Formulas for partition k-tuples with t-cores

Shane Chern

Abstract. Let $A_{t,k}(n)$ denote the number of partition k-tuples of n where each partition is t-core. In this paper, we establish formulas of $A_{t,k}(n)$ for some values of t and k by employing the method of modular forms, which extends Wang’s result for $t = 3$ and $k = 2, 3$.

Keywords. Partition, k-tuple, t-core, modular form.

2010MSC. Primary 11P84; Secondary 11F11, 11M36, 05A17.

1. INTRODUCTION

Let $A_t(n)$ denote the number of t-core partitions of n, that is, the number of partitions of n with no hook numbers being multiples of t. Garvan, Kim, and Stanton [7, Eq. (2.1)] showed that the generating function of $A_t(n)$ is given by

$$\sum_{n \geq 0} A_t(n)q^n = \frac{(q^t; q^t)_\infty}{(q; q)_\infty},$$

where, as usual, we denote $$(a; q)_\infty := \prod_{n \geq 0} (1 - aq^n),$$

and $$(a; q)_n := \frac{(a; q)_\infty}{(aq^n; q)_\infty} \quad (-\infty < n < \infty).$$

For convenience, we also write $$(a_1, a_2, \ldots, a_n; q)_\infty := (a_1; q)_\infty(a_2; q)_\infty \cdots (a_n; q)_\infty.$$ We say $(\lambda_1, \ldots, \lambda_k)$ is a partition k-tuple of n if the sum of all the parts equals n. For example, $\{(1,1), \{1\}\}$ is a partition pair of 3. Furthermore, a partition k-tuple $(\lambda_1, \ldots, \lambda_k)$ of n with t-cores means that each λ_i is t-core. Let $A_{t,k}(n)$ denote the number of partition k-tuples of n with t-cores. From (1.1), we readily obtain the generating function of $A_{t,k}(n)$, that is,

$$\sum_{n \geq 0} A_{t,k}(n)q^n = \left(\sum_{n \geq 0} A_t(n)q^n\right)^k = \frac{(q^t; q^t)^{kt}}{(q; q)^k_\infty}. \quad (1.2)$$

Here we write $A_{t,1}(n) = A_t(n)$.

Many authors have studied the number of partitions and partition pairs with t-cores and obtained sets of Ramanujan-like congruences (see, e.g., [1, 2, 3, 4, 5, 10, 12, 16]).
More recently, Wang [15] established formulas of $A_{3,2}(n)$ and $A_{3,3}(n)$ with the help of Ramanujan’s $1\psi_1$ formula and Bailey’s $6\psi_6$ formula. Let $\sigma_1(n) = \sum_{d|n} d$ and $\sigma_{2,\chi_3}^*(n) = \sum_{d|n} \chi_3(\frac{n}{d})d^2$ (here $\chi_3(n) = (n|3)$ denotes the Legendre symbol). He proved that for any integer $n \geq 0$,

$$A_{3,2}(n) = \frac{1}{3}\sigma_1(3n + 2),$$

and

$$A_{3,3}(n) = \sigma_{2,\chi_3}^*(n + 1).$$

However, we notice that Wang’s method expires for $k \geq 4$ due to a lack of corresponding $s\psi_s$ formulas. Recall that for the case $k = 1$, Granville and Ono [9] gave the formula

$$A_{3,1}(n) = \sigma_{0,\chi_3}(3n + 1),$$

where $\sigma_{0,\chi_3}(n) = \sum_{d|n} \chi_3(d)$, using the tools of modular forms. We also notice that in [13], Ono, Robins, and Wahl found formulas of the number of representations of n as sums of k triangular numbers (denoted by $\delta_k(n)$) for $k = 2, 4, 6, 8, 10, 12, $ and 24 by applying the same method. It is known by Jacobi’s identity that

$$\sum_{n\geq 0} q^{T_n} = 1 + q + q^3 + q^6 + q^{10} + \cdots = \frac{(q^2;q^2)_\infty^2}{(q;q)_\infty}.$$

We immediately see that their $\delta_k(n)$ is our $A_{2,k}(n)$. It is therefore natural to expect the method of modular forms will play a role in finding formulas of $A_{t,k}(n)$ for some other values of t and k.

In Section 2, we will give a brief introduction to modular forms. In Section 3, we will discuss $A_{3,k}(n)$ and derive two new formulas for $k = 4$ and 6. We should say that these formulas, which involve Fourier coefficients of some η-products, are not explicit. However, they can be regarded as analogues to $\delta_k(n)$ in [13]. In the following sections, we will present some formulas for $t \geq 4$. Here the formula of $A_{5,1}(n)$ is explicit.

2. A BRIEF INTRODUCTION TO MODULAR FORMS

Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. We first define the following congruence subgroups of level N:

(1) $\Gamma_0(N) = \left\{ \gamma \in SL_2(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N} \right\}$.

(2) $\Gamma_1(N) = \left\{ \gamma \in SL_2(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$.

(3) $\Gamma(N) = \left\{ \gamma \in SL_2(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$.

Here “∗” means “unspecified.”

Let $A \in SL_2(\mathbb{Z})$ act on the complex upper half plane \mathcal{H} by the linear fractional transformation

$$A \tau = \frac{a \tau + b}{c \tau + d}.$$

Let χ be a Dirichlet character mod N and $k \in \mathbb{Z}^+$ satisfying $\chi(-1) = (-1)^k$. Let $f(\tau)$ be a holomorphic function on \mathcal{H} such that

$$f(A \tau) = \chi(d)(c \tau + d)^k f(\tau)$$

for all $A \in \Gamma_0(n)$ and all $\tau \in \mathcal{H}$. We call $f(\tau)$ a modular form of weight k and nebentypus χ on $\Gamma_0(N)$. Furthermore, we say $f(\tau)$ is a holomorphic modular form (resp. cusp form) if $f(\tau)$ is holomorphic (resp. vanishes) at the cusps of $\Gamma_0(N)$. It is known that the holomorphic modular forms (resp. cusp forms) of weight k and nebentypus χ form finite dimensional \mathbb{C}-vector spaces, denoted by $M_k(\Gamma_0(N), \chi)$ (resp. $S_k(\Gamma_0(N), \chi)$). Moreover, $M_k(\Gamma_0(N), \chi)$ is the direct sum of $S_k(\Gamma_0(N), \chi)$ and Eisenstein series.

Every modular form $f(\tau) \in M_k(\Gamma_0(N), \chi)$ admits a Fourier expansion at infinity of the form

$$f(\tau) = \sum_{n \geq 0} a(n) q^n$$

where $q := e^{2\pi i \tau}$. Since spaces of modular forms are finite dimensional, given two modular forms with the same level N and weight k, it is known that they are equal if their Fourier expansions agree for the first $k[SL_2(\mathbb{Z}) : \Gamma_0(N)]/12$ terms (see [11, 14]).

For more details on modular forms, the reader may refer to [6].

3. Formulas of $A_{3,k}(n)$

Taking $t = 3$ in (1.1), we have

$$\Phi(q) := \sum_{n \geq 0} A_3(n) q^n = \frac{(q^3; q^3)_\infty^3}{(q; q)_\infty},$$

which is essentially a quotient of Dedekind η-functions, where η is defined by

$$\eta(\tau) = q^{1/24} \prod_{n \geq 1} (1 - q^n) = q^{1/24}(q; q)_\infty$$

with $q := e^{2\pi i \tau}$. In fact, we have

$$\Phi(q) = q^{-1/3} \frac{\eta^3(3\tau)}{\eta(\tau)}.$$ \hspace{1cm} (3.2)

Now we focus on $\Phi^k(q)$. To make our argument more complete, we include the proofs of (1.3), (1.4), and (1.5) as part of this section. We should mention at first that for odd k our modular forms have nebentypus $\chi = (-3|n)$, whereas the nebentypus is $\chi = (9|n)$ when k is even (here $(\cdot|n)$ denotes the Jacobi symbol).
3.1. The case \(k = 1 \). We consider the weight 1 modular form \(q\Phi(q^3) \) on \(\Gamma_0(9) \) defined by

\[
q\Phi(q^3) = \frac{\eta^3(9\tau)}{\eta(3\tau)} = \sum_{n \geq 0} A_{3,1}(n)q^{3n+1}.
\]

The first few terms of its Fourier expansion are

\[
q\Phi(q^3) = q + q^4 + 2q^7 + 2q^{13} + q^{16} + \cdots.
\]

Let \(\chi_3(n) = (n|3) \) denote the Legendre symbol, and write

\[
\sigma_{0,\chi_3}(n) = \sum_{d|n} \chi_3(d).
\]

We define the following weight 2 Eisenstein series on \(\Gamma_0(9) \)

\[
\sum_{n \geq 0} \sigma_{0,\chi_3}(3n+1)q^{3n+1}.
\]

It turns out that \(q\Phi(q^3) \) is the Eisenstein series on \(\Gamma_0(9) \) given by

\[
q\Phi(q^3) = \sum_{n \geq 0} \sigma_{0,\chi_3}(3n+1)q^{3n+1}.
\]

We therefore obtain

Theorem 3.1 (Granville and Ono). For any integer \(n \geq 0 \),

\[
A_{3,1}(n) = \sigma_{0,\chi_3}(3n+1). \tag{3.3}
\]

3.2. The case \(k = 2 \). We consider the modular form \(q^2\Phi^2(q^3) \in \mathcal{M}_2(\Gamma_0(9)) \).

\[
q^2\Phi^2(q^3) = \frac{\eta^6(9\tau)}{\eta^2(3\tau)} = \sum_{n \geq 0} A_{3,2}(n)q^{3n+2}.
\]

The first few terms of its Fourier expansion are

\[
q^2\Phi^2(q^3) = q^2 + 2q^5 + 5q^8 + 4q^{11} + 8q^{14} + \cdots.
\]

Let

\[
\sigma_1(n) = \sum_{d|n} d.
\]

We define the following weight 2 Eisenstein series on \(\Gamma_0(9) \)

\[
\sum_{n \geq 0} \sigma_1(3n+2)q^{3n+2}.
\]

One readily verifies our generating function \(q^2\Phi^2(q^3) \) satisfies

\[
q^2\Phi^2(q^3) = \frac{1}{3} \sum_{n \geq 0} \sigma_1(3n+2)q^{3n+2}.
\]

We therefore prove

Theorem 3.2 (Wang). For any integer \(n \geq 0 \),

\[
A_{3,2}(n) = \frac{1}{3} \sigma_1(3n+2). \tag{3.4}
\]
3.3. The case $k = 3$. Here we consider the weight 3 modular form $q\Phi^3(q)$ on $\Gamma_0(3)$:

$$q\Phi^3(q) = \frac{\eta^3(3\tau)}{\eta^3(\tau)} = \sum_{n \geq 0} A_{3,3}(n)q^{n+1}.$$

We give the first few terms of its Fourier expansion as follows

$$q\Phi^3(q) = q + 3q^2 + 9q^3 + 13q^4 + 24q^5 + \cdots.$$

Let

$$\sigma_{2,\chi_3}^*(n) = \sum_{d | n} \chi_3(n/d)d^2.$$

Now we consider the weight 3 Eisenstein series on $\Gamma_0(3)$

$$\sum_{n \geq 1} \sigma_{2,\chi_3}^*(n)q^n.$$

By equating Fourier coefficients we find that

$$q\Phi^3(q) = \sum_{n \geq 1} \sigma_{2,\chi_3}^*(n)q^n.$$

It follows

Theorem 3.3 (Wang). For any integer $n \geq 0$,

$$A_{3,3}(n) = \sigma_{2,\chi_3}^*(n + 1). \quad (3.5)$$

3.4. The case $k = 4$. We consider the weight 4 modular form $q^4\Phi^4(q^3)$ on $\Gamma_0(9)$ given by

$$q^4\Phi^4(q^3) = \frac{\eta^{12}(9\tau)}{\eta^4(3\tau)} = \sum_{n \geq 0} A_{3,4}(n)q^{3n+4}.$$

Here are the first few terms of the Fourier expansion of $q^4\Phi^4(q^3)$:

$$q^4\Phi^4(q^3) = q^4 + 4q^7 + 14q^{10} + 28q^{13} + 57q^{16} + \cdots.$$

Let

$$\sigma_3(n) = \sum_{d | n} d^3.$$

We consider the following weight 4 Eisenstein series on $\Gamma_0(9)$:

$$E(\tau) = \sum_{n \geq 0} \sigma_3(3n + 1)q^{3n+1}.$$

Note also that the space of cusp forms $S_4(\Gamma_0(9))$ is 1 dimensional and is spanned by the η-product

$$\eta^8(3\tau) = q - 8q^4 + 20q^7 - 70q^{10} + 64q^{13} + \cdots.$$

By equating Fourier coefficients we obtain the following identity:

$$q^4\Phi^4(q^3) = \frac{1}{81}(E(\tau) - \eta^8(3\tau)).$$

It implies
Theorem 3.4. Let $\eta^8(3\tau) = \sum_{n \geq 1} a(n)q^n$. For any integer $n \geq 0$,

$$A_{3,4}(n) = \frac{1}{81}(\sigma_3(3n+4) - a(3n+4)). \quad (3.6)$$

Remark 3.1. It is known that $\eta^8(3\tau)$ is a cusp with complex multiplication. Since all forms with complex multiplication are lacunary, that is, the arithmetic density of their non-zero Fourier coefficients is 0, we immediately see $A_{3,4}(n) = \sigma_3(3n+4)/81$ almost always.

3.5. The case $k = 6$. Here we consider the modular form $q^2\Phi_6(q) \in \mathcal{M}_6(\Gamma_0(3)).$

$$q^2\Phi_6(q) = \frac{\eta^{18}(3\tau)}{\eta^6(\tau)} = \sum_{n \geq 0} A_{3,6}(n)q^{n+2}. \quad (3.6)$$

We give the first few terms of its Fourier expansion

$$q^2\Phi_6(q) = q^2 + 6q^3 + 27q^4 + 80q^5 + 207q^6 + \cdots .$$

Given a prime p, let $\nu_p(n)$ denote the largest integer e such that $p^e \mid n$. Write

$$\sigma_{5,3}^\#(n) = 3^{5\nu_3(n)} \sum_{d \mid n, \, d \not= 0 \mod 3} d^5.$$

Now we define the following weight 6 Eisenstein series on $\Gamma_0(3)$

$$E(\tau) = \sum_{n \geq 1} \sigma_{5,3}^\#(n)q^n.$$

It is easy to see $S_6(\Gamma_0(3))$ is 1 dimensional and is spanned by

$$\eta^6(\tau)\eta^6(3\tau) = q - 6q^2 + 9q^3 + 4q^4 + 6q^5 + \cdots .$$

Our form $q^2\Phi_6(q)$ satisfies

$$q^2\Phi_6(q) = \frac{1}{39}(E(\tau) - \eta^6(\tau)\eta^6(3\tau)).$$

We thus conclude

Theorem 3.5. Let $\eta^6(\tau)\eta^6(3\tau) = \sum_{n \geq 1} a(n)q^n$. For any integer $n \geq 0$,

$$A_{3,6}(n) = \frac{1}{39}(\sigma_{5,3}^\#(n+2) - a(n+2)). \quad (3.7)$$

4. Formula of $A_{4,2}(n)$

Taking $t = 4$ in (1.1), we have

$$\Phi(q) := \sum_{n \geq 0} A_4(n)q^n = \frac{(q^4; q^4)_\infty}{(q; q)_\infty}. \quad (4.1)$$

One readily sees it equals the following η-quotient

$$\Phi(q) = q^{-5/8}\frac{\eta^4(4\tau)}{\eta(\tau)}. \quad (4.2)$$
Now we consider the modular form $q^5 \Phi^2(q^4) \in \mathcal{M}_3(\Gamma_0(16), (-4|n))$.

$$q^5 \Phi^2(q^4) = \frac{\eta^8(16\tau)}{\eta^2(4\tau)} = \sum_{n \geq 0} A_{4,2}(n)q^{4n+5}.$$

The first few terms of its Fourier expansion are

$$q^5 \Phi^2(q^4) = q^5 + 2q^9 + 5q^{13} + 10q^{17} + 12q^{21} + \cdots.$$

Let $\chi_{4,2}$ be the Dirichlet character mod 4 given by

$$\chi_{4,2}(n) = \begin{cases} 1 & n \equiv 1 \mod 4, \\ -1 & n \equiv 3 \mod 4, \\ 0 & (n,4) > 1, \end{cases}$$

and write

$$\sigma_{2,\chi_{4,2}}(n) = \sum_{d|n} \chi_{4,2}(d)d^2.$$

We consider the following weight 3 Eisenstein series on $\Gamma_0(16)$:

$$E(\tau) = \sum_{n \geq 0} \sigma_{2,\chi_{4,2}}(4n + 1)q^{4n+1}.$$

It is also known that the space of cusp forms $\mathcal{S}_3(\Gamma_0(16), (-4|n))$ is 1 dimensional and is spanned by

$$\eta^6(4\tau) = q - 6q^5 + 9q^9 + 10q^{13} - 30q^{17} + \cdots.$$

One readily verifies

$$q^5 \Phi^2(q^4) = \frac{1}{32}(E(\tau) - \eta^6(4\tau)).$$

We therefore prove

Theorem 4.1. Let $\eta^6(4\tau) = \sum_{n \geq 1} a(n)q^n$. For any integer $n \geq 0$,

$$A_{4,2}(n) = \frac{1}{32}(\sigma_{2,\chi_{4,2}}(4n + 5) - a(4n + 5)). \quad (4.3)$$

5. **Formulas of $A_{5,k}(n)$**

Taking $t = 5$ in (1.1), we have

$$\Phi(q) := \sum_{n \geq 0} A_5(n)q^n = \frac{(q^5; q^5)_\infty}{(q; q)_\infty}. \quad (5.1)$$

It is easy to obtain the following identity:

$$\Phi(q) = q^{-1}\frac{\eta^5(5\tau)}{\eta(\tau)}. \quad (5.2)$$
5.1. The case \(k = 1 \). Here we consider the weight 2 modular form \(q\Phi(q) \) on \(\Gamma_0(5) \) with nebentypus \((5|n) \).

\[
q\Phi(q) = \frac{\eta^5(5\tau)}{\eta(\tau)} = \sum_{n \geq 0} A_{5,1}(n)q^{n+1}.
\]

The first few terms of its Fourier expansion are

\[
q\Phi(q) = q + q^2 + 2q^3 + 3q^4 + 5q^5 + \cdots.
\]

Let \(\chi_{5,3} \) be the Dirichlet character mod 5 given by

\[
\chi_{5,3}(n) = \begin{cases}
1 & n \equiv 1, 4 \mod 5, \\
-1 & n \equiv 2, 3 \mod 5, \\
0 & (n, 5) > 1.
\end{cases}
\]

Now write

\[
\sigma^*_{1,\chi_{5,3}}(n) = \sum_{d|n} \chi_{5,3}(n/d)d.
\]

Define the following weight 2 Eisenstein series on \(\Gamma_0(5) \)

\[
E(\tau) = \sum_{n \geq 1} \sigma^*_{1,\chi_{5,3}}(n)q^n.
\]

It follows by equating Fourier coefficients that

\[
q\Phi(q) = E(\tau).
\]

We conclude

Theorem 5.1. For any integer \(n \geq 0 \),

\[
A_{5,1}(n) = \sigma^*_{1,\chi_{5,3}}(n + 1).
\]

Remark 5.1. It is of interest to mention that we can prove Theorem 5.1 through Bailey’s \(6\psi_6 \) formula. Recall

Lemma 5.2 (Bailey’s \(6\psi_6 \) formula). For \(|aq^2/(bcde)| < 1 \),

\[
6\psi_6 \left[\begin{array}{cccccc}
q\sqrt{a}, & -q\sqrt{a}, & b, & c, & d, & e \\
\sqrt{a}, & -\sqrt{a}, & aq/b, & aq/c, & aq/d, & aq/e \\
\end{array} \right] \\
= \frac{(aq, aq/(bc), aq/(bd), aq/(be), aq/(cd), aq/(ce), aq/(de), q, q/a; q)_\infty}{(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, qa^2/(bcde); q)_\infty},
\]

where the \(s\psi_s \) function is defined as

\[
s\psi_s \left[\begin{array}{ccc}
\frac{a_1, \ldots, a_s}{b_1, \ldots, b_s}; q, z \\
\end{array} \right] := \sum_{n=-\infty}^{\infty} \frac{(a_1, \ldots, a_s; q)_n z^n}{(b_1, \ldots, b_s; q)_n}.
\]

For its proof, the reader may refer to [8, Sec. 5.3]. Now taking

\[
(a, b, c, d, e, q) \to (q^4, q, q^3, q^3, q^5)
\]

in (5.4), we deduce that

\[
\sum_{n \geq 0} A_{5,1}(n)q^{n+1} = q(q^5; q^5)_\infty/(q; q)_\infty
\]
Note that for $|q| < 1$ we have

$$\frac{q}{(1 - q)^2} = \sum_{d \geq 1} dq^d.$$

It therefore follows

$$\sum_{n \geq 0} A_{5,1}(n)q^{n+1} = \sum_{n \geq 0} \sum_{d \geq 1} \left\{ dq^{(5n+1)d} - dq^{(5n+2)d} - dq^{(5n+3)d} + dq^{(5n+4)d} \right\}.$$

By equating coefficients we have

$$A_{5,1}(n) = \sum_{d \mid n+1} \chi_{5,3}(d) \frac{n+1}{d} = \sum_{d \mid n+1} \chi_{5,3} \left(\frac{n+1}{d} \right) d = \sigma^*_1 \chi_{5,3}(n+1).$$

5.2. **The case $k = 2$.** We consider the modular form $q^2 \Phi^2(q) \in M_4(\Gamma_0(5))$.

$$q^2 \Phi^2(q) = \frac{\eta^{10}(5\tau)}{\eta^2(\tau)} = \sum_{n \geq 0} A_{5,2}(n)q^{n+2}.$$

The first few terms of its Fourier expansion are

$$q^2 \Phi^2(q) = q^2 + 2q^3 + 5q^4 + 10q^5 + 20q^6 + \cdots.$$

Let

$$\sigma^{\#}_{3,5}(n) = 5^{\nu_5(n)} \sum_{d \mid n, d \equiv 0 \mod 5} d^3,$$

where $\nu_5(n)$ denotes the largest integer e such that $5^e \mid n$. Now we define the following weight 4 Eisenstein series on $\Gamma_0(5)$

$$E(\tau) = \sum_{n \geq 1} \sigma^{\#}_{3,5}(n)q^n.$$

We also notice that the space of cusp forms $S_4(\Gamma_0(5))$ is 1 dimensional and is spanned by

$$\eta^4(\tau) \eta^4(5\tau) = q - 4q^2 + 2q^3 + 8q^4 - 5q^5 + \cdots.$$

Our form $q^2 \Phi^2(q)$ satisfies

$$q^2 \Phi^2(q) = \frac{1}{13} (E(\tau) - \eta^4(\tau) \eta^4(5\tau)).$$

We thus conclude

Theorem 5.3. Let $\eta^4(\tau) \eta^4(5\tau) = \sum_{n \geq 1} a(n)q^n$. For any integer $n \geq 0$,

$$A_{5,2}(n) = \frac{1}{13} (\sigma^{\#}_{3,5}(n + 2) - a(n + 2)).$$

(5.5)
6. Formula of $A_{7,1}(n)$

Taking $t = 7$ in (1.1), we have

$$\Phi(q) := \sum_{n \geq 0} A_7(n)q^n = \frac{(q^7: q^7)_{\infty}}{(q; q)_{\infty}}.$$ \hspace{1cm} (6.1)

One easily finds

$$\Phi(q) = q^{-2} \frac{\eta^7(7\tau)}{\eta(\tau)}. \hspace{1cm} (6.2)$$

Now we consider the modular form $q^2 \Phi(q) \in M_3(\Gamma_0(7), (-7|n))$.

$$q^2 \Phi(q) = \frac{\eta^7(7\tau)}{\eta(\tau)} = \sum_{n \geq 0} A_{7,1}(n)q^{n+2}. \hspace{1cm} (6.3)$$

The first few terms of its Fourier expansion are

$$q^2 \Phi(q) = q^2 + q^3 + 2q^4 + 3q^5 + 5q^6 + \cdots.$$

Let $\chi_{7,4}$ be the Dirichlet character mod 7 given by

$$\chi_{7,4}(n) = \begin{cases}
1 & n \equiv 1, 2, 4 \pmod{7}, \\
-1 & n \equiv 3, 5, 6 \pmod{7}, \\
0 & (n, 7) > 1.
\end{cases}$$

We write

$$\sigma^*_{2,\chi_{7,4}}(n) = \sum_{d|n} \chi_{7,4}(n/d)d^2.$$

Consider the following weight 3 Eisenstein series on $\Gamma_0(7)$:

$$E(\tau) = \sum_{n \geq 1} \sigma^*_{2,\chi_{7,4}}(n)q^n.$$

Note also that $S_3(\Gamma_0(7), (-7|n))$ is 1 dimensional and is spanned by

$$\eta^3(\tau)\eta^3(7\tau) = q - 3q^2 + 5q^4 - 7q^7 - 3q^8 + \cdots.$$

It is easy to verify that

$$q^2 \Phi(q) = \frac{1}{8}(E(\tau) - \eta^3(\tau)\eta^3(7\tau)).$$

We therefore prove

Theorem 6.1. Let $\eta^3(\tau)\eta^3(7\tau) = \sum_{n \geq 1} a(n)q^n$. For any integer $n \geq 0$,

$$A_{7,1}(n) = \frac{1}{8}(\sigma^*_{2,\chi_{7,4}}(n + 2) - a(n + 2)). \hspace{1cm} (6.3)$$

Acknowledgments. The author thanks Wei Lin and Yucheng Liu for helpful discussions. The author also thanks the referee for valuable suggestions which have improved the readability of this paper.
FORMULAS FOR PARTITION k-TUPLES WITH t-CORES

References

1. N. D. Baruah and K. Nath, Some results on 3-cores, *Proc. Amer. Math. Soc.* 142 (2014), no. 2, 441–448.
2. N. D. Baruah and K. Nath, Infinite families of arithmetic identities and congruences for bipartitions with 3-cores, *J. Number Theory* 149 (2015), 92–104.
3. M. Boylan, Congruences for 2^t-core partition functions, *J. Number Theory* 92 (2002), no. 1, 131–138.
4. S. C. Chen, Congruences for t-core partition functions, *J. Number Theory* 133 (2013), no. 12, 4036–4046.
5. H. B. Dai, Arithmetic of 3^t-core partition functions, *Integers* 15 (2015), Paper No. A7, 5 pp.
6. F. Diamond and J. Shurman, *A first course in modular forms*, Graduate Texts in Mathematics, 228. Springer-Verlag, New York, 2005. xvi+436 pp.
7. F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores, *Invent. Math.* 101 (1990), no. 1, 1–17.
8. G. Gasper and M. Rahman, *Basic hypergeometric series. Second edition*, Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge, 2004. xxvi+428 pp.
9. A. Granville and K. Ono, Defect zero p-blocks for finite simple groups, *Trans. Amer. Math. Soc.* 348 (1996), no. 1, 331–347.
10. M. D. Hirschhorn and J. A. Sellers, Some amazing facts about 4-cores, *J. Number Theory* 60 (1996), no. 1, 51–69.
11. N. Koblitz, *Introduction to elliptic curves and modular forms. Second edition*, Graduate Texts in Mathematics, 97. Springer-Verlag, New York, 1993. x+248 pp.
12. B. L. S. Lin, Some results on bipartitions with 3-core, *J. Number Theory* 139 (2014), 44–52.
13. K. Ono, S. Robins, and P. T. Wahl, On the representation of integers as sums of triangular numbers, *Aequationes Math.* 50 (1995), no. 1-2, 73–94.
14. G. Shimura, *Introduction to the arithmetic theory of automorphic functions*, Reprint of the 1971 original. Publications of the Mathematical Society of Japan, 11. Kanō Memorial Lectures, 1. Princeton University Press, Princeton, NJ, 1994. xiv+271 pp.
15. L. Wang, Explicit formulas for partition pairs and triples with 3-cores, *J. Math. Anal. Appl.* 434 (2016), no. 2, 1053–1064.
16. O. X. M. Yao, Infinite families of congruences modulo 3 and 9 for bipartitions with 3-cores, *Bull. Aust. Math. Soc.* 91 (2015), no. 1, 47–52.

School of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, China

E-mail address: shanechern@zju.edu.cn; chenxiaohang92@gmail.com