Botchev, M. A.

Coarse grid corrections in Krylov subspace evaluations of the matrix exponential. (English)

SIAM J. Sci. Comput. 45, No. 3, S421-S438 (2023)

Summary: A coarse grid correction (CGC) approach is proposed to enhance the efficiency of the matrix exponential and \(\varphi \) matrix function evaluations. The approach is intended for iterative methods computing the matrix-vector products with these functions. It is based on splitting the vector by which the matrix function is multiplied into a smooth part and a remaining part. The smooth part is then handled on a coarser grid, whereas the computations on the original grid are carried out with a relaxed stopping criterion tolerance. Estimates on the error are derived for the two-grid and multigrid variants of the proposed CGC algorithm. Numerical experiments demonstrate the efficiency of the algorithm when it is employed in combination with Krylov subspace and Chebyshev polynomial expansion methods.

MSC:

- 65F60 Numerical computation of matrix exponential and similar matrix functions
- 65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
- 65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs

Keywords:

- matrix exponential
- phi matrix function
- multigrid
- Krylov subspace methods
- exponential residual
- exponential time integration

Full Text: DOI arXiv

References:

[1] Afanasjew, M., Eiermann, M., Ernst, O. G., and Güttel, S., Implementation of a restarted Krylov subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429 (2008), pp. 2293-2314, doi:10.1016/j.laa.2008.06.029. · Zbl 1153.65042

[2] Al-Mohy, A. H. and Higham, N. J., Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), pp. 488-511, doi:10.1137/100788860. · Zbl 1234.65028

[3] Amaladas, J. R. and Kamath, H., Implicit and multigrid procedures for steady-state computations with upwind algorithms, Comput. & Fluids, 28 (1999), pp. 187-212, doi:10.1016/S0045-7930(98)00022-X. · Zbl 0968.76047

[4] Botchev, M. A., Grimm, V., and Hochbruck, M., Residual, restarting, and Richardson iteration for the matrix exponential, SIAM J. Sci. Comput., 35 (2013), pp. A1376-A1397, doi:10.1137/110820191. · Zbl 1278.65052

[5] Botchev, M. A., Knizhnerman, L., and Tyrtyshnikov, E. E., Residual and restarting in Krylov subspace evaluation of the \((\varphi) \) function, SIAM J. Sci. Comput., 43 (2021), pp. A3733-A3759, doi:10.1137/20M1375383.

[6] Botchev, M. A. and Knizhnerman, L. A., ART: Adaptive residual-time restarting for Krylov subspace matrix exponential evaluations, J. Comput. Appl. Math., 364 (2020), p. 112311, doi:10.1016/j.cam.2019.06.027. · Zbl 1427.65060

[7] Celledoni, E. and Moret, I., A Krylov projection method for systems of ODEs, Appl. Numer. Math., 24 (1997), pp. 365-378, doi:10.1016/S0168-9274(97)00035-0. · Zbl 0885.65073

[8] Clenshaw, C. W., Chebyshev Series for Mathematical Functions, , Her Majesty’s Stationary Office, London, 1962.

[9] Druskin, V., Givensbaum, A., and Knizhnerman, L., Using nonorthogonal Lanczos vectors in the computation of matrix functions, SIAM J. Sci. Comput., 19 (1998), pp. 38-54, doi:10.1137/S1064827596303661. · Zbl 0912.65021

[10] Eiermann, M. and Ernst, O. G., A restarted Krylov subspace method for the evaluation of matrix functions, SIAM J. Numer. Anal., 44 (2006), pp. 2481-2504, doi:10.1137/050633846. · Zbl 1129.65019

[11] Eiermann, M., Ernst, O. G., and Güttel, S., Deflated restarting for matrix functions, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 621-641, doi:10.1137/090746655. · Zbl 1264.65070

[12] Falgout, R. D., Friedholm, S., Keole, Tz. V., MacLachlan, S. P., and Schroder, J. B., Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635-C661, doi:10.1137/130942303. · Zbl 1310.65115

[13] Fedorenko, R. P., A relaxation method for solving elliptic difference equations, U.S.S.R. Comput. Math. and Math. Phys., 1 (1962), pp. 1092-1096, doi:10.1016/0041-5553(62)90031-9.
[14] Fedorenko, R. P., The speed of convergence of one iterative process, UU.S.S.R. Comput. Math. and Math. Phys., 4 (1964), pp. 227-235, doi:10.1016/0041-5553(64)90253-8. · Zbl 0148.39501
[15] Fedorenko, R. P., Iterative methods for elliptic difference equation, Russ. Math. Surv., 28 (1973), pp. 129-195, doi:10.1070/rm1973v028n02abeh001547. · Zbl 0278.65063
[16] Fedorenko, R. P., On the History of the Multigrid Method Creation, translated from the Russian by M. A. Botchev, 2001, https://team.kiam.ru/botchev/fedorenko/.
[17] Frommer, A., Güttel, S., and Schweitzer, M., Convergence of restarted Krylov subspace methods for Stieltjes functions of matrices, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 1602-1624, doi:10.1137/13093419X. · Zbl 1316.65040
[18] Frommer, A., Güttel, S., and Schweitzer, M., Efficient and stable Arnoldi restarts for matrix functions based on quadrature, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 661-683, doi:10.1137/130934224. · Zbl 1309.65050
[19] Gander, M. J., 50 Years of Time Parallel Time Integration, in Multiple Shooting and Time Domain Decomposition Methods, Springer, New York, 2015, pp. 69-113, doi:10.1007/978-3-319-23321-5_3. · Zbl 1337.65202
[20] Geißen, P., Mönk, H., and Brüggemann, D., An implicit multigrid method for turbulent combustion, J. Comput. Phys., 167 (2001), pp. 247-276, doi:10.1016/j.jcp.2000.0671. · Zbl 1029.76035
[21] Golub, G. H. and Van Loan, C. F., Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore and London, 1996. · Zbl 0865.65009
[22] Güttel, S., Rational Krylov Methods for Operator Functions, Ph.D. thesis, Technischen Universität Bergakademie Freiberg, 2010, www.guettel.com.
[23] Hackbusch, W., Parabolic multigrid methods, in Computing Methods in Applied Sciences and Engineering VI (Versailles, 1983), North-Holland, Amsterdam, 1984, pp. 189-197.
[24] Hackbusch, W., Iterative Solution of Large Sparse Systems of Equations, Springer-Verlag, New York, 1994. · Zbl 0789.65017
[25] Hochbruck, M. and Ostermann, A., Exponential integrators, Acta Numer., 19 (2010), pp. 209-286, doi:10.1017/S0962492910000048. · Zbl 1242.65109
[26] Jansen, J. and Vandewalle, S., Multigrid waveform relaxation of spatial finite element meshes: The continuous-time case, SIAM J. Numer. Anal., 33 (1996), pp. 465-474, doi:10.1137/07330324. · Zbl 0853.65094
[27] Jansen, J. and Vandewalle, S., On SOR waveform relaxation methods, SIAM J. Numer. Anal., 34 (1997), pp. 2456-2481, doi:10.1137/S0036142995294292. · Zbl 0908.65038
[28] Jawecki, T., Auzinger, W., and Koch, O., Computable Strict Upper Bounds for Krylov Approximations to a Class of Matrix Exponentials and \(\phi\)-Functions, preprint, https://arxiv.org/abs/1809.0369v1, 2018.
[29] Lubich, Ch. and Ostermann, A., Multi-grid iteration for parabolic equations, BIT Numer. Math., 27 (1987), pp. 216-234, doi:10.1007/BF01934186. · Zbl 0623.65125
[30] Miekka, U. and Nevanlinna, O., Convergence of dynamic iteration methods for initial value problems, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 459-482, doi:10.1137/0908046. · Zbl 0625.65063
[31] Minion, M. L., Speck, R., Bolten, M., Emmett, M., and Ruprecht, D., Interweaving PFASST and parallel multigrid, SIAM J. Sci. Comput., 37 (2015), pp. S244-S263, doi:10.1137/14097536X. · Zbl 1325.65193
[32] Oosterlee, C. W., Schuller, A., and Trottenberg, U., Multigrid, Academic Press, New York, 2001.
[33] Ryaben’kii, V. S. and Tsynkov, S. V., A Theoretical Introduction to Numerical Analysis, Chapman & Hall/CRC, Boca Raton, FL, 2007.
[34] Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003, doi:10.1137/1.9780898718003. · Zbl 1031.65046
[35] Sidje, R. B., Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Softw., 24 (1998), pp. 130-156. · Zbl 0917.65063
[36] Tal-Ezer, H., Spectral methods in time for parabolic problems, SIAM J. Numer. Anal., 26 (1989), pp. 1-11, doi:10.1137/0726001. · Zbl 0668.65090
[37] van der Vorst, H. A., Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cambridge, UK, 2003. · Zbl 1032.65027
[38] Vandewalle, S., Waveform relaxation methods, in Parallel Multigrid Waveform Relaxation for Parabolic Problems, Springer, New York, 1993, pp. 23-48. · Zbl 0816.65057
[39] White, J., Odeh, F., Sangiovanni-Vincentelli, A. L., and Ruehl, A., Waveform Relaxation: Theory and Practice, Technical Report UCB/ERL M85/65, EECS Department, University of California, Berkeley, 1985.
[40] Zhukov, V. T. and Fedoritova, O. B., On development of parallel algorithms for solving parabolic and elliptic equations, J. Math. Sci., 254 (2021), pp. 606-624, doi:10.1007/s10958-021-05329-y. · Zbl 1488.65182
[41] Zhukov, V. T., Novikova, N. D., and Fedoritova, O. B., On the solution of evolution equations based on multigrid and explicit iterative methods, Comput. Math. Math. Phys., 55 (2015), pp. 1276-1289, doi:10.1134/S0965545215080151. · Zbl 1327.65189

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.