Immunopathology, host-virus genome interactions, and effective vaccine development in SARS-CoV-2

Desh Deepak Singh¹, Ihn Han², Eun-Ha Choi²*, Dharmendra Kumar Yadav³*

¹Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
²Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
³Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Gachon University, Incheon, Republic of Korea.

Corresponding Author*
Dharmendra Kumar Yadav, Ph.D
Assistant Professor
Phone: +82-32-820-4947
E.mail: dharmendra30oct@gmail.com, dharmendra@gachon.ac.kr
Abstract

Coronaviruses are a group of enveloped RNA viruses that are diversely found in humans and now declared a global pandemic by the World Health Organization in March 2020. The population's susceptibility to these highly pathogenic coronaviruses has contributed to large outbreaks, evolved into public health events, and rapidly transmitted globally. Thus, there is an urgent need to develop effective therapies and vaccines against this disease. In the primary stage of severe acute respiratory syndrome coronavirus (SARS-COV-2) infection, the signs and symptoms are nonspecific, and many more cases have been observed than initially expected. Genome sequencing is performed regularly to identify genetic changes to SARS-COV-2, and vaccine development is focused on manufacture, production, and based on specific problems, and very few are available on recent developments in the prevention of outbreaks. The aim of this review article to explore recent updates on SARS-COV-2 in the context of pathogenesis during disease progression, and innate acquired mechanisms of defense. This includes advances in diagnostics, susceptibility, and severity of host-virus genome interactions, modes of transmission, active compounds being used in pre-clinical and clinical trials for the treatment of patients, vaccine developments, and the effectiveness of SARS-COV-2 prevention and control measures. We have summarized the importance of pathophysiology immune response, Diagnostics, vaccine development currently approaches explored for SARS-COV-2.

Keywords: SARS-COV-2, pathophysiology, immune response, diagnostics, vaccine development.
1. Introduction

The highly contagious and pathogenic novel SARS-CoV-2, causative agent ongoing COVID-19 pandemic, has spread rapidly and posed a health threat of unprecedented magnitude on the global population. This group includes more than 100 viruses commonly found in various animal species, including bats, pangolins, horses, cats, cattle, camels, goats, and humans [1-3]. Coronaviruses are classified in order Nidovirales, family Coronaviridae, and positive-sense, single-stranded RNA (ssRNA) viruses with a large genome size of approximately 30 kb. There are seven types of coronavirus found in humans, belonging to “alpha and beta” groups, which frequently mutate and show cross-species transmission. Like the other two highly pathogenic coronaviruses SARS-CoV and MERS-CoV, SARS-CoV-2 also caused severe respiratory illness and even death. The first human coronavirus (alpha-HCoV-229E) was identified in the 1960s and caused an upper respiratory tract infection, like the common cold [4, 5]. Most people are infected with one or more types of viruses. Rarely, coronaviruses infect animals and become new zoonoses, which can infect people and spread in the human population [5]. A new alpha human coronavirus was discovered in 2003, which was associated with pneumonia, rhinorrhea, and laryngotraceobronchitis in children, particularly in immune-compromised individuals. The beta coronaviruses (type 2) are categorized into lineages A, B, C, and D. One member of lineage A (HCoV-OC-43) was discovered in 1967, and a second (HCoV-HKU) was identified in 2005, associated with diarrhea, acute rhinitis, and infection of the lower respiratory tract. From lineage B, SARS-CoV was identified in 2002-03 and its mode of transmission was bat to civet and then, via civet, to humans [2-5]. A second highly transmissible virus from lineage B was discovered in December 2019 in Wuhan, China, and now known as SARS-CoV-2. Another coronavirus of interest belongs to lineage C and caused an outbreak of Middle East Respiratory Syndrome (MERS) in 2012, from camels to humans [6].

In 2019 in Wuhan, China there were several unusual cases of pneumonia, presenting with a dry cough, dyspnea, fever, and lung tissue damage [3]. The source of many of these cases was recorded as being the Wuhan wild animal and seafood market [7]. On 12th January 2020, China shared the genetic sequence of the infectious agent. China reported virus originated from wild bats and was similar to SARS, hence the infectious agent became known as SARS-CoV-2 at the end of January [8] and declared an emergency a pandemic (global outbreak) of disease [1, 9]. SARS-CoV-2 is highly transmissible and 15,296,926 cases and 628,903 deaths from SARS-CoV-2 were recorded in over 200 counties on 24th July 2020. We
compared these figures with other coronavirus outbreaks, such as SARS in 2003, where the number of infected persons was approximately 8,000, with a 9.5 % case fatality rate. MERS in 2012 had approximately 2,500 cases, with a mortality rate of approximately 35 % [10, 11]. The virus targets the respiratory system and its transmission is by contact, droplets, and fomites from another infected person who may be symptomatic or asymptomatic [12]. The incubation period is around 2 to 14 days [9]. The main symptoms are dry cough, fever, sore throat, and shortness of breath, leading to pneumonia and acute respiratory distress (ARDS), which may require intensive care as shown in figure 1 [13]. Overall, the mortality rate is approximately 3%, and increases with age, over 60. The mortality rate is also higher in people with diabetes, heart disease, and kidney disease [14]. In COVID-19 patients, a characteristic feature is a lymphocytopenia and CT chest scans show ground glass-like features, indicative of viral pneumonia [15, 16]. Diagnosis of SARS-CoV-2 is made with real-time PCR, by identifying the RNA load via nasal swab (NS) and throat swab (TS), and/or by X-ray and CT scans [15]. The main treatments are supportive, such as antivirals, antimalarials, steroids, and antibiotics [17]. At present, no approved treatments or vaccines are available against SARS-CoV-2 as shown in figure 1. However, randomized multicentric clinical trials are under way to look for treatment and vaccine options.

1.1. Pathogenesis during the progression of SARS-COV-2 infection

MERS and SARS share the same mechanism as SARS-CoV-2. Spike protein (S2) binds to the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1) receptor protein, which is expressed in epithelial cells [18]. The virus enters the host cells via receptor-mediated endocytosis and is uncoated, releasing RNA genome into the cytoplasm see human SARS-COV-2 life cycle as shown in figure 2 [15]. Spike protein also has another function; binds to ACE2, causing down-regulation, which leads, eventually, to lung injury [19]. The liver produces an inactive form of angiotensin, which circulates in the blood in response to the enzyme renin released by the kidney, and which converts angiotensin to angiotensin-I [13, 14]. This circulates in blood in an inactive form and converted to angiotensin-II by an angiotensin-converting enzyme (ACE or ACE1) [20]. This enzyme maintains blood pressure and mediates tissue injury via a series of non-hemodynamic effects [21]. ACE2 would normally cleave angiotensin-II, as part of a negative feedback loop therefore, if ACE2 is downregulated, this would increase blood pressure in SARS-COV-2 patients. Furthermore, angiotensin-II can bind to receptors in the lungs, called type 1a angiotensin-II receptors (AGTR1A), which increases the permeability of the lungs. Here, a problem arises when the downregulation of ACE2
simultaneously upregulates ACE1, due to negative feedback [22-24], and this leads to excessive angiotensin-II. This binds to the AGTR1A receptors, which then causes excessive vascular pulmonary activity, the pathology observed in lung tissue associated with pulmonary destruction [22-24].

Figure 1: Flow Diagram of transmission, diagnosis, clinical presentation, and treatment for COVOD-19
1.2. Innate and acquired mechanisms of defense against SARS-CoV-2

The entry of immune cells into the lungs to fight SARS-CoV-2 leads to ARDS [25, 26] and it's associated with the upregulation of pro-inflammatory cytokines and chemokines shown in figure 3 [27]. In SARS-CoV-2 infected patients, IL-1β, IL-16, CXC chemokines, and ligand 2 (CCL2) [28] levels are high. Individuals recovered from SARS-CoV-2 have shown an early expression of interferons IFN-α, IFN-γ, CXCL-10, and CCL2 [29]. IFN-α is an antiviral protein released by infected cells and serves as a signal to produce other anti-viral proteins, so that nearby host cells are more protected. It activates other immune cells, such as macrophages [29]. IFN-γ is a part of the immune system that destroys particular cells that are infected with SARS-CoV-2) [30]. Chemo attractants such as CXCL-10 and CCL2 are released to guide other cells to destroy infected cells [31, 32]. The adaptive immune response is known to be vital to survival, severe SARS-CoV-2 infection is related to a failure to switch from an innate immune response to an adaptive immune response. Infected people lose their memory cells, effector cells, or enough antibodies to reduce the viral load, unbalancing the host-pathogen interaction [33]. NF-kB an important pro-inflammatory cytokine that regulates some genes encoding other cytokines and chemokines as shown in figure 3 [34] that are released by cells and which trigger an immune response against the infection. Nucleocapsid proteins (N-proteins) of SARS-CoV-2 bind to viral RNA, as part of the assembly process, and this may be prevented by host proteins such as MDAS and RIG-1 [35]. These proteins detect viral RNA and trigger cell destruction [36] The EB protein of SARS-CoV-2 inhibited by MAD-5 and RIG-1. If MAD-5 and RIG-1 proteins can function, they activate the mitochondrial surface protein MAVS, and this protein activates E3 ubiquitin ligases, leading to the production of NF-kB, which enters the nucleus and activates pro-inflammatory cytokines [37]. The E3 ubiquitin ligases also activate IRF-3 and IRF-7 transcription factors, which enter the nucleus and upregulate interferon α, γ, and activate immune cells (figure 3) [3, 38]. However, the M-protein of SARS-CoV-2 inhibits the phosphorylation of IRF-3 and IRF-7 [36]. Therefore, these transcription factors cannot go to the nucleus and cannot up-regulate the interferon at transcription level [3]. The PLPro protein of SARS-CoV-2 is capable of inhibiting the activation of NF-kB, therefore no response in the nucleus and upregulation of pro-inflammatory proteins. In some cases, the production of sufficient cytokines decreases the number of interferons [35, 39-41].

1.3. Advances in the diagnosis of SARS-COV-2
The gold standard for diagnosis is RT-PCR, and the Centre for Disease Control and Prevention (CDC) has developed an RT-PCR kit based on a specific target sequence shown in figure 1 [42, 43]. Various countries have developed their RT-PCR kits, such as Germany (targeting RdRP, E, and N genes), China (targeting ORF1ab and N), Hong Kong (targeting nsp14 and N genes), Japan (targeting multiple proteins), and Thailand (targeting the N gene). Various diagnostic assays are being developed to detect the virus. Some kits are only able to detect one strain of SARS-CoV-2, and some are sensitive to any SARS agent. The specificity of RT-PCR depends on the expertise of individuals, and samples must be taken from the lower or upper respiratory tract. Moreover, single negative samples do not rule out MERS-CoV infection [15, 17].

RT-PCR can often miss the identification together and has only a 70% sensitivity for acute infection. [42]. Tested sample, approximately 3% of those who have negative PCR results have SARS-CoV-2. There could be reasons, for this, perhaps early at the pandemic not enough virus samples for detection and the diagnostic kits were not used correctly [44]. The RT-PCR test may improve over time and suggested, meanwhile, that chest CT is used to identify patients for further testing, which will help to inform isolation and treatment as shown in figure 1 [45, 46]. CT scan is also good technology to screening for testing but due to poor access to laboratory testing, or in a situation where centralized public health workers are overstretched [47]. In patients with SARS-CoV-2 symptoms, such as fever, cough, and shortness of breath, clinicians often carry out chest X-rays, which are relatively cheap and easy.
Figure 3: Immune response the SARS-CoV-2 infection

The most common abnormal finding that of ground-glass opacities, portions of the lungs show up on X-ray images as a hazy shade of gray, like frosted glass, instead of being black [48, 49]. It is important to know that chest X-rays are not very sensitive to SARS-CoV-2. Patients who are highly suspected of having SARS-COV-2 viral pneumonia should probably receive chest CT, even if their chest X-ray is negative [27, 50]. Chest CT provides a more detailed view, with the most common finding, again, being ground-glass opacities scattered throughout the lungs [51, 52]. These represent tiny air sacs or alveoli that are filled with fluid and that turn a shade of grey on the CT scan. In severe and advanced infections, more fluid accumulates in the lobes of the lungs, and the appearance progresses to a solid, white consolidation and finally a crazy-paving pattern, with swelling of the interstitial space along the walls of the lung lobules [53, 54]. A chest X-ray is informative but not very sensitive or specific to SARS-CoV-2; therefore, individuals should undergo RT-PCR [54, 55]. Many countries have been isolating patients with classic CT findings until laboratory tests help to identify the cause of disease. It is also important to evaluate each patient, based on the severity of the disease [55]. Individuals can be asymptomatic or have a very mild form of the disease; the sensitivity of a chest CT falls to about 50% in the first 48 hours of symptoms or with individuals with the mild disease [51]. ELISA was used to detect antibodies to MERS-CoV for earlier detection, which is based on the N and S proteins of MERS-Co-V. Micro-neutralization is used to detect specific antibodies in the serum sample, this test is considered more sensitive and specific for the analysis of neutralizing antibodies. The presence of antibodies indicates that the immune response has developed in the infected person, but serology tests are recommended for observation purposes only, not for a diagnosis.

1.4. Case classification and clinical complications with SARS-CoV-2 infection

The new CDC list of possible SARS-CoV-2 symptoms includes fever, cough, difficulty in breathing, repeated shaking with chills, muscle pain, headache, sore throat, and loss of taste and smell as shown in figure 1. In a few cases, patients experience extreme fatigue, diarrhea, and fever 37.8°C or above [3, 9-11, 13, 56]. Symptoms usually occur 2-14 days after exposure to the virus, but may also be observed for up to 28 days. Not all individuals with SARS-CoV-2 show all symptoms and these range from mild to severe [56]. The test result showed viral nucleic acid declared as a positive SARS-CoV-2 test [14-16]. Suspected cases are those with symptoms who have been exposed to infected cases [13]. Clinically diagnosed cases are those having symptoms, prior exposure, and the presence of a lung imaging
feature consisting of coronavirus pneumonia [34, 46]. Asymptomatic cases are free from symptoms but test positive for viral nucleic acid. SARS-CoV-2 infection is classified into three categories mild, severe, and critical. Mild cases have either no sign of pneumonia or mild pneumonia [27]. Severe cases show problems of oxygenation, breathing, and characteristic radiological findings on a CT-Scan [57, 58]. In severe cases, breathing problems are classified as dyspnea, and patients have a respiratory frequency (RF) > 30/Min [12, 14, 55, 58]. Severity also classified as an oxygen saturation < 93 % and PF ratio < 300 [55]. The illness is considered to be severe if lung infiltration or pneumonia occupying more than 50% of their lung field and is seen on a chest radiograph or CT-scan [55, 59]. In critical cases, acute respiratory distress syndrome (ARDS) is a major clinical complication of SARS-CoV-2 infection [60]. This syndrome is characterized by hypoxic respiratory failure and bilateral infiltration due to diffuse alveolar damage [61]. This damage can cause respiratory failure, which is associated with VQ mismatch and pulmonary shunting [62] [63]. Large immune-mediated cytokine cascades cause lung alveolar damage, patients are unable to successfully ventilate, and develop respiratory failure [64]. Septic shock causes vasodilation and leads to multiple organ dysfunction, especially in the kidney. Some SARS-CoV-2 patients develop renal failure, in addition to respiratory failure, and may require life support [65]. Patients who develop these complications with SARS-COV-2 have much higher mortality rates [66]. The overall case fatality rate in the SARS-CoV-2 pandemic near about 3.5%, but in elderly patients, this rises to 14%. Fatality is higher for patients with cardiovascular disease (10.5%), diabetes (7.3%), chronic respiratory disease (6.3%), and cancer (5.6%) [67, 68]. Some clinicians have reported the presence of blood clots in young adults (aged < 50 years), which causes serious problems such as heart attack and stroke [69].

1.5. Susceptibility to mutation and severity of host-virus genome interactions

SARS-CoV-2 has mutated into at least 30 different genetic variants. Of these, 19 are novel strains, including six mutations in the spike protein. Different strains have affected different parts of the world. This may lead to potential difficulties in finding a universal method of diagnosis or treatment. Strains from 11 randomly chosen SARS-CoV-2 patients from Hangzhou were isolated and analyzed by deep sequencing [70-72]. Researchers said that the virus has acquired mutations that are capable of substantially changing its pathogenicity. Some of the most pathogenic strains of the virus are more pathogenic than normal strains [73, 74]. One mutated strain of SARS-CoV-2 has been more lethal across Europe and New York than in other parts of the United States and other countries [75]. The diversity of viral
strains under investigation leads to a consideration of the impact of these mutations on
the development of vaccines and drugs. Mutations in the virus genome might cause the disease
to be more virulent, more severe, or more transmissible [18, 76]. Microbiologists from the
Peking School of Life Sciences in Beijing, and the Institute Pasteur of Shanghai, have studied
the genome of 103 samples of SARC-CoV-2 [18]. They analyzed the
evolutionary relationship between the virus strains and their sequenced
 genomes. They identified two lineages the milder or less infectious S type and the highly
infectious, more virulent, and more severe L type [77]. The genetic difference between S and
L lineages is in the receptor-binding domain. The L type is more prevalent (70 %) in current
cases [78, 79]. The L type was prevalent in the early stages of the outbreak in Wuhan. Later
on, the S type became prevalent in China because of lockdown control [80]. The Chinese
lockdown successfully closed down the spread by isolating people, and this approach seemed
to reduce the number of cases of L type SARS-CoV-2 in Wuhan after January 2020 [79, 80].
If the Chinese lockdown halted the L type, the subsequent pandemic may be of the S type,
which is believed to be less virulent [79-81]. There are also the possibility of infection with
both viral types in an individual with SARS-CoV-2. One patient in the US has tested positive
for both the S and L types, so it appears that both lineages are persisting in the pandemic [81,
82].

2. Drugs used in pre-clinical and clinical therapy

There is no specific treatment currently available drugs for SARS-CoV-2 [70, 71, 77].
Some drugs are under investigation and being tested as a potential treatment of SARS-COV-2,
as shown in tables 1 and 2. The antiviral agent famvir has shown efficacy against SARS-CoV-
2, and clinical trials have been conducted in 70 patients in Shenzhen, Guangdong province [72,
83-87]. Another drug option is remdesevir, an adenosine analog, which is incorporated into the
nascent viral RNA chain and results in premature termination. However, the drug is still in a
clinical trial [88], a randomized control trial involving 1063 patients, funded by the US,
improved recovery from advanced SARS-CoV-2. Preliminary results indicate that patients
treated with remdesevir showed a 31% improvement in recovery time over placebo[88].
Chloroquine widely used as an anti-malarial and as a treatment for autoimmune disease, and
also reported as having anti-viral activity, blocking virus infection by increasing the endosomal
pH required for virus-cell fusion as well as interference with glycosylation of the cellular
receptor of SARS-CoV-2 [89]. In addition to its anti-viral activity, chloroquine has immune-
modulating activity, which may synergistically enhance anti-viral effects in vivo. Meanwhile, a
clinician from South Korea has reported the use of an anti-HIV drug combination, lopinavir, and ritonavir, to successfully treat SARS-CoV-2 shown in figure 1 [90, 91]. Researchers in China have reported full recovery from SARS-CoV-2 their blood plasma for possible use as a new treatment of the virus [87, 92], an approach is known as hyperimmune globin therapy. Corticosteroids should be avoided because of their potential in prolonging viral replication, as previously observed in MERS-CoV patients. These are the treatment options currently available, but all are under trial, as part of an effort to test more than 60 types of potential therapeutic drugs, as shown in Table 2.

Table 1: List of potential therapeutic option for SARS-COV-2

S.N	Drug	Mechanism	Risk	Remark	References
1	Lopinavir	Lopinavir bind to membrane protein and enzyme for coronavirus replication	Cardiac arrhythmias. Carefulness in patients with liver diseases	Preclinical	[16, 93]
2	Remdesivir	Inhibit the activity of RNA-dependent RNA polymerases; excise nucleotide analog inhibitors.	Nausea and vomiting	Preclinical	[88]
3	Chloroquine (Antimalarial)	Viral DNA and RNA polymerase, viral protein, glycosylation, ACE2 cellular receptor inhibition, immunomodulation of cytokine release.	Cardiac arrhythmias, retinal damage, especially, G6PD deficiency, Caution in diabetics	chloroquine has activity against pneumonia patients with SARS-CoV-2 infection; however, specific data are not available.	[89]
4	Antimalarial (Hydroxychloroquine)	*In vitro* activity against SARS-CoV-2, inhibition of viral enzymes or processes such as viral DNA and RNA polymerase; 5ACE2 inhibition.	Diabetics Significant drug interactions	hydroxychloroquine has activity against SARS-CoV-2.	[93]
5	Azithromycin	Reducing chemotaxis of neutrophils (PMNs) to the lungs by inhibiting cytokines (i.e., IL-8), inhibition	Risk of cardiac arrhythmias	Reduce the excessive cytokine production associated with respiratory viral infections	[93]
6	Azithromycin Macrolide	Downregulate inflammatory responses	Blocking the activation of nuclear	Reduce the excessive cytokine.	[93]
3. Vaccine development for SARS-COV-2: hope against hope

Scientists are designing vaccines at various laboratories and institutions around the world as shown in table 2. Vaccines are made using a highly conserved part of the viral genome, and more than 90 vaccines are under construction against SARS-CoV-2. Some technologies are being used that have never been used before for developing licensed vaccines. Other research groups have begun clinical trials on humans, while others are testing in animal models [96]. Potential vaccines needed to be work for all strains and any mutated variants, and likely to be very challenging to find a single vaccine that works for all [88]. The aim of vaccine development to expose the body to the antigen, without causing the disease. However, antigens will still cause an immune response that can block or kill the virus, if persons become infected later.

Table 2: List of probable drug targets against SARS-CoV-2

Antibacterial	transcription factors.	production associated with respiratory viral infections
7 Tocilizumab IL-6 Receptor-Inhibiting Monoclonal Antibody	GI perforation, hepatotoxicity	Tocilizumab inhibits IL-6-mediated receptors [94]
8 SARS-COV-2 Convalescent Plasma Contain antibodies to SARS-CoV-2 SARS-CoV-2 neutralizing antibody titers may be conducted (optimally greater than 1:320) FDA approval required [95]		

Table 2: List of probable drug targets against SARS-CoV-2
Targeted viral component	Mechanism of action	Status	Reference	
Viral spike glycoprotein S	Monoclonal antibodies against RBD inhibits virus-host cell binding	Under progress	[97]	
S1	HR2P and P1 peptides inhibit fusion of S with a host cell receptor	Under progress	[98]	
Oligosaccharides (S)	Griffithsin binds to oligosaccharides on S and inhibits virus-host cell binding	Under progress	[99]	
S	siRNA based dsRNA inhibits the replication of SARS-COV-2	Under progress	[100]	
Viral envelope, membrane, nucleocapsid, and accessory proteins	E	siRNA based dsRNA inhibits the replication of SARS-COV-2	Under progress	[101]
E	Hexamethylene amiloride Ion act as Ion channel inhibitors for COVID-19	Under progress	[102]	
M	siRNA based dsRNA, inhibits the replication of SARS-COV-2	Under progress	[103]	
N	siRNA, PJ34, Monoclonal antibodies	Under progress	[104]	
Accessory proteins	siRNA – dsRNA act as ORF protein inhibitors, COVID-19	Under progress	[17]	
Viral enzymes-based inhibitors	PLpro	GRL0617, Inhibitors of PLpro activity (Optimal activity)	Under progress	[105]
3CLpro	Lopinavir, Inhibitors of 3CLpro activity; Broad spectrum effective in SARS-COV-2 patients in non-randomized trials	Under progress	[10]	
RdRp	Ribavirin, inhibits viral RNA synthesis found effective SARS-COV-2; dose need to optimize	Under progress	[106]	
BCX4430	Based on analogue to adenosine and inhibit viral RNA polymerase activity; Broad spectrum	Under progress	[107]	
RdRp	Analogues of acyclovir inhibit RdRp, effective against MERS-CoV and HCoV-NL63 • Further investigations required.	Under progress	[108]	
Helicase	5-hydroxychromone derivatives disable the function of helicase	Under progress	[109]	
Helicase	SSYA10-001 and ADKs, disable the function of helicase Broad spectrum, effective against SARS-COV-2	Under progress	[110]	
Angiotensin converting enzyme	Benazepril (Lotensin), perindopril (Aceon), quinapril (Accupril), trandolapril (Mavik)	Angiotensin II receptor Blocker	Under progress	[111]
One challenge that the antibody response against S and L is slightly different [112], and L type vaccine induces slightly different antibodies, it is unclear if this will confer cross-immunity to S type and vice versa [83]. In the context of the current waves of infection, unclear whether becoming co-infected with both L and S types at the same time leads to more serious illness [113]. SARS-CoV-2 are RNA-based viruses with a 3.4 kbp genome and a couple of changes in the genome of this virus [96, 113]. Mutations have been observed in S2 receptors, which are proteins responsible for the infection of host cells. Unfortunately, these viruses are more transmissible and provided challenges to vaccine development, and also need more study in this field [10].

Table 3: List of SARS-CoV-2 Vaccine under clinical trial

S. N.	Vaccine development	Product category of vaccine	Type of candidate vaccine description	Current status	Developer	References
1	INO-4800	DNA based	DNA plasmid delivered by electroporation targeted for S1-RBD-protein	Phase-II and III	Inovio Pharmaceutical s, CEPI, Korea National Institute of Health, International Vaccine Institute; Thermo Fisher Scientific; Beijing Advaccine Biotechnology; Richter-Helm BioLogic	[114]
2	BNT162 (a1, b1, b2, c2)	RNA Based	S1-RBD-protein targeted	Phase-II and III	(BioNTech, Fosun Pharma, Pfizer); Rentschler; Biopharma; Fosun Pharma	[115]
3	SARS-CoV-2/aAPC	lentiviral vector	lentiviral vector, pathogen-specific artificial antigen-presenting dendritic cells targeted spike (S) glycoprotein	Phase I	(Shenzhen Geno-Immune Medical Institute)	[116]
4	LV-SMENP-DC	lentiviral vector	lentiviral minigene vaccine, dendritic cells modified with lentiviral vector and based on multiple viral antigens	Phase I	(Shenzhen Geno-Immune Medical Institute)	[117]
5	bacTRL-Spike	DNA based	DNA; bacTRL-targeted on Spike protein	Phase I	(Symvivo Corporation, University of British)	[118]
	Vaccine Type	Vector/Protein Target	Phase	Institute/University		
---	----------------------	-----------------------	---------	---		
6	Ad5-nCoV	Non-replicating viral vector	Phase-III	Columbia, Dalhousie University		
		Recombinant adenovirus type 5 vector targeted on Spike protein		(CanSino Biologies, Institute of Biotechnology of the Academy of Military Medical Sciences; Beijing Institute of Biotechnology; Canada's National Research Council; Petrovax)		
7	ChAdOx1 nCoV-19	Adenoviral vector	Phase-III	United Kingdom		
		ChAdOx1 is a replication-deficient simian adenoviral vector derived from isolate Y25 targeted on Spike protein		[119]		
8	mRNA-1273	RNA Vaccine	Phase I	Moderna, US National Institute of Allergy and Infectious Diseases		
		lipid nanoparticle dispersion containing messenger RNA targeted on Spike protein		[120]		
9	Ad5-nCoV	Spike protein	Phase I	(CanSino Biologics, Institute of Biotechnology of the Academy of Military Medical Sciences)		
		recombinant adenovirus type 5 vector		[121]		
10	Ad5-nCoV	Non-Replicating	Phase 2	Institute of Biotechnology, Academy of Military Medical Sciences, PLA of China; CanSino Biological Inc./Beijing Institute of Biotechnology		
		Non-Replicating Viral Vector 2nd Gen E2b- Ad5 Spike, RBD		[122]		
	Vaccine Type	Delivery Method	Phase	Sponsor/Partner(s)	Reference	
---	--	--------------------------	-------	---	-----------	
11	DNA plasmid vaccine Electroporation device	DNA	Phase 1	Inovio Pharmaceuticals	[115]	
12	d TBD	Inactivated, Live Attenuated Virus Deoptimized	Preclinical	Osaka University/ BIKEN/ NIBIOHN	[123]	
13	Dendritic cell-based vaccine	Non-replicating vector; dendritic cell-based vaccine	Preclinical	Vaxart / Emergent BioSolutions	[124]	
14	Parainfluenza virus 5	Non-replicating vector	Preclinical	Centro Nacional Biotecnologia (CNB-CSIC), Spain	[130]	
15	Dendritic cell-based vaccine	Virus-like particle-based	Preclinical	University of Manitoba	[125]	
16	GX-19 DNA	DNA Vaccine	Pre-Clinical	Genexine Consortium	[126]	
17	DNA with electroporation	DNA Vaccine	Pre-Clinical	Karolinska Institute / Cobra Biologics (OPENCORONA Project)	[127]	
18	Recombinant SARS CoV-2 glycoprotein nanoparticle vaccine	Protein Subunit	Recombinant SARS CoV-2 glycoprotein nanoparticle vaccine adjuvanted with Matrix M	Phase-I Novavax	[128]	
19	Recombinant deactivated rabies virus containing S1	Protein Subunit	Pre-clinical	Bharat Biotech/ Thomas Jefferson University (INDIA)	[129]	
20	Adenovirus Type 5 Vector	Replicating vector	Pre-clinical	Zydus Cadila (INDIA)	[130]	
21	ChAdOx1-S	Non-Replicating Viral Vector	The immune response generated against the spike protein	Phase-III University of Oxford/AstraZeneca	[131]	
	Vaccine Type	Delivery Method	Antigen Encoding	Phase	Collaborators	
---	--------------------------------------	-----------------	------------------	-------	---	
22	LNPenca psulated mRNA	RNA	Lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor-binding domain (RBD)	Phase-I	Moderna/NIAID [132]	
23	Plasmid DNA	DNA	Microneedle array for delivery spike protein based	Pre-Clinical	Immunomic Therapeutics, Inc./EpiVax, Inc./PharmaJet [133]	
24	NasoVAX	Non-Replicating Viral Vector	adenovirus-based NasoVAX expressing SARS2-CoV spike protein	Pre-Clinical	Altimmune [134]	
25	Deoptimized live attenuated vaccines	Live Attenuated Virus	Codon deoptimized live attenuated vaccines	Pre-Clinical	Codagenix/Serum Institute of India [135]	
26	Inactivated + alum	Inactivated viral protein	As viral subunit protein Inactivated	Phase - II	Sinovac [136]	
27	3 LNP-mRNAs	RNA based	mRNA vaccines encode antigens	Phase-III	BioNTech/Fosun Pharma/Pfizer [137]	
28	mRNA	RNA	a vaccine targeting the Spike protein receptor-binding domain	Pre-Clinical	Curevac [138]	
29	Plant-derived VLP	Virus-like particle	QVLP vaccine induced a substantial and sustained increase of hemagglutinin-specific polyfunctional CD4 T cells.	Phase I	Medicago Inc. [139]	
30	eVLP	VLP	The target antigen on the surface of the virus like particle	Pre-Clinical	ARTES Biotechnology [140]	
31	Codon deoptimized live attenuated virus	Live attenuated virus	Live-attenuated vaccine, it has the potential to stimulate a robust T cell and antibody immune response	Pre-Clinical	Codagenix / Serum Institute of India (INDIA) [141]	
32	Codon deoptimized live attenuated virus	Live attenuated virus	Live Attenuated Covid-19 vaccine based on codon de-optimized technology.	Pre-Clinical	Indian Immunologicals Ltd/ Griffith University (INDIA) [142]	
33	VLA2001	Inactivated	Inactivated + CpG 1018, Spike protein receptor-binding domain	Pre-clinical	Valneva/Dynavax [143]	
34	Ad5 vector	Non-Replicating Viral Vector	Ad5 adjuvanted Oral Vaccine platform	Pre-Clinical	Vaxart [144]	
35	Protein-based adjuvanted	Protein Subunit	Native like Trimeric subunit Spike Protein vaccine	Pre-Clinical	Clover Biopharmaceuticals Inc./GSK/Dynavax	[145]
---	---	---	---	---	---	---
36	Microneedle arrays S1 subunit	Protein Subunit	MNA-MERS-S1 subunit vaccines	Pre-Clinical	Univ. of Pittsburgh	[146]
37	OMV-based vaccine	Protein subunit	Receptor-binding domain (RBD) in the N-terminal surface subunit (S1), and then employs its C-terminal transmembrane subunit (S2) to fuse with the host cell membrane	Pre-Clinical	BiOMViS Srl/Univ. of Trento	[147]
39	S protein	Protein Subunit	Protein Subunit S protein (baculovirus production), Ii-Key peptide targeted for S protein	Pre-Clinical	Sanofi Pasteur/GSK	[148]
40	gp-96 backbone	Protein Subunit	Activates CD8 T cells, antigen presenting	Pre-Clinical	Heat Biologics/Univ. Of Miami	[149]
41	Peptide vaccine	Protein Subunit	Synthetic Long Peptide Vaccine candidate for S and M proteins	Pre-Clinical	FBRI SRC VB VEC TOR, Rospotrebnadzor, Kolosovo	[150]
42	SARS-COV-2 XWG-03 truncated S	Protein subunit	COVID-19 XWG-03 truncated S (spike) proteins.	Pre-Clinical	Innovax/Xiamen Univ./GSK	[151]
43	OMV-based vaccine	Protein subunit	Outer Membrane Vesicle (OMV)-subunit	Pre-Clinical	Quadram Institute Biosciences	[152]
44	Measles Vector	Replicating Viral Vector	Non-Replicating Viral Vector Oral Vaccine platform. (S, N targets).	Pre-Clinical	Institute Pasteur/Thermis/Univ. of Pittsburg Center for Vaccine Research/Merck	[153]
45	Replication competent VSV chimeric virus technology (VSVΔG)	Replicating Viral Vector	Replication competent VSV chimeric virus technology (VSVΔG) delivering the SARS-CoV-2 Spike (S) glycoprotein.	Pre-Clinical	IAVI/Merck	[154]
	Vaccine Type	Vector	Description	Phase	Sponsor/Company	Reference
---	-------------------------------	--------------------------	---	---------	---	-----------
46	M2SR	Replicating Viral Vector	M2-deficient single replication (M2SR) influenza vector	Pre-Clinical	UW–Madison/FluGen/Bharat Biotech	[155]
47	Ii-Key peptide	Protein Subunit	The peptide sequence includes at least one cell-permeable peptide (CPP) domain	Pre-Clinical	Generex/EpiVax	[156]
48	Molecular clamp stabilized Spike protein	Protein Subunit	Molecular clamp stabilized Spike protein is a COVID-19 protein-based vaccine	Pre-Clinical	University of Queensland/GSK/Dynavax	[157]
49	Oral Ad5 S	Non-Replicating Viral Vector	Adenovirus serotype 5 (Ad5)-based vaccine vectors	Pre-Clinical	Stabilitech Biopharma Ltd	[158]
50	Spike-based	Protein subunit	Protein Subunit RBD-based	Pre-Clinical	University of Alberta	[159]
51	Measles Virus	RNA	Live attenuated measles virus (S, N targets) is a COVID-19 viral-vector vaccine (S, N targets)	Pre-Clinical	DZIF – German Center for Infection Research	[160]
52	Live viral vectored vaccine based on attenuated influenza virus backbone (intranasal)	Replicating Viral Vector	Live viral vectored vaccine based on attenuated influenza virus backbone (intranasal)	Pre-Clinical	BiOCAD and IEM	[161]
53	Ad26.CO V2-S	Non-Replicating Viral Vector	Ad26 (alone or with MVA boost)	Pre-Clinical	Janssen Pharmaceutical Companies	[162]
54	MVA-S encoded	Non-replicating viral vector	Non-replicating viral vector MVA-S encoded SARS-CoV2; MVA-S encoded	Pre-clinical	DZIF – German Center for Infection Research	[163]

There are several types of SARS-CoV-2 vaccine currently under trial as shown in table 3, based on genome. Seven research groups are working on inactivated vaccines of SARS-CoV-2 [164]. Twenty-five teams are developing viral vector vaccines, where the virus is genetically altered to induce the body to produce viral proteins. Some viral vector vaccines can destroy replicates inside the host cell, while others prevent replication due to the inactivation of viral genes. Almost 20 groups use the genetic sequences for SARS-COV-2 proteins, which induce
the immune response. Once these genetic instructions (RNA/DNA) are inserted into human cells, the host cells produce viral proteins. The viral spike protein is the main target of RNA/DNA vaccines. Another type of vaccine involves injecting SARS-CoV-2 proteins directly into the body. They can also use small fragments of protein (peptides) or the isolated outer-shell protein of SARS-CoV-2, such proteins can induce an immune response without damaging cells. Germany and the United Kingdom have approved their first two SARS-CoV-2 vaccines. The Paul Ehrlich Institute (PEI) approved for the first clinical trial of RNA-based BNT162b1 vaccine, developed with the use of a lipid nanoparticle, non-viral gene delivery system. The cell then transcribes and translates this genetic information into proteins, which generates an immune response. A team of research scientists working on three other, similar, mRNA vaccines. Similarly, Oxford also launching a trial of the chadOx1 nCoV-19 vaccine, which is based on chimpanzee adenovirus, which includes the spike or S protein on the surface of SARS-CoV-2. The mRNA vaccine candidate developed by Imperial College is being tested in an animal model.

Neutralizing monoclonal antibodies against SARS-CoV-2

Neutralizing antibodies (Nabs) of coronaviruses tend to target the turmeric spike (S) protein (S1 and S2) and mediate the entry into a host cell. Which is actively involved in the attachment of cell and fusion of the cell membrane via the formation of a six-helix bundle (6-HB) fusion core [164]. The S protein has AA (Amino Acid) that are 77.5 % identical and bind to ACE2 on human cells through the S1B domain. S1-RBD and S2 are identified as potential targets for Nabs. To identify antibodies that could potentially neutralize SARS-CoV2. SARS-CoV-2 patents generate immunoglobulin F (IgG) types of antibodies, which is binding to SARS-CoV-2 elements after the onset of disease and blocking SARS-CoV-2 entry of host cells, called neutralizing antibody (Nabs) [164, 165]. Possible targets of nAbs on the S protein of SARS-CoV-2as shown in figure 4. Monoclonal antibody (mAb), antigen-binding fragment (Fab), single-chain variable region fragment (scFv), or single-domain antibody binds to the RBD, S1 subunit (non-RBD, including NTD), or S2 of the viral S protein, blocking binding between the RBD and the respective receptor (for RBD-targeting nAbs), interfering with the conformational change of S (for S1-targeting nAbs), or hindering S2- mediated membrane fusion (for S2-targeting nAbs), leading to the inhibition of infection with SARS-CoV-2 in the host cells. Several human monoclonal antibodies (mAbs) have been developed from memory B cells [166, 167]. A researcher from the field developed 51 cell lines from the humanized mice and evaluate the efficacy and 47D 11 were found active and targeted against the S1B receptor binding
domain of SARS-CoV-2. Pseudo typed lentiviral-based neutralization assay was performed to identify the efficacy of Nabs. The potential of pseudo-virus-neutralizing efficacy suggested that the neutralizing capacity of SARS-CoV-2-specific depends on the magnitude and binding affinity of antibodies [165]. Representative SARS-CoV RBD and MERS-CoV RBD-Targeting nAbs are mentioned in table 4.

Figure 4: Potential targets of nAbs against SARS-CoV-2. This figure was created using BioRender (https://biorender.com/).

Table 4. Representative SARS-CoV RBD- and MERS-CoV RBD-Targeting nAbs.

S. N.	Antibody discovery Neutralizing monoclonal antibodies	Palatifor m	Epitope clusters	binding affinit ies	Protectiv e efficacy	IC50	References
1	3F11	Humanize d phage display library	sdAb llama Animal immunization and sequencing RBD PsV (pseudovirus)neutral ization	Blocking RBD–ACE2	Protect mice against the challenge of SARS	IC50 = 0.14 μg/ml.	[165]
---	---	---	---	---	---		
2	ab1	B cells of convalescent patients; Single-cell sequencing	Neutralize live SARS-CoV (strain Urbani) infection RBD in the S1.	Blocking RBD–ACE2	Full protection of mice: 0.3 mg of IgG1 ab1.	Reporter Gene neutralization assay: 200 ng/ml; LV neutralization: ND100 < 400 ng/ml	
3	CB6;	B cells of convalescent patients	Neutralize live SARS-CoV (strain Urbani) infection RBD in the S1.	Blocking RBD–ACE2	Protection of rhesus macaques: 50 mg/kg.	PsV neutralization: ND50 = 0.036 μg/ml; LV neutralization: ND50 = 0.036 μg/ml	
4	P2C-1F11	The plasma of convalescent patients	SARS-CoV (strain Urbani) infection RBD	Blocking RBD–ACE2	Protection of mice.	PsV neutralization: IC50 = 0.03 μg/ml.	
5	rRBD-15	A synthetic human Fab antibody library	SARS-CoV (strain Urbani) infection RBD	Blocking RBD–ACE2	Protection of mice.	PsV neutralization: IC50 = 12.2 nM.	
6	CC12.1	B cells of convalescent patients	SARS-CoV infection RBD	Blocking RBD–ACE2	Full protection of Syrian hamsters: Antibody serum concentration of ~22 μg/ml.	PsV neutralization: IC50 = 0.019 μg/ml.	
7	COVA1-18	B cells of convalescent patients	SARS-CoV infection RBD	Blocking RBD–ACE2	Protection of Syrian hamsters: Antibody serum concentration.	PsV neutralization: IC50 = 8 ng/ml	
8	BD-368-2	B cells of convalescent	Neutralize live SARS-CoV (strain Urbani) infection RBD	Blocking RBD–ACE2	B cells of convalescent	PsV neutralization: IC50	

No.	Antibody/Method	Source	Activity	Effect	Neutralization	Reference
9	B38	Peripheral blood of SARS-CoV-2-infected patients	Neutralize live SARS-CoV (strain Urbani) infection RBD	Blocking RBD–ACE2.	Protection of mice: Lung viral load reduced by 32.8% compared with PBS control	LV (live virus) neutralization: IC50 = 15 ng/ml; [173]
10	H4	Peripheral blood of SARS-CoV-2-infected patients	Neutralize live SARS-CoV (strain Urbani) infection RBD	Blocking RBD–ACE2.	Protection of mice: Lung viral load reduced by 26% compared with PBS control.	LV neutralization: IC50 = 0.896 μg/ml; [173]
11	7B11	Animal immunization; hybridoma technology	Neutralize live SARS-CoV (strain Urbani) infection RBD	Blocking RBD–ACE2.	Protection of mice. Lung viral load reduced by 26% compared with PBS control.	PsV neutralization: IC50 = 10 μg/ml; [174]
12	CR3022	Gene cloning; Protein expression	SARS-CoV infection RBD.	Blocking RBD–ACE2.		LV neutralization: IC50 = ~ 0.114 μg/ml; [175]
13	4A8	Peripheral blood of convalescent patients	NTD		PsV neutralization: EC50 ~ 49 μg/ml; [176]	
14	VHH-72-Fc	Animal immunization and sequencing	SARS-CoV (strain Urbani) infection RBD	Blocking RBD–ACE2.	Protection of mice.	PsV neutralization: IC50 ~ 0.2 μg/ml; [177]
15	311mab–31B5	B cells of convalescent patients	SARS-CoV (strain Urbani) infection RBD	Blocking	Protection of mice.	PsV neutralization: IC50; [173]
			RBD–ACE2.			
---	---	---	---	---		
16	H014	Animal immunization and phage display	SARS-CoV infection RBD.	Blocking RBD–ACE2.		
				Protection of mice: Lung viral load reduced by about 10–100 folds compared with PBS control.		
				PsV neutralization: IC50 = 3 nM;		
				[178]		
17	COV2-2196	Peripheral blood of convalescent patients	SARS-CoV infection RBD.	Blocking RBD–ACE2.		
				Protection of hamsters: Viral RNA copy numbers and infectious virus titers in lung tissues were reduced by 4 logs or more compared with PBS control.		
				PsV neutralization: IC50 = 0.7 ng/ml;		
				[179]		
18	COVA2-15	A synthetic human Fab antibody library	SARS-CoV infection RBD.	Blocking RBD–ACE2.		
				Protection of mice.		
				LV neutralization: IC50 = 7 ng/ml;		
				[172]		
19	REGN10989	Transgenic mice; Peripheral blood of SARS-CoV-2-infected patients; Next	SARS-CoV infection RBD.	Blocking RBD–ACE2.		
				Protection of mice.		
				PsV neutralization: IC50 = 7.23 pM;		
				[180]		
Effectiveness of SARS-CoV-2 prevention and control procedures

According to the WHO and CDC, hand washing is the most effective procedure to prevent infection. Asymptomatic spreaders may be present in the community, feeling quite well but still able to pass on the virus [45, 72]. It is critical to understand that the asymptomatic spreading of the virus has been shown and that it can be transmitted before symptoms or detection [27]. There are three important concepts: identity, isolation, and information. Once a patient identified, they need to take actions regarding personal hygiene and prevention, such as limiting contact with others as much as possible, staying at home, using available PPE (N-Mask or FFP2-standard masks set by the European Union, gloves, and goggles), and avoid touching the eyes, nose, mouth, and wash hands. Used PPE should be discarded properly to prevent SARS-CoV-2 infection [62]. Hand hygiene should be maintained, such as washing hands for 30 seconds with an effective soap or hand sanitizer with at least 70% alcohol [181]. High-touch surfaces that may be contaminated with SARS-CoV-2 can also be cleaned, using EPA-approved disinfectants. There is no any disinfectant currently approved by the EPA specifically for SARS-CoV-2, but several disinfectants are available[182]. Current observations suggest that people of all ages are generally susceptible to this new infectious disease. However, those who are in close contact with patients with symptomatic and asymptomatic SARS-CoV-2, including health care workers and other patients in a hospital, are at higher risk of infection [182]. As of February 14, 2020, a total of 1,716 health care workers in China were infected with SARS-CoV-2, comprising 3.8 % of all patients nationally, 6 of whom have died [182, 183]. A team of research scientists at the Aix-Marseille University, in France, found that some SARS-CoV-2 strains can replicate at 60°C, and the virus are not completely eliminated until the temperature rises to 90-100°C.

Peoples with chronic disease may suffer from increased stress due to the coronavirus pandemic because SARS-CoV-2 disease poses higher health risks for them. Stress during the pandemic, including fear, concerns about health and loved ones, changes in routine eating patterns, and difficulty in concentrating, can lead to a worsening of existing health problems, increased use of tobacco, alcohol, and other drugs. Peoples with pre-existing mental health conditions should be aware of worsening caused by the pandemic. Stress can be reduced by
taking care of close friends and family, and by helping others to cope, making the community stronger. It will be better to avoid stressful activities that cause anxiety, to keep updated with accurate information, to meditate regularly, try to eat healthy, balanced meals, exercise regularly, sleep more often, and develop an understanding of the actual risk.

1. Conclusion:

SARS-CoV-2 continues to increase its death toll as more people become infected. More than 215 countries are reporting new cases, and many struggle to limit their spread. SARS-CoV-2 has origins in mutations to coronavirus strains in animals, such as bats and pangolin. Poorly treated animals are stressed and are responsible for the emergence of new diseases. Wet markets where animals are in close contact with humans are the perfect breeding grounds for new diseases. Coronavirus not only causes respiratory problems, but may also damage the heart, kidneys, liver, and other organs. Half of the SARS-CoV-2 patients have blood or protein in their urine samples, an indication of early kidney damage. SARS-CoV-2 may also cause inflammation of the heart muscles and can cause disturbances in the heart rhythm, ultimately leading to cardiac arrest. The human gastrointestinal tract contains 100 times more ACE2 receptors than the lungs. Research shows that the virus could use these receptors to gain entry into other organs of the body and this might lead to multi-organ failure. The current scenario of the SARS-CoV-2 pandemic proves that the world was not prepared for a disaster on such a scale. In the event of another pandemic in the future, do you believe the world will have learned lessons to prepare for what comes next, such as funding medical research, building better health care systems and infrastructure, and tracking potentially lethal viruses? Researchers are actively working on the characterization of new emerging strains, drug discovery, and the development of SARS-CoV-2 infections. Already, some excellent tools and techniques have been found for use in the fight against SARS-CoV-2. There are 92 vaccines under development, 45 antibodies, 12 cell-based and, 5 RNA-based therapies, and 52 other therapeutic options are currently being explored to fight the new SARS-CoV-2. Various clinical trials are underway to investigate potential therapies against the SARS-CoV-2 pandemic, but no effective treatment is effective, to date. Furthermore, we review known factors of early-life adversity and their potential influence on the adult immune system and contemplate what kind of data should be collected to understand how social influence disease susceptibility and severity of COVID-19. We hope this work will contribute to protecting and treating people at risk of developing a vaccine for severe SARS-CoV-2 infections/COVID-19.
Author’s contribution

D.D.S and D.K.Y. conceived and designed the project and collected data from the literature and write the manuscript. I.H. and E.H.C, support editing the Manuscript. All authors contributed to the interpretation and discussion of the results. All authors read and approved the final version of the manuscript.

Acknowledgments

D. D. S. thankful to Amity University Rajasthan, Jaipur, India. D.K.Y. thankful to Gachon Institute of Pharmaceutical Science and the Department of Pharmacy, College of Pharmacy, Gachon University of Medicine and Science, Incheon, Korea for providing the computational modeling facility. We are tanksful to Chandni Kumari for support to Manuscript reference and editing. D.K.Y. was thankful to the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology, who supported this study (No. 2017R1C1B2003380). This research was also partially supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) (NRF-2016K1A4A3914113).

Conflicts of interest:

The author(s) confirm that this article content has no conflicts of interest.

Reference

[1] V.M. Cucinotta D, WHO Declares COVID-19 a Pandemic, Acta Bio Med 91(1) (2020) 157-160.
[2] J. Zheng, SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat, International Journal of Biological Sciences 16(10) (2020) 1678-1685.
[3] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, J.a. Xia, T. Yu, X. Zhang, L. Zhang, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, The Lancet 395(10223) (2020) 507-513.
[4] D. Schoeman, B.C. Fielding, Coronavirus envelope protein: current knowledge, Virology Journal 16(1) (2019).
[5] L.L.M. Poon, M. Peiris, Emergence of a novel human coronavirus threatening human health, Nature Medicine 26(3) (2020) 317-319.
[6] A.S. Omrani, J.A. Al-Tawfiq, Z.A. Memish, Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction, Pathogens and Global Health 109(8) (2016) 354-362.
[7] S. Jiang, L. Du, Z. Shi, An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies, Emerg Microbes Infect 9(1) (2020) 275-277.
[8] J.S. Mackenzie, D.W. Smith, COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don't, Microbiology Australia 41(1) (2020).
[9] J.-j. Zhang, X. Dong, Y.-y. Cao, Y.-d. Yuan, Y.-b. Yang, Y.-q. Yan, C.A. Akdis, Y.-d. Gao, Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China, Allergy 75(7) (2020) 1730-1741.
[10] X. Yang, Y. Yu, J. Xu, H. Shu, J.a. Xia, H. Liu, Y. Wu, L. Zhang, Z. Yu, M. Fang, T. Yu, Y. Wang, S. Pan, X. Zou, S. Yuan, Y. Shang, Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, The Lancet Respiratory Medicine 8(5) (2020) 475-481.
[11] B.E. Young, S.W.X. Ong, S. Kalimuddin, J.G. Low, S.Y. Tan, J. Loh, O.-T. Ng, K. Marimuthu, L.W. Ang, T.M. Mak, S.K. Lau, D.E. Anderson, K.S. Chan, T.Y. Tan, T.Y. Ng, L. Cui, Z. Said, L. Kurupatham, M.I.C. Chen, M. Chan, S. Vasoo, L.-F. Wang, B.H. Tan, R.T.P. Lin, V.J.M. Lee, Y.-S. Leo, D.C. Lye, Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore, Jama 323(15) (2020).
[12] H.A. Rothan, S.N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, Journal of Autoimmunity 109 (2020).
[13] D. Raoult, A. Zumla, F. Locatelli, G. Ippolito, G. Kroemer, Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses, Cell Stress 4(4) (2020) 66-75.
[14] G. Khan, A novel coronavirus capable of lethal human infections: an emerging picture, Virology Journal 10(1) (2013).
[15] V.M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D.K.W. Chu, T. Bleicker, S. Brünink, J. Schneider, M.L. Schmidt, D.G.J.C. Mulders, B.L. Haagmans, B. van der Veer, S. van den Brink, L. Wijsman, G. Goderski, J.-L. Romette, J. Ellis, M. Zambon, M. Peiris, H. Goossens, C. Reusken, M.P.G. Koopmans, C. Drosten, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Eurosurveillance 25(3) (2020).
[16] Z. Ye, Y. Zhang, Y. Wang, Z. Huang, B. Song, Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review, European Radiology 30(8) (2020) 4381-4389.
[17] S.-S. Jean, P.-I. Lee, P.-R. Hsueh, Treatment options for COVID-19: The reality and challenges, Journal of Microbiology, Immunology and Infection 53(3) (2020) 436-443.
[18] X. Tian, C. Li, A. Huang, S. Xia, S. Lu, Z. Shi, L. Lu, S. Jiang, Z. Yang, Y. Wu, T. Ying, (2020).
[19] X.-Y. Ge, J.-L. Li, X.-L. Yang, A.A. Chmura, G. Zhu, J.H. Epstein, J.K. Mazet, B. Hu, W. Zhang, C. Peng, Y.-J. Zhang, C.-M. Luo, B. Tan, N. Wang, Y. Zhu, G. Cramer, S.-Y. Zhang, L.-F. Wang, P. Daszak, Z.-L. Shi, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor, Nature 503(7477) (2013) 535-538.
[20] H. Xu, L. Zhong, J. Deng, J. Peng, H. Dan, X. Zeng, T. Li, Q. Chen, High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa, International Journal of Oral Science 12(1) (2020).
[21] J. Demiselle, N. Fage, P. Radermacher, P. Asfar, Vasopressin and its analogues in shock states: a review, Annals of Intensive Care 10(1) (2020).
[22] Y. Cao, L. Li, Z. Feng, S. Wan, P. Huang, X. Sun, F. Wen, X. Huang, G. Ning, W. Wang, Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations, Cell Discovery 6(1) (2020).
[23] P. Kakodkar, N. Kaka, M.N. Baig, A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19), Cureus (2020).
[24] J.S. Rico-Mesa, A. White, A.S. Anderson, Outcomes in Patients with COVID-19 Infection Taking ACEI/ARB, Current Cardiology Reports 22(5) (2020).
[25] B. Russell, C. Moss, G. George, A. Santaolalla, A. Cope, S. Papa, M. Van Hemelrijck, Associations between immune-suppressive and stimulating drugs and novel COVID-19—a systematic review of current evidence, ecancermedicalscience 14 (2020).
[26] K. Yuki, M. Fujiogi, S. Koutsogiannaki, COVID-19 pathophysiology: A review, Clinical Immunology 215 (2020).
[27] H. Meng, R. Xiong, R. He, W. Lin, B. Hao, L. Zhang, Z. Lu, X. Shen, T. Fan, W. Jiang, W. Yang, T. Li, J. Chen, Q. Geng, CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China, Journal of Infection 81(1) (2020) e33-e39.
[28] T. Torres, L. Puig, Managing Cutaneous Immune-Mediated Diseases During the COVID-19 Pandemic, American Journal of Clinical Dermatology 21(3) (2020) 307-311.

[29] E.J. Giamarellos-Bourboulis, M.G. Netea, N. Rovina, K. Akinosoglou, A. Antoniadou, N. Antonakos, G. Damoraki, T. Gkavogianni, M.-E. Adami, P. Katsaounou, M. Ntaganou, M. Kyriakopoulou, G. Dimopoulos, I. Koutsoudimitropoulos, D. Velissaris, P. Koufargyris, A. Karageorgos, K. Katrini, V. Lekakis, M. Lupse, A. Kotsaki, G. Renieris, D. Theodoulou, V. Panou, E. Koukaki, N. Koulouris, C. Gogos, A. Koutsoukou, Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure, Cell Host & Microbe 27(6) (2020) 992-1000.e3.

[30] R. de Alwis, S. Chen, E.S. Gan, E.E. Ooi, Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development, EBioMedicine 55 (2020).

[31] J.A. Choreño-Parra, S. Thiranavukkarasu, J. Zúñiga, S.A. Khader, The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine, Cytokine & Growth Factor Reviews 53 (2020) 53-62.

[32] J. Nikolich-Zugich, K.S. Knox, C.T. Rios, B. Natt, D. Bhattacharya, M.J. Fain, SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes, GeroScience 42(2) (2020) 505-514.

[33] P. Mehta, D.F. McAuley, M. Brown, E. Sanchez, R.S. Tattersall, J.J. Manson, COVID-19: consider cytokine storm syndromes and immunosuppression, The Lancet 395(10229) (2020) 1033-1034.

[34] P. Rizzo, F. Vieceli Dalla Sega, F. Fortini, L. Marracino, C. Rapezzi, R. Ferrari, COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm?, Basic Research in Cardiology 115(3) (2020).

[35] Y. Xiong, Y. Liu, L. Cao, D. Wang, M. Guo, A. Jiang, D. Guo, W. Hu, J. Yang, Z. Tang, H. Wu, Y. Lin, M. Zhang, Q. Zhang, M. Shi, Y. Liu, Y. Zhou, K. Lan, Y. Chen, Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients, Emerging Microbes & Infections 9(1) (2020) 761-770.

[36] S. Xia, M. Liu, C. Wang, W. Xu, Q. Lan, S. Feng, F. Qi, L. Bao, L. Du, S. Liu, C. Qin, F. Sun, Z. Shi, Y. Zhu, S. Jiang, L. Lu, Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion, Cell Research 30(4) (2020) 343-355.

[37] E.H. Choy, F. De Benedetti, T. Takeuchi, M. Hashizume, M.R. John, T. Kishimoto, Translating IL-6 biology into effective treatments, Nature Reviews Rheumatology 16(6) (2020) 335-345.
[38] A. Saghazadeh, N. Rezaei, Immune-epidemiological parameters of the novel coronavirus – a perspective, Expert Review of Clinical Immunology 16(5) (2020) 465-470.

[39] S. Felsenstein, J.A. Herbert, P.S. McNamara, C.M. Hedrich, COVID-19: Immunology and treatment options, Clinical Immunology 215 (2020).

[40] L. Lin, L. Lu, W. Cao, T. Li, Hypothesis for potential pathogenesis of SARS-CoV-2 infection – a review of immune changes in patients with viral pneumonia, Emerging Microbes & Infections 9(1) (2020) 727-732.

[41] R. Zolfaghari Emameh, H. Nosrati, R.A. Taheri, Combination of Biodata Mining and Computational Modelling in Identification and Characterization of ORF1ab Polyprotein of SARS-CoV-2 Isolated from Oronasopharynx of an Iranian Patient, Biological Procedures Online 22(1) (2020).

[42] J.F.-W. Chan, K.-H. Kok, Z. Zhu, H. Chu, K.K.-W. To, S. Yuan, K.-Y. Yuen, Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerging Microbes & Infections 9(1) (2020) 221-236.

[43] C.t.n. NCT04334980, Evaluating the Safety, Tolerability and Immunogenicity of bacTRL-Spike Vaccine for Prevention of COVID-19, ClinicalTrials.gov (2020).

[44] A. Haveri, T. Smura, S. Kuivanen, P. Österlund, J. Hepojoki, N. Ikonen, M. Pitkäpaasi, S. Blomqvist, E. Rönkkö, A. Kantele, T. Strandin, H. Kallio-Kokko, L. Mannonen, M. Lappalainen, M. Broas, M. Jiang, L. Siira, M. Salminen, T. Puimalainen, J. Sane, M. Melin, O. Vapalahti, C. Savolainen-Kopra, Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020, Eurosurveillance 25(11) (2020).

[45] P. Zimmermann, N. Curtis, Coronavirus Infections in Children Including COVID-19, Pediatric Infectious Disease Journal 39(5) (2020) 355-368.

[46] Q. Hu, H. Guan, Z. Sun, L. Huang, C. Chen, T. Ai, Y. Pan, L. Xia, Early CT features and temporal lung changes in COVID-19 pneumonia in Wuhan, China, European Journal of Radiology 128 (2020).

[47] W. Schweitzer, T. Ruder, R. Baumeister, S. Bolliger, M. Thali, E. Meixner, G. Ampanozi, Implications for forensic death investigations from first Swiss post-mortem CT in a case of non-hospital treatment with COVID-19, Forensic Imaging 21 (2020).

[48] C. Butt, J. Gill, D. Chun, B.A. Babu, Deep learning system to screen coronavirus disease 2019 pneumonia, Applied Intelligence (2020).
[49] Z. Liu, L. Ding, G. Chen, C. Zhao, X. Luo, X. Li, W. Luo, J. Xia, X. Liu, Clinical Time Features and Chest Imaging of 85 Patients With COVID-19 in Zhuhai, China, Frontiers in Medicine 7 (2020).

[50] R.T. Eastman, J.S. Roth, K.R. Brimacombe, A. Simeonov, M. Shen, S. Patnaik, M.D. Hall, Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19, ACS Central Science 6(5) (2020) 672-683.

[51] L. Fan, D. Li, H. Xue, L. Zhang, Z. Liu, B. Zhang, L. Zhang, W. Yang, B. Xie, X. Duan, X. Hu, K. Cheng, L. Peng, N. Yu, L. Song, H. Chen, X. Sui, N. Zheng, S. Liu, Z. Jin, Progress and prospect on imaging diagnosis of COVID-19, Chinese Journal of Academic Radiology 3(1) (2020) 4-13.

[52] J.H. Beigel, K.M. Tomashek, L.E. Dodd, A.K. Mehta, B.S. Zingman, A.C. Kalil, E. Hohmann, H.Y. Chu, A. Luetkemeyer, S. Kline, D. Lopez de Castilla, R.W. Finberg, K. Dierberg, V. Tapson, L. Hsieh, T.F. Patterson, R. Paredes, D.A. Sweeney, W.R. Short, G. Touloumi, D.C. Lye, N. Ohmagari, M.-d. Oh, G.M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer, M.G. Kortepeter, R.L. Atmar, C.B. Creech, J. Lundgren, A.G. Babiker, S. Pett, J.D. Neaton, T.H. Burgess, T. Bonnett, M. Green, M. Makowski, A. Osinusi, S. Nayak, H.C. Lane, Remdesivir for the Treatment of Covid-19 — Preliminary Report, New England Journal of Medicine (2020).

[53] F. Ucar, D. Korkmaz, COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images, Medical Hypotheses 140 (2020).

[54] C. Bao, X. Liu, H. Zhang, Y. Li, J. Liu, Coronavirus Disease 2019 (COVID-19) CT Findings: A Systematic Review and Meta-analysis, Journal of the American College of Radiology 17(6) (2020) 701-709.

[55] A. Amanati, A. Karimi, A. Fahimzad, A.R. Shamshiri, F. Fallah, A. Mahdavi, M. Talebian, Incidence of Ventilator-Associated Pneumonia in Critically Ill Children Undergoing Mechanical Ventilation in Pediatric Intensive Care Unit, Children 4(7) (2017).

[56] C.f.D.C.a. Prevention, Coronavirus (COVID-19), 2020. https://www.cdc.gov/cdc-info/index.html.

[57] D.D. Addie, S. le Poder, P. Burr, N. Decaro, E. Graham, R. Hofmann-Lehmann, O. Jarrett, M. McDonald, M.L. Meli, Utility of feline coronavirus antibody tests, Journal of Feline Medicine and Surgery 17(2) (2014) 152-162.
[58] R. Bhat, A. Hamid, J.R. Kunin, S.S. Saboo, K. Batra, D. Baruah, A.P. Bhat, Chest Imaging in Patients Hospitalized With COVID-19 Infection - A Case Series, Current Problems in Diagnostic Radiology 49(4) (2020) 294-301.

[59] C. Bor, K. Demirag, O. Okcu, I. Cankayali, M. Uyar, Ventilator-Associated Pneumonia in Critically Ill Patients with Intensive Antibiotic Usage, Pakistan Journal of Medical Sciences 31(6) (1969).

[60] D. Mantuani, B. Frazee, J. Fahimi, A. Nagdev, Point-of-Care Multi-Organ Ultrasound Improves Diagnostic Accuracy in Adults Presenting to the Emergency Department with Acute Dyspnea, Western Journal of Emergency Medicine 17(1) (2016) 46-53.

[61] G. Tersalvi, M. Vicenzi, D. Calabretta, L. Biasco, G. Pedrazzini, D. Winterton, Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms, Journal of Cardiac Failure 26(6) (2020) 470-475.

[62] C.-C. Lai, Y.H. Liu, C.-Y. Wang, Y.-H. Wang, S.-C. Hsueh, M.-Y. Yen, W.-C. Ko, P.-R. Hsueh, Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths, Journal of Microbiology, Immunology and Infection 53(3) (2020) 404-412.

[63] Q. Bi, Y. Wu, S. Mei, C. Ye, X. Zou, Z. Zhang, X. Liu, L. Wei, S.A. Truelove, T. Zhang, W. Gao, C. Cheng, X. Tang, X. Wu, Y. Wu, B. Sun, S. Huang, Y. Sun, J. Zhang, T. Ma, J. Lessler, T. Feng, Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study, The Lancet Infectious Diseases (2020).

[64] M.E. El Zowalaty, J.D. Järhult, From SARS to COVID-19: A previously unknown SARS-related coronavirus (SARS-CoV-2) of pandemic potential infecting humans – Call for a One Health approach, One Health 9 (2020).

[65] P. Lomoro, F. Verde, F. Zerboni, I. Simonetti, C. Borghi, C. Fachinetti, A. Natalizi, A. Martegani, COVID-19 pneumonia manifestations at the admission on chest ultrasound, radiographs, and CT: single-center study and comprehensive radiologic literature review, European Journal of Radiology Open 7 (2020).

[66] I. Ghinai, T.D. McPherson, J.C. Hunter, H.L. Kirking, D. Christiansen, K. Joshi, R. Rubin, S. Morales-Estrada, S.R. Black, M. Pacilli, M.J. Fricchione, R.K. Chugh, K.A. Walblay, N.S. Ahmed, W.C. Stoeccker, N.F. Hasan, D.P. Burdsall, H.E. Reese, M. Wallace, C. Wang, D. Moeller, J. Korpics, S.A. Novosad, I. Benowitz, M.W. Jacobs, V.S. Dasari, M.T. Patel, J. Kauerauf, E.M. Charles, N.O. Ezike, V. Chu, C.M. Midgley, M.A. Rolfes, S.I. Gerber, X. Lu, S. Lindstrom, J.R. Verani, J.E. Layden, S. Brister, K. Goldesberry, S. Hoferka, D. Jovanov, D.
Nims, L. Saathoff-Huber, C. Hoskin Snelling, H. Adil, R. Ali, E. Andreychak, K. Bemis, M. Frias, P. Quartey-Kumapley, K. Baskerville, E. Murphy, E. Murskyj, Z. Noffsinger, J. Vercillo, A. Elliott, U.S. Onwuta, D. Burck, G. Abedi, R.M. Burke, R. Fagan, J. Farrar, A.M. Fry, A.J. Hall, A. Haynes, C. Hoff, S. Kamili, M.E. Killerby, L. Kim, S.A. Kujawski, D.T. Kuhar, B. Lynch, L. Malapati, M. Marlow, J.R. Murray, B. Rha, S.K.K. Sakthivel, S.E. Smith-Jeffcoat, E. Soda, L. Wang, B.L. Whitaker, T.M. Uyeki, First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA, The Lancet 395(10230) (2020) 1137-1144.

[67] J.M. Abduljalil, B.M. Abduljalil, Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: a recent view, New Microbes and New Infections 35 (2020).

[68] Z. Zheng, F. Peng, B. Xu, J. Zhao, H. Liu, J. Peng, Q. Li, C. Jiang, Y. Zhou, S. Liu, C. Ye, P. Zhang, Y. Xing, H. Guo, W. Tang, Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis, Journal of Infection (2020).

[69] J.F.-W. Chan, S. Yuan, K.-H. Kok, K.K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C.C.-Y. Yip, R.W.-S. Poon, H.-W. Tsoi, S.K.-F. Lo, K.-H. Chan, V.K.-M. Poon, W.-M. Chan, J.D. Ip, J.-P. Cai, V.C.-C. Cheng, H. Chen, C.K.-M. Hui, K.-Y. Yuen, A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, The Lancet 395(10223) (2020) 514-523.

[70] C.D. Russell, J.E. Millar, J.K. Baillie, Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury, The Lancet 395(10223) (2020) 473-475.

[71] D.D. Singh, I. Han, E-H. Choi D.K. Yadav. Recent Advances in Pathophysiology, Drug Development and Future Perspectives of SARS-CoV-2. Front. Cell Dev. Biol. 8:580202. doi: 10.3389/fcell.2020.580202 (2020)

[72] S. Kumar, K. Zhi, A. Mukherji, K. Gerth, Repurposing Antiviral Protease Inhibitors Using Extracellular Vesicles for Potential Therapy of COVID-19, Viruses 12(5) (2020).

[73] P.-I. Lee, Y.-L. Hu, P.-Y. Chen, Y.-C. Huang, P.-R. Hsueh, Are children less susceptible to COVID-19?, Journal of Microbiology, Immunology and Infection 53(3) (2020) 371-372.

[74] F.-C. Zhu, Y.-H. Li, X.-H. Guan, L.-H. Hou, W.-J. Wang, J.-X. Li, S.-P. Wu, B.-S. Wang, Z. Wang, L. Wang, S.-Y. Jia, H.-D. Jiang, L. Wang, T. Jiang, Y. Hu, J.-B. Gou, S.-B. Xu, J.-J. Xu, X.-W. Wang, W. Wang, W. Chen, Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial, The Lancet 395(10240) (2020) 1845-1854.
[75] L. Dietz, P.F. Horve, D.A. Coil, M. Fretz, J.A. Eisen, K. Van Den Wymelenberg, J.A. Gilbert, 2019 Novel Coronavirus (COVID-19) Pandemic: Built Environment Considerations To Reduce Transmission, mSystems 5(2) (2020).
[76] M. Pachetti, B. Marini, F. Benedetti, F. Giudici, E. Mauro, P. Storici, C. Masciovecchio, S. Angeletti, M. Ciccozzi, R.C. Gallo, D. Zella, R. Ippodrino, Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant, Journal of Translational Medicine 18(1) (2020).
[77] M.P. Lythgoe, P. Middleton, Ongoing Clinical Trials for the Management of the COVID-19 Pandemic, Trends in Pharmacological Sciences 41(6) (2020) 363-382.
[78] Y.-R. Guo, Q.-D. Cao, Z.-S. Hong, Y.-Y. Tan, S.-D. Chen, H.-J. Jin, K.-S. Tan, D.-Y. Wang, Y. Yan, The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status, Military Medical Research 7(1) (2020).
[79] G. Kolifarhood, M. Aghaali, H. Mozafar Saadati, N. Taherpour, S. Rahimi, N. Izadi, S.S. Hashemi Nazari, Epidemiological and Clinical Aspects of COVID-19; a Narrative Review, Arch Acad Emerg Med 8(1) (2020) e41.
[80] L. Gattinoni, D. Chiumello, P. Caironi, M. Busana, F. Romitti, L. Brazzi, L. Camporota, COVID-19 pneumonia: different respiratory treatments for different phenotypes?, Intensive Care Medicine 46(6) (2020) 1099-1102.
[81] L. Mousavizadeh, S. Ghasemi, Genotype and phenotype of COVID-19: Their roles in pathogenesis, Journal of Microbiology, Immunology and Infection (2020).
[82] J. Rello, E. Storti, M. Belliato, R. Serrano, Clinical phenotypes of SARS-CoV-2: implications for clinicians and researchers, European Respiratory Journal 55(5) (2020).
[83] M. Saber-Ayad, M.A. Saleh, E. Abu-Gharbieh, The Rationale for Potential Pharmacotherapy of COVID-19, Pharmaceuticals 13(5) (2020).
[84] N. Chow, K. Fleming-Dutra, R. Gierke, A. Hall, M. Hughes, T. Pilishvili, M. Ritchey, K. Roguski, T. Skoff, E. Ussey, Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019 — United States, February 12–March 28, 2020, MMWR. Morbidity and Mortality Weekly Report 69(13) (2020) 382-386.
[85] M. Tobaiqy, M. Qashqary, S. Al-Dahery, A. Mujallad, A.A. Hershans, M.A. Kamal, N. Helmi, Therapeutic management of patients with COVID-19: a systematic review, Infection Prevention in Practice 2(3) (2020).
[86] L. Shen, J. Niu, C. Wang, B. Huang, W. Wang, N. Zhu, Y. Deng, H. Wang, F. Ye, S. Cen, W. Tan, T. Gallagher, High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses, Journal of Virology 93(12) (2019).
[87] G. Zhou, Q. Zhao, Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2, International Journal of Biological Sciences 16(10) (2020) 1718-1723.

[88] G. Pawelec, N.-p. Weng, Can an effective SARS-CoV-2 vaccine be developed for the older population?, Immunity & Ageing 17(1) (2020).

[89] N.I.o. Health, NIH clinical trial shows Remdesivir accelerates recovery from advanced COVID-19, 2020.

[90] X. Xu, M. Han, T. Li, W. Sun, D. Wang, B. Fu, Y. Zhou, X. Zheng, Y. Yang, X. Li, X. Zhang, A. Pan, H. Wei, Effective treatment of severe COVID-19 patients with tocilizumab, Proceedings of the National Academy of Sciences 117(20) (2020) 10970-10975.

[91] G. Guo, L. Ye, K. Pan, Y. Chen, D. Xing, K. Yan, Z. Chen, N. Ding, W. Li, H. Huang, L. Zhang, X. Li, X. Xue, New Insights of Emerging SARS-CoV-2: Epidemiology, Etiology, Clinical Features, Clinical Treatment, and Prevention, Frontiers in Cell and Developmental Biology 8 (2020).

[92] S.G.V. Rosa, W.C. Santos, Clinical trials on drug repositioning for COVID-19 treatment, Revista Panamericana de Salud Pública 44 (2020).

[93] P. Gautret, J.-C. Lagier, P. Parola, V.T. Hoang, L. Meddeb, M. Mailhe, B. Doudier, J. Courjon, V. Giordanengo, V.E. Vieira, H. Tissot Dupont, S. Honoré, P. Colson, E. Chabrière, B. La Scola, J.-M. Rolain, P. Brouqui, D. Raoult, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, International Journal of Antimicrobial Agents (2020).

[94] C.t.N. NCT04310228, Favipiravir Combined With Tocilizumab in the Treatment of Corona Virus Disease 2019, ClinicalTrials.gov (2020).

[95] U.f.a. Drug, Recommendations for Investigational COVID-19 Convalescent Plasma, fda.gov (2020).

[96] W.J. Gibson, T. Nafee, R. Travis, M. Yee, M. Kerneis, M. Ohman, C.M. Gibson, Machine learning versus traditional risk stratification methods in acute coronary syndrome: a pooled randomized clinical trial analysis, Journal of Thrombosis and Thrombolysis 49(1) (2019) 1-9.

[97] X.C. Tang, S.S. Agnihothram, Y. Jiao, J. Stanhope, R.L. Graham, E.C. Peterson, Y. Avnir, A.S.C. Tallarico, J. Sheehan, Q. Zhu, R.S. Baric, W.A. Marasco, Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution, Proceedings of the National Academy of Sciences 111(19) (2014) E2018-E2026.

[98] L. Du, G. Zhao, Y. Yang, H. Qiu, L. Wang, Z. Kou, X. Tao, H. Yu, S. Sun, C.T.K. Tseng, S. Jiang, F. Li, Y. Zhou, A Conformation-Dependent Neutralizing Monoclonal Antibody
Specifically Targeting Receptor-Binding Domain in Middle East Respiratory Syndrome Coronavirus Spike Protein, Journal of Virology 88(12) (2014) 7045-7053.

[99] C. Barton, J.C. Kouokam, A.B. Lasnik, O. Foreman, A. Cambon, G. Brock, D.C. Montefiori, F. Vojdani, A.A. McCormick, B.R. O'Keefe, K.E. Palmer, Activity of and Effect of Subcutaneous Treatment with the Broad-Spectrum Antiviral Lectin Griffithsin in Two Laboratory Rodent Models, Antimicrobial Agents and Chemotherapy 58(1) (2014) 120-127.

[100] B.R. O'Keefe, B. Giomarelli, D.L. Barnard, S.R. Shenoy, P.K.S. Chan, J.B. McMahon, K.E. Palmer, B.W. Barnett, D.K. Meyerholz, C.L. Wohlford-Lenane, P.B. McCray, Broad-Spectrum In Vitro Activity and In Vivo Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family Coronaviridae, Journal of Virology 84(5) (2010) 2511-2521.

[101] D.L. Barnard, Y. Kumaki, Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy, Future Virology 6(5) (2011) 615-631.

[102] R.S. Baric, K. Pervushin, E. Tan, K. Parthasarathy, X. Lin, F.L. Jiang, D. Yu, A. Vararattanavech, T.W. Soong, D.X. Liu, J. Torres, Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel, PLoS Pathogens 5(7) (2009).

[103] M.L. He, B.J. Zheng, Y. Chen, K.L. Wong, J.D. Huang, M.C. Lin, K.Y. Yuen, J.J. Sung, H.F. Kung, Development of interfering RNA agents to inhibit SARS-associated coronavirus infection and replication, Hong Kong Med J 15(3 Suppl 4) (2009) 28-31.

[104] H.-I. Liao, C.A. Olson, S. Hwang, H. Deng, E. Wong, R.S. Baric, R.W. Roberts, R. Sun, mRNA Display Design of Fibronectin-based Intrabodies That Detect and Inhibit Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein, Journal of Biological Chemistry 284(26) (2009) 17512-17520.

[105] Y.M. Báez-Santos, S.E. St. John, A.D. Mesecar, The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds, Antiviral Research 115 (2015) 21-38.

[106] R.S. Mandal, A. Ta, R. Sinha, N. Theeya, A. Ghosh, M. Tasneem, A. Bhunia, H. Koley, S. Das, Ribavirin suppresses bacterial virulence by targeting LysR-type transcriptional regulators, Scientific Reports 6(1) (2016).

[107] R. Taylor, P. Kotian, T. Warren, R. Panchal, S. Bavari, J. Julander, S. Dobo, A. Rose, Y. El-Kattan, B. Taubenheim, Y. Babu, W.P. Sheridan, BCX4430 – A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease, Journal of Infection and Public Health 9(3) (2016) 220-226.

[108] A.J. Pruijssers, M.R. Denison, Nucleoside analogues for the treatment of coronavirus infections, Current Opinion in Virology 35 (2019) 57-62.
[109] A.O. Adedeji, K. Singh, N.E. Calcaterra, M.L. DeDiego, L. Enjuanes, S. Weiss, S.G. Sarafianos, Severe Acute Respiratory Syndrome Coronavirus Replication Inhibitor That Interferes with the Nucleic Acid Unwinding of the Viral Helicase, Antimicrobial Agents and Chemotherapy 56(9) (2012) 4718-4728.

[110] A.O. Adedeji, K. Singh, A. Kassim, C.M. Coleman, R. Elliott, S.R. Weiss, M.B. Frieman, S.G. Sarafianos, Evaluation of SSYA10-001 as a Replication Inhibitor of Severe Acute Respiratory Syndrome, Mouse Hepatitis, and Middle East Respiratory Syndrome Coronaviruses, Antimicrobial Agents and Chemotherapy 58(8) (2014) 4894-4898.

[111] Y.J. Chen, L.J. Li, W.L. Tang, J.Y. Song, R. Qiu, Q. Li, H. Xue, J.M. Wright, First-line drugs inhibiting the renin angiotensin system versus other first-line antihypertensive drug classes for hypertension, Cochrane Database of Systematic Reviews (2018).

[112] P.J. Hotez, D.B. Corry, M.E. Bottazzi, COVID-19 vaccine design: the Janus face of immune enhancement, Nature Reviews Immunology 20(6) (2020) 347-348.

[113] R. Ojha, N. Gupta, B. Naik, S. Singh, V.K. Verma, D. Prusty, V.K. Prajapati, High throughput and comprehensive approach to develop multipitope vaccine against minacious COVID-19, European Journal of Pharmaceutical Sciences 151 (2020).

[114] C.T.n. NCT04346277, Compassionate Use Open-Label Anti-CD14 Treatment in Patients With SARS-CoV-2 (COVID-19), ClinicalTrials.gov (2020).

[115] C.t.n. NCT04336410, Safety, Tolerability and Immunogenicity of INO-4800 for COVID-19 in Healthy Volunteers, ClinicalTrials.gov (2020).

[116] C.t.n. NCT04368728, Study to Describe the Safety, Tolerability, Immunogenicity, and Potential Efficacy of RNA Vaccine Candidates Against COVID-19 in Healthy Adults, ClinicalTrials.gov (2020).

[117] C.t.n. NCT04299724, Safety and Immunity of Covid-19 aAPC Vaccine, ClinicalTrials.gov (2020).

[118] C.t.n. NCT04276896, Immunity and Safety of Covid-19 Synthetic Minigene Vaccin, ClinicalTrials.gov (2020).

[119] C.t.n. NCT04341389, A Phase II Clinical Trial to Evaluate the Recombinant Novel Coronavirus Vaccine (Adenovirus Vector), ClinicalTrials.gov (2020).

[120] TrialSiteNews, University of Oxford Commences Clinical Trial for Vaccine Candidate (ChAdOx1 nCoV-19) Targeting COVID-19, CLINICAL TRIALS, CORONAVIRUS, COVID-19, UNIVERSITY OF OXFORD, VACCINE (2020).

[121] C.t.n. NCT04283461, Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis SARS CoV-2 Infection, ClinicalTrials.gov (2020).
[122] ChiCTR2000031781, A randomized, double-blinded, placebo-controlled phase II clinical trial for Recombinant Novel Coronavirus (2019-nCOV) Vaccine (Adenovirus Vector), Chinese clinical trial registry (2020).

[123] N.I.o.B. Innovation, Laboratory of Vaccine Materials, nibiohn.go.jp (2020).

[124] B. B, Vaxart Announces Additional Positive Pre-Clinical Data for its Oral COVID-19 Vaccine Program, in: I. Vaxart (Ed.) 2020.

[125] C. RUTKOWSKI, UM alumnus on front lines of COVID-19 research in China, news.umanitoba.ca (2020).

[126] L. Han-soo, Genexine, Binex to develop COVID-19 vaccine, koreabiomed.com (2020).

[127] T.R.F. Smith, A. Patel, S. Ramos, D. Elwood, X. Zhu, J. Yan, E.N. Gary, S.N. Walker, K. Schultheis, M. Purwar, Z. Xu, J. Walters, P. Bhojnagarwala, M. Yang, N. Chokkalingam, P. Pezzoli, E. Parzych, E.L. Reuschel, A. Doan, N. Tursi, M. Vasquez, J. Choi, E. Tello-Ruiz, I. Maricic, M.A. Bah, Y. Wu, D. Amante, D.H. Park, Y. Dia, A.R. Ali, F.I. Zaidi, A. Generotti, K.Y. Kim, T.A. Herring, S. Reeder, V.M. Andrade, K. Buttigieg, G. Zhao, J.-M. Wu, D. Li, L. Bao, J. Liu, W. Deng, C. Qin, A.S. Brown, M. Khosheojad, N. Wang, J. Chu, D. Wrapp, J.S. McLellan, K. Muthumi, B. Wang, M.W. Carroll, J.J. Kim, J. Boyer, D.W. Kulp, L.M.P.F. Humeau, D.B. Weiner, K.E. Broderick, Immunogenicity of a DNA vaccine candidate for COVID-19, Nature Communications 11(1) (2020).

[128] C.T. Arena, Covid-19: China to launch clinical trials for coronavirus vaccine, clinicaltrialsarena.com (2020).

[129] E. Hamilton, UW–Madison, FluGen, Bharat Biotech to develop CoroFlu, a coronavirus vaccine, warf.org (2020).

[130] Z.v.r. programme, Zydus Cadila launches a fast tracked programme to develop vaccine for the novel coronavirus, 2019-nCoV (COVID-19), zyduscadila.com (2020).

[131] I. TV, Oxford University’s COVID-19 vaccine moves to next stage of human trial, indiatvnews.com (2020).

[132] S. Novakowski, K. Jiang, G. Prakash, C. Kastrup, Delivery of mRNA to platelets using lipid nanoparticles, Scientific Reports 9(1) (2019).

[133] P. Technology, Covid-19: Entos and Takis to work on separate vaccines, pharmaceutical-technology.com (2020).

[134] D. S, COVID-19 Vaccine Candidates, assaygenie.com (2020).

[135] C.T. Arena, Serum Institute of India brings Covid-19 vaccine into animal testing, clinicaltrialsarena.com (2020).
[136] C.t.n. NCT01273233, Safety of an Inactivated Enterovirus Type 71 Vaccine in Healthy Adults, clinicaltrials.gov (2013).
[137] P. Inc, BioNTech and Pfizer announce regulatory approval from German authority Paul-Ehrlich-Institut to commence first clinical trial of COVID-19 vaccine candidates, in: B. Media (Ed.) 2020.
[138] CureVac, CureVac’s Optimized mRNA Platform Provides Positive Pre-Clinical Results at Low Dose for Coronavirus Vaccine Candidate, in: curevac.com (Ed.) 2020.
[139] medicago, Virus-Like particles, 2020.
[140] pharma-industry-review, ARTES joins fight against COVID-19 with VLP vaccine platforms, 2020.
[141] S.I.o. India, News, 2020.
[142] K. R.N, Indian Immunologicals and Australia’s Griffith University tie-up for COVID-19 vaccine research, The Hindu, Hyderabad, 2020.
[143] Valneva, Valneva and Dynavax Announce Collaboration to Advance Vaccine Development for COVID-19, in: valneva.com (Ed.) 2020.
[144] Vaxart, Vaxart Demonstrates Efficacy of Oral Avian Flu Vaccine in Preclinical Studies, 2020.
[145] Dynavax, Dynavax and Clover Biopharmaceuticals Announce Research Collaboration to Evaluate Coronavirus (COVID-19) Vaccine Candidate with CpG 1018 Adjuvant, in: D.T. Corporation (Ed.) 2020.
[146] HealthDay, Test Vaccine Elicits Strong Ab Response to SARS-CoV-2 in Mice, 2020.
[147] B.i.c.w.T. University, OMV-based vaccine, 2020.
[148] Sanofi, Sanofi and GSK to join forces in unprecedented vaccine collaboration to fight COVID-19, in: Sanofi (Ed.) 2020.
[149] heatbio, Heat Biologics’ COVID-19 Vaccine Program, 2020.
[150] P. Kalita, A.K. Padhi, K.Y.J. Zhang, T. Tripathi, Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2, Microbial Pathogenesis 145 (2020).
[151] P. Technology, GSK partners with Innovax Biotech on Covid-19 vaccine, 2020.
[152] Q.I. Bioscience, OMV-based vaccine, 2020.
[153] Merck, Merck to Acquire Themis, 2020.
[154] Iavi, Iavi and merck collaborate to develop vaccine against sars cov-2, in: iavi.org (Ed.) 2020.
[155] W. M, UW–Madison, FluGen, Bharat Biotech to develop CoroFlu, a coronavirus vaccine, 2020.
GlobeNewswire, Generex Signs Contract with EpiVax to Develop 1i Key Peptide Vaccines to Address the Coronavirus Pandemic, 2020.

Aranca, COVID-19 Vaccines Under Pre-Clinical Development, 2020.

C. R, Adenoviral vectors are the new COVID-19 vaccine front-runners. Can they overcome their checkered past?, 2020.

N. J, University of Alberta researchers in race against time to create COVID-19 vaccine, ualberta.ac (2020).

Dzif, The DZIF focuses on SARS-CoV-2 research, dzif.de (2020).

B. O, Candidats a vaccí contra la Covid-19, segons l'Organització Mundial de la Salut 2020.

TrialSiteNews, CanSino Biological, Moderna, and INOVIO Lead COVID-19 Vaccine Race; 42 Other Candidates in Pre-Clinical Stage, 2020.

Dzif, SARS-CoV-2: DZIF scientists and the development of vaccines, dzif.de (2020).

Q. Gao, L. Bao, H. Mao, L. Wang, K. Xu, M. Yang, Y. Li, L. Zhu, N. Wang, Z. Lv, H. Gao, X. Ge, B. Kan, Y. Hu, J. Liu, F. Cai, D. Jiang, Y. Yin, C. Qin, J. Li, X. Gong, X. Lou, W. Shi, D. Wu, H. Zhang, L. Zhu, W. Deng, Y. Li, J. Lu, C. Li, X. Wang, W. Yin, Y. Zhang, C. Qin, Development of an inactivated vaccine candidate for SARS-CoV-2, Science 369(6499) (2020) 77-81.

X. Chi, X. Liu, C. Wang, X. Zhang, X. Li, J. Hou, L. Ren, Q. Jin, J. Wang, W. Yang, Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain, Nature Communications 11(1) (2020).

Y. Cao, B. Su, X. Guo, W. Sun, Y. Deng, L. Bao, Q. Zhu, X. Zhang, Y. Zheng, C. Geng, X. Chai, R. He, X. Li, Q. Lv, H. Zhu, W. Deng, Y. Xu, Y. Wang, L. Qiao, Y. Tan, L. Song, G. Wang, X. Du, N. Gao, J. Liu, J. Xiao, X.-d. Su, Z. Du, Y. Feng, C. Qin, C. Qin, R. Jin, X.S. Xie, Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells, Cell 182(1) (2020) 73-84.e16.

W. Li, A. Drelich, D.R. Martinez, L. Gralinski, C. Chen, Z. Sun, A. Schäfer, S.R. Leist, X. Liu, D. Zhelev, L. Zhang, E.C. Peterson, A. Conard, J.W. Mellors, C.-T. Tseng, R.S. Baric, D.S. Dimitrov, Potent neutralization of SARS-CoV-2 in vitro and in an animal model by a human monoclonal antibody, BioRxiv (2020).

R. Shi, C. Shan, X. Duan, Z. Chen, P. Liu, J. Song, T. Song, X. Bi, C. Han, L. Wu, G. Gao, X. Hu, Y. Zhang, Z. Tong, W. Huang, W.J. Liu, G. Wu, B. Zhang, L. Wang, J. Qi, H. Feng, F.-S. Wang, Q. Wang, G.F. Gao, Z. Yuan, J. Yan, A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2, Nature 584(7819) (2020) 120-124.
[169] B. Ju, Q. Zhang, J. Ge, R. Wang, J. Sun, X. Ge, J. Yu, S. Shan, B. Zhou, S. Song, X. Tang, J. Yu, J. Lan, J. Yuan, H. Wang, J. Zhao, S. Zhang, Y. Wang, X. Shi, L. Liu, J. Zhao, X. Wang, Z. Zhang, L. Zhang, Human neutralizing antibodies elicited by SARS-CoV-2 infection, Nature 584(7819) (2020) 115-119.

[170] J. Liu, S. Zhang, T. Zhang, H. Xiao, J. Du, S. Zeng, Y. Kong, B. Liu, X. Li, J. Lin, L. Li, X. Zeng, Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy, Antibody Therapeutics 3(2) (2020) 95-100.

[171] T.F. Rogers, F. Zhao, D. Huang, N. Beutler, A. Burns, W.-t. He, O. Limbo, C. Smith, G. Song, J. Woehl, L. Yang, R.K. Abbott, S. Callaghan, E. Garcia, J. Hurtado, M. Parren, L. Peng, S. Ramirez, J. Ricketts, M.J. Ricciardi, S.A. Rawlings, N.C. Wu, M. Yuan, D.M. Smith, D. Nemazee, J.R. Teijaro, J.E. Voss, I.A. Wilson, R. Andrabi, B. Briney, E. Landais, D. Sok, J.G. Jardine, D.R. Burton, Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model, Science (2020).

[172] P.J.M. Brouwer, T.G. Caniels, K. van der Straten, J.L. Snitselaar, Y. Aldon, S. Bangaru, J.L. Torres, N.M.A. Okba, M. Claireaux, G. Kerster, A.E.H. Bentlage, M.M. van Haaren, D. Guerra, J.A. Burger, E.E. Schermer, K.D. Verheul, N. van der Velde, A. van der Kooi, J. van Schooten, M.J. van Breemen, T.P.L. Bijl, K. Sliepen, A. Aartse, R. Derking, I. Bontjer, N.A. Kootstra, W.J. Wiersinga, G. Vidarsson, B.L. Haagmans, A.B. Ward, G.J. de Bree, R.W. Sanders, M.J. van Gils, Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability, Science 369(6504) (2020) 643-650.

[173] X. Chen, R. Li, Z. Pan, C. Qian, Y. Yang, R. You, J. Zhao, P. Liu, L. Gao, Z. Li, Q. Huang, L. Xu, J. Tang, Q. Tian, W. Yao, L. Hu, X. Yan, X. Zhou, Y. Wu, K. Deng, Z. Zhang, Z. Qian, Y. Chen, L. Ye, Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor, Cellular & Molecular Immunology 17(6) (2020) 647-649.

[174] W. Tai, X. Zhang, Y. He, S. Jiang, L. Du, Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2, Antiviral Research 179 (2020).

[175] J. Huo, Y. Zhao, J. Ren, D. Zhou, H.M.E. Duyvesteyn, H.M. Ginn, L. Carrique, T. Malinauskas, R.R. Ruza, P.N.M. Shah, T.K. Tan, P. Rijal, N. Coombes, K.R. Bewley, J.A. Tree, J. Radecke, N.G. Paterson, P. Supasa, J. Mongkolsapaya, G.R. Screaton, M. Carroll, A. Townsend, E.E. Fry, R.J. Owens, D.I. Stuart, Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike, Cell Host & Microbe 28(3) (2020) 445-454.e6.
Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study, The Lancet Microbe 1(1) (2020) e14-e23.

D. Wrapp, D. De Vlieger, K.S. Corbett, G.M. Torres, N. Wang, W. Van Breedam, K. Roose, L. van Schie, M. Hoffmann, S. Pöhlmann, B.S. Graham, N. Callewaert, B. Schepens, X. Saelens, J.S. McLellan, Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Cameliid Antibodies, Cell 181(5) (2020) 1004-1015.e15.

Z. Lv, Y.-Q. Deng, Q. Ye, L. Cao, C.-Y. Sun, C. Fan, W. Huang, S. Sun, Y. Sun, L. Zhu, Q. Chen, N. Wang, J. Nie, Z. Cui, D. Zhu, N. Shaw, X.-F. Li, Q. Li, L. Xie, Y. Wang, Z. Rao, C.-F. Qin, X. Wang, Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody, Science 369(6510) (2020) 1505-1509.

S.J. Zost, P. Gilchuk, J.B. Case, E. Binshtein, R.E. Chen, J.P. Nkolola, A. Schäfer, J.X. Reidy, A. Trivette, R.S. Nargi, R.E. Sutton, N. Suryadevara, D.R. Martinez, L.E. Williamson, E.C. Chen, T. Jones, S. Day, L. Myers, A.O. Hassan, N.M. Kafai, E.S. Winkler, J.M. Fox, S. Shrihari, B.K. Mueller, J. Meiler, A. Chandrashekar, N.B. Mercado, J.J. Steinhardt, K. Ren, Y.-M. Loo, N.L. Kallewaard, B.T. McCune, S.P. Keeler, M.J. Holtzman, D.H. Barouch, L.E. Gralinski, R.S. Baric, L.B. Thackray, M.S. Diamond, R.H. Carnahan, J.E. Crowe, Potently neutralizing and protective human antibodies against SARS-CoV-2, Nature 584(7821) (2020) 443-449.

J. Hansen, A. Baum, K.E. Pascal, V. Russo, S. Giordano, E. Wloga, B.O. Fulton, Y. Yan, K. Koon, K. Patel, K.M. Chung, A. Hermann, E. Ullman, J. Cruz, A. Rafique, T. Huang, J. Fairhurst, C. Libertiny, M. Malbee, W.-y. Lee, R. Welsh, G. Farr, S. Pennington, D. Deshpande, J. Cheng, A. Watty, P. Bouffard, R. Babb, N. Levenkova, C. Chen, B. Zhang, A. Romero Hernandez, K. Saotome, Y. Zhou, M. Franklin, S. Sivapalasingam, D.C. Lye, S. Weston, J. Logue, R. Haupt, M. Frieman, G. Chen, W. Olson, A.J. Murphy, N. Stahl, G.D. Yancopoulos, C.A. Kyratsous, Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail, Science (2020).

K. Dhama, K. Sharun, R. Tiwari, M. Dadar, Y.S. Malik, K.P. Singh, W. Chaicumpa, COVID-19, an emerging coronavirus infection: advances and prospects in designing and
developing vaccines, immunotherapeutics, and therapeutics, Human Vaccines & Immunotherapeutics 16(6) (2020) 1232-1238.

[182] J. Wang, Z. Wang, Strengths, Weaknesses, Opportunities and Threats (SWOT) Analysis of China’s Prevention and Control Strategy for the COVID-19 Epidemic, International Journal of Environmental Research and Public Health 17(7) (2020).

[183] C. Xu, J. Jin, J. Song, Y. Yang, M. Yao, Y. Zhang, R. Zhao, Z. Chen, Application of refined management in prevention and control of the coronavirus disease 2019 epidemic in non-isolated areas of a general hospital, International Journal of Nursing Sciences 7(2) (2020) 143-147.