High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges

Amjad M. Husaini

© The Author(s), under exclusive licence to The Genetics Society 2022

The agriculture-based livelihood systems that are already vulnerable due to multiple challenges face immediate risk of increased crop failures due to weather vagaries. As breeders and biotechnologists, our strategy is to advance and innovate breeding for weather-proofing crops. Plant stress tolerance is a genetically complex trait. Additionally, crops rarely face a single type of stress in isolation, and it is difficult for plants to deal with multiple stresses simultaneously. One of the most helpful approaches to creating stress-resilient crops is genome editing and trans- or cis-genesis. Out of hundreds of stress-responsive genes, many have been used to impart tolerance against a particular stress factor, while a few used in combination for gene pyramiding against multiple stresses. However, a better approach would be to use multi-role pleiotropic genes that enable plants to adapt to numerous environmental stresses simultaneously. Herein we attempt to integrate and present the scattered information published in the past three decades about these pleiotropic genes for crop improvement and remodeling future cropping systems. Research articles validating functional roles of genes in transgenic plants were used to create groups of multi-role pleiotropic genes that could be candidate genes for developing weather-proof crop varieties. These biotech crop varieties will help create ‘high-value farms’ to meet the goal of a sustainable increase in global food productivity and stabilize food prices by ensuring a fluctuation-free assured food supply. It could also help create a gene repository through artificial gene synthesis for ‘resilient high-value food production’ for the 21st century.

Heredity (2022) 128:460–472; https://doi.org/10.1038/s41437-022-00500-w

With newer 21st century challenges, agriculture transition has become imperative for food and nutritional security in the new era. Farming currently faces formidable challenges in feeding a growing population in a sustainable way (Firbank et al. 2018). The situation has become complicated and worse in view of resource depletion, climate change, challenges due to pandemics like COVID-19. There is an immediate need to explore ways and means for developing a robust food production system that would survive the challenges of climate change, resource shrinkage and consumer preferences for nutritious food. In 2008, a High-Level Conference on World Food Security was convened by Food and Agricultural Organization, International Fund for Agricultural Development, United Nations World Food Programme and Consultative Group on International Agricultural Research. In this conference, 181 countries adopted a declaration that “It is essential to address the question of how to increase the resilience of present food production systems to challenges posed by climate change” (Husaini and Tuteja 2013). National Climate Assessment by the United States, Global Change Research Program has highlighted that climate change poses several challenges to crop production, and crop yields are expected to decrease due to altered temperatures and water availability, soil erosion, and pest and disease outbreaks (Reidmiller et al. 2018). According to the Global Report on Food Crises (GRFC 2020), a joint consensus-based assessment of acute food insecurity situations around the world by 16 partner organizations, weather extremes were the primary drivers of the acute food insecurity situation for almost 34 million people in 25 countries in 2019 in comparison with 29 million in 2018. Furthermore, the growing intensity and severity of these extreme weather events caused an increase in the number of people facing food crises in 2019 in comparison with 2018 (GRFC 2020). These extreme weather events are generally an amaligam of multiple stress types and are very complicated to handle.

CROPS Seldom EXPERIENCE SINGLE STRESS, AND STRESS TOLERANCE IS A COMPLEX TRAIT

Crop plants often experience more than one biotic and abiotic stress (Hasanuzzaman et al. 2012) (Fig. 1). Stress tolerance is genetically complex, and since plants rarely face a single type of stress in isolation, it becomes difficult for a plant to deal with multiple stresses simultaneously (Husaini 2014). Stress tolerance results through an interplay of multiple genes. For example, multiple signaling cascades are used for broad-spectrum disease resistance. Induction of both salicylic acid (SA)-dependent and Jasmonic Acid /Ethylene-dependent defense response pathways may be required (Li et al. 2019). Specific genes can be employed to develop plants with tolerance to multiple pathogens and biotic stresses. (Chun et al. 2012) have demonstrated the critical
involvement of Nitric Oxide in both these pathways. Their study suggests that overexpression of Neuronal Nitric oxide synthase in Nicotiana tabacum can sufficiently induce both the JA/ET-dependent pathway and the SA-dependent pathway and impart resistance against bacteria, fungi and viruses. Similarly, the overexpression of Arabidopsis thaliana Nonexpresser of PR GENES 1 (AtNPR1), a key regulator of broad-spectrum disease resistance (SAR), imparts resistance in Fragaria vesca L. against multiple pathogens. It imparts resistance against three fungal diseases (anthracnose caused by Colletotrichum acutatum, crown rot caused by C. gloeosporioides and powdery mildew caused by Podosphaera aphanis), and one bacterial disease viz. angular leaf spot caused by Xanthomonas fragariae (Silva et al. 2015). These diseases cause considerable losses in fruit ranging between 50 and 80%.

This situation throws a big challenge to the food and nutritional security of the growing world population, which is projected to reach 9.7 billion by 2050 and will necessitate enhancement in agricultural production by at least 70–85% (Alexandratos and Bruinsma 2012), (Ray et al. 2013). However, the bright side is that there is impressive progress in plant biotechnology and the associated ‘gene revolution’ for crop improvement. The critical question is that can we mine biodiversity for food and nutritional security? (McCouch et al. 2013) suggested that the first step would be to obtain sequence information from the genomes of organisms to generate a ‘parts list’ that can help decipher mechanisms enabling plants to adapt to numerous environments and guide remodeling cropping systems for the future. There are arguably millions of traits in a complex organism such as the human, but the number of genes in the human genome is only about 20,000. Inevitably, there are at least some genes that affect multiple traits. The basic purpose of this paper is to provide a snapshot of this ‘list’ of candidate genes with critical roles that cause significant effects on the plant’s phenotype, and can therefore be employed to develop biotech crops resilient to multiple stresses.

Fig. 1 An overview of the 21st-century challenges and the high-value genes for breeding nutrient-dense weather-resilient crops. Crops can develop resilience towards stresses through genome engineering and increase uptake of nutrients through better nutrient use efficiency, and hence meet the food and nutritional security challenges. Such crops will support in establishing high-efficiency farms capable of giving better returns per unit of the applied input (time, space, labor, energy).
PLEIOTROPIC GENES FOR CROP IMPROVEMENT

Pleiotropy is a phenomenon in which a single locus affects two or more different phenotypic traits. The term was formally introduced in 1910 by the German geneticist Ludwig Plate (Stearns 2010). Mendel too had described an early case of pleiotropy of three characters (seed coat color, flower color, and axial spots) in his classic 1866 paper (Stearns 2010), (Fairbanks and Rytting 2001). Pleiotropy cannot be treated as a unitary concept with a definable prevalence. It is a suite of conceptually related but empirically independent phenomena (Paaby and Rockman 2013). Many classifications that are not mutually exclusive have been proposed by different workers (Paaby and Rockman 2013), (Hodgkin 2002), (Solovieff et al. 2013), (Wagner and Zhang 2011). At its essence, pleiotropy implies a mapping from one thing at the genetic level to multiple things at a phenotypic level (Paaby and Rockman 2013). Pleiotropy is generally caused by a single molecular function involved in multiple biological processes (He and Zhang 2006). Characterizing the underlying biological mechanism of a pleiotropic effect is a major challenge in the field as many alternative models for an apparent cross-phenotype effect can fit the observed data (Solovieff et al. 2013).

A popular method of measuring pleiotropy is to use knock-out genotypes in a homogenous background (Dudley et al. 2005). By the same analogy, knock-in genotypes are used to validate the function of (trans)genes. In the last few decades, genetic modification (GM) techniques have been used to combine and modify genes from genetically distant individuals for conferring desired genetic traits on resultant biotech crops. The latest among these techniques focus on genome editing and include TALEN- and CRISPR-based methods like Cas-Clover, Crispr-Act3 (Abdallah et al. 2015; Xianghong et al. 2018; Luo et al. 2019; Pan et al. 2021; Roca Paixao et al. 2019). Even there is scope to use CRISPR-based knock-out strategy to downregulate those cis-regulatory elements which function as negative regulators of abiotic stress (Zafar et al. 2020).

Based on an in-depth perusal of earlier studies, we prepared a repository of pleitropic genes that should be the candidates for developing weather-resilient and nutrient-rich crop plants with inbuilt tolerance to multiple stresses. This review focuses on mining useful information about genes that promote abiotic stress tolerance (e.g. drought, salinity, submergence, cold, freezing and heat) and enhancing product quality. These ‘high-value genes’ can lay a strong foundation for a sustainable agricultural production model for assured food and nutritional security (Fig. 1). For the sake of brevity, we focused on the cross-phenotype ‘effects’ of the selected transgenes, without much discussion about the underlying mechanisms of their action as that would have been beyond the scope of a single review. The information presented below shall be very useful for biotechnologists and breeders for developing better crops. For understanding the individual mechanisms in detail, it is recommended to refer to the respective cited research paper(s).

MAJOR-EFFECT MULTI-ROLE GENES FOR CHALLENGING SITUATIONS

Transgenes encoding ROS scavenger proteins

Oxidative damage in plants is a consequence of exposure to temperature extremes, high light intensity, water stress, salinity, and mineral deficiencies. During oxidative stress, the balance between reactive oxygen species production and the quenching activity of the antioxidants is disturbed. Plants with high antioxidant levels, either constitutive or induced, have better resistance to this oxidative damage. There is a well-known correlation between stress tolerance and activities of the major antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidise (APX), guaiacol peroxidase, glutathione synthase and glutathione reductase (reviewed in (Hossain et al. 2011)). Experiments using transgenic plant models that over-produce these antioxidant enzymes provide clear evidence that their over-production enhances tolerance against osmotic stress, high temperature, oxidative stress, photooxidative, and ozone damage ((Husaini et al. 2010); (Kapoor et al. 2019); (Sun et al. 2020)) (Table 1). A perusal of the table shows that it has been nearly one and a half decades since discovering their ROS scavenging properties using transgenic approach. However, still, they have not been exploited commercially. Critical evaluation of these engineered alterations in the antioxidant system on crop productivity under normal and multiple stress environments in field conditions should be allowed by the regulatory agencies to successfully meet the challenges of the 21st century.

Transgenes encoding transcription factors

Transcription factors play a significant role in controlling gene expression and activate the cascades of genes acting together. In order to impart tolerance against multiple stresses, a good strategy is to overexpress the transcription factor encoding genes that control stress-responsive multiple genes of various pathways. Some major families of transcription factors act under the influence of ethylene, jasmonic acid, SA, and other phytohormones, conferring abiotic stress tolerance.

Although much information about transcription factors has been gathered on their role in diverse abiotic stresses, selecting key TFs to develop abiotic stress-tolerant plants using transgenic technology is still an important issue before us (Wang et al. 2016). Based on the perusal of available literature related to many TF families (including WRKY, NF-Y, Zn-finger etc.,) we propose using some selected transcription factors that have a proven role in imparting tolerance against multiple stresses simultaneously (Table 1).

AP2/Ethylene responsive element-binding proteins (EREBP) family includes a large group of plant-specific TFs. It is characterized by the presence of a highly conserved AP2-ethylene-responsive element-binding factor (ERF) DNA-binding domain that directly interacts with GCC box and/or dehydration-responsive element (DRE)/C-repeat element, cis-acting elements at the promoter of downstream target genes (Riechmann and Meyerowitz 1998). These AP2/EREBP TFs are grouped into four major subfamilies: AP2 (Apetala2), RAV (related to AB3/VP1), DREB (dehydration-responsive element-binding protein), and ERF (Sakuma et al. 2002), (Sharoni et al. 2011). We discuss the last two subfamilies as these are important for multiple stress tolerance.

(a) The Ethylene Responsive element-binding Factors: The ERF subfamily is the largest group of the AP2/EREBP TF family (Dietz et al. 2010) and functions in plant stress tolerance by regulating the stress-responsive genes through interacting with the cis-element GCC boxes with a core sequence of AGCCGCC (Ohme-Takagi and Shinshi 1995); (Hao et al. 1998). Ethylene Response Factor (ERF) gene imparts tolerance to multiple stress factors such as drought, salinity, cold, pathogen etc. (Table 2). This is partly due to their involvement in hormonal signaling pathways like ethylene, JA, or SA (Liang et al. 2008). ERFs act as a key regulatory hub. These are involved in ethylene, jasmonate, abscisic acid (ABA), and redox signaling in many abiotic stresses (Müller and Munné-Bosch 2015). When constitutively overexpressed in transgenic tobacco, ERF from tomato confers enhanced tolerance to salt and pathogens by activating the expression of pathogen-related genes (Wang et al. 2004). Similarly, transgenic lines of tobacco overexpressing Tsi1 showed enhanced salt tolerance and resistance to pathogens (Park et al. 2001). The expression of many Pathogenesis-related (PR) genes, like PR1, PR2, PR3, SAR8.2 and osmotin got activated even under unstressed conditions. Overexpression...
of GmERF3 imparted resistance against tobacco mosaic virus (TMV) and enhanced salinity and drought tolerance in tobacco (Zhang et al. 2009).

(b) Dehydration-Responsive Element-Binding Factors (DREB): DREBs are well-characterized transcription factors known to play an important role in regulating gene expression in response to abiotic stresses via ABA-independent and ABA-dependent manner (Table 2). Overexpression of HvCBF4 from barley in rice activates fifteen rice genes and increases tolerance to drought, high-salinity, and low-temperature stresses without stunting growth (Oh et al. 2007). (Hsieh et al. 2002) reported improved drought, chilling and oxidative stress tolerance of tomato plants expressing Arabidopsis DREB1. Similarly, overexpression of DREB1 in Arabidopsis results in the activation of expression of many stress-tolerance genes and tolerance of the plant to drought, high salinity, and/or freezing is improved (Jaglo-Ottosen et al. 1998); (Liu et al. 1998). Overexpression of DREB1A and OsDREB1 in transgenic Arabidopsis and rice plants, respectively, impart increased tolerance to drought, high salinity and freezing stress (Kasuga et al. 1999); (Gilmour et al. 2000); (Ito et al. 2006). DREB1A induces the expression of stress-tolerance genes like kin1, rd29A, rd22, cor6.6, and cor15a (Park et al. 2001). In an interesting study in Arabidopsis, it has been reported that a cystatin gene (cysteine proteinase inhibitor) AtCYSa possesses dehydration-responsive element (DRE) and abscisic acid (ABA)-responsive element (ABRE) in its promoter region (Zhang et al. 2008). In transgenic Arabidopsis and yeast, this characteristic made AtCYSa as a DREB1A and AREB target gene, and enhanced tolerance against salt, oxidative, drought, and cold stresses. GmDREB2 and OsDREB2A overexpression in transgenic plants enhance drought and salt tolerance (Chen et al. 2007); (Mallikarjuna et al. 2011). Overexpression of ZmDREB2A results in improved drought-stress tolerance and enhanced thermo tolerance, indicating that ZmDREB2A had a dual function of mediating the expression of genes responsive to both water and heat stress (Qin et al. 2007). Similarly, transgenic Arabidopsis plants overexpressing DREB2A show increased thermo tolerance, in addition to tolerance against water stress (Sakuma et al. 2006).

Transgenes encoding protein kinases

Perception and signaling pathways are vital components of an adaptive response for plants’ survival under stress conditions. Mitogen-Activated Protein Kinases (MAPKs) are serine/threonine protein kinases, which phosphorylate several substrates involved in numerous plant cellular responses. They perform a vital role in signal transduction pathways. Various stresses like low temperature, wounding, high osmolarity, high salinity, and ROS serve as signals for activating the MAPK cascade. MAPK cascade is a crucial convergent point for cross-talk between different abiotic stress responses (Table 3). To elucidate, gene silencing and overexpression studies on GhRaf19, a Raf-like MAPKKK gene, revealed

| Table 1. Some representative examples of the overexpression of genes encoding enzymatic antioxidants in plants. |
Gene	Transgenic plant	Response to abiotic stresses	References
Superoxide dismutase (Cu/Zn SOD)	Nicotiana tabacum	Enhanced tolerance to salt, water, PEG stresses	Badawi et al. 2004; Prashanth et al. 2008;
	Orzaya sativa	Transgenic plants were more tolerant to MV mediated oxidative stress, salinity stress and drought stress	(Zhang et al. 2017; Lee et al. 2007; Xu et al. 2014;
Superoxide dismutase (SiCSD) (Cu/Zn SOD)	Nicotiana tabacum	Enhances tolerance to drought, cold and oxidative stress	Wang et al. 2005; Wang et al. 2006; Cao et al. 2017; Kim et al. 2008; Kim et al. 2021;
Superoxide dismutase + ascorbate peroxidase (Mn SOD + APX)	Festuca arundinacea	MV, H2O2, and Cu, Cd and As tolerance	Eltayeb et al. 2007; Sultana et al. 2012; Eltayeb et al. 2007; Ushimaru et al. 2006;
Superoxide dismutase + ascorbate peroxidase (Mn SOD + APX)	Manihot esculentum	Enhances tolerance to oxidative and chilling stress	Kwon et al. 2003; Hao et al. 2019; Yoshimura et al. 2004;
Ascorbate peroxidase (cAPX)	Lycopersicon esculentum	Enhanced tolerance to UV-B, heat, drought and chilling stresses	Gaber et al. 2006; Yin et al. 2017
Ascorbate peroxidase (cAPX)	Nicotiana tabacum	Enhances tolerance to drought, salt and oxidative stress	
Ascorbate peroxidase (swpa4)	Nicotiana tabacum	Enhanced tolerance to MV, H2O2, NaCl and Mannitol	
Ascorbate peroxidase (swpa4)	Arabidopsis thaliana	Enhances tolerance to oxidative stress and drought	
Monodehydro ascorbate reductase (MDAR1)	Nicotiana tabacum	Enhanced tolerance to Ozone, salt and PEG stress	
Monodehydro ascorbate reductase (AeMDHAR)	Orzaya sativa	Confers salt tolerance	
Dehydro ascorbate reductase (DHAR)	Nicotiana tabacum	Drought and salt tolerance	
	Nicotiana tabacum	Ozone and drought tolerance	
	Nicotiana tabacum	Enhanced tolerance to MV, H2O2, low temperature and NaCl stress	
Dehydro ascorbate reductase (DHAR)	Arabidopsis thaliana	Enhances tolerance to salt and drought	
Glutathione peroxidase (GPX)	Nicotiana tabacum	Enhanced tolerance to MV under moderate light intensity, chilling stress under high light intensity or salt stress	
	Arabidopsis thaliana	Enhanced tolerance to H2O2, Fe ions, MV, chilling, high salinity or drought stresses	
Glutathione peroxidase (GPX)	Arabidopsis thaliana	Enhanced tolerance against Aluminium toxicity	

It may be noted that there are some genes whose role in ROS scavenging was validated nearly 15 years back but are yet to be exploited commercially.
Table 2. Transcription factor coding genes useful for incorporating multiple stress tolerance in plants.

Gene	Transgenic plant	Response to abiotic stress	References
Tsi1 (EREBP/AP2)	Nicotiana tabacum	Tolerance to pathogen (Pseudomonas syringae pv tabaci) and osmotic stress	(Park et al. 2001); (Pan et al. 2012b);
SIEF5	Solanum lycopersicum	Tolerance to drought and salt	(Wang et al. 2004);
JERF3	Nicotiana tabacum	Tolerance to salt stress and fungal disease	(Yang et al. 2018);
SpERF	Arabidopsis thaliana	Tolerance to salt and drought stress	(Zhang et al. 2009);
TaPIEP1 (a pathogen-induced ERF gene)	Triticum aestivum	Tolerance to Bipolaris sorokiniana, Rhizoctonia cerealis, Fusarium graminearum (pathogens)	(Cheng et al. 2011);
GmERF3	Nicotiana tabacum	Tolerance to salt, drought,Ralstonia solanacearum, Alternaria alternata, and tobacco mosaic virus (TMV)	(Deokar et al. 2013);
GmERF9	Nicotiana tabacum	Tolerance to drought and salt stress	(Tang et al. 2003);
AtERF1	Arabidopsis thaliana	Salt, drought and heat stress tolerances	(Wang et al. 2004);
BrERF4	Arabidopsis thaliana	Salt and drought tolerance	(Xu et al. 2007);
CaERF116	Arabidopsis thaliana	Osmotic and freezing tolerance	(Trujillo et al. 2008);
CaP1F	Pinus virginiana	Heat and heavy metal tolerance	(Gao et al. 2008);
CaP1F	Solanum tuberosum	Drought, freezing, heat and heavy metal tolerance	(Zhang et al. 2009);
JERF3	Nicotiana tabacum	Salt, drought and freezing tolerance	(Pan et al. 2012b);
TaERF1	Arabidopsis thaliana	Salt, drought and freezing tolerance	(Jung et al. 2008);
SdERF3	Nicotiana tabacum	Salt and drought tolerance	(Gao et al. 2016);
TERF1	Oryza sativa	Salt and drought tolerance	(Wang et al. 2018);
GmERF8	Nicotiana tabacum	Salt and drought tolerance	(Wang et al. 2014);
SIEF5	Solanum lycopersicum	Salt and drought tolerance	(Yang et al. 2014);
ThERF1	Arabidopsis thaliana	Negative regulator of salt and drought stress	(Oh et al. 2007);
AtMYB44	Arabidopsis thaliana	Salt and drought tolerance	(Hsieh et al. 2002);
FtMYB10	Arabidopsis thaliana	Negative regulator of salt and drought stress	(Zhang et al. 2008);
ZmWRKY106	Arabidopsis thaliana	Drought and heat tolerance	(Jaglo-Ottosen et al. 1999);
GhWRKY17	Nicotiana tabacum	Negative regulator of salt and drought stress	(Liu et al. 1998);
HvCBF4	Hordeum vulgare	Tolerance to salt, drought, low temperature	(Kitashiba et al. 2004);
DREB1	Solanum lycopersicon	Improved tolerance to drought, chilling and oxidative stress	(Kasuga et al. 1999);
DREB1A,DREB2A (AtCYSa, AtCYSb)	Arabidopsis thaliana	Tolerance to salt, drought, oxidative stress, and cold stress	(Kasuga et al. 2004);
DREB1	Arabidopsis thaliana	Tolerance to drought, high salinity and freezing	(Gilmour et al. 2000);
DREB1A/CBF(cig-b)	Arabidopsis thaliana	Tolerance to salt and freezing	(Ito et al. 2006);
DREB1B, DREB1A	Oryza sativa	Tolerance to salt and drought	(Datta et al. 2012);
GmDREB2	Arabidopsis thaliana	Tolerance to salinity and drought	(Chen et al. 2007);
OsDREB2A	Arabidopsis thaliana	Enhance drought and salt tolerance	(Ma et al. 2011);
HhDREB2	Arabidopsis thaliana	Tolerance to salt and drought	(Ma et al. 2015);
ZmDREB2A	Arabidopsis thaliana	Improved drought-stres tolerances and enhanced thermo-tolerance	(Qin et al. 2007);
DREB2A	Arabidopsis thaliana	Increased thermo-tolerance and tolerance to water stress	(Sakuma et al. 2006);

Contrasting effects on drought, and salt stress as compared to cold stress (Jia et al. 2016). Virus-induced gene silencing of this gene in cotton and N. benthamiana enhanced tolerance against drought and salt stress, while its overexpression enhanced resistance against cold stress and vice versa. In transgenic maize, constitutive overexpression of MAPKKK/Nicotiana protein kinase 1 causes activation of an oxidative signal cascade. It results in higher photosynthetic rates in transgenics and tolerance to cold, heat, and salinity (Shou et al. 2004). Transgenic plants overexpressing Arabidopsis MAPK kinase 2 (MKK2) show tolerance against salt and freezing, while mkk2 null mutants are hypersensitive to salt and cold stress (Teige et al. 2004). MKK2 overexpression causes constitutive upregulation of 152 genes involved in stress signaling, metabolism, and transcriptional regulation. It also causes upregulation of the downstream MPK4, MPK6 activity in transgenic plants. Transgenic tobacco plants constitutively overexpressing NPK1 (an active tobacco ANP1 ortholog) possess better drought, salt, and cold tolerance than wild-type plants (Kovtun et al. 2000). OsMAPK5 overexpression in transgenic rice results in tolerance against salt stress and other abiotic stresses (Xiong and Yang 2003). ZmMPK17 overexpression in transgenic tobacco results in enhanced tolerance against osmotic stress, cold and viral pathogens (Pan et al. 2012a). Rice CDPK7 gene is a positive regulator in triggering salt/drought stress-responsive genes and has successfully imparted tolerance against cold, drought, and salinity stress in transgenic plants (Saijo et al. 2000) (Table 3).
Table 3. Kinase genes useful for incorporating multiple stress tolerance in plants.

Gene (kinase)	Transgenic plant	Response to abiotic stress	References
NPK1	Zea mays	Tolerance to cold, heat and salinity	(Shou et al. 2004); (Pavlavić et al. 2020); (Teige et al. 2004); (Jia et al. 2016); (Kovtun et al. 2000);
NPK1	Brassica oleracea var botrytis	Tolerance to salt	
MKK2	Arabidopsis thaliana	Tolerance against salt and freezing Hypersensitive to salt and cold stress	(Long et al. 2014); (Xiong and Yang 2003);
GhRaf19	Nicotiana benthamiana	Over-expression increases cold tolerance but decreases drought and salt tolerance	
NPK1	Nicotiana tabacum	Tolerance to drought, salt and cold	(Asano et al. 2012);
GbMPK3	Nicotiana tabacum	Tolerance to drought and oxidative stress and increases plant height	
OsMAPK5	Oryza sativa	Tolerance to salt, drought and cold	
OsCPK12	Oryza sativa	Tolerance to salt and susceptibility to rice blast	
ZmMPK17	Nicotiana tabacum	Tolerance against osmotic stress, cold and viral pathogens	
	Nicotiana tabacum	Tolerance to chilling and pathogen defense	
CDPK7	Oryza sativa	Tolerance to cold, drought and salinity	
GhCPK6	Arabidopsis thaliana	Tolerance to salt, drought and ABA stress	
GhMPK7	Arabidopsis thaliana	Resistance to fungus Colletotrichum nicotianae and Virus PVY; Regulation of plant growth and development; Resistance to pathogen infection	

Table 4. Osmotin (PR-5 gene) gene is useful for incorporating multiple stress tolerance in plants.

Gene	Transgenic plant	Response to abiotic stress	References
Osmotin	Solanum tuberosum	Resistance to Phytophthora infestans	(Liu et al. 1994);
Osmotin	Solanum tuberosum	Resistance to Alternaria solani	(Li et al. 1999);
Osmotin	Triticum aestivum	Tolerance against Fusarium, salt	(Kaur et al. 2020);
Osmotin	Morus indica	Tolerance to salt, drought, Fusarium pallidoroseum, Colletotrichum gloeosporioides, Colletotrichum dematium	Mackintosh et al. 2007;
Osmotin	Dianthus caryophyllus	Tolerance against Fusarium oxysporum	(Sokhansanj et al. 2006);
Osmotin	Nicotiana tabacum	Drought, salt tolerance	(Noori and Sokhansanj 2008);
SindOLP	Sesamum indicum	Tolerance to salt, drought, oxidative stress and charcoal rot	
Osmotin + Chitinase	Solanum lycopersicum	Tolerance against Fusarium oxysporum	(Sokhansanj et al. 2006);
Osmotin	Olea europaea	Tolerance to cold	
Osmotin	Solanum tuberosum	Tolerance to salt and drought	(Goel et al. 2010); (Husaini and Abdin 2008a);
Osmotin	Fragariax ananassa	Tolerance against salt, drought stress	
OLP	Solanum tuberosum	Tolerance to salt, drought and fungal stress	(Husaini et al. 2012); (Kumar et al. 2016);
Osmotin	Gossypium hirsutum	Drought tolerance	
Osmotin	Daucus carota	Tolerance to drought	

Osmotin
Osmotin is a cysteine-rich PR-5c protein. It was discovered as a thaumatin-like stress-responsive protein synthesized and accumulated by tobacco cells under salt and desiccation stress (Singh et al. 1985). It plays a major role in protecting plant plasma membranes under low plant water potential (Viktorova et al. 2010). It gets accumulated in plants under prolonged exposure to cold also (D’angeli and Altamura 2012). It is hypersensitive to salt and cold stress (D’angeli and Altamura 2007), and its expression is also induced by SA, ABA, auxin, UV light, wounding, fungal infection, oomycetes, bacteria, and viruses (Fagoaga et al. 2001); (Anil Kumar et al. 2015); reviewed in (Husaini et al. 2011); (Husaini and Neri 2016).

There are numerous reports which show that osmotin and its homologs impart: (a) salt tolerance (Singh et al. 1987, 1985); (Bol et al. 1990); (Zhu et al. 1993), 1995; (Barthakur et al. 2001); (Sokhansanj et al. 2006); (Husaini and Abdin 2008a); (Goel et al. 2010), (b) drought tolerance (Barthakur et al. 2001); (Parkhi et al. 2009); (Sokhansanj et al. 2006); (Husaini and Abdin 2008b); (Goel et al. 2010), (c) cold tolerance (D’angeli and Altamura 2007), (d) and protection from fungal pathogens too (Raghothama et al. 1993); (Liu et al. 1994); (Abad et al. 1996); (Scovel et al. 2000); (Ramos et al. 2015), (Xue et al. 2016); (Sripriya et al. 2017). Osmotin from the resurrection plant Tripogon loliiformis has been used to confer tolerance to multiple abiotic stresses simultaneously (cold, drought, and salinity) in transgenic rice (Le et al. 2018). Taken together, osmotin could be useful in developing biotic and abiotic stress-tolerant genetically engineered plants (reviewed in (Husaini and Rafiqi 2012), (Husaini and Neri 2016)) (Table 4).

GENES FOR MINERAL (IRON, ZINC, COPPER) BIOFORTIFICATION
Mineral deficiency in human beings is a grave global challenge (Singh et al. 2010). Approaches like diet diversification, supplementation through minerals, fortification of food items and biofortification are used to address the issue. Application of mineral micro- and macro-nutrients coupled with breeding...
varieties with enhanced uptake of mineral elements, is a good strategy for biofortification of edible crops (Graham et al. 2001) (Graham et al. 2007); (Bouis 2000; Bouis et al. 2003); (Genc et al. 2005); (White and Broadley 2005) (Pfeiffer and McClafferty 2007). An important consideration is that these elements must be bioavailable to humans so that the gut absorbs them during the process of digestion and assimilation. The use of transgenic plants for increasing the micronutrients in staple food crops is a promising approach. Iron content in rice seeds can be enhanced by overexpression of nicotianamine synthase (NAS) gene, catalyzing the trimerisation of 5-adenosyl methionine to form nicotianamine (NA) and nicotianamine aminotransferase (Bashir et al. 2006); (Haydon and Cobbett 2007); (Kim et al. 2006). Overexpression of NAS increases the secretion of phytosiderophores and the uptake of iron. NA chelates Fe(II) and Fe(III) cations, and plays an important role in its translocation and homeoanastasis (Takahashi et al. 2001); (Koike et al. 2004). Iron is transported from the cytoplasm into the plastid by a permease in chloroplasts 1 (Duy et al. 2007). It gets associated with ferritin, an iron-storage protein located in the plastid (Briat et al. 1999); (Petit et al. 2001). In transgenic rice, the combined expression of Pvferritin and AtNAS1 has been shown to cause a six-fold increase in iron content in the endosperm. Phytase does not prevent this iron accumulation, but on the contrary helps reduce the iron anti-nutrient phytate. Hence, it can be concluded that the overexpression of NAS and ferritin in transgenic plants can increase metal translocation to seeds. Another approach is to knock-out genes involved in the biosynthetic pathway of phytate in crops, thereby increasing the bioavailability of iron and zinc to human beings. This approach has been successful in rice and wheat, where low phytate varieties were developed using RNAi or CRISPR-Cas mediated knockdown of Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) gene (Ali et al. 2013), (Aggarwal et al. 2018), (Ibrahim et al. 2021).

In soil, mineral availability is influenced by its pH, cation exchange capacity, redox conditions, microbial activity, water content, soil structure, and organic matter content (Shuman 1998); (Frossard et al. 2000). Fe, Zn, Cu, Ca and Mg in their cationic forms can be taken up by roots of all plant species, while Fe, Zn and Cu can be taken up by graminaceous species as metal-chelates too. Fe, Zn and Cu phytoavailability is generally enhanced in the rhizosphere of crops by the exudation of protons, siderophores and organic acids by roots (Hoffland et al. 2006); (Ismail et al. 2007); (Degryse et al. 2008).

Plants use two strategies for uptake of iron from the soil (Grotz and Guerinot 2006); (Puig et al. 2007). In non-graminaceous species, roots secrete organic acids and phenolic compounds to acidify the rhizosphere and enhance Fe3+ concentration in the soil. Fe2+ gets chelated to these compounds and is subsequently reduced by ferric reductases to Fe2+ in the root epidermis (Robinson et al. 1999); (Wu et al. 2005); (Mukherjee et al. 2006). Then zinc-regulated transporter and iron-regulated transporter (IRT) mediate Fe2+ influx to root cells (Ishimaru et al. 2005; Vert et al. 2002). In the second strategy, employed by cereals and grasses, phytosiderophores are secreted to chelate Fe3+, and the Fe3+-phytosiderophore complex is taken up by root cells (Ishimaru et al. 2006; von Wirl et al. 1995).

Yellow stripe like (YSLs) proteins

Maize yellow stripe 1 (YS1) protein belongs to the oligopeptide transporter (OPT) family and is a proton-coupled metal-complex symporter (Schaff et al. 2004). Its homologues play a vital role in the uptake of Fe2+-phytosiderophore by graminaceous species (strategy II plants) (Haydon and Cobbett 2007; Ishimaru et al. 2006; Puig et al. 2007). YSL proteins and associated OPTs load and unload Fe2+-nicotianamine (Fe2+-NA) complexes into and out of the phloem for iron relocation within the plant. OsYSL2 is an Fe-II–NA and Mn-II–NA transporter involved in the phloem transport of both iron and manganese in rice (Koike et al. 2004).

Furthermore, the YSL proteins catalyze the uptake of Zn-nicotianamine complexes in graminaceous plant species (strategy II plants) (Haydon and Cobbett 2007; Suzuki et al. 2006; von Wirén et al. 1996). Although some Ca2+ channels in the plasma membrane are permeable to Zn2+ (Demidchik et al. 2002; White et al. 2002), however, most of the Zn2+ influx into the cytoplasm is facilitated by ZIPS (Assunção et al. 2001; Broadley et al. 2007; Colangelo and Guerinot 2006; Lopez-Millan et al. 2004; Palmgren et al. 2008; Pence et al. 2000). ZIP family mediates Zn2+ influx into the leaf cells (Ishimaru et al. 2005). YSL proteins load zinc into the phloem, where it is transported as a Zn-NA complex to the sink tissues (Gross et al. 2003; Haydon and Cobbett 2007; Krüger et al. 2002; Puig et al. 2007; Waters and Grusak 2008).

Interestingly, plants that hyper-accumulate Zn exhibit constitutively high expression of genes encoding ZIPS, YSL proteins and NAS.

YSL protein has been shown to play a vital role in loading Cu into the phloem, which is then transported as Cu-NA complex (Mira et al. 2001) (DiDonato et al. 2004; Guo et al. 2003; Puig et al. 2007); (Waters and Grusak 2008). Interestingly, the YSL proteins transport both Cu-NA complexes and the free Cu2+ and Fe2+ cations (Wintz et al. 2003).

The above research findings clearly show that overexpression of YSL and NAS may increase metal uptake and translocation, especially iron, zinc, manganese and copper in transgenic plants. Such studies need to be undertaken to address the grave problems of mineral malnutrition in women and children. Various genes play a vital role in biofortification (Table 5). However, there is a need to identify many more candidate genes that can impart gain-of-function attributes to genetically engineered crops. Based on the available literature, a set of few such candidate genes is presented in Table 6.

Table 5. Genes useful for biofortification through mobilisation of multiple nutrients and enhancement of physiological parameters in plants.

Gene	Transgenic Plant	Response	References
Suppression of DET1 (De-etiolated 1) by RNAI	Solanum lycopersicum	Improves both carotenoid as well as flavonoid content simultaneously	Davuluri et al. 2005; Wirth et al. 2009; Song et al. 2014; Ramireddy et al. 2018
NAS (Nicotianamine synthase) and ferritin	Oryza sativa	Increase in mineral content of Fe and Zn	
Alternanthera philoxeroides KUP3 (ApkUP3)	Oryza sativa	Enhanced K+ nutrition and drought tolerance in transgenic plants. Increased the net photosynthetic rate, activities of superoxide dismutase, peroxidase, and ascorbate peroxidase.	
Cytokinin oxidase / dehydrogenase gene (CRX)	Hordeum vulgare	Improved nutrient efficiency, and biofortification. Improved tolerance against drought	

CONSTRAINTS AND CHALLENGES

Biopolitics around GM crops

The most successful crop breeding project was the incorporation of semidwarf genes to create the modern high-yielding varieties
that began with the release of IR8 60 years ago, spurring the Green Revolution in rice (Zeigler 2007). Production of ‘Golden Rice’ was another significant advancement and involved the transfer of genes necessary for the accumulation of carotenoids (vitamin A precursors) in the rice endosperm (Ye et al. 2000); (Potrykus 2003). It resulted in about 140 g of the rice providing a child’s RDA for beta carotene (Raney and Pingali 2007) and has been shown to get efficiently converted to vitamin A in humans (Tang et al. 2009). GM crops have not met their full potential to deliver practical solutions to end-users, especially in developing countries. There was a report way back in 2001, wherein the European Commission confirmed the safety of GM crops and food, after painstaking research spanning 15 y and involving 81 projects with 400 scientists. Even the former founder of Greenpeace, Dr. Patrick Moore criticized Greenpeace as committing a "crime against humanity" for its opposition to GM Golden Rice. Further, 107 Nobel Laureates urged Greenpeace and its supporters to "abandon their campaign against ‘GMOs’ in general and Golden Rice in particular". However, golden rice has still not seen the light of the day, courtesy of biopolitics! A recent silver lining in the dark cloud is that the Philippines has recently in July 2021 approved the commercial production of golden rice and has become the first country to do so.

Costly regulatory regime favors multi-national companies

Despite promising research results of genetically modified crops with beneficial agronomic traits like enhanced drought tolerance, salt tolerance and insect resistance, developed by publicly funded research, these have not reached end users because of the extremely high cost of regulatory compliance. Besides political, socioeconomic, cultural, and ethical concerns about modern biotech crops related to the fear of technological "neo-colonialism" in developing countries, intellectual property rights, land ownership, customer choices, negative cultural and religious perceptions, and 'fear of the unknown' have impeded the spread of these crops. Such public concerns fueled and supported by vested interests have led to the over-regulation of this technology, threatening to retard its applications in agriculture reviewed in (Husaini and Tuteja 2013). It is estimated that it costs up to US$20 million to gain commercial certification of a single GM crop. 1st World Food Prize Winner Professor M.S. Swaminathan has pitched for promoting more public-sector research in GM technology so that there can be inclusiveness in access to technology (Husaini and Sohail 2018). It is high time that political will be shown to develop GM Crops in the public sector, as a complicated and costly regulatory regime is a blessing in disguise for MNCs!

Table 6. Some important genes for conferring traits beneficial for better crops.

Trait	Gene	References
Bioavailability	Phytate degradation (Phytase)	(White and Broadley 2009); (Bouis 2000); (Devappa et al. 2012); (Shewry and Ward 2012); (Shi et al. 2003); (Brinch-Pedersen et al. 2002); (Matuschek et al. 2001); (Shi et al. 2005); (Lucca et al. 2001); (Chen et al. 2003); (Caimi et al. 1996); (Ali et al. 2013); (Aggarwal et al. 2018); (Ibrahim et al. 2021)
	Phytate biosynthesis (MkF)	
	Cysteine synthesis (rgMT)	
	Vitamin synthesis (DHAR)	
	Inulin biosynthesis (SacB)	
	Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1)	
Seed filling	Mineral transporters for phloem unloading (YSL, HMA, Nramp)	(Chu et al. 2010); (Jean et al. 2005);
	Nutrient storage proteins (ferritin, glutelin)	(Tauris et al. 2009);
	Vacuole Fe loading (VIT1, Nramp3, Nramp4)	(Liao et al. 2012); (Lucca et al. 2001); (Goto et al. 2000); (Vasconcelos et al. 2003); (Murray-Kolb et al. 2002); (Langar et al. 2005); (Kim et al. 2006)
Shoot transport	Mineral transporters for xylem unloading & phloem loading (FRO, ZIP, COPT)	(Wu et al. 2005) ; (Bughio et al. 2002);
	Mineral phloem mobility: increased synthesis of mineral chelators such as ITP or NA (YSL, OPT)	(Cohen et al. 2004); (Eckhardt et al. 2001); (Wintz et al. 2003); (Tauris et al. 2009); (del Pozo et al. 2010); (Chu et al. 2010); (Jean et al. 2005); (Tauris et al. 2009)
Root uptake & xylem loading	Mineral transporters (IRT, ZIP, YS, IREG, HMA, FRD3, MTP3)	(Wong and Cobbett 2009); (Arrivault et al. 2006) ;
	Phytosiderophore secretion (YS, NAS)	(Durrett et al. 2007);
	Soil nutrient availability (FRO)	(Green and Rogers 2004); (Tauris et al. 2009); (Wu et al. 2005); (Durrett et al. 2007); (Green and Rogers 2004)
	Organic acid release (FRD3)	
CONCLUSION
Agriculture is central to food and nutritional security as well as the general wellbeing of a majority population. Evolving resilient, holistic, and secure food systems that adapt to climate change and other stress factors is indispensable for human survival in the 21st century. Here, we demonstrate the role of major-effect multi-locus pleiotropic genes in imparting tolerance against multiple stresses per se or through modulation of regulatory pathways. The crops engineered using these genes can help better adopt resource conservation technologies, which are beneficial for environmental sustainability. These crops will possess better nutritional value, higher nitrogen and water use efficiencies, disease and pest tolerance, and can withstand water scarcity, flooding, high temperature, cold weather, salinity, mineral toxicity, etc. In addition to reducing carbon emissions by reducing fuel consumption, these can help in carbon sequestration too. In the future, biotech crops will be developed using genome engineering of these pleiotropic genes. They can even be synthesized artificially and pyramided to combat problems involving highly complex traits. To create a resilient high-value crop repertoire for ‘High-Value Farms’, these genes will be an indispensable asset.

REFERENCES
Abad LR, D’Urzo MP, Liu D, Narasimhan ML, Reuveni M, Zhu JK et al. (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118(1):11–23
Abdallah NA, Prakash CS, McHughen AG (2015) Genome editing for crop improve- ment challenges and opportunities. GM Crops Foods 6(4):183–205
Aggarwal S, Kumar A, Bhati KK, Kaur G, Shukla V, Tiwari S et al. (2018) RNAi-mediated downregulation of inositol pentakisphosphate kinase (IPK1) in wheat grains decreases phytic acid levels and increases Fe and Zn accumulation. Front Plant Sci 9:259
Alexandratos N, Bruinsma J (2012) World Agriculture towards 2030/2050: The 2012 Revision. ESA Working Paper No. 12-03, FAO, Rome.
Ali N, Paul-S, Gayen D, Sarkar SN, Dutta K, Dutta SK (2013) Development of low phylate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS ONE 8(7):e68161
Anil Kumar S, Himma Kumar P, Shivaraj Kumar G, Mohanalatha C, Kavi Kishor P (2015) Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Front Plant Sci 6:163
Anon A, Rathore K, Crosby K (2014) Overexpression of a tobacco osmotin gene in carrot (Daucus carota L.) enhances drought tolerance. Vitr Cell Dev Biol-Plant 50 (3):299–306
Arrivalt S, Senger T, Kirmer A (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46(5):861–879
Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I et al. (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69(1):26–36
Assunção A, Martins PDC, De Folter S, Vooios R, Schat H, Aarts M (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell Environ 24(2):217–226
Badawi GH, Yamuchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K et al. (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166 (4):919–928
Barthakur S, Babu V, Bansa K (2001) Over-expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. J Plant Biochem Biotechnol 10(1):31–37
Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S et al. (2006) Cloning and characterization of deoxymugineic acid synthase genes from gramin-eaceous plants. J Biol Chem 281(43):32395–32402
Bol J, Linhorst H, Cornelissen B (1990) Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28(1):113–138
Bois HE (2000) Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition 16(7-8):701–704
Bois HE, Chassy BM, Ochanda JO (2003) 2. Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci Technol 14 (5-8):191–209
Briot JF, Lobreaux S, Grignon N, Vansuyt G (1999) Regulation of plant ferritin synthesis: how and why. Cell Mol Life Sci CMLS 56(1):155–166
Brench-Pedersen H, Sørensen LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7(3):118–125
Broadley MR, White PJ, Hammond JP, Zelio I, Lux A (2007) Zinc in plants. N. Phy-tologist 173(4):677–702
Bughio N, Yamaguchi H, Nishizawa NK, Nakashima H, Mori S(2002) Cloning an iron-regulated metal transporter from rice J Exp Bot 53(374):1677–1682
Cai G, Wang G, Wang L, Pan J, Liu Y, Liu D (2014) ZmMKW1, a novel group A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress toler ance and was involved in pathogen defense in transgenic tobacco. Plant Sci 214:57–73
Caimi PG, McCole LM, Klein TM, Kerr PS (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amylolique-faciens SacB gene. Plant Physiol 110(2):355–363
Cao S, Du X-H, Li L-H, Li Y-D, Zhang L, Pan X et al. (2017) Overexpression of Populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants. Russian J Plant Physiol 64(2):224–234
Chen M, Wang Q-Y, Cheng X-G, Xu Z-S, Li L-C, Ye X-G et al. (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353 (2):299–305
Chen W, Chen P, Liu D, Kynast R, Friebe B, Velazhahan R et al. (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet 99(5):775–780
Chen Z, Young TE, Ling J, Chang S-C, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci 100 (6):3525–3530
Cheng M-C, Liao P-M, Kuo W-W, Lin T-P (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-response gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162(3):1566–1582
Chowdhury S, Basu A, Kundu S (2017) Overexpression of a new osmotin-like protein gene (SinDOP1) confers tolerance against biotic and abiotic stresses in sesame. Front Plant Sci 8:410
Chu H-H, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt DE et al. (2010) Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiol 154(1):197–210
Chu HJ, Park HC, Koo SC, Lee JH, Park CY, Choi MS et al. (2012) Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers dis ease resistance to pathogens, Mol Cells 34(5):463–471
Cohen CK, Garvin DF, Kochian LV (2004) Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta 218(5):784–792
Colangelo EP, Guerinot ML (2006) Put the metal to the metal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9(3):322–330
D’Angeli S, Altamura M (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225 (5):1147–1163
Das M, Chauhan H, Chhibbar A, Haq QMR, Khurana P (2011) High-efficiency transforma-tion and selection tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, constitutive and inducible expression of tobacco osmotin. Transgenic Res. 20(2):231–246
Datta K, Baisakh N, Ganguly M, Krishnan M, Yamaguchi Shinozaki K, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10 (5):579–586
Davuluri GR, Van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D et al. (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23(7):890–895
Degryse F, Verma V, Smolders E (2008) Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffed solutions and in soil. Plant Soil 306 (1):69–84
Demidchik V, Bowen HC, Maathuis FJ, Shabala SN, Tester MA, White PJ et al. (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32(5):799–808
Deokar AA, Kondawar V, Kohli D, Aslam M, Jain PK, Karuppayil SM et al. (2015) The Deokar AA, Kondawar V, Kohli D, Aslam M, Jain PK, Karuppayil SM et al. (2015) The
Guo W-I, Bundithiya W, Goldsborough PB (2003) Characterization of the Arabidopsis metallothionein family: tissue-specific expression and induction during senescence and in response to copper N. Physiol 159(2):369–381
Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF) domain in plant. J Biol Chem 273(14):26857–26866
Hao Z, Wang X, Zong Y, Wen S, Cheng Y, Li H (2019) Enzymatic activity and functional analysis under multiple abiotic stress conditions of a dehydroascorbate reductase gene derived from Liriodendron chinense. Environ Exp Bot 167:103850
Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor in stress response and its management: perspectives and strategies. Springer, Dordrecht, 261–315
Haydon MJ, Cobbett CS (2007) Transports of ligands for essential metal ions in plants. N. Phytopathol 174(3):499–506
He L, Yang X, Wang L, Zhu L, Zhou T, Deng J et al. (2013) Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GHCk06) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun 435(2):209–215
He X, Zhang J (2006) Toward a molecular understanding of pleiotropy. Genetics 173(4):1885–1891
Hodgkin J (2002) Seven types of pleiotropy. Int J Dev Biol 46(3):501–505
Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283(1):155–162
Hossain MA, Teixeira da Silva J, Fujita M (2011) Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: an integrative relationship. Abiot Stress/Book 1:235–266
Hsieh T-H, Lee J-T, Chamy Y, Chan M-T (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130(2):618–626
Husaini AM (2014) Challenges of climate change: Omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production. GM Crops Food 5(2):97–105
Husaini AM, Abdin MZ (2008a) Development of transgenic strawberry (Fragaria x ananassa Duch.) plants tolerant to salt stress. Plant Sci 174(4):446–455
Husaini AM, Abdin MZ (2008b) Overexpression of tobacco osmotin gene leads to salt stress tolerance in strawberry (Fragaria x ananassa Duch.) plants. Indian J Bio Technol 7:465–471
Husaini AM, Rafiq AM (2012) Role of osmotin in strawberry improvement. Plant Mol Biol Rep 30(5):1055–1064
Husaini AM, Tuteja N (2013) Biotech crops: Imperative for achieving the Millenium Development Goals and sustainability of agriculture in the climate change era. Plant Sci 190:414–422
Husaini AM, Sohail M (2018) Time to redefine organic agriculture: Can’t GM crops be certified as organics? Front Plant Sci 9:423
Husaini AM, Rashid Z, Mir RU, Aquil B (2011) Approaches for gene targeting and targeted gene expression in plants. GM Crops Food 2(3):150–162
Husaini AM, Kamili AN, Wani M, Teixeira da Silva J, Bhat G (2010) Sustaining saffron (Crocus sativus Kashmirianus) production: technological and policy interventions. Front Plant Sci 1:116–127
Husaini AM, Abdin MZ, Khan S, Xu YW, Aquil S, Anis M (2012) Modifying strawberry for better adaptability to adverse impact of climate change.Curr Sci 102(12):1660–1673
Husaini AM and Xu YW (2016) Challenges of Climate Change to Strawberry Cultivation: Uncertainty and Beyond. In: Strawberry- Growth, Development and Diseases (Eds. Husaini AM and Neri D), CABI, UK, pp.262–287
Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S et al. (2005) Analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47(1):141–153
Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106
FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Physiol Plant 125(1):262–272
Gao F, Gao Y, Zhao H, Zhou J, Luo X, Huang Y et al. (2016) Tartery buckwheat FmMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiol Biochem 109:378–396
Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X et al. (2008) Expression of TFRF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep 27(1):178–179
Genc Y, Humphries JM, Lyons GH, Graham RD (2005) Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations. J Trace Elem Med Biol 18(4):319–324
Gilmour SJ, Seboti AM, Salazar MP, Everard JD, Thomasow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124(4):1854–1865
Goel D, Singh A, Yadav V, Babbar S, Bansal K (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245(1):133–141
Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet 100(5):658–664
Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Advances in Agronomy 70:77–142. https://doi.org/10.1016/S0065-2113(01)70004-1
Graham RD, Welch RM, Saunders DA, Otitz-Monasterio I, Bouis HE, Bonierbale M et al. (2007) Nutritious: subsistence food systems. Adv Agron 92–1–74
Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136(1):2523–2531
Gross J, Stein RJ, Fett-Neto AG, Fett JP (2003) Iron homeostasis related genes in rice. Genet Mol Biol 26:477–497
Grotz N, Gueninot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim et Biophys Acta 1763(7):595–608
Graham RD, Welch RM, Sanders DA, Otitz-Monasterio I, Bouis HE, Bonierbale M et al. (2007) Nutritious: subsistence food systems. Adv Agron 92–1–74
Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136(1):2523–2531
Gross J, Stein RJ, Fett-Neto AG, Fett JP (2003) Iron homeostasis related genes in rice. Genet Mol Biol 26:477–497
Grotz N, Gueninot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim et Biophys Acta 1763(7):595–608
Graham RD, Welch RM, Sanders DA, Otitz-Monasterio I, Bouis HE, Bonierbale M et al. (2007) Nutritious: subsistence food systems. Adv Agron 92–1–74
Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S et al. (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56(10):287–287
Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65(6):547–570
Ito Y, Katsura K, Manuyama K, Taji T, Kobayashi M, Seki M et al. (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47(1):141–153
Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106
Jean ML, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AOSYL1 reveals its role in iron and nicotianamine seed loading. Plant J 44(5):769–782

Jia H, Hao L, Guo X, Liu S, Yan Y, Guo X (2016) A Raf-like MAPKKK gene, GhrAf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton. Plant Sci 252:267–281

Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI et al. (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146(2):623–635

Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A novel combination of the Arabidopsis DREB1A gene and stress-inducible ndr29a promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350

Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

Kaur A, Reddy MS, Pati PK, Kumar A (2020) Over-expression of osmotin (OsmWS) gene of Withania somnifera in potato cultivar 'Kufri Chipsana' 1 improves resistance to Alternaria solani. Plant Cell Tiss Org 142:131–142

Kim SA, Punshon T, Lanzotti A, Li L, Alonso JM, Ecker JR et al. (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314(5803):1176–1179

Kim Y-H, Hong JK, Kim HS, Kwak S-S (2021) Overexpression of the sweetpotato peroxidase gene swp4 enhances tolerance to methyl viologen-mediated oxidative stress and dehydration in Arabidopsis thaliana. J Plant Biochem Biotechnol 30(1):215–220

Kim Y-H, Kim CY, Song W-K, Park D-S, Kwon Y-S, Lee H-S et al. (2008) Overexpression of sweetpotato swp4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227(4):867–881

Kishita H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T (2004) Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers enhanced dehydration and salt stress tolerance. Plant Mol Biol 53(2):375–386

Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S et al. (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39(3):415–424

Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci 97(6):2940–2945

Krüger C, Berkowitz O, Stephon UW, Hell RD (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Oryza sativa L. J Biol Chem 277(28):25062–25069

Kumar SA, Kumari PH, Jawahar G, Prashanth S, Suravajhala P, Katam R et al. (2016) Drought stress improves the bioavailability and the level of iron in rice grains. Theor Appl Genet 130(8):1391–1406

Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci 91(5):1888–1892

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K et al. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102(2):392–397

Luo M, Li H, Chakraborty S, Morbitzer R, Rinaldo A, Upadhyaya N et al. (2019) Efficient TALEN-mediated gene editing in wheat. Plant Biotechnol J 17(11):2026–2028

Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA et al. (2007) Over-expression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488

Maliarkarjuna G, Mallikarjuna K, Reddy M, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33(8):1689–1697

Matuschek E, Toowo E, Svanberg U (2001) Oxidation of polyphenols in phytate-reduced high-tannin cereals: effect on different phenolic groups and on in vitro accessible iron. J Agric Food Chem 49(11):5630–5638

McCouch S, Baute GJ, Braden J, Bramel P, Breitling PK, Buckler E et al. (2013) Feeding the future. Nature 499(7456):23–24

Mira H, Martinez-Garcia F, Pehuraria L (2001) Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J 25(5):521–528

Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223(6):1178–1190

Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169(1):32–41

Murray-Kolb LE, Takiawa F, Goto F, Yoshihara T, Theil EC, Beard JL (2002) Transgenic rice is a source of iron for iron-depleted rats. J Nutr 132(5):957–960

Noori SS, Sokhansanj A (2008) Wheat plants containing an osmotin gene show enhanced ability to produce roots at high NaCl concentration. Russian J Plant Physiol 55(2):256–258

Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 transcription factor confers enhanced abiotic stress in transgenic rice. Plant Biotechnol J 5(2):392–403

Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that function as transcriptional activators. Annu Rev Genet 29:279–296

Palmer CR, Vetter SD, Ullah H, Khan IA, Shafi M, Ahmad S et al. (2005) Mobilization of zinc in transgenic rice with osmotin and chitinase genes and their resistance to Fusarium wilt. J Horticultural Sci Biotechnol 80(5):517–522

Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29(3):139–146

Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK et al. (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13(9):464–473

Pan C, Wu X, Markel K, Malzahn AA, Kundagrami S, Neterovic S et al. (2021) CRISPR-ACT: 0 for highly efficient multiplexed gene activation in plants. Nat Plants 7(1):1–12

Pan J, Zhang M, Kong X, Xing X, Liu Y, Zhou Y et al. (2012a) ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta 235(4):611–676

Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012b) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tobacco. Plant Cell Rep 31:349–360

Park JM, Park C-J, Lee S-B, Ham B-K, Shin R, Park K-H (2001) Overexpression of the tobacco Ts1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13(5):1035–1046
AMH is grateful to Ms. Asma Khurshid for the help in collecting relevant literature for the manuscript.

COMPETING INTERESTS

The author declares no competing interest.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Amjad M. Husaini.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.