A hyperchaotic hyperjerk system with four nonlinearities, its dynamical analysis and circuit realization

Mujiarto1, S Vaidyanathan2, S Zhang3, A Sambas1, Sukono4, A S Praiw5, Subiyanto6

1Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Indonesia
2Research and Development Centre, Vel Tech University, Avadi, Chennai, India
3School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, China
4Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia.
5Faculty of Teacher Training and Education, Universitas Muhammadiyah Tasikmalaya, Indonesia
6Department of Marine Science, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Indonesia.

Corresponding author: acengs@umtas.ac.id

Abstract. A new four-dimensional hyperchaotic hyperjerk system with four nonlinearities is proposed in this paper. The dynamical properties of the new hyperjerk system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed dynamical analysis of the new hyperjerk system has been carried out with bifurcation diagram and Lyapunov exponents. As an engineering application, an electronic circuit realization of the new hyperchaotic hyperjerk system is designed via MultiSIM to confirm the feasibility of the theoretical hyperchaotic hyperjerk model.

1. Introduction
Hyperjerk systems are special types of mechanical chaotic systems arising in chaos literature [1-2]. Chaotic systems are very useful in many applications in science and engineering such as weather systems [3-4], ecology [5], neurons [6-7], biology [8-10], cellular neural networks [11-12], chemical reactors [13-14], oscillators [15-20], robotics [21-24], encryption [25-30], finance systems [31-32], circuits [33-45], secure communication [46-50], etc.

In physics, a hyperjerk ODE can be written as the high-order dynamics

$$\frac{d^n x}{dt^n} = \varphi \left(x, \frac{dx}{dt}, \ldots, \frac{d^{n-1} x}{dt^{n-1}} \right), \quad (n \geq 4) \tag{1}$$

In (1), \(x(t)\) stands for the displacement, \(\frac{dx}{dt}\) the velocity, \(\frac{d^2 x}{dt^2}\) the acceleration, \(\frac{d^3 x}{dt^3}\) the jerk and higher-order derivatives are called as hyperjerk terms.

Thus, we call the ODE (1) as the hyperjerk differential equation.

For qualitative analysis, it is convenient to express the hyperjerk ODE (1) in a system form.

Using phase variables, we can express the hyperjerk differential equation (1) as follows:
Jerk systems are special cases of hyperjerk systems when \(n = 3 \). Thus, jerk systems can be described by the following general system of differential equations.

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
& \quad \vdots \\
\dot{x}_n &= \varphi(x_1, x_2, \ldots, x_n)
\end{align*}
\]

(2)

Many jerk systems have been reported in the chaos literature [51-58]. Jerk systems have important applications in mechanical engineering [1-2]. Some famous jerk systems can be cited as Sprott systems [51], Li system [52], Elsonbaty system [53], Coulelet system [54], Kengne system [55], Vaidyanathan systems [56-60], etc.

In the literature, many hyperjerk systems have been reported by many scientists [61-68]. Some popular hyperjerk systems are Chlouverakis system [61], Munmuangsan system [62], Daltzis system [63], Wang system [64], Pham system [65], Vaidyanathan systems [66-70], etc.

In this research paper, we report the finding of a new hyperchaotic hyperjerk system with four nonlinearities. We describe the phase plots of the hyperjerk system and do a rigorous dynamic analysis by finding bifurcation diagrams, Lyapunov exponents, etc. Bifurcation analysis is very useful to understand the special properties of chaotic and hyperchaotic systems [71-76].

Section 2 describes the new hyperchaotic hyperjerk system, its phase plots and Lyapunov exponents. Section 3 describes the dynamic analysis of the new hyperchaotic hyperjerk system. Furthermore, an electronic circuit realization of the new chaotic system is presented in detail in Section 4. The circuit experimental results of the new hyperjerk system in Section 4 agreement with its numerical simulations via MATLAB obtained in Section 2. Section 5 draws the main conclusions.

2. A new hyperchaotic hyperjerk system

In this work, we report a new 4-D hyperjerk system given by the dynamics

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= -x_1 - x_2 - ax_3 + b(|x_2| + |x_3|) - cx_4^2 x_4 - dx_2^2
\end{align*}
\]

(4)

where \(x_1, x_2, x_3, x_4 \) are state variables and \(a, b, c, d \) are positive constants.

In this paper, we show that the hyperjerk system (1) is hyperchaotic for the parameter values

\[
a = 3.6, \quad b = 0.02, \quad c = 3, \quad d = 0.05
\]

(5)

For numerical simulations, we take the initial values of the hyperjerk system (4) as \(X(0) = (0.1, 0.1, 0.1, 0.1) \).

Figures 1-4 show the 2-D projections of the new hyperjerk system (4) in \((x_1, x_2), (x_2, x_3), (x_3, x_4) \) and \((x_1, x_4) \) coordinate planes, respectively.
Figure 1. 2-D plot of the hyperchaotic hyperjerk system (4) in the \((x_1, x_2)\) plane for
\(X_0 = (0.1, 0.1, 0.1, 0.1)\) and \((a, b, c, d) = (3.6, 0.02, 3, 0.05)\)

Figure 2. 2-D plot of the hyperchaotic hyperjerk system (4) in the \((x_2, x_3)\) plane for
\(X_0 = (0.1, 0.1, 0.1, 0.1)\) and \((a, b, c, d) = (3.6, 0.02, 3, 0.05)\)
Figure 3. 2-D plot of the hyperchaotic hyperjerk system (4) in the \((x_3, x_4)\) plane for
\[X_0 = (0.1, 0.1, 0.1, 0.1)\] and \((a, b, c, d) = (3.6, 0.02, 3, 0.05)\)

Figure 4. 2-D plot of the hyperchaotic hyperjerk system (4) in the \((x_1, x_4)\) plane for
\[X_0 = (0.1, 0.1, 0.1, 0.1)\] and \((a, b, c, d) = (3.6, 0.02, 3, 0.05)\)
For the rest of this section, we take the values of the parameters as in the hyperchaotic case (5), i.e. $(a, b, c, d) = (3.6, 0.02, 3, 0.05)$.

The equilibrium points of the new hyperchaotic hyperjerk system (4) are obtained by solving the system of equations

\begin{align*}
x_1 &= 0 \quad \text{(6a)} \\
x_2 &= 0 \quad \text{(6b)} \\
x_3 &= 0 \quad \text{(6c)} \\
-x_1 - x_2 - ax_3 + b(|x_2| + |x_3|) - cx_1^2x_4 - dx_2^2 &= 0 \quad \text{(6d)}
\end{align*}

From (6a), (6b) and (6c), we deduce that $x_1 = x_2 = x_3 = 0$.

Substituting these in (6d), we obtain $-x_1 = 0$. This gives $x_4 = 0$.

Hence, $E_0 = (0, 0, 0, 0)$ is the unique equilibrium of the chaotic jerk system (4).

The Jacobian matrix of the new hyperjerk system (4) at $E_0 = (0, 0, 0, 0)$ is obtained as

\[
J = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & -1 & -3.6 & 0 \\
\end{bmatrix}
\]

The Jacobian J has the spectral values $\lambda_{1,2} = 0.1604 \pm 1.8395i$, $\lambda_{3,4} = -0.1604 \pm 0.5172i$

This shows that the equilibrium point E_0 is a saddle-focus and unstable.

For the parameter values as in the hyperchaotic case (5) and the initial state $X_0 = (0.1, 0.1, 0.1, 0.1)$, the Lyapunov exponents of the new jerk system (4) are determined using Wolf’s algorithm as

\[
LE_1 = 0.1344, \quad LE_2 = 0.0411, \quad LE_3 = 0, \quad LE_4 = -1.2929
\]

The hyperjerk system (4) is hyperchaotic since it has 2 positive Lyapunov exponents. Thus, the system (4) exhibits a self-excited strange hyperchaotic attractor. Also, we note that the sum of the Lyapunov exponents in (8) is negative. This shows that the hyperjerk system (4) is dissipative.

The Kaplan-Yorke dimension of the hyperjerk system (4) is determined as

\[
D_{KY} = 3 + \frac{LE_1 + LE_2 + LE_3}{|LE_4|} = 3.1357,
\]

which indicates the high complexity of the hyperchaotic hyperjerk system (4).

3. Bifurcation Analysis for the New Hyperchaotic Hyperjerk System

In this section, we describe a bifurcation analysis for the new hyperjerk system (4) introduced in Section 2. Bifurcation analysis is an important topic for studying chaotic systems [71-76].

Here, we select a and c as the control parameters and fix others.

We fix $b = 0.02$, $c = 3$, $d = 0.05$, the initial condition $X_0 = (0.1, 0.1, 0.1, 0.1)$ and vary a in the region of $[3.6, 4.6]$.

Obviously, from the bifurcation diagram and the Lyapunov exponents shown in Figure 5, one can get that the hyperjerk system (4) depicts hyperchaos in the region of $[3.6, 3.95]$; then the system gets into chaos and finally converts into periodic orbits. In addition, there is quasi-periodic behavior in the parameter range. Some sample results are shown in Figures 6-9.
Figure 5. Bifurcation diagram and Lyapunov exponents of the new hyperjerk system (4), where we fix $b = 0.02$, $c = 3$, $d = 0.05$ and the initial conditions $(0.1, 0.1, 0.1, 0.1)$

Figure 6. Phase plots of the new hyperjerk system (4), where we fix $b = 0.02$, $c = 3$, $d = 0.05$ and the initial conditions $(0.1, 0.1, 0.1, 0.1)$. When $a = 3.6$, the system (5) depicts hyperchaos.

Figure 7. Phase plots of the new hyperjerk system (4), where we fix $b = 0.02$, $c = 3$, $d = 0.05$ and the initial conditions $(0.1, 0.1, 0.1, 0.1)$. When $a = 4$, the system (4) depicts chaos.
Figure 8. Phase plots of the new hyperjerk system (4), where we fix $b = 0.02$, $c = 3$, $d = 0.05$ and the initial conditions $(0.1, 0.1, 0.1, 0.1)$. When $a = 4.25$, the system (4) depicts quasi-period motion.

Figure 9. Phase plots of the new hyperjerk system (4), where we fix $b = 0.02$, $c = 3$, $d = 0.05$ and the initial conditions $(0.1, 0.1, 0.1, 0.1)$. When $a = 4.6$, the system (4) depicts periodic orbit.

We fix $a = 3.6$, $b = 0.02$, $d = 0.05$, the initial conditions $(0.1, 0.1, 0.1, 0.1)$ and vary c in the region of $[3, 6]$. The constant Lyapunov exponent behavior, meaning the values of the Lyapunov exponents keep invariable when the parameters vary in a certain range, has been reported in some chaotic systems [76]. From the Lyapunov exponent spectrum shown in Figure 10, one can see that the hyperjerk system (4) displays that all the values of the Lyapunov exponents are unchanged and moreover, the value of the maximum Lyapunov exponent keeps invariable and positive when the control parameter c increases in the region of $[3, 6]$. That means the system exhibits robust chaos behavior, which is very important for real-world applications.
Figure 10. Bifurcation diagram and Lyapunov exponents of the new hyperjerk system (4), where we fix $a = 3.6$, $b = 0.02$, $d = 0.05$ and the initial conditions $(0.1, 0.1, 0.1, 0.1)$

4. Circuit Implementation of the New Hyperchaotic Hyperjerk System

In this section, we design an electronic circuit based on the hyperjerk system (4) in MultiSIM software. A circuit design containing three channels with respect to the variables x_1, x_2, x_3, x_4 of system (4) is given in Figure 11. The circuit includes simple electronic elements such as resistors, multipliers, capacitors, op-amps and diodes.

In this study, a linear scaling is considered as follows:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= \frac{x_4}{2} \\
\dot{x}_4 &= -2x_1 - 2x_2 - 2ax_3 + 2b(|x_2| + |x_3|) - 16cx_1x_4 - dx_2^2
\end{align*}
\]

By applying Kirchhoff’s laws to this circuit, its dynamics are presented by the following circuital equations:

\[
\begin{align*}
\dot{x}_1 &= \frac{1}{C_1R_1} x_2 \\
\dot{x}_2 &= \frac{1}{C_2R_2} x_3 \\
\dot{x}_3 &= \frac{1}{C_3R_3} x_4 \\
\dot{x}_4 &= -\frac{1}{C_4R_4} x_1 - \frac{1}{C_4R_5} x_2 - \frac{1}{C_4R_6} x_3 + \frac{1}{C_4R_7} |x_2| + \frac{1}{C_4R_8} |x_3| - \frac{1}{C_4R_9} x_1^4 x_4 - \frac{1}{C_4R_{10}} x_2^2
\end{align*}
\]

The values of components in Figure 11 are chosen to match the parameters of new hyperjerk system (4) as follows: $R_1 = R_2 = 400 \, k\Omega$, $R_3 = 800 \, k\Omega$, $R_4 = R_5 = 200 \, k\Omega$, $R_6 = 55.55 \, k\Omega$, $R_7 = R_8 = 10 \, M\Omega$, $R_9 = 8.33 \, k\Omega$, $R_{10} = 8 \, M\Omega$, $C_1 = C_2 = C_3 = C_4 = 1nF$. The circuit simulations of the phase plots are displayed in Figs 12 (a)-(d), which show the chaotic attractors in x_1-x_2 plane, x_2-x_3.
plane, x_3-x_4 plane and x_1-x_4 plane, respectively. As can be seen from the MultiSIM outputs in Figure 12 and numerical simulation in Figures 1-4, the results are similar.

5. Conclusions
A new four-dimensional hyperchaotic hyperjerk system with four nonlinearities was announced in this paper. The dynamical properties of the new hyperjerk system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed dynamical analysis of the new hyperjerk system was done with bifurcation diagram and Lyapunov exponents. Furthermore, an electronic circuit realization of the new hyperchaotic hyperjerk system was carried out via MultiSIM to confirm the feasibility of the theoretical hyperchaotic hyperjerk model.
Fig. 11 Circuit design for the proposed new four-dimensional hyperchaotic hyperjerk system (4)

Fig. 12 MultiSIM chaotic attractors of the new four-dimensional hyperchaotic hyperjerk system (4)
(a) x_1-x_2 plane, (b) x_2-x_3 plane, (c) x_3-x_4 plane and (d) x_1-x_4 plane.
References
[1] Vaidyanathan S and Volos C 2017 Advances and Applications in Chaotic Systems (Berlin: Springer)
[2] Pham V T, Vaidyanathan S, Volos C and Kapitaniak T 2018 Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors (Berlin: Springer)
[3] Vaidyanathan S, Azar A T, Rajagopal K, Sambas A, Kacar S and Cavusoglu U 2018 International Journal of Simulation and Process Modelling 13 281-296
[4] Vaidyanathan S, Volos C K, Rajagopal K, Kyprianidis I M and Stouboulos I N 2015 Journal of Engineering Science and Technology Review 8 74-82
[5] Vaidyanathan S 2015 International Journal of PharmTech Research 8 974-981
[6] Vaidyanathan S 2015 International Journal of PharmTech Research 8 1-11
[7] Vaidyanathan S 2015 International Journal of PharmTech Research 8 117-127
[8] Tomita K 1982 Journal of Theoretical Biology 99 111-118
[9] Vaidyanathan S 2015 International Journal of PharmTech Research 8 106-116
[10] Vaidyanathan S 2015 International Journal of PharmTech Research 8 156-166
[11] Njitacke Z T and Kengne J 2018 AEU-International Journal of Electronics and Communications 93 242-252
[12] Vaidyanathan S 2015 International Journal of PharmTech Research 8 946-955
[13] Saad M, Safieddine A and Sultan R 2018 Journal of Physical Chemistry A 122 6043-6047
[14] Vaidyanathan S 2015 International Journal of ChemTech Research 8 159-171
[15] Hellen E H and Volkov E 2018 Communications in Nonlinear Science and Numerical Simulation 62 462-479
[16] Vaidyanathan S and Rasappan S 2011 Communications in Computer and Information Science 131 585-593
[17] Pisarchik A N, Huerta-Cuellar G and Kulp C W 2018 Communications in Nonlinear Science and Numerical Simulation 62 134-145
[18] Vaidyanathan S 2015 International Journal of Modelling, Identification and Control 23 380-392
[19] Vaidyanathan S 2012 Lecture Notes of the Institute for for Computer Sciences, Social-Informatics and Telecommunications Engineering 85 124-133,
[20] Xu Q, Zhang Q, Jiang T, Bao B and Chen M 2018 Circuit World 44 108-114
[21] Vaidyanathan S, Sambas A, Mamat M and Sanjaya W S M 2017 Archives of Control Sciences 27 541-554
[22] Singh J P, Lochan K, Kuznetsov N V and Roy B K 2017 Nonlinear Dynamics 90 1277-1299
[23] Wang Y, Mou Y and Zhang J 2018 Journal of Harbin Engineering University 39 584-593
[24] Mansour S M B, Sundarapandian V and Naceur S M 2016 International Journal of Control Theory and Applications 9 37-54
[25] Akgul A, Moroz I, Pelihvan S and Vaidyanathan S 2016 Optik 127 5491-5499
[26] Vaidyanathan S, Akgul A, Kacar S and Cavusoglu U 2018 European Physical Journal Plus 133 46
[27] Vaidyanathan S 2015 Kyungpook Mathematical Journal 55 563-586
[28] Vaidyanathan S and Rajagopal K 2017 International Journal of Simulation and Process Modelling 12 165-178
[29] Dou Y, Liu X, Fan H and Li M 2017 Optik 145 456-464
[30] Vaidyanathan S, Sambas A, Mamat M and Sanjaya W S M 2017 International Journal of Modelling, Identification and Control 28 153-166
[31] Idowu B A, Vaidyanathan S, Sambas A, Oluosola O I and Onma O S 2018 Studies in Systems, Decision and Control 133 271-295
[32] Tacha O I, Volos C K, Kyprianidis I M, Stouboulos I N, Vaidyanathan S and Pham V T 2016

Applied Mathematics and Computation 276 200-217

[33] Volos C K, Pham V T, Vaidyanathan S, Kyprianidis I M and Stouboulos I N 2015 Journal of Engineering Science and Technology Review 8 142-151

[34] Daltzis P, Vaidyanathan S, Pham V T, Volos C, Nistazakis E. and Tombras G. 2018 Circuits, Systems, and Signal Processing 37 613-615

[35] Sambas A, Vaidyanathan S, Mamad M and Mada Sanjaya W S 2018 Studies in Systems, Decision and Control 133 365-373

[36] Vaidyanathan S, Jafari S, Pham V T, Azar A T and Alsaadi F E 2018 Archives of Control Sciences 28 239-254

[37] Wang X, Vaidyanathan S, Volos C, Pham V T and Kapitaniak T 2017 Nonlinear Dynamics 89 1673-1687

[38] Sambas A, Mamad M, Vaidyanathan S, Mohamed M A, Mada Sanjaya W S and Mujiarto 2018 WSEAS Transactions on Systems and Control 13 345-352

[39] Mamad M, Vaidyanathan S, Sambas A, Mohamed M A, Sampath S and Sanjaya W S M 2018 International Journal of Engineering and Technology 7 1410-1414

[40] Sambas A, Mamad M, Vaidyanathan S, Mohamed M A and Mada Sanjaya W S 2018 International Journal of Engineering and Technology 7 1245-1250

[41] Volos C, Maaita J O, Vaidyanathan S, Pham V T, Stouboulos I and Kyprianidis I 2017 IEEE Transactions on Circuits and Systems II: Express Briefs 64 339-343

[42] Pham V T, Jafari S, Volos C, Giakoumis A, Vaidyanathan S and Kapitaniak T 2016 IEEE Transactions on Circuits and Systems II: Express Briefs 63 878-882

[43] Mamad M, Vaidyanathan S, Sambas A, Mujiarto, Sanjaya W S M and Subiyanto 2018 IOP Conference Series: Materials Science and Engineering 332 012033

[44] Lien C H, Vaidyanathan S, Sambas A, Sukono, Mamad M, Sanjaya W S M and Subiyanto 2018 IOP Conference Series: Materials Science and Engineering 332 012010

[45] Vaidyanathan S, Sambas A, Sukono, Mamad M, Gundara G, Sanjaya W S M and Subiyanto 2018 IOP Conference Series: Materials Science and Engineering 332 012048

[46] Khorashadizadeh S and Majidi M H 2017 AEU-International Journal of Electronics and Communications 82 37-44

[47] Xu G, Xu J, Xiu C, Liu F and Zang Y 2017 Neurocomputing 227 108-112

[48] Zaher A A 2018 Computers and Electrical Engineering 71 77-92

[49] Zaher A A and Abu-Rezq 2011 Communications in Nonlinear Science and Numerical Simulation 16 3721-3737

[50] Naderi B and Kheiri H 2016 Optik 127 2407-2412

[51] Sprott J C 1997 American Journal of Physics 65 537-543

[52] Li C and Sprott J C and Xing H 2016 Physics Letters A 380 1172-1177

[53] Elsonbaty A and El-Sayed A M A 2017 Nonlinear Dynamics 90 2637-2655

[54] Coullet P, Tresser C and Arneodo A 1979 Physics Letters A 72 268-270

[55] Kengne J, Njikam S M and Folifack Signing V R 2018 Chaos, Solitons and Fractals 106 201-213

[56] Vaidyanathan S 2015 International Journal of Modelling, Identification and Control 23 380-392

[57] Vaidyanathan S and Azar A T 2016 Studies in Fuzziness and Soft Computing 337 581-607

[58] Vaidyanathan S 2017 Archives of Control Sciences 27 409-439

[59] Vaidyanathan S 2017 Studies in Computational Intelligence 709 393-417

[60] Vaidyanathan S and Azar A T 2016 Studies in Fuzziness and Soft Computing 337 349-376

[61] Chlouverakis K E and Sprott J C 2006 Chaos, Solitons and Fractals 28 739-746

[62] Mumphungsaen B and Srisuchinwong B 2011 Chaos, Solitons and Fractals 44 995-1003

[63] Daltzis P, Vaidyanathan S, Pham V T, Volos C, Nistazakis E and Tombras G 2018 Circuits Systems and Signal Processing 37 613-635
[64] Wang X, Vaidyanathan S, Volos C, Pham V T and Kapitaniak T 2017 *Nonlinear Dynamics* **89** 1673-1687
[65] Pham V T, Vaidyanathan S, Volos C, Wang X and Hoang D V 2017 *Studies in Computational Intelligence* **701** 59-80
[66] Vaidyanathan S, Jafari S, Pham V T, Azar A T and Alsaadi F E 2018 *Archives of Control Sciences* **28** 239-254
[67] Vaidyanathan S 2017 *Studies in Computational Intelligence* **701** 393-423
[68] Vaidyanathan S 2016 *Archives of Control Sciences* **26** 311-338
[69] Vaidyanathan S 2016 *Studies in Computational Intelligence* **635** 185-209
[70] Vaidyanathan S 2016 *International Journal of Control Theory and Applications* **9** 257-278
[71] Zhang S, Zeng Y, Li Z, Wang M, Zhang X and Chang D 2018 *International Journal of Dynamics and Control* **23** 1-12
[72] Zhang S, Zeng Y and Li Z 2018 *Chinese Journal of Physics* **56** 793-806
[73] Zhang S, Zeng Y C and Li Z J 2018 *J. Computational and Nonlinear Dynamics* **13** 1-10
[74] Zhang S, Zeng Y, Li Z, Wang M and Xiong L 2018 *Pramana* **90** 63
[75] Wang L, Zhang S, Zeng Y C and Li Z J 2018 *Electronics Letters* **52** 1008-1010
[76] Zhang S, Zeng Y C, Li Z J, Wang M J and Xiong L 2018 *Chaos* **28** 013113