Bypassing the Need for the Transcriptional Activator EarA through a Spontaneous Deletion in the BRE Portion of the fla Operon Promoter in Methanococcus maripaludis

Yan Ding¹, Alison Berezuk², Cezar M. Khursigara² and Ken F. Jarrell¹*¹

¹ Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada, ² Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada

In Methanococcus maripaludis, the euryarchaeal archaellum regulator A (EarA) is required for the transcription of the fla operon, which is comprised of a series of genes which encode most of the proteins needed for the formation of the archaeal swimming organelle, the archaellum. In mutants deleted for earA (ΔearA), there is almost undetectable transcription of the fla operon, Fla proteins are not synthesized and the cells are non-archaellated. In this study, we have isolated a spontaneous mutant of a ΔearA mutant in which the restoration of the transcription and translation of the fla operon (using flaB2, the second gene of the operon, as a reporter), archaella formation and swarming motility were all restored even in the absence of EarA. Analysis of the DNA sequence from the fla promoter of this spontaneous mutant revealed a deletion of three adenines within a string of seven adenines in the transcription factor B recognition element (BRE). When the three adenine deletion in the BRE was regenerated in a stock culture of the ΔearA mutant, very similar phenotypes to that of the spontaneous mutant were observed. Deletion of the three adenines in the fla promoter BRE resulted in the mutant BRE having high sequence identity to BREs from promoters that have strong basal transcription level in Mc. maripaludis and Methanocaldococcus jannaschii. These data suggest that EarA may help recruit transcription factor B to a weak BRE in the fla promoter of wild-type cells but is not required for transcription from the fla promoter with a strong BRE, as in the three adenine deletion version in the spontaneous mutant.

Keywords: BRE deletion, archaellum, EarA, promoter, fla operon, archaea

INTRODUCTION

In the third domain of life, the Archaea, the transcription machinery is composed of a multi-subunit RNA polymerase that shares homology to the eukaryotic RNA polymerase II, as well as two general transcription factors: the TATA-box binding protein (TBP) and transcription factor B (TFB) (Bell and Jackson, 2001; Jun et al., 2011; Gehring et al., 2016). The corresponding DNA...
elements of a basal archaean promoter includes a purine-rich transcription factor B recognition element (BRE), which is recognized by the TFB, immediately followed by a TATA box centered at a distance of 26/27 bp upstream of the transcription start site (TSS) (Soppa, 1999; Bartlett, 2005; Gehring et al., 2016). To initiate transcription, TBP first binds to TATA box. This is followed by the binding of TFB to the DNA-TBP complex by recognition of the BRE sequence (Bell et al., 1999) and, finally, the recruitment of RNA polymerase to initiate transcription (Bell and Jackson, 2001). Mutations in either the TATA box or BRE can decrease transcription levels by reducing recruitment of TBP and TFB (Bartlett, 2005).

Although Archaea use a eukaryote-like basal transcription machinery, the genome structure and its transcription regulation are more like that found in Bacteria. In Archaea, a cluster of genes is co-transcribed into a poly-cistronic mRNA under the control of a single promoter, which can be regulated by repressors and/or activators (Peeters et al., 2013). Transcriptional activators typically bind to sites located upstream of the BRE and help in the recruitment of TBP or TFB. In contrast, repressors can bind to either the promoter region where they interfere with TFB or TBP binding by steric hindrance, or downstream of the promoter, sometimes even after the TSS, to prevent RNA polymerase recruitment or transcription elongation (Bell, 2005; Peeters et al., 2013; Karr, 2014). Transcriptional activators are often associated with promoters that have TATA box or BRE sequences that deviate from consensus sequences (Ochs et al., 2012; Peeters et al., 2013). They are believed to help overcome poor binding of TBP or TFB to weak TATA and BRE sequences to activate transcription (Ouhammouch et al., 2003; Peng et al., 2009; Ochs et al., 2012).

The methanogen *Methanococcus maripaludis* is a member of the phylum Euryarchaeota and a model organism for studies in Archaea. Here, the fla operon, encoding the components of the archaean swimming organelle, the archaellum (Jarrell and Albers, 2012; Albers and Jarrell, 2015), begins with flaB1-B3 encoding the three major structural proteins (archaellins), followed by the fla-associated genes *flaC*-1 (Chaban et al., 2007). Transcription of the *fla* operon is controlled by the transcriptional activator EarA (Ding et al., 2016b). Deletion of *earA* results in almost undetectable transcription of the *fla* operon and a corresponding disappearance of FlaB2 protein and archaellae production (Ding et al., 2016b). Immediately upstream of the BRE in the *fla* promoter, four 6 bp consensus sequences were identified as EarA binding sites. When all four EarA binding sites were eliminated in the genome of wild-type *M. maripaludis*, similar phenotypes were observed as in the *ΔearA* mutant (Ding et al., 2016b). Recently, we have shown that EarA homologs from selected archaellated methanogens could successfully complement the function of EarA in the *M. maripaludis* *ΔearA* mutant, indicating that the EarA regulatory model is likely widespread in the methanogen *fla* promoters (Ding et al., 2017).

In addition to the direct control of transcription of the *fla* operon by EarA, transcription of the *fla* operon was also found to be regulated under several growth conditions. Global transcriptome analysis of *M. maripaludis* showed that the transcription of the *fla* operon is up-regulated when *H₂* is limited and down-regulated under leucine starvation, for example (Hendrickson et al., 2008). In addition, we recently showed that transcription of the *fla* operon was severely impaired in cells grown at temperatures greater than 38°C (Ding et al., 2016a). The mechanism behind the regulation of the *fla* promoter under the above conditions, including any possible involvement of EarA or other putative transcriptional activators or repressors, is yet to be reported.

In this study, we isolated a spontaneous mutant of the *ΔearA* mutant in which transcription of the *fla* operon, production of archaellins and archaellation were all restored to near wild-type levels, despite the absence of EarA. Analysis of the *fla* promoter region of this mutant revealed a deletion of three adenines in the BRE. Recreation of the three adenine deletion in the original *ΔearA* mutant by molecular biology techniques resulted in very similar archaella-related phenotypes as observed in the spontaneous mutant. Examination of the *fla* promoter wild-type BRE and the three adenine deletion BRE revealed that the mutant BRE were highly similar to BRE sequences associated with promoters with strong basal transcription levels in both *M. maripaludis* and a related hyperthermophilic methanogen *Methanocaldoccoccus jannaschii*.

MATERIALS AND METHODS

Strains and Culture Conditions

Methanococcus maripaludis Δ*hpt* (Mm900) (Moore and Leigh, 2005), *M. maripaludis* Δ*hpt*Δ*earA* (Δ*earA*, Ding et al., 2016b) and mutant strains derived from them were routinely cultured in 120 mL sealed serum bottles containing 10 mL Balch medium III under a headspace of H₂:CO₂ (80:20) with shaking at 35°C (Balch et al., 1979). *Escherichia coli* TOP10 cells were cultured in Luria-Bertani (LB) broth or LB agar in the presence of 100 µg/mL ampicillin for plasmid selection at 37°C. Strains used in this study are listed in Table 1.

Identification of a Spontaneous Mutant Strain (Δ*earA*-sp) Derived from Δ*earA* in Which the Expression of FlaB2 Was Restored

Immediately after its generation, the *ΔearA* mutant was streaked three times for purity, and one colony was grown overnight and frozen as the stock culture at −80°C. Western blot analysis confirmed the cessation of FlaB2 expression in the *ΔearA* strain at this stage (Ding et al., 2016a). The *ΔearA* strain was also maintained in the lab via weekly subculture in Balch medium III statically at 37°C. After 6 months of sub-culturing, western blotting experiments revealed that the expression of FlaB2 was restored. PCR experiments determined that this strain still had the deletion of *earA*, so the restoration of FlaB2 expression was not a result of strain contamination. The newly isolated strain was named as *ΔearA*-sp (sp for spontaneous).
Sequence Analysis of the fla Promoter Region in the ΔearA-sp Strain

The fla promoter region spanning from −348 bp upstream of the TSS of the fla promoter to 162 bp downstream of the TSS from the ΔearA-sp strain was PCR amplified using primer pair P1-For/P1-Rev (Table 2) and washed ΔearA-sp cells as template (Ding et al., 2016b). The sequence of the PCR products was aligned with the corresponding region of the Mc. maripaludis S2 genome (NCBI version CAF31274.1) using Clustal Omega to detect the presence of any mutation (Goujon et al., 2010; Sievers et al., 2011).

Construction of Plasmids Used for the Δ3A Mutant Strain Generation

A mutant strain harboring the same three adenine deletion in the fla promoter BRE region as found in the ΔearA-sp strain was generated in the ΔearA mutant that showed no production of FlaB2 by western blotting. Briefly, an ~2 kb DNA fragment containing the fla promoter region missing the three adenines in the BRE was PCR amplified with primers P-fus-F and P-fus-R (Table 2) and washed ΔearA-sp strain cells as template. The PCR product was digested with BamHI and cloned into BamHI digested pCRPrtNeo (Moore and Leigh, 2005) to create plasmid pKJ1273. Sequencing of the insert in pKJ1273 confirmed the three adenine deletion in BRE and no other changes. To generate the Δ3A mutant strain, pKJ1273 was transformed into ΔearA using a PEG-based method (Tumbula et al., 1994). The transformation mixture was cultured overnight without selection and then sub-cultured in McCas medium containing 1 mg/ml of neomycin for selection of cells in which pKJ1273 was integrated into the genome. After two passages in medium with neomycin selection, cells were cultured in McCas medium without neomycin to allow a second recombination event that would excise the pCRPrtNeo vector backbone, and this culture was plated onto McCas agar with 250 µg/mL 8-azahypoxanthine to kill any cells in which the vector backbone had remained integrated. Single colonies were picked and cultured in Balch medium III for western blot analysis of FlaB2 expression. For colonies in which the FlaB2 expression was restored, PCR was conducted to amplify both the earA gene region and the fla promoter region using primers listed in Table 2 and washed cells as template. The size of the PCR amplicons of the earA gene region was analyzed by electrophoresis through 0.8% agarose gels to confirm the

TABLE 1	Strains and plasmids used in this study.	
Strains or plasmids	**Description**	**Reference**
Methanococcus maripaludis strains		
Mm900	Mc. maripaludis S2 Δhpt, wild-type strain in this study	Moore and Leigh, 2005
ΔearA	Mm900 ΔearAΔtta	Ding et al., 2016b
ΔearA-sp	A spontaneous mutant derived from ΔearA in which the transcription of flaB2 was restored	This study
Δ3A	A mutant created from ΔearA in which three adenines were deleted from the BRE region of the fla promoter	This study
Escherichia coli strains		
TOP10	F− mcrA Δ(mrr-hsdRMS-mcrBC) ϕ80lacZΔM15 ΔlacX74 nupG recA1 araD139Δ ara-leu7697 galE15 galK16 rpsL(StrR) endA1 λ−	Invitrogen
Plasmids		
pCRPrtNeo	hmv promoter-hpt fusion plus Neo’ cassette in pCR2.1Topo; Amp’	Moore and Leigh, 2005
pKJ1273	pCRPrtNeo containing ~2 kb region from fla promoter in which three adenines in the BRE region were deleted	This study

TABLE 2	Primers used in this study.	
Primer sets	**Sequence**	**Restriction site incorporated (underlined)**
Promoter-substitution primers		
P-fus-F	AGTCGGATCCATACATCAGTTTGACAGGAC	BamHI
P-fus-R	GACTGGATCCATACATCAGTTTGACAGGAC	BamHI
Sequencing primers for promoter-substitution mutant screening		
P1-For	TTTTAGATCTGGATGTTCTACTATGTTTGACAGGAC	
P1-Rev	ATCATGATCGGTAAGTTCCATCG	
earA-seq-F	TGTTAAAGTGGTTTTGCTCG	
earA-seq-R	CATGGTATCAAAGATCTTCG	
qRT-PCR primers		
B2-qRT-PCR-For	GCTGCAATAGACATGAATCAGG	
B2-qRT-PCR-Rev	GACGATGATATGATGATGATGATG	
slp-qRT-PCR-For	GGTTATCAATAGACATGAATCAGG	
slp-qRT-PCR-Rev	GCTAGATGATATGATGATGATGATG	
deletion in earA. The PCR products of the fla promoter region from seven colonies that produced FlaB2 and four colonies that did not produce FlaB2 were sequenced. One of the colonies that produced FlaB2 and contained the deletion of the targeted three adenines in the BRE region was restreaked for purity and designated as Δ3A.

Western Blot Analysis of FlaB2 Expression in Mc. maripaludis Strains
The presence of the archaellin FlaB2 in the wild-type and various mutant strains of Mc. maripaludis was analyzed by western blot with an anti-FlaB2 antibody as previously described (Chaban et al., 2007).

Quantitative RT-PCR (qRT-PCR) Analysis of the flaB2 Transcription Level in Mc. maripaludis Strains
Total RNA from an Mc. maripaludis overnight cell culture was extracted using a High Pure RNA Isolation Kit (Roche Life Science) following a modified Gram negative bacteria RNA extraction protocol with an additional DNase treatment using a TURBO DNA-free Kit (Ambion) at 37°C for 30 min. Ten nanograms of total RNA from each extraction was converted into cDNA using an iScriptTM cDNA Synthesis Kit (Bio-Rad) with random hexamer primers. To detect the transcript level of flaB2, gene specific primers were constructed to amplify flaB2 and the sp gene that encodes the S-layer protein (the latter was used as the reference) [Table 2, (Ding et al., 2016a)]. qRT-PCR experiments were performed as previously described (Ding et al., 2016a). Triplicates were included in each experiment, and three biological repeats were conducted.

Swarming Motility Analysis of Mc. maripaludis Strains on Semi-Solid Agar
Five microliters of overnight cell cultures of each Mc. maripaludis strain (OD₆₀₀ normalized to 1.0) grown in Balch Medium III were stabbed into Balch Medium III plates containing 0.25% agar (w/v) (Ding et al., 2015). Plates were incubated anaerobically in a canister under an atmosphere of H₂:CO₂ (80:20) at 37°C for 4 days.

Electron Microscopy Analysis of Mc. maripaludis Strains
Cells grown overnight in Balch medium III were centrifuged and the pellets washed briefly with 2% NaCl (w/v), and resuspended in 2% NaCl. Cell resuspensions were loaded on 200-mesh carbon-coated copper grids. After adhesion to the grid for 1 min, cells were washed with 2% NaCl and then stained with 2% (w/v) phosphotungstic acid, pH 7.0. Samples were examined with a Philips CM-10 transmission electron microscope at 80 kV and images were taken with a SIS/Olympus Morada 11-megapixel charge-coupled device camera under standard operating conditions.

RESULTS
Isolation and Identification of a Spontaneous Mutant of the ΔearA Strain in Which FlaB2 Expression Was Restored
In Mc. maripaludis, the transcription of the fla operon is dependent on the transcription activator EarA (Ding et al., 2016b). In the absence of EarA, as in the ΔearA strain, the archaellin FlaB2 (encoded by the second gene in the fla operon) is not detected in western blots (Figure 1A) and cells are non-archaellated. However, continuous weekly transfer of the ΔearA strain for about 6 months resulted in the isolation of a mutant form of the ΔearA strain in which FlaB2 synthesis was restored (Figure 1B). This spontaneous mutant was designated as ΔearA-sp. The deletion of the earA gene in ΔearA-sp was still present, as confirmed by PCR analysis of this strain compared to the original ΔearA strain and Mm900 cells. As shown in Figure 1C, both ΔearA and the ΔearA-sp cells had the expected smaller amplicon size obtained in PCR using primers flanking the deletion area of earA compared with amplicons obtained using Mm900 or ΔflaB2 cells as template, ruling out the possibility that the restoration of FlaB2 in ΔearA-sp was due to contamination with the wild-type Mm900 strain or any other Mc. maripaludis strain with an intact earA.

![Western blot analysis of wild-type cells, the ΔearA strain and a spontaneous mutant of the ΔearA strain, ΔearA-sp, in which the expression of FlaB2 was restored.](image-url)
As an initial step in an effort to determine how these cells had regained the ability to transcribe the fla operon genes without EarA, we amplified and sequenced a ∼500 bp region encompassing the fla promoter from ΔearA-sp [from −348 nt to +162 nt with respect to the TSS; (Ding et al., 2016b)]. Analysis of the sequencing data showed that the four EarA binding sites (Ding et al., 2016b) upstream of the fla promoter remained intact, as did the TATA box, but in a stretch of seven adenines in the BRE found immediately upstream of the TATA box, three out of the seven adenines were missing in the earA-sp strain (Figure 2). No other changes were found in the sequence of the PCR product amplified from the fla promoter region in the earA-sp strain.

Construction of a Δ3A Mutant in Which the Three Adenine Deletion in the BRE Was Recreated

It is possible that mutations other than the three adenine deletion in the fla promoter region could have occurred elsewhere in the genome of ΔearA-sp that were solely, or partially, responsible for the restoration of Flab2 production. To explore if the three adenine deletion detected in the fla promoter region in the ΔearA-sp strain alone would result in the restoration of expression of Flab2 in the absence of EarA, a mutant which carried the same three adenine deletion mutation in the fla promoter region as that in ΔearA-sp, was generated from the original stock ΔearA strain that did not synthesize Flab2. Since the size difference in the fla promoter region of ΔearA and the generated three adenine mutant would be only three nucleotides, we did not try to screen mutants by PCR analysis. Instead, we used western blotting to screen for Flab2 production, since if the deletion of the three adenosines was responsible for restoration of transcription of the fla operon, transformants bearing this deletion would be readily identified from transformants that had retained the wild-type seven adenine sequence in the BRE region. Western blotting of a random number of transformant colonies appearing on 8-azahypoxanthine plates identified both ones that did and did not synthesize detectable amounts of Flab2. The sequence of the fla promoter of four colonies where Flab2 production was detected and seven colonies in which Flab2 production was not detected were determined. In each of the colonies in which no Flab2 was detected by western blotting, a wild-type fla promoter sequence, i.e., with seven consecutive adenines in the BRE, was found. In each of the four colonies that were found to produce Flab2, the fla promoter was identical to the wild-type sequence except for the three adenine deletion in the BRE (data not shown). One of the transformant colonies that produced Flab2 and had the three adenine deletion in the BRE, was found. In each of the four colonies that were found to produce Flab2, the fla promoter was identical to the wild-type sequence except for the three adenine deletion in the BRE (data not shown). One of the transformant colonies that produced Flab2 and had the three adenine deletion in the BRE, was designated Δ3A and studied further. As shown in Figure 3A, Flab2 production in the ΔearA-sp strain was near wild-type levels. In contrast, in the Δ3A cells, the expression level of Flab2 was lower than that from the ΔearA-sp strain. PCR analysis of the Δ3A cells confirmed that these cells still possessed the deletion in earA (Figure 1C).

Transcription of flab2 in the ΔearA-sp and Δ3A Strains Was Restored

Restoration of Flab2 synthesis in the ΔearA-sp and Δ3A strains as demonstrated by the western blot results indicated that...
transcription of flaB2 was occurring in both mutant strains. A direct measure of the transcript level of flaB2 in these two mutants as well as control strains was obtained in qRT-PCR experiments (Figure 3B). As expected, flaB2 transcripts were not detected in the ΔflaB2 strain and were barely detectable in the ΔearA strain. In contrast, the transcription level of flaB2 was increased over 4-fold and 2.5-fold in the ΔearA-sp and the Δ3A strains, respectively, compared to that detected in wild-type cells. The relatively higher transcription level of flaB2 in the ΔearA-sp cells compared to the Δ3A cells was consistent with production of FlaB2 in the two strains detected in the western blot. However, the production of FlaB2 in the Δ3A cells was lower than in wild-type cells even though flaB2 transcription was higher.

ΔearA-sp and Δ3A Strains Were Archaeallated

qRT-PCR and western blot analyses demonstrated that transcription and translation of flaB2 had been restored in the ΔearA-sp and Δ3A strains. To determine if the transcription and translation of the entire fla operon was restored in the two mutant strains resulting in assembly of archaella, cells were examined by electron microscopy. As shown in Figure 4, archaella were observed on the cell surface of both ΔearA-sp and Δ3A cells, as well as the wild-type cells, but not on ΔflaB2 or ΔearA cells.

ΔearA-sp and Δ3A Strains Had Swarming Motility

To further determine if the archaella observed on ΔearA-sp and Δ3A cells were functional, swarming motility assays were performed. Overnight cultures of ΔearA-sp, Δ3A, as well as Mm900, ΔflaB2, and ΔearA strains were inoculated onto semi-solid Balch medium III agar. After incubation at 37°C for 4 days Mm900, ΔearA-sp and Δ3A cells were clearly motile although the motility of the Δ3A cells was less than the other two strains (Figure 5). The non-archaellated strains, ΔflaB2 and ΔearA, remained at the inoculation spot, as expected. The swarming data are consistent with data from western blot, qRT-PCR, and EM analyses.

DISCUSSION

Previous studies have shown that the euryarchaeal archaellum regulator EarA was critical for transcription of the fla operon in Mc. maripaludis via its binding to at least one of four consensus sequences located immediately upstream of the BRE and TATA box of the fla promoter. In a ΔearA mutant, transcription of the fla operon is barely detectable and cells are non-archaellated (Ding et al., 2016b). In this study, we have isolated a spontaneous mutant of a ΔearA strain in which the transcription of the fla operon and archaellation were restored. Analysis of the DNA sequence of the fla promoter region in this mutant, designated ΔearA-sp, revealed a deletion of three adenines in the BRE region. Recreation of the three adenine deletion in the stock strain of the ΔearA mutant also led to restoration of fla operon transcription and archaellation, indicating that this small deletion in the BRE overcame the requirement for EarA for activation of transcription of the fla operon. However, the expression of FlaB2 detected by western blotting was lower in the recreated strain than in the spontaneous mutant ΔearA-sp, suggesting that the three adenine deletion may not be the sole change in the ΔearA-sp strain affecting transcription of the fla operon. However, it seems clear from our studies on the directed mutant Δ3A strain, that the deletion of three adenines in the BRE of the fla operon promoter is sufficient on its own to result in all the phenotypes related to archaellation observed in the spontaneous mutant.

Since there is virtually no transcription detected from the native fla promoter if earA is deleted, it suggests that the fla promoter is intrinsically very weak or inactive. Two key elements that determine promoter strength in Archaea are the sequences of the TATA box and BRE (Bartlett, 2005). The TATA box is the site of binding of the TATA-binding protein TBP while the BRE sequence is the site of binding for TFB (Peeters et al., 2013). While relatively few transcriptional activators have been studied in Archaea, the mechanism of activation in these limited studies has been shown to involve recruitment of TBP or TFB to the TATA box or BRE (Karr, 2014). Consensus TATA box sequences vary for different subgroups of Archaea and mutations in the TATA box can reduce transcription efficiency (Soppa,
Ding et al. BRE Deletion Overcomes EarA Requirement

FIGURE 4 | Electron micrographs illustrating archaella on the surface of ΔearA-sp and Δ3A mutants, as well as wild-type cells. As expected, the ΔflaB2 and ΔearA mutants were non-archaellated. Bars equal 500 nm.

FIGURE 5 | Swarming assay demonstrating the motility of the ΔearA-sp and Δ3A mutants. Overnight cell cultures were normalized with respect to their OD_{600} and the same amount of cells were inoculated onto Balch medium III plates containing 0.25% agar and incubated for 4 days at 37°C.

1999; Bartlett, 2005; van de Werken et al., 2006). For protein promoters in *Mcc. jannaschii*, the TATA box was determined to be TWTATATA (where W = A or T) (Zhang et al., 2009), very similar to the TTTATATA proposed previously for the promoters of stable RNA genes in *Methanococcus vannielii* (Thomm and Wich, 1988) and featuring the methanogen characteristic of strict alterations of T and A in contrast to TATA boxes in other major archaeal groups (Soppa, 1999). One of the best-studied archaeal transcriptional activators, Pn2 of *Mcc. jannaschii*, binds to multiple sequences upstream of BRE in the rubredoxin 2 gene and has its stimulatory effect due to direct recruitment of TBP (Ouhammouch et al., 2003, 2005). Adding binding sites for Pn2 upstream of heterologous promoters with sub-optimal TATA box sequences resulted in significant transcriptional activation (Ouhammouch et al., 2005). Analysis of the TATA box of the *fla* operon in *M. maripaludis* revealed a strong identity to the consensus sequence, including the alternating T and A stretch TATATAT, suggesting binding of TBP should not be impaired.

The 6–7 nucleotide long BRE sequences are the major site of binding for TFB, with positions −3 and −6 of BRE (relative to the TATA box) showing the strongest specificity determinants (Qureshi and Jackson, 1998; Littlefield et al., 1999). There are no BRE consensus sequences reported for halophiles and methanogens (van de Werken et al., 2006). However, in *Mcc. jannaschii*, a hyperthermophilic relative of *M. maripaludis*, two studies have identified promoter sequences on a whole genome basis (Li et al., 2008; Zhang et al., 2009). The first study used the binding of TBP and TFB in EMSA studies to identify promoters (Li et al., 2008). These studies had a strong bias for strong promoters, especially for promoters of tRNA genes with only small percentage of promoters for protein genes being retrieved. These studies led to the identification of an extended BRE element sequence of 9–10 nucleotides (MRCCGAAAG where M = A, C and R = A, G). The second study focused on identification of
Promoter sequence analysis of the wild-type and mutated fla promoters and other archaeal promoters. (A) Promoter sequences of fla promoter (fla), mutated fla promoter with the three adenine deletion in the BRE (Sp/3A), glnA promoter (glnA), and nifH promoter (nifH) from Methanococcus maripaludis, as well as the conserved promoter sequence from the tRNA\(^{Lys}\) gene of Methanococcus jannaschii (Mja). (B) BRE/TATA box sequences of the fla operon promoters of selected Methanococcales.

promoters for protein-encoding genes (Zhang et al., 2009). It was found for Mcc. jannaschii protein gene promoters that there was a greater variability in the BRE than in the TATA box (Zhang et al., 2009). The identified promoters for protein-encoding genes were shown to bind the general transcription factors less tightly than tRNA gene promoters. Notably, base frequencies at several BRE positions considered important for TFB binding were significantly different from the in vitro selected promoters (mostly for tRNA genes) in the earlier study. Examination of the BRE sequences in both protein-encoding genes and tRNA genes revealed that most had internal stretches of 3–5 adenines, far less than the seven adenines in the wild-type fla operon promoter. Interestingly, the fla operon BRE element has a G at position −1, the most commonly found base at that position in the strong tRNA gene BRE (Figure 6A), while in protein-encoding genes the most common base at −1 is C (Zhang et al., 2009).

The wild-type version of the BRE of the fla operon promoter, with its stretch of seven adenines, does not show strong sequence identity to what may be considered strong BRE sequences as reported for Mcc. jannaschii. On the other hand, it is apparent that the three adenine deletion version found in the ΔearA-sp mutant much more closely aligns with BRE sequences found in strong tRNA genes promoters of Mcc. jannaschii (Figure 6A). In addition, the mutated fla promoter in the ΔearA-sp strain shares high sequence identity with two studied promoter sequences in Mc. maripaludis, namely the nitrogen-regulated glnA and nifH promoters (Figure 6A) (Cohen-Kupiec et al., 1997, 1999). Both glnA and nifH promoters are regulated via the repressor NrpR, which binds to the nif operators located downstream of the TATA boxes just after the TSS in the two promoters leading to repression of transcription under ammonia growth conditions (Cohen-Kupiec et al., 1997, 1999; Lie et al., 2005). Both nifH and glnA expression is very low when cells are grown on ammonia and NrpR binds but high expression is observed under conditions of diazotrophic growth where NrpR does not bind or in a strain where nrpR has been deleted (Cohen-Kupiec et al., 1997, 1999; Lie and Leigh, 2003; Lie et al., 2005). This indicated that the basal transcription level of the two promoters was strong, suggesting that TFB and TBP in Mc. maripaludis could recognize BRE and the TATA box of these two promoters and initiate transcription (Cohen-Kupiec et al., 1997, 1999). The high sequence identity of the three adenine deletion BRE of the ΔearA-sp strain with that of the glnA and nifH promoters, as well as the BRE of the highly expressed tRNA genes of Mcc. jannaschii likely explains why the pre-initiation complex could be formed with the mutated fla promoter without the aid of EarA. The qRT-PCR results (Figure 3B) suggest that the wild-type fla operon promoter even with EarA is not as strong as the three adenine deletion version in the absence of EarA.

Studies in several archaea have indicated that promoters containing non-conserved BRE sequences can be weak or even inactive (Peng et al., 2009, 2011; Marschaus and Pfeifer, 2012; Ochs et al., 2012). Replacement of the BRE of inducible promoters with a BRE from strong promoters, for example, can greatly increase the transcription from the resulting chimeric promoter. In Sulfolobus solfataricus, transcription from the arabinose promoter is induced in the presence of arabinose, via an unidentified factor that binds to a consensus ara-box sequence located immediately upstream of the BRE and TATA box (Lubelska et al., 2006; Peng et al., 2011). When the BRE from the arabinose promoter was replaced with the strong BRE
from the *Sulfolobus shibatae* viral (SSV) T6 promoter (Qureshi and Jackson, 1998), the resulting chimeric promoter was now constitutive and not regulated by the ara-box element (Peng et al., 2009). The apparent mechanism of transcription activation of the ara-box binding factor is thought to be by recruitment of TFB to a weak BRE (Peng et al., 2009, 2011). In *Pyrococcus furiosus*, transcription from the *pf1089* promoter is activated by PF1088 (Transcription factor B recruitment factor 1, TFB-RF1). This activation is dependent on the weak BRE of the *pf1089* promoter and is not observed if the *pf1089* promoter BRE is replaced with the BRE from the strong *gdh* promoter (Spitalny and Thomm, 2003; Ochs et al., 2012). Electrophoretic mobility shift assays further revealed that the transcription activation of the wild-type *pf1089* promoter was by the recruitment of TFB via TFB-RF1, thereby overcoming the weak BRE.

We have recently shown that EarA homologs are commonly found in the Euryarchaota and that EarA proteins from numerous methanogens can rescue the defects in archaellation in a *M. maripaludis* ΔearA strain (Ding et al., 2017). As shown in Figure 6B, examination of the *fla* promoter regions in selected archaellated Methanococcales containing an earA homolog revealed BRE sequences identical, or very similar, to that in *M. maripaludis*, i.e., with a string of seven adenines as in *Methanococcus voltae*, *Methanococcus vanniellii*, and *Methanothermococcus thermolithothrophicus* or seven adenines in a stretch of eight nucleotides in the BRE of the *fla* promoter of *Mcc. jannaschii*. It would appear that in all these cases, the *fla* promoter requires the presence of EarA proteins to overcome weak BRE sequences, presumably to aid in the recruitment of TFB, as found for transcriptional activators TFB-RF1 and the ara-box binding factor.

The appearance of the ΔearA-sp mutant was surprising to us. The isolation of the original ΔearA mutant arose after it was discovered that, after repeated transfers in the lab, mutants carrying deletions of various *fla* or *agl* genes required for assembly of archaella stopped transcription of the *fla* operon and the *fla* operon reporter protein FlaB2 could not be detected in western blots (Vandyke et al., 2009; Ding et al., 2016b). It was determined that in at least some of these mutants, the reason for the cessation of *fla* operon transcription was a reading-frame shift mutation in earA. We reasoned that in these strains that carried mutations in *fla* or *agl* genes necessary for archaella assembly, it was an advantage to no longer synthesize several proteins, some of which, like archаellins, were required in large amounts when they could not be assembled in archaella. This led to a selective advantage for those cells that had stopped transcription of the *fla* operon, as in the earA mutants. Thus, it is not obvious to us why a mutation in the ΔearA that would restore transcription of the *fla* operon would arise and outgrow the original ΔearA mutant. The answer may lie in the presence of an additional mutation(s) in the ΔearA-sp strain that could be revealed by comparison of the complete sequence of the ΔearA and ΔearA-sp strains.

In this study, a spontaneous mutant with restored FlaB2 expression was isolated from a ΔearA mutant, indicating that in the spontaneous mutant the need for the transcriptional activator EarA for the transcription of the *fla* promoter was bypassed. Analysis of the DNA sequence in the *fla* promoter region from the spontaneous mutant revealed a three adenine deletion in the BRE region in the *fla* promoter. Sequence alignment showed that the mutated BRE in the *fla* promoter shares high similarity with BREs from strong promoters in methanogens, indicating that with this mutated BRE, the transcription initiation of the *fla* promoter could be conducted with components of the basal pre-initiation complex. We believe this is the first report of spontaneous mutation in the promoter region that overcomes the need for a transcriptional activator and it emphasizes the key role played by the BRE in promoter strength in Archaea.

AUTHOR CONTRIBUTIONS

Conceived and designed experiments: YD, AB, CK, and KJ. Performed the experiments: YD, AB, CK, and KJ. Analyzed the data: YD, AB, CK, and KJ. Wrote the paper: YD, AB, CK, and KJ.

FUNDING

This research was funded by Discovery Grants from The Natural Sciences and Engineering Research Council of Canada (NSERC) to KJ and CK.
Ding, Y., Lau, Z., Logan, S. M., Kelly, J. F., Berezuk, A., Khursigara, C. M., et al. (2016a). Effects of growth conditions on archaeallum and N-glycosylation in Methanococcus maripaludis. Microbiology 162, 339–350. doi: 10.1099/mic.0.008221

Ding, Y., Nash, J., Berezuk, A., Khursigara, C. M., Langelaan, D. N., Smith, S. P., et al. (2016b). Identification of the first transcriptional activator of an archaeallum operon in a euryarchaeon. Mol. Microbiol. 102, 54–70. doi: 10.1111/mmi.13444

Ding, Y., Uchida, K., Aizawa, S. I., Murphy, K., Berezuk, A., Khursigara, C. M., et al. (2015). Effects of N-glycosylation site removal in archaeallins on the assembly and function of archaeallin in Methanococcus maripaludis. PLoS ONE 10:e0116402. doi: 10.1371/journal.pone.0116402

Gehring, A. M., Walker, J. E., and Santangelo, T. J. (2016). Transcription regulation in Archaea. J. Bacteriol. 198, 1906–1917. doi: 10.1128/JB.00255-16

Goujon, M., McWilliam, H., Li, W., Valent, F., Squizzato, S., Paern, J., et al. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38, W695–W699. doi: 10.1093/nar/gkq313

Hendrickson, E. L., Liu, Y., Rosas-Sandoval, G., Portar, I., Soll, D., Whitman, W. B., et al. (2008). Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate. J. Bacteriol. 190, 2198–2205. doi: 10.1128/JB.01805-07

Jarrell, K. F., and Albers, S. V. (2012). The archaeallum: an old motility structure and alanine permease. J. Bacteriol. 194, 235–246. doi: 10.1128/JB.01274-10

Karr, E. A. (2014). Transcription regulation in the third domain. Adv. Appl. Microbiol. 89, 101–133. doi: 10.1016/B978-0-12-800259-9.00003-2

Li, E., Reich, C. I., and Olsen, G. J. (2008). A whole-genome approach to identifying protein binding sites: promoters in Methanocaldococcus (Methanococcus) jannaschii. Nucleic Acids Res. 36, 6948–6958. doi: 10.1093/nar/gkm499

Lieber, J. J., and Leigh, J. A. (2003). Analysis of the open region and of the transcriptional start points of the two ribosomal protein genes in Methanocaldococcus maripaludis. Mol. Microbiol. 47, 235–246. doi: 10.1046/j.1365-2958.2003.02393.x

Lieber, J. J., Wood, G. E., and Leigh, J. A. (2005). Regulation of nif expression in Methanocaldococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators. J. Biol. Chem. 280, 5236–5241. doi: 10.1074/jbc.M411778200

Littlefield, O., Korkhin, Y., and Sigler, P. B. (1999). The structural basis for the oriented assembly of a TBP/TFB/promoter complex. Proc. Natl. Acad. Sci. U.S.A. 96, 13668–13673. doi: 10.1073/pnas.96.24.13668

Lubelska, J. M., Jonuscheit, M., Schleper, C., Albers, S. V., and Driessen, A. J. (2006). Regulation of expression of the arabinose and glucose transporter genes with homology to the TATA box of higher eukaryotes. Mol. Microbiol. 60, 440–453. doi: 10.1111/j.1365-2958.2006.04758.x

Marschall, S., and Pfeifer, F. (2012). A dual promoter region with overlapping activator sequences drives the expression of gas vesicle protein genes in haloarchaea. Microbiology 158, 2815–2825. doi: 10.1099/mic.0.060178-0

Moore, B. C., and Leigh, J. A. (2005). Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J. Bacteriol. 187, 972–979. doi: 10.1128/JB.187.3.972-979.2005

Ochs, S. M., Thumann, S., Richau, R., Weiwaich, M. T., Lowe, T. M., Thomm, M., et al. (2012). Activation of archaeal transcription mediated by recruitment of transcription factor B. J. Biol. Chem. 287, 18863–18871. doi: 10.1074/jbc.M111.365742

Peeters, E., Peixeiro, N., and Sezonov, G. (2013). Cis-regulatory logic in archaeal transcription. Biochem. Soc. Trans. 41, 326–331. doi: 10.1042/BST20123012

Peng, N., Ao, X., Liang, Y. X., and She, Q. (2011). Archaeal promoter architecture and mechanism of gene activation. Biochem. Soc. Trans. 39, 99–103. doi: 10.1042/BST0390099

Peng, N., Xia, Q., Chen, Z., Liang, Y. X., and She, Q. (2009). An upstream activation element exerting transcriptional activation on an archaeal promoter. Mol. Microbiol. 74, 928–939. doi: 10.1111/j.1365-2958.2009.06908.x

Qureshi, S. A., and Jackson, S. P. (1998). Sequence-specific DNA binding by the S. shibatae TFIIH homolog, TFB, and its effect on promoter strength. Mol. Cell 1, 389–400. doi: 10.1016/S1097-2765(00)00039-8

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539. doi: 10.1038/msb.2011.75

Somma, J. (1999). Normalized nucleotide frequencies allow the definition of archaeal promoter elements for different archaeal groups and reveal base-specific TFB contacts upstream of the TATA box. Mol. Microbiol. 31, 1589–1592. doi: 10.1046/j.1365-2958.1999.01724.x

Spitalny, P., and Thomm, M. (2003). Analysis of the open region and of DNA-protein contacts of archaeal RNA polymerase transcription complexes during transition from initiation to elongation. J. Biol. Chem. 278, 30497–30505. doi: 10.1074/jbc.M303633200

Thomm, M., and Wich, G. (1988). An archaeabacterial promoter element for stable RNA genes with homology to the TATA box of higher eukaryotes. Nucleic Acids Res. 16, 151–163. doi: 10.1093/nar/16.1.151

Tumbula, D. L., Makula, R. A., and Whitman, W. B. (1994). Transformation of Methanococcus maripaludis and identification of a Pst-like restriction system. FEBS Microbiol. Lett. 121, 309–314. doi: 10.1111/j.1574-6968.1994.tb07118.x

van de Werken, H. J., Verhees, C. H., Akerboom, J., de Vos, W. M., and van der Oost, J. (2006). Identification of a glycolytic regulon in the archaea Pyrococcus and Thermococcus. FEMS Microbiol. Lett. 260, 69–76. doi: 10.1111/j.1574-6968.2006.00292.x

Vandye, D. J., Wu, J., Logan, S. M., Kelly, J. F., Mizuno, S., Aizawa, S. I., et al. (2009). Identification of genes involved in the assembly and attachment of a novel flagellin-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis. Mol. Microbiol. 72, 633–644. doi: 10.1111/j.1365-2958.2009.06671.x

Zhang, J., Li, E., and Olsen, G. J. (2009). Protein-coding gene promoters in Methanocaldococcus (Methanococcus) jannaschii. Nucleic Acids Res. 37, 3588–3601. doi: 10.1093/nar/gkp213

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Ding, Berezuk, Khursigara and Jarrell. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.