Research Article

Boundedness of Multilinear Calderón-Zygmund Operators on Grand Variable Herz Spaces

Hammad Nafis, Humberto Rafeiro, and Muhammad Asad Zaighum

1Department of Mathematics and Statistics, Riphah International University, I-14 Islamabad, Pakistan
2United Arab Emirates University, College of Sciences, Department of Mathematical Sciences, P.O. Box 15551, Al Ain, Abu Dhabi, UAE

Correspondence should be addressed to Humberto Rafeiro; rafeiro@uaeu.ac.ae

Received 3 January 2022; Revised 7 February 2022; Accepted 11 February 2022; Published 28 March 2022

Academic Editor: Douadi Drihem

Copyright © 2022 Hammad Nafis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we prove the boundedness of multilinear Calderón-Zygmund operators on product of grand variable Herz spaces. These results generalize the boundedness of multilinear Calderón-Zygmund operators on product of variable exponent Lebesgue spaces and variable Herz spaces.

1. Introduction

There has been increased interest in the study of multilinear singular integral operators in recent years. The class of multilinear singular integrals with standard Calderón-Zygmund kernels provides the foundation and starting point of research of the theory. Such a class of multilinear Calderón-Zygmund operators was introduced and first studied by Coifman and Meyer [1–3] and later by Grafakos and Torres [4]. For the boundedness and other properties of multilinear fractional integrals, we refer to, e.g., [5–8].

Variable Lebesgue spaces were introduced in [9], but stayed under the radar for a considerable amount of time. Apart from some previous sporadic episodes, the research boom on such spaces can be traced back to the foundational paper [10]. Since then, these spaces have attracted much attention of mathematicians, not only because of their connection with harmonic analysis but also due to their usefulness in application to a wide range of problems, see, e.g., [11]. The standard references to the general theory of variable Lebesgue spaces are [12, 13].

The classical definition of Herz spaces was introduced in [14]. Many studies can be found related to these spaces and its variations, which include variable Herz spaces, continual Herz spaces, and Herz spaces with variable smoothness and integrability. For details, see [15–21] and references therein.

Grand Lebesgue spaces on bounded sets, which proved to be useful in application to partial differential equations, were introduced in [22, 23]. In the last years, various operators of harmonic analysis have been intensively studied on grand spaces, see for instance [20, 24–32]. Grand Lebesgue sequence spaces were introduced recently in [33], where several operators of harmonic analysis were studied, e.g., maximal, convolutions, Hardy, Hilbert, and fractional operators.

In this paper, we prove the boundedness of multilinear Calderón-Zygmund operators on grand variable Herz spaces which were introduced in [34]. The present paper is organized in the following way. Apart from the introduction, in Section 2, we recall some definitions and results related to variable exponent spaces. Section 3 contains some details about multilinear Calderón-Zygmund kernels and the proof of the main result.

Notations.

(i) \(\mathbb{N} \) is the set of natural numbers and \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \)

(ii) \(\mathbb{Z} \) is the set of integers
2. Function Spaces with Variable Exponent

In this section, we recall definitions and results related to variable exponent Lebesgue spaces, variable Herz spaces, and grand variable Herz spaces.

2.1. Lebesgue Space with Variable Exponent. For the current section, we refer to [10–13, 35] unless and until stated otherwise. Let q be a real-valued measurable function on \mathbb{R}^n with values in $[1, \infty)$. For $X < \mathbb{R}^n$, we suppose that

$$1 \leq q^-(X) \leq q(X) \leq q^+(X) < \infty,$$

where $q^-(X) = \text{ess inf}_{x \in X} q(x)$ and $q^+(X) = \text{ess sup}_{x \in X} q(x)$. By $L^{q}(\mathbb{R}^n)$, we denote the space of measurable function f on \mathbb{R}^n such that

$$I_{q}(f) = \int_{\mathbb{R}^n} |f(x)|^{q(x)} \, dx < \infty.$$

It is a Banach space, see [13, 35], endowed with norm:

$$\|f\|_{q} = \inf \left\{ \eta > 0 : I_{q}(\frac{f}{\eta}) \leq 1 \right\}.$$

By q', we denote the conjugate exponent of q, defined by $q'(x) = q(x)/(q(x) - 1)$. In the sequel, we use log condition:

$$|q(x) - q(y)| \leq \frac{A}{\ln |x - y|}, |x - y| \leq \frac{1}{2}, x, y \in \mathbb{R}^n,$$

where $A = A(q) > 0$ does not depend on x, y; decay condition at 0:

$$|q(x) - q(0)| \leq \frac{A}{\ln |x|}, |x| \leq \frac{1}{2},$$

holds for some $q(0) \in (1, \infty)$; and A must satisfy the following condition:

$$|q(x) - q(\infty)| \leq \frac{A}{\ln (e + |x|)}.$$

We adopt the following notations:

(i) $L^{q}(\mathbb{R}^n) = \{ f : f \in L^{q}(K) \text{ for all compact subsets } K \subset \mathbb{R}^n \}$

(ii) $\mathcal{P}(\mathbb{R}^n)$ consists of all measurable functions q satisfying $q^+ > 1$ and $q^- < \infty$

(iii) $\mathcal{P}_0^{log}(\mathbb{R}^n)$ and $\mathcal{P}_\infty^{log}(\mathbb{R}^n)$ denote the classes of $q \in \mathcal{P}(\mathbb{R}^n)$ which satisfy (5) and (6), respectively.

(iv) $\mathcal{B}(\mathbb{R}^n)$ is the set of all $q \in \mathcal{P}(\mathbb{R}^n)$ for which M is bounded on $L^{q}(\mathbb{R}^n)$.

For the following lemma, we refer to, e.g., [12].

Lemma 1 (Generalized Hölder’s Inequality). Given $p, q \in \mathcal{P}(\mathbb{R}^n)$, define $r \in \mathcal{P}(\mathbb{R}^n)$ by $1/r(x) = 1/p(x) + 1/q(x)$. Then, there exists a constant c such that for all $f \in L^{p}(\mathbb{R}^n)$ and $g \in L^{q}(\mathbb{R}^n)$, $f g \in L^{r}(\mathbb{R}^n)$ and

$$\|fg\|_{r} \leq c \|f\|_{p} \|g\|_{q}.$$
where

\[\|f\|_{K^{q,p}_{\mathcal{S}}(\mathbb{R}^n)} = \left(\sum_{k \in \mathbb{Z}} 2^{kn} \|f X_k\|_{q^p}^p\right)^{1/p} . \] (12)

The nonhomogeneous Herz space \(K^{q,p}_{\mathcal{S}}(\mathbb{R}^n) \) is defined by

\[K^{q,p}_{\mathcal{S}}(\mathbb{R}^n) = \left\{ f \in L^{q_p}_{\text{loc}}(\mathbb{R}^n) : \|f\|_{K^{q,p}_{\mathcal{S}}(\mathbb{R}^n)} < \infty \right\} , \] (13)

where

\[\|f\|_{K^{q,p}_{\mathcal{S}}(\mathbb{R}^n)} = \left(\sum_{k \in \mathbb{N}_0} 2^{kn} \|f X_k\|_{q^p}^p\right)^{1/p} + \|f \chi_0(0,1)\|_{q^p} . \] (14)

For the boundedness of integral operators on Herz type spaces, we refer to, e.g., \([18, 19, 36]\).

2.3. Grand Lebesgue Sequence Space. In this section, we recall the definition of grand Lebesgue sequence space. For the following definition and statements, see \([33]\). In what follows, \(\mathcal{S} \) stands for one of the sets \(\mathbb{Z}^n, \mathbb{Z}, \mathbb{N}, \) and \(\mathbb{N}_0 \).

Definition 4. Let \(1 \leq p < \infty \) and \(\theta > 0 \). The grand Lebesgue sequence space \(\mathcal{S}^{p,\theta} \) is defined by the norm

\[\|x\|_{\mathcal{S}^{p,\theta}(\mathcal{S})} = \sup_{\varepsilon > 0} \left(\varepsilon \sum_{k \in \mathcal{S}} |x_k|^{p(1+\varepsilon)} \right)^{1/(p+1+\varepsilon)} , \] (15)

\[= \sup_{\varepsilon > 0} \varepsilon^{\theta/(p(1+\varepsilon))} \|x\|_{\mathcal{S}^{p,\theta}(\mathcal{S})} . \]

2.4. Grand Variable Herz Space. Following \([34]\), we now introduce the grand variable Herz spaces.

Definition 5. Let \(\alpha \in L^{\infty}(\mathbb{R}) \), \(1 \leq p < \infty \), \(q : \mathbb{R}^n \rightarrow [1, \infty) \), and \(\theta > 0 \). The homogeneous grand variable Herz space is defined by

\[K_{\mathcal{S}^{p,\theta}}(\mathbb{R}^n) = \left\{ f \in L^{q_p}_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) : \|f\|_{K_{\mathcal{S}^{p,\theta}}(\mathbb{R}^n)} < \infty \right\} , \] (16)

where

\[\|f\|_{K_{\mathcal{S}^{p,\theta}}(\mathbb{R}^n)} = \sup_{\varepsilon > 0} \left(\varepsilon \sum_{k \in \mathcal{S}} |f X_k|^{p(1+\varepsilon)} \right)^{1/(p+1+\varepsilon)} \]

\[= \sup_{\varepsilon > 0} \varepsilon^{\theta/(p(1+\varepsilon))} \|f\|_{K_{\mathcal{S}^{p,\theta}}(\mathbb{R}^n)} . \] (17)

The following lemma, see \([15]\), is helpful to estimate the norm of characteristics functions.

Lemma 6. Let \(q \in \mathcal{S}_{\infty}^{\log}(\mathbb{R}^n) \) and let \(R = B(0, r) \setminus B(0, (r/2)) \). If \(|R| \leq 2^{-n} \), then

\[\|f\|_{\mathcal{S}(\mathbb{R}^n)} = \|f\|_{\mathcal{S}_{\infty}^{\log}(\mathbb{R}^n)} , \] (18)

with the implicit constants independent of \(r \) and \(x \in R \).

The left-hand side equivalence remains true for every \(|R| > 0 \) if we assume, additionally, that \(q \in \mathcal{S}_{\infty}^{\log}(\mathbb{R}^n) \) and \(\mathcal{S}_{\infty}^{\log}(\mathbb{R}^n) \).

3. Boundedness of Multilinear Calderón-Zygmund Operators

Consider the multilinear operator \(T \) of the form

\[T(f_1, \ldots, f_m)(x) = \int_{\mathbb{R}^n} K(x, x_1, \ldots, x_m) f_1(x_1) \cdots f_m(x_m) \, dy_1 \cdots dy_m , \] (19)

where \(x \notin \bigcap_{j=1}^m \text{spt}(f_j) \) and \(f_1, \ldots, f_m \in L^{\infty}_{\text{c}}(\mathbb{R}^n) \), the space of compactly supported functions. Let \(K(x, y_1, \ldots, y_m) \) be a locally integrable function defined away from the diagonal \(x = y_1 = \cdots = y_m \in (\mathbb{R}^n)^{m+1} \), which satisfies the size estimate

\[|K(x, y_1, \ldots, y_m)| \leq \frac{c}{(|x - y_1| + |x - y_2| + \cdots + |x - y_m|)^m} , \] (20)

for some \(c > 0 \) and all \((x, y_1, \ldots, y_m) \in (\mathbb{R}^n)^{m+1} \) with \(x \neq y_j \) for some \(j \). For smoothness, assume that for some \(\epsilon > 0 \),

\[|K(x, y_1, \ldots, y_m) - K(x', y_1, \ldots, y_m)| \leq \frac{c|x - x'|^{1/m}}{(|x - y_1| + \cdots + |x - y_m|)^m} , \] (21)

provided that \(|x - x'| \leq 1/2 \max \{|x - y_1|, \ldots, |x - y_m|\} \) and

\[|K(x, y_1, \ldots, y_j, \ldots, y_m) - K(x, y_1, \ldots, y_j', \ldots, y_m)| \leq \frac{c|y_j - y_j'|^{1/m}}{(|x - y_1| + \cdots + |x - y_m|)^m} , \] (22)

whenever \(|y_j - y_j'| \leq 1/2 \max \{|x - y_1|, \ldots, |x - y_m|\} \) for all \(j \in \{1, \ldots, m\} \).

Such kernels are called Calderón-Zygmund kernels and the class of all functions satisfying (20), (21), and (22) with parameters \(m, c, \) and \(\epsilon \) will be denoted by \(m-\text{CZK}(c, \epsilon) \), compare \([4]\). We say that \(T \) be as in (19) is an \(m \)-linear Calderón-Zygmund operator, if

(i) The related kernel belongs to \(m-\text{CZK}(c, \epsilon) \)

(ii) \(T \) is bounded from \(L^{q_1} \times \cdots \times L^{q_m} \) to \(L^q \) for some \(1 < q_1, q_2, \ldots, q_m < \infty \) and \(1/q = 1/q_1 + \cdots + 1/q_m \).

Grafakos and Torres \([4]\) proved the boundedness of \(T \) from \(L^{q_1} \times \cdots \times L^{q_m} \) to \(L^{\infty} \) for some \(1 < q_1, q_2, \ldots, q_m < \infty \), and \(1/q = 1/q_1 + \cdots + 1/q_m \), and from \(L^1 \times \cdots \times L^1 \) to \(L^{1/m} \).
The boundedness of the multilinear Calderón-Zygmund operator T on variable exponent Lebesgue spaces was proved in [37], as stated below.

Lemma 7. Let $q_1 \in B(R^n)$, $i \in I, m$, $q \in B^\text{log}_0(R^n)$ with $1/q(x) = 1/q_1(x) + \cdots + 1/q_m(x)$, and $(qs')' \in B(R^n)$ for some $0 < s < q'$. Then, the m-linear Calderón-Zygmund operator T is bounded on the product of variable exponent Lebesgue spaces. Moreover,

$$\left\| T \left(\bar{f} \right) \right\|_{q(\cdot)} \leq \prod_{i=1}^m \left\| f_i \right\|_{q_i(\cdot)},$$

with the constant C independent of $\bar{f} = (f_1, \ldots, f_m)$.

We now state and prove the boundedness of multilinear Calderón-Zygmund operator on grand variable Herz spaces.

Theorem 8. Let $q_i \in B(R^n)$, $i \in I, m$, $q, q_i \in B^\text{log}_0(R^n) \cap B^\text{log,0}(R^n)$ such that $q_i(0) \leq q_i(\infty)$, $1/q(x) = 1/q_1(x) + \cdots + 1/q_m(x)$, $I < q'_i < q'_i < \infty$, and $(qs')' \in B(R^n)$ for some $0 < s < q'$. Let $\theta > 0$, $1 < p_i < \infty$, and $q_i \in L^\infty(R)$ be log-Hölder continuous both at the origin and at infinity for $i \in I, m$ with

$$-n/q_i(\infty) < \alpha_i(0) \leq \alpha_i(\infty) < (1 - 1/q_i(0)).$$

Suppose that $a(x) = \sum_{i=1}^m q_i(x)$ and $1/p = \sum_{i=1}^m 1/p_i$. Then, the m-linear Calderón-Zygmund operator T is bounded on the product of grand variable Herz spaces. Moreover,

$$\left\| T \left(\bar{f} \right) \right\|_{K^a(\eta,p)(R^n)} \leq \prod_{i=1}^m \left\| f_i \right\|_{K^{a_i}(\eta,p_i)(R^n)},$$

with the constant $C > 0$ independent of $\bar{f} = (f_1, \ldots, f_m)$.

Proof. We restrict ourselves to $m = 2$, the general case following in a similar manner. Defining $f_\varphi(x) = f_1(x) \chi_{R_\varphi}(x)$ and $f_\sigma(x) = f_2(x) \chi_{R_\sigma}(x)$, we decompose the component functions of \bar{f} as

$$f_1(x) = \sum_{\varphi \in \mathbb{Z}} f_\varphi(x), f_2(x) = \sum_{\sigma \in \mathbb{Z}} f_\sigma(x).$$

For future usage, we divide \mathbb{Z} into the following sets

$$L_k := \{ n \in \mathbb{Z} \mid n \leq k - 2 \},
M_k := \{ n \in \mathbb{Z} \mid k - 1 \leq n \leq k + 1 \},
N_k := \{ n \in \mathbb{Z} \mid n \leq k + 2 \},$$

and, for X and Y arbitrary subsets of \mathbb{Z}, we define

$$v_\varphi^e(X, Y) := \left\| 2^{|k|} \sum_{q \in X \times Y} Tf_\varphi \right\|_{q(\cdot)} \text{ and } v_\varphi(X, Y) := v_\varphi^e(X, Y).$$

From Definition 5 and (26), we have

$$\left\| T(f_1, f_2) \right\|_{k^a(\eta,p)(\mathbb{R}^n)} \leq \sup_{\varepsilon > 0} \left(\varepsilon^\frac{\theta}{\varepsilon} \sum_{k \in \mathbb{Z}} (2^{|k|})^{1/p(|1+\varepsilon|)} \right)^{1/p(1+\varepsilon)}$$

$$\leq \sup_{\varepsilon > 0} \left(\varepsilon^\frac{\theta}{\varepsilon} \sum_{k \in \mathbb{Z}} \sum_{\varphi \in \mathbb{Z}} (2^{|k|})^{1/p(|1+\varepsilon|)} \right)^{1/p(1+\varepsilon)}$$

$$\leq \sum_{j=1}^q I_j,$$

where

$$I_j := \sup_{\varepsilon > 0} \left(\varepsilon^\frac{\theta}{\varepsilon} \sum_{k \in \mathbb{Z}} (2^{|k|})^{1/p(|1+\varepsilon|)} \right)^{1/p(1+\varepsilon)},$$

with $ \lambda_1 = v_\varphi^e(L_1, L_1)$, $\lambda_2 = v_\varphi^e(L_1, M_1)$, $\lambda_3 = v_\varphi^e(L_1, N_1)$, $\lambda_4 = v_\varphi^e(M_1, L_1)$, $\lambda_5 = v_\varphi^e(M_1, M_1)$, $\lambda_6 = v_\varphi^e(M_1, N_1)$, $\lambda_7 = v_\varphi^e(N_1, L_1)$, $\lambda_8 = v_\varphi^e(N_1, M_1)$, and $\lambda_9 = v_\varphi^e(N_1, N_1)$.

It is necessary to estimate I_1, I_2, I_3, I_5, I_6, and I_9, since I_4, I_7, and I_8 can be obtained in a similar manner as I_2, I_3, and I_6, respectively. Estimation for I_1: splitting $\mathbb{Z} = \mathbb{Z}_- \cup N_0$ and by the asymptotic $2^{k\alpha(x)} = 2^{k\alpha(0)} (x \in R_\varphi$ and $k < 0)$ and $2^{k\alpha(x)} = 2^{k\alpha(\infty)} (x \in R_k$ and $k \geq 0)$, we get

$$I_1 \leq \sup_{\varepsilon > 0} \left(\varepsilon^\frac{\theta}{\varepsilon} \sum_{k \in \mathbb{Z}} (2^{|k|})^{p(|1+\varepsilon|)} v_\varphi(L_k, L_k)^{p(|1+\varepsilon|)} \right)^{1/p(1+\varepsilon)}$$

$$+ \sup_{\varepsilon > 0} \left(\varepsilon^\frac{\theta}{\varepsilon} \sum_{k \in \mathbb{Z}} (2^{|k|})^{p(|1+\varepsilon|)} v_\varphi(L_k, L_k)^{p(|1+\varepsilon|)} \right)^{1/p(1+\varepsilon)}$$

$$= I_{11} + I_{12}.$$
yielding

\[
|T(f, f_\alpha)(x)| \leq \int_{B(x, r)} \int_{B(y, r)} |f_\alpha(y_1) - f_\alpha(y_2)| dy_1 dy_2 \\
\leq 2^{-2k_1} \int_{B(x, r)} |f_\alpha(y_1)| dy_1 \int_{B(y, r)} |f_\alpha(y_2)| dy_2.
\]

From estimate (35), Hölder’s inequality, \(1/q(x) = 1/q_1(x) + 1/q_2(x)\), and Lemma 2, we obtain

\[
v_k(L_k, L_k) \leq \sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|X_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)} \|X_\alpha\|_{q_1(\cdot)} \|f_\alpha\|_{q_1(\cdot)}
\leq \sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} 2^{n(q_1(\cdot))} \|f_\alpha\|_{q_1(\cdot)} 2^{n(q_1(\cdot))} \|f_\alpha\|_{q_1(\cdot)}
\leq \left(\sum_{q \in Z} \sum_{\alpha \in Z} 2^{(k-q_1(n(q_1(\cdot)) - n(\alpha_1(\cdot))))} \|f_\alpha\|_{q_1(\cdot)} \right) \left(\sum_{q \in Z} \sum_{\alpha \in Z} 2^{(k-q_1(n(q_1(\cdot)) - n(\alpha_1(\cdot))))} \|f_\alpha\|_{q_1(\cdot)} \right)
\]

(36)

Taking into account the previous estimate for \(v_k(L_k, L_k)\), the equality \(1/p = 1/p_1 + 1/p_2\), and Hölder’s inequality, we have

\[
I_{11} \leq \sup_{e > 0} \left(e^\theta \sum_{k \in Z} \left(\sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|X_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)} \right)^{1/p_1(1+e)} \right)
	imes \sup_{e > 0} \left(e^\theta \sum_{k \in Z} \left(\sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)} \right)^{1/p_1(1+e)} \right)
= I_{111} I_{112}.
\]

(37)

By Hölder’s inequality, Fubini’s theorem for series, \(2^{-p_1(1+e)} < 2^{-p_1}\), and defining \(b_1 = n/q_1(0) - n + \alpha_1(0) < 0\), we obtain

\[
I_{111} \leq \sup_{e > 0} \left(e^\theta \sum_{k \in Z} \left(\sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|X_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)} \right)^{1/p_1(1+e)} \right)
	imes \left(\sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)} \right)^{1/p_1(1+e)}
\leq \sup_{e > 0} \left(e^\theta \sum_{k \in Z} \sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)} \right)^{1/p_1(1+e)}
\leq \sup_{e > 0} \left(e^\theta \sum_{k \in Z} \sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)} \right)^{1/p_1(1+e)}
\leq \sup_{e > 0} \left(e^\theta \sum_{k \in Z} \sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)} \right)^{1/p_1(1+e)}
\]

(38)

The estimate \(I_{112} \leq \|f_1\|_{K_{p_1(1+e)}(X)} \|f_2\|_{K_{p_1(1+e)}(X)}\) is obtained, mutatis mutandis, via the estimation for \(I_{111}\). With these estimates at hand, we obtain

\[
I_{11} \leq \|f_1\|_{K_{p_1(1+e)}(X)} \|f_2\|_{K_{p_1(1+e)}(X)}.
\]

(39)

To estimate \(I_{12}\), we split as follows

\[
I_{12} \leq \sup_{e > 0} \left(e^\theta \sum_{k \in Z} \sum_{q \in Z} \sum_{\alpha \in Z} T(f, f_\alpha)(X_{q_1(\cdot)}) \right)^{1/p_1(1+e)}
+ \sup_{e > 0} \left(e^\theta \sum_{k \in Z} \sum_{q \in Z} \sum_{\alpha \in Z} T(f, f_\alpha)(X_{q_1(\cdot)}) \right)^{1/p_1(1+e)}
= I_{121} + I_{122}.
\]

(40)

The estimate \(I_{122}\) follows in similar manner as in \(I_{11}\) with simply replaced \(a_1(0)\) by \(a_1(\infty)\) and used the fact \(q_1(0) \leq q_1(\infty)\).

For estimate \(I_{121}\), by Hölder’s inequality, Lemma 2, and the inequality \(q_1(0) < q_1(\infty)\), we obtain

\[
v_k(Z_-, Z_-) \leq \sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|X_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)}
\leq \sum_{q \in Z} \sum_{\alpha \in Z} 2^{-2k_1} \|f_\alpha\|_{q_1(\cdot)} \|f_\alpha_X\|_{q_1(\cdot)}
\leq \left(\sum_{q \in Z} \sum_{\alpha \in Z} 2^{(k-q_1(n(q_1(\cdot)) - n(\alpha_1(\cdot))))} \|f_\alpha\|_{q_1(\cdot)} \right)^{1/p_1(1+e)}
\leq \left(\sum_{q \in Z} \sum_{\alpha \in Z} 2^{(k-q_1(n(q_1(\cdot)) - n(\alpha_1(\cdot))))} \|f_\alpha\|_{q_1(\cdot)} \right)^{1/p_1(1+e)}
\]

(41)

From the estimate of \(v_k(Z_-, Z_-)\), the equality \(1/p = 1/p_1 + 1/p_2\), and Hölder’s inequality, we have

\[
I_{121} \leq \sup_{e > 0} \left(e^\theta \sum_{k \in Z} \sum_{q \in Z} \sum_{\alpha \in Z} 2^{(k-q_1(n(q_1(\cdot)) - n(\alpha_1(\cdot))))} \|f_\alpha\|_{q_1(\cdot)} \right)^{1/p_1(1+e)}
\times \left(\sum_{k \in Z} \sum_{q \in Z} \sum_{\alpha \in Z} 2^{(k-q_1(n(q_1(\cdot)) - n(\alpha_1(\cdot))))} \|f_\alpha\|_{q_1(\cdot)} \right)^{1/p_1(1+e)}
= A_{11} A_{12}.
\]

(42)

Invoking the Hölder inequality and defining \(\xi_1 = n/q_1(0) - n + \alpha_1(\infty) < 0\), we have
\[
A_1 \leq \sup_{\epsilon > 0} \left[\epsilon^\theta \sum_{k \in \mathbb{Z}} \left(2^{(k-\varphi)q_0} \|f\|_{q_0(\cdot)} \right)^{\|p_{1+\epsilon}\|} \right] \times \left(\sum_{k \in \mathbb{Z}} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|f\|_{q_0(\cdot)} \right) \leq \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} \left(2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|f\|_{q_0(\cdot)} \right)^{\|p_{1+\epsilon}\|} \right) \leq \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} \left(2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|f\|_{q_0(\cdot)} \right)^{\|p_{1+\epsilon}\|} \right) \leq \left\| f \right\|_{\mathcal{K}_{q_0(\cdot)}^{p_{1+\epsilon}}(\mathbb{R}^n)}. \]

(43)

Similar estimate, with the corresponding changes, is obtained for \(A_2\), from which we obtain \(I_{12} \leq \left\| f_1 \right\|_{\mathcal{K}_{q_1(\cdot)}^{p_{1+\epsilon}}(\mathbb{R}^n)} \left\| f_2 \right\|_{\mathcal{K}_{q_2(\cdot)}^{p_{1+\epsilon}}(\mathbb{R}^n)}. \) Hence

\[
I_1 \leq \left\| f_1 \right\|_{\mathcal{K}_{q_1(\cdot)}^{p_{1+\epsilon}}(\mathbb{R}^n)} \left\| f_2 \right\|_{\mathcal{K}_{q_2(\cdot)}^{p_{1+\epsilon}}(\mathbb{R}^n)}. \]

(44)

Estimation for \(I_2\): as in the case of \(I_1\), we obtain the following estimate

\[
I_2 \leq \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|v_k(L_k, M_k)\|_{p_{1+\epsilon}} \right)^{1/\|p_{1+\epsilon}\|} + \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|v_k(L_k, M_k)\|_{p_{1+\epsilon}} \right)^{1/\|p_{1+\epsilon}\|} = I_{21} + I_{22}. \]

(45)

Notice that, for \(x \in R_q, y_1 \in R_{q_1}, y_2 \in R_{q_2}, \varphi \in L_k, \) and \(\sigma \in M_k\), we have

\[
|x - y_1| + |x - y_2| \geq |x - y_1| \geq 2 \geq 2^k, \]

(46)

from which, taking Lemma 2 into consideration and elementary computations, we obtain

\[
v_k(L_k, M_k) \leq \sum_{\varphi \in \mathbb{Z}} \sum_{\sigma \in M_k} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \left\| f_\varphi \right\|_{q_1(\cdot)}(k \in \mathbb{Z}_+). \]

(47)

From the estimate for \(v_k(L_k, M_k)\) and Hölder’s inequality, we get

\[
I_{21} \leq \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} \left(2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|f\|_{q_0(\cdot)} \right)^{\|p_{1+\epsilon}\|} \right) \times \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} \left(2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|f\|_{q_0(\cdot)} \right)^{\|p_{1+\epsilon}\|} \right) = I_{211} I_{212}. \]

(48)

Notice that \(I_{211} = I_{111}\). For the estimate \(I_{212}\), we reason as follows

\[
I_{212} \leq \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \left(\sum_{\varphi \in \mathbb{Z}} \left(2^{(k-\varphi)q_0(1+\epsilon)} \|f\|_{q_0(\cdot)} \right)^{\|p_{1+\epsilon}\|} \right)^{1/\|p_{1+\epsilon}\|} \right) \leq \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \left\| f \right\|_{\mathcal{K}_{q_0(\cdot)}^{p_{1+\epsilon}}(\mathbb{R}^n)} \right)^{1/\|p_{1+\epsilon}\|} \leq \left\| f \right\|_{\mathcal{K}_{q_0(\cdot)}^{p_{1+\epsilon}}(\mathbb{R}^n)}. \]

(49)

The term \(I_{22}\) is estimated by

\[
I_{22} \leq \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|v_k(L_k, M_k)\|_{p_{1+\epsilon}} \right)^{1/\|p_{1+\epsilon}\|} + \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|v_k(L_k, M_k)\|_{p_{1+\epsilon}} \right)^{1/\|p_{1+\epsilon}\|} = I_{221} + I_{222}. \]

(50)

To estimate \(I_{221}\), by Hölder’s inequality, Lemma 2, and the inequality \(q_1(0) \leq q_1(\infty)\), we have

\[
v_k(Z_k, M_k) \leq \sum_{\varphi \in \mathbb{Z}} \sum_{\sigma \in M_k} 2^{(k-\varphi)q_0(\cdot)(1+\epsilon)} f_{\sigma}(\cdot) \leq 2^{(k-\sigma)q_1(\cdot)(1+\epsilon)} f_{\sigma}(\cdot). \]

(51)

Thus using (51) and by Hölder’s inequality, we have

\[
I_{221} \leq \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} \left(\sum_{\varphi \in \mathbb{Z}} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|f\|_{q_0(\cdot)} \right)^{\|p_{1+\epsilon}\|} \right) \times \sup_{\epsilon > 0} \left(\epsilon^\theta \sum_{k \in \mathbb{Z}} \left(\sum_{\varphi \in \mathbb{Z}} 2^{k\|\varphi\|_{q_0(\cdot)}(1+\epsilon)} \|f\|_{q_0(\cdot)} \right)^{\|p_{1+\epsilon}\|} \right) = B_1 B_2. \]

(52)

The term \(B_1\) is equal to \(A_1\) and for \(B_2\) we use similar arguments as for \(I_{212}\), replacing \(a_1(0)\) with \(a_2(\infty)\).

For the term \(I_{222}\), by Hölder’s inequality and Lemma 2, we have

\[
v_k(0, k, M_k) \leq \sum_{\varphi = 0}^{k-2} 2^{(k-\varphi)q_1(\cdot)(1+\epsilon)} \|f\|_{q_1(\cdot)} \|f\|_{q_1(\cdot)} = I_{221} I_{222}. \]

Taking into consideration (53) and applying Hölder’s inequality, we get
from which, taking into account the elementary inequality \((2^k + 2^2)^{\alpha_2} \geq 2^{2\alpha_2} \), it follows

\[
|\mathcal{T}(f\phi, f\sigma)(x)| \leq 2^{-2k} \int_{\mathbb{R}^2} |f\phi(y_1)| |f\sigma(y_2)| dy_1 2^{-\sigma_2} \int_{\mathbb{R}^2} |f\sigma(y_2)| dy_2, \quad (x \in \mathcal{R}_k).
\]

(58)

By Hölder’s inequality, Lemma 2, \(q_2(0) \leq q_2(\infty) \), and \(k \in \mathbb{Z}_+ \), we obtain

\[
v_k(L_k, N_{-k}) \leq \sum_{q \in \mathbb{Z}_+} 2^{(k+\sigma)(n(q_1(0)-n) - n)} \| f\phi \|_{q_1(0)} \sum_{q \in \mathbb{Z}_+} 2^{(k+\sigma)m(q_1(0))} \| f\sigma \|_{q_1(0)}.
\]

(59)

To estimate the term \(I_{31} \), using (59) and the Hölder inequality, we obtain

\[
I_{31} \leq \mathcal{K}_{\mathfrak{p}}(\mathfrak{B}^p_{\mathfrak{p}}(\mathbb{R}^2)) \leq \mathcal{K}_{\mathfrak{p}}(\mathfrak{B}^p_{\mathfrak{p}}(\mathbb{R}^2)) \leq \mathcal{K}_{\mathfrak{p}}(\mathfrak{B}^p_{\mathfrak{p}}(\mathbb{R}^2)).
\]

(63)
The term \(I_{32} \) can be estimated as
\[
I_{32} \leq \sup_{c > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} 2^{k\alpha(\zeta(\phi))} \nu_k(\mathbb{Z}_+, N_k) p(1+\varepsilon) \right)^{1/(p(1+\varepsilon))} \\
+ \sup_{c > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} 2^{k\alpha(\zeta(\phi))} \nu_k(0, k, N_k) p(1+\varepsilon) \right)^{1/(p(1+\varepsilon))}
\]
\[
= I_{321} + I_{322}.
\]

(64)

For \(k \in \mathbb{N}_0 \), \(\phi \in \mathbb{Z}_+ \), \(\sigma \in \mathbb{N}_k \), \(q_1(0) \leq q_1(\infty) \), and Lemma 2, we obtain
\[
\nu_k(\mathbb{Z}_+, N_k) \leq \sum_{q \in \mathbb{Z}_+} 2^{(k-\varepsilon)(n/\alpha - n)} \left\| f_{\phi} \right\|_{q_1(\cdot)}(t) \cdot \sum_{\sigma \in \mathbb{N}_k} 2^{((k-\varepsilon)n/\alpha)(\sigma)} \left\| f_{\sigma} \right\|_{q_2(\cdot)}(t).
\]

(65)

By (65) and Hölder’s inequality, we get
\[
I_{321} \leq \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} \left(\sum_{q \in \mathbb{Z}_+} 2^{(k-\varepsilon)(n/\alpha - n)} \right) \left\| f_{\phi} \right\|_{q_1(\cdot)}(t) \right)^{1/(p(1+\varepsilon))} \\
\times \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} \left(\sum_{\sigma \in \mathbb{N}_k} 2^{((k-\varepsilon)n/\alpha)(\sigma)} \right) \left\| f_{\sigma} \right\|_{q_2(\cdot)}(t) \right)^{1/(p(1+\varepsilon))}
\]
\[
= D'_1 D'_2.
\]

(66)

Note that \(D'_1 = A_1 \). The estimate for \(D'_2 \) can be obtained in a similar way as for \(I_{312} \), by replacing \(\alpha_2 \) with \(\alpha_2(\infty) \).

For estimate \(I_{322} \), by Hölder’s inequality and Lemma 2, we have
\[
\nu_k(0, k, N_k) \leq \sum_{q \in \mathbb{Z}_+} 2^{(k-\varepsilon)(n/\alpha - n)} \left\| f_{\phi} \right\|_{q_1(\cdot)}(t) \cdot 2^{(k-\varepsilon)(n/\alpha - n)} \left\| f_{\sigma} \right\|_{q_1(\cdot)}(t).
\]

(67)

Using (67) and Hölder’s inequality, we obtain
\[
I_{322} \leq \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} \left(\sum_{q \in \mathbb{Z}_+} 2^{(k-\varepsilon)(n/\alpha - n)} \right) \left\| f_{\phi} \right\|_{q_1(\cdot)}(t) \right)^{1/(p(1+\varepsilon))} \\
\times \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} \left(\sum_{\sigma \in \mathbb{N}_k} 2^{((k-\varepsilon)n/\alpha)(\sigma)} \right) \left\| f_{\sigma} \right\|_{q_1(\cdot)}(t) \right)^{1/(p(1+\varepsilon))}
\]
\[
= D'_3 D'_4.
\]

(68)

We have \(D'_3 = D'_3 \) and the estimate for the term \(D'_4 \) is similar to \(B'_1 \). Taking all the estimates into account yields
\[
I_3 \leq \left\| f \right\|_{K^{\alpha(\zeta(\phi))}(\mathbb{R}^1)} \left\| f_{\sigma} \right\|_{K^{\alpha(\zeta(\phi))}(\mathbb{R}^n)},
\]

(69)

Estimation for \(I_5 \): We have
\[
I_5 \leq \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} 2^{k\alpha(\zeta(\phi))} \nu_k(M_k, M_k) p(1+\varepsilon) \right)^{1/(p(1+\varepsilon))} \\
+ \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} 2^{k\alpha(\zeta(\phi))} \nu_k(M_k, M_k) p(1+\varepsilon) \right)^{1/(p(1+\varepsilon))}
\]
\[
= I_{51} + I_{52}.
\]

(70)

By the \(L^{(1)} \)-boundedness of \(T \), see Lemma 7, we obtain that
\[
\nu_k(M_k, M_k) \leq \sum_{q \in \mathbb{M}_k} \sum_{\sigma \in \mathbb{M}_k} \left\| f_{\phi} \right\|_{q_1(\cdot)} \left\| f_{\sigma} \right\|_{q_2(\cdot)}.
\]

(71)

By Hölder’s inequality, we have
\[
I_{51} \leq \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} \left(\sum_{q \in \mathbb{M}_k} 2^{k\alpha(\zeta(\phi))} \nu_k(M_k, M_k) p(1+\varepsilon) \right)^{1/(p(1+\varepsilon))} \\
\times \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} \left(\sum_{\sigma \in \mathbb{M}_k} 2^{k\alpha(\zeta(\phi))} \nu_k(M_k, M_k) p(1+\varepsilon) \right)^{1/(p(1+\varepsilon))}
\]
\[
\leq \left\| f_1 \right\|_{K^{\alpha(\zeta(\phi))}(\mathbb{R}^1)} \left\| f_2 \right\|_{K^{\alpha(\zeta(\phi))}(\mathbb{R}^n)}.
\]

(72)

Similarly, we can obtain similar estimate for \(I_{52} \), replacing \(\alpha_1(0) \) by \(\alpha_1(\infty) \) with \(k \in \mathbb{N}_0 \). Therefore
\[
I_5 \leq \left\| f_1 \right\|_{K^{\alpha(\zeta(\phi))}(\mathbb{R}^1)} \left\| f_2 \right\|_{K^{\alpha(\zeta(\phi))}(\mathbb{R}^n)}.
\]

(73)

Estimation for \(I_6 \): we have
\[
I_6 \leq \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} 2^{k\alpha(\zeta(\phi))} \nu_k(M_k, M_k) p(1+\varepsilon) \right)^{1/(p(1+\varepsilon))} \\
+ \sup_{x > 0} \left(e^{\theta} \sum_{k \in \mathbb{N}_0} 2^{k\alpha(\zeta(\phi))} \nu_k(M_k, M_k) p(1+\varepsilon) \right)^{1/(p(1+\varepsilon))}
\]
\[
= I_{61} + I_{62}.
\]

(74)

For \(k \in \mathbb{Z}_+ \), \(\phi \in \mathbb{Z}_+ \), \(\sigma \in \mathbb{N}_k \), and \(x \in \mathbb{R}_k \), we have
\[
|x - y_1| \leq |y_2| - |x|2^{\sigma},
\]

(75)

yielding
\[
\left| T\left(f_{\phi} f_{\sigma}\right)(x) \right| \leq 2^{-k\alpha} \int_{\mathbb{R}^1} \left| f_{\phi}(y_1) \right| dy_1 2^{-\sigma} \int_{\mathbb{R}^n} \left| f_{\sigma}(y_2) \right| dy_2.
\]

(76)
By Hölder’s inequality, Lemma 2, $k \in \mathbb{Z}_+$, and inequality $q_2(0) \leq q_2(\infty)$, we obtain
\[
\nu_k(M_k, N_k) \leq \sum_{q \in M_k, \sigma \in N_k} 2^{(k-\sigma)n} \|f\|_{q_1(\cdot)} \left\| f_{\sigma} \right\|_{q_2(\cdot)}.
\] (77)

By (77) and invoking Hölder’s inequality, we get
\[
I_{41} \leq \sup_{c > 0} \left(c^d \sum_{k \in \mathbb{Z}_+} \left(\sum_{q \in M_k, \sigma \in N_k} 2^{(k-\sigma)n} \left\| f\right\|_{q_1(\cdot)} \left\| f_{\sigma} \right\|_{q_2(\cdot)} \right)^{1/(p(1+\varepsilon))} \right).
\] (78)

Note that the estimate I_{612} is equal to that of I_{51} and I_{612} is obtained by similar argument used in I_{312}.

For $k \in \mathbb{N}_+$, we have
\[
\nu_k(M_k, N_k) \leq \sum_{q \in M_k, \sigma \in N_k} 2^{(k-\sigma)n} \|f\|_{q_1(\cdot)} \left\| f_{\sigma} \right\|_{q_2(\cdot)}.
\] (79)

Using (79) and Hölder’s inequality, we get
\[
I_{42} \leq \sup_{c > 0} \left(c^d \sum_{k \in \mathbb{Z}_+} \left(\sum_{q \in M_k, \sigma \in N_k} 2^{(k-\sigma)n} \left\| f\right\|_{q_1(\cdot)} \left\| f_{\sigma} \right\|_{q_2(\cdot)} \right)^{1/(p(1+\varepsilon))} \right).
\] (80)

The estimate I_{621} is similar to I_{52} and $I_{622} = D_{42}$. Hence
\[
I_6 \leq \left\| f_1 \right\|_{K_{q_1}^{(1)/(p_1)}(R^n)} \left\| f_2 \right\|_{K_{q_2}^{(2)/(p_2)}(R^n)}. \] (81)

Estimation for I_9: we estimate I_9 as usual
\[
I_9 \leq \sup_{c > 0} \left(c^d \sum_{k \in \mathbb{Z}_+} 2^{kn(0)(p(1+\varepsilon))} \nu_k(N_k, N_k)^{p(1+\varepsilon)} \right)^{1/(p(1+\varepsilon))}.
\] (82)

For $\varphi \in N_k$, $y_1 \in R_q$, and $x \in R_k$, we have $|x - y_1| \leq 2^p$, whereas for $\sigma \in N_k$, $y_2 \in R_q$, and $x \in R_k$, we have $|x - y_2| \leq 2^p$. Under the assumptions for the obtained inequalities, we have
\[

\left| T(f_1, f_2)(x) \right| \leq 2^{-q_2n} \int_{R^n} |f_1(y_1)| \left| f_2(y_2) \right| \left| dy_1 \right| 2^{-q_2n} \int_{R^n} \left| f_2(y_2) \right| \left| dy_2 \right|.
\] (83)

When $k \in \mathbb{Z}_+$, by Hölder’s inequality, Lemma 2, and $q_1(0) \leq q_2(\infty)$, we obtain
\[
\nu_k(N_k, N_k) \leq \sum_{q \in M_k, \sigma \in N_k} 2^{(k-\sigma)n} \left\| f\right\|_{q_1(\cdot)} \left\| f_{\sigma} \right\|_{q_2(\cdot)}.
\] (84)

Thus
\[
I_{41} \leq \sup_{c > 0} \left(c^d \sum_{k \in \mathbb{Z}_+} \left(\sum_{q \in M_k, \sigma \in N_k} 2^{(k-\sigma)n} \left\| f\right\|_{q_1(\cdot)} \left\| f_{\sigma} \right\|_{q_2(\cdot)} \right)^{1/(p(1+\varepsilon))} \right).
\] (85)

The estimates for the terms I_{911} and I_{912} are obtained in the same way as for I_{312}. Therefore
\[
I_9 \leq C \left\| f_1 \right\|_{K_{q_1}^{(1)/(p_1)}(R^n)} \left\| f_2 \right\|_{K_{q_2}^{(2)/(p_2)}(R^n)}. \] (86)

Finally, for the term I_{92}, we have
\[
I_{92} \leq \sup_{c > 0} \left(c^d \sum_{k \in \mathbb{Z}_+} \left(\sum_{q \in M_k, \sigma \in N_k} 2^{kn(0)(p(1+\varepsilon))} \left\| f\right\|_{q_1(\cdot)} \left\| f_{\sigma} \right\|_{q_2(\cdot)} \right)^{1/(p(1+\varepsilon))} \right).
\] (87)

The terms I_{921} and I_{922} can be estimated in a similar manner as for that I_{322}. Thus
\[
I_9 \leq \left\| f_1 \right\|_{K_{q_1}^{(1)/(p_1)}(R^n)} \left\| f_2 \right\|_{K_{q_2}^{(2)/(p_2)}(R^n)}. \] (88)

Taking into account the estimates (44), (55), (69), (73), (81), and (88), we get
\[
\| T(f_1, f_2) \|_{K_{q_1}^{(1)/(p_1)}(R^n)} \leq \| f_1 \|_{K_{q_1}^{(1)/(p_1)}(R^n)} \| f_2 \|_{K_{q_2}^{(2)/(p_2)}(R^n)}, \] (89)

which completes the proof.

\begin{flushright}
\hfill \Box
\end{flushright}

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interest.
Authors’ Contributions

All the authors have contributed equally in preparation and finalization of the manuscript.

Acknowledgments

We gratefully acknowledge the constructive comments of the anonymous referees.

References

[1] R. R. Coifman and Y. Meyer, “On commutators of singular integrals and bilinear singular integrals,” Transactions of the American Mathematical Society, vol. 212, pp. 315–331, 1975.
[2] R. R. Coifman and Y. Meyer, “Commutateurs d’intégrales singulières et opérateurs multilinéaires,” Annales de l’Institut Fourier, vol. 28, no. 3, pp. 177–202, 1978.
[3] R. R. Coifman and Y. Meyer, “Au-delà des operateurs pseudodifferentiels,” Astérisque, vol. 57, 1978.
[4] L. Grafakos and R. H. Torres, “Multilinear Calderon-Zygmund theory,” Advances in Mathematics, vol. 165, no. 1, pp. 124–164, 2002.
[5] V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, “Integral operators in non-standard function spaces,” in Oper. Theory Adv. Appl., vol. 2, p. 249, Birkhäuser, Cham, 2016.
[6] V. Kokilashvili, M. Mastylo, and A. Meskhi, “On the boundedness of the multilinear fractional integral operators,” Nonlinear Analysis, vol. 94, pp. 142–147, 2014.
[7] V. Kokilashvili, M. Mastylo, and A. Meskhi, “Two-weight norm estimates for multilinear fractional integrals in classical Lebesgue spaces,” Fractional Calculus and Applied Analysis, vol. 18, no. 5, pp. 1146–1163, 2015.
[8] V. Kokilashvili, M. Mastylo, and A. Meskhi, “The measure of noncompactness of multilinear operators,” Nonlinear Analysis, vol. 188, pp. 70–79, 2019.
[9] W. Orlicz, “Über Konjugierte Exponentenfolgen,” Studia Mathematica, vol. 3, no. 1, pp. 200–211, 1931.
[10] O. Kováčik and J. Rakosník, “On spaces Lp(x) and W1,q(x),” Czechoslovak Mathematical Journal, vol. 41, no. 116, pp. 592–618, 1991.
[11] D. Cruz-Uribe, A. Fiorenza, J. Martell, and C. Pérez, “The boundedness of classical operators on variable Lp spaces,” Annales Academiae Scientiarum Fennicae Mathematica, vol. 31, no. 1, pp. 239–264, 2006.
[12] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Space. Foundations and Harmonic Analysis, Birkhäuser, 2013.
[13] L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, “Lebesgue and Sobolev spaces with variable exponents,” in Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011.
[14] C. Herz, “Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms,” Indiana University Mathematics Journal, vol. 18, no. 4, pp. 283–323, 1968.
[15] A. Almeida and D. Drihem, “Maximal, potential and singular type operators on Herz spaces with variable exponents,” Journal of Mathematical Analysis and Applications, vol. 394, no. 2, pp. 781–795, 2012.
[16] H. G. Feichtinger and F. Weisz, “Herz spaces and summability of Fourier transforms,” Mathematische Nachrichten, vol. 281, no. 3, pp. 309–324, 2008.
[17] M. Izuki, “Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characteriza- tion,” Analysis Mathematica, vol. 36, no. 13, pp. 33–50, 2010.
[18] X. Li and D. Yang, “Boundedness of some sublinear operators on Herz spaces,” Illinois Journal of Mathematics, vol. 40, no. 3, pp. 484–501, 1996.
[19] S. Lu and D. Yang, “The decomposition of the weighted Herz spaces and its application,” Science in China, Series A: Mathematics, vol. 38, pp. 147–158, 1995.
[20] A. Meskhi, H. Rafeiro, and M. A. Zaighum, “Central Calderon-Zygmund operators on Herz-type Hardy spaces of variable smoothness and integrability,” Annals of Functional Analysis, vol. 9, no. 3, pp. 310–321, 2018.
[21] S. G. Samko, “Variable exponent Herz spaces,” Mediterranean Journal of Mathematics, vol. 10, no. 4, pp. 2007–2025, 2013.
[22] L. Greco, T. Iwaniec, and C. Sbordone, “Inverting the p-harmonic operator,” manuscripta mathematica, vol. 92, no. 1, pp. 249–258, 1997.
[23] T. Iwaniec and C. Sbordone, “On the integrability of the Jacobian under minimal hypotheses,” Archive for Rational Mechanics and Analysis, vol. 119, no. 2, pp. 129–143, 1992.
[24] A. Fiorenza, B. Gupta, and P. Jain, “The maximal theorem for weighted grand Lebesgue spaces,” Studia Mathematica, vol. 188, no. 2, pp. 123–133, 2008.
[25] V. Kokilashvili, “Boundedness criteria for singular integrals in weighted grand Lebesgue spaces,” Journal of Mathematical Sciences, vol. 170, no. 1, pp. 20–33, 2010.
[26] V. Kokilashvili and A. Meskhi, “A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces,” Georgian Mathematical Journal, vol. 16, no. 3, pp. 547–551, 2009.
[27] V. Kokilashvili and A. Meskhi, “Trace inequalities for fractional integrals in grand Lebesgue spaces,” Studia Mathematica, vol. 210, no. 2, pp. 159–176, 2012.
[28] V. Kokilashvili and A. Meskhi, “Potentials with product kernels in grand Lebesgue spaces: one-weight criteria,” Lithuanian Mathematical Journal, vol. 53, no. 1, pp. 27–39, 2013.
[29] V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, “Integral operators in non-standard function spaces,” in Oper. Theory Adv. Appl., vol. 1, p. 248, Birkhäuser, Cham, 2016.
[30] A. Meskhi, “Weighted criteria for the Hardy transform under the Bp condition in grand Lebesgue spaces and some applications,” Journal of Mathematical Sciences, vol. 178, no. 6, pp. 622–636, 2011.
[31] A. Meskhi, “Criteria for the boundedness of potential operators in grand Lebesgue spaces,” Proceedings of A. Razmadze Mathematical Institute, vol. 169, pp. 119–132, 2015.
[32] V. D. Radulescu and D. Repovs, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Chapman and Hall/CRC, 1st edition, 2015.
[33] H. Rafeiro, S. Samko, and S. Umarakhadzhiev, “Grand Lebesgue sequence spaces,” Georgian Mathematical Journal, vol. 25, no. 2, pp. 291–302, 2018.
[34] S. Kafis, H. Rafeiro, and M. A. Zaighum, “A note on the boundedness of sublinear operators on grand variable Herz spaces,” Journal of Inequalities and Applications, vol. 2020, no. 1, Article ID 1, 2020.
[35] S. G. Samko, “On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators,”
Integral Transforms and Special Functions, vol. 16, no. 5-6, pp. 461–482, 2005.

[36] G. Lu, S. Lu, and D. Yang, “Singular integrals and commuta-
tors on homogeneous groups,” Analysis Mathematica, vol. 28, no. 2, pp. 103–134, 2002.

[37] X. X. Tao, X. Yu, and H. H. Zhang, “Multilinear Calderón Zygmund operators on variable exponent Morrey spaces over domains,” Applied Mathematics-A Journal of Chinese Universities, vol. 26, no. 2, pp. 187–197, 2011.