Regular Article

Naturally Oxidized Olive Oil Promotes Active Cutaneous Anaphylaxis and Th2 Cytokine Production

Hirofumi Ogino,*a Tomofumi Okuno,b Koichi Murano,b and Hitoshi Ueno*c

a Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University; 45–1 Nagaotouge-cho, Hirakata, Osaka 573–0101, Japan; and b Division of Hygienic Chemistry, Osaka Institute of Public Health; 8–34 Tojo-cho, Tennōji-ku, Osaka 543–0026, Japan.

Received January 21, 2021; accepted March 29, 2021

The excessive ingestion of oxidized dietary oils may exacerbate some allergic diseases. We previously reported that oxidized olive oil exacerbates active cutaneous anaphylaxis (ACA), one of the immediate allergic reactions. This study was conducted to clarify the effects of oxidized olive oil on the T cell response during ACA. BALB/c female mice were orally administered naturally oxidized olive oil once every 2 d for 2 weeks after ovalbumin (OVA)/aluminum hydroxide gel sensitization, after which ACA was elicited by intracutaneous administration of OVA into the ear auricles. Compared with fresh olive oil, oxidized olive oil administration increased the antigen-specific immunoglobulin E (IgE) antibody titer 2 weeks after OVA-sensitization and vascular hyperpermeability increased due to ACA. In the oxidized olive oil-administered mice, the mRNA expression levels of T-helper 2 (Th2) cytokines, interleukin (IL)-4, -5, -6, and -10, in the lymph nodes increased, as did the proportion of cluster designation (CD)3+CD4+ cells in the spleen and lymph nodes. In CD3+CD4+ cells, the mRNA expression levels of IL-4 and GATA-binding protein 3 (GATA3), the master regulator of Th2, were higher in the oxidized olive oil-group. Antigen-stimulated specific IL-4 production exacerbation of allergic diseases. As oxidative stress is associated with a variety of allergic diseases, such as asthma, bronchitis, and dermatitis, increased oxidative stress due to the ingestion of oxidized dietary oils may increase allergic symptoms.

The increase in oxidative stress and tissue damage caused by the ingestion of oxidized cooking oils was clarified in animal experiments. We previously demonstrated that ingestion of naturally oxidized olive oil exacerbated various allergic reactions, including the immediate type. However, the mechanisms of aggravation of the immediate allergic reaction due to the oxidized oil intake are unclear. In this study, we investigated the effects of oxidized olive oil ingestion on active cutaneous anaphylaxis (ACA), one of the immediate-type allergic reactions, using ovalbumin (OVA) to clarify the effects of oxidized oil on T cells during allergic reactions. ACA is caused by the humoral immune response related to Th2 cells and immunoglobulin E (IgE) antibody; therefore, we measured the allergic symptoms and Th2 cytokine expression levels in ACA. Furthermore, the spleen of ACA model mice was harvested to examine the Th1/Th2 balance by measuring cluster designation (CD)3+CD4+ cell distribution and Th2 cytokine production in peripheral lymphocytes.

Key words oxidized oil; lipid peroxide; oxidative stress; allergic disease; active cutaneous anaphylaxis

INTRODUCTION

The prevalence of allergic diseases is increasing worldwide, especially in developed countries. Many studies have been conducted to clarify the cause of this problem, focusing on changes in lifestyles such as living and food environment. The hygiene hypothesis, an increase in the prevalence of allergies as a result of improved hygiene levels due to improved living environments, is well known. Infection and unhygienic environments during infancy were found to suppress the development of allergic diseases. This is thought to be based on promoting T-helper 1 (Th1) differentiation and adjusting the Th1/Th2 balance through contact with antigens in the environment. Excessively hygienic environments were suggested to inhibit Th1 differentiation, leading to a Th2-dominant state, thereby increasing the susceptibility to asthma and allergic rhinitis.

In developed countries, consumption of frying oil and processed food is increasing due to simplification of dietary habits such as an increase in fast food intake. An increased intake of oxidized cooking oil induces oxidative stress by oxidizing unsaturated fatty acids and generating free radicals. Oxidative stress is an imbalance between oxidation and antioxidation, and is caused by overexposure to oxidants. It has been reported that thermally-oxidized cooking oils promote lipid peroxidation and causes oxidative damage of various tissues such as liver and pancreas. Oxidized soybean oil intake has been reported to enhance the production of antibodies and inflammatory mediators and to promote lymphocytes proliferation, but little information is available on the relationship between oxidized oil intake and the increased incidence or exacerbation of allergic diseases. As oxidative stress is associated with a variety of allergic diseases, such as asthma, bronchitis, and dermatitis, increased oxidative stress due to the ingestion of oxidized dietary oils may increase allergic symptoms.

Preparation of Oxidized Olive Oil Oxidized olive oil was prepared by natural oxidation of olive oil for more than 3 months at room temperature. Naturally oxidized olive oil and fresh olive oil were mixed and adjusted to approximately 50 mEq/kg. The thiobarbituric acid reactive substances...
(TBARS) and acid value (AV) of oxidized olive oil were similar to those of fresh olive oil.

Chemical Analyses The peroxide value (POV) was measured by the American Oil Chemists’ Society official method JAOAC using 0.01 mol/L sodium thiosulfate after dissolving oils in an acetic acid–chloroform (3:2) solution. The POV (mEq/kg) was calculated from the titration value of sodium thiosulfate.

Animals Animal protocols conformed to the Animal Experiment Guidelines of Setsunan University that were established by revising the guidelines of the Japanese Society for Pharmacology. This study was approved by the Committee for the Ethical Use of Experimental Animals at Setsunan University. All efforts were made to minimize animal suffering, reduce the number of animals used, and use alternatives to in vivo techniques. Female BALB/c mice (4–5 weeks old) were purchased from Japan SLC, Inc., Shizuoka, Japan, and acclimated in a specific pathogen-free room at 23 ± 1°C and 47–67% humidity under a 12-h light–dark cycle (lights on at 7:30 a.m.) for at least one week before the start of experiments.

ACA Sensitization Female mice (6-weeks-old) were immunized twice at weekly intervals by intraperitoneally administering a mixture of 1 µg of OVA (Sigma-Aldrich Inc., St. Louis, MO, U.S.A.) and 1 mg of aluminum hydroxide gel as the adjuvant. Mice were orally administered 100 µL of the oxidized olive oil from the first immunization once every 2 d for 2 weeks. Thereafter, mice were intravenously injected with 250 µL of 0.5% Evans blue-saline solution, followed by the elicitation of ACA in the right ear by injecting 10 µL of 0.1 µg/µL OVA-saline solution. The left ear was sham-challenged by injecting saline solution. Thirty minutes after the challenge, mice were sacrificed under anesthesia and both ears were removed to measure extravasated dye. Non-immunized mice were challenged in the same manner as immunized mice in order to assess nonspecific dye leakage. The extraction and quantification of dye leakage were performed as described by Inagaki et al. (18).

Blood samples were collected 1 and 2 weeks after OVA-immunization. OVA-specific IgE plasma levels were measured using a commercial enzyme-linked immunosorbent assay (ELISA) kit (SHIBAYAGI Co., Ltd., Gunma, Japan).

Preparation of Splenocytes Spleens were harvested under sterile conditions and single-cell suspensions were prepared by passage through a nylon mesh filter. After destroying red blood cells using ammonium–chloride–potassium buffer, splenocytes were suspended in growth medium or 2% fetal bovine serum (FBS)-containing phosphate-buffered saline (PBS).

Cell Proliferation Assay Splenocytes (200000 cells/well) were cultured in 96-well flat plates and stimulated by 100 µg/mL of OVA for 72 h. After incubation with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) for 2 h, the generated formazan crystals were dissolved in dimethyl sulfoxide (DMSO) and the absorbance at 570 nm was measured.

Flow Cytometry and Cell Sorting Splenocytes were FeR blocked with TruStain fcX (BioLegend, Inc., San Diego, CA, U.S.A.) and then stained using combinations of fluorescently labeled anti-mouse antibodies: antigen-presenting cell (APC)-CD3, PE/Cy7-CD4, and fluorescein isothiocyanate (FITC)-CD8 (BioLegend, Inc.). Multi-stained cells were analyzed by BD FACSAria Fusion (BD Biosciences, San Diego, CA, U.S.A.), and CD3^+CD4^+ and CD3^+CD8^+ cells (each >98% purity) were isolated based on the results.

APC Preparation Mouse peritoneal macrophages were prepared as described previously and used to represent APC. In brief, peritoneal cells were harvested by peritoneal lavage and other hemolytic cells were disrupted by osmotic shock using one-third isotonic saline. Remaining cells were seeded onto cell culture dishes in the culture medium and incubated at 37°C for 1 h. After washing away non-adherent cells, adherent cells were obtained as macrophages. More than 98% of the cells were macrophages according to the zymosan phagocytosis test.

T Cell and APC Co-culture Isolated CD3^+CD4^+ cells were cultured in flat 96-well plates with APC. These cells were co-cultured at a 5:1 T cell/APC ratio (50 000 to 100 000). Cells were stimulated by 20 ng/mL of 12-O-tetradecanoylphorbol 13-acetate (PMA) + 1 µg/mL of ionomycin (Io) or 100 µg/mL OVA. After culturing for 48 h, the amounts of interleukin (IL)-4 and interferon (IFN)-γ in the culture supernatant were measured using the Mouse Uncoated ELISA Kit (Thermo Fisher Scientific, Inc.).

mRNA Expression Analysis mRNA expression levels were measured by RT-PCR. Lymph nodes and isolated T cells were immersed in Sepasol RNA I Super G (Nacalai Tesque, Inc., Kyoto, Japan). Total RNA extracted according to the manufacturer’s protocol was reverse transcribed using a reverse transcription kit (Thermo Fisher Scientific, Inc.). One microliter of the cDNA solution was used for PCR using SYBR Green I Master (Roche Diagnostics, Mannheim, Germany) and LightCycler 480 System II (Roche Diagnostics, GmbH). Primer sets for IFN-γ, IL-4, -5, -6, -10, -12, -13, -17, T-box expressed in T cells (T-bet), GATA-binding protein 3 (GATA3), and ribosomal protein S18 (Rps18, an internal control) were purchased (Eurofins Genomics, K.K., Tokyo, Japan). The relative mRNA expression levels were calculated as ratios based on Rps18 mRNA levels.

Statistical Analysis Results were statistically analyzed by the Student’s t-test or two-way ANOVA followed by Bonferroni’s multiple comparison test using LightStone Origin Pro (Tokyo, Japan). p-Values <0.05 were considered significant.

RESULTS

Auricular Allergic Reactions and Cytokine mRNA Expression by ACA To investigate the effects of oxidized olive oil on ACA, mice that were sensitized with OVA were orally administered oxidized or fresh olive oil for 2 weeks. ACA was elicited on the next day by intracutaneous administration of OVA to the right ear and vascular permeability due to the allergic reaction 30 min after elicitation was evaluated. Almost no dye leakage was observed in the non-immunized mice regardless of the oxidation degree of the administered oil. However, dye leakage due to the allergic reaction was observed in the oxidized olive oil-administered group (Fig. 1).

The titer of OVA-specific IgE antibody in the plasma was measured 1 and 2 weeks after sensitization. OVA-IgE was not
detected in the non-immunized mice, but was detected one week after sensitization in immunized mice (Fig. 2). The titer of OVA-IgE was significantly higher in the oxidized olive oil-administered group two weeks after sensitization.

The mRNA expression levels of Th2 cytokines, IL-4, IL-5, IL-6, and IL-10, in infra-auricular parotid lymph nodes were measured two weeks after sensitization. All these cytokines mRNA levels increased approximately two-fold in the oxidized olive oil group compared with those in the fresh olive oil group (Fig. 3). Th1 cytokines, IL-12 p40 and IFN-γ, were not significantly affected by oxidized olive oil (data not shown).

Lymphocytes and T Cell Responses of Splenocytes from OVA-Sensitized Mice

To investigate whether the administration of oxidized olive oil affects peripheral T cell responses in OVA-sensitized mice, we first measured the effects of OVA treatment on the splenocyte proliferation rate. No significant increase in splenocytes by OVA treatment was observed in non-immunized mice regardless of oxidized olive oil administration (Fig. 4). Splenocytes of the immunized mice demonstrated OVA-stimulated proliferation and significantly increased in the oxidized olive oil group. The relative proportion of the T cell subsets in splenocytes and lymphocytes isolated from OVA-sensitized mice was defined by CD3 and CD4 fluorescent antibody staining and analyzed by flow cytometry. The percentage of CD3⁺CD4⁺ double-positive cells was gated and quantified, as shown in Fig. 5. CD3⁺CD8⁺ cells were not significantly different between two groups, while the percentage of CD3⁺CD4⁺ cells in the oxidized olive oil group was significantly higher than that in the fresh olive oil group.
The values are the mean ± S.D. (n = 4). *p < 0.05, **p < 0.01 vs. the fresh olive oil group. Statistical test used was t test.

Table 1. Proportion of the T Cell Subpopulation

	CD3⁺CD4⁺ (%)	CD3⁺CD8⁺ (%)
Spleen		
Fresh oil	25.6 ± 3.06	13.5 ± 3.53
Oxidized oil	32.5 ± 1.40**	17.7 ± 5.15
Mesenteric LN		
Fresh oil	52.7 ± 1.12	20.7 ± 1.64
Oxidized oil	57.4 ± 1.93*	22.4 ± 1.25
Parotid LN		
Fresh oil	47.0 ± 5.28	25.0 ± 1.83
Oxidized oil	54.5 ± 2.60*	26.7 ± 1.38

* p < 0.05, ** p < 0.01 vs. the fresh olive oil group. Statistical test used was t test.

DISCUSSION

Sensitization with aluminum hydroxide gel as an adjuvant induces Th2 and Th2 cytokines, such as IL-4, and in the induction phase of immediate allergic reactions, including ACA, symptoms appear via IgE antibody. IgE bound to effector cells, such as basophils and mast cells, binds to antigens and is activated by cross-linking to release histamine and other inflammatory mediators, thereby increasing vascular permeability. A relationship between the intake of oxidized dietary oil and immune function has been reported. Lin et al. reported that intake of deep-fried oxidized soybean oil influences Th2-related antibodies and inflammatory mediators.

This study suggested that the intake of oxidized dietary oils increases Th2 immunity and allergic reactions.

We previously demonstrated that the consumption of oxidized olive oil exacerbates contact hypersensitivity, a delayed-type allergy, and that this exacerbation was caused by the increased production of IL-18 during the sensitization phase, resulting in the increased production of IFN-γ and Th1. In this study, administration of an ingestible amount of oxidized olive oil increased Th2 immunity and exacerbated the immediate allergic reaction. Oxidized olive oil increased serum IgE levels and mRNA expression of Th2 cytokines in regional lymph nodes, and exacerbated ACA. As IL-4 plays an important role in the differentiation of naïve T cells into Th2, increased IL-4 production by oxidized olive oil-intake may amplify Th2. Promotion of Th2 differentiation resulted in increased IgE production in the sensitization phase, and the activation of effector cells, such as basophils and mast cells, was promoted by eliciting ACA, resulting in increased vascular permeability. Oarada reported that mitogen-stimulated cell proliferation increased in splenic lymphocytes of mice fed an oxidized soybean oil-containing diet. This report supports our finding that oxidized olive oil increases splenocyte proliferation due to OVA stimulation. T follicular helper (TFH), a subset of helper T cells present in lymphoid follicles, is considered to be more involved in the control of antibody production.
production than Th2, so detailed studies focusing on TFH are required on the effects of oxidized oils.

Th1 produce IFN-γ and promote cell-mediated immunity, whereas Th2 produce IL-4 and promote humoral immunity by antibodies. IFN-γ suppresses Th2 and IL-4 suppresses Th1 to reciprocally adjust their function and maintain balance. In the present study, oxidized olive oil reduced IFN-γ, and increased IL-4 and GATA3 expression in CD3⁺CD4⁺ cells, suggesting that it promoted Th2 dominance. Although a decrease in IFN-γ mRNA was observed in the oxidized olive oil-administered group, t-bet mRNA did not affect. Further examination on protein expression of the master regulators and fluctuation of Th1/Th2 by oxidized oil is needed. IL-4 is essential for Th2 differentiation, and the binding of IL-4 to IL-4R activates Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. Expression of GATA3, the master regulator of Th2, is deeply involved in the activation of nuclear factor-kappa B (NF-κB) induced via CD28, a co-stimulatory receptor, in addition to induction by IL-4/STAT6 signaling. The promotion of NF-κB activation by the intake of oxidized rapeseed oil has been reported. These reports suggest that NF-κB activity may be involved in the promotion of Th2 induction by the oxidized olive oil. Neither IFN-γ nor IL-4 was affected by non-specific PMA/Io stimulation, but in the presence of APC, IL-4 increased and IFN-γ decreased. This suggests that oxidized olive oil increased antigen-specific Th2 and cytokine production during antigen stimulation.

In conclusion, we found that oxidized olive oil increased antigen-specific IgE production during the sensitization phase, resulting in exacerbated allergic reactions, such as vascular hyperpermeability, during the elicitation phase. Oxidized olive oil also increased the proportion of CD3⁺CD4⁺ cells in lymphatic organs and their production of antigen-specific IL-4. This suggests that the excessive intake of oxidized olive oil promotes Th2 differentiation and proliferation via an increase in IL-4 production during the sensitization phase, thereby exacerbating immediate-type allergic diseases. However, the mechanisms of Th2 response promotion and effects of oxidized olive oil on other effector cells, such as TFH, basophils, and mast cells, were unclear. Further studies are needed to clarify the exacerbation mechanisms of immediate-type allergic reactions due to the ingestion of oxidized dietary oil.
Acknowledgments We thank Eri Koike, Shingo Yamada, Masashi Okada, and Karin Mizuno at Setsunan University for their technical assistance.

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) Strachan DP. Hay fever, hygiene, and household size. BMJ, 299, 1259–1260 (1989).
2) Renz H, Mutius E, Illi S, Wolkers F, Hirsch T, Weiland SK. IL-13(T(1)/T(2)) immune response profiles differ between atopic children in eastern and western Germany. J. Allergy Clin. Immunol., 109, 338–342 (2002).
3) Morgan WJ, Stern DA, Sherrill DL, Guerra S, Holberg CJ, Guilbert TW, Taussing LM, Wright AL, Martinez FD. Outcome of asthma and wheezing in the first 6 years of life: follow-up through adolescence. Am. J. Respir. Crit. Care Med., 172, 1233–1238 (2005).
4) Greco LA, Delattre JF, Hartmann A, Steinhilber M, Klainer MD, Liu AH. Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitization in infants at high risk of asthma. Lancet, 355, 1680–1683 (2000).
5) Holt PG, O’keeffe P, Holt BJ, Baron-Hay MJ, Saphioglu C, Knox B, Stewart GA, Thomas WR, Sly PD. T-cell “priming” against environmental allergens in human neonates: sequential deletion of food antigen reactivity during infancy with concomitant expansion of responses to ubiquitous inhalant allergens. Pediatr. Allergy Immunol., 6, 85–90 (1995).
6) Haspeslagh E, Heyndrickx J, Hammad H, Lambrecht BN. The hygiene hypothesis: immunological mechanisms of airway tolerance. Curr. Opin. Immunol., 54, 102–108 (2018).
7) Nwagụna BC, Achebe AC, Ezenniyaka LU, Eze LC. Toxicity of oxidized fats H: tissue levels of lipid peroxides in rats fed a thermally oxidized corn oil diet. Food Chem. Toxicol., 37, 413–416 (1999).
8) Huang WC, Kang ZC, Li YJ, Shaw HM. Effects of oxidized frying oil on proteins related to α-tocopherol metabolism in rat liver. J. Clin. Biochem. Nutr., 45, 29–28 (2009).
9) Chiang YF, Shaw HM, Yang MF, Huang CY, Hsieh CH, Chao PM. Dietary oxidized frying oil causes oxidative damage of pancreatic islets and impairment of insulin secretion, effects associated with vitamin E deficiency. Br. J. Nutr., 105, 1311–1319 (2011).
10) Lin BF, Lai CC, Lai KW, Chiang BL. Dietary oxidized oil influences the levels of type 2 helper cell-related antibody and inflammatory mediators in mice. Br. J. Nutr., 84, 911–917 (2000).
11) Obara M. Effect of dietary oils and their oxidized products on lymphoid tissue and immunocompetent cells in mice. Young Investigator Award of the 2001’s JSNFS, Nippon Eiyo Shokuryou Gakkaisi, 55, 119–124 (2002).
12) Bowler RP, Crapo JD. Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol., 110, 349–356 (2002).
13) Bao A, Yang H, Ji J, Chen Y, Bao W, Li F, Zhang M, Zhou X, Li Q, Ben S. Involvement of p38 MAPK and oxidative stress in the ovariode-enhanced enhancement of AHR and pulmonary inflammation in an allergic asthma model. Respir. Res., 18, 2017 (2016).
14) Kang J, Song J, Shen S, Li B, Yang X, Chen M. Disisonyl phthalate aggravates allergic dermatitis by activation of NF-kB. Oncotarget, 7, 85472–85482 (2016).
15) Hayam I, Cogan U, Mokady S. Enhanced peroxidation of proteins of the erythrocyte membrane and of muscle tissue by dietary oxidized oil. Biosci. Biotechnol. Biochem., 61, 1011–1012 (1997).
16) Ogino H, Sakazaki F, Okuno T, Arakawa T, Ueno H. Oxidized dietary oils enhance immediate- and/or delayed-type allergic reactions in BALB/c mice. Allergol. Int., 64, 66–72 (2015).
17) American Oil Chemists’ Society. Official methods and recommended practices of the AOCS. 6th ed. Method Ja 8–87. AOCS Press, Champaign (2010).
18) Inagaki N, Miura T, Nagai H, Koda A. Active cutaneous anaphylaxis (ACA) in the mouse ear. Jpn. J. Pharmacol., 59, 201–208 (1992).
19) Koike A, Shibano M, Mori H, Kohama K, Fujimori K, Amano F. Simultaneous addition of Shikonin and its derivatives with lipopolysaccharide induces rapid macrophage death. Biol. Pharm. Bull., 39, 969–976 (2016).
20) Brewer JM, Conacher M, Hunter CA, Mohrs M, Brombacher F, Alexander J. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J. Immunol., 163, 6448–6454 (1999).
21) Knol EF. Requirement for effective IgE cross-linking on mast cells and basophils. Mol. Nutr. Food Res., 50, 620–624 (2006).
22) Ogino H, Murano K, Okuno T, Sakazaki F, Arakawa T, Ueno H. IL-18 and IFN-gamma expression enhances contact hypersensitivity after oral administration of naturally oxidized olive oil to mice. Food Agric. Immunol., 29, 886–897 (2018).
23) Ogino H, Okuno T, Murano K, Arakawa T, Ueno H. Naturally oxidized olive oil exacerbates contact hypersensitivity by promoting differentiation into effector T cells and increasing antigen-specific IgE production. Food Agric. Immunol., 30, 54–60 (2019).
24) Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol., 28, 445–489 (2010).
25) Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S, Asnagli H, Akkarian M, Murphy TL. Signaling and transactivation in T helper development. Annu. Rev. Immunol., 18, 451–494 (2000).
26) Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat. Rev. Immunol., 2, 933–944 (2002).
27) Inoue H, Kubo M. SOCS protein in T helper cell differentiation: Implications for allergic disorders? Expert Rev. Mol. Med., 6, 1–11 (2004).
28) Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nat. Immunol., 4, 1169–1176 (2003).
29) Seder RA, Paul WE, Davis MM, Fazekas de St Groth B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med., 176, 1091–1098 (1992).
30) Hsieh CS, Heimberger AB, Gold JS, O’Garra A, Murphy KM. Differential regulation of T helper cytokine production by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc. Natl. Acad. Sci. U.S.A., 89, 6065–6069 (1992).
31) Wittthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, Liu ET, Ihle JN. Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature, 370, 153–157 (1994).
32) Reu J, Schindler U, Henzel WJ, Ho TC, Brasseur M, McKnight SL. An interleukin-4-induced transcription factor: IL-4 Stat. Science, 265, 1703–1706 (1994).
33) Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A. A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat. Immunol., 2, 45–50 (2001).
34) Rodriguez-Palmero M, Hara T, Thumbs A, Hunig T. Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur. J. Immunol., 29, 3914–3924 (1999).
35) Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell, 89, 587–596 (1997).
36) Ranganath S, Murphy KM. Structure and specificity of GATA protein in Th2 development. Mol. Cell. Biol., 21, 2716–2725 (2001).
37) Varedy J, Gessner DK, Most E, Eder K, Ringsen R. Dietary moderately oxidized oil activates the NrF2 signaling pathway in the liver of pigs. Lipids Health Dis., 11, 31 (2012).