Prognostic factors associated with mortality and major in-hospital complications in patients with bacteremic pneumococcal pneumonia

Population-based study

Jessica A. Beatty, MSa,b, Sumit R. Majumdar, MDb,c, Gregory J. Tyrrell, PhDd,e, Thomas J. Marrie, MDf, Dean T. Eurich, PhDa,b,*

Abstract

Bacteremic pneumococcal pneumonia (BPP) causes considerable mortality and morbidity. We aimed to identify prognostic factors associated with mortality and major in-hospital complications in BPP.

A prospective, population-based clinical registry of 1636 hospitalized adult patients (\textgeq 18 years) with BPP was established between 2000 and 2010 in Northern Alberta, Canada. Prognostic factors for mortality and major in-hospital complications (e.g., cardiac events, mechanical ventilation, aspiration) were evaluated using multivariable logistic regression.

Average age was 54 (standard deviation 18) years, 57\% males, and 59\% had high case-fatality rate (CFR) serotypes. Overall, 14\% (226/1636) of patients died and 22\% (315/1410) of survivors developed at least 1 complication. Independent prognostic factors for mortality were age (adjusted odds ratio [aOR], 1.5 per decade; 95\% confidence interval [CI], 1.3–1.7), nursing home residence (aOR, 3.7; 95\% CI, 1.8–7.4), community-dwelling dementia (aOR 3.7; 95\% CI, 1.6–8.6), alcohol abuse (aOR, 2.2; 95\% CI, 1.4–3.4), acid-suppressing drugs (aOR, 1.5; 95\% CI, 1.0–2.3), guideline-discordant antibiotics (aOR, 3.4; 95\% CI, 2.4–4.8), multilobe pneumonia (aOR, 2.6; 95\% CI, 1.8–3.6), and high CFR serotypes (aOR, 1.8; 95\% CI, 1.2–2.8). Similar prognostic factors were observed for major in-hospital complications. Pneumococcal vaccination was associated with reduced in-hospital mortality (aOR, 0.2; 95\% CI, 0.05–0.9) but not major complications (\textit{P}=0.2).

Older and frailer patients, and those who abuse alcohol or take acid-suppressing drugs, are at increased risk of BPP-related mortality and complications, as are those with high CFR serotypes. Beyond identifying those at highest risk, our findings demonstrate the importance of guideline-concordant antibiotics and pneumococcal vaccination in those with BPP.

Abbreviations: AIDS = acquired immune deficiency syndrome, aOR = adjusted odds ratio, ARDS = acute respiratory distress syndrome, BPP = bacteremic pneumococcal pneumonia, CAP = community-acquired pneumonia, CFR = case-fatality rate, CI = confidence interval, GI = gastrointestinal, IPD = invasive pneumococcal disease, MACE = major adverse cardiovascular events, SD = standard deviation.

Keywords: complications, mortality, pneumococcus, pneumonia, prognostic factors
1. Introduction

Community-acquired pneumonia (CAP) is a significant cause of morbidity and mortality worldwide.\cite{1} Streptococcus pneumoniae (hereafter, “pneumococcus”) remains the most commonly identified pathogen in CAP, and is responsible for 30% to 40% of all diagnosed cases.\cite{2} It has been estimated that 25% of cases of pneumococcal pneumonia are associated with bacteremia.\cite{3} Complications of bacteremic pneumococcal pneumonia (BPP) are diverse and range from adult respiratory distress syndrome to septic shock and death.\cite{4} Case-fatality rates (CFRs) in adults with BPP are 15% to 36% despite continued advances in antibiotic therapy and supportive care.\cite{5,6} Furthermore, major complications (e.g., need for mechanical ventilation, heart failure, acute kidney injury) occur in a large proportion of patients who survive pneumococcal bacteremia.\cite{7} Thus, there is interest in identifying novel prognostic markers to identify those at highest risk of adverse events associated with BPP before they occur.

Several studies have reported prognostic factors associated with mortality in patients with BPP including extremes of age, alcohol abuse, certain comorbidities, severity of presenting illness, late antibiotic treatment, and CAP guideline-discordant therapy.\cite{8-12} However, the findings from these studies are often contradictory, and the generalizability of 3 of these studies is limited due to small study sample sizes (all <150 patients).\cite{9-11} missing data,\cite{12} or uncontrolled confounding. Furthermore, studies examining in-hospital complications in BPP patients are even more limited,\cite{8,13} and to our knowledge prognostic factors associated with in-hospital complications in patients with BPP have yet to be examined in detail.

Therefore, we used a large clinically rich prospective population-based cohort to evaluate potential prognostic factors associated with mortality and major in-hospital complications in adults with BPP.

2. Methods

2.1. Setting and subjects

Since 1998, all cases of invasive pneumococcal disease (IPD) in the province of Alberta are classified as notifiable diseases and therefore are reported to the Provincial Health Office. As a result of this reporting requirement, identified S. pneumoniae isolates from IPD cases in Alberta are forwarded to the Provincial Laboratory for Public Health in Edmonton, Alberta, for serotyping and antimicrobial susceptibility trend analysis.\cite{14,15} The definition of IPD followed the Canadian national case definition: isolation of S. pneumoniae from a nonsterile site such as blood, cerebrospinal fluid, pleural fluid, biopsy tissue, joint aspiration, pericardial fluid, or peritoneal fluid.\cite{16} The database used for this survey encompassed IPD cases that occurred in Northern Alberta, Canada (population: 2,060,039\cite{17}) between January 1, 2000 and December 31, 2010. From this population, we restricted our study to adult patients (≥18 years) with clinically diagnosed pneumonia who had pneumococcal bacteremia (Fig. 1). This study was approved by the University of Alberta Health Research Ethics Board panel B (Pro00001314), and received a waiver for the need for written informed consent.

2.2. Data collection

All identified cases of BPP were reviewed in detail by trained research nurses who had prior experience in this field using a data collection tool previously described.\cite{18,19} Information collected included sociodemographic data, pre-existing comorbid conditions, and prescription drug history, lifestyle factors (e.g., smoking status, alcohol intake, illicit drug use), and clinical data (e.g., chest radiograph findings, antibiotic treatments). We classified antibiotic treatments according to whether or not they were discordant or discordant with clinical practice guidelines for the empiric treatment of CAP.\cite{20,21}

2.3. Streptococcus pneumoniae characterization

Optochin susceptibility and bile solubility assays were used to confirm that isolates were S. pneumoniae.\cite{14,15} Serotyping of all isolates was performed using the Quellung reaction\cite{22} and grouped according to previous literature into: low CFR serotypes (1, 4, 5, 7F, 8) versus high CFR serotypes (3, 6A, 6B, 9N, 9V, 12F, 14, 19A, 19F, 22F, 23F).\cite{12,23} All “other” serotypes identified from cases in our survey (2, 7C, 9L, 10A, 10F, 11A, 11B, 11F, 13, 15A, 15B, 15C, 16F, 17F, 18A, 18B, 18C, 18F, 20, 22A, 23A, 23B, 28A, 29, 31, 33A, 33F, 34, 35A, 35B, 35C, 35F, 37, 38, 40, 42) were subsequently classified as high CFR category because there were similar patient characteristics and nearly identical CFRs as observed with the high CFR serotypes (22% in high CFR serotypes vs 17% in low CFR serotypes). Supplementary Tables 1 to 3, \url{http://links.lww.com/MD/B414}, present a stratification of all pneumococcal serotypes into vaccine-related or nonvaccine related serotypes, respectively.

2.4. Outcomes

Our primary outcome of interest was in-hospital mortality. The secondary end-point of interest was any major in-hospital complication, defined as the presence of 1 or more of need for mechanical ventilation, acute respiratory distress syndrome not needing mechanical ventilation, major adverse cardiovascular events (MACE, including unstable angina, myocardial infarction, heart failure, or cardiac arrest), liver failure, acute kidney injury, stroke, seizure, or acute aspiration associated with the presenting illness. All outcomes were obtained by detailed chart review and adjudicated by medical experts as previously described.
2.5. Statistical analysis

Descriptive data using appropriate statistical tests were undertaken. Adjusted odd ratios were estimated using multivariable logistic regression. All potential prognostic variables listed in Table 1 were adjusted for in our analysis with exception to the Charlson Comorbidity Index. The c-statistic (area under the receiver-operating characteristic) was used to describe overall predictive model accuracy and the Hosmer-Lemeshow test statistic was used to assess the model’s goodness-of-fit. All analyses were performed with Stata SE, version 12.1 (Stata, College Station, TX).

2.6. Sensitivity analyses

We conducted several sensitivity analyses to evaluate the robustness of our study results. First, we restricted analyses to those 65 years and older because these patients are at a substantially increased risk of mortality. Second, we stratified by sex, because females with IPD have a much higher risk of mortality than males. Third, we stratified our analysis based on low versus high CFR serotypes. Fourth, we reclassified our CFR serotypes as low versus high versus “other” rather than collapsing the latter 2 categories. Lastly, to ensure differences in comorbidities were not driving our results, we further adjusted our analyses for the Pitt Bacteremia Score, which has been shown to have high accuracy predicting mortality in patients with BPP.

3. Results

Our cohort consisted of 1636 adults with BPP; mean age was 54 (standard deviation 18) years, 434 (27%) were over the age of 65 years, and 931 (57%) were male. Chronic obstructive pulmonary disorder, mental health disorders, and cardiac disease were the most frequent comorbidities, and in terms of lifestyle factors, 51% of patients were nonsmokers and 25% abused alcohol (Table 1). Overall, 41% had low CFR serotypes and only 4% had been vaccinated with the polysaccharide pneumococcal vaccine prior to presentation.

3.1. In-hospital mortality

Overall, 226 (14%) patients died in hospital. Compared with those who survived, patients who died were older, more likely to reside in a nursing home, and sicker (e.g., more comorbidities and medications) and they had more severe BPP (e.g., multilobe pneumonia, high CFR serotypes, see Table 1). Moreover, patients who died were also more likely to have suffered 2 or more major complications than those who survived (41% vs 8%, \(P < 0.001 \) for difference).

In the multivariable analysis, the most important independent prognostic factors for death were older age, nursing home residence, community-dwelling dementia, alcohol abuse, and the use of acid-suppressing drugs as well as some characteristics of BPP itself and its treatment such as multilobe pneumonia and use of CAP guideline-discordant antibiotics (Table 2). Of note, even though <5% of patients were vaccinated, pneumococcal vaccination was independently associated with lower mortality (adjusted odds ratio, 0.2; 95% confidence interval, 0.05–0.9; \(P = 0.03 \)).

3.2. Major in-hospital complications

Among the 1410 BPP survivors, most patient-level characteristics were similar to those we noted for mortality (Table 3). The most common in-hospital complications were need for mechanical ventilation (16%), acute aspiration (6%), and MACE (5%) (Table 4). In the multivariable analysis, the most important prognostic factors independently associated with nonfatal complications were stroke, alcohol abuse, multilobe pneumonia, and having a high CFR serotype (Table 5).

3.3. Sensitivity analyses with respect to mortality

Restricting analyses to persons 65 years and older, stratifying by sex, categorizing according to high CFR serotypes, or reclassifying CFR as low versus high versus other did not materially alter the strength of association or statistical significance of any of the prognostic factors described in the main analysis for in-hospital mortality or nonfatal complications (Supplemental Figs. 1–3, http://links.lww.com/MD/B414).

Table 1

Characteristics of 1636 adult patients with bacteremic pneumococcal pneumonia, stratified by mortality.	Mortality, N (%) or mean (SD)	\(P \)
No (n=1410)	Yes (n=226)	
Age		
52 (17)	65 (18)	<0.001
Sex, male		
801 (56.8)	130 (57.3)	0.8
Aboriginal		
186 (13.2)	26 (11.5)	0.5
Nursing home		
22 (1.6)	26 (11.5)	<0.001
Non-smoker		
663 (47.0)	164 (72.6)	<0.001
Underlying condition		
16 (1.1)	15 (6.6)	<0.001
Mental health disorder		
241 (17.1)	40 (17.7)	0.8
Stroke		
49 (3.4)	17 (7.6)	0.003
Cardiac disease		
205 (14.5)	65 (28.8)	<0.001
Anemia		
93 (6.6)	27 (11.9)	0.004
Diabetes		
180 (12.8)	38 (16.8)	0.096
Asplenia		
11 (0.8)	1 (0.4)	0.6
Auto-immune disorder		
147 (10.4)	27 (11.9)	0.6
AIDS		
76 (5.4)	9 (4.0)	0.4
Cancer		
161 (11.4)	52 (23.0)	<0.001
Immunosuppressive therapy		
96 (6.8)	30 (13.3)	0.001
Musculoskeletal disorder		
211 (15.0)	51 (22.6)	0.004
Asthma		
174 (12.3)	21 (9.3)	0.2
COPD		
282 (20.0)	64 (28.3)	0.004
Hepatic cirrhosis		
58 (4.1)	19 (8.4)	0.005
GI bleed		
33 (2.3)	12 (5.3)	0.011
Renal disorder		
56 (4.0)	25 (11.1)	<0.001

AIDS = acquired immune deficiency syndrome, COPD = chronic obstructive pulmonary disorder, GI = gastrointestinal, SD = standard deviation.
4. Discussion

Using a large clinically rich population-based cohort we found that in-hospital mortality and major in-hospital complications associated with BPP are still common (14% and 22%, respectively). Older age and other markers of frailty along with acid suppressing drugs were independently associated with in-hospital mortality while alcohol abuse, pneumonia severity, and guideline-discordant antibiotic treatments were independently associated with both in-hospital mortality and complications. Of note, high CFR serotypes were independently associated with both increased mortality and increased complications. Though fewer than 1-in-20 patients were documented to have received polysaccharide pneumococcal vaccine, it was associated with reduced mortality although it did not affect rates of in-hospital complications.

Previous studies have identified older age,[10] guideline-discordant antibiotic therapy,[10,11] and multilobe pneumonia,[11] as independent factors associated with increased BPP mortality. Our work confirms this and extends these findings to other markers of frailty beyond older age such as nursing home residence and community-dwelling dementia. Though acid-suppressing drugs are associated with an increased risk of pneumonia and an increased risk of recurrent pneumonia,[19] our findings that acid-suppressing drugs are associated with increased mortality was somewhat unexpected. It has been suggested that these medications may intensify the severity of an infection by promoting acid-suppression and bacterial overgrowth, which would increase the risk for mortality particularly among elderly patients.[19]

Our study also highlights the potential role of serotypes on adverse outcomes, which has been a controversial topic.[24,28] Although we found an association between high CFR serotypes and adverse in-hospital events, a recent comparable study involving 1580 adult patients with BPP by Naucler et al found that the effect of serotypes on mortality was mitigated after adjusting for age, sex, and Charlson Index.[12] Conversely, a study by Harboe et al composed of 18,858 patients with IPD found that specific pneumococcal serotypes increased the risk of IPD associated mortality after adjusting for age and comorbidity.[29] Our study is consistent with the larger study of Harboe et al[29] and supports the idea that pneumococcal serotypes are an important prognostic factor for in-hospital adverse events in BPP patients; however, not all studies have found this association. Potential reasons for discrepancies between other studies and ours may include the categorization of pneumococcal serotypes into 3 categories (low, medium, or high) compared to 2 categories (low or high),[12,23] differences in the numbers of individual serotypes present,[12] or residual confounding (i.e., insufficient adjustment for host factors).[10,31]

Despite its strengths, our study is not without limitations. First, we do not have cause-specific mortality. Second, we had little information on the severity of in-hospital complications, only whether they occurred or not. Third, our findings may not be generalizable to patients with pneumococcal bacteremia without pneumonia or cases of nonpneumonia IPD such as meningitis.

Table 2

Characteristics	Adjusted OR (95% CI)	P
Age (per decade)	1.5 (1.3–1.7)	<0.001
Nursing home	3.7 (1.8–7.4)	<0.001
Nonsmoker	1.9 (1.3–2.7)	0.002
Alcoholism	2.2 (1.4–3.4)	<0.001
Underlying condition		
Dementia	3.7 (1.6–8.6)	0.003
Cancer	1.5 (1.0–2.3)	0.076
Guideline-discordant antibiotics	3.4 (2.4–4.8)	<0.001
Acid suppressing drugs	1.5 (1.0–2.3)	0.036
Multilobe pneumonia	2.6 (1.8–3.6)	<0.001
High CFR serotype	1.8 (1.2–2.8)	0.003
Pneumococcal vaccine	0.2 (0.05–0.9)	0.033

CFR = case-fatality rate, CI = confidence interval, OR = odds ratio.

*Adjusted for all other variables presented in Table 1 with exception to the Charlson Comorbidity Index; only these variables with P < 0.1 included in table; Hosmer-Lemeshow goodness-of-fit test P = 0.6 and c-statistic = 0.83.

Table 3

Characteristics	In-hospital complications, N (%) or mean (SD)	P	
Characteristics	No (n = 1095)	Yes (n = 315)	
Age	51 (17)	55 (16)	<0.001
Sex, male	614 (56.1)	187 (59.4)	0.3
Aboriginal	137 (12.2)	49 (15.6)	0.2
Nursing home	13 (1.2)	9 (2.9)	0.035
Nonsmoker	582 (53.2)	165 (52.4)	0.8
Underlying condition			
Dementia	11 (1.0)	5 (1.6)	0.4
Mental health disorder	174 (15.9)	67 (21.3)	0.025
Stroke	27 (2.5)	21 (6.7)	<0.001
Cardiac disease	128 (11.7)	59 (18.7)	0.001
Anemia	65 (5.9)	28 (9.9)	0.063
Diabetes	129 (11.8)	51 (16.2)	0.039
Anemia	6 (0.5)	5 (1.6)	0.065
Auto-immune disorder	115 (10.5)	32 (10.2)	0.9
AIDS	61 (5.6)	15 (4.8)	0.6
Cancer	141 (12.9)	20 (6.3)	0.001
Immunosuppressive therapy	70 (6.4)	26 (8.3)	0.248
Musculoskeletal disorder	93 (8.5)	40 (12.7)	0.024
Asthma	142 (13.0)	32 (10.2)	0.162
COPD	187 (17.1)	95 (30.2)	<0.001
Hepatic cirrhosis	38 (3.5)	20 (6.3)	0.023
GI bleed	23 (2.1)	10 (3.2)	0.266
Renal disorder	38 (3.5)	18 (5.7)	0.072
Charlson index			
Low (0)	463 (42.3)	97 (30.8)	Ref
Intermediate (1–2)	433 (39.5)	148 (47.0)	0.001
High (>3)	190 (18.2)	70 (22.2)	0.003
≥3 Other comorbidities	134 (12.2)	69 (21.9)	<0.001
Alcoholism	221 (20.2)	125 (39.7)	<0.001
Ilicit drug use	244 (22.3)	71 (22.5)	0.9
Multilobe pneumonia	183 (16.7)	126 (40.0)	<0.001
Guideline-discordant antibiotics	174 (15.9)	68 (21.8)	0.018
≥3 Nonantibiotic medications	391 (35.7)	158 (50.2)	<0.001
Acid suppressing drugs	157 (14.3)	66 (21.0)	0.005
Bronchodilators	207 (18.9)	63 (20.0)	0.7
Bronchio anti-inflammatories	49 (4.5)	16 (5.1)	0.7
Pneumococcal vaccine	55 (5.0)	14 (4.4)	0.7
Serotypes by case-fatality rates			
Low	534 (46.8)	90 (28.6)	Ref
High	561 (51.2)	225 (71.4)	<0.001

AIDS = acquired immune deficiency syndrome, COPD = chronic obstructive pulmonary disorder, GI = gastrointestinal, SD = standard deviation.
Fourth, our data represent adults with BPP prior to the era of recommendations to use conjugated vaccines in addition to just pneumococcal polysaccharide vaccine in this patient population.[32,33] Fifth, we did not have information about antibiotic therapy, including timing, route, dose, frequency, or antimicrobial susceptibilities. Lastly, our serotypes were grouped based on serotype-specific CFRs reported by previous meta-analysis and it is possible that certain serotypes were misclassified.[23] If this were the case; however, it would tend to bias to the null and suggests that, if anything, the associations between serotypes and outcomes are stronger than we reported.

The impact of BPP on mortality and in-hospital complications is substantial. Although we discovered only 2 potentially modifiable factors (current use of acid-suppressing drugs and treatment with CAP guideline-discordant antibiotics), we have established the importance of recognizing frailty and lifestyle factors and our results suggest that more rapid availability of pneumococcal serotypes might aid frontline clinicians by helping them select out a subgroup of patients destined to have poor outcomes who might benefit from more intense monitoring and more rapid intensification of supportive care and treatments for their pneumonia.

Table 4

Complication	Mortality, N (%) or mean (SD)	P	
Mechanical ventilation	No (n=1410)	Yes (n=226)	
Acute aspiration	229 (16.2)	116 (51.3)	<0.001
MACE	71 (5.0)	63 (27.9)	<0.001
Acute kidney injury	38 (2.7)	28 (12.4)	<0.001
Seizure	24 (1.7)	14 (6.2)	<0.001
Liver failure	17 (1.2)	15 (6.6)	<0.001
Stroke	4 (0.3)	6 (2.7)	0.001
ARDS without ventilation	3 (0.2)	5 (2.2)	<0.001
Any major complication	315 (22.3)	158 (70.0)	<0.001
≥2 Complications	111 (7.9)	92 (40.7)	<0.001

ARDS = acute respiratory distress syndrome, MACE = major adverse coronary event, SD = standard deviation.

Table 5

Complication	Adjusted OR (95% CI)	P
Alcoholism	3.2 (2.3–4.6)	<0.001
Underlying condition		
Stroke	2.3 (1.1–4.6)	0.020
AIDS	0.5 (0.3–1.0)	0.050
Cancer	0.3 (0.2–0.5)	<0.001
COPD	2.0 (1.3–2.0)	0.001
Guideline-discordant antibiotics	1.7 (1.2–2.4)	0.005
≥3 Other nonantibiotic medications	1.7 (1.2–2.4)	0.006
Multilobe pneumonia	3.9 (2.9–5.4)	<0.001
High CFR serotype	2.8 (2.0–3.9)	<0.001

ARDS = acquired immune deficiency syndrome, CFR = case-fatality rate, CI = confidence interval, COPD = chronic obstructive pulmonary disorder, OR = odds ratio.

Acknowledgments

The authors would like to thank the clinical diagnostic laboratories in northern Alberta that submitted pneumococcal isolates to the ProLab for serotyping.

References

[1] Ortevist A, Hedlund J, Kalin M. *Streptococcus pneumoniae*: epidemiology, risk factors, and clinical features. Semin Respir Crit Care Med 2005;26:563–74.

[2] Jover F, Cuadrado JM, Andreu L, et al. A comparative study of bacteremic and non-bacteremic pneumococcal pneumonia. Eur J Intern Med 2008;19:15–21.

[3] Said MA, Johnson HL, Nonyane BA, et al. Estimating the burden of pneumococcal pneumonia among adults: a systematic review and meta-analysis of diagnostic techniques. PloS ONE 2013;8:e60273.

[4] Cremers AJ, Meets JR, Walraven G, et al. Effects of 7-valent pneumococcal conjugate 1 vaccine on the severity of adult 2 bacteremic pneumococcal pneumonia. Vaccine 2014;32:9989–94.

[5] Lynch JP III, Zhanel GG. *Streptococcus pneumoniae*: epidemiology, risk factors, and strategies for prevention. Semin Respir Crit Care Med 2009;30:189–209.

[6] Pereira JM, Teixeira-Pinto A, Basilio C, et al. Can we predict pneumococcal bacteremia in patients with severe community-acquired pneumonia? J Crit Care 2013;28:970–4.

[7] Berjohm CM, Fishman NO, Joffe MM, et al. Treatment and outcomes for patients with bacteremic pneumococcal pneumonia. Medicine 2008;87:160–6.

[8] Alexs B, Greaves WL, Frederick WR. Pneumococcal bacteremia in adults: a 14-year experience in an inner-city university hospital. Clin Infect Dis 1995;21:345–51.

[9] Garnacho-Montero J, Garcia-Cabreia E, Diaz-Martin A, et al. Determinants of outcome in patients with bacteremic pneumococcal pneumonia: importance of early adequate treatment. Scand J Infect Dis 2010;42:185–92.

[10] Fica A, Bunster N, Alagia F, et al. Bacteremic pneumococcal pneumonia: distribution, antimicrobial susceptibility, severity scores, risk factors, and mortality in a single center in Chile. Braz J Infect Dis 2014;18:115–23.

[11] Lujan M, Gallego M, Fontanals D, et al. Prospective observational study of bacteremic pneumococcal pneumonia: effect of discordant therapy on mortality. Crit Care Med 2004;32:625–31.

[12] Nauckler P, Darenberg J, Mortfeld E, et al. Contribution of host, bacterial factors and antibiotic treatment to mortality in adult patients with bacteremic pneumococcal pneumonia. Thorax 2013;68:571–9.

[13] Blot M, Crosser D, Pechnot A, et al. A leukocyte score to improve clinical outcome predictions in bacteremic pneumococcal pneumonia in adults. Open Forum Infect Dis 2014;1:ofu075.

[14] Tyrrell GJ, Lowgren M, Chiu N, et al. Serotypes and antimicrobial susceptibilities of invasive Streptococcus pneumoniae pre- and post-seven-valent pneumococcal conjugate vaccine introduction in Alberta, Canada, 2000–2006. Vaccine 2009;27:3533–60.

[15] Werno AM, Murdoch DR. Medical microbiology: laboratory diagnosis of invasive pneumococcal disease. Clin Infect Dis 2008;46:926–32.

[16] Public Health Agency of Canada. Case Definitions for Communicable Diseases under National Surveillance—2009. 2009; 35(suppl 2). http://www.phac-aspc.gc.ca/publicat/ccdr-rmtc/09vol35s2/index-eng.php.

[17] Aeberhard J, Cremers AJ, Meets JR, et al. Clinical outcome predictions in bacteremic pneumococcal pneumonia in adults. Open Forum Infect Dis 2016;3:ofu075.

[18] Tyrrell GJ, Lowgren M, Chiu N, et al. Serotypes and antimicrobial susceptibilities of invasive Streptococcus pneumoniae pre- and post-seven valent pneumococcal conjugate vaccine introduction in Alberta, Canada, 2000–2006. Vaccine 2009;27:3533–60.

[19] Werno AM, Murdoch DR. Medical microbiology: laboratory diagnosis of invasive pneumococcal disease. Clin Infect Dis 2008;46:926–32.

[20] Public Health Agency of Canada. Case Definitions for Communicable Diseases under National Surveillance—2009. 2009; 35(suppl 2). http://www.phac-aspc.gc.ca/publicat/ccdr-rmtc/09vol35s2/index-eng.php.

[21] Asadi L, Eurich DT, Gamble JM, et al. Guideline adherence and clinical outcome predictions in bacteremic pneumococcal pneumonia in adults: a 14-year experience in an inner-city university hospital. Clin Infect Dis 2014;59:2145–51.

[22] Lund E, Henrichsen J. Laboratory diagnosis, serology and epidemiology of *Streptococcus pneumoniae*. In: Methods in Microbiology. Vol. 12. New York: Academic Press; 1978.
[23] Weinberger DM, Harboe ZB, Sanders EA, et al. Association of serotype with risk of death due to pneumococcal pneumonia: a meta-analysis. Clin Infect Dis 2010;51:692–9.

[24] Ruiz LA, Zalacain R, Capelastegui A, et al. Bacteremic pneumococcal pneumonia in elderly and very elderly patients: host- and pathogen-related factors, process of care, and outcome. J Gerontol Ser A 2014;69:1018–24.

[25] Marrie TJ, Tyrrell GJ, Gerg S, et al. Factors predicting mortality in invasive pneumococcal disease in adults in Alberta. Medicine 2011;90:171–9.

[26] Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373–83.

[27] Feldman C, Alane S, Yu VL, et al. Severity of illness scoring systems in patients with bacteraemic pneumococcal pneumonia: implications for the intensive care unit care. Clin Microbiol Infect 2009;15:830–7.

[28] Alane S, McGee L, Jackson D, et al. Association of serotypes of Streptococcus pneumoniae with disease severity and outcome in adults: an international study. Clin Infect Dis 2007;45:46–51.

[29] Harboe ZB, Thomsen RW, Rits A, et al. Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Med 2009;6:e1000081.

[30] Jansen AG, Rodenburg GD, van der Ende A, et al. Invasive pneumococcal disease among adults: associations among serotypes, disease characteristics, and outcome. Clin Infect Dis 2009;49:e23–9.

[31] Sporstrom K, Spindler C, Ortqvist A, et al. Clonal and capsular types decide whether pneumococci will act as a primary or opportunistic pathogen. Clin Infect Dis 2006;42:451–9.

[32] Public Health Agency of Canada. Canadian Immunization Guide. Pneumococcal Vaccine. Part 4: Active Vaccines. http://www.phac-aspc.gc.ca/publicat/cig-gci/p04-pnue-eng.php. Accessed October 7, 2015.

[33] Tomczyk S, Bennett NM, Stoecker C, et al. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 2014;63:822–5.