Abstract

In recent scenario, fluorosis is now going to be a severe problem throughout the globe due to toxic effects of fluoride (F) on both plants and animals. F presents in the halogenated group of the periodic table and has the characteristics of electronegativity. Natural geological sources and increased industrialization have contributed greatly to the increasing incidence of fluoride-induced human and animal health issues. In animals and human beings, it exerts adverse effects mainly through the attenuation of antioxidant defense mechanism and chelation of enzymatic cofactors. Thereafter, it causes metabolic disorders through interacting with various cellular processes such as gene expression, cell cycle, metabolism, ion transport, hormonal secretion, endocytosis, apoptosis, necrosis, and oxidative stress. These effects lead to dental mottling, skeletal dysfunctions including crippling deformities, osteoporosis, and other vital organs dysfunction. It was found that, water is the main source of fluoride intake to plants and animals, which further may go into food chain of human beings through consumption of high fluoride content plant and animal origin food. Several preventive and control measures have been developed to ameliorate the fluoride toxicity, like application of synthetic chemicals, plants bioactive molecules, and plant products like fruit pulp, seed mixture, and plant buckle products. Therefore, this article presents up-to-date information on the fluoride sources, toxicity and different amelioration measures to reduce fluoride level directly from water as well as application of different natural/synthetic products/molecules to ameliorate the toxic effects of fluoride in in-vivo models.

Introduction

In the halides group of the periodic table, fluoride (F) has great importance due to its smallest size and most electro negativity. Although the mechanisms of F in biological forms are remains unclear but it has the unique chemical and biochemical properties for the size and reactivity [1–3]. It is ubiquitously present in soil, water, plants and air. In the animal body, F makes its presence through water and food. But, some of the recent studies indicate that, most of the F comes from pharmaceutical drugs (20%) and through agrochemicals (30-40%) [4,5]. The variability and presence of fluoride depends upon the location. It was found that F is present in the soil within the range of 10–1000 parts per million (ppm). However, in water it ranges from 0.5 to 2000 ppm. This incident depends upon the sources of water [6,7]. According to World Health Organization (WHO), F exposure to animals above the 1.5 ppm, set at chronic fluoride toxicity. Through water exposure, this type of toxicity is going to endemic in most of the countries across the world [8]. In USA, the normal level of F in drinking water is 4 mg/L [9]. But, in the European country, it is 0.8 ppm [10]. In India, most of the states are showing the greater level of F in drinking water [11]. Fluoride exerts its effects on plants also [12]. It attenuates all the cells and tissues, impaired the stomatal conductance. Simultaneously, it acts as the metabolic and reproductive inhibitor, impaired photosynthesis and respiration pathways. Ultimately, F caused even to plants death [13–18]. In animals, fluoride intoxication causing skeletal impairment, called as skeletal fluorosis. Recently, high fluoride intake has been associated with dental cancer and tumors of other organs. First clinical symptoms appeared like reduced food intake and loss of body weight gain. After attenuating the antioxidant defence mechanism, F also affect to the gastrointestinal tract, brain, muscle etc.. [19–22]. To ameliorate these effects, several types of synthetic chemicals, herbal drugs, plant bioactive molecule, and plant natural products have been incorporated in the medicinal documentary. For example, melatonin, pineal proteins (epiphyseal proteins), quercetin, curcumin, ascorbic acid, lipoic acid, flavonoids, polyphenols have been found great role against the F toxicity [23–26]. The present review critically discusses on the fluoride sources, worldwide levels and its toxic effects on plants and animals. Furthermore, the article discusses the recent ameliorative steps developed through synthetic chemicals, plant bioactive molecules, and plant natural products.
Biochemistry of fluoride

In the halides group of the periodic tables (group VII), among all other molecules, fluoride has the great importance due to its smallest size and most electro negativity. Although, the mechanisms of F in biological forms are remains unclear but it has the unique chemical and biochemical properties for the size and reactivity [1–3]. It is 13th most abundant element and distributed widely throughout the earth in soil, water, and food. F, a pale yellow colored gas, has atomic number 9 and atomic weight of 18.9984 at standard temperature and pressure [27]. The brief about the F, have been mentioned in the Figure 1 [28]. It has the tendency to exist in the Free State as diatomic molecules. Due to electromotivity characteristics, these can react with less electromotive elements or chemical groups. Fluoride compounds are formed when the element fluoride combines with other chemical elements. It does not occur in a free state in nature [28]. Fluoride however has many unique chemical properties. These properties had a great impact on the special biochemical physiological effects. For these reason, F can affect the metabolism and mechanisms of action within the living system [29]. In addition to the chemical properties and isotopic nature of fluorine has had an important impact on our understanding of the metabolism, toxicity, and therapeutic effects of fluoride. 19-F is one of the isotopes of F and occurs naturally. This isotope has the extremely short half-life.

Sources of fluoride

Natural and anthropogenic sources are the two main ways through which F entered in the environment [30].

Natural sources

Soil: The normal total fluoride content of soil ranges from 150–400 mg/kg. F level in the clay soil is 1000 mg/kg [31]. F contamination to soil is because of the utilization of phosphorus fertilizers which have total 1–1.5% fluorine [32]. Contaminated soil with F, show its toxicity after the inhalation of soil contaminants which have vapourized or through the contaminated ground water after the F leaching from the soil [33–35].

Water: Water containing the F concentration up to 1.0 mg/L is safe. Whereas, the F levels in between 1.1 and 2.5 mg/L are marginally contaminated. However, above 2.6 mg/L F level is determined as the highly contaminated [31]. It was found that the level of F in ground water is higher than the surface water as the F percolates from the soil to ground water through leaching process. There are several factors which are responsible for the presence of F in natural ground water from the soil. Among them, geological factors, consistency of the soil, nature of rocks, pH and temperature of the soil, chelating action of other elements, depth of wells, leakage of shallow groundwater, and chemical and physical characteristics of water [36]. Water is an important source of F exposure to human beings and animals.

Forage, grasses and grains: At the vicinity of industrialized area, it was found that forages and grasses contain the higher level of F than the other area. Some studies also found that, grasses and forages has the higher level of F than the industrialized area. It is due to the fluoride rich dust, ash, raining factors for which plants could be affected far from the industry. Plants contamination depends upon several factors like the amount of F released in to the atmosphere, distance between the F source and contaminated area, type of vegetation, height of plants, atmospheric condition, and seasons etc. [37–39]. It has been established the relationship between the F level in soil and plants of F will be increased by 3 ppm for each 100 ppm increase in soil F up to the 2200 ppm [39].

Volcanic activities: Due to volcanic eruption, animals and plants kingdom have been affected throughout the globe (Table 1). Volcanic ash contains high level of F and contaminations of F to the geochemical cycle are frequent. From the volcanic eruption, F has been released in the form of hydrogen fluoride. Erupted F may covered several places and stay for many years. After decaying and leaching, F caused severe casualty to domestic and wild animals [6,40,41].

Anthropogenic sources

Anthropogenic fluoride contamination happens by human activities like industrialization, motorization, fluoride

Sl. No.	Country	Casualty	References
01	Hekla volcano, Iceland	F concentration was 350–4300 μg/g.	[42]
02	Lonquimay volcano, Chile	Affected more than 10,000 farm animals. Death occurred of more than 4000 livestock animals.	[43]
03	Ruapehu volcano, Mexico	Livestock and wild animals dead.	[44]
04	Puyehue–Cordon Caulle volcano, Argentina	Severe fluorotic dental lesions were observed in died wild red deer.	[45]
05	Hekla volcano, Iceland	Livestock and wild animals died.	[44]

*Sl. No.-serial number.
containing pesticides, fluoridation of drinking water supplies, dental products, refrigerants, and fire extinguishers. F contamination due to airborne sources also occurred. The mean F concentration in normal areas (unpolluted/non-industrialized) is generally less than 0.1 μg/m³. The levels may be slightly higher in the vicinity of industries, but should not exceed 2–3 μg/m³. In many countries, coal burning for household purposes was documented as the main source of F causing endemic fluorosis. Industrial release fluoride-rich fumes and effluents into the environment also caused casualty in livestock sector like cattle, buffaloes, sheep, goats, camels etc. There are several reports documenting mineral mixture supplements as a major source of fluoride toxicity in livestock. Moreover, incorporation of modern creation and utilization of chemicals in different sectors like hydrogen fluoride (HF), calcium fluoride (CaF), sodium fluoride (NaF), fluorosilicic corrosive (H SiF), sodium hexafluorosilicate (Na SiF), sulfur hexafluoride (SF), and phosphate manures are the main sources of fluoride.

Global scenario of fluoride levels

Around the globe, twenty three nations are belongs to the critical region regarding the fluoride level. Among them India is also present. Billions of people are affected due to fluoride exposure. In India, twenty million people are severely affected by fluorosis and 40 million people are exposed to risk of endemic fluorosis. Level of fluoride in drinking water throughout the globe has been tabulated in the Table 2.

Fluoride toxicity

In Animals: Chronic exposure to F induces an array of deleterious impacts in livestock animals, experimental animals, as well as humans also. First symptoms of chronic F toxicity in animals are reduced feed intake and body weight gain (BWG) loss. Prolonged exposure to F causes fluorosis, leading to a progressive degenerative disease, dental mottling and several types of skeletal dysfunctions. Main mechanism of these deformities, after exposure of F is mainly the generation of different types of ROS production (Table 3). Experimental evidence indicates that exposure to fluoride results in oxidative stress both in vitro and in vivo in soft tissues such as liver, kidney, brain, lungs etc. Fluoride inhibits the activities of antioxidant enzymes like superoxide dismutase, glutathione peroxidase and catalase and etc. Fluoride inhibits the activities of antioxidant enzymes like superoxide dismutase, glutathione peroxidase, and catalase and the generation of different types of ROS production (Table 3).

Amelioration of fluoride toxicity

Table 2: Fluoride level in drinking water sources throughout the globe.

Sl. No.	Country Name	Fluoride level	References
01	Pilanesberg and Western Bushveld, South Africa	30 mg/L	[20]
02	Sanddrif, Kuboes and Leeu Gamka, South Africa	30 mg/L	[58,59]
03	Ivory coast, Africa	Above permissible limit	[60]
04	Bongo, Ghanav	0.11-4.6 mg/L	[61]
05	Lakes Elementahta and Nukuru, Kenya	2–20 mg/L	[62-64]
06	Tibiri, Nigeria	4.7–6.6 mg/L	[65]
07	Senegal	4.6-7.4 mg/L	[66]
08	Tanzania	8.0-12.7 mg/L	[67]
09	Rift Valley, Uganda	0.5-2.5 mg/L	[68]
10	Abu Deleig and Jebel Gaili, Sudan	0.65–3.2 mg/L	[69,70]
11	Hail, Saudi Arabia	2.8 mg/L	[71]
12	Mecca, Saudi Arabia	2.5 mg/L	[72]
13	Middle and eastern part of Turkey	13.7 mg/L	[73]
14	Alberta, Canada	4.3 mg/L	[46,74,73]
15	Saskatchewan, Canada	2.3 mg/L	[73]
16	Quebec, Canada	2.5 mg/L	[73]
17	Rigolet, Canada	0.1–3.8 mg/L	[73]
18	Coronel Dorrego, Argentina	0.9–18.2 mg/L	[74]
19	Olho D’Água, Brazil	2–3 mg/L	[75]
20	Wonji-Shoa sugar estates, Ethiopia	1.5–177 mg/L	[77,78]
21	Hermosillo and Abasolo, Mexico	1.5 to 2.8 mg/L	[79]
22	Illinois, USA	1.06-4.07 mg/L	[80]
23	Texas, USA	0.3-4.3 mg/L	[81]
24	Czech republic	>3 mg/L	[82]
25	Munster, Germany	8.8 mg/L	[83]
26	Pohang and Gyeongju, Korea	>5 mg/L	[84]
27	Hordaland, Norway	0.02–9.48 mg/L	[85]
28	Northern and Central Poland	>3 mg/L	[86]
29	Tenerife, Spain	2.50-4.59 mg/L	[87]
30	Kuitan, China	21.5 mg/L	[7,88]
31	Finland	>3 mg/L	[7,88]
32	Japan	1.4 mg/L	[7,88]
33	Indonesia	0.1–4.2 mg/L	[7]
34	Thailand	>0.9 ppm	[91]
35	North Central Province, Sri Lanka	10 mg/L	[92]
36	India	0.5-69.7 mg/L	[7,93-95]
37	Pakistan	8–13.52 mg/L	[96]

Table 3: Summary of reactive oxygen and nitrogen species [Source: 28]

Reactive Oxygen Species	Reactive Nitrogen Species						
Free Radicals	Other Substances	Free Radicals	Other Substances				
Superoxide anion radical	O₂⁻	Hydrogen peroxide	H₂O₂	Nitric oxide radical	NO	Peroxy nitrite	ONOO⁻
Hydroxyl radical	HO	Hypochlorous acid	HOCl	Nitric dioxide radical	NO₂	Nitrates	NO₂⁻
Alkoxyl radical	RO⁻	Ozone	O₃				
Peroxyl radical	ROO⁻	Singlet oxygen	¹O₂	Nitrates	NO₂⁻	Nitrosyl	NO⁺

Citation: Bharti VK, Giri A, Kumar K (2017) Fluoride Sources, Toxicity and Its Amelioration: A Review. Peertechz J Environ Sci Toxicol 2 (1): 021-032.
Table 4: Modulation of different oxidative biomarkers during hepatic oxidative damages occurs on high exposure of fluoride.

Type of the study	Model & Dosage	End point*	References
In-vitro (Animal cells)	Mouse pancreatic beta-cells (ßTC-6) at 1.35 and 2.5mM for 12 h	↑Generation of \(\cdot O_2^- \), ↓activity of SOD, ↓∆ψm	[102]
	Primary rat hippocampal neurons at 20, 40, and 80 mg/l, equivalent to 1.05, 2.1 and 4.2mM for 24 h	↑Generation of ROS, ↓level of GSH, ↓activities of GSH-Px, and SOD, ↑lipid peroxidation	[103]
	Murine hepatocytes at 100mM for 1 h	↑Generation of ROS, ↓level of GSH, ↓GSH:GSSG ratio, ↓activities of SOD, and catalase, ↑lipid peroxidation, and oxidation of proteins	[104]
In-vitro (Human Cells)	Hepatocellular carcinoma (HepG2) cells at 3mM for 6 and 24 h	↑GSH/GSSG ratio, ↑gene expression of Mn-SOD	[105]
	Neuroblastoma (SH-SYSY) cells exposed at 0.05–5mM for 24 h	↑Lipid peroxidation, and ↑protein oxidation	[106]
In vivo (Animals)	Male albino guinea pigs exposed at 250mg NaF/kg subcutaneously and sacrificed 8 h later	↑Generation of NO in blood	[107]
	Male Wistar rats exposed at 5mg/kg body mass/day, orally for 8 weeks	↑Generation \(\cdot O_2^- \), ↓activity of SOD, ↓∆ψm, ↑lipid peroxidation in spermatozoa	[108]
	Male Swiss mice exposed at 50 mg/L in drinking water for 10 weeks	↑Level of ascorbic acid, ↓level of uric acid in plasma, ↑Lipid peroxidation, ↑level of GSH, ↑activity of GSH–Px, ↓activity of SOD in erythrocytes, ↑activity of GSH–Px, and GST, ↑ratio GSH:GSSG in brain	[109]
	Albino rats exposed at 100 mg/L in drinking water for 4 months	↑Level of antioxidant capacity, ↓level of GSH in liver	[109]
	Male albino Wistar rats exposed at 1, 10, 50, and 100 mg/L in drinking water for 12 weeks	↑Generation ROS, changes in levels of GSH in blood, ↑generation ROS in liver, kidney, and brain	[110]
	Second generation of Male Albino adult Wistar rats exposed at 10, 50, and 100 mg/L in drinking water for 180 days	↑Lipid peroxidation, ↓activities of SOD, catalase, and GSH-Px in lung	[111]
	Chicks exposed by diet to 100, 250, or 400 mg F/kg for 50 days	↑Generation of NO, ↑lipid peroxidation, ↓activities of SOD, catalase, and GSH-Px in serum	[112]
	Male albino rats exposed at 10.3 mg NaF/kg body weight/day, orally for 5 weeks	↑Lipid peroxidation, ↑generation NO, ↓activities of SOD, and catalase, ↓Total antioxidant capacity, and ↓level of GSH in liver	[113]
	Pig exposed to food supplemented with 250 mg F/kg for 50 days	↑Expression of gen Cu/Zn SOD in liver	[114]
	Male rats exposed at 20 mg/kg/day for 29 days by oral gavage	↑Level of conjugated dienes in the testis, epididymis, and epididymal sperm pellet, ↓activities of GDH-Px, and catalase in the sperm	[115]
	Male Wistar rats exposed at 50 and 100 mg/L in drinking water during 4 months	↓Activity of CuZn-SOD in pancreas	[116]
	Male and female Wistar rats exposed at 50, 100, and 150 mg/L in drinking water during 3 months	↑Lipid peroxidation, ↓activities of SOD, and GSH-Px in liver	[116]
	Barrows exposed at 250 and 400 mg/kg (from NaF) in their diets for 50 days	↑Generation of NO, ↑lipid peroxidation, ↓activities of GSH–Px and SOD in serum, ↑Lipid peroxidation, ↓activities of GSH–Px, and SOD in thyroid, liver, and kidney	[117]
	Male Swiss mice exposed at 5 mg/kg body mass/day, orally for 8 weeks	↑ROS in erythrocytes, ↓level of GSH in blood, ↓activities of SOD, catalase, and GSH-Px, ↑lipid peroxidation, in kidney and liver	[118]
	Female rats exposed at 100 mg/L in drinking water for 60 days	↑Lipid peroxidation, ↓activities of SOD, catalase, and GSH–Px in endometrium	[119]
Table 5: Regulation of apoptotic and cytokines related gene expression by fluoride exposure [Source: 28].

Type of the study	Model & Dosages	End point	References
In vitro (Human cells)	Neuroblastoma (SH-SYSY) cells at 40, and 80 mg/L, equivalent to 2.1, and 4.2 mM for 24 h		
		↑Apoptosis molecules Fas, Fas-L, and caspasases 3 and 8.	[127]
In vivo (Humans)	Peripheral blood mononuclear cells from Mexican individuals drinking water with levels of 1.9–4.02 mgF/L	↓Inflammatory Chemokines (CCL1, CCL18, CCL19), ↓cytokines (IL-11, IL-2), ↓pro- and anti-inflammatory molecules (LTA, TNF-a, TGF-a, TGF-b1, TGF-b3), ↓Apoptosis molecules (TNF-a, FasL, C3D0L, 4-IBBL, TANK, TRAIL, DR3, Casp-2, Casp6, CIDE-A and CIDE-B), ↑survivine	[128]

Arrows refer to increases (↑) or decreases (↓) regulation [Source: 28].

Recently, various studies have been conducted in various fields like development of different techniques to reduce the fluoride level from the water sources directly, use plant metabolites on the experimental animals, and use of different chemical/molecule (melatonin, pineal protein, quercetin etc.). In case of different techniques, several natural and chemical adsorbents such as red soil, charcoal, brick, Waste tea ash, fly-ash, serpentine, alum, Activated carbon, Al–Fe (hydr) oxides, sulfate-doped Fe3O4/Al2O3 nanoparticles, aluminum salts etc have been used (Table 6). On the other hand, use of leaves, seeds, fruit pulps, plant juices of Azadirachta indica, Ficus religiosa, Acacia catechu, Peltiphyllum peltatum and tamarind seeds etc. are also using to reduce the toxic effects of fluoride and summarized in the Table 7. Additionally, some synthetic chemical molecules like melatonin, pineal protein, lycopene, and quercetin, etc. also have the great role to reduce the fluoride induced toxicity. All are summarized in the Table 8.

Conclusions

Through this review, it is summarized that having the electronegativity, fluoride is ubiquitously present in the environments. In some countries it is within the range, whereas most of the countries which have been reviewed showed more than the permissible level as per guideline recommended by WHO. Among different sources, water is the important source of fluoride exposure. Hence, water purification techniques should be developed for safe and economic method for portable water. High fluoride exposure affects human beings and animals health through oxidative stress, immune suppression, apoptosis, and affecting nutrient utilization. Hence, ameliorative measures are important to prevent their endemicity and disease progress. Meanwhile, plant bioactive molecules, several synthetic molecules, and pineal gland secretions have shown protective effect against fluoride toxicity. However, more extensive studies are required for wide application of these molecules as therapeutics agents.
Table 6: Available technologies for removal of fluoride in water.

Sl. No.	Technique for water de-fluoridation	Component Used	References
01	Adsorption	Al-Fe (hydr)oxides	[129]
02	Adsorption	Sulfate-doped Fe₃O₄/Al₂O₃ nanoparticles	[130]
03	Adsorption	Waste tea ash	[131]
04	Adsorption	Neem charcoal	[132]
05	Adsorption	Calcined bauxite, gypsum, magnesite and their composite filter	[133]
06	Adsorption	Activated alumina	[134-136]
07	Adsorption	Bone char	[67,137]
08	Adsorption	Activated carbon	[138,139]
09	Adsorption	Palm kernel shell-based adsorbent	[140]
10	Adsorption	Rice husk and activated charcoal	[141]
11	Adsorption	Leaf biomass	[142]
12	Electrochemical method	-	[143]
13	Coagulation	Aluminum salts	[144]
14	Electrolysis	-	[145]
15	Reverse osmosis	-	[146]
16	Nanofiltration	-	[147]
17	Membrane processes	-	[148]

Table 7: Experimental studies on plant based natural products in amelioration of fluoride toxicity.

Sl. No.	Species of experimental animals	Fluoride dose and route of administration	Duration of study	Dose and route of plants	Effect on studied parameters	References
01	Adult male Wistar albino rats	10.3 mg/kg bw/day, Oral	35 days	Black berry juice, 1.6 g/kg bw administered perorally	↑Glutathione level, total anti-oxidant capacity and superoxide dismutase activity	[149]
02	Adult albino mice	600 ppm NaF, Oral	45 days	Ginseng Extract, 50, 150, and 250 mg/kg bodyweight/day, administered perorally	↑ of TCA enzymes (ICDH, SDH, and aconitase) were noted in brain regions	[150]
03	Adult albino mice	600 ppm NaF, Oral	45 days	Banaba Extract, 50, 150, and 250 mg/kg bodyweight/day, administered perorally	↑ of TCA enzymes (ICDH, Succinate dehydrogenase (SDH), and aconitase) were noted in brain regions	[151]
04	Adult female albino mice	1030.675 mg m³; Oral	14 days	Gallic acid of *Peltiphyllum peltatum*, 10-20 mg/kg bw/day, i.p.	↑ Succinate dehydrogenase (SDH), Catalase and superoxide dismutase enzyme activities and glutathione levels	[152]
06	Male Swiss albino mice	NaF at a dose of 600 ppm; Oral	14 days	Ethanol extract of the bark of *Terminalia arjuna*, 50 mg/kg of body weight, administered perorally	↑ Heart SOD, ↑GPx, ↑ GR, ↑ GSH, ↑ CAT ↓ SGOT, ↓ ALP	[153]
07	Colony-bred male albino rats	NaF at a dose of 100 ppm; administered perorally	30 days	*Tamarindus indica* leaf powder, 2.5 to 10 g% of feed administered through diet	↑ Plasma glucose, ↓ Lipid levels, ↑ Lipid peroxidation, ↑ Hepatic glycogen content, ↑ Hexokinase activity, ↑ Cholesterol excretion, improvement in antioxidant profiles of both hepatic and renal tissues	[154]

Table 8: Experimental studies supporting protective effect of melatonin, epiphyseal (pineal) proteins, quercetin, and lycopene in amelioration of fluoride toxicity.

Sr. No.	Species of experimental animals	Melatonin dose and route of administration	Duration of study	Dose and route of fluoride exposure	Effect on studied parameters	References
01	Adult female albino mice	10 mg/kg bw/day, i.p.	30 days	10 mg/kg bw/day, administered perorally	↑ Liver ALP, ACP, SDH, SGOT, SGPT, liver weight, body weight, Liver protein content	[155]
02	Adult male Wistar rats	10 mg/kg bw/day; administered perorally	60 days	NaF 4 mg/kg bw/day, administered perorally	↓ TBARS and ROS in brain tissues, ↑ GSH and GPx brain tissue, attenuation of NaF induced rise in brain levels of TNF-α	[156]
03	Adult female Wistar rats	10 mg/kg bw/day, i.p.	28 days	150 ppm in drinking water, administered perorally	↓ MDA (LPO) levels in cardiac, hepatic, and renal tissues, ↑ CAT, ↑ TSD, ↑ TGx, ↑ TGR activities and ↑ TGSH	[157]

Citation: Bharti VK, Giri A, Kumar K (2017) Fluoride Sources, Toxicity and Its Amelioration: A Review. Peertechz J Environ Sci Toxicol 2(1): 021-032.
04. Adult female Wistar rats 10 mg/kg, bw/day; i.p. 28 days 150 ppm in drinking water, administered perorally ↓ [Na⁺], [K⁺], and ALP levels, ↑ plasma glucose. [158]

05. Adult female albino mice 10 mg/kg bw/day; i.p. 30 day 10 mg NaF/kg bw/day, administered perorally ↑ Succinate dehydrogenase (SDH), ↑ protein and creatinine levels, ↑ Acid phosphatase (ACP) and ↑ alkaline phosphatase (ALP), ↓ Lipid peroxidation (LPO) and Glutathione (GSH) [159]

06. Adult female Wistar rats 10 mg/kg bw/day; i.p. 28 days 150 ppm in drinking water, administered perorally ↑ plasma glucose, ↑ Plasma creatinine, ↓ urea, ↓ BUN, ↓ cholesterol, ↓ Na⁺, ↓ SGPT, ↓ SGOT, ↓ ALP plasma Na⁺, ↑ ALP, and ↓ cholesterol. [160]

07. Adult female Swiss-strain albino mice 10 mg/kg bw/day; i.p. 30 days 10 mg/kg bw/day, administered perorally Lowered the level of lipid peroxides and enhanced the antioxidant status. [161]

08. Adult female Wistar rats 10 mg/kg bw/day; i.p. 28 days 150 mg/L administered perorally ↑ Brain MDA, ↑ TSOD, ↑ GPx, ↑ GR and ↑ CAT [101]

09. Mature male Wistar rats 10 mg/kg bw/day; i.p. 60 days 5 and 10 mg NaF/kg bw, administered perorally ↑ Lipid peroxidation (LPO), ↑ glutathione peroxidase (GPx), ↑ glutathione (GSH), ↑total ascorbic acid (TAA), ↑ glutathione-S-transferase (GST), ↑ glutathione reductase (GR), ↑ superoxide dismutase (SOD), and ↑ catalase (CAT) in the testicular cells [162]

10. Human red blood cells (Male) 5 μg/mL and 10 μg/mL 4 hr at 37°C 50–500 μg NaF/mL in a final normal saline volume of 4.0 mL Significant reduction in F-induced hemolysis with maximum amelioration occurring at 10 μg/mL. [163]

Epiphyseal (pinéal) proteins
01. Adult female Wistar rats 100 μg/kg bw/day; i.p. 28 days 150 ppm administered perorally ↓ MDA (LPO) levels in cardiac, hepatic, and renal tissues, ↑ CAT, ↑ TSOD, ↑ GPx, ↑ GR and ↑ GSH [156]
02. Adult female Wistar rats 100 μg/kg bw/day; i.p. 28 days 150 ppm, administered perorally Plasma reduction of [Na⁺], [K⁺], and ALP levels, increases in the plasma glucose [157]
03. Adult female Wistar rats 100 μg/kg bw/day; i.p. 28 days 150 ppm administered perorally ↑ Plasma glucose, ↑ Plasma creatinine, ↓ urea, ↓ BUN, ↓ cholesterol, ↓ K⁺, and ↓ Na⁺, ↓ SGPT, ↓ SGOT, ↓ ALP, ↑ Plasma Na⁺, ↑ ALP, and ↑ cholesterol [159]
04. Adult female Wistar rats 100 μg/kg bw/day; i.p. 28 days 150 mg/L administered perorally ↑ Brain MDA, ↑ TSOD, ↑ GPx, ↑ GR, ↑ GSH, ↑ CAT [101]
05. Adult female Wistar rats 100 μg/kg bw/day; i.p. 14 days 150 ppm, administered perorally ↑ AChE activity in plasma, RBCs, heart, and brain. [164]
06. Adult female Wistar rats 50, 100, and 200 μg/kg bw/day; i.p. 21 days 150 ppm, administered perorally ↓ Plasma F, lipid peroxidation (LPO), ↓ alkaline phosphatase (ALP), ↓ plasma and RBCs acetyl cholinesterase (AChE) activity, ↓ Plasma and RBCs LPO Red blood cells (RBCs). ↑ RBCs GSH, CAT, GR, and GPx level. [165]

Quercetin
01. Male Wistar rats NaF at a dose of 600 ppm; administered perorally 14 days Quercetin 10 to 20 mg/kg; i.p. ↓ Kidney Glutathione (GSH), ↓ LPO, ↓ Superoxide dismutase (SOD), ↓ catalase activity [4]

Lycopene
01. Adult male albino rats NaF 10.3 mg/kg body weight/day, administered perorally 35 days Lycopene (10 mg/kg body weight/day), administered perorally ↑ Glutathione level, total anti-oxidant capacity and superoxide dismutase activity [166]

References
1. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82: 503–568. Link: https://goo.gl/28dJtp
2. Edwards JC, Kahl CR (2010) Chloride channels of intracellular membranes. FEBs Lett 584: 2102–2111. Link: https://goo.gl/GQoTs
3. Zimmermann MB (2011) The role of iodine in human growth and development. Semin Cell Dev Biol 22: 645–652. Link: https://goo.gl/F5plao
4. Nabavi SM, Nabavi SF, Esiami S, Moghaddam AH (2012) In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem 132: 931–935. Link: https://goo.gl/9fdnB3
5. Jagtap S, Yenkie MK, Labhsetwar N, Rayalu S (2012) Fluoride in drinking water and defluoridation of water. Chem Rev 112: 2454–2466. Link: https://goo.gl/f9dnB3
6. Weinstein LH, Davison A (2004) Fluorides in the environment: effects on plants and animals. CABI Publishing, Cambridge. Link: https://goo.gl/bPWlXC

Citation: Bharti VK, Giri A, Kumar K (2017) Fluoride Sources, Toxicity and Its Amelioration: A Review. Peertechz J Environ Sci Toxicol 2(1): 021-032.
7. WHO (2006). World Health Organization, Fluoride in Drinking water, Fawell J, Bailey K, Chilton J, Dahl E, Fewtrell L, and Magara Y, Eds., IWA Publishing, Alliance House, 12 Caxton Street, London SW1H 0QS, UK, 41–75. Link: https://goo.gl/ahF6h

8. WHO (2003). Background Document for Preparation of WHO Guidelines for Drinkingwater Quality. Fluoride in Drinking-water. Geneva: WHO. Link: https://goo.gl/4Y5xwa

9. U.S. Environmental Protection Agency. (2003) Ground Water and Drinking Water. Drinking Water Contaminants (Online 2003). Link: https://goo.gl/8qPCS2

10. European Commission. (2011) “Critical review of any new evidence on the hazard profile, health effects, and human exposure to fluoride and the fluoridating agents of drinking water,” Scientific Committee on Health and Environmental Risks (SCHER). Link: https://goo.gl/fn283a

11. Planning Commission, India. (2007) Eleventh five-year plan approach paper. Rural watersupplyandsanitation. Link: https://goo.gl/VguWJk

12. Franzaring J, Klumpp A, Fangmeier A (2007) Active Biomonitoring of Airborne Fluoride near an HF Producing Factory Using Standardized Grass Cultures. Atmos Environ 41: 4828–4840. Link: https://goo.gl/GWku0c

13. Alves ES, Moura BB, Domingos M (2008) Structural Analysis of Tillandsia usneoides L. Exposed to Air Pollutants in São Paulo City-Brazil. Water Air Soil Pollu, 189: 61-68. Link: https://goo.gl/1ZDEpo

14. Reddy MP, Kaur M (2008) Sodium fluoride induced growth and metabolic changes in Salicornia brachiata Roxb. Water Air Soil Pollut 188: 171-179. Link: https://goo.gl/ITuXeP

15. Lovelace CJ, Miller GW (1967) In vitro effects of fluoride on tricarboxylic acid cycle dehydrogenases and oxidative phosphorylation: Part I. J Histochem Cytochem 15: 195-201. Link: https://goo.gl/4P4qBe

16. Melchior NC, Melchior JB (1956) Inhibition of yeast hexokinase by fluoride ion. Sci 124: 402-403.

17. Lee C, Miller GW, Welkie GW (1965) The effects of hydrogen fluoride and wounding on respiratory enzymes in soybean leaves. Air Water Pollut Int J 10: 169-181.

18. Miller JE, Miller GW (1974) Effects of fluoride on mitochondrial activity in higher plants. Physiol Plant 32: 115-121. Link: https://goo.gl/sqgKvD

19. Khandare AL, Kumar PU, Shankar HN. (2007) Effect of calcium deficiency induced by fluoride intoxication on lipid metabolism in rabbits. Fluoride 40: 184–189. Link: https://goo.gl/UV5S01J

20. Coetzee PP, Coetzee LL, Puka R, Mushenga1 S (2003) Characterization of selected South African clays for defluoridation of natural waters. Water SA 29: 331–338. Link: https://goo.gl/GnizBV

21. Dunipace AJ, Edward JB, Wilson ME (1998) Chronic fluoride exposure does not cause detrimental, extra skeletal effects in nutritionally deficient rats. J Nutr 128: 1392–1400. Link: https://goo.gl/NBG15g

22. Lohakare J, Pattanaik A, Khan SA (2010) Effect of long-term fluoride exposure on growth, nutrient utilization and fluoride kinetics of calves fed graded levels of dietary protein. Biol Trace Elem Res 138: 148-162. Link: https://goo.gl/IzBFK5

23. Heber D (2010) Pomegranate. Chapter 30. In Nutrition and Health: Bioactive Compounds and Cancer. Edited by J.A. Milner and D.F. Romagnolo. Humana Press, c/o Springer Science and Business Media LLC, New York 725-734. Link: https://goo.gl/GqGK92

24. Nabavi SF, Eslamî SH, Moghaddam AH, Nabavi SM (2011) Protective effects of curcumin against fluoride-induced oxidative stress in the rat brain. Neuropysiology 43: 287-291. Link: https://goo.gl/VRQZVv

25. Nabavi SM, Nabavi SF, Eslamî S, Moghaddam AH (2012) In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem 132: 931-935. Link: https://goo.gl/eQA1Jv

26. Nabavi SF, Nabavi SM, Abolhasani F, Moghaddam AH, Eslamî S (2012) Cytoprotective effects of curcumin on sodium fluoride induced intoxication in rat erythrocytes. Bull Environ Contam Toxicol 88: 486-490. Link: https://goo.gl/xxeyXk

27. Finger GC (1961) Fluorine Resources and Fluorine Utilization. Adv Fluorine Chem 2: 35-54.

28. Giri A, Bharti VK, Angmo K, Kalia S, Kumar B (2016) Fluoride versus Oxidative stress, Immune System and Apoptosis in Animals: a Review. Int J Bioass 5: 5163-5173. Link: https://goo.gl/tQONES

29. Department of Health and Human Services. (1991) Report of the subcommittee on fluoride of the Committee to Coordinate Environmental Health and Related Programs, USPHS. Review of fluoride: benefits and risks. Public Health Service. Link: https://goo.gl/5F4MCg

30. Cengeloglu Y, Esengul K, Ersoz M (2002) Removal of Fluoride from aqueous Solution by Using red mud. Sep Pur Tech 28: 81-86. Link: https://goo.gl/Dn1unl

31. Susheela AK (1999) Fluorosis management programme in India. Curr Sci India 77: 1050–1256. Link: https://goo.gl/vVkJh

32. Bombik E, Bombik A, Gorski K, Saba L, Bombik T, et al. (2011) Effect of Environmental Contamination by Fluoride compounds on selected horse tissues. Polish J Environ Stud 20: 37-43. Link: https://goo.gl/Ev5O6b

33. Begum A (2012) Soil Profiles and Fluoride Adsorption in Intensively Cultivated Areas of Mysore District, Karnataka, India. Chem Sci Trans 1: 410-414. Link: https://goo.gl/d1YEl

34. Blagojevic S, Jakovljevic M, Radulovic M (2002) Content of Fluorine in Soils In The Vicinity of Aluminium Plant in Podgorica. J Agricul Sci 47: 1-8. Link: https://goo.gl/pzHtdc

35. Ericson B, Hanrahan D, Kong V (2014) The world’s worst pollution problems; the top ten of the toxic twenty. Link: https://goo.gl/4saMAj

36. Li C, Gao X, Wang Y (2014) Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci Total Environ 508C: 155–165. Link: https://goo.gl/FAA4Stx

37. NRC (1960) The Fluorosis problem in livestock production. A report of the NRC committee on animal nutrition. Publication 824, National Research Council, Washington. Link: https://goo.gl/EFxPlv

38. Radostits OM, Gay CC, Blood DC, Hinchliff KW (2000) Veterinary Medicine, a textbook of the diseases of cattle, sheep, pigs, goats and horses, 9th edn. WB Saunders Company Ltd, London. Link: https://goo.gl/oxKH4L

39. Mascola JJ, Barth KM, McLaren JB (1974) Fluoride intake of cattle grazing fluoride-contaminated forage, as determined by esophageal-fistulated steers. J Anim Sci 38: 1298–1303. Link: https://goo.gl/xdgVv

40. Araya O, Wittwer F, Villa A (1993) Evolution of fluoride contamination in cattle and grass following a volcanic eruption. Vet Hum Toxicol 35: 437–440. Link: https://goo.gl/IDlgF

41. Bellomo S, Aiuppa A, D’Alessandro W, Parello F (2007) Environmental impact of magmatic fluoride emission in the Mt. Etna area. J Volcanol Geoth Res 165: 87–101. Link: https://goo.gl/viH9p9

42. Thorarinsson S (1979) On the damage caused by volcanic eruptions with special reference to tephra and gases. In: Sheets PD, Grayson DK (eds) Volcanic ash and grass following a volcanic eruption. Vet Hum Toxicol 35: 437–440. Link: https://goo.gl/IDlgF

43. Araya O, Wittwer F, Villa A (1993) Evolution of fluoride contamination in cattle and grass following a volcanic eruption. Vet Hum Toxicol 35: 437–440. Link: https://goo.gl/IDlgF

44. Araya O, Wittwer F, Villa A (1993) Evolution of fluoride contamination in cattle and grass following a volcanic eruption. Vet Hum Toxicol 35: 437–440. Link: https://goo.gl/IDlgF

45. Araya O, Wittwer F, Villa A (1993) Evolution of fluoride contamination in cattle and grass following a volcanic eruption. Vet Hum Toxicol 35: 437–440. Link: https://goo.gl/IDlgF

Citation: Bharti VK, Giri A, Kumar K (2017) Fluoride Sources, Toxicity and Its Amelioration: A Review. Peertechz J Environ Sci Toxicol 2(1): 021-032.
44. Armienta MA, de La Cruz-Reyna S, Cruz O, Ceniceros N, Aguayo A. et al. (2011) Fluoride in ash leachates: environmental implications at popocatepetl volcano, central Mexico. Nat Hazards Earth Syst Sci 11: 1949–1956. Link: https://goo.gl/Y2qCZ7

45. Flueck WT, Smith-Flueck JA (2013) Severe dental fluorosis in juvenile deer linked to a recent volcanic eruption in Patagonia. J Wildlife Dis 49: 355–366. Link: https://goo.gl/oqQ9DP

46. WHO (2000) World Health Organization, Geneva. Fluorides, Environmental Health Criteria, 227.

47. Patra RC, Dwivedi SK, Bhardwaj B, Swarup D (2000) Industrial pollution and effects of lead and fluoride on animal health. Indian Council of Agricultural Research, Pusa, New Delhi. Link: https://goo.gl/3d5B5B

48. WHO (2000) Fluorides. In: Chapter 6. Air quality guidelines, 2nd edn. WHO regional office for Europe, World Health Organization, Copenhagen.

49. Gujijian L, Liugen Z, Dzugoren-Aydin NS, Lianfen G, Junhua L et al. (2011) Fluoridation technology for use in fluorotic areas in Tanzania. Physics Chem Earth 28: 1097–1104. Link: https://goo.gl/sWTTM7

50. Swarup D, Dwivedi SK (2002) Environmental pollution and effects of lead and fluoride on animal health. Indian Council of Agricultural Research, Pusa, New Delhi. Link: https://goo.gl/3s2K0

51. Swarup D, Dey S, Patra RC, Dwivedi SK, Ali SL (2001) Clinico-epidemiological determination of Fluoride in Water, Soil and Vegetables from the Precinct of River Basawa, Zaria, Nigeria. J Basic Appl Chem 1: 33-38. Link: https://goo.gl/c95FyM

52. Patra RC, Dwivedi SK, Bhardwaj B, Swarup D (2000) Industrial pollution and effects of lead and fluoride on animal health. Indian Council of Agricultural Research, Pusa, New Delhi. Link: https://goo.gl/3d5B5B

53. Sahoo N, Singh PK, Ray SK, Bisoi PC, Mahapatra HK (2003) Fluorosis in sheep around an aluminium factory. Indian Vet J 80: 617–621. Link: https://goo.gl/2SWg3j

54. Sahoo N, Singh PK, Ray SK, Bisoi PC, Mahapatra HK (2003) Fluorosis in sheep around an aluminium factory. Indian Vet J 80: 617–621. Link: https://goo.gl/2SWg3j

55. Patra RC, Dwivedi SK, Bhardwaj B, Swarup D (2000) Industrial fluorosis in cattle and buffalo around Udaipur, India. Sci Total Environ 253: 145–150. Link: https://goo.gl/2Sw50Dh

56. Singh JL, Swarup D (1995) Clinical observations and diagnosis of fluorosis in dairy cows and buffaloes: case report. Agri Practice 16: 25–30.

57. Chinoy JN (1991) Effects of fluoride on physiology of animals and human beings. Indian J Environ Toxicol 1: 17-32.

58. Grobler SR, Dreyer AG, Bilgnaut RJ (2001) Drinking water in South Africa: Implications for fluoride supplementation. J South Afr Dent Assoc 56: 557–559. Link: https://goo.gl/7XnSGH

59. Mothusi B (1998) Psychological effects of dental fluorosis, Fluoride and Florosis, The Status of South African Research, Pilanesberg National Park, North West Province, T, (1995): as cited in Muller WJ, Heath RGM, Villet MH, Finding the optimum: Fluoridation of potable water in South Africa. Water SA, 24: 1–27.

60. WHO (2005) World Health Organization, Geneva, Switzerland. Link: https://goo.gl/wof1q6

61. Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous ground waters in the upper regions of Ghana. Environ Geol 33: 13–24. Link: https://goo.gl/6EEnSA

62. Kaimenyi TJ (2004) Oral health in Kenya. Int Dent J 54: 378–382. Link: https://goo.gl/KVAjUS

63. Nair KR, Manji F (1982) Endemic fluorosis in deciduous dentition–A study of 1276 children in typically high fluoride area (Kiambu) in Kenya. Odonto-Stomatologie Tropicale 4: 177–184. Link: https://goo.gl/GXXVU4

64. Nair KR, Manji F, Gitonga JN (1984) The occurrence and distribution of fluoride in groundwaters in Kenya. East Afr J Med 61: 503–512. Link: https://goo.gl/hgscUL

66. Brouwer ID, Dirks OB, De-Bruin A, Hautvast JGAJ (1988) Unsuitability of World Health Organization guidelines for fluoride concentrations in drinking water in Senegal. Lancet 30: 223–225. Link: https://goo.gl/28Cz9j

67. Mjengera H, Mkungo G (2003) Appropriate defluoridation technology for use in fluorotic areas in Tanzania. Fluoride 36: 157–161. Link: https://goo.gl/sNLXny

68. Nair KR, Manji F (1982) Endemic fluorosis in Sudanese children from two villages with respectively 0.25 mg/L and 2.56 mg/L F in the drinking water. Int J Paediatr Dent 5: 223–229. Link: https://goo.gl/3K300L

69. Smith DA, Harris HA, Kirk R (1953) Fluorosis in the Butana, Sudan. J Tropic Med Hyg 56: 57–58. Link: https://goo.gl/wd3zrZ

70. Smith DA, Harris HA, Kirk R (1953) Fluorosis in the Butana, Sudan. J Tropic Med Hyg 56: 57–58. Link: https://goo.gl/wd3zrZ

71. Al-Kateeb TL, Al-Marasafi AL, O’Mullane DM (1991) Caries prevalence and treatment need amongst children in an Arabian community. Commun. Dentistry Oral Epidemiol 19: 277–280. Link: https://goo.gl/3JvBxY

72. Akpata ES, Fakiha Z, Khan N (1997) Dental fluorosis in the upper regions of Ghana. Fluoride 30: 233–239. Link: https://goo.gl/3K300L

73. Health Canada (1993) Priority Substances List Assessment Report on Inorganic Fluorides, Canadian Environmental Protection Act, Minister of Supply and Services Canada, Canada Communication Group-Publishing, Ottawa, Canada K1A 0S9, 12–19. Link: https://goo.gl/3z4A

74. Ismail AI, Messer JG (1996) The risk of fluorosis in students exposed to a higher than optimal concentration of fluoride in well water. J Public Health Dent 56: 22–27. Link: https://goo.gl/usvYm7

75. Paoloni JD, Fiorentino CE, Sequeira ME (2003) Fluoride contamination of aquifers in the southeast subhumid pampa, Argentina. Environ Toxicol 18: 317–320. Link: https://goo.gl/Al2O0

76. Cortes DF, Ellwood RP, O’Mullan DM, de Magalhaes Bastos JR (1996) Drinking water fluoride levels, dental fluorosis and caries experience in Brazil. J Public Health Dentistry 56: 226–228. Link: https://goo.gl/RqFx3B

77. Haimanot RT, Fekadu A, Bjorvatn K (1995) Prevalence of dental fluorosis in Sudanese children from two villages with respectively 0.25 mg/L and 2.56 mg/L F in the drinking water. Int J Paediatr Dent 5: 223–229. Link: https://goo.gl/3K300L

78. Kloos H, Tekle-Haimanot R, Kloos H, Zein AH (1993) The Ecology of Health in the Rift Valley. Tropic Geogr Med 39: 209–217.

79. Diaz-Barriga F, Navarro-Quezada A, Grijalva MI, Grimaldo M, Loyola-Rodriguez AI, O’Mullane DM (1991) Caries prevalence and treatment need amongst children in an Arabian community. Commun. Dentistry Oral Epidemiol 19: 277–280. Link: https://goo.gl/3JvBxY

80. Cohen D, Conrad MH (1998) 65,000 GPD fluoride removal membrane system in Lakeland, California, USA. Desalination 117: 19–35. Link: https://goo.gl/iIZosO

81. Diaz-Barriga F, Navarro-Quezada A, Grijalva MI, Grimaldo M, Loyola-Rodriguez AI, O’Mullane DM (1991) Caries prevalence and treatment need amongst children in an Arabian community. Commun. Dentistry Oral Epidemiol 19: 277–280. Link: https://goo.gl/3JvBxY
Bharti et al. (2017)

from wastewaters. Environ Sci Technol 34: 3247–3253. Link: https://go.to/IRXCDk

82. Heikens A, Sumart S, vanBergen M, Widianarko B, Fokkert L et al. (2005) The impact of the hyperacid Jen Crater Lake: Risks of excess fluoride to human health. Sci Tot Environ 346: 56–69. Link: https://go.to/GJH3JH

83. Queste A, Lacombe M, Hellmeier W, Hillermann F, Bottulussi B et al. (2001) High concentrations of fluoride and boron in drinking water wells in the Muenster region—Results of a preliminary investigation. Int J Environ Health 203: 221–224. Link: https://go.to/zKKnCh

84. Kim K, Jeong YG (2005) Factors influencing natural occurrence of fluoride-rich groundwater: A case study in the southeastem part of the Korean Peninsula. Chemosphere 58: 1399–1408. Link: https://go.to/K2y2CJ

85. Bardsen A, Klock KS, Bjorvatn K (1999) Dental fluorosis among persons exposed to high- and low-fluoride drinking water in western Norway. Commun Dentistry Oral Epidemiol 27: 259–267. Link: https://go.to/2I1NdXZ

86. Czarnowski W, Wrzesniowska K, Krechniak J (1996) Fluoride in drinking water and human urine in Northern and Central Poland. Sci Total Environ 191: 177–184. Link: https://go.to/ULyUI99

87. Hardisson A, Rodriguez MI, Burgos A, Flores LD, Gutierrez R et al. (2001) Fluoride levels in publically supplied and bottled drinking waters in the island of Tenerife. Spain. Bull Environ Contamin Toxicol 67: 163–170. Link: https://go.to/rF0qTH

88. Wang GQ, Huang YZ, Xiao BY, Qian XC, Yao H et al. (1997) Toxicity from water containing arsenic and fluoride in Xinjiang. Fluoride 30: 81–84. Link: https://go.to/dvfRx4

89. Aqsa B, Turkmian A (2000) Defluoridation in drinking waters. Water Science and Technology. 42: 403–407. Link: https://go.to/XQEDvd

90. Tsutsui A, Yagi M, Horowitz AM (2000) The prevalence of dental caries and fluoride in drinking water of Marks Nagar, Unnao district, Uttar Pradesh, India. Environ Geochem Health 28: 591–595. Link: https://go.to/OfSwv

91. Totsui A, Yagi M, Horowitz AM (2000) The prevalence of dental caries and fluoride in Japanese communities with up to 1.4 ppm of naturally occurring fluoride. J Public Health Dentistry 60: 147–153. Link: https://go.to/KEdrCB

92. McGrady MG, Ellwood RP, Srisilapanan P, Kowarinich N, Worthington HV et al. (2012) Dental fluorosis in populations from Chiang Mai, Thailand with different fluoride exposures – Paper1: assessing fluorosis risk, predictors of fluorosis and the potential role of food preparation. BMC Oral Health 12: 16. Link: https://go.to/rFfy32Q

93. Ayoob S, Gupta AK (2006) Fluoride-induced changes in haem proteins and melatonin. Biol Trace Elem Res 130: 131–140. Link: https://go.to/jOsSYw

94. Choubisa SL (2012) Fluoride in drinking water and its toxicosis in tribals, Rajasthan, India. Proc Nat Acad Sci India Sect B Biol Sci 82: 325-330. Link: https://go.to/BTXpaO

95. Heikens A, Sumart S, vanBergen M, Widianarko B, Fokkert L et al. (2005) The impact of the hyperacid Jen Crater Lake: Risks of excess fluoride to human health. Sci Tot Environ 346: 56–69. Link: https://go.to/GJH3JH

96. Shah MT, Danishwar S (2003) Potential fluoride-alkali metal interactions in ovary of mice and its reversal. Fluoride 31: S27.

97. Choubisa SL (2012) Fluoride in drinking water and its toxicosis in tribals, Rajasthan, India. Proc Nat Acad Sci India Sect B Biol Sci 82: 325-330. Link: https://go.to/BTXpaO

98. Choubisa SL (2015) Industrial fluorosis in domestic goats (Capra hircus), Rajasthan, India. Fluoride 48: 105-112. Link: https://go.to/lhQKN6

99. Patel PD, Chinyo NJ (1998) Influence of fluoride on biological free radical reactions in ovary of mice and its reversal. Fluoride 31: S27.

100. Eraslan G, Kanbur M, Silici S (2007) Evaluation of propolis effects on some biochemical parameters in rats treated with sodium fluoride. Pest Biochem Physiol 88: 273–283. Link: https://go.to/SXqLRo

101. Bharti VK, Srivastava RS (2009) Fluoride-induced oxidative stress in rat’s brain and its amelioration by buffalo (Bubalus bubalis) pineal proteins and melatonin. BioI Trace Elem Res 130: 131–140. Link: https://go.to/BVh6mX

102. Garcia-Montalvo EA, Reyes-Perez H, del Razo LM (2009) Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress. Toxicol 263: 75–83. Link: https://go.to/J3v2dx

103. Zhang M, Wang AG, He WH (2007) Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons. Toxicol 236: 208–216. Link: https://go.to/nuRqR

104. Ghosh J, Das J, Mann P (2008) Cytoprotective effect of arjunolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway. Toxicol in vitro 22: 1918–1926. Link: https://go.to/mnURqR

105. Morgan KT, Ni H, Brown HR (2002) Application of cDNA microarray technology to in vitro toxicology and the selection of genes for a real-time RT-PCR-based screen for oxidative stress in Hep-G2 cells. Toxicol Pathol 30: 435-451. Link: https://go.to/SJ715MA

106. Gao Q, Liu YJ, Guan ZZ (2008) Oxidative stress might be a mechanism connected with the decreased alpha 7 nicotinic receptor influenced by high-concentration of fluoride in SHSYSY neuroblastoma cells. Toxicol In Vitro 22: 837-843. Link: https://go.to/4q3C2B

107. Sireli M, Bulbul A (2004) The effect of acute fluoride poisoning on nitric oxide and methemoglobin formation in the Guinea pig. Turk J Vet Anim Sci 28: 591–595. Link: https://go.to/J0eKTE

108. Izquierdo-Vega JA, Sanchez-Gutierrez M, del Razo LM (2008) Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss. Toxicol Appl Pharmacol 230: 352–357. Link: https://go.to/vOx7PY

109. Flora SJ, Mittal M, Mishra D (2009) Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain. J Neurol Sci 285: 198–205. Link: https://go.to/v9DhQj

110. Shanthakumari D, Srinivasalu S, Subramanian S (2004) Effects of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats. Toxicol 204: 219–228. Link: https://go.to/nChBcl

111. Chouhan S, Lomash V, Flora SJS (2010) Fluoride-induced changes in haem biosynthesis pathway, neurological variables and tissue histopathology of rats. J Appl Toxicol 30: 63–73. Link: https://go.to/f94RP

112. Aydin G, Cic E, Akdogan M, Gokalp O (2003) Histopathological and biochemical changes in lung tissues of rats following administration of fluoride over several generations. J Appl Toxicol 23: 437–446. Link: https://go.to/nC1T13

113. Liu G, Chai C, Cui L (2003) Fluoride causing abnormally elevated serum nitric oxide levels in chicks. Environ Toxicol Pharmacol 13: 199–204. Link: https://go.to/9UB3r

114. Hassan HA, Youssef MI (2009) Mitigating effects of antioxidant properties of black berry juice on sodium fluoride induced hepatotoxicity and oxidative stress in rats. Food Chem Toxicol 47: 2332–2337. Link: https://go.to/nIbpcW

115. Zhan XA, Wang M, Xu ZR (2006) Effects of fluoride on hepatic antioxidant system and transcription of Cu/Zn SOD gene in young pigs. J Trace Elem Med Biol 20: 83–87. Link: https://go.to/OtuqA8

Citation: Bharti VK, Giri A, Kumar K (2017) Fluoride Sources, Toxicity and Its Amelioration: A Review. Peertechz J Environ Sci Toxicol 2(1): 021-032.
116. Ghosh D, Das S, Maiti R, Jana D, Das U (2002) Testicular toxicity in sodium fluoride treated rats: association with oxidative stress. Reprod Toxicol 16: 385–390. Link: https://goo.gl/uoAaML

117. Guo XY, Sun GF, Sun YC (2003) Oxidative stress from fluoride induced hepatotoxicity in rats. Fluoride 36: 25–29. Link: https://goo.gl/ylWlWu

118. Zhan XA, Xu ZR, Li JX (2005) Effects of fluoride on lipid peroxidation and antioxidant systems in young pigs. Fluoride 38: 157–161. Link: https://goo.gl/ruwIF

119. Mc-Cord JM, Keele BB, Fridovich I (1984) An enzyme based theory of obligate anaerobiosis, the physiological functions of superoxide dismutase. Proc Natl Acad Sci 86: 1024–1027. Link: https://doi.org/10.1073/pnas.86.3.1024

120. Guney M, Oral B, Demirin H (2007) Protective effects of vitamins C and E against endometrial damage and oxidative stress in fluoride intoxication. Clin Exp Pharmacol Physiol 34: 467–474. Link: https://doi.org/10.1111/j.1440-1681.2007.04442.x

121. Mittal M, Flora SJS (2007) Vitamin E protects oxidative stress and essential metal imbalance during concomitant exposure to arsenic and fluoride in male mice. Drug Chem Toxicol 30: 263–281. Link: https://www.tandfonline.com/doi/abs/10.1080/03620330701341930?journalCode=dcst20

122. Chouhan S, Flora SJS (2008) Effects of fluoride on the tissue oxidative stress and apoptosis in rats: biochemical assays supported by IR spectroscopy data. Toxicol 254: 61–67. Link: https://doi.org/10.1016/j.tox.2007.07.013

123. Jhala DD, Chinoy NJ, Rao MV (2008) Mitigating effects of some antidotes on fluoride and arsenic induced free radical toxicity in mice ovary. Food Chem Toxicol 46: 1138–1142. Link: https://www.sciencedirect.com/science/article/pii/S0278691508002400

124. Kanbur M, Eraslan G, Silici S (2009) Effects of sodium fluoride exposure on some biochemical parameters in mice: evaluation of the ameliorative effect of royal jelly applications. Food Chem Toxicol 47: 1184–1189. Link: https://www.sciencedirect.com/science/article/pii/S0278691508008104

125. Basha PM, Madhusudhan N (2010) Pre and post natal exposure of fluoride induced oxidative macromolecular alterations in developing central nervous system of rat and amelioration by antioxidants. Neurochem Res 35: 1017–1028. Link: https://doi.org/10.1007/s11064-010-0225-8

126. Chen T, Cui Y, Gong T (2009) Inhibition of splenocyte proliferation and induced oxidative macromolecular alterations in developing central nervous system of rat and amelioration by antioxidants. Neurochem Res 34: 467–474. Link: https://doi.org/10.1007/s11064-008-9651-1

127. Shivarajashankara YM, Shivashankara AR, Gopalakrishna BP (2001) Mitigation of fluoride toxicity on seed germination, seedling growth and biochemistry of paddy (Oryza sativa L.). Asian J Biol Sci 4: 540-544. Link: https://www.tandfonline.com/doi/abs/10.1080/11779320209448356?journalCode=ajbs20

128. Qiao J, Cui Z, Sun Y, Hu Q, Guan X (2014) Simultaneous removal of arsenate and fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Sep Purif Technol 50: 310–317. Link: https://doi.org/10.1016/j.seppur.2013.12.015

129. Chouhan VS, Dwivedi PK, Iyengar LR (2013) Effect of sodium fluoride on seed germination, seedling growth and biochemistry of paddy (Oryza sativa L.). Asian J Biol Sci 4: 540-544. Link: https://www.tandfonline.com/doi/abs/10.1080/11779320209448356?journalCode=ajbs20

130. Shivarajashankara YM, Shivashankara AR, Gopalakrishna BP (2001) Mitigation of fluoride toxicity on seed germination, seedling growth and biochemistry of paddy (Oryza sativa L.). Asian J Biol Sci 4: 540-544. Link: https://www.tandfonline.com/doi/abs/10.1080/11779320209448356?journalCode=ajbs20

131. Kanbur M, Eraslan G, Silici S (2009) Effects of sodium fluoride exposure on some biochemical parameters in mice: evaluation of the ameliorative effect of royal jelly applications. Food Chem Toxicol 47: 1184–1189. Link: https://www.sciencedirect.com/science/article/pii/S0278691508008104

132. Vardhan C, Karthikeyan J (2011) Removal of fluoride from water using low-cost materials. In: Fifteenth International Water Technology Conference. [Online] Alexandria, Egypt. Link: https://doi.org/10.1051/ewa:2011010

133. Shivarajashankara YM, Shivashankara AR, Gopalakrishna BP (2001) Mitigation of fluoride toxicity on seed germination, seedling growth and biochemistry of paddy (Oryza sativa L.). Asian J Biol Sci 4: 540-544. Link: https://www.tandfonline.com/doi/abs/10.1080/11779320209448356?journalCode=ajbs20

134. Shivarajashankara YM, Shivashankara AR, Gopalakrishna BP (2001) Mitigation of fluoride toxicity on seed germination, seedling growth and biochemistry of paddy (Oryza sativa L.). Asian J Biol Sci 4: 540-544. Link: https://www.tandfonline.com/doi/abs/10.1080/11779320209448356?journalCode=ajbs20

135. Ghorai S, Pant KK (2005) Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep Purif Technol 50: 310–317. Link: https://doi.org/10.1016/j.seppur.2013.12.015

136. Shivarajashankara YM, Shivashankara AR, Gopalakrishna BP (2001) Mitigation of fluoride toxicity on seed germination, seedling growth and biochemistry of paddy (Oryza sativa L.). Asian J Biol Sci 4: 540-544. Link: https://www.tandfonline.com/doi/abs/10.1080/11779320209448356?journalCode=ajbs20

137. Chauhan VS, Dwivedi PK, Iyengar LR (2013) Effect of sodium fluoride on seed germination, seedling growth and biochemistry of paddy (Oryza sativa L.). Asian J Biol Sci 4: 540-544. Link: https://www.tandfonline.com/doi/abs/10.1080/11779320209448356?journalCode=ajbs20

138. Bharti et al. (2017) Fluoride Sources, Toxicity and Its Amelioration: A Review. Peertechz J Environ Sci Toxicol 2(1): 021-032.
150. Hassan HA, Abdel-Aziz AF (2010) Evaluation of free radical-scavenging and anti-oxidant properties of blackberry against fluoride toxicity in rats. Food Chem Toxicol 48: 1999–2004. Link: https://goo.gl/pXybJx

151. Basha PM, Saumya SM (2013) Suppression of Mitochondrial Oxidative Phosphorylation and TCA Enzymes in Discrete Brain Regions of Mice Exposed to High Fluoride: Amelioration by Panax ginseng (Ginseng) and Lagerstroemia speciosa (Banaba) Extracts. Cell Mol Neurobiol 33: 453–464. Link: https://goo.gl/J7vuxH

152. Nabavi SF, Habtemariam S, Sureda A, Akbar HM, Daglia M, et al. (2013) In vivo protective effects of gallic acid isolated from peltiphyllum peltatum against sodium fluoride-induced oxidative stress in rat erythrocytes. Arh Hig Rada Toksikol 64: 553-559. Link: https://goo.gl/xBd4BC

153. Sinha M, Manna P, Sil PC (2008) Terminalia arjuna Protects Mouse Hearts Against Sodium Fluoride-Induced Oxidative Stress. J Med Food 11: 733–740. Link: https://goo.gl/BaU6DN

154. Vasant RA, Narasimhacharya AVR (2012) Ameliorative effect of tamarind leaf on fluoride-induced metabolic alterations. Environ Health Prev Med 17: 484–493. Link: https://goo.gl/6koPxk

155. Chawla SL, Yadav R, Shah D, Rao MV (2008) Protective action of melatonin against fluoride induced hepatotoxicity in adult female mice. Fluoride 41: 44-51. Link: https://goo.gl/QqxdDn

156. Jain A, Mehta VK, Chittora R, Mahdi AA, Bhatnagar M (2015) Melatonin ameliorates fluoride induced neurotoxicity in young rats: an in vivo evidence. Asian J Pharm Clin Res 8: 164-167. Link: https://goo.gl/HJElEk

157. Bharti VK, Srivastava RS, Kumar H, Bag S, Majumdar AC, et al. (2014) Effects of melatonin and epiphyseal proteins on fluoride-induced adverse changes in antioxidant status of heart, liver, and kidney of rats. Adv Pharmacol Sci 2014:522969. Link: https://goo.gl/IESXbF

158. Bharti VK, Srivastava RS (2011) Effects of epiphyseal proteins and melatonin on the blood biochemical parameters of fluoride-intoxicated rats. Neurophysiol 42: 258-264. Link: https://goo.gl/5pgiO3

159. Rao MV, Chawla SL, Patel N (2009) Melatonin reduction of fluoride-induced nephrotoxicity in mice. Fluoride 42: 110–116. Link: https://goo.gl/8tLwwQ

160. Bharti VK, Srivastava RS (2011) Effect of pineal proteins and melatonin on certain biochemical parameters of rats exposed to high-fluoride drinking water. Fluoride 44: 30–36. Link: https://goo.gl/kwE7ZU

161. Chawla SL, Rao MV (2012) Protective effect of melatonin against fluoride induced oxidative stress in the mouse ovary. Fluoride 45: 125–132. Link: https://goo.gl/7nWbhZ

162. Rao MV, Bhatt RN (2012) Melatonin protection against F-induced oxidative stress and testicular dysfunction in rats. Fluoride 45: 116-124. Link: https://goo.gl/NIJNgv

163. Rao MV, Vyas DD, Meda RB, Chawla SL (2011) In vitro protective role of melatonin against hemolysis induced by sodium fluoride in human red blood cells. Fluoride 44: 77–82. Link: https://goo.gl/5jWUTb

164. Bharti VK, Srivastava RS, Anand AK, Kusum K (2012) Buffalo (Bubalus bubalis) epiphyseal proteins give protection from arsenic and fluoride-induced adverse changes in acetylcholinesterase activity in rats. J Biochem Mol Toxicol 26: 10-15. Link: https://goo.gl/8eDjIV

165. Bharti VK, Srivastava RS (2011) Effect of pineal proteins at different dose level on fluoride-induced changes in plasma biochemicals and blood antioxidants enzymes in rats. Biol Trace Elem Res 141: 275-282. Link: https://goo.gl/8eDjIV

166. Mansour HH, Tawfik SS (2012) Efficacy of lycopene against fluoride toxicity in rats. Pharm Biol 50: 707–711. Link: https://goo.gl/z2hgHD