Mapping Vegetation Species Succession in a Mountainous Grassland ecosystem using Landsat and Sentinel-2 data

Adagbasa G. E.¹*, Mukwada G.¹,²,³

¹Department of Geography, University of the Free State, South Africa
²Afromontane Research Unit, University of the Free State, South Africa
³Department of Geography & W.A. Franke College of Forestry & Conservation of the University of Montana, USA

Corresponding Author:
E-mail address: Adagbasa.Eg@ufs.ac.za (EG)
Abstract

Vegetation species succession and composition are significant factors determining the rate of ecosystem biodiversity recovery after being disturbed and subsequently vital for sustainable and effective natural resource management and biodiversity. The succession and composition of grasslands ecosystems worldwide have significantly been affected by the accelerated changes in the environment due to natural and anthropogenic activities. Therefore, understanding spatial data on the succession of grassland vegetation species and communities through mapping and monitoring is essential to gain knowledge on the ecosystem and other ecosystem services. This study used a random forest machine learning classifier on the Google Earth Engine platform to classify grass vegetation species with Landsat 7 ETM+ and ASTER multispectral imager (MI) data resampled with the current Sentinel-2 MSI data to map and estimate the changes in vegetation species succession. The results indicate that ASTER IM has the least accuracy of 72%, Landsat 7 ETM+ 84%, and Sentinel-2 had the highest of 87%. The result also show that other species had replaced four dominant grass species totaling an area of about 49 km² throughout the study.

Keywords: Grassland, Succession, Mountains, Remote sensing

1. Introduction

Vegetation succession has many economically significant attributes, including high overall biomass and productivity, a wider variety of species, and minimal nutrients or energy from the ecosystem (1). Nevertheless, an ecosystem with naturally occurring succession stages will be more resilient to natural and anthropogenic disturbances, suppose these disturbances increase in severity, frequency, and magnitude because of human activities and weather conditions. In that case, the
pressure on plant communities increases, thereby causing an accelerated succession and creating
a new vegetation community and allowing the succession of non-native species (2).

Luken (1) describes vegetation succession as a change in vegetation composition over 500 years
without been disturbed to achieve a stable species composition called a climax. Climate change
and other disturbances within a short period may result in fluctuations of species composition,
promote non-native species and delay the natural vegetational succession from reaching its climax.
The succession of non-native species could impact biodiversity and the natural ecosystem. Non-
native invasive species quickly inhabit disturbed spaces and delay native species from achieving
seral or climax states. In some cases, the succession is entirely taken over and held for an extended
period at an intermediate state, affecting biodiversity (3-5). Invasive vegetation species threaten
native vegetation species and water resources because they grow faster, consume more water, and
spread more than the native species (6, 7). The encroachment of these vegetation species tends to
alter the balance of ecosystems, thereby accelerating succession. Vegetation species succession
and composition are significant factors determining the rate of ecosystem biodiversity recovery
after being disturbed (8) and subsequently vital for sustainable and effective natural resource
management and biodiversity. For example, in South Africa, changes in vegetation succession
resulting from disturbances have led to significant losses in biodiversity (9).

Worldwide, the succession and composition of grasslands ecosystems have been significantly
affected by the accelerated changes in the environment due to natural and anthropogenic activities
(10, 11). It has resulted in shortages in grasslands taxonomy and efficient functioning of ecosystem
services (12). Grasslands’ changing diversity and composition impact ecosystem services like
precipitation and temperature controls, freshwater supply, erosion control, and soil formation (13-
15). They can likely result in biodiversity loss (16). About one-third of South African land surface
is covered by the grassland biome (17). It has just less than 3% located in protected areas, and 40-60% have been altered with little chance of been salvaged and returned. It makes the grassland one of the most vulnerable biomes in South Africa (18). Therefore, understanding spatial data on the succession of grassland vegetation species and communities through mapping and monitoring is essential to gain knowledge on the ecosystem and other ecosystem services (9, 19, 20).

Remote sensing provides an efficient approach for mapping grassland vegetation species by reducing rigorous fieldwork necessitated by standard mapping methods. It does this effectively by offering a wide range of recent data on vegetation species distribution from hyperspectral and multispectral imagery (21, 22). Extensive studies have been undertaken in monitoring spatio-temporal changes in vegetation species composition and diversity using remote sensing data (23-26). However, these studies focus briefly on a short period, usually between one to five years, because, before now, only high-resolution hyperspectral images could give accurate vegetation species discrimination at individual levels (9, 19, 27-30). Nevertheless, recent studies have shown that free low-resolution satellite images like Sentinel-2 MSI and Landsat 8 OLI can be used to accurately map and monitor grassland vegetation species (31-33). Vegetation species succession and diversity monitoring can be done over an extended period using these low-resolution imageries in combination with machine learning. Therefore, this study used Landsat 7 ETM+ and ASTER MI data fused with the current Sentinel-2 MSI data to map and estimate the changes in vegetation species succession.

2. Study Area

The study was conducted at the Golden Gate Highlands National Park, located in Free State, South Africa, near the Lesotho border (Figure 1). The Park covers 340 km² and is located at the foothills of the Maloti Mountains of the Eastern Free State. The highest peak in the park is 2,829 m (9,281
ft) above sea level. The Park is positioned in the Eastern Highveld region of South Africa and experiences a dry, sunny climate from June to August with showers, hail, and thunderstorms between October and April and snow in winter. The Park has a relatively high annual rainfall of 800 mm (31 in). The park contains over 60 grass species (34).

Figure 1: The Study Area

3. Materials and Methods

The study used satellite images from different sensors to cover the period of study. The sensors used include the European Union/ESA/Copernicus Sentinel-2 MSI, the United States Geological Survey (USGS) Landsat series ETM+, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imager satellite images with UTM Projection Zone35S, and Datum WGS84 available on the Google earth engine (GEE). The imageries were selected for the rainy months from November to April. The year 2001 was chosen for the Landsat ETM+, 2011 for the ASTER MI, and 2021 for Sentinel-2. Landsat ETM+ and OLI were selected
for this study because they have a 15m panchromatic band used to pansharpening the images from 30 m to 15 m. ASTER IM was selected for 2011 because Landsat ETM+ had the scan line error for 2011. Also, the ASTER IM has 15 m, resolution bands. The atmospheric and geometric correction was done on the images, and the 10 m bands of Sentinel-2 were then used to resample the pan sharped 15m Landsat images and ASTER IM to 10 m using bicubic interpolation. All the images from the different sensors were calibrated to top-of-atmosphere (TOA) reflectance. A spectral library of the 12 dominant grass vegetation species in the study area was acquired from a previous study (31) that used deep learning and machine learning models to discriminating grass species at the individual level. Their study recommended Sentinel-2 MSI bands 6, 7 (red edge), bands 8 and 8A, band 11, and band 12 to produce optimum classification accuracy. Therefore, the spectral resolution of these bands was used to match and select the bands in the Landsat ETM+ and ASTER MI as presented in table 1. The spectral library was used to generate 100 random sample locations for training and cross-validation. The locations were randomly split into a training set (70%) to train the classifiers (31, 35) and a test set (30%) for testing purposes (31, 36).

The GEE code editor random forest machine learning classifier with ten trees was used to process the image collections to classify the images into induvial species classes (31, 37). Ancillary data such as Normalized Difference Vegetation Index (NDVI) were mapped into the image collection on GEE before classification was done to improve classification accuracy. The difference in illuminating effect by high mountains was accounted for by mapping a 15 meters resolution ASTER Global Digital Elevation Model (GDEM) version 2 scale down to 10 m into the image collection (31, 36, 38, 39).

Table 1: Selected bands for classification
4. Results and Discussion

4.1. Sensor performance and spectral reflectance

Table 2 shows the accuracy of each sensor. ASTER IM has the least accuracy of 72%, Landsat 7 +ETM 84%, and Sentinel-2 had the highest of 87%. The ASTER IM had the lowest level of accuracy, possibly because (40) stated that each scene does not have all 14 bands. Therefore, some scenes may have fewer bands than others. Hence, only bands 1 to 3 were available for that period. However, these bands' spectral range can be compared to bands 1-5 of Landsat +ETM and OLI. Another possible reason is that the three bands available didn't adequately separate the grass species from each other, as shown in the spectral reflectance curve in Figure 2. Nevertheless, if all the bands were available, ASTER IM should discriminate the grass species effectively to attain a higher accuracy using machine learning classifiers. The accuracy of the ASTER image agrees with a study done by (41). Their study used ASTER NDVI and EVI to discriminate rice and citrus fields with 75% and 65% accuracy, respectively. They also used Landsat 5 TM NDVI and EVI,
which had a lower accuracy of 60% and 65% than the accuracy reached in this study with Landsat 7 ETM+. Landsat 7 ETM+ was able to get a greater accuracy because the bands were pansharpened with the 15m panchromatic bands, unavailable on the Landsat 5 T.M., and resampled from 30 m to 10 m using the Sentinel-2 10 m bands. Also, the R.F. machine learning classifier, which many studies have proved to improve classification (31, 32, 42, 43), contributed to the higher accuracy in this study than the density slicing classification used in their research.

Table 2: Accuracy of different sensors

S/N	Sensors	Accuracy %
1	Sentinel-2 MSI (2021)	87%
2	Landsat 7 +ETM (2001)	84%
3	ASTER MI (2011)	72%

Figure 2: Species spectral reflectance curves of twelve grass species extracted from Landsat 7 ETM+ (a), ASTER MI (b), and Sentinel-2 (c)
Figure 2 shows the spectral reflectance of the twelve grass species extracted from all the sensors. In the Landsat 7 ETM+, the species were discriminated in wavelengths of 0.52 - 0.77 µm and 1.55 – 2.08 µm, representing bands at the start of the wavelength for the panchromatic near-infrared, shortwave infrared 1, and shortwave infrared 2. The ASTER MI has its best spectral separation wavelength of 0.780-0.860µm (VNIR near-infrared, nadir pointing band). At the same time, the Sentinel-2 separated it best in the bands 6, 7 (red edge), bands 8 and 8A, band 11, and band 12 as recommended by the study by (31, 44-46), hence the difference in classification accuracy.

4.2. Grass Species changes and succession.

Figure 3 shows the map of twelve dominant vegetation species discrimination for 2001, 2011, and 2021. However, the classified map for 2010 was not analyzed further because of the low level of accuracy. The difference of 12% from 2001 and 15% to 2021 might misrepresent the changes that occurred with the classified maps of 2001 and 2021.

Figure 3: The map of grass species derived from the Landsat 7 ETM+ (a), ASTER MI (b), and Sentinel-2 MSI (c).
Figure 4 shows the vegetation changes from 2001 to 2021. It shows that four grass species had the most significant transformation into other species in area coverage over twenty years. *S. centrifugus* had an enormous shift of 22.6 km\(^2\), *E. curvula* had a change of 11.42 km\(^2\), *S. Conrathii* had a change of 9.7 km\(^2\), and *P.australis* changed 5.14 km\(^2\). The other seven grass species had gained and losses over the other four species.

Figure 4: Vegetation transformation between 2001 and 2021

M. junceus has the highest success rate. It has replaced different species covering a total land area of 17.22 km\(^2\). Another species fast replacing other species is the *T. triandra* species, replacing 11.4 km\(^2\) that formerly contained other species. *E. curvula*, termed an increaser species by many studies (9, 31), and grows very fast in disturbed environments have been replaced by eight different species. *T. triandra* accounts for 50% of the total area that other species have replaced the *E. curvula*. Although the *E. curvula* being an increaser species, it had replaced other species like the *S. centrifugus* and area dominated by mixed species in different study locations and gained back almost 90% of the area lost to other species in Figures 5 and 6. Figure 6 shows that the replacement of *E. curvula* by *T. triandra* happens all over the study area. Still, it is more concentrated around the North, North-East, South-west, and roads of the study area.
Figure 5: Species contributions to changes in *Eragrostis curvula*

Figure 6: Areas where *Themeda triandra* succeeded from *Eragrostis curvula*
S. centrifugus, the highest replacement species, is replaced by all the other species in the study area, especially M. junceus, E. curvula, and T. triandra, accounting for 4.8 km², 4.7 km², and 3.3 km² respectively in figure 7. The S. centrifugus species is monocotyledon and belongs to the Poaceae family. It is a native species of South Africa and is termed one of the least concerned threatened species in the red list of South African plants (47). The succession appears to be occurring around the South, South-western part of the study area, where there are very high elevations (figure 8).

Figure 7: Species contributions to change in Sporobolus centrifugus
Figure 8: Areas where *M. junceus* succeeded from *S. centrifugus*

S. Conrathii is a native species in South Africa but not endemic to the country. It is also not seen as threatened plant species (47). This species has about 6.26 km² replaced by *M. junceus*, majorly in the southwestern (figure 10) part of the study area but gains 1.06km² by replacing *S. centrifugus* and 0.34km² of *H. depressa* (Figure 9).
Figure 9: Species contributions to changes in *Stiburus Conrathii*

Figure 10: Areas where *M. junceus* succeeded from *S. Conrathii*

P. australis is a decreaser species quickly affected by overgrazing and has a slow recovery rate after a disturbance (48). It is a tall grass found across South Africa, especially around river beds.
and wet environments, and is not at risk of extinction. (47, 49). Nevertheless, figure 11 shows that it is being replaced mainly by *T. triandra* (2.55 km2), *E. plane* Nees (2.3 km2), and *M. junceus* (1.4 km2). It is also gaining back by replacing *S. centrifugus* and *E. curvula*. It is found across the study area around the river channels and is replaced mainly in the southern and northern parts of the study area (Figure 12).

![Species contributions to change in *Phragmites australis*](image)

Figure 11: Species contributions to change in *Phragmites australis*

The replacement of species may be happening because several factors or disturbances like that could either be natural or anthropogenic. Each species may have a unique or several reasons for replacing others or has been replaced. Some of these species are used for human activities like thatching and medicinal purposes, and some are palatable for grazing. Climate change and fires are common factors that can also affect these successions (50, 51). The study area is a region constantly affected by wildfires, and the fire severity and magnitude have been mapped by (31). Their research showed some parts of the study area had constantly been burnt with high fire severity over 20 years. These parts of the study area may be experiencing changes in species composition, leaving only the fire-tolerant species or invasive species like *S. plumosum*, which is
a known species that promote the spread of wildfires (52-54). In fires recently disturbed areas in the park, *S. plumosum* can sprout and lie dormant when encountering higher temperatures and low-moisture conditions for the remainder of winter while awaiting the emergence of spring (55).

Figure 12: Areas where *T. triandra* succeeded from *P. australis*

Several studies have found that climatic variables like temperature changes significantly impact the distribution of ecological characteristics and environmental dynamics for many types of vegetation species, including alien or native hosts (55-57). Temperature plays a significant role in the distribution of species, with substantial effects on fire risk. The region's climate often has extended periods of pronounced temperature and low precipitation, resulting in large, devastating
fires that devastate populations of plant life (57). In their research in the study area, Adepoju, Adelabu (55) noted the possibility that the distribution of some types of grasses could be better enhanced under conditions with higher daytime temperatures, low to moderate levels of rain at lower elevations. They also noted that climate is an essential factor in determining grass species distribution in the mountainous grasslands of South Africa, where periods of warm and cold weather considerably fluctuate.

Areas that are subject to overgrazing and human activities are more likely to experience the spreading of the species that can lead to gaining of new species and loss others. Factors like distance from settlement, land near grasslands and agricultural, and distance from roads impact how disturbances affect different vegetation species (55, 58, 59). The study area has been a national park with a history of incorporating farms lands to expand the conservation area (60). In February 1991, the Qwaqwa National Park, which initially comprised multiple crop farmlands, agricultural activities like domestic animal grazing, was also integrated into the study area. To date, some of these farmers are still located in the park, and their livestock is still grazing the vegetation (60, 61). However, some farmers have stopped planting on them. The disturbed land has been left to recover by the park managers as a conservation strategy. Nevertheless, not all these previous farmlands have recovered fully because the soils have been over-exploited. The vegetation species in these locations struggle to survive with the effects of disturbances like frequent wildfires and overgrazing from agricultural animals from within the park or the surrounding communal areas or from the herbivorous animals within the park.
5. Conclusion

This study has shown that the Landsat 7 ETM+ can be used for vegetation species discrimination if the panchromatic band is used to pan sharpening the 30 m bands to 15 m and then resampled with the 10m bands Sentinel-2 MSI. It will allow for research in monitoring vegetation species changes over a long period. Although the ASTER MI wasn't used to analyze the vegetation species changes, it also has a prospect of being used if all the recommended bands are available. The study explored the differences in vegetation species that have occurred over 20 years but didn't explore the precise reasons why others were replacing some vegetation species. The causes and factors influencing the shift in vegetation species in some park locations can be done in a further study. It will help the park managers appropriately manage the park and prevent key vegetation species from total annihilation by other more aggressive vegetation species, preserving the animal population in the park and keeping the ecosystem healthy.

6. Acknowledgments

The authors would like to acknowledge the support of the South African National Park (SANPARKS) South Africa throughout data collection. The authors would also like to acknowledge the contribution of Prof. S.A Adelabu without whom this research would not have been possible.
References

1. Luken JO. Vegetational succession, climax. Environmental Geology. Dordrecht: Springer Netherlands; 1999. p. 652-4.
2. Ma W, Wang X, Zhou N, Jiao L. Relative importance of climate factors and human activities in impacting vegetation dynamics during 2000–2015 in the Otindag Sandy Land, northern China. Journal of Arid Land. 2017;9(4):558-67.
3. David AS, Zarnetske PL, Hacker SD, Ruggiero P, Biel RG, Seabloom EW. Invasive congeners differ in successional impacts across space and time. 2015;10(2):e0117283.
4. Vera FWM. Grazing ecology and forest history: Cabi; 2000.
5. Dyderski MK, Jagodziński AMF. Impact of invasive tree species on natural regeneration species composition, diversity, and density. 2020;11(4):456.
6. Rebelo A, Cowling R, Richardson D, Pierce S. Vegetation of Southern Africa. Cambridge University Press Cambridge; 1997.
7. Curhes S, Leigh C, Walton C. Weed risk assessment: African lovegrass Eragrostis curvula. 2009.
8. Viana-Soto A, Aguado I, Martínez S. Assessment of Post-Fire Vegetation Recovery Using Fire Severity and Geographical Data in the Mediterranean Region (Spain). Environments. 2017;4(4):90.
9. Mansour K, Mutanga O, Everson T, Adam E. Discriminating indicator grass species for rangeland degradation assessment using hyperspectral data resampled to AISA Eagle resolution. ISPRS Journal of Photogrammetry and Remote Sensing. 2012;70:56-65.
10. Smart SM, Thompson K, Marrs RH, Le Duc MG, Maskell LC, Firbank LG. Biotic homogenization and changes in species diversity across human-modified ecosystems. 2006;273(1601):2659-65.
11. Dallimer M, Tinch D, Acs S, Hanley N, Southall HR, Gaston KJ, et al. 100 years of change: examining agricultural trends, habitat change and stakeholder perceptions through the 20th century. 2009;46(2):334-43.
12. Wesche K, Krause B, Culmsee H, Leuschner CJB. Fifty years of change in Central European grassland vegetation: Large losses in species richness and animal-pollinated plants. 2012;150(1):76-85.
13. Hoeffner K, Beylich A, Chabbi A, Cluzeau D, Dascalu D, Graefe U, et al. Legacy effects of temporary grassland in annual crop rotation on soil ecosystem services. Science of The Total Environment. 2021;780:146140.
14. Zhao Y, Liu Z, Wu J. Grassland ecosystem services: a systematic review of research advances and future directions. 2020:1-22.
15. Muller M, Siebert S, Ntloko B, Siebert FJB. Conservation. A floristic assessment of grassland diversity loss in South Africa. 2021;51(1):1-9.
16. Everson CS, Everson TJA, Science F. The long-term effects of fire regime on primary production of montane grasslands in South Africa. 2016;33(1):33-41.
17. Carbutt C, Tau M, Stephens A, Escott BJG. The conservation status of temperate grasslands in southern Africa. 2011;11(1):17-23.
18. Little IT, Hockey PA, Jansen RJB. Conservation. Impacts of fire and grazing management on South Africa's moist highland grasslands: A case study of the Steenkampsberg Plateau, Mpumalanga, South Africa. 2015;45(1):1-15.
19. Cho MA, Malahlela O, Ramoelo A. Assessing the utility WorldView-2 imagery for tree species mapping in South African subtropical humid forest and the conservation implications: Dukuduku forest patch as case study. International Journal of Applied Earth Observation and Geoinformation. 2015;38:349-57.
20. Ramoelo A, Cho MA, Mathieu R, Madonsela S, Van De Kerchove R, Kasza Z, et al. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. International journal of applied earth observation and geoinformation. 2015;43:43-54.
21. Adam E, Mutanga O, Rugege D, Ismail R. Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP. International Journal of Remote Sensing. 2012;33(2):552-69.

22. Schmidt K, Skidmore A. Spectral discrimination of vegetation types in a coastal wetland. Remote sensing of Environment. 2003;85(1):92-108.

23. Lu B, He Y. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS Journal of Photogrammetry and Remote Sensing. 2017;128:73-85.

24. Osińska-Skotak K, Radecka A, Piórkowski H, Michalska-Hejduk D, Kopeć D, Tokarska-Guzik B, et al. Mapping Succession in Non-Forest Habitats by Means of Remote Sensing: Is the Data Acquisition Time Critical for Species Discrimination? 2019;11(22):2629.

25. Hantson W, Kooistra L, Slim PAJAvs. Mapping invasive woody species in coastal dunes in the Netherlands: a remote sensing approach using LIDAR and high-resolution aerial photographs. 2012;15(4):536-47.

26. Möckel T, Dalmayne J, Schmid BC, Prentice HC, Hall K. Airborne Hyperspectral Data Predict Fine-Scale Plant Species Diversity in Grazed Dry Grasslands. 2016;8(2):133.

27. Ramoelo A, Skidmore AK, Cho MA, Schlerf M, Mathieu R, Heitkönig IM. Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor. International Journal of Applied Earth Observation and Geoinformation. 2012;19:151-62.

28. Mutanga O, Adam E, Adjorlolo C, Abdel-Rahman EM. Evaluating the robustness of models developed from field spectral data in predicting African grass foliar nitrogen concentration using WorldView-2 image as an independent test dataset. International Journal of Applied Earth Observation and Geoinformation. 2015;34:178-87.

29. Cushman T, Yule I, Pullanagari R, Grafton M. Identifying grass species using hyperspectral sensing.

30. Adelabu S, Mutanga O, Adam E, Sebego R. Spectral discrimination of insect defoliation levels in mopane woodland using hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2014;7(1):177-86.

31. Adagbasa EG, Adelabu SA, Okello TW. Application of deep learning with stratified K-fold for vegetation species discrimination in a protected mountainous region using Sentinel-2 image. Geocarto International. 2019:1-21.

32. Shoko C, Mutanga O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS journal of photogrammetry and remote sensing. 2017;129:32-40.

33. Sothe C, Almeida CMD, Liesenberg V, Schimalski MBJRS. Evaluating Sentinel-2 and Landsat-8 data to map successional forest stages in a tropical forest in Southern Brazil. 2017;9(8):838.

34. Parks SAN. Annual Report 2006/07. 2007.

35. Nkemelu DK, Omeiza D, Lubalo N. Deep Convolutional Neural Network for Plant Seedlings Classification. arXiv preprint arXiv:181108404. 2018.

36. Adepoju K, Adelabu S, editors. Improved Landsat-8 OLI and Sentinel-2 MSI Classification in Mountainous Terrain using Machine Learning on Google Earth Engine. Proceedings of the Biennial Conference of the Society of South African Geographers; 2018; University of the Free State.

37. Sesnie SE, Finegan B, Gessler PE, Thessler S, Ramos Bendana Z, Smith AM. The multispectral separability of Costa Rican rainforest types with support vector machines and Random Forest decision trees. International Journal of Remote Sensing. 2010;31(11):2885-909.

38. Saha AK, Arora MK, Csaplovics E, Gupta RP. Land Cover Classification Using IRS LISS III Image and DEM in a Rugged Terrain: A Case Study in Himalayas. Geocarto International. 2005;20(2):33-40.

39. Bahadur K.C. K. Improving Landsat and IRS Image Classification: Evaluation of Unsupervised and Supervised Classification through Band Ratios and DEM in a Mountainous Landscape in Nepal. Remote Sensing. 2009;1(4):1257-72.
481 40. NASA LD. DAAC: ASTER Level 1 Precision Terrain Corrected Registered At-Sensor Radiance,
482 Version 3, NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science
483 (EROS) Center, Sioux Falls, South Dakota. 2015.
484 41. Hashim M, Hazini SJJT. Separation of Different Vegetation Types in ASTER and Landsat
485 Satellite Images Using Satellitè derived Vegetation Indices. 2014;71(4).
486 42. Adepoju KA, Adelabu SA. Improving accuracy evaluation of Landsat-8 OLI using image
487 composite and multisource data with Google Earth Engine. Remote Sensing Letters. 2020;11(2):107-16.
488 43. Sharma RC, Hara K, Hirayama H. A Machine Learning and Cross-Validation Approach for the
489 Discrimination of Vegetation Physiognomic Types Using Satellite Based Multispectral and
490 Multitemporal Data. Scientifica. 2017;2017:8.
491 44. Wakulinska M, Marcinkowska-Ochtyra AJRS. Multi-temporal sentinel-2 data in classification of
492 mountain vegetation. 2020;12(17):2696.
493 45. Immitzer M, Neuwirth M, Böck S, Brenner H, Vuolo F, Atzberger CJRS. Optimal input features
494 for tree species classification in Central Europe based on multi-temporal Sentinel-2 data.
495 2019;11(22):2599.
496 46. Puletti N, Chianucci F, Castaldi CJASR. Use of Sentinel-2 for forest classification in
497 Mediterranean environments. 2018;42:32-8.
498 47. Raimondo D, Staden Lv, Foden W, Victor J, Helme N, Turner R, et al. Red list of South African
499 plants 2009: South African National Biodiversity Institute; 2009.
500 48. Volesky JD, Young SL, Jenkins KH. Cattle grazing effects on Phragmites australis in Nebraska.
501 Invasive Plant Science and Management. 2016;9(2):121-7.
502 49. Canavan K, Paterson ID, Lambertini C, Hill MP. Expansive reed populations—alien invasion or
503 disturbed wetlands? AoB PLANTS. 2018;10(2).
504 50. Leistner OA. Seed plants of southern Africa: families and genera: National Botanical Institute;
505 2000.
506 51. Russell GG, Watson L, Kockemoer M, Smook L, Barker N, Anderson H, et al. Grasses of
507 southern Africa1990.
508 52. Snyman H. Seriphium plumosum. Newsletter of the Grassland Society of Southern Africa 2009.
509 53. Dubula B, Tefsamichael SG, Rampedi IT. Assessing the potential of remote sensing to
510 discriminate invasive Seriphium plumosum from grass. South African Journal of Geomatics.
511 2016;5(2):201-13.
512 54. Mashalane MJ, Adjorlolo C. Integrating remote sensing and geostatistics in mapping Seriphium
513 plumosum (bankrupt bush) invasion 2016.
514 55. Adepoju K, Adelabu S, Mokubung CJEm, assessment. Mapping Seriphium plumosum
515 encroachment and interaction with wildfire and environmental factors in a protected mountainous
516 grassland. 2020;192(6):1-15.
517 56. Du Z, Wang Z, Liu Y, Wang H, Xue F, Liu YJJIoID. Ecological niche modeling for predicting
518 the potential risk areas of severe fever with thrombocytopenia syndrome. 2014;26:1-8.
519 57. Liu M, Zhao J, Guo X, Zhang Z, Tan G, Yang JJS. Study on climate and grassland fire in
520 HulunBuir, Inner Mongolia autonomous region, China. 2017;17(3):616.
521 58. Keeley JEJiwof. Fire intensity, fire severity and burn severity: a brief review and suggested
522 usage. 2009;18(1):116-26.
523 59. Chuvieco E, Riaño D, Danson F, Martin PJJoGRB. Use of a radiative transfer model to simulate
524 the postfire spectral response to burn severity. 2006;111(G4).
525 60. Rademeyer C, van Zyl WJMJoSS. Golden Jubilee for Golden Gate-A Concise History of Golden
526 Gate Highlands National Park, 1963 to 2013. 2014;5(27 P3):1169.
527 61. Slater RJGJ. Between a rock and a hard place: contested livelihoods in Qwaqwa National Park,
528 South Africa. 2002;168(2):116-29.