The Genome and Development-Dependent Transcriptomes of *Pyronema confluens*: A Window into Fungal Evolution

Stefanie Traeger1, Florian Altegoer1, Michael Freitag2, Toni Gabaldon3,4, Frank Kempken5, Abhishek Kumar5, Marina Marcet-Houben3,4, Stefanie Pöggeler6, Jason E. Stajich7, Minou Nowrousian1*

1 Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany, 2 Center for Genome Research and Bioinformatics, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America, 3 Centre for Genomic Regulation (CRG), Barcelona, Spain, 4 Universitat Pompeu Fabra (UPF), Barcelona, Spain, 5 Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 6 Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany, 7 Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America

Abstract

Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, *Tuber melanosporum*, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of *Pyronema confluens*, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the *P. confluens* lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in *P. confluens*. On the other hand, *P. confluens* has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The *P. confluens* genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene *pro44* that is upregulated during development in *P. confluens* and the Sordariomycete *Sordaria macrospora*. The *P. confluens* *pro44* gene (PCON_06721) was used to complement the *S. macrospora* *pro44* deletion mutant, showing functional conservation of this developmental regulator.

Introduction

Fungi (Eumycota) are a group of eukaryotes that are present in almost all habitats; therefore they do not only play a great role in nature, but also influence human life in many ways [1]. About 100,000 fungal species have been described, but it is estimated that the actual number might exceed 1.5 million [2]. The largest group among the Eumycota is the Ascomycota (or ascomycetes), which comprise the Saccharomycotina, Taphrinomycotina, and Pezizomycotina. The former groups contain many unicellular species (yeasts) or species that develop only few hyphae or develop hyphae only under certain conditions (dimorphic fungi), whereas the Pezizomycotina are generally filamentous fungi capable of producing highly differentiated multicellular structures, the most complex of which are fruiting bodies for the protection and dispersal of sexual spores [3,4]. The most basal groups of Pezizomycotina are the Pezizomycetes and the Orbiliomycetes that form open fruiting bodies called apothecia with exposed meiosporangia (asci). Phylogenetically derived groups (e.g. Sordariomycetes, Eurotiomycetes and Dothideomycetes) mostly differentiate closed fruiting bodies where the asci develop within and protected by mycelial structures [3,5–8].

In the last decade, genomes of many filamentous ascomycetes have been sequenced and are invaluable for the analysis of the evolution of species as well as for understanding physiological and morphological properties of fungi. In fact, fungi are among the groups of eukaryotes with the highest number of sequenced genomes to date (http://www.ncbi.nlm.nih.gov/genome/browse/), largely because they include many model organisms, species of medical, agricultural or biotechnological importance. In addition,
Author Summary

Fungi are a morphologically and physiologically diverse group of organisms with huge impacts on nearly all ecosystems. In recent years, genomes of many fungal species have been sequenced and have greatly improved our understanding of fungal biology. Ascomycetes are the largest fungal group with the highest number of sequenced genomes; however, for the Pezizales, an early-diverging lineage of filamentous ascomycetes, only one genome has been sequence to date, namely that of the black truffle. While truffles are among the most valuable edible fungi, they have a specialized life style as plant symbionts producing belowground fruiting bodies; thus it is difficult to draw conclusions about basal ascomycetes from one truffle genome alone. Therefore, we have sequenced the genome and several transcriptomes of the basal ascomycete *Pyronema confluens*, which has a saprobic life style typical of many ascomycetes. Comparisons with other fungal genomes showed that *P. confluens* has two conserved mating type genes, but that the genomic environment of the mating type genes is different from that of higher ascomycetes. We also found that a high number of orphan genes, i.e. genes without homologs in other fungi, are upregulated during sexual development. This is consistent with rapid evolution of sex-associated genes.

they usually have compact genomes with short introns and relatively few repetitive regions or non-coding DNA compared to plants and animals, thus making genomic analysis less complex. However, while there are at least ten genome sequences available for each of the more derived groups (Sordariomycetes, Leotiomycetes, Eurotiomycetes and Dothideomycetes), only one Orbiliomycete and one Pezizomycete genome have been sequenced, namely those of a nematode-trapping fungus, *Anare驯sorpsia* and one Pezizomycete genome have been sequenced, only one Orbiliomycete and one Pezizomycete genome have been sequenced, namely those of a nematode-trapping fungus, *Anare驯sorpsia* and one Pezizomycete genome have been sequenced, namely those of a nematode-trapping fungus, *Anare驯sorpsia* and one Pezizomycete genome have been sequenced, namely those of a nematode-trapping fungus, *Anare驯sorpsia* and one Pezizomycete genome have been sequenced, namely those of a nematode-trapping fungus, *Anare驯sorpsia*. The genome of the *P. confluens* strain CBS100304 was sequenced with a combination of Roche/454 and Illumina/Solexa sequencing similar to what was described previously for *Sordaria macrospora* [22]. A summary of the sequence reads that were used for the *P. confluens* assembly is given in Table S1. The final assembly consists of 1,588 scaffolds (1,898 contigs) with a total size of 50 Mb, a scaffold N50 of 135 kb and a GC content of 47.8% (Table 1). To estimate the genome size independently of the assembly, k-mer analyses based on the Illumina/Solexa reads were performed using an algorithm described for the potato genome [23]. The analysis resulted in one clear peak, as one would expect for haploid genome (Figure S1). Based on the analysis for different k-mer lengths (31 and 41), a total genome size of ~50.1 Mb was predicted which is close to the total length of the assembly.

For transcriptomics, we performed RNA-seq for three different conditions: sexual development (sex), long-term culturing in the dark (DD), and a mixture of different vegetative tissues (vemix), in morphogenetic analyses. To fill this gap, we sequenced and analyzed the genome and development-dependent transcriptomes of the Pezizomycete *Pyronema confluens*.

P. confluens was established as a model organism for the analysis of cell biology and fruiting body development in filamentous ascomycetes during the first half of the 20th century. It was instrumental in the elucidation of the dikaryotic phase during sexual development of higher ascomycetes [13–17]. In the last decade, *P. confluens* was used in comparative studies of gene expression during sexual development of ascomycetes [6,18,19]. It is a soil-living saprobe found in forests in temperate climates. In nature, its fruiting bodies (apothecia) usually appear on the ground after forest fires [20]. Under laboratory conditions, *P. confluens* has a short life cycle where typical apothecia containing eight-spored asci are formed within six days (Figure 1). This is rare among members of the Pezizomycetes, many of which do not easily reproduce sexually in the laboratory. Also, *P. confluens* is homothallic (self-fertile), therefore no crossing partner of different mating type is needed for the fungus to complete its sexual cycle [17]. In addition, *P. confluens* can also be used to study the effects of light on fruiting body formation, because in contrast to many other filamentous ascomycetes, fruiting body development in this fungus is strictly light-dependent [6,21]. A previous analysis based on sequence data from 15 proteins showed that the *P. confluens* lineage is positioned at the base of the filamentous ascomycetes in a phylogenetic tree [6]. Phylogenomic analysis based on the genome data from this study and including sequences from *T. melanosporum* and *A. oligospora* confirms this basal position with the Pezizomycetes as sister group to the Orbiliomycetes (Figure 2).

In two previous small pilot studies, *P. confluens* was used for comparative expression analyses to identify genes with evolutionary conserved expression patterns during fruiting body development in ascomycetes [6,19]. These studies already indicated that gene expression patterns during development might be conserved even over large evolutionary distances. Here, we sequenced the genome and development-dependent transcriptomes of *P. confluens* with the following objectives: (i) To work towards closing the sequence gap among basal filamentous ascomycetes, and thus, to learn more about the evolution of fungal genomes. (ii) To use the genome and transcriptome data to study the biology of a basal filamentous ascomycete in comparison with more derived species, with a focus on sexual development.

Results/Discussion

Sequencing and Assembly of the *P. confluens* Genome and Development-Dependent Transcriptomes

The genome of the *P. confluens* strain CBS100304 was sequenced with a combination of Roche/454 and Illumina/Solexa sequencing similar to what was described previously for *Sordaria macrospora* [22]. A summary of the sequence reads that were used for the *P. confluens* assembly is given in Table S1. The final assembly consists of 1,588 scaffolds (1,898 contigs) with a total size of 50 Mb, a scaffold N50 of 135 kb and a GC content of 47.8% (Table 1). To estimate the genome size independently of the assembly, k-mer analyses based on the Illumina/Solexa reads were performed using an algorithm described for the potato genome [23]. The analysis resulted in one clear peak, as one would expect for haploid genome (Figure S1). Based on the analysis for different k-mer lengths (31 and 41), a total genome size of ~50.1 Mb was predicted which is close to the total length of the assembly.

For transcriptomics, we performed RNA-seq for three different conditions: sexual development (sex), long-term culturing in the dark (DD), and a mixture of different vegetative tissues (vemix), in
two biological replicates per condition (Table S1). For each condition, RNA from different time points was pooled to represent a high number of genes that are expressed during the corresponding condition (see Materials and Methods for details). RNA for sex samples was extracted from mycelia grown in minimal medium in surface culture in constant light. Only under these conditions is P. confluens able to develop fruiting bodies, whereas growth in darkness, submerged, or in complete medium prevents sexual development. We used RNA from 3d, 4d, and 5d old mycelia to cover the initial stages of sexual development up to the development of young fruiting bodies (Figure 1). The DD samples comprised RNAs from mycelia grown in minimal medium in submerged culture in constant darkness, which prevents fruiting body formation. The vegmix samples also contained only RNAs from mycelia that could not develop fruiting bodies, but from a mixture of growth conditions different from the DD condition. We argue that the use of different mycelia sharing the common denominator of “no fruiting bodies” would allow us to focus on genes that are differentially expressed during fruiting body morphogenesis by comparing the three different conditions. Thus, genes that are differentially regulated in the comparisons sex/DD and sex/vegmix, but not DD/vegmix

Figure 1. Life cycle of P. confluens under continuous illumination and laboratory conditions. Non-pigmented, regularly septated mycelium germinates from haploid ascospores after a few hours. First orange structures of sexual organs can be observed after two days, they consists of ascogonia (enlarged, cytoplasm-rich female structures) and antheridia (male organs). Cytoplasmic fusion and transfer of nuclei are realized by a trichogyne that grows from an ascogonium to an antheridium; the formation of dikaryotic ascogenous hyphae begins after plasmogamy and is followed by karyogamy and meiosis (not shown). After the fourth day of incubation, young pigmented apothecia can be observed; these contain many thin paraphyses, but no mature asci yet. By the sixth to seventh day, apothecia are mature and contain numerous ascii (shown in top and side view to the left and right, the middle panel shows a flattened apothecium to visualize the ascus rosette). Each ascus contains eight hyaline ascospores. With the exception of the ascogenous hyphae in which karyogamy occurs leading to a diploid nucleus (which directly undergoes meiosis to yield haploid ascospores), all hyphae, both in vegetative or sexual structures, contain haploid nuclei.

doi:10.1371/journal.pgen.1003820.g001
are candidates for genes that are regulated in a sexual development-dependent manner.

RNAs from different growth conditions were also used to allow a high read coverage of as many genes as possible for annotation purposes as described previously for *Sordaria macrospora* [24]. Therefore, gene model predictions were performed *ab initio* as well as evidence-based on the RNA-seq data (details in Materials and Methods). The output from different gene prediction pipelines was merged using MAKER [25]. Gene model predictions were scanned for consistency, and 10% of the predicted gene annotations were corrected manually to improve the exon/intron structure. To address the question whether the assembly and annotation cover the complete gene space of *P. confluens*, we performed a BLASTP search with a eukaryotic core gene set as previously described [26]. All of the 248 single-copy core genes were present in the *P. confluens* predicted peptides, suggesting that the assembly covers the complete core gene space.

Untranslated regions (UTRs) were also modeled by the gene prediction pipeline, and were refined based on the manually curated gene set using custom-made Perl scripts as described previously [24]. For the current assembly, 13,369 protein-coding genes are predicted with an average CDS length of 1,093 and an average transcript length of 1,483 bases (Table 1, Table S2). The

Table 1. Main features of the *P. confluens* genome.

Feature	Value
assembly size	50 Mb
no. of scaffolds	1,588
N50	135 kb
GC content	47.8%
number of predicted genes	13,369
predicted tRNAs	605
average length of CDSs	1,093 nt
GC content of CDSs	51.1%
coding regions in genome	29.2%
average length of mRNAs	1,483 nt
GC content of mRNAs	49.9%
mean/median length of 5′ UTRs	260/156 nt
mean/median length of 3′ UTRs	281/200 nt

1 only those genes used where a UTR length >0 was determined.

doi:10.1371/journal.pgen.1003820.001
median length of 5′ and 3′ UTRs are 156 and 200 bases, respectively, similar to findings in T. melanosporum, Aspergillus oryzae and S. macrospora [24,27,28]. Furthermore, we predicted 605 rRNAs, and assembled an rDNA unit comprising the 18S, 5.8S and 28S rRNA genes as well as the internal transcribed spacers (ITS) 1 and 2. Based on this annotation, the majority of the RNA-seq reads map to exonic regions as expected (Figure S2).

Spliced sequence reads identified in RNA-seq mapping results can not only be used to improve the exon/intron structures of predicted genes, but also to address the question of natural antisense transcripts (NATs), because the consensus sequences at the 5′ and 3′ ends of introns allow strand determination even in non-strand-specific RNA-seq data. NATs can play a role in the regulation of gene expression, and were found to be pervasive in metazoans [29,30]. To identify putative NATs in P. confluens, we extracted predicted splice sites in antisense orientation to annotated genes from the mapping results obtained with TopHat [31]. Antisense splice sites covered by at least five spliced sequence reads, and with a coverage of more than 10% of the average coverage of the predicted sense-transcript were checked manually to remove splice sites that were most likely due to annotation errors, within repeat-rich regions, or close to sequence gaps. This yielded 376 antisense splice sites in 281 genes (Table S3), indicating that natural antisense transcripts are present in P. confluens. The number of genes with NATs is most likely underestimated, because we set stringent criteria, and non-spliced antisense transcripts could not be discovered by this analysis. In T. melanosporum, only 33 NATs were identified from RNA-seq data by gene modeling, but this low number most likely also is an underestimate due to the method used [27]. Few studies have addressed the presence of NATs at a genome-wide scale in filamentous fungi, and the number of NATs that were identified in the ascomycetes Aspergillus flavius, Aspergillus niger, and Magnaporthe grisea [32–34], and in the basidiomycetes Ustilago maydis, Coprinopsis cinerea, and Schizopyllum commune [35–37] is in a range similar to our findings in P. confluens. Thus, NATs appear to be present across all groups of filamentous fungi, even though they do not seem to be as pervasive as in metazoans.

When compared with the genome of its closest sequenced relative, T. melanosporum [9], the P. confluens genome is much smaller (50 Mb versus 125 Mb), but contains nearly twice the number of protein-coding genes (13,369 versus 7,496). The large size of the truffle genome is mostly due to an expansion of transposons and other repeated elements, with nearly 58% (~71 Mb) of the genome consisting of repeats larger than 200 bp [9]. Repeat analyses based on similarity to known repeat classes as well as de novo repeat finding showed that in P. confluens, transposable elements longer than 200 bp constitute only 12% (~6 Mb) of the genome, with low complexity regions and simple repeats constituting an additional 0.21 and 1.03%, respectively (Table S4). Very few of the repeats show a high percentage of sequence identity with the repeat consensus sequences, indicating a high degree of divergence among repeats (Figure S3). This is different from findings in T. melanosporum, Fusarium oxysporum, and Pyrenophora tritici-repentis [9,38,39], but similar to Nectria haematococca [40]. One reason for this finding might be that long perfect repeats (longer than the Roche/454 read lengths of 300–400 bp) were lost in the assembly process; however, this would not apply to shorter perfect repeats. Also, the k-mer analysis showed a single main peak corresponding to a genome size of 30 Mb (Figure S1), and did not show any major extra peaks, indicating that most of the genome sequence is represented in the assembly. Thus, the presence of repeats with dissimilar sequences suggests that the repeats are evolutionary rather old, and that genome defense processes are active in P. confluens. A search for genes that might be involved in chromatin modification and other silencing processes showed that P. confluens comprises gene sets similar to those in other fungi where genome defense processes were identified. Interestingly, there is even a slight expansion in some families of putative RNA interference genes (Table S5). This suggests that in its current state, the P. confluens genome is well-protected against repeat spreading, and that the high repeat content of the T. melanosporum genome is not characteristic for all members of the Pezizales. Among the genes that might be involved in genome defense is PCON_06255, a homolog of the N. crassa nd gene. In N. crassa, the cytosine DNA methyltransferase RID is essential for repeat induced point mutation (RIP) [41]. The RIP process introduces C→T mutations in duplicated sequences of more than 400 bp and at least 80% sequence identity during the sexual cycle, and thus is a means to control the spread of duplicated sequences including transposons [42–44]. The rid homolog PCON_06255 is slightly upregulated during sexual development (Table S2), consistent with a role for the gene product under these conditions; however, an analysis of the genomic DNA for the presence of regions that might have been subjected to RIP yielded only a small fraction (0.46%) of the genome (Table S6). Thus, RIP does not seem to play a major role in genome defense in P. confluens. Overall, with respect to genome size, gene number, and transposon content, the P. confluens genome is more similar to those of many higher filamentous ascomycetes than to the truffle genome, indicating that these features in truffle might be a consequence of the specialized life style.

It has been shown previously that the number of introns per gene varies greatly between different fungal lineages, with filamentous ascomycetes harboring one to two introns per kilobase [45]. However, at the time of the study, no Pezizomycete genome sequences were available, therefore we performed an analysis of intron content in P. confluens and T. melanosporum in comparison with nine other filamentous fungi representing major fungal lineages (Figure 3). The comparison included 747 genes for which orthologs could be identified in all analyzed fungi. About 7% of the analyzed P. confluens genes do not contain introns, similar to chytrids and zygomycetes, and less than in most higher ascomycetes where 10–12% of the investigated genes are intron-free. This is also much less than in hemiascomycete yeasts, e.g. S. cerevisiae, where only a minority of genes contains introns [45]. However, it is almost twice the number found in basidiomycetes, where less than 4% of the analyzed genes do not contain introns. The average number of introns per kb is 1.83 in P. confluens, which is larger than that of the higher filamentous ascomycetes with the exception of Aspergillus nidulans, but still in the same range as found in the previous study [45]. Interestingly, T. melanosporum has 2.49 introns per kb, the highest value of all investigated ascomycetes. These data might indicate that within filamentous ascomycetes there is a tendency towards net intron loss that is more pronounced in the evolutionary derived lineages than in the basal Pezizomycetes. However, the exceptionally high intron content of T. melanosporum might also be life style-specific or connected to the high repeat content in this fungus.

The availability of transcriptome data for P. confluens also allowed us to compare overall expression levels across the genome. In a previous study with metazoans, genes could be grouped in two classes with high and low expression levels, respectively, independent of species, tissue type, or type of experiment [46]. In fungi, this has been addressed only in the filamentous ascomycete Sordaria macrospora where the situation is different, because there were up to three expression peaks depending on the conditions analyzed [24]. Interestingly, the situation in P. confluens is more similar to
metazoa, with two main peaks that represent high and low expression in all three conditions investigated (for details see Text S1 and Figure S4).

Analysis of Synteny with Other Fungal Species

The closest relative of *P. confluens* with a sequenced genome is *T. melanosporum*, therefore, we used the MUMmer package [47] to determine regions of sequence similarity and possible synteny, i.e. the order of genes within the genome, between the two species. However, even though both species belong to the order Pezizales, there is little sequence similarity at nucleic acid level (data not shown), therefore we used the PROmer algorithm from the MUMmer package to compare the in silico-translated genomic sequences (Figure 4). Even at amino acid level, only ~11% of the *P. confluens* genome align with the *T. melanosporum* genome, compared to more than 66% in the highly syntenic genomes of *S. macrospora* and *N. crassa* (Figure 4A and B). A dot plot analysis of the PROmer results also indicated a low degree of overall synteny between *P. confluens* and *T. melanosporum* (Figure S5A). In a second analysis of synteny, we identified orthologs for all *P. confluens* genes in the predicted proteomes of ten filamentous fungi by reciprocal BLAST analysis [48], and used the positions of orthologous proteins on sequenced chromosomes or contigs to determine synteny (Figure S5B). A dot plot for this comparison of *P. confluens* with *T. melanosporum* also shows that there is little overall synteny, in contrast to the comparison of the highly syntenic genomes of *N. crassa* and *S. macrospora*. The low degree of synteny between *P. confluens* and *T. melanosporum* might be explained by their large evolutionary distance. Estimation of divergence times of the Pyronema and Tuber lineages using r8s [49] placed their most recent common ancestor at least 260 Mya (million years ago), nearly twice the time of the estimated divergence of Tuber from its sister groups within the Tuberaceae (~156 Mya, [50]).

Nevertheless, an analysis of the number of syntenic gene pairs or gene triplets showed that although the number of syntenic pairs and triplets in *P. confluens* versus *T. melanosporum* is still lower than in *N. crassa* versus *S. macrospora*, it is much higher than in comparisons of *P. confluens* with other ascomycetes (Figure 4C). This indicates that many regions of microsynteny exist between *P. confluens* and *T. melanosporum* whereas overall chromosomal synteny was lost. In contrast, in comparisons of *P. confluens* with basidiomycete, zygomycete, or chytrid species, we found few syntenic gene pairs or triplets.

P. confluens Might Reflect an “Intermediate State” in the Evolution of the Genomic Environment of the Mating Type Loci

In filamentous ascomycetes, the master regulators of sexual reproduction are the various genes that reside at the mating type (*MAT*) loci [51]. They encode transcription factors that regulate the sexual cycle. Heterothallic ascomycetes have a bipolar mating type system, with isolates possessing one of two non-allelic versions (idiomorphs) of a single *MAT* locus, termed *MAT1-1* and *MAT1-2* [52]. The *MAT1-1-1* and *MAT1-2-1* genes encode transcription factors with a conserved alpha domain and high-mobility group (HMG)-domain, respectively [51]. Conversely, homothallic ascomycetes carry both *MAT* loci within a single genome, with the two loci either fused together, located within close proximity, or on separate chromosomes [53–57]. BLASTP searches with *MAT1-1-1* proteins of different filamentous ascomycetes revealed the
The genome of the homothallic *P. confluens* has two putative MAT loci, typical for homothallic filamentous ascomycetes. The MAT-1 and MAT-2 loci encode an alpha domain and an HMG domain transcription factor, respectively. The mating type loci are not fused and not in close proximity, similar to the situation in several Eurotiomycetes [63]. Only the MAT-2 locus is flanked by the conserved APN2 gene, whereas both MAT loci are flanked by a pair of paralogous genes not found in this location in other ascomycetes (Figure 5). In this respect, *P. confluens* is more similar to derived filamentous ascomycetes than to its closest sequenced relative, *T. melanosporum*, where the MAT loci are not flanked by either APN2 or SLA2. Thus, the *P. confluens* MAT loci might reflect a putative intermediate state between the relatively conserved genomic arrangement of mating type loci found in higher filamentous ascomycetes and the specific arrangements found in *T. melanosporum*.

We also searched for homologs to other proteins involved in sexual development and signaling, e.g. pheromone and pher-

Figure 4. Synteny analysis with other fungi. A–B. Regions of sequence identity between the *in silico*-translated genomic sequences of the pairs *T. melanosporum*/*P. confluens* and *S. macrospora/N. crassa* (for comparison) were determined with the PROmer algorithm from the MUMmer package [47]. The percent identity plot (A) was plotted with gnuplot, green indicates sequences on the forward strand, blue on the reverse strand of the reference. The PROmer analysis shows a much higher percentage of regions of similarity/identity between *S. macrospora* and *N. crassa* than between *T. melanosporum* and *P. confluens*. C. The number of pairs or triplets of orthologous genes within a 20 kb (pairs) or 40 kb (triplets) region was determined for *P. confluens* and 10 other fungi. For comparison, the number of syntenic pairs or triplets was also determined for *S. macrospora* and *N. crassa* (bars at the right). Note that the y-axis is interrupted in two places for better visualization. Data used for this analysis are from the genome projects as indicated in the legend of Figure 3.

doi:10.1371/journal.pgen.1003820.g004

Figure 5. Organization of the mating type loci. The predicted mating type genes MAT-1-1-1 and MAT-1-2-1 on scaffolds 329 and 381, respectively, are shown together with adjacent genes. The gap in scaffold 381 was introduced for better visibility and contains the predicted genes PCON_08386 and PCON_08387.

doi:10.1371/journal.pgen.1003820.g005

presence of a MAT1-1-1 gene (PCON_07491, scaffold 329) encoding a putative transcription factor with an alpha domain that is most similar to the MAT1-1-1 protein of *T. melanosporum* [58] (Table S7). In the majority of Sordariomycetes, two other genes are also located in the MAT1-1 locus: the MAT1-1-2 gene encoding a protein with a PP domain harboring the three invariant residues proline (P), proline and phenylalanine (F), and the MAT1-1-3 gene encoding a protein with a high-mobility-group (HMG) domain as a DNA-binding motif [55,59]. Homologs of these two MAT1-1-specific mating type genes could not be identified in the genome of *P. confluens*.

A BLAST search with MAT1-2-1 HMG domain mating type proteins identified the ORF PCON_06339 (scaffold 361) encoding a HMG domain protein as a putative MAT1-2-1 homolog. The encoded protein displayed the highest degree of identity to the mating type protein MAT1-2-1 of *Gibberella indica* (Table S7).

The genes APN2, encoding a putative DNA lyase, and SLA2, encoding a cytoskeleton assembly control factor, have been determined for *P. confluens* flanking the mating type locus of the Pezizomycete *P. confluens* [58] (Table S7). Only a homolog of the *G. indica* genome and therefore to homothallism. Indeed the phylogenomic tree in phylomeDB shows that PCON_08391 and PCON_07490 are species-specific paralogs.

In summary, the genome of the homothallic *P. confluens* has two putative MAT loci, typical for homothallic filamentous ascomycetes. The MAT-1 and MAT-2 loci encode an alpha domain and an HMG domain transcription factor, respectively. The mating type loci are not fused and not in close proximity, similar to the situation in several Eurotiomycetes [63]. Only the MAT-2 locus is flanked by the conserved APN2 gene, whereas both MAT loci are flanked by a pair of paralogous genes not found in this location in other ascomycetes (Figure 5). In this respect, *P. confluens* is more similar to derived filamentous ascomycetes than to its closest sequenced relative, *T. melanosporum*, where the MAT loci are not flanked by either APN2 or SLA2. Thus, the *P. confluens* MAT loci might reflect a putative intermediate state between the relatively conserved genomic arrangement of mating type loci found in higher filamentous ascomycetes and the specific arrangements found in *T. melanosporum*.
mone receptor genes as well as genes involved in pheromone processing and downstream signaling. With the exception of pheromone genes, which are weakly conserved in ascomycetes, conserved genes for sexual development were found in *P. confluens*, too (for details see Text S2 and Table S7).

Many Orphan Genes are Upregulated during Sexual Development

A quantitative analysis of gene expression across the *P. confluens* genome was performed based on RNA-seq (Table S2). Of the 13,369 annotated genes, only 58 were not expressed (i.e. have no RNA-seq reads mapped to their exon sequences) in any of the conditions tested. Our analysis was focused on development-dependent gene expression with one tested condition allowing sexual development (sex), and two conditions that only allow the formation of vegetative mycelium (DD and vegmix). Genes that are regulated mostly by developmental factors should be differentially expressed in the comparisons sex/DD and sex/vegmix, but not DD/vegmix. Of the predicted 13,369 protein-coding genes, 5,955 (41%) are regulated differentially in at least one of the three comparisons with thresholds >2 or <0.3, and 3,616 genes (27%) are differentially regulated in at least one comparison with thresholds >4 and <0.25. With the less stringent thresholds, 506 (4%) genes are downregulated and 1,804 (13%) genes are upregulated in both sex/DD and sex/vegmix, but not differentially regulated in DD/vegmix; with the more stringent thresholds, the numbers are 229 (2%) and 1,460 (11%) genes.

Studies in animals and plants have shown that genes associated with sexual reproduction evolve more rapidly than genes with other functions [64,65]. This can be observed not only for single genes, but across genes that are transcriptionally expressed in other functions [64,65]. This can be observed not only for single genes, but across genes that are transcriptionally expressed in other functions [64,65]. This can be observed not only for single genes, but across genes that are transcriptionally expressed in other functions [64,65]. This can be observed not only for single genes, but across genes that are transcriptionally expressed in other functions [64,65]. This can be observed not only for single genes, but across genes that are transcriptionally expressed in other functions [64,65]. This can be observed not only for single genes, but across genes that are transcriptionally expressed in other functions [64,65]. This can be observed not only for single genes, but across genes that are transcriptionally expressed in other functions [64,65]. This can be observed not only for single genes, but across genes that are transcriptionally expressed in other functions [64,65]. This can be observed not only for single genes, but across genes that are transcriptionally expressed in other functions [64,65].

High numbers of genes were preferentially expressed under any of the conditions that we analyzed derived peptide lengths, and expression in the three conditions sex, DD, and vegmix. One is gene loss in all but one putative function, in an analysis of seven ascomycete genomes [72,73]. Increased evolutionary rates have generally been observed in genes with higher lineage-specificity, independent of putative function, in an analysis of seven ascomycete genomes [74]. However, there are other mechanisms that may lead to the presence of orphan genes. One is gene loss in all but one observed species, although this is unlikely to occur on a larger scale, i.e. for thousands of genes in a single species. Another is the de novo gene birth from previously non-coding sequences, a process that in recent years was acknowledged as probably being more common than previously thought [75,76]. One might speculate that the high number of sex-associated orphan or less conserved genes in *P. confluens* indicates that sexual development allows the “testing” of novel gene-inventions. This might be feasible in filamentous fungi where sexual development is usually not the only means of propagation, and therefore novel genes that are deleterious for sexual reproduction under some circumstances might be retained by purely vegetative propagation until more compatible conditions occur. Another reason could be a more general trend for less conserved genes to be involved in group-
Genome and Transcriptomes of Pyronema confluens

A

peptide length [amino acids]

a
b
P. confluens orphan genes
Pezizales
filamentous ascomycetes
filamentous dikarya
filamentous fungi
all fungi

d

B

no. of genes
% diff. expr.
% sex. dev. up
% sex. dev. down

C

RPKM

S
D
V

a
b
c
d
e
f

September 2013 | Volume 9 | Issue 9 | e1003820
Light-Dependent Development and Expression of Photoreceptor Genes

It has been shown in many fungi that light can cause developmental changes. In several ascomycetes, illumination promotes vegetative reproduction via conidiospores, while sexual reproduction is observed in darkness [78]. In contrast to this, it was noted already at the beginning of the last century that the formation of apothecia in _P. confluens_ is light-dependent [13,21], and this was confirmed by our studies. Both constant illumination (LL) as well as a 12 h photoperiod promote fruiting body formation, whereas in constant darkness (DD), _P. confluens_ is sterile (Figure S7, Figure 7). This complete light-dependency of fruiting body development is uncommon in ascomycetes. It was discussed that perithecium formation in _Trichoderma reesei_ might be activated by light [79], but it was shown later on that sexual development in this fungus can also be observed in darkness [80]. However, light-dependent fruiting body development was observed in several basidiomycetes, e.g. _Schizophyllum commune_ and _Coprinopsis cinerea_, and in both species, blue light constitutes the effective part of the visible spectrum [81–83]. We found that this is also the case for _P. confluens_ where blue (400–500 nm) but not green or red light allows fruiting body formation (Figure 7A). This confirms an early study from the 1920s that found wavelengths of 400–550 nm to promote sexual development in this fungus [21].

Despite the fact that no phototopic responses to wavelengths other than blue have been observed in _P. confluens_ yet, its genome encodes putative photoreceptors that cover a range of wavelengths (Table 2), and most of these genes are expressed (Figure 7, Table S10). This includes homologs of _N. crassa_ WC-1 and WC-2 (PCON_03119 and PCON_05086), transcription factor/photoreceptor proteins that are part of the white collar complex and mediate all blue-light responses [84–88]; however, no homolog was found for the VVD protein that functions in light adaptation in _N. crassa_ and _T. reesei_ [80,89,90]. Two putative phytochromes (PCON_06747 and PCON_06326) are present in the _P. confluens_ genome, the first of which is orthologous to FphA that was shown to be the photoreceptor mediating repression of sexual development by red light in _A. nidulans_ [91]. _P. confluens_ also encodes an ortholog of the _N. crassa_ opsin-related protein (PCON_01637) that lacks a conserved lysine residue for chromophore binding, but has no homolog of the rhodopsin NOP-1, a putative green-light receptor [92–94] (Table 2). BLAST searches in the _T. melanoporum_ genome also failed to identify a NOP-1 homolog, suggesting that the Pezizales might lack a gene for this type of photoreceptor. A gene encoding a putative cryptochrome is present in _P. confluens_ (PCON_04132, Table 2), but was the only putative photoreceptor gene for which no expression could be detected under the conditions tested. All other putative photoreceptor genes are expressed, and induced by white light in long-term illumination experiments (4 d LL versus 4 d DD, Figure 7B), but only moderately or not induced by short-term light pulses (from 5 to 60 min, Figure 7C). Interestingly, we also observed some induction with green light for several of the genes, which is surprising because _P. confluens_ lacks a rhodopsin-type receptor that was hypothesized to mediate green-light responses in fungi [92]. However, the green-light filter we used has a slight transmission wavelength overlap with the blue light filter (Figure S8), therefore at least part of the green-light responses might be mediated by residual blue light. Nevertheless, _P. confluens_ seems to have some green-light sensitivity, because the _orp_ gene is light-induced in the short- and long-term illumination experiments, and this effect is stronger with green light than with blue light (Figure 7, B and C).

We also looked for homologs to genes that act downstream of photoreceptors in light signal transduction in other fungi. Interestingly, _P. confluens_ contains a _frq_ homolog (PCON_09365), and thus is the most distant relative of _N. crassa_ in which this gene is found. The _frq_ gene encodes the main regulator of circadian rhythmicity in _N. crassa_, and is a direct target of the white collar complex, but so far _frq_ homologs were only found in Sordariomycetes, Dothideomycetes, and Leotiomycetes [95,96]. The identification of a _frq_ homolog in _P. confluens_ suggests that _frq_ was present in the ancestor of filamentous ascomycetes and was lost several times during evolution, because the _T. melanoporum_ genome does not contain a _frq_ homolog (data not shown), and no homolog has been detected in the Eurotiomycetes [95,96]. Similar to _N. crassa_ [84,97], the _P. confluens_ _frq_ is strongly induced by short light pulses, and this reaction is mainly mediated by blue light (Figure 7C), _frq_ was also upregulated in the long-term illumination experiments (Figure 7B).

In _N. crassa_, an antisense transcript of _frq_ is also upregulated by light, and is involved in light-dependent resetting of the circadian clock [98]. Analysis of antisense splice sites did not show any NATs for the _P. confluens_ _frq_, although we cannot exclude the possibility of non-spliced antisense transcripts with this analysis. However, a splice site analysis of RNA-seq reads for _frq_ indicated that there might be an alternatively spliced intron in the sense direction overlapping the predicted start codon of the open reading frame (Figure S9). In _N. crassa_, an intron overlapping the _frq_ start codon is alternatively spliced resulting in two different forms of the _FRQ_ protein [99,100]. To determine whether a similar mechanism might occur in _P. confluens_, we performed RT-PCR analysis of a region covering the predicted alternatively spliced intron. Interestingly, there are indeed two different transcript, and alternative
splicing of the intron is light-dependent with an increased ratio of spliced versus non-spliced transcript in the light (Figure S9). In the N. crassa frq, alternative splicing of the AUG-covering intron is temperature-dependent [99,100], therefore it seems that similar principles might be at work in these two distantly related fungi, but with different input signals.

We also identified an ortholog for the GATA-type transcription factor NsdD/SUB-1/PRO44 (PCON_06721) that was shown to mediate late light responses in N. crassa [101] and is essential for sexual development in A. nidulans, Aspergillus fumigatus, N. crassa and S. macrospora [102–105]. The developmental function of this protein appears to be conserved (see later section), and expression analyses indicate that light responses, and therefore regulatory activities, might also be similar to those in higher fungi, because the P. confluens pro44 is strongly light induced after long- and short-term illumination (Figure 7).
We also searched for homologs to carotenoid biosynthesis genes that are known to be light-induced in other fungi [78,106,107]. *P. confluens* encodes homologs to the three enzymes AL-1, AL-2, and AL-3 from *N. crassa* [108–111], and the corresponding al genes (PCON_03421, PCON_03432, and PCON_05718) are strongly light-induced under short- and long-term illumination (Figure 7B, C). Under long-term illumination, blue light has an even stronger effect than white light on al gene expression. It has been shown in a previous biochemical analysis that the orange-pinkish pigments that characterize *P. confluens* cultures grown in white or blue light (Figure 7A) are carotenoids [112]. Thus, assuming a function of the al genes in *P. confluens* similar to that in *N. crassa*, it seems likely that these carotenoids are synthesized by the products of the al genes. Analysis of cultures grown on complete medium that does not support fruiting body formation even in the light indicates that pigment synthesis is independent of fruiting body formation, because light-grown cultures are pigmented even in the absence of apothecia formation (Figure S7).

In summary, our data suggest that light-sensing and signal transduction in *P. confluens* might be comparable to mechanisms in the distantly related species *N. crassa*, and might thus be conserved to a large degree in filamentous ascomycetes. However, output from the light-signaling pathways might be somewhat different, because fruiting body development is strictly light-dependent in *P. confluens*, but not in most other ascomycetes. Blue light has the strongest effect on both morphological as well as gene expression phenotypes, but our data hint at sensitivity to other wavelengths, too, especially in the green part of the visible spectrum. Similar findings were made in *S. macrospera*, where phenotypic changes were observed in response to green light, and in *N. crassa*, where gene expression was found to be modified in mutants of the putative green-light receptor NOP-1 [22,113].

Gene Family Expansions and Contractions in *P. confluens*

We searched for conserved protein domains in the predicted proteins from *P. confluens* and seven other filamentous fungi to identify protein families that are expanded in *P. confluens* (Table S1). Among the expanded gene families are two that encode mostly small, extracellular proteins, namely CBM_14 and Defensin_2 domain proteins. The CBM_14 domain (Chitin binding Peritrophin-A domain) is mainly found in metazoa, and in fungi so far has been described only in the Avr4 protein from *Cladosporium fulvum* and, with one gene per genome, in the genomic sequences from several Aspergilli [114,115]. BLASTP analysis in GenBank revealed that there are also some predicted CBM_14 proteins in other Eurotiales (Figure 8A), but not in other fungal groups. In contrast, there are 13 proteins with CBM_14 domain in *P. confluens* (Figure 8A). All of these are predicted as extracellular and have a putative cleavable N-terminal signal peptide for co-translational insertion into the ER (data not shown). They are mostly 80–140 amino acids long with the exception of PCON_04108 (351 amino acids), and contain no other recognized domains besides CBM_14. Some of the corresponding genes are clustered within the same genomic region, indicating that the genes might have arisen through duplications at certain gene loci: PCON_09939, PCON_09940, PCON_09946, and PCON_09947 lie within 20 kb of scaffold 486, and PCON_05983 and PCON_05987 lie within 9 kb on scaffold 228.

The RNA-seq data show that more than half of the CBM_14 domain proteins are upregulated during sexual development.
Figure 8. The CBM_14 domain protein family is expanded in \textit{P. confluens}. A. Multiple alignment of the CBM_14 domains of proteins from \textit{P. confluens}, several Eurotiales and an insect. In addition to the \textit{P. confluens} proteins, the following proteins were used for Clustal X analysis: \textit{A. gambiae}, \textit{Anopheles gambiae} sp|O76217.2; \textit{A. nidulans}, \textit{Aspergillus nidulans} ANID_00499 from the \textit{A. nidulans} genome project http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiHome.html; \textit{A. niger}, \textit{Aspergillus niger} ref|XP_001397263.1; \textit{N. fischeri}, \textit{Neosartorya fischeri} ref|XP_001266454.1; \textit{P. chrysog.}, \textit{Penicillium chrysogenum} ref|XP_002561001.1. The conserved cysteine residues are indicated by green arrowheads above the sequence.

B. Quantitative real time PCR analysis of selected CBM_14 domain-encoding genes from \textit{P. confluens}. Expression was analyzed for each gene in two independent biological replicates for the four conditions LL, DD, LLK and DDK (light and darkness in surface culture and submerged culture). Sexual development is only possible in condition LL. The graph shows mean and standard deviation (for better visualization, standard deviations for negative expression ratios are shown in the negative instead of the positive direction). Expression ratios were calculated to
Furthermore, the overall expression levels of these proteins vary greatly ranging from no sequence reads in certain conditions to >13,000 reads (normalized to kb of mRNA, Figure S10). For example, the clustered genes PCON_09939 to PCON_09947 are preferentially or only expressed during sexual development, while others are more strongly expressed under non-sexual conditions. To address the expression of some CBM_14 domain genes in more detail and distinguish between regulation by sexual development, light, and growth conditions (surface versus submerged), we performed qRT-PCR for four genes under the conditions LL, DD, LLK and DDK (light and darkness in surface culture and submerged culture, Figure 8B). These combinations distinguish if a gene is differentially regulated during sexual development (i.e. in LL/DD and in LL/LLK), or regulated by light (i.e. in LL/DD and LLK/DDK) or regulated by surface versus submerged growth (i.e. LL/LLK and DD/DDK). PCON_04108 and PCON_09947 are upregulated during sexual development, but not consistently regulated by light or surface culture (PCON_09947 is slightly upregulated by light, but the extent of regulation is far lower than the development-dependent regulation). PCON_09794 is downregulated during sexual development, but not regulated by the other two stimuli, whereas PCON_06720 is downregulated during sexual development and (to a lesser extent) downregulated in the light and in surface cultures. Overall, the four genes have distinct expression patterns, which might indicate that they are functional in P. confluens. The Avr4 protein from the phytopathogenic C. fulvum was shown to bind chitin and protect it from hydrolysis by plant chitinases [115]. P. confluens is non-pathogenic, but one might speculate that secreted CBM_14 domain proteins might protect the fungus from microbial attacks in its soil habitat.

A second expanded gene family encoding small, secreted proteins is the Defensin_2 family (Table S11). Defensin_2 domain proteins are mostly known from arthropods where they are part of the immune system and act against bacteria [116,117]. In fungi, only one Defensin_2 domain protein has been described in detail, namely Plectasin from Pseudolentinus nigrella, a member of the Pezizales [118,119]. In P. confluens, the family comprises six members (PCON_01606 to PCON_01611), all of which are between 92–96 amino acids long, including predicted signal peptides of 15–23 amino acids, and are encoded by a cluster of genes within 10 kb on scaffold 1117 (Figure S11A and B). Two of the genes (PCON_01607 and PCON_01611) are pseudogenes, and interestingly the expression of the two pseudogenes is much lower than that of the other four genes under all conditions investigated by RNA-seq (Figure S11C). Both pseudogenes have one of the functional Defensin genes as closest homolog (Figure S11D), and one might speculate that they have arisen from gene duplications within the Defensin gene cluster, but lost (most of) their expression and function which was retained by their closest homologs. Interestingly, all genes including the pseudogenes are downregulated during sexual development (Figure S11C). However, a comparison of intergenic regions showed that these are not conserved, in contrast to the coding regions. On the one hand, this might indicate that the regulatory sequences responsible for development-specific regulation are too small or non-conserved to be detected in these comparisons. Another explanation could be that regulation is achieved through chromatin organization of the complete gene cluster, similar to what was described for secondary metabolism gene clusters in fungi [120,121].

In addition to the Defensin_2 domain proteins in P. confluens and P. nigrella, searches in other sequenced fungal genomes identified Defensin_2 domain proteins only in Eurotiomycetes (Figure S10D). This phylogenetic distribution is similar to that of the CBM_14 domain proteins. One might speculate that both classes of small, secreted proteins arose from horizontal transfer events from insects into fungi; alternatively, this could be a case of gene loss or rapid evolution in the other ascomycete groups. Horizontal gene transfer has been acknowledged as an important mechanism in fungal evolution only in recent years, and the availability of genome sequences has made in-depth analyses possible [122]. A transfer event of carotenoid biosynthesis genes from fungi into insects has been shown already [123], therefore it seems possible that a transfer in the reverse direction might also occur. Interestingly, both the Defensin_2 as well as the CBM_14 domain proteins might be involved in defense mechanisms against microorganisms in arthropods. One might hypothesize that the corresponding genes were acquired by fungi through horizontal gene transfer, and were retained because they offer a selective advantage in the microorganism-rich soil habitat.

A third gene family that is expanded in P. confluens compared to T. melanoporum (but not to other ascomycetes) comprises genes with HET (heterokaryon incompatibility protein) domains. While there are only two HET-domain containing protein in T. melanoporum [124], there are 15 in P. confluens (Table S11). However, there are 11–101 predicted HET domain proteins in various species of higher filamentous ascomycetes, therefore the number in T. melanoporum might have been reduced by selective gene loss. In the Sordariomycetes N. crassa and Podospora anserina, HET domain proteins were shown to mediate heterokaryon incompatibility (HI) [125,126]. Homologs to many known HI proteins can be found in P. confluens (Table S12); however, none of the P. confluens HET-domain proteins contains additional WD repeat, NACHT, leucine- or glycine-rich repeat domains that are found in the HET domain in HI proteins from N. crassa and P. anserina [127]. Therefore, if HI is present in P. confluens, it is unlikely to be mediated by the same proteins that regulate HI in Sordariomycetes.

A number of protein families are have fewer members or are missing in P. confluens compared to more derived ascomycete groups (Table S11). Most prominent among these are gene families involved in secondary metabolism (see next section), transporter protein families, and several gene families involved in carbohydrate metabolism. The low number of genes for some transporter families might be connected to the limited capabilities for the production (and presumably export) of secondary metabolites; whereas the reduced number of genes for certain enzymes involved carbohydrate metabolism might either be a niche-specific adaptation or indicate that the expansion of carbohydrate-activating enzymes occurred only in more derived ascomycete groups. Overall, gene family contraction in P. melanoporum is much less prominent than in T. melanoporum [9].

Genes for Secondary Metabolism

In contrast to the gene families described in the previous section, genes encoding enzymes for the biosynthesis of polypeptides or non-ribosomal peptides, typical secondary metabolites of filamentous ascomycetes, are underrepresented in the P. confluens genome (Figure S12A). There are seven putative non-ribosomal peptide synthase (NRPS) genes, and one polyketide synthase (PKS) gene,
much fewer than in the genomes of higher filamentous ascomycetes [128–130]. The predicted NRPS protein PCON_02059 has the typical domain structure of siderophore NRPSs and is part of a cluster of genes homologs of which are involved in siderophore biosynthesis in other fungi [131,132] (Figure S12B). A second putative NRPS gene (PCON_07777) is not clustered and does not have homology to NRPSs with known function. The remaining five NRPS genes all have a domain structure that is typical for alpha-aminoadipate reductase (AAR)-type NRPSs (Figure S12A), and (with the exception of PCON_04030) all have high sequence similarity to aminoadipate semialdehyde dehydrogenase, an enzyme of lysine biosynthesis that is conserved in fungi [129]. Most fungi have only one AAR-type NRPS [129], therefore the high number of corresponding genes in P. confluens is somewhat unusual. Possible explanations may be selective amplification of this specific gene family or loss of most other NRPS genes with exception of AAA-type NRPS genes. However, at least PCON_04030 might have a function other than lysine biosynthesis, because the gene is located adjacent to the single PKS gene (PCON_04029) in a gene cluster that also contains other genes encoding enzymes that might be involved in the biosynthesis of secondary metabolites (Figure S12C). The genes in this cluster might be involved in the production of a hybrid polyketide/non-ribosomal peptide. The existence of gene clusters encoding separate PKS and NRPS proteins that act in a common biosynthetic pathway was demonstrated, for example, in A. nidulans, where such a cluster is responsible for the production of Emericellamide [133].

The single predicted PKS PCON_04029 is a type I PKS. In filamentous ascomycetes, there is usually one type III PKS encoded in the genome [130], but type III PKSs are missing in P. confluens. A low number of PKS and NRPS genes was also found in T. melanosporum, and therefore seems to be typical for lower filamentous ascomycetes rather than a result of the truffle-specific life-style [9]. In summary, our analysis shows that the presence and clustering of NRPS and PKS genes is already established in P. confluens. In combination with the fact that no PKS genes and only the single AAR-type NRPS gene were found in Taphrinomycotina, Saccharomycotina, and zygomycete genomes [130], this suggests that the evolution and expansion of PKS and NRPS gene families began in a common ancestor of filamentous ascomycetes, whereas the expansion of type III PKS genes might be a later event that occurred in higher filamentous ascomycetes. However, at present it cannot be excluded that the low number of putative PKS and NRPS genes is an adaptation to specific ecological niches in both T. melanosporum and P. confluens [134,135]; more Pezizomycete genome sequences will be needed to resolve this question.

Genes Encoding Putative Transcription Factors

The number of putative transcription factor genes (excluding general transcription factors that regulate RNA polymerase) in filamentous fungi varies from 182 in N. crassa to more than 800 in several Fusarium species [39,136–138]. In truffle, 201 transcription factor genes were predicted [139], while our survey of the P. confluens genome indicated 177 putative transcription factor genes (Table 3, Table S13). Similar to other filamentous ascomycetes, the largest group comprises putative Zn_{2}-Cys_{6} binuclear cluster (Zn cluster) proteins; thus, the regulatory capacity of P. confluens appears to be similar to that of other filamentous fungi. 54 of the putative transcription factor genes are differentially expressed in at least one of the comparisons that were investigated (Figure S13). Eight genes are strongly upregulated during sexual development, and among these is PCON_02619, the gene encoding the ortholog of STE12, a transcription factor that was shown to be involved in sexual development in yeast and filamentous ascomycetes [140–143]. Expression of PCON_02619 and five additional transcription factor genes was characterized in more detail by qRT-PCR (Figure S14). Development-dependent expression was confirmed for those genes that were predicted to be differentially regulated during sexual development by the RNA-seq analysis, showing that our sampling strategy is indeed suitable for identifying developmentally regulated genes. The STE12 ortholog PCON_02619 was confirmed as one of the most strongly upregulated transcription factors during sexual development. Interestingly, the corresponding Stc1 gene in truffle is downregulated in fruiting bodies [139], suggesting a functional diversification of this conserved transcription factor among Pezizomycota.

Comparative Expression Analysis to Identify Genes with Conserved Expression Patterns during Sexual Development

Comparison of gene expression patterns can serve to identify core genes that are involved in biological processes, because conservation of expression is a strong indicator for functional significance [144,145]. In previous studies, we have already demonstrated that development-dependent expression of several genes is conserved in P. confluens and other, more derived filamentous ascomycetes, and that conservation of gene expression can be used as a criterion to identify genes that play a role during sexual development in fungi [6,18,19]. Here, we compared the RNA-seq results from P. confluens with published data from different developmental stages of S. macrospora [24] (Table S14). A cluster analysis of RPKM values for all orthologous gene pairs showed that overall expression patterns in total vegetative or sexual mycelia from S. macrospora are more similar to those from total mycelia from P. confluens than to expression patterns from

| Table 3. Overview of putative transcription factor genes. |
|-----------------|----------------|----------------|
| pfam domain | no. of genes | diff. expressed | % diff. expr. |
| model | | |
| bZIP_1 | 6 | 0 | 0.0 |
| bZIP_2 | 3 | 0 | 0.0 |
| bZIP1 and bZIP2 | 3 | 1 | 33.3 |
| CBF | 3 | 0 | 0.0 |
| CBF_NFYA | 1 | 0 | 0.0 |
| CBF_NFYB_HMF | 7 | 1 | 14.3 |
| Fork_head | 4 | 1 | 25.0 |
| GATA | 8 | 3 | 37.5 |
| HLH | 8 | 4 | 50.0 |
| HMG_box | 8 | 2 | 25.0 |
| Homeobox | 3 | 1 | 33.3 |
| Myb_DNA-binding | 13 | 3 | 23.1 |
| SRF-TF | 2 | 0 | 0.0 |
| zf-C2H2 | 25 | 10 | 40.0 |
| zf-C3HC4 | 20 | 5 | 25.0 |
| Zn_clus | 63 | 23 | 36.5 |
| sum | 177 | 54 | 30.5 |

1Searches for conserved protein domains (pfam domains) were performed with the HMMER 3.0 program hmmsearch [160,161]. Numbers of genes that are differentially expressed in at least one of the comparisons (sex/DD, sex/vegmix, DD/vegmix) are indicated, detailed information for each gene is given in Table S13. doi:10.1371/journal.pgen.1003820.t003

Comparison of gene expression patterns can serve to identify core genes that are involved in biological processes, because conservation of expression is a strong indicator for functional significance [144,145]. In previous studies, we have already demonstrated that development-dependent expression of several genes is conserved in P. confluens and other, more derived filamentous ascomycetes, and that conservation of gene expression can be used as a criterion to identify genes that play a role during sexual development in fungi [6,18,19]. Here, we compared the RNA-seq results from P. confluens with published data from different developmental stages of S. macrospora [24] (Table S14). A cluster analysis of RPKM values for all orthologous gene pairs showed that overall expression patterns in total vegetative or sexual mycelia from S. macrospora are more similar to those from total mycelia from P. confluens than to expression patterns from...
isolated young fruiting bodies (protoperithecia) of *S. macrospora* (Figure 9). Similar results were obtained in a cluster analysis of expression ratios where comparisons of *S. macrospora* protoperithecia with total mycelia cluster separately from other comparisons (Figure S15). This indicates that similar tissues/organs in different species might have more similar expression patterns than different tissues/organs from the same species; in other words, tissue/organ-specific gene expression might be conserved across fungi. While more comparative studies of specific fungal organs or cell types are needed to confirm this, this finding is similar to results from organ-specific gene expression analysis in mammals [66].
Among the genes that were upregulated during sexual development in both species are the predicted transcription factor gene PCON_06721 and its S. macrospora ortholog pro44. The S. macrospora gene was shown previously to be essential for fruiting body development, similar to the corresponding homologous genes in A. nidulans, N. crassa, and A. fumigatus [102–105]. In N. crassa, the homologous sub-1 gene was also shown to be light-regulated at the level of transcription, and to be involved in light-regulation of downstream genes [101]. PCON_06721 (P. confluens pro44) is also light-induced (see section about light-dependent regulation and Figure 7), and further qRT-PCR analysis of PCON_06721 showed that it is upregulated by both light and sexual development, indicating that PCON_06721 might be involved in sexual development and development-independent light reactions (Figure 9B). PCON_06721 and its homologs in other fungi encode GATA-type transcription factors. Whereas the C-terminal GATA domain is highly conserved in all homologous proteins, the N-terminal part of the protein is only weakly conserved (Figure S16). To address the question whether the developmental function of PCON_06721 might be conserved despite limited sequence conservation, we transformed an S. macrospora Apro44 strain with a construct expressing the P. confluens PCON_06721 gene (Figure 9C). The S. macrospora Apro44 is sterile and forms protoperithecia, but no mature perithecia. Transformation with PCON_06721 restored the fertility of the deletion mutant, demonstrating that the gene from the basal filamentous ascomycete P. confluens is functional in the more derived Pezizomycete S. macrospora. This indicates that this transcription factor gene is one of the core regulators of sexual development across filamentous ascomycetes.

Conclusions
Here, we have analyzed the genome and development-dependent transcriptomes of P. confluens. This is the second Pezizomycete genome to be sequenced, but the first of a Pezizomycete with a more “typical” saprobic lifestyle and apothecium when compared to the more specialized life style of the truffle T. melanosporum. Overall genomic synteny with T. melanosporum is low, but regions of microsynteny between P. confluens and truffle are more numerous than between P. confluens and other ascomycetes, indicating that the two Pezizomycetes are more closely related to each other than to other ascomycete groups; however, the level of synteny still suggests a wide evolutionary range within the Pezizomycetes. This is consistent with phylogenetic analyses based on rDNA sequences that placed Pyronema and Tuber in subgroups C and B, respectively, of the Pezizomycetes [146,147].

The P. confluens genome has a number of characteristics that are similar to higher filamentous ascomycetes, and distinct from T. melanosporum, namely its size of 50 Mb, gene content of ~13,400 protein-coding genes, and low repeat content. However, several typical features of higher filamentous ascomycetes are different in P. confluens, allowing conclusions about the evolution of these features in fungi. For example, the mating type genes are conserved, but in contrast to higher filamentous ascomycetes, their genomic environment is not. Also, clustered genes for secondary metabolites exist, but in much lower numbers than in other species. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light-sensing and signaling might be similar to more derived species and therefore represent basic features of filamentous ascomycetes. Several families encoding predicted small secreted proteins are expanded in P. confluens and present in only few other fungal groups, making it possible that they were acquired by horizontal gene transfer. By analyzing spliced RNA-seq reads in antisense direction to annotated genes, we were able to deduce the presence of natural antisense transcripts in P. confluens; and this principle might be of interest for non-strand-specific RNA-seq experiments in other organisms.

Interestingly, among the P. confluens orphan genes, a disproportionally high number is upregulated during sexual development, consistent with a hypothesis of rapid evolution of sex-associated genes. Comparative transcriptome analysis with S. macrospora identified the transcription factor gene PCON_06721, the ortholog of S. macrospora pro44, as upregulated during sexual development in both species, and complementation of an S. macrospora deletion mutant with the P. confluens gene demonstrated the conserved function of this regulator of sexual development. In summary, the P. confluens genome helps to close a sequence gap at the base of the filamentous ascomycetes, and the genome and transcriptome data are valuable resources for the analysis of fungal evolution and sexual development.

Materials and Methods

Strains and Culture Conditions
The sequenced strain is Pyronema confluens CBS100304, obtained from the CBS (Centraalbureau voor Schimmelcultures, Utrecht, NL). The strain was grown on minimal medium as previously described [6] or on cornmeal medium [148]. Sordaria macrospora strains used in this study are the wild type (FGSC 10222) and the pro44 deletion mutant from the strain collection of the Department of General and Molecular Botany at the Ruhr-Universität Bochum (Nowrousian, Teichert and Kück, unpublished). S. macrospora was grown on cornmeal medium as previously described [148].

Light Treatment for the Analysis of Light-Dependent Development and Gene Expression
For standard cultures, white light with a spectral range from 400 to 700 nm (Osram L36W/840; 1.57 lx at culture level) was used. For wavelength-dependent development and gene expression analyses, LEE filters (Andover, UK) with different transmission characteristics were used (light intensity at the level of the cultures given in lux, for transmission data see Figure S8): far red (LEE Filter 787 marius red; 0.02 lx), red (LEE Filter 106 primary red; 0.54 lx), green (LEE Filter 139 primary green; 0.06 lx) and blue (LEE Filter 363 medium blue; 0.14 lx). For light induction experiments, samples were harvested under far-red light (Philips PF712E darkroom safe light) after 4 d continuous light (LL), or continuous darkness (DD), or DD and 5–60 min of light induction with the respective wavelengths.

DNA Preparation and Sequencing
Genomic DNA from P. confluens was prepared from mycelium grown for 3 days in minimal medium. Mycelium was frozen in liquid nitrogen, pulverized, and incubated in equal volumes of lysis buffer (0.6 M, 10 mM EDTA, 100 mM Tris-HCl pH 8.0, 1% SDS) and phenol/chloroform (1:1) at room temperature for 10 min with constant shaking. After centrifugation, the supernatant was again treated with an equal volume phenol/chloroform (1:1), and this step was repeated until the supernatant was clear. It was then treated with RNase A, and afterwards again with phenol/chloroform. Genomic DNA was precipitated with sodium acetate (pH 7.0) and ethanol. Roche/454 sequencing was performed with 20 µg genomic DNA at Eurofins MWG GmbH (Ebersberg, Germany) on a GS FLX system. Illumina/Solexa paired-end sequencing was performed with 5 µg genomic DNA at
GATC Biotech (Konstanz, Germany) on a HiSeq 2000. An overview of obtained sequence reads is given in Table S1.

Assembly and k-mer Frequency Analysis

The 454 raw data were extracted from sff files and converted to fasta files using sff_extract.py [Jose Blanch and Bastien Chevreux, http://bioinf.comav.upv.es/sff_extract/index.html]. 454 and Illumina raw data were trimmed with custom-made Perl scripts to remove reads with undetermined bases ("N") and for trimming of low quality bases (phred score <10) from the 3' end as described (available at http://c1-1-8.serverhosting.rub.de/public/software.html) [24,104]. 454 reads were assembled with the Celera assembler [149]. The trimmed 454 and Illumina reads as well as the 454-based Celera assembly were used for an assembly with Velvet 1.1.04 [150] with the following parameters for velveth (k) and velveg (all others): k 41, exp_cov 100, cov_cutoff 2, long_mant_cutoff 0, ins_length 300. Overlapping Velvet scaffolds were merged further using CAP3 [151].

The rDNA unit (scaffold 1635) was assembled separately from 454 reads. BLAST searches with rDNAs from S. macrospora and several publicly available Pezizales rDNAs against the 454 reads and the Celera assembly were used to obtain sequences with homology to rDNA. Theses reads were assembled with CAP3 [151] to obtain an rDNA unit that contains the 18S, 5.8S, and 28S rRNA genes as well as the internal transcribed spacers 1 and 2.

k-mer frequencies were analyzed based on the Illumina reads with an algorithm described for potato genome [23]. The algorithm was used to write a custom Perl program. Based on the fastq data of the Illumina reads, k-mers of 31 and 41 bases were analyzed.

RNA Preparation, qRT-PCR, and RNA-seq

For RNA extraction, P. confluens mycelia were grown as described in liquid medium (minimal medium or cornmeal medium) either in darkness (and harvested in dark red light) or in light, as surface cultures or submerged (shaking cultures) [6]. For the analysis of effects of different wavelengths on fruiting body formation and gene expression, LEE filters (Andover, UK) were used as described above. RNA was prepared with the RNasey lipid tissue mini kit (Qiagen, Hilden, Germany) as described [6]. Reverse transcription and qRT-PCR were performed as described previously [18,152], oligonucleotide primers are given in Table S15.

For RNA-seq analysis, 50 μg total RNA from several growth conditions were pooled to generate the sex, DD, and vegmix samples. RNA for sample sex was extracted from mycelia grown in minimal medium in surface culture in constant light. Only under these conditions is P. confluens able to develop fruiting bodies. Equal amounts of RNAs from mycelia grown for 3, 4, and 5 d were pooled to represent a high number of genes that are expressed during fruiting body development. The DD samples comprised RNAs from mycelia grown for 3, 4, and 5 d in minimal medium in submerged culture in constant darkness, which prevents fruiting body formation. The vegmix samples also contained only RNAs from mycelia that could not develop fruiting bodies, but from a mixture of growth conditions different from the DD samples: for the vegmix samples, we used mycelia grown for 3 d in complete medium (cornmeal medium) in surface culture in constant darkness, mycelia grown for 3 d submerged in minimal medium in constant light, and mycelia grown for 3 d submerged in minimal medium in constant darkness. Two independent biological replicates of each condition (sex, DD, and vegmix) were used for sequencing. cDNA and library preparation for RNA-seq as well as Illumina/Solexa paired-end sequencing was performed at GATC Biotech (Konstanz, Germany). Indexed cDNA libraries for multiplexing were prepared with the TrueSeq RNA sample preparation kit (Illumina, San Diego, CA, USA). One library was prepared for each independent replicate for each of the three conditions (sex, DD, and veg), and the resulting six libraries were pooled and sequenced in one lane on a HiSeq 2000. An overview of obtained sequence reads is given in Table S1.

Annotation and Analysis of Repeat Content

RNA-seq reads were assembled with Trinity [153], and assembled transcripts were mapped to the genome sequence with PASA [154]. The longest full length ORFs identified by PASA were used to train AUGUSTUS and SNAP; then gene models were predicted independently with AUGUSTUS, SNAP, and GeneMark-ES [155–158]. The resulting annotation from each of the prediction programs was used together with the RNA-seq data as input to MAKER, a program that integrates the different sources of gene evidence [25]. Detailed parameters that were used for the gene predictions are available at https://github.com/hyphaltip/fungi-gene-prediction-params/. Initial automated gene predictions were checked for consistency (e.g. presence of start/stop codons) and manually curated in about 10% of all cases. UTR predictions were refined/improved based on the RNA-seq data using custom-made Perl scripts as described previously [24]. For each of the predicted proteins, the protein with the highest sequence identity in GenBank (nr) was determined using BLASTP [48], and putative localizations of the predicted proteins were determined with WoLF PSORT [159] (Table S2). Searches for conserved protein domains (Pfam-A domains, http://pfam.sanger.ac.uk/) were performed with the HMMER 3.0 program hmmsearch [160,161]. A chi-square test to determine which domains are over- or underrepresented in P. confluens was performed in R. tRNAs were predicted using a combination of Infernal 1.0, rRNAscan-SE, TFAM 1.0, and ARAGORN [162–165].

Analysis of transposable elements and other repeats was performed with RepeatMasker (A.F.A. Smit, R. Hubley, P. Green; www.repeatmasker.org) based the RepbaseUpdate library [166] and a library of de novo-identified P. confluens repeat consensus sequences that was generated by RepeatModeler (A.F.A. Smit, R. Hubley; www.repeatmasker.org/RepeatModeler.html). First, the P. confluens genome sequence was analyzed using the RepBase Update library and species-specification “fungi”. In a second step, repeats were identified de novo from the P. confluens genome using RepeatModeler, and the RepeatMasker analysis was repeated with the P. confluens-specific repeat library generated by RepeatModeler. The results of both RepeatMasker runs were combined using custom-made Perl scripts to remove redundancy and only keep non-overlapping repeat regions. Histograms of percent divergence, percent insertions, and percent deletions compared to the repeat consensus sequences were generated based on the output information from RepeatMasker.

RIP Index Calculation

Composite RIP indices were calculated with Perl script RIP_index_calculation.pl [https://github.com/hyphaltip/fungi tools/blob/master/scripts/RIP_index_calculation.pl] on DNA sequences of 300 bp in sliding windows (window step size 100 bp) based on a method used in [167]. Briefly, a RIP product index (TpA/ApT) and RIP substrate index (CpA+GpT) [168,169] are calculated. Sequences that have been subjected to RIP have a product index of at least 1.1 and a substrate index of less than 0.9, while sequences that have not been subjected to RIP have a product index of less than 0.8 and

References:

1. [18] and [152]
2. [6]
3. [149]
4. [151]
5. [152]
6. [6]
7. [150]
8. [24]
9. [18,152]
10. [154]
11. [153]
12. [18,152]
13. [151]
14. [153]
15. [154]
16. [155–158]
17. [25]
18. [24]
19. [160,161]
20. [160,161]
21. [160,161]
22. [166]
23. [159] (Table S2)
24. [162–165]
25. [162–165]
substrate index of at least 1.1. The composite RIP index is calculated by subtracting the substrate index from the product index; positive values imply that the DNA has been subjected to RIP [167].

Analysis of Natural Antisense Transcripts (NATs)

Predicted splice sites from the junctions.bed output of Tophat [31] were analyzed with respect to strand based on the intron consensus sequences (5' GT or GC, 3' AG) and overlap with annotated protein-coding genes using custom-made Perl scripts based on BioPerl modules [170]. Splice sites in antisense direction to annotated genes were further filtered to include only sites covered by at least five spliced sequence reads, and with a coverage of more than 10% of the average coverage of the predicted sense-transcript. Remaining putative antisense splice sites were checked manually to remove splice sites that were most likely due to annotation errors or within repeat-rich regions or close to sequence gaps.

Synteny Analysis

Regions of sequence similarity were determined with the PROmer algorithm from the MUMmer package version 3.23 [47]. The resulting files were used as input to mummerplot, and percent identity plots and dot plots of PROmer results were visualized with gnuplot (www.gnuplot.info) based on the mummerplot output files.

An orthology-based analysis of synteny was performed by determining orthologs for all \(P. \) \(\text{confluens} \) genes in the predicted proteomes of ten filamentous fungi by reciprocal BLAST analysis [46], and using custom-made Perl scripts based on BioPerl modules [170] to determine the positions of orthologous proteins on sequenced chromosomes or contigs.

Phylogenomics Analysis and Estimation of Divergence Times

The predicted proteomes of \(P. \) \(\text{confluens} \) and the following 17 other fungal species were used for the reconstruction of the phylome: \(\text{Agaricus bisporus} \) [171], \(\text{Arthrobasidium obidense} \) [10], \(\text{Blumeria graminis} \) [172], \(\text{Coccidioides immittis} \) [173], \(\text{Emericella nidulans} \) [174], \(\text{Gibberella zeae} \) [138], \(\text{Laccaria bicolor} \) [175], \(\text{Mycosphaerella graminicola} \) [176], \(\text{Neosartorya fischeri} \) [177], \(\text{Neurospora crassa} \) [178], \(\text{Phaeseolus vulgaris} \) [179], \(\text{Saccharomyces cerevisiae} \) [180], \(\text{Schizosaccharomyces pombe} \) [181], \(\text{Sclerotinia sclerotiorum} \) [182], \(\text{Sordaria macrospora} \) [22], \(\text{Tuber melanosporum} \) [9], \(\text{Yarrowia lipolytica} \) [183]. 13 of the proteomes belonged to other Pezizomycotina species, \(\text{S. cerevisiae} \) and \(Y. \) \(\text{lipolytica} \) represented the Saccharomycotina and \(S. \) \(\text{pombe} \), \(L. \) \(\text{bicolor} \) and \(A. \) \(\text{bisporus} \) served as outgroups.

The phylome, meaning the complete collection of phylogenetic trees for each gene in a genome, was reconstructed in an automated process that mimics a manual phylogenetic tree reconstruction process [184]: homology search, multiple sequence alignment and phylogenetic reconstruction. For each protein encoded in the \(P. \) \(\text{confluens} \) genome we performed a Smith-Waterman search against the proteome database formed by the genomes listed above. Results were then filtered using an e-value threshold of 1e-05 and a continuous overlapping region between the query and the result of 0.3. A maximum of 150 sequences were taken. Multiple sequence alignments were then reconstructed using three different programs: MUSCLE v3.8 [185], MAFFT v6.712b [186], and DIALIGN-TX [187]. Alignments were reconstructed in forward and reverse (i.e. using the Head or Tail approach [188]). The resulting alignments were then combined using M-COFFEE [189]. A trimming step was performed using trimAl v1.3 [190] (consistency-score cutoff 0.1667, gap-score cutoff 0.9). Trees were reconstructed using PhyML [191]. First the best fitting model was selected by reconstructing neighbor joining trees as implemented in BioNJ [192] using seven different models (JTT, LG, WAG, Blosum62, MrRev, VT and Dayhoff). The two best models in terms of likelihood were used to reconstruct maximum-likelihood trees. Four rate categories were used and invariant positions were inferred from the data. Branch support was computed using an aLRT (approximate likelihood ratio test) based on a chi-square distribution. Resulting trees and alignments are stored in phylomeDB [184] (http://phylomeDB.org), with the phylomeID 203.

Orthologs between \(P. \) \(\text{confluens} \) and the other species included in the phylome were based on the phylogenetic trees reconstructed in the phylome (Table S9). A species-overlap algorithm, as implemented in ETE v2 [193] was used to infer orthology and paralogy relationships. The algorithm traverses the tree and at each node it calls speciation or duplication depending on whether there are common species at both sides of the node.

Expanded protein families were detected based on the trees reconstructed in the phylome. For each tree, we used ETE v2 [193] to find nodes that exclusively contained \(P. \) \(\text{confluens} \) sequences. Only those nodes with more than five sequences were considered as expansions. Overlapping expansions were fused when they shared more than 20% of their members. Expansions were then annotated using a BLAST search against UniProt.

The species tree was built using a concatenation method. 426 single-copy, widespread genes were selected. The concatenated alignment was further trimmed using trimAl [190] (gap-score cutoff 0.5 and conservation 0.5). The final alignment contained 277,192 positions. The tree was reconstructed using PhyML [191]. LG model [194] was selected and a 4-categories GAMMA distribution was used. A bootstrap of 100 repetitions was also reconstructed. Additionally a species tree based on the super-tree reconstruction program DupTree [195] was reconstructed. All the trees reconstructed in the phylome were used as input (6,949 trees). Both species trees showed the same topology.

r8s [49] was used to estimate the divergence between \(P. \) \(\text{confluens} \) and \(T. \) \(\text{melanosporum} \) based on the species tree inferred from the concatenated alignment. Two analyses were run using different estimates of the divergence between \(\text{Schizosaccharomyces pombe} \) and the remaining ascomycetes as calibration point. For each analysis the smoothing parameter was estimated using cross-validation. In the first analysis, the divergence between \(S. \) \(\text{pombe} \) and the remaining ascomycetes was put at 723.86 Mya [196] (www. timetree.org), this resulted in a divergence time between \(T. \) \(\text{melanosporum} \) and \(P. \) \(\text{confluens} \) of 260.38 Mya. If a more ancestral divergence point is selected as a calibration point (1147.78 Mya, [197]), then the divergence time between the two species of interest is 413.30 Mya.

Quantitative Analysis of Gene Expression Based on RNA-seq Data

RNA-seq reads were cleaned with custom-made Perl scripts as described [24] and mapped to the \(P. \) \(\text{confluens} \) genome sequence using Tophat [31]. Custom-made Perl scripts using modules from the BioPerl toolkit [170] were used to determine the number of reads that mapped to each annotated protein-coding gene based on the SAM files with the mapping information (output from Tophat), and quantitative analysis was done with two different methods (“classical” and with LOX [198]) as described previously [24]. We also used the two Bioconductor packages DESeq [199] and baySeq [200] in the R computing environment (version 2.12.1); however, similar to previous analyses, the number of
differentially expressed genes was >10%, and under these conditions the statistical models upon which these methods are based are no longer valid [24], therefore the results were not used for further analyses (data not shown). Results from both LOX and “classical” analyses agreed well with qRT-PCR results for selected genes (see e.g. Figure S14, compare qRT-PCR results for LL/DD with RNA-seq results for sex/DD). LOX calculates expression ratios and Bayesian credible intervals and p-values for differential expression. The classical analysis consists of the calculation of expression ratios, standard deviation, and coefficient of variance from read counts normalized to the total number of read counts for the sample, and genes were sorted into five groups (0–4) according to the following criteria: genes in group 4 have ratios of ≤0.25 or ≥4 in all independent biological replicates, genes in group 3 have a mean ratio of ≤0.25 or ≥4 and a coefficient of variance <0.5, genes in group 2 have ratios of ≤0.5 or ≥2 in all independent biological replicates, genes in group 1 have a mean ratio of ≤0.5 or ≥2 and a coefficient of variance <0.5, and group 0 contains all other genes (with the exception of genes for which no ratios could be calculated due to a lack of read coverage, these were not included in the analysis). To classify genes as differentially expressed, a consensus was determined for each gene based on the results from both the classical and LOX analysis; a gene was labeled as up-regulated (1), down-regulated (−1) or not differentially expressed (0) under the conditions that were compared, when the following criteria were met: (a) “normal” analysis expression ratios from both classical and LOX analysis had to be >2 and <0.5, LOX Bayesian probability for differential expression = 1, and the gene had to be in groups 1–4 in the classical analysis; (b) (stringent analysis) thresholds for expression ratios were set to >4 and <0.25.

For the analysis of reads that mapped to different genomic regions (e.g., exons, introns, intergenic regions), reads were counted based on the SAM files with the mapping information using custom-made Perl scripts as described previously [24]. To determine the distribution of expression frequencies (Figure S4), the coverage for locus tags of protein-coding genes was determined as the average coverage for the bases of the predicted mRNA (normalized to coverage per kilobase per million counted bases in the sample). Curve fitting and clustering of the data by expectation-maximization was performed on the log2-transformed RNA-seq data using the R package mclust [201].

Complementation of *S. macrospora* Δpro44 with PCON_06721

Plasmid pRSnat_06721_OE for complementation of an *S. macrospora* pro44 deletion mutant was generated by homologous recombination in yeast as described [102]. It contains the PCON_06721 ORF under control of the *Aspergillus nidulans* gpd promoter and trpC terminator in vector pRSnat, which contains a nourseothricin resistance cassette for selection in *S. macrospora* [202]. The *S. macrospora* Δpro44 strain was transformed with pRSnat_06721_OE as described [104,203].

Phylogenetic Analysis

Multiple alignments were created in CLUSTALX [204] and trimmed with Jalview [205], and the same alignment was used for analysis by distance-matrix (DM) or maximum parsimony (MP). Phylogenetic analyses were made with PAUP version 4.0b10 for Windows (D.L. Swofford, distributed by Sinauer Associates, copyright 2001 Smithsonian Institution), DM and MP analyses were performed using 10,000 bootstrap replicates. Consensus trees were graphically displayed with TREEVIEW [206].

Accession Numbers

The sequence and annotation data are available under the accession numbers HF935090–HF936767 (annotated scaffolds at the European Nucleotide Archive ENA, http://www.ebi.ac.uk/ena/data/view/HF935090–HF936767), CATG01000001–CATG01001989 (primary, non-annotated contigs from which scaffolds were assembled), and BioProject acc. PRJN65573. The sequence reads that were used for the assembly of the *P. confluens* genome were submitted to the NCBI sequence read archive (accession number SRA059523). The RNA-seq reads and derived expression ratios were submitted to the GEO database (accession number GSE41631).

Supporting Information

Figure S1 k-mer frequency distribution for *P. confluens* Illumina/ Solexa reads. k-mer lengths of k = 31 (top) and k = 41 (bottom) were used for the analysis. A single main peak can be observed in both cases. The rise in k-mer occurrence below a k-mer frequency of 10 is due to sequencing errors. The sum of k-mers from the main peak results in an estimate of ~50.1 Mb for the size of the haploid genome. (TIF)

Figure S2 Analysis of genome-wide coverage of different genomic regions by RNA-seq reads. Reads were counted that map to exons of protein-coding genes, introns of protein-coding genes, intergenic regions, and non-coding RNAs (only reads are counted where both ends map to the same type of region). Percent of reads that map to the corresponding regions are shown. At the right end of the graph (separated by a dashed line), the relative distribution of these regions across the genome is indicated. (TIF)

Figure S3 Repeat divergence analysis. Histograms of percent divergence, insertions, and deletions of *P. confluens* repeat sequences compared to the consensus sequences of the respective repeats as determined by RepeatMasker based on a RepeatModeler-generated, *P. confluens*-specific repeat library. For this analysis, only repeats >200 bp (without simple repeats and low complexity regions) were chosen, a total of 7,158 repeats were analyzed. Only few repeats show perfect or high identity to the consensus sequence (i.e. low sequence divergence); the majority of reads shows between 10-20% divergence compared to the consensus sequence (mean 15.20%, median 16.73%), suggesting that they are not of recent origin. However, few deletions or insertions are observed in the repeat sequences. (TIF)

Figure S4 Distribution of gene expression levels. A. Histograms of log2 of coverage (normalized to base coverage per kilobase of mRNA per million counted bases) for each locus tag for each independent biological replicate (left, middle), and histograms and estimated frequency distribution functions for the log2 of the mean for each condition (right). In case of zero coverage, log2 coverage was set to -11 (otherwise all log2 values >-11) and was not used here. The distribution function (red) for each condition could be dissected into components. The components (blue, green, and yellow lines) are normal distributions with varying means and variances that make up different proportions of the observed distribution. Estimation of mixtures was done with the mcclus package from R (Fraley and Raftery, J Amer Stat Assoc 2002, 97: 611–631) and some manual curve adjustments. B. Venn diagrams of the number of genes that contribute to the low expression peak (peak 1, green) and the high expression peak (peak 2, blue) in each condition in A. (TIF)
Figure S5 Synteny analysis with other fungi. A. Regions of sequence identity between the *in silico*-translated genomic sequences of the pairs *T. melanoporum/P. confluens* and *S. macrospora/N. crassa* (for comparison) were determined with the PROmer algorithm from the MUMmer package [47]. The dot plot was plotted with gmapplot, red indicates sequences on the forward strand, blue on the reverse strand of the reference (x-axis). The PROmer analysis also shows much greater synteny between *S. macrospora* and *N. crassa* than between *T. melanoporum* and *P. confluens*. B. Positions of orthologous genes were determined along the concatenated scaffolds from each species and visualized as dot plot for the pairs *T. melanoporum/P. confluens* and *S. macrospora/N. crassa* (for comparison). Scaffolds were not specifically ordered for this analysis, therefore the seemingly still somewhat random organization in the *N. crassa/S. macrospora* comparison (as compared to the corresponding Figure in [22]); however, this was done on purpose to show the difference between the *S. macrospora/N. crassa* and *T. melanoporum/P. confluens* comparisons, even though the number of scaffolds in *S. macrospora* and *P. confluens* is very similar (1,585 vs. 1,588 scaffolds in the assemblies used for this comparison).

(TIF)

Figure S6 Lineage-specific peptide lengths and gene expression based on phylogenomics analysis and RNA-seq data. Peptide lengths and expression of *P. confluens* genes from groups of genes with different levels of evolutionary conservation as indicated. Lineage-specificity groups were determined based on phylogenomics analyses (Tables S8 and S9). A. Boxplot showing the distribution of peptide lengths (outliers left out for better visibility) with the median value as a horizontal line in the box between the first and third quartiles. Peptide length of predicted *P. confluens* orphan genes are smaller than those for the other groups, and from groups A to D, median peptide lengths increase with increasing conservation of genes. B. The number of genes in each group are indicated on the logarithmic y-axis to the right, and percentage of genes that are differentially regulated under any condition, and up- or down-regulated during sexual development (up or down in sex/DD and sex/vegmix, data shown for stringent expression analysis) are indicated on the y-axis to the left. The orphan genes have the highest percentage of differentially expressed genes, most of which are upregulated during sexual development, and this can also be observed in the Pezizales-specific genes (group B). In the other groups, the portion of differentially regulated genes is smaller, and the percentage of genes upregulated during sexual development is similar or smaller than that of downregulated genes. C. Overall expression levels given in RPKM (reads per kilobase per million counted reads). For each group, RPKM values were calculated for samples sexual development (S), DD (D), and vegmix (V) as mean RPKM values of the two independent experiments. The boxplot shows the distribution with the median value as a horizontal line in the box between the first and third quartiles (outliers left out for better visibility). The small inlet shows a magnification of the RPKM values for group A (orphan genes) for better visualization of the higher mean in the samples for sexual development.

(TIF)

Figure S7 Fruiting body development under different light regimes and on different media. *P. confluens* was grown on minimal medium or cornmeal medium for 7 d at 25°C. Light regimes were constant white light (LL), constant darkness (DD) and 12 h light/12 h darkness cycles (LD). Fruiting bodies are only formed on minimal medium with illumination (LL or LD), whereas on complete medium, there is orange pigmentation of the mycelium, but no fruiting body formation. Under conditions that do not allow sexual development, sometimes mycelial aggregates are formed, but do not contain sexual structures.

(TIF)

Figure S8 Transmission data for filters used in light experiments. The following LEE filters (Hampshire, UK) were used, transmitted light curves from http://www.leefilters.com/lighting/colour-list.html: blue: http://www.leefilters.com/lighting/colour-details.html#363&filter=cf, green: http://www.leefilters.com/lighting/colour-details.html#139&filter=cf, red: http://www.leefilters.com/lighting/colour-details.html#106&filter=cf, far-red: http://www.leefilters.com/lighting/colour-details.html#787&filter=cf. Curves indicate transmitted light (in %) for each wavelength.

(TIF)

Figure S9 Alternative splicing of the *P. confluens* frq gene (*PCON_09365*). A. The first 1500 nucleotides of the frq transcript are shown. The upper part shows the major transcript and the lower part shows a minor transcript generated through alternative splicing as identified by the presence of spliced sequence reads in the RNA-seq data. The minor transcript lacks the predicted AUG and would therefore use a downstream AUG and yield a protein that lacks the first 32 amino acids. Three putative upstream ORFs are indicated as black rectangles. Numbers indicate nucleotide positions in scaffold 447. B. Semi-quantitative RT-PCR analysis of alternative splicing. PCR primers (*PCON_09365* t1/t3, Table S15) are indicated by gray arrows below the transcripts in A. (+) and (−) indicate RT-PCRs with and without reverse transcriptase, respectively, with the (−) samples showing no amplicons as expected. NTC, no template control. The 500 bp and 300 bp amplicons represent the major and the minor (alternatively spliced) transcript, respectively. The minor transcript is barely detectable in DD, but clearly present under light conditions, both in LL (4 d of constant light) and after a 30 min light pulse (DD+30). C. Quantification of the ratio of spliced versus non-spliced transcripts (300 bp versus 500 bp RT-PCR products in B). Mean and standard deviation of two independent biological replicates are shown.

(TIF)

Figure S10 Expression of CBM_14 domain-encoding genes in *P. confluens* as determined by RNA-seq. A. Expression of CBM_14 domain-encoding proteins during sexual development and vegetative growth. Heatmap of log₂ ratios of gene expression under three different conditions. Gray boxes indicate non-determined values. C, ratio from “classical” analysis; L, ratio from LOX analysis. Nearly half of the CBM_14 domain-encoding genes are upregulated during sexual development. B. Overall expression levels vary between CBM_14 domain-encoding genes. Normalized read counts per kb of mRNA (mean of two independent biological replicates) are shown for the three conditions for each gene. Overall read counts per condition vary from none to >13000.

(TIF)

Figure S11 Defensin_2 domain-encoding genes in *P. confluens*. A. Multiple Alignment of Defensin_2 domain-containing proteins from *P. confluens* and *Pseudoplectania nigrella*. Two of the *P. confluens* genes are pseudogenes that are not expected to yield a functional protein; the stop codon within *PCON_01607* and the two amino acids between which a frameshift occurs in *PCON_01611* are indicated in red. The predicted signal sequences for cotranslational insertion into the ER are given in bold (SignalP 4.0 predictions, Nature Methods 2011, 8:785–786). The position of the conserved intron within the coding region of all *P. confluens* proteins is indicated by a green triangle above the sequences (the
intron is located between the second and third nucleotide of the corresponding nucleotide triplet. Accession number of the *P. nigrella* plectasin: sp|Q53J06.1. **B.** Genomic organization of Defensin_2 domain-encoding genes. The genes are located within a region from nt 102001 to nt 113000 of scaffold 1117. The two pseudogenes PCON_01607 and PCON_01611 are shaded in gray. **C.** Expression of Defensin_2 domain-containing genes. Normalized counts of RNA-seq reads for the three conditions that were investigated (sex, DD, and vegmix) are shown for the six genes; note that the read counts for sexual development are given on the secondary axis to the right, because they are much lower than the read counts in DD and vegmix for all six genes. Read counts for the two pseudogenes PCON_01607 and PCON_01611 (shaded in gray) are generally lower than those for the other genes in all conditions investigated. **D.** Phylogenetic analysis of Defensin_2 domain-encoding proteins. In addition to the *P. confluens* proteins, the following proteins were used for Neighbor joining analysis with 1000 bootstrap replications: A.cap, *A. pycnoporus* sp|Q53J06.1; A.der., *A. pycnoporus* sp|Q53J06.1; A.glob., *A. gyroides* sp|Q53J06.1; P.nig., *Pseudotaxia nigrella* sp|Q53J06.1. (TIF)

Figure S12 Genes for polyketide and non-ribosomal peptide biosynthesis in *P. confluens*. **A.** Protein domain organization of all proteins in *P. confluens* that are predicted to be PKSs or NRPSs. Complete A-T-C modules in the NRPSs are boxed. The putative siderophore biosynthesis NRPS PCON_02829 has the typical domain structure of four A-T-C modules and two T-C modules. The five AAR-type NRPSs (domain structures A-T-R) are shown in a gray box. **B.** Putative biosynthetic cluster containing the NRPS gene PCON_02829. Genes with putative functions in siderophore biosynthesis are shown in light blue. **C.** Putative biosynthetic gene cluster containing the PKS gene PCON_04029. Genes with putative functions in the biosynthesis of a hybrid polyketide/non-ribosomal peptide are shown in light blue. (TIF)

Figure S13 Differentially expressed predicted transcription factors in *P. confluens*. **A.** 54 of the 177 predicted transcription factors are differentially expressed in at least one comparison (sex/DD, sex/vegmix, DD/vegmix; data from non-stringent analysis); these are shown in this heatmap (clustering and heatmap generation in R). C and L show log2 expression ratios from classical and LOX analysis, respectively. **B.** Eight putative transcription factors are strongly upregulated (>10×, up to ∼4000×) during sexual development in both sex/DD and sex/vegmix. They contain domains from seven different DNA binding domain families. Only PCON_07392 and PCON_02619 have an ortholog in most investigated fungi, for the others, there are often BLAST hits, but no clear orthologs (in reciprocal BLAST). One reason for this might be that these transcription factors belong to larger families where the definition of orthologs is difficult. PCON_02619 is the ortholog of the *S. macrospora* yeast STE12 transcription factor. (TIF)

Figure S14 Quantitative real time PCR analysis of selected putative transcription factor genes in *P. confluens*. Expression was analyzed by qRT-PCR for each gene in two independent biological replicates for the four conditions LL, DD, LLK and DDK (light and darkness in surface culture and submerged culture). Sexual development is only possible in condition LL. Expression ratios are shown as blue bars, and were calculated to address the question if a gene is differentially regulated during sexual development (i.e. in LL/DD and in LL/LLK), or regulated by light (i.e. in LL/DD and LLK/DDK) or regulated by surface versus submerged growth (i.e. LL/DDK and DD/ DDK). RNA-seq results for each gene are given as gray bars for comparison: light gray, LOX; dark gray, classic analysis. Dashed lines indicate two-fold upregulation. The qRT-PCR results match the RNA-seq results very well, this can be seen in the comparison sex/DD and LL/DD (same growth conditions, qRT-PCR 3 d). RNA-seq p-value of 3-5 d; the other growth conditions are not directly comparable, but tendencies are conserved. The qRT-PCR data confirm a strong upregulation of PCON_02619, PCON_04765, and PCON_06047 during sexual development only (as opposed to light- or surface culture-dependent, because LL/LLK also gives upregulation which indicates independence of light, and DD/DDK does not give upregulation which indicates that surface culture alone is not sufficient for upregulation). The three genes PCON_10922, PCON_10987, and PCON_10990 are not significantly upregulated by a single condition (sexual development, light, surface culture). PCON_10922 is upregulated in the comparison LL/LLK, but not LL/DD or DD/DDK. This might indicate that surface culture induces the expression of this gene, but only in the light. (TIF)

Figure S15 Comparative analysis of gene expression during sexual development in *P. confluens* (P.c.) and *S. macrospora* (S.m.). Heat map of hierarchical clustering of log2 expression ratios for comparison of different growth conditions in both fungi. (TIF)

Figure S16 Gene structure and alignments of pro44 homologs. **A.** Genomic loci and predicted proteins for *P. confluens* pro44 (PCON_06721) and its orthologs in *S. macrospora* (pro44, SMAC_03223), *N. crassa* (sub-1, NCU01154), and *A. nidulans* (nadD, ANID_03152). Lengths of coding sequences and proteins are given to the right. **B.** Multiple alignment of the four proteins. The conserved GATA domain at the C-terminus is indicated by a black line above the sequence. It includes four conserved cysteine residues that bind a zinc atom to form the zinc finger. Data from the following sources: *S. macrospora*: acc. no. CABT02000007, *N. crassa*: Neurospora Crassa database (http://www.broadinstitute.org/annotation/genome/neurospora/MultiHome.html), *A. nidulans*: acc. no. U70044 and Aspergillus comparative database (http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiHome.html). (TIF)

Table S1 Overview of DNA and RNA sequencing results for the *P. confluens* genome and transcriptome. **A.** Roche/434 sequencing of genomic DNA. **B.** Illumina/Solexa sequencing of genomic DNA (50 base reads from 300 bp insert paired-end library). **C.** RNA-seq analysis (Illumina/Solexa sequencing of 101 base reads from 300 bp insert paired-end cDNA library). (PDF)

Table S2 Analysis of differential gene expression in *P. confluens* by RNA-seq. The table gives an overview of all protein-coding genes of *P. confluens* with their basic characteristics (length of mRNA, UTRs, CDS, peptides; homology to other species; putative domains and subcellular localization), normalized RNA-seq read counts from two replicates each of the condition sex, DD, and vegmix, as well as the expression ratios for sex/DD, sex/
vegmix, and DD/vegmix calculated with LOX or “classic” analysis as well as results of the consensus analysis.

Table S3 Antisense splice sites in RNA-seq reads.

Table S4 Repeat elements in the P. confluens genome.

Table S5 P. confluens homologs of chromatin-associated proteins and proteins involved in genome defense, A. Histones and histone modification. B. DNA methylation machinery. C. RNA interference and meiotic silencing.

Table S6 Predicted regions that were subjected to RIP.

Table S7 Mating type, pheromone, pheromone receptor, pheromone-processing, and signal transduction genes, and homologs to developmental genes in P. confluens. A. Genes within or adjacent to the mating type loci. Genes that are upregulated at least two-fold in both classic (C) and LOX (L) analysis in the conditions investigated are given in bold red. B. Putative pheromone processing proteins. Genes that are upregulated at least two-fold in both classic (C) and LOX (L) analysis in the conditions investigated are given in bold red. C. Putative proteins of the pheromone response pathway. Genes that are upregulated at least two-fold in both classic (C) and LOX (L) analysis in the conditions investigated are given in bold red. D. Putative MAP kinase modules. E. P. confluens homologs to developmental proteins from S. macrospora.

Table S8 Lineage-specific gene expression. The table contains four sheets that give a summary as well as expression and orthology information for P. confluens genes of groups a-f with orthology determined by reciprocal BLAST in the first two sheets, and a summary and Expression and orthology information for P. confluens genes of groups A-G with orthology determined by phylogenomics analysis in the last two sheets.

Table S9 Overview of phylome reconstruction.

Table S10 Gene expression under different light regimes. Transcript levels were determined after short light induction (5-60 min after growth in darkness for 4 d). P. confluens was grown in minimal liquid medium and harvested under far-red light. Transcript levels were determined by qRT-PCR from at least two independent biological replicates, ratios versus 4 d in darkness (DD) and standard deviations are given.

Table S11 Analysis of gene families and gene family expansion and contraction in P. confluens compared to other fungi. The first sheet contains results from pfam domain searches, the second sheet results from phylogenomic analysis, and the third sheet contains gene families that are contracted in P. confluens in comparison with other filamentous ascomycetes.

Table S12 P. confluens homologs to heterokaryon incompatibility genes from N. crassa and P. anserina. For N. crassa and P. anserina proteins shaded in gray, no clear P. confluens ortholog can be identified. A. N. crassa het genes. B. P. anserina het genes.

Table S13 Expression data for predicted P. confluens transcription factor genes.

Table S14 Comparative transcriptomics of orchids in P. confluens and S. macrospora. S. macrospora data are from [24], P. confluens data from this study.

Text S1 Distribution of gene expression levels.

Text S2 Genes for pheromone/receptor signaling.

Acknowledgments
We would like to thank Swenja Ellßel and Silke Nimtz for excellent technical assistance, Prof. Dr. Ulrich Kück (Bochum) for continuing support, and Prof. Dr. Nicole Frankenbeng-Dinkel (Bochum) for filters for light experiments.

Author Contributions
Conceived and designed the experiments: MN. Performed the experiments: ST FA MN. Analyzed the data: ST JES AK FK SP MF MMH TG. Wrote the paper: MN. Performed de novo assembly: MN. Performed gene predictions: JS. Performed bioinformatics analyses: MN MF MMH TG. Helped draft the manuscript: ST SP TG FK MF.

References
1. Buckley M (2008) The fungal kingdom - diverse and essential roles in earth's ecosystem. Washington DC: American Academy of Microbiology.
2. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105: 1422–1432.
3. Ebersberger I, de Matos Simoes R, Kupczok A, Gube M, Kothé E, et al. (2012) A consistent phylogenetic backbone for the fungi. Mol Biol Evol 29: 1319–1334.
4. Hibblett DS, Binder M, Bischoff JP, Blackwell M, Cannon PF, et al. (2007) A higher-level phylogenetic classification of the Fungi. Mycologia 111: 509–547.
5. Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Nat Acad Sci USA 101: 4507–4512.
6. Nosrousian M, Kück U (2006) Comparative gene expression analysis of fruiting body development in two filamentous fungi. FEMS Microbiol Lett 257: 328–333.
7. Zhuang WY, Liu CY (2012) What an rRNA secondary structure tells about phylogeny of fungi in ascomycota with emphasis on evolution of major types of loci. PLoS One 7: e47546.
8. Sapatofar JW, Sung G-H, Johnson D, Hesse C, O'Rourke B, et al. (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98: 1018–1028.
9. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, et al. (2010) P. anserina het genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464: 1033–1039.
10. Yang J, Wang L, Ji X, Feng Y, Li X, et al. (2011) Genomic and proteomic analyses of the fungus Arthrobysotis oligospora provide insights into nematode-trap formation. PLoS Pathog 7: e1002179.
11. Pfist tr DH, Lakke ME (1995) Two Arthrobotrys anamorphs from Ophelia auriculata. Mycologia 87: 684–686.
12. Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10: 417–430.
13. Claussen P (1912) Zur Entwicklungsgeschichte der Ascomyceten. Pyronema confluens. Zeitschr f Bot 4: 1–63.
14. Gwynne-Vaughan HCI, Williamson HS (1931) Contributions to the study of Pyronema confluens. Ann Bot 45: 355–371.
15. Krol J (1937) Uber Regenerationsversuche an Fruchtkoerpern und andere entwicklungsgeschichtliche Untersuchungen bei Pyronema confluens. Zeitschr f Bot 31: 9–174.
16. Moore EJ, Keef RP (1963) The genus Pyronema. Bull Torrey Bot Club 90: 33–42.
17. Wilson EM (1932) The ascoecytic hyphae of Pyronema confluens. Ann Bot 56: 321–338.
18. Geising S, Schindler D, Franzel B, Wolters D, Nowrousian M (2012) The histone chaperone ASF1 is essential for sexual development in the filamentous fungus *Neurospora crassa*. Mol Microbiol 84: 740–753.
19. Geising S, Schindler D, Nowrousian M (2012) Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi. J Basic Microbiol. doi: 10.1002/jobm.201200215.
20. Seaver EF (1909) Studies in pyrrophyte fungi. I. The occurrence and cultivation of *Pyronema*. Mycologia 1: 131–139.
21. Robinson W (1926) The conditions of growth and development of *Pyronema* var. *minutum*. Trans. Fungi 55: 152–272.
22. Nowrousian M, Stajich JE, Chu M, Emigh J, Espagne E, et al. (2010) De novo assembly of a 40 Mbp eukaryotic genome from short sequence reads: *Saccharomyces cerevisiae*, a model organism for fungal morphogenesis. PLoS Genet 6: e1000951.
23. The Genome Poopulation Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.
24. Teichert I, Wolff G, Kuck U, Nowrousian M (2012) Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics 13: 511.
25. Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, et al. (2008) MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18: 189–196.
26. Parra G, Bradnam K, Ning Z, Keane T, Korf I (2009) Assessing the gene space in draft genomes. Nucl Acids Res 37: 289–297.
27. Tisserant E, Da Silva C, Kohler A, Morin E, Wincker P, et al. (2011) Deep RNA sequencing improved the structural annotation of the *Tuber melanosporum* transcriptome. Nucl Acids Res 39: 833–843.
28. Wang B, Guo G, Wang C, Lin Y, Wang X, et al. (2010) Survey of the transcriptome of *Aspergillus oryzae* via massively parallel mRNA sequencing. Nucl Acids Res 38: 5075–5087.
29. Dobail S, Davis CA, Merkel A, Dobin A, Lassmann T, et al. (2012) Landscape of transcription in human cells. Nature 489: 101–108.
30. Donaldson ME, Saville BJ (2012) Natural antisense transcripts in fungi. Mol Microbiol 83: 405–417.
31. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinf 25: 1105–1111.
32. Delmas S, Pullan ST, Gaddipati S, Kolokolis M, Malla S, et al. (2012) Uncovering the genome-wide transcriptional responses of the filamentous fungus *Aspergillus niger* to lignocellulose using RNA sequencing. PLoS Genet 8: e1002737.
33. Grewal M, Venus RG, Rahgupathy MB, Nobuta K, Li H, et al. (2006) Deep and comparative analysis of the mycelium and asci transcriptomes of *Magnaporthe grisea* using MPPSS, RL-SAGE, and oligoarray methods. BMC Genomics 7: 310.
34. Smith CA, Robertson D, Yates B, Nielsen DM, Brown D, et al. (2008) The evolution of gene expression levels in mammalian organs. Nature 478: 343–348.
35. Chong CC, Au CL, Wilke SK, Stajich JE, Zolan ME, et al. (2013) V-Serial analysis of gene expression studies reveal a transcriptomic switch during fruiting body development in *Cyperus esculentus*. BMC Genomics 14: 195.
36. Boyle EJ, Donaldson ME, Morrison EN, Saville BJ (2011) Utahge mgalp transcript features are identified through full-length cDNA analysis. Mol Gen Genomics 286: 143–159.
37. Ohm RA, de Jong JF, Lagunes LG, Aerts A, Kotte E, et al. (2010) Genome sequence of the model mushroom *Schizophyllum commune*. Nat Biotechn 28: 957–963.
38. Mannring VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, et al. (2013) Comparative genomics of a plant-pathogenic fungus, *Pyromnesia trifaciata-ripen齟*, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (Bethesda) 3: 41–63.
39. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Dubois MJ, et al. (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367–373.
40. Coleman JJ, Roundley SD, Rodriguez-Carreos M, Kuo A, Wassmann CC, et al. (2007) The genome of *Acremonium halnicum*: Contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5: e1000618.
41. Freitag M, Williams RL, Kothe GO, Selker EU (2002) A cytosine methyltransferase homologue is essential for repeat-induced point mutation in *Neurospora crassa*. Proc Nat Acad Sci USA 99: 1082–9083.
42. Selker EU, Cambareri EB, Jensen BC, Haack KR (1987) Rearrangement of duplicated DNA in specialized cells of *Neurospora*. Cell 51: 741–742.
43. Cambareri EB, Bryan JC, Schabath E, Selker EU (1989) Repeat-induced point mutagenesis of the *A. niger* mating-type loci. Science 244: 1521–1523.
44. Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20: 417–423.
45. Stajich JE, Dierich FS, Roy SW (2007) Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Res 17: 1239–1249.
46. Hebenstreit D, Feng M, Gu J, Charoeasavan V, van Oudenaarden A, et al. (2011) RNA sequencing reveals two major classes of gene expression levels in metazonax cells. Mol Syst Biol 7: 497.
107. Tisch D, Schmolz M (2010) Light regulation of metabolic pathways in fungi. Biochim Biophys Acta 1806: 847–862.

108. Harding RW, Turner RV (1981) Photoregulation of the carotenoid biosynthetic pathway in albino and white collar mutants of Neurospora crassa. Plant Physiol 68: 743–749.

109. Schmidhauser TJ, Lauter FR, Russo VE, Yanovsky M (1990) Cloning, sequencing, and photoregulation of \(w_{-1} \), a carotenoid biosynthetic gene of \(Neurospora crassa \). Mol Cell Biol 10: 5064–5070.

110. Schmidhauser TJ, Lauter FR, Schumacher M, Zhou W, Russo VE, et al. (1994) Characterization of \(w_{-2} \), the phytoene synthase gene of \(Neurospora crassa \). Cloning, sequencing analysis, and photoregulation. J Biol Chem 269: 12060–12066.

111. Nelson MA, Morelli G, Caratoi A, Romano N, Macino G (1989) Molecular cloning of a \(Neurospora crassa \) carotenoid biosynthetic gene (\(albl-5 \)) regulated by blue light and the products of the \(white \) \(collar-1 \) \(white \) \(collar-2 \) complex in blue-light signal transduction. EMBO J 8: 2215–2222.

112. Carlile MJ, Friend J (1956) Carotenoids and reproduction in \(Neurospora \). Nature 178: 369–370.

113. Olemdo M, Reger-Herreros C, Luque EM, Corrochano LM (2010) A complex photoreceptor system mediates the regulation by light of the carotenoid genes \(albl-6 \) and \(con-6 \) in \(Neurospora crassa \). Fungal Genet Biol 47: 352–363.

114. van den Burg HA, Westerink N, Francois R, Roth R, Woestenenk E, et al. (2003) Natural dufialide-bound-disrupted mutants of AVR4 of the tomato pathogen \(Cladosporium fulvum \) are sensitive to proteolysis, circumvent Cf4-mediated resistance, but retain their chitin binding ability. J Biol Chem 278: 27340–27346.

115. van den Burg HA, Harrison SJ, Joosten MHJ, Vervoort J, de Wyto P (2003) \(Cladosporium fulvum \) Aver protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 19: 1420–1430.

116. Fujiwara S, Imai J, Fujimura M, Yashima T, Kawashima T, et al. (1990) A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royal jelly protein \(RN \). J Biol Chem 265: 11333–11337.

117. Bulet P, Heret C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects: structure and function. Dev Comp Immunol 23: 329–343.

118. Mygind PH, Fischer SL, Schnoor KM, Hansen MT, Sonksen CP, et al. (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437: 975–980.

119. Schneider T, Kruse T, Wimmer R, Wiedemann I, Saus V, et al. (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipoprotein \(T \). Science 328: 1168–1172.

120. Bok JW, Chiang YM, Szweczyk E, Reyes-Dominguez Y, Davidson AD, et al. (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5: 462–464.

121. Bok JW, Noordermeer D, Kole SP, Keller NP (2006) Secondary metabolic gene clustering in \(Aspergillus nidulans \): genome and transcriptomes of \(Pyronema confluens \). Mycologia 102: 269–278.

122. Richards TA, Leonard G, Soanes DM, Talbot NJ (2011) Gene transfer into the wide analysis of light-inducible responses reveals hierarchical light signalling in \(Neurospora crassa \). Mol Microbiol 81: 585–610.

123. Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies microbial evolution. Curr Opin Microbiol 9: 579–587.

124. Iotti M, Rubini A, Tisserant E, Kholer A, Paolocci F, et al. (2012) Self/nonself recognition in \(Pyronema confluens \). Microbiol Mol Biol Rev 64: 316–353.
genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68: 1–108.

137. Son H, Seo YS, Min K, Park AR, Lee J, et al. (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog 7: e1002310.

138. Cuenca CA, Goldener U, Xu JR, Trail F, Turgeon RG, et al. (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317: 1400–1402.

139. Montanini B, Lavelle E, Bolchi A, Kohler A, Morina E, et al. (2011) Genome-wide search and functional identification of transcription factors in the mycorrhizal fungus Tuber melanosporum. New Phytol 179: 736–750.

140. Johnson AD (1995) Molecular mechanisms of cell-type determination in fungi. Philos Trans R Soc Lond B Biol Sci 347: 595–516.

141. Nolting N, Poggeler S (2006) A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporegermination. Mol Microbiol 62: 853–868.

142. Li D, Bobrowicz F, Wilkinson HH, Ekbote DJ (2003) A mitogen-activated protein kinase MpkA regulates nitrogen nutrition and contributing to vegetative growth in Neurospora crassa. Genetics 170: 1091–1104.

143. Vallim MA, Miller KY, Miller BL (2000) Aspergillus SteA (sterile12-like) is a homeodomain-C2/H2-Zn finger transcription factor required for sexual development. Mol Microbiol 36: 290–301.

144. Stuart JM, Segel E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302: 249–253.

145. Romero IG, Ruvinsky I, Gilad Y (2012) Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet 13: 505–516.

146. Korf I (2004) Gene finding in novel genomes. BMC Bioinformatics 5: 59.

147. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith Jr RK, et al. (2003) A whole-genome assembly of Drosophila. Science 297: 1411–1414.

148. Goodwin SV, McBarrek SE, Dhillon B, Wittenberg AH, Crane CF, et al. (2011) Finished genome of the fungal pathogen Mycosystema galeae reveals dispensable structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7: e1002070.

149. Fedorova ND, Khalid N, Joardar M, Raiter M, Amedeo P, et al. (2008) Genome islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLOS Genet 4: e1000046.

150. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 427: 859–868.

151. Hane JK, Lowe RGT, Solomon PS, Tan K-C, Schoch CL, et al. (2007) Dithiolethione plant interactions illuminated by genome sequencing and EST enrichment. Plant Cell 19: 3347–3360.

152. Nowrousian M, Ringelberg C, Dunlap JC, Loros JJ, Küçük U (2005) Cross-regulation of the circadian clock by sets of divergent B-type and C-type在家鸽先锋中的作用。Nature 422: 893–897.

153. Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829.

154. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. (2008) The Pfam protein families database. Nucl Acids Res 36: D281–288.

155. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucl Acids Res 33: W451–454.

156. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, et al. (2005) A large genome duplication in plants. Genome Res 110: 462–467.

157. Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and a wide search and functional identification of transcription factors in the mycorrhizal fungus Agaricus bisporus. Nucl Acids Res 31: 3543–3549.

158. Huson DH, Flach C, Giegerich R, Gallwitz D, Martin D, et al. (2007) Applied Bioinformatics gene annotation using maximal transcript alignment assemblies. Nucl Acids Res 35: 5654–5666.

159. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comp Biol 7: e1002195.

160. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. (2008) The Pfam protein families database. Nucl Acids Res 36: D281–288.

161. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comp Biol 7: e1002195.

162. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New phylipDB version 3.6. New Phytol 189: 736–750.

163. Huerta-Cepas J, Dopazo J, Redondo E (2007) M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucl Acids Res 35: 1316–1320.

164. Taquist H, Cui Y, Ardell DH (2007) TFAM 1.0: an online tRNA function alignments. Bioinformatics 23: 1335–1337.

165. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, et al. (2001) Comparative genomic analyses of the human fungal pathogens Coccidioides immitis and Cryptococcus neoformans. Science 293: 1129–1133.

166. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 859–868.

167. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.

168. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Amer Stat Assoc 97: 611–631.
Klix V, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, et al. (2010) Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete *Sordaria macrospora* provides new insights into essential and non-essential sexual regulators. Eukaryot Cell 9: 894–905.

Nowrousian M, Masloff S, Pöggeler S, Kück U (1999) Cell differentiation during sexual development of the fungus *Sordaria macrospora* requires ATP citrate lyase activity. Mol Cell Biol 19: 450–460.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24: 4876–4882.

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191.