Abstract

We compute the r-matrix for the elliptic Euler-Calogero-Moser model. In the trigonometric limit we show that the model possesses an exact Yangian symmetry.
1 Introduction

The Euler-Calogero-Moser model was defined in [1, 2]. In [3] we considered the rational case and we derived the r-matrix. In this paper we are interested in its trigonometric and elliptic generalizations. In the elliptic case we compute the r-matrix and show that the usual elliptic Calogero-Moser model and its r-matrix are obtained by Hamiltonian reduction. In the trigonometric case we show that the current algebra symmetry exhibited by Gibbons and Hermsen [1] in the rational case, is deformed into a Yangian symmetry algebra.

We consider a system of N particles on a line with pairwise interactions. The degrees of freedom consist of the positions and momenta $(p_i, q_i)_{i=1\ldots N}$ and of antisymmetric additional variables $(f_{ij} = -f_{ji})_{i,j=1\ldots N}$, with the Poisson brackets

$$\{ p_i, q_j \} = \delta_{ij} \quad (1)$$

$$\{ f_{ij}, f_{kl} \} = \frac{1}{2} (\delta_{il} f_{jk} + \delta_{ki} f_{lj} + \delta_{jk} f_{il} + \delta_{lj} f_{ki}). \quad (2)$$

The Poisson brackets of the f_{ij} just reproduce the $O(N)$ Lie algebra. The Hamiltonian will be taken of the form

$$H = \frac{1}{2} \sum_{i=1}^N p_i^2 - \frac{1}{2} \sum_{i,j=1\atop i \neq j}^N f_{ij} f_{ji} V(q_{ij}), \quad q_{ij} = q_i - q_j \quad (3)$$

with an even potential $V(-x) = V(x)$.

The equations of motion are easily derived:

$$\dot{q}_i = p_i$$

$$\dot{p}_i = \sum_{j=1\atop j \neq i}^N f_{ij} f_{ji} V'(q_{ij})$$

$$\dot{f}_{ij} = \sum_{k=1\atop k \neq i,j}^N f_{ik} f_{jk} \left[V(q_{ik}) - V(q_{jk}) \right].$$

Such a system admits a Lax representation only for specific potentials. Indeed writing the following ansatz for the Lax pair

$$L(\lambda) = \sum_{i=1}^N p_i e_{ii} + \sum_{i,j=1\atop i \neq j}^N l(q_{ij}, \lambda) f_{ij} e_{ij} \quad (4)$$

$$M(\lambda) = \sum_{i,j=1\atop i \neq j}^N m(q_{ij}, \lambda) f_{ij} e_{ij} \quad (5)$$

where e_{ij} is the $N \times N$ matrix $(e_{ij})_{kl} = \delta_{ik} \delta_{jl}$ and $\lambda \in \mathbb{C}$ is the spectral parameter, we find that the equations of motion can be written in the Lax form

$$\dot{L}(\lambda) = [M(\lambda), L(\lambda)] \quad (6)$$

if and only if the following equalities are satisfied:

$$m(x, \lambda) = -\frac{\partial}{\partial x} l(x, \lambda) = -l'(x, \lambda) \quad (7)$$

$$l'(x, \lambda) l(y, \lambda) - l'(y, \lambda) l(x, \lambda) = l(x + y, \lambda) [V(x) - V(y)] \quad (8)$$

$$l(x) \sim -\frac{1}{x} \text{ when } x \to 0. \quad (9)$$
Eq.(8) is the famous functional equation of Calogero. Its general solution is:

$$ l(x, \lambda) = -\frac{\sigma(x+\lambda)}{\sigma(x) \sigma(\lambda)}, \quad V(x) = \varphi(x) $$

(10)

where σ and φ are Weierstrass elliptic functions, the relevant properties of which are recalled in the appendix. The elliptic $O(N)$ Euler-Calogero-Moser model is precisely defined by eq.(8) with $V(x) = \varphi(x)$ together with the Poisson brackets (12).

2 The r-matrix

From eq.(8) it follows that $trL^n(\lambda)$ is a set of conserved quantities. In particular

$$ trL(\lambda) = \sum_{i=1}^{N} p_i, \quad trL^2(\lambda) = 2H + \varphi(\lambda). $$

The involution property of these quantities $trL^n(\lambda)$ will follow from the existence of an r-matrix which we now calculate (13). Introducing the notations $L_1(\lambda) = L(\lambda) \otimes 1$ and $L_2(\lambda) = 1 \otimes L(\lambda)$ we show that the Poisson brackets of the Lax matrix elements can be recast as

$$ \{L_1(\lambda), L_2(\mu)\} = [r_{12}(\lambda, \mu), L_1(\lambda)] - [r_{21}(\mu, \lambda), L_2(\mu)]. $$

(11)

Following (13) we assume that r is of the form

$$ r_{12}(\lambda, \mu) = a(\lambda, \mu) \sum_{i=1}^{N} c_{ii} \otimes e_{ii} + \sum_{i,j=1 \atop i \neq j}^{N} b_{ij}(\lambda, \mu) e_{ij} \otimes e_{ij} + \sum_{i,j=1 \atop i \neq j}^{N} c_{ij}(\lambda, \mu) e_{ij} \otimes e_{ij}. $$

Requiring that $r_{12}(\lambda, \mu)$ be independent of the p_i variables we obtain

$$ b_{ij}(\lambda, \mu) = -b_{ji}(\mu, \lambda) $$

(12)

$$ c_{ij}(\lambda, \mu) = c_{ij}(\mu, \lambda). $$

(13)

Moreover assuming that $r_{12}(\lambda, \mu)$ is independent of the f_{ij} variables yields the following system:

$$ a(\lambda, \mu) l(q_{ij}, \lambda) - b_{ij}(\lambda, \mu) l(q_{ij}, \mu) + c_{ij}(\lambda, \mu) l(q_{ji}, \mu) = -l'(q_{ij}, \lambda) $$

(14)

$$ b_{ij}(\lambda, \mu) l(q_{jk}, \lambda) - b_{ik}(\lambda, \mu) l(q_{jk}, \mu) = \frac{1}{2} l(q_{jk}, \lambda) l(q_{ji}, \mu) $$

(15)

$$ c_{ij}(\lambda, \mu) l(q_{jk}, \lambda) + c_{ik}(\lambda, \mu) l(q_{jk}, \mu) = \frac{1}{2} l(q_{jk}, \lambda) l(q_{ij}, \mu) $$

(16)

$$ c_{ij}(\lambda, \mu) l(q_{ki}, \lambda) + c_{kj}(\lambda, \mu) l(q_{ki}, \mu) = \frac{1}{2} l(q_{ki}, \lambda) l(q_{ij}, \mu). $$

(17)

A solution to these equations is

$$ a(\lambda, \mu) = -\frac{1}{2} [\zeta(\lambda + \mu) + \zeta(\lambda - \mu)] $$

$$ b_{ij}(\lambda, \mu) = \frac{1}{2} l(q_{ij}, \lambda - \mu) $$

$$ c_{ij}(\lambda, \mu) = \frac{1}{2} l(q_{ij}, \lambda + \mu). $$

Indeed substituting the preceding expressions in eq.(13,16,17) leads to the same relation:

$$ l(q_{ij}, \lambda - \mu) l(q_{jk}, \lambda) + l(q_{ki}, \mu - \lambda) l(q_{jk}, \mu) + l(q_{ik}, \lambda) l(q_{ji}, \mu) = 0 $$
which upon setting \(x = \frac{1}{2} (\lambda + q_{ij}) \), \(y = \frac{1}{2} (2\mu - \lambda + q_{ij}) \), \(z = \frac{1}{2} (\lambda + q_{ji}) \) and \(t = \frac{1}{2} (-\lambda - q_{ki} + q_{kj}) \) is a direct consequence of relation (53). The expression for \(a(\lambda, \mu) \) is then given by eq.(14), and is simplified using eq.(51) and (55). Finally the r-matrix reads

\[
 r_{12}(\lambda, \mu) = \frac{1}{2} \sum_{i,j=1}^{N} l(q_{ij}, \lambda - \mu) e_{ij} \otimes e_{ji} + \frac{1}{2} \sum_{i,j=1}^{N} l(q_{ij}, \lambda + \mu) e_{ij} \otimes e_{ij}
\]

\[
 - \frac{1}{2} \left[\zeta(\lambda + \mu) + \zeta(\lambda - \mu) \right] \sum_{i=1}^{N} e_{ii} \otimes e_{ii}.
\]

(18)

\section{The \(sl(N) \) model}

The above \(O(N) \) model can be obtained from the more general \(sl(N) \) model by a mean procedure \cite{8, 9, 10}. The \(sl(N) \) elliptic Euler-Calogero Moser model is defined by the Hamiltonian

\[
 H = \frac{1}{2} \sum_{i=1}^{N} p_{i}^2 - \frac{1}{2} \sum_{i,j=1}^{N} f_{ij} f_{ji} \varphi(q_{ij})
\]

and the Poisson brackets

\[
 \{ p_i, q_j \} = \delta_{ij}
\]

\[
 \{ f_{ij}, f_{kl} \} = \delta_{jk} f_{il} - \delta_{il} f_{kj}.
\]

(20)\hspace{1cm} (21)

For this model we define a Lax matrix as

\[
 L(\lambda) = \sum_{i=1}^{N} (p_i - \zeta(\lambda) f_{ii}) e_{ii} + \sum_{i,j=1}^{N} l(q_{ij}, \lambda) f_{ij} e_{ij}.
\]

(22)

The Hamiltonian is given by \(H = \frac{1}{2} \int \frac{d\lambda}{2\pi iN} \text{tr} L^2(\lambda) \). A direct calculation gives

\[
 \{ L_1(\lambda), L_2(\mu) \} = \left[r_{12}(\lambda, \mu), L_1(\lambda) \right] - \left[r_{21}(\mu, \lambda), L_2(\mu) \right] - \sum_{i,j=1}^{N} l'(q_{ij}, \lambda - \mu) (f_{ii} - f_{jj}) e_{ij} \otimes e_{ji}
\]

(23)

with the beautifully simple r-matrix

\[
 r_{12}(\lambda, \mu) = -\zeta(\lambda - \mu) \sum_{i=1}^{N} e_{ii} \otimes e_{ii} + \sum_{i,j=1}^{N} l(q_{ij}, \lambda - \mu) e_{ij} \otimes e_{ji}.
\]

(24)

At this point let us make two remarks:

- Because of the third term in the right member of eq.(23) the integrals of motion \(\text{tr} L^n(\lambda) \) are not in involution. However we can restrict ourselves to the manifolds \((f_{ii} = \text{constant})_{i=1...N} \) since \(\text{tr} L^n(\lambda) \) Poisson-commute with \(f_{ii} \). On these manifolds \(\text{tr} L^n(\lambda) \) are in involution.

- The r-matrix for the \(O(N) \) model eq.(24) is immediately seen to be of the form

\[
 r_{12}^{O(N)} = \frac{1}{2} (1 + \sigma \otimes 1) r_{12}^{sl(N)}
\]

where \(\sigma \) is the involutive automorphism

\[
 \sigma : \lambda e_{ij} \longrightarrow -(-\lambda)^n e_{ij}.
\]

This is typical of a mean construction.
In the following we will restrict the f_{ij} to a symplectic leaf of the Poisson manifold (21). Introducing vectors
\[
(\xi_i)_{i=1\ldots N} \quad \text{with} \quad \xi_i = (\xi_i^a)_{a=1\ldots r}
\]
\[
(\eta_i)_{i=1\ldots N} \quad \text{with} \quad \eta_i = (\eta_i^b)_{a=1\ldots r}
\]
with the Poisson brackets
\[
\{\xi_i^a, \xi_j^b\} = 0, \quad \{\eta_i^a, \eta_j^b\} = 0, \quad \{\xi_i^a, \eta_j^b\} = -\delta_{ij} \delta_{ab},
\]
we parametrize the f_{ij} as follows:
\[
f_{ij} = (\xi_i|\eta_j) = \sum_{a=1}^r \xi_i^a \eta_j^a.
\]

The phase space now becomes a true symplectic manifold.

4 The r-matrix of the elliptic Calogero model

We show here that the r-matrix for the elliptic Calogero model \cite{8, 12} can be obtained from eq. (23) by a Hamiltonian reduction procedure \cite{8, 9, 10}.

We choose $r = 1$ in eq. (26). On the manifold $f_{ij} = \xi_i \eta_j$ acts an Abelian Lie group
\[
\xi_i \rightarrow \lambda_i \xi_i, \quad \eta_i \rightarrow \lambda_i^{-1} \eta_i.
\]
Remark that the group acts on L and therefore all the Hamiltonians $trL^n(\lambda)$ are invariant. Thus one can apply the method of Hamiltonian reduction. The infinitesimal generator of this action is
\[
H_\epsilon = \sum_{i=1}^N \epsilon_i f_{ii}, \quad \lambda_i = 1 + \epsilon_i.
\]

We fix the momentum by choosing
\[
f_{ii} = \alpha.
\]
To compute the reduced Poisson brackets of the Lax matrix, we remark that the matrix
\[
L^{Cal}(\lambda) = g^{-1}L(\lambda) g \quad \text{with} \quad g = \text{diag}(\xi_i)_{i=1\ldots N}
\]
\[
= \sum_{i=1}^N [g_i - \alpha \zeta(\lambda)] e_{ii} + \alpha \sum_{i,j=1 \atop i \neq j}^N l(q_{ij}, \lambda) e_{ij}
\]
is invariant under the isotropy group G_α of α (which is the whole group itself since it is Abelian) and we can compute the Poisson brackets of its matrix elements directly. We find
\[
\{L^{Cal}_1(\lambda), L^{Cal}_2(\mu)\} = \{L^{Cal}_2(\lambda, \mu), L^{Cal}_1(\lambda)\} - \{L^{Cal}_2(\mu, \lambda), L^{Cal}_2(\mu)\}
\]
with
\[
\sum_{i,j=1 \atop i \neq j}^N l(q_{ij}, \lambda - \mu) e_{ij} \otimes e_{ji} + \frac{1}{2} \sum_{i=1}^N e_{ii} \otimes e_{ii}
\]
where $u_{12} = \{g_1, g_2\} g_1^{-1} g_2^{-1}$ is here equal to zero. Redefining
\[
r^{Cal}_{12}(\lambda, \mu) \rightarrow r^{Cal}_{12}(\lambda, \mu) + \left[\frac{1}{2} \alpha \sum_{i=1}^N e_{ii} \otimes e_{ii}, L(\mu) \right]
\]
does not change eq. (23) and yields exactly the r-matrix found in \cite{11, 13}
\[
r^{Cal}_{12}(\lambda, \mu) = \sum_{i,j=1 \atop i \neq j}^N l(q_{ij}, \lambda - \mu) e_{ij} \otimes e_{ji} + \frac{1}{2} \sum_{i,j=1 \atop i \neq j}^N l(q_{ij}, \mu) (e_{ii} + e_{jj}) \otimes e_{ij}
\]
\[-[\zeta(\lambda - \mu) + \zeta(\mu)] \sum_{i=1}^N e_{ii} \otimes e_{ii}.
\]
5 Yangian symmetry in the trigonometric case

The parametrization (26) of f_{ij} introduces a $sl(r)$ symmetry into the theory. The transformation

$$\eta^a_i \rightarrow \sum_{b=1}^r u^{ab} \eta^b_i,$$

$$\xi^a_i \rightarrow \sum_{b=1}^r (u^{-1})^{ab} \xi^b_i,$$

leaves the f_{ij} invariant and therefore also the Hamiltonians. This symmetry is generated by a set of conserved currents

$$J^{ab}_0 = \sum_{i=1}^N \xi^b_i \eta^a_i.$$

(31)

It is remarkable that this current was shown, in the rational case [1], to be the first of a hierarchy building a current algebra commuting with the Hamiltonian — and more generally with a subset of the commuting Hamiltonians.

We now extend this result to the trigonometric case, and we will show that the hierarchy of currents form a Yangian symmetry in this case. Taking the trigonometric limit ($\omega_1 = \infty$ and $\omega_2 = i\pi$) in the above formulas, we see that the Lax matrix can be taken of the form

$$L(\lambda) = L_0 - \coth(\lambda)F$$

(32)

with

$$L_0 = \sum_{i=1}^N p_i e_{ii} - \sum_{i,j=1 \atop i \neq j}^N \coth(q_{ij}) f_{ij} e_{ij}, \quad F = \sum_{i,j=1}^N f_{ij} e_{ij}.$$

(33)

By a straightforward calculation, or taking the limit of the elliptic case, we find

$$\{L_1(\lambda), L_2(\mu)\} = \frac{1}{2} (1 - \coth(\lambda) \coth(\mu)) ([C, F_1] - [C, F_2])$$

$$- \sum_{i,j=1 \atop i \neq j}^N (f_{ii} - f_{jj}) \frac{1}{\sinh^2(q_{ij})} e_{ij} \otimes e_{ji}$$

(34)

where

$$r^{0}_{12} = - \sum_{i,j=1 \atop i \neq j}^N \coth(q_{ij}) e_{ij} \otimes e_{ji}$$

(35)

and C is the Casimir element of $sl(N)$

$$C = \sum_{i,j=1}^N e_{ij} \otimes e_{ji}.$$

(36)

In spite of the unusual second term in eq. (34), the quantities $trL^n(\lambda)$ are still in involution on the manifolds $\Sigma_\alpha : (f_{ii} = \alpha)_{i=1...N}$. Indeed,

$$\{trL^n(\lambda), trL^m(\mu)\} = \frac{n m}{2} \sum_{i,j=1 \atop i \neq j}^N \frac{f_{ii} - f_{jj}}{\sinh^2(q_{ij})} [L^{n-1}(\lambda)]_{ij} \frac{1}{\sinh^2(q_{ij})} [L^{m-1}(\mu)]_{ji}$$

$$- \frac{n m}{2} (1 - \coth(\lambda) \coth(\mu)) tr_{12} (L_1^{n-1}(\lambda)L_2^{m-1}(\mu)[C, F_1 - F_2])$$

5
and since $\text{tr}_2 ((1 \otimes A) C) = A$, we obtain

$$\{ \text{tr} L^n(\lambda), \text{tr} L^m(\mu) \} = n\ m \sum_{i,j=1}^{N} f_{ii} - f_{jj} \left[L^{n-1}(\lambda) \right]_{ij} \left[L^{m-1}(\mu) \right]_{ji}$$

$$- \frac{n\ m}{2} (1 - \coth(\lambda) \coth(\mu)) \ \text{tr} \{ L^{n-1}(\lambda) [L^{m-1}(\mu), F] - L^{m-1}(\mu)[L^{n-1}(\lambda), F] \}. $$

If we notice that

$$F = -\frac{L(\lambda) - L(\mu)}{\coth(\lambda) - \coth(\mu)}$$

we immediately get the involution property.

We consider now the subset $\text{tr}(L^n) = \text{tr}(L_0 + F)^n$ of commuting Hamiltonians; notice that H belongs to this subset, since $H = \frac{1}{2} \text{tr} L^2 - \alpha \text{tr} L + \frac{1}{2} N \alpha^2$.

We introduce the following quantities:

$$J_{ab}^n = \text{tr}(L^n F_{ab}), \quad a, b = 1, \ldots, r \quad n = 0, 1, \ldots, \infty$$

where F_{ab} is the $N \times N$ matrix of elements

$$(F_{ab})_{ij} = f_{ij}^a = \xi_i^a \eta_j^a.$$ (38)

We define the generating functional of the currents J_{ab}^n. It is the $r \times r$ matrix $T(z)$ of elements

$$T_{ab}(z) = -\frac{1}{2} \delta_{ab} - \sum_{n \in \mathbb{N}} z^{n+1} J_{ab}^n = -\frac{1}{2} \delta_{ab} + \text{tr} \left(\frac{1}{L - z} F_{ab} \right).$$ (39)

Proposition. On the manifolds Σ_α we have the following two properties:

1. The currents J_{ab}^n Poisson commute with all the quantities of the form $\text{tr}(L^n)$.

2. The generating functional $T(z)$ satisfies the defining relation of a (classical) Yangian algebra:

$$\{ T(y) \otimes T(z) \} = [R(y, z), T(y) \otimes T(z)]$$

with

$$R(y, z) = -2 \frac{\Pi}{y - z} , \quad \Pi = \sum_{a,b=1}^{r} e_{ab} \otimes e_{ba}. $$ (41)

Proof. To prove this proposition we need the Poisson brackets

$$\{ L_1, L_2 \} = [r_{12}^0, L_1] - [r_{21}^0, L_2] + \sum_{i,j=1}^{N} (f_{ii} - f_{jj}) \frac{1}{\sinh^2(q_{ij})} e_{ij} \otimes e_{ji} $$

$$\{ L_1, F_{2}^{ab} \} = [-r_{21}^0 + C, F_{2}^{ab}]$$

$$\{ F_{1}^{ab}, F_{2}^{cd} \} = (\delta_{ad} F_{1}^{cb} - \delta_{bc} F_{2}^{ad}) C.$$ (44)

Remark that the currents J_{ab}^n and the Hamiltonians $\text{tr}(L^n)$ are invariant under the symmetry

$$\xi_i^a \longrightarrow \lambda_i \xi_i^a , \quad \eta_i^a \longrightarrow \lambda_i^{-1} \eta_i^a.$$

Therefore we can compute their Poisson brackets on the reduced phase space straightforwardly: restricting ourselves to the manifolds $f_{ii} = \alpha$, the last term in eq.(42) vanishes, and we will systematically drop its contribution in intermediate calculations.

We emphasize that in eq.(43) the same r-matrix appears. Moreover it is the term $[C, F_{2}^{ab}]$ in eq.(43) which is responsible for the quadratic form of eq.(4), as we shall see in what follows.
Introducing the generating functional $H(z) = \text{tr}(\frac{1}{L-z})$ of the Hamiltonians $\text{tr}(L^n)$ we compute
\[
\left\{ \frac{1}{L_1 - y_1} F_{ab}^{cd}, \frac{1}{L_2 - z} \right\} = - \left[\frac{1}{L_2 - z} r_{12}^{0}, \frac{1}{L_1 - y_1} F_{ab}^{cd} \right] + \left[\frac{1}{L_1 - y_1} r_{21}^{0}, \frac{1}{L_2 - z} \right]
\]
\[
+ \frac{1}{L_1 - y_1 \ L_2 - z} \left[\mathcal{C}, F_{ab}^{cd} \right] \frac{1}{L_2 - z}.
\]
Taking the trace we obtain
\[
\left\{ T_{ab}^{cd}(y), H(z) \right\} = \text{tr} \left(F_{ab}^{cd} \right) \left(\frac{1}{L - y} \right) (L-z)^2 = 0.
\]
This proves the first part of the proposition. To prove the second part we evaluate
\[
\left\{ \frac{1}{L_1 - y_1} F_{ab}^{cd}, \frac{1}{L_2 - z} F_{cd}^{ef} \right\} = - \left[\frac{1}{L_2 - z} r_{12}^{0}, \frac{1}{L_1 - y_1} F_{ab}^{cd} \right] + \left[\frac{1}{L_1 - y_1} r_{21}^{0}, \frac{1}{L_2 - z} F_{cd}^{ef} \right]
\]
\[
+ \frac{1}{L_1 - y_1 \ L_2 - z} \left(\delta_{ad} F_{bc}^{ef} - \delta_{eb} F_{ad}^{cd} \right) C
\]
\[
+ \frac{1}{L_1 - y_1 \ L_2 - z} \left[\mathcal{C}, F_{ab}^{cd} \right] \frac{1}{L_2 - z} F_{cd}^{ef} - \left[\mathcal{C}, F_{cd}^{ef} \right] \frac{1}{L_1 - y_1} F_{ab}^{cd} \right\}.
\]
Hence taking the trace we get
\[
\left\{ T_{ab}^{cd}(y), T_{cd}^{ef}(z) \right\} = \text{tr} \left(\frac{1}{L - y} \frac{1}{L - z} \left(\delta_{ad} F_{bc}^{ef} - \delta_{eb} F_{ad}^{cd} \right) \right)
\]
\[
+ \text{tr} \left(\frac{1}{L - y} \left[\frac{1}{L - z} F_{cd}^{ef}, \frac{1}{L - y} F_{ab}^{cd} \right] \right) - \text{tr} \left(\frac{1}{L - z} \left[\frac{1}{L - y} F_{ab}^{cd}, \frac{1}{L - y} F_{cd}^{ef} \right] \right).
\]
Using the cyclicity of the trace and
\[
\frac{1}{L - y} \frac{1}{L - z} = \frac{1}{y - z} \left(\frac{1}{L - y} - \frac{1}{L - z} \right)
\]
this becomes
\[
\left\{ T_{ab}^{cd}(y), T_{cd}^{ef}(z) \right\} = \frac{1}{y - z} \left(\delta_{ad} (T_{bc}^{eh}(y) - T_{ch}^{eb}(z)) - \delta_{eb} (T_{ad}^{ef}(y) - T_{ad}^{ef}(z)) \right)
\]
\[
+ \frac{2}{y - z} \text{tr} \left(\frac{1}{L - y} \frac{1}{L - z} F_{cd}^{ef}, \frac{1}{L - y} F_{ab}^{cd}, \frac{1}{L - y} F_{cd}^{ef} \right).
\]
Remarking that
\[
\text{tr} \left(\frac{1}{L - y} \frac{1}{L - z} F_{cd}^{ef}, \frac{1}{L - y} F_{ab}^{cd} \right) = \sum_{ijkl=1}^{N} \left(\frac{1}{L - y} \right)_{ij} \xi_{ij}^{k} \eta_{ij}^{l} \left(\frac{1}{L - z} \right)_{kl} \xi_{kl}^{j} \eta_{kl}^{a}
\]
\[
= \left(\sum_{ij=1}^{N} \left(\frac{1}{L - y} \right)_{ij} \xi_{ij}^{k} \eta_{ij}^{l} \right) \left(\sum_{kl=1}^{N} \left(\frac{1}{L - z} \right)_{kl} \xi_{kl}^{j} \eta_{kl}^{a} \right)
\]
\[
= \left(T_{ad}^{ef}(y) + \frac{1}{2} \delta_{ad} \right) \left(T_{ch}^{eb}(z) + \frac{1}{2} \delta_{eb} \right)
\]
we prove the result \(\square \).
The rational limit is obtained by applying the canonical transformation

\[
p_i \rightarrow \frac{1}{\epsilon} p_i \\
q_i \rightarrow \epsilon q_i
\]

and sending \(\epsilon\) to zero. In this limit

\[
L_0 \rightarrow \frac{1}{\epsilon} L_{\text{rational}} \\
r_{12}^0 \rightarrow \frac{1}{\epsilon} r_{12}^{\text{rational}}.
\]

The Casimir term drops therefore from eq.(43), leaving us with a linear Poisson algebra

\[
\{T(y) \otimes T(z)\} = -\frac{1}{2} [R(y, z), T(y) \otimes 1 + 1 \otimes T(z)] \tag{45}
\]

which is the result found by Gibbons and Hermsen.

6 Conclusion

The Euler-Calogero-Moser model is becoming more and more interesting. On the one hand the computation of the classical \(r\)-matrix is made considerably easier by the existence of the extra variables \(f_{ij}\), the more complicated \(r\)-matrix of the Calogero-Moser model following naturally from a Hamiltonian reduction procedure. On the other hand, this model exhibits an exact infinite symmetry which is just a current algebra symmetry in the rational case and becomes an exact Yangian symmetry in the trigonometric case. This structure is very much reminiscent of the one discovered in [13]. Actually the two currents \(J_0\) and \(J_1\) (which generate the full algebra) are identical in the two cases. Indeed, in our case we have

\[
J_{1}^{ab} = \sum_{i=1}^{N} p_i f_{ii}^{ab} - \sum_{i,j}^{N} \frac{e^{-q_{ij}}}{\sinh(q_{ij})} f_{ij} f_{ji}^{ab}.
\]

Setting \((X_i)^{ab} = f_{ii}^{ab}\), \(\Theta_{ij} = 2 \frac{e^{2q_{ij}}}{e^{2q_{ij}} - e^{-2q_{ij}}}\), and using eq.(28) we can rewrite

\[
J_{1}^{ab} = \sum_{i=1}^{N} p_i X_i^{ab} - \sum_{i,j}^{N} \Theta_{ij} (X_i X_j)^{ab}.
\]

This is exactly the current found in [13]. In fact the model considered in [14, 15, 13] is a quantum version of our model for a particular choice of orbit.

At this point two interesting problems arise. One is the understanding of the role of the \(r\)-matrix in the quantization of these models. The other is the hypothetical extension of these results to the elliptic case, which still remains quite mysterious.

Acknowledgements We thank D. Bernard for discussions.

Appendix

The Weierstrass \(\sigma\) function of periods \(2\omega_1, 2\omega_2\) is the entire function defined by

\[
\sigma(z) = z \prod_{m,n \neq 0} \left(1 - \frac{z}{\omega_{mn}} \right) \exp \left[\frac{z}{\omega_{mn}} + \frac{1}{2} \left(\frac{z}{\omega_{mn}} \right)^2 \right] \tag{46}
\]
with $\omega_{mn} = 2m\omega_1 + 2n\omega_2$. The functions ζ and φ are

$$\zeta(z) = \frac{\sigma'(z)}{\sigma(z)}, \quad \varphi(z) = -\zeta'(z),$$

(47)

these functions having the symmetries

$$\sigma(-z) = -\sigma(z), \quad \zeta(-z) = -\zeta(z), \quad \varphi(-z) = \varphi(z).$$

(48)

Their behaviour at the neighbourhood of zero is

$$\sigma(z) = z + O(z^5), \quad \zeta(z) = z^{-1} + O(z^3), \quad \varphi(z) = z^{-2} + O(z^2).$$

(49)

Setting

$$l(q, \lambda) = -\frac{\sigma(q + \lambda)}{\sigma(q) \sigma(\lambda)}$$

(50)

it is easy to check that

$$l(-q, \lambda) = -l(q, -\lambda), \quad l'(q, \lambda) = l(q, \lambda) [\zeta(\lambda + q) - \zeta(q)].$$

(51)

We need several non trivial relations:

$$-\frac{\sigma(\lambda - \mu) \sigma(\lambda + \mu)}{\sigma^2(\lambda) \sigma^2(\mu)} = \varphi(\lambda) - \varphi(\mu),$$

(52)

$$\sigma(x-y)\sigma(x+y)\sigma(z-t)\sigma(z+t)+\sigma(y-z)\sigma(y+z)\sigma(x-t)\sigma(x+t)+\sigma(z-x)\sigma(z+x)\sigma(y-t)\sigma(y+t) = 0,$$

(53)

this last equation becoming, in terms of the $l(q, \lambda)$ function,

$$\frac{l(q, \lambda)}{l(-q, \lambda - \mu)} = \zeta(\lambda) + \zeta(\mu - \lambda) + \zeta(q) - \zeta(\mu + q).$$

(55)

Choosing the periods $\omega_1 = \infty$ and $\omega_2 = i\frac{\pi}{2}$ we obtain the hyperbolic case

$$\sigma(z) = \sinh(z) \exp\left(-\frac{z^2}{6}\right), \quad \zeta(z) = \coth(z) - \frac{z}{3}, \quad \varphi(z) = \frac{1}{\sinh^2(z)} + \frac{1}{3}$$

(56)

and

$$l(q, \lambda) = -\frac{\sinh(\lambda + q)}{\sinh(\lambda) \sinh(q)} \exp\left(-\frac{\lambda q}{3}\right).$$

(57)

All these formulas were collected in [11].

References

[1] J. Gibbons and T. Hermsen, Physica 11D (1984) 337.
[2] S. Wojciechowski, Phys. Lett. 111A (1985) 101.
[3] E. Billey, J. Avan and O. Babelon, preprint hep-th/9312042.
[4] F. Calogero, Lett. Nuovo Cimento 13 (1975) 411.
[5] F. Calogero, Lett. Nuovo Cimento 16 (1976) 77.
[6] E.K. Sklyanin, “On the complete integrability of the Landau-Lifchitz equation.” preprint LOMI E-3-79 Leningrad 1979.
[7] O. Babelon and C-M. Viallet, Phys. Lett. B 237 (1990) 411.
[8] A.V. Mikhailov, JETP Lett. 30 (1979) 443.
[9] L.D. Faddeev and N.Yu. Reshetikhin, Theor. Math. Phys. 56 (1983) 323.
[10] J. Avan and M. Talon, Nucl. Phys. B 352 (1991) 215.
[11] E.K. Sklyanin, preprint hep-th/9308060.
[12] H.W. Braden and T. Suzuki, hep-th/9309033.
[13] D. Bernard, M. Gaudin, F.D.M. Haldane and V. Pasquier, J. Phys. A: Math. Gen. 26 (1993) 5219.
[14] J. Minahan and A. Polychronakos, CU-TP-566 (1992) preprint.
[15] K. Hikami and M. Wadati, J. Phys. Soc. Jpn. 62 (1993).