Article

New Species of Large-Spored Alternaria in Section Porri Associated with Compositae Plants in China

Lin Zhao 1, Huan Luo 2, Hong Cheng 3, Ya-Nan Gou 1, Zhi-He Yu 3 and Jian-Xin Deng 1,*

1 Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; zhaolin999@hotmail.com (L.Z.); hongcheng7777@hotmail.com (H.C.); gynan024@hotmail.com (Y.-N.G.)
2 Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea; luohuan_0813@163.com
3 Department of Biology, College of Life Sciences, Yangtze University, Jingzhou 434025, China; zhiheyu@hotmail.com
* Correspondence: djxin555@yangtzeu.edu.cn

Keywords: Alternaria; compositae; morphology; multi-locus sequence analyses; taxonomy

Abstract: Alternaria is a ubiquitous fungal genus including saprobic, endophytic, and pathogenic species associated with a wide variety of substrates. It has been separated into 29 sections and seven monotypic lineages based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing the majority of large-spored Alternaria species, most of which are important plant pathogens. Since 2015, of the investigations for large-spored Alternaria species in China, 13 species were found associated with Compositae plants based on morphological comparisons and phylogenetic analyses. There were eight known species and five new species (A. anhuiensis sp. nov., A. coreopsidis sp. nov., A. nanningensis sp. nov., A. neimengguensis sp. nov., and A. sulphureus sp. nov.) distributed in the four sections of Helianthinficientes, Porri, Sonchi, and Teretispora, and one monotypic lineage (A. argyranthemi). The multi-locus sequence analyses encompassing the internal transcribed spacer region of rDNA (ITS), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), Alternaria major allergen gene (Alt a 1), translation elongation factor 1-alpha (TEF1), and RNA polymerase second largest subunit (RPB2), revealed that the new species fell into sect. Porri. Morphologically, the new species were illustrated and compared with other relevant large-spored Alternaria species in the study. Furthermore, A. calendulae, A. lecanthemi, and A. tagetica were firstly detected in Brachyactis ciliate, Carthamus tinctorius, and Calendula officinalis in China, respectively.

Keywords: Alternaria; porri; compositae; morphology; multi-locus sequence analyses; taxonomy

1. Introduction

Alternaria is a cosmopolitan and widely distributed fungal genus described originally by Nees (1816), which is characterized by the dark-coloured phaeodictyospores in chains and a beak of tapering apical cells [1]. It is also associated with nearly every environmental substrate including animal, plant, agricultural product, soil, and the atmosphere. Species of Alternaria are known as serious plant pathogens, causing enormous losses on many crops [1,2]. The taxonomy is mainly based on sporulation patterns and their conidial shape, size, and seption [2,3]. Around 280 species are summarised and recognised on the basis of morphology [2], comprising two groups, large-spored (60–100 µm long conidial body) and small-spored (below 60 µm conidial body) [4–6].

Since the 20th century, molecular approaches, especially multi-locus phylogenetic analyses, have been used to identify Alternaria species [7–10]. Over ten gene regions are used in the classification, such as the internal transcribed spacer region of rDNA (ITS), large subunit ribosomal DNA (LSU), mitochondrial small subunit (mtSSU), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), Alternaria major allergen gene (Alt a 1), translation elongation factor 1-alpha (TEF1), RNA polymerase second largest subunit (RPB2), and plasma membrane ATPase [1,4,7,9,11–18]. Alternaria has been separated into 29 sections and
seven monotypic lineages [19–21]. The introduction of a molecular phylogenetic approach has helped to clarify their taxonomy, combining many allied genera into one large genus of *Alternaria* complex [1].

Due to the effects of *Alternaria* on humans and their surroundings, the identification is particularly important to agriculture, medicine, and science. The Compositae plants serve as food plant, oil seed, seed plant, ornamental, and sources of medicine and insecticide worldwide [22], of which nearly 3000 species almost 240 genera have been found in China [23]. Most *Alternaria* are commonly plant pathogens leading to substantial economic losses caused by *Alternaria* leaf spots and defoliation [18,24–26]. Large-spored *Alternaria* species encompassing 148 species are almost phytopathogenic demonstrated [2].

During the investigation of large-spored *Alternaria* in China, five new species were encountered from diseased leave samples of composite plants. The objectives of this study were to identify them on the basis of the cultural and conidial morphology incorporate with multi-loci phylogeny (ITS, GAPDH, Alt a 1, TEF1, and RPB2). The present multi-locus analysis supplemented with cultural and morphological data forms an example for *Alternaria* species recognition. The five new species described in this study add species diversity to large-spored *Alternaria* and provide theoretical and practical basis for the further identification and disease management.

2. Materials and Methods

2.1. Sample Collection and Fungal Isolation

Symptomatic samples of composite plants (14) have been randomly collected from different provinces in China since 2015. For fungal isolation, the samples were put into sterile plastic bags and taken to the laboratory. Small leaf segments (2 mm) with disease lesions were placed into petri dishes with moist filter papers and incubated at 25 °C in dark for conidial sporulation. Single spore of large-spored *Alternaria* was picked by a sterilized glass needle under the stereoscopic microscope and transferred to potato dextrose agar (PDA: Difco, Montreal, Canada). Over ten similar spores were randomly picked from a sample for sub-culturing to obtain the pure cultures, and two to three strains were selected for deposition when exhibiting similar cultural morphology on PDA. A total of 81 strains were kept in test-tube slants and deposited at 4 °C. Living ex-type strains were preserved in the Fungi Herbarium of Yangtze University (YZU), in Jingzhou, Hubei, China.

2.2. Morphological Observations

To determine cultural characteristics including growth rate, color and texture of colonies [27], mycelial plugs (6 mm in diameter) were taken from the edge of colonies grown on PDA. Then, the plugs were put on fresh PDA plates (90 mm) at 25 °C for 7 days in darkness. To observe the conidial morphology (conidial sporulation patterns, shape, size, etc.), mycelia were grown on potato carrot agar (PCA) and V8 juice agar (V8A) inoculated at 22 °C with a light period of 8 h light/16 h dark [2]. After 7 days, conidia and sporulation patterns were observed. Conidiophores and conidia were mounted with lactophenol picric acid solution and photographed with a Nikon ECLIPSE Ni-U microscope (Nikon, Japan). Randomly selected conidia \((n = 50)\) were separately measured for each characterization.

2.3. DNA Extraction and PCR Amplification

Genomic DNA extraction was performed using fresh mycelia collected from colonies grown on PDA [28]. Polymerase chain reaction (PCR) amplifications of the internal transcribed spacer region of rDNA (ITS), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), *Alternaria* major allergen gene (Alt a 1), translation elongation factor 1-alpha (TEF1), and RNA polymerase second largest subunit (RPB2) gene regions were amplified with the primer pairs ITS5/ITS4 [29], EF1-728F/EF1-986R [30], gpd1/gpd2 [31], Alt-for/Alt-rev [12], and RPB2-5F2/RPB2-7cR [32,33], respectively. A 25 µL of the PCR reaction mixture comprising 21 µL of 1.1 × Taq PCR Star Mix (TSINGKE, Beijing, China), 2 µL template DNA and 1 µL of each primer was applied and performed in a BIORAD T100 thermocycler [1].
Successfully amplified PCR products were purified and sequenced by TSINGKE company (Beijing, China).

2.4. Phylogenetic Analyses

The resulted sequences were examined by BioEdit v.7.0.9 [34] and assembled with PHYDIT 3.2 [35]. All newly generated sequences were deposited in GenBank (Table 1). Relevant sequences [4] were retrieved from NCBI database based on the results of BLAST searches (Table 1). The concatenated sequence dataset of multiple loci was aligned using MEGA v.6.0 [36]. Phylogenetic analyses of each alignment were performed using maximum likelihood (ML) and Bayesian inference (BI) methods. ML analysis was conducted using RAxML v.7.2.8 [37]. Bootstrapping with 1000 replicates was performed using the model of nucleotide substitution obtained by MrModeltest. For the BI analysis, it was performed using parameters including 1,000,000 Markov chain Monte Carlo (MCMC) algorithm with Bayesian posterior probabilities [38]. MrModel test v.2.3 used the best-fit model (GTR+I+G) according to the Akaike Information Criterion (AIC). Two MCMC chains were run from random trees for 10^6 generations, and the trees were sampled every 100th generation. After discarding the first 25% of the samples, the 50% majority rule consensus tree and posterior probability values were calculated. Finally, the resulting trees were edited in FigTree v.1.3.1 [39]. Branch support of the groupings (>60%/0.6 for ML bootstrap value-BS/posterior probability-PP) were indicated in the phylogram. *Alternaria gypsophilae CBS 107.41* in sect. *Gypsophilae* was used as an outgroup.

Section	Species	Strain	Locality	Substrate	ITS	GAPDH	Alt a 1	TEF1	RPB2
Porri	A. acalyphicola	CBS 541.94 T	Seychelles	*Acalypha indica*	KJ718097	KJ717952	KJ718617	KJ718446	KJ718271
Porri	A. agerati	CBS 117221 R	USA	*Ageratum houstonianum*	KJ718098	KJ717953	KJ718618	KJ718447	KJ718272
Porri	A. agripastis	CBS 577.94 T	Canada	*Euphorbia esula*, stem lesion	KJ718099	JQ646356	KJ718619	KJ718448	KJ718273
Porri	A. allii	CBS 116701 R	USA	*Allium cepa* var. *viviparum*	KJ718103	KJ717957	KJ718623	KJ718452	KJ718277
Porri	A. alternarioides	CBS 105.51 T	UK	*Anagallis arvensis*, leaf spot	KJ718105	KJ717959	KJ718625	KJ718454	KJ718279
Porri	A. anagallioides	CBS 117129 R	New Zealand	*Coreopsis basalis*, leaf spot	KJ718109	KJ717962	KJ718629	KJ718457	KJ718283
Porri	A. anubiusis sp. nov.	ZYU 171206 T	China	*Coreopsis basalis*, leaf spot	MK264916	MK303949	MK303953	MK303958	MK303960
Porri	A. aragakii	PPRI 123576	South Africa	*Anoda cristate*, leaf spot	KJ718110	KJ717963	KJ718630	KJ718458	KJ718284
Porri	A. argyroxiphii	CBS 117222 T	USA	*Argyroxiphium edulis*, leaf spot	KJ718111	KJ717964	KJ718631	KJ718459	KJ718285
Porri	A. azadirachtae	CBS 116444 T	Australia	*Azadirachta indica*, leaf spot	KJ718112	JQ646350	KJ718632	KJ718460	KJ718286
Porri	A. bataticola	CBS 531.63 T	Japan	*Ipomoea batatas*	KJ718115	KJ717967	KJ718635	KJ718463	KJ718289
Porri	A. blumeae	CBS 113764 T	Thailand	*Blumea aurita*	KJ718117	JQ646349	JQ646333	KJ718465	KJ718291
Porri	A. calendulae	CBS 224.76 T	Germany	*Calendula officinalis*, leaf spot	KJ718127	KJ717977	KJ718648	KJ718475	KJ718301
Porri	A. calendulae	CBS 101498	New Zealand	*Calendula officinalis*, leaf spot	KJ718128	KJ717978	KJ718645	KJ718476	KJ718302
Porri	A. carthami	CBS 116439 T	New Zealand	*Rosa sp.*, leaf spot	KJ718129	KJ717979	KJ718646	KJ718477	KJ718303
Porri	A. carthamicola	CBS 116650 R	Japan	*Calendula officinalis*, leaf spot	KJ718130	KJ717980	KJ718647	KJ718478	KJ718304
Porri	A. carthamini	CBS 117091 R	USA	*Carthamus tinctorius*, leaf spot	KJ718134	KJ717984	KJ718652	KJ718308	KJ718308
Section	Species	Strain	Locality	Substrate	ITS	GAPDH	Alt a 1	TEF1	RPB2
---------	----------------	------------	----------------	--	-----------	----------	---------	-----------	-----------
Porri	A. cassiae	CBS 116119 T	Malaysia	Sauropus androgynus	KJ718136	KJ717986	KJ71865	KJ718484	KJ718310
Porri	A. catananches	CBS 137456 T	Netherlands	Catananche caerulea	KJ718139	KJ717989	KJ718657	KJ718487	KJ718313
Porri	A. centaureae	CBS 116446 T	USA	Centaurea solstitialis, leaf spot	KJ718140	KJ717990	KJ718658	KJ718488	KJ718314
Porri	A. cichorii	CBS 102.33 T	Cyprus	Citrullus vulgaris, fruit	KJ718141	KJ717991	KJ718659	KJ718489	KJ718315
Porri	A. cirsinoxia	CBS 113261 T	Canada	Datura stramonium, leaf spot	KJ718143	KJ717993	KJ718661	KJ718491	KJ718317
Porri	A. citrullicola	CBS 103.32 T	Cyprus	Datura stramonium, leaf spot	KJ718144	KJ717994	KJ718665	KJ718495	KJ718320
Porri	A. coreopsidis	YZU 161159	China	Coreopsis basalisis, leaf	KJ718145	KJ717997	KJ718668	KJ718501	KJ718326
Porri	A. crassa	CBS 110.38 T	Cyprus	Luffa acutangula	KJ718147	KJ717997	KJ718665	KJ718495	KJ718320
Porri	A. cucumerina	CBS 116114 T	USA	Luffa acutangula	KJ718149	KJ717997	KJ718665	KJ718495	KJ718320
Porri	A. cyamopsidis	CBS 117219 R	USA	Cucumis melo, leaf spot	KJ718151	KJ718000	KJ718668	KJ718501	KJ718326
Porri	A. dauci	CBS 112590 R	USA	Cucumis melo, leaf spot	KJ718152	GQ180072	GQ180088	KJ718500	KJ718325
Porri	A. deserticola	CBS 116114 T	USA	Cucumis melo, leaf spot	KJ718153	KJ718000	KJ718668	KJ718501	KJ718326
Porri	A. echinacea	YZU 161160 T	China	Coreopsis basalisis, leaf	KJ718154	KJ718001	KJ718669	KJ718502	KJ718327
Porri	A. grandis	CBS 116695 R	New Zealand	Coreopsis basalisis, leaf	KJ718155	KJ718001	KJ718669	KJ718502	KJ718327
Porri	A. ipomoeae	CBS 219.79 T	Ethiopia	Coreopsis basalisis, leaf	KJ718156	KJ718001	KJ718669	KJ718502	KJ718327
Porri	A. jesenskae	CBS 113855 T	New Zealand	Coreopsis basalisis, leaf	KJ718157	KJ718001	KJ718669	KJ718502	KJ718327
Porri	A. linariae	CBS 105.41 T	USA	Coreopsis basalisis, leaf	KJ718158	KJ718001	KJ718669	KJ718502	KJ718327
Porri	A. passiflora	CBS 630.93 T	USA	Coreopsis basalisis, leaf	KJ718159	KJ718001	KJ718669	KJ718502	KJ718327
Porri	A. pseudorostrata	CBS 116333 T	New Zealand	Coreopsis basalisis, leaf	KJ718210	KJ718210	KJ718718	KJ718556	KJ718383
Porri	A. pipionipisi	CBS 116115 T	India	Coreopsis basalisis, leaf	KJ718211	KJ718211	KJ718718	KJ718557	KJ718384
Porri	A. porri	CBS 116699 T	USA	Coreopsis basalisis, leaf	KJ718212	KJ718212	KJ718718	KJ718557	KJ718384
Porri	A. proteenta	CBS 116437 T	New Zealand	Coreopsis basalisis, leaf	KJ718220	KJ718220	KJ718718	KJ718557	KJ718384
Porri	A. scorzonerae	CBS 117366 T	USA	Scorzonera hispatica, leaf	KJ718229	KJ718229	KJ718736	KJ718575	KJ718402
Porri	A. sennae	CBS 477.81 T	India	Scorzonera hispatica, leaf	KJ718230	KJ718230	KJ718736	KJ718575	KJ718402

Table 1. Cont.
Table 1. Cont.

Section	Species	Strain	Locality	Substrate	ITS	GAPDH	Alt a 1	TEF1	RPB2
Porri	A. sesami	CBS 115264 R	India	Sesamum indicum, seedling	JF780939	KJ718061	KJ718738	KJ718577	KJ718405
Porri	A. sidae	CBS 117730 T	Kiribati	Sida fallax, leaf spot	KJ718232	KJ718062	KJ718739	KJ718578	KJ718406
Porri	A. silybi	CBS 134092 T	Russia	Silybum marianum, leaf	KJ718233	KJ718063	KJ718740	KJ718579	KJ718407
Porri	A. solani	CBS 134093 T	Russia	Silybum marianum, leaf	KJ718234	KJ718064	KJ718741	KJ718580	KJ718408
Porri	A. solani-niger	CBS 109157 R	USA	Solanum tuberosum, leaf	KJ718238	KJ718065	KJ718742	KJ718581	KJ718409
Porri	A. steviae	CBS 117362 T	Japan	S. rebaudiana, leaf spot	KJ718247	KJ718075	KJ718753	KJ718593	KJ718422
Porri	A. tagetica	CBS 117217 R	USA	Tagetes sp., leaf spot	KJ718252	KJ718079	KJ718758	KJ718598	KJ718427
Porri	A. tagetica	CBS 297.79 T	UK	Tagetes sp., seed	KJ718253	KJ718080	KJ718759	KJ718599	KJ718428
Porri	A. tagetica	CBS 298.79 T	UK	Tagetes sp., seed	KJ718254	KJ718081	KJ718760	KJ718600	KJ718429
Porri	A. tagetica	CBS 480.81 R	USA	Tagetes erecta, leaf spot	KJ718255	KJ718082	KJ718762	KJ718601	KJ718430
Porri	A. thunbergiae	CBS 116331 T	Australia	Thunbergia alata, leaf spot	KJ718257	KJ718084	KJ718764	KJ718603	KJ718432
Porri	A. tillandsiae	CBS 116116 T	New Zealand	Tillandsia usneoides, leaf	KJ718260	KJ718087	KJ718767	KJ718606	KJ718435
Porri	A. tropica	CBS 631.93 T	USA	Passiflora edulis, fruit	KJ718261	KJ718088	KJ718768	KJ718607	KJ718436
Porri	A. venezuelensis	CBS 116121 T	Venezuela	Phacelia vulgaris, leaf	KJ718263	KJ718263	KJ718770	KJ718609	KJ718438
Porri	A. zinniae	CBS 117223 R	New Zealand	Zinnia elegans, leaf spot	KJ718270	KJ718096	KJ718777	KJ718616	KJ718445
Porri	A. zinniae	CBS 118.44 T	Hungary	Callistephus chinensis, seed	KJ718264	KJ718643	KJ718771	KJ718610	KJ718439
Porri	A. zinniae	CBS 117.59 T	Italy	Zinnia elegans	KJ718266	KJ718092	KJ718773	KJ718612	KJ718441
Porri	A. zinniae	CBS 299.79 T	UK	Zinnia sp., seed	KJ718268	KJ718094	KJ718775	KJ718614	KJ718443
Gypsophilae	A. gypsophilae	CBS 107.41 T	Netherlands	Gypsophila elegans, seed	KJ718270	KJ718096	KJ718777	KJ718616	KJ718445

Note: The bold indicate the newly generated sequences. T, ex-type strain; R, representative strain.

3. Results

In the present study, large-spored Alternaria species associated with Compositae leaf spot in China since a survey from 2015 are summarized based on the phylogenetic analysis of GAPDH and RPB2 gene fragments (Figure S1 and Table S1). A total of 13 species including the present five new taxa revealed in four sections of Helianthiinficientes (A. helianthiinficiens), Porri (A. calendulae, A. tagetica and A. zinniae), Sonchi (A. cinerariae and A. sonchi), and Teretispora (A. leucanthei), and one monotypic lineage (A. argyranthemi) (Figure S1). Meanwhile, a comprehensive description of the five new species in sect. Porri are described as A. anhuiensis sp. nov., A. coreopsis sp. nov., A. nanningensis sp. nov., A. neimengguensis sp. nov., and A. sulphureus sp. nov.
3.1. Phylogenetic Analysis

The multi-gene phylogeny was constructed to determine the accurate positions of the new Alternaria based on five sequence loci (ITS + GAPDH + Alt a 1 + TEF1 + RPB2) (Table 1). The analysis comprised sequences of the ITS (504 characters), GAPDH (526 characters), Alt a 1 (457 characters), TEF1 (342 characters), and RPB2 (672 characters) gene regions with a total length of 2501 characters. The tree topologies (Figure 1) computed from the ML and BI analyses, were similar to each other, resulting in identical species-clades and the ML topology was presented as basal tree. The present strains fell into five separate branches in sect. Porri of Alternaria. Strain YZU 171206 was sister to A. alternariacida supported with a PP value of 1.0, which close to A. silybi with low BS and PP values surpport. Strains YZU 161159 and YZU 161160 formed an independent clade (BS/PP = 100%/1.0). Strain YZU 171523 fell into an individual branch close to A. obtecta and A. tillandsiae well-supported by 97%/0.99 (BS/PP). Strain YZU 171784 was clustered with A. cirsinoxia, A. centaureae, A. cichorii, and A. cantannaches supported by values of 79%/1.0 (BS/PP). Strain YZU 191448 was out group of strain YZU 171206, A. silybi and A. alternariacida with BS and PP values below 60% and 0.6. The results indicated that the five branches represent five new species from three different hosts (Coreopsis basalis, Cosmos sulphureus, and Lactuca seriola).

3.2. Taxonomy

Alternaria anhuiensis H. Luo and J.X. Deng, sp. nov. (Figure 2).
MycoBank No: 844033.
Etymology: Named after the collecting locality, Anhui Province.
Typification: China, Anhui Province, Hefei City, from leaf spot of Coreopsis basalis. June, 2017, J.X Deng, ex-type culture YZU 171206.
Description: Colonies on PDA circular, buff in the centre, flocculent with brown halo at the edge; reverse crimson pigment at centers, light yellow at margins, 59–60 mm in diam, at 25 °C for 7 days. On V8A, conidiophores arising from substrate or lateral of aerial hyphae with geniculate conidiogenous loci at or near apex, straight or curved, smooth-walled, septate, pale to dark brown, (40–) 60–145 (–203) × (4.5–) 5–7.5 (–8) µm; conidia solitary, long-narrow ovoid or ellipsoid body, apex rounded, base narrow, smooth-walled, single to double beak, dark brown, 61–100 (–111.5) × (11.5–) 13–19.5 µm, 6–11 transverse septa, 0–1 (–2) longitudinal septa; beak long-narrowed filiform, 1-beak, (32–) 58–133 (–150.5) × 2.5–4 (–4.5) µm; 2-beak, (22–) 60.5–90.5 (–116.5) × 2.5–3.5 µm. On PCA, conidiophores straight or curved, smooth-walled, septate, (42.5–) 50–140 × 4.5–6.5 (–9) µm; conidia solitary, long-narrow ovoid or ellipsoid body, single to double beak, triple or quadruple beaks not common, black brown, (55–) 66–105 × 11–16 µm, 5–10 (–11) transverse septa, 0–1 longitudinal septum; beak long-narrowed filiform, 1-beak, 95–217 (–236) × 2.5–4 (–5.5) µm; 2-beak, 60–140 × 2.5–3.5 µm; 4-beak (n = 1), 82 × 3 µm.

Notes: Phylogenetic analysis of the species based on a combined dataset of ITS, GAPDH, Alt a 1, TEF1, and RPB2 gene fragments falls in an individual clade close to A. alternariacida and A. silybi in sect. Porri (Figure 1). Morphologically, its primary conidiophores can generate geniculate conidiogenous loci at or near apex which differed from those two species (Figure 2, Table 2). It can be easily distinguished from A. alternariacida by producing more transverse septa and shorter beaks. Moreover, its conidia are solitary while A. alternariacida forms solitary or in unbranched chains of 2 (–3) conidia.

Alternaria coreopsidis H. Luo and J.X. Deng, sp. nov. (Figure 3).
MycoBank No: 844034.
Etymology: Named after the host genus name, Coreopsis.
Typification: China, Shaanxi Province, Xian City, from leaf spot of Coreopsis basalis. June, 2016, J.X Deng, ex-type culture YZU 161160.
Figure 1. Maximum likelihood (ML) phylogram of new five Alternaria species from the Compositae family based on a combined dataset of ITS, GAPDH, Alt a 1, TEF1, and RPB2 gene sequences. The RAxML bootstrap support values >60% (ML) and Bayesian posterior probabilities >0.6 (PP) are given at the nodes (ML/PP). The present strains are in bold.

Description: Colonies on PDA circular, buff halo in the centre, villiform with white at the edge; reverse dark brown at centers, vinaceous buff pigment at margins, 47–48 mm in diam, at 25 °C for 7 days. On V8A, conidiophores arising from substrate or lateral of aerial hyphae, solitary, simple, straight to slightly curved, septate, pale to dark brown, apical conidiogenous locus, pale brown, (34–) 50–86 (–115.5) × 5–7 (–9) µm; conidia solitary or in unbranched chains of 2 conidia, long-narrow ovoid or ellipsoid body, smooth-walled, single beak, yellow or brown, (48.5–) 55–80 (–85) × (9–) 10–15 µm, 6–9 transverse septa,
0–1 longitudinal septa; beak filamentous, 1-beak, (20–) 30–140 (–206) × (2–) 2.5–4 µm; normally, false beak swollen at the apex, around 8–10.5 (–14) × 4.5–5 (–6) µm. On PCA, conidiophores straight or curved, smooth-walled, septate, (24–) 50–90 (–135) × 5–7.5 (–9) µm; conidia long-narrow ovoid or ellipsoid body, apex rounded, single beak, pale brown, (40–) 45–70 × 9–13 µm, (5–) 6–8 (–9) transverse septa, 0–1 longitudinal septa; beak filamentous, 1-beak, (0–) 15–100 (–175) × (0–) 2–4 µm; swollen apex of false beak commonly 10–13 (–16.5) × 5–6 (–6.5) µm.

Figure 2. Morphology of Alternaria anhuiensis sp. nov. (A, B) Natural symptoms of Coreopsis basalis; (C, D) Colony phenotypes (on PDA for 7 days at 25 °C); (E, F) Sporulation patterns (on V8A at 22 °C); (G, H) Conidiophores (on V8A at 22 °C); (I) Conidia (on V8A at 22 °C); (J) Conidia (on PCA at 22 °C). Bars: (E–J) = 25 µm.

Figure 3. Morphology of Alternaria coreopsidis sp. nov. (A, B) Natural symptoms of Coreopsis basalis; (C, D) Colony phenotypes (on PDA for 7 days at 25 °C); (E) Sporulation patterns (on V8A at 22 °C); (F, G) Conidiophores (on V8A at 22 °C); (H) Conidia (on V8A at 22 °C); (I) Conidia (on PCA at 22 °C). Bars: (E–I) = 25 µm.
Table 2. Morphological comparisons of the five new *Alternaria* species and their closely related species.

Species Strain	Conidia Shape	Size (µm)	Transverse septa	Beak (µm)	Sporulation Pattern	Medium	Reference
A. alternariacida CBS 105.51	Smooth-walled, narrowly ovoid; smooth-walled	(85–) 99–111	(3–) 5–6 (–)	(47–) 129–257	Solitary or in unbranched chains of 2 (–) conidia	SNA	[4]
A. anhuiensis sp. nov. YZU 171206	Long-narrow ovoid or ellipsoid; smooth-walled	61–100 (–111.5) × (11.5–) 13–19.5	6–11	(22–) 58–133	Solitary	V8A	This study
A. catananches CBS 137456	Narrowly ovoid, ornamented in lower half of the conidium	(26–) 37–43 (–57) × (7–) 8–9 (–11)	(2–) 4 (–)	(77–) 126–160	Solitary	SNA	[4]
A. centaureae CBS 116446	Long-narrow-ellipsoid or long-ovoid; smooth-walled	75–100 × 15–24	7–10	140–190	Solitary	V8A	[2]
A. chinensis CBS 117218	Narrow-ovoid or narrow-ellipsoid; smooth-walled	60–80 × 14–18	7–12	120–240	Terminal clumps of 4–5 conidia	V8A	[2]
A. cirrata CBS 113261	Long-narrow-ellipsoid or ellipsoid; smooth-walled	70–90 × 12–22	7–9	80–165	Solitary or tufts of 2–7 conidia	V8A	[2]
A. coreopidis sp. nov. YZU 161160	Long-narrow ovoid or ellipsoid; smooth-walled	(48.5–) 55–80 (–85) × (9–) 10–15	6–9	(20–) 30–140	Solitary or 2-conidium chains	V8A	This study
A. nanningensis sp. nov. A. neimenggensis sp. nov. YZU 171513	Ovoid or ellipsoid; smooth-walled	(40.5–) 47–79 (–87) × 9–13.5 (–13)	6–10 (–11)	10–30 (1–)	Solitary	V8A	This study
A. obtecta CBS 134278	Long-narrow-ellipsoid or ellipsoid; smooth or punctulate-walled	65–95 × 18–22	7–10	55–150	Solitary	PCA	[2]
A. porri CBS 116698	Long-ovoid, sometimes broad or nearly cylindrical; smooth or punctulate-walled	70–105 × 19–24	8–12	95–160 (2–) 2–6.5	Solitary	V8A	[2]
A. silphi CBS 134093	Long-ellipsoid, subcylindrical or long-ovoid; smooth or punctulate-walled	50–80 × 15–20 (–22)	(5–) 7–10	70–130 (–190) × 3	Solitary	V4A	[40]
A. stenae CBS 117362	Long-ovoid, subellipsoid, or obovoid; smooth or punctulate-walled	55–95 × 18–30	7–10	60–120	Solitary or tiny distal clumps	V8A	[2]
A. sulphureus sp. nov. YZU 191448	Ovoid, ellipsoid, or obovoid; smooth-walled	(64–) 74–116 (12.5–) 14–20 (–28.5)	(5–) 7–11	(25.5–) 34–151 (–159.5) × 2.5–4.5	Solitary	V8A	This study
A. tillandsiae CBS 116116	Long-ovoid, ellipsoid, long-ovoid; smooth or a minor punctulate-walled	70–102 × 16–19	8–11	75–120	Solitary	V8A	[2]

Materials examined: China, Shaanxi Province, Xian City, from leaf spot of *Coreopsis basalis*. June 2016, J.X Deng, living culture YZU 161159.

Notes: Phylogenetically, the species falls into an independent lineage outside of a clade comprising type species of *A. porri* of sect. *Porri* (Figure 1). It can be delimited based on either of GAPDH and RPB2 gene sequences (Figure S1). The species is characterized by producing conidia with false beak swollen at the apex up to 8–13 (–16.5) × 4.5–6.5 µm (Figure 3; Table 2).

Alternaria nanningensis H. Luo and J.X. Deng, sp. nov. (Figure 4).
Figure 4. Morphology of *Alternaria nanningensis* sp. nov. (A,B) Natural symptoms of *Cosmos sulphureus*; (C,D) Colony phenotypes (on PDA for 7 days at 25 °C); (E,F) Sporulation patterns (on V8A at 22 °C); (G) Conidiophores (on V8A at 22 °C); (H) Conidia (on V8A at 22 °C); (I) Conidia (on PCA at 22 °C). Bars: (E–J) = 25 µm.

MycoBank No: 844035.

Etymology: Named after the collecting locality, Nanning City.

Typification: China, Guangxi Province, Nanning City, from leaf spot of *Cosmos sulphureus*. July 2017, J.X. Deng, ex-type culture YZU 171523.

Description: Colonies on PDA irregular, pistac, entire; reverse dark olive green, slightly protuberant with white at margins, 56–57 mm in diam, at 25 °C for 7 days. On V8A, conidiophores arising from substrate or lateral of aerial hyphae with geniculate conidiogenous loci at apex, straight or curved, smooth-walled, septate, pale brown, 38–59 (–64) × 4–5 (–6) µm; conidia solitary, ovoid or ellipsoid body, base narrow, smooth-walled, single beak, pale to yellow brown, (40.5–) 47–79 (–87) × 9–13.5 (–15) µm, 6–10 (–11) transverse septa, 0–1 longitudinal septa; beak long-narrowed filiform, 1-beak, 10–30 × (1–) 1.5–2 (–3) µm. On PCA, conidiophores straight or curved, smooth-walled, septate; 32–70 (–86) × 4–5.5 µm; conidia solitary, ovoid or ellipsoid body, single beak, pale to yellow brown, (49–) 55–77 (–82) × 10.5–13.5 (–15) µm, 5–9 (–10) transverse septa, 0–1 longitudinal septum; beak long-narrowed filiform, 1-beak, 13–26 (–44) × 1.5–2 (–2.5) µm.

Notes: The species is phylogenetically recognized as a distinct species in sect. *Porri* based on ITS, GAPDH, Alt a 1, TEF1, and RPB2 which displays a close relationship with *A. obtecta*, *A. tillandsiae*, and *A. steviae* (Figure 1). Compared with them, it is quite different by producing smaller conidia with short beaks (Figure 4; Table 2). Furthermore, its conidia are smooth-walled while some conidia of *A. obtecta* and *A. steviae* are minutely punctulate. *Alternaria nanningensis* forms simple conidiophores (solitary). But many conidiophores of *A. steviae* produce geniculate extensions and additional conidia, yielding tiny distal clumps of sporulation.

Alternaria neimengguensis H. Luo and J.X. Deng, sp. nov. (Figure 5).

MycoBank No: 844036.

Etymology: Named after the collecting locality, Inner Mongolia Autonomous Region.

Typification: China, Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, IMAU, from leaf spot of *Lactuca seriola*. September 2017, J.X. Deng, ex-type culture YZU 171784.
Figure 5. Morphology of *Alternaria neimengguensis* sp. nov. (A) Natural symptoms of *Lactuca seriola*; (B,C) Colony phenotypes (on PDA for 7 days at 25 °C); (D,E) Sporulation patterns (on V8A at 22 °C); (F) Conidiophores (on V8A at 22 °C); (G) Conidia (on V8A at 22 °C); (H) Conidia (on PCA at 22 °C). Bars: (D–H) = 25 µm.

Description: Colonies on PDA circular, pale brown en masse, flocculent, reverse dark olive green at centers, pale brown at margins, 51–54 mm in diam, at 25 °C for 7 days. On V8A, conidiophores arising from substrate or lateral of aerial hyphae, straight or curved, smooth-walled, septate, brown, 26–45 (–51) × 5–7 (–8) µm; conidia solitary, ovoid or ellipsoid body, apex rounded, base wide, smooth-walled, single to double beak, brown, (70–) 77–130 (–143.5) × (13–) 15–20 (–23) µm, 6–11 (–12) transverse septa, 0–1 (–2) longitudinal septa; beak long-narrowed filiform, 1-beak, (24.5–) 35–65 (–76) × (1.5–) 2–3 (–4) µm; 2-beak, (33–) 45–65 (–92) × (2–) 2.5–3 (–3.5) µm. On PCA, conidiophores straight or curved, smooth-walled, septate; 35–70 (–75) × 5–6.5 (–7.5) µm; conidia solitary, ovoid or ellipsoid body, apex rounded, single to double beak, pale to yellow brown, (59–) 66–104 (–120.5) × 13–18 (–20) µm, (5–) 6–10 (–11) transverse septa, 0–1 (–2) longitudinal septa; beak long-narrowed filiform, 1-beak, (13–) 31.5–60 (–93) × 1.5–3 µm; 2-beak, (12–) 26–53 (–80) × 1.5–2.5 (–3) µm.

Notes: In the phylogeny, the species is sister to *A. cirsinoxia*, *A. centaureae*, *A. cichorii*, and *A. catananches* (Figure 1). The conidiophores are distinct to *A. cirsinoxia* whose are 2–3 arm branches near a conidiophore tip and progressively geniculate, yielding tufts of several conidia. They are different from *A. cichorii* whose are frequently branch or proliferate in a geniculate manner near the apex, yielding terminal clumps of 4–5 conidia. In conidial morphology, it is obviously different from those four species by producing larger conidia (Table 2).

Alternaria sulphureus L. Zhao and J.X. Deng, sp. nov. (Figure 6).
Figure 6. Morphology of *Alternaria sulphureus* sp. nov. (A,B) Natural symptoms of *Cosmos sulphureus*; (C,D) Colony phenotypes (on PDA for 7 days at 25 °C); (E,F) Sporulation patterns (on PCA at 22 °C); (G) Conidiophores (on PCA at 22 °C); (H) Conidia (on V8A at 22 °C); (I) Conidia (on PCA at 22 °C). Bars: (E–I) = 25 μm.

Mycobank No: 844037.

Etymology: Named after the host species name, *Cosmos sulphureus*.

Typification: China, Shanxi Province, from leaf spot of *Cosmos sulphureus*. September 2019, J.X Deng, ex-type culture YZU 191448.

Description: Colonies on PDA circular, light brown in the centre, buff texture velutinous at the edge, reverse black brown at centers, 62–63 mm in diam, at 25 °C for 7 days. On V8A, conidiophores arising from substrate, solitary, simple, straight to slightly curved, septate, apical conidiogenous locus, pale brown; (50–) 63–100 (–108) × 6–8 (–9) μm; conidia solitary, sometimes in chains of two conidia, ovoid, ellipsoid or obovoid body, smooth-walled, pale to yellow, (64–) 74–116 × (12.5–) 14–20 (–25.5) μm, (5–) 7–11 transverse septa, 0–1 (–2) longitudinal septa; beak long-narrowed filiform, 1-beak, (25.5–) 34–151 (–159.5) × 2.5–4.5 (–5.5) μm; 2-beak (*n* = 1), 129 × 4 μm. On PCA, conidiophores straight or curved, smooth-walled, septate, (34.5–) 40.5–56 (–85) × 5–7.5 μm; conidia ovoid, ellipsoid, or obovoid body, apex rounded, single to double beak, triple beaks not common, pale brown, 80–110 × 16–24 μm, 6–10 transverse septa, 0–1 longitudinal septum; beak long-narrowed filiform, 1-beak, (73–) 110–195 × 3–5 μm; 2-beak, (74–) 96–170 × 3–4 μm; 3-beak (*n* = 1), 109.5 × 3.5 μm.

Notes: This species is phylogenetically related to *A. silybi*, *A. alternariacida* and *A. anhuiensis* sp. nov. in sect. *Porri* (Figure 1). It could be distinguished from *A. silybi* and *A. alternariacida* by forming larger conidia (Figure 6; Table 2) and is quite different from *A. alternariacida* by producing multiple and shorter beaks.
4. Discussion

Thirteen large-spored *Alternaria* species associated with Compositae leaf spot in China were assigned to four sections and one monotypic lineage in this study. Among these species, five new species (*A. anhuiensis* sp. nov., *A. coreopsidis* sp. nov., *A. nanningensis* sp. nov., *A. neimengguensis* sp. nov., and *A. sulphureus* sp. nov.) were clearly recognized in section *Porri*. The section is speciose assessing encompassing 117 large-spored *Alternaria* [5]. In 2014, the section is reduced 82 morphospecies in to 63 phylogenetic species [2]. They are commonly pathogenic and could induce typical black necrotic lesions surrounded by chlorotic areas. There are some important famous plant pathogens, such as *A. porri* on *Allium* plants (Liliaceae), *A. solani* for potato (Solanaeaceae), *A. sesami* for sesame (Pedaliaceae) and *A. dauci* for carrot (Umbelliferae) [2]. Twenty-one species are comprised in sect. *Porri* associated with the Compositae family [4]. This study provides new data supplements for the *Alternaria* taxonomy of sect. *Porri*.

Morphologically, large-spored *Alternaria* species in sect. *Porri* are characterised by broadly ovoid, obclavate, ellipsoid, subcylindrical or obovoid, medium to large conidia containing multiple transverse and longitudinal septa, solitary or in short chains with a simple or branched, long to filamentous beak [4]. Among these characteristics, sporulation patterns, conidial body, transverse septa, and beak type provide useful information for the preliminary separation into sections [2]. Morphology is quite important for new fungal species identification, which can be defined based on unique morphological characters when the molecular data is not well-supported [41]. Morphological comparisons of the present new species and their relevant species in sect. *Porri* were conducted (Table 2). For the sporulation patterns, the conidia of *A. anhuiensis*, *A. nanningensis*, *A. neimengguensis*, and *A. sulphureus* are solitary produced except *A. coreopsidis*, which similar to *A. alternariacida*, *A. cichorii*, *A. cirsinoxia*, and *A. steviae* forming chain of 2 (~3) units [2,4]. In conidial morphology, *A. anhuiensis*, *A. nanningensis*, *A. neimengguensis*, and *A. sulphureus* are distinguishable from their closely related species based on the size of conidial bodies (Table 2) and also the wall ornamentations [2,4]. On the other hand, *A. anhuiensis*, *A. neimengguensis*, and *A. sulphureus* are readily be distinguished by producing multiple beaks. By the way, there are no significant differences on conidial morphology of PCA and V8A medium for all species.

In addition, morphological variation and fundamental pleomorphism complicate the *Alternaria* species recognition, and host plants reflect some evidences for the identification [3]. With the discovery of *Alternaria* species, it has been found from various plants of Compositae [1,4,21,42,43]. *Alternaria calendulae* has been reported from *Calendula officinalis* in Czech Republic [2], Germany [4], Japan [4], and Korea [44]. It also is found on *C. officinalis* in China and firstly on *Brachyactis ciliata* in the study. *Alternaria leucanthemi* has previously been found on *Chrysanthemum maximum* from Netherlands [1] and *Helianthus annuus* from China [45]. It is firstly isolated from *Carthamus tinctorius* in this study. In addition, *A. tagetica* is commonly associated with *Tagetes* plants (*Tagetes erecta* and *Tagetes patula*) [3,4,46–48], which firstly encountered from *Calendula officinalis* in this study. Interestingly, the five new species are isolated from three different composite hosts (*Coreopsis basalis*, *Cosmos sulphureus*, and *Lactuca seriola*) and *A. cinerariae* are found on five different composite plants in China (Figure S1; Table S1). The results suggest that an *Alternaria* species may associated with several host plants.

5. Conclusions

The present data indeed revealed a diversity of large-spored *Alternaria* associated with Compositae plants in China. A total of 13 large-spored *Alternaria* species were obtained and circumscribed as eight known species and five new species belonging to the four sections of *Helianthinficientes*, *Porri*, *Sonchi*, and *Teretispora*, and one monotypic lineage (*A. argyranthemi*) based on the morphological characteristics and molecular properties of multiple DNA sequences (ITS, GAPDH, Alt a 1, TEF1, and RPB2). *Alternaria calendulae*, *A. leucantheri*, and *A. tagetica* were firstly isolated from *Brachyactis ciliata*, *Carthamus tinctorius*, and *Calendula officinalis* in China, respectively. Since large-spored *Alternaria* species are
almost demonstrated phytopathogens, further study on the pathogenicity is needed to verify in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jof8060607/s1, Figure S1: Phylogenetic tree of large-spored Alternaria from the Compositae family in China using a maximum likelihood (ML) analysis based on combined GAPDH and RPB2 gene sequences. The RAxML bootstrap support values > 60% (ML) and Bayesian posterior probabilities >0.6 (PP) are given at the nodes (ML/PP); Table S1: The other Alternaria species associated with the Compositae plants from China analyzed by phylogeny.

Author Contributions: The contributions of L.Z. and H.L. are consistent. Conceptualization, L.Z. and J.-X.D.; methodology, L.Z. and J.-X.D.; software, H.L.; validation, H.L., H.C. and Y.-N.G.; formal analysis, H.C. and Y.-N.G.; data curation, L.Z. and H.L.; writing—original draft preparation, L.Z. and H.L.; writing—review and editing, L.Z., J.-X.D. and Z.-H.Y.; visualization, L.Z.; supervision, J.-X.D.; project administration, J.-X.D. All authors have read and agreed to the published version of the manuscript.

Funding: The financial support was given by the National Natural Science Foundation of China (No. 31400014 and No. 31570022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The sequences newly generated in this study have been submitted to the GenBank database.

Acknowledgments: The authors would like to thank Xue-Feng Wei for providing the leaf samples.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Woudenberg, J.H.; Groenewald, J.Z.; Binder, M.; Crous, P.W. Alternaria redefined. Stud. Mycol. 2013, 75, 171–212. [CrossRef] [PubMed]
2. Simmons, E.G. Alternaria: An Identification Manual; CBS Fungal Biodiversity Centre: Utrecht, The Netherlands, 2007.
3. Zhang, T.Y. Flora Fungorum Sinicorum, Alternaria in China. Science Press: Beijing, China, 2003; Volume 16.
4. Woudenberg, J.H.C.; Truter, M.; Groenewald, J.Z.; Crous, P.W. Large-spored Alternaria pathogens in section Porri disentangled. Stud. Mycol. 2014, 79, 1–47. [CrossRef]
5. Gannibal, P.B. Distribution of Alternaria species among sections. 1. Section Porri. Mycotaxon 2015, 130, 207–213. [CrossRef]
6. Pinto, V.E.F.; Patriarca, A. Alternaria Species and Their Associated Mycotoxins; Mycotoxigenic Fungi Humana Press: New York, NY, USA, 2017; pp. 13–32. [CrossRef]
7. Pryor, B.M.; Bigelow, D.M. Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 2003, 95, 1141–1154. [CrossRef]
8. Park, M.S.; Romanoski, C.E.; Pryor, B.M. A re-examination of the phylogenetic relationship between the causal agents of carrot black rot, Alternaria radicina and A. carotinriculina. Mycologia 2008, 100, 511–527. [CrossRef]
9. Liu, H.F.; Liao, J.; Chen, X.Y.; Liu, Q.K.; Yu, Z.H.; Deng, J.X. A novel species and a new record of Alternaria isolated from two Solanaceae plants in China. Mycol. Prog. 2019, 18, 1005–1012. [CrossRef]
10. Htun, A.A.; Liu, H.F.; He, L.; Zhou, X.Z.; Aung, S.L.L.; Deng, J.X. New species and new record of Alternaria from onion leaf blight in Myanmar. Mycol. Prog. 2022, 21, 59–69. [CrossRef]
11. Pryor, B.M.; Gilbertson, R.L. Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. Mycol. Res. 2000, 104, 1312–1321. [CrossRef]
12. Hong, G.S.; Cramer, R.A.; Lawrence, C.B.; Pryor, B.M. Alt a 1 allergen homologs from related taxa: Analysis of phylogenetic content and secondary structure. Fungal Genet. Biol. 2005, 42, 119–129. [CrossRef]
13. Lawrence, D.P.; Park, M.S.; Pryor, B.M. Nimbya and embellisia revisited, with nov.comb. for Alternaria celosiae and A. perpunctulata. Mycol. Prog. 2012, 11, 799–815. [CrossRef]
14. Lawrence, D.P.; Gannibal, P.B.; Peever, T.L.; Pryor, B.M. The sections of Alternaria: Formalizing species-group concepts. Mycologia 2013, 105, 530–546. [CrossRef] [PubMed]
15. Lawrence, D.P.; Gannibal, P.B.; Dugan, F.M.; Pryor, B.M. Characterization of Alternaria isolates from the infectors species-group and a new taxon from Arthenantherum, Pseudoalternaria arrenathera sp. nov. Mycol. Prog. 2014, 13, 257–276. [CrossRef]
16. Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; Vries, M.D.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W. Alternaria section Porri: Species, formae speciales or pathotypes? Stud. Mycol. 2015, 82, 1–21. [CrossRef]
17. Pei, D.F.; Aung, S.L.L.; Liu, H.F.; Liu, Q.K.; Yu, Z.H.; Deng, J.X. Alternaria hydrangeae sp. nov. (Ascomycota: Pleosporaceae) from Hydrangea paniculata in China. Phytotaxa 2019, 401, 287–295. [CrossRef]
18. He, L.; Cheng, H.; Htun, A.A.; Ge, H.; Xia, Z.Z.; Guo, J.J.; Deng, J.X.; Du, T. Phylogeny and taxonomy of two new *Alternaria* (Ascomycota: Pleosporaceae) species in section *Gypsophila* from China. *Mycol. Prog.* 2021, 20, 355–363. [CrossRef]

19. Lawrence, D.P.; Rotondo, F.; Gannibal, P.B. Biodiversity and taxonomy of the pleomorphic genus *Alternaria*. *Mycol. Prog.* 2016, 15, 3. [CrossRef]

20. Ghafri, A.A.; Maharachchikunbura, S.S.; Hyde, K.D.; Nadiya, A.A.S.; Abdullah, M.A.S. A new section and a new species of *Alternaria* encountered from Oman. *Phytotaxa* 2019, 405, 279–289. [CrossRef]

21. Gannibal, P.B.; Orina, A.S.; Gasich, E.L. A new section for *Alternaria helianthi-inficiens* found on sunflower and new asteraceous hosts in Russia. *Mycol. Prog.* 2022, 21, 34. [CrossRef]

22. Hind, N. Introduction to the compositae, the largest family of flowering plants. *Curtis’s Bot. Mag.* 2018, 35, 332–338. [CrossRef]

23. Luo, H.; Xia, Z.Z.; Chen, Y.Y.; Zhou, Y.; Deng, J. Taxonomy of *Alternaria* from Compositae: Research progress. *Chin. Agric. Sci. Bull.* 2018, 34, 63–70.

24. Mackinnon, S.L.; Keifer, P.; Ayer, W.A. Components from the phytotoxic extract of *Alternaria brassicicola*, a black spot pathogen of canola. *Phytochemistry* 1999, 51, 215–221. [CrossRef]

25. Andersen, B.; Kroeger, E.; Roberts, R.G. Chemical and morphological segregation of *Alternaria alternata*, *A. gaisen* and *A. longipes*. *Mycol. Res.* 2001, 105, 291–299. [CrossRef]

26. Thomma, B.P. *Alternaria* spp.: From general saprophyte to specific parasite. *Mol. Plant Pathol.* 2003, 4, 225–226. [CrossRef] [PubMed]

27. Deng, J.X.; Li, M.J.; Paul, N.C.; Oo, M.M.; Lee, H.B.; Oh, S.K.; Yu, S.H. *Alternaria brassicifoli* spp. nov. isolated from *Brassica rapa* subsp. pekinensis in Korea. *Mycobiology* 2018, 46, 172–176. [CrossRef]

28. Cenis, J.L. Rapid extraction of fungal DNA for PCR amplification. *Nucleic Acids Res.* 1992, 20, 2380. [CrossRef] [PubMed]

29. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In *PCR Protocols: A Guide to Methods and Applications*; Innis, M.A., Gelfand, D.H., Sninsky, J.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [CrossRef]

30. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 1999, 91, 553–556. [CrossRef]

31. Berbee, M.L.; Pirseyedi, M.; Hubbard, S. *Cochliobolus* phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. *Mycologia* 1999, 91, 964–977. [CrossRef]

32. Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. *Mol. Biol. Evol.* 1999, 16, 1799–1808. [CrossRef]

33. Sung, G.H.; Sung, J.M.; Hywel-Jones, N.L.; Spatafora, J.W. A multi–gene phylogeny of *Mycosystema* (Ascomycota, fungi): Identification of localized incongruence using a combinational bootstrap approach. *Mol. Phylogenet. Evol.* 2007, 44, 1204–1223. [CrossRef] [PubMed]

34. Hall, T.A. Bioedit: A user-friendly biological sequence alignment editor and analysis program. In *Window 95/98/NT. Nucleic Acids Symp. Ser.* 1999, 41, 95–98.

35. Chun, J. Computer Assisted Classification and Identification of Actinomycetes. Ph.D. Thesis, University of Newcastle, Newcastle upon Tyne, UK, 1995. Available online: http://theses.ncl.ac.uk/jspui/handle/10443/410 (accessed on 1 May 2022).

36. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 2013, 30, 2725–2729. [CrossRef] [PubMed]

37. Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 2006, 22, 2688–2690. [CrossRef] [PubMed]

38. Rannala, B.; Yang, Z. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. *J. Mol. Evol.* 1996, 43, 304–311. [CrossRef]

39. Rambaut, A.; Drummond, A. *FigTree v.1.3.1. Institute of Evolutionary Biology*; University of Edinburgh: Edinburgh, UK, 2010.

40. Gannibal, P.B. Taxonomic studies of *Alternaria* from Russia: New species on Asteraceae. *Mycotaxon* 2010, 114, 109–114. [CrossRef]

41. Jeewon, R.; Hyde, K.D. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. *Mycosphere* 2017, 7, 1669–1677. [CrossRef]

42. Luo, H.; Xia, Z.Z.; Chen, Y.Y.; Zhou, Y.; Deng, J.X. Morphology and Molecular Characterization of *Alternaria argyranthemi* on *Chrysanthemum coronarium* in China. *Mycobiology* 2018, 46, 278–282. [CrossRef]

43. He, L.; Liu, H.F.; Htun, A.A.; Ge, H.; Deng, J.X.; Du, T. First Report of *Alternaria cinerariae* Causing Leaf Spot on *Tussilago farfara* in China. *Plant Dis.* 2020, 104, 3264. [CrossRef]

44. Lee, Y.H.; Cho, W.D.; Kim, W.K.; Jin, K.S.; Lee, E.J. Report on host-unrecorded diseases identified from economical crops in Korea. *Res. Rep. Rural Developm. Admin.* 1991, 33, 15–19.

45. Zhao, G.; Zhang, T.Y.; Cao, A.X.; Wang, H.K. Phylogenetic relationships of *Alternaria* and related genera and taxonomic status of *A. lecanthemi* inferred from ITS rDNA sequence analysis. *Mycosystema* 2006, 25, 184–191. [CrossRef]

46. Tomioka, K.; Sato, T.; Koganezawa, H. Marigold leaf spot caused by *Alternaria tagetica* new to Japan. *J. Gen. Plant Pathol.* 2000, 664, 294–298. [CrossRef]

47. Li, M.J.; Deng, J.X.; Paul, N.C.; Lee, H.B.; Yu, S.H. Characterization and pathogenicity of *Alternaria vanuatuensis*, a new record from *Allium* plants in Korea and China. *Mycobiology* 2014, 42, 412–415. [CrossRef] [PubMed]

48. Paul, N.C.; Deng, J.X.; Lee, H.B.; Yu, S.H. Characterization and pathogenicity of *Alternaria burnsi* from seeds of *Cucurbita maxima* (Cucurbitaceae) in Bangladesh. *Mycobiology* 2015, 43, 384–391. [CrossRef]