The Commissioning Progress of the Cooler Storage Ring HIRFL-CSR in Lanzhou

Xiaohong Cai, Jiawen Xia, Wenlong Zhan, Hushan Xu and the CSR Commissioning Group

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

E-mail: caixh@impcas.ac.cn

Abstract. HIRFL-CSR is a multi-purpose cooler-storage-ring system constructed at the Institute of Modern Physics, Chinese Academy of Sciences in Lanzhou, China. Construction of the HIRFL-CSR storage ring complex has been finished, and passed the government check and acceptance, recently. The first stored beam in the CSRm was obtained in January 2006 using stripping injection. The commissioning got great progress in 2007. In early January 2007 electron cooling in CSRm was successfully done, and the multiple multi-turn injection was successively realized for \(^{12}\text{C}^{6+}\), \(^{36}\text{Ar}^{18+}\) and \(^{129}\text{Xe}^{27+}\) beams, respectively. The \(^{129}\text{Xe}^{27+}\) beam was extracted from the main ring by fast extraction. The 660MeV/u \(^{12}\text{C}^{6+}\) was injected into the experimental ring and reached an intensity of 15mA there. The first two physics experiments were done in December 2007 including the mass measurement in isochronous mode in the experimental ring. The 300MeV/u \(^{12}\text{C}^{4+}\) ions were successfully slow-extracted from the main ring in early 2008. This paper presents the main commissioning results.

1. Introduction

HIRFL-CSR is a multi-purpose cooler-storage-ring system in the National Laboratory of Heavy Ion Research (HIRFL) In Lanzhou, China [1,2] including a main ring (CSRm), an experimental ring (CSRe), and a radioactive beam line (RIBLL II) connecting the two rings. Heavy ion beams in an energy range of 8–30 MeV/u from the HIRFL will be accumulated, cooled and accelerated to the energy of 1 GeV/u (\(^{12}\text{C}^{6+}\)) and 500 MeV/u (\(^{238}\text{U}^{72+}\)) in the main ring, and then extracted to produce secondary beams (radioactive ion beam or highly charged heavy ions). The secondary beams will be accepted by and stored in the experimental ring for internal-target experiments or for high-precision spectroscopy with beam cooling. The experimental ring CSRe can accept highly charged ions with energies up to 750 MeV/u (\(^{12}\text{C}^{6+}\)) and 500 MeV/u (\(^{238}\text{U}^{72+}\)). The double-ring-system provides flexibility in the production of highly charged ions and of radioactive ion beams, thus offering opportunities for nuclear physics and atomic physics research as the facility at GSI in Germany [3]. Construction of the HIRFL-CSR storage ring complex has been finished, and passed the check and acceptance organized by the National Development and Reform Commission (NDRC) in July 30, 2008.

2. The commissioning of the HIRFL-CSR project

To whom any correspondence should be addressed.
The commissioning of the HIRFL-CSR system began in 2005. The first stored beam in the CSRm was obtained on January 23, 2006 using 6.897 MeV/u C\(^{4+}\) as the injected beam in combination with stripping injection mode. The commissioning got considerable progress in 2007 (Table 1). In early January 2007 electron cooling in CSRm was successfully done and 1 GeV/u \(^{12}\text{C}\)\(^{6+}\) ions up to 1.6 mA (corresponding to the ion number of \(8 \times 10^9\)) have been accumulated by using cooling stacking. The multiple multi-turn injection (MMI) was then realized for \(^{12}\text{C}\)\(^{6+}\), \(^{36}\text{Ar}\)\(^{18+}\) and \(^{129}\text{Xe}\)\(^{27+}\) (Fig.1) beams, respectively. In this injection mode the ions are injected into an unoccupied outer region of phase space with non-integer tune which ensures many turns before the injected beam re-occupies the same region [4].The first MMI was done for \(^{12}\text{C}\)\(^{6+}\) in CSRm with e-cooling on April 1, and MMI for \(^{36}\text{Ar}\)\(^{18+}\) in CSRm with e-cooling was tested on April 25 reaching a intensity of 180 \(\mu\)A. For the MMI test for Xe ion, the 2.9 MeV/u \(^{129}\text{Xe}\)\(^{27+}\) ions provided by HIRFL-SFC was injected into CSRm, accumulated to 500 \(\mu\)A (\(1 \times 10^8\) ions) by using MMI and accelerated to 235 MeV/u. The kicker for fast extraction with the parameters of \(I_{\text{max}} = 2700\) A, \(V_{\text{max}} = 60\) kV and rising time=150 ns was tested on-line, and the 235 MeV/u \(^{129}\text{Xe}\)\(^{27+}\) beams was first extracted from CSRm by fast extraction in August 2007.

In October the 7 MeV/u \(^{12}\text{C}\)\(^{4+}\) provided by SFC was accumulated and accelerated to 660 MeV/u in CSRm and then extracted fast to RIBLL II. The 660 MeV/u \(^{12}\text{C}\)\(^{6+}\) transferred through RIBLL II was injected into CSRe and reached an intensity of 15 mA (corresponding to the ion number of \(1.56 \times 10^{16}\) pps) in CSRe (Fig.2). This was the first successful commissioning of the whole HIRFL-CSR system.

Table 1 Commissioning progresses of HIRFL-CSR project

Date	Commissioning conditions	Results
January 23, 2006	Stripping injection 6.897 MeV/u C\(^{4+}\)	Stored beam in CSRm
January 2, 2007	\(^{12}\text{C}\)\(^{6+}\)	Cooling Stacking + Ramping, 1 GeV/u, 1.6 mA, CSRm
April 1, 2007	\(^{12}\text{C}\)\(^{6+}\)	multiple multi-turn injection (MMI), CSRm
April 25, 2007	\(^{36}\text{Ar}\)\(^{18+}\)	MMI, 1 GeV/u, 180 \(\mu\)A, CSRm
June 25, 2007	2.9 MeV/u \(^{129}\text{Xe}\)\(^{27+}\)	MMI, 235 MeV/u, 500 \(\mu\)A, CSRm
August 4, 2007	235 MeV/u \(^{129}\text{Xe}\)\(^{27+}\)	Fast extraction from CSRm
October 6, 2007	660 MeV/u \(^{12}\text{C}\)\(^{6+}\)	Stored in CSRe, 15 mA
December 12, 2007	Radioactive ions produced, isochronous mode in CSRe	Mass measurements, \(\Delta M/M\sim 10^{-5}\)

The first two physics experiments were done in December 2007. In one of the experiments a Be target of 5 mm was installed at the primary target position of RIBLL II, secondary beams such as \(^{34}\text{Cl},\ ^{32}\text{S}\) and \(^{30}\text{P}\) and so on were produced and injected into CSRe which was set in the isochronous mode. The masses of the stored secondary ions could be determined from the revolution time spectrum of the ions measured by using a time-of-flight (TOF) detector system. The stored ions went through a carbon foil of the TOF detector and emitted secondary electrons. The electrons were deflected by a perpendicular magnetic field and detected by a multi-channel plate giving the timing signal. The frequency resolution of the stored secondary ions reached \(\Delta f/f \sim 10^{-7}\), and the mass resolution of \(10^{-5}\) was obtained (Fig.3).
Fig. 1 Multiple multi-turn injection and acceleration in CSRm for 2.9 MeV/u 129Xe$^{27+}$.

Fig. 2 Multi time injection in CSRe for 660 MeV/u 12C$^{6+}$.

Fig. 3 Mass measurement in CSRe in isochronous mode.
During the first mass measurement experiment, the HIRFL-CSR system was set in the full running mode shown in Fig. 4. In this full running mode the $^{36}\text{Ar}^{8+}$ ions produced by ECR source was first pre-accelerated to 2 MeV/u by HIRFL-SFC, and to 22MeV/u by HIRFL-SSC. The 22MeV/u $^{36}\text{Ar}^{8+}$ changed to $^{36}\text{Ar}^{18+}$ after passing through a stripper, and then injected into CSRm by MMI, accelerated to 368MeV/u by CSRm. The 368MeV/u $^{36}\text{Ar}^{18+}$ ions extracted from CSRm transferred through RIBLL II, and injected into CSRe for the mass measurement experiment.

In early 2008, the 300MeV/u $^{12}\text{C}^{4+}$ ions were successfully slow-extracted from CSRm. This is an important milestone of the HIRFL-CSR project which makes the external target experiments at RIBLL II and the cancer therapy at the therapy terminal possible.

The first phase experiments at the HIRFL-CSR include the internal target experiments in the CSRm, the external target experiments with RIBLL II and the internal target experiments in the CSRe. The experiments cover a wide range of hadron physics, radioactive ion beam physics, highly charged atomic physics, high energy density physics, biological medical physics and so on.

![Fig. 4 Full running mode of the HIRFL-CSR system](image-url)

3. References

[1] Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P, Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K D, Dang J R, Cai X, Wang Y F, Tang J Y, Qiao W M, Rao Y N, He Y, Ma L Z and Zhou Z Z, 2002 Nucl. Instr. Meth. A488 11
[2] Cai X, Lu R, Shao C J, Ruan F F, Yu D, Li M S, Torpokov D K, Shestakov Yu V, Sadykov R S, Zevakov S A, Xia J W and Zhan W L, 2007 J. Phys. Conference Series, 58 55
[3] Kienle P, 1988 Nuclear Physics A478 84
[4] Yuan Y J, Xia J W, Zhang W Z, Song M T and Yang X D, 2001, Nucl. Phys. Rev. 18 39