Screening and Analysis of the Marker Components in *Ganoderma lucidum* by HPLC and HPLC-MSⁿ with the Aid of Chemometrics

Lingfang Wu, Wenyi Liang, Wenjing Chen, Shi Li, Yaping Cui, Qi Qi and Lanzhen Zhang *

School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China; fanglingwu@163.com (L.W.); lwy1054289310@163.com (W.L.); sdewjying@163.com (W.C.); lishi816@126.com (S.L.); 20150931830@bucm.edu.cn (Y.C.); cici_jiayou1@163.com (Q.Q.)

* Correspondence: zhanglanzhen01@126.com; Tel./Fax: +86-10-8473-8628

Academic Editor: Derek J. McPhee
Received: 3 January 2017; Accepted: 1 April 2017; Published: 6 April 2017

Abstract: *Ganoderma* triterpenes (GTs) are the major secondary metabolites of *Ganoderma lucidum*, which is a popularly used traditional Chinese medicine for complementary cancer therapy. The present study was to establish a fingerprint evaluation system based on Similarity Analysis (SA), Cluster Analysis (CA) and Principal Component Analysis (PCA) for the identification and quality control of *G. lucidum*. Fifteen samples from the Chinese provinces of Hainan, Neimeng, Shangdong, Jilin, Anhui, Henan, Yunnan, Guangxi and Fujian were analyzed by HPLC-PAD and HPLC-MSⁿ. Forty-seven compounds were detected by HPLC, of which forty-two compounds were tentatively identified by comparing their retention times and mass spectrometry data with that of reference compounds and reviewing the literature. Ganoderic acid B, 3,7,15-trihydroxy-11,23-dioxolanost-8,16-dien-26-oic acid, lucidenic acid A, ganoderic acid G, and 3,7-oxo-12-acetylganoderic acid DM were deemed to be the marker compounds to distinguish the samples with different quality according to both CA and PCA. This study provides helpful chemical information for further research on the anti-tumor activity and mechanism of action of *G. lucidum*. The results proved that fingerprints combined with chemometrics are a simple, rapid and effective method for the quality control of *G. lucidum*.

Keywords: *Ganoderma lucidum*; triterpenes; HPLC-MSⁿ; Similarity Analysis (SA); chemometrics

1. Introduction

Ganoderma lucidum (Leyss. ex Fr.) Karstis is one of the most highly used medicinal fungi in the world. Its fruiting body, called lingzhi or reishi, has been widely used in traditional Chinese medicine (TCM) as a dietary supplement and medicinal herb in China and other eastern countries. Modern medical research has indicated that *G. lucidum* has comprehensive biological activities, such as anti-cancer [1–5], immune-modulating [1,3,6], anti-oxidant [6–8], anti-microbial [9], anti-inflammatory [10], anti-HIV-1 [11], and so on, among which the most attractive is its anti-cancer activity.

To date, more than 400 compounds were isolated and identified from *G. lucidum*. Over 150 compounds such as ganoderic acid A (GA-A), GA-C₂, GA-D, GA-DM, GA-lactone, ganoderiol F, ganodermanotriol and so on belong to the *Ganoderma* terpene (GT) class which are regarded as the main medicinal components [9,12–15]. Accumulating evidence has shown that GTs can inhibit the proliferation of hepatoma cells and HeLa cells, as well as human colon cancer cells HT-29 [16–18]. The type and content of triterpene acids reflects the quality of *G. lucidum*, so GTs could be used as marker components to evaluate the quality of *G. lucidum*.
The therapeutic effects of traditional Chinese medicines (TCMs) are based on the complex interactions of numerous complicated chemical constituents as a whole system, so methods are needed in order to control the quality of this complex system. In this case, HPLC fingerprints of key components provide a new approach for quality control of traditional Chinese medicines. There are many studies about fingerprints analysis combined with chemometrics for the quality control of traditional Chinese medicines and to find the bioactive components [19–21].

Some studies on the fingerprints of G. lucidum have been reported [22–25], but in these studies, only a few compounds were identified by HPLC-MS. Yang [26] focused on chemical identification of the GTs, and identified thirty-two compounds, but no marker compounds were found from cluster analysis (CA) and principal component analysis (PCA).

In the present study, forty-seven peaks were detected in HPLC-PDA, of which thirty-seven were common peaks in the similarity analysis. Forty-two known triterpenoids were identified by high-resolution liquid mass spectrometry. To the best of our knowledge, this is the first time that so many compounds were identified. We also found for the first time that ganoderic acid B, 3,7,15-tri hydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid, lucidenic acid A, ganoderic acid G, and 3,7-oxo-12-acetylganoderic acid DM might be suitable marker compounds to distinguish between G. lucidum samples of different quality, according to CA and PCA. This study provides helpful chemical information for further research on the anti-tumor activity and mechanism of action of G. lucidum. The method developed in our study also provides a scientific foundation for the quality control of G. lucidum.

2. Results and Discussion

2.1. Validation of the Method

The relative retention time, relative peak area and similarities were used to evaluate the quality of the fingerprints. Dehydrotumulosic acid (peak 15) which is a large single peak in the middle of the chromatogram, was assigned as the reference peak to calculate relative retention times and relative peak areas.

The precision was determined by repeated injection of the same sample solution six consecutive times. The RSDs of relative retention time and relative peak area of the common peaks were all below 0.94% and 2.88%, respectively; the similarities of different chromatograms were all above 0.995.

The repeatability was evaluated by the analysis of six prepared samples. The RSDs of relative retention time and relative retention time of the common peaks were all below 0.95% and 2.86%, respectively; the similarities of different chromatograms were all above 0.995.

Stability testing was performed with one sample over 24 h. The RSDs of relative retention time and relative retention time of the common peaks were all below 1.06% and 2.71%; the similarities of different chromatograms were all 1.000. All these results indicated that the samples remained stable during the testing period and the conditions were satisfactory for the fingerprint analysis.

2.2. Similarity Analysis (SA)

The chromatographic profile must be representative of all the samples and have the features of integrity and fuzziness. By analyzing the mutual pattern of chromatograms, the identification and authentication of the samples can be conducted well even if the amounts of some chemical constituents are different from the others.

Fifteen batches of samples from different habitats were determined and the chromatograms were analyzed by SES to generate a common pattern R (Figure 1). The peak area of the common peaks was listed in the supplementary materials. SES for Chromatographic Fingerprint was performed to calculate the similarities of different chromatograms compared to the common pattern. The results are shown in Table 1.
Table 1. The results of similarities of the chromatograms from different origins.

No.	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	R
S1	1.000	0.820	0.925	0.848	0.799	0.723	0.701	0.921	0.699	0.748	0.714	0.774	0.708	0.723	0.935	
S2	0.820	1.000	0.831	0.733	0.707	0.673	0.636	0.803	0.670	0.803	0.797	0.777	0.624	0.642	0.687	0.864
S3	0.925	0.831	1.000	0.914	0.853	0.795	0.768	0.961	0.663	0.735	0.813	0.833	0.728	0.785	0.838	0.965
S4	0.848	0.733	0.914	1.000	0.877	0.711	0.676	0.911	0.597	0.672	0.744	0.674	0.604	0.694	0.509	0.907
S5	0.799	0.707	0.853	0.877	1.000	0.659	0.622	0.853	0.562	0.618	0.680	0.651	0.671	0.636	0.689	0.857
S6	0.723	0.673	0.795	0.711	0.659	1.000	0.843	0.728	0.509	0.739	0.744	0.653	0.481	0.984	0.648	0.825
S7	0.701	0.636	0.768	0.676	0.622	0.843	1.000	0.706	0.512	0.669	0.695	0.665	0.705	0.862	0.642	0.791
S8	0.921	0.803	0.961	0.911	0.853	0.728	0.706	1.000	0.664	0.697	0.784	0.913	0.695	0.719	0.733	0.956
S9	0.699	0.670	0.663	0.597	0.562	0.509	0.512	0.664	1.000	0.675	0.665	0.714	0.774	0.500	0.723	0.772
S10	0.692	0.803	0.735	0.672	0.618	0.739	0.669	0.697	0.675	1.000	0.799	0.650	0.711	0.720	0.686	0.826
S11	0.748	0.797	0.813	0.744	0.680	0.744	0.695	0.784	0.665	0.799	1.000	0.651	0.671	0.708	0.689	0.874
S12	0.714	0.777	0.833	0.674	0.651	0.653	0.665	0.913	0.714	0.650	0.651	1.000	0.695	0.505	0.733	0.867
S13	0.774	0.624	0.728	0.604	0.671	0.481	0.705	0.695	0.774	0.711	0.671	0.695	1.000	0.681	0.742	0.854
S14	0.708	0.642	0.785	0.694	0.636	0.984	0.862	0.719	0.500	0.720	0.708	0.505	0.681	1.000	0.554	0.810
S15	0.723	0.687	0.838	0.509	0.689	0.648	0.642	0.733	0.723	0.686	0.689	0.733	0.742	0.554	1.000	0.863
R	0.935	0.864	0.965	0.907	0.857	0.825	0.791	0.956	0.772	0.826	0.874	0.867	0.854	0.810	0.863	1.000
Figure 1. Overlaid HPLC chromatograms of samples from No. S1 to S15. The common pattern (marked R) was obtained by using the Similarity Evaluation System (SES) for the Chromatographic Fingerprints of TCMs.

The conclusion can be drawn from the results that the similarities of different chromatograms compared to the common pattern are all above 0.800, except for samples S7 (0.791) and S9 (0.772), which indicates that the chemical constituents of different samples are not highly influenced by their sources. The common pattern is a very positive identification for the samples of *G. lucidum*.

2.3. Identification of the Compounds Present

HPLC-ESI-MSn method was employed to identify the components in *G. lucidum* (Figures 2 and 3) Molecular weights and fragmentation information (Tables 2 and 3) were obtained. The possible structures of 37 common peaks and ten other peaks a1–a10 were deduced, as shown in Figure 4. Under the optimized MS conditions, the negative mode was used to identify the peaks.

Figure 2. HPLC chromatograms of *G. lucidum*.
Figure 3. Negative mode of the HPLC-MSn chromatograms of *G. lucidum*.

![Negative mode of the HPLC-MSn chromatograms of *G. lucidum*](image)

Figure 4. The chemical structures of the identified compounds.

![Chemical structures of the identified compounds](image)
Peak No.	t_R (min)	[M−H]−	Negative Mode	Identification
1	16.07	533.3109	M^+ 533.3109 [M−H]^−, 485.2977 [M−H−18(H_2O)−30(2CH_3)]^−	12-hydroxygianoderic C_4 [26,27]
2	17.39	515.3452	M^+ 515.3452 [M−H]^−	Unknown
3	17.79	613.2977	M^+ 613.2977 [M−H]^−, 553.3198 [M−H−18(H_2O)−42(2CH_2CO)]^−, 343.1749 [M−H−18(H_2O)−192(pyrolysis fragments of D ring)]^−	3-acetylgianoderic acid K [26]
4	20.22	515.3011	M^+ 515.3011 [M−H]^−, 453.2738 [M−H−18(H_2O)−44(CO_2)]^−, 397.1818 [M−H−18(H_2O)−194(pyrolysis fragments of D ring)]^−	3,7,15-trihydroxy-11,23-dioxolanost-8,16-dien-24-oic acid [26]
5	21.84	517.3159	M^+ 517.3159 [M−H]^−, 437.4261 [M−H−36(2H_2O)−44(CO_2)]^−, 481.3099 [M−H−18(H_2O)−194(pyrolysis fragments of D ring)]^−	Ganoderic acid C_2 [26,29,30]
6	22.83	501.3214	M^+ 501.3214 [M−H]^−, 437.4045 [M−H−18(H_2O)−44(CO_2)]^−, 397.1574 [M−H−18(H_2O)−194(pyrolysis fragments of D ring)]^−	Ganolucic acid B [26]
7	24.10	457.2592	M^+ 457.2592 [M−H]^−, 397.1818 [M−H−44(CO_2)−16(CH_3)]^−, 353.0224 [M−H−184(pyrolysis fragments of D ring)]^−	3-hydroxy-4,14-trimethyl-7,11,15-trioxocholest-8-en-24-oic acid [26]
8	25.83	529.2786	M^+ 529.2786 [M−H]^−, 511.2697 [M−H−18(H_2O)]^−, 437.3528 [M−H−18(H_2O)−44(CO_2)−30(2CH_3)]^−, 317.0999 [M−H−18(H_2O)−194(pyrolysis fragments of D ring)]^−	Ganoderic acid C_2 [26]
9	28.17	531.2941	M^+ 531.2941 [M−H]^−, 513.2853 [M−H−18(H_2O)]^−, 437.3528 [M−H−18(H_2O)−44(CO_2)−30(2CH_3)]^−, 301.1445 [M−H−18(H_2O)−184(pyrolysis fragments of D ring)]^−	Ganoderic acid G [26,31]
10	31.25	516.2992	M^+ 516.2992 [M−H]^−, 497.2901 [M−H−18(H_2O)]^−, 437.3528 [M−H−18(H_2O)−44(CO_2)−30(2CH_3)]^−, 287.2104 [M−H−194(pyrolysis fragments of D ring)]^−	Ganolucic acid B [26,30,31]

Table 2. The HPLC-MS data and compound names of the 47 peaks.
Peak No.	t_R (min)	[M – H]⁻	Negative Mode	Identification
11	33.14	511.2698	M⁷⁺: 511.2698 [M – H]⁻, 467.3225 [M – H – 18(H₂O)]⁻, 449.3569 [M – H – 18(H₂O) – 44(CO₂)]⁻, 434.2295 [M – H – 18(H₂O) – 59(Asc)⁻], 493.3167 [M – H – 18(H₂O) – 44(CO₂)] – 204 (pyrolysis fragments of C ring)⁻, 147.0566 [M – H – 18(H₂O) – 44(CO₂)] – 204 (pyrolysis fragments of C ring)⁻ – 98 (pyrolysis fragments of A ring)⁻.	unknown
12	34.63	513.2588	M⁷⁺: 513.2588 [M – H]⁻, 451.2515 [M – H – 18(H₂O) – 44(CO₂)]⁻, 436.2622 [M – H – 18(H₂O) – 59(Asc)⁻].	Ganoderic acid AM₁ [26,32]
13	38.02	573.3042	M⁷⁺: 573.3042 [M – H]⁻, 555.2953 [M – H – 18(H₂O)]⁻, 496.3256 [M – H – 18(H₂O) – 59(Asc)⁻]⁻.	Ganoderic acid K [26]
14	40.45	457.2954	M⁷⁺: 457.2954 [M – H]⁻, 449.2799 [M – H – 15(Asc)²]⁻, 439.0501 [M – H – 18(H₂O)]⁻, 421.4436 [M – H – 36(H₂O)]⁻, 95.3611 [M – H – 18(H₂O) – 44(CO₂)]⁻, 301.3354 [M – H – 138 (pyrolysis fragments of D ring) – 18(H₂O)]⁻.	Lucideric acid A [26]
15	44.49	515.3004	M⁷⁺: 515.3004 [M – H]⁻, 479.3175 [M – H – 18(H₂O)]⁻, 451.2515 [M – H – 18(H₂O) – 44(CO₂)]⁻, 303.1984 [M – H – 18(H₂O) – 144 (pyrolysis fragments of D ring)]⁻.	Ganoderic acid A [26,30,31]
16	46.25	571.2893	M⁷⁺: 571.2893 [M – H]⁻, 553.2797 [M – H – 18(H₂O)]⁻, 491.3605 [M – H – 18(H₂O) – 44(CH₃CO) – 30(CH₃)]⁻, 457.3870 [M – H – 18(H₂O) – 42(CH₃CO) – 44(CO₂)]⁻.	Ganoderic acid H [26,33]
17	52.47	527.2637	M⁷⁺: 527.2637 [M – H]⁻, 509.2544 [M – H – 18(H₂O)]⁻, 435.2996 [M – H – 18(H₂O) – 44(CO₂) – 30(2CH₂)²], 301.2139 [M – H – 18(H₂O) – 144 (pyrolysis fragments of D ring) – 14(CH₂)]⁻, 299.1358 [M – H – 18(H₂O) – 194 (pyrolysis fragments of D ring) – 16(CH₂)]⁻.	12-hydroxy-3,7,11,15,23-pentaosolanost-8-en-26-oic acid [26]
18	62.71	615.2795	M⁷⁺: 615.2795 [M – H]⁻, 597.3021 [M – H – 18(H₂O)]⁻, 579.2928 [M – H – 18(H₂O) – 44(CO₂)]⁻.	12,15-bis(acetyloxy)-3-hydroxy-7,11,12-triosolanost-8-en-26-oic acid [26]
19	69.36	513.2806	M⁷⁺: 513.2806 [M – H]⁻, 495.2746 [M – H – 18(H₂O)]⁻, 473.2644 [M – H – 18(H₂O) – 44(CO₂)]⁻, 451.2073 [M – H – 18(H₂O) – 44(CO₂) – 15(CH₂)]⁻, 301.1673 [M – H – 18(H₂O) – 144 (pyrolysis fragments of D ring)]⁻.	Ganoderic acid D [26,30]
20	75.66	511.2693	M⁷⁺: 511.2693 [M – H]⁻, 493.2604 [M – H – 18(H₂O)]⁻, 449.2799 [M – H – 18(H₂O) – 44(CO₂)]⁻.	Ganoderic acid F [26]
Table 2. Cont.

Peak No.	tR (min)	[M – H]⁻	Negative Mode	Identification
21	77.24	499.3067	M⁰: 499.3067 [M – H]⁻, 499.3067 [M – H]⁻	Ganolacidic acid D [26]
			M⁰: 499.3067 [M – H]⁻, 481.3056 [M – H – 18(H₂O)]⁻, 437.3787 [M – H – 18(H₂O) – 44(CO₂)]⁻, 437.3787 – 419.2850 [M – H – 18(H₂O) – 44(CO₂) – 18(H₂O)]⁻	
22	80.47	569.2731	M⁰: 569.2731 [M – H]⁻, 551.0040 [M – H – 18(H₂O)]⁻	12-acetoxy ganoderic acid F [26,27]
			M⁰: 531.0840 – 509.2411 [M – H – 18(H₂O) – 42(CH₂=CO)]⁻, 479.2618 [M – H – 18(H₂O) – 42(CH₂=CO) – 30(2CH₂)J]⁻, 317.2808 [M – H – 204 (pyrolysis fragments of C ring) – 30(2CH₂)J]⁻	
			M⁰: 509.2411 – 465.2256 [M – H – 18(H₂O) – 42(CH₂=CO) – 44(CO₂)]⁻, 435.3218 [M – H – 18(H₂O) – 42(CH₂=CO) – 44(CO₂) – 30(2CH₂)J]⁻, 301.2180 [M – H – 18(H₂O) – 42(CH₂=CO) – 194 (pyrolysis fragments of D ring) – 14(CH₂)]⁻	
23	81.87	513.2857	M⁰: 513.2857 [M – H]⁻	Ganoderic acid J [26]
			M⁰: 513.2857 – 451.2750 [M – H – 18(H₂O) – 44(CO₂)]⁻, 436.3795 [M – H – 18(H₂O) – 44(CO₂) – 15(CH₃)]⁻, 305.2700 [M – H – 194 (pyrolysis fragments of D ring) – 14(CH₂)]⁻, 251.1266 [M – H – 18(H₂O) – 44(CO₂) – 204 (pyrolysis fragments of C ring) – 14(CH₂)]⁻	
			M⁰: 451.2750 – 421.2310 [M – H – 18(H₂O) – 44(CO₂) – 30(2CH₂)J]⁻, 403.2533 [M – H – 18(H₂O) – 44(CO₂) – 30(2CH₂) – 18(H₂O)]⁻	
24	86.30	497.2899	M⁰: 497.2899 [M – H]⁻	Ganoderic acid GS [32]
			M⁰: 497.2899 – 479.2302 [M – H – 18(H₂O)]⁻, 453.2728 [M – H – 18(H₂O) – 44(CO₂)]⁻, 435.2746 [M – H – 18(H₂O) – 44(CO₂)]⁻, 285.1586 [M – H – 18(H₂O) – 194 (pyrolysis fragments of D ring)]⁻	
25	88.22	483.3108	M⁰: 483.3108 [M – H]⁻	3,7-oxo-12-hydroxy ganoderic acid DM [27,32]
			M⁰: 483.3108 – 467.2955 [M – H – 16(CH₂)]⁻, 465.3409 [M – H – 18(H₂O)]⁻, 439.3409 [M – H – 44(CO₂)]⁻, 421.3387 [M – H – 18(H₂O) – 44(CO₂)]⁻, 385.1546 [M – H – 96 (pyrolysis fragments of A ring)]⁻, 345.2003 [M – H – 136 (pyrolysis fragments of B ring)]⁻, 315.1342 [M – H – 178 (pyrolysis fragments of D ring)], 287.1245 [M – H – 136 (pyrolysis fragments of B ring) – 18(H₂O)]⁻	
			M⁰: 345.2003 – 301.2150 [M – H – 136 (pyrolysis fragments of B ring) – 44(CO₂)]⁻, 271.0611 [M – H – 136 (pyrolysis fragments of B ring) – 44(CO₂) – 30(2CH₂)J]⁻, 269.1784 [M – H – 136 (pyrolysis fragments of B ring) – 44(CO₂) – 32(2CH₂)J]⁻	
26	91.31	529.3177	M⁰: 529.3177 [M – H]⁻	12-hydroxy ganoderic acid D [26]
			M⁰: 529.3177 – 511.3445 [M – H – 18(H₂O)]⁻, 493.3448 [M – H – 36(2H₂O)]⁻, 467.3685 [M – H – 18(H₂O) – 44(CO₂)]⁻, 295.1241 [M – H – 18(H₂O) – 194 (pyrolysis fragments of D ring)]⁻	
			M⁰: 467.3685 – 449.3226 [M – H – 18(H₂O) – 44(CO₂) – 18(H₂O)]⁻, 419.1971 [M – H – 18(H₂O) – 44(CO₂) – 18(H₂O) – 30(2CH₂)J]⁻, 263.3528 [M – H – 18(H₂O) – 44(CO₂) – 204 (pyrolysis fragments of C ring)]⁻, 247.0979 [M – H – 18(H₂O) – 44(CO₂) – 204 (pyrolysis fragments of C ring) – 16(CH₂)]⁻	
27	91.83	613.3005	M⁰: 613.3005 [M – H]⁻, 595.2902 [M – H – 18(H₂O)]⁻	3-acetyl ganoderic acid H [26]
			M⁰: 595.2902 – 553.2996 [M – H – 18(H₂O) – 42(CH₂=CO)]⁻, 523.2399 [M – H – 18(H₂O) – 44(CO₂) – 28(2CH₂)J]⁻, 509.3708 [M – H – 18(H₂O) – 44(CO₂) – 42(CH₂=CO)]⁻	
			M⁰: 553.2996 – 479.2277 [M – H – 18(H₂O) – 42(CH₂=CO) – 44(CO₂) – 30(2CH₂)J]⁻, 465.3148 [M – H – 18(H₂O) – 42(CH₂=CO) – 80(2CO₂)]⁻, 345.2561 [M – H – 18(H₂O) – 42(CH₂=CO) – 194 (pyrolysis fragments of D ring) – 14(CH₂)]⁻, 343.3474 [M – H – 18(H₂O) – 42(CH₂=CO) – 194 (pyrolysis fragments of D ring) – 16(CH₂)]⁻	
28	91.30	570.0023	M⁰: 570.0023 [M – H]⁻	Unknown
29	93.34	483.3266	M⁰: 483.3266 [M – H]⁻	15-hydroxy ganoderic acid DM [32]
			M⁰: 483.3266 – 465.3160 [M – H – 18(H₂O)]⁻, 447.2954 [M – H – 36(2H₂O)]⁻, 439.407433.2728 [M – H – 44(CO₂)]⁻, 421.4003 [M – H – 18(H₂O) – 44(CO₂)]⁻, 361.1981 [M – H – 18(H₂O) – 44(CO₂) – 60(CH₃COOH)]⁻, 255.1103 [M – H – 178 (pyrolysis fragments of D ring) – 18(H₂O) – 32(2CH₂)J]⁻	
Table 2. Cont.

Peak No.	t_r (min)	[M−H][−]	Negative Mode	Identification
30	95.05	525.3211	M⁺ 525.3211 [M−H][−]	3.7-oxo-12-acetyl ganoderic acid DM [26]
		483.2451	M⁺ 483.2451 [M−H][−] =CO \) 44(CO OH)[−]	Unknown
		387.2253	M⁺ 387.2253 [M−H][−] =CO \) 44(CO OH)[−]	Ganoderic acid DM [32]
		439.4126	M⁺ 439.4126 [M−H][−] =CO \) 44(CO OH)[−]	Lucidone A [32]
35	111.95	453.3369	M⁺ 453.3369 [M−H][−]	Ganoderic acid TR or Ganoderic acid Y [32]
		495.2749	M⁺ 495.2749 [M−H][−]	3,11,15-trioxochole-8-en-24-oic acid [26,27]
37	119.35	459.2901	M⁺ 459.2901 [M−H][−]	7,15-dihydroxy-4,4,14-trimethyl-3,11-dioxochole-8-en-24-oic acid [26]
a1	13.31	527.2641	M⁺ 527.2641 [M−H][−]	3,12-dihydroxy-4,4,14-trimethyl-7,11,15-trioxo-lanost-8,9,20,22-en-24-oic acid [26,27]
a2	13.71	511.3550	M⁺ 511.3550 [M−H][−]	Ganoderic acid Mf [26,33]
a3	29.16	459.2763	M⁺ 459.2763 [M−H][−]	Lucidene acid N [26]
Table 2. Cont.

Peak No.	\(t_R \) (min)	\([M - H]^-\)	Negative Mode	Identification
a4	49.03	511.2703	435.2854 [M - H - 4CH2=CO] - 14(CH2)=CO	Ganoderic acid D [26]
a5	52.47	515.3007	367.1648 [M - H - 36(CH2O) - 44(CO2)] - 14(CH2)=CO	Ganoderic acid ε [31,33]
a6	54.24	527.2637	360.2672 [M - H - 36(CH2O) - 44(CO2)] - 14(CH2)=CO	Elvingic acid A [26]
a7	69.32	513.2836	453.2854 [M - H - 4CH2=CO] - 14(CH2)=CO	Ganoderic acid B [26]
a8	79.87	513.2494	450.2654 [M - H - 4CH2=CO] - 14(CH2)=CO	Lucideric acid D [26]
a9	88.41	555.2974	453.2854 [M - H - 4CH2=CO] - 14(CH2)=CO	Lucideric acid GS-3 [32,33]
a10	124.88	471.3473	\([M - H]^-\)	unknown
Table 3. The chemical structures of the identified compounds.

No.	Chemical Name	Ty.	R1	R2	R3	R4	C=C	M
1	12-Hydroxyganoderic acid C₂	A	β-OH	β-OH	α-OH	OH	-	534.3109
2	3-Acetylganoderic acid K	A	β-OAc	β-OH	=O	-	-	613.2977
3	3,7,15-Trihydroxy-11,23-dioxolanost-8,16-dien-26-oic acid	A	β-OH	β-OH	β-OH	-	Δ16, 17	516.3011
4	Ganoderic acid C₂	A	β-OH	β-OH	α-OH	H	-	518.3139
5	Ganoolucidic acid B	A	β-OH	H	α-OH	H	-	502.3214
6	3-Acetylganoderic acid K	A	β-OAc	β-OH	=O	β-OAc	Δ20, 22	514.2941
7	3,7,11,15-Trihydroxy-7,11,15-trioxolanost-8-en-24-oic acid	B	β-OH	=O	=O	H	-	458.2594
8	Ganoderic acid C₆	A	β-OH	=O	=O	H	-	512.2693
9	Ganoderic acid G	A	β-OH	β-OH	=O	α-OH	H	514.2836
10	Ganoderic acid B	B	=O	β-OH	=O	H	-	458.2954
11	Ganoderic acid AM	A	β-OH	=O	=O	H	-	512.2985
12	Ganoderic acid K	A	β-OH	=O	=O	α-OH	-	572.2893
13	Lucidonic acid A	B	=O	β-OH	=O	H	-	514.3004
14	Ganoderic acid H	A	=O	=O	β-OH	α-OH	-	512.2863
15	Ganoderic acid D	A	=O	=O	α-OH	H	-	500.3067
16	Ganoderic acid F	A	=O	=O	=O	-	-	500.3067
17	3,7-12-Hydroxy-12-hydroxy-ganoderic acid DM	D	=O	=O	OH	H	-	484.3108
18	12,15-Bis(acetoxyl)12-hydroxy-7,11,15-trioxolanost-8-en-26-oic acid	A	=O	=O	OAc	OAc	-	616.2795
19	Ganoderic acid D	A	=O	β-OH	=O	H	-	514.2836
20	Ganoderic acid F	A	=O	=O	=O	-	-	484.2899
21	Ganoolucidic acid D	C	-	-	-	-	-	500.3067
22	12-Acetoxyganoderic acid F	A	=O	=O	=O	β-OAc	-	570.2731
23	Ganoderic acid J	A	=O	=O	α-OH	H	-	514.2857
24	Ganoderic acid GS	A	=O	=O	α-OH	H	-	498.2899
25	3,7-Oxo-12-hydroxy-ganoderic acid DM	D	=O	=O	H	OH	-	484.3108
26	12-Hydroxyganoderic acid D	A	=O	β-OH	=O	OH	-	530.3177
27	3-Acetylganoderic acid H	A	β-OAc	=O	=O	β-OAc	-	614.3005
28	15-Hydroxyganoderic acid DM	D	=O	H	=O	H	-	484.2366
29	3,7-Oxo-12-acetylganoderic acid DM	D	=O	=O	-	β-OAc	-	526.3211
30	3,7-Oxo-12-acetylganoderic acid DM	D	=O	=O	-	β-OAc	-	526.3211
31	Ganoolucidic acid A	A	=O	α-OH	H	-	-	500.3419
32	3,11,15-Trioxolanost-8-en-24-oic acid	A	=O	H	α-OH	H	-	468.3156
33	Lucidonic acid A	E	-	-	-	-	-	402.0025
34	Ganoderic acid TR	F	=O	=O	-	-	-	454.3369
35	Ganoderic acid Y	G	β-OH	=O	=O	H	-	468.2749
36	3,11,15-Trioxolanost-8-en-24-oic acid	A	=O	H	=O	H	-	460.2901
37	7,15-Dihydroxy-4,4,14-trimethyl-3,11-dioxolanost-8-en-24-oic acid	B	=O	OH	OH	OH	H	528.2641
38	3,12-Dihydroxy-4,4,14-trimethyl-7,11,15-trioxolanost-8,9,20,22-en-26-oic acid	A	β-OH	=O	=O	β-OH	Δ20, 22	512.3550
39	Ganoderic acid Mf	H	β-OAc	-	-	-	-	460.2763
40	Lucidonic acid N	B	β-OH	β-OH	=O	H	-	512.2703
41	Ganoderic acid D	A	=O	β-OH	=O	H	Δ20, 22	512.2703
42	Ganoderic acid C	C	-	=O	α-OH	H	-	516.3007
43	Elffingic acid A	A	=O	β-OH	=O	α-OH	Δ20, 22	528.2637
44	Ganoderic acid B	A	β-OH	β-OH	=O	H	Δ20, 22	514.2836
45	Lucidonic acid D	B	=O	=O	=O	β-OAc	-	514.2494
46	Lucidonic acid G	A	β-OH	β-OH	=O	-	-	556.2974
As shown in Table 2, in the negative mode ESI-MS spectra, the $[\text{M} - \text{H}]^-$ and $[\text{M} - \text{H}_2\text{O} - \text{H}]^-$ ions were found for all 47 compounds. The $[\text{M} - \text{CO}_2 - \text{H}]^-$ ion was seen for most of the compounds. In type A and C, the molecular weight of pyrolysis fragments of D ring was 194, while there is at least 17, 20, 22, or 24. In type B, the molecular weight of pyrolysis fragments of D ring was 192. In type D, the molecular weight of pyrolysis fragments of D ring was 178. In type E, the molecular weight of pyrolysis fragments of D ring was 80, only for compound 34. In type F, the molecular weight of pyrolysis fragments of D ring was also 194, without R1, R2, R3, and R4, only for compound 35. In type G, the molecular weight of pyrolysis fragments of D ring was also 178, without R2, R3, and R4, only for compound 35. In type H, the molecular weight of pyrolysis fragments of D ring was also 192, without C=C, only for compound a2.

2.4. Cluster Analysis (CA)

Cluster analysis is a multivariate analysis technique that is used to sort samples into groups. It is widely applied for fingerprint analysis, because it is a nonparametric data interpretation method and simple to use. CA provides a visual representation of complex data. Average linkage between groups was applied, and Pearson correlation was selected as a measurement. The method can classify different herbs by measuring the peak areas from their corresponding HPLC fingerprints. The common characteristic peaks, which were calculated by the Similarity Evaluation System, were selected for the CA. Cluster analysis of *G. lucidum* samples was performed based on the relative peak areas of all 37 common peaks.

The CA results are shown in Figure 5, where the quality characteristics are revealed more clearly. The cluster analysis results show that the samples could be divided into three quality clusters. Among them, Cluster I includes the samples S2, S5, S6, S1, S11 and S7, Cluster II includes S13 S14 and S12, the others are in Cluster II. All the compounds in Cluster II had much lower concentrations than the other two clusters.

Cluster I was distinguished as it contains more 3-acetylganoderenic acid K (F3), ganoderic acid G (F9), ganoderic acid B (F10), unknown F11, lucidenic acid A (F14), and 3,7-oxo-12-acetylganoderenic acid DM (F30) than Clusters II and III. The higher concentration of these compounds in Cluster I may be due to the good quality of *G. lucidum* herb. This indicated that these compounds could be used as marker compounds to distinguish the *G. lucidum* samples with different quality. The results of
CA could be validated against each other and provided more references for the quality evaluation of *G. lucidum*.

2.5. Principal Components Analysis (PCA)

To evaluate the variations in quality of the 15 samples, PCA was carried out with the relative amounts of each identified component. The contents of 37 fingerprint peaks were applied to evaluate the sample variations. Figure 6 shows the score plots obtained by PCA. The first six principal components accounted for 93.69% of the total variance. Examination of the score plots indicates that the main components responsible for the separation were ganoderic acid B (F10), 3-acetylganoderenic acid K (F3), 3,7-oxo-12-acetylganoderic acid DM (F30), ganoderic acid G (F9), 3,7,15-trihydroxy-11,23-dioxolanost-8,16-dien-26-oic acid (F4), lucidenic acid A (F14), 3-acetyl-ganoderic acid H (F27) and unknown F11, as shown in Figure 6 and Table 4.

Peak No.	PC1	PC2	PC3	PC4	PC5	PC6
1	0.058	0.077	−0.014	−0.087	−0.025	0.007
2	−0.018	−0.012	−0.087	0.074	0.407	0.008
3	0.092	0.006	−0.059	0.024	−0.079	0.058
4	0.078	0.040	−0.018	−0.077	0.037	0.053
5	0.019	−0.050	−0.043	0.307	−0.017	0.117
6	−0.010	0.096	0.062	0.048	−0.095	0.242
7	0.041	0.079	−0.157	0.057	0.035	0.121
8	0.057	−0.033	0.051	0.046	−0.051	0.147
9	0.079	−0.067	−0.024	0.077	0.085	0.048
10	0.096	−0.025	−0.044	0.025	−0.023	0.019
11	0.077	−0.050	0.078	−0.080	0.040	0.046
12	0.015	0.090	0.070	−0.074	0.006	0.162
13	0.057	0.011	0.032	0.004	0.019	0.386
14	0.078	−0.047	0.037	0.023	−0.008	0.072
15	−0.003	0.060	0.064	−0.033	0.076	0.075
16	0.042	−0.054	0.034	−0.089	0.164	0.259
17	0.049	−0.062	0.115	−0.069	0.117	0.068
18	−0.054	−0.005	−0.049	0.290	0.054	0.013
19	0.043	−0.006	−0.025	0.167	0.064	0.177
20	−0.017	−0.026	0.115	−0.069	0.117	0.068
21	−0.021	0.039	0.019	0.101	0.077	0.049
22	−0.015	0.050	0.015	0.099	−0.056	0.093
23	0.000	0.128	−0.133	0.023	0.095	0.043
24	0.032	0.002	0.016	−0.086	0.139	0.182
25	−0.018	0.106	0.025	−0.008	−0.100	0.012
26	−0.031	0.058	−0.061	−0.011	0.206	0.130
27	0.078	0.069	−0.070	−0.029	−0.048	0.054
28	−0.035	0.055	0.123	−0.071	−0.051	0.021
29	−0.029	0.065	0.031	0.103	−0.135	0.052
30	0.085	0.048	−0.050	−0.082	−0.027	0.007
31	0.075	0.012	−0.020	0.025	−0.052	0.062
32	−0.049	0.042	0.239	−0.059	−0.126	0.241
33	−0.040	0.069	−0.029	−0.098	0.186	0.118
34	−0.007	0.176	0.028	−0.131	−0.076	0.343
35	0.029	−0.041	0.059	0.159	−0.182	0.239
36	−0.020	−0.039	0.203	0.040	−0.111	0.004
37	0.068	−0.003	−0.016	0.056	−0.109	0.220
These components were deemed to be the marker compounds of sample variation. This result is in accord with the one obtained from the cluster analysis (CA). The combination of PCA and CA was thus a useful tool for quality control and evaluation of *G. lucidum*.

3. Materials and Methods

3.1. Samples and Reagents

Fifteen *G. lucidum* samples were purchased from different regions of China and authenticated by Professor Chun-Sheng Liu (School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China). Each sample (three replicates) was placed in a dark and dry environment. The regions where the 15 samples were obtained are listed in Table 5. HPLC grade acetonitrile and acetic acid were obtained from Fisher (Waltham, MA, USA); distilled water was bought from Watsons (Beijing, China) and was filtered through a 0.22 μm membrane (Dikma, Beijing, China) prior to use. All other reagents were of analytical grade.

3.2. Sample Preparation

Dried powder of *G. lucidum* from different regions (1 g) was accurately weighed out and transferred into a 100 mL conical flask. Chloroform (50 mL) was added to the flask and the flask with the chloroform and powder was placed in an ultrasonic extraction device and extracted for 30 min twice. The solution was cooled and filtered through filter paper, and then the solvent was recovered using a rotary evaporator. The residue was dissolved in a 10 mL volumetric flask using methanol. The solution was filtered through a 0.22 μm membrane filter for fingerprint analysis.

![Image](image_url)

Figure 6. PCA scores plots of the sample from different regions.

Table 5. The regions of origin of the 15 samples.

No.	Region	No.	Region
S1	Haikou, Hainan	S9	Huangshan, Anhui
S2	Baotou, Neimeng	S10	Jinzhai, Anhui
S3	Taishan, Shandong	S11	Xinyang, Yunnan
S4	Jiaxing, Shandong	S12	Dali, Yunnan
S5	Jilin, Jilin	S13	Tianlin, Guangxi
S6	Changbaishan, Jilin	S14	Shanghai
S7	Changchun, Jilin	S15	Fuzhou, Fujian
S8	Jingzhou, Hunan		

Molecules 2017, 21, 584
3.3. Apparatus and Parameters

A Waters Alliance HPLC 2695 series instrument (Waters, Manchester, UK) was used to perform the high performance liquid chromatography (HPLC) analysis. Mobile phase: A (acetonitrile); B (H₂O:CH₃COOH, 100:0.2, v/v). Column: Agilent C18 (250 mm × 4.6 mm, 5 µm), maintained at 30 °C with flow rate of 1.0 mL·min⁻¹. The detection wavelength was set at 254 nm for acquiring chromatograms. The injection volume was 20 µL. Gradient elution procedure: 0 min (20 % A) → 8 min (29% A) → 25 min (29% A) → 55 min (30% A) → 65 min (30% A) → 70 min (31% A) → 90 min (65% A) → 110 min (90% A) → 135 min (90% A).

The LCMS-IT-TOF instrument (Shimadzu, Kyoto, Japan) was equipped with an ESI source used in negative ionization mode. The interface and MS parameters were as follows: nebulizer pressure, 100 kPa; dry gas, N₂ (1.5 L/min); drying gas temperature, 200 °C; spray capillary voltage, 4000 V; scan range, m/z 100–1000. Mobile phase: A (acetonitrile); B (H₂O:CH₃COOH, 100:0.2, v/v). Column: Agilent C18 (250 mm × 4.6 mm, 5 µm), maintained at 30 °C with flow rate of 1.0 mL·min⁻¹. The injection volume was 20 µL. Gradient elution procedure: 0 min (20 % A) → 8 min (29% A) → 25 min (29% A) → 55 min (30% A) → 65 min (30% A) → 70 min (31% A) → 90 min (65% A) → 110 min (90% A) → 135 min (90% A).

3.4. Statistical Analyses

The HPLC data were used for fingerprint analysis and chemometrics. HPLC-MS² was used for identification of the 47 peaks. Cluster analysis (CA) and principal components analysis (PCA) were performed by SPSS (SPSS statistical software package, version 20.0, SPSS Inc., Chicago, IL, USA).

4. Conclusions

The therapeutic effects of traditional Chinese medicines (TCM) are based on the complex interactions of complicated chemical constituents as a whole system. HPLC and HPLC-MS² fingerprint analysis combined with chemometrics were employed to study the complex G. lucidum system. According to previous extensive phytochemical and pharmacological studies, triterpenoid acids were the most important chemical components in the samples, which had a variety of potential biological activities. The qualitative analysis and quantification of triterpenoid acids can better reflect the therapeutic effects and quality of G. lucidum. The chromatographic method is predominant to control the quality and stability of the complex system. This study provided a systematic method for the quality control of G. lucidum by HPLC fingerprinting and the HPLC-MS² evaluation system based on Similarity Analysis (SA), Cluster Analysis (CA) and Principal Component Analysis (PCA). As a result, a common mutual pattern was established by determining and comparing the fingerprints of 15 samples of G. lucidum from different regions. Forty-seven compounds were detected by HPLC-MS², of which forty-two compounds were tentatively identified by comparing their retention times, and mass spectrometry data with that of reference compounds and literature data. Ganoderic acid B (10), 3,7,15-tri-hydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (F4), Lucidenic acid A (F14), Ganoderic acid G (F9), unknown (F11), 3,7-oxo-12-acetyl-ganoderic acid DM (F30) were deemed to be the markers to distinguish G. lucidum samples of different quality. The proposed method can be used to improve the quality control of G. lucidum, thus ensuring the effectiveness of G. lucidum herbs. There are still five peaks—2, 11, 28, 31 and a10—which were not identified by HPLC-MS², of which compound 11 was used as marker compound to distinguish the G. lucidum of different quality. These components require further study.

Supplementary Materials: The supplementary materials are available online.

Acknowledgments: The authors gratefully acknowledge the financial support from the Ministry of Science and Technology support project (No. 2012BAI29B01) and National Natural Science Foundation of China (No. 81274187).

Author Contributions: Conceived and designed the experiments: Lanzhen Zhang, Lingfang Wu. Performed the experiments: Lingfang Wu, Wenjing Chen, Wenyi Liang, Shi Li, Qi Qi, Yaping Cui. Analyzed the data: Lingfang Wu. Wrote the paper: Ling-Fang Wu, Lanzhen Zhang.
Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bojana, B. Ganoderma lucidum: A potential for biotechnological production of anti-cancer and immunomodulatory drugs. *Recent Pat. Anticancer Drug Discov.* 2013, 8, 255–287.
2. Xia, Q.; Zhang, H.Z.; Sun, X.F.; Zhao, H.J.; Wu, L.F.; Zhu, D.; Yang, G.H.; Shao, Y.Y.; Zhang, X.X.; Mao, X.; et al. A comprehensive review of the structure elucidation and biological activity of triterpenoids from *Ganoderma* spp. *Molecules* 2014, 19, 17478–17535. [CrossRef] [PubMed]
3. Feng, L.; Yuan, L.; Du, Y.; Chen, Y.; Zhang, M.H.; Gu, J.F.; He, J.J.; Wang, Y.; Cao, W. Anti-Lung cancer activity through enhancement of immunomodulation and induction of cell apoptosis of total triterpenes extracted from *Ganoderma lucidum* (Leyss. ex Fr.) Karst. *Molecules* 2014, 19, 8, 255–287.
4. Radwan Faisal, F.F.; Hossain, A.; God, J.M.; Leaphart, N.; Elvington, M.; Nagarkatti, M.; Tomlinson, S.; Haque, A. Reduction of myeloid-derived suppressor cells and lymphoma growth by a natural triterpenoid. *J. Cell. Biochem.* 2015, 116, 102–114.
5. Huang, S.M.; Yang, X.L.; Wang, B.W.; Zhu, H.S.; Xu, J.L. Antitumor activity of ethanol-soluble and acidic components from *Ganoderma lucidum*. *Nat. Prod. Res.* 2004, 16, 146–148.
6. Min, B.S.; Nakamura, N.; Miyashiro, H.; Bae, K.W.; Hattori, M. Triterpenes from the spores of *Ganoderma lucidum* and their inhibitory activity against HIV-1 protease. *Chem. Pharm. Bull.* 1998, 10, 1607–1612. [CrossRef]
7. Miuzhina, Y.; Takahashi, N.; Hanashima, L.; Koshinom, H.; Esumi, Y.; Uzawa, J.; Sugawara, F.; Sakaguchi, K. Luodenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, *Ganoderma lucidum*. *Bioorg. Med. Chem.* 1999, 7, 2047–2052. [CrossRef]
8. Min, B.S.; Nakamura, N.; Miyashiro, H.; Bae, K.W.; Hattori, M. Triterpenes from the spores of *Ganoderma lucidum* and their inhibitory activity against HIV-1 protease. *Chem. Pharm. Bull.* 1998, 10, 1607–1612. [CrossRef]
19. Sun, H.; Chen, X.; Zhang, A.; Sakurai, T.; Jiang, J.; Wang, X. Chromatographic fingerprinting analysis of Zhizhu Wan preparation by high-performance liquid chromatography coupled with photodiode array detector. *Pharmacogn. Mag.* 2014, 10, 470–476. [PubMed]

20. Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Prigomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: An innovative technique in food supplement quality control. *J. Food Sci. Technol.* 2015. [CrossRef] [PubMed]

21. Zhu, J.Q.; Fan, X.H.; Cheng, Y.Y.; Agarwal, R.; Moore, C.M.V.; Chen, S.T.; Tong, W.D. Chemometric analysis for identification of botanical raw materials for pharmaceutical use: A case study using *Panax notoginseng*. *PLoS ONE* 2014, 9, e87462. [CrossRef] [PubMed]

22. Chen, Y.; Yan, Y.; Xie, M.Y.; Nie, S.P.; Liu, W.; Gong, X.F.; Wang, Y.X. Development of a chromatographic fingerprint for the chloroform extracts of *Ganoderma lucidum* by HPLC and LC-MS. *J. Pharm. Biomed. Anal.* 2008, 3, 469–477. [CrossRef] [PubMed]

23. Chen, Y.; Zhu, S.B.; Xie, M.Y.; Nie, S.P.; Liu, W.; Li, C.; Gong, X.F.; Wang, Y.X. Quality control and original discrimination of *Ganoderma lucidum* based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. *Anal. Chim. Acta* 2008, 6, 146–156. [CrossRef] [PubMed]

24. Shi, X.M.; Zhang, J.S.; Tang, Q.J.; Yang, Y.; Hao, R.X.; Pan, Y.J. Fingerprint analysis of Lingzhi (Ganoderma) strains by high-performance liquid chromatography coupled with chemometric methods. *World J. Microbiol Biotechnol.* 2008, 11, 2443–2450. [CrossRef]

25. Zhang, J.; Luo, X.; Zheng, L.; Xu, X.; Ye, L. Discrimination of Ganoderma based on high performance liquid chromatographic fingerprints combined with chemometrics methods. *Ann. Assoc. Can.-Fr. Pour l’Avancement Sci.* 2009, 6, 776.

26. Yang, M.; Wang, X.M.; Guan, S.H.; Xia, J.M.; Sun, J.H.; Guo, H.; Guo, D.A. Analysis of Triterpenoids in *Ganoderma lucidum* Using Liquid Ionization Coupled with Electrospray Ionization Mass Spectrometry. *J. Am. Soc. Mass. Spectrom.* 2007, 18, 927–939. [CrossRef] [PubMed]

27. Cheng, C.R.; Yang, M.; Wu, Z.Y. Fragmentation pathways of oxygenated tricyclic triterpenoids and their application in the qualitative analysis of *Ganoderma lucidum* by multistage tandem mass spectrometry. *Rapid Commun. Mass Spectrom.* 2011, 25, 1323–1335. [CrossRef] [PubMed]

28. Hu, L.L.; Ma, Q.Y.; Huang, S.Z. Three new lanostanoid triterpenes from the fruiting bodies of *Ganoderma tropicum*. *J. Asian Nat. Prod. Res.* 2013, 4, 357–362. [CrossRef] [PubMed]

29. Kohda, H.; Tokumoto, W.; Sakamoto, K. The biologically active constituents of *Ganoderma lucidum* (FR,) Karst. histamine release-inhibitory triterpenes. *Chem. Pharm. Bull.* 1985, 34, 1367–1374. [CrossRef]

30. Liu, Y.L.; Liu, Y.P.; Qiu, F. Sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of five ganoderic acids in *Ganoderma lucidum* and its related species. *J. Pharm. Biomed. Anal.* 2011, 54, 717–721. [CrossRef] [PubMed]

31. Qian, Z.M.; Jin, Z.; Li, D.P. Analysis of global components in *Ganoderma* using liquid chromatography system with multiple columns and detectors. *J. Sep. Sci.* 2012, 35, 2725–2734. [CrossRef] [PubMed]

32. Yan, Z.; Xia, B.; Qiu, M.H. Fast analysis of triterpenoids in *Ganoderma lucidum* spores by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. *Biomed. Chromatogr.* 2013, 11, 1560–1567. [CrossRef] [PubMed]

33. Min, B.S.; Gao, J.J.; Nakamura, N. Triterpenes from the spores of *Ganoderma Lucidum* and their cytotoxicity against meth-A and LLC tumor cells. *Chem. Pharm. Bull.* 1998, 7, 1026–1033.

Sample Availability: Samples are available from the authors.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).