Evidence for STAT4 as a Common Autoimmune Gene: rs7574865 Is Associated with Colonic Crohn’s Disease and Early Disease Onset

Jürgen Glas1,2,3, Julia Seiderer1, Melinda Nagy1, Christoph Fries1, Florian Beigel1, Maria Weidinger1, Simone Pfennig1, Wolfram Klein4, Jörg T. Epplen4, Peter Lohse5, Matthias Folwaczny2, Burkhard Göke1, Thomas Ochsenkühn1, Julia Diegelmann1,2, Bertram Müller-Myhsok6, Darina Roeske6, Stephan Brand1*

1 Department of Medicine II - Grosshadern, University of Munich, Munich, Germany, 2 Department of Preventive Dentistry and Periodontology, University of Munich, Munich, Germany, 3 Institute of Human Genetics, RWTH Aachen, Aachen, Germany, 4 Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany, 5 Institute of Clinical Chemistry - Grosshadern, University of Munich, Munich, Germany, 6 Max-Planck-Institute of Psychiatry, Munich, Germany

Abstract

Background: Recent studies demonstrated an association of STAT4 variants with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), indicating that multiple autoimmune diseases share common susceptibility genes. We therefore investigated the influence of STAT4 variants on the susceptibility and phenotype of inflammatory bowel diseases (IBD) in a large patient and control cohort.

Methodology/Principal Findings: Genomic DNA from 2704 individuals of Caucasian origin including 857 patients with Crohn’s disease (CD), 464 patients with ulcerative colitis (UC), and 1383 healthy, unrelated controls was analyzed for seven SNPs in the STAT4 gene (rs11889341, rs7574865, rs7568275, rs179673, rs10181656, rs7582694, rs10174238). In addition, a detailed genotype-phenotype analysis was performed. Our analysis revealed an association of the STAT4 SNP rs7574865 with overall decreased susceptibility to CD (p = 0.047, OR 0.86 [95% CI 0.74–0.99]). However, compared to CD patients carrying the wild type genotype, the STAT4 SNP rs7574865 was significantly associated with early CD onset (p = 0.021) and colonic CD (p = 0.008; OR = 4.60, 95% CI 1.63–12.96). For two other STAT4 variants, there was a trend towards protection against CD susceptibility (rs7568275, p = 0.058, OR 0.86 [95% CI 0.74–1.00]; rs10174238, p = 0.057, OR 0.86 [95% CI 0.75–1.00]). In contrast, we did not observe any association with UC susceptibility. Evidence for weak gene-gene interaction of STAT4 with the IL23R SNP rs11209026 was lost after Bonferroni correction.

Conclusions/Significance: Our results identified the STAT4 SNP rs7574865 as a disease-modifying gene variant in colonic CD. However, in contrast to SLE and RA, the effect of rs7574865 on CD susceptibility is only weak.

Introduction

The precise etiology of inflammatory bowel disease (IBD) is not completely understood but accumulating data on genetic risk factors, including genome-wide association studies, have significantly advanced our understanding of its pathogenesis. [1,2] During the last decade, substantial progress has been made in identifying susceptibility genes for Crohn’s disease (CD) involved in innate immunity [particularly genetic variants in the NOD2/CARD15 region] [3–7] and autophagy [variants in the ATG16L1 [8–11] and IRGM region] [12] as well as in the proinflammatory IL-23 [13,14] and T-helper cell type 17 (Th17) pathway, [15,16] highlighting the complex interaction between gut homeostasis, bacterial recognition and proinflammatory mucosal immune response in IBD. Moreover, it is now clear that adaptive immune responses involved in the IBD pathogenesis are more complex than the traditional dichotomous Th1/Th2 paradigm. Particularly the identification of the IL-23-Th17 pathway highlights the importance of T-cell differentiation in maintaining intestinal immune homeostasis in the pathogenesis of both CD and ulcerative colitis (UC). [16–18]

STAT4 (signal transducers and activators of transcription-4) represents a transcription factor transducing IL-12-, IL-23-, and type 1 interferon-mediated signals into Th1 and Th17 differen-
tiation, monocyte activation, and interferon-gamma production. [19–23] The requirement for STAT4-dependent cytokine regulation has well been replicated for the pathogenesis of autoimmune encephalomyelitis, [24,25] rheumatoid arthritis, [26,27] and also IBD, [28–30] highlighting a critical role for STAT4 in autoimmune diseases. [23] Previous studies demonstrated constitutive STAT4 activation in intestinal T cells of CD patients [28] and an increased expression and activation of IL-12-induced STAT4 signaling in the mucosa of patients with UC. [29] Interestingly, STAT4 isoforms differentially regulate Th1 cytokine production and thereby the severity of IBD. [30] Using a transfer colitis model, it has been shown that particularly STAT4 beta promotes colonic inflammation and tissue destruction which correlates with STAT4 isoform-dependent expression of TNF-α and GM-CSF in vivo and in vitro. [30] A recent in vivo study [31] demonstrated an impaired development of human Th1 cells in patients with deficient expression of STAT4.

Investigating the genetic background of STAT4 regulation, very recent studies suggested a significant association of genetic variants in the STAT4 gene on chromosome 2q with systemic lupus erythematosus (SLE) and rheumatoid arthritis [23,27,32,33] as well as Sjögren’s disease (SD), [34] systemic sclerosis, [23,35] psoriasis [36] and also type-1 diabetes, [37] thus indicating common genetic and molecular pathways in multiple autoimmune diseases. In patients with IBD, there are so far only limited data including a study on 700 Spanish IBD patients reporting a significant association of the STAT4 variant rs7574865 with both susceptibility to CD and UC. [38] However, this association has not been replicated in larger patient cohorts of different ethnic origin and the phenotypic consequences are unknown so far. We therefore initiated a large genotype-phenotype analysis including 1321 Caucasian IBD patients (857 patients with CD, 464 patients with UC) and 1383 healthy, unrelated controls investigating genetic variants in STAT4 as potential susceptibility genes in IBD and potential phenotypic consequences.

Methods

Study population and assessment of disease phenotype

The study population (n = 2704) consisted of 1321 Caucasian IBD patients including 857 patients with CD, 464 patients with UC, and 1383 healthy, unrelated controls. Written, informed consent was obtained from all patients prior to the study. The study was approved by the Ethics committee of the Ludwig-Maximilians-University Munich (Department of Medicine, Munich-Grosshadern) and adhered to the ethical principles for medical research involving human subjects of the Helsinki Declaration (http://www.wma.net/e/policy/b3.htm). For the diagnosis of CD or UC, established diagnostic guidelines including endoscopic, radiological, and histopathological criteria were used. [39] Patients with CD were assessed according to the Montreal classification [40] based on age at diagnosis (A), location (L), and behaviour (B) of disease. In patients with UC, anatomic location was also assessed in accordance to the Montreal classification, using the criteria ulcerative proctitis (E1), left-sided UC (distal UC; E2), and extensive UC (pancolitis; E3); Patients with indeterminate colitis were excluded from the study. Phenotypic characteristics included demographic data and clinical parameters (behaviour and anatomic location of IBD, disease-related complications, previous surgery or immunosuppressive therapy) which were recorded by investigation of patient charts and a detailed questionnaire including an interview at time of enrolment. All phenotypic data were collected blind to the results of the genotypic data. The demographic characteristics of the IBD study population are summarized in Table 1.

DNA extraction and genotyping of the STAT4 variants

From all study participants, blood samples were taken and genomic DNA was isolated from peripheral blood leukocytes using the DNA blood mini kit from Qiagen (Hilden, Germany) according to the manufacturer’s guidelines. Seven STAT4 SNPs (rs11889341, rs7568275, rs8179673, rs10181636, rs7582694, rs10174236) were genotyped by PCR and melting curve analysis using a pair of fluorescence resonance energy transfer (FRET) probes in a LightCycler® 480 Instrument (Roche Diagnostics, Mannheim, Germany). The SNP selection was based on a previous study demonstrating significant associations of these SNPs with SLE and rheumatoid arthritis. [27] The donor fluorescent molecule (fluorescein) at 3'-end of the sensor probe is excited at its specific fluorescence excitation wavelength (533 nm) and the energy is transferred to the acceptor fluorescent molecule at the 5'-end (LightCycler Red 610, 640 or 670) of the anchor probe. The specific fluorescence signal emitted by the acceptor molecule is detected by the optical unit in the LightCycler 480 Instrument. The sensor probe is exactly matching to one allele of each SNP, preferentially to the rarer allele, whereas in the case of the other allele there is a mismatch resulting in a lower melting temperature. The total volume of the PCR was 5 μl containing 25 ng of genomic DNA, 1× Light Cycler 480 Genotyping Master (Roche Diagnostics), 2.5 pmol of each primer and 0.75 pmol of each FRET probe (TIB MOLBIOL, Berlin, Germany). In the case of rs11889341, rs7574865, rs7568275 and rs8179673, the concentration of the forward primer, and in the case of rs7582694, the concentration of the reverse primer, were reduced to 1.25 pmol. For rs10181636, the concentration of the forward primer, and for rs10174238 the concentration of the reverse primer, were reduced to 0.5 pmol. The PCR comprised an initial

Table 1. Demographic characteristics of the IBD study population.
Gender
N = 857
Age (yrs)
Body mass index
Age at diagnosis (yrs)
Disease duration (yrs)
Positive family history of IBD (%)

doi:10.1371/journal.pone.0010373.t001
denaturation step (95°C for 10 min) and 45 cycles (95°C for 10°C sec, 60 for 10 sec, 72°C for 15 sec). The melting curve analysis comprised an initial denaturation step (95°C for 1 min), a step rapidly lowering the temperature to 40°C and holding for 2 min, and a heating step slowly (1 acquisition/°C) increasing the temperature up to 95°C and continuously measuring the fluorescence intensity. The results of melting curve analysis have been confirmed by analyzing two patient samples for each possible genotype using sequence analysis. For sequencing, the total volume of the PCR was 100 μl containing 250 ng of genomic DNA, 1× PCR-buffer (Qiagen, Hilden, Germany), a final MgCl2 concentration of 1.5 mM, 0.2 μM of a dNTP-Mix (Sigma, Steinheim, Germany), 2.5 units of HotStar Plus Taq™ DNA polymerase (Qiagen) and 10 pmol of each primer (TIB MOL-BIO). All sequences of primers and FRET probes and primer annealing temperatures used for genotyping and for sequence analysis are given in Tables 2 and 3. The genotype data for 10 IBD-associated SNPs were typed using the QiAquick PCR Purification Kit (Qiagen) and sequenced by a commercial sequencing company (Sequiserve, Vaterstetten, Germany). All sequences of primers and FRET probes and primer annealing temperatures used for genotyping and for sequence analysis are entailed in Tables 2 and 3. The genotype data for 10 IBD-associated IL-23R SNPs (rs1004819, rs7517047, rs10496929, rs2201841, rs11465804, rs11209026 = p.Arg381Gln, rs1343151, rs10089677, rs11209032, rs11209033) were available from a previous study. [14]

Statistical analyses

For data evaluation, we used the SPSS 13.0 software (SPSS Inc., Chicago, IL, U.S.A.) and R-2.4.1. (http://cran.r-project.org). Each genetic marker was tested for Hardy-Weinberg equilibrium in the control population. Fisher’s exact test was used for comparison between categorical variables, while Student’s t test was applied for quantitative variables. Single-marker allelic tests were performed with Pearson’s Student’s t test. All differences comparing the allele frequencies of CD patients with those of healthy controls (Table 4) as also described before [27]. Moreover, for two other variants there was a trend towards association with decreased CD susceptibility (rs7568275, p = 0.058, OR 0.86 [95% CI 0.75–1.00]; rs10174238, p = 0.057, OR 0.86 [95% CI 0.75–1.00]). For all other STAT4 SNPs investigated, we could not demonstrate significant differences comparing the allele frequencies of CD patients with those of healthy controls (Table 4). Moreover, analysis of haplotypes consisting of SNPs within the STAT4 gene did not detect any significant differences between CD and UC, respectively, when compared to the control group (Supplemental Tables S4 and S5).

Results

The STAT4 SNP rs7574865 modulates susceptibility to CD but not to UC

In all three subgroups (CD, UC, and controls), the allele frequencies of the STAT4 SNPs were in accordance with the predicted Hardy-Weinberg equilibrium (Table 4). In patients with CD, the analysis revealed a significant association of the STAT4 SNP rs7574865 with decreased susceptibility to CD (p = 0.047, OR 0.86 [95% CI 0.74–0.99]) (Table 4); however, this significance would have been lost after Bonferroni correction, which has not been applied since all seven STAT4 SNP were in very strong linkage disequilibrium in all three subgroups of the study population (Supplemental Tables S1, S2, S3) as also described before [27]. Moreover, for two other variants there was a trend towards a decrease in CD susceptibility (rs7568275, p = 0.058, OR 0.86 [95% CI 0.74–1.00]; rs10174238, p = 0.057, OR 0.86 [95% CI 0.75–1.00]). For all other STAT4 SNPs investigated, we could not demonstrate significant differences comparing the allele frequencies of CD patients with those of healthy controls (Table 4). Moreover, analysis of haplotypes consisting of SNPs within the STAT4 gene did not detect any significant differences between CD and UC, respectively, when compared to the control group (Supplemental Tables S4 and S5).

Table 2. Primer sequences (F: forward primer, R: reverse primer), FRET probe sequences, and primer annealing temperatures used for STAT4 genotyping.

Polymorphism	Primer sequences	FRET probe sequences
rs11889341	F: TCATTTTTTCCACATGTCAC	TGAACACCTTTATTTTCCACACTGC-FL
rs7574865	R: GAACTGAGGTTCCAGAACAG	LC610-CTGCGGGCCAGAGTCCAGTCA
rs7568275	F: TTATGGAAAAATTACATGAGTTG	GGTGACACAAATGGAATTACTGTGGT-FL
rs8179673	R: GCAAATCTTTGTAAAAAGTCAA	LC640-ATCTTATTCTTGTGGGACTTCAGGCAGAT
rs10181656	F: GCCATTAGAGTCTTATGGAAGTGA	ACTTTATATGTTGCAATTATAATATTGCTGTGTG-FL
rs7582694	R: AAGTTTATACGATGACTTATTTA	LC650-CATACCTACCATACATACATATATTTA*
rs10174238	F: GTTTGTACCCCTTTCTCCGGAAGA	LC610-CAATACATACATACATACATATATTTA*
rs7574865	R: GTGGACCAAAATGGAATTACTGTGGT-FL	LC640-ATCTTATTCTTGTGGGACTTCAGGCAGAT
rs8179673	R: AAGTTTATACGATGACTTATTTA	ACTTTATATGTTGCAATTATAATATTGCTGTGTG-FL
rs10181656	R: GCAAATCTTTGTAAAAAGTCAA	LC640-ATCTTATTCTTGTGGGACTTCAGGCAGAT
rs7582694	F: GTTTGTACCCCTTTCTCCGGAAGA	LC650-CATACCTACCATACATACATATATTTA*
rs10174238	R: GTGGACCAAAATGGAATTACTGTGGT-FL	LC640-ATCTTATTCTTGTGGGACTTCAGGCAGAT

Note: FL: Fluorescein, LC610: LightCycler-Red 610; LC640: LightCycler-Red 640. The polymorphic position within the sensor probe is underlined. A phosphate is linked to the 3'-end of the acceptor probe to prevent elongation by the DNA polymerase in the PCR.

*The underlined T base within the rs8179673 anchor probe represent LNA (locked nucleic acid) bases in.

**The underlined C base within the rs7582694 reverse primer differs from the original sequence.

doi:10.1371/journal.pone.0010373.t002
Associations between STAT4 genotype status and the CD phenotype

Based on the significant association of the STAT4 SNP rs7574865 with the susceptibility to CD, we next performed a detailed genotype-phenotype analysis in a subgroup of n = 622 phenotypically well-characterized CD patients carrying SNP rs7574865. CD patients homozygous for rs7574865 showed a significant younger age at disease onset (23.2 years ± 7.5) compared to wildtype patients (27.9 years ± 12.3; p = 0.021) and also heterozygous patients (29.0 years ± 12.4; p = 0.007). In addition, we observed significantly more male patients in the subcohort of homozygous carriers of the SNP rs7574865 compared to the wildtype patients (p = 0.040) and heterozygous patients (p = 0.005; Table 5). CD patients homozygous for rs7574865 were found to have significantly more frequent colonic disease compared to wildtype patients (p = 0.008) and heterozygous carriers (p = 0.033; Table 6). Moreover, none of the homozygous carriers demonstrated isolated CD of the terminal ileum. In contrast, the analysis revealed no significant associations with other phenotypic disease characteristics such as body mass index (BMI), incidence of stenoses and fistulas, use of immunosuppressive agents, or extraintestinal manifestations (Tables 5 and 6).

Analysis for epistasis with IL23R

Given that IL-23, a cytokine involved in Th17 cell differentiation, activates not only STAT3 but also to a lesser degree STAT4, we next investigated potential epistasis with the IBD susceptibility gene IL23R. Analysis for 10 SNPs in the IL23R region which have previously shown to significantly influence CD susceptibility [14] found weak interactions between the STAT4 SNPs rs8179673, rs7582694 and rs10174238 with the coding IL23R SNP rs11209026 = p.Arg181Gln in CD (Supplemental Table S6) but significance was lost after correction for multiple comparisons. Interestingly, similar to the effect of the STAT4 SNP rs7574865 shown in this study, the IL23R SNP rs11209026 is protective for CD susceptibility. However, none of the three STAT4 SNPs with epistasis to the IL23R SNP rs11209026 were independently associated with CD, although there was a trend for association of CD with rs10174230 (rs10174230: p = 0.057; rs8179673: p = 0.12; rs7582694: p = 0.15; Table 4). Furthermore, no significant interaction was observed between STAT4 and IL23R SNPs in UC (Supplemental Table S7).

Discussion

Here, we present the first detailed genotype-phenotype analysis of STAT4 gene variants in a large Caucasian IBD cohort. In line with previous reports of significant associations of genetic variants in the STAT4 gene with the risk for autoimmune diseases such as SLE, rheumatoid arthritis [23,27,32] and psoriasis, [23,36] our study could identify the STAT4 SNP rs7574865 also to be associated with the susceptibility to CD. However, this association to CD did not reach the extent of significance or clinical relevance shown for other CD susceptibility genes such as NOD2/CARD15 and IL23R [5,13,14,41–43]. For all other STAT4 gene variants investigated (rs11889341, rs7568275, rs8179673, rs10181656, rs7582694 and rs10174238), our analysis did not reveal any significant association with CD or UC susceptibility. However, there was a trend towards an association in the case of rs7568275 and rs10174238 in CD, which can be explained by the strong linkage disequilibrium between all seven STAT4 SNPs [27] investigated in our study. A smaller Spanish study including 700 IBD patients also reported a significant association of the STAT4 variant rs7574865 with CD susceptibility, although rs7574865 was in this study a risk allele and not protective [38]. In contrast, a very recent Korean study found

Table 3. Primer sequences used for the sequence analysis of STAT4 variants.

Polymorphism	Primer sequences	
rs11889341	CAAATACCTCCTACTATGCTG	GAAATGAGCTCGGAAAACAG
rs7574865	AAGAAAGTGTGAATTTAAAAAAGCTA	GCAATCTGTTGGAGAAGAGTCTA
rs7568275	AACCAACCTCATTAAAAAATTAGCA	GAAGGAAAAGAATAATGAGTAC
rs8179673	TTAGTTTTTCCACCTTTAGTTTCTC	TCAATATCATGGGAGAGAGT
rs10181656	GGTATGAAAATACAAAAAAGACAG	GATTTCCAAACAGGATACCC
rs7582694	AACCCTCTATGGTTCCTCA	CAGTGGAATAGTTTATCTGTC
rs10174238	GGTAAGAGGTTACAGTGAGGAGGAA	AGAAGATGTCACCTGCTC

doi:10.1371/journal.pone.0010373.t003

Table 4. Associations of STAT4 gene markers in CD and UC case-control association studies.

SNP	Minor allele	Crohn’s disease n = 857	Ulcerative colitis n = 464	Controls n = 1383				
	MAF	p value	OR [95% CI]	MAF	p value	OR [95% CI]	MAF	
rs11889341	T	0.194	0.11	0.88 [0.76-1.03]	0.215	0.96	1.01 [0.84-1.20]	0.214
rs7574865	T	0.190	0.047	0.86 [0.74-0.99]	0.214	1.00	1.00 [0.83-1.20]	0.215
rs7568275	G	0.193	0.058	0.86 [0.74-1.00]	0.212	0.78	0.97 [0.81-1.17]	0.217
rs8179673	C	0.198	0.12	0.89 [0.76-1.03]	0.215	0.93	0.99 [0.82-1.18]	0.217
rs10181656	G	0.197	0.12	0.89 [0.76-1.03]	0.211	0.74	0.96 [0.80-1.16]	0.217
rs7582694	C	0.197	0.15	0.89 [0.77-1.04]	0.212	0.89	0.98 [0.82-1.18]	0.215
rs10174238	G	0.202	0.057	0.87 [0.75-1.00]	0.229	0.85	1.02 [0.85-1.22]	0.226

Minor allele frequencies (MAF), allelic test P-values, and odds ratios (OR, shown for the minor allele) with 95% confidence intervals (CI) are depicted for both the CD and UC case-control cohorts.

doi:10.1371/journal.pone.0010373.t004
no association of

\[\text{STAT4} \]

SNPs with CD but a weak association of the \(\text{STAT4} \) SNP rs925847 with susceptibility to UC (P = 0.025; OR = 0.63). [44] Similar to the findings in CD in our study, \(\text{STAT4} \) was protective against UC in the Korean study. [44] In contrast, another very recent study from Spain found no association of the \(\text{STAT4} \) SNP rs7574865 with CD and UC [45], while an extended meta-analysis showed a disease association of this SNP with UC and not CD in the Spanish population. [45] Considering the limited data of \(\text{STAT4} \) gene variants in IBD patients and the conflicting results from the Spanish studies, the impact of \(\text{STAT4} \) on IBD susceptibility seems to be much more limited than that of \(\text{STAT3} \) variants.

In addition, this study demonstrated weak epistasis between the CD-protective \(\text{IL23R} \) variant rs11209026 with several \(\text{STAT4} \) SNPs (Supplementary Table S6). However, none of these gene-gene interactions remained significant after Bonferroni correction. Interestingly, similar to our findings, opposing effects of \(\text{STAT3} \) variants on different Th17-mediated autoimmune diseases have been reported. A very recent genome-wide association study identified \(\text{STAT3} \) as a new susceptibility gene for multiple sclerosis (MS), a disorder in which the Th17 pathway plays a major role. [46] Remarkably, in MS, the G allele of the \(\text{STAT3} \) SNP rs744166 is the risk allele, whereas in CD, the A allele has been found to increase disease susceptibility. [47] Thus, it is possible that a SNP can confer opposite effects in different disorders within the same pathway. Further genotype-phenotype studies in large patient cohorts of different ethnic origin will therefore be required before final conclusion on the influence of \(\text{STAT4} \) on IBD susceptibility can be drawn.

In our study, CD patients homozygous for the SNP rs7574865 were significantly younger at disease onset compared to wildtype and heterozygous patients. Moreover, CD patients homozygous for rs7574865 were found to have significantly more frequent colonic disease compared to wildtype patients (p = 0.008) and heterozygous carriers (p = 0.033). It is therefore of special interest that particularly the \(\text{STAT4} \) SNP rs7574865, which has previously been shown to be the most significant SNP in the association studies for other IBD-associated autoimmune diseases such as SLE, rheumatoid arthritis [23,27,32] and Sjögren’s disease, [23,34] is associated with both CD susceptibility and CD phenotype. However, similar to \(\text{STAT4} \), other IBD susceptibility genes such as \(\text{IL23R} \), \(\text{IL2}/\text{IL21} \), \(\text{STAT3} \), and \(\text{PTPN2} \) are associated with other autoimmune diseases. [48–53]

Regarding the disease-modifying effect of genetic variants in the \(\text{STAT4} \) region on IBD observed in our study, one might hypothesize whether the \(\text{STAT4} \) risk allele has different expression levels or functional effects in different effector cells. A recent study demonstrated a significant association of the \(\text{STAT4} \) risk allele with overexpression of \(\text{STAT4} \) in primary cells of mesenchymal origin such as osteoblasts but not in B cells. [54] This might indicate the potential presence of a tissue-specific intragenic enhancer and cell-type-specific effects of different \(\text{STAT4} \) gene variants on \(\text{STAT4} \) expression levels. This would be in line with previous studies demonstrating that \(\text{STAT4} \) isoforms differentially regulate Th1 cytokine production with \(\text{STAT4} \beta \) promoting greater colonic inflammation and tissue destruction which correlates with \(\text{STAT4} \) isoform-dependent expression of TNF-\(\gamma \) and GM-CSF in vitro and in vivo, but not Th1 expression of IFN-\(\gamma \) or Th17 expression of IL-17. [30] Further investigations on the effect of genetic variants on the expression levels and splicing isoforms in both T cells and B cells as well as intestinal epithelial cells will therefore be necessary. Moreover, based on previous studies [55] reporting an increased sensitivity to IFN-\(\gamma \) in lupus patients carrying the risk variant of \(\text{STAT4} \), one might also speculate whether this mechanism might contribute to increased mucosal inflammation in IBD patients and to the response of immunosuppressive and immunomodulatory therapies.

In summary, our results identified the \(\text{STAT4} \) SNP rs7574865 as a disease-modifying gene variant in CD. Homozygous carriers of the minor allele of rs7574865 have an earlier CD onset and more often colonic disease than carriers of the major allele. Further studies on expression and regulation of \(\text{STAT4} \) in the intestinal mucosa will be required to investigate the functional consequences of \(\text{STAT4} \) gene variants in more detail.

| Table 5. Association between the \(\text{STAT4} \) rs7574865 gene variant and demographic characteristics of the CD cohort. |
|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| | (1) | (2) | (3) | (1) vs. (2) p value | (1) vs. (3) p value | (2) vs. (3) p value | (1) vs. (2+3) p value | |
| | GG | GT | TT | OR | OR | OR | OR | |
| Crohn’s disease | (n = 399) | (n = 203) | (n = 20) | | | | | |
| Male sex | 203/399 (51.0%) | 84/203 (41.0%) | 15/20 (75.0%) | 0.031 | 0.040 | 0.005 | 0.132 | |
| Age (yr) | Mean ± SD | 40.7±13.3 | 42.0±12.9 | 34.4±7.2 | 0.225 | 0.001 | 0.0002 | 0.528 | |
| Range | 16–82 | 18–82 | 21–49 | | | | | |
| Age at diagnosis (yr) | Mean ± SD | 27.9±12.3 | 29.0±12.4 | 23.2±7.5 | 0.308 | 0.021 | 0.007 | 0.551 | |
| Range | 6–71 | 11–78 | 13–37 | | | | | |
| Disease duration (yr) | Mean ± SD | 12.7±9.1 | 13.1±8.4 | 10.8±4.3 | 0.643 | 0.103 | 0.067 | 0.823 | |
| Range | 0–46 | 1–42 | 2–19 | | | | | |
| BMI | Mean ± SD | 23.2±4.3 | 22.8±4.2 | 23.4±3.3 | 0.312 | 0.808 | 0.487 | 0.366 | |
| Range | 13–41 | 16–34 | 16–29 | | | | | |

doi:10.1371/journal.pone.0010373.t005
Table 6. Association between the STAT4 rs7574865 gene variant and CD characteristics based on the Montreal classification.\(^4\)

rs7574865	(1)	(2)	(3)	(1) vs. (2)	(1) vs. (3)	(2) vs. (3)	(1) vs. (2+3)
GG							
GT							
TT							

Location	(n = 399)	(n = 203)	(n = 20)	OR (p value)	OR (p value)	OR (p value)	OR (p value)	
Upper Gl (L4)	10/385 (2.6%)	0	0	**0.035**	1.000	-	-	
Terminal ileum	49/385 (12.7%)	16/192 (8.3%)	4/18 (22.2%)	0.123	0.62 CI (0.34–1.13)	0.275	0.076	0.284
Colon and Upper Gl (L1+L4)	4/385 (1.0%)	3/192 (1.6%)	0	**0.008**	1.15 CI (0.33–3.62)	0.348	1.000	1.000
Penetrating (B3)	152/369 (41.2%)	81/184 (44.0%)	10/18 (56.0%)	0.584	0.50 CI (0.21–1.20)	0.772	1.000	1.000
with perianal f. (B3p)	17/369 (4.6%)	6/184 (3.3%)	3/19 (15.8%)	0.508	0.47 CI (0.16–1.35)	0.649	1.10 CI (0.19–11.43)	0.664
Use of immuno- suppressive agents	307/376 (82.0%)	154/188 (82.0%)	16/20 (80.0%)	0.100	1.00 CI (0.65–1.60)	1.000	1.000	1.000
Use of infliximab	156/397 (39.0%)	80/199 (40.0%)	9/20 (45.0%)	0.589	0.47 CI (0.28–0.81)	0.39 CI (0.04–1.76)	0.427	0.16 CI (0.82–1.64)
Fistula	187/365 (50.7%)	102/185 (55.4%)	11/19 (57.9%)	0.321	1.10 CI (0.87–1.43)	1.23 CI (0.91–1.67)	1.30 CI (0.92–1.84)	0.796
Stenosis	241/364 (66.2%)	123/182 (67.6%)	12/19 (63.2%)	0.773	1.02 CI (0.78–1.31)	1.23 CI (0.93–1.61)	1.00 CI (0.72–1.39)	0.796
Abscesses	112/335 (33.0%)	71/169 (42.0%)	7/19 (37.0%)	0.630	1.03 CI (0.50–2.13)	1.00 CI (0.40–2.67)	1.00 CI (0.42–2.67)	1.00 CI (0.72–1.50)
Surgery because of CD	219/355 (62.0%)	116/177 (66.0%)	10/18 (55.6%)	0.393	0.98 CI (0.77–1.63)	0.80 CI (0.50–1.34)	0.80 CI (0.50–1.34)	0.796
Positive family history of IBD	55/291 (18.9%)	17/139 (12.2%)	1/13 (7.7%)	0.098	0.36 CI (0.10–1.27)	0.475	0.000	0.060

For each variable, the number of patients with complete information on this particular disease variable included in the analysis is given.\(^1\)

1. Disease behaviour was defined according to the Montreal classification. A stricturing disease phenotype was defined as presence of stenosis without penetrating disease. The diagnosis of stenosis was made surgically, endoscopically, or radiologically (using MR enteroclysis).

2. Immunosuppressive agents included azathioprine, 6-mercaptopurine, methotrexate, and/or infliximab.

3. Only surgery related to CD-specific problems (e.g. fistulectomy, colectomy, ileostomy) was included.

4. For each variable, the number of patients with complete information on this particular disease variable included in the analysis is given.

5. Only surgery related to CD-specific problems (e.g. fistulectomy, colectomy, ileostomy) was included.

6. doi:10.1371/journal.pone.0010373.t006
Supporting Information

Table S1 Linkage disequilibrium (LD) between STAT4 SNPs in controls. Values are given as D’/r².
Found at: doi:10.1371/journal.pone.0010373.s001 (0.12 MB DOC)

Table S2 LD between STAT4 SNPs in CD patients. Values are given as D’/r².
Found at: doi:10.1371/journal.pone.0010373.s002 (0.12 MB DOC)

Table S3 LD between STAT4 SNPs in UC patients. Values are given as D’/r².
Found at: doi:10.1371/journal.pone.0010373.s003 (0.12 MB DOC)

Table S4 Haplotype analysis for STAT4 SNPs in the CD case-control cohort.
Found at: doi:10.1371/journal.pone.0010373.s004 (0.12 MB DOC)

Table S5 Haplotype analysis for STAT4 SNPs in the UC case-control cohort.
Found at: doi:10.1371/journal.pone.0010373.s005 (0.12 MB DOC)

Table S6 Epistasis between STAT4 and IL23R SNPs in the CD case-control cohort.
Found at: doi:10.1371/journal.pone.0010373.s006 (0.17 MB DOC)

Table S7 Epistasis between STAT4 and IL23R SNPs in the UC case-control cohort.
Found at: doi:10.1371/journal.pone.0010373.s007 (0.16 MB DOC)

Acknowledgments
This work contains parts of the unpublished degree thesis of M. Nagy.

Author Contributions
Conceived and designed the experiments: JG SB. Performed the experiments: JG MN CF PL. Analyzed the data: JG SP BMM DR SB. Contributed reagents/materials/analysis tools: JG FB MW SP WK JTE PL MF BG TO JD SB. Wrote the paper: JG JS SB. Obtained funding for study: SB.

References
1. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448: 427–434.
2. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347: 417–429.
3. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, et al. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411: 599-603.
4. Ogura Y, Boren DK, Inohara N, Nicolae DL, Chen FF, et al. (2001) A new susceptibility locus for Crohn’s disease is identified by analysis of IL23R. Nature 411: 599–603.
5. Seidierer J, Schütz F, Brand S, Stauringder T, Pfennig S, et al. (2006) Homozygosity for the CARD15 frameshift mutation 1007fs is predictive of early onset of Crohn’s disease with ileal stenosis, entero-enteral fistulas, and frequent need for surgical intervention with high risk of re-stenosis. Scand J Gastroenterol 41: 1421-1422.
6. Seidierer J, Brand S, Herrmann KA, Schütz F, Hatz R, et al. (2006) Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn’s disease in clinical practice: results of a prospective study. Inflamm Bowel Dis 12: 1114–1121.
7. Schnitzler F, Brand S, Staudinger T, Pfennig S, Hofbauer K, et al. (2006) Eight SNPs in CD patients. Values are given as D’/r².
8. Glas J, Konrad S, Schnebel S, Dambacher J, Seiderer J, et al. (2008) The ATG16L1 gene variants rs2241879 and rs2241880 (T300A) are strongly associated with susceptibility to Crohn’s disease. Nature 411: 603–606.
9. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, et al. (2007) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene in 111 patients with inflammatory bowel disease. Immunogenetics 59: 99–106.
10. Prescott NJ, Fisher SA, Franke A, Hampe J, Omnie CM, et al. (2007) A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBDS. Gastroenterology 132: 1665–1671.
11. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, et al. (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39: 596–604.
12. Massey DC, Parkes M (2007) Genomewide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn’s disease. Autophagy 3: 649–651.
13. Duer R, Taylor KD, Brant SR, Rioux JD, Silverberg MS, et al. (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314: 1461–1463.
14. Glas J, Seidierer J, Wetzitz M, Konrad A, Török HP, et al. (2007) e1004819 is the main disease-associated IL23R variant in German Crohn’s disease patients: combined analysis of IL23R, CARD15, and O CN1/2 variants. PLoS ONE 2: e19.
15. Seidierer J, Elben I, Digeleman J, Glas J, Stalhaffer J, et al. (2008) Role of the novel TH17 cytokine IL-17F in inflammatory bowel disease (IBD): Upregulated colonie IL-17F expression in active crohn’s disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis 14: 437–445.
16. McGovern D, Powrie F (2007) The IL23 axis plays a key role in the pathogenesis of IBD. Gut 56: 1333–1336.
17. Neurath MF (2007) IL-23: a master regulator in Crohn disease. Nat Med 13: 26–28.
18. Brand S (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58: 1152–1167.
19. Lankford CS, Frucht DM (2003) A unique role for IL-23 in promoting cellular immunity. J Leukoc Biol 73: 49–56.
20. Watford WT, Hissong BD, Breah JM, Kanoo Y, Muld L, et al. (2004) Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202: 139–156.
21. Mathur AN, Chang HC, Zisoulis DG, Stritesky GL, Yu Q, et al. (2007) Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 178: 4901–4907.
22. Ciric B, El-beni M, Cabrera R, Zhang GX, Rostami A (2009) IL-23 drives pathogenic IL-17-producing CD4+ T cells. J Immunol 182: 5296–5305.
23. Korman BD, Kastner DL, Gregersen PF, Remmers EF (2008) STAT4: genetics, mechanisms, and implications for autoimmunity. Curr Allergy Asthma Rep 8: 390–403.
24. Chitnis T, Najafian N, Benou C, Salama AD, Grubuy MJ, et al. (2007) Effect of targeted disruption of STAT3 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J Clin Invest 110: 739–747.
25. G C, Clearwae W, O’Malley JT, Adams SM, Kanakasabi S, et al. (2008) STAT4 isoforms differentially regulate inflammation and demyelination in experimental allergic encephalomyelitis. J Immunol 181: 5681–5690.
26. O’Malley JT, Eri RD, Stritesky GL, Mathur AN, Chang HC, et al. (2008) STAT4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of Th1-mediated inflammation. J Immunol 181: 4653–4664.
27. Remmers EF, Plenge RM, Lee AT, Graham RR, Hon G, et al. (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357: 977–986.
28. Mucke J, Weigmann B, Bartsch B, Kierschlk R, Strand D, et al. (2005) Activation pattern of signal transducers and activators of transcription (STAT) factors in inflammatory bowel diseases. Am J Gastroenterol 100: 602–604.
29. Stagelis KT, Eri RD, Stitesky GL, Mathur AN, Chang HC, et al. (2008) STAT4 isoforms differentially regulate Th1 cytokine production and the severity of inflammatory bowel disease. J Immunol 181: 5681–5690.
30. Pang YH, Zheng CQ, Yang XZ, Zhang WJ (2007) Increased expression and Stat4 direct development of IL-17-secreting Th cells. J Immunol 178: 4901–4907.
31. Chang HC, Han L, Goswami R, Nguyen ET, Pellosi D, et al. (2009) Impaired development of human Th1 cells in patients with deficient expression of STAT4. Blood 113: 5087–5090.
32. Oroszcz G, Alizadeh BZ, Belguodo-Vega AM, Gonzalez-Gay MA, Bala A, et al. (2008) Association of STAT4 with rheumatoid arthritis: a replication study in three European populations. Arthritis Rheum 58: 1974–1980.
33. JIJD, Lee VV, Kong KA, Woo JJ, Choi SJ, et al. (2010) Association of STAT4 polymorphism with rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Mol Biol Rep 37: 141–147.
34. Korman BD, Alba MI, Le JM, Alvekios I, Smith JA, et al. (2008) Variant form of STAT4 is associated with primary Sjögren’s syndrome. Genes Immun 9: 267–270.
35. Rueda B, Brown J, Simonc C, Hesselstrand R, Diaz B, et al. (2009) The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet 18: 2071–2077.
36. Zervou MI, Goulidimos GN, Castro-Giner F, Tosca AD, Krueger-Krasagakis S (2009) STAT4 gene polymorphism is associated with psoriasis in the genetically homogeneous population of Crete, Greece. Hum Immunol 70: 738–741.
37. Lee HS, Park H, Yang S, Kim D, Park Y (2008) STAT4 polymorphism is associated with early-onset type 1 diabetes, but not with late-onset type 1 diabetes. Ann N Y Acad Sci 1150: 93–98.
38. Martinez A, Varade J, Marquez A, Cenit MC, Espino L, et al. (2008) Association of the STAT4 gene with increased susceptibility for some immune-mediated diseases. Arthritis Rheum 58: 2590–2602.
39. Lennard-Jones JE (1989) Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl 170: 2–6; discussion 16–19.
40. Silverberg MS, Satsangi J, Ahmad T, Arnott ID, Bernstein CN, et al. (2005) Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 19 Suppl A: 5–36.
41. Seidener J, Dambacher J, Kuhnlein B, Pfennig S, Konrad A, et al. (2007) The role of the selenoprotein S (SELS) gene – 105G>A promoter polymorphism in inflammatory bowel disease and regulation of SELS gene expression in intestinal inflammation. Tissue Antigens 70: 238–246.
42. Brand S, Beigel F, Obuzak T, Zitzmann K, Eichhorst ST, et al. (2006) IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 90: G527–G538.
43. Begue B, Dumant C, Bambou JC, Beaulieu JF, Chamaillard M, et al. (2006) Microbial induction of CARD15 expression in intestinal epithelial cells via toll-like receptor 5 triggers an antibacterial response loop. J Cell Physiol 209: 241–252.
44. Moon CM, Cheon JH, Kim SW, Shin DJ, Kim ES, et al. Association of signal transducer and activator of transcription 4 genetic variants with extra-intestinal manifestations in inflammatory bowel disease. Life Sci, 2010 Feb 20. [Epub ahead of print].
45. Diaz-Gallo LM, Palomino-Morales RJJ, Gómez-García M, Cardetta C, Rodrigo L, et al. STAT4 gene influences genetic predisposition to ulcerative colitis but not Crohn’s disease in the Spanish population: A replication study. Hum Immunol, 2010 Mar 7. [Epub ahead of print].
46. Jakkula E, Leppä V, Salonen AM, Varilo T, Kallio S, et al. (2010) Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. Am J Hum Genet 86: 285–291.
47. Barrett JC, Hansoul S, Nicolai DL, Cho JH, Duerr RH, et al. (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40: 953–962.
48. Ban Y, Tsuzuki T, Tanigoshi M, Nakano Y, Yoneyama K, et al. (2009) Association studies of the IL-23R gene in autoimmune thyroid disease in the Japanese population. Autoimmunity 42: 126–130.
49. Huffniece U, Lascorz B, Bohm B, Lohmann J, Wendler J, et al. (2009) Genetic variants of the IL-23R pathway: association with psoriatic arthritis and psoriasis vulgaris, but no specific risk factor for arthritis. J Invest Dermatol 128: 353–358.
50. Fedetz M, Ndagire D, Fernandez O, Leyva Y, Guerrero M, et al. (2009) Multiple sclerosis association study with the TNR-IL2-IL21 region in a Spanish population. Tissue Antigens 74: 244–247.
51. Fung EY, Smyth DJ, Howson JM, Cooper JD, Walker NM, et al. (2009) Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAP13 as a susceptibility locus. Genes Immun 10: 188–191.
52. Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, et al. (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359: 2767–2777.
53. Glas J, Stalhoffer J, Ripke S, Wetzke M, Pfennig S, et al. (2009) Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am J Gastroenterol 104: 1737–1744.
54. Sigurdsson S, Nordmark G, Garnero S, Grundberg E, Kwan T, et al. (2008) A risk haplotype of STAT1 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum Mol Genet 17: 2869–2876.
55. Kariuki SN, Kirou KA, MacDermott EJ, Barillas-Arias L, Crow MK, et al. (2009) Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Immunol 182: 34–30.