Massless Dirac fermions in an electromagnetic field

Ahmed Jellal\(^1,2,3\), Abderrahim El Mouhafid\(^2,3\) and Mohammed Daoud\(^4,5\)

\(^1\) Physics Department, College of Sciences, King Faisal University, PO Box 380, Alahsa 31982, Saudi Arabia
\(^2\) Saudi Center for Theoretical Physics, Dhahran, Saudi Arabia
\(^3\) Theoretical Physics Group, Faculty of Sciences, Chouaïb Doukkali University, PO Box 20, 24000 El Jadida, Morocco
\(^4\) Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
\(^5\) Department of Physics, Faculty of Sciences, Ibn Zohr University, PO Box 8106, 80006 Agadir, Morocco
E-mail: ajellal@ictp.it and ahjellal@kfu.edu.sa

Received 30 October 2011
Accepted 23 December 2011
Published 30 January 2012

Abstract. We study the relations between massless Dirac fermions in an electromagnetic field and atoms in quantum optics. After getting the solutions for the energy spectrum, we show that it is possible to reproduce the 2D Dirac Hamiltonian, with all its quantum relativistic effects, in a controllable system such as a single trapped ion, through the Jaynes–Cummings and anti-Jaynes–Cummings models. Also we show that under certain conditions, the evolution of the Dirac Hamiltonian provides us with Rashba spin–orbit and linear Dresselhaus couplings. Considering the multimode multiphoton Jaynes–Cummings model interacting with \(N\) modes of an electromagnetic field prepared in general pure quantum states, we analyze the Rabi oscillation. Evaluating the time evolution of the Dirac position operator, we determine the Zitterbewegung frequency and the corresponding oscillating term as a function of the electromagnetic field.

Keywords: algebraic structures of integrable models, graphene (theory)
1. Introduction

In graphene [1]–[3], the linear electronic band dispersion near the Dirac points gives rise to charge carriers (electrons or holes) that propagate as if they were massless fermions with speeds of the order of 10^6 m s^{-1} rather than the speed of light $3 \times 10^8 \text{ m s}^{-1}$. Hence, charge carriers in this structure should be described using the massless Dirac equation rather than the usual Schrödinger equation. The physics of relativistic electrons is thus now experimentally accessible in graphene based solid-state devices, whose behavior differs drastically from that of similar devices fabricated with usual semiconductors. Consequently, new unexpected phenomena have been observed together with other phenomena that were well-understood for common semiconductors, such as the quantum Hall effect [4, 5]. Thus, graphene devices have enabled the study of relativistic dynamics in controllable nanoelectronic circuits (relativistic electrons on a chip) and their behavior probes our most basic understanding of electronic processes in solids. This also allowed us to establish a relationship between massless Dirac fermions in two dimensions and quantum optics; for instance one can see [6, 7].

On the other hand, the Jaynes–Cummings (JC) model describes the basic interaction of a two-level atom and a quantized field, which is also the cornerstone for the treatment of the interaction between light and matter in quantum optics [8]. It can be used to explain many quantum phenomena, such as the collapses and revivals of the atomic population inversions, squeezing of the quantized field and the atom–cavity entanglement. Recent experiments showed that the JC model can be invoked in quantum-state engineering and quantum information processing, e.g. the generation of Fock states [9] and entangled states [10], and the implementations of quantum logic gates [11], etc. Originally, the JC model was physically implemented with a cavity quantum electrodynamics system; see for instance [12, 13]. Certainly, there has also been interest in realizing the JC model with other physical systems. A typical system is a cold ion trapped in a Paul trap and driven by classical laser beams [13, 14] where an interaction between two selected internal electronic levels and the external vibrational mode of the ion can be induced.
The relationship between the relativistic systems and atoms in quantum optics is studied for different purposes. In this respect, the first theoretical proposal was made by Lamata et al. [15] and its experimental realization was achieved by Gerritsma et al. [16]. Subsequently, further progress has been made in this area [17]–[20]; for example in [20], the dynamics of the 2 + 1 Dirac oscillator was studied exactly and spin oscillations due to a Zitterbewegung of purely relativistic origin were found. An exact mapping of this quantum relativistic system onto a JC model is established. This equivalence allowed us to map a series of quantum optical phenomena onto the relativistic oscillator and vice versa. A realistic experimental proposal was made, accessible with current technology, for studying the equivalence of the two models using a single trapped ion.

Motivated by different developments and in particular [15,20], we consider massless Dirac fermions in an electromagnetic field and show the link with the JC and anti-Jaynes–Cummings (AJC) models. This can be done by determining the solutions of the energy spectrum and mapping the corresponding eigenspinors in terms of two states of the JC model. Furthermore, we analyze the Rabi oscillations by considering atoms coupled to the field states and evolving in time according to the stationary eigenspinors. This allows us to obtain two normalization coefficients in terms of the Rabi frequency which verify the normalization condition. By evaluating the probabilities of the atom in the ground and excited states, we show that the probability predicts sinusoidal Rabi oscillations, much like in the classical case, and exists even when the field is initially in the ground state.

Finally, we deal with another aspect of Dirac fermions in graphene [21]–[23], that is the Zitterbewegung (ZB) effect. Indeed, on calculating the time evolution of the Dirac position operator, we end up with an extra term. We show, after inspection, that this term represents a quantum oscillation about the classical motion and indicates the existence of the ZB effect. By evaluating the expectation value of the Dirac position, we obtain the ZB frequency in terms of the energy levels and the magnetic field, which disappears for a null energy.

The present paper is organized as follows. In section 2, we consider the Hamiltonian describing one massless Dirac fermion in an electromagnetic field with a Zeeman effect. Choosing the Landau gauge, we obtain the eigenvalues and the corresponding eigenspinors. After setting the different ingredients, we establish the link between our system and quantum optics through the JC and AJC models in section 3. The Rabi oscillations for atoms coupled to field states in graphene will be analyzed in section 4. Using the Heisenberg picture dynamics, we study the ZB effect and determine its oscillation frequency in section 5. Finally we close our work by concluding and giving some perspectives.

2. Dirac fermions in an electromagnetic field

In graphene, the two Fermi points, each with a twofold band degeneracy, can be described using a low-energy continuum approximation with a four-component envelope wavefunction whose components are labeled with a Fermi-point pseudospin = ±1 and a sublattice forming a honeycomb. Under this approximation we can describe our charge carriers, in an electromagnetic field (\(\mathbf{E}, \mathbf{B} \)) where \(\mathbf{E} = E \mathbf{\hat{e}}_y \), using a gauge invariant Dirac Hamiltonian in 2 + 1 space–time dimensions with minimal coupling to the vector potential.
and Zeeman effect as follows:

\[H_D = v_F \bar{\sigma} \cdot \vec{p} + \sigma_y E_y + \frac{1}{2} g \mu_B B \sigma_z \] \hspace{1cm} (1)

where \(v_F \approx 10^6 \text{ m s}^{-1} \) is the Fermi velocity, the conjugate momentum is \(\vec{p} = \vec{p} - (e/c) \vec{A} \), \(g \) is the Landé factor, \(\mu_B \) is the Bohr magneton, \(\bar{\sigma} \) are Pauli spin matrices and the nonzero matrix elements of \(\sigma_z \) are \(\langle \uparrow | \sigma_z | \uparrow \rangle = +1 \) and \(\langle \downarrow | \sigma_z | \downarrow \rangle = -1 \). Choosing the vector potential in the Landau gauge \(\vec{A}(x, y) = (-By, 0) \), we write (1) as

\[H_D = v_F \left(\begin{array}{cc} 0 & p_x + ip_y - \frac{eB}{c} y + i \frac{eE}{v_F} y \\ p_x - ip_y - \frac{eB}{c} y - i \frac{eE}{v_F} y & 0 \end{array} \right) + \frac{1}{2} g \mu_B B \sigma_z. \] \hspace{1cm} (2)

By setting \(\xi = 1 + i (cE/v_F B) \) and \(\bar{\xi} = 1 - i (cE/v_F B) \), we obtain the form

\[H_D = v_F \left(\begin{array}{cc} 0 & p_x - \frac{\hbar}{l_B} \xi y \\ p_x + ip_y - \frac{\hbar}{l_B} \bar{\xi} y & 0 \end{array} \right) + \frac{1}{2} g \mu_B B \sigma_z \] \hspace{1cm} (3)

where \(l_B = \sqrt{\hbar/eB} \) is the magnetic length.

To diagonalize the above Hamiltonian, it is convenient to introduce the annihilation and creation operators. They are

\[a = \frac{l_B}{\hbar \sqrt{2}} \left(\begin{array}{c} ip_x - p_y - \frac{\hbar}{2l_B} \xi y \\ 0 \end{array} \right), \quad a^\dagger = \frac{l_B}{\hbar \sqrt{2}} \left(\begin{array}{c} -ip_x - p_y + \frac{\hbar}{2l_B} \bar{\xi} y \\ 0 \end{array} \right) \] \hspace{1cm} (4)

which satisfy the commutation relation

\[[a^\dagger, a] = \mathbb{I}. \] \hspace{1cm} (5)

These can be used to write \(H_D \) as

\[H_D = \left(\begin{array}{cc} \frac{1}{2} g \mu_B B & i \hbar \omega_c a^\dagger \\ -i \hbar \omega_c a & -\frac{1}{2} g \mu_B B \end{array} \right) \] \hspace{1cm} (6)

where we have set the frequency \(\omega_c = \sqrt{2}(v_F/l_B) \).

The complete solutions of the energy spectrum can be obtained by solving the time independent Dirac equation \(H_D \phi = \varepsilon \phi \). Note that the form of our Hamiltonian suggests separating variables by writing the eigenspinors as

\[\phi(x, y) = \chi(x) \psi(y), \quad \psi(y) = (\psi_1, \psi_2)^t, \quad \chi(x) = e^{ik_x x} \] \hspace{1cm} (7)

with \(k_x \) is a real parameter that stands for the wavenumber of the excitations along the \(x \)-direction. Thus, the reduced eigenvalue equation is given by

\[H_D \left(\begin{array}{c} |\psi_1\rangle \\ |\psi_2\rangle \end{array} \right) = \varepsilon \left(\begin{array}{c} |\psi_1\rangle \\ |\psi_2\rangle \end{array} \right) \] \hspace{1cm} (8)

which leads to the relations

\[i \hbar \omega_c a^\dagger |\psi_2\rangle = (\varepsilon - \frac{1}{2} g \mu_B B) |\psi_1\rangle \] \hspace{1cm} (9)

\[-i \hbar \omega_c a |\psi_1\rangle = (\varepsilon + \frac{1}{2} g \mu_B B) |\psi_2\rangle. \] \hspace{1cm} (10)

As we will see soon, these will be solved by making a separation between the positive and negative energy solutions as well as discussing the relation between them.
The positive energy solution can be obtained from (9) and (10), giving the following relation between spinor components:

\[|\psi_2\rangle = \frac{-i\hbar \omega_c}{(\varepsilon + (1/2)g\mu_B B)} a |\psi_1\rangle. \]

(11)

Clearly, it is necessary to impose the condition \(\varepsilon \neq -\frac{1}{2}g\mu_B B < 0 \), which tells us that (11) is valid only for positive energies corresponding to the positive eigenspinors denoted by \(|\psi^+_1\rangle = (|\psi_1^+\rangle |\psi_2^+\rangle)\). Now, from (11) we show that \(|\psi_1^+\rangle\) satisfies the second differential equation

\[[\varepsilon^2 - (\frac{1}{2}g\mu_B B)^2 - \hbar^2 \omega_c^2 a^\dagger a] |\psi_1^+\rangle = 0 \]

(12)

which is nothing but a simple harmonic oscillator type of form. Thus, the positive eigenvalues are given by

\[\varepsilon^+_n = +\sqrt{\frac{\hbar^2 \omega_c^2 n + \frac{1}{4}(g\mu_B B)^2}{n + (1/2)g\mu_B B}}, \quad n = 0, 1, 2, \ldots \]

(13)

where the corresponding eigenstates take the form

\[|\psi^+_1\rangle = |n\rangle = (a^\dagger)^n |0\rangle. \]

(14)

At this level, it is interesting to note that these eigenstates are clearly dependent on the electromagnetic field. To clarify this statement, we write them as

\[|\psi_1^+\rangle = (\frac{-i\hbar}{\sqrt{2^n n!}}) \left(k_x + \partial_y - \frac{\hbar}{B} \tilde{\xi}_y \right)^n |0\rangle \]

(15)

with \(k_x \) the wavevector along the \(x \)-direction and the parameter \(\tilde{\xi} = 1 - i(cE/v_F B) \) a function of the ratio between the two fields. Now inserting (14) into (11) we find

\[|\psi_2^+\rangle = \frac{-i\hbar \omega_c}{\varepsilon^+_n + (1/2)g\mu_B B} a |n\rangle = -i \sqrt{\frac{\varepsilon^+_n - (1/2)g\mu_B B}{\varepsilon^+_n + (1/2)g\mu_B B}} |n - 1\rangle. \]

(16)

Combining all of this, we write the eigenspinors as

\[|\psi^+_n\rangle = \begin{pmatrix} u^+_n |n\rangle \\ -iu^-_n |n - 1\rangle \end{pmatrix} \]

(17)

where the amplitudes \(u^\pm_n \) read as

\[u^\pm_n = \left(\frac{1}{2} \pm \frac{(1/4)g\mu_B B}{\sqrt{\hbar^2 \omega_c^2 n + (1/4)(g\mu_B B)^2}} \right)^{1/2}. \]

(18)

As regards the negative energy solution, we use a similar approach to end up with the eigenvalues

\[\varepsilon^-_m = -\sqrt{\hbar^2 \omega_c^2 (m + 1) + \frac{1}{4}(g\mu_B B)^2}, \quad m = 0, 1, 2, \ldots \]

(19)

To derive the corresponding negative eigenspinors, we use the energy conservation

\[(\varepsilon^+_n)^2 = (\varepsilon^-_m)^2 \]

(20)
Massless Dirac fermions in an electromagnetic field

which tells us that the two quantum numbers are related by \(n = m + 1 \). Thus, we obtain

\[
|\psi_n^-\rangle = \left(\frac{-iu^+_n|n+1\rangle}{u^-_n|n\rangle} \right) \tag{21}
\]

where the \(u^\pm_n \) are given in (18). We recall that all eigenspinors obtained so far are electromagnetic field \((\vec{E}, \vec{B})\) dependent.

For later use, it is convenient to write the eigenspinors (17) and (21) in an appropriate form. This can be done by using Pauli spinors, such as

\[
|\psi^+_n\rangle \equiv |\psi_{n,\sigma,e^+_n}\rangle = u^+_n|n,\uparrow\rangle - i u^-_n|n-1,\downarrow\rangle \tag{22}
\]

\[
|\psi^-_n\rangle \equiv |\psi_{n,\sigma,e^-_n}\rangle = u^-_n|n,\uparrow\rangle + i u^+_n|n-1,\downarrow\rangle \tag{23}
\]

This summarizes the results obtained so far, which will be employed to study different issues in the forthcoming analysis. More precisely, we will implement them to establish a link between massless Dirac fermions in an electromagnetic field and atoms in quantum optics. Subsequently, we will discuss the possibility of making contact with the Rabi oscillations and ZB effect as well.

3. The link with Jaynes–Cummings models

As claimed before, we would like to use our results in order to make contact with quantum optic systems through two relevant models, i.e. JC and AJC. In doing so, first let us prepare our system to make the required contact easy and clear. From (9) to (10) we show that the Hamiltonian (6) takes the form

\[
H_D = i\hbar \omega_c (a^\dagger |\psi_2\rangle \langle \psi_1| - a|\psi_1\rangle \langle \psi_2|) + \frac{1}{2} g\mu_B B \sigma_z \tag{24}
\]

which can easily be written as

\[
H_D = \hbar (g' \sigma^- a^\dagger + g'^* \sigma^+ a) + \frac{1}{2} g\mu_B B \sigma_z. \tag{25}
\]

This Hamiltonian can be interpreted as a model of quantum optics where \(g' = i\omega_c \) is the strength of the coupling between the atom and the electromagnetic field, and \(\sigma^+ \) and \(\sigma^- \) are the spin raising and lowering operators, respectively. More precisely, (25) describes a single two-state atom, represented by the Pauli matrices, interacting with a (single-mode quantized) electromagnetic field. This statement will be clarified in the next part.

We will show how to implement the dynamics of (25) in a single ion inside a Paul trap with two frequencies \(\nu_x \) and \(\nu_y \). For this, let us consider a system of two-level atoms of the ground \(|e\rangle \) and excited \(|f\rangle \) states where the eigenspinors (17) can be split as

\[
|\psi\rangle = |\psi_1\rangle |e\rangle + |\psi_2\rangle |f\rangle. \tag{26}
\]

These two metastable internal states \(|e\rangle \) and \(|f\rangle \) correspond to the following energies:

\[
\varepsilon_{n_e} = \hbar \omega_n e = \hbar \sqrt{\omega_c^2 n_e + (1/2 g\mu_B B/\hbar)^2}, \quad \varepsilon_{n_f} = \hbar \omega_n f = \sqrt{\omega_c^2 n_f + (1/2 g\mu_B B/\hbar)^2} \tag{27}
\]

where the energy difference between them is characterized by the transition frequency \(\omega_0 = (\varepsilon_{n_e} - \varepsilon_{n_f})/\hbar \). All observable quantities of this two-state system can be conveniently
represented by Pauli operators, such as
\[\sigma_z = |e\rangle\langle e| - |f\rangle\langle f|, \quad \sigma^+ = |e\rangle\langle f|, \quad \sigma^- = |f\rangle\langle e| \] (28)
where the expectation value of the operator \(\sigma_z \) is the atomic inversion, while \(\sigma^+ \) and \(\sigma^- \) induce upward and downward transitions respectively. It is sometimes convenient to work with the Hermitian combinations of \(\sigma^+ \) and \(\sigma^- \), i.e. \(\sigma_x = \sigma^+ + \sigma^- \) and \(\sigma_y = i(\sigma^+ - \sigma^-) \).

Using these, we write the Hamiltonian (25) as
\[H_D = v_F (\sigma_x p_x + \sigma_y p_y) + \frac{\hbar \omega_i}{\sqrt{2} l_B} \left(-\sigma_x + \frac{cE}{B} \sigma_y \right) y + \frac{1}{2} g \mu_B B \sigma_z \] (29)
which shows its dependence on the electric field through the extra term \((cE/B)\sigma_y \) appearing in the Hamiltonian form. Clearly for \(E = 0 \), one recovers a system of massless Dirac fermions in a magnetic field and thus the extra term can be seen as a shift to the spin \(\sigma_x \). Certainly, this will play a crucial role in the forthcoming analysis and make a difference with respect to the former results obtained in this direction [20].

Having set all the ingredients, let us show that the Dirac Hamiltonian (29) can be linked with the JC and AJC models. We start by introducing the JC model, usually called the red-sideband excitation, which consists of a laser field acting resonantly on two internal levels. Typically, a resonant JC coupling induces an excitation in the internal levels while producing a de-excitation of the motional harmonic oscillator and vice versa. The resonant JC Hamiltonian is given by
\[H_{JC}^i = \hbar \eta_i \Omega_i \left(\sigma^+ a_i e^{i\phi} + \sigma^- a_i^+ e^{-i\phi} \right) + \hbar \delta_i \sigma_z \] (30)
where \(a_i \) and \(a_i^+ \) (\(i = x, y \)) are the annihilation and creation operators associated with a motional degree of freedom. \(\eta_i := k_i \sqrt{\hbar/2M \nu_i} \) is the Lamb–Dicke parameter [14], \(k_i \) is the wavenumber of the driving field, \(M \) is the ion mass, \(\nu_i \) are the natural trap frequencies, \(\phi \) is the red-sideband phase, and \(\Omega_i \) and \(\delta_i \) are the excitation coupling strengths. Using the realization (4) for the annihilation and creation operators, we map (30) as
\[H_{JC}^i = \frac{\hbar \eta_i \Omega_i l_B}{\sqrt{2}} \left[i(\sigma^+ e^{i\phi} - \sigma^- e^{-i\phi}) p_x - (\sigma^+ e^{i\phi} + \sigma^- e^{-i\phi}) p_y \right] \]
\[+ \frac{\hbar \eta_i \Omega_i}{\sqrt{2} l_B} \left[-i(\sigma^+ e^{i\phi} - \sigma^- e^{-i\phi}) - \frac{cE}{B} (\sigma^+ e^{i\phi} + \sigma^- e^{-i\phi}) \right] y + \hbar \delta_i \sigma_z. \] (31)

On the other hand, the AJC Hamiltonian reads as
\[H_{AJC}^i = \hbar \eta_i \Omega_i \left(\sigma^+ a_i^+ e^{i\varphi} + \sigma^- a_i e^{-i\varphi} \right) \] (32)
where \(\varphi \) is the blue-sideband phase. Like for to (30), we show that \(H_{AJC}^i \) takes the form
\[H_{AJC}^i = \frac{\hbar \eta_i \Omega_i l_B}{\sqrt{2}} \left[-i(\sigma^+ e^{i\varphi} - \sigma^- e^{-i\varphi}) p_x - (\sigma^+ e^{i\varphi} + \sigma^- e^{-i\varphi}) p_y \right] \]
\[+ \frac{\hbar \eta_i \Omega_i}{\sqrt{2} l_B} \left[i(\sigma^+ e^{i\varphi} - \sigma^- e^{-i\varphi}) - \frac{cE}{B} (\sigma^+ e^{i\varphi} + \sigma^- e^{-i\varphi}) \right] y. \] (33)

Fixing different parameters, let us see what the sum \(H_{JC}^i + H_{AJC}^i \) looks like. For particular values of the parameters involved, we obtain table 1.

doi:10.1088/1742-5468/2012/01/P01021
Table 1. Linear combinations of JC and AJC Hamiltonians for given values of the parameters involved.

i	δ_i	φ	ϕ	H^{JC}_i + H^{AJC}_i
x	δ	3π	2	\sqrt{2}ηΩ_B σ_x p_x + hδσ_z
y	0	3π	2	\sqrt{2}ηΩ_B σ_y p_y + \sqrt{2}hηΩ cE \sigma_y y
y	0	3π	2	-\sqrt{2}hηΩ \sigma_x y

Table 2. Configurations of four parameters leading to the new form of $H^{JC}_i + H^{AJC}_i$.

i	δ	φ	ϕ	H^{JC}_i + H^{AJC}_i
x	δ	0	π	\sqrt{2}ηΩ_B σ_y p_x + hδσ_z
y	0	0	0	-\sqrt{2}ηΩ_B σ_x p_y - \sqrt{2}hηΩ cE y

Now by summing all terms in table 1, one gets

$$\sum_i (H^{JC}_i + H^{AJC}_i) = \sqrt{2}ηΩ_B (σ_x p_x + σ_y p_y) + \frac{\sqrt{2}hηΩ}{l_B} \left(-σ_x + \frac{cE}{B} σ_y \right) y + hδσ_z. \quad (34)$$

A comparison to the Dirac Hamiltonian (29) yields the following correspondence:

$$\begin{cases}
\omega_c := 2ηΩ \\
\frac{1}{2}gμ_B B := hδ
\end{cases} \quad (35)$$

where $Ω = Ω_i$ and $η = η_i$, ∀ $i = x, y$. Equation (35) means that if the Lamb–Dicke parameter $η$ is restricted to the ratio between the cyclotron frequency $ω_c$ and the excitation coupling strength $Ω$ supplemented by a variation of the magnetic field like the excitation coupling strength $δ$, then the present system can be linked with the atoms in quantum optics. Otherwise, (35) tells us that it is possible to reproduce the 2D Dirac Hamiltonian (29), with all of its quantum relativistic effects, in a controllable system such as a single trapped ion. This conclusion is deduced also by analyzing massive Dirac fermions in a magnetic field in the same framework [20].

We close this section by showing that the system under consideration can be reduced to spintronic ones. In doing so, let us choose different parameters, as summarized in table 2.

Summing over i, we obtain the Hamiltonian

$$\sum_i (H^{JC}_i + H^{AJC}_i) = \sqrt{2}ηΩ_B (σ_y p_x - σ_x p_y) - \frac{\sqrt{2}hηΩ cE}{l_B} \sigma_y y + hδσ_z. \quad (36)$$

On taking $E = 0$ and $δ = 0$ in (36), the resulting term is nothing but the Rashba spin–orbit coupling [24] where the coefficient $\sqrt{2}ηΩ_B$ is identified as a coupling parameter of Rashba type.

\[\text{doi:10.1088/1742-5468/2012/01/P01021}\]
One can ask for other configurations of the parameters involved and see what we gain. In fact, let us take the choice listed in table 3.

As before, we sum to obtain the Hamiltonian

\[\sum_i (H_i^{JC} + H_i^{AJC}) = \sqrt{2\eta_0}\Omega l_B (\sigma_x p_x - \sigma_y p_y) - \frac{\sqrt{2}\eta_0\Omega cE}{l_B} \sigma_y y + \hbar \delta \sigma_z \]

(37)

which reduces to the linear Dresselhaus coupling \cite{24} for \(E = 0 \) and \(\delta = 0 \). According to (36) and (37), one can conclude that the system under consideration also shares some features with spintronic systems. Therefore one can go further in investigating the basic features of (36) and (37) to extract more information about these relationships.

4. Rabi oscillations

The Rabi oscillations of fermions in graphene have been studied in different contexts to deal with various issues \cite{6, 7}. For example in [6] the relation between the canonical model of quantum optics, the JC model and Dirac fermions in a quantizing magnetic field was investigated. It was demonstrated that Rabi oscillations are observable in the optical response of graphene, providing us with a transparent picture of the structure of optical transitions. While the longitudinal conductivity reveals chaotic Rabi oscillations, the Hall component measures coherent ones. This opens up the possibility of investigating a microscopic model of a few quantum objects in a macroscopic experiment with tunable parameters.

Motivated by the above developments, we analyze the Rabi oscillations of the system under consideration. We start by expanding a general state in the eigenspinors obtained, (17), to study the corresponding dynamics. Let us assume that initially at \(t = 0 \) the atom is in the lower state \(|f\rangle \) and the cavity contains precisely \(n - 1 \) photons, i.e. the field is in a number (Fock) state \(|n - 1\rangle \) with \(n = 1, 2, \ldots \). Then the initial state of the system is \(|f, n-1\rangle \), while the interaction term of the Hamiltonian (25) connects this initial state to the final state \(|e, n\rangle \). To proceed further, we consider the initial state for the field as \(|\psi(0)\rangle = |f, n-1, \downarrow\rangle \) and assume that an atom in the excited state is injected into the field. Using (22), (23) and (26), one can write the initial state as

\[|\psi(0)\rangle = i u_n^{-} |\psi_{n,\sigma,\epsilon_n^{+}}\rangle - i u_n^{+} |\psi_{n,\sigma,\epsilon_n^{-}}\rangle. \]

(38)

Its evolution state can easily be obtained by the action of

\[|\psi(t)\rangle = e^{-i/\hbar H_D t} |\psi(0)\rangle = C_{e,n}(t) |e, n, \uparrow\rangle + C_{f,n-1}(t) |f, n-1, \downarrow\rangle \]

(39)

doi:10.1088/1742-5468/2012/01/P01021
where the coefficients are given by

\[C_{e,n}(t) = \sqrt{\frac{4\zeta n}{1 + 4\zeta n}} \sin(\omega_n t) \]
\[C_{f,n-1}(t) = \cos(\omega_n t) + \frac{i}{\sqrt{1 + 4\zeta n}} \sin(\omega_n t). \]

It is easy to check that these verify the normalization condition \(|C_{e,n}(t)|^2 + |C_{f,n-1}(t)|^2 = 1 \). The frequency of oscillations is given by

\[\omega_n := \frac{E_n}{\hbar} = \delta \sqrt{1 + 4\zeta n} \]

where the parameter \(\zeta = (\omega_c/2\delta)^2 \) controls the nonrelativistic limit. Equation (39) shows very clearly the non-stationary states of localization (\(|e, n, \uparrow\rangle, |f, n-1, \downarrow\rangle\)), which is nothing but the Rabi oscillation that is a simple quantum beat interstate, \(|e, n, \uparrow\rangle\) and \(|f, n-1, \downarrow\rangle\). Moreover, the dynamics of (39) is completely similar to the atomic Rabi oscillations that can be seen from the JC model. This similarity shows another way in which the system under consideration can be linked with Rabi oscillations.

To understand better the present situation, let us analyze the probabilities of existence. Indeed, for an atom in the state \(|f, n-1, \downarrow\rangle\), we find

\[P_{n-1}^f(t) = 1 - \frac{4\zeta n}{1 + 4\zeta n} \sin^2(\omega_n t) = 1 - \left(1 - \frac{\delta^2}{\omega_n^2}\right) \sin^2(\omega_n t) \]

where \(\omega_n \) is now identified with the Rabi frequency \(\omega_R \). It is clear that \(P_{n-1}^f(t) \) oscillates between a maximum of unity and a minimum of \((\delta/\omega_n)^2 \). Equation (43) predicts sinusoidal Rabi oscillations much like in the classical case. However, even when the field is initially in the vacuum state, i.e. \(n = 0 \), the probability exists.

Now let us see what happens when the atom is in the state \(|e, n, \downarrow\rangle\). Indeed, after some algebra we get the probability

\[P_n^e(t) = \frac{4\zeta n}{1 + 4\zeta n} \sin^2(\omega_R t) = 1 - \left(1 - \frac{\delta^2}{\omega_R^2}\right) \sin^2(\omega_R t). \]

This can be plotted as shown in figure 1 for a particular value of \(\delta \). One can easily see that for the resonance case (\(\delta = 0 \)), \(P_n^e(t) \) reduces to

\[P_n^e(t) = \sin^2(\omega_R t) \]

which is in agreement with the blue figure (figure 1). For \(t = \pi/2\omega_R \) all the atomic population has been transferred to the excited state. Clearly, the probabilities \(P_n^e(t) \) and \(P_{n-1}^f(t) \) oscillate in time with the Rabi frequency, \(\omega_R \), where their amplitudes are maximum at \(\delta = 0 \) and decrease rapidly as \(\delta \) increases. In contrast, in a stationary state the probabilities of localization of the particle are equal and constant.

It is frequently convenient to consider the atomic inversion \(W(t) \), which is defined as the difference of the excited and ground state populations. This is

\[W(t) = P_n^e(t) - P_{n-1}^f(t) = 2 \left(1 - \frac{\delta^2}{\omega_R^2}\right) \sin^2(\omega_R t) - 1 \]
\(\text{doi:10.1088/1742-5468/2012/01/P01021} \)
which can be simplified by assuming that the atom is initially in the ground state and requiring the resonant case. These results allow us to obtain

\[W(t) = \sin^2(\omega_R t) - \cos^2(\omega_R t) = -\cos(2\omega_R t) \] (47)

where the Rabi frequency reduces now to the quantity \(\omega_R = \sqrt{n}\omega_c \). Again, for \(t = \pi/2\sqrt{n}\omega_c \) all of the population is transferred to the excited state and we have \(W(\pi/2\sqrt{n}\omega_c) = 1 \). On the other hand, if we choose \(t = \pi/4\sqrt{n}\omega_c \), then \(W(\pi/4\sqrt{n}\omega_c) = 0 \) and the population is shared coherently between the excited and ground states. This case shows the constraint

\[C_{e,n}(\pi/4\sqrt{n}\omega_c) = C_{f,n-1}(\pi/4\sqrt{n}\omega_c) = \frac{1}{\sqrt{2}} \] (48)

and therefore the corresponding state is

\[|\psi(\pi/4\sqrt{n}\omega_c)\rangle = \frac{1}{\sqrt{2}} (|e, n, \uparrow\rangle + |f, n-1, \downarrow\rangle) \] (49)

In summary, one can see that the behavior of a two-level atom interacting with a single electromagnetic mode is surprisingly rich. In fact, there are Rabi oscillations that collapse and remain quiescent, revive, then collapse again.

5. Zitterbewegung effect

The Zitterbewegung (ZB) effect, also called trembling motion, consists of a helicoidal motion of a free Dirac particle. It is a natural consequence of the non-commutativity of its velocity operator components \(v_F \sigma_j \), with \(i = x, y \). In connection with the quantum optics realm, this quantum relativistic effect was studied by Lamata et al [15]. The ZB effect has also been studied for different reasons in systems made of graphene [21]–[23]. For instance in [22], the electric current and spatial displacement due to the ZB effect of electrons in graphene in the presence of an external magnetic field were described. It was shown that, when the electrons are prepared in the form of wavepackets, the presence of a quantizing magnetic field \(B \) has very important effects on the ZB effect. (1) For \(B \neq 0 \) the
ZB oscillations are permanent, while for \(B = 0 \) they are transient. (2) For \(B \neq 0 \) many ZB frequencies appear, while for \(B = 0 \) only one frequency is at work. (3) For \(B \neq 0 \) both interband and intraband (cyclotron) frequencies contribute to the ZB effect, while for \(B = 0 \) there are no intraband frequencies. (4) Magnetic field intensity changes not only the ZB frequencies but also the entire character of the ZB spectrum. An emission of electromagnetic dipole radiation by the trembling electrons was proposed and described. It was argued that graphene in a magnetic field is a promising system for an experimental observation of Zitterbewegung.

Let us study the ZB effect for massless Dirac fermions in an electromagnetic field and discuss what will add an electric field to the results presented in [22]. In doing so, we describe the dynamics of the system under consideration through the Heisenberg picture. Indeed, we calculate the time evolution of the Dirac position operator

\[
\tilde{x}(t) = e^{-(i/\hbar)H_D t} \tilde{x} e^{(i/\hbar)H_D t}
\]

which satisfies the Heisenberg equation of motion

\[
\frac{d\tilde{x}}{dt} = \frac{i}{\hbar}[H_D, \tilde{x}] = v_F \tilde{\sigma}_j
\]

where \(H_D \) is the Hamiltonian given in (1). To get the explicit form of \(\tilde{x}(t) \), we introduce the dynamics of the Pauli operators

\[
-i\hbar \frac{d\tilde{\sigma}_j}{dt} = [H_D, \tilde{\sigma}_j]
\]

which can be evaluated by using the anti-commutation relations \(\{\sigma_i, \sigma_j\} = 2\delta_{ij}\mathbb{I} \) \((i, j = x, y, z) \). This leads to the equation

\[
-i\hbar \frac{d\tilde{\sigma}_j}{dt} = -2v_F \tilde{\pi}_j - 2eEy\delta_{yj} + 2H_D \tilde{\sigma}_j.
\]

It is convenient for later use to introduce the compact form

\[
-i\hbar \frac{d\tilde{\eta}}{dt} = 2H_D \tilde{\eta}
\]

where the operator \(\eta \) is given by

\[
\tilde{\eta} = \tilde{\sigma}_j - v_F H_D^{-1} \tilde{\pi}_j - eE_y H_D^{-1} \delta_{yj}
\]

and satisfies the following dynamics:

\[
-i\hbar \frac{d\tilde{\eta}}{dt} = -i\hbar \frac{d\tilde{\sigma}_j}{dt} = 2H_D \tilde{\eta}.
\]

This can be solved easily to find

\[
\tilde{\eta}(t) = e^{(2i/\hbar)H_D t} \tilde{\eta}_0
\]

where \(\tilde{\eta}_0 \) is a constant operator

\[
\tilde{\eta}_0 = \tilde{\eta}(0) = \tilde{\sigma}_j(0) - v_F H_D^{-1} \tilde{\pi}_j - eE_y H_D^{-1} \delta_{yj}.
\]

Since we have \(\{H_D, \tilde{\eta}\} = 0 = \{H_D, \tilde{\eta}_0\} \), (57) can be rewritten as

\[
\tilde{\eta}(t) = \tilde{\eta}_0 e^{(2i/\hbar)H_D t}.
\]

doi:10.1088/1742-5468/2012/01/P01021
Combining (53), (55) and (59), we end up with
\[
\frac{d\vec{x}}{dt} = v_F^2 H_D^{-1} \vec{\pi}_j + eE v_F y H_D^{-1} \delta_{yj} + v_F \vec{\eta}_0 e^{-(2i/\hbar)H_D t}
\]
which can be integrated to get the time evolution
\[
\vec{x}(t) = v_F^2 H_D^{-1} \vec{\pi}_j t + eE v_F y H_D^{-1} \delta_{yj} t + \frac{1}{2} i \hbar v_F \vec{\eta}_0 H_D^{-1} e^{-(2i/\hbar)H_D t} + \vec{x}(0)
\]
where \(\vec{x}(0)\) is a constant (operator) of integration
\[
\vec{x}(0) - \frac{1}{2} \hbar v_F \vec{\sigma}_j(0) H_D^{-1} + \frac{1}{2} i \hbar v_F \vec{\eta}_0 H_D^{-1} \vec{\pi}_j t + \frac{1}{2} i \hbar v_F e E y H_D^{-2} \delta_{yj}.
\]
Now using the correspondence (35), which links our system with atoms in quantum optics, we map (61) as
\[
\vec{x}(t) = \vec{x}(0) + 2 \eta^2 \Omega^2 \vec{\pi}_j + \sqrt{2} e E \eta B \Omega \vec{\pi}_j t
\]
\[
+ \left(\vec{\sigma}_j(t) - \sqrt{2} \eta B \Omega \vec{\pi}_j + e E y \delta_{yj} \right) \frac{i \hbar \eta B \Omega}{2 H_D} (1 - e^{-(2i/\hbar)H_D t}).
\]
This result shows that different contributions originated from different sources. Indeed, the first two terms on the rhs account for the classical kinematics of a free particle in an electromagnetic field \((\vec{E}, \vec{B})\). However, the last term represents a quantum oscillation about the classical motion with a frequency \(2 |E_D|/\hbar\) where \(E_D = \varepsilon_n\). This oscillating term is the so-called ZB effect or ‘trembling motion’ and its frequency associated with the measurable quantity \(\langle \vec{x}(t) \rangle\) can be estimated as
\[
\omega_{ZB} = 2 \frac{|E_D|}{\hbar} = 2 \sqrt{4 \eta^2 \Omega^2 |\varepsilon_n| + \delta^2}
\]
where the correspondence (35) is used. On the other hand, the presence of the electric field \(\vec{E}\) is clearly shown in equation (63). Thus, one can interpret the terms \(\sqrt{2} e E \eta B \Omega \delta_{yj}\) and \((e E y \delta_{yj})\) as shifts with respect to the original terms, which of course disappear if we require \(\vec{E} = 0\). This tells us that our results are interesting, general, and such that one can recover the standard ones by simply fixing some parameters.

6. Conclusion

The solutions for the energy spectrum of a system of massless Dirac fermions in the electromagnetic field are obtained. The corresponding Dirac Hamiltonian \(H_D\) is used to investigate a two-level atom interacting with a single electromagnetic field. The connection between the JC model in quantum optics and \(H_D\) is established in a simple manner without imposing any limit on the strength of the electromagnetic field. This can serve as a tool for studying atomic transitions in quantum optics using relativistic quantum mechanical models in the presence of the electromagnetic field.

More precisely, after mapping the eigenspinors in terms of ground and excited states of a two-level atom, we derived a new form of the Dirac Hamiltonian. This is used to establish a link with JC and AJC models as a linear combination under the correspondence between their parameters. Making a suitable choice of the parameters involved, we showed that

\textbf{doi:10.1088/1742-5468/2012/01/P01021}
the linear combination can be reduced to either the Rashba or the Dresselhaus couplings. This is a significant result because it relies two sectors, namely graphene and quantum optic systems.

Because the Rabi oscillations are occurring in the JC model and because of its relation to our system, we analyzed them. In fact, we mapped the eigenspinors in terms of two-level atom states, i.e. ground and excited ones, and showed that the Rabi frequency can be obtained in terms of the quantized energy levels. Calculating the probabilities for atoms in ground and excited states separately, we obtained different results showing that these probabilities are maximum when the detuning δ is null and decrease rapidly as δ increases. These are used to discuss the resonant case by evaluating the atomic inversion $W(t)$ and we conclude that the population of the state depends on the value attributed to $W(t)$.

Finally, we analyzed the Zitterbewegung effect for massless Dirac fermions in an electromagnetic field. This was done by using the Heisenberg picture dynamics to evaluate the time evolution of the Dirac position operator. This allowed us to obtain a quantum oscillation about the classical motion with a defined frequency. Its oscillation between the negative and positive energy states is similar to the Rabi oscillation in the two-level atom. By evaluating the position average, we obtained the ZB frequency in terms of the quantized energy system.

We close this part by listing some ideas, which can be worked through by adopting our approach presented in this paper. Indeed, it will be of interest to analyze the massless Dirac fermions in the presence of a perpendicular magnetic field and by considering an electric field supported by a 2×2 unit matrix as formulated for graphene in [3]. This certainly will yield new results and interesting conclusions due to the reduction of the magnetic field from B to $B' = B\sqrt{1 - (E/V_F B)^2}$. One also can study in this framework the tilted magnetic field case rather than the uniform one.

Acknowledgments

The generous support provided by the Saudi Center for Theoretical Physics (SCTP) was highly appreciated by AJ and AEM. AJ acknowledges partial support by King Faisal University. The authors are also indebted to the referees for their instructive comments.

References

[1] Novoselov K S et al, 2004 Science 306 666
[2] See, e.g. Castro Neto A H et al, 2009 Rev. Mod. Phys. 81 109
[3] For a recent review see Goerbig M O, 2011 Rev. Mod. Phys. 83 1193
[4] Novoselov K S et al, 2005 Nature 438 197
[5] Zhang Y et al, 2005 Nature 438 201
[6] Dora B et al, 2009 Phys. Rev. Lett. 102 036803
[7] Mishchenko E G, 2009 Phys. Rev. Lett. 103 246802
[8] Jaynes E T and Cummings F W, 1963 Proc. IEEE 51 89
Shore B W and Knight P L, 1993 J. Mod. Opt. 40 1195
Zheng S B, 2008 Phys. Rev. A 77 045802
[9] Bertet P et al, 2002 Phys. Rev. Lett. 88 143601
[10] Osnaghi S et al, 2001 Phys. Rev. Lett. 87 037902
[11] Monroe C et al, 1995 Phys. Rev. Lett. 75 4714
[12] Rempe G and Walther H, 1987 Phys. Rev. Lett. 58 353
Cirac J I et al, 1994 Phys. Rev. A 49 1202
[13] Blockey C A, Walls D F and Risken H, 1992 Europhys. Lett. 17 509

doi:10.1088/1742-5468/2012/01/P01021
Massless Dirac fermions in an electromagnetic field

[14] Leibfried D et al, 2003 Rev. Mod. Phys. 75 281
[15] Lamata L et al, 2007 Phys. Rev. Lett. 98 253005
[16] Gerritsma R et al, 2010 Nature 463 68
[17] Casanova J et al, 2010 Phys. Rev. A 82 020101
[18] Gerritsma R et al, 2011 Phys. Rev. Lett. 106 060503
[19] Lamata L et al, 2011 New J. Phys. 13 095003
[20] Bermudez A, Martin-Delgado M A and Solano E, 2007 Phys. Rev. A 76 041801(R)
[21] Katsnelson M I, 2006 Eur. Phys. J. B 51 157
[22] Rusin T M and Zawadzki W, 2008 Phys. Rev. B 78 125419
[23] Roldan R, Fuchs J-N and Goerbig M O, 2010 Phys. Rev. B 82 205418
[24] Schliemann J, Egues J C and Loss D, 2006 Phys. Status Solidi c 3 4330