The Effect of Warp Tension on the Colour of Jacquard Fabric Made with Different Weaves Structures

A Karnoub1, N Kadi1,2, O Holmudd, J Peterson and M Skrifvars2

1 Faculty of Mechanical Engineering, University of Aleppo, Syria
2 Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Sweden

Abstract. The aims of this paper is to demonstrate the effect of warp tension on fabric colour for several types of weaves structures, and found a relationship between them. The image analyse technique used to determine the proportion of yarns colour appearance, the advantage of this techniques is the rapidity and reliability. The woven fabric samples are consisting of a polyester warp yarn with continuous filaments and density of 33 end/cm, a polypropylene weft yarn with a density of 24 pick/cm, and the warp tension ranged between 12-22 cN/tex. The experimental results demonstrate the effect of the warp tension on the colour of fabric, and this effect is related to several factors, where the large proportion of warp appearance leads to larger effect on fabric colour. The difference in the value of colour differences ΔE_{cmc} is larger is in the range 16 to 20 cN/tex of warp tension. Using statistical methods, a mathematical model to calculate the amount of the colour difference ΔE_{cmc} caused by the change in warp tension had been proposed.

1. Introduction
Designing of fabrics require using a set of coloured yarns, which in combination give a wanted visual appearance. This is done by combining the yarns in the weave, either by showing the colour or hiding a warp above the weft or vice versa \cite{1}\cite{2}.

The use of weft and warp coloured yarns with weave structure allow to development fabric designs, by appear the desired colour in one area of the design, and we can obtain more large of colours effects by changing the fabric constructional parameters \cite{3} \cite{4} \cite{5}, this constructional parameters of fabric can influence even more the fabric reflect \cite{6}.

The relation between colour and weave structures have been analysed in several paper, The effect of small waves repeat in the derivation of colours is analysed by Dawson \cite{7}, where the sizes of the smallest sets of yam colour sequences that cover all possibilities are determined, and all effects with plain weave identified.

Dimitrovski and Gabrijelicc \cite{8} gave a mathematical relationship to determine the proportion of yarn colour appearance in any weave structure.

The warp tension in the weaving loom have been the subject of many investigation \cite{9} \cite{10}\cite{11}\cite{12}\cite{13} to increase loom producing by decrease cutting of warp yarn, by suitable warp tension value, and to improve the fabric quality.
Musa Kılıç and Ayşe Okur [15] were investigate the relationships between yarn diameter measured and yarn strength, and they gave a statistically relationships between yarn diameter variation and strength variation.

The image analysis techniques used for the identification of textile products [15][16], where the relation between weave diagram and its diffraction pattern established using digital image processing technology.

A different process techniques had used to analyses the pictures or images that have been converted to numerical form. The advantage of image analysis techniques is rapid and reliable instrumental method for measurement, analysis, and real time dynamic controls [17]. This research aims to demonstrate the effect of warp tension on fabric colour for several types of weaves structures, and found a relationship between them. And determine the proportion of yarns colour appearance using the digital image analysis.

2. Materials and methods

2.1. Specimens preparing
The studies woven fabric samples are consisting of a polyester warp yarn with continuous filaments and density of 33 end/cm, a polypropylene weft yarn with a density of 24 pick/cm. The warp tension ranged between 12-22 cN/tex. The specimen fabrication had done on the loom model (Alpha) from the production company (Somet) Italy, Figure 1. The tests of specimen have been done after the production without any finishing process.

![Figure 1. used loom.](image)

2.2. Digital image analysis to determine the proportion of yarns colour appearance
To determine the proportion of yarn appearance from the weft and from warp, we use the image analysis program. Were in the first steps a fabric images taken using optical microscope, this image was first compressed from 256 to 16 and filtering in the pre-processing.

The used yarns diameters are determine by a microscope, Figure 2. These values will be introduced in the program with the weave structure to detect the yarn area; the component analysis determines the proportion of warp yarns colour.
Weave structure	Yarn colours	Structure weave
S1/4	Satin 1/4, Warp colour is black, weft colour is white	
S1/4e1, S1/4e2	Satin 1/4 1st weft, Satin 1/4 2nd weft, Warp colour is black, 1st weft colour is white, 2nd weft colour is golden	
S4/1a1, S4/1a2	Satin 4/1 1st warp, Satin 4/1 2nd warp, 1st warp colour is white, 2nd warp colour is black, weft colour is black	
S1/9e1, S9/1a2	Satin 1/9 1st weft, Satin 9/1 2nd warp, Warp colour is black, 1st weft colour is white, 2nd weft colour is black	
S7/1	Satin 7/1, Warp colour is black, weft colour is white	
S6/2	Satin 6/2, Warp colour is black, weft colour is white	
T7/1	Twill 7/1, Warp colour is black, weft colour is white	
Figure 2. Diameters of used yarns.

2.3. Measure the colour of the samples
A spectrophotometer device was used to measure the colour of the samples, by measuring the difference between the previous values of the reference sample and the location of the sample conducted by the measurement process we get the colour differences ΔE_{cmc}.
When the colour differences $\Delta E_{\text{cmc}}<1$ the difference of colour cannot be detected visually by the eye.

Figure 3. Flowchart of yarns colour proportion determined method.
3. Results and discussion

From Figure 4 it can be observed that there is a relationship between the warp tension and the colour differences ΔE_{cmc} value for different types of weave structures, the difference in the value of colour differences ΔE_{cmc} is larger in the range 16 to 20 cN/tex of warp tension.

![Figure 4. Relationship between warp tension and ΔE_{cmc} value for different structure.](image)

In the zone of 16 to 20 cN/tex of warp tension the relations between warp tension and the colour differences ΔE_{cmc} are approximately linear, Figure 5.

![Figure 5. Relationship between warp tension and ΔE_{cmc} value for different structure in the range 16 to 20 cN/tex of warp tension.](image)
The first parameter of fabric structure is the warp appearance, and from the digital image analysis we demonstrated the relationship between warp appearance proportions and different weaves structure, Figure 5.

![Figure 5. Relationship between warp appearance proportion and different weaves structure.](image)

The linear relations between warp tension and the colour differences ΔE_{cmc} and the value of represented in the table 2 for each weave structure used in the range 16 to 20 cN/tex of warp tension with value of warp appearance proportion, from this table we observe a relation between the constants in the linear equations and the warp appearance.

Table 2. Relationship between warp tension T_a and ΔE_{cmc} for a different wave structure in the range 16 to 20 cN/tex of warp tension for different wave structure.

Weave structure	Warp appearance %	Relationship between warp tension T_a and ΔE_{cmc}
S1/4	17.9	$\Delta E_{\text{cmc}} = 0.0350 T_a + 0.0533$
S1/4e1, S1/4e2	20.8	$\Delta E_{\text{cmc}} = 0.0763 T_a - 0.4658$
S4/1a1, S4/1a2	79.8	$\Delta E_{\text{cmc}} = 0.6225 T_a - 9.1217$
S1/9e1, S9/1a2	35.2	$\Delta E_{\text{cmc}} = 0.0888 T_a - 0.2075$
S7/1	87.5	$\Delta E_{\text{cmc}} = 0.7200 T_a - 10.66$
S6/2	75	$\Delta E_{\text{cmc}} = 0.5325 T_a - 7.6983$
T7/1	87.5	$\Delta E_{\text{cmc}} = 0.7150 T_a - 10.457$

From table 2, and using statistical methods, the mathematical model to calculate the amount of the colour difference ΔE_{cmc} caused by the change warp tension in the in the range 16 to 20 cN/tex, is the following:
\[\Delta E_{\text{cmc}} = (\beta \cdot W_a - \mu) \cdot T_a - \lambda \cdot W_a + \eta \]

Where:

- \(\Delta E_{\text{cmc}} \): Colour differences,
- \(W_a \): Warp appearance,
- \(T_a \): Warp tension [cN/tex].

Table 3. value of mathematical model constants

\(\beta \)	\(\mu \)	\(\lambda \)	\(\eta \)
0.01	0.172	0.15	3.56

4. Conclusions

Warp tension has an effect on the colour of fabric, and this effect is related to several factors. The large proportion of warp appearance leads to larger effect on fabric colour.

The difference in the value of the colour differences \(\Delta E_{\text{cmc}} \) is larger in the range 16 to 20 cN/tex of warp tension.

Using the digital image analysis we demonstrated the relationship between warp appearance proportions and different weaves structure.

Using statistical methods, a mathematical model to calculate the amount of the colour difference \(\Delta E_{\text{cmc}} \) caused by the change in warp tension had been proposed.

References

1. Becker J, 2009 *Pattern and Loom* Second edition (Donald B. Wagner)
2. Hayavadana J 2015 *Woven Fabric Structure Design and Product Planning* First edition (WPI Woodhead Publishing India)
3. Mathur K and Seyam A 2011 Color and Weave Relationship in Woven Fabrics *Advances in Modern Woven Fabrics Technology* (S Vassiliadis)
4. Dimitrovski K and Gabrijelcic H 2004 Correction of Colour Values of Woven Fabrics Using Changes to Constructional Parameters *AUTEX Research Journal* vol 4 (ARJ) pp 558-567
5. Osaki K 2003 High-Quality Colour Reproduction on Jacquard Silk Textile From Digital Colour Images *AUTEX Research Journal* vol 3 (ARJ) pp 173-179
6. Akgun M, Becerir B and Alpay H R 2014 Effect of Fabric Layers on the Relationship between Fabric Constructional Parameters and Percentage Reflectance Values of Polyester Fabrics *Journal of Textiles* vol 2014 (Hindawi) pp 1-13
7. Dawson R M 2002 Colour and Weave Effects with some Small Weave Repeat Sizes *Textile Research Journal* vol. 72 (SAGE Journals) pp 854-863
8. Dimitrovski K and Gabrijelcic H 2001 Calculating and Measuring the Fabric Colour for Fabrics Woven from Yarns Dyed in Different Ways vol 50 (*Tekstilec*) pp 178-193
9. Karnoub A, Kadi N and Azari Z 2017 Using the Expert System to Analyse Loom Performance *The Journal of The Textile Institute* vol 108 (Taylor and Francis Online) pp 203-215
10. Neogi S K 2016 Role of Yarn Tension in weaving *Textile Research Journal* (Woodhead Publishing India In Textiles)
11. Azari Z, Kadi N and Karnoub A 2015 The Effect of Warp Tension on Jacquard Fabric Specification *Journal of Textile and Fashion Technology* vol 1 JTFTJUN20152 pp 72-20.
12. Karnoub A, Kadi N, Azari Z, and Bakeer ES 2015 Find the Suitable Warp Tension to get the Best Resistance for Jacquard Fabric *Journal of Textile Science and Engineering* vol 5 (OMICS International)
[13] Kadi N and Karnoub A 2015 The Effect of Warp and Weft Variables on Fabric’s Shrinkage Ratio *Journal of Textile Science and Engineering* vol 5 (OMICS International)

[14] Kılıç M and Okur A 2006 Relationships between Yarn Diameter / Diameter Variation and Strength *Fibers and Textiles in Eastern Europe* vol 14 (Poland: IBWch) pp 84-87

[15] Drobina R and Machnio M S 2006 Application of the Image Analysis Technique for Textile Identification *AUTEX Research Journal* vol 6 no 1 pp 40-48

[16] Zhang1 J, Xin and Wu X 2013 A Review of Fabric Identification Based on Image Analysis Technology *Textiles and Light Industrial Science and Technology* vol 2 (Science and Engineering Publishing Company) pp 120-130

[17] Singh JP, Anuhbav G, Aprajita A, Himanshi S and Vandana J 2014 Digital Image Processing Techniques: A Versatile System for Textile Characterization *Textile Science and Engineering* vol 4 (OMICS International)