$N = 4$ gauged supergravity and a IIB orientifold with fluxes

R D’Auria1,2, S Ferrara1,2,3,4 and S Vaulà1,2

1 Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
2 Istituto Nazionale di Fisica Nucleare (INFN)—Sezione di Torino, Italy
3 CERN, Theory Division, CH 1211 Geneva 23, Switzerland
4 INFN, Laboratori Nazionali di Frascati, Italy
E-mail: dauria@polito.it, sergio.ferrara@cern.ch and vaula@polito.it

New Journal of Physics 4 (2002) 71.1–71.20 (http://www.njp.org/)
Received 1 July 2002
Published 4 October 2002

Abstract. We analyse the properties of a spontaneously broken $D = 4$, $N = 4$ supergravity without cosmological constant, obtained by gauging translational isometries of its classical scalar manifold.

This theory offers a suitable low energy description of the super-Higgs phases of certain type-IIB orientifold compactifications with 3-form fluxes turned on.

We study its $N = 3$, 2, 1, 0 phases and their classical moduli fluxes and we show that this theory is an example of no-scale extended supergravity.

1. Introduction

Spontaneously broken supergravities have been widely investigated over the last 25 years, as the supersymmetric analogue of the Higgs phase of spontaneously broken gauge theories [1]–[7]. We recall that, when N supersymmetries are spontaneously broken to $N' < N$ supersymmetries, then $N - N'$ gravitini acquire masses by absorption of $N - N'$ Goldstone fermions. The theory in the broken phase will then have N' manifest supersymmetries with $N - N'$ gravitini belonging to massive multiplets of the residual N' supersymmetries. However, unlike gauge theories, the super-Higgs phases of local supersymmetries require more care because these theories necessarily include gravity.

Therefore, by broken and unbroken supersymmetry, we mean the residual global supersymmetry algebra in a given gravitational background solution of the full coupled Einstein equations.

A particularly appealing class of spontaneously broken theories are those which allow a Minkowski background, because in this case the particle spectrum is classified in terms of Poincaré supersymmetry, and the vacuum energy (cosmological constant) vanishes in this background.
It is usually not easy to obtain [5]–[7], in a generic supergravity theory, a broken phase with vanishing cosmological constant, even at the classical level. Few examples of isolated Minkowski vacua with broken supersymmetry were found in the context of gauged extended supergravities [8] with non-compact gaugings [9]–[12]. However, it was realized [13], first in the context of $N = 1$ supergravity, that there are particular classes of supergravity theories, called no-scale supergravities [14], in which the vacuum energy, parametrized by the scalar potential, is always non-negative, as is the case of rigid supersymmetry, then offering the possibility of having either a positive or vanishing cosmological constant.

The heuristic structure of these models, at the classical level, is that the supersymmetry breaking is mediated by some degrees of freedom, while some other degrees of freedom do not feel the supersymmetry breaking. The latter are responsible for the positive potential which, however, vanishes when extremized, reflecting the fact that those degrees of freedom do not participate in the supersymmetry breaking.

Examples of no-scale supergravities in the case of extended supersymmetries, were first given in the case of $N = 2$ supergravity [15, 16] by introduction of an $N = 2$ Fayet–Iliopoulos term and, for special geometries [17]–[19], with a purely cubic holomorphic prepotential.

These models did admit a $N = 2$ or 0 phase, but not a $N = 1$ phase. Later models with $N = 2$ spontaneously broken supergravity to either $N = 1$ or 0 in the presence of hypermultiplets were obtained [20]–[22].

The no-scale structure of these models resulted in the fact that the broken phases had a non-trivial moduli space, with sliding gravitino (and other massive fields) masses dependent on the moduli.

Moreover, a severe restriction on the allowed broken phases comes from the constrained geometry of the moduli space of the supergravity with a given number of supersymmetries. In fact, these moduli spaces are described by manifolds of restricted holonomy and therefore the interpretation of massive degrees of freedom, which allows us to describe a given broken phase, must be compatible with this requirement [23]–[25].

Consistent truncation of extended supergravities to theories with lower supersymmetries was studied in [26] and the super-Higgs phases were shown to be consistent with this analysis.

The first model with $N = 2 \rightarrow 1 \rightarrow 0$ breaking showed an unusual feature [20, 21], namely that in order to have a theory with different gravitino masses and vanishing cosmological constant, two out of the three translational isometries of the $USp(2,2)/USp(2) \times USp(2)$ quaternionic manifold [27] must be gauged, the relative gauge fields being the graviphoton and the vector of the only vector multiplet present in this model.

Recently, Louis [25] observed that, in the context of a generic $N = 2$ theory, spontaneously broken to $N = 1$ in Minkowski space, the two massive vectors, superpartners of the massive gravitino, must correspond to a spontaneously broken \mathbb{R}^2 symmetry, irrespective of the other matter fields, thus confirming the relevance of the gauging of translational isometries in spontaneously broken supergravity.

A wide class of spontaneously broken supergravities with a no-scale structure is provided by the Scherk–Schwarz generalized dimensional reduction [28, 29]. The four-dimensional description of these models [30, 31] is obtained by gauging ‘flat groups’ [28], which are a semidirect product of an Abelian group of translational isometries with a compact $U(1)$ generator of the Cartan subalgebra of the maximal compact subgroup of the global symmetry of the five-dimensional theory.
In all these models, the massive vector bosons, partners of the massive gravitini, are again associated to spontaneously broken translational isometries ($\mathbb{R}^{27} \subset E_{7(7)}$ in the case of $N = 8$ supergravity) of the scalar manifold of the unbroken theory.

Many variants of the Scherk–Schwarz breaking and their stringy realization have been studied in the literature [32]–[34].

Spontaneously broken supergravities, by using dual versions of standard extended supergravities, where again translational isometries of the scalar manifold of the ungauged theory are gauged, were studied in [35] as a $N > 2$ generalization [36] of the original model which allowed the $N = 2 \rightarrow 1$ hierarchical breaking of supersymmetry.

In the string and M-theory context, no-scale supergravity models were recently obtained as a low energy description of orientifold compactification with brane fluxes turned on [37]–[52]. The natural question arises as to which low energy supergravity corresponds to their description and how the Higgs and super-Higgs phases are incorporated in the low energy supergravity theory.

It was shown in a recent investigation [53], extending previous analysis [15, 35, 36], that the main guide to study new forms of N-extended gauged supergravities is to look for inequivalent maximal lower triangular subgroups of the full duality algebra (the classical symmetries of a four-dimensional N-extended supergravity) inside the symplectic algebra of electric–magnetic duality transformations [54].

Indeed, different maximal subgroups of the full global (duality) symmetry of a given supergravity theory allow us in principle to find all possible inequivalent gaugings [10, 55, 56]. In the case of a type-IIB superstring compactified on a T_6/\mathbb{Z}_2 orientifold [42, 43] the relevant embedding of the supergravity fields corresponds to the subgroup $SO(6,6) \times SL(2,\mathbb{R})$, which acts linearly on the gauge potentials (six each coming from the $N-S$ and the $R-R$ 2-forms $B_{\mu i}, C_{\mu i} i = 1 \ldots 6$). It is obvious that this group is $GL(6,\mathbb{R}) \times SL(2,\mathbb{R})$, where $GL(6,\mathbb{R})$ comes from the moduli space of T^6 while $SL(2,\mathbb{R})$ comes from the type-IIB $SL(2,\mathbb{R})$ symmetry in ten dimensions. This means that the twelve vectors are not in the fundamental 12 of $SO(6,6)$ but rather a $(6,2)$ of $GL(6,\mathbb{R}) \times SL(2,\mathbb{R})$, where the ‘+’ refers to the $O(1,1)$ weight of $GL(6,\mathbb{R}) = O(1,1) \times SL(6,\mathbb{R})$. Their magnetic duals are instead in the $(6-,2)$ representation. Note that, instead, in the heterotic string the 12 vectors $g_{\mu i}, B_{\mu i} i = 1 \ldots 6$ are in the $(6^+,6^\pm)$ and their magnetic dual in the $(6^-,6^\mp)$ representation, where the lower plus or minus refers to the \mathbb{R} of $GL(6,\mathbb{R})$ and the upper plus or minus refers to the \mathbb{R} of $SL(2,\mathbb{R})$.

The symplectic embedding of the Lie algebra of $SO(6,6) \times SL(2,\mathbb{R})$ inside $Sp(24,\mathbb{R})$ is therefore realized as follows [35, 53]:

$$SO(6,6) = GL(6,\mathbb{R}) + T^+_1 + T^-_1 \quad (1.1)$$
$$\begin{align*}
(12,2) & \rightarrow (6^+,2) + (6^-,2) \quad (1.2)
\end{align*}$$

where $GL(6,\mathbb{R}) \times SL(2,\mathbb{R})$ is block diagonal and T^\pm_1 are lower and upper off-diagonal generators, respectively.

The gauged supergravity, corresponding to this symplectic embedding, was constructed in [35] but the super-Higgs phases were not studied.

In the present paper we study these phases, derive the mass spectrum in terms of the four complex gravitino masses and analyse the moduli space of these phases and their relative unbroken symmetries.

Connection with supergravity compactification on the T^6/\mathbb{Z}_2 orbifold with brane fluxes is discussed.

New Journal of Physics 4 (2002) 71.1–71.20 (http://www.njp.org/)
The major input is that the 15 axion fields $B^{\Lambda\Sigma} = -B^{\Sigma\Lambda}$, $\Lambda, \Sigma = 1 \ldots 6$ related to the 15 translational isometries of the moduli space $SO(6, 6)/SO(6) \times SO(6)$ are dual to a compactified $R - R$ 4-form scalars ($B^{\Lambda\Sigma} = \frac{1}{4!} \epsilon^{\Lambda\Sigma\Delta\Gamma\Pi\Omega} C_{\Delta\Gamma\Pi\Omega}$). Moreover the charge coupling of $N = 4$ dual supergravity of [35]:
\[\nabla_\mu B^{\Lambda\Sigma} = \partial_\mu B^{\Lambda\Sigma} + f^{\Lambda\Sigma\Delta\alpha} A_{\Delta\alpha} \quad \alpha = 1, 2; \Delta = 1 \ldots 6 \] (1.3)
identifies the supergravity coupling $f^{\Lambda\Sigma\Delta\alpha}$ with the 3-form fluxes coming from the term [42, 43]
\[dC + H^\alpha \wedge B^{\beta} \epsilon_{\alpha\beta} \] (1.4)
of the covariant 5-form field strength, where H^α is taken along the internal directions and integrated over a non-trivial 3-cycle.†

This paper is organized as follows.

In section 2 we describe the geometry underlying the $N = 4$ supergravity in the dual basis chosen by the type-IIB orientifold compactification.

In section 3 we describe the ungauged and gauge theory in this basis: the main ingredient is to rewrite the supergravity transformation laws in an unconventional way in terms of the reduced manifold $GL(6)/SO(6)$ and the 15 axion fields $B^{\Lambda\Sigma}$. This allows us to compute the fermion shifts in terms of which the potential can be computed.

In section 4 we analyse the potential. We show that it is semidefinite positive and find the extremum which stabilizes the dilaton and the $GL(6)/SO(6)$ scalar fields, except for three fields related to the radii of $T^6 = T^2 \times T^2 \times T^2$.

In section 5 we compute the mass spectrum of the gravitini and the vector fields. It is shown that the four complex gravitino masses precisely correspond to the $(3, 0) + 3(2, 1)$ decomposition of the real 3-form flux matrix $F^{\Lambda\Sigma\Delta} = L_\alpha f^{\Lambda\Sigma\Delta\alpha}$ (L_α coset representative of $SL(2, \mathbb{R})/SO(2)$).

In section 6 the reduction of the massive and massless sectors of the different super-Higgs phases are described. In particular it is shown that, by a given choice of the complex structure, the $N = 3$ supergravity corresponds to taking as nonzero only the $(3, 0)$ part of the holomorphic components of $F^{\Lambda\Sigma\Delta}$.

In section 7 we give the conclusions, while in the appendix we give the explicit representation of the $SU(4)$ gamma matrices used in the text.

2. Geometry of the $N = 4$ scalar manifold

We start from the coset representative of $SO(6, 6)/SO(6) \times SO(6)$ written in the following form [57, 58]:
\[L = \begin{pmatrix} E^{-1} & -BE \\ 0 & E \end{pmatrix}. \] (2.1)

Here $E \equiv E^I_\Lambda$ and $E^{-1} \equiv E^I_\Lambda$ are the coset representative and its inverse of $GL(6)/O(6)_{d}$, $SO(6)_{d}$ being the diagonal subgroup of $SO(6) \times SO(6)$, the indices $\Lambda, I = 1 \ldots 6$ are in the fundamental of $GL(6)$ and $SO(6)_{d}$ respectively (indices I, J can be raised or lowered with the Kronecker delta). Finally $B^{\Lambda\Sigma}$ parametrizes the 15 translations. This corresponds to the following decomposition:
\[\mathfrak{so}(6, 6) = \mathfrak{sl}(6, \mathbb{R}) + \mathfrak{so}(1, 1) + 15' + 15^-. \] (2.2)

† The gauge couplings in (1.3) are actually ‘dual’ to the fluxes of [42, 43].
Note that the representation 12 of $\mathfrak{so}(6,6)$ decomposes as $12 \to 6_{+1} + 6_{-1}$, thus containing six electric and six magnetic fields, and the bifundamental of $\mathfrak{so}(6,6) + \mathfrak{sl}(2,\mathbb{R})$ decomposes as $(12,2) = (6_{+1},2)_{\text{electric}} + (6_{-1},2)_{\text{magnetic}}$. In particular, we see that $\mathfrak{sl}(2,\mathbb{R})$ is totally electric. The 12 vectors gauge an Abelian subgroup of the $15'\uparrow$ translations. The left invariant 1-form $L^{-1} dL \equiv \Gamma$ turns out to be

$$\Gamma = \begin{pmatrix} E dE^{-1} & -E dB E \\ 0 & E^{-1} dE \end{pmatrix}. \quad (2.3)$$

Now we extract the connections ω_d and $\hat{\omega}$, where ω_d is the connection of the diagonal $SO(6)_d$ subgroup and $\hat{\omega}$ is its orthogonal part. We get

$$\omega_d = \frac{1}{2} \begin{pmatrix} E dE^{-1} - dE^{-1} E & 0 \\ 0 & E dE^{-1} - dE^{-1} E \end{pmatrix}, \quad (2.4)$$

$$\hat{\omega} = \frac{1}{2} \begin{pmatrix} 0 & -E dB E \\ -E dB E & 0 \end{pmatrix}, \quad (2.5)$$

so that the total connection $\Omega = \omega_d + \hat{\omega}$ is

$$\Omega = \frac{1}{2} \begin{pmatrix} E dE^{-1} - dE^{-1} E & -E dB E \\ -E dB E & E dE^{-1} - dE^{-1} E \end{pmatrix}. \quad (2.6)$$

By definition the vielbein P is defined as

$$P = \Gamma - \Omega \quad (2.7)$$

so that we get

$$P = \frac{1}{2} \begin{pmatrix} E dE^{-1} + dE^{-1} E & -E dB E \\ E dB E & -(E dE^{-1} + dE^{-1} E) \end{pmatrix}. \quad (2.8)$$

In the following we will write Ω and P as follows:

$$\Omega = \frac{1}{2} \begin{pmatrix} \omega^{IJ} & -P^{[IJ]} \\ -P^{[IJ]} & \omega^{IJ} \end{pmatrix}; \quad P = \frac{1}{2} \begin{pmatrix} P^{(IJ)} & -P^{[IJ]} \\ P^{[IJ]} & P^{(IJ)} \end{pmatrix} \quad (2.9)$$

where

$$\omega^{IJ} = (E dE^{-1} - dE^{-1} E)^{IJ} \quad (2.10)$$

$$P^{(IJ)} = (E dE^{-1} + dE^{-1} E)^{IJ} \quad (2.11)$$

$$P^{[IJ]} = (E dB E)^{IJ} \quad (2.12)$$

Note that

$$\nabla^{(SO(6)_d)}E^I_A = \frac{1}{2} E^I_A P^{(IJ)}. \quad (2.13)$$

For the $SU(1,1)/U(1)$ factor of the $N = 4$ σ model we use the following parametrizations:

$$S = \begin{pmatrix} \phi_1 & \bar{\phi}_2 \\ \bar{\phi}_1 & \phi_2 \end{pmatrix} \quad (\phi_1 \bar{\phi}_1 - \phi_2 \bar{\phi}_2 = 1). \quad (2.14)$$

Introducing the 2-vectors

$$L^\alpha \equiv \begin{pmatrix} L^1 \\ L^2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + \phi_2 \\ -i(\phi_1 - \phi_2) \end{pmatrix} \quad (2.15)$$

$$L_\alpha \equiv \epsilon_{\alpha\beta} L^\beta \quad (2.16)$$
the identity \(\phi_1 \tilde{\phi}_1 - \phi_2 \tilde{\phi}_2 = 1 \) becomes
\[
L^\alpha T^\beta - T^\alpha L^\beta = i \epsilon^{\alpha \beta}.
\]
(2.17)

Introducing the left-invariant \(\mathfrak{sl}(2, \mathbb{R}) \) Lie algebra valued 1-form:
\[
\theta \equiv S^{-1} dS = \begin{pmatrix} q & p \\ p & -q \end{pmatrix}
\]
(2.18)

one can easily determine the coset connection 1-form \(q \) and the vielbein 1-form \(p \):
\[
q = i \epsilon_{\alpha \beta} L^\alpha dT^\beta
\]
(2.19)
\[
p = -i \epsilon_{\alpha \beta} L^\alpha dL^\beta.
\]
(2.20)

Note that we have the following relations:
\[
\nabla L^\alpha \equiv dL^\alpha + qL^\alpha = -L^\alpha p
\]
(2.21)
\[
\nabla T^\alpha \equiv dT^\alpha - qT^\alpha = -L^\alpha \bar{p}.
\]
(2.22)

3. The gauging (turning on fluxes)

In the ungauged case the supersymmetry transformation laws of the bosonic and fermionic fields can be computed from the closure of Bianchi identities in superspace and turn out to be
\[
\delta V^\mu = -i \bar{\psi}^A \gamma^\mu \epsilon^A - i \psi^A \gamma^\mu \epsilon_A
\]
(3.1)
\[
\delta A_{\Lambda \mu} = -L_a E^I_{\Lambda} (\Gamma^I)^{AB} \bar{\psi}^A \epsilon_B - T_\alpha E_{\Lambda 1} (\Gamma_1)^{AB} \bar{\psi}^A \epsilon_B + i L_\alpha E_{\Lambda 1} (\Gamma_1)^{AB} \chi_A \gamma_\mu \epsilon_B
\]
(3.2)
\[
+ i L_\alpha E_{\Lambda 1} (\Gamma_1)^{AB} \bar{\chi} \gamma_\mu \epsilon_B + i T_\alpha E_{\Lambda 1} (\Gamma_1)^{AB} \gamma_\mu \epsilon_B
\]
(3.3)
\[
p_\beta \delta L^\beta \equiv -i \epsilon_{\alpha \beta} L^\alpha \delta L^\beta = 2 \bar{\chi} A^\epsilon A \Longrightarrow \delta L^\alpha = 2 \bar{T}^\alpha \bar{\chi} A^\epsilon A
\]
(3.4)
\[
P^I_\mu \delta a^m = (\Gamma^I)^{AB} \bar{\lambda}_A A^B + (\Gamma^I)^{AB} \bar{\chi}_A \gamma_\mu \epsilon_B
\]
(3.5)
\[
\delta \bar{\psi}_{\mu A} = \bar{D}_\mu \epsilon_A - T^\alpha E^I_{\Lambda} (\Gamma^I)^{AB} F_{\mu \nu \Lambda} \gamma^\nu \epsilon_B
\]
(3.6)
\[
\delta \bar{\chi}^A = \frac{1}{2} L^\alpha \gamma^\mu \epsilon A + \frac{1}{4} L^\alpha E^A (\Gamma^I)^{AB} F_{\mu \nu \Lambda} \gamma^\mu \gamma^\nu \epsilon_B
\]
(3.7)
\[
\delta \lambda_{IA} = \frac{1}{2} (\Gamma^I)^{AB} P^I_\mu \gamma^\mu \epsilon B - \frac{1}{2} L^\alpha E^A (\Gamma^I)^{AB} F_{\mu \nu \Lambda} \gamma^\mu \epsilon_B
\]
(3.8)

where \(p_\mu \equiv p_a \partial_\mu L^a \) and \(P^I_\mu \equiv P_m^I \partial_\mu a^m, m = 1 \ldots 21, a^m \) being the scalar fields parametrizing the coset \(GL(6)/SO(6) \).

The position of the \(SU(4) \) index \(A \) on the spinors is related to its chirality as follows: \(\psi_{\mu A}, \epsilon_A, \gamma_A, \lambda_{IA} \) are left-handed spinors, while \(\psi^A_{\mu}, \epsilon^A, \chi_A, \lambda^I A \) are right-handed. Furthermore \(\Gamma_I, I = 1 \ldots 6 \) are the four-dimensional gamma matrices of \(SO(6) \) (see the appendix). Note that \((\Gamma_I)^{AB} = -(\Gamma_I)^{BA} \) and \((\Gamma_I)^{AB} = (\Gamma_I)^{AB} \).

The previous transformations leave invariant the ungauged Lagrangian that will be given elsewhere together with the solution of the superspace Bianchi identities. Our interest is, however, in the gauged theory where the gauging is performed on the Abelian subgroup \(T_{15} \) of translations.

It is well known that, when the theory is gauged, the transformation laws of the fermion fields acquire extra terms called fermionic shifts which are related to the gauging terms in the Lagrangian and enter in the computation of the scalar potential \([5, 7, 59]\).

New Journal of Physics 4 (2002) 71.1–71.20 (http://www.njp.org/)
Let us compute these extra shifts for the gravitino and spin $1/2$ fermions in the supersymmetry transformation laws. Since we want to gauge the translations, according to the general rules, we have to perform the substitution

$$ dB^{ij} \rightarrow \nabla B^{ij} = dB^{ij} + k^{ij\Lambda} A_{\Lambda} $$

where $k^{ij\Lambda}$ are the Killing vectors corresponding to the 15 translations, with ij a couple of antisymmetric world indices and Λ denoting the adjoint indices of $GL(6) \times SL(2, R)$. Since the ‘coordinates’ B^{ij} are related to the axion $B^{\Lambda \Sigma}$ by

$$ dB^{\Lambda \Sigma} = E^A_i E^B_j P^{[IJ]}_{ij} dB^{IJ} $$

we get

$$ \nabla B^{\Lambda \Sigma} = E^A_i E^B_j P^{[IJ]}_{ij} \nabla B^{ij} = dB^{\Lambda \Sigma} + E^A_i E^B_j P^{[IJ]}_{ij} k^{ij\Lambda} A_{\Lambda} \equiv dB^{\Lambda \Sigma} + f^{\Lambda \Sigma \Gamma} A_{\Gamma} $$

where $f^{\Lambda \Sigma \Gamma}$ are numerical constants.

Therefore, the gauged connection affects only ω and not ψ and we have

$$ \omega_{\text{gauged}}^{IJ} = -\frac{1}{2} E^A_i \nabla B^{\Lambda \Sigma} E^B_i = \omega^{IJ} - \frac{1}{2} E^A_i f^{\Lambda \Sigma \Gamma} A_{\Gamma} E^B_i. $$

Therefore, if we take the Bianchi identities of the gravitino

$$ \nabla \rho_A + \frac{1}{4} R^{ab}_{\gamma \delta \psi A} + \frac{1}{4} R^B_A (\omega_1) \psi_B = 0 $$

where ω_1 is the composite connection of the $SU(4) \sim SO(6)$ R symmetry acting on the gravitino $SU(4)$ index, and

$$ R^B_A = R^{IJ} (\Gamma_{IJ})^B_A $$

then, since

$$ \omega_1 = \omega_d + \omega_{\text{gauged}} $$

the gauged $SU(4)$ curvatures become

$$ R^B_A (\omega_{\text{gauged}}) = R^B_A (\omega_d + \omega_{\text{gauged}}) = R^B_A (\omega_1) - \frac{1}{2} (\Gamma_{IJ})^B_A E^I_A f^{\Lambda \Sigma \Gamma} A_{\Gamma} E^J_B. $$

As for the supersymmetry transformations (3.1) we do not report here the procedure used to determine the fermion shifts in the gauged Bianchi identities which, as mentioned before, will be given elsewhere. It is sufficient to say that, according to a well known procedure, the cancellation of the extra term appearing in (3.16) requires an extra term in the superspace parametrization of the gravitino curvature. This in turn implies a modification of the space-time supersymmetry transformation law of the gravitino, obtained by adding the following extra term to $\delta \psi_{A\mu}$:

$$ \delta \psi^{(shift)}_{A\mu} = S_{AB} \gamma_{\mu \nu} \epsilon^B = -\frac{1}{48} L^a f^{IJK} (\Gamma_{IJK})^B_{AB} \gamma_{\mu \nu} \epsilon^B $$

where we have defined $f^{IJK} = f^{\Lambda \Sigma \Gamma} E^A_i E^B_j E^C_k$ and the symmetric matrix S_{AB} is (one-half) the gravitino mass matrix entering the Lagrangian.

Recalling the selfduality relation $\Gamma_{IJK} = \frac{1}{4} \epsilon_{IJKLMN} \Gamma^{LMN}$ and introducing the quantities

$$ F^\pm IJK = \frac{1}{2} (F^{IJK} \pm i F^{IJK}) $$

where

$$ F^{IJK} = L^a f^{IJK} \quad F^{IJK} = E^a f^{IJK} \quad (F^\pm IJK)^* = F^{\mp IJK} $$

New Journal of Physics 4 (2002) 71.1–71.20 (http://www.njp.org/)
the gravitino gauge shift can be rewritten as
\[\delta \psi_{A \mu}^{(shift)} = S_{AB} \gamma_\mu \epsilon^B = -\frac{i}{48} F_{-IJK} (\Gamma_{IJK})_{AB} \gamma_\mu \epsilon^B. \]
(3.20)

Analogous computations in the Bianchi identities of the left handed gaugino and dilatino fields give the following extra shifts:
\[\delta \chi^A_{(shift)} = N_{AB} \epsilon^B = -\frac{1}{48} L^{\alpha} f_{IJK \alpha} (\Gamma_{IJK})^{AB} \epsilon^B \]
\[\delta \lambda^i_A = Z_{AI}^B \epsilon^B = \frac{1}{8} L^{\alpha} f_{IJK \alpha} (\Gamma_{IJK})^{AB} \epsilon^B. \]
(3.21)
(3.22)

These results agree, apart from normalizations, with [35].

4. The scalar potential

The Ward identity of supersymmetry [5, 7].
\[V \delta_B A = -12 S_{AC} S^{CB} + 4 N_{AC} N^{CB} + 2 Z^{IC}_{A} Z^{IB}_{C} \]
(4.1)
allows us to compute the scalar potential from knowledge of the fermionic shifts \(S_{AB}, N_{AB}, Z^{IB}_A \) computed before, equations (3.17), (3.21) and (3.22). We obtain
\[V = \frac{1}{124} (L^\alpha \bar{T}^\beta f_{\alpha IJK \beta} - \frac{1}{2} e^{\alpha \beta} f_{\alpha IJK \beta}^* f_{\beta IJK \alpha}) \]
\[= \frac{1}{24} (L^\alpha \bar{T}^\beta N_{AL\Sigma} N_{\Lambda \Pi} f_{\alpha \Lambda \Sigma \Gamma} f_{\beta \Pi \Delta \Omega} - \frac{1}{2} e^{\alpha \beta} f_{\alpha \Lambda \Sigma \Gamma} f_{\beta \Lambda \Sigma \Omega} \det(E)) \]
(4.2)
where we have made explicit the dependence on the \(GL(6)/SO(6) \) scalar fields and \(N_{\Lambda \Sigma} \) is defined by
\[N_{\Lambda \Sigma} = E^I_{\Lambda} E^J_{\Sigma}. \]
(4.3)
Another useful form of the potential, which allows the discussion of the extrema in a simple way, is to rewrite equation (4.2) as follows:
\[V = \frac{1}{124} (L^\alpha \bar{T}^\beta (f_{\alpha IJK \beta} - i^* f_{\alpha IJK \beta})(f_{\beta IJK \alpha} + i^* f_{\beta IJK \alpha})) = \frac{1}{124} |F_{-IJK}|^2 \]
(4.4)
where we have used equations (3.18) and (3.19).

From (4.4) we see that the potential has an absolute minimum with vanishing cosmological constant when \(F_{-IJK} = 0 \).

In order to have a theory with vanishing cosmological constant the two \(SL(2, \mathbb{R}) \) components of \(f_{\alpha \Lambda \Sigma \Gamma} \) cannot be independent. A general solution of \(F_{-IJK} = 0 \) is given by setting
\[f_1^{-\Lambda \Sigma \Delta} = i \alpha f_2^{-\Lambda \Sigma \Delta} \]
(4.5)
where \(\alpha \) is a complex constant. In real form we have
\[f_1^{\Lambda \Sigma \Delta} = \text{Re} \alpha f_2^{\Lambda \Sigma \Delta} - \text{Im} \alpha f_2^{\Lambda \Sigma \Delta}. \]
(4.6)
The solution of (4.5) is
\[L^\alpha = i \alpha L^\beta \epsilon^{\alpha \beta} \rightarrow \frac{L_2}{L_1} = -i \alpha \Rightarrow \frac{\phi_2}{\phi_1} = \frac{1 - \alpha}{1 + \alpha}. \]
(4.7)
† The complete gauged Lagrangian will be given elsewhere.
In the particular case \(\alpha = 1 \), (4.5) reduces to

\[
 f^{\alpha \Sigma \Delta} = \frac{1}{3!} \epsilon^{\alpha \beta \gamma} f^{\gamma \Sigma \Delta} \eta \eta \eta \Rightarrow f_1^{\alpha \Sigma \Delta} = -f_2^{\alpha \Sigma \Delta} \Rightarrow f_1^{-\alpha \Sigma \Delta} = i f_2^{-\alpha \Sigma \Delta}
\]

(4.8)

which is the constraint imposed in [35]. In this case the minimum of the scalar potential is given by

\[
 \phi^2 = 0 \Rightarrow |\phi^1| = 1
\]

(4.9)

or, in terms of the \(L^\alpha \) fields, \(L_1^1 = \frac{1}{\sqrt{2}} \), \(L_2^1 = \frac{1}{\sqrt{2}} \).

If we take a configuration of the \(GL(6)/SO(6) \) fields where all the fields \(a^m = 0 \) except the three fields \(\varphi_1, \varphi_2, \varphi_3 \), parametrizing \(O(1,1)^3 \), then the matrix \(E_\alpha^I \) has the form given in section 6 (equation (6.21)) and in this case

\[
 f^{IJK}_{\alpha} = e^{-(\varphi_1 + \varphi_2 + \varphi_3)} f^{\alpha \Sigma \Gamma}_I
\]

(4.10)

so that

\[
 V(\phi_1, \phi_2, \varphi_1, \varphi_2, \varphi_3; a^m = 0) = \frac{1}{12} e^{-(2\varphi_1 + 2\varphi_2 + 2\varphi_3)} |E^{-\alpha \Sigma \Gamma}|^2.
\]

(4.11)

The minimum condition can be also retrieved in the present case by observing that in the case \(\alpha = 1 \) the potential takes the simple form

\[
 V = \frac{1}{48} (L^{\alpha \Sigma \Delta} - \frac{1}{2} \delta^{\alpha \beta}) f^{IJK}_{\alpha} f_{IJK\beta}.
\]

(4.12)

Using the explicit form of \(f^{IJK} \) as given in the next section (equations (5.1) and (5.2)), the potential becomes

\[
 V(\phi_1, \phi_2, \varphi_1, \varphi_2, \varphi_3; a^m = 0) = \frac{1}{192} \sum m_i^2 e^{-(2\varphi_1 + 2\varphi_2 + 2\varphi_3)} (L^{\alpha \Sigma \Delta} - 1)
\]

\[
 = \frac{1}{96} \sum m_i^2 e^{-(2\varphi_1 + 2\varphi_2 + 2\varphi_3)} |\phi_2|^2.
\]

(4.13)

Therefore \(V = 0 \) implies

\[
 |L_1^1|^2 + |L_2^1|^2 \equiv |\phi_1|^2 + |\phi_2|^2 = 1
\]

(4.14)

which is satisfied by equation (4.9) where we have taken into account equation (2.14). Note that equations (4.14) and (4.9), giving the extremum of the potential, fixes the dilaton field. In contrast, the extremum of the potential with respect to \(\varphi_1, \varphi_2, \varphi_3 \), does not fix these fields, since the corresponding extremum gives the condition \(V \equiv 0 \).

This shows the no-scale structure of the model. The \(a^m \) fields are instead stabilized at \(a^m = 0 \). All the corresponding modes get masses (for \(N = 1, 0 \)).

When \(\alpha \neq 1 \), a simple solution of equation (4.5) is to take \(f_1^{-\alpha \Sigma \Delta} \) non-vanishing only for a given value of \(\Lambda \Sigma \Delta \), e.g. \(\Lambda = 1 \), \(\Sigma = 2 \), \(\Delta = 3 \). Then we have a four real parameter solution in term of \(f_{\alpha}^{123} \) and \(f_{1456}^{456} \) as in [42]. The general solution contains, besides \(\alpha \), four complex parameters, since \(f_1^{-\alpha \Sigma \Delta} \) has at most eight non-vanishing components.

In string theory, \(f_1 \) and \(f_2 \) satisfy some quantization conditions which restrict the value of \(\alpha \) [42, 43].

It is interesting to see what is the mechanism of cancellation of the negative contribution of the gravitino shift to the potential which makes it positive semidefinite. For this purpose it is useful to decompose the gaugino shift (3.22) in the 24-dimensional representation of \(SU(4) \) into its irreducible parts \(20 + \tilde{4} \). Setting

\[
 \lambda_A^I = \lambda_A^{1(20)} + \frac{1}{5} (\Gamma_I)_{AB} \lambda_B^{B(4)}
\]

(4.15)
where
\[\chi^{A(4)} = (\Gamma I)^{AB} \chi^{I}_B; \quad (\Gamma I)^{AB} \chi^{I(20)} = 0 \] (4.16)
we get
\[\delta \chi^{I(20)}_A = \frac{1}{8} (F^{IJK} (\Gamma_{JK})^B_A + \frac{1}{6} F^{JLM} (\Gamma^I \Gamma_{JLM})^B_A) \epsilon_B \] (4.17)
\[\delta \chi^{A(4)} = \frac{1}{8} F^{+IJK} (\Gamma_{IJK})^{AB} \epsilon_B. \] (4.18)
Performing some \(\Gamma \)-matrix algebra, equation (4.17) reduces to
\[\delta \chi^{I(20)}_A = Z^{(20)B}_A \epsilon_B \] (4.19)
In this way the irreducible parts of the fermion shifts are all proportional to \(F^{\pm IJK} \Gamma_{IJK} \), namely
\[\delta \psi^{(shift)} = S_{AB} \gamma_\mu \epsilon^B = -\frac{i}{48} F^{\mp IJK} (\Gamma_{IJK})^{AB} \gamma_\mu \epsilon^B \] (4.20)
\[\delta \chi^{A(shift)} = N^{AB} \epsilon^B = -\frac{i}{48} F^{+ IJK} (\Gamma_{IJK})^{AB} \epsilon^B \] (4.21)
\[\delta \chi^{A(shift)(4)} = Z^{(4)AB} \epsilon^B = \frac{1}{8} F^{+ IJK} (\Gamma_{IJK})^{AB} \epsilon^B \] (4.22)
\[\delta \chi^{I(shift)(20)}_A = Z^{(20)B}_A \epsilon^B = \frac{1}{8} F^{- IJK} (\Gamma_{IJK})^{B} \epsilon^B. \] (4.23)
When one traces the indices \(AB \) in (4.1) one sees that the contributions from the gravitino shifts and from the \(\bar{A} \) of the gaugino shifts are both proportional to \(|F^{- IJK}|^2 \) and since, on general grounds they have opposite sign, they must cancel against each other. Vice versa, the square of the gaugino shift in the \(20 \) representation and the square of the dilatino shift are both proportional to \(|F^{+ IJK}|^2 \), that is, to the scalar potential. Indeed
\[Z^{(20)I}_{A} Z^{(20)I}_{B} = 6 N^{AB} N_{BA} = \frac{1}{64} (L^{\alpha} L^{\beta} f^{IJK}_{\alpha} f^{IJK}_{\beta} - \frac{1}{2} \epsilon^{\alpha \beta} f^{IJK}_{\alpha} f^{IJK}_{\beta}) = \frac{3}{8} V. \] (5.24)
It then follows that the \(\chi^{A(4)} \) are the four Goldstone fermions of spontaneously broken supergravity. These degrees of freedom are eaten by the four massive gravitini in the super-Higgs mechanism. This cancellation reflects the no-scale structure of the orientifold model as discussed in [42, 43]. It is the same kind of cancellation of \(F \) and \(D \) terms against the negative (gravitino square mass) gravitational contribution to the vacuum energy that occurs in Calabi–Yau compactification with brane fluxes turned on [38, 41, 48].

5. Mass spectrum of the gravitini and vector fields

It is clear that not all the \(f^{A \Sigma \Gamma \alpha} \) are different from zero; indeed we have only 12 vectors which can be gauged, while the axion field \(B^{A \Sigma} \) has 15 components. Therefore, some of the components of the axion field must be invariant under the gauging. From equation (3.11) one easily realizes that the components \(B^{14}, B^{25}, B^{36} \) are inert under gauge transformations. This can be ascertained using the explicit form of \(f^{IJK}_\alpha \):
\[f^{IJK}_1 = f^{123} \delta^{IJK}_{123} + f^{156} \delta^{IJK}_{156} + f^{246} \delta^{IJK}_{246} + f^{345} \delta^{IJK}_{345} \] (5.1)
\[f^{IJK}_2 = \frac{1}{|\alpha|^2} (-\text{Re} \alpha^* f^{IJK}_1 - \text{Im} \alpha f^{IJK}_1) = -f^{IJK}_2 \] (5.2)

New Journal of Physics 4 (2002) 71.1—71.20 (http://www.njp.org/)
which implies

\[f^{14k} = f^{25k} = f^{36k} = 0, \quad \forall k. \] (5.3)

Let us now compute the masses of the gravitini. As we have seen in the previous section the extremum of the scalar potential is given by

\[F^{-1JK} = L^1 f_1^{-1JK} + L^2 f_2^{-1JK} = 0. \] (5.4)

It follows that the gravitino mass matrix \(S_{AB} \) at the extremum takes the values

\[S_{AB}^{(extr)} = -\frac{i}{48} (L^1 \Gamma_1 f_1^{-1JK} + L^2 \Gamma_2 f_2^{-1JK} \Gamma_{IJK})_{AB} \] (5.5)

\[= -\frac{i}{48 L^2} (L^2 L^1 - L^1 L^2) f_1^{-1JK} \Gamma_{IJK} = \frac{1}{48 L^2} L^2 f_1^{-1JK} \Gamma_{IJK}. \] (5.6)

From (5.5) we may derive an expression for the gravitino masses at the minimum of the scalar potential very easily, going to the reference frame where \(S_{AB} \) is diagonal. Indeed it is apparent that this corresponds to choosing the particular frame corresponding to the diagonal \(\Gamma_{IJK} \). As is shown in the appendix, the diagonal \(\Gamma_{IJK} \) correspond to \(\Gamma_{123}, \Gamma_{156}, \Gamma_{246}, \Gamma_{345} \) and their dual.

It follows that the four eigenvalues \(\mu_i + i \mu'_i, \quad i = 1, \ldots, 4 \) of \(S_{AB} \) are

\[\mu_1 + i \mu'_1 = \frac{1}{24 L^2} (f^{-123} - f^{-156} - f^{-246} + f^{-345}) \]

\[\mu_2 + i \mu'_2 = \frac{1}{24 L^2} (f^{-123} + f^{-156} + f^{-246} + f^{-345}) \] (5.7)

\[\mu_3 + i \mu'_3 = \frac{1}{24 L^2} (f^{-123} + f^{-156} - f^{-246} - f^{-345}) \]

\[\mu_4 + i \mu'_4 = \frac{1}{24 L^2} (f^{-123} - f^{-156} + f^{-246} - f^{-345}). \]

Here we have set \(f_1^{-1JK} = f^{-1JK} \).

Furthermore \(L^2 \), computed at the extremum (see equation (4.7)), is a function of \(\alpha \).

The gravitino mass squared \(m^2_i \) is given by \(m_i^2 = \mu_i^2 + \mu'_i^2 \).

The above results (5.7) and (5.3) take a more elegant form by observing that they use a complex basis:

\[e_1 + i e_4 = E_x; \quad e_2 + i e_5 = E_y; \quad e_3 + i e_6 = E_z \] (5.8)

\[e_1 - i e_4 = \bar{E}_x; \quad e_2 - i e_5 = \bar{E}_y; \quad e_3 - i e_6 = \bar{E}_z \] (5.9)

where the tensor \(f_{1JK1} \equiv f_1^{1JK} \) takes the following components:

\[f_{xy} = \frac{1}{8} \{ f_{123} - f_{156} + f_{246} - f_{345} + i(\ast f_{123} - \ast f_{156} + \ast f_{246} - \ast f_{345}) \} \] (5.10)

\[f_{x\bar{y}} = \frac{1}{8} \{ f_{123} - f_{156} - f_{246} + f_{345} + i(\ast f_{123} - \ast f_{156} - \ast f_{246} + \ast f_{345}) \} \] (5.11)

\[f_{xy} = \frac{1}{8} \{ f_{123} + f_{156} + f_{246} + f_{345} + i(\ast f_{123} + \ast f_{156} + \ast f_{246} + \ast f_{345}) \} \] (5.12)

\[f_{x\bar{y}} = \frac{1}{8} \{ f_{123} + f_{156} - f_{246} - f_{345} + i(\ast f_{123} + \ast f_{156} - \ast f_{246} - \ast f_{345}) \} \] (5.13)

while

\[f_{x\bar{z}} = f_{x\bar{y}} = f_{y\bar{z}} = f_{y\bar{x}} = f_{z\bar{x}} = f_{z\bar{y}} = 0. \] (5.14)

Therefore, the 20 entries of \(f_{1\Sigma\Delta} \) are reduced to eight.
In this holomorphic basis the gravitino mass eigenvalues assume the rather simple form:

\[\mu_1 + i \mu'_1 = \frac{1}{6L^2} f_{xyz} \]
\[\mu_2 + i \mu'_2 = \frac{1}{6L^2} f_{xyz} \]
\[\mu_3 + i \mu'_3 = \frac{1}{6L^2} f_{xyz} \]
\[\mu_4 + i \mu'_4 = \frac{1}{6L^2} f_{xyz}. \]

\[(5.15)\]
\[\mu_1 + i \mu'_1, \mu_2 + i \mu'_2, \mu_3 + i \mu'_3, \mu_4 + i \mu'_4 \text{ can be interchanged by changing} \]
\[\text{the definition of the complex structure, (5.8), that is permuting the roles of} \ E_{x,y,z} \text{ and} \ (5.20). \]

Let us now compute the masses of the 12 vectors. We set here for simplicity \(\Lambda = 3 \). Taking into account that the mass term in the vector equations can be read from the kinetic term of the vectors and of the axions in the Lagrangian, namely

\[2L^\lambda \partial^\mu \partial^\nu N^{\Lambda\Sigma} f_{\Lambda\Sigma\mu
u} + N_{\Lambda\Gamma} N_{\Sigma\Delta} (\partial_{\mu} B^{\Lambda\Sigma} + f^{\Lambda\Sigma\Omega\Lambda} A_{\Omega\mu \nu}) \]

where \(N^{\Lambda\Sigma} \equiv E^{\Lambda}_x E^{\Sigma}_x \) is the kinetic matrix of the vectors and \(N_{\Lambda\Sigma} = (N^{-1})^{\Lambda\Sigma} \). At zero scalar fields \((E^\lambda_x = \delta^\lambda_1) \), \(\alpha = 1 \rightarrow (L^1, L^2) = \frac{1}{\sqrt{2}}(1, -i) \) the vector equation of motion gives a square mass matrix proportional to \(Q_{\Lambda\alpha,\Sigma\beta} \):

\[Q_{\Lambda\alpha,\Sigma\beta} = f_{\Gamma\Delta} \partial (\alpha \Lambda f_{\beta\Sigma}) \partial \Gamma \Delta. \]

\[(5.20)\]

which is symmetric in the exchange \(\Lambda \alpha \leftrightarrow \Sigma \beta \). The eigenvalues of \(Q_{\Lambda\alpha,\Sigma\beta} \) can be easily computed and we find that they are twice degenerate. In terms of the four quantities

\[\ell_0 = (m_1^2 + m_2^2 + m_3^2 + m_4^2) \]
\[\ell_1 = (m_1^2 - m_2^2 - m_3^2 + m_4^2) \]
\[\ell_2 = (m_1^2 - m_2^2 + m_3^2 - m_4^2) \]
\[\ell_3 = (m_1^2 + m_2^2 - m_3^2 - m_4^2) \]

the six different values turn out to be proportional to

\[\ell_0 + \ell_1 = 2(m_1^2 + m_2^2); \quad \ell_0 - \ell_1 = 2(m_2^2 + m_3^2) \]
\[\ell_0 + \ell_2 = 2(m_1^2 + m_2^2); \quad \ell_0 - \ell_2 = 2(m_2^2 + m_4^2) \]
\[\ell_0 + \ell_3 = 2(m_1^2 + m_2^2); \quad \ell_0 - \ell_3 = 2(m_3^2 + m_4^2). \]

\[(5.21)\]
\[(5.22)\]
\[(5.23)\]

Note that for \(N = 3, 2 \) six and two vectors are, respectively, massless, according to the massless sectors of these theories described in section 6.

6. Reduction to lower supersymmetry \(N = 4 \rightarrow 3, 2, 1, 0 \)

Since the supergravities with \(1 \leq N < 4 \) are described by \(\sigma \) models possessing a complex structure, it is convenient to rewrite the scalar field content of the \(N = 4 \) theory in complex coordinates as already done for the computation of the gravitino masses.
We recall that we have 36 scalar fields parametrizing \(SO(6, 6)/SO(6) \times SO(6) \) that have been split into 21 fields \(g_{iJ} = g_{Ji} \) parametrizing the coset \(GL(6)/SO(6) \) plus 15 axions \(B_{IJ} = -B_{JI} \) parametrizing the translations. As we have already observed, since we have only 12 vectors, the three axions \(B_{14}, B_{15}, B_{36} \) remain inert under gauge transformations.

When we consider the truncation to the \(N = 3 \) theory we expect that only nine complex scalar fields become massless moduli parametrizing \(SU(3,3)/SU(3) \times SU(3) \times U(1) \). Moreover, it is easy to see that if we set, for example, \(\mu_1 = \mu_2 = \mu_3 = 0 \), which implies \(f_{345} = f_{156} = -f_{123} = -f_{246} \) in the \(N = 3 \) theory, we get that also the six fields \(B_{12} - B_{45}, B_{13} - B_{46}, B_{24} - B_{15}, B_{34} + B_{16}, B_{23} + B_{56}, B_{35} + B_{26} \) are inert under gauge transformations.

We may take advantage of the complex structure of this manifold, by rotating the real frame \(\{e_I\}, I = 1 \ldots 6 \) to the complex frame defined in (5.8). In this frame we have the following decomposition for the scalar fields in terms of complex components:

\[
B_{IJ} \rightarrow B_{ij}, B_{\bar{i}j}, B_{ij}, B_{\bar{i}j}.
\]

In the presence of the translational gauging, the differentials of the axionic fields become covariant and they are obtained by the substitution:

\[
\begin{align*}
\db_{ij} &\rightarrow (\db f_{ijk}) A^{kj} + (\db f_{ijk}) A^{\bar{k}j} + (\db f_{ijk}) A^{k\bar{j}} + (\db f_{ijk}) A^{\bar{k}\bar{j}} \\
\db_{\bar{i}j} &\rightarrow (\db f_{\bar{i}jk}) A^{kj} + (\db f_{\bar{i}jk}) A^{\bar{k}j} + (\db f_{\bar{i}jk}) A^{k\bar{j}} + (\db f_{\bar{i}jk}) A^{\bar{k}\bar{j}}.
\end{align*}
\]

Since in the \(N = 4 \rightarrow 3 \) truncation the only surviving massless moduli fields are \(B_{ij} + i g_{ij} \), then the \(3 + 3 \) axions \(\{B_{ij}, B_{ij}\} \) must become massive, while \(\delta B_{ij} \) must be zero. We see from equation (5.4) that we must put to zero the components

\[
f_{\bar{i}jk} = f_{\bar{k}j} = f_{\bar{i}k} = 0
\]

while

\[
f_{ijk} \equiv f e_{ijk} \neq 0.
\]

Looking at equations (5.15) we see that these relations are exactly the same which set \(\mu_1 + i \mu'_1 = \mu_2 + i \mu'_2 = \mu_3 + i \mu'_3 = 0 \) and \(\mu_4 + i \mu'_4 \neq 0 \), confirming that the chosen complex structure corresponds to the \(N = 3 \) theory. Note that the corresponding \(g_{ij} \) fields partners of \(B_{ij} \) in the chosen complex structure parametrize the coset \(O(1, 1) \times SL(3, \mathbb{C})/SU(3) \). Actually the freezing of the holomorphic \(g_{ij} \) gives the following relations among the components in the real basis of \(g_{iJ} \):

\[
\begin{align*}
g_{14} + g_{25} + g_{36} &= 0 \\
g_{11} - g_{14} &= 0, &g_{22} - g_{55} &= 0, &g_{33} - g_{66} &= 0 \\
g_{12} - g_{45} &= 0, &g_{13} - g_{46} &= 0, &g_{23} - g_{56} &= 0 \\
g_{15} + g_{24} &= 0, &g_{16} + g_{34} &= 0, &g_{26} + g_{35} &= 0.
\end{align*}
\]

The freezing of the axions \(B_{ij} \) in the holomorphic basis gives the analogous equations:

\[
\begin{align*}
B_{12} - B_{45} &= 0, &B_{13} - B_{46} &= 0, &B_{23} - B_{56} &= 0 \\
B_{15} + B_{42} &= 0, &B_{16} + B_{43} &= 0, &B_{26} + B_{53} &= 0 \\
B_{14} &= B_{25} = B_{36} = 0.
\end{align*}
\]
The massless g_7 and B_{β} are instead given by the following combinations:

\begin{align}
 g_{x\tau} &= \frac{1}{2}(g_{11} + g_{44}), \\
 B_{y\beta} &= \frac{1}{2}(g_{22} + g_{55}), \\
 g_{z\zeta} &= \frac{1}{2}(g_{33} + g_{66}) \\
 B_{x\tau} &= \frac{1}{2}B_{14}, \\
 B_{y\beta} &= \frac{1}{2}B_{25}, \\
 B_{z\zeta} &= \frac{1}{2}B_{36}
\end{align}

(6.14)

(6.15)

$g_{x\tau} = \frac{1}{2}(g_{12} + ig_{15})$, $g_{x\tau} = \frac{1}{2}(g_{13} + ig_{16})$, $g_{y\beta} = \frac{1}{2}(g_{23} + ig_{26})$

$B_{x\tau} = \frac{1}{2}(B_{12} + iB_{15})$, $B_{x\tau} = \frac{1}{2}(B_{13} + iB_{16})$, $B_{y\beta} = \frac{1}{2}(B_{23} + iB_{26})$

(6.16)

(6.17)

$B_{xx} = B_{yy} = B_{zz} = 0$.

(6.18)

Let us now consider the reduction $N = 4 \rightarrow 2$ for which the relevant moduli space is $SU(2,2)/(SU(2) \times SU(2) \times U(1)) \otimes SU(1,1)/U(1)$. Setting $\mu_2 + i\mu_2' = \mu_3 + i\mu_3' = 0$ we find

\[f_{xy\tau} = f_{xy\beta} = 0 \]

(6.19)

which, in real components, implies

\[f_{123} + f_{156} = 0; \quad f_{246} + f_{345} = 0 \]

(6.20)

and analogous equations for their Hodge dual. This implies that in the $N = 2$ phase two more axions are gauge inert, namely $B_{23} + B_{35} = 2B_{23}$ and $B_{26} + B_{56} = 2B_{26}$ or, in holomorphic components, $B_{y\beta}$. The five fields $B_{14}, B_{25}, B_{36}, B_{23}, B_{26}$ parametrize the coset $SO(1,1) \times SO(2,2)/SO(2) \times SO(2)$.

If we now consider the truncation $N = 4 \rightarrow 1$ the relevant coset manifold is $(SU(1,1)/U(1))^3$ which contains three complex moduli. To obtain the corresponding complex structure, it is sufficient to freeze $g_{y\beta}, B_{ij}$ with $i \neq j$. In particular the $SU(1,1)^3$ can be decomposed into $O(1,1)^3 \otimes T_3$ where the three $O(1,1)$ and the three translations T_3 are parametrized by $g_{x\tau}, g_{y\beta}, g_{z\zeta}$ and $B_{x\tau}, B_{y\beta}, B_{z\zeta}$, respectively.

These axions are massless because of equation (5.14). (Note that the further truncation $N = 1 \rightarrow 0$ does not alter the coset manifold $SU(1,1)^3$ since we have no loss of massless fields in this process.) In this case we may easily compute the moduli dependence of the gravitino masses. Indeed, $O(1,1)^3$, using equations (6.8) and (6.14), will have as coset representative the matrix

\[
 E^I_A = \begin{pmatrix}
 e^{-\varphi_1} & 0 & 0 & 0 & 0 & 0 \\
 0 & e^{-\varphi_2} & 0 & 0 & 0 & 0 \\
 0 & 0 & e^{-\varphi_3} & 0 & 0 & 0 \\
 0 & 0 & 0 & e^{-\varphi_1} & 0 & 0 \\
 0 & 0 & 0 & 0 & e^{-\varphi_2} & 0 \\
 0 & 0 & 0 & 0 & 0 & e^{-\varphi_3}
 \end{pmatrix}
\]

(6.21)

where we have set $g_{11} = e^{2\varphi_1}, g_{22} = e^{2\varphi_2}, g_{33} = e^{2\varphi_3}$, the exponentials representing the radii of the manifold $T^{2}_{(14)} \times T^{2}_{(25)} \times T^{2}_{(36)}$.

We see that in the gravitino mass formula (3.17) the vielbein E^I_A reduces to the diagonal components of the matrix (6.21). A straightforward computation then gives

\[
 S^{-1}_{AB}S^{AB} = \frac{1}{(48)^2} e^{-(2\varphi_1 + 2\varphi_2 + 2\varphi_3)} \begin{pmatrix}
 m_1^2 & 0 & 0 & 0 \\
 0 & m_2^2 & 0 & 0 \\
 0 & 0 & m_3^2 & 0 \\
 0 & 0 & 0 & m_4^2
 \end{pmatrix}
\]

(6.22)
We see that the square of the gravitino masses goes as \(\frac{1}{R R_i R_j} \). Note that this is different from what happens in the Kaluza–Klein compactification, where the gravitino mass squared goes as \(\frac{1}{R^2} \), where \(\frac{1}{R} = g_{\text{string}}^2 \) and the complex structure \(\tau = i \) is a constant, so that \(\langle \mu^2 \rangle \simeq g_{\text{string}}^2 R^{-1} \).

We note that in the present formulation, where we have used a contravariant \(B^{\Lambda \Sigma} \) as basic charged fields, the gravitino mass depends on the \(T_6 \) volume. However, if we made use of the dual 4-form \(C^{\Lambda \Sigma \Gamma \Delta} \), as it comes from type IIB string theory, then the charge coupling would be given in terms of \(*f^{\alpha}_{\Lambda \Sigma} \) and the gravitino mass matrix would be trilinear in \(E_I^\Lambda \) instead of \(E_I^\Lambda \). Therefore all our results can be translated into the new one by replacing \(R_i \rightarrow R_i^{-1} \).

7. Conclusions

In this paper we have shown that a non-standard form of \(N = 4 \) supergravity, where the full \(SO(6, n) \) symmetry is not manifest, nor even realized linearly on the vector field strengths \([53]\), is the suitable description for a certain class of \(IIB \) compactifications in presence of 3-form fluxes. Since the super-Higgs phases of \(N \)-extended supergravities solely depend on their gauging, the use of a dual formulation \([35]\) is crucial, where the linear symmetry acting on the vector fields \((n = 6) \) is \(GL(6, \mathbb{R}) \times SL(2, \mathbb{R}) \) rather than \(SO(6, 6) \), thus allowing the gauging of a subalgebra \(T_{12} \) inside the \(T_{15} \) (see equation (1.1)), the latter being a nilpotent Abelian subalgebra of \(SO(6, 6) \).

For a choice of complex structures on \(T_6 = T^2 \times T^2 \times T^2 \) the four complex gravitino masses are proportional to the \((3, 0)\) and three \((2, 1)\) fluxes of 3-forms. \(N = 3 \) supergravity corresponds to setting to zero the three \((2, 1)\)-form fluxes, \(N = 2 \) and \(1 \) supergravities correspond to the vanishing of two or one \((2, 1)\)-form.

The scalar potential is non-negative and given by the square of the supersymmetry variation of the component 20 of the 24 \(SU(4) \) (reducible) representation of the six gaugini \((6 \times 4 = 20 + \bar{4})\) of the six matter vector multiplets of the \(SO(6, 6) \) symmetric supergravity. Indeed the positive contribution of the component 4 of the gaugino just cancel in the calculation of the potential the negative contribution of the spin \(\frac{3}{2} \) gravitini.

The classical moduli space of the \(N = 3, 2, 1 \) (or 0) are, respectively, the following three complex manifolds:

\[
N = 3 : \quad \frac{SU(3, 3)}{SU(3) \times SU(3) \times U(1)} \quad (7.1)
\]

\[
N = 2 : \quad \frac{SU(1, 1)}{U(1)} \times \frac{SU(2, 2)}{SU(2) \times SU(2) \times U(1)} \quad (7.2)
\]

\[
N = 1, 0 : \quad \left(\frac{SU(1, 1)}{U(1)} \right)^3 \quad (7.3)
\]

with six, two, or zero massless vectors, respectively.

Note in particular that the \(N = 2 \rightarrow 1 \) phases correspond to a spontaneously broken theory with one vector and two hypermultiplets, which is the simplest generalization \([22]\) of the model in \([20, 21]\).
It is curious to observe that the moduli space of the \(N = 0 \) phase is identical to the moduli space of the \(N = 0 \) phase of \(N = 8 \) spontaneously broken supergravity via Scherk–Schwarz dimensional reduction \([28]–[31, 53]\). The moduli spaces (7.1) and (7.2) of the Scherk–Schwarz \(N = 8 \) dimensional reduced case occur as \(N = 2 \) broken phases (depending on the relations among the masses of the gravitini).

The main difference is that, in Scherk–Schwarz breaking, the gravitini are \(\frac{1}{2} \)-BPS saturated, while here they belong to long massive multiplets \([42, 53]\). This is related to the fact that the ‘flat group’ which is gauged is Abelian in the \(N = 4 \) (orientifold) theory and non-Abelian in the Scherk–Schwarz dimensional reduced \(N = 8 \) theory.

We have considered here the effect of supergravity for the IIB orientifold only for the part responsible for the super-Higgs phases. If one adds \(n D3 \) branes, that will correspond to adding \(n \) matter vector multiplets \([35]\) which, however, will not modify the supersymmetry breaking condition. Then, the \(\sigma \) model of the \(N = 3 \) effective theory will be \(SU(3, 3 + n)/SU(3) \times SU(3 + n) \times U(1) \) \([60]\) and will also contain, as moduli, the ‘positions’ of the \(n \) \(D3 \) branes \([42]\).

Acknowledgments

SF would like to thank the Dipartimento di Fisica, Politecnico di Torino for its kind hospitality during the completion of this work.

RD’A would like to thank the Theoretical Division of CERN for its kind hospitality during the completion of this work.

This work was supported in part by the European Community’s Human Potential Program under contract HPRN-CT-2000-00131 Quantum Space-Time, in which RD’A and SV are associated to Torino University. The work of SF has also been supported by the DOE grant DE-FG03-91ER40662, Task C.

Appendix. The \(SU(4) \) gamma matrices

We have used the following \((\Gamma^I)^{AB} = -(\Gamma^I)^{BA} \)-matrix representation:

\[
\begin{align*}
\Gamma^1 &= \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}, &
\Gamma^4 &= \begin{pmatrix}
0 & 0 & 0 & i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{pmatrix}
\\
\Gamma^2 &= \begin{pmatrix}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{pmatrix}, &
\Gamma^5 &= \begin{pmatrix}
0 & 0 & i & 0 \\
0 & 0 & 0 & i \\
-i & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{pmatrix}
\\
\Gamma^3 &= \begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}, &
\Gamma^6 &= \begin{pmatrix}
0 & -i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & 0 & -i & 0
\end{pmatrix}
\end{align*}
\]

New Journal of Physics 4 (2002) 71.1–71.20 (http://www.njp.org/)
while

\[(\Gamma^I)^{AB} = (\tilde{\Gamma}^I)^{AB} = \frac{1}{2} \epsilon^{ABCD}(\Gamma^I)_{CD}.\]

(A.2)

Note that

\[(\Gamma^{IJ})^A_B = \frac{1}{2} [\Gamma^{[IJ}^{AC}(\Gamma^{J]}_B)^{CB}]\]

(A.3)

\[(\Gamma^{IJK})^A_B = \frac{1}{3!} [\Gamma^{I}_{AC}(\Gamma^{J}_{CD}(\Gamma^{K}_{DB}) + \text{perm.}].\]

(A.4)

Here the matrices \(\Gamma^{IJK}\) are symmetric and satisfy the relation

\[\Gamma^{IJK} = \frac{i}{6} \epsilon^{IJKLMN} \Gamma^{LMN}.\]

(A.5)

In this representation, the following matrices are diagonal:

\[\Gamma^{123} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \Gamma^{156} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \]

(A.6)

\[\Gamma^{246} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \Gamma^{345} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \]

as well as the matrices \(\Gamma^{456}, \Gamma^{234}, \Gamma^{135}\) and \(\Gamma^{126}\) related with them through the relation \((A.5)\).†

References

[1] Deser S and Zumino B 1977 Broken supersymmetry and supergravity Phys. Rev. Lett. 38 1433
[2] Cremmer E, Julia B, Scherk J, Ferrara S, Girardello L and van Nieuwenhuizen P 1979 Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant Nucl. Phys. B 147 105
[3] Cremmer E, Ferrara S, Girardello L and Van Proeyen A 1983 Yang–Mills theories with local supersymmetry: Lagrangian, transformation laws and superHiggs effect Nucl. Phys. B 212 413
[4] Grisaru M T, Rocek M and Karlhede A 1983 The superHiggs effect in superspace Phys. Lett. B 120 110
[5] Cecotti S, Girardello L and Porrati M 1986 Constraints on partial superHiggs Nucl. Phys. B 268 295
[6] For an extensive list of references on applied spontaneously broken supergravity, see for instance:
 Nilles H P 1984 Supersymmetry, supergravity and particle physics Phys. Rep. 110 1
 Weinberg S The Quantum Theory of Fields vol 3 (Cambridge: Cambridge University Press)
[7] Ferrara S and Maiani L 1985 An introduction to supersymmetry breaking in extended supergravity Preprint CERN-TH-4232/85 Based on lectures given at SILARG V, 5th Latin American Symp. on Relativity and Gravitation (Bariloche, Argentina, January 1985)
[8] de Wit B and Nicolai H 1982 N = 8 supergravity Nucl. Phys. B 208 323
[9] Hull C M 1984 Noncompact gaugings of \(N = 8\) supergravity Phys. Lett. B 142 39
 Hull C M 1984 More gaugings of \(N = 8\) supergravity Phys. Lett. B 148 297
[10] Hull C M and Warner N P 1985 The structure of the gauged \(N = 8\) supergravity theories Nucl. Phys. B 253 650
 Hull C M and Warner N P 1985 The potentials of the gauged \(N = 8\) supergravity theories Nucl. Phys. B 253 675

† Note that there is an error of sign in [35] for the values of \(\Gamma^{156}, \Gamma^{246}, \Gamma^{345}\).

New Journal of Physics 4 (2002) 71.1–71.20 (http://www.njp.org/)
[11] de Roo M and Wagemans P 1985 Gauge matter coupling in $N = 4$ supergravity Nucl. Phys. B 262 644
[12] Gunaydin M, Romans L J and Warner N P 1986 Compact and noncompact gauged supergravity theories in five-dimensions Nucl. Phys. B 272 598
[13] Cremmer E, Ferrara S, Kounnas C and Nanopoulos D V 1983 Naturally vanishing cosmological constant in $N = 1$ supergravity Phys. Lett. B 133 61
[14] Ellis J R, Lahanas A B, Nanopoulos D V and Tamvakis K 1984 No-scale supersymmetric standard model Phys. Lett. B 134 429
Ellis J R, Kounnas C and Nanopoulos D V 1984 No-scale supersymmetric guts Nucl. Phys. B 247 373
For a review see Lahanas A B and Nanopoulos D V 1987 The road to no-scale supergravity Phys. Rep. 145 1
[15] Cremmer E, Kounnas C, Van Proeyen A, Derendinger J P, Ferrara S, de Wit B and Girardello L 1985 Vector multiplets coupled to $N = 2$ supergravity: superHiggs effect, flat potentials and geometric structure Nucl. Phys. B 250 385
[16] Gunaydin M, Sierra G and Townsend P K 1984 Vanishing potentials in gauged $N = 2$ supergravity: an application of Jordan algebras Phys. Lett. B 144 41
[17] de Wit B, Lauwers P G and Van Proeyen A 1985 Lagrangians of $N = 2$ supergravity-matter systems Nucl. Phys. B 255 569
[18] Strominger A 1990 Special geometry Commun. Math. Phys. 133 163
[19] Castellani L, D’Auria R and Ferrara S 1990 Special geometry without special coordinates Class. Quantum Grav. 7 1767
[20] Cecotti S, Girardello L and Porrati M 1986 An exceptional $N = 2$ supergravity with flat potential and partial superHiggs Phys. Lett. B 168 83
[21] Ferrara S, Girardello L and Porrati M 1996 Minimal Higgs branch for the breaking of half of the supersymmetries in $N = 2$ supergravity Phys. Lett. B 366 155 (Preprint hep-th/9510074)
[22] Fre P, Girardello L, Pesando I and Trigiante M 1997 Spontaneous breaking with surviving compact gauge groups Nucl. Phys. B 493 231 (Preprint hep-th/9607032)
[23] Andrianopoli L, D’Auria R, Ferrara S and Lledo M A 2002 Super Higgs effect in extended supergravity Nucl. Phys. B (Preprint hep-th/0202116)
[24] Andrianopoli L, D’Auria R and Ferrara S 2002 Consistent reduction of $N = 2 \rightarrow N = 1$ four-dimensional supergravity coupled to matter Nucl. Phys. B 628 387 (Preprint hep-th/0112192)
[25] Louis J 2002 Aspects of spontaneous $N = 2 \rightarrow N = 1$ breaking in supergravity Preprint hep-th/0203138
[26] Andrianopoli L, D’Auria R and Ferrara S 2002 Supersymmetry reduction of N-extended supergravities in four dimensions J. High Energy Phys. JHEP03(2002)025 (Preprint hep-th/0110277)
[27] Bagge J and Witten E 1983 Matter couplings in $N = 2$ supergravity Nucl. Phys. B 222 1
[28] Scherk J and Schwarz J H 1979 How to get masses from extra dimensions Nucl. Phys. B 153 61
[29] Cremmer E, Scherk J and Schwarz J H 1979 Spontaneously broken $N = 8$ supergravity Phys. Lett. B 84 83
[30] Sezgin E and van Nieuwenhuizen P 1982 Renormalizability properties of spontaneously broken $N = 8$ supergravity Nucl. Phys. B 195 325
[31] Andrianopoli L, D’Auria R, Ferrara S and Lledo M A 2002 Gauging of flat groups in four-dimensional supergravity Preprint hep-th/0203206
[32] Ferrara S, Kounnas C, Porrati M and Zwirner F 1987 Effective super-Higgs and StrM² from four-dimensional strings Phys. Lett. B 194 366
Ferrara S, Kounnas C, Porrati M and Zwirner F 1989 Superstrings with spontaneously broken supersymmetry and their effective theories Nucl. Phys. B 318 75
Ferrara S, Kounnas C and Zwirner F 1994 Mass formulae and natural hierarchy in string effective supergravities Nucl. Phys. B 429 589 (Preprint hep-th/9405188)
Ferrara S, Kounnas C and Zwirner F 1995 Nucl. Phys. B 433 255 (erratum)
[33] Barbieri R, Hall L J and Nomura Y 2002 Models of Scherk–Schwarz symmetry breaking in 5D: classification and calculability Nucl. Phys. B 624 63 (Preprint hep-th/0107004)
[34] Antoniadis I, Derendinger J P and Kounnas C 1999 Non-perturbative temperature instabilities in $N = 4$ strings
[35] Tsokur V A and Zinovev Y M 1996 Spontaneous supersymmetry breaking in $N = 4$ supergravity with matter
Phys. Atom. Nucl. 59 2192
Tsokur V A and Zinovev Y M 1996 Yad. Fiz. 59N12 2277 (Preprint hep-th/9411104)
Tsokur V A and Zinovev Y M 1996 Spontaneous supersymmetry breaking in $N = 3$ supergravity with matter
Phys. Atom. Nucl. 59 2185
Tsokur V A and Zinovev Y M 1996 Yad. Fiz. 59N12 1169 (Preprint hep-th/9411096)
Tsokur V A and Zinovev Y M 1996 Dual versions of extended supergravities Phys. Lett. B 378 120 (Preprint hep-th/9503064)

[36] Zinovev Y M 1995 Dual versions of $N = 2$ supergravity and spontaneous supersymmetry breaking Class. Quantum Grav. 12 1355 (Preprint hep-th/9409199)

[37] Polchinski J and Strominger A 1996 New vacua for type II string theory Phys. Lett. B 388 736

[38] Taylor T R and Vafa C 2000 RR flux on Calabi–Yau and partial supersymmetry breaking Phys. Lett. B 474 130

[39] Mayr P 2001 On supersymmetry breaking in string theory and its realization in brane worlds Nucl. Phys. B 593 99

[40] Curio G, Klemm A, Lust D and Theisen S 2001 On the vacuum structure of type II string compactifications on Calabi–Yau spaces with H-fluxes Nucl. Phys. B 609 3

[41] Giddings S B, Kachru S and Polchinski J 2001 Hierarchies from fluxes in string compactifications Preprint hep-th/0105097

[42] Frey A R and Polchinski J 2002 $N = 3$ warped compactifications Preprint hep-th/0201029

[43] Kachru S, Schulz M and Trivedi S 2002 Moduli stabilization from fluxes in a simple IIB orientifold Preprint hep-th/0201028

[44] Louis J and Micu A 2002 Type II theories compactified on Calabi–Yau threefolds in the presence of background fluxes Preprint hep-th/0202168

[45] Curio G, Klemm A, Lust D and Theisen S 2001 On the vacuum structure of type II string compactifications on Calabi–Yau spaces with H-fluxes Nucl. Phys. B 609 3

[46] Michelson J 1997 Compactifications of type IIB strings to four dimensions with non-trivial classical potential Nucl. Phys. B 495 127 (Preprint hep-th/9610151)

[47] Cachazo F and Vafa C 2002 $N = 1$ and $N = 2$ geometry from fluxes Preprint hep-th/0206017

[48] Dall’Agata G 2001 Type IIB supergravity compactified on a Calabi–Yau manifold with H-fluxes J. High Energy Phys. JHEP 11(2001)005 (Preprint hep-th/0107264)

[49] Becker K and Becker M 2001 Supersymmetry breaking, M-theory and fluxes J. High Energy Phys. JHEP 07(2001)038 (Preprint hep-th/0107044)

[50] Haack M and Louis J 2001 M-theory compactified on Calabi–Yau fourfolds with background flux Phys. Lett. B 507 296 (Preprint hep-th/0103068)

[51] Beasley C and Witten E 2002 A note on fluxes and superpotentials in M-theory compactifications on manifolds of G(2) holonomy Preprint hep-th/0203061

[52] Gukov S and Haack M 2002 IIA string theory on Calabi–Yau fourfolds with background fluxes Preprint hep-th/0203267

[53] Andrianopoli L, D’Auria R, Ferrara S and Lledo M A 2002 Duality and spontaneously broken supergravity in flat backgrounds Preprint hep-th/0204145

[54] Gaillard M K and Zumino B 1981 Duality rotations for interacting fields Nucl. Phys. B 193 221

[55] Cordaro F, Fre P, Gualtieri L, Termonia P and Trigiante M 1998 $N = 8$ gaugings revisited: An exhaustive classification Nucl. Phys. B 532 245 (Preprint hep-th/9804056)

[56] Hull C M 2002 New gauged $N = 8$, $D = 4$ supergravities Preprint hep-th/0204156

[57] Giveon A, Rabinovici E and Veneziano G 1989 Duality in string background space Nucl. Phys. B 322 167
[58] Schwarz J H and Sen A 1993 Duality symmetries of $4-D$ heterotic strings *Phys. Lett.* B 312 105 (*Preprint* hep-th/9305185)

[59] D’Auria R and Ferrara S 2001 On fermion masses, gradient flows and potential in supersymmetric theories *J. High Energy Phys.* JHEP 05(2001)034 (*Preprint* hep-th/0103153)

[60] Castellani L, Ceresole A, Ferrara S, D’Auria R, Fre P and Maina E 1986 The complete $N = 3$ matter coupled supergravity *Nucl. Phys.* B 268 317