Prevalence of Parasitic Helminthes among Slaughtered Animals in Slaughterhouses in Taiz, Yemen

Kamal Hezam1,2, Abdo Farae Morshed2, Abdulnaser Hassan2, Abdul Baset Abbas1,3, Hesham Ghaleb4, Juan Zhang1, Anwar Qahtan5

1Department of Microbiological and Biochemical Pharmacy, School of Life Science and Technology, China Pharmaceutical University
2Department of Parasitology & Immunology, Faculty of Applied Science, Taiz University
3Department of Medical Microbiology, Faculty of Science, Ibb University
4Department of Medicinal Chemistry, School of Institute of Pharmaceutical Research, China Pharmaceutical University
5Department of Biomedical Engineering, School of Biology, Hunan University

kamalium136@yahoo.com

Abstract: This study was carried out in 2012. It aimed at detecting the prevalence of parasitic helminthes infections among goats, sheep, cattle and camels slaughtered in slaughterhouses in Taiz, Yemen. The number of slaughtered ruminants was 636 goats, 47 sheep, 311 cattle, and 12 camels. The highest prevalence rate of hydatid cysts was found in camels (41.66\%) followed by cattle (33.76\%) followed by goats (6.13\%). There was no infection with hydatid cysts in sheep. Also, the highest rate of infection with liver flukes (\textit{Fasciola} sp.) was observed in cattle (5.47\%), goats (3.14\%). No liver fluke infection was observed in sheep and camels. Whereas, the prevalence rate of \textit{Taenia} sp. infection was higher in goats (22.8\%) than that in sheep (14.90\%); no infections were detected in both cattle and camels. There was a variance in the rate of helminthes infection during 4 months study period and also, among different sexes and age groups.

[1Kamal Hezam, Abdo Farae Morshed, Abdulnaser Hassan, Abdul Baset Abbas, Hesham Ghaleb, Juan Zhang, Anwar Qahtan. \textbf{Prevalence of Parasitic Helminthes among Slaughtered Animals in Slaughterhouses in Taiz, Yemen.} \textit{J Am Sci} 2017;13(8):107-112. ISSN 1545-1003 (print); ISSN 2375-7264 (online). http://www.jofamericanscience.org, 13. doi: 10.7537/marsj130817.13.]

Key words: Helminthes, slaughtered animals, Hydatidosis, Echinococcus, Fasciola, Taeniasis, Taiz.

1- Introduction

Animals are considered to be the main source of some epidemic diseases in Yemen. They are the main source of protein as well. Parasitism is one of the main constraints limiting livestock productions. Mortality of animals from parasitic diseases may not be alarming at times but their direct effects in their productions (Baker & Muller, 1988). Control of diseases communicable from animals to men under natural conditions is an important task of a Veterinarian. There are the most important zoonotic parasitic diseases such as Hydatidosis, Gardiasisis, Fascioliasis, Settariosis, Trichinellosis, Ascariosis, and Schistosomiasis (Schwabe, 1984).

The importance of these diseases as a public health hazard, particularly in rural areas where a close association exists between man and domestic animal is well established. Supervision of the slaughter houses and organization of hygienic precautions concerning food of animal origin are unsatisfactory in Taiz. Many slaughterhouses and village markets, where animals are slaughtered have not Veterinary supervision and have become the places where dogs congregate and often waste products of animals are kept in the waste heaps from which dogs became infected by hydatidosis. Cattle, camel, sheep and goats are the most important livestock of farmers in Taiz. They supply meat and milk to meet the partial requirement of protein of high caloric value for the population. The seminar on manpower organized by Food and Agriculture Organization (FAO, 1965) revealed the sufferings of the people of this region due to deficiency of vital food nutrients. Transmission zoonotic agent could be through indirect contact with animal secretion and excretion, infected water and food through direct contact with animal infected (Lorenzini et al, 2006).

It gets such a significant attention that prevention of hydatidosis is one of the dynamic programs of World Health Organization in the field of zoonotic disorders. But these animals are commonly affected with hydatid cyst, cysticercus and coenurosis, causing considerable economic losses in the form of mortality, stunted growth, unthriftiness and partial or complete condemnations of the carcasses at the slaughter houses (Gemmell. 1990). Increasing recognition of the burden of human fascioliasis has occurred; it is now recognised as an emerging zoonosis by the WHO (Silfico \textit{et al.}, 2000). The zoonosis has a serious impact on both public health & animal health. The common methods of transmission animal diseases to human...
beings include direct contact, through infected fomites or ingestion of infected milk and meat.

It is known that many zoonotic diseases like Echinococcosis, Amphistomiiasis, Trichinellosis. can be transmitted from animal to human body. Indiscriminate slaughter of food animals sale of meat without ante-mortem and post-mortem examinations by a qualified Veterinarian is not only jeopardize human health but also wide spread environmental pollution. In Taiz governorate the Hydatidosis spread was studied by (Al-Selwi et al 2010) and they found high level Hydatid cysts infection of cows, goats and sheep.

This disease infected many organs such as liver, lung, and other organs. The aim of this study was to detect the prevalence of parasitic helminthes infections among slaughtered animals in slaughterhouses in Taiz, Yemen.

2- Materials and methods:
Study area and cases:
This study was conducted for the period 2-5/2012 in Taiz, located in the west of Yemen, where spreading of parasitic helminthes in slaughtered animals in slaughterhouses in Taiz, Yemen. The animals were infected by parasitic helminthes combined from three slaughter (Al-Ashbatt, Al-Mokha and Central slaughterhouse more specimens). It is very important to note that the practical work for this study was conducted during the period of 2 February 2012 to May 2012 in 9 PM – 4 AM.

Autopsy
In cows, sheep, camels and goats, cyst and parasite were shown in livers, lungs, intestinal and other sites beyond slay in Central slaughter and rarely Al-Ashbute Slaughter that taken from it.

Manual work
Autopsy taken off thin cyst and parasite was fixated in 10% formalin and examined in the laboratory of parasitology Department. The site of cyst, size, their location and type were noted (Bin Kabir et al., 2010). The cyst fluid was excreted from each cyst and decanted in a test tube for 1 ml from each of germinal layer cyst, then centrifugated the samples more than one time respectively, after that the specimen examined under the microscope to observe its fertility, also to counted and monitor development of protoscolices and staining it.

Direct smear
One drop from hydatid cyst fluid on slide after that it was scanned under the microscope 10x that used to certain from found of scolex and second method determinant of sterilized or fertilized cyst after looking to (shape cyst).

Staining by Gemsa stain
After direct smear fixed the slide and add 70%. Methanol thin lead to dry beyond Staining by Gemsa stain at 5 minutes thin wash by distill water drop to drop after that examination 100 x.

Staining /Eosin Stain:
Take of the drops of sample in the slid lead to dry thin fixed the alcohol 70% lead to dry thin add the eosin stain at 15 minutes thin wash the distill water drop to drop and dry thin examination the microscopic100x.
Figure 4

Figur1=protoscolesis
Figur2=containe of Hydated cyst
Figur3= Necrosis and Hydatidosis
Figur4=Taenia in small intestiane

3- Results:

The results in this study revealed that the prevalence of Parasitic Helminthes among Slaughtered Animals in Slaughterhouses in Taiz, Yemen, during the period from February to May 2012. Table 1 showed that the total number of cattle, goats, sheep and camels were 311, 636, 47 and 12 respectively. It is also shown that the prevalence of parasitic diseases encountered in slaughtered animals.

Out of 1006 slaughtered animals 149 (14.81%), 37 (3.67%) and 152 (15.1%) ruminants slaughtered were found to be infected with Hydatidosis, Fascioliasis and Taeniasis respectively. The prevalence of hydatidosis was highest in camels (41.66%) followed by cattle (33.76%) and goats (6.13%) and there are no infected at sheep. In addition to the results showed the prevalence of fascioliasis was highest in cattle (5.47%) then g goats (3.14%). Out of 1006 slaughtered animals 145 (14.41%), 7 (0.69%) were found to be infected with Taeniasis, while no infected in cattle and camels.

Table 2 illustrated the sex related distribution of parasitic diseases. The prevalence of all disease condition was distinctly higher in male animals except higher in female in cattle. Age related distribution of in Parasitic Helminthes among Slaughtered Animals is shown in table 3. As shown in the table the prevalence of all diseases was higher in older animals.

Table 4 revealed that the prevalence of parasitic diseases relation in rural importer which were in rural more than importer.

Disease	Cattle n=311	Goats n=636	Sheep n=47	Camels n=12
Hydatidosis	105 (33.76%)	39 (6.13%)	0	5 (41.66%)
Fascioliasis	17 (5.47%)	20 (3.14%)	0	0 (0.00%)
Taeniasis	0	145 (22.80%)	7 (14.90%)	0 (0.00%)
Necrosis	94 (30.22%)	30 (4.71%)	0	4 (33.33%)
Necrosis + Hydatidosis	44 (14.14%)	2 (0.13%)	0	4 (33.33%)
Taeniasis + Hydatidosis	0	6 (0.94%)	0	0 (0.00%)
Taeniasis+necrosis	0	11 (1.72%)	0	0 (0.00%)

n= Number of animals examined, ()=Number of infected animals

Disease	Species of Slaughtered animals	Cattle	Goats	Sheep	Camels				
		M n=79	F n=232	M n=509	M n=127	M n=42	F n=5	M n=11	F n=1
Hydatidosis		12	93	39	000	000	000	4	0000
Fascioliasis		2	15	16	2	000	000	00	0000
Taeniasis		2	000	127	18	6	1	00	0000
Necrosis		13	81	15	15	000	000	5	0000
Necrosis + Hydatidosis		6	38	2	000	000	000	4	0000

M= Male
Female
Table (3): Prevalence of parasitic diseases relation to Age.

Disease	Age Slaughtered animals	Cattle	Goats	Sheep	Camels		
	≤4y, >4y, ≤5m, >5m	<5m	>5m	<5m	>5m	6-10 y	5y
Hydatidosis	10, 3, 18, 21	00	00	00	00	00	00
Fascioliasis	7, 10, 4, 16	00	00	00	00	00	00
Taeniasis	1, 1, 23, 122	00	00	00	00	00	00
Necrosis	39, 66, 9, 21	00	00	4	00	00	00
Necrosis + Hydatidosis	20, 24, 00, 2	00	00	00	4	00	00
Taeniasis + Hydatidosis	00, 00, 3, 8	00	00	00	00	00	00
Taeniasis+necrosis	00, 00, 3, 8	00	00	00	00	00	00

Y = year
M = month

Table (4): Prevalence of parasitic diseases relation in Rural and Importer.

Disease	Cattle Rural	Cattle Importer	Goats Rural	Goats Importer	Sheep Rural	Sheep Importer	Camels Rural
Hydatidosis	93	12	38	00	00	5	
Fascioliasis	15	2	20	00	00		
Taeniasis	00	0	141	8	00		
Necrosis	82	12	30	00	4		
Necrosis + Hydatidosis	38	6	2	00	4		
Taeniasis+ Hydatidosis	00	00	6	00	00		
Taeniasis+necrosis	00	00	11	00	00		

4- Discussion:

Zoonotic diseases are one of the most important diseases that distribute in the most area of the world. It’s endemic in Yemen and another countries, and makes abundant economics damage.

The parasitic helminthes diseases epidemiology depends on the equilibrium between the infection rate and the host resistance. Accordingly in both temperate and tropical areas, young animals are predominately liable to develop heavy infection. While, there is a marked difference in the seasonal incidence of the disease between those tropical areas in which the climate includes a treatment area, dry season and those in which the dry season is short or absent (Kadir, Rasheed, 2008).

This study showed the most common ruminants slaughtered animals in Taiz abattoir slaughterhouses were goats, Cattle, sheep and camels with number 636, 311, 47 and 12 respectively. The prevalence of hydatid cysts were revealed in Camels (41.66%), cattle (33.76%) and goat (6.13%), while no hydatid cyst was revealed in sheep, may be due to different feed grass and grassland.

The prevalence rate of liver flukes "Fasciolasis" were observed in cattle (5.47%), goats (3.14%), whereas liver fluke was not present in camel and sheep. We think that depend on the ecological factors.

The distribution of *Taenia* was high rate in goats (22.8%) and sheep (14.90%), however not detected among camel and cattle.

In comparison the results in our study with other study carried out in Hadhramout, Yemen that showed variations in incidence of hydatid cyst, where the incidence in sheep 3.21% more than in our study, while the incidence in goats 2.13% less than our study, this may be due to the geographic variation (Baswaid, 2007).

The infection rate increase according to the increasing animal’s age, the prevalence of infection in male more than female but the higher in female in cattle that may be the females are kept back for reproductive purposes and milk production.

The animals check for hydatid cysts, in this study, exhibited relatively low rate of infection, compared to the results of studies done in Yemen 22.9% (Al-Shaibani and et all 2015) likewise in some Arabic countries: 4.6% in sheep in Saudi Arabia (Farah et al., 1984), 12.8% in sheep in Kuwait (Hassonah and Buhbehani,1976), 4% in sheep and 3.6% in goats in Jordan (Al-Yaman et al.,1985), 5.3% in sheep in Morocco (Pandey et al., 1988) and 5.9%, 4.5% in sheep and 5.1%, 3.1% in goats in Iraq respectively (Al-Abbassy et al., 1980 and Molan, 1993), but
slightly high compared to the results 0.17% in sheep showed by Ali et al. (2003).

Bin Kabir et al., 2010: a study was conducted in Bangladesh that showed the prevalence of hydatidosis was nearly similar to our study (26.01%), otherwise the fascioliasis was more than our study (20.74%). The results revealed that the prevalence of parasitic diseases relation in rural importer which were in rural more than importer that’s due to the ruminants slaughtered undergo a medical examination at ports.

Authors:
Kamal Hezam1,2, Abdo Farae Morshed, Abdulnaser Hassan2, Abdul Basset Abbas1,2, Hesham Ghaleb2, Juan Zhang2, Anwar Qahtan3

1Department of Microbiological and Biochemical Pharmacy, School of Life Science and Technology, China Pharmaceutical University
2Department of Parasitology & Immunology, Faculty of Applied Science, Taiz University
3Department of Medical Microbiology, Faculty of Science, Ibb University
4Department of Medicinal Chemistry, School of Institute of Pharmaceutical Research, China Pharmaceutical University
5Department of Biomedical Engineering, School of Biology, Hunan University

References:
1. Ahmed S., Nawaz M., Gul R., Zakir M. and Abdul Razzaq. Some Epidemiological Aspects of Hydatidosis of Lungs and Livers of Sheep and Goats in Quetta, Pakistan, Pakistan J. Zool., vol. 2006: 38(1), pp. 1-6.
2. Ali, A. A., Bin Saleh H. O. and Al-Shabibi, S. Aberration of hydatid disease cases among slaughter-house animals. Journal of Natural and Applied Sciences 2003: 7(3): 401-407 (In Arabic with English summary).
3. Al-Selwi A., Al-Sabai G., Al-Majidi H., Al-Absi N and Al-Absi S. Observation on Hydatidosis in Taiz, Governorate, Yemen. (2010): Unpublished.
4. Baker, J. R. & Muller, R. Journal of Advance in parasitology. 1988. Vol 27: pp.244-250.
5. Baswaid S. H. Prevalence of Hydatid Cyst in Slaughtered Sheep and Goats IN Hadhramout (Yemen), Ass. Univ. Bull. Environ. Res. Vol. 10 No. 2, October 2007:67-72.
6. Bin Kabir, Md. H, Eliyas, M, Abul Hashem, Md, Miazzi M. O. Prevalence of zoonotic parasitic diseases of domestic animals in different abattoir of Comilla and Brahman Baria region in Bangladesh. Univ. j. zool. rajshahi. univ. vol. 28, 2010 pp. 21025.
7. ELLIS, J. A., CHAVERA, A. E. V. and De MARTINI, J. CDisease conditions in slaughtered sheep from small holder flocks in Peru. Small Rum. Res.1993: 10: 243- 250.
8. EL-METENAWY, T. M. An abattoir survey of metacestodes among slaughtered ruminants at Al-Qassim area, Sauri Arabia. Pakistan Vet. J. 1999: 19: 84-87.
9. FAO (Food and Agricultural Organization of the United Nations). Asian Livestock. Monthly Technical Magazine of the FAO Animal Production and Health Commission for Asia and the Pacific (APHCA) 1965: 8: 85-87.
10. Farah, M. O., Shuaib, M. A. and Ibrahim, I. A. Prevalence of some helminthic parasites and hepatic disorders in sheep, cattle and camels in Bureida. Proceedings of the Saudi Biological Association. 1984: 1:337-339.
11. Gemmell, M. A. Australasian contributions to an understanding of the epidemiology and control of hydatid disease caused by Echinococcusgranulosus, past, present and future. Int. J. Parasito. 1990: 20: 431-456.
12. Hassonah, O. and Beihbehani, K. The epidemiology of Echinococcus in Kuwait. J. Hilmintonthology, 1976: 50: 65-73.
13. Heath D. D. Parasitology 1970: 60: pp 449-456.
14. IRM Al-Shaibani, Fuad A. Saad, H Al-Mahdi. Cystic echinococcosis in humans and animals at Dhamar and Taiz governorates, Yemen. Int. J. Curr. Microbiol. App. Sci. 2015: 4(2): 596-609.
15. Kadir M. A., Rasheed S. A. Prevalence of some parasitic helminths among slaughtered ruminants in Kirkuk slaughter house, Kirkuk, Iraq, Iraqi Journal of Veterinary Sciences, 2003: Vol. 22, No. 2, 2008 (81-85).
16. Kara M., Giciky. andarslan M. O. A slaughterhouse study oprevalence of helminthes of cattle and sheep in malatya province, Tukey. J. A. V. A8. 2009: (11):2200-2205,2009.
17. Lorenzini G., Tasca T. and Decarli G. A. Prevalence intestinal parasites in dogs and cats under Veterinary care in portoalegre, riograndesosul, Brazil, Braoj. vet. Res. anim. sci., sao Paulo, x 2007:44, n.2, p.137-145.
18. MEHRABANI, D. A., ORYAN, A. AND SADJADI, S. M., Prevalence of Echinococcus granulosus infection in stray dogs and herbivores in Shiraz, Iran. Vet. Parasit., 1999: 86: 217-220.
19. MORO, P. L., McDonald, J., Gilman, R. H., Silva, B., Varastegui, M., Malqui, V., Lescano, G., Falcon, N., Montes, G. AND Bazalar, H. Epidemiology of Echinococcous granulosus infection in the central Pakistan Andes. Bull. Wld. Hlth. Org., 1997: 5: 553-561.
20. Pandey, V. S., Ohelli, H. and Moumen, A. Epidemiology of hydatidosis/ Echinococcosis in Quarzazte, The Pre- Saharian region of Morocco. Ann. Trop. Med. Parasitology. 1988: 82 (5): 461-470.

21. Salem CB. O. A, Schneegans F., Chollet JY. and Jemli MH. Epidemiological Studies on Echinococcosis and Characterization of Human and Livestock Hydatid Cysts in Mauritania, Iranian J Parasitol: Vol. 6, No.1, 2011, pp.49-57.

22. Schwabe, C. W. Veterinary Medicine and Human Health, 3rd edn., Williams and Wilkins, Baltimore, pp. 1984: 472-85.

23. Slifco, T. R., Smith, H. V. & Rose, J. B. Emerging parasite zoonoses associated with water and food. Int. J. Parasitol. St. Petersburg, USA. 2000.

24. Tappe K. H, Mousavi S. J and Barazesh A. Prevalence and fertility of hydatid cyst in slaughtered livestock of Urmia city, Northwest Iran, Journal of Parasitology and Vector Biology. 2011: Vol. 3(2), pp. 29-32.