Improving Accuracy of Goodness-of-fit Test.

Kris Duszak and Jan Vrbik
Brock University
October 28, 2014

Abstract

It is well known that the approximate distribution of the usual test statistic of a goodness-of-fit test is chi-square, with degrees of freedom equal to the number of categories minus 1 (assuming that no parameters are to be estimated – something we do throughout this article). Here we show how to improve this approximation by including two correction terms, each of them inversely proportional to the total number of observations.

1 Goodness-of-fit Test: A Brief Review

To test whether a random independent sample of size n comes from a specific distribution can be done by dividing all possible outcomes of the corresponding random variable (say U) into k distinct regions (called categories) so that these have similar probabilities of happening. The sample of n values of U is then converted into the corresponding observed frequencies, one for each category (we denote these X_1, X_2, \ldots, X_k), equivalent to sampling a multinomial distribution with probabilities p_1, p_2, \ldots, p_k. (computed, for each category, based on the original distribution). The new random variables X_i have expected values given by $n \cdot p_i$ (where i goes from 1 to k) and variance-covariance matrix given by

$$n \cdot (\mathbb{P} - \mathbf{p} \mathbf{p}^T)$$

where \mathbf{p} is a column vector with k elements (the individual p_i probabilities), and \mathbb{P} is similarly an $k \times k$ diagonal matrix, with the same p_i probabilities on its main diagonal.

The usual test statistic is

$$T = \sum_{i=1}^{k} \frac{(X_i - n \cdot p_i)^2}{n \cdot p_i} = \sum_{i=1}^{k} Y_i^2$$

(1)

where

$$Y_i = \frac{X_i - n \cdot p_i}{\sqrt{n \cdot p_i}}$$

(2)
equivalent to (in its vector form)

$$ Y = \frac{\mathbb{P}^{-1/2}(X - n \cdot p)}{\sqrt{n}} $$

where X is a column vector of the $X_1, X_2, ..., X_k$ observations.

The Y_i's have a mean of zero and their variance-covariance matrix is

$$ V = \mathbb{P}^{-1/2}(p - p^T)\mathbb{P}^{-1/2} = I - p^{1/2}(p^{1/2})^T $$

where I is the $k \times k$ unit matrix and $p^{1/2}$ denotes a column vector with elements equal to $p_1^{1/2}, p_2^{1/2}, ..., p_k^{1/2}$. The matrix (4) is idempotent, since

$$ p^{1/2}(p^{1/2})^T p^{1/2}(p^{1/2})^T = p^{1/2}(p^{1/2})^T $$

and its trace is $k - 1$, since

$$ \text{Tr} \left[p^{1/2}(p^{1/2})^T \right] = \text{Tr} \left[(p^{1/2})^T p^{1/2} \right] = \sum_{i=1}^{k} p_i = 1. $$

Because the k-dimensional distribution of (3) tends (as $n \to \infty$) to a Normal distribution with zero means and variance-covariance matrix of (4), X must similarly converge to the χ^2_{k-1} distribution (assuming that U does have the hypothesized distribution). A substantial disagreement between the observed frequencies X_i and their expected values $n \cdot p_i$ will be reflected by the test statistic T exceeding the (right-hand-tail) critical value of χ^2_{k-1}, leading to a rejection of the null hypothesis.

Since the sample size is always finite, the critical value (computed under the assumption that $n \to \infty$) with have an error roughly proportional to $\frac{1}{n}$. To remove this error is an objective of this article.

2 $\frac{1}{n}$ proportional correction

A small modification of the results of (4) indicate that a substantially better approximation (which removes the $\frac{1}{n}$-proportional error) to the probability density function (PDF) of the distribution of T (under the null hypothesis) is

$$ \chi^2_{k-1}(t) \cdot \left(1 + B \cdot \left(\frac{t^2}{(k-1)(k+1)} - \frac{2t}{k-1} + 1 \right) + C \cdot \left(\frac{t^3}{(k-1)(k+1)(k+3)} - \frac{3t^2}{(k-1)(k+1)} + \frac{3t}{k-1} - 1 \right) \right) $$

where $\chi^2_{k-1}(t)$ is the PDF of the regular chi-square distribution and

$$ B = \frac{1}{8} \sum_{i,j=1}^{k} \kappa_{i,j} $$
\[C = \frac{1}{8} \sum_{i,j,\ell=1}^{k} \kappa_{i,j,\ell} \kappa_{i,\ell,\ell} + \frac{1}{12} \sum_{i,j,\ell=1}^{k} \kappa_{i,j,\ell}^2 \]

(7)

where \(\kappa_{i,j,\ell} \) and \(\kappa_{i,j,\ell,h} \) are cumulants of the (multivariate) \(Y \) distribution. They can be found easily, based on the logarithm of the joint moment generating function of (2), namely

\[M = n \cdot \ln \left(\sum_{m=1}^{k} p_m \exp \left(\frac{t_m}{\sqrt{n} \cdot p_m} \right) \right) - \sum_{m=1}^{k} t_m \sqrt{n} \cdot p_m \]

by differentiating \(M \) with respect to \(t_i, t_j \) and \(t_\ell \) to get \(\kappa_{i,j,\ell} \) (and the extra \(t_h \) to get \(\kappa_{i,j,\ell} \)), followed by setting all \(t_m = 0 \).

This yields

\[\kappa_{i,i,i} = \frac{(1 - p_i)(1 - 2p_j)}{\sqrt{n} \cdot p_i} \]
\[\kappa_{i,i,j} = -\frac{\sqrt{p_j}(1 - 2p_i)}{\sqrt{n}} \]
\[\kappa_{i,j,\ell} = \frac{2\sqrt{p_i \cdot p_j \cdot p_\ell}}{\sqrt{n}} \]

and

\[\kappa_{i,i,i,i} = \frac{(1 - p_i)(1 - 6p_i + 6p_i^2)}{n \cdot p_i} = \frac{1}{n} \left(\frac{1}{p_i} - 7 + 12p_i - 6p_i^2 \right) \]
\[\kappa_{i,i,j,j} = \frac{2p_i + 2p_j - 6p_i \cdot p_j - 1}{n} \]

Using these formulas, we can proceed to compute

\[B = \frac{1}{8} \sum_{i=1}^{k} \kappa_{i,i,i,i} + \frac{1}{8} \sum_{i \neq j}^{k} \kappa_{i,i,j,j} = \]

\[\frac{1}{8n} \left(Q - 7k + 12s_1 - 6(s_2^2 - 2s_2) + 2(k - 1)s_1 + 2(k - 1)s_1 - 12s_2 - k(k - 1) \right) \]

where

\[Q \equiv \sum_{i=1}^{k} \frac{1}{p_i} \]

and \(s_1 \) and \(s_2 \) are the first two elementary symmetric polynomials in \(p_i \), i.e.

\[s_1 = \sum_{i=1}^{k} p_i \]
\[s_2 = \sum_{i<j}^{k} p_i \cdot p_j \]
(note that $\sum_{i=1}^{k} p_i^2 = s_1^2 - 2s_2$). Realizing that $s_1 = 1$, the expression for B can be simplified to

$$B = \frac{1}{8n} \left(Q - k^2 - 2k + 2\right).$$

When choosing the categories in a manner which makes all p_i equal to $1/k$, the last expression reduces to

$$-\frac{k - 1}{4n}$$

Similarly,

$$C = \frac{1}{8} \sum_{i=1}^{k} \kappa_{i,i,i}^2 + \frac{1}{4} \sum_{i \neq j}^{k} \kappa_{i,i,i} \kappa_{i,j,j} + \frac{1}{8} \sum_{i \neq j}^{k} \kappa_{i,j,j}^2 + \frac{1}{8} \sum_{i \neq j \neq \ell}^{k} \kappa_{i,j,j} \kappa_{i,\ell,\ell}
\quad + \frac{1}{12} \sum_{i=1}^{k} \kappa_{i,i,i}^2 + \frac{1}{4} \sum_{i \neq j}^{k} \kappa_{i,i,i}^2 + \frac{1}{12} \sum_{i \neq j \neq \ell}^{k} \kappa_{i,i,i}^2
\quad = \frac{5}{24n} \sum_{i=1}^{k} \frac{(1 - p_i)^2(2p_i - 2p_i)^2}{p_i} - \frac{1}{4n} \sum_{i \neq j}^{k} (1 - p_i)(1 - p_i)(1 - p_j)
\quad + \frac{3}{8n} \sum_{i \neq j}^{k} p_j(1 - 2p_i)^2 + \frac{1}{8n} \sum_{i \neq j \neq \ell}^{k} p_i(1 - 2p_j)(1 - 2p_\ell) + \frac{1}{3n} \sum_{i \neq j \neq \ell}^{k} p_i p_j p_\ell
\quad = \frac{5}{24n} \sum_{i=1}^{k} \left(\frac{1}{p_i} - 6 + 13p_i - 12p_i^2 + 4p_i^3 \right)
\quad - \frac{1}{4n} \sum_{i=1}^{k} (k(1 - 3p_i + 2p_i^2) - 3 + 11p_i - 12p_i^2 + 4p_i^3)
\quad + \frac{9}{24n} \sum_{i=1}^{k} (1 - 5p_i + 8p_i^2 - 4p_i^3) + \frac{1}{8n} \sum_{i \neq j \neq \ell}^{k} p_i(1 - 2p_j - 2p_\ell) + \frac{5}{6n} \sum_{i \neq j \neq \ell}^{k} p_i p_j p_\ell
\quad = \frac{1}{24n} \left(5Q - 21k + 20 + 12(s_2^2 - 2s_2) - 16(s_1^3 - 3s_1 s_2 + 3s_3)\right)
\quad - \frac{1}{4n} \left(k(1 - 3 - 2(s_2^2 - 2s_2)) - 3k + 11 - 12(s_1^3 - 2s_2^2) + 4(s_1^3 - 3s_1 s_2 + 3s_3)\right)
\quad + \frac{1}{8n} \left((k - 2)(k - 1) - 2(k - 2)2s_2 - 2(k - 2)2s_2\right) + \frac{5}{n} s_3
\quad = \frac{1}{24n} \left(5(Q - k^2) + 2(k - 1)(k - 2)\right)
$$

where

$$s_3 = \sum_{i<j<\ell} p_i \cdot p_j \cdot p_\ell$$

Note that

$$\sum_{i=1}^{k} p_i^3 = s_1^3 - 3s_1 s_2 + 3s_3$$
and that the final formula reduces to
\[C = \frac{(k - 1)(k - 2)}{12n} \]
in the case of all categories being equally likely.

The corresponding distribution function is given by
\[F_T(u) = \int_0^u \chi^2_{k-1}(t) \, dt - 2\chi^2_{k-1}(u) \cdot \frac{u}{k-1} \cdot \left[B \cdot \left(\frac{u}{k+1} - 1 \right) + C \cdot \left(\frac{u^2}{(k+1)(k+3)} - \frac{2u}{k+1} + 1 \right) \right] \]
which can be used for a substantially more accurate computation of critical values of \(T \) (by setting \(F_T(u) = 1 - \alpha \) and solving for \(u \)).

3 Monte Carlo Simulation

We investigate the improvement achieved by this correction by selecting (rather arbitrarily) the value of \(k \) (from the most common 5 to 15 range), the individual components of \(p \), and the sample size \(n \) (with a particular interest in small values). Then we generate a million of such samples and, for each of these, compute the value of \(T \). The resulting empirical (yet ‘nearly exact’) distribution is summarized by a histogram, which is then compared with the \(\chi^2_{k-1} \) approximation, first without and then with the proposed correction of (5). Marginally we mention that, when \(p_i = \frac{1}{k} \) for all \(i \) (the uniform case), the set of potential values of \(T \) becomes rather small (the values range from \(k - n \) to \(n(k - 1) \) in steps of \(2k/n \)). For large enough \(n \), the shape of the exact distribution still follows the \(\chi^2_{k-1} \) curve, but in a correspondingly ‘discrete’ manner. Our examples tend to avoid this complication by making the \(p_i \) values sufficiently distinct from each other; the exact \(T \) distribution remains discrete, but the number of its possible values increases so dramatically that this is no longer an issue (unless \(n \) is extremely small, the distribution can be considered, for any practical purposes, to be continuous).

The simulation reveals that, when \(k = 5 \), the essential discreteness of the the \(T \) distribution remains ‘visible’ (even with a non-uniform choice of \(p_i \)'s) unless \(n \) is at least 20. Such a relatively large value of \(n \) (an average of 4 per category) results in only a marginal improvement achieved by our correction – see Fig. 1, with the blue curve being the basic \(\chi^2_{k-1} \) approximation and the red one representing (5).
When \(k = 10 \) and the \(p \) values are reasonable ‘diverse’ (those of our example range from 0.033 to 0.166), the discreteness of the exact \(T \) distribution is less of a problem (even though still showing – see Fig. 2), even for \(n \) as low as 12 (our choice). The new formula already proves to be a definite improvement over the basic approximation:

Finally, when \(k = 15 \), the distribution becomes almost perfectly smooth (eliminating all traces of discreteness – see Fig. 3) even for \(n = 10 \). Unfortu-
nately, this sample size is now so small that it is our approximation itself which starts showing a visible error (for this value of k, this happens whenever the absolute value of either B or C exceeds 2.25; in this example $B = 0.31$ and $C = 2.62$). The general rule of thumb is that neither B nor C should exceed 0.15k (beyond that, the approximation may become increasingly nonsensical).

![Figure 3.](image)

To demonstrate the true superiority of the new approximation, we now use $k = 15$ and $n = 15$, with the individual probabilities ranging from 0.028 to 0.116 (Fig. 4). Since now $B = 0.085$ and $C = 1.54$, the new approximation (unlike the old one, which is clearly off the mark) represents a decent agreement with the ‘exact’ answer.
4 Conclusion

Using the χ^2 approximation to perform the usual goodness-of-fit test, the number of observations should be as large as possible; when this becomes impractical (e.g. each observation is very costly), one can still achieve good accuracy by:

1. increasing the number of categories (one should aim for the $10-15$ range); this inevitably results in reducing the average number of observations per category – in spite of that, the test becomes more accurate,

2. choosing categories in such a way that their individual probabilities are all distinct from each other (avoiding the $p_i = 1/k$ situation) but, at the same time, not letting any one of them become too small (this would increase, often dramatically, the value of each B and C of our correction – see the next item),

3. using the $1/n$ proportional correction of (9), but monitoring the values of B and C (neither of them should be bigger, in absolute value, than $0.15k$).

References

[1] Vrbik J: “Accurate Confidence Regions based on MLEs” Advances and Applications in Statistics 32 #1 (2013) 33-56