Preparation of Magnetic Chitosan Beads for Heavy Metal Ions Removal from Water

Rahmi* , Fathurrahmi, Lelifajri, Fitri Purnamawati, Rahmawati Sembiring

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Jalan Tgk. T anoh Abe No. 3 Darussalam, Banda Aceh, Indonesia

*Corresponding author: rahmi@fmipa.unsyiah.ac.id

Abstract. Magnetic chitosan beads have been successfully prepared using Fe$_3$O$_4$ and applied for Hg(II) and Cd(II) removal from water. Fe$_3$O$_4$ was extracted from Aceh iron sand using co-precipitation method. The preparation of magnetic chitosan beads was conducted with several contents of chitosan and Fe$_3$O$_4$. The obtained magnetic chitosan beads were characterized using XRD, FTIR, and SEM. XRD pattern of magnetic chitosan bead was broader and has a lower intensity than chitosan that confirmed the decrease in chitosan crystallinity. FTIR and SEM data confirmed the formation of magnetic chitosan beads. Adsorption study was performed for Hg(II) and Cd(II) removal from water. The adsorption capacities of magnetic chitosan beads for Hg(II) and Cd(II) were 0.4 and 3.04 mg/g, respectively which were higher than adsorption capacities of pure chitosan.

Keywords: Magnetic chitosan, beads, heavy metal ions, adsorption

1. Introduction

Chitosan is a biopolymer produced from the chitin deacetylation process using alkali. Chitosan is widely used in various fields of industry such as health, cosmetics, agricultural, and livestock industries [1,2]. Chitosan is used as a coagulant in wastewater treatment, moisturizer, seed coating, anti-cancer/anti-tumor, anti-cholesterol, additional animal feed, contact lenses, fat solvent, food preservatives, and adsorbent [3]. As an adsorbent, chitosan obtained much attention due to the nature of chitosan that is not poisonous, biodegradable, and abundantly available [4,5]. However, chitosan in pure form has weaknesses such as high solubility at low pH and limited mechanical properties. Besides, chitosan is usually used as a powder adsorbent. The fine chitosan size makes chitosan very difficult to separate from the solution after the adsorption process [6]. Therefore, efforts should be made to modify chitosan.

Some researchers have reported some modifications of chitosan with the purpose to improve chitosan stability in acidic conditions. Liu et al. modified chitosan by converting chitosan into magnetic chitosan [7]. Magnetic chitosan is easily separated from the solution after an adsorption process using external magnet [8,9]. The magnetic chitosan was prepared using commercial Fe$_3$O$_4$. The use of commercial Fe$_3$O$_4$ results in expensive adsorbent. Whereas, it is known that iron sand contains Fe$_3$O$_4$ that can be used as a magnetic resource. Besides, Indonesia is an archipelago consisting of thousands of islands. Every island is surrounded by beautiful beaches with abundant sand. The sand contains valuable minerals such as iron, titanium, silica, and other elements [10].
Based on the previous studies, the primary magnetic mineral in iron sand was magnetite (Fe₃O₄) [11,12]. Based on the above description, in this work chitosan was modified with Fe₃O₄ extracted from Aceh iron sand. The Fe₃O₄ extraction from iron sand was conducted by a co-precipitation method using HCl and NH₄OH. The magnetic chitosan beads preparation was performed with several ratios of Fe₃O₄/chitosan. The obtained magnetic chitosan was characterized using SEM, FTIR, and XRD. Its adsorption capacity was examined for adsorption of mercury and cadmium.

2. Methods

2.1. Materials
Iron sand was collected from Aceh. Chitosan (deacetylation degree: 75.0-85.0%) was obtained from Tokyo Chemical Industry Co., Ltd Japan.

2.2. Fe₃O₄ isolation
Iron sand (15 g) was added to beaker glass containing 100 mL HCl 12 M and stirred at 70 °C for 30 minutes. The solution was then filtered using a filter paper to separate undissolved particles. NH₄OH was dropped into solution while stirred and heated at 70 °C for 30 minutes until a black precipitate was formed [13,14]. The obtained black precipitate (Fe₃O₄) was dried at 70 °C for 2 hours.

2.3. Preparation of magnetic chitosan beads
Chitosan (0.35 g) was dissolved in 20 mL acetic acid (2%) and stirred for 2 hours to form a chitosan solution. Fe₃O₄ particles (0.5 g) were added to chitosan solution and for 2 hours. Dope solution was added to a syringe and dropwise into NaOH solution (3 M). The magnetic chitosan beads formed in the NaOH solution were filtered and washed several times until a neutral pH reached. The magnetic chitosan beads were dried in the oven overnight at a temperature of 40 °C. The same procedure was conducted for several ratios of chitosan/ Fe₃O₄.

2.4. Adsorption experiments
Magnetic chitosan beads (0.1 g) were added to Erlenmeyer flask which contained 25 mL of the heavy metal ion solution. The initial concentration of the heavy metal ion solution was 25 ppm. The solution was stirred at 150 rpm for 40 minutes. After adsorption, magnetic chitosan beads were removed from solution using a permanent magnet.

2.5. Instrumentation
Heavy metal ion concentrations were determined by using Shimadzu AA-6300 Atomic Absorption Spectrophotometer. FTIR spectra of materials was obtained using Shimadzu FTIR-Prestige 21 Series FTIR Spectrometer, where spectral scanning was conducted from 4500 to 400 cm⁻¹. The XRD patterns were detected utilizing Shimadzu XRD-700 Series X-Ray Diffractometer. It was operated at 40 kV and 30 mA which produced CuKα with λ= 0.154 nm in the range of 2θ = 10-80° using a step size of 0.02 °/min. SEM images were obtained with JSM-6510A/JSM-6510LA (Analytical/Analytical low vacuum SEM).

3. Results and Discussion

3.1. Structural Characteristics
XRD patterns of iron sand and Fe₃O₄ isolated from iron sand are shown in Figure 1. Both XRD patterns show similar peaks that typical for Fe₃O₄. It was due to the most component of iron sand was Fe₃O₄. However, the XRD pattern of Fe₃O₄ extracted from iron sand (Figure 1b) shows a broader and lower intensity, which indicated a small crystallite size [15]. XRD pattern of Fe₃O₄ exhibits broad
peaks at 2θ value of 35.98°, 43.72°, 56.68°, and 63.42° which were attributed to the (311), (400), (511) and (440) planes, respectively (JCPDS reference no 00–001-1111) [16].

Figure 2 shows the SEM image of Fe$_3$O$_4$ particles which was observed at a magnification of 20,000x. The SEM image exhibits an irregular shape of Fe$_3$O$_4$ particles with various particle sizes. It is a good agreement with previous work reported by Daoush related to synthesis of Fe$_3$O$_4$ nanoparticles by co-precipitation method [17].

Based on EDS data of Fe$_3$O$_4$ (Figure 3), the most elements contained in the sample are Fe and O elements, where Fe element has a mass percentage of 56.59%, and O element has a mass percentage of 34.18%. There are several minor elements contained in the sample such as C, Cl, and Al elements with a mass percentage of 7.39%, 1.21%, 0.62%, respectively. It showed the presence of impurities in the sample, but their contents were meager. Several studies also reported the presence of impurities in extracted Fe$_3$O$_4$ [18,19].

Figure 4 shows photo images of magnetic chitosan beads with several Fe$_3$O$_4$/chitosan ratios. The best shape of magnetic chitosan beads was obtained at a ratio of 58.82% (Figure 4f). Figure 4a shows magnetic chitosan beads with a ratio of 83.33%, where they formed an irregular shape. It was due to the high content of Fe$_3$O$_4$ particles which made chitosan as a matrix could not bind them well to form bead shape.
Figure 4. Photo images of magnetic chitosan with several Fe₃O₄/chitosan ratios of (a) 83.33, (b) 76.92, (c) 71.42, (d) 66.66, (e) 62.50, and (f) 58.82%

Figure 5. SEM data of (a, b) chitosan beads and (c, d) magnetic chitosan beads

Figure 5 shows SEM images of chitosan beads (a, b) and magnetic chitosan beads (c, d) with different magnifications. At 400x magnification, the surface of chitosan beads was smooth compared to magnetic chitosan beads. It was due to the distribution of Fe₃O₄ particles in magnetic chitosan beads [20], where Fe₃O₄ particles embedded in chitosan beads [16]. Figure 5d shows some Iron oxide (Fe₃O₄) particles were fully coated by chitosan and some others emerged in the surface of the beads. The results confirmed the formation of chitosan beads and magnetic chitosan beads.

FTIR spectra of chitosan beads and magnetic chitosan beads are shown in Figure 6. FTIR spectrum of chitosan beads is shown in Figure 6a. It shows -NH₂ stretching vibration at a wavenumber of 3427.51 cm⁻¹. The band at a wavenumber of 1633.71 cm⁻¹ corresponds with amide stretching vibration. These bands show a typical FTIR spectrum of chitosan. Figure 6b exhibits new bands at wavenumber 580.57 cm⁻¹ and 428.20 cm⁻¹ which correlate with the vibration of tetrahedral Fe-O and octahedral Fe-O [16]. Compared with the FTIR spectrum of chitosan beads, absorption bands of magnetic chitosan beads show some shifts such as at wavenumbers of 2924.09, 1629.85, 1323.17, and 1031.92 cm⁻¹. These results confirmed the interaction between the two components in the sample.
Figure 6. FTIR spectra of (a) chitosan beads and (b) magnetic chitosan beads

Figure 7 shows the XRD patterns of chitosan and magnetic chitosan beads. Figure 7a exhibits $2\theta = 20^\circ$ which is a typical peak for chitosan. After modification with Fe_3O_4, chitosan lost its crystallinity and generated amorphous materials that was favorable for adsorption process [21]. Typical peaks of Fe_3O_4 were observed in the XRD pattern of magnetic chitosan beads. It confirmed the existence of Fe_3O_4 particles in magnetic chitosan. However, due to their entrapment into chitosan beads, the peaks were suppressed [16].

Figure 7. XRD patterns of (a) chitosan and (b) magnetic chitosan beads
3.2. Adsorption studies
The best content of Fe$_3$O$_4$ in magnetic chitosan beads as heavy metal ion adsorbent was determined based on the adsorption experiments. The adsorption processes were performed with the same initial concentration and contact time. The results were shown in Figure 8 for mercury adsorption and Figure 9 for cadmium adsorption. The highest adsorption capacity for both Figures was found at Fe$_3$O$_4$ content of 58.82%. The adsorption capacity of chitosan beads was lower than the adsorption capacity of magnetic chitosan beads. It was due to Fe$_3$O$_4$ particles play an essential role in heavy metal ions removal with specific interactions between heavy metal ions, and Fe formed inner-sphere complexes [22].

![Figure 8. Adsorption capacity (Q) of mercury ions by magnetic chitosan beads with different content of Fe$_3$O$_4$.](image)

![Figure 9. Adsorption capacity (Q) of cadmium ions by magnetic chitosan beads with different content of Fe$_3$O$_4$.](image)

4. Conclusion
The addition of Fe$_3$O$_4$ in chitosan could improve chitosan performance for cadmium and mercury ion adsorption. The best magnetic chitosan beads were found at Fe$_3$O$_4$ content of 58.82%. XRD analysis confirmed the decrease in chitosan crystallinity. FTIR and SEM data confirmed the formation of magnetic chitosan beads. The adsorption study was performed for Hg(II) and Cd(II) removal from water. The results showed that magnetic chitosan beads have a higher adsorption capacity than pure chitosan.
Acknowledgements
We gratefully acknowledge the financial support from Direktorat Riset dan Pengabdian Masyarakat, Direktorat Jenderal Penguatan Riset dan Pengembangan Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia (grant number 04/UN11.2/PP/SP3/2018).

References
[1] Song Z, Li G, Guan F, Liu W 2018 Polymers, 10(389) 1-14
[2] Senel S, McClure S J 2004 Advanced drug delivery reviews 56, 1467-1480
[3] Raafat D and Sahl H 2009 Microbial biotechnology 2(2) 186–201
[4] Wan M, Kan C, Rogel B D, Dalida M L P 2010 Carbohydrate Polymers 80(9) 891-899.
[5] De Gisi S, Lofrano G, Grassi M, and Notarnicola M 2016 Sustainable Materials and Technologies 9 10-40
[6] Lv L, Chen N, Feng C, Zhang J, Li M 2017 RSC Adv. 7, 27992–28000
[7] Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, and Wang X 2012 ChemCommun. 48 7350-7352.
[8] Paulino A T, Belfiore L A, Kubota L T, Muniz E C, Almeida E B, Tambourgi V C 2011 Desalination 275 187–196
[9] Fan C, Li K, He Y, Wang Y, Qian X and Jia J 2018 Science of the Total Environment 627 1396–1403
[10] Ibrahimm, Akhyar 2012.Majalah Ilmiah BISSOTEK. 7(1) 44-51.
[11] Yulianto A, Bijaksana S, LoeksmantoW 2003 Indonesian Journal of Physics 14(2) 63-66
[12] Tiwow V A, Arsyad M, Palloan P, Rampe M J 2018 IOP Conf. Series: Journal of Physics: Conf. Series 997 012010
[13] Mufti N, Atma T, Fuad A, Sutadji E 2014 AIP Conf. Proc. 1617, 165-169
[14] Gunanto Y E, Izaak M P, Jobiliong E, Cahyadi L, Adi WA 2018 IOP Conf. Series: Journal of Physics: Conf. Series 1011 012005
[15] Yogamalar R, Srinivasan R, Vinu A, Ariga K and Bose A C 2009 Solid State Communications, 149 1919-19
[16] Malwal D, Gopinath P 2017 Colloid and Interface Science Communications 19 14–19
[17] Daoush W M 2017 J Nanomed Res 5(3): 00118
[18] Sukirman E, Sarwanto Y, Insani A, Rina T M, Purwanto A 2018 IOP Conf. Series: Journal of Physics: Conf. Series 1091 012007
[19] Jalil Z, Rahwanto A, Mustanir, Akhyar, Handoko E 2016 AIP Conf. Proc. 1862, 030023-1–030023-4
[20] Denkkas B E, Klicay E, Birlikseven C, Ozturk E 2002 Reactive & Functional Polymers 50 225–232
[21] Shariful M I,Sepehr T,Mehrali M, Ang B C, Amalina M A 2018 Journal of Applied Polymer Science 135, 45851.
[22] An B, Liang Q, Zhao D 2011Water Res. 45 1961–1972.