Comprehensive analysis of the prognosis of S100 family members and their relationship with tumor-infiltrating immune cells in human pancreatic adenocarcinoma

Yajun Ren, MD\(^a\), Bing Chen, MD\(^a\), Meng Zhang, MD\(^b,c\), Feng Xu, MD\(^a\)*

Abstract

S100 family members (S100s) are small molecular EF hand calcium binding proteins and widely expressed in many tissues and organs. S100s are shown to be biomarkers of disease progression and prognosis in various types of cancers. Nevertheless, the expression patterns, function, and prognostic values of S100s and its association with tumor-infiltrating immune cells in pancreatic adenocarcinoma (PAAD) patients have not been systematically clarified. We explored the expression and roles of the entire 20 S100s in PAAD patients by using the following public databases: Oncomine, gene expression profiling interactive analysis, cbioPortal, Metascape, search tool for recurring instances of neighboring genes, Tumor IMmune Estimation Resource, and GeneMANIA. The S100A2/A3/A4/A6/A8/A9/A10/A11/A13/A14/A16/B/P mRNA expressions were significantly upregulated in PAAD patients. The mRNA expression of S100A3/A4/A6/A10/A11/A14/A16/Z were significantly negatively related with the tumor stage in PAAD patients. We found that the S100A2/A3/A5/A10/A11/A14/A16 were significantly correlated with poor overall survival, whereas the increased levels of S100A1/B/G/Z were strongly associated with good overall survival. We found significant correlations among S100s and tumor-infiltrating immune cells. Cox proportional risk models revealed that B cells, Dendritic cells and S100A1/A5/A6/A8/A9/A13/A14 were significantly related with outcomes in PAAD patients. These results suggest that S100A2/A3/A10/A11/A14/A16 may serve as new diagnostic and prognostic biomarkers for PAAD patients and provide new clues for immunotherapy in PAAD patients.

Abbreviations: DCs = dendritic cells, DFS = disease-free survival, GEPIA = gene expression profiling interactive analysis, GO = gene ontology, Mφ = macrophages, OS = overall survival, PAAD = pancreatic adenocarcinoma, PPI = protein-protein interaction, S100s = S100 family members, TCGA = the cancer genome atlas.

Keywords: comprehensive analysis, immune infiltration, pancreatic adenocarcinoma, prognosis, S100s

1. Introduction

Pancreatic adenocarcinoma (PAAD) always causes high lethality in patients, the incidence of PAAD has increased over the past few decades and it is likely to continue to increase further.\(^1,2\) It is predicted that by 2030, the number of deaths from PAAD will dramatically increase and become the second most common cause of death from cancers.\(^3\) Hence, there is a need to look for reliable predictive biomarkers and accurate outcomes of PAAD patients.

S100 family members (S100s) are small molecular EF hand calcium binding proteins and that are widely expressed in many tissue organs and play important roles in many biological processes, including Calcium homeostasis, inflammation, proliferation, differentiation, cell migration, and apoptosis and so on.\(^4\) Over the past decades, numerous studies have revealed that S100s are shown to be a biomarker for disease progression and prognosis in different types of cancers, for instance, lung cancer,\(^5\) acute myeloid leukemia,\(^6\) melanoma,\(^7\) ovarian cancer,\(^8,9\) and breast cancer.\(^10\) The aberrant expression of S100s and its correlation with prognosis and pathological features have been partially reported in PAAD patients. Several studies have suggested that S100A4 may serve as a possible biomarker because...
its expression was correlated with malignancy, metastasis, and invasion and poor overall survival (OS) in PAAD. The higher expression of S100A2 was associated with progression and predicts a good response to pancreatectomy in PAAD. S100A6, S100A11, and S100P may also be useful biomarkers for the diagnosis in PAAD patients. However, the functions of other S100s in PAAD have not yet been completely elucidated.

As far as we know, there has not been a systematical bioinformatics analysis to investigate the expression of the entire 20 S100s and associations with tumor immunity in PAAD patients. In recent years, microarray and RNA-seq technology has developed very quickly. In our study, we used the different databases to analyze the expression patterns, mutations, functional networks and correlations with tumor stage, and outcomes and tumor-infiltrating immune cells in PAAD patients.

2. Materials and methods

2.1. Oncomine

The Oncomine is an integrated online microarray database. In our research, we contrasted the S100s mRNA expression of tumor tissues with that of normal tissues in various cancers, and P value was generated by Student t test, with P < 0.01, fold change ≥ 2, data type: mRNA, gene bank: 10%.

2.2. GEPIA 2

The gene expression profiling interactive analysis (GEPIA) 2 datasets is an easy-to-use online tool and used to analyze the RNA-seq results from the cancer genome atlas (TCGA) and GEX projects, containing 8587 normal and 9736 tumors samples. In our research, we performed the S100s mRNA expression analysis, tumor stage analysis, OS, and disease-free survival (DFS) by using GEPIA 2. The threshold of P < .05. The expression and tumor stage analysis were evaluated using the Student t test. OS and DFS were evaluated using Kaplan–Meier method.

2.3. TCGA and cBioPortal

TCGA database contains RNA-seq data and clinicopathologic information for 30 various cancers. In our study, we used the cBioPortal to perform the S100s genomes profiles analysis (TCGA, Firehose Legacy) dataset, including 186 cases, including mutations, Putative copy-number alterations from GISTIC, mRNA Expression z-Scores (threshold: ±2.0) and Protein expression Z-scores (threshold: ±2.0). In addition, and we conduct the co-expression analysis and correlation analysis among the genetic mutations of S100s with OS and DFS by using the cBioPortal.

2.4. GeneMANIA

The GeneMANIA is an online tool and provides some information, including protein-protein and gene-gene interactions, protein domain similarity, co-localization, co-expression, and pathways. In our study, we used GeneMANIA to find neighboring genes which were significantly related with S100s by performing the pathway enrichment and functional annotation analysis, and then construct a gene-gene interaction network.

2.5. STRING

The search tool for recurring instances of neighboring genes (STRING) is a friendly website and used to predict the protein-protein interaction (PPI). In our study, we constructed a PPI network of S100s by using STRING.

2.6. Metascape

The Metascape is a friendly website for exploring gene ontology (GO) enrichment analysis and Kyoto encyclopedia of genes and genomes enrichment analysis. In our research, we analyzed the gene annotation and pathway enrichment analysis of S100s and neighboring genes by using the Metascape. The thresholds of P value, Min Overlap and Min Enrichment were limited as 0.01, 3 and 1.5, respectively.

2.7. TIMER 2.0

The Tumor Immune Estimation Resource (TIMER) 2.0 is a very convenient and practical website for exploring the correlations between tumor-infiltrating immune cells and their effects on clinical prognosis. In our research, we used the TIMER 2.0 to investigate the relationship of S100s expression with tumor-infiltrating immune cells and clinical outcomes in PAAD patients by Cox proportional hazard model.

3. Results

3.1. The S100s mRNA expression in PAAD patients

We compared the S100s mRNA expression in different types of cancers with normal tissues. S100s, such as S100A1, S100A2, S100A3, S100A4, S100A5, S100A6, S100A7, S100A8, S100A9, S100A10, S100A11, S100A12, S100A13, S100A14, S100A16, S100B, S100G, S100P, and S100Z were explored in human multiple cancers in Oncomine (Fig. 1 and Table 1). The databases included 349, 335, 342, 309, 300, 243, 320, 153, 344, 326, 352, 314, 344, 343, 248, 171, 362, 296, 344, 147 unique analyses for S100A1-S100Z, and respectively. The mRNA expressions of S100s were significantly altered in a majority of human cancers, including upregulated and downregulated. The mRNA expression of S100A2/A4/A6/A10/A11/A13/A14/A16/P were overexpressed in PAAD patients. The other S100s were not significantly difference in PAAD and normal tissues.

As shown in Table 1, in Pei dataset, S100A2/A4/A6/A10/A11/A14/A16/P were overexpressed in PAAD tissue with a fold change of 7.68, 4.857, 9.149, 3.337, 4.953, 6.455, 4.396, and 77.931, respectively. In Iacobuzio-Donahue dataset, S100A2/A10/A11/A13/P were upregulated in PAAD tissue with a fold change of 3.613, 5.514, 7.198, 2.225, and 24.013, respectively. Logsdon et al showed that S100A4/A10/A11/A13/P were increased in PAAD tissue (fold change: 4.442, 7.578, 18.29, 7.197, and 20.309, respectively). Badea et al showed that the higher levels of S100A4/A6/A10/A11/A13/A16/P were overexpressed in PAAD tissue (fold change: 4.374, 5.919, 3.095, 4.43, 2.186, 2.327, and 13.177, respectively). Segara et al showed that S100A6/A10/A11/A13/P were found higher expressed in PAAD tissue with a fold change of 4.764, 4.299, 7.519, 2.68, and 17.727, respectively. Grutzmann et al found that the expression of S100A16 (fold change = 2.36) and S100P (fold change = 8.382) were raised in PAAD tissue versus normal tissues. Buchholz et al reported that S100A16 was over-expressed in PAAD tissue (fold change = 2.162). Ishikawa et al reported that S100P (fold change = 4.247) was higher expressed in PAAD patients.

3.2. The expression of S100s and their association with the tumor stage in PAAD patients

We compared the S100s mRNA expression of PAAD tissues with control tissues by using GEPIA 2 (Fig. 2). We found that the S100A2/A4/A6/A10/A11/A14/A16/P mRNA expressions were significantly higher in PAAD tissue than that of normal tissues. Buchholz et al reported that the expression of S100A16 (fold change = 2.36) and S100P (fold change = 8.382) were raised in PAAD tissue versus normal tissues. Buchholz et al reported that S100A16 was over-expressed in PAAD tissue (fold change = 2.162). Ishikawa et al reported that S100P (fold change = 4.247) was higher expressed in PAAD patients.
A4/A5/A6/A10/A11/A14/A16/P/Z mRNA expressions were significantly negatively associated with tumor stage of PAAD patients, whereas other S100s had no significant difference (Fig. 3).
3.3. Prognostic values of S100s in PAAD patients

Using GEPIA 2, we investigated the prognostic significance of S100s in PAAD patients. Interestingly, the analysis revealed that higher expression of S100A2/A3/A5/A10/A11/A14/A16 were correlated with poor OS (Over Survival) significantly, whereas the increased level of S100A1/B/G/Z were strongly associated with good OS (Fig. 4). The other S100s were not correlated with OS in PAAD patients. In addition, the S100A2/A10/A16 mRNA expressions were predicted to have worse DFS (Disease-free survival), whereas the upregulated levels of S100A1/B were correlated with good DFS in PAAD patients (Fig. 5). The OS and DFS of S100A7A was not found in the GEPIA dataset. The other S100s were not correlated with DFS in PAAD patients.

3.4. The genetic alteration of S100s in PAAD patients

We explored the genetic alterations and its correlation in PAAD patients (TCGA, Firehose Legacy) by using cBioPortal. S100s were changed in 84 of 186 PAAD patients (45%) (Fig. 6a). The genetic alterations of S100A14/A16/A10/A4 were the top 4...
genes (14%, 11%, 11% and 10%, respectively). Furthermore, the further study found that PAAD patients with genetic alteration had shorter OS and DFS than those with nothing alterations, whereas there was no statistically significant difference (P value was .282 and .681, Fig. 6b and c).

We also used the cBioPortal dataset to calculate the Pearson correlation coefficient of S100s with each other and assess whether these genes were correlated with each other (Fig. 7a). The results show that there was a high correlation between these genes. In addition, we performed a PPI network and explored the potential interaction among S100s by using STRING database (Fig. 7b). As shown, the PPI network consists of 20 nodes and 74 edges. The results revealed that S100s were directly and indirectly connected to 1 another and S100A16 was only associated with S100A14, and other S100s displayed close mutual protein-protein interaction. In addition, we constructed a gene-gene interaction network of S100s and their neighboring genes by using GeneMANIA. The results revealed that 20 genes such as TCHHL1, HRNR, FLG2, RPTN, S100A7L2, FLG, TCHH, CRNN, SNTN, CABP7, CALN1, CABP2, KCNIP4, PVALB, MICU3, MYL5, OCM, EFCAB3, CAPSL, and GUCA1A, were mainly correlated with the regulation and function of S100s in PAAD (Fig. 7c).

3.5. Functional enrichment analysis of S100s in PAAD patients

We used the Metascape to explore the functions of S100s by analyzing GO and Kyoto encyclopedia of genes and genomes. GO enrichment analysis included biological processes, cellular components and molecular functions. The analysis showed the 8 most enriched terms, including calcium ion binding,
calcium-dependent protein binding, RAGE receptor binding, S100 protein binding, cornified envelope, leukocyte degranulation, and perinuclear region of cytoplasm and response to metal ion (Fig. 8a–b and Table 2). In addition, we constructed an enriched terms network, colored by \(P \) value. Additionally, to further understand the relationship between S100s and PAAD, we constructed PPI Enrichment Analysis. We found that the biological processes were primarily linked to calcium-dependent protein binding, calcium ion binding, protein homodimerization activity, cornified envelope, cornification and keratinization (Fig. 8c–e).

3.6. The relationship between S100s and tumor-infiltrating immune cells in PAAD patients

S100s may affect the outcomes of PAAD patients by taking part in immune cells infiltration. Hence, we used TIMER 2.0 Databases to investigate the association between the S100s and Tumor-Infiltrating Immune Cells (Figs. 9 and 10). The results showed that there was a positive association between S100A1 and CD4\(^+\) T cells infiltration; however, there was a negative association between S100A1 and CD8\(^+\) T cells, macrophages...
(Mφ) and dendritic cells (DCs) infiltration. S100A3 and S100A4 were positively related with Neutrophils and DCs infiltration, and S100A3 was also positively associated with CD4+ T cells infiltration. S100A5 and S100A6 were negatively related with CD8+ T cells and Mφ infiltration, and S100A6 was also negatively associated with Neutrophils and DCs infiltration. S100A7/A10/A11 were negatively correlated with Mφ infiltration. S100A8/A9/A12/B/Z were positively related with CD8+ T cells, CD4+ T cells, Mφ, Neutrophils and DCs infiltration, and S100A12/B/Z were also positively associated with B cells infiltration. There was a positive relationship between S100A13 and CD4+ T cells infiltration, while there was a negative relationship between S100A13 and Mφ infiltration. S100A14 and S100A16 were negatively related with CD8+ T cells, Mφ and DCs infiltration, and there was a negative relationship between S100A6 and CD8+ T cells infiltration. There was a negative association between S100P and CD4+ T cells, Mφ infiltration. However, S100A7A/S100G were not correlated with immune cells infiltration. Additionally, we used Cox proportional risk model to explore the association between S100s and Tumor-Infiltrating Immune Cells. The results revealed that B cells (P = .024), DCs (P = .025), S100A1(P = .001), S100A5(P = .026), S100A6(P

Figure 5. The prognosis value of S100s in patients with PAAD in the DFS curve (GEPIA 2). DFS = disease-free survival, GEPIA = gene expression profiling interactive analysis, PAAD = pancreatic adenocarcinoma.
= .025), S100A8 (P = .004), S100A9 (P = .017), S100A13 (P = .039), and S100A14 (P = .006) were obviously related with prognosis of patients with PAAD (Table 3).

4. Discussion

Accumulative studies indicated that S100s dysfunction plays a very important role in many cancers.[4] The functions of S100s in certain cancers has been reported, but comprehensive analysis of the whole 20 S100s in PAAD patients has not been clarified. In our study, we found that the S100A2/A3/A4/A6/A8/A9/A10/A11/A13/A14/A16/B/P mRNA expressions were significantly upregulated in PAAD patients. Survival analysis found that the increased levels of S100A2/A3/A5/A10/A11/A14/A16 were significantly correlated with poor OS, whereas the increased levels of S100A1/B/G/Z were strongly correlated with good OS. Our study suggested that S100A2/A3/A10/A11/A14/A16 could be used as novel prognostic or therapeutic biomarkers.

S100A2 was overexpressed and correlated with poor prognosis and progression in PAAD.[21] Biankin et al revealed that S100A2 expression is a good predictor of response to pancreatectomy for PAAD.[21] Bachet et al showed that the higher expression of S100A2 predicts good DFS and OS in patients receiving adjuvant therapy and should be evaluated as a predictive biomarker in PAAD.[22] Wen et al revealed that the S100A2 is downregulated in radioresistant pancreatic cells, suggesting that S100A2 may be involved in radioresistance of PAAD cells.[23] In our research, we found that the S100A2 was significantly overexpressed in PAAD tissues, and there was a relationship between S100A2 and short OS and DFS in PAAD patients. However, there was no association between S100A2 and the tumor stage in PAAD patients.

S100A3 plays a vital role in some cancers, for instance, ovarian cancer, gastric cancer and colorectal cancer.[8,31,32] But the role of S100A3 in PAAD patients has not been investigated. In our research, we first revealed that the S100A3 expression was significantly higher in PAAD patients. Moreover, high S100A3 expression was linked with advanced tumor stage and worse OS in PAAD patients; however, the expression of S100A3 has nothing to do with DFS in PAAD patients. The role and mechanism of S100A3 in PAAD still need to be confirmed by a large number of studies in the future.

S100A10, a plasminogen receptor, was overexpressed in PAAD patients, as a new putative biomarker and could promote the growth and invasion of pancreatic tumor. The expression of S100A10 was driven by methylation of the – 400 bp promoter region and oncogenic KRASG12D. S100A10 promoted the growth of pancreatic tumors and regulated the expression of VEGF and CCND1.[33] However, the underlying mechanisms need to be explored further. In our research, the analysis indicated that the S100A10 expression was aberrantly upregulated in PAAD patients. Moreover, high S100A10 expression was related with advanced tumor stage. The results indicated that the expression of S100A10 may result in short OS and DFS in PAAD patients.

S100A11 was over-expressed in the early stage of carcinogenesis and downregulated during the progression of pancreatic
cancer. Xiao et al showed that the S100A11 was related with bad prognosis and S100A11 was an independent prognostic indicator of PAAD, and further research confirmed that S100A11 promoted the viability and proliferation of human PAAD PANC-1 cells through the upregulation of the PI3K/AKT pathway. Mitsui et al found that the secretory S100A11 induced upregulation mobility of PAAD cells by activating the surrounding fibroblasts through the S100A11-RAGE-TPL2-COX2 pathway. Takamatsu et al identified that extracellular S100A11 promoted the proliferation of fibroblasts through the RAGE-MyD88-mTOR-p70 S6 kinase pathway. In this research, the data suggested that the S100A11 expression was aberrantly upregulated in PAAD patients. Nevertheless, high S100A11 expression was related to advanced tumor stage and shorter OS. However, there was no association between S100A11 and tumor stage in PAAD patients.

S100A14 in PAAD has been rarely reported. In a recently published study, Zhu et al revealed that S100A14 was significantly over-expressed in PAAD and promoted the progression and gemcitabine resistance. Our results revealed that the S100A14 expression was significantly over-expressed in PAAD patients. Moreover, the S100A14 expression was related with
advanced tumor stage and bad clinical outcomes. However, the S100A14 expression in PAAD patients has no effect on DFS of PAAD patients.

S100A16 is an important member of S100s. In a recent report, Tu et al. used bioinformatics to investigate the S100A16 expression and its prognostic in PAAD patients, and confirmed that S100A16 expression was upregulated in PAAD patients and affected the prognosis of PAAD patients. Meanwhile, experiments by Fang et al. confirmed that S100A16 was overexpressed in PAAD and promoted the metastasis and progression of PAAD through FGF19-mediated Akt and ERK1/2 signaling pathways. Li et al. reported that S100A16 promoted the metastasis by inducing EMT through up-regulating TWIST1 expression and activating the STAT3 signaling pathway in PAAD patients.
PAAD. Our results revealed S100A16 expression was significantly over-expressed in PAAD. Moreover, the expression of S100A16 was associated with advanced tumor stage. The above results suggested that the higher S100A10 expression led to short OS and DFS in PAAD patients.

A previous study has focused on tumor Immune Infiltration and its role in PAAD. Ino et al. reported that more CD4+ and CD8+ T cells infiltration are a prerequisite for longer survival in PAAD patients, and the CD4+CD8+ T cells status is an independent prognostic factor. Jiang et al. revealed that DCs were observed to abundantly infiltrate the tumor tissue, but the function of DCs always were impaired. Di et al. found that the density of Tumor-associated macrophages were correlated with worse outcomes and distant metastasis in PAAD patients. In our study, the results revealed the S100A3 was positively related with the CD4+ T cells, Neutrophils and DCs infiltration. The transcription levels of S100A10/A11 were negatively correlated with Mφ infiltration. There was a negative association between the S100A14 and CD8+ T cells, Mφ and DCs infiltration. There was a negative relationship between the S100A16 and CD8+ T cells, CD4+ T cells, Mφ and DCs infiltration. The results

Figure 9. The association between S100A1/A2/A3/A4/A5/A6/A7/A7A/A8/A9 and Tumor-Infiltrating Immune Cells in PAAD patients (TIMER 2.0). PAAD = pancreatic adenocarcinoma, TIMER = Tumor Immune Estimation Resource.
indicated that S100s may reflect the antitumor immunity in PAAD. The Cox proportional risk model revealed that the S100A1/A5/A6/A8/A9/A13/A14 expression was obviously related with the outcomes of PAAD patients.

Nevertheless, our study has some limitations. Because of complex posttranscriptional modifications in cells, the transcriptional levels did not completely reflect the protein levels in PAAD. To further clarify the expression and detailed mechanism of S100s in PAAD, numerous basic experiments are still needed in the future.

5. Conclusion

In conclusion, we systematically analyzed the S100s expression and its association with outcomes and tumor immune microenvironment in PAAD patients. Our results indicated that the S100A2/A3/A4/A6/A8/A9/A10/A11/A13/A14/B/G/P/Z mRNA expressions were significantly upregulated in PAAD patients. Survival analysis found that the increased levels of S100A2/A3/A4/A6/A8/A9/A10/A11/A13/A14/A16 were significantly correlated with poor OS, whereas the increased levels...
of S100A1/B/G/Z were strongly correlated with good OS. We found significant correlations among S100s and Tumor-Infiltrating Immune Cells. Additionally, The Cox proportional risk model revealed that B cells, Dendritic cells and S100A1/A5/A6/A8/A9/A13/A14 were obviously related with prognosis of patients with PAAD. Our results reveal that S100s may be a new target for the diagnosis and treatment of PAAD and provide evidence for the clinical application of S100s inhibitors in PAAD patients.

Acknowledgments
We thank all authors sharing public database data that could be used in the study.

Author contributions
Data curation: Yajun Ren, Bing Chen.
Formal analysis: Yajun Ren, Bing Chen.
Funding acquisition: Yajun Ren, Meng Zhang.
Investigation: Yajun Ren, Bing Chen, Meng Zhang.
Methodology: Yajun Ren, Bing Chen, Meng Zhang.
Project administration: Feng Xu.
Resources: Feng Xu.
Software: Yajun Ren, Bing Chen, Meng Zhang.
Supervision: Yajun Ren, Meng Zhang.
Validation: Yajun Ren, Meng Zhang.
Writing – original draft: Yajun Ren, Meng Zhang.
Writing – review & editing: Feng Xu.

References
[1] Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer. Lancet. 2020;395:2008-20.
[2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7-30.
[3] Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.
[4] Allgower C, Kretz AL, von Karstedt S, et al. Friend or foe: s100 proteins in cancer. Cancers (Basel). 2020;12:2037.
[5] Liu Y, Cui J, Tang YL, et al. Prognostic roles of mRNA expression of S100 in non-small-cell lung cancer. Biomed Res Int. 2018;2018:9815806.
[6] Yang XY, Jin J, Huang J, et al. Expression and clinical significance profile analysis of S100 family members in human acute myeloid leukemia. Eur Rev Med Pharmacol Sci. 2020;24:7324–34.
[7] Xiong TF, Pan FQ, Li D. Expression and clinical significance of S100 family genes in patients with melanoma. Melanoma Res. 2019;29:23–9.
[8] Bai Y, Li LD, Li J, Lu X. Prognostic values of S100 family members in ovarian cancer patients. Breast Cancer Res Treat. 2018;171:733–43.
[9] Huang S, Zheng J, Huang Y, et al. Impact of S100A4 expression on clinicopathological characteristics and prognosis in pancreatic cancer: a meta-analysis. Dis Markers. 2016;2016:8137378.
[10] Tsukamoto N, Egawa S, Akada M, et al. The expression of S100A4 in human pancreatic cancer is associated with invasion. Pancreas. 2013;42:1027–33.
[11] Ohuchida K, Mizumoto K, Miyasaka Y, et al. Over-expression of S100A2 in pancreatic cancer correlates with progression and poor prognosis. J Pathol. 2007;211:275–82.
[12] Tsakamotsu N, Egawa S, Akada M, et al. The expression of S100A4 in human pancreatic cancer is associated with invasion. Pancreas. 2013;42:1027–33.
[13] Ohuchida K, Mizumoto K, Miyasaka Y, et al. Over-expression of S100A2 in pancreatic cancer correlates with progression and poor prognosis. J Pathol. 2007;211:275–82.
[14] Tsakamotsu N, Egawa S, Akada M, et al. The expression of S100A4 in human pancreatic cancer is associated with invasion. Pancreas. 2013;42:1027–33.
[17] Sealfon SC, Chu TT. RNA and DNA microarrays. Methods Mol Biol. 2011;671:3–34.
[18] Rhodes DR, Kalyana-Sundaram S, Mahavisno V, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9:166–80.
[19] Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W356–60.
[20] Cancer Genome AN. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.
[21] Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signaling. 2013;6:pl1.
[22] Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery. 2012;2:401–4.
[23] Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–20.
[24] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.
[25] Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.
[26] Li T, Fan J, Wang B, et al. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 2017;77:1108–10.
[27] Li B, Severson E, Pignon JC, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17:174.
[28] Biankin AV, Kench JG, Colvin EK, et al. Expression of S100A2 calcium-binding protein predicts response to pancreatectomy for pancreatic cancer. Gastroenterology. 2009;137:558–68, e1–11.
[29] Bachet JB, Marechal R, Demetter P, et al. S100A2 is a predictive biomarker of adjuvant therapy benefit in pancreatic adenocarcinoma. Eur J Cancer. 2013;49:2643–53.
[30] Wen Q, Zhao YP, Chen G, et al. [Expression of S100A2 in secondarily radioresistant pancreatic cancer cells and significance thereof]. Zhonghua yi xue za zhi. 2006;86:2817–20.
[31] Wang C, Luo J, Rong J, et al. Distinct prognostic roles of S100 mRNA expression in gastric cancer. Pathol Res Pract. 2019;215:127–36.
[32] Zeng ML, Zhu XJ, Liu J, et al. An integrated bioinformatic analysis of the S100 gene family for the prognosis of colorectal cancer. Biomed Res Int. 2020;2020:4746929.
[33] Bydoun M, Sterea A, Liptay H, et al. S100A10, a novel biomarker in pancreatic ductal adenocarcinoma. Mol Oncol. 2018;12:1895–916.
[34] Ohuchida K, Mizumoto K, Ohashi S, et al. S100A11, a putative tumor suppressor gene, is overexpressed in pancreatic carcinogenesis. Clin Cancer Res. 2006;12:5417–22.
[35] Xiao M, Li T, Li Y, et al. S100A11 promotes human pancreatic cancer Panc-1 cell proliferation and is involved in the PI3K/AKT signaling pathway. Oncol Lett. 2018;15:175–82.
[36] Mitsui Y, Tomonobu N, Watanabe M, et al. Upregulation of mobility in pancreatic cancer cells by secreted S100A11 through activation of surrounding fibroblasts. Oncol Res. 2019;27:945–56.
[37] Takamatsu H, Yamamoto KI, Tomonobu N, et al. Extracellular S100A11 plays a critical role in spread of the fibroblast population in pancreatic cancers. Oncol Res. 2019;27:713–27.
[38] Zhu H, Gao W, Li X, et al. S100A14 promotes progression and gemcitabine resistance in pancreatic cancer. Pancreatology. 2021;21:589–98.
[39] Tu G, Gao W, Li Y, et al. Expressional and prognostic value of S100A16 in pancreatic cancer via integrated bioinformatics analyses. Front Cell Dev Biol. 2021;9:645641.
[40] Fang D, Zhang C, Xu P, et al. S100A16 promotes metastasis and progression of pancreatic cancer through FGF19-mediated AKT and ERK1/2 pathways. Cell Biol Toxicol. 2021;37:535–71.
[41] Li T, Ren T, Huang C, et al. S100A16 induces epithelial-mesenchymal transition in human PDAC cells and is a new therapeutic target for pancreatic cancer treatment that synergizes with gemcitabine. Biochem Pharmacol. 2021;189:114396.
[42] Ino Y, Yamazaki-Itoh R, Shimada K, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108:914–23.
[43] Jang JE, Hajdu CH, Liot C, et al. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep. 2017;20:558–71.
[44] Di Caro G, Cortese N, Castino GF, et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut. 2016;65:1710–20.