Improving QA Generalization by Concurrent Modeling of Multiple Biases

Mingzhu Wu, Nafise Sadat Moosavi, Andreas Rücklé, Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universität Darmstadt
https://www.ukp.tu-darmstadt.de

Abstract
Existing NLP datasets contain various biases that models can easily exploit to achieve high performances on the corresponding evaluation sets. However, focusing on dataset-specific biases limits their ability to learn more generalizable knowledge about the task from more general data patterns. In this paper, we investigate the impact of debiasing methods for improving generalization and propose a general framework for improving the performance on both in-domain and out-of-domain datasets by concurrent modeling of multiple biases in the training data. Our framework weights each example based on the biases it contains and the strength of those biases in the training data. It then uses these weights in the training objective so that the model relies less on examples with high bias weights. We extensively evaluate our framework on extractive question answering with training data from various domains with multiple biases of different strengths. We perform the evaluations in two different settings, in which the model is trained on a single domain or multiple domains simultaneously, and show its effectiveness in both settings compared to state-of-the-art debiasing methods.

1 Introduction

As a result of annotation artifacts, existing NLP datasets contain shallow patterns that correlate with target labels (Gururangan et al., 2018; McCoy et al., 2019; Schuster et al., 2019a; Le Bras et al., 2020; Jia and Liang, 2017; Das et al., 2019). Models tend to exploit these shallow patterns—which we refer to as biases in this paper—instead of learning general knowledge about solving the target task.

Existing debiasing approaches weaken the impact of such biases by disregarding or down-weighting affected training examples. They are often evaluated using adversarial or synthetic sets that contain counterexamples, in which relying on the examined bias will result in incorrect predictions (Belinkov et al., 2019; Clark et al., 2019; He et al., 2019; Mahabadi et al., 2020).

Importantly, the majority of existing debiasing approaches only deal with a single bias. They improve the performance scores on a targeted adversarial evaluation set, while typically resulting in performance decreases on the original datasets, or on adversarial datasets that contain different types of biases (Utama et al., 2020; Nie et al., 2019; He et al., 2019).

In this paper, we show that modeling multiple biases is a key factor to benefit from debiasing methods for improving both in-domain performance and out-of-domain generalization, and propose a new debiasing framework for concurrent modeling of multiple biases during training. A key challenge for developing a general framework that can handle multiple biases is to properly combine them when various biases’ strength is different in each dataset. Previous work has found that if the ratio of biased examples is high, down-weighting, or disregarding all of them results in an insufficient training signal, which leads to performance decreases (Clark et al., 2019; Utama et al., 2020). Therefore, we propose a novel multi-bias weighting function that weights each example according to multiple biases and based on each bias’ strength in the training domain. We incorporate the multi-bias weights in the training objective by adjusting the loss according to the bias weights of individual training examples so that the model relies on more general patterns of the data.

We evaluate our framework with extractive question answering (QA), for which a wide range of datasets from different domains exist—some contain crucial biases (Weissenborn et al., 2017; Sug-
Existing approaches to improve generalization in QA either are only applicable when there exist multiple training domains (Talmor and Berant, 2019; Takahashi et al., 2019; Lee et al., 2019) or rely on models and ensembles with larger capacity (Longpre et al., 2019; Su et al., 2019; Li et al., 2019). In contrast, our novel debiasing approach can be applied to both single and multi-domain scenarios, and it improves the model generalization without requiring larger pre-trained language models.

We compare our framework with the two state-of-the-art debiasing methods of Utama et al. (2020) and Mahabadi et al. (2020). We study its impact in two different scenarios where the model is trained on a single domain, or multiple domains simultaneously. Our results show the effectiveness of our framework compared to other debiasing methods, e.g., when the model is trained on a single domain, it improves generalization over six unseen datasets by around two points on average while the improvement is less than 0.5 points for other debiasing approaches.

Our contributions:

1. We propose a new debiasing framework that handles multiple biases at once while incorporating the bias strengths in the training data. We show that the use of our framework leads to improvements in both in-domain and out-of-domain evaluations.

2. We are the first to investigate the impact of debiasing methods for improving generalization using multiple QA training and evaluation sets.

2 Related Work

Debiasing Methods There is a growing amount of research literature on various debiasing methods to improve the robustness of models against individual biases in the training data (Clark et al., 2019; Mahabadi et al., 2020; Utama et al., 2020; He et al., 2019; Schuster et al., 2019b).

The central idea of the methods proposed in previous work is to reduce the impact of training examples that contain a bias. Existing work either reduces the importance of biased examples in the loss function (Clark et al., 2019; Mahabadi et al., 2020), lowers the confidence on biased examples (Utama et al., 2020), or trains an ensemble of a bias model for learning biased examples, and a base model for learning from non-biased examples (Clark et al., 2019; He et al., 2019; Mahabadi et al., 2020).

A crucial limitation of the majority of existing methods is that they only target a single bias. While they improve the performances on the adversarial evaluation sets crafted for this particular bias, they lead to lower performance scores on non-targeted evaluation sets including the in-domain data (Nie et al., 2019), i.e., unlearning a specific bias does not indicate that the model has learned more general patterns of the data (Jha et al., 2020). We thus need debiasing approaches that help the model to learn from less-biased patterns of the data and improve its overall performance across various datasets that are not biased or may contain different biases.

We compare our framework with recently proposed debiasing methods of Utama et al. (2020) and Mahabadi et al. (2020).

Utama et al. (2020) address a single bias. While improving the performance on the adversarial evaluation set, they also maintain the performance on the in-domain data distribution, which are exceptions to the aforementioned methods. Mahabadi et al. (2020) handle multiple biases jointly and show that their debiasing methods can improve the performance across datasets if they fine-tune their debiasing methods on each target dataset to adjust the debiasing parameters. However, the impact of their method is unclear on generalization to unseen evaluation sets.

In contrast to these state-of-the-art debiasing methods, we (1) concurrently model multiple biases without requiring any information about evaluation datasets, and (2) show that our debiasing framework achieves improvements in in-domain, as well as unseen out-of-domain datasets.

Generalization in QA The ability to generalize models to unseen domains is important across a variety of QA tasks (Rücklé et al., 2020; Guo et al., 2020; Talmor and Berant, 2019). In this work, we focus on extractive QA. In this context, the MRQA workshop held a shared task dedicated to evaluating the generalization capabilities of QA models to unseen target datasets (Fisch et al., 2019a). The winning team (Li et al., 2019) uses an ensemble of multiple pre-trained language models, which includes XLNet (Yang et al., 2019) and ERNIE (Sun et al., 2019). Other submissions outperform the baseline by using more complex models with more parameters and better pre-training. For example,
Su et al. (2019) achieve considerable improvements by simply fine-tuning XLNet instead of BERT, and Longpre et al. (2019) achieve further improvements by augmenting the training data with additional unanswerable questions.

The proposed methods by Takahashi et al. (2019) and Lee et al. (2019) for improving generalization leverage the fact that multiple training sets are available from different domains. For instance, Takahashi et al. (2019) assign an expert to each in-domain dataset, and Lee et al. (2019) introduce a domain discriminator to learn domain invariant features that are shared between datasets. Their methods are thus not applicable to a single domain scenario.

Unlike the methods mentioned above, in this paper, we propose a model-agnostic approach to handle biases of the training data for improving the generalization capability of QA models. Our proposed approach improves generalization without requiring any additional training data or employing larger models or ensembles.

3 Multi-bias Debiasing Framework

Let $\mathcal{D}_T = \{D_{t1}, \ldots, D_{tn}\}$ be the set of n training datasets, and $\mathcal{D}_E = \{D_{e1}, \ldots, D_{em}\}$ be the set of m evaluation sets that represent out-of-domain data. Each example x_i in both training and evaluation datasets contains a question q_i, a context c_i, and an answer span a_i as the input. The corresponding output for x_i is the start s_i and end e_i indices, which denote the span of the correct answer in c_i. Our goal is to train a single model on \mathcal{D}_T that achieves good zero-shot transfer performances on \mathcal{D}_E, i.e., obtaining a generalizable model that transfers well to unseen domains.

To achieve this, we propose a novel debiasing framework that models multiple biases of the training data. The framework consists of four components (see Figure 1): (1) multi-domain knowledge distillation (KD) to distill the knowledge from multiple teachers into a single student model (\S 3.1); (2) a set of bias models that we use for detecting biased training examples (\S 3.2); (3) a novel multi-bias weighting function that weights individual training examples based on the biases they contain (\S 3.3); and (4) a bias-aware loss function, which encourages the model to focus on more general data patterns instead of heavily biased examples. We examine two different losses that either scale the teacher predictions or adjust each training example's weight during training (\S 3.4).

In the following, we will describe the four components in more detail.

3.1 Multi-domain Knowledge Distillation

The idea of multi-domain knowledge distillation is to distill an ensemble of teacher models into a single student model by learning from the soft teacher labels instead of the hard one-hot labels. Even when only used with one training set, KD can provide a richer training signal than one-hot labels (Hossein Mobahi, 2020; Hinton et al., 2015).

We first train n teacher models $\{M_{t1}, \ldots, M_{tn}\}$, one for each of the training sets. We then distill the knowledge from all the teacher models into one multi-domain student model M. For every example (x_i, y_i) from dataset D_j, we obtain the probability distribution p_i^j from the teacher model M_{tj} and minimize the Kullback-Leibler (KL) divergence between the student distribution p_i^s and teacher distribution p_i^j.

3.2 Bias Models

In order to prevent models from learning patterns associated with biases, we first need to recognize the biased training examples. The common method for doing so is to train models that only leverage bias patterns for solving the task (Clark et al., 2019; Mahabadi et al., 2020; Utama et al., 2020; He et al., 2019). We call these models bias models B_1, \ldots, B_k. For instance, some answers can be
identified by only considering the interrogative adverbs that indicate the question types, e.g., when, where, etc. (Weissenborn et al., 2017). Therefore, the corresponding bias model will only use those adverbs in questions to identify answers.

We use such bias models to compute weights that determine how well the training examples can be solved by relying on the biases.

Since QA models should predict the indices of the start and end tokens of an answer span, we define two bias weights $\beta_{j,s}$ and $\beta_{j,e}$ for each example x_i. Assuming $B_j(x_i) = \{b_1, \ldots, b_{|c_i|}\}$ is B_j’s predicted output distribution of the start index for x_i and g is the gold start index, we define $\beta_{j,s}$ as follows:

$$\beta_{j,s}(x_i) = \begin{cases} b_g & \text{if the prediction is correct} \\ 0 & \text{otherwise} \end{cases}$$

where the start index prediction of B_j on x_i is correct if $\text{argmax}(B_j(x_i)) = g$. By setting $\beta_{j,s}$ to zero, we treat the example as unbiased if it cannot be answered by the bias model.

We determine $\beta_{j,e}$ accordingly for the end index. To simplify our notation, in the remainder of this work, we denote $\beta(x_i)$ as the bias weight of one example and do not differentiate between start and end indices.

3.3 Multi-Bias Weighting Function

As we show in § 5.1, each dataset contains various biases with different strengths. If we directly use the output of the bias models to down-weight or filter all biased examples, as it is the case in existing debiasing methods, we will lose the training signal from a considerable portion of the training data. This will in turn decrease the overall performance (Utama et al., 2020). To apply our framework to training sets that may contain multiple biases of different strengths, we automatically weight the output of the bias models according to the strength of each bias in each training dataset.

Therefore, we propose a scaling factor $F_S(B_k, D_{t_j})$ to automatically control the impact of bias B_k in dataset D_{t_j} in our debiasing framework, i.e., to reduce the impact of bias on the loss function when the bias is commonly observed in the dataset.

The scaling factor is defined as:

$$F_S(B_k, D_{t_j}) = 1 - \frac{\text{EM}(B_k, D_{t_j})}{\text{EM}(M_{t_j}, D_{t_j})} \quad (1)$$

where EM measures the performance of the examined model on the given dataset based on the exact match score, and M_{t_j} is the teacher model that is trained on D_{t_j}. This lowers the impact of strong biases whose corresponding bias models perform well, e.g., when their performance is close to the performance of the teacher model. If $F_S = 0$, the performance of B_k equals to M_{t_j}, indicating that this bias type exists in all the training examples. Thus, we do not use it for debiasing.

We then combine multiple biases for a single training example $x_i \in D_{t_j}$ as follows:

$$F_B(x_i) = \min_k (F_S(B_k, D_{t_j}) \times \beta_k(x_i)) \quad (2)$$

The scaling factor $F_S(B_k, D_{t_j})$ computes a dataset-level weight for bias B_k while $\beta_k(x_i)$ computes an example-level weight for x_i based on B_k.

In summary, an example x_i receives a high weight based on B_k if (1) x_i can be correctly answered using the bias model B_k, and (2) B_k is not prevalent in the training examples of D_{t_j}. The final bias weight $F_B(x_i)$ of a bias B_k on example x_i is the product of the example-level and dataset-level weights.

The purpose of using the minimum in Equation 2 is to retain as much training signal as possible from the original data by only down-weighting examples that are affected by all biases.

3.4 Bias-Aware Loss Function

The final step is to incorporate F_B within the distillation process to adapt the loss of each example based on its corresponding bias weight.

Assume p^t_i and p^s_i are the probability predictions of a teacher model M_{t_j} and a student model M on example $x_i \in D_{t_j}$, respectively. We incorporate F_B in the loss function in two different ways: (1) multi-bias confidence regularization (Mb-CR), and (2) multi-bias weighted loss (Mb-WL). While bias weights are used to scale the teacher probabilities in Mb-CR, they are directly applied to weight the training loss in Mb-WL. The main difference between these two training losses is that the bias weights have a more direct and therefore a stronger impact on the loss function in Mb-WL.

Multi-bias confidence regularization (Mb-CR). We adapt the confidence regularization method of Utama et al. (2020) to our setup to concurrently debias multiple biases. We use F_B to scale the teacher predictions to make the teacher less confident on biased examples. We define the scaled
We incorporate four biases in our experiments. We perform all experiments with BERT base uncased (Devlin et al., 2019) in the AllenNLP framework (Gardner et al., 2018). We use the MRQA multi-task implementation (Fisch et al., 2019b) of BERT for QA model as the baseline.

4 Experimental Setup

4.1 Base Model

We perform all experiments with BERT base uncased (Devlin et al., 2019) in the AllenNLP framework (Gardner et al., 2018). We use the MRQA multi-task implementation (Fisch et al., 2019b) of BERT for QA model as the baseline.

4.2 Examined Biases and Bias Models

We incorporate four biases in our experiments.

- **Wh-word** (Weissenborn et al., 2017): the corresponding model for detecting this bias only uses the interrogative adverbs from the question.

- **Lexical overlap** (Jia and Liang, 2017): in many QA examples, the answer is in the sentence of the context that has a high similarity to the question. To recognize this bias, we train the bias model using only the sentence of the context that has the highest similarity to the question, if the answer lies in this sentence.\(^3\) Otherwise, we exclude the example during training.

- **Empty question** (Sugawara et al., 2020): the answer can be found without the presence of a question, e.g., by selecting the most prominent entity of the context. The model for detecting this bias only uses contexts without questions.

- **Shallow**: we design a very shallow model to capture simple patterns of the dataset that may not be captured by the aforementioned biases. We use a simplified Bi-Directional Attention Flow (BiDAF) model (Seo et al., 2017) that uses 50-dimension Glove word embeddings, no character embeddings and a single layer of LSTM (instead of two).

For each examined dataset, we first automatically generate a biased dataset which only contains biased examples (e.g., only examples with empty questions) for each individual bias type and split the resulting dataset into two halves. We then train a separate bias model for each half and use them to compute the bias weights of the other half.

Dataset	wh.	emp.	lex.	shal.	one	all
SQuAD	17.9	8.8	51.9	32.7	61.9	3.4
Hotpot	26.8	18.2	56.5	45.1	74.5	6.9
Trivia	29.6	26.8	41.6	21.3	58.1	6.2
News	16.2	7.9	11.4	17.4	31.8	1.0
NQ	47.5	38.5	51.0	38.7	64.8	23.2

Table 1: The ratio of examples that are answered correctly by the bias models. ‘one’ shows the ratio of examples that contain at least one bias. ‘all’ shows the ratio for examples that contain all biases.

4.3 Data

We use five training datasets. This includes SQuAD (Rajpurkar et al., 2016), HotpotQA (Yang et al., 2018), TriviaQA (Joshi et al., 2017), NewsQA (Trischler et al., 2017), and Natural Questions (NQ) (Kwiatkowski et al., 2019). For evaluating the out-of-domain generalization of models, we use six datasets. This includes BioASQ (Wiese et al., 2017), DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), RelationExtraction (Levy et al., 2017), and TextbookQA (Kembhavi et al., 2017). For all training and evaluation datasets, we use the version that are provided by the MRQA shared task, in which all examples can be solved using extractive answer selection. Detailed statistics of all datasets are reported in the appendix.

4.4 Evaluation Settings

We evaluate our proposed methods in two different settings: (1) single-domain (SD), and (2) multi-domain (MD). In SD, the model is trained on a single dataset. For the MD setting, we use all the training datasets of §4.3. Our baseline within this set-
Table 2: The impact of our debiasing framework in a single-domain training setting when the model is trained on NQ and TriviaQA. I-Δ and O-Δ are the average EM improvements on in-domain and out-of-domain experiments, respectively. Highest scores on each evaluation set are boldfaced.

Dataset	Baseline	NQ Mb-WL	Mb-CR	TriviaQA Mb-WL	Mb-CR	
Dev.	63.66	64.90	64.95	58.24	59.87	59.09
1-Δ	1.24	1.29		1.63	0.85	
DROP	19.10	21.76	21.29	9.12	9.51	9.12
RACE	20.47	22.85	23.00	15.58	15.58	15.88
BioSQ	34.91	36.10	36.44	26.60	28.13	28.39
TextQA	30.94	33.87	34.66	17.76	17.63	17.9
RelExt	63.74	63.06	64.01	62.01	61.46	62.45
DuoRC	34.78	36.64	38.71	24.32	27.58	26.58
AVG	33.99	35.71	36.35	25.90	26.65	26.72
O-Δ	1.72	2.36		0.75	0.82	

Table 1, respectively. The results of SD based on other training datasets are reported in the appendix.

We observe that (1) without using any additional training examples or increasing the model size, we can improve generalization by using our debiasing methods, (2) the impact of debiasing methods is stronger when the training data is more biased, and (3) the use of our proposed debiasing methods not only improve generalization, but it also improves the performance on the in-domain evaluation dataset, which contains similar biases as those of the training data. This is in contrast to previous work that either decreases the in-domain performance (He et al., 2019; Clark et al., 2019; Mahabadi et al., 2020), or at most preserves it (Utama et al., 2020). We analyze the reason for this in §6.1.

5.3 Impact of debiasing on MD training

Table 3 shows the results of the multi-domain setting. Talmor and Berant (2019) show that training MT-BERT on multiple domains leads to robust generalization. Since MT-BERT is trained on multiple domains simultaneously, which are not equally affected by different biases, the model is less likely to learn these patterns. However, our results show that our debiasing methods further improve the average EM scores by more than one point even if the model is trained on multiple domains.

6 Discussion and Analysis

In this section, we discuss the benefits and limitations of our framework.
The main differences of our proposed framework are as follows:

- It is a general framework and can be used with any bias-aware training objectives, e.g., that of Utama et al. (2020) or Mahabadi et al. (2020).
- It models multiple biases at the same time compared to Utama et al. (2020)’s confidence-regularization method.
- It incorporates both dataset-level and example-level weights for each bias, and combines them using the multi-bias weighting function, while Mahabadi et al. (2020)’s DFL method simply average example-level weights of different biases.

Utama et al. (2020)’s CR method can be modeled in our Mb-CR method by only modeling a single bias and removing the $F_B(x_i)$ combination function.

Mahabadi et al. (2020) propose two different methods among which the Debiased Focal Loss (DFL) approach has a better performance. Therefore, we use DFL in our comparisons.

The comparison of our methods vs. (1) Utama et al. (2020)’s CR will indicate whether modeling multiple biases at once is a key factor on the resulting improvements, and (2) Mahabadi et al. (2020)’s DFL will indicate whether our proposed methods for modeling of multiple biases improves the performance or any method that models multiple biases jointly will have the same impact. For a fair comparison, we use the same bias types and bias weights in all the debiasing methods.

![Table 3: Impact of our debiasing methods when trained on multiple domains. *MT-BERT* is trained with the MRQA setup. The upper and bottom block present the in-domain and out-of-domain scores, respectively.](image)

Dataset	MT-BERT	Mb-WL	Mb-CR
SQuAD	77.52	79.87	79.59
Hotpot	58.77	59.43	59.58
Trivia	63.66	62.5	62.94
News	45.96	49.36	49.72
NQ	64.86	65.52	65.5
I-AVG	62.15	63.34	63.47
I-Δ	1.18	1.31	
DROP	29.34	29.27	28.14
RACE	30.86	30.12	29.82
BioSQ	46.94	49.6	50.2
TtxQA	39.06	43.38	44.58
RelExt	73.93	73.64	72.96
DuoRC	44.37	46.17	45.64
O-AVG	44.08	45.36	45.22
O-Δ	1.28	1.14	

Table 3: Impact of our debiasing methods when trained on multiple domains. *MT-BERT* is trained with the MRQA setup. The upper and bottom block present the in-domain and out-of-domain scores, respectively.

![Table 4: Comparisons with Utama et al. (2020) and Mahabadi et al. (2020) debiasing methods, i.e., CR(lex.) and DFL, respectively.](image)

Method	in-domain	out-of-domain		
	EM	I-Δ	EM	O-Δ
SD				
Baseline	63.66	-	33.99	-
CR(lex.)	58.32	-5.34	34.28	0.29
DFL	64.32	+0.66	34.35	+0.36
Mb-CR	64.95	+1.29	36.35	+2.36
MD				
Baseline	62.15	-	44.08	-
CR(lex.)	61.35	-0.80	43.70	-0.39
DFL	63.35	+1.20	44.44	+0.36
Mb-CR	63.47	+1.31	45.22	+1.14

Table 4: Comparisons with Utama et al. (2020) and Mahabadi et al. (2020) debiasing methods, i.e., CR(lex.) and DFL, respectively.

Based on the SD results, we observe that (1) debiasing only based on the *lexical overlap* bias, which is the strongest bias in the training data, considerably drops the in-domain performance, and it has a negligible impact on out-of-domain results, and (2) while combining all biases using DFL improves the in-domain results, it does not have a significant impact on out-of-domain performances. This shows the importance of (a) concurrent modeling of multiple-biases, and (b) our proposed multi-bias methods in improving the overall performance. We will further investigate the impact of each of the components in our framework in §6.2.

The results of *CR(lex)* in the MD setting show that debiasing based on a single bias—one that is common in most of training datasets—negatively impacts the in-domain and out-of-domain performances. Similar to the SD results, the *DFL* bias combination has a more positive impact on in-domain instead of out-of-domain in MD results.

4The results of CR with other bias types, i.e., Mb-CR with a single bias, is reported in Table 6.
Overall, both SD and MD results show the effectiveness of our proposed framework for both in-domain and out-of-domain setups.

6.2 Impact of the Framework Components

We investigate the impact of the components of our framework including: (1) knowledge distillation (KD): by replacing the teacher probabilities with gold labels in Mb-WL; and (2) the scaling factor (F_S): by removing the scaling factor from Equation 2. Table 5 reports the results for the SD setting when the model is trained on NQ. The results show that KD has a big impact on the generalization of Mb-WL, while F_S has a stronger impact on Mb-CR’s generalization.

Dataset	Mb-WL	Mb-CR		
	I-Δ	O-Δ	I-Δ	O-Δ
no KD	-0.60	-1.95	-	-
no F_S	-0.32	+0.38	-0.57	-1.34

Table 5: Impact of knowledge distillation and the scaling factor in our Mb-WL and Mb-CR methods.

In addition, we evaluate the impact of combining multiple biases in Table 6 by using a single bias at a time instead of modeling multiple biases. The results show that multi-bias modeling (1) is more useful than modeling any individual bias for both in-domain and out-of-domain experiments, and (2) has a more significant impact on Mb-CR compared to Mb-WL.

Dataset	wh. only	emp. only	lex. only	shal. only
Mb-WL	-0.75	-1.01	-3.88	-0.8
	-0.13	-0.95	-2.24	-0.39
	-0.66	-0.69	-6.63	-2.07
	+0.46	-0.68	-4.11	-0.86

Table 6: The performance differences between using single-bias modeling compared to multi-bias modeling. All models are trained on NQ dataset.

6.3 Is debiasing always beneficial?

We hypothesize that applying debiasing methods will not lead to performance gains if (1) the presence of examined biases is not strong in the training data, i.e., if most of the examples are unbiased, and therefore the model that is trained on this data will not be biased, to begin with, and (2) the out-of-domain set strongly contain the biases based on which the model is debiased during training.

To verify the first hypothesis, we evaluate the single-domain experiments using the NewsQA dataset that contains the smallest ratio of biased examples, i.e., only 1% of the data contain all of the examined biases. The results are reported in Table 7, which in turn confirms our hypothesis.

Dataset	Mb-WL	Mb-CR
	I-Δ	O-Δ
	-0.26	0.14
	0.49	-0.10

Table 7: Impact of our methods when trained on NewsQA that contains few biased examples.

Regarding the second hypothesis, we report the results of the bias models on the evaluation sets in Table 8. The results of all bias models are very high on RelExt compared to other evaluation datasets, and as we see from the results of both SD and MD settings in Table 2 and 3, our debiasing methods are the least effective on improving the out-of-domain performance on this evaluation set.

Dataset	wh.	emp.	lex.	shal.
DROP	8.98	5.06	14.64	2.99
RACE	7.42	3.56	15.13	2.67
BioSQ	12.70	10.44	25.86	5.12
TxtQA	8.65	5.46	15.44	3.93
RelExt	30.16	21.13	57.56	19.67
DuoRC	5.67	2.93	24.52	4.73

Table 8: The EM scores of the bias models, which are trained on NQ, on out-of-domain evaluation sets.

7 Conclusion

In this paper we (1) investigate the impact of debiasing methods on QA model generalization for both single and multi-domain training scenarios, and (2) propose a new framework for improving the in-domain and out-of-domain performances by concurrent modeling of multiple biases. Our framework weights each training example according to multiple biases and based on the strength of each bias in the training data. It uses the resulting bias weights in the training objective to prevent the model from mainly focusing on learning biases. We evaluate our framework using two different training objectives, i.e., multi-bias confidence regularization and multi-bias loss re-weighting, and show its effectiveness in both single and multi-domain training scenarios. We further compare our framework with two state-of-the-art debiasing
methods of Utama et al. (2020) and Mahabadi et al. (2020). We show that knowledge distillation, modeling multiple biases at once, and weighting the impact of each bias based on its strength in the training data are all important factors in improving the in-domain and out-of-domain performances. While recent literature on debiasing in NLP focuses on improving the performance on adversarial evaluation sets, this work opens new research directions on wider uses of debiasing methods. The main advantage of using our debiasing methods is that they improve the performance and generalization without requiring additional training data or larger models. Future work could build upon our framework by applying it to a wide range of tasks beyond QA using task-specific bias models.

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF), the German Research Foundation under grant EC 503/1-1 and GU 798/21-1, and the Hessen State Ministry for Higher Education, Research and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE. The first author of the paper is supported by a scholarship from Technical University of Darmstadt. The authors would like to thank Prasetya Ajie Utama, Jan-Christoph Klie, Benjamin Schiller, Gisela Vallejo, Rabeeh Karimi Mahabadi, and the anonymous reviewers for their valuable feedbacks.

References

Yonatan Belinkov, Adam Poliak, Stuart Sieber, Benjamin Van Durme, and Alexander Rush. 2019. Don’t take the premise for granted: Mitigating artifacts in natural language inference. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 877–891, Florence, Italy. Association for Computational Linguistics.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. 2019. Don’t take the easy way out: Ensemble based methods for avoiding known dataset biases. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4069–4082, Hong Kong, China. Association for Computational Linguistics.

Anubrata Das, Samreen Anjum, and Danna Gurari. 2019. Dataset bias: A case study for visual question answering. Proceedings of the Association for Information Science and Technology, 56(1):58–67.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. 2019. DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2368–2378, Minneapolis, Minnesota. Association for Computational Linguistics.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen. 2019a. MRQA 2019 shared task: Evaluating generalization in reading comprehension. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 1–13, Hong Kong, China. Association for Computational Linguistics.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen. 2019b. MRQA 2019 shared task: Evaluating generalization in reading comprehension. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 1–13, Hong Kong, China. Association for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. 2018. AllenNLP: A deep semantic natural language processing platform. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS), pages 1–6, Melbourne, Australia. Association for Computational Linguistics.

Mandy Guo, Yinfei Yang, Daniel Cer, Qinlan Shen, and Noah Constant. 2020. MultiReQA: A cross-domain evaluation for retrieval question answering models. arXiv preprint arXiv:2005.02507.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and Noah A. Smith. 2018. Annotation artifacts in natural language inference data. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 107–112, New Orleans, Louisiana. Association for Computational Linguistics.

He He, Sheng Zha, and Haohan Wang. 2019. Unlearn dataset bias in natural language inference by fitting
the residual. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019), pages 132–142, Hong Kong, China. Association for Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the knowledge in a neural network. In NIPS Deep Learning and Representation Learning Workshop.

Peter L. Bartlett, Hossein Mobahi, Mehrdad Farajtabar. 2020. Self-distillation amplifies regularization in hilbert space. In Proceedings of the Advances in Neural Information Processing Systems 33 (NIPS 2020).

Rohit Jha, Charles Lovering, and Ellie Pavlick. 2020. When does data augmentation help generalization in nlp? arXiv preprint arXiv:2004.13012.

Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension systems. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2021–2031, Copenhagen, Denmark. Association for Computational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–1611, Vancouver, Canada. Association for Computational Linguistics.

Aniruddha Kembhavi, Minjun Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh Hajishirzi. 2017. Are you smarter than a sixth grader? textbook question answering for multimodal machine comprehension. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5376–5384.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Ilia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Li-lon Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:453–466.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. RACE: Large-scale ReAding comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 785–794, Copenhagen, Denmark. Association for Computational Linguistics.

Ronan Le Bras, Swahba Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew E. Peters, Ashish Sabharwal, and Yejin Choi. 2020. Adversarial filters of dataset biases. In ICML.

Seanie Lee, Donggyu Kim, and Jangwon Park. 2019. Domain-agnostic question-answering with adversarial training. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 196–202, Hong Kong, China. Association for Computational Linguistics.

Omer Levy, Minjun Seo, Eunsol Choi, and Luke Zettlemoyer. 2017. Zero-shot relation extraction via reading comprehension. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 333–342, Vancouver, Canada. Association for Computational Linguistics.

Hongyu Li, Xiyuan Zhang, Yibing Liu, Yiming Zhang, Quan Wang, Xiangyang Zhou, Jing Liu, Hua Wu, and Haifeng Wang. 2019. D-NET: A pre-training and fine-tuning framework for improving the generalization of machine reading comprehension. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 212–219, Hong Kong, China. Association for Computational Linguistics.

Shayne Longpre, Yi Lu, Zhucheng Tu, and Chris DuBois. 2019. An exploration of data augmentation and sampling techniques for domain-agnostic question answering. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 202–227, Hong Kong, China. Association for Computational Linguistics.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and James Henderson. 2020. End-to-end bias mitigation by modelling biases in corpora. In In Proceedings of the 58th annual meeting of the Association for Computational Linguistics, page to appear. Association for Computational Linguistics.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3428–3448, Florence, Italy. Association for Computational Linguistics.

Yixin Nie, Yicheng Wang, and Mohit Bansal. 2019. Analyzing compositionality-sensitivity of nli models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6867–6874.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
Andreas Rücklé, Jonas Pfeiffer, and Iryna Gurevych. 2020. MultiCQA: Exploring the zero-shot transfer of text matching models on a massive scale. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics.

Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and Karthik Sankaranarayanan. 2018. DuoRC: Towards complex language understanding with paraphrased reading comprehension. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1683–1693, Melbourne, Australia. Association for Computational Linguistics.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel Roberto Filizzola Ortiz, Enrico Santos, and Regina Barzilay. 2019a. Towards debiasing fact verification models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3419–3425, Hong Kong, China. Association for Computational Linguistics.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel Roberto Filizzola Ortiz, Enrico Santos, and Regina Barzilay. 2019b. Towards debiasing fact verification models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3419–3425, Hong Kong, China. Association for Computational Linguistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2017. Bidirectional attention flow for machine comprehension. In Proceedings of 5th International Conference on Learning Representations (ICLR).

Dan Su, Yan Xu, Genta Indra Winata, Peng Xu, Hyeondey Kim, Zihan Liu, and Pascale Fung. 2019. Generalizing question answering system with pretrained language model fine-tuning. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 203–211, Hong Kong, China. Association for Computational Linguistics.

Saku Sugawara, Pontus Stenetorp, Kentaro Inui, and Akiko Aizawa. 2020. Assessing the benchmarking capacity of machine reading comprehension datasets. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020). Association for the Advancement of Artificial Intelligence.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang. 2019. Ernie 2.0: A continual pre-training framework for language understanding. arXiv preprint arXiv:1907.12412.

Takumi Takahashi, Motoki Taniguchi, Tomoki Taniguchi, and Tomoko Ohkuma. 2019. CLER: Cross-task learning with expert representation to generalize reading and understanding. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 183–190, Hong Kong, China. Association for Computational Linguistics.

Alon Talmor and Jonathan Berant. 2019. MultiQA: An empirical investigation of generalization and transfer in reading comprehension. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4911–4921, Florence, Italy. Association for Computational Linguistics.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and Kaheer Suleman. 2017. NewsQA: A machine comprehension dataset. In Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 191–200, Vancouver, Canada. Association for Computational Linguistics.

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna Gurevych. 2020. Mind the trade-off: Debiasing nlu models without degrading the in-distribution performance. In Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe. 2017. Making neural QA as simple as possible but not simpler. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 271–280, Vancouver, Canada. Association for Computational Linguistics.

Georg Wiese, Dirk Weissenborn, and Mariana Neves. 2017. Neural question answering at BioASQ 5B. In BioNLP 2017, pages 76–79, Vancouver, Canada, Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in Neural Information Processing Systems 32, pages 5753–5763, Curran Associates, Inc.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2369–2380, Brussels, Belgium. Association for Computational Linguistics.
A Training details

We use the same hyperparameters as the MRQA shared task. To be more specific, we use BertAdam optimizer with a learning rate of 3×10^{-5} and batch size of 6. We sample all training examples in each dataset during training and evaluation. All our models are trained for 2 epochs. We choose the size of 512 tokens to be the maximum sequence fed into the neural network. Contexts with longer tokens will be split into several training instances. The single domain experiment takes roughly 3 hours on a single Nvidia Tesla V100-SXM3-32GB GPU while it takes around 15 hours for the multi-domain experiment on the same GPU.

B Dataset statistics

Table 9 presents a brief description for each of the examined training and evaluation sets.

C SD results using other training data

We report the results of the SD setting using NQ, TriviaQA, and NewsQA in the paper. Table 10 reports the results, using the EM score, on the remaining training data, i.e., SQuAD and HotpotQA. Debiasing the model on SQuAD has a more positive impact on out-of-domain results while debiasing the model that is trained on HotpotQA has a better impact on in-domain performances.

D Results using F1 scores

The results in the paper are reported using the EM score. Table 11-Table 17 show the results of this work using F1 scores. The main difference of EM and F1 scores are for answers whose corresponding span contains more than one word. If a system partially detects the correct span boundary, it receive a partial F1 score but a zero EM score. As we see, the findings of the paper would remain the same using F1 scores instead of EM scores.
Table 9: The detailed statistics about the datasets. The upper block shows five domains used for training, the lower block shows six domains used for evaluation. ||Q|| and ||C|| denotes the average token length in Question and Context, respectively. The train and dev columns show the numbers of examples in the corresponding training and development sets, respectively.

| Dataset | Question (Q) | Context (C) | ||Q|| | ||C|| | train | dev |
|------------------|--------------------|---------------|-------|-------|--------|--------|
| SQuAD | Crowdsourced | Wikipedia | 11 | 137 | 86,588 | 10,507 |
| HotpotQA | Crowdsourced | Wikipedia | 22 | 232 | 72,928 | 5,904 |
| Trivia | Trivia | Web snippets | 16 | 784 | 61,688 | 7,785 |
| News | Crowdsourced | News articles | 8 | 599 | 74,160 | 4,212 |
| NQ | Search logs | Wikipedia | 9 | 153 | 104,071| 12,836 |
| DROP | Crowdsourced | Wikipedia | 11 | 243 | - | 1,503 |
| RACE | Domain experts | Examinations | 12 | 349 | - | 674 |
| BioSQ | Domain experts | Science article | 11 | 248 | - | 1,504 |
| HotpotQA | Crowdsourced | Textbook | 11 | 657 | - | 1,503 |
| RelExt | Synthetic | Wikipedia | 9 | 30 | - | 2,948 |
| DuoRC | Crowdsourced | Movie plots | 9 | 681 | - | 1,501 |

Table 10: The impact of our debiasing methods on SQuAD and HotpotQA. I-Δ and O-Δ indicate the average improvements in in-domain and out-of-domain experiments, respectively. Results are reported based on F1 scores.

Dataset	Baseline	SQuAD	HotpotQA			
	EM	Mb-WL	Mb-CR	EM	Mb-WL	Mb-CR
dev.	79.24	79.82	79.39	55.48	56.48	56.47
I-Δ	0.58	0.15	1.00	0.99		
DROP	17.30	16.9	18.9	19.69	20.83	19.43
RACE	23.59	24.18	25.07	17.51	16.77	17.95
BioSQ	45.28	44.02	42.49	37.90	37.96	37.5
TxtQA	33.67	36.19	36.06	14.97	15.97	16.1
RelExt	68.93	68.42	68.15	63.06	60.89	61.67
DuoRC	40.57	43.77	43.24	28.78	32.91	31.65
AVG	38.22	38.91	38.99	30.32	30.89	30.72
O-Δ	0.69	0.76	0.57	0.40		

Table 11: The impact of our debiasing framework in a single-domain training setting when the model is trained on NQ and TriviaQA. I-Δ and O-Δ are the average improvements on in-domain and out-of-domain experiments, respectively. Results are reported based on F1 scores.

Dataset	Baseline	NQ	TriviaQA			
		Mb-WL	Mb-CR		Mb-WL	Mb-CR
Dev.	75.36	76.44	76.57	64.66	66.44	66.08
I-Δ	1.08	1.21	1.78	1.42		
DROP	28.75	31.41	30.93	14.89	15.2	14.02
RACE	30.04	32.1	33.03	22.15	21.77	22.06
BioSQ	52.13	54.46	53.18	36.68	39.94	40.98
TxtQA	40.03	43.03	43.48	21.86	21.75	21.94
RelExt	77.68	77.45	77.75	73.86	73.09	74.3
DuoRC	43.44	45.37	47.04	31.48	34.64	33.7
AVG	45.35	47.30	47.57	33.49	34.40	34.50
O-Δ	1.96	2.22	0.91	1.01		
Table 12: The impact of our debiasing methods on SQuAD and HotpotQA based on F1 scores. I-Δ and O-Δ indicate the average improvements in in-domain and out-of-domain experiments, respectively.
Table 13: F1 scores of our debiasing methods when trained on multiple domains. MT-BERT is the MRQA baseline trained on five training datasets.

Method	in-domain	out-of-domain		
	F1	I-\(\Delta\)	F1	O-\(\Delta\)
SD Baseline	75.36	-	45.35	-
CR(lex.)	71.32	-4.04	46.05	0.70
DFL	75.97	+0.61	45.90	+0.55
Mb-CR	76.57	+1.21	47.57	+2.22
MD Baseline	73.79	-	54.36	-
CR(lex.)	73.15	-0.65	54.45	-0.09
DFL	74.93	+1.13	55.54	+1.18
Mb-CR	75.18	+1.38	55.68	+1.32

Table 14: Comparisons with Utama et al. (2020) and Mahabadi et al. (2020) debiasing methods, i.e., CR(lex.) and DFL, respectively. F1 scores reported.

Dataset	Baseline	Mb-WL	Mb-CR
Dev.	50.31	50.05	50.45
I-\(\Delta\)	-0.26	0.14	
DROP	13.51	12.71	12.71
RACE	23.00	22.55	20.92
BioSQ	31.52	33.11	33.11
TtxtQA	28.94	31.07	30.54
RelExt	50.88	50.75	50.58
DuoRC	36.18	36.78	35.58
AVG	30.67	31.16	30.57
O-\(\Delta\)	0.49	-0.10	

Table 15: F1 scores for different variations of the Mb-WL debiasing method. \(F_S\) refers to scaling factor.

Dataset	wh.	emp.	lex.	shal.
DROP	15.16	8.19	21.7	8.61
RACE	13.16	6.12	23.09	6.7
BioSQ	23.87	18.73	40.46	13.12
TtxtQA	12.69	8.67	21.18	6.69
RelExt	41.78	29.25	71.88	31.12
DuoRC	8.54	4.23	32.7	9.26

Table 16: The impact of debiasing methods evaluated using F1 scores when the model is trained on NewsQA that contains few biased examples.