Expression of Estrogenic Response Genes in Black Mollies (Poecilia Sphenops) Exposed to Pyrogenic Hydrocarbon and Petroleum from Campeche Sound

Maurilio Lara-Flores, Jaime Rendon von Osten

ABSTRACT
The estrogenic effects of endocrine disrupting compounds (EDC’s) in animals are not reversible and can reduce populations. Sensitive methods such Q-PCR have been used to determine changes in gene expression and thus predict the effects before they become irreversible. The present study was designed to detect the expression on the estrogen receptors and vitellogenin genes in the Black Mollies fish (Poecilia sphenops) exposed to pyrogenic hydrocarbon and petroleum from Campeche Sound. The results indicate that the expression of transcript of the estrogen receptor and vitellogenin indicates are potentially useful as molecular biomarker for detecting the presence of endocrine-disruption compounds in environment.

Key words: Black Mollies fish, Endocrine Disrupting Compounds (EDC’s), Expression genes, Petroleum hydrocarbon, Pyrogenic hydrocarbon.
largest offshore oil provinces, producing more than 2 million barrels of crude oil per day and it’s important identify sentinel’s organisms to understand the effect of these activity in the environment. In this study, we evaluated the expression of genes involved in the VTG production by analyzing RNA in male Black Mollies (Poecilia sphenops) exposed to pyrogenic hydrocarbon and petroleum from Campeche Sound, Mexico.

MATERIALS AND METHODS
The Black Mollies (P. sphenops) were acquired from Aquapolis Acuario (San Francisco de Campeche, Campeche, Mexico) and maintained for three weeks in 20 L glass aquarium containing 18 L of aerated and dechlorinated water according to Rendon von Osten et al. (2005). The organisms were fed ad libitum, three times a day with a commercial fish food (Treta Min, by Tetra Holding, USA). The stocking rate for the in vivo study was 3 fish/aquarium with four replicates per treatment. Fish were not fed during the experiment.

A total of 12 fishes were exposed to 1 mg L\(^{-1}\) of burned grass as a source of pyrogenic hydrocarbon, another group of 12 fishes was exposed to 1 mg L\(^{-1}\) of a sample form an oil spill occurred in 2007 in the Gulf of Mexico. The chemical analysis of the oil indicates the presence of aliphatic hydrocarbons of C14 to C39 and aromatic hydrocarbons acenaphthene, acenaphthylene, anthracene, benzo [k] fluoranthene, fluoranthene, fluorene, indeno [1,2,3-cd] pyrene and phenanthrene (Rendon von Osten, 2009); and 12 fishes were kept as controls. All the fishes were stocked in ASTM hard water. The bioassays were carried out for 36 h in static test design according to chronic exposure criteria by Orlando et al. (2002). Every 12 h, four fish from each treatment were sacrificed to remove the liver.

Total RNA was isolated from tissue of the liver of the fishes in accordance with the manufacturer’s instructions (RNA purification kits GeneJet, Thermo Fisher Scientific, Foster City, USA). RNA was quantified using NanoDrop ND-1000 Spectrophotometer (NanoDrop, Wilmington, DE), and its quality was assessed by the presence of ribosomal bands in ethidium-bromide stained agarose gels. The RNA was diluted to approximately 1 mg mL\(^{-1}\) for RT-PCR. The RT-PCR was performed according to the manufacturer’s instructions (TaqMan Reverse Transcription Reagent, Thermo Fisher Scientific, Foster City, USA). For the relative quantification of gene expression, Q-PCR on StepONE Q-PCR equipment (Applied Biosystems, Foster City, USA) using Maximum SYBRGreen/ROX QPCR Master Mix (Thermo Fisher Scientific, Foster City, USA) was used. The sequences of the primers are shown in Table 1. PCR conditions were as follows: initial denaturation at 94° C for 30 sec, hybridization at 60° C for 30 sec, and extension at 72° C for 30 sec. The relative intensity of transcripts was analyzed using the StepONE software (Applied Biosystems, Foster City, USA).

Fig 1: Mean and standard deviation of the relative intensity of Vitellogenin I receptor transcript in the gonads of Black Mollies fishes exposed to Petrogenic (Pet) and Pyrogenic (Pyr) hydrocarbon. Values with the same superscript are not statistically different (p>0.05).

Table 1. Sequences of primer pairs used in Q-PCR study (Ishibashi et al., 2008).

GENE NAME	PRIMER SEQUENCES
Estrogen receptor α (AB033491)	5’-GTCAGTGCCGTTACTTGCC-3’ 5’-CATCACCTTGTCTCCAACCTG-3’
Estrogen receptor β (AB070901)	5’-GTGGAATCTCATTTCGCG-3’ 5’-CACGTCAGCAGGATCTT-3’
Vitellogenin I (AB064320)	5’-TGAAAGGCTAGTGAGGAAG-3’ 5’-AATCAGGCAATGAGGTAGG-3’
Vitellogenin II (AB075891)	5’-GCTTCAGGAGGTCCTCTCT-3’ 5’-GGTACACAGTGGATCGGCCGC-3’
β-Actin (S74868)	5’-AGACGCACCTACAGCGATC-3’ 5’-TCTCGTCTCAGGGATCTT-3’
72°C for 1 min. For quantification gene β-actin was used as reference and 2^ΔCT method, to calculate the expression (Kenneth et al, 2001).

Values of parameters were used to detect interaction between petroleum and pyrogenic hydrocarbons and exposure time by two-way ANOVA. If a significant interaction was detected between the main effects, the variable was analysed using a one-factor ANOVA. If there was a significant difference, F-test were performed using the STATGRAPHICS Centurion X (The Plains, VA, USA).

RESULTS AND DISCUSSION

The expression of the VTG I gene in Black Molly in response to pyrogenic and petrogenic hydrocarbon is shown in Fig 1. At 24 h the VTG I expression was a maximum decreasing after 36 h of exposure to petrogenic hydrocarbon; in contrast, there no evidence of effect in the organisms when there exposed to pyrogenic hydrocarbon.

The maximum expression of the VTG II was observed at 36 h of exposure to the pyrogenic hydrocarbon; on the other hand, with petrogenic hydrocarbon the maximum expression was at 12 h with linear decrease over time (Fig 2).

For the Estrogen Receptor α gene, an increase over time with maximum values at 36 h in both hydrocarbon source (Fig 3).

Only after 24 h and increase was observed in the expression of Estrogen Receptor β gene in organisms exposed to petrogenic hydrocarbons, without expression in the other samples (Fig 4).

The hepatic VTG is a sensitive biomarker for estrogenic...
effect of hydrocarbons. The VTG is synthesized in response to stimulation by estrogenic chemicals that bind to the ER's forming ER complexes that then bind to the estrogen response elements of the target genes to regulate their expression (Watanabe et al., 2009). A recent in vitro study with primary cultured zebrafish hepatocytes suggested that hydrocarbons have a common estrogenic effect but may interact differently with ER isoforms, perhaps contributing directly to differential the ER and the VTG gene transcription (Maradonna et al., 2013). Several studies have reported the induction of the VTG synthesis or transcription in the fish or cultured male fish hepatocytes upon exposure to hydrocarbons (Carnevali et al., 2010; Uren-Webster et al., 2010; Maradonna et al., 2013). Although the induction of the VTG could depend on species sensitivity, exposure time, and concentrations, these studies demonstrate the estrogenic activity of hydrocarbons (Wang et al., 2013). In our study the expression of the vitellogenin-related genes in the Black Molly fish was observed only when exposure was to petrogenic hydrocarbon and not to pyrogenic hydrocarbon, probably due to the nature of the compounds. Kitana et al. (2007) detect that low-level of polycyclic hydrocarbon may disrupt endocrine function in males of Chrysemis picta by an increase in the plasma concentration of vitellogenin; they explain that hydrocarbons exert their effects via aryl hydrocarbon receptor, and this gene regulate the function of the other genes that effect the development of the gonads. Rochman et al. (2014) concluded that petroleum products alter the function of the estrogen receptor alpha (ER) and the VTG gene transcription in aquatic animals and a permanent effect could be observed; in this work we concluded that the same effect occur in Black Molly fish.

REFERENCES
Carnevali, O., Tosni, L., Speciale, C., Peng, C. Zhu, Y., Maradonna, F. (2010). DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis. Plos One. 5: e10201.
Iguchi, T., Sumi, M., Tanabe, S. (2002). Endocrine disruptor issues in Japan. Congenital Anomalies. 42: 106-119.
Iguchi, T., Watanabe, H., Katsu, Y. (2007). Toxicogenomics and ecotoxicogenomics for studying endocrine disruption and basic biology. General Comparative Endocrinology. 153: 25-29.
Ishibashi, H., Yamauchi, R., Matsuoka, M., Kim, J-W., Hirano, M., Yamaguchi, A., Tominaga, N., Aizono, K. (2008). Fluorotelomer alcohols induce hepatic vitellogenin through activation of the estrogen receptor male medaka (Oryzias latipes). Chemosphere. 71: 1853-1859.
Kabir, E.R., Rahman, M.S., Rahman, I. (2015). A review on endocrine disruptors and their possible impacts on human health. Environmental Toxicology and Pharmacology. 40: 241-258.
Kenneth, J., Livak, T., Schmittegen, D. (2001). Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2ΔΔCT method. Method. 25: 402-408.
Kidd, K.A., Becher, G., Bergman, A., Muir, D.C.G., Woodruff, T.J. (2012). Human and wildlife exposure to EDC's. In: Bergman, A., Heidel, J.J., Jöblng, S., Kidd, K.A., Zoeller, R.T. (Eds), State of the Science of Endocrine Disrupting Chemicals -2012. World Health Organization, UNEP, Switzerland, 189-250.
Kitana, N., Won, S.J., Callard, S.J. (2007). Reproductive deficits in male freshwater turtle Chrysemys picta from Cape Cod, Massachusetts. Biology of Reproduction. 76: 346-352.
Maradonna, F., Evangelisti, M., Gioacchini, G., Migliarini, B., Olivotto, I., Carnevali, O. (2013). Assay of VTG, ERs and PPARs as endpoint for the rapid in vitro screening of the harmful effect of di-(2-ethylhexyl)-phthalate (DEHP) and phthalic acid (PA) in zebrafish primary hepatocyte cultures. Toxicology In Vitro. 27: 84-91.
Orlando, E., Davis, W., Guillele, L. (2002). aromatase activity in the ovary and brain of the Eastern mosquito fish (Gambusia holbrooki) exposed to paper mill effluent. Environmental Health Perspective. 110: 429-433.
Rendon von Osten J. (2009). Informe de análisis de hidrocarburos

Fig 4: Mean and standard deviation of the relative intensity of estrogen receptor ß transcript in the gonads of Black Mollies fishes exposed to Petrogenic (Pet) and Pyrogenic (Pyr) hydrocarbon. Values with the same superscript are not statistically different (p>0.05).
Expression of Estrogenic Response Genes in Black Mollies (*Poecilia Sphenops*) Exposed

Rendon von Osten, J., Ortiz-Arana, A., Guillermina, L., Soares, A.M. (2005). In vivo evaluation of three biomarkers in the mosquito fish (*Gambusia yucatana*) exposed to pesticides. Chemosphere. 58: 627-636.

Rochman, C.M., Hentsschel, B.T., Swee, J.T. (2014). Long-Term absorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. Plos One. 9: 1-10.

Tarrant, A.M. (2005). Endocrine-like signalling in Cnidarioans: current understanding and implication for ecophysiology. Integrative and Comparative Biology. 45: 201-214.

Uren-Webster, T.M., Lewis, C., Filby, A.L., Paull, G.C., Santos, E.M. (2010). Mechanisms of toxicity of di (2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquatic Toxicology. 99: 360-369.

Wang, X., Yang, T., Zhang, K., Ma, Y., Han, J., Yang, L., Zhou, B. (2013). Endocrine disruption by di-(2-ethylhexyl)-phthalate in Chinese rare minnow (*Gobiocypris rarus*). Environmental Toxicology and Chemistry. 32: 1846-1854.

Watanabe, H., Iguchi, T. (2003). Evaluation of endocrine disruptors based on gene expression using a microarray. Environmental Science. 10: 61-67.

Watanabe, K.H., Li, Z., Kroll, K.J., Villenuve, D.L., Garcia-Reyero, N., Orlando, E.F., et al. (2009). A computational model of the hypothalamic-pituitary-gonadal axis in male fathead minnows exposed to 17-alpha-ethynylestradiol and 17 beta-estradiol. Toxicology Science and Technology. 35: 2909-2916.