Postoperative Infection and Its Management Strategies - Review

Naveenaa N.¹, Geetha R. V.⁴, Leslie Rani S.³

¹Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
²Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
³Department of Pathology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India

Article History:
Received on: 29 Sep 2020
Revised on: 15 Nov 2020
Accepted on: 20 Dec 2020

Keywords:
Antibiotic prophylaxis, Infection, Resistance, Wound care

ABSTRACT

Post-operative infection still remains as a challenging one which occurs during the postoperative course. This can cause mild to severe complications and can even lead to death. Due to which this leads to serious consequences like expanded expenses in hospitals because of increased hospital stay and treatment. The area is marked to have pain, tenderness, edema and even discharges like pus is seen. The commonly involved organisms include the Staphylococcus, Streptococcus, Pseudomonas species and E.coli. The risk of acquiring the infection differs from one person to another. The paces of these infections differ from hospital to hospital and the site of contamination might be limited to a stitch line or might extend into the operative sight. The post-operative infections are combated by providing antibiotic prophylaxis before, during and after the surgery. The main challenge associated is the antibiotic resistance by the bacterial species, so it becomes difficult to evaluate the sound techniques for treating these infections. So this can be prevented by following pre-operative, intraoperative, post-operative surgical techniques. Proper strategies must be used to prevent and control these infections. The aim of this review is to analyze the postoperative infections and their management strategies.

INTRODUCTION

The postoperative infection is an infection which occurs within 30 days of operation or the postoperative course. The postoperative infection can cause extreme issues, including failure of surgical procedure, surgical complication, organ failure, sepsis and even death (Segreti, 2017). The risk of acquiring the infection differs from one person to another. The paces of these infections differ from hospital to hospital and the site of contamination might be limited to a stitch line or might extend into the operative sight. This type of surgical wound infection is a type of nosocomial infection. This infection can be respiratory disease; urinary tract disease or surgical wound contamination (Goswami et al., 2020). These infections represent 20%-39% of all those infections which are acquired in the hospital (Ameh, 2009).

The usual area around the infected surgical wound can be described by pain, tenderness, erythema, warmth, swelling and pus formation (Ahmed, 2012).
So there are various precautions which can be practiced due to the resistance gained by the bacteria. Post-operative infection control which becomes difficult infection and the management strategies of antibiotics becomes difficult to choose the antibiotic and it becomes difficult to choose the antibiotic against those antibiotics has a higher risk of leading to death. The classical clinical symptoms of these infections could include localised pain, pus or discharge spreading erythema, wound dehiscence and persistent pyrexia. The surgical site infection are classified into four categories based on the microbial contamination which includes: clean, clean contaminated, contaminated, dry and these classification are helpful in reporting a postoperative infection. The clean wound is considered to be clean and less colonization of bacteria is seen.

The classical nosocomial pathogen, which causes a widespread disease is an opportunistic species, E. coli, Proteus species, Streptococcus species, Enterobacter species, Acinetobacter; Pseudomonas species and Coagulase-negative Staphylococci.

The contamination of wounds by these species is commonly characterized by the classical symptoms of pain, redness, swelling and an elevated temperature at the site of incision and systemic fever. Paeruginosa is an opportunistic nosocomial pathogen, which causes a widespread infection and leads to morbidity in immuno compromised patients. A study has stated that the surgical site infection occurred 16.4% out of which the isolates which were found are 50% Klebsiella pneumonia, 27.8% Staphylococcus aureus, 11.1% of E.coli and Pseudomonas species.
Risk factors involved

The pre-operative risk factors include age, race, diabetes mellitus, hypertension (Paramasivam et al., 2020), cirrhosis (Alkaaki et al., 2019). In addition to the microbial contamination, there are certain host-dependent factors like age, dietary status, lifestyle, any co-existing disease and immunocompetency. The hospital-related factors include the length of hospital stay, preoperative procedures like an antibiotic, antiseptic prophylaxis (Forren, 2006). Obesity is another patient-related hazard factor. The study has concluded that the incidence of surgical site infection in a patient with obesity is more than the non-obese patient (Cordero-Ampuero and de Dios, 2010). This obesity has been reported with delayed wound healing which could be a risk factor for deep infections. Diabetes is also a major risk factor as patients with this disease as comorbidity has a higher percentage of infection [66.66%] when compared to other morbidities such as hypertension and renal failure (Khairy, 2011). When a study was conducted in a teaching hospital of Saudi Arabia, the patient with diabetes has a greater risk of acquiring these infections, where 20 out of 80 patients with diabetic mellitus have developed an infection after the surgery.

It is also very important to check whether the patient is hyperglycemic, or they are insulin resistance or diabetic for those who are undergoing major surgery. Cigarette smoking also inhibits wound healing and decreases blood circulation and increases nonfunctioning hemoglobin (Scott and Buckland, 2006). So the risk factors depend on the dietary status, obesity, diabetes, smoking, heart disease, hypertension, bleeding disorder, complex emergency surgery (Wiseman, 2015). The method related elements include poor surgical technique, a delayed span of operation, the nature of preoperative skin preparation and ill-advised disinfection of careful instruments (Anderson and Kaye, 2009)

Organisms associated with postoperative infection

Postoperative infection is commonly caused by aerobic and anaerobic bacteria. The dominant pathogens are oxygen-consuming Gram-positive cocci (group B streptococci, enterococci (Vaishali and Geetha, 2018), and staphylococcal species), and anaerobic Gram-positive cocci (Peptococcus and Peptostreptococcus species), aerobic Gram-negative bacilli (Escherichia coli, Klebsiella pneumoniae, and Proteus species), and anaerobic Gram-negative bacilli (Bacteroides and Prevotella species). The bacteria which is commonly associated with surgical site infection are Staphylococcus aureus, which is the frequently reported causative agent (Gaynes et al., 2005). The nasal carriage of Staphylococcus aureus is noted to be 30% of the most healthy population and particularly Methicillin-resistant Staphylococcus aureus, these predispose the patients to have a higher risk of acquiring this infection. The antibiotic-resistant species have been found increasingly to be associated with nosocomial infection (Misteli, 2011). For example, Methicillin-resistance S.aureus, Vancomycin-resistant enterococci, and the extended-spectrum beta-lactamase gram-negative bacteria have gained more concerns. Many infections causing bacteria to withstand the antibiotic resistance or multi drug resistance and the major problem associated is the appropriate choice of drug to combat the situation (Hospenthal, 2011; Misteli, 2011). Interestingly other than bacterial species, certain fungi like C.Albicans are nosocomial pathogens which are also associated with having hush resistance to the antibiotic spectrum (Shahzan et al., 2019).

Management strategies

The options to remove these infections are divergent. It is estimated that the 40-60% of these infections can be controlled and preventable under antimicrobial prophylaxis, proper infection control, and a guidance program (Schneeberger, 2002). For most of the patients, a single dose of antibiotic prophylaxis is more than enough to gain proper therapeutic effect. For those patients who are undergoing extended procedures more than 3-4 hours, the second dose of antibiotics must be administered at proper intervals even after surgery. The antimicrobial drug must be given at an interval of 30 minutes and should be administered 2 hours before the beginning of a procedure. Administration of extended-spectrum cephalosporins, penicillins, and carbapenems can be given as a solitary specialist to treat these sorts of infections. Depending on the patient’s response to the treatment, the protocol can be continued, or altered treatment or management strategies must be brought to prevent the infection.

Preoperative infection prevention

Patients should be advised to stop smoking at least 30 days before all the procedures begin and proper glucose tolerance levels, weight management must be taken care (DiGiorgio et al., 2012). Modification of dietary habits and keeping oneself clean (Selvakumar and Np, 2017; Shahana and Muralidharan, 2016) and self-hygiene and not to consume even alcohol and finally an antiseptic wash can be recommended before surgery (Clarke-Pearson and
The management of the preoperative drug is important and is categorised into prescriptions to stop, prescriptions to start, and prescriptions for altering. In some patients, bowel preparation has to be considered. Preoperative shaving and appropriate hair removal at the site of the incision must be done. Administration of vaccines can be done before or after surgery and it is found the vaccines are not contraindicated during surgery and vice versa (Pratha and Geetha, 2017).

Intraoperative infection prevention

The preventive measure in this stage has a multiphase approach which includes antibiotic prophylaxis, appropriate surgical technique and handling the tissues properly during surgery. The antibiotic administration should be done within 2 hours of surgery and it acts effectively when given before incision (Anderson, 2011). The proper surgical techniques include proper scrubbing, maintaining sterile instruments and use of antiseptic skin preparation, the commonly used ones are povidone-iodine, chlorhexidine gluconate (Vigliani, 2009). The proper tissue handling avoids acute hemostasis, unnecessary tension to the tissue and reduced dead space during wound closure. The explanation behind using cautious antimicrobial prophylaxis is to give a succinct course of an antimicrobial agent so as to diminish the microbial burden of intraoperative sullying to a level that can’t overwhelm the resistance system.

Post operative prevention

The post-operative preventive measures include tight glucose control, early enteral nutrition (Gaston and Kuremsky, 2010), protecting the surgical area for the 48 hours and then changing the injury dressing and surveillance program. If the risk factors are identified, then antibiotic prophylaxis can be done to reduce risk of an infectious complication. Many herbal formulations are also found to have strong antibacterial effects against various bacterial species and it promotes better wound healing (Aafreen et al., 2019).

Challenges

It is very difficult to evaluate the sound techniques for that infection (Sakharkar, 2009). Poor response to therapy could be mainly due to the resistant microorganism and wound infection. The resistance which is gained by the bacteria makes it difficult to cure the infection by providing antibiotic prophylaxis (Nelson, 2017). There might be an increased hospital stay, so that could even reflect on the economy of a person. The risk of infection not only occurs because of the microorganisms but the host-related factors which include obesity, diabetes, food habits and immunocompromised conditions (Urban, 2006). The improper surgical technique and sterile conditions of operation theatres are some of the contributing factors which still happens. The lack of infection control programs in hospitals, and they lack both the awareness of the problem and also how to combat the situation to prevent these types of infection (Ogunsola et al., 2000).

CONCLUSION

Postoperative infection still remains a challenging one in most of the developing and even developed countries. There is an urgent need for infection control and prevention in various hospitals, to prevent these infections. Continuous education of hospital authorities and health care workers on the principle of infection control. As these surgical site infections are preventable, but new techniques must be implemented to reduce the mortality rate by following the proper infection control protocols. If these risk factors are identified and eliminated then the harmful effect on the patient and the associated health care cost also significantly drops down with lesser hospital stay. So proper methods of treatment must be used and the advanced surgical techniques can be practiced to avoid these infections. With the constrained improvement of newer antimicrobials, the anti-microbial strains, alternative antimicrobial interventions are viewed as increasingly significant. So following adequate protocol in the infection control can prevent the infection from the surgical site.

Funding Support

The authors declare that they have no funding support for this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

REFERENCES

Aafreen, M. M., Geetha, R. V., Thangavelu, L. 2019. Evaluation of anti-inflammatory action of Laurus nobilis-an in vitro study anti-inflammatory action of Laurus nobilis-an in vitro study. *International Journal of Research in Pharmaceutical Sciences*, 10(2):1209–1213.

Ahmed, M. 2012. Prevalence of nosocomial wound infection among postoperative patients and antibiotics patterns at teaching hospital in Sudan. *North American Journal of Medical Sciences*, 4(1):29–34.

Alkaaki, A., Al-Radi, O. O., et al. 2019. Surgical site
infection following abdominal surgery: a prospective cohort study. *Canadian Journal of Surgery*, 62(2):111–117.

Ameh, E. A. 2009. Surgical Site Infection in Children: Prospective Analysis of the Burden and Risk Factors in a Sub-Saharan African Setting. *Surgical Infections*, 10(2):105–109.

Anderson, D. J. 2011. Surgical site infections. *Infectious disease clinics of North America*, 25(1):135–153.

Anderson, D. J. 2014. Strategies to Prevent Surgical Site Infections in Acute Care Hospitals: 2014 Update. *Infection Control & Hospital Epidemiology*, pages 66–88.

Anderson, D. J., Kaye, K. S. 2009. Staphylococcal Surgical Site Infections. *Infectious Disease Clinics of North America*, 23(1):53–72.

Ashwin, K. S., Muralidharan, N. P. 2015. Vancomycin-resistant enterococcus (VRE) vs Methicillin-resistant Staphylococcus Aureus (MRSA). *Indian Journal of Medical Microbiology*, 33(5):166–167.

Askarian, M. 2003. National nosocomial infection surveillance system–based study in Iran: Additional hospital stay attributable to nosocomial infections. *American Journal of Infection Control*, 31(8):465–468.

Clarke-Pearson, D. L., Geller, E. J. 2013. Complications of Hysterectomy. *Obstetrics & Gynecology*, 121(3):654–673.

Cordero-Ampuero, J., de Dios, M. 2010. What Are the Risk Factors for Infection in Hemi-arthroplasties and Total Hip Arthroplasties? *Clinical Orthopaedics and Related Research®, 468(12):3268–3277.

DiGiorgio, M., Bertin, M., Vinski, J., Sun, Z., Albert, N. 2012. Validation of infection preventionists surveillance for determining hospital-acquired central line-associated bloodstream infection using Centers for Disease Control and Prevention definitions. *American Journal of Infection Control*, 40(5):e199–e199.

Engemann, J. J. 2003. Adverse Clinical and Economic Outcomes Attributable to Methicillin Resistance among Patients with Staphylococcus aureus Surgical Site Infection. *Clinical Infectious Diseases*, 36(5):592–598.

Fry, D. E., Fry, R. V. 2007. Surgical Site Infection: The Host Factor. *AORN Journal*, 86(5):801–814.

Gaston, R. G., Kuremsky, M. A. 2010. Postoperative Infections: Prevention and Management. *Hand Clinics*, 26(2):265–280.

Gaynes, R., Edwards, J. R., et al. 2005. Overview of Nosocomial Infections Caused by Gram-Negative Bacilli. *Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America*, 41(6):848–854.

Ghoneim, M. M., O’Hara, M. W. 2016. Depression and postoperative complications: an overview. *BMC Surgery*, 16(1).

Girija, A. S. S. 2019. Plasmid-encoded resistance to trimethoprim/sulfamethaxazole mediated by dfrA1, dfrA5, sul1 and sul2 among Acinetobacter baumannii isolated from urine samples of patients with severe urinary tract infection. *Journal of Global Antimicrobial Resistance*, 17:145–146.

Girija, A. S. S., Priyadarsinini, J. V. 2019. CLSI based antibiogram profile and the detection of MDR and XDR strains of Acinetobacter baumannii isolated from urine samples. *Medical Journal of The Islamic Republic of Iran*, 33:3–3.

Girija, S. A., Jayaseelan, V. P., Arumugam, P. 2018. Prevalence of VIM- and GIM-producing Acinetobacter baumannii from patients with severe urinary tract infection. *Acta Microbiologica et Immunologica Hungarica*, 65(4):539–550.

Goswami, K., Stevenson, K. L., Parvizi, J. 2020. Intra-operative and Postoperative Infection Prevention. *The Journal of Arthroplasty*, 35(3):S2–S8.

Habib, M. B., Akbar, N. S. 2019. Frequency and Susceptibility Pattern of Extended Spectrum Beta Lactamase Producing Aerobic Gram Negative Bacteria in Post-Operative Infections. *Nano Biomedicine and Engineering*, 10(2):138–149.

Hamm-Hayden, P. 1990. A surgical wound and post-operative infection surveillance data system aimed at service-specific prevention and quality assurance. *American Journal of Infection Control*, 18(2):150.

Hariom, H., Misra, A. P., Mishra, R. 2012. Determinants of Surgical Site Infection in Rural Kanpur, India. *Journal of Evolution of Medical and Dental Sciences*, 1(6):921–928.

Hospenthal, D. R. 2011. Multidrug-Resistant Bacterial Colonization of Combat-Injured Personnel at Admission to Medical Centers After Evacuation From Afghanistan and Iraq. *The Journal of Trauma: Injury, Infection, and Critical Care*, 71(1):52–57.

Iliyasu, G. 2016. Nosocomial infections and resistance pattern of common bacterial isolates in an intensive care unit of a tertiary hospital in Nigeria: A 4-year review. *Journal of Critical Care*, 34:116–120.

J V Priyadarsinini 2018. In silico analysis of virulence genes in an emerging dental pathogen A. baumannii and related species. *Archives of Oral Biology*,
94:93–98.

Khairy, G. A. 2011. Surgical Site Infection in a Teaching Hospital: A Prospective Study. *Journal of Taibah University Medical Sciences*, 6(2):114–120.

Marickar, R. F., Geetha, R. V., Neelakantan, P. 2014. Efficacy of Contemporary and Novel Intracanal Medicaments against Enterococcus Faecalis. *Journal of Clinical Pediatric Dentistry*, 39(1):47–50.

Misteli, H. 2011. Spectrum of pathogens in surgical site infections at a Swiss university hospital. *Swiss Medical Weekly*.

Monaco, G., et al. 2009. Evaluation of antibiotic prophylaxis in reducing postoperative infection after mandibular third molar extraction in young patients. *Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons*, 67(7):1467–1472.

Nelson, K. 2017. Resistance to Ceftazidime-Avibactam Is Due to Transposition of KPC in a Porin-Deficient Strain of Klebsiella pneumoniae with Increased Efflux Activity. *Antimicrobial agents and chemotherapy*, 61(10):1–13.

Odom-Forren, J. 2006. Preventing surgical site infections. *Nursing*, 36(6):59–63.

Ogunsola, F. T., Utulu, P. C., Mabayoje, O., Odugbemi, T., Mabadeje, A. F. B. 2000. Reservoirs of Nosocomial Pathogens at a University Teaching Hospital In Nigeria. *Journal of the Nigerian Infection Control Association*, 3(2):18–24.

Owens, C. D., Stoessel, K. 2008. Surgical site infections: epidemiology, microbiology and prevention. *Journal of Hospital Infection*, 70(Supple 2):3–10.

Paramasivam, A., Priyadharsini, J. V., Raghunandhakumar, S. 2020. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases. *Hypertension Research: official journal of the Japanese Society of Hypertension*, 43(2):153–154.

Pratha, A. A., Geetha, R. V. 2017. Awareness on Hepatitis-B vaccination among dental students-A Questionnaire Survey. *Research Journal of Pharmacy and Technology*, 10(5):1360–1362.

Priyadharsini, J. V. 2018. An insight into the emergence of Acinetobacter baumannii as an oral dental pathogen and its drug resistance gene profile - An in silico approach. *Heliyon*, 4(12):1051–1051.

Sakharkar, B. M. 2009. Disposal of Hospital Waste. *Principles of Hospital Administration and Planning*, pages 310–310.

Schneeberger, P. M. 2002. Surveillance as a starting point to reduce surgical-site infection rates in elective orthopaedic surgery. *Journal of Hospital Infection*, 51(3):179–184.

Scott, E. M., Buckland, R. 2006. A Systematic Review of Intraoperative Warming to Prevent Postoperative Complications. *AORN Journal*, 83(5):1090–1113.

Segreti, J. 2017. Introduction to the Centers for Disease Control and Prevention and Healthcare Infection Control Practices Advisory Committee Guide line for Prevention of Surgical Site Infection: Prosthetic Joint Arthroplasty Section. *Surgical Infections*, 18(4):394–400.

Selvakumar, R., Np, M. 2017. Comparison in Benefits of Herbal Mouthwashes with Chlorhexidine Mouthwash: A Review. *Asian Journal of Pharmaceutical and Clinical Research*, 10(2):3–7.

Shahana, R. Y., Muralidharan, N. P. 2016. Efficacy of mouth rinse in maintaining oral health of patients attending orthodontic clinics. *Research Journal of Pharmacy and Technology*, 9(11):1991–1993.

Shahzan, M. S., Girija, A. S., Priyadharsini, J. V. 2019. A computational study targeting the mutated L321F of ERG11 gene in C. albicans, associated with fluconazole resistance with bioactive compounds from Acacia nilotica. *Journal de Mycologie Médicale*, 29(4):303–309.

Smiline, A. S. G., Vijayashree, J. P., Paramasivam, A. 2018. Molecular characterization of plasmid-encoded blaTEM, blaSHV and blaCTX-M among extended spectrum β-lactamases [ESBLs] producing Acinetobacter baumannii. *British Journal of Biomedical Science*, 75(4):200–202.

Urban, J. A. 2006. Cost analysis of surgical site infections. *Surgical infections*, 7(Supple 1):19–22.

Vaishali, M., Geetha, R. V. 2018. Antibacterial activity of Orange peel oil on Streptococcus mutans and Enterococcus-An In-vitro study. *Research Journal of Pharmacy and Technology*, 11(2):513–514.

Vigliani, M. 2009. The Management of Depression During Pregnancy: A Report From the American Psychiatric Association and the American College of Obstetricians and Gynecologists. *Obstetrics & Gynecology*, 114(6):1372–1372.

Wiseman, J. T. 2015. Predictors of surgical site infection after hospital discharge in patients undergoing major vascular surgery. *Journal of Vascular Surgery*, 62(4):1023–1031.

Youssif, D. 2012. Healthcare costs of methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa infections in veterans: role of vitamin D deficiency. *European Journal of Clinical Microbiology & Infectious Diseases*, 31:281–286.