Development of two-photon event generators for the KEDR experiment

V A Tayursky1,2
1 Budker Institute of Nuclear Physics, Novosibirsk, Russia
2 Novosibirsk State University, Russia
E-mail: tayursky@inp.nsk.su

Abstract. The KEDR experiment, which started in 2002, is dedicated to a study of c- and b-quarks and the two-photon physics at the e^+e^- collider VEPP-4M in the Budker INP. To analyze the 2γ data and estimate contribution of two-photon background events in the 1γ data samples, the event generators $e^+e^-\rightarrow e^+e^-+\text{hadrons}$, $e^+e^-\rightarrow e^+e^-+\pi^+\pi^-$, and $e^+e^-\rightarrow e^+e^-+\text{PS}$ (PS – pseudoscalar meson) have been developed.

1. Introduction
Since the beginning of the 2000s at the e^+e^- collider VEPP-4M (energy $2E_b = 2 - 11$ GeV) experiments with the detector KEDR [1] are carried out at energies $2E_b \lesssim 4$ GeV. To the present time the KEDR performed a series of precision measurements of masses of elementary particles [2], R [3], and some others.

For the $\gamma\gamma$ experiments the KEDR detector is equipped with a special system of scattered electron (e^\pm) tagging (TS), consisting of two identical subsystems, each of 4 blocks located on both sides of the interaction point (see figure 1). The TS detects electrons (positrons), scattered in interaction, in the angle range 0-10 mrad with energies 45\% – 98\% of the beam energy.

![Figure 1. Drawing of the TS of the KEDR detector.](image)

The accuracy of measurement of the scattered e^\pm energy is about 0.1\% of the beam energy and resolution in the invariant mass of $\gamma\gamma$ system $\Delta W/W \sim 1\%$. When scattered electrons are
detected in the TS, corresponding Q_i of photons are small: $Q_i \ll m_\rho$, mass of ρ-meson.

$$Q_i^2 = |k_i^2| \approx E_b E'_i (\theta_i^2) \lesssim 10^{-2} \text{ GeV}^2.$$

(Variables are shown in figure 2).

Using TS in the double tag mode, one can define W independent of the central detector:

$$W^2 \approx 4\omega_1\omega_2 = 4(E_b - E'_1)(E_b - E'_2).$$

The main goal of experiments with the KEDR in the $\gamma\gamma$ physics – precision measurement of the total cross section of two-photon hadron production at energies $W \lesssim 4$ GeV and the cross sections of production of pairs $\pi^+\pi^-$ and K^+K^- at $W \lesssim 1.5$ GeV. For this purpose collection of luminosity integral of 100 pb$^{-1}$ or more is planed. There are two measurements of the total cross section $\sigma(\gamma\gamma \rightarrow \text{hadrons})$ at low $\gamma\gamma$ energy W and $Q^2 \approx 0$: by the MD-1 detector and by the TPC/2γ detector [4]. In figure 3 the measurement of the MD-1 is shown. For comparison, the TPC/2γ obtained $\sigma(\gamma\gamma \rightarrow \text{hadrons})=471\pm12$ and 479 ± 16 nb at $W=2$-3 and 3-4 GeV.

![Figure 2. Variables of process $e^+e^- \rightarrow e^+e^- + \text{hadrons.}$](image1.png)

![Figure 3. Cross section $\gamma\gamma \rightarrow \text{hadrons}$ measured by the MD-1 detector [4].](image2.png)

2. Lowest-order cross section

For a description of the $\gamma\gamma$ process $e^+e^- \rightarrow e^+e^- + f$, variables shown in figure 2, and invariants: $t_1 = -Q_2^2 = k_1^2$, $t_2 = -Q_2^2 = k_2^2$, $s_1 = (p_1^2 + k)^2$, $s_2 = (p_2^2 + k)^2$, $s = (p_1 + p_2)^2$, $W^2 = k^2 = (k_1 + k_2)^2$ are used.

The differential cross section for the unpolarized beams in the lowest order of QED is [5]:

$$d\sigma = \frac{\alpha^2}{16\pi^4 t_1 t_2} \sqrt{(k_1 k_2)^2 - t_1 t_2} \frac{d^3q_1}{E_1} \frac{d^3q_2}{E_2},$$ \hspace{1cm} (1)

where the function \sum contains sum of 6 hadron $\gamma\gamma$ cross sections with calculated in QED factors.

The simulation can be divided into two stages: (i) $e^+e^- \rightarrow e^+e^- + f$ (reaction 2 \rightarrow 3) and (ii) $f \rightarrow n$ particles. The phase space of $n + 2$ particles can be represented as [6]:

$$R_{n+2} = \int dW^2 R_3 R_n, \quad dR_n = \prod_i \frac{d^3q_i}{2E_i} \delta^4(k - \sum_{j=1}^{n} q_j),$$ \hspace{1cm} (2)

where R_3 – the phase space of the final state of the $2 \rightarrow 3$ reaction [6], R_n – phase space of n particles with 4-moments q_i from decay of the system f. The 3-particle phase volume R_3 as a function of variables s, s_1, s_2, t_1, t_2, W after integration over the azimuthal angle φ [6].

The energy-momentum conservation is fulfilled exactly in the generators described below.
3. Event generator $e^+e^- \to e^+e^+ + \text{hadrons}$

For small $Q^2 \to 0$ all hadron cross sections in \sum (equation (1)), except σ_{TT} – cross section for transverse photons, tend to 0, and $\sigma_{TT} \to \sigma_{\gamma\gamma}$, where $\sigma_{\gamma\gamma}$ – cross section for real transverse photons [5]. From formulas (1) and (2) one obtains

$$d\sigma = \frac{\alpha^2 \sqrt{X_K_{TT}} \cdot \sigma_{TT}}{32\pi^3 s(s - 4m^2) t_1 t_2 \sqrt{-\Delta_4}} dW^2 d\tau_1 \tau_2 ds_1 ds_2.$$ \hspace{1cm} \text{(3)}

Here $\sigma_{TT} = [F(t_1, t_2)/F(0, 0)]^2 \sigma_{\gamma\gamma}$, transition form factors are included in σ_{TT}. Δ_4 – Gram determinant [6]. The formulas for the X and K_{TT} can be found in [5]. For the $F(t_1, t_2)$ two options can be used: $|F(t_1, t_2)|^2 = |F(0, 0)|^2$ and the vector dominance model (VDM): $|F|^2 = (1 - t_1^2/m_P^2)^{-2}(1 - t_2^2/m_P^2)^{-2}$.

In the generator the hadron system consists of pions with uniform distribution in phase space [7]. This follows from the e^+e^- data at energy of several GeV. Simulation $e^+e^- \to e^+e^+ + \text{hadrons}$ includes simulation of invariant W in the range of $W_{\text{min}} - W_{\text{max}}$, invariants t_1, t_2, s_1, s_2 in the kinematics limits of the problem [7], [8], as well as rotation angle φ of the whole system. From these values one obtains laboratory 4-moments of scattered e^\pm and of the $\gamma\gamma$ system. 4-moments of pions from decay of the system f are simulated according to [9].

In figure 4 the distribution in n_π – number of π^\pm, obtained in this model at $W=3$ GeV, is compared with one measured in the $e^+e^- \to \text{hadrons}$ experiment at $\sqrt{s} = 3$ GeV [10].

![Figure 4. Distribution on n_π at 3 GeV.](image)

4. Event generator $e^+e^- \to e^+e^- + \pi^+\pi^-$

This generator is based on the formula (3) and the simple model [11], which includes interference of the Born amplitude for helicity $\lambda=2$ in the continuum with the amplitude of the resonance $f_2(1270)$ with spin 2. The cross section $\sigma_{\gamma\gamma}$ in (3) equals $\sigma_{\gamma\gamma} = \int (d\sigma/d\varOmega) d\varOmega$, where, in the $\gamma\gamma$ system,

$$d\sigma = \left(\left(\frac{d\sigma}{d\varOmega} \right)_B \right)^{\lambda=0} 2 + \left(\left(\frac{d\sigma}{d\varOmega} \right)_R \right)^{\lambda=2} 2.$$ \hspace{1cm} \text{(4)}

The calculated Born, resonance and total $\gamma\gamma$ cross sections are shown in figure 5 (left panel). The cross section $\sigma(e^+e^- \to e^+e^- + \pi^+\pi^-)$ (integral of (4) for $W = 2m_{\pi^-} - 1.5$ GeV) as a function of beam energy is shown in figure 5 (right panel). Integral of (4) at $W = 0.8 - 1.5$ GeV for $|\cos\theta^*| < 0.6$ is consistent with a factor of 2 with the measurement of the Belle detector [12].

5. Event generator $e^+e^- \to e^+e^- + \text{PS} \text{ (PS – pseudoscalar meson)}$

This generator for simulation two photon production of pseudoscalar mesons is described in detail in [13]. In the generator an option for account radiative corrections in the single tag mode is included.

The differential production cross section of narrow pseudoscalar meson with mass M_R and $\gamma\gamma$ width $\Gamma_{\gamma\gamma}$ can be written as [13]

$$d\sigma = \frac{4\alpha^2 \Gamma_{\gamma\gamma}}{\pi s^2 t_1^2 t_2^2 M_R^3} \left| \frac{F(t_1, t_2)}{F(0, 0)} \right|^2 \frac{d\tau_1 \tau_2 ds_1 ds_2}{\sqrt{-\Delta_4}}.$$ \hspace{1cm} \text{(5)}
Figure 5. Model [11]: cross sections $\sigma(\gamma\gamma \rightarrow \pi^+\pi^-)$ as a function of $\pi^+\pi^-$ mass (left panel) and cross section $\sigma(e^+e^- \rightarrow e^+e^-\pi^+\pi^-)$ as a function of beam energy (right panel).

Function B was calculated in [14] and is given by

$$B = 0.25t_1t_2B_1 - 4B_2^2 + m_e^2B_3,$$

where

$$B_1 = (4p_1p_2 - 2p_1k_2 - 2p_2k_1 + k_1k_2)^2 + (k_1k_2)^2 - 16t_1t_2 - 16m_e^4,$$

$$B_2 = (p_1p_2)(k_1k_2) - (p_1k_2)(p_2k_1),$$

$$B_3 = t_1(2p_1k_2 - k_1k_2)^2 + t_2(2p_2k_1 - k_1k_2)^2 + 4m_e^2(k_1k_2)^2.$$ \hspace{1cm} (6)

Algorithm of simulation of events $e^+e^- \rightarrow e^+e^- + \text{PS}$ is the same as for the modeling of $e^+e^- \rightarrow e^+e^- + \text{hadrons}$, only it is not necessary to simulate the energy W, since $W = M_R$.

Measurement of the cross section $\sigma(e^+e^- \rightarrow e^+e^+ + \eta)$ at $\sqrt{s} = 1$ GeV by the KLOE detector [15] is consistent with the MC calculation with and without VDM within about two errors:

$$\sigma_{\text{exp}} = 41.7 \pm 4 \text{ pb [KLOE]}; \sigma_{\text{MC}} = 32.4 \text{ pb [with VDM]} \text{ and } \sigma_{\text{MC}} = 35.5 \text{ pb [without VDM]}.$$

For experiments on two-photon physics with the KEDR detector at small Q^2, radiative corrections are negligible (see [13]).

Acknowledgments

This work was supported in part by the RFBR grants 15-02-03114-a and 15-02-09016-a.

References

[1] Anashin V V et al. 2013 Physics of Particles and Nuclei 44 657
[2] Levichev E B et al. 2014 Physics Uspekhi 57 66
[3] Anashin V V et al. 2016 Phys. Lett B 753 533
[4] Morgan D et al. 1994 Journal of Particle Physics 20 Suppl. 8A A1
[5] Budnev V M et al. 1975 Phys. Rep. C 15 181
[6] Byckling E and Kajante K 1973 Particle Kinematics ed John Wiley and sons (London New York Sidney Toronto)
[7] Tavursky V A and Eidelman S I 2000 (In Russian) Monte Carlo generators of multiparticle events Preprint INP. 2000-78 Novosibirsk
[8] Schuler G A 1998 Comp. Phys. Comm. 108 279
[9] Kopylov G 1975 (In Russian) Original Russian title: Osnovy Kinematiki Rezonansov Nauka (Moskva)
[10] Siegrist J L et al. 1982 Phys. Rev. D 26 969
[11] Courau A et al. 1984 Phys. Lett. B 147 227
[12] Mori T et al. 2007 Phys. Rev. D 75 051101(R)
[13] Druzhinin V P et al. 2014 Comp. Phys. Comm. 185 236
[14] Brodsky S J et al. 1971 Phys. Rev. D 4 1532
[15] Nguyen F 2011 Talk at the Int. Workshop on e^+e^- Coll. from ϕ to ψ (Novosibirsk)