C1 MAPPINGS IN \(\mathbb{R}^5 \) WITH DERIVATIVE OF RANK AT MOST 3 CANNOT BE UNIFORMLY APPROXIMATED BY C2 MAPPINGS WITH DERIVATIVE OF RANK AT MOST 3

PAWEŁ GOLDESTEIN AND PIOTR HAJLASZ

Abstract. We find a counterexample to a conjecture of Gałęski \cite{G} by constructing for some positive integers \(m < n \) a mapping \(f \in C^1(\mathbb{R}^n, \mathbb{R}^n) \) satisfying \(\text{rank}\ Df \leq m \) that, even locally, cannot be uniformly approximated by \(C^2 \) mappings \(f_\varepsilon \) satisfying the same rank constraint: \(\text{rank}\ Df_\varepsilon \leq m \).

1. Introduction

In the context of geometric measure theory Jacek Gałęski \cite{G} Conjecture 1.1 and Section 3.3] formulated the following conjecture.

Conjecture 1. Let \(1 \leq m < n \) be integers and let \(\Omega \subset \mathbb{R}^n \) be open. If \(f \in C^1(\Omega, \mathbb{R}^n) \) satisfies \(\text{rank}\ Df \leq m \) everywhere in \(\Omega \), then \(f \) can be uniformly approximated by smooth mappings \(g \in C^\infty(\Omega, \mathbb{R}^n) \) such that \(\text{rank}\ Dg \leq m \) everywhere in \(\Omega \).

A weaker form of the conjecture is whether any mapping as in Conjecture 1 can be approximated locally.

Conjecture 2. Let \(1 \leq m < n \) be integers and let \(\Omega \subset \mathbb{R}^n \) be open. If \(f \in C^1(\Omega, \mathbb{R}^n) \) satisfies \(\text{rank}\ Df \leq m \) everywhere in \(\Omega \), then for every point \(x \in \Omega \) there is a neighborhood \(B^n(x, \varepsilon) \subset \Omega \) and a sequence \(f_i \in C^\infty(B^n(x, \varepsilon), \mathbb{R}^n) \) such that \(\text{rank}\ Df_i \leq m \) and \(f_i \) converges to \(f \) uniformly on \(B^n(x, \varepsilon) \).

The following result is easy to prove and it shows that Conjecture 2 is true on an open and dense subset of \(\Omega \).

Theorem 3. Let \(1 \leq m < n \) be integers and let \(\Omega \subset \mathbb{R}^n \) be open. If \(f \in C^1(\Omega, \mathbb{R}^n) \) satisfies \(\text{rank}\ Df \leq m \) everywhere in \(\Omega \), then there is an open and dense set \(G \subset \Omega \) such that for every point \(x \in G \) there is a neighborhood \(B^n(x, \varepsilon) \subset G \) and a sequence \(f_i \in C^\infty(B^n(x, \varepsilon), \mathbb{R}^n) \) such that \(\text{rank}\ Df_i \leq m \) and \(f_i \) converges to \(f \) uniformly on \(B^n(x, \varepsilon) \).

However, in general Conjecture 2 (and hence Conjecture 1) is false and the main result of the paper provides a family counterexamples for certain ranges of \(n \) and \(m \).
Theorem 4. Suppose that \(m + 1 \leq k < 2m - 1, \ell \geq k + 1, r \geq m + 1, \) and the homotopy group \(\pi_k(S^m) \) is non-trivial. Then there is a map \(f \in C^1(\mathbb{R}^\ell, \mathbb{R}^r) \) with rank \(Df \leq m \) in \(\mathbb{R}^\ell \) and a Cantor set \(E \subset \mathbb{R}^\ell \) with the following property:

For every \(x_0 \in E \) and \(\varepsilon > 0 \) there is \(\delta > 0 \) such that

if \(g \in C^{k-m+1}(\mathbb{B}(x_0, \varepsilon), \mathbb{R}^r) \) and \(|f(x) - g(x)| < \delta \) for all \(x \in \mathbb{B}(x_0, \varepsilon) \),

then rank \(Dg \geq m + 1 \) on a non-empty open set in \(\mathbb{B}(x_0, \varepsilon) \).

(Here by a Cantor set we mean a set that is homeomorphic to the ternary Cantor set.)

Therefore the mapping \(f \) cannot be approximated in the supremum norm by \(C^{k-m+1} \) mappings with rank of the derivative \(\leq m \) in any neighborhood of any point of the set \(E \).

Remark 5. In fact, the mapping \(f \) constructed in the proof of Theorem 4 is \(C^\infty \) smooth on \(\mathbb{R}^\ell \setminus E \), so \(G = \mathbb{R}^\ell \setminus E \) is an open and dense set where we can approximate \(f \) smoothly, cf. Theorem 3.

Since the assumptions of the theorem are quite complicated, let us show explicit situations when the approximation cannot hold.

Example 1. If \(n \geq 3, \ell \geq n+2 \) and \(r \geq n+1 \), then there is \(f \in C^1(\mathbb{R}^\ell, \mathbb{R}^r) \) with rank \(Df \leq n \) in \(\mathbb{R}^\ell \) that cannot be locally approximated in the supremum norm by mappings \(g \in C^2(\mathbb{R}^\ell, \mathbb{R}^r) \) satisfying rank \(Dg \leq n \).

Indeed, if \(n \geq 3, k = n+1 \) and \(m = n \), then \(\pi_k(S^m) = \mathbb{Z}_2 \) (see 3) and \(m+1 \leq k < 2m-1 \).

In particular, there is \(f \in C^1(\mathbb{R}^5, \mathbb{R}^5) \) with rank \(Df \leq 3 \) that cannot be locally approximated in the supremum norm by mappings \(g \in C^2(\mathbb{R}^5, \mathbb{R}^5) \) satisfying rank \(Dg \leq 3 \).

Example 2. \(\pi_6(S^4) = \mathbb{Z}_2, k = 6, m = 4, m+1 \leq k < 2m-1 \), so there is \(f \in C^1(\mathbb{R}^7, \mathbb{R}^7) \), rank \(Df \leq 4 \), that cannot be locally approximated by mappings \(g \in C^3(\mathbb{R}^7, \mathbb{R}^7) \) satisfying rank \(Dg \leq 4 \).

Example 3. \(\pi_8(S^5) = \mathbb{Z}_{24}, k = 8, m = 5, m+1 \leq k < 2m-1 \), so there is \(f \in C^1(\mathbb{R}^9, \mathbb{R}^9) \), rank \(Df \leq 5 \), that cannot be locally approximated by mappings \(g \in C^4(\mathbb{R}^9, \mathbb{R}^9) \) satisfying rank \(Dg \leq 5 \).

Infinitely many essentially different situations when the assumptions of Theorem 4 are satisfied can be easily obtained by examining the catalogue of homotopy groups of spheres.

While, in general, Gałęski’s conjecture is not true, Theorem 4 covers only a certain range of dimensions and ranks, leaving other cases unsolved. We believe that the following special case of the conjecture is true.

Conjecture 6. If \(f \in C^1(\mathbb{R}^n, \mathbb{R}^k), n, k \geq 2, \) satisfies rank \(Df \leq 1 \), then \(f \) can be uniformly approximated (at least locally) by mappings \(g \in C^\infty(\mathbb{R}^n, \mathbb{R}^k) \) satisfying rank \(Dg \leq 1 \).

Our belief is based on the fact that in that case the structure of the mapping \(f \) is particularly simple: on the open set where rank \(Df = 1 \), it is a \(C^1 \) curve that branches on the set where rank \(Df = 0 \).
2. Proof of Theorem 3

Let $G \subset \Omega$ be the set of points where the function $x \mapsto \text{rank } Df(x)$ attains a local maximum i.e.,

$$G = \{ x \in \Omega : \exists \varepsilon > 0 \forall y \in \mathbb{B}^n(x, \varepsilon) \text{ rank } Df(y) \leq \text{rank } Df(x) \}.$$

We claim that the set G is open, and that rank Df is locally constant in G. Indeed, the set \{rank $Df \geq k$\} is open so if $x \in G$ and rank $Df(x) = k$, then rank $Df(y) \geq k$ in a neighborhood $\mathbb{B}^n(x, \varepsilon)$ of x, but rank Df attains a local maximum at x, so rank $Df(y) = k$ in $\mathbb{B}^n(x, \varepsilon)$. Clearly, $\mathbb{B}^n(x, \varepsilon) \subset G$ and rank Df is constant in the neighborhood $\mathbb{B}^n(x, \varepsilon) \subset G$.

We also claim that the set $G \subset \Omega$ is dense. Let $x \in \Omega$ and $\mathbb{B}^n(x, \varepsilon) \subset \Omega$. Since rank Df can attain only a finite number of values, it attains a local maximum at some point $y \in \mathbb{B}^n(x, \varepsilon)$. Clearly, $y \in G$. That proves density of G.

It remains to prove now that f can be locally approximated in G. Let $x \in G$. Then rank $Df(x) = k \leq m$. Since rank Df is constant in a neighborhood of x, it follows from the Rank Theorem [6, Theorem 8.6.2/2] that there are diffeomorphisms Φ and Ψ defined in neighborhoods of x and $f(x)$ respectively such that $\Phi(x) = 0$, $\Psi(f(x)) = 0$, and

$$\Psi \circ f \circ \Phi^{-1}(x_1, \ldots, x_n) = (x_1, \ldots, x_k, 0, \ldots, 0) \quad \text{in a neighborhood of } 0 \in \mathbb{R}^n.$$

Let $\pi_k : \mathbb{R}^n \to \mathbb{R}^n$, $\pi_k(x_1, \ldots, x_n) = (x_1, \ldots, x_k, 0, \ldots, 0)$. Then $\Psi \circ f \circ \Phi^{-1} = \pi_k$, so $f = \Psi^{-1} \circ \pi_k \circ \Phi$ in a neighborhood of x. If Φ_ε and $(\Psi^{-1})_\varepsilon$ are smooth approximations by mollification, then $f_\varepsilon = (\Psi^{-1})_\varepsilon \circ \pi_k \circ \Phi_\varepsilon$ is C^∞ smooth and it converges uniformly to f in a neighborhood of x as $\varepsilon \to 0$. Clearly, rank $DF_\varepsilon \leq k$ by the chain rule, since rank $D\pi_k = k$. \qed

Remark 7. It is easy to see that in fact rank $f_\varepsilon = k$ in a neighborhood of x, provided ε is sufficiently small. Indeed, $\Phi_\varepsilon = \Phi \circ \varphi_\varepsilon$ (approximation by mollification) so $DF_\varepsilon = (DF) \circ \varphi_\varepsilon$. Since $\det(DF(x)) \neq 0$, for small $\varepsilon > 0$ we also have that $\det(DF_\varepsilon(x)) \neq 0$ and hence Φ_ε is a diffeomorphism near x. Similarly, $(\Psi^{-1})_\varepsilon$ is a diffeomorphism near 0.

3. Proof of Theorem 4

In the first step of the proof we shall construct a mapping $F : \mathbb{B}^{k+1} \to \mathbb{R}^{m+1}$ defined on the unit ball $\mathbb{B}^{k+1} = \mathbb{B}^{k+1}(0, 1)$, with the properties announced by Theorem 4.

Lemma 8. Suppose that $m + 1 \leq k < 2m - 1$ and $\pi_k(S^m) \neq 0$. Then there exists a map $F \in C^1(\mathbb{B}^{k+1}, \mathbb{R}^{m+1})$ with rank $DF \leq m$ in \mathbb{B}^{k+1} and a Cantor set $E_F \subset \mathbb{B}^{k+1}$ such that for every $x_0 \in E_F$ and $1 - |x_o| > \varepsilon > 0$ there is $\delta > 0$ with the following property:

if $G \subset C^{k-m+1}(\mathbb{B}^{k+1}(x_o, \varepsilon), \mathbb{R}^{m+1})$ satisfies $|F(x) - G(x)| < \delta$ at all points $x \in \mathbb{B}^{k+1}(x_o, \varepsilon)$, then rank $DG \geq m + 1$ on an open, non-empty set in $\mathbb{B}^{k+1}(x_o, \varepsilon)$.

Before we prove Lemma 8 let us show how Theorem 4 follows from it. To this end, let $\mathbb{B}^{k+1} \subset \mathbb{B}^{k+1}$ be a ball concentric with \mathbb{B}^{k+1}, containing the Cantor set E_F and let $\Phi : \mathbb{B}^{k+1} \to \mathbb{R}^{k+1}$ be a diffeomorphism onto \mathbb{R}^{k+1} that is identity on \mathbb{B}^{k+1}, so $F \circ \Phi^{-1} : \mathbb{B}^{k+1} \to \mathbb{R}^{m+1}$...
\(\mathbb{R}^{k+1} \rightarrow \mathbb{R}^{m+1} \) coincides with \(F \) on \(\mathbb{B}^{k+1} \) and hence in a neighborhood of the set \(E_F \). Denote the points in \(\mathbb{R}^{k} \) and \(\mathbb{R}^{r} \) by

\[
(x, y) \in \mathbb{R}^{k+1} \times \mathbb{R}^{r-k-1} = \mathbb{R}^{k} \quad \text{and} \quad (z, v) \in \mathbb{R}^{m+1} \times \mathbb{R}^{r-m-1} = \mathbb{R}^{r}
\]

and let \(\pi : \mathbb{R}^{r} \rightarrow \mathbb{R}^{m+1} \), \(\pi(z, v) = z \) be the orthogonal projection.

It easily follows that the mapping

\[
\mathbb{R}^{k} \ni (x, y) \mapsto f(x, y) := (F \circ \Phi^{-1}(x), 0) \in \mathbb{R}^{r}
\]

satisfies the claim of Theorem 4 with \(E \equiv E_F \times \{0\} \subset \mathbb{R}^{k+1} \times \mathbb{R}^{r-k-1} = \mathbb{R}^{k} \).

Indeed, in a neighborhood of \(x_o \in E_F \), \(f(x, y) = (F(x), 0) \).

Suppose that \(g \in C^{k-m+1}(\mathbb{B}^{k+1}(x_o, 0), \mathbb{R}^{r}) \) is such that

\[
|f(x, y) - g(x, y)| < \delta \quad \text{for all} \quad (x, y) \in \mathbb{B}^{k+1}(x_o, 0, \varepsilon).
\]

Then \(G(x) = \pi(g(x, 0)) \in C^{k-m+1}(\mathbb{B}^{k+1}(x_o, \varepsilon), \mathbb{R}^{m+1}) \) satisfies

\[
|F(x) - G(x)| < \delta \quad \text{for all} \quad x \in \mathbb{B}^{k+1}(x_o, \varepsilon)
\]

provided \(\varepsilon > 0 \) is so small that \(f(x, y) = (F(x), 0) \) for all \(x \in \mathbb{B}^{k+1}(x_o, \varepsilon) \).

Hence \(\text{rank } DG \geq m + 1 \) on an open, non-empty set in \(\mathbb{B}^{k+1}(x_o, \varepsilon) \) by Lemma 8. Since \(\text{rank } Dg(x, 0) \geq \text{rank } DG(x) \) and the set \{ \text{rank } Dg \geq m + 1 \} \) is open, rank \(Dg \geq m + 1 \) on an open, non-empty subset of \(\mathbb{B}^{k+1}(x_o, \varepsilon) \), which completes the proof of Theorem 4.

Therefore it remains to prove Lemma 8.

Proof of Lemma 8. Let \(\mathcal{I} \) denote the unit cube \([-\frac{1}{2}, \frac{1}{2}]^{m+1} \) in \(\mathbb{R}^{m+1} \). Since, by assumption, \(\pi_k(\mathcal{S}^m) \neq 0 \) and \(\partial \mathcal{I} \) is homeomorphic to \(\mathcal{S}^m \), there is a continuous mapping \(\hat{\phi} : \mathcal{S}^k \rightarrow \partial \mathcal{I} \) that is not homotopic to a constant map. Approximating \(\hat{\phi} \) by standard mollification, we obtain a smooth mapping from \(\mathcal{S}^k \) to \(\mathbb{R}^{m+1} \), uniformly close to \(\hat{\phi} \), with the image lying in a small neighborhood of \(\partial \mathcal{I} \). Then, composing it with a \(C^\infty \) smooth mapping \(R \) that is homotopic to the identity and maps a neighborhood of \(\partial \mathcal{I} \) onto \(\partial \mathcal{I} \) we obtain a mapping \(\phi : \mathcal{S}^k \rightarrow \partial \mathcal{I} \) that is not homotopic to a constant map and is \(C^\infty \) smooth as a mapping to \(\mathbb{R}^{m+1} \).

A smooth mapping \(R : \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{m+1} \) homotopic to the identity, that maps a neighborhood of \(\partial \mathcal{I} \) onto \(\partial \mathcal{I} \) can be defined by a formula

\[
R(x_1, x_2, \ldots, x_{m+1}) = (\lambda_s(x_1), \lambda_s(x_2), \ldots, \lambda_s(x_{m+1})),
\]

where for \(s \in (0, \frac{1}{2}) \) the function \(\lambda_s : \mathbb{R} \rightarrow \mathbb{R} \) is smooth, odd, non-decreasing and such that \(\lambda_s(t) = t \) when \(||t - \frac{1}{2}|| > 2s \) and \(\lambda(t) = 1 \) when \(||t - \frac{1}{2}|| < s \), see the graph on the right. Taking \(s \rightarrow 0 \) gives a homotopy between \(R \) and the identity.

Lemma 8 is a simple consequence of the following result proved in \cite{2} Lemma 5.1. (Note that in the statement of Lemma 5.1 in \cite{2}, \(k \) plays the role of \(m \) and \(m \) plays the role of \(k \).) The self-similarity property of the mapping \(F \) in Lemma 9 is explicitly stated in the proof of Lemma 5.1 in \cite{2}.
Lemma 9. Suppose that $m + 1 \leq k < 2m - 1$ and $\pi_k(S^m) \neq 0$. Then there is a mapping $F \in C^1(\mathbb{R}^{k+1}, \mathbb{R}^k)$ satisfying rank $DF \leq m$ everywhere, such that F maps the boundary $\partial \mathbb{B}^{k+1} = S^k$ to $\partial \mathbb{R}^k$ and $F|_{\partial \mathbb{B}^{k+1}} = \phi$, where ϕ has been defined above.

Moreover, F is self-similar in the following sense. There is a Cantor set $E_F \subset \mathbb{R}^{k+1}$ such that for every $x_o \in E_F$ there is a sequence of balls $D_i \subset \mathbb{R}^{k+1}$, $x_o \in D_i$, with radii convergent to zero, and similarity transformations

$$\Sigma_i : \mathbb{B}^{k+1} \to D_i, \quad \Sigma_i(\mathbb{B}^{k+1}) = D_i, \quad T_i : \mathbb{R}^{m+1} \to \mathbb{R}^{m+1},$$

each being a composition of a translation and scaling, such that

$$T_i^{-1} \circ F|_{D_i} \circ \Sigma_i = F.$$

Here the C^1 regularity of F means that it is C^1 as a mapping into \mathbb{R}^{m+1}, with the image being the cube \mathbb{I}.

The mappings T_i and Σ_i are compositions $T_i = \tau_{j_1} \circ \ldots \circ \tau_{j_l}$ and $\Sigma_i = \sigma_{j_1} \circ \ldots \circ \sigma_{j_l}$ of similarity transformations τ_j and σ_j that are used at the very end of the proof of Lemma 5.1 in [2]. The Cantor set E_F is the same as the Cantor set C in the proof of Lemma 5.1 in [2].

In other words, F restricted to an arbitrarily small ball D_i that contains x_o is a scaled copy of $F : \mathbb{B}^{k+1} \to \mathbb{I}$.

The mapping F is obtained through an iterative construction, described in detail in [2]. We shall present here a sketch of that construction.

Sketch of the construction of the mapping F.

By assumption, $\pi_k(S^m) \neq 0$. By Freudenthal’s theorem ([3, Corollary 4.24]), also $\pi_{k-1}(S^{m-1}) \neq 0$; let $h : S^{k-1} \to S^{m-1}$ be a mapping that is not homotopic to a constant.

We begin by choosing in the ball \mathbb{B}^{k+1} disjoint, closed balls \mathbb{B}_i, $i = 1, 2, \ldots, N = n^{m+1}$, of radius $\frac{2}{n}$, all inside $\frac{1}{2} \mathbb{B}^{k+1}$. This is possible, if n is chosen sufficiently large, since, for n large, the $(k+1)$-dimensional volume of $\frac{1}{2} \mathbb{B}^{k+1}$ is much larger than the sum of volumes of \mathbb{B}_i, $2^{-(k+1)} \gg n^{m+1}2^{k+1}n^{-(k+1)}$.

We define a C^∞-mapping F in $\mathbb{B}^{k+1} \setminus \bigcup_{i=1}^N \mathbb{B}_i$; then, the same mapping is iterated inside each of the balls $\mathbb{B}_i = \mathbb{B}_{i,1}$, which defines F outside a family of N^2 second generation balls $\mathbb{B}_{i,2}$, and so on – in this way we obtain a mapping which is C^∞ outside a Cantor set. Finally, we extend F continuously to the Cantor set C defined by the subsequent generations of balls $\mathbb{B}_{i,j}$, as the intersection $C = \bigcap_{j=1}^\infty \bigcup_{i=1}^{N^j} \mathbb{B}_{i,j}$.

The mapping F in $\mathbb{B}^{k+1} \setminus \bigcup_{i=1}^N \mathbb{B}_i$ is (in principle – see comments below) defined as a composition of four steps (see Figure 1):

1. First, we realign all the balls \mathbb{B}_i inside \mathbb{B}^{k+1}, by a diffeomorphism G_1 equal to the identity near $\partial \mathbb{B}^{k+1}$, so that the images of \mathbb{B}_i are identical, disjoint, closed balls
lying along the vertical axis of \mathbb{B}^{k+1}. Obviously, this diffeomorphism has to shrink the balls \mathbb{B}_i somewhat.

(2) The next step, the mapping $H : \mathbb{B}^{k+1} \rightarrow \mathbb{B}^{m+1}$, is defined in the following way: it maps $(k - 1)$-dimensional spheres centered at the vertical axis of \mathbb{B}^{k+1}, lying in the hyperplane orthogonal to that axis, to $(m - 1)$-dimensional spheres of the same radius, centered at analogous points on the vertical axis of \mathbb{B}^{m+1}. On each such sphere, H is an appropriately scaled copy of the mapping h. This way, H restricted to any k-sphere centered on the axis (in particular to $\partial \mathbb{B}_{k+1}$ and to $\partial(G_1(\mathbb{B}_i))$) equals (up to scaling) to the suspension of h.

(3) Next, we define the diffeomorphism G_2: we inflate the ball \mathbb{B}^{m+1} to $\frac{1}{2}\sqrt{m + 1}\mathbb{B}^{m+1}$, so that we can inscribe the unit cube $[-\frac{1}{2}, \frac{1}{2}]^{m+1}$ in it, and inside that ball, we rearrange the N balls $H(G_1(\mathbb{B}_i))$, so that each of them is almost inscribed in one of the cubes of the grid obtained by partitioning the unit cube into $N = n^{m+1}$ cubes of edge length $\frac{1}{n}$.

(4) Finally, we project $\frac{1}{2}\sqrt{m + 1}\mathbb{B}^{m+1} \cup \bigcup_{i=1}^{N} G_2(H(G_1(\mathbb{B}_i)))$ onto the m-dimensional skeleton of the grid: first, we project the outside of the unit cube onto the boundary of the cube using the nearest point projection π, then in each of the N closed cubes of the grid we use the mapping R defined in the proof of Lemma 8. Even though π is not smooth, this composition turns out to be smooth (see [2, Lemma 5.3]).

In fact, this construction of F outside $\bigcup_i \mathbb{B}_i$ is almost correct – the resulting mapping is not C^∞, but Lipschitz: it is not differentiable at the points of the vertical axis, and some technical modifications are necessary to make it C^∞. Similarly, some additional work is necessary to glue F with scaled copies of F in each of the balls \mathbb{B}_i in a differentiable way. These are purely technical difficulties, the details are provided in [2].

The third iteration of that construction is depicted in Figure 2.

One easily checks that the derivative of F tends to 0 as we approach the points of the Cantor set C, thus the limit mapping, extended to the whole \mathbb{B}^{k+1}, is C^1. For each point of $\mathbb{B}^{k+1} \setminus C$, the image of its small neighborhood is mapped to the m-dimensional skeleton of the grid, thus rank $DF \leq m$ at all these points, and since $DF = 0$ at the points of C, the condition rank $DF \leq m$ holds everywhere in \mathbb{B}^{k+1}.

\[\square\]

Lemma 9 allows us to complete the proof of Lemma 8 as follows. Let $x_o \in E_F$ and $1 - |x_o| > \varepsilon > 0$ be given. Suppose to the contrary, that there is a sequence $G_j \in C^{k-m+1}(\mathbb{B}^{k+1}(x_o, \varepsilon), \mathbb{R}^{m+1})$ with rank $DG_j \leq m$, that is uniformly convergent to F on $\mathbb{B}^{k+1}(x_o, \varepsilon)$.

Let D_i be a sequence of balls convergent to x_o as in the statement of Lemma 9. If i is sufficiently large, then $D_i \subset \mathbb{B}^{k+1}(x_o, \varepsilon)$ and the sequence G_j converges uniformly to F on D_i. Hence

$$\tilde{G}_j := T_i^{-1} \circ G_j \mid_{D_i} \circ \Sigma_i : \mathbb{B}^{k+1} \rightarrow \mathbb{R}^{m+1}$$

converges uniformly to

$$T_i^{-1} \circ F \mid_{D_i} \circ \Sigma_i = F : \mathbb{B}^{k+1} \rightarrow \Pi.$$
Figure 1. The construction of F in $\mathbb{B}^{m+1} \setminus \bigcup_{i=1}^{N} \mathbb{B}_i$.

Figure 2. The third iteration: F outside the third generation of balls $\bigcup_i \mathbb{B}_{3,i}$.
Obviously, \(\text{rank } D\tilde{G}_j \leq m \). Since \(\tilde{G}_j \) is uniformly close to \(F \) on \(\partial B^{k+1} \) and \(F|_{\partial B^{k+1}} : S^k \to \partial I \) is not homotopic to a constant map, it easily follows that for \(j \) sufficiently large the image \(\tilde{G}_j(B^{k+1}) \) contains the cube \(\frac{1}{2}I \) that is concentric with \(I \) and has half the diameter (as otherwise, using a projection onto the boundary of the cube, one could construct a homotopy of \(F|_{\partial B^{k+1}} : S^k \to \partial I \) to a constant map).

Recall that according to Sard’s theorem [4, 5], the map \(\tilde{G}_j \in C^{k-m+1} \) maps the set of its critical points to a set of measure zero. Since \(\text{rank } D\tilde{G}_j \leq m \), all points in \(B^{k+1} \) are critical, so the set \(\tilde{G}_j(B^{k+1}) \) has measure zero, which contradicts the fact that it contains the cube \(\frac{1}{2}I \). The proof is complete. \(\square \)

References

[1] Gałęski, J.: Besicovitch–Federer projection theorem for continuously differentiable mappings having constant rank of the Jacobian matrix. *Math. Z.* (2017), https://doi.org/10.1007/s00209-017-1985-x.

[2] Goldstein, P., Hajłasz, P., Pankka, P.: Topologically nontrivial counterexamples to Sard’s theorem. *arXiv:1804.07658*. Submitted.

[3] Hatcher, A.: *Algebraic topology*. Cambridge University Press, Cambridge, 2002.

[4] Sard, A.: The measure of the critical values of differentiable maps. *Bull. Amer. Math. Soc.* 48 (1942), 883–890.

[5] Sternberg, S.: *Lectures on differential geometry*. Chelsea Publishing Co., New York, second edition, 1983. With an appendix by Sternberg and Victor W. Guillemin.

[6] Zorich, V. A.: *Mathematical analysis. I.* Second edition. Universitext. Springer-Verlag, Berlin, 2015.

Paweł Goldstein, Institute of Mathematics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

E-mail address: P.Goldstein@mimuw.edu.pl

Piotr Hajłasz, Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

E-mail address: hajlasz@pitt.edu