INTRODUCTION

The World Health Organization reported that ascariasis is commonly parasitic infection disease of human with highest cases occur in tropical and subtropical countries. It is estimated around 60,000 people deaths by severe ascariasis infections, mainly in children [1]. Ascariasis also remains a health problem in Indonesia with the frequency cases about 75%. Because of chronic ascariasis, children experience impaired growth and development due to decreased food intake [2]. Arizono et al. have studied that human ascariasis is a result of infection with pig-derived ascariasis such as Ascaris lumbricoides, Ascaris suum, and Ascaridia galli [3].

The emergence of helminthes resistance to currently available anthelmintic agents leads to an increasing of natural anthelmintic demand [4].

Curanga fel-terrae (Lour.) Merr. which is known as Poguntan tanoh or poguntano by Indonesian people belongs to family Linderniaceae [5,6]. The leaf of plant is traditionally used for helminthiasis treatment [7]. Preliminary study indicated that the leaf ethanol extract of C. fel-terrae has potential anthelmintic activity against an earthworm, Pheretima phostuma. This effect may due to the presence of phytochemical compounds such as flavonoids, saponins, tannins, glycosides, and terpenoids/steroids [8]. However, anthelmintic effects of the leaf ethanol extract of Indonesian C. fel-terrae on human parasitic worms have not been studied.

This work was to study the anthelmintic effects of the leaf ethanol extract of C. fel-terrae against A. galli. Although A. galli is the common helminth parasites in fowls [9], but this worm has similarity with A. lumbricoides in morphological and physiological properties [10]. Because of this reason, A. galli is used as animal model in our experiment.

MATERIALS AND METHODS

Plant materials

Leaves of C. fel-terrae were collected from Dairi District, North Sumatra Province, Indonesia. The species was authenticated and deposited by the Herbarium Department of Indonesian Institute of Sciences.

Chemicals

Chemical used in this study namely 96% ethanol, saline, and sodium carboxymethyl cellulose (Na-CMC) were purchased from Merck, UK. Standard albendazole was obtained from Indofarma Pharmaceutical Industry, Indonesia.

Preparation of plant extract

The cleaned leaves of C. fel-terrae were dried on oven with air circulation at 40°C and then powdered with electrical grounder. The dried leaf powder was extracted by percolating with 96% ethanol at room temperature. Filtrate was then concentrated in a rotary evaporator at 40°C to obtain the crude extract of plant leaves.

Phytochemical screening

Phytochemical screening method from Tiwari et al. was adopted to identify chemical compounds of the ethanol extract of C. fel-terrae leaves, such as alkaloids, flavonoids, glycosides, saponins, tannins, and terpenoids/steroids [11].

Evaluation of anthelmintic effects

A. galli were obtained from a local slaughterhouse in Medan, Indonesia. The worms were identified by the Zoology Department of Universitas Sumatera Utara. Before experiment, A. galli were acclimated in saline at room temperature for 1 hr. To investigate anthelmintic effects, the worms were divided into six groups in which each group contain three worms. Group I was exposed to saline (negative control), Group II was

ABSTRACT

Objective: This study was to investigate the anthelmintic effects of ethanol extract of Curanga fel-terrae leaves on Ascaridia galli.

Methods: Extract of C. fel-terrae was prepared by percolating the dried powder of the plant leaves. To observe anthelmintic effects, A. galli was exposed to the plant extract solutions in different concentrations at room temperature for 72 hrs. Sodium chloride 0.9%, sodium carboxymethyl cellulose 0.5%, and albendazole 0.1% were served as negative control, solvent control, and positive control, respectively. The anthelmintic effects were determined by observing the time taken for paralysis and the time taken for death of A. galli during experiment.

Results: The results demonstrated that there were no different effects between negative and solvent controls. However, the ethanol extract of C. fel-terrae leaves exhibited significantly paralysis and death effects toward A. galli. The plant extracts at the concentration of 100 mg/ml showed similar anthelmintic effects with albendazole 0.1%. This study also indicated that the paralysis and death effects of plant extract were shorter when the worms exposed with the concentration above of 100 mg/ml.

Conclusion: This study indicated that the ethanol extract of C. fel-terrae leaves has potential anthelmintic effects on A. galli.

Keywords: Curanga fel-terrae, Ascaridia galli, Anthelmintic, Helminthiasis, Ascariasis.
exposed to Na-CMC 0.5% in saline (solvent control), and Group III was exposed to albendazole 0.1% (positive control). Groups IV-VI were separately exposed to the ethanol extract of C. fel-terrae leaves at the different doses (100, 200, and 300 mg/ml). The anthelmintic effects were evaluated by observing the time taken for paralysis, and the time taken for death of the worms at room temperature for 72 hrs.

Statistical analysis

All data were expressed as mean±SD. The data of each group were statistically analyzed using analysis of variance followed by post hoc test Tukey honest significant difference multiple comparison tests. Values were classified as significantly different if p<0.05.

RESULTS

Phytochemical compounds

The results of phytochemical test indicated that the leaf ethanol extract of *C. fel-terrae* contain flavonoids, glycosides, saponins, tannins, and steroids.

Anthelmintic effects

As shown in Table 1, there were no different effects on *A. galli* between saline (negative control) and Na-CMC 0.5% (solvent control). During observation, the ethanol extract of *C. fel-terrae* leaves significantly produced paralysis and death effects toward *A. galli* compared with these controls. The plant extract at the concentration of 100 mg/ml have similar anthelmintic effects with albendazole 0.1%. In addition, the paralysis and death times were shorter when on *A. galli* exposed to the plant extract at concentrations of 200 mg/ml and 300 mg/ml. The results also indicated that the time taken for paralysis is and the time taken for death on the worms declined with the increasing concentrations of the plant extract.

DISCUSSION

This study identified the presence of flavonoids, glycosides, saponins, tannins, and steroids in the leaf ethanol extract of *C. fel-terrae*. Few compounds of this plant leaves such as flavonoid glucoronesides [12], dehydrobryogenin glycoside, cucurbitacin [13,14], triterpenoid saponins [15], and β-sitosterol [16] also isolated by other researchers. The *C. fel-terrae* also contain acid compounds mainly heptadecanoic acid, butanedioic acid, docosanoic acid, and hydroxycinnamic acid [17]. The saponins [15], and β-sitosterol [16] also isolated by other researchers.

The effects also involve the change of phosphatase enzymes in the tegument of parasites [39]. However, so far, action of mechanism of the anthelmintic effects of ethanol extract of *C. fel-terrae* on *A. galli* are weaker than the such plant extracts, but further studies are still needed to discovery its bioactive compounds.

CONCLUSION

This study indicates the potential anthelmintic effects of leaf ethanol extract of *C. fel-terrae* on *A. galli*.

ACKNOWLEDGMENT

We would like to thank the Universitas Sumatera Utara, Medan, Indonesia for their financial support by TALENTA Research Scheme 2016.

REFERENCES

1. World Health Organization. Water sanitation hygiene: Water related diseases: Ascariasis; 2001. Available from: http://www.who.int/water_sanitation_health/diseases/ascariasis/en/. [Last accessed on 2016 Aug 17].

2. Indonesian Ministry of Health. Guidelines of Clinical Practices for Physician in Primary Health Care Facility. Jakarta: Indonesian Ministry of Health; 2014.

3. Arizono N, Yoshimura Y, Tohzaka N, Yamada M, Tegoshi T, Onishi K, et al. Ascariasis in Japan: Is pig-derived Ascaris infecting humans? Jpn

Table 1: Anthelmintic effects of the ethanol extract of *C. fel-terrae* leaves on *A. galli*

Treatment	Time taken for paralysis (hr) ± SD	Time taken for death (hr) ± SD
Saline	30.78±1.59*	3.80±0.33*
Na-CMC 0.5%	30.74±0.53*	3.80±0.18*
Ethanol extract (100 mg/ml)	5.08±0.87	10.47±0.32
Ethanol extract (200 mg/ml)	3.96±0.28	8.39±0.84*
Ethanol extract (300 mg/ml)	2.49±0.09*	6.93±0.57*
Albendazole 10.1%	4.61±0.47	10.26±1.01

All data are presented as the average value of three replicates (n=3). *p<0.05 compared with albendazole 0.1%, SD: Standard deviation, *C. fel-terrae*: Curanga fel-terrae, A. galli: Ascaridia galli.
4. Tagboto S, Townson S. Antiparasitic properties of medicinal plants and other naturally occurring products. Adv Parasitol 2001;50:199-295.

5. Bala Bhandari S. Preliminary survey of Malesean seeds plants families. Reinwardtha 2010;13(2):171-81.

6. Rahmanzead R, Müller K, Fischer E, Bartels D, Borsch T. The linderaeaceae and gratioaceae are further lineages distinct from the scrophulariaceae (Lamiales). Plant Biol (Stuttg) 2005;7(1):67-78.

7. Jitu V, Gorantla M, Chamundeeswari D. Evaluation of anthelmintic activity of melatonin extract of Picria fel-terrae (Lour.) Merr. Int J Pharm Technol Res 2015;8(3):347-51.

8. Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical screening and extraction: A review. Int Pharm Sci 2011;1(1):98-106.

9. Huang Y, De Bruyne T, Apers S, Ma Y, Claeyts M, Pieters L, et al. Flavanoid glucuronides from Picria fel-terrae. Phytochemistry 1999;52(8):1701-3.

10. Zhang J, Wang LS, Liang XY. Studies on technology optimization for extracting triterpenoid saponins from Picria fel-terrae. J Nat Prod 1998;61(6):757-61.

11. Fang H, Ning DS, Liang XY. Studies on technology optimization for extracting triterpenoid saponins from Picria fel-terrae by multi-target grading method. J Chin Med Mater 2009;32(12):1902-5.

12. Huang Y, De Bruyne T, Apers S, Ma Y, Claeyts M, Vandens Berghe D, et al. Complexes. An inhibiting cucurbitacin glycosides from Picria fel-terrae. J Nat Prod 1998;61(6):757-61.

13. Zou JM, Wang LS, Liang XY. Studies on technology optimization for extracting triterpenoid saponins from Picria fel-terrae by multi-target grading method. J Chin Med Mater 2009;32(12):1902-5.

14. Sitorus P, Harahap U, Pandapotan M, Barus T. Isolation of β-sitosterol from the exsheathment of gastro-intestinal nematode larvae. Vet Parasitol 2013;191(1-2):44-50.

15. Kumar BS, Lakshman K, Jayaveena KN, Velmurugan C, Manoj B, Sridhar SM. Anthelmintic activity of methanolic extract of Amaranthus caudatus Linn. Internet J Food Saf 2010;12:127-9.

16. Jain P, Singh S, Singh SK, Verma SK, Kharya MD, Solanki S. Anthelmintic potential of herbal drugs. Int J Res Dev Pharm L Sci 2013;2(3):412-27.

17. Hussain A, Sonkar AK, Ahmad MP, Wahab S. In vitro anthelmintic activity of Coleus aromaticus root in Indian adult earthworm. Asian Pac J Trop Dis 2012;2:Suppl 1:425-7.

18. Wang GX, Han J, Zhao LW, Jiang DX, Liu YT, Liu XL. Anthelmintic activity of steroid saponins from Paris polyphylla. Phytomedicine 2010;17(14):1102-5.

19. Borba HR, Freire BB, Albuquerque AC, Cardoso ME, Braga IG, Almeida ST, et al. Anthelmintic comparative study of Solanum lycocarpum S. Hill extracts in mice naturally infected with Aspicularis tetraperta. Nat Sci 2010;8(4):94-100.

20. Gaikwad SS, Kale AA, Jadhav BG, Deshpande NR, Salvekar JP. Anthelmintic Activity of Cassia auriculata L. Extracts-In vitro study. J Nat Prod Plant Resour 2011;1(2):62-6.

21. Chandrashekhar CH, Latha KP, Vagdevi HM, Vaidya V. Anthelmintic activity of the crudeextracts of Ficus racemosa. Int J Green Pharm 2008;2(2):100-3.

22. Ampou S, Sy S, Diaw S, Beye K. Antifilarial activity of seeds of Asystasia gangetica. Int J Pharm Life Sci 2013;4(6):2727-30.

23. Husori DI, Bawin DY, Huimin BA, Putia L. Anthelmintic activity of ethanolic and aqueous extracts of Allium sativum L. Leaves on Ascaris lumbricoides. Int J Pharm Pharm Sci 2016;8(9):1310-3.

24. Kumar R, Solanki R, Tripathi L. In vitro anthelmintic activity of seeds of Cicer arietumum L. Asian. J Chem 2013;25(9):5109-10.

25. Kaur M, Singh H, Kaur J. Anthelmintic activity of hydroalcoholic extract of Senna occidentalis leaf extract. Int J Res Pharm Biomed Sci 2012;3:1143-6.

26. Goel AK, Kulkarmeeda DK, Dubey MP, Rajendran SM. Screening of Indian plants for biological activity: Part XVI. Indian J Exp Biol 2002;40(7):812-27.

27. Azaiez H, Halaileh F, Abbas N, Markovic A, Mouloud H, Unger ED, et al. Polyphenols from Pistacia lentiscus and Phillyrea latifolia impair the exsheathment of gastro-intestinal nematode larvae. Vet Parasitol 2013;191(1-2):44-50.

28. Jain P, Singh S, Singh SK, Verma JK, Kharya MD, Solanki S. Anthelmintic potential of herbal drugs. Int J Res Dev Pharm L Sci 2013;2(3):412-27.

29. Hussain A, Sonkar AK, Ahmad MP, Wahab S. In vitro anthelmintic activity of Coleus aromaticus root in Indian adult earthworm. Asian Pac J Trop Dis 2012;2:Suppl 1:425-7.

30. Wang GX, Han J, Zhao LW, Jiang DX, Liu YT, Liu XL. Anthelmintic activity of steroid saponins from Paris polyphylla. Phytomedicine 2010;17(14):1102-5.

31. Borba HR, Freire BB, Albuquerque AC, Cardoso ME, Braga IG, Almeida ST, et al. Anthelmintic comparative study of Solanum lycocarpum S. Hill extracts in mice naturally infected with Aspicularis tetraperta. Nat Sci 2010;8(4):94-100.

32. Gaikwad SS, Kale AA, Jadhav BG, Deshpande NR, Salvekar JP. Anthelmintic Activity of Cassia auriculata L. Extracts-In vitro study. J Nat Prod Plant Resour 2011;1(2):62-6.

33. Chandrashekhar CH, Latha KP, Vagdevi HM, Vaidya V. Anthelmintic activity of the crudeextracts of Ficus racemosa. Int J Green Pharm 2008;2(2):100-3.

34. Kundu S, Roy S, Nandi S, Ukil B, Lyndem LM. In vitro anthelmintic effects of Senna occidentalis (L.) Link (Leguminosae) on rat tapeworm Hymenolepis diminuta. Int J Pharm Pharm Sci 2015;7(6):268-72.

35. Swargiary A, Roy B. In vitro anthelmintic efficacy of Alpinia nigra and its bioactive compound, astragalin against Fasciolopsis buski. Int J Pharm Pharm Sci 2015;7(10):30-5.