Abstract

Researchers are currently interested in studying the dynamics of the wave field in a nonlinear and dispersive medium. The Nonlinear Schrödinger Equation (NLSE), which is the fundamental equation that explains the phenomenon, has paved the way for research in a variety of fields, including soliton scattering. However, if the fields have a large number of components, the Coupled NLSE should be considered. We used orthogonally polarised and equal-amplitude vector solitons with two polarization directions to model the interactions. The effect of vector soliton scattering by external Delta potential in Coupled NLSE was studied in this paper. The scattering process is primarily determined by the initial velocity, amplitude of the soliton and potential strength. The variational approximation and direct numerical methods of Coupled NLSE were used to investigate the scattering process. The variational approximation (VA) method was used to analyse the dynamics of soliton’s width and center of mass position. The soliton may thus be reflected, transmitted or trapped within the potential. Uncoupled solitons may initially create a coupled state if their kinetic energy is less than the attractive interaction...
potential between solitons, but once their velocity surpasses the critical velocity, the soliton will easily pass through each other. To validate the approximation, a direct numerical simulation of CNLSE was performed. The results of the VA method and direct numerical simulation of Coupled NLSE are in good agreement when the parameters for both solutions are set to the same value. The initial velocity, potential strength and soliton amplitude play a role in the scattering of the vector soliton with Delta potential. © Published under licence by IOP Publishing Ltd.

Author keywords
coupled nonlinear Schrödinger equation; delta potential; nonlinear equation; numerical method; scattering; variational method; Vector soliton

Indexed keywords

References (10)

1. Tan, Y., Yang, J. (2001) *Physical Review E - Statistical, Nonlinear, and Soft Matter Physics*, 64 (5 II), pp. 056616/1-056616/17. Cited 36 times. View at Publisher

2. Goodman, R.H., Haberman, R. (2005) *Physical Review E - Statistical, Nonlinear, and Soft Matter Physics*, 71 (5), art. no. 056605. Cited 22 times. doi: 10.1103/PhysRevE.71.056605 View at Publisher

3. Ueda, T., Kath, W.L. (1990) *Physical Review A*, 42 (1), pp. 563-571. Cited 112 times. doi: 10.1103/PhysRevA.42.563 View at Publisher

4. Gromov, E.M., Malomed, B.A., Tyutin, V.V. (2018) *Communications in Nonlinear Science and Numerical Simulation*, 54, pp. 13-20. Cited 7 times. doi: 10.1016/j.cnsns.2017.05.012 View at Publisher
Din, M.A.M., Umarov, B., Aklan, N.A.B., Hadi, M.S.A., Ismail, N.H.
Scattering of the vector soliton in coupled nonlinear Schrödinger equation with Gaussian potential
(2020) Malaysian Journal of Fundamental and Applied Sciences, 16 (5), pp. 500-504.
https://mjfas.utm.my/index.php/mjfas/article/view/1724/pdf
doi: 10.11113/mjfas.v16n5.1724

Anderson, D.
Variational approach to nonlinear pulse propagation in optical fibers
(1983) Physical Review A, 27 (6), pp. 3135-3145. Cited 917 times.
doi: 10.1103/PhysRevA.27.3135

Manakov, S. V.
On the Theory of Two-dimensional Stationary Electromagnetic Waves
Soviet Physics-JETP, 38, pp. 248-253. Cited 1159 times.

Yang, J.
(2010) Nonlinear waves in integrable and nonintegrable systems
Society for Industrial and Applied Mathematics. Cited 604 times.

Aklan, N.A.B., Umarov, B.A.
The Soliton Interaction in Weakly Nonlocal Nonlinear Media on the External Potentials
(Open Access)
(2017) Journal of Physics: Conference Series, 819 (1), art. no. 012024. Cited 3 times.
http://www.iop.org/EJ/journal/conf
doi: 10.1088/1742-6596/819/1/012024

Sakaguchi, H., Tamura, M.
Scattering and trapping of nonlinear Schrödinger solitons in external potentials
(Open Access)
(2004) Journal of the Physical Society of Japan, 73 (3), pp. 503-506. Cited 39 times.
doi: 10.1143/JPSJ.73.503

© Copyright 2021 Elsevier B.V., All rights reserved.
