We derive the equations of motion of extended deformable bodies in metric-affine gravity. The conservation laws which follow from the invariance of the action under the general coordinate transformations are used as a starting point for the discussion of the dynamics of extended deformable test bodies. By means of a covariant approach, based on Synge’s world function, we obtain the master equation of motion for an arbitrary system of coupled conserved currents. This unified framework is then applied to metric-affine gravity. We confirm and extend earlier findings; in particular, we once again demonstrate that it is only possible to detect the post-Riemannian spacetime geometry by ordinary (non-microstructured) test bodies if gravity is nonminimally coupled to matter.

PACS numbers: 04.25.-g; 04.50.-h; 04.20.Cv
Keywords: Approximation methods; Equations of motion; Metric-affine gravity; Multipolar techniques

We dedicate this article to Friedrich W. Hehl – a pioneer of metric-affine gravity – on the occasion of his birthday.

I. INTRODUCTION

Metric-affine gravity [1] is a natural extension of Einstein’s general relativity theory. It is based on gauge-theoretic principles [2, 3], and it takes into account microstructural properties of matter (spin, dilation current, proper hypercharge) as possible physical sources of the gravitational field, on an equal footing with macroscopic properties (energy and momentum) of matter.

In this work we derive the equations of motion of extended deformable test bodies in metric-affine gravity. In this theory, matter is characterized by three fundamental Noether currents – the canonical energy-momentum current, the canonical hypermomentum current, and themetrical energy-momentum current. These objects satisfy a set of conservation laws (or, more exactly, balance equations). Following Mathisson, Papapetrou, and Dixon [4–9], the equations of motion of extended test bodies are derived from the conservation laws. Our derivation is based on a covariant multipolar test body method, which utilizes Synge’s world function formalism [10, 11].

In view of the multi-current characterization of matter in metric-affine gravity, we develop here a general approach which is applicable to an arbitrary set of conservation laws for any number of currents. The latter can include the gravitational, electromagnetic, and other physical currents if they are relevant to the model under consideration. The results presented here allow for the systematic study of test body motion in a very large class of gravitational theories (and not only gravitational), in particular they can also be applied to the case in which there is a general nonminimal coupling between gravity and matter. Models with nonminimal coupling have recently attracted a lot of attention in the literature [12, 13]. Their physical interpretation and impact are still a subject of discussion [14, 15].

Here we explicitly show how the new geometrical structures in metric-affine gravity couple to matter, which in turn may underlie the design of experimental tests of gravity beyond the Einsteinian (purely Riemannian) geometrical picture. Our current work, generalizes and unifies several previous works [16–26] on the equations of motion in gauge gravity theories.

The structure of the paper is as follows: In section II we briefly introduce the relevant geometrical notions and recall the dynamical structure of metric-affine gravity. Our discussion is different from [1] in that we avoid the use of the anholonomic frame/coframe, and all considerations are based on the traditional (Einsteinian) holonomic coordinate tensor formalism. We pay special attention to the extension of metric-affine gravity to the case of nonminimal coupling of gravity and matter. In section III we develop a generalized framework for the analysis of the multi-current conservation laws, and derive general covariant master equations of motion for test bodies characterized by an arbitrary set of Noether currents. On the basis of these general results, we then obtain in section IV the equations of motion of extended test bodies in metric-affine gravity. The infinite hierarchy of equations for multipole moments up to an arbitrary order is given, and we analyze the lowest orders of approximation in some more detail. In particular we derive the equations of motion of a pole-dipole test body, as well as monopolar particle in section V and compare those to previous
results in the literature. Our final conclusions are drawn
our in [VI] A brief summary of our conventions and fre-
quently used formulas can be found in the appendices [A]
and [B] Appendix [C] contains some supplementary ma-
terial on the derivation of the general equations of motion.

Our notations and conventions are those of [I]. In par-
ticular, the basic geometrical quantities such as the cur-
vature, torsion, and nonmetricity are defined as in [I],
and we use the Latin alphabet to label the spacetime co-
ordinate indices. Furthermore, the metric has the signa-
ture (+, −, −, −). It should be noted that our definition
of the metrical energy-momentum tensor is different from
the definition used in [12] [13] [21].

II. METRIC-AFFINE GRAVITY

The geometrical arena of metric-affine gravity is as
follows. The physical spacetime is identified with a
four-dimensional smooth manifold \(L_4 \), which is endowed
with a metric \(g_{ij} \), and a linear connection \(\Gamma_{ki}^j \). These
structures introduce the physically important notions of
lengths, angles, and parallel transport on the spacetime.
In general, the geometry of such a manifold is exhaus-
tively characterized by three tensors: the curvature, the
torsion and nonmetricity. They are defined as follows

\[R_{ki}^j := \partial_k \Gamma_{li}^j - \partial_l \Gamma_{ki}^j + \Gamma_{kn}^j \Gamma_{li}^n - \Gamma_{ln}^j \Gamma_{ki}^n, \]
\[T_{ki}^l := \Gamma_{ki}^l - \Gamma_{kl}^i, \]
\[Q_{kij} := -\nabla_k g_{ij} = -\partial_k g_{ij} + \Gamma_{ki}^l g_{lj} + \Gamma_{kj}^l g_{il}. \]

The Riemannian connection \(\hat{\Gamma}_{kj}^i \) is uniquely determined
by the conditions of vanishing torsion and nonmetricity
which yield explicitly

\[\hat{\Gamma}_{kj}^i = \frac{1}{2} g^{il} (\partial_j g_{kl} + \partial_k g_{lj} - \partial_l g_{kj}). \]

The deviation of the geometry from the Riemannian one is
then conveniently described by the distortion tensor

\[N_{kij} := \hat{\Gamma}_{kj}^i - \Gamma_{kj}^i. \]

The system (2) and (3) allows us to find the distortion
tensor in terms of the torsion and nonmetricity. Explicitly,

\[N_{kij} = -\frac{1}{2} (T_{kij} + T_i^{kj} + T_j^{ik}) \]
\[+ \frac{1}{2} (Q_{kij} - Q_{kij}^i - Q_{jk}^i). \]

Conversely, one can use this to express the torsion and
nonmetricity tensors in terms of the distortion,

\[T_{kij} = -2 N_{kij}, \]
\[Q_{kij} = -2 N_{k(ij)}. \]

Substituting (5) into (11), we find the relation between
the non-Riemannian and the Riemannian curvature tensors

\[R_{abc} = \hat{R}_{abc} - \hat{\nabla}_a N_{dc} b + \hat{\nabla}_d N_{ac} b + N_{an} b N_{dc} n - N_{dn} b N_{ac} n. \]

The hat over a symbol denotes the Riemannian objects
(such as the curvature tensor) and the Riemannian oper-
ators (such as the covariant derivative) constructed from
the Christoffel symbols (4).

A. Dynamics in metric-affine theory

The gravitational effects in the metric-affine theory are
defined by the set of fundamental variables: the inde-
pendent metric \(g_{ij} \) and connection \(\Gamma_{kj}^i \). Accordingly,
there are two sets of field equations.

Assuming standard minimal coupling, the total La-
grangian of interacting gravitational and matter fields reads

\[L = V(g_{ij}, R_{ij}^k, N_{ki}^j) + L_{\text{mat}}(g_{ij}, \psi^A, \nabla_i \psi^A). \]

In general, the gravitational Lagrangian \(V \) is constructed
as a diffeomorphism invariant function of the curvature,
torsion, and nonmetricity. However, in view of the relations (7) and (8),
we can limit ourselves to Lagrangian functions that depend arbitrarily on the curvature
and the distortion tensors. The matter Lagrangian depends on the matter field \(\psi^A \) and its covariant derivative

\[\nabla_k \psi^A = \partial_k \psi^A - \Gamma_{kl}^j \psi^j, \]

where \((\sigma^A B)_j^i \) are the generators of general coordinate transformations.

The field equations of metric-affine gravity can be written
in several equivalent ways. The standard form is the set of the so-called “first” and “second” field equations
(using the modified covariant derivative defined by
\[\hat{\nabla}_i = \nabla_i + N_{ki}^j k). \]

\[\hat{\nabla}_n H_{nm}^i k + \frac{1}{2} T_{mn}^i H_{mn}^j k - E_k^i = -\Sigma^i, \]

\[\hat{\nabla}_i H_{kij}^l + \frac{1}{2} T_{mn}^i H_{mn}^j j - L_{kij} = \Delta^j k. \]

Here the generalized gravitational field momenta are in-
duced by

\[H_{kij}^l := -2 \frac{\partial V}{\partial R_{kli}^j}, \]
\[H_{ki}^j := -\frac{\partial V}{\partial T_{kij}}, \]
\[M_{kij} := -\frac{\partial V}{\partial Q_{kij}}, \]

and the gravitational hypermomentum density is

\[E_{kij} = -H_{kij} - M_{kij} = -\frac{\partial V}{\partial N_{kij}}. \]

Furthermore, the generalized energy-momentum tensor of the gravitational field is

\[E_k^i = \delta_k^j V + \frac{1}{2} Q_{klm} M_{lmm}^i + T_{kl}^n H_{ln}^i + R_{kln}^m H_{lmn}^i. \]
The sources of the gravitational field are the canonical energy-momentum tensor and the canonical hypermomentum of matter, respectively:

\[\Sigma^i = \frac{\partial L_{\text{mat}}}{\partial \dot{\psi}^A} \nabla_k \psi^A - \delta^i_k L_{\text{mat}}. \]

(18)

\[\Delta^{i j} = \frac{\partial L_{\text{mat}}}{\partial \theta^{ij}} = -\frac{\partial L_{\text{mat}}}{\partial \nabla_k \psi^A} (\sigma^A B)^i_j \psi^B. \]

(19)

It is straightforward to verify that instead of the first field equation (11), one can use the so-called zeroth field equation which replaces the second term in (10). The coupling of matter and the canonical hypermomentum density \(J^\mu \) properties: the momentum density \(\rho \) and the intrinsic hypermomentum density \(J^\mu \).

Fluid elements are characterized by their microstructural properties: the momentum density \(P_k \) and the intrinsic hypermomentum density \(J^\mu \).

III. GENERAL MULTIPOLAR FRAMEWORK

In this section we derive “master equations of motion” for a general extended test body, which is characterized by a set of currents \(J^{A_j} \).

(29)

Normally, these are the so-called Noether currents that correspond to an invariance of the action under certain symmetry group. However, this is not necessary, and any set of currents is formally allowed. We call \(J^{A_j} \) dynamical currents. The generalized index (capital Latin letters \(A, B, \ldots \)) labels different components of the currents.

As the starting point for derivation of the equations of motion for generalized multipole moments, we consider the following conservation law:

\[\hat{\nabla}_j J^{A_j} = -\Lambda_j B^A \cdot J^{B_j} - \Pi^A_B \Xi^B. \]

(30)

On the right-hand side, we introduce objects that can be called material currents \(\Xi^A \).

(31)

to distinguish them from the dynamical currents \(J^{A_j} \). The number of components of the dynamical and material currents is different; hence, we use a different index with a dot, \(A, B, \ldots \), the range of which does not coincide with that of \(A, B, \ldots \). At this stage we do not specify the ranges of both types of indices, this will be done for the particular examples which we analyze later. As usual, Einstein’s summation rule over repeated indices is assumed for the generalized indices as well as for coordinate indices.

Both sets of currents \(J^{A_j} \) and \(\Xi^A \) are constructed from the variables that describe the structure and the properties of matter inside the body. In contrast, the objects \(\Lambda_j B^A \), \(\Pi^A_B \) do not depend on the matter, but they are functions of the external classical fields which act on the body and thereby determine its motion. The list of such external fields includes the electromagnetic, gravitational, and scalar fields.

We will now derive the equations of motion of a test body by utilizing the covariant expansion method of Synge [10]. For this we need the following auxiliary formula for the absolute derivative of the integral of an arbitrary bitensor density \(B^{\alpha_1 \alpha_2}(x, y) \) (the latter
is a tensorial function of two spacetime points):
\[
\frac{D}{ds} \int_{\Sigma(s)} \tilde{B}^z y_1 d\Sigma_{z_1} = \int_{\Sigma(s)} \tilde{\nabla}_z \tilde{B}^z y_1 \hat{u} d\Sigma_{z_2} + \int_{\Sigma(s)} v^{y_2} \tilde{\nabla}_{y_2} \tilde{B}^z y_1 d\Sigma_{y_1}.
\]
(33)

Here \(v^{y_1} := dx^{y_1}/ds\), \(s\) is the proper time, \(\frac{D}{ds} = v^{\bar{\nabla}_i}\), and the integral is performed over a spatial hypersurface. Note that in our notation the point to which the index of a bitensor belongs can be directly read from the index itself; e.g., \(y_n\) denotes indices at the point \(y\). Furthermore, we will now associate the point \(y\) with the world-line of the test body under consideration. Here the tilde marks densities, \(\sigma\) denotes Synge’s world function, with \(\sigma^y\) being its first covariant derivative, and \(g^{yx}\) is the parallel propagator for vectors. For objects with more complicated tensorial properties the parallel propagator is straightforwardly generalized to \(G^{y, x}_{X, \hat{X}}\) and \(\Xi^\hat{A}\). We will need these generalized propagators to deal with the dynamical and material currents \(J^{\hat{A}j}\) and \(\Xi^\hat{A}\). More details are collected in appendix [A].

After these preliminaries, we introduce integrated momenta for the two types of currents via (for \(n = 0, 1, \ldots\))
\[
j^{y_1 \ldots y_n} Y_0 = (-1)^n \int_{\Sigma(\tau)} \sigma^{y_1 \ldots y_n} G^{Y_0} X_0 \hat{J} \hat{X}_{\nu' \nu''} d\Sigma_{x''},
\]
(34)
\[
\hat{j}^{y_1 \ldots y_n} Y_0 = (-1)^n \int_{\Sigma(\tau)} \sigma^{y_1 \ldots y_n} G^{Y_0} X_0 g^{y'' y'} \hat{J} \hat{X}_{\nu' \nu''} d\Sigma_{x''},
\]
(35)
\[
m^{y_1 \ldots y_n} Y_0 = (-1)^n \int_{\Sigma(\tau)} \sigma^{y_1 \ldots y_n} G^{Y_0} X_0 \Xi \hat{X}_{\nu' \nu''} d\Sigma_{x''}.
\]
(36)

Integrating (30) and making use of (33), we find the following ‘master equation of motion’ for the generalized multipole moments:

\[
\frac{D}{ds} j^{y_1 \ldots y_n} Y_0 = -n \nu(y_1 \nu_2 \ldots y_n) Y_0 + n \nu(y_1 \ldots y_{n-1}) Y_0 y_n - \gamma^{y_1 \ldots y_n} \nu^y y_{n+1} \left(j^{y_1 \ldots y_n} y' y'' + j^{y_1 \ldots y_n} y' y'' \right) - \Lambda^{y' y''} y_0 j^{y_1 \ldots y_n} y' y'' - \Pi^{y_0} y_0 m^{y_1 \ldots y_n} y'' - \Pi^{y_0} y_0 m^{y_1 \ldots y_n} y''
\]
\[
- \frac{1}{k!} \left[(-1)^k \frac{1}{n} \nu(y_1 \ldots y_{n+k}) j^{y_1 \ldots y_{n+k}} y'' y'' + \left(\gamma^{y_1 \ldots y_{n+k}} y'' y'' \right) - \Lambda^{y' y''} y_0 m^{y_1 \ldots y_{n+k}} y'' y'' \right],
\]
(37)

A. Electrodynamics in Minkowski spacetime

To see how the general formalism works, let us consider the motion of electrically charged extended bodies under the influence of electromagnetic field in the flat Minkowski spacetime. This problem was analyzed earlier by means of a different approach in [33].

In this case, it is convenient to recast the set of dynamical currents into the form of a column
\[
J^{\hat{A}j} = \left(\begin{array}{c} J^j \\ \Sigma^k j \end{array} \right),
\]
(38)
where \(J^j\) is the electric current and \(\Sigma^k j\) is the energy-momentum tensor. Physically, the structure of the dynamical current is crystal clear: the matter elements of an extended body are characterized by the two types of “charges”, the electric charge (the upper component) and the mass (the lower component).

The generalized conservation law comprises two components of different tensor dimensions:
\[
\tilde{\nabla}_j \left(\frac{J^j}{\Sigma^k j} \right) = \left(\begin{array}{c} F^{k, j} J^j \\ 0 \end{array} \right),
\]
(39)
where the lower component of the right-hand side describes the usual Lorentz force.

Accordingly, we indeed recover for the dynamical current (33) the conservation law in the form (30) where \(\Xi^B = 0\) and
\[
\Lambda_{j B}^A = \left(\begin{array}{cc} 0 & 0 \\ F^{k, j} & 0 \end{array} \right).
\]
(40)
The generalized moments (34)-(36) have the same column structure, reflecting the two physical charges of matter:
\[
j^{y_1 \ldots y_n} Y_0 = \left(\begin{array}{c} j^{y_1 \ldots y_n} \\ g^{y_1 \ldots y_n} \end{array} \right),
\]
(41)
\[
\hat{j}^{y_1 \ldots y_n} Y_0 = \left(\begin{array}{c} \hat{j}^{y_1 \ldots y_n} \\ k^{y_1 \ldots y_n} \end{array} \right),
\]
(42)
whereas $m^{y_1 \cdots y_n \tilde{Y}_0} = 0$.

As a result, the master equation (57) reduces to the coupled system of the two sets of equations for the moments:

\[
\frac{D}{ds} \gamma^{y_1 \cdots y_n} = -n v(y_1 j y_2 \cdots y_n) + n i(y_1 \cdots y_n),
\]
\[
\frac{D}{ds} \rho^{y_1 \cdots y_n \gamma_0} = -n v(y_1 j y_2 \cdots y_n) \gamma_0 + n k(y_1 \cdots y_n - 1 | y_0 | y_n),
\]
\[
- \sum_{k=1}^{\infty} \frac{1}{k!} F_{y^0 y_1 \cdots y_n+k} y^0 y_1 \cdots y_n y^k,
\]
\[
- F_{y^0 y_1 \cdots y_n} y^1 \cdots y_n y^0.
\]

These equations should be compared to those of [33].

IV. EQUATIONS OF MOTION IN METRIC-AFFINE GRAVITY

We are now in a position to derive the equations of motion for extended test bodies in metric-affine gravity. Introducing the dynamical current

\[
J^{A j} = \left(\begin{array}{c} \Delta^{ikj} \\ \Sigma^{kj} \end{array} \right),
\]

and the material current

\[
\Xi^A = \left(\begin{array}{c} t^{ik} \\ L_{\text{mat}} \end{array} \right),
\]

we then recast the system (25) and (26) into the generic conservation law (30), where we now have

\[
\Lambda_{jB}^A = \left(\begin{array}{c} U_{jikr}^{l^k} - \delta_i^l \delta_k^r \\ R_{jikr}^{l^k} \end{array} \right),
\]
\[
\Pi_{A B} = \left(\begin{array}{c} \delta_i^k \delta_j^l \delta_k^r \\ 0 \\ \frac{1}{2} Q_{ikj}^{l^k} A^{ik} \end{array} \right).
\]

Like in the previous example of an electrically charged body, the matter elements in metric-affine gravity are also characterized by two “charges”: the canonical hyper-momentum (upper component) and the canonical energy-momentum (lower component). This is reflected in the column structure of the dynamical current (43). The material current (44) takes into account the metrical energy-momentum and the matter Lagrangian related to the nonminimal coupling. The multi-index $A = \{ik, k\}$, whereas $\tilde{A} = \{ik, 1\}$. Accordingly, the generalized propagator reads

\[
G^X_{y, t} = \left(\begin{array}{cc} g_{y_1 x_1} g_{y_2 x_2} & 0 \\ 0 & g^{-1}_{y_1 x_1} \end{array} \right),
\]

and we easily construct the expansion coefficients of its derivatives from the corresponding expansions of the derivatives of the vector propagator g^y_{x}:

\[
\gamma^{y_0}_{y_1 y_2 \cdots y_{k+2}} = \left(\begin{array}{cc} \gamma^{y_0 (y')_{y_2 \cdots y_{k+2}} y^{y'} & 0 \\ 0 & \gamma^{y_0}_{y y' y_2 \cdots y_{k+2}} \end{array} \right),
\]

where we denoted

\[
\gamma^{y_0 (y')_{y_2 \cdots y_{k+2}} y^{y'}} = \gamma^{y_0}_{y y' y_2 \cdots y_{k+2}} y^{y'} + \gamma^{y}_{y' y y_2 \cdots y_{k+2}} y^{y'}. \tag{51}
\]

In particular, for the first expansion coefficient ($k = 1$), we find

\[
\gamma^{y_0 (y')_{y_2 y_{k+2}} y^{y'}} = \frac{1}{2} \left(R^{y_0}_{y y' y_2 y_{2 y_3} - \delta^{y'}_{y'} y_2 y_{2 y_3} \delta^{y_0} y_y} + R^{y}_{y y' y_2 y_{2 y_3} - \delta^{y'}_{y'} y_2 y_{2 y_3} \delta^{y_0} y_y} \right). \tag{52}
\]

For completeness, let us also write down another generalized propagator

\[
G^{Y}_{x} = \left(\begin{array}{cc} g_{y_1 x_1} g_{y_2 x_2} & 0 \\ 0 & g^{-1}_{y_1 x_1} \end{array} \right). \tag{54}
\]

The last step is to write the generalized moments (53) in terms of their components:

\[
J^{y_1 \cdots y_n Y} = \left(\begin{array}{c} R^{y_1 \cdots y_n y' y''} \\ \rho^{y_1 \cdots y_n y'} \end{array} \right), \tag{55}
\]
\[
\jmath^{y_1 \cdots y_n Y_{y_0}} = \left(\begin{array}{c} \delta^{y_1 \cdots y_n y' y''} y_{y_0} \\ k^{y_1 \cdots y_n y' y_0} \end{array} \right), \tag{56}
\]
\[
m^{y_1 \cdots y_n Y} = \left(\begin{array}{c} \mu^{y_1 \cdots y_n y'} y_{y_0} \\ \xi^{y_1 \cdots y_n} \end{array} \right). \tag{57}
\]

For the two most important moments, “h” stands for the hypermomentum, whereas “p” stands for the momentum. Finally, substituting all of the above into the “master equation” (37), we obtain the system of multipolar equations of motion for extended test bodies in metric-affine gravity:

\footnote{Note that in order to facilitate the comparison with our previous work [23], we provide in appendix C the explicit form of integrated conservation laws (25) and (26), as well as the generalized integrated moments (55) – (57) in the notation used in [23].}
$$\frac{D}{ds} h_{y_1 \ldots y_n y_\alpha y_\beta} = -n v^l y_1 y_2 \ldots y_n y_\alpha y_\beta + n q^l y_1 \ldots y_{n-1} | y_\alpha y_\beta | y_n + k^{y_1 \ldots y_n y_\alpha y_\beta} - \mu y_1 \ldots y_n y_\alpha y_\beta$$

$$= -\frac{1}{2} \tilde{R}_{y_\alpha y_\beta} y_\gamma y_\nu y_{n+1} \left(q^{y_1 \ldots y_n + 1 y_\alpha y_\beta y_\gamma + y_\gamma y_\nu} h_{y_1 \ldots y_n + 1 y_\alpha y_\beta y_\gamma} \right)$$

$$- \frac{1}{2} \tilde{R}_{y_\alpha y_\beta} y_\gamma y_\nu y_{n+1} \left(q^{y_1 \ldots y_n + 1 y_\alpha y_\beta y_\gamma + y_\gamma y_\nu} h_{y_1 \ldots y_n + 1 y_\alpha y_\beta y_\gamma} \right)$$

$$- U_{y_\alpha y_\beta y_\gamma y_\nu y_{n+1} + 1} q^{y_1 \ldots y_n + 1 y_\alpha y_\beta y_\gamma y_\nu} y_n + 1 q^{y_1 \ldots y_n + 1 y_\alpha y_\beta y_\gamma y_\nu} y_n,$$
1. Rewriting equations of motion

Let us decompose (60) and (61) into symmetric and skew-symmetric parts:

\[\mu^{abc} = k^{abc} + q^{abc} - \varepsilon^{abc}h^{bc} \]

where we introduced the abbreviation

\[k^{abc} = \frac{D}{ds}h^{[ab]} + k^{[ab]} = -U_{cde}^{(ab)}q_{dec}. \]

As a result, we can express the moments symmetric in the last two indices \(\mu^{ab} = \mu^{(ab)} \) and \(\mu^{ca} = \mu^{c(ab)} \) (in general, this is possible also for an arbitrary order \(\mu^{[1...ab]} = \mu^{1...c(a)b} \) in terms of the other moments.

Let us denote the skew-symmetric part \(s^{ab} = h^{[ab]} \), as this greatly simplifies the subsequent manipulations and the comparison with [23].

The system of the two equations (62) and (63) can be resolved in terms of the 3rd rank \(k \)-moment. The result reads explicitly:

\[k^{ab} = v^a p^b + v^c (p^{[ab]} - s^{ab}) + v^b (p^{[ac]} - s^{ac}) + v^a (p^{[bc]} - s^{bc}) + q^{[ab]c} + q^{[ac]b} + q^{[bc]a}. \]

(69)

This yields some useful relations:

\[k^{[bc]} = -\varepsilon^{a(sb)} + q^{[bc]a}, \]

(70)

\[k^{[ab]c} = \varepsilon^{a(sb)} p^{[bc]} + v^c (p^{[ab]} - s^{ab}) + q^{[ab]c}. \]

(71)

The next step is to use the equations (67), (68) together with (63) and substitute the \(\mu \)-moments and \(k \)-moments into (61) and (63) + (64). This yields the system that depends only on the \(p, h, q, \) and \(\xi \) moments.

Let us start with the analysis of (61). The latter contains the combination \(k^{[b]c[d]} + v^{[d]}p^{[b]c] \) where the skew symmetry is imposed by the contraction with the Riemann curvature tensor which is antisymmetric in the last two indices. Making use of (69), we derive

\[k^{[ab]c} = v^c (p^{[ab]} - s^{ab}) + q^{[ab]c}. \]

(73)

Note that by construction \(\kappa^{abc} = k^{[ab]c} \).

Then by making use of the Ricci identity we find

\[-\frac{1}{2} \hat{R}^{a}_{\, bcd} (k^{bcd} + v^d p^{bc}) = \hat{R}^{a}_{\, bcd} [q^{[cd]b} + v^b (p^{[cd]} - s^{cd})]. \]

(74)

Substituting \(k^{bc} \) from (63) and \(\mu^{bc} \) from (67), we find after some algebra

\[-V_{cb} a k^{bc} - \frac{1}{2} Q^{[c]b} k^{bc} = -A_{b} Dp^{ba} - N^{a}_{\, cd} D_{h_{cd}} - \hat{R}^{a}_{\, bcd} (v^{b} A_{b} - \hat{A}^{a}_{\, b} k^{bc} - k^{abc} A_{b} A_{c}) \]

\[+ (N^{a}_{\, nb} N_{dc}^{n} - N^{a}_{\, cn} N_{db}^{n}) \hat{h}^{cd}. \]

(75)

Further simplification is achieved by noticing that

\[v^{b} A_{b} = D_{A} A_{c} = p^{a}_{\, c} A_{a} \frac{DA_{c}}{ds}, \]

(76)

where we used (62) and recalled that \(A_{b} = A_{b}^{\prime} \).

Analogously, taking \(k^{[b]c[d]} \) from (70) and \(\mu^{bc} \) from (65), we derive

\[-V_{dc}^{\prime} a k^{bcd} - \frac{1}{2} Q^{[c]b} k^{bcd} = -A_{b} k^{cab} + N^{a}_{\, cd} b q^{cd} - N^{a}_{\, cd} b h^{cd}. \]

(78)

We can again use \(A_{b} = A_{b}^{\prime} \) and (62) to simplify

\[-A_{b} k^{cab} = -p^{ba} D_{A_{b}} A_{b} \frac{DA_{b}}{ds}. \]

(79)

After these preliminary calculations, we substitute (74) - (79) into (64) to recast the latter into

\[\frac{D}{ds} \left(F_{p}^{a} + F_{N^{a}_{\, cd} h_{cd}}^{a} + p^{a}_{\, b} \hat{F}_{b} \right) = \hat{F}^{a}_{\, bcd} v^{b} (p^{[cd]} - s^{cd}) \]

\[+ \hat{F}^{q}_{\, ab} \left[R^{[a]bc} - \hat{R}^{a}_{\, bcd} - N^{a}_{\, cd} a \right] b \]

\[-N^{a}_{\, nb} N_{dc}^{n} + N^{a}_{\, cn} N_{db}^{n} \hat{F}^{b}_{\, cd} A_{b} - \hat{F}^{b}_{\, cda} A_{a} - \hat{F}^{b}_{\, cda} A_{a} \]

(80)

Finally, combining (63) and (61) to eliminate \(k^{ba} \) we derive the equation

\[\frac{D}{ds} \left(p^{ab} - h^{ab} \right) = \mu^{ab} - v^{a} \left(p^{b} + N^{b}_{\, cd} h_{cd} \right) + q^{[cd]b} N_{cd}^{a} + q^{acd} N_{d}^{a} - \xi^{a} A_{b} + (q^{a} b - k^{abc}) A_{c}. \]

(81)

Following [23], we introduce the total orbital and the total spin angular moments

\[L^{ab} := 2p^{[ab]}, \quad S^{ab} := -2h^{[ab]}, \]

(82)

and define the generalized total energy-momentum 4-vector and the generalized total angular momentum by

\[P^{a} := F(p^{a} + N^{a}_{\, cd} h_{cd}) + p^{ba} \hat{F}_{b} F, \]

(83)

\[J^{ab} := F(L^{ab} + S^{ab}), \]

(84)

Then, taking into account the identity (49) which with the help of the raising and lowering of indices can be recast into

\[\hat{F}^{a}_{\, bcd} N_{debc} = -R^{a}_{\, bde} + \hat{R}^{a}_{\, bde} + N^{a}_{\, ebcd} \]

\[+ N^{a}_{\, nb} N_{de}^{n} - N_{d}^{n} b N_{cn}, \]

(85)
we rewrite the pole-dipole equations of motion (80) and (81) in the final form
\[
\frac{DP^a}{ds} = \frac{1}{2} R_{abcd}^{\mu} \mathcal{J}^{cd} + F q^{[c|d]} N_{dc}^b - \xi \nabla^a F - \xi^b \nabla^a F, \tag{86}
\]
\[
\frac{DJ^{ab}}{ds} = -2\nu [\mu p^b] + 2F(q^{[c|d]} N_{dc}^b + q^{[c|d]} N_{dc}^b) + [q^{[a|b]} + q^{[b|a]} - q^{(ab)c}] A_c. \tag{87}
\]
The last equation arises as the skew-symmetric part of (81), whereas the symmetric part of the latter is a non-dynamical relation that determines the \(\mu^{ab} \) moment
\[
\mu^{ab} = \frac{D\gamma^{ab}}{ds} + \frac{1}{F} \nu^{(a} (P^{b)} + \mathcal{J}^{bc} A_c) + \xi^{(a} A^{b)} - q^{(a|b)} N_{dc}^b - q^{(a|d)} N_{dc}^b + [q^{[a|b]} + q^{[b|a]} - q^{(ab)c}] A_c. \tag{88}
\]
Here the symmetric moment of the total hypermomentum is introduced via
\[
\gamma^{ab} := p^{(ab)} - h^{(ab)}. \tag{89}
\]

B. Coupling to the post-Riemannian geometry: Fine structure

Let us look more carefully at how the post-Riemannian pieces of the gravitational field couple to extended test bodies. At first, we notice that the generalized energy-momentum vector (83) contains the term \(N^a_{\ cdf} h^{cd} \) that describes the direct interaction of the distortion (torsion plus nonmetricity) with the intrinsic dipole moment of the hypermomentum. Decomposing the latter into the skew-symmetric (spin) part and the symmetric (proper hypermomentum + dilation) part, we find
\[
N^a_{\ cdf} h^{cd} = \frac{1}{2} N^a_{\ [cd]} S^{cd} - \frac{1}{2} Q^a_{\ cdf} h^{(cd)}. \tag{90}
\]
Here we made use of (8). This is quite consistent with the gauge-theoretic structure of metric-affine gravity. The second term shows that the intrinsic proper hypermomentum and the dilation moment couple to the nonmetricity, whereas the first term displays the typical spin-torsion coupling.

Similar observations can be made for the coupling of higher moments which appear on the right-hand sides of (80) and (87) - and thus determine the force and torque acting on an extended body due to the post-Riemannian gravitational field. In order to see this, let us introduce the decomposition
\[
-\frac{1}{2} q^{abc} = \hat{q}^{abc} + \hat{q}^{c[ab]} \tag{91}
\]
into the two pieces
\[
\hat{q}^{abc} := \frac{1}{2} (q^{[a|b]} + q^{[b|a]} - q^{(ab)c}), \tag{92}
\]
\[
\hat{q}^{abc} := \frac{1}{2} (q^{(ab)c} + q^{[a|b]} - q^{[b|a]}). \tag{93}
\]
The overscript “\(F \)” and “\(s \)” notation shows the relevance of these objects to the dilation plus proper hypermomentum and to the spin, respectively. By construction, we have the following algebraic properties
\[
\hat{q}^{[ab]c} \equiv 0, \quad \hat{q}^{(ab)c} \equiv 0. \tag{94}
\]

Making use of the decomposition (91) and of the explicit structure of the distortion (67), we then recast the equations of motion (80) and (87) into
\[
\frac{DP^a}{ds} = \frac{1}{2} R_{abcd}^{\mu} \mathcal{J}^{cd} + F q^{[c|d]} N_{dc}^b - \xi \nabla^a F - \xi^b \nabla^a F, \tag{95}
\]
\[
\frac{DJ^{ab}}{ds} = -2\nu [\mu p^b] + 2F(q^{[c|d]} T_{dc}^b + 2q^{[a|d]} T_{ab}^b) - 2\xi q^2 h^b F. \tag{96}
\]
Now we clearly see the fine structure of the coupling of extended bodies to the post-Riemannian geometry. The first lines in the equations of motion describe the usual Mathisson-Papapetrou force and torque. They depend on the Riemannian geometry only. A body with the nontrivial moment (92) is affected by the torsion field, whereas the nontrivial moment (93) feels the nonmetricity. This explains the different physical meaning of the higher moments (92) and (93). In addition, the last lines in (95) and (96) describe contributions due to the non-minimal coupling.

C. General monopolar equations of motion

At the monopolar order we have nontrivial moments \(p^a, k^{ab}, \mu^{ab} \) and \(\xi \). The nontrivial equations of motion then arise from the eq. (58) for \(n = 0 \) and from the eq. (59) for \(n = 1, n = 0 \):
\[
0 = k^{ba} - \mu^{ab}, \tag{97}
0 = k^{ba} - v^a p^b, \tag{98}
\]
\[
\frac{DP^a}{ds} = -V_{eb} k^{ab} - \frac{1}{2} Q^a_{\ ceb} h^{bc} - A^a \xi. \tag{99}
\]
The first two equations (97) and (98) yield
\[
k^{[ab]} = 0, \quad \nu [\mu p^b] = 0, \tag{100}
\]
and substituting (97), (98) and (100) into (99) we find
\[
\frac{D(F p^a)}{ds} = -\xi \nabla^a F. \tag{101}
\]
From (100) we have \(p^a = M v^a \) with the mass \(M := v^a p_a \), and this allows us to recast (101) into the final form
\[
M \frac{Dv^a}{ds} = -\xi (g^{ab} - v^a v^b) \nabla b F. \tag{102}
\]
Hence, in general the motion of nonminimally coupled monopole test bodies is nongeodetic. Furthermore, the general monopole equation of motion \((102)\) reveals an interesting feature of theories with nonminimal coupling. There is an “indirect” coupling, i.e. through the coupling function \(F(g_{ij}, R_{ijk}^l, T_{ij}^k, Q_{kij})\), of post-Riemannian spacetime features to structureless test bodies.

\[N_{kj}^i = K_{kj}^i + \frac{1}{2} (Q^i g_{kj} - Q_k b_j^i - Q_j b_k^i) . \quad (103) \]

The contortion tensor is constructed from the torsion,

\[K_{kj}^i = -\frac{1}{2} (T_{kj}^i + T_j^i k + T_j^k i) . \quad (104) \]

As a result, the generalized momentum \((83)\) in Weyl-Cartan spacetime takes the form

\[p^a = F p_a - \frac{F}{2} (K^a_{\ cd} s^{cd} - Q_b s^{ba} + Q^a D) + p^b \nabla_b F . \quad (105) \]

Here we introduced the intrinsic dilation moment \(D := g_{ab} h^{ab}\).

Substituting the distortion \((103)\) into \((86)\) and \((87)\), we find the pole-dipole equations of motion in the Weyl-Cartan spacetime:

\[D P^a_{\ ds} = \frac{1}{2} \tilde{P}^a_{\ bcd} b^b \ n_{cd} + F q^a_{\ bcd} \nabla_b T_{cd} + Z^b \nabla_b Q_b - \xi \nabla_b F - \xi \nabla_b F, \quad (106) \]

\[D J_{\ ab}^{\ ds} = -2 \ve^a p^b + 2 F (q^c_{\ bcd} a T_{cd}^b) + 2 q^a_{\ [cd]} T_{cd}^b + 2 F Z^{[a} Q^{b]} - 2 \ve^a \nabla_b F . \quad (107) \]

Here we introduced the trace of the modified moment \((92)\),

\[Z^a := g_{bc} d^{bca} = \frac{1}{2} g_{bc} (q^b c - q^b a - q^a b) . \quad (108) \]

It is coupled to the Weyl nonmetricity.

\section{E. Weyl spacetime}

Weyl spacetime \([34]\) is obtained as a special case of the results above for vanishing torsion. Hence the contortion is trivial,

\[K_{abc} = 0 . \quad (109) \]

Taking this into account, the generalized momentum \((105)\) and the equations of motion \((106)\) and \((107)\) are simplified even further.

It is interesting to note that besides a direct coupling of the dilation moment to the Weyl nonmetricity on the right-hand sides of \((105)\) and \((107)\), there is also a nontrivial coupling of the spin to the nonmetricity in \((105)\).

\section{VI. CONCLUSIONS}

We have worked out covariant test body equations of motion for standard metric-affine gravity, as well as its extensions with nonminimal coupling. Our results cover a very large class of gravitational theories, and one can use them as a theoretical basis for systematic tests of gravity by means of extended deformable bodies.

Furthermore, our work generalizes a whole set of works \([16–24, 26, 35]\). In particular it can be viewed as a completion of the program initiated in \([18]\), in which a noncovariant Papapetrou-type \([3]\) approach was used. The general equations of motion \((55)\) and \((56)\) cover all of the previously reported cases. As demonstrated explicitly, the master equation \((57)\) allows for a quick adoption to any physical theory, as soon as the conservation laws and (multi-)current structure are fixed.

It is satisfying to see that in the context of nonminimal metric-affine gravity, one is able to recover the same indirect coupling – as previously reported in \([24]\) in the case of torsion – of new geometrical quantities to regular matter via the coupling function \(F\). This may be exploited to devise new strategies to detect post-Riemannian spacetime features in future experiments. We hope that our covariant unified framework sheds more light on the systematic test of theories which exhibit nonminimal coupling.

\section{ACKNOWLEDGEMENTS}

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant LA-905/8-1/2 (D.P.).

\section{Appendix A: Conventions & Symbols}

In the following we summarize our conventions, and collect some frequently used formulas. A directory of
TABLE I. Directory of symbols.

Symbol	Explanation
\(g_{ab} \)	Metric
\(\sqrt{g} \)	Determinant of the metric
\(\delta^a_b \)	Kronecker symbol
\(x^a, s \)	Coordinates, proper time
\(\Gamma^{ab}_{c} \)	Connection
\(N_{ab} \)	Distortion
\(Q_{abc} \)	Nonmetricity
\(T_{ab}^{c} \)	Torsion
\(R_{abc}d \)	Curvature
\(H^{abc}_{d}, H^{ab}_{ec}, M_{abc}, E^{ab}_{c} \)	World function
\(g_{ab}, G^{X}_{Y} \)	Field momenta
\(a^{A}_{B} \)	Parallel propagator
\((\sigma^{A}_{B})^{l}_{\gamma} \)	Generators coord. transf.

Matter quantities

Symbol	Explanation
\(\psi^{A} \)	General matter field
\(\Sigma^{ab}_{c} \)	Canonical energy-momentum
\(\Delta^{ab}_{c} \)	Canonical hypermomentum
\(t^{a}_{b} \)	Metrical energy-momentum
\(\Delta^{ab}_{c} \)	Hypermomentum
\(D \)	Intrinsic dilation moment
\(P_{a} \)	Momentum density
\(J_{a}^{b} \)	Hypermomentum density
\(\xi^{a} \)	Velocity
\(Z^{A} \)	Material currents
\(\rho^{a} \)	Gen. momentum
\(J^{ab} \)	Gen. total angular momentum
\(\Psi^{ab} \)	Total hypermomentum moment
\(M \)	Mass
\(L \)	Lagrangian
\(j^{a}_{-}, i^{a}_{-}, m^{a}_{-}, p^{a}_{-}, k^{a}_{-} \)	Integrated moments
\(h^{a}_{+}, q^{a}_{-}, \mu^{a}_{-}, \xi^{a}_{-} \)	

Auxiliary quantities

Symbol	Explanation
\(\tilde{\nabla}_{a} \)	Modified cov. derivative
\(F_{a}, A \)	Coupling function
\(J^{ab} \)	Dynamical variables
\(\alpha^{00}_{y_{1}...y_{n}}, \beta^{00}_{y_{1}...y_{n}}, \gamma^{00}_{y_{1}...y_{n}} \)	Expansion coefficients
\(U_{abc}, V_{ab}^{c}, \Lambda_{ij}^{A}, \Pi^{A}_{B} \)	Auxiliary variables
\(\phi^{a}_{b}, \phi^{a}_{y_{1}y_{0}, x_{0}}, \phi^{a}_{y_{1}y_{0}+1y_{0}+1}, x_{0}x_{1}, \phi^{a}_{abc}, \phi^{a}_{abc}, z^{a} \)	

Operators

Symbol	Explanation
\(\partial^{a}_{b} \)	(Partial, covariant) derivative
\(\mathcal{L}^{a}_{b} \)	Total derivative
\([\ldots]^{k} \)	Coincidence limit
\(a_{-}^{a}_{m} \)	Riemannian quantity
\(a_{-}^{a}_{m} \)	Density

symbols used throughout the text can be found in table [1].

For an arbitrary \(k \)-tensor \(T_{a_{1}...a_{k}} \), the symmetrization and antisymmetrization are defined by

\[
T_{(a_{1}...a_{k})} := \frac{1}{k!} \sum_{l=1}^{k!} T_{\pi(l)a_{1}...a_{k}}, \tag{A1}
\]

\[
T_{[a_{1}...a_{k}]} := \frac{1}{k!} \sum_{l=1}^{k!} (-1)^{|l|/2} T_{\pi(l)a_{1}...a_{k}}, \tag{A2}
\]

where the sum is taken over all possible permutations (symbolically denoted by \(\pi(l) \)) of its \(k \) indices. As is well known, the number of such permutations is equal to \(k! \). The sign factor depends on whether a permutation is even (\(|l| = 0 \)) or odd (\(|l| = 1 \)). The number of independent components of the totally symmetric tensor \(T_{(a_{1}...a_{k})} \) of rank \(k \) in \(n \) dimensions is equal to the binomial coefficient \(\binom{n-k}{k} = (n+1-k)!/k!n!(n-k)! \), whereas the number of independent components of the totally antisymmetric tensor \(T_{[a_{1}...a_{k}]} \) of rank \(k \) in \(n \) dimensions is equal to the binomial coefficient \(\binom{n-k}{k} = n!/k!(n-k)! \). For example, for a second rank tensor \(T_{ab} \), the symmetrization yields a tensor \(T_{(ab)} = \frac{1}{2}(T_{ab} + T_{ba}) \) with 10 independent components, and the antisymmetrization yields another tensor \(T_{[ab]} = \frac{1}{2}(T_{ab} - T_{ba}) \) with 6 independent components.

The covariant derivative defined by the Riemannian connection is conventionally denoted by the nabla by or by the semicolon: \(\nabla_{a} \equiv \nabla_{a} \).

Our conventions for the Riemann curvature are as follows:

\[
2A^{c_{1}...c_{k}}d_{1}...d_{l} := 2\nabla_{a}[\nabla_{b}]A^{c_{1}...c_{k}}d_{1}...d_{l} = \sum_{i=1}^{k} \hat{R}_{abc}^{c_{i}}A^{c_{1}...c_{i-1}c_{i+1}...c_{k}}d_{1}...d_{l},
\]

\[
- \sum_{j=1}^{l} \hat{R}_{abcd}^{c_{j}}A^{c_{1}...c_{j-1}c_{j+1}...c_{k}}d_{1}...d_{l}. \tag{A3}
\]

The Ricci tensor is introduced by \(\hat{R}_{ik} := \hat{R}_{kij}^{j} \), and the curvature scalar is \(\hat{R} := g^{ij}\hat{R}_{ij} \). The signature of the spacetime metric is assumed to be \((+1, -1, -1, -1) \).

In the derivation of the equations of motion we made use of the bitensor formalism; see, e.g., [10, 11, 36] for introductions and references. In particular, the world function is defined as an integral \(\sigma(x, y) := \frac{1}{2}\epsilon \int_{0}^{y} d\tau \left(\frac{y}{\tau} \right)^{2} \) over the geodesic curve connecting the spacetime points \(x \) and \(y \), where \(\epsilon = \pm 1 \) for timelike/space like curves. Note that our curvature conventions differ from those in [10, 36]. Indices attached to the world function always denote covariant derivatives, at the given point, i.e. \(\sigma_{y} := \nabla_{y}\sigma \); hence, we do not make explicit use of the semicolon in the case of the world function. The parallel propagator by \(g^{\nu}_{\mu}(x, y) \) allows for the parallel transportation of objects along the unique geodesic that links the points \(x \) and \(y \).
For example, given a vector V^x at x, the corresponding vector at y is obtained by means of the parallel transport along the geodesic curve as $V^y = g^y_x (x, y) V^x$. For more details see, e.g., section 5 in [21]. A compact summary of useful formulas in the context of the bitensor formalism can also be found in the appendices A and B of [21].

We start by stating, without proof, the following useful rule for a bitensor B with arbitrary indices at different points (here just denoted by dots):

$$[B_...y] = [B_...y] + [B_...x].$$

(A4)

Here a coincidence limit of a bitensor $B_{..}(x, y)$ is a tensor $[B_..] = \lim_{x\to y} B_{..}(x, y)$.

(A5)

determined at y. Furthermore, we collect the following useful identities:

$$\sigma_{y_0[y_1y_2]} = \sigma_{y_0[y_1y_2y_3]} = \sigma_{x_0x_1y_0y_1y_2},$$

(A6)

$$g^{y_1} x y \partial_{x_2} \sigma_{x_2} = 2 \sigma = g^{y_1y_2} \sigma_{y_1} \sigma_{y_2},$$

(A7)

$$[\sigma] = 0, \quad [\sigma_x] = [\sigma_y] = 0,$$

(A8)

$$[\sigma_{x_1} x_2] = [\sigma_{y_1} y_2] = g_{y_1 y_2},$$

(A9)

$$[\sigma_{y_1} y_2] = [\sigma_{y_1} y_2] = -g_{y_1 y_2},$$

(A10)

$$[\sigma_{x_1} x_2 x_3] = [\sigma_{x_1} x_2 x_3] = [\sigma_{x_1} x_2 x_3] = 0,$$

(A11)

$$[g^{x_0} y_1] = \delta^{y_0}_{y_1}, \quad [g^{x_0} y_1 x_2] = [g^{x_0} y_1 y_2] = 0,$$

(A12)

$$[g^{x_0} y_1 x_2 x_3] = \frac{1}{2} \tilde{R}^{y_0}_{y_1 y_2 y_3},$$

(A13)

Appendix B: Covariant expansions

Here we briefly summarize the covariant expansions of the second derivative of the world function, and the derivative of the parallel propagator:

$$\sigma^{y_0}_{x_1} = g^{y_1}_{x_1} \left(-\delta^{y_0}_{y_1} \right) + \sum_{k=2}^{\infty} \frac{1}{k!} \alpha^{y_0}_{y_1 y_2 \ldots y_{k+1}} \sigma^{y_2} \cdots \sigma^{y_{k+1}},$$

(B1)

$$\sigma^{y_0}_{y_1} = \delta^{y_0}_{y_1} - \sum_{k=2}^{\infty} \frac{1}{k!} \beta^{y_0}_{y_1 y_2 \ldots y_{k+1}} \sigma^{y_2} \cdots \sigma^{y_{k+1}},$$

(B2)

$$g^{y_0}_{x_1 x_2} = g^{x_1}_{x_1} g^{y_1}_{x_1} \left(\frac{1}{2} \tilde{R}^{y_0}_{y_1 y_2 y_3} \sigma^{y_3} \sigma^{y_4} \right) + \sum_{k=2}^{\infty} \frac{1}{k!} \gamma^{y_0}_{y_1 y_2 \ldots y_{k+2}} \sigma^{y_3} \cdots \sigma^{y_{k+2}},$$

(B3)

$$g^{y_0}_{x_1 y_2} = g^{y_1}_{x_1} \left(\frac{1}{2} \tilde{R}^{y_0}_{y_1 y_2 y_3} \sigma^{y_3} \right) + \sum_{k=2}^{\infty} \frac{1}{k!} \gamma^{y_0}_{y_1 y_2 y_3 \ldots y_{k+2}} \sigma^{y_3} \cdots \sigma^{y_{k+2}},$$

(B4)

$$G^{y_0}_{x_1 x_2} = G^{y_0}_{x_1 y_2} \left(\prod_{k=1}^{\infty} \frac{1}{k!} \gamma^{y_0}_{x_1 y_2 y_3 \ldots y_{k+2}} \sigma^{y_3} \cdots \sigma^{y_{k+2}} \right),$$

(B5)

$$G^{y_0}_{x_1 y_2} = G^{y_0}_{x_1 y_2} \left(\prod_{k=1}^{\infty} \frac{1}{k!} \gamma^{y_0}_{x_1 y_2 y_3 \ldots y_{k+2}} \sigma^{y_3} \cdots \sigma^{y_{k+2}} \right).$$

(B6)

The coefficients α, β, γ in these expansions are polynomials constructed from the Riemann curvature tensor and its covariant derivatives. The first coefficients read as follows:

$$\alpha^{y_0}_{y_1 y_2 y_3} = -\frac{1}{3} \tilde{R}^{y_0}_{y_1 y_2 y_3} y_1,$$

(B7)

$$\beta^{y_0}_{y_1 y_2 y_3} = \frac{2}{3} \tilde{R}^{y_0}_{y_1 y_2 y_3} y_1,$$

(B8)

$$\alpha^{y_0}_{y_1 y_2 y_3 y_4} = \frac{1}{2} \tilde{\gamma}^{y_0}_{y_2 y_3 y_4} y_1,$$

(B9)

$$\beta^{y_0}_{y_1 y_2 y_3 y_4} = -\frac{1}{3} \tilde{R}^{y_0}_{y_1 y_2 y_3 y_4} y_1,$$

(B10)

$$\gamma^{y_0}_{y_1 y_2 y_3 y_4} = \frac{1}{3} \tilde{\gamma}^{y_0}_{y_1 y_2 y_3 y_4}.$$ (B11)

We also need the covariant expansion of a usual vector:

$$A_x = g^{y_0}_{x} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} A_{y_0 y_1 \ldots y_k} \sigma^{y_1} \cdots \sigma^{y_k}.$$ (B12)

Appendix C: Explicit form

Here we make contact with our notation in [23] to facilitate a direct comparison to the results there.

We introduce the auxiliary variables:

$$\phi^{y_1 \ldots y_n}_{x_0} := \sigma^{y_1} \cdots \sigma^{y_n} g^{y_0}_{x_0},$$

(C1)

$$\Psi^{y_1 \ldots y_n}_{x_0 x'} := \sigma^{y_1} \cdots \sigma^{y_n} g^{y_0}_{x_0} g^{y_0}_{x_0}.$$ (C2)
Their derivatives
\[\Psi^{y_1 \ldots y_n y_0} y_{0x_1', z} = \sum_{a=1}^{n} \sigma^a y_1 \ldots \sigma^a y_n \sigma^a y_0 \Psi^{y_0}_{a, x_0} g^{y_0}_{z_0} g^{y_0}_{x_0} + \sigma^a y_1 \ldots \sigma^a y_n \left(g^{y_0}_{z_0} g^{y_0}_{x_0} \right) \]
(C3)
\[\Phi^{y_1 \ldots y_n y_0} y_{0x_1} = \sum_{a=1}^{n} \sigma^a y_1 \ldots \sigma^a y_n \sigma^a y_0 + \sigma^a y_1 \ldots \sigma^a y_n \sigma^a y_0 \]
(C4)
can be straightforwardly evaluated by using the expansion from appendix B.

In terms of (C1) and (C2) the integrated conservation laws (25) and (26) take the form
\[\frac{D}{ds} \int \Psi^{y_1 \ldots y_n y_0 y_0}_{x_0 x} x_{x}\Sigma x_0 x_2 d \Sigma x_2 = \int \Psi^{y_1 \ldots y_n y_0 y_0}_{x_0 x} \left[-U^{x}_{x} x_{x} x_{x} x_{x} \Sigma x_0 x_2 x_{x} + \Sigma x_0 x_2 - \Sigma x_0 \right] w^{x_2} d \Sigma x_2 \]
+ \int \Psi^{y_1 \ldots y_n y_0 y_0}_{x_0 x} \left[\Delta x_{0} x_{x} x_{x} \Sigma x_0 x_2 \right] w^{x_2} d \Sigma x_2 + \int y^{n+1} y^{y_1 \ldots y_n y_0 y_0}_{x_0 x} y_{0x_1'} y_{0x_1} \Delta x_{0} x_{x} x_{x} d \Sigma x_2 \]
(C5)
\[\frac{D}{ds} \int \Phi^{y_1 \ldots y_n y_0 y_0}_{x_0 x} x_{x}\Sigma x_0 x_2 d \Sigma x_2 = \int \Phi^{y_1 \ldots y_n y_0 y_0}_{x_0 x} \left(-V^{x}_{x} x_{x} x_{x} x_{x} \Sigma x_0 x_2 x_{x} - R^{x}_{x} x_{x} x_{x} x_{x} \Delta x_{x} x_{x} x_{x} x_{x} - \frac{1}{2} Q^{x}_{x} x_{x} x_{x} x_{x} x_{x} \right) \]
- \[A^{x_0} \Sigma x_2 \] \[w^{x_2} d \Sigma x_2 + \int \Phi^{y_1 \ldots y_n y_0 y_0}_{x_0 x} x_{x}\Sigma x_0 x_2 \left(x_{x} x_{x} x_{x} d \Sigma x_2 + \int y^{n+1} \Phi^{y_1 \ldots y_n y_0 y_0}_{x_0 x} y_{0x_1} x_{x} x_{x} d \Sigma x_2 \right) \]
(C6)
This form allows for a direct comparison to (29) and (30) in [23]. Explicitly, in terms of (C1) and (C2) the integrated moments from (53)–(57) are given by
\[p^{y_1 \ldots y_n y_0} := \left(-1 \right)^n \int_{\Sigma(x)} \Phi^{y_1 \ldots y_n y_0}_{x_0 x} x_{x}\Sigma x_0 x_2 d \Sigma x_2 \]
(C7)
\[h^{y_2 \ldots y_n+1 y_0 y_1} := \left(-1 \right)^n \int_{\Sigma(x)} \Psi^{y_2 \ldots y_n+1 y_0 y_1}_{x_0 x} x_{x}\Sigma x_0 x_2 d \Sigma x_2 \]
(C8)
\[\xi^{y_1 \ldots y_n} := \left(-1 \right)^n \int_{\Sigma(x)} \sigma^a y_1 \ldots \sigma^a y_n L_{y_0} x_{x} d \Sigma x_2 \]
(C12)

[1] F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman. Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep., 258:1, 1995.
[2] M. Blagojević. Gravitation and Gauge Symmetries. IOP Publishing, London, 2002.
[3] M. Blagojević and F. W. Hehl. Gauge Theories of Gravitation. A Reader with Commentaries. Imperial College Press, London, 2013
[4] M. Mathisson. Neue Mechanik materieller Systeme. Acta Phys. Pol., 6:163, 1937.
[5] A. Papapetrou. Spinning test-particles in General Relativity. I. Proc. Roy. Soc. Lond. A, 209:248, 1951.
[6] W. G. Dixon. A covariant multipole formalism for extended test bodies in General Relativity. Nuovo Cimento, 34:317, 1964.
[7] W. G. Dixon. Dynamics of extended bodies in General Relativity. III. Equations of motion. Phil. Trans. R. Soc. Lond. A, 277:59, 1974.
[8] W. G. Dixon. Extended bodies in General Relativity: Their description and motion. Proc. Int. School of Phys. Enrico Fermi LXVII, Ed. J. Ehlers, North Holland, Amsterdam, page 156, 1979.
[9] W. G. Dixon. Mathisson’s new mechanics: Its aims and
realisation. Acta Phys. Pol. B Proc. Suppl., 1:27, 2008.

[10] J. L. Synge. Relativity: The general theory. North-Holland, Amsterdam, 1960.

[11] B. S. DeWitt and R. W. Brehme. Radiation damping in a gravitational field. Ann. Phys (N.Y.), 9:220, 1960.

[12] O. Bertolami, C. G. Böhmer, T. Harko, and F. S. N. Lobo. Extra force in $f(R)$ modified theories of gravity. Phys. Rev. D., 75:104016, 2007.

[13] S. Nojiri and S. D. Odintsov. Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models. Phys. Rep., 505:59, 2011.

[14] N. Straumann. Problems with Modified Theories of Gravity, as Alternatives to Dark Energy. 2008. URL arXiv:0809.5148v1[gr-qc].

[15] T. Harko. Thermodynamic interpretation of the generalized gravity models with geometry - matter coupling. Phys. Rev. D, 90:044067, 2014.

[16] W. R. Stoeger and P. B. Yasskin. Can a macroscopic gyroscope feel torsion? Gen. Rel. Grav., 11:427, 1979.

[17] P. B. Yasskin and W. R. Stoeger. Propagation equations for test bodies with spin and rotation in theories of gravity with torsion. Phys. Rev. D, 21:2081, 1980.

[18] D. Puetzfeld and Yu.N. Obukhov. Propagation equations for deformable test bodies with microstructure in extended theories of gravity. Phys. Rev. D, 76:084025, 2007.

[19] D. Puetzfeld and Yu. N. Obukhov. Motion of test bodies in theories with nonminimal coupling. Phys. Rev. D, 78: 121501, 2008.

[20] D. Puetzfeld and Yu. N. Obukhov. Probing non-Riemannian spacetime geometry. Phys. Lett. A, 372: 6711, 2008.

[21] D. Puetzfeld and Yu. N. Obukhov. Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling. Phys. Rev. D, 87:044045, 2013.

[22] F. W. Hehl, Yu. N. Obukhov, and D. Puetzfeld. On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B. Phys. Lett. A, 377:1775, 2013.

[23] D. Puetzfeld and Yu. N. Obukhov. Equations of motion in gravity theories with nonminimal coupling: A loophole to detect torsion macroscopically? Phys. Rev. D, 88: 064025, 2013.

[24] D. Puetzfeld and Yu. N. Obukhov. Unraveling gravity beyond Einstein with extended test bodies. Phys. Lett. A, 377:2447, 2013.

[25] M. Roshan. Test particle motion in modified gravity theories. Phys. Rev. D, 87:044005, 2013.

[26] D. Puetzfeld and Yu. N. Obukhov. Prospects of detecting spacetime torsion. Int. J. Mod. Phys. D, 23:1442004, 2014.

[27] Yu. N. Obukhov and R. Tresguerres. Hyperfluid - a model of classical matter with hypermomentum. Phys. Lett. A, 184:17, 1993.

[28] A. H. Taub. General relativistic variational principle for perfect fluids. Phys. Rev., 94:1468, 1954.

[29] B. F. Schutz. Perfect fluids in general relativity: Velocity potentials and variational principles. Phys. Rev. D, 2: 2762, 1970.

[30] J. Weyssenhoff and A. Raabe. Relativistic dynamics of spin-fluids and spin-particles. Acta Phys. Pol., 9:7, 1947.

[31] Yu. N. Obukhov and V. A. Korotky. The Weyssenhoff fluid in Einstein-Cartan theory. Class. Quantum Grav., 4:1633, 1987.

[32] Yu. N. Obukhov and D. Puetzfeld. Conservation laws in gravity: A unified framework. Phys. Rev. D, 90:024004, 2014.

[33] W. G. Dixon. Description of extended bodies by multipole moments in special relativity. J. Math. Phys., 8: 1591, 1967.

[34] H. Weyl. Raum-Zeit-Materie. Springer, Berlin, 1923.

[35] I. Bailey and W. Israel. Lagrangian dynamics of spinning particles and polarized media in General Relativity. Comm. Math. Phys., 42:65, 1975.

[36] E. Poisson, A. Pound, and I. Vega. The motion of point particles in curved spacetime. Living Reviews in Relativity, 14(7), 2011.