Local automorphisms of finite dimensional simple Lie algebras

Mauro Costantini
Dipartimento di Matematica “Tullio Levi-Civita”
Torre Archimede - via Trieste 63 - 35121 Padova - Italy
email: costantini@math.unipd.it

Abstract

Let \(g \) be a finite dimensional simple Lie algebra over an algebraically closed field \(K \) of characteristic 0. A linear map \(\varphi : g \to g \) is called a local automorphism if for every \(x \) in \(g \) there is an automorphism \(\varphi_x \) of \(g \) such that \(\varphi(x) = \varphi_x(x) \). We prove that a linear map \(\varphi : g \to g \) is local automorphism if and only if it is an automorphism or an anti-automorphism.

Keywords: Simple Lie algebra, Nilpotent Lie algebra, Automorphism, Local automorphism.

2010 Mathematics Subject Classification: 17A36, 17B20, 17B40.

1 Introduction

Mappings which are close to automorphisms and derivations of algebras have been extensively investigated: in particular, since the 1990s (see [17], [18], [19]), the description of local and 2-local automorphisms (respectively, local and 2-local derivations) of algebras has been deeply studied by many authors.

Given an algebra \(A \) over a field \(k \), a \textit{local automorphism} (respectively, \textit{local derivation}) of \(A \) is a \(k \)-linear map \(\varphi : A \to A \) such that for each \(a \in A \) there exists an automorphism (respectively, a derivation) \(\varphi_a \) of \(A \) such that \(\varphi(a) = \varphi_a(a) \). A map \(\varphi : A \to A \) (not \(k \)-linear in general) is called a \textit{2-local automorphism} (respectively, a \textit{2-local derivation}) if for every \(x, y \in A \), there exists an automorphism (respectively, a derivation) \(\varphi_{x,y} \) of \(A \) such that \(\varphi(x) = \varphi_{x,y}(x) \) and \(\varphi(y) = \varphi_{x,y}(y) \).

In [18] the author proves that the automorphisms and the anti-automorphisms of the associative algebra \(M_n(\mathbb{C}) \) of complex \(n \times n \) matrices exhaust all its local automorphisms. On the other hand,
it is proven in [10] that a certain commutative subalgebra of $M_3(\mathbb{C})$ has a local automorphism which is not an automorphism.

Among other results (see the Introduction of [4] for a detailed historical account), assuming the field k is algebraically closed of characteristic zero, in [1] the authors proved that every 2-local derivation of a finite dimensional semisimple Lie algebra is a derivation; in [2] it is proved that every local derivation of a finite dimensional semisimple Lie algebra is a derivation. As far as automorphisms are concerned, in [9] the authors proved that if g is a finite dimensional simple Lie algebra of type $A_\ell (\ell \geq 1)$, $D_\ell (\ell \geq 4)$, or $E_i (i = 6, 7, 8)$, then every 2-local automorphism of g is an automorphism. This result was extended to any finite dimensional semisimple Lie algebra in [3]. On the other hand, for local automorphisms of simple Lie algebras it is only known that the automorphisms and the anti-automorphisms of the special linear algebra $\mathfrak{sl}(n)$ exhaust all its local automorphisms ([4, Theorem 2.3]).

The main purpose of this paper is to extend this result to any finite dimensional simple Lie algebra: namely we prove that a K-linear endomorphism of a finite dimensional simple Lie algebra g over the algebraically closed field K of characteristic zero is a local automorphism if and only if it is an automorphism or an anti-automorphism of g.

Let G be the connected component of the automorphism group of g: then G is the adjoint simple algebraic group over K with the same Dynkin diagram as g. It is clear that every automorphism of g is a local automorphism: we show that every anti-automorphism of g is a local automorphism too. For this purpose we make use of the Bala-Carter theory for the classification of nilpotent elements in g.

To show that a local automorphism of g is an automorphisms or an anti-automorphisms, we make use of the Tits’ Building $\Delta(G)$ of G (as defined in [22, Chap. 5.3]) and the classification theorem [22, Theorem 5.8] which in particular describes the automorphisms of $\Delta(G)$.

2 Preliminaries

Throughout the paper K is an algebraically closed field of characteristic zero. We denote by \mathbb{R} the reals, by \mathbb{Z} the integers.

Let $A = (a_{ij})$ be a finite indecomposable Cartan matrix of rank n. To A there is associated a root system Φ, a simple Lie algebra g and a simple adjoint algebraic group G over K. We
fix a maximal torus T of G, and a Borel subgroup B containing T: B^- is the Borel subgroup opposite to B, U (respectively U^-) is the unipotent radical of B (respectively of B^-). We denote by \mathfrak{h}, \mathfrak{n}, \mathfrak{n}^- the Lie algebra of T, U, U^- respectively. Then Φ is the set of roots relative to T, and B determines the set of positive roots Φ^+, and the simple roots $\Delta = \{\alpha_1, \ldots, \alpha_n\}$. The real space $E = \mathbb{R}\Phi$ is a Euclidean space, endowed with the scalar product $(\alpha_i, \alpha_j) = d_i a_{ij}$. Here $\{d_1, \ldots, d_n\}$ are relatively prime positive integers such that if D is the diagonal matrix with entries d_1, \ldots, d_n, then DA is symmetric. For $\beta = m_1\alpha_1 + \cdots + m_n\alpha_n$, the height of β is $m_1 + \cdots + m_n$.

For $\alpha, \beta \in \Phi$, we put $\langle \beta, \alpha \rangle = \frac{2(\beta, \alpha)}{\langle \alpha, \alpha \rangle}$.

We denote by W the Weyl group; s_α is the reflection associated to $\alpha \in \Phi$, we write for short s_i for the simple reflection associated to α_i, w_0 is the longest element of W. We put $\Pi = \{1, \ldots, n\}$, ϑ the symmetry (called the opposite involution) of Π induced by $-w_0$ and we fix a Chevalley basis $\{h_i, i \in \Pi; e_\alpha, \alpha \in \Phi\}$ of \mathfrak{g} (see [7, Chap. 4.2]). We put $h_\beta = [e_\beta, e_{-\beta}]$ for $\beta \in \Phi$ (hence $h_i = h_{\alpha_i}$ for $i \in \Pi$).

We use the notation $x_\alpha(\xi)$, for $\alpha \in \Phi$, $\xi \in K$, as in [7], [21]. For $\alpha \in \Phi$ we put $X_\alpha = \{x_\alpha(\xi) \mid \xi \in K\}$, the root-subgroup corresponding to α. We identify W with N/T, where N is the normalizer of T.

We choose the x_α’s so that, for all $\alpha \in \Phi$, $n_\alpha = x_\alpha(1)x_{-\alpha}(-1)x_\alpha(1)$ lies in N and has image the reflection s_α in W. The family $(x_\alpha)_{\alpha \in \Phi}$ is called a realization of Φ in G.

Given an element $w \in W$ we shall denote a representative of w in N by \dot{w}. We can, and shall, take \dot{w} defined over \mathbb{Z}.

For algebraic groups we use the notation in [14], [8]. In particular, for $J \subseteq \Pi$, $\Delta_J = \{\alpha_j \mid j \in J\}$, Φ_J is the corresponding root system, W_J the Weyl group, P_J the standard parabolic subgroup of G, $L_J = T\langle X_\alpha \mid \alpha \in \Phi_J \rangle$ the standard Levi subgroup of P_J. For $w \in W$ we have

$$\dot{w}U^-\dot{w}^{-1} \cap U = \prod_{\alpha > 0} \prod_{\alpha < 0} X_\alpha.$$

If x is an element of \mathfrak{g}, $C_G(x)$ is the centralizer of x in G.

We denote by $GL(\mathfrak{g})$ the group of automorphisms of \mathfrak{g} as a K-vector space. The group $\text{AUT}(\mathfrak{g})$ of automorphisms of \mathfrak{g} as a Lie algebra is completely described in [15, Chap. IX], [13, 16.5].
We denote by $NB(\mathfrak{g})$ the set of the nilradicals of Borel subalgebras of \mathfrak{g}. This is a unique orbit under G: if $n_1 \in NB(\mathfrak{g})$ then, by the Bruhat decompositon in G, there exists a unique $w \in W$ and a unique $u \in \tilde{w}U\tilde{w}^{-1} \cap U$ such that $n_1 = \text{Ad } uw.n$.

3 The main result

We recall that a parabolic subgroup P is called distinguished if $\dim P/R_uP = \dim R_uP/(R_uP)'$. Here R_uP is the unipotent radical of P and $(R_uP)'$ is the derived subgroup of R_uP (see [8, p. 167]). Two parabolic subgroups are said to be opposite if their intersection is a common Levi subgroup (see [5, 14.20]). If P is a parabolic subgroup and L is a Levi subgroup of P, then there exists a unique parabolic subgroup opposite to P containing L. Any two opposite parabolic subgroups of P are conjugate by a unique element of R_uP ([5, Proposition 14.21]).

Lemma 3.1 Let P be a distinguished parabolic subgroup of a semisimple algebraic group R and let P^op be an opposite parabolic subgroup of P. Then P and P^op are conjugate in R.

Proof. It is enough to assume R simple, $P = P_J = \langle B, X_{-\alpha_i} \mid i \in J \rangle$, $P^\text{op} = \langle B^-, X_{\alpha_i} \mid i \in J \rangle$ for a certain $J \subseteq \Pi$. If $w_0 = -1$, then $P^\text{op} = \tilde{w}_0P\tilde{w}_0^{-1}$. We are left with the cases where R is of type A_n, $n \geq 2$, D_n with $n \geq 5$, n odd, E_6. From the tables in [8], p. 174 - 176, one checks that again $P^\text{op} = \tilde{w}_0P\tilde{w}_0^{-1}$, since in each case the diagram of P is invariant under the opposite involution ϑ of the Dynkin diagram. □

Theorem 3.2 The anti-automorphism $-i_{\mathfrak{g}} : \mathfrak{g} \to \mathfrak{g}$, $x \mapsto -x$ is a local automorphism of \mathfrak{g}.

Proof. Let $x \in \mathfrak{g}$. We have to show that there exists $\alpha \in \text{AUT}(\mathfrak{g})$ such that $\alpha(x) = -x$. Let O be the G-orbit of x: it is enough to show that this holds for a certain $y \in O$. In fact, if $x = \text{Ad } g.y$ and $\beta(y) = -y$ for certain $g \in G$, $\beta \in \text{AUT}(\mathfrak{g})$, then $\alpha(x) = -x$, where α is the automorphism of \mathfrak{g} given by $\alpha = (\text{Ad } g)\beta(\text{Ad } g)^{-1}$.

Let $x = s + e$ be the Jordan-Chevalley decomposition of x, i.e. s is semisimple, e is nilpotent, with $[s, e] = 0$. Let $H = C_G(s)$. This is a Levi subgroup of G and, up to conjugacy in G, we may assume that H is the standard Levi subgroup L_J of G. Moreover the centralizer of s in \mathfrak{g} is the Lie algebra l_J of L_J, e lies in l_J, and s lies in the center $Z(l_J) \subseteq \mathfrak{h}$. Let m be a minimal Levi subalgebra of l_J containing e. Let M be the Levi subgroup of H such that $m = \text{Lie}(M)$, and let
Let \(M' \) be the semisimple part of \(M \) and \(m' = \text{Lie}(M') \). Then \(e \) lies in \(m' \) and \(e \) is distinguished in \(m' \). There exists a distinguished parabolic subgroup \(P_{M'} \) of \(M' \) such that \(e \) lies in the dense orbit of \(P_{M'} \) on the Lie algebra \(u_{P_{M'}} \) of its unipotent radical. Up to conjugation by an element of \(H \), we may assume that \(P_{M'} = \langle T_1, X_\alpha, X_{-\alpha}, X_\delta \mid \alpha \in \Psi_1, \delta \in \Psi_2 \rangle \) for \(T_1 \) a certain subtorus of \(T \) and \(\Psi_1, \Psi_2 \) certain disjoint subsets of \(\Phi^+ \).

Now we consider an automomorphism \(\iota \) of \(G \) satisfying
\[
\iota(t) = t^{-1} \quad \text{for every } t \in T \quad , \quad \iota(X_\alpha) = X_{-\alpha} \quad \text{for every } \alpha \in \Phi
\]
[16, proof of Corollary 1.16, p. 189]. Then the differential \(d\iota \) is an automorphism of \(g \) satisfying
\[
d\iota(h) = -h \text{ for every } h \in \mathfrak{h}, \text{ in particular } d\iota(s) = -s.\]
It is enough, by [20, Lemma 2.2.1], to show that \(d\iota(e) \) and \(-e \) are conjugate by an element of \(H \). But \(\iota(P_{M'}) = \langle T_1, X_\alpha, X_{-\alpha}, X_\delta \mid \alpha \in \Psi_1, \delta \in \Psi_2 \rangle \) is opposite to \(P_{M'} \) (since \(P_{M'} \cap \iota(P_{M'}) = \langle T_1, X_\alpha, X_{-\alpha} \mid \alpha \in \Psi_1 \rangle \), a Levi subgroup of \(M' \)). Since a parabolic subgroup has a unique dense orbit on the Lie algebra of its unipotent radical, and clearly \(-e \) lies in the dense orbit of \(P_{M'} \) on \(u_{P_{M'}} \), and \(d\iota(N) \) lies in the dense orbit of \(\iota(P_{M'}) \) on \(d\iota(u_{P_{M'}}) \), it is enough to show that \(P_{M'} \) and \(\iota(P_{M'}) \) are conjugate in \(H \).

From Lemma 3.1 it follows that \(P_{M'} \) and \(\iota(P_{M'}) \) are already conjugate in \(M' \), and we are done.\(\square \)

We denote by \(\text{AUT}^*(g) \) the group of automorphisms of the \(K \)-vector space \(g \) which are either automorphisms or anti-automorphisms of the Lie algebra \(g \). Then \(\text{AUT}^*(g) = \text{AUT}(g) \rtimes \langle -i_g \rangle \).

We observe that if \(\varphi \) is a local automorphism of \(g \), then \(\varphi \) is invertible and its inverse is a local automorphism. It is also clear that the composite of local automorphisms is a local automorphism, therefore the set \(\text{LAut}(g) \) of local automorphisms of \(g \) is a subgroup of \(GL(g) \). By Theorem 3.2 we have

\textbf{Corollary 3.3} Every anti-automorphism of \(g \) is a local automorphism, i.e. \(\text{AUT}^*(g) \leq \text{LAut}(g) \).
\(\square \)

We shall prove that \(\text{LAut}(g) = \text{AUT}^*(g) \).

\textbf{Lemma 3.4} Let \(\varphi \) be in \(\text{LAut}(g) \). Then \(\varphi \) leaves invariant the set \(N \) of nilpotent elements and the set \(S \) of semisimple elements of \(g \).
Proof. Let $x \in \mathfrak{g}$. There exists $\varphi_x \in \text{AUT}(\mathfrak{g})$ such that $\varphi_x(x) = \varphi(x)$. Since automorphisms map nilpotent (respectively, semisimple) elements to nilpotent (respectively, semisimple) elements, it follows that $\varphi(N) \subseteq N$ and $\varphi(S) \subseteq S$. Since φ^{-1} is also a local automorphism, we conclude that $\varphi(N) = N$ and $\varphi(S) = S$. □

A classical theorem of Gerstenhaber [12] states that any vector space consisting of nilpotent $n \times n$ matrices has dimension at most $\frac{1}{2}n(n-1)$, and that any such space attaining this maximal possible dimension is conjugate to the space of upper triangular matrices. In [11] the authors generalized this result to the Lie algebra of any reductive algebraic group over any algebraically closed field, under certain conditions in case the characteristic of the field is 2 or 3. We restate this generalization for our purposes. For short we say that a subspace V of \mathfrak{g} is nilpotent, if V consists of nilpotent elements.

Theorem 3.5 ([11, Theorem 1]) Let V be a nilpotent subspace of a finite dimensional semisimple Lie algebra \mathfrak{g} over K. Then $\dim V \leq \frac{1}{2}(\dim \mathfrak{g} - \text{rk} \mathfrak{g})$ and, if equality holds, V is the nilradical of a Borel subalgebra of \mathfrak{g}.

In particular the nilpotent subspaces of maximal dimension are the maximal nilpotent subalgebras \mathfrak{g}: they constitute the set $\mathcal{N}\mathcal{B}(\mathfrak{g})$ defined in the Preliminaries.

Proposition 3.6 Let φ be in $\text{LAut}(\mathfrak{g})$. Then φ induces a permutation of the set $\mathcal{N}\mathcal{B}(\mathfrak{g})$.

Proof. Let V be any nilpotent subspace of \mathfrak{g}. By Lemma 3.4 $\varphi(V)$ and $\varphi^{-1}(V)$ are nilpotent subspaces of \mathfrak{g}. Therefore φ induces a permutation $V \mapsto \varphi(V)$ of the set of all nilpotent subspaces of \mathfrak{g}. In particular φ induces a permutation of $\mathcal{N}\mathcal{B}(\mathfrak{g})$. □

We introduce the canonical Tits’ Building $\Delta(G)$ associated to G.

Definition 3.7 [22, Chap. 5.3] The building $\Delta(G)$ of G is the set of all parabolic subgroups of G, partially ordered by reverse of inclusion.

The maximal elements of $\Delta(G)$ (called chambers) are the Borel subgroups of G. The set of Borel subgroups of G is in canonical bijection with the set of Lie algebras of Borel subgroups of G (i.e. the Borel subalgebras of \mathfrak{g}, [5, 14.25]), and this set is in canonical bijection with the set
Local automorphisms of simple Lie algebras

By Proposition 3.6, a local automorphism \(\varphi \) of \(g \) induces a permutation of \(\mathcal{NB}(g) \), and therefore a permutation \(\rho_{\varphi} \) of the set of chambers of \(\Delta(G) \). Let \(B_1, B_2 \) be adjacent chambers: this means that the codimension (as algebraic varieties) of \(B_1 \cap B_2 \) in \(B_1 \) (and \(B_2 \)) is 1. Since \(B_1 \cap B_2 \) always contains a maximal torus of \(G \), this is equivalent to the condition that the codimension (as \(k \)-vector spaces) of \(n_1 \cap n_2 \) in \(n_1 \) (and \(n_2 \)) is 1, where \(n_i \) is the nilradical of the Lie algebra of \(B_i \) for \(i = 1, 2 \).

Proposition 3.8 Let \(\varphi \) be in \(\text{LAut}(g) \). Then \(\rho_{\varphi} \) can be (uniquely) extended to an automorphism of \(\Delta(G) \).

Proof. By the previous discussion, this follows from [22, Theorem 3.21, Corollary 3.26]. \(\square \)

We shall still denote by \(\rho_{\varphi} \) the automorphism of \(\Delta(G) \) induced by \(\varphi \).

A symmetry of the Dynkin diagram of \(G \) is a permutation \(\delta \) of the nodes of the diagram such that \(\langle \alpha_{\delta(i)}, \alpha_{\delta(j)} \rangle = \langle \alpha_i, \alpha_j \rangle \) for all \(i, j \in \Pi \) ([15, p. 277]. Note that in [7, p. 200] the definition is different, in order to deal also with fields of characteristic 2 or 3). We denote the group of symmetries of the Dynkin diagram by Diagr.

Definition 3.9 Let \(\delta \) be a symmetry of the Dynkin diagram of \(g \). We denote by \(d_{\delta} \) both the isometry of \(E \) and the graph automorphism of \(g \) defined respectively by

\[
d_{\delta}(\alpha_i) = \alpha_{\delta(i)} \quad \text{for every } i \in \Pi
\]

\[
d_{\delta}(e_{\alpha_i}) = e_{\alpha_{\delta(i)}}, \quad d_{\delta}(e_{-\alpha_i}) = e_{-\alpha_{\delta(i)}}, \quad d_{\delta}(h_{\alpha_i}) = h_{\alpha_{\delta(i)}} \quad \text{for every } i \in \Pi
\]

Proposition 3.10 Let \(\varphi = c \iota_g \), for a certain \(c \in K^* \). Then \(\varphi \in \text{LAut}(g) \) if and only if \(c = \pm 1 \).

Proof. We only need to show that if \(\varphi = c \iota_g \) is a local automorphism, then \(c = \pm 1 \). By [7, Proposition 6.4.2] we have

\[
\text{Ad } n_{\alpha} h_{\beta} = h_{\alpha_{\delta}(\beta)}
\]

for every \(\alpha, \beta \in \Phi \), so that

\[
\text{Ad } \hat{w} h_{\beta} = h_{\delta(\beta)}
\]

for every \(w \in W, \beta \in \Phi \). Now fix any \(\alpha \in \Phi, h \in \mathfrak{h} \). There exists \(g \in G, \delta \in \text{Diagr} \) such that

\[
c h_{\alpha} = \varphi(h_{\alpha}) = d_{\delta} \text{Ad } g h_{\alpha}
\]
Hence $\text{Ad } g.h.\alpha = cd^{-1}\delta h.\alpha \in \mathfrak{h}$, which means that the elements $h.\alpha$ and $cd^{-1}\delta h.\alpha$ of \mathfrak{h} are conjugate under G, and therefore they are conjugate under W, i.e. there exists $w \in W$ such that $\text{Ad } g.h.\alpha = \text{Ad } w.h.\alpha = h.w(\alpha)$. Hence $cd^{-1}\delta h.\alpha = h.w(\alpha)$, $c h.\alpha = d\delta h.w(\alpha) = h.\delta w(\alpha) = h.\beta$, for $\beta = \delta w(\alpha) \in \Phi$. It follows that $\beta = \pm \alpha$, i.e. $c = \pm 1$. □

A semilinear isomorphism between two Lie algebras is a bijective semilinear mapping of the underlying vector spaces which respects Lie multiplication.

Definition 3.11 Let $f \in \text{Aut } K$. We denote by a_f both the field automorphism of G (as an abstract group) and the f-semilinear automorphism of \mathfrak{g} defined respectively by

$$a_f(x.\alpha(k)) = x.\alpha(f(k)) \quad \text{for every } \alpha \in \Phi, k \in K$$

$$a_f(k e.\alpha) = f(k) e.\alpha \quad \text{for every } \alpha \in \Phi, k \in K$$

Remark 3.12 Note that we also have $a_f(k h.\alpha) = f(k) h.\alpha$ for every $\alpha \in \Phi$, $k \in K$, since $h.\alpha = [e.\alpha, e.-\alpha]$ for every $\alpha \in \Phi$. Moreover, for every $g \in G$, $x \in \mathfrak{g}$ we have $a_f(\text{Ad } g.x) = \text{Ad } (a_f(g)).a_f(x)$.

Proposition 3.13 Let $\varphi \in \text{GL}(\mathfrak{g})$ and $f \in \text{Aut } K$ be such that $\varphi(X) = a_f(X)$ for every $X \in \mathcal{N}\mathcal{B}(\mathfrak{g})$. Then $f = i_K$ and there is $c \in K^*$ such that $\varphi = c i_\mathfrak{g}$.

Proof. We have $a_f(n) = n$ and $a_f(n^-) = n^-$. It follows that

$$a_f(\text{Ad } x.\alpha(k)\dot{w}.n) = \text{Ad } x.\alpha(f(k))\dot{w}.n \quad a_f(\text{Ad } x.\alpha(k)\dot{w}.n^-) = \text{Ad } x.\alpha(f(k))\dot{w}.n^-$$

for every $\alpha \in \Phi$, $k \in K$, since we fixed the representatives \dot{w} over \mathbb{Z}, and therefore $a_f(\dot{w}) = \dot{w}$ for every $w \in W$.

We shall repeatedly use the fact that if $n_1, n_2 \in \mathcal{N}\mathcal{B}(\mathfrak{g})$ are such that $n_1 \cap n_2 = \langle v \rangle$ with $v \neq 0$, then

$$\langle \varphi(v) \rangle = \varphi(n_1) \cap \varphi(n_2) = a_f(n_1) \cap a_f(n_2) = \langle a_f(v) \rangle$$

For every $i \in \Pi$ we have

$$\text{Ad } \dot{s}_i.n^- \cap n = \langle e.\alpha_i \rangle \quad \text{Ad } \dot{s}_i.n \cap n^- = \langle e.-\alpha_i \rangle$$
hence
\[\langle \varphi(e_{\alpha_i}) \rangle = \langle af(e_{\alpha_i}) \rangle = \langle e_{\alpha_i} \rangle, \quad \langle \varphi(e_{-\alpha_i}) \rangle = \langle af(e_{-\alpha_i}) \rangle = \langle e_{-\alpha_i} \rangle \]

Let \(\alpha \in \Phi \). There exists \(w \in W, i \in \Pi \) such that \(w(\alpha_i) = \alpha \). Then
\[\langle e_{\alpha_i} \rangle = \text{Ad } \hat{w} \cdot \langle e_{\alpha_i} \rangle = \text{Ad } \hat{w} \cdot \langle e_{\alpha_i} \rangle \cap \text{Ad } \hat{w} \cdot n \]
so that
\[\langle \varphi(e_{\alpha_i}) \rangle = \langle af(e_{\alpha_i}) \rangle = \langle e_{\alpha_i} \rangle \]

Hence, for every \(\alpha \in \Phi \) there exists \(c_\alpha \in K^* \) such that \(\varphi(e_{\alpha_i}) = c_\alpha e_{\alpha_i} \).

By [7, p. 64], for every \(\alpha \in \Phi, k \in K \) we have
\[\text{Ad } x_\alpha(k)e_{\alpha_i} = e_{\alpha_i}, \quad \text{Ad } x_\alpha(k)e_{-\alpha} = e_{-\alpha} + kh_\alpha - k^2e_{\alpha_i} \]
Let us fix \(i \) in \(\Pi \). From \(\text{Ad } \hat{s}_i \cdot n \cap n^- = \langle e_{-\alpha_i} \rangle \) we get
\[\text{Ad } x_{\alpha_i}(k) \cdot \text{Ad } \hat{s}_i \cdot n \cap \text{Ad } x_{\alpha_i}(k) \cdot n^- = \text{Ad } x_{\alpha_i}(k) \cdot e_{-\alpha_i} = \langle e_{-\alpha_i} + kh_\alpha - k^2e_{\alpha_i} \rangle \]
so that
\[\langle \varphi(e_{-\alpha_i} + kh_\alpha - k^2e_{\alpha_i}) \rangle = \langle af(e_{-\alpha_i} + kh_\alpha - k^2e_{\alpha_i}) \rangle = \langle e_{-\alpha_i} + f(k)h_\alpha - f(k)^2e_{\alpha_i} \rangle \]
(3.1)
In particular, for \(k = 1 \) we get
\[\langle \varphi(e_{-\alpha_i} + h_\alpha - e_{\alpha_i}) \rangle = \langle e_{-\alpha_i} + h_\alpha - e_{\alpha_i} \rangle \]
hence \(\varphi(h_{\alpha_i}) = d_i h_{\alpha_i} + x_i e_{\alpha_i} + y_i e_{-\alpha_i} \) for certain \(d_i, x_i, y_i \in K, i = 1, \ldots, n \). From (3.1), for every \(k \in K \) there exits \(p_k \in K^* \) such that
\[c_{-\alpha_i} e_{-\alpha_i} + k(d_i h_{\alpha_i} + x_i e_{\alpha_i} + y_i e_{-\alpha_i}) - k^2c_{\alpha_i} e_{\alpha_i} = p_k(e_{-\alpha_i} + f(k)h_\alpha - f(k)^2e_{\alpha_i}) \]
(3.2)
hence \(k d_i = p_k f(k) \) for every \(k \in K \) and in particular, for \(k = 1, d_i = p_1 \). But then \(p_k = f(k)^{-1} p_1 \) for every \(k \in K^* \), so that \(p_k = p_1 \) for every \(k \) in the prime field \(\mathbb{Q} \) of \(K, k \neq 0 \). From (3.2) we obtain \(c_{-\alpha_i} e_{-\alpha_i} + ky_i e_{-\alpha_i} = p_1 e_{-\alpha_i} \) and \(kx_i e_{\alpha_i} - k^2c_{\alpha_i} e_{\alpha_i} = -p_1 k^2 e_{\alpha_i} \) for every \(k \in \mathbb{Q}^* \), so that \(y_i = 0, c_{-\alpha_i} = p_1, x_i = 0 \) and \(c_{\alpha_i} = p_1 \). We have proved that
\[\varphi(h_{\alpha_i}) = c_{\alpha_i} h_{\alpha_i}, c_{-\alpha_i} = c_{\alpha_i}, \quad \varphi(e_{\alpha_i}) = c_{\alpha_i} e_{\alpha_i}, c_{-\alpha_i} = c_{\alpha_i} \]
Moreover, from (3.2) it follows that
\[c_\alpha e_{-\alpha_i} + k c_\alpha h_{\alpha_i} - k^2 c_\alpha e_{\alpha_i} = p_k (e_{-\alpha_i} + f(k) h_{\alpha_i} - f(k)^2 e_{\alpha_i}) \]
for every \(k \in K \), hence \(p_k = c_\alpha \) and \(f(k) = k \) for every \(k \in K \), i.e. \(f = i_K \).

So far we have proved that \(f = i_K \), and that for every \(i = 1, \ldots, n \) we have \(\varphi(e_{\alpha_i}) = c_\alpha e_{\alpha_i} \), \(\varphi(e_{-\alpha_i}) = c_\alpha e_{-\alpha_i} \) and \(\varphi(h_i) = c_\alpha h_i \). Our aim is to show that \(c_\alpha = c_\beta \) for every \(\alpha, \beta \in \Phi \). We prove that \(c_\alpha = c_\beta \) for every \(\alpha, \beta \in \Phi^+ \). With a similar procedure it will follow that \(c_\alpha = c_\beta \) for every \(\alpha, \beta \in \Phi^- \), so that \(c_\alpha = c_\beta \) for every \(\alpha, \beta \in \Phi \) by (3.3).

By [7, p. 64], for linearly independent roots \(\alpha, \beta \) we have
\[\text{Ad } x(t).e_\beta = \sum_{r=0}^{q} M_{\alpha,\beta,r} t^r e_{r\alpha+\beta} \]
where \(M_{\alpha,\beta,0} = 1 \), \(M_{\alpha,\beta,r} = \pm \left(\frac{p+r}{r} \right) \) for \(r \geq 1 \), \(-p\alpha + \beta, \ldots, \beta, \ldots, q\alpha + \beta \) is the \(\alpha \)-chain through \(\beta \) with \(p \) and \(q \) non negative integers. In particular, for \(t = 1 \) we get
\[\text{(3.4)} \quad \text{Ad } x(1).e_\beta = \sum_{r=0}^{q} M_{\alpha,\beta,r} e_{r\alpha+\beta} \]

We begin by showing that \(c_{\alpha_i} = c_{\alpha_j} \) for every \(i, j \in \Pi \). Assume \(\alpha_i + \alpha_j \in \Phi \). Then
\[\text{Ad } x_{\alpha_i}(1).e_{\alpha_j} = \sum_{r=0}^{q} M_{\alpha_i,\alpha_j,r} e_{r\alpha_i+\alpha_j} \]
with \(q \geq 1 \). From \(\text{Ad } \dot{s}_j.n^- \cap n = \langle e_{\alpha_j} \rangle \) we get
\[\langle \text{Ad } x_{\alpha_i}(1).e_{\alpha_j} \rangle = \text{Ad } x_{\alpha_i}(1) \text{Ad } \dot{s}_j.n^- \cap \text{Ad } x_{\alpha_i}(1).n \]
so that
\[\langle \varphi(\text{Ad } x_{\alpha_i}(1).e_{\alpha_j}) \rangle = \langle a_f(\text{Ad } x_{\alpha_i}(1).e_{\alpha_j}) \rangle = \langle \text{Ad } x_{\alpha_i}(1).e_{\alpha_j} \rangle \]

There exists \(c \in K^* \) such that
\[\varphi(\sum_{r=0}^{q} M_{\alpha_i,\alpha_j,r} e_{r\alpha_i+\alpha_j}) = c \left(\sum_{r=0}^{q} M_{\alpha_i,\alpha_j,r} e_{r\alpha_i+\alpha_j} \right) \]
Since \(M_{\alpha_i,\alpha_j,r} \neq 0 \) for every \(r = 0, \ldots, q \), we get
\[c_{r\alpha_i+\alpha_j} = c \]
for every \(r = 0, \ldots, q \), and in particular \(c_{\alpha_j} = c, c_{\alpha_i + \alpha_j} = c \), so that \(c_{\alpha_j} = c_{\alpha_i + \alpha_j} = c \). Similarly, by considering \(\text{Ad} \, x_{\alpha_j} \cdot e_{\alpha_i} \), we obtain \(c_{\alpha_i} = c_{\alpha_j + \alpha_i} \); hence \(c_{\alpha_i} = c_{\alpha_j} = c \). Since the Dynkin diagram is connected, we get \(c_{\alpha_i} = c_{\alpha_j} = c \) for every \(i, j \in \Pi \) (incidentally, the previous argument shows that \(c_\alpha = c_\beta = c \) for positive roots \(\alpha, \beta \) of height at most 2).

Assume that \(\beta \) is a positive root of height \(m \) with \(m \geq 2 \). Then we may write \(\beta = \gamma + \alpha_i \), for a certain \(\gamma \in \Phi^+ \) (of height \(m - 1 \)) and a certain \(i \in \Pi \). Then

\[
\text{Ad} \, x_\gamma \cdot e_{\alpha_i} = \sum_{r=0}^{q} M_{\gamma, \alpha_i, r} \cdot e_{r\gamma + \alpha_i}
\]

with \(q \geq 1 \). From \(\text{Ad} \, s_i \cdot \mathfrak{n}^- \cap \mathfrak{n} = \langle e_{\alpha_i} \rangle \) we get

\[
\langle \text{Ad} \, x_\gamma \cdot e_{\alpha_i} \rangle = \langle \text{Ad} \, x_\gamma \cdot \text{Ad} \, s_i \cdot \mathfrak{n}^- \cap \text{Ad} \, x_\gamma \cdot \mathfrak{n} \rangle
\]

so that

\[
\langle \varphi(\text{Ad} \, x_\gamma \cdot e_{\alpha_i}) \rangle = \langle a_f(\text{Ad} \, x_\gamma \cdot e_{\alpha_i}) \rangle = \langle \text{Ad} \, x_\gamma \cdot e_{\alpha_i} \rangle
\]

There exists \(d \in K^* \) such that

\[
\varphi \left(\sum_{r=0}^{q} M_{\gamma, \alpha_i, r} \cdot e_{r\gamma + \alpha_i} \right) = d \left(\sum_{r=0}^{q} M_{\gamma, \alpha_i, r} \cdot e_{r\gamma + \alpha_i} \right)
\]

Since \(M_{\gamma, \alpha_i, r} \neq 0 \) for every \(r = 0, \ldots, q \), we get

\[
c_{r\gamma + \alpha_i} = d
\]

for every \(r = 0, \ldots, q \), and in particular \(c_{\alpha_i} = d, c_\beta = c_{\gamma + \alpha_i} = d \), so that \(c_\beta = c_{\alpha_i} = c \). We have therefore proved that \(c_\alpha = c \) for every \(\alpha \in \Phi^+ \). Similarly one can prove that \(c_\alpha = c' \) for every \(\alpha \in \Phi^- \) for a certain \(c' \in K^* \). Since by (3.3) we have \(c_{-\alpha_i} = c_{\alpha_i} \) we get \(c' = c \), i.e. \(c_\alpha = c \) for every \(\alpha \in \Phi \). But we also have \(\varphi(h_i) = c \, h_i \) for every \(i \in \Pi \), we conclude that \(\varphi = c \, i_g \). \(\square \)

Theorem 3.14 Let \(\mathfrak{g} \) be a finite dimensional simple Lie algebra over the algebraically closed field \(K \) of characteristic zero. Then a linear map \(\varphi : \mathfrak{g} \to \mathfrak{g} \) is local automorphism if and only if it is an automorphism or an anti-automorphism, i.e. \(\text{LAut}(\mathfrak{g}) = \text{AUT}^*(\mathfrak{g}) \).

Proof. The case when \(\mathfrak{g} \) is of type \(A_n, n \geq 1 \), is dealt with in [4]. For completeness, here we give a proof also for this case. By Corollary 3.3 we have \(\text{AUT}^*(\mathfrak{g}) \leq \text{LAut}(\mathfrak{g}) \). Let \(\varphi \) be a local
automorphism of \mathfrak{g}. We show that there exists an automorphism β of \mathfrak{g} and $c \in K^*$ such that $\beta^{-1}\varphi = c i_{\mathfrak{g}}$.

Assume first that \mathfrak{g} has rank 1, i.e. $\mathfrak{g} = \mathfrak{sl}(2)$. Then the result follows from the main theorem in [6] (see Remark on page 45). So assume $\text{rk } \mathfrak{g} \geq 2$. By Proposition 3.8, φ induces an automorphism ρ_φ of the building $\Delta(G)$ of G. By the structure theorem on isomorphisms of buildings ([22, Theorem 5.8]), there exists an automorphism α of G (as an algebraic group) and a field automorphism a_f of G such that $\rho_\varphi(P) = \alpha a_f(P)$ for every parabolic subgroup P of G. It follows that, for $\beta = d\alpha$, the differential of α, we get
\[
\beta^{-1}\varphi(X) = a_f(X)
\]
for every X in $\mathcal{N}\mathcal{B}(\mathfrak{g})$. By Proposition 3.13, $\beta^{-1}\varphi = c i_{\mathfrak{g}}$ for a certain $c \in K^*$.

Finally, from Proposition 3.10, we get $c = \pm 1$, and $\varphi = \pm \beta \in \text{AUT}^*(\mathfrak{g})$. □

Remark 3.15 From the structure of the automorphism group of \mathfrak{g}, it follows that any $\varphi \in \text{LAut}(\mathfrak{g})$ is of the form $\varphi = \pm d_\delta(\text{Ad } g)$ for a unique $g \in G$ and a unique graph automorphism d_δ.

References

[1] S. Ayupov, K. Kudaybergenov, I. Rakhimov, *2-local derivations on finite-dimensional Lie algebras*, Linear Algebra Appl. 474, 1–11 (2015).

[2] S. Ayupov, K. Kudaybergenov, *Local derivations on finite dimensional Lie algebras*, Linear Algebra Appl. 493, 381–398 (2016).

[3] S. Ayupov, K. Kudaybergenov, *2-local automorphisms on finite-dimensional Lie algebras*, Linear Algebra Appl. 507, 121–131 (2016).

[4] S. Ayupov, K. Kudaybergenov, *Local automorphisms on finite-dimensional Lie and Leibniz algebras*, preprint arXiv:1803.03142v2.

[5] A. Borel, *Linear Algebraic Groups*, Second enlarged edition, Springer-Verlag, New York (1991).

[6] P. Botta, S. Pierce, W. Watkins, *Linear transformations that preserve the nilpotent matrices*, Pacific J. Math. 104(1), 39–46 (1983)
[7] R. W. CARTER, *Simple Groups of Lie Type*, John Wiley (1989).

[8] R. W. CARTER, *Finite Groups of Lie Type*, John Wiley (1985).

[9] Z. CHEN, D. WANG, *2-Local automorphisms of finite-dimensional simple Lie algebras*, Linear Algebra Appl. 486, 335–344 (2015).

[10] R. CRIST, *Local Automorphisms*, Proc. Amer. Math. Soc. 128, 1409–1414 (2000).

[11] J. DRAISMA, H. KRAFT, J. KUTTLER, *Nilpotent subspaces of maximal dimension in semi-simple Lie algebras*, Compos. Math. 142(2), 464–476 (2006).

[12] M. GERSTENHABER, *On nilalgebras and linear varieties of nilpotent matrices, I*, Amer. J. Math. 80, 614–622 (1958).

[13] J.E. HUMPHREYS, *Introduction to Lie algebras and representation theory*, Third printing, Graduate Texts in Mathematics, No. 9, Springer-Verlag, New York-Heidelberg (1980).

[14] J.E. HUMPHREYS, *Linear Algebraic Groups*, Third printing, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg (1987).

[15] N. JACOBSON, *Lie Algebras*, Republication of the 1962 original, Dover Publications, Inc., New York (1979).

[16] J.C. JANTZEN, *Representations of algebraic groups*, Pure and Applied Mathematics 131, Academic Press, Inc., Boston, MA (1987).

[17] R.V. KADISON, *Local derivations*, J. Algebra 130, 494–509 (1990).

[18] D.R. LARSON, A.R. SOUROUR, *Local Derivations and Local Automorphisms of B(H)*, In: “Operator theory: operator algebras and applications, Part 2” (Durham, NH, 1988), Proc. Sympos. Pure Math. 51, 187–194 (1990).

[19] P. ŠEMRL, *Local automorphisms and derivations on B(H)*, Proc. Amer. Math. Soc. 125, 2677–2680 (1997).

[20] A. SINGH, M. THAKUR, *Reality properties of conjugacy classes in algebraic groups*, Israel J. Math. 165, 1–27 (2008).
[21] T.A. Springer, *Linear Algebraic Groups*, Second Edition, Progress in Mathematics 9, Birkhäuser (1998).

[22] J. Tits, *Buildings of spherical type and finite BN-pairs*, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York (1974).