Effect of Strawberry Extract on Tooth Discoloration and Morphology- An in vitro Study

R. Neha *, V. Vishnu Priya *, Abirami Arthanari , R. Gayathri , S. Kavitha and P. K. Reshma

*Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Department of Forensic Odontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i5B35412

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/81370

ABSTRACT

Background: Teeth whitening or dental bleaching is a procedure that is most often asked by patients because it is a very effective way to improve the appearance and aesthetics of a smile when compared with other invasive restorative treatments. Strawberry being a natural ingredient helps in the teeth whitening process.

Aim: The aim of the study is to find the effect of strawberry extract on tooth discoloration and morphology.

Materials and Methods: Non-carious tooth samples were used for the experiment. Mandibular premolars were used as the samples, in which one tooth was immersed in strawberry extract and the other was in distilling water and kept for three days. The height and size of the tooth were measured to determine morphological changes before and after experiments. The results were compared between the dimensions of both the teeth for 72 hours and plotted into a bar graph.

Results: The results indicated that there were no significant morphological changes between the
tooth immersed in strawberry extract and distilled water.

Conclusion: Fruits and leaves of strawberry plants are used to whiten teeth. Chewing strawberries every day can help to nourish the mouth, such as whitening of teeth and making breath more fresher. All these processes take place only if teeth are exposed to strawberry for a long period. Our study established the teeth whitening and anti-decay properties of strawberry extract in the teeth. Further research is required to observe the effect of strawberry extract on teeth in detail.

Keywords: Strawberry extract; tooth discoloration; morphological changes.

1. **INTRODUCTION**

The neat arrangement of the teeth and the colour has become so important which raises the need for "aesthetic dentistry". It has now gained more attention from both the public and the dentist [1]. Tooth erosion is a pathological disease in which the dental hard tissue is lost due to its chemical removal from the surface with an acid or other involvement. The causative factors of this multifactorial disease are of two types that are extrinsic and intrinsic. The extrinsic causes are environment, medication, lifestyle factors, and diet. Intrinsic tooth erosion occurs if gastric acid reaches the mouth due to regurgitation, vomiting, or gastro-oesophageal reflux disease [2]. An individual will not be aware of this problem until it affects the dentine and pulp, which further leads to tooth sensitivity and poor aesthetics [3].

Teeth whitening or dental bleaching is a procedure that is often asked by the patients because it is an effective way to improve the appearance and aesthetics of a smile when compared to other invasive dental treatments. Also teeth whitening improves oral health and quality of life [4]. Teeth whitening can be done during dental practice which includes two things that are eliminating extrinsic colors and intrinsic colors. Extrinsic whitening can be done by mechanical or chemical techniques, which will be done by the dentist, known as office bleaching [5]. Tooth bleaching is generally done to remove yellow or dull coloured teeth because scraps of food such as coffee, chocolate, cigarettes, medicines or some other color changes or structural changes in the teeth. Tooth whitening is also done to restore the color of the teeth into a natural color or make it whiter [1]. The chemicals used for teeth whitening are Hydrogen Peroxide (H2O2), Carbamide Peroxide (CO(NH2)2.H2O2) and Sodium Perborate (NaBO3.4H2O) [6].

Strawberry being a natural ingredient is used to whiten decolorized teeth. Strawberries are a herbaceous fruit plant and it’s from the family of Rosaceae. Strawberries (Fragaria sp.) is one of many fruits consumed due to its rosy red color, sweet and sour taste, and various benefits [7]. Strawberries have many health benefits to control high blood pressure, and the ability to prevent coronary heart disease [8]. Strawberries are also used to whiten teeth. Besides having many vitamins and minerals, strawberries contain secondary metabolites like Ellagic acid which acts as a redox reagent in the bleaching process [9]. It also contains malic acid which binds with calcium in the tooth enamel which has an impact on tooth erosion which will reduce the hardness of the tooth surface [10]. Strawberry also contains pectin, a natural fiber which acts as a self cleaning agent for the tooth. It can help in cleaning the plaque on the tooth surface [11]. Our team has extensive knowledge and research experience that has translated into high quality publications [12-31].

The present study is aimed to know whether strawberry has any effect on teeth discoloration and morphology.

2. **MATERIALS AND METHODS**

The study was conducted in Saveetha Dental college in the laboratory of the biochemistry department. The strawberries were collected and aqueous extract was prepared. Extracted teeth were collected from the Oral and Maxillofacial surgery department. Non carious teeth were collected carefully, which were extracted due to periodontal reasons and the collected teeth were kept in a dry environment under room temperature. The teeth taken were measured according to buccal length, palatal length, buccal width, palatal width, mesial width and distal width using scale. Photographs were also taken to note the colour changes.

Later the teeth were put separately in distilled water (n=6) and strawberry extract (n=6) and kept in a chilled environment. Measurements were taken every 24 hours for three days and the values were noted.
3. RESULTS

The collected measurements of the teeth put in strawberry extract and distilled water were compared separately. There was no change in the measurement for both teeth as strawberry was a natural substance teeth undergo changes only after a long period of time, and the erosive nature of malic acid can also be seen only after long periods of exposure to strawberry extract.

Fig. 1 The above graph shows the buccal length measurements of the tooth immersed in strawberry extract and distilled water. X-Axis represents the number of days the teeth are immersed and the Y-Axis represents the measurements of buccal length of teeth immersed in the strawberry extract and distilled water. Each bar represents a mean ± SEM of 6 independent observations. The mean value of the Buccal length of the tooth immersed in strawberry is 2 cm and that of the tooth immersed in distilled water is 2.1 cm. There observed no significant changes in the buccal length measurements of all the teeth during the 3 days.

Fig. 2 The above graph shows the lingual length measurements of the tooth immersed in strawberry extract and distilled water. X-Axis represents the number of days the teeth are immersed and the Y-Axis represents the measurements of the lingual length of teeth immersed in the strawberry extract and distilled water. Each bar represents a mean ± SEM of 6 independent observations. The Lingual length of the tooth immersed in strawberry is 2 cm and that of the tooth immersed in distilled water is 1.95 cm. There observed no significant changes in the lingual length measurements of all the teeth during the 3 days.

Fig. 3 The above graph shows the buccal width measurements of the tooth immersed in strawberry extract and distilled water. X-Axis represents the number of days the teeth immersed and the Y-Axis represents the measurements of the buccal width of teeth immersed in the strawberry extract and distilled water. Each bar represents a mean ± SEM of 6 independent observations. The mean value of the Buccal width of the tooth immersed in strawberry is 0.5 cm and that of tooth immersed in distilled water is 0.5 cm. There observed no significant changes in the buccal width measurements of all the teeth during the 3 days.

Fig. 4 The above graph shows the lingual width measurements of the tooth immersed in strawberry extract and distilled water. X-Axis represents the number of days the teeth immersed and the Y-Axis represents the measurements of the lingual width of teeth immersed in the strawberry extract and distilled water. Each bar represents a mean ± SEM of 6 independent observations. The mean value of the Lingual width of the tooth immersed in strawberry is 0.5 cm and that of the tooth immersed in distilled water is 0.55 cm. There observed no significant changes in the lingual width measurements of all the teeth during the 3 days.
Fig. 2. Lingual length

Fig. 3. Buccal width

Fig. 5. The above graph shows the mesial width measurements of the tooth immersed in strawberry extract and distilled water. X-Axis represents the number of days the teeth immersed and the Y-Axis represents the measurements of the mesial width of teeth immersed in the strawberry extract and distilled water. Each bar represents a mean ± SEM of 6 independent observations. The mean value of the Mesial width of the tooth immersed in strawberry is 0.75 cm and that of the tooth immersed in distilled water is 1.05 cm. There observed no significant changes in the mesial width measurements of all the teeth during the 3 days.

Fig. 6. The above graph shows the distal width measurements of the tooth immersed in
strawberry extract and distilled water. X-Axis represents the number of days the teeth immersed and the Y-Axis represents the measurements of distal width of teeth immersed in the strawberry extract and distilled water. Each bar represents a mean ± SEM of 6 independent observations. The mean value of Distal width of the tooth immersed in strawberry is 0.75cm and that of the tooth immersed in distilled water is 0.95cm. There observed no significant changes in the distal width measurements of all the teeth during the 3 days.

![Lingual width](image)

Fig. 4. Lingual length

![Mesial width](image)

Fig. 5. Mesial width
Fig. 6. Distal width

4. DISCUSSION

Teeth whitening has been one of the most widely used aesthetics enhancing procedures in the field of dentistry [32]. Studies indicated that strawberry juice effectively lightens tooth enamel colour after soaking it for 3 hours. It is proposed that high acidity of strawberry juice with pH value 3-4 is one of the factors involved in whitening of the teeth [10]. From our study it was evident that there are no significant changes in the buccal width, mesial width, distal width, palatal width, palatal length and buccal length among the teeth immersed in strawberry extract in all the 3 days (Fig. 1-6). Our study also indicated that the tooth does not show any detrimental changes when it is kept in strawberry extract for a duration of three days. The results of the present study also revealed that the extract did not show any changes in the tooth enamel as it was kept for limited number of days which is similar with another study done by Asmawathi et al in which the tooth enamel structure after the strawberry gel application found that there was no significant effect between the duration of application time and changes in tooth enamel structure [33]. Another study [34] stated that rosella (hibiscus sabdariffa) contains bioactive saponins which bound the dye that was able to make the tooth colour become neutral and white.

The results of the study were consistent with the research conducted by Pramesti et al showed that strawberry consumption can remove stains caused by soda, wine and coffee. The natural tooth whitening can happen when consumed in proper time and concentration [35].

Fig. 7. Tooth colour before placing in distilled water

As enamel did not experience any erosive process until the pH value reached 5.5. This increase in PH is associated with enamel solubility resulting in dental erosion. Teeth whitening agents can cause changes in the chemical structure as well as changes in the superficial texture of tooth enamel [10]. In theory
it can be said that enamel erosion is due to the acids present in the strawberry. Although Strawberry juice is used to whiten teeth, further research is required to study the effect in detail. Strawberry juice when exposed to teeth for a longer period of time shows a whitening effect due to its acidic properties, which act as a potent oxidising agent on the tooth's enamel surface [36]. The results showed that strawberry is harmless to the teeth as there were no detrimental changes in tooth morphology and colour of the teeth.

Fig. 8. Tooth colour before placing in strawberry extract

Fig. 9. Tooth colour after 3 days of exposure in distilled water

Fig. 10. Tooth colour after 3 days of exposure in strawberry extract
5. CONCLUSION

The tooth placed in strawberry extract did not show any changes in tooth morphology and tooth colour. Hence strawberries can be used in mouthwashes, and tooth pastes to maintain a good oral health.

6. FUTURE SCOPE

In the future the study can be expanded by increasing the sample size, duration of experiment and inclusion of other characteristics and chemical composition of strawberry extract to study the effect of it in detail.

7. LIMITATION

Small sample size and less duration can be the limitations of the present study.

CONSENT

It is not applicable.

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).

SOURCE OF FUNDING

The present project is supported by

- Saveetha Dental College,
- Saveetha Institute of Medical and Technical Science, Saveetha University
- Uma Maheshwari Fireworks.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Rodrigues FT, Serro AP, Polido M, Ramalho A, Figueiredo-Pina CG. Effect of bleaching teeth with hydrogen peroxide on the morphology, hydrophilicity, and mechanical and tribological Properties of the Enamel. Wear. 2017;374-375;21–8.
2. Lussi A, Jaeggi T, Zero D. The role of diet in the aetiology of dental erosion. Caries Res. 2004;38 Suppl 1:34–44.
3. Luo Y, Zeng XJ, Du MQ, Bedi R. The prevalence of dental erosion in preschool children in China. J Dent. 2005;33(2):115–21.
4. Kose C, Calixto AL, Bauer JRO, Reis A, Loguercio AD. Comparison of the Effects of In-office Bleaching Times on Whitening and Tooth Sensitivity: A Single Blind, Randomized Clinical Trial. Oper Dent. 2016;41(2):138–45.
5. Nakamura T, Saito O, Ko T, Maruyama T. The effects of polishing and bleaching on the colour of discoloured teeth in vivo. J Oral Rehabil. 2001;28(11):1080–4.
6. Ito Y, Momoi Y. Bleaching using 30% hydrogen peroxide and sodium hydrogen carbonate. Dent Mater J. 2011;30(2):193–8.
7. Fauziah C, Fitiyani S, Diansari V. Colour Change of Enamel after Application of Averrhoa bilimbi. Journal of Dentistry Indonesia. 2013;19(3):53–6.
8. Budiman S, Saraswati D. Berkebun Strawberry Secara Komersil. Bogor: Swadaya; 2005.
9. Rio S, Gunawan HA, Yuniastuti M. Color space system analysis of tooth enamel whitening with a phenolic extract of strawberry leaf. J Phys Conf Ser. 2018;1073(2):022003.
10. Larasati DM, Firsty KN, Yogiartono M. Effectiveness of ellagic acid that contains in strawberry for acrylic discoloration. Asia Pacific Dental Students Journal. 2012;3(2):1–9.
11. Gilang Rasuna Sabdho Wening N, M Panji Sabila A, Taufan Bramantoro N, R. Darmawan Setijanto N, Zamzam A. Strawberry Utilization Empowerment Program in Low Temperature Environment as a Dental Health Promotion. Journal of International Oral Health. 2019;11(7):26–9.
12. Wu F, Zhu J, Li G, Wang J, Veeraraghavan VP, Krishna Mohan S, et al. Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). Artif Cells Nanomed Biotechnol. 2019;47(1):3297–305.
13. Chen F, Tang Y, Sun Y, Veeraraghavan VP, Mohan SK, Cui C. 6-shogaol, a active constituents of ginger prevents UVB radiation mediated inflammation and oxidative stress through modulating NrF2 signaling in human epidermal
keratinocytes (HaCaT cells). J Photochem Photobiol B. 2019;197:111518.

14. Li Z, Veeraraghavan VP, Mohan SK, Bolla SR, Lakshmanan H, Kumaran S, et al. Apoptotic induction and anti-metastatic activity of eugenol encapsulated chitosan nanopolymer on rat glioma C6 cells via alleviating the MMP signaling pathway [Internet]. Journal of Photochemistry and Photobiology B: Biology. 2020;2036:111773. Available:http://dx.doi.org/10.1016/j.jphoto biol.2019.111773

15. Babu S, Jayaraman S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed Pharmacother. 2020 Nov;131:110702.

16. Malaikolundhan H, Mookkan G, Krishnamoorthi G, Matheswaran N, Alsawalha M, Veeraraghavan VP, et al. Anticarcinogenic effect of gold nanoparticles synthesized from Albizia lebbeck on HCT-116 colon cancer cell lines. Artif Cells Nanomed Biotechnol. 2020;48(1):1206–13.

17. Han X, Jiang X, Guo L, Wang Y, Veeraraghavan VP, Krishna Mohan S, et al. Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artif Cells Nanomed Biotechnol. 2019;47(1):3577–84.

18. Gothai S, Muniandy K, Gnanaraj C, Ibrahim IAA, Shahzad N, Al-Ghamdi SS, et al. Pharmacological insights into antioxidants against colorectal cancer: A detailed review of the possible mechanisms. Biomed Pharmacother. 2018;107:1514–22.

19. Veeraraghavan VP, Hussain S, Balakrishna JP, Dhwale L, Kullappan M, Ambrose JM, et al. A Comprehensive and Critical Review on Ethnopharmacological Importance of Desert Truffles: Terfezia claveryi, Terfezia boudieri, and Tirmania nivea [Internet]. Food Reviews International. 2021;1:1–20. Available:http://dx.doi.org/10.1080/875591 29.2021.1889581

20. Sathyya S, Ragul V, Veeraraghavan VP, Singh L, Niyas Ahamed MI. An in vitro study on hexavalent chromium [Cr(VI)] remediation using iron oxide nanoparticles based on beads. Environmental Nanotechnology, Monitoring & Management. 2020;14:100333.

21. Yang Z, Pu M, Dong X, Ji F, Priya Veeraraghavan V, Yang H. Piperine loaded zinc oxide nanocomposite inhibits the PI3K/AKT/mTOR signaling pathway via attenuating the development of gastric carcinoma: In vitro and in vivo studies. Arabian Journal of Chemistry. 2020;13(5): 5501–16.

22. Rajendran P, Alzahrani AM, Rengarajan T, Veeraraghavan VP, Krishna Mohan S. Consumption of reused vegetable oil intensifies BRCA1 mutations. Crit Rev Food Sci Nutr. 2020 Oct 27;1–8.

23. Barma MD, Muthupandiyan I, Samuel SR, Amaechi BT. Inhibition of Streptococcus mutans, antioxidant property and cytotoxicity of novel nano-zinc oxide varnish. Arch Oral Biol. 2021;126:105132.

24. Samuel SR. Can 5-year-olds sensibly self-report the impact of developmental enamel defects on their quality of life? Int J Paediatr Dent. 2021;31(2):285–6.

25. Samuel SR, Kuduruthullah S, Khair AMB, Shaye MA, Elkaseh A, Varma SR. Dental pain, parental SARS-CoV-2 fear and distress on quality of life of 2 to 6 year-old children during COVID-19. Int J Paediatr Dent. 2021;31(3):436–41.

26. Tang Y, Rajendran P, Veeraraghavan VP, Hussain S, Balakrishna JP, Chinnathambi A, et al. Osteogenic differentiation and mineralization potential of zinc oxide nanoparticles from Scutellaria baicalensis on human osteoblast-like MG-63 cells [Internet]. Materials Science and Engineering: C. 2021;119:111656. Available:http://dx.doi.org/10.1016/j.msec. 2020.111656

27. Yin Z, Yang Y, Guo T, Veeraraghavan VP, Wang X. Potential chemotherapeutic effect of betalain against human non-small cell lung cancer through PI3K/Akt/mTOR signaling pathway. Environ Toxicol. 2021;36(6):1011–20.

28. Veeraraghavan VP, Periuradai ND, Karunakaran T, Hussain S, Surapaneni KM, Jiao X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J Biol Sci. 2021;28(7): 3633–40.

29. Mickyamaray S, Alfaiz FA, Paramasivam A, Veeraraghavan VP, Periuradai ND, Surapaneni KM, et al. Rhaponticin
suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J Biol Sci. 2021;28(7):3641–9.

30. Teja KV, Ramesh S. Is a filled lateral canal – A sign of superiority? [Internet]. Vol. 15, Journal of Dental Sciences. 2020;562–3. Available:http://dx.doi.org/10.1016/j.jds.2020.02.009

31. Theertha M, Sanju S, Priya VV, Jain P, Varma PK, Mony U. Innate lymphoid cells: Potent early mediators of the host immune response during sepsis. Cell Mol Immunol. 2020;17(10):1114–6.

32. Brambert P, Qian F, Kwon SR. Erosion Potential of Tooth Whitening Regimens as Evaluated with Polarized Light Microscopy. J Contemp Dent Pract. 2015;16(11):921–5.

33. Asmawati, Asmawati A, Rieuwpassa IE. Comparison of enamel hardness after dental bleaching agent application strawberry gel and carbamide peroxide 10% [Internet]. Vol. 3, Journal of Dentomaxillofacial Science. 2018;17. Available:http://dx.doi.org/10.15562/jdmfs.v3i1.626

34. Azizah N, Darmawan E, Nurani LH. Efek Kapsul Ekstrak Etanol Kelopak Bunga Rosella (Hibiscus sabdariffa L.) terhadap Kadar Bilirubin Sukarelawan Sehat [Internet]. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia. 2018;4:13. Available:http://dx.doi.org/10.20473/jfiki.v4i12017.13-18

35. Pramesti A, Jasrin TA, Hidayat OT. Teeth re-whitening effect of strawberry juice on coffee stained teeth. Padjadjaran j dent [Internet]. 2018;25(1). Available:http://jurnal.unpad.ac.id/pjd/article/view/15427

36. Seow WK, Thong KM. Erosive effects of common beverages on extracted premolar teeth. Aust Dent J. 2005;50(3):173–8; quiz 211.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/81370