Coagulase and Deoxyribonuclease Activities of Staphylococci Isolated From Clinical Sources

HARRY E. MORTON AND JUDITH COHN

William Pepper Laboratory, Microbiology Division, Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received for publication 2 August 1971

A total of 504 clinical isolates of the family Micrococcaceae were tested for coagulase, deoxyribonuclease, clumping factor, and phosphatase to determine whether there is a correlation between the results of these tests and the pathogenicity of staphylococci. In the tests for coagulase production, it was found that either human or rabbit plasma could be used with broth cultures, whereas rabbit but not human plasma was satisfactory when microorganisms removed from solid culture medium were used. Deoxyribonuclease production correlated better than the fermentation of mannitol with coagulase production. The use of methyl green, Toluidine Blue O, or acridine orange offered no advantage over the use of HCl for detecting the production of deoxyribonuclease. Neither the presence of clumping factor nor the production of phosphatase correlated well with coagulase production. Strains of staphylococci that did not produce coagulase and deoxyribonuclease were isolated as frequently as, and from a greater variety of clinical sources than, strains which produced these substances. It is concluded that the production of coagulase and deoxyribonuclease are properties of staphylococci which are not necessarily indicative of potential pathogenicity of the organisms for man.

An investigation of the tests for coagulase, deoxyribonuclease (DNase), clumping factor, and phosphatase was undertaken to determine whether any of these in vitro tests might be useful for predicting potential pathogenicity of staphylococci for man. It was considered necessary to determine whether either human or rabbit plasma could be used in the slide test for clumping factor and in the tube test for coagulase. Cadness-Graves et al. (6) stated that with human plasma coagulase-negative strains do not give positive slide tests for clumping factor. Using human plasma and growth from solid medium Needham et al. (22) found approximately 95% correlation between the slide test for clumping factor and the tube test for coagulase, and observed that a few strains reversed their reactions when subcultured and subsequently retested. Decrease or loss of clumping factor was also observed by Steward and Kelly (32) after storage of cultures and frozen cell suspensions but not when the cultures were lyophilized. Knowledge of this change in properties is important in the maintenance of cultures for quality control.

Manuals for clinical microbiology are not consistent or sufficiently specific in their recommendations for performing the slide test for clumping factor or for performing the coagulase test. In the American Society for Microbiology Manual of Clinical Microbiology, Ivler stated that the slide test for clumping factor is not recommended for routine diagnostic work and would not describe it in his chapter on staphylococci (14). However, in the same manual, Paik described the procedure for the slide test and recommended confirming all negative tests with a tube test (24). This gives the impression that a positive slide test for clumping factor indicates a positive tube test reaction for coagulase. In the American Public Health Association manual of diagnostic procedures, Blair recommended either human or rabbit plasma for the tube test for coagulase with growth from solid medium and in the slide test for clumping factor (3). Confirmation of negative slide tests with tube tests was also recommended and it was pointed out that some skill is required in performing and reading the slide test. The DNase test was reported by Jarvis and Wynne to be helpful in the case of strains

1 Presented at the 71st Annual Meeting of the American Society for Microbiology, Minneapolis, Minn., 2-7 May 1971.
that give doubtful reactions in the coagulase test (15).

Although many authors have referred to the production of coagulase and DNase as indicative of the pathogenicity of staphylococci for man, an examination of the strains from clinical material does not appear to have been made recently.

MATERIALS AND METHODS

Cultures. Strains of staphylococci were isolated from clinical specimens submitted to the laboratory. To include numerous coagulase-negative cultures in the study, some strains of gram-positive cocci were isolated from blood-agar plates that had been exposed to room air during the routine monitoring of air in the operating rooms. The cultures were maintained on heart infusion agar (HIA) slants, and usually not more than two or three transfers were made before performance of the various tests.

Plasmas. Human plasma was removed from those blood specimens which had been collected in Vacutainers (lavender-colored stoppers) containing EDTA (either the sodium or potassium salt of ethylenediaminetetraacetic acid) for hematological studies. Usually 1 to 2 ml of plasma could be removed from each tube. Although the blood was not collected aseptically, the plasma was handled aseptically. The plasma from a number of tubes was removed to yield a pool of at least 150 ml. This was centrifuged at 2,000 rev/min for 15 min to remove the blood cells, and then was dispensed in 10 to 12-ml amounts into tubes with screw-cap tops and stored at −10°C until used. Just prior to use, a sufficient quantity of the plasma was thawed and the contents of each tube were mixed thoroughly.

Rabbit plasma was Difco Coagulase Plasma EDTA obtained in the desiccated form. After being reconstituted according to the manufacturer's directions, it was either used promptly or stored at −10°C.

Media. DNase test agar (DTA), from either Difco or BBL, was prepared according to the manufacturer's directions and dispensed into sterile plastic petri dishes (90 by 15 mm).

DTA-MG medium was prepared by adding 1 ml of 0.5% methyl green solution to each 100 ml of DTA medium prior to autoclaving at 121°C for 15 min. After cooling to 50°C, the medium was dispensed into sterile plastic petri dishes. A stock solution of 0.5 g of methyl green (Allied Chemical NA 0420) was prepared in 100 ml of deionized water and repeatedly extracted with equal volumes of chloroform in a separatory funnel until the chloroform became colorless, as recommended by Smith et al. (31). The stock solution of methyl green was stored at 4°C.

DTA-TBO medium was prepared by adding 10 mg of Toluidine Blue 0 (Allied Chemical NA 0641) to each 100 ml of DTA medium prior to autoclaving at 121°C for 15 min (29). After cooling to 50°C, the medium was dispensed into sterile petri dishes.

DTA-AO medium was similar to that described by Omenn and Friedman (23), and was prepared by adding 1 ml of a stock solution of 0.4% acridine orange (basic orange 14; Matheson, Coleman and Bell, AX 305) to each 100 ml of DTA medium before autoclaving. After cooling to 50°C, the medium was dispensed into sterile petri dishes.

Phenolphthalein diphosphate agar (PDP medium) was prepared by adding 2 ml of a 0.5% stock solution of phenolphthalein diphosphate sodium salt and 3 ml of sterile defibrinated sheep blood to each 100 ml of HIA which had been melted and cooled to 50°C; the PDP medium was dispensed into sterile plastic petri dishes. The stock solution was prepared by dissolving 0.5 g of phenolphthalein diphosphate sodium salt in 100 ml of deionized water which had been sterilized by filtering through a 0.22-μm membrane filter (Millipore Corp.); the stock solution was stored at −10°C (2).

HIA and heart infusion broth (HIB) were obtained from Difco. Both media were stated by the manufacturer to have a final pH of 7.4.

The media for fermentation tests were prepared by adding 1% glucose or 1% mannitol to purple broth base (Difco). These media were dispensed in 6-ml amounts into 16 by 150 mm tubes containing 10 by 35 mm inverted tubes, which had been fitted with Morton closures (Scientific Products no. T1390-16) and sterilized by autoclaving at 121°C for 15 min.

Tests. Coagulase tests with broth cultures were performed by adding 0.5 ml of overnight HIB culture to 0.5 ml of human or rabbit plasma (diluted to 1 part rabbit plasma and 4 parts HIB) and incubating the tubes in a water bath at 37°C. The tubes were examined after 1 to 2, 4, and 6 hr. Any coagulation of the plasma was recorded as a positive reaction. Tubes in which no coagulation occurred were incubated overnight, and a final reading was made after 24 hr. If coagulation occurred, it took place usually within 1 to 2 or 4 hr and was in the form of a firm or nearly firm clot. Rarely did a positive reaction occur during overnight incubation. The reacting mixtures were contained in sterile 13 by 100 mm tubes with stainless-steel closures (Scientific Products no. T1390-13).

Tube coagulase tests with growth from solid medium were performed by suspending some growth from an overnight HIA slant in 0.5-ml amounts of human and undiluted rabbit plasma with a platinum loop. The tubes were similar to those used in the coagulase test with broth cultures. Readings were made after 1 and 3 hr and after overnight incubation in a water bath at 37°C. Any coagulation of the plasma was recorded as a positive reaction.

Slide tests for the clumping factor were performed by mixing some growth from an HIA slant with a drop of 0.85% sodium chloride solution on a microscope slide. If the suspension remained uniform, a drop of human or rabbit plasma was added and rapidly mixed by gently rotating the slide. Clumping of the organisms within 10 sec was recorded as a positive reaction.

For determining the ability of the organisms to ferment glucose and mannitol, one tube of glucose broth and one tube of mannitol broth were inoculated with the growth from a HIA slant, placed in a
GasPak (BBL) anaerobic jar, and incubated at 36°C overnight. The production of acid was evidenced by the change in color of the bromocresol purple indicator from purple to yellow.

The test for phosphatase was made by inoculating plates of PDP medium with up to eight cultures with the growth from HIA slants. Inoculations were made by making a streak about 2 cm long with an inoculating needle. After overnight incubation at 36°C, the plates were flooded with 1 N HCl (16). The production of DTA-AO was evidenced by a clear zone remaining around the growth; in the absence of DTA-AO, the medium turned opaque.

In many cases, parallel tests for the production of DTA-AO were made with DTA-MG, DTA-TBO, and DTA-AO media. Plates of DTA-MG and DTA-TBO were inoculated and incubated similarly to the DTA plates. On DTA-MG, the production of DTA-AO by the growing cultures produced a clear zone around the growth; in the absence of DTA-AO, the medium remained green. On DTA-TBO, the production of DTA-TBO was indicated by a rose-pink zone around the growth; in the absence of DTA-TBO, the medium remained blue. Plates of DTA-AO were inoculated with up to 8 cultures with the growth from tubes of HIB by making short streaks with an inoculating loop. After overnight incubation at 36°C, the opened plates were examined in a darkened room with ultraviolet light by use of a Mineralite, model SL2537, 9 w, 110 v, short-wave ultraviolet filter (Ultra-Violet Products, Inc., South Pasadena, Calif). A zone of nonfluorescence surrounded the growing cultures which produced DTA-AO, whereas the medium fluoresced brightly in areas where DTA-AO had not been produced.

RESULTS

In Table 1 are summarized the results obtained by testing 224 strains of staphylococci grown in broth for coagulate production by use of human and rabbit plasmas in the tube test. Also included are the results obtained by using the growth of the organisms from solid medium for detecting the presence of clumping factor in the slide test and the production of coagulase in the tube tests with the two plasmas, the production of DTA-AO on DTA, and the ability to utilize glucose and mannitol anaerobically.

All 224 strains of staphylococci produced coagulase as determined by the tube test with broth cultures and at least one of the plasmas; 223 of the 224 strains coagulated rabbit plasma, and 219 of the 224 strains coagulated human plasma. When growth from solid medium was used in the tube test, 221 of the 224 strains of staphylococci coagulated rabbit plasma but only 36 of the 224 strains coagulated human plasma. When some of the growth from the same cultures on solid medium used in the tube tests was used for the slide tests with the same lots of plasma, only 152 of the 224 strains clumped in rabbit plasma and 184 strains clumped in human plasma. It is evident that rabbit plasma is better than human plasma for performing the tube coagulate test with growth from either solid or liquid media. If human plasma has to be used for the coagulate test, only broth cultures should be used. The presence of clumping factor as detected in the slide test was not a good indicator of coagulate production, as only 68% of the 224 cultures reacted with rabbit plasma and 82% reacted with human plasma.

Only 2 (0.89%) of the 224 coagulase-positive strains of staphylococci failed to give a positive test for DNase. These two strains also failed to ferment mannitol, failed to give a positive coagulate test with rabbit plasma in the tube test with growth from solid medium, and did not possess clumping factor. The broth cultures coagulated human and rabbit plasma in the tube test (line 15, Table 1). These strains were isolated from air.

The broth cultures of 69 strains of micrococci failed to coagulate human and rabbit plasmas in the tube tests, and it is this property which characterizes this group of cultures summarized in Table 2. The reason for selecting as the most reliable results those obtained in the coagulate test in which equal amounts of broth culture and plasma were contained in a tube, as proposed by Cowan in 1938 (7), was that it was shown by Williams and Harper (35) to be the most satisfactory technique. Only one strain fermented glucose and mannitol (line 12, Table 2); this strain failed to produce DNase and coagulate by any of the methods of testing, and it did not possess clumping factor. Only three strains coagulated rabbit plasma in the tube test with growth from solid medium, but the numbers of false-positive reactions were much greater with human plasma and in the slide tests for clumping factor. Five of the 69 cultures produced DNase.

Only 200 of the 224 coagulase-positive cultures listed in Table 1 and 19 of the 96 coagulase-negative cultures listed in Table 2 produced phosphatase. Additional tests for phos-
TABLE 1. Clumping factor, coagulase, and DNase tests with staphylococci

Line	No. of cultures	Clumping factor slide test	Coagulase tests	Anaerobic fermentation	DNase				
			Solid medium	Broth medium					
		H	R	H	R	H	R	G	M
1	16	+	+	+	+	+	+	+	+
2	127	+	+	-	+	+	+	+	+
3	9	+	-	+	+	+	+	+	+
4	7	-	-	+	+	+	+	+	+
5	29	-	-	-	+	+	+	+	+
6	18	+	-	-	+	+	+	+	+
7	7	+	+	-	+	+	+	+	+
8	1	+	-	-	+	+	+	+	+
9	1	+	-	-	+	+	+	+	+
10	1	+	-	-	+	+	+	+	+
11	1	+	-	-	+	+	+	+	+
12	1	+	-	-	+	+	+	+	+
13	1	-	-	-	-	+	+	+	+
14	1	-	-	-	-	+	+	+	+
15	2	+	-	+	-	+	+	+	+
16	1	+	-	-	-	+	+	+	+
17	1	+	-	-	-	+	+	+	+
Total reacting strains	224	184	152	36	221	219	223	224	222

H = human plasma; R = rabbit plasma; G = glucose; M = mannitol; + = clumping in the slide tests for clumping factor, coagulation in the tube tests for coagulation production, only acid produced in the fermentation tests, and production of DNase in the DNase test; - = no reaction.

TABLE 2. Clumping factor, coagulase, and DNase tests with Micrococcaceae

Line	No. of cultures	Clumping factor slide test	Coagulase tests	Anaerobic fermentation	DNase				
			Solid medium	Broth medium					
		H	R	H	R	H	R	G	M
1	11	-	-	-	-	-	-	-	-
2	22	-	-	-	-	-	-	-	-
3	5	+	-	-	-	-	-	+	-
4	5	+	-	-	-	-	-	+	-
5	2	+	+	-	-	-	-	+	-
6	1	+	+	-	-	-	-	+	-
7	3	+	+	-	-	-	-	+	-
8	1	+	+	-	-	-	-	+	-
9	1	+	+	-	-	-	-	+	-
10	3	-	-	-	-	-	-	-	-
11	1	-	-	-	-	-	-	-	-
12	1	-	-	-	-	-	-	-	-
13	7	+	-	-	-	-	-	+	-
14	4	+	-	-	-	-	-	-	-
15	1	-	-	-	-	-	-	+	-
16	1	+	-	-	-	-	-	+	-
Total reacting strains	69	17	10	13	3	0	0	47	1

See footnote a of Table 1.
phatase production were discontinued since
the correlation between it and coagulate pro-
duction was poor.

Since the results of the slide test for clumping factor with human plasma and
growth from solid medium correlated poorly
with positive reactions in the coagulate test
with broth cultures and DNase production
(Table 1), and also correlated poorly with neg-
ative reactions in these same tests (Table 2),
additional cultures were not tested for clumping factor or for coagulate production
with growth from solid medium and human
plasma. Only tube tests were employed with
rabbit plasma and growth from solid medium
and human and rabbit plasmas with broth cul-
tures for coagulate production in addition to
tests for fermentation of glucose and mannitol
and for DNase production with 211 cultures.
The results are summarized in Table 3.

Again, there was good agreement in the re-
sults obtained in the coagulate tests with
rabbit plasma and growth from either solid or
liquid media (76 positive reactions) and with
human plasma and broth cultures (77 positive
reactions). Only 65 strains fermented glucose
and mannitol, and with 20 strains (line 2,
Table 3) the failure to ferment mannitol must
be considered as serious negative correlations
because the strains produced coagulate by the
three methods of testing and produced DNase.

There were 23 among the 211 strains that
produced DNase but failed to coagulate rabbit
plasma. Strains with this combination of reac-
tions are included in the strains cited in
column 8 of Table 4, and their sources are dis-
cussed later.

Of 210 strains of staphylococci and micro-
cocci tested for DNase production by two
methods, 99 strains gave a positive reaction on
DTA whereas only 76 were positive on the
DTA-AO when examined with ultraviolet
light. Similarly, when DTA and DTA-TBO
were tested with 110 strains, 70 were positive
for DNase on DTA but only 63 were positive
on DTA-TBO. The DTA-AO and DTA-TBO
appeared too insensitive for detecting DNase
production, so comparative tests were discon-
tinued.

In the comparison of DTA and DTA-MG
with 258 strains, 165 were positive for DNase
production and 81 were negative on both
media. However, there were 12 strains that
were negative on DTA but gave a positive or
slightly positive reaction on DTA-MG. The
latter medium gave too many slightly positive
reactions that were difficult to interpret, so the
use of DTA with the subsequent flooding of
the medium with hydrochloric acid remained
the method of choice for testing for DNase
production.

DISCUSSION

Berger's Manual (7th ed.) stated that the
distinctive characters of *Staphylococcus aureus*
are that the organisms are normally coagulate-
positive (human or rabbit plasma) and ferment

Table 3. Coagulate and DNase tests with staphylococci

Line	No. of cultures	Tube test	Anoerobic fermentation	DNase			
		Broth medium	Solid medium				
		H	R	R	G	M	
1	55	+	+	+	+	+	+
2	20	+	+	+	+	-	+
3	1	+	-	-	+	+	+
4	1	+	-	-	+	-	+
5	1	-	-	+	+	+	+
6	1	+	-	-	+	-	+
7	20	-	-	+	+	-	+
8	8	-	-	-	+	-	
9	99	-	-	-	+	-	
10	5	-	-	-	-	-	
Total reacting strains	211	77	76	76	206	65	98
Grand totals*	504	296	299	300	477	277	325

* See footnote a of Table 1.
* For Tables 1-3.
both glucose and mannitol under anaerobic conditions. Evans (10, 11) stressed the importance of anaerobic incubation of fermentation tests with mannitol and reported that each of 19 coagulase-positive (by rabbit plasma) strains of staphylococci fermented mannitol but 4% of 66 coagulase-negative strains also fermented mannitol. In a more extensive study, Mossel (21) reported that 2.1% of 389 coagulase-positive strains failed to ferment mannitol and 4.8% of 188 coagulase-negative strains fermented mannitol (anaerobically). Kimler (19, 20) found that about 1% of his strains of staphylococci were coagulase-positive and mannitol-negative and about 8% were coagulase-negative and mannitol-positive. He stated that based on 112 coagulase-positive and 49 coagulase-negative strains there was better agreement with mannitol fermentation and other reactions in the case of the coagulase-positive strains than in the case of coagulase-negative strains. Baird-Parker (1) observed a rather high frequency of coagulase-negative strains that utilized mannitol anaerobically, 2 among 40 strains. Person et al. (25) reported that 1.6% of 556 strains of Micrococcaceae were coagulase-positive and mannitol-negative, and 3.2% were coagulase-negative and mannitol-positive.

We found 35 (12%) of 304 coagulase-positive strains that failed to ferment mannitol and 10 (5%) of 200 coagulase-negative strains that fermented mannitol anaerobically. Thus, the incidence of coagulase-negative mannitol-positive strains is within the range reported by other investigators working with micrococci from human sources. Our incidence of 12% coagulase-positive mannitol-negative strains is higher than those reported by other workers with human strains. The difference may be due in part to the different methods of anaerobiosis used and the periods of observation. We read the fermentation tests after 24 hr of incubation, the same as for the DNase and the tube coagulase tests. If the mannitol tests had been incubated longer, as some investigators did, we may have observed fewer negative reactions.

Brown et al. (5), working with staphylococci of bovine origin, reported 13 (25%) of 52 coagulase-positive strains that failed to ferment mannitol and only 1 of 191 coagulase-negative strains that fermented mannitol. Whether the organisms are from human or bovine sources, the production of coagulase and the anaerobic utilization of mannitol by staphylococci are not strictly parallel reactions.

There are 16 theoretical combinations of four reactions taken four at a time, but, since the combination of fermentation of mannitol and nonfermentation of glucose is not known to exist, there are only 12 possible combinations, as listed in Table 4. Approximately 88% of the 304 coagulase-positive strains produced coagulase and DNase and fermented glucose and mannitol; 13% of the 200 coagulase-negative strains gave negative reactions in each of the four tests (columns 1 and 2, Table 4). The other combinations of reactions shown by 211 (41.8%) of the 504 strains require some evaluations.

No strains were encountered with the combinations of reactions listed in columns 10, 11, and 12 (Table 4). The fermentation of glucose and negative reactions in the other three tests, as shown by the 138 strains cited in column 5, indicate that the single reaction, the fermentation of glucose, has little value in the identification of staphylococci. However, the inability to ferment glucose is helpful in ruling out staphylococci and potentially pathogenic micrococi, as will be seen when the 26 strains cited in column 2 are discussed. The 31 strains listed in column 3 can be considered as giving

Table 4. Summary of the reactions of 504 strains of Micrococcaceae in the tests for coagulase, DNase, and fermentation of glucose and mannitol

Test	Columns and combinations of reactions*											
	1	2	3	4	5	6	7	8	9	10	11	12
Coagulase*	+	-	+	+	-	+	-	-	+	+	-	-
DNase*	+	-	+	-	-	+	+	-	+	+	+	-
Glucose	+	-	+	-	-	-	+	+	+	-	-	-
Mannitol*	+	-	-	-	-	-	-	-	-	-	-	-
Total strains (504)	267	26	31	5	138	1	9	26	1	0	0	0

* Symbols: + = positive reaction; - = no reaction on the substrate.
* + Coagulation of rabbit plasma in the tube test with growth from either solid or liquid medium.
* + Production of DNase on DTA when tested with 1 N HCl.
* + Production of acid during anaerobic incubation for 24 hr.
fermentation.

be tested

reactions

pathogenic

associated

that

strains

sisted

in

rangements

strain

reactionsof

bothcoagulase

actions

actions

in

strains
to

be

atypical

range

wasisolatedfromtheair. The one

culture

coagulationreaction

for

negativecoagulase

wasconsidered

to

be

atypical

negative

reaction

for

coagulase

since

the

reactions

in

the

other

three

tests

were

positive;

this

strain

was

isolated

from

a skin ulcer.

The five cultures with the reactions listed in column 4 may represent atypical negative re-

actions for DNase and mannitol fermentation, as two of the cultures were isolated from ab-

scesses, one from urine, and two from operating room air. The nine cultures with the re-

actions listed in column 7 may represent atypical negative reactions for the production of

both coagulase and DNase if these strains are to be considered potentially pathogenic. The

strains were isolated from the following sources: blood, boil, abscess, nose, and skin, one each;
cervix, two; and urine, two.

There may be some justification for consid-
ering the majority of the 26 strains with the

reactions listed in column 8 as potentially pathogenic for man but giving atypical negative

reactions for coagulase production when tested with rabbit plasma and for mannitol

fermentation. Zierdt and Golde (36) reported

that 8% of their DNase-positive strains gave

reactions of this type. A negative mannitol

fermentation reaction is more likely to be asso-
ciated with a negative coagulase reaction, as

95% of 200 coagulase-negative strains were

mannitol-negative whereas only 88% of 304

coagulase-positive strains were mannitol-posi-
tive. Two of the cultures produced coagulase

when tested with human plasma; one culture

was isolated from air (Table 2, line 15) and the

other from an eye (Table 3, line 4). The four

strains listed on line 14 of Table 2 were iso-
lated from operating room air; one strain con-

sisted of large gram-positive cocci and in one

strain tetrad arrangements predominated. It

is possible for staphylococci to exhibit tetrad ar-

rangements and for some strains of Gaffkye to

be pathogenic. The sources of the 20 cultures

listed on line 7 of Table 3 were as follows: ab-

scess, 2; blood, 3; wound, 4; catheter tip, 2;
nose, 1; sputum, 1; skin, 1; urethra, 1; urine, 2;
peritoneal drainage, 1; penile discharge, 1; and
frontal lobe, 1.

In view of the clinical sources of the 27 cul-
tures cited in columns 8 and 9 of Table 4, and
mentioned above, it may be advisable to give

more serious consideration to the production of

DNase, rather than the tests for coagulase pro-
duction and the fermentation of mannitol, as

an in vitro reaction indicative of potential

pathogenicity of staphylococci for man. DNase

production agreed slightly better with coagu-
lase production than did mannitol fermenta-

tion in that of the 304 coagulase-positive cul-
tures 98% produced DNase whereas 88% fer-

mented mannitol. In addition 13.5% of the 200

cogulase-negative cultures produced DNase

and only 5% fermented mannitol. Considering

the many reports in man by coagulase-

negative strains of staphylococci (S. epi-
dermidis, S. albus), a more critical in vitro test

is needed for an indicator of potential patho-
genicity, if such a reliable test is possible.

In performing the tube coagulase tests, the

addition of 0.5 ml of overnight broth culture,
as recommended by Jenkins and Metzger (18),
or 0.1 or 0.2 ml of the culture, as recom-

mended by Fisk (13), appeared to make no
detectable difference in the outcome of the
test. Our finding that, of 504 strains of micro-
occi, 299 were coagulase-positive with rabbit
plasma and 296 were coagulase-positive with
human plasma in the tube test with broth cul-
tures is at great variance with the results of

Jenkins and Metzger (18), who reported only
40% of the staphylococci coagulase-positive
with rabbit plasma gave a positive reaction

with human plasma. Our results are in agree-

ment, however, with those of Jeljaszewicz (17),

who found the two plasmas comparable and

recommended that broth cultures of staphylo-
occi be used for testing for free coagulase.

In contrast to broth cultures, the growth

from solid medium gave widely discrepant

results with human and rabbit plasmas in the

tube test. Of the 223 cultures that were coagu-
lase-positive in the tube test with broth cul-
tures and rabbit plasma, 221 were coagulase-

positive in the tube test with rabbit plasma

and growth from solid medium but only 36

were positive with human plasma (Table 1). A

possible explanation for the failure of many

cultures to produce coagulase when the growth

from solid medium is suspended in human

plasma is that there may be antibodies or

other substances in the human plasma that

inhibit the production of coagulase. Streitfeld

et al. (33) demonstrated that human gamma

globulin inhibited coagulase production but
did not inhibit growth. Ehrenkranz et al. (9)

found that human sera may exert a bacterio-

static action on some strains of staphylococci,

both coagulase-producers and non-producers.

A given serum may inhibit the growth of some
coagulase-positive strains of staphylococci and not other strains (12). The possibility of the presence of antibiotics in blood freshly drawn from hospital patients and used in the coagu-
lase tests, which could inhibit the metabolism of staphylococci and the production of coagu-
lase, cannot be overlooked. The use of broth cultures and diluted plasma could obviate these difficulties.
The DNase produced by S. aureus was re-
ported by Cunningham et al. (8) as being dis-
tinctive in that, among other things, it was heat-stable. In testing a group of staphylo-
cocci, the majority of which produced enterotoxin, Victor et al. (34) found 95% of 275 coag-
ulase-positive strains to produce the heat-
stable DNase. More important was the finding among this selected group of staphylococci that 24.4% of 41 coagulase-negative strains also produced the heat-stable DNase. Coagulase-
negative enterotoxin-positive staphylococci have produced outbreaks of food-borne gastroenteritis, so there is not a definite correla-
tion of coagulase and enterotoxin production by staphylococci (4).

The negative coagulase tests for the 36 strains listed in columns 7, 8, and 9 of Table 4 do not appear to be criteria for nonpatho-
geticity as discussed above. However, 27 of the 36 strains produced DNase. Comprising the five cultures with the reactions in column 4 of Table 4 were two cultures from abscesses, one from urine, and two from air. Thus, the failure to produce DNase does not appear to be an absolute criterion for nonpathogenicity.

Considering the 26 strains cited in column 2 of Table 4, it appears that the failure to utilize glucose anaerobically is an important reaction in ruling out staphylococci and potentially pathogenic Micrococcaceae, as only four of the strains were isolated from urine, one from sputum, and one from a furuncle. One strain was Micrococcus roseus and the remainder of the cultures were from plates that had been ex-
posed to room air.

One would expect the sources of the strains cited in column 1, which gave a positive reac-
tion in all four tests, to be from the most se-
vere infections, but that was not the case. The greatest proportion of the strains came from sputum and nasopharyngeal and throat swabs, some from wounds and ulcers, and a few from abscesses, carbuncles, cervix, blood, urine, skin, and air. The greatest surprise was the wide distribution of the strains which pro-
duced neither coagulase or DNase (column 5, Table 4). Blood and wound cultures contrib-
uted the greater numbers of these strains with the following sources each contributing a few strains: eye, ear, urine, cervix, cerebrospinal fluid, abscesses, sinus, skin, pus, lymph nodes, subclavian catheter tip, trachea, ulcer, pericardial fluid, fistula, masses in the neck and breast, penile abrasion, and air.

The sources of the cultures cited in column 3 were as varied as, and comparable to, the sources of the strains cited in column 5, even though one group of cultures produced both coagulase and DNase and the other group pro-
duced neither one. The sources of the cultures in column 5 were as follows: wounds, nine; pharynx, four; blood, three; abscesses, two; throat, two; and one strain each from cerebro-
spinal fluid, tracheal aspirate, spleen, knee, eye, rash, skin, lochia, and synthetic intrave-
nous solution.
It becomes readily apparent that the produc-
tion of coagulase, as detected with broth cul-
tures and human or rabbit plasma or growth from solid medium and rabbit plasma, and the production of DNase are properties that may be useful for identifying the species S. aureus, but these properties should not be taken as in vitro reactions indicative of pathogenicity, nor is their absence indicative of nonpathogenicity. The division of staphylococci into aureus and epidermidis species was questioned by Smith and Farkas-Himsley (30). The fact remains there is no reliable in vitro test for deter-
mining potential pathogenicity of staphylo-
cocci for man. In clinical microbiology, the signs and symptoms of the patient provide the pathogenicity test for the culture isolated in the laboratory. Numerous investigators over a period of many years have reported many in-
stances where coagulase-negative strains, the so-called S. albus or S. epidermidis, have pro-
duced serious infections in man. These infec-
tions have included subacute bacterial endo-
carditis (22, 26) and bacteremia associated with ventriculovenous-cerebrospinal fluid shunt (26, 27) and ventriculoatriostomy (28).

The current trend in the management of patients, such as the use of circulatory prostheses, venous catheters, and immunosup-
present drugs, are factors which have a bearing on whether strains of staphylococci are patho-
genic, and not everything depends upon a par-
ticular biochemical reaction of the organisms.

LITERATURE CITED
1. Baird-Parker, A. C. 1963. A classification of micrococci and staphylococci based on physiological and bio-
chemical tests. J. Gen. Microbiol. 30:409-427.
2. Barber, M., and S. W. A. Kuper. 1961. Identification of Staphylococcus pyogenes by the phosphatase reaction.
3. Blair, J. E. 1970. Staphylococcal infections, p. 207-226. In J. Mandelstam (ed.), Microbiology. McGraw-Hill, New York.

4. Brackinridge, J. C., and M. S. Bergdoll. 1971. Outbreak of food-borne gastroenteritis due to a coagulase-negative enterotoxin-producing staphylococcus. N. Engl. J. Med. 284:541-543.

5. Brown, R. W., O. Sandvik, R. K. Scherer, and D. L. Rose. 1967. Differentiation of strains of Staphylococcus epidermidis isolated from bovine udders. J. Gen. Microbiol. 47:273-287.

6. Cadness-Graves, B., R. Williams, G. J. Harper, and A. A. Miles. 1943. Slide-test for coagulase-positive staphylococci. J. Bacteriol. 47:1736-738.

7. Cowan, S. T. 1938. The classification of staphylococci by precipitation and biological reactions. J. Pathol. Bacteriol. 46:31-45.

8. Cunningham, L., B. W. Catlin, and M. Privat de Gailllle. 1936. A deoxyribonuclease of Micrococcus pyogenes. J. Amer. Chem. Soc. 78:4642-4645.

9. Ehrenkranz, N. J., D. F. Elliott, and R. Zarco. 1971. Serum bacteriofagism of Staphylococcus aureus. Infect. Immun. 3:694-670.

10. Evans, J. B. 1947. Anaerobic fermentation of mannitol by staphylococci. J. Bacteriol. 54:266.

11. Evans, J. B. 1948. Studies of staphylococci with special reference to the coagulase-positive types. J. Bacteriol. 55:785-800.

12. Fisher, S. 1960. The anti-staphylococcal activity of human sera in vitro and its relationship to passive protective potency. Aust. J. Exp. Biol. Med. Sci. 38:339-346.

13. Fish, A. 1940. The technique of the coagulase test for staphylococci. Brit. J. Exp. Pathol. 21:311-314.

14. Ivler, D. 1970. Staphylococcus, p. 61-64. In J. E. Blair, E. H. Lennette, and J. P. Truant (ed.), Manual of clinical microbiology. American Society for Microbiol. Med. 18:991-993.

15. Jarvis, J. D., and C. D. Wynne. 1969. A short survey of the reliability of deoxyribonuclease as an adjunct in the determination of staphylococcal pathogenicity. J. Med. Lab. Technol. 26:131-133.

16. Jeffries, C. D., D. P. Holtman, and D. G. Guse. 1957. Rapid method for determining the activity of microorganisms on nucleic acids. J. Bacteriol. 73:590-591.

17. Jejelazewicz, J. 1956. Badania nad koagulazami gromkowymi. I. Metody oszczczania wolnej i zwiazanej koagulazy. Acta Microbiol. Pol. 7:17-34.

18. Jenkins, C. J., Jr., and W. I. Metzger. 1959. Evaluation of different substrates for the staphylococcal coagulase test and a comparison of the tube and the slide techniques. J. Lab. Clin. Med. 54:141-144.

19. Kimler, A. 1962. Some clinical laboratory briefs on staphylococci. J. Bacteriol. 83:207-208.

20. Kimler, A. 1962. Evaluation of mediums for identification of Staphylococcus aureus. Amer. J. Clin. Pathol. 37:593-596.

21. Mosel, D. A. A. 1962. Attempt in classification of catalase-positive staphylococci and micrococci. J. Bacteriol. 84:1140-1147.

22. Needham, G. M., V. Ferris, and W. W. Spink. 1945. The correlation of the rapid slide method with the tube method for differentiating coagulase-positive from coagulase-negative strains of staphylococci. Amer. J. Clin. Pathol. 15 (Tech. Suppl. 9):83-85.

23. Omenn, G. S., and J. Friedman. 1970. Isolation of mutants of Staphylococcus aureus lacking extracellular nuclease activity. J. Bacteriol. 101:261-294.

24. Paik, G. 1970. Reagents, stains, and test procedures, p. 675-692. In J. E. Blair, E. H. Lennette, and J. P. Truant (ed.), Manual of clinical microbiology. American Society for Microbiology, Bethesda, Md.

25. Person, D. A., P. K. W. Yu, and J. A. Washington, II. 1969. Characterization of Micrococcaceae isolated from clinical sources. Appl. Microbiol. 18:95-97.

26. Quinn, E. L., F. Cox, and M. Fisher. 1966. The problem of associating coagulase-positive staphylococci with disease. Ann. N.Y. Acad. Sci. 123 (Art. 1):428-456.

27. Rames, L., B. Wise, J. R. Goodman, and C. F. Piel. 1970. Renal disease with Staphylococcus albus bacteria. A complication in ventriculotriatrical shunts. J. Amer. Med. Ass. 212:1671-1677.

28. Schimke, R. T., P. H. Black, V. H. Mark, and M. N. Swartz. 1961. Indolent Staphylococcus albus or aureus bacteremia after ventriculotriatrical shunts. N. Eng. J. Med. 264:264-270.

29. Schreier, J. B. 1969. Modification of deoxyribonuclease test medium for rapid identification of Serretia marcescens. Amer. J. Clin. Pathol. 51:711-716.

30. Smith, H. B. H., and H. Farkas-Himsley. 1969. The relationship of pathogenic coagulase-negative staphylococci to Staphylococcus aureus. Can. J. Microbiol. 15:879-880.

31. Smith, P. B., G. A. Hancock, and D. L. Rhodan. 1969. Improved medium for detecting deoxyribonuclease-producing bacteria. Appl. Microbiol. 18:991-993.

32. Steward, E. E., and F. C. Kelly. 1969. Variation of bound coagulase of Staphylococcus aureus. J. Bacteriol. 77:101-103.

33. Streifeld, M. M., B. Salman, and S. M. Shoelson. 1969. Staphylococcal infection by pooled human gamma-globulin. Nature (London) 184:1655-1666.

34. Victor, R., F. Lachica, W. F. Weiss, and R. H. Diebel. 1969. Relationships among coagulase, enterotoxin, and heat-stable deoxyribonuclease production by Staphylococcus aureus. Appl. Microbiol. 18:126-127.

35. Williams, R. E. O., and G. J. Harper. 1946. Determination of coagulase and alpha-haemolysin production by staphylococci. Brit. J. Exp. Pathol. 27:72-81.

36. Zierdt, C. H., and D. W. Golde. 1970. Deoxyribonuclease-positive Staphylococcus epidermidis strains. Appl. Microbiol. 20:54-57.