EMBEDDING TOPOLOGICAL SPACES INTO
HAUSDORFF κ-BOUNDED SPACES

TARAS BANAKH, SERHII BARDYLA, AND ALEX RAVSKY

Abstract. Let κ be an infinite cardinal. A topological space X is κ-bounded if the closure of any subset of cardinality $\leq \kappa$ in X is compact. We discuss the problem of embeddability of topological spaces into Hausdorff (Urysohn, regular) κ-bounded spaces, and present a canonical construction of such an embedding. Also we construct a (consistent) example of a sequentially compact separable regular space that cannot be embedded into a Hausdorff ω-bounded space.

1. Introduction

It is well-known that a topological space X is homeomorphic to a subspace of a compact Hausdorff space if and only if the space X is Tychonoff. In this paper we address the problem of characterization of topological spaces that embed into Hausdorff (Urysohn, regular, resp.) spaces possessing some weaker compactness properties.

One of such properties is the κ-boundedness, i.e., the compactness of closures of subsets of cardinality $\leq \kappa$. It is clear that each compact space is κ-bounded for any cardinal κ. Any ordinal $\alpha := [0, \alpha)$ of cofinality $\text{cf}(\alpha) > \kappa$, endowed with the order topology, is κ-bounded but not compact. More information on κ-bounded spaces can be found in [9], [10], [13]. Embedding of topological spaces into compact-like spaces was also investigated in [1, 2, 5, 6].

In this paper we discuss the following:

Problem 1.1. Which topological spaces are homeomorphic to subspaces of κ-bounded Hausdorff (Urysohn, regular) spaces?

In Theorem 3.3 (and Theorem 3.5) we shall prove that the necessary and sufficient conditions of embeddability of a T_1-space X into a Hausdorff (Urysohn) κ-bounded space are the (strong) π-regularity and the (strong) π-normality of X, respectively. In Theorem 3.6 we shall prove that a sufficient condition of embeddability of a T_1-space X into a regular κ-bounded space is the total π-normality of X. The above mentioned separation axioms are introduced and studied in Section 2. In Section 3 we shall present a canonical construction of an embedding a (strongly or totally) π-normal space into a Hausdorff (Urysohn or regular) κ-bounded space. In Section 4 we construct a space that is totally π-normal but not functionally Hausdorff, and a (consistent) example of a sequentially compact separable regular space which is not Tychonoff and hence does not embed into a Hausdorff ω-bounded space. Also, for each cardinal κ we construct a topological space which is κ-bounded, π-normal, H-closed, but not Urysohn.

2010 Mathematics Subject Classification. Primary 54D30; 54D35; 54D80; 54B30.

Key words and phrases. κ-bounded space, Wallman extension, countably compact space, sequentially compact space.

The work of the second author is supported by the Austrian Science Fund FWF (Grant I 3709 N35).
2. Useful separation axioms

Let \mathcal{F} be a family of closed subsets of a topological space X. The topological space X is called

- \mathcal{F}-regular if for any set $F \in \mathcal{F}$ and point $x \in X \setminus F$ there exist disjoint open sets $U, V \subset X$ such that $F \subset U$ and $x \in V$;
- strongly \mathcal{F}-regular if for any set $F \in \mathcal{F}$ and point $x \in X \setminus F$ there exist open sets $U, V \subset X$ such that $F \subset U$, $x \in V$ and $\overline{U} \cap \overline{V} = \emptyset$;
- \mathcal{F}-Tychonoff if for any set $F \in \mathcal{F}$ and point $x \in X \setminus F$ there exist a continuous function $f : X \to [0, 1]$ such that $f(F) \subset \{0\}$ and $f(x) = 1$;
- \mathcal{F}-normal if for any disjoint sets $A, B \in \mathcal{F}$ there exist disjoint open sets $U, V \subset X$ such that $A \subset U$ and $B \subset V$;
- strongly \mathcal{F}-normal if for any disjoint sets $A, B \in \mathcal{F}$ there exist open sets $U, V \subset X$ such that $A \subset U$, $B \subset V$ and $\overline{U} \cap \overline{V} = \emptyset$;
- totally \mathcal{F}-normal if for any disjoint closed sets $A \in \mathcal{F}$ and $B \subset X$ there exist disjoint open sets $U, V \subset X$ such that $A \subset U$ and $B \subset V$.

For families \mathcal{F} containing all one-point subsets of X, these properties relate as follows:

\[
\text{totally } \mathcal{F}\text{-normal} \iff \text{strongly } \mathcal{F}\text{-normal} \iff \mathcal{F}\text{-normal}
\]

\[
\mathcal{F}\text{-Tychonoff} \iff \text{strongly } \mathcal{F}\text{-regular} \iff \mathcal{F}\text{-regular}.
\]

However, the total \mathcal{F}-normality does not imply the \mathcal{F}-Tychonoff property; see Example 2.4 below.

Proposition 2.1. If a topological space X is \mathcal{F}-regular for some family \mathcal{F} of closed Lindelöf subspaces of X, then X is \mathcal{F}-normal.

Proof. To show that X is \mathcal{F}-normal, fix any two disjoint closed sets $A, B \in \mathcal{F}$. By the \mathcal{F}-regularity, for every $a \in A$ there exists an open neighborhood $V_a \subset X$ of a whose closure $\overline{V_a}$ in X does not intersect the set B. By the Lindelöf property of A the open cover $\{V_a : a \in A\}$ of A has a countable subcover $\{V_{a_n}\}_{n \in \omega}$. By analogy, for every $b \in B$ there exists an open neighborhood $U_b \subset X$ of b whose closure $\overline{U_b}$ in X does not intersect the set A. By the Lindelöf property of B, the open cover $\{U_b : b \in B\}$ of B has a countable subcover $\{U_{b_n}\}_{n \in \omega}$. For every $n \in \omega$ let

\[
V_A = \bigcup_{n \in \omega} V_{a_n} \setminus \bigcup_{k \leq n} \overline{U_{b_k}} \quad \text{and} \quad U_B = \bigcup_{n \in \omega} U_{b_n} \setminus \bigcup_{k \leq n} \overline{V_{a_k}}.
\]

Then V_A, U_B are two disjoint open neighborhoods of the sets A, B, witnessing that the space X is \mathcal{F}-normal.

A subset Y of a topological space X is defined to be (countably) paracompact in X if for each (countable) cover \mathcal{U} of Y by open subsets of X, there exists a locally finite family \mathcal{V} of open subsets of X such that $Y \subset \bigcup \mathcal{V}$ and each set $V \in \mathcal{V}$ is contained in some set $U \in \mathcal{U}$.

The proof of the following proposition is straightforward.

Proposition 2.2. If a subset Y of a topological space X is (countably) paracompact in X, then each closed subset of Y also is (countably) paracompact in X.
Proposition 2.3. Let \mathcal{F} be a family of closed Lindelöf subsets of X, which are countably paracompact in X. If the space X is strongly \mathcal{F}-regular, then X is strongly \mathcal{F}-normal.

Proof. To show that X is strongly \mathcal{F}-normal, fix any two disjoint closed sets $A, B \in \mathcal{F}$. By the strong \mathcal{F}-regularity of X, for every $a \in A$ and $b \in B$ there exist open sets V_a, W_a, V_b, W_b in X such that $a \in V_a \subset \overline{V_a} \subset W_a \subset X \setminus B$ and $b \in V_b \subset \overline{V_b} \subset W_b \subset X \setminus A$.

By the Lindelöf property of the space X, the open cover $\{V_a : a \in A\}$ of A has a countable subcover $\{V_{a_n}\}_{n \in \omega}$. By analogy, the open cover $\{V_b : b \in B\}$ of the Lindelöf space B has a countable subcover $\{V_{b_n}\}_{n \in \omega}$.

It is easy to see that $\{V_a \setminus \bigcup_{k \leq n} \overline{W_{b_k}}\}_{n \in \omega}$ is a cover of A by open subsets of X. By the countable paracompactness of X, there exists a locally finite family \mathcal{U}_A of open sets in X such that $A \subset \bigcup \mathcal{U}_A$ and each set $U \in \mathcal{U}_A$ is contained in some set $V_{a_n} \setminus \bigcup_{k \leq n} \overline{W_{b_k}}$ and hence $U \subset \overline{V_{a_n}} \setminus \bigcup_{k \leq n} W_{b_k} \subset W_{a_n} \setminus \bigcup_{k \leq n} W_{b_k}$.

Consider the open neighborhood $U_A = \bigcup \mathcal{U}_A$ of A. The local finiteness of the family \mathcal{U}_A ensures that $\overline{U_A} = \bigcup_{U \in \mathcal{U}_A} U \subset \bigcup_{n \in \omega} W_{a_n} \setminus \bigcup_{k \leq n} W_{b_k}$.

By analogy, we can find an open neighborhood U_B of the countably paracompact subset B in X such that $\overline{U_B} \subset \bigcup_{n \in \omega} W_{b_n} \setminus \bigcup_{k \leq n} W_{a_k}$.

It remains to observe that

$$\overline{U_A} \cap \overline{U_B} \subset \left(\bigcup_{n \in \omega} W_{a_n} \setminus \bigcup_{k \leq n} W_{b_k} \right) \cap \left(\bigcup_{n \in \omega} W_{b_n} \setminus \bigcup_{k \leq n} W_{a_k} \right) = \emptyset.$$

\[\square\]

Proposition 2.4. Each regular topological space X is totally \mathcal{F}-normal for the family \mathcal{F} of closed subsets of X that are paracompact in X.

Proof. To show that X is totally \mathcal{F}-normal, fix any two disjoint closed sets $A \in \mathcal{F}$ and $B \subset X$. By the regularity of X, for every $a \in A$ there exists an open neighborhood $U_a \subset X$ such that $a \in U_a \subset X \setminus B$. Since A is paracompact in X there exists a locally finite family \mathcal{V} of open subsets of X such that $A \subset \bigcup \mathcal{V}$ and each set $V \in \mathcal{V}$ is contained in some set $U_a, a \in A$. The locally finiteness of \mathcal{V} implies that $\overline{\bigcup \mathcal{V}} = \bigcup_{V \in \mathcal{V}} \overline{V} \subset \bigcup_{a \in A} U_a \subset X \setminus B$. Then $\overline{\mathcal{V}}$ and $X \setminus \overline{\mathcal{V}}$ are disjoint open neighborhoods of the sets A and B, respectively.

\[\square\]

Let κ be a cardinal. A topological space X is called **totally π-normal** (resp. **strongly π-normal, $\overline{\pi}$-normal, strongly $\overline{\pi}$-regular, $\overline{\pi}$-regular, $\overline{\pi}$-Tychonoff) if it is totally \mathcal{F}-normal (resp. strongly \mathcal{F}-normal, \mathcal{F}-normal, strongly \mathcal{F}-regular, \mathcal{F}-regular, \mathcal{F}-Tychonoff) for the family \mathcal{F} of closed subsets of X of cardinality $\leq \kappa$ in X. Simple examples show that the family \mathcal{F} can be strictly larger than the family of closures of subsets of cardinality $\leq \kappa$ in X.

Proposition 2.5. Each κ-bounded Hausdorff space X is π-normal.

Proof. Let \mathcal{F} be the family of closed subspaces of X of cardinality $\leq \kappa$ in X. Given two disjoint closed sets $A, B \in \mathcal{F}$, we observe that the sets A, B are compact. By the Hausdorff property of X, the disjoint compact sets A, B have disjoint open neighborhoods.

\[\square\]

In Example 3.3 we shall construct a Hausdorff ω-bounded space which is not strongly $\overline{\pi}$-normal.

Proposition 2.6. Each subspace X of a κ-bounded Hausdorff space Y is π-regular.
Proof. Let F be a closed subspace of the closure of a set $E \subset X$ of cardinality $|E| \leq \kappa$ in X and let $x \in X \setminus F$ be a point. The κ-boundedness of Y ensures that the closure \overline{F} of F in Y is compact and so is the closure $\overline{\mathcal{F}}$ of $\mathcal{F} \subset Y$. Since $F = X \cap \overline{\mathcal{F}}$ and $x \in X \setminus F$, $x \not\in \overline{F}$ and so by the Hausdorff property of Y there exist two disjoint open sets $V, U \subset Y$ such that $x \in V$ and $\overline{F} \subset U$. Then $V \cap X$ and $U \cap X$ are two disjoint open sets in X such that $x \in V \cap X$ and $F \subset U \cap X$, which means that the space X is κ-regular. \hfill \square

Let us recall that a topological space X is called Urysohn if any distinct points of X have disjoint closed neighborhoods in X. Similarly as above one can prove the following facts.

Proposition 2.7. Each κ-bounded Urysohn space X is strongly κ-normal.

Proposition 2.8. Each subspace X of a κ-bounded Urysohn space Y is strongly κ-regular.

Proposition 2.9. Each κ-bounded regular space X is totally κ-normal.

We recall that the density $d(X)$ of a topological space X is the smallest cardinality of a dense subset in X.

Proposition 2.10. Each subspace X of density $d(X) \leq \kappa$ in a κ-bounded Hausdorff space Y is Tychonoff.

Proof. Let D be a dense subset of X with $|D| = d(X) \leq \kappa$. By definition of a κ-bounded space, the closure \overline{D} of D in Y is compact and being Hausdorff is Tychonoff. Then $X \subset \overline{D}$ is Tychonoff, too. \hfill \square

3. The Wallman κ-bounded extension of a topological space

We recall [8 §3.6] that the Wallman extension WX of a topological space X consists of closed ultrafilters, i.e., families \mathcal{U} of closed subsets of X satisfying the following conditions:

- $\emptyset \notin \mathcal{U}$;
- $A \cap B \in \mathcal{U}$ for any $A, B \in \mathcal{U}$;
- a closed set $F \subset X$ belongs to \mathcal{U} if $F \cap A \neq \emptyset$ for every $A \in \mathcal{U}$.

The Wallman extension WX of X carries the topology generated by the base consisting of the sets

$$\langle U \rangle = \{ F \in WX : \exists F \in \mathcal{F} (F \subset U) \}$$

where U runs over open subsets of X.

By (the proof of) Theorem [8 3.6.21], the Wallman extension WX is compact. By Theorem [8 3.6.22] a T_1-space X is normal if and only if its Wallman extension WX is Hausdorff.

If X is a T_1-space, then we can consider the map $j_X : X \to WX$ assigning to each point $x \in X$ the principal closed ultrafilter consisting of all closed sets $F \subset X$ containing the point x. It is easy to see that the image $j_X(X)$ is dense in WX. By [8 3.6.21], the map $j_X : X \to WX$ is a topological embedding.

The following lemma can be easily derived from the definition of a closed ultrafilter and should be known.

Lemma 3.1. For a subset A of a T_1-space X, a closed ultrafilter $\mathcal{F} \in WX$ belongs to $\overline{\mathcal{F}}$ if and only if $\overline{A} \in \mathcal{F}$.

Given an infinite cardinal κ, in the Wallman extension WX of a T_1-space X, consider the subspace

$$\mathcal{W}_\kappa X = \bigcup \{ j_X(C) : C \subset X, |C| \leq \kappa \}$$
of \(WX \). The space \(W_kX \) will be called the Wallman \(\kappa \)-bounded extension of \(X \).

The following proposition justifies the choice of terminology.

Proposition 3.2. For any topological space \(X \), the space \(W_kX \) is \(\kappa \)-bounded.

Proof. We should prove that for any subset \(\Omega \subset W_kX \) of cardinality \(|\Omega| \leq \kappa \), the closure \(\overline{\Omega} \) is compact. By the definition of \(W_kX \), for every ultrafilter \(u \in \Omega \) there exists a set \(C_u \subset X \) such that \(|C_u| \leq \kappa \) and \(u \in j_X(C_u) \). Consider the set \(C = \bigcup_{u \in \Omega} C_u \) and observe that \(|C| \leq \kappa \) and the closure \(j_X(C) \) in \(WX \) is compact (by the compactness of \(WX \)). Then the closure \(\overline{\Omega} \) of \(\Omega \) in \(W_kX \) coincides with the closure of \(\Omega \) in \(j_X(C) \) and hence is compact. \(\Box \)

The following proposition characterizes some separation properties of the Wallman \(\kappa \)-bounded extension \(W_kX \) of a \(T_1 \)-space.

Proposition 3.3. For a \(T_1 \)-space \(X \) the following statements hold:

1) \(W_kX \) is Hausdorff iff \(X \) is \(\pi \)-normal;
2) \(W_kX \) is Urysohn iff \(X \) is strongly \(\pi \)-normal;
3) \(W_kX \) is regular iff \(X \) is totally \(\pi \)-normal.

Proof. 1. To prove the “if” part of the statement 1), assume that \(X \) is \(\pi \)-normal. Given any distinct closed ultrafilters \(u, v \in W_kX \), use the maximality of \(u, v \) and find two disjoint closed sets \(F \in u \) and \(E \in v \). By definition of \(W_kX \), there exists a subset \(C \subset X \) such that \(|C| \leq \kappa \) and \(u, v \in j_X(C) \). By Lemma 3.1, \(C \in u \cap v \). By the \(\pi \)-normality of \(X \), the disjoint closed sets \(F \cap C \in u \) and \(E \cap C \in v \) have disjoint open neighborhoods \(U \) and \(V \) in \(X \), respectively. Then \(\langle U \rangle \) and \(\langle V \rangle \) are disjoint neighborhoods of the ultrafilters \(u \) and \(v \) in \(WX \), witnessing that the space \(W_kX \) is Hausdorff.

To prove the “only if” part, assume that the space \(W_kX \) is Hausdorff. By Proposition 3.2, the space \(W_kX \) is \(\kappa \)-bounded. To show that the space \(X \) is \(\pi \)-normal, take any subset \(C \subset X \) of cardinality \(|C| \leq \kappa \) and two disjoint closed subsets \(F, E \) of \(\overline{C} \subset X \). Lemma 3.1 implies \(j_X(F) \cap j_X(E) = \emptyset \). Since \(j_X(F) \cup j_X(E) \subset j_X(C) \) and \(|C| \leq \kappa \), the sets \(j_X(F) \) and \(j_X(E) \) are compact and by the Hausdorffness of \(W_kX \), these compact sets have disjoint open neighborhoods \(U \) and \(V \) in \(W_kX \). Then \(j_X^{-1}(U) \) and \(j_X^{-1}(V) \) are disjoint neighborhoods of the sets \(F \) and \(E \) in \(X \), witnessing that the space \(X \) is \(\pi \)-normal.

2. To prove the “if” part of the statement 2), assume that the space \(W_kX \) is strongly \(\pi \)-normal. Given any distinct closed ultrafilters \(u, v \in W_kX \), use the maximality of \(u, v \) and find two disjoint closed sets \(F \in u \) and \(E \in v \). By definition of \(W_kX \), there exists a subset \(C \subset X \) such that \(|C| \leq \kappa \) and \(u, v \in j_X(C) \). By Lemma 3.1, \(C \in u \cap v \). By the strong \(\pi \)-normality of \(X \), the disjoint closed sets \(F \cap C \in u \) and \(E \cap C \in v \) have open neighborhoods \(U \) and \(V \) in \(X \) such that \(\overline{U} \cap \overline{V} = \emptyset \). Then \(\langle U \rangle \) and \(\langle V \rangle \) are disjoint open neighborhoods of the ultrafilters \(u \) and \(v \) in \(WX \). We claim that \(\langle U \rangle \cap \langle V \rangle = \emptyset \). Indeed, given any closed ultrafilter \(w \in WX \), we conclude that either \(U \notin w \) or \(V \notin w \). If \(U \notin w \), then by the maximality of \(w \), the closed set \(\overline{U} \) is disjoint with some set in \(w \) and then \(\langle X \setminus \overline{U} \rangle \) is a neighborhood of \(w \), disjoint with \(\langle U \rangle \). If \(V \notin w \), then \(\langle X \setminus \overline{V} \rangle \) is a neighborhood of \(w \) that is disjoint with \(\langle V \rangle \). In both cases we obtain that \(w \notin \langle U \rangle \cap \langle V \rangle \), which implies \(\langle U \rangle \cap \langle V \rangle = \emptyset \) and witnesses that the space \(W_kX \) is Urysohn.

To prove the “only if” part, assume that the space \(W_kX \) is Urysohn. By Proposition 3.2, the space \(W_kX \) is \(\kappa \)-bounded. To show that the space \(X \) is strongly \(\pi \)-normal, take any subset \(C \subset X \) of cardinality \(|C| \leq \kappa \) and two disjoint closed subsets \(F, E \) of \(\overline{C} \subset X \). Lemma 3.1
implies that \(j_X(F) \cap j_X(E) = \emptyset \). Since \(j_X(F) \cup j_X(E) \subseteq j_X(C) \) and \(|C| \leq \kappa \), the sets \(j_X(F) \) and \(j_X(E) \) are compact. Since the space \(\mathcal{W}_k X \) is Urysohn the compact sets \(j_X(F) \) and \(j_X(E) \) have open neighborhoods \(U \) and \(V \) with disjoint closures in \(\mathcal{W}_k X \). Then \(j_X^{-1}(U) \) and \(j_X^{-1}(V) \) are open neighborhoods with disjoint closures of the sets \(F \) and \(E \) in \(X \), respectively.

3. To prove the “if” part of the statement 3, assume that the space \(X \) is totally \(\kappa \)-normal. Given any closed ultrafilter \(u \in \mathcal{W}_k X \) and a basic open neighborhood \(\langle U \rangle \) of \(u \) in \(\mathcal{W}_k X \), find a closed set \(F \subseteq u \) such that \(F \subseteq U \). Since \(u \in \mathcal{W}_k X \), there exists a subset \(C \subseteq X \) such that \(|C| \leq \kappa \) and \(u \subseteq j_X(C) \). By Lemma 3.1 \(C \subseteq u \). Replacing the set \(F \) by \(F \cap C \), we can assume that \(F \subseteq C \). By the total \(\kappa \)-normality of \(X \), there exists an open neighborhood \(V \) of \(F \) in \(X \) such that \(\langle V \rangle \subseteq U \). Using Lemma 3.1 we can show that \(u \subseteq \langle V \rangle \subseteq \langle U \rangle \), witnessing the regularity of the space \(\mathcal{W}_k X \).

To prove the “only if” part, assume that the space \(\mathcal{W}_k X \) is regular. By Proposition 3.2 the space \(\mathcal{W}_k X \) is \(\kappa \)-bounded. To show that the space \(X \) is totally \(\kappa \)-normal, take any subset \(C \subseteq X \) of cardinality \(|C| \leq \kappa \) and two disjoint closed subsets \(F, E \) of \(X \) such that \(F \subseteq C \). Lemma 3.1 implies that \(j_X(F) \cap j_X(E) = \emptyset \). Since \(j_X(F) \subseteq j_X(C) \) and \(|C| \leq \kappa \), the set \(j_X(F) \) is compact. By the regularity of \(\mathcal{W}_k X \), the sets \(j_X(F) \) and \(j_X(E) \) have disjoint open neighborhoods \(U \) and \(V \) in \(\mathcal{W}_k X \). Then \(j_X^{-1}(U) \) and \(j_X^{-1}(V) \) are disjoint open neighborhood of the sets \(F \) and \(E \) in \(X \), respectively. Hence \(X \) is totally \(\kappa \)-normal.

The following three theorems give a partial answer to Problem 1.1 and are the main results of this paper.

Theorem 3.4. For an infinite cardinal \(\kappa \) and a \(T_1 \)-space \(X \) consider the conditions:

1. the space \(X \) is \(\kappa \)-normal;
2. the Wallman \(\kappa \)-bounded extension \(\mathcal{W}_k X \) of \(X \) is Hausdorff;
3. \(X \) is homeomorphic to a subspace of a Hausdorff \(\kappa \)-bounded space;
4. the space \(X \) is \(\kappa \)-regular.

Then \(1 \iff 2 \Rightarrow 3 \Rightarrow 4 \). If each closed subspace of density \(\leq \kappa \) in \(X \) is Lindelöf, then \(4 \Rightarrow 1 \) and hence the conditions \(1 \)–\(4 \) are equivalent.

Proof. The equivalence \(1 \iff 2 \) was proved in Proposition 3.3(1) and \(2 \Rightarrow 3 \) follows immediately from Proposition 3.2 and the fact that the canonical map \(j_X : X \to \mathcal{W}_k X \) is a topological embedding. The implication \(3 \Rightarrow 4 \) follows from Proposition 2.6 If each closed subspace of density \(\leq \kappa \) in \(X \) is Lindelöf, then \(4 \Rightarrow 1 \) by Proposition 2.1 \(\Box \)

Theorem 3.5. For an infinite cardinal \(\kappa \) and a \(T_1 \)-space \(X \) consider the conditions:

1. the space \(X \) is strongly \(\kappa \)-normal;
2. the Wallman \(\kappa \)-bounded extension \(\mathcal{W}_{\kappa} X \) of \(X \) is Urysohn;
3. \(X \) is homeomorphic to a subspace of a Urysohn \(\kappa \)-bounded space;
4. \(X \) is strongly \(\kappa \)-regular.

Then \(1 \iff 2 \Rightarrow 3 \Rightarrow 4 \). If each closed subspace of density \(\leq \kappa \) in \(X \) is countably paracompact in \(X \) and Lindelöf, then \(4 \Rightarrow 1 \) and hence the conditions \(1 \)–\(4 \) are equivalent.

Proof. The equivalence \(1 \iff 2 \) was proved in Proposition 3.3(2) and \(2 \Rightarrow 3 \) follows immediately from Proposition 3.2 and the fact that the canonical map \(j_X : X \to \mathcal{W}_k X \) is a topological embedding. The implication \(3 \Rightarrow 4 \) follows from Proposition 2.8 If each closed subspace of density \(\leq \kappa \) in \(X \) is countably paracompact in \(X \) and Lindelöf, then \(4 \Rightarrow 1 \) by Propositions 2.2 and 2.3 \(\Box \)
Theorem 3.6. For an infinite cardinal κ and a T_1-space X consider the conditions:

1. the space X is totally \mathfrak{P}-normal;
2. the Wallman κ-bounded extension $W_\kappa X$ of X is regular;
3. X is homeomorphic to a subspace of a regular κ-bounded space;
4. X is regular.

Then (1) \iff (2) \implies (3) \implies (4). If each closed subspace of density $\leq \kappa$ in X is paracompact in X, then (4) \implies (1) and hence the conditions (1)–(4) are equivalent.

Proof. The equivalence (1) \iff (2) was proved in Proposition 3.3(3), the implication (2) \implies (3) follows immediately from Proposition 3.2 and the fact that the canonical map $j_X : X \to W_\kappa X$ is a topological embedding, and (3) \implies (4) is trivial. If each closed subspace of density $\leq \kappa$ in X is paracompact in X, then (4) \implies (1) by Propositions 2.2 and 2.4. \square

Problem 3.7. Does each \mathfrak{P}-Tychonoff space embed into a Hausdorff κ-bounded space?

4. Some examples

A topological space X is functionally Hausdorff if for any distinct points $x, y \in X$ there exists a continuous function $f : X \to \mathbb{R}$ such that $f(x) \neq f(y)$.

First, we present an example of a first-countable regular space M which is \mathfrak{P}-normal but is neither functionally Hausdorff nor strongly \mathfrak{P}-normal. The space M is a suitable modification of the famous example of Mysior [11].

Let $Q_1 = \{y \in \mathbb{Q} : 0 < y < 1\}$ be the set of rational numbers in the interval $(0, 1)$ and

$$M = \{-\infty, +\infty\} \cup \mathbb{R} \cup (\mathbb{R} \times Q_1)$$

where $-\infty, +\infty \notin \mathbb{R} \cup (\mathbb{R} \times Q_1)$ are two distinct points. The topology on the space M is generated by the subbase

$$\{\{z\}, M \setminus \{z\} : z \in \mathbb{R} \times Q_1\} \cup \{V_x : x \in \mathbb{R}\} \cup \{U_n : n \in \mathbb{Z}\} \cup \{W_n, n \in \mathbb{Z}\}$$

where

$$V_x = \{x\} \cup \{(z, y) : z \in \mathbb{R} \times Q_1 : z \in \{x, x + y\}\}$$

for $x \in \mathbb{R},$

$$U_n = \{-\infty\} \cup \{x \in \mathbb{R} : x < n\} \cup \{(x, y) : x \in \mathbb{R} \times Q_1 : x < n + 1\}$$

for $n \in \mathbb{Z},$

$$W_n = \{+\infty\} \cup \{x \in \mathbb{R} : x > n\} \cup \{(x, y) : x \in \mathbb{R} \times Q_1 : x > n\}$$

for $n \in \mathbb{Z}.$

Example 4.1. The space M has the following properties:

1) M is regular, first-countable and \mathfrak{P}-normal;
2) M is neither functionally Hausdorff nor strongly \mathfrak{P}-normal.

Proof. The definition of the topology of M implies that this space is regular, first-countable and the closure \overline{C} of any countable subset $C \subset M$ is contained in the countable set

$$\{-\infty, +\infty\} \cup C \cup \{y, y - z : (y, z) \in C\}.$$

By Proposition 2.1 the space M is \mathfrak{P}-normal.

By analogy with [11] (see also [4] and [8, 1.5.9]), it can be shown that $f(-\infty) = f(+\infty)$ for any continuous real-valued function f which means that the space M is not functionally Hausdorff.

Observe that the unit interval $I = [0, 1]$ is a closed discrete subspace of the space M. Besides the discrete topology inherited from M, the interval I carries the standard Euclidean topology, inherited from the real line. The interval I endowed with the Euclidean topology.
will be denoted by \mathbb{I}_E. To show that the space M is not strongly π-normal we shall need the following fact.

Claim 4.2. For any dense subset A in \mathbb{I}_E and any open neighborhood U of A in M the intersection $U \cap \mathbb{I}$ is a comeager subset of \mathbb{I}_E.

Proof. To derive a contradiction, assume that the set $B = \mathbb{I} \setminus U$ is not meager in \mathbb{I}_E and hence B is of the second Baire category in \mathbb{I}_E. Since $B \cap U = \emptyset$, for every $b \in B$ there exists a finite subset F_b of \mathbb{Q}_1 and a basic open neighborhood $V_{F_b} = \{b\} \cup \{(z, y) \in \mathbb{R} \times (\mathbb{Q}_1 \setminus F_b) : z \in \{b, b + y\}\}$ of b such that $V_{F_b} \cap U = \emptyset$. For each finite subset $F \subset \mathbb{Q}_1$ put $B_F = \{b \in B : F_b = F\}$. Since the set of all finite subsets of \mathbb{Q}_1 is countable and B is of the second category, there exists a finite subset $F \subset \mathbb{Q}_1$ such that the set B_F is not meager in \mathbb{I}_E. Hence there exists an interval $(c, d) \subset \mathbb{I}_E$ such that B_F is dense in (c, d). Recall that A is dense in \mathbb{I}_E. At this point it is easy to check that $\emptyset \neq U \cap \bigcup_{b \in B} V_{F_b} \subset U \cap \bigcup_{b \in B} V_{F_b} = \emptyset$, which is a desired contradiction. \(\square\)

Recall that the subspace $\mathbb{I} \subset M$ is discrete. Let $A := \mathbb{Q} \cap \mathbb{I}$ and $B := (\mathbb{Q} + \sqrt{2}) \cap \mathbb{I}$ be two closed countable disjoint subsets of M. Assuming that the space M is strongly π-normal, we can find open sets U_A and U_B in M such that $A \subset U_A$, $B \subset U_B$ and $\overline{U_A} \cap \overline{U_B} = \emptyset$. By Claim 4.2 the sets $\overline{U_A} \cap \mathbb{I}$ and $\overline{U_B} \cap \mathbb{I}$ are comeager in \mathbb{I}_E and hence have nonempty intersection and this is a desired contradiction showing that the space M is not strongly π-normal. \(\square\)

Remark 4.3. The space $M \setminus \{(-\infty, +\infty)\}$ is Tychonoff, zero-dimensional, locally compact, locally countable, π-normal but not strongly π-normal.

Now we present an example of a regular, ω-bounded, totally π-normal space which is not functionally Hausdorff. Let $[0, \alpha]$ be the ordinal $\alpha + 1$ endowed with the order topology. Let $T = [0, \omega_1] \times [0, \omega_2] \setminus \{(\omega_1, \omega_2)\}$ be the subspace of the Tychonoff product $[0, \omega_1] \times [0, \omega_2]$. Observe that T is ω-bounded. Let \mathbb{Z} be the discrete space of integers and $-\infty, +\infty$ be distinct points which do not belong to $T \times \mathbb{Z}$. By Y we denote the set $(T \times \mathbb{Z}) \cup \{-\infty, +\infty\}$ endowed with the topology τ which satisfies the following conditions:

- the Tychonoff product $T \times \mathbb{Z}$ is an open subspace in Y;
- if $-\infty \in U \in \tau$, then there exists $n \in \omega$ such that $\{(t, k) \in T \times \mathbb{Z} : k < -n\} \subset U$;
- if $+\infty \in U \in \tau$, then there exists $n \in \omega$ such that $\{(t, k) \in T \times \mathbb{Z} : k > n\} \subset U$.

One can check that the space Y is regular and ω-bounded.

On the space Y consider the smallest equivalence relation \sim such that $(x, \omega_2, 2n) \sim (x, \omega_2, 2n + 1)$ and $(\omega_1, y, 2n) \sim (\omega_1, y, 2n - 1)$ for any $n \in \mathbb{Z}, x \in \omega_1$ and $y \in \omega_2$. Let X be the quotient space Y/\sim of Y by the equivalence relation \sim.

Example 4.4. The space X is regular, ω-bounded and totally π-normal, but not functionally Hausdorff and hence is not π-Tychonoff.

Proof. Since the ω-boundedness is preserved by continuous images, the space X is ω-bounded.

Using the classical argument due to Tychonoff (see [12, p.109]), it can be shown that the space X is regular, but for each real-valued continuous function f on X, $f(-\infty) = f(+\infty)$. Hence X is not functionally Hausdorff. By Proposition 2.9 X is totally π-normal. \(\square\)

Remark 4.5. For each infinite cardinal κ the punctured Tychonoff plank $[0, \kappa] \times [0, \kappa^+] \setminus \{((\kappa, \kappa^+))\}$ is an example of strongly π-normal space which is not totally π-normal.
A topological space X is called

- H-compact if for any open cover \mathcal{U} of X there exists a finite subfamily $\mathcal{V} \subset \mathcal{U}$ such that $X = \bigcup_{V \in \mathcal{V}} V$;
- H-closed if X is Hausdorff and H-compact.

It is clear that each compact space is H-compact. By [8, 3.12.5], a Hausdorff topological space X is H-closed if and only if it is closed in each Hausdorff space containing X as a subspace.

For each infinite cardinal κ we shall construct a π-normal, κ-bounded, H-compact Hausdorff space which is not Urysohn. Given an infinite cardinal κ, denote by C the set of all isolated points of the cardinal $\kappa^+ = [0, \kappa^+]$ endowed with the order topology. Write C as the union $C = A \cup B$ of two disjoint unbounded subsets of κ^+. Choose any points $a, b \notin \kappa^+$ and consider the space $X_\kappa = \kappa^+ \cup \{a, b\}$ endowed with the topology τ satisfying the following conditions:

- κ^+ with the order topology is an open subspace of X_κ;
- if $a \not\in U \subset \tau$, then there exists $\alpha \in \kappa^+$ such that $\{\beta \in A : \beta > \alpha\} \subset U$;
- if $b \not\in U \subset \tau$, then there exists $\alpha \in \kappa^+$ such that $\{\beta \in B : \beta > \alpha\} \subset U$.

Example 4.6. For each cardinal κ the space X_κ is π-normal, κ-bounded, H-compact and Hausdorff, but not Urysohn.

Proof. It is straightforward to check that X_κ is π-normal, κ-bounded, and Hausdorff. The H-compactness of X_κ follows from the observation that for any open neighborhood $U \subset X_\kappa$ of the doubleton $\{a, b\}$ the closure \overline{U} contains the interval $[\alpha, \kappa^+]$ for some ordinal $\alpha \in \kappa^+$.

To see that X_κ is not Urysohn observe that for any open neighborhoods U_a and U_b of a and b, respectively, the sets $\overline{U_a} \cap \kappa^+$ and $\overline{U_b} \cap \kappa^+$ are closed and unbounded in κ^+. Hence $\overline{U_a} \cap \overline{U_b} \neq \emptyset$. □

Next, we are going to present a (consistent) example of a separable sequentially compact scattered space X which is regular but not π-Tychonoff and hence cannot be embedded into an ω-bounded Hausdorff space.

This example is a combination of van Douwen’s example [7, 7.1] of a locally compact sequentially compact space, based on a regular tower, and the famous example of Tychonoff corkscrew due to Tychonoff, see [12, p.10]. First we recall the necessary definitions related to (regular) towers.

By $[\omega]^{\omega}$ we denote the family of all infinite subsets of ω. For two subsets $A, B \in [\omega]^{\omega}$ we write $A \subseteq^* B$ if $A \setminus B$ is finite. Also we write $A \supseteq^* B$ if $A \subseteq^* B$ but $B \not\subseteq^* A$. A family $\mathcal{T} \subseteq [\omega]^{\omega}$ is called a regular tower if for some regular cardinal κ the family \mathcal{T} can be written as $\mathcal{T} = \{T_{\alpha}\}_{\alpha \in \kappa}$ so that

1. $T_\beta \supseteq^* T_\alpha$ for any ordinals $\alpha < \beta$ in κ, and
2. for any $I \in [\omega]^{\omega}$ there exists $\alpha \in \kappa$ such that $I \not\subseteq^* T_\alpha$.

The first condition implies that the sets T_α, $\alpha \in \kappa$, are distinct and hence $\kappa = |\mathcal{T}|$. Also this condition implies that the relation \supseteq^* is a well-order on \mathcal{T}.

Consider the uncountable cardinals

$$t = \min\{|\mathcal{T}| : \mathcal{T} \subseteq [\omega]^{\omega} \text{ is a regular tower}\}$$

$$\hat{t} = \sup\{|\mathcal{T}| : \mathcal{T} \subseteq [\omega]^{\omega} \text{ is a regular tower}\}$$

and observe that $t \leq \hat{t} \leq \mathfrak{c}$. It is well-known that Martin’s Axiom implies the equality $t = \hat{t} = \mathfrak{c}$.

Proposition 4.7. The strict inequality $t < \hat{t}$ is consistent. Also $t = \hat{t} = \omega_1 < \omega_2 = \mathfrak{c}$ is consistent.
Proof. The consistency of $t = \hat{t} = \omega_1 < \omega_2 = \mathfrak{c}$ was proved in [3, Theorem 4.1].

To prove the consistency of $t < \hat{t}$, assume that $\text{MA} + \neg \text{CH}$ holds in the ground model V and let V' be the forcing extension of V obtained by adding ω_1 many Cohen reals. Then $t = b = \omega_1$ in V', which yields a regular tower of length ω_1 in V'. On the other hand, any maximal tower from V of length $(2^\omega)^V > \omega_1$ (which exists, because in V, $t = 2^\omega > \omega_1$) remains regular in V' since it is well-known (and easy to check) that Cohen forcing cannot add infinite pseudointersections to maximal towers. Hence $t < \hat{t}$ in V'.

A topological space X is called ω-regular if for any open set $U \subset X$ and point $x \in U$ there exists a sequence $(U_n)_{n \in \omega}$ of open neighborhoods of x such that $\bigcup_{n \in \omega} U_n \subset U$ and $\overline{U}_n \subset U_{n+1}$ for all $n \in \omega$. It is easy to see that each completely regular space is ω-regular.

Example 4.8. If $t < \hat{t}$, then there exists a topological space X such that

1. X is separable, scattered, and sequentially compact;
2. X is regular but not ω-regular and hence not completely regular and not ω-Tychonoff;
3. X does not embed into an ω-bounded Hausdorff space.

Proof. Since $t < \hat{t}$, there are two regular towers $T_1 = \{A_\alpha\}_{\alpha \in \kappa}$ and $T_2 = \{B_\beta\}_{\beta \in \lambda}$ such that $\kappa < \lambda$. For every $\alpha \in \kappa$ and $\beta \in \lambda$ consider the sets $C_\alpha = \omega \setminus A_\alpha$ and $D_\beta = \omega \setminus B_\beta$. Let $T_1 = \{C_\alpha\}_{\alpha \in \kappa}$ and $T_2 = \{D_\beta\}_{\beta \in \lambda}$. Obviously, \mathbb{C} is a well order on T_1 and T_2. Also, observe that the families T_1 and T_2 satisfy the following condition: for any infinite subset I of ω there exist $C_\alpha \in T_1$ and $D_\beta \in T_2$ such that the sets $I \cap C_\alpha$ and $I \cap D_\beta$ are infinite.

For every $i \in \{1, 2\}$, consider the space $Y_i = T_i \cup \omega$ which is topologized as follows. Points of ω are isolated and a basic neighborhood of $T \in T_i$ has the form

$$B(S, T, F) = \{P \in T_i \mid S \subseteq^* P \subseteq^* T\} \cup (\{T \setminus S\} \setminus F),$$

where $S \subseteq T_i \cup \emptyset$ satisfies $S \subseteq^* T$ and F is a finite subset of ω.

Repeating arguments of Example 7.1 [7] one can check that the space Y_i is sequentially compact, separable, scattered and locally compact for every $i \in \{1, 2\}$.

For every $i \in \{1, 2\}$ choose any point $\infty_i \notin Y_i$ and let $X_i = \{\infty_i\} \cup Y_i$ be the one-point compactification of the locally compact space Y_i. It is easy to see that the compact space X_i is scattered, $i \in \{1, 2\}$.

Consider the space $\Pi = (X_1 \times X_2) \setminus \{(\infty_1, \infty_2)\}$. It is easy to check that the space Π is separable, scattered and sequentially compact.

Choose any point $\infty \notin \Pi \times \omega$ and consider the space $\Sigma = \{\infty\} \cup (\Pi \times \omega)$ endowed with the topology consisting of the sets $U \subset \Sigma$ satisfying two conditions:

- for any $n \in \omega$ the set $\{z \in \Pi : (z, n) \in U\}$ is open in Π;
- if $\infty \in U$, then there exists $n \in \omega$ such that $\bigcup_{m \geq n} \Pi \times \{m\} \subset U$.

Taking into account that the space Π is separable, scattered and sequentially compact, we conclude that so is the space Σ. On the space Σ consider the smallest equivalence relation \sim such that $(x_1, \infty_2, 2n) \sim (x_1, \infty_2, 2n + 1)$ and $(\infty_1, x_2, 2n + 1) \sim (\infty_1, x_2, 2n + 2)$ for any $n \in \omega$ and $x_i \in X_i \setminus \{\infty_i\}, i \in \{1, 2\}$. Let X be the quotient space Σ/\sim of Σ by the equivalence relation \sim. Observe that the character of the space X_1 at ∞_1 is equal to the regular cardinal $|T_1| = \kappa$ and is strictly smaller than the pseudocharacter of the space X_2 at ∞_2, which is equal to the regular cardinal $|T_2| = \lambda$. Using this observation and repeating the classical argument due to Tychonoff (see [12, p.109]), it can be shown that the space X is regular but not ω-regular (at the point ∞), and hence not Tychonoff and not ω-Tychonoff (since for separable T_1-spaces the Tychonoff property is equivalent to the ω-Tychonoff property).
By Proposition 2.10, the separable space X does not embed into an ω-bounded Hausdorff space.

Question 4.9. Does there exist in ZFC an example of a separable regular sequentially compact space which is not Tychonoff?

Acknowledgements

The authors would like to express their sincere thanks to Lyubomyr Zdomskyy for valuable comments and especially for the idea of the proof of Proposition 4.7.

References

[1] T. Banakh, *On κ-bounded and M-compact reflections of topological spaces*, Topology Appl. 289 (2021) 107547.

[2] T. Banakh, S. Bardyla, A. Ravsky, *Embeddings into countably compact Hausdorff spaces*, Ukr. Mat. Zh. (accepted); [arXiv:1906.04541](https://arxiv.org/abs/1906.04541).

[3] J. Baumgartner, P. Dordal, *Adjoining dominating functions*, J. Symbolic Logic 50:1 (1985) 94–101.

[4] H. Brandenburg, A. Mysior, *For every Hausdorff space Y there exists a nontrivial Moore space on which all continuous functions into Y are constant*, Pacific J. Math. 111:1 (1984) 1–8.

[5] D. Dikranjan, E. Giuli, *$S(n)$-θ-closed spaces*, Topology Appl. 28 (1988) 59–74.

[6] D. Dikranjan, J. Pelant, *Categories of topological spaces with sufficiently many sequentially closed spaces*, Cahiers de Topologie et Geometrie Differentielle Categoriques, 38:4, (1997) 277–300.

[7] E.K. van Douwen, *The integers and topology*, in: K. Kunen, J.E. Vaughan (Eds.), *Handbook of set-theoretic topology*, North-Holland, Amsterdam, (1984) 111–167.

[8] R. Engelking, *General Topology*, Heldermann Verlag, Berlin, 1989.

[9] I. Juhász, J. van Mill, W. Weiss, *Variations on ω-boundedness*, Israel J. Math. 194:2, (2013) 745–766.

[10] I. Juhász, L. Soukup, Z. Szentmiklész, *Between countably compact and ω-bounded*, Topology Appl. 195 (2015) 196–208.

[11] A. Mysior, *A regular space which is not completely regular*, Proc. Amer. Math. Soc., 81:4 (1981) 652–653.

[12] L.A. Steen, J.A. Seebach, *Counterexamples in topology*, Springer, New York–Heidelberg, (1978), 244 pp.

[13] J. Vaughan, *Countably compact and sequentially compact spaces*, in: K. Kunen, J.E. Vaughan (Eds.), *Handbook of Set-Theoretic Topology*, Elsevier, (1984) 569–602.

Ivan Franko National University of Lviv, Ukraine, and Jan Kochanowski University in Kielce, Poland

Email address: t.o.banakh@gmail.com

Institute of Mathematics, Kurt Gödel Research Center, University of Vienna, Austria

Email address: sbardyla@yahoo.com

Pidstrigach Institute for Applied Problems of Mechanics and Mathematics, Lviv, Ukraine

Email address: alexander.ravsky@uni-wuerzburg.de