Recent, it was published in Circulation that empagliflozin inhibits H₂O₂-induced cardiac late sodium current (late I_{Na}). Using computational modeling and point mutagenic approaches, Philippaert et al suggested a possible site of empagliflozin-binding within Na$_v$1.5 similar to that of local anesthetics, supportive of direct drug binding to Na$_v$1.5, although this remains to be determined conclusively and alternative mechanisms may exist. We have previously shown that CaMKII (Ca/calcium-dependent kinase II) binds to Na$_v$1.5, stimulates late I_{Na}, and affects its H$_2$O$_2$-dependent regulation. We also demonstrated that empagliflozin inhibits CaMKII in failing human and murine cardiomyocytes.

Here we show that inhibition of H$_2$O$_2$-induced late I_{Na} by empagliflozin cannot solely be mediated by direct drug binding but depends on CaMKII-dependent phosphorylation of Na$_v$1.5 at serine 571. We demonstrate that empagliflozin inhibits late I_{Na} in patients with aortic stenosis (AS) and phenotype features of heart failure (HF) with hypertrophy and preserved ejection fraction (59.4±1.7%). Murine models of CaMKIIδ knock-out (CaMKIIδ$^{-/-}$), inhibition of CaMKII-dependent Na$_v$1.5 phosphorylation at serine 571 (S571A), and with CaMKII phosphomimetic Na$_v$1.5 S571E mutation were tested for involvement of CaMKII-Na$_v$1.5 phosphorylation. Isolated ventricular myocytes were incubated (30 min) with empagliflozin (1 µmol/L) or control (dimethyl sulfoxide). Some cardiomyocytes were incubated with inhibitors of open-state Na channel inactivation (ATX-II or veratridine) or lidocaine (100 µmol/L, 30 min) for direct Na channel inhibition. H$_2$O$_2$ (100 µmol/L, 5 min) was used to induce reactive oxygen species, which stimulate late I_{Na} in HF via CaMKII3 (tested with CaMKII-inhibitor myristoylated-autocamtide-2-related inhibitory peptide (AiP); 2 µmol/L, 30 min). For some experiments, empagliflozin was washed in to ATX-II or H$_2$O$_2$ preincubated myocytes. Late I_{Na} was measured as described previously.

Resting membrane potential was held at ~120 mV and I_{Na} elicited by depolarizing to ~20 mV for 1000 ms, quantified by integrating from 100 to 500 ms of the start of depolarization (normalized to membrane capacitance). Western blots used human ventricular tissue exposed to empagliflozin/vehicle (30 min). Data were analyzed using mixed-effects analysis with Holm-Sidak, linear mixed model with random factor “individual” and Sidak correction, or paired t test (GraphPad Prism 9).

We demonstrate that late I_{Na} in ventricular myocytes from patients with AS similar to CaMKII-inhibitor AiP (Figure [A]). ATX-II-dependent (Figure [B]) enhancement of late I_{Na} in
Figure. Late \(I_{\text{Na}} \) inhibition by empagliflozin requires CaMKII.

A. Original recordings and mean data of empagliflozin- or AiP-mediated inhibition of late \(I_{\text{Na}} \) in human ventricular cardiomyocytes from patients with AS (n=patients). B. Original recordings and mean data of late sodium current (late \(I_{\text{Na}} \)) in murine cardiomyocytes from wild-type (WT) or CaMKII\(\delta \)-/- mice (n=cells per mice). The ATX-dependent enhancement of late \(I_{\text{Na}} \) could not be blocked by empagliflozin. C. In contrast, the \(\text{H}_2\text{O}_2 \)-dependent stimulation of late \(I_{\text{Na}} \) was blocked by CaMKII inhibition (AiP, CaMKII\(\delta \)-/-), by transgenic inhibition of CaMKII-dependent Na\(\text{V} \)1.5 phosphorylation (S571A), or in the presence of empagliflozin. D. In contrast with local anesthetic lidocaine, neither empagliflozin nor AiP could block enhanced late \(I_{\text{Na}} \) in mice with phosphomimetic substitution of glutamic acid for serine at 571 (S571E). E and F, Western blots of cardiomyocytes on empagliflozin show reduced CaMKII-autophosphorylation (T287) and reduced CaMKII-dependent Na\(\text{V} \)1.5 phosphorylation. For comparison of multiple groups, mixed-effects analysis plus Holm-Sidak (A) or linear mixed model plus Sidak were performed. For comparison of 2 groups, paired \(t \) test was done (F). A indicates ampere; AiP, autocamtide-2-related inhibitory peptide; AS, aortic stenosis; ATX II or ATX, Anemonia viridis toxin 2; CaMKII, Ca/calmodulin-dependent kinase II; CaMKII\(\delta \)-/-, CaMKII delta knock out \(\delta \); Empa; Empa, empagliflozin; F, farad; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; HF, heart failure; kDa= kilo Dalton; ms, miliseconds; p, phosphorylated; pA, picoampere; S571A and S571E: Nav1.5 with a phosphomimetic mutation at Ser571 (S571E), or Nav1.5 with the phosphorylation site ablated (S571A); V, vehicle; and WT, wildtype.
murine wild-type cardiomyocytes was not affected by empagliflozin (not even at 10 and 100 µmol/L), or after wash-in (at 1 µmol/L) to ATX-II preincubated myocytes, which would be expected if empagliflozin were a direct Na\textsubscript{\text{\text{\text{Na}}}} inhibitor. Moreover, wash-in of empagliflozin (up to 10 µmol/L) also did not inhibit late Na\textsubscript{\text{\text{\text{Na}}}} in myocytes preincubated with a moderate concentration of veratridine (16 nmol/L, experimentally determined as EC\textsubscript{50} by dose-response; data not shown). In sharp contrast, both veratridine and ATX-II-enhanced late Na\textsubscript{\text{\text{Na}}} were blocked by lidocaine (not shown). Empagliflozin robustly inhibited H\textsubscript{2}O\textsubscript{2}-induced late Na\textsubscript{\text{\text{Na}}} (Figure [C]), with maximal efficacy at 6 minutes but not at 2 minutes after onset of exposure (late Na\textsubscript{\text{\text{Na}}} integral during wash-in: 0 minutes, −50.8±4.3 A*F−1[ampere·farad]·ms; 2 minutes, −39.9±4.6 A*F−1·ms, \textit{P}=0.0934 versus 0 minutes; 4 minutes, −24.2±4.6 A*F−1·ms, \textit{P}=0.0007 versus 0 minutes; 6 minutes, −17.2±4.0 A*F−1·ms, \textit{P}<0.0001 versus 0 minutes, n=6). No additional effect of empagliflozin on late Na\textsubscript{\text{\text{Na}}} was observed with AIP (not shown) or in myocytes lacking either CaMKII\textsubscript{\text{\text{\text{δ}}}} (CaMKII\textsubscript{\text{\text{\text{δ}}}−/−}) or CaMKII-dependent Na\textsubscript{\text{\text{\text{Na}}}} phosphorylation at serine 571 (S571A, Figure [C]). Accordingly, the enhanced late Na\textsubscript{\text{\text{Na}}} in mice with CaMKII phosphomimetic Na\textsubscript{\text{\text{\text{Na}}}+/−}S571E was blocked by neither empagliflozin nor AIP (Figure [D]). In contrast, lidocaine inhibited late Na\textsubscript{\text{\text{Na}}} in S571E cells, underscoring that empagliflozin primarily acts by CaMKII-Na\textsubscript{\text{\text{\text{Na}}}} phosphorylation. Empagliflozin dose-response revealed an IC\textsubscript{50} for inhibition of H\textsubscript{2}O\textsubscript{2}-dependent late Na\textsubscript{\text{\text{Na}}} of 0.086 µmol/L in murine myocytes (not shown). Empagliflozin inhibited CaMKII autophosphorylation and CaMKII-dependent phosphorylation of Na\textsubscript{\text{\text{\text{Na}}}} in AS and HF (Figure [E and F]).

In conclusion, inhibition of late Na\textsubscript{\text{\text{Na}}} by empagliflozin is at least in part caused by inhibition of CaMKII-dependent regulation of Na\textsubscript{\text{\text{\text{Na}}}}.2,4 If cardiac Na channels were solely directly inhibited, empagliflozin, like local anesthetics, should have blocked ATX-II/veratridine–stimulated late Na\textsubscript{\text{\text{Na}}} but it did not. Nevertheless, the target of empagliflozin in the heart remains unclear,5 and further research is needed to better understand direct versus indirect effects on late Na\textsubscript{\text{\text{Na}}}.

We demonstrate that empagliflozin also inhibits late Na\textsubscript{\text{\text{Na}}} in patients with AS and features of HF with preserved ejection fraction, which may reduce the propensity for arrhythmias and contribute to the positive results of the EMPEROR-Preserved trial (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Preserved Ejection Fraction).

ARTICLE INFORMATION

Affiliations

Department of Internal Medicine II (J.M., M.J.B., SP, TS, MT, SS, L.S.M., SW) and Department of Cardiothoracic Surgery (Z.P.), University Medical Center Regensburg, Germany, Davis Heart and Lung Research Institute, Ohio State University, Columbus (P.J.M., HM, TJ.H.)

Acknowledgments

J.M., M.J.B., and S.W. designed experiments, interpreted data, wrote the article, and are responsible for the integrity of the article. J.M., M.J.B., TS, MT, ZP, TJ.H., HM, and SP acquired data and revised the article. SS, PJ.M., and L.S.M. revised the article for critical intellectual content.

Sources of Funding

J.M. is funded by the German Cardiac Society Clinician Scientist program and by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant MU 4555/2-1. L.S.M. is funded by DFG grant MA1982/5-1. S.W. and L.S.M. are funded by SFB 1350 TPA6 and the University of Regensburg ReForm C program. S.W. is funded by DFG grants WA 2539/4-1, 5-1, 7-1, and 8-1. M.J.B. is supported by German Heart Foundation/German Foundation of Heart Research grant F/50/20. S.P., TS, and MT are funded by the Else-Kröner-Fresenius Stiftung (EKFS, 2019_A84). S.S. is funded by DFG (SO 1223/4-1) and EKFS (2017_A137). P.J.M. is funded by National Institute of Health grant R35 HL135754 and by Leducq Foundation. T.J.H. is funded by National Institute of Health grants R01 HL156652 and R01 HL135096.

Disclosures

None.

REFERENCES

1. Philippaert K, Kayaanamooorthy S, Fatehi M, et al. The cardiac late sodium channel current is a molecular target for the sodium-glucose co-transporter 2 inhibitor empagliflozin. Circulation. 2021. Accessed May 21, 2021. https://doi.org/10.1161/CIRCULATIONAHA.121.053350

2. Wagner S, Dybkova N, Rasenack E, Jacobshagen C, Fabritz L, Kirchhof P, Maier S, Zhang T, Hasenfuss G, Brown JH, Ca/calmodulin-dependent protein kinase II regulates cardiac Na channels. J Clin Investig. 2006;116:3127–3138. doi: 10.1172/JCI26620

3. Wagener S, Ruff HM, Weber SL, Belmann S, Sowa T, Schulte T, Anderson ME, Grandi E, Bers DM, Baccs J. Reactive oxygen species–activated Ca/calmodulin-dependent kinase II is required for late Na\textsubscript{\text{\text{Na}}} augmentation leading to cellular Na and Ca overload. Circ Res. 2011;108:555–565. doi: 10.1161/CIRCRESAHA.110.221911

4. Mustroph J, Wagemann O, Lücht CM, Trum M, Hammer KP, Sag CM, Lebek S, Tarnowski D, Reinders J, Perbellini F. Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Heart Failure. 2018;5:642–648. doi: 10.1002/ehf.212336

5. Lopaschuk GD, Subodh V. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl Sci. 2020;5:632–644. doi: 10.1016/j.jacbts.2020.02.004