Novel Conditions on the Non-Normal Cayley Graphs of Valency Six

Mahtab Hashemian and Mehdi Alaeiyan*
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran; alaeiyan@iust.ac.ir

Abstract
A Cayley graph \(X = \text{Cay}(G, S) \) on a group \(G \) is said to be normal if the right regular representation \(R(G) \) of \(G \) is normal in the full automorphism group \(\text{Aut}(X) \). In this paper, two novel conditions are outlined to identify the non-normal Cayley graphs of valency six. As an application, some non-normal Cayley graphs of valency six on \(A_4 \) and \(A_5 \) are obtained.

Keywords: Automorphism Groups, Cayley Graph, Normal Cayley Graph

1. Introduction
Let \(X \) be a finite simple undirected graph, we use \(V(X) \), \(E(X) \), \(A(X) \) and \(\text{Aut}(X) \) to denote its vertex set, edge set, arc set and full automorphism group, respectively. For every \(u,v \in V(X) \), \(\{u, v\} \) is the edge incident to \(u \) and \(v \) in \(X \). A graph is called vertex-transitive if its automorphism group is transitive on the vertex set. A graph is called edge-transitive if its automorphism group is transitive on the edge set. Similarly an arc-transitive graph is a graph whose automorphism group is transitive on the arc set. Throughout this paper the symmetric group of degree \(n \) and the alternating group of degree \(n \) are denoted by \(S_n \) and \(A_n \), respectively.

Let \(G \) be a permutation group on a set \(A \) and \(\alpha \in A \). Denote by \(G_\alpha \) the stabilizer of \(\alpha \) in \(G \), that is, the subgroup of \(G \) fixing the point \(\alpha \). Permutation group \(G \) is semiregular on \(A \) if \(G_\alpha = 1 \) for every \(\alpha \in A \) and regular if \(G \) is transitive and semiregular. Let \(G \) be a finite group and let \(S \) be a subset of \(G \) such that \(1 \in S \) and \(S^{-1} = S \). The Cayley graph \(X = \text{Cay}(G, S) \) on \(G \) with respect to \(S \) is defined as the graph with a vertex set \(V(X) = G \) and an edge set \(E(X) = \{\{g, h\} | g, h \in G, gh^{-1} \in S\} \). A Cayley graph \(\text{Cay}(G, S) \) is connected if and only if \(G = \langle S \rangle \). Let \(A = \text{Aut}(\text{Cay}(G, S)) \). It is obvious that \(R(G) \) are contained in \(A \). Also is regular on the set \(V(X) \). Thus a Cayley graph is vertex transitive. If \(A_1 \) denotes the stabilizer of the vertex 1 in \(A \) then \(\text{Aut}(G, S) = \{\alpha \in \text{Aut}(G) | S^\alpha = S\} \) is a subgroup of \(A_1 \). A Cayley graph \(\text{Cay}(G, S) \) is said to be normal if \(R(G) \) is normal in \(A \).

A lot of study has been done in normality of Cayley graphs. For example, normality of Cayley graphs of order \(p^2 \) and \(2p \) has been determined by Dobson\(^1\) and Du\(^2\), respectively. Disconnected normal Cayley graphs are highlighted by Wang\(^3\). Further, Preager\(^4\) has developed a perspective which identifies \(\text{Cay}(G, S) \) is normal if \(N_{A_1}(R(G)) \) is transitive on edges and \(\text{Cay}(G, S) \) is a connected cubic Cayley graph on a non-abelian simple group. Also vast majority of normal connected cubic Cayley graphs on non-abelian simple groups are specified by Fang\(^5\).

In 2005, Feng and Xu\(^6\) proved that every connected tetravalent Cayley graph on a regular \(p \)-group is normal when \(p \neq 2, 5 \). One year later, normality of tetravalent Cayley graphs on dihedral groups have been discussed by Wang and Xu\(^7\).

In 2007, normality of the connected Cayley graph of valency 5 on \(A_5 \) has been determined by Feng and Zhou\(^8\), although in \(^9\) the normality of the connected Cayley graphs of valency 3 and 4 on \(A_4 \) has been proved by Xu and Xu. For more results on the normality of Cayley graphs, we refer the reader to \(^{1-3}\).

*Author for correspondence
In this paper, we have presented two main theorems with new conditions in order to ease the identification of non-normal Cayley graphs of valency 6.

2. Preliminaries

First we will give some preliminary results which use in the next.

Let \(X = \text{Cay}(G, S) \) be a Cayley graph of \(G \) with respect to \(S \) and \(\text{Aut}(G, S) = \left\{ a \in \text{Aut}(G) | S^a = S \right\} \). Set \(A := \text{Aut}(X) \) and denote by \(A_1 \) the stabilizer of the vertex 1 in \(A \). The following proposition is basic.

Lemma 2.1 [6, Proposition 1.1]

As the above notations:

(i) \(\text{Aut}(X) \) contains the right regular representation \(R(G) \) of \(G \) and so \(X \) is vertex-transitive.

(ii) \(X \) is undirected if and only if \(S^{+} = S \). Hence, all Cayley(di) graphs are vertex-transitive.

(iii) \(X \) is connected if and only if \(G = \langle S \rangle \).

Lemma 2.2 [6, Proposition 1.2]

We have:

(i) \(N_{A}(R(G)) = R(G) \text{Aut}(G, S) \),

(ii) \(A = R(G) \text{Aut}(G, S) \) if and only if \(R(G) \) is normal in \(G \).

Lemma 2.3 [11, Proposition 1.5]

The Cayley (di) graph is normal if and only if \(A_1 = \text{Aut}(G, S) \).

3. Discussion of Main Theorems

Now two sufficient conditions are given on the non-normal Cayley graphs of valency 6 for a finite group.

Theorem 3.1

Let \(G \) be a finite group and \(S = \{ s_1, s_2, s_3, s_4, s_5, s_6 \} \) be a subset of \(G \) which \(S^{+} = S \) and \(s_3, s_6 \) are involutions. Suppose that \(S \) contains at least three involutions and there exists an involution \(h \) in \(G \backslash S \) such that \(s_2 = hs_1, s_3 = hs_2, s_4 = hs_3, s_5 = hs_4, s_6 = hs_5, s_7 = hs_6 \).

Then the Cayley graph \(\text{Cay}(G, S) \) is not normal.

Proof

By the equations (*) and because \(h \not\in S \), we have \(1 \not\in S \). Consider \(\sigma = (s_3 s_4)(s_5 s_6) \). Clearly \(s_5 s_6 \neq s_4 \) and \(s_6 s_3 \neq s_3 \), because if \(s_5 s_6 \neq s_4 \) then by the last equation of (*) we have \(s_6 h s_5 = s_4 \) so \(s_6 s_3 = s_4 \) and it implies that \(s_6 = 1 \), a contradiction. Thus \(s_5 s_6 \neq s_4 \). Similarly we can see \(s_6 s_3 \neq s_4 \). It shows that \(\sigma \) is a permutation on \(G \).

Let \(X = \text{Cay}(G, S) \) and \(A = \text{Aut}(X) \). Denote by \(A_1 \) the stabilizer of 1 in \(A \). To prove that \(X = \text{Cay}(G, S) \) is not normal, by Proposition 2.3, it suffices to show that \(\sigma \in A_1 \) and \(\sigma \not\in \text{Aut}(G, S) \).

By the equations (*), \(s_4 = s_4 h s_1 = s_4 h s_5 = s_4 h \) and \(s_3 = s_1 h h s_5 h = h = h h s_5 h = h s_5 h = s_5 h \).

Since \(s_5 s_6 \) are involutions and by the assumption, \(S \) contains at least three involutions, implying that either \(s_4 \) and \(s_1 \) or \(s_3 \) and \(s_5 \) are involutions. If \(s_4 \) and \(s_1 \) are involutions, then \(s_5 s_6 \) must be involutions. It means that \(s_3 \) and \(s_4 \) have different orders. If \(s_3 \) and \(s_4 \) are involutions, then \(s_3^{-1} = (hs_i)^{-1} = s_4^{-1} h^{-1} = h = s_3 h \), which means that \(s_3 \) and \(s_4 \) are not involutions and \(s_5 \) and \(s_6 \) have different orders. Thus, \(\sigma \in \text{Aut}(G, S) \) because \(\sigma \) permutes \(s_3 \) to \(s_5 \). Further, \(s_3 s_4 \neq 1 \) and \(s_5 s_6 \neq 1 \) because \(s_5 \) is an involution. Hence, \(\sigma \) fixes \(\sigma \). So we need only to show that \(\sigma \in A = \text{Aut}(X) \) and for this, it is enough to show that \(\sigma \) keeps adjacency of edges.

Let \(T = \{ w \}, h \omega, s_5 \omega, h s_4 \omega \} \). For any \(\omega \in T \), we have \(T = \{ \omega \}, h \omega, s_5 \omega, h s_4 \omega \} \). For example if \(\omega = s_5 \omega \), then

\[
\omega = h s_3 = h s_3 h = s_4
\]

\[
s_6 \omega = s_5 s_6 \omega = s_6
\]

Also if \(\omega = s_4 \omega \), then

\[
\omega = h s_5 \omega = s_5 h s_5 \omega = s_6 s_4 \omega
\]

Similarly, if \(\omega = s_4 \) or \(\omega = s_5 s_4 \) the same result is obtained. Thus it is assumed that for any \(\omega \in T \), \(T = \{ \omega \}, h \omega, s_5 \omega, h s_4 \omega \} \). Clearly, \(\sigma \) fixes every element in \(G \).

Now let \(\{ u, v \} \in E(X) \). We aim to prove that \(\{ u, v \} \in E(X) \). Consider two cases:

Case 1. If \(\{ u, v \} \cap T = \emptyset \), then \(\{ u, v \} \notin T \) and \(\{ u, v \} \notin T \). Consider two cases:

Case 2. If \(\{ u, v \} \cap T \neq \emptyset \), without loss of generality we can assume \(u \in T \), then \(T = \{ u, h u, s_4 u, h s_4 u \} \) and \(\sigma = (u h u)(s_4 u s_4 h u) \). Thus \(u^{\sigma} = h u, h u, s_5 u, h s_5 u \). Thus \(u^{\sigma} = h u, s_5 u, h s_5 u \) and \(\{ u, v \} \in E(X) \), we have \(v = s_i u \) for some \(i \), where \(1 \leq i \leq 6 \).
If \(v = s_j u\), then \(v = s_j h u\) and \(\{u, v\}^c = \{h u, s_j u\} \subseteq E(X)\). Similarly if \(v = s_j u\), then \(\{u, v\}^c = \{h u, s_j h u\} \subseteq E(X)\). Now, suppose that \(v = s_j u\) for some \(j\), \(1 \leq j \leq 4\). It is clear that \(v = s_j u \neq u\) and \(v \neq h u\). Because if \(v = h u\), then \(s_j u = h u\) for some \(j\), \(1 \leq j \leq 4\). So \(s_j = h\) and it is a contradiction. Similarly, \(v = s_j u \neq s_j u\) or \(s_j h u\) for some \(j\), \(1 \leq j \leq 4\). Therefore \(v \not\in T\) and \(v^c = v\). Now If \(j = 1\) then \(v = s_1 u = s h u\) and \(\{u, v\}^c = \{h u, s_1 h u\} \subseteq E(X)\). If \(j = 2\), then \(v = s_2 u = h s u\) and \(\{u, v\}^c = \{h u, h s u\} \subseteq E(X)\). Similarly, for \(j = 3, 4\), we have \(\{u, v\}^c \subseteq E(X)\).

Therefore, both Cases 1, 2 implies that \(\sigma \not\in A\). Thus \(\sigma \in A^c\) and \(\sigma \in Aut(G, S)\), by Lemma 2.3, \(Cay(G, S)\) is not normal.

Theorem 3.2

Let \(G\) be a finite group and \(S = \{s_1, s_2, s_3, s_4, s_5, s_6\}\) be a subset of \(G\) such that \(1 \not\in S\), \(G = \langle S \rangle\) and \(S^c = S\). Suppose that \(s_j\) is an involution, \(N = \{1, s_1, s_2, s_3\}\) be a subgroup of \(G\) and \(H = \langle s_1, s_2, s_3 \rangle\) such that \(s_j, s_j \in H\). If \(|G:H| \geq 4\) and \(\{s_1 s_2, s_1 s_3, s_2 s_3\} = \{s_2 s_3, s_1 s_3, s_1 s_2\}\), then the Cayley graph \(Cay(G, S)\) is not normal.

Proof

Since \(|G:H| \geq 4\) and \(s_1, s_2, s_3, s_4, s_5, s_6 \in H\), there is a coset \(Hg\) such that \(s_j \not\in Hg\) for each \(i\), \(1 \leq i \leq 6\). It implies that \(Hg \neq H\). Let \(X = Cay(G, S)\) and \(A = Aut(X)\). Now, we define a permutation \(s\) on \(G\). If \(v \in Hg\), then \(v^c = s_j v\) and if \(v \in G \setminus Hg\), then \(v^c = v\). Clearly for each \(i\), \(1 \leq i \leq 6\), \(s_i^\sigma = s_i^\sigma\). Further, \(1 \not\in Hg\). If \(\sigma \in Aut(G)\), then \(\sigma\) fixes each element of \(G\), because \(G = \langle S \rangle\) and \(s_i^\sigma = s_i^\sigma\), and it means \(\sigma = 1\), a contradiction. Thus, \(\sigma \not\in Aut(G, S)\), and it is enough to show that \(\sigma \not\in Aut(X)\).

Let \(\{u, v\} \subseteq E(X)\). We claim that \(\{u, v\}^c \subseteq E(X)\). For this we consider two cases.

Case 1. If \(\{u, v\} \cap Hg = \emptyset\), then \(u, v \not\in Hg\) and \(\{u, v\}^c = \{u, v\} \) so \(\sigma \in Aut(X)\).

Case 2. If \(\{u, v\} \cap Hg \neq \emptyset\). We may assume that \(u \in Hg\), thus \(u^c = s_j u\) and since \(\{u, v\} \subseteq E(X)\) it is easy to see \(v = s_j u\) for some \(k\), \(1 \leq k \leq 6\). If \(k = 1\), then \(v = s_1 u \in Hg\) because \(s_1 \in H\) and \(u \in Hg\), so we have \(\{u, v\}^c = \{s_j u, u\} \subseteq E(X)\). If \(k = 2\), then \(v = s_2 u \not\in Hg\) because \(s_2 \not\in H\). Since \(N = \{1, s_1, s_2, s_3\}\) be a group of order 4 and \(s_3\) is an involution, we have \(s_2 = s_3^2\). Therefore, \(\{u, v\}^c = \{s_j u, s_j u\} = \{s_j u, s_j s_3^2 u\} \subseteq E(X)\). Similarly if \(k = 3\), then \(v = s_3 u \in Hg\) and \(\{u, v\}^c = \{s_j u, s_j u\} = \{s_j u, s_j s_3 u\} \subseteq E(X)\). If \(k = 4\), then \(v = s_4 u \not\in Hg\) because \(s_4 \not\in H\) and \(u \not\in Hg\). So \(v^c = s_4 u\). By the assumption, we know that \(s_4 \in \{s_1 s_4, s_2 s_4, s_3 s_4\}\). Thus there is an \(s_j\) such that \(s_j s_4 = s_j s_4\), where \(l = 4\) or 5 or 6. So \(\{s_j u, s_j s_4 u\} = \{s_j u, s_j s_4 u\} \subseteq E(X)\). Similarly, if \(k = 5\), then \(v = s_5 u \in Hg\) and \(\{u, v\}^c = \{s_j u, s_j u\} = \{s_j u, s_j u\} \subseteq E(X)\), where \(r = 4\) or 5 or 6.

It implies that in each case, \(\{u, v\}^c \subseteq E(X)\) and so \(\sigma \in Aut(X)\). Therefore, \(\sigma \in A\), but \(\sigma \not\in Aut(G, S)\) and by Lemma 2.3, \(Cay(G, S)\) is not normal.

4. Conclusion

Now we construct an infinite family of non-normal Cayley graphs of valency 6 by using Theorem 3.1 in the following example.

Example 4.1

Let \(n(>2)\) be an even integer and \(m > 1\). If \(G = \langle a, b, c \mid a^n = b^x = c^w = 1, b^{-1} a b = a^{-1}, b^{-1} c b = c^{-1}\rangle\), then, the Cayley graph

\[
\text{Cay}\left(G, \left\{a^2, a^2 b, c, c^{-1}, bc, cb\right\}\right)
\]

is a non-normal Cayley graph of valency 6.

Proof

It is clear that, \(a^2, c, c^{-1} \neq 1\). Further \(bc \neq 1\), because if \(bc = 1\), then \(c = b\) a contradiction. Similarly, \(cb \neq 1\). Also \(a^2 b \neq 1\), because if \(a^2 b = 1\), then \(a^2 \left(a^2 a^2\right) = b = a^2 b = b \in S\) a contradiction. Thus, \(1 \not\in S\).

Now, let \(h = b \in G \setminus S\) and consider \(s_1 = cb, s_2 = c^{-1}, s_3 = s_1, s_4 = s_3, s_5 = s_2^{a^2}, s_6 = a^2 b\). It is easy to see that \(h\) is an involution, \(S\) has at least three involutions and \(s_5 s_6 = s_5 = s_1, s_4 = s_3, s_5 = s_2^{a^2}, s_6 = a^2 b\). Thus the conditions of Theorem 3.1 are hold and \(Cay(G, S)\) is not normal.

In following examples some non-normal Cayley graphs of valency 6 on \(A_6\) and \(A_7\) are determined.

Example 4.2

Let \(W_1 = \{(1, 2), (4, 5), (5, 6, 4), (4, 6, 5), (6, 4, 1, 2), (5, 6, 3, 4), (1, 2)(3, 4)\}\). Then the \(Cay(A_6, W_1)\) is not normal.

Proof

Consider \(h = (1, 2)(5, 6)\). It is clear that \(h \in A_6 \setminus W_1\) and \(h\) is an involution. Now suppose that \(s_1 = (1, 2)(4, 5), s_2 = (5, 6, 4), s_3 = (4, 6, 5), s_4 = (6, 4)(1, 2), s_5 = (5, 6)(3, 4)\) and \(s_6 = (1, 2)(3, 4)\). It is easy to see the conditions of Theorem 3.1 are hold and the Cayley graph \(Cay(A_6, W_1)\) is not normal.
Example 4.3
Let \(W_5 = \{(1 \ 3) \ (2 \ 6), \ (5 \ 2 \ 6), \ (2 \ 5 \ 6), \ (3 \ 2) \ (1 \ 3), \ (5 \ 6) (2 \ 4), \ (1 \ 3) \ (2 \ 4)\} \). Then the \(\text{Cay}(A_5, W_5) \) is not normal.

Proof
Consider \(h = (1 \ 3)(5 \ 6) \). It is clear that \(h \in A_5 \setminus W_5 \) and \(h \) is an involution. Let \(s_1 = (1 \ 3)(2 \ 6), \ s_2 = (5 \ 2 \ 6), \ s_3 = (2 \ 5 \ 6), \ s_4 = (5 \ 2)(1 \ 3), \ s_5 = (5 \ 6)(2 \ 4) \) and \(s_6 = (1 \ 3)(2 \ 4) \). It is easy to see the conditions of Theorem 3.1 are hold and the Cayley graph \(\text{Cay}(A_5, W_5) \) is not normal.

Example 4.4
Let \(W_6 = \{(1 \ 4)(2 \ 6), (3 \ 2 \ 6) (2 \ 3 \ 6), (3 \ 2)(1 \ 4), (3 \ 6)(2 \ 5), (1 \ 4)(2 \ 5)\} \). Then the \(\text{Cay}(A_6, W_6) \) is not normal.

Proof
Similarly, by consider \(h = (1 \ 4)(3 \ 6) \), the \(\text{Cay}(A_6, W_6) \) is not normal.

Example 4.5
Let \(W_6 = \{(1 \ 5)(3 \ 4), (2 \ 3 \ 4), (2 \ 3)(1 \ 5), (2 \ 4)(3 \ 6), (1 \ 5)(3 \ 6)\} \). Then the \(\text{Cay}(A_6, W_6) \) is not normal.

Proof
Similarly, by consider \(h = (1 \ 5)(2 \ 4) \), the \(\text{Cay}(A_6, W_6) \) is not normal.

Example 4.6
Let \(W_6 = \{(1 \ 6)(3 \ 5), (2 \ 5 \ 3), (3 \ 5 \ 2), (2 \ 5)(1 \ 6), (2 \ 3)(4 \ 5), (1 \ 5)(4 \ 3)\} \). Then the \(\text{Cay}(A_6, W_6) \) is not normal.

Proof
Similarly, by consider \(h = (1 \ 6)(2 \ 3) \), the \(\text{Cay}(A_6, W_6) \) is not normal.

Example 4.7
Let \(U_4 = \{(1 \ 2)(4 \ 5), (3 \ 5 \ 4), (4 \ 5 \ 3), (3 \ 5)(1 \ 2), (1 \ 4)(2 \ 3), (1 \ 3)(2 \ 4)\} \). Then the \(\text{Cay}(A_4, U_4) \) is not normal.

Proof
Consider \(h = (1 \ 2)(3 \ 4) \). It is clear that \(h \in A_4 \setminus U_4 \) and \(h \) is an involution. Let \(s_1 = (1 \ 2)(4 \ 5), s_2 = (3 \ 5 \ 4), s_3 = (4 \ 5 \ 3), s_4 = (3 \ 5)(1 \ 2), s_5 = (1 \ 4)(2 \ 3) \) and \(s_6 = (1 \ 3)(2 \ 4) \). It is easy to see that \(s_2 = h s_1, s_4 = h s_3 \) and \(s_5 s_6 = h \). So by the Theorem 3.1, the \(\text{Cay}(A_4, U_4) \) is not normal.

Example 4.8
Let \(U_6 = \{(1 \ 5)(2 \ 4), (2 \ 3 \ 4), (2 \ 4 \ 3), (3 \ 4)(1 \ 5), (1 \ 3)(2 \ 5), (1 \ 2)(5 \ 3)\} \). Then the \(\text{Cay}(A_6, U_6) \) is not normal.

Proof
Consider \(h = (1 \ 5)(2 \ 3) \). It is clear that \(h \in A_6 \setminus U_6 \) and \(h \) is an involution. Similarly we have \(s_2 = h s_1, s_3 = h s_4, s_5 = s_2 h \) and \(s_6 s_5 = h \). So by the Theorem 3.1, the \(\text{Cay}(A_6, U_6) \) is not normal.

5. References

1. Alaeiyan M. Normal 6-valent Cayley graphs of abelian groups with valency, Four. International Journal of Industrial Engineering and Production Research. 2008; 19(1):1–11.
2. Alaeiyan M, Talebi AA, Paryab K. Arc-transitive Cayley graphs of valency five on abelian groups. Southeast Asian Bull Math, 2008; 32(6):1029–35.
3. Alaeiyan M, Tavallaee H, Talebi AA. Cayley graphs of abelian groups which are not normal edge-transitive. Vietnam Journal of Mathematics. 2005; 33(3):309.
4. Dobson E, Witte D. Transitive permutation groups of prime-squared degree. J Algebraic Combin. 2002; 16:43–69.
5. Du SF, Wang RJ, Xu MY. On the normality of Cayley digraphs of order twice a prime. Australian Journal of Combinatorics. 1998; 18:227–34.
6. Fang XJ, Li CH, Wang DJ, Xu MY. On cubic Cayley graphs of finite simple groups. Discrete Math. 2002; 244:67–75.
7. Feng YQ, Xu MY. Automorphism groups of tetravalent Cayley graphs on regular p-groups. Disceret Math. 2005; 305:354–60.
8. Preager CE. Finite normal edge-transitive graphs. Bull Austral Math Soc. 1999; 60:207–20.
9. Wang CQ, Wang DJ, Xu MY. On normal Cayley graphs of finite groups. Science in China Ser A. 1998; 28:131–9.
10. Wang CQ, Xu MY. Non-normal one-regular and 4-valent Cayley graphs of dihedral groups D2n. European J Combin. 2006; 27:750–66.
11. Xu MY, Xu SJ. The Symmetry properties of Cayley graphs of small valencies on the alternating group A5. Science in China Ser A. 2004; 47:593–604.
12. Zhou JX, Feng YQ. Two sufficient conditions for non-normal Cayley graphs and their applications. Science in China Ser A. 2007; 50:201–16.