Crystal structure of (3E,5E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C_{24}H_{21}F_{6}NO_{3}

Abstract

C_{24}H_{21}F_{6}NO_{3}, monoclinic, P2_{1}/c (no. 14), a = 16.6493(9) Å, b = 15.3005(8) Å, c = 8.8554(5) Å, β = 99.746(6)°, V = 2223.3(2) Å³, Z = 4, R_{gt}(F) = 0.0444, wR_{ref}(F^2) = 0.1094, T = 100 K.

Source of material

N-methyl-4-piperidone (0.3 mL, 3.0 mmol) and 3-(trifluoromethyl)-4-methoxybenzaldehyde (1.08 g, 5.0 mmol) were dissolved in 10 mL acetic acid. Then dry hydrogen chloride gas was followed continuously into the solution for 45 min. After gas insertion, the reaction system was stirred at room temperature for seven days. The reaction was stopped, the precipitate was filtered from the reaction system, then it was dissolved in distilled water and adjusted to a neutral pH with saturated aqueous Na_{2}CO_{3} so- lution. The precipitate was filtered from the system and dissolved with dichloromethane. The organic phase was washed successively with deionized water and brine, dried over anhydrous sodium sulfate and condensed under vacuum. The crude product was purified by silica-gel column chromatography (petroleum ether: ethyl acetate = 10:1, v/v). Crystals were obtained under ambient conditions via solvent evaporation in the mixed solvents of dichloromethane and methanol (1:1, v/v) and drying under vacuo at 333 K for 3 h.

Experimental details

The H atoms were placed in idealized positions and treated as riding on their parent atoms, with d(C–H) = 0.96 Å (methyl), U_{iso}(H) = 1.5U_{eq}(C), and d(C–H) = 0.97 Å.
(methylene), $U_{	ext{iso}}(H) = 1.2U_{eq}(C)$, and $d(C-H) = 0.93$ Å (aromatic), $U_{	ext{iso}}(H) = 1.2U_{eq}(C)$.

Comment

During inflammatory neurodegenerative diseases in central nervous system (CNS), the resident microglia become activated and polarized to a pro-inflammatory M1 phenotype [4], which can produce pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) [5-7]. These pro-inflammatory cytokines disrupt blood-brain barrier (BBB) by activating the nuclear factor kappa B (NF-kB) signaling pathway [8]. In addition, activated microglia can produce reactive oxygen species (ROS), which may indirectly induce neuroinflammation by activating NF-kB [9]. Therefore, developing an NF-kB inhibitor with anti-neuroinflammatory activity and low toxicity may be a therapeutic option for the treatment of inflammatory CNS neurodegenerative diseases [10].

Curcumin has anti-inflammatory, anti-tumor, anti-oxidation and other activities. But its clinical application is limited because of its low stability, poor bioavailability and false positive. Structural modification based on curcumin was carried out and different curcumin analogues have been reported. Therein, (3E, 5E)-3,5-bis(arylene)-4-piperidones (BAPs) was a very distinguished class because they could inhibit tumor growth by anti-inflammatory and inhibiting NF-kB dependent signaling pathways [11]. Some symmetric and dissymmetric BAPs had been designed and synthesized as anti-tumor and anti-inflammatory agents [12-18]. However, BAPs have rarely been developed as anti-neuroinflammatory drugs. In our recent study, a series of new BAPs were designed and synthesized through Claisen-Schmidt condensation reactions.

Single-crystal structure analysis reveals that the title compound contains one drug molecule in the asymmetric unit (cf. the figure). Bond lengths and angles are all in the expected ranges [20]. The arylidene moieties on both sides of central piperidone adopt the E stereochemistry [19]. The dihedral angles between the two-fluorobenzylidens and the central piperidine ring are 36.05(2)$^\circ$ and 26.86(3)$^\circ$, respectively. In the title compound, the peripheral heteroatoms (such as F, N, O, S) can act as hydrogen bonding acceptors for bioactive molecules with the aim of creating more potent antitumor activities and anti-inflammatory activity [21].

Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
References

1. Rigaku. CrysAlisPRO. Rigaku Oxford Diffraction Ltd. Yarnton, Oxfordshire, England, 2017.
2. Sheldrick G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122.
3. Sheldrick G. M. Crystal structure reﬁnement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.
4. Streit W. J., Xue Q. S., Tischer J., Bechmann I. Microglial pathology. Acta Neuropathol. Commun. 2014, 2, 142.
5. Kima N., Martinsezb C. C., Janga D. S., Leec J. K., Oh M. S. Anti-neuroinflammatory effect of tresses celosia on lipopolysaccharide-stimulated microglial cells and mouse. Biomed. Pharmacother. 2019, 111, 1359–1366.
6. Zhang J. Q., Zhang Q., Xu Y. R., Li H. X., Zhao F. L., Wang C. M., Liu Z., Liu P., Liu Y. N., Meng Q. G., Zhao F. Synthesis and in vitro anti-inﬂammatory activity of C20 epimeric ocotillol-type triterpenes and protopanaxadiol. Planta Med. 2019, 85, 292–301.
7. Wang C. M., Liu J., Deng J. Q., Wang J. Z., Weng W. Z., Chu H. X., Meng Q. G. Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins. J. Ginseng Res. 2020, 44, 14–23.
8. Liu J., Xu Y. R., Yang J. J., Wang W. Z., Zhang J. Q., Zhang R. M., Meng Q. G. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J. Ginseng Res. 2017, 41, 373–378.
9. Yang Y., Salayandia V. M., Thompson J. F., Yang L. Y., Estrada E. Y., Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J. Neuroinflammation 2015, 12, 26.
10. Zeng K. W., Wang S., Dong X., Jiang Y., Tu P. F. Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, INK/p38 MAPKs and Jak2/Stat3 signaling pathways. Phytomedicine 2014, 21, 298–306.
11. Sun Y., Gao Z. F., Yan W. B., Yao B. R., Xin W. Y., Wang C. H., Meng Q. G., Hou G. G. Discovery of novel NF-κB inhibitor based on scaffold hopping: 1,4,5,6,7,8-hexahydropyrido[4,3-d]pyrimidine. Eur. J. Med. Chem. 2020, 198, 112366.
12. Yao B. R., Sun Y., Chen S. L., Suo H. D., Zhang Y. L., Wei H., Wang C. H., Zhao F., Cong W., Xin W. Y., Hou G. G. Dissymmetric pyridyl-substituted 3,5-bis(aryliden)-4-piperidones as anti-hepatoma agents by inhibiting NF-κB pathway activation. Eur. J. Med. Chem. 2019, 167, 187–199.
13. Li N., Xin W. Y., Yao B. R., Wang C. H., Cong W., Zhao F., Li H. J., Hou Y., Meng Q. G., Hou G. G. Novel disymmetric 3,5-bis(aryliden)-4-piperidones as potential antitumor agents with biological evaluation in vitro and in vivo. Eur. J. Med. Chem. 2018, 147, 21–33.
14. Su C. M., Hou G. G., Wang C. H., Zhang H. Q., Yang C. C., Liu M., Hou Y. Potential multifunctional agents with anti-hepatoma and anti-inflammation properties by inhibiting NF-κB activation. J. Enzyme Inhib. Med. Chem. 2019, 34, 1287–1297.
15. Bai X. Y., Meng Q. G., Hou G. G., Hou Y. Crystal structure and anti-inflammatory activity of (3E,5E)-1-((4-bromophenyl)sulfonyl)-3-(pyridin-4-ylmethylene)-5-(2-(trifluoromethyl)benzylidene)piperidin-4-one, C24H18BrF3N2O3 S. Z. Kristallogr. NCS 2020, 235, 407–409.
16. Sun Y., Liu Y. K., Li J. D., Meng Q. G., Hou G. G. Crystal structure and anti-inflammation activity of (3E,5E)-3-(2-fluorobenzylidene)-1-((4-fluorophenyl)sulfonyl)-5-(pyridin-3-ylmethylene)piperidin-4-one, C25H18F2N2O3 S. Z. Kristallogr. NCS 2020, 235, 377–379.
17. Zhou Y. Q., Hou G. G., Meng Q. G., Hou Y. Crystal structure and anti-inflammation activity of (3E,5E)-1-((4-chlorophenyl)sulfonyl)-3-(pyridin-4-ylmethylene)-5-(2-(trifluoromethyl)benzylidene)piperidin-4-one, C24H18ClF3N2O3 S. Z. Kristallogr. NCS 2020, 235, 411–413.
18. Yang Q. W., Wang N., Zhang J., Chen G., Xu H., Meng Q. G., Du Y., Yang X., Fan H. Y. In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y12 receptor. Phytomedicine 2019, 64, 152899.
19. Nesterov V. N. 3,5-Bis(4-methoxybenzylidene)-1-methyl-4-piperidone and 3,5-bis(4-methoxybenzylidene)-1-methyl-4-oxopiperidinium chloride: potential biophotonic materials. Acta Crystallogr. 2004, C60, o806–o809.
20. Yao B. R., Li N., Wang C. H., Hou G. G., Meng Q. G., Yan K. Novel asymmetric 3,5-bis(arylidenepiperidin-4-one derivatives: synthesis, crystal structures and cytotoxicity. Acta Crystallogr. 2018, C74, 659–665.
21. Li N., Bai X. Y., Zhang L. S., Hou Y. Synthesis, crystal structures and anti-inflammation activity of four 3,5-bis(aryliden)-N-benzenesulfonyl-4-piperidone derivatives. Acta Crystallogr. 2018, C74, 1171–1179.