Safety and efficacy of single-agent docetaxel (Taxotere) administered weekly in non-small cell lung carcinoma patients in Korea: An observational study

Sun Min Lim1,2*, Byeong Bae Park3*, Keun-Chil Park4, Hoon-Kyo Kim5, Jong Seok Lee6, Sung Hwa Bae7, Seung-Sei Lee8, Jin-Hyoung Kang9, Se-Hoon Park4, Gyeong-Won Lee10, Hyo-Rac Lee11, Jae Hong Seo12, Yong Tae Kim11, Sung Hyun Yang13 & Joo-Hang Kim1

1 Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Seoul, Korea
2 Division of Medical Oncology, Department of Internal Medicine, CHA University Bundang Medical Center, Seongnam, Korea
3 Hanyang University College of Medicine, Division of Hematology-Oncology, Department of Internal Medicine, Seoul, Korea
4 Samsung Medical Center, Department of Hematology-Oncology, Seoul, Korea
5 St. Vincent Hospital, Department of Oncology, Gyeonggi-do, Korea
6 Seoul National University Bundang Hospital, Gyeonggi-do, Korea
7 Daegu Catholic University Hospital, Daegu, Korea
8 Kangbuk Samsung Medical Center, Seoul, Korea
9 The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul, Korea
10 Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Gyeongnam, Korea
11 NHIC Ilsan Hospital, Gyeonggi-do, Korea
12 Korea University Guro Hospital, Seoul, Korea
13 Korea Cancer Center Hospital, Seoul, Korea

Keywords
Carcinoma; docetaxel; non-small cell lung cancer; safety.

Correspondence
Joo-Hang Kim, Division of Medical Oncology, Department of Internal Medicine, CHA University Bundang Medical Center, Seongnam, Korea.
Tel: +82 10 8765 6411
Fax: +82 31 780 3449
Email: kim123@cha.ac.kr

Abstract

Background: To investigate the efficacy, safety, and tolerability of weekly docetaxel treatment in advanced non-small cell lung cancer (NSCLC) patients in Korea.

Methods: This prospective observational study included Korean advanced NSCLC patients with Eastern Cooperative Oncology Group performance status <2 who received weekly monotherapy of docetaxel at a dose determined by the physician. Efficacy measurements included tumor response rate, overall survival (OS), progression-free survival, and one-year survival rate. Safety was analyzed through recorded incidences of adverse events (AEs), serious adverse events (SAEs), deaths, and other related safety parameters, along with their toxicity grades.

Results: Of 274 patients analyzed, one patient achieved a complete response and 42 partial responses; thus, the overall response rate was 15.7%. The OS rate at baseline and at one-year follow-up was 38.3% and 33.8%, respectively. AEs were reported in 229 (83.6%) patients. The most frequently reported hematologic AE of grade ≥3 was a decrease in neutrophils, with 6.6% of the patients developing neutropenia. In non-hematologic AEs of grade ≥3, the most common were infection with unknown absolute neutrophil count and death not associated with Common Terminology Criteria for Adverse Events (CTCAE) (4.7% each). The most common SAE reported was death, not associated with CTCAE (7.3%).

Conclusions: In Korean patients, the weekly regimen of docetaxel monotherapy was safe and efficacious against advanced NSCLC.

Introduction

Lung cancer is the leading cause of cancer-related mortality, responsible for about 1.4 million deaths per year worldwide.1 With an estimated 1.6 million new cases per year constituting about 13% of all newly diagnosed cancers, lung cancer is the most prevalent of all cancers, with the majority of these cases now occurring in the developing world.1,2 Approximately 85% of lung cancers are classified as non-small cell lung cancer (NSCLC), which histologically comprises adenocarcinoma, squamous cell carcinoma, large-cell carcinoma, and not otherwise specified carcinomas.3,4 Despite significant
progress in imaging and diagnostic techniques, early detection of NSCLC has been unsuccessful, with as high as 70% of the cases presenting locally advanced or metastatic disease. Historically, the standard therapy for treatment of advanced NSCLC has been platinum-based doublet therapy in combination with taxanes, antimetabolites, or vinca alkaloids, with response rates between 20–30% and median survival of eight to 10 months. However, a substantial proportion of patients ultimately progress and should be offered second-line treatment.

Docetaxel (Taxotere, Sanofi-Aventis Korea Co. Ltd) is a semi-synthetic taxane that is clinically used as a chemotherapeutic agent against many cancers, such as breast, head and neck, gastric, ovarian, and prostate cancers. Docetaxel is also indicated for use as a single agent in patients with locally advanced and metastatic NSCLC and in whom prior platinum-based therapy has failed to elicit a favorable response. The recent guidelines from the American Society of Clinical Oncology have recommended docetaxel as a second-line therapy for patients with unresectable NSCLC.

The most extensively studied dose of docetaxel is 75 mg/m² administered every three weeks. This regimen, while demonstrating efficacy and tolerability, is often accompanied by incidences of grade 3/4 neutropenia. Docetaxel-induced myelosuppression and its related complications can be considerably serious in elderly patients. Docetaxel is associated with increased hematologic toxicity, infection, and treatment-related mortality when given at a higher dose of 100 mg/m² in patients who have received prior chemotherapy. With the intent of reducing these toxic side effects, alternative regimens consisting of lower doses of docetaxel have been evaluated in patients with NSCLC. Randomized phase II and III trials of docetaxel administered weekly show a significantly improved toxicity profile in comparison with the standard tri-weekly regimen. Apart from a favorable overall toxicity profile, these trials also report no incidences of alopecia, pulmonary toxicity, fever, diarrhea, infection, or fluid retention, and a lower incidence of grade 3/4 or febrile neutropenia. A meta-analysis conducted by Bria et al., based on six randomized controlled trials comparing the two regimens of docetaxel, concluded that weekly docetaxel has an advantage in terms of reducing incidences of neutropenia. Similarly, other clinical trials have demonstrated the efficacy and safety of a weekly regimen of docetaxel in advanced metastatic NSCLC and breast cancer. A trial comparing a weekly versus a tri-weekly regimen demonstrated that while global quality of life (QOL) was the same for both groups, parameters such as cognitive function, pain, appetite, and hair loss showed improvement in the patients who received a weekly regimen of docetaxel. Thus, the tolerability of docetaxel as a single agent administered weekly for NSCLC could be particularly helpful in elderly patients or in patients with a low performance status, as well as for use in long-term maintenance therapy.

This study aimed to investigate the efficacy, safety, and tolerability of weekly docetaxel treatment in NSCLC patients in Korea. This study was observational by nature and designed to record trends in NSCLC treatment in Korea. Therefore, the independent decisions made by the physicians in optimizing therapy reflect the real-life scenario of the treatment of advanced NSCLC in Korea.

Methods

Study population

This observational study was designed to evaluate the safety, efficacy, and tolerability of docetaxel in Korean advanced NSCLC patients. The purpose of this subanalysis was to evaluate these parameters in a weekly regimen of docetaxel monotherapy.

Between November 2005 and October 2007, patient recruitment was carried out at 14 centers in Korea. Patients with advanced NSCLC who had been administered weekly docetaxel at a dose determined by physicians and who had provided consent for the release of their data, were included for evaluation in this study. Patients who had received combination therapy, with an Eastern Cooperative Oncology Group performance status (ECOG PS) >2, or whose data collection forms could not be retrieved, were excluded from the analysis. Docetaxel dose and schedule was determined at the discretion of the treating physician.

The baseline characteristics, including demographic data, medical history, disease characteristics, status of prior chemotherapy, and dose of docetaxel monotherapy, were collected. Tumor response was evaluated by Response Evaluation Criteria in Solid Tumors (RECIST) and classified as complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD). The overall response rate (ORR) was calculated as the percentage of CR and PR reported in the total number of patients. Other parameters, such as number of treatment cycles, reasons for discontinuation of docetaxel, subsequent treatments after docetaxel, and patient status, were evaluated at the one-year follow-up visit. All adverse events (AEs) observed during the study were assessed by the National Cancer Institute’s Common Terminology Criteria for Adverse Events (CTCAE), version 3.0. Serious adverse events (SAEs) were defined as any AEs which caused death, were life-threatening, or which resulted in persistent or significant disability or incapacity.

All incidences of AEs and SAEs, along with their frequency and toxicity grades were analyzed and listed. Deaths and other related safety parameters were also reported.

The study protocol was in compliance with the recommendations of the 18th World Health Congress (Helsinki 1964).
and approved by the applicable institutional review boards. The study was conducted in compliance with Good Clinical Practice (GCP) guidelines, and international and Korean laws and regulations. Study monitoring for accuracy, completeness, and GCP compliance was performed by the sponsor, Sanofi-Aventis Korea Co. Ltd.

Statistical analyses

This analysis included all eligible patients. Descriptive statistics were provided. Continuous variables were summarized using mean, median, standard deviation (SD), inter-quartile range, and the minimum and maximum value. Categorical variables were summarized by counts and percentages. Overall survival (OS) and progression-free survival (PFS) were reported as Kaplan–Meier plots, and 95% confidence intervals (CIs) were calculated. Safety analysis was descriptive with AEs classified by body organ system and toxicity grade, and summarized by counts and percentages. SAS version 9.2 (SAS Institute Inc., Cary, NC, USA) was used for the analysis.

Results

Demographics and baseline characteristics

A total of 274 patients who had received docetaxel monotherapy at 14 centers in Korea were enrolled in the study. Table 1 demonstrates the characteristics of the study population at baseline. The majority of the patients (73.7%) were men and the average age of the patients (±SD) was 61.9 ± 10.6 years. The 60–69 year age group comprised 44.9% of the patients. More than 90% of the patients had received previous anticancer therapy. Of those patients who had received prior chemotherapy, a combination of gemcitabine and cisplatin was the most commonly prescribed first-line chemotherapy (30.2%). The most commonly prescribed second-line chemotherapeutic agent was gefitinib, used in 28.4% of patients. Past operative history and concomitant disease was reported in 134 (48.9%) patients, and hypertension was the most frequent concomitant disease, reported in 44% of these patients. Active smoking was reported in 60.6% of the patients, and the average number (±SD) of smoking years was 34.4 ± 12.4.

Eighty-five percent of the NSCLCs were diagnosed as stage IV, and adenocarcinoma was the most common histology, reported in 149 (54.4%) patients, followed by squamous cell carcinoma, reported in 101 (36.9%) patients.

Docetaxel prescription

Physicians prescribed according to their preference based on clinical evidence. The most commonly prescribed regimen was 30 mg/m² on days one, eight, and 15, (30.7%), followed

Table 1 Baseline patient characteristics

Total number of patients	N = 274
Demographics	
Males: n (%)	202 (73.7)
Age (years): mean ± SD	61.9 ± 10.6
BMI (kg/m²): mean ± SD	22.5 ± 3.0
BSA (m²): mean ± SD	1.6 ± 0.2
ECOG performance status: n (%)	
0	9 (3.3)
1	211 (77.0)
2	54 (19.7)
Medical history	
Active smoking: n (%)	166 (60.6)
Duration (years): mean ± SD	34.4 ± 12.4
Previous anticancer therapy: n (%)	
Chemotherapy	248 (90.5)
Chemotherapy + Radiotherapy	54 (19.7)
Chemotherapy + Radiotherapy + OP	42 (15.3)
N/A	56 (22.6)
Previous chemotherapy: n (%)	
No	46 (16.8)
1	40 (14.6)
2	72 (26.3)
3	109 (39.8)
>3	7 (2.6)
Previous first-line chemotherapy: n (%)	
Gemcitabine + Cisplatin	67 (24.5)
Paclitaxel + Carboplatin	45 (16.4)
Paclitaxel + Cisplatin	29 (10.6)
N/A	87 (31.8)
Previous second-line chemotherapy: n (%)	
Gefitinib	23 (8.4)
Pemetrexed	13 (4.7)
Paclitaxel + Carboplatin	7 (2.6)
N/A	191 (69.7)
Disease characteristics	
NSCLC Location: n (%)	
Right	146 (53.3)
Left	104 (38.0)
Both	24 (8.8)
Stage: n (%)	
III a	2 (0.7)
III b	40 (14.6)
IV	232 (84.7)
Histological type (overlap count): n (%)	
Adenocarcinoma	149 (54.4)
Squamous cell carcinoma	101 (36.9)
Large cell	7 (2.6)
Other	18 (6.6)
Docetaxel (Taxotere) weekly regimen: n (%)	
35 mg/m² (Day 1, 8, 15)	69 (25.3)
30 mg/m² (Day 1, 8, 15)	96 (35.2)
25 mg/m² (Day 1, 8, 15)	51 (18.7)
Other	57 (20.9)
N/A	1 (0.3)

Other† – see Supplementary Table S1. BMI, body mass index; BSA, body surface area; ECOG, Eastern Cooperative Oncology Group; NSCLC, non-small cell lung cancer; OP, operative procedure; SD, standard deviation.
Efficacy

Tumor response at baseline was assessed in 237 patients; 37 patients were non-evaluable. Table 2 summarizes the best response to weekly docetaxel, as judged by the physicians. Assessment was determined by RECIST criteria in most of the patients (215, 90.7%) while World Health Organization criteria were used in the remaining 22 (9.3%) patients. One (0.4%) patient achieved a CR and 42 (15.3%) patients showed PRs. The ORR was 15.7%. SD was reported in 73 (26.6%) patients, while 121 (44.2%) patients showed PD. Figure 1 depicts the Kaplan–Meier survival curves for OS and PFS at baseline and OS at one-year follow-up. The median OS time at baseline was seven months (95% CI 0.54–0.82) and the one-year survival rate was 38.3%. At one-year follow-up, median OS was 5.8 months (95% CI 0.43–0.71) and the one-year survival rate was 33.8%. The median PFS was 2.4 months (95% CI 0.20–0.27) and one-year PFS rate was 12.5%.

Table 3 shows the efficacy parameters, evaluated at the one-year follow-up visit. The average number (±SD) of treatment cycles of docetaxel that had been prescribed to the patients was 2.7 ± 1.6. Docetaxel monotherapy had been discontinued in 214 (78.1%) patients as a result of disease progression. At the time of the one-year follow-up visit, 195 (71.2%) of the patients had died and 49 (17.9%) had been lost to follow-up. After completion of docetaxel therapy, 129 (47.1%) patients received subsequent therapies; of these gefitinib (39.5%) and vinorelbine (4.7%) were the most common.

Safety

Overall, 229 (83.6%) patients experienced 828 AEs. All AEs are listed in Table 4. A total of 101 episodes of AEs of grade 3 or higher occurred in 75 patients, based on CTCAE version 3.0. A total of 75 SAEs were reported in 65 (23.7%) patients and 91 (33.2%) patients experienced 133 events, which were either an AE of grade 3 and above or a SAE.

Hematologic AEs were reported in 92 (33.6%) patients and the most commonly observed AE of grade 3 or higher was neutropenia, reported in 6.6% of the patients. Hematologic SAEs were reported in three patients; of these, two had developed neutropenia and one developed leukocytopenia. A total of 693 episodes of non-hematologic AEs were experienced by 216 (78.8%) patients, with grade 3 or higher in 59 (21.5%) patients. While the most frequent non-hematologic AEs were pain (21.9% patients), fatigue (19.0%), and anorexia (17.5%), grade 3 or higher infection with unknown absolute neutrophil count and death not associated with CTCAE, was observed in 4.7% of the patients. Non-hematologic SAEs were experienced in 62 (22.6%) patients, with the most common SAE being death not associated with CTCAE (7.3% patients), followed by infection with unknown absolute neutrophil count (5.8%).

During the study period, 20 (7.3%) patients discontinued docetaxel treatment as a result of toxicities. At the time of the one-year follow-up, 195 (71.2%) patients had died.
Discussion

This report presents the findings of an observational study conducted at various centers in Korea to evaluate the efficacy, safety, and tolerability of single-agent docetaxel given as a weekly regimen in advanced NSCLC patients. The goal of this study is to reflect the real-life scenario in the management of advanced NSCLC in general clinical practice in Korea.

Despite having shown favorable results in terms of efficacy and survival, the standard tri-weekly regimen is associated with significant toxicity issues, namely high-grade myelosuppression. With the goal of improving the tolerability of docetaxel, various regimens have been analyzed. Phase II trials that evaluated the weekly regimen of docetaxel and compared it to the standard regimen have demonstrated an improved outcome with regard to hematological toxicity. Moreover, a larger phase III trial comparing the two schedules did not show any difference in survival. The efficacy of weekly docetaxel in previous studies was comparable with that of the tri-weekly schedule, with ORRs of 10.5–24% and one-year survival rates of 6–58%. In our study, the ORR of weekly docetaxel was 15.7% and the one-year survival rate was 33.8%. These results from real-life practice are comparable to the findings of the

Figure 1 Kaplan–Meier survival curve for (a) overall survival (OS) at baseline, (b) OS at one-year follow-up, and (c) progression-free survival (PFS) at baseline.
aforementioned interventional trials, suggesting that the efficacy and safety of weekly docetaxel treatment observed in previous clinical trials can be replicated in the routine clinical management of advanced NSCLC.

Myelosuppression, as previously mentioned, is a major shortcoming of the standard docetaxel therapy, with high-grade neutropenia the most often reported hematological toxicity. The incidence of neutropenia in previously conducted clinical trials was in the range of 15.9–28%.12–15 In comparison, in our study, neutropenia of grade 3 or higher was reported in only 6.6% of the patients, followed by leukopenia in 1.1%. Thus, weekly docetaxel demonstrated an acceptable safety profile, somewhat better than seen in previously reported trials.

While the utility of standard platinum-based therapies is limited, novel molecular targeted agents and long-term maintenance therapy are currently being investigated for improving the survival outcome for NSCLC patients.22 Maintenance therapy refers to a long-term treatment paradigm following a favorable response (CR, PR, or SD) to front-line therapy. Thus, tolerability and manageable toxicity are major requirements for an agent to be used in maintenance therapy. Third-generation chemotherapeutic agents, including docetaxel, are being evaluated for their suitability in maintenance therapy or as single agents.22–24 In a phase III study, docetaxel (given as per standard regimen and limited to 6 cycles), administered immediately following gemcitabine and carboplatin as front-line therapy in advanced NSCLC, demonstrated a marked improvement in PFS and OS without any toxicity issues or deterioration of QOL.25

Total AE	AE of 3 ≥ grade			
N1 (%)	N1 (%)	N1 (%)		
Leucopenia (total WBC)	15 (5.47)	24	3 (1.09)	3
Neutropenia	40 (14.60)	69	18 (6.57)	26
Anemia	27 (9.85)	32	2 (0.73)	2
Thrombocytopenia	9 (3.28)	9	2 (0.73)	2
Lymphopenia	1 (0.36)	1	0 (0.00)	0
Total (A)	135	33		
Pain	60 (21.90)	79	0 (0.00)	0
Fatigue/asthenia	52 (18.98)	63	7 (2.55)	7
Anorexia	48 (17.52)	58	2 (0.73)	2
Alopecia	36 (13.14)	41	3 (1.09)	3
Cough	32 (11.68)	35	0 (0.00)	0
Dyspnea	31 (11.31)	33	6 (2.19)	6
Mucositis	29 (10.58)	36	1 (0.36)	1
Neuropathy	27 (9.85)	27	1 (0.36)	1
Diarrhea	26 (9.49)	27	1 (0.36)	1
Infection with unknown ANC	23 (8.39)	23	13 (4.74)	13
Death not associated with CTCAE term	22 (8.03)	22	13 (4.74)	13

N1 – No. of patients, N1 – No. of AEs, AE, adverse events; ANC, absolute neutrophil count; AST, aspartate aminotransferase; CTCAE, Common Terminology Criteria for Adverse Events; GI, gastrointestinal; GU, genitourinary; SGOT, serum glutamic oxaloacetic transaminase; WBC, white blood cells.
As more than half of the newly reported NSCLC cases occur in patients over the age of 65, NSCLC indeed poses a serious health concern to the elderly.24 Given the increased threat of toxicity resulting from age-related physiologic processes in elderly patients, the development of well-tolerated chemotherapeutic regimens is imperative for successful treatment.27 A phase III study carried out in elderly patients in Japan reported a slight advantage of docetaxel over vinorelbine as a single agent in terms of OS, PFS, and response rate.28 However, the results of this study were not significant enough to make them statistically relevant. This study has certain inherent limitations. The safety and efficacy profile of weekly docetaxel was observational by nature and, hence, needs to be verified in large scale randomized phase III trials. Survival analysis in this study was carried out at baseline and at one-year follow-up. While these data allow some degree of comparison with previous trials, it is inadequate to judge the utility in assessing long-term survival in patients. This study exclusively analyzed a particular regimen of docetaxel, namely, monotherapy, administered weekly. Inclusion of other regimens of docetaxel or other agents, either individually or in combination, would have allowed comparison and also provided an overview of the various treatment modalities for advanced NSCLC.

This study indicates a favorable safety, efficacy, and tolerability profile of single-agent weekly docetaxel in patients with advanced NSCLC. These results do offer promise for the utilization of a particular regimen of docetaxel in long-term maintenance therapy and in patients in whom tolerability of chemotherapy is a primary concern. Further extensive phase III studies are warranted.

Acknowledgments

Editorial assistance for preparing the manuscript was provided by Mr. Satyendra Shenoy from Sanofi-Aventis (India).

Disclosure

This study was sponsored by Sanofi-Aventis Korea Ltd.

References

1 International Agency for Research on Cancer. Lung cancer incidence and mortality worldwide in 2008. GLOBOCAN 2008 Fact Sheet 2008. [Cited 24 Mar 2011.] Available from URL: http://globoCAN.iarc.fr/factsheets/cancers/lung.asp.

2 American Cancer Society. Global cancer facts and figures. ACS; 2015. [Cited 5 Aug 2015.] Available from URL: http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/.

3 Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008; 83: 584–94.

4 Stinchcombe TE, Socinski MA. Current treatments for advanced stage non-small cell lung cancer. Proc Am Thorac Soc 2009; 6: 233–41.

5 Spira A, Ettinger DS. Multidisciplinary management of lung cancer. (Published erratum appears in N Engl J Med 2009; 360: 1917) N Engl J Med 2004; 350: 379–92.

6 Kelly K, Crowley J, Bunn PA Jr et al. Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small-cell lung cancer: A Southwest Oncology Group trial. J Clin Oncol 2001; 19: 3210–8.

7 Schiller JH, Harrington D, Belani CP et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002; 346: 92–8.

8 Azzoli CG, Baker SJr, Temin S et al. American Society of Clinical Oncology Clinical Practice Guideline update on chemotherapy for stage IV non-small-cell lung cancer. J Clin Oncol 2009; 27: 6251–66.

9 Fossella FV, DeVore R, Kerr RN et al. Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-small Cell Lung Cancer Study Group. J Clin Oncol 2000; 18: 2354–62.

10 Shepherd FA, Dancey J, Ramlau R et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 2000; 18: 2095–103.

11 Hainsworth JD. Practical aspects of weekly docetaxel administration schedules. Oncologist 2004; 9: 538–45.

12 Chen YM, Shih JF, Perng RP, Tsai CM, Whang-Peng J. A randomized trial of different docetaxel schedules in non-small cell lung cancer patients who failed previous platinum-based chemotherapy. Chest 2006; 129: 1031–8.

13 Gervais R, Ducolone A, Breton JL et al. Phase II randomised trial comparing docetaxel given every 3 weeks with weekly schedule as second-line therapy in patients with advanced non-small-cell lung cancer (NSCLC). Ann Oncol 2005; 16: 90–6.

14 Lai CL, Tsai CM, Chiu CH et al. Phase II randomized trial of tri-weekly versus days 1 and 8 weekly docetaxel as a second-line treatment of advanced non-small cell lung cancer. Jpn J Clin Oncol 2005; 35: 700–6.

15 Schuette W, Nagel S, Blankenburg T et al. Phase III study of second-line chemotherapy for advanced non-small-cell lung cancer with weekly compared with 3-weekly docetaxel. J Clin Oncol 2005; 23: 8389–95.

16 Bria E, Cuppone F, Ciccarese M et al. Weekly docetaxel as second line chemotherapy for advanced non-small-cell lung cancer: Meta-analysis of randomized trials. Cancer Treat Rev 2006; 32: 583–7.
17 Camps C, Massuti B, Jiménez A et al. Randomized phase III study of 3-weekly versus weekly docetaxel in pretreated advanced non-small-cell lung cancer: A Spanish Lung Cancer Group trial. Ann Oncol 2006; 17: 467–72.
18 Tabernero J, Climent MA, Lluch A et al. A multicentre, randomised phase II study of weekly or 3-weekly docetaxel in patients with metastatic breast cancer. Ann Oncol 2004; 15: 1358–65.
19 Gridelli C, Gallo C, Di Maio M et al. A randomised clinical trial of two docetaxel regimens (weekly vs 3 week) in the second-line treatment of non-small-cell lung cancer. The DISTAL 01 study. Br J Cancer 2004; 91: 1996–2004.
20 Abe T, Takeda K, Ohe Y et al. Randomized phase III trial comparing weekly docetaxel plus cisplatin versus docetaxel monotherapy every 3 weeks in elderly patients with advanced non-small-cell lung cancer: The intergroup trial JCOG0803/WJOG4307L. J Clin Oncol 2015; 33: 575–81.
21 Maemondo M, Inoue A, Sugawara S et al. Randomized phase II trial comparing carboplatin plus weekly paclitaxel and docetaxel alone in elderly patients with advanced non-small cell lung cancer: North Japan Lung Cancer Group Trial 0801. Oncologist 2014; 19: 352–3.
22 Mok TS, Ramalingam SS. Maintenance therapy in nonsmall-cell lung cancer: A new treatment paradigm. Cancer 2009; 115: 5143–54.
23 Bearz A, Garassino I, Cavina R et al. Pemetrexed single agent in previously treated non-small cell lung cancer: A multi-institutional observational study. Lung Cancer 2008; 60: 240–5.
24 Moro-Sibilot D, Vergnenegre A, Smit EF et al. Second-line therapy for NSCLC in clinical practice: Baseline results of the European SELECTTION observational study. Curr Med Res Opin 2010; 26: 2661–72.
25 Fidias PM, Dakhil SR, Lyss AP et al. Phase III study of immediate compared with delayed docetaxel after front-line therapy with gemcitabine plus carboplatin in advanced non-small-cell lung cancer. J Clin Oncol 2009; 27: 591–8.
26 Gridelli C, Perrone F, Monfardini S. Lung cancer in the elderly. Eur J Cancer 1997; 33: 2313–4.
27 Pallis AG, Fortpied C, Wedding U et al. EORTC elderly task force position paper: Approach to the older cancer patient. Eur J Cancer 2010; 46: 1502–13.
28 Kudoh S, Takeda K, Nakagawa K et al. Phase III study of docetaxel compared with vinorelbine in elderly patients with advanced non-small-cell lung cancer: Results of the West Japan Thoracic Oncology Group Trial (WJTOG 9904). J Clin Oncol 2006; 24: 3657–63.

Supporting information
Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Table S1 Different dosing regimens of docetaxel.