Small-scale integrated farming systems can abate continental-scale nutrient leakage

Gidon Eshel
Bard College, Annandale-on-Hudson, New York, United States of America
* geshel@gmail.com

Abstract

Beef is the most resource intensive of all commonly used food items. Disproportionate synthetic fertilizer use during beef production propels a vigorous one-way factory-to-ocean nutrient flux, which alternative agriculture models strive to rectify by enhancing in-farm biogeochemical cycling. Livestock, especially cattle, are central to these models, which advocates describe as the context most likely to overcome beef’s environmental liabilities. Yet the dietary potential of such models is currently poorly known. Here, I thus ask whether nitrogen-sparing agriculture (NSA) can offer a viable alternative to the current US food system. Focusing on the most common eutrophication-causing element, N, I devise a specific model of mixed-use NSA comprising numerous small farms producing human plant-based food and forage, the latter feeding a core intensive beef operation that forgoes synthetic fertilizer and relies only on locally produced manure and N fixers. Assuming the model is deployed throughout the high-quality, precipitation-rich US cropland (delimiting approximately 100 million ha, less than half of today’s agricultural land use) and neglecting potential macroeconomic obstacles to wide deployment, I find that NSA could produce a diverse, high-quality nationwide diet distinctly better than today’s mean US diet. The model also permits 70%–80% of today’s beef consumption, raises today’s protein delivery by 5%–40%, and averts approximately 60% of today’s fertilizer use and approximately 10% of today’s total greenhouse gas emissions. As defined here, NSA is thus potentially a viable, scalable environmentally superior alternative to the current US food system, but only when combined with the commitment to substantially enhance our reliance on plant food.

Introduction

Beef is the most resource intensive of all commonly used foods [1–6]. Compared with poultry [5], beef requires 7, 70, 22, and 10 times as much high-quality cropland, total land, irrigation water, and fertilizer, respectively, while emitting 11 times the greenhouse gases per gram of protein. Correspondingly, beef production dominates total US resource use for food production [3,5]. Consuming less beef can thus potentially mitigate climate change and environmental degradation [7–14].

While widely held, this view is not universal [15–25]. When contested, it is most often on the grounds that while the above findings fairly characterize hyperintensive industrial
agriculture, more sustainable agricultural models that currently contribute very little to total production can deliver far less resource-intensive beef [1,14,26].

Most proposed routes to achieving such putative less resource-intensive beef envision small to medium mixed-use farms, in which cattle are a cornerstone element on account of promoting local recycling of nutrients and thus “soil building” [27,28]. Because on timescales up to a decade the mineral component of soil is approximately fixed, this rather vague idea addresses organic components of soil and thus biogeochemical cycling [29–33]. Indeed, alternative agricultural models are most often promoted on the grounds that they can combat eutrophication and anthropogenic climate change by reducing nutrient leaching and enhancing soil carbon sequestration, respectively [34]. While these goals are often perceived as independent, and soil amendments typically address one or the other [35] (e.g., synthetic fertilizer or biochar for promoting yield or C sequestration, respectively), eutrophication and sequestration are closely interlinked. First, C sequestration rates partly depend on productivity and aboveground litter flux, which rise with rising nutrient availability. Second, while broader than the oceanic Redfield ratio, soil C:N:P:K ratios still reflect the characteristics of their organic inputs, which vary minimally under industrial agriculture. This depresses and narrows agricultural C:N ratios relative to natural ones [36–41], suggesting that biogeochemically preferable proposed alternatives to industrial agriculture stand to both enhance C sequestration by cropland and reduce nutrient leakage and eutrophication.

Soil organic carbon and nitrogen are thus interlinked, and nitrogen—which strongly impacts productivity—also partly controls sequestration in natural and managed environments [28,42]. That is one of the reasons synthetic nitrogenous fertilizer is the most ubiquitous agricultural soil amendment and the prime driver of agricultural eutrophication, the elimination of which is a foundational principle of the suite of promoted practices collectively described as nitrogen-sparing agriculture (NSA) [43,44].

Here, I do not endorse specific agricultural models promoted for potentially minimizing nitrogen imbalances or enhancing carbon sequestration. Rather, I consider a more basic question: Assuming NSA is economically viable (which is beyond the current scope but must be independently shown), can it produce enough nutritious food for 0.3–0.4 billion Americans while lowering food-related resource use? Below, I begin answering this question by quantifying the food output and environmental burdens of a putative rigorously nitrogen-sparing alternative to industrial agriculture, and try to imagine the role it may play in a reconfigured US food and agricultural system [45].

The basic building block of the alternative system is a small mixed-use [42,46] NSA farm whose nitrogen budget is semi-closed. Each such “atom” farm comprises 3 parts (Fig 1). At its core is a small to medium intensive cattle operation (here I only consider beef, but dairy is also possible). Around this cattle core, the farm’s available high-quality rainfed cropland comprises 2 subunits. One produces vegetal human food (I use “vegetal” as a shorthand for plant-based food items for human consumption, dominated by grains, fruits, vegetables, and nuts). The other subunit produces served cattle forage (hay, silage, greenchop, and haylage).

The areal extents (“acreage”) of each unit farm are unchanged, 1 and approximately 0.43 ha of vegetal and forage production, respectively (Eq S16 and section B in S1 Text), conserving today’s approximately 30% of cropland used for feed production. But partitioning of these approximately 1.43 ha to various purposes within each farm can vary in time so as to optimize nutrient dynamics. This may mean, e.g., allowing temporary post-harvest cattle grazing on either of the 2 crop-based subunits, exploiting such marginal resources as minor hay regrowth or aboveground residues, while replenishing nutrient stocks via direct manure deposition. It can also mean deliberate alternating of a given plot of land between vegetal and fodder crops.
so as to optimize the role of nitrogen fixers. (But this is made challenging by distinct required bed preparations, compounded by no- or low-till dictates [47].)

Key to successfully deploying the envisioned NSA farms is efficient collection of manure, the only cropland nitrogen source beyond local deposition and fixation. Ensuring this efficiency is the reason the cattle operation I consider here is intensive, relying on served forage rather than grazing, yet this requires on-farm silage silos or pits and hay storage barns, mowers, tedders, balers, and front loaders for hay, and mixers/feeders for feeding. Implementing the envisioned NSA farm thus depends on nontrivial capital investment, which highlights the crucial role of policy in a successful widespread transition to NSA. This is not addressed here.

The intensive core cattle operation, whose areal extent is negligible relative to those of the vegetal and forage subunits, interconnects the farm components biogeochemically. I devise a novel mathematical model of the basic farm unit (introduced in detail in sections A and B in S1 Text), and use it (with unique sets of considered crops as described in section B in S1 Text) to calculate the food production output and needed environmental resource input of 250 different randomized (Monte Carlo) implementations of this basic mixed farm, assuming 3 forage qualities. This formalism accounts for geographical and seasonal variability, as well as local preferences and policies. The different assumed forage qualities account for variable farming
know-how, especially as pertaining to optimal crop rotations, as well as variable geographical suitability for forage production. From the simulated food outputs and required resource inputs of these single farm unit implementations, I obtain per hectare input and output statistics of the unit farm for the 3 assumed forage qualities that are expected to characterize on average widespread deployment of the NSA model.

Going beyond the individual farm requires spatial upscaling of these results [48]. The geographical element of this—choosing the candidate area in which NSA farms can be reasonably expected to take hold over time—is straightforward: Because the envisioned agriculture is quite labor- and skill-intensive, it is unlikely to succeed with low yields. I thus focus exclusively on high-quality, precipitation-rich US cropland by summing US Department of Agriculture (USDA) “cropland used for crops” [49] in all contiguous US (“lower 48”) states excluding all Southern Plains, Mountains, and Pacific Seaboard states. This is a conservative estimate of suitable area, most notably because it excludes California and the lush Pacific Northwest west of the Cascades. Favoring nonetheless quantitative conservatism over a possibly inflated estimate of NSA’s potential, this choice delimits approximately 100 million ha, less than half of today’s cropland. This is the area I assume can house the modeled NSA farm.

The economic and broader societal dimensions of upscaling the single NSA farm results are far more challenging [50,51]. If embarked on cavalierly or abruptly, the transition from the current state to the full envisioned NSA system may well lead to supply, demand, and price shocks, as well as dietary and culinary ones, that most will deem intolerable. Avoiding those shocks and rendering the transition successful thus poses important social science challenges. While these challenges are outside of the current geophysical scope, it is my hope that social scientists will address them in future contributions.

With these caveats, I next derive the national-level nutritional and environmental outcomes of a reconfigured US food and agricultural system [45] with the NSA model system deployed on all high-quality US cropland with adequate precipitation for rainfed production, the previously introduced approximately 10^8 ha. Dividing this high-quality cropland area by the approximately 1.43 ha of the individual farm yields the number of farms it can support. Since the input and output of individual farms is solved for, the total number of farms permitted on the available cropland straightforwardly yields an estimate of the total national food produced and resources required by the new national production model. It is an upper bound estimate, because this scenario is idealized: In reality, deploying the unit NSA farm nationally requires more than simply replicating it everywhere, as discussed briefly earlier, and is likely to be less efficient, delivering less food while requiring more resources. On the other hand, if used wisely, such societal tools as thoughtful legislation and supportive economic and agrarian policies may yield economies of scale that will enhance efficiency and limit the difference between the upper bound output I derive here and the actually realized output.

These limitations notwithstanding, the total food output yields the resultant overall “NSA diet,” the beef plus plant output of the NSA model deployed over the 105 million ha of lush US cropland divided by 330 million Americans, i.e., producing no exports, which deviates from the US’s status today as a key food and feed exporter. While this is a limitation of the results, the elevated food output of the NSA-based system (reported in the following section) means that it is possible to implement this model, feed the entire domestic population, and have an exported remainder.

The current effort complements an earlier estimate [14] of the amount of “sustainable” beef the US can produce using rangeland alone (but no intensive feed cultivation), as both quantify expected consumption levels under more environmentally desirable production models. But the 2 efforts differ markedly in 2 key ways. First, while earlier we focused on low-productivity western rangelands whose food production potential is limited to beef, here I focus on
high-quality US croplands in eastern and midwestern US states that can be used for any food crop, or deliver over 20-fold more fodder per hectare than arid rangelands [49]. Second, while earlier we considered western rangeland used for grazing, with modest changes relative to today, here I envision a completely novel model—distributed, nitrogen-sparing, co-dependent intensive production of beef and vegetal food in the eastern US.

Results and discussion
Fig 2 presents the mean annual output of human food from the modeled farm. To put these output measures in perspective, let’s compare them to the corresponding US means. The 2017 Census of Agriculture (Table 9 in [52]) estimates that the US has about 364 million ha of total cropland of any kind, of which 260 million is harvested. Over recent years, this enterprise has been producing [53] about 3,800–4,200 kcal and 110–125 g of protein per person per day. Ignoring export–import imbalance, whose impact on the following calculation is smaller than its claimed precision, even considering only harvested land, these values correspond to mean deliveries of about 1.8–1.9 Gcal and 51–58 kg of protein per hectare per year, or—for easy comparison with Fig 2—2.5–2.8 Gcal and 73–83 kg of protein per 1.43 hectare per year. These numbers represent 70%–75% of the caloric and 50%–60% of the protein outputs Fig 2 reports. The considered NSA is thus more, not less, productive than current US agriculture as a whole, even when ignoring altogether the use of non-harvested land (primarily fallow cropland and pastureland, definitely not unimportant resources).

Scaling the single farm results (Fig 2) nationally (with the aforementioned caveats), Fig 3 presents the key nutritional (Fig 3A, 3B and 3E) and environmental (Fig 3C and 3D) outcomes of a national deployment of the NSA. Fig 3A and 3B show the daily per capita beef and protein delivery by the NSA diet. For comparison, the 2019–2020 daily per capita beef intake in the

![Fig 2. Annual protein, total food mass, and dietary energy delivered by one approximately 1.43-ha unit farm. The plant and beef contributions to annual protein (a), total food mass (b), and dietary energy (c) are shown in green (bottom) and red (top), respectively. The whiskers, calculated over the 3 forage qualities and 250 Monte Carlo realizations, span ±1 standard deviation of the total, the plants plus beef sum (the full bar heights). The dietary energy unit in (c) is gigacalories (1 Gcal = 10^9 kcal). Numerical values are given in S1 Data.](https://doi.org/10.1371/journal.pbio.3001264.g002)
mean American diet (MAD) [1] as recorded by the USDA [53] is 52 g person$^{-1}$d$^{-1}$. Fig 3E shows mean individual delivery of key nutrients. To permit easy comparison to the current US diet, I present the above nutrient deliveries as fractions of today's MAD [1,53]. For example, the NSA diet delivers on average roughly 11 and 9 times the α and β carotene today's US diet supplies (leftmost points in Fig 3E).

On average, the total (vegetal plus beef) NSA diet delivers 70%–80% and 110% of today's beef and protein consumption (Fig 3A and 3B, respectively), and —because the NSA model relies exclusively on manure—averts 55%–60% of today's nitrogen fertilizer use (Fig 3C). The NSA model also averts approximately 10% and 110% of today's total and agricultural national greenhouse gas emissions (the former not shown and the latter shown by the dotted line in Fig 3D). The reason the savings exceed 100% is that they reflect elimination of the need...
for synthetic fertilizer, the single largest CO₂ source in food production (Tables 5–1 and 5–2 of [55]), combined with a national dietary shift toward higher reliance on plants than today’s diet. This effect is well above the global shift toward healthier and less environmentally demanding diets predicted by Springmann et al. [57], which makes sense because the dietary shifts they consider are far more modest than the combined agropractical and dietary shifts considered here.

Fig 3E shows some of the more pronounced nutritional impacts of a putative national transition from today’s diet to the NSA-based alternative diet. Relative to today’s conventional-agriculture-based diet, the NSA diet delivers markedly more of nearly all considered nutrients. Most of the nutrients—phyto-micronutrients, various vitamins, total and soluble fiber, and ω₃,₆ fatty acids—are protective [7,58,59]. For 3 nutrients, the NSA diet delivers less than today’s conventional agriculture diet, but 2 of these—saturated fat and cholesterol—are considered nutritionally deleterious [60,61], although this view is being actively refined [62]. The only clearly negative nutritional impact of the NSA diet is the reduced vitamin B₁₂ intake, which primarily reflects the replacement in the NSA diet of poultry, pork, dairy, and eggs with plant alternatives, reducing the overall prominence of animal-based food in this diet. While this is potentially alarming in light of the critical neurological importance of B₁₂, the deficiency is easy to overcome [63].

The answer to the basic question motivating this inquiry—can nutrient-autonomous NSA domestically produce enough nutritious food for all Americans—is thus an emphatic yes. Even with stringently limiting nitrogen sources to manure, atmospheric deposition, and symbiotic fixation, limiting agriculture to precipitation-rich regions, and allowing for a 15% yield penalty in the NSA model relative to today’s conventional model (see sections B and N in S1 Text for justification of and sensitivity to this yield penalty [64]), NSA produces more than enough food (including protein) for all Americans, at considerable environmental savings, while markedly improving the mean national diet and requiring a fairly modest reduction in beef consumption (Fig 2A).

Because the above results hold with ample margins, they are likely to persist even if some of my assumptions are revisited and relaxed.

These results are possible mostly because the model only produces beef and vegetal food, but no poultry, pork, dairy, or eggs. In a more realistic rendition of the model whose implementation chances are higher, this limitation will have to be eliminated or relaxed. The key reason the model can so bountifully feed the populace is the spontaneous emergence in the model of a plant-heavy diet despite allocating 6-fold more land to beef than to any single plant item (0.43 versus 0.07 ha). Because plants in general require far less land, much more plant protein can be produced under the NSA model, even on the fairly small portion of total US cropland I exploit here, and even with allocating nearly a third of all that cropland for beef production.

Because I model NSA with beef at its core, and because the output proves more than sufficient, permitting most of today’s beef consumption, some readers may view the results as a waiver of beef’s environmental liabilities. This is negated by beef’s modest positive and disproportionately negative contributions to the NSA diet, and by its outsized land use, but is supported by its enhancement of vegetal yields.

To evaluate the net effect of this duality, let’s compare protein delivery by the main model (Fig 3B) to delivery of no beef, forgoing manure benefits but having potentially more land for vegetal production (Fig 4). The left (dark green) bar corresponds to rewilding in each farm the 0.43-ha forage area—30% of all land—and using the original 1 ha of vegetal production. On the right (light green), the production model now occupies the full area, 1.43 ha per farm. In both alternative scenarios, vegetal productivity is significantly reduced because of the absence
of manure. Comparing the central and left bars shows that eliminating cattle and rewilding 30% of the considered land delivers approximately 50% of the available protein. Comparing the central and right bars shows that preserving the main model’s total land area while forgoing manure benefits also lowers protein delivery, to approximately 75% of the reference protein availability. By significantly enhancing vegetal output, beef is thus a key component of the NSA model, despite directly yielding only a modest fraction of total protein (Fig 2A).

At least in principle, NSA offers a realistic alternative to today’s industrial model, provided the US population is ready to replace much of the animal-based portion of its diet with plant-based alternatives. Beef cattle have a uniquely important contribution to making this transition possible and palatable.

Materials and methods

I consider a specific vegetal food and beef coproduction NSA model, and quantify its potential productivity and role in a thoroughly reconfigured US food system. Clearly, more efficient livestock [5,17,65] could also enhance nitrogen availability for vegetal production beyond symbiotic fixation and atmospheric deposition, while exacting lower environmental impacts than beef [65]. I nonetheless focus on beef for 2 reasons. First and foremost, the elemental
composition of beef manure is nearest (among the major livestock types) to those of crops [38], making it agronomically superior. Second, beef is deeply entrenched and hard to replace [66] in worldwide diets.

The basic structure of the modeled farm is guided by a key tenet of NSA, maximizing local nutrient recycling and minimizing local nutrient imbalances. Heeding this adage while focusing on nitrogen as a proxy for limiting nutrients in general, the modeled farm receives only atmospheric sources of the key environmental variables limiting land productivity—precipitation and deposition plus symbiotic fixation for water and reactive nitrogen, respectively. Obviously, complete models of NSA will have to also address supplies of phosphorus, potassium, and other agriculturally vital nutrients whose cycles differ markedly from that of nitrogen, as well as latitude and length of growing season, seasonal patterns of precipitation, cloud cover, temperature, and humidity among other limiting factors. The current calculation is thus an upper bound estimate in the sense that in some locales, limitations posed by other variables can suppress local productivity below the levels envisioned here.

The modeled farm comprises 3 elements shown schematically in Fig 1. Production of vegetal food for human consumption and forage for cattle claim A_v and A_f ha, respectively. Reactive nitrogen sources include deposition and symbiotic fixation, augmented by manure from the cattle operation. The latter contribution is determined by the herd size and composition (sections E and F and Table B in S1 Text) and by diet composition (section D and Table A in S1 Text).

To maximize manure recovery and yields, the forage subunit is mostly not directly grazed, delivering served cattle fodder (greenchop in summer and hay, haylage, or silage otherwise) instead. The core cattle operation is thus nutritionally grass-based yet operationally mostly an intensive, spatially confined operation whose area is negligible relative to A_v or A_f.

The model’s governing equations are simple nitrogen conservation statements for the 3 subunits,

$$y_v = \rho_v(d + f_v + \gamma n_m A_v)$$ \hspace{1cm} (1)

$$y_f = \rho_f[d + f_f + (1 - \gamma) n_m A_f]$$ \hspace{1cm} (2)

$$n_m = \beta A_f y_f$$ \hspace{1cm} (3)

addressing the vegetal, forage, and cattle subunits, respectively. Above y_v and y_f are the nitrogen yields of the vegetal and forage subunits (kg N ha$^{-1}$ y$^{-1}$), n_m is the number of mother cows the herd comprises, ρ_v and ρ_f are the corresponding dimensionless nitrogen retention fractions (the productive fraction of all available nitrogen, parameterized as in section B1 in S1 Text), d and f_v and f_f are rates of nitrogen introduction into the respective subunits by atmospheric deposition and symbiotic fixation, and γ is the manure partitioning parameter, with $\gamma = \{0,1\}$, respectively, corresponding to all the manure delivered to the vegetal and forage subunits. Nitrogen cycling efficiencies are given by α and β. Annual production of plant available manure nitrogen by 1 cow and her associated animals (e.g., roughly 0.7 calf y$^{-1}$ and 0.04 bull; see section E in S1 Text for the herd structure) is given by α, while cattle need for forage nitrogen in cow-years per kilogram forage N is given by β.

Even though the equations are flexible enough to accommodate any $\gamma = \{0,1\}$, section A1 in S1 Text shows that $\gamma = 1$ is optimal and is thus the default value used. For most applications,
therefore

\[y_v = \rho_v(d + f_v + \alpha n_m A_v^{-1}) \]

(4)

\[y_t = \rho_t(d + f_t) \]

(5)

\[n_m = \beta A_f y_t, \]

(6)

which combine into

\[y_v = (d + f_v) + z \beta \rho_v \rho_t A_v^{-1}(d + f_t). \]

(7)

The land areas \(A_v \) and \(A_f \) and their ratio are key free parameters of the system not constrained by the governing equations. They can therefore be chosen so as to, e.g., maximize protein or vitamin B\(_{12}\) delivery, or minimize greenhouse gas emissions. Because the current contribution is a preliminary conceptual inquiry, not an effort to derive the definitive model for optimal NSA, I choose \(A_f/A_v = 3/7 \approx 0.43 \) (section B in S1 Text), conserving the value of this ratio in today’s US food system. Given the notorious difficulties of dietary modifications of most any kind [67], compounded by limited willingness for personal sacrifice in the name of environmental betterment, minimizing deviation from today’s state seems reasonable. Follow-up work can revisit these choices so as to optimize various objectives. The basic atom farm modeled here thus occupies approximately 1.43 ha.

The herd comprises mature mother cows and bulls, the necessary replacement animals for both categories, and output calves and steers (section E and Table B in S1 Text). Numbers of all animal categories are fixed proportions of the number of mother cows \(n_m \), e.g., 4 bulls or 16 replacement heifers per 100 cows. Consequently, the herd structure and size, and therefore forage requirements and beef and manure output, linearly track \(n_m \), whose quantification (section B in S1 Text) is a key element of the solution. I solve the governing equation, Eq 7, in a Monte Carlo formalism, with \(A_f = 1 \) ha, \(A_v \approx 0.43 \) ha, \(\rho_v \) and \(\rho_t \) parameterized as functions of available nitrogen inputs as discussed in section B1 in S1 Text, and all remaining right-hand-side terms randomly drawn from empirically derived distributions. With \(y_v \) thus evaluated and \(\rho_t \) known (by parametrization valuation), I use Eqs 5 and 6 to get \(y_t \) and \(n_m \), respectively. All remaining characteristics of the solution follow from \(\{y_v, y_t, n_m\} \) thus evaluated. The single farm results can then be applied to larger areal, geographical extent, subject to the caveats and precautions highlighted above and in section C in S1 Text.

In this preliminary stage of this work, once an applicable geographical extent of \(A_{up} \) ha is selected for the upscaling, that area is simply assumed to be fully dedicated to NSA, i.e., to house \(N_{farm} = A_{up}/1.43 \) farms. With the single farm solution outputs and inputs, and this \(N_{farm} \), the environmental and nutritional consequences (section B and Eqs S18 and S19 in S1 Text) of the transition to the NSA model for 330 million Americans consuming the vegetal and beef output of this limited-area NSA deployment are straightforwardly obtained.

The system’s outputs—vegetal food, beef, and manure—all depend on the envisioned cattle diet. The considered herd subsists mostly on variable-quality [68] forages, reflecting the broad range of soils and climates in US croplands. In an effort to enhance output while most closely tracking today’s practices [3,5], the herd diet also comprises 5% by mass (roughly today’s fraction) of energy- and protein-rich agroindustrial byproducts (e.g., millfeed from grain milling, sugar beet pulp, or citrus peel from juice production) that are widely used as cattle feeds today. For any specified cattle diet (ranging in the forages and byproducts used; Table A in S1 Text), I use well-established equations [68,69] to predict the herd’s forage consumption, weight gain, and manure nitrogen excretion (sections D–G in S1 Text).
Supporting information

S1 Data. A text data file reporting all the numerical values of main text and supplementary figures.
(DAT)

S1 Text. Supplementary information, including supplementary sections A–N, Eqs S1–S32, Tables A and B, and Figs A–F.
(PDF)

Acknowledgments

I heartily thank the Lamont Doherty Earth Observatory at Columbia, and the Department of Earth and Planetary Sciences at Harvard, for their warm hospitality during my extended adjunct affiliations. By providing library and computational support, both materially aided this effort. I also thank William H. Schlesinger of the Cary Institute for his careful reading of an early draft and his thoughtful comments on it, and the EUS program at Bard for their generous support.

Author Contributions

Conceptualization: Gidon Eshel.
Data curation: Gidon Eshel.
Formal analysis: Gidon Eshel.
Funding acquisition: Gidon Eshel.
Investigation: Gidon Eshel.
Methodology: Gidon Eshel.
Project administration: Gidon Eshel.
Resources: Gidon Eshel.
Software: Gidon Eshel.
Supervision: Gidon Eshel.
Validation: Gidon Eshel.
Visualization: Gidon Eshel.
Writing – original draft: Gidon Eshel.
Writing – review & editing: Gidon Eshel.

References

1. Eshel G, Stainier P, Shepon A, Swaminathan A, Noor E, Milo R. Environmentally optimal, nutritionally sound, protein and energy conserving plant based alternatives to U.S. meat. Sci Rep. 2019; 50:8164–8. https://doi.org/10.1038/s41598-019-46590-1 PMID: 31395893
2. Harwatt H, Sabaté J, Eshel G, Soret S, Ripple W. Substituting beans for beef as a contribution toward US climate change targets. Clim Change. 2017; 143:261–70. https://doi.org/10.1007/s10584-017-1969-1
3. Eshel G, Shepon A, Makov T, Milo R. Partitioning United States’ feed consumption among livestock categories for improved environmental cost assessments. J Agric Sci. 2014; 153:432–45. https://doi.org/10.1017/S0021859614000690
4. Shepon A, Eshel G, Noor E, Milo R. The opportunity cost of animal based diets exceeds all food losses. Proc Natl Acad Sci U S A. 2018; 115:3804–9. https://doi.org/10.1073/pnas.1713820115 PMID: 29581251

5. Eshel G, Shepon A, Makov T, Milo R. Land, irrigation water, greenhouse gas and reactive nitrogen burdens of meat, eggs & dairy production in the United States. Proc Natl Acad Sci U S A. 2014; 111:11996–2001. https://doi.org/10.1073/pnas.1402183111 PMID: 25049416

6. Clune S, Crossin E, Vergheese K. Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod. 2017; 140:766–83. https://doi.org/10.1016/j.jclepro.2016.04.082

7. Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019; 393:447–92. https://doi.org/10.1016/S0140-6736(18)31788-4 PMID: 30660336

8. Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014; 515:518–22. https://doi.org/10.1038/nature13959 PMID: 25383533

9. Smith P, Calvin K, Nkem J, Campbell D, Cherubini F, Grassi G, et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob Chang Biol. 2020; 26:1532–75. https://doi.org/10.1111/gcb.14878 PMID: 31637793

10. Jenny JP, Koirala S, Gregory-Eaves I, Francus P, Niemann C, Ahrens B, et al. Human and climate change: beef farming brings on warming. Nature. 2015; 524:269. https://doi.org/10.1038/nature13959

11. Eshel G, Shepon A, Makov T, Milo R. Land, irrigation water, greenhouse gas and reactive nitrogen burdens of meat, eggs & dairy production in the United States. Proc Natl Acad Sci U S A. 2014; 111:11996–2001. https://doi.org/10.1073/pnas.1402183111 PMID: 25049416

12. Clune S, Crossin E, Vergheese K. Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod. 2017; 140:766–83. https://doi.org/10.1016/j.jclepro.2016.04.082

13. Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019; 393:447–92. https://doi.org/10.1016/S0140-6736(18)31788-4 PMID: 30660336

14. Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014; 515:518–22. https://doi.org/10.1038/nature13959 PMID: 25383533

15. Smith P, Calvin K, Nkem J, Campbell D, Cherubini F, Grassi G, et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob Chang Biol. 2020; 26:1532–75. https://doi.org/10.1111/gcb.14878 PMID: 31637793

16. Jenny JP, Koirala S, Gregory-Eaves I, Francus P, Niemann C, Ahrens B, et al. Human and climate change: beef farming brings on warming. Nature. 2015; 524:269. https://doi.org/10.1038/nature13959

17. Eshel G, Shepon A, Makov T, Milo R. Land, irrigation water, greenhouse gas and reactive nitrogen burdens of meat, eggs & dairy production in the United States. Proc Natl Acad Sci U S A. 2014; 111:11996–2001. https://doi.org/10.1073/pnas.1402183111 PMID: 25049416

18. Clune S, Crossin E, Vergheese K. Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod. 2017; 140:766–83. https://doi.org/10.1016/j.jclepro.2016.04.082

19. Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019; 393:447–92. https://doi.org/10.1016/S0140-6736(18)31788-4 PMID: 30660336

20. Climate change: beef farming brings on warming. Nature. 2015; 524:269. https://doi.org/10.1038/524269d

21. Nguyen TLT, Hermansen JE, Mogensen L. Environmental consequences of different beef production systems in the EU. J Clean Prod. 2010; 18:756–66. https://doi.org/10.1016/j.jclepro.2009.12.023

22. Rotz CA, Asem-Hiablie S, Dillon J, Bonifacio H. Cradle-to-farm gate environmental footprints of beef cattle production in Kansas, Oklahoma, and Texas. J Anim Sci. 2015; 93:2509–19. https://doi.org/10.2273/jas.2014-8909 PMID: 26020346

23. Lupo CD, Clay DE, Benning JL, Stone JJ. Life-cycle assessment of the beef cattle production system for the northern great plains, USA. J Environ Qual. 2013; 42:1386–94. https://doi.org/10.2134/jeq2013.03.0101 PMID: 24216416

24. Pierrehumbert RT, Eshel G. Climate impact of beef: an analysis considering multiple time scales and production methods without use of global warming potentials. Environ Res Lett. 2015; 10:085002. https://doi.org/10.1088/1748-9326/10/8/085002

25. LaCanne CE, Lundgren JG. Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ. 2018 Feb 26. https://doi.org/10.7717/peerj.4428 PMID: 29503771
26. Rodale R. Breaking new ground: the search for a sustainable agriculture. Futurism. 1983; 17:15–20.
27. Mitchell JP, Reicosky DC, Kueman EA, Fisher J, Beck D. Conservation agriculture systems. CAB Rev. 2019; 14:1–25. https://doi.org/10.1079/PAVSNNR201914001
28. Rhodes CJ. The imperative for regenerative agriculture. Sci Prog. 2017; 100:80–129. https://doi.org/10.1016/j.issn.2017.05.016 PMID: 28693674
29. Amundson R, Berthe AA, Hopmans JW, Olson C, Szttein AE, Sparks DL. Soil and human security in the 21st century. Science. 2015; 348(6235). https://doi.org/10.1126/science.1261071 PMID: 25954014
30. Tanner S, Katra I, Haim A, Zaady E. Short-term soil loss by eolian erosion in response to different rain-fed agricultural practices. Soil Tillage Res. 2016; 155:149–56. https://doi.org/10.1016/j.still.2015.08.008
31. Montgomery DR. Soil erosion and agricultural sustainability. Proc Natl Acad Sci U S A. 2007; 104:13268–72. https://doi.org/10.1073/pnas.0611508104 PMID: 17686990
32. Zhang X-CJ, Garbrecht JD. Precipitation retention and soil erosion under varying climate, land use, and tillage and cropping systems. J Am Water Resour Assoc. 2002; 38:1241–53. https://doi.org/10.1111/j.1752-1688.2002.tb04345.x
33. Jia Z, Kuzyakov Y, Myrold D, Tiedje J. Soil organic carbon in a changing world. Pedosphere. 2017; 27:789–91. https://doi.org/10.1016/S1002-0160(17)60489-2
34. Machmuller MB, Kramer MG, Cyle TK, Hill N, Hancock D, Thompson A. Emerging land use practices rapidly increase soil organic matter. Nat Commun. 2015; 6:6995. https://doi.org/10.1038/ncomms7995 PMID: 25925997
35. Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—a review. Mitigation and adaptation strategies for global change. 2006; 11:403–427. https://doi.org/10.1007/s11027-005-9006-5
36. Post WM, Pastor J, Zinke PJ, Stangenberger AG. Global patterns of soil nitrogen storage. Nature. 1985; 317:613–616. https://doi.org/10.1038/317613a0
37. Cleveland CC, Liptzin D. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry. 2007; 85:235–52. https://doi.org/10.1007/s10533-007-9132-0
38. Castellano MJ. Shifting human diets and agricultural nutrient management. J Soil Water Conserv. 2010; 65:63A–66A. https://doi.org/10.2489/jswc.65.3.63A
39. Kuzyakov Y, Zamanian K. Reviews and syntheses: agropedogenesis—humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences. 2019; 16:4783–803. https://doi.org/10.5194/bg-16-4783-2019
40. Matschullat J, Reimann C, Birke M, dos Santos Carvalho D, Albanese S, Anderson M, et al. GEMAS: CNS concentrations and C/N ratios in European agricultural soil. Sci Total Environ. 2018; 627:975–84. https://doi.org/10.1016/j.scitotenv.2018.01.214 PMID: 29426222
41. Compton JE, Boone RD. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology. 2000; 81:2314–30. https://doi.org/10.1890/0012-9658(2000)081[2314:LTIOAO]2.0.CO;2
42. Mueller ND, Lassaleta L. Nitrogen challenges in global livestock systems. Nat Food. 2020; 1:400–1. https://doi.org/10.1038/s43016-020-0117-7
43. Francis CA, Porter P. Ecology in sustainable agriculture practices and systems. CRC Crit Rev Plant Sci. 2011; 30:1–2,64-73. https://doi.org/10.1080/07352689.2011.554353
44. González AD, Frostell B, Carlsson-Kanyama A. Protein efficiency per unit energy and per unit greenhouse gas emissions: potential contribution of diet choices to climate change mitigation. Food Policy. 2011; 36:562–70. https://doi.org/10.1016/j.foodpol.2011.07.003
45. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. Closing yield gaps through nutrient and water management. Nature. 2012; 490:254–257. https://doi.org/10.1038/nature11420 PMID: 22932270
46. Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA, et al. Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science. 2010; 320(5876):822–825. https://doi.org/10.1126/science.1183725 PMID: 20150490
47. Beach HM, Laing KW, van de Walle M, Martin RC. The current state and future directions of organic no-till farming with cover crops in Canada, with case study support. Sustainability (Switzerland). 2018; 10 (2):73. https://doi.org/10.3390/su10020073
48. Pitt H, Jones M. Scaling up and out as a pathway for food system transitions. Sustainability. 2016; 8 (10):1025. https://doi.org/10.3390/su8101025
49. National Agricultural Statistics Service. Quick Stats. Washington (DC): US Department of Agriculture; 2021 [cited 2021 May 11]. Available from: http://quickstats.nass.usda.gov.
50. Westermann O, Förch W, Thornton P, Körner J, Cramer L, Campbell B. Scaling up agricultural interventions: Case studies of climate-smart agriculture. Agric Syst. 2018; 165:283–293. https://doi.org/10.1016/j.agsy.2018.07.007

51. Horlings LG, Marsden TK. Exploring the “New Rural Paradigm” in Europe: eco-economic strategies as a counterforce to the global competitiveness agenda. Eur Urban Reg Stud. 2014; 21(1):4–20. https://doi.org/10.1177/0969776414521187

52. Perdue S, Hamer H. 2017 census of agriculture. United States: summary and state data. Volume 1. Washington (DC): US Department of Agriculture; 2017 [cited 2021 May 11]. Available from: https://www.nass.usda.gov/Publications/AgCensus2017/Full_Report/Volume_1_Chapter_1_US/usv1.pdf.

53. Economic Research Service. Food availability (per capita) data system. Washington (DC): US Department of Agriculture; 2020 [cited 2020 Nov 14]. Available from: https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/.

54. Economic Research Service. Fertilizer use and price. Washington (DC): US Department of Agriculture; 2019 [cited 2020 Sep 10]. Available from: https://www.ers.usda.gov/data-products/fertilizer-use-and-price/.

55. US Environmental Protection Agency. Inventory of U.S. greenhouse gas emissions and sinks, 1990–2018. Washington (DC): US Environmental Protection Agency; 2020 [cited 2021 May 11]. Available from: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2018.

56. Kim S, Dale BE, Jenkins R. Life cycle assessment of corn grain and corn stover in the United States. Int J Life Cycle Assess. 2009; 14:160–74. https://doi.org/10.1007/s11367-008-0054-4

57. Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L, et al. Options for keeping the food system within environmental limits. Nature. 2018; 562:519–25. https://doi.org/10.1038/s41586-018-0594-0 PMID: 30305731

58. Willett WC, Skerrett PJ. Eat, drink, and be healthy: the Harvard Medical School guide to healthy eating. New York: Free Press; 2005.

59. Jahn JL, Stampfer MJ, Willett WC. Food, health & the environment: a global grand challenge & some solutions. Daedalus. 2015; 144:31–44. https://doi.org/10.1162/DAED_a_00352

60. Park JE, Miller M, Rhyne J, Wang Z, Hazen SL. Differential effect of short-term popular diets on TMAO and other cardio-metabolic risk markers. Nutr Metab Cardiovasc Dis. 2019; 29:513–7. https://doi.org/10.1016/j.numecd.2019.02.003 PMID: 30940489

61. Khodarahmi M, Kahroba H, Jafarabadi MA, Mesgari-Abba si M, Farhangi MA. Dietary quality indices modifies the effects of melanocortin-4 receptor (MC4R) rs17782313 polymorphism on cardio-metabolic risk factors and hypothalamic hormones in obese adults. BMC Cardiovasc Disord. 2020; 20:57. https://doi.org/10.1186/s12872-020-01366-8 PMID: 32019489

62. Shih CW, Hauser ME, Aronica L, Rigdon J, Gardner CD. Changes in blood lipid concentrations associated with changes in intake of dietary saturated fat in the context of a healthy low-carbohydrate weight-loss diet: a secondary analysis of the Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) trial. Am J Clin Nutr. 2019; 109:433–41. https://doi.org/10.1093/ajcn/nqy305 PMID: 30649213

63. Haddad EH, Jaceldo-Siegl K, Oda K, Fraser GE. Associations of circulating methylmalonic acid and vitamin B-12 biomarkers are modified by vegan dietary pattern in adult and elderly participants of the Adventist Health Study 2 Calibration Study. Curr Dev Nutr. 2020; 4:nzaa008. https://doi.org/10.1093/cdn/nzaa008 PMID: 32064447

64. Seufert V, Ramankutty N. Many shades of gray—the context-dependent performance of organic agriculture. Sci Adv. 2017; 3,e1602638. https://doi.org/10.1126/sciadv.1602638 PMID: 28345054

65. Shih CW, Hauser ME, Aronica L, Rigdon J, Gardner CD. Changes in blood lipid concentrations associated with changes in intake of dietary saturated fat in the context of a healthy low-carbohydrate weight-loss diet: a secondary analysis of the Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) trial. Am J Clin Nutr. 2019; 109:433–41. https://doi.org/10.1093/ajcn/nqy305 PMID: 30649213

66. Haddad EH, Jaceldo-Siegl K, Oda K, Fraser GE. Associations of circulating methylmalonic acid and vitamin B-12 biomarkers are modified by vegan dietary pattern in adult and elderly participants of the Adventist Health Study 2 Calibration Study. Curr Dev Nutr. 2020; 4:nzaa008. https://doi.org/10.1093/cdn/nzaa008 PMID: 32064447

67. Seufert V, Ramankutty N. Many shades of gray—the context-dependent performance of organic agriculture. Sci Adv. 2017; 3,e1602638. https://doi.org/10.1126/sciadv.1602638 PMID: 28345054

68. Shih CW, Hauser ME, Aronica L, Rigdon J, Gardner CD. Changes in blood lipid concentrations associated with changes in intake of dietary saturated fat in the context of a healthy low-carbohydrate weight-loss diet: a secondary analysis of the Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) trial. Am J Clin Nutr. 2019; 109:433–41. https://doi.org/10.1093/ajcn/nqy305 PMID: 30649213

69. National Research Council. Nutrient requirements of beef cattle. 7th revised edition. Washington (DC): National Academies Press; 2000.

70. National Research Council. Nutrient requirements of beef cattle. 7th revised edition. Washington (DC): National Academies Press; 2000.