No association between COMT val158met polymorphism and suicidal behavior: meta-analysis and new data

Carlos Tovilla-Zárate1*, Isela Juárez-Rojop2, Teresa Ramón-Frias1, Mario Villar-Soto 3, Sherezada Pool-García4, Beatriz Camarena Medellín5, Alma D Genis Mendoza6, Lilia López Narvaez7 and Nicolini Humberto6

Abstract

Background: The polymorphism COMTval158met has been associated with suicidal behavior in case-control and meta-analysis studies, but results and conclusions remain controversial. The objective of this study was to examine the association between COMT val158met with suicidal behavior in a case-control study and to assess the combined evidence -this case-control study and available data from other related studies- we carried out a meta-analysis.

Methods: We conducted a case-control study with 105 patients with suicide attempts and 236 controls. Subsequently, we performed a meta-analysis of published genetic association studies by searching through Medline, PubMed and Web of Science databases.

Results: No significant differences were found in the distribution of alleles ($\chi^2 = 0.33, 1 \text{ df}, p = 0.56$) or genotypes ($\chi^2 = 2.36, 2 \text{ df}, p = 0.26$). The meta-analysis comprising 12 association studies (including the present one) showed that the risk COMTmet allele of COMTval158/met is not associated with suicidal behavior (OR: 1.09, 95% CI: 0.97-1.23), even in the absence of heterogeneity (OR: 1.09, 95% CI: 0.97-1.23).

Conclusion: Our results showed no association between COMTval158/met and suicidal behavior. However, more studies are necessary to determine conclusively an association between COMT and suicidal behavior.
catabolic enzyme for catecholaminergic neurotransmitters in the brain.

The COMT gene is located on the long arm of chromosome 22 at 22q11; it spans 28 kb and contains six exons. A common polymorphism of the COMT gene is the val108/158met variant (rs4680). This polymorphism is due to a G to A transition at codon 158 of the membrane bound form of COMT, which corresponds to codon 108 of the soluble form of COMT, resulting in a valine (val) to methionine (met) substitution [16,17]. COMT is one of the enzymes that degrade catecholamines, including dopamine [16,17]. The low activity COMT genotype (COMTmet/met), consisting of a met/met allele pair, yields a 3-4 fold lower enzyme activity compared to the high activity genotype (COMTval/val), which has a val/val allele pair, whereas the COMTval/met genotype produces intermediate enzyme activity [18].

To date, the polymorphism rs4680 of COMT has been associated with a number of disorders including schizophrenia [19], bipolar disorder [20], major depressive disorder [21], obsessive compulsive disorder [22], and Parkinson’s disease [23]. Several studies have investigated the association between rs4680 of COMT and suicidal behavior. Other COMT polymorphisms that have been investigated are rs362204 and 2097603 [24]. Actually more than fourteen case-control studies have been reported, as well as one study in trios [25]. However, the association of COMT with suicidal behavior remains controversial. In addition, two meta-analyses have been published to date [11,26]. To explore the possibility that some of these COMT variants have susceptibility for suicidal behavior, we conducted a case-control study in a Mexican population and then we used the combined evidence to perform a meta-analysis of all the published data.

Methods
Case-control study
Samples
A total of 105 patients were consecutively recruited from the outpatient service of the General Hospital of Comalcalco in the state of Tabasco, Mexico and from the National Institute of Psychiatry Ramón de la Fuente in Mexico City. These patients had attempted suicide between January and August 2010. In addition, 236 unrelated controls were recruited for this study. All subjects signed an informed consent to participate in the study after they were given a verbal and written explanation of the research objectives. To reduce ethnic variation and stratification effects, only Mexican subjects descending from Mexican parents and grandparents participated in this study. The study was approved by the local ethics committee and performed in accordance with the ethics standards laid down in the 1975 Declaration of Helsinki.

Clinical evaluation
DSM-IV Axis-I and II diagnoses were made using the Structured Clinical Interview for DSM-IV in Spanish. All patients were evaluated by a trained psychiatrist or clinical psychologists with at least a master’s level degree. Following the reports in the literature, we defined a suicide attempt as a self-harm behavior with at least some intent to end one’s life. Subjects were excluded when the self-injury behaviors were determined to have no suicidal intention or ideation [5].

A total of 105 patients (55 males, 50 females) were included in the study. Their mean age was 30.5 (11.40) years old (range: 14-59 years). DSM-IV main lifetime diagnoses of mental disorders among the patients were as follows: schizophrenia spectrum disorders (n = 50), anxiety disorders (n = 35), and undiagnosed (n = 20). The mean number of suicide attempts was 2.06. The possibility of childhood abuse sufferers was not evaluated.

Control subjects consisted of 236 volunteers (132 males, 104 females); their mean age was 34.5 (10.1) years old (range: 14-51 years). They were recruited from the Blood Donor Center of the General Hospital of Comalcalco and from the general population of the Comalcalco city area in the state of Tabasco, México. Subjects were physically healthy on medical evaluation. All were of Mexican descent and none manifested psychiatric problems, as assessed in brief interviews by psychiatrists. Informed consent was obtained from each control subject.

COMT val108/158met (rs4680) genotyping
Genomic DNA was extracted from peripheral blood leukocytes using a modified version of the protocol by Lahiri [27]. The final volume of the PCR reaction was 5 μL and consisted of 20 ng genomic DNA, 2.5 FL TaqMan Master Mix, and 0.125 FL 20× Assay made to order. The amplification was performed in 96-well plates using the TaqMan Universal Thermal Cycling Protocol. After the PCR end-point was reached, fluorescence intensity was measured with the 7500 real-time PCR system using SDS v2.1 software (Applied Biosystems). An allelic discrimination was performed resulting in the clear identification of three genotypes for COMT Val108/158Met polymorphism. All genotyping was performed blind to patient outcome. As a quality control in our genotyping analyses we used random blind duplicates.

Statistical Analysis
Hardy-Weinberg equilibrium was tested using Pearson’s goodness-of-fit chi-squared test. Chi-squared test or Fisher’s Exact test was used to compare genotype and
allele frequencies between groups. The power to detect associations given the sample size was analyzed using the Quanto 1.2 software. The power of the analysis was 0.31. The level of significance was set at 0.05.

Meta-analysis study

Identification and selection of publications

A literature search comprising from January to March 2011 was performed. The publications were identified using the following search terms in Medline, PubMed and Web of Science databases: “COMT and suicidal behavior”, “COMT and suicide”, rs4680 and suicidal behavior”, rs4680 and suicide” and “COMT Val/Met and suicide”. These words were combined to retrieve the summaries. The search also implicated the review of the bibliography cited at the end of various research articles to identify additional papers not covered by the electronic search of abstracts.

To be selected, the publications had to fulfill the following criteria: (1) to be published in peer-reviewed journals, (2) to be written in English, (3) to contain independent data, (4) to be case-control association studies in which the frequencies of three genotypes were clearly stated or could be calculated, and (5) the use of healthy individuals as controls. Besides, we included one article consisting only of cases, because the n in this study was large and raised the detection power in the meta-analysis study [28].

Data Extraction

The following data were obtained for each of the studies: authors, year of publication, region, number of cases and controls, number of alleles, male percentage, diagnostic status, and association results. These data were not always available for all studies. In cases of missing data, we contacted the respective authors to ask for the allele frequencies that were not included in the main text of the papers. One of the studies did not include a control group [29], but we made an adjustment accordingly based on the other studies in the literature that included a control group [26]. Briefly, we calculated the weighted frequency for a particular genotype from studies that included controls and applied it to the study not including a control group. We considered the number of the “virtual” control group equal to the number of patients in a specific study. Then the hypothetical number of subjects with the particular genotype frequency was assigned in proportion to the percentage of the same genotype which was obtained from the weighted analysis [30].

The outcomes of the meta-analysis were built by taking into consideration the following categories: a) exposed sick, b) exposed not-sick, c) not-exposed sick, and d) not-exposed not-sick. The “sick” term refers to subjects exhibiting suicidal behavior and the “exposed” term to the allele of risk (COMTmet158).

Data analysis

For the meta-analysis procedures, we used the EPIDAT 3.1 program http://dxsp.sergas.es. This software is freely available for epidemiologic analysis of tabulated data. Data was analyzed with the random-effects model following the reports in the literature [31,32]. Sample heterogeneity was analyzed with the Dersimonian and Laird’s Q test. The result of the Q test was complemented with graphs to help visualize those studies that favored heterogeneity. The results of the meta-analysis are expressed as an odds ratio (OR). To address the problem of publication bias, funnel plots were calculated by the EPIDAT 3.1 software. This plotting standardizes the effect of each of the published studies on the vertical axis and its corresponding precision on the horizontal axis. Likewise, we used the Egger’s test to complement the funnel plots; the Egger’s test evaluates the hypothesis of absence of bias of a publication. Finally, a chi-squared (χ2) analysis was used to calculate the Hardy-Weinberg equilibrium to evaluate genotype distribution.

Results
Case-control study

Of the 105 suicide attempt patients, 34 (32.4%) had the COMTval/val genotype, 58 (55.2%) the COMTval/met, and 13 (12.4%) the COMTmet/met type. Genotype frequencies in the patient group satisfied the Hardy-Weinberg equilibrium (p = 0.12). In the control group, 80 individuals (33.2%) presented the COMTval/val genotype, 112 (47.6%) the COMTval/met type, and 44(15.7%) the COMTmet/met type. No significant differences in genotype (χ2 = 2.36, df = 2, p = 0.26) or allele (χ2 = 0.33, df = 1, p = 0.56) frequencies were observed between patients and the control group.

Meta-analysis study

With regard to the literature search, a total of 18 papers were identified, but only 12 were included in this meta-analysis, including our case-control study [1,5,29,33-40] (Table 1). The six excluded studies did not comply with the inclusion criteria: in two of these studies genotype frequencies could not be obtained [24,25]; other study was carried out in families [41]; in other report the sample overlapped with a previous one [26]; the fifth was a meta-analysis [11], and the sixth a review [42].

The selected studies comprised a total of 2723 cases and 1886 controls. Our meta-analysis consisted of 2723 cases, 1399 more than the last meta-analysis reported in the literature [26]. We observed that in all genotyped populations, both patients and controls were in Hardy-Weinberg equilibrium (p > 0.05), excluding the controls...
We explored all populations in a combined way and we still encountered them in equilibrium (p = 0.17, and p = 0.46, respectively).

Figure 1 shows the pooled OR derived from all studies indicating a non-significant association of allele met in the COMT val/met polymorphism with suicidal behavior (Random effects model: OR: 1.07; 95% CI 0.85-1.33; p(Z) = 0.19). We observed heterogeneity in all studies (Q = 57.08, df = 1; p = 0.0005). The Egger's test indicated no evidence of publication bias (t = 1.31, df = 10; p = 0.21) (Figure 2). Therefore, we carried out a second analysis, which only included studies inside the heterogeneity curve (Nedic [33], Ono [1], Baud [36] and Nolan [37] reports were excluded).

Table 1 Descriptive characteristics of 13 studies on the role of COMT val158/met polymorphism in suicidal behavior

Study	Sample Size	Location	Diagnosis	Number of Met alleles in cases	Gender (Male/female)	Mean Age
	n	(cases-control)				
Obara 1998 [40]	12-135	Japanese	Suicide Attempt	13		
Russ 2000 [34]	51-51	Caucasians	Suicide Ideation	46	32/19	38.1
Nolan 2000 [37]	84-64	US and Finnish	Suicide Attempt	77	59/15	41
Liou 2001 [39]	62-188	Chinese, Asian	Suicide Attempt	29	26/36	36.7
Ruiescu 2003 [38]	328-149	German, Caucasian	Suicide Attempt	159	53/96	38.6
Ono 2004 [1]	163-169	Japanese, Asiatic	Completed Suicide	111	112/51	46.4
Baud 2007 [36]	427-185	Switzerland and France	Suicide Attempt	388	460	38.7
Zalsman 2008 [35]	201-119	Caucasian-European	Suicide Attempt	220	41.6	41.2
Pernoud 2010 [29]	875	France and Switzerland	Suicide Attempt	784	256/619	39.6
Lee 2011 [5]	197-170	Korean	Suicide Attempt	121	70/127	49.3
Nedik 2011 [33]	82-311	Croatian, Caucasian	Alcohol Dependence, Suicide Attempt	108	59/23	50.7
Tovilla-Zárate 2011	105-236	Mexican	Suicide Attempt	84	55/50	30.5

Figure 1 Odds ratios for the met allele of the val/158met polymorphism in the COMT gene of individuals with suicidal behavioral (Random effects model: OR: 1.07; 95% CI 0.85-1.33; p(Z) = 0.19). We observed heterogeneity in all studies (Q = 57.08, df = 1; p = 0.0005). The Egger's test indicated no evidence of publication bias (t = 1.31, df = 10; p = 0.21) (Figure 2). Therefore, we carried out a second analysis, which only included studies inside the heterogeneity curve (Nedic [33], Ono [1], Baud [36] and Nolan [37] reports were excluded).
However, we could not find an association either (OR: 1.09, 95% CI: 0.97-1.23; Z: 1.11, P(Z) = 0.26) (Table 2).

In addition, when we included an explorative analysis of each of the Caucasian samples, significant heterogeneity was encountered (Q = 26.5; df = 5; p = 0.0001). Nedic [33] and Baud [36] reports contributed to the heterogeneity. Also, we could not detect a significant association between COMTmet allele and suicidal behavior (OR: 1.10; 95% CI: 0.91-1.16; p(Z) = 0.25).

Finally, we selected a subgroup of the whole sample and performed an analysis of the studies containing only suicide attempters; however, the result was also negative (OR = 1.09, 95% CI: 0.96-1.22; Z = 0.60, P(Z) = 0.54). The same occurred without the presence of heterogeneity (Q = 6.07, df = 6, p = 0.41) (Figure 3).

Discussion

In this study, we explored the association of COMTval/met (rs4680) with suicidal behavior. First a case-control study was conducted. Additionally, we performed a meta-analysis to assess the evidence of association between COMTval/met and suicidal behavior.

We could not find any association between COMTmet or COMTval allele and suicidal behavioral in a Mexican population. To our knowledge, this is the first study addressing the genetic association between COMTval/met alleles and suicidal behavior in a Mexican population. Our results are in agreement with recent reports in the literature stating the no association of COMTval/met and suicidal behavior [26,35]. This result is not surprising considering that complex behaviors, such as suicidal behavior, are the result of a moderate number of genes that individually have small to modest effects on disease liability [26,43].

Available evidence suggests that the effect of this polymorphism on suicidal behavior may be related to the lethality of suicide attempts rather than to the risk for attempting suicide per se [11,35]. In our study we only performed an association with attempted suicide, because we wanted to establish which COMT polymorphisms were associated with suicide attempts; this could be considered as a limitation of our study. However, other study analyzing genotype differences with respect to lethality of suicide attempts or violent attempt methods reported results similar to ours [35].

It is worth mentioning the evidence provided by other studies reporting a positive association of the COMTval allele when compared to the control group [5,36-38]. But these results are controversial, since such association was observed in presence of the COMTmet allele in patients presenting alcohol dependency or other diseases [33]. These differences among studies might be explained by the different diagnostic entities used. Some studies evaluated patients with alcohol dependence, while others included patients with schizophrenia, or schizoaffective or mood disorders [33]. Other limitation could be that these association studies were conducted in various populations and different criteria were used to define the phenotypes. Other relevant factor is the study was conducted.
difference in the size of the samples. We observed that almost all studies consisted of small samples (n < 200) and some even made subdivisions within samples (gender or affective status, for example). Hence, n was very small and had a low power of association. When we detected this limitation we decided to analyze the evidence in a meta-analysis.

We tested the probability of the association of COMTmet with suicidal behavior. However, we could not find any association between these two factors. A previous meta-analysis reported a Met association with suicidal behavior [11]; however, this association is not strong because the results of this meta-analysis were highly dependent upon the inclusion of all the studies. When five of the six studies involved were individually removed from the analysis, the relationship between COMT and suicidal behavior was no longer significant [11]. Our results are in accordance with other recently published meta-analysis in which no association was found between Met or Val allele and suicidal behavior [26]. This evidence supports a lack of direct modulation of COMT on suicidal behavior.

Similarly to the results presented in a previous study, the sample sizes of the studies included in the present meta-analysis are in the low range compared to genetics studies for other diseases. Therefore, future studies comprising larger samples of completed suicide are important to determine this association. We also consider that given the small number of studies available the association is not observable.

In a first approach we observed heterogeneity; however this variation was due to four specific studies. We carried out a second analysis, in which the studies that gave rise to heterogeneity were discarded. However, no association between COMTmet and suicidal behavior was encountered. Finally, with the aim of establishing whether this association depended on completed suicide or suicide attempt, we performed a last analysis which only included suicide attempters. Once again, no association was confirmed.

Our study presents some limitations. Our case-control study lacks of a specific scale investigating suicide attempt. With regard to the meta-analysis, publication bias has to be considered, since negative studies are less likely to get published. Also, an overrepresentation of the results showing an association between the polymorphism and the investigated disorder is also possible [44]. Although the contribution covering from genetic factors to personality traits may differ between male and female subjects, we did not analyze for gender. Other limitations are inherent in many meta-analysis of association (including this one) such as their retrospective nature and the inclusion of study-level data.

Conclusion
In conclusion, our case-control study suggests no association between COMTmet and suicidal behavior in a Mexican population. This same negative association was observed in the meta-analysis. However, more comprehensive studies and larger samples are necessary to determine conclusively an association of COMT with suicidal behavior.

List of abbreviations used
COMT: catechol-o-methyl-transferase; DSM-IV: Diagnostic and statistical manual of mental disorders-IV.

Acknowledgements
The authors gratefully acknowledge our research volunteers who helped to recruit the participants in this study. The collection of data and the
genotyping of subjects were accomplished thanks to the support of grants from the PROVEP/1035/10/7315.

Author details
1Universidad Juárez Autónoma de Tabasco, División Académica Multidisciplinaria de Comalcalco, Comalcalco, Tabasco, México. 2Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, México. 3Hospital de Alta Especialidad “Gustavo A. Rovirosa” Villahermosa, Tabasco, México. 4Hospital General de Comalcalco, Comalcalco, Tabasco, México. 5Departamento de Genética Psiquiátrica, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñoz”, México D. F., México. 6Servicios de Atención Psiquiátrica, Secretaría de Salud, México D. F., México. 7Hospital General de Yajalón, Yajalón, Chiapas, México.

Authors’ contributions
TZC and CMB conceived the study, participated in its design, and helped to draft the manuscript. TZC, JRJ, and RFT helped to perform the statistical analysis and to draft the manuscript. VSM and PGS recruited participants, and helped with the integration of data and analysis. GA, LL and HN coordinated and supervised the integration of data. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 3 May 2011 Accepted: 21 September 2011 Published: 21 September 2011

References
1. Ono H, Shikawa O, Nuchida H, Ueno Y, Maeda K: Association between catechol-O-methyltransferase functional polymorphism and male suicide completers. Neuropsychopharmacology 2004, 29(7):1374-1377.
2. Arango V, Ernsberger P, Sved AF, Mann JJ: Quantitative autoradiography of alpha 1- and alpha 2-adrenergic receptors in the cerebral cortex of controls and suicide victims. Brain Res 1993, 630(1-2):271-282.
3. Lester D: The concentration of neurotransmitter metabolites in the cerebrospinal fluid of suicidal individuals: a meta-analysis. Pharmacopsychiatry 1995, 28(2):45-50.
4. Jones JS, Stanley B, Mann JJ, Frances AJ, Guido JR, Traskman-Bendz L, Winchel R, Brown RP, Stanley M: CSF 5-HIAA and HVA concentrations in elderly depressed patients who attempted suicide. Am J Psychiatry 1999, 147(9):1225-1227.
5. Lee HY, Kim YK: Gender Effect of Catechol-O-Methyltransferase Val158Met Polymorphism on Suicidal Behavior. Neuropsychobiology 2006, 63(3):177-182.
6. Savitz JB, Cupido CL, Ramases K: Trends in suicidology: personality as an endophenotype for molecular genetic investigations. PLoS Med 2006, 3(5):e107.
7. Garfinkel BD, Froese A, Hood J: Suicide attempts in children and adolescents. Am J Psychiatry 1982, 139(10):1257-1261.
8. Linkowski P, de Maertelaer V, Mendlewicz J: Suicidal behaviour in major depressive illness. Acta Psychiatr Scand 1985, 72(3):233-238.
9. McCuffin P, Marusic A, Farmer A: What can psychiatric genetics offer suicidology? Crisis 2001, 22(2):61-65.
10. Hawton K, Haw C, Houston K, Townsend E: Family history of suicidal behaviour: prevalence and significance in deliberate self-harm patients. Acta Psychiatr Scand 2002, 106(5):387-393.
11. Kia-Keating BM, Glatt SJ, Tuang MT: Meta-analyses suggest association between COMT, but not HTR1B, alleles, and suicidal behavior. Am J Med Genet B Neuropsychiatr Genet 2007, 144B(8):1048-1053.
12. Baldessarini RJ, Hennen J: Genetics of suicide: an overview. Harv Rev Psychiatry 2002, 10(1):1-13.
13. Brezo J, Kempan T, Turecki G: The genetics of suicide: a critical review of molecular studies. Psychiatr Clin North Am 2008, 31(2):179-203.
14. Roy A, Segal NL, Centenwall BS, Robinette CD: Suicide in twins. Arch Gen Psychiatry 1991, 48(1):29-32.
15. Schulsinger F, Kety SS, Rosenthal D, PH W: A family study of suicide. New York, NY: Academic Press, 1979.
16. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melén K, Julkunen I, Taskinen J: Kinetics of human soluble and membrane-bound catechol-O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995, 34(12):4020-4210.
17. Spielman RS, Weinsilboum RM: Genetics of red cell COMT activity: analysis of thermal stability and family data. The American Journal of Medical Genetics 1981, 10(3):279-290.
18. Lachman HM, Papolos DF, Saito T, Yu YM, Szumilanski CL, Weinsilboum RM: Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996, 6(3):243-250.
19. Sagud M, Muck-Seler D, Mihaljevic-Peles A, Vukan-Cusa B, Zivkovic M, Jakovljevic M, Pavlic N: Catechol-O-methyl transferase and schizophrenia. Psychiatr Danub 2010, 22(2):270-274.
20. Houck P: Role of the COMT gene Val158Met polymorphism in mental disorders: a review. Eur Psychiatry 2007, 22(5):276-281.
21. Kocaba NA, Fachtel C, Barreto M, Kasper S, Linotte S, Mendlewicz J, Noro M, Osipow P, Souery D, Zohar J, Massat I: The impact of catechol-O-methyltransferase SNPs and haplotypes on treatment response phenotypes in major depressive disorder: a case-control association study. Int Clin Psychopharmacol 2010, 25(4):218-227.
22. Pooley EC, Fineberg N, Harrison PJ: The met(158) allele of catechol-O-methyltransferase (COMT) is associated with obsessive-compulsive disorder in men: case-control study and meta-analysis. Mol Psychiatry 2007, 12(6):556-561.
23. Williams-Gray CH, Hampshire A, Barker RA, Owen AM: Attentional control in Parkinson’s disease is dependent on COMT val 158 met genotype. Brain 2008, 131(Pt 2):597-608.
24. De Luca V, Tharmalingam S, Müller DJ, Wong G, de Bartolomeis A, Kennedy JL: Gene-gene interaction between MAOA and COMT in suicidal behavior: analysis in schizophrenia. Brain Res 2006, 1097(1):26-30.
25. De Luca V, Tharmalingam S, Sicard T, Kennedy JL: Gene-gene interaction between MAOA and COMT in suicidal behavior. Neurosci Lett 2005, 383(1-2):151-154.
26. Galati R, Porcelli S, Giegling I, Hartmann AM, Müller HJ, De Ronchi D, Serretti A, Rujescu D: Catechol-O-methyltransferase gene modulation on suicide behavior and personality traits: review, meta-analysis and association study. J Psychiatr Res 2011, 45(3):309-321.
27. Lahiri DK, Nurnberger Jr Jr: A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 1991, 19(19):5444.
28. Perroud N, Jaussent I, Guillaume S, Bellivier F, Baud P, Jollant F, Lebovier M, Lewis OM, Malafosse A, Courtet P: COMT but not serotonin-related genes modulates the influence of childhood abuse on anger traits. Genes Brain Behav 2010, 9(2):193-202.
29. Perroud N, Salzmann A, Saiz PA, Baca-Garcia E, Sarchiapone M, Garcia-Villoria MP, Carl V, Vaquer-Lorenzo C, Jaussent I, Mouton D, Vezzaz M, Huguelet P, Courtet P, Malafosse A: Rare genotype combination of the serotonin transporter gene associated with treatment response in severe personality disorder. Am J Med Genet B Neuropsychiatr Genet 2010, 153B(8):1494-1497.
30. Serretti A, Chiesa A: Treatment-emergent sexual dysfunction related to antidepressants: a meta-analysis. J Clin Psychopharmacol 2009, 29(3):259-266.
31. Tovilla-Zarate C, Camarena B, Apqurian R, Nicolini H: Association study and meta-analysis of the apolipoprotein gene and schizophrenia. Genes Med 2008, 10(2):79-83.
32. Kavoussi FR, Ioannidis JP: Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Hum Genet 2008, 123(1):1-14.
33. Nedic G, Nikolac M, Svilgin KN, Muck-Seler D, Borovecki F, Pavic N: Association study of a functional catechol- O-methyltransferase (COMT) Val108/158Met polymorphism and suicide attempts in patients with alcohol dependence. Int J Neuropsychopharmacol 2011, 14(3):377-388.
34. Russ MJ, Lachman HM, Kashdan T, Saito T, Bjamakovic-Kacila S: Analysis of catechol-O-methyltransferase and 5-hydroxytryptamine transporter polymorphisms in patients at risk for suicide. Psychiatr Res 2000, 93(1):73-78.
35. Zalzman G, Huang YY, Oquendo MA, Brent DA, Giner L, Hagghighi F, Burke AK, Ellis SP, Currer D, Mann J: No association of COMT Val158Met

Tovilla-Zarate et al. BMC Psychiatry 2011, 11:151 http://www.biomedcentral.com/1471-244X/11/151 Page 7 of 8
polymorphism with suicidal behavior or CSF monoamine metabolites in mood disorders. Arch Suicide Res 2008, 12(4):327-335.

36. Baud P, Courret P, Perroud N, Jollant F, Buresi C, Malafosse A: Catechol-O-methyltransferase polymorphism (COMT) in suicide attempters: a possible gender effect on anger traits. Am J Med Genet B Neuropsychiatr Genet 2007, 144B(8):1043-1047.

37. Nolan KA, Volavka J, Czobor P, Cseh A, Lachman H, Saito T, Tilhonen J, Putkonen A, Hallikainen T, Kotilainen I, Rasen P, Isohanni M, Jarvelin MR, Karvonen MK: Suicidal behavior in patients with schizophrenia is related to COMT polymorphism. Psychiatr Genet 2000, 10(3):117-124.

38. Rujescu D, Giegling I, Getti A, Hartmann AM, Moller HJ: A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits. Biol Psychiatry 2003, 54(1):34-39.

39. Nolan KA, Volavka J, Czobor P, Cseh A, Lachman H, Saito T, Tilhonen J, Putkonen A, Hallikainen T, Kotilainen I, Rasen P, Isohanni M, Jarvelin MR, Karvonen MK: Suicidal behavior in patients with schizophrenia is related to COMT polymorphism. Psychiatr Genet 2000, 10(3):117-124.

40. Nolan KA, Volavka J, Czobor P, Cseh A, Lachman H, Saito T, Tilhonen J, Putkonen A, Hallikainen T, Kotilainen I, Rasen P, Isohanni M, Jarvelin MR, Karvonen MK: Suicidal behavior in patients with schizophrenia is related to COMT polymorphism. Psychiatr Genet 2000, 10(3):117-124.

41. Ohara K, Nagai M, Suzuki Y: Low activity allele of catechol-o-methyltransferase gene and Japanese unipolar depression. Neuroreport 1998, 9(7):1305-1308.

42. De Luca V, Strauss J, Kennedy JL: Power based association analysis (PBAT) of serotonergic and noradrenergic polymorphisms in bipolar patients with suicidal behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32(1):197-203.

43. Giegling I, Olgiati P, Hartmann AM, Calati R, Moller HJ, Rujescu D, Serretti A: Personality and attempted suicide. Analysis of anger, aggression and impulsivity. J Psychiatr Res 2009, 43(16):1262-1271.

44. Kendler KS: "A gene for...": the nature of gene action in psychiatric disorders. Am J Psychiatry 2005, 162(7):1243-1252.

45. Van Kerkhoven LA, Laheij RJ, Jansen JB: Meta-analysis: a functional polymorphism in the gene encoding for activity of the serotonin transporter protein is not associated with the irritable bowel syndrome. Aliment Pharmacol Ther 2007, 26(7):979-986.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-244X/11/151/prepub