Identification of Radioactive Iodine Refractory Differentiated Thyroid Cancer

Zhuan-Zhuan Mu1,2, Xin Zhang1,2, and Yan-Song Lin1,2,*

1Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, 2Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China

Most differentiated thyroid cancer (DTC) patients have an excellent prognosis. However, about one-third of DTC patients with recurrent or metastatic disease lose the hallmark of specific iodine uptake initially or gradually and acquire radioactive iodine-refractory DTC (RAIR-DTC) with poor prognosis. Due to the potentially severe complications from unnecessarily repeated RAI therapy and encouraging progress of multiple targeted drugs for advanced RAIR-DTC patients, it has become crucial to identify RAIR-DTC early. In this review, we focus on the progress and controversies regarding the defining of RAIR-DTC, further with subsistent approaches and promising molecular nuclear medicine imaging in identifying RAIR-DTC, which may shed light on the proper management methods of such patients.

Key Words: Thyroid Neoplasms; Iodine Radioisotopes; Molecular Imaging

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The incidence of thyroid cancer has increased rapidly. 567,233 new cases of thyroid cancer occurred globally in 2018, accounting for 3.1% of all tumors.1 Differentiated thyroid cancer (DTC), including papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), Hürthle cell carcinoma, and poorly differentiated thyroid cancer (PDTC), arise from follicular cells and make up more than 95% of all of thyroid cancers.2 Irrespective of excellent prognoses in most DTC patients, the prevalence of distant metastasis ranges widely from 5%-25%,3,7 which leads to a 5-year survival rate that can be as high as approximately 50%.8 However, about one-third of DTC patients with recurrence or metastasis lose the hallmark of specific iodine uptake initially or gradually, presenting as a RAI-refractory state.9 The 5-year survival rate was merely 19% for such patients.9 Inadequate response to RAI poses a great challenge RAI-refractory DTC (RAIR-DTC) management.

According to the 2015 American Thyroid Association (ATA) guidelines, the RAI therapy should be discontinued once the patient has been recognized as RAIR-DTC. Although the recognition of RAIR-DTC has been more and more clear over time, the diagnostic criteria are still based on imaging manifestation and RAI response, which is more or less influenced by the physician’s objective judgment. There isn’t a well-recognized definition of RAIR-DTC. Furthermore, along with the encouraging progress of molecular pathogenesis over the recent decades, multiple drugs targeted on genetic and epigenetic alterations, and aberrant signal pathways, notably tyrosine-kinase inhibitors (TKIs), have been developed with promising results and have begun to meaningfully impact clinical practice. With the advent of these new treatment options, practitioners are faced with important decisions in determining which patients are appropriate for systemic treatments and the proper timing to initiate the treatment. Thus, it has become crucial to early identify and even predict RAIR-DTC. Herein, we aim to address RAIR-DTC as follows: 1) the definition of and controversies surrounding RAIR-DTC; 2) subsistent approaches to recognize RAIR-DTC; and 3) promising molecular nuclear medicine imaging in identifying RAIR-DTC.

CONTROVERSIES OF THE DEFINITION

Paterson et al.10 reported the phenomenon of non-RAI avidity as early as 1952. However, no explicit statement had been clearly defined about RAIR-DTC until September 2010 during the 14th International Thyroid Congress in
Moreover, the interval between 131I-WBS acquisition and planar and SPECT. Similarly, 124I showed a superior RAI-avid disease have been demonstrated compared with questions, the superiority of PET to deliver images for detecting metastases coexistence in one DTC patients. As it has been growing heterogeneity, which means avid and no-avid RAI developed over time, some controversies remain, particularly as administration of a 131I therapy may falsely classify RAI-avid metastasis as non-RAI-avid. Concerning the cumulative activity of RAI therapy, it may not be rational to take 22.2 GBq (600mCi) as a cut-off value of RAI-DTC’s definition. Given the increased risk of secondary cancers and leukemias with RAI activity accretion, patients with a cumulative dose of more than 22.2 GBq are not recommended for RAI therapy and classified as RAI-DTC. However, it is noticeable that parts of such patients are still with visible RAI uptake in lesions which have neither been cured nor progress according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria, which might be regarded as a kind of response as “stable disease”. In cases like these, it is debatable whether additional RAI treatment should be recommended for such patients. The 2015 ATA guidelines suggest that subsequent RAI treatment should be based on the meaningful response, which is “generally associated with a significant reduction in serum Tg and/or in the size or rate of growth of metastases or structurally apparent disease”. Therefore, how to define response to RAI therapy is more crucial in such a scenario, rather than the argument of a specific cut-off value of RAI dosages.

Furthermore, novel perspectives about defining RAI-DTC have been put forward as follows. 1) Patients with disease progressing whereas complementary total thyroidectomy is no longer beneficial merely for demonstrating RAI-DTC by 131I-WBS. Such patients could be identified as RAI-DTC by alternative molecular imaging other than 131I-WBS. 2) Benefits from RAI therapy in aggressive DTC histology (such as poorly differentiated, insular or Hürthle Cell variants). There is no sufficient evidence to determine whether RAI is likely to be effective in such a situation. Significant uptake of RAI and benefits still could be seen in up to 20% of patients with either Hürthle cell carcinoma or poorly differentiated phenotypes. Conversely, RAI-DTC would occur even in classic PTC. Therefore, it is tough to judge the benefits of RAI therapy in patients with aggressive histology variants. Further evaluation remains necessary to determine whether it is refractory to iodine indeed. Given the unclarity in defining RAI-DTC, it is not easy to confirm the RAI-refractory status. Further evaluation and more neutral approaches should be tailored to identify RAI-DTC.
CURRENT APPROACHES TO IDENTIFY RAIR-DTC

1. ¹³¹I-WBS

Due to the expression of the sodium iodide symporter (NIS), the unique property of thyroid follicular cells to trap and concentrate iodine was also reserved in DTC, which allows RAI (generally ¹³¹I) to be an effective agent of imaging and therapy of DTC and its metastases. ¹³¹I-WBS can localize to the remnant thyroid issue and residual or recurrent RAI-avid lesions and provide evidence for subsequent ¹³¹I treatment. The accuracy of a DxWBS can reach up to 90%, especially with high specificity (91%-100%) and relatively low sensitivity (27-55%). Nevertheless, the neoplastic cells may dedifferentiate and lose certain characteristics associated with normal thyroid follicular cells, notably the diminished NIS expression and/or intracellular retention. About one-third of DTC patients with recurrence or metastases show negative ¹³¹I uptake initially or gradually. According to Durante et al. and Song et al., patients without ¹³¹I uptake in their metastases presented significantly higher disease-specific mortality and drastically decreased 10-year survival rate, compared with those with ¹³¹I uptake. In addition, one retrospective analysis indicated that ¹³¹I uptake grade of metastatic disease was an independent prognostic factor. Adequate attention needs to be paid to patients with negative imaging of ¹³¹I-WBS (despite DxWBS or RxWBS) and abnormally elevated serum Tg level, which always suggests the presence of RAI-refractory disease (Fig. 1).

2. ¹⁸F-FDG PET/CT

Because of the rare iodine avidity of RAIR-DTC foci, research interest into other effective imaging modalities has been aroused by the time. ¹⁸F-FDG, the most well-known functional radiotracer, also plays a crucial role in RAIR-DTC management, including the foci detection, efficacy evaluation and prognosis prediction (Fig. 1). Feine et al. first reported an inverse relationship between RAI and FDG uptake in thyroid carcinoma (the so-called ‘flip-flop phenomenon’), which was thought to be attributed to the loss of ability to concentrate RAI during dedifferentiation, along with an increased demand for glucose of tumor cells. In a meta-analysis of the diagnostic accuracy of ¹⁸F-FDG PET/CT in DTC patients with elevated serum Tg after thyroidectomy and negative ¹³¹I-WBS, the pooled sensitivity and specificity of ¹⁸F-FDG PET/CT were 93.5% (95% confidence interval [CI], 87.0%-97.3%) and 83.9% (95% CI, 72.3%-92.0%), respectively. There has been a variety of reports demonstrated that the sensitivity of ¹⁸F-FDG PET/CT findings increased with the Tg level. ¹⁸F-FDG PET metabolic parameters have been confirmed to be prognostic factors in several studies. In a study of 62 metastatic RAIR-DTC patients, Manohar et al. found that patients with overall metastatic tumor volumes (MTVs) higher than 9.08 mL and total lesion glycolysis (TLG) higher than 49.1 had poorer overall survival (OS) (p=0.06) and progression-free survival (PFS) (p=0.007) rates. According to the 2015 ATA guidelines, ¹⁸F-FDG PET/CT was recommended for high-risk DTC patients with elevated Tg levels (generally stimulated Tg>10 ng/mL) and negative RAI imaging. A recent prospective study showed that at a...
cut-off value of 4.0 in SUVmax, the sensitivity and specificity of 18F-FDG PET/CT predicting 131I-avidity could reach to 75.3% and 56.7%, respectively, which indicates that 18F-FDG PET/CT before 131I therapy is of great value in the prediction of the RAI-avidity of metastases.47

3. Tg relevant indicators

Tg is a protein produced by thyroid follicular cells. Under the condition of negative anti-Tg antibody, Tg is an important additional parameter in the determination of remission and monitoring of the disease’s progress. The increasing trend or very high Tg levels after total thyroid ablation may suggest a recurrence and/or metastasis of the disease. From a retrospective study of 137 patients with PTC after total thyroidectomy, Miyauchi et al.48 found that Tg-doubling time (Tg-DT) was a prominent independent predictor of prognosis. Patients with Tg-DT shorter than 1 year showed a 10-year-survival rate of 50%, which is significantly less than 95% of those with Tg-DT for 1-3 years. Yet, one study aiming at progressive or recurrent DTC patients drew a different conclusion that Tg-DT alone was not an independent survival predictor, but instead, the highly significant difference in survival rates was revealed in patients with high tumor loads (Tg > 100 ng/mL).49 The discrepancies between these studies might result from the different patient constitution and cohort comparison. Another assessment of Tg trends provides a brand-new perspective on Tg dynamic evaluation. It analyzed the ratio of the pre-ablative, stimulated Tg in the first 2 RAI therapies (pstim-Tg2/Tg1) and the ratio of suppressed Tg before and after the second RAI therapy (sup-Tg2/Tg1) from pulmonary metastatic DTC patients, which indicated that the higher Tg2/Tg1 value above the cutoff point (0.544 for pstim-Tg2/Tg1, 0.972 for sup-Tg2/Tg1), the greater possibility of RAIR-DTC.50

4. Closely related genetic characteristic

It is well known that the BRAFV600E mutation is correlated with the recurrence and poor clinicopathological outcomes.51-53 The BRAFV600E mutation negatively regulates iodine metabolism genes (NIS, TSHR, Tg, TPO, etc) via the abnormal activation of the mitogen-activated protein kinase (MAPK) pathway.54-56 On the one hand, BRAFV600E mutation promotes NIS silence by histone deacetylation (HDAC) of NIS promoter,57 on the other hand, the BRAFV600E mutation upgrades the secretion of transforming growth factor β (TGFβ),58 which, through the activation of SMADs and consequent impairment of the thyroid-gene transcription factor PAX8, is a potent repressor of NIS in thyroid cells (Fig. 2)58,59. Our previous study found that the BRAFV600E mutation was associated with the non-RAI-avid of DTC lesions in distant metastases.60 Similarly, the TERT mutation also closely associates with non-RAI-avid DTC within distant metastases, it offers a greater negative influence on RAI avidity when compared with the BRAFV600E mutation. Meanwhile, the TERT mutation could be used as an early predictor RAIR status.61 Several studies have further found that coexistence of the TERT and BRAFV600E mutations may trigger more aggressive clinicopathologic characteristics.62-67

PROMISING MOLECULAR NUCLEAR MEDICINE APPROACHES TO IDENTIFY RAIR-DTC

1. RGD imaging targeted on integrin

18F-FDG PET/CT is usually considered one of the most important alternative imaging strategies, which is still un-
Zhuan-Zhuan Mu, et al

FIG. 3. The nuclear imaging for identifying RAIR-DTC. Negative 131I-WBS act as fundamental indicator for RAIR-DTC identifying, while there still are plenty of influencing factors. Other nuclear imaging modalities could be complements with progressed researches.

131I-WBS: 131I-whole-body scan, RAI: radioactive iodine, RAIR-DTC: radioactive iodine refractory differentiated thyroid cancer, FDG: fluorodeoxyglucose, RGD: Arg-Gly-Asp, PSMA: prostate-specific membrane antigen, SSTR: Somatostatin receptors.

2. Prostate-specific membrane antigen (PSMA) imaging

The prostate-specific membrane antigen (PSMA) is a new target for radionuclide imaging and therapy of prostate cancer in recent years. Overexpression of PSMA has also been demonstrated on the cell membrane of endothelial cells of tumor neovasculature in several other malignancies such as renal cell carcinoma, colon carcinoma, neuroendocrine tumors, melanoma, and breast cancer.

It is compelling that 68Ga-PSMA PET/CT imaging can also identify RAIR-DTC potentially. In a prospective research study including 10 patients of metastatic DTC harboring 32 lesions, all patients showed substantial PSMA uptake with 30/32 total lesions detected by 68Ga-PSMA PET, compared 23/32 positive lesions on 18F-FDG PET/CT. Particularly, 21 (70%) of the 30 lesions showing PSMA expression were localized to the bones. In a study by Lütje et al., 6 patients with 131I-WBS-negative and 18F-FDG-positive metastasized DTC received 68Ga labelled PSMA ligands and underwent PET/CT. The results demonstrated that 68Ga-HBED-CC-PSMA PET/CT might be suitable for staging patients with RAI-negative DTC metastases and identifying patients who might be eligible for PSMA-targeted radionuclide therapy.

3. Somatostatin receptors (SSTR) imaging

Numerous studies have demonstrated the expression of somatostatin receptors (SSTR) type 2, 3 and 5 in DTC in variable percentages. Radiolabeled somatostatin analogs, such as 68Ga-DOTA-octreotide and 68Ga-DOTA-lanreotide...
(LAN), have drawn worldwide attention because of their superior pharmacokinetic characteristics and better spatial resolution of PET technology. However, the diagnostic value of radiolabeled somatostatin analogues in RAIR-DTC remains conflicting. In a study by Traub-Weidinger et al., lesions showing aerobic glycolysis on 18F-FDG PET were found in 24% of 28 patients with corresponding positive results with 68Ga-DOTA-LAN in 35% and with 68Ga-DOTA-Tyr3-octreotide in 29%. Kundu et al. also confirmed 68Ga-DOTA-NOC PET-CT is inferior to 18F-FDG PET-CT at the lesion-based level in DTC with raised Tg and negative 131I-WBS.

4. Choline imaging

The role of radiolabeled choline PET/CT has been fully verified in the diagnosis of prostate cancer. Incidental thyroid uptake has been reported by authors in 18F-choline PET/CT prostate cancer scintigraphy. Some researchers have reported that radiolabeled choline PET/CT may be useful in hunting metastases of thyroid cancer which were negative on 18F-FDG PET/CT. Wu et al. successfully identified thyroid carcinoma using 11C-choline PET/CT in 4 patients with thyroid carcinomas, while the lesions in 3 of 4 patients were missed by previous 18F-FDG PET. In a case report by Piccardo et al., it concluded that 18F-choline PET/CT could detect lethal DTC recurrences, thus choline PET/CT may complement 18F-FDG PET/CT in identifying DTC lesions. Given the absence of convincing evidence, the effectiveness of 11C-choline imaging needs to be further verified with large-scale research (Fig. 3).

FUTURE PERSPECTIVES

The management of RAIR-DTC has been a huge challenge for clinical physicians. There are still many controversies on the definition of RAIR-DTC. The current advancements in RAIR-DTC diagnosis are limited to post-131I therapy evaluation, in which the patients may have been exposed to unnecessary RAI radiation and missed the opportunity to receive more effective interventions. There is a need to be able to predict RAIR-DTC before 131I therapy and make individualized treatment decisions. Thus, continuous improvement in molecular imaging and molecular pathology are surely needed in future research and should focus on RAI-refractory prediction, treatment targets selection, determining the optimal timing for treatment initiation and making second and even third-line treatment schedules.

ACKNOWLEDGEMENTS

This research was supported by the National Natural Sciences Foundation of China (81771875 and 81571714), Medical and Health Science and Technology Innovation Project of Chinese Academy of Medical Science in 2018 (2016-12M-2-006), and part from the Thyroid Study Group of the Asia Oceania Research Initiative Network (AORIN).

AUTHOR CONTRIBUTIONS

Zhuan-Zhuang Mu: Literature search and review, manuscript writing, and editing. Xin Zhang: Manuscript writing and editing. Yan-Song Lin: manuscript writing and editing, and content planning.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
2. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, et al. SEER cancer statistics review, 1975-2013 [Internet]. Bethesda: National Cancer Institute; c2016 [cited 2019 May 15]. Available from: http://seer.cancer.gov/csr/1975_2013.
3. Sampson E, Brierley JD, Le LW, Rotstein L, Tsang RW. Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis. Cancer 2007;110:1451-6.
4. Schlumberger M, Tubiana M, De Vathaire F, Hill C, Gardet P, Travagli JP, et al. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab 1986;63:960-7.
5. Albano D, Bertagna F, Bonacina M, Durmo R, Cerudelli E, Gazzilli M, et al. Possible delayed diagnosis and treatment of metastatic differentiated thyroid cancer by adopting the 2015 ATA guidelines. Eur J Endocrinol 2018;179:143-51.
6. Haq M, Harmer C. Differentiated thyroid carcinoma with distant metastases at presentation: prognostic factors and outcome. Clin Endocrinol (Oxf) 2005;63:87-93.
7. Albano D, Panarotto MB, Durmo R, Rodella C, Bertagna F, Giubbini R. Clinical and prognostic role of detection timing of distant metastases in patients with differentiated thyroid cancer. Endocrine 2019;63:79-86.
8. Nixon IJ, Whitcher MM, Palmer FL, Tuttle RM, Shaha AR, Shah JP, et al. The impact of distant metastases at presentation on prognosis in patients with differentiated carcinoma of the thyroid gland. Thyroid 2012;22:884-9.
9. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91:2892-9.
10. Paterson R, Warrington HC, Gilbert CW. Radioiodine in thyroid cancer. Br Med Bull 1952;8:154-7.
11. Brose MS, Smit J, Capeviglia J, Elisei R, Nutting C, Pitoia F, et al. Regional approaches to the management of patients with advanced, radioactive iodine-refractory differentiated thyroid carcinoma. Expert Rev Anticancer Ther 2012;12:1137-47.
12. Schlumberger M, Brose M, Elisei R, Leboulleux S, Luster M, Pitoia F, et al. Definition and management of radioactive iodine-re-
fractionary differentiated thyroid cancer. Lancet Diabetes Endocrinol 2014;2:356-8.

13. Tuttle RM, Sabra MM. Defining RAI refractory thyroid cancer: when is RAI therapy unlikely to achieve a therapeutic response? [Internet]. South Dartmouth: Thyroid Disease Manager; 2014[cited 2019 Jul 9]. Available from: https://www.thyroidmanager.org/wp-content/uploads/chapters/s2-defining-rai-refractory-thyroid-cancer-when-is-rai-therapy-unlikely-to-achieve-a-therapeutic-response.pdf.

14. Sacks W, Braunstein GD. Evolving approaches in managing radioactive iodine-refractory differentiated thyroid cancer. Endocr Pract 2014;20:263-75.

15. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Sacks W, Braunstein GD. Evolving approaches in managing radioiodine-refractory differentiated thyroid cancer: when is RAI therapy unlikely to achieve a therapeutic response.pdf.

16. Wells K, Moreau S, Shin YR, Van Nostrand D, Burman K, Wartofsky L. Positive (+) post-treatment (tx) scans after the radioiodine (RAI) tx of patients who have well-differentiated thyroid cancer (WDTC), positive serum thyroglobulin levels (TG+), and negative diagnostic (dx) RAI whole body scans (WBS-): predictive values and frequency. J Nucl Med 2008;49(Suppl 1):238P.

17. Sabra MM, Grewal RK, Tala H, Larson SM, Tuttle RM. Clinical outcomes following empiric radiiodine therapy in patients with structurally identifiable metastatic follicular cell-derived thyroid carcinoma with negative diagnostic but positive post-therapy 131I whole-body scans. Thyroid 2012;22:877-83.

18. Fatourechi V, Hay ID, Javedan H, Wiseman GA, Mullan BP, Gorman CA. Lack of impact of radiiodine therapy in tg-positive, diagnostic whole-body scan-negative patients with follicular cell-derived thyroid cancer. J Clin Endocrinol Metab 2002;87:1521-6.

19. Hung BT, Huang SH, Huang YE, Wang PW. Appropriate time for post-therapeutic I-131 whole body scan. Clin Nucl Med 2009;34:339-42.

20. Lee JW, Lee SM, Koh GP, Lee DH. The comparison of 131I whole-body scans on the third and tenth day after (131)I therapy in differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab 2002;87:1490-8.

21. Chong A, Song HC, Min JJ, Jeong SY, Ha JM, Kim J, et al. Improved detection of lung or bone metastases with an I-131 whole body scan. Clin Nucl Med Imaging 2010;44:273-81.

22. Sluiter WJ, et al. The diagnostic value of 124I-PET in patients with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun 2009;30:639-50.

23. Duchateau L, Caeberghs P, Verboekend E, et al. Serum thyroglobulin and iodine-131 whole-body scan in the diagnosis and assessment of treatment for metastatic differentiated thyroid carcinoma. J Nucl Med 1994;35:257-62.

24. Franceschi M, Kusić Z, Franceschi D, Lukinac L, Rončević S. Thyroglobulin determination, neck ultrasonography and iodine-131 whole-body scintigraphy in differentiated thyroid carcinoma. J Nucl Med 1996;37:446-51.

25. Rubino C, de Vathaire F, Dottorini ME, Hall P, Schwartz C, Couette JE, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer 2003;89:1638-44.

26. Russo-Eizaguirre G, Gallofré JC, Grande E, Zafón Llopís C, Ramón y Cajal Asensio T, Navarro González E, et al. Spanish consensus for the management of patients with advanced radioactive iodine refractory differentiated thyroid cancer. Endocr Nutr 2016;63:e17-24.

27. Tuttle RM, Ahuja S, Avram AM, Bernet VJ, Bourguet P, Daniels GH, et al. Contraversies, consensus, and collaboration in the use of 131I therapy in differentiated thyroid cancer: a joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019;29:461-70.

28. Broderick DF, Dufour AR, Heary RK, Schild SE. The role of 18F-FDG PET/CT in patients with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun 2019;40(12):1039-46.
carcinoma with elevated serum thyroglobulin and negative I-131 whole body scan. Nucl Med Rev Cent East Eur 2014;17:87-93.

39. Ozkan E, Aras G, Kucuk NO. Correlation of 18F-FDG PET/CT findings with histopathological results in differentiated thyroid cancer patients who have increased thyroglobulin or antithyroglobulin antibody levels and negative 131I whole-body scan results. Clin Nucl Med 2013;38:326-31.

40. Kwon SY, Kim J, Jung SH, Chong A, Song HC, Bom HS, et al. Preablative stimulated thyroglobulin levels can predict malignant potential and therapeutic responsiveness of subcentimeter-sized, 18F-fluorodeoxyglucose-avid cervical lymph nodes in patients with papillary thyroid cancer. Clin Nucl Med 2016;41:e32-8.

41. Stangierski A, Kaznowski J, Wolinski K, Jodlowska E, Michalisyn P, Kubiak K, et al. The usefulness of fluorine-18 fluorodeoxyglucose PET in the detection of recurrence in patients with differentiated thyroid cancer with elevated thyroglobulin and negative radioiodine whole-body scan. Nucl Med Commun 2016;37:935-8.

42. Vera P, Kuhn-Lansoy C, Edet-Sanson A, Hapdey S, Modzelewski R, Hitzel A, et al. Does recombinant human thyrotropin-stimulated postulated emission tomography with [18F]fluoro-2-deoxy-D-glucose improve detection of recurrence of well-differentiated thyroid carcinoma in patients with low serum thyroglobulin? Thyroid 2010;20:15-23.

43. Manohar PM, Beesley LJ, Bellile EL, Worden FP, Avram AM. Prognostic value of FDG-PET/CT metabolic parameters in metastatic radioiodine-refractory differentiated thyroid cancer. Clin Nucl Med 2018;43:641-7.

44. Masson-Deshayes S, Schwartz C, Dalban C, Guendouzen S, Pochart JM, Dalac A, et al. Prognostic value of [18F]-FDG PET/CT metabolic parameters in metastatic differentiated thyroid cancers. Clin Nucl Med 2015;40:469-75.

45. Pace L, Klein M, Salvatore B, Nicolai E, Zampella E, Assante R, et al. Prognostic role of 18F-FDG PET/CT in the postoperative evaluation of differentiated thyroid cancer patients. Clin Nucl Med 2015;40:111-5.

46. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic differentiated thyroid cancer using [18F]-fluorodeoxyglucose positron emission tomography scanning. J Clin Endocrinol Metab 2006;91:498-505.

47. Liu M, Cheng L, Jin Y, Ruan M, Sheng S, Chen L. Predicting (131)I-avidity of metastases from differentiated thyroid cancer using [18F]-FDG PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 2018;8:4352.

48. Miyachi A, Kudo T, Miya K, Kobayashi K, Ita Y, Takamura Y, et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid 2011;21:707-16.

49. Rössing RM, Jentzen W, Nagarajah J, Bockisch A, Gőrges R. Serum thyroglobulin doubling time in progressive thyroid cancer. Thyroid 2016;26:1712-8.

50. Wang C, Zhang X, Li H, Li X, Lin Y. Quantitative thyroglobulin response to radioactive iodine treatment in predicting radioactive iodine-refractory thyroid cancer with pulmonary metastasis. PLoS One 2017;12:e0179664.

51. Xing M, Alzhahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 2015;33:42-50.

52. Xing M, Alzhahrani AS, Carson KA, Viola D, Eliesi R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013;309:1493-501.

53. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007;28:742-62.

54. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013;13:184-99.

55. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005;12:245-62.

56. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 2005;90:6373-9.

57. Zhang Z, Liu D, Murugan AK, Liu Z, Xing M. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocr Relat Cancer 2014;21:161-73.

58. Riesco-Eizaguirre G, Rodríguez I, De la Vieja A, Costamagna E, Carrasco N, Nistal M, et al. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res 2009;69:8317-25.

59. Costamagna E, García B, Santisteban P. The functional interaction of the pair of domain transcription factors Pax8 and Smad3 is involved in transforming growth factor-β repression of the sodium/iodide symporter gene. J Biol Chem 2004;279:3439-46.

60. Yang K, Wang H, Liang Z, Liang J, Li F, Lin Y. BRAFV600E mutation associated with non-radioiodine-avid status in distant metastatic papillary thyroid carcinoma. Clin Nucl Med 2014;39:675-8.

61. Yang X, Li J, Li X, Liang Z, Guo W, Liang J, et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer. J Nucl Med 2017;58:258-65.

62. Liu X, Qu S, Liu R, Sheng C, Shi X, Zhu G, et al. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab 2014;99:E1130-6.

63. Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 2014;32:2718-26.

64. Ngeow J, Eng C. TERT and BRAF in thyroid cancer: teaming up or trouble. J Clin Oncol 2014;32:2683-4.

65. Melo M, da Rocha AG, Vinagre J, Sobrinho-Simões M, Soares P. Coexistence of TERT promoter and BRAF mutations in papillary thyroid carcinoma: added value in patient prognostics? J Clin Oncol 2015;33:667-8.

66. Dettmer MS, Schmitt A, Steinert H, Capper D, Moh H, Kommeth P, et al. Tall cell papillary thyroid carcinoma: new diagnostic criteria and mutations in BRAF and TERT. Endocr Relat Cancer 2015;22:419-29.

67. Moon S, Song YS, Kim YA, Lim JA, Cho SW, Moon JH, et al. Effects of coexistent BRAF(V600E) and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis. Thyroid 2017;27:651-60.
68. Nucera C, Lawler J, Parangi S. BRAF(V600E) and microenvironment in thyroid cancer: a functional link to drive cancer progression. Cancer Res 2011;71:2417-22.

69. Zhao D, Jin X, Li F, Liang J, Lin Y. Integrin αvβ3 imaging of radioactive iodine-refractory thyroid cancer using 99mTc-3PRGD2. J Nucl Med 2012;53:1872-7.

70. Gao R, Zhang GJ, Wang YB, Liu Y, Wang F, Jia X, et al. Clinical value of 99mTc-3PRGD2 SPECT/CT in differentiated thyroid carcinoma with negative 131I whole-body scan and elevated thyroglobulin level. Sci Rep 2018;8:473.

71. Vatsa R, Shykla J, Mittal BR, Bhusari P, Sood A, Basher RK, et al. Usefulness of 68Ga-DOTA-RGD (αvβ3) PET/CT imaging in thyroglobulin elevation with negative iodine scintigraphy. Clin Nucl Med 2017;42:471-2.

72. Chernaya G, Mikhailo N, Khabalova T, Svyatchenko S, Mostovich L, Shvechenko S, et al. The expression profile of integrin receptors and osteopontin in thyroid malignancies varies depending on the tumor progression rate and presence of BRAF V600E mutation. Surg Oncol 2018;27:702-8.

73. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015;42:197-209.

74. Kratochvil C, Giesel FL, Eder M, Afshar-Oromieh A, Benesova M, Mier W, et al. [177Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2015;42:878-9.

75. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovascularity. Cancer Res 1999;59:3192-8.

76. Demirci E, Ocak M, Kabasalı T, Svyatchenko S, Mostovich L, Shvechenko S, et al. Expression profile of integrin receptors and osteopontin in thyroid malignancies varies depending on the tumor progression rate and presence of BRAF V600E mutation. Surg Oncol 2018;27:702-8.

77. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015;42:197-209.

78. Vatsa R, Shykla J, Mittal BR, Bhusari P, Sood A, Basher RK, et al. Usefulness of 68Ga-DOTA-RGD (αvβ3) PET/CT imaging in thyroglobulin elevation with negative iodine scintigraphy. Clin Nucl Med 2017;42:471-2.

79. Lütje S, Gomez B, Cohnen J, Umuthu L, Gotthardt M, Poeppe1 TD, et al. Imaging of prostate-specific membrane antigen expression in metastatic differentiated thyroid cancer using 68Ga-HBED-CC-PSMA PET/CT. Clin Nucl Med 2017;42:20-5.

80. Teunissen JJ, Kwekkeboom DJ, Kooij PJ, Bakker WH, Krenning EP. Peptide receptor radionuclide therapy for non-radiiodine-avid differentiated thyroid carcinoma. J Nucl Med 2005;46 Suppl 1:1075S-14S.

81. Klage B, Krause K, Schierle K, Steinert F, Dralle H, Fuhrer D. Somatostatin receptor subtype expression in human thyroid tumours. Horm Metab Res 2010;42:237-40.

82. Pisarek H, Stepien T, Kubiak R, Borkowska E, Pawlikowski M. Expression of somatostatin receptor subtypes in human thyroid tumors: the immunohistochromical and molecular biology (RT-PCR) investigation. Thyroid Res 2009;2:1.

83. SancaS, Hardt A, Singer J, Köppel G, Eren FT, Gülüss U, et al. Somatostatin receptor 2 expression determined by immunohistochemistry in cold thyroid nodules exceeds that of hot thyroid nodules, papillary thyroid carcinoma, and Graves’ disease. Thyroid 2010;20:505-11.

84. Stokkel MP, Verkooijen RB, Smit JW. Indium-111 octreotide scintigraphy for the detection of non-functioning metastases from differentiated thyroid cancer: diagnostic and prognostic value. Eur J Nucl Med Mol Imaging 2004;31:950-7.

85. Virgolini I, Patri P, Novotny C, Traub T, Leimer M, Füger B, et al. Comparative somatostatin receptor scintigraphy using in-111-DOTA-lanreotide and in-111-DOTA-Tyr3-octreotide versus F-18-FDG-PET for evaluation of somatostatin receptor-mediated radionuclide therapy. Ann Oncol 2001;12 Suppl 2:S41-5.

86. Rodrigues M, Traub-Weidinger T, Leimer M, Li S, Andreae F, Angelberger P, et al. Value of 111In-DOTA-lanreotide and 111In-DOTA-DPhe1-Tyr3-octreotide in differentiated thyroid cancer: results of in vitro binding studies and in vivo comparison with 18F-FDG-PET. Eur J Nucl Med Mol Imaging 2005;32:1144-51.

87. Traub-Weidinger T, Putzer D, von Guggenberg E, Dobrozemsky G, Hilica B, Kendler D, et al. Multiparametric PET imaging in thyroid malignancy characterizing tumour heterogeneity: somatostatin receptors and glucose metabolism. Eur J Nucl Med Mol Imaging 2015;42:1995-2001.

88. Kundu P, Lata S, Sharma P, Singh H, Malhotra A, Bal C. Prospective evaluation of (68)Ga-DOTANOC PET-CT in differentiated thyroid cancer patients with raised thyroglobulin and negative (131)I whole body scan: comparison with (18)F-FDG-PET-CT. Eur J Nucl Med Mol Imaging 2014;41:1354-62.

89. Wu HB, Wang QS, Wang MF, Li HS. Utility of 11C-choline imaging as a supplement to F-18 FDG PET imaging for detection of thyroid carcinoma. J Nucl Med Mol Imaging 2011;36:91-5.

90. Piccardo A, Massollo M, Bandelloni R, Arlandini A, Foppiani L. Lymph node metastasis from tall-cell thyroid cancer negative on 18F-FDG PET/CT and detected by 18F-choline PET/CT. Clin Nucl Med 2015;40;e117-9.