Infliximab induction regimens in steroid-refractory acute severe colitis: a multicentre retrospective cohort study with propensity score analysis

Shaji Sebastian1 | Sally Myers1 | Konstantinos Argyriou2 | Gayle Martin3 | Louis Los4 | Joseph Fiske5 | Ravi Ranjan6 | Benjamin Cooper7 | Vivek Goodoory8 | Hey-Long Ching9 | Nishani Lalanthika Jayasooriya10 | Johanne Brooks11 | Anjan Dhar6 | Achut H. Shenoy7 | Jimmy K. Limdi5 | Jeffrey Butterworth4 | Patrick B. Allen3 | Sunil Samuel2 | Gordon W. Moran2 | Richard Shenderey8 | Gareth Parkes10 | Alan Lobo9 | Nicholas A. Kennedy12 | Sreedar Subramanian13 | Tim Raine11

Summary

Background: Accelerated induction regimens of infliximab have been proposed to improve response rates in patients with steroid-refractory acute severe colitis.

Aim: To determine the differences in outcome for acute severe ulcerative colitis between accelerated and standard-dose infliximab

Methods: We collected data on hospitalised patients receiving differing regimens of rescue therapy for steroid-refractory acute severe ulcerative colitis. Our primary outcome was 30-day colectomy rate. Secondary outcomes were colectomy within index admission, and at 90 days and 12 months. We used propensity score analysis with optimal caliper matching using high risk covariates defined a priori to reduce potential provider selection bias.

Results: We included 131 patients receiving infliximab rescue therapy; 102 received standard induction and 29 received accelerated induction. In the unmatched cohort, there was no difference by type of induction in the 30-day colectomy rates (18% vs 20%, \(P = .45 \)), colectomy during index admission (13% vs 20%, \(P = .26 \)) or overall colectomy (20% vs 24%, \(P = .38 \)). In the propensity score-matched cohort of 52 patients, 30-day colectomy (57% vs 27%, \(P = .048 \)) and index admission colectomy (53% vs 23%, \(P = .045 \)) rates were higher in those receiving standard induction compared to accelerated induction but there was no difference in overall colectomy rates (57% vs 31%, \(P = .09 \)). There was no significant difference in length of stay or in complication and infection rates.

Conclusion: In a propensity score-matched cohort, steroid-refractory acute severe ulcerative colitis patients, short-term, but not long-term, colectomy rates appear to be lower in those receiving an accelerated induction regimen.
1 | INTRODUCTION

Acute severe ulcerative colitis (ASUC) is a medical emergency with up to 30% of patients requiring colectomy during their index admission and is associated with a mortality of up to 2.9% in peripheral centres and about 1% in specialist IBD units. ASUC is traditionally defined by the Truelove and Witt’s criteria, which combine frequency of bloody stools (≥6 per day) with at least one marker of systemic toxicity: pulse rate > 90 bpm, temperature > 37.8°C, haemoglobin < 105 g/L and/or an ESR > 30 mm/h. ASUC requiring hospitalisation occurs in 10%-25% at diagnosis and in 20%-30% during the disease course of ulcerative colitis.

Intravenous corticosteroids remain the cornerstone of first-line therapy for ASUC. A meta-analysis of cohort studies and randomised trials, published in 2007, examined the response to corticosteroids in ASUC. The authors reported a pooled response rate to intravenous steroids of 67%, indicating that up to 40% of patients fail to respond. Over the last decade, in patients failing corticosteroids, rescue therapies, including ciclosporin and infliximab, have been used as an option to avoid colectomy. While there is no difference in response rates between infliximab and ciclosporin, a majority of clinicians now appear to favour infliximab mainly citing convenience and safety.

Despite the use of rescue therapies, a significant proportion of patients still undergo colectomy. The data on rescue therapies indicate that the rates of nonresponse to infliximab rescue vary from 40%-55%. Reasons for nonresponse may include patient and disease factors or treatment factors such as timing of rescue and dosing schedules. A key and unanswered question remains the optimal dosing strategy of infliximab in steroid-refractory ASUC. Current regimens have extrapolated dosing schedules for management of moderate-to-severe disease in an out-patient clinic setting to the hospitalised in-patient, and use a standard induction regimen of 5 mg/kg intravenously at week 0, 2 and 6. However, there are multiple reasons why ASUC may be associated with increased clearance of infliximab. These include hypoalbuminaemia, leakage of infliximab itself into the stool, activation of the reticuloendothelial system and higher circulating TNF levels. This enhanced clearance of infliximab may also be associated with worse clinical outcomes.

This has led to the concept of ‘accelerated induction rescue therapy,’ where higher dosages or increased frequency of induction dosing have been proposed. There are no published randomised controlled trials on the efficacy and safety of accelerated induction. Although there is increasing use of accelerated induction in clinical practice, the data from the published small cohort studies are conflicting. Our recent meta-analysis of the available cohort studies showed no conclusive evidence for benefit of accelerated induction in reducing colectomy rates in steroid-refractory disease. However, the majority of existing studies are single-centre cohorts with significant limitations including small sample sizes. Furthermore, such studies did not take into account provider bias, which could be an important determinant in selection of the type of rescue therapy.

We have now performed a multicentre retrospective cohort study in 11 centres in the United Kingdom to compare the outcomes of using accelerated induction to standard induction regimens for ASUC in the real-world setting. We have used propensity score matching method to reduce the impact of provider bias in treatment selection.

2 | MATERIALS AND METHODS

This was a multicentre retrospective cohort study. We included patients with ASUC meeting modified Truelove and Witt’s criteria admitted between May 2016 and May 2018 for intravenous corticosteroids in 11 acute hospitals in the UK (Six University Teaching Hospitals and Five Peripheral Secondary Care Hospitals).

2.1 | Inclusion and exclusion criteria

We included consecutive hospitalised patients needing intravenous steroids who received at least three doses of intravenous steroids. Physicians completing the case reports assessed them as meeting modified Truelove and Witt’s criteria. We excluded patients with: a diagnosis of IBD unclassified, Crohn’s colitis, infective colitis; co-existent cytomegalovirus; admission for elective surgery; and prior therapy with anti-TNF.

2.2 | Study design

Patients who received infliximab following failure of intravenous rescue therapy were stratified into two groups. The standard induction rescue group comprised of patients who received a dose of infliximab 5 mg/kg at week 0 and no further doses until 2 weeks after first dose. The accelerated induction group included patients who received at least two doses of 5 mg/kg with a second dose received on or before 7 days after the first dose and/or those who received 10 mg/kg for their first dose with a further dose within 2 weeks. We recorded available data on clinical and laboratory data at baseline, at commencement of rescue therapy, 30 days, 90 days, 6 months and 12 months.

Our primary outcome measure was colectomy rate at 30 days. Secondary outcome measures were index admission colectomy rates, colectomy rates at 90 days, 6 months and 12 months, the length of hospital admission and adverse events including post-operative complications and mortality.

2.3 | Statistical analysis

Continuous variables were summarised using mean and standard deviation and compared using Student’s t test or the Mann-Whitney U test. Categorical variables were expressed as proportions and analysed by Fisher’s exact test or chi-squared test as appropriate.

Propensity score-adjusted matching was used to minimise the possibility of provider bias in the choice of rescue treatment. Baseline
clinical and demographic variables were matched in a 1:1 fashion to create a matched cohort with baseline variables which are independent of the initial infliximab dose. We ascribed a priori determined factors considered to affect the choice of rescue therapy including C-reactive Protein (CRP), serum albumin, CRP/albumin ratio, haemoglobin and the presence of pancolitis in the propensity score matching. Logistic regression was used to generate bivariate propensity scores using these variables. We used the greedy matching algorithm with the nearest calliper matching neighbour (random order) within a 0.01 propensity score selected for the best match in the matched cohort. We confirmed balanced covariates distribution after matching.

Kaplan-Meier survival curves were plotted for the primary outcome of 30-day colectomy rates in both unmatched and matched cohorts between those receiving standard induction compared to accelerated induction and the rates compared by log-rank statistic.

All tests were two-sided and a \(P \) value of \(<.05\) was considered significant. We used \textit{spss} statistics version 25 (IBM Corp.) for analysis.

As this was a retrospective data collection, in accordance with the UK Health Research Authority guidance, no central ethical committee submission was made. Individual institutions sought permissions to conduct a local service evaluation as appropriate.

3 | RESULTS

3.1 | Study cohort

We included data on 131 patients from 11 centres across the UK receiving rescue therapy for steroid-refractory ASUC, of which 102 received standard induction regime and 29 received accelerated induction regimen. The baseline characteristics are recorded in Table 1. There were differences in blood parameters between the patients receiving standard induction and accelerated induction rescue (Table 2). Patients receiving accelerated regimen were more likely to have higher CRP levels, higher CRP/albumin ratio and lower albumin levels at day 1 and day 3 and there were no differences between the two groups in terms of haemoglobin on day 1 or day 3.

3.2 | Colectomy rates: entire cohort

The overall colectomy rate among the 131 patients who received rescue therapy was 29%. Table 3 reports the colectomy rates at 30 days, 90 days, 6 months and 12 months in patients receiving rescue therapy. There was no significant difference in overall colectomy rates between in-patients receiving standard induction vs accelerated induction group \((P = .996) \) (Table 3 and Figure 1).

3.3 | Colectomy rates: propensity score-matched cohort

Using propensity score matching, we included 52 matched patients receiving rescue therapy for comparison. The baseline characteristics and blood markers in the cohort are detailed in Table 4.

In the propensity score-matched cohort, there was no difference in overall colectomy rates between standard induction and accelerated induction groups \((57% \text{ vs } 31%, \ P = .09) \), but the index admission colectomy \((53% \text{ vs } 23%, \ P = .045) \) and 30-day colectomy \((57% \text{ vs } 27%, \ P = .048) \) rates were higher in those receiving standard induction (Figure 2).

3.4 | Duration of hospital stay and complications

The mean duration of hospital stay in patients treated with standard induction was 4.4 days (SD 1.6) less than patients given accelerated induction rescue therapy \((P < .01) \) in the unmatched cohort. In the propensity score-matched cohort, there was no significant difference in the length of stay between standard induction and accelerated induction groups \((23.6 \pm 4.3 \text{ vs } 19.2 \pm 7.1 \text{ days}, \ P = .09) \). There was no difference in complication rates between the two groups \((18.6\% \text{ vs } 20.7\%, \ P = .8) \) but there was one death in the accelerated induction group (Table 5).

4 | DISCUSSION

Despite the increasing use of infliximab rescue therapy in patients failing intravenous steroids, a significant proportion of ASUC patients do not respond adequately to standard induction dosing. Pharmacokinetic data have led to increasing use of intensified or accelerated dosing schedules in rescue therapy for ASUC patients. Our large multicentre retrospective study showed no difference in colectomy rates in the overall cohort of patients receiving standard vs accelerated dosing schedules but when provider bias was accounted for in the propensity-matched cohort, we found a reduction in short-term colectomy rates in patients receiving accelerated induction.

The first study to report the potential benefit of more frequent infliximab infusions in ASUC patients was from Gibson et al in Ireland,\(^16\) who in their cohort of 50 hospitalised patients with ASUC showed a reduction in short-term colectomy rates in the 15 patients who received three doses of 5 mg/kg within 24 days when compared to those receiving standard induction regimen \((6.7\% \text{ vs } 40\%, \ P = 0.039) \). This study also suggested shortened time to colectomy in those receiving standard regime although the long-term colectomy rates were similar. Notably, 38% of these patients had lower endoscopic disease severity (Mayo 2), and the authors did not correct for provider bias in the choice of regimen. Furthermore, the definition of accelerated dosing in this study did not include the need for a further dose 7 days after the first dose or increased front-loading dose. Subsequent studies examining the use of increased frequency of infliximab at 5 mg/kg\(^17,18,21,22\) and a recent meta-analysis\(^19\) have not confirmed the benefit as reported by Gibson et al in one study.\(^21\) there was an increased risk of colectomy with accelerated induction. Our colectomy rates in the overall unmatched cohort mirror the results from these studies.
showing no additional significant benefit in short-term colectomy rates with accelerated induction.

Some studies21,23 have assessed an early aggressive approach aimed at overcoming proposed faecal losses of infliximab using a front-loading higher dose of 10 mg/kg in ASUC patients. In our study, only four patients received a higher initial dose and hence could not be analysed separately. Results of a randomised controlled trial from Australia (ClinicalTrials.gov Identifier: NCT02770040) comparing various dosing strategies are eagerly awaited.

A number of patient- and disease-related variables have been suggested as high risk for needing colectomy in patients with ASUC24,25 These indices were developed in the pre-infliximab rescue therapy.
Table 2: Blood parameters at admission and day 3—Unmatched cohort

	Standard induction group (n = 102)	Accelerated induction group (n = 29)	P
Haemoglobin day 1	122 ± 19	116 ± 19	.11
(Mean ± SD)			
CRP day 1	56 ± 78	101 ± 36	.001
Median (IQR)			
Serum albumin day 1	33 ± 6	30 ± 2	.006
(Mean ± SD)			
Platelet count day 1	458 ± 145	577 ± 133	.21
(Mean ± SD)			
Monocyte count day 1	1.2 ± 0.6	1.6 ± 0.6	.73
(Mean ± SD)			
CRP/albumin ratio >2 day 1 (n, %)	61 (59.8)	24 (82.7)	.03
Haemoglobin day 3	116 ± 17	110 ± 16	.83
(Mean ± SD)			
CRP day 3	75 ± 91	117 ± 48	.001
(Median ± IQR)			
Serum albumin day 3	31 ± 6	27 ± 2	.001
(Mean ± SD)			
Platelet count day 3	472 ± 150	615 ± 134	.001
(Mean ± SD)			
CRP/albumin ratio >2 day 3 (n, %)	49 (48.0)	21 (72.4)	.01

Table 3: Colectomy rates entire cohort

	Steroid with standard rescue therapy (102)	Steroid with accelerated therapy (29)	P-value
30 d	18 (17.6%)	6 (20.7%)	.45
90 d	20 (19.6%)	7 (24.1%)	.38
6 mo	26 (25.5%)	8 (27.6%)	.49
12 mo	29 (28.4%)	9 (31.0%)	.99

Figure 1: Kaplan-Meier plot for colectomy-free survival—accelerated induction vs standard induction: unmatched cohort
era and the relevance of this in patients considered for rescue therapy is uncertain. More recently, a number of other patient-related factors such as serum albumin, serum albumin/CRP ratio and haemoglobin nadir have been proposed as predictive risk factors for colectomy at index admission.16,26 We have identified CRP/albumin ratio > 2 as a predictor for colectomy (unpublished data). However, at present, there is no consensus on the consistent identification and risk stratification of patients not only needing rescue therapy but also those who may potentially benefit from different dosing strategies. This lack of consensus inevitably leads to variations in the management and dosing regimens27 as seen in our study. The blood parameters at first and second doses of rescue therapy indicate lack of improvement or indeed worsening which along with clinical symptom may prompt a second dose as accelerated induction (Data S1).

One of the strengths of our study is the attempt to compare the outcomes between the different dosing regimens after accounting for the potential bias of baseline clinical and demographic variables and the potential impact of these in clinicians’ choice using a propensity score-matched method. Our model incorporated established disease severity markers such as CRP, serum albumin, CRP/albumin ratio and haemoglobin levels at induction and endoscopic disease severity. This is the first study to report a benefit of accelerated induction regimes when taking into the potential for provider bias based on differing disease severity. Nalagatla et al23 adjusted for the propensity score in their multivariable model and found no difference in in-hospital colectomy rates (OR 0.70, 95\% CI 0.16–3.01). However, the overall colectomy rates in both groups in this study (8\%–9\%) were substantially lower than our study (17\%–21\%). This may be related to overall lower disease severity in all parameters

\begin{table}
\centering
\begin{tabular}{|l|l|l|l|}
\hline
 & Standard induction & Accelerated induction & P-value \\
 & \multicolumn{2}{l|}{N = 26} & \multicolumn{1}{l|}{N = 26} & \\
\hline
Age in years median & 31 (17–47) & 29 (18–43) & .93 \\
 (range) & & & \\
\hline
Gender, n & & & \\
 & Male & 14 & 11 & .34 \\
 & Female & 12 & 15 & \\
\hline
Disease extent, n & & & \\
 & Pancolitis & 23 & 21 & .96 \\
 & Left-sided colitis & 3 & 5 & \\
\hline
Duration of disease years median (SD) & 3.2 (4.1) & 2.9 (3.9) & 1.00 \\
\hline
Prior steroid use, n & & & \\
 & Yes & 21 & 19 & .89 \\
 & No & 5 & 7 & \\
\hline
Prior thiopurine use & & & \\
 & Yes & 16 & 11 & .06 \\
 & No & 10 & 15 & \\
\hline
Mayo endoscopic scope, (n) & & & \\
 & Mayo 3 & 24 & 26 & .98 \\
 & Mayo 2 & 2 & 0 & \\
\hline
Number of days on IV steroids before Infliximab, Median (range) & 4 (2.7) & 3 (2.6) & .91 \\
\hline
CRP at rescue, Median (IQR) & 116 (39) & 124 (41) & .76 \\
\hline
Haemoglobin at rescue, Mean (SD) & 108 (2) & 99 (2) & .08 \\
\hline
Albumin at rescue, Mean (SD) & 29 (3) & 26 (2) & .64 \\
\hline
Platelet count at rescue, mean (SD) & 511 (63) & 546 (4) & .07 \\
\hline
Haemoglobin nadir <100 g/L at rescue n (%) & 18 (69\%) & 20 (76\%) & 1.00 \\
\hline
CRP/albumin ratio >2 at rescue n (%) & 24 (92\%) & 25 (96\%) & .99 \\
\hline
\end{tabular}
\caption{Characteristics of propensity score-matched cohort (n = 52)}
\end{table}
in the patients included in this study when compared to our cohort. In a study by Shah et al., after adjusting for patient- and disease-related factors and provider bias in a propensity score-matched model, no reduction in colectomy rates was found in those receiving higher upfront dosing when compared to standard dosing. This study only included patients from a single centre and differed from ours by including patients with prior infliximab exposure before rescue therapy. Furthermore, in this study and in the study by Nalagatla et al., the endoscopic disease severity of patients in the propensity-matched cohort was milder (30% having an endoscopic Mayo score of 2) when compared to our study where 97% of the included patients in our matched cohort had severe disease (Mayo 3) at endoscopy. Thus, our results suggest that early identification of patients with high-risk features for colectomy may reduce colectomy rates by the use of accelerated rescue therapy.

In the unmatched cohort, the duration of hospital stay was significantly shorter in those receiving standard induction. In the matched cohort, on the other hand, there was no difference in the length of stay. Our results were similar to that of Shah et al., where the median length of stay was identical in those receiving standard induction and accelerated induction in the matched cohort. In that study, in the unmatched cohort there were higher complications in the standard-dose group when compared to the high-dose group, a finding not seen in our unmatched cohort. However similar to our results in that study, the overall complication rate including infectious and/or non-infectious complications was not significantly higher in the high-dose group compared to standard-dose group in the propensity-matched cohort. Thus, overall accelerated dosing regimens did not seem to increase the risk of complications. There was one death in the accelerated induction group as a result of post-operative rectal stump leak and sepsis resulting in multiorgan failure.

We acknowledge that our study has a number of limitations. Due to the retrospective nature of the study, we were unable to collect every variable each day following admission with ASUC and were also unable to record the objective assessment of response and remission. We also had no data on serum infliximab levels or biomarkers such as faecal calprotectin in patients receiving rescue therapy. There is increasing focus on the use of therapeutic drug monitoring in IBD patients treated with infliximab and the impact of dose optimisation utilising drug levels on the outcomes could not be ascertained in this study. There were significant differences in the unmatched cohort of patients and also heterogeneity in dosing regimens and timing indicating variations in practice in the real-world setting. Hence, although this was a multicentre study and one of the largest to compare rescue therapy regimes, our attempt to reduce provider variation by propensity score matching led to a relatively small sample size in the matched cohort thus reducing the power of our study for the primary outcome and rate of complications. Furthermore, our model cannot account for the variability in management including dose optimisation during the maintenance period which could have affected the outcome. That said, controlling for bias of treatment choice based on disease in a multicentre cohort is a major strength of our study.

FIGURE 2 Kaplan-Meier plot for colectomy-free survival—accelerated induction vs standard induction: matched cohort

TABLE 5 Duration of hospital stay and complications

	Steroid with standard rescue therapy (102)	Steroid with accelerated therapy (29)	
Days of hospital stay unmatched cohort (mean, SD)	14.8 (8.1)	19.2 (5.9)	
Days of hospital stay matched cohort (mean, SD)	23.6 (4.3)	19.2 (7.1)	
Complications - infections, post-operative complications or mortality (n, %) unmatched cohort	Yes	19 (18.6%)	6 (20.7%)
	No	83 (80.4%)	23 (79.3%)
In conclusion, we found that in the overall cohort of ASUC patients in real-world setting receiving rescue therapy infliximab, the initial induction dosing strategy did not change the short-term or long-term colectomy rates. In a subgroup of patients with matched covariates of severity, accelerated induction regimes appear to reduce in-hospital and short-term colectomy rates without any increase in complications. The optimal dosing regimens and risk stratification of patients needing accelerated dosing regimens need to be evaluated in a prospective study.

ACKNOWLEDGEMENTS

Declaration of personal interests: Shaji Sebastian holds research grants from Takeda, AbbVie, Warner Chilcott, Ferring, MSD, Biohит and Celgene, serves on the advisory boards of Takeda, AbbVie, Merck, Ferring, Pharmacosmos, Warner Chilcott, Janssen, Falk Pharma, Biohит, TriGenix, Celgene and Tillotts Pharma, and has received speaker fees from Abbvie, Jaassen, Merck, Warner Chilcott and Falk Pharma. Sree Subramanian has received speaker fee from MSD, Actavis, Abbvie, Takeda, Dr Falk pharmaceuticals, Shire and received educational grant from MSD, Abbvie, Actavis and is an advisory board member for Abbvie, Dr Falk pharmaceutics and Vifor pharmaceuticals. Jimmy Limdi has received research grants from Takeda, has received speaker fees from Abbvie, MSD, Tillotts, Janssen and Takeda and has served on advisory boards for Vifor, Abbvie and Dr Falk pharma. Gordan Moran has received: educational support from Abbvie, Janssen, NAPP, Takeda Pharmaceuticals, Merck Sharp & Dohme Ltd, Ferring and Dr Falk. He has received speaker honoraria from Merck Sharp & Dohme Ltd, Abbvie, Janssen, Ferring and Takeda Pharmaceuticals. He attended advisory boards for Abbvie, Takeda Pharmaceuticals, Janssen, Medtronic, Phebra Pharmaceuticals, Servertus Associates Ltd and Dr Falk. Anjan Dhar has received speaker fees and honoraria from Abbvie, Janssen, Dr Falk Pharmaceuticals and educational grants from Abbvie, Takeda, Janssen, Dr Falk Pharmaceuticals, Ferring. Alan Lobo has received speaker fees, consultancy or advisory board fees for MSD, Abbvie, Janssen, Takeda, ProImmune, Vifor, Shield Therapeutics and Medtronic. Gareth Parkes has received speaker fees, consultancy or advisory board fees for Abbvie, Dr Falk, Ferring, Janssen, Napp, Takeda, Tillotts. Tim Raine has received research/educational grants and/or speaker/consultation fees from Abbvie, Celgene, Gilead, GSK, Janssen, MSD, Novartis, Pfizer, Sandoz and Takeda. Nicholas Kennedy has received speaker/consultation fees from Falk, Pharmacosmos, Janssen and Takeda. His institution has received research funding from MSD, Abbvie, Napp, Pfizer, Takeda and Pharmacosmos.

AUTHORSHIP

Guarantor of the article: Professor Shaji Sebastian.

Author contributions: Shaji Sebastian, Sally Myers: Designed the study, Collected and analysed the data, Wrote manuscript Tim Raine, Gareth Parks, Alan Lobo, Achut Shenoy, Richard Shenderey, Jimmy Limdi, Jeffrey Butterworth, Anjan Dhar, Sreedhar Subramanian, Patrick Allen, Sunil Samuel, Gordon Moran: Supervised collection of data, critical review of the manuscript and analysis. Nicholas A Kennedy: Contributed to design, Statistical analysis review and critical review of the manuscript Konstantinos Argyriou, Gayle Martin, Louis Los, Joseph Fiske, Benjamin Copper, Vivek Goodoory, Ravi Ranjan, Hey-Long Ching, Nishanalanithika Jayasooriya, Johanne Brookes: Collected data. All authors reviewed and approved the final version of the manuscript. Acknowledgements: Dr Chao Huang: review of statistical analysis.

Funding for the study: None.

Writing support: None.

REFERENCES

1. Ananthakrishnan AN, McGinley EL, Binion DG, Saelian K. A nationwide analysis of changes in severity and outcomes of inflammatory bowel disease hospitalizations. J Gastrointest Surg. 2011;15:267-276.
2. Lynch RW, Lowe D, Protheroe A, Driscoll R, Rhodes JM, Arnott I. Outcomes of rescue therapy in acute severe colitis: what should we tell our patients? Three year mortality following admission for the treatment of ulcerative colitis: a 6 year retrospective case review. Frontline Gastroenterol. 2010;1:35-41.
3. Truelove SC, Wits L. Cortisone in ulcerative colitis; final report on a therapeutic trial. Br Med J. 1955;2:1041-1048.
4. Burisch J, Katsanos KH, Christodoulou DK, et al. Natural disease course of ulcerative colitis during the first five years of follow-up in a European population-based inception cohort—an Epi-IBD study. J Crohns Colitis. 2013;19:252-276.
5. Janssen, Takeda, ProImmune, Vifor, Shield Therapeutics and Medtronic. Gareth Parkes has received speaker fees, consultancy or advisory board fees for Abbvie, Dr Falk, Ferring, Janssen, Napp, Takeda, Tillotts. Tim Raine has received research/educational grants and/or speaker/consultation fees from Abbvie, Celgene, Gilead, GSK, Janssen, MSD, Novartis, Pfizer, Sandoz and Takeda. Nicholas Kennedy has received speaker/consultation fees from Falk, Pharmacosmos, Janssen and Takeda. His institution has received research funding from MSD, Abbvie, Napp, Pfizer, Takeda and Pharmacosmos.

AUTHORSHIP

Guarantor of the article: Professor Shaji Sebastian.

Author contributions: Shaji Sebastian, Sally Myers: Designed the study, Collected and analysed the data, Wrote manuscript Tim Raine, Gareth Parks, Alan Lobo, Achut Shenoy, Richard Shenderey, Jimmy Limdi, Jeffrey Butterworth, Anjan Dhar, Sreedhar Subramanian, Patrick Allen, Sunil Samuel, Gordon Moran: Supervised collection of data, critical review of the manuscript and analysis. Nicholas A Kennedy: Contributed to design, Statistical analysis review and critical review of the manuscript Konstantinos Argyriou, Gayle Martin, Louis Los, Joseph Fiske, Benjamin Copper, Vivek Goodoory, Ravi Ranjan, Hey-Long Ching, Nishanalanithika Jayasooriya, Johanne Brookes: Collected data. All authors reviewed and approved the final version of the manuscript. Acknowledgements: Dr Chao Huang: review of statistical analysis.

Funding for the study: None.

Writing support: None.

REFERENCES

1. Ananthakrishnan AN, McGinley EL, Binion DG, Saelian K. A nationwide analysis of changes in severity and outcomes of inflammatory bowel disease hospitalizations. J Gastrointest Surg. 2011;15:267-276.
2. Lynch RW, Lowe D, Protheroe A, Driscoll R, Rhodes JM, Arnott I. Outcomes of rescue therapy in acute severe colitis: what should we tell our patients? Three year mortality following admission for the treatment of ulcerative colitis: a 6 year retrospective case review. Frontline Gastroenterol. 2010;1:35-41.
3. Truelove SC, Wits L. Cortisone in ulcerative colitis; final report on a therapeutic trial. Br Med J. 1955;2:1041-1048.
4. Burisch J, Katsanos KH, Christodoulou DK, et al. Natural disease course of ulcerative colitis during the first five years of follow-up in a European population-based inception cohort—an Epi-IBD study. J Crohns Colitis. 2013;19:252-276.
5. Janssen, Takeda, ProImmune, Vifor, Shield Therapeutics and Medtronic. Gareth Parkes has received speaker fees, consultancy or advisory board fees for Abbvie, Dr Falk, Ferring, Janssen, Napp, Takeda, Tillotts. Tim Raine has received research/educational grants and/or speaker/consultation fees from Abbvie, Celgene, Gilead, GSK, Janssen, MSD, Novartis, Pfizer, Sandoz and Takeda. Nicholas Kennedy has received speaker/consultation fees from Falk, Pharmacosmos, Janssen and Takeda. His institution has received research funding from MSD, Abbvie, Napp, Pfizer, Takeda and Pharmacosmos.
10. Narula N, Marshall JK, Colombel J-F, et al. Systematic review and meta-analysis: infliximab or cyclosporine as rescue therapy in patients with severe ulcerative colitis refractory to steroids. Am J Gastroenterol. 2016;111:477-491.

11. Clement C, Seagrove A, Rapport F, et al. PTU-063. Healthcare professionals’ views of the use and administration of two salvage therapy drugs for acute ulcerative colitis: a nested qualitative study within the CONSTRUCT trial. BMJ Open. 2017;7:e014512.

12. Aratari A, Papi C, Clemente V, et al. Colectomy rate in acute severe ulcerative colitis in the infliximab era. Dig Liver Dis. 2008;40:821-826.

13. Dotan I, Ron Y, Yanai H, et al. Patient factors that increase infliximab clearance and shorten half-life in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20:2247-2259.

14. Brandse JF, van den Brink GR, Wildenberg ME, et al. Loss of infliximab into feces is associated with lack of response to therapy in patients with severe ulcerative colitis. Gastroenterology. 2015;149:350-355.e2.

15. Rosen MJ, Minar P, Vinks AA. Review article: applying pharmacokinetics to optimise dosing of anti-TNF biologics in acute severe ulcerative colitis. Aliment Pharmacol Ther. 2015;41:1094-1103.

16. Gibson DJ, Heetun ZS, Redmond CE, et al. An accelerated infliximab induction regimen reduces the need for early colectomy in patients with acute severe ulcerative colitis. Clin Gastroenterol Hepatol. 2015;13:330-335.e1.

17. Choy MC, Seah D, Gorelik A, et al. Mo1878 comparison of accelerated infliximab induction vs standard induction treatment in acute severe ulcerative colitis. Gastroenterology. 2016;150:S803.

18. Govani SM, Waljee AK, Stidham RW, Higgins P, Hardiman K. S16 accelerated dosing of infliximab prevents colectomy within 90 days in only half of patients with severe ulcerative colitis. Gastroenterology. 2016;150:S106.

19. Sebastian S, Myers S, Nadir S, Subramanian S. Systematic review: efficacy and safety of accelerated induction regimens in infliximab rescue therapy for hospitalized patients with acute severe colitis. Dig Dis Sci. 2019;64:1119-1128.

20. Herfarth HH, Rogler G, Higgins P. Pushing the pedal to the metal: should we accelerate infliximab therapy for patients with severe ulcerative colitis? Clin Gastroenterol Hepatol. 2015;13:336-338.

21. Shah SC, Naymagon S, Panchal HJ, Sands BE, Cohen BL, Dubinsky MC. Accelerated infliximab dosing increases 30-day colectomy in hospitalized ulcerative colitis patients: a propensity score analysis. Inflamm Bowel Dis. 2018;24:651-659.

22. An Y, Chen C, White L, Howlett M, Lord A, Radford-Smith G. Accelerated dosing of infliximab induction and endoscopic mucosal healing in patients with acute severe ulcerative colitis. J Gastroenterol Hepatol. 2017;32:121-154.

23. Nalagatla N, Falloon K, Tran G, et al. Effect of accelerated infliximab induction on short- and long-term outcomes of severe ulcerative colitis: a retrospective multicenter study and meta-analysis. Clin Gastroenterol Hepatol. 2019;17:502-509.e1.

24. Ho GT, Mowat C, Goddard C, et al. Predicting the outcome of severe ulcerative colitis: development of a novel risk score to aid early selection of patients for second-line medical therapy or surgery. Aliment Pharmacol Ther. 2004;19:1079-1087.

25. Travis SP, Farrant JM, Ricketts C, et al. Predicting outcome in severe ulcerative colitis. Gut. 1996;38:905-910.

26. Choy MC, Seah D, Gorelik A, et al. Predicting response after infliximab salvage in acute severe ulcerative colitis. J Gastroenterol Hepatol. 2018;33:1347-1352.

27. Shah SC, Naymagon S, Cohen BL, Sands BE, Dubinsky MC. There is significant practice pattern variability in the management of the hospitalized ulcerative colitis patient at a tertiary care and IBD referral center. J Clin Gastroenterol. 2018;52:333-338.

SUPPORTING INFORMATION

Additional supporting information will be found online in the Supporting Information section at the end of the article.

How to cite this article: Sebastian S, Myers S, Argyriou K, et al. Infliximab induction regimens in steroid-refractory acute severe colitis: a multicentre retrospective cohort study with propensity score analysis. Aliment Pharmacol Ther. 2019;50:675–683. https://doi.org/10.1111/apt.15456

APPENDIX 1

ELEVATE-ASUC STUDY GROUP AUTHORS AND COMPLETE LIST OF AFFILIATIONS

Shaji Sebastian, IBD Unit, Hull University Hospitals NHS Trust, Hull, UK; Hull York Medical School, University of Hull and York, Hull, UK; Sally Myers, IBD Unit, Hull University Hospitals NHS Trust, Hull, UK; Konstantinos Argyriou, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK; Gayle Martin, South Eastern Trust, Belfast, UK; Louis Los, Royal Shrewsbury Hospitals NHS Trust, Shrewsbury, UK; Joseph Fiske, The Pennine Acute Hospitals NHS Trust, Manchester, UK; Ravi Ranjan, County Durham and Darlington NHS Foundation Trust, Durham, UK; Benjamin Cooper, Colchester Hospital University NHS Foundation Trust, Colchester, UK; Vivek Goodyoo, Airedale NHS Foundation Trust, Airedale, UK; Hey-Long Ching, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK; NishaniLalanthika Jayasooriya, Royal London Hospital, Bart’s Health NHS Trust, London, UK; Johanne Brooks, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Anjan Dhar, County Durham and Darlington NHS Foundation Trust, Durham, UK; Achut H. Shenoy, Colchester Hospital University NHS Foundation Trust, Colchester, UK; Jimmy K. Limdi, The Pennine Acute Hospitals NHS Trust, Manchester, UK; Jeffrey Butterworth, Royal Shrewsbury Hospitals NHS Trust, Shrewsbury, UK; Patrick B. Allen, South Eastern Trust, Belfast, UK; Sunil Samuel, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK; Gordon W. Moran, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK; University Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK; Richard Shenderey, Airedale NHS Foundation Trust, Airedale, UK; Gareth Parkes, Royal London Hospital, Bart’s Health NHS Trust, London, UK; Alan Lobo, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK; Nicholas A Kennedy, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK; Tim Raine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Sreedhar Subramanian, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK.