Glycemic response of *chapati* (Indian flat bread) developed from cereal pulse blends

Karmjeet Kaur, Dr. Harpreet Kaur, Dr. Kiran Bains, Dr. Jaswinder Kaur Brar, Dr. Preety Ahluwalia and Dr. Amarjeet Kaur

DOI: [https://doi.org/10.22271/chemi.2020.v8.i5ai.10700](https://doi.org/10.22271/chemi.2020.v8.i5ai.10700)

**Abstract**

The study was conducted to develop culturally acceptable low glycemic *chapati* (Indian flat bread) for diabetic patients. The acceptability, nutritional composition and glycemic index (GI) of the developed *chapati* were assessed. Oat, barley, soybean and chickpea flour were incorporated into the whole wheat flour, by using ten different flour combinations. The developed *chapati* was compared with corresponding control chapatti. The overall acceptability of *chapati* prepared form the blend of whole wheat flour with soybean (75 and 25%) and with whole wheat flour, barley and soybean in the proportion of 50, 25 and 25% was significantly (p<0.05) higher as compared to control (whole wheat flour). The results of proximate analysis revealed a significantly (p≤0.05) higher fibre, protein and a significantly (p<0.05) lower carbohydrate content in the developed *chapati*. The Glycemic Index of *chapati* prepared from whole wheat flour, barley and soy flour (50, 25 and 25%), had significantly (p≤0.05) lower GI(52). Increased protein and crude fiber content and decreased carbohydrates resulted in a significant (p≤0.05) reduction in the GI of *chapati*. It came in the category of low glycemic foods (< 55) as per WHO classification of low GI foods, hence it can be included in the regular diets of the diabetic patients to prevent further complications.

**Keywords:** Oat flour, barley flour, soy flour, chickpea flour, *chapati*, blood glucose, glycemic index

**Introduction**

Diabetes mellitus has become an important public health challenge. It is the main cause of death and disability throughout the world. Global prevalence of diabetes has doubled between 1980 and 2014 (IDF,2013) [8]. According to the International Diabetes Federation, one in 11 adults had diabetes during 2015 and the number is expected to be one in 10 in 2040 (IDF,2015) [7]. India is the member country one of the International Diabetes Federation SEA (South East Asia) region. International Diabetes Federation, 2017 has shown that globally 425 million people have diabetes and in the SEA region 82 million people have the disease; it could go up to 151 million by 2045. India is at the 2nd position after China with 72.9 million cases of Type 2 diabetes in the age group of 20-79 years and there are estimates that India will be at first position with 134.3 million cases of Type 2 diabetes by 2045 (IDF,2017) [9].

Intake of refined carbohydrates has been increased over the years and it has shown the upward trend in the prevalence of obesity and type 2 diabetes in the US, indicating that the type of carbohydrate consumed may impact disease risk through alterations in postprandial blood glucose and insulin concentrations (Augustin et al. 2002 and Gross et al. 2004) [3, 5].

To account for these qualitative differences in carbohydrate type, the concept of glycemic index (GI) was developed by Jenkins et al. (2008) [10] as a physiologic rather than a structural approach for classifying carbohydrates. Glycemic index (GI) describes the blood glucose response after consumption of a carbohydrate containing test food relative to a carbohydrate containing reference food, typically glucose or white bread. GI was originally designed for people with diabetes as a guide to food selection, advice being given to select foods with a low GI. The amount of food consumed is a major determinant of postprandial hyperglycemia, and the concept of glycemic load (GL) takes account of the GI of a food and the amount eaten (Venn and Green 2007) [14]. The physiologic effect of a carbohydrate refers to the rate and magnitude in which dietary glucose enters the bloodstream after a meal, as well as the subsequent demand placed on the pancreas to secrete sufficient amounts of insulin to
normalize blood glucose levels. Thus, postprandial plasma glucose and insulin concentrations following consumption of carbohydrate is highly governed by the quality and quantity of carbohydrate consumed (Augustin et al. 2002 and Aston 2006) [1, 2]. A positive association was found between increased dietary GI and risk for coronary heart disease (Liu et al. 2000) [3], whereas lower dietary GI was associated with a reduced risk for the development of type 2 diabetes in men and women (Salmeron et al. 1997a and Salmeron et al. 1997b) [12, 13]. While several interventional studies have also reported beneficial effects of consuming low-GI diets. For this reason, there is interest in using these concepts for diet prescription so large interest has recently risen in the development of functional foods or products that can offer health benefit beyond the traditional nutrients. The present study was planned to develop low glycemic index chapati for diabetic patients.

**Material and Methods**
The present study was aimed to develop low Glycemic Index chapati. The material and methods used have been discussed here.

**Procurement of food ingredients**
The basic ingredients, whole wheat flour, and functional food ingredients like oat flour, barley flour, soy flour and chickpea flour were collected at one lot from the local market and stored in bins and used for the entire study.

**Designing of blends**
Chapatiies were prepared from the blends of different flours of cereals and legumes. Oats, barley, soybean and chickpea flour have been reported to have low glycemic index (GI). Ten different blends were prepared by using the above grain flours in different proportions by incorporating in whole wheat flour. The proportions of different ingredients in each blend to be used to prepare chapati is given in Table 1

| Blend | Whole Wheat flour (g/100g) | Oat flour (g/100g) | Soy flour (g/100g) |
|-------|-----------------------------|-------------------|-------------------|
| Control | 100                        | -                 | -                 |
| Blend 1 | 25                         | 50                | 25                |
| Blend 2 | 50                         | 25                | 25                |
| Blend 3 | 75                         | -                 | 25                |
| Blend 4 | 25                         | 50                | 25                |
| Blend 5 | 50                         | 25                | 25                |
| Blend 6 | 25                         | 50                | 25                |
| Blend 7 | 50                         | 25                | 25                |
| Blend 8 | 75                         | -                 | 25                |
| Blend 9 | 25                         | 50                | 25                |
| Blend 10 | 50                        | 25                 | 25               |

**Glycemic index of the developed products**

Glycemic index of chapati was estimated, through a scientific approach of determining the glucose response in healthy subjects through meal tolerance test. The experiment was conducted in the department of Food and Nutrition, College of Home Science PAU Ludhiana. All the subjects were informed beforehand about the experiment and their voluntary consents were taken before conducting the experiment.

**Selection of subjects**
For each product 10 volunteer healthy nondiabetic subjects in the age group of 20 to 40 y were selected. Assessment of glycemic response was done by taking finger prick capillary blood sample.

**Glucose tolerance test**
The subjects were asked to come for blood glucose test after overnight fast. On first occasion, 50 g carbohydrate in the form of glucose (reference) and on subsequent occasion test food (chapati) providing 50 g available carbohydrate was given to the subjects. Fasting blood glucose was checked. The volunteers were asked to consume test chapati within 10-12 minutes. The blood samples were drawn and checked after every half an hour interval for two hours for the post prandial

**Development of chapati**

Chapati was prepared using ten blends. The standardized recipes for control samples were prepared from whole wheat flour is given below. Blends were used to prepare test samples.

**Chapati Ingredients**
Whole wheat flour: 100g

**Method**
1. Knead the flour into dough by adding water.
2. The dough was divided into equal portions and each portion of the dough was rounded off between the palms of hands and rolled into a chapati with the help of rolling pin.
3. The chapatis were baked on thick iron sheet (tawa) heated by gas flame at constant temperature.
4. One side of the chapati took 45 seconds for getting baked then it was turned and other side was baked for almost the same time.
5. It was turned again and pressed with a clean cloth moving the chapati in the circular motion till it become fluffy like a ball.

**Organoleptic evaluation of chapati**
The developed chapatis were evaluated organoleptically by a panel of 15 subjects comprising of students and faculty of department of Food and Nutrition, PAU, Ludhiana. Each chapati sample was prepared and tested thrice. The samples were coded to avoid any bias. The panelists were asked to score the samples for color, appearance, flavor, texture, taste and overall acceptability by using a score card of 9 point Hedonic Rating Scale.

The highly acceptable chapati along with its corresponding control were weighed, homogenized and oven dried at 60°C. Dried samples were stored in air tight plastic bags for proximate analysis.

**Nutritional analysis**

Moisture, total ash, crude protein, crude fibre, crude fat were assessed using standard methods.(AOAC 2000) [1] The content of carbohydrates was calculated by subtracting the sum of moisture, protein, ash, fat and crude fibre from 100. Carbohydrates = 100 - (Moisture + Protein + Fat + Ash + Fibre).

The energy content was calculated by factorial method.

Energy (Kcal) = (4\texttimes \text{protein}) + (9\times \text{fat}) + (4\times \text{carbohydrate})

The developed chapatis were weighed, homogenized and oven dried at 60°C. Dried samples were stored in air tight plastic bags for proximate analysis.

**Methods**

1. Knead the flour into dough by adding water.
2. The dough was divided into equal portions and each portion of the dough was rounded off between the palms of hands and rolled into a chapati with the help of rolling pin.
3. The chapatis were baked on thick iron sheet (tawa) heated by gas flame at constant temperature.
4. One side of the chapati took 45 seconds for getting baked then it was turned and other side was baked for almost the same time.
5. It was turned again and pressed with a clean cloth moving the chapati in the circular motion till it become fluffy like a ball.

**Organoleptic evaluation of chapati**
The developed chapatis were evaluated organoleptically by a panel of 15 subjects comprising of students and faculty of department of Food and Nutrition, PAU, Ludhiana. Each chapati sample was prepared and tested thrice. The samples were coded to avoid any bias. The panelists were asked to score the samples for color, appearance, flavor, texture, taste and overall acceptability by using a score card of 9 point Hedonic Rating Scale.

The highly acceptable chapati along with its corresponding control were weighed, homogenized and oven dried at 60°C. Dried samples were stored in air tight plastic bags for proximate analysis.

**Nutritional analysis**

Moisture, total ash, crude protein, crude fibre, crude fat were assessed using standard methods. (AOAC 2000) [1] The content of carbohydrates was calculated by subtracting the sum of moisture, protein, ash, fat and crude fibre from 100.

Carbohydrates = 100 - (Moisture + Protein + Fat + Ash + Fibre).

The energy content was calculated by factorial method.

Energy (Kcal) = (4\times \text{protein}) + (9\times \text{fat}) + (4\times \text{carbohydrate})

The developed products were evaluated organoleptically by a panel of 15 subjects comprising of students and faculty of department of Food and Nutrition, PAU, Ludhiana. Each chapati sample was prepared and tested thrice. The samples were coded to avoid any bias. The panelists were asked to score the samples for color, appearance, flavor, texture, taste and overall acceptability by using a score card of 9 point Hedonic Rating Scale.

The highly acceptable chapati along with its corresponding control were weighed, homogenized and oven dried at 60°C. Dried samples were stored in air tight plastic bags for proximate analysis.

**Methods**

1. Knead the flour into dough by adding water.
2. The dough was divided into equal portions and each portion of the dough was rounded off between the palms of hands and rolled into a chapati with the help of rolling pin.
3. The chapatis were baked on thick iron sheet (tawa) heated by gas flame at constant temperature.
4. One side of the chapati took 45 seconds for getting baked then it was turned and other side was baked for almost the same time.
5. It was turned again and pressed with a clean cloth moving the chapati in the circular motion till it become fluffy like a ball.

**Organoleptic evaluation of chapati**
The developed chapatis were evaluated organoleptically by a panel of 15 subjects comprising of students and faculty of department of Food and Nutrition, PAU, Ludhiana. Each chapati sample was prepared and tested thrice. The samples were coded to avoid any bias. The panelists were asked to score the samples for color, appearance, flavor, texture, taste and overall acceptability by using a score card of 9 point Hedonic Rating Scale.

The highly acceptable chapati along with its corresponding control were weighed, homogenized and oven dried at 60°C. Dried samples were stored in air tight plastic bags for proximate analysis.

**Nutritional analysis**

Moisture, total ash, crude protein, crude fibre, crude fat were assessed using standard methods. (AOAC 2000) [1] The content of carbohydrates was calculated by subtracting the sum of moisture, protein, ash, fat and crude fibre from 100.

Carbohydrates = 100 - (Moisture + Protein + Fat + Ash + Fibre).

The energy content was calculated by factorial method.

Energy (Kcal) = (4\times \text{protein}) + (9\times \text{fat}) + (4\times \text{carbohydrate})

Glycemic index of the developed products

Glycemic index of chapati was estimated, through a scientific approach of determining the glucose response in healthy subjects through meal tolerance test. The experiment was conducted in the department of Food and Nutrition, College of Home Science PAU Ludhiana. All the subjects were informed beforehand about the experiment and their voluntary consents were taken before conducting the experiment.

**Selection of subjects**
For each product 10 volunteer healthy non diabetic subjects in the age group of 20 to 40 y were selected. Assessment of glycemic response was done by taking finger prick capillary blood sample.

**Glucose tolerance test**
The subjects were asked to come for blood glucose test after overnight fast. On first occasion, 50 g carbohydrate in the form of glucose (reference) and on subsequent occasion test food (chapati) providing 50 g available carbohydrate was given to the subjects. Fasting blood glucose was checked. The volunteers were asked to consume test chapati within 10-12 minutes. The blood samples were drawn and checked after every half an hour interval for two hours for the post prandial
level. The blood glucose response curves were plotted for both oral glucose tolerance test and test product.

The glycemic index was calculated using the formula given by Wolever and Jenkins (1986)\(^{[17]}\).

\[
\text{Glycemic index} = \frac{\text{Area under glucose curve after test meal}}{\text{Area under glucose curve after reference meal}} × 100
\]

The Glycemic load (GL) was determined by the method of Salmeron et al. (1997). The GL was calculated based on the quantity of the recipe per serving and the respective available carbohydrate content. The following formula was used:

\[
\text{Glycemic load} = \frac{\text{Available carbohydrates (g) × GI}}{100}
\]

**Statistical analysis**

The results of organoleptic scores, proximate analysis and glycemic index were statistically analyzed using analysis of variance technique and student’s t test with the aid of Microsoft statistical analysis tool pack. The limit of probability fixed for the test of significance was \(P=0.05\). Wherever the significant results were obtained, the critical difference was calculated.

**Ethical issues**

Informed consent was obtained before conducting the experiment before feeding food items and checking the blood glucose of human subjects. The privacy rights of human subjects will always be observed.

**Results and Discussion**

The present study was conducted to evaluate the acceptability, nutritional composition and glycemic index of developed chapatís using different blends of whole wheat flour and legume flours.

**Organoleptic evaluation of developed chapatí**

Chapatíes were prepared using different blends (Table 1) and were evaluated organoleptically. The mean scores of colour, appearance, flavor, texture, taste and overall acceptability of 10 blends ranged from 7.33 to 8.06, 7.00 to 8.06, 6.73 to 7.87, 6.81 to 7.70, 7.85 to 6.67, 6.54 to 7.82 and maximum scores for colour and appearance (8.06) were observed with the blend of whole wheat flour, barley flour and soy flour in the proportion of 50, 25 and 25% followed by blend of whole wheat flour, barley flour and soy flour in the proportion of 25, 50 and 25% while for flavor, texture and taste maximum scores were observed in blend 3 containing whole wheat flour and soy flour (75 and 25%). The minimum scores (7.33) for colour were observed in blend containing whole wheat flour, oat flour and soy flour (25, 50 and 25%) and in blend 6 containing whole wheat flour, barley flour and chickpea flour in the proportion of 25, 50 and 25%.

The scores of overall acceptability were highest in control (8.03) followed by the blend containing whole wheat flour and soy flour in the proportion of 25% and 50% (7.82 and 7.00) followed by the blend containing whole wheat flour, barley flour, and chickpea flour in the proportion of 75% and 25%. The minimum scores for colour, appearance, flavor, texture and taste maximum scores were observed in blend 3 containing whole wheat flour and soy flour (75 and 25%). The minimum scores (7.33) for colour were observed in blend containing whole wheat flour, oat flour and soy flour (25, 50 and 25%) and in blend 6 containing whole wheat flour, barley flour, and chickpea flour in the proportion of 25, 50 and 25%.

**Table 2: Organoleptic scores of chapatí using different blends**

| Blend | Flour combinations                  | Amount (g/100g) | Colour | Appearance | Flavor | Texture feel | Taste | Overall acceptability |
|-------|------------------------------------|-----------------|--------|------------|--------|--------------|-------|-----------------------|
| Blend 1 | Whole wheat flour+Oat+Soybean | 25±50+25 | 7.3±0.83 | 7.17±0.91 | 6.73±1.18 | 7.17±1.03 | 6.89±0.95 | 7.04±0.80 |
| Blend 2 | Whole wheat flour+Oat+Soybean | 50±25+25 | 7.75±0.81 | 7.58±1.08 | 7.25±1.11 | 7.44±1.00 | 7.50±0.85 | 7.53±0.77 |
| Blend 3 | Whole wheat flour+Soybean | 75±25 | 7.89±0.62 | 7.80±0.76 | 7.87±0.63 | 7.70±0.73 | 7.85±0.64 | 7.82±0.53 |
| Blend 4 | Whole wheat flour+Barley+Soybean | 25±50±25 | 8.00±0.53 | 7.97±0.45 | 7.69±0.95 | 7.67±0.79 | 7.81±0.89 | 7.80±0.65 |
| Blend 5 | Whole wheat flour+Barley+Soybean | 50±25±25 | 8.06±0.33 | 7.97±0.89 | 7.69±0.89 | 7.67±0.67 | 7.75±0.77 | 7.81±0.61 |
| Blend 6 | Whole wheat flour+Oat+Chickpea | 25±50+25 | 7.33±1.12 | 7.00±0.99 | 6.81±0.12 | 6.81±0.14 | 6.67±1.07 | 6.54±0.90 |
| Blend 7 | Whole wheat flour+Oat+Chickpea | 50±25+25 | 7.44±0.88 | 7.22±0.90 | 7.28±0.88 | 7.28±0.78 | 7.03±0.81 | 7.26±0.71 |
| Blend 8 | Whole wheat flour+Chickpea | 75±25 | 7.56±0.88 | 7.28±1.00 | 7.32±0.86 | 7.46±0.44 | 7.32±0.96 | 7.38±0.84 |
| Blend 9 | Whole wheat flour+Barley+Chickpea | 25±50+25 | 7.36±1.10 | 7.17±1.06 | 7.11±1.26 | 7.14±0.20 | 7.11±1.06 | 7.29±0.96 |
| Blend 10 | Whole wheat flour+Barley+Chickpea | 50±25+25 | 7.61±0.84 | 7.58±0.63 | 7.22±0.93 | 7.47±0.81 | 7.28±1.30 | 7.56±0.82 |
| Control | Whole wheat flour | 100 | 7.97±0.36 | 7.97±0.43 | 8.03±0.33 | 8.01±0.32 | 8.05±0.35 | 8.03±0.25 |

Values are presented as Mean± SD

**Key to scores:** 9= Like extremely, 8= Like very much, 7= Like moderately, 6= Like slightly, 5= Neither like or dislike, 4= Dislike slightly, 3= Dislike moderately, 2= Dislike very much, 1= Dislike extremely

Fig 1: Overall acceptability scores of chapatíes prepared from different blends
Proximate composition of most acceptable chapati sample

The proximate composition of most accepted chapati has been given in Table 3.

Chapati

The chapaties prepared from blend 3 comprising of whole wheat flour and soy flour (75 and 25%) and blend 5 comprising of whole wheat flour, barley flour and soy flour (50, 25 and 25%) had higher overall acceptability, so were selected for proximate analysis. The comparison of the proximate principles of blends with the control (whole wheat flour) was made. The results revealed that the moisture content of blend 3 and 5 had significantly ($p<0.05$) lower moisture content i.e. 1.71 and 1.63 g/100 g, respectively as compared to the control (2.58g/100g) but no significant difference in moisture content was found between two blends (Table 3). The ash content was found to be significantly more in blend 3 (2.40g/100g) and blend 5 (2.55g/100g) when compared with the control (1.4g/100g) but no significant difference in ash content was observed between the two blends. The high ash content of chapaties prepared from two blends was attributed to the supplementation of soy flour.

Similarly, the crude fibre content of the blend 3 and blend 5 was found to be significantly more i.e. 1.47 and 1.16g/100g, respectively when compared to the control (0.79g/100g) but the difference between the two blends was found to be non-significant. Sharma (2009) [14] observed that the test missi roti supplemented with 30% oats had 3% moisture, 0.9% ash, 16.9% crude protein, 3% fat and 5.4% crude fibre.
**Table 3**: Proximate composition of selected blends of *chapati* (g/100g on dry weight basis)

| Blends       | Flour combinations                      | Amount (g/100g) | Moisture | Total Ash | Crude Fibre | Crude Fat | Crude Protein | Carbohydrate | Energy (kcal) |
|--------------|-----------------------------------------|-----------------|----------|-----------|-------------|-----------|---------------|--------------|---------------|
| Blend 3      | Whole wheat flour+Soybean               | 75+25           | 1.71±0.05| 2.4±0.06  | 1.47±0.08   | 6.08±0.25 | 16.09±0.06    | 72±0.12      | 408           |
| Blend 5      | Whole wheat flour +Barley +Soybean      | 50+25+25        | 1.63±0.13| 2.55±0.06 | 1.16±0.20   | 7.65±0.13 | 16.88±0.16    | 70±0.03      | 417           |
| Control      | Whole wheat flour                       | 100             | 2.58±0.46| 1.45±0.09 | 0.79±0.25   | 1.66±0.00 | 11.18±0.59    | 82±0.29      | 389           |
| CD at 5%     |                                         |                 | 0.82     | 0.21      | 0.57        | 0.50      | 1.05          | 0.55         | 4.25          |

The fat content of blend 3 and blend 5 was found to be significantly more when compared to the control. The crude protein content of blend 3 and blend 5 was significantly (*p<0.05*) more i.e. 16.09 and 16.88g/100g as compared to the control. (11.18g/100g) but no significant difference was found between two blends. The increase in fat and protein content was due to the incorporation of soy flour.

The available carbohydrates were 72.25 and 70.13g/100g in blend 3 and 5 which were significantly lower than control (82.43g/100g). The purpose to develop the products from these blends was to lower the carbohydrate content and ultimately the lower GI. The energy content of *chapattis* from blend 3 and blend 5 was 408 and 417 Kcal/100g.

The glycemic index of control and test *chapati* is presented in Table 4.

**Table 4**: Glycemic index of control and test products

| Product        | Quantity administered (grams) | GI     | GI Category |
|----------------|-------------------------------|--------|-------------|
| Chapati (control) | 92                            | 61.24  | Moderate    |
| Chapati (test)   | 104                           | 51.95  | Low         |

**Plate 1**: *Chapati*

The lowering of glycemic index in *chapati* can be attributed to the addition of legumes which contains 5-10% more amylose compared to cereal grains and this amylose is more resistant to digestion. With the incorporation of legumes, the protein content had increased and higher amount of proteins may
physically encapsulate starch, preventing the enzyme access (Holm et al. 1989) [6]. Apart from this the crude fibre had also increased in test chapati. Dietary fibre inhibits starch digestibility by increasing the viscosity of intestinal contents and slow down the absorption of carbohydrates from the food (Wolever 1990) [10].

Table 5 displays that the mean GI and GL of the supplemented chapati was significantly lower as compared to the control chapati. Anything with GI value of 70 or more is a high GI food, moderate GI foods ranged from 56 to 69 and low GI foods have scores from 0 to 55 (Foster Powell et al. 2002) [6]. Whole wheat based chapati comprising of wheat flour, barley flour and soy flour (50, 25 and 25%) with 51.95 glycemic index had 9.29% lower GI units when compared with control. It would have importance in north India where wheat is the staple food. Increase in protein and crude fiber and decrease in carbohydrates were responsible for lowering the glycemic value of the developed chapati. The developed chapati can be included in the regular diets of diabetics for the management of diabetes and to avoid any further complications.

Conclusion

The present study was conducted to develop the low GI chapati (Indian flat bread) and to evaluate the acceptability, nutritional composition and glycemic index of it. Oat, barley, soybean and chickpea flour were incorporated in the whole wheat flour to make chapati, by making 10 combinations of these flours. Ten samples of each product were prepared including a control. Maximum scores for colour and appearance (8.06) were observed in blend of wheat flour, barley flour and soy flour in the proportion of 50, 25 and 25%. The results of proximate analysis revealed a significantly \( p<0.05 \) higher fibre, protein and a significantly \( p<0.05 \) lower carbohydrate content in the developed chapati. The Glycemic Index of chapati prepared from whole wheat flour, barley and soy flour (50, 25 and 25%), had significantly \( p<0.05 \) lower GI (52) with 9.29% lower GI units. Thus it could be a healthy alternative for diabetic patients to manage the disease and to prevent further complications.

Fig 3: Mean blood glucose curves after consumption of glucose, control chapati and test chapati containing 50g carbohydrates

| Product         | GI  | Normal serving size (g) | Available carbohydrate (g) | Glycemic load (GL) |
|-----------------|-----|------------------------|----------------------------|--------------------|
| Chapati (control) | 61.24 | 40                      | 22                         | 13.47              |
| Chapati (test)  | 51.95 | 40                      | 19                         | 9.87               |

Acknowledgements

We thank the volunteers who participated in the GI testing study. The authors would like to thank the Head, department of Food and Nutrition for providing the research facilities. There are no conflicts of interest any with other organisation.

References

1. AOAC. Official methods of analysis. Association of official analytical chemist, Washington, DC, 2000.
2. Aston LM. Glycemic Index and metabolic disease risk. Proc Nutr Soc. 2006; 65:125-34.
3. Augustin LS, Franceshi S, Jenkins DJA. Glycemic index in chronic disease: a review. Eur J Clin Nutr. 2002; 56:1049-71.
4. Foster Powell K, Holt SHA, Brand Miller JC. International table of glycemic index and glycemic load values. Am J Clin Nutr. 2002; 76:5-56.
5. Gross LS, Li L, Ford ES, Liu S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: An Ecologic Assessment. Am J Clin Nutr. 2004; 79:774-79.
6. Holm J, Hagander B, Bjovk I, Eliasson A, Lundquist I. The effect of various thermal processes on the glycaemic response to whole grain wheat products in humans and rats. American I Nutr. 1989; 10:1531-33.
7. International Diabetes Federation. IDF Diabetes Atlas. 7th edition. Brussels, Belgium: International Diabetes Federation. 2015; 2015:55-63.
8. International Diabetes Federation. IDF Diabetes Atlas. 6th ed. Brussels, Belgium: International Diabetes Federation, 2013.
9. International Diabetes Federation. IDF Diabetes Atlas. 8th ed: International Diabetes Federation, 2017.
10. Jenkins DJA, Augustin LSA, Esfahani A, Kendall CWC. Glycemic index, dietary fiber, and human health: an historical perspective. Dietary fibre: an international perspective for harmonization of health benefits and energy values, 2008, 137-49.
11. Liu S, Willet WC, Stampfer MJ. A prospective study of dietary Glycemic load, carbohydrate intake and risk of coronary heart disease in US women. Am J Clin Nutr. 2000; 71:1455-61.
12. Salmeron J, Ascherio A, Rimm EB. Dietary Fiber, Glycemic load and risk of NIDDM in men. Diabetes Care. 1997a; 20:545-50.
13. Salmeron J, Manson JE, Stampfer MJ. Dietary fiber, glycemic load and risk of non-insulin dependent diabetes mellitus in women. JAMA, 1997b; 277:472-77.
14. Sharma V. Organolectic and nutritional evaluation of fibre rich products from oats. M, Sc Thesis, Punjab Agricultural University, Ludhiana, Punjab, 2009.
15. Venn BJ, Green TJ. Glycemic index and glycemic load: measurement issues and their effect on diet-disease relationships. Eur J Clin Nutr. 2007; 1:1S22-31.
16. Wolever TM. The glycemic index. World Rev Nutr Diet. 1990; 62:120-85.
17. Wolever TM, Jenkins DJA. The use of glycemic index in predicting the blood glucose response to mixed meals. Am J Clin Nutr. 1986; 43:163-172.