An inquiry into whether or not 1000009 is a prime number

Leonhard Euler

1. Since this number is manifestly a sum of two squares, namely $1000^2 + 3^2$, the question becomes this: can this number be divided into two squares in any other way? For if this cannot be done in any way, the number will certainly be prime; on the other hand, if this resolution could be done in some other way then it will certainly not be a prime number, and its divisors could even be assigned. Thus if we set one of the squares $= xx$, it needs to be inquired whether the other one, namely $1000009 - xx$, can escape being a square, except for the cases $x = 3$ and $x = 1000$. This can be investigated in the following way:

2. Since the number ends in 9, one of the squares is necessarily divisible by 5, and indeed thus by 25. Let us therefore take the formula $1000009 - xx$ to be divisible by 25, and it is clear that it necessarily happens that $x = 25a + 3$; then this formula will be obtained:

$$1000000 - 6\cdot 25a - 25^2aa,$$

which divided by 25 becomes $40000 - 6a - 25aa$. This form therefore should be a square.

*Presented to the St. Petersburg Academy on March 16, 1778. Originally published as *Utrum hic numerus 1000009 sit primus necne inquiritur*, Nova acta academiae scientiarum Petropolitanae 10 (1797), 63–73. E699 in the Eneström index. Translated from the Latin by Jordan Bell, Department of Mathematics, University of Toronto, Toronto, Ontario, Canada. Email: jordan.bell@gmail.com

1Translator: In Prop. 6, §35 of his 1749 *De numeris qui sunt aggregata duorum quadratorum*, E228, Euler shows that if $N = a^2 + b^2$ where a and b are relatively prime and N has no more representations as a sum of two squares, then N is prime.

2Translator: The idea of this paper is that if some number is a sum of two squares in two ways, then some other smaller number must be a square. We then check all the cases. If we find a case where this smaller number is a square then we can use this to find a factor of the original number, which is therefore composite. If we check all the cases and none of them are squares, then the original number can be written as a sum of two squares in only one way and hence is prime.

3Translator: Since $1000009 \equiv 9 \pmod{10}$, either $1000009 - xx, xx \equiv 0, 9 \pmod{10}$ or $1000009 - xx, xx \equiv 4, 5 \pmod{10}$.

4Translator: Since $1000009 - xx$ is a multiple of 25 and they are both squares, $(1000009 - xx)/25$ is a square.
3. At this point two cases must be considered, according to whether a is an even or an odd number. In the first case let $a = 2b$, and by dividing by 4, this resulting formula must also be a square:

$$A = 10000 - 3b - 25bb.$$

For the other case let $a = 4c + 1$, and the resulting form will be the square

$$B = 39969 - 224c - 400cc,$$

which is at any rate able to be an odd square. On the other hand for the same case let us take $c = 4d - 1$, and this formula results:

$$C = 39981 + 176d - 400dd,$$

which, since it leaves 5 when divided by 8, can never be a square. Therefore only the two formulas A and B need to be examined.

The expansion of the formula

$$B = 39969 - 224c - 400cc.$$

4. Here let us successively take all the values 0, 1, 2, 3 etc., both positive and negative, for the letter c. Since the formula $400cc \pm 224c$ needs to be subtracted from the absolute number 39969, according to c being a positive or negative number, let us record these numbers successively subtracted in two columns, along with their differences:

c	$400cc - 224c$	Diff.	c	$400cc + 224c$	Diff.
0	0		0	0	
1	176	176	1	624	624
2	1152	976	2	2048	1424
3	2928	1776	3	4272	2224
4	5504	2576	4	7296	3024

It’s clear right away here that in both cases the differences continually increase by 800.

5. These differences are then continuously subtracted from the absolute number 39969; for convenience this is done in two columns, so that it can be seen whether the numbers that result from this are squares:

Translator: I would guess that Euler just means that there is no obvious reason why B can’t be a square, not that it obviously can be a square.

Translator: Since the squares modulo 8 are 0, 1, 4.
6. In both sides of the calculation, the single square that occurs is \(2209 = 47^2\); whence it it apparent that the given number is not prime; although this number is included in the paper *De tabula numerorum primorum usque ad milli- lionem et ultra continuanda*, included in volume XIX of our Novi Commentarii, it has divisors; for finding these it can be noted that the square arose from the value \(c = -10\), whence \(a = -39\); then collecting, \(x = 25a + 3 = -972\), and hence

\[
1000009 - xx = 55225 = 235^2,
\]

so that we thus have this double resolution:

\[
1000^2 + 3^2 = 972^2 + 235^2,
\]

and then by transposing

\[
1000^2 - 235^2 = 972^2 - 3^2,
\]

from which it follows

\[
(1000 - 235)(1000 + 235) = (972 - 3)(972 + 3),
\]

or \(1235 \cdot 765 = 969 \cdot 975\). Then it would be \(1235 = \frac{969}{765}\), and these fractions are reduced to this simplest one, \(\frac{10}{9}\), from which it is then concluded\(^7\) that our number has a common divisor with the sum of squares \(19^2 + 15^2\), which will thus be 293, and we find that

\[
1000009 = 293 \cdot 3413.
\]

From this it is clear that an error crept into the table in the above mentioned paper, where all the prime numbers contained between 1000000 and 1002000 were listed, which happened as examination of the prime divisor 293 was overlooked.

\(^7\)Translator: See Prop. 7 of E228. Say \(N = a^2 + b^2 = c^2 + d^2\), with both \(b\) and \(d\) odd. Then \(a^2 - c^2 = d^2 - b^2\) and so \((a - c)(a + c) = (d - b)(d + b)\). Let \(k = \text{gcd}(a - c, d - b)\). Then for some \(l, m\) with \(\text{gcd}(l, m) = 1\), \(a - c = kl\) and \(d - b = km\), and so \(l(a + c) = m(d + b)\). Because \(l\) and \(m\) are relatively prime, \(m\) divides \(a + c\), so \(a + c = mn\) for some \(n\). Hence \(ln = d + b\). Then it turns out that \(N = (\frac{l^2 + m^2}{\text{gcd}(l, m)})(\frac{n^2 - n^2}{\text{gcd}(l, m)})\); we can check this by expanding this, and we end up getting \(l^2 + m^2 + n^2 + n^2\), which indeed is \(N\). In the case Euler is doing here, we get \(l = 15, m = 19, k = 51, n = 65\).
The expansion of the formula

\[A = 10000 - 3b - 25bb \]

7. This formula is a hundredth part of the formula 1000009 - xx, and for its expansion again two cases need to be distinguished, one in which \(b \) is an even number and another in which it is odd. It is evident that in the first case, unless \(b \) is an evenly even number the proposed formula cannot be a square. Therefore let \(b = 4c \), and the resulting form, divided by 4, will be 2500 - 3c - 100cc. It can be seen without too much difficulty that this cannot be a square aside from the case \(c = 0 \). First it’s evident that it can’t happen when \(c = \pm 1 \); next, it likewise cannot happen either when \(c = \pm 2 \). Thus let \(c = \pm 3 \), and our formula turns into 2500 - 900 \(\pm 9 = 1600 \pm 9 \), which cannot be a square. Now if one takes \(c = \pm 4 \), it is

\[
2500 - 1600 \pm 12 = 900 \pm 12,
\]

which is certainly not a square. Next, even taking \(c = \pm 5 \) a square still doesn’t arise; for this yields

\[
2500 - 2500 \pm 15 = 0 \pm 15.
\]

8. For the other case where \(b \) is an odd number, one first puts \(b = 4d + 1 \), and the proposed formula becomes

\[9972 - 212d - 400dd, \]

which divided by 4 will be

\[2493 - 53d - 100dd, \]

which in the case \(d = 0 \) is apparently not a square. Therefore let us take \(d = \pm 1 \), which gives 2393 \(\pm 53 \), also not a square; and the case \(d = \pm 2 \) yields 2093 \(\pm 106 \); indeed the case \(d = \pm 3 \) gives 1593 \(\pm 159 \), from neither of which result squares, nor for the case \(d = \pm 4 \), which obviously gives 893 \(\pm 212 \). Next, the case \(d = -5 \) yields \(-7 + 265 \). Finally let \(b \) be a number of the form \(4d - 1 \), which yields

\[9978 + 188d - 400dd. \]

Since this number is even but not divisible by 4, it cannot be a square.

8Translator: The case \(c = 0 \) just gives 1000009 = 1000^2 + 3^2, and we are looking for other decompositions into two squares.

9Translator: I don’t see why it’s obvious that \(c = \pm 1 \) doesn’t give squares. But there the numbers are 2397 and 2603, and we can just check that these are different from the squares 48^2, 49^2, 50^2, 51^2, 52^2. For \(c = \pm 2 \) they are not squares because neither are divisible by 4.
take to be $1000081 = 1000^2 + 9^2$, and let us see whether it can still be resolved into two squares in another way. One of these, like in the preceding case, is necessarily divisible by 5. Therefore by putting one square $= xx$, let us see whether the remaining part $1000081 - xx$ can be a square divisible by 5, i.e. 25.

10. To this end let us set $x = 25y + 9$, and it will become this formula

$$1000000 - 18 \cdot 25y - 25^2yy,$$

which divided by 25 turns into this simpler one:

$$40000 - 18y - 25yy.$$

Now first let y be an even number, that is $y = 2a$, and dividing the formula again by 4 one obtains:

$$A = 10000 - 9a - 25aa.$$

Second for the odd number let us put: $1^\circ \ y = 4b + 1$, and this gives

$$B = 39957 - 272b - 400bb.$$

This number is odd and leaves 5 when divided by 8, and hence cannot be a square, whence the formula B can be omitted altogether. 2° let us put $y = 4c - 1$, and the formula will be:

$$C = 39993 + 128c - 400cc,$$

where the number 39993 leaves 1 when divided by 8, and hence it is appropriate to subject it to further investigation.

The decomposition of the formula

$$C = 39993 + 128c - 400cc$$

11. Since here numbers contained in the form $400cc \pm 128c$ need to be successively subtracted from the absolute number 39993, as above to assist this calculation we write in the following table the numbers to be subtracted along with their differences, according to whether c is positive or negative:

10 Translator: The squares modulo 10 are 0, 1, 4, 5, 6, 9. Either $1000081 - xx, xx \equiv 5, 1$ (mod 10), $\equiv 5, 6$ (mod 10) or $\equiv 5, 9$ (mod 10).

11 Translator: The original has the misprint 4.
Here again the differences successively increase by 800.

12. Thus let us subtract these differences continually increasing by eight hundred from the absolute number 39993. The calculation goes as follows:

c	400cc − 128c	Diff.	c	400cc + 128c	Diff.
0	0	272	0	0	528
1	272	1072	1	528	1328
2	1344	1872	2	1856	2128
3	3216	3984	3		

Plainly no square occurs here.

The decomposition of the formula

\[A = 10000 - 9a - 25aa \]

13. Let us put an even number in place of \(a \), which indeed must be evenly even, and therefore let \(a = 4e \). Therefore by dividing by 4 this form arises:

\[2500 - 9e - 100ee \].

Then numbers contained in the form \(100ee \pm 9e \) need to be successively subtracted from the absolute number, which are recorded in the following table, according as \(e \) is a positive or negative number:

\(e \)	100ee − 9e	Diff.	100ee + 9e	Diff.
0	0	91	0	109
1	91	291	109	309
2	382	491	418	509
3	873		927	
Thus let us continually subtract these differences increasing by two hundred from the absolute number 2500 in the following way:

2500	2500
91	109
2409	2391
291	309
2118	2082
491	509
1573	1627
691	709
936	864
891	45
45	

where no squares occur besides 2500, which however leads to the known square 1000^2.

14. Now let a be an odd number, and first of the form $4f + 1$, whence our formula turns into \[9966 - 236f - 400ff. \]

Since this number is oddly even, it cannot be a square. Therefore let us put $a = 4f - 1$, and the formula becomes \[9984 + 164f - 400ff, \]

which is evenly even; and divided by 4 it turns into this:

\[2496 + 41f - 100ff. \]

Therefore here numbers of the form $100 \pm 41f$ need to be subtracted from the absolute number, which, according as f is a positive or negative number, works out like this:

f	$100ff - 41f$	Diff.	f	$100ff + 41f$	Diff.
0	0	59	0	0	141
1	59	259	1	141	341
2	318	459	2	482	541
3	777		3	1023	

Now let these differences increasing by two hundred be subtracted from the absolute number:

12 Translator: The original has the misprint $9966 - 236f - 4ff$.

13 Translator: The original has the misprint $9984 + 164 - 4ff$.
Therefore because no square occurs anywhere in this calculation, it is certain that the proposed number 1000081 can be resolved into two squares in only one way, and hence it is certain that it is prime, as was presented in the table of the above mentioned paper; and it is particularly noteworthy that we have determined this truth by such an easy calculation.

15. It is regrettable however that this method cannot be applied to exploring all numbers, but is restricted just to those numbers which not only are sums of two squares, but also which end in 1 or 9; for so much of the success of this method is because one of the squares is divisible by 5.

16. In the meantime however, plainly all numbers contained in the form $4n+1$ ending in either 1 or 9 can be examined by this method with equal success; for we have found that if such a number can be resolved into two squares, one of them is certainly divisible by 5. Then also, by calculating according to the rule that has been established, if it turns out that the proposed number can be resolved into two squares in just one way, this is certain proof that it is prime; but on the other hand, if it can be done in two or more ways, from this factors can be assigned as we did above. Indeed if it happens that the proposed number cannot be divided into two squares even in one way, then this also is proof that the number is not prime, even if its factors cannot then be defined; for it can be concluded that it has at least two prime factors of the form $4n − 1$.