Sofia Khan ... kConFab Investigators, Australian Ovarian Cancer Study Group, ... The GENICA Network ... et al.

MicroRNA related polymorphisms and breast cancer risk

PLoS One, 2014; 9(11):e109973-1-e109973-12

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Originally published at:
http://doi.org/10.1371/journal.pone.0109973

http://hdl.handle.net/2440/91491
MicroRNA Related Polymorphisms and Breast Cancer Risk

Sofia Khan1, Dario Greco1,2, Kyriaki Michailidou3, Roger L. Milne4,5, Taru A. Muranen1, Tuomas Heikkinen1, Kirsimari Aaltonen1,6,7, Joe Dennis3, Manjeet K. Bolla3, Jianjun Liu4, Per Hall9, Astrid Irvanto4, Keith Humphreys9, Jingmei Li6, Kamila Czene9, Jenny Chang-Claude10, Rebecca Hein10,11, Anja Rudolph12, Petra Seibold10, Dieter Flesch-Jany11, Olivia Fletcher13, Julian Peto14, Isabel dos Santos Silva14, Nichola Johnson13, Lorna Gibson14, Zoe Aitken14, John L. Hopper15, Helen Tsimiklis16, Minh Bui14, Enes Makalic15, Daniel F. Schmidt15, Melissa C. Southey15, Carmel Apicella15, Jennifer Stone15, Quinten Waisfisz17, Hanne Meijers-Heijboer17, Muriel A. Adank17, Rob B. van der Luijt18, Alfons Meindl19, Peter Lichtner25, Clare Turnbull26, Nazneen Rahman26, Stephen J. Chanock27, David J. Hunter28,29, Angela Cox30, Simon S. Cross31, Malcolm W. R. Reed30, Marjanka K. Schmidt32, Annegien Broeks33, Laura J. Van’t Veer32, Fran B. Hogervorst32, Peter A. Fasching33,34, Michael G. Schrauder33, Arif B. Ekici35, Matthias W. Beckmann33,34, Stig E. Bojesen36,37, Béatrice Berne40, Yon-Dschun Ko100, The GENICA Network97,98,99,100,101,102,103*, Hermann Brenner104,105, Aida Karina Dieffenbach104,105, Volker Arndt104, Christa Stegmaier106, Anthony Swerdlow107, Alan Ashworth13, Nick Orr13, Michael Jones71, Jacques Simard108, Mark S. Goldberg109,110, France Labre`che111, Martine Dumont108, Robert Winquist112, Katri Pylkäs112, Arja Jukkola-Vuorinen113, Mervi Grip114, Vesa Kataja115,116, Veli-Matti Kosma117,118,119, Jaana M. Hartikainen117,118,119, Arto Mannermaa117,118,119, Ute Hamann101, Georgia Chenevix-Trench120, Carl Blomqvist12, Kristiina Aittomäki6, Douglas F. Easton3,4,6, Heli Nevanlinna14

1 Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland, 2 Finnish Institute of Occupational Health, Helsinki, Finland, 3 Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom, 4 Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia, 5 Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia, 6 Department of Clinical Genetics, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland, 7 Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland, 8 Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore, 9 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, 10 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, 11 PMF Research Group at the Department of Child and Adolescent Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany, 12 Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany, 13 Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom, 14 Department of Non-Communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom, 15 Centre for

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e109973

...
Abstract

Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining multiple genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI: 0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99), and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 3' UTR of CASP8, HECTD3, DROSHA, MUSTN1, and MYC1L, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

Citation: Khan S, Greco D, Michailidou K, Milne RL, Muranen TA, et al. (2014) MicroRNA Related Polymorphisms and Breast Cancer Risk. PLoS ONE 9(11): e109973. doi:10.1371/journal.pone.0109973

Editor: Zhongming Zhao, Vanderbilt University Medical Center, United States of America

Received June 6, 2014; Accepted September 8, 2014; Published November 12, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Data Availability: The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. Data are available via the Breast Cancer Association Consortium (BCAC) Data Access Coordination Committee (DACC) (http://ccge.medschl.cam.ac.uk/consortia/bcac/). To request the data, readers may contact Manjeet Humphreys (mh139@medschl.cam.ac.uk) or Douglas Easton (dfe20@medschl.cam.ac.uk).

Funding: Funding for the iCOGS infrastructure came from the European Community’s Seventh Framework Programme under grant agreement number 223175 (HEALTH-F2-2009-223175) (DCGS). iCOGS was also partly supported by the Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” (CT-FRBC) (S & JDF), and the Ministry of Economic Development, Innovation and Export Trade of Quebec – grant # 380-TR-701 (S & JDF, P-Ha). HEBCS was financially supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The population allele and frequency times were obtained from the data source funded by the Nordic Center of Excellence in Disease Genetics based on samples regionally selected from Finland, Sweden and Denmark. The UK2 GWAS was funded by Wellcome Trust and Cancer Research UK. It included samples collected through the TRBC study which is funded by Cancer Research UK [C6200/A6372]. The WTCCC was funded by the Wellcome Trust. The ABCFS and OFBCR studies were supported by the United States National Cancer Institute, National Institutes of Health (n/a) under RFA-CA-06-503 and through cooperative agreements with members of the Breast Cancer Family Registry (BCFR) and Principal Investigators, including Cancer Care Ontario (U101 CA69467), Northern California Cancer Center (U101 CA69417), University of Melbourne (U01 CA69638). Samples from the NC-BFRC were processed and distributed by the Coriell Institute for Medical Research. OFBCR was supported by the Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program and grant U11 CA164920 from the National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. JHL is a National Health and Medical Research Council (NHMRC) Australia Fellow and a Victorian Breast Cancer Research Consortium Group Leader. MCS is a NHMRC Senior Research Fellow and a Victorian Breast Cancer Research Consortium Group Leader. JHL and MCS are both group leaders of the Victoria Breast Cancer Research Consortium. The ABCS study was supported by the Dutch Cancer Society [grants NKI 2007-3839, 2009-4363]; BBMRI-NL, which is a Research Infrastructure financed by the Dutch government (NWO 184.021.007); and the Dutch National Genomics Initiative. The BCRC is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). The BCBS GWAS received funding from The Institute National de Cancer. The work of the BCRC was partly supported by ELAN-Fond of the University Hospital of Erlangen. ES (BIGO) is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, United Kingdom. It is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECLE study was funded by Fonction de France (contract grant number 2004012618 and 2007005156), Institut National du Cancer (INCA) [2007-1/5P2, 2008-1-IP-4 and 2009-1-SHS/SP-04], Ligue Nationale contre le Cancer, Association pour la Recherche contre le Cancer (ARC) [2008-1-IP-4]; Agence Française de Sécurité Sanitaire de l’Environnement et du Travail (AFCSET - ANSES) [ST-2005-003, EST2008/1/26, and VS-2009-21], Ligue contre le Cancer Grand Ouest. The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. The UK2 was funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). The BCBS GWAS received funding from The Institute National de Cancer. The work of the BCRC was partly supported by ELAN-Fond of the University Hospital of Erlangen. ES (BIGO) is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, United Kingdom. It is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECLE study was funded by Fondation de France (contract grant number 2004012618 and 2007005156), Institut National du Cancer (INCA) [2007-1/5P2, 2008-1-IP-4 and 2009-1-SHS/SP-04], Ligue Nationale contre le Cancer, Association pour la Recherche contre le Cancer (ARC) [2008-1-IP-4]; Agence Française de Sécurité Sanitaire de l’Environnement et du Travail (AFCSET - ANSES) [ST-2005-003, EST2008/1/26, and VS-2009-21], Ligue contre le Cancer Grand Ouest. The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital. The CNIO-RCS was supported by the Genome Spain Foundation, the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitaria (PI11/00923 and PI081120). We acknowledge the support of Alvarez Ivanov, Daniel Sarembock and the Human Genotyping-CEGEN Unit (CNIO). The Human Genotyping-CEGEN Unit is supported by the Instituto de Salud Carlos III. The CT5 was supported by the California Breast Cancer Act of 1993; National Institutes of Health (grants R01 CA77398 and the Lon V Smith Foundation [LV39420]); and the California Breast Cancer Research Fund (contract 97-10500). Collection of cancer incidence data used in this study was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Human Services, Division of Cancer Surveillance and Epidemiology, Section 103885. DEMOKRITOS is supported by a Hellenic Cooperative Oncology Group research grant (HR R_BG/04) and the Greek General Secretary for Research and Technology (GSR&T) Program, Research Excellence II, funded at 75% by the European Union. The DBFBCS GWAS was funded by The Netherlands Organisation for Scientific Research (NWO) as part of a ZonMW/VIDI grant number 91756341. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (104-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMW), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The ESTHER study was supported by a grant from the Baden-Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The HMBCS was supported by a grant from the Friends of Hannover Medical School and by the Rudolf Bartling Foundation. The Financial support for KARBC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, The Swedish Cancer Society and Bert von Kantzow foundation. The GC-HBCC was supported by Deutsche Krebshilfe [107054], the Dietmar-Hopp Foundation, the Helmholtz society and the German Cancer Research Centre (DKFZ). The GC-HBCC GWAS was...
Introduction

Breast cancer is the most common women's cancer and is a leading cause of cancer mortality [1]. Inherited genetic variation has been associated with the initiation, development and progression of breast cancer. Studies on twins have suggested that hereditary predisposing factors are involved in up to one third of all breast cancers [2]. Many genetic loci have been associated with breast cancer risk and collectively explain approximately 35% of hereditary predisposing factors are involved in up to one third of breast cancer to date identified 41 novel low penetrance susceptibility loci [4] by selecting nearly 30,000 SNPs from a combined GWAS might explain a similar fraction of familial risk [4]. These studies have found evidence for association of miRNA related SNPs and cancer risk, but the study sample sizes have been relatively small. More effective miRNA destabilization is achieved when miRNA targets the 3' UTR rather than other mRNA regions [8–10]. An individual miRNA may regulate approximately 100 distinct miRNAs, and together more than 1000 human miRNAs are believed to be either oncogenic when tumor suppressor genes are targeted, or genomic guardians (tumor suppressor miRNAs) when oncogenes are targeted [14]. Additionally it has been suggested that they may modulate both metastasis [15] and chemotheraphy resistance [16].

Mature miRNAs are 20–23 nucleotide, single-stranded RNA molecules that play a crucial role in gene expression regulation for many cellular processes including differentiation potential and development pattern. miRNAs undergo a stepwise maturation process involving an array of RNA machinery components. Drosha and DGR8 mediate the cleavage of long primary miRNA transcripts (pri-miRNAs) into shorter pre-miRNAs in the nucleus [5,6]. The pre-miRNAs are then transported to the cytoplasm where they are further cleaved by Dicer to produce mature miRNAs [7]. MiRNAs interact by pairing with the 3’ untranslated region (UTR), and also within the coding region and 5’ UTR of the corresponding miRNAs leading to mRNA destabilization, cleavage or translation repression. More effective mRNA destabilization is achieved when miRNA targets the 3’UTR rather than other mRNA regions [9–10]. An individual miRNA may regulate approximately 100 distinct miRNAs, and together more than 1000 human miRNAs are believed to modulate more than half of the miRNA species encoded in the genome [11,12]. Additionaily, most miRNAs possess binding sites for miRNAs [13]. MiRNAs are involved in tumorigenesis in that they can be either oncogenic when tumor suppressor genes are targeted, or genomic guardians (tumor suppressor miRNAs) when oncogenes are targeted [14]. Additionally it has been suggested that they may modulate both metastasis [15] and chemotheraphy resistance [16]. MiRNAs have also been shown to have altered expression levels in tumours compared to normal tissue and between tumor subtypes in breast cancer among other carcinoma types [17–19]. SNPs may affect miRNA machinery genes or miRNAs activity; however SNPs can also create, abolish or modify miRNA binding sites in their binding regions. Polymorphisms in miRNA binding sites have been studied in regard to the risk of several cancers [20], including breast cancer [21–23]. These studies have found evidence for association of miRNA related SNPs and cancer risk, but the study sample sizes have been relatively small. In this study, we investigate associations between miRNA-related polymorphisms and breast cancer risk by using a meta-
analysis of nine GWAS and subsequent genotyping of top hits using 41,785 cases and 41,890 controls of European ancestry from the BCAC. To our knowledge, this is thus far the largest investigation of associations between miRNA-related polymorphisms and breast cancer susceptibility.

Materials and Methods

SNP selection and genotyping

SNPs in mature or pre-miRNAs, in genes of the miRNA machinery and in 3'UTR regions of protein coding genes with a potential effect on miRNA binding were systematically searched from Ensembl (hg18/build36) and Patrocles databases [24]. Additionally, tagging SNPs for such with $r^2 \geq 0.8$ were also identified utilizing the public HapMap SNP database. By this in silico approach we identified altogether 147,801 candidate SNPs and 12,550 tagging SNPs. These SNPs were then overlayed with those from the combined GWAS from the BCAC [4] and altogether 2196 SNPs were present (either genotyped or imputed) in the combined GWAS. These SNPs were genotyped with Illumina or Affymetrix arrays, as described previously [25–32]. The combined GWAS data were imputed for all scans using HapMap version 2 CEU as a reference in similar fashion to that presented by Michailidou and colleagues [4] with the exception that the HapMap version 2 release 21 was used at the time the overlay was performed. Analysis using a 1-degree-of-freedom trend test of these 2196 SNPs in the combined GWAS indicated some evidence of association with breast cancer risk for 44 SNPs ($p<0.09$). Notably, the combined GWAS included imputed data generated using HapMap version 2 release 21 (based on NCBI build 35 (dbSNP b125)), whereas the results presented here for the combined GWAS are based on imputation using HapMap version 2 release 22 (based on NCBI build 36 (dbSNP b126)). In the release 22, a number of SNPs were excluded due to mapping inconsistencies in build 35 relative to build 36. Hence, the estimates from the combined GWAS may slightly differ from the initial association analysis. The 44 SNPs (including 30 candidate and 14 tagging SNP) were genotyped on additional samples in the BCAC using the custom Illumina Infinium array (iCOGS) which included a total of 211,155 SNPs as described previously. The detailed description of quality control process for combined GWAS and iCOGS genotyping data was presented in [4].

Of the 42 SNPs that passed quality control [4], two were located in miRNA genes (one candidate SNP located in pre-miRNA hsa-miR-2110 and one tag SNP tagging a mature hsa-mir-5401 variant), and four SNPs were located in miRNA machinery genes (SMAD5, SND1, CNOT4, and DROSHA). The genotyped DROSHA SNP tags the 3' UTR miRNA binding site variant in the DROSHA gene. The remaining 38 candidate or tag SNPs were located in, or tagged to a predicted miRNA binding site in the 3' UTR of protein coding genes. All 42 SNPs are described in Table 1. The workflow of the SNP selection in different stages is illustrated in Figure 1.

Study sample

The combined GWAS included nine breast cancer studies totalling 10,052 cases and 12,575 controls of European ethnic background. Details and study-specific subject numbers are presented in Table S1. Since the GWAS were limited to patients of European ethnic background we further utilized 41,785 cases ascertained for their first primary, invasive breast cancer and 41,890 controls of European ancestry from 41 BCAC studies genotyped using the iCOGS array (Table S2). For a subgroup analysis of ER negative and ER positive cases, as well as cases aged less than 50 years at diagnosis, we included all the cases for which the respective data were available. The ER subgroup analysis was based on 702 ER negative cases and 2,019 ER positive cases from five GWAS studies and 7,200 ER negative cases from 40 BCAC studies and 26,302 ER positive cases from 34 BCAC studies. The analysis of cases aged less than 50 years at diagnosis was based on 3,470 cases from three GWAS studies and 9,483 cases from 35 BCAC studies. All participating studies conform to the Declaration of Helsinki and were approved by the respective ethical review boards and ethics committees (Tables S1 and S2), and all participants in these studies had provided written consent for the research.

Statistical methods

We used logistic regression to estimate per-allele log-odds ratios and standard errors including the study as a covariate. We also included principal components as covariates in order to correct for potential hidden population structure. In the GWAS, for two studies (UK2 and HEBCS) the estimates were adjusted for the first three principal components and in the iCOGS analysis we used the first six principal components and an additional component to reduce inflation for the LMBC study, as described previously [4]. Subgroup analyses were carried out for ER negative and positive subgroups and for the group aged less than 50 years at diagnosis. For meta-analysis, we combined the estimates from the combined GWAS and iCOGS with a fixed effects model using the inverse variance weighted method. In the meta-analysis, the subjects involved in both combined GWAS and iCOGS (1880) were only taken into account once. In order to adjust for P-values against multiple testing, we used Benjamini Hochberg correction. The adjusted P-values are shown in Table 2 along with the nominal P-values. In the text we report the nominal P-values. The statistical analyses were conducted using the R 2.14.0 statistical computing environment (http://www.r-project.org/).

Results

For the 42 SNPs we successfully genotyped, estimates of association from the combined GWAS and from iCOGS analysis are shown in Table S3. Twenty-one SNPs showed consistent

Figure 1. Workflow of miRNA SNP selection. doi:10.1371/journal.pone.0109973.g001
Chr	Position	Coding	Gene	miRNA	SNP effect
10	11592289	GA	hsa-miR-2110	GA	AC
11	93865677	GA	hsa-miR-518b	GA	AC
1	13494799	AC	SMAD5	hsa-miR-99b-5p	AC
2	13474202	AG	SNRD1	hsa-miR-32	AC
3	31437304	GA	DROSHA	hsa-miR-198	AC
4	35746153	CA	MYCL1	hsa-miR-182-5p	ANC
5	93067136	CG	CNOT4	hsa-miR-193b-3p	AC
6	1327630	AG	DDX11L	hsa-miR-182-5p	AC
7	13474202	AG	SNRD1	hsa-miR-32	AC
8	13474202	AG	SNRD1	hsa-miR-32	AC
9	13474202	AG	SNRD1	hsa-miR-32	AC
10	11592289	GA	hsa-miR-2110	GA	AC
11	93865677	GA	hsa-miR-518b	GA	AC
1	13494799	AC	SMAD5	hsa-miR-99b-5p	AC
2	13474202	AG	SNRD1	hsa-miR-32	AC
3	31437304	GA	DROSHA	hsa-miR-198	AC
4	35746153	CA	MYCL1	hsa-miR-182-5p	ANC
5	93067136	CG	CNOT4	hsa-miR-193b-3p	AC
6	1327630	AG	DDX11L	hsa-miR-182-5p	AC
7	13474202	AG	SNRD1	hsa-miR-32	AC
8	13474202	AG	SNRD1	hsa-miR-32	AC
9	13474202	AG	SNRD1	hsa-miR-32	AC
10	11592289	GA	hsa-miR-2110	GA	AC
11	93865677	GA	hsa-miR-518b	GA	AC
1	13494799	AC	SMAD5	hsa-miR-99b-5p	AC
2	13474202	AG	SNRD1	hsa-miR-32	AC
3	31437304	GA	DROSHA	hsa-miR-198	AC
4	35746153	CA	MYCL1	hsa-miR-182-5p	ANC
5	93067136	CG	CNOT4	hsa-miR-193b-3p	AC
6	1327630	AG	DDX11L	hsa-miR-182-5p	AC
7	13474202	AG	SNRD1	hsa-miR-32	AC
8	13474202	AG	SNRD1	hsa-miR-32	AC
9	13474202	AG	SNRD1	hsa-miR-32	AC
Table 1. Cont.

Chr	Position	Coding	Gene	miRNA	SNP effect*
2	20186026	AG	CASP8	hsa-miR-207-5p	AC
2	21849301	GA	CCDC3	hsa-miR-1178	AC
4	78874296	GA	CNOT6L	hsa-miR-643/hsa-miR-297	AC
4	78874299	GA	CNOT6L	hsa-miR-549en	AC
10	13727177	GA	FRMD4A	hsa-miR-548m	AC
17	7187575	GA	KCTD11	hsa-miR-892b	AC
3	52839175	AG	MUSTN1	hsa-miR-891b	AC
6	150186694	GA	PCMT1	hsa-miR-595	AC
3	16864604	AC	SERPINI2	hsa-miR-1272	AC
10	49867441	AC	WDFY4	hsa-miR-657/hsa-miR-214/hsa-miR-15a/hsa-miR-16/hsa-miR-15b/hsa-miR-195/hsa-miR-424/hsa-miR-497	AC

*According to Patrocles prediction; AC = abolishes conserved binding site, ANC = abolishes non-conserved binding site, CNC = creates non-conserved binding site (Target sites are considered conserved if they are shared by at least one primate, one rodent, and one nonprimate/nonrodent mammal [24]).

SNP rs1045487 (r^2 = 1.0) of CASP8 and the SNP rs1052532 in MYCL1 Embryonic Nuclear Protein 1 (MUSTN1) and V-Myc Myelocytomatosis Viral Oncogene Homolog 1 (MYCL1), respectively (Table 2). SNP rs1045494 is tagging the hsa-miR-938 binding site in TOMTOSIS Viral Oncogene Homolog 1 (MYCL1) and rs3134615 is located at the binding site of hsa-miR-1827 of MIER3, close to the known breast cancer susceptibility gene MAP3K1. The SNP rs702681 is located at the same 5q11.2 locus as the previously published risk SNP rs809312 [33] (correlation r^2 = 0.3). When the two SNPs were analysed in the same logistic regression model, the association with rs809312, but not that with rs702681 remained nominally statistically significant, suggesting that rs702681 is unlikely to be the causal SNP at this locus. The five SNPs with the significant novel associations from the meta-analysis (P = 5.67x10^{-5} and adjusted P = 3.53x10^{-5} after correction for multiple testing) were rs1045494, (OR 0.92 [95%CI 0.88–0.96]; P = 5.90x10^{-5}); rs1052532, (OR 0.97 [95%CI 0.95–0.99]; P = 7.78x10^{-5}); rs702681, (OR 0.97 [95%CI 0.94–0.99]; P = 1.35x10^{-5}); rs6134615 (OR 0.97 [95%CI 0.95–0.99]; P = 1.71x10^{-5}); and rs3134615 (OR 1.03 [95%CI 1.01–1.05]; P = 5.07x10^{-5}) located in 3' UTR of Caspase-8 (CASP8), HD Domain Containing 3 (HDDC3), DROSHA, Musculoskeletal, Embryonic Nuclear Protein 1 (MUSTN1) and V-Myc Myelocytomatosis Viral Oncogene Homolog 1 (MYCL1), respectively (Table 2). SNP rs1045494 is tagging the hsa-miR-938 binding site SNP rs1045497 (r^2 = 1.0) of CASP8 and the SNP rs1052532 in HDCC3 is predicted to abolish the binding site for hsa-miR-1224-5p. The SNP rs10719 is predicted to abolish the hsa-miR-1290 binding site in the 3' UTR of DROSHA. SNP rs4697545 tags the hsa-miR-891b binding site SNP rs6445308 (r^2 = 1.0) of MUSTN1 and rs3134615 is located at the binding site of hsa-miR-1827 of MYCL1. There was no evidence for heterogeneity in the per-allele OR for any SNP. The per study per allele ORs for these five miRNA binding site SNPs from the combined GWAS along with per-SNP heterogeneity variance P-values are shown in Figure S1 and from the iCOGS in Figure S2. Next we analysed the SNPs by ER status-defined subtype, and for cases aged less than 50 years at diagnosis, for risk associations in the meta-analysis of combined GWAS and iCOGS (Tables S4, S5 and S6). These analyses did not reveal any additional significant results. For rs1045494 in CASP8 at a more significant association with breast cancer risk was found for the ER positive subgroup than in the main analysis, but the result from the test for heterogeneity by ER status was not significant (data not shown). All associations were estimated using an additive inheritance model. Dominant and recessive models did not improve the estimates (data not shown).

Discussion

We investigated associations between genetic variation in miRNAs, in the genes of the miRNA machinery and in the miRNA binding sites and the risk of breast cancer. We identified several SNPs that are predicted to abolish an miRNA binding site and that are significantly associated with breast cancer risk. Previous studies investigating miRNA related SNPs, especially in miRNA binding sites have included predefined sets of genes. Nicoloso and colleagues investigated 38 previously identified breast cancer risk SNPs and found two to modify miRNA binding sites in TGFBI and XRCC1 in vitro [23]. Neither of these were included in our data set. Liang and colleagues investigated 134 potential miRNA binding sites in cancer-related genes and found six miRNA binding site SNPs that were associated with ovarian cancer risk [34].
Table 2. Associations of SNPs in the GWAS and iCOGS separately and combined GWAS + iCOGS and breast cancer risk.

SNP	Chr	Position	coding	GWAS OR (95% CI)	iCOGS OR (95% CI)	Combined GWAS + iCOGS OR (95% CI)	Combined GWAS + iCOGS \(P \)^2(BH corrected)	Gene
rs702681	5	56253786	AG	1.07 (1.02–1.11)	1.06 (1.04–1.09)	1.06 (1.04–1.08)	3.88 \(\times 10^{-10} \) (1.63 \(\times 10^{-10} \))	MIER3
rs1045494	2	201860026	AG	0.90 (0.81–1.00)	0.92 (0.88–0.96)	0.92 (0.88–0.96)	5.94 \(\times 10^{-5} \) (1.25 \(\times 10^{-5} \))	CASP8
rs1052532	15	89275240	AG	0.94 (0.90–0.98)	0.97 (0.95–0.99)	0.97 (0.95–0.99)	7.78 \(\times 10^{-4} \) (1.09 \(\times 10^{-4} \))	HHD3
rs10719	5	31437204	GA	0.92 (0.88–0.97)	0.98 (0.95–1.00)	0.97 (0.94–0.99)	1.35 \(\times 10^{-3} \) (1.42 \(\times 10^{-3} \))	DROSHA
rs4687554	3	52839175	AG	0.94 (0.90–0.99)	0.97 (0.95–1.00)	0.97 (0.95–0.99)	1.71 \(\times 10^{-3} \) (1.44 \(\times 10^{-3} \))	MULSTN1
rs3134615	1	40134653	CA	1.04 (0.99–1.09)	1.03 (1.00–1.05)	1.03 (1.01–1.05)	5.07 \(\times 10^{-3} \) (3.55 \(\times 10^{-3} \))	MYCIL1
rs7635553	3	168646064	GA	0.89 (0.83–0.95)	0.98 (0.95–1.01)	0.98 (0.97–1.01)	9.24 \(\times 10^{-3} \) (5.54 \(\times 10^{-3} \))	SERPIN2
rs3796133	3	10000533	GA	1.18 (1.08–1.29)	1.01 (0.97–1.06)	1.04 (1.00–1.09)	3.93 \(\times 10^{-2} \) (1.45 \(\times 10^{-2} \))	DCLBD2
rs4351800	11	7446395	CA	1.04 (1.00–1.08)	1.01 (0.99–1.03)	1.02 (1.00–1.04)	4.15 \(\times 10^{-2} \) (1.45 \(\times 10^{-2} \))	SYT9
rs17512204	2	118449301	GA	1.06 (0.98–1.14)	1.03 (0.99–1.06)	1.03 (1.00–1.07)	5.22 \(\times 10^{-2} \) (1.57 \(\times 10^{-2} \))	CCDC93
rs3809828	17	7187575	GA	1.17 (1.06–1.28)	1.01 (0.97–1.05)	1.00 (0.99–1.02)	7.93 \(\times 10^{-2} \) (2.22 \(\times 10^{-2} \))	KCTD11
rs7441	12	90063806	GA	1.11 (1.03–1.20)	1.01 (0.97–1.05)	1.03 (0.99–1.06)	1.04 \(\times 10^{-1} \) (2.57 \(\times 10^{-1} \))	DCON
rs7086917	10	49867441	AC	0.96 (0.93–1.00)	0.99 (0.97–1.01)	0.99 (0.97–1.00)	1.29 \(\times 10^{-1} \) (3.01 \(\times 10^{-1} \))	WDFY4
rs7040123	9	7160742	AG	1.11 (0.99–1.23)	1.02 (0.97–1.07)	1.00 (0.95–1.04)	1.79 \(\times 10^{-1} \) (3.74 \(\times 10^{-1} \))	KDM4C
rs7674744	4	78874296	GA	0.94 (0.89–0.99)	0.99 (0.97–1.02)	0.91 (0.98–1.03)	1.81 \(\times 10^{-1} \) (3.74 \(\times 10^{-1} \))	CNOT6L
rs12438324	15	55366808	AG	0.87 (0.79–0.97)	1.00 (0.94–1.05)	0.86 (0.97–1.02)	1.07 \(\times 10^{-1} \) (3.74 \(\times 10^{-1} \))	TCF12
rs17151639	7	127425052	AG	0.96 (0.92–1.01)	0.99 (0.97–1.02)	0.99 (0.98–1.02)	2.19 \(\times 10^{-1} \) (4.18 \(\times 10^{-1} \))	SDFN1
rs1740616	7	13473600	CG	0.87 (0.72–1.04)	0.99 (0.93–1.04)	0.93 (0.92–1.03)	3.70 \(\times 10^{-1} \) (5.98 \(\times 10^{-1} \))	CNOT4
rs5713934	1	52590776	GA	1.04 (1.00–1.08)	1.00 (0.98–1.02)	1.01 (0.99–1.02)	4.37 \(\times 10^{-1} \) (6.34 \(\times 10^{-1} \))	C3D18
rs2304669	2	238830402	AG	0.96 (0.91–1.02)	1.00 (0.97–1.02)	0.99 (0.97–1.02)	4.36 \(\times 10^{-1} \) (6.34 \(\times 10^{-1} \))	PER2
rs1058450	4	120200088	GA	0.96 (0.91–1.01)	1.00 (0.97–1.02)	0.98 (0.93–1.03)	4.59 \(\times 10^{-1} \) (6.43 \(\times 10^{-1} \))	SYNO2

The SNPs with consistent odds ratios in combined GWAS and iCOGS analysis are shown. (Results for all 42 SNPs are presented in Table S3.)

1Build 36 position.

2Per allele odds ratio for the minor allele relative to the major allele.

3Idf p-trend.

4Idf p-trend adjusted against multiple testing by Benjamini–Hochberg correction method.

doi:10.1371/journal.pone.0109973.t002
In the meta-analysis of combined GWAS and iCOGS for main effects, for four of the five most significant miRNA binding site SNPs, the minor allele was associated with a decreased breast cancer risk. The minor allele of SNP rs3134615 in 3' UTR of MYCL1 was associated with an increased breast cancer risk. All the five most significant miRNA binding site SNPs locate in 3' UTR and have been predicted to abolish the miRNA binding site. The defect in miRNA-mediated regulation would be expected to lead to an increase in the translation of the corresponding encoded protein. The five genes, whose regulation may be affected by the miRNA-associated SNPs, include the pre-apoptotic gene CASP8, HDDC3, miRNA biogenesis master regulator DROSHA, MYC-family member MYCL1 and MUSTN1. CASP8 is involved in apoptosis in breast cancer cells [35], and many studies have reported polymorphisms in this gene to be associated with risks for several cancers [36,37] including breast cancer [38,39], indicating the importance of CASP8 in tumor development. SNP rs1045494 studied here is located close to the coding region SNP rs1045485 that has been previously shown to have a stronger protective effect [38,40,41]. Interestingly, Michalidou and colleagues reported this SNP as having only weak evidence for an association (P 0.0013 in combined GWAS and iCOGS) [4], but these two SNPs (rs1045485 and rs1045494) are not correlated (r² = 0.001 in Caucasian population). Neither is rs1045494 correlated with the more strongly associated rs1830298 SNP, identified through fine-mapping of the region (r² = 0.02) [42]. Rs1045494 tags SNP rs1045487 (r² = 1.0) which is predicted to abolish the hsa-miR-938 binding site and thus may affect CASP8 expression. There is very little reported evidence on the involvement of HDDC3 or the hsa-miR-1224-3p in cancer, indicating a novel association with risk. HDDC3 has been suggested to be involved in the starvation response [43]. The HDDC3 gene is expressed at higher levels by several different tumor types, including breast tumors, than by normal tissue [44]. DROSHA is a miRNA master regulator. It is a member of the RNase III enzyme family, belongs to the miRNA biogenesis pathway and is the core nuclease that processes pri-miRNAs into pre-miRNAs in the nucleus [5,6]. The SNP rs10719 in the 3' UTR of DROSHA is predicted to abolish the hsa-miR-1298 binding site. Hsa-miR-1298 is predicted to target DROSHA by the Patrocles prediction as well as by TargetScan [45] and PITA [46] prediction algorithms. Recently a small Korean study reported another SNP rs644236, tagging the SNP rs10719 (r² = 0.955 in CEU population and r² = 0.876 in Asian population (combined CHB and JPT)) to be associated with elevated breast cancer risk [47]. When taking into account the opposite major and minors alleles in the Asian and European populations for SNPs rs644236 and rs10719, this result is in concordance with our results where both the combined GWAS as well as the iCOGS analysis consistently indicated an association of the minor allele of SNP rs10719 with reduced breast cancer risk. We also found the minor allele of SNP rs3134615 in the 3' UTR of MYCL1 to be associated with an increased risk. MYCL1 (L-MYC) belongs to the same family of transcription factors as the known proto-oncogene MYC (C-MYC) and they share a high degree of structural similarity [48]. The MYCL1 gene has previously been reported to be amplified and overexpressed in ovarian cancer [49]. A case-control study by Xiong and colleagues reported SNP rs3134615 to be significantly associated with increased risk of small cell lung cancer [50]. SNP rs3134615 was predicted by Patrocles to abolish the hsa-miR-1827 binding site. This has also been suggested by functional studies where MYCL1 was found as the target of hsa-miR-1827 and the SNP rs3134615 was also found to increase MYCL1 expression [50]. The evidence from functional studies is consistent with our finding that SNP rs3134615 might increase breast cancer risk. MUSTN1 has been shown to be involved in the development and regeneration of the musculoskeletal system [51]. Thus far no evidence of association between MUSTN1 and breast cancer has been reported, but the MUSTN1 gene is expressed in the mammary glands [52].

Since only a small fraction of miRNA binding sites has been experimentally validated, we selected SNPs that had been computationally predicted to affect miRNA binding sites. For our original SNP selection we used the Patrocles database that contains predicted miRNA binding sites and also compiles perturbation prediction of SNP effects. There are a multitude of prediction programs and their performance has been evaluated [53]. Witkos and colleagues find target prediction algorithms that utilize orthologous sequence alignment, like Patrocles, to be the most reliable.

The followup of the 42 miRNA related SNPs identified five significant associations with breast cancer risk. Although the individual risk effects were subtle, considering that we could only investigate a small proportion of our initial in silico data set of miRNA related SNPs (over 140,000 SNPs) this may suggest that genetic polymorphisms affecting the miRNA regulation could have a considerable combined effect on breast cancer risk.

It should be noted that, until fine mapping studies are carried out for these loci, it is not clear whether these miRNA-related SNPs are the variants responsible for the observed associations. This comprehensive analysis of miRNA related polymorphisms using a large two stage study of women with European ancestry provides evidence for miRNA related SNPs being potential modulators of breast cancer risk.
Table S4 Results for SNPs in the GWAS and iCOGS separately and combined GWAS+iCOGS analysis for ER negative subgroup.

Table S5 Results for SNPs in the GWAS and iCOGS separately and combined GWAS+iCOGS analysis for ER positive subgroup.

Table S6 Results for SNPs in the GWAS and iCOGS separately and combined GWAS+iCOGS analysis for cases less than 50 years at diagnosis.

Acknowledgments

We thank all the individuals who took part in these studies and all the researchers, study staff, clinicians and other health care providers, technicians and administrative staff who have enabled this work to be carried out. The HEBCS thanks Dr. Karl von Smitten and KR Ira for their help with the HEBCS data and samples. The ABCFS thanks Maggie Angyalakos, Judi Maskill and Gillian Dite. The OFBCR thanks Teresa Sander, Nayana Weerasooriya and Gerd Glendon. The ABCS would like to acknowledge Ellen van der Schoot for DNA of controls. The BBCC thanks Silke Landrith, Sonja Oeser, Matthias Ru¨nber, and Fuchsia Steiner. The BBCC thanks Eileen Williams, Elaine Ryder-Mills and Kara Sargus. The BIGGS thanks Niall McInerny, Gabrielle Colleran, Andrew Rowan and Angela Jones. The BSUCH thanks Peter Bugert and the Munich University, Mainheim. The CBS thanks the support of Nuria Alvarez, Daniel Herrero, Primitiva Menendez and the Human Genotyping-CEGEN Unit (CNIO). The DFBBCS thanks Margreet Assens, Christi van Aperen, Senno Verhoef, and Rogier van Oldenburg for providing samples from their Clinical Genetic centers. We also thank Pascal Arp, Miia Jhamai, Marijke Verkerk, Lizbeth Jherena and Marjolein Peters for their help in creating the GWAS database, and Karol Estrada and Maxim K. Struchalin for their support in creation and analysis of imputed data. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The ESTHER thanks Hartwig Ziegler, Sonja Wolf, and Volker Harthun. The GC-BBCS would like to thank the following people for providing additional information and samples: Prof. Dr. Norbert Arnold, Dr. Sabine Preissler-Adams, Dr. Monika Mareeva-Varon, Dr. Dieter Niederacher, Prof. Dr. Brigitte Schlegelberger, Dr. Clemens Mu¨l, Heide Hellebrand, and Stefanie Engert. The HMBCS thanks Peter Hillelmanns, Hans Christiansen and Johan H. Karstens. The KBCP thanks Eija My¨ohanen and Helena Kemila¨inen. The kConFab/AOCS wishes to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study for their contributions to this resource, and the many families who contribute to kConFab. The LBMC thanks Giliel Peuteman, Dominick Smeets, Thomas Van Brussel and Kathleen Corhout. The MARIE would like to thank Alina Vrieling, Katharina Buck, Ursula Edler, Muhabbet Celik, and Sabine Behrens. The MBCS thanks Saranoush Manoukian, Bernard Peterl and Christian Gille. The members of the Foundation IRCS International Network of Cancer Dei Tumori (INT); Bernardo Bonanni, Irene Ferseo and Angela Manicciolo of the Istituto Europeo di Oncologia (IEO) and the personnel of the Family Cancer Test Laboratory. The MTLGEBCS gratefully acknowledge the assistance of Lesley Richardson and Marie-Claire Goulet in conducting the study. We would like to thank Martine Tranchant (Cancer Genomics Laboratory, CHU de Quebec Research Center), Myriam Marcellin, CEC/MONSANT, and Lea Heguy (McGill University Health Center, Royal Victoria Hospital; McGill University) for DNA extraction, sample management and skillful technical assistance. J.S. is Chairholder of the Canada Research Chair in Oncogenetics. The OBCS thanks Meeri Otsuka and Kari Mononen. The ORIGO thanks E. Krol-Warmerdam, and J. Blom for patient accrual, administering questionnaires, and managing clinical information. The LUMC survival data were retrieved from the Leiden hospital-based cancer registry system (ONCDOC) with the help of Dr. J. Molenaar. The OSU thanks Robert Pilarzki and Charles Shapiro, who were instrumental in the formation of the OSU Breast Cancer Tissue Bank. We thank the Human Genetics Sample Bank for processing of samples. OSU Columbus area control specimens were provided by the Ohio State University’s Human Genetics Sample Bank. The PBCS thanks Mark Sherman, Neolina Sziesznia-Dalrowska, Beata Pekonska, Wioleta Zatorska, Pei Chiao and Michael Shannon. The RBCS thanks Kranzhaus, Bonn. Dr. Hans-Peter Nieuwlaat, Annette Heemskerk and the Erasmus MC Family Cancer Clinic. The SBCS thanks Sue Higham, Ian Brook, Sabapathy Balasubramanian, Helen Cramp and Dan Connelly. The SEARCH thanks the SEARCH and EPIC-Norfolk teams. The iCOGS study would not have been possible without the contributions of the following: Qian Wang (BCAC), Andrew Berchuck (OCAC), Rosalind A. Ecles, Ali Amin Al Olama, Zoeas Kote-Jarai, Sara Benlloch (PRACTICAL), Antonia Antoniou, Lesley McGuigof and Ken Olliff (CIMBA), Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Genetic Epidemiology Laboratory, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoisserie and Frederic Robidoux and the staff of the McGill University and Genome Quebec Innovation Centre, and the staff of the Copenhagen Genomics Laboratory, and Julie M. Cunningham, Sharon A. Windeband, Christopher A. Hiller, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility.

Consortia members

GENICA Network. Hilirud Brauch, Wing-Yee Lo, Christina Justenhouven: Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tubingen, Germany. Yon-Dschun Ko, Christian Baich; Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johannes-Gutenberg-Universitat; Bonn. Hans-Peter Fischer: Institute of Pathology, University of Bonn, Bonn, Germany. Ute Hamann: Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany. Thomas Bruning, Beate Pesch, Sylvia Rabstein, Anne Lotz: Institute of the Ruhr University Bochum (IPA), Bochum, Germany. Volker Harth: Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg, Ziegelhofer Ependorf, Germany.

kConFab Investigators. See http://www.kconfab.org/Organisation/ Members.aspx

AOCS. See: http://www.aocsstudy.org/org_coll.asp

Author Contributions

Conceived and designed the experiments: HG DK GM JF. Performed the experiments: SK KM DK GM JF. Analyzed the data: SK KM DK GM JF. Contributed reagents/materials/analysis tools: SK KM DK GM JF. Wrote the paper: SK KM JCC MG JD MS NL JH DFE AAY JIAP BH DB AC MFH AG SC RFJ OF AM MC MP SK KM JCC MG JD MS NL JH DFE AAY JIAP BH DB AC MFH AG SC RFJ OF AM MC MP.
SM PR PM. Barile PM. JWM JM. JMC A. Jager A. Jakubowska J. Lubinski KJB KD C. McLean TB YDK VA C. Stegmaier A. Swerdlow AA NO MJ J. Simard MD. KP AJV MG. VK MB JD VMK JMH iConFab Investigators Australian Ovarian Cancer Study Group The GENICA Network. Approved the final version of the manuscript: SK HN DG KM GCT AC RLM PDPP UH MKS A. Meindl RW TH CB K. Aaltonen KJB KD C. McLean TB YDK VA C. Stegmaier A. Swerdlow AA NO MJ J. Simard MD. KP AJV MG. VK MB JD VMK JMH iConFab Investigators Australian Ovarian Cancer Study Group The GENICA Network. Administrative technical or material support: MKR JD MS RL.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.
2. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, et al. (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343: 78–85.
3. Ghoshdari M, Fletcher O, Michailoudis K, Turnbull C, Schmidt MK, et al. (2012) Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet 44: 312–316.
4. Michailoudis K, Hall P, Gonzalez-Neira A, Ghoshdari M, Dennis J, et al. (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45: 353–361, 361e351–352.
5. Derdi AM, Topps BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231–235.
6. Lee Y, Ahn C, Han J, Choi H, Kim J, et al. (2003) The nuclear RNAIII Drosola initiates microRNA processing. Nature 425: 415–419.
7. Hutvagner G, McLachlan J, Pasquinelli AE, Balut E, Tuschl T, et al. (2001) A collar function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 839–843.
8. Sosio M, Kloorsternman H, Bianchi A, de Vreugd P, Dijkstraen I, et al. (2004) Organization of the tricistron gene cluster in Actinopelas teichomycetes. Microbiology 150: 95–102.
9. Filipowicz W, Bhattacharrya SN, Sonenberg N (2008) Mechanism of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 11: 597–610.
10. Shukla GC, Singh J, Barik S (2011) MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3: 83–92.
11. Liang Z, Wu H, Xia J, Li Y, Zhang Y, et al. (2010) Involvement of miR-326 in cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 839–843.
12. Zhong X, Coukos G, Zhang L (2012) miRNAs in human cancer. Methods Mol Biol 652: 295–306.
13. Friedman RC, Farhi KK, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 126: 657–668.
14. Farazi TA, Hoell JI, Morozov P, Tuschl T (2013) MicroRNA in Human Carcinoma metastasis. Oncol Rep 30: 643–650.
15. Lee JT, Humphries K, Heikininen T, Autio R, Ojala K, et al. (2000) Identification of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat Struct Mol Biol 7: 1196–1202.
16. Liu J, Humphreys K, Heikininen T, Autio R, Ojala K, et al. (2000) Interferon-gamma modulates the epithelial-to-mesenchymal transition in human renal cell carcinoma. Mol Cancer Ther 9: 448–457.
17. Volinia S, Croce CM (2013) Prognostic microRNA/mRNA signature from the TCGA breast invasive ductal carcinoma dataset. Mol Cancer Ther 12: 394–402.
18. Kilpinen S, Autio R, Ojala K, Bucher E, et al. (2008) Systematic database of polymorphic miRNA-mediated gene regulation in vertebrates. Genomics 91: 469–480.
19. Dite GS, Jenkins MA, Southey MC, Hocking JS, Giles GJ, et al. (2003) Familial breast cancer: a case-control study in Korea. Breast Cancer Res Treat 130: 939–951.
48. Birrer MJ, Segal S, DeGreve JS, Kaye F, Sausville EA, et al. (1988) L-myc cooperates with ras to transform primary rat embryo fibroblasts. Mol Cell Biol 8: 2668–2673.

49. Wu R, Lin L, Beer DG, Ellenson LH, Lamb BJ, et al. (2003) Amplification and overexpression of the L-MYC proto-oncogene in ovarian carcinomas. Am J Pathol 162: 1603–1610.

50. Xiong F, Wu C, Chang J, Yu D, Xu B, et al. (2011) Genetic variation in an miRNA-1827 binding site in MYCL1 alters susceptibility to small-cell lung cancer. Cancer Res 71: 5175–5181.

51. Lombardo F, Komatsu D, Hadjiargyrou M (2004) Molecular cloning and characterization of Mustang, a novel nuclear protein expressed during skeletal development and regeneration. FASEB J 18: 52–61.

52. Kapushesky M, Adamusiak T, Burdett T, Culhane A, Farne A, et al. (2012) Gene Expression Atlas update—a value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res 40: D1077–1081.

53. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical Aspects of microRNA Target Prediction. Curr Mol Med 11: 93–109.