Tension-dependent stabilization of E-cadherin limits cell–cell contact expansion in zebrafish germ-layer progenitor cells

Jana Slováková,a,b,1 Mateusz Sikora,a,c,d,1 Feyza Nur Arslana, Silvia Caballero-Manceboa, S. F. Gabriel Krens,a Walter A. Kaufmann,a Jack Merrina, and Carl-Philipp Heisenberga,2

*Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria; ‡Department of Theoretical Biophysics, Institute of Molecular Biotechnology, Vienna, 1030 Austria; †Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany; and ′Faculty of Physics, University of Vienna, 1090 Vienna, Austria

Edited by Alpha Yap, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; received December 13, 2021; accepted December 29, 2021 by Editorial Board Member Yale E. Goldman

Tension of the actomyosin cell cortex plays a key role in determining cell–cell contact growth and size. The level of cortical tension outside of the cell–cell contact, when pulling at the contact edge, scales with the total size to which a cell–cell contact can grow (J.-L. Maitre et al., Science 338, 253–256 (2012)). Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell–cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell–cell contact size is limited by tension-stabilizing E-cadherin–actin complexes at the contact.

cell adhesion | cell–cell contact formation | mechanosensing

For multicellular organisms to form, cells need to establish stable and long-lasting contacts. Consequently, insight into the molecular and cellular mechanisms by which cell–cell contacts are being formed and maintained is central for understanding how multicellularity has emerged in evolution. Adhesion between cells is mediated by various cell–cell adhesion molecules, among which cadherins constitute a key family of adhesion receptors mediating selective Ca2+-dependent cell–cell adhesion (1, 2). While much progress has been made in identifying how cadherin adhesion molecules can trigger cell–cell contact formation by binding to each other and associated molecules, such as catenins (3–5), comparably little is known on how cadherins transduce forces between cells and how such force transduction feeds back on the organization and function of cadherins at cell–cell contacts.

Cadherins—and in particular, classical cadherins—are thought to function in cell–cell contact formation in three different ways (6, 7, 10). 1) They promote cell–cell contact formation by directly lowering interfacial tension at the cell–cell contact zone (8). How cadherins achieve this is not yet entirely clear, but the generation of lateral pressure through cadherin-mediated molecular crowding at the contact zone has been proposed as one potential effector mechanism (9, 10). 2) Signaling from cadherins modulates the actomyosin cytoskeleton at the cell–cell contact site, thereby controlling contact growth and maintenance (11). Effectors molecules involved in this process include RhoA and Arp2/3, which both are repressed when cadherins bind over the contact, and Rac, which is activated upon cadherin binding (12, 13). 3) Cadherins transduce pulling forces from the contractile actomyosin cortices of the contacting cells over the contact site (6, 14, 15). This force transduction allows the contact to grow and reach steady state after those forces are balanced at the contact. Data on cultured cells and primary cells from zebrafish embryos support a critical function of cadherins in contact expansion. They are thought to disassemble the actomyosin cortex at the contact site and mechanically couple the cortices of the contacting cells at the contact edge (6, 16). These observations led to a model where pulling forces at the contact edge, originating from the contractile cortices of the contacting cells, are transduced by cadherins over the contact and drive contact expansion. Consequently, the size of the contact is expected to scale with the ratio of cortical tension at the cell–cell vs. the cell–medium interface (6, 9).

Cadherins at cell–cell contacts not only transduce forces between the contacting cells but are also affected by the forces to which they are subjected. Studies on culture cells have provided evidence that tension at cadherin cell–cell adhesion sites promotes cadherin clustering and reduces their turnover at the contact site (16–18). How tension functions in those processes

Significance

Cell–cell contact formation is a key step in the evolution of multicellularity. While the molecular and cellular processes underlying cell–cell adhesion and contact formation have been extensively studied, comparably little is known about the physical principles guiding these processes. Actomyosin cortex tension differentially applied at the cell–cell and cell–medium interfaces was shown to promote expansion of the cell–cell contacts. Here, we uncover a nonlinear relationship between cortex tension and cell–cell contact size; in a low-tension regime, cell–cell contact size positively scales with cortex tension, while the high-tension regime promotes small contacts. This change in behavior is due to tension decreasing the turnover of adhesion molecules at the cell–cell contact, limiting contact expansion.

Author contributions: J.S., M.S., and C.-P.H. designed research; J.S. and M.S. performed research; F.N.A., S.C.-M., W.A.K., and J.M. contributed new reagents/analytic tools; J.S. and M.S. analyzed data; and J.S., M.S., S.F.G.K., and C.-P.H. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. A.Y. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1J.S. and M.S. contributed equally to this work.
2To whom correspondence may be addressed. Email: heisenberg@ist.ac.at.

This article contains supporting information online at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122030119/-/DCSupplemental.

Published February 14, 2022.
is not yet fully understood, but tension-induced stabilization of filamentous actin (F-actin) (16, 19, 20) and unfolding of α-catenin (21), a key component of the cadherin adhesion complex (22, 23), are involved. Unfolding of α-catenin is thought to reveal cryptic binding sites to Vinculin (21, 24), which again enhances binding of α-catenin to F-actin by simultaneously binding to both molecules (17, 20, 25, 26).

Yet, how mechanosensing of cadherin cell–cell adhesion sites affects the function of cadherins in contact expansion and maintenance remains unclear. To address this question, we tested how changes in cortex tension affect contact expansion of zebrafish primary germ-layer progenitor cells. Contrary to previous expectations (6), we found that above a critical threshold level of tension, the size of cell–cell contacts becomes smaller rather than bigger. We further found that this restricting influence of cortex tension on contact growth is due to high tension promoting cytосkeletal anchoring of E-cadherin, leading to enhanced clustering and stability of E-cadherin at the contact.

Results

To test whether the ratio of cortical tensions at the cell–medium to cell–cell interface directly scales with cell–cell contact size, as previously suggested (6, 9), we sought to analyze the effect of a wide range of cortical tension ratios on contact formation. In order to examine cell–cell contact formation in primary vertebrate cells, we turned to zebrafish germ-layer progenitor cells, previously used to study the role of cortical tension in contact expansion (6). Specifically, we imaged ectoderm progenitor cell doublets either mounted in polymeric wells, allowing us to monitor cell–cell contact organization at high resolution (Fig. 1A), or placed on nonadhesive substrates for high-throughput analysis of contact expansion. Consistent with previous observations (6, 9), we found that reducing cortical tension at the cell–medium to cell–cell interface—“cortical tension” for the remainder of the manuscript—in cell doublets by exposing them to 10 μM myosin II inhibitor blebbistatin (Bb) and thus, decreasing the ratio of cortical tensions at the cell–medium to cell–cell interface—assuming that cortical tension at the cell–cell interface is uniformly down-regulated independently of the total level of cortical tension in the adhering cells (6, 9)—severely reduced expansion of the cell–cell contact surface area (A) (Fig. 1B and C and SI Appendix, Fig. S1). Contrary to the model predictions, however, when performing the reverse experiment and strongly increasing cortical tension by exposing cell doublets to 50 nM lysophosphatidic acid (LPA) (27) or overexpressing constitutively active (ca) RhoA in the contacting cells (28) and thus, increasing the ratio of cortical tensions at the cell–medium to cell–cell interface—assuming that cortical tension at the cell–cell interface is uniformly up-regulated independently of the total level of cortical tension in the adhering cells (6, 9)—severely reduced expansion of the cell–cell contact surface area (A) (Fig. 1B and C and SI Appendix, Fig. S1). Notably, the effect of LPA on contact expansion became already apparent during the first minute of contact formation (Fig. 1C and SI Appendix, Fig. S1), suggesting that high cortical tension restrains contact expansion for within seconds after contact initiation. Together, these findings contrast previous observations that the ratio of cortical tensions at the cell–medium to cell–cell interface directly scales with cell–cell contact size (6, 9).

To systematically investigate how changes in cortical tension affect contact expansion in doublets, we determined to what extent cortical tension is altered in progenitor cells upon exposure to Bb or different concentrations of LPA by employing atomic force microscopy (AFM) (29, 30), and how those changes relate to contact expansion. We found that A was maximized when cortical tension was left unaltered, while it dropped when cortical tension was either elevated in the presence of LPA (5 to 50 nM) or diminished upon exposure to Bb (10 μM) (Fig. 1D). This suggests that the threshold level of cortical tension delineating the transition point from where on cortical tension is not promoting but inhibiting contact expansion is close to the cortical tension level of untreated progenitor cells. To exclude the possibility that the effect of LPA on cell–cell contact expansion is not due to its activity in elevating cortical contractility but rather, by modulating other potential target processes, such as actin polymerization (31), we first tested whether general cell properties, such as their overall size and distribution of plasma membrane in contacting vs. noncontacting regions, are affected in LPA-treated doublets. None of these features showed consistent changes upon LPA treatment (SI Appendix, Fig. S3), arguing against LPA affecting general cell properties that might secondarily impact contact formation. To more specifically address whether LPA affects contact formation by up-regulating cortex tension, we reduced myosin II activity in LPA-treated progenitor cell doublets and determined how this affects the ability of LPA in restricting contact expansion.

To explore the mechanisms by which high cortical tension limits contact expansion, we turned to previous observations that cortical tension might increase cadherin adhesion complex clustering and stability at cell–cell contact sites (16, 32). To visualize cadherin complex dynamics in progenitor cell doublets, we took advantage of a transgenic line [Transgene(Tg)(ctnma-citrine)ct3a], which expresses a Citrine-tagged version of α–E-catenin (Ctnma1) under its endogenous promoter that colocalizes with E-cadherin/ Cdh1 (SI Appendix, Fig. S4), thus removing the possibility of function in controlling contact expansion, with low to normal levels of cortical tension promoting and high levels of cortical tension inhibiting contact expansion.

Tension-dependent stabilization of E-cadherin limits cell–cell contact expansion in zebrafish germ-layer progenitor cells
doublets (Fig. 2D), suggesting that cortical tension might increase the size not only of E-cadherin clusters but also of the adjacent actin accumulations. To further test this notion, we performed high-resolution fluorescence microscopy of contacts stained for both Ctnna1 and F-actin in control and LPA-treated doublets, revealing larger actin accumulations adjacent to larger Ctnna1 clusters in LPA-treated compared with control doublets (Fig. 2E).

Tension-induced cadherin cluster formation at cell–cell contacts has previously been associated with reduced adhesion molecule turnover (16). To test whether adhesion complex turnover at germ-layer progenitor cell–cell contacts is affected by changes in cortical tension, we performed fluorescence recovery after photobleaching (FRAP) experiments of Ctnna1 in control (Ctrl) doublets and doublets exposed to Bb (10 μM) or LPA (5 and 50 nM). (Scale bar: 5 μm.) (C) Cell–cell contact size (A_c) as a function of contact time in control doublets, doublets exposed to Bb (10 μM), or different concentrations of LPA (1 to 50 nM). Dotted lines connect contact formation (0 min) with the first time point when data were collected. Error bars (SD) are shown in SI Appendix, Fig. 51. Ctrl: N = 9, n = (1 min: 30, 2 min: 26, 3 min: 30, 6 min: 24, 9 min: 24, 12 min: 24, 15 min: 22, 18 min: 22); LPA5: N = 1, n = 10 (for each time point); Bb: n = 1, n = (3 for each time point); LPA50: N = 7, n = (1 min: 32, 2 min: 32, 3 min: 33, 6 min: 21, 9 min: 21, 12 min: 21, 15 min: 21, 18 min: 20). (D) Cell–cell contact size (A_c) at 12-min contact time for control doublets and doublets exposed to Bb (10 μM) or different amounts of LPA (5 to 50 nM) plotted against cortical tension (T_c) values measured by AFM. Error bars denote SD. For T_c measurements, N = 3, (single-cell Ctrl) n = 287, (single-cell Bb) n = 88, (single-cell LPA5) n = 142, and (single-cell LPA50) n = 294. For A_c measurements, N and n are the same as in C (time point 12 min). (E) A_c in doublets exposed to 50 nM LPA as a function of time in culture before and after adding 10 μM Bb to the culture medium. The gray area denotes SD (N = 3; n = 16). If not stated otherwise, N corresponds to the number of experiments, and n corresponds to the number of cell doublets.
cell–cell contact ruptures first at its linkage to the actomyosin cortex, suggesting that the deadhesion strength is limited by the cortical anchoring strength of the E-cadherin adhesion complex and thus, can be used to determine cytoskeletal anchoring of the E-cadherin adhesion complex by tension enhances cadherin clustering at progenitor cell doublets. Conversely, when progenitor cell doublets were exposed to Latrunculin (Latr), blocking actin polymerization and thus, destabilizing the cortical actin network, or Jasplakinolide (Jasp), promoting actin polymerization and network stability (16, 34). First, we analyzed how exposure to Latr and Jasp affects cortical anchoring of the E-cadherin complex by determining the deadhesion force of progenitor cell doublets as a readout of the cortical anchoring strength in the presence of Latr or Jasp. The deadhesion force of cell doublets was decreased when F-actin was destabilized in the presence of 300 nM Latr (Fig. 4B), suggesting that exposure to Latr reduces the cortical anchoring strength of the E-cadherin adhesion complex. Conversely, when progenitor cell doublets were exposed to 100 nM Jasp to stabilize the F-actin network, the apparent deadhesion force remained largely unchanged (Fig. 4B). However, multiple actin-containing tethers were typically observed between the separating cells (Fig. 4B), suggesting that contacts were not fully separated, which also prevented us from reliably determining contact stress under those conditions (SI Appendix, Fig. S6B). While these measurements did not reveal the complete separation force of Jasp-treated doublets, they show that the cortical anchoring strength of E-cadherin in the

![Fig. 2. Cortical tension triggers Ctnna1/F-actin clustering at the contact of cell doublets. (A) Rim to center intensity ratios of core components of the cadherin adhesion complex in doublets. The schematic in Left shows the rim and center regions of the cell–cell contact where the fluorescence mean intensities were measured in control doublets (red line) and doublets exposed to LPA 50 nM (blue line). Doublets were fixed and analyzed for each time point separately (1, 2, 5, and 10-min contact time). F-actin was visualized by Phalloidin with n = 3; (Ctrl) n = 5, 3, 3, and 3 (corresponding to the different contact times mentioned above); and (LPA) n = 6, 5, 4, and 5. Ctnna1 was visualized by immunohistochemistry with n = 3; (Ctrl) n = 5, 3, 5, and 5; and (LPA) n = 4, 3, 4, and 3. Myosin II was visualized by Myl12.1-eGFP expression with n = 1; (Ctrl) n = 9, 8, 7, and 8; and (LPA) n = 5, 5, 4, and 2. Shadowed areas denote SD. (B) Exemplary subdiffraction limited confocal images of Ctnna1 subcellular distribution at the cell–cell contact of control doublets (Left) and doublets exposed to 50 nM LPA (Right). Quantifications below show cluster mean intensity (Im) and volumes (V) of the 50 largest clusters of each cell–cell contact. Blue shadows in Right denote control conditions. (Ctrl) N = 1 and n = 3; (LPA) N = 1 and n = 5. (Scale bar: 5 μm.) (C) CLEM images with F-actin visualized by phalloidin–Alexa-488 (green). Right shows zoomed-in images of the boxed region in Left. (Scale bars: 1 μm.) (D) Left) Electron microscopy (EM) images of electron-dense clusters (outlined with green) at cell–cell contacts in control doublets (Upper) and doublets exposed to 50 nM LPA (Lower). (Scale bar: 200 nm.) (E) Representative Airy Scan images of F-actin (red) and Ctnna1 (green) colocalizing in clusters depicted by light blue arrowheads. (Scale bar: 20 nm.) (F) Representative Airy Scan images of F-actin (red) and Ctnna1 (green) colocalizing in clusters depicted by light blue arrowheads. (Scale bar: 20 nm.)
Fig. 3. Cortical tension reduces Ctnna1 turnover at the contact of cell doublets. (A) FRAP analysis of Ctnna1 turnover at the contact of progenitor cell doublets. Fluorescence images of Ctnna1 localization within the contact plane of control doublets (Upper) and doublets exposed to 50 nM LPA (Lower) in the last prebleach (Left) and first postbleach frames (Right). Boxed regions (Left) and arrows (Right) outline bleached regions. (Scale bar: 10 μm.) (B) Normalized intensity kymographs of Ctnna1 recovery after photobleaching at the cell–cell contact edge of control doublets and doublets exposed to 50 nM LPA. (Scale bars: horizontal, 6 s; vertical, 10 μm.) (C) Quantification of Ctnna1 fluorescence intensity within the bleached regions at the contact edge of control doublets (purple) and doublets exposed to 50 nM LPA (red) as a function of time after photobleaching. τ denotes the recovery characteristic timescale. Thin lines denote individual cases, and thick lines are averages. (Ctrl) N = 3 and n = 12; (LPA50) N = 2 and n = 7. Materials and Methods has details. If not stated otherwise, N corresponds to the number of experiments, and n corresponds to the number of cell doublets.

Cortical tension reduces Ctnna1 turnover at the contact of cell doublets. The presence of Jasp exceeds the resistance of the actin cytoskeleton to considerable deformation when pulled into tethers. Importantly, the formation of actin-filled tethers uponSeparation was not observed when increasing cytoskeletal anchoring (6) of the E-cadherin adhesion complex by LPA, presumably as a result of LPA, but not Jasp, also promoting cortical actomyosin tension resisting actin network deformation. To further test whether the cytoskeletal anchoring of Cdh2 is needed for LPA restricting contact expansion in doublets, we compared contact expansion in cell doublets expressing either Cdh2FL or Cdh2Δcyto. Strikingly, doublets expressing Cdh2Δcyto failed to show any recognizable changes in contact expansion when exposed to LPA (Fig. 5 and SI Appendix, Fig. S8), while doublets expressing Cdh2FL displayed similar changes in contact expansion and size upon LPA treatment (50 nM) to those found in control cell doublets (Fig. 5). Finally, to directly test whether cytoskeletal anchoring of the cadherin adhesion complex restricts contact expansion, we substituted endogenous E-cadherin with a version of Cdh2 where the cytoplasmic tail is replaced by the actin binding domain (ABD) of utrophin (Cdh2Δcyto-UtrABD). We found that contact expansion was significantly reduced in doublets expressing Cdh2Δcyto-UtrABD compared with those expressing Cdh2FL (Fig. 5), consistent with the notion that anchoring of the cadherin adhesion complex to the actin cytoskeleton inhibits contact expansion. Collectively, these findings strongly suggest that cortical tension restricts contact expansion by promoting the cytoskeletal anchoring of the cadherin adhesion complex.

Discussion

Our findings suggest a nonmonotonic relationship between cell cortex tension and cell–cell contact size. At low and moderate levels of cortical tension, contact size positively scales with tension, consistent with a simple model where the level of cortical tension pulling on the contact edge sets the ratio of interfacial tension at the cell–cell interface (where cortex tension is uniformly and strongly down-regulated) to the cell–medium interface, which again determines the size of the contact after force equilibrium between the contacting cells is reached. At high levels of cortical tension, however, the contact size inversely scales with the level of tension. Importantly, this does not argue against the general concept of force equilibrium between the two contacting cells.
contacting cells determining contact size (note that the LPA-
treated contacts still slowly expand up to the longest experi-
mentally still accessible contact times) (Fig. 1C) but rather,
suggests that the ability of the contact to expand might be force
sensitive, permitting fast contact expansion at low to moderate
levels of cortical tension while considerably slowing it down at
high tension levels.

We also show that cortical tension diminishes the ability of
the contact to expand by increasing E-cadherin anchoring to
the cortical actomyosin cytoskeleton and that this enhanced
anchoring leads to E-cadherin clustering and reduced turnover
of the E-cadherin adhesion complex at the contact. Previous
studies have provided evidence that unfolding of α-catenin
and stabilization of the actin network are involved in mediating
the effect of tension on E-cadherin clustering by promoting cyto-
skeletal anchoring of the cadherin adhesion complex (16, 20,
21, 36, 41, 42). Our observations suggest not only that cortical
actomyosin network stiffness as a result of contraction (43).
To what extent those alternative mechanisms might affect the
nonmonotonic relationship between cortical tension and contact
size, however, still needs to be explored.

Commonly, contact size is assumed to scale with contact
strength, and there are multiple cases where such a relationship
has been documented (6, 12, 44). Our findings of an inverse
relationship between contact size and strength point at the pos-
sibility that some processes might benefit from cell–cell contacts
being simultaneously small and strong. For instance, during col-
lective or chain cell migration, cells need to establish stable
contacts with their neighbors and at the same time, retain
contact-free interfaces that allow them to form protrusions
required for cell migration (45, 46). This points at the possibil-
ity that the nonmonotonic coregulation of contact size and
strength as a function of cortical tension might reflect specific
features of these contacts: at low to moderate levels of cortical
tension, contact size might be less important as contacts are
likely to be more transient and flexible. At high cortical tension,
in contrast, contacts are expected to be long lived and stable,
and thus, contact size will more permanently affect other pro-
cesses requiring cell–cell contact-free interfaces, such as cell
protrusion formation and cell matrix adhesion. Whether and
how the combined effect of contact size and strength affects
specific biological processes remain to be investigated.

Fig. 4. Enhanced cytoskeletal anchoring of the cadherin adhesion complex by cortical tension limits contact expansion in doublets. (A) Contact stress (σc) for control progenitor cell doublets and doublets exposed to 50 nM LPA after 10-min contact time. (Ctrl) N = 13 and total n = 17; (LPA50) N = 7 and total n = 12. **** P value = 3.6e-17 Student’s t test. (B) Separation force (Fp) for control doublets and doublets exposed to 300 nM Latr or 100 nM Jasp. Upper shows actin-rich tethers formed between the cells during separation in the presence of Jasp. (Ctrl) N = 3 and total n = 17; (Latr) N = 1 and total n = 8; (Jasp) N = 3 and total n = 13. (Ctrl–Jasp) Not significant (t test with Bonferroni correction for multiple comparisons). *** (Latr–Jasp) P value = 6.96e-4; **** (Ctrl–Latr) P value = 1.92e-5. (Scale bar: 5 μm.) (C) Rim to center mean intensity ratios for F-actin, myosin II, and Ctnna1 as a function of contact time (1, 2, 5, and 10 min) in the presence or absence of Jasp. F-actin was visualized by Phalloidin with N = 3; (Ctrl) n = 5, 3, 3, and 3 (corresponding to the different contact times mentioned above); (Latr) n = 3, 3, 4, and 3; and (Jasp) n = 3, 3, 4, and 3. Ctnna1 was visualized by immunohistochemistry with N = 1; (Ctrl) n = 5, 3, 5, and 5; and (Jasp) n = 3, 3, 3, and 3. Myosin II was visualized by Myl12.1-eGFP expression with N = 1; (Ctrl) n = 9, 8, 7, and 8; and (Jasp) n = 12, 9, 11, and 8. The shadowed areas denote SD. (D) Exemplary Airy Scan images of Ctnna1 subcellular localization at the contact edge of doublets exposed to Latr or Jasp. Quantifications below show cluster mean intensity (Im) and volumes (V) of the 50 largest clusters of each cell–cell contact. Arrows indicate distribution means. N = 1; (Latr) n = 7; and (Jasp) N = 5. (Scale bar: 5 μm.) (E) Cell–cell contact size (A) of control doublets and doublets exposed to Jasp or Latr as a function of contact time. Dotted lines connect contact formation (0 min) with the first time point when data were collected. The shadowed area denotes SD with (Ctrl) N and n as in Fig. 1C. (Jasp) N = 4, n = 3 min; 6, 6 min; 6, 9 min; 16, 12 min; 16, 15 min; 16, 18 min; 16; (Latr) N = 4, n = 3 min: 21, 6 min: 21, 9 min: 21, 12 min: 21, 15 min: 21, 18 min: 9. If not stated otherwise, N corresponds to the number of experiments, and n corresponds to the number of cell doublets.
mRNA and morpholino injections. Zebrafish embryos were induced to consist of ectoderm progenitors only by microinjection of one cell-stage embryos with 100 pg lefty1 messenger RNA (mRNA). To substitute endogenous E-cadherin with controlled amounts of full-length or truncated Cdh2, 8 ng e-cadherin/ldh1 morpholino (5'-TAAATCGACGTCCTTTCCTCAACG-3'; GeneTools) together with either 100 pg of cdh2FL-eGFP, 100 pg of cdh2Acyto-eGFP, or 100 pg of cdh2Acyto-UtrABD-eGFP mRNA (6, 54) was injected into one cell-stage embryos. To increase cortical tension, 5 pg of ca RhoA (28) and to visualize subcellular vinculin distribution, 150 pg of vinculinB-eGFP were injected into one cell–stage embryos. The cell membrane was labeled by injection of 50 to 100 pg membrane-bound red fluorescent protein. The covisualisation of Ctnna1 with vinculin was done by injecting 100 pg of ctnna1-mcherry (6) and 100 pg of vinculinB-eGFP. Synthetic mRNA was produced by using the SP6 mMessage mMachine kit (Ambion).

Immunostaining. Single progenitor cells were obtained as described in Cell Culture and allowed to seed on MatTek dishes for 30 min. Cells were then fixed with 4% paraformaldehyde (PFA; Sigma-Aldrich) in DMEM/F12 for 10 min at room temperature (RT), washed three times with phosphate buffered saline (PBS, Sigma-Aldrich) to remove the PFA, and incubated in phosphate buffered saline with 0.3% Triton x100 (PBT; Merck) for 30 min at RT to permeabilize the plasma membrane. PBT was subsequently replaced with blocking solution consisting of PBT with 1% dimethyl sulfoxide (Sigma-Aldrich) and 10% goat serum (Gibco) for 1 h at RT before primary antibodies diluted in blocking solution were added overnight at 4°C. Cells were washed three times with PBS at RT, and secondary antibodies diluted in blocking solution were added for 2 h at RT, followed by three washes with PBS at RT to remove the antibodies. The following primary antibodies were used: E-catenin (1:1,000; Sigma-Aldrich; ZCA01), Vinculin (1:100; Sigma-Aldrich; V45045), and E-cadherin [1:250; MPI-CBG (55)]. As secondary antibodies, fluorescently Alexa-488, Alexa-647, or Alexa-568-coupled secondary antibodies (1:250; Molecular Probes) were used. For labeling F-actin, Phalloidin (1:250; Invitrogen) was used. Immunolabeled cells were imaged on a Zeiss Observer inverted microscope equipped with a Spinning Disk System (see Imaging Acquisition).

Imaging Acquisition. Fluorescence imaging of cells was performed on the Spinning Disk System (Andor Revolution Imaging System; Yokogawa CSU-X1) placed on an inverted microscope (Axio Observer Z1 Zeiss) using a 40×1.2 numerical aperture (NA) water immersion lens (Zeiss) for time-lapse imaging and a 100×1.4 NA oil (Zeiss) for still images. The setup was equipped with a motorized piezo stage, stage heating, and objective heater units. Single- and dual-color fluorescence images were acquired using 488- and 561-nm laser lines with an optical slicing of 0.5 μm; 30-mW maximum laser output power was used, and images were acquired using an ionX DU-897-BV electron-multi-multiplying CCD (EMCCD) camera (Andor Technology) with exposure times set to 100 to 300 ms and frame rates between 1 and 2 s. Resulting image z stacks were retained using Imaris 9.1.2 (Bitplane) to obtain z stack images of cell–cell contacts between cell doublets. High-resolution images of endogenous E-cadherin/Cdh1, Ctnna1, and F-actin clusters were obtained using an inverted Zeiss LSM 880 confocal/“Airy Scan” using a 63×/1.4 NA oil (Zeiss), and image analysis was performed using ImageJ software (56).

Image Analysis. Visualization of Ctnna1 clusters was performed using deconvolved (Zeiss ZEN 2.3) z stacks of confocal images of cell doublets, with 50 to 100 images per stack and 0.19-μm z increment. Protein cluster volume and fluorescence intensity were detected and quantified following ref. 57, using Imaris 9.1.2 (Bitplane). VinculinB-GFP fluorescence intensity was quantified from z-stack images of cell–cell contacts by first selecting a plane in the stack, where the cell–cell contact appeared the largest (corresponding to the middle of the contact), and then measuring average intensity in two 3 × 3-pixel regions located at the edges of the cell–cell contact (rim intensity) and two in the middle of the contact line (center intensity). From that, rim to center ratio was calculated.

Materials and Methods

Fish Lines and Husbandry. Zebrafish maintenance was carried out as described (51). Embryos were grown at 28 to 31°C in embryo medium (EM) (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 20.33 mM MgSO4, and pH 7.5) (33). Embryos were collected. SDs are shown in SI Appendix, Fig. 3B. (Cdh2FL-eGFP, Cdh2Acyto-eGFP, and Cdh2Acyto-UtrABD-eGFP at the contact of doublets in the presence or absence of 50 mM LPA. (Scale bar: 5 μm.) (B) Cell–cell contact size (Ac) in doublets expressing either Cdh2FL (pink), Cdh2Acyto (blue), or Cdh2Acyto-UtrABD-eGFP (green and yellow) in the possession (dotted lines, yellow for Cdh2Acyto-UtrABD-eGFP) or absence (solid lines, green for Cdh2Acyto-UtrABD-eGFP) of 50 mM LPA. Dashed lines connect contact formation (0 min) with the first time point when data were collected. SDs are shown in SI Appendix, Fig. 3B. (Cdh2FL) N = 2, n = 3 (min: 3, 6 min: 8, 6 min: 8, 9 min: 12, 6 min: 8); (Cdh2Acyto) N = 2, n = 3 (min: 14, 6 min: 14, 9 min: 14, 12 min: 14); (Cdh2Acyto + LPAαβ) N = 2, n = 3 (min: 6, 9 min: 9, 12 min: 9); (Cdh2FL + LPAαβ) N = 2, n = 3 (min: 10, 6 min: 10, 9 min: 10, 12 min: 10); (Cdh2Acyto-UtrABD-eGFP) N = 3, n = 3 (min: 5, 6 min: 5, 9 min: 5, 12 min: 5); (Cdh2Acyto-UtrABD-eGFP + LPAαβ) N = 1, n = 3 (min: 3, 6 min: 3, 9 min: 3, 12 min: 3). If not stated otherwise, N corresponds to the number of experiments, and n corresponds to the number of cell doublets.

There is ample evidence for cadherin-mediated cell–cell contacts being mechanosensitive (47, 48). While the molecular and cellular mechanisms underlying this mechanosensitivity have been studied in detail (6, 49, 50), comparably little is yet known about its function in contact formation and maintenance. Our findings of an important function for mechanosensation at cadherin-mediated cell–cell contacts in controlling contact expansion identify a yet unknown role of mechanosensation in determining contact dynamics and strength.
FRAP. For each experiment, two progenitor cells from the Tg(cttna-citrine)12 già line were placed in a polymer well mounted on a MatTek dish using pipettes and allowed to form a contact. Subsequently, the cell–cell contact plane was aligned with the focal plane. After cells had been in contact for 10 ± 2 min, at least 10 frames of prebleach fluorescence intensity were recorded, and then, a 488 laser (300 pulses, 300 ms, dwell time 30 μs) was used to bleach a small rectangular area on the contact edge (region of interest) with the size of 8 × 8 pixels. Imaging of the bleached area was performed at 3.3 frames/s with an image size of 512 × 512 pixels for at least 60 s before the contact plane would typically drift out of the focal plane.

For each bleached contact, a polarization transformation was performed around the center of the contact for a prebleach image followed by a postbleach image series (300 ms from the recorded time series) using the ImageJ Polar Transformer plug-in (https://imagej.nih.gov/ij/plugins/polar-transformer.html).

In the transformed images, a line profile was taken along the contact edge (line thickness: nine pixels), and the radial span of the bleached region was recorded. Subsequent stacks were aligned into kymographs using a cross-correlation method to correct for cell doublet rotation. The intensity in the bleached region \(I_b(t) \) and that outside of it \(I_o(t) \) were then recorded over time.

To correct for acquisition photobleaching, the following transformations were applied to the data:

\[
\begin{align*}
 f(t) &= I_o(t)/I_b(t) \\
 g(t) &= 1 - f(t) \\
 h(t) &= g(t)/g(t-\tau)
\end{align*}
\]

where \(\tau = 0 \) corresponds to the first time point after bleaching. In this way, \(h(\tau) \) ~ 0 corresponds to full recovery of the signal. Single exponential recovery equations were then fitted using non-linear least squares to \(h(t) = e^{-t/\tau} \), where \(\tau \) is the characteristic recovery time. Fitting errors were calculated as squares of diagonal elements of the covariance matrix. In Fig. 3C, \(h(t) = 1 - 1/h(t) \) is shown to conform to typical representation of the FRAP data.

Rim to Center Ratio and Contact Size Analysis. A number of freshly formed cell doublets (typically one to four) expressing citrine-tagged CTnna1 were followed for up to 20 min (at which point the cells would typically drift from the field of view or divide) and imaged every 3 min on a spinning-disk microscope using 2 stacks. From each doublet, three substacks were cut out for every time point: one containing the cell–cell contact with thickness \(d \) and two stacks containing small cytosol volumes from each cell, from which the average cytosolic signal intensity \(I_s(x) \) was calculated. Subsequently, the cell–cell contact was projected on a plane (sum of the signal), and background signal \(I_b \) was subtracted from it. The contour of the contact was detected by applying a combination of thresholding (typically at the 1.5 to 2.5 times background intensity, visually assessed to contain whole cell–cell contacts) and subsequent dilation of the binarized image to account for uneven distribution of adhesion molecules at the cell–cell contact rim. An ellipse was then fitted to the contour using a set of custom-made scripts in order to calculate the surface area

\[
A \propto \pi a_b \times a_t
\]

where \(a_b \) and \(a_t \) denote ellipse semiaxes. Due to the dotted and discontinuous nature of the GFP signal in cells expressing Cdh2FPL, Cdh2Ca7o, and Cdh2Ca7o-UtrABD the automatic contact size measurement was not possible. In these cases, the diameter of each cell–cell contact was manually measured using ImageJ.

Integrated Intensity Analysis. Cell doublets were placed in polymer wells as described above, with cell–cell contacts selected that had the contact plane well aligned with the imaging plane. Background values were taken as average fluorescence intensity in a neighboring empty polymer well and substracted from each image. Cell–cell contacts were outlined, and the sum of the raw fluorescence intensity was calculated.

Dual-Pipette Assay. Single progenitor cells were prepared as described in Cell Culture. MatTek glass-bottom dishes were passivated by incubation in heat-activated 1% aqueous tannic acid in acetone at 60 °C overnight at RT. Samples were transferred to BEEM capsules (EMS; 70020-B) and allowed to form a contact. Subsequently, the cell contacts were outlined, and the sum of the background fluorescence intensity was recorded. Subsequent stacks were aligned into kymographs using a cross-correlation method to correct for cell doublet rotation. The intensity in the bleached region \(I_b(t) \) and that outside of it \(I_o(t) \) were then recorded over time. For each measurement, two healthy-looking cells were selected, put in contact, and left unperturbed for 10 min. Afterward, both cells were aspirated by pipettes, and the negative pressure in one of the pipettes (holding pipette) was adjusted to hold one cell firmly. The pressure in the other pipette was then increased in a stepwise fashion, and at each step, a separation attempt was performed, which involved moving the pulling pipette away from the holding pipette with a constant speed of 20 μm/s up to a distance of 20 μm. Pressure was recorded at each separation attempt, and subsequently, separation force \(F_s \) was calculated according to the equation

\[
F_s = F_p \left(P_s - P_o \right)/2
\]

where \(F_p \) is the pulling pipette radius, \(k = 1, 2, \ldots \) is the attempt number, and \(P_s - P_o \) are pressure values in the last unsuccessful and the first successful separation attempt, respectively. Experiments where more than six attempts were needed for separation were excluded from the study to avoid mechanosensitive stiffening of the separated cells.

Triplet Assay. Cell culture was prepared as described above. Linear cell triplets of 50 nM LPA-treated and untreated cells were arranged using micropipettes and allowed to expand their contacts for 5 to 8 min. Central cell radius was measured three times prior to separation. Flanking cells were then aspirated, and triplets were separated by pulling one of the pipettes away from the triplet. After separation, movies were recorded tracking the bulge formed on the central cell of the triplet in the plane of the former contact. Bulge radius measured by connecting the edges of the bulge by a straight line and taking half of the line length three times for each triplet. The ratio of the bulge radius to the central cell radius was then plotted, yielding the ratio of cortical tensions at the cell–medium to the cell–cell interfaces (6).

Transmission Electron Microscopy. For high-pressure freezing of cells, sapphire disks of 1.4 × 0.05 mm in diameter (Wohlenberg) were carbon coated to a thickness of 10 nm using the Leica EM ACE600 high-vacuum coating device (Leica Microsystems). The pattern of a Maitxform H15 finder grid (Science Services; LF 135-Ni) was evaporated onto the disk surface, and the coat was stabilized by baking overnight at 120 °C. After plasma cleaning for 2 min (Harrick plasma cleaner; radio frequency level medium), sapphire disks were immersed in liquid nitrogen at 4 °C for 5 min, and immersed in a 0.5 μM solution of Concavalin A (Sigma-Aldrich) and washed thoroughly in PBS. They were then placed into cup-shaped aluminum planchettes with cavity dimensions of 2-mm inner diameter and 100-μm indentation (Wohlenberg). Primary progenitor cells were prepared as described in Cell Culture above and plated onto the sapphires with cells from one embryo on average distributed over two disks. Cells were allowed to form spontaneous contacts and adhere to the disk surface for 10 min at RT. One microliter of 5% bovine serum albumin (BSA) (Sigma-Aldrich; A-9647) in medium equivilibrated to RT was then added as a space filler and antifreezing agent. The flat side of an aluminum planchette with a 300-μm indentation was used as a lid, and excess of solution was removed with filter paper. The sandwiched samples were high-pressure frozen instantaneously using the HPM-010 high-pressure freezing machine (Leica Microsystems), transferred to cryowells (Biozym; T311-2), and then stored in liquid nitrogen.

For high-pressure freezing, GFP-labeled cells were performed consecutively: 1) 1% tannic acid (Sigma-Aldrich; 403040) in nonhydroxy acetone (VWR; 8.22251) and 2) 1% osmium (EMS; 19134) plus 0.2% uranyl acetate (20% stock in methanol; AL-Labortechnik; 77870.2) in nonhydroxy acetone. Two-milliliter screw-cap Nalgene cryowells (Sigma-Aldrich; V4632) were used for substitution filled with 1 mL of mixture. The substitution mixtures were applied consecutively: 24 h of incubation in 0.1% tannic acid in acetone at ~82 °C, three 10-min washes in acetone at ~82 °C, 6 h of incubation in 1% osmium plus 0.2% uranyl acetate in acetone at ~82 °C, temperature rise of 15 °C/h to ~60 °C, 3 h of incubation at ~60 °C, temperature rise of 15 °C/h to ~30 °C, 3 h of incubation at ~30 °C, three 10-min washes in acetone at ~30 °C, and temperature rise of 15 °C/h to 4 °C. Sapphires were then removed from the aluminum planchettes and embedded in epoxy resin (Durcupan ACM; Fluka). Samples were consecutively infiltrated with a 3:1 mixture of acetone and Durcupan for 1 h at 4 °C: 1:1 acetone/Durcupan for 1.5 h at 4 °C, 1:3 acetone/Durcupan for 2 h at 4 °C, and more Durcupan overnigt at RT. Samples were transferred to BEEM capsules (EMS; 70020-B) filled with freshly prepared Durcupan and cured for 48 h at 60 °C in an oven. Serial ultrathin sections (70 to 80 nm) were cut using an UC7 ultramicrotome (Leica Microsystems) and collected onto formvar-coated copper slot grids. The sections were then contrasted for 10 min at RT and Leiden’s lead citrate for 2 min at RT.

Sections were examined in a Tecnai 10 transmission electron microscope (Thermo Fisher Scientific) operated at 80 kV and equipped with an EMSIS.
AFM. Cell cortex tension measurements on single cells were performed as described previously (29), with preparation of single cells as described in Cell Culture. For each experiment, individual cells from five blastoderm preparations were seeded on a tissue culture dish with a cover glass bottom (FluoroDish) containing DMEM/F12 either alone (control) or supplemented with 5 or 50 nM LPA or 10 μM Bb. Cells were probed using AFM (NanoWizard 4 BioScience; JPK Instruments) mounted on an inverted fluorescent microscope [Olympus IX71]. Commercial colloidal force probes (CP-qp-CONT-BSA-A; NanoAndMore USA) were passivated with heat-inactivated fetal calf serum (FCS; Invitrogen) for 1 h at RT to avoid nonspecific adhesion of the bead to the cells. Force distance curves were acquired using 500-pN contact force and 1-μm s⁻¹ approach/retreat velocity. Up to three curves with 10-s waiting time between successive curves were taken per cell to prevent any history effect.indentation was calculated from the tip displacement. To obtain the values, disks of 1 cm in diameter were cut from Aclar foil (thickness: 198 μm; TedPella; 10501-10) and placed in sterile Corning 12-well plates (Sigma-Aldrich; CLS 3737). Dissociated cells were plated on these disks (cells from one blastoderm per disk), and they were allowed to form spontaneous cell–cell contacts and adhere to the disk surface for 10 min at RT. Cells were then fixed with 4% PFA (Sigma-Aldrich; 158127) in PBS (pH 7.4) for 10 min at RT and washed three times with PBS. Subsequently, Phalloidin conjugated with AlexaFluor 633 (A12375 in PBS) was applied to the cells for 3 h at RT to label F-actin. In an additional round of fixation, 4% PFA plus 0.05% glutaraldehyde (Agar Scientific; R1020) in PBS was applied for 20 min at RT. After washing in PBS, 50 mM glycine (VWR; 24403.298) in PBS was used to block free aldehyde groups for 20 min at RT. After washing in PBS again, samples were dehydrated in graded ethanol (50, 70, 90, 96, 100%) and embedded in LR-White resin (Sigma-Aldrich; 62661). Samples were consecutively infiltrated with a 1:1 mixture of ethanol to LR-White, 1:2 ethanol/LR-White, and mere LR-White for 20 min each at 4 °C. Samples were transferred to gelatin capsules (Science Services; 70103), filled with fresh LR-White, capped tightly, and cured for 12 h at 50 °C in an oven. Sections were cut at 180 nm and mounted on 15-mm glass coverslips coated with a Tissue Capture Pen (EMS, 71314-10). Sections were then embedded in VectaShield (Vector Laboratories), coveslipped, and imaged under an LSM 880 microscope (Zeiss) with an oil immersion objective (40× NA 1.4) using an Airy Scan detector. Overview images were taken to facilitate localization of doublets on the section. After fluorescence imaging, coverslips were removed from glass slides, and sections were contrast enhanced by incubating them in 1% aqueous uranyl acetate for 10 min at RT and Reynolds’s lead citrate for 4 min at RT. Sections were then observed under a Merlin VP Compact FE-Scanning Electron Microscope (Zeiss) using an In-Lens (No. 2006-1670), a Mirror (No. M-16300-180), and an In-Lens (No. BSE). Images from details were first aligned to the overviews, where the whole cell–cell doublet was visible using the SIFT algorithm (58). Subsequently, fluorescent images were aligned with the EM overviews using the easy cell–CLEM method (59) implemented in iyo open-source software (40).

Cell Cortex Tension Measurements on Single Cells

Cell Cortex Tension Measurements on Single Cells

Reagents and Inhibitors. Fetal BSA (GIBCO), heat-passivated FBS (Invitrogen), heat-inactivated FCS (Invitrogen), and 1-oleoyl LPA (Tocris Bioscience) were used at the indicated concentrations (1, 5, 10, and 50 nM). Pharmacological inhibitors were used at the following concentrations: 10 μM active (−) or inactive (+) Bb (Tocris Bioscience), 0.3 μM Latrunculin-B (Sigma-Aldrich), 100 nM Jasp (Invitrogen), and 2 mg/mL Concanavalin A (Sigma-Aldrich).

Polymer Microwell Preparation. To facilitate imaging of the cell–cell contacts in the focal plane, a microwell setup was used as described (16). In order to achieve adhesion, the cell doublet will always remain in the correct position during the experiment, microwells with a range of well diameters (15 to 30 μm) and 50-μm depth were prepared. Polydimethylsiloxane (PDMS) stamps containing the negative of the desired pattern were gently pressed to droplets of My Polymer 134 (My Polymers) applied to Mattek glass-bottom petri dishes and then, ultraviolet (UV) curated (Thorlabs UV light-emitting diode 365 nm) in nitrogen atmosphere for up to 1 h, at which point the PDMS stamps were peeled off.

Statistical Analysis and Repeatability of Experiments. Statistical analyses of data were performed using the GraphPad Prism 6 software and the statsmol python package. Statistical details of experiments are reported in the figures. To test for normality of a sample, a D’Agostino and Pearson omnibus normality test was used. In case two samples were compared and normal distribution was assumed, an unpaired t test was performed, while the Mann–Whitney test was performed in case of not normally distributed data. In case more than two normally distributed samples were compared, an ANOVA was performed followed by Tukey’s multiple comparison test. Alternatively, the Student’s t test was performed with Bonferroni correction for multiple comparisons as stated in detail in the figures. If no normal distribution could be assumed, a Kruskal–Wallis test followed by Dunn’s multiple comparison test was used. At least more than three independent experiments (N) were performed unless stated otherwise in the figures. No statistical method used was used to predetermine sample size, the experiments were not randomized, and the investigators were not blinded to allocation during experiments and outcome assessment. P value of <0.05 was considered as significant.

Cell Biology

Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells

Slovakova et al.

Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells

1. C. Yoshida, M. Takeichi, Tertarocinoma cell adhesion: Identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell 28, 217–224 (1982).
2. S. Hong, K. K. Tran, J. Y. Sim, R. Roh-Johnson, M. Troyanovsky, Cell-cell junctions by switching its adhesive bond. J. Cell Biol. 192, 1073–1083 (2011).
3. L. Hinck, J. S. Nathke, J. Papkoff, W. J. Nelson, Dynamics of cadherin/catenin complex formation: Novel protein interactions and pathways of complex assembly. J. Cell Biol. 125, 1327–1340 (1994).
4. D. L. Rimm, E. R. Koslov, P. Kebriaei, C. D. Cianci, J. S. Morrow, Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl. Acad. Sci. U.S.A. 92, 8887–8891 (1995).
5. A. Nagafuchi, S. Ishihara, S. Tsukita, The roles of catenins in the cadherin-mediated cell adhesion: Functional analysis of E-cadherin-alpha-catenin fusion molecules. J. Cell Biol. 127, 235–245 (1994).
6. J.-L. Maitre et al., Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).
7. J.-L. Maitre, C.-P. Heisenberg, Three functions of cadherins in cell adhesion. Curr. Biol. 23, R626–R633 (2013).
8. M.-S. Steinberg, Dendritic adhesion in morphogenesis: A modern view. Curr. Opin. Genet. Dev. 17, 281–286 (2007).
9. R. Winklbauer, Cell adhesion strength from cortical tension—An integration of concepts. J. Cell Sci. 128, 3687–3693 (2015).
10. J. C. Stachowiak et al., Membrane bending by protein-protein crowding. Nat. Cell Biol. 14, 944–949 (2012).
11. T. D. Perez, M. Tamada, M. P. Sheetz, W. J. Nelson, Immediate-early signaling induced by E-cadherin engagement and adhesion. J. Biol. Chem. 283, 5014–5022 (2008).
12. S. Yamada, W. J. Nelson, Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J. Cell Biol. 178, 517–527 (2007).
13. P. Z. Anastasiadis et al., Inhibition of RhoA by p120 catenin. Proc. Natl. Acad. Sci. U.S.A. 103, 263–264 (2006).
14. N. Borghi et al., E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. U.S.A. 109, 12568–12573 (2012).
15. M. Roh-Johnson et al., Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335, 1232–1235 (2012).
16. W. Engl, B. Arasi, L. Y. Yap, J. P. Thiery, V. Viasnoff, Actin dynamics modulate mechanical sensitization of E-cadherin at adherens junctions. Nat. Cell Biol. 16, 587–594 (2014).
17. C. D. Buckley et al., Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346, 1245211 (2014).
18. J. Y. Sim et al., Spatial distribution of cell-cell and cell-ECM adhesions regulates force balance while main-taining E-cadherin molecular tension in cell pairs. Mol. Biol. Cell 26, 2456–2465 (2015).
19. J. M. Leerberg et al., Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. *Curr. Biol.* 24, 1698–1699 (2014).

20. W. A. Thomas et al., α-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength. *J. Biol. Chem.* 288, 4957–4969 (2013).

21. S. Yonemura, Y. Wada, T. Watanabe, A. Nagafuchi, M. Shibata, alpha-Catenin as a tension transducer that induces adherens junction development. *Nat. Cell Biol.* 12, 533–542 (2010).

22. R. Desai et al., Monomeric α-catenin links cadherin to the actin cytoskeleton. *Nat. Cell Biol.* 15, 261–273 (2013).

23. S. Hirano, N. Kimoto, Y. Shimoyama, S. Hirohashi, M. Takeichi, Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70, 293–310 (1992).

24. M. Yao et al., Force-dependent conformational switch of α-catenin controls vinculin binding. *Nat. Commun.* 5, 4525 (2014).

25. S. Huveeners et al., Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. *J. Cell Biol.* 196, 641–652 (2012).

26. Q. le Duc et al., Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. *J. Cell Biol.* 189, 1107–1115 (2010).

27. G. B. Mills, W. H. Moolenaar, The emerging role of lysophosphatidic acid in cancer. *Nat. Rev. Cancer* 3, 582–591 (2003).

28. A. Takesono et al., Solute carrier family 3 member 2 (Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubule networks in the zebrafish embryo. *Proc. Natl. Acad. Sci. U.S.A.* 109, 3371–3376 (2012).

29. M. Krieg et al., Tensile forces govern germ-layer organization in zebrafish. *Nat. Cell Biol.* 10, 429–436 (2008).

30. P. H. Puech, K. Poole, D. Knebel, D. J. Muller, A new technical approach to quantify cell-cell adhesion forces by AFM. *Ultramicroscopy* 106, 637–644 (2006).

31. E. Panther et al., The influence of lysophosphatidic acid on the functions of human dendritic cells. *J. Immunol.* 169, 4129–4135 (2002).

32. S. Rakshit, S. Sivasankar, Biomechanics of cell adhesion: How force regulates the lifetime of adhesive bonds at the single molecule level. *Phys. Chem. Chem. Phys.* 16, 2211–2223 (2014).

33. M. Cavaey, M. Rauzi, P. F. Lenne, T. Lecuit, A two-tiered mechanism for stabilization and immobilization of E-cadherin. *Nature* 453, 751–756 (2008).

34. B. A. Truong Quang, M. Mani, O. Markova, T. Lecuit, P. F. Lenne, Principles of E-cadherin supramolecular organization in vivo. *Curr. Biol.* 23, 2197–2207 (2013).

35. G. R. Kale et al., Distinct contributions of tensile and shear stress on E-cadherin levels during morphogenesis. *Nat. Commun.* 9, 5021 (2018).

36. S. Dufour, R.-M. Mège, J. P. Thiery, α-catenin, vinculin, and F-actin in strengthening E-cadherin cell-cell adhesions and mechanosensing. *Cell Adhes. Migr.* 7, 345–350 (2013).

37. J. M. Bianchini et al., Reevaluating α-catenin monomer and homodimer functions by characterizing E-cadherin/α-catenin chimeras. *J. Cell Biol.* 210, 1065–1074 (2015).

38. G. Salbreux, G. Charras, E. Paluch, Actin cortex mechanics and cellular morphogenesis. *Trends Cell Biol.* 22, 536–545 (2012).

39. M. Behrndt et al., Forces driving epithelial spreading in zebrafish gastrulation. *Science* 338, 257–260 (2012).

40. C. S. Chen et al., α-Catenin-mediated cadherin clustering couples cadherin and actin dynamics. *J. Cell Biol.* 210, 647–661 (2015).

41. C. Bertocchi et al., Nanoscale architecture of cadherin-based cell adhesions. *Nat. Cell Biol.* 19, 28–37 (2017).

42. S. Hong, R. B. Troyanovsky, S. M. Troyanovsky, Binding to F-actin guides cadherin cluster assembly, stability, and movement. *J. Cell Biol.* 201, 131–143 (2013).

43. G. H. Koenderink et al., An active biopolymer network controlled by molecular motors. *Proc. Natl. Acad. Sci. U.S.A.* 106, 15192–15197 (2009).

44. C. Bertet, L. Sulak, T. Lecuit, Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. *Nature* 429, 667–671 (2004).

45. C. Collins, W. J. Nelson, Running with neighbors: Coordinating cell migration and cell-cell adhesion. *Curr. Opin. Cell Biol.* 36, 62–70 (2015).

46. V. Maruthamuthu, M. L. Gardel, Protrusive activity guides changes in cell-cell tension during epithelial cell scattering. *Biophys. J.* 107, 555–563 (2014).

47. B. D. Hoffman, A. S. Yap, Towards a dynamic understanding of cadherin-based mechanobiology. *Trends Cell Biol.* 25, 803–814 (2015).

48. D. E. Leckband, J. de Rooij, Cadherin adhesion and mechanotransduction. *Annu. Rev. Cell Dev. Biol.* 30, 291–315 (2014).

49. A. S. Yap, K. Duszcz, V. Vissiaeff, Mechanosensing and mechanotransduction at cell-cell junctions. *Cold Spring Harb. Perspect. Biol.* 10, a028761 (2018).

50. D. Pinheiro, Y. Bellac, Mechanical force-driven adherens junction remodeling and epithelial dynamics. *Dev. Cell* 47, 391 (2018).

51. M. Westerfield, *The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish* (Dario Rerio) (University of Oregon Press, 2007).

52. C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, T. F. Schilling, Stages of embryonic development of the zebrafish. *Dev. Dyn.* 203, 253–310 (1995).

53. C. P. Choe et al., Wnt-dependent epithelial transitions drive pharyngeal pouch formation. *Dev. Cell* 24, 296–309 (2013).

54. Y. S. Chu et al., Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. *J. Cell Biol.* 167, 1183–1194 (2004).

55. Y. Arboleda-Estudillo et al., Movement directionality in collective migration of germ layer progenitors. *Curr. Biol.* 20, 161–169 (2010).

56. C. T. Rueden et al., Image3d: Image for the next generation of scientific image data. *BMC Bioinformatics* 18, 529 (2017).

57. D. Banovic et al., Drosophila neurulin1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. *Neuron* 66, 724–738 (2010).

58. D. G. Lowe, Distinctive image features from scale-invariant keypoints. *Int. J. Comput. Vis.* 60, 91–110 (2004).

59. X. Heiligenstein, P. Paul-Gilloteaux, M. Belle, G. Raposo, J. Salamero, eC-CLEM: Flexible multidimensional registration software for correlative microscopies with refined accuracy mapping. *Microsc. Microanal.* 23, 360–361 (2017).