Experimental Glomerular Endothelial Injury In Vivo

George Haddad¹, Lin Fu Zhu², David C. Rayner³, Allan G. Murray¹*

1 Department of Medicine, University of Alberta, Edmonton, Alberta, Canada, 2 Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, 3 Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada

Abstract

The microvascular endothelium of the kidney glomerulus is injured in Shiga-like toxigenic bacterial infection, genetic or acquired loss of complement regulatory protein function, and alloimmune responses of solid- or bone marrow transplantation. Existing models of diseases with glomerular endothelial cell (EC) injury, collectively grouped as thrombotic microangiopathies, are problematic, impeding investigation of the mechanisms of microvascular defense and repair. To develop a model of glomerular endothelial injury in the mouse, we conjugated the M. oreades lectin to the cytotoxin, saporin, (LS) to selectively injure the glomerular endothelium. Injury of the microvasculature was evaluated by light, immunofluorescence, and electron microscopy, and by quantitative RT-PCR of cell-type specific transcripts. Renal function was evaluated by quantification of serum creatinine. The toxin conjugate induced apoptosis of microvascular ECs in vitro, and subtle histologic features of thrombotic microangiopathy in vivo that were enhanced by co-injection of 50 μg/kg LPS. Among LS/LPS-treated animals, loss of glomerular EC staining correlated with decreased expression of EC-specific transcripts, and impaired kidney function. Selective injury of the glomerular microvasculature with LS toxin conjugate and LPS elicits histologic features of thrombotic microangiopathy and acute kidney failure.

Introduction

The vascular endothelium is the principal target of injury in a group of disorders collectively termed thrombotic microangiopathies (TMA). TMA is initiated by diverse processes including uncontrolled complement protein activity caused by inherent or acquired defects in complement regulatory proteins, cytotoxic drugs, or immune responses to allologic endothelium in the context of allogeneic bone marrow or solid organ transplantation. The most common cause of TMA is Shiga-toxigenic (Stx) E. coli infection. TMA injury occurred in about 25% of infected cases to contribute to the high death rate observed in the recent German epidemic [1,2], and may be associated with chronic renal dysfunction among survivors [3,4]. Glomerular endothelial injury associated with the atypical hemolytic-uremic syndrome frequently leads to end stage kidney failure [5]. Similarly, transplant-associated TMA is a significant cause of morbidity, mortality, and kidney allograft loss [6,7].

In these disorders, acute microvascular thrombosis of the kidney glomerulus that compromises kidney function is a presenting feature in most cases. In vitro studies indicate Stx binds human microvascular endothelial cells (EC) to induce apoptosis [8–12], but a variety of subtle effects on endothelial gene transcription induced by sublethal toxin concentrations may also occur [13,14]. In addition, systemic activation of coagulation proteins both precedes and correlates with subsequent microvascular thrombosis in Shiga toxigenic infection, consistent with a parallel contribution of direct EC injury, and inflammation-driven prothrombotic effects to kidney pathology [15]. Study of the mechanisms of glomerular microvascular injury and repair following Stx administration to rodents, however, are confounded by predominant injury of the kidney tubular epithelial cells in vivo in the absence of glomerular EC injury [16,17].

In transplantation, both classical T cell-mediated and antibody-mediated (ABMR) allograft rejection target the microvasculature, recognized in clinical biopsy specimens by features such as subendothelial accumulation of lymphocytes in the allograft arterial intima, glomerulitis, and complement C4d labeling of the endothelium [18]. Endothelial injury in rejection can also be fulminant, typically associated with combined acute cell- and alloantibody-mediated attack, resulting in widespread loss of the endothelium, microvascular thrombosis, and parenchymal cell injury as a consequence of
the disturbed microcirculation [19–23]. Isolated allo-antibody-mediated injury has proven difficult to model in rodents [24,25].

We describe a mouse model of acute microvascular endothelial injury selective for kidney glomerular endothelium with synchronized vascular damage and repair. Delivery of a toxin to the glomerular endothelium induces a wave of injury characterized by microvascular thrombosis and fulminant kidney failure. At sublethal doses, glomerular fibrin deposition, microvascular cell apoptosis and EC loss are evident.

Materials and Methods

Animals and ethics statement

Fourteen to 18 week old C57BL/6 female mice (Jackson Laboratory) were maintained according to Canadian Council for Animal Care and Use Committee of the University of Alberta.

Reagents

The following products were purchased: pure and biotinylated M. oreades lectin A (MOA) (EY labs; San Mateo, CA); LPS O55:B5, saporin, and the biotinylated L. esculentum lectin (Sigma-Aldrich; St. Louis, MO); rabbit antibody to cleaved caspase 3 (Cell Signaling Technology; Boston, MA); rat anti-mouse CD31 (BD Pharmingen; Mississauga, ON); rabbit anti-mouse fibrinogen (GenWay; San Diego, CA); anti-mouse podocalyxin (R&D systems); anti-mouse podocin (Santa Cruz Biotechnology; Santa Cruz, CA); goat anti-rabbit, –rat, or -mouse IgG conjugated to FITC, or DyLight 549 (Jackson Immunoresearch). The active MoA lectin was visualized using Alexa Fluor 594-conjugated streptavidin (Jackson ImmunoResearch) and confocal microscopy. In subsequent experiments, where indicated, MOA lectin (500 μg/kg), LPS (50 μg/kg), or LS (200 or 500 μg/kg) ± LPS in 100 μL were introduced via retrograde carotid artery injection.

Histology and immunohistochemical staining

Kidney, heart, lung, liver, spleen, skeletal muscle, and brain were collected and either snap frozen in OCT or placed in IHC zinc fixative (BD Pharmingen). The tissues were stained with Hematoxylin & Eosin (H & E) and with periodic acid-Schiff (PAS). For immunofluorescence staining, 5 μm frozen sections were stained for fibrin, CD31, podocalyxin, podocin, CD42, CD45, or with L. esculentum lectin to specifically label glomerular and peritubular capillary endothelium, and imaged with a spinning disc confocal microscope (Quorum Wave FX-X1). For transmission electron microscopy, tissues ~1 mm² from LPS/ LS or saline injected mice were fixed using Karnovsky fixative solution (Poly Scientific, New York, NY) and embedded in the low viscosity embedding Spur's Kit (Electron Microscopy Sciences, Hatfield, PA) according to manufacturer's instructions. Ultra-thin sections were stained with uranyl acetate and lead citrate and viewed using a Philips 410 transmission electron microscope.

Real-time PCR

All PCR primers were designed using Primer Express software (ABI) and produced by Integrated DNA Technologies (San Diego, CA). See Table 1 for a list of the primers used in this study. One μg of total RNA was reversed transcribed into cDNA. SYBR green was used for the real-time PCR (7500 thermocycler, ABI). The data were analyzed using the ΔΔCt relative quantitation method.

Creatinine analysis

Serial serum samples were sent to the Metabolomics Innovation Center at the University of Alberta to apply a quantitative analysis of creatinine using a combination of direct injection mass spectrometry with reverse-phase LC-MS/MS (AbsoluteIDQ Kit; Biocrates Life Sciences AG, Austria). The serum samples were analyzed with the AbsoluteIDQ kit as directed by the manufacturer.

Semiquantitative analysis of the renal injury

The histology slides were evaluated by a renal pathologist, DCR, in a blinded fashion. Up to thirty consecutive glomeruli in equatorial section were scored per animal. The kidney sections were scored for glomerular injury, including fibrin and apoptotic cells within the capillary lumen, as a fraction of total glomeruli evaluated as described [27]. Tubular injury was scored using a...
mesangial cells or podocytes (Figure 1C-H). We observed no

Table 1. Primers used for qRT-PCR.

Gene	Forward	Reverse
CD31	AGGACAGTCCGATGTTGTATGAA	AAGACCCGAGGTCAGAAGAA
TIE2	GGGCGAAAAAGGTTTTG	CGAAGTCACTCTACAGAAATAA
eNOS	TGTCTGGGCGATGTGCTA	CATGCGGCCCTCGTTG
Nephrin	GCGAGGCTCTGGAAGC	CACTTGCTTCCAGAACTCT
KIM1	CCUGACCAGAACCCTACTAAG	TGCTCACAGAGAGCAGTAGCA

doi: 10.1371/journal.pone.0078244.t001

semi-quantitative scale 0-4 (0- normal, 1- ≤ 25 %, 2- ≤ 50 %, 3-

Staining of tissue sections from lung, liver, skeletal muscle or

brain (data not shown).

To emulate the pro-coagulant environment associated with

many thrombotic microangiopathies, we opted to study mice

co-treated with LPS at a threshold dose for tissue factor

induction in the kidney [27]. In the first set of experiments, Bl/6

toxin was treated with saporin, unconjugated MOA lectin, LS

conjugate 500 µg/kg, LPS (50 µg/kg), LPS + LS, or saline, then

tissues were harvested at 12 h and examined by a blinded

observer (DCR) for evidence of thrombotic microvascular

injury. No injury was observed among animals treated with

saporin, MOA lectin, or LS alone. Treatment with the LS

conjugate alone, or as shown in Figure 2, treatment with LPS

and the LS conjugate, elicited diffuse glomerular capillary

thrombosis, but no injury of the heart microvasculature.

Glomeruli from three LPS/ LS-injured mice were evaluated for

quantitative analysis. We found 72 ± 14% of glomeruli from

injected mice showed microvascular thrombosis compared to

none from control mice (n=90 glomeruli; p<0.05). Glomerular

capillaries stained for fibrin by immunohistochemistry, and fibrin

cut was identified in glomerular capillary loops on transmission

electron microscopy of LPS/ LS-treated mice (Figure 2C, D, E).

The fenestrated EC was absent in many glomerular capillaries

examined by electron microscopy (Figure 2D), and luminal

cells adjacent to the basement membrane stain for activated

caspase 3 by immunohistochemistry (Figure 2F). In contrast,

intact podocyte foot process distribution was evident (Figure 2D).

Occasional shistocytes could be identified on blood

smears. No thrombosis of peritubular capillaries or injury to the

tubular epithelial cells was evident at this early time-point. This

data demonstrates that LS treatment induces rapid, selective

injury of the glomerular endothelium resulting in thrombotic

microangiopathy. However, at the 500 µg/kg LS dose, LPS/ LS

and LS treatments were uniformly lethal, limiting the utility for

experimentation (Figure 3).

In subsequent experiments, mice were treated with 200

µg/kg LS, or LPS/ LS, to characterize the functional

consequence of sub-lethal toxin-induced glomerular endothelial

injury. This lower dose of LS was tolerated (Figure 3A, B), and

glomerular injury was evaluated (Figure 3C). Sub-lethal injury

to the microvasculature is reflected at Day 4 by loss of

microvascular ECs and regenerative changes most evident in

the glomerular endothelial and tubular epithelial cell

compartments of the kidney of LPS/ LS-treated mice. As shown

in Figure 4, within the glomerulus we identified intraluminal

apoptotic cells, frequently positioned adjacent to the capillary

wall (Figure 4A). Mononuclear cells were seen in the

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e78244

Statistical analysis

The data are expressed as mean ± SD, and analyzed using

single or 2-way ANOVA with pairwise comparisons evaluated

posthoc using Tukey’s test (GraphPad PRISM, La Jolla, CA).

Kaplan-Meier curves were analyzed by the log-rank test.

Nonparametric data were analyzed with the Mann-Whitney

test. A

factor-starved MCEC induced apoptosis, indicated by activated

caspase 3 staining, of 30.3 ± 5.0% of LS-treated cells versus

none from control mice (n=90 glomeruli; p<0.05). Glomerular

capillaries stained for fibrin by immunohistochemistry, and fibrin
}

clot was identified in glomerular capillary loops on transmission

electron microscopy of LPS/ LS-treated mice (Figure 2C, D, E).

The fenestrated EC was absent in many glomerular capillaries

examined by electron microscopy (Figure 2D), and luminal

cells adjacent to the basement membrane stain for activated

caspase 3 by immunohistochemistry (Figure 2F). In contrast,

intact podocyte foot process distribution was evident (Figure 2D).

Occasional shistocytes could be identified on blood

smears. No thrombosis of peritubular capillaries or injury to the

tubular epithelial cells was evident at this early time-point. This

data demonstrates that LS treatment induces rapid, selective

injury of the glomerular endothelium resulting in thrombotic

microangiopathy. However, at the 500 µg/kg LS dose, LPS/ LS

and LS treatments were uniformly lethal, limiting the utility for

experimentation (Figure 3).

In subsequent experiments, mice were treated with 200

µg/kg LS, or LPS/ LS, to characterize the functional

consequence of sub-lethal toxin-induced glomerular endothelial

injury. This lower dose of LS was tolerated (Figure 3A, B), and

glomerular injury was evaluated (Figure 3C). Sub-lethal injury

to the microvasculature is reflected at Day 4 by loss of

microvascular ECs and regenerative changes most evident in

the glomerular endothelial and tubular epithelial cell

compartments of the kidney of LPS/ LS-treated mice. As shown

in Figure 4, within the glomerulus we identified intraluminal

apoptotic cells, frequently positioned adjacent to the capillary

wall (Figure 4A). Mononuclear cells were seen in the

glomerular capillaries (0.76 ± 0.24 cells/glomerulus among LPS/LS treated mice versus 0.36 ± 0.17 cells/glomerulus among PBS controls; n=5 mice/group; p = NS), and PMN were rarely seen. However, only rare CD45-positive leukocytes or CD42-positive platelets were identified in the glomerular microcirculation of LPS/LS-treated or control mice by immunofluorescence staining of frozen sections. Immunostaining for EC was discontinuous in glomerular capillaries of mice treated with the sub-lethal dose of LPS/LS (Figure 5). Fibrin deposition was evident around the margin of the glomerular capillary loops in immunofluorescence microscopy (Figure 5). In contrast, LS 200 μg/kg given without LPS resulted in no mortality, and little change in glomerular immunostaining for EC or fibrin compared to controls (data not shown).

In agreement with these features of glomerular EC injury, the abundance of constitutively expressed EC-specific transcripts, CD31, TIE2, and NOS3, in the kidney cortex was reduced ~40% in sub-lethal LPS/LS-treated versus control mice (Figure 6). Glomerular podocyte foot processes were focally effaced on EM images at Day 4 after injury, but the podocyte-specific transcript nephrin was unchanged during the acute phase of injury between Day 0-4 in LPS/LS-treated animals versus controls (Figure 6).

Figure 1. MOA lectin binds the glomerular endothelium. Intravenous injection of MOA lectin labels heart microvascular endothelium (A), but after intra-arterial injection, the kidney glomerular (C, F) but not heart endothelium (B) is labeled. Endothelial cells are labeled with anti-CD31 (green; B (right panel), D), or MOA lectin (red; A, B (left panel), C, F). Double-labeled merged images of CD31 and MOA lectin (E) demonstrate overlapping distribution in the glomerulus. No overlap is identified between MOA lectin (F) and the podocyte marker, podocin (G) in the merged image (H).

doi: 10.1371/journal.pone.0078244.g001
Figure 2. Glomerular thrombotic microangiopathy develops after LPS/LS treatment. Kidneys were harvested 12 h after saline (A, C) or LPS/LS (500 μg/kg) treatment (B, D, E, F). Hematoxylin and eosin staining reveals widespread amorphous eosinophilic glomerular capillary thrombi (B), whereas red blood cells are seen in patent capillaries in (A). Transmission electron microscopy shows focal loss of glomerular endothelium (D), and capillary thrombosis (D, E), but preserved podocyte foot processes similar to the control (D versus C). Occasional cells in glomerular capillary lumens are found to stain for activated caspase 3 (F; inset: irrelevant antibody control). RBC- red blood cell; GEC- glomerular endothelial cell; FP- podocyte foot process; F- fibrin clot; bm- basement membrane.

doi: 10.1371/journal.pone.0078244.g002
Injury and regenerative change in the tubular cell compartment of the kidney was prominent at Day 4 as anticipated as a consequence of the disordered microcirculation in the sub-lethally injured animals (Figure 4B, C; Figure 7). Similarly, expression of KIM-1, a tubular epithelial cell stress gene, was elevated in both LS treatment groups at Day 4 after injury. At Day 7 after LPS/LS injury, pathologic features of tubular injury were resolving, and KIM-1 expression...
organ function represent a considerable health burden to changes are evident in the tubular (C) and glomerular capillary microangiopathy. The consequences of these disorders on increased in the lethal LPS/LS dose group, consistent with evidence of tubular epithelial injury and regeneration. (A) and tubules (B) after LS treatment. Regenerative mitotic changes are evident in the tubular (C) and glomerular capillary compartments (D).

Figure 4. Glomerular microvascular injury after sublethal LPS/LS treatment. Mice were treated with LPS/LS 200 μg/kg and tissues were harvested 4 days later and stained with PAS. Apoptotic cells (arrows) are seen in the glomerular capillaries (A) and tubules (B) after LS treatment. Regenerative mitotic changes are evident in the tubular (C) and glomerular capillary compartments (D).

doi: 10.1371/journal.pone.0078244.g004

Repaired the injured vascular endothelium was evident on Day 4 and Day 7 tissue sections in the sublethal LS injured group, reflected by mitotic figures within the glomerular capillaries (Figure 4C, D), normalization of glomerular and peritubular capillary immunostaining for EC and fibrin (Figure 5), and endothelial-specific gene expression (Figure 6) at Day 7. Serum creatinine, as a measure of kidney function, was increased in the lethal LPS/LS dose group, consistent with acute renal failure associated with glomerular TMA injury. The creatinine showed an intermediate rise in the LS 200 μg/kg dose groups versus baseline, and was normalizing by Day 7 (Figure 8).

Discussion

Endothelial injury of the kidney glomerular microvasculature is a key feature of diverse diseases resulting in thrombotic microangiopathy. The consequences of these disorders on organ function represent a considerable health burden to affected individuals. In particular, Stx-mediated glomerular EC injury in epidemic toxigenic E coli infections contributes to morbidity and mortality of both children and adults [1–4]. Moreover, among transplant recipients, cell-mediated allo-immune responses, and the more recently recognized antibody-mediated rejection, target the EC in kidney allografts [20]. Although low-grade injury is tolerated for a time, the cumulative burden of damage to the microvasculature ultimately limits kidney allograft survival [30–33]. Animal models of this disease are needed to develop an understanding of the mechanisms of endothelial defense, consequences of injury, and key repair mechanisms that might be exploited to minimize organ damage or prolong graft survival.

We describe a new model of temporally coordinated glomerular EC damage in the mouse, and characterize the immediate consequences of glomerular microvascular compromise on the kidney. With marked injury, widespread thrombosis of the glomerular capillaries is seen, followed by features of tubular injury and functional compromise of the kidney precipitating death in a few days. These features resemble the early phase of microvascular injury observed in clinical specimens with Stx- or alloantibody-mediated damage [20,21,23,34–37]. More limited endothelial injury, on the other hand, provokes moderate functional compromise associated with features of repair in the vascular and tubular cell compartments.

Other approaches to model thrombotic microangiopathy in the mouse have been developed. Mutations in complement regulatory proteins [38], or vascular endothelial growth factor [39] elicits asynchronous, chronic progressive microvascular thrombosis and ultimately death. Administration of Shiga-like toxins elicits acute kidney injury in the mouse [14,40], and directly damages kidney tubular epithelial, but not glomerular endothelial cells [16,17]. In a model of allo-immune EC injury, transplantation into CCR5-deficient mice sensitized to donor allo-antigen, elicits microvascular complement deposition and heart allograft rejection as a consequence of antibody binding to allogeneic EC and cardiac myocytes [24,25]. Selective injury of the microvasculature has been approached using lectins that label the endothelial glycocalyx after intravenous injection [41,42]. Concanavalin A, for example, binds endothelium from diverse microvascular beds in rodents, but selective injection into a renal artery followed by anti-concanavalin A antibody induces widespread microvascular injury associated with inflammatory changes in the glomerulus and peritubular capillaries [43].

These valuable models support investigations of the role of complement, alloantibody, and innate immune cell actions on endothelium, but often induce asynchronous complex injury that may not be selective for the kidney microvascular endothelium. Deficient expression of one or more components of the complement system in many inbred laboratory mouse strains may confound these approaches [44]. The current model has the strength of widespread, synchronized, and selective GEC injury resulting in reproducible TMA and compromised kidney function. The approach is less technically challenging than the concanavalin A model, since selective renal artery cannulation is not required. Like the Stx A subunit, the saporin moiety of the LS conjugate is known to inhibit ribosome-dependent translation, hence this injury model
Figure 5. Glomerular microvascular injury after sublethal LPS/LS treatment. L. esculentum lectin labeling of endothelium (upper panels, red) in glomerular (circled) and peritubular capillaries. Glomerular capillary fibrin immunostaining (lower panels, green) after LPS/LS treatment. Glomerular and peritubular capillary endothelial staining at day 4 appears inhomogeneous, with glomerular fibrin accumulation, and normalizes at day 7. Representative of 5 mice/group.

doi: 10.1371/journal.pone.0078244.g005

Figure 7. Tubular epithelial cell damage occurs after glomerular EC injury. Tubular epithelial cell effacement and regeneration is evident at day 4 after LPS/LS 200 μg/kg treatment (A). Features of tubular injury and repair are quantitated in (B) as described in Methods. Expression of the tubular epithelial cell stress gene KIM-1 is quantitated by qRT-PCR in (C). (n = 5 mice/group; * p<0.05 versus 200 μg/kg day 4 group; ** p<0.05 versus saline group).

doi: 10.1371/journal.pone.0078244.g007
closely emulates the mechanism of the human hemolytic uremic disease, but lacks the confounding effect of direct Stx toxicity to tubular epithelial cells [16,17,45].

The MOA lectin has been characterized to specifically bind to the Gal-α(1,3)Gal epitope on glycoproteins displayed on the glycocalyx of mouse glomerular endothelium [29]. Injection of the MOA lectin alone at high doses was reported to elicit proteinuria, but not features of diffuse TMA, consistent with our observations. In contrast to this previous report, we observed the lectin binding to the heart microvascular EC in vitro and in vivo in Bl/6 mice after iv injection, but selective kidney targeting could be achieved by systemic intra-arterial injection. Injury of the heart microvasculature is under study to model the effects of microvascular injury and repair in that organ.

Injury of the glomerular endothelium was evident in both the high- and low-dose LS treatment groups. At early timepoints, we observed focal loss of the glomerular endothelium and EC injury reflected by loss of fenestration on transmission electron microscopy, inhomogeneous glomerular EC immunostaining, and focal fibrin deposition in glomerular capillaries after LPS/LS treatment. This morphological data is supported by decreased transcript abundance of the characteristic constitutively-expressed endothelial genes CD31, TIE2, and eNOS3. In contrast, injury to the podocyte, tubular cell, and peritubular capillary compartments is evident after the GEC injury. Taken together this data indicates primary GEC injury induced by LPS/LS treatment, resulting in features of TMA.

The addition of low-dose LPS to the LS toxin conjugate enhanced the reproducibility of glomerular injury. A low dose challenge with LPS was used to promote a prothrombotic environment [27,40,46], and we observed no effect of LPS alone on the kidney histology or function, consistent with previous reports [17,40]. Although LPS alone has been used as a model of kidney injury in lethal septicemia, the dose of LPS administered here is ~100 fold lower. Nevertheless, LPS in combination with cycloheximide, a ribosome inhibitory toxin similar in action to saporin, is known to induce EC apoptosis in vitro [47,48], hence we also expect that EC injury in LS-treated animals was enhanced by LPS. Together these agents reproduce the two important components, EC injury and hypercoagulability, of the pathophysiology thought to be involved in the development of human thrombotic microangiopathy [15].

In summary, we describe a mouse model of selective glomerular endothelial injury that elicits the pathological features of TMA similar to those seen in Stx-mediated acute kidney injury, and antibody-mediated allograft rejection. The synchronized endothelial injury is associated with kidney dysfunction and should facilitate investigation of mechanisms underlying defense and repair of the microvasculature, and recovery of organ function.

Acknowledgements

The authors acknowledge the technical assistance of Yue Huang.

Author Contributions

Conceived and designed the experiments: GH AGM. Performed the experiments: GH LFZ. Analyzed the data: GH DCR AGM. Contributed reagents/materials/analysis tools: DCR. Wrote the manuscript: GH DCR AGM.
References

1. Frank C, Werber D, Cramer JP, Askan M, Faber M et al. (2011) Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med 365: 1771-1780. doi:10.1056/NEJMoA1106483. PubMed: 21669362.

2. Magnus T, Röther J, Simova O, Meier-Cillen M, Repentin J et al. (2012) The neurological syndrome in adults during the 2011 northern German E. coli serotype O104:H4 outbreak. Brain 135: 1650-1659. doi:10.1093/brain/aws090. PubMed: 22539260.

3. Oakes RS, Kirkham JK, Nelson ND, Siegler RL (2008) Duration of oliguria and anuria as predictors of chronic renal-renal sequelae in post-diastolic hemolytic uremic syndrome. Pediatr Nephrol 23: 1303-1308.

4. Siegler RL, Pavia AT, Christofferson RD, Milligan MK (1994) A 20-year population-based study of postdiastolic hemolytic uremic syndrome in Utah. Pediatrics 94: 35-40. PubMed: 8008534.

5. Fremeaux-Bacchi V, Fakhouri F, Garnier A, Bienaimé F, Dragon-Durey MA et al. (2011) Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol 8: 554-562. doi:10.2215/CJN.04790512. PubMed: 23070876.

6. Colvin RB (2007) Antibody-mediated renal allograft rejection: diagnosis and pathogenesis. [Review] [61 refs]. J Am Soc Nephrol 18: 1046-1056. doi:10.1681/ASN.2007010073. PubMed: 17360942.

7. Laskin BL, Goebel J, Davies SM, Jodele S (2011) Small vessels, big trouble in the kidneys and beyond: hematopoietic stem cell transplantation-associated thrombotic microangiopathy Blood 118: 1452-1462. doi:10.1182/blood-2011-02-321315. PubMed: 21596850.

8. Erwert RD, Zucker-Franklin D (1982) Pathologic effects of plasma from patients with thrombotic thrombocytopenic purpura on platelets and cultured vascular endothelial cells. Blood 60: 1030-1037. PubMed: 7052160.

9. Pipers AH, van den Setten PA, van den Heuvel LP, Assmann KJ, Dijkman HB et al. (2001) Verocytotoxin-induced apoptosis of human microvascular endothelial cells. J Am Soc Nephrol 12: 767-778. PubMed: 11274238.

10. Erwert RD, Winn RK, Harlan JM, Bannerman DD (2002) Shiga-like toxin inhibition of FLICE-like inhibitory protein expression sensitizes endothelial cells to bacterial lipopolysaccharide-induced apoptosis. J Immun 77: 4056-4074. doi:10.1128/JI.00679-08. PubMed: 19124603.

11. Siegler RL, Pavia AT, Christofferson RD, Milligan MK (1994) A 20-year population-based study of postdiastolic hemolytic uremic syndrome in Utah. Pediatrics 94: 35-40. PubMed: 8008534.

12. Fujii J, Wood K, Matsuda F, Carneiro-Filho BA, Schlegel KH et al. (2002) Acute humoral rejection in kidney transplantation: II. Morphology, immunopathology, and pathologic classification. J Am Soc Nephrol 13: 779-787. PubMed: 11856785.

13. Magro CM, Calomeni EP, Nadasy T, Shusterman BD, Pope-Harman AL et al. (2005) Ultrastructure as a diagnostic adjunct in the evaluation of lung allograft biopsies. Ultrastruct Pathol 29: 95-106. doi:10.1080/10912900420002108. PubMed: 16028666.

14. Lipták P, Kemény E, Morvay Z, Szederkenyi E, Szenohradszky P et al. (2005) Peritubular capillary damage in acute hemural rejection: an ultrastructural study of 262 biopsies. Ultrastruct Pathol 29: 2870-2876. doi:10.1111/j.1556-3767.2005.00112.x. PubMed: 16302999.

15. Bickelrast A, Pelletier R, Wang JJ, Nadasy G, DiPaola N et al. (2008) An immunohistochemical analysis of human renal allografts associated with concomitant cellular rejection. Am J Pathol 173: 347-357. doi:10.2353/ajpath.2008.070391. PubMed: 18583312.

16. Rozzini T, Rosenblum JM, Schenck AD, Ishii D, Fairchild RL (2009) CCR5 is required for regulation of alloreactive T-cell responses to single class II MHc-mismatched murine cardiac grafts. Am J Transplant 9: 2251-2261. doi:10.1111/j.1600-6143.2009.02786.x. PubMed: 19856127.

17. Barbieri SS, Ruggiero L, Tremoli E, Weksler BB (2008) Suppressing PTEN activity by tobacco smoke plus interleukin-1beta modulates dissociation of VE-cadherin/beta-catenin complexes in endothelium. Arterioscler Thromb Vasc Biol 28: 732-738. doi:10.1161/ATVBAHA.107.159434. PubMed: 18207211.

18. Yamamoto K, Loskutoff DJ (1997) The kidneys of mice with autoimmune disease acquire a hypofibrinolytic/procoagulant state that correlates with the development of glomerulonephritis and tissue injury. J Clin Invest 95: 725-734. doi:10.1128/IAI.01581-07. PubMed: 18541659.

19. Matsumoto M, Tanaka Y, Yamamoto T, Noi E, Miyata T et al. (2004) Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol 15: 1574-1581. doi:10.1086/400121. PubMed: 15153568.

20. Warner RL, Winter HC, Speyer CL, Varani J, Oldstein JI et al. (2004) Marasmus oreades lectin induces renal thrombotic microangiopathic lesions. Exp Mol Pathol 77: 77-84. doi:10.1016/j.yexmp.2004.03.003. PubMed: 15351223.

21. Gloor JM, Sethi S, Steggal MD, Park WD, Moore SB et al. (2007) Transplant glomerulopathy: subclinical incidence and association with alloantibody. Am J Transplant 7: 2124-2132. doi:10.1111/j.1600-6143.2007.01895.x. PubMed: 17603052.

22. Gaston RS, Cecca JM, Kasiske BL, Fieberg AM, Leduc R et al. (2010) Evidence for antibody-mediated injury as a major determinant of late kidney allograft failure. Transplantation 90: 68-74. doi:10.1097/TP.0b013e3181d1c025. PubMed: 20463463.

23. Sellares J, de Freitas DG, Mengel M, Sis B, Hidalgo LG et al. (2011) Inflammation lesions in kidney transplant biopsies: association with survival is due to the underlying diseases. Am J Transplant 11: 489-499. doi:10.1111/j.1600-6143.2010.03154.x. PubMed: 21342447.

24. Smith JD, Banner NR, Hamour IM, Ozawa M, Goh A et al. (2011) De novo donor HLA-specific antibodies after heart transplantation are an independent predictor of poor patient survival. Am J Transplant 11: 312-319. doi:10.1111/j.1600-6143.2010.03383.x. PubMed: 21219570.

25. John HD, Thoenes W (1982) The glomerular lesions in endotheliopathetic hemolytic nephropathy (hemolytic uremic syndrome, malignant nephrosclerosis, post partum renal insufficiency). Pathol Res Pract 173: 236-259. doi:10.1016/0344-0338(82)80087-3. PubMed: 6869731.

26. Mitra D, Kim J, MacLow C, Karsan A, Laurence J (1998) Role of caspases 1 and 3 and Bcl-2-related molecules in endothelial cell apoptosis associated with thrombotic microangiopathies. Am J Pathol 157: 279-287. doi:10.1016/S0002-9440(10)60102-2. PubMed: 9840908.

27. Lajoie G (1997) Antibody-mediated rejection of human renal allografts: an electron microscopic study of peritubular capillaries. Ultrastruct Pathol 21: 235-242. doi:10.3109/01913299709021919. PubMed: 9893824.

28. Ishii Y, Sawada T, Kubota K, Fuchinoue S, Teraoka S et al. (2005) Injury and progressive loss of peritubular capillaries in the development of chronic allograft nephropathy. Kidney Int 67: 321-332. doi:10.1111/j.1523-7755.2005.00895.x. PubMed: 15610296.
38. Pickering MC, de Jorge EG, Martinez-Barricarte R, Recalde S, Garcia-Layana A et al. (2007) Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J Exp Med 204: 1249-1256. doi:10.1084/jem.20070301. PubMed: 17517971.

39. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M et al. (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358: 1129-1136. doi:10.1056/NEJMoa0707330. PubMed: 18337803.

40. Keepers TR, Psotka MA, Gross LK, Obrig TG (2006) A murine model of HUS: Shiga toxin with lipopolysaccharide mimics the renal damage and physiologic response of human disease. J Am Soc Nephrol 17: 3404-3414. doi:10.1681/ASN.2006050419. PubMed: 17082244.

41. Belloni PN, Nicolson GL (1988) Differential expression of cell surface glycoproteins on various organ-derived microvascular endothelia and endothelial cell cultures. J Cell Physiol 136: 398-410. doi:10.1002/jcp.1041360303. PubMed: 3170638.

42. Thurston G, Baluk P, Hirata A, McDonald DM (1996) Permeability-related changes revealed at endothelial cell borders in inflamed venules by lectin binding. Am J Physiol 271: H2547-H2562. PubMed: 8997316.

43. Hohenstein B, Braun A, Amann KU, Johnson RJ, Hugo CP (2008) A murine model of site-specific renal microvascular endothelial injury and thrombotic microangiopathy. Nephrol Dial Transplant 23: 1144-1156. PubMed: 18045820.

44. Choo JK, Seebeck JD, Nickeleit V, Shimizu A, Lei H et al. (1997) Species differences in the expression of major histocompatibility complex class II antigens on coronary artery endothelium: implications for cell-mediated xenoreactivity. Transplantation 64: 1315-1322. doi: 10.1097/00007890-199711150-00014. PubMed: 9371674.

45. Barbieri L, Valbonesi P, Bonora E, Gorini P, Bolognesi A et al. (1997) Polynucleotide:adenosine glycosidase activity of ribosome-inactivating proteins: effect on DNA, RNA and poly(A). Nucleic Acids Res 25: 518-522. doi:10.1093/nar/25.3.518. PubMed: 9016590.

46. Pawlinski R, Wang JG, Owens AP 3rd, Williams J, Antoniak S et al. (2010) Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood 116: 806-814. doi: 10.1182/blood-2009-12-259267. PubMed: 20410508.

47. Daniel S, Arvelo MB, Patel VI, Longo CR, Shrikhande G et al. (2004) A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 104: 2376-2384. doi: 10.1182/blood-2003-02-0835. PubMed: 15251990.

48. Li JH, D’Alessio A, Pober JS (2009) Lipopolysaccharide can trigger a cathepsin B-dependent programmed death response in human endothelial cells. Am J Pathol 175: 1124-1135. doi:10.2353/ajpath.2009.090113. PubMed: 19661440.