Overview Supporting Information

1. Computational details
 a. Structure optimizations
 b. Free energy computations
 c. Scaling relations
 d. Stability computations

2. Supporting data
 a. Experimental data
 i. XRD of CeCoO$_3$
 ii. XRDs of as-prepared perovskites to be tested via TGA
 iii. Oxygen nonstoichiometry
 iv. TGA
 v. HT-XRD for material stability
 vi. RT-XRD
 vii. TEM
 b. Thermochemical equilibrium analysis

3. References

1. Computational details
 a. Structure optimizations

Both, ASE and GPAW are open-source codes available from the Department of Physics at the Technical University of Denmark and are available at https://wiki.fysik.dtu.dk/ase/ and https://wiki.fysik.dtu.dk/gpaw/.

Table S1: Minimum and maximum values of calculated lattice constants (a) and magnetic moments of the transition metals (M) at the B sites of cubic (space group 221) ABO$_3$, AA’BO$_3$, ABB’O$_3$ and AA’BB’O$_3$ perovskites.

Type of perovskite	a (Å)	M(B) (μ$_B$)	M(B’) (μ$_B$)
ABO$_3$	3.7357 – 4.2914	0.2453 – 3.8368	
AA’BO$_3$	3.7953 – 4.2000	0.2757 – 3.7985	0.2760 – 3.8000
ABB’O$_3$	3.6000 – 4.1419	0.0040 – 4.2172	-3.1064 – 3.8337
AA’BB’O$_3$	3.7998 – 4.1274	-2.2340 – 3.880	-2.3856 – 3.5935

The DFT-computed lattice constants compare well, within the uncertainty of DFT calculations1–2, with the experimental values for cubic perovskites of similar composition. For example, the relative error is 1.06% when comparing DFT-computed 3.9566 Å (La$_{0.5}$Sr$_{0.5}$MnO$_3$) to an experimental value of 3.915 Å (La$_{0.67}$Sr$_{0.33}$MnO$_3$)3 or 0.07-1.38% when comparing DFT-computed 3.9276 Å (La$_{0.5}$Sr$_{0.5}$Fe$_{0.5}$Co$_{0.5}$O$_3$) to experimental values of about 3.925 Å (La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-δ}$)4 and 3.874 Å (La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_3$)5 or 2.17% when comparing 3.9183 Å (SrCoO$_3$) to an experimental value of 3.835 Å (SrCoO$_3$)6.

b. Free energy computations

Free energies of the chemical species i (G_i) were calculated via:

$$G_i(T,P) = N_i \mu_i (T,P) = E_i + U_{ZPE,i} - S_i (T,P)$$

where T and P are the absolute temperature (298.15 K) and pressure (1.013 bar), N_i is the number of atoms, μ_i is the chemical potential, E_i is the total electronic energy determined from DFT-based structure optimization, $U_{ZPE,i}$ is the zero-point vibrational energy, and S_i is the entropy. Gases are assumed to be ideal, while liberated lattice oxygen is treated using the harmonic approximation where all degrees of freedom are treated as frustrated harmonic vibrations and pressure-volume contributions are neglected. Thermodynamic properties were calculated from vibrational frequencies and standard statistical mechanical equations evaluated through ASE. Free energy corrections of the solids are neglected.7
Analogously, the enthalpy of forming oxygen vacancies ($\Delta H_v[O]$) at the surface is defined as:

$$\Delta H_v[O] = \Delta G_v[O] + T\Delta S_v[O]$$

where $\Delta S_v[O]$ is the entropy of forming oxygen vacancies.

Free energies and enthalpies are relative to the chemical potential of stable H$_2$O and H$_2$ gas, that is, E^r is given with:

$$E^r_o = E[H_2O] - E[H_2]$$

where $E[H_2O]$ and $E[H_2]$ are the total electronic energy of reference H$_2$O and H$_2$ molecules in the gas phase.

c. Scaling relations

Eq. (5) in the main text is based on data for TiO$_2$ (rutile), Ti$_2$O$_3$, Cu$_2$O, ZnO (wurtzite), MoO$_3$, Ag$_2$O, Ba$_2$Sr$_2$Co$_3$O$_{16.5}$ (cubic), and La$_{0.67}$Sr$_{0.33}$FeO$_{2.5}$ (cubic). Data for cubic ZrO$_2$, cubic Y$_2$Zr$_3$O$_{15}$, Y$_2$O$_3$-stabilized ZrO$_2$, CeO$_2$, and La$_{0.67}$Sr$_{0.33}$MnO$_3$ was disregarded due to a large deviation of oxygen nonstoichiometry (δ) between the thermochemical data for bulk metal oxides and the DFT data for metal oxide surfaces. Differences of factor 16-32 for the nonstoichiometry of ZrO$_2$ ($\delta = 2$ for the ZrO$_2$/Zr bulk couple vs. $\delta = 0.0625$ for the Zr$_3$O$_{12}$/Zr$_3$O$_{15}$ surface model couple), Y$_2$Zr$_3$O$_{15}$ ($\delta = 2$ for the ZrO$_2$/Zr bulk couple vs. $\delta = 0.0625$ for the Y$_2$Zr$_3$O$_{15}$/Y$_2$Zr$_3$O$_{29}$ surface model couple), CeO$_2$ ($\delta = 1$ for the CeO$_2$/Ce bulk couple vs. $\delta = 0.0625$ for the Ce$_3$O$_7$/Ce$_3$O$_{15}$ surface model couple), and of factor 3, which is relatively high when compared to the other computed perovskite models, for La$_{0.67}$Sr$_{0.33}$MnO$_3$ ($\delta = 1$ for the Mn$_2$O$_3$/MnO bulk couple vs. $\delta = 0.33$ for the La$_{0.67}$Sr$_{0.33}$MnO$_3$ surface model couple).

Calculations of ΔG_v^{∞} at 1200 K to 1800 K and $-\Delta G_v^{\infty}$ at 800 K to 1400 K for metal oxides where the underpinning thermochemical data is not available, namely the perovskites evaluated in this work, were based on the scaling of these two bulk quantities with ΔG_v^{∞} at 298 K and 1 bar across 27 solid metal oxide and six metal/metal oxide pairs. Thermodynamic properties obtained through scaling relations are defined per mole of monoatomic oxygen. The data for the derived linear scaling relations ($R^2 > 0.83$) are shown with Table S2 and Table S3, where a and b represent the following factors in Eq. (4):

$$-\Delta G_v^{\infty} = a \frac{kJ \text{ mol}^{-1}}{kJ \text{ mol}^{-1}} \Delta G_v^{\infty} + b \text{ kJ mol}^{-1}$$

Table S2. DFT-derived linear scaling factors a and b, based on the scaling of $-\Delta G_v^{\infty}$ with a stoichiometric amount of CO$_2$ in the inlet gas and ΔG_v^{∞} at 298 K and 1 bar across 27 solid metal oxide and six metal/metal oxide pairs.

T (K)	a	b
800	-0.9622	552.73
900	-0.9633	555.07
1000	-0.9647	557.63
1100	-0.9654	559.59
1200	-0.9652	561.04
1300	-0.9625	561.90
1400	-0.9594	562.50

Table S3. DFT-derived linear scaling factors a and b, based on the scaling of $-\Delta G_v^{\infty}$ with 1% CO in CO$_2$ in the inlet gas and ΔG_v^{∞} at 298 K and 1 bar across 27 solid metal oxide and six metal/metal oxide pairs.

T (K)	a	b
800	-0.9622	583.36
900	-0.9633	589.53
1000	-0.9647	595.91
1100	-0.9654	601.71
1200	-0.9652	606.99
1300	-0.9625	611.67
1400	-0.9594	616.10

Table S4. DFT-derived linear scaling factors a and b, based on the scaling of ΔG_v^{∞} at $p_{O_2} = 10^{-4}$ bar with ΔG_v^{∞} at 298 K and 1 bar across 27 solid metal oxide and six metal/metal oxide pairs.

T (K)	a	b
1200	0.9652	-296.51
1300	0.9625	-322.25
1400	0.9594	-347.67
1500	0.9551	-372.30
1600	0.9514	-396.93
1700	0.9452	-419.97
The data for the derived linear scaling relations is given with Tables S5-S8. The free energies of the oxide oxidation and reduction of the computed perovskites are not shown here, but can be provided on demand.

d. Stability computations

Eq. 5 displays the schematic reaction between an ABO$_3$ perovskite and CO$_2$, forming a carbonate and a metal oxide with the B cation. Eq. 6 illustrates the dissociation of an ABO$_3$ perovskite into A and B metal oxides.

\[
\begin{align*}
\frac{1}{144} \cdot E(\text{ABO}_3) + x \cdot E(\text{CO}_2) & \rightarrow x \cdot E(\text{ACO}_3) + E(\text{B}_2\text{O}_3) + \frac{2x - y}{14} \cdot E(\text{O}_2) \\
\frac{1}{144} \cdot E(\text{ABO}_3) & \rightarrow \frac{\frac{14 \cdot x \cdot E(\text{A}_2\text{O}_3)}{14} + \frac{14 \cdot x \cdot E(\text{B}_2\text{O}_3)}{14} + 3 \cdot \frac{x \cdot \frac{14 \cdot x}{14} - \frac{14 \cdot x}{14} - \frac{14 \cdot x}{14}}{14}}{144} \cdot E(\text{O}_2)
\end{align*}
\]

where $E(\text{ABO}_3)$, $E(\text{CO}_2)$, $E(\text{ACO}_3)$, $E(\text{A}_2\text{O}_3)$ and $E(\text{B}_2\text{O}_3)$ are the DFT total energies of the ABO$_3$, CO$_2$, ACO$_3$, O$_2$, A$_2$O$_3$ and B$_2$O$_3$ compound, respectively. $E(\text{O}_2)$ was taken as the energy reference of stable H$_2$O and H$_2$ in the gas phase, due to the difficulty of DFT to describe the triplet state of O$_2$ correctly.

2. Supporting data

a. Experimental data

i. XRD of CeCoO$_3$

![Figure S1: XRD spectrum of as-prepared CeCoO$_3$ (peak labels from Wolcyrz et al. and Smith et al.)](image_url)

ii. XRD of as-prepared perovskites to be tested via TGA

* Orthorhombic perovskite (Pnma) * Orthorhombic perovskite (Pnma) * Hexagonal perovskite (P6_3cm) * Rhombohedral perovskite (R-3cH)
iii. Oxygen nonstoichiometry

Figure S2: RT-XRDs of as-prepared YFeO$_3$, YMnO$_3$, YCo$_{0.3}$Fe$_{0.7}$O$_3$, YCo$_{0.1}$Fe$_{0.9}$O$_3$, LaFeO$_3$, LaCo$_{0.5}$Fe$_{0.5}$O$_3$ and LaCo$_{0.5}$Ni$_{0.5}$O$_3$. Peak labels for YFeO$_3$, YCo$_{0.3}$Fe$_{0.7}$O$_3$, YCo$_{0.1}$Fe$_{0.9}$O$_3$ from du Boulay et al.12, for YMnO$_3$ from Gibbs et al.13, for LaFeO$_3$ from Maregio et al.14, for LaCo$_{0.5}$Fe$_{0.5}$O$_3$ from McCready et al.15 and for LaCo$_{0.5}$Ni$_{0.5}$O$_3$ from Vyshatko et al.16.

Figure S3: Percent mass change as a function of time subjected to 873, 1073 and 1273 K in 1% CO in CO$_2$ ($p_{O_2} = 1.88\times10^{-21}$, 3.79×10^{-15} and 7.75×10^{-11} bar O$_2$, respectively) for oxidation experiments of LaCo$_{0.5}$Fe$_{0.5}$O$_3$, LaFe$_{0.5}$Ni$_{0.5}$O$_3$, LaCo$_{0.5}$Ni$_{0.5}$O$_3$, LaFeO$_3$, YMnO$_3$, YFeO$_3$ and YCo$_{0.5}$Fe$_{0.5}$O$_3$.

Figure S4: Percent mass change as a function of time subjected to 1573 K in 1×10^{-4}, 3.04×10^{-4} and 5.07×10^{-4} bar O$_2$ for reduction experiments of LaCo$_{0.5}$Fe$_{0.5}$O$_3$, LaFe$_{0.5}$Ni$_{0.5}$O$_3$, LaCo$_{0.5}$Ni$_{0.5}$O$_3$, LaFeO$_3$, YMnO$_3$, YFeO$_3$ and YCo$_{0.5}$Fe$_{0.5}$O$_3$.
Figure S5: δ_{red} and δ_{ox} for YCo$_{0.5}$Fe$_{0.5}$O$_3$, LaFe$_{0.5}$Ni$_{0.5}$O$_3$, LaCo$_{0.5}$Ni$_{0.5}$O$_3$, YMnO$_3$, YFeO$_3$, and LaCo$_{0.5}$Fe$_{0.5}$O$_3$. δ_{red} results from reduction at 1573 K and 5.07$\times$$10^{-4}$, 3.04$\times$$10^{-4}$ and 1$\times$$10^{-4}$ bar O$_2$ (beige bars, from left to right). δ_{ox} results from oxidation at 873, 1073 and 1273 K and 1% CO in CO$_2$ ($p_{O_2} = 1.88\times10^{-21}$, 3.79×10^{-15} and 7.75×10^{-11} bar O$_2$, respectively, blue bars).

Figure S6: Percent mass change as a function of time at 873, 1073 and 1273 K in 1% CO in CO$_2$ ($p_{O_2} = 1.88\times10^{-21}$, 3.79×10^{-15} and 7.75×10^{-11} bar O$_2$, respectively) and 100% CO$_2$ ($p_{O_2} = 3.67\times10^{-9}$, 4.63×10^{-7} and 1.27×10^{-5} bar O$_2$, respectively) for oxidation experiments of LaFe$_{0.5}$Ni$_{0.5}$O$_3$, LaCo$_{0.5}$Ni$_{0.5}$O$_3$ and YCo$_{0.5}$Fe$_{0.5}$O$_3$.
Figure S7: Percent mass change as a function of time at 873, 1073 and 1273 K in 1% CO in CO\(_2\) (\(p_{O_2} = 1.88\times10^{-21}, 3.79\times10^{-15}\) and 7.75\(\times10^{-11}\) bar O\(_2\), respectively) for oxidation experiments of YFeO\(_3\), YCo\(_{0.1}\)Fe\(_{0.9}\)O\(_3\), YCo\(_{0.3}\)Fe\(_{0.7}\)O\(_3\) and YCo\(_{0.5}\)Fe\(_{0.5}\)O\(_3\).

Figure S8: Percent mass change as a function of time at 1573 K in 1\(\times10^{-4}\), 3.04\(\times10^{-4}\) and 5.07\(\times10^{-4}\) bar O\(_2\) for reduction experiments of YFeO\(_3\), YCo\(_{0.1}\)Fe\(_{0.9}\)O\(_3\), YCo\(_{0.3}\)Fe\(_{0.7}\)O\(_3\) and YCo\(_{0.5}\)Fe\(_{0.5}\)O\(_3\).

iv. TGA

Figure S9: Percent mass change as a function of time for BaCoO\(_3\), SrCoO\(_3\), BaMnO\(_3\), SrMnO\(_3\) and SrTiO\(_3\).
v. HT-XRD for material stability

Figure S10: HT-XRD spectra in CO₂ between 310 and 1275 K of a) SrTiO₃ (peak labels from Howard et al.¹⁷) and b) SrCoO₃ (peak labels from Wang et al.¹⁸, Zeng et al.¹⁹, Saito et al.²⁰, Hanawalt et al.²¹ and Stromme et al.²²), c) SrMnO₃ (peak labels from Kuroda et al.²³), d) BaCoO₃ (peak labels from Jacobson et al.²⁴, Liu et al.²⁵, Stromme et al.²², Bell et al.²⁶ and Saito et al.²⁰) and e) BaMnO₃ (peak labels from Negas et al.²⁷, Liu et al.²⁸ and McMurdie et al.²⁹and f) ratio between ΣE_p, carb and ΣE_i, carb for 36 ABO₃-type perovskites with divalent A-cations (round symbols), with SrTiO₃, SrCoO₃, SrMnO₃, BaCoO₃ and BaMnO₃ highlighted in orange, red, light green, dark green and light blue, respectively.
Figure S11: HT-XRD spectra in 0.2 bar O_2 between 310 and 1275 K of a) SrTiO$_3$ (peak labels from Howard et al.17) and b) SrCoO$_3$ (peak labels from Wang et al.18, Zeng et al.19, Davey et al.20, Hanawalt et al.21, Saito et al.20, Takeda et al.31 and Liu et al.35), c) SrMnO$_3$ (peak labels from Kuroda et al.23), d) LaAlO$_3$ (peak labels from Lehnert et al.32), e) BaCoO$_3$ (peak labels from Jacobson et al.24 and Spitsbergen et al.13), f) BaMnO$_3$ (peak labels from Negus et al.27 and McMurdie et al.29) and g) ratio between ΣE_p,$_{\text{phase}}$ and ΣE_r,$_{\text{phase}}$ for 63 ABO$_3$-type perovskites with divalent A-cations (round symbols) and trivalent and tetravalent A-cations (square symbols), with SrCoO$_3$, SrTiO$_3$, SrMnO$_3$, BaCoO$_3$, BaMnO$_3$ and LaAlO$_3$ highlighted in orange, red, light blue, light green, dark green and dark blue, respectively.
vi. RT-XRD

Figure S12: RT-XRD spectra before and after TGA with CO\textsubscript{2} of a) SrTiO\textsubscript{3} (peak labels from Howard \textit{et al.}12), b) SrMnO\textsubscript{3} (peak labels from Kuroda \textit{et al.}23), c) SrCoO\textsubscript{3} (peak labels from Takeda \textit{et al.}31, Grenier \textit{et al.}34 and Stromme \textit{et al.}22), d) BaMnO\textsubscript{3} (peak labels from Negas \textit{et al.}27 and Bell \textit{et al.}26) and e) BaCoO\textsubscript{3} (peak labels from Jacobson \textit{et al.}24 and Hanawalt \textit{et al.}21).
Figure S13: HAADF STEM images of BaCoO₃: a) material flakes (bright areas) suspended over the vacuum window in the amorphous carbon support foil (the dark grey left part of the micrograph), and b-h) the drift corrected, elemental maps and their overlays.
Figure S14: HAADF STEM images of SrTiO₃: a) material flakes (bright areas) suspended over the vacuum window in the amorphous carbon support foil (the dark grey left part of the micrograph), and b-i) the drift corrected, elemental maps and their overlays.
Figure S15: HAADF STEM images of SrCoO$_3$: a) material flakes (bright areas) suspended over the vacuum window in the amorphous carbon support foil (the dark grey left part of the micrograph), and b-i) the drift corrected, elemental maps and their overlays.
Figure S16: HAADF STEM images of SrMnO$_3$: a) material flakes (bright areas) suspended over the vacuum window in the amorphous carbon support foil (the dark grey left part of the micrograph), and b-f) the drift corrected, elemental maps and their overlays.

b. Thermochemical equilibrium analysis

Thermochemical data35 was extrapolated for CeO$_2$ \geq 1300 K, Co$_3$O$_4$ \geq 1300 K, CuO \geq 1400 K, Fe$_2$O$_3$ \geq 1800 K, Mn$_3$O$_4$ \geq 1900 K, Mn$_2$O$_3$ \geq 1500 K, MoO$_3$ \geq 1500 K, Na$_2$O$_2$ \geq 1000 K, RhO \geq 1200 K, Rh$_2$O$_3$ \geq 1400 K, RuO$_2$ \geq 1400 K, Sb$_2$O$_3$ \geq 1800 K, SbO$_2$ \geq 1300 K, SnO \geq 1400 K, SnO$_2$ \geq 1600 K, Tl$_2$O \geq 1100 K, and Tl$_2$O$_3$ \geq 1200 K using second-order polynomial regressions with R2 between 0.99932 and 0.99998.

Table S5. Enthalpies of reduction at 298 K (Δh_{0}°) and Gibbs free energies of the oxide reduction at 298 K (Δg_{0}°) and oxide oxidation at 298 K ($-\Delta g_{0}^{\circ}$) of 27 solid metal oxide and six metal/metal oxide pairs at 1 bar, calculated from experiment-derived tabulated thermochemical data.35

Product of the oxide oxidation	Reactant of the oxide oxidation	Δh_{0}° (kJ mol$^{-1}$)	Δg_{0}° (kJ mol$^{-1}$)	$-\Delta g_{0}^{\circ}$ (kJ mol$^{-1}$)
Ag$_2$O	Ag	62.20	21.63	492.74
Au$_2$O$_3$	Au	-53.84	-51.86	566.22
CeO$_2$	Ce$_2$O$_3$	762.33	685.67	-171.30
Co$_3$O$_4$	CoO	392.38	304.62	209.75
Compound	Metal	Value 1	Value 2	Value 3
----------	-------	---------	---------	---------
Cu₂O	Cu	237.77	217.06	297.31
CuO	Cu₂O	351.62	295.25	219.12
Fe₂₃₇.₇₇O	FeO	604.50	521.81	-7.44
Fe₂O₃	Fe₂O₄	471.96	392.85	121.52
Fe₂O₄	FeO	464.27	389.07	125.29
Mn₂O₄	MnO	202.82	153.75	360.61
Mn₂O₃	Mn₃O₄	312.29	269.89	244.48
MoO₃	MoO₂	190.45	141.08	373.29
Na₂O	Na₂O	750.61	694.51	-180.14
NbO₂	NbO	619.23	574.94	-60.57
Nb₂O₅	NbO₂	345.02	331.81	182.55
Rh₂O₃	RhO	305.01	253.02	261.35
RuO₂	Ru	338.09	319.70	194.67
Sb₂O₃	Sb₂O₃	590.11	526.30	-11.93
SnO₂	SnO	871.11	814.54	-300.17
Ti₂O₃	TiO	711.28	666.23	-151.86
Ti₃O₅	Ti₃O₃	753.96	739.75	-225.38
Ti₄O₇	Ti₄O₅	748.93	689.21	-174.85
Ti₅O₇	Ti₅O₇	185.40	162.72	351.65
Tl₂O₃	Tl₂O	710.44	661.25	-146.89
V₂O₃	VO	416.73	358.81	155.56
V₂O₄	V₂O₃	246.86	201.81	312.56
V₂O₅	V₂O₄	531.83	485.47	28.90
WO₂₋₇₂	WO₂	432.34	387.67	126.70
WO₂₋₉₂	WO₂₋₇₂	496.50	450.34	64.03
WO₂₋₉₆	WO₂₋₉₂	397.50	351.29	163.08
WO₃	WO₂₋₉₆	341.41	295.35	219.01
ZnO	Zn	700.92	640.95	-126.59
ZrO₂	Zr	1097.46	1039.72	-525.36
Table S6. Gibbs free energies of the oxide oxidation between 800 K and 1400 K (\(-\Delta_{\text{G}}^\circ\)) of 27 solid metal oxide and six metal/metal oxide pairs in 100% CO₂, calculated from experiment-derived tabulated thermochemical data.\(^{35}\)

Product of oxide oxidation	Reactant of oxide oxidation	800 K	900 K	1000 K	1100 K	1200 K	1300 K	1400 K
Ag₂O	Ag	490.92	497.25	505.33	515.03	526.23	541.29	558.97
Au₂O₃	Au	577.56	583.08	589.47	596.67	604.61	613.27	623.40
CeO₂	Ce₂O₃	-125.80	-115.85	-105.63	-95.13	-84.38	-76.34	-50.44
Co₃O₄	Co	287.61	304.33	320.80	336.84	352.36	362.51	372.32
CuO	Cu₂O	313.71	315.71	317.43	318.88	320.09	321.09	317.25
Cu₂O₃	Cu	219.73	219.26	218.81	218.43	218.086	217.79	217.55
Fe₉₉₅₆O₆	FeO	38.34	43.88	48.67	53.27	57.90	62.69	67.67
Fe₂O₃	Fe₂O₄	171.16	183.63	195.69	207.27	218.82	230.22	241.41
Fe₃O₄	FeO	164.25	171.68	178.94	186.01	192.88	199.51	205.91
Mn₉₉₅₆O₆	MnO	353.08	351.20	349.24	347.21	345.09	342.90	340.62
Mn₂O₃	Mn₂O₄	224.972	220.67	216.29	209.54	195.68	181.52	167.12
MoO₃	MoO₂	364.20	360.41	354.82	348.06	339.60	330.28	319.71
Na₂O₂	Na₂O₃	-176.95	-177.13	-177.58	-178.40	-180.10	-182.01	-184.02
Nb₂O₃	NbO	-75.57	-78.40	-80.91	-82.88	-83.22	-83.24	-83.12
Nb₂O₅	Nb₂O₃	216.17	223.26	230.46	237.71	248.63	259.70	267.07
Rh₂O₃	RhO	256.95	255.48	253.91	252.25	250.52	248.72	245.13
Ru₂O₃	Ru	221.49	228.92	245.83	266.49	287.28	303.34	319.66
Sb₂O₃	Sb₂O₄	4.34	6.15	7.79	9.30	10.72	12.06	15.62
Sn₂O₅	SnO	-301.94	-303.98	-306.25	-308.65	-311.13	-313.17	-314.30
Ti₉₉₅₆O₆	TiO	-192.09	-199.22	-205.31	-210.56	-215.16	-219.27	-223.04
Ti₂O₃	Ti₂O₅	-206.79	-198.92	-191.82	-185.26	-178.99	-172.79	-166.46
Ti₃O₆	Ti₃O₉	-160.04	-156.27	-152.17	-147.73	-142.97	-137.82	-132.49
TiO₂	TiO₃	360.56	363.52	368.37	372.11	374.96	378.71	382.62
Ti₂O₆	Ti₂O₉	-154.02	-155.66	-157.25	-158.75	-160.16	-161.474	-162.69
Product of the oxide oxidation	Reactant of the oxide oxidation	-\(\Delta G_{0}^{\circ}\) (kJ mol\(^{-1}\))						
-------------------------------	---------------------------------	-------------------------------						
		800 K	900 K	1000 K	1100 K	1200 K	1300 K	1400 K
Ag\(_2\)O	Ag	521.55	531.71	543.62	557.15	572.17	591.07	612.58
Au\(_2\)O	Au	608.19	617.54	627.76	638.79	650.56	663.05	677.00
CeO\(_2\)	CeO\(_2\)	-95.17	-81.39	-67.34	-53.01	-38.44	-17.57	3.17
Co\(_3\)O \(_4\)	CoO	318.24	338.79	359.09	378.96	398.28	412.28	425.92
CuO	CuO	344.34	350.17	355.72	361.00	366.04	370.86	370.86
Cu\(_2\)O	Cu	250.36	253.72	257.10	260.55	264.03	267.57	271.16
Fe\(_{1.97}\)O	FeO	68.97	78.34	86.96	95.39	103.85	112.46	121.28
Fe\(_3\)O \(_4\)	FeO	201.79	218.09	233.98	249.39	264.77	280.00	295.02
Fe\(_2\)O	FeO	194.89	206.14	217.23	228.13	238.83	249.29	259.51
Mn\(_3\)O	MnO	383.719	385.66	387.53	389.33	391.04	392.68	394.22
Mn\(_2\)O \(_3\)	MnO	255.68	255.13	254.58	251.66	241.63	231.30	220.72
MoO	MoO \(_2\)	394.83	394.87	393.11	390.18	385.54	380.05	373.32
Na\(_2\)O	Na\(_2\)O	-146.32	-142.67	-139.29	-136.28	-134.15	-132.24	-130.42

Table S7. Gibbs free energies of the oxide oxidation between 800 K and 1400 K (\(-\Delta G_{0}^{\circ}\)) of 27 solid metal oxide and six metal/metal oxide pairs at 1% CO in CO\(_2\), calculated from experiment-derived tabulated thermochemical data.\(^{15}\)
Product of the oxide reduction	Reactant of the oxide reduction	Δ\(\Phi_{O_2}^{\circ}\) (kJ mol\(^{-1}\))
		1200 K
		1300 K
		1400 K
		1500 K
		1600 K
		1700 K
		1800 K
Ag\(_2\)O	Ag	-261.70
		-340.09
		348.92
		-87.81
		-55.562
		46.44
		206.62
Au\(_2\)O	Au	-301.65
		-373.63
		306.99
		-122.86
		-81.44
		21.85
		176.96

Table S8. Gibbs free energies of the oxide reduction between 1200 K and 1800 K (\(\Delta\Phi_{O_2}^{\circ}\)) of 27 solid metal oxide and six metal/metal oxide pairs at \(pO_2 = 10^{-4}\) bar, calculated from experiment-derived tabulated thermochemical data.\(^{35}\)
Compound	Oxidation State	Energy (kJ/mol)
CeO₂	0	-344.15
Co₃O₄	2	-387.87
CuO	1	-432.71
Cu₂O	1	-478.63
Fe₂O₃	3	-525.54
Fe₃O₄	4	-261.70
FeO	0	-481.00
MnO₃	3	-344.15
Mn₂O₅	3	-387.87
MoO₃	4	-432.71
Na₂O₂	2	-344.15
NbO₂	3	-525.54
Nb₂O₃	4	-261.70
Rh₂O₃	2	-301.65
RuO₂	4	-344.15
Sb₂O₃	5	-387.87
SnO₂	4	-432.71
Ti₂O₃	3	-478.63
Ti₃O₅	4	-525.54
Ti₄O₇	5	-261.70
TiO₂	0	-481.00
TiO₃	3	-301.65
TiO₅	4	-344.15
V₂O₅	2	-432.71
V₂O₃	3	-478.63
WO₂	6	-525.54
WO₂₉	7	-261.70
WO₃₉₆	8	-301.65
ZnO	0	-387.87
ZrO₂	0	-432.71
3. References

1. Medford, A. J.; Vojvodic, A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J. K., *J. Catal.*, 2012, 290, 108-117.
2. Medford, A. J.; Wellendorff, J.; Vojvodic, A.; Studt, F.; Abild-Pedersen, F.; Jacobsen, K. W.; Bligaard, T.; Nørskov, J. K., *Science*, 2014, 345, 197-200.
3. Tsui, F.; Smoak, M. C.; Nath, T. K.; Eom, C. B., *Appl. Phys. Lett.*, 2000, 76, 2421-2423.
4. Hardy, J. S.; Templeton, J. W.; Edwards, D. J.; Lu, Z. G.; Stevenson, J. W., *J. Power Sources*, 2012, 198, 76-82.
5. Hashimoto, S.; Fukuda, Y.; Kuhn, M.; Sato, K.; Yashiro, K.; Mizusaki, J., *Solid State Ionics*, 2011, 186, 37-43.
6. Bezdicka, P.; Wattiaux, A.; Grenier, J. C.; Pouchard, M.; Hagenmuller, P., *Z. Anorg. Allg. Chem.*, 1993, 619, 7-12.
7. Zeng, Z. H.; Calle-Vallejo, F.; Mogensen, M. B.; Rossmeisl, J., *PCCP*, 2013, 15, 7526-7533.
8. Michalsky, R.; Botu, V.; Hargus, C. M.; Peterson, A. A.; Steinfeld, A., *Adv. Energy Mater.*, 2014, 4, 1401082.
9. Rossmeisl, J.; Logadottir, A.; Nørskov, J. K., *Chem. Phys.*, 2005, 319, 178-184.
10. Wolcyrz, M.; Kepinski, L., *J. Solid State Chem.*, 1992, 99, 409-413.
11. Smith, W. L.; Hobson, A. D., *Acta Crystallogr B*, 1973, B 29, 362-363.
12. du Boulay, D.; Maslen, E. N., *Acta Crystallogr B*, 1995, B 51, 921-929.
13. Gibbs, A.S.; Knight, K.S.; Lightfoot, P., *Phys. Rev. B*, 2011, 83, 094111.
14. Mareño, M.; Dernier, P. D., *Mater. Res. Bull.*, 1971, 6, 23-29.
15. McCreary, D. E.; Kingsley J. J., *Powder Diffr.*, 1994, 9, 143-145.
16. Vyshatko, N. P.; Kharton, V. V.; Shaula, A. L.; Marques, F. M. B., *Powder Diffr.*, 2003, 18, 159-161.
17. Howard, S. A.; Yau, J. K.; Anderson, H. U., *J. Appl. Phys.*, 1989, 65, 1492-1498.
18. Wang, Y.; Yu, L.; Wang, J. H.; Chen, L. W.; Gao, W. G.; Du, X. L.; Biao, L. H., *Mater. Lett.*, 2012, 75, 39-41.
19. Zeng, P. Y.; Ran, R.; Zhihao, C. A. H.; Zhou, W.; Gu, H. X.; Shao, Z. P.; Liu, S. M., *J. Alloys Compd.*, 2008, 455, 465-470.
20. Saito, S.; Nakahigashi, K.; Shimomura, Y., *J. Phys. Soc. Jpn.*, 1966, 21, 850-851.
21. Hanawalt, J. D.; Rinn, H. W.; Frevel, L. K., *Ind. Eng. Chem. Anal. Ed.*, 1938, 10, 457-512.
22. Stromme, K. O., *Acta Chem. Scand. A*, 1975, 29, 105-110.
23. Kuroda, K.; Ishizawa, N.; Mizutani, N.; Kato, M., *J. Solid State Chem.*, 1981, 38, 297-299.
24. Jacobson, A. J.; Hutchison, J. L., *J. Solid State Chem.*, 1980, 35, 334-340.
25. Liu, X.; Prewitt, C. T., *Phys. Chem. Miner.*, 1990, 17, 168-172.
26. Bell, A. M. T., *Supercond Sci Tech*, 1990, 3, 55-61.
27. Negash, T.; Roth, R. S., *J. Solid State Chem.*, 1971, 3, 323-339.
28. Liu, L. G., *J. Appl. Phys.*, 1971, 42, 3702.
29. McMurdie, H. F.; Golovato, E., *J Res Nat Bur Stand*, 1948, 41, 589-600.
30. Davey, W. P., *Phys. Rev.*, 1925, 25, 753-761.
31. Saito, S.; Nakahigashi, K.; Shimomura, Y., *J. Phys. Soc. Jpn.*, 1966, 21, 850-851.