Review

Bacteria in Cancer Therapeutics: A Framework for Effective Therapeutic Bacterial Screening and Identification

Eta E. Ashu1,2, Jianping Xu3 and Ze-Chun Yuan1, 2

1. Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
2. London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada.
3. Department of Biology, McMaster University, Hamilton, Ontario, Canada.

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2018.11.21; Accepted: 2019.02.21; Published: 2019.04.21

Abstract

By 2030, the global incidence of cancer is expected to increase by approximately 50%. However, most conventional therapies still lack cancer selectivity, which can have severe unintended side effects on healthy body tissue. Despite being an unconventional and contentious therapy, the last two decades have seen a significant renaissance of bacterium-mediated cancer therapy (BMCT). Although promising, most present-day therapeutic bacterial candidates have not shown satisfactory efficacy, effectiveness, or safety. Furthermore, therapeutic bacterial candidates are available to only a few of the approximately 200 existing cancer types. Excitingly, the recent surge in BMCT has piqued the interest of non-BMCT microbiologists. To help advance these interests, in this paper we reviewed important aspects of cancer, present-day cancer treatments, and historical aspects of BMCT. Here, we provided a four-step framework that can be used in screening and identifying bacteria with cancer therapeutic potential, including those that are uncultivable. Systematic methodologies such as the ones suggested here could prove valuable to new BMCT researchers, including experienced non-BMCT researchers in possession of extensive knowledge and resources of bacterial genomics. Lastly, our analyses highlight the need to establish and standardize quantitative methods that can be used to identify and compare bacteria with important cancer therapeutic traits.

Key words: cancer, bacterium, therapeutics, bacterium-mediated cancer therapy, screening, microbiology

Introduction

Cancer is a group of diseases caused by disproportionately dividing cells that grow into invasive lumpy masses, commonly referred to as tumors. Approximately 200 human cancers are currently recognised by the National Cancer Institute (http://www.cancer.gov/types/). Some cancers are capable of spreading from their tissue of origin to distant body parts in a process called metastasis. Despite their metastatic ability, cancers are mainly categorized based on their tissue and/or organ of origin. For example, cancers that begin in tissues that line or cover body organs are known as carcinomas. Sarcomas, melanomas, lymphomas, and leukemias are other well-known examples of cancers. It is worth noting that not all cancers are tumorous, for example, blood cancers such as leukemia, lymphoma, and multiple myeloma are known to be non-solid cancers. In addition to pathologically categorizing cancers based on their tissues or organs of origin, molecular taxonomies based on recurrent genetic and epigenetic alterations in human tissue have been suggested.(1) Regardless of the cancer type in question, cancers can indeed have devastating effects on affected and surrounding body organs and are thus deemed a global public health issue.

It is estimated that approximately 18.1 million
new cancer cases occurred globally in 2018, with 92.8% of these cases occurring in Asia, Europe and the Americas. Of these 18.1 million cases, an estimated 6.56 million individuals were newly diagnosed with lung, breast, colorectal, or prostate cancer. An estimated 9.6 million individuals died from cancer in 2018, with approximately 5.5 million of these deaths solely occurring in Asia. It is estimated that lung, liver and stomach cancer were the most fatal cancers, jointly leading to approximately 3.33 million deaths. Other cancers of note estimated to have caused significant global mortality in 2018 are breast and colorectal cancers. They jointly caused a total of about 1.18 million deaths. When compared to their counterparts in developing regions, the cumulative risk of dying from cancer was 7.55% higher in men in developed regions. However, there was no notable difference in the estimated cumulative risk of dying from cancer between women in developing and developed regions. Overall, cancer mortality and incidence trends in 2018 were shown to substantially vary at country and regional levels.

Similar to global cancer mortality and incidence trends, cancer risk factors can often vary by region and country. A wide range of factors including genetic background, age, smoking, alcohol consumption, body weight, diet, exposure to pollutants, and microbial infection have been linked to the risk of developing certain cancer types. Of these risk factors, carcinogenic microbial infection stands out. Together, infectious microbial agents were responsible for causing 2.2 million new cancer cases in 2012. Interestingly, the link between microbial infection and cancer was hypothesized and investigated as early as the nineteenth century. Today, approximately 16% of the global cancer burden is attributed to microbial infections. Curiously, not only can bacteria and other microbes enhance the risk of getting cancer but they can also enhance its treatment. In fact, infection mediated cancer therapy is an age-old therapy that pre-dates the seventeenth century discovery of microorganisms and can be traced to as early as 2600 BC.

Aside from infection mediated cancer therapy, several therapeutic options are currently available to cancer patients. These therapeutic options can vary greatly based on a host of factors, including the locations of the cancer, its size, and the patient’s health status. Together, cancer therapies can be broadly classified into two main types: systemic and localised therapies. In cases of metastasized cancers, systemic therapies are often the treatment of choice. Systemic therapies refer to treatments that target the entire body through the bloodstream. Three well-known examples of systemic therapies include chemo-, hormone-, and immuno- therapy. Like everything else, each of these therapies has its advantages and limitations. Generally speaking, one of the main advantages in using systemic therapies is that resection can at times be avoided. On the other hand, systemic therapies can often have unintended consequences on healthy tissues and organs. Furthermore, these treatments rely mostly on blood circulation and could have limited effectiveness in quiescent tumor regions with limited vascularization. Unlike systemic therapies, localised therapies have limited effectiveness against metastasized cancers. However, they can instantly limit cancer or its symptoms by reducing the mass effect of tumors, and in some cases, they can cure cancer. Furthermore, localised therapies, such as surgeries, are able to remove cancers from the body which are inaccessible to certain chemotherapies, the brain for example. Despite recent and impressive advances, there are still many unmet needs in cancer therapeutics.

Coupled to revolutionary cancer therapies such as robot assisted surgery, checkpoint inhibitors and monoclonal antibodies, the scientific community has witnessed the renaissance of bacterium-mediated cancer therapy (BMCT) over the last two decades. However, despite notable advances made in improving BMCT in recent years, most bacterial candidates have yet to attain satisfactory efficacy, effectiveness, or safety. The current but rather few therapeutic bacterial candidates are relatively limited in tumor cytotoxicity, immunogenicity, chemotacticity, or safety. Furthermore, the possibility of an occurrence of septicemia caused by antibiotic resistance and/or the reversion of attenuated pathogenic phenotypes in these candidate bacteria are still causes for concern. Similarly, the impairment of therapeutic effectiveness due to previous bacterial immunization is also possible. As a result, the search for optimal bacterial candidates is still ongoing.

Recent advances in environmental microbiology, in particular, our understanding of microbiomes from diverse ecological niches are contributing to the interest in and the renaissance of BMCT. It is estimated that there may be 1 trillion microbial species on earth, approximately 99% of which cannot be cultured. The candidate pool is therefore huge. Could it be possible that some of these microbes, including the uncultivable ones, are potential therapeutic bacterial candidates? With so many prospective candidates to consider but limited resources to screen every single bacterium, this paper aims to provide a necessary practical guide to screening and identifying bacteria with significant cancer therapeutic potential.
A brief history of bacteria-mediated cancer therapy

Although it was implicitly used prior to the nineteenth century, BMCT was only explicitly used and brought to the forefront of cancer therapeutics in 1891 by Dr. William Coley.(8, 28) Dr. Coley, a bone surgeon, used both attenuated and unattenuated mixtures of *Streptococcus pyogenes* and *Serratia marcescens* to treat sarcoma patients. In spite of his relative success in treating inoperable sarcomas, his treatments, known as Coley’s toxins, were met with much skepticism due to their inconsistencies and the extent of their side effects. Also, the emergence of radiotherapy at the time provided a less controversial therapeutic option for cancer treatment.(28, 29) Despite the initial drawbacks and skepticism, research on BMCT persisted. *Clostridium* filtrates and spores were used in cancer treatment for the first time approximately half a century later in 1935 and 1947. (30, 31) In 1988, the very first recombinant *Clostridium* was developed for BCMT,(32) that was followed by the development of an auxotrophic *Salmonella* about a decade later in 1997.(33) The year 2002 marked a monumental milestone in the field of BMCT as the very first clinical trial in recent times was carried out.(34) Despite the limited success of the aforementioned clinical trial, the field of BMCT has generated an unprecedented amount of interest, mainly due to the abundance of potential microbial candidates and the diversity of recombinant DNA techniques being used to further explore relevant bacterial traits. (9-24)

To facilitate BMCT research, we sought to answer the following questions in this paper: (1) what makes a bacterium a good BMCT candidate? (2) How would a good BMCT prospect be identified? (3) How can different BMCT candidates be compared? Building on previously published literature, we discuss key bacterial traits useful in screening for new or better prospects.

Tips necessary for screening promising bacteria prospects

Traditionally, cancer therapeutic bacterial screening was solely a wet lab experimental process. However, recent advances to our understanding of bacterial genomes have added a secondary dimension to the process of cancer therapeutic bacterial screening. Presently, there are over 22,000 complete bacterial genome sequences deposited in the National Center for Biotechnology Information’s genome database. *In silico* analyses of these and other data can significantly speed up the screening for cancer therapeutic bacteria. Ideally, a good BMCT prospect should show: (1) cancer selectivity, (2) cancer cytotoxicity and/or immunogenicity, (3) limited toxicity to normal cells, and (4) stability within the human body. Although many bacteria are known to secrete a wide array of cancer cytotoxic substances,(6) little is known about the genes responsible for synthesizing and secreting these substances. Similarly, some bacteria are known to hinder tumor growth through inflammasome and effector T-cell pathways,(6) but little attention has been given to genes necessary for their cancer immunogenicity. Aside from their inherent tumor cytotoxicity and immunogenicity, bacteria can also be used as vectors for the delivery of other anti-cancer drugs as they are able to localize in hypoxic tumor regions. (6, 35) However, to make BMCT more successful, many questions need to be further addressed, including (1) what makes bacteria localize within tumors? (2) Are there niche-specific genes necessary for preferential tumor growth? (3) How can a bacterium prospect with tumor specificity, cytotoxicity, immunogenicity and stability be mined? (4) Does such a bacterium even exist naturally? Or, can it be engineered? And (5) are there better cancer therapeutic bacteria combinations that could improve patient clinical outcomes?

The rationale for further bacterial screening is embedded in the above questions and the fact that therapeutic bacterial candidates have been identified for only a few of the approximately 200 existing cancer types. In Figure 1, we suggest a screening framework that entails mining genes important to bacterial cytotoxicity, chemotacticity, immunogenicity, and pathogenicity in currently available therapeutic bacterial candidates, followed by finding analogs or orthologs to those genes in prospect candidates. Fortunately, most present-day cancer therapeutic bacterial candidates have been sequenced and some genes pertaining to cancer therapeutics have been reported. For example, the niche-specific genes necessary for preferential growth of *Salmonella typhimurium* in solid tumors have been identified.(36) In light of the suggested framework, we have provided below a nonexclusive list of cancer cytotoxic bacteria reported in literature, highlighting the cancer’s cytotoxic substance they produce and their synthesizing gene(s). We have also provided a list of cancer immunogenic and chemotactic bacteria, highlighting relevant genes whenever possible. It is worth noting that in currently available therapeutic bacterial candidates whose relevant gene clusters are unknown, bioinformatical methods such as gene network, probabilistic algorithms, and metagenomic islands can be used to predict gene function. (37-40) Once predicted, algorithms such as BLAST can be
used to identify analogs or orthologs in bacterial libraries. Our suggested framework could be valuable in advancing BMCT, especially in the current genomic era. More importantly, it could prove to be valuable to new BMCT researchers, including experienced non-BMCT researchers in possession of extensive bacterial genomic resources.

Cancer cytotoxic traits

Cancer cytotoxic traits are attributes that enable bacteria to secrete substances that are toxic to cancerous cells. Given the number of currently identified cancer cytotoxic bacteria, advancing BMCT requires identifying therapeutic bacterial candidates with better selective cytotoxicity and/or other useful cancer therapeutic traits. In view of characterizing cytotoxic gene analogs and orthologs in prospective candidates, we provided a non-exhaustive list of previously identified cancer cytotoxic bacteria, their secreted substances, the chemical nature of these substances, and their synthesizing genes (Table 1). The contents of this table could be useful to researchers seeking to identify the genes responsible for the secretion of certain cancer cytotoxic substances and to those screening necessary genes for bacterial vectors. As shown in Table 1, the main focus of this review was to demonstrate the diversity of bacteria capable of secreting anti-cancer substances. Consequently, many compounds produced by Actinomycetes and their corresponding biosynthetic genes were omitted. Furthermore, although toxicities to normal cells are not shown in Table 1, they can be referenced accordingly. We note that many bacteria with anti-cancer abilities also produce antimicrobial substances. We hereby encourage researchers working in the field of antimicrobial development to screen their current bacterial libraries for potential anti-cancer activities.

Within the context of identifying bacteria with better or new cancer cytotoxic traits, uncultivable bacteria have been under-explored and represent a huge potential source of anti-cancer substances. This is mostly attributed to our failure to reproduce important aspects of their natural environments under laboratory conditions. It has been previously shown that uncultivable microbes constitute the majority of bacterial genetic diversity in nature and could represent an important BMCT source. The framework suggested in Figure 1 takes into account uncultivable bacteria; however, step 4 for uncultivable bacteria involves processes such as partial genomic digestion and cloning of functional gene fragments into appropriate vectors. Amongst other considerations, isolation and purification of metagenomic DNA from soil, fragment size selection, and choice of vector and host have been previously discussed by Dr. Robin Pettit. Similar and more recent techniques such as primer restriction are also applicable to metagenomic DNA from aquatic environments. More importantly, aside from cloning functional genes belonging to uncultivable bacteria, growing uncultivable bacteria can be achieved through recent advances in bacterial culture, including co-culture with other bacteria, recreating bacterial environment in laboratories, and combining these approaches with micro-cultivation technology.

Cancer immunogenic traits

Cancer immunogenic traits are attributes that enable certain bacteria to induce human immune responses against cancerous cells. Bacteria’s inherent ability to elicit the immune system makes them crucial to BMCT. Immune system stimulation within the context of cancer treatment can be achieved in several ways including: (1) inflammasome activation, (2) tumor-associated macrophage repolarization, (3) tumor-associated myeloid derived suppressor cell alteration and, (4) effector T-cell responses. Of major interest to the process of cancer therapeutic bacterial screening is identifying previously studied immunogenic bacteria and genes necessary for their immunogenicity. In Table 2, we provided a non-exclusive list of cancer immunogenic bacteria, their respective immunogen(s) and synthesizing gene(s). Furthermore, within the context of exploring uncultivable bacteria, analogous or orthologous immunogenic genes from uncultivable bacteria can be cloned into suitable vectors and tested in vivo, or grown by means of recent advances in bacterial culture.
Table 1. Representative list of bacteria with cancer cytotoxic traits

Bacteria	Cryptotoxical substance	Chemical nature	Active against	Synthesizing gene(s)	Growth Inhibition	Reference(s)
Actinomadura cyaneoviridis	Caerulomycin F–K	Bipyridines	K562, HL-60 (leukemia), K1 (leukemia), and A549 (alveolar adenocarcinoma)	The caerulomycin A gene cluster is known	IC50 = 0.37 and 25.7 µM	(43, 44)
Actinomadura sp.	Caerulomycin F–K	Bipyridines	K562, HL-60 (leukemia), K1 (leukemia), and A549 (alveolar adenocarcinoma)	The caerulomycin A gene cluster is known	IC50 values down to 1.4 ng/mL	(45, 46)
Actinomadura verrucosa	Caerulomycin F–K	Bipyridines	K562, HL-60 (leukemia), K1 (leukemia), and A549 (alveolar adenocarcinoma)	The caerulomycin A gene cluster is known	IC50 values down to 1.4 ng/mL	(47, 48)
Actinomyces sp.	Chlorinated dihydroquinones	Terpene	Human colon adenocarcinoma (HCT-116)	Unknown	IC50 = 0.97–2.40 ng/mL	(49)
Bacillus anguliquefaciens	Chlorinated dihydroquinones	Terpene	Human colon adenocarcinoma (HCT-116)	Unknown	IC50 = 19.7 and 26.4 µg/mL	(50)
Bacillus licheniformis	Chlorinated dihydroquinones	Terpene	Human colon adenocarcinoma (HCT-116)	Unknown	IC50 = 0.65–1.6 μg/mL	(51)
Nocardia alba	Chlorinated dihydroquinones	Terpene	Human colon adenocarcinoma (HCT-116)	Unknown	IC50 = 0.98 µg/mL	(60)
Bacillus subtilis	Chlorinated dihydroquinones	Terpene	Human colon adenocarcinoma (HCT-116)	Unknown	IC50 = 0.65–1.6 μg/mL	(51)
Streptomyces albulus	Chlorinated dihydroquinones	Terpene	Human colon adenocarcinoma (HCT-116)	Unknown	IC50 = 0.98 µg/mL	(60)
Brevibacillus sp.	Laterosporulin 10	Peptide	MCF-7 (breast cancer), HEK293T (embryonic kidney cancer), HT1080 (fibrosarcoma)	The laterosporulin10 gene cluster is known	IC50 = 0.26–13 ng/mL	(58)
Chromobacterium violaceum	Romidepsin (FK228)	Peptide	In over 20 cell lines including nueroblastoma, T-cell lymphomas, lung, mammary,	The romidepsin gene cluster is known	IC50 = 0.3–6.3 ng/mL	(60)
Clostridium botulinum	Botulinum neurotoxin type A	Peptide	T47D (breast cancer), PC-3, LNCaP, (prostate cancer), SH-SY5Y (neuroblastoma)	The botulinum A gene cluster is known	IC50 = 0.54–300 nM	(70, 71)
Corinobacterium diphteriae	Diphtheria toxin	Peptide	MCF-7 (breast cancer), H295R (fibrodermic carcinoma), HeLa (cervical adenocarcinoma), CTCL (cutaneous T cell lymphomas, U118MG, U37MG, and U87MG(fibrosarcoma))	The tox gene is known	IC50 = 0.55–2.08 µg/mL	(70, 72)
Dermacoccus abyssi	Dermacazine F and G	Phenazine	K562 (leukemia)	Unknown	IC50 = 7 and 9 µM	(73)
Enterococcus sp.	Enterococal anti-proliferative peptide	Peptide	MDA-MB-231 (breast adenocarcinoma), HeLa (cervical adenocarcinoma), and A549 (alveolar adenocarcinoma)	Unknown	IC50 = 29.3–84.3 nM	(74, 75)
Escherichia coli	Colicin A and E1	Peptide	MC77, MDA-MB-231, ZR75, BT474ART549, SKBR3, T47D (breast cancer), SKUT-1 (leukemia), and H9913T (fibrosarcoma)	The cox and cox genes are known	Inhibition of cellular growth was 17-40% for Colcin E1 and 16-56% for Colcin A	(76, 77)
Escherichia coli	Cytosine deaminase (often used with 5-flourouracil)	Peptide	A549 (alveolar adenocarcinoma), C6, U251 (glioma), HCT116 (colorectal cancer), and DU145 (prostate carcinoma)	The cdxA gene cluster is known	IC50 = 0.36–0.47 mM	(78)
Geitlerinema sp.	Ankaranohaloid A	Macroside	NCI–H460 (lung cancer), Neuro-2a (neuroblastoma), and MDA-MB-435 (breast cancer)	Unknown	IC50 = 8.9-262 µM	(82)
Klebsiella pneumoniae	Microcin E492	Peptide	RJ2.2S (B-lymphoblastoid cells), HeLa (cervical adenocarcinoma), and Jurkat (acute T cell Leukemia)	The microcin E492 gene cluster is known	IC50 = 4 ± 3 to 57 ± 11 cell survival	(83, 84)
Lactobacillus lactis	Nisin A	Peptide	UM-SCC-17B, UM-SCC-14A, HSC-3 (head and neck cancer), MCF-7 (breast cancer), HepG2 (hepatocellular carcinoma), and Jurkat (T cell leukaemia)	The nisin A gene cluster is known	IC50 = 105–225 µM	(70, 85)
Listeria monocytogenes	Listeriolysin O	Peptide	SKBR3, MCF-7 (breast cancer), and Jurkat (T cell leukaemia)	The hly gene is known	IC50 = 50 µM to 0.1 nM	(70, 86)
Table: Antibacterial Activity of Natural Products

Organism/Strain	Peptide/Peptide Cluster	Antibacterial Activity
Lyngbya majuscule	Atripelic & C	Depsipeptide
Lyngbya majuscule	Hermitamide A & B	Alkaloid
Lyngbya majuscule	Lyngbyabellin E1 & B	Peptide
Lyngbya majuscule	Weskapeptin A & B	Peptide
Marinospore sp.	Marinomycin C & D	Polypeptide
Micromonospora sp.	Microcyclamide	Peptide
Micromonospora sp.	Microcyclamide	Peptide
Micromonospora sp.	Arisostatin A & B	Tetrocarcin group spirotetronate
Nocardia dassonvillei	N-(2-hydroxyphenyl)phenyl-2-phenoicinamine	Phenazine
Nocardipus lucentensit	Lucentamycin A & B	Peptide
Nostoc sp.	Cryptophycin-1	Depsipeptide
Paeonocalicus profundus	Heptapeptide	Peptide
Pedicoccus aciditolerans	Rec-pecidocin	Peptide
Peptisciuca variabilis	Pelagiomycin A	Phenazine
Pseudomonas aeruginosa	Exotoxin A	Peptide
Pseudomonas aeruginosa	Azurin	Peptide
Pseudomonas aeruginosa	Pyocin S2	Peptide
Pseudomonas aeruginosa	Arginine deiminase	Peptide
Pseudomonas aeruginosa	Phcnos-1-carboxylic acid	Depsipeptide
Saccharothrix aeroleucigenes	Bromo analog of rebeccamycin	Peptide
Salinispora arenicola	Arenamides A-C	Peptide
Salinispora tropica	Salinsporamide A	Peptide
Salmonella enterica & Escherichia coli	Cytotulysin A	Peptide
Serratia marcescens	Prodigiosin	Pyrrolopyrro methane
Serratia marcescens	Serratawettin W2	Cyclic lipopeptide
Serratia marcescens	Serangium celulosinum	Epothilone A & B

** Additional Information: **
- **Bacterial Activity:**
 - Cyclic peptides (e.g., epothilones)
 - Depsipeptides
 - Phenazines
 - Phenolic compounds

** IC50 Values:**
- Many compounds show IC50 values ranging from nanomolar to micromolar, indicating potent antibacterial activity.

** References:**
- Journal of Cancer, 2019, Vol. 10, 1786
- http://www.jcancer.org
Table 1: Antibiotics from soil microorganisms

Organism	Protein	Tumor(s)	IC₅₀ (µM)
Staphylococcus aureus	α-hemolysin	MCF-7 (mammary carcinoma)	1.6 µM
Streptococcus pneumonia	Pep27anal2 (pep27 analog)	AML-2, HL-60, Jurkat (leukemia), SNL-601 (gastric cancer), and (MCF-7) (breast cancer)	0.035 µM
Streptococcus bovis	Bovycin	HepG2 (hepatocellular carcinoma) and MCF-7 (breast carcinoma)	0.039 µM
Streptomyces verticillus	Bleomycin	Has been tested against over 30 different cancer type including leukemias, lymphomas, myelomas, and carcinomas	0.26 nM
Streptomyces proeuris var. cariis	Dorsorubicin (Adriamycin)	Anthracycline Tested in over 900 cell types including various carcinomas, sarcomas, melanomas, lymphomas, and leukemias	0.0044 - 44 µM
Streptomyces canthoensis or. lantilenae	Mitomycin C	Aziridine Tested in over 900 different cell lines	0.00948-249 µM
Streptomyces griseofuscus	Azinomycin A & B	L5178Y (leukemia)	0.07 and 0.11 µg/mL for azinomycins A and B, respectively
Streptomyces albus	Actinomycin G	Chromopeptide HM02 (gastric adenocarcinoma), HepG2 (hepatocellular carcinoma), and MCF-7 (breast adenocarcinoma)	0.0015 - 0.0039 µM
Streptomyces macromyceticus	Auromomycin	Polypeptide Ehrlich ascites (carcinoma), ascites sarcoma 180, L1210 (leukemia), and LEWIS lung carcinoma	0.016 mg/kg
Streptomyces pyraeus	Daunorubicin	Anthracycline L3.6 (pancreatic carcinoma) and HeLa (cervical adenocarcinoma)	0.002 - 0.4 µM
Streptomyces sp.	Chromomycin	Polypeptide Wide range of cancer cells including ovary, breast, prostate, pancreas, skin, lung,	0.026 nM - 6900M
Streptomyces sp.	IT-62-B	Baumycin group anthracycline L210 (murine leukemia cells), P388/murine lymphocytic leukemia), P388/ADR (daunorubicin resistant), and KB/human nasopharyngeal carcinoma	0.006-0.04 µg/mL
Streptomyces sp.	Diketopiperazine derivative	Piperazine HCT-116 (colon adenocarcinoma) and HepG-2 (hepatocellular carcinoma)	0.1 μg/mL for anti-HCT-116 and HepG-2 cell lines
Streptomyces sp.	SF2575	Tetracycline P388/murine lymphocytic leukemia	Unknown IC₅₀ = 7.7 µg/mL
Streptomyces sp.	1, 2 - benzoic dicarboxylic acid, mono 2 - ethylhexyl ester	Tetracycline	Unknown IC₅₀ = 42 and 100 µg/mL for HepG-2 and MCF-7, respectively
Streptomyces sp.	2-bromo-1-hydroxyphenazine	Phenazine Human colon adenocarcinoma (HCT-116)	IC₅₀ = 0.1 µM
Streptomyces violaconglomeratus	Azogamycin	Anthracycline Sarcoma S-180	Unknown L/mg/kg of intraperitoneal injection
Symplc sp.	Belamide A	Tetrapeptide HCT-116 colon cancer	Unknown IC₅₀ = 0.07-1.6 µM
Thermaactinomyces sp.	Mechercharmin A	Peptide AS49 (lung cancer), and Jurkat (T cell leukaemia)	Unknown IC₅₀ = 0.04-0.046M
Verrucosispora spp.	Proximicin A-C	Peptide MCF-7/breast carcinoma AGS (gastric adenocarcinoma), and HepG2 (hepatocellular carcinoma)	<0.025-9.5 µg/mL

Note: The data includes a range of IC₅₀ values indicating the concentration of the antibiotic that inhibits cancer cell growth by 50%. The values were sourced from various studies, with the notation that at least one study has also sequenced the genes involved in the production of these antibiotics.

Traits necessary for preferential tumor growth

The most important and well explored bacterial traits of efficient BMCT are the abilities to differentiate cancerous cells from healthy cells or recognize the peculiar bacterial growth environment provided by the cancer cells. This is typically achieved by bacteria recognizing specific chemical signals emitted by cancer cells. Due to recent advances in recombinant DNA techniques, these traits have been leveraged by engineering bacterial vectors for the precise delivery of diverse anti-cancerous proteins to tumors. This has been mostly achieved by cloning genes coding for diverse anti-cancerous proteins into bacterial vectors, including those coding for immunogenic antigens, cytokines, and cell cycle check-point inhibitors, antibodies, and cytotoxic agents. (186) Although bacterial vector systems are typically designed to enable the direct expression of these anti-cancerous proteins, they have also been used for bactofection or gene transfer to mammalian cancer cells. (186) Within the context of cancer therapeutic bacterial screening, we provide examples of bacteria that are currently used as vectors for the delivery of diverse anti-cancerous molecules (Table 3). We however note that, for most of these bacterial vectors, genes responsible for preferential growth around tumor environment are either unreviewed or unknown. Advancing BMCT within the context of bacterial screening would not only entail identifying these genes in currently used vectors for the delivery of diverse anti-cancerous molecules, but also randomly screening both facultative and obligate anaerobes in order to identify new prospects with better tumor discriminatory abilities or other useful cancer therapeutic traits in addition to their tumor discriminatory abilities. This is particularly important as the future of BMCT hinges on bacteria with improved tumor discriminatory abilities.
The rationale for identifying bacterial pathogenic traits or genes as proposed in our four-step framework (Figure 1), lies in the fact that pathogenicity of the candidate bacteria has been one of the major drawbacks to BMCT. Nonetheless, a significant number of bacteria strains used in BMCT are pathogenic to human. A critical consideration after the in silico screening of bacterial prospects with good BMCT potential cannot be disregarded since there is always the potential for attenuation. However, if issues pertaining to attenuation reversion and septicemia are to be permanently addressed, then identifying non-pathogenic bacteria with aforementioned anti-cancerous traits must be further explored.

Table 2. Representative list of bacteria with cancer immunogenic traits

Bacteria	Immunogen(s)/Immunogenic properties	Active against	Synthesizing gene(s)	Reference(s)
Clostridium novyi	Phospholipases	Sarcomas, gliomas, squamous and colon carcinomas	The phospholipase C gene (NT01CX0979)	(170, 173, 174)
Escherichia coli	Lipopolysaccharide	Colon and breast carcinomas	Lipid A, core polysaccharide, and O-antigen genes	(175, 176)
Mycobacterium bovis	α antigen	Cervical adenocarcinoma and bladder cancer	The α antigen gene	(177-179)
Streptococcus pyogenes	Emn55, speA, speB and speC	Pancreatic carcinoma and lymphosarcoma	speA, speB, speC, and Emn55 genes	(180-182)
Listeria monocytogenes	Listeriolysin O	Ovarian and breast carcinomas.	The llo gene	(171, 172, 183, 184)
Salmonella typhi	Lipopolysaccharide/survival within macrophages	Colon carcinoma	Lipid A, core polysaccharide, and O-antigen genes; slyA, STM3120 and htrA genes	(16, 185)

Table 3. Representative list of bacteria that are known to preferential accumulate in tumors

Bacteria	Comments	Effective against	Important gene(s)	Reference(s)
Bifidobacterium longum	At 168 hours, tumors had 60,000 bacilli per gram of tumor tissue in contrast to no germination in livers, spleens, kidneys, or lungs.	Diverse solid tumors including B16-F10 melanoma and Lewis lung carcinoma	Unknown	(187)
Clostridium novyi	Within 16 hours the bacterium had florally germinated within the tumors in contrast to no germination in livers, spleens, kidneys, lungs, or brains.	Diverse solid tumors including HCT116 colon and B16 skin carcinomas	Unknown	(188)
Escherichia coli	Preferential accumulated in tumor at a ratio of >10^3:1	Diverse solid tumors including gliomas, breast, skin and colon carcinoma	Unknown	(189, 190)
Listeria monocytogenes	Selectively infected, survived and multiplied in tumors; 27 hours after injection, the bacterium was only detected in tumors	Diverse solid tumors including 4T1 mammary and PC-3 prostate tumors	Unknown	(189, 191)
Magnetococcus marinus	Aerotactic bacteria with the ability to swim along magnetic field lines. Approximately 35% of the bacterium penetrated into hypoxic regions	HCT116 colorectal carcinoma	Unknown	(192, 193)
Salmonella typhi	Preferential accumulated in tumor at a ratio of >1,000:1	Multiple solid tumors	cheY, motAB, and eutC genes	(36, 189)
Vibrio cholerae	Selectively infected and multiplied in tumors and metastases, with titres reaching approximately 5.97 × 10^10 after 32 hours	Bladder carcinomas, gliomas and fibrosarcoma	Unknown	(189)

Pathogenic traits

The rationale for identifying bacterial pathogenic traits or genes as proposed in our four-step framework (Figure 1), lies in the fact that pathogenicity of the candidate bacteria has been one of the major drawbacks to BMCT. Nonetheless, a significant number of bacteria strains used in BMCT are pathogenic to human. A critical consideration after the in silico screening of bacterial prospects with aforementioned traits should be that of pathogenicity. For instance, Clostridium histolyticum spores preferentially germinate in hypoxic tumor regions, making it an excellent BMCT candidate. However, Clostridium histolyticum can also produce significant amount of exotoxins consequently causing pathophysiological changes to healthy tissue and organs. In an attempt to circumvent some of the issues pertaining to toxicity while maintaining their efficacy, attenuated bacterial strains with less or no toxicity are being used in BMCT. L. monocytogenes, S. typhi, and C. novyi are some of the well-known examples of bacterial candidates that have been attenuated to improve safety. For example, the L. monocytogenes cancer vaccine was rendered safer by the deletion of virulence factors such as ActA and Internalin B (ΔactA/ΔinlB), leading to >1,000-fold reduction in toxicity. Similarly, S. typhi defective in the synthesis of guanosine tetraphosphate virtually resulted in an avirulent strain. Thus, within the context of advancing BMCT, identifying non-pathogenic analogs to pathogenic strains of key importance is vital to BMCT. Nonetheless, pathogenic bacterial prospects with good BMCT potential cannot be disregarded since there is always the potential for attenuation. However, if issues pertaining to attenuation reversion and septicemia are to be permanently addressed, then identifying non-pathogenic bacteria with aforementioned anti-cancerous traits must be further explored.

Conclusion and perspective

In this review we (1) highlighted bacterial traits that make them good therapeutic candidates for the treatment of cancer, (2) suggested a four-step framework that can be used to identify bacteria with good cancer therapeutic potential, including uncultivable strains, and (3) touched on quantifiable attributes such as growth inhibition, cytotoxicity to normal cells,
and preferential accumulation ratio that can be used to compare and contrast important cancer therapeutic traits for BMCT.

The singular most important bacterial trait to cancer therapeutics is their ability to specifically target tumors or cancerous cells. The future of BMCT lies in being able to find bacteria that can target cancerous cells, secrete cytotoxic and/or immunogenic substances, and be tolerated and are stable in the targeted tissue and cancer environment. Recent advances in recombinant DNA techniques significantly advanced BMCT. Engineering a bacterium that targets tumors or cancerous cells, produces cytotoxic or immunogenic proteins, self-propels and responds to triggering signals, senses the local environment and produces externally detectable signals is not so far-fetched anymore. However, despite the overall enthusiasm about the future of BMCT, using multi-layered genetically modified bacteria could result in stability issues. Identifying bacterial prospects with better cancer therapeutic potential, which require minimum genetic modifications, would go a long way to improve BMCT. Lastly, our analyses highlight the need to establish and standardize quantitative methods to identify and characterize bacteria with important cancer therapeutic traits.

Acknowledgement
This work was supported by Mitacs-Accelerate [Fund IT07941-Yuan_OVGV], Ontario Greenhouse Vegetable Growers (OGVG), Agriculture and Agri-Food Canada Growing Forward-II [project J-001589] and Natural Sciences and Engineering Research Council of Canada (NSERC) [Discovery grant RGPIN-2015-06052]. We also thank Michelle Bargel for help with literature search, Nanyikun (Nancy) Zhao and Michelle S.M. Li for critically reading and editing this manuscript.

Competing Interests
The authors have declared that no competing interest exists.

References
1. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamororo D, Ng S, et al. Multiparameter analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929-44.
2. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. The Lancet Global Health. 2016;4(9):e699-e6.
3. Sluiter AB, Muller DC, van Hooft JAE, van den Broek A, de Bont WD. Local application of bacteria improves safety of Salmonella-mediated tumor therapy and retains advantages of systemic infection. Oncotarget. 2017;8(30):49888.
4. Mehta N, Lyon JD, Patil K, Mokarekza N, Kim C, Bellamkonda RV. Bacterial carriers for glioblastoma therapy. Molecular Therapy-Oncolytics. 2017;4:1-17.
5. Luo C-H, Huang C-T, Su C-H, Yeh C-S. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano lett. 2016;16(6):3493-9.
6. Fan J-X, Li Z-H, Liu X-H, Zheng D-W, Chen Y, Zhang X-Z. Bacteria-Mediated Tumor Therapy Utilizing Photothermolysis-Controlled TNF-α Expression via Oral Administration. Nanoscale 2018;10(4):2373-80.
7. Loczy KJ, Lennon JT. Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences. 2016;113(21):5970-5.
8. Wei MQ, Mengesha A, Good D, Anné J. Bacterial targeted tumour therapy: dawn of a new era. Cancer Lett. 2008;259(1):16-27.
9. McCarthey EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. The Iowa orthopaedic journal. 2006;26:154.
10. Plummer HC, Siebenmann CO, Chapman MG. Effect of histolyticus infection and toxin on transplantable mouse tumors. Proceedings of the Society for Experimental Biology and Medicine. 1947;62(6):461-7.
11. Schlechte H, Elbe B. Recombinant plasmid DNA variation of Clostridium histolyticum—model experiments of cancerostatic gene transfer. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene Series A: Medical Microbiology, Infectious Diseases, Virology, Parasitology. 1988;268(3):347-56.
12. Pavelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel vaccine cancer vector. Cancer Res. 1997;57(20):4537-44.
13. Toso JF, Gill VJ, Hwu P, Mariconda FM, Restifo NP, Schwartzentruber DJ, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. Journal of Clinical Oncology: official journal of the American Society of Clinical Oncology. 2003;21(1):142.
14. Patyar S, Prakash A, Medhi B. Bacteria as a therapeutic approach in cancer therapy. Bacteria and Cancer. 2017;2018(12):185-208.
Lee DG, Hahn KH, Park Y, Kim HY, Lee W, Lim SC, et al. Functional and structural characteristics of anticaner peptide Pep27 analogues. Cancer cell international. 2007;5(1):21.

Kim E-H, Cho Y, Kwon-MK, Tran TD-H, Park S-S, Lee K-J, et al. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine. 2012;30(11):2008-19.

Paiva AD, de Oliveira MD, de Paula SO, Baracat-Pereira MC, Breukink E, Mancioli CRV. Toxicity of bovinic HSC against mammalian cell lines and role of cholesterol in bacteriocin activity. Microbiology. 2012;158(11):2851-8.

Liu G, Zhong J, Ni J, Chen M, Xiao H, Luan H. Characteristics of the bovinic HJS0 gene cluster in Streptococcus bovis HJS0. Microbiology. 2010;156(5):1112-20.

Du L, Sánchez C, Chen M, Edwards DJ, Shen B. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003. Science. 1999;283(5410):1378-82.

Kawauchi T, Sasaki T, Yoshida K-I, Matsumoto H, Chen RX, Huang MY, et al. Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis. Oncol. Immunol. 2014;3(5):28926.

Chandra D, Jahangir A, Quispes-Tintaya W, Einstein M, Gravekamp C. Myeloid-derived suppressor cells have a central role in attenuated Listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice. Br. Cancer. 2013;108(1):2281.

Robertson N, Shao A, Fong C, O’Gorman C, Zepeda B, Tran C, et al. Intratumoral injection of Clostridium novyi-NT spheroids induces antitumor immunity in mice. Cancer Res. 2009;69(14):5860-6.

Bettgowda C, Huang X, Lim J, Cheong I, Kohli M, Szabo SA, et al. The genome and transcriptomes of the antitumor agent Clostridium novyi-NT. Nature biotechnology. 2006;24(12):1573.

Kurokatsu M, Yamaguchi Y, Takanaka Y, Fuchigami K, Furukawa K, Matsushita K, et al. Induction of CD4+ and CD8+ antitumor effector T cells by bacteria mediated therapy. International journal of cancer. 2015;136:3678-90.

Weibel S, Stritzker J, Eck M, Goebel W, Szalay AA. Colonization of experimental murine breast cancer model by Escherichia coli K-12 significantly alters the tumour microenvironment. Cellular microbiology. 2008;10(8):1235-48.

Kitamura A, Mastumoto S, Ashina I. Growth inhibition of Hela cell by internalization of Mycobacterium bovis Bacillus Calmette-Guérin (BCG) Tokyo. Cancer cell international. 2009;9(1):30.

Kawasaki K, Yamaguchi R, Yamazaki A, Kasahara H, Yamao T, Kagami Y. Colony formation and induction of the Mycobacterium bovis BCG gene for extracellular alpha antigen. Journal of bacteriology. 1988;170(9):3947-54.

Lawman M, Kane C, Erichrad S, Shaw N, Lawman P. A novel cancer vaccine meets canine trial endpoints. American Association for Cancer Research; 2007.

Maletzki C, Linnebacher M, Kreikemeyer B, Emmrich J. Pancreatic cancer vaccination with a recombinant vaccinia virus encoding light-emitting proteins. Nature biotechnology. 2009;27(9):842-8.

Kurokatsu M, Satake Y, Kawanami S, Kim G, Takebe Y, Kawamura J, et al. Induction of effective antitumor immune responses in a mouse bladder tumor model by using DNA of a α antigen from mycobacteria. Cancer Gene Ther. 2001;8(7):483.

Stern C, Kaunitz N, Kocijancic D, Trittel S, Riese P, Guzman CA, et al. The genome of the antibiotic producer Streptomyces griseus: Biosynthesis of the antitumor chromomycin A3 in Streptomyces griseus: analysis of the gene cluster and rational design of novel chromomycin analogs. Biochemistry. 2002;41(9):2441-8.

Wang X, Tubadzhiev J, Rateb ME, Annand JK, Qin Z, Jaspers M, et al. Identification and characterization of the antichromomycin G gene cluster in Streptomyces iakyrus. Molecular BioSystems. 2013;9(6):1286-9.

Yamasita T, Naoi H, Hidaka T, Watanabe K, Kumada Y, Takacheri T, et al. Studies on Auramycin. Journal of Antibiotics (Tokyo). 1979;32(2):339-9.

Sakurai E, Kasahara H, Tanaka M, Hayashi H, Horii H, Morita K, et al. Nucleotide sequence of the macromomycin apoprotein gene and its expression in Streptomyces chromomyceticus. The Journal of antibiotics. 1991;44(21):1704-13.

Cervason JE, Hindenburg AB, Veeradis MP, Schulze S, Wanebo HJ, Mestha S. An effective in vitro antitumor response against human pancreatic carcinoma with paclitaxel and doxorubicin by induction of both necrosis and apoptosis. Anticancer Res. 2004;24(5A):2017-26.

Akin CO, Sahay N. Effects of epirubicin and doxorubicin on cell proliferation and cell death in HeLa cells. Journal of Cell & Molecular Biology. 2005;4(1):12.

Guimarães LA, Jimenez PC, Sousa Ts, Freitas HS, Rocha DD, Wilke DV, et al. Chromomycin A2 induces autophagy in melanoma cells. Mar Drugs. 2014;12(12):5893-5.

Aubert U, Zecl DL, Sajid I. Antitumor compounds from Streptomyces sp. Bioorganic & medicinal chemistry. 2011;19(17):5183-9.

Al-Maarri A, Elzeini AS, Zayed M, El-Shawarby AA, Ibraham MA, et al. Methylnitroimidazole derivatives: Antitumor activity and mechanisms of action. International journal of cancer. 2010;127(9):2109-16.

Kawachi T, Sasaki T, Watae H-O, Miyadoh S, Nagasawa M, Shomura T, et al. A New Tetracycline Antibiotic with Antitumor Activity I. Taxonomy and Fermentation of the Producing Strain Isolation and Characterization of Sf2575. Journal of Antibiotics (Tokyo). 1992;45(3):320-4.

Kariuki K, Matsu T, Takeya Y, Kurokawa K, Imagawa H, Nishizawa M, Shirizu Y. Mechercharmycins A and B, cytotoxic substances from marine-derived cyanobacterium. Tetrahedron Lett. 2006;47(20):3387-90.

Kawai H, Hayakaya Y, Nakagawa M, Furihata K, Furuiha K, Shimazu A, et al. Arugomicyn A: a New Anthracycline Antibiotic I. Taxonomy Fermentation Isolation and Physico-Chemical Properties. Journal of Antibiotics (Tokyo). 2001;54(19):1568-89.
191. Riedel CU, Monk IR, Casey PG, Morrissey D, O'Sullivan GC, Tangney M, et al. Improved luciferase tagging system for Listeria monocytogenes allows real-time monitoring in vivo and in vitro. Applied and environmental microbiology. 2007;73(9):3091-4.
192. Felfoul O, Mohammadi M, Taherkhani S, De Lanauze D, Xu YZ, Loghin D, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature nanotechnology. 2016;11(11):941.
193. Martel S. Targeting active cancer cells with smart bullets. Ther Deliv. 2017;8(5):301-12.
194. Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proceedings of the National Academy of Sciences. 2004;101(36):13832-7.
195. Na HS, Kim HJ, Lee HY-C, Hong Y, Rhee JH, Choy HE. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine. 2006;24(12):2027-34.
196. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785.