DYNAMIC MODELLING OF PISTON THE MOTION IN COMBUSTION ENGINES

Sunny Narayan1,*, Shitu Abubakar2, Muhammad Usman Kaisan2, Hauwa Ndagı2, Yunusa Tukur3, Ivan Grujić4, Nadica Stojanović4

1Mechanical Engineering Department, Qassim University, Burydah, Saudi Arabia
2Mechanical Engineering Department, Ahmadu Bello University, Zaria, Nigeria
3Department of Energy Planning and Analyses, Energy Commission of Nigeria, Abuja, Nigeria
4Department of Motor Vehicles and Motors, University of Kragujevac, Kragujevac, Serbia

*E-mail of corresponding author: rarekv@gmail.com

Resume

The presented work discusses a methodology for analysis of noise emissions from a diesel engine. A numerical model of the piston motion, analyzing its lateral, reciprocating and rotation motion, has been presented in order to investigate the lateral motion of the piston skirt assembly and resulting vibrations induced as a result of these motions in the engine block. Various parameters of modal analysis were obtained using the mobility analysis. The presented methodology was validated by data obtained from a diesel engine test set up. The predicted results matched well with those of measured data, hence validating the presented scheme.

1 Introduction

In combustion engines a lateral space is present between the skirt and a cylinder liner that gives a motion freedom in lateral direction during the engine operation [1]. The existence of this gap puts a limit on magnitude of piston motion [2]. The piston assembly contributes to about 30-40% of mechanical losses and hence its design is a major concern for automotive engineers [3-4]. The piston thrusts liner to other side due to changing in direction of side thrust force due to motion of a connecting rod [5-6].

A dynamic model of the crank slider mechanism has been presented by Flores et al. [2]. The existence of lateral gap makes the system nonlinear and chaotic in nature. The reaction force between the liner and a skirt also plays an important role in dynamics of motion. As the coefficient of restitution decreases, the motion transforms from bouncing to a periodic one [7-8].

McFadden and Turnbull analyzed effects of combustion gas pressure on primary motion of a piston [9]. A two degree of freedom system has been analyzed showing a correlation between the piston slap and resulting vibrations [10-16]. Various parameters affecting piston motion has been considered, which includes location of a center of gravity [17], profile of a skirt [18-19], effects of inertial forces [20-21], frictional forces [22] and lubricating oil [23]. Mounted accelerometers on the block surface were used to simulate the piston’s secondary motion [5].

2 Piston assembly model

The secondary motion of a skirt for the case of a 240 cc engine was modeled as depicted in Figure 1. The piston was considered as a point mass of 0.363 kg (m_p) and inertia (I_p) of 7.8540X10-9 kg-m^2 having two degree of freedom in motion (X_p, θ). The cylinder block was considered as a lumped mass of 48.5 kg (m_b) with a single degree of freedom X_b, as shown in equation (1).

For condition of no impact, (X_p - X_b = X_c) the motion was governed by Equation (1).
and a liner can be obtained from the product of elastic tension and the coefficient of frictional force. As the speed of engine increases, the coefficient of friction decreases gradually until reaching the minimum at the mid stroke. The frictional forces between the liner and a skirt (\(F_f\)) and piston rings and liner (\(F_{fr}\)) may be expressed in terms of the sliding velocity of a piston (\(V\)), nominal clearance (\(h\)), lubricating oil viscosity (\(\mu\)), number of piston rings (\(n\)) and the shear area of a contact (\(A_s\)) as \([27-57]\):

\[
F_f = \mu V A_s 1/h, \quad (3)
\]

\[
F_{fr} = n\mu V A_s 2/h, \quad (4)
\]

where \(A_{s1}\) is the shear contact area between the liner and a skirt and \(A_{s2}\) is the shear contact area between the liner and rings.

5 Mobility parameter determination

The mobility may be defined as the ratio of velocity response \(V(J\omega)\) of a structure to exciting force \(F(J\omega)\) acting on a structure \([5]\):

\[
M(J\omega) = V(J\omega)/F(J\omega), \quad (5)
\]

\[
M(J\omega) = -J\omega((K-M\omega^2)+JC\omega)/Mo^2(K+JC\omega), \quad (6)
\]

In the frequency range below the first anti resonance frequency value (\(\omega_a = K/m\)), the point mobility equation can be approximated as \([5, 31-32]\):

\[
M(J\omega) = -J/M\omega^2, \quad (7)
\]
Above the anti resonance frequency, the point mobility can be written as:

\[M(\omega) = -\omega J \omega / K. \]

(8)

6 Experimental setup

Tests were done on a single cylinder HARTZ engine having specifications as presented in Table 1.

The in-cylinder pressure was monitored by an AVL transducer, having specifications shown in Table 2. Block vibrations were measured by means of an Endveco7240C type Mono axial accelerometer, having features accelerometer are presented in Table 3.

Various engine testing speeds in rpm (Revolutions per minute) (2000 rpm and 3000 rpm) and load values (80% and 100%) were chosen with an aim to cover complete engine operational conditions. The data recorded during each test was under steady state conditions as seen in Table 4.

Figure 3 shows the general layout of the test rig with placement of various sensors.

7 Results and discussions

Figures 4 and 5 depict variations of the piston side thrust force. This force changes its direction five times in a complete engine cycle indicating five possible instances of lateral contact of the skirt with a liner.

COMSOL 7 multi physics software was used to

Table 1 Engine specifications

Type	Diesel Engine
Make	HARTZ
Number of cylinders	1
Bore	69 mm
Stroke	65 mm
Displacement	0.243 liter
Compression	22:1
Maximum power	3.5kW @ 4400 rpm
Maximum torque	10N-m @ 2000 rpm

Table 2 Pressure transducer specifications

Range	0-250 Bar
Sensitivity	20 pC/Bar
Resonance Frequency	160 kHz

Table 3 Accelerometer specifications

Range	1000 g
Sensitivity	3 pC/g
Resonance Frequency	90 kHz

Table 4 Testing specifications

Case	rpm	Load	\(P_{\text{injection}} \) (Bar)
1	2000	80%	716
2	2000	100%	692
3	3000	80%	814
4	3000	100%	612
5	3000	-	512
Figure 3 Experimental setup

Figure 4 Variations of the piston side thrust force (2000 rpm)

Figure 5 Variations of the piston side thrust force (3000 rpm)

Figure 6 Variations of the piston velocity (2000 rpm)

Figure 7 Variations of the piston velocity (3000 rpm)

Figure 8 Variations of the piston mobility (2000 rpm)

Figure 9 Variations of the piston mobility (3000 rpm)
changes its direction at both dead centers. In order to visualize the pistons secondary motion during the reciprocating motion, the piston secondary motion is represented in a graphical form and the piston lateral motion and rotating motion are normalized to the piston stroke position, based on the reciprocating motion of a piston, as shown in Figure 13.

Figure 14 shows the measured vibratory response of the cylinder block in the vibration amplitudes, as captured by accelerometer. The vibration of the cylinder decays after the first impact of the piston on the upper boundary of a liner.

Table 5 Dynamic features of a system

Test case	Piston parameter	Liner parameter
1	\(\omega_a\) 100 Hz	\(\omega_a\) 39 Hz
	\(C_p\) 109330 (kg/s)	\(C_p\) 42884 (kg/s)
	\(K_p\) 174 (kg/s²)	\(K_p\) 175 (kg/s²)
	\(m_p\) 174 (kg)	\(m_p\) 175 (kg)
2	\(\omega_a\) 100 Hz	\(\omega_a\) 39 Hz
	\(C_p\) 109330 (kg/s)	\(C_p\) 109330 (kg/s)
	\(K_p\) 174 (kg/s²)	\(K_p\) 174 (kg/s²)
	\(m_p\) 174 (kg)	\(m_p\) 174 (kg)
3	\(\omega_a\) 158 Hz	\(\omega_a\) 63 Hz
	\(C_p\) 172750 (kg/s)	\(C_p\) 69669 (kg/s)
	\(K_p\) 174 (kg/s²)	\(K_p\) 174 (kg/s²)
	\(m_p\) 174 (kg)	\(m_p\) 176 (kg)
4	\(\omega_a\) 158 Hz	\(\omega_a\) 63 Hz
	\(C_p\) 109330 (kg/s)	\(C_p\) 109330 (kg/s)
	\(K_p\) 174 (kg/s²)	\(K_p\) 174 (kg/s²)
	\(m_p\) 174 (kg)	\(m_p\) 174 (kg)
5	\(\omega_a\) 158 Hz	\(\omega_a\) 63 Hz
	\(C_p\) 172750 (kg/s)	\(C_p\) 69669 (kg/s)
	\(K_p\) 174 (kg/s²)	\(K_p\) 174 (kg/s²)
	\(m_p\) 174 (kg)	\(m_p\) 176 (kg)

As seen from Figure 12, the piston tilting angle changes its direction at both dead centers. In order to visualize the pistons secondary motion during the reciprocating motion, the piston secondary motion is represented in a graphical form and the piston lateral motion and rotating motion are normalized to the piston stroke position, based on the reciprocating motion of a piston, as shown in Figure 13.

It is evident from the plot that the piston remains at the lower boundary cylinder liner for a longer time, as compared to the upper boundary of a cylinder wall. In addition, the piston is predicted to slide for a crank angle of 100° before the TDC along the cylinder liner (Figure 13).

Figure 14 shows the measured vibratory response of the cylinder block in the vibration amplitudes, as captured by accelerometer. The vibration of the cylinder decays after the first impact of the piston on the upper boundary of a liner. The vibration is induced once
Figure 13 The piston’s secondary motion (Case 1)

Figure 14 Vibration response of the engine block (Case 1)

Figure 15 Effects of variations of the engine speed on engine block vibrations (2000 rpm)
force, acting on the piston, results in the piston bouncing
off the cylinder liner more frequently at higher speeds,
as seen from Figures 15 and 16.

The induced vibrations of a block also increase
again when the piston impacts lower cylinder liner.
The induced vibrations had an amplitude of order of 7×10^{-3} m. As the engine operating speed increases, the
piston side thrust force, which is a function of the engine
rotating speed, increases. An increase in the side thrust
force, acting on the piston, results in the piston bouncing
off the cylinder liner more frequently at higher speeds,
as seen from Figures 15 and 16.

The induced vibrations of a block also increase
with engine speed. The sliding duration also falls with
Values of the first resonance frequencies of both the skirt and a liner were found to be in the 100 Hz-160 Hz range and it remains unaffected by variations in the engine operational conditions. Several peaks were found in the simulated block vibrations, which were related to impacts of a skirt with liner. The COMSOL-7 software was then used to analyze the tilting motion of a piston, which showed a good match with that simulated by solving dynamic equations of motion. Effects of load and speed on lateral motion of piston skirt were also investigated. The piston skirt was also found to slide along a liner a few crank angle degrees before the TDC position. This sliding motion was less dominant during the power stroke as the bouncing motion dominates the dynamic motion of a skirt. The duration of sliding motion of a piston along the liner was observed to decrease with increase in load and speed conditions, which is in agreement with previous available literature.

8 Conclusions

A lumped system model was discussed in the present paper. Various dynamic parameters of a system were calculated, using the concept of mobility, which were later used to simulate the lateral motion of a piston, as well as the resulting engine block vibrations.
[11] OFFNER, G., HERBST, H.M., PRIEBSSCH, H. H. A methodology to simulate piston secondary movement under lubricated contact conditions. In: SAE 2001 World Congress: proceedings[online]. USA: SAE International, 2001. ISSN 0148-7191, eISSN 2688-3627, technical paper 2001-01-0565. Available from: https://doi.org/10.4271/2001-01-0565

[12] LIU, K., XIE, Y., GUI, C.A comprehensive study of the friction and dynamic motion of the piston assembly. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology[online]. 1998, 212(3), p. 221-226. ISSN 1350-6501, eISSN 2041-305X. Available from:https://doi.org/10.1243/13506501981542038

[13] KIM, T. J. Numerical analysis of the piston secondary dynamics in reciprocating compressors. Journal of Mechanical Science and Technology. 2003, 17(3), p. 350-356. ISSN 1738-494X, eISSN 1976-3824.

[14] RUGGIERO, A., SENATORE, A. Computer model for the prediction of the impact force induced by piston slap in internal combustion engines, The Annals of the University Dunarea de Jos of Galati, Fascicle VIII: Tribology[online].2003, 2003, p. 129-134. ISSN 1221-4590.

[15] DESAI, H. Computer aided kinematic and dynamic analysis of a horizontal slider crank mechanism used for single-cylinder four stroke internal combustion engine. In: World Congress on Engineering WCE 2009: proceedings[online]. Vol. II. 2009. ISBN 978-988-18210-1-0, p. 1-3.

[16] WILSON, R., PAWCETT, J. N. Dynamics of the slider-crank mechanism with clearance in the sliding bearing. Mechanism and Machine Theory[online]. 1974, 9(1), p. 61-80. ISSN 0094-114X. Available from: https://doi.org/10.1016/0094-114X(74)90068-1

[17] HADDAD, S.D., TJAN, K. T. An analytical study of offset piston and crankshaft designs and the effect of oil film on piston slap excitation in a diesel engine. Mechanism and Machine Theory[online]. 1995, 30(2), p. 271-284. ISSN 0094-114X. Available from:https://doi.org/10.1016/0094-114X(94)00035-J

[18] KOIZUMI, T., TSUJIIUCHI, N., OKAMURA, M., TSUKIJIMA, H., KUBOMOTO, I., ISHIDA, E. Reduction of piston slap excitation by optimizing piston profiles. In: SPIE 2002: proceedings[online]. 2002. p. 107-113.

[19] JANG, S., CHO, J. Effects of skirt profiles on the piston secondary movements by the lubrication behaviors. International Journal of Automotive Technology. 2004, 5(1), p. 23-31. ISSN 1229-9138, eISSN 1976-3832.

[20] NARAYAN, S. Effects of various parameters on piston secondary motion. In: 18th Asia Pacific Automotive Engineering Conference: proceedings [online]. USA: SAE International, 2015. ISSN 0148-7191, eISSN 2688-3627, technical paper 2015-01-0079. Available from: https://doi.org/10.4271/2015-01-0079.

[21] GUZZOMI, A, HESTERMAN, D, STONE, B. Variable inertia effects of an engine including piston friction and a crank or gudgeon pin offset. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering[online]. 2008, 222(3), p. 397-414. ISSN 0954-4070, eISSN 2041-2991. Available from: https://doi.org/10.1243/09544070JAUTO590

[22] GUZZOMI, A, HESTERMAN, D, STONE, B. The effect of piston friction on engine block dynamics. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics[online]. 2007, 221(2), p. 277-289.ISSN 1464-4193, eISSN 2041-3068. Available from: https://doi.org/10.1243/14644193JMBD66

[23] GERGES, S. N. Y., DE LUCA, J. C., LALOR, N. The influence of cylinder lubrication on piston slap. Journal of Sound and Vibration[online]. 2002, 257(3), p. 527-557. ISSN 0022-460X. Available from: https://doi.org/10.1006/jsvi.2002.5051

[24] TAN, Y. C., RIPIN, Z. Technique of measuring piston secondary motion using laser displacement sensors. Experimental Mechanics[online]. 2012,52, p. 1447-1459. ISSN 0014-4851. Available from: https://doi.org/10.1007/s11340-012-9600-x

[25] CONFORT, A. An introduction to heavy-duty diesel engine frictional losses and lubricant properties affecting fuel economy - Part I. SAE International[online]. 2003, 2003-01-3225. ISSN 0148-7191, eISSN 2688-3627. Available from:https://doi.org/10.4271/2003-01-3225

[26] TAYLOR, R., COY, R. Improved fuel efficiency by lubricant design: A review, Proceedings of the Institution of Mechanical Engineers: Part J: Journal of Engineering Tribology[online]. 2000, 214(1), p. 1-15. ISSN 1350-6501, eISSN 2041-305X. Available from:https://doi.org/10.1177/135065010021400101

[27] ZWEIRI, Y., WHIDBONE, J., SENEVIRATNE, L. Instantaneous friction components model for transient engine operation. Proceedings of the Institution of Mechanical Engineers: Part D: Journal of Automobile Engineering[online]. 2002, 214, p. 809-824. ISSN 0954-4070, eISSN 2041-2991. Available from: https://doi.org/10.1243/0954407001527664

[28] TAN, Y.C., RIPIN, Z M. Frictional behavior of piston rings of small utility two-stroke engine under secondary motion of piston. Tribology International [online]. 2011, 44(5), p. 592-602. ISSN 0040-607X. Available from: https://doi.org/10.1016/j.triboint.2010.12.009

[29] SHI, X., POLYCARPOU, A.A. Measurement and modeling of normal contact stiffness and contact damping at the meso scale. Journal of Vibration and Acoustics[online].2005, 127(1), p. 52-60. ISSN 1048-9002, eISSN 1528-8927. Available from: https://doi.org/10.1115/1.1857920
[51] NARAYAN, S., ALSAGRI, A. S., GUPTA, V. Design and analysis of hybrid automotive suspension system. *International Journal of Mechanical and Production Engineering Research and Development (IJMPERD)* [online]. 2019, 9(4), p. 637-642. ISSN 2249-6890, eISSN 2249-8001. Available from: https://doi.org/10.24247/ijmperdaut201963

[52] MAHROOGI FAISAL, O., NARAYAN, S. Design and analysis of double wishbone suspension systems for automotive applications. *International Journal of Mechanical and Production Engineering Research and Development (IJMPERD)* [online]. 2019, 9(4), p. 1433-1442. ISSN 2249-6890, eISSN 2249-8001. Available from: https://doi.org/10.24247/ijmperdaut2019148

[53] STOJANOVIC, N., GLISOVIC, J., GRUJIC, I., NARAYAN, S. Influence of size of ventilated brake disc ribs on air flow velocity. *International Journal of Advanced Science and Technology (IJAST)* [online]. 2020, 29(1), p. 637-647. ISSN 2005-4238, eISSN 2207-6360. Available from: http://sersc.org/journals/index.php/IJAST/article/view/3285

[54] MAHROOGI, F. O., NARAYAN, S. Effects of dampers on piston slapping motion. *International Journal of Vehicle Noise and Vibration (IJVNv)* [online]. 2020, 16(1/2), p. 46-57. ISSN 1479-1471, eISSN 1479-148X. Available from: https://doi.org/10.1504/IJVNv.2020.112432

[55] NARAYAN, S., GUPTA, V. Frequency characteristics of in cylinder pressure of a gasoline engine. *Journal of Applied Engineering Science* [online]. 2021, 19(1), p. 92-97. ISSN 1451-4117, eISSN 1821-3197. Available from: https://doi.org/10.5937/jaes0-27156

[56] NARAYAN, S. Modelling of noise radiated from engines. In: The 11th International Conference on Automotive Engineering: proceedings [online]. 2015. 2015-01-0107. ISSN 0148-7191, eISSN 2688-3627. Available from: https://doi.org/10.4271/2015-01-0107

[57] NARAYAN, S. Analysis of noise emitted from diesel engines. *Journal of Physics: Conference Series* [online]. 2015, 662, 012018. ISSN 1742-6588, eISSN 1742-6596. Available from: https://doi.org/10.1088/1742-6596/662/1/012018