Паттерн генетического разнообразия у локальных и коммерческих пород свиней на основе анализа микросателлитов

В.Р. Харзинова, Н.А. Зиновьева

Федеральный исследовательский центр животноводства – ВИЖ им. академика Л.К. Эрнста, Дубровицы, Московская область, Россия

e-mail: veronika0784@mail.ru

Аннотация. Одной из основных задач генетики и селекции животных является оценка генетического разнообразия и исследование генетических взаимоотношений между различными породами и популяциями с помощью методов молекулярно-генетического анализа. Нами проведен анализ полиморфизма микросателлитов и получена информация о состоянии генетического разнообразия и структуры популяций локальных пород свиней, разводимых на территории России (кемеровская, беркширская, ливенская, мангалица, цивильская), Республики Беларусь (крупная белая, черно-пестрая), Украины (степная белая), а также коммерческих пород импортного происхождения отечественной репродукции (крупная белая, ландрас, дюрок). Материалом для исследований служили пробы ткани 1194 образцов свиней из биоресурсной коллекции «Банк генетического материала животных и птиц» ФГБНУ ФЦИ ВИЖ им. Л.К. Эрнста. Полиморфизм 10 STR-локусов (S0155, S0355, S0386, SW24, SO005, SW72, SW951, S0101, SW240, SW857) определяли по ранее разработанной методике с помощью генетического анализатора ABI3130xl (Applied Biosystems, США). Для оценки аллелепонда каждой породы рассчитывали среднее число аллелей ($N_A$) и эффективное число аллелей ($N_E$) на локус, аллельное разнообразие ($A_R$), вычисленное с применением процедуры рарификации, наблюдаемую ($H_O$) и ожидаемую ($H_E$) гетерозиготность, индекс фиксации ($F_IS$). Степень генетической дифференциации пород оценивали на основе попарных значений $F_{ST}$ и $D$. Анализ параметров аллельного и генетического разнообразия локальных пород показал максимальный уровень полиморфности у свиней украинской степной породы ($N_A = 6.500, N_E = 3.709, A_R = 6.020$, а минимальный – у свиней породы дюрок (4.875, 2.119 и 3.821 соответственно). Наиболее высокий уровень генетического разнообразия выявлен у свиней крупной белой породы Республики Беларусь ($H_O = 0.707, H_E = 0.702$). Наиболее высокий уровень генетического разнообразия установлен у свиней импортных пород ландрас ($H_O = 0.459, H_E = 0.400$) и дюрок ($H_O = 0.480, H_E = 0.469$), что, возможно, указывает на высокое давление отбора в этих породах. По результатам филогенетического анализа выявлена генетическая обособленность пород свиней корня крупной белой породы, в создании которых принимали участие беркширские свиньи, и отдаленность пород ландрас и мангалица. Кластерный анализ показал генетическую консолидированность свиней пород черно-пестрая, беркширская и мангалица. Отличной от других пород генетической структурой характеризовались также импортные породы свиней с кластеризацией в зависимости от происхождения. Информация, полученная в ходе исследований, может служить руководством для стратегий управления и разведения изученных пород свиней с целью лучшего их использования и сохранения.

Ключевые слова: породы свиней; микросателлиты; генетическое разнообразие.

Для цитирования: Харзинова В.Р., Зиновьева Н.А. Паттерн генетического разнообразия у локальных и коммерческих пород свиней на основе анализа микросателлитов. Вавиловский журнал генетики и селекции. 2020; 24(7):747-754. DOI 10.18699/VJ20.669

The pattern of genetic diversity of different breeds of pigs based on microsatellite analysis

V.R. Kharzinova, N.A. Zinovieva

L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Moscow region, Russia

e-mail: veronika0784@mail.ru

Abstract. One of the main tasks of genetics and animal breeding is the assessment of genetic diversity and the study of genetic relationships between different breeds and populations using molecular genetic analysis methods. We analysed the polymorphism of microsatellites and the information on the state of genetic diversity and the population structure of local breeds in Russia: the Kemerovo, the Berkshire, the Liven, the Mangalitsa, and the Civilian; in the Republic of Belarus: the Large White and the Black-and-White; and in Ukraine: the White Steppe, as well as commercial breeds of imported origin of domestic reproduction: the Large White, the Landrace, and the Duroc. The materials used for this study were the tissue and DNA samples extracted from 1,194 pigs and DNA of the UNU "Genetic material bank of domestic and wild animal species and birds" of the L.K. Ernst Federal Research Center for Animal Husbandry.
Введение
В настоящее время промышленное производство свинины основано на использовании ограниченного числа коммерческих пород свиней импортного происхождения. Данные породы хорошо приспособлены к интенсивным производственным системам, направленным на максимальную реализацию генетического потенциала продуктивности (Muñoz et al., 2019). Наряду с зарубежными существует локальные (местные) породы, которые являются носителями уникальных форм изменчивости и составляют национальные генетические ресурсы сельскохозяйственных видов животных. Несмотря на свою немногочисленность, локальные породы не утратили значения и в современных условиях развития животноводства. Такие породы, имея более низкую продуктивность по сравнению с коммерческими, характеризуются большей индивидуальной изменчивостью, конституциональной крепостью, стессоустойчивостью и хорошей адаптацией к местным климатическим условиям (Харзинова и др., 2017). Локальные породы рассматриваются сегодня в качестве незаменимых генетических ресурсов для создания географически ориентированных систем органического производства продукции животноводства. По мнению Ю.А. Столповского (2013), из-за включения в мировое сельское хозяйство транснациональных животноводческих индустрий создается опасность сокращения национальных генетических ресурсов, зависимости от импорта продовольствия и селекционных достижений, а также появляется угроза глобализации распространения инфекций и скрытых генетических дефектов. Отсюда следует все возрастающая важность не только изучения генофондов сельскохозяйственных видов животных импортного происхождения, но и сохранения генетических ресурсов местных пород.

Согласно руководству по разработке национальных планов управления генетическими ресурсами сельскохозяйственных животных (FAO, 1998), были предложена интегрированная программа всемирного управления генетическими ресурсами сельскохозяйственных животных с использованием эталонных микросателлитных маркеров (короткие тандемные повторы – short tandem repeats, STR) (Egito et al., 2007). На сегодняшний день имеется множество публикаций, в которых показана прикладная значимость STR для характеристики генетического разнообразия и структуры пород свиней как коммерческого (Зиновьева и др., 2012; Vrtková et al., 2012; Szmatoła et al., 2016), так и местного разведения (Kaul et al., 2002; Kramarenko et al., 2018). Однако сравнительные исследования всего многообразия локальных и коммерческих пород свиней, разводимых на территории России, до настоящего времени не проводились. Целью нашего исследования была характеристика генетического разнообразия и популяционной структуры восьми локальных и трех коммерческих пород свиней на основании анализа микросателлитов.

Материалы и методы
Объектом исследований послужил биологический материал, полученный от 1194 свиней и сохраняемый в коллекции «Банк генетического материала животных и птиц» ФГБНУ ФЦ ВИЖ им. Л.К. Эрнста. В качестве биологического материала использовали образцы ткани (ушной выщип). Представленная выборка включала восьем локальных пород, разводимых на территории России: кемеровская (Кемеровская область, КЕМ, n = 35), бергенская (Ярославская область, BERK, n = 80), ливенская (Орловская область, LIV, n = 67), мангалица (Алтайский край, MNG, n = 52), цивильская (Республика Чувашия, CVL, n = 43), Республики Беларусь: крупная белая (BLW, n = 47) и черно-пестрая (BBP, n = 98); Украины: степная белая (LWUK, n = 61), а также три коммерческие породы импортного происхождения отечественной репродукции, разводимые в селекционно-генетических центрах Орловской, Воронежской и Липецкой областей: крупная белая (LW, n = 241), ландرز (LDR, n = 250) и дюрк (DUR, n = 223).

Выделение ДНК проводили с помощью наборов для выделения геномной ДНК серии «ДНК-Экстран» (ЗАО «Си-
Паттерн генетического разнообразия пород свиней с использованием микросателлитов

В.Р. Харзинова
Н.А. Зиновьева
2020
24-7

Таблица 1. Результаты теста десяти микросателлитов при анализе исследуемых пород свиней на соответствие генетическому равновесию Харди–Вайнберга

| Порода   | Локус МС |
|----------|----------|
|          | SW24    | S0155  | S0005  | SW72   | SW951  | S0386  | S0355  | SW240  | SW857  | S0101  |
| LDR      | **      | **     | ***    | ***    | **      | **     | *      | ***    | ***    | ***    |
| CVL      | *       | ns     | ***    | ns     | ns      | ns     | ns     | ns     | ns     | ns     |
| LIV      | ns      | *      | **     | ns     | ns      | ns     | ns     | ns     | ns     | ns     |
| BLW      | *       | ns     | ***    | ns     | ns      | ns     | *      | ns     | *      | ns     |
| MNG      | ns      | ns     | ***    | ns     | ns      | ns     | ns     | *      | ns     | *      |
| BERK     | ns      | **     | ***    | ns     | ***     | ns     | *      | ns     | *      | ns     |
| KEM      | *       | ns     | ***    | ns     | ns      | **     | *      | ns     | *      | *      |
| LWUK     | ns      | **     | ***    | *      | ***     | ns     | ***    | ns     | *      | ns     |
| BBP      | ns      | ns     | ***    | ns     | ***     | **     | ns     | *      | ns     | ns     |
| DUR      | ***     | ***    | ***    | ns     | ***     | ***    | ns     | ***    | ***    | ***    |
| LW       | ***     | ***    | ***    | ns     | ***     | ***    | ns     | ***    | ***    | ***    |

Примечание. * p < 0.05; ** p < 0.01; *** p < 0.001; ns – недостоверно.
Интересен результат исследований, опубликованный S. Kramarenko с коллегами (2018). В них показано, что у свиней породы дюрок, разводимых в некоторых районах Украины, восемь из двенадцати локусов имели недостаточно значимые отклонения от состояния генетического равновесия. Для оценки степени генетического разнообразия популяций и пород чаще всего используют два основных показателя – уровень полиморфности и степень гетерозиготности (Храброва и др., 2011), результаты анализа которых представлены в табл. 2.

Таблица 2. Параметры генетического разнообразия исследуемых пород свиней на основе анализа микросателлитов

| Порода | n  | NA  | Ne  | A*  | Ho  | He  | FIS |
|--------|----|-----|-----|-----|-----|-----|-----|
| CVL    | 43 | 4.875 ± 0.398 | 2.807 ± 0.295 | 4.810 ± 0.391 | 0.590 ± 0.074 | 0.611 ± 0.047 | 0.059 [-0.100; 0.218] |
| LIV    | 67 | 5.375 ± 0.596 | 2.979 ± 0.306 | 5.073 ± 0.514 | 0.672 ± 0.041 | 0.639 ± 0.037 | -0.060 [-0.159; 0.039] |
| BLW    | 47 | 5.000 ± 0.535 | 3.672 ± 0.492 | 4.934 ± 0.527 | 0.707 ± 0.052 | 0.702 ± 0.029 | -0.002 [-0.088; 0.084] |
| MNG    | 52 | 4.875 ± 0.639 | 2.723 ± 0.376 | 4.659 ± 0.613 | 0.524 ± 0.113 | 0.545 ± 0.095 | 0.100 [-0.120; 0.320] |
| BERK   | 80 | 5.125 ± 0.441 | 2.789 ± 0.206 | 4.769 ± 0.342 | 0.575 ± 0.048 | 0.627 ± 0.028 | 0.079 [-0.062; 0.220] |
| KEM    | 35 | 5.125 ± 0.611 | 3.246 ± 0.443 | 5.444 ± 0.626 | 0.550 ± 0.055 | 0.644 ± 0.054 | 0.139 [0.034; 0.244] |
| LWUK   | 61 | 6.500 ± 0.802 | 3.709 ± 0.427 | 6.020 ± 0.657 | 0.627 ± 0.043 | 0.709 ± 0.028 | 0.118 [0.041; 0.195] |
| BBP    | 98 | 5.375 ± 0.595 | 3.057 ± 0.331 | 4.828 ± 0.550 | 0.645 ± 0.062 | 0.639 ± 0.049 | -0.008 [-0.097; 0.081] |
| DUR    | 223 | 4.875 ± 0.295 | 2.119 ± 0.274 | 3.821 ± 0.305 | 0.480 ± 0.088 | 0.469 ± 0.070 | -0.014 [-0.178; 0.150] |
| LW     | 241 | 6.250 ± 0.559 | 3.349 ± 0.467 | 5.126 ± 0.518 | 0.651 ± 0.047 | 0.672 ± 0.030 | 0.036 [-0.039; 0.111] |
| LDR    | 249 | 6.001 ± 0.463 | 2.396 ± 0.492 | 4.634 ± 0.475 | 0.459 ± 0.095 | 0.490 ± 0.073 | 0.098 [-0.037; 0.233] |

Примечание. n – количество образцов; NA – среднее число аллелей на локус; Ne – число эффективных аллелей на локус; A* – аллельное разнообразие; Ho и He – наблюдаемая и ожидаемая гетерозиготность; FIS – коэффициент инбридинга с 95 % доверительным интервалом.

Интересен результат исследований, опубликованный S. Kramarenko с коллегами (2018). В них показано, что у свиней породы дюрок, разводимых в некоторых районах Украины, восемь из двенадцати локусов имели недостаточно значимые отклонения от состояния генетического равновесия. Для оценки степени генетического разнообразия популяций и пород чаще всего используют два основных показателя – уровень полиморфности и степень гетерозиготности (Храброва и др., 2011), результаты анализа которых представлены в табл. 2. Минимальные значения среднего числа аллелей на локус (NA = 4.875) были отмечены в трех породах: CVL, MNG и DUR, максимальные (более 6.000) – у свиней породы дюрок (LDR, NA = 6.001), у крупной белой породы, разводимой на территории нашей страны (LW, NA = 6.250), и украинской степной белой (LWUK, NA = 6.500). Число эффективных аллелей на локус (Ne) варьировало от 2.119 (DUR) до 3.709 (LWUK). Еще одной характеристикой уровня полиморфности является аллельное разнообразие (A*), которое рассматривается в качестве сильного индикатора эволюционного потенциала популяции (Allendorf, 1986; Caballero, Garcia-Dorado, 2013). Было высказано предположение, что этот показатель имеет ключевое значение для сохранения популяции и управления ею (Greenbaum et al., 2014). Минимальные значения A* были скорректированы методом рарификации, были детектированы у DUR (3.821), максимальные – у LWUK (6.020). По мнению G. Greenbaum с коллегами (2014), уменьшение аллельного разнообразия может привести к снижению способности популяции адаптироваться к будущим изменениям окружающей среды. Более того, есть свидетельства, что высокое аллельное разнообразие даже нейтральных аллелей увеличивает эволюционируемость, делая значительную часть генотипического пространства доступной для меньшего количества мутационных событий (Wagner, 2008). На сегодняшний день очень часто используют такие показатели генетической характеристики популяций (Vonholdt et al., 2008; Toro et al., 2009; Andras et al., 2011), как наблюдаемая (H0) и ожидаемая (He) гетерозиготность (Greenbaum et al., 2014). Наблюдаемая гетерозиготность в исследованных породах свиней изменялась в пределах от 0.459 ± 0.095 у LDR до 0.707 ± 0.052 у BLW. По мнению ряда авторов, при уменьшении наблюдаемой гетерозиготности снижается средняя приспособленность особей, т.е. показатель имеет четкие экологические последствия (Reed, Frankham, 2003; Szulkin et al., 2010). Умеренные уровни наблюдаемой гетерозиготности (выше 0.5) наблюдалась у девяти пород свиней, с вариацией от 0.545 ± 0.095 у MNG до 0.709 ± 0.028 у LWUK. Исключение составили свиньи породы дюрок и ландрас, у которых данный показатель имел минимальные значения: 0.469 ± 0.070 и 0.490 ± 0.073 соответственно.

Согласно значениям индекса фиксации, незначительный недостаток гетерозигот был выявлен в семи породах.
свиней (CVL, MNG, BERK, KEM, LWUK, LW, LDR) с варьированием положительных значений показателя от 0.036 у LW до 0.139 у KEM. Однако для этих пород, за исключением KEM и LWUK, область 95% доверительного интервала индекса фиксации перекрывала нулевое значение, что указывает на недостоверные отклонения в количестве гетерозигот от теоретически ожидаемого в данных породах. Незначительное смещение генетического равновесия в сторону избытка гетерозигот было отмечено в четырех породах: LIV, BLW, BBP и DUR, у которых индекс фиксации имел отрицательные значения – 0,060, 0,002, 0,008 и 0,014 соответственно.

Среди локальных пород максимальный уровень полиморфности был выявлен у LWUK (N_a = 6.500, N_e = 3.709, A_R = 6.020), а максимальный уровень генетического разнообразия – у BLW (H_O = 0.707, H_E = 0.702). Свины породы мангалица имели минимальные значения всех анализируемых параметров: N_a = 4.875, N_e = 2.723, A_R = 4.659, H_O = 0.524, H_E = 0.545. Однако в работе (Druml et al., 2012) значения генетических параметров, характеризующих уровень генетического разнообразия свиней породы мангалица Австрии и Национального заповедника Серби, были еще ниже: N_a = 3.8, H_O = 0.49, H_E = 0.54 и N_e = 3.94, H_O = 0.58, H_E = 0.54 соответственно. При сравнении животных импортного происхождения отечественной репродукции группа свиней крупной белой породы превосходила две другие по всем показателям: N_a = 6.250, N_e = 3.349, A_R = 5.126, H_O = 0.651, H_E = 0.672. Из всех исследуемых пород свиней минимальный уровень полиморфности и генетического разнообразия выявлен в породе дюрок: N_a = 4.875, N_e = 2.119, A_R = 3.821, H_O = 0.418, H_E = 0.406. Низкий уровень генетического разнообразия этой породы отмечен и другими авторами. При сравнении животных импортного происхождения отечественной репродукции группа свиней крупной белой породы превосходила две другие по всем показателям: N_a = 6.250, N_e = 3.349, A_R = 5.126, H_O = 0.651, H_E = 0.672. Из всех исследуемых пород свиней минимальный уровень полиморфности и генетического разнообразия выявлен в породе дюрок: N_a = 4.875, N_e = 2.119, A_R = 3.821, H_O = 0.418, H_E = 0.406. Низкий уровень генетического разнообразия этой породы отмечен и другими авторами.

Для оценки степени дифференциации популяций используют два основных класса показателей, определяющих количественную структуру популяций: индексы фиксации F_ST и Nei’s G_ST и показатели аллельной дифференциации, такие как Jost’s D и дифференциальная энтропия (Jost et al., 2018). Наиболее часто в популяционных генетических исследованиях применяют стандартный метод оценки индекса фиксации F_ST (Weir, Cockerham, 1984). Однако при расчете генетических расстояний по данным изменчивости высокополиморфных маркеров значения показателя могут быть смещены (Meirmans, Hedrick, 2011; Hopper et al., 2018). В этой связи нами дополнительно были проведены расчеты показателя D, предложенного L. Jost (2008), который учитывает долю аллельных вариаций в популяциях (табл. 3).

Найбольшая генетическая близость по обоим показателям выявлена для свиней российской и белорусской популяции крупной белой породы: LW/BWL F_ST = 0.037, D = 0.064. Однако в отношении максимальных значений индексов были обнаружены различия: наибольшей генетической удаленностью, согласно индексу фиксации F_ST, характеризуется группа LDR/CVL (0.244), а по показателю D – группа LW/DUR (0.291).

ГЕНЕТИКА И СЕЛЕКЦИЯ ЖИВОТНЫХ / ANIMAL GENETICS AND BREEDING 751
Рис. 1. Результаты кластерного анализа одиннадцати пород свиней на основе микросателлитов с использованием программы STRUCTURE 2.3.4.
Породы: 1 – CVL (цивильская), 2 – LIV (ливенская), 3 – LWUK (степная белая Украина), 4 – LW (крупная белая), 5 – BLW (крупная белая Республики Беларусь), 6 – KEM (кемеровская), 7 – MNG (мангалица), 8 – BBP (черно-пестрая Республики Беларусь), 9 – BERK (беркширская), 10 – DUR (дорог), 11 – LDR (ландрас).

Рис. 2. Проекция исследуемых образцов пород свиней на плоскости двух координат по данным PCA-анализа.

Таблица 3. Генетические расстояния между исследуемыми породами свиней на основе анализа микросателлитов

| Порода | CVL | LIV | BLW | MNG | BERK | KEM | LWUK | BBP | DUR | LW | LDR |
|--------|-----|-----|-----|-----|------|-----|------|-----|-----|----|-----|
| CVL    | 0   | 0.101 | 0.158 | 0.175 | 0.271 | 0.212 | 0.097 | 0.207 | 0.176 | 0.153 | 0.250 |
| LIV    | 0.098 | 0 | 0.107 | 0.147 | 0.187 | 0.138 | 0.195 | 0.122 | 0.189 | 0.168 | 0.186 |
| BLW    | 0.098 | 0.062 | 0 | 0.242 | 0.267 | 0.113 | 0.112 | 0.110 | 0.285 | 0.064 | 0.271 |
| MNG    | 0.171 | 0.114 | 0.132 | 0 | 0.265 | 0.146 | 0.269 | 0.185 | 0.246 | 0.225 | 0.150 |
| BERK   | 0.195 | 0.120 | 0.135 | 0.178 | 0 | 0.200 | 0.277 | 0.113 | 0.191 | 0.221 | 0.224 |
| KEM    | 0.152 | 0.088 | 0.071 | 0.099 | 0.125 | 0 | 0.179 | 0.113 | 0.270 | 0.151 | 0.143 |
| LWUK   | 0.094 | 0.125 | 0.086 | 0.169 | 0.168 | 0.116 | 0 | 0.178 | 0.267 | 0.077 | 0.238 |
| BBP    | 0.150 | 0.080 | 0.062 | 0.118 | 0.088 | 0.064 | 0.120 | 0 | 0.249 | 0.132 | 0.144 |
| DUR    | 0.189 | 0.158 | 0.199 | 0.208 | 0.181 | 0.208 | 0.222 | 0.195 | 0 | 0.291 | 0.186 |
| LW     | 0.111 | 0.102 | 0.037 | 0.162 | 0.131 | 0.107 | 0.083 | 0.096 | 0.190 | 0 | 0.224 |
| LDR    | 0.244 | 0.171 | 0.190 | 0.146 | 0.189 | 0.140 | 0.171 | 0.115 | 0.222 | 0.185 | 0 |

Примечание. Значения D показаны над диагональю, значения F_{ST} – под диагональю при парном сравнении.

Для наглядного представления генетической степени близости исследуемых пород свиней числовые матрицы полученных попарных генетических дистанций $F_{ST}$ и D были визуализированы с помощью алгоритма «сети соседей» (Neighbor-Net) (рис. 3). Обособленный массив сформировали группы свиней корня крупной белой породы (CVL, LWUK, LW и BLW) и примикающие к нему ветви кемеровской и ливенской пород. Отдельной ветвью расположился кластер пород, в создании которых принимали участие свиньи с кровью беркширской породы: BBP, BERK и DUR. Животные пород ландрас и мангалица представлены другим кластером.
Заключение
Проведенные нами исследования были направлены на анализ генетического разнообразия и изучение взаимоотношений восьми локальных пород и трех пород импортного происхождения отечественной репродукции. В целом локальные породы превосходили группы свиней импортного происхождения и по аллельному, и по генетическому разнообразию, что, вероятно, объясняется практическим отсутствием программ постоянного улучшения конкретных характеристик, которым подвержены коммерческие породы. С другой стороны, максимальные положительные значения индекса фиксации были детектированы именно в локальных породах (кемеровская и украинская степная белая), что может привести к смещению генетического равновесия в сторону недостатка гетерозигот. Анализ главных компонент, проведенный на основе частот аллелей исследованных пород свиней, позволил охарактеризовать размах вариабельности и проследить главные закономерности популяционно-генетической дифференциации особей изучаемых пород. Полученная информация может служить руководством для стратегий дифференциации особей изучаемых пород. Полученные нами результаты свидетельствуют о том, что генетическое разнообразие, которое состоит из разных генетических аспектов (аллелей и генетических разнообразий), имеет важное значение для сохранения и улучшения пород свиней. Методы анализа, которые мы использовали, позволяют определить степень генетического разнообразия и выявить особенности популяционной структуры пород свиней.

Список литературы / References
Зиновьева Н.А., Харзинова В.Р., Сизарева Е.И., Гладырь Е.А., Ко стюнина О.В., Луговой С.И., Тапиха В.А., Гамко Л.Н., Овсеенко Е.В., Шавырина К.М., Эрнст Л.К. Оценка вклада различных факторов в генетическое разнообразие свиней корней крупной белой породы. С.-х. биология. 2012;6:35-42. [Zinovieva N.A., Kharzinova V.R., Sizareva E.I., Gladyr’ E.A., Kostyunina O.V., Lugovoi S.I., Tapiha V.A., Gamko L.N., Ovsseen-
ко E.V., Shavyrina K.M., Ernst L.K. Evaluation of the contribution of different pig populations to the genetic diversity of the large white breed. Sel’skokhozyaystvennaya Biologiya = Agricultural Biology. 2012;6:35-42. (in Russian)]
Столповский Ю.А. Популяционно-генетические основы сохранения генофондов местноведущих видов животных. Биологический журнал генетики и селекции. 2013;17(4/2):900-915. [Stolpovsky Yu.A. Population genetics studies underlying preservation of domesticated animal species gene pools. Vavilovskii Zhurnal Genetiki i Selektci = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):900-915. (in Russian)]
Харзинова В.Р., Карпушкина Т.В., Денисова Т.Е., Костюни на О.В., Зиновьева Н.А. Популяционно-генетическая характеристика свиней породы крупная белая, ландрас и дюрок с использованием микросателлитов. Зоотехния. 2018;4:2-7. [Kharzinova V.R., Karpushkina T.V., Denisova T.E., Kostyunina O.V., Zinovieva N.A. Populational-genetic characterization of White Large, Landrace, and Duroc pig breeds using microsatellites. Zootechniya = Zootechnics. 2018;4:2-7. (in Russian)]
Харзинова В.Р., Костюнина О.В., Зиновьева Н.А. Локальные породы свиней: сравнительная характеристика аллелофонда на основе анализа микросателлитов. Зоотехния. 2018;4:2-7. [Kharzinova V.R., Kostyunina O.V., Zinovieva N.A. Comparative characterization of the allele pool of local pig breeds based on microsatellite analysis. Svinovodstvo = Pig Breeding. 2017;1:5-7. (in Russian)]
Храброва Л.А., Калинкова Л.В., Зайцева М.А. Методические положения по использованию ДНК-анализа лошадей для оценки генетических ресурсов в коневодстве. Дивово, 2011. [Khrabrova L.A., Kalinkova L.V., Zaitseva M.A. Guidelines for the use of Horse DNA Analysis for the Assessment of Genetic Resources in Horse Breeding. Divovo, 2011. (in Russian)]
Allendorf F.W. Genetic drift and the loss of alleles versus heterozygosity. Zoo. Biol. 1985;5:181-190.
Andras J., Kirk N., Harvell C. Range-wide population genetic structure of Symbiodinium associated with the Caribbean sea fan coral, Gorgonia ventalina. Mol. Ecol. 2011;20:2525-2542. DOI 10.1111/j.1365-294X.2011.05115.x.
Caballero A., García-Dorado A. Allelic diversity and its implications for the rate of adaptation. Genetics. 2013;195(4):1373-1384. DOI 10.1534/genetics.113.158410.
Charoensook R., Gatpayak K., Brenig B., Knorr C. Genetic diversity analysis of Thai indigenous pig population using microsatellite markers. Asian-Australas. J. Anim. Sci. 2019;32(10):1491-1500. DOI 10.5713/ajas.18.0832.
Jost L. GST and its relatives do not measure differentiation.

Jombart T. adegenet: a R package for the multivariate analysis of genetic relatedness.

Jolliffe I.T., Cadima J. Principal component analysis: a review and recent developments.

Kaul R., Singh A., Vijh R.K., Tantia M.S., Beh R. Evaluation of the genetic diversity of local Balkan pig breeds in Austria, Croatia, Serbia and Bosnia-Herzegovina and its practical value in conservation programs.

Keenan K., McGinnity P., Cross T.F., Crozier W.W., Prodöhl P.A. Into the weeds: matching importation history to geographic features of genetic diversity.

Kim T.H., Kim K.S., Choi B.H., Yoon D.H., Jang G.W., Lee K.T., Hufbauer R.A. Genetic diversity, population structure and subdivision of local Balkan pig breeds in Austria, Croatia, Serbia and Bosnia-Herzegovina and its practical value in conservation programs.

Kramarenko S.S., Lugovoy S.I., Kharzinova V.R., Lykhach V.Y., Kramarenko A.S., Lykhach A.V. Genetic diversity of Ukrainian local pig breeds based on microsatellite markers.

Meirmans P.G., Hedrick P.W. Assessing population structure: F(ST) and related measures.

Mol. Ecol. Resour. 2011;11(1):5-18. DOI 10.1111/j.1755-0998.2010.02927.x.

Mulnoz M., Bozzi R., García-Casco J., Núñez Y., Ribani A., Franci O., García F., Sklep M., Schiavo G., Bovo S., Utzeri V.J., Çarme R., Martins J.M., Quintanilla R., Tibau J., Maregta V., Djurkin-Kušec I., Mercat M.J., Riquet J., Estellé J., Zimmer C., Razaifeti V., Araujo J.P., Radović Ć., Savić R., Karolji D., Gallo M., Čande-Potokar M., Fernández A.I., Fontanesi L., Ōvilo C. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip.

Sci. Rep. 2019;9: 13546. DOI 10.1038/s41598-019-49830-6.

Novembre J., Johnson T., Bryce K., Kutalik Z., Boyko A.R. Genes mirror geography within Europe. Nature. 2008;456:98-101.

Patterson N., Price A.L., Reich D. Population structure and Eigen analysis. PLoS Genet. 2006;2(12):e190. DOI 10.1371/journal.pgen.1002019.

Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28:2537-2539. DOI 10.1093/bioinformatics/bts460.

Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-959. pmid: 10835412.

R Core Team. R: a language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria, 2012. Available at http://www.Rproject.org.

Reed D.H., Frankham R. Correlation between fitness and genetic diversity. Biol. Conserv. 2003;17:230-237.

Salamon D., Maregta P., Klišanin V., Motnik S., Karolji D., Mahnet Ž., Skorpini D., Luković Z., Salajpal K. Genetic diversity of the Banija spotted pig breed using microsatellite markers. J. Centr. Eur. Agric. 2019:36-42.

Szmatała T., Ropka-Molik K., Tyra M., Piorówska K., Žukowski K., Oczkowski M., Bliharski T. The genetic structure of five pig breeds maintained in Poland. Ann. Anim. Sci. 2016;16(4):1019-1027. DOI 10.1515/aas-2016-0006.

Szulkin M., Bienne N., David P. Heterozygosity-fitness correlations: a time for reappraisal. Evolution. 2010;64:1202-1217.

Toro M., Fernández J., Caballero A. Molecular characterization of breeds and its use in conservation. Livest Sci. 2009;120:174-195.

Vonholdt B.M., Stahler D.R., Smith D.W., Earl D.A., Pollinger J.P. The genealogy and genetic viability of reintroduced Yellowstone grey wolves. Mol. Ecol. 2008;17:252-274.

Vrtková I., Stehlík L., Putnová L., Kratochvílová L., Falková L. Genealogy and genetic viability of reintroduced Yellowstone grey wolves. Mol. Ecol. 2008;17:252-274.

Wagner A. Robustness and evlauability: a paradox resolved. Proc. Biol. Sci. 2008;275:91-100.

Weir B.S., Cockerham C.C. Estimating F-Statistics for the analysis of population structure. Evolution. 1984;38(6):1358-1370. DOI 10.2307/2408641.

Wickham H. ggplot2: Elegant graphics for data analysis. NY: Springer-Verlag. 2009.

Yue G.H., Wang G.L. Molecular genetic analysis of the Chinese European pig breed. S. Afr. J. Anim. Sci. 2003;33(3):159-165.