Use of barium – strontium modifier in manufacturing welding flux based on silicomanganese slag for welding and surfacing mining equipment

N A Kozyrev, A R Mikhno, R E Kryukov, N F Yakushevich and A A Provodova
Siberian State Industrial University, 42 Kirova street, Novokuznetsk, 654007, Russia
E-mail: kozyrev_na@mtsp.sibsiu.ru

Abstract. The paper discusses the possibility in principle of barium-strontium modifier application as a refining and gas-protective additive for welding fluxes based on silicomanganese slag for surfacing mining equipment. In the experiments the barium-strontium flux additive was used, prepared in two ways: barium-strontium modifier mixed with liquid glass and the dust of barium-strontium modifier with a fraction less than 0.2 mm. The additives were mixed at a ratio of 2-10% from weight of silicomanganese slag. It is shown that the use of a mixture of barium-strontium modifier with liquid glass as an additive is more preferable to the use of additive as a dust. It was established that the use of not more than 8% of a barium-strontium additive is optimal from the point of view of metal contamination with nonmetallic inclusions.

1. Introduction
The development of materials and the use of recovery technology that significantly increase the wear resistance of the working surfaces of machines and mechanisms of mining equipment exposed to abrasive and impact wear during operation is an important task. The most promising methods of recovery include the use of submerged-arc welding of the parts wear surfaces.

To restore the mining equipment, welding fluxes such as ANF-6-1, AN-348, AN-60, AN-20, AN-28 are used. To reduce the costs for restoration of mining equipment, the application of a new welding flux based on wastes from metallurgical production such as silicomanganese slag and flux – additives containing barium and strontium modifier is suggested [1-18]. The studies on the introduction of a barium-strontium modifier additive into welding fluxes based on silicomanganese slag, as well as the quality of the weld beads produced, were studied previously [19-20], the further studies are presented in this paper.

2. Methods of research
The chemical composition of the welded samples was determined according to the state standards GOST 10543-98 by the X-ray fluorescence method on XRF-1800 spectrometer and by the atomic-emission method using DFS-71 spectrometer. Investigation of longitudinal samples of the deposited layer for the presence of nonmetallic inclusions was performed in accordance with GOST 1778-70 using the optical microscope OLYMPUS GX-51 in a bright field within the range of magnifications ×100.
To produce the flux, slag from silicomanganese production with the chemical composition given in table 1 was used. The preparation flux additive containing barium-strontium modifier with the chemical composition (table 2) was carried out by mixing the barium-strontium modifier with liquid glass in a ratio of 75% and 25%, respectively. After that, the mixture was kept at a room temperature for 24 hours, dried in the oven at 300 °C, further cooled, crushed and sieved to obtain fraction of 0.45-2.5 mm. Further, the flux and flux-additives were mixed in various proportions. The investigated flux and flux-additive ratios are given in table 3. The silicomanganese slag with the fraction 0.45-2.5 mm was applied in the experiments. In the first option (with liquid glass), the additive was introduced in an amount of 2, 4, 6, 8, 10% (corresponding samples M2, M4, M6, M8, M10). According to the second option, the additive (dust) was introduced in an amount of 2, 6, 8, 10% (corresponding samples M21, M61, M81, M101). The flux made of silicomanganese slag without additives (M) was used for comparison.

The surfacing was performed on samples with sizes 300 × 150 mm and 20 mm in thickness from sheet steel grade 09G2S. The process was carried out using S-08GA welding wire by ASAW-1250 welding tractor in the following modes: I = 680 A; U = 28 V; V = 28 m/h.

The samples were cut from the welded plates, and the X-ray spectral analysis of the deposited layer composition and metallographic studies of the deposited layer were carried out. The chemical composition of the welding flux is provided in table 4. The chemical composition of the slag crust is given in table 5, the chemical composition of the weld metal is given in table 6.

Table 1. Chemical composition of silicomanganese slag.

Content, %	Al₂O₃	CaO	SiO₂	FeO	MgO	MnO	F	Na₂O	K₂O	S	P
6.91-9.62	6.91-9.62	22.85-31.70	46.46-48.16	0.27-0.81	6.48-7.92	8.01-8.43	0.28-0.76	0.26-0.36	0.62-0.17	0.15-0.01	

Table 2. Chemical composition of barium – strontium modifier.

Content, %	BaO	SrO	CaO	SiO₂	MgO	K₂O	Na₂O	Fe₂O₃	MnO	Al₂O₃	TiO₂	CO₂
13.0-19.0	13.0-19.0	3.5-7.5	17.5-25.5	19.8-29.8	0.7-1.1	2.5-3.5	1.0-2.0	1.5-6.5	1.9-3.9	0.7-1.1	16.0-20.0	

Table 3. Investigated ratios of flux – flux-additives, %.

Flux marking	The amount of barium-strontium additive, wt%	The amount of silicomanganese slag, wt%	
	With liquid glass	Dust	
M	-	-	100
M2	2	-	98
M4	4	-	96
M6	6	-	94
M8	8	-	92
M10	10	-	90
M21	-	2	98
M61	-	6	94
M81	-	8	92
M101	-	10	90

As it can be seen from figures 1-4, when the additive flux is introduced, barium, strontium are reduced, and the concentration of sulfur and phosphorus get lower. Investigation of longitudinal
samples of the deposited layer for the presence of nonmetallic inclusions was carried out on thin sections without etching by OLYMPUS GX-51 optical microscope with a magnification × 100 comparing with the reference scales according to GOST 1778-70.

The presence of non-deformable silicates, spot and sulfide oxides was established in the weld metal (figure 5) after studying the nature of its contamination with nonmetallic inclusions. The characteristics of nonmetallic inclusions of the deposited layer are given in table 5.

It was shown that when using a mixture of barium-strontium modifier in the amount 2-8% with a liquid glass, the degree of weld metal contamination with nonmetallic inclusions is less, in comparison with the absence of liquid glass in the additive, as well as 10% of the liquid glass in it.

Table 4. Chemical composition of the flux.

Flux	FeO	MnO	CaO	SiO₂	Al₂O₃	MgO	Na₂O	K₂O	S	P
M	0.50	7.97	31.34	46.09	6.61	5.74	0.40	0.01	0.33	0.011
M2	1.39	7.68	31.27	46.31	6.48	5.40	0.52	0.04	0.20	0.022
M4	0.77	7.69	30.56	46.11	6.42	5.42	0.49	0.03	0.38	0.022
M6	1.11	7.12	29.27	45.52	6.87	4.75	0.75	0.20	0.17	0.037
M8	1.04	7.14	31.65	43.93	6.22	3.71	0.79	0.27	0.13	0.044
M10	2.08	7.09	30.16	43.90	7.17	3.58	0.62	0.20	0.12	0.027
M21	1.32	8.14	32.09	45.19	6.20	5.35	0.36	0.01	0.43	0.014
M61	0.33	8.02	30.97	46.38	6.71	6.01	0.29	0.01	0.18	0.013
M81	1.89	7.90	30.79	40.07	5.71	3.03	0.48	0.57	0.13	0.090
M101	1.01	7.22	31.62	44.99	6.71	3.29	0.40	0.32	0.14	0.061

Table 5. The chemical composition of slag crusts.

Flux	FeO	MnO	CaO	SiO₂	Al₂O₃	MgO	Na₂O	K₂O	S	P
M	1.69	7.78	32.35	42.50	6.59	5.55	0.30	0.01	0.21	0.011
M2	2.07	7.54	31.91	43.63	6.52	5.92	0.31	0.01	0.16	0.012
M4	2.11	7.15	31.45	45.31	6.38	5.42	0.43	0.03	0.18	0.017
M6	1.93	7.20	31.37	44.30	7.46	5.26	0.39	0.02	0.23	0.017
M8	2.00	7.83	31.19	44.55	7.35	3.68	0.53	0.13	0.11	0.023
M10	1.12	7.16	30.60	44.90	6.48	3.10	0.84	0.32	0.14	0.047
M21	2.34	7.42	31.97	43.30	6.59	5.56	0.31	0.3	0.21	0.014
M61	2.21	6.95	30.26	45.55	7.06	4.99	0.33	0.13	0.17	0.017
(b) Mass fraction of elements, %

Flux	ZnO	Cr₂O₃	F	BaO	SrO	TiO₂
M	0.012	0.04	0.37	-	-	0.07
M2	0.006	0.10	0.45	0.19	0.098	0.08
M4	0.008	0.07	0.41	0.38	0.20	0.09
M6	0.008	0.05	0.46	0.34	0.19	0.09
M8	0.005	0.037	0.42	0.64	0.39	0.12
M10	0.013	0.026	0.56	1.52	0.58	0.16
M21	0.004	0.07	0.38	0.34	0.20	0.07
M61	0.011	0.04	0.38	0.64	0.39	0.11
M81	0.004	0.039	0.38	0.83	0.41	0.11
M101	0.003	0.035	0.48	1.03	0.54	0.14

Table 6. The chemical composition of the welded beads.

(a) Mass fraction of elements, %

Flux	C	Si	Mn	Cr	Ni	Cu	V	Mo
M	0.07	0.43	1.16	0.05	0.11	0.14	0.007	0.021
M2	0.08	0.26	0.83	0.05	0.13	0.15	0.003	0.020
M4	0.07	0.29	0.84	0.05	0.13	0.15	0.005	0.020
M6	0.09	0.26	0.77	0.04	0.10	0.15	0.004	0.020
M8	0.04	0.41	1.28	0.05	0.08	0.13	0.001	0.01
M10	0.04	0.36	1.20	0.05	0.08	0.12	0.001	0.01
M21	0.09	0.31	0.76	0.05	0.13	0.15	0.004	0.019
M61	0.08	0.23	0.77	0.05	0.13	0.14	0.004	0.017
M81	0.05	0.41	1.25	0.04	0.08	0.13	0.003	0.01
M101	0.04	0.41	1.26	0.04	0.08	0.13	0.001	0.01

(b) Mass fraction of elements, %

Flux	Nb	S	P	Ba	Sr
M	0.003	0.029	0.018	otс.	otс.
M2	0.004	0.026	0.015	0.0041	0.0004
M4	0.003	0.025	0.014	0.0054	0.0006
M6	0.003	0.021	0.011	0.0065	0.0008
M8	0.012	0.013	0.011	0.0096	0.0010
M10	0.010	0.014	0.012	0.0119	0.0011
M21	0.002	0.028	0.016	0.0049	0.0001
M61	0.003	0.026	0.014	0.0058	0.0003
M81	0.011	0.013	0.011	0.0086	0.0005
M101	0.011	0.012	0.011	0.0112	0.0006

The use of a strontium-barium modifier dust in the amount of 2-8% also reduces the level of contamination of the welded layer with non-metallic inclusions compared with the use of a larger amount of additive (10%).
Figure 1. The effect of the additive introduced into the deposited layer on the barium concentration.

Figure 2. The effect of the additive introduced into the deposited layer on the strontium concentration.

Figure 3. The effect of the additive introduced into the deposited layer on the sulfur concentration.

Figure 4. The effect of the additive introduced into the deposited layer on the phosphorus concentration.
Samples: a) M; b) M2; c) M4; d) M6; e) M8; f) M10; g) M21; h) M61; i) M81; j) M101.

Figure 5. Nonmetallic inclusions in the deposited layer.

Table 7. Characteristics of nonmetallic inclusions in the weld metal.

Sample	Non-metallic inclusions, point	nondeformable silicates	spot oxides	sulfides
M	1b,2b, rare 3b	la	la	
M2	1b,2b	la	-	
M4	1b,2b	la	-	
M6	1b,2b	la	-	
M8	1b,2b	la	-	
M10	1b,2b, rare 3b	la	la	
M21	1b,2b	la	-	
M61	1b,2b	la	-	
4. Conclusions

1) The possibility in principle of applying barium-strontium carbonatite as a refining and gas-
protective additive for welding fluxes is shown. The use of a mixture of barium-strontium carbonatite
with a liquid glass as an additive is more preferable with respect to the use of a dust additive.

2) It is determined that the use of barium-strontium additive in the amount not more than 8% is
optimal from the point of view of the contamination degree of the weld metal with nonmetallic
inclusions. This flux is recommended for welding and surfacing of mining equipment.

References

[1] Ivakin V L, Chernyak S S and Pimnev D Yu 2003 A New Technology for Improving the Quality
of Metals and Alloys with Barium-cesium Carbonate (Irkutsk) p123
[2] Rozhikhina I D, Nokhrina O I, Dmitrienko V I and Platonov M A 2015 Izvestiya VUZov:
Ferro Metallurgy vol 58 15 871–875
[3] Crespo A C, Puchol R Q and Gonzalez L P 2009 Welding International vol 23 2 120–131
[4] Golovko V V and Potapov N N 2009 Welding International vol 25 11 889–893
[5] Volobuev Y S, Volobuev O S, Parkhomenco A G, Dobrozhela E I and Klimenchuk O S 2012
Welding International vol 26 8 649–653
[6] Volobuev Y S, Surkov A V, Volobuev O S, Kipiani P N, Shestov D V, Pavlov N V and
Savchenko A I 2010 Welding International vol 24 4 298–300
[7] Potapov N N and Kurlanov S A 1987 Welding International vol 1 10 951–954
[8] Babushkin P L and Persits V Y 1991 Welding International vol 5 9 741–742
[9] Pavlov I V and Oleinichenko K A 1995 Welding International vol 9 4 329–332
[10] Chigarev V V and Kosenko A A 1994 Welding International vol 8 10 808–809
[11] Kurlanov S A, Potapov N N and Natapov O B 1993 Welding International vol 7 1 65–68
[12] Bublik O V and Chamov S V 2010 Welding International vol 24 9 730–733
[13] Crespo A C, Puchol R Q, Gonzalez L P 2009 Welding International vol 23 2 120–131
[14] Golovko V V and Potapov N N 2011 Welding International vol 25 11 889–893
[15] Crespo A C, Puchol R Q, Gonzalez L P, Sanchez L G, Gomez Perez C R and Cedre E D 2007
Welding International vol 21 7 502–511
[16] Volobuev Y S, Volobuev O S, Parkhomenco A G, Dobrozhela E I and Klimenchuk O S 2012
Welding International vol 26 8 649–653
[17] Volobuev Y S, Surkov A V, Volobuev O S, Kipiani P N, Shestov D V, Pavlov N V and
Savchenko A I 2010 Welding International vol 24 4 298–300
[18] Potapov N N and Kurlanov S A 1987 Welding International vol 1 10 951–954
[19] Kozyrev N A, Kryukov R E, Burnakov M A, Mikhailov A P and Fedotov E E 2017 Proc. of the
XX Int. Sci. and Pract. Conf. on Metallurgy: Technologies, Innovations, Quality (SibGiU-
Novokuznetsk) part 1 pp 296–299
[20] Kozyrev N A, Kryukov R E, Kryukov N E, Kovalsky I N and Kozyreva O E 2017 Ferrous
Metallurgy. Bulletin of Scientific, Technical and Economic Information 6(1410) pp 95–98