Rutile Ru$_x$Ti$_{1-x}$O$_2$ nanobelts to enhance visible light photocatalytic activity

S. Mihai$^1$, D. L. Cursaru$^1$*, D. Matei$^1$, A. M. Manta$^1$, R. Somoghi$^2$ & G. Branoiu$^1$

We herein report on the synthesis by a facile sol-gel method without templates for preparing rutile Ru$_x$Ti$_{1-x}$O$_2$ ($x = 0.16; 0.07; 0.01$) nanobelts with exposed (001) facets. The rutile nanobelts with exposure (001) facets, favor the separation photogenerated electron-hole pairs and inhibit the recombination of the electron-hole pairs resulting in the increase of the number of main superoxide and hydroxyl radicals. The photocatalytic properties of the rutile Ru$_x$Ti$_{1-x}$O$_2$ nanobelts were evaluated by discoloring of MB (methylene blue) dye under sunlight irradiation at an intensity of 40000 lx. It was also done a thorough interface analysis to determine the band energy.

Titanium dioxide (TiO$_2$) has been extensively investigated due to its chemical stability, low cost, catalytic properties, photocatalytic properties, environmental clean-up by organic compound mineralization$^1$ and because it is a renewable energy generator used for efficient hydrogen production$^2$–$^4$. TiO$_2$ has four crystalline polymorphs, anatase, rutile, brookite and TiO$_2$ (B) (biphasic based on anatase). Anatase and anatase biphasic TiO$_2$ have been extensively investigated in photocatalysis$^5$ under various forms and morphologies: microspheres, nanoflows, nanotrees and nanobelts$^6$–$^8$.

One of the objectives of photocatalysis is the efficient use and conversion of solar light, this is done by doping classical photocatalysts with noble metals (Au, Ag, Pt, etc.)$^7$–$^9$, 10 or other oxides (RuO$_2$)$^{11}$, 12. Also, understanding the principles of crystal growth is a major challenge for many researchers, surface science is an intensely studied field. In the last decade, the science of anatase surface has attracted attention due to the special properties of the surface, the differences in reactivity and surface energy$^{13}$. Yang to al.$^{13}$ were the promoters of the TiO$_2$ anatase crystal synthesis with a high percentage (47% by weight) of facets (001), using hydrogen fluoride. Nanobelts structures are considered 1D nanostructures. The dimensional study plays an important role in determining material properties and is a huge challenge for researchers. 1D nanostructures have been extensively investigated due to their distinctive properties related to 0D and 2D materials. 1D nanostructures show two important properties: fast electronic transport and effective load transfer$^{14}$. Synthesis of 1D nanoparticles depends on several factors: chemical method, pH and temperature, while the catalytic activity depends mainly on the properties of the surface$^4$. The increased interest in the controlled synthesis of the exposed face exposed TiO$_2$ particles (001) is due to a high photocatalytic activity compared to (101) faces$^{15}$. The study research of Zhao et al. have shown that surface energy of rutile TiO$_2$ facets is $\gamma$ (001) > $\gamma$ (100) > $\gamma$ (101) (0.90 J m$^{-2}$ > 0.53 J m$^{-2}$ > 0.44 J m$^{-2}$)$^{14}$. The chemical dissociation of the water molecules is energetically favored on the plane (001), and the hydroxyl radicals on the TiO$_2$ surface react much more easily with the dissociated molecules of the organic compounds$^{14}$.

In this paper, it was developed a facile sol-gel method without templates for preparing rutile.

Ru$_x$Ti$_{1-x}$O$_2$ nanobelts crystals with controlled morphologies. The nanobelts have a layer structure which is beneficial for the introduction of heteroatoms, as an example Ru, because RuO$_2$ adopts the rutile structure. Introduction of the metal ions into the crystalline structure of TiO$_2$ nanobelts, expands the absorption edge to the visible light range to enhance, therefore we propose the introduction of ruthenium into the crystal for the extend of the absorption to the visible light range.

Results

The crystalline phases structures of rutile TiO$_2$ and rutile Ru$_x$Ti$_{1-x}$O$_2$ nanobelts are shown in Fig. 1. RuO$_2$ shows a rutile structure and it has lattice parameters similar to those of TiO$_2$ rutile, therefore no new peaks were observed in the diffraction spectrums of nanobelts structures, regardless of Ru doping concentration.
Whatever of the Ru doping concentration, the typical diffraction peaks which appear at $2\theta = 28^\circ$, $36^\circ$, $42^\circ$, $55^\circ$, $57^\circ$, $63^\circ$, $64^\circ$, $68^\circ$, $69^\circ$ could be assigned as the (110); (101); (111); (211); (220); (002); (310); (301); (112) diffraction lines corresponding to the rutile phase. The crystalline phase composition and lattice parameters from rutile nanobelts, having a tetragonal phase with lattice parameters $a = b$ from 4.587 to 4.595 Å, and $c = 2.957$ to 2.967 Å is obtained with very high crystalline quality. The crystalline phase composition and lattice parameters from Rietveld refinement are summarized in Table 1.

It should be noted that the larger lattice constants and d-spacing values are due to upon Ru doping. This is due to the larger ionic radius of Ru than that of Ti in the rutile, the structural relaxation follows the Vegard’s law. The d-spacing value of the rutile sample for (110) plane is in agreement to the interatomic dimension observed at HRTEM microscopy. Figure 2 shows the HRTEM images of RuxTi1-xO2 (x = 0.16) nanobelts sample. The TEM images confirm the formation of one-dimensional nanobelts nanostructures. Rutile TiO2 nanobelts have very small thicknesses, widths of 6–20 nm and can be 100–200 nm in length.

The HRTEM image shows the (101) and (002) atomic planes with lattice spacings of 3.499 Å ($1/r$) and 4.255 Å ($1/r$), respectively. The interfacial angle between these two crystalline facets was found to be 67.27° and it was determined by Fast-Fourier Transform (FFT) image (Fig. 2). Deviation with one degree may be due to ruthenium from the crystalline lattice. These results even if less than the theoretical value, reveal that the interfacial angle between rutile is in good agreement with the theoretical value of the angle between the (101) and (001) planes. HRTEM images suggest that the prepared sample behaved like a well-crystallized heterostructure nanobelts.

Rutile RuxTi1-xO2 nanobelts have an octahedral arrangement, where either Ti or Ru atoms prefer a coordination number of 6. The layered arrangements of octahedrons facilitate their growth in the (001) direction as nanobelt like geometry.

The UV-Vis diffuse reflectance spectroscopy (DRS) spectra of all samples are shown in Fig. 3A. The DRS method is employed to determine the band gap energy for photocatalysts. The intense absorption feature in the range of 200 nm–408 nm is characteristic of the TiO2 and corresponds to the band gap energy of 3.2 eV as for rutile phase. The visible absorption band in the range 408–627 nm corresponds to the band gap energy from 2 to 3.2 eV and can be assigned to charge transfer transition of the donor ($\text{Ru}^{4+} \rightarrow \text{Ru}^{5+} + e^-$, $\text{Ru}^{3+} \rightarrow \text{Ru}^{4+} + e^-$) or acceptor ($\text{Ru}^{4+} \rightarrow \text{Ru}^{3+} + h^+$) type.

This suggests that rutile RuxTi1-xO2 photocatalysts could be active in the visible light region. The spectra UV-vis from rutile RuxTi1-xO2 photocatalysts were transformed to the absorption specters according to the Kubelka Munk theory: $\left[ F(R_{\infty}) \cdot h\nu \right]^{1/2}$ (Fig. 4). The optical band gap energies of the photocatalysts can be approximated from the plot of $F(R_{\infty}) \cdot h\nu$ versus $h\nu$ (photon energy) and were estimated from the intercept of the tangent with the abscissa axis yielding the band gap energies. It can be observed that the gap energies band is presented in Fig. 4 compared to the bulk rutile TiO2 of 3.2 eV. The bandgap energies decreased from 3.2 eV for rutile TiO2 to 2.55 eV, 2.68 eV 3.07 eV for RuxTi1-xO2 x = 0.16, x = 0.07 and x = 0.01 respectively.

---

**Table 1.** The crystalline phase composition and lattice parameters from Rietveld refinement.

| Sample     | Space group | Z       | Lattice parameters (Å) | Cell Volume (Å³) | Crystal Density (g/cm³) |
|------------|-------------|---------|------------------------|------------------|-------------------------|
| Ti1-xRuO2  | P42/mmm     | 2       | a (= b) 4.587, c 2.957 | 3.243            | 62.240                  |
| Ti1-xRuO2, x = 0.07 | P42/mmm     | 2       | a (= b) 4.592, c 2.959 | 3.247            | 62.466                  |
| Ti1-xRuO2, x = 0.16 | P42/mmm     | 2       | a (= b) 4.595, c 2.967 | 3.250            | 62.474                  |

---

**Figure 1.** XRD patterns of RuxTi1-xO2 nanobelts a(x = 0); b(x = 0.01); c(x = 0.07); d(x = 0.16).
XPS measurements have been performed to analyze the surface composition and oxidation states of Ti and Ru in the samples. The survey spectrum for the Ru$_x$Ti$_{1-x}$O$_2$ (x = 0.16), with the highest ruthenium content (Fig. 3B), confirms the complete removal of chlorine in the samples TiO$_2$ doped. The absence of the peaks in area 197.9 eV and 199.5 eV (Cl 2p$^{3/2}$ and Cl 2p$^{1/2}$) were observed. Figure 3C shows the XPS spectra of Ti 2p on the surface of each sample. The binding energies at 454.0 and 459.7 eV (Ti 2p$^{3/2}$ and Ti 2p$^{1/2}$) correspond to octahedral coordinated Ti$^{4+}$ state$^{19,20}$. The energy difference between the two peaks is 5.7 eV which is consistent with the energy
difference between the level of spin-orbit splitting coupling effect. The substitution of Ru ions into the TiO₂ lattice can induce electronic structure.

The Raman spectra for rutile RuxTi₁₋ₓO₂ photocatalysts are displayed in Fig. 3D, where two bands features of tetragonal rutile TiO₂ (space group D₄h) at 445 and 610 cm⁻¹ were assigned to Eg (planar O-O vibration) and A₁g (Ti-O stretch) modes. The broad band at 235 cm⁻¹ was attributed to the multiple photon scattering process. The absence of the peaks to features attributable to RuO₂ from 528 cm⁻¹ and 646 cm⁻¹ corresponds to Eg and A₁g modes, was evident in all of the samples, confirming the lattice substitution of the RuO₂ in the rutile TiO₂. Ruthenium doping induces a low red-shifts with increasing Ru concentration in all of the samples, probably due to the formation of oxygen defects or Ru-O-Ti linkages (Fig. 3D).

The photocatalytic properties of the rutile RuxTi₁₋ₓO₂ nanobelts have been evaluated by photocatalytic degradation of methylene blue (MB) under sunlight at the 40000 lx intensity. The photocatalytic results are displayed in Fig. 5A. It was observed that the photodegradation process of methylene blue took place faster in the presence of rutile doped with ruthenium compared with undoped rutile. The increase of ruthenium content gave a decrease of the band gap that can be correlated with the increase absorption to the visible light range, and respectively enhance of the photocatalytic activity. It was observed that the photodegradation process of methylene blue has been degraded for the Ru0.16Ti0.84O2 nanobelts which are above the results of the rutile TiO₂ (74 wt.%).

The kinetic curves of sunlight MB degradation over each catalyst are depicted in Fig. 5B and show that the degradation of MB dye follows pseudo first-order kinetics law, ln(C/C₀) = kapp t, where kapp is the pseudo-first order constant rate.

The constant rate kapp, was determined by plotting the ln(C/C₀) versus irradiation time. It can be observed that with increasing of the ruthenium content the constant rate kapp rises from 0.0125 min⁻¹ to 0.0227 min⁻¹ (Table 2).

The enhanced photocatalytic activity caused by ruthenium doping and to the ability of Ru to capture the photogenerated holes on the TiO₂ (valence band). The conduction band can be calculated by using the empirical equation:

\[ E_{cb} = E_{vb} - E_g \]

Figure 4. Determination of energy band gap of Ru₂Ti₃O₇ nanobelts a (x = 0); b (x = 0.01); c (x = 0.07); d (x = 0.16).

On the basis of the experimental results, a possible mechanism of the enhanced photocatalytic activity over the rutile RuxTi₁₋ₓO₂ is proposed in Fig. 6.
Evb = X – Ee + 1/2Eg, where Ecb is the conduction band, Evb is the valence band, X the geometric mean of the Mulliken, Ee is the energy of free electrons on the hydrogen scale (~4.5 eV) and Eg is the bandgap value of semiconductor, respectively. The values of Ecb, Evb are displayed in Table 3.

It can be observed that hydrogen peroxide and peroxide radicals can form. The photocatalytic process is shown in Fig. 6. Excited electrons under sunlight jumped from VB (valence band) to CB (conduction band) and generate charge carriers (electron-hole pairs). Due to the nanobelts structure, the electron-hole pairs are moved to the photocatalyst surface, where electrons and holes are involved in redox reactions on the surface. The photocatalytic degradation efficiency can be due to the reactive (001) facets, these having a strong ability to dissociate water molecules to form hydrogen peroxide and peroxide radicals, contributors in the photo-oxidation process16.

Table 2. The rate constant k_{app} of Ru_{x}Ti_{1-x}O_{2} nanobelts.

| k_{app} MB (min^{-1}) | Ru_{x}Ti_{1-x}O_{2} (x = 0.16) | Ru_{x}Ti_{1-x}O_{2} (x = 0.07) | Ru_{x}Ti_{1-x}O_{2} (x = 0.01) | TiO_{2} |
|-----------------------|---------------------------------|---------------------------------|---------------------------------|---------|
| 0.02273               | 0.0170                          | 0.0168                          | 0.0125                          |         |
The morphology of the samples was characterized by transmission electron microscope Tecnai™ G2 F20 TWIN radiation. The Raman spectra of samples were registered using a DXR Raman Microscope from Thermo Scientific. States were analyzed by Thermo Scientific K-Alpha X-ray Photoelectron Spectrometer (XPS) system with Al K-alfa radiation of copper at a voltage of 40 kV and a current of 250 μA. D8 Advance diffractometer using the characteristic Kα radiation of the environment by decomposition of organic compounds under the sunlight. A useful application of green technology can be the utilization of the synthesized photocatalysts in the remediation of the environment by decomposition of organic compounds under the sunlight.

**Methods**

**Materials.** The chemicals used in this work were of analytical reagent. Titanium n-butoxide Ti(OBu)₄, ruthenium chloride (RuCl₃xH₂O), hydrochloric acid (HCl), methylene blue (MB) and NH₄OH were purchased from Sigma-Aldrich. All solutions were prepared with distilled water.

**Preparation of RuₓTi₁₋ₓO₂ nanobelts.** The 1D (one-dimension) RuₓTi₁₋ₓO₂ nanobelts were synthesized via a sol-gel method described by Nguyen-Phan at al. 20. A typical synthesis implies mixing at room temperature for 30 minutes, of 14 mL of titanium n-butoxide and 14 mL of hydrochloric acid (35 wt.%). Then a desirable amount of RuCl₃xH₂O was added into the solution. The mixture was stirred for 12 h at 110 °C. Finally, the resulting precipitate was washed with aqueous 0.1 M NH₄OH solution (20 ml), and with distilled water. After drying at 70 °C overnight, the products were calcinated in the air at 850 °C for 3 hours. The samples were denoted as RuxTi1−xO2, where x represented the nominal doping dosage of ruthenium (x = 0.01, 0.07 and 0.16). The TiO₂ rutile sample was synthesized by a similar method without adding RuCl₃xH₂O precursor and labeled as TiO₂.

**Characterization.** X-Ray diffraction (XRD) of the samples was analyzed at ambient temperature on a Bruker D8 Advance diffractometer using the characteristic Kα radiation of copper at a voltage of 40 kV and a current of 40 mA. XRD patterns were collected in the 2θ range between 5° and 80°.

The UV-vis diffuse reflectance spectra of rutile RuₓTi₁₋ₓO₂ were obtained by using a Jasco UV-Vis V-550 spectrophotometer in the wavelength range from 200 to 900 nm with an integrating sphere assembly. The sample was diluted with MgO (ratio 1:6) and then mechanically mixed. The UV-vis absorption was transformed according to the Kubelka Munk function, \( F(R_{\infty}) \), for infinite thick samples. The sample surface elements and their oxidation states were analyzed by Thermo Scientific K-Alpha X-ray Photoelectron Spectrometer (XPS) system with Al K-alfa radiation. The Raman spectra of samples were registered using a DXR Raman Microscope from Thermo Scientific. The morphology of the samples was characterized by transmission electron microscope Tecnai™ G2 F20 TWIN.
measured absorption at 665 nm (sample is recovered).

20. Zhumei, W., Bo, L., Zhixiang, X., Yueming, L. & Zong-Yang, S. Preparation and photocatalytic properties of RuO2/TiO2 composite

15. Liu, M.

14. Zhao, Z., Tian, J., Sang, Y., Cabot, A. & Liu, H. Structure, Synthesis, and Applications of TiO2 Nanobelts.

13. Yang, H. G.

12. Uddin, T.

11. Gu, Q., Gao, Z., Yu, S. & Xue, C. Constructin Ru/TiO2 Heterojunction and Ru/TiO2 schottky Junction. Adv. Mater Interfaces, 3, 1506361–1506368 (2016).

10. Shuang, S., Lv, R., Xie, Z. & Zhang, Z. Surface Plasmon Enhanced Photocatalysis of Au/Pt-doped TiO2 Nanoparticle Arrays Scientific Reports, https://doi.org/10.1038/srep26670 (2016).

9. Mihai, S., Cursaru, D. L., Ghita, D. & Dinescu, A. Morpho ierarhic TiO2 with plasmonic gold decoration for highly active photocatalysis properties. Material Letters 162, 222–225 (2016).

8. Zhou, W. Cryst. Eng. Comm. 117, 17885–17893 (2009).

7. Chaguetti, S. et al. Visible-light photocatalytic performances of TiO2 nanobelts decorated with iron oxide nanocrystals. RSC Adv. 6, 114843–114851 (2016).

6. Zhou, W. et al. Nanostructures Toward Enhanced Photocatalytic Water Splitting via a RuO2/TiO2 Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity. ACS Appl. Mater. Interfaces. 2, 2385–2392 (2010).

5. Gu, Q., Gao, Z., Yu, S. & Xue, C. Facile Synthesis of Zn0.5Cd0.5S Ultrathin Nanorods on Reduced Graphene Oxide for Enhanced Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem. https://doi.org/10.1002/cctc.201402872 (2015).

4. Triggs, P. & Levy, F. Optical and Electrical Properties of Ru-Doped TiO2. Phys. Stat. Sol., 136, 363–374 (1985).

3. Triggs, P. & Levy, F. Optical and Electrical Properties of Ru-Doped TiO2. Phys. Stat. Sol., 129, 363–374 (1985).

2. Sun, S. Nature 43, 2218–2226 (2006).

1. Shen, S. et al. Facile Synthesis of Zn0.5Cd0.5S Ultrathin Nanorods on Reduced Graphene Oxide for Enhanced Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem. https://doi.org/10.1002/cctc.201402872 (2015).

References

Author contributions

S.M. wrote the main manuscript text and prepare Figures 4, 6 and graphical abstract. D.C. and S.M. were responsible with the synthesis of Ru3Ti8O23 nanobelts. D.M. was responsible with the photocatalytic experiments and prepare Figure 5. A.M.M. performed UV-vis and XPS investigations and prepared Figure 3. R.S. was responsible with TEM investigations and she prepared Figure 2. G.B. prepared XRD investigations and prepared Figure 1.

Competing interests

The authors declare no competing interests.
