PLL-based nanoresonator driving IC with automatic parasitic capacitance cancellation and automatic gain control

Hyunwoo Heo¹, Hyungseup Kim¹, Donggeun You¹, Yongsu Kwon¹, Yil-suk Yang², Junghoon Lee³ and Hyoungho Ko¹

Abstract
This paper presents a phase-locked loop (PLL) based resonator driving integrated circuit (IC) with automatic parasitic capacitance cancellation and automatic gain control. The PLL consisting of a phase frequency detector (PFD), a loop filter, and a voltage-controlled oscillator (VCO) makes the driving frequency to be locked at the resonant frequency. The resonator is modeled by Butterworth–Van Dyke equivalent circuit model with motional resistance of 72.8 kΩ, capacitance of 6.19 fF, inductance of 79.4 mH, and parasitic parallel capacitance of 2.59 pF. To mitigate the magnitude and phase distortion in the resonator frequency response, it is necessary to compensate for the parasitic capacitance. The proposed automatic parasitic capacitance cancellation loop is operated in the open-loop mode. In the automatic parasitic capacitance cancellation phase, the outputs of the transimpedance amplifier (TIA) at the lower and higher frequency than the resonant frequency (VH and VL), are compared, and the programmable compensation capacitor array matches the VH and VL using binary-searched algorithm to cancel the parallel parasitic capacitance. The automatic gain control (AGC) loop keeps the oscillation at the suitable amplitude, and the AGC output can be used as a measurement of the motional resistance. The AGC loop is also digitally controlled. The proposed resonator driving IC is designed in a 0.18-μm bipolar complementary metal oxide semiconductor double-diffused metal oxide semiconductor (BCDMOS) process with an active area of 3.2 mm². The simulated phase noise is −61.1 dBc/Hz at 1 kHz and the quality factor (Q-factor) is 59,590.

Keywords
Phase-locked loop, automatic parasitic capacitance cancellation, automatic gain control, Butterworth-Van Dyke equivalent circuit model, motional series resonant frequency

Introduction
As the development of internet of things (IoT) technologies, various sensor markets are continuously growing. Recently, nanotechnology-based nanoresonator sensor is of interests to expected to have various sensor applications with the growth of the nano/microelectromechanical system (NEMS/MEMS) sensor market. By the motional resistance or motional inductance detection method of a nanoresonator, it can be used for measuring physical properties of liquid, such as density or viscosity,¹ ² ³ and it can be applied as bio sensors or chemical sensors that measure the blood glucose, and so on.

There are two main categories for the resonator driving system: open-loop system and closed-loop system. In open-loop system, resonant frequency and quality factor (Q-factor) can be obtained with the full frequency curve of a nanoresonator,⁷ but the additional input driving source with frequency sweeps near resonant frequency is required. In the case of high Q-factor of resonator, the sweep size of the input frequency should be fine. With unknown resonant frequency, it can be difficult to find the resonant frequency
depending on the frequency sweep range and size. Also, there are limitations in obtaining the continuous changes in Q-factor or resonant frequency. In closed-loop system, self-sustained oscillator4,11 circuit and phase-locked loop (PLL) architecture4,12 are mainly used. Compared to the oscillator circuit, PLL architecture has better adaptability to resonators and better performance with large damped resonators.1

This paper presents PLL-based nanoresonator driving integrated circuit (IC) with automatic parasitic capacitance cancellation and automatic gain control. The nanoresonator was modeled by Butterworth-Van Dyke equivalent circuit model13–17 with motional series branch (resistance, inductance, and capacitance) and parallel parasitic capacitance. The purpose of the proposed nanoresonator driving IC is detection of the motional resistance, which is damping parameter of the mechanical lumped-parameter model. The nanoresonator model used in the proposed circuit has the motional series resonant frequency of 7.16 MHz, and the parallel capacitance of 2.59 pF. As the parasitic capacitance cause magnitude and phase distortions of frequency response and affect the resonant characteristic, the influence of the parasitic capacitance should be minimized. In this paper, a new method for the parasitic compensation is presented for the parasitic capacitance compensation. The automatic parasitic capacitance cancellation loop of the proposed nanoresonator driving IC automatically matches the programmable compensation capacitor array to the parasitic capacitance by using binary-searched algorithm, and compensate the parasitic capacitance properly.

PLL consists of phase frequency detector (PFD), loop filter, and voltage-controlled oscillator (VCO). PLL tracks the resonant frequency of the nanoresonator and keeps the oscillation frequency at the resonant frequency. The path through the AGC amplifier A_3, resistor R_{REF} and A_4, which is the replica path with the path through the AGC amplifier A_1, nanoresonator and TIA compensate the phase delay because of the AGC amplifier, nanoresonator, and TIA.

The automatic gain control loop (AGC)11,18 keeps the oscillation amplitude properly, by automatically tracking the set reference voltage V_{AGC}. As the motional resistance can be obtained digitally by the AGC loop operation, the proposed circuit does not require an additional analog-to-digital converter (ADC).

The remainder of this paper is organized as follows. Section “Circuit implementation” describes the overall structure and compositions of the proposed scheme. Section “Circuit operation” describes the detailed operation principle of each mode (automatic parasitic capacitance cancellation loop, PLL, and AGC loop) of the proposed scheme. Section “Experimental results” shows the operation verification of the implemented circuit. The end of the paper concludes the proposed PLL-based nanoresonator driving IC.

Circuit implementation

Figure 1 shows the top architecture of the proposed PLL-based nanoresonator driving IC with automatic parasitic capacitance cancellation and AGC. The automatic parasitic capacitance cancellation loop mode and the AGC loop mode can be selected by switching operation. Before the operation of PLL and the AGC loop, the automatic parasitic capacitance cancellation loop is activated first to compensate the parasitic parallel capacitance of a nanoresonator.

The automatic parasitic capacitance cancellation loop consists of 10-bit programmable compensation capacitors array C_{comp}, buffer A_{P1}, unity gain inverting amplifier A_{P2}, TIA, peak detector, sampling capacitors C_H and C_L, comparator $COMP_{APC}$, and successive approximation register (SAR) logic. In the parasitic capacitance cancellation loop phase, a higher frequency and a lower frequency compared with the resonant frequency is implied to the input terminal F_{inH} and F_{inL}, respectively. By the sequential operation of two switches F_{inH} and F_{inL}, the circuit is driven in higher frequency and lower frequency sequentially. In the parasitic capacitance cancellation phase, R_{AGC} and the gain of the AGC amplifiers (A_1, A_2, and A_3) has a static value.

PLL consists of PFD, VCO, and loop filter. The phase of TIA output and VCO output are compared by two comparators $COMP_{PLL1}$ and $COMP_{PLL2}$, and PFD output that proportional to the phase difference controls VCO. The PFD output voltage is applied to the VCO and keeps the VCO output frequency at the resonant frequency. The AGC loop consists of 9-bit programmable resistor array R_{AGC}, AGC amplifier, TIA, peak detector, comparator $COMP_{AGC}$, and SAR logic register. The DC voltage input terminal V_{AGC} at the comparator $COMP_{AGC}$ is the reference voltage that is compared with the peak voltage of the TIA output. The reference voltage V_{AGC} can be arbitrarily set to a desired oscillation amplitude.

The nanoresonator model used in the proposed IC is shown in Figure 2. The nanoresonator was modeled by Butterworth-Van Dyke equivalent circuit model with the motional series resonant frequency of 7.16 MHz (the motional resistance of 72.8 kΩ, the motional inductance of 79.4 mH, the motional capacitance of 6.19 fF, and the parasitic parallel capacitance C_p of 2.59 pF).

Figure 3 shows the charge pump PFD (CPPFD)19 implemented in the proposed IC. The CPPFD is implemented with two D flip-flops, source current I_{SRC}, and sink current I_{SNK}. I_{SRC} and I_{SNK} which has the current value of 12 μA in the proposed circuit force the current into or out the loop filter. The loop filter is implemented with second-order passive loop filter with R_{LF} of 600 Ω, C_{LF} of 80 pF, and C_F of 8 pF. The CPPFD compares the phase of VCO output and of TIA output, and locks the oscillation frequency at the resonant frequency of the nanoresonator. To avoid a dead zone
Heo et al.

region of the CPPFD, reset input is delayed using two inverter cells.

Figure 4 shows the schematic of operational amplifier (op-amp) used in TIA, AGC amplifier, and peak detector. The op-amp is implemented with rail-to-rail folded cascode architecture and Monticelli’s class-AB output stage. For the wide input range, M1–M4 forms rail-to-rail input stage. M9–M12, M17, and M18 constitute Monticelli’s class-AB output stage to achieve power efficiency. C_{m1} and C_{m2} is used to nested-Miller
compensation capacitor to secure frequency response stability.

Circuit operation

Automatic parasitic capacitance cancellation loop

In the Butterworth-Van Dyke equivalent circuit model, the MSRF ω_{rs} of the nanoresonator that parasitic capacitance C_p is ignored is expressed as:

$$\omega_{rs} = \frac{1}{\sqrt{L_m C_m}}$$ \hspace{1cm} (1)

In the case of $C_p >> C_m$, the parallel resonant frequency ω_{rp} that C_p is considered can be expressed as:

$$\omega_{rp} = \omega_{rs} \sqrt{1 + \frac{C_m}{C_p}}$$ \hspace{1cm} (2)

The equations (1) and (2) indicate that parasitic capacitance affect the frequency response of the resonator, and it should be compensated properly.

As shown in Figure 5, if the parasitic capacitance C_p is not compensated, the resonator no more has a band-pass filter characteristic having an accurate resonant frequency, and the gain continuously increases or decreases with the variation of frequency. By taking advantage of this these characteristics, the automatic parasitic capacitance cancellation loop operates by the method of comparing the output voltage by sequentially applying a low-frequency signal input and a high-frequency signal input compared to the resonant frequency of F. After the parasitic capacitance is compensated by C_{comp} to the parasitic capacitance C_p, before compensation, the initial frequency characteristic of the nanoresonator is shown as in Figure 5. As the automatic parasitic capacitance cancellation loop operates, the output at the frequency of F_{inh} and F_{inl} is compared and C_{comp} is adjusted using SAR control. In this process, over compensation and under compensation of C_p is repeated, tracking the point where the gain at the frequency of F_{inh} and F_{inl} are same, that is, the point where C_{comp} is matched to C_p.

PLL and Automatic gain control loop

After the parasitic capacitance is compensated by the operation of the automatic capacitance cancellation loop, PLL, and AGC loop mode are activated. Figure 9 shows the connection status of PLL and AGC loop mode. The current output of the nanoresonator driven by VCO output is converted to voltage and amplified by TIA and the peak voltage of TIA output is compared to set reference voltage V_{AGC}. The comparator COMP$_{AGC}$ compares the peak voltage of TIA output and V_{AGC}, and 9-bit programmable resistor array R_{AGC} is controlled by the method of binary-searched algorithm using 9-bit SAR logic register. As R_{AGC} is controlled, the gain of the circuit is controlled and the peak voltage of the TIA output automatically tracks the reference voltage V_{AGC}.

The motional capacitance C_m and the motional inductance L_m of the nanoresonator driven in resonant frequency are canceled each other out and if the parasitic capacitance C_p is compensated properly, the TIA output can be expressed as:
The motional resistance R_m can be expressed as:

$$R_m = R_{AGC} \cdot \frac{R_{TIA}}{R_2} \cdot \frac{V_{IN}}{V_{O,TIA}}$$

Assuming the nanoresonator as a narrow-band mechanical bandpass filter, the fundamental frequency of V_{in} is the natural frequency of the nanoresonator. The C_F is about ten times smaller than C_{LF}, the open-loop gain of the PLL can be approximated as:

$$G(s) \approx \frac{1}{2\pi} \cdot I_{CP} \cdot K_{VCO} \cdot \frac{sRC + 1}{s^2C_1}$$

Where I_{CP} is the charge pump current and K_{VCO} is the voltage-to-frequency conversion coefficient of the
Figure 8. Conceptual frequency response of the nanoresonator during the automatic parasitic capacitance cancellation loop operation.

Figure 9. Circuit connection status of automatic gain control loop operation.
VCO. Thus, the simplified closed-loop transfer function can be expressed as:

\[
H(s) = \frac{I_{CP}}{s^2 + \frac{I_{CP}}{2\pi C_p} K_{VCO} \cdot R_L + \frac{I_{CP}}{2\pi C_L} \cdot K_{VCO}} (6)
\]

Experimental results

Figure 10 shows the layout of the proposed PLL-based nanoresonator driving IC with automatic parasitic cancellation and automatic gain control. The proposed IC is designed with a 0.18-μm bipolar complementary metal oxide semiconductor double-diffused metal oxide semiconductor (BCDMOS) process with an active area of 3.2 mm\(^2\).

The op-amp shown in Figure 4 is implemented with unit gain bandwidth (UGBW) of hundreds of megahertz to drive the nanoresonator model with the resonant frequency of 7.16 MHz. Figure 11 shows the loop gain simulation results of the op-amp. The op-amp has DC gain of 82.2 dB, and UGBW of 260 MHz, which is sufficient to drive the nanoresonator with 7.16 MHz of resonant frequency. The op-amp has the phase margin of 50° and secures the frequency stability.

Figure 12 shows the simulation result of the automatic parasitic capacitance cancellation loop. The 10-bit programmable compensation capacitor array \(C_{\text{comp}}\) implemented with the unit capacitance of 33.4 fF matches the 2.59 pF of the parasitic capacitance \(C_p\) of the nanoresonator at digital register input of 76 or 77 in decimal. The SAR logic digital output controls the compensation capacitor array \(C_{\text{comp}}\), comparing the output at the frequency of \(F_{\text{inH}}\) and \(F_{\text{inL}}\), as shown in Figure 8. The simulated SAR logic register digital output is 76 and the parasitic capacitance is compensated properly.

Figure 13(a) shows the time domain simulation result of AGC loop when the motional resistance \(R_m\) is 10 kΩ, and the reference voltage \(V_{\text{AGC}}\) is 1.2 V. The oscillation frequency is locked at 7.16 MHz, which is close to the resonant frequency of the nanoresonator. The peak detector output of the black line automatically tracks the reference voltage \(V_{\text{AGC}}\). Figure 13(b) shows the digital output of the AGC loop under the same condition and the simulated digital output is 13 in decimal.

Figure 14 shows the motional resistance \(R_m\) detection simulation. Digital output of the AGC loop is simulated under the variation of the motional resistance \(R_m\) from 10 to 100 kΩ with intervals of 10 kΩ. The
A nanoresonator is shown in Table 1. As the parallel parasitic capacitance compensation loop automatically tracks and automatically compensating for the parasitic capacitance is proposed.

Table 1. Performance summary of the proposed PLL-based nanoresonator driving IC and comparison with other studies.

Method	Technology (µm)	Frequency (MHz)	Q-factor	Phase noise at 1 kHz (dBc/Hz)	Parasitic cancellation
This work	0.13	7.16	59,590	−61.1	Yes
Seth et al.⁹	0.18	20	160,000	−131	No
Nabki and El-Gamal¹⁰	0.18	8.29	1,040	−89	No
Wojciechowski et al.²²	0.35	101.7	3,100	−90.6	No
Johnston et al.²¹	0.18	864	1257	−68	No

Figure 14. Motional resistance R_m detection simulation result.

Figure 15. FFT simulation result of the proposed PLL-based nanoresonator driving IC.

Conclusion

As nanotechnology-based sensor is expected to have various sensor application, nanoresonator can be applied as a bio/chemical sensor by the method of detecting the motional inductance or the motional resistance. This paper presents PLL-based nanoresonator driving IC with automatic parasitic capacitance cancellation and automatic gain control. The purpose of the proposed IC is to detect the motional resistance of a nanoresonator. To compensate the phase or the magnitude distortion of the frequency response, the parallel parasitic capacitance of the nanoresonator should be compensated. The automatic parasitic...
Acknowledgement

The EDA tool was supported by the IC Design Education Center (IDEC), Republic of Korea.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Electronics and Telecommunications Research Institute (ETRI) Grant funded by the Korean government (20ZB1155, Development of MEANS resonator-based oscillator circuit based on higher-order model. In: Proceedings of the 2010 symposium on piezoelectricity, acoustic waves and device applications, Xiamen, China, 10–13 December 2010, pp.491–496. New York: IEEE.

10. Lin YW, Lee S, Li SS, et al. Series-resonant VHF micro-mechanical resonator reference oscillators. IEEE J Solid-State Circuits 2004; 39(12): 2477–2491.

11. Arnau A, Sogorb T and Jimenez Y. Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation. Rev Sci Instrum 2002; 73(7): 2724–2737.

12. Tamayo J, Humphris ADL, Malloy AM, et al. Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 2001; 86(1–2): 167–173.

13. Yan Z and Zhou X. Simulation of ZnO based film bulk acoustic resonator by modified Butterworth-Van Dyke model. In: Proceedings of the 2010 symposium on piezoelectricity, acoustic waves and device applications, Xiamen, China, 10–13 December 2010, pp.491–496. New York: IEEE.

14. Niedermayer AO, Voglhuber-Brunnamia T, Sell J, et al. Methods for the robust measurement of the resonant frequency and quality factor of significantly damped resonating devices. Meas Sci Technol 2012; 23(8): 085107.

15. Huang H and Paramo D. Broadband electrical impedance matching for piezoelectric ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 2011; 58(12): 2699–2707.

16. Giraud S, Bila S, Chatrais M, et al. Bulk acoustic wave filter synthesis and optimization for UMTS applications. In: 2009 IEEE international frequency control symposium joint with the 22nd European frequency and time forum, Besancon, 20–24 April 2009, pp.890–893. New York: IEEE.

17. Arnau A, Sogorb T and Jimenez Y. A new method for continuous monitoring of series resonance frequency and simple determination of motional impedance parameters for loaded quartz-crystal resonators. IEEE Trans Ultrason Ferroelectr Freq Control 2001; 48(2): 617–623.

18. Nabki F and El-Gamal MN. A high gain-bandwidth product transimpedance amplifier for MEMS-based oscillators. In: ESSCIRC 2008-34th European solid-state circuits conference, Edinburgh, 15–19 September 2008, pp.454–457. New York: IEEE.

References

1. Sell JK, Niedermayer AO and Jakoby B. A digital PLL circuit for resonator sensors. Sens Actuators A Phys 2011; 172(1): 69–74.

2. Manzaneque T, Ruiz-Diez V, Hernando-Garcia J, et al. Piezoelectric MEMS resonator-based oscillator for density and viscosity sensing. Sens Actuators A Phys 2014; 220: 305–315.

3. Mehdizadeh E, Gonzales J, Rahafrooz A, et al. Piezoelectric MEMS resonator-based oscillator for density and viscosity monitoring. Tech Dig Hilton Head Workshop 2012; 35: 359–362.

4. Toledo J, Manzaneque T, Ruiz-Diez V, et al. Piezoelectric resonators and oscillator circuit based on higher-order out-of-plane modes for density-viscosity measurements of liquids. J Micromech Microeng 2016; 26(8): 084012.
19. Kamal MM, El-Shewekh EW and El-Saba MH. Design and implementation of a low-phase-noise integrated CMOS frequency synthesizer for high-sensitivity narrow-band FM transceivers. In: Proceedings of the 12th IEEE international conference on fuzzy systems (Cat. No. 03CH37442), Cairo, 11 December 2003, pp.167–175. New York: IEEE.

20. De Langen KJ and Huijsing JH. Compact low-voltage power-efficient operational amplifier cells for VLSI. IEEE J Solid-State Circuits 1998; 33(10): 1482–1496.

21. Johnston ML, Kymissis I and Shepard KL. FBAR-CMOS oscillator array for mass-sensing applications. IEEE Sens J 2010; 10(6): 1042–1047.

22. Wojciechowski KE, Olsson RH, Tuck MR, et al. Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators. In: Transducers 2009–2009 International solid-state sensors, actuators and microsystems conference, Denver, CO, 21–25 October 2009, pp.2126–2130. New York: IEEE.