Yb-Doped BaCeO$_3$ and Its Composite Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells

Xueyue Jiang, Fufang Wu * and Hongtao Wang *

School of Chemical and Material Engineering, Fuyang Normal College, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang 236037, China; jiangxueyue@126.com
* Correspondence: wff03609344@126.com (F.W.); hwang@fync.edu.cn (H.W.); Tel.: +86-558-2596249 (H.W.); Fax: +86-558-2596703 (H.W.)

Received: 25 January 2019; Accepted: 27 February 2019; Published: 4 March 2019

Abstract: BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ was prepared via the sol-gel method using zirconium nitrate, ytterbium trioxide, cerium nitrate and barium acetate as raw materials. Subsequently, it reacted with the binary NaCl–KCl salt to obtain BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl–KCl composite electrolyte. The structure, morphology, conductivity and fuel cell performance of the obtained samples were investigated. Scanning electron microscope (SEM) images showed that BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ and NaCl–KCl combined with each other to form a homogeneous 3-D reticulated structure. The highest power density and conductivity of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl–KCl was 393 mW cm$^{-2}$ and 3.0 \times 10$^{-1}$ S cm$^{-1}$ at 700 $^\circ$C, respectively.

Keywords: defects; composite; electrolytes; hydrogen; fuel cell; conductivity

1. Introduction

Fuel cells have many merits, such as diversity of fuel options, being environmentally friendly and having high energy efficiency [1–8]. BaCeO$_3$ and SrCeO$_3$-based perovskite oxides have excellent protonic conductivities under hydrogen- or water-containing atmosphere at 400–1000 $^\circ$C [9–15]. The oxygen vacancies appear when Ce$^{4+}$ is substituted with trivalent metal cations [16]. Owing to the concentrations of oxygen vacancies and point defect pairs, two opposing factors, the optimum doping level of BaCeO$_3$ and SrCeO$_3$-based electrolytes is usually 10% [17]. Among these doped metal cations, Y$^3+$ and Yb$^{3+}$ doped BaCeO$_3$ or SrCeO$_3$ have relatively high conductivities [17,18]. The synthetic methods of BaCeO$_3$ and SrCeO$_3$-based electrolytes are solid-state reactions, citrate-nitrate combustions, microemulsions and sol-gel methods [19,20]. The solid-state reaction method requires a high temperature (1550–1700 $^\circ$C) and the particle size of the product is larger. By comparison, the sol-gel method can mix raw materials at the nanometre level. Moreover, the sintering temperature can be reduced to 200–300 $^\circ$C.

Intermediate temperature solid oxide fuel cells have many advantages, such as good selectivity, durability and low cost [21–24]. The excellent protonic conduction of BaCeO$_3$-based electrolytes is mainly reflected at high temperatures (700–1000 $^\circ$C). Also, the conductivities of BaCeO$_3$-based electrolytes are relatively low at intermediate temperatures (400–700 $^\circ$C). In applying BaCeO$_3$-based electrolytes to intermediate temperature solid oxide fuel cells, electrolyte membranes and composite electrolytes have attracted intensive attention in recent years [25–32]. Park et al. reported that the conductivities of composite BaZr$_{0.85}$Y$_{0.15}$O$_{3-\delta}$-Nd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ electrolyte are higher than that of single BaZr$_{0.85}$Y$_{0.15}$O$_{3-\delta}$ above 600 $^\circ$C [28]. Huang et al. found the conductivities of BaCe$_{0.7}$Zr$_{0.3}$Y$_{0.2}$O$_{3-\delta}$-Li$_2$CO$_3$-Na$_2$CO$_3$ composite electrolyte >0.1 S cm$^{-1}$ at 600 $^\circ$C [32]. Our previous studies indicated that SrCeO$_3$-based oxides-inorganic salt composite electrolytes have good intermediate temperature electrochemical properties [33,34]. Usually, BaCeO$_3$-based electrolytes
have higher conductivities than SrCeO$_3$-based ones. To date, there are only a few reports on composite electrolytes of BaCeO$_3$-based ceramic/carbonate [32]. BaCeO$_3$-based electrolytes/chloride composite electrolytes have not been developed and investigated thoroughly.

In this study, BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ was prepared via the sol-gel method and the composite electrolyte of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl-KCl was also synthesized. The morphology, physical chemistry change, and the structure of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ were studied using SEM, Thermogravimetric Analysis and Differential Scanning Calorimetry (TGA-DSC) and X-ray diffractometer (XRD). The intermediate temperature electrochemical properties of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ and BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl-KCl were also investigated.

2. Materials and Methods

BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ was prepared via the sol-gel method using zirconium nitrate, ytterbium trioxide, cerium nitrate and barium acetate as the raw materials. The stoichiometric metal ion salts (Ba$^{2+}$:Ce$^{4+}$:Yb$^{3+}$ = 10:9:1) were dissolved in deionized water. Citric acid was added (three times as much as the metal ion salts). The pH of the above solution was adjusted to 8.0 with ammonia and heated at 90 °C for 6 h until gelatinous. The xerogel was obtained at 130 °C and heated for the ashing treatment [35–37]. The calcination of the resultant ash was carried out at 1250 °C for 6 h until gelatinous. The xerogel was obtained at 130 °C and heated for the ashing treatment [35–37]. The calcination of the resultant ash was carried out at 1250 °C and heated for the ashing treatment [35–37]. The calcination of the resultant ash was carried out at 1250 °C and heated for the ashing treatment [35–37]. The calcination of the resultant ash was carried out at 1250 °C and heated for the ashing treatment [35–37].

A 1:1 mole ratio of NaCl to KCl was heated at 700 °C to form the molten salt [38]. The weight ratio of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl–KCl = 80:20 was mixed and ground. Then, the mixing powders were sintered at 750 °C for 2 h to obtain BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl–KCl.

Thermogravimetric Analysis and Differential Scanning Calorimetry (TGA-DSC, Universal V 3.7A, TA Instruments, New Castle, DE, USA) were conducted before and after the ashing treatment of the BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ precursor. The temperature ranged between 25 °C and 1100 °C with a heating rate of 15 °C·min$^{-1}$. The structures of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ (1250 °C, 1550 °C) and BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl–KCl were determined by X-ray diffractometer (XRD, X’pert Pro MPD, Holland’s company, Amsterdam, Netherlands). From the X-ray spectrogram, the average crystallite size (D_{XRD}) can be calculated from:

$$D_{XRD} = 0.89\lambda/b\cos \theta$$

where λ is the X-ray wavelength of Cu-Kα radiation ($\lambda = 0.15405$ nm), b is the corrected half-width of the diffraction peak and θ is the diffraction angle (°) [35]. The external and cross-sectional surfaces of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ (1550 °C) and BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl–KCl were imaged using a scanning electron microscope (SEM, S-4700, Hitachi, Tokyo, Japan).

For conductivity measurements, BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ (1550 °C) and BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl–KCl pellets were processed into wafers (diameter = 16 mm, thickness = 1.0 mm). The electrodes (area = 0.50 cm2) were comprised of 20 wt% Pd and 80 wt% Ag and the wires were pure Ag. The conductivities were investigated utilizing an electrochemical analyzer over the frequency range from 1 Hz to 100 KHz in the air at 400–700 °C as well as with the oxygen partial pressures (p_{O_2}) from 1×10^{-20} to 1 atm at 700 °C [8]. The electrochemical impedance spectroscopy (EIS) of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ (1550 °C) and BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl–KCl were studied under open circuit conditions. Finally, H_2/O_2 fuel cells were fabricated and tested.

3. Results and Discussion

TGA-DSC plots for the BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ precursor were measured before and after the ashing treatment. In Figure 1a, the DSC curve has a sharp exothermic peak between 260 °C and 300 °C accompanied by 45% weight loss, mainly attributed to the decomposition of citric acid and ammonium salt. The weight loss is gentle, declining from 510 °C to 580 °C, which is attributed to the decomposition of the nitrate. As seen in Figure 1b, there was a decline in weight loss around 550 °C, which is ascribed
to the incomplete decomposition of the nitrate [39,40]. There was almost no weight loss after 1070 °C indicating that the BaCeO3 phase had begun to form.

![Graph 1](image1.png)

Figure 1. Thermogravimetric Analysis and Differential Scanning Calorimetry (TGA-DSC) plots for the BaCe0.9Yb0.1O3−α precursor before (a) and after (b) ashing treatment.

The XRD patterns of BaCe0.9Yb0.1O3−α (1250 °C, 1550 °C) and BaCe0.9Yb0.1O3−α•NaCl–KCl are shown in Figure 2. The XRD patterns show that the sintered BaCe0.9Yb0.1O3−α (1250 °C, 1550 °C) samples are all orthorhombic BaCeO3 phases. The average crystallite sizes (D\textsubscript{XRD}) of BaCe0.9Yb0.1O3−α (1250 °C, 1550 °C) samples are 45.9573 nm and 50.2176 nm, respectively. Combined with the results of Figure 1, the first sintering temperature of 1250 °C is suitable. There are some small additional peaks in the BaCe0.9Yb0.1O3−α•NaCl–KCl XRD spectrum, suggesting that NaCl–KCl inorganic salts exist as crystalline phases in the composite electrolyte [35].

The SEM external and cross-sectional surface images of BaCe0.9Yb0.1O3−α calcined at 1550 °C for 5 h (Figure 3a,b) and BaCe0.9Yb0.1O3−α•NaCl–KCl sintered at 750 °C for 2 h (Figure 3c,d) are displayed in Figure 3. As seen in Figure 3a,b, the degree of BaCe0.9Yb0.1O3−α particle agglomeration is good. However, the fractured surface image of BaCe0.9Yb0.1O3−α shows that there are still some holes after being calcined at 1550 °C for 5 h, as shown in Figure 3b. It has been proved by our experiments that they are closed holes. In Figure 3c,d, it is clearly visible that the particles of BaCe0.9Yb0.1O3−α...
are aggregated into clumps after the addition of NaCl–KCl inorganic salts sintered at 750 °C for 2 h. The regular polyhedron zones correspond to the BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α. Contrastingly, the amorphous areas point to the NaCl–KCl inorganic salt phase. Combined with the results of Figure 2, NaCl–KCl inorganic salts exist as both crystalline and amorphous phases [31,32].

Figure 2. X-ray diffractometer (XRD) patterns of BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α (1250 °C, 1550 °C) and BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α-NaCl–KCl.

Figure 3. Scanning electron microscope (SEM) photos of BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α calcined at 1550 °C for 5 h (a,b) external and cross-sectional surfaces, and BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α-NaCl–KCl sintered at 750 °C for 2 h (c,d) external and cross-sectional surfaces.

Figure 4 shows the log (σT)$^{-1}$ plots of BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α (1550 °C) and BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α-NaCl–KCl in the air from 400 °C to 700 °C. As seen in Figure 4, the conductivities of composite BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α-NaCl–KCl electrolytes are higher than that of the single BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α. The conductivities of BaCe$_{0.9}$Yb$_{0.1}$O$_3$–α-NaCl–KCl vary from 2.0 × 10$^{-4}$ S·cm$^{-1}$ to 3.0 × 10$^{-1}$ S·cm$^{-1}$
in the range of 400–700 °C which is equivalent to BaZr_{0.85}Y_{0.15}O_{3−α}-Li_2CO_3-K_2CO_3 in the air at 650 °C [31]. The single BaCe_{0.9}Yb_{0.1}O_{3−α} electrolyte shows a linear Arrhenius curve in the air at 400–700 °C, whereas the conductivities of BaZr_{0.85}Y_{0.15}O_{3−α}-Li_2CO_3-K_2CO_3 start to increase dramatically above 600 °C. The results indicate that the molten NaCl–KCl salt provides more ion transport channels at high temperatures [31,32,41].

Figure 5 shows the conductivities of BaCe_{0.9}Yb_{0.1}O_{3−α} (1550 °C) and BaCe_{0.9}Yb_{0.1}O_{3−α}-NaCl–KCl as a function of pO_2 from 1×10^{-20} to 1 atm at 700 °C. The log $σ$ ~ log pO_2 plot is usually used to estimate the ionic and electronic conduction of an electrolyte. Pikalova et al. reported that BaCe_{0.89}Gd_{0.1}Cu_{0.01}O_{3−α} has a predominantly proton-conducting character at intermediate and low pO_2 values [9]. As shown in Figure 5, the conductivity is a horizontal line parallel to the X-axis, which indicates that the samples are almost pure ionic conductors. This may be ascribed to the molten salts acting as fast conduction paths for ionic charge carriers, which corresponds with related reports on composite electrolytes [25–32].

![Figure 4](image1.png)

Figure 4. The log ($σ$)-1000 T−1 plots of BaCe_{0.9}Yb_{0.1}O_{3−α} (1550 °C) and BaCe_{0.9}Yb_{0.1}O_{3−α}-NaCl–KCl in the air from 400 °C to 700 °C.

![Figure 5](image2.png)

Figure 5. The conductivities of BaCe_{0.9}Yb_{0.1}O_{3−α} (1550 °C) and BaCe_{0.9}Yb_{0.1}O_{3−α}-NaCl–KCl as a function of pO_2 at 700 °C.

Figure 6 presents the electrochemical impedance spectroscopy (EIS) of BaCe_{0.9}Yb_{0.1}O_{3−α} (1550 °C) and BaCe_{0.9}Yb_{0.1}O_{3−α}-NaCl–KCl under open-circuit conditions at 700 °C. Usually, the AC impedance curve includes a semicircle and a radial at high (1 KHz–100 KHz) and low (1 Hz–1 KHz) frequencies.
which correspond to the ohmic and total resistances, respectively. Additionally, the difference between them from the intercept with the real axis at high frequencies to the juncture point of the semicircle and radial, represents polarization resistance \((R_p) \) [18]. The semicircle gradually disappears as the temperature increases [42,43]. In Figure 6, the polarization resistance \((R_p) \) for BaCe\(_{0.9}\)Yb\(_{0.1}\)O\(_{3-\alpha}\) \((1550 ^\circ C)\) and BaCe\(_{0.9}\)Yb\(_{0.1}\)O\(_{3-\alpha}\)-NaCl–KCl are 1.72 \(\Omega \) cm\(^2\) and 0.31 \(\Omega \) cm\(^2\), respectively. This result indicates that the molten salt cannot only generate fast transport ways but also enhance its long-range mobility, which leads to lower resistance and higher performance.

![Figure 6](image)

Figure 6. The electrochemical impedance spectroscopy (EIS) of BaCe\(_{0.9}\)Yb\(_{0.1}\)O\(_{3-\alpha}\) \((1550 ^\circ C)\) and BaCe\(_{0.9}\)Yb\(_{0.1}\)O\(_{3-\alpha}\)-NaCl–KCl under open-circuit conditions at 700 \(^\circ C \).

Figure 7 shows the \(I-V-P \) curves of BaCe\(_{0.9}\)Yb\(_{0.1}\)O\(_{3-\alpha}\) \((1550 ^\circ C)\) and BaCe\(_{0.9}\)Yb\(_{0.1}\)O\(_{3-\alpha}\)-NaCl–KCl at 700 \(^\circ C \). The following reactions occur in the cathode and anode compartments:

\[
\text{cathode reaction: } 2\text{H}^+ + \text{O}_2 + 4e^- = \text{H}_2\text{O} + \text{O}^{2-} \quad (2)
\]

and

\[
\text{anode reaction: } 2\text{H}_2 + \text{O}^{2-} = 2\text{H}^+ + \text{H}_2\text{O} + 4e^- . \quad (3)
\]

The \(\text{H}_2/\text{O}_2 \) fuel cell using BaCe\(_{0.9}\)Yb\(_{0.1}\)O\(_{3-\alpha}\)-NaCl–KCl \((\text{thickness} = 1.0 \text{ mm})\) as electrolyte achieves the highest power density \((P_h) \) of 393 mW cm\(^{-2}\) when the voltage is 0.64 V at 700 \(^\circ C \). The SrCe\(_{0.6}\)Zr\(_{0.3}\)Lu\(_{0.1}\)O\(_{3-\alpha}\) only has 34.8 mW cm\(^{-2}\) under the same conditions. The \(P_h \) value of our result is higher than the fuel cell performance of 60 wt\% Ce\(_{0.8}\)Sm\(_{0.2}\)O\(_{1.9}\)-40 wt\% \(\text{(Li/Na)}_2\text{CO}_3 \) \((575 ^\circ C)\) and BaCe\(_{0.7}\)In\(_{0.15}\)Ta\(_{0.05}\)Y\(_{0.05}\)O\(_{3-\alpha}\) \((\text{thickness} = 25 \mu \text{m}, 700 ^\circ C)\), however, lower than 80 wt\% BaCe\(_{0.7}\)Zr\(_{0.1}\)In\(_{0.15}\)Ta\(_{0.05}\)Y\(_{0.05}\)O\(_{3-\alpha}\)-20 wt\% \(\text{(Li/Na)}_2\text{CO}_3 \) \((\text{thickness} = 0.4 \text{ mm}, 600 ^\circ C)\) as shown in Table 1 [18,32,44]. This may be due to the different electrolyte and inorganic salt types and fuel cell construction.

![Figure 7](image)

Figure 7. The \(I-V-P \) curves of BaCe\(_{0.9}\)Yb\(_{0.1}\)O\(_{3-\alpha}\) \((1550 ^\circ C)\) and BaCe\(_{0.9}\)Yb\(_{0.1}\)O\(_{3-\alpha}\)-NaCl–KCl at 700 \(^\circ C \).
Table 1. The highest power densities of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl-KCl and similar electrolytes in the literature.

Electrolytes	Highest Power Densities
BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl-KCl (80: 20)	393 mW·cm$^{-2}$ (thickness = 1.0 mm), 700 °C, in this work
BaCe$_{0.7}$Zr$_{0.3}$Y$_{2}$O$_{3-\alpha}$-(Li/Na)$_2$CO$_3$ (80: 20)	957 mW·cm$^{-2}$ (thickness = 0.4 mm), 600 °C, [32]
Ce$_{0.8}$Sm$_{0.2}$O$_{1.9}$-(Li/Na)$_2$CO$_3$ (60: 40)	240 mW·cm$^{-2}$, 575 °C, [44]
BaCe$_{0.9}$In$_{0.15}$Ta$_{0.05}$O$_{3-\alpha}$	303 mW·cm$^{-2}$ (thickness = 25 µm), 700 °C, [18]

4. Conclusions

In this study, BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ was prepared via the sol-gel method. The first sintering temperature for the BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ precursor was determined using TGA-DSC. XRD and SEM results indicated that NaCl-KCl inorganic salts exist as both crystalline and amorphous phases. The polarization resistances (R_p) for BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$ (1550 °C) and BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl-KCl were 1.72 Ω·cm2 and 0.31 Ω·cm2 under open-circuit conditions at 700 °C, respectively. The highest power density and conductivity of BaCe$_{0.9}$Yb$_{0.1}$O$_{3-\alpha}$-NaCl-KCl were 393 mW·cm$^{-2}$ and 3.0 × 10$^{-1}$ S·cm$^{-1}$ at 700 °C, respectively.

Author Contributions: H.W. and X.J. conceived and designed the experiments; F.W. and X.J. performed the experiments; H.W. and F.W. analyzed the data; X.J. contributed the used materials and analysis tools; H.W. wrote the paper.

Funding: This work was supported by the National Natural Science Foundation (No. 51402052, 21602029) of China, The Natural Science Project of Anhui Province (No. KJK2018A037), Excellent Youth Foundation of Anhui Educational Committee (No. gxyq2018046), Horizontal cooperation project of Fuyang municipal government and Fuyang Normal College (No. XDHI2016019, XDHTXD201704).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lo Faro, M.; Trocino, S.; Zignani, S.C.; Italiano, C.; Vita, A.; Aricò, A.S. Study of a solid oxide fuel cell fed with n-dodecane reformate. Part II: Effect of the reformate composition. Int. J. Hydrog. Energy 2017, 42, 1751–1757.
2. Fragiacomo, P.; De Lorenzo, G.; Corigliano, O. Performance Analysis of an intermediate temperature solid oxide electrolyzer test bench under a CO$_2$-H$_2$O feed stream. Energies 2018, 11, 2276. [CrossRef]
3. Yang, C.; Ren, C.; Yu, L.; Jin, C. High performance intermediate temperature micro-tubular SOFCs with Ba$_{0.9}$Ce$_{0.1}$Fe$_2$Nb$_{1/2}$O$_{3-\alpha}$ as cathode. Int. J. Hydrog. Energy 2013, 38, 15348–15353. [CrossRef]
4. Miyake, M.; Matsumoto, S.; Iwami, M.; Nishimoto, S.; Kameshima, Y. Electrochemical performances of Ni$_{1-x}$Cu$_x$ SDC cermet anodes for intermediate-temperature SOFCs using syngas fuel. Int. J. Hydrog. Energy 2016, 41, 13625–13631. [CrossRef]
5. De Lorenzo, G.; Fragiacomo, P. Electrical and thermal analysis of an intermediate temperature IIR-SOFC system fed by biogas. Energy Sci. Eng. 2018, 6, 60–72. [CrossRef]
6. Milewski, J.; Wołowicz, M.; Lewandowski, J. Comparison of SOE/SOFC system configurations for a peak hydrogen power plant. Int. J. Hydrog. Energy 2017, 42, 3498–3509. [CrossRef]
7. Kim, H.-S.; Bae, H.B.; Jung, W.; Chung, S.-Y. Manipulation of nanoscale intergranular phases for high proton conduction and decomposition tolerance in BaCeO$_3$ polycrystals. Nano Lett. 2018, 18, 1110–1117. [CrossRef] [PubMed]
8. Gong, Z.; Sun, W.; Jin, Z.; Miao, L.; Liu, W. Barium- and strontium-containing anode materials toward ceria-based solid oxide fuel cells with high open circuit voltages. ACS Appl. Energy Mater. 2018, 1, 3521–3528. [CrossRef]
9. Pikalova, E.; Medvedev, D. Effect of anode gas mixture humidification on the electrochemical performance of the BaCeO$_3$-based protonic ceramic fuel cell. Int. J. Hydrog. Energy 2016, 41, 4016–4023. [CrossRef]
10. Bae, S.Y.; Park, J.-Y.; Lim, H.-T. Investigation of electronic transport property and durability of BCY-BZY electrolyte cells using embedded probes. Electrochim. Acta 2017, 236, 399–407. [CrossRef]
11. Sun, H.; Zhang, S.; Li, C.; Rainwater, B.; Liu, Y.; Zhang, L.; Zhang, Y.; Li, C.; Liu, M. Atmospheric plasma-sprayed BaZr0.1Ce0.9Y0.1O3−δ (BZCY) electrolyte membranes for intermediate-temperature solid oxide fuel cells. Ceram. Int. 2016, 42, 19231–19236. [CrossRef]

12. Danilov, N.; Pikalova, E.; Lyagaeva, J.; Antonov, B.; Medvedev, D.; Demin, A.; Tsiakaras, P. Grain and grain boundary transport in BaCe0.5Zr0.3La0.2O3−δ (Ln-Y or lanthanide) electrolytes attractive for protonic ceramic fuel cells application. J. Power Sources 2017, 366, 161–168. [CrossRef]

13. Xiao, J.; Chen, L.; Yuan, H.; Ji, L.; Xiong, C.; Ma, J.; Zhu, X. Fabrication and characterization of BaZr0.1Ce0.7Y0.2O3−δ based anode supported solid oxide fuel cells by tape casting combined with spray coating. Mater. Lett. 2017, 189, 192–195. [CrossRef]

14. Lyagaeva, J.; Vdovin, G.; Hakimova, L.; Medvedev, D.; Demin, A.; Tsiakaras, P. BaCe0.5Zr0.3Y0.2−αYb0.1O3−δ proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 2017, 251, 554–561. [CrossRef]

15. Wang, W.; Medvedev, D.; Shao, Z. Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells. Adv. Funct. Mater. 2018, 1802592. [CrossRef]

16. Minakshi, M.; Nallathamby, K.; Mitchell, D.R.G. Electrochemical characterization of an aqueous lithium rechargeable battery: The effect of CeO2 additions to the MnO2 cathode. J. Alloy Compd. 2009, 479, 87–90. [CrossRef]

17. Sun, L.; Miao, H.; Wang, H. Novel SrCe1−xYbxO3−α (Na/K)Cl composite electrolytes for intermediate temperature solid oxide fuel cells. Solid State Ion. 2017, 311, 41–45. [CrossRef]

18. Zhang, Z.; Chen, L.; Li, Q.; Song, T.; Su, J.; Cai, B.; He, H. High performance In, Ta and Y-doped BaCeO3 electrolyte membrane for proton-conducting solid oxide fuel cells. Solid State Ion. 2018, 323, 25–31. [CrossRef]

19. Wang, H.; Han, Y.; Shi, R.; Sheng, L.; Guan, Q.; Liu, J. BaCe0.9Er0.1O3−α-NaCl-KCl composite as electrolyte for intermediate temperature solid oxide fuel cells. Int. J. Electrochem. Sci. 2019, 14, 755–763. [CrossRef]

20. Guo, Y.; Liu, B.; Yang, Q.; Chen, C.; Wang, W.; Ma, G. Preparation via microemulsion method and proton conduction at intermediate-temperature of BaCe1−xYbxO3−α. Electrochim. Commun. 2009, 11, 153–156. [CrossRef]

21. Vilela, C.; Martins, A.P.C.; Sousa, N.; Silvestre, A.J.D.; Figueiredo, F.M.L.; Freire, C.S.R. Poly(bis[2-(methacryloyloxy)ethyl]phosphate)/bacterial cellulose nanocomposites: Preparation, characterization and application as polymer electrolyte membranes. Appl. Sci. 2018, 8, 1145. [CrossRef]

22. Xia, C.; Qiao, Z.; Feng, C.; Kim, J.; Wang, B.; Zhu, B. Study on zinc oxide-based electrolytes in low-temperature solid oxide fuel cells. Materials 2018, 11, 40. [CrossRef] [PubMed]

23. Fang, X.; Zhu, J.; Lin, Z. Effects of electrode composition and thickness on the mechanical performance of a solid oxide fuel cell. Energies 2018, 11, 1735. [CrossRef]

24. Bernuy-Lopez, C.; Rioja-Monllor, L.; Nakamura, T.; Ricote, S.; O’Hayre, R.; Amezawa, K.; Einarsrud, M.; Grande, T. Effect of cation ordering on the performance and chemical stability of layered double perovskite cathodes. Materials 2018, 11, 196. [CrossRef] [PubMed]

25. Morejudo, S.H.; Zanon, R.; Escolástorico, S.; Yuste-Tirados, I.; Malened-Fjeld, H.; Vestre, P.K.; Coors, W.G.; Martinez, A.; Norby, T.; Serra, J.M.; et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 2016, 353, 563–566. [CrossRef] [PubMed]

26. Duan, C.; Song, B.; Shao, Z.; Wang, Y.; Zhang, M.; Nikodemski, S.; Sanders, M.; Ricote, S.; Almonsoori, A.; O’Hayre, R. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 2015, 349, 1321–1326. [CrossRef] [PubMed]

27. Liu, F.; Dang, J.; Hou, J.; Qian, J.; Zhu, Z.; Wang, Z.; Liu, W. Study on new BaCe0.7In0.3O3−δ-Gd0.1Ce0.9O2−δ composite electrolytes for intermediate-temperature solid oxide fuel cells. J. Alloy Compd. 2015, 639, 252–258. [CrossRef]

28. Park, K.-Y.; Lee, T.-H.; Jo, S.; Yang, J.; Song, S.-I.; Lim, H.-T.; Kim, J.H.; Park, J.-Y. Electrical and physical properties of composite BaZr0.85Y0.15O3−δ-Nd0.1Ce0.9O2−δ electrolytes for intermediate temperature-solid oxide fuel cells. J. Power Sources 2016, 336, 437–446. [CrossRef]

29. Rondao, A.I.B.; Patricio, S.G.; Figueiredo, F.M.L.; Marques, F.M.B. Composite electrolytes for fuel cells: Long-term stability under variable atmosphere. Int. J. Hydrog. Energy 2014, 39, 5460–5469. [CrossRef]

30. Martins, N.C.T.; Rajesh, S.; Marques, F.M.B. Synthesis and electrochemical assessment of Ce0.5Yb0.5O1.25 ceramics and derived composite electrolytes. Mater. Res. Bull. 2015, 70, 449–455. [CrossRef]
31. Park, K.-Y.; Lee, T.-H.; Kim, J.-T.; Lee, N.; Seo, Y.; Song, S.-J.; Park, J.-Y. Highly conductive barium zirconate-based carbonate composite electrolytes for intermediate temperature-protonic ceramic fuel cells. *J. Alloy Compd.* 2014, 585, 103–110. [CrossRef]
32. Hei, Y.; Huang, J.; Wang, C.; Mao, Z. Novel doped barium cerate-carbonate composite electrolyte material for low temperature solid oxide fuel cells. *Int. J. Hydrog. Energy* 2014, 39, 14328–14333. [CrossRef]
33. Zhang, W.; Yuan, M.; Wang, H.; Liu, J. High-performance intermediate temperature fuel cells of new SrCe$_{0.9}$Yb$_{0.1}$O$_{3-\delta}$-inorganic salt composite electrolytes. *J. Alloy Compd.* 2016, 677, 38–41.
34. Shi, R.; Liu, J.; Wang, H.; Wu, F.; Miao, H. Intermediate temperature fuel cell durability of Eu-doped SrCeO$_3$-SrZrO$_3$ solid solution/NaCl-KCl composite electrolyte. *Ceram. Int.* 2017, 43, 16931–16935. [CrossRef]
35. Song, J.; Meng, B.; Tan, X. Stability and electrical conductivity of BaCe$_{0.85}$Tb$_{0.05}$M$_{0.1}$O$_{3-\delta}$ (M = Co, Fe, Y, Zr, Mn) high temperature proton conductors. *Ceram. Int.* 2016, 42, 13278–13284. [CrossRef]
36. Shi, R.; Liu, J.; Wang, H.; Wu, F.; Miao, H.; Cui, Y. Low temperature synthesis of SrCe$_{0.9}$Eu$_{0.1}$O$_{3-\alpha}$ by sol-gel method and SrCe$_{0.9}$Eu$_{0.1}$O$_{3-\alpha}$-NaCl-KCl composite electrolyte for intermediate temperature fuel cells. *Int. J. Electrochem. Sci.* 2017, 12, 11594–11601. [CrossRef]
37. Reddy, G.S.; Bauri, R. Y and In-doped BaCeO$_3$-BaZrO$_3$ solid solutions: Chemically stable and easily sinterable proton conducting oxides. *J. Alloy Compd.* 2016, 688, 1039–1046. [CrossRef]
38. Liu, X.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. *Chem. Soc. Rev.* 2013, 42, 8237–8265. [CrossRef] [PubMed]
39. Matsuda, A.; Oh, S.; Nguyen, V.H.; Daiko, Y.; Kawamura, G.; Muto, H. Anhydrous proton conductivity of KHSO$_4$-H$_3$PW$_{12}$O$_{40}$ composites and the correlation with hydrogen bonding distance under ambient pressure. *Electrochim. Acta* 2011, 56, 9364–9369. [CrossRef]
40. Soo, M.T.; Prastomo, N.; Matsuda, A.; Kawamura, G.; Muto, H.; Noor, A.F.M.; Lockman, Z.; Cheong, K.Y. Elaboration and characterization of sol-gel derived ZrO$_2$ thin films treated with hot water. *Appl. Surf. Sci.* 2012, 258, 5250–5258. [CrossRef]
41. Zhu, B.; Li, S.; Mellander, B.E. Theoretical approach on ceria-based two-phase electrolytes for low temperature (300–600 °C) solid oxide fuel cells. *Electrochem. Commun.* 2008, 10, 302–305. [CrossRef]
42. Presto, S.; Viviani, M. Effect of CuO on microstructure and conductivity of Y-doped BaCeO$_3$. *Solid State Ion.* 2016, 295, 111–116. [CrossRef]
43. Verma, M.L.; Minakshi, M.; Singh, N.K. Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor. *Electrochim. Acta* 2014, 137, 497–503. [CrossRef]
44. Chen, M.; Zhang, H.; Fan, L.; Wang, C.; Zhu, B. Ceria-carbonate composite for low temperature solid oxide fuel cell: Sintering aid and composite effect. *Int. J. Hydrog. Energy* 2014, 39, 12309–12316. [CrossRef]