Deep neck space infection: an iceberg

Venkatesh Patil1, Rashmi Patil2*, R. N. Karadi1

1Department of Otolaryngology, 2Department of Surgery, BLDEU Shri B. M. Patil Medical College, Vijayapur, Karnataka, India

INTRODUCTION

Deep neck space infection present like an iceberg, wherein severe infection is seated deep in neck with very little clinical signs superficially. Incidence of neck infection has dramatically reduced due to good oral hygiene and availability of medical facilities and antibiotics everywhere.1 Neck space infection still persists in third worldwide countries because of poor oral hygiene and improper use of antibiotics. Complications associated with neck space infection like stridor, neck swelling, odynophagia, jugular vein thrombosis, septic embolism and carotid artery erosion are present in most of the patients when they present to tertiary care centre.2

Objective of study was to review pre-disposing factors and clinical features in deep neck space infections, its assessment and management so as to avoid life threatening complications.

METHODS

This Study was a retrospective observational study of 55 cases conducted in department of otorhinolaryngology, B.L.D.E.U’s Shri B.M. Patil Medical College and Hospital, Vijayapur, Karnataka from January 2010 to June 2017 to review pre-disposing factors and clinical features in deep neck space infections, its assessment and management so as to avoid life threatening complications.
Inclusion criteria

Patients presenting with deep neck space infections were included in the study.

Exclusion criteria

Superficial skin infections and patients presenting as furuncle, infected sebaceous cyst, skin lesions like boil, vesicles were excluded from the study.

Data collected involved demography age, sex, habitus, history of smoking and tobacco consumption, alcohol and associated disease like diabetes mellitus. All patients have undergone Ultrasound of neck. CT scan was done if required for detail assessment and further surgical intervention such as incision drainage, tracheostomy was done if needed.

All characteristics were summarized descriptively. For categorical data, the number and percentage were used in the data summaries. Data were analysed using SPSS software V.23.0 and Microsoft office.

RESULTS

There were 38 male patients and 17 female patients. M: F 2.2:1. Age group varied from 1 to 60 years (Figure 1).

Submandibular space infection was most commonly involved space followed by parapharyngeal and peritonsilar space. Other neck space infection such Tubercular, parotid abscess are less frequently seen. One case each of acute retropharyngeal and thyroid abscess in children were included in the study (Table 2).

Table 2: Site of deep neck space infections.

Site	Number
Submandibular abscess	21
Parapharyngeal abscess	17
Peritonsillar abscess	12
Tubercular abscess	4
Parotid abscess	4
Thyroid abscess	1
Retropharyngeal abscess	1

Most common presentation is swelling in neck region in 55 patients, fever in 51 patients, odynophagia in 16 patients, dysphagia in 8 patients, and difficulty in breathing 6 patients. Physical examination revealed oedema with localised tenderness in 56 patients with skin necrosis in 2 patients, dental pain in 13 patients, peritonsillar infection in 12 patients, trismus in 22 patients. Patients presenting with stridor underwent tracheostomy followed by surgical intervention. Fibre optic intubation was done in 10 patients. (Table 3)

Table 3: Causes of deep neck space infections.

Causes	Number
Dental caries	16
Tonsillar	12
Cervical lymphadenitis	8
Tubercular	4
Parotid	4
Fish bone throat	1
Post traumatic	1
Unknown	14

After stabilisation of patient, surgical intervention was done in where abscess formation is seen in ultrasound/CT Scan. CT scan was done in patient in whom spread of infection was suspected superiorly to base of skull and inferiorly into mediastinum and upper thorax.

Patient was put on intravenous antibiotics, analgesics, IV fluids. Diabetes and other co morbid conditions were treated accordingly.

Majority of neck space infection were treated by incision and drainage via cervical approach. Peritonsillar abscess was drained orally followed by interval tonsillectomy. 15 patients who were in early stage of infection without abscess formation were treated conservatively with intravenous antibiotics (Table 4).
Table 4: Following surgical intervention for neck space infection.

Surgical intervention	Number
Cervical incision and drainage	25
Abscess drainage followed by tonsillectomy	12
Needle aspiration	3
Cervical incision and drainage with tracheostomy	3
Endoscopic fish bone extraction	1
Thyroid abscess drainage	1
Retropharyngeal abscess drainage	1
Conservative	15

Commonest organisms isolated in deep neck space infection were *Staphylococcus aureus* 47% of cases followed by *Streptococcus pyogenes* 14% of the cases. Due to start of antibiotics at periphery 14% cases culture were sterile (Table 5).

Table 5: Commonest organisms isolated.

Microorganism	N	Percentage (%)
Staphylococcus aureus	26	47
Streptococcus pyogenes	08	14
Streptococcus viridans	05	09
Pseudomonas aeruginosa	04	07
Klebsiella pneumonia	03	05
Bacteroids	01	01
Sterile	08	14

Complications seen in our study were upper airway obstruction and stridor: 10 cases, mediastinitis: 1 case, toxemia: 6 cases.

DISCUSSION

Deep neck space infection is commonly seen in males and in age group 3rd to 5th decade of life. Results of our study is similar to literature.

Associate co-morbidity which leads to neck space infection such as poor dental hygiene, diabetic, tobacco chewing, immunocompromised states like Diabetes mellitus were present in 23 patients and tuberculosis in 4 patients. Smoking and alcohol consumption were most commonly associated social habits.

Commonest presentation of DNI were swelling neck region associated with fever odynophagia and trismus. Four of our children of age less than 1year presented with symptoms of lethargy, drooling of saliva, excessive cry, fever and cough. Signs of toxemia like tachycardia, tachypnea, raised temperature was seen in 2 children.

Most common organism isolated were *S. aureus, Str. viridans, Klebsiella and Pseudomonas*. Some cultures showed no growth due to usage of antibiotics prior to presentation. *Klebsiella* species were seen in both diabetic and non-diabetics. Other authors have mentioned about cultures being polymicrobial in nature. Our study did not demonstrate any culture being mixed.

Commonest neck space infection was submental and submandibular space, others include parapharyngeal extending to submandibular and parotid spaces were also seen. Retropharyngeal and posterior triangle neck space infections are seen in decreasing order compared to other spaces.

10 of our patients presented with stridor, 2 patients needed emergency tracheostomy, out of these one had Ludwig’s angina with severe trismus and other one was a case of extensive cellulitis of neck with stridor. Airway is secured first in patients presenting with severe trismus and oedema tongue with fibre optic intubation or tracheostomy prior to drainage of abscess.

Contrast enhanced CT scan is investigation of choice with sensitivity of 100% in evaluation of deep neck space infections. CT scan is also very sensitive in detection of known complications like mediastinitis, jugular vein thrombosis. CT or USG guided aspirations of abscess are successful in prior studies.

Early recognition and treatment of deep neck space infections has better prognosis. Hence it reduces complications and mortality rate associated with it.

CONCLUSION

Patients presenting with deep neck space infection should be treated on emergency basis as they have tendency to compromise airway. Tracheostomy is indicated if signs of airway obstruction noted.

Contrast enhanced CT scans is helpful in confirming and extent of disease where clinically difficult to assess underlying abscess formation.

Broad spectrum antibiotics are started initially and changed accordingly after culture. Any abscess formation has to be drained surgically after initial stabilisation.

Prompt early recognition and drainage avoids life threatening complications.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Durazzo M, Pinto F, Loures M, Volpi E, Nishio S, Brandão L, et al. Osespaços cervicais profundos e
1. Blomquist IK, Bayer AS. Life-threatening deep fascial space infections of the head and neck. Infect Dis Clin North Am. 1988;2(1):237-64.
2. Bahu SJ, Shibuya TY, Meleca RJ, Mathog RH, Yoo GH, Stachler RJ, et al. Craniocephalic necrotizing fasciitis: an 11-year experience. Otolaryngol Head Neck Surg. 2001;125(3):245-52.
3. Parhiscar A, Har-El G. Deep neck abscess: a retrospective review of 210 cases. Ann Oto Rhinol Laryngol. 2001;110(11):1051-4.
4. Sakaguchi M, Sato S, Ishiyama T, Katsuno S, Taguchi K. Characterization and management of deep neck infections. Int J Oral Max Surg. 1997;26(2):131-4.
5. Sethi DS, Stanley RE. Deep neck abscesses—changing trends. J Laryngol Otol. 1994;108(2):138-43.
6. Coticchia JM, Getnick GS, Yun BD, Arnold JE. Age-, Site and Time-specific differences in pediatric deep neck abscesses. Archives of Otolaryngology-Head Neck Surg. 2004;130:201-7.
7. Moncada R, Warpeha R, Pickleman J, Spak M, Cardoso M, Berkow A, et al. Mediastinitis from odontogenic and deep cervical infection. Anatomic pathways of propagation. Chest. 1978;73(4):497-500.
8. Nagy M, Pizzuto M, Backstrom J, Brodsky I. Deep neck infections in children: A new approach to diagnosis and treatment. Laryngoscope. 1997;107:1627-34.
9. Levitt GW. The surgical treatment of deep neck infections. Laryngoscope. 1971;81(3):403-11.
10. Heindel DJ. Deep neck abscesses in adults: management of a difficult airway. Anesth Analg. 1987;66(8):774-6.
11. Shockley WW. Ludwig angina: a review of current airway management. Arch Otolaryngol Head Neck Surg. 1999;125(5):600.
12. Suehara AB, Gonçalves AJ, Alcadipani FA, Kawabata NK, Menezes MB. Deep neck infection-analysis of 80 cases. Rev Bras Otorrinolaringol. 2008;74(2):253-9.
13. Yeow K, Liao C, Hao S. US-guided needle aspiration and catheter drainage as an alternative to open surgical drainage for uniloculated neck abscesses. J Vascular Intervventional Radiol. 2001;12:589-94.
14. Mazita A, Hazim MYS, Shiraz M, Primuharsa Putra SHA. Neck Abscess: Five Year Retrospective Review of Hospital University Kebangsaan Malaysia Experience. Med J Malaysia. 2006;61(2):151-6.

Cite this article as: Patil V, Patil R, Karadi RN. Deep neck space infection: an iceberg. Int J Otorhinolaryngol Head Neck Surg 2018;4:644-7.