Symptomatology of Coronavirus Disease 2019 (COVID-19) - Lessons from A Meta-Analysis Across 13 Countries

Champika Saman Kumara Gamakaranage (champikasri@gmail.com)
Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka

Dineshani Hettiarachchi
University of Colombo Faculty of Medicine

Dileepa Ediriweera
University of Kelaniya Faculty of Medicine

Saroj Jayasinghe
University of Colombo Faculty of Medicine

Research article

Keywords: SARS-CoV-2, COVID-19, symptoms, meta-analysis, prevalence

DOI: https://doi.org/10.21203/rs.3.rs-39412/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: COVID-19 pandemic has resulted in varying clinical manifestations and mortality rates. There is no consensus on the symptomatology that would guide researchers and clinicians.

Objective: The objective of the study was to identify symptoms and their frequencies of coronavirus disease 2019 with a meta-analysis of studies from several countries. **Data sources:** A systematic review using PubMed and Google Scholar data sources and reference tracing were used to identify 7176 relevant articles. **Eligibility criteria:** Suitable articles were selected manually with selection criteria and 14 original articles included for meta-analysis. **Data abstraction analysis:** PRISMA guideline was used for abstracting data. Then a table was generated by feeding it with numbers and proportions of each symptom described in original studies. A meta-analysis was carried out using random effect models on each symptom separately across the studies and their prevalence rates and 95% confidence intervals calculated.

Results: We identified 14 relevant scientific papers, either cross-sectional or cohort studies and analyzed. There were 2,660 cases of COVID-19. He majority were from China (n=2,439, 91.7%) and remainder from the Netherlands, Italy, Korea and India and one article from Europe. There was a total of 32 symptoms (i.e. present in >50% of patients): fever (79.56%, 95% CI: 72.17-86.09%), malaise (63.3%, 95% CI: 53.1 – 73.0%), cough (56.7. %, 95% CI: 48.6 - 64.6 %) and cold (55.6%, 95% CI: 45.2 – 65.7%). Symptoms of intermediate incidence (5-49%) were; anosmia, sneezing, ocular pain, fatigue, sputum production, arthralgia, tachypnea, palpitation, headache, chest tightness, shortness of breath, chills, myalgia, sore throat, anorexia, weakness, diarrhea, rhinorrhea, dizziness, nausea, altered level of consciousness, vomiting and abdominal pain. Rare symptoms (<5% of patients) were: tonsil swelling, haemoptysis, conjunctival injection, lymphadenopathy and rash were uncommon symptoms of coronavirus disease (<5%).

Conclusion and implications of key findings: We found (25/32) symptoms to be present in =>5% of cases which could be considered as "typical" symptoms of COVID-19. The list of symptoms we identified are different from those documents released by the WHO, CDC, NHS, Chinese CDC, Institute Pasteur and Mayo Clinic. The compiled list would be useful for future researchers to document a comprehensive picture of the illness.

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the strain of coronavirus that causes coronavirus disease 2019 (COVID-19) has resulted in a pandemic with varying clinical manifestations. It has affected 216 countries or territories across the globe. Since the outbreak, it has claimed more than 423,000 lives and infected 7.5 million by mid-June 2020 according to the World Health Organization (WHO) ³. As COVID-19 spreads rapidly studies characterizing its clinical syndromes report a range of clinical features that differ from classic SARS like respiratory illness. This could be a result of host genetic and environmental factors or the virulence factors of the virus. There have been an estimated 198 sites in the SARS-CoV-2 genome that have undergone recurrent independent mutations suggesting an ongoing adaptation of COVID-19 to its human host⁴. Currently the clinical manifestations of the novel coronavirus portray a picture of multisystem involvement. The spectrum of clinical manifestations ranges from an asymptomatic carrier state to mild symptomatic disease with full recovery or progression to multi organ dysfunction and even sudden death. The classic clinical presentations when it was initially described was cough, shortness of breath or difficulty in breathing or at least two of the following symptoms including fever, chills, muscle pain, headache, sore throat and new loss of taste or smell⁵. Some presentations e.g. thromboembolism leading to multi-organ failure, stroke and cardiac complications like ischemic and rhythm abnormalities and skin manifestations such as petechial rashes and gastrointestinal symptoms; diarrhea, nausea and vomiting, which were thought as ‘atypical’ initially were found to be frequent as more cases with those presentations started emerging. Although many symptoms are described in literature, collective data from across different continents is no available. There is no consensus on ‘symptoms of COVID-19’ established up to now. We conducted this systematic review and meta-analysis to identify the common and uncommon symptoms of COVID-19 by analyzing selected studies around the world.

Methods

Study design: Systematic review with meta-analysis

We followed the recommendations of PRISMA and Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines⁶.

Selection of studies and extraction of data: We (first two investigators themselves) used PubMed and Google scholar data bases to extract data. We searched the PubMed data base for suitable articles using the key words; “Symptoms of COVID-19 or 2019-nCoV or SARS-CoV-2” which produced 2761 articles on June 02nd 2019. Google scholar search with the same terms produced 2920 articles. “Clinical manifestations of COVID-19 or 2019-nCoV or SARS-CoV-2” produced 1466 articles on the same day. Further Google searches were carried out using references to trace important articles. This process of selection of articles is depicted in the flow diagram below.

Initial search results were first screened by the title and abstract. We included peer-reviewed articles that reported demographical, clinical features of cases confirmed using real-time reverse transcriptase polymerase chain reaction (RT-PCR). Only the original articles which had evaluated the clinical manifestations were included, with a minimum number of cases of 20 for the meta-analysis. Thus, case reports, review articles, letters and opinions were not included for meta-analysis. The inclusion and exclusion criteria are given below:

Inclusion criteria

1. Original studies evaluating symptoms of COVID-19 published before 2 June 2020 on persons confirmed with a positive PCR.
2. Predominately adult studies
3. Studies with more than 90 cases for China and at least 20 cases for other countries
4. Studies conducted in any country
5. Articles published in English language

Exclusion criteria

1. Predominately paediatric studies
2. Those articles that had not stated the frequencies and/or percentages of incidence of symptoms of COVID-19
3. Studies with less than 90 cases for China and less than 20 cases for other countries
4. Articles published in languages other than English

Please note that there were several studies from China; authors intentionally limited the number of studies from China when adequate numbers were included. This was to enable the inclusion of a diverse population in order to improve the generalizability of findings. We have limited the symptom analysis to mainly adult population, excluding primarily paediatric studies considering the potential variation in symptomatology, target groups and expertise of the authors. The authors’ fluency in languages is limited to English on published articles leaving those published in other languages, excluded.

Study population: we included data from 14 studies, collecting 2660 individuals in to the analysis. Ages ranged from 0 to 94 years. It was not possible to calculate means and modes due to differences in the data given in the studies. However, the age and sex parameters are given separately for each study in table 01.

The disease severity included mild, moderate, severe/ critical and fatal representing a wider spectrum of disease. Each symptom was taken separately across the studies, including only those tested for that symptom, to avoid confounding by the investigator ‘not checking’ for the particular symptom. Meta-analysis was carried out studying each symptom separately and their frequencies were calculated and ranked in order. Figure 1 demonstrates the prevalence of all the symptoms and further describes the results of meta-analysis for each symptom separately. These symptoms are illustrated with the relevant system involved in Figure 2.

Among the selected studies for symptom analysis, 9 were from China 7-13, one study per each country included from Netherlands 14, India 15, Korea 16 and Italy 17. Another article by Spiteri G et.al was included which represented the first 38 cases in Europe 18. A large study which included data from 5700 COVID-19 patients in New York, was not include in to the meta-analysis. This is because the clinical characteristics assessed in this study were only fever and tachypnea present at triage. Fever was present only at triage in 30.7% and tachypnea in 17.3% of cases 19. Here the symptoms before and after the triage was not taken in to account thus limiting the feasibility in our analysis 19. Several other similar studies were excluded from the meta-analysis concerning the selection criteria; doubts raised on accuracy of data, inadequate information on symptoms studied etc. 31-43.

Methodology and results of these articles were also studied prior to selection, to assure the quality of information. After assessing the suitability of the articles, we selected 14 original studies for the meta-analysis. Those articles were used to generate a table consisting of sample size, number, percentage and prevalence of each symptom. The findings are presented in Table 1 as the Characteristics of studies. All the patients included were diagnosed to have COVID-19 by detection of nucleic acids (viral RNA detection by Reverse Transcription Polymerase Chain Reaction – RT-PCR).

Statistical analysis: All the symptoms encountered were considered for the analysis. Some symptoms were identified in all the studies (e.g. fever and cough), but certain symptoms were only described in one study (e.g. common cold, tonsil swelling, sneezing, palpitation, conjunctival congestion/ injection anosmia, rash, lymphadenopathy and malaise). Therefore, each symptom was considered separately and meta-analysis was carried out to obtain the prevalence of each symptom across all the studies. The sample size and number of events per each symptom in each study was considered in the analysis. Freeman-Tukey double arcsine transformation with inverse variance method was used to consider individual study weights. The overall prevalence of symptoms across studies along with 95% confidence intervals was calculated and symptoms were ranked in the ascending order as depicted in figure 1. R programming language version 3.6.3 22 and Meta package 23 were used in the analysis.

Results

A total of 14 articles with original data describing the clinical manifestations of COVID-19 were retrieved. The largest study was done in China by Guan et.al 7. Owing to the novelty of the current pandemic there were heterogeneity among the available data and not all symptoms were mentioned. The ages of patients varied from 0 to 94 years. All the studies were descriptive cross sectional or cohort studies and their characteristics are summarized in the Table 1.
Study	Age (years)/Sex	Study design and rating of quality of evidence	Institute(s)/Geography	Composition	Comments or additional information
CHINA					
Guan W	N=1099	Retrospective Cohort study	552 hospitals	hospitalized as well as from outpatient departments (OPD)	Composition may represent wider spectrum of the disease from mild to severe.
		Rating 3	distributed in 30		
			provinces, autonomous		
			regions, and		
			municipalities in		
			mainland China		
CHINA		Retrospective case series	Tongji Hospital	Only moderate-severe or critically ill patients have been included. OPD	Symptoms of those survived are mostly comparable to those died.
Chen T	N=274	Rating 4		cases not included	Dyspnoea was commoner 62% in those died and only 31% in those recovered.
CHINA		Retrospective cross sectional study	Shanghai Public Health	22 (8.8%) - admitted to ICU	Has studied the temporal clinical progression, Median duration of fever
Chen J	N=249	Rating 3	Clinical Centre (SPHCC)	215 (86.3%) - were discharged	was 10 days (95% CI – 8-11 days)
				2 (0.8%) - died	
CHINA			Multicentre	They represent 50 (26%) ICU admitted cases, and 54 (28%) deaths. Disease	
Shou F	N=191	Retrospective Cohort study	Changsha Public Health	severity ranges from general (38%), severe (35%) and critical (28%), thus	
		Rating 3	treatment Center (CPHC)	excluding the milder fraction of the severity spectrum	
CHINA		Retrospective Cross sectional study	Zhongnan Hospital of	36/138 were admitted ICU and were	ICU admitted patients were more likely to have pharyngeal pain, dyspnoea,
Sheng F	N=161	Rating 4	Wuhan University	older (median age, 66 [IQR, 57-78]) than non-ICU patients (median age of 51	dizziness, abdominal pain and anorexia.
				[IQR- 37-62]), P<0.001.	
CHINA		Retrospective case series	Respiratory departments of nine tertiary hospitals in Hubei province	Discharged 44 (32.1%)	Higher mortality rate likely due to more critical patient cohort involved in the respiratory wards.
Lui K	N=137	Rating 3		Death 16 (11.7%)	
				Inpatient treatment 77 (56.2%)	
CHINA		Retrospective cross sectional study	Jinyintan Adult Hospital in Wuhan	11 (11%) - died	49% of patients had an exposure to seafood market in Huanan.
Chen N	N=99	Rating 4			Article gives data only up to 25 Jan 2020 and outcomes were-11% deaths/31% discharged/ rest still hospital
CHINA		Cross sectional study	hospitalized patients admitted in Jingzhou Central Hospital	30 (33%) - severely ill	Outcomes taken when 75 (82.4%) were still in hospital.
Zhao X Y	N=91	Rating 4		2 (2.2%) – died	
				61 (67%) - only mild disease	
Clinical manifestations of COVID-19

We identified 32 symptoms mentioned in 14 studies. Table 2 summarizes clinical manifestation from those selected original articles with their frequencies. Those seen in more than 5% of the study populations were considered common and those less than 5% as uncommon.
Clinical feature	Prevalence From Meta-analysis	CHINA Guan W Number(%)	CHINA Chen T Number(%)	CHINA Chen J Number(%)	CHINA Zhou F Number(%)	CHINA Zheng F Number(%)	CHINA Wang D Number(%)	CHINA Kui L Number(%)	CHINA Chen N Number(%)	CHINA Zh Nu N =
Fever	79.56 (72.17–86.09)	975 (88.7)	249 (91)	217 (87.1)	180 (94)	122 (75.8)	136 (98.6)	112 (81.8)	82 (83)	75 N = 1099
Cough	56.66 (48.59–64.55)	745 (67.8)	185 (68)	91 (36.5)	151 (79)	101 (62.7)	82 (59.4)	66 (48.2)	81 (82)	59 n = 274
Sputum production	22.43 (13.8–32.41)	370 (33.70)	83 (30)	44 (23)	37 (26.8)	6 (4.4)				11 N = 249
Shortness of breath	18.24 (12.07–25.32)	205 (18.7)	120 (44)	19 (7.6)	23 (14.3)	43 (31.2)	26 (19%)	31 (31)		19 N = 249
Tachypnoea	22.61 (3.94–49.86)	10 (0.9)	7 (3)							19 N = 249
Haemoptysis	2.31 (0.48–5.28)	10 (0.9)	7 (3)							19 N = 249
Sneezing	40 (30.07–50.35)									19 N = 249
Tonsil swelling	2.09 (1.32–3.03)	23 (2.1)								19 N = 249
Sore throat/Pharyngalgia	14.19 (8.7–20.68)	153 (13.9)	12 (4)	16 (6.4)	24 (17.4)					19 N = 249
Rhinorrhoea and/or nasal congestion	6.86 (2.91–12.09)	53 (4.8)	17 (6.8)							19 N = 249
Cold	55.56 (45.16–65.72)									19 N = 249
Chest tightness	18.09 (1.66–45.64)	103 (38)								19 N = 249
palpitation	7.3 (3.46–12.33)									19 N = 249
Chills	16.23 (6.49–29.18)	126 (11.5)								19 N = 249
Fatigue (Tiredness)	37.1 (27.75–46.96)	419 (38.1)	137 (50)	39 (15.7)	44 (23)	64 (39.8)	96 (69.6)	44 (32.1)		35 N = 191
Dizziness	8.1 (5.33–11.35)	21 (8)	28 (11.2)							35 N = 138
Clinical feature	Prevalence From Meta-analysis	CHINA Guan W Number(%)	CHINA Chen T Number(%)	CHINA Chen J Number(%)	CHINA Zhou F Number(%)	CHINA Zheng F Number(%)	CHINA Wang D Number(%)	CHINA Kui L Number(%)	CHINA Chen N Number(%)	CHINA Zh Number(%)
--	------------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	------------------------	----------------------
N = 1099	N = 274	n = 249	N = 191	N = 161	N = 138	N = 137	N = 99	N = 99		
Headache	15.58 (9.21–23.16)	150(13.6)	31(11)	28(11.2)	12(7.5)	9(6.5)	13(9.5%)	8(8)		
Altered consciousness	5.94 (1.49–12.73)								9(9)	3(3)
Abdominal pain	3.66 (1.39–6.76)		19(7)						3(2.2)	2(2)
Diarrhoea	8.26 (4.36–13.15)	42(3.8)	77(28)	8(3.2)	9(5)	17(10.6)	14(10.1)	11(8.0%)	2(2)	14
Anorexia/Inappetence	17.62 (4.42–36.82)		-	66(24)	8(3.2)			55(39.9)		11
Conjunctival congestion/injection	0.82 (0.36–1.45)								9(0.8)	
Rash	0.18 (0–0.55)	2(0.2)								
Lymphadenopathy	0.18 (0–0.55)	2(0.2)								
Nausea	6.58 (4.09–9.56)	55(5.0)	24(9)	7(4)	6(3.7)	14(10.1)	1(1)	11		
Vomiting	4.95 (2.86–7.54)	55(5.0)	16(6)	7(4)		5(3.6)	1(1)			
Myalgia	19.37 (14.47–24.77)	164(14.9)	60(22)	29(15)	18(11.2)	48(34.8)	44(32.1)	11(11)	15	
Arthralgia/Arthrodynia	26.24 (4.89–56.39)	164(14.9)								8(8)
Anosmia	46.84 (35.89–57.93)									
Malaise	63.33 (53.08–73.03)									
Clinical feature	Prevalence	CHINA Guan W	CHINA Chen T	CHINA Zhou F	CHINA Zheng F	CHINA Wang D	CHINA Kui L	CHINA Chen N	CHINA Zh	
------------------	------------	-------------	--------------	--------------	--------------	-------------	------------	-------------	--------	
N = 1099	N = 274	n = 249	N = 191	N = 161	N = 138	N = 137	N = 99	N =		
weakness	11.47	(0.41–31.75)	2.71	(0.96–5.12)	7(2,8)					

Ranking of symptoms

The most prevalent clinical symptoms were fever (79.56%, 95% CI: 72.17–86.09%), malaise (63.3%, 95% CI: 53.1–73.0%), cough (56.7%, 95% CI: 48.6–64.6%) and cold (55.6%, 95% CI: 45.2–65.7%) observed in more than 50% of the study population. Anosmia (46.8%, 95% CI: 35.9–57.9%), sneezing (40%, 95% CI: 30.1–50.4%), fatigue (37.1%, 95% CI: 27.8–47.0%) and ocular pain (34.4%, 95% CI: 24.9–44.6%) are also quite common occurring in >30% of cases. Gastro-intestinal symptoms are also seen frequently; anorexia (17.6%, 95% CI: 4.4–36.8%), diarrhea (8.3%, 95% CI: 4.4–13.2), nausea (6.6%, 95% CI: 4.1–9.6%) and vomiting (5.0%, 95% CI: 2.9–7.5%). According to our findings uncommon symptoms (<5%) were tonsil swelling, hemoptysis, conjunctival injection/congestion, rash and lymphadenopathy. All those with a prevalence >/= 5% were considered common and therefore ‘typical symptoms’ of COVID-19.

There were symptoms noted only in one study (sneezing, tonsil swelling, cold, conjunctival injection/congestion, ocular pain, rash, lymphadenopathy, anosmia and malaise) thus giving a poor statistical confidence on prevalence.

Discussion

This study was designed to identify the symptoms of COVID-19 and to rank them according to their frequencies of occurrence in a globally representative sample. This was difficult as the disease is novel and new symptoms and complications were frequently been reported. Our study recognizes 32 symptoms of coronavirus disease, which represent most organs and systemic features, thus defining this disease as a multisystem syndrome rather than a respiratory disease. There was no clear consensus as to what are the symptoms of novel corona virus disease until now. Manifestations are identified as we learn about it with the spread of the disease. The symptoms identified in the guidelines issued by the World Health Organization (WHO) 25, The National Health Service (NHS) 26, The Centers for Disease Control and Prevention (CDC) 27, Chinese Center for Disease Control and Prevention (Chinese CDC) 28, Institute Pasteur 29, Mayo Clinic 30 and in web-based trackers for self-assessment differ from that reported in our study. This comparison is shown in Table 3.
Clinical feature	Prevalence (%)	WHO	NHS	CDC	Chinese CDC	Institut Pasteur	Mayo Clinics
Fever	79.6	✅	✅	✅	✅	✅	✅
Cough	56.7	✅	✅	✅	✅	✅	✅
Sputum production	22.4					✅	✅
Shortness of breath	18.2					✅	✅
Tachypnoea	22.6					✅	✅
Haemoptysis	2.3					✅	✅
Sneezing	40.0					✅	✅
Tonsil swelling	2.1					✅	✅
Sore throat/ Pharyngalgia	14.2	✅	✅	✅	✅		✅
Rhinorrhoea and/or nasal congestion	6.9	✅	✅	✅	✅		✅
Cold	55.6	✅				✅	✅
Chest tightness	18.1					✅	✅
palpitation	7.3					✅	✅
Chills	16.2					✅	✅
Fatigue (Tiredness)	37.1	✅	✅	✅	✅		✅
Dizziness	8.1					✅	✅
Headache	15.6	✅	✅	✅	✅		✅
Altered consciousness	5.9					✅	✅
Abdominal pain	3.7					✅	✅
Diarrhoea	8.3	✅	✅	✅	✅		✅
Anorexia/ Inappetence	17.6					✅	✅
Conjunctival congestion/ injection	0.9	✅					✅
Rash	0.2					✅	✅
Lymphadenopathy	0.2					✅	✅
Nausea	6.6					✅	✅
Vomiting	4.0					✅	✅
Myalgia	19.4	✅	✅	✅	✅		✅
Arthralgia/ Arthrodynia	26.2					✅	✅
Anosmia	46.8	✅	✅	✅	✅		✅
Malaise	63.3					✅	✅
weakness	11.8					✅	✅
Asymptomatic	2.7					✅	✅

We also found two studies which used such clinical criteria. We used original studies from different geographic locations having a range of severities to improve the generalizability of the information. However, nine studies representing about 90% of study population is from China, giving a publication bias for our statistical analysis. There is a significant variation in proportions of each symptom across countries and regions. This variability of presentations is likely to be due to the differences in demography of sample, virulence of strain of COVID-19, aggregation of severe cases in to certain centers with higher facilities and milder cases in to other care centers and variations in host response (both genetic and immunological) in different populations.

Wider spectrum of disease severity is covered by the included studies for the meta-analysis. Tostmann et al. has studied the COVID-19 in health care workers during a screening test while Chen T et al. included 113 fatal cases thus approaching the far severe aspect of the disease. However, the accessibility...
to health care facility and some factors that could modify clinical features (e.g pregnancy, co-morbidities of individuals) were not taken in to account. The studies primarily on paediatric and neonatal population were identified but not included in this analysis and suggest the need of a different study for that.

Older age, male sex, presence of comorbidities and certain symptoms were associated with poor outcome. The median age in the Italian study was high (median of 67.5 years), which may at least partially explain the higher fatality rates observed in this population. Sex-disaggregated data suggests a slight male predominance which was also observed in mortality rates. Clinical data associated with disease evolution is critical knowledge especially in a new pandemic. Among the reported cases till February 2020, 14% of COVID-19 cases were severe, causing pneumonia and shortness of breath, and that of about 5% of patients had critical disease, including respiratory failure, septic shock, and multi-organ failure. Host susceptibility is studied in detail by Shi Yu et al, including 487 patients outside Wuhan. They have developed a host risk score using 3 variables: age, sex and presence or absence of hypertension. Further analyses of the symptoms indicate that, certain symptoms like dyspnoea/ shortness of breath (62% in diseased vs. 31% in recovered), chest pain (49% in diseased vs. 30% in recovered) and altered consciousness (22% in diseased vs. 1% in recovered), are associated with higher mortality.

Asymptomatic cases in this study was 9/287 (prevalence – 2.71%, 95% CI 0.96%- 5.12%) using data from articles by Chen J and Spiteri G. This might not reveal the true picture, because a large scale screening tests done on populations at risk needed to assess this. However, a study done in Japanese Diamond Princess Cruise ship by Mizumoto K et al. shows valuable results. Here 3,711 patients were kept quarantined after finding one patient with COVID-19. Out of all, 634 cases became positive and 306 (48.3%) cases were symptomatic and 328 (51.7%) were asymptomatic.

In this study, we did not concentrate on the chronology of development of symptoms and complications which is also very important for clinicians when assessing patients, and need to be addressed in detail separately. However, temporal clinical progression has been assessed by Chen J et al (N = 249) in their study. There had been reports of possible ‘reactivation’ of COVID-19 after recovering from the first infection; the symptoms of such cases are not taken in to this review.

The results of our systematic review highlight the common and uncommon clinical symptoms which will help clinicians across the globe in the diagnosis and management of suspected cases of COVID-19, especially during the early phase. This will help in defining the disease presentation and improves diagnostic skills. These common and uncommon symptoms could be utilized in studying patients and designing future research.

There are a multitude of other uncommon or rare manifestations of COVID-19 not described in these studies presented from many countries that have been mainly the focus of case reports.

Limitations

Some symptoms assessed were only present in one or two studies and other studies have not recorded them or not inquired about them making them statistically less reliable on their frequencies.

We have not focused on the chronology of symptom development and complications. Reports in languages other than English were not included.

Conclusions

There are 32 symptoms of COVID-19 representing multiple organs and systemic features. Fever is the most common symptom followed by malaise, cough, cold and anosmia. Researchers and clinicians should be aware of a comprehensive list of symptoms to describe the illness and for research.

List Of Abbreviations

- COVID-19 - Coronavirus Disease 2019
- PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analysis
- CI - Confidence Interval
- WHO - World Health Organization
- NHS - The National Health Service (United Kingdom)
- CDC - Centers for Disease Control and Prevention (United State of America)
- Chinese CDC - Chinese Centers for Disease Control and Prevention
- MOOSE - Meta-analysis of Observational Studies in Epidemiology
- SARS-CoV-2 - Severe Acute Respiratory Syndrome Coronavirus-2
- RT-PCR - Reverse Transcriptase Polymerase Chain Reaction
- PCR - Polymerase Chain Reaction
RNA - Ribonucleic Acid

Declarations

Ethics approval and consent to participate:
Not applicable

Consent for publication:
Not applicable

Availability of data and materials:
The pooled articles, data-sheets and analytic results are available with the authors for future references

Competing interests:
There are no competing interests.

Funding:
No funding involved in this study and manuscript writing

Authors' contributions:
CG: Conceptualization, search of data sources, initial draft writing and updating manuscript
DH: Search of data sources, Initial draft writing, updating manuscript, and designing figure 02 info graphic.
DE: Meta-analysis and compilation of statistics section of manuscript
SJ: Update and finalizing the manuscript.
All authors have read and approved the manuscript

Acknowledgements:
We wish to thank Ms. Sajini Wickramasinghe for her contribution to the info graphic

Ethical concerns:
We included the data from published literature and the consent was not applicable data collection and for publications.

References
1. Gholipour B, 5 Scariest disease outbreaks of the past century. Live science. November 25, 2013
2. Miller, Mark A., et al. "The signature features of influenza pandemics—implications for policy." New England Journal of Medicine25 (2009): 2595-2598.
3. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200521-covid-19-sitrep-122.pdf?sfvrsn=24f20e05_2
4. Dorp V, Lucy, et al. "Emergence of genomic diversity and recurrent mutations in SARS-CoV-2." Infection, Genetics and Evolution(2020): 104351.
5. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html?fbclid=IwAR0014Hs3DpWCmiKmrWV7fqsdaBF96zeMDkt-1zzy4svf9WEHa-jxc0-XA
6. Moher, David, et al. "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement." PLoS med7 (2009): e1000097.
7. Guan W et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 28 Feb 2020. DOI: 10.1056/NEJMoa2002032
8. Chen T et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020;368:m1091
9. Chen J et al. Clinical progress of patients with COVID-19 in Shanghai, China. Journal of infection 80 (2020) el-e6
10. Zhou F et al. Clinical course and risk factors for mortality of adults inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-62
39. Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., Ma, H., Chen, W., Lin, Y., Zheng, Y., et al. (2020). Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci 63, https://doi.org/10.1007/s11427-020-1661-4
40. Chen G et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–2629. https://doi.org/10.1172/JCI137244.
41. Xu Xiao-Wei et al. Clinical findings in a group of patients infected with the corona virus (SARS-Cov-2) outside of the Wuhan, China: retrospective case series. BMJ 2020;368:m606 http://dx.doi.org/10.1136/bmj.m606
42. Wang L, Gao Y-hua, lou L-L, et al. The clinical dynamics of 18 cases of COVID-19 outside of Wuhan, China. Eur Respir J 2020; in press (https://doi.org/10.1183/13993003.00398-2020)
43. Pung R et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet 2020; 395: 1039–46
44. Shi Y et al. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Shi et al. Critical Care (2020) 24:108
45. Hong H, Wang Y, Chung H-T, Chen C-J, Clinical characteristics of novel coronavirus disease 2019 (COVID-19) in newborns, infants and children, Pediatrics and Neonatology, https://doi.org/10.1016/j.pedneo.2020.03.001.
46. Chang T-H et al., Clinical characteristics and diagnostic challenges of pediatric COVID-19: A systematic review and meta-analysis, Journal of the Formosan Medical Association, https://doi.org/10.1016/j.jfma.2020.04.007
47. Xia W et al. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatric Pulmonology. 2020;55:1169–1174.
48. Su L et al. The different clinical characteristics of corona virus disese cases between children and their families in China – the character of children with COVID-19. Emerging Microbes & Infections 2020, VOL 9: 707-713.
49. Zheng F et al. Clinical characteristics of children with Coronavirus disease 2019 in Hubei, China. Current Medical Science. DOI https://doi.org/10.1007/s11596-020-2172-6. 40(2):275-280,2020
50. Kottis K et al. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Critical Care (2020) 24:176.
51. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence?. https://doi.org/10.1016/S1474-4422(20)30109-5
52. Sun R, Liu H, Wang X. Mediastinal emphysema, giant bulla and pneumothorax developed during the course of COVID-19 pneumonia. Korean J Radiol 2020;21(5):541-544.
53. Chen C, Zhou Y, Wang D. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. https://doi.org/10.1007/s00059-020-04909-z
54. Nicastri Emanuele, D’Abramo Alessandra, Faggioni Giovanni, De Santis Riccardo, Mariano Andrea, Lepore Luciana, Molinari Filippo, Petralito Giancarlo, Fillo Silvia, Munzi Diego, Corpolongo Angela, Bordi Licia, Carletti Fabrizio, Castletti Concetta, Colavita Francesca, Lalle Eleonora, Bevilacqua Nazario, Giancola Maria Letizia, Scorzolini Laura, Lanini Simone, Palazzolo Claudia, De Domenico Angelo, Spinelli Maria Anna, Scognamiglio Paola, Piredda Paolo, Iaconomi Raffaele, Mone Andrea, Puro Vincenzo, Petralito Giancarlo, Ippolito Giuseppe, on behalf of INMI and the Italian Army COVID-19 study groups. Coronavirus disease (COVID-19) in a paucisymptomatic patient: epidemiological and clinical challenge in settings with limited. community transmission, Italy, February 2020. Euro Surveill. 2020;25(11):pii=2000230. https://doi.org/10.2807/1560-7917.ES.2020.25.11.2000230
55. Boulware DR, Pullen MF, Bangdiwala AS, et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19 [published online ahead of print, 2020 Jun 3]. N Engl J Med. 2020;NEJMoa2016638. doi:10.1056/NEJMoa2016638
56. Standardized surveillance case definition and national notification for 2019 novel coronavirus disease. (COVID9) https://cdn.ymaws.com/www.cste.org/resource/resmgr/2020ps/Interim-20-ID-01_COVID-19.pdf
Figure 1

Flow diagram
Figure 2

Symptoms of COVID-19

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- PRISMA2009checklist.doc
- Figure1.ResultsofMetaanalysis.docx