On Special Semigroups Derived From an Arbitrary Semigroup

Attila Nagy
Department of Algebra
Budapest University of Technology and Economics
P.O. Box 91
1521 Budapest
Hungary
e-mail: nagyat@math.bme.hu

Abstract

Let S be a semigroup, Λ a non-empty set and P a mapping of Λ into S. The set $S \times \Lambda$ together with the operation \circ_P defined by $(s, \lambda) \circ_P (t, \mu) = (sP(\lambda)t, \mu)$ form a semigroup which is denoted by (S, Λ, \circ_P). Using this construction, we prove a common connection between the semigroups S, S/θ and $S/\theta^* = (S/\theta)/(\theta^*/\theta)$, where θ and θ^*/θ are the kernels of the right regular representations of S and S/θ, respectively. We also prove an embedding theorem for the semigroup $(S, S/\theta, \circ_P)$, where S is a left equalizer simple semigroup without idempotents, and P maps every θ-class of S into itself.

1 Introduction

Let S be an arbitrary semigroup. It is known that the relation θ on S defined by $(a, b) \in \theta$ if and only if $xa = xb$ for all $x \in S$ is a congruence on S. This congruence is the kernel of the right regular representation $\varphi : a \mapsto \varphi_a$ $(a \in S)$ of S: $\varphi_a : s \mapsto sa$ $(s \in S)$ is the inner right translations of S defined by a. For convenience, the semigroup $\varphi(S) = S/\theta$ is also called the right regular representation of S. The θ-class of S containing an element $s \in S$ will be denoted by $[s]_{\theta}$.

Let θ^* denote the congruence on the semigroup S for which $\theta \subseteq \theta^*$ and θ^*/θ is the kernel of the right regular representation on S/θ, where θ^*/θ is defined by $([s]_{\theta}, [t]_{\theta}) \in \theta^*/\theta$ if and only if $(s, t) \in \theta^*$ (see Theorem 5.6 of [5]). It is easy to see that $(a, b) \in \theta^*$ if and only if $(xa, xb) \in \theta$ for all $x \in S$, that is, $sa = sb$ for all $s \in S^2$ (see also [7] and [8]). The θ^*-class of S containing an element $s \in S$ will be denoted by $[s]_{\theta^*}$.

The right regular representation of semigroups plays an important role in the examination of semigroups. Here we cite some results of papers [1], [2] and [9], in which special types of semigroup are characterized by the help of their right regular representation.

A semigroup satisfying the identity $ab = a$ (resp. $ab = b$) is called a left zero (resp. right zero) semigroup. A semigroup is called a left group (resp. right group...
group) if it is a direct product of a group and a left zero (resp. right zero) semigroup.

Lemma 1 ([1]) A semigroup S is a left group if and only if the right regular representation S/θ of S is a group.

A semigroup S is called an M-inversive semigroup ([10]) if, for each $a \in S$, there are elements $x, y \in S$ such that ax and ya are middle units of S, that is, $caxd = cd$ and $cyad = cd$ is satisfied for all $c, d \in S$.

Lemma 2 ([2]) A semigroup S is M-inversive if and only if the right regular representation S/θ of S is a right group.

In [9], a semigroup S is called a left equalizer simple semigroup if, for arbitrary elements $a, b \in S$, the assumption $x_0a = x_0b$ for some $x_0 \in S$ implies $xa = xb$ for all $x \in S$.

Lemma 3 ([9]) A semigroup S is left equalizer simple if and only if the right regular representation S/θ of S is left cancellative.

The previous lemmas show connections between S and S/θ, in special cases. In this paper we would like to find a common connection between the semigroups S, S/θ and $S/\theta^* = (S/\theta)/(\theta^*/\theta)$ in a general case. In our examination, the following construction plays an important role.

Let S be a semigroup, Λ an arbitrary set, and P is a mapping of Λ into S. It is easy to see that the set $S \times \Lambda$ together with the operation $(s, \lambda) \circ P (t, \mu) = (sP(\lambda)t, \mu)$ is a semigroup. This semigroup is the dual of the semigroup constructed in Exercise 6 for §8.2 of [4]. This semigroup will be denoted by $(S, \Lambda; \circ_P)$.

In Section 2, we deal with the semigroups $(S, \Lambda; \circ_P)$. We show that the left cancellativity and the right simplicity of a semigroup S are inherited from S to the semigroup $(S, \Lambda; \circ_P)$.

In Section 3, the semigroups $(S, S/\theta; \circ_P)$ are in the focus of our examination, where S is an arbitrary semigroup and P is an arbitrary mapping of the factor semigroup S/θ into S with condition $P([s]_\theta) \in [s]_\theta$. We show that, for an arbitrary semigroup S, the right regular representation of the semigroup $(S, S/\theta; \circ_P)$ is isomorphic to the semigroup $(S/\theta^*, S/\theta; \circ_P')$, where P' is the mapping of S/θ into S/θ^* defined by $P'(\[s]_\theta) = \[s]_{\theta^*}$.

In Section 4, we prove an embedding theorem for the semigroups $(S, S/\theta; \circ_P)$, where S is an idempotent-free left equalizer simple semigroup. We prove that if S is a left equalizer simple semigroup without idempotent then the semigroup $(S, S/\theta; \circ_P)$ can be embedded into a simple semigroup $(S'', S/\theta; \circ_{P''})$ containing a minimal left ideal.

For notations and notions not defined here, we refer to [3], [4] and [6].
2 Hereditary properties

In this section we show that the left cancellativity and the right simplicity of a semigroup S are inherited from S to the semigroup $(S, \Lambda; \circ_P)$.

Lemma 4 If S is a left cancellative semigroup then the semigroup $(S, \Lambda; \circ_P)$ is also left cancellative for any set Λ and any mapping $P : \Lambda \mapsto S$.

Proof. Assume

$$(s, \lambda) \circ_P (t, \mu) = (s, \lambda) \circ_P (r, \tau)$$

for some $s, t, r \in S$ and $\lambda, \mu, \tau \in S$. Then

$$(sP(\lambda)t, \mu) = (sP(\lambda)r, \tau)$$

from which it follows that

$$sP(\lambda)t = sP(\lambda)r \quad \text{and} \quad \mu = \tau$$

As S is left cancellative, we get $t = r$. Hence

$$(t, \mu) = (r, \tau).$$

Thus the semigroup $(S, \Lambda; \circ_P)$ is left cancellative. \qed

Lemma 5 If S is a right simple semigroup then the semigroup $(S; \Lambda; \circ_P)$ is also right simple for any set Λ and any mapping $P : \Lambda \mapsto S$.

Proof. Let $(s, \lambda), (t, \mu) \in (S, \Lambda; \circ_P)$ be arbitrary elements. As S is right simple,

$$sP(\lambda)S = S.$$

Then there is an element $x \in S$ such that

$$sP(\lambda)x = t,$$

and so

$$(s, \lambda) \circ_P (x, \mu) = (sP(\lambda)x, \mu) = (t, \mu).$$

From this it follows that the semigroup $(S, \Lambda; \circ_P)$ is right simple. \qed

Corollary 1 If S is a right group then the semigroup $(S; \Lambda; \circ_P)$ is also a right group for any semigroup S and any mapping $P : \Lambda \mapsto S$.

Proof. As a semigroup is a right group if and only if it is right simple and left cancellative, our assertion follows from Lemma 4 and Lemma 5. \qed
3 The right regular representation

In this section we deal with the right regular representation of semigroups (S, Λ, \circ_P) in that case when S is an arbitrary semigroup, Λ is the factor semigroup S/θ and P is an arbitrary mapping of S/θ into S with condition that $P([a]_\theta) \in [a]_\theta$ for every $s \in S$. We note that the product \circ_P in the semigroup $(S, S/\theta, \circ_P)$ does not depend on choosing P, because $(s, [a]_\theta) \circ_P (t, [b]_\theta) = (sP([a]_\theta)t, [b]_\theta)$ for every $s, t, a, b \in S$, and $sa' = sa''$ for every $a', a'' \in [a]_\theta$.

Theorem 1 Let S be an arbitrary semigroup. Let P be a mapping of S/θ into S with condition $P([a]_\theta) \in [a]_\theta$ for every $[a]_\theta \in S/\theta$. Let P' denote the mapping of S/θ onto S/θ^* defined by $P'([a]_\theta) = [a]_{\theta^*}$. Then the right regular representation of the semigroup $(S, S/\theta; \circ_P)$ is isomorphic to the semigroup $(S/\theta^*, S/\theta; \circ_{P'})$.

Proof. Let θ^* denote the kernel of the right regular representation of the semigroup $(S, S/\theta, \circ_P)$. Let ϕ be the mapping of the factor semigroup $(S, S/\theta, \circ_P)/\theta^*$ onto the semigroup $(S/\theta^*, S/\theta, \circ_{P'})$ defined by

$$\phi(([a, [b]_\theta])_{\theta^*}) = ([a]_{\theta^*}, [b]_\theta),$$

where $([a, [b]_\theta])_{\theta^*}$ denotes the θ^*-class of $(S, S/\theta, \circ_P)$ containing the element $(a, [b]_\theta)$ of $(S, S/\theta, \circ_P)$. To show that ϕ is injective, assume

$$\phi(([a, [b]_\theta])_{\theta^*}) = \phi(([c, [d]_\theta])_{\theta^*})$$

for some $([a, [b]_\theta])_{\theta^*}, ([c, [d]_\theta])_{\theta^*} \in (S, S/\theta, \circ_P)/\theta^*$. Then

$$([a]_{\theta^*}, [b]_\theta) = ([c]_{\theta^*}, [d]_\theta)$$

and so

$$[a]_{\theta^*} = [c]_{\theta^*} \quad \text{and} \quad [b]_\theta = [d]_\theta.$$
be arbitrary. Then
\[
\phi((a, [b]_{\theta})\theta \cdot ([c, [d]_{\theta}]_{\theta \cdot}) = \phi(((a, [c, [d]_{\theta}]_{\theta \cdot})) =
\]
\[
= (\{abc\}_{\theta \cdot}, [d]_{\theta}) = (\{a, [b]_{\theta \cdot} [c]_{\theta \cdot}, [d]_{\theta}) =
\]
\[
= ([a]_{\theta \cdot}, [b]_{\theta \cdot} \circ P (\{c]_{\theta \cdot}, [d]_{\theta}) = \phi((a, [b]_{\theta \cdot})_{\theta \cdot} \circ P (\{((a, [b]_{\theta \cdot})_{\theta \cdot}).
\]
Hence \(\phi \) is a homomorphism, and so it is an isomorphism of the right regular representation of the semigroup \((S, S/\theta, \circ_P)\) onto the semigroup \((S/\theta^*, S/\theta, \circ_{P'})\).

\(\square \)

Corollary 2 If \(S \) is a left group then the semigroup \((S, S/\theta, \circ_P)\) is M-inversive.

Proof. If \(S \) is a left group then \(S/\theta \) is a group by Lemma 1. As \(S^2 = S \), we have \(\theta = \theta^* \). Thus \(S/\theta^* \) is a group. By Corollary 1, the semigroup \((S/\theta^*, S/\theta, \circ_{P'})\) is a right group and so, by Theorem 1 and Lemma 2, \((S, S/\theta, \circ_P)\) is an M-inversive semigroup.

\(\square \)

Corollary 3 If \(S \) is an M-inversive semigroup then the semigroup \((S, S/\theta, \circ_P)\) is M-inversive.

Proof. If \(S \) is M-inversive then \(S/\theta \) is a right group by Lemma 2. As the kernel of the right regular representation of a right group is the identity relation, \(\theta^*/\theta \) is the identity relation on \(S/\theta \). Then \(\theta^* = \theta \) and so \(S/\theta^* \) is a right group. By Corollary 1, \((S/\theta^* \times S/\theta, \circ_{P'})\) is a right group. By Theorem 1 and Lemma 2, \((S, S/\theta, \circ_P)\) is an M-inversive semigroup.

\(\square \)

Corollary 4 If \(S \) is a left equalizer simple semigroup then the semigroup \((S, S/\theta, \circ_P)\) is left equalizer simple.

Proof. Let \(S \) be a left equalizer simple semigroup. Then, by Lemma 3, \(S/\theta \) is a left cancellative semigroup. As the right regular representation of a left cancellative semigroup is the identity relation, \(\theta^*/\theta \) is the identity relation on \(S/\theta \). From this it follows that \(\theta^* = \theta \) and so \(S/\theta^* \) is a left cancellative semigroup. By Lemma 4, \((S/\theta^*, S/\theta, \circ_{P'})\) is a left cancellative semigroup. By Theorem 1 and by Lemma 3, the semigroup \((S, S/\theta, \circ_P)\) is M-inversive.

\(\square \)

4 An embedding theorem

In this section we deal with such semigroups \((S, S/\theta, \circ_P)\) in which \(S \) is an idempotent-free left equalizer simple semigroup.

Theorem 2 If \(S \) is a left equalizer simple semigroup without idempotents then the semigroup \((S, S/\theta, \circ_P)\) can be embedded into a simple semigroup \((S'', S/\theta, \circ_{P''})\) containing a minimal left ideal.
Proof. Let S be a left equalizer simple semigroup without idempotent. Then, by Theorem 8.19 of [4], there is an embedding τ of S into a left simple semigroup S'' without idempotents. Consider the semigroup $(S'', S/\theta \circ P')$, where the mapping $P'' : S/\theta \rightarrow S''$ is defined by $P''([s]_\theta) = \tau(P([s]_\theta))$. By the dual of Exercise 6 for §8.2 of [4], $(S'', S/\theta \circ P')$ is a simple semigroup containing a minimal left ideal. We show that

$$\Phi : (a, [b]_\theta) \mapsto (\tau(a), [b]_\theta)$$

is an embedding of the semigroup $(S, S/\theta \circ P)$ into the semigroup $(S'', S/\theta \circ P')$.

First we show that Φ is injective. Assume $\Phi((a, [b]_\theta)) = \Phi((c, [d]_\theta))$ for some $a, b, c, d \in S$. Then

$$\tau(a) = \tau(c) \quad \text{and} \quad [b]_\theta = [d]_\theta.$$

As τ is injective, we get

$$(a, [b]_\theta) = (c, [d]_\theta).$$

Next we show that Φ is a homomorphism. Let

$$(a, [b]_\theta), (c, [d]_\theta) \in (S, S/\theta \circ P)$$

be arbitrary elements. Then

$$\Phi((a, [b]_\theta) \circ_P (c, [d]_\theta)) = \Phi((a P([b]_\theta)c, [d]_\theta)) = (\tau(a P([b]_\theta)c), [d]_\theta) =$$

$$(\tau(a)\tau(P([b]_\theta))\tau(c), [d]_\theta) = (\tau(a)P''([b]_\theta)c, [d]_\theta) =$$

$$= (\tau(a), [b]_\theta) \circ_{P'} (\tau(c), [d]_\theta) = \Phi((a, [b]_\theta)) \circ_{P'} \Phi((c, [d]_\theta))$$

and so Φ is a homomorphism. Consequently Φ is an embedding of the semigroup $(S, S/\theta \circ P)$ into the simple semigroup $(S'', S/\theta \circ P')$ containing a minimal left ideal. \[\square\]

References

[1] J.L. Chrislock, Semigroups Whose Regular Representation is a Group, Proc. Japan Acad., 40 (1964), 799–800

[2] J.L. Chrislock, Semigroups Whose Regular Representation is a Right Group, The American Mathematical Monthly, 74 (1967), 1097–1100

[3] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc. Providence R.I., I(1961)

[4] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc. Providence R.I., II(1967)
[5] J.M. Howie, *An Introduction to Semigroup Theory*, Academic Press, London, 1976

[6] A. Nagy, *Special Classes of Semigroups*, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001

[7] A. Nagy, Left reductive congruences on semigroups, *Semigroup Forum*, **87** (2013), 129–148

[8] A. Nagy, Remarks on the paper "M. Kolibiar, On a construction of semigroups", *Periodica Mathematica Hungarica* (to appear), DOI 10.1007/s10998-015-0094-z

[9] A. Nagy, Left equalizer simple semigroups, *Acta Mathematica Hungarica* (to appear), http://arxiv.org/pdf/1504.07183.pdf

[10] M. Yamada, A note on middle unitary semigroups, *Kődai Math. Sem. Rep.*, **7** (1955), 49–52