Tuberculous lymphadenitis as a cause of obstructive jaundice: A case report and literature review

Radoje Colovic, Nikica Grubor, Rada Jesic, Marjan Micev, Tanja Jovanovic, Natasa Colovic, Henry Dushan Atkinson

Abstract

Obstructive jaundice secondary to tuberculosis (TB) is extremely rare. It can be caused by TB enlargement of the head of the pancreas, TB lymphadenitis, TB stricture of the biliary tree, or a TB mass of the retroperitoneum. A 29-year-old man with no previous history of TB presented with abdominal pain, obstructive jaundice, malaise and weight loss. Ultrasonography (US), computer tomography (CT) scan and endoscopic retrograde cholangiopancreatography (ERCP) were suggestive of a stenosis of the distal common bile duct (CBD) caused by a mass in the posterior head of the pancreas. Tumor markers, CEA and CA19-9 were within normal limits. HBsAg and HCV were negative. Abdominal ultrasonography (US) revealed a semi-solid hypoechoic lesion 39 mm × 40 mm in size around the head of the pancreas, with two enlarged lymph nodes lying above this, and a common bile duct measuring 10 mm in diameter. Computer tomography (CT) scan showed a low density mass on the posterior aspect of the head of the pancreas with a contrast enhancing solid-rim (Figure 1). Pancreatography was normal, however severe narrowing of the distal common bile duct (CBD) was seen on endoscopic retrograde cholangiopancreatography (ERCP) (Figure 2A and B).

INTRODUCTION

Abdominal tuberculosis (ATB) is rare and obstructive jaundice caused by tuberculosis (TB) is extremely rare. ATB can mimic more common noninfectious abdominal syndromes and is often overlooked because of its low incidence. The mechanisms by which ATB causes bile duct obstruction are varied. We describe a patient with biliary obstruction caused by enlarged tuberculous lymph nodes.

CASE REPORT

A 29-year-old man presented to our unit with epigastric pain and tenderness on examination, and jaundice, steatorrhea, malaise and weight loss of 7 kg over the preceding 6 mo. Total bilirubin was 163 µmol/L and direct bilirubin 88 µmol/L; SGOT, SGPT, gamma GT and alkaline phosphatase were moderately elevated. Other laboratory tests including the tumor markers CEA and CA19-9 were all within normal limits. HBsAg and HCV were negative. Abdominal ultrasonography (US) revealed a semi-solid hypoechoic lesion 39 mm × 40 mm in size around the head of the pancreas, with two enlarged lymph nodes lying above this, and a common bile duct measuring 10 mm in diameter. Computer tomography (CT) scan showed a low density mass on the posterior aspect of the head of the pancreas with a contrast enhancing solid-rim (Figure 1). Pancreatography was normal, however severe narrowing of the distal common bile duct (CBD) was seen on endoscopic retrograde cholangiopancreatography (ERCP) (Figure 2A and B).
The patient underwent open surgery, and at operation the liver was found to be slightly firm, gallbladder moderately dilated, Lund’s lymph node enlarged (about 1.5 cm), common bile duct moderately dilated and two lymph nodes close to the common hepatic artery also enlarged (2 cm and 3 cm). After mobilizing the duodenum and the head of the pancreas, an enlarged (4 cm) soft lymph node adherent to the distal CBD, was removed. The lymph node had a solid surface with a soft and caseous centre, and had a fistulous connection with the posterior aspect of the CBD. Frozen section histology of the lymph node revealed chronic granulomatous inflammation. The gallbladder, Lund’s lymph node, the two other enlarged lymph nodes lying close to the common hepatic artery, and a specimen of liver was removed and sent for histology. The narrowed distal CBD was resected, the distal end over sewn, and the proximal end anastomosed with a Roux-en-Y jejunal limb. The resected specimen included the fistulous opening on the posterior wall of the CBD (Figure 3).

The patient had an uneventful postoperative recovery, and bilirubin levels normalised within two weeks. Histology of the liver and gallbladder was normal. The resected CBD showed epithelial ulceration and inflammation with a number of necrotizing granulomata. The lymph nodes had a chronic granulomatous appearance with large merged necrotic areas, and smaller epitheloid-type granulomata with occasional multinuclear giant cells (Figure 4A and B) suggestive of tuberculous lymphadenitis. The diagnosis was confirmed with a polymerase chain reaction (PCR) using automated analyzer Cobas/Roche/, with the Amplicor Mycobacterium tuberculosis assay. No previous specific risk for TB was found in the patient. He was treated with anti-tuberculous quadruple therapy and achieved gradual clinical improvement, with resolution of pain and malaise, and a weight gain of 10 kg over the next 6 mo. He remained well at 2.5 years postoperatively.

DISCUSSION

Obstructive jaundice secondary to abdominal TB is extremely rare. Four mechanisms have been described: TB of the pancreas itself may cause pseudoneoplastic obstructive jaundice; it may be secondary to TB lymphadenitis causing compression and inflammation of the lymph nodes and the CBD, as in our case, with caseation of the lymph node causing fistulation into the CBD; biliary TB itself may lead to single or multiple
structures, mimicking cholangiocarcinoma, and TB can create a retroperitoneal mass leading to biliary tree obstruction.

The diagnosis of abdominal TB should be considered in the context of a mass in the head of the pancreas in the immunocompromised patients and in countries with endemic TB, after the exclusion of malignancy and other biliary inflammation. TB lymphadenitis can be suspected when a contrast-enhanced CT scan demonstrates low density masses surrounded by an enhancing solid rim, or when ERCP demonstrates a normal pancreatogram with a smooth narrowing of the CBD, as were seen in our patient. FDG-PET scanning has not been shown to be useful in distinguishing TB from pancreatic malignancy, as both conditions have an increased uptake of the FDG metabolite. US or CT-guided percutaneous fine needle aspiration (FNA) of the enlarged lymph nodes may be useful, but is often not definitive. Cytology of CBD aspirate, however, obtained by ERCP, may be confirmatory in the presence of the acid-fast bacillus (Mycobacterium tuberculosis); alternatively PCR of the aspirate may be diagnostic. However, in the case of a periportal lymphadenopathy causing obstructive jaundice, as in our patient, these FNA tests are only positive if a fistula exists between the TB lymph node and the CBD, allowing bacilli to pass into the CBD. Other potential diagnostic methods include obtaining tissue specimens by laparoscopy or endoscopic ultrasound with FNA. Though in practice, the diagnosis is often established at operation or even after surgery by histology or PCR-based assay, as was the case in our patient.

The great benefit of a preoperative diagnosis of TB causing the obstruction is that a more conservative path could be followed, involving removal of the obstructing lymph node alone, followed by anti-TB medications. In our case more elaborate CBD resective surgery was undertaken for presumed malignancy.

However, even though TB lymphadenitis was suspected in our patient after intraoperative frozen section, resection of the involved part of the CBD was necessary as the bile duct was already strictured, and eventual closure of the fistula would probably result in additional stenosis or even complete obstruction of the CBD. Thus inexplicable stenosis of the CBD should be taken into consideration in the context of pancreatic or TB lymphadenitis associated with obstructive jaundice and be treated by biliary bypass surgery in addition to anti-TB medication.

REFERENCES

1. Crowson MC, Perry M, Burden E. Tuberculosis of the pancreas: a rare cause of obstructive jaundice. Br J Surg 1984; 71: 239
2. Chen CH, Yang CC, Yeh YH, Yang JC, Chou DA. Pancreatic tuberculosis with obstructive jaundice--a case report. Am J Gastroenterol 1999; 94: 2534-2536
3. Shan YS, Sy ED, Lin PW. Surgical resection of isolated pancreatic tuberculosis presenting as obstructive jaundice. Pancreas 2000; 21: 100-101
4. Koutrakis G, Glinavou A, Karayiannakis A, Karatzas G. Primary tuberculosis of the pancreas mimicking a pancreatic tumor. Int J Pancreatol 2001; 29: 151-153
5. Singh B, Moodley J, Batitang S, Chetty R. Isolated pancreatic tuberculosis and obstructive jaundice. S Afr Med J 2002; 92: 357-359
6. Xie F, Poon RT, Wang SG, Bie P, Huang XQ, Dong JH. Tuberculosis of pancreas and peripancreatic lymph nodes in immunocompetent patients: experience from China. World J Gastroenterol 2003; 9: 1361-1364
7. El Mansori O, Tajdine MT, Mikou I, Janati MI. [Pancreatic tuberculosis. Report of two cases] Gastroenterol Clin Biol 2003; 27: 548-550
8. Panzuto F, D’Amato A, Laghi A, Cadau G, D’Ambra G, Aguzzi D, Iannaccone R, Montesani C, Caprilli R, Delle Fave G. Abdominal tuberculosis with pancreatic involvement: a case report. Dig Liver Dis 2003; 35: 283-287
9. Kumar R, Kapoor D, Singh J, Kumar N. Isolated tuberculosis of the pancreas: a report of two cases and review of the literature. Trop Gastroenterol 2003; 24: 76-78
10. Beaulieu S, Chouillart E, Petit-Jean B, Vitte RL, Eugene C. [Pancreatic tuberculosis: a rare cause of pseudoneoplastic obstructive jaundice] Gastroenterol Clin Biol 2004; 28: 295-298
11. Kohen MD, Altman KA. Jaundice due to a rare cause: tuberculous lymphadenitis. Am J Gastroenterol 1973; 59: 48-53
12. Murphy TF, Gray GF. Biliary tract obstruction due to tuberculous adenitis. Am J Med 1980; 68: 452-454
13. Stanley JH, Yantis PL, Marsh WH. Periporal tuberculous adenitis: a rare cause of obstructive jaundice. Gastrointest Radiol 1984; 9: 227-229
14. Mathieu D, Ladeb MF, Guigui B, Rousseau M, Vasile N. Periporal tuberculous adenitis: CT features. Radiology 1986; 161: 713-715
15. Alvarez SZ, Sollano JD Jr. ERCP in hepatobiliary tuberculosis. Gastrointest Endosc 1998; 47: 100-104
16. Queralt CB, Cruz JM, Comet V Jr, Almajano C, Val-Carreres C. [Obstructive jaundice due to peripancreatic tuberculosis adenitis] Rev Esp Enferm Dig 1992; 82: 201-202
17. Poon RT, Lo CM, Fan ST. Diagnosis and management of biliary obstruction due to periporal tuberculous adenitis. Hepatogastroenterology 2001; 48: 1585-1587
18. Obama K, Kanai M, Taki Y, Nakamoto Y, Takabayashi A. Tuberculous lymphadenitis as a cause of obstructive jaundice: report of a case. Surg Today 2003; 33: 229-231
19. Probst A, Schmidbaur W, Jechart G, Hammond A, Zentner J, Niculescu E, Messmann H. Obstructive jaundice in AIDS: diagnosis of biliary tuberculosis by ERCP. Gastrointest Endosc 2004; 60: 145-148
20. Fan ST, Ng IO, Choi TK, Lai EC. Tuberculosis of the bile duct: a rare cause of biliary stricture. Am J Gastroenterol 1989; 84: 413-414
21. Behera A, Kochhar R, Dhavan S, Aggarwal S, Singh K. Isolated common bile duct tuberculosis mimicking malignant obstruction. Am J Gastroenterol 1997; 92: 2122-2123
22. Yeh TS, Chen NH, Jan YY, Hwang TL, Jeng LB, Chen MF. Obstructive jaundice caused by biliary tuberculosis: spectrum of the diagnosis and management. Gastrointest Endosc 1999; 50: 105-108
23. Kok KY, Yapp SK. Tuberculosis of the bile duct: a rare cause of obstructive jaundice. J Clin Gastroenterol 1999; 29: 161-164
24. Inal M, Aksungur E, Akgul E, Demirbas O, Ozgun M, Erkokcak E. Biliary tuberculosis mimicking cholangiocarcinoma: treatment with metallic biliary endoprosthesis. Am J Gastroenterol 2000; 95: 1069-1071
25. Prasad A, Pandey KK. Tuberculous biliary strictures: uncommon cause of obstructive jaundice. Australas Radiol 2001; 45: 365-368
26. Kazemifar E, De-Roos A, Bolk JH, Arend SM. Obstructive jaundice and hematemesis: two cases with unusual presentations of intra-abdominal tuberculosis. Eur J Intern Med 2004; 15: 259-261
27. Woodfield JC, Windsor JA, Godfrey CC, Orr DA, Officer NM. Diagnosis and management of isolated pancreatic tuberculosis: recent experience and literature review. ANZ J Surg 2004; 74: 368-371

S-Editor Li DL L-Editor Ma JY E-Editor Lu W

www.wjgnet.com