Spherical orbits and representations of $\mathcal{U}_\varepsilon(\mathfrak{g})$

N. CANTARINI∗ G. CARNOVALE† M. COSTANTINI‡

Abstract

Let $\mathcal{U}_\varepsilon(\mathfrak{g})$ be the simply connected quantized enveloping algebra at roots of one associated to a finite dimensional complex simple Lie algebra \mathfrak{g}. The De Concini-Kac-Procesi conjecture on the dimension of the irreducible representations of $\mathcal{U}_\varepsilon(\mathfrak{g})$ is proved for the representations corresponding to the spherical conjugacy classes of the simply connected algebraic group G with Lie algebra \mathfrak{g}. We achieve this result by means of a new characterization of the spherical conjugacy classes of G in terms of elements of the Weyl group.

Mathematics Subject Classification (2000): 17B37 (primary), 17B10 (secondary).

Introduction

Since their appearance in the mid 80’s quantum groups have been extensively investigated. In particular the representation theory of the quantized enveloping algebra $\mathcal{U}_\varepsilon(\mathfrak{g})$, as introduced in [16], and of the quantum function algebra $\mathcal{F}_\varepsilon[G]$ ([22]) has been deeply studied by many authors. Here \mathfrak{g} is a simple complex Lie algebra, G is the corresponding simple simply-connected algebraic group, and ε is a primitive ℓ-th root of unity, with ℓ an odd integer strictly greater than 1. However, while the irreducible representations of $\mathcal{F}_\varepsilon[G]$ are well described ([23]), the representation theory of $\mathcal{U}_\varepsilon(\mathfrak{g})$ is far from being understood. In this context there is a procedure to associate a certain conjugacy class \mathcal{O}_V of G to each simple $\mathcal{U}_\varepsilon(\mathfrak{g})$-module V. The De Concini-Kac-Procesi conjecture asserts that $\ell \dim \mathcal{O}_V$ divides $\dim V$. At present the conjecture has been proved only in some cases, namely for the conjugacy classes of maximal dimension - the regular orbits - ([19]), for the subregular unipotent orbits in type A_n when ℓ is a power of a prime ([10]), for all orbits in A_n when ℓ is a prime ([8]), and for the conjugacy classes \mathcal{O}_g of $g \in SL_n$ when the conjugacy class of the unipotent part of g is spherical ([9]). We recall that a conjugacy class \mathcal{O} in G is called spherical if there exists a Borel subgroup of G with a dense orbit in \mathcal{O}. The proof of the conjecture in [19] makes use of the representation theory of the quantized Borel subalgebra \mathcal{B}_ε introduced in [21]. This method works for representations corresponding to unipotent spherical orbits and this underlines the correspondence between the geometry of the conjugacy class and the structure of the corresponding irreducible representations.

The same approach is extended in the present paper to the case of any simple Lie algebra \mathfrak{g} and any spherical conjugacy class of G. For this purpose we make use of the analysis of the spherical conjugacy classes in G. In order to determine the semisimple ones we use the classification of spherical pairs (G, H) where H is a closed connected reductive subgroup of G of the same rank (see [32], [11]). On the other hand the spherical unipotent conjugacy classes (or equivalently the spherical nilpotent adjoint orbits in \mathfrak{g}) have been classified by Panyushev in [37] (see also [39] for a proof which does not rely on the classification of
nilpotent orbits). We finally determine the remaining spherical conjugacy classes in Section 2.3.

Our strategy in the proof of the De Concini-Kac-Procesi conjecture for representations corresponding to spherical orbits relies on a so far unknown characterization of these orbits in terms of elements of the Weyl group W of G. More precisely, let us fix a pair of opposite Borel subgroups (B, B^-). If \mathcal{O} is any conjugacy class in G, there exists a unique element $z = z(\mathcal{O}) \in W$ such that $\mathcal{O} \cap BzB$ is open dense in \mathcal{O}. We give a characterization of spherical conjugacy classes in the following theorem:

Theorem 1. Let \mathcal{O} be a conjugacy class in G, $z = z(\mathcal{O})$. Then \mathcal{O} is spherical if and only if $\dim \mathcal{O} = \ell(z) + rk(1 - z)$.

Here $\ell(z)$ denotes the length of z and $rk(1 - z)$ denotes the rank of $1 - z$ in the standard representation of W. In order to make use of the representation theory of B_z, we show that if \mathcal{O} is a spherical conjugacy class, then $\mathcal{O} \cap BzB \cap B^{-}$ is always non-empty. As a consequence of this fact we obtain our main result on the representation theory of \mathcal{O}:

Theorem 2. Assume \mathfrak{g} is a finite dimensional simple complex Lie algebra and ℓ is a good integer. If V is a simple $\mathcal{U}_\ell(\mathfrak{g})$-module whose associated conjugacy class \mathcal{O}_V is spherical, then $\ell \frac{\dim \mathcal{O}_V}{\dim V}$ divides $\dim V$.

The paper is structured as follows. In Section 1 we introduce notation and recall the classification of the spherical nilpotent orbits of \mathfrak{g}. In Section 2 the spherical conjugacy classes of G are analyzed and the main theorems are proved. In establishing Theorem 1 we shall deal with the classical and the exceptional cases separately and we shall consider first the unipotent conjugacy classes of G, then the semisimple conjugacy classes and, finally, the conjugacy classes of G which are neither unipotent nor semisimple. Section 2.3 is dedicated to the analysis of the properties of the correspondence $\mathcal{O} \rightarrow z(\mathcal{O})$ when \mathcal{O} is a spherical conjugacy class. In Section 3 the De Concini-Kac-Procesi conjecture is proved for representations corresponding to spherical conjugacy classes. The proof is then extended, using the De Concini-Kac reduction theorem ([17]), to a larger class of representations (see Corollary 3.6). As a consequence, the De Concini-Kac-Procesi conjecture is proved in type C_2.

As far as notation and terminology are concerned we shall follow [16] and [27]. In particular for the definition of the classical groups we choose the bilinear forms associated to the following matrices with respect to the canonical bases:

$$
\begin{pmatrix}
0 & I_n \\
-I_n & 0
\end{pmatrix}
$$

for C_n,

$$
\begin{pmatrix}
0 & I_n \\
I_n & 0
\end{pmatrix}
$$

for D_n,

$$
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & I_n \\
0 & I_n & 0
\end{pmatrix}
$$

for B_n.

In each case we fix the Borel subgroup corresponding to the set of simple roots as described in [27] §12.1.

Acknowledgements. The authors would like to thank Andrea Maffei for helpful discussions and suggestions.

1 Preliminaries

Let us introduce the objects of our investigation. Let A be an $n \times n$ Cartan matrix and let \mathfrak{g} be the associated simple complex Lie algebra, with Cartan subalgebra \mathfrak{h}. Let Φ be the set of roots relative to \mathfrak{h}, Φ^+ a fixed set of positive roots and $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ the corresponding set of simple roots. Let G be a reductive algebraic group with Lie algebra \mathfrak{g}, T the maximal torus with Lie algebra \mathfrak{h}, B the Borel subgroup determined by Φ^+ and B^- the Borel subgroup opposite to B. Let U (resp. U^-) be the unipotent radical of B (resp. B^-).
Let W be the Weyl group of g and let us denote by s_α the reflection corresponding to the root α. By $\ell(w)$ we shall denote the length of the element $w \in W$ and by $rk(1-w)$ we shall mean the rank of $1-w$ in the standard representation of the Weyl group. By w_0 we shall denote the longest element in W. If $N = N(T)$ is the normalizer of T in G then $W = N/T$; given an element $w \in W$ we shall denote a representative of w in N by \dot{w}. For any root α of g we shall denote by $x_\alpha(t)$ the elements of the corresponding root subgroup X_α of G. We shall choose the representatives $s_\alpha \in N$ of the reflection $s_\alpha \in W$ as in [11 Theorem 7.2.2]. In particular we recall that the Weyl group of Sp_{2n} (resp. SO_{2n}) can be identified with the group of permutations σ in the symmetric group S_{2n} such that $\sigma(n+i) = \sigma(i) \pm n$ for all $1 \leq i \leq n$ (resp. $\sigma(n+i) = \sigma(i) \pm n$ and $\# \{i \leq n \mid \sigma(i) > n\}$ is even) and it is exactly for these elements that one can choose a monomial representative in Sp_{2n} (resp. SO_{2n}). For further details see [25, p. 397]. In case of ambiguity we will denote the Weyl group (resp. Borel subgroups) of an algebraic group K by $W(K)$ (resp. $B(K)$, $B^-(K)$).

In order to describe the unipotent conjugacy classes of G we will make use of their standard descriptions in terms of Young diagrams and weighted Dynkin diagrams [12 §13.1, §5.6]. For the dimension of these classes we will refer to [12 §13.1].

Definition 1.1 Let K be a connected algebraic group over \mathbb{C} and let H be a closed subgroup of K. The homogeneous space K/H is called spherical if there exists a Borel subgroup of K with a dense orbit.

Let us recall that the sphericity of K/H depends only on the Lie algebras of K and H. By an abuse of notation, in order to lighten the presentation, we shall identify isogenous groups whenever convenient.

If g is of classical type its spherical nilpotent orbits are classified in the following theorem:

Theorem 1.2 [37 §4] The spherical nilpotent orbits in type A_n and C_n are those corresponding to Young diagrams with at most two columns. The spherical nilpotent orbits in type B_n and D_n are those corresponding to Young diagrams with at most two columns or to Young diagrams with three columns and only one row with three boxes.

In order to deal with the exceptional Lie algebras we shall also make use of the following theorem:

Theorem 1.3 [38 Theorem 3.2] The spherical nilpotent orbits in g are those of type $rA_1 + sA_1$.

2 Spherical conjugacy classes

Definition 2.1 We say that an element $x \in G$ lies over an element $w \in W$ if $x \in B\dot{w}B$.

Let \mathcal{O} be a conjugacy class in G. There exists a unique element $z = z(\mathcal{O}) \in W$ such that $\mathcal{O} \cap B\dot{z}B$ is open dense in \mathcal{O}. In particular

$$\overline{\mathcal{O}} = \mathcal{O} \cap B\dot{z}B \subseteq B\dot{z}B.$$

(2.1)

It follows that if y is an element of $\overline{\mathcal{O}}$ and $y \in B\dot{w}B$, then $w \leq z$ in the Chevalley-Bruhat order of W.

Let us observe that if \mathcal{O} is a spherical conjugacy class of G and if $B.x$ is the dense B-orbit in \mathcal{O}, then $B.x \subseteq B\dot{z}B$.
Theorem 2.2 Suppose that \mathcal{O} contains an element $x \in B\dot{w}B$. Then

$$\dim B.x \geq \ell(w) + rk(1 - w).$$

In particular $\dim \mathcal{O} \geq \ell(w) + rk(1 - w)$. If, in addition, $\dim \mathcal{O} \leq \ell(w) + rk(1 - w)$ then \mathcal{O} is spherical, $w = z(\mathcal{O})$ and $B.x$ is the dense B-orbit in \mathcal{O}.

Proof. Let $U^w = U \cap \dot{w}U\dot{w}^{-1}$ and let $B^w = U^wT$. Let us estimate the dimension of the orbit $B^w.x$.

Step 1. The centralizer $C_{B^w}(x)$ is contained in a maximal torus.

Let $\bar{u} \bar{w} \bar{b}$ be the unique decomposition of x in $U^w \dot{w}B$ and let u be a unipotent element in $C_{B^w}(x)$. Then

$$u\bar{w}b = ux = xu = \bar{w}bu.$$

By the uniqueness of the decomposition it follows that $u = 1$, since $bu \in B$ and $u \in U^w$. Therefore the unipotent radical of $C_{B^w}(x)$ is trivial and, by [28, Proposition 19.4(a)], $C_{B^w}(x)$ is contained in a maximal torus.

Step 2. We have: $\dim C_{B^w}(x) \leq n - rk(1 - w)$.

Without loss of generality we may assume that $C_{B^w}(x)$ is contained in T. Let $t \in C_{B^w}(x)$. Then $xtx^{-1} = t$ and, by [41, §3.1], $\dot{w}t\dot{w}^{-1} = t$. Therefore $C_{B^w}(x) \subset T^w$, where

$$T^w = \{t \in T : \dot{w}t\dot{w}^{-1} = t\}.$$

thus $\dim C_{B^w}(x) \leq \dim T^w = n - rk(1 - w)$.

Now let us observe that:

$$\dim B^w.x = \dim B^w - \dim C_{B^w}(x) = \ell(w) + n - \dim C_{B^w}(x) = \ell(w) + n - n + rk(1 - w) = \ell(w) + rk(1 - w).$$

It follows that if, in addition, $\ell(w) + rk(1 - w) \geq \dim \mathcal{O}$, then $\dim C_{B^w}(x) = \dim T^w$ and $\dim \mathcal{O} = \ell(w) + rk(1 - w)$. In particular $B.x$ is the dense B-orbit in \mathcal{O}. □

Proposition 2.3 Let \mathcal{O} be a conjugacy class, $z = z(\mathcal{O})$. If there exists an element $w \in W$ such that $w \leq z$ and $\dim \mathcal{O} \leq \ell(w) + rk(1 - w)$, then \mathcal{O} is spherical with $\dim \mathcal{O} = \ell(w) + rk(1 - w) = \ell(z) + rk(1 - z)$.

Proof. From $w \leq z$ it follows that $\ell(w) + rk(1 - w) \leq \ell(z) + rk(1 - z)$. Indeed it is enough to consider the case $\ell(z) = \ell(w) + 1$: then $rk(1 - z) = rk(1 - w) + 1$ so that either $\ell(z) + rk(1 - z) = \ell(w) + rk(1 - w) + 2$ or $\ell(z) + rk(1 - z) = \ell(w) + rk(1 - w)$ and the inequality follows. Therefore $\dim \mathcal{O} \leq \ell(w) + rk(1 - w) \leq \ell(z) + rk(1 - z)$. By Theorem 2.2 we obtain

$$\dim \mathcal{O} = \ell(z) + rk(1 - z) = \ell(w) + rk(1 - w).$$

□

Let us observe that it may happen that $w \neq z$.

Corollary 2.4 Let \mathcal{O} be a conjugacy class, $z = z(\mathcal{O})$. Let w_1, \ldots, w_k be elements of W such that $\mathcal{O} \cap B\dot{w}_i B \neq \emptyset$ for $i = 1, \ldots, k$, and let us consider the set X of minimal elements in

$$\{w \in W : w \geq w_i, i = 1, \ldots, k\}.$$

If for every $w \in X$ we have $\dim \mathcal{O} \leq \ell(w) + rk(1 - w)$, then \mathcal{O} is spherical.

Proof. Since $w_i \leq z$ for $i = 1, \ldots, k$, there exists $w \in X$ such that $w \leq z$. Then we conclude by Proposition 2.3. □
Corollary 2.5 Let Ω be a conjugacy class. Let w_1, w_2 be elements of W such that $\Omega \cap Bw_iB \neq \emptyset$ for $i = 1, 2$. If
\[
\{w \in W \mid w \geq w_i, \ i = 1, 2\} = \{w_0\}
\]
then $z(\Omega) = w_0$. If, in addition, $\dim \Omega \leq \ell(w_0) + rk(1 - w_0)$ then Ω is spherical. □

Definition 2.6 Let Ω be a conjugacy class. We say that Ω is well-placed if there exists an element $w \in W$ such that
\[
\Omega \cap B^- \cap BwB \neq \emptyset \text{ and } \dim \Omega = \ell(w) + rk(1 - w).
\]

It follows from Definition 2.6 and Theorem 2.2 that if a conjugacy class Ω is well-placed then it is spherical and $z(\Omega) = w$. Our aim is to show that every spherical conjugacy class is well-placed.

In the sequel we will make use of following lemma:

Lemma 2.7 Let $\phi : G_1 \rightarrow G_2$ be an isogeny of reductive algebraic groups. Let $x_1 \in G_1$, $x_2 = \phi(x_1)$ and let Ω_{x_1} be the conjugacy class of x_1 in G_1. Let $w \in W = W(G_1) = W(G_2)$ and let \bar{w} be a representative of w in G_1. Then $B(G_1)\bar{w}B(G_1) \cap B^-(G_1) \cap \Omega_{x_1} \neq \emptyset$ if and only if $B(G_2)\bar{w}B(G_2) \cap B^-(G_2) \cap \Omega_{x_2} \neq \emptyset$. □

2.1 Unipotent conjugacy classes

In view of Definition 2.6 we begin this section with a result concerning the intersection between U^- and the (unique) dense B-orbit in a spherical unipotent conjugacy class.

Lemma 2.8 Let Ω be a unipotent spherical conjugacy class, $B.x$ the (unique) dense B-orbit in Ω. Then $B.x \cap U^-$ is not empty.

Proof. Let $g \in \Omega$ and let P be the canonical parabolic subgroup of G associated to g (see §2.1 and §2.3.1). Then g lies in the unipotent radical P^u of P, and $H = C_G(g) \leq P$. Since Ω is spherical, there exists a Borel subgroup B_1 of G such that HB_1 is dense in G. In particular, PB_1 is dense in G. Without loss of generality, we may assume $P \supseteq B$, $P = P_{J_1}$ with $J_1 \subseteq \{\alpha_1, \ldots, \alpha_n\}$ say, and $B_1 = \tau B^-$, following the notation in [12] §2.8 (here we have $J_2 = \emptyset$). In our case the subset K of $\{\alpha_1, \ldots, \alpha_n\}$ is empty. We recall that $N_{J_1,0} = \{\bar{\sigma} \mid \sigma \in D_{J_1,0}\}$ and that $D_{J_1,0} = D_{J_1}$, where $D_{J_1} = \{\sigma \in W \mid \sigma(\Phi_{J_1}^+) \subseteq \Phi^+\}$. Then $\tau^{-1}(\Phi_{J_1}^+) \subseteq \Phi^+$ and Φ^+ is empty. We show that $P \tau B^-\tau^{-1}$ is dense in G if and only if $\tau^{-1}(\Phi^+ \setminus \Phi_{J_1}) \subseteq \Phi^-$ (which then implies that $u_0 \tau$ is the longest element of W_{J_1}). We have
\[
P \cap \tau B^-\tau^{-1} = (P^u \cap \tau U^-\tau^{-1})(L_{J_1} \cap \tau B^-\tau^{-1})
\]
and $L_{J_1} \cap \tau B^-\tau^{-1} = L_{J_1} \cap B_1$ is a Borel subgroup of L_{J_1} by [12] Propositions 2.8.7, 2.8.9]. Let us denote by r the number of positive roots in Φ_{J_1} and by s the dimension of $P^u \cap \tau U^-\tau^{-1}$. Then $P \tau B^-\tau^{-1}$ is dense in G if and only if $\dim(P \tau B^-\tau^{-1}) = \dim P + \dim B - \dim G$. Since $\dim P = \dim P^u + \dim L_{J_1} = N + n + r$, $\dim B = N + n$, $\dim L_{J_1} \cap B = n + r$, we get that $P \tau B^-\tau^{-1}$ is dense in G if and only $s = 0$, that is $P^u \cap \tau U^-\tau^{-1} = \{1\}$. This in turn is equivalent to $\{\Phi^+ \setminus \Phi_{J_1}\} \cap \tau(\Phi^+) = \emptyset$, that is $\tau^{-1}(\Phi^+ \setminus \Phi_{J_1}) \subseteq \Phi^-$, as we wanted.

We are now in the position to exhibit an element in $B.x \cap U^-$. By hypothesis we have $g \in P^u = \prod_{\beta \in \Phi^+ \setminus \Phi_{J_1}} X_{\beta}$. Then $\tau^{-1}g\tau$ lies in $\prod_{\beta \in \Phi^+ \setminus \Phi_{J_1}} X_{\beta} \subseteq U^-$. On the other hand, from $H \tau B^-\tau^{-1}$ dense in G it follows that $C_G(\tau^{-1}g\tau) B$ is dense in G, hence $\tau^{-1}g\tau$ lies in $B.x$. □

Let us observe that we can directly deal with the minimal unipotent conjugacy class:
Proposition 2.9 Let Ω be the unipotent conjugacy class of type A_1 (minimal orbit). Then Ω is well-placed.

Proof. Let β_1 denote the highest root of g. Then $x_{-\beta_1}(1)$ is a representative of Ω. For every positive root α and every $t \neq 0$ we have:

\begin{equation}
 x_{-\alpha}(t) = x_\alpha(t^{-1})h_\alpha x_\alpha(t^{-1})
\end{equation}

for some $h \in T$ (see [11, p. 106]). In particular $x_{-\beta_1}(1)$ belongs to $B\delta_{\beta_1}B \cap B^-$. By Lemma 4.3.5 we have

$$\ell(s_{\beta_1}) + rk(1 - s_{\beta_1}) = \#\{\alpha \in \Phi^+ | \alpha \not\perp \beta_1\} + 1 = \dim \Omega$$

and the statement follows. \hfill \Box

2.1.1 Classical type

This section is devoted to the analysis of the spherical unipotent conjugacy classes of G when G is of classical type. Since the case of type A_n has been treated in [9] we shall assume that G is of type B_n, C_n or D_n.

It will be useful for our purposes to fix some notation for Young diagrams corresponding to spherical unipotent conjugacy classes. We will denote by $X_{t,m}$ and $Z_{t,m}$, respectively, the following Young diagrams with m boxes:

\begin{align*}
 X_{t,m} &= \begin{array}{cccc}
 \vdots & \vdots & & \\
 \vdots & \vdots & & \\
 \vdots & \vdots & & \\
 \emptyset & \emptyset & & \\
 \end{array} \quad Z_{t,m} &= \begin{array}{cccc}
 \vdots & \vdots & & \\
 \vdots & \vdots & & \\
 \vdots & \vdots & & \\
 \emptyset & \emptyset & & \\
 \end{array}
\end{align*}

By an abuse of notation, given a unipotent element $u \in G$ and a Young diagram of fixed shape J, we will say that $u = J$ if the conjugacy class of u is described by J.

It will be convenient for our purposes to understand when an element of a classical group lies over the longest element w_0 of the Weyl group.

Remark 2.10 Let $G = Sp_{2n}$ (resp. SO_{2n} and n even) so that $w_0 = -1$. Then the elements of B^- and B are of the form

$$\begin{pmatrix}
 tF^{-1} & 0 \\
 \Sigma & F
\end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
 X & A \\
 0 & X^{-1}
\end{pmatrix},$$

respectively, where Σ and A are symmetric (resp. skew-symmetric), and F and X are upper triangular, invertible matrices. Therefore an element $x \in B^-$ lies over w_0 if there exist upper triangular invertible matrices X and Y, and symmetric (resp. skew-symmetric) matrices A, B such that

\begin{equation}
 x = \begin{pmatrix}
 tF^{-1} & 0 \\
 \Sigma & F
\end{pmatrix} = \begin{pmatrix}
 X & A \\
 0 & X^{-1}
\end{pmatrix} \cdot \begin{pmatrix}
 0 & I_n \\
 \mp I_n & 0
\end{pmatrix} \cdot \begin{pmatrix}
 Y & YB \\
 0 & X^{-1}
\end{pmatrix}.
\end{equation}

A direct computation shows that (2.4) holds if and only if $\Sigma = \gamma X^{-1}Y$, i.e., if and only if Σ lies in the big cell of GL_n or, equivalently, if its principal minors are different from zero (see, for example, [28, Exercise 28.8]).

Similarly, if $G = SO_{2n+1}$, so that $w_0 = -1$, the elements of B^- and B are of the form

$$\begin{pmatrix}
 1 & t\psi \\
 0 & 0 \\
 -F\psi & \Sigma
\end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
 1 & 0 & t\gamma \\
 0 & -X\gamma & XA \\
 0 & 0 & X^{-1}
\end{pmatrix},$$

respectively, where the symmetric
parts of Σ and A are $-(1/2)\psi^t\psi$ and $-(1/2)\gamma^t\gamma$ respectively, and F and X are upper
triangular, invertible matrices. Therefore an element $x = \begin{pmatrix} 1 & t\psi & 0 \\ 0 & F^{-1} & 0 \\ -F\psi & F\Sigma & F \end{pmatrix} \in B^-$
lies over ω_0 if and only if there exist two upper triangular invertible matrices U and X, two
vectors γ and c, and two matrices A and S with symmetric part equal to $-(1/2)\gamma^t\gamma$ and
$-(1/2)c^tc$, respectively, such that the following equality holds:

\[(2.5) \quad x = \begin{pmatrix} 1 & 0 & t\gamma \\ -X\gamma & X & I_A \\ 0 & 0 & I_A^{-1} \end{pmatrix} \begin{pmatrix} (-1)^n & 0 & 0 \\ 0 & 0 & I_n \\ 0 & I_n & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & t\gamma \\ 0 & -Uc & U \\ 0 & 0 & tU^{-1} \end{pmatrix}^{-1}. \]

A tedious but straightforward computation shows that \ref{2.5} holds if and only if $F\Sigma$ lies
in the big cell of GL_n and $F\Sigma^{-1}\psi = (-1)^n - 1.$

\textbf{Theorem 2.11} Let O_g be a spherical unipotent conjugacy class of an element $g \in G$. Then O_g is well-placed.

\textbf{Proof.} G of type C_n. For every integer $k = 1, \ldots, n$ let us consider the unipotent conjugacy
class O_k of Sp_{2n} parametrized by a Young diagram of shape $X_{k,2n}$. We have: $\dim O_k = k(2n - k + 1)$.

For every fixed k let us choose the following matrix A_k in $O_k \cap B^-:

A_k = \begin{pmatrix} I_k & 0_n \\ 0_n & I_n \end{pmatrix}

where I'_k is the $n \times n$ diagonal matrix $I'_k = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}.$

In W let us consider the element w_k sending e_i to $-e_i$ for every $i = 1, \ldots, k$ and fixing
all the other elements of the canonical basis of C^n. We have:

\[rk(1 - w_k) + \ell(w_k) = k(2n - k + 1) = \dim O_k. \]

If we choose the representative

\[\hat{w}_k = \begin{pmatrix} 0 & 0 & I_k & 0 \\ 0 & I_{n-k} & 0 & 0 \\ -I_k & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{n-k} \end{pmatrix}, \]

then

\[A_k = U_k \hat{w}_k B_k \]

where $U_k = \begin{pmatrix} I_n & I'_k \\ 0_n & I_n \end{pmatrix}$ and $B_k = \begin{pmatrix} -I_k & 0 & 0 \\ 0 & I_{n-k} & -I_k' \\ 0 & 0 & I_{n-k} \end{pmatrix}.$

This identity shows that A_k lies over w_k since U_k and B_k belong to B. This concludes the
proof for G of type C_n.

G of type D_n. Let us consider the unipotent conjugacy classes of SO_{2n} associated to
Young diagrams either of shape $X_{2k,2n}$ with $k = 1, \ldots, [n/2]$, or of shape $Z_{2k,2n}$ with
$k = 0, \ldots, [n/2] - 1$. Let us recall that when n is even there are two distinct conjugacy
classes, $O_{n/2}$ and $O'_{n/2}$, associated to the Young diagram of shape $X_{n,2n}$, with weighted
Dynkin diagrams.
Let us introduce the following matrices:

\[
D = \begin{array}{ccc}
0 & 0 & \cdots & 0 \\
\end{array} \quad \text{and} \quad
D' = \begin{array}{ccc}
0 & 0 & \cdots & 0 \\
\end{array}
\]

Moreover let \(\mathcal{O}_k \) (for \(k < \frac{n}{2} \)) and \(\tilde{\mathcal{O}}_k \) be the unipotent conjugacy classes with Young diagrams \(X_{2k,2n} \) and \(Z_{2k,2n} \), respectively.

We have: \(\dim \mathcal{O}_k = 2k(2n - 2k - 1) \), \(\dim \tilde{\mathcal{O}}_k = 4(k + 1)(n - k - 1) \) and \(\dim \mathcal{O}'_{n/2} = n^2 - n = \dim \tilde{\mathcal{O}}_{n/2} \).

Now let us consider the following element \(w_k \) in the Weyl group of \(\text{so}_{2n} \):

\[
w_k : \begin{cases}
e _i \mapsto -e_{i+1} & \text{if } i \text{ is odd and } 1 \leq i \leq 2k - 1, \\
e _i \mapsto -e_{i-1} & \text{if } i \text{ is even and } 2 \leq i \leq 2k, \\
e _i \mapsto e_i & \text{if } i > 2k.
\end{cases}
\]

Then \(\ell(w_k) = 4nk - 4k^2 - 3k \) and \(rk(1 - w_k) = k \), therefore \(\ell(w_k) + rk(1 - w_k) = \dim \mathcal{O}_k \).

Let us introduce the following matrices: \(S_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \), \(S_k = \text{diag}(S_1, \ldots, S_1) \) of order \(2k \), \(J_k = \begin{pmatrix} S_k & 0 \\ 0 & 0_{n-2k} \end{pmatrix} \), \(u_k = \begin{pmatrix} I_n & 0_n \\ J_k & I_n \end{pmatrix} \) and \(H_k = \begin{pmatrix} I_n & -J_k \\ 0_n & I_n \end{pmatrix} \).

Notice that \(H_k \in B \) and \(u_k \) lies in \(\mathcal{O}_k \cap B^- \) for \(k < n/2 \). The weighted Dynkin diagram associated to \(u_{n/2} \) shows that \(u_{n/2} \in \mathcal{O}_{n/2} \cap B^- \). Besides, the following identity of matrices holds: \(H_ku_kH_k = u_k \) where

\[
\tilde{w}_k = \begin{pmatrix} 0_{2k} & I_{n-2k} \\ J_k & 0_{2k} \\ I_{n-2k} \end{pmatrix}.
\]

This shows that \(u_k \) lies over \(w_k \) for \(k = 1, \ldots, [n/2] \).

Now \(n \) be even and \(k = n/2 \) and let us consider the automorphism \(\hat{\tau} \) of \(\text{SO}_{2n} \) arising from the automorphism \(\tau \) of the Dynkin diagram interchanging \(\alpha_{n-1} \) and \(\alpha_n \). Then \(u'_{n/2} = \hat{\tau}(u_{n/2}) \in B^- \) is a representative of the conjugacy class \(\mathcal{O}'_{n/2} \) associated to \(D' \).

If we apply the map \(\hat{\tau} \) to the equality \(u_{n/2} = H_{n/2}u_{n/2}H_{n/2} \) we find that \(u'_{n/2} \) lies over \(w'_{n/2} = \tau w_{n/2} \tau \in W \subset Aut(\Phi) \). As \(\tau \) permutes simple roots, it is clear that \(\ell(w_{n/2}) = \ell(w'_{n/2}) \). Therefore,

\[
\ell(w'_{n/2}) + rk(1 - w'_{n/2}) = \ell(w_{n/2}) + rk(1 - w_{n/2}) = \dim \mathcal{O}_{n/2} = \dim \mathcal{O}'_{n/2}.
\]

This concludes the proof for \(G \) of type \(D_n \) and \(\mathcal{O} \) a conjugacy class corresponding to a Young diagram of shape \(X_{2k,2n} \) with \(k \leq [n/2] \).

Now we want to prove the statement for \(\tilde{\mathcal{O}}_k \). Let us first assume \(n = 2m \). Let \(v_{m-1} = \begin{pmatrix} 1 \end{pmatrix} \) where:

* \(F \) is the upper triangular \(n \times n \) matrix with all diagonal elements equal to 1, the first upper off-diagonal equal to \((-1, 0, -1, \ldots, 0, -1) \) and zero elsewhere;
Let us consider the following embedding of \(\dim \tilde{\mathcal{O}} \) the
under this embedding a representative of an element
and lies over \(\eta_k \) and that equality holds also when \(n = 2 \), i.e., when \(SO_{2n} \) is not simple. Hence the statement is proved for \(n \) even and \(k = n/2 - 1 \).

Let us consider the conjugacy class \(\tilde{\mathcal{O}}_k \) for \(n \) not necessarily even and the embedding \(j_{2k+2} \) of \(SO_{2k+4} \) into \(SO_{2n} \):

\[
j_{2k+2} : \begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} A & I_{n-2k-2} & B \\ C & 0_{n-2k-2} & D \\ 0_{n-2k-2} & I_{n-2k-2} \end{pmatrix}.
\]

The embedded image of \(v_{m-1} \), for \(m = k + 1 \), belongs to \(B^- \), it is a representative of \(\tilde{\mathcal{O}}_k \) and lies over \(\eta_k = \begin{pmatrix} -I_{2k+2} & 0 \\ 0 & I_{n-2k-2} \end{pmatrix} \). One can check that \(\ell(\eta_k) + rk(1 - \eta_k) = \dim \tilde{\mathcal{O}}_k \) so the statement is proved for \(G \) of type \(D_n \).

\(G \) of type \(B_n \). Let us consider the unipotent conjugacy classes \(\mathcal{C}_k \) and \(\tilde{\mathcal{C}}_k \) of shape \(X_{2k,2n+1} \) and \(Z_{2k,2n+1} \), respectively, with \(k = 1, \ldots, [n/2] \) and \(h = 0, \ldots, ([n-1]/2) \). We have:

\[
\dim \mathcal{C}_k = 4nk - 4k^2 \quad \text{and} \quad \dim \tilde{\mathcal{C}}_h = 2(h+1)(2n-2h-1).
\]

Let us consider the following embedding of \(SO_{2n} \) in \(SO_{2n+1} \):

\[
X \mapsto \begin{pmatrix} 1 & X \end{pmatrix}.
\]

Under this embedding a representative of an element \(w \in W(SO_{2n}) \) is mapped to a representative of an element in \(W(SO_{2n+1}) \). Through the same embedding the Borel subgroup \(B(SO_{2n}) \) (resp. \(B^- (SO_{2n}) \)) can be seen as a subgroup of \(B(SO_{2n+1}) \) (resp. \(B^- (SO_{2n+1}) \)). The image of the representative \(u_k \) of the class \(\mathcal{O}_k \subset SO_{2n} \) is a representative of the class \(\mathcal{C}_k \subset SO_{2n+1} \), it belongs to \(B^- (SO_{2n+1}) \) and lies over \(w_k \) where \(w_k \) is the same as in the corresponding case of \(SO_{2n} \). The length of \(w_k \), viewed as an element of \(W(SO_{2n+1}) \), is \(\ell(u_k) = 4nk - 4k^2 - k \) and \(rk(1 - w_k) = k \), therefore \(\ell(w_k) + rk(1 - w_k) = \dim \mathcal{C}_k \). Hence, we have the statement for \(\mathcal{C}_k \).

Similarly, if \(k \leq [n/2] - 1 \), the image of the representative \(v_k \) of the class \(\tilde{\mathcal{O}}_k \subset SO_{2n} \) is a representative of the class \(\tilde{\mathcal{C}}_k \subset SO_{2n+1} \), it belongs to \(B^- (SO_{2n+1}) \) and lies over \(\eta_k \) where \(\eta_k \) is the same as in the corresponding case of \(SO_{2n} \). If we view \(\eta_k \) as an element of \(W(SO_{2n+1}) \) we obtain:

\[
\ell(\eta_k) + rk(1 - \eta_k) = 4nk - 4k^2 - 8k + 4n - 4 + 2k + 2 = \dim \tilde{\mathcal{C}}_k
\]

so the statement holds for \(\tilde{\mathcal{C}}_k \) with \(k \leq [n/2] - 1 \).

Let us now prove the statement for the classes corresponding to Young diagrams with no rows consisting of only one box, i.e., for \(\mathcal{C}_{\frac{n-1}{2}} \) when \(n \) is odd. In this case

\[
\dim \tilde{\mathcal{C}}_{\frac{n-1}{2}} = n^2 + n = \ell(w_0) + rk(1 - w_0).
\]

Let us consider the element \(v = \begin{pmatrix} 1 & \psi \\ 0 & I_n \end{pmatrix} \) where \(\psi = \begin{pmatrix} 1 & 0 & \ldots & 0 \\ 0 & I_n \end{pmatrix} \) and \(\Sigma \) is the \(n \times n \) matrix with diagonal equal to \((-1/2, 0, \ldots, 0)\), first upper off-diagonal equal to
of these subalgebras as the sets of roots orthogonal to B. One can check that Σ belongs to the big cell of GL_n and that $^t\psi \Sigma^{-1} \psi = -2$. By Remark 2.10 we conclude the proof.

2.1.2 Exceptional type

This section is devoted to the analysis of the spherical unipotent conjugacy classes of G when G is of exceptional type. Let us introduce some notation: we shall denote by β_1 the highest root of g and, inductively, by β_r, for $r > 1$, the highest root of the root system orthogonal to $\beta_1, \ldots, \beta_{r-1}$ when this is irreducible. Similarly we shall denote by γ_1 the highest short root of g and inductively, by γ_r, for $r > 1$, the highest short root of the root system orthogonal to $\gamma_1, \ldots, \gamma_{r-1}$ when it is irreducible.

Theorem 2.12 Let O be a spherical unipotent conjugacy class. Then O is well-placed.

Proof. The unipotent spherical conjugacy classes of G are those of type $rA_1 + s\tilde{A}_1$. We shall deal with the different types of orbits separately:

Type A_1. See Proposition 4.9.

Type A_1 (of type F_4, G_2). Let g be of type G_2. The element $x_{-\gamma_1}(1)$ is a representative of the class O of type \tilde{A}_1 and lies over $s_{-\gamma_1}$ by (2.2). Therefore $z(O) \geq s_{\gamma_1}$. Besides, since \overline{O} contains the minimal conjugacy class, by (2.3) it follows that $z(O) \geq s_{\beta_1}$, hence, by Corollary 2.5 $z(O) = u_0$. We now conclude using Lemma 2.8 and noticing that $\dim O = 8 = \ell(w_0) + rk(1 - w_0)$.

Let g be of type E_4. The element $x = x_{-\beta_1}(1) x_{-\beta_2}(1)$ is a representative of the class of type \tilde{A}_1 as the calculation of its weighted Dynkin diagram shows. By (2.2) x belongs to $B s_{\beta_1} s_{\beta_2} B$ and one can check that $\ell(s_{\beta_1} s_{\beta_2}) + rk(1 - s_{\beta_1} s_{\beta_2}) = 22 = \dim O$.

Type $2A_1$ (of type E_6, E_7, E_8). The element $x_{-\beta_1}(1) x_{-\beta_2}(1)$ is a representative of this class. By construction and by (2.2), $x_{-\beta_1}(1) x_{-\beta_2}(1)$ lies over $s_{\beta_1} s_{\beta_2}$. One can check that $\ell(s_{\beta_1} s_{\beta_2}) + rk(1 - s_{\beta_1} s_{\beta_2}) = 22 = \dim O$.

Type $3A_1$ (of type E_6, E_7, E_8). If g is of type E_7 there are two conjugacy classes of type $3A_1$ that, following [1], we shall denote by $(3A_1)^\prime$, $(3A_1)^\prime\prime$. A representative of the class $(3A_1)^\prime$ is $x_{-\beta_1}(1) x_{-\beta_2}(1) x_{-\gamma_1}(1)$, as one can verify by computing its weighted Dynkin diagram. Relation (2.2) implies that $x_{-\beta_1}(1) x_{-\beta_2}(1) x_{-\gamma_1}(1)$ lies over $s_{\beta_1} s_{\beta_2} s_{\alpha_7}$ since α_7 is orthogonal to β_1 and β_2. One can verify that $\ell(s_{\beta_1} s_{\beta_2} s_{\alpha_7}) + rk(1 - s_{\beta_1} s_{\beta_2} s_{\alpha_7}) = 54 = \dim O$.

In order to handle the remaining classes of type $3A_1$ we consider subalgebras of type D_4 in g and the corresponding immersions of algebraic groups. We realize the root systems of these subalgebras as the sets of roots orthogonal to $\ker(1 - w)$ where $w \in W$ is chosen as follows:

- $w_0 = s_{\beta_1} s_{\beta_2} s_{\beta_3} s_{\alpha_4}$ if g is of type E_6;
- $s_{\beta_1} s_{\beta_2} s_{\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5} s_{\alpha_3}$ if g is of type E_7;
- $s_{\beta_1} s_{\beta_2} s_{\beta_3} s_{\alpha_\tau}$ if g is of type E_8.

In Theorem 2.11 we proved that if O' is the class of type $3A_1$ of D_4 then $z(O')$ is the longest element of the Weyl group of D_4. By construction, in each case w is the longest element of the Weyl group of the corresponding copy of D_4. One can verify that $\ell(w) + rk(1 - w)$ is equal to the dimension of the unipotent orbit of type $3A_1$ if g is of type E_6 or E_8 and $(3A_1)^\prime$ if g is of type E_7. In the latter case Theorem 2.2 implies that a representative of the class of type $3A_1$ in D_4 is a representative of the class of type $(3A_1)^\prime$.
Type $A_1 + \tilde{A}_1$ (g of type F_4). Let us consider the subgroup of G of type B_3 generated by $X_{2,\alpha}$ for $\alpha \in \{\alpha_2 + 2\alpha_3 + 2\alpha_4, \alpha_1, \alpha_2, \alpha_3\}$. By Theorem 2.11, if O' is the conjugacy class of type $A_1 + \tilde{A}_1$ in B_3, then $z(O')$ is the longest element of the Weyl group of B_3 and coincides with the longest element of W. Therefore there is a representative of the conjugacy class of type $A_1 + \tilde{A}_1$ in F_4 in $B\tilde{w}_0B$. We have: $\dim O = 28 = \ell(w_0) + rk(1 - w_0)$.

Type $4A_1$ (g of type E_7, E_8). We observe that $\dim O = \dim B = \ell(w_0) + rk(1 - w_0)$ therefore we need to prove that $z(O) = w_0$. In order to do so we shall apply Corollary 2.5.

Let us consider the following subalgebras of type D_6 in g and the corresponding immersions of algebraic groups: as above we realize the root systems of these subalgebras as the sets of roots orthogonal to $\ker(1 - w_i)$ where the w_i’s in W are chosen as follows:

- if g is of type E_7:

 $w_1 = s_{\beta_1} s_{\beta_2} s_{\beta_3} s_{\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5} s_{\alpha_2} s_{\alpha_5} = w_0 s_{\alpha_7}$;
 $w_2 = s_{\beta_1} s_{\beta_2} s_{\beta_3} s_{\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5} s_{\alpha_2} s_{\alpha_7} = w_0 s_{\alpha_5}$;

- if g is of type E_8:

 $w_1 = s_{\beta_1} s_{\beta_2} s_{\beta_3} s_{\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5} s_{\alpha_2} s_{\alpha_5} = w_0 s_{\alpha_3} s_{\alpha_7}$;
 $w_2 = s_{\beta_1} s_{\beta_2} s_{\beta_3} s_{\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5} s_{\alpha_3} s_{\alpha_7} = w_0 s_{\alpha_3} s_{\alpha_5}$.

It is shown in Theorem 2.11 that if O' is the conjugacy class of type $4A_1$ in D_6 then $z(O')$ is the longest element of the Weyl group of D_6 which coincides with w_i in each case. The only element in W which is greater than or equal to both w_1 and w_2 is w_0, hence the statement.

\[
\square
\]

2.2 Semisimple conjugacy classes

As for spherical unipotent conjugacy classes we establish a result concerning the intersections $B^+ \cap O \cap B\tilde{w}B$, with $w \in W$, when O is a semisimple conjugacy class.

Lemma 2.13 Let t be a semisimple element of G such that $O_t \cap B\tilde{w}B \neq \emptyset$ for some $w \in W$. Then $B^+ \cap O_t \cap B\tilde{w}B \neq \emptyset$.

Proof. Without loss of generality we may assume that t lies in T. Let $g \in G$ be such that $g^{-1}tg \in B\tilde{w}B$ and let $g = u_\sigma \tilde{\sigma}b$ be the unique decomposition of g in $U^+ \tilde{\sigma}B$. Then $\tilde{\sigma}^{-1}u_\sigma^{-1}tu_\sigma \tilde{\sigma}$ belongs to $O_t \cap B\tilde{w}B \cap B^+$ since $\tilde{\sigma}^{-1}u_\sigma \tilde{\sigma}$ lies in U^+.

\[
\square
\]

2.2.1 Classical type

In this section we shall analyze the spherical semisimple conjugacy classes of G when G is of classical type. Using \[\text{[11 Remarque 8]}\] we list the spherical semisimple conjugacy classes (up to a central element) in Table 1, where we indicate a representative g of each semisimple class O_g, the dimension of O_g and the structure of the Lie algebra of the centralizer of g. By ζ we shall denote a primitive $2n$-th root of 1. Note that D_1 must be interpreted as a 1-dimensional torus T_1 wherever it occurs and that A_0 and B_0 denote the trivial Lie algebra.

Remark 2.14 It is well known that $X, Y \in S_{p2n}$ are conjugated in S_{p2n} if and only if they are conjugated in GL_{2n}. The same holds for X, Y in the orthogonal group O_{m} (see, for example, \[\text{[41 Ex. 2.15 (ii)]}\]). It follows that if $X, Y \in SO_{m}$ are conjugated in GL_{2n} and $C_{O_m}(X) \not\subset SO_m$ then X and Y are conjugated in SO_{m}. On the contrary, if $C_{O_m}(X) \subset SO_m$ then the conjugacy class of X in O_m splits into two distinct conjugacy classes in SO_m of the same dimension.
Theorem 2.15 Let \mathcal{O}_g be a spherical semisimple conjugacy class of G. Then \mathcal{O}_g is well-placed.

A_{n-1}	$g_k = \text{diag}(-I_k, I_{n-k})$ if k even and $1 \leq k \leq \frac{n}{2}$	$2k(n-k)$	$\mathbb{C} + A_{k-1} + A_{n-k-1}$
B_n	$g_{\zeta,k} = \text{diag}(\zeta I_k, \zeta I_{n-k})$ if k odd and $1 \leq k \leq \frac{n}{2}$	$2k(n-k)$	$\mathbb{C} + A_{k-1} + A_{n-k-1}$
C_n	$\rho_k = \text{diag}(1, -I_k, I_{n-k}, -I_k, I_{n-k})$ if $1 \leq k \leq n$	$2k(2n-2k+1)$	$D_k + B_{n-k}$
D_n	$\beta = \text{diag}(1, k, \lambda^{-1}I_n)$ if $\lambda \in \mathbb{C} \setminus \{0, \pm 1\}$	$n^2 + n$	$\mathbb{C} + A_{n-1}$
---	$\sigma_k = \text{diag}(-I_k, I_{n-k}, -I_k, I_{n-k})$ if $1 \leq k \leq \frac{n}{2}$	$4k(n-k)$	$C_k + C_{n-k}$
---	$c_{\lambda} = \text{diag}(\lambda, \lambda^{-1}, I_n, I_{n-1})$ if $\lambda \in \mathbb{C} \setminus \{0, \pm 1\}$	$4n - 2$	$\mathbb{C} + C_{n-1}$
---	$c = \text{diag}(i I_n, -i I_n)$ if $1 \leq k \leq \frac{n}{2}$	$n^2 + n$	$\mathbb{C} + A_{n-1}$
---	$d = \text{diag}(i I_{n-1}, -i, -i I_{n-1})$ if $1 \leq k \leq \frac{n}{2}$	$n^2 - n$	$\mathbb{C} + A_{n-1}$

Table 1

Proof. For each class \mathcal{O}_g we shall exhibit an element w of the Weyl group such that $\dim \mathcal{O}_g = \ell(w) + rk(1 - w)$ and a representative of \mathcal{O}_g in BwB. The proof will follow from Lemma 2.1.

Type A_{n-1}. Let $t_k = \left(\begin{array}{ccc} -\eta I_k & 0 & 0 \\ 0 & \eta I_{n-2k} & 0 \\ -2\eta Y_k & 0 & \eta I_k \end{array} \right)$, where $\eta = \left\{ \begin{array}{ll} \zeta & \text{if } k \text{ is odd} \\
1 & \text{if } k \text{ is even} \end{array} \right.$ and Y_k is the $k \times k$ matrix $\left(\begin{array}{ccc} 0 & \cdots & 1 \\ \cdots & \cdots & \cdots \\ 1 & \cdots & 0 \end{array} \right)$. Then $t_k \in O_{\eta_k} \cap B^-$ if k is even and $t_k \in O_{C_{n-k}} \cap B^-$ if k is odd. As in the proof of Theorem 3.4, $t_k \in BwB$ where

$$w_k = (n - n - 1 \ldots n - k + 1 \ldots n - k k \ldots 1)$$

and $\ell(w_k) + rk(1 - w_k) = 2k(n-k)$.

Type C_n. Let us consider the conjugacy class \mathcal{O}_{σ_n}. The following element \hat{v}_k lies in $N \cap \mathcal{O}_{\sigma_n}$:

$$\hat{v}_k = \left(\begin{array}{ccc} 0_{2k} & 0 & S_k \\ 0 & I_{n-2k} & 0 \\ -S_k & 0 & 0_{n-2k} \end{array} \right)$$

where S_k is the $2k \times 2k$ matrix introduced in the proof of Theorem 2.1. Let v_k be the image of \hat{v}_k in W. Then

$$\ell(v_k) + rk(1 - v_k) = 4nk - 4k^2 = 4k(n-k) = \dim \mathcal{O}_{\sigma_k}.$$
Let us now consider the class $O_{c,\lambda}$. Let us first assume $n = 2$. With the help of Remark 2.10, one can check that the element

$$x = \begin{pmatrix} A & 0 \\ C & D \end{pmatrix} = \begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda^{-1} & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \in O_{c,\lambda} \cap B^- \cap B\tilde{w}_0B.$$

Let us now suppose $n > 2$. Then the element

$$\begin{pmatrix} A & I_{n-2} \\ C & D \end{pmatrix} \begin{pmatrix} 0_n \\ 0_{n-2} \end{pmatrix} \begin{pmatrix} 1 & 0_{n-1} \\ 0_{n-1} & I_{n-1} \end{pmatrix}$$

is a representative of $O_{c,\lambda}$ lying over the following element w of W:

$$w(e_i) = \begin{cases} -e_i & \text{if } i = 1, 2 \\ e_i & \text{if } i \neq 1, 2. \end{cases}$$

We have: $\ell(w) + rk(1 - w) = 4n - 2 = \dim O_{c,\lambda}$.

Let us now consider the class O_c. One can check that the element $\begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$ lies in $O_c \cap B\tilde{w}_0B$ and that $\dim O_c = n^2 + n = \ell(w_0) + rk(1 - w_0)$.

Type D_n. Let us notice that the centralizer of σ_k in O_{2n} contains the element

$$\begin{pmatrix} 0 & I_{n-1} \\ 1 & 0_{n-1} \\ 1 & 0_{n-1} \\ 0_{n-1} & I_{n-1} \end{pmatrix}$$

which does not lie in SO_{2n}. By Remark 2.14, an element $x \in SO_{2n}$ belongs to O_{σ_k} if and only if it is conjugated to σ_k in GL_{2n}.

Let us consider the element \tilde{w}_k of $W(SO_{2n})$ represented in N by:

$$\tilde{w}_k = \begin{pmatrix} 0_{2k} & I_{2k} & 0_{2k} & I_{2k} \\ I_{n-2k} & 0_{n-2k} & I_{n-2k} & 0_{n-2k} \end{pmatrix}.$$

Then \tilde{w}_k lies in O_{σ_k} and

$$\ell(\tilde{w}_k) + rk(1 - \tilde{w}_k) = 4k(n - k) = \dim O_{\sigma_k}.$$

Let us consider the conjugacy class O_c of c. In this case $CO_{2n}(c) \subset SO_{2n}$ so the conjugacy class of c in O_{2n} splits into the conjugacy classes O_c and O_d in SO_{2n}. Let J_k be the $n \times n$ matrices introduced in the proof of Theorem 2.11. If n is even then the element

$$\tilde{w} = \begin{pmatrix} 0_n \\ J_n/2 \\ 0_n \\ J_n/2 \end{pmatrix} \in N$$

is a representative of O_c. Besides, if $w \in W$ is the image of \tilde{w} in W, then $\ell(w) + rk(1 - w) = n^2 - n = \dim O_c$.

If n is odd then the element $\tilde{w}' = \begin{pmatrix} 0_{n-1} \\ J_{(n-1)/2} \\ i \\ J_{(n-1)/2} \\ 0_{n-1} \\ -i \end{pmatrix}$ lies in $O_c \cap N$ and

$$\ell(w') + rk(1 - w') = n^2 - n = \dim O_c$$

where w' is the image of \tilde{w}' in W.

Let us now consider the class O_d. If n is odd, then $-d \in O_c$ so $z(O_d) = w = z(O_c)$. If n is even, then $d = \hat{r}(c)$, where \hat{r} is the automorphism of SO_{2n} introduced in the proof.
of Theorem 2.14. Therefore \(\hat{\tau}(\hat{\omega}) \in N \) is a representative of \(O_d \) and its projection \(w^\tau \) is such that \(\ell(w^\tau) + rk(1 - w^\tau) = n^2 - n = \dim O_d \).

Type \(B_n \). Let \(\rho_k \) with \(k = 1, \ldots, n \) be the semisimple elements of \(SO_{2n+1} \) introduced in Table 1. The following cases need to be analyzed separately:

Case I: \(1 \leq k \leq \lfloor \frac{n}{2} \rfloor \). We already proved that, under these hypotheses, the conjugacy class \(O_{\sigma_k} \) of \(\sigma_k \) in \(SO_{2n} \) contains the element

\[
\hat{\omega}_k = \begin{pmatrix}
0 & I_{2k} & I_{2k} \\
I_{n-2k} & 0 & 0 \\
I_{n-2k} & 0 & I_{n-2k}
\end{pmatrix}.
\]

Then \(\hat{\omega}_k = \begin{pmatrix}
1 \\
\hat{\omega}_k
\end{pmatrix} \) lies in \(O_{\rho_k} \cap N \). Let \(v_k \) be the element in \(W(SO_{2n+1}) \) represented by \(\hat{\omega}_k \). Then \(\ell(v_k) + rk(1 - v_k) = 2k(2n - 2k + 1) = \dim O_{\rho_k} \).

Case II: \(\lceil \frac{n}{2} \rceil < k \leq n \). Let us consider the following element of \(N \):

\[
\hat{\omega}_k = \begin{pmatrix}
-1 & 0_{2(n-k)+1} & -I_{2(n-k)+1} \\
0_{2k-n-1} & I_{2(n-k)+1} & 0_{2n-k-1} \\
I_{2k-n-1} & 0_{2(k-n-1)} & -I_{2k-n-1}
\end{pmatrix}.
\]

Since the element \(\operatorname{diag}(-1, I_{2n}) \) belongs to the centralizer \(CO_{2n+1}(\rho_k) \), it follows from Remark 2.10 that \(\hat{\omega}_k \) lies in \(O_{\rho_k} \). Besides,

\[
\ell(Z_{n-k}) + rk(1 - Z_{n-k}) = 2k(2n - 2k + 1) = \dim O_{\rho_k}.
\]

Finally, let \(O_{b_\lambda} \) be the conjugacy class of \(b_\lambda \). Then

\[
\dim O_{b_\lambda} = n^2 + n = \ell(w_0) + rk(1 - w_0).
\]

Let

\[
v = \begin{pmatrix}
1 & i_{\psi} \\
0 & -\lambda \Sigma \\
-\psi & \lambda \Sigma & \lambda I_n
\end{pmatrix}
\]

where \(\psi = \begin{pmatrix}1 & 0 & \ldots & 0 \end{pmatrix} \) and \(\Sigma \) is the \(n \times n \) matrix with diagonal \((-1/2, 0, \ldots, 0)\), first upper off-diagonal \((1, 1, \ldots, 1)\), first lower off-diagonal \((-1, -1, \ldots, -1)\) and zero elsewhere. Since the element \(\operatorname{diag}(-1, I_{2n}) \) belongs to the centralizer in \(O_{2n+1} \) of \(b_\lambda \), \(v \) lies in \(O_{b_\lambda} \) and, by Remark 2.10, \(b_\lambda \) lies over \(w_0 \).

2.2.2 Exceptional Type

In this section we shall analyze the spherical semisimple conjugacy classes of \(G \) when \(G \) is of exceptional type. Using Remark 2.6 we are able to list the spherical semisimple conjugacy classes up to a central element. The results are collected in Table 2, where we indicate a representative \(g \) of each semisimple class \(O_g \), the dimension of \(O_g \) and the structure of the Lie algebra of the centralizer of \(g \). If \(g \) has rank \(n \) we shall denote by \(\hat{\omega}_i \), for \(i = 1, \ldots, n \), the elements in \(h \) defined by

\[
\{\alpha_j, \hat{\omega}_i\} = \delta_{ji} \quad j = 1, \ldots, n.
\]

Theorem 2.16 Let \(O_g \) be a spherical semisimple conjugacy class. Then \(O_g \) is well-placed.
Group	\(\dim \mathcal{O}_g \)	\(\text{Lie}(C_G(g)) \)	\(w \)
\(E_6 \)	40	\(A_1 + A_5 \)	\(w_0 = s_{\beta_1}s_{\beta_2}s_{\beta_3}s_{\alpha_4} \)
\(E_7 \)	70	\(A_7 \)	\(w_0 \)
\(E_8 \)	128	\(D_8 \)	\(w_0 \)
\(F_4 \)	28	\(A_1 + C_3 \)	\(w_0 \)
\(O_2 \)	6	\(A_2 \)	\(s_{\gamma_1} \)

Proof. Let us consider the conjugacy class \(\mathcal{O}_{p_2} \) in \(E_6 \) and the element

\[
z = s_{\beta_1}s_{\beta_2}x_{\beta_1}(1)x_{\beta_2}(1) \exp(\pi i \omega_1)x_{\beta_2}(-1)x_{\beta_1}(-1)s_{\beta_1}^{-1}s_{\beta_2}^{-1}.
\]

Then \(z = x_{-\beta_1}(t_1)x_{-\beta_2}(t_2)s_{\beta_1}s_{\beta_2}x_{\beta_1}(1)x_{\beta_2}(1) \exp(\pi i \omega_1)s_{\beta_2}^{-1}s_{\beta_1}^{-1} \) for some \(t_1 \) and \(t_2 \) different from zero so

\[
z = x_{-\beta_1}(2t_1)x_{-\beta_2}(2t_2)h
\]

for some \(h \in T \). Hence \(z \) lies in \(\mathcal{O}_{p_2} \cap B \). Besides, \(\ell(s_{\beta_1} + s_{\beta_2}) + rk(1 - s_{\beta_1}s_{\beta_2}) = 32 = \dim \mathcal{O}_{p_2} \).

In a similar way, for the conjugacy class \(\mathcal{O}_{p_3} \) in \(E_7 \), let us consider the element

\[
y = s_{\beta_1}s_{\beta_2}x_{\alpha_7}(1)x_{\beta_2}(1)x_{\alpha_1}(1) \exp(\pi i \omega_7)x_{\alpha_7}(-1)x_{\beta_2}(-1)x_{\beta_1}(-1)s_{\alpha_7}^{-1}s_{\beta_2}^{-1}s_{\beta_1}^{-1}.
\]

Then \(y = x_{-\beta_1}(t_1)x_{-\beta_2}(t_2)x_{-\alpha_7}(t_3)s_{\beta_1}s_{\beta_2}s_{\alpha_7}x_{\alpha_7}(1)x_{\beta_2}(1)x_{\beta_1}(1) \exp(\pi i \omega_7)s_{\alpha_7}^{-1}s_{\beta_2}^{-1}s_{\beta_1}^{-1} \) for some \(t_1 \), \(t_2 \) and \(t_3 \) different from zero. Then

\[
y = x_{-\beta_1}(2t_1)x_{-\beta_2}(2t_2)x_{-\alpha_7}(2t_3)h
\]

for some \(h \in T \). Hence, \(y \) lies in \(\mathcal{O}_{p_3} \cap B \). Besides, \(\ell(s_{\beta_1}s_{\beta_2}s_{\alpha_7}) + rk(1 - s_{\beta_1}s_{\beta_2}s_{\alpha_7}) = 54 = \dim \mathcal{O}_{p_3} \).

Let now \(g \) be of type \(F_4 \) and let us consider the conjugacy class \(\mathcal{O}_{f_2} \). Let us fix a short root \(\gamma \) which does not belong to the root system of \(C_G(f_2) \) (which is of type \(B_4 \)), and let \(w \in W \) be such that \(w(\gamma) = -\gamma_1 \). Then we have:

\[
x := \omega x_\gamma(-1)f_2x_\gamma(1)\omega^{-1} = x_{-\gamma_1}(t)h
\]

for some \(t \neq 0 \) and some \(h \in T \). Therefore \(x \) lies in \(\mathcal{O}_{f_2} \cap B\). Since the root system of type \(F_4 \) is self-dual we have:

\[
\ell(s_{\gamma_1}) + rk(1 - s_{\gamma_1}) = \ell(s_{\beta_1}) + rk(1 - s_{\beta_1}) = 16 = \dim \mathcal{O}_{f_2}.
\]

Let now \(g \) be of type \(G_2 \). Then the element

\[
\dot{s}_{\gamma_1}^{-1}x_{\gamma_1}(-1)e_2x_{\gamma_1}(1)\dot{s}_{\gamma_1} = \dot{s}_{\gamma_1}^{-1}x_{\gamma_1}(t)e_2\dot{s}_{\gamma_1},
\]

Table 2
for some \(t \neq 0 \), lies in \(B s_{\gamma_1} B \cap O_{r_2} \cap B^- \). As in type \(F_4 \) we have:

\[
\ell(s_{\gamma_1}) + rk(1 - s_{\gamma_1}) = \ell(s_{\beta_1}) + rk(1 - s_{\beta_1}) = 6 = \dim O_{r_2}.
\]

For the remaining spherical semisimple conjugacy classes we shall assume \(G = G_{ad} \) and use Lemma 2.13. For each of these classes \(O_g \) we shall prove the statement by exhibiting an element \(\tilde{w} \in N \cap O_g \) such that \(\ell(w) + rk(1 - w) = \dim O_g \) and by using Lemma 2.13. The elements \(w \)'s are listed in Table 2. Let us observe that for every element \(w \) in Table 2 corresponding to these classes we can choose a representative \(\tilde{w} \in N \) of order two in \(G_{ad} \). For \(w = w_0 \), when \(w_0 = -1 \), this fact was observed in [11, Lemma 2]. In general this can be seen using the expression of \(\tilde{w} \) as a product of reflections with respect to mutually orthogonal roots as in Table 2, and [11, Lemma 7.2.1]. From the analysis of the conjugacy classes of the involutions of \(G_{ad} \) in [26] (see also [26] X.5) we deduce \(\dim O_{w_0} = \ell(w_0) + rk(1 - w_0) \). If \(w = w_0 \), by Theorem 2.2, \(\dim O_{w_0} = \ell(w_0) + rk(1 - w_0) \). By [26] X.5, Tables II, III] there is only one conjugacy class of involutions in \(G_{ad} \) whose dimension is equal to \(\ell(w_0) + rk(1 - w_0) \). Therefore \(w_0 \) lies in the spherical semisimple conjugacy class of maximal dimension.

Finally, we are left with the conjugacy classes \(O_{q_2} \) and \(O_{r_2} \). In order to prove that the element \(\tilde{w} \) lies in the corresponding orbit \(O_g \) when \(g \) is either \(q_2 \) or \(r_2 \), it is sufficient to use [26] X.5, Tables II, III] and estimate the dimension of the centralizer of \(\tilde{w} \). One can perform this computation in the Lie algebra of \(G \), namely, calculating the dimension of \(\text{Lie}(C_G(\tilde{w})) = \{x \in g : Ad(\tilde{w})(x) = x \} \). This can be done analyzing the eigenspaces of \(\text{Ad}(\tilde{w}) \) in the stable subspaces of the form \(g_\alpha + g_{w(\alpha)} \), with the use of [11] Lemma 7.2.1.

\(\square \)

2.3 The remaining conjugacy classes

In this section we shall investigate the spherical conjugacy classes \(O_g \) of elements \(g \in G \) which are neither semisimple nor unipotent. If the conjugacy class \(O_g \) of an element \(g \) with Jordan decomposition \(su \) is spherical, then both \(O_s \) and \(O_u \) are spherical. Indeed, if \(BC_G(g) \) is dense in \(G \) then also \(BC_G(s) \supset BC_G(g) \) and \(BC_G(u) \supset BC_G(g) \) are dense in \(G \). Therefore the semisimple parts of the elements we shall consider in this section are those occurring in [26]. Let us notice that when the identity component of the centralizer of such a semisimple element is not simple it is isomorphic either to an almost direct product \(G_1 G_2 \) or to an almost direct product \(G_1 G_2 T_1 \) where \(T_1 \) is a one-dimensional torus. When this is the case we will identify \(G_j \) with a subgroup of \(G \) and write a unipotent element commuting with \(s \) as a pair \((u_1, u_2) \) or, equivalently, as a product \(u_1 u_2 \) with \(u_j \in G_j \) unipotent. If the conjugacy class of \(su = su_1 u_2 \) is spherical, then the conjugacy class of \(u_j \in G_j \) is necessarily spherical.

In the sequel we will need the following definition and results:

Definition 2.17 Let \(\tilde{G} \) be a reductive connected algebraic group. Let \(H \) be a closed subgroup of \(G \). We say that \(H = H^u K \) is a Levi decomposition of \(H \) if \(H^u \) is the unipotent radical of \(H \) and \(K \) is a maximal reductive subgroup of \(H \).

In characteristic zero such a decomposition always exists.

Proposition 2.18 [4] Proposition I.11] Let \(\tilde{G} \) be a reductive connected algebraic group over an algebraically closed field of characteristic zero. Let \(H \) be a closed subgroup of \(\tilde{G} \) with Levi decomposition \(H = H^u K \). Let \(P \) be a parabolic subgroup of \(G \) with a Levi decomposition \(P = P^u L \) such that \(H^u \subset P^u \) and \(K \subset L \). Then the following conditions are equivalent:

1. \(\tilde{G}/H \) is spherical;
2. \(K \) has an open orbit in \(P^u/H^u \) and the generic \(K \)-stabilizer of \(P^u/H^u \) is spherical in \(L \).
When \(H \) is the centralizer \(C_G(u) \) of a unipotent element in a semisimple algebraic group \(G \), a construction of the subgroups \(P, K \) and \(L \) as in Proposition 2.18 is given in \[24\] Lemma 5.3, using key results of \[41\]. Let us recall this construction. Let \(e \) be the nilpotent element of \(\mathfrak{g} = \text{Lie}(\mathcal{G}) \) corresponding to \(u \) and let \((e, h, f)\) be an \(sl_2 \)-triple in \(\mathfrak{g} \). The semisimple element \(h \) determines a natural \(\mathbb{Z} \)-grading on \(\mathfrak{g} \) by \(\mathfrak{g}_j := \{z \in \mathfrak{g} \mid [h, z] = jz\} \). The subalgebra \(\mathfrak{p} := \bigoplus_{j>0} \mathfrak{g}_j \) is parabolic and \(\mathfrak{p}^u := \bigoplus_{j>0} \mathfrak{g}_j \) is its nilpotent radical. The subalgebra \(\mathfrak{p} \) is called the canonical parabolic subalgebra associated to \(e \) and it is independent of the choice of the \(sl_2 \)-triple. Let \(P \) be the parabolic subgroup of \(\mathcal{G} \) whose Lie algebra is \(\mathfrak{p} \) and let \(L \) be the connected, reductive subgroup of \(\mathcal{G} \) whose Lie algebra is \(\mathfrak{g}_0 \), i.e., \(L = \{g \in \mathcal{G} \mid \text{Ad}(g)h = h\}^o \). The group \(P \) is called the canonical parabolic associated to \(u \) and \(P = P^uL \) is a Levi decomposition of \(P \). It turns out that \(C_{\mathcal{G}}(u) \subset P \), \(C_{\mathcal{G}}(u)^h \subset P^u \) and that \(C_{\mathcal{G}}(u) = (P \cap C_{\mathcal{G}}(u))(C_{\mathcal{G}}(u) \cap L) \) is a Levi decomposition of \(C_{\mathcal{G}}(u) \).

A similar construction works in the case of non-semisimple elements:

Lemma 2.19 Let \(\mathcal{G} \) be a connected reductive algebraic group with Lie algebra \(\mathfrak{g} \), let \(g \in \mathcal{G} \) be an element with Jordan decomposition \(g = su \), \(u \neq 1 \), and let \(H = C_{\mathcal{G}}(g) \). Then the Levi decomposition \(P = P^uL \) of the canonical parabolic \(P \) associated to \(u \) induces a Levi decomposition \(H = H^uK \) of \(H \) with \(K = L \cap H \).

Proof. The semisimple element \(s \) lies in \(C_{\mathcal{G}}(u) \) and \(u \) lies in \(C_{\mathcal{G}}(s)^o \) which is a reductive subgroup. Hence, there exists an \(sl_2 \)-triple \((e, h, f)\) of elements of \(\text{Lie}(C_{\mathcal{G}}(s)^o) = \{x \in \mathfrak{g} \mid \text{Ad}(s)x = x\} \) where \(e \) is the nilpotent element associated to \(u \). It follows that \(s \in C_{\mathcal{G}}(h) = \{y \in \mathcal{G} \mid \text{Ad}(y)h = h\} = \mathcal{L}_o = L \). The canonical parabolic \(P \) associated to \(u \) contains \(H = C_{\mathcal{G}}(u) \cap C_{\mathcal{G}}(s) \). The subgroup \(K = L \cap H \) is reductive because it is the centralizer of a semisimple element \(s \in \mathcal{L}_o \cap C_{\mathcal{G}}(u) \) (see \[43, Corollary 9.4\]). The subgroup

\[
V = P^u \cap H = C_{\mathcal{G}}(u)^u \cap C_{\mathcal{G}}(s)
\]

is a unipotent normal subgroup of \(H \). In order to prove that \(H = KV \) is a Levi decomposition of \(H \) and, in particular, that \(H^u = V \), it is enough to show that \(H \subseteq KV \) because \(K \cap V = 1 \) follows from the Levi decomposition of \(C_{\mathcal{G}}(u) \).

Let \(z \in H \). As \(H \subset C_{\mathcal{G}}(u) \), there exist unique \(v \in C_{\mathcal{G}}(u)^u \) and \(t \in C_{\mathcal{G}}(u) \cap L \) such that \(z = vt \). Then \(sus^{-1} \in V \) because \(V \) is normal in \(H \) and \(sts^{-1} \in C_{\mathcal{G}}(u) \cap L \) because both \(t, s \in C_{\mathcal{G}}(u) \cap L \), and \(L \) is normal in \(L \). Besides, \(z = szs^{-1} \). By the uniqueness of the decomposition in \(C_{\mathcal{G}}(u) \) we get necessarily \(sts^{-1} = t \) and \(sv^{-1} = v \), i.e., \(t \in K \) and \(v \in V \).

Corollary 2.20 Let \(\mathcal{G} \) be a connected reductive algebraic group with Lie algebra \(\mathfrak{g} \), let \(g \in \mathcal{G} \) be an element with Jordan decomposition \(g = su \), \(u \neq 1 \), and let \(H = C_{\mathcal{G}}(g) \). Then the Levi decomposition \(P = P^uL \) of the canonical parabolic \(P \) associated to \(u \) induces a Levi decomposition \(H^o = H^uK^o \) of \(H^o \) with \(K = L \cap H \).

Proof. The corollary follows from \(H^u \subseteq H^o \). \(\square\)

As we already observed the sphericity of \(\mathcal{G}/H \) depends only on the Lie algebras of \(\mathcal{G} \) and \(H \). In particular for the analysis of the conjugacy class of an element \(g \in \mathcal{G} \) it does not matter whether we consider \(C_{\mathcal{G}}(g) \) or its identity component.

Remark 2.21 Let \(G_1 \subset G_2 \) be reductive algebraic groups and let \(u \) be a unipotent element in \(G_1 \). Suppose that the conjugacy class of \(u \) in \(G_2 \) is spherical. Then the conjugacy class of \(u \) in \(G_1 \) is spherical by \[37, Corollary 2.3, Theorem 3.1\].

Again we shall handle the classical and the exceptional cases separately.
2.3.1 Classical type

In this section we shall assume that G is of classical type.

Proposition 2.22 Let $g = su \in G$ with $s \neq 1$ and $u \neq 1$. If the conjugacy class of g is spherical then only the following possibilities may occur:

- G is of type C_n and, up to a central element, $g = \sigma_k u$ with $u = X_{1,2n}$;
- G is of type B_n and, up to a central element, $g = \rho_n u$ where $u = X_{2t,2n+1}$ with $t = 1, \ldots, \lfloor \frac{n}{2} \rfloor$.

Proof. We shall use Proposition 2.18 in order to show that if g is not as in the statement, then O_g cannot be spherical. With notation as in Lemma 2.19 we shall describe K^o and its action on $P^n/H^n \cong p^n/h^n$.

Type A_{n-1}. Since O_g is spherical s is conjugated, up to a central element, to one of the g_k’s or of the $g_{\zeta,k}$’s (see Table 1). We shall show that necessarily $u = 1$, leading to a contradiction. As u is a unipotent element of the centralizer of g_k (resp. $g_{\zeta,k}$), it can be identified with a pair $(u_1, u_2) \in SL_k \times SL_{n-k}$. It is enough to prove that if one of the $u_j \neq 1$ and the other is equal to 1 then O_g is not spherical. Suppose that $u = (u_1, 1)$ with u_1 spherical with Young diagram of shape $X_{t,k}$ for $1 \leq t \leq \lfloor \frac{k}{2} \rfloor$. We have:

- $p^n/h^n \cong \text{Mat}_{t,n-k} \times \text{Mat}_{t-1,k,t}$;
- $K \cong \{(A, B, C) \in GL_t \times GL_{k-2t} \times GL_{n-k} \mid \det A^2 \det B \det C = 1\}$;
- action of K on p^n/h^n:

$$(A, B, C).(P, Q) = (Y_tAY_tPC^{-1}, CQA^{-1})$$

where Y_t is a symmetric $t \times t$ matrix such that $Y_t^2 = 1$, depending on the choice of u_1.

Since $Tr(QY_tP)$ is a non-trivial polynomial invariant of the action of K on p^n/h^n, O_g is not spherical. The case $u_2 \neq 1$ is similar and left to the reader.

Let now G be orthogonal or symplectic. Then if the conjugacy class of $g = su_1u_2$ is spherical, then u_1 and u_2 are either of shape $X_{t,m}$ or of shape $Z_{2t,m}$, with u_j of shape $Z_{2t,2m}$ only if $G = SO_m$.

Type C_n. Let us distinguish the following possibilities for s:

1) $s = 1$. If $u_1 = X_{t,2k}$ with $t \geq 1$ and $u_2 = 1$ we have:

- $p^n/h^n \cong \text{Mat}_{2n-2k,t}$;
- $K^o \cong Sp_{2n-2k} \times SO_t \times Sp_{2k-2t}$;
- action of K^o: orthosymplectic of $Sp_{2n-2k} \times SO_t$.

If $t \geq 2$ the orthosymplectic action of $Sp_{2n-2k} \times SO_t$ on $\text{Mat}_{2n-2k,t}$ cannot have a dense orbit because it has a non-trivial invariant. Indeed, if $X \in \text{Mat}_{2n-2k,t}$, E is the matrix of the form with respect to which SO_t is orthogonal, and if J is the matrix of the form with respect to which Sp_{2n-2k} is symplectic, then $Tr((E^tXJX)^2)$ is a non-trivial invariant for the $Sp_{2n-2k} \times SO_t$-action. Then, if u_1 is of shape $X_{t,2k}$ and $t \geq 2$, $O_{\sigma_k u}$ is not spherical. By the symmetry in the roles of u_1 and u_2 the same holds if u_2 is of shape $X_{t,2n-2k}$ with $t \geq 2$.

If $u_1 = X_{1,2k}$ and $u_2 = X_{1,2n-2k}$ we have:

- $p^n/h^n \cong \mathbb{C}^{2n-2k} \oplus \mathbb{C}^{2k-2} \oplus \mathbb{C}$
- $K^o \cong Sp_{2n-2k} \times Sp_{2k-2}$
• action of K°: standard of $Sp_{2n-2k} \oplus$ standard of $Sp_{2k-2} \oplus$ trivial.

It is clear that the action of K° on p^u/h^u cannot have an open orbit.

ii) $s = c\lambda$. Since $u \in C_G(c\lambda)$,

$$u = \begin{pmatrix} 1 & U_1 & U_2 \\ U_3 & 1 & U_4 \end{pmatrix}$$

where $\begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}$ is a spherical unipotent element of Sp_{2n-2}. In particular the Young diagram of u has shape $X_{k,2n}$ with $1 \leq k \leq n - 1$. We have:

- $p^u/h^u \cong \mathbb{C}^k \oplus \mathbb{C}^k$;
- $K^\circ \cong \mathbb{C}^* \times SO_k \times Sp_{2n-2k-2}$;
- K° acts as follows: $(a, A, B) \cdot (v, w) = (aAv, a^{-1}Aw)$.

This action has never a dense orbit since the product $(t^wEv)(t^wEw)$ is invariant.

iii) $s = c$. Then necessarily

$$u = \begin{pmatrix} A \\ A^{-1} \end{pmatrix}$$

where A is a spherical unipotent element of SL_n. In particular the Young diagram of u has shape $X_{2k,2n}$ with $1 \leq k \leq \lfloor \frac{n}{2} \rfloor$. We have:

- $p^u/h^u \cong Sym_k \oplus Sym_k \oplus Mat_{k,n-2k} \oplus Mat_{n-2k,k}$ where Sym_k is the space of $k \times k$ symmetric matrices;
- $K^\circ \cong GL_k \times GL_{n-k}$;
- K° acts as follows:

$$(A, B) \cdot (Z, L, M, N) = \left(Y_k Ay_k, Y_k t^vEv, t^wEw, t^wA^{-1}La^{-1}, t^wA^{-1}MB^{-1}, BN_{Y_k} t^wAY_k \right).$$

This action has never a dense orbit since $Tr(Y_kZY_L)$ is a nonzero polynomial invariant.

Type D_n. Let us distinguish the following possibilities for s:

i) $s = c$. This case can be treated as for G of type C_n. In the computations Sym_k is replaced by Ant_k, the space of skew-symmetric $k \times k$ matrices. When $k = 1$ the product MN is a non-trivial invariant.

ii) $s = d$. If n is odd the proof follows by noticing that $O_c = O_{-d}$. If n is even the conjugacy class of cu is spherical if and only if the conjugacy class of $\hat{\tau}(cu) = d\hat{\tau}(u)$ is spherical. Then the proof follows from i).

iii) $s = \sigma_k$. If $u_1 = X_{2t, 2k}$ and $u_2 = 1$ we have:

- $p^u/h^u \cong Mat_{2n-2k, 2i}$;
- $K^\circ \cong SO_{2n-2k} \times Sp_{2t} \times SO_{2k-4}$;
- the action of K° is the orthosymplectic of $SO_{2n-2k} \times Sp_{2t}$.

If $u_1 = Z_{2t, 2k}$ and $u_2 = 1$ we have:

- $p^u/h^u \cong Mat_{2n-2k, 2i} \oplus C^{2n-2k} \oplus C^{2i}$;
- $K^\circ \cong SO_{2n-2k} \times Sp_{2t} \times SO_{2k-4} \oplus C^{2t}$;
Let \(s = \rho_k \). Let \(u = X_{2t,r} \), with \(r = 2k \) if \(u_2 = 1 \) and \(r = 2n - 2k + 1 \) if \(u_1 = 1 \). We have:

- \(p^n/h^u \cong \text{Mat}_{2n+1-r,2t} \);
- \(K^o \cong SO_{2n+1-r} \times Sp_{2t} \times SO_{r-4t} \);
- the action of \(K^o \) is the orthosymplectic of \(SO_{2n+1-r} \times Sp_{2t} \).

Let \(u = Z_{2t,r} \), with \(r = 2k \) if \(u_2 = 1 \) and \(r = 2n - 2k + 1 \) if \(u_1 = 1 \). We have:

- \(p^n/h^u \cong \text{Mat}_{2n+1-r,2t} \odot \mathbb{C}^{2n+1-r} \odot \mathbb{C}^{2t} \);
- \(K^o \cong SO_{2n+1-r} \times Sp_{2t} \times SO_{r-4t-3} \);
- the action of \(K^o \) is orthosymplectic of \(SO_{2n+1-r} \times Sp_{2t} \) standard of \(SO_{2n+1-r} \) standard of \(Sp_{2t} \).

In both cases, by arguments similar to the previous ones, the action of \(K^o \) on \(p^n/h^u \) can never have a dense orbit unless \(g = \rho_n u \) with \(u = X_{2t,2n+1} \).

ii) \(s = b_\lambda \). Then, necessarily,

\[
\left(\begin{array}{cc}
1 & 0 \\
A & A^{-1} \end{array} \right)
\]

where \(A \) is a spherical unipotent element of \(SL_n \). In particular the Young diagram of \(u \) has shape \(X_{2k,2n+1} \) with \(1 \leq k \leq \left[\frac{n}{2} \right] \). We have:

- \(p^n/h^u \cong \mathbb{C}^{k} \oplus \mathbb{C}^{k} \oplus \text{Ant}_k \oplus \text{Ant}_k \oplus \text{Mat}_{k,n-2k} \oplus \text{Mat}_{n-2k,k} \);
- \(K^o \cong GL_k \times GL_{n-2k} \);
- \(K^o \) acts on \(p^n/h^u \) as follows:

\[
(A, B).(v, w, Z, L, M, N) = \\
= (A^{-1}v, Y_k AY_k w, Y_k AY_k ZY_k tAY_k, tAY_k A^{-1}LA^{-1}, tA^{-1}MB^{-1}, BNY_k tAY_k)
\]

where \(Y_k \) is as above.

This action has never a dense orbit since \(tAw \) is a nonzero polynomial invariant. The statement now follows.

Let us now analyze the remaining possibilities.

Theorem 2.23 Let \(g = su \) be an element of \(G \) such that:

- either \(G \) is of type \(C_n \), \(s = \sigma_k \) and \(u = X_{1,2n} \);
- or \(G \) is of type \(B_n \), \(s = \rho_n \) and \(u \) is a spherical unipotent element associated to a Young diagram with two columns.
Then O_g is spherical and well-placed.

Proof. We shall show that O_g is well-placed and hence spherical by exhibiting an element $x \in O_g \cap B \bar{w} B \cap B^-$ for some w such that $\ell(w) + rk(1 - w) = \dim O_g$.

Type C. Let $u = (u_1, u_2) \in C_{Sp_{2n}(\sigma_k)} \cong Sp_{2k} \times Sp_{2n-2k}$, where $1 \leq k \leq \lceil \frac{n}{2} \rceil$, and let us distinguish the following cases:

1. $u_1 = 1, u_2 = X_{1,2(n-k)}$. In this case $\dim O_g = (4k + 2)(n - k)$.

 (i) Let us assume $k = \lceil \frac{n}{2} \rceil$. Then $\dim O_g = n^2 + n = \ell(w_0) + rk(1 - w_0)$. Let us choose the following element $M \in B^-$:

 $$
 M = \begin{pmatrix}
 S & 0 \\
 -1 & 0 & 1 \\
 0 & -1 & 0 & 1 \\
 \vdots & \ddots & \ddots & \ddots \\
 -1 & \ddots & \ddots & \ddots \\
 \end{pmatrix}
 $$

 where $S = \text{diag}(1, -1, 1, -1, 1, \ldots)$ is a $n \times n$ matrix. Then one can verify that M lies over w_0 and that $M \in O_g$.

 (ii) Now let us suppose $k < \lceil \frac{n}{2} \rceil$. Notice that in this case $n - k \geq 2 + 2$. Let i_{2k+1} be the following embedding of Sp_{4k+2} into Sp_{2n}:

 $$
 \left(\begin{array}{c|c}
 A_{2k+1} & B_{2k+1} \\
 \hline
 C_{2k+1} & D_{2k+1}
 \end{array} \right)_{i_{2k+1}} \rightarrow \left(\begin{array}{c|c}
 A_{2k+1} & B_{2k+1} \\
 \hline
 C_{2k+1} & D_{2k+1}
 \end{array} \right).
 $$

 Case (i) shows that if $G = Sp_{4k+2}, g' = \sigma_k u$ where $u = (u_1, u_2), u_1 = 1, u_2 = X_{1,2(k+1)}$ then $O_{g'}$ contains a matrix $M \in B^- (Sp_{4k+2})$ lying over w_0. In particular this implies that $i_{2k+1}(M)$ lies in $B^- \cap B \bar{w}_{2k+1} B$ where

 $$
 \bar{w}_{2k+1} = \left(\begin{array}{c|c}
 0_{2k+1} & 0 \\
 \hline
 0 & I_{n-2k-1}
 \end{array} \right)_{i_{2k+1}} \rightarrow \left(\begin{array}{c|c}
 0_{2k+1} & 0 \\
 \hline
 -I_{2k+1} & 0
 \end{array} \right).
 $$

 The thesis follows by noticing that $i_{2k+1}(M)$ belongs to O_g and that

 $$
 \ell(u_{2k+1}) + rk(1 - w_{2k+1}) = (4k + 2)(n - k) = \dim O_g.
 $$

2. $u_1 = X_{1,2k}, u_2 = 1$. In this case $\dim O_g = 2k(2n - 2k + 1)$.

 (i) Let us first suppose that n is even and let $k = \frac{n}{2}$ so that $\dim O_g = n^2 + n$. Let us choose the following element $\bar{M} \in B^- \cap O_g$:

 $$
 \bar{M} = \begin{pmatrix}
 \bar{S} & 0 \\
 -1 & 0 & 1 \\
 \vdots & \ddots & \ddots & \ddots \\
 -1 & \ddots & \ddots & \ddots \\
 0 & -1 & 0 & -1 \\
 \end{pmatrix}.
 $$

 Then O_g is spherical and well-placed.
where $\tilde{S} = \text{diag}(-1, 1, -1, 1, \ldots)$ is an $n \times n$ matrix. Since $\dim O_g = \ell(w_0) + rk(1-w_0)$, it is enough to show that M lies over w_0 and this follows, using Remark 2.10, from a straightforward calculation.

(ii) Now let us suppose $k < \frac{n}{2}$. Case (i) shows that if $G = Sp_{4k}$, $g' = \sigma_k u$ where $u = (u_1, u_2)$, $u_1 = X_{2k, 2n}$, $u_2 = 1$, then $O_{g'}$ contains a matrix $M \in B^-(Sp_{4k})$ lying over w_0. Using the embedding i_{2k} of Sp_{4k} into Sp_{2n}, it is immediate to see that $i_{2k}(M)$ belongs to $B^- \cap B\hat{\sigma}B$ where

$$\sigma = \begin{pmatrix} 0_{2k} & 0 & -I_{2k} & 0 \\ I_{n-2k} & 0 & 0 & 0 \\ 0 & 0_{n-2k} & 0 & 0 \\ 0 & 0 & I_{n-2k} & 0 \end{pmatrix}.$$

Finally, let us notice that $i_{2k}(M)$ is conjugated to g and that if σ is the projection of σ in W, then $\ell(\sigma) + rk(1-\sigma) = 4kn - 4k^2 + 2k = \dim O_g$.

Type B_n. Let $g = \rho_n u$ where $u = (u_1, 1)$, u_1 is of shape $X_{2k, 2n}$ and $1 \leq k \leq \lfloor n/2 \rfloor$. If $k < \frac{n}{2}$ the class O_g is completely determined by the diagram $X_{2k, 2n}$. If n is even, let $t_{n} \in SO_{2n+1}$ be a representative of $s_{n} \in W(SO_{2n+1})$. Conjugation by t_{n} fixes ρ_n and induces the automorphism $\tilde{\tau}$ of SO_{2n} (see the proof of Theorem 2.11). Therefore, if u_1 and u'_1 are representatives of the two distinct unipotent conjugacy classes of SO_{2n} associated to $X_{n, 2n}$ and if $u = (u_1, 1)$ and $u' = (u'_1, 1)$, $u'_1 \in O_u$ and $\rho_n u' \in O_{\rho_n u}$. Therefore also for $k = \frac{n}{2}$ the class $O_{g'}$ is completely determined by the diagram $X_{2k, 2n}$. Thus let us denote by O_k the conjugacy class of $g = \rho_n u$ with u_1 of shape $X_{2k, 2n}$. Then $\dim O_k = 4nk - 4k^2 + 2n - 2k$. Let us first assume that k is maximal, i.e., $k = k_{\text{max}} = \lfloor \frac{n}{2} \rfloor$. Then $\dim O_{k_{\text{max}}} = n^2 + n = \dim B(SO_{2n+1})$.

Let $g_n = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -I_n & 0 & 0 \\ 0 & 0 & \Sigma & -I_n \\ \psi & \Sigma & \Sigma & \Sigma \end{pmatrix}$ where $\psi = \ell(1 0 \cdots 0)$, Σ is the $n \times n$ matrix with diagonal $(1/2, 0, 0, \ldots, 0)$, first upper off-diagonal $(1, 1, \ldots, 1)$, first lower off-diagonal $(-1, -1, \ldots, -1)$ and 0 elsewhere. By Remark 2.10, g_n lies over w_0. As $\text{diag}(-1, 1, \ldots, 1) \in C_{O_{2n+1}}(\rho_n u)$, it follows from Remark 2.10 that g_n belongs to $O_{k_{\text{max}}}$, so the assertion is proved for k maximal.

Let us now assume that $2k < n - 1$, i.e., that there are strictly more than two rows with one box in $X_{2k, 2n}$. We consider the following embedding of $SO_{4k+3} \times SO_{2n-4k-2}$ in SO_{2n+1}:

$$\left(\begin{array}{cc} a & t' \\ \gamma & A' \\ \delta & C' \\ \end{array}\right) \mapsto \left(\begin{array}{cc} a & t' \\ A' & B' \\ C' & D' \\ \end{array}\right).$$

Let $g_{2k+1} = \text{the representative of the conjugacy class of } O_{k_{\text{max}}} \text{ in } SO_{4k+3}$. One can check that the embedded image of $(g_{2k+1}, -1)$ is a representative of O_k in $B^- (SO_{2n+1})$ and that it lies over $\omega_k = \begin{pmatrix} -I_{2k+1} & 0 \\ 0 & I_{n-2k-1} \end{pmatrix} \in W(SO_{2n+1})$.

As $rk(1-\omega_k) + \ell(\omega_k) = (2k + 1)^2 + (2k + 1) + 2(n - 2k - 1)(2k + 1) = \dim O_k$, we have the statement for $k = 1, \ldots, \lfloor n/2 \rfloor$.

2.3.2 Exceptional type

In this section we shall assume that G is of exceptional type. We already recalled that if the conjugacy class O_g of an element g with Jordan decomposition su is spherical, then both O_s and O_u are spherical. Besides, as O_g is spherical, $\dim O_g \leq \dim B$. Therefore a dimensional argument rules out all the possibilities except the following:
• \(g = p_1 x_{\beta_1}(1) \) if \(g \) is of type \(E_6 \);
• \(g = q_2 x_{\beta_1}(1) \) if \(g \) is of type \(E_7 \);
• \(g = r_2 x_{\beta_1}(1) \) if \(g \) is of type \(E_8 \);
• \(g = f_2 x_{\beta_1}(1) \) if \(g \) is of type \(F_4 \).

The following result excludes the first three cases:

Proposition 2.24 If \(g \) is of type \(E_6 \), \(E_7 \) or \(E_8 \) any spherical conjugacy class of \(G \) is either semisimple or unipotent.

Proof. By the discussion above it is enough to prove that the class of \(s x_{\beta_1}(1) \), with \(s = p_1, q_2, r_2 \), is not spherical. Let \(H \) be the centralizer of \(s x_{\beta_1}(1) \) in \(G \). We shall use the same notation as in Lemma 2.19. Let \(S \) be a stabilizer in general position for the action of \(K \) on \(l/\mathfrak{k} \), where \(l = \text{Lie}(L) \) and \(\mathfrak{k} = \text{Lie}(K) \). Let \(c_M(X) \) denote the complexity of the action of a reductive algebraic group \(M \), with Borel subgroup \(B_M \), on the variety \(X \), i.e., \(c_M(X) = \min_{x \in X} \text{codim} B_M x \). Then, by (37) Theorem 1.2 (i),

\[
(2.6) \quad c_G(G/H) = c_L(L/K) + c_S(p^u/h^u).
\]

We see that in all cases \(l = \mathfrak{t} \oplus \mathfrak{ch}_{\beta_1} \) so that \(c_L(L/K) = 0 \) and \(S = K \). In particular, if \(g \) is of type \(E_6 \), \(E_7 \), \(E_8 \) then \(K \) is of type \(A_5 \), \(D_6 \), \(E_7 \), respectively. By (35) Théorème 1.4 (see also (33) Theorem 1.4) \(D_6 \) and \(E_7 \) have no linear multiplicity free representations, hence \(E_7 \) and \(E_8 \) have no spherical exceptional conjugacy classes which are neither semisimple nor unipotent.

As far as \(E_6 \) is concerned, one can check that

\[
p^u \simeq \bigoplus_{\alpha \geq 0, \alpha \neq \beta_1} \mathfrak{g}_\alpha; \quad h^u = \mathfrak{g}_{\beta_1},
\]

therefore \(\dim(p^u/h^u) = 20 \). By (35) Théorème 1.4 there are no multiplicity free representations of a group of type \(A_5 \) on a vector space of dimension 20, hence the statement. \(\square \)

Theorem 2.25 Let \(g \) be of type \(F_4 \) and let \(\mathcal{O} \) be the conjugacy class of \(f_2 x_{\beta_1} \). Then \(\mathcal{O} \) is spherical and well-placed.

Proof. We have: \(\dim \mathcal{O} = 28 = \ell(w_0) + rk(1 \cdot w_0) \). We shall show that \(z(\mathcal{O}) = w_0 \) which implies, by Theorem 2.2, that \(\mathcal{O} \) is spherical.

The element \(f_2 \) lies in \(T \subset C_G(f_1) \). Besides, \(C = C_G(f_1) \) is the subgroup of \(G \) of type \(C_3 \times A_1 \) with simple roots \(\{ \alpha_2, \alpha_3, \alpha_4 \} \) and \(\beta_1 \). Since \((f_2)^2 = 1 \), it follows that \(f_2 \) is of the form \((s, t) \in C_3 \times A_1 \) with \(t \) central and \(s^2 = 1 \). Hence, \(f_2 \) is conjugated (up to a central element) in \(C \) to an element of the form \((\sigma_1, t) \). By Theorem 2.16 \(f_2 \) is conjugated, up to a central element in \(C \), by an element in the component of type \(C_3 \), to \(s_{\alpha_4} \dot{s}_{\alpha_2+2\alpha_3+\alpha_4} h \) for some \(h \in T \). Hence \(f_2 x_{-\beta_1}(1) \) is conjugated to

\[
\dot{s}_{\alpha_4} \dot{s}_{\alpha_2+2\alpha_3+\alpha_4} h x_{-\beta_1}(1) \in B \dot{s}_{\alpha_4} \dot{s}_{\alpha_2+2\alpha_3+\alpha_4} \dot{s}_{\beta_1} B = B w_0 \dot{s}_{\alpha_2} B
\]

for some \(h \in T \).

On the other hand, the involution \(\rho_4 = h_{\alpha_2}(-1) h_{\alpha_2+2\alpha_3+\alpha_4}(-1) \) (notation as in Lemma 28) is conjugated to \(f_2 \) since its centralizer is the subgroup of type \(B_4 \) with simple roots \(\{ \alpha_2 + 2\alpha_3, \alpha_1, \alpha_2, \alpha_3 + \alpha_4 \} \). Therefore the element \(\rho_4 x_{\beta_1}(1) \in C_G(\rho_4) \) is a representative of the class \(\mathcal{O} \). By Theorem 2.23 there exists a representative of the conjugacy class \(z(\mathcal{O}) = w_0 \). Let us finally show that \(\mathcal{O} \cap B w_0 B \cap B^- \neq \emptyset \). Let \(g \in G \) be such that
$g^{-1} f_2 x_{\beta_1}(1) g \in B \hat{w}_0 B$ and let $g = u_\sigma \sigma b$ be its unique decomposition in $U^\sigma \sigma B$. Then $g^{-1} f_2 x_{\beta_1}(1) g$ lies in $B \hat{w}_0 B$ if and only if
\[
\hat{\sigma}^{-1} u^{-1}_\sigma f_2 x_{\beta_1}(1) u_\sigma \hat{\sigma} = \hat{\sigma}^{-1} u^{-1}_\sigma f_2 u_\sigma \sigma x_{\sigma^{-1}(\beta_1)}(t),
\]
with $t \in \mathbb{C}^*$, lies in $B \hat{w}_0 B$. Notice that u_σ and $x_{\beta_1}(1)$ commute because β_1 is the highest root of g. The root $\sigma^{-1}(\beta_1)$ is negative otherwise $z(\hat{O}_f)$ would be w_0 which is impossible by Theorem 2.2. Then, as in Lemma 2.13, $\hat{\sigma}^{-1} u^{-1}_\sigma f_2 x_{\beta_1}(1) u_\sigma \hat{\sigma}$ lies in $B \hat{w}_0 B \cap B^-$. □

2.4 Classification and remarks

The results of the previous sections can be summarized in the following theorem:

Theorem 2.26 A conjugacy class \mathcal{O} is spherical if and only if it is well-placed.

In fact our results lead also to the following characterization of spherical conjugacy classes:

Theorem 2.27 Let \mathcal{O} be a conjugacy class in G, $z = z(\mathcal{O})$. Then \mathcal{O} is spherical if and only if $\dim \mathcal{O} = \ell(z) + rk(1-z)$.

Corollary 2.28 Let \mathcal{O} be a spherical conjugacy class of G and let $z = z(\mathcal{O})$. Let $x \in \mathcal{O}$ be an element such that $B.x$ is dense in \mathcal{O}. Then $B.x = B^z.x = \mathcal{O} \cap B^z B$.

Proof. Theorem 2.26 and Theorem 2.2 show that if y lies in $\mathcal{O} \cap B^z B$ then $B.y$ is dense in \mathcal{O}. It follows that y belongs to $B.x$ hence $B.x = \mathcal{O} \cap B^z B$. Besides, $U^z.x = U.x$ since they are irreducible, closed and have the same dimension. Therefore $B^z.x = TU^z.x = TU.x = B.x$. □

Let us introduce the map

$$
\tau : \{\text{Spherical conjugacy classes of } G\} \longrightarrow W
$$

$$
\mathcal{O} \mapsto z(\mathcal{O})
$$

and let us analyze some of its properties. A description of the image of τ is given in Tables 2.3, 4, and 5. In the tables we use the notation introduced in Tables 1.1. When G is of type B (resp. D) the root system orthogonal to β_1 is no longer irreducible: it consists of three components of type A_1 if G is of type D_4, and of one component of type A_1 and one component of type B (resp. D) in the other cases. When G is of type D_4 we shall define $\mu_4 = \alpha_4$. When G is not of type D_4 we shall denote by μ_1 the positive root of the component of type A_1 and by ν_1 the highest root of the component of type B (resp. D). Inductively, for $r > 1$, we shall denote by μ_r, the positive root of the component of type A_1 and by ν_r the highest root of the component of type B (resp. D) of the root system orthogonal to β_1, μ_j, ν_j for every $j = 1, \ldots, r - 1$.

In a similar way when G is of type C the root system orthogonal to γ_1 consists of one component of type A_1 and one component of type C. We shall denote by γ'_2 the highest short root of the component of type C. Inductively, for $r > 1$, we shall denote by γ'_r, the highest short root of the component of type C of the root system orthogonal to γ_1, γ'_j for every $j = 1, \ldots, r - 1$.

Remark 2.29 We note that if \mathcal{O} is a spherical conjugacy class then $z(\mathcal{O})$ is an involution. The reason for this is that if G is of adjoint type, then each spherical conjugacy class \mathcal{O} coincides with its inverse. For unipotent classes this follows from [14] Lemma 1.16, [15] Lemma 2.3. For the semisimple classes in almost all cases we are dealing with involutions in G. In the remaining cases we always have $w_0 = -1$, and in this case every semisimple element is conjugate to its inverse. Finally, for the classes \mathcal{O}_{su} where $s \neq 1 \neq u$ the result follows from the fact that s is an involution and that u is conjugate to its inverse in $C_G(s)$.
Remark 2.30 Let $\pi_1 : G \rightarrow G/U$ and $\pi_2 : G/U \rightarrow G/B$ be canonical projections. Let B act on G by conjugation, on G/B by left multiplication and on G/U as follows:

$$b(gU) = bg^{-1}U.$$

Then π_1 and π_2 are B-equivariant maps. In particular $\pi_2 \circ \pi_1$ maps every B-orbit of G to a B-orbit of G/B, i.e., a Schubert cell $C_\sigma = B\sigma B/B$, for some $\sigma \in W$.

Let \mathcal{O} be a spherical conjugacy class and let $z = z(\mathcal{O})$. Let $B.x$ be the dense B-orbit in \mathcal{O}. Then $\dim \mathcal{O} = \dim B.x = \ell(z) + rk(1 - z)$. Besides $\pi_2 \circ \pi_1 (B.x) = C_z$ and by [20, Proposition 16.4] $\dim \pi_1 (\mathcal{O}) = \ell(z) + rk(1 - z)$. It follows that the map $\rho = \pi_1|_{\mathcal{O}} : \mathcal{O} \rightarrow G/U$ has finite fibers. We think that the map ρ could give a relation between \mathcal{O} and the symplectic leaves of B^- coming from the quantization of B^- (see [23]).

\mathfrak{g}	\mathcal{O}	$z(\mathcal{O})$			
A_{n-1}	$X_{k,n}$	$s_\beta_1 \ldots s_\beta_k$			
B_n	$X_{2k,2n+1}$	$s_\beta_1 s_\nu_1 \ldots s_\nu_k s_{\nu_{k-1}}$	$Z_{2k,2n+1}$	$k < \binom{n}{2}$	$s_\gamma_1 \ldots s_{\gamma_{2k+2}}$
C_n	$X_{2k,2n}$	$s_\beta_1 \ldots s_\beta_k$	u_0		
D_n	$X_{n,2n}$	$s_\beta_1 s_\nu_1 \ldots s_\nu_k s_{\alpha_n}$	$Z_{2k,2n}$	$s_\beta_1 s_\nu_1 s_\nu_2 s_\nu_3 \ldots s_{\nu_k} s_{\nu_{k+1}}$	
E_6	A_1	s_β_1	$2A_1$	$s_\beta_1 s_\beta_2$	
	$3A_1$	u_0			
E_7	A_1	s_β_1	$2A_1$	$s_\beta_1 s_\beta_2$	
	$(3A_1)'$	$s_\beta_1 s_\beta_2 s_{\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5 + \alpha_6}$	$(3A_1)''$	$s_\beta_1 s_\beta_2 s_{\alpha_7}$	
	$4A_1$	u_0			
E_8	A_1	s_β_1	$2A_1$	$s_\beta_1 s_\beta_2$	
	$3A_1$	u_0			
	$s_\beta_1 s_\beta_2 s_{\alpha_7}$	$4A_1$	u_0		
F_4	A_1	s_β_1	A_1	$s_\beta_1 s_\beta_2$	
	$A_1 + A_1$	u_0			
G_2	A_1	s_β_1	A_1	u_0	

Table 3: Unipotent spherical conjugacy classes

\mathfrak{g}	\mathcal{O}_{su}	$z(\mathcal{O}_{su})$
B_n	$s = \rho_s$, $u = (X_{2k,2n}, 1)$, $k = \lceil n/2 \rceil$	w_0
	$s = \rho_s$, $u = (X_{2k,2n}, 1)$, $k < \lceil n/2 \rceil$	$s_{\gamma_1} \ldots s_{\gamma_{2k+1}}$
C_n	$s = \sigma_k$, $u = (1, X_{1,2n-2k})$	$s_{\beta_1} \ldots s_{\beta_{2k+1}}$
	$s = \sigma_k$, $u = (X_{1,2k}, 1)$	$s_{\beta_1} \ldots s_{\beta_{2k}}$
F_4	$f_{2x_\beta_1 (1)}$	w_0

Table 4: Spherical conjugacy classes which are neither semisimple nor unipotent
Table 5: Spherical semisimple conjugacy classes, \(g \) of classical type

g	\(\mathcal{O} \)	\(z(\mathcal{O}) \)
\(A_{n-1} \)	\(\mathcal{O}_{\beta_k} \)	\(s_{\beta_1} \cdots s_{\beta_k} \)
\(A_{n-1} \)	\(\mathcal{O}_{\gamma_k} \)	\(s_{\beta_1} \cdots s_{\gamma_k} \)
\(B_n \)	\(\mathcal{O}_{\beta_k} \), \(1 \leq k \leq \lfloor n/2 \rfloor \)	\(s_{\gamma_1} \cdots s_{\gamma_k} \)
\(B_n \)	\(\mathcal{O}_{\beta_k} \), \(\lfloor n/2 \rfloor < k \leq n \)	\(s_{\gamma_1} \cdots s_{\gamma_{2(k-n)+1}} \)
\(C_n \)	\(\mathcal{O}_{\tau_k} \)	\(s_{\gamma_1} s_{\gamma_k} \cdots s_{\gamma_k} \)
\(C_n \)	\(\mathcal{O}_{\xi_\lambda} \)	\(s_{\beta_1} s_{\beta_2} \)
\(D_n \)	\(\mathcal{O}_c \) (n even)	\(s_{\beta_1} s_{\beta_n} \cdots s_{\beta_n/2-2} s_{\alpha_n} \)
\(D_n \)	\(\mathcal{O}_c \) (n odd)	\(s_{\beta_1} s_{\beta_n} \cdots s_{\beta_n/2-1} s_{\alpha_{n-1}} \)
\(D_n \)	\(\mathcal{O}_{\xi_\mu} \), \(k < n/2 \)	\(s_{\beta_1} s_{\mu_1} s_{\mu_2} \cdots s_{\mu_{k-1}} s_{\mu_k} \)
\(D_n \)	\(\mathcal{O}_{\eta_{n/2}} \)	\(s_{\beta_1} s_{\mu_1} s_{\mu_2} \cdots s_{\mu_{n/2-2}} s_{\alpha_{n/2}} \)

Let us recall that also \(w_0 \) can be decomposed as a product of mutually orthogonal roots.

Remark 2.31 We recall that for a \(B \)-variety \(X \) the following objects are defined:

\[
P = \{ f \in k(X) \setminus \{0\} \mid \exists b \in B \text{ such that } b.f = \lambda_f(b)f, \ \forall b \in B \}
\]

where \(\lambda_f \in \chi(B) \), the character group of \(B \);

\[
\psi: P \to \chi(B)
\]

\[
f \mapsto \lambda_f;
\]

\[
\Gamma(X) = \psi(P);
\]

\[
r(X) := \text{rank}(\Gamma(X));
\]

\[
u(X) = \max_{x \in X} \dim U.x.
\]

Here we note that if \(\mathcal{O} \) is a spherical conjugacy class then \(r(\mathcal{O}) = rk(1 - z(\mathcal{O})) \) and \(u(\mathcal{O}) = \ell(z(\mathcal{O})) \). Indeed, this follows from [35, Corollary 1, Corollary 2(ii)], Theorem 2.2 and [31, Lemma 2.1].

Remark 2.32 Let us recall that a nilpotent orbit \(\mathcal{O} \) in \(g \) is called a model orbit if \(\mathbb{C}[\mathcal{O}] \) consists exactly of the self-dual representations of \(G \) with highest weights in the root lattice, each occurring once (see [35, p. 229]). In this case the corresponding unipotent conjugacy class \(\mathcal{O} \) in \(G \) is spherical ([6], [44]) and, by Remark 2.31 \(rk(1 - z(\mathcal{O})) = rk(1 - w_0) \). It follows from the proofs of Theorems 2.11 and 2.12 that \(z(\mathcal{O}) = w_0 \) (cf. [34, Table 4] and [1]).

3 The proof of the DKP-conjecture

In this section we prove the De Concini-Kac-Procesi conjecture for representations corresponding to spherical conjugacy classes.

Let \(\ell \) be a positive odd integer greater than one. We will assume that \(\ell \) is a good integer, i.e., that \(\ell \) is coprime with the bad primes (for the definition of the bad primes see [4]) and that \(G \) is simply connected.
3.1 Strategy of the proof

Let \(\epsilon \) be a primitive \(\ell \)-th root of unity and let \(\mathcal{U}_\epsilon(g) \) be the simply connected quantum group associated to \(g \) as defined in [13], with generators \(E_i, F_i, K_\beta \) with \(\beta \) in the weight lattice \(P \) and \(i = 1, \ldots, n \). For our purposes it is convenient to introduce the subalgebra \(B_\epsilon \) of \(\mathcal{U}_\epsilon(g) \) generated by \(E_1, \ldots, E_n \) and \(K_\beta \) with \(\beta \in P \). The representation theory of this algebra has been deeply investigated in [23], where \(B_\epsilon \cong F_c[B^-] \).

The centre of \(\mathcal{U}_\epsilon(g) \) contains a proper, finitely generated subalgebra \(Z_0 \) such that \(\mathcal{U}_\epsilon(g) \) is a finite \(Z_0 \)-module (in particular it follows that every irreducible \(\mathcal{U}_\epsilon(g) \)-module has finite dimension).

For any associative algebra \(A \) let us denote by \(\text{Spec} A \) the set of the equivalence classes of the irreducible representations of \(A \). It is worth noticing that \(\text{Spec} Z_0 = \{ (t^{-1}u, tu) \mid u \in U, t \in T, u^- \in U^- \} \) (19 §4.4). In [13] the map \(\pi : \text{Spec} Z_0 \rightarrow G, \pi(t^{-1}u, tu) = (u^-)^{-1}t^2u \), which is an unramified covering of the big cell \(\Omega = B^-B \) of \(G \), is considered. Let \(\varphi \) be the map obtained by composing \(\pi \) with the central character \(\chi : \text{Spec} \mathcal{U}_\epsilon(g) \rightarrow \text{Spec} Z_0 \). It follows that for every \(g \in \Omega \) one can define a certain finite-dimensional quotient \(\mathcal{U}^g \) of \(\mathcal{U}_\epsilon(g) \) such that if \(g = \varphi(V) \) then \(V \) is an \(\mathcal{U}^g \)-module.

In [13] §6.1, Proposition (a) the following crucial result is established:

\[
\text{if } g, h \in \Omega \text{ are conjugated in } G \text{ up to a central element then } \mathcal{U}^g \text{ and } \mathcal{U}^h \text{ are isomorphic.}
\]

In [13] §6.8 the following conjecture is formulated:

Conjecture If \(\sigma \in \text{Spec} \mathcal{U}_\epsilon(g) \) is an irreducible representation of \(\mathcal{U}_\epsilon(g) \) on a vector space \(V \) such that \(\varphi(\sigma) \) belongs to a conjugacy class \(\mathcal{O}_V \) in \(G \), then \(\dim(V) \) is divisible by \(\ell^\frac{1}{2}\dim \mathcal{O}_V \).

The De Concini-Kac-Procesi conjecture has been proved in the following cases:

(i) \(\emptyset \) is a regular conjugacy class (19 Theorem 5.1);

(ii) \(G \) is of type \(A_n \) and \(\ell = p \) is a prime (13);

(iii) \(G \) is of type \(A_n, \ell = p^k \) and \(\emptyset \) is a subregular unipotent conjugacy class (13);

(iv) \(G \) is of type \(A_n \) and \(\emptyset \) is a spherical unipotent conjugacy class (10).

We recall that the subalgebra \(B_\epsilon \) contains a copy of the coordinate ring \(\mathbb{C}[B^-] \) of \(B^- \). Given \(b \in B^- \), let us denote by \(m_b \) the corresponding maximal ideal of \(\mathbb{C}[B^-] \) and let us consider the algebra \(A_b := B_\epsilon/m_bB_\epsilon \). This is a finite-dimensional algebra with the following properties:

Theorem 3.1 [21] If \(p, q \in B^- \) lie over the same element \(w \in W \), then the algebras \(A_p \) and \(A_q \) are isomorphic.

Theorem 3.2 [21] Let \(p \in B^- \cap BwB \) be a point over \(w \in W \) and let \(A_p \) be the corresponding algebra. Assume that \(\ell \) is a good integer. Then the dimension of each irreducible representation of \(A_p \) is equal to \(\ell((\ell(w)+rk(1-w))/2 \).

Corollary 3.3 If \(p \in B^- \) lies over \(w \in W \) and \(\sigma \) is an irreducible representation of \(\mathcal{U}_\epsilon(g) \) on a vector space \(V \) such that \(\varphi(\sigma) \) is conjugated to \(p \), then \(\dim(V) \) is divisible by \(\ell((\ell(w)+rk(1-w))/2 \)

Proof. See [9 Corollary 2.9].

Theorem 2.26 and Corollary 3.3 lead to the following result:
Theorem 3.4 Let \(g \) be a simple complex Lie algebra and let \(\ell \) be a good integer. If \(V \) is a simple \(\mathcal{U}_c(g) \)-module whose associated conjugacy class \(\mathcal{O}_V \) is spherical, then \(\ell \divides \dim \mathcal{O}_V \).

It was shown in [17] §8 that in order to prove the conjecture it is enough to consider the exceptional conjugacy classes, that is the conjugacy classes of exceptional elements. For the convenience of the reader we recall that a semisimple element \(g \in G \) is exceptional if its centralizer in \(G \) has finite centre. An element \(g \in G \) is called exceptional if its semisimple part is exceptional. From the classification of the semisimple exceptional elements ([30] Lemma 7.1), [17] §7) it follows that when \(g \) is of classical type or of type \(G_2 \) all the semisimple exceptional elements are spherical. The elements \(\sigma_k \) and \(\rho_k \) in Table 1, with \(k = 1, \ldots, \frac{\ell}{2} \) for \(g \) of type \(C_n \), \(k = 2, \ldots, \frac{\ell}{2} \) for \(g \) of type \(D_n \), and \(k = 1, \ldots, n \) for \(g \) of type \(B_n \), are, up to central elements, representatives of all spherical, semisimple, exceptional conjugacy classes. The elements appearing in Table 2 except \(p_2 \) and \(q_3 \) are, up to central elements, representatives of all spherical, semisimple, exceptional conjugacy classes for \(g \) exceptional type.

Using the De Concini-Kac reduction theorem ([17] §8) we can go a bit further in the proof of the conjecture:

Corollary 3.5 Let \(g \) be of classical type or of type \(G_2 \) and let \(s \) be a semisimple element of \(G \). Then any irreducible representation \(V \) of \(\mathcal{U}_c(g) \) lying over \(\mathcal{O}_s \) has dimension divisible by \(\ell \divides \dim \mathcal{O}_s \).

Proof. An irreducible representation of \(\mathcal{U}_c(g) \) lying over a semisimple element of \(G \) is either exceptional or induced by an exceptional semisimple representation of \(\mathcal{U}_c(g') \) ([17] §8). By Theorem 2.15 the De Concini-Kac-Procesi conjecture follows for all irreducible representations lying over semisimple elements.

Corollary 3.6 Let \(g \) be a non-exceptional element of \(G \) with Jordan decomposition \(g = su \) such that \(\mathcal{O}_s \) and \(\mathcal{O}_u \) are spherical. Then any irreducible representation \(V \) of \(\mathcal{U}_c(g) \) lying over \(\mathcal{O}_s \) has dimension divisible by \(\ell \divides \dim \mathcal{O}_s \).

Proof. Since \(\mathcal{O}_s \) is spherical \(s \) can be chosen among the non-exceptional elements in Tables 1 and 2. The case of \(G \) of type \(A_n \) was dealt with in [9]. Using [17] §8 we have:

1. \(G \) is of type \(C_n \) and \(s = c \). Then \(V \) is induced by an irreducible \(\mathcal{U}_c(sp_{2n-2}) \)-module \(V' \) lying over the spherical, unipotent conjugacy class of the element \(\begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix} \in sp_{2n-2} \);

2. \(G \) is of type \(C_n \) (resp. \(D_n \)) and \(s = c \). Then \(V \) is induced by an irreducible \(\mathcal{U}_c(sl_n) \)-module \(V' \) lying over the unipotent spherical conjugacy class of the element \(A \in SL_n \), where \(A \) is as in the proof of Proposition 2.22;

3. \(G \) is of type \(D_n \) and \(s = d = \tau(c) \). Then, since \(C_G(c) \) is generated by the root subgroups corresponding to the simple roots \(\alpha_1, \ldots, \alpha_{n-1} \), the centralizer of \(d \) in \(G \) is generated by the root subgroups corresponding to the simple roots \(\alpha_1, \ldots, \alpha_{n-2}, \alpha_n \) and \(V \) is induced by an irreducible \(\mathcal{U}_c(sl_n) \)-module \(V' \) lying over a spherical unipotent conjugacy class of \(SL_n \);

4. \(G \) is of type \(D_n \) and \(s = \sigma_1 \). Then

\[
V = \begin{pmatrix} 1 & U_1 \\ U_3 & 1 \\ U_4 \end{pmatrix}
\]
where \(u' = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix} \) is a spherical unipotent element of \(SO_{2n-2} \). Then \(V \) is induced by an irreducible \(U_c(s0_{2n-2}) \)-module \(V' \) lying over \(u' \);

5. \(G \) is of type \(B_n \) and there are two possibilities:

(a) \(s = \rho_1 \) and, as in the previous case, \(V \) is induced by an irreducible \(U_c(s0_{2n-1}) \)-module \(V' \) lying over a spherical unipotent element;

(b) \(s = b_\lambda \), and \(V \) is induced by an irreducible \(U_c(sl_n) \)-module \(V' \) lying over the unipotent spherical conjugacy class of the element \(A \in SL_n \) where \(A \) is as in the proof of Proposition 2.22.

6. \(G \) is of type \(E_6 \).

In this case \(s = \exp(\pi i \hat{\omega}_1) \) and, since \(u \) commutes with \(s \), \(u \) belongs to the subgroup of type \(D_5 \) with simple roots \(\alpha_2, \ldots, \alpha_6 \). By [17] \(\S 8 \) \(V \) is induced by an irreducible \(U_c(s0_{10}) \)-module \(V' \) corresponding to the conjugacy class of the element \(u \). Besides, the conjugacy class of \(u \) in \(D_5 \) is again spherical by Remark 2.21.

7. \(G \) is of type \(E_7 \).

In this case \(s = \exp(\pi i \hat{\omega}_7) \) and \(u \) belongs to the subgroup of type \(E_6 \) with simple roots \(\alpha_1, \ldots, \alpha_6 \). By [17] \(\S 8 \) \(V \) is induced by an irreducible \(U_c(e_6) \)-module \(V' \) corresponding to the unipotent spherical conjugacy class of the element \(u \). The conjugacy class of \(u \) in \(E_6 \) is again spherical by Remark 2.21.

By Theorem 3.4 the proof is concluded. \(\square \)

Remark 3.7 We point out that Corollary 3.6 can be generalized to a larger class of representations by making use of the De Concini-Kac reduction theorem. In particular the conjecture follows whenever the following conditions are satisfied:

1. \(s \) lies in the identity component of \(Z(C_G(s)) \);

2. \(\mathcal{O}_u \) is spherical.

When \(g \) is of classical type condition 1. is equivalent to the following conditions in the corresponding matrix groups:

- \(G = SO_{2n+1} \): \(C_G(s)^o \) contains no copy of type \(D_k \) with \(k \geq 2 \), i.e., if \(s \) is diagonal, no submatrix of \(s \) is conjugated to \(\rho_k \) with \(k \geq 2 \);

- \(G = Sp_{2n} \): \(C_G(s) \) contains at most one copy of type \(C_k \) with \(k \geq 1 \), i.e., if \(s \) is diagonal, no submatrix of \(s \) is conjugated to \(\sigma_k \) with \(k \geq 1 \);

- \(G = SO_{2n} \): \(C_G(s)^o \) contains at most one copy of type \(D_k \) with \(k \geq 2 \), i.e., if \(s \) is diagonal, no submatrix of \(s \) is conjugated to \(\sigma_k \) with \(k \geq 2 \).

Let us notice that when \(g \) is of type \(A_n \) condition 1. is always satisfied ([9] Theorem 3.4)).

Corollary 3.8 Any irreducible representation \(V \) of \(U_c(sp_4) \) has dimension divisible by \(\ell \dim \mathcal{O}_V \).

Proof. Thanks to the De Concini-Kac reduction theorem it is enough to consider the exceptional representations of \(U_c(sp_4) \). Since an exceptional element \(g \) of \(sp_4 \) is either spherical or regular, the De Concini-Kac-Procesi conjecture follows from Theorem 3.4 and [19] Theorem 5.1]. \(\square \)
References

[1] J. ADAMS, J.-S. HUANG, D. VOGAN, JR Functions on the model orbit in E_8, Elec. Jour. Repres. Theory 2, 224–263 (1998).

[2] P. BALA, R. W. CARTER Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Camb. Phil. Soc. 79, 401–425 (1976).

[3] P. BALA, R. W. CARTER Classes of unipotent elements in simple algebraic groups. II, Math. Proc. Camb. Phil. Soc. 80, 1–17 (1976).

[4] N. BOURBAKI Groupes et Algèbres de Lie, Chapitres 4,5, et 6, Masson, Paris (1981).

[5] M. BRION Représentations exceptionelles des groupes semi-simples, Ann. scient. Éc. Norm. Sup. 4e série, t. 18, 345–387 (1985).

[6] M. BRION Quelques propriétés des espaces homogènes sphériques, Manuscripta Math. 55, 191–198 (1986).

[7] M. BRION Classification des espaces homogènes sphériques, Compositio Math., vol. 63, 189–208 (1987).

[8] N. CANTARINI Mod-p reduction for quantum groups, J. Algebra, vol. 202, no. 1, 357–366 (1998).

[9] N. CANTARINI Spherical orbits and quantized enveloping algebras, Comm. Algebra, 27(7), 3439–3458 (1999).

[10] N. CANTARINI The quantized enveloping algebra $U_q(sl(n))$ at the roots of unity, Comm. Math. Phys., vol. 211, no. 1, 207–230 (2000).

[11] R. W. CARTER Simple Groups of Lie Type, Pure and Applied Mathematics XXVIII (1972).

[12] R. W. CARTER Finite Groups of Lie Type, Pure and Applied Mathematics (1985).

[13] D. COLLINGWOOD, W. MCGOVERN Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York (1993).

[14] M. COSTANTINI On the lattice automorphisms of certain simple algebraic groups, Rend. Sem. Mat. Univ. Padova, Vol. XC, 141–157 (1993).

[15] M. COSTANTINI The lattice automorphisms of simple algebraic groups over \mathbb{F}_2, Manuscripta Math. 91, 1–16 (1996).

[16] C. DE CONCINI, V. G. KAC Representations of quantum groups at roots of one, Progress in Math. 92, Birkhauser, 471–506 (1990).

[17] C. DE CONCINI, V. G. KAC Representations of quantum groups at roots of 1: reduction to the exceptional case, International Journal of Modern Physics, 7(1A), 141–149 (1992).

[18] C. DE CONCINI, V. G. KAC, C. PROCESI Quantum coadjoint action, J. Amer. Math. Soc. 5, 151–190 (1992).

[19] C. DE CONCINI, V. G. KAC, C. PROCESI Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157, 405–427 (1993).

[20] C. DE CONCINI, V. G. KAC, C. PROCESI Quantum Groups, Lecture Notes in Math. 1565 Springer, Berlin, 31–140 (1993).
[21] C. De Concini, V. G. Kac, C. Procesi *Some quantum analogues of solvable Lie groups*, Geometry and Analysis, Tata Institute of Fundamental Research, Bombay (1995).

[22] C. De Concini, V. Lyubashenko *Quantum function algebra at roots of 1*, Adv. Math. 108(2), 205–262 (1994).

[23] C. De Concini, C. Procesi *Quantum Schubert cells and representations at roots of 1*, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser. 9 Cambridge Univ. Press, Cambridge, 127–160 (1997).

[24] G. B. Elkington *Centralizers of unipotent elements in semisimple algebraic groups*, J. Algebra 23, 137–163 (1972).

[25] W. Fulton, J. Harris *Representation Theory*, Springer-Verlag, New York (1991).

[26] S. Helgason *Differential Geometry, Lie Groups, and Symmetric Spaces*, Academic Press, New York (1978).

[27] J. Humphreys *Introduction to Lie Algebras and Representation Theory*, Springer-Verlag, New York (1994).

[28] J. Humphreys *Linear Algebraic Groups*, Springer-Verlag, New York (1995).

[29] V. G. Kac *Automorphisms of finite order of semisimple Lie algebras*, Funkcional. Anal. i Priložen 2, 93–94 (1968).

[30] V. G. Kac *Infinite Dimensional Lie Algebras*, Birkhauser Boston, Inc., USA (1983).

[31] F. Knop *On the set of orbits for a Borel subgroup*, Comment. Math. Helv. 70, 285–309 (1995).

[32] M. Kramer *Spharische Untergruppen in kompakten zusammenhangenden Liegruppen*, Compositio Math. 38, 129–153 (1979).

[33] A. S. Leahy *A classification of multiplicity free representations*, J. Lie Theory, 8(2), 367–391 (1998).

[34] W. M. McGovern *Rings of regular functions on nilpotent orbits II: model algebras and orbits*, Comm. Alg. 22, 765–772 (1994).

[35] W. M. McGovern *The Adjoint Representation and the Adjoint Action*, Encyclopaedia of Mathematical Sciences 131, 159–238 (2002).

[36] D. Panyushev *Complexity and rank of homogeneous spaces*, Geom. Dedicata, 34, 249–269 (1990).

[37] D. Panyushev *Complexity and nilpotent orbits*, Manuscripta Math. 83, 223-237 (1994).

[38] D. Panyushev *On spherical nilpotent orbits and beyond*, Ann. Inst. Fourier, Grenoble 49(5), 1453–1476 (1999).

[39] D. Panyushev *Some amazing properties of spherical nilpotent orbits*, preprint [arXiv:math.AG/0206265](http://arxiv.org/abs/math.AG/0206265) (2002).

[40] T.A. Springer *The unipotent variety of a semi-simple group*, Paper presented at the Bombay colloquium, 1968, 373–391, Tata Institute, Bombay, India (1969).
[41] T.A. SPRINGER, R. STEINBERG *Conjugacy classes*, In: “Seminar on algebraic groups and related finite groups”. LNM 131, 167–266, Springer-Verlag, Berlin Heidelberg New York (1970).

[42] R. STEINBERG *Lectures on Chevalley Groups*, Yale University (1967).

[43] R. STEINBERG *Endomorphisms of Linear Algebraic Groups*, Mem. Amer. Math. Soc. 80 (1968).

[44] É. B. VINBERG, B. N. KIMEL’FEL’D *Homogeneous domains on flag manifolds and spherical subsets of semisimple Lie groups (Russian)*, Funktsional. Anal. i Prilozhen. 12, no. 3, 12–19 (1978).

[45] H. VÖLKLEIN *On the lattice automorphisms of the finite Chevalley groups*, Nederl. Akad. Wetensch. Indag. Math. 48, 213-228 (1986).