Digitalization as a Factor of Sustainable Development of Industrial Enterprises

I Ivanov¹, L Orlova², T Vlasova³

¹State University of Management, 109542, Ryazanskij prospekt, 99, Moscow, Russia
²State University of Management, 109542, Ryazanskij prospekt, 99, Moscow, Russia
³Moscow State Region University, 105005, Radio Street, 10a. Moscow, Russia

E-mail: ivanov-igor-nik@mail.ru, lorlo@mail.ru, tivlasova@rambler.ru

Abstract. This study discusses the development of digitalization processes in the world and the Russian Federation, how they are manifested in the economy and, in particular, in industry. Weak performance of the Russian Federation in the digitalization field is noted with the main reasons indicated. The role of the "Digital Economy of the Russian Federation" Program in the development and implementation of digital technologies into domestic practice is shown. The development of these technologies is uneven in various national economy sectors, as well as their prospects in the field of material production, including industry. The ways of accelerated adaptation of industrial enterprises to digital reality are shown. These paths include, in particular, the development of dynamic capabilities of companies, transition to end-to-end industrial systems, adoption of the smart enterprise concept based on the SAP S/4HANA platform. The relevant positive experience of certain industrial companies is shown. In the context of digitalization, the sustainable development (SD) concept gains more priority with the continuous adaptation of economic systems to the changing requirements of the external environment. The dependence of the sustainable development level on the economy digitalization degree is shown. The main goals of sustainable development of economic entities are formulated, approaches are described for linking these goals with the corresponding goals at the level of the region, industry and the country as a whole. It is noted that the sustainable development of industrial enterprises during digitalization can be fully ensured only with effective support from the state based on the GR management concept.

1. Introduction

Information and communication technologies (ICT), which are the base for the digital economy, have recently become the most important factor in economic growth. The digital economy, which is a new economic order, contributes to the growth rates of the second-generation informatization, as well as the creation of a fundamentally new management system [20, 23].

Virtually all aspects of social life have undergone certain changes with the development of ICT. Entire sectors of the national economy are using the opportunities of the digital economy. In July 2017, at a meeting of the Council for Strategic Development and Priority Programs, V.V. Putin emphasized that the economy digitalization is a priority to ensure the national security of the Russian Federation and the competitiveness of economic entities [19].

The Government of the Russian Federation has approved "Digital Economy of the Russian Federation" Program, which has the main goal to create appropriate conditions for the digital economy...
development in the Russian Federation, the core of which should be digital data for all spheres of economic and social activity [1].

The urgent need to implement this program is determined, on the one hand, by the need to ensure the Russian Federation's national security, and on the other hand, by the equally significant need to increase the competitiveness of the Russian Federation in the world market. In this light, the Russian economy digitalization is a task of extreme importance and is a vivid example how quantitative changes evolve into qualitative ones — improvement of computational performance and the scale of computer memory allowed to develop and effectively implement new technologies, which, in turn, contribute to even faster development of software and hardware of computing systems.

As for the economic system of the Russian Federation, its digital transformation is an integral part of the Industry 4.0 concept, which implies the economic management model change — the model turns into a predictive software [7].

Today, the growth of national economies is associated mainly with the process of digitalization of these economies. This process impacts on all spheres of the national economy and social life, going beyond information technology [6]. In 2020, according to forecasts, the ten leading world economies should increase their total GDP by 2.3% in a result of digitalization, which will amount to 1.36 trillion USD. For developing countries, given their relatively low base, GDP growth should increase by 34% according to the forecasts [10]. However, it should be noted that the coronavirus pandemic that broke out in the world in 2020 will undoubtedly affect these forecasts.

The economy digitalization of the Russian Federation began with a certain delay compared to the developed countries. Furthermore, the corresponding processes are carried out in different sectors at a different pace — the most advanced in this regard are the financial and social sectors, public administration, health care and education. Digitalization is implemented to a lesser extent for material production and, in particular, for the industry. At the same time, the level of innovation (including digitalization) of industrial enterprises largely determines the sustainability of these enterprises and their competitiveness in the world market. The abovementioned signifies the need to study the issues of interrelation and interdependence of digitalization processes, as well as the implementation of sustainable development goals for industrial enterprises.

2. Background and methodology
This study is based on the development of theorists and experience of practitioners in the field of digitalization and sustainable development, as well as on the manifestation of relevant processes in the field of material production, including industry. Official legislative and regulatory documents, statistics, and media materials have been used.

The authors have generalized and analyzed scientific literature on sustainable development and economy digitalization processes as a whole and for a separate economic entity. The purpose of this study was to establish the nature of the digitalization aspects manifested in the conditions of the industrial sector company operation, as well as to determine the impact of digital transformation on the sustainability of these companies. Furthermore, the task was to determine the most effective ways to combine digitalization processes with sustainable development. These include, in particular, increasing the dynamic capabilities of the enterprise and the use of the "Government Relations" (GR) concept.

The fast pace of transformation processes affecting how different countries, as well as individual regions, industries and enterprises, search for the new ways to develop their economies, predetermines the urgent need for constant monitoring of the development of both theoretical and practical aspects of how digital processes are combined in the economy with the implementation of sustainable development objectives.

3. Discussion and results
The role of the digital economy can be judged by the following data: the annual increase in its share in world GDP averages 18%. According to the World Bank, the number of people using high-speed
Internet is increased by 10%, which provides an increase in GDP growth from 0.4 to 1.4% per year. The Boston Consulting Group predicts digital economy growth by 2035 up to 16 trillion USD. In terms of the economic system digitalization, the Russian Federation is still lagging behind the EU countries and the United States. Among the reasons for the weak performance, first of all, an unfavorable investment climate, international sanctions, a backward regulatory framework for promoting the results of scientific research into the practice of business entities, and an insufficient level of digital technology utilization in business shall be noted. The digital economy accounts for only 3.9% of the country's GDP, which is two to three times lower than in the United States, China, the EU countries and Brazil. The success of the United States in this area is explained by the active participation of the private sector and state in investing into the economy digitalization. The size of private investment in the digitalization of the economy in the Russian Federation does not exceed 2.2% of GDP; at the same time, in the USA, this value is 5%, in the EU countries — 3.9%, in Brazil — 3.6%. Among European countries, Germany should be noted, where 10% of residents work in the high technology field. Furthermore, the state is actively funding promising high-tech projects. In addition to the share of the digital economy in GDP, the Russian Federation also underperforms in household spending in the digitalization field, in the volume of investments made by enterprises in digitalization, and, finally, in the volume of government spending on the digital transformation of the economy. The private business sector of the Russian Federation does not show a noticeable commitment to the promotion of digital technologies for the consumers, does not invest enough in the implementation of technological breakthroughs to create new products and services, improve service quality, and increase labor productivity. According to expert estimates of the global McKinsey Institute, digital economy in the Russian Federation will be able to reach only 8–10% of the country's GDP by 2025, while in China this value is estimated at 22%. In the United States, the expected increase in value due to digitalization may amount 1.6–2.2 trillion USD by the specified date [10].

Weak performance of the Russian Federation in the economy digitalization field will be reduced with implementation of the abovementioned "Digital Economy of the Russian Federation" Program, according to which the development and implementation of digital technologies will be performed in all spheres of life — in public administration, economy, social sphere, entrepreneurship. In practice, the process of digitalization of various national economy sectors and social life is taking place unevenly in the Russian Federation. The corresponding changes are most noticeable in the financial and social spheres, as well as in public administration. In the financial sector, a clear manifestation of its digitalization is, for example, the emergence and spread of cryptocurrencies, the amount of which reached about 188 trillion USD by the end of 2019. Public administration is the area where the impact of digitalization on the general public is most visible — the public opinion is shaped via the Internet and network structures, digital public services, etc. Digitalization results are clearly visible for healthcare and education systems. In the first case, this includes digital medical records, digital registration, new methods of diagnostics and data transmission. In the second — abandonment of paper textbooks, introduction of digital logbooks, remote learning, etc. The digitalization of legislation can be seen, in particular, in the introduction of digital signatures, electronic document management, digital registration of property, digital notaries [12].

Digitalization is used very effectively in these areas. At the same time, a number of industries embrace digitalization, but the corresponding processes are associated with noticeable risks. First of all, this applies to energy, transport, national security, and banking sector [11]. These risks are associated with accidents in power systems, natural disasters, theft of financial resources, cyberattacks on strategic and defense facilities, illegal distribution of personal data on the Internet, etc. According to V.I. Malyi, digitalization is not only meaningless for certain industries, but also harmful, since it violates the humanistic foundations of social life. The author is referring to the development of artificial intelligence to the detriment of human development, robotization of life, genetic engineering and production of genetically modified food, as well as overwhelming surveillance of citizens' life.

Returning to the industries, for which digitalization seems to be undoubtedly promising, the insufficient attention to the real economy sector should be noted in this case, in particular to industry,
as well as the shift in priorities from industries to sectors of non-material production and services in the implementation of a part of social and economic development programs in certain territorial entities of the Russian Federation [12].

At the same time, digitalization of industrial enterprises expands the possibilities for increasing the sustainability of these enterprises due to a faster and more efficient analysis of the actual organizational, technical and economic state of the company. In particular, utilization of Big Data technologies ensures quick monitoring of physical wear and tear, and predicting equipment obsolescence. These technologies, together with the "Internet of Things", and artificial intelligence, significantly increase marketing effectiveness and, as a result, the company's stability [7].

However, it should be emphasized that modern trends in the development of digital processes occur at a very high speed, are completely new for most companies and, as a rule, destabilize their current production and economic activities. Under these conditions, the ability of the company's management to quickly adapt to a changing situation largely determines the prospects for ensuring the sustainable development of the company. In turn, whether the adaptation is successful largely depends on the degree of development of the company's dynamic capabilities that make up its competitive potential. At the same time, the most important dynamic abilities of a company include [16]:

- identifying changes in the external environment faster than competitors;
- making the necessary decisions quickly;
- striving for continuous development;
- commitment to continuous learning;
- being flexible and adaptable;
- commitment to finding and developing new abilities.

The aggregate of the dynamic capabilities of individual enterprises forms the dynamic capabilities of certain industries. The study of E.D. Vaisman and N.S. Nikiforova [6] establishes the relationship of these abilities with the level of digitalization of some industries. The group with a significant level of digitalization and dynamic capabilities includes the automotive industry, machinery and equipment manufacturing, and the chemical industry. The second group is represented by industries with the digitalization level below the average, but with dynamic capabilities above average (metallurgy, food and leather production). The third group includes industries with a low level of both digitalization and dynamic capabilities (textile, clothing, cellulose and paper production, wood processing).

Despite a certain delay with the digital transformation of the Russian Federation economy, a number of national economy sectors have gained certain worthwhile experience in the development of digital technologies. These include, in particular, the mining and metallurgical industries. The main direction of digitalization processes in this industry is the focus on end-to-end industrial systems, as well as on the intelligent enterprise concept based on the SAP S/4HANA platform [4]. According to SAP, 38 migration projects to the abovementioned platform are currently in the active phase (SAP CIS official website) [2].

A large-scale digitalization program for mining and metallurgical sectors is being implemented by one of the industry leaders of the Russian Federation — MMC Norilsk Nickel PJSC. One of the program directions is the creation of an ERP system based on SAP solutions to ensure management optimization of production processes, labor resources and financial indicators. Furthermore, Norilsk Nickel is implementing the "Technological Breakthrough" program, which is a set of specialized solutions for the production activities of mining, processing and metallurgical processing.

PJSC Severstal is also switching to SAP S/4HANA platform. This transition will affect production, sales, procurement and financial activities. At the SAP Forum in April 2019, Severstal presented three implemented SAP-based technology solutions.

Cooperation between SAP and Metalloinvest Group, a leading manufacturer and supplier of iron ore and metal products, is considered successful [21]. In 2016, this company developed and implemented a comprehensive business transformation program based on SAP S/4HANA. The
program objectives are to transform and increase the efficiency of business processes, improve the planning quality, reduce labor costs, improve control over the execution of plans and standards, ensure accounting transparency, etc. A multifunctional service center was created, which provided such services as — treasury functions, finance, procurement, personnel management and others.

The main digitalization trends in the metallurgical sector were discussed at the 4th International Mining and Metallurgical SAP Summit (September 11–12, 2012, Moscow, Stary Oskol). The main topic of the summit was the concept of "Smart Manufacturing", which includes:

- Smart enterprise — a set of digital solutions to ensure the continuity of business processes;
- Smart SAP technologies, including Internet support for interaction of IT solutions with the physical world;
- Smart manufacturing — automation and optimization of production processes.

The already mentioned Metalloinvest company, the co-organizer of SAP Summit, carried out the first stage of a large-scale digital transformation — created an integrated system for managing the financial and economic complex. More than one hundred production and management entities of the company have been unified by a single ERP system based on SAP S/4HANA.

A noteworthy experience of the United Metallurgical Company (OMK) with the implementation of an automated warehouse management system — SAP EWM ("Smart warehouse") at the Vyksa Steel Works (VSW). Three months after the introduction of this system, the performance of logistics warehouses increased by more than 20%, labor costs decreased by 15%, errors in order picking — by 70%.

During the SAP summit, the creation of a common blockchain-based industry register of certificates for the products of metallurgical enterprises was announced. This idea was supported by Russian metallurgical companies and it may be launched in 2020. A unified register of certificates greatly facilitates the standardization of document flow between customers and suppliers.

Severstal presented a project to optimize the product certification procedure based on the Sherlock automated control system. This project allows analyzing each unit of production by all quality criteria according with the buyer's requirements. If the experience with the "Sherlock" system currently operating at the continuous hot-dip galvanizing unit is found to be positive, it will be implemented in other production divisions of the plant.

It should be emphasized that the above successful examples of digital technology utilization in the Russian industry are still more the exception than the rule. Industry development in most countries is currently focusing on the Industry 4.0 program, which implies the digital transformation of industries and is aimed at rationalizing the use of resources, implementation of innovations, development and introduction of new technologies and, as a result, at improving economic and social efficiency, ensuring sustainable development (SD) of industries and individual enterprises of the real economy sector.

At the same time, many changes in the economy, including the real sector, are happening so quickly that not all businesses, as well as individual citizens, have time to quickly adapt to them. This, in turn, gives rise to an institutional dichotomy in society — a consequence of digitalization, which in a number of cases can lead to its decline, instead of improving the quality of life, provoking a feeling of uncertainty, and lack of understanding of the ongoing processes. Keeping in mind the abovementioned, the implementation of the sustainable development concept requires prompt identification of emerging trends and adaptation of the country's management system for the social and economic development to these trends [12]. As mentioned above, this is even more relevant because the effects of digitalization differ for different areas.

Furthermore, digitalization creates fundamentally new conditions for the functioning of industrial enterprises. The extremely high rates of the fourth industrial revolution development have a destabilizing effect on the external environment of enterprises. In these conditions, the role of sustainable development becomes more significant, which implies a continuous process of adaptation of the company's economic system to the changing requirements of the external environment and maintaining the company's competitiveness.
The generally accepted interpretation of the "sustainable development" concept implies meeting the needs of both the current generation and future generations. Sustainable development of the economic and social system as a whole and individual enterprises is based on a positive trend in the economic component of this system (quality of life improvement), the social component (development of human capital) and the environmental component (environment quality improvement).

Research carried out by Zh.S. Belyaeva and Ya.A. Lopatkova [5] revealed a correlation between sustainable development trends and digitalization. At the same time, the levels of sustainable development and digitalization are proportional to the degree of social and economic development of individual countries.

The sustainability of a modern enterprise can only be ensured by adequate potential. Such potential is built in the process of creating a modern production with innovation focus and effective management covering all levels of the company's management system, with effective marketing ensuring constant monitoring of the market. The enterprise sustainability potential cannot be achieved in these conditions without modern information technologies, as well as digital transformation in all areas of the company's activities.

Digitalization allows quickly detecting tendencies that disrupt enterprise stability, becoming the base of a modern in-house diagnostic system using such information technologies as Big Data, artificial intelligence, 3D modeling, etc. Digital transformation can significantly reduce losses from human factor mistakes, thereby increasing enterprise stability in an unstable and uncertain external environment. Such an environment requires the business to be not just stable, but dynamically stable, i.e., to be able to maintain its production and operation parameters, as well as main competitive advantages and ability to develop. This state can be achieved by developing a system of the abovementioned dynamic abilities in the company.

Sustainable development implies reaching certain goals, including tasks to be solved at the level of individual businesses, in particular, ensuring access to reliable energy sources, promoting full employment and innovation, and environmental protection.

Ensuring the company's sustainability requires a development strategy that would ensure the implementation of goals and objectives inherent to the global sustainable development trend. Given the foregoing, the set of goals and indicators developed by the company should be linked to the goals and indicators used at the global level. At the same time, in practice, strategies of companies based on the sustainable development concept in most cases do not correlate with the global level goals. This is a consequence of a lack of methodological tools for integrating of sustainable development elements into the company's management processes. The authors propose a concept scheme of an approach to the definition of SD goals and indicators by a company derived from similar goals and indicators used at the region, industry and country levels. At the same time, the top-level goals and indicators should inherit the global SD tasks of the UN. Ideally, a set of sustainable development goals should enable the definition and monitoring of interrelated goals and indicators at all management levels.

The algorithm for the implementation of target indicators in the framework of sustainable development management can be represented as the following sequence:

3.1. Formulating sustainable development goals
The definition of SD goals shall be based on the vision, mission and goals of the company. The goal could be, for example, "to increase the energy efficiency of the company's production assets by 20% by 2022" or "to modernize the infrastructure and re-equip at least 30% of the company's auxiliary assets".

3.2. Decomposition of SD goals and formalization into target indicators
This process shall be interconnected with the corporate strategy development stage. To do that, the company analyzes its potential and determines how the set goals can be achieved. The sustainable development goals are decomposed into subgoals, each is assigned its target indicator in the process of formalization.
3.3. Incorporation of target sustainable development programs (TSDP) into product strategies
The industrial enterprise strategy creation shall be switching from developing a unified corporate strategy to product strategy and then to functional strategies. At the same time, the product strategy is developed on the basis of the selected target markets, which include only those TSDPs that relate to the quality of the final product or its purpose. For example, gas pipeline quality contributes to the implementation of the UN’s goal of "ensuring universal access to affordable, reliable and modern energy supplies by 2030”.

3.4. Incorporating TSDP into functional strategies
The strategic perspectives for the functional areas are determined based on the results of the previous steps. However, both tasks of the enterprise as a whole and tasks of individual departments shall be addressed. At the same time, functional strategies should be decomposed with the possibility of subsequent data consolidation.

3.5. Establishing TSDP for business operations
It is obvious that the enterprise strategy is effectively implemented only if the top-level strategic goals are transformed into adequate lower-level goals. Therefore, one of the main tasks for improving the efficiency of the company's sustainable development management is the creation of a set of goals for operational activities.

3.6. TSDP implementation in business operations
At this stage, it is important to use accounting and budgeting tools allowing to track the achievement of the established indicators.

3.7. TSDP implementation monitoring
TSDP implementation monitoring is performed simultaneously with the stage of the company's strategy implementation analysis. At this point, tasks are defined for data collection from the business operations departments and project teams.

3.8. TSDP fine-tuning
The enterprise strategy management process has a continuous and cyclical nature. During the corresponding TSDP cycle, the defined indicators should be fine-tuned based on the results of the company’s activities monitoring. Fine-tuning can be carried out to revise the target values for the planned period or clarify the lower-level indicators, for example, when expanding the functionality or structure of a particular company department.

 The implementation of the enterprise SD program is possible only with effective support from the state. Mutually beneficial partnerships shall be formed between government structures and businesses based on the concept of sustainable development. Such relations are called "Government Relations" (GR) — the activities of non-state entities aimed at interaction with government bodies [22]. GR management is becoming especially relevant in the light of the above concept, which appeared in the report of the UN General Assembly, prepared by the Commission on Environment and Development.

 Significant changes are currently taking place in relations between government and companies. For instance, in the United States, GR management allows forming relationships to support the strategic goals of business entities, which, in turn, clearly understand their needs, as well as the needs of the national economy in terms of sustainable development. Under the conditions of the digital economy of the United States, this GR-building approach allows to [9]:

 • create conditions for regulatory framework improvement;
 • create platforms for the digital economy in the most promising areas of the real sector;
 • win the competition between the above platforms;
 • spread the best solutions to the entire economy.
At the same time, GR management in the United States involves not only the large and medium-sized businesses but small businesses (innovative and technology-focused ones) as well.

In China, GR management ensured the development of production digitalization by introducing the industrial Internet, as well as by expanding the sales markets. All this provided [9]:

- full-scale digitalization of production and logistics;
- development of a high-quality regulatory framework;
- control system digitalization, creation of digital platforms;
- integration of digital platforms and ecosystems into a single environment.

Social projects based on public-private partnerships have a significant effect [8, 14] allowing the population to master the possibilities of the digital economy at the cognitive level [15]. For instance, the state supports the GR management concept in the development of modern digital technologies and the implementation of such projects as "smart city", "digital healthcare", "digital continuous education", etc.

At the same time, technological disadvantage of the Russian Federation in the digital economy field compared to the developed countries in the absence of a significant number of innovative enterprises in various spheres of the national economy indicates the insufficiency of the existing tools that stimulate and regulate the processes of creating favorable conditions for the development and introduction of the economy digitalization technologies. In these conditions, the Russian Federation needs to determine the main directions of development of GR management institute, which shall address both the social aspects of digital technologies (education and investment in human resources), as well as the creation of a Russian technical and economic base for switching to a new technological order [21].

4. Conclusions

Information and communication technologies are currently the most important factors in economic growth, being a platform for digital economy development. The implementation of "Digital Economy of the Russian Federation" Program approved by the government of the Russian Federation should become a guarantee of ensuring national security and competitiveness of the Russian Federation in the world market. Digitalization of various spheres of economic activities of the Russian Federation occurs unevenly. With some positive examples of the introduction of digital technologies in a number of industrial enterprises, digitalization of the real economy sector, in particular, of industry, is still lagging behind the corresponding processes in other areas of the national economy. At the same time, the speed of adaptation of industrial enterprises to rapidly changing external factors (and, first of all, to digital technologies) decisively determines the ability of companies to ensure their sustainable development. The success of such adaptation largely depends on the so-called dynamic capabilities of the company, which in their most general form represent the ability to continuously learn and develop, make quick decisions, as well as develop new company capabilities. The main direction of digitalization processes, and, consequently, the industrial enterprise sustainability improvement, is the transition to end-to-end production systems based on the SAP S/4HANA platform. Along with digitalization and dynamic capabilities, the sustainability of a modern industrial enterprise can only be ensured with an appropriate potential that is gained in the process of creating a modern innovative production with effective company management at all levels while using modern information technologies. In addition to the above, sustainable development of a modern domestic industrial enterprise can be ensured by the effective support of the relevant state bodies using the GR management concept.

5. References

[1] Decree of the President of the Russian Federation dated 09.05.2017 N 203 "On the Strategy for the Development of the Information Society in the Russian Federation for 2017 - 2030" [Electronic resource] Access mode: http://www.consultant.ru/ document / cons_doc_LAW_318543 (date accessed 15/12/2019)
[2] Official site of the SAP CIS company [Electronic resource] Access mode: http://www.sap.com/cis/about.html (date accessed 12/10/2019)

[3] Abrashkin M S, Vershinin A A 2018 The impact of the digital economy on the development of industry in the Russian Federation Regional economic issues 1(34) pp 3-9

[4] Belyaev E D, Ivanov I N, Belyaev A M 2019 Development of digital technologies in the mining and metallurgical industry Materials of the International Scientific Conference “Step into the Future. Artificial Intelligence” (M. GU)

[5] Belyaeva Zh S, Lopatkova Ya A 2019 The impact of digitalization on sustainable development. In the collection: Spring Days of Science of the Higher School of Economics Collection of reports of the international conference of students and young scientists pp 84-88

[6] Vaisman E D, Nikiforova N S 2018 Development of the dynamic capabilities of industrial enterprises in the digital economy Bulletin of the Ural State University of Economics 3 Vol 19 pp 126-136

[7] Vasin N S 2018 Enterprise sustainability management in the digital economy Economic analysis: theory and practice vol 17 issue 6 pp 1100-1113

[8] Ignatova T V 2012 Formation of a set of measures for managing anti-crisis interaction between the state and business Russian entrepreneurship 5 pp 11-16

[9] Kail Ya Ya, Ignatova T V, Epinina V S 2019 Coordination of the Institute of GR-management in the system of sustainable economic development Bulletin of Eurasian Science 2 https://esj.today / PDF / 39ECVN219 / pdf (free access)

[10] Kapranova L D 2018 Digital economy in the context of sustainable development of Russia Materials of the VI International Scientific Congress Theory and practice of entrepreneurship development: modern concepts, digital technologies and an effective system pp 305-309

[11] Maliy V I, Gusev V V 2019 Optimal combination of digital and traditional economies as the basis for sustainable development of the Russian Federation. Materials of the VI All-Russian Scientific and Practical Conference "Dylnov Readings" pp 165-171

[12] Mingaleva Zh A, Postnikov V P 2019 The impact of digitalization processes on the transformation of approaches to sustainable development Science diary 12(36) p 28

[13] Petrukhina N V 2019 Sustainable development of the constituent entities of the Russian Federation in the digital economy Collection of articles Socio-economic development of Russia: problems, trends, prospects of the XVIII International Scientific and Practical Conference pp 259-262

[14] Plotnikova N A 2014 Features of interaction between business and government in the regulation of socio-economic problems of the territory Concept 28 pp 56-60

[15] Rubtsova N V, Chumakova L P 2018 Some features of the legal regulation of entrepreneurial activity in the context of the digital economy Russian laws: experience, analysis, practice 8 pp 94-98

[16] Somonova N S, Ivanov I N 2013 Building an innovative business model of activities based on key competencies and dynamic capabilities of the enterprise University Bulletin 11 pp 119-129

[17] Tserenova B I 2018 Digitalization of the industrial sector as a key factor for sustainable development of the territory Collection of MNPK pp 1317-1322

[18] Shutkov A A 2019 Problems of sustainable and innovative development of the economy in the digital era Economic systems T 12 3-4 pp 139-141

[19] Shcheglov E V 2018 Features of sustainable development of industrial enterprises in the digital economy Gaudeamus Igitur 4 pp 11-15

[20] Yao U, Safonova E G 2019 Science and business - as factors of sustainable development of the digital economy Science And Business Of Sustainable Development Factors Of The Digital Economy Economy. Business. Finance 3 pp 33-36

[21] Metallinvest completed the implementation of a digital platform for managing business processes [Electronic resource] Access mode: http://www.consultant.ru/ document / ons_doc_LAW_318543 / (date accessed 11/03/2020)
[22] GR and lobbying: theory and technology (Edited by A V Achkasova, I E Mintusov, O G Filatova (M.: Yurayt Publishing House) p 315

[23] Svistunov V M, Grishaeva S A, Lobachev V V 2020 Digitalization of the Russian economy in the context of global trends European Proceedings of Social and Behavioral Sciences EpSBS, 18th International Scientific Conference Problems of Enterprise Development: Theory and Practice 27 pp 503-512 (Samara, Russia)