APRESENTAÇÃO PICTÓRICA DE PARÂMETROS ATUAIS NA MANOMETRIA DE ALTA RESOLUÇÃO ESOFÁGICA

A pictorial presentation of esophageal high resolution manometry current parameters

Fernanda M. LAFRAIA¹, Fernando A. M. HERBELLA¹, Julia R. KALLUF¹, Marco G. PATTI²

Trabalho realizado no Departamento de Cirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil e Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, USA.

RESUMO - A manometria de alta resolução é, atualmente, a tecnologia mais moderna para o estudo da motilidade esofágica e vem substituindo a manometria convencional nos grandes centros de pesquisa com parâmetros que seguem a Classificação de Chicago, que busca unificar as interpretações gráficas da manometria de alta resolução e, dessa maneira, categorizar os diversos distúrbios esofágicos. Objetivo: Mostrar, de forma pictórica, os novos parâmetros compilados na versão 3.0 da Classificação de Chicago, buscando facilitar a compreensão e interpretação da manometria de alta resolução. Métodos: Foram revistas as manometrias da casuística dos autores e selecionados os traçados representativos dos parâmetros da Classificação de Chicago. Resultados: Entre os parâmetros apresentados foram considerados a Morfologia da Transição Gastroesofágica, que classifica o segmento de acordo com sua fisiologia e anatomia; a Integral da Pressão de Relaxamento, que mede o relaxamento do esfíncter esofagiano inferior; a Integral Contrátil Distal, que avalia o vigor contrátil da onda peristáltica; e, a Latência Distal, que mede o tempo da peristalse, desde o início da deglutição até a ampola epífrenica. Conclusão: A aplicabilidade clínica desses novos conceitos ainda está sendo estudada.

ABSTRACT – Introduction: High resolution manometry is the current technology used to study the esophageal motility and is replacing conventional manometry in important centers for esophageal motility with parameters used on esophageal motility, following the Chicago Classification. This classification unifies high resolution manometry interpretation and classifies esophageal disorders. Objective: This review shows, in a pictorial presentation, the new parameters established by the Chicago Classification, version 3.0, aimed to allow an easy comprehension and interpretation of high resolution manometry. Methods: Esophageal manometries performed by the authors were reviewed to select illustrative tracings representing Chicago Classification parameters. Results: The parameters are: Esophagogastric Morphology, that classifies this junction according to its physiology and anatomy; Integrated Relaxation Pressure, that measures the lower esophageal sphincter relaxation; Distal Contractile Integral, that evaluates the contraction vigor of each wave; and, Distal Latency, that measures the peristalsis velocity from the beginning of the swallow to the epiphrenic ampulla. Conclusion: Clinical applications of these new concepts is still under evaluation.

INTRODUÇÃO

A manometria de alta resolução (MAR) é, atualmente, a tecnologia mais moderna para o estudo da motilidade esofágica. Ela é instrumento que permite acesso aos esfíncteres e ao corpo esofágico através de visão simultânea e panorâmica que vai da faringe até o estômago e, assim, permite o estudo da motilidade esofágica e avaliar a função esfíncter esofágico inferior.

Devido ao seu caráter moderno e tecnológico, a MAR vem substituindo a manometria convencional nos grandes centros especializados em motilidade esofágica, pois tem se mostrado mais rápida, mais confortável e não apresenta certas limitações presentes na manometria convencional, como os artefatos de movimento. Por isso, é fundamental que os pesquisadores e especialistas do esôfago se atualizem e passem a compreender os parâmetros utilizados nos estudos atuais. Esses parâmetros seguem a Classificação de Chicago, normatização feita por especialistas em motilidade esofágica que busca unificar as interpretações gráficas da MAR e, dessa maneira, categorizar os diversos distúrbios esofágicos. Essa classificação já está em sua terceira versão, tendo sido publicada em 2015.

Esse artigo teve por objetivo mostrar de forma pictórica os novos parâmetros compilados na versão 3.0 da Classificação de Chicago, buscando facilitar a compreensão e interpretação de estudos feitos usando a MAR.

MÉTODO

Foram revistas as manometrias da casuística dos autores e selecionados os traçados representativos dos parâmetros da Classificação de Chicago.
FIGURA 1 – A) Detecção da hérnia de hiato na manometria convencional: nota-se a zona de pressão correspondente ao diafragma (1) e a zona de pressão correspondente ao EEI (2); B) morfologia da transição gastroesofágica na manometria de alta resolução: os tipos são classificados de acordo com o grau de dissocação das pressões correspondentes ao diafragma (D) e esfincter esofagiano inferior (LES/EEI).

FIGURA 2 – A) Oscilação respiratória do EEI: nota-se que não há dissocação dos componentes das pressões correspondentes ao diafragma e EEI, apenas a excursão dos componentes com a respiração (seta); B) relaxamento do EEI pela manometria convencional medido pela pressão mínima (nadir) e nota-se em A, na figura, pseudo relaxamento causado pela diminuição fictícia da pressão do esfincter causada pela movimentação do sensor para dentro do estômago pelo movimento com a deglutição, caracterizada por relaxamento de curta duração, e em B, a contração fásica do diafragma durante o período de relaxamento, levando à confusão na interpretação da duração do relaxamento, diferente de C.

FIGURA 3 – A) Medicação do relaxamento do EEI pela integral da pressão de relaxamento: nota-se que são selecionados os momentos de menor pressão (setas pretas), excluindo a pressão diafragmática (seta vermelha), no intervalo de 10 s pós-deglutição; B) medição do Vigor Contrátil pela integral contratil distal e nota-se que o parâmetro é obtido considerando-se a amplitude, duração e tamanho da onda contratil.

FIGURA 4 – A) Tipos de ondas pela manometria convencional: (A) peristáltica, (B) simultânea, (C) interrompida, (D) falha; B) medição da peristalse pela latência distal (DL): nota-se que o parâmetro é obtido pelo intervalo de tempo entre o início da deglutição até o ponto de desaceleração contratil.

FIGURA 5 – Identificação do ponto de desaceleração contratil (CDP): ele corresponde à representação da transição entre o corpo esofágico e a ampola epifrênica e aparece como uma inflexão na curva peristáltica no gráfico de pressão topográfica.

RESULTADOS

Morfologia da transição gastroesofágica

O reconhecimento das hérnias de hiato pela manometria convencional dá-se pela detecção de duas zonas distais de alta pressão, correspondentes ao diafragma e ao esfincter esofagiano inferior (EEI)¹ (Figura 1A). A MAR, por sua maior sensibilidade, permite a distinção da pressão diafragmática e do EEI, mesmo com grande proximidade ou sobreposição das estruturas. Isto permitiu classificar a morfologia da transição gastroesofágica em três tipos diferentes (Figura 1B)¹². O tipo I mostra justaposição total das duas estruturas no gráfico de pressão topográfica. No tipo II, o esfincter e o diafragma são separados e há dois picos de pressão; a distância entre os dois picos pressóricos é de 1-2 cm e pode variar ou ser intermitente; o nadir da pressão entre os dois picos deve ser maior que a pressão intragástrica. No tipo IIIa, há distância maior que 2 cm
entre os dois picos de pressão e o nadir entre eles atinge valor menor ou igual que a pressão gástrica; o ponto de inversão da pressão está perto do diafragma. O tipo lllb segue as mesmas premissas do tipo IIIa, porém o ponto de inversão da pressão está mais próximo do EEI.

A oscilação do EEI com a respiração não deve ser confundida com o tipo II (Figura 2A)

Relaxamento do esfincter esofagiano inferior

Na manometria convencional, o relaxamento do EEI é medido basicamente pela pressão mínima (nadir), o que pode ser confundido com pseudo relaxamento (Figura 2B). A MAR propiciou a criação de um novo parâmetro, a Integral da Pressão de Relaxamento (IRP), que corresponde à pressão média dos 4 s de maior relaxamento pós-deglutição em um intervalo de 10 s, iniciado no começo da deglutição, que corresponde ao relaxamento do EES (Figura 3A).

Vigor contrátil

Na manometria convencional, mede-se a pressão contrátil em 3 cm, 8 cm, 13 cm e 18 cm de distância da borda superior do EEI, não sendo avaliadas as áreas situadas entre as posições dos sensores. Com a MAR, há visão panorâmica do corpo esofágico e, dessa forma, pode-se avaliar e classificar o vigor contrátil de cada onda de forma global. Para isso, foi criado o parâmetro da Integral Contrátil Distal (DCD). O valor dele é encontrado da combinação da amplitude (mmHg) x duração (s) x tamanho da contração do esôfago distal (cm), excedendo 20 mmHg, da zona de transição até o EIE (Figura 3B). Baseado na DCD as ondas são classificadas em ineficazes, normais ou hipercontráteis.

Peristalse

Na manometria convencional, a classificação da peristalse é feita baseada na velocidade e propagação da onda (Figura 4A). Na MAR, foi criado o parâmetro da latência distal (DL), que mede de maneira objetiva o tempo da peristalse a partir do início da deglutição até a ampola epifrênica. A DL dá-se pelo intervalo entre o início do relaxamento do esfincter esofágico superior e o ponto de desaceleração contrátil (CDP) (Figura 4B). O CDP é uma representação da transição entre o corpo esofágico e a ampola epifrênica e aparece como inflexão na curva peristáltica no gráfico de pressão topográfica local onde ocorre mudança da velocidade de propulsão do bolus, tendo atingido o local de maior dilatação do corpo esofágico (Figura 5). O PDC pode ser de difícil localização, portanto foi criado, na versão 3.0 da Classificação de Chicago, um critério que limita a localização do PDC em até 3 cm do esfincter esofágico inferior em casos de peristalse atípica.

A Classificação de Chicago é relativamente recente; porém, criou novos parâmetros e nova classificação dos distúrbios motores. Assim, como nas classificações que utilizavam a manometria convencional, ainda há casos não passíveis de ser incluídos dentre os padrões por ela definidos. Dessa forma, perfeita aplicação direta entre a manometria e a terapêutica nem sempre é possível. A versão 3.0 da Classificação de Chicago tentou ser voltada mais para clínica. Uma nova versão é preparada para futuro próximo e deve incluir também o esfincter esofágico superior, já que o método parece ser muito vantajoso para estudo desta área.

DISCUSSÃO

CONCLUSÃO

A manometria de alta resolução trouxe novos parâmetros para classificar a fisiologia do esôfago e os eventos que lâ ocorrem; porém, a aplicabilidade clínica desses novos conceitos ainda está sendo estudada.

REFERÊNCIAS

1. Clarke JO, Pandolfini JE. Esophageal motor disorders: how to bridge the gap between advanced diagnostic tools and paucity of therapeutic modalities? J Clin Gastroenterol. 2012 Jul;46(7):442-8. doi: 10.1097/MCG.0b013e31823d30c1.
2. Herbelin FA, Armijo PR, Patti MG. A pictorial presentation of 3.0 Chicago Classification for esophageal motility disorders. Einstein (Sao Paulo). 2016 Mar 8. pii: S1176-45082016005001103.
3. Herbelin FA, Vicentein FP, DelGrande JC. High-resolution and conventional manometry in the assessment of the lower esophageal sphincter length. J Gastrointest Surg. 2010 Sep;14(9):1466-79.
4. Herbelin FA, DelGrande JC. Novastecnicaesambulatoriais para avaliação da motilidade esofágica e sua aplicação no estudo do megaesôfago. Rev Col Bras Cir. 2008; 35(3):199-202.
5. Kahrilas PJ, Bredenoord AJ, Fox M, Gwyali CP, Roman S, Smout AJ, Pandolfini JE. International High Resolution Manometry Working Group. The Chicago Classification of Esophageal Motility Disorders, v3.0. Neurogastroenterol Motil. 2015 Feb; 27(2): 160–174.
6. Katz PO, Richter JE, Cowan R, Castell DO. Apparent complete lower esophageal sphincter relaxations in achalasia. Gastroenterology. 1986; 89(4):978-83.
7. Lin Z, Kahrilas PJ, Roman S, Boris L, Carlson D, Pandolfini JE. Refining the criterion for an abnormal Integrated Relaxation Pressure in esophageal pressure topography based on the pattern of esophageal contractility using a classification and regression tree model. Neurogastroenterol Motil. 2012 Aug;24(8):e356-63. doi: 10.1111/j.1365-2982.2012.01952.x. Epub 2012 Jun 20.
8. Lin Z, Pandolfini JE, Xiao Y, Carlson D, Bidari K, Escolar G, Kahrilas PJ. Localizing the contractile deceleration point (CDP) in patients with abnormal esophageal pressure topography. Neurogastroenterol Motil. 2010 Oct;22(10):972-5.
9. Martínez JC, Lima GR, Silva DH, Duarte AF, Novo NF, da Silva EC, Pinto PC, Maia AM. Clinical, endoscopic and manometric features of the primary motor disorders of the esophagus. ABCD, arq. bras. cir. dig., 2015, vol.28, no.1, p.32-35. ISSN 0102-6720.
10. MaraisDJ, Lopez-LR, Andreollo NA. Dysphagiaaerenterifarflu, funduption: endoscopic, radiological and manometric evaluation. ABCD, arq. bras. cir. dig., Dec 2014, vol.27, no.4, p.251-255. ISSN 0102-6720.
11. Pandolfini JE, Fox MR, Bredenoord AJ, Kahrilas PJ. High-resolution manometry in clinical practice: utilizing pressure topography to classify oesophageal motility abnormalities. Neurogastroenterol Motil. 2009 Aug;21(8):796-806.
12. Pandolfini JE, Kim H, Ghosh SK, Clarke JO, Zhang Q, Kahrilas PJ. High-resolution manometry of the EGJ: an analysis of crural diaphragm function in GERD. Am J Gastroenterol. 2007 May; 102(5):1056-63.
13. Pandolfini JE, Leslie E, Lugger D, Mitchell B, Kwiatek MA, Kahrilas PJ. The contractile deceleration point: an important physiologic landmark on oesophageal pressure topography. Neurogastroenterol Motil. 2010 Apr; 22(4):395-400, e90.
14. Pandolfini JE, Roman S, Carlson D, Lugger D, Bidari K, Boris L, Kwiatek MA, Kahrilas PJ, Distal esophageal spasm in high-resolution esophageal pressure topography: defining clinical phenotypes. Gastroenterology. 2011 Aug; 141(2):469-75.
15. Rezende DT, Herbelina FA, Silva LC, Panocchia-Neto S, Patti MG. Upper esophageal sphincter pressure variations during upper esophageal manometry. Arq Bras Cir Dig. 2014 Jul-Sep;27(3):182-3.
16. Roman S, Pandolfini JE, Chen J, Boris L, Lugger D, Kahrilas PJ. Phenotypes and clinical context of hypercontractility in high-resolution esophageal pressure topography (BPT). Am J Gastroenterol. 2012 Jan; 107(1):37-45.
17. Xiao Y, Kahrilas PJ, Kwasny MJ, Roman S, Lin Z, Nicoledeme F, Lu C, Pandolfini JE. High-resolution manometry correlates of ineffective esophageal motility. Am J Gastroenterol. 2012 Nov; 107(11):1647-54.