Chromosome length scaling in haploid, asexual reproduction

P M C de Oliveira

Instituto de Física, Universidade Federal Fluminense, avenida Litorânea s/n, Boa Viagem, Niterói 24210-340, Brazil

E-mail: pmco@if.uff.br

Received 3 August 2006
Published 22 January 2007
Online at stacks.iop.org/JPhysCM/19/065147

Abstract
We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with \(L\) bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number \(m\) of bits are flipped. Selection is implemented according to the number \(N\) of 1-bits counted along the individual’s chromosome: the smaller \(N\) the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed.

The question we pose concerns the procedure of increasing \(L\). The aim is to get the same distribution of genetic loads \(N/L\) among the equilibrated population, in spite of a larger \(L\). Should we keep the same mutation rate \(m/L\) for different values of \(L\)? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size.

1. Introduction

A natural method of evolution is to increase the chromosome length in order to make space for more genetic information. However, Nature seems to impose a maximum possible chromosome length, as inferred from at least two general observations. First, all large animals present the same order of magnitude for their chromosome lengths. Second, the genetic information for these animals is spread over more than one chromosome pairs (23 for humans), instead of a single, long one. This broken-information storage strategy demands an extra cost, a coordinated regulatory mechanism triggering the simultaneous copy of the various chromosomes at reproduction or cell division. Therefore, some unavoidable obstacle must exist, which prevents Nature from following the simpler rule of increasing the length of a single chromosome.
On the other hand, during reproduction, the chemical machinery which performs DNA
duplication works as a zip, scanning the one dimensional chromosome chain, base after base.
Thus, the total number m of ‘errors’ (i.e. mutations appearing in offspring as compared to
parents) should be proportional to the chromosome length L, on average. Therefore, by
increasing L, this linear behaviour indicates that one should keep the same mutation rate m/L:
this procedure is then supposed to yield the same genetic quality for the whole population, in
spite of the larger L.

In order to test these ideas, we decided to simulate on computers a very simple model
where each individual carries a single chromosome represented by a bit-string with L bits. Each
bit can appear in either of two forms, 0 or 1. The allele represented by a 0-bit is the wild type,
whereas a 1-bit corresponds to some harmful mutation. In this work, we treat the case of haploid
individuals, the genetic information stored along a single bit-string. In another related work [1]
we treat diploid, sexual reproducing populations with crossings and recombination, and the
results and conclusions are completely different (preliminary results can be found in [2]).

The model is designed in order to keep only the fundamental ingredients of genetic
inheritance and Darwinian evolution: random mutations performed at birth, and natural
selection. All other biological issues which have no direct influence during the very moment
of reproduction are ignored, for instance, the various correlations and inhomogeneities along
the chromosome, the various phases during embryo development, metabolism during life, etc.
Instead, selection is implemented by taking into account just one phenotype: the number N of
harmful alleles, i.e. 1-bits counted along the individual’s chromosome. It is a minimalist model,
not a reductionist one, because we do not divide the problem into smaller, separate pieces
either in space or in time (see [3]). This distinction between minimalism and reductionism is
of fundamental importance as concerns the size- and time-scaling behaviour which leads to the
criticality observed in evolutionary systems [2].

We keep in the computer memory the chromosome (bit-string) of each individual
belonging to a population (in reality, the number of 1-bits is enough). The total number P
of individuals is kept fixed by controlling the number of deaths as equal to the number of births
at each new time step: a fraction b of the population dies, while another fraction also equal to b
of newborns are generated by random parents chosen among the survivors. At each time step,
we perform two successive sub-steps, first deaths and then births.

The death sub-step contains the selection ingredient: an individual with $N+1$ harmful
alleles (1-bits) along its chromosome survives with a smaller probability than another individual
with N harmful alleles. Let us call x the ratio between these two probabilities, $x = P(N+1)/P(N)$, and let us also consider x independent of $N = 0, 1, 2 \ldots L$ (this assumption is equivalent to adopting an exponential decay for the survival probability as a function of N).
The same x is also adopted as the survival probability for individuals with $N = 0$. Of course,
the value of x should be strictly smaller than unity, otherwise nobody dies and the population
does not evolve.

Let us now describe the first sub-step corresponding to deaths. First, we count the number
$H(N)$ of individuals with N harmful alleles. Then, we solve the polynomial equation
\[
\sum_{N=0}^{L} H(N)x^{N+1} = (1 - b)P
\]
getting the value of x. We adopted $b = 0.02$, i.e. 2% of the population die each new time
step. Other not-too-large values (1%, 3%, etc) can also be adopted with the same results, since
the role of b is only to fix a convenient timescale, the time interval between two successive
snapshots of a movie describing the evolving population. As b is a small fraction, x is always
near unity (in fact, $1 - b \leq x < 1$). Now, for each individual i, we toss a random number r in
between 0 and 1: if \(r < x_{Ni}^{N_i+1} \), then this individual survives, where \(N_i \) counts the number of harmful alleles along its chromosome; otherwise, this individual dies and is excluded from the population. After applying this death roulette to the whole population, the number of survivors is \((1 - b)P \), on average.

The second sub-step corresponds to births in exactly the same number as the number of deaths that occurred during the first. For each newborn we toss a random parent among the survivors. Then, we copy its chromosome and perform mutations on the copy. Each mutation is a bit which is flipped (from 0 to 1, or vice versa), the position of which along the chromosome taken at random. As the number of 0-bits is dominant among the population, ‘bad’ mutations (0 to 1) are much more like to occur, as in Nature. The total number of mutations for this particular newborn is a random number \(M \) whose average coincides with the parameter \(m \) fixed the same for the whole population during the whole evolutionary time: for each newborn, we toss \(M \) in between 0 and 2\(m \). Neither \(M \) nor \(m \) need to be integer numbers; they are real numbers. Suppose the tossed \(M \) is not an integer. Then, we perform first \(\text{int}(M) \) mutations, where \(\text{int}(X) \) is the integer part of \(X \). After that, with probability \(\text{frac}(M) \), we perform a last mutation, where \(\text{frac}(X) \) is the fractional part of \(X \): we toss a new random number \(r \) in between 0 and 1, and perform the last mutation only if \(r < \text{frac}(M) \).

The simulation starts with all individuals alike, only 0-bits along their chromosomes, i.e. \(N = 0 \) for all. As the generations pass, individuals with different values of \(N = 1, 2, 3 \ldots \) appear, due to mutations. After many generations, the distribution of genetic loads \(N/L \) stabilizes. Figure 1 is an example, where we have superimposed different chromosome lengths.
The first observation concerning this figure is that both Darwinian evolution ingredients (random mutations and selection) work together. In order to better understand this important point, imagine the first sub-step was replaced by random deaths (no selection): in this case, the curve would run away to the right, sticking to a normal, bell-shaped narrow distribution (Gaussian) centred at \(N/L = 0.5 \), far to the right in figure 1. Moreover, in this selection-less case the wild genotype \(N = 0 \) would be extinct. This would correspond to a completely random genetic pool, nothing to do with any kind of evolutionary process. On the other hand, instead of selection, imagine we skip the mutation ingredient (no mutations): now, the curve would be replaced by a single point at \(N = 0 \), an eugenic situation where all individuals are ‘perfect’, again no relation with any evolutionary process. Without mutations, this would be the final destiny even if we had started the simulation from a randomly chosen population. The fact that figure 1 is in between these two extremes, neither \(N = 0 \) nor \(\langle N \rangle/L = 0.5 \), shows that Darwin evolution is going on; the tendency towards complete genetic randomization due to successive mutations is compensated by the selective deaths, according to a steady-state balance. In the physicist’s jargon, we can say that selection is able to contain the tendency towards entropy explosion, the same balance which leads to free-energy minimization.

The second observation concerning this figure 1 is that all populations with different chromosome lengths collapse onto the same curve. In other words, one is able to obtain the same genetic quality for populations with different chromosome lengths, provided one keeps the same mutation rate \(m/L \) per locus.

Based on these results, the precipitate conclusion would be the following. There is no price to pay by adopting the evolutive procedure of increasing the chromosome length. One can perform this increment by keeping the same chemical copying machinery, i.e. the same error rate \(m/L \), and obtain the same degree of genetic degradation kept under control. The advantage is a larger information storage capacity. Why, then, do real chromosome lengths seem to have already reached a limiting size?

The story is incomplete. The rest is described in the following section. Definitive conclusions appear in the last section.

2. The scaling

Figure 1 with chromosome lengths of \(L = 32, 64, 128 \) and 512 is incomplete. By including a larger length of \(L = 1024 \), one gets figure 2.

Unlike the collapsed curves of figure 1, now repeated at the left-handed side of figure 2, the larger chromosome length of \(L = 1024 \) shows a runaway from the wild genotype \((N = 0) \) towards the random situation \(\langle N \rangle \approx L/2 \). Beyond this length, the wild genotype is extinct and the whole population distribution is no longer glued to it. The same behaviour is also observed in many other similar systems, in particular the pioneering Eigen model [4]. Beyond a certain limit for the chromosome length \(L \), the scaling properties denoted by the collapse of many curves into a single distribution containing the wild genotype no longer hold. The precipitate conclusion at the end of last section is now in check. We need a more detailed analysis, which follows.

Let us consider different values for the parameter \(m \), the average number of mutations performed at birth. Figure 3 shows the average genetic load \(\langle N \rangle/L \) as a function of \(m \), for various chromosome lengths \(L = 32, 64, 128 \ldots 2048 \) (black circles) and 4096 (black squares). In the limit of large enough chromosome lengths, this figure seems to display a first order phase transition. The average genetic load vanishes if the number \(m \) of mutations remains below a certain threshold \(m_c \) (here, \(m_c \approx 3 \)). This would be the survival phase, where the population genetic quality is not compromised by too many mutations at birth. On the other hand, for
After the runaway observed in figure 2 for $L = 1024$, the distribution curves for larger and larger values of L (not shown in figure 2 for clarity) would be sharper and sharper, all of them centred near $N/L \approx 0.5$. Therefore, within negligible (sub-linear) fluctuations, all individuals share the same phenotype $N \approx L/2$ and become selectively alike to each other. No selection, no evolution.

Technically, by putting such a sharp distribution $H(N)$ in equation (1) one gets the solution $x = 1$ in the limit of large values of L (or N). However, this solution is nonsense, because it implies eternal survival for all individuals; again no evolution. In reality, for such sharp distributions far from $N/L = 0$, the population would undergo a genetic meltdown, and would be eventually extinct. This fate is artificially avoided by our assumption of a constant size population, which no longer holds. We could correct this failure and observe real extinction, simply by imposing some maximum value x_{max} near to but strictly smaller than unity, if the solution x obtained from equation (1) surpasses this limit. However, this procedure is unnecessary because we are interested only in the survival which holds on the left-hand side of figure 3, where always one gets $x < 1$ from equation (1).

On the survival side of figure 3 or 4, the plots correspond to straight lines starting at the origin, whose slopes decrease proportionally to $1/L$. Thus, by keeping the same ratio m/L for increasing values of L, one always gets the same value for $\langle N \rangle/L$ read on the vertical axis along a plateau, provided m does not surpass the transition point m_c (i.e. provided L is not too large). In reality, not only the average $\langle N \rangle/L$, but the whole distribution of N/L does not depend on L, as in figure 1.
Is this phase transition genuine? In order to answer this question, we need to consider the so-called thermodynamic limit (the limit of larger and larger populations) and ask whether the (would-be) phase transition remains. We could, for instance, repeat figure 1 for a larger population, say $P = 32 \, 000$. We do not need to show such a plot, because it is the same as figure 1. The only difference is that $L = 1024$ now fits into the same collapsed curve as shown in figure 1, instead of following the runaway observed in figure 2. In fact, the runaway does not occur if the population size is large enough. Figure 4 corresponds to a larger population of $P = 32 \, 000$, to be compared with the former figure 3: now, the apparent transition point is located at $m_c \approx 5$, larger than the former value.

Figure 5 shows again the average genetic load $\langle N \rangle / L$ as a function of m, for increasing population sizes. For clarity, only data corresponding to the two largest chromosome lengths $L = 2048$ (squares) and 4096 (lines) are shown. The larger the population size, the larger the transition point m_c. As an estimate for m_c, we have taken the crossings of the $L = 4096$ curves with the horizontal line $\langle N \rangle / L = 0.25$ (just half-way from the complete order $N = L/2$). The resulting values of m_c obtained from these crossings are plotted against P in figure 6. They follow a power law, and this behaviour indicates that m_c grows indefinitely for larger and larger populations. In this limit, only the survival phase exists, no runaway.

The apparent survival–extinction transition shown in plots like figure 3 is not a genuine phase transition, it disappears for large enough population sizes. Therefore, the precipitate conclusion we stated at the end of the last section is not completely wrong. Indeed, in order to keep the same genetic quality of the population for increasing chromosome lengths, one should
Figure 4. For a larger population of $P = 32,000$, the apparent transition occurs at a larger threshold $m_c \approx 5$, as compared to figure 3.

Figure 5. The (would-be) transition occurs at different locations for different population sizes $P = 1000, 3200, 10,000, 32,000$ and 100,000 from left to right. Squares correspond to $L = 2048$, and lines to $L = 4096$.
Figure 6. The transition point increases for increasing population sizes, following a power law. The straight line $m_c \propto P^{0.44}$ fits very well the data. It means that one needs a minimum population size $P_{\text{min}} \propto L^{1/0.44} = L^{2.3}$ in order to sustain the population survival, where L is the chromosome length.

keep the same rate of errors when each chromosome is copied for reproduction, i.e. the same probability of error per locus, m/L. However, this is not a cost-free procedure. The population size should also be large enough to avoid the runaway shown in figure 2. The minimum required population size depends on the largest chromosome length one wants to reach.

The current paper deals with asexual populations. In another paper [1], we have shown that this conclusion does not hold for sexually reproducing populations. In this case, the survival–extinction transition is a genuine one; the transition point m_c does not depend on the population size. When the chromosome length is increased, one should keep the same absolute number m of mutations performed at birth, not the ratio m/L. Therefore, with sex, the price to pay for increasing the chromosome length is higher: one should improve the performance of the chemical DNA copying machinery, in order to keep the same number of errors, in spite of a larger length to be copied.

We close this section with a technical comment on the simulations. The evolutionary time one needs to reach genetic stabilization is huge, especially near the jumps shown in plots like figures 3, 4 or 5. Starting from an initial population with only $N = 0$ individuals, one needs 10^8 or more time steps in order to reach the runaway shown in figure 2. In order to control the statistics, we simulated a total of 10 independent populations, taking averages at the end, with error bars. For this reason, our computer program runs for a long time in an Athlon/Opteron 250 processor, up to ≈ 10 days for each point shown on the rightmost curve on figure 5.

3. Conclusions

Based on a very simple model which nevertheless contains both fundamental ingredients which drive Darwin’s evolution, namely random mutations performed at birth and natural selection,
we have discovered some chromosome length scaling properties. The overall result is very simple to state: in order to increase the chromosome length \(L \), one should keep the same mutation rate \(m/L \), where \(m \) is the average number of point mutations performed at birth. This result is also in complete agreement with human intuition, since the number \(m \) of errors found in a chromosome copy should be proportional to its length \(L \), when performed by the same chemical DNA copying machinery.

However, the issue is not so simple, not so intuitive. The validity of this linear behaviour depends on the population size. It should be large enough to avoid the genetic meltdown characterized by the runaway shown in figure 2, which means extinction. We have also shown that a minimum population size is required to avoid this, which increases for larger and larger chromosome lengths as

\[
P_{\text{min}} \propto L^\alpha
\]

where our numerical estimate for the exponent is \(\alpha \approx 2.3 \).

By including sex with crossings and recombination, another completely different scaling holds, independent of the population size: \(m \) instead of \(m/L \) should be preserved when a \(L \)-scaling transformation is performed [1, 2].

References

[1] de Oliveira P M C et al 2006 Does sex induce a phase transition?, in preparation
[2] Stauffer D, Moss de Oliveira S, de Oliveira P M C and Sá Martins J S 2006 Biology, Sociology, Geology by Computational Physicists (The Netherlands: Elsevier)
[3] Parisi G 1999 Physica A 263 557
[4] Eigen M 1971 Naturwissenschaften 58 465
 Eigen M, McCaskill J and Schuster P 1989 Adv. Chem. Phys. 75 149