TORI AND HEEGAARD SPLITTINGS

Abstract. Haken showed that the Heegaard splittings of reducible 3-manifolds are reducible, that is, a reducing 2-sphere can be found which intersects the Heegaard surface in a single simple closed curve. When the genus of the “interesting” surface increases from zero, more complicated phenomena occur. Kobayashi showed that if a 3-manifold M^3 contains an essential torus T, then it contains one which can be isotoped to intersect a strongly irreducible Heegaard splitting surface F in a collection of simple closed curves which are essential in T and in F. In general there is no global bound on the number of curves in this collection. We give conditions under which a global bound can be obtained.

Abigail Thompson

1. Introduction

In [2], Haken showed that the Heegaard splittings of reducible 3-manifolds are reducible, that is, a reducing 2-sphere can be found which intersects the Heegaard surface in a single simple closed curve. When the genus of the “interesting” surface increases from zero, more complicated phenomena occur. We explore conditions under which the picture remains simple when the manifold is irreducible but contains an essential torus.

The motivation for this work is two-fold.

First, Kobayashi [4] showed that if a 3-manifold M^3 contains an essential torus T, then it contains one which can be isotoped to intersect a (strongly irreducible) Heegaard splitting surface F in a collection of simple closed curves which are essential in T and in F. In general there is no global bound on the number of curves in this collection for an arbitrary genus Heegaard surface. We give conditions under which a global bound exists.

Second, it is known ([6], [3]) that if M contains an essential torus T, then the distance of the Heegaard splitting, as defined by Hempel in [3] is at most 2. So a Heegaard splitting of a toroidal manifold has distance at most 2, but of course a manifold with a distance 2 Heegaard splitting is not necessarily toroidal. This naturally leads to

1Supported by the National Science Foundation grant 1207765 and the Institute for Advanced Study, where the author was the Neil Chriss and Natasha Herron Chriss Founders’ Circle Member for 2015-2016.
the question: given a distance 2 Heegaard splitting of a 3-manifold \(M \), can we discern whether or not \(M \) is toroidal? We give a partial answer to this question.

Let \(M^3 \) be a closed, orientable, irreducible 3-manifold. Let \(F \) be a minimal genus Heegaard surface for \(M \), so \(F \) splits \(M \) into two handlebodies, \(H_1 \) and \(H_2 \). Call a Seifert-fibered space with base space a disk and two exceptional fibers a boundary small Seifert-fibered space.

Our main theorem is:

1. **Theorem.** Let \(M^3 \) be a closed, orientable 3-manifold, and \(F \) a minimal genus strongly irreducible Heegaard splitting for \(M \). Let \(T \) be an essential torus in \(M \). Then one of the following holds:

i. There exists an essential surface \(G \) and a minimal genus Heegaard surface \(F' \) for \(M \) such that \(G \) intersects \(F' \) in at most 4 essential simple closed curves.

ii. The minimal genus Heegaard decomposition of \(M \) is not thin.

iii. \(M \) contains an essential torus bounding a boundary small Seifert-fibered space.

1.1. **Outline of the paper.** In Section 2 we give definitions and background information. In Section 3 we prove Theorem 1.

2. Background and Definitions

2.1. **Heegaard splittings and distance.** Let \((H_1, H_2, F)\) be a Heegaard splitting of a closed orientable 3-manifold \(M \), where \(H_1 \) and \(H_2 \) are handlebodies and \(F = \partial H_1 = \partial H_2 \). The genus \(g \) of the Heegaard splitting is the genus of the surface \(F \). The Heegaard splitting is reducible if there exists an essential simple closed curve \(c \) on \(F \) such that \(c \) bounds (imbedded) disks \(D_1 \) in \(H_1 \) and \(D_2 \) in \(H_2 \). The splitting is stabilized if there exist essential simple closed curves \(c_1 \) and \(c_2 \) on \(F \) such that \(c_i \) bounds an (imbedded) disk \(D_i \) in \(H_i \) and \(c_1 \) and \(c_2 \) intersect transversely in a single point. A stabilized splitting of genus at least 2 is reducible. The splitting is weakly reducible if there exist essential simple closed curves \(c_1 \) and \(c_2 \) on \(F \) such that \(c_1 \) bounds an (imbedded) disk \(D_i \) in \(H_i \) for \(i = 1, 2 \) and \(c_1 \) and \(c_2 \) are disjoint. A splitting that is not weakly reducible is strongly irreducible.

Hempel [3] generalized the idea of strong irreducibility to define the distance of a Heegaard splitting to be the minimum length \(r \) of a sequence \(c_1, c_2, ..., c_r \) of essential simple closed curves on \(F \) such that \(c_1 \) bounds a disk in \(H_1 \), \(c_r \) bounds a disk in \(H_2 \), and consecutive \(c_i \)'s are
disjoint. In this notation, a strongly irreducible Heegaard splitting has distance at least 1.

2.2. Thin position for 3-manifolds. In [5], we define thin position for a closed, orientable 3-manifold M. The idea is to replace a Heegaard splitting for M with a different handle decomposition, which by some measure of complexity is potentially simpler than a Heegaard decomposition. We include the basic definitions here; for more details, see [5].

For M a connected, closed, orientable 3-manifold, let $M = b_0 \cup N_1 \cup T_1 \cup N_2 \cup \ldots \cup N_k \cup T_k \cup b_3$, where b_0 is a collection of 0-handles, b_3 is a collection of 3-handles, and for each $i = 1, 2, \ldots, k$, N_i is a collection of 1-handles and T_i is a collection of 2-handles. Let S_i, $i = 1, 2, \ldots, k$, be the surface obtained from $\partial (b_0 \cup N_1 \cup T_1 \cup \ldots \cup N_k)$ by deleting all spheres bounding 0- or 3-handles in the decomposition. The complexity of a (connected, closed, orientable) genus g surface F, $c(F)$, is $2g - 1$, and the complexity of a disconnected surface is the sum of the complexities of its components. Define the width of the decomposition of M to be the set of integers $\{c(S_i)\}$, $i = 1, 2, \ldots, k$. We compare lists from two different decompositions using lexicographical ordering. The width of M is the the minimal width over all decompositions of M. A handle decomposition for M realizing the width of M is called thin position for M.

It is straightforward to see that if a Heegaard splitting of M is weakly reducible, then it is possible to re-arrange the handles of the splitting to obtain a thinner decomposition of M than that provided by the Heegaard splitting. What is less obvious is that it is possible for a minimal genus, strongly incompressible Heegaard splitting of M to fail to be thin position for the manifold. This possibility arises in part (ii) of our main theorem.

3. Proof of Theorem 1

Let M^3 be a closed, orientable 3-manifold. Let F be a minimal genus strongly irreducible Heegaard splitting for M. Let T be an essential torus in M.

By [3], we can isotop T so that T intersects F in a collection C of simple closed curves, each of which is essential both in T and in F. If the number of curves in C is less than or equal to four, we are done, so assume that the number of curves in C is at least six. Hence T is split by C into at least six annuli. We will use these annuli to obtain an annulus in H_1 which is disjoint from a “good” pair of compressing disks in H_2.
The proof of the theorem will follow from two lemmas. The first produces a good pair of compressing disks or an essential torus bounding a boundary small Seifert-fibered space. The second uses a good pair of compressing disks to either produce the desired essential surface or to give a new, thinner, handle decomposition of M.

2. **Definition.** Let H be a handlebody and let D and E be disjoint compressing disks for H. We say that D and E are dependent if either D and E are parallel in H, or if D_1, say, cuts off a solid torus in which D_2 bounds a meridian disk. We say the pair (D, E) is good if at least one of D and E is non-separating and D and E are not dependent. Suppose (D, E) is a good pair of compressing disks for H, and let F' be the boundary of the handlebody(ies) obtained by compressing H along D and E. Note that $c(F') \leq c(F) - 3$. Indeed, the point of using a “good” pair of disks is to ensure this drop in complexity.

3. **Definition.** Let A be an annulus properly imbedded in a 3-manifold M. Let M' be obtained from M by removing an open neighborhood of A. We say M' is obtained from M by surgering along A. In a slight abuse of notation, we also say that $\partial(M')$ is obtained from $\partial(M)$ by surgering along A.

4. **Lemma.** Let M^3 be a closed, orientable 3-manifold. Let F be a minimal genus strongly irreducible Heegaard splitting for M, splitting M into the handlebodies H_1 and H_2. Let T be an essential torus in M. Assume T intersects F in a collection C of simple closed curves which are essential on T (and on F). Assume the number of these curves has been minimized (among all choices of T and F) and is greater than or equal to six. Then there exists a good pair of disks (D, E) in H_2 disjoint from one of the annuli A in $T \cap H_1$, or M contains an essential torus T bounding a boundary small Seifert-fibered space.

Proof of Lemma 4

Let A be the collection of annuli in $T \cap H_2$. Every annulus in A is boundary compressible. Find two annuli B_1 and B_2 in A so that B_1 can be boundary compressed disjoint from all other annuli in A to obtain the disk D_1 and then B_2 can be boundary compressed disjoint from all remaining annuli and D_1 to obtain the disk D_2. Notice that ∂D_1 is disjoint from all curves in C and ∂D_2 is disjoint from all curves in C except possibly ∂B_1. Since there are at least six curves in C, there is at least one annulus A in $T \cap H_1$ with boundary disjoint from $\partial D_1 \cup \partial D_2$.

If the pair D_1, D_2 is good we are done.
If \(D_1, D_2 \) is not good then either \(D_1 \) and \(D_2 \) are dependent or both \(D_1 \) and \(D_2 \) are separating, or possibly both.

Suppose \(D_1 \) and \(D_2 \) are both separating but not parallel. Then \(\partial D_1 \cup \partial D_2 \) divides \(F \) into three components. At least one of these components is disjoint from \(\partial A \). Replace one of the \(D_i \)’s with a non-separating compressing disk \(E \) for \(H_2 \) whose boundary is contained in the boundary of this component, making the selection to avoid dependence of the resulting pair. Hence we can produce a good pair.

Suppose \(D_1 \) and \(D_2 \) are dependent. Then they are either parallel, or \(D_1 \), say, cuts off a solid torus in which \(D_2 \) bounds a meridian disk. We can reconstruct the annuli \(B_1 \) and \(B_2 \) from \(D_1 \) and \(D_2 \) by attaching bands \(d_1 \) and \(d_2 \) to them.

If \(D_1 \) and \(D_2 \) are parallel, then either \(B_1 \) and \(B_2 \) are parallel in \(H_2 \) or \(\partial B_1 \cup \partial B_2 \) bounds a 4-punctured sphere \(P \) in \(F \). Note that \(\partial A \) is disjoint from \(\partial B_1 \cup \partial B_2 \). Some annulus (which by an abuse of notation we will call \(A \)) of \(T \cap H_1 \) must be boundary compressible in \(H_1 \) and the boundary compression must be disjoint from \(\partial B_1 \cup \partial B_2 \). Hence both boundary components of \(A \) lie in \(P \) or both lie outside of \(P \). If \(\partial A \) lies completely outside \(P \), then boundary compressing \(A \) yields a compressing disk for \(H_1 \) disjoint from \(D_1 \), contradicting strong irreducibility. If \(\partial A \) lies completely inside \(P \), then at least two components of \(C \) must be parallel on \(F \).

Suppose \(D_1 \) cuts off a solid torus in which \(D_2 \) bounds a meridian disk. Then reconstructing the annuli \(B_1 \) and \(B_2 \) from \(D_1 \) and \(D_2 \) by attaching bands \(d_1 \) and \(d_2 \) to them yields at least two of the curves in \(\partial B_1 \cup \partial B_2 \) are parallel on \(F \).

In both cases, we obtain an annulus \(S \) (the annulus of parallelism) on \(F \) such that \(\partial S \) lies on \(T \). Since \(T \) was chosen to minimize the number of curves of intersection with \(F \), \(S \) is not parallel into \(T \). We can construct two new tori \(T_1 \) and \(T_2 \) by surgering \(T \) along \(S \), each of which can be isotoped to have fewer curves of intersection with \(F \) than \(T \). Since \(T \) was chosen to minimize the number of curves of intersection with \(F \), both \(T_1 \) and \(T_2 \) must be inessential tori, hence (because \(M \) is prime) each bounds a solid torus in \(M \). Then \(T \) bounds a boundary small Seifert-fibered space.

5. **Lemma.** Let \(M^3 \) be a closed, orientable 3-manifold. Let \(F \) be a minimal genus \(g \) strongly irreducible Heegaard splitting for \(M \), splitting \(M \) into the handlebodies \(H_1 \) and \(H_2 \). Let \(A \) be an incompressible non-boundary-parallel annulus properly imbedded in \(H_1 \), and let \(D \) and \(E \) be a good pair of compressing disks for \(H_2 \), such that \(\partial D \cup \partial E \) is disjoint from \(\partial A \). Then at least one of the following holds:
1. There exists an essential surface G that intersects F in at most 4 essential simple closed curves.
2. The minimal genus Heegaard decomposition of M is not thin.
3. The surface F' obtained by surgering F along A is also a Heegaard surface.

Proof of Lemma 5:

Case 1: A is non-separating in H_1.

Let H'_1 be the manifold obtained from H_1 by surgering along A. Since A is non-separating and incompressible, H'_1 is a handlebody of genus g. Let J be the complement of H'_1 in M. If J is a handlebody then possibility 3 holds and we are done.

Assume J is not a handlebody. Since $\partial D \cup \partial E$ is disjoint from ∂A, D and E are compressing disks for ∂J. Let D be a complete minimal collection of compressing disks for J including D and E and let L be the manifold obtained by compressing J along D. Since (D, E) is good, $c(\partial L) \leq (2g - 4)$.

Subcase A: Some component G of ∂L is incompressible in M. Then, by reconstructing J, we see that G is an incompressible surface in M and G intersects F in at most four essential simple closed curves.

Subcase B: Some component G of ∂L is compressible in M. Since D is complete, G is incompressible into L, hence it must be compressible into $M - L$. By ([1, the Heegaard splitting of $M - L$ given by F' is weakly reducible, hence the width of $M - L$ is less than $2g - 1$. Starting with ∂L, however, we can complete the handle decomposion of M by re-attaching A and then completing the compressions from H_3. Hence L has width at most $2g - 2$. So the initial Heegaard splitting of M was not thin position for M.

Case 2: A is separating in H_1.

This case is similar, with a slightly more careful complexity count.

Let H'_1 be the component obtained from H_1 by surgering along A which contains ∂D and ∂E (since F is weakly incompressible, both are in the boundary of one component, or else the boundary of one or the other would be disjoint from the disk obtained by boundary compressing A). H'_1 is a handlebody of genus at most g. Let J be the complement of H'_1 in M. If J is a handlebody then possibility 3 holds and we are done.

If J is not a handlebody, the argument proceeds as before.

Conclusion of proof of Theorem 1:

Let M^3 be a closed, orientable 3-manifold. Let F be a minimal genus strongly irreducible Heegaard splitting for M. Let T be an essential torus in M. Assume T intersects F in a collection of simple closed
curves which are essential on T (and on F). Among all such pairs T and F, choose the pair with the fewest possible number of such curves of intersection. If the number of curves is less than or equal to four, we are done, so assume the number of curves is at least six. Then by Lemma 4, either we can find an essential torus bounding a boundary small Seifert-fibered space, or there exists a good pair of disks (D, E) in H_2 disjoint from one of the annuli A in $T \cap H_1$. Applying Lemma 5, either conditions (i) or (ii) hold, and we are done, or the surface F' obtained by surgering F along A is also a Heegaard surface. But then F' is a minimal genus Heegaard surface intersecting T in two fewer essential simple closed curves. If F' is a strongly irreducible Heegaard splitting, this contradicts our choice of T and F. If F' is weakly reducible, then the Heegaard splitting given by F' is not thin, hence the splitting given by F is not thin.

References

[1] A.J. Casson and C. McA. Gordon Reducing Heegaard splittings, Topology and its Applications vol. 27, Issue 3, 1987, Pages 275-283.

[2] W. Haken Some results on surfaces in 3-manifolds Studies in Modern Topology, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), (1968), 39-98.

[3] J. Hempel, 3-manifolds as viewed from the curve complex, Topology vol. 40, Issue 3, May 2001, Pages 631-657

[4] T. Kobayashi Structures of full Haken manifolds, Osaka J. Math. 24 (1987), p.173-215.

[5] M. Scharlemann and A. Thompson Thin position for 3-manifolds, Contemporary Mathematics, vol. 164, 1994, p. 231-238.

[6] A. Thompson The disjoint curve property and genus 2 manifolds, Topology and its applications 97 (1999), p. 271-279.

Abigail Thompson
Department of Mathematics
University of California
Davis, CA 95616

e-mail: thompson@math.ucdavis.edu