Pulmonary Staple-Stump Granuloma After Segmentectomy: Two Case Reports and Comparison with Cases of Stump Recurrence

Yasushi Mizukami
Yuki Takahashi
Hirofumi Adachi

Corresponding Author: Yasushi Mizukami, e-mail: mizukam@gmail.com
Conflict of interest: None declared

Case series
Patient: Male, 70 • Female, 60
Final Diagnosis: Staple stump granuloma
Symptoms: Abnormal shadow on computed tomography
Medication: —
Clinical Procedure: —
Specialty: Surgery

Objective: Rare disease
Background: Correctly diagnosing a staple-line mass after pulmonary resection for lung malignant tumor can be difficult. Differential diagnoses of recurrence, infectious mass, granuloma, and so on must be considered, despite their rarity. We report two cases of pulmonary staple-stump granuloma after segmentectomy for lung cancer.

Case Reports: Case 1 involved a 70-year-old man with small nodule in the left upper lobe identified on computed tomography (CT). Video-assisted thoracoscopic (VATS) left upper division segmentectomy was performed. Histopathological examination revealed squamous carcinoma. Follow-up CT 1 year postoperatively showed a shadow at the staple-stump, with growth evident later. CT-guided biopsy found no malignancy. However, complete left upper lobectomy was performed because of the gradually enlarging lesion. Histopathological examination revealed epithelioid granuloma. Case 2 involved a 60-year-old with suspected lung cancer in the right upper lobe. VATS right upper division segmentectomy (S2) was performed. CT at 30 months postoperatively showed a shadow at the staple line, with subsequent growth. VATS right upper lobectomy was performed. Intraoperative rapid diagnosis revealed epithelioid granuloma. These two cases were compared with five cases of staple-stump recurrence in our institution. All cases of recurrence grew concentrically or radially from the staple line with the mass surrounding the staple line. On the other hand, cases of granuloma extended along the long axis of the staple line, and 3-dimensional CT (3DCT) may help to understand the morphology.

Conclusions: Although preoperative differentiation of staple-line granuloma is difficult and pathological diagnosis is important, characteristic radiologic features and 3DCT may facilitate diagnosis.

MeSH Keywords: Granuloma, Foreign-Body • Neoplasm Recurrence, Local • Surgical Staplers

Abbreviations: CT – computed tomography; 3DCT – 3-dimensional computed tomography; FDG-PET – fluorodeoxyglucose positron emission tomography; MRI – magnetic resonance imaging

Full-text PDF: https://www.amjcaserep.com/abstract/index/idArt/916906
Background

A staple-stump mass after pulmonary resection is generally initially presumed to represent recurrence of the resected malignant tumor. Preoperative diagnosis of rarer differential diagnoses such as infectious mass and granuloma is difficult. We report two cases of pulmonary staple-stump granuloma after segmentectomy for lung cancer.

Case report

Case 1

A 70-year-old man without known allergies had been followed-up due to pneumoconiosis, detecting a small, 5-mm nodule in the left upper lobe (S1+2) on computed tomography (CT). The lesion had increased 10 mm in diameter by 6 months later. Subsequent fluorodeoxyglucose (FDG)-positron emission tomography (PET) confirmed slight accumulation and showed no metastases including contrast-enhanced magnetic resonance imaging (MRI) of the brain. Lung cancer was suspected and video-assisted thoracoscopic (VATS) left upper division segmentectomy and lymphadenectomy were performed. A4 and A5 were interlobar type and preserved. Although V3 was dissected, V4+5 was preserved. Residual lung expansion was good. Pathological findings showed left upper squamous lung carcinoma classified as pT1aN0M0 Stage IA according to the Union for International Cancer Control classification (seventh edition). Follow-up CT a year after surgery revealed a shadow at the staple-stump. This shadow had increased in diameter on CT performed 3 months later. Subsequent FDG-PET revealed abnormal accumulation in the same region, maximum standardized uptake value (SUVmax) in the early phase was 9.42 and 13.31 in the delayed phase. FDG-PET and contrast-enhanced MRI of the brain showed no metastasis. CT-guided biopsy showed no evidence of malignancy. Preoperative 3-dimensional computed tomography (3DCT) revealed the mass extending along the long axis of the staple line (Figure 1). Complete left upper lobectomy was performed because the mass had been growing gradually. The residual lingular segment was firmly adherent to the chest wall and mediastinum. Pathological findings revealed non-caseating epithelioid cell granuloma (Figure 2).

Case 2

A 60-year-old woman without known allergies was being followed-up due to dyslipidemia. Cancer-screening CT had revealed a ground-glass nodule in the right upper lobe (S2) 3 year before the first visit to our hospital. Follow-up CT at 1 week before the first visit to our hospital had revealed that the nodule had grown to 12 mm in size, part of the nodule showed slightly high density, and the patient was referred to our hospital. FDG-PET, contrast-enhanced MRI of the brain and transbronchial biopsy were performed, but no definitive diagnosis was reached. However, lung adenocarcinoma in the right upper lobe (S2) without an invasive part or metastasis was suspected. VATS right upper division segmentectomy (S2) and lymphadenectomy were performed. A2b and V2b were dissected. Recurrent A2 was unclear. Residual lung expansion was good. Follow-up CT at two-and-a-half years after the surgery showed a shadow at the staple line (37 mm in diameter) that continued growing gradually. Subsequent FDG-PET confirmed abnormal accumulation, but no metastases. Pathological diagnosis from transbronchial or transcutaneous biopsy proved difficult. Preoperative 3DCT revealed the mass extending along the staple line (Figure 3). VATS right upper lobectomy was performed. Intraoperative rapid diagnosis revealed epithelioid granuloma. Lymphadenectomy was not performed. Bacterial and acid-fast bacterial cultures yielded negative results. Pathological findings revealed epithelioid cell granuloma (Figure 2).

Figure 1. Findings from preoperative computed tomography of the chest in Case 1. (A, B) Lung window setting (A) and mediastinal window setting (B) show a smooth margined mass along the staple line of the left lingular segment. (C) Three-dimensional computed tomography helps to understand the morphology of the mass (purple shadow).
Figure 3. Findings from preoperative computed tomography of the chest in Case 2. (A, B) Lung window setting (A) and mediastinal window setting (B) show a smooth marginated mass along the staple line of the right upper lobe. (C) Three-dimensional computed tomography helps to understand the morphology of the mass (purple shadow).
Table 1. Pulmonary staple-stump granuloma: a review of the literature.

First author	Year	Age	Sex	Primary disease	Primary surgery	History of allergy	Interval (months)	Site of occurrence
Tomita	2003	74	M	Metastasis of colon cancer	Wedge resection	No	5	Left upper lobe
Tanaka	2003	50	F	Lung cancer	Segmentectomy	NR	60	Left upper lobe (S4+5)
Kono	2005	60	M	Lung cancer	Segmentectomy	NR	28	Left lower lobe (basal segment)
Furukawa	2007	57	F	Lung cancer	Segmentectomy	NR	48	Right upper lobe
Matsuoka	2007	62	F	Lung cancer	Lobectomy + Segmentectomy	NR	51	Right lower lobe
Yuksel	2007	60	F	Endometrial adenocarcinoma	Lobectomy	NR	4	Right middle lobe
Ohtsuka	2008	69	F	Rectal cancer	Wedge resection	NR	57	Left upper lobe (S3)
Sawada	2008	67	M	Pneumothorax	Wedge resection	NR	72	Right upper lobe
Eguchi	2008	68	M	Aspergilloma	Wedge resection	NR	30	Right upper lobe
Murakami	2009	72	F	Lung cancer	Lobectomy	NR	84	Right upper lobe
Motono	2012	64	M	Renal cell carcinoma	Wedge resection	NR	7	Left lower lobe (S10)
Tempaku	2012	59	F	Rectal cancer	Wedge resection	NR	60	Right lower lobe (S10)
Yoshino	2014	70	M	Lung cancer	Segmentectomy	NR	12	Left lower lobe
Yoshida	2014	71	M	Lung abscess	Lobectomy	NR	72	Right upper lobe (S3)
Kamata	2015	42	F	Metastasis of cervical cancer	Wedge resection	NR	144	Left upper lobe (S1+2)
				Lung cancer	Segmentectomy	NR	36	Right lower lobe (basal segment)
Sanada	2016	69	M	Rectal cancer	Lobectomy + wedge resection	NR	4	Right middle lobe
Mizuno	2017	43	F	colorectal cancer	Segmentectomy	NR	15	Right lower lobe (basal segment)
				Lung cancer	Segmentectomy	NR	26	Right upper lobe
				Lung cancer	Segmentectomy	NR	47	Right upper lobe
				Lung cancer	Segmentectomy	NR	24	Right upper lobe
Hashimoto	2017	66	F	Lung cancer	Lobectomy + wedge resection	No	60	Right middle lobe
Matsuoka	2018	73	F	Lung cancer	Segmentectomy	NR	31	Right lower lobe
				Lung cancer	Wedge resection	NR	5	NR
				Metastatic lung cancer	Segmentectomy	NR	5	Right lower lobe
				Lung cancer	Segmentectomy	NR	84	Right lower lobe
				Hamartoma	Segmentectomy	NR	192	Left upper lobe
				Lung cancer	Lobectomy	NR	66	NR
This study	2019	70	M	Lung cancer	Segmentectomy	No	12	Left upper lobe (S4+5)
				Lung cancer	Segmentectomy	No	30	Right upper lobe
Table 1 continued. Pulmonary staple-stump granuloma: a review of the literature.

First author	Size (mm)	Staple line	FDG-PET SUV max	Preoperative biopsy and pathological diagnosis	Surgical intervention	Culture
Tomita	NR	Edge of mass	NR	Not performed	Wedge resection	Negative
Tanaka	20	Edge of mass	NR	Bronchoscopy, not diagnosed	Wedge resection	Tuberculosis
Kono	50	Edge of mass	NR	Bronchoscopy, not diagnosed	Lobectomy	Mycobacterium intercellulare
Furukawa	50	Edge of mass	NR	Bronchoscopy, not diagnosed	Bilobectomy	Mycobacterium avium
Matsuoka	20, 15 (Two)	Edge of mass	NR	CT-guided biopsy, granuloma	Wedge resection	Mycobacterium avium
Yuksel	NR	NA	3.5	Not performed	Wedge resection	NR
Ohtsuka	20	Edge of mass	NR	Not performed	Segmentectomy	Negative
Sawada	23	Surrounded by mass	NR	Not performed	Wedge resection	NR
Eguchi	40	Edge of mass	NR	Not performed	Lobectomy	Mycobacterium avium
Murakami	23	Edge of mass	NR	Not performed	Lobectomy	Negative
Motono	NR	Edge of mass	NR	Not performed	Wedge resection	Negative
Terasawa	20	Edge of mass	NR	Not performed	Wedge resection	Negative
Yoshino	NR	Edge of mass	11.1	Bronchoscopy, not diagnosed	Lobectomy	Mycobacterium avium
Yoshida	20	Surrounded by mass	10	Bronchoscopy, not diagnosed	Wedge resection	Negative
Kamata	35	Edge of mass	4.9	Not performed	No	NR
25 Edge of mass	14.5	Non-necrotic granuloma	No	Non-necrotic granuloma	No	NR
Sanada	39	Edge of mass	6	Bronchoscopy, not diagnosed	Wedge resection	Mycobacterium intercellulare
Mizuno	17	Edge of mass	6	Not performed	Lobectomy	Negative
24 Edge of mass	1.5	CT-guided biopsy	No	CT-guided biopsy	No	One of three cases had Mycobacterium avium
41 Edge of mass	7	CT-guided biopsy	No	CT-guided biopsy	No	
17	NR	Edge of mass	NR	CT-guided biopsy	No	
Hashimoto	NR	Edge of mass	3.24	Bronchoscopy, not diagnosed	Lobectomy	NR
Matsuoka	NR	Edge of mass	NR	Lobectomy	Mycobacterium avium	
NR	Edge of mass	13.2	NR	Wedge resection	Mycobacterium avium	
NR	Edge of mass	7.03	NR	Lobectomy	Mycobacterium avium	
NR	Edge of mass	3.3	NR	Lobectomy	Mycobacterium avium	
NR	Edge of mass	NR	NR	Lobectomy	Mycobacterium avium	
NR	Edge of mass	1.96	NR	Wedge resection	Mycobacterium avium	
This study	27	Edge of mass	9.42	CT-guided biopsy, not diagnosed	Lobectomy	Negative
Tempaku	37	Edge of mass	3.5	Not performed	Lobectomy	Not performed

NR – not reported; Interval – disease-free interval from primary surgery to radiological diagnosis; NA – not available.
Discussion

The most likely differential diagnosis for postoperative shadows around a surgical stump is recurrence of the resected malignancy, although infection, granuloma, and inflammatory lesion are other differential diagnoses. Suture granuloma of the stump has been reported [1–3]. Absorbable or monofilament sutures should be used to prevent suture granuloma. In recent years, surgical staples have seen wide use in thoracic surgery, especially in VATS. Staple granuloma of the stump as reported here is rare, and 28 cases of staple-line granuloma have been reported to date (Table 1) [4–22].

Metals such as cobalt, chromium, and nickel are easily ionized. The frequency of sensitivity to various metals in patients with orthopedic metallic implants has been reported as 0.2% for chromium, 1.3% for nickel, and 1.8% for cobalt [23]. On the other hand, surgical staples are commonly made from titanium, which shows high resistance to corrosion and very high biocompatibility in physiological environments. Given these features, titanium is broadly used in clinical fields and allergy to titanium has rarely been reported [24]. Despite titanium’s hypoallergenic properties, if there is a possibility of allergy, type IV allergy may be presumed in these cases of granuloma.

Patch testing is one of the diagnostic tests for titanium allergy and probably should have been performed, although neither of our cases had any history of allergic reactions. In addition, infection may cause local granuloma around the staple line. Thirteen cases of granuloma caused by infection have been reported (Table 1). Mycobacterium were detected in each of those cases. In our cases, Case 2 showed negative results, but bacterial cultures were not prepared in Case 1.

Using an autosuture device causes atelectasis or ventilation and perfusion impairment along the staple line. Mycobacterium infection is assumed to occur pre- or postoperatively for this compromised location, resulting in development of a staple-line mass [4,14,19]. Likewise, cases of post-segmentectomy pseudotumor are surmised to result from obstruction of the blood supply and drainage [25]. Staple-line granuloma seems to arise when a foreign body reaction is added to this scenario.

The purpose of using staples is to prevent postoperative pulmonary leak. In our cases, branches of the pulmonary artery and vein were preserved. Intraoperative lung expansion and the color of the lung surface seemed satisfactory in each case. However, we considered that the reason why granuloma developed was probably insufficient blood supply or drainage.
and air inflation or deflation in part of the residual segment. Staple-line granuloma would then have arisen with the addition of the rare foreign body reaction to titanium.

Mizuno et al. reported that stump recurrence should be suspected for cases of stump mass with a short disease-free interval (DFI), high SUVmax and CEA levels, and a staple line located in the middle [18]. Our cases showed high SUVmax and short DFI. In terms of the morphology, the present cases of granuloma showed a mass along the staple line similar to previously reported cases. On the other hand, although stump recurrence has been reported to surround the staple line [5], in two of the five cases of stump recurrence treated at our institution between 2009 and 2017 (Rec1, Rec2) (Figure 4), the staple was present at the edge as in the cases of granuloma. However, all cases of recurrence were irregular, inaccurate circles and seemed morphologically different from cases of granuloma. For the purpose of identifying pulmonary branches preoperatively as past study [26], 3DCT of the pulmonary vessels has usually been performed using contrast medium. However, it is difficult to distinguish artery from vein without contrast medium. When deference of CT number between adjacent structures is clear, it is easy to create 3DCT. Therefore, 3DCT without contrast medium uses in the field of colorectal cancer screening, and helps to detect small mass and to apprehend the morphology [27]. We applied 3DCT to a staple-line mass after pulmonary resection. It may help in achieving a better understanding of the morphology. 3DCT reveals that staple-stump granuloma is a smooth margined mass long contacted with the staple line. It indicates that all cases of recurrence are shaped like almost sphere and grow concentrically or radially from the staple line (Figures 1, 3–5). It is possible that staple-stump granuloma decreases [5]. Taking these matters in account, when definitive diagnosis by CT is thus difficult, it needs biopsy or surgery.

Conclusions

Although preoperative diagnosis of staple-line granuloma is difficult and pathological diagnosis is important, characteristic radiologic features and 3DCT may facilitate diagnosis.

Acknowledgements

The authors would like to acknowledge Yoshifumi Yamashita, the radiological technician, for his contribution in creating the 3DCT images and all the staffs involved in the patient’s care, in the department of thoracic surgery at National Hospital Organization, Hokkaido Cancer Center.

Conflict of interest

None.

References:

1. Baba K, Nagao K, Matsuda M et al: An operative case of suture-granuloma which resulted from an intra-pulmonary treatment 10 years ago and manifested hemoptysis. Kyobu Geka, 1996; 49: 1048–51 [in Japanese]
2. Fink G, Herskovitz P, Nili M et al: Suture granuloma simulating lung neoplasm occurring after segmentectomy. Thorax, 1993; 48: 405–6
3. Kobayashi R, Mori S, Fukui T et al: A suture granuloma of the lung that occurred 19 years after surgery for mucopidermoid tumor. Jpn J Chest Surg, 2009; 23(2): 165–68
4. Tomita M, Matsuoka Y, Edagawa M et al: Pulmonary granuloma possibly caused by staples after video-assisted thoracoscopic surgery. Ann Thorac Cardiovasc Surg, 2003; 9: 123–25
5. Kamata T, Watanabe S, Sakurai H, Nakagawa K: Two cases of pulmonary granuloma difficult to diagnostically differentiate from resection stump recurrence of lung cancer. Jpn J Chest Surg, 2015; 29: 700–5
6. Yoshino M, Sekine Y, Koh E et al: Pulmonary granuloma associated with non-tuberculous mycobacteria occurring at the staple line after segmentectomy for lung cancer: report of a case. Haigai, 2014; 54(6): 790–94
7. Yuksel M, Ak gul AG, Evman S, Batrel HF: Suture and stapler granulomas: A word of caution. Eur J Cardiothorac Surg, 2007; 31: 563–65
8. Yoshida S, Matsumoto I, Saito D et al: A case of pulmonary staple granuloma suspected to be lung cancer. Jpn J Chest Surg, 2015; 29(4): 452–53
9. Furukawa M, Ikeda H, Takeo M, Yamamoto M: Pulmonary granuloma associated with non-tuberculous mycobacteria occurring in the staple used for operation of lung cancer. Jpn J Chest Surg, 2007; 21(7): 942–45
10. Murakami S, Saito H, Tsuibo M et al: Mycobacterial granuloma on the staple-line eight years after middle lobectomy for adenocarcinoma of the lung. Haigai, 2009; 49: 1038–42
11. Tempaku H, Takao M, Suzuki H et al: Pulmonary foreign body granuloma on the staple line five years after wedge resection for metastatic lung cancer. Jpn J Chest Surg, 2012; 26(1): 52–55
12. Eguchi T, Kurai M, Kato K et al: A case of non-tuberculous mycobacterial infection along the pulmonary suture line after partial resection for aspergillosis. Jpn J Chest Surg, 2008; 22(1): 35–38
13. Motono N, Okada A, Togashi K: A foreign body granuloma on the staple-line after pulmonary resection for metastatic renal cell carcinoma. Haigan, 2012; 52(1): 23–26
14. Tanaka H, Iuchi K, Matsumura A et al: Pulmonary tuberculosis post staple-segmentectomy for lung cancer. Jpn J Chest Surg, 2003; 17: 794–97
15. Sanada M, Shibata H, Ikeda K et al: A case of granuloma suspected to be stump recurrence of pulmonary tumor. Jpn J Chest Surg, 2017; 31(2): 243–47
16. Matsuoka K, Ueda M, Miyamoto Y: Mycobacterial granuloma on the staple line after pulmonary resection. Asian Cardiovasc Thorac Ann, 2018; 26: 540–45
17. Ohtsuka H, Kanzaki M, Kikawa T et al: Case of pulmonary granuloma occurring along the staple. Jpn J Chest Dis, 2008; 67: 977–80
18. Mizuno K, Ohde Y, Hayashi S et al: Clinical differentiations in stump granuloma and stump recurrence after lung resection for malignancy using a stapler. Haigan, 2008; 57(7): 826–31
19. Kono Y, Endo S, Otani S et al: Non-tuberculous mycobacterial infection along the staple-suture line after segmentectomy for small peripheral lung cancer; Report of a case. Kyobu Geka, 2005; 58: 165–68 [in Japanese]
20. Matsuoka T, Sugi K, Matsuda E et al: Mycobacterium avium complex (MAC) infection needed differential diagnosis of the recurrence after surgery for double lung cancer; Report of a case. Kyobu Geka, 2007; 60: 1200–3 [in Japanese]
21. Sawada T, Watanabe Y, Oura H, Handa M. Pulmonary staple granuloma mimicking lung cancer; report of a case. Kyobu Geka, 2008; 61: 591–94 [in Japanese]
22. Hashimoto S, Yamasaki N, Doi R et al: Granuloma by foreign body reaction to the staple used for partial resection of the lung. Kyobu Geka, 2017; 70: 187–90 [in Japanese]
23. Swiontkowski MF, Agel J, Schwappach J et al: Cutaneous metal sensitivity in patients with orthopaedic injuries. J Orthop Trauma, 2001; 15: 86–89
24. Goutam M, Giriyapura C, Mishra SK, Gupta S: Titanium allergy: A literature review. Indian J Dermatol, 2014; 59: 630
25. Grismer JT, Schaefer RF, Read RC: Postsegmentectomy pseudotumor of the lung. Ann Thorac Surg, 1998; 65: 243–45
26. Watanabe S, Arai K, Watanabe T et al: Use of three-dimensional computed tomographic angiography of pulmonary vessels for lung resections. Ann Thorac Surg, 2003; 75: 388–92
27. Johnson CD, Chen MH, Toledano AV et al: Accuracy of CT colonography for detection of large adenomas and cancers. N Engl J Med, 2008; 359: 1207–17