Effects for atmospheric neutrino experiments from electron neutrino oscillations

J. Bunn, R. Foot and R. R. Volkas

School of Physics,
Research Centre for High Energy Physics,
The University of Melbourne,
Parkville, 3052 Australia.

Abstract

The minimal interpretation of the atmospheric neutrino data suggests that the muon neutrino oscillates into another species with a mixing angle close to the maximal $\pi/4$. In the Exact Parity Symmetric Model, both the muon and electron neutrinos are expected to be maximally mixed with essentially sterile partners (ν'_μ and ν'_e respectively). We examine the impact of maximal $\nu_e - \nu'_e$ oscillations on the atmospheric neutrino experiments. We estimate that maximal $\nu_e - \nu'_e$ oscillations will have effects on atmospheric neutrino data for $|\delta m^2 (\nu_e - \nu'_e)| > 7 \times 10^{-5} \text{ eV}^2$. For δm^2 in this range, a slight but distinctive rise in the ratio of muon-like to electron-like events is predicted for the low-energy sample. Furthermore, the ratio of low-energy electron-like events with zenith angles less than 90 deg to those with zenith angles greater than 90 deg should be greater than 1.
There are three main experimental indications that neutrinos have mass and oscillate: the atmospheric neutrino anomaly\cite{1, 2, 3}, the solar neutrino problem\cite{4} and the LSND experiment\cite{5}. In the atmospheric neutrino experiments, the fluxes of electron and muon neutrinos resulting from cosmic ray interactions with the atmosphere are measured. The results of these experiments are usually expressed in terms of the quantity R, where

$$R \equiv \frac{(n_\mu/n_e)_{data}}{(n_\mu/n_e)_{MC}}$$

and n_μ and n_e are the numbers of ν_μ and ν_e induced events respectively. The ratio $(n_\mu/n_e)_{MC}$ is obtained from Monte Carlo simulated events based on theoretical calculations of the fluxes\cite{6}. The experimental results are summarized in Table 1 for the low energy (sub GeV) data. Observe that while no anomaly has been observed by the Frejus\cite{7} or Nusex collaborations\cite{8}, the errors for these experiments are significantly larger than the errors quoted by the Kamiokande\cite{1} and IMB\cite{2} collaborations. In this paper we assume that the anomaly is real and represents evidence for neutrino oscillations.

In this context, the atmospheric neutrino anomaly suggests that the muon neutrino oscillates maximally (or close to maximally) with another as yet unidentified species\cite{1}. The solar neutrino problem\cite{4}, on the other hand suggests that either the electron neutrino oscillates maximally (or near maximally) with another species\cite{4, 11, 12, 13, 14} or there are small angle oscillations which are enhanced due to matter effects in the sun\cite{15}. It is tempting to assume that both the atmospheric and solar neutrino anomalies are due to essentially the same mechanism, which then suggests that they are both solved by large angle or maximal neutrino oscillations.

From a model building perspective, several simple ideas have been put forward to explain both the atmospheric and solar neutrino problems via large angle oscillations, including,

(i) The electron and muon neutrinos oscillate into each other with near maximal mixing\cite{11}. This solution is also compatible with the LSND experiment\cite{16}.

(ii) The three known neutrinos are maximally mixed with each other\cite{12, 17}. This solution can explain the atmospheric and solar neutrino problems but is incompatible with LSND.

(iii) All three of the neutrinos are maximally mixed with a sterile species (we denote the three sterile neutrinos by the notation $\nu'_e, \nu'_\mu, \nu'_\tau$)\cite{10, 18, 19}. This scenario is also compatible with the LSND experiment.

The purpose of this paper is to study some implications of this last possibility for current atmospheric neutrino experiments.

Although the solution (iii) is non-minimal, it can be theoretically well motivated. Our
interest in the above scheme comes from the observation that it is naturally realized in gauge models with exact (i.e. unbroken) parity symmetry[18]. Exact parity symmetry is possible if the particle content of the standard model is doubled (the doubling occurs because each of the known particles has a mirror image which is a distinct particle). If neutrinos have mass, and mass mixing between ordinary and mirror neutrinos occurs, then each of the known neutrinos is necessarily a maximal mixture of two states (assuming that the mixing between generations is small)[18]. There are also other interesting schemes which suggest that the ordinary neutrinos oscillate maximally into sterile states[19].

Maximal $\nu_e - \nu'_e$ oscillations reduce the flux of solar neutrinos by an energy independent factor of 2 for the large range of parameters

$$3 \times 10^{-10} \lesssim |\delta m^2_{ee}|/eV^2 \lesssim 7.5 \times 10^{-3},$$

where the upper bound is the most recent experimental bound[20]. (Note that the MSW matter effects due to neutrino propagation through the sun can be ignored if the electron neutrino oscillates maximally[10]). Maximal $\nu_\mu - \nu'_\mu$ oscillations can explain the atmospheric neutrino anomaly provided that $10^{-3} \lesssim |\delta m^2_{\mu\mu}|/eV^2 \lesssim 10^{-1}$[1, 21, 22]. The best fit (obtained from a fit to the zenith angle dependent multi-GeV neutrino data)[1] occurs for $|\delta m^2_{\mu\mu}| \approx 1.6 \times 10^{-2} eV^2$. Note however that the atmospheric neutrino experiments are sensitive to both $\nu_\mu - \nu'_\mu$ and $\nu_e - \nu'_e$ oscillations in principle. Assuming that the oscillations are exactly maximal, we will study the constraints on the parameters δm^2_{ee} and $\delta m^2_{\mu\mu}$ suggested by the existing atmospheric neutrino experiments.

For maximal $\nu_\alpha - \nu'_\alpha$ oscillations (with $\alpha = e$ for $\nu_e - \nu'_e$ oscillations and $\alpha = \mu$ for $\nu_\mu - \nu'_\mu$ oscillations), the probability that a weak eigenstate neutrino ν_α of energy E_ν remains a weak eigenstate after travelling a distance L is in general[15],

$$P(\nu_\alpha \rightarrow \nu_\alpha, L, E_\nu) = 1 - \frac{\sin^2 \delta_m}{f},$$

where δ_m is given by

$$\delta_m \approx 1.27 \left[\frac{\delta m^2_{\alpha\alpha}}{eV^2} \right] \left[\frac{L}{km} \right] \left[\frac{GeV}{E_\nu} \right] \sqrt{f}. $$

The quantity f contains the matter effects. For oscillations in vacuum, $f = 1$. In general, f is given by,

$$f = 1 + a^2.$$
interactions. For $\alpha = e$, i.e. $\nu_e - \nu'_e$ oscillations$^{[23]}$,

$$a = -\sqrt{2} G_F (2N_e - N_n) E_{\nu} \over \delta m_{ee'}^2 ,$$

(6)

where G_F is the Fermi constant and N_e and N_n are the number densities of electrons and neutrons of the medium through which the neutrinos propagate. Note that equal number densities for electrons and protons has been assumed in Eq.(6). For neutrino propagation through the Earth, $N_e = N_p \simeq N_n$ where N_p is the number density of protons. Hence N_e is related to the density ρ and the proton mass m_p by $N_e \simeq 0.5 \rho/m_p$.

Of course, in a detailed analysis the probability $P(\nu_\alpha \to \nu_\alpha, L, E_{\nu})$ must be averaged over L and E_{ν} with an appropriate weighting factor, which takes into account the energy spectrum of the neutrinos, the cross section and so on. Such an analysis is quite difficult without detailed knowledge of the experiments (for example, the lepton detection efficiency function is not given in Ref.$^{[1]}$) and is most easily performed by the experimentalists themselves. However, much can still be learned without doing a rigorous analysis.

We define the useful quantity $D_{\alpha\alpha'}$ by the distance for which $|\delta m| = \pi/4$, which corresponds to a survival probability of $1/2$ (if $f \simeq 1$). From Eq.(4),

$$D_{\alpha\alpha'} \simeq \left[E_{\nu} \over \text{GeV} \right] \left[E_{\nu}^2 \over \delta m_{2\alpha\alpha'}^2 \right] \left[1 \over \sqrt{f} \right] \left[1 \over 4 \right] \left[1 \over 1.27 \right] \text{km.}$$

(7)

For distances $L \sim D_{\alpha\alpha'}/2$, the oscillation length is too large to have a significant effect. For $L \simeq D_{\alpha\alpha'}$, the oscillations are significant, and should deplete the number of neutrinos by a factor of about 2 (if $f \simeq 1$) after suitable averaging is performed. In the intermediate regime, $D_{\alpha\alpha'}/2 \sim L \sim D_{\alpha\alpha'}$, an $L-$ dependent depletion occurs.

In the absence of ν_e oscillations, the zenith angle dependent multi GeV atmospheric neutrino data suggest that the muon neutrino oscillates maximally with $|\delta m_{2\mu\mu'}^2| \sim 10^{-2} eV^2$. In terms of the parameter $D_{\mu\mu'}$, this corresponds to $D_{\mu\mu'} \sim 40$ km for $E_{\nu} \sim 0.6$ GeV (sub GeV data) and $D_{\mu\mu'} \simeq 400$ km for $E_{\nu} \sim 6$ GeV (multi GeV data). For the sub GeV data, therefore, there should not be much zenith angle dependence since most of the neutrinos travel distances greater than 40 km. There may be some effect for neutrinos coming close to vertically down, however at low energies the correlation between the lepton direction and the incident neutrino direction is quite weak.

Qualitatively it is clear that the atmospheric neutrino anomaly suggests that if the electron neutrino oscillates maximally with a sterile neutrino then $D_{ee'} \gg D_{\mu\mu'}$, otherwise there would not be a significant decrease in the ratio R. The effect of $\nu_e - \nu'_e$ oscillations will be most important for the low energy neutrino data, since for low energies, the length $D_{ee'}$ is reduced. Let us define the quantities R_\pm where R_+ is the contribution to R from neutrinos with $\cos \theta > 0$ and R_- is the contribution to R from neutrinos with $\cos \theta < 0$ (θ
is the zenith angle, with \(\theta = 0 \) corresponding to downward travelling neutrinos). Neutrinos with \(\cos \theta > 0 \) travel through the atmosphere (where matter effects can be neglected) for distances \(20 \lesssim L/km \lesssim 500 \), while neutrinos with \(\cos \theta < 0 \) travel in matter for distances \(500 \lesssim L/km \lesssim 13000 \). In the absence of oscillations, \(R_+ \) and \(R_- \) should each contain approximately half of the interactions.

Note that matter effects will be important when \(a \gtrsim 1 \). Furthermore, for \(a \gtrsim \sqrt{2} \), the effects of the \(\nu_e - \nu'_e \) oscillations become suppressed and can be approximately neglected. From Eq.(3), the quantity \(a \) can be expressed as

\[
a \simeq 1.5 \left[\frac{10^{-4} \text{ eV}^2}{\delta m_{ee}^2} \right] \left[\frac{\rho}{4 \text{ g/cm}^3} \right] \left[\frac{E_{\nu}}{\text{GeV}} \right].
\]

Assuming that \(\rho \simeq 4 \text{ g/cm}^3 \), the condition \(a \gtrsim \sqrt{2} \) implies that

\[
|\delta m_{ee}^2| \gtrsim 7 \times 10^{-5} \text{ eV}^2 \quad \text{for } E \simeq 0.6 \text{ GeV}.
\]

Thus for the above range of parameters the matter effects ensure that the \(\nu_e - \nu'_e \) oscillations can be approximately neglected for \(\nu_e - \nu'_e \) oscillations through the Earth. The \(\nu_e - \nu'_e \) oscillations during propagation through the atmosphere can also be neglected if \(|\delta m_{ee}^2| \lesssim 7 \times 10^{-5} \text{ eV}^2 \), since for this range of \(|\delta m_{ee}^2| \), \(D_{ee'} \gtrsim 4000 \text{ km} \gg 500 \text{ km} \).

Observe that for \(|\delta m_{ee}^2| \gtrsim 7 \times 10^{-5} \text{ eV}^2 \), the length \(D_{ee'} \gtrsim 4000 \text{ km} \) for the sub GeV neutrinos. Thus, for \(\delta m_{ee}^2 \) in this range, the \(\nu_e - \nu'_e \) oscillations will be important and will reduce the number of electron neutrinos. This will increase \(\langle R \rangle \), where the brackets \(\langle ... \rangle \) denote the average over all zenith angles. As \(|\delta m_{ee}^2| \) increases, \(D_{ee'} \) decreases and \(\langle R \rangle \) increases (and matter effects quickly become negligible for the sub-GeV neutrinos). For \(E_{\nu} \simeq 0.6 \text{ GeV} \), the value \(|\delta m_{ee}^2| \simeq 10^{-3} \text{ eV}^2 \) corresponds to \(D_{ee'} \simeq 500 \text{ km} \) which is the distance to the horizon (that is, the \(\theta = 90 \text{ deg line} \)). In order to obtain insight into the increase of \(\langle R \rangle \) with \(|\delta m_{ee}^2| \), it is useful to explicitly calculate \(\langle R \rangle \) for this point. This is because neutrinos coming from the hemisphere with \(0 \leq \theta \leq \pi/2 \) travel distances less than \(D_{ee'} \), whereas those from the \(\pi/2 \leq \theta \leq \pi \) hemisphere travel distances greater than \(D_{ee'} \). So, \(R_- \) should be approximately equal to the standard model value since both \(\nu_e \) and \(\nu_\mu \) fluxes are reduced by a factor of 2, while \(R_+ \) will be about half of the standard model value. This leads to \(\langle R \rangle \simeq 0.67 \) for \(|\delta m_{ee}^2| \simeq 10^{-3} \text{ eV}^2 \). Clearly \(|\delta m_{ee}^2| \gtrsim 10^{-3} \text{ eV}^2 \) implies that \(\langle R \rangle \gtrsim 0.67 \), with \(R_- \simeq 1 \) and \(0.5 \lesssim R_+ \lesssim 1 \). For some value of \(|\delta m_{ee}^2| \), \(\langle R \rangle \) becomes so large that it is disfavoured by the data that actually suggest an anomaly. Note that the current laboratory bound \(|\delta m_{ee}^2| < 7.5 \times 10^{-3} \text{ eV}^2 \)) is probably in the range where \(\langle R \rangle \) crosses over into disfavoured values. In summary then, for \(\delta m_{ee}^2 \) in the range

\[
|\delta m_{ee}^2| \gtrsim 7 \times 10^{-5} \text{ eV}^2
\]
the effects of the maximal $\nu_e - \nu'_e$ oscillations should be significant for the low energy data. The effect of the $\nu_e - \nu'_e$ oscillations with $\delta m^2_{ee'}$ in the range Eq. (I) will be to increase $\langle R \rangle$.

As well as increasing $\langle R \rangle$, the $\nu_e - \nu'_e$ oscillations will also make the flux of electron neutrinos zenith angle dependent for the low energy data. The zenith angle dependence should manifest itself by an increase in R for decreasing values of $\cos \theta$. Such a result would not be expected if the anomaly is interpreted assuming only $\nu_\mu - \nu'_\mu$ oscillations and this should provide a distinctive signature for $\nu_e - \nu'_e$ oscillations. However, since the angular correlation between the neutrinos and the produced charged leptons is quite poor at low energies (r.m.s. $\sim 60^\circ$), this effect will be quite difficult to measure. Although no evidence for zenith angle dependence in the low energy data has been found by the existing experiments, the sensitivity should be greatly improved in the near future with the data expected from Superkamiokande. In this context, we remark that a sensitive way to test for $\nu_e - \nu'_e$ oscillations is to compare the measured number of electron events with $\cos \Theta > 0$, n^+_e, with the number of electron events with $\cos \Theta < 0$, n^-_e. (Here Θ is the zenith angle of the detected electron). If electron neutrino oscillations are negligible then $R_e \equiv n^+_e/n^-_e \simeq 1$. If ν_e oscillations occur with $\delta m^2_{ee'}$ in the range Eq. (I), then $R_e > 1$. Note that R_e should be almost free of systematic uncertainties. With the improved statistics expected from the superKamiokande experiment it should be possible to measure R_e quite accurately. Thus the hypothesis that ν_e oscillates maximally with a sterile ν'_e can be tested, provided that $\delta m^2_{ee'}$ is in the range Eq. (I).

Finally, it only remains to comment on the impact of $\nu_e - \nu'_e$ oscillations on the multi-GeV data. For $|\delta m^2_{ee'}| \lesssim 7 \times 10^{-4}$ eV2, $a \lesssim \sqrt{2}$ for $E_\nu \sim 6$ GeV [see Eq. (I)], which means that the matter effects will suppress the $\nu_e - \nu'_e$ oscillations through the Earth. Thus, for much of the parameter space of interest, Eq. (I), $\nu_e - \nu'_e$ oscillations will not modify the expectations for the multi-GeV atmospheric neutrino data. There may be some effects for $\nu_e - \nu'_e$ oscillations with $\delta m^2_{ee'}$ in the range $|\delta m^2_{ee'}| \simeq 7 \times 10^{-4}$ eV2. The effect of $\delta m^2_{ee'}$ in this range would be to increase R for $\cos \theta \sim -1$.

In conclusion we have examined the implications of the hypothesis that both the ν_μ and ν_e neutrinos are maximally mixed with sterile partners for the atmospheric neutrino experiments. The assumption of maximal mixing means that the oscillations can be described by just two parameters, $\delta m^2_{ee'}$ and $\delta m^2_{\mu\mu'}$. We have shown that the maximal $\nu_e - \nu'_e$ oscillations should not significantly affect the atmospheric neutrino experiments if $\delta m^2_{ee'}$ is in the range $|\delta m^2_{ee'}| \lesssim 7 \times 10^{-5}$ eV2. For $\delta m^2_{ee'}$ in the remaining range, $|\delta m^2_{ee'}| \simeq 7 \times 10^{-5}$ eV2, the effects of the $\nu_e - \nu'_e$ oscillations will be significant. They should lead to the distinctive signature of an increasing value of R for lower values of $\cos \theta$ for the low-energy neutrino sample. This prediction may be tested by the new data expected from Superkamiokande. A related effect is that the value of R averaged over zenith angle, $\langle R \rangle$, should be somewhat higher than the expected value in the absence of $\nu_e - \nu'_e$ oscillations (again for the low-energy sample). Further data, especially from Superkamiokande, should clarify these issues.
Acknowledgements

This work was supported by the Australian Research Council. R.F. is an Australian Research Fellow.

References

[1] Y. Fukuda et. al, Kamiokande Collab., Phys. Lett. B335, 237 (1994); Phys.Lett. B280, 146 (1992); Phys. Lett. B205, 416 (1988).

[2] D. Casper et al, IMB Collab., Phys. Rev. Lett. 66, 2561 (1991); Phys. Rev. D46, 3720 (1992).

[3] W. Allison et. al., Soudan2 Collab., Phys. Lett. B391, 491 (1997).

[4] Homestake Collaboration, Nucl. Phys. B Proc. Suppl. 38, 47 (1995); Kamiokande Collab. Nucl. Phys. B. Proc. Suppl. 38, 55 (1995); Gallex Collab., Phys. Lett. B327, 377 (1994); Sage Collab., Phys. Lett. B328, 234 (1994).

[5] LSND Collaboration, C. Athanassopoulos et.al., Phys. Rev. Lett. 75, 2650 (1995); Phys. Rev. C54, 2685 (1996); and preprint UCRHEP-E-191, nucl-ex/9706006 (1997).

[6] See e.g., M. Kawasaki and S. Mizata, Phys. Rev. D43, 2900 (1991) and references therein.

[7] K. Daum et. al., Frejus Collab., Z. Phys. C66, 417 (1995).

[8] M. Aglietta et. al, Nusex Collab., Europhys. Lett. 8, 611 (1989).

[9] V. Gribov and B. Pontecorvo, Phys. Lett. B28, 493 (1969).

[10] R. Foot and R. R. Volkas, University of Melbourne Preprint UM-P-95/94, hep-ph/9510312, (Oct, 1995); R. Foot, H. Lew and R. R. Volkas, Mod. Phys. Lett. A7, 2567 (1992); R. Foot, Mod. Phys. Lett. A9, 169 (1994).

[11] A. Acker, S. Pakvasa, J. Learned and T. J. Weiler, Phys. Lett. B298, 149 (1993).

[12] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B349, 137 (1995); see also Ref.[17] and also E. Torrente-Lujan, hep-ph/9604218 (1996).

[13] G. Conforto et. al., Astropart. Phys. 5, 147 (1996).
Note that the analyses[14] argue that the solar neutrino problem can be solved by an energy \textit{independent} reduction in the solar neutrino fluxes by a factor of about 2. Large angle or maximal neutrino oscillations can also give an energy \textit{dependent} flux reduction if $|\delta m^2| \sim 10^{-10} \ eV^2$. See e.g. V. Barger, R. J. N. Phillips and K. Whisnant, Phys. Rev. D24, 538 (1981); S. L. Glashow and L. M. Krauss, Phys. Lett. B190, 199 (1987). For a recent analysis, see e.g. E. Calabresu et. al., Astropart. Phys. 4, 159 (1995). Finally note that the energy independent solutions to the solar neutrino problem proposed independently (as far as we are aware) by the authors[14] have been disputed by P. Krastev and S. Petcov, Phys. Rev. D53, 1665 (1996).

[15] L. Wolfenstein, Phys. Rev. D17, 2369 (1978); D20, 2634 (1979); S. P. Mikheyev and A. Yu. Smirnov, Nuovo Cim. C9, 17 (1986). See also, V. Barger et. al., Phys. Rev. D22, 2718 (1980). For reviews, see e.g. T. K. Kuo and J. Pantaleone, Rev. Mod. Phys. 61, 937 (1989); G. Gelmini and E. Roulet, Rept. Prog. Phys. 58, 1207 (1995).

[16] A. Acker and S. Pakvasa, Phys. Lett. B397, 209 (1997).

[17] C. Giunti, C. W. Kim and J. D. Kim, Phys. Lett. B352, 357 (1995).

[18] R. Foot and R. R. Volkas, Phys. Rev. D52, 6595 (1995); and references therein.

[19] See e.g. M. Kobayashi, C. S. Lim and M. M. Nojiri, Phys. Rev. Lett. 67, 1685 (1991); C. Giunti, C. W. Kim and U. W. Lee, Phys. Rev. D46, 3034 (1992).

[20] Particle data group, Phys. Rev. D54, 1 (1996).

[21] J. G. Learned, S. Pakvasa and T. J. Weiler, Phys. Lett. B207, 79 (1988); V. Barger and K. Whisnant, Phys. Lett. B209, 365 (1988); K. Hidaka, M. Honda and S. Midorikawa, Phys. Rev. Lett. 61, 1537 (1988).

[22] Note that maximal $\nu_\mu - \nu_\mu'$ oscillations with $|\delta m^2_{\mu\mu'}| \sim 10^{-2} \ eV^2$ [as well as $\nu_e - \nu_e'$ oscillations with $\delta m^2_{ee'}$ in the range Eq.[2]] are consistent with big bang nucleosynthesis for a significant range of parameters. For details, see R. Foot and R. R. Volkas, Phys. Rev. D55, 5147 (1997); \texttt{hep-ph/9612243}, Astropart. Phys. (in press).

[23] See e.g., D. Notzold and G. Raffelt, Nucl. Phys. B307, 924 (1988).

[24] The density of the Earth in the mantle (which is about 3000 km in depth) varies from about 3 to 5.5 g/cm^3. The density of the core is significantly larger, in the range 10 to 13 g/cm^3. The increase in density of the core can suppress neutrino oscillations during the neutrino propagation through the core even when $a \lesssim 1$ for neutrinos propagating through the mantle. However in Eq.[3], it is justified to take ρ as the density of the
mantle (that is $\rho \simeq 4 \text{ g/cm}^3$) since the neutrinos which pass through the core must also pass through at least 6000 km of mantle. In the region of interest where $a \lesssim \sqrt{2}$ in the mantle, $D_{ee'} \lesssim 4000 \text{ km} \leq 6000 \text{ km}$. Thus any suppression of the neutrino oscillations while the neutrinos are propagating through the core does not matter.
Table Captions

Table 1: Summary of the current low energy atmospheric neutrino experiments ($E_\nu \sim 0.6$ GeV). Note however that the Frejus result includes both contained and semicontained events.
Table 1

Experiment	\((R)\)
Kamiokande¹	\(0.60^{+0.06}_{-0.05}(\text{stat.}) \pm 0.05(\text{syst.})\)
IMB²	\(0.54 \pm 0.05(\text{stat.}) \pm 0.12(\text{syst.})\)
Soudan2³	\(0.72 \pm 0.19(\text{stat.})^{+0.05}_{-0.07}(\text{syst.})\)
Frejus⁷	\(1.00 \pm 0.15(\text{stat.}) \pm 0.08(\text{syst.})\)
Nusex⁸	\(1.04^{+0.28}_{-0.32}\)