2015

Recommendations of generic names in Diaporthales competing for protection or use

Amy Y. Rossman
Gerard C. Adams
Paul F. Cannon
Lisa A. Castlebury
Pedro W. Crous

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers

Part of the Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons

This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Amy Y. Rossman, Gerard C. Adams, Paul F. Cannon, Lisa A. Castlebury, Pedro W. Crous, Marieka Gryzenhout, Walter M. Jaklitsch, Luis C. Mejia, Dmitar Stoykov, Dhanushka Udayanga, Hermann Voglmayr, and Donald M. Walker
Recommendations of generic names in *Diaporthales* competing for protection or use

Amy Y. Rossman1, Gerard C. Adams2, Paul F. Cannon3, Lisa A. Castelbury4, Pedro W. Crous5, Marieka Gryzenhout6, Walter M. Jaklitsch7,8, Luis C. Mejia9,10, Dmitar Stoykov11, Dhanushka Udayanga12, Hermann Voglmayr12, and Donald M. Walker13

1Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; corresponding author e-mail: amydiianer@yahoo.com
2Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68503, USA
3Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK
4Systematic Mycology & Microbiology Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA
5CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
6Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
7Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
8Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Peter Jordan-Straße 82, 1190 Vienna, Austria
9Center for Cellular and Molecular Biology of Diseases, Institute for Scientific Research and High Technology Services (INDICASAT-AIP), P.O. Box 0843-01103, Panama
10Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Panama
11Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 113 Sofia, Bulgaria
12Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
13Department of Natural Sciences, Findlay University, Findlay, Ohio 45840 USA

Abstract: In advancing to one name for fungi, this paper treats generic names competing for use in the order *Diaporthales* (*Ascomycota, Sordariomycetes*) and makes a recommendation for the use or protection of one generic name among synonymous names that may be either sexually or asexually typified. A table is presented that summarizes these recommendations. Among the genera most commonly encountered in this order, *Cytospora* is recommended over *Valsa* and *Diaportha* over *Phomopsis*. New combinations are introduced for the oldest epithet of important species in the recommended genus. These include *Amphiphorpha tiliae*, *Coryneum lanceformis*, *Cytospora brevispora*, *C. ceratosperma*, *C. cinereostroma*, *C. eugeniae*, *C. fallax*, *C. myragena*, *Diaportha amaranthropi*, *D. annonacearum*, *D. bougainvilleicola*, *D. caricae-papayae*, *D. cococina*, *D. cucurbitae*, *D. juniperivora*, *D. leptostromiformis*, *D. pterophila*, *D. theae*, *D. vitimegaspora*, *Mastigosporella georgiana*, *Pilidieilla angustispora*, *P. calamicola*, *P. pseudograni*, *P. stromatic*, and *P. terminialiae*.

Key words: Article 59
Ascomycetes
Fungi
nomencature
one fungus-one name
pleomorphic fungi
taxonomy
unit nomenclature

Article info: Submitted: 8 May 2015; Accepted: 27 May 2015; Published: 4 June 2015.

INTRODUCTION

The order *Diaporthales* includes 12 families with about 50 genera. In moving to one name for fungi in accordance with the *International Code of Nomenclature for algae, fungi and plants* (ICN; McNeill et al. 2012), two or more genera typified by a sexual or asexual morph may compete for use. Many genera in *Diaporthales* are known primarily from their sexual morphs and do not have competing generic names for their asexual morphs and *vice versa*; these are not considered here. A number of resources were consulted in order to find competing pairs of generic names in the order, including Wijayawardene et al. (2012) and the USDA SMML Fungal Databases (url: http://nt.ars-grin.gov/sbmlweb/fungi/index.cfm). The procedure for determining whether two genera are synonyms based on their type species and the factors that were reviewed in considering which genus to recommend for use or protection are outlined in Johnston et al. (2014). In that paper recommendations are made for competing genera in *Leotiomyces*.

Following are recommendations for generic names in *Diaporthales* for use or protection when two or more names are synonyms. Although in general this follows the principle of priority, there are situations in which it is advantageous to
protect a generic name that does not have priority by date of publication but has commonly been used as explained in Johnston et al. (2014). A synopsis of these recommendations for generic names in Diaporthales is provided in Table 1, which includes a list of competing generic names with the citation and type species. These generic names have been compared with those listed in Kirk et al. (2013). In most cases both names are listed there; in one case the recommended name is not included but it is anticipated that the list will be modified to be consistent with the recommendations proposed here, indeed some of these are already included in the updated online version of that list prepared for IMC10 (http://www.indexfungorum.org/GeneraOfFungi/).

RECOMMENDATIONS

Protect Amphiporthe 1971 over Amphicytostroma 1921
The type species of Amphiporthe, *A. hranicensis* based on *Diaportha hranicensis*, is the sexual morph of the type species of *Amphicytostroma*, *A. tiliae* based on *Cytospora tiliae*, according to Petrak (1921) and Sutton (1980), thus these generic names are synonyms. This species occurs on dead branches of *Tilia* in Europe (Farr & Rossman 2015). Five names have been described in *Amphiporthe* while only two names have been included in *Amphicytostroma*. The second name in *Amphicytostroma*, *A. quercinum* based on *Gloeosporium quercinum*, is the asexual morph of *Amphiporthe leiphaemia* based on *Sphaeria leiphaemia*, cause of stem and twig lesions of oak in Europe (Sieber et al. 1995). Sogonov et al. (2008) showed that *Amphiporthe hranicensis* belongs in *Gnomoniaceae* while *A. castanea* and *A. leiphaemia* are unrelated to *A. hranicensis* and fall elsewhere in *Diaporthales* (Zhang & Blackwell 2001; Castlebury, unpubl.); these species should be placed in another genus. *Amphiporthe* is more widely used than *Amphicytospora*, thus it seems best to protect *Amphiporthe*. Both names are included in Kirk et al. (2013), thus it is recommended that *Amphicytospora* be deleted.

Amphiporthe tiliae (Sacc.) Rossman & Castl., comb. nov.
Mycobank MB812583
Basionym: *Cytospora tiliae* Sacc., *Michelia* 1: 519 (1879).
Synonyms: *Diaportha hranicensis* Petr., *Annls mycol.* 12: 477 (1914).
Amphiporthe hranicensis (Petr.) Petr., *Sydowia* 24: 257 (1971).

Protect Apiognomonia 1917 over Discula 1884
The genus *Apiognomonia* has recently been well-defined including five species (Sogonov et al. 2008) based on the type species, *A. veneta*, which had previously been distinguished from *A. errabunda* (Sogonov et al. 2007). The lectotype species of *Discula*, *D. quercina*, now considered a synonym of *D. umbrinella* (Sutton 1980), is the asexual morph of *Apiognomonia errabunda*; thus *Apiognomonia* and *Discula* are synonyms. *Apiognomonia errabunda* is the cause of anthracnose of oak and various hardwood trees (Boewe et al. 1954, Neely & Himelick 1967, Hepting 1971, Sinclair et al. 1987, Hibben & Daughtrey 1988). The concept of the genus *Discula* has never been clearly defined with species having diverse affinities in *Gnomoniaceae*. A number of species placed in *Discula* have been linked with species of *Ophiognomonia* (Sogonov et al. 2008, Walker et al. 2014). The cause of dogwood anthracnose in North America, *Discula destructiva*, is not congeneric with the type of *Discula* nor does it group with *Ophiognomonia* (Sogonov et al. 2008).

Given the ill-defined concept of *Discula* and that a number of species are now linked with the genus *Ophiognomonia*, we recommend the protection and use of *Apiognomonia*. Both names are listed in Kirk et al. (2013), thus it is recommended that *Discula* be deleted.

Use Coryneum 1816 rather than Pseudovalsa 1863
The type species of *Coryneum*, *C. umbonatum*, is the asexual morph of *Pseudovalsa longipes*, while the type species of *Pseudovalsa*, *P. lanciformis*, is considered the sexual morph of *Coryneum brachyurum* (Sutton 1975). Assuming that *P. lanciformis* and *P. longipes* are congeneric, then *Coryneum* and *Pseudovalsa* are synonyms. Sutton (1975) monographed *Coryneum* and accepted 19 species, referring many additional names to other genera. Many of the commonly reported plant pathogenic species previously known as *Coryneum* have now been placed in other genera such as *Seiridium cardinale* (syn. *Coryneum cardinale*), cause of cypress canker (Danti et al. 2014, Sutton & Gibson 1972), and *Thyrostroma carpophilum* (syn. *Coryneum carpophilum*, *Stigmina carpophila*, and *Coryneum beyerincki*), cause of shot-hole disease of *Rosaceae* (Sutton 1997, Tovar-Pedraza et al. 2014). Although 68 names have been described in *Pseudovalsa* and three important species have been shown to group together (de Silva et al. 2009), many species of *Pseudovalsa* are now placed in other genera. These two genera are about equal in the number of currently accepted species and a monograph of *Coryneum* exists, thus it seems advisable to use the earliest name, *Coryneum*. Among the species of *Coryneum* known to have *Pseudovalsa* sexual morphs, only one requires a name change. Both generic names are listed in Kirk et al. (2013) thus it is recommended that *Pseudovalsa* be deleted.

Coryneum lanciforme (Fr.) Voglmayr & Jaklitsch, comb. nov.
Mycobank MB812584
Basionym: *Sphaeria lanciformis* Fr., *Observ. mycol.* 2: 324 (1818).
Synonyms: *Pseudovalsa lanciformis* (Fr.) Ces. & De Not., *Comm. Soc. crittog. Ital.* 1(4): 206 (1863).
Coryneum brachyurum Link, in Willdenow, *Sp. pl.*, 4*th* edn 6(2): 124 (1825).

Use Cryphonectria 1905 rather than Endothiella 1906
The generic name *Cryphonectria* was recently conserved with the type species, *C. parasitica* (Gryzenhout et al. 2005), widely known as the cause of chestnut blight in North America (Anagnostakis 1987). Many additional species of
Cryphonectria have been discovered on woody plants in both temperate and tropical regions (Gryzenhout et al. 2009). The generic name *Endothiella* based on the type species, *E. gyrosa*, is now placed in Cryphonectria as *C. decipiens* (Gryzenhout et al. 2009). *Endothiella* has been used for the asexual morphs of species of Cryphonectria. Given the widespread use of the name *Cryphonectria* and its priority, this name is recommended for use. Both names are included in Kirk et al. (2013) thus it is recommended that *Endothiella* be deleted.

Use Cryptosporella rather than Disculina 1916

The genus *Cryptosporella*, based on the type species *C. hypodermia*, has recently been monographed by Mejia et al. (2008, 2011b) and includes 19 species. The genus *Disculina* is based on *D. neesii*, regarded as *D. vulgaris* by Sutton (1980), who considered it the asexual morph of *Ophiiovalsa suffusa*, now placed in *Cryptosporella* as *C. suffusa* (Mejia et al. 2008). Thus, *Cryptosporella* and *Disculina* are synonyms. Given that *Cryptosporella* has priority and has been recently monographed, while *Disculina* includes only six names, we recommend the use of *Cryptosporella*. Both names are included in Kirk et al. (2013) thus it is recommended that *Disculina* be deleted.

Use Cytospora 1818 rather than Valsa 1825, Valsella 1870, Leucostoma 1917, Valseutypella 1919, or Leucocytospora 1927

Numerous diseases of woody plants including those of economic importance are caused by species of the asexual genus *Cytospora* and its sexual counterpart *Valsa* and related genera *Leucocytospora, Leucostoma, Valsella,* and *Valseutypella*. The type species of *Cytospora*, *C. chrysosperma* as clarified by Donk (1964), is the asexual morph of *Valsa sordida* and commonly causes cankers on members of *Salicaceae* (Callan 1998). The type species of *Valsa, V. ambiens*, is linked with *C. leucosperma* (Spiegelman 1985, Hayova & Minter 1998). There is no question that these generic names are synonyms as their type species are congeneric. Both names have been widely used. At present 562 names have been described in *Cytospora*, while *Valsa* includes 875 names. Given that *Cytospora* is the oldest name and that several recent accounts of *Cytospora* species have been published (Adams 2005, Fotouhifar et al. 2010, Fan et al. 2014), it seems best to use the generic name that has priority, namely *Cytospora*. The genus *Valsella* is based on *V. salicis*, now considered a synonym of *Cytospora fertilis*. An isolate of *V. salicis* grouped with others species now considered *Cytospora* (Castlebury et al. 2002). The type species of *Leucostoma, L. massarianum*, falls within the genus *Cytospora* (Adams et al. 2002, 2005) near *Cytospora malii* and *C. persooni* and thus *Leucostoma* is also a synonym of *Cytospora*. Adams et al. (2005) listed Leucocytospora as a synonym of *Cytospora* although the type species of *L. corni* was not included in the study. *Leucostoma* and *Leucocytospora* were described for species similar to *Cytospora* and *Valsa* that have a whitish ring around the ostiole. This characteristic occurs in many species of *Cytospora* scattered throughout the genus (Castlebury et al. 2004, Adams et al. 2005). The type species of *Valseutypella, V. tristicha* on *Rosa* spp., was also determined to fall within *Cytospora* based on molecular sequence data (Castlebury, unpubl.) and as suggested by Hubbes (1960) who described the asexual morph. No molecular data exist to support segregate genera within *Cytospora*, thus these generic names are all considered synonyms of *Cytospora*. *Cytospora* as well as *Leucocytospora, Valsa, Valsella,* and *Valseutypella* are included in Kirk et al. (2013) while *Leucocytospora* is not. It is recommended that *Leucocytospora, Valsa, Valsella* and *Valseutypella* be deleted.

Many names previously recognized in *Valsa* already have an older epithet in *Cytospora* with the correct scientific names presented in the SMMF Fungal Databases (http://int.ars-grin.gov/fungaldatabases/). New names for the common species of *Cytospora* previously placed in *Valsa* are provided here:

Cytospora brevispora (G.C. Adams & Jol. Roux) G.C. Adams & Rossman, **comb. nov.**

MycoBank MB812485

Basionym: *Valsa brevispora* G.C. Adams & Jol. Roux, *Stud. Mycol.* 52: 91 (2005).

Cytospora ceratosperma (Tode) G.C. Adams & Rossman, **comb. nov.**

MycoBank MB812486

Basionym: *Sphaeria ceratosperma* Tode, *Fung. mecklenb. sel.* 2: 53 (1791).

Valsa ceratosperma (Tode) Maire, *Publ. Inst. Bot. Barcelona* 3(4): 20 (1937).

Cytospora cinereostroma (G.C. Adams & M.J. Wingf.) G.C. Adams & Rossman, **comb. nov.**

MycoBank MB812488

Basionym: *Valsa cinereostroma* G.C. Adams & M.J. Wingf., *Stud. Mycol.* 52: 73 (2005).

Cytospora eugeniae (Nutman & F.M. Roberts) G.C. Adams & Rossman, **comb. nov.**

MycoBank MB 812489

Basionym: *Valsa eugeniae* Nutman & F.M. Roberts, *Trans. Brit. Mycol. Soc.* 36: 229 (1953).

Cytospora fallax (Nitschke) G.C. Adams & Rossman, **comb. nov.**

MycoBank MB812490

Basionym: *Valsa fallax* Nitschke, *Jb. nassau. Ver. Naturk.* 23–24: 200 (1870).

Cytospora myragena (G.C. Adams & M.J. Wingf.) G.C. Adams & Rossman, **comb. nov.**

MycoBank MB812491

Basionym: *Valsa myragena* G.C. Adams & M.J. Wingf., *Stud. Mycol.* 52: 97 (2005).

Use Diaporthe 1870 rather than Phomopsis 1884

Species in both *Diaporthe* and *Phomopsis* have been used for fungi that cause canker diseases of woody plants such as *D. citri*, cause of citrus melanos (Mondal et al. 2003), *D. sojae*, cause of pod and stem blight of soybean (Udayanga et
Table 1. Recommended generic names of *Diaporthales* among those that compete for use and their synonyms. The recommended generic name is listed in bold; see text for the rationale for these recommendations. For each generic name this list provides the author, its date and place of publication, the type species of the genus, its basionym, their dates of publication, and the currently accepted name, if different. The action required is indicated in the last column such as protection of names that do not have priority.

Accepted genus	Rejected genus	Action required
Amphiporthe Petr., Sydowia 24: 257 (1971); type species *A. hranicensis* (Petr.); Petr. (1971), basionym: *Diaporthe hranicensis* Petr. (1914), now *Amphiporthe hranicensis* (Sacc.) Rossman & Castil. (2015)	Amphicytostroma Petr., *Annls mycol.* 19: 63 (1921); type species *A. tiliae* (Sacc.) Petr. (1921), basionym: *Cytospora tiliae* Sacc. (1879), now *Amphiporthe tiliae* (Sacc.) Rossman & Castil. (2015)	Protect *Amphiporthe* (1971) over *Amphicytostroma* (1921)
Apiognomonía Höhn., *Ber. Deutsch. Bot. Ges.* 35: 635 (1917); type species *A. veneta* (Sacc. & Speg.) Höhn. (1918), basionym: *Laestadia veneta* Sacc. & Speg. (1878)	*Discella* Sacc., *Syll. Fungi* 3: 674 (1884); lectotype species: *D. quercina* (Cook) Sacc. (1884), basionym: *Discella quercina* Cooke (1883), now *Apiognomonía errabunda* (Roberge ex Desm.) Höhn. (1918), basionym *Sphaeria errabunda* Roberge ex Desm. (1848)	Protect *Apiognomonía* (1917) over *Discella* (1884)
Coryneum Nees, *Syst. Pilze* 34: 34. (1816); type species: *C. umbonatum* Nees (1816)	*Pseudovalsa* Ces. & De Not., *Comment. Soc. Crittogam. Ital.* 1: 206 (1863); type species: *P. lanciformis* (Fr.) Ces. & De Not. (1863), basionym *Sphaeria lanciformis* Fr. (1818), now *Coryneum lanciforme* (Fr.) Voglmayr & Jaklitsch (2015)	Use *Coryneum* (1816) rather than *Pseudovalsa* (1863)
Cryphonectria (Sacc.) Sacc. & D. Sacc., *Syll. Fung.* 17: 783 (1905), basionym: *Nectria* subgen. *Cryphonectria* Sacc. (1883); conserved type species: *Cryphonectria parasitica* (Murrill) M.E. Barr (1978), basionym *Diaporthe parasitica* Murrill (1906)	*Endothiella* Sacc., *Annls mycol.* 4: 273 (1906); type species: *E. gyrosa* Sacc. (1906), now *Cryphonectria decipiens* Gryzenh. & M.J. Wingf. (2009) non *C. gyrosa* (Berk. & Broome) Sacc. & D. Sacc. (1905)	Use *Cryphonectria* (1905) rather than *Endothiella* (1906)
Cryptospora Sacc., *Michelia* 1: 30 (1877); lectotype species *C. hypoderma* (Fr.) Sacc. (1877), basionym: *Sphaeria hypoderma* Fr. (1823)	*Disculina* Höhn., *Sitzungsber. Kaiserl. Akad. Wiss., Math.-Naturwiss. Cl. Abt.* 1: 125: 104 (1916); type species: *D. neesii* (Corda) Höhn. (1916), basionym: *Cryptosporum neesii* Corda (1837), now *Cryptospora suffusa* (Fr.) L.C. Mejia & Castil. (2008)	Use *Cryptospora* Sacc. (1877) rather than *Disculina* (1916)
Cytospora Ehrenb., *Sylv. mycol. berol.*: 2 (1818): Fr., *Syst. Mycol.* 2: 540 (1823); designated type species: *C. chrysosperma* Pers. (1819)	*Valsia* Fr., *Syst. Orbis. Veg.*: 107 (1825); type species: *V. ambiens* (Pers.) Fr. (1849), basionym *Sphaeria ambiens* Pers. (1801), now *Cytospora leucosperma* (Pers.) Fr. (1823), basionym *Naemaspora leucosperma* Pers. (1796)	Use *Cytospora* (1818) rather than *Valsia* (1825), *Valsella* (1870), *Leucostoma* (1917), *Valseutypella* (1919), or *Leucocycluspora* (1927).
Diaporthe Nitschke, *Pyrenomyc. Germ.* 2: 240 (1870); type species: *D. eres* Nitschke (1870), nom. cons. prop. (Rossman et al. 2014)	*Phomopsis* (Sacc.) Bubák, *Öst. bot. Z.* 55: 78 (1905), basionym: *Phoma* subgen. *Phomopsis* Sacc. (1884); type species: *P. lactucae* (Sacc.) Bubák (1905), basionym: *Phoma lactucae* Sacc. (1880)	Use *Diaporthe* (1870) rather than *Phomopsis* (1884)
Table 1. (Continued).

Accepted genus	Rejected genus	Action required
Endothia Fr., Summa Veg. Scand.: 385 (1849); designated type species: *E. gyrosus* (Schwein.) Fr. (1849), basionym: *Sphaeria gyrosa Schwein. (1822)*	Calopactia Syd. & P. Syd., Annls mycol. 10: 82 (1912); type species: *C. singularis* Syd. & P. Syd., now *Endothia singularis* (Syd.) Shear & N.E. Stevens (1917)	Use *Endothia* (1849) rather than *Calopactia* (1912)
Massariovalsa Sacc., *Michelia* 2: 569 (1882); type species: *M. sudans* (Berk. & M.A. Curtis) Sacc. (1882), basionym: *Massaria sudans* Berk. & M.A. Curtis (1876)	Melanconiosis Ellis & Everh., Bull. Torrey Bot. Club 27: 575 (1900); type species: *M. inquinans* Ellis & Everh. (1900), now *Massariovalsa sudans* Berk. & M.A. Curtis. Sacc. (1882)	Use *Massariovalsa* (1882) rather than *Melanconiosis* (1900)
Mastigosporella Höh., *Sber. Akad. Wiss. Wien. Math.-naturw. Kl., Abt. 1 123*: 135 (1914); type species: *M. hyalina* (Ellis & Everh.) Höh. (1914), basionym: *Harknessia hyalina* Ellis & Everh. (1885)	Wuestneiopsis J. Reid & Dowsett, Can. J. Bot. 68: 2406 (1990); type species: *W. georgiana* (J.H. Mill. & G.E. Thomps.) J. Reid & Dowsett (1900), basionym: *Gnomoniella georgiana* J.H. Mill. & G.E. Thomps. (1940), now *Mastigosporella georgiana* (J.H. Mill. & G.E. Thomps.) Rossman & Crous (2015)	Use *Mastigosporella* (1914) rather than *Wuestneiopsis* (1990)
Mazzantia Mont., Bull. Soc. Bot. France 2: 525 (1855); type species: *M. gali* (Fr.) Mont. (1856), basionym: *Sphaeria galii* Fr. (1828)	Mazzantielia Höh., Mitt. Bot. Lab. TH Wien 2: 61 (1925); designated type species: *M. semip* (Brunaud) Höh. (1925), basionym: *Placospheria semip* Brunaud (1890), now *Mazzantia semip* Sacc. & Penz. (1882)	Use *Mazzantia* (1855) rather than *Mazzantielia* (1925)
Melanconis Tul. & C. Tul., *Select. fung. carpal. 2*: 115 (1863); type species: *M. stilbostoma* (Fr.) Tul. & C. Tul. (1863), basionym: *Sphaeria stilbostoma* Fr. (1817)	Melanconium Link, Mag. Gesell. naturf. Freunde, Berlin 3(1–2): 9 (1809); type species: *M. atrum* Link (1809)	Protect *Melanconis* (1863) over *Melanconium* (1832)
Pilidiella Petr. & Syd., *Beih. Reprium nov. Spec. Regni veg. 42*: 462 (1927); type species: *P. quercicola* (Oudem.) Petr. (1927), basionym: *Macropodia quercicola* Oudem. (1902)	Schizoparme Shear, Mycologia 15: 120 (1923); type species: *S. stramina* Shear (1923), now *Pilidiella castaneicola* (Ellis & Everh.) Arx (1957), basionym: *Gloeosporium castaneicola* Ellis & Everh. (1895)	Protect *Pilidiella* (1927) over *Schizoparme* (1923)
Plagiostoma Fuckel, Jahrb. Nassauischen Vereins Natur. 23–24: 118 (1870); designated type species *P. euphorbiae* (Fuckel) Fuckel (1870), basionym *Sphaeria euphorbiae* Fuckel (1860)	Diplodina Westend., Bull. Acad. Roy. Sci. Belgique, Cl. Sci. ser. 2: 2: 562 (1857); type species: *D. salcis* Westend. (1857), now *Plagiostoma apiculata* (Wallr.) L.C. Mejía (2011)	Protect *Plagiostoma* (1870) over *Diplodina* (1857), additional synonyms *Septomyxa* (1884) and *Cryptodiaporthe* (1921)
Stilbospora Pers., *Neues Mag. Bot. 1*: 93 (1794); type species: *S. macrospora* Pers. (1801)	Prosthecium Fresen., *Beitr. Mykol. 2*: 62 (1852); type species: *P. ellipsoidosporum* Fresen. (1852), now *Stilbospora macrospora* Pers. (1801)	Use *Stilbospora* 1794 rather than *Prosthecium* (1852)

Al. 2015, and *D. vaccinii*, cause of blueberry and cranberry twig blight (Friend & Boone 1968, Milholland & Daykin 1983, Oudemans et al. 1998), as well as endophytes in herbaceous and woody plants (Castlebury et al. 2002). When most names of *Diaporthe* or *Phomopsis* were described, species in these genera were considered to be host specific. However, recent studies using molecular data have shown that, while a few species are host-specific, many others have a broad host range. Most species of *Diaporthe* can be identified only through the use of molecular sequences (Udayanga et al. 2014a, b). About 1000 names have been described in each genus including many that are sexual and asexual morphs of the same species.

Recently the type species of *Diaporthe*, *D. eres*, has been carefully circumscribed (Udayanga et al. 2014a) and this name is conserved against 21 obscure earlier names (Rossman et al. 2014). The type species of *Phomopsis*, *P. lactucae*, has not been as clearly defined but there is no doubt that it is congeneric with *Diaporthe* and that *Diaporthe* and *Phomopsis* are synonyms. *Diaporthe* and *Phomopsis* have been used about equally, thus, it seems best to use the name that has priority, *Diaporthe*. *Diaporthe* but not *Phomopsis* is listed in Kirk et al. (2013).

Determining the correct name for species of *Diaporthe* is difficult considering that names in both genera must be taken into account and defining old names is nearly impossible. Due
to the lack of distinct morphological characteristics, examination of type specimens is only marginally useful. In his monograph of Diaportha, Wehmer (1933) listed many synonyms under each of the species that he recognized. As in the case of D. eres, some of these names are older. Many names previously recognized in Phomopsis already have an older epithet in Diaportha with the correct scientific names presented in the SMML Fungal Databases (http://int.ars-grin.gov/fungaldatabases/). However, a number of the most important and some recently described names in Phomopsis are here transferred to Diaportha.

Diaportha amaranthophila (Inácio et al) Rossman & Udayanga, **comb. nov.**

MycoBank MB812492
Basionym: Phomopsis amaranthophila Inácio et al., *Fitopatol. Brasil.* 24: 185 (1999).
Synonym: *Phomopsis amaranthicola* Rosskopf et al., *Mycologia* 92: 117 (2000); nom. inval. (Art. 40.3).

Diaportha annonacearum (Bond.-Mont.) Rossman & Udayanga, **comb. nov.**

MycoBank MB812493
Basionym: Phomopsis annonacearum Bond.-Mont., *Acta Inst. bot. Komarov. Acad. Sci., Pl. Crypt.* ser. 2 3: 721 (1936).

Diaportha bougainvilleicola (M.M. Xiang et al) Rossman & Udayanga, **comb. nov.**

MycoBank MB812494
Basionym: Phomopsis bougainvilleicola M.M. Xiang et al., *Mycosystema* 22: 516 (2003).

Diaportha cariceae-papayae (Petr. & Cif.) Rossman & Udayanga, **comb. nov.**

MycoBank MB812495
Basionym: Phomopsis cariceae-papayae Petr. & Cif., *Annls mycol.* 28: 412 (1930).

Diaportha cocoina (Cooke) Rossman & Udayanga, **comb. nov.**

MycoBank MB812496
Basionym: Phoma cocoina Cooke, *Grevillea* 5: 101 (1877).
Synonyms: Phomopsis cocoina (Cooke) Punth., *Trans. Brit. Mycol. Soc.* 64: 435 (1975).
Phyllosticta cocos Cooke, *Grevillea* 8: 94 (1880).

Diaportha cucurbitae (McKeen) Udayanga & Castl., **comb. nov.**

MycoBank MB812623
Basionym: Phomopsis cucurbitae McKeen, *Canad. J. Bot.* 35: 46, (1957).
This new combination was published in Udayanga et al. (2015) but without a registration number, so was not validly published there (Art. 42.1).

Diaportha juniperivora (G.G. Hahn) Rossman & Udayanga, **comb. nov.**

MycoBank MB812497
Basionym: *Phomopsis juniperivora* G.G. Hahn, *Phytopathology* 10: 249 (1920).

Diaportha leptostromiformis (J.G. Kühn) Rossman & Udayanga, **comb. nov.**

MycoBank MB812498
Basionym: Cryptosporium leptostromiforme J.G. Kühn, *Ber. physiol. Lab. Versuch. landw. Inst. Univ. Halle:* 1 [1] (1880).
Synonyms: *Phomopsis leptostromiformis* (J.G. Kühn) Bubák, *Danish Fungi:* 422 (1913).
Diaportha woodii Punth., *Mycol. Pap.* 136: 51 (1974).

Diaportha pterophila (Nitschke ex Fuckel) Rossman & Udayanga, **comb. nov.**

MycoBank MB812508
Basionym: Sphaeria pterophila Nitschke ex Fuckel, *Jb. nassau. Ver. Naturk.* 23–24: 377 (1870).
Synonyms: *Phomopsis pterophila* (Nitschke ex Fuckel) Died., *Annls mycol.* 9: 28 (1911).
Diaportha samaricola W. Phillips & Plowr., *Grevillea* 3: 126 (1875).

Diaportha theae (Petch) Rossman & Udayanga, **comb. nov.**

MycoBank MB812499
Basionym: Phomopsis theae Petch, *Ann. R. bot. Gdns Peradeniya* 9: 324 (1925).

Diaportha vitimegaspora (K.C. Kuo & L.S. Leu) Rossman & Udayanga, **comb. nov.**

MycoBank MB812500
Basionym: Phomopsis vitimegaspora K.C. Kuo & L.S. Leu, *Mycofaxon* 66: 498 (1998).
Synonym: *Diaportha kyushuensis* Kajitani & Kanem., *Mycoscience* 41: 112 (2000).

Use Endothia 1849 rather than Calopactus 1912

The type species of *Endothia*, *E. gyroa*, and the monotype species of *Calopactus*, *C. singularis*, were shown to be congeneric by Gryzenhout (2009) who recognized *C. singularis* as the asexual morph of *E. singularis*. A number of diseases are caused by species of *Endothia* such as stem and twig canker of chestnut caused by *E. singularis* (Sung & Han 1986). Given the widespread use of the name *Endothia* with 32 names and its priority over *Calopactus* with only one name, use of *Endothia* is recommended. *Endothia* but not *Calopactus* is included in Kirk et al. (2013).

Use Massariovalsa 1882 rather than Melanconiopsis 1900

The type species of *Massariovalsa*, *M. sudans*, is considered the sexual morph of *Melanconiopsis inquinans*, type species of *Melanconiopsis* (Wehneyer 1939), thus these congeneric names are synonyms. Five names are included in *Massariovalsa* while eight fungi have been described in *Melanconiopsis*, some of which also have names in *Massariovalsa*. Suarez et al. (2000) discussed the disposition of three names in *Melanconiopsis* placing two of them in *Endomelanconium*. These generic names have been used about equally in the literature, referring primarily to *Massariovalsa sudans* (syn. *Melanconiopsis inquinans*). Neither genus has been recently monographed or studied using molecular data. Given the lack of rationale for using
Melanconiopsis and the lack of molecular data regarding the placement of species in either genus, the principle of priority should be followed, thus it is recommended that Massariovalsa be used. Both Massariovalsa and Melanconiopsis are listed in Kirk et al. (2013), thus it is recommended that Melanconiopsis be deleted.

Use Mastigosporella 1914 rather than Wuestneiopsis 1990

The type species of Mastigosporella, M. hyalina, is considered to be the asexual morph of Wuestneiopsis quercifolia (as Dicarpella quercifolia) (Barr 1979, Nag Raj 1981). The generic type of Wuestneiopsis is W. georgiana. Both of these Wuestneiopsis names were placed in the illegitimate later homonym Dicarpella Syd. & P. Syd. 1921 non Bory 1824 by Reid & Dowsett (1990). Given that the type species of Mastigosporella and Wuestneiopsis were considered to be congeneric by Barr (1978) and that Reid & Dowsett (1990) suggested that W. georgiana may have a Mastigosporella asexual morph, these genera appear to compete for synonymy. The genus Mastigosporella containing two species was monographed by Nag Raj (1981) with another species, M. anisophyllae, added recently by Crous et al. (2013). Nag Raj (1981) examined the holotype of W. georgiana (as Dicarpella georgiana), which he considered to be the sexual morph of M. nyssae. Given that Mastigosporella is more widely used and has priority, use of Mastigosporella is recommended. Both Mastigosporella and Wuestneiopsis are listed in Kirk et al. (2013), thus Wuestneiopsis should be deleted. One new combination is needed.

Mastigosporella georgiana (J.H. Mill. & G.E. Thomps.) Rossman & Crous, *comb. nov.*

MycoBank MB812501

Basionym: Gnomoniella georgiana J.H. Mill. & G.E. Thomps., *Mycologia* 32: 8 (1940).

Synonyms: Wuestneiopsis georgiana (J.H. Mill. & G.E. Thomps.) J. Reid & Dowsett, *Canad. J. Bot.* 68: 2406 (1990).

Mastigosporella nyssae Nag Raj & Di Cosmo, *Bibithca Mycol.* 80: 57 (1981).

Use Mazzantia 1855 rather than Mazzantiella 1925

The generic name for the sexual morph *Mazzantia*, based on *M. galii*, has been widely used and this genus includes 27 names. *Mazzantia galii* has been included in molecular studies of Diaporthales as a sister group for *Diaporthe* (Udayanga et al. 2014a). Mazzantiella, based on *M. sepium*, was described as the asexual morph of *Mazzantia sepium*, thus these type species are most likely congeneric. Each of the three names in *Mazzantiella* has a sexual morph name in *Mazzantia*, thus no name changes are required if *Mazzantia* is maintained. Given the greater use of *Mazzantia*, its priority, and the lack of required name changes, use of *Mazzantia* is recommended. *Mazzantia* but not *Mazzantiella* is listed in Kirk et al. (2013).

Protect Melanconis 1863 over Melanconium 1832

Recently an account was provided of the type species of *Melanconis, M. stilbostoma* (Voglmayr et al. 2012) in distinguishing *Melanconis* from *Melanconium*. The concept of *Melanconium* based on the type species, *M. atrum*, remains obscure with many species placed in other genera such as *Arthrinium*, *Greeneria*, and *Harknessia*. Conidial size and morphology of the lectotype specimen of *Melanconium atrum* is similar to *Melanconis alni*, but the latter is specific to *Alnus* and not known from *Fagus*, the host given for *M. atrum*; the true identity of *M. atrum* remains obscure (Voglmayr et al. 2012). Although more names exist in *Melanconium*, these generic names are reported in about equal numbers. Given the confusion surrounding *Melanconium* and the well-defined concept of *Melanconis*, we recommend that *Melanconis* be protected over *Melanconium*. Both generic names are listed in Kirk et al. (2013).

Protect Pilidiella 1927 over Schizoparme 1923

The type species of *Pilidiella, P. quercicola*, is congeneric with the type species of Schizoparme, *S. straminea*, which is the sexual morph of *Pilidiella castaneicola* (van Niekerk et al. 2004). Species of the asexual *Pilidiella* have been more widely reported than those of the sexually typified *Schizoparme* (Samuels et al. 1993, Farr & Rossman 2015). Sixteen names exist in *Pilidiella* while only nine species of *Schizoparme* have been described, three of which already have names in *Pilidiella*. With the use of *Pilidiella* five species must be transferred from *Schizoparme*. However, more name changes would result if the name *Schizoparme* were used. Species of *Pilidiella* and the closely related but distinct genus *Coniella* are commonly encountered in plant-associated environments while the sexual morph *Schizoparme* is rarely reported, thus we recommend the use of *Pilidiella*. A number of diseases are caused by *Pilidiella*, including foliage blight of quaresmeira (*Tibouchina granulosa*) in Brazil caused by *P. tibouchiniae* (Miranda et al. 2012), and crown and stem rot of pomegranate (*Punica granatii*) caused by *P. granati* (Celiker et al. 2012). *Pilidiella* is not listed in Kirk et al. (2013) and should be added while *Schizoparme* should be deleted.

Pilidiella angustispora (Samuels et al.) Rossman & Crous, *comb. nov.*

MycoBank MB812502

Basionym: *Schizoparme angustispora* Samuels et al., *MycoFoton* 46: 465 (1993).

Pilidiella calamicola (J. Fröhli. & K.D. Hyde) Rossman & Crous, *comb. nov.*

MycoBank MB812503

Basionym: *Schizoparme calamicola* J. Fröhli. & K.D. Hyde, *Palm Microfungi*: 255 (2000).

Pilidiella pseudogranati (Crous) Rossman & Crous, *comb. nov.*

MycoBank MB812504

Basionym: *Schizoparme pseudogranati* Crous, *Persoonia* 32: 219 (2014).
Pilidiella stromatica (Samuels et al.) Rossman & Crous, comb. nov.
MycoBank MB812505
Basionym: Schizoparme stromatica Samuels et al., Mycotaxon 46: 474 (1993), 1993

Pilidiella terminaliae (Samuels et al.) Rossman & Crous, comb. nov.
MycoBank MB812506
Basionym: Schizoparme terminaliae Samuels et al., Mycotaxon 46: 478 (1993).

Protect *Plagiostoma* 1870 over *Diplodina* 1857, and the additional synonyms *Septomyxa* 1884 and *Cryptodiaporthe* 1921

The type species of *Plagiostoma*, *P. euphorbiae*, has served as the basis for a monographic account of this genus (Meija et al. 2011a) including a number of plant pathogens such as *P. populinum*, cause of bark necrosis of white poplar (Melnik & Zarudnaya 2008). The type species of *Diplodina*, *D. salicis*, is considered a synonym of *D. microspora* by Sutton (1980), the asexual morph of *Plagiostoma apiiculata* (Meija et al. 2011a); thus *Diplodina* and *Plagiostoma* are synonyms. Although *Diplodina* includes several hundred names, these names have been placed in diverse genera, such as *Ascochytta*, *Discella*, *Microdipodia*, and *Phloeospora*, suggesting that the concept of *Diplodina* is poorly defined. The concept of *Plagiostoma*, however, is well-defined, and there are two recent monographic works on the genus including many new species (Meija et al. 2011a, Walker et al. 2014). These accounts suggest that the protection of this generic name is warranted, which would prevent a significant number of name changes. The type species of *Septomyxa*, *S. aesculi*, and *Cryptodiaporthe*, *C. aesculi*, are both regarded as *Plagiostoma aesculi* (Meija et al. 2011a), thus those later generic names are synonyms of *Plagiostoma*. Sutton (1977) listed six additional generic synonyms of *Diplodina* but this synonymy could not be confirmed. *Plagiostoma*, *Cryptodiaporthe*, and *Diplodina*, but not *Septomyxa*, are listed in Kirk et al. (2013), thus *Cryptodiaporthe* and *Diplodina* should be deleted.

Use *Stilbospora* 1794 rather than *Prosthecium* 1852

The type species of *Stilbospora*, *S. macrospersa*, is the name applied to the asexual morph of the type species of *Prosthecium*, *P. ellipsoidorum*; thus these generic names are synonyms (Voglmayr & Jaklitsch 2014). At present 26 names have been described in *Prosthecium*, while 85 names were placed in *Stilbospora*; however, most names in *Prosthecium* and *Stilbospora* should most likely be excluded from both of these genera (Voglmayr & Jaklitsch 2014). *Stilbospora* appears to be more widely used, has priority, and has recently been monographed with three accepted species (Voglmayr & Jaklitsch 2014). In addition, many species of *Prosthecium* were redispaced in *Stilbospora* and *Stegonosporium* (Voglmayr & Jaklitsch 2008). *Stilbospora* appears to be more widely used, has priority, and has recently been monographed (Voglmayr & Jaklitsch 2014); thus, we recommend the use of *Stilbospora*. Both names are included in Kirk et al. (2013), and *Prosthecium* should therefore be deleted.

ACKNOWLEDGEMENT

Herrmann Voglmayr acknowledges financial support by the Austrian Science Fund (FWF; project P27645-B16).

REFERENCES

Adams GC, Surve-Iyer RS, lezzoni AF (2002) Ribosomal DNA sequence divergence and group I introns within the *Leucostoma* species *L. cinctum*, *L. persooni*, and *L. parapersonii* sp. nov., ascomycetes that cause Cytospora canker of fruit trees. *Mycologia* 94: 947–967.

Adams GC, Wingfield MJ, Common R, Roux J (2005) Phylogenetic relationships and morphotype of *Cytospora* species and related teleomorphs (Ascomycota, Diaporthales, Valsaceae) from Eucalyptus. *Studies in Mycology* 52: 1–144.

Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. *Mycologia* 79: 23–37.

Barr ME (1978) The *Diaporthales* in North America with emphasis on *Gnomonia* and its segregates. *Mycologia Memoirs* 7: 1–232.

Boewe GH, Campana HR, Schneider IR (1954) Sycamore anthracnose severe in Illinois. *Plant Disease Report* 38: 597–598.

Callan BE (1998) *Diseases of Populus in British Columbia: a diagnostic manual*. Ottawa: Natural Resources Canada, Canadian Forest Service.

Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the *Diaporthales* based on large subunit nuclear ribosomal DNA sequences. *Mycologia* 94: 1017–1031.

Celiker NM, Uysal A, Cetinel B, Poyraz D (2012) Crown rot on pomegranate caused by *Coniella granati* in Turkey. *Australasian Plant Disease Notes* 7: 161–162.

Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, van der Bank M, et al. (2013) Fungal Planet Description Sheets: 154–213. *Persoonia* 31: 188–296.

Danti R, Barberini S, Pecchioli A, Di Lonoardo V, Rocca GD (2014). The epidemic spread of *Swiridium cardinale* on Leyland cypress severely limits its use in the Mediterranean. *Plant Disease* 98: 1081–1087.

De Silva H, Castlebury LA, Green S, Stone JK (2009) Characterisation and phylogenetic relationships of *Anisogramma virgultorum* and *A. anomala* in the *Diaporthales* (Ascomycota). *Mycological Research* 113: 73–81.

Donk MA (1964) Nomina conservanda proposita I. Proposals in fungi. *Deuteromycetes. Regnum Vegetabile* 34: 7–15.

Fan X-L, Liang Y-M, Ma R, Tian C-m (2014) Morphological and phylogenetic studies of *Cytospora* (Valsaceae, *Diaporthales*) isolates from Chinese scholar tree, with description of a new species. *Mycoscience* 55: 252–259.

Farr DF, Rossman AY (2015) *Fungal Databases*. Beltsville, MD: Systematic Mycology and Microbiology Laboratory, ARS, USDA; http://nt.ars-grin.gov/fungaldatabases/

Fotouhi Far K-B, Hedjaroude G-A, Leuchtmann A (2010) *ITS* rDNA phylogeny of Iranian strains of *Cytospora* and associated teleomorphs. *Mycologia* 102: 1369–1382.

Friend RJ, Boone DM (1968) *Diapithe vaccinii* associated with dieback of cranberry in Wisconsin. *Plant Disease Reporter* 52: 341–344.
Gryzenhout M, Glen HF, Wingfield BD, Wingfield MJ (2005) (1868) Proposal to conserve the name Cryptonectria (Diaporthales) with a conserved type. Taxon 54: 539–540.

Gryzenhout M, Wingfield BD, Wingfield MJ (2009) Taxonomy, Phylogeny, and Ecology of Bark-Inhabiting and Tree-Pathogenic Fungi in the Cryptonectriaceae. St Paul, MN: American Phytopathological Society Press.

Hayova VP, Minter DW (1998) Valsa ambiens subsp. ambiens. International Mycological Institute Descriptions of Fungi and Bacteria 1364: 1–4.

Hepting GH (1971) Diseases of the Forest and Shade Trees of the United States. [Agriculture Handbook no. 386.] Washington, DC: USDA-Forest Service.

Hibben CR, Daughtrey ML (1988) Dogwood anthracnose in northeastern United States. Plant Disease 72: 199–203.

Hubbes M (1960) Systematische und physiologische Untersuchungen an Valssaceen auf Weiden. Phytopathologische Zeitschrift 39: 65–93.

Johnston PR, Seifert KA, Stone JK, Rossman AY, Marvanova L (2014) Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus 5: 91–120.

Kirk PM, Stalpers JA, Braun U, Crous PW, Hansen K, et al. (2013) A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants. IMA Fungus 4: 381–443.

McNeill J, Barrie FF, Buck WR, Demoulin V, Greuter W, et al. (eds.) (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). [Regnum Vegetabile no. 154.] Königstein: Koeltz Scientific Books.

Meija LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2008) Phylogenetic placement and taxonomic review of the genus Cryptosporella and its synonyms Ophiovalsa and Wintereilla (Gnomoniaceae, Diaporthales). Mycological Research 112: 23–35.

Meija LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2011a) A systematic account of the genus Plagiostroma (Gnomoniaceae, Diaporthales) based on morphology, host-associations, and a four-gene phylogeny. Studies in Mycology 68: 211–235.

Meija LC, Rossman AY, Castlebury LA, White JF (2011b) New species, phylogeny, host-associations and geographic distribution of genus Cryptosporella (Gnomoniaceae, Diaporthales). Mycologia 103: 379–399.

Melnik VA, Zarudnaya GI (2008) Bark necrosis on white poplar in Saint Petersburg. Mikologia u Fitoapatologia 42: 369–373.

Milholland RD, Daykin ME (1983) Blueberry fruit rot caused by Phomopsis vaccini. Plant Disease 67: 325–327.

Miranda Bec, Barreto RW, Crous PW, Groenewald JZ (2012) Pseudospora turbinata sp. nov. associated with foliage blight of Tibouchina granulosa (quaresmeira) in Brazil. IMA Fungus 3: 1–7.

Mondal SN, Agostini JP, Timmer LW (2003) Factors affecting pycnidial development of Diaporthe citri, the cause of citrus melanose. Phytopathology 93: S63.

Nag Rag TR, DiCosmo F (1981) A monograph of Harknessia and Mastigiospora, with notes on associated telemorphs. Bibliotheca Mycologica 80: 1–62.

Neeley D, Himelick EB (1963) Temperature and sycamore anthracnose severity. Plant Disease Reporter 47: 171–175.

Oudemans PV, Caruso FL, Stretch AW (1998) Cranberry fruit rot in the northeast: a complex disease. Plant Disease 82: 1176–1184.

Petrak F (1921) Mykologische Notizen. II. Annales Mycologici 19: 17–128.

Reid J, Dowsett JA (1990) On Diacarpella, Sphaerognomonia, and Apiosporopsis. Canadian Journal of Botany 68: 2398–2407.

Rossman A, Udayanga D, Castlebury LA, Hyde KD (2014) (2304) Proposal to conserve the name Diaporthe earlis against twenty-one competing names (Ascomycota: Diaporthales: Diaporthaceae). Taxon 63: 934–935.

Samuels GJ, Barr ME, Louren R (1993) Revision of Schizoparme (Diaporthales, Melanconidaceae). Mycotaxon 46: 459–483.

Sieben TN, Kowalski T, Holdenerder O (1995) Fungal assemblages in stem and twig lesions of Quercus robur in Switzerland. Mycological Research 99: 534–538.

Sinclair WA, Lyon HH, Johnson WT (1987). Diseases of Trees and Shrubs. Ithaca, NY: Cornell University Press.

Sogonov MV, Castlebury LA, Rossman AY, White JF (2007) The type of species of Apiognomonia, Apiognomonia veneta, with its Discula anamorph is distinct from Apiognomonia errabunda. Mycological Research 111: 693–709.

Sogonov MV, Castlebury LA, Rossman AY, Mejia LC, White JF (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Studies in Mycology 62: 1–79.

Spelman LJ (1985) A monograph of Valsa on hardwoods in North America. Canadian Journal of Botany 63: 1355–1378.

Suarez V, Carmaran CC, Sutton BC (2000) Melanconidaceae microspora sp. nov. from bamboo in Argentina. Mycological Research 104: 1530–1534.

Sung JM, Han SS (1986) Identification of canker-causing fungi associated with stems and twigs of chestnut tree. Korean Journal of Plant Pathology 2: 174–184.

Sutton BC (1975) Coelomycetes. V. Coryneum. Mycological Papers 138: 1–224.

Sutton BC (1977) Coelomycetes VI. Nomenclature of generic names proposed for Coelomycetes. Mycological Papers 141: 1–253.

Sutton BC (1980) The Coelomycetes: Fungi Imperfecti with Pycnidia, acervuli and Stromata. Kew: Commonwealth Mycological Institute.

Sutton BC (1997) On Stigmina, Wilsonomyces and Thyrostroma (Hyphomycetes). Arnoldia (Jamaica Plain) 14: 33–35.

Sutton BC, Gibson IAS (1972) Seindium cardinale. Commonwealth Mycological Institute Descriptions of Pathogenic Fungi and Bacteria 326: 1–2.

Tovar-Pedraza JM, Ayala-Escobar V, Segura-Leon OL (2013) Thryostroma carpophilum causing apricot shoot-hole in Mexico. Australasian Plant Disease Notes 8: 31–33.

Udayanga D, Castlebury LA, Rossman AY, Chukeatitri E, Hyde KD (2014a) Insights into the genus Diaporthe: phylogenetic species delimitation in the D. euris species complex. Fungal Diversity 67: 203–229.

Udayanga D, Castlebury LA, Rossman AY, Hyde KD (2014b) Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytopsorella, D. foeniculina and D. rudis. Persoonia 32: 83–101.

Udayanga D, Castlebury LA, Rossman AY, Chukeatitri E, Hyde KD (2015) The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits, and other field crops. Fungal Biology 119: 383–407.

van Niekerk JM, Groenewald JZ, Verkley GJM, Fourie PH, Wingfield MJ, et al. (2004) Systematic reappraisal of Coniella and Pildiella, with specific reference to species occurring on Eucalyptus and Vitis in South Africa. Mycological Research 108: 283–303.
Voglmayr H, Rossman AY, Castlebury LA, Jaklitsch WM (2012) Multigene phylogeny and taxonomy of the genus Melanconiella (Diaporthales). *Fungal Diversity* 57: 1–44.

Voglmayr H, Jaklitsch WM (2008) *Prosthecium* species with *Stegonsporium* anamorphs on Acer. *Mycological Research* 112: 885–905.

Voglmayr H, Jaklitsch WM (2014) *Stillbosporaceae* resurrected: generic reclassification and speciation. *Persoonia* 33: 61–82.

Walker DM, Lawrence BR, Wooten JA, Rossman AY, Castlebury LA (2014) Five new species of the highly diverse genus *Plagiostoma* (Gnomoniaceae, Diaporthales) from Japan. *Mycological Progress* 13: 1057–1067.

Wehmeyer LE (1933) The Genus Diaporthe Nitschke and its Segregates. [University of Michigan Studies, Science Series no. 9.] Ann Arbor, MI: University of Michigan.

Wehmeyer LE (1939) The genus *Massariovalsa*. *American Journal of Botany* 26: 831–834.

Wijayawardene DNN, McKenzie EHC, Hyde KD (2012) Toward incorporating anamorphic fungi in a natural classification - checklist and notes for 2011. *Mycosphere* 3: 157–228.

Zhang N, Blackwell M (2001) Molecular phylogeny of dogwood anthracnose fungus (*Discula destructiva*) and the *Diaporthales*. *Mycologia* 93: 355–365.