMID: 32086242] DOI: 10.2967/jnumed.119.237347.

Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis BD, Hernandez R, Eddine SB, Cai W. Molecular Imaging of Pancreatic Cancer with 68Ga-Labeled Integrin αvβ6 Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. *J Nucl Med* 2020; 61: 1461-1467 [PMID: 32086242] DOI: 10.2967/jnumed.119.237347.

Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis BD, Hernandez R, Eddine SB, Cai W. Molecular Imaging of Pancreatic Cancer with 68Ga-Labeled Integrin αvβ6 Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. *J Nucl Med* 2020; 61: 1461-1467 [PMID: 32086242] DOI: 10.2967/jnumed.119.237347.

Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis BD, Hernandez R, Eddine SB, Cai W. Molecular Imaging of Pancreatic Cancer with 68Ga-Labeled Integrin αvβ6 Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. *J Nucl Med* 2020; 61: 1461-1467 [PMID: 32086242] DOI: 10.2967/jnumed.119.237347.

Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis BD, Hernandez R, Eddine SB, Cai W. Molecular Imaging of Pancreatic Cancer with 68Ga-Labeled Integrin αvβ6 Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. *J Nucl Med* 2020; 61: 1461-1467 [PMID: 32086242] DOI: 10.2967/jnumed.119.237347.

Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis BD, Hernandez R, Eddine SB, Cai W. Molecular Imaging of Pancreatic Cancer with 68Ga-Labeled Integrin αvβ6 Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. *J Nucl Med* 2020; 61: 1461-1467 [PMID: 32086242] DOI: 10.2967/jnumed.119.237347.

Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, Gallagher FA, Lewis BD, Hernandez R, Eddine SB, Cai W. Molecular Imaging of Pancreatic Cancer with 68Ga-Labeled Integrin αvβ6 Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. *J Nucl Med* 2020; 61: 1461-1467 [PMID: 32086242] DOI: 10.2967/jnumed.119.237347.
Pancreaticoduodenectomy for pancreatic cancer. Dig Endosc 2020; 32: 801-811 [PMID: 31876309 DOI: 10.1111/den.13615]

Zhang L, Sanagapalli S, Stoika A. Challenges in diagnosis of pancreatic cancer. World J Gastroenterol 2018; 24: 2047-2060 [PMID: 29783074 DOI: 10.3748/wjg.v24.i11.2047]

Clarke DL, Clarke BA, Thomson SR, Garden OJ, Lazarus NG. The role of preoperative biopsy in pancreatic cancer. HPB (Oxford) 2004; 6: 144-153 [PMID: 15333609 DOI: 10.2147/lap.2011.036362]

Beckbrough N, Uzunoglu FG, Adham M, Imrie C, Milicevic M, Sandberg AA, Asburn HJ, Bassi C, Bächler C, Charnley RM, Conlon K, Cruz LF, Derenaris C, Friess H, Gurusamy KS, Hartwig W, Lillehoe KD, Mondi M, Montorsi M, Neoptolemos JP, Shirhakande SV, Takaozi K, Traverso W, Vashist YK, Volliner C, Ye C, Izbicki JR. International Study Group of Pancreatic Surgery. Analysis, and Meta-Regression.

Ricci C, Ingoldi C, Alberici L, Pagano N, Mosconi C, Marasco G, Minni F, Casadei R. Blumgart Anastomosis After Pancreaticoduodenectomy: A Comprehensive Systematic Review, Meta-Analysis, and Meta-Regression. World J Surg 2021; 45: 1929-1939 [PMID: 33721074 DOI: 10.1007/s00268-021-06039-x]

Fang Y, Gurussamy KS, Wang Q, Davidson BR, Lin H, Xie X, Wang C. Meta-analysis of randomized clinical trials on safety and efficacy of biliary drainage before surgery for obstructive jaundice. Br J Surg 2013; 100: 1589-1596 [PMID: 24264780 DOI: 10.1056/bjs-9260]

Schorn S, Vogel T, Demir IE, Demir E, Safak O, Friess H, Ceyhan GO. Do somatostatin-agonists have the same impact on postoperative morbidity and pancreatic fistula in patients after pancreaticoduodenectomy and distal pancreatectomy? Pancreatology 2020; 20: 1770-1778 [PMID: 33121847 DOI: 10.1016/j.pan.2020.01.043]

Ammoret BJ, Ayiomamitis GD. Laparoscopic pancreaticoduodenectomy and distal pancreatectomy: A UK experience and a systematic review of the literature. Surg Endosc 2011; 25: 2084-2099 [PMID: 21298539 DOI: 10.1007/s00464-010-1538-4]

Mehrabi A, Hafezi M, Arvin J, Esmaeilzadeh M, Garoussi C, Emami G, Kössler-Ebs J, Müllcr-Stich BP, Bächler MW, Hackert T, Diener MK. A systematic review and meta-analysis of laparoscopic vs open distal pancreatectomy for benign and malignant lesions of the pancreas: it's time to randomize. Surgery 2015; 157: 45-55 [PMID: 25482464 DOI: 10.1016/j.surg.2014.06.081]

Pierce RA, Spiller JA, Hawkins WJ, Strasberg SM, Linehan DC, Halpin VJ, Eagon JC, Brunt LM,
Frisella MM, Matthews BD. Outcomes analysis of laparoscopic resection of pancreatic neoplasms. *Surg Endosc* 2007; 21: 579-586 [PMID: 17180287 DOI: 10.1007/s00464-006-9022-x]

161 **Petrucciani N**, Nigri G, Debs T, Giannini G, Sforlini E, Antonillo L, Aurello P, D'Angelo F, Gugenheim J, Ramacciato G. Frozen section analysis of the pancreatic margin during pancreatectoduodenectomy for cancer: Does extending the resection to obtain a secondary R0 provide a survival benefit? *Pancreatology* 2016; 16: 1037-1043 [PMID: 27097467 DOI: 10.1016/j.pan.2016.09.004]

162 **Winter JM**, Cameron JL, Campbell KA, Arnold MA, Chang DC, Coleman J, Hodgkin MB, Sauter PK, Hruban RH, Riall TS, Schlickew RD, Choti MA, Lillanoe KD, Yeo CJ. 1423 pancreatectoduodenectomies for pancreatic cancer: A single-institution experience. *J Gastrointest Surg* 2006; 10: 1199-210; discussion 1210 [PMID: 17114007 DOI: 10.1016/j.gassur.2006.08.018]

163 **Schmidt CM**, Glant J, Winter JM, Kennard J, Dixon J, Zhao Q, Howard TJ, Madura JA, Nakeeb A, Pitt HA, Cameron JL, Yeo CJ, Lillanoe KD. Total pancreatectomy (R0 resection) improves survival over subtotal pancreatectomy in isolated neck margin positive pancreatic adenocarcinoma. *Surgery* 2007; 142: 572-8; discussion 578 [PMID: 17950350 DOI: 10.1016/j.surg.2007.07.016]

164 **Karpoff HM**, Klimstra DS, Brennan MF, Conlon KC. Results of total pancreatectomy for adenocarcinoma of the pancreas. *Arch Surg* 2001; 136: 44-7; discussion 48 [PMID: 11146775 DOI: 10.1001/archsurg.136.1.44]

165 **Scholten L**, Stoop TF, Del Chiario M, Busch OR, van Eijck C, Molenaar IQ, de Vries JH, Besselink MG; Dutch Pancreatic Cancer Group. Systematic review of functional outcome and quality of life after total pancreatectomy. *Br J Surg* 2019; 106: 1735-1746 [PMID: 31502658 DOI: 10.1002/bjs.11296]

166 **Tomlinson JS**, Jain S, Bentrem DJ, Sekeris EG, Maggard MA, Hines OJ, Reber HA, Ko CY. Accuracy of staging node-negative pancreas cancer: a potential quality measure. *Arch Surg* 2007; 142: 767-723; discussion 773 [PMID: 17709731 DOI: 10.1001/archsurg.142.8.767]

167 **Tol JA**, Gouma DJ, Bassi C, Dervenis C, Montorsi M, Adham M, Andrén-Sandberg A, Asbun HJ, Bockhorn M, Büchler MW, Conlon KC, Fernández-Cruz L, Friess H, Hartwig W, Izbicki JR, Lillanoe KD, Milicicve MN, Neoptolemos JP, Shrikhande SV, Vollmer CM, Yeo CJ, Charnley RM; International Study Group on Pancreatic Surgery. Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: a consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). *Surgery* 2014; 156: 591-600 [PMID: 25061003 DOI: 10.1016/j.surg.2014.06.016]

168 **Sun J**, Yang Y, Wang X, Yu Z, Zhang T, Song J, Zhao H, Wen J, Du Y, Lau WY, Zhang Y. Meta-analysis of the efficacies of extended and standard pancreatoduodenectomy for ductal adenocarcinoma of the head of the pancreas. *World J Surg* 2014; 38: 2708-2715 [PMID: 24912627 DOI: 10.1002/10.002628/10-6/14-2633-9]

169 **Zgliczynski S**, Gietka-Czernel M, Gorowski T, Bednariski A, Chomiczi O, Jastrzebska W, Makowska A, Niegowska E, Paciulowska J, Sozynsky P. Results of 1131 thoracic lymph node dissection for 2,000 throracoabdominal: the effects depend on the dose? *Exp Clin Endocrinol* 1991; 97: 286-291 [PMID: 1915466 DOI: 10.1245/s10434-008-0281-x]

170 **Gurusamy KS**, Kumar S, Davidson BR, Fusai G. Resection vs other treatments for locally advanced pancreatic cancer. *Cochrane Database Syst Rev* 2014; CD010244 [PMID: 24578248 DOI: 10.1002/14651858.CD010244.pub2]

171 **Yamada S**, Fujii T, Sugimoto H, Nomoto S, Takeda S, Kodera Y, Nakao A. Aggressive surgery for borderline resectable pancreatic cancer: evaluation of National Comprehensive Cancer Network guidelines. *Pancreas* 2013; 42: 1004-1010 [PMID: 23532000 DOI: 10.1097/MPA.0b013e31827b2d7c]

172 **Mollberg N**, Rahbari NN, Koch M, Hartwig W, Hoeger Y, Büchler MW, Weitz J. Arterial resection during pancreatectomy for pancreatic cancer: Does extending the resection to obtain a secondary R0 provide a survival benefit? *Ann Surg* 2011; 254: 882-893 [PMID: 22064622 DOI: 10.1097/SLA.0b013e31821f2ac99]

173 **Wang S**, Shi N, You L, Dai M, Zhao Y. Minimally invasive surgical approach vs open procedure for pancreatoduodenectomy: A systematic review and meta-analysis. *Medicine (Baltimore)* 2017; 96: e9619 [PMID: 29390259 DOI: 10.1097/MD.0000000000006919]

174 **Palanivelu C**, Senthilathan P, Sahnis SC, Babu NS, Srivatsan Gurumurthy S, Anand Vijai N, Nalankilli VP, Praveen Raj P, Parhassarathy R, Rajapandian S. Randomized clinical trial of laparoscopic vs open pancreatoduodenectomy for periampullary tumours. *Br J Surg* 2017; 104: 1443-1450 [PMID: 28985142 DOI: 10.1002/bjs.10662]

175 **Poves I**, Burdio F, Moraté O, Iglesias M, Radosевич A, Ilzarbe L, Visa L, Grande L. Comparison of Perioperative Outcomes Between Laparoscopic and Open Approach for Pancreatoduodenectomy: The PADULAP Randomized Controlled Trial. *Ann Surg* 2018; 268: 731-739 [PMID: 30138162 DOI: 10.1097/SLA.0000000000002893]

176 **Croome KP**, Farnell MB, Que FG, Reid-Lombardo KM, Truty MJ, Nageotte DM, Kendrick ML. Total laparoscopic pancreatoduodenectomy for pancreatic ductal adenocarcinoma: oncologic advantages over open approaches? *Ann Surg* 2014; 260: 633-8; discussion 638 [PMID: 25203880 DOI: 10.1097/SLA.0000000000000937]

177 **Boone BA**, Zenati M, Hogg ME, Steve J, Moser AJ, Bartlett DL, Zeh HJ, Zureikat AH. Assessment of quality outcomes for robotic pancreatoduodenectomy: identification of the learning curve. *JAMA* 2015; 150: 416-422 [PMID: 2576143 DOI: 10.1001/jamasurg.2015.17]

178 **Wang SE**, Shyr BU, Chen SC, Shyr YM. Comparison between robotic and open
pancreatoduodenectomy with modified Blumgart pancreaticojjunostomy: A propensity score-matched study. Surgery 2018; 164: 1162-1167 [PMID: 30093277 DOI: 10.1016/j.surg.2018.06.031]

Zureikat AH, Postlewait LM, Liu Y, Gillespie TW, Weber SM, Abbott DE, Ahmad SA, Maithel SK, Hogg ME, Zenati M, Cho CS, Salem A, Xia B, Steve J, Nguyen TK, Keshava HB, Chalikonda S, Walsh RM, Talamonti MS, Stocker SJ, Bentrem DJ, Lumpkin S, Kim JH, Zeh HJ 3rd, Kooby DA. A Multi-institutional Comparison of Perioperative Outcomes of Robotic and Open Pancreatoduodenectomy. Ann Surg 2016; 264: 640-649 [PMID: 27433907 DOI: 10.1097/SLA.0000000000001869]

Nassour I, Tohme S, Hoehn R, Adam MA, Zureikat AH, Alessandro P. Safety and oncologic efficacy of robotic compared to open pancreatioduodenectomy after neoadjuvant chemotherapy for pancreatic cancer. Surg Endosc 2021; 35: 2248-2254 [PMID: 32440928 DOI: 10.1007/s00464-020-07638-w]

Baimas-George M, Watson M, Murphy KJ, Iannitti D, Baker E, Ocuin L, Vrochides D, Martinie JB. Robotic pancreatioduodenectomy may offer improved oncologic outcomes after open surgery: a propensity-matched single-institution study. Surg Endosc 2020; 34: 3644-3649 [PMID: 32328825 DOI: 10.1007/s00464-020-07564-x]

Mizrahi JD, Durana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet 2020; 395: 2008-2020 [PMID: 32593337 DOI: 10.1016/S1473-7806(20)30974-0]

Perrone G, Prakash L, Qiao W, Varadharachy GR, Wolff R, Fogelman D, Overman M, Pant S, Javle M, Koay EJ, Herman J, Kim M, Ikoma N, Tseng CW, Lee JE, Katz MHG. Postoperative Chemotherapy Benefits Patients Who Received Preoperative Therapy and Pancreaticectomy for Pancreatic Adenocarcinoma. Ann Surg 2020; 271: 996-1002 [PMID: 31895709 DOI: 10.1097/SLA.0000000000003763]

Müller PC, Frey MC, Ruzza CM, Nickel F, Jost C, Gwerder C, Hackert T, Zgraggen K, Kessler U. Neoadjuvant Chemotherapy in Pancreatic Cancer: An Appraisal of the Current High-Level Evidence. Pharmacology 2021; 106: 143-153 [PMID: 32966993 DOI: 10.1159/000510343]

Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervenis C, Lacaine F, Falconi M, Pederzoli P, Pap A, Spooner D, Kerr DJ, Büchler MW; European Study Group for Pancreatic Cancer. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004; 350: 1200-1210 [PMID: 15028824 DOI: 10.1056/NEJMoa032295]

Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Niedergethmann M, Zülke C, Fähke J, Arning MB, Sinn M, Hinke A, Riess H. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 2013; 310: 1473-1481 [PMID: 24104372 DOI: 10.1001/jama.2013.272001]

Neoptolemos JP, Stocken DD, Bassi C, Ghanek P, Cunningham D, Goldstein D, Padbury R, Moore MJ, Gallinger S, Mariette C, Wente MN, Izbicki JR, Friess H, Lerch MM, Dervenis C, Olah A, Butturini G, Doi R, Lind PA, Smith D, Valle JW, Palmer DH, Buckels JA, Thompson J, McKay CJ, Rawcliffe CL, Büchler MW; European Study Group for Pancreatic Cancer. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 2010; 304: 1073-1081 [PMID: 20823433 DOI: 10.1001/jama.2010.1275]

Neoptolemos JP, Palmer DH, Ghanek P, Iserelli EE, Valle JW, Halloran CM, Faludy O, O'Reilly DA, Cunningham D, Wadsley J, Darby S, Meyer T, Gillmore R, Anthoney A, Lind P, Gilmelius B, Fahlke J, Arning MB, Sinn M, Hinke A, Riess H. Adjuvant chemotherapy with gemcitabine and capecitabine in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet 2017; 389: 1011-1024 [PMID: 28129987 DOI: 10.1016/S0140-6736(16)32409-6]

Conroy T, Hammel P, Hebbard M, Ben Abdelghani M, Wei AC, Raoul JL, Chové L, Francois E, de Roussan L, Gérard D, Lepinay M, Montani C, Jouffroy-Zeller C, Rat P, Malika D, Castan F, Bachet JB; Canadian Cancer Trials Group and the Ucaneciar-GI-PRODIGE Group. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N Engl J Med 2018; 379: 2395-2406 [PMID: 30575490 DOI: 10.1056/NEJMoa1809775]

Parmar A, Chaves-Porras J, Saluja R, Perry K, Rahmanian AP, Santos SD, Ko YJ, Berry S, Doherty M, Chan KKW. Adjuvant treatment for resected pancreatic adenocarcinoma: A systematic review and network meta-analysis. Crit Rev Oncol Hematol 2020; 145: 102817 [PMID: 31955005 DOI: 10.1016/j.critrevonc.2019.102817]

Galvano A, Castiglia M, Rizzo S, Silvestris N, Brunetti O, Vaccaro G, Cristina V, Barraco N, Bono M, Guercio G, Graceffa G, Fufulo F, Gori S, Bazan V, Russo A. Moving the Target on the Optimal Adjuvant Strategy for Resected Pancreatic Cancers: A Systematic Review with Meta-Analysis. Cancers (Basel) 2020; 12 [PMID: 32119977 DOI: 10.3390/cancers12030554]

Raufi AG, Breakstone R, Leonard K, Charpentier K, Beard R, Renaud J, Cavanaugh L, Stavrakas A, MacKinnon K, Almanna K, Osowskii A, Safrian HP. Adjuvant FOLFIRINOX+Nab-Paclitaxel (FOLFIRINOX) for Pancreatic Cancer: A Brown University Oncology Research Group Phase II Study
pancreatic ductal adenocarcinoma (PDA).

chemotherapy (peri-op CTx) with mFFX vs gemcitabine plus capecitabine (GEMCAP) or MFFX

immediate surgery compared with neoadjuvant gemcitabine plus capecitabine (GEMCAP) or MFFX

S, Wadsley J, Al-Mukhtar A, Jiao LR, Wasan HS, Carter R, Graham JS, Ammad F, Evans J, Tjaden

Ghaneh P

Recent progress in pancreatic ductal adenocarcinoma.

Nabavizadeh N, Simeone DM, Weekes CD, Thomas CR Jr. Multidisciplinary standards of care and

Adenocarcinoma: A Propensity Score Adjusted Analysis.

Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline

Zwinderman AH, Punt CJ, van Eijck CH, van Tienhoven G; Dutch Pancreatic Cancer Group.

Nuyttens J, Paardekooper GMRM, Patijn GA, van der Sangen MJC, de Vos-Geelen J, Wilmink JW,

Buijsen J, Busch OR, Creemers GM, van Dam RM, Eskens FALM, Festen S, de Groot JBW, Groot

Versteijne E

Adenocarcinoma: A Meta-Analysis of Individual Patient Data.

Kang CM, Zalupski M, Ahmad H, Yentz S, Helton S, Rose JB, Takishita C, Nagakawa Y, Abu Hilal

JH, Hwang DW, Song KB, Lee JH, Lee W, Chang HM, Kim KP, Kim SC, Ryoo BY. FOLFIRINOX

Yoo C

Biliary Association. Evaluation of Adjuvant Chemotherapy in Patients With Resected Pancreatic

HWM, Wilmink JW, Groot Koerkamp B, Besselink MG; European-African Hepato-Pancreato-

Malleo G, Marino MV, Mortensen MB, Nikolov A, Lesurtel M, Keck T, Kleeft J, Pande R, Pfeiffer P,

Pierras D, Roberts KJ, Sa Cunha A, Saitoh H, Strickland T, Puype PM, van Laarhoven HWM, Wilmink JW, Groot Koerkamp B, Besselink MG; European-African Hepato-Pancreato-

Buijsen J, Busch OR, Creemers GM, van Dam RM, Eskens FALM, Festen S, de Groot JBW, Groot

Versteijne E

Adenocarcinoma: A Propensity Score Adjusted Analysis.

Pancreas 2019; 48: 216-222 [PMID: 30629022 DOI: 10.1097/MPA.0000000000001231]

Grossberg AJ, Chu LC, Deig CR, Fishman Ek, Hwang WL, Maitra A, Marks DL, Mehta A,
Nabavizadeh N, Simeone DM, Weekes CD, Thomas CR Jr. Multidisciplinary standards of care and
current progress in pancreatic ductal adenocarcinoma. CA Cancer J Clin 2020; 70: 375-403 [PMID:
32683683 DOI: 10.3322/caac.21626]

Ghanesh P, Palmer DH, Cicconi S, Halloran C, Psarelli EE, Rawcliffe CL, Sripadam R, Mukherjee
S, Wadsley J, Al-Mukhtar A, Jiao LR,Wasan HS, Carter R, Graham JS, Ammad F, Evans J, Tjaden
C, Hackert T, Buchler MW, Neoptolemos JP; European Study Group for Pancreatic Cancer (ESPACE).
ESPACE-5F: four-arm, prospective, multicenter, international randomized phase II trial of
 immediate surgery compared with neoadjuvant gemcitabine plus capecitabine (GEMCAP) or MFEX
or chemoradiation therapy (CRT) in patients with borderline resectable pancreatic cancer. J Clin
Oncol 2020; 38 (15_Suppl): 4505 [DOI: 10.1200/JCO.2020.38.15_suppl.4505]

Gambaca AB, Rupji M, Switchenko JM, Lee RM, Turgeon MK, Meyer BI, Russell MC, Cardona K,
Kooby DA, Maithel SK, Shah MM. Optimal timing and treatment strategy for pancreatic cancer. J
Surg Oncol 2020; 122: 457-468 [PMID: 32470166 DOI: 10.1002/jso.25976]

Sohal D, Duong MT, Ahmad SA, Gandhi N, Beg MS. SWOG S1505: Results of perioperative
chemotherapy (peri-op CTx) with mFFX vs gemcitabine/nab-paclitaxel (Gem/nab) for resectable
pancreatic ductal adenocarcinoma (PDA). J Clin Oncol 2020; 38 (15_Suppl): 4504
Motof F, Unno M. Adjuvant and neoadjuvant treatment for pancreatic adenocarcinoma. *Jpn J Clin Oncol* 2020; 50: 483-489 [PMID: 32083296 DOI: 10.1093/jjco/hya018]

Lahori KJ, Lassen K, Hoem D, Grombech JE, Søreide JA, Mortensen K, Smaaald R, Sorbye H, Verbeke C, Dueland S. Neoadjuvant chemotherapy vs surgery first for resectable pancreatic cancer (Norwegian Pancreatic Cancer Trial - 1 (NorPACT-1)) - study protocol for a national multicentre randomized controlled trial. *BMC Surg* 2017; 17: 94 [PMID: 28841916 DOI: 10.1186/s12893-017-0291-1]

Schwarz L, Vernerey D, Bachet JB, Tuchs JI, Portales F, Michel P, Cubba AS. Resectable pancreatic adenocarcinoma neo-adjuvant FOLFIRINOXOX-based chemotherapy - a multicenter, non-comparative, randomized, phase II trial (PANACHE01-PRODIGE48 study). *BMC Cancer* 2018; 18: 762 [PMID: 30041614 DOI: 10.1186/s12885-018-4663-4]

Ettrich TJ, Berger AW, Perkhofer L, Daun S, König A, Dickhut A, Wittel U, Wille K, Geissler M, Algül G, Gallmeier E, Atzpodien J, Kornmann M, Mucu R, Prasnikar N, Tannapfel A, Reinacher-Schick A, Uhl W, Seufferlein T. Neoadjuvant plus adjuvant or only adjuvant nab-paclitaxel plus gemcitabine for resectable pancreatic cancer - the NEONAX trial (AIO-PAK-0313), a prospective, randomized, controlled, phase II study of the AIO pancreatic cancer group. *BMC Cancer* 2018; 18: 1298 [PMID: 30594153 DOI: 10.1186/s12885-018-5183-y]

Motio F, Kosuge T, Ueno H, Yamaue H, Satoi S, Shio M, Honda G, Matsumoto I, Wada K, Furuse J, Matsuyama Y, Unno M. Study Group of Preoperative Therapy for Pancreatic Cancer (Prep) and Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer (JSAP). Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 vs upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05). *Jpn J Clin Oncol* 2019; 49: 190-194 [PMID: 30608598 DOI: 10.1093/jjco/hyy190]

Oksaka T, Nakamura M, Yoshiida M, Kitano M, Usaka K, Ito Y, Furuse J, Hanada K, Okazaki K; Committee for Revision of Clinical Guidelines for Pancreatic Cancer of the Japan Pancreatic Society. Clinical Practice Guidelines for Pancreatic Cancer 2019 From the Japan Pancreas Society: A Synopsis. *Pancreas* 2020; 49: 326-335 [PMID: 32132516 DOI: 10.1097/MPA.0000000000001513]

Oksaka T, Furuse J. Recent advances in chemotherapy for pancreatic cancer: evidence from Japan and recommendations in guidelines. *J Gastroenterol* 2020; 55: 369-382 [PMID: 31997007 DOI: 10.1007/s00535-020-01666-y]

UMIN-CTR Clinical Trial. Randomized phase II/III study of gemcitabine and nab-paclitaxel therapy vs S-1 and concurrent radiotherapy as neoadjuvant treatment for Borderline resectable pancreatic cancer. [cited 21 Dec 2019]. In: UMIN-CTR Clinical Trial [Internet]. Available from: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000030821

Sahni S, Nahm C, Krisp C, Molloy MP, Mehta S, Maloney S, Iichins M, Pavlakis N, Clarke S, Chan D, Gill AJ, Howell VM, Samra J, Mittal A. Identification of Novel Biomarkers in Pancreatic Tumor tissue to Predict Response to Neoadjuvant Chemotherapy. *Front Oncol* 2020; 10: 237 [PMID: 32195192 DOI: 10.3389/fonc.2020.00237]

Hammel P, Lacy J, Portales F, Sobero AF, Pazd Cid RA, Mozo JLM, Terrebonne E, Dowden SD, Li JS, Ong TJ, Nydam T, Philip PA. Phase II LAPACT trial of nab-paclitaxel (nab-P) plus gemcitabine (G) for patients with locally advanced pancreatic cancer (LAPDAC). *J Clin Oncol* 2018; 36 (suppl 4) 204

Marthey L, Sa-Cunha A, Bian JF, Gauthier M, Cuffe A, Francois E, Trouilloud I, Malka D, Bachet JB, Coriat R, Terrebonne E, De La Fouchardière C, Manfredi S, Solub D, Lécaille C, Thiot Bidault A, Combelfon F, Biest J. FOLFIRINOX for locally advanced pancreatic adenocarcinoma: results of an AGEO multicenter prospective observational cohort. *Ann Surg Oncol* 2015; 22: 295-301 [PMID: 25037971 DOI: 10.1245/s10434-014-3898-9]

Weniger M, Moir J, Dann M, Maggino L, Kordes M, Rosendahl J, Ceyhan GO, Schorn S; RESPECT-study group. Respect - A multicenter retrospective study on preoperative chemotherapy and recommendations in guidelines for locally advanced and borderline resectable pancreatic cancer. *Pancreatology* 2020; 20: 1113-1138 [PMID: 32793267 DOI: 10.1016/j.pan.2020.06.012]

Suker M, Beumer BR, Sadot E, Marthey L, Faris JE, Mellon EA, El-Rayes BF, Wang-Gillam A, Lacy J, Hosein PZ, Moorcroft SY, Conroy T, Hohla F, Allen P, Taieb J, Hong TS, Shridhar R, Chau I, van Eijck CH, Koerkamp BG. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. *Lancet Oncol* 2016; 17: 801-810 [PMID: 27160474 DOI: 10.1016/S1470-2045(16)00172-5]

Philip PA, Lacy J, Portales F, Sobredo A, Pazo Cid RA, Mozo JLM, Kim ElJ, Dowden S, Zakari A, Borg C, Terrebonne E, Rivera F, Sastre J, Bathini V, Lópeze-Trabada D, Asselah J, Saif MW, Shiansong Li J, Ong TJ, Nydam T, Hannel P. Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): a multicentre, open-label phase 2 study. *Lancet Gastroenterol Hepatol* 2020; 5: 285-294 [PMID: 31950379 DOI: 10.1016/S2468-1253(19)30327-9]

Kunzmann M, Algül G, Geokkurt E, Siegler Gm, Martens UM, Waldschmidt D, Pelzer U, Hennes E, Fuchs M, Siveke J, Kullmann F, Boeck S, Ettrich TJ, Ferencyz P, Keller R, Germer C, Stein H, Hartlapp I, Klein Heinemann V. Conversion rate in locally advanced pancreatic cancer (LAPDAC) after nab-paclitaxel/gemcitabine- or MFFX-based induction chemotherapy (NEOLAP): final results of a multicenter randomised phase II AIO trial. *Ann Oncol* 2019; 30: v253

Wolfe AR, Prabakar D, Yildiz VO, Cloyd JM, Dillhoff M, Abusahlin L, Alexandra Diaz D, Miller ED, Chen W, Frankel WL, Noonan A, Williams TM. Neoadjuvant-modified FOLFIRINOX vs nab-paclitaxel plus gemcitabine for borderline resectable or locally advanced pancreatic cancer patients
who achieved surgical resection. Cancer Med 2020; 9: 4711-4723 [PMID: 32415696 DOI: 10.1002/cam4.3075]

224 Hammel P, Huguet F, van Laethem JL, Goldstein D, Glimelius B, Artru P, Borbath I, Bouché O, Shannon J, André T, Mineur L, Chibaudel B, Bonnetain F, Louvet C; LAP07 Trial Group. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib. The LAP07 Randomized Clinical Trial. JAMA 2016; 315: 1844-1853 [PMID: 27139057 DOI: 10.1001/jama.2016.4324]

225 Arcelli A, Buwenge M, Macchia G, Bertini F, Guido A, Deodato F, Cilla S, Scotti V, Rosetto ME, Djan I, Parisi S, Mattucci GC, Cellini F, Fiore M, Bonomo P, Belgioia L, Niespolo RM, Gabriele P, Di Marco M, Simoni N, Mazzarotto R, Morganti AG; AIRO (Italian Association of Radiation Oncology and Clinical Oncology) Gastrointestinal Study Group. Stereotactic body radiotherapy vs conventionally fractionated chemoradiation in locally advanced pancreatic cancer: A multicenter case-control study (PAULA-1). Cancer Med 2020; 9: 7879-7887 [PMID: 32901054 DOI: 10.1002/cam4.3330]

226 Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gouorgou-Bourgade S, de la Fouchardière C, Bemouja J, Bachet JB, Khemissa-Akouz F, Pérez-Vergé D, Delbaldo C, Assenat E, Chauvet B, Michel P, Montoto-Grillot C, Ducrex E, M Grandjean. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369: 1691-1703 [PMID: 24131140 DOI: 10.1056/NEJMoa1304369]

227 von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Igleissig J, Renssler MF. Paclitaxel/Gemcitabine Versus Nab-Paclitaxel/Gemcitabine in Patients With Untreated, Metastatic Pancreatic Cancer. J Clin Oncol 2016; 34: 3127-3135 [PMID: 27200535 DOI: 10.1200/JCO.2015.63.9246]

228 Wang G, Camartero P, Cheung WY. A Real-World Comparison of FOLFIRINOX, Gemcitabine Plus nab-Paclitaxel, and Gemcitabine in Advanced Pancreatic Cancers. J Gastrointest Oncol 2019; 10: 62-68 [PMID: 29143916 DOI: 10.3902/jgo.2018.10814]

229 Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, Macarulla T, Lee KH, Cunningham D, Blanc JF, Hubner RA, Chia CF, Schwartzmann G, Siveke JT, Braiteh F, Moyo V, Belanger B, Dhindsa N, Byrave E, Von Hoff DD, Chen LT; NAPOLI-1 Study Group. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after FOLFIRINOX: A phase 2, open-label, randomised trial. Lancet Oncol 2016; 17: 387-395 [PMID: 26615328 DOI: 10.1016/S1470-2045(16)30096-1]

230 Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, Park JO, Hochhauser D, Arnold D, Oh DY, Reinaich-Schick A, Tortora G, Algul H, O'Reilly EM, McGuinness D, Cui KY, Schlienger K, Locker GY, Kindler HL. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N Engl J Med 2019; 381: 317-327 [PMID: 31157963 DOI: 10.1056/NEJMoa1903387]

231 Alistar A, Morris BB, Desnoyer R, Klepin HD, Hosseinzadeh K, Clark C, Cameron A, Leyendecker J, D'Agostino Jr, Topaloglu U, Boteju LW, Boteju AR, Shorr R, Zachar Z, Bingham PM, Ahmed T, Crane S, Shah R, Migliano JJ, Pardee TS, Miller L, Hawkins G, Jin G, Zhang W, Pasche B. Safety and tolerability of the first-in-class agent CPI-613 in combination with modified chemoradiotherapy in patients with locally advanced pancreatic cancer: A single-centre, open-label, dose-escalation, phase 1 trial. Lancet Oncol 2017; 18: 770-778 [PMID: 28495639 DOI: 10.1016/S1470-2045(17)30314-5]

232 Jiang B, Zhou L, Lu J, Yang W, Liu C, You L, Guo J. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides? Front Oncol 2020; 10: 576399 [PMID: 33178608 DOI: 10.3389/fonc.2020.576399]

233 von Ahrens D, Bhagat TD, Nagrath D, Maitra A, Verma A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J Hematol Oncol 2017; 10: 66 [PMID: 28351381 DOI: 10.1186/s12050-017-0448-5]

234 Provenzano PP, Hingorani SR. Hyaluronan, fluid pressure, and stromal resistance in pancreatic cancer. Br J Cancer 2013; 109: 1-8 [PMID: 23299539 DOI: 10.1038/bjc.2012.369]

235 Hingorani SR, Zheng L, Bullock AJ, Seery TE, Harris WP, Sigal DS, Braiteh F, Ritch PS, Zalupski MM, Bahary N, Oberstein PE, Wang-Gillam A, Wu W, Chondros D, Jiang P, Khelifa S, Pu J, Aldrich C, Hendifar AE, HALO 202: Randomized Phase II Study of PegPH20 Plus Nab-Paclitaxel/Gemcitabine Versus Nab-Paclitaxel/Gemcitabine in Patients With Untreated, Metastatic Pancreatic Ductal Adenocarcinoma. J Clin Oncol 2018; 36: 359-366 [PMID: 29232172 DOI: 10.1200/JCO.2017.74.9564]

236 Catenacci DV, Junttila MR, Karrison T, Bahary N, Horibua MN, Nattam SR, Marsh R, Wallace J, Kozloff L, Rajdev L, Cohen D, Wade J, Bleekman B, Lenz HJ, Stiff P, Kumar P, Xu P, Henderson L, Takebe N, Salgia R, Wang X, Stadler WM, de Sauvage FJ, Kindler HL. Randomized Phase Ib/II Study of Gemcitabine Plus Placebo or Vismodegib, a Hedgehog Pathway Inhibitor, in Patients With Pancreatic Cancer.
Mccleary-wheeler AL, Carr RM, Palmer SR, Smyrk TC, Allred JB, Almada LL, Tolosa EJ, Lambert Jr MA, Marks DL, Borad MJ, Molina Jr Jr, Qi Y, Lingle WL, Grothey A, Pitol HC, Jatoi A, Northfelt DW, Bryce AH, McWilliams RR, Okuno SH, Halaska P, Kim GP, Colon-Otero G, Lowe VJ, Callstrom MR, Ma WW, Bekaii-Saab T, Hing MC, Elichaef C, Tomczak M, Phase I trial of Vismodegib and Erlotinib combination in metastatic pancreatic cancer. *Pancreatology* 2020; 20: 101-109 [PMID: 31785262 DOI: 10.1016/j.pan.2019.11.011]

Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yaeq BY, Drageck LC, Ly L, Baglini CV, Blaszkowsky LS, Ferrone CR, Parikh AR, Weekees CD, Nipp RD, Kwak EL, Allen JN, Corcoran RB, Ting DT, Faris JE, Zhu AX, Goyal L, Berger DL, Qadan M, Lillemoe KD, Talele N, Jain RK, DeLaney TF, Duda DG, Boucher Y, Fernandez-Del Castillo C, Hong TS. Total Neoadjuvant Therapy With FOLFIRINOX in Combination With Losartan Followed by Chemoradiotherapy for Locally Advanced Pancreatic Cancer: A Phase 2 Clinical Trial. *JAMA Oncol* 2019; 5: 1020-1027 [PMID: 31145418 DOI: 10.1001/jamaoncol.2019.0892]

Dimecevski G, Kotopoulos S, Bjanes T, Hoem D, Schiott J, Gjertsen BT, Biermann M, Molven A, Sorbye H, Mccormick E, Postema M, Gilja OH. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. *J Control Release* 2016; 243: 172-181 [PMID: 27744037 DOI: 10.1016/j.jconrel.2016.10.007]

Cookie VG, LefBleu VS, Keskink D, Khan Z, O'Connell JT, Teng Y, Duncan MB, Xi L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani R, Kailurri R. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. *Cancer Cell* 2012; 21: 66-81 [PMID: 22264789 DOI: 10.1016/j.ccr.2011.11.024]

Veenstra VL, Dhamhofer H, Wussarp C, van Rijssel LB, van de Vijver MJ, Dijk F, Wilmink HW, Besseling MG, Busch OR, Chang DK, Bailey PJ, Baninik AV, Kocher HM, Medema JP, Li JS, Jiang R, Pierce DW, van Laarhoven HWM, Bijlsma MF. ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy. *Onco genesis* 2018; 7: 87 [PMID: 30442938 DOI: 10.1038/s41389-018-0096-9]

Griesmann H, Drezel C, Milsicov S, Sipos B, Rosenhaid J, Gress TM, Michl P. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. *Gut* 2017; 66: 1278-1285 [PMID: 27013602 DOI: 10.1136/gutjnl-2015-310049]

Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and Prevention of Pancreatic Cancer. *Trends Cancer* 2018; 4: 418-428 [PMID: 29860986 DOI: 10.1016/j.trecan.2018.04.001]

Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, Sherry RM, Topalian SL, Yang JC, Lowy I, Rosenberg SA. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. *J Immunother* 2010; 33: 828-833 [PMID: 20842054 DOI: 10.1097/CJI.0b013e3181eiec14c]

Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Piot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agraowl S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM. Safety and activity of anti-PD-1 antibody in patients with advanced cancer. *N Engl J Med* 2012; 366: 2455-2465 [PMID: 22658128 DOI: 10.1056/NEJMoa1206094]

O'Reilly EM, Oh DY, Dhan J, Renouf DJ, Lee MA, Sun W, Fisher G, Hezel A, Chang SC, Vlahovic G, Takahashi O, Yang Y, Fitts D, Philip P, Pa. Durvalumab With or Without Tremelimumab for Patients With Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinical Trial. *JAMA Oncol* 2019; 5: 1032-1038 [PMID: 31318392 DOI: 10.1001/jamaoncol.2019.15588]

Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Gress TM, Michl P. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. *Gut* 2017; 66: 1278-1285 [PMID: 27013602 DOI: 10.1136/gutjnl-2015-310049]

Humphris JL, Patch AM, Nones K, Bailey PJ, Johns AL, McKay S, Chang DK, Miller DK, Pajic M, Kassahun KS, Quinn MC, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse H, Humphris JL, et al. An Investigational Study of Vismodegib and Erlotinib Combination in Metastatic Pancreatic Cancer. *J Clin Oncol* 2015; 33: 2785-2789 [PMID: 26527777 DOI: 10.1200/JCO.2015.62.8719]
WJG. Pancreatic cancer in 2021

Furukawa M, Adachi T, Yamaue H. A double-blind randomized comparative clinical trial to loaded with WT1 peptides (TLP0-001) or placebo for the patients with advanced pancreatic cancer phase III, double-blind, randomized clinical trial comparing S-1 in combination with DC vaccine Katsuda M. Whole Recombinant Saccharomyces cerevisiae Yeast Expressing Ras Mutations as Treatment for Levin A, Neville D, Kelsen DP, O'Reilly EM. Targeting mutated K-ras in pancreatic and colorectal cancers. Gause B, Marincola F, Khleif SN. Pilot study of mutant ras peptide-based vaccine as an adjuvant Toubaji A. Follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras. Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Beever KM, Fader AN, Taube J, Houssseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshelman JR, Vogelstein B, Anders RA, Diaz LA Jr. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Weiss GJ, Blaydorn L, Beck J, Bornemann-Kolatzki K, Urnovitz H, Schütz E, Khemka V. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs 2018; 36: 96-102 [PMID: 29192760 DOI: 10.1007/s10637-017-0525-1]

National Institute of Public Health. ONO-4538 Phase II Study (ONO-4538-83/TASUKI-83). [cited 21 Dec 2019]. In: National Institute of Public Health [Internet]. Available from: https://rctportal.niph.go.jp/en/detail?trial_id=JapicCTI-184230

Wang-Gillam A, O'Reilly EM, Bendell JC, Wainberg ZA, Borazanci EH, Bahary N, O'Hara MH, Beatty GL, Pant S, Cohen DJ, Leong S, Beg MS, Yu KH, Evans TRJ, Seufflerlein T, Okusaka T, Phillips P, Liu X, Perna SK, Le DT. A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) + chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol 2019; 37: TPS465

Schizas D, Charalampakis N, Kole C, Economoupolou P, Koustas E, Gkotis E, Zlomas D, Psyrri A, Karamnouzis MV. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat Rev 2020; 86: 102016 [PMID: 32247999 DOI: 10.1016/j.ctrv.2020.102016]

Le DT, Piccozzi VJ, Ko AH, Wainberg ZA, Kindler H, Wang-Gillam A, Oberstein P, Morse MA, Zeh HJ 3rd, Weekes C, Reid T, Borazanci E, Crocenzi T, LoConte NK, Musher B, Laheru D, Murphy A, Whiting C, Ferber S, Brockstedt DG, Jaffee EM. Results from a Phase Ib, Randomized, Multicenter Study of GVAX Pancreas and CRS-207 Compared with Chemotherapy in Adults with Previously Treated Metastatic Pancreatic Adenocarcinoma (ECLIPSE Study). J Clin Cancer Res 2019; 25: 5493-5502 [PMID: 31126960 DOI: 10.1158/1078-0432.CCR-18-2992]

Asahara S, Takeda K, Yamao K, Maguchi H, Yamaue H. Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med 2013; 11: 291 [PMID: 24237633 DOI: 10.1186/1479-5876-11-291]

Suzuki N, Hazama S, Iuchi H, Usuegi K, Tanaka H, Hirakawa K, Aruga A, Hatori T, Ishizaki H, Umeda Y, Fujiwara T, Ikemoto T, Shimada M, Yoshimatsu K, Shimizu R, Hayashi H, Sakata K, Takenouchi H, Matsui H, Shindo Y, Iida M, Koki Y, Arima H, Furukawa H, Ueno T, Yoshino S, Nakanoua Y, Oka M, Nagano H. Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic cancer: VENUS-PC study. Cancer Sci 2017; 108: 73-80 [PMID: 27783849 DOI: 10.1111/cas.13113]

Miyazawa M, Katsuda M, Maguchi H, Katanuma A, Ishii H, Ozaka M, Yamao K, Imaoka H, Kawai M, Hiroeno S, Okada KI, Yamaue H. Phase II clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant treatment for surgically resected pancreatic cancer patients. Int J Cancer 2017; 140: 973-982 [PMID: 27861852 DOI: 10.1002/ijc.30510]

Wedén S, Klemp M, Gladhaug IP, Möller M, Eriksen JA, Gaudernack G, Buanes T. Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras. Int J Cancer 2011; 128: 1120-1128 [PMID: 20473937 DOI: 10.1002/ijc.25449]

Toubaji A, Achtar M, Provenzano M, Herrin VE, Behrens R, Hamilton M, Bernstein S, Venzon D, Gause B, Marincola F, Kheili SN. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother 2008; 57: 1413-1420 [PMID: 18297281 DOI: 10.1007/s00262-008-0477-8]

Abou-Alfa GK, Chapman PB, Feilchenfeldt J, Brennan MF, Capanu M, Gansukh B, Jacobs G, Levin A, Neville D, Kelsen DP, O'Reilly EM. Targeting mutated K-ras in pancreatic adenocarcinoma using an adjuvant vaccine. Am J Clin Oncol 2011; 34: 321-325 [PMID: 20686403 DOI: 10.1097/COC.0b013e3181e4b610]

Cohn A, Morse MA, O'Neil B, Whiting S, Coeckett C, Ferrari J, Bellgrau D, Apelain D, Rodell TC. Whole Recombinant Sacccharomyces cerevisiae Yeast Expressing Ras Mutations as Treatment for Patients With Solid Tumors Bearing Ras Mutations: Results From a Phase 1 Trial. J Immunother 2018; 41: 141-150 [PMID: 29528991 DOI: 10.1097/CJI.0000000000000219]

Katsuda M, Miyazawa M, Kawaii M, Hiroeno S, Okada KI, Shimizu A, Kitahata Y, Yamaue H. A phase III, double-blind, randomized clinical trial comparing S-1 in combination with DC vaccine loaded with WT1 peptides (TLP0-001) or placebo for the patients with advanced pancreatic cancer refractory to standard chemotherapy. J Clin Oncol 2017; 35: TPS4153

Katsuda M, Miyazawa M, Ojima T, Katanuma A, Hakamada K, Sudo K, Asahara S, Endo I, Ueno M, Hara K, Yamada S, Fujii T, Sato S, Ioka T, Ohira M, Akahori T, Kitano M, Nagano H, Furukawa M, Adachi T, Yamaue H. A double-blind randomized comparative clinical trial to
evaluate the safety and efficacy of dendritic cell vaccine loaded with WT1 peptides (TLP0-001) in combination with S-1 patients in advanced pancreatic cancer refractory to standard chemotherapy. \textit{ Trials} 2019; \textbf{20}: 242 [PMID: 31029154 DOI: 10.1186/s13086-019-3332-5]

267 \textbf{Liu} J, Zhong JF, Zhang X, Zhang C. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in
In cell malignancies. \textit{J Hematol Oncol} 2017; \textbf{10}: 35 [PMID: 28143567 DOI: 10.1186/s13045-017-0405-3]

268 \textbf{June CH}, O'Connor RS, Kawalekar OU, Ghassassi S, Malone MC. CAR T cell immunotherapy for \textit{human cancer}. \textit{Science} 2018; \textbf{359}: 1361-1365 [PMID: 29567707 DOI: 10.1126/science.aar6711]

269 \textbf{Wu} J, Cai J. Dilemma and Challenge of Immunotherapy for Pancreatic Cancer. \textit{Dig Dis Sci} 2021; \textbf{66}: 359-368 [PMID: 32140943 DOI: 10.1007/s10620-020-06183-9]

270 \textbf{Beatty GL}, O'Hara MH, Lacey SF, Torigian DA, Nazimuiddin F, Chen F, Kulikovskaya IM, Soulou MC, McGarvey M, Nelson AM, Gladney WL, Levine BL, Melenhorst JJ, Pesa G, June CH. Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. \textit{Gastroenterology} 2018; \textbf{155}: 29-32 [PMID: 29567081 DOI: 10.1053/j.gastro.2018.03.029]

271 \textbf{Le DT}, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA Jr, Donehower RC, Jaffee EM, Laheru DA. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. \textit{J Immunother} 2013; \textbf{36}: 382-389 [PMID: 23924790 DOI: 10.1097/JIT.0b013e318281fb7a2]

272 \textbf{Chung V}, Kos FJ, Hardwick N, Yuan Y, Chao J, Li D, Waisman J, Li M, Zurcher K, Frankel P, Diamond DJ. Evaluation of safety and efficacy of p53MVA vaccine combined with pembrolizumab in patients with advanced solid cancers. \textit{Clin Transl Oncol} 2019; \textbf{21}: 363-372 [PMID: 30094792 DOI: 10.1007/s12094-018-1932-2]

273 \textbf{Wang-Gillam A}, Lockhart AC, Tan BR, Suresh R, Lim KH, Rattern L, Morton A, Huffman J, Marquez S, Boice N, DeNardo DG. Phase I study of defactinib combined with pembrolizumab and gemcitabine in patients with advanced cancer. \textit{J Clin Oncol} 2018; \textbf{36}: 2561

274 \textbf{Reiss KA}, Mick B, O'Hara MH, Teitelbaum UR, Karasib TB, Schneider CJ, O'Dwyer PJ, Karlson D, Cowden S, Fuhrer MJ, Entel EL, Pantal AA, Mavandi M, Kofford DA, Nathan K, Maxwell KN, Beatty GL, Domechek SM. A randomized phase II trial of niraparib plus either nivolumab or ipilimumab in patients with advanced pancreatic cancer whose cancer has not progressed on platinum-based therapy. \textit{ J Clin Oncol} 2019; \textbf{37}: TPS4161

275 \textbf{Desai} J, Kortmansky JS, Segal NH, Fakih M, Oh DY, Kim KP, Rahma OE, Ko AH, Chung HC, Alsina M, Yeh KH, Li S, Al-Sakaff NJA, Patel J, Barak H, Wang J, Zhang X, Bleul C, Cha E, Lee J. MORPHEUS: A phase I/II study platform evaluating the safety and efficacy of cancer immunotherapy (CIT)—based combinations in gastrointestinal (GI) cancers. \textit{ J Clin Oncol} 2019; \textbf{37}: TPS467

276 \textbf{Rahal A}, Musher B. Oncolytic viral therapy for pancreatic cancer. \textit{J Surg Oncol} 2017; \textbf{116}: 94-103 [PMID: 28407327 DOI: 10.1002/jso.24626]

277 \textbf{Eissa IR}, Bustos-Villalobos I, Ichinose T, Matsumura S, Naoe Y, Miyajima N, Morimoto D, Mukoyama N, Zhiwen W, Tanaka M, Hasegawa H, Sumigama S, Aleksic B, Koder Y, Kasuya H. The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. \textit{Cancers (Basel)} 2018; \textbf{10}: [PMID: 30261620 DOI: 10.3390/cancers10103586]

278 \textbf{Chang KJ}, Senzer NN, Binmoeller K, Goldswieg H, Coffin R. Phase I dose-escalation study of talimogene laherparepvec (T-VEC) for advanced pancreatic cancer (ca). \textit{J Clin Oncol} 2012; \textbf{30}: e14546

279 \textbf{Noonan AM}, Farren MR, Geyer SM, Huang Y, Tahiri S, Ahd D, Mikhail S, Climbor KK, Pant S, Apaso S, Sexton J, Marshall JL, Mace TA, Wu CS, El-Rayes B, Timmers CD, Zwiebel J, Lesinski GB, Villalona-Calero MA, Bekaai-Saab TS. Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. \textit{Mol Ther} 2016; \textbf{24}: 1150-1158 [PMID: 27039845 DOI: 10.1038/mt.2016.66]

280 \textbf{Mahalingam D}, Wilkinson GA, Eng KH, Fields P, Rabem P, Moseley JL, Cheetham K, Coffin M, Haeusler C, Zibrowius C, Pehl J, Vennegoor A, Waite H, Spiller J, Wooding K, Franklin RE. A phase Ib/II study of defactinib combined with pembrolizumab and gemcitabine in patients with advanced breast cancer. \textit{J Natl Cancer Inst} 2018; \textbf{110}: 179-187 [PMID: 30403135 DOI: 10.1093/jnci/djy248]

281 \textbf{Chang KJ}, Senzer NN, Binmoeller KJ, Goldswieg KH, Coffin R. Phase I dose-escalation study of talimogene laherparepvec (T-VEC) for advanced pancreatic cancer (ca). \textit{J Surg Oncol} 2012; \textbf{30}: e14546

282 \textbf{Noonan AM}, Farren MR, Geyer SM, Huang Y, Tahiri S, Ahd D, Mikhail S, Climbor KK, Pant S, Apaso S, Sexton J, Marshall JL, Mace TA, Wu CS, El-Rayes B, Timmers CD, Zwiebel J, Lesinski GB, Villalona-Calero MA, Bekai-Saab TS. Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. \textit{Mol Ther} 2016; \textbf{24}: 1150-1158 [PMID: 27039845 DOI: 10.1038/mt.2016.66]

283 \textbf{Relaier A}, Monaco ML, Essani K. The Present Status of Immuno-Oncolytic Viruses in the Treatment of Pancreatic Cancer. \textit{Viruses} 2020; \textbf{12} [PMID: 33213031 DOI: 10.3390/v12111318]

284 \textbf{Aguirre AJ}, Nowak JA, Camarda ND, Moffitt RA, Ghaziani AA, Hazar-Rethinam M, Raghavan S, Kim J, Biais LK, Ragon D, Welch MW, Reilly E, McCabe D, Marin D, Lander K, Helvie K, Oliver N, Babic A, Da Silva A, Nadres B, Van Seventer EE, Shahzade HA, St Pierre JP, Burke KP, Clancy T, Cleave JM, Doyle LA, Jajko K, McCleanry MJ, Mayerhardt J, Murphy JE, Ng K, Patel AK, Perez K, Rosenthal MH, Rubinson DA, Ryau M, Shapiro GI, Sicinska E, Silverman SG, Nagy RJ, Lanman RB, Knoerzer D, Welsch DJ, Yurgelun MB, Getz G, Hornick JL, Johnson BE, Kulke MH, Mayer RJ, Miller JW, Shyn PB, Tuovesan DA, Wagle N, Yeh JJ, Hahn WC, Corcoran RB, Carter SL, Wolpin BM. Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. \textit{Cancer Discov} 2018; \textbf{8}: 1096-1111 [PMID: 29903880 DOI: 10.1158/2159-8290-CD-18-0275]
colorectal cancer. *Anticancer Drugs* 2020; 31: 545-557 [PMID: 32304411 DOI: 10.1097/CAD.0000000000000940]

O'Reilly EM, Hechtman JF. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. *Ann Oncol* 2019; 30: viii36-viii40 [PMID: 31605106 DOI: 10.1093/annonc/mdz385]

Sołomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D, Jungbluth AA, Zehir A, Benayed R, Drilon A, Hyman DM, Ladanyi M, Sireci AN, Hechtman JF. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. *Mod Pathol* 2020; 33: 38-46 [PMID: 31375766 DOI: 10.1038/s41379-019-0324-7]

Aguirre AJ. Oncogenic NRGI Fusions: A New Hope for Targeted Therapy in Pancreatic Cancer. *Clin Cancer Res* 2019; 25: 4589-4591 [PMID: 31164372 DOI: 10.1158/1078-0432.CCR-19-12800]

Jones MR, Williamson LM, Topham JT, Lee MKC, Goytain A, Ho J, Denroche RE, Jang G, Pleasance E, Shen Y, Karasinska JM, McGie JP, Gill S, Lim HJ, Moore MJ, Wong HL, Ng T, Yip S, Zhang W, Sadeghi S, Reisie C, Mungall AJ, Mungall KL, Moore RA, Ma Y, Knox JJ, Gallinger S, Laskin J, Marra MA, Schaeffer DF, Jones SJM, Renouf DJ. NRGI Gene Fusions Are Recurrent, Clinically Actionable Gene Rearrangements in KRAS Wild-Type Pancreatic Ductal Adenocarcinoma. *Clin Cancer Res* 2019; 25: 4674-4681 [PMID: 31068372 DOI: 10.1158/1078-0432.CCR-19-0191]

Thompson ED, Roberts NJ, Wood LD, Eshleman JR, Goggins MG, Kern SE, Klein AP, Hruban RH. The genetics of ductal adenocarcinoma of the pancreas in the year 2020: dramatic progress, but far to go. *Mod Pathol* 2020; 33: 2544-2563 [PMID: 32704033 DOI: 10.1038/s41379-020-0629-6]

Chantrill LA, Nagrial AM, Watson C, Johns AL, Martyn-Smith M, Simpson S, Mead S, Jones MD, Sammar JS, Gill AJ, Watson N, Chin VT, Humphris JL, Chou A, Brown B, Morey A, Pajie M, Grimm SM, Chang DK, Thomas D, Sebastian L, Sjouquist K, Yip S, Pavlakis N, Ashgar R, Harvey S, Grimison P, Simes J, Biankin AV. Australian Pancreatic Cancer Genome Initiative (APGI): Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial Management Committee of the Australasian Gastrointestinal Trials Group (AGITG). Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. *Clin Cancer Res* 2015; 21: 2029-2037 [PMID: 25896973 DOI: 10.1158/1078-0432.CCR-15-0426]

Kuo KK, Hsiao PJ, Chang WT, Chuang SC, Yang YH, Wuputra K, Ku CC, Pan JB, Li CP, Kato K, Liu CJ, Wu DC, Yokoyama KK. Therapeutic Strategies Targeting Tumor Suppressor Genes in Pancreatic Cancer. *Cancers (Basel)* 2021; 13 [PMID: 34359820 DOI: 10.3390/cancers13153920]

Yarchoan M, Myzak MC, Johnson BA 3rd, De Jesus-Acosta A, Le DT, Jaffe EM, Azad NS, Donehower RC, Zheng L, Oberstein PE, Fine RL, Laheru DA, Goggins M. Olaparib in combination with gemcitabine in patients with advanced pancreatic cancer. *Oncotarget* 2017; 8: 44073-44081 [PMID: 28454122 DOI: 10.18632/oncotarget.17237]

Aung KL, Fischer SE, Denroche RE, Jang GH, Dodd A, Creighton S, Southwood B, Liang SB, Chadwick D, Zhang A, O’Kane GM, Alba H, Mouna S, Grant RC, Miller JK, Mbabu A, Pasternack D, Lungu JM, Bartlett JMS, Ghai S, Lemire M, Holter S, Connor AA, Moffitt RA, Yeh A, Thompson ED, Donehower RC, Zheng L, Oberstein PE, Fine RL, Laheru DA, Goggins M. Olaparib in combination with gemcitabine in patients with advanced pancreatic cancer. *Oncotarget* 2017; 8: 44073-44081 [PMID: 28454122 DOI: 10.18632/oncotarget.17237]

Singhi AD, George B, Greenbowe JR, Chung J, Suh J, Maitra A, Klemmperer SJ, Hendifar A, Milind JM, Golan T, Brand RE, Zureikat AH, Roy S, Schrock AB, Miller VA, Ross JS, Ali SM, Bahary N. Real-Time Targeted Genome Profile Analysis of Pancreatic Ductal Adenocarcinomas Identifies Genetic Alterations That Might Be Targeted With Existing Drugs or Used as Biomarkers. *Gastroenterology* 2019; 156: 2242-2253.e4 [PMID: 30836094 DOI: 10.1053/j.gastro.2019.02.037]

Luchini C, Bresans LAA, Wood LD, Chatterjee D, Shin JI, Sciammarella C, Fiadone G, Mallego L, Salvia R, Kryklyva V, Piredda ML, Cheng L, Lawlor RT, Asap M, Scarpa A. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. *Gut* 2021; 70: 148-156 [PMID: 32350089 DOI: 10.1136/gutjnl-2020-320726]

Choi M, Kipps T, Kurzrock R. ATM Mutations in Cancer: Therapeutic Implications. *Mol Cancer Ther* 2016; 15: 1781-1791 [PMID: 27413114 DOI: 10.1158/1355-7163.MCT-15-0945]

Nanda N, Roberts NJ. ATM Serine/Threonine Kinase and its Role in Pancreatic Risk. *Genes (Basel)* 2020; 11 [PMID: 31963441 DOI: 10.3390/genes11010108]

Mukhopadhayay S, Goswami D, Adiseshaiah PP, Burgan W, Yi M, Guerin TM, Kozlov SV, Nisssley DV, McCormick F. Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers. *Cancer Res* 2020; 80: 1630-1643 [PMID: 31911550 DOI: 10.1158/0008-5472.CAN-19-1363]

James MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, Chen Y, Babbar A, Firdaus SJ, Darjania L, Feng J, Chen JH, Li S, Song H, Thach C, Liu Y, Zariieh A, Ely T, Kucharski JM, Kessler LV, Wu T, Yu K, Wang Y, Yao Y, Deng X, Zarrinkar PP, Brehmer D, Dhanak D, Lorenzi MV, Hu-Lowe D, Patricelli MP, Li Y, Sukari A, Ou SI, Al-Hallak MN, Azmi AS. KRAS G12C Game of Thrones, which direct KRAS inhibitor will claim the iron throne? *Cancer Treat Rev* 2020; 84: 101974 [PMID: 32982293DOI: 10.1158/1078-0432.CCR-17-29949]
300 Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801-1806 [PMID: 18772397] DOI: 10.1126/science.1164368

301 Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quiek K, Quinn MC, Robertson AJ, Fadlullah MZ, Bruxner TJ, Christ AN, Harlisong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Wilson PJ, Markham E, Cloonan N, Anderson MJ, Fink JI, Holmes O, Kazakoff SH, Leonand C, Newell F, Poulde B, Song S, Taylor D, Waddell N, Wood S, Xu Q, Wu J, Pinse M, Cowley MJ, Luke HC, Jones MD, Nagrial AM, Humphris J, Chantrill LA, Chin V, Steinemann AM, Mawson A, Humphrey ES, Colvin EK, Chou A, Scarlett CJ, Pino Av, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Pettit J, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Amt D, Humphris J, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Maitra A, Moes J, Bao Y, Baj B, Zeps N, Jamieson N
315 Iida N, Dzaturev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Golshizad RS. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342: 967-970 [PMID: 24264989 DOI: 10.1126/science.1240527]

316 Vande Voorde J, Sabuncuoglu S, Noppen S, Hofer A, Ranjarbani F, Fieuws S, Balzarini J, Liewens S. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cells cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem 2014; 289: 13034-13035 [PMID: 24668817 DOI: 10.1074/jbc.M114.558924]

317 Pushalkar S, Sundeyin M, Daley D, Zamhirin CP, Kurz E, Mishra A, Mohan N, Akyut B, Usyk M, Torres LE, Werba G, Zhang K, Guo Y, Li Q, Akkad N, Lall S, Wadowski B, Gutiérrez J, Kochen Rossi JA, Herzog JW, DISkin B, Torres-Hernandez A, Leinwand J, Wang W, Taun PK, Savadkar S, Janal M, Saxena A, Li X, Cohen D, Sartor RB, Saxena D, Miller G. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Immune and Adaptive Immune Suppression. Cancer Discov 2018; 8: 403-416 [PMID: 29567829 DOI: 10.1158/2159-8290.CD-17-1134]

318 Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, Thaiss CA, Reuben A, Livny J, Avraham R, Frederick DT, Ligorio M, Chatman K, Johnston SE, Mosher CM, Brandis A, Fuku G, Gurbati C, Gopalakrishnan V, Kim M, Hurd MW, Katz M, Fleming J, Maitra A, Smith DA, Skalak M, Bu J, Michaud M, Traeger SA, Barshack I, Golan T, Sandbank J, Flaherty KT, Mandinova A, Garrett WS, Thayer SP, Ferrone CR, Huttonhower C, Bhatia SN, Gevers D, Wargo JA, Golub TR, Straussman R. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017; 357: 1156-1160 [PMID: 28912244 DOI: 10.1126/science.aah3943]

319 Lebourhis P, Cummings J, Stanton M, Murphy CT, McCarthy FO, Reid G, Urbaniači C, Byrne WL, Tangroy M. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep 2015; 5: 14554 [PMID: 26416623 DOI: 10.1038/srep14554]

320 Kamarajah SK, Burns WR, Frankel TL, Cho CS, Nathan H. Validation of the American Joint Commission on Cancer (AJCC) 8th Edition Staging System for Patients with Pancreatic Adenocarcinoma: A Surveillance, Epidemiology and End Results (SEER) Analysis. Ann Surg Oncol 2017; 24: 2023-2030 [PMID: 28217392 DOI: 10.1245/s10434-017-5810-x]

321 Raut CP, Tseng JF, Sun CC, Wang H, Woff RA, Crane CH, Wang R, Vauthney JN, Abdalla EK, Lee JE, Pisters PW, Evans DB. Impact of resection status on pattern of failure and survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Ann Surg Oncol 2007; 246: 52-60 [PMID: 17592291 DOI: 10.1097/01.sla.0000259391.84304.2b]

322 Crippa S, Guarnieri G, Belfiori G, Partelli S, Pagnanelli M, Gasparini G, Balzano G, Lena MS, Rubini C, Doglioni C, Zamboni G, Falconi M. Positive neck margin at frozen section analysis is a significant predictor of tumour recurrence and poor survival after pancreaticoduodenectomy for pancreatic cancer. Eur J Surg Oncol 2020; 46: 1524-1531 [PMID: 32098733 DOI: 10.1016/j.ejso.2020.02.013]

323 Meyer W, Kurwixch C, Reichel M, Steinhäuser B, Wünsch PH, Gebhardt C. Pathomorphological and histological prognostic factors in curatively resected ductal adenocarcinoma of the pancreas. Surg Today 2000; 30: 582-587 [PMID: 10930222 DOI: 10.1007/s005950070066]

324 Sohn TA, Yeo CJ, Cameron JL, Koniaris L, Kaushal S, Abrams RA, Sauter PK, Coleman J, Hruban RH, Lilenmoe KD. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg 2000; 4: 567-579 [PMID: 11307091 DOI: 10.1016/s1091-255x(00)00105-5]

325 Chang DK, Johns AL, Merrett ND, Gill AJ, Colvin EK, Scarlett CJ, Nguyen NQ, Leong RW, Cosman PH, Kelly MI, Sutherland RL, Henshall SM, Kench JG, Biankin AV. Margin clearance and outcome in resected pancreatic cancer. J Clin Oncol 2009; 27: 2855-2862 [PMID: 19398572 DOI: 10.1200/JCO.2008.20.5104]

326 Helm J, Centeno BA, Coppola D, Melis M, Lloyd M, Park JY, Chen DT, Malafa MP. Histologic characteristics enhance predictive value of American Joint Committee on Cancer staging in resectable pancreas cancer. Cancer 2009; 115: 4080-4089 [PMID: 19626671 DOI: 10.1002/cncr.24503]

327 Kinsella TJ, Seo Y, Willis I, Stellato TA, Siegel CT, Harpp D, Willson JK, Gibbons J, Sanabria JR, Hardacre JM, Schulap J. The impact of resection margin status and postoperative CA19-9 Levels on survival and patterns of recurrence after postoperative high-dose radiotherapy with 5-FU-based concurrent chemotherapy for resectable pancreatic cancer. Am J Clin Oncol 2008; 31: 446-453 [PMID: 18838880 DOI: 10.1097/COC.0b013e31816efc64]

328 Pelucchi C, Galeone C, Polesel J, Manzari M, Zucchetto A, Talanini R, Franceschi S, Negri E, La Vecchia C. Smoking and body mass index and survival in pancreatic cancer patients. Pancreas 2014; 43: 47-52 [PMID: 24177141 DOI: 10.1097/MPA.0b013e3182a7c74d]

329 Yuan C, Morales-Oyarvide V, Babic A, Clish CB, Kraft P, Bao Y, Qian ZR, Rubinson DA, Ng K, Giovannucci EL, O’gino S, Stampfer MJ, Gazzano JM, Sesso HD, Cochrane BB, Marnes JE, Fuchs CS, Wolpin BM. Cigarette Smoking and Pancreatic Cancer Survival. J Clin Oncol 2017; 35: 1822-1828 [PMID: 28358654 DOI: 10.1200/JCO.2016.71.2026]

330 Jiang P, Zhang M, Gui L, Zhang K. Expression patterns and prognostic values of the cyclin-dependent kinase 1 and cyclin A2 gene cluster in pancreatic adenocarcinoma. J Int Med Res 2020; 48: 300060520930113 [PMID: 33290118 DOI: 10.1177/0300060520930113]
Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, Nourse C, Murtaugh LC, Harlifong I, Idrisoglu S, Manning S, Nourbakhsh E, Wani S, Fink L, Holmes O, Vardar L, Cowley MJ, Cowley MJ, Colvin EK, Nagrial AM, Humphrey ES, Chantrill LA, Mawson A, Humphris J, Chou A, Pajic M, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kassahn KS, Thomas J, Yang Z, Fu W, He Q, Chen H, Wang A, Yang D, Li J, Zheng S, Fu W, Hic-5 in pancreatic stellate cells affects proliferation, apoptosis, migration, and invasion of pancreatic cancer cells and postoperative survival time of pancreatic cancer. **Biomed Pharmacother** 2020; 121: 109355 [PMID: 31683179 DOI: 10.1016/j.biopharm.2019.109355]

Song C, Chen T, He L, Ma N, Li JA, Rong YF, Fang Y, Liu M, Xie D, Lou W. PRMT1 promotes pancreatic cancer growth and predicts poor prognosis. **Cell Oncol (Dordr)** 2020; 43: 51-62 [PMID: 31520395 DOI: 10.1007/s13402-019-00435-1]

Kurahara H, Maemura K, Mataki Y, Tane K, Iino S, Kawasaki Y, Ichii T, Arigami T, Mori S, Shindow Y, Higashi M, Ueno S, Shinoda H, Natsugoe S. Lung recurrence and its therapeutic strategy in patients with pancreatic cancer. **Pancreatology** 2020; 20: 89-94 [PMID: 31787525 DOI: 10.1016/j.pan.2019.11.015]

Liu M, Zhang Y, Yang J, Cui X, Zhou Z, Zhan H, Ding K, Tian X, Yang Z, Fung KA, Edil BH, Postier RG, Bronze MS, Fernandez-Zapico ME, Stemmler MP, Brabletz T, Li YP, Houwen CW, Li M. ZIP4 Increases Expression of Transcription Factor ZEB1 to Promote Integrin α3β1 Signaling and Inhibit Expression of the Gemcitabine Transporter ENT1 in Pancreatic Cancer Cells. **Gastroenterology** 2020; 158: 679-692.e1 [PMID: 31771924 DOI: 10.1053/j.gastro.2019.10.038]

Ou ZL, Luo Z, Lu YB. Long non-coding RNA HULC as a diagnostic and prognostic marker of pancreatic cancer. **World J Gastroenterol** 2019; 25: 6728-6742 [PMID: 31857775 DOI: 10.3748/wjg.v25.i46.6728]

Fu Z, Yao J, Li Y, Ji B, Jia B, Liu B. TLYMS presents a novel biomarker for diagnosis and prognosis in patients with pancreatic cancer. **Medicine (Baltimore)** 2019; 98: e18487 [PMID: 31861032 DOI: 10.1097/MD.0000000000018487]

Bu F, Zhu X, Yi X, Luo C, Lin K, Zhu J, Hu C, Liu Z, Zhao J, Huang C, Zhang W, Huang J. Expression Profile of GINS Complex Predicts the Prognosis of Pancreatic Cancer Patients. **Onco Targets Ther** 2020; 13: 11433-11444 [PMID: 33192076 DOI: 10.2147/OTT.S275649]
