THE COSMIC HORSESHOE: DISCOVERY OF AN EINSTEIN RING AROUND A GIANT LUMINOUS RED GALAXY

V. Belokurov,1 N. W. Evans,1 A. Moiseev,2 L. J. King,1 P. C. Hewett,1 M. Pettini,1 L. Wyrzykowski,1,3 R. G. McMahon,1 M. C. Smith,1 G. Gilmore,1 S. F. Sanchez,4 A. Udalski,3 S. Koposov,3 D. B. Zucker,1 and C. J. Walcher6

Received 2007 June 14; accepted 2007 October 29; published 2007 November 13

ABSTRACT

We report the discovery of an almost complete (∼300°) Einstein ring of diameter 10′ in Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Spectroscopic data from the 6 m telescope of the Special Astrophysical Observatory reveal that the deflection galaxy has a line-of-sight velocity dispersion in excess of 400 km s\(^{-1}\) and a redshift of 0.444, while the source is a star-forming galaxy with a redshift of 2.379. From its color, luminosity, and velocity dispersion, we argue that this is the most massive galaxy lens hitherto discovered.

Subject headings: galaxies: evolution — galaxies: structure — gravitational lensing

1. INTRODUCTION

There have been many optical giant arcs discovered, caused by the lensing effects of massive galaxy clusters and their central galaxies. But, few optical rings have ever been found, despite theoretical predictions that they should be abundant (Miralda-Escude & Lehar 1992). Warren et al. (1996) found 0047–2808, which is a high-redshift star-forming galaxy lensed by a massive early-type galaxy into a partial (∼170°) Einstein ring of 2.70′ diameter, while King et al. (1998) discovered a complete Einstein ring in the near-infrared around B1938+666. Cabanac et al. (2005) found a nearly complete (∼260°) Einstein ring of diameter 2.96′ produced by the lensing of a starburst galaxy by a massive and isolated elliptical galaxy. The Sloan Lens ACS Survey (SLACS; Bolton et al. 2006) has also identified a number of partial optical rings, based on the identification of anomalous emission lines in Sloan Digital Sky Survey (SDSS) spectra together with confirmatory follow-up data. Here, we report the discovery of the Cosmic Horseshoe—an almost complete (∼300°), giant Einstein ring, with a diameter of ∼10″ in SDSS data. Throughout the Letter, we use the standard cosmology Ω_m = 0.3, Ω_Λ = 0.7, and H_0 = 70 km s\(^{-1}\) Mpc\(^{-1}\).

2. DISCOVERY AND FOLLOW-UP

Previous search strategies with SDSS data can be divided into three kinds. The first discovery was made by Inada et al. (2003a), who searched around spectroscopically identified quasars looking for stellar-like objects with a similar color to provide candidates for follow-up, and found the spectacular 14.62″ separation lens SDSS J1004+4112. The remaining two methods target smaller separation lenses, in which the images are unresolved by SDSS. Inada et al. (2003b) and Johnston et al. (2003) searched through spectroscopically identified quasars, looking for evidence of extended sources corresponding to unresolved, multiple images. The most widely used strategy is to search through the spectroscopic database looking for emission lines of high-redshift objects within the spectrum of lower redshift early-type galaxies (Willis et al. 2005; Bolton et al. 2006). Here, we introduce a new method, inspired by the recent, serendipitous discovery of the 8 o’clock arc, which is a Lyman break galaxy lensed into three images merging into an extended arc (Allam et al. 2007). The SDSS pipeline resolved the arc into three objects. This suggests searching for multiple, blue, faint companions around luminous red galaxies (LRGs) in the SDSS object catalog. The search is fast, so it is easy to experiment with different magnitude and color cuts, as well as search radii. For example, selecting lenses in DR5 to be brighter than r = 19.5 and g – r > 0.6, together with sources within 6″ that are fainter than r = 19.5 and bluer than g – r = 0.5, yields three very strong candidates. One of the three candidates is the 8 o’clock arc—another is the subject of this Letter, the Cosmic Horseshoe.

The left panel of Figure 1 shows a g, r, i composite image. Most of the faint objects in the field of view are galaxies, but the environment is clearly not that of a rich cluster. The inset shows a 16″ × 16″ cutout in which the central lens galaxy is surrounded by a ∼300° ring of radius ∼5″. This makes it the largest, and one of the most complete, optical rings ever discovered.

We obtained imaging follow-up data at the 2.5 m Isaac Newton Telescope (INT), La Palma, and spectroscopy at the 6 m BTA telescope of the Special Astrophysical Observatory (SAO), Nizhniy Arkhyz, Russia. Observations were carried on the INT on the night (UT) of 2007 May 12 with the Wide Field Camera (WFC). The exposure times were 600 s in each of the three wave bands u, g, and i—which are similar to the SDSS filters. The measured seeing (FWHM) on the images (0.33″ pixels) was 1.30″, 1.26″, and 1.21″ in u, g, and i, respectively. The INT data are roughly a magnitude deeper than the SDSS data and were reduced using the CASU INT WFC pipeline (Irwin & Lewis 2001). The bottom right panel of Figure 1 shows the g, r, i composite field of view of 24″ × 24″ centered on the lens galaxy. The Cosmic Horseshoe is shown with great clarity in the panels of Figure 2. We can extract the properties of the LRG, such as magnitude, effective radius, ellipticity, and orientation, by masking out the ring emission and fitting a PSF-convolved de Vaucouleurs profile as listed in Table 1. Our INT magnitudes agree with the SDSS magnitudes reported in the table, although SDSS overestimates the g-band effective radius because of contamination from the ring. The shape of the isophotes of the LRG is shown in dotted lines. In
the right panel, the light from the lens galaxy is subtracted to leave a clearer picture of the ring in the g-band. The surface brightness profile along the ring in magnitudes arcsec$^{-2}$ is shown in the inset. There are four maxima, A, B, C, and D, whose right ascension and declination offsets from the LRG are A: (3.0", 4.6"), B: (−1.1", 5.2"), C: (−4.7", 2.2"), and D: (2.0", −4.0"), together with errors of ≤0.4". There is some evidence that C may even be considered as two merging images at C$_1$ (−4.7", 2.2") and C$_2$ (−4.8", −1.7"). Figure 3 shows the number density of galaxies with photometric redshifts provided by SDSS in the range 0.35 < z < 0.55. In the left panel, a large-scale filamentary structure can be discerned. The middle panel shows that the Cosmic Horseshoe lies in a group of galaxies—the enhancement in number density over the background is ∼6. The lens is the brightest object in the group of ∼26 members, as is clear from the cumulative luminosity function in the right panel.

Long-slit spectral observations were performed on 2007 May 15/16 with the multimode focal reducer SCORPIO (Afanasiev & Moiseev 2005) installed at the prime focus of the BTA 6 m telescope at the SAO. The seeing was 1.7". A 1.0" wide slit was placed to intercept the two brighter arcs in the ring (C and D in Fig. 2) and to include some of the light from the lens galaxy, as shown in the top right panel of Figure 1. We used the VPHG550G grism, which covers the wavelength interval 3650–7550 Å with a spectral resolution 8–10 Å FWHM. With a CCD EEV 42-40 2k × 2k detector, the reciprocal dispersion was 1.9 Å pixel$^{-1}$. The total exposure time was 3600 s, divided into six 10 minute exposures. The target was moved along the slit between exposures to ease background subtraction and CCD fringes removal in the data processing. The bias subtraction, geometric corrections, flat-fielding, sky subtraction, and calibration to flux units ($F_γ$) were performed by means of IDL-based software.

The top panel of Figure 4 shows a cutout of the two-dimensional spectrum with position along the slit plotted against the dispersion. The slit also passes through a nearby star, which causes the spectrum in the topmost pixels. In the lower part, the blue spectrum is dominated by two images of the source, while the red spectrum by the lensing galaxy. The lower panels show extracted one-dimensional spectra. The middle one is the sum of the two source images; there is a strong narrow line which is Lyα emission, together with accompanying Lyα forest blueward and multiple absorption lines redward. This yields a measurement of the source redshift as z = 2.379. The bottom panel is the lens galaxy spectrum, which shows the characteristic features of a LRG. The lens redshift is z = 0.444. Although Ca H and K absorption is detected in the lensing galaxy spectrum, the signal-to-noise (S/N) ratio is modest, ∼10, and the resolution relatively low. However, the inset in the bottom panel shows the instrumental resolution and the Ca H and K lines, which are clearly resolved. Performing fits of Gaussian line profiles to the absorption produces a velocity dispersion estimate of 430 ± 50 km s$^{-1}$, where the principal uncertainty arises from the placement of the “continuum.” The spectrograph slit was not aligned across the center of the galaxy but, given the relatively poor seeing, the spectrum is dominated by light from within the half-light radius of the galaxy.

3. DISCUSSION

3.1. Source

The spectrum in Figure 4 shows the source is a star-forming galaxy at z = 2.379. From the observed wavelengths of the

Parameter	Value
Lens:	
Right ascension	11h48m33.15s
Declination	19°30'03.5"
Redshift, z_l	0.444
Magnitudes (SDSS), g_l, r_l, i_l	20.8, 19.0, 18.2 mag
Effective radii (INT), R_{eff}	2.2", 1.7"
Axis ratio (INT; in g, i)	0.8, 0.9
Position angle (INT; in g, i)	99°, 95°
Radio flux (FIRST, NVSS)	5.4, 4.8 mJy
Source:	
Redshift, z_s	2.379
Ring:	
Diameter	10.2"
Length	300°
Total magnitudes (INT) u, g, i	21.6, 20.1, 19.7 mag
Mass enclosed	$5.4 \times 10^{10} M_\odot$
10 labeled absorption lines, we deduce a mean redshift \(\langle z_{\text{abs}} \rangle = 2.3767 \pm 0.0006 \), while the peak of the Ly\(\alpha \) emission line gives \(z_{\text{em}} = 2.3824 \). The overall character of the spectrum is typical of BX galaxies in the surveys by Steidel et al. (2004). These are galaxies at a mean redshift \(\langle z \rangle \approx 2.2 \) selected from their blue rest-frame UV colors. In finer detail, the spectrum resembles most closely the subset of these galaxies which are relatively young, with assembled stellar masses \(\langle M^* \rangle \approx 5 \times 10^9 M_\odot \) and metallicities of about 1/3 solar. The composite spectrum of galaxies with these characteristics has been discussed by Erb et al. (2006a) and has typical rest-frame equivalent widths of the interstellar lines \(W_{\text{obs}} \approx 1.5–2 \) \(\text{Å} \), and a similar strength of the Ly\(\alpha \) emission line. The closest local analog is the field spectrum of nearby starburst galaxies (Chandar et al. 2005). The difference between Ly\(\alpha \) emission and interstellar absorption redshifts found here is typical of high-redshift star-forming galaxies and is generally interpreted as resulting from large-scale outflows of the interstellar medium in galaxies with high rates of star formation, driven by kinetic energy deposited by massive star winds and supernovae. Adopting the median blueshift of 165 km s\(^{-1}\) of the interstellar absorption lines relative to the H \(\text{II} \) regions producing He\(\alpha \) emission (C. C. Steidel et al. 2007, in preparation), we deduce a systemic redshift of \(z_{\text{sys}} = 2.379 \).

Interpolating between the measured \(g \) and \(i \) magnitudes in Table 1, we deduce an absolute magnitude at 1700 Å \(AB_{1700} = -25.4 \) in the standard cosmology. If the magnification factor is \(\sim 35 \) (see § 3.2), or 3.9 mag, this corresponds to an intrinsic \(AB_{1700} = -21.5 \), or \(L = 1.6 L^\odot \), according to the recent determination of the luminosity function of BX galaxies by Reddy et al. (2007). The colors of the lensed galaxy are typical of those of most BX galaxies. The \(u - g \) and \(g - i \) colors indicated by the photometry in Table 1 imply a UV spectral slope redder than the essentially flat spectrum \((F \propto \nu^0) \) expected for an unobscured star-forming galaxy (e.g., Leitherer et al. 1999). Assuming that the Calzetti et al. (2000) obscuration law applies, we deduce \(E(B-V) = 0.2 \), close to the median of the distribution of the values reported by Erb et al. (2006b) for BX galaxies. The corresponding attenuation at 1700 Å is a factor of \(\sim 6 \).

3.2. Lens

Bernardi et al. (2006) found 70 galaxies with dispersions >350 km s\(^{-1}\) that were not superpositions in the spectroscopic part of the SDSS DR1. These are the galaxies with largest velocity dispersions and might harbor the most massive black holes. The fact that the PSF-convolved de Vaucouleurs model gives an excellent fit to the light distribution of the lens galaxy minimizes the chance that the high-velocity dispersion is a product of superposition in our case. The lens is detected in the NVSS and FIRST surveys with an integrated flux density at 20 cm of 4.8 and 5.4 mJy, respectively. Assuming a radio spectrum of the form \(S \propto \nu^\alpha \) \((\alpha = -0.7) \), the monochromatic radio power is \(3.2 \times 10^{24} \text{ W Hz}^{-1} \), similar to the radio galaxies studied at \(z \sim 0.7 \) in the 2SLAQ luminous red galaxy survey (Sadler et al. 2007). Of course, we have assumed that all of the radio flux comes from the lens. In the nearby universe such powerful radio sources are associated with active galactic nuclei rather than star-forming galaxies.

The \(r \)-band absolute magnitude of the lens is \(-23.45 \) at \(z = 0 \). This assumes the SDSS \(r \)-band model magnitude of \(r = 19.00 \), together with the standard cosmology, a \(k \)-correction of \(-0.87 \) mag, and the passive evolution model of \(+0.38 \) mag (Bernardi et al. 2003). This puts the lens in the brightest bin for LRGs. The high luminosity is also indicated by the red color \((g-i > 2.6) \) of the galaxy. Color and luminosity also correlate with velocity dispersion and mass (Figs. 4 and 7 of Bernardi et al. 2003). All these measurements support the idea that the lensing galaxy is a very massive object.

Let us model the lens as a singular isothermal sphere galaxy with a velocity dispersion \(\sigma = 430 \) km s\(^{-1}\). For a lens redshift of 0.44 and a source redshift of 2.38, the deflection due to an isothermal sphere is \(\sim 3.7 \). As the LRG is so massive, it pro-
vides most of the deflection needed. In physical units, the ring radius is at a projected distance of \(\sim 50 \) kpc from the center of the LRG. The (cylindrical) mass enclosed within the Einstein ring is \(\sim 5.4 \times 10^{12} M_\odot \). The magnification can be estimated assuming that the source size is \(\sim 0.4'' \) (Law et al. 2007). The ratio of the area subtended by the ring to that subtended by the source is \(\sim 4R/\delta R \), where \(R \) is the ring radius and \(\delta R \) is the source size, which is roughly the same as the ring thickness. This gives a magnification of \(\sim 50 \). Although the lens galaxy provides most of the deflection, there is probably a modest contribution from the environment. Kochanek et al. (2001) showed that the ellipticity of an Einstein ring is proportional to the external shear. The Cosmic Horseshoe is nearly a perfect circle. Any contribution from the galaxy group must therefore be modest. This is surprising, as all other large-separation lenses have a significant contribution from the environment.

The ring has at least four density knots, whose locations are noted in § 2. A more sophisticated algorithm that fits to the image locations and relative brightnesses is provided by the method of Evans & Witt (2003). Here, the lens density has an isothermal profile in radius, but the angular shape of the iso-density contours is given by a Fourier series. Fermat surfaces and critical curves are presented for two possible models in Figure 5. In the left panel, the positive parity images are A and C, while the negative parity images corresponding to saddle points on the Fermat surface and are B and D. In the right panel, C is regarded as a merging pair (C1 and C2), while A and D are retained as images and B is discarded. In both cases, the mass enclosed within the Einstein ring is \(\sim 6 \times 10^{12} M_\odot \), similar to our crude estimates, while the magnification is in the range 25–35. Also possible is that the Cosmic Horseshoe is a sextuplet system, with C a conglomeration of three merging images in addition to A, B, and D (see, e.g., Evans & Witt 2001).

The combination of high absolute luminosity and large magnification factor makes the Cosmic Horseshoe the brightest galaxy known at \(z > 2 \). The lens galaxy is one of the most massive LRGs ever detected. Detailed studies of this remarkable system at a variety of wavelengths, from optical to submillimeter, will help us probe the physical nature of star formation in the young universe, while detailed modeling will enable us to study the interplay between baryons and dark matter in very massive galaxies.

The authors acknowledge with gratitude the support of the EC 6th Framework Marie Curie RTN Programme MRTN-CT-2004-505183 ("ANGLES"). The Letter was partly based on observations collected with the 6 m telescope of the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences (RAS), which is operated under the financial support of Science Department of Russia (registration number 01-43). Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. A. V. M. also acknowledges a grant from the President of the Russian Federation (MK1310.2007.2).

REFERENCES

Afanasiev, V. L., & Moiseev, A. V. 2005, Astron. Lett., 31, 194
Allam, S. S., Tucker, D. L., Lin, H., Diehl, H. T., Annis, J., Buckley-Geer, E. J., & Frieman, J. A. 2007, ApJ, 662, L51
Bernardi, M., et al. 2003, AJ, 125, 1849
———. 2006, AJ, 131, 2018
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T., & Moustakas, L. A. 2006, ApJ, 638, 703
Cabana, R. A., Valls-Gabaud, D., Jaunsen, A. O., Lidman, C., & Jerjen, H. 2005, A&A, 436, L21
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 682
Chandar, R., Leitherer, C., Tremonti, C. A., Calzetti, D., Aloisi, A., Meurer, G. R., & de Mello, D. 2005, ApJ, 628, 210
Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., & Adelberger, K. L. 2006b, ApJ, 644, 813
Erb, D. K., Steidel, C. C., Shapley, A. E., Pettini, M., Reddy, N. A., & Adelberger, K. L. 2006a, ApJ, 646, 107
Evans, N. W., & Witt, H. J. 2001, MNRAS, 327, 1260
———. 2003, MNRAS, 345, 1351
Inada, N., et al. 2003a, Nature, 426, 810
Inada, N., et al. 2003b, AJ, 126, 666
Irwin, M. J., & Lewis, J. R. 2001, NewA Rev., 45, 105
Johnston, D. E., et al. 2003, AJ, 126, 2281
King, L. J., et al. 1998, MNRAS, 295, L41
Kochanek, C. S., Keeton, C. R., & McLeod, B. A. 2001, ApJ, 547, 50
Law, D. R., Steidel, C. C., Erb, D. K., Pettini, M., Reddy, N. A., Shapley, A. E., Adelberger, K. L., & Simenc, D. J. 2007, ApJ, 656, 1
Leitherer, C., et al. 1999, ApJS, 123, 3
Miralda-Escude, J., & Leahy, J. 1992, MNRAS, 259, 31P
Reddy, N. A., Steidel, C. C., Pettini, M., Adelberger, K. L., Shapley, A. E., Erb, D. K., & Dickinson, M. 2007, ApJ, in press
Sadler, E., et al. 2007, MNRAS, 381, 211
Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65
Steidel, C. C., Shapley, A. E., Pettini, M., Adelberger, K. L., Erb, D. K., Reddy, N. A., & Hunt, M. P. 2004, ApJ, 604, 534
Warren, S. J., Hewett, P. C., Lewis, G. F., Moller, P., Iovino, A., & Shaver, P. A. 1996, MNRAS, 278, 139
Willis, J. P., Hewett, P. C., & Warren, S. J. 2005, MNRAS, 363, 1369

FIG. 5.—Contours of the Fermat time delay surface for two possible lens models of the Cosmic Horseshoe, together with the locations of the stationary points which mark the predicted image positions. The critical curve of the lens model, which is also a contour of constant convergence, is shown in red, together with the observed image locations. Left: The model uses eq. (5) of Evans & Witt (2003) with the Fourier coefficients \(\alpha_b = 9.89, \alpha_c = 0.090, b_2 = -0.11, a_2 = 0.02, b_1 = -0.04 \) to reproduce image locations A, B, C, and D. Right: A similar model, but with Fourier coefficients \(\alpha_a = 10.07, \alpha_b = 0.066, b_2 = -0.22, a_1 = -0.03, b_1 = -0.01 \) to reproduce image locations A, C, C′, and D.