БЫСТРОДЕЙСТВУЮЩИЙ ИНСУЛИН АСПАРТ: ОБЗОР ЕГО ФАРМАКОКИНЕТИЧЕСКИХ И ФАРМАКОДИНАМИЧЕСКИХ СВОЙСТВ И КЛИНИЧЕСКИХ ПОСЛЕДСТВИЙ

© Х. Хаар1*, Т. Хайзе2

1Отдел клинической фармакологии, «Ново Нордиск», Соборг, Дания
2«Профиль», Нейсс, Германия

Быстродействующий инсулин аспарт (быстрый аспарт) представляет собой инсулин аспарт (иАсп) с двумя добавленными вспомогательными веществами, L-аргинином и никотиновой кислотой, для обеспечения стабильности состава и ускоренного начала всасывания после подкожного введения по сравнению с ранее разработанными быстродействующими инсулинами. Фармакокинетические/фармакодинамические свойства быстрого аспарта были охарактеризованы в клинико-фармакологических исследованиях с сопоставимой общей методологией. У пациентов с сахарным диабетом 1 типа (СД1) или 2 типа (СД2) профили сывороточной концентрации иАсп и снижение уровня глюкозы смешены по временной шкале влево у быстрого аспарта в сравнении с иАсп. Также применение быстрого аспарта обеспечивает более раннее начало, удвоение первоначального воздействия и увеличение в 2,5 раза исходного эффекта снижения уровня глюкозы в течение 30 минут после подкожной инъекции, а также более раннее окончание действия. Аналогичные результаты были показаны при использовании непрерывной подкожной инфузии инсулина (НПИИ). Улучшенные фармакологические свойства быстрого аспарта по сравнению с иАсп одинаковы для всех групп населения, то есть для пожилых людей, детей, подростков и японцев. Таким образом, фармакологические характеристики быстрого аспарта в большей степени соответствуют секреции инсулина во время еды у здоровых людей, что наделяет быстрый аспарт потенциалом для дальнейшего улучшения постпрандийного контроля глюкозы у пациентов с СД. Действительно, изменение по сравнению с исходными значениями концентрации глюкозы через 1 ч после приема пищи более благоприятно у быстрого аспарта по сравнению с иАсп при использовании в качестве базис-блюсной или помповой (НПИИ) инсулинотерапии у субъектов с СД1 или СД2. В данном обзоре обобщены опубликованные в настоящее время результаты клинических фармакологических исследований быстрого аспарта и обсуждаются потенциальные клинические преимущества быстрого аспарта по сравнению с предыдущими быстродействующими препаратами инсулина.

КЛЮЧЕВЫЕ СЛОВА: быстрый аспарт; фармакокинетика; фармакодинамика; клэп

FAST-ACTING INSULIN ASPART: A REVIEW OF ITS PHARMACOKINETIC AND PHARMACODYNAMIC PROPERTIES AND THE CLINICAL CONSEQUENCES

© Hanne Haahr1*, Tim Heise2

1Clinical Pharmacology Department, Novo Nordisk A/S, Søborg, Denmark
2Profi1, Neuss, Germany

Fast-acting insulin aspart (faster aspart) is insulin aspart (iAsp) with two added excipients, L-arginine and niacinamide, to ensure formulation stability with accelerated initial absorption after subcutaneous administration compared with previously developed rapid-acting insulins. The pharmacokinetic/pharmacodynamic properties of faster aspart have been characterised in clinical pharmacology trials with comparable overall methodology. In subjects with type 1 (T1D) or type 2 (T2D) diabetes, the serum iAsp concentration-time and glucose-lowering effect profiles are left-shifted for faster aspart compared with iAsp. In addition, faster aspart provides earlier onset, doubling of initial exposure, and an up to 2.5-fold increase in initial glucose-lowering effect within 30 min of subcutaneous injection, as well as earlier offset of exposure and effect. Similar results have been shown using continuous subcutaneous insulin infusion (CSII). The improved pharmacological properties of faster aspart versus iAsp are consistent across populations, i.e. in the elderly, children, adolescents and the Japanese. Thus, the faster aspart pharmacological characteristics more closely resemble the mealtime insulin secretion in healthy individuals, giving faster aspart the potential to further improve postprandial glucose control in subjects with diabetes. Indeed, change from baseline in 1-h postprandial glucose increment is in favour of faster aspart versus iAsp when used as basal-bolus or CSII treatment in phase III trials in subjects with T1D or T2D. This review summarises the currently published results from clinical pharmacology trials with faster aspart and discusses the potential clinical benefits of faster aspart compared with previous rapid-acting insulin products.

KEYWORDS: faster aspart; pharmacokinetic; pharmacodynamic; clamp
КЛЮЧЕВЫЕ МОМЕНТЫ СТАТЬИ

Несмотря на преимущества быстродействующих инсулинов по сравнению с обычным человеческим инсулином в отношении их фармакокинетических/фармакодинамических характеристик, все еще существует потребность в еще более ускоренном всасывании и действии инсулина, чтобы лучше имитировать секрецию инсулина во время еды в здоровом состоянии.

Быстрый аспарт обеспечивает смещение фармакокинетических/фармакодинамических профилей влево, что соответствует более раннему началу, вдвое большему первоначальному действию и до 2,5-кратному увеличению начального гипогликемического эффекта в течение первых 30 мин, а также более раннему прекращению действия и эффекта по сравнению с инсулином аспарт.

В исследованиях III фазы было показано более близкое сходство фармакологических характеристик быстрого аспарта по сравнению с инсулином аспарт.

У пациентов с сахарным диабетом (СД) снижение постпрандиальных уровней глюкозы (ППГ) является важным аспектом оптимизации общего гликемического контроля и достижения гликемических целей [1, 2]. У здоровых людей секреция инсулина происходит сразу после приема пищи, контролируя тем самым уровни ППГ [3]. Для устранения постпрандиальной гипергликемии пациентам с диабетом предлагается введение инсулина во время приема пищи с профилем абсорбции, который имитирует эндогенную секрецию инсулина после приема пищи в здоровом состоянии [4, 5, 6].

Инсулин быстрого действия используется у пациентов с СД 1 типа (СД1) в режимах базис-болюсной терапии или при непрерывной подкожной инфузии инсулина (НПИИ), а также у пациентов с СД 2 типа (СД2), которым необходимо усилить лечение путем добавления инъекции инсулина перед приемом пищи к базальному инсулину в сочетании с приемом пероральных сахароснижающих препаратов (ПССП) [7]. Ранее разработанные быстродействующие инсулины (инсулин аспарт [иАсп], инсулин лизпро и инсулин глulisин) обеспечивают более быстрое всасывание и более раннее начало снижения уровня глюкозы крови, что приводит к улучшению контроля уровня ППГ по сравнению с обычным человеческим инсулином [8, 9]. Однако скорость их всасывания недостаточна для оптимизации постпрандиальной гликемии при введении инсулина в начале приема пищи [10, 11]. Скорее, наибольшее снижение ППГ достигается при введении этих инсулинов за 15–30 мин до еды [10, 11]. В соответствии с утвержденной маркировкой и, по-видимому, для простоты и практических соображений многие пациенты с диабетом используют только минимальный интервал между введением инсулина и началом приема пищи или вообще не используют его [12]. Таким образом, существует клиническая потребность в применении во время приема пищи инсулинов со сверхбыстрой абсорбционной способностью, чтобы дополнительно минимизировать отклонения от постпрандиальной секреции инсулина в здоровом состоянии.

Быстродействующий иАсп (быстрый аспарт) представляет собой иАсп в новой рецептуре, разработанной для достижения ускоренного начального всасывания после подкожного введения по сравнению с ранее разработанными быстродействующими инсулинами [13, 14, 15]. Фармакологические свойства быстрого аспарта были охарактеризованы в нескольких клинических фармакологических исследованиях [16–27]. Кроме того, в исследованиях III фазы была исследована эффективность и безопасность применения быстрого аспарта по сравнению с иАсп у пациентов с СД1 или СД2 [28–35]. В настоящем обзоре обобщены результаты исследований клинической фармакологии быстрого аспарта и постпрандиального гликемического контроля у пациентов с диабетом по сравнению с ранее разработанными быстродействующими инсулинами.

БЫСТРЫЙ АСПАРТ

Быстрый аспарт – это новая формула иАсп (NovoRapid®, NovoLog®), аналога человеческого инсулина, где пролин в положении B28 заменен на аспарагиновую кислоту. По сравнению с иАсп быстрый аспарт был модифицирован путем добавления двух вспомогательных веществ – никотиновой кислоты (витамина B3) для увеличения скорости всасывания после подкожного введения и L-аргинина (аминоциклоты) для обеспечения стабильности состава. В исходной формуляции иАсп большинство молекул иАсп существуют в виде гексамеров, которые слишком велики, чтобы их можно было легко абсорбировать [13]. В условиях, имитирующих фармакокинетическую формулу или подкожное депо, никотиновая кислота увеличивает долю более легко усваиваемых мономеров иАсп, тем самым частично устраняя стадию, ограничивающую скорость всасывания, диссоциацию гексамера на мономеры [13]. Соответственно, никотиновая кислота способствует трансэндотелиальному транспорту иАсп [13]. Кроме того, исследования на свиньях показывают, что никотиновая кислота может усиливать кровоток в коже через транзиторную локальную васодилатацию, которая также может способствовать абсорбции молекул иАсп после подкожного введения [13].

Никотиновая кислота и L-аргинин включены в базу данных FDA США неактивных ингредиентов в продуктах для увеличения скорости всасывания, диссоциации гексамера на мономеры [13]. Соответственно, никотиновая кислота способствует трансэндотелиальному транспорту иАсп [13]. Кроме того, исследования на свиньях показывают, что никотиновая кислота может усиливать кровоток в коже через транзиторную локальную васодилатацию, которая также может способствовать абсорбции молекул иАсп после подкожного введения [13].
сих доз перорального приема никотиновой кислоты у людей показали хороший профиль безопасности [38]. Любые локальные побочные эффекты никотиновой кислоты в месте инъекции маловероятны, так как было показано, что период полувыведения никотиновой кислоты из подкожного депо у свиней составляет всего ~5 мин [13]. Аминокислота L-аргинин естественным образом содержится в пище, богатой белками, и применение ее в виде пищевых добавок в 5–10 раз превышающего среднесуточное потребление с пищей, безопасно и хорошо переносится [39].

Прежде чем выбрать состав быстрого аспарта, предназначенный для дальнейшей клинической разработки, была предпринята систематическая фармакокинетическая оценка действия различных составов у людей, чтобы принять обоснованное решение относительно оптимального состава при сбалансированности скорости всасывания и стабильности состава [27]. Никотиновая кислота положительно влияет на скорость абсорбции, частично за счет усиления мономеризации [13], что, однако, также отрицательно влияет на стабильность состава. Напротив, другой наполнитель, цинк, увеличивает олигомеризацию инсулина и, следовательно, отрицательно влияет на скорость абсорбции, но важен для обеспечения стабильности состава [40]. На рис. 1 показана концептуальная модель, основанная на клинических фармакокинетических данных, описывающих, как скорость абсорбции зависит от различных концентраций никотиновой кислоты и цинка в составе быстрого аспарта. В клиническом фармакологическом исследовании были испытаны несколько составов быстрого аспарта с различными комбинациями концентраций никотиновой кислоты и цинка, и среди тех, которые имели приемлемую стабильность состава, для дальнейшей разработки был выбран препарат с наиболее высокой скоростью абсорбции. Недавние исследования показывают, что L-аргинин также способствует повышению стабильности инсулина за счет снижения агрегации инсулина в растворах с высокой ионной силой [41].

МЕТОДОЛОГИЯ

Настоящий обзор включает 12 клинических фармакологических исследований [16–27] и 10 других клинических испытаний (большинство из них являются частью программы «Начало III фазы клинической разработки») [28–35, 42, 43] быстрого аспарта, идентифицированных поиском в PubMed по терминам «клиническое исследование быстрого аспарта» и «начало действия более быстродействующего инсулина аспарт», а также поиском на сайте ClinicalTrials.gov для I фазы исследований, с использованием термина «быстрый аспарт». Чтобы быть включенным в этот обзор, требовалось, чтобы испытания были опубликованы в форме статьи, однако с двумя исключениями, где включение было расценено как весьма актуальное для полноты обзора [27, 33].

В ходе испытаний, характеризующих фармакологические свойства быстрого аспарта, общий дизайн и методология были максимально стандартизированы, при этом допускались незначительные различия в зависимости от конкретной популяции и целей испытания. Для обеспечения согласованности в отношении экспериментальных процедур и анализа данных все испытания были одноконтрольными, и только несколько центров были задействованы в рамках программы изучения клинической фармакологии быстрого инсулина аспарт. Все испытания были однодозовыми, и iАсп включался в качестве препарата сравнения, где это было уместно.

Фармакокинетика

Забор образцов крови проводили непосредственно перед введением дозы и в часто заданных временных точках до 12 ч после введения в большинстве исследований, с целью наиболее полной фиксации продолжительности воздействия у всех субъектов. Во всех исследованиях концентрация свободного сывороточного иАсп измерялась с использованием проверенного iАсп-специфического фермент-связанного иммуносорбентного метода, применявшегося после осаждения полиэтиленгликолем (ПЭГ). В отдельных работах общие концентрации иАсп в сыворотке крови измеряли с использованием того же метода, но без осаждения ПЭГ [21].

Фармакодинамика

В большинстве исследований клинической фармакологии быстрого аспарта действие по снижению уровня глюкозы оценивали с помощью угликинеческого клэмп-теста с использованием либо ClampArt (Profil, Neuss, Германия) [19, 20, 24], Biostator (MTB Medizintechnik, Amstetten, Germany) [18], STG-22 глюкозоконтролирующая система инфузии инсулина (Искусственная эндокринная поджелудочная железа; NIKKISO Co. Ltd., Токио, Япония) [25] или ручной клэмп [17]. Чтобы избежать влияния эндогенного инсулина на результаты клэмп-теста, во все исследования с использованием данного метода включались только субъекты с СД1, кроме одной работы, специально проведенной для изучения фармакологических свойств быстрого

![Оптимально более быстрый состав инсулина аспарт при соблюдении баланса скорости абсорбции и стабильности](image-url)

Рис. 1. Концептуальная модель, демонстрирующая влияние различных концентраций цинка и никотиновой кислоты в формуле быстрого аспарта на скорость абсорбции после подкожного введения. AU – произвольные единицы.
аспарта у субъектов с СД2 [17]. Чтобы минимизировать секрецию эндогенного инсулина, целевой уровень глюкозы в крови (ГК) был ниже у пациентов с СД2 (5,0 ммоль/л) [17], чем у пациентов с СД1 (5,5 ммоль/л) [18, 19, 20, 24, 25]. Тем не менее, как и во всех других исследованиях с использованием клэмп-теста у пациентов с СД2, существует риск секреции эндогенного инсулина, который может усложнить интерпретацию полученных результатов [44]. В двух исследованиях, посвященных клинической фармакологии [22, 23], и в нескольких исследованиях III фазы [28–33] был проведен стандартизованный 4–6-часовой тестовый прием пищи для оценки динамики уровней ППГ при применении быстрого аспарта по сравнению с iAsp. Во всех работах, чтобы оценить фармакодинамику быстрого аспарта, привычный инсулин у субъектов исследования заменялся, и весь инсулин своевременно отменялся, чтобы избежать какого-либо влияния экзогенного инсулина на фармакодинамические результаты.

ФАРМАКОКИНЕТИКА БЫСТРОГО АСПАРТА

Фармакокинетика быстрого аспарта в сравнении с iAsp после подкожной инъекции была исследована в объединенном анализе 218 взрослых пациентов СД1 на основе шести клиническо-фармакологических исследований [16] и 61 субъекта с СД2 на основе одного такого исследования [17]. Фармакокинетический профиль был смешен влево в случае быстрого аспарта по сравнению с iAsp во всех исследованиях у субъектов как с СД1, так и с СД2 (рис. 2), предполагая, что фармакокинетический профиль быстрого аспарта более близко имитирует здоровую секрецию эндогенного инсулина по сравнению с ранее разработанными быстродействующими инсулинами.

Начало и ранняя фаза действия

В объединенном анализе среди взрослых с СД1 начало появления iAsp в крови происходило на ~5 мин раньше, время до 50% максимальной концентрации в ранней части фармакокинетического профиля (транняя 50% Cmax) было на ~10 мин короче, а время до максимальной концентрации (тmax) было на 7 мин короче для быстрого аспарта в сравнении с iAsp (рис. 3а) [16]. В проведенных исследованиях по клинической фармакологии для оценки начала воздействия использовались показатели начала выявления в крови, tранняя 50% Cmax и tmax. Начало выявления в крови определяли как время от введения дозы до первой концентрации iAsp в сыворотке ≥10 пмоль/л (нижний предел количественного определения), что наилучшим образом отражает истинное начало действия, тогда как tранняя 50% Cmax и tmax представляют собой

Рис. 2. Фармакокинетические профили при применении быстрого аспарта в сравнении с iAsp у субъектов с СД1 и СД2. Средняя 5-часовая (A), 6-часовая (B) или 2-часовая (C, D) сывороточная концентрация iAsp в зависимости от времени после подкожной инъекции дозы 0,2 Ед/кг при СД1 (A, C) и 0,3 Ед/кг при СД2 (B, D). Пополы вариабельности показывают стандартную ошибку среднего. iAsp – инсулин аспарт; СД1 – сахарный диабет 1 типа; СД2 – сахарный диабет 2 типа. Модифицировано из Heise и соавт. [16] в соответствии с условиями международной лицензии Creative Commons Attribution-NonCommercial 4.0 (http://creativecommons.org/licenses/by-nc/4.0/) и из Pieber и соавт. [17].
1. Конечная точка

Начало действия	МНК (мин)	Различия в леченииa [95% ДИ]	Значение рb	
	Быстрый аспарт	Инсулин аспарт		
Сахарный диабет 1 типа	4,1	8,9	-4,9 [-5,3; -4,4]	<0,001
Сахарный диабет 2 типа	3,3	4,4	-1,2 [-1,8; -0,5]	0,001

| Конечная точка |

МНК (пмоль*час/л)	Соотношение			
	Быстрый аспарт	Инсулин аспарт	леченииa [95% ДИ]	Значение рb
AUCиАсп, 0–15 мин	11,5	3,0	3,83 [3,41; 4,29]	<0,001
Сахарный диабет 1 типа	18,5	7,4	2,48 [1,97; 3,13]	0,001
AUCиАсп, 0–30 мин	52	26	2,01 [1,87; 2,17]	<0,001
Сахарный диабет 2 типа	80	42	1,89 [1,56; 2,28]	<0,001
AUCиАсп, 0–1 ч	177	134	1,32 [1,26; 1,39]	<0,001
Сахарный диабет 2 типа	263	189	1,39 [1,22; 1,58]	<0,001
AUCиАсп, 0–1,5 ч	300	258	1,16 [1,12; 1,21]	<0,001
Сахарный диабет 2 типа	445	355	1,26 [1,12; 1,41]	<0,001
AUCиАсп, 0–2 ч	401	365	1,10 [1,06; 1,14]	<0,001
Сахарный диабет 2 типа	613	516	1,19 [1,07; 1,31]	0,001

Рис. 3. Начало действия (A) и раннее действие (B) для быстрого аспарта в сравнении с иАсп после подкожного введения дозы 0,2 Ед/кг для субъектов с СД1 и 0,3 Ед/кг для субъектов с СД2. a – быстрый Аспарт – иАсп; b – для сравнения терапии быстрым аспартом против иАсп; c – быстрый аспарт/иАсп. AUC – площадь под кривой; ДИ – доверительный интервал; iAсп – инсулин аспарт; МНК – среднее значение метода наименьших квадратов; сахарный диабет 1 типа – СД1; сахарный диабет 2 типа – СД2; tранняя 50% Cmax – время до 50% максимальной концентрации в ранней части фармакокинетического профиля; tmax – время до максимальной концентрации; U – единицы. Данные Heise и соавт. [16] и Pieber и соавт. [17].
совокупность времени до начала и скорость абсорбции [45]. Тем не менее $t_{\text{ранее 50% Смакс}}$ и $t_{\text{позднее}}$ также были получены для быстрого аспарта для обеспечения сопоставимости с предыдущими испытаниями быстродействующего инсулина, в которых данные параметры использовались в виде одной или обеих конечных точек [46–49].

В соответствии со смещённым влево фармакокинетическим профилем более выраженное раннее воздействие было отмечено для быстрого аспарта по сравнению с иАсп в течение первых 2 ч после введения в объединённом анализе взрослых с СД1 (рис. 3b) [16]. Со времени введения дозы до 30 мин параметры воздействия быстрого аспарта были в два раза выше, чем воздействия иАсп.

У субъектов с СД2 более раннее начало и более раннее воздействие также были характерны для быстрого аспарта по сравнению с иАсп [17]. Начало действия произошло на 1,2 мин раньше, $t_{\text{ранее 50% Смакс}}$ было на 8,5 мин короче, а раннее воздействие в течение первых 30 мин после введения дозы ($AUC_{\text{иАсп,0–30 мин}}$) было на 89% больше при применении быстрого аспарта по сравнению с иАсп (рис. 3). Следовательно, ускоренная абсорбция быстрого аспарта по сравнению с иАсп происходит как у пациентов с СД1, так и с СД2.

Поздняя фаза и окончание действия
Приближение профиля действия к постпрандиальной секреции инсулина у здоровых подразумевает не только более раннее начало и более высокую скорость абсорбции, но также более раннее окончание действия и более низкую экспозицию в поздней фазе, чтобы снизить риск поздней постпрандиальной гипогликемии [5]. В объединённом анализе взрослых с СД1 смещение экспозиции происходило в более ранние сроки для быстрого аспарта, чем для иАсп. Время до достижения 50% максимальной концентрации иАсп в поздней фазе фармакокинетического профиля ($t_{\text{ранее 50% Смакс}}$) было на 12.2 мин короче ($p<0.001$), а позднее воздействие, начиная со времени 2 ч после инъекции ($AUC_{\text{иАсп,2–9 мин}}$), было на 11% меньше ($p<0.001$) для быстрого аспарта по сравнению с иАсп [16]. У субъектов с СД2 соответствующие различия окончания действия и поздней фазы воздействия составили 36,4 мин ($p<0.001$) и 12% ($p=0.002$) соответственно в пользу быстрого аспарта [17]. Таким образом, фармакокинетический профиль быстрого аспарта более сопоставим с постпрандиальной секрецией эндогенного инсулина у здоровых людей как в ранней, так и в поздней фазах профиля.

Общее воздействие
В объединённом анализе среди взрослых пациентов с СД1 общее воздействие ($AUC_{\text{иАсп,0–t}}$) и максимальная концентрация ($C_{\text{макс}}$) не отличались между быстрым аспартом и иАсп. Соотношение лечения быстрый аспарт/иАсп составляло 1,01 (95% доверительный интервал [ДИ] 0,98–1,04, $p=0.470$) и 1,04 (95% ДИ 1,00–1,08, $p=0.085$) соответственно [16]. У субъектов с СД2 $AUC_{\text{иАсп,0–2 ч}}$ была одинаковой для быстрого аспарта и иАсп, с коэффициентом корреляции около 0,99 (95% ДИ 0,94–1,04, $p=0.646$), в то время как $C_{\text{макс}}$ была немного выше для быстрого аспарта, чем для иАсп, с соотношением 1,13 (95% ДИ 1,02–1,14, $p=0.018$) [17]. Для интерпретации значения $t_{\text{ранее 50% Смакс}}$ важно, чтобы $C_{\text{макс}}$ была сопоставима между быстрым аспартом и иАсп [45]. Более высокая $C_{\text{макс}}$ для быстрого аспарта по сравнению с иАсп у субъектов с СД2 означает, что как $t_{\text{ранее 50% Смакс}}$ так и $t_{\text{позднее 50% Смакс}}$ были исключительно увеличены для быстрого аспарта. Если бы $C_{\text{макс}}$ была одинаковой для быстрого аспарта и иАсп, различия в лечении для $t_{\text{ранее 50% Смакс}}$ и $t_{\text{позднее 50% Смакс}}$ в пользу быстрого аспарта, вероятно, были бы еще больше [17].

Абсолютная биодоступность быстрого аспарта была определена у здоровых мужчин, получавших быстрый аспарт подкожно в область живота, предплечья и бедра и внутривенно [26]. Абсолютная биодоступность быстрого аспарта составляла ~80% независимо от области инъекции (живот 83%; плечо 77%; бедро 77%) [26].

Зависимость концентрации от дозы введения быстрого аспарта исследована у пациентов с СД1 в диапазоне доз от 0,1 до 0,4 ЕД/кг [19]. Анализ пропорциональности дозы показал, что увеличение $AUC_{\text{иАсп,0–t}}$ и $C_{\text{макс}}$ при увеличении дозы было незначительно больше, чем сама пропорциональность дозе, и предполагало увеличение общей экспозиции на 12% и $C_{\text{макс}}$ после 10% увеличения дозы быстрого аспарта [19]. Сопоставимые результаты были получены для иАсп, на основе чего был сделан вывод, что такое незначительное отклонение пропорциональности дозе не должно влиять на титрование дозы в клинических условиях [19].

Фармакокинетика, измеренная в виде свободного или общего инсулина аспарт (иАсп)
Инсулин может существовать в кровотоке в связанном или свободном виде. Связанная форма возникает из-за обратимого связывания с антителами против инсулина и, следовательно, имеет первостепенное значение для определения у пациентов, ранее получавших лечение инсулином [50, 51]. Оценка фармакокинетики инсулина у пациентов с диабетом должна учитывать потенциальную интерференцию, вызванную наличием антител против инсулина [51]. Во всех исследованиях клинической фармакологии быстрого инсулина измеряли свободный иАсп после удаления антител против инсулина с помощью осаждения методом ПЭГ. Поскольку это представляет собой добавление к совокупности данных и соответствует запросам регулирующих органов, в отдельных исследованиях также измерялась общая концентрация иАсп [18, 22, 24, 25]. В объединённом анализе четырёх исследований клинической фармакологии у взрослых пациентов с СД1 проведено сравнение фармакокинетических параметров быстрого аспарта и иАсп на основании общих и свободных измерений иАсп. Более раннее начало, более раннее воздействие и более быстрое окончание действия были характерны для быстрого аспарта по сравнению с иАсп, что было независимо от того, были ли параметры основаны на определении свободного или общего иАсп [21]. Различие быстрый аспарт – иАсп в $t_{\text{ранее 50% Смакс}}$ составило ~8,8 мин для свободной формы и ~7,6 мин для общего иАсп (в обоих случаях $p<0.001$).

$AUC_{\text{иАсп,0–30 мин}}$ была на 88% и 77% больше для быстрого аспарта по сравнению с иАсп при измерении как свободного, так и общего иАсп соответственно (в обоих случаях $p<0.001$). Наконец, разница быстрый аспарт – иАсп для $t_{\text{позднее 50% Смакс}}$ составила ~13,8 мин для свободного и ~14,0 мин для общего иАсп (в обоих случаях $p<0.001$) [21].
Фармакодинамика быстрого аспарта в сравнении с иАсп после подкожной инъекции была охарактеризована в объединенном анализе трех исследований с использованием клэмп-метода, включавшем 119 взрослых с СД1 [16] и 61 субъекта с СД2 [17]. В соответствии с фармакокинетическим профилем, профиль снижения уровня глюкозы был смещен влево при применении быстрого аспарта по сравнению с иАсп у субъектов с СД1 и СД2 (рис. 4).

Начало действия и снижение уровня глюкозы в ранней фазе
В объединенном анализе взрослых с СД1 начало действия отмечалось на ~5 мин раньше, время до 50% максимальной скорости инфузии глюкозы (GIR) в ранней фазе профиля GIR (транслированный 50% GIRmax) было на 9,5 мин короче и время до максимальной GIR (т Girmax) было на 10,5 мин короче для быстрого аспарта по сравнению с иАсп (рис. 5а) [16]. Начало действия было использовано в качестве наилучшей возможной оценки разницы в эффекте снижения уровня глюкозы между двумя инсулинами. Начало действия определяли как время от введения дозы до тех пор, пока уровень ГК не уменьшался на ≥0,3 ммоль/л по сравнению с исходным уровнем в условиях клэмп-метода, при отсутствии введения глюкозы за 60 мин до инъекции дозы инсулина до момента начала его действия [19]. Это определение включает начальную скорость действия и, следовательно, может переоценивать время начала действия [45]. Помимо этого, клэмп-метод является искусственными условиями, и поэтому начало действия, определяемое с его использованием, может не отражать истинное начало действия. Тем не менее, такое определение является относительно надежным и клинически значимым, представляющим более адекватную оценку начала действия инсулина, чем альтернативные конечные точки на основе клэмп-метода, такие как время достижения 10% или 50% максимального эффекта снижения глюкозы или время достижения 10% общего снижения уровня глюкозы [45, 46, 52, 53].

В соответствии со смещением влево профилем GIR для быстрого аспарта по сравнению с иАсп более выраженный ранний эффект снижения глюкозы наблюдался для быстрого аспарта до 2 ч после введения дозы в объединенном анализе исследований взрослых с СД1 (рис. 5б) [16]. В течение первых 30 мин после введения дозы эффект снижения уровня глюкозы был на 74% выше для быстрого аспарта по сравнению с иАсп.

Более раннее начало и более выраженный ранний эффект снижения глюкозы также были показаны...
A Конечная точка

Начало действия	Быстрый аспарт	Инсулин аспарт	Различия в лечении	Значение
Сахарный диабет 1 типа	16,1	21,0	-4,9 [-6,9; -3,0]	<0,001
Сахарный диабет 2 типа	22,4	31,3	-8,9 [-12,1; -5,7]	<0,001
$t_{\text{ранняя 50% GIRmax}}$	36,3	45,7	-9,5 [-12,5; -6,4]	<0,001
Сахарный диабет 1 типа	39,3	51,1	-11,8 [-18,1; -5,4]	<0,001
Сахарный диабет 2 типа	121,6	132,1	-10,5 [-17,0; -4,0]	0,002
t_{GIRmax}	150,9	155,6	-4,7 [-27,5; 18,1]	0,680

B Конечная точка

Конечная точка	МНК (мг/кг)	Соотношение лечения	Значение		
AUC$_{\text{GIR, 0–30 мин}}$	Быстрый аспарт	Инсулин аспарт	лечения	Значение	
Сахарный диабет 1 типа	51,2	29,4	1,74 [1,47; 2,10]	<0,001	
Сахарный диабет 2 типа	17,3	7,0	2,47 [1,58; 6,22]	<0,001	
AUC$_{\text{GIR, 0–1 ч}}$	Сахарный диабет 1 типа	180	134	1,34 [1,25; 1,43]	<0,001
Сахарный диабет 2 типа	99	67	1,48 [1,24; 1,83]	<0,001	
AUC$_{\text{GIR, 0–1,5 ч}}$	Сахарный диабет 1 типа	359	301	1,19 [1,13; 1,26]	<0,001
Сахарный диабет 2 типа	171	127	1,35 [1,16; 1,56]	<0,001	
AUC$_{\text{GIR, 0–2 ч}}$	Сахарный диабет 1 типа	557	494	1,13 [1,07; 1,19]	<0,001
Сахарный диабет 2 типа	262	210	1,25 [1,10; 1,41]	<0,001	

Рис. 5. Начало снижения уровня глюкозы (A) и ранний эффект снижения уровня глюкозы (B) для быстрого аспарта в сравнении с инсулином после подкожной инъекции в дозе 0,2 Ед/кг у субъектов с СД1 и 0,3 Ед/кг у субъектов с СД2. "Быстрый аспарт – инсулин аспарт." Для сравнения лечения быстрого аспарта против инсулина аспарта. АУС – площадь под кривой; ДИ – доверительный интервал; GIR – скорость инфузии глюкозы; ХАС – инсулин аспарт; МНК – среднее значение метода наименьших квадратов; СД1 – сахарный диабет 1 типа; СД2 – сахарный диабет 2 типа; $t_{\text{ранняя 50% GIRmax}}$ – время до достижения 50% максимальной скорости инфузии глюкозы в ранней фазе профиля скорости инфузии глюкозы; t_{GIRmax} – время до максимальной скорости инфузии глюкозы; U – единицы. Данные взяты из Heise и соавт. [16] и Pieber и соавт. [17].
для быстрого аспарта по сравнению с iAsp у субъектов с СД2 [17]. Начало действия наступило на 8,9 мин раньше, \(t_{\text{pоздняя 50% GIRmax}} \) было на 11,8 мин короче, а ранний эффект снижения глюкозы через 30 мин после введения препарата (AUCGIR, 0–30 мин) был на 147% больше для быстрого аспарта по сравнению с iAsp (рис. 5).

Окончание действия и снижение уровня глюкозы в поздней фазе

Окончание действия ранее определялось как время, когда GIR больше не требуется, и уровень ГК увеличивался до 8,3 ммоль/л в конце применения клэмпа [44, 54]. Тем не менее такое определение переоценивает окончание действия и, возможно, не является наиболее клинически значимым показателем для перипрандиальных инсулинов, где своевременная утилизация глюкозной нагрузки, возникающей в результате приема пищи, а не постоянное поддержание эуликемии, является основной целью. Таким образом, в исследованиях клинической фармакологии быстрого аспарта оценивали время до 50% максимального GIR в поздней фазе профиля GIR (\(t_{\text{поздняя 50% GIRmax}} \)) и поздний эффект снижения уровня глюкозы, начиная с 2 ч после инъекции (AUCGIR,2–t) в настройках клэмпа, чтобы отразить фармакокинетические свойства поздней фазы. В объединенном анализе взрослых с СД1 \(t_{\text{поздняя 50% GIRmax}} \) было на 14,3 мин короче (p<0,001) и AUCGIR,2–t на 10% меньше (p<0,001) для быстрого аспарта по сравнению с iAsp [16]. У лиц с СД2 соответствующие различия были на 14,4 мин ниже (p=0,152) и на 9% меньше (p=0,083) для быстрого аспарта по сравнению с iAsp [17]. Таким образом, несмотря на то, что средние различия в лечении были очень похожи у пациентов с СД1 и СД2, статистически значимую разницу не было достигнуто в связи с малым числом пациентов с СД2 [17]. Важно отметить, что во время \(t_{\text{поздняя 50% GIRmax}} \), т.е. значения эффекта снижения уровня глюкозы по определению все еще остается, и, следовательно, \(t_{\text{поздняя 50% GIRmax}} \) не отражает полного окончания действия. Однако, как видно из рис. 4, снижение метаболического действия характерно для быстрого аспарта и iAsp, поэтому смещение на 14 мин раньше для быстрого аспарта должно быть в правильном диапазоне даже для более позднего времени. Поэтому делается вывод, что быстрый аспарт обеспечивает более раннее смещение эффекта снижения глюкозы по сравнению с iAsp, что может потенциально снизить риск поздней постпрандиальной гипогликемии, наблюдаемой, когда эффект снижения уровня глюкозы превышает абсорбцию глюкозы из пищи во время поздней постпрандиальной фазы.

Общий эффект снижения уровня глюкозы

У обоих субъектов с СД1 и СД2 общий (AUCGIR,0–t) и максимальный (GIRmax) эффект снижения глюкозы были сопоставимыми между быстрым аспартом и iAsp, что позволяет предположить, что оба вида терапии обеспечивают одинаковый общий эффект снижения глюкозы при введении в аналогичных дозах [16, 17]. У пациентов с СД1 отношение лечения быстрый аспарт/iAsp составляло 0,98 (95% ДИ 0,94–1,03; p=0,426) и 1,01 (95% ДИ 0,96–1,05; p=0,814) соответственно [16]. У пациентов с СД2 отношение лечения быстрый аспарт/iAsp оценено как 1,00 (95% ДИ 0,92–1,08; p=0,960) и 1,03 (95% ДИ 0,96–1,11; p=0,373) соответственно [17].

Фармакодинамическая вариабельность

Вариабельность снижения уровня глюкозы между применяемыми дозами инсулина важна для пациентов с диабетом, стремящихся к оптимальному гликемическому контролю с минимальной гипогликемией [57]. Внутрисубъектная вариабельность снижения уровня глюкозы была исследована для быстрого аспарта в сравнении с iAsp в перекрестном исследовании, где субъекты получали три однородные дозы по 0,2 Ед/кг быстрого аспарта или 0,2 Ед/кг iAsp в отдельные дни дозирования [19]. Внутрисубъектная вариабельность для быстрого аспарта, определяемая как коэффициент вариации, составляла 20–25% для раннего снижения уровня глюкозы через 1 или 2 ч после введения, 18% для AUCGIR,0–t и 19% для GIRmax [19]. Внутрисубъектная вариабельность статистически значимо не отличалась между быстрым аспартом и iAsp и находилась в том же диапазоне для быстрого аспарта, как ранее наблюдалось для обычного человеческого инсулина, инсулина глулизина и инсулина глулизина [48]. Вследствие низкой вариабельности у субъектов эффекта снижения уровня глюкозы, что ранее наблюдалось с обычным человеческим инсулином и ранее разработанными быстродействующими инсулинами, пациенты могут ожидать, что более быстрое начало и больший начальный эффект снижения уровня глюкозы при быстром аспарте будут постоянно наблюдаться день ото дня.

Механизмы, лежащие в основе повышенного раннего снижения уровня глюкозы при применении быстрого аспарта

Как описано в разделе «Клинические последствия фармакологических характеристик быстрого аспарта»,
более раннее начало и больший начальный эффект снижения глюкозы быстрого аспарта по сравнению с иАсп приводят к уменьшенному приросту ППГ при применении быстрого аспарта. Механизмы, стоящие за этим, были исследованы в тести с приемом пищи с использованием методики тройного отслеживания для определения оборота ППГ у пациентов с СД1 [22]. В течение первого часа после приема пиши быстрый аспарт вызывал не только большую периферическую скорость утилизации глюкозы, но также и большее подавление эндогенной продукции глюкозы по сравнению с иАсп (рис. 6). У здоровых людей прием пиши приводит к быстрой секреции инсулина в воротную вену с целью снижения концентрации ГК посредством снижения выработки глюкозы в печени и увеличения потребления глюкозы из периферической крови [3]. Соответствующий баланс между печеночными и периферическими эффектами обеспечивается путем воздействия на печень в несколько раз более высоких уровней инсулина, чем при периферической терапии [58]. Тот факт, что снижение ППГ с быстрым аспартом происходит частично через воздействие на печень, показывает важность быстрой абсорбции инсулина. Соответственно, недавно было показано, что при применении быстрого аспарта по сравнению с иАсп повыше ППГ после смешанного приема пиши у субъектов с СД1 была значительно ниже [59].

ФАРМАКОЛОГИЧЕСКИЕ СВОЙСТВА БЫСТРОГО АСПАРТА ПРИ НЕПРЕРЫВНОЙ ПОДКОЖНОЙ ИНФУЗИИ ИНСУЛИНА

Поскольку использование метода НПИИ повышается при лечении СД, важно оценить эффективность быстрого аспарта при применении в инсулиновой помпе [60]. Фармакологические характеристики быстрого аспарта в условиях НПИИ были исследованы у пациентов с СД1, получавших болюс 0,15 Ед/кг путем НПИИ в дополнение к базальной путем введения 0,02 Ед/кг/ч [20]. В соответствии с результатами, полученными для подкожной инъекции препарата, фармакокинетический (рис. 7) и фармакодинамический профили болюсной дозы были смешены влево для быстрого аспарта по сравнению с иАсп. Начало действия (tранняя 50% Cmax) происходило на 11,8 мин раньше (p<0,001), AUCиАсп, 0–30 мин была приблизительно в 3 раза больше (p<0,001), а tпоздняя 50% Cmax происходило на 35,4 мин раньше (p<0,001) при приеме быстрого аспарта по сравнению с иАсп [20]. Точно так же, tранняя 50% GIRmax составляло на 11,1 мин меньше (р<0,001), AUCGIR, 0–30 мин была примерно в 2 раза больше (p=0,002), а tпоздняя 50% GIRmax происходило на 24,0 мин раньше (p=0,002) для быстрого аспарта против иАсп [20]. AUCиАсп, 0–t и AUCGIR, 0–t для болюсной дозы были одинаковыми для быстрого аспарта и иАсп. Соотношение лечения быстрый аспарт/иАсп составляло 0,97 (95% ДИ 0,90–1,05; p=0,477) и 1,04 (95% ДИ 0,95–1,13; p=0,427) соответственно [20]. В заключение, введение быстрого аспарта через НПИИ обеспечивает ускоренное начало, более выраженные начальное действие и эффект снижения уровня глюкозы, а также раннее окончание действия относительно иАсп. Таким образом, в условиях НПИИ фармакологический профиль быстрого аспарта после подкожной инъекции более приближен к секреции инсулина во время еды у здоровых субъектов.

РАЗЛИЧНЫЕ ПОПУЛЯЦИИ ПАЦИЕНТОВ, ОБЛАСТИ ИНЪЕКЦИЙ И УРОВНИ АНТИТЕЛ К ИНСУЛИНУ

Дети и подростки

Быстрый аспарт сравнивали с иАсп в исследованиях фармакокинетики и теста с приемом пищи у детей (6–11 лет), подростков (12–17 лет) и взрослых с СД1 [23]. У детей и подростков начало действия произошло примерно в 2 раза быстрее, tранняя 50% был на ~7 мин
короче, а AUC_{0-30 мин} была на 78–98% больше для быстрого аспарта по сравнению с iАсп (рис. 8). AUC_{0-5} для быстрого аспарта была на 41% меньше у детей (p<0,001) и на 22% меньше у подростков (p=0,002) по сравнению со взрослыми. В линейной смешанной модели с периодом, возрастной группой, лечением и взаимодействием между возрастной группой и лечением в качестве фиксированных эффектов значение p для взаимодействия между возрастной группой и лечением составляло 0,481 [23]. Таким образом, возрастной эффект на AUC_{0-5} не отличался статистически значимо между быстрым аспартом и iАсп. Кроме того, влияние возраста на AUC_{0-5} не считается клинически важным, поскольку сохранена необходимость проводить индивидуальное титрование доз быстрого аспарта. Примечательно, что все субъекты получали дозы 0,2 Ед/кг массы тела независимо от возраста, а влияние возраста на AUC_{0-5} в значительной степени соответствовало различиям в абсолютных дозах по возрастным группам (в среднем 8,3, 12,8 и 15,6 Ед у детей, подростков и взрослых соответственно). В связи с этим было высказано предположение, что повышение общей дозы инсулина (не зависящее от возраста) может привести к увеличению AUC_{0-5}.

Лица пожилого возраста
В исследовании с использованием клэмп-теста сравнивали применение быстрого аспарта с iАсп у лиц пожилого возраста (≥65 лет) и более молодых пациентов (18–35 лет) с СД1. Начало появления препарата в крови происходило примерно в 2 раза быстрее (на 3 мин раньше; p <0,001), tраньяя 50 % Cmax было на 10 мин короче (p<0,001), а начальная экспозиция до 2 ч после введения дозы была выше для быстрого аспарта по сравнению с iАсп у пожилых людей [24]. Аналогично, начало действия происходило на 10 мин раньше, tраньяя 50% GIRmax было на 6 мин короче, а начальный эффект снижения глюкозы через 2 ч после введения дозы был выше для быстрого аспарта по сравнению с iАсп (рис. 9). Влияние быстрого аспарта в сравнении с iАсп на фармакокинетические/фармакодинамические конечные точки статистически значимо не различалось у пожилых и молодых людей [24]. Таким образом, применение быстрого аспарта должно также уменьшить уровень ППГ по сравнению с ранее разработанными быстродействующими инсулинами у пожилых пациентов с диабетом.

Лица с почечной или печеночной недостаточностью
Почечная и печеночная недостаточность могут потенциально влиять на кинетику ш/или метаболизм лекарств [61, 62]. Фармакокинетические свойства быстрого аспарта не были исследованы у пациентов с почечной или печеночной недостаточностью. Единственное изменение в формуле быстрого аспарта по сравнению с iАсп относится к процессу подкожной абсорбции. Сама форма быстрого аспарта не была модифицирована по сравнению с оригинальной формулой iАсп [13]. Рецептор-опосредованный клиренс является основным путем клиренса молекул iАсп. Таким образом, фармакокинетические результаты по iАсп при почечной и печеночной недостаточности также могут быть использованы как репрезентативные для быстрого аспарта. Показано, что на фармакокинетику iАсп [63] не влияют наличие почечной недостаточности (оцененная по кли-
Сахарный диабет / Diabetes Mellitus | 111

Начало действия

Конечная точка	МНК (мин)	Различия в лечении
	Быстрый аспарт	Инсулин аспарт
Дети	5,2	9,8
Подростки	5,3	11,0

Рис. 8. Начало воздействия (A) и раннее воздействие (B) для быстрого аспарт в сравнении с иАсп после подкожной дозы 0,2 Ед/кг у детей и подростков с СД1. а Быстрый аспарт – иАсп. b Для сравнения лечения быстрым аспартом против иАсп. c Быстрый аспарт/иАсп. AUC – площадь под кривой; ДИ – доверительный интервал; иАсп – инсулин аспарт; МНК – среднее значение метода наименьших квадратов; СД1 – сахарный диабет 1 типа; $t_{ранняя 50\% C_{max}}$ – время до достижения 50% максимальной концентрации в ранней фазе фармакокинетического профиля; t_{max} – время до достижения максимальной концентрации; U – единицы. Данные из Fath и соавт. [23].

Конечная точка

Конечная точка	МНК (пмоль*час/л)	Соотношение
	Быстрый аспарт	Инсулин аспарт
AUC иАсп, 0–15 мин		
Дети	7,3	2,3
Подростки	7,3	1,7
AUC иАсп, 0–30 мин		
Дети	40,6	22,8
Подростки	40,0	20,1
AUC иАсп, 0–1 ч		
Дети	140,6	111,5
Подростки	152,6	119,1
AUC иАсп, 0–1,5 ч		
Дети	225,7	203,3
Подростки	261,8	233,3
AUC иАсп, 0–2 ч		
Дети	284,5	270,5
Подростки	346,0	324,1

В пользу Быстрого аспарта

В пользу инсулина аспарт

Различия в лечении

Быстрый аспарт – инсулин аспарт

В пользу Быстрого аспарта

В пользу инсулина аспарт

Соотношение лечения

Быстрый аспарт/инсулин аспарт
ОБЗОР

112 | Сахарный диабет / Diabetes Mellitus

A Конечная точка

МНК (мин)	Различия в лечении			
Быстрый аспарт	Инсулин аспарт			
[95% ДИ]	Значение p			
Начало действия	19,0	29,1	-10,2 [-15,3; -5,1]	<0,001
$t_{50\% \text{ GIRmax}}$	32,1	37,7	-5,6 [-9,0; -2,2]	0,003
t_{GIRmax}	136,2	145,8	-9,6 [-33,7; 14,5]	0,415

В пользу Быстрого аспарта ➔ В пользу инсулина аспарт

Различия в лечении

Быстрый аспарт – инсулин аспарт

B Конечная точка

МНК (мг/кг)	Соотношение			
Быстрый аспарт	Инсулин аспарт			
[95% ДИ]	Значение p			
AUC GIR, 0–30 мин	44,7	21,4	2,09 [1,37; 4,66]	0,001
AUC GIR, 0–1 ч	149,1	105,3	1,42 [1,14; 1,75]	0,003
AUC GIR, 0–1,5 ч	283,0	229,5	1,23 [1,03; 1,47]	0,022
AUC GIR, 0–2 ч	433,1	362,0	1,20 [1,00; 1,43]	0,048

В пользу Быстрого аспарта ➔ В пользу инсулина аспарт

Соотношение лечения

Быстрый аспарт/инсулин аспарт

Рис. 9. Начало снижения уровня глюкозы (A) и раннее снижение уровня глюкозы (B) для быстрого аспарта в сравнении с iAсп после подкожной инъекции дозы 0,2 Ед/кг у пожилых людей с СД1. "Быстрый аспарт – iAсп." Для сравнения лечения быстрым аспартом против iAсп. "Быстрый аспарт/iAсп. AUC – площадь под кривой; ДИ – доверительный интервал; GIR – скорость инфузии глюкозы; iAсп – инсулин аспарт; МНК – среднее значение метода наименьших квадратов; СД1 – сахарный диабет 1 типа; $t_{50\% \text{ GIRmax}}$ – время до достижения 50% максимальной скорости инфузии глюкозы в ранней фазе профиля инфузии глюкозы; t_{GIRmax} – время до достижения максимальной скорости инфузии глюкозы; U – единицы. Данные Heise и соавт. [24].

Японцы

Поскольку раса и этническая принадлежность могут влиять на фармакологические характеристики быстрого аспарта также не подвержены, в какой-либо клинически значимой степени, влиянию почечной или печеночной недостаточности.

Японцы

Поскольку раса и этническая принадлежность могут влиять на фармакологические характеристики инсулинов, фармакокинетические характеристики быстрого аспарта также не подвержены, в какой-либо клинически значимой степени, влиянию почечной или печеночной недостаточности.

Японцы

Поскольку раса и этническая принадлежность могут влиять на фармакологические характеристики инсулинов, фармакокинетические свойства быстрого аспарта сравнивались с таковыми iAсп в клэмп-исследовании у японских пациентов с СД1 [25, 64]. Фармакокинетические/фармакодинамические профили были смещены влево для более быстрого аспарта по сравнению с iAсп (рис. 10). Для быстрого аспарта по сравнению с iAсп начало появления в крови произошло на 4,1 мин раньше (p<0,001), $t_{50\% \text{ GIRmax}}$ было на 10,2 мин короче (p<0,001), а AUC GIR, 0–30 мин была на 94% выше (p<0,001) [25]. Аналогично, начало действия произошло на 5,3 мин раньше (p=0,001), $t_{50\% \text{ GIRmax}}$ было на 10,0 мин короче (p<0,001) и AUC GIR, 0–30 мин была на 110% выше (p=0,002) [25]. Соответствующие различия для быстрого аспарта относительно iAсп у пациентов белой расы составили – появление в крови – на 4,9 мин раньше, $t_{50\% \text{ GIRmax}}$ – на 9,5 мин раньше, AUC GIR, 0–30 мин на 101% выше, начало действия – на 4,9 мин раньше, $t_{50\% \text{ GIRmax}}$ – на 9,5 мин короче и AUC GIR, 0–30 мин на 74% больше (все p<0,001). Таким образом, в соответствии с результатами, полученными на испытуемых белой расы, быстрый аспарт у японцев также более приближен к секреции инсулина после приема пищи у здоровых лиц по сравнению с ранее разработанными быстродействующими инсулинами.

Различные области введения препарата

Инсулин можно вводить подкожно в различные области, однако, возможно, это приводит к различиям в фармакокинетических профилях [65, 66, 67]. Именно поэтому весьма интересны результаты исследования, проведенное на здоровых мужчинах, оценивающего фармакокинетику быстрого аспарта, вводимого подкожно в область живота, плечо или бедро (рис. 11) [26]. Начало появления препарата в крови составляло ~3 мин, $t_{50\% \text{ GIRmax}}$
~20 мин, и $t_{max} \approx 55$ мин для быстрого аспарта, независимо от области инъекции. Ранняя экспозиция в течение первых 1 или 2 ч после введения и C_{max} были на 20–30% ниже для бедра по сравнению с областью живота и плеча. $AUC_{\text{асп,0-2ч}}$ была сопоставима для всех трех областей инъекции [26]. Основываясь на этих результатах, сверхбыстрые фармакокинетические свойства быстрого аспарта наиболее выражены при подкожном введении в живот или плечо по сравнению с бедром.

Эффект антиинсулиновых антител

Влияние анти-иАсп антител на фармакокинетику/фармакодинамику быстрого аспарта и иАсп было исследовано в четырех клинико-фармакологических исследованиях, дополненных результатами исследования III фазы [21]. Как для быстрого аспарта, так и иАсп общая экспозиция была примерно в 2 раза выше для общего по сравнению со свободным иАсп, что, по крайней мере частично, может быть объяснено наличием антител против иАсп. Таким образом, более высокие уровни анти-иАсп антител были связаны с более низким отношением свободный/общий иАсп для $AUC_{\text{асп,0-2ч}}$, [21]. Было также показано, что начальный эффект снижения уровня глюкозы в течение 1 ч после введения дозы был более высоким для быстрого аспарта по сравнению с иАсп независимо от уровня антител против иАсп, и, по существу, в исследовании не было выявлено никакой корреляции между уровнем анти-иАсп антител и увеличением ППГ через 1 ч в тесте с едой [21]. На основании этих результатов сделан вывод о том, что быстрый аспарт имеет ускоренные фармакологические характеристики по сравнению с иАсп, независимо от уровня антител против иАсп.

Рис. 10. Средние 2-часовые профили концентрации иАсп в сыворотке крови в зависимости от времени (A) и средние 2-часовые профили снижения глюкозы (B) для быстрого аспарта по сравнению с иАсп после подкожной инъекции в дозе 0,2 Ед/кг у японских пациентов с СД1. ИАсп – инсулин аспарт; СД1 – сахарный диабет 1 типа; U – единицы. Из Shiramoto и соавт. [25].

Рис. 11. Средние 5-часовые профили концентрации иАсп в сыворотке крови для 0,2 ед/кг быстрого аспарта, вводимого подкожно в область живота, плеча или бедра здоровым мужчинам. ИАсп – инсулин аспарт; U – единицы. Из Hövelmann и соавт. [26].
Это согласуется с рядом других исследований, в которых не было выявлено клинически значимого влияния антиинсулиновых антител на фармакодинамику, эффективность или безопасность инсулина [21, 68, 69, 70].

КЛИНИЧЕСКИЕ ПОСЛЕДСТВИЯ ФАРМАКОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК БЫСТРОГО АСПАРТА

Инъекционная терапия с многократными инъекциями

В нескольких исследованиях III фазы было показано, что фармакологические характеристики быстрого аспарта приводят к улучшению контроля ППГ и, по меньшей мере, к эффективному общему гликемическому контролю с аналогичным или сниженным общим риском гипогликемии по сравнению с иАсп при использовании в виде многократных ежедневных инъекций и при введении в начале приема пищи (табл. 1).

У пациентов с СД1 эффективность и безопасность быстрого аспарта в режиме базис-болюсной терапии сравнивались с иАсп в 52-недельном исследовании с инсулином детемиром и в 26-недельном исследовании с инсулином деглудеком [28, 30, 31]. Повышение уровней ППГ в тесте со стандартной едой было стабильно снижено при применении быстрого аспарта в сравнении с иАсп через 1 ч после еды в обоих испытаниях, а также через 30 мин после еды в 26-недельном исследовании и через 2 ч после приема пищи на 26-й неделе 52-недельного исследования (рис. 12a) [28, 30, 31]. В 52-недельном исследовании HbA₁c была еще меньше на 0,15% для быстрого аспарта по сравнению с иАсп после 26 нед [35]. Увеличение ППГ через 20 мин после начала приема пищи исследовалось в 26-недельном исследовании, а более низкая частота гипогликемии наблюдалась при применении быстрого аспарта в 16-недельном исследовании [32, 33]. 18-недельное исследование изучало добавление быстрого аспарта к базальному инсулину и метформину у пациентов с СД2 [34]. Как и ожидалось, было продемонстрировано превосходство снижения уровня HbA₁c (см. табл. 1) и улучшение в среднем на 2,48 ммоль/л самостоятельно измеренного уровня ППГ через 2 ч после приема пищи для терапии быстрым аспартом в сравнении с терапией только базальным инсулином, и с многократным повышением частоты тяжелой или подтвержденной определением ГК гипогликемии при добавлении быстрого аспарта к базальному инсулину (табл. 1).

Эффективность и безопасность быстрого аспарта также оценивалась у детей и подростков (1–17 лет) с СД1 в 26-недельном исследовании быстрого аспарта или иАсп в базис-боловом режиме в сравнении с инсулином деглудеком [35]. Увеличение ППГ через 1 ч, основанное на самостоятельном измерении ГК, было меньше при применении быстрого аспарта в сравнении с иАсп на завтрак, обед и во время всех приемов пищи; HbA₁c был снижен на 0,17% для быстрого аспарта по сравнению с иАсп с сопоставимой частотой тяжелой или подтвержденной гипогликемии [35]. Эти результаты показывают, что и у детей, и у подростков ускоренная абсорбция быстрого аспарта позволяет улучшить контроль ППГ и, по крайней мере, обеспечить эффективный общий гликемический контроль с аналогичной частотой гипогликемии по сравнению с иАсп. Сверхбыстрые фармакологические характеристики быстрого аспарта позволяют использовать препарат после приема пищи. Введение быстрого аспарта через 20 мин после начала приема пищи исследовалось в нескольких исследованиях III фазы, включая детей, подростков и взрослых с СД1 [30, 31, 35]. Увеличение
Название исследования	Популяция исследования	Продолжительность лечения; схема лечения	Терапия сравнения	Различия в эффективности быстрого аспарта и препарата сравнения (расчетные различия в лечении)	Различия в частоте гипогликемии при применении быстрого аспарта и препарата сравнения (различия в %)			
				НbA1c (%)	**ΔPПГ1ч** (ммоль/л)	**ΔPПГ2ч** (ммоль/л)	**Тяжелая гипогликемия**	**Тяжелая или подтвержденная уровень ГК гипогликемия**
Терапия многократными инъекциями								
Onset 1 [30]	СД1	26 недель; лечение – базис болюсная инсулинотерапия с инсулином детемир	иАсп	-0,15; не уступает; существенный	-1,18	-0,67	НО	1 ↑
Onset 1 [28]	СД1	52 недели; лечение – базис болюсная инсулинотерапия с инсулином детемир	иАсп	-0,10; существенный	-0,91	-0,42	21 ↓	1 ↑
Onset 8 [31]	СД1	26 недель; лечение – базис болюсная инсулинотерапия с инсулином дегludeк	иАсп	-0,02; не уступает	-0,90	-0,35	НО	НЗ
Onset 2 [32]	СД2; лечение базальным инсулином + ПССП	26 недель; лечение – базис болюсная инсулинотерапия с инсулином глагрин + ПССП	иАсп	-0,02; не уступает	-0,59	-0,36	25 ↑	9 ↑
Onset 9 [33]	СД2; лечение базис-болюсной инсулинотерапией	16 недель; лечение – базис болюсная инсулинотерапия с инсулином дегludeк ± метформин	иАсп	-0,04; не уступает	-0,40	НО	НО	19 ↓
Onset 3 [34]	T2D; лечение базальным инсулином + ПССП	18 недель; лечение – базис-болюсным введением инсулина + метформин	Базальный только + метформин	-0,94; превосходящий	НО	НО	789 ↑	724 ↑
Onset 5 [29]	СД1; лечение НПИИ	26 недель	иАсп	0,09; не уступает; существенный	-0,91	-0,90	НО	0 ↔

Примечания: 1. Результаты, выделенные жирным шрифтом, указывают на статистически значимое различие между быстрым аспартом и терапией сравнения. Стрелки для гипогликемии указывают числовое направление различий между схемами лечения. 2. НПИИ – непрерывная подкожная инфузия инсулина; ΔППГ 1ч – приращение уровня постпрандиальной глюкозы в течение 1 ч; ΔППГ 2ч – приращение уровня постпрандиальной глюкозы в течение 2 ч; HbA1c – гликозилированный гемоглобин; ГК – глюкоза крови; иАсп – инсулин аспарт; НО – не определено; НЗ – не значимо (но оценка не предоставлена); ПССП – пероральный сахароснижающий препарат; СД1 – сахарный диабет типа 1; СД2 – сахарный диабет 2 типа.
ППГ в тесте с приемом пищи было выше при применении быстрого аспарта после еды по сравнению с иАсп в начале приема пищи, что сохранялось до 1 ч после приема пищи. Тем не менее применение после еды быстрого аспарта давало сопоставимое снижение уровня HbA1c и сопоставимую частоту тяжелой или подтвержденной определением ГК гипогликемии по сравнению с иАсп во время еды [30, 31, 35]. Эти результаты свидетельствуют о том, что введение быстрого аспарта после еды может быть альтернативным терапевтическим подходом у детей, у которых часто имеется нерегулярный режим питания, и в других ситуациях, когда фактическое потребление пищи сложно оценить заранее.

Непрерывная подкожная инфузия инсулина (НПИИ)

При ускоренной фармакокинетике инсулина, которая характерна для быстрого аспарта, возможно его использование в инсулиновых помпах [71]. Совместимость для применения в помпах для быстрого аспарта в сравнении с иАсп исследовалась в течение 6 нед у 37 пациентов с СД1. В ходе исследования не отмечено микроскопически подтвержденных окклюзий инфузионного набора, что предполагает сопоставимую совместимость быстрого аспарта и иАсп для НПИИ [42]. Поисковая работа на 43 пациентах с СД1 показала, что в тесте с приемом пищи после 2 нед НПИИ с быстрым аспартом или иАсп средний уровень ГК в течение первых 2 ч после приема пищи был на 0,99 ммоль/л ниже для быстрого аспарта по сравнению с иАсп [43]. Также в 16-недельном исследовании III фазы у взрослых с СД1, в котором изучались эффективность и безопасность быстрого аспарта в НПИИ, повышение ППГ через 30 мин, через 1 и 2 ч в тесте с приемом пищи в конце лечения уменьшалось в случае применения быстрого аспарта в сравнении с иАсп (рис. 12б) [29]. HbA1c не уступал в своих значениях при применении быстрого аспарта в сравнении с иАсп, хотя разница в 0,09% в пользу иАсп была статистически значимой. Частота тяжелой или подтвержденной определением ГК гипогликемии была сходной для быстрого аспарта и иАсп (табл. 1) [29]. Таким образом, можно говорить о том, что быстрым аспартом обеспечивается более эффективный контроль ППГ после подкожной инъекции по сравнению с ранее разработанным быстродействующим инсулином, что также относится к лечению посредством НПИИ. По мере появления более совершенных инсулиновых помпов станет более важным использование в них ускоренного всасывания быстрого аспарта, включающий систему замкнутого контура и искусственную поджелудочную железу [71, 72]. Тем не менее, учитывая относительно ограниченный клинический опыт применения быстрого аспарта в инсулиновых помпах, необходимо провести более масштабные клинические испытания и/или накопление реального опыта применения, которое позволило бы полностью раскрыть профиль безопасности, а также клинический потенциал применения быстрого аспарта в помповом инсулинонасосе [73].

ПОТЕНЦИАЛЬНЫЕ ФАКТОРЫ РИСКА И ОГРАНИЧЕНИЯ, СВЯЗАННЫЕ С БЫСТРЫМ АСПАРТОМ

Во всех клинических испытаниях быстрый аспарт был оценен как безопасный и хорошо переносимый препарат, что было ожидаемо ввиду отсутствия изменений в молекуле иАсп, а также хорошего профиля безопасности для двух других вспомогательных веществ (см. раздел «Быстрый аспарт»).

При применении ультра-быстроэффектующего инсулина существует риск того, что профиль снижения глюкозы крови может быть слишком быстрым, чтобы соответствовать абсорбции глюкозы из пищи, особенно в случае большого объема потребляемой пищи и/или большого содержания в ней жира [5, 11]. В некоторых исследованиях быстрый аспарт был связан с небольшим повышением частоты гипогликемии в течение первых 1–2 ч после начала приема пищи, хотя этот период обычно сопровождается низкой частотой гипогликемии [28, 29, 30, 32]. Другой потенциальной проблемой может быть риск недостатка инсулина в поздней фазе и связанное с этим возникновение гипергликемии. По-видимому, это не является проблемой для аспарта, по крайней мере, до 4 ч после еды (рис. 12). В исследованиях был показан более низкий риск гипогликемии с 3 до 4 ч после еды для быстрого аспарта в сравнении с иАсп, что указывает на то, что более быстрый профиль действия аспарта более соответствует потребностям в утилизации глюкозы в позднем постпрандиальном периоде [31]. Тем не менее данная продолжительность действия инсулина не может подойти для всех типов и объемов блюд. В большинстве исследований, в которых проводилось изучение подъема ППГ при применении быстрого аспарта и иАсп в тестах с приемом еды, пациенты получали стандартную жидкую пищу [23, 28–33]. Также важно установить наилучшие режимы дозирования быстрого аспарта для смешанных блюд, блюд с высоким содержанием жиров и углеводов с учетом интервала между инъекциями и приемом пищи и потенциальной потребности в дополнительных дозах. Интересно, что в нескольких исследованиях изучался контроль ППГ при применении во время еды быстрого аспарта и иАсп после приема нестандартизированной пищи. У пациентов с СД2 результаты измерения ГК исходно и через 1 ч после еды были статистически значимыми в пользу быстрого аспарта по сравнению с иАсп в обед, основного приема пищи вечером и во время всех приемов пищи [33]. У детей и подростков с СД1 изменения исходных показателей интерстициального прироста глюкозы в течение 1 и 2 ч были статистически значимыми в пользу быстрого аспарта по сравнению с иАсп во время завтрака, основного приема пищи вечером, во время всех приемов пищи [35]. Кроме того, у взрослых с СД1 с использованием НПИИ изменения по сравнению с исходным уровнем среднего интерстициального уровня глюкозы в точки 1 или 2 ч были статистически значимыми для быстрого аспарта по сравнению с иАсп при всех индивидуальных приемах пищи и всех приемах пищи [29]. Поскольку состав блюда и время приема пищи могут значительно колебаться между индивидуумами, а также между различными регионами и странами, исследования по изучению схем дозирования быстрого аспарта в зависимости от типа пищи не могут отразить все возможные практимальные режимы. Таким образом, очень важно предпринимать индивидуализированный подход для обеспечения наилучшего соответствия между режимом дозирования инсулина и привычным образом питания.
Более быстрое начало и короткая продолжительность действия быстрого аспарта должны также учитываться при использовании путем НПИИ. В двойном слепом исследовании, изучавшем применение быстрого аспарта в сравнении с iAsp, вводимыми с помощью НПИИ, непрерывный мониторинг уровня глюкозы показал более высокие уровни глюкозы в ночное время и до еды в случае быстрого аспарта [29]. В связи с этим предположено, что параметры инсулиновой помпы могут быть скорректированы для адаптации к специфической фармакокинетике быстрого аспарта [29]. Таким образом, при использовании быстрого аспарта в режиме НПИИ в клинической практике необходимо учить потребность в ином распределении между базальной скоростью и болюсными дозами введения инсулина, а также корректирующие поправки для всех типов болюсов, которые в настоящее время разработаны для быстродействующих инсулинов [73].

Выводы

Быстрый аспарт представляет собой сверхбыстрый состав iAsp, разработанный для обеспечения ускоренного всасывания после подкожного введения. Фармакокинетические и фармакодинамические профили по сравнению с iAsp в разных популяциях (взрослые с СД1 или СД2, дети и подростки, пожилые люди и японцы), а также при НПИИ. Улучшенные фармакологические характеристики обеспечивают более быструю абсорбцию препарата и улучшенный контроль ППГ и, по крайней мере, равный гликемический контроль с аналогичным риском гипогликемии в сравнении с iAsp. В целом быстрый аспарт может частично соответствовать неудовлетворенным потребностям пациентов с диабетом в инсулине с фармакокинетическим профилем, который приближается к здоровой эндогенной секреции прандиального инсулина.

Дополнительная информация

Благодарности. Авторы хотели бы поблагодарить Карстена Ройсторф, PhD, CR Pharma Consult, Коленгаген, Дания, за предоставление поддержки по написанию статьи, финансируемой Novo Nordisk, и Навин Ратор, MD, Novo Nordisk, за правки медицинского текста окончательной версии статьи.

Конфликт интересов. Статья была профинансирована «Ново Nordisk». Ханне Хаар является сотрудником и акционером Novo Nordisk. Тим Хейз является акционером Profil, фирмы, получавшей финансовое финансирование исследований от Adocia, Boehringer Ingelheim, Dance Pharmaceuticals, Eli Lilly, Gen & Lee Pharmaceuticals, Johnson & Johnson, Mars, MedImmune, Mylan, Nordic Bioscience, Novo Nordisk, Pfizer, Novo Nordisk, Saniona, Nano, Wockhardt и Zealand Pharma. Кроме того, Тим Хейз является членом консультативных групп для Mylan и Novo Nordisk и получил гонорары докладчика и гранты на поездки от Eli Lilly и Novo Nordisk.

Данная статья является репринтом: Haahr H., Heise T. Fast-Acting Insulin Aspart: A Review of its Pharmacokinetic and Pharmacodynamic Properties and the Clinical Consequences. Clin Pharmacokinet. 2020;59:155-172. https://doi.org/10.1007/s40262-019-00834-5

Список литературы

1. Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients. Variations with increasing levels of HbA1c. Diabetes Care. 2003;26(3):881–885. doi: https://doi.org/10.2337/diacare.26.3.881

2. Woerle HJ, Neumann C, Zschau S, et al. Impact of fasting and postprandial glucose on overall glycemic control in type 2 diabetes Importance of postprandial glycemia to achieve target HbA1c levels. Diabetes Res Clin Pract. 2007;77(2):280–285. doi: https://doi.org/10.1016/j.diabres.2006.11.011

3. Saad A, Dailla Man C, Nandy DK, et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes. 2012;61(11):2691–2700. doi: https://doi.org/10.2337/db11-1478

4. Heise T. Getting closer to physiologic insulin secretion. Clin Ther. 2007;29(Suppl D):S161–165. doi: https://doi.org/10.1016/j.clinthera.2007.12.012

5. Heinemann L, Muchmore DB. Ultrafast-acting insulins: state of the art. J Diabetes Sci Technol. 2012;6(4):728–742. doi: https://doi.org/10.1177/193292681200600402

6. Home PD. Plasma insulin profiles after subcutaneous injection: how close can we get to physiology in people with diabetes? Diabetes Obes Metab. 2015;17(11):1011–1020. doi: https://doi.org/10.1111/dom.12501

7. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S15–942. doi: https://doi.org/10.2337/dc19-S009

8. Sheldon B, Russell-Jones D, Wright J. Insulin analogues: an example of applied medical science. Diabetes Obes Metab. 2009;11(1):15–19. doi: https://doi.org/10.1111/j.1463-1326.2008.01015.x

9. Home PD. The pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues and their clinical consequences. Diabetes Obes Metab. 2012;14(9):780–788. doi: https://doi.org/10.1111/j.1463-1326.2012.01580.x

10. Luijf YM, van Bon AC, Hoekstra JB, Devries JH. Premeal injection of rapid-acting insulin reduces postprandial glycemic excursions in type 1 diabetes. Diabetes Care. 2010;33(10):2152–2155. doi: https://doi.org/10.2337/dc10-0692

11. Sliamty D, Ameil SA, Chouldhary P. Optimal prandial timing of bolus insulin in diabetes management: a review. Diabet Med. 2018;35(3):306–316. doi: https://doi.org/10.1111/dme.13525

12. Overmann H, Heinemann L. Injection-meal interval: recommendations of diabetologists and how patients handle it. Diabetes Res Clin Pract. 1999;43(2):137–142. doi: https://doi.org/10.1016/s0168-8227(98)00132-6

13. Kilsgaard J, Buckley ST, Nielsen RH, et al. Elucidating the mechanism of absorption of fast-acting insulin aspart: the role of niacinamide. Pharm Res. 2019;36(3):49. doi: https://doi.org/10.1007/s11095-019-2578-7

14. Biester T, Kordonouri O, Danne T. Pharmacological properties of faster-acting insulin aspart. Curr Diabetes Rep. 2017;17(11):101. doi: https://doi.org/10.1007/s11989-017-0931-y

15. Senior P, Hramiak I. Fast-acting insulin aspart and the need for new mealtime insulin analogues in adults with type 1 and type 2 diabetes: a Canadian perspective. Can J Diabetes. 2019;43(7):515–523. doi: https://doi.org/10.1007/s12534-019-00959-0

16. Heise T, Pieber TR, Danne T, et al. A pooled analysis of clinical pharmacology trials investigating the pharmacokinetic and pharmacodynamic characteristics of fast-acting insulin aspart in adults with type 1 diabetes. Clin Pharmacokinet. 2017;56(5):551–559. doi: https://doi.org/10.1007/s40262-017-0514-8

17. Pieber TR, Svihlikova E, Brunner M, et al. Fast-acting insulin aspart in subjects with type 2 diabetes: earlier onset and greater initial exposure and glucose-lowering effect compared with insulin aspart. Diabetes Obes Metab. 2019;21(9):2068–2075. doi: https://doi.org/10.1111/dom.13767

18. Heise T, Hovelmann U, Brandstedt L, et al. Faster-acting insulin aspart: earlier onset of appearance and greater early pharmacokinetic and pharmacodynamic effects than insulin aspart. Diabetes Obes Metab. 2015;17(7):682–688. doi: https://doi.org/10.1111/dom.12468
32. Bowering K, Case C, Harvey J, et al. Faster aspart versus insulin aspart measured as free or total insulin aspart and the relation to anti-insulin aspart antibody levels in subjects with type 1 diabetes mellitus. *Clin Pharmacokinet*. 2019;58(5):639–649. doi: https://doi.org/10.1007/s40262-018-0718-6

22. Basu A, Pieber TR, Hansen AK, et al. Greater early postprandial suppression of endogenous glucose production and higher initial glucose disappearance is achieved with fast-acting insulin aspart compared with insulin aspart. *Diabetes Obes Metab*. 2018;20(7):1615–1622. doi: https://doi.org/10.1111/dom.13270

23. Fath M, Danne T, Biester T, et al. Faster-acting insulin aspart provides faster onset and greater early exposure vs insulin aspart in children and adolescents with type 1 diabetes mellitus. *Pediatr Diabetes*. 2017;18(8):903–910. doi: https://doi.org/10.1111/pedi.12506

20. Heise T, Holleman F, deVries JH. The interpretation of glucose levels in subjects with type 1 diabetes mellitus. *Eur J Clin Chem Clin Biochem*. 1997;35(5):365–367. doi: https://doi.org/10.1007/s001250051536

19. Heise T, Nosek L, Spitzer H, et al. Insulin glulisine: what can it and cannot do, and how to do it. *Diabetes Obes Metab*. 2016;18(10):962–972. doi: https://doi.org/10.1111/dom.12703

18. Jans L, Parks MH, Sahaywalla C. Determination of time to onset and rate of action of insulin products: importance and new approaches. *J Pharm Sci*. 2013;102(1):271–279. doi: https://doi.org/10.1002/jps.23355

17. Steiner S, Hompesch M, Pohli R, et al. A novel insulin formulation with a more rapid onset of action. *Diabetologia*. 2008;51(9):1602–1606. doi: https://doi.org/10.1007/s00125-008-1095-8

16. Lindholm A, Jacobsen LV. Clinical pharmacokinetics and pharmacodynamics of insulin aspart. *Clin Pharmacokinet*. 2009;48(4):261–291. doi: https://doi.org/10.2165/00003088-200847010-00002

15. Becker RH, Frick AD. Clinical pharmacokinetics and pharmacodynamics of insulin glulisine. *Clin Pharmacokinet*. 2008;47(1):7–20. doi: https://doi.org/10.2165/00003088-200847010-00002

14. Morse L, Muchmore DB, Hompesch M, et al. Comparative pharmacokinetics and insulin action for fast-acting insulin analogs injected subcutaneously with and without hyaluronidase. *Diabetes Care*. 2013;36(2):273–275. doi: https://doi.org/10.2337/dc12-0808

13. Arnqvist H, Olsson PO, von Schenck H. Free and total insulin as determined after precipitation with polyethylene glycol: analytical characteristics and effects of sample handling and storage. *Clin Chem*. 1982;28(1):93–96. doi: https://doi.org/10.1093/clinchem/33.1.93

12. Laplace H. Anti-insulin antibodies in insulin immunometric assays: a still possible pitfall. *Eur J Clin Chem Clin Biochem*. 1997;35(5):365–367. doi: https://doi.org/10.1015/cclm.1997.35.5.365

11. Heise T, Nosek L, Spitzer H, et al. Insulin glulisine: a faster onset of action compared with insulin aspart. *Isoprio*. *Diabetes Obes Metab*. 2007;9(5):746–753. doi: https://doi.org/10.1111/j.1463-1326.2007.00746.x

10. Arnold S, Rave K, Hövelmann U, et al. Insulin glulisine has a faster onset of action compared with insulin aspart in healthy volunteers. *Exp Clin Endocrinol Diabetes*. 2011;119(9):662–664. doi: https://doi.org/10.1055/s-0030-1252067

9. Swinnen SG, Holleman F, Delivry A. The interpretation of glucose clamp studies of long-acting insulin analogues: from physiology to marketing and back. *Diabetologia*. 2008;51(10):1790–1795. doi: https://doi.org/10.1007/s00125-008-1098-5

8. Heise T, Zijlstra E, Nosek L, et al. Glucometric control with faster-acting insulin aspart in patients with type 1 diabetes mellitus: the onset 7 trial. *Diabetes Care*. 2018;41(1):27–33. doi: https://doi.org/10.2337/dc17-1678

7. Zijlstra E, Demissie M, Grauungard T, et al. Investigation of pump compatibility of fast-acting insulin aspart in subjects with type 1 diabetes. *Diabetes Technol Ther*. 2016;18(11):145–151. doi: https://doi.org/10.1177/1932296716673375

6. Zijlstra E, Grauungard T, et al. Comparison of pharmacokinetic and pharmacodynamic properties between faster-acting insulin aspart and insulin aspart in elderly subjects with type 1 diabetes mellitus. *Drugs Aging*. 2017;34(11):29–38. doi: https://doi.org/10.1007/s40266-016-0418-6

5. Shiroimoto M, Nishida T, Hansen AK, Haahr H. Fast-acting insulin aspart in Japanese patients with type 1 diabetes: faster onset, higher early exposure and greater early glucose-lowering effect relative to insulin aspart. *J Diabetes Investig*. 2018;9(2):303–310. doi: https://doi.org/10.1111/jdi.12697

4. Holmström U, Zijlstra E, et al. Efficacy and safety of fast-acting insulin aspart in comparison with insulin aspart in type 1 diabetes patients. *Diabetes Obes Metab*. 2013;15(2):98–104. doi: https://doi.org/10.1111/dom.12280

3. Bode BW, Iotova V, Kovarenko M, et al. Efficacy and safety of fast-acting insulin aspart compared with insulin aspart in elderly subjects with type 1 diabetes. *Diabetes Care*. 2017;40(7):951–957. doi: https://doi.org/10.2337/dc16-1778

2. Zijlstra E, Demissie M, Grauungard T, et al. Investigation of pump compatibility of fast-acting insulin aspart in subjects with type 1 diabetes. *Diabetes Technol Ther*. 2016;18(11):145–151. doi: https://doi.org/10.1177/1932296716673375

1. Heise T, Zijlstra E, Nosek L, et al. Glycaemic control with faster-acting insulin aspart in patients with type 1 diabetes using continuous subcutaneous insulin infusion. *Diabetes Technol Ther*. 2017;19(1):125–133. doi: https://doi.org/10.1089/dia.2016.0350

0. Heise T, Zijlstra E, Nosek L, et al. Efficacy and safety of fast-acting insulin aspart compared with insulin aspart in type 1 diabetes patients. *Diabetes Obes Metab*. 2013;15(2):98–104. doi: https://doi.org/10.1111/dom.12280
Haar H, Haise T. Fast-Acting Insulin Aspart: A review of its pharmacokinetic and pharmacodynamic properties and the clinical consequences. *Diabetes Mellitus*. 2020;23(1):xxx-xxx. doi: https://doi.org/10.14341/DM12357