IntaRNA 2.0 - enhanced and customizable prediction of RNA-RNA interactions
- Supplementary material -

Martin Mann¹, Patrick R. Wright¹, Rolf Backofen¹,²,*

¹Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany and
²Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany

Contents

1 Energy computation details 2
2 Minimal energy profiles of Spot42-sthA interactions 3
Supplementary Table 1 4
4 Supplementary FASTA 7
5 Target sequence generation 8
1 Energy computation details

An RNA molecule consisting of \(n \) nucleotides is described by its sequence of bases encoded by \(S \in \{A,C,G,U\}^n \) indexed from 5’ to 3’ end.

For a given pair of two RNAs \(S^1, S^2 \), we will denote with \(E^{\text{hybrid}}_{i..k} \) the minimal energy of any interaction of the subsequences \(S^1_{i..k} \) and \(S^2_{l..j} \) under the additional condition that the subsequence ends form each a base pair, i.e. \((S^1_i, S^2_j)\) and \((S^1_k, S^2_l)\) are Watson-Crick or G-U base pairs. This energy term also includes the RNA-RNA interaction initiation energy penalty as well as closing base pair penalties (if the final base pairs are not G-C).

The energy penalty \(ED^1[i,k] \) to make the subsequence \(S^1_{i..k} \) accessible is given by

\[
ED^1[i,k] = -RT \cdot \log(Pr^u[i..k]),
\]

where \(Pr^u[i..k] \) denotes the unpaired probability for subsequence \(S^1_{i..k} \) (e.g. computed via McCaskill’s algorithm [1]), \(R \) the gas constant and \(T \) the temperature of the system. \(ED^2 \) is defined analogously.

For an interaction with left/right-most base pairs \((S^1_i, S^2_j)/(S^1_k, S^2_l)\), resp., and an hybridization energy given by \(E^{\text{hybrid}} \), the overall interaction energy in \textsc{IntaRNA}v1 is defined by

\[
E_{i..k}^{v1} = E^{\text{hybrid}}_{i..k} + \begin{cases}
ED^1[i-1,k] + E^{\text{dangle}}_{S^1_{i-1}} + E^{\text{dangle}}_{S^1_{k+1}} & \text{both ends free} \\
ED^1[i-1,k] + E^{\text{dangle}}_{S^1_{i-1}} & \text{5’-end free} \\
ED^1[i,k] + E^{\text{dangle}}_{S^1_{k+1}} & \text{3’-end free} \\
ED^1[i,k] & \text{no end free}
\end{cases}
\]

\[
+ \min \{ \text{dangling end cases for } S^2 \text{ and interval } j..l \}. \tag{2}
\]

Here, all possibilities of free ends and according dangling end contributions \(E^{\text{dangle}}[..] \) are considered while the ED penalty is extended to cover the free end positions as well.

The new \textsc{IntaRNA}v2 dangling end treatment always takes free dangling end contributions into account by weighting them with according conditional probabilities \(Pr^u \) that the position is unpaired given that the interaction site is accessible, i.e. not involved in intramolecular base pairs. For instance, the 5’-dangling-end probability for the first sequence (position \(S^1_{i-1} \)), is given by

\[
Pr^u[i-1 | i..k] = \frac{Pr^u[(i-1)..k]}{Pr^u[i..k]} = \frac{\exp(-ED^1[i-1,k]/RT)}{\exp(-ED^1[i,k]/RT)} = \frac{\exp((ED^1[i,k] - ED^1[i-1,k])/RT)}{\exp(-ED^1[i,k]/RT)} \tag{3}
\]

using the \(ED^1 \) values for \(S^1 \) given Eq. 1.

Given these probabilities, \textsc{IntaRNA}v2 computes the overall interaction energy using

\[
E_{i..k}^{v2} = E^{\text{hybrid}}_{i..k} + ED^1[i,k] + \begin{cases}
Pr^u[i-1 | i..k] \cdot E^{\text{dangle}}_{S^1_{i-1}} + Pr^u[k+1 | i..k] \cdot E^{\text{dangle}}_{S^1_{k+1}} & \text{both ends free} \\
Pr^u[i-1 | i..k] \cdot E^{\text{dangle}}_{S^1_{i-1}} & \text{5’-end free} \\
Pr^u[k+1 | i..k] \cdot E^{\text{dangle}}_{S^1_{k+1}} & \text{3’-end free} \\
Pr^u[i,k] & \text{no end free}
\end{cases}
\]

\[
+ \begin{cases}
ED^2[j,l] & \text{no end free} \\
Pr^u[j-1 | j..l] \cdot E^{\text{dangle}}_{S^2_{j-1}} + Pr^u[l+1 | j..l] \cdot E^{\text{dangle}}_{S^2_{l+1}} & \text{both ends free} \\
Pr^u[j-1 | j..l] \cdot E^{\text{dangle}}_{S^2_{j-1}} & \text{5’-end free} \\
Pr^u[l+1 | j..l] \cdot E^{\text{dangle}}_{S^2_{l+1}} & \text{3’-end free}
\end{cases} \tag{4}
\]
2 Minimal energy profiles of Spot42-sthA interactions

Spot42 is known to interact with its targets via three conserved accessible regions I (positions 1-10), II (20-37), and III (47-60) [2, 3] that are depicted in Figure 1. It has been shown that mainly sites I and III are important for the interaction with the target mRNA encoded by the sthA gene. The mutated sequences in Figure 1 (mutation in capital red letters) were employed in the original study [3].

Mutating sites I and III has been reported to show the highest effect while the mutation of region II exhibited only minor effects. Figure 2 shows the according minimal energy profiles for the Spot42 wildtype and all three mutants. The individual mutations on their own do not completely break the regulation of sthA by Spot42 [3], which suggests additive effects of regions I and III.

![Minimal energy profile for all intermolecular index pairs covered by any predicted interaction of Spot42 and the sthA mRNA (with E<0) for different sequence variants of Spot42. Conserved accessible regions I, II and III of Spot42 known to interact with target RNAs are tagged on the right.](image)

While the mutation of region II shows (as experimentally shown) no significant effect (only a minor minimal energy increase for sites I and III of 0.5 kcal/mol), mutating region I or III breaks the respective predicted interaction site completely. On the other hand the non-mutated site stays intact and may be responsible for the remaining partial regulation of sthA by the mutant [3].
3 Supplementary Table 1

The following table contains the results for the benchmark. The first, second and third columns specify the sRNA name, locus tag and name of the target, respectively. The fourth column indicates the rank produced by an IntaRNA v1 whole genome target prediction (arguments \texttt{-p 7 -w 150 -L 100}). The fifth column shows the rank produced by an IntaRNA v2 whole genome target prediction with standard parameters (arguments \texttt{--seedBP 7 --tAccW 150 --tAccL 100 --qAccW 0 --qAccL 0}) and the sixth column shows the rank for IntaRNA v2 whole genome target predictions which enforce a seed energy ≤ -4.8 kcal/mol (additional argument \texttt{--seedMaxE=-4.8}). Rank '-' indicates that no prediction could be made for a specific sRNA-target pair. The last column contains the references to the articles reporting the RNA pairs.

sRNA	tar locus tag	tar name	v1	v2	v2 seed ≤ -4.8	reference
ArcZ	STM1682	tpx	1678	1995	1191	[5]
ArcZ	STM2970	slaC	4433	4420	-	[5]
ArcZ	STM3216	-	3616	3662	-	[5]
ArcZ	b1892	fhlB	2322	2525	1726	[6]
ArcZ	b2741	rpoS	192	423	256	[7]
ArcZ	b3546	eptB	2322	2525	1726	[6]
ChiX	STM0687	yblM/chiP	8	8	6	[9]
ChiX	STM1313	cedB	4	4	3	[9]
ChiX	b16010	dlpB/citA	4	4	4	[10]
ChiX	b0081	chiP	3	3	3	[11]
ChiX	b1737	chiC	2	2	2	[12]
CyaR	STM0833	ompX	129	83	59	[13]
CyaR	b0723	sdiA	243	376	260	[14]
CyaR	b0814	ompX	118	70	58	[15]
CyaR	b1740	nadE	2332	1813	-	[15]
CyaR	b1824	yobF	60	54	46	[14]
CyaR	b2416	ptsI	77	53	45	[14]
CyaR	b3666	yqaE	405	661	448	[15]
CyaR	b2687	luxS	690	556	379	[15]
DsrA	b1237	hns	14	8	2	[16]
DsrA	b2741	rpoS	1	1	-	[16]
DsrA	b3521	mreB	1786	1683	-	[17]
FrmS	b0723	sdiA	31	30	543	[18]
FrmS	STM0777	gmuA	1875	1852	1059	[18]
FrmS	b0887	cydD	318	315	174	[19]
FrmS	b1107	nagZ	427	395	-	[14]
FrmS	b1479	maeA	330	329	2341	[18]
FrmS	b1531	marA	54	96	-	[14]
FrmS	b1656	sodB	667	118	64	[19]
FrmS	b1811	yobA	5	5	5	[19]
FrmS	b3215	folE	312	539	284	[18]
FrmS	b3240	folX	367	515	271	[18]
FrmS	b3631	iscR	1	1	1	[14]
FrmS	b3629	metE	211	61	37	[19]
FrmS	b3608	sodA	770	1095	591	[19]
GevB	STM0002	thrA	168	83	47	[20]
GevB	STM0245	metQ	620	367	562	[20]
GevB	STM0399	brntQ	17	55	171	[20]
GevB	STM0862	yblH	373	227	125	[20]
GevB	STM0665	gflI	109	131	100	[21]
GevB	STM0699	lrp	165	368	194	[20]
GevB	STM1299	gdhA	116	110	1824	[21]
GevB	STM1452	tppB	819	924	457	[20]
GevB	STM1746.8	oppA	147	130	1187	[21]
GevB	STM2355	argT	35	18	330	[21]
GevB	STM2356	ndk	35	78	2360	[20]
GevB	STM3062	serA	119	177	131	[20]
GevB	STM3064	ictA	209	61	35	[20]
GevB	STM3225	yglU/stT	459	447	232	[20]
GevB	STM3564	livK	47	133	80	[21]
Gene	STM	Description				
--------	------------	-------------				
GevB	STM3567	livJ				
GevB	STM3630	dppA				
GevB	STM3903	ilvE				
GevB	STM3999	yilC				
GevB	STM4351	yifK				
GevB	STM4398	cycA				
GevB	b1404	csgD				
GevB	b1130	phoP				
GevB	b3089	sstT				
GevB	b4208	cycA				
GimZ	b3729	glmS				
MicA	STM4231	lasB				
MicA	b0411	tex				
MicA	b0814	ompX				
MicA	b0957	ompA				
MicA	b1130	phoP				
MicC	STM1572	ompD				
MicC	b2215	ompC				
MicF	STM3066	yahO				
MicF	STM3095	lrp				
MicF	STM3248	lprR				
MicF	b0921	phoE				
MicF	b0889	lrp				
MicF	b0929	ompF				
MicF	b3912	cpxR				
OmrA	b0565	ompF				
OmrA	b1040	csgD				
OmrA	b1130	flhD				
OmrA	b2155	cirA				
OmrA	b3405	ompR				
OmrB	b0565	ompF				
OmrB	b1040	csgD				
OmrB	b1892	flhD				
OmrB	b2155	cirA				
OmrB	b3405	ompR				
OxyS	b0892	flhD				
OxyS	b2731	flhA				
RprA	b1040	csgD				
RprA	b1441	ydaM				
RprA	b2741	rpoS				
RpyB	STM0413	tex				
RpyB	STM0687	yhiM/chiP				
RpyB	STM0999	ompF				
RpyB	STM1070	ompA				
RpyB	STM1473	ompN				
RpyB	STM1530	-				
RpyB	STM1572	ompD				
RpyB	STM1732	ompW				
RpyB	STM1995	ompS				
RpyB	STM2207	ompC				
RpyB	STM2391	faeL				
RpyB	b0081	mraZ				
RpyB	b0721	sdhC				
RpyB	b0805	fur				
RpyB	b1256	ompW				
RpyB	b2215	ompC				
RpyB	b2394	riuD				
RpyB	b2518	achB				
RpyB	b2519	csgD				
RpyB	b3088	ykgJ				
RpyB	b0592	fepB				
RpyB	b0883	fur				
RpyB	b0721	sdhC				
RpyB	b0723	sdhA				
Gene	Start	End	Length			
--------	-------	-------	--------			
RyhB	60894	60894	7			
RyhB	61107	61107	9			
RyhB	61200	61200	49			
RyhB	61352	61352	14			
RyhB	61531	61531	101			
RyhB	61658	61658	280			
RyhB	61659	61659	439			
RyhB	61778	61778	152			
RyhB	61981	61981	54			
RyhB	62069	62069	49			
RyhB	62155	62155	87			
RyhB	62200	62200	108			
RyhB	62530	62530	130			
RyhB	63365	63365	34			
RyhB	63607	63607	45			
RyhB	63942	63942	49			
RyhB	64070	64070	360			
RyhB	64122	64122	129			
SgrS	STM2945	STM2945	1287			
SgrS	STM2962	STM2962	95			
SgrS	b1101	b1101	7			
SgrS	b1517	b1517	1531			
SgrS	b2416	b2416	73			
Spec42	STM2190	STM2190	97			
Spec42	b0039	b0039	16			
Spec42	b0720	b0720	179			
Spec42	b0721	b0721	44			
Spec42	b0728	b0728	203			
Spec42	b0757	b0757	4			
Spec42	b1136	b1136	50			
Spec42	b1302	b1302	4			
Spec42	b1398	b1398	10			
Spec42	b1761	b1761	49			
Spec42	b1901	b1901	134			
Spec42	b2221	b2221	166			
Spec42	b2702	b2702	45			
Spec42	b2715	b2715	135			
Spec42	b2801	b2801	29			
Spec42	b2802	b2802	1634			
Spec42	b3224	b3224	6			
Spec42	b3365	b3365	46			
Spec42	b3607	b3607	83			
Spec42	b3942	b3942	882			
Spec42	b4070	b4070	214			
Spec42	b4122	b4122	241			
Spec42	b4311	b4311	51			
Spot42	STM2190	STM2190	97			
Spot42	b0720	b0720	179			
Spot42	b0721	b0721	44			
Spot42	b0728	b0728	203			
Spot42	b0757	b0757	4			
Spot42	b1136	b1136	50			
Spot42	b1302	b1302	4			
Spot42	b1398	b1398	10			
Spot42	b1761	b1761	49			
Spot42	b1901	b1901	134			
Spot42	b2221	b2221	166			
Spot42	b2702	b2702	45			
Spot42	b2715	b2715	135			
Spot42	b2801	b2801	29			
Spot42	b2802	b2802	1634			
Spot42	b3224	b3224	6			
Spot42	b3365	b3365	46			
Spot42	b3607	b3607	83			
Spot42	b3942	b3942	882			
Spot42	b4070	b4070	214			
Spot42	b4122	b4122	241			
Spot42	b4311	b4311	51			
Spot42	STM2190	STM2190	97			
Spot42	b0720	b0720	179			
Spot42	b0721	b0721	44			
Spot42	b0728	b0728	203			
Spot42	b0757	b0757	4			
Spot42	b1136	b1136	50			
Spot42	b1302	b1302	4			
Spot42	b1398	b1398	10			
Spot42	b1761	b1761	49			
Spot42	b1901	b1901	134			
Spot42	b2221	b2221	166			
Spot42	b2702	b2702	45			
Spot42	b2715	b2715	135			
Spot42	b2801	b2801	29			
Spot42	b2802	b2802	1634			
Spot42	b3224	b3224	6			
Spot42	b3365	b3365	46			
Spot42	b3607	b3607	83			
Spot42	b3942	b3942	882			
Spot42	b4070	b4070	214			
Spot42	b4122	b4122	241			
Spot42	b4311	b4311	51			
4 Supplementary FASTA

> ArcZ
 gugcggccccaaacagugcuagcggccccuuauacucauauauuuacggcagcggcaccacauuauuuc
cuccgggugcagcggcagcggcaccacggcagcggcagcggcaccacggcagcggcagcggcaccacggcagu
awggccauauuauu
> CyaX
 gugacuauacacacuauauacucucucucuu}
5 Target sequence generation

Input: The target sequences that were used for the benchmark can be generated by performing a whole genome target prediction using the IntaRNA webserver interface. For this, "Get target RNA sequences from NCBI Genome" should be selected on the input page. Then, any FASTA file can be pasted into the query area. Next, either NC_000913 or NC_003197 need to be specified in the "Target NCBI RefSeq ID" field. NC_000913 retrieves the sequences for *Escherichia coli* and NC_003197 does the same for *Salmonella*. In the last input step, "nt up" needs to be set to 200, "nt down" needs to be set to 100 and the job can be started.

Output: On the result page "Show Input Parameters" can be selected. Here, "Target RNA (long) in FASTA" shows a link to a FASTA file with the target sequences of interest.
References

[1] J. S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. *Biopolymers*, 29(6-7):1105–19, 1990. [PubMed:1695107] [doi:10.1002/bip.360290621].

[2] Thorleif Møller, Thomas Franch, Christina Udesen, Kenn Gerdes, and Poul Valentin-Hansen. Spot 42 RNA mediates discoordinate expression of the *E. coli* galactose operon. *Genes Dev*, 16(13):1696–706, 2002. [PubMed:12101127] [doi:10.1101/gad.231702].

[3] Chase L. Beisel and Gisela Storz. The base-pairing RNA Spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in *Escherichia coli*. *Mol Cell*, 41(3):286–97, 2011. [PubMed:21292161] [doi:10.1016/j.molcel.2010.12.027].

[4] Patrick R. Wright. *Predicting small RNA targets in prokaryotes - a challenge beyond the barriers of thermodynamic models*. PhD thesis, Albert-Ludwigs-University Freiburg, December 2016.

[5] Kai Papenfort, Nelly Said, Tim Welsink, Sacha Lucchini, Jay C. D. Hinton, and Jorg Vogel. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. *Mol Microbiol*, 74(1):139–58, 2009. [PubMed:19732340] [doi:10.1111/j.1365-2958.2009.06857.x].

[6] Nicholas De Lay and Susan Gottesman. A complex network of small non-coding RNAs regulate motility in *Escherichia coli*. *Mol Microbiol*, 86(3):524–38, 2012. [PubMed:22925049] [doi:10.1111/j.1365-2958.2012.08209.x].

[7] Pierre Mandin and Susan Gottesman. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. *EMBO J*, 29(18):3094–107, 2010. [PubMed:20683441] [PubMed Central:PMC2944060] [doi:10.1038/emboj.2010.179].

[8] Kyung Moon, David A. Six, Hyun-Jung Lee, Christian R. H. Raetz, and Susan Gottesman. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. *Mol Microbiol*, 89(1):52–64, 2013. [PubMed:23659637] [PubMed Central:PMC3765083] [doi:10.1111/mmi.12257].

[9] Nara Figueroa-Bossi, Martina Valentini, Laurette Malleret, Francesca Fiorini, and Lionello Bossi. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. *Genes Dev*, 23(17):2004–15, 2009. [PubMed:19638370] [PubMed Central:PMC2751969] [doi:10.1101/gad.541609].

[10] Pierre Mandin and Susan Gottesman. A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. *Mol Microbiol*, 72(3):551–65, 2009. [PubMed:19426207] [PubMed Central:PMC2714224] [doi:10.1111/j.1365-2958.2009.06665.x].

[11] Anders Aamann Rasmussen, Jesper Johansen, Jesper S. Nielsen, Martin Overgaard, Birgitte Kallipolitis, and Poul Valentin-Hansen. A conserved small RNA promotes silencing of the outer membrane protein YfbM. *Mol Microbiol*, 72(3):566–77, 2009. [PubMed:19400782] [doi:10.1111/j.1365-2958.2009.06688.x].

[12] Martin Overgaard, Jesper Johansen, Jakob Møller-Jensen, and Poul Valentin-Hansen. Switching off small RNA regulation with trap-mRNA. *Mol Microbiol*, 73(5):790–800, 2009. [PubMed:19682266] [doi:10.1111/j.1365-2958.2009.06807.x].

[13] Kai Papenfort, Verena Pfeiffer, Sacha Lucchini, Avinash Sonawane, Jay C. D. Hinton, and Jorg Vogel. Systematic deletion of *Salmonella* small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. *Mol Microbiol*, 68(4):890–906, 2008. [PubMed:18399940] [doi:10.1111/j.1365-2958.2008.06189.x].
[14] Patrick R. Wright, Andreas S. Richter, Kai Papenfort, Martin Mann, Jorg Vogel, Wolfgang R. Hess, Rolf Backofen, and Jens Georg. Comparative genomics boosts target prediction for bacterial small RNAs. *Proc Natl Acad Sci USA*, 110(37):E3487–96, 2013. [PubMed:23980183] [PubMed Central:PMC3773804] [doi:10.1073/pnas.1305248110].

[15] Nicholas De Lay and Susan Gottesman. The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. *J Bacteriol*, 191(2):461–76, 2009. [PubMed:18978044] [PubMed Central:PMC2620814] [doi:10.1128/JB.01157-08].

[16] R. A. Lease, M. E. Cusick, and M. Belfort. Riboregulation in *Escherichia coli*: DsrA RNA acts by RNA:RNA interactions at multiple loci. *Proc Natl Acad Sci USA*, 95(21):12456–61, 1998. [PubMed:9770507].

[17] Bastien Cayrol, Emilie Fortas, Claire Martret, Grzegorz Cech, Anna Kloska, Stephane Caulet, Marion Barbet, Sylvain Trepont, Sergio Marco, Aziz Taghbalout, Florent Busi, Grzegorz Wegrzyń, and Veronique Arluison. Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. *Integr Biol (Camb)*, 7(1):128–41, 2015. [PubMed:25407044] [doi:10.1039/c4ib00102h].

[18] Sylvain Durand and Gisela Storz. Reprogramming of anaerobic metabolism by the FnrS small RNA. *Mol Microbiol*, 75(5):1215–31, 2010. [PubMed:20075074] [PubMed Central:PMC2941437] [doi:10.1111/j.1365-2958.2010.07044.x].

[19] Anders Boysen, Jakob Moller-Jensen, Birgitte Kallipolitis, Poul Valentin-Hansen, and Martin Overgaard. Translational regulation of gene expression by an anaerobically induced small non-coding RNA in *Escherichia coli*. *Journal of Biological Chemistry*, 285(14):10690–702, 2010. [PubMed:20075074] [PubMed Central:PMC2856277] [doi:10.1074/jbc.M109.089755].

[20] Cynthia M. Sharma, Kai Papenfort, Sandy R. Pernitzsch, Hans-Joachim Mollenkopf, Jay C. D. Hinton, and Jorg Vogel. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. *Mol Microbiol*, 81(5):1144–65, 2011. [PubMed:21696468] [doi:10.1111/j.1365-2958.2011.07751.x].

[21] Cynthia M. Sharma, Fabien Darfeuille, Titia H. Plantinga, and Jorg Vogel. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. *Genes Dev*, 21(21):2804–17, 2007. [PubMed:17974919] [PubMed Central:PMC2045133] [doi:10.1101/gad.447207].

[22] Qi Yang, Nara Figueroa-Bossi, and Lionello Bossi. Translation enhancing ACA motifs and their silencing by a bacterial small regulatory RNA. *PLoS Genet*, 10(1):e1004026, 2014. [PubMed:24391513] [PubMed Central:PMC3879156] [doi:10.1371/journal.pgen.1004026].

[23] Mikkel Girke Jorgensen, Jesper S. Nielsen, Anders Boysen, Thomas Franch, Jakob Moller-Jensen, and Poul Valentin-Hansen. Small regulatory RNAs control the multi-cellular adhesive lifestyle of *Escherichia coli*. *Mol Microbiol*, 84(1):36–50, 2012. [PubMed:22250746] [doi:10.1111/j.1365-2958.2012.07976.x].

[24] Audrey Coornaert, Claude Chiaruttini, Mathias Springer, and Maude Guillier. Post-transcriptional control of the *Escherichia coli* PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB. *PLoS Genet*, 9(1):e1003156, 2013. [PubMed:23300478] [PubMed Central:PMC3556696] [doi:10.1371/journal.pgen.1003156].

[25] Sarah C. Pulvermacher, Lorraine T. Stauffer, and George V. Stauffer. The small RNA GcvB regulates *sstT* mRNA expression in *Escherichia coli*. *J Bacteriol*, 191(1):238–48, 2009. [PubMed:18952787] [doi:10.1128/ JB.00915-08].

[26] Sarah C. Pulvermacher, Lorraine T. Stauffer, and George V. Stauffer. Role of the sRNA GcvB in regulation of *cycA* in *Escherichia coli*. *Microbiology*, 155(Pt 1):106–14, 2009. [PubMed:19118351] [doi:10.1099/mic.0.023508-0].
[27] Johannes H. Urban and Jörg Vogel. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. *PLoS Biol*, 6(3):e64, 2008. [PubMed:18351803] [doi:10.1371/journal.pbio.0060064].

[28] Lionello Bossi and Nara Figueroa-Bossi. A small RNA downregulates LamB maltoporin in *Salmonella*. *Mol Microbiol*, 65(3):799–810, 2007. [PubMed:17608792] [doi:10.1111/j.1365-2958.2007.05829.x].

[29] Emily B. Gogol, Virgil A. Rhodius, Kai Papenfort, Jorg Vogel, and Carol A. Gross. Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. *Proc Natl Acad Sci USA*, 108(31):12875–80, 2011. [PubMed:21768388] [PubMed Central:PMC3150882] [doi:10.1073/pnas.1109379108].

[30] Klas I. Udekwu, Fabien Darfeuille, Jorg Vogel, Johan Reimegård, Erik Holmqvist, and E. Gerhart H. Wagner. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. *Genes Dev*, 19(19):2355–66, 2005. [PubMed:16204185] [PubMed Central:PMC1240044] [doi:10.1101/gad.354405].

[31] Audrey Coornaert, Alisa Lu, Pierre Mandin, Mathias Springer, Susan Gottesman, and Maude Guillier. MicA sRNA links the PhoP regulon to cell envelope stress. *Mol Microbiol*, 76(2):467–79, 2010. [PubMed:20345657] [PubMed Central:PMC2925231] [doi:10.1111/j.1365-2958.2010.07115.x].

[32] Verena Pfleiffer, Kai Papenfort, Sacha Lucchini, Jay C. D. Hinton, and Jorg Vogel. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. *Nat Struct Mol Biol*, 16(8):840–6, 2009. [PubMed:19620966] [doi:10.1038/nsmb.1631].

[33] Shuo Chen, Aixia Zhang, Lawrence B. Blyn, and Gisela Storz. MicC, a second small-RNA regulator of Omp protein expression in *Escherichia coli*. *J Bacteriol*, 186(20):6689–97, 2004. [PubMed:15466019] [doi:10.1128/JB.186.20.6689-6697.2004].

[34] Colin P. Corcoran, Dimitri Podkaminski, Kai Papenfort, Johannes H. Urban, Jay C. D. Hinton, and Jorg Vogel. Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. *Mol Microbiol*, 84(3):428–45, 2012. [PubMed:22458297] [doi:10.1111/j.1365-2958.2012.08031.x].

[35] Erik Holmqvist, Cecilia Unoson, Johan Reimegard, and E. Gerhart H. Wagner. A mixed double negative feedback loop between the sRNA MicF and the global regulator Lrp. *Mol Microbiol*, 84(3):414–27, 2012. [PubMed:22234810] [doi:10.1111/j.1365-2958.2012.07994.x].

[36] T. Suzuki, C. Ueguchi, and T. Mizuno. H-NS regulates OmpF expression through micF antisense RNA in *Escherichia coli*. *J Bacteriol*, 178(12):3650–3, 1996. [PubMed:8655567] [PubMed Central:PMC178139].

[37] Maude Guillier and Susan Gottesman. The 5’ end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. *Nucleic Acids Res*, 36(21):6781–94, 2008. [PubMed:18953042] [PubMed Central:PMC2588501] [doi:10.1093/nar/gkn742].

[38] Erik Holmqvist, Johan Reimegård, Maaike Sterk, Nina Grantcharova, Ute Römling, and Eduard Gerhart Heinrich Wagner. Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. *EMBO J*, 29(11):1840–50, 2010. [PubMed:20407422] [PubMed Central:PMC2885931] [doi:10.1038/emboj.2010.73].

[39] S. Altuvia, A. Zhang, L. Argaman, A. Tiwari, and G. Storz. The *Escherichia coli* OxyS regulatory RNA represses flhA translation by blocking ribosome binding. *EMBO J*, 17(20):6069–75, 1998. [PubMed:9774350] [PubMed Central:PMC1170933] [doi:10.1093/emboj/17.20.6069].

[40] Franziska Miika, Susan Busse, Alexandra Possling, Janine Berkhof, Natalia Tschowri, Nicole Sommerfeldt, Mihaela Pruteanu, and Regine Hengge. Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in *Escherichia coli*. *Mol Microbiol*, 84(1):51–65, 2012. [PubMed:22356413] [PubMed Central:PMC3465796] [doi:10.1111/j.1365-2958.2012.08002.x].
[41] Nadim Majdalani, David Hernandez, and Susan Gottesman. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. *Mol Microbiol*, 46(3):813–26, 2002. [PubMed:12410838].

[42] Kai Papenfort, Marie Bouvier, Franziska Mika, Cynthia M. Sharma, and Jörg Vogel. Evidence for an autonomous 5’ target recognition domain in an Hfq-associated small RNA. *Proc Natl Acad Sci USA*, 107(17):20435–40, 2010. [PubMed:21059903] [PubMed Central:PMC2996696] [doi:10.1073/pnas.1009784107].

[43] Roberto Balbontín, Francesca Fiorini, Nara Figueroa-Bossi, Josep Casadesús, and Lionello Bossi. Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in *Salmonella enterica*. *Mol Microbiol*, 78(2):380–94, 2010. [PubMed:20979336].

[44] Marie Bouvier, Cynthia M. Sharma, Franziska Mika, Knud H. Nierhaus, and Jorg Vogel. Small RNA binding to 5’ mRNA coding region inhibits translational initiation. *Mol Cell*, 32(6):827–37, 2008. [PubMed:19111662] [doi:10.1016/j.molcel.2008.10.027].

[45] Patrick R. Wright. hlIntaRNA - Comparative prediction of sRNA targets in prokaryotes. Diplomarbeit, Albert Ludwigs University Freiburg, March 2012.

[46] Guillaume Desnoyers and Eric Masse. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. *Genes Dev*, 26(7):726–39, 2012. [PubMed:22474262] [PubMed Central:PMC3323883] [doi:10.1101/gad.182493.111].

[47] Jesper Johansen, Anders Aamann Rasmussen, Martin Overgaard, and Poul Valentin-Hansen. Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J Mol Biol, 364(1):1–8, 2006. [PubMed:17007876] [doi:10.1016/j.jmb.2006.09.004].

[48] Julie-Anna M. Benjamin and Eric Masse. The iron-sensing aconitase B binds its own mRNA to prevent sRNA-induced mRNA cleavage. *Nucleic Acids Res*, 42(15):10023–36, 2014. [PubMed:25092924] [PubMed Central:PMC4150767] [doi:10.1093/nar/gku649].

[49] Jing Wang, William Rennie, Chaochun Liu, Charles S. Carmack, Karine Prevost, Marie-Pier Caron, Eric Masse, Ye Ding, and Joseph T. Wade. Identification of bacterial sRNA regulatory targets using ribosome profiling. *Nucleic Acids Res*, 43(21):10308–20, 2015. [PubMed:26546513] [PubMed Central:PMC4666370] [doi:10.1093/nar/gkv1158].

[50] Branislav Vecerek, Isabella Moll, and Udo Bläsi. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. *EMBO J*, 26(4):965–75, 2007. [PubMed:17268550] [PubMed Central:PMC1852835] [doi:10.1038/sj.emboj.7601553].

[51] Karine Prévost, Guillaume Desnoyers, Jean-François Jacques, François Lavoie, and Eric Massé. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. *Genes Dev*, 25(4):385–96, 2011. [PubMed:21289064] [PubMed Central:PMC3042161] [doi:10.1101/gad.2001711].

[52] Branislav Vecerek, Isabella Moll, Taras Afonyushkin, Vladimir Kaberdin, and Udo Blasi. Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron metabolism of *Escherichia coli*. *Mol Microbiol*, 50(3):897–909, 2003. [PubMed:14617150].

[53] Julia Bos, Yohann Duverger, Benoît Thouvenot, Claude Chiaruttini, Christiane Branlant, Mathias Springer, Bruno Charpentier, and Frederic Barras. The sRNA RyhB regulates the synthesis of the *Escherichia coli* methionine sulfoxide reductase MsrB but not MsrA. *PLoS One*, 8(5):e63647, 2013. [PubMed:23671689] [doi:10.1371/journal.pone.0063647].

[54] Karine Prévost, Hubert Salvail, Guillaume Desnoyers, Jean-François Jacques, Émilie Phaneuf, and Eric Massé. The small RNA RyhB activates the translation of *shiA* mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. *Mol Microbiol*, 64(5):1260–73, 2007. [PubMed:17542919] [doi:10.1111/j.1365-2958.2007.05733.x].
[55] Guillaume Desnoyers, Audrey Morissette, Karine Prévost, and Eric Massé. Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA. *EMBO J*, 28(11):1551–61, 2009. [PubMed:19407815] [doi:10.1038/emboj.2009.116].

[56] Hubert Salvail, Pascale Lanthier-Bourbonnais, Jason Michael Sobota, Mélissa Caza, Julie-Anna M. Benjamin, Martha Eugénia Sequeira Mendia, François Lépine, Charles M. Dozois, James Imlay, and Eric Massé. A small RNA promotes siderophore production through transcriptional and metabolic remodeling. *Proc Natl Acad Sci USA*, 107(34):15223–8, 2010. [PubMed:20696910] [PubMed Central:PMC2930555] [doi:10.1073/pnas.1007805107].

[57] Kai Papenfort, Dimitri Podkaminski, Jay C. D. Hinton, and Jorg Vogel. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. *Proc Natl Acad Sci USA*, 109(13):E757–64, 2012. [PubMed:2338560] [PubMed Central:PMC3323961] [doi:10.1073/pnas.1119414109].

[58] Kai Papenfort, Yan Sun, Masatoshi Miyakoshi, Carin K. Vanderpool, and Jorg Vogel. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. *Cell*, 153(2):426–37, 2013. [PubMed:23582330] [PubMed Central:PMC4151517] [doi:10.1016/j.cell.2013.03.003].

[59] Hiroshi Kawamoto, Yukari Koide, Teppei Morita, and Hiroji Aiba. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. *Mol Microbiol*, 61(4):1013–22, 2006. [PubMed:16859494] [doi:10.1111/j.1365-2958.2006.05288.x].

[60] Jennifer B. Rice and Carin K. Vanderpool. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. *Nucleic Acids Res*, 39(9):3806–19, 2011. [PubMed:21245045] [PubMed Central:PMC3089445] [doi:10.1093/nar/gkq1219].

[61] Erik Holmqvist, Patrick R. Wright, Lei Li, Thorsten Bischler, Lars Barquist, Richard Reinhardt, Rolf Backofen, and Jorg Vogel. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. *EMBO J*, 2016. [PubMed:27044921] [PubMed Central:PMC5207318] [doi:10.15252/embj.201593360].

[62] Chase L. Beisel, Taylor B. Updegrove, Ben J. Janson, and Gisela Storz. Multiple factors dictate target selection by Hfq-binding small RNAs. *EMBO J*, 31(8):1961–74, 2012. [PubMed:22388518] [PubMed Central:PMC3343335] [doi:10.1038/embj.2012.52].

[63] Jiandong Chen and Susan Gottesman. Spot 42 sRNA regulates arabinose-inducible araBAD promoter activity by repressing synthesis of the high-affinity low-capacity arabinose transporter. *J Bacteriol*, 2016. [PubMed:27849174] [PubMed Central:PMC5237117] [doi:10.1128/JB.00691-16].