Solitary Waves Bifurcated from Bloch Band Edges in Two-dimensional Periodic Media

Zuoqiang Shi1, Jianke Yang2

1Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
2Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401, USA

Nonlinear wave propagation in periodic media is attracting a lot of attention these days. This was stimulated in part by rapid advances in optics, Bose-Einstein condensates, and related fields. In optics, various periodic and quasi-periodic structures (such as photonic crystals, photonic crystal fibers, periodic waveguide arrays and photonic lattices) have been constructed by ingenious experimental techniques, with applications to light routing, switching and optical information processing [1, 2, 3, 4, 5, 6, 7, 8]. These periodic media create a wide range of new phenomena for light propagation, even in the linear regime. For instance, the diffraction of light in a periodic medium exhibits distinctively different patterns from homogeneous diffraction [2]. If the periodic medium has a local defect, this defect can guide light by a totally new physical mechanism called repeated Bragg reflections [1, 2, 9, 10, 11, 12, 13]. When the nonlinear effects become significant, such as with high-power beams or strongly nonlinear materials, the physical phenomena would be even richer and more complex, and their understanding is far from complete yet. In Bose-Einstein condensates, one direction of recent research is to load the condensates into periodic optical lattices [14, 15, 16]. This problem and the above nonlinear optics problems are closely related, and are often analyzed together.

Solitary waves play an important role in nonlinear wave systems. These waves are nonlinear localized structures which propagate without change of shape. In physical communities, they are often just called solitons, which we do occasionally in this paper as well. In one-dimensional (1D) periodic media, solitary waves (called lattice solitons) have been predicted and observed in optical experiments [3, 8, 17, 18, 19, 20]. But in two and higher dimensions, periodic media can support a much wider array of solitary wave structures, many of which have no counterparts in 1D systems. So far, several types of 2D lattice solitons in the semi-infinite bandgap (such as fundamental, dipole and vortex solitons) as well as the first bandgap (such as fundamental, vortex and reduced-symmetry gap solitons) have been reported [5, 12, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Solitons in Bessel-ring lattices and 2D quasi-periodic lattices have been reported as well [32, 33, 34]. All these works were either numerical or experimental, and an analytical understanding on these solitons is still lacking. Some of these solitons bifurcate from edges of Bloch bands. For instance, the gap vortex solitons reported in [22] bifurcate from the two X-symmetry points of the second Bloch band, and the reduced-symmetry solitons reported in [23] bifurcate from a single X-symmetry point of the second Bloch band (both under focusing nonlinearity). This raises the following important questions: are there other types of solitary waves bifurcated from Bloch bands in 2D periodic media? how can such solitary waves be analytically predicted and classified?

In this paper, we determine all possible solitary-wave structures bifurcated from edges of Bloch bands in 2D periodic media both analytically and numerically, using the two-dimensional nonlinear Schrödinger equation with a periodic potential as the mathematical model. By multi-scale perturbation methods, we derive the envelope equations of these solitary waves near band edges. We find that these envelope equations admit solutions which lead to not only solitons reported before (see [22, 30] for instance), but also new solitary-wave structures such as dipole-array solitons bifurcated from the second Bloch band under focusing nonlinearity, and vortex-cell solitons bifurcated from the second

I. INTRODUCTION
Bloch band under defocusing nonlinearity. We also show analytically that the centers of envelope solutions can only be positioned at four possible locations at or between the potential peaks. We further determine the whole families of these solitons both near and far away from band edges directly using numerical methods [35]. Near the band edges, the numerical solutions spread over many lattice sites, and they fully agree with the analytical solutions obtained from envelope equations. Far away from the band edges, solitary waves are strongly localized, and their intensity and phase profiles carry signatures of individual soliton families. These studies provide a rather complete understanding of solitary waves bifurcated from Bloch bands in 2D periodic media.

II. THE MATHEMATICAL MODEL

The mathematical model we use for the study of solitary waves in 2D periodic media is the 2D nonlinear Schrödinger (NLS) equation with a periodic potential:

$$i U_t + U_{xx} + U_{yy} - V(x, y)U + \sigma|U|^2 U = 0,$$

where $U(x, y, t)$ is a complex function, $V(x, y)$ is the periodic potential (also called the lattice potential), and $\sigma = \pm 1$ is the sign of nonlinearity. This model arises in Bose-Einstein condensates trapped in a 2D optical lattice (where t is time) [14, 15] as well as light propagation in a periodic Kerr medium under paraxial approximation (where t is the distance of propagation). In certain optical materials (such as photorefractive crystals), the nonlinearity is of a different (saturable) type. But it is known that those different types of nonlinearities give qualitatively similar results as the Kerr nonlinearity above [21, 24, 25, 36].

In this article we take the lattice potential as

$$V(x, y) = V_0 (\sin^2 x + \sin^2 y),$$

whose periods L along the x and y directions are both equal to π. This square-lattice potential can be readily engineered in Bose-Einstein condensates [13, 10] and optics [2, 7]. This potential is separable, which makes our theoretical analysis a little easier. Similar analysis can be repeated for other types of periodic potentials and nonlinearities (such as saturable nonlinearities in photorefractive crystals [5, 36]) with minimal changes. Without loss of generality, when we carry out specific computations, we always set $V_0 = 6$ in the potential (2.2).

Solitary waves in Eq. (2.1) are sought in the form

$$u(x, y) = u(x, y)e^{-i\mu t},$$

where amplitude function $u(x, y)$ is a solution of the following equation:

$$u_{xx} + u_{yy} - [F(x) + F(y)]u + \mu u + \sigma|u|^2 u = 0,$$

and μ is a propagation constant.

In this article, we determine solitary waves in Eq. (2.1) which are bifurcated from the Bloch bands (i.e. continuous spectrum) of that equation. To do so, information about the Bloch bands of Eq. (2.4) is essential. Such Bloch bands will be analyzed first below.

III. BLOCH BANDS AND BAND GAPS

When function $u(x, y)$ is infinitesimal, Eq. (2.4) becomes a linear equation:

$$u_{xx} + u_{yy} - [F(x) + F(y)]u + \mu u = 0.$$

Solutions of this linear equation are the Bloch modes, and the corresponding propagation constants μ form Bloch bands. Since the potential in (3.1) is separable, Bloch solutions and Bloch bands of this 2D equation can be constructed from solutions of a 1D equation. Specifically, the 2D Bloch solution $u(x, y)$ of Eq. (3.1) and its propagation constant μ can be split into the following form:

$$u(x, y) = p(x; \omega_a)p(y; \omega_b), \quad \mu = \omega_a + \omega_b,$$
FIG. 1: (color online) (a) Dispersion curves of the 1D equation (3.3) with $V_0 = 6$; (b) Bloch bands (shaded regions) and bandgaps at various values of potential levels V_0 in Eq. (3.3). The circle points in (a) correspond to edges of Bloch bands marked by numbers 1-5 in (b). Bloch modes at these locations are displayed in Fig. 2.

where $p(x;\omega)$ is a solution of the following 1D equation:

$$p_{xx} - F(x)p + \omega p = 0. \quad (3.3)$$

This 1D equation is equivalent to the Mathieu’s equation. Its solution is

$$p(x;\omega) = e^{ikx}\tilde{p}(x;\omega), \quad (3.4)$$

where $\tilde{p}(x;\omega)$ is periodic with the same period π as the potential $F(x)$, and $\omega = \omega(k)$ is the 1D dispersion relation. This dispersion diagram is shown in Fig. 1(a) (for $V_0 = 6$). The bandgap structure of this 1D equation (3.3) at various values of V_0 is shown in Fig. 1(b). Notice that in the 1D case, at any non-zero value of V_0, bandgaps appear; in addition, the number of bandgaps is infinite. The first five Bloch waves $p(x;\omega_k), 1 \leq k \leq 5$ at the lowest five edges of Bloch bands $\omega = \omega_k$ are displayed in Fig. 2. These Bloch waves have been normalized to have unit amplitude. Notice that these solutions at band edges are all real-valued.

Using these 1D dispersion results and the above connection between 1D and 2D Bloch solutions, we can construct the dispersion surfaces and bandgap structures of the 2D problem (3.1). The 2D Bloch-mode solution is of the form

$$u(x, y) = e^{ik_x x + ik_y y} \tilde{p}[x;\omega(k_x)] \tilde{p}[y;\omega(k_y)], \quad (3.5)$$

where

$$\mu = \omega(k_x) + \omega(k_y), \quad -1 \leq k_x, k_y \leq 1 \quad (3.6)$$

is the 2D dispersion relation, and $-1 \leq k_x, k_y \leq 1$ is the first Brillouin zone. This 2D dispersion relation (at $V_0 = 6$) is shown in Fig. 3(a). The 2D bandgap structure at various values of V_0 is shown in Fig. 3(b). Unlike the 1D case, for a given V_0 value, there are only a finite number of bandgaps in the 2D problem. The first bandgap appears only when $V_0 > 1.40$, the second bandgap appearing when $V_0 > 4.13$, etc. As V_0 increases further, more bandgaps will be found. At the potential strength $V_0 = 6$ as used in this paper, two bandgaps exist. Edges of Bloch bands at this V_0 value are marked in Fig. 3(b) as ‘A, B, C, D, E’ respectively.

Locations of Bloch-band edges in the first Brillouin zone are important, as these locations reveal the symmetry properties of Bloch modes. To clearly mark such locations, we plotted the first Brillouin zone in Fig. 3. In the literature, the center of this Brillouin zone is called the Γ point, the four corners called the M points, and points $(k_x, k_y) = (1, 0), (0, 1)$ called the X and X' points respectively [27]. These points are marked in the Brillouin zone of Fig. 3. Note that the four corner (M) points correspond to the same Bloch mode, but points X and X' lead to different (linearly independent) Bloch modes. In this first Brillouin zone, Bloch-band edges A, B in Fig. 3(b) are located at Γ and M symmetry points respectively. At band edge C, there are two points on the dispersion surfaces which are located at X and X' symmetry points. The same goes to the band edge D. Band edge E is located at the Γ symmetry point.

Now we examine 2D Bloch solutions at band edges. To illustrate, we consider the edge points A, B, C, D and E in Fig. 3(b), where $V_0 = 6$. At both points A and B, there is a single Bloch solution. The Bloch solution at point A (located at Γ point of the Brillouin zone) is $u(x, y) = p(x;\omega_1)\tilde{p}(y;\omega_1)$, where $p(x;\omega_1)$ is shown in Fig. 2(1). This solution is displayed in Fig. 4(A). Its propagation constant is $\mu = 2\omega_1$. Notice that this solution has the symmetry $u(x, y) = u(y, x)$. For convenience, we denote point A as "1+1", and is so indicated in Fig. 3(b). Similarly, the Bloch
FIG. 2: One-dimensional Bloch waves of Eq. (3.3) at the lowest five edges of Bloch bands marked by circles in Fig. 1(a) and by numbers in Fig. 1(b). (1): $\omega_1 = 2.063182$; (2): $\omega_2 = 2.266735$; (3): $\omega_3 = 5.165940$; (4): $\omega_4 = 6.81429$; (5) $\omega_5 = 7.74678$.

FIG. 3: (color online) (a) Dispersion surfaces of the 2D problem (3.1) at $V_0 = 6$; the low figure at its side is the first Brillouin zone; (b) the 2D bandgap structure for various values of V_0. Letters 'A, B, C, D, E' mark the edges of Bloch bands at $V_0 = 6$. Insets like 'A:1+1' are explained in the text.

solution at point B (located at M point of the Brillouin zone) is $u(x, y) = p(x; \omega_2)p(y; \omega_2)$, where $p(x; \omega_2)$ is shown in Fig. 2(b). This solution is displayed in Fig. 4(B), and its propagation constant is $\mu = 2\omega_2$. This solution has the symmetry $u(x, y) = u(y, x)$ as well. Point B is "2 + 2" in our notations. Points C, D, E are different from A and B and are more interesting. At these points, there are two linearly independent Bloch solutions, $u(x, y)$ and $u(y, x)$. At point C, these two solutions are $u(x, y) = p(x; \omega_1)p(y; \omega_3)$ and $u(y, x) = p(y; \omega_1)p(x; \omega_3)$, with the same propagation constant $\mu = \omega_1 + \omega_3$. Here $p(x; \omega_3)$ is shown in Fig. 2(3). These solutions correspond to the X and X' points in the Brillouin zone. Point C is thus "1+3". Its $u(x, y)$ solution is displayed in Fig. 4(C); the $u(y, x)$ solution is just
FIG. 4: (color online) Upper left: the potential function $-V(x, y)$; (A, B, C, D, E) are Bloch modes at the edge points of Bloch bands marked by the same letters in Fig. 3(b).

a 90° rotation of $u(x, y)$ in Fig. 4(C) and thus not shown. Point D is ”2+4”, where the two linearly independent Bloch solutions are $u(x, y) = p(x; \omega_2)p(y; \omega_4)$ and $u(y, x) = p(y; \omega_2)p(x; \omega_4)$, the former of which is displayed in Fig. 4(D). These solutions also correspond to the X and X' points in the Brillouin zone. Point E is ”1+5”, and the two Bloch solutions are $u(x, y) = p(x; \omega_1)p(y; \omega_5)$ and $u(y, x) = p(y; \omega_1)p(x; \omega_5)$ (the former is shown in Fig. 4(E)). These solutions correspond to the Γ symmetry point in the Brillouin zone. It is interesting that at point E, the two different Bloch modes are both located at the same Γ point, while at points C and D, their two Bloch modes are located at different symmetry points (X and X') in the Brillouin zone. This difference between points E and \{C, D\} will manifest itself later in solitary wave bifurcations. Because of the existence of two linearly independent Bloch solutions at band edges C, D and E, their linear superpositions remain a solution. These superpositions can give rise to interesting solution patterns, some of which (such as vortex arrays) have been pointed out before [12, 27], while many others are new. Solitary waves bifurcated from these linearly superimposed Bloch modes are one of the subjects we will focus on in the remainder of the paper.

The above Bloch solutions exist on band edges with infinitesimal amplitudes. When amplitudes of these solutions increase, these Bloch solutions may localize and form solitary-wave structures. The corresponding propagation constant μ then moves from band edges into band gaps. In the next section, we analyze how solitary waves bifurcate from Bloch solutions of band edges using multi-scale perturbation methods.
IV. ENVELOPE EQUATIONS OF BLOCH MODES

In this section, we develop an asymptotic theory to analyze small-amplitude solitary waves bifurcating from Bloch waves near band edges in Eq. (2.4), and derive their envelope equations. We have known that at an edge of a Bloch band, there may be either one or two linearly independent Bloch modes. The bifurcation analysis for these two cases are similar, thus we will present detailed calculations only for the latter case (which is a little more complex), and just give the results for the former case.

A. Derivation of envelope equations

Let us consider a 2D band edge \(\mu_0 = \omega_{0,1} + \omega_{0,2} \), where \(\omega_{0,n} \) \((n = 1, 2) \) are 1D band edges, \(\omega_{0,1} \neq \omega_{0,2} \), and the two linearly independent Bloch modes are \(p_1(x)p_2(y) \) and \(p_1(y)p_2(x) \) with \(p_n(x) = p(x; \omega_{0,n}) \). Notice that

\[
p_n(x + L) = \pm p_n(x)
\]

it since \(\omega_{0,n} \) is a 1D band edge. Here \(L = \pi \) is the period of the 1D potential \(F(x) \). When the solution \(u(x, y) \) of Eq. (2.4) is infinitesimally small, this solution on the band edge is then a linear superposition of these two Bloch modes in the general case. When \(u(x, y) \) is small but not infinitesimal, we can expand the solution \(u(x, y) \) of (2.4) into a multi-scale perturbation series:

\[
u = \epsilon u_0 + \epsilon^2 u_1 + \epsilon^3 u_2 + \cdots,
\]

where

\[
\mu = \mu_0 + \eta \epsilon^2,
\]

\(\eta = \pm 1 \), and \(X = \epsilon x, Y = \epsilon y \) are long spatial scales of envelope functions \(A_1 \) and \(A_2 \). Substituting the above expansions into Eq. (2.4), the equation at \(O(\epsilon) \) is automatically satisfied. At order \(O(\epsilon^2) \), the equation for \(u_1 \) is

\[
u_{1,xx} + u_{1,yy} - [F(x) + F(y)] u_1 + \mu_0 u_1 = -2 \left(\frac{\partial^2 u_0}{\partial x \partial X} + \frac{\partial^2 u_0}{\partial y \partial Y} \right),
\]

Its homogeneous equation has two linearly independent solutions, \(p_1(x)p_2(y) \) and \(p_1(y)p_2(x) \). In order for the inhomogeneous equation (4.5) to admit a solution, the following Fredholm conditions

\[
\int_0^{2L} \int_0^{2L} \left(\frac{\partial^2 u_0}{\partial x \partial X} + \frac{\partial^2 u_0}{\partial y \partial Y} \right) p_1(x)p_2(y) \, dx dy = 0,
\]

\[
\int_0^{2L} \int_0^{2L} \left(\frac{\partial^2 u_0}{\partial x \partial X} + \frac{\partial^2 u_0}{\partial y \partial Y} \right) p_2(x)p_1(y) \, dx dy = 0
\]

must be satisfied. Here the integration length is \(2L \) rather than \(L \) since the homogeneous solutions \(p_1(x)p_2(y) \) and \(p_2(x)p_1(y) \) may have periods \(2L \) along the \(x \) and \(y \) directions (see Eq. (4.1)). Recalling the \(u_0 \) solution (4.1), it is easy to check that the above Fredholm conditions are indeed satisfied automatically, thus we can find a solution for Eq. (4.5) as

\[
u_1 = \frac{\partial A_1}{\partial X} \nu_1(x)p_2(y) + \frac{\partial A_1}{\partial X} \nu_2(y)p_1(x) + \frac{\partial A_2}{\partial X} \nu_2(x)p_1(y) + \frac{\partial A_2}{\partial X} \nu_1(y)p_2(x),
\]

where \(\nu_n(x) \) is a periodic solution of equation

\[
\nu_{n,xx} - F(x) \nu_n + \omega_{0,n} \nu_n = -2 p_{n,x}, \quad n = 1, 2.
\]

At \(O(\epsilon^3) \), the equation for \(u_2 \) is

\[
u_{2,xx} + u_{2,yy} - [F(x) + F(y)] u_2 + \mu_0 u_2 = - \left(2 \frac{\partial^2 u_1}{\partial x \partial X} + 2 \frac{\partial^2 u_1}{\partial y \partial Y} + \frac{\partial^2 u_0}{\partial X^2} + \frac{\partial^2 u_0}{\partial Y^2} + \eta u_0 + |u_0|^2 u_0 \right).
\]
Substituting the formulas (4.14) and (4.18) for \(u_0 \) and \(u_1 \) into this equation, we get

\[
- \{u_{2x} + u_{2yy} = [F(x) + F(y)] u_2 + \mu_0 u_2 \} =
\]

\[
\begin{align*}
&\frac{\partial^2 A_1}{\partial X^2} [2\nu'(x) + p_1(x)] p_2(y) + \frac{\partial^2 A_1}{\partial Y^2} [2\nu'(y) + p_2(y)] p_1(x) \\
&+ \frac{\partial^2 A_2}{\partial X^2} [2\nu'_2(x) + p_2(x)] p_1(y) + \frac{\partial^2 A_2}{\partial Y^2} [2\nu'_1(y) + p_1(y)] p_2(x) \\
&+ 2 \frac{\partial^2 A_1}{\partial X \partial Y} [p'_1(x)\nu_2(y) + p'_2(y)\nu_1(x)] + 2 \frac{\partial^2 A_2}{\partial X \partial Y} [p'_2(x)\nu_1(y) + p'_1(y)\nu_2(x)] \\
&+ p_1^2(x)p_2^2(y)|A_1|^2 A_1 + p_1(x)p_2(y)p_2^2(y)p_2^2(x)(A_1 A_2^2 + 2A_1|A_2|^2) \\
&+ p_2^2(x)p_1^2(y)|A_2|^2 A_2 + p_1^2(x)p_2(y)p_2(y)p_2(x)(A_2 A_1^2 + 2A_2|A_1|^2) \\
&+ \eta_1 A_1(X,Y)p_1(x)p_2(y) + \eta_2 A_2(X,Y)p_2(x)p_1(y).
\end{align*}
\]

(4.11)

Here the overbar represents complex conjugation. Before applying the Fredholm conditions to this inhomogeneous equation, we notice the following identities:

\[
\int_0^{2L} p_1(x)p_2(x)dx = 0,
\]

(4.12)

\[
\int_0^{2L} p_1(x)\nu_2(x)dx = \int_0^{2L} p_2(x)\nu_1(x)dx,
\]

(4.13)

and

\[
\int_0^{2L} [2\nu'_n(x) + p_n(x)] p_n(x)dx = D_n \int_0^{2L} p_n^2(x)dx, \quad n = 1, 2,
\]

(4.14)

where

\[
D_n = \frac{1}{2} \frac{d^2 \omega}{dk^2} \bigg|_{\omega = \omega_{0,n}}.
\]

(4.15)

Identity (4.12) holds since \(p_1(x) \) and \(p_2(x) \) are the eigenfunctions of the self-adjoint linear Schrödinger operator with different eigenvalues. Identity (4.13) can be confirmed by taking the inner product between Eq. (4.12) and functions \(p_n(x) \). Identity (4.14) can be verified by expanding the solution of Eq. (3.3) around the edge of the Bloch band \(\omega = \omega_{0,n} \) (see Eq. (15) in [20]). Utilizing these identities and (4.1), the Fredholm conditions for Eq. (4.11) finally lead to the following coupled nonlinear equations for the envelope functions \(A_1 \) and \(A_2 \):

\[
D_1 \frac{\partial^2 A_1}{\partial X^2} + D_2 \frac{\partial^2 A_1}{\partial Y^2} + \eta A_1 + \sigma [\alpha|A_1|^2 A_1 + \beta (\bar{A}_1 A_2^2 + 2A_1|A_2|^2)] + \gamma (|A_2|^2 A_2 + \bar{A}_2 A_1^2 + 2A_2|A_1|^2) = 0,
\]

(4.16)

\[
D_2 \frac{\partial^2 A_2}{\partial X^2} + D_1 \frac{\partial^2 A_2}{\partial Y^2} + \eta A_2 + \sigma [\alpha|A_2|^2 A_2 + \beta (\bar{A}_2 A_1^2 + 2A_2|A_1|^2)] + \gamma (|A_1|^2 A_1 + \bar{A}_1 A_2^2 + 2A_1|A_2|^2) = 0.
\]

(4.17)

Here

\[
\alpha = \frac{\int_0^{2L} \int_0^{2L} p_1^4(x)p_2^4(y) \, dxdy}{\int_0^{2L} \int_0^{2L} p_1^2(x)p_2^2(y) \, dxdy},
\]

(4.18)

\[
\beta = \frac{\int_0^{2L} \int_0^{2L} p_1^2(x)p_2^2(x)p_1^2(y)p_2^2(y) \, dxdy}{\int_0^{2L} \int_0^{2L} p_1^2(x)p_1^2(y) \, dxdy},
\]

(4.19)
\[
\alpha = \int_0^{2L} \int_0^{2L} p_1^4(x)p_2^4(y) \, dx \, dy
\]

\[
\beta = \frac{\int_0^{2L} \int_0^{2L} p_1''(x)p_2''(y) \, dx \, dy}{\int_0^{2L} \int_0^{2L} p_1^2(x)p_2^2(y) \, dx \, dy}.
\]

Notice that \(\alpha \) and \(\beta \) are always positive, but \(\gamma \) may be positive, negative, or zero.

The coefficients in Eqs. (4.16)-(4.17) can be readily determined from Bloch solutions of the 1D equation (3.3). In particular, when the 1D Bloch waves \(p_1(x) \) and \(p_2(x) \) have been normalized to have unit amplitude (see Fig. 2), we find that at point C,

\[
D_1 = 0.434845, \quad D_2 = 2.422196, \quad \alpha = 0.5821, \quad \beta = 0.1325, \quad \gamma = 0;
\]

at point D,

\[
D_1 = -0.586799, \quad D_2 = -13.264815, \quad \alpha = 0.5256, \quad \beta = 0.1811, \quad \gamma = 0;
\]

and at point E,

\[
D_1 = 0.434845, \quad D_2 = 15.793172, \quad \alpha = 0.4684, \quad \beta = 0.0781, \quad \gamma = -0.0261.
\]

At band edges where a single Bloch mode exists (such as points A and B in Fig. 3(b)), the envelope equation for this single Bloch mode can be more easily derived. In this case, this single Bloch mode must be of the form \(\psi(x) = \psi(x; \omega_0, 1) \), and \(\omega_0, 1 \) is a band edge in the 1D problem (3.3). Unlike the previous case, interchanging \(x \) and \(y \) of this Bloch solution does not give different Bloch modes. The leading order solution \(u_0(x, y) \) in the expansion (4.2) now is \(A_1(X, Y)p_1(x)p_1(y) \), and the envelope equation for \(A_1(X, Y) \) can be found to be

\[
D_1 \left(\frac{\partial^2 A_1}{\partial X^2} + \frac{\partial^2 A_1}{\partial Y^2} \right) + \eta A_1 + \sigma \alpha_0 |A_1|^2 A_1 = 0,
\]

where \(D_1 \) is as given in Eq. (4.15), and

\[
\alpha_0 = \frac{\int_0^{2L} \int_0^{2L} p_1^4(x)p_2^4(y) \, dx \, dy}{\int_0^{2L} \int_0^{2L} p_1^2(x)p_2^2(y) \, dx \, dy}.
\]

In particular, when the Bloch solution \(p_1(x) \) is normalized to have unit amplitude, then at point A,

\[
D_1 = 0.434845, \quad \alpha_0 = 0.462815;
\]

and at point B,

\[
D_1 = -0.588073, \quad \alpha_0 = 0.500922.
\]

We note that for this single-Bloch-mode case, an envelope equation similar to (4.24) has been derived before in [37].

B. Locations of envelope solitons

The envelope equations (4.16)-(4.17) and (4.24) are translation-invariant. For instance, if \([A_1(X, Y), A_2(X, Y)]\) is a solution of Eqs. (4.16)-(4.17), so is \([A_1(X - X_0, Y - Y_0), A_2(X - X_0, Y - Y_0)]\) where \((X_0, Y_0)\) are any constants. However, only when \((X_0, Y_0)\) take some special values can the perturbation series solution (4.2) truly satisfy the original equation (2.3). The reason is that \((X_0, Y_0)\) must satisfy certain additional constraints. These constraints are exponentially small in \(\epsilon \), thus they can not be captured in the power series expansions of (4.2), but need to be calculated using asymptotics beyond all orders techniques [38] or other equivalent methods [20]. In 1D problems, it has been shown that envelope solitons can only be located at two positions relative to the periodic lattice [20] (or the underlying periodic wave train [38]). In the present 2D problem, we will show below that envelope solitons can only be located at four positions relative to the 2D periodic lattice by a method similar to that used in [20]. As we have...
done in the previous subsection, detailed derivations will be presented for the \((A_1, A_2)\) solutions of Eqs. (4.10)-(4.17). Similar results hold for the \(A_1\) solution of Eq. (4.24) as well.

First we derive two constraints for the envelope solutions. Multiplying Eq. (2.4) by \(\bar{u}_x\) or \(\bar{u}_y\), adding its conjugate equation, and integrating from \(-\infty\) to \(+\infty\), we get the following two constraints:

\[
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F'(x) |u(x, y)|^2 dx dy = 0, \tag{4.28}
\]
\[
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F'(y) |u(x, y)|^2 dx dy = 0. \tag{4.29}
\]

Substituting the perturbation expansion (1.2) of the solution \(u(x, y)\) into the above equations, these constraints at the leading order become

\[
I_1(x_0, y_0) = \varepsilon^2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F'(x) |A_1 p_1(x)p_2(y) + A_2 p_2(x)p_1(y)|^2 dx dy = 0, \tag{4.30}
\]
\[
I_2(x_0, y_0) = \varepsilon^2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F'(y) |A_1 p_1(x)p_2(y) + A_2 p_2(x)p_1(y)|^2 dx dy = 0. \tag{4.31}
\]

Here

\[
A_k = A_k(X - X_0, Y - Y_0), \quad k = 1, 2, \tag{4.32}
\]
and \((X_0, Y_0) = (\epsilon x_0, \epsilon y_0)\) is the center position of the envelope solution \((A_1, A_2)\). In this paper, we consider envelope functions \((A_1, A_2)\) such that \(|A_1|^2, |A_2|^2\) and \(A_1A_2 + \bar{A}_1A_2\) are symmetric in \(X\) and \(Y\) about the center position \((X_0, Y_0)\), i.e.

\[
|A_k(-X, Y)|^2 = |A_k(X, Y)|^2 = |A_k(X, -Y)|^2, \quad k = 1, 2, \tag{4.33}
\]
and similar relations hold for \(A_1\bar{A}_2 + \bar{A}_1A_2\). All solitary-wave solutions of Eqs. (4.10)-(4.17) that we know satisfy these assumptions (up to spatial translations).

Now we examine the constraint (4.30). This constraint can be rewritten as

\[
I_1(x_0, y_0) = \varepsilon^2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F'(x) \left[|A_1|^2 p_1^2(x)p_2^2(y) + |A_2|^2 p_2^2(x)p_1^2(y) \right. \\
+ \left. (A_1 \bar{A}_2 + \bar{A}_1 A_2)p_1(x)p_2(y)p_2(x)p_1(y) \right] dx dy = 0. \tag{4.34}
\]

Since \(F'(x)\) is anti-symmetric, and \(p_1^2(x), p_2^2(x)\) both symmetric, functions \(F'(x)p_1^2(x)p_2^2(y), F'(x)p_2^2(x)p_1^2(y)\) and \(F'(x)p_1(x)p_2(x)p_1(y)p_2(y)\) have the following Fourier series expansions:

\[
F'(x)p_1^2(x)p_2^2(y) = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} c_{m,n}^{(1)} \frac{2\pi mx}{L} \cos \frac{2\pi ny}{L}, \tag{4.35}
\]
\[
F'(x)p_2^2(x)p_1^2(y) = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} c_{m,n}^{(2)} \frac{2\pi mx}{L} \cos \frac{2\pi ny}{L}, \tag{4.36}
\]
\[
F'(x)p_1(x)p_2(x)p_1(y)p_2(y) = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} d_{m,n}^{(3)} \frac{2\pi mx}{L} \cos \frac{2\pi ny}{L} + \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} d_{m,n}^{(3)} \cos \frac{2\pi mx}{L} \sin \frac{2\pi ny}{L}. \tag{4.37}
\]

Here \(d_{m,n}^{(3)} = 0\) or \(c_{m,n}^{(3)} = 0\) (for all \(m, n\)) if \(p_1(x)p_2(x)\) is even or odd respectively. When the above Fourier expansions are substituted into Eq. (4.34), every Fourier mode in these expansions leads to an exponentially small term in (4.34), and the exponential rate of decay of these terms is larger for higher values of \(m + n\). Keeping only the leading-order term obtained from Fourier modes with \(m + n = 1\), Eq. (4.34) becomes

\[
I_1(x_0, y_0) = \varepsilon^2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left\{ \left[c_{1,0}^{(1)}|A_1|^2 + c_{1,0}^{(2)}|A_2|^2 + c_{1,0}^{(3)}(A_1 \bar{A}_2 + \bar{A}_1 A_2) \right] \sin \frac{2\pi x}{L} \\
+ d_{1,0}^{(3)}(A_1 \bar{A}_2 + \bar{A}_1 A_2) \sin \frac{2\pi y}{L} \right\} dx dy. \tag{4.38}
\]
Recalling Eq. (4.32) and our symmetry assumptions on \(|A_1|^2, |A_2|^2\) and \(A_1 \tilde{A}_2 + \tilde{A}_1 A_2\) (see (4.33)), the above integral can be simplified to be

\[
I_1(x_0, y_0) = W_{1,1} \sin \left(2\pi x_0 / L\right) + W_{1,2} \sin \left(2\pi y_0 / L\right),
\]

(4.39)

where

\[
W_{1,1} = \varepsilon^2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left\{ c_{1,0}^{(1)} |A_1(X, Y)|^2 + c_{1,0}^{(2)} |A_2(X, Y)|^2 + c_{1,0}^{(3)} [A_1(X, Y) \tilde{A}_2(X, Y) + \tilde{A}_1(X, Y) A_2(X, Y)] \right\} \cos \frac{2\pi x}{L} \, dxdy,
\]

and

\[
W_{1,2} = \varepsilon^2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} d_{1,0}^{(3)} [A_1(X, Y) \tilde{A}_2(X, Y) + \tilde{A}_1(X, Y) A_2(X, Y)] \cos \frac{2\pi y}{L} \, dxdy.
\]

(4.40)

Notice that both integrals \(W_{1,1}\) and \(W_{1,2}\) are exponentially small in \(\varepsilon\), thus the constraint (4.30) is exponentially small, hence it cannot be captured by power-series perturbation expansions (4.2). Repeating similar calculations for the integral of \(I_2(x_0, y_0)\) in Eq. (4.31), we can get (to the leading order)

\[
I_2(x_0, y_0) = W_{2,1} \sin(2\pi x_0 / L) + W_{2,2} \sin(2\pi y_0 / L),
\]

(4.42)

where expressions for \(W_{2,1}\) and \(W_{2,2}\) are similar to those for \(W_{1,1}\) and \(W_{1,2}\) above. Then in order for the two constraints (4.30) and (4.31) to hold, we must have

\[
\sin(2\pi x_0 / L) = \sin(2\pi y_0 / L) = 0.
\]

(4.43)

Thus, the envelope solution \((A_1, A_2)\) can only be centered at four locations:

\[
(x_0, y_0) = (0, 0), \left(0, \frac{L}{2}\right), \left(\frac{L}{2}, 0\right), \left(\frac{L}{2}, \frac{L}{2}\right).
\]

(4.44)

Note that due to the \(x\) and \(y\) symmetry of the lattice, envelope solutions centered at the second and third locations as above are topologically the same (except an interchange of \(x\) and \(y\) axes). Other possible locations of \((x_0, y_0)\), such as \((L, L)\), are equivalent to one of the four locations above due to periodicity of the lattice potential.

V. SOLUTIONS OF ENVELOPE EQUATIONS

Envelope equations (4.16)-(4.17) and (4.21) are one of the key results of this article. They have important consequences. First, they show that solitary waves are possible only when \(\eta D_1 < 0\) and \(\eta D_2 < 0\). This simply means that \(\mu\) must lie in the bandgap of the linear system (see Eq. (4.3)). Second, these equations show that solitary waves exist only when the dispersion coefficients \(D_1, D_2\) and the nonlinearity coefficient \(\sigma\) are of the same sign. For instance, at points A, C and E in Fig. 3 where \(D_1 > 0\) and \(D_2 > 0\), solitary waves exist only when \(\sigma > 0\), i.e., for focusing nonlinearity, but not for defocusing nonlinearity (\(\sigma < 0\)). The situation is opposite at points B and D. This result is consistent with our physical intuitions as well as the 2D experimental observations in [31].

Below, we consider soliton solutions of envelope equations (4.21) and (4.16)-(4.17). The scalar equation (4.21) is the familiar 2D NLS equation, and it admits the following types of solitary wave solutions:

1. \(A_1 = f(R)\), which is real and radially symmetric; here \((R, \Theta)\) is the polar coordinates of \((X, Y)\);

2. \(A_1 = f(R)e^{in\Theta}\), where \(n\) is an integer; this is a vortex-ring solution with charge \(n\).

The coupled envelope equations (4.16)-(4.17) admit a wider array of solutions. A complete classification of their solutions is beyond the scope of the present article. Below we only list a few types of their solutions. If \(\gamma = 0\), these equations admit the following three simple solution reductions:

(i) \(A_1 \neq 0, A_2 = 0\); or \(A_1 = 0, A_2 \neq 0\). In this case, the solution is a single Bloch-wave envelope solution. Notice that \(A_1\) (or \(A_2\)) satisfies a 2D NLS equation with different dispersion coefficients \(D_1\) and \(D_2\) along the \(X\) and \(Y\) directions, thus these solutions are simply those described above (charge-free or vortex solutions) except being stretched along the \(X\) or \(Y\) direction, hence becoming ellipse-shaped.
(ii) $A_1, A_2 \in \mathbb{R}$, where \mathbb{R} is the set of real numbers. In this case, the solution is a real-valued vector envelope state. Note that if $(A_1, A_2) \in \mathbb{R}$ is a solution, so are $(−A_1, A_2), (A_1, −A_2), (−A_1, −A_2)$, and (iA_1, iA_2). All these solutions are equivalent to each other and lead to the equivalent solitary waves in the original system \((2.4)\) (see the end of this section).

(iii) $A_1 \in \mathbb{R}, A_2 \in i\mathbb{R}$. In this case, the solution is a complex-valued vector envelope state. Note that the other solution of $A_1 \in i\mathbb{R}, A_2 \in \mathbb{R}$ is equivalent to this $A_1 \in \mathbb{R}, A_2 \in i\mathbb{R}$ solution.

If $\gamma \neq 0$, however, the reductions are quite different. For instance, the first and third reductions of case $\gamma = 0$ no longer hold. In this case, the reduction of $A_1, A_2 \in \mathbb{R}$ is allowed. Under this reduction, there are two subcases, $A_1 > 0, A_2 > 0$, and $A_1 > 0, A_2 < 0$, which are not equivalent to each other. They lead to different solitary waves in Eq. \((2.4)\) (see the end of this section).

It is noteworthy that at band edges where $\gamma \neq 0$, the single Bloch-wave envelope reductions of $A_1 \neq 0, A_2 = 0$ and $A_1 = 0, A_2 \neq 0$ are not possible. Physically, this is due to a resonance between the two Bloch modes, which prevents the existence of a single Bloch mode envelope solution. For instance, at point E of Fig. 3 where $\gamma \neq 0$ (see Eq. \((4.23)\)), the two Bloch modes are both located at the same Γ point in the first Brillouin zone (see Sec. III and Fig. 3(E)). These two Bloch modes are thus in resonance, which makes $\gamma \neq 0$. At points where $\gamma = 0$ (such as points C and D in Fig. 3), the two Bloch solutions are located at different symmetry points of the Brillouin zone and are not in resonance, thus single Bloch-wave reductions of $A_1 \neq 0, A_2 = 0$ and $A_1 = 0, A_2 \neq 0$ are possible there.

To illustrate various envelope-soliton solutions admitted by Eqs. \((4.24)\) and \((4.10)\)–\((4.17)\), we consider points A, B, C, D and E of Fig. 3 in detail below. At each of these five points, we determine solutions of the underlying envelope equations. For each envelope solution, we also display the corresponding leading-order analytical solution $u_0(x, y)$. Since envelope solitons can have four different locations (see the previous section), which will lead to four different solutions $u_0(x, y)$, for simplicity, we will only display the one where the envelope is centered at $(x_0, y_0) = (0, 0)$ below.

First we consider point A. At this point, a single Bloch mode exists and has been shown in Fig. 4(A). This Bloch wave is located at Γ point of the first Brillouin zone, is π-periodic along both x and y directions, and is all positive. The envelope equation at this point is given by \((4.24)\) with the coefficients D_1 and α_0 given in Eq. \((4.20)\). Since $D_1 > 0$, solitary waves will bifurcate into the semi-infinite bandgap ($\eta < 0$) under focusing nonlinearity ($\sigma = 1$). If we take the solution of \((4.24)\) to be $A_1 = f(R)$ where $f(R) > 0$ is the ground-state envelope solution, the corresponding leading-order analytical solution $u_0(x, y)$ is a nodal solitary wave. Such solutions have been reported before \((5, 11, 21, 23)\). Other envelope solutions of \((4.24)\) such as $A_1 = f(R)$ where $f(R)$ is a higher-mode solution (with nodes) or vortex-ring solutions $A_1 = f(R)e^{i\theta}$ could lead to other types of solitary wave structures.

Next, we consider point B. At this point, a single Bloch mode exists and has been shown in Fig. 4(B). This Bloch mode is located at M point of the first Brillouin zone, is 2π-periodic along both x and y directions, and its adjacent peaks are out of phase. The envelope equation at this point is given by \((4.24)\) with the coefficients D_1 and α_0 given in Eq. \((4.27)\). Since $D_1 < 0$, solitary waves will bifurcate into the first bandgap ($\eta > 0$) under defocusing nonlinearity ($\sigma = -1$). If we take the solution of \((4.24)\) to be the ground-state envelope solution, the corresponding analytical solution $u_0(x, y)$ is a gap soliton with nodes. Such solutions have been reported in \((5, 15, 23)\).

Envelope solutions at points C, D and E are richer and more interesting. Two of them, which are the so-called reduced-symmetry solitons \((30)\) and gap vortex solitons \((27)\), have been reported before. But many other solutions at these points are novel and have not been considered yet. They include solutions which we call dipole-array solitons, dipole-cell solitons, vortex-cell solitons, etc. Envelope solutions and the corresponding leading-order analytical solutions $u_0(x, y)$ at these three points will be described in the next three subsections respectively.

A. Envelope solutions at point C

At point C, two Bloch modes exist. One of them is shown in Fig. 4(C), while the other is a 90°-rotation of Fig. 4(C). These Bloch modes are located at the X and X' points of the first Brillouin zone. They are π-periodic along one spatial direction, and 2π-periodic along the other spatial direction. Envelope equations at this point are given by \((4.10)-\,(4.17)\), with the coefficients D_1, D_2, α, β given in Eq. \((4.21)\), and $\gamma = 0$. Since $D_1, D_2 > 0$ here, solitary waves will bifurcate into the first bandgap ($\eta < 0$) under focusing nonlinearity ($\sigma = 1$). Since $\gamma = 0$, we have three solution reductions (see above). Under these reductions, we consider the following subclasses of solutions.

(i) $A_1 > 0, A_2 = 0$. In this case, the envelope solution is an ellipse as shown in Fig. 4(a). This ellipse stretches along the Y direction. When the Bloch wave (see Fig. 4(C)) is modulated by this envelope function, the resulting leading-order analytical solution $u_0(x, y)$ is plotted in Fig. 4(b) (with ϵ taken as 0.2). This solution contains only a single Bloch mode (since $A_2 = 0$), thus we can call it a single-soliton. This soliton is narrower along the x direction, and broader along the y direction, thus it is expected to be more mobile along
For a vortex-type soliton, its angular momentum is an important quantity. This momentum is defined as [21, 22, 24, 25] before. Quite different is the case of solitons residing inside the semi-infinite bandgap, as has been reported in [27] for a different nonlinearity (see Sec. VI(A)). However, it is possible to consider vortex structure. Thus we call this solution a vortex-array gap soliton. The outer region of this soliton is aligned along the horizontal \((x)\) and vertical \((y)\) directions though. Note that this dipole-array soliton is quite different from dipole solitons reported before (see [19, 26] for instance): previous dipole solitons reside in the semi-infinite bandgap, and their peaks are at lattice sites; but the present dipole-array soliton resides in the first bandgap, and its peaks are off lattice sites. This dipole-array gap soliton arises due to a superposition of two modulated Bloch modes (see Eq. (4.4)), and has never been reported before.

\(A_1 > 0, A_2 > 0.\) In this case, the envelope solutions are both real and positive, and they are shown in Fig. 6(a, b). They are both ellipse-shaped but stretched along opposite directions. The corresponding leading-order analytical solution \(u_0(x, y)\) is plotted in Fig. 6(c, d) (with \(\epsilon\) taken as 0.2). The central region of this solitary wave is a dipole array aligned along the two diagonal directions, thus we will call this solitary wave a dipole-array gap soliton. The outer region of this soliton is aligned along the horizontal \((x)\) and vertical \((y)\) directions though. Note that this dipole-array soliton is quite different from dipole solitons reported before (see [19, 26] for instance): previous dipole solitons reside in the semi-infinite bandgap, and their peaks are at lattice sites; but the present dipole-array soliton resides in the first bandgap, and its peaks are off lattice sites. This dipole-array gap soliton arises due to a superposition of two modulated Bloch modes (see Eq. (4.4)), and has never been reported before.

For a vortex-type soliton, its angular momentum is an important quantity. This momentum is defined as

\[
\Omega = \int \mathbf{r} \times \text{Im}(\bar{\mathbf{u}} \nabla \mathbf{u}) \, d\mathbf{r} = \text{Im} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{\mathbf{u}}(xu_y - yu_x) \, dx \, dy. \tag{5.1}
\]

Here \(\text{Im}(\bar{\mathbf{u}} \nabla \mathbf{u})\) is the linear momentum, and \(\mathbf{r}\) is the position vector in the \((x, y)\) plane. The spin of the vortex is defined as

\[
S = \frac{\Omega}{\int |\mathbf{u}|^2 \, d\mathbf{r}}. \tag{5.2}
\]

In the absence of the periodic potential, the spin of a vortex soliton takes an integer value equal to the phase winding number (topological charge). In the present case with a periodic potential, the spin of a vortex-array gap soliton does not take integer values in general. Even though this soliton has a local vortex structure around each lattice center, the topological charges of adjacent lattice centers are opposite, thus the total spin of this vortex-array soliton is finite, not infinite. In fact, substituting the perturbation-series solution \(A_1 \in \mathbb{R}, A_2 \in i\mathbb{R}\) into the \(\Omega\) and \(S\) formulas, we can easily show that both \(\Omega\) and \(S\) approach zero as \(\epsilon \to 0\). Thus the spin of these vortex-array solitons is quite small.
FIG. 6: (color online) (a, b) Envelope solutions $A_1(X,Y) > 0$ (left) and $A_2(X,Y) > 0$ (right) at point C; (c, d) the corresponding analytical dipole-array soliton $u_0(x,y)$ with $\epsilon = 0.2$: the left is the amplitude and right the phase; (e, f) the analytical vortex-array soliton $u_0(x,y)$ at point C in the case (iii) with $\epsilon = 0.2$: the left is the amplitude and right the phase.

B. Envelope solutions at point D

Point D admits two Bloch waves, one shown in Fig. 4(D), and the other one being a 90°-rotation of Fig. 4(D). These Bloch modes are located at the X and X' points of the first Brillouin zone. Envelope equations at this point are given by (4.16)-(4.17), with the coefficients D_1, D_2, α, β given in Eq. (4.22), and $\gamma = 0$. Since $D_1, D_2 < 0$ now, solitary waves will bifurcate into the second bandgap ($\eta > 0$) under defocusing nonlinearity ($\sigma = -1$). Like point C, three solution reductions are admitted. Under these reductions, we consider the following subclasses of solutions.

(i) $A_1 > 0, A_2 = 0$. In this case, the envelope solution is an ellipse as shown in Fig. 7(a), which is thinner than Fig. 5(a) at point C. When the Bloch wave (see Fig. 4(D)) is modulated by this envelope function, the resulting leading-order analytical solution $u_0(x,y)$ is plotted in Fig. 7(b) (with $\epsilon = 0.2$). This solution is also a single-Bloch-mode soliton since $A_2 = 0$. Due to the thin envelope solution, this soliton is much broader in the y direction than in the x direction. Thus we can expect it to be much more mobile along the y direction than along the x direction. Note that this solution is under defocusing nonlinearity, while a similar-looking solution in Fig. 5(b) (see also [30]) was under focusing nonlinearity.

(ii) $A_1 > 0, A_2 > 0$. In this case, the envelope solutions are both real and positive, and are shown in Fig. 8(a, b). They are both ellipse-shaped stretching along opposite directions. The corresponding leading-order analytical solution $u_0(x,y)$ is plotted in Fig. 8(c, d) (with $\epsilon = 0.2$). This solution looks quite different from its counterpart — the dipole-array soliton of Fig. 5(c, d) at point C. Its main feature is that the solution inside each lattice site is a dipole cell. Its difference from the dipole-array soliton at point C is that, here the two humps of each dipole are completely confined inside each individual lattice, while the two humps of each dipole in Fig. 5(c, d) spread to neighboring lattice sites. We will call this soliton in Fig. 8(c, d) a dipole-cell gap soliton. Solutions of this kind have not been reported before. Notice that in the central region of the soliton, dipole cells are aligned...
FIG. 7: (color online) (a) Envelope solution $A_1(X, Y)$ at point D with $A_2 = 0$; (b) the corresponding analytical single-Bloch-mode soliton $u_0(x, y)$ with $\epsilon = 0.2$.

FIG. 8: (color online) (a, b) Envelope solutions $A_1(X, Y) > 0$ (left) and $A_2(X, Y) > 0$ (left) at point D; (c, d) the corresponding analytical dipole-cell soliton $u_0(x, y)$ with $\epsilon = 0.2$: the left is the amplitude and right the phase; (e, f) the analytical vortex-cell soliton $u_0(x, y)$ at point D in the case (iii) with $\epsilon = 0.2$: the left is the amplitude and right the phase.

along diagonal directions, but in the outer region, dipole cells are dominated and aligned along the horizontal and vertical directions.

(iii) $A_1 > 0$, $A_2 = i\hat{A}_2$, $\hat{A}_2 > 0$. In this case, the two Bloch modes have $\pi/2$ phase delay, and envelope functions (A_1, \hat{A}_2) are similar to (A_1, A_2) of Fig. 8(a, b). The leading-order analytical solution $u_0(x, y)$ with these envelope solutions is displayed in Fig. 8(c, e, f). The most significant feature of this solution is that, in the central region, the solution inside each lattice site is a vortex cell (with charge 1 or -1). Thus we call it a \textit{vortex-cell gap soliton}. Charges of adjacent cells are opposite, hence the total angular momentum and spin of this soliton are both finite. When $\epsilon \to 0$, the angular momentum and spin approach zero. Notice that each vortex cell here is completely
isolated and confined inside each individual lattice, which is quite different from the vortex-array soliton in Fig. 6(e, f), where neighboring vortices are connected together and do not have clear-cut boundaries between them. In addition, this vortex-cell soliton is under defocusing nonlinearity, while the vortex-array soliton of Fig. 6(e, f) was under focusing nonlinearity (see also [27]). Furthermore, this vortex-cell soliton resides in the second bandgap, while the vortex-array soliton of Fig. 6(e, f) resides in the first bandgap. Gap vortex solitons under defocusing nonlinearity as reported in [15, 29] reside also inside the first bandgap; they are the counterparts of vortex solitons in the semi-infinite bandgap as reported in [21, 22], and are fundamentally different from these vortex-cell gap solitons bifurcated from point D here. Although these vortex-cell gap solitons have never been studied before, they do resemble the linear vortex-cell defect modes in photonic lattices as reported in [12].

C. Envelope solutions at point E

Point E also admits two Bloch modes, one shown in Fig. 4(E), and the other being a 90°-rotation of Fig. 4(E). These Bloch modes are both located at Γ point of the first Brillouin zone, thus are π-periodic along both spatial directions. Envelope equations at this point are given by (4.16)-(4.17), with the coefficients $D_1, D_2, \alpha, \beta, \gamma$ given in Eq. (4.23). Since $D_1, D_2 > 0$, solitary waves will bifurcate into the second bandgap ($\eta < 0$) under focusing nonlinearity ($\sigma = 1$). Since $\gamma \neq 0$, the reduction of $A_1, A_2 \in \mathbb{R}$ is allowed, and we consider the following two subclasses of solutions.

(i) $A_1 > 0, A_2 > 0$. In this case, the envelope solutions are both real and positive, and they are shown in Fig. 9(a, b). They are both very thin ellipses stretched along opposite directions. The corresponding leading-order analytical solution $u_0(x, y)$ is plotted in Fig. 9(c) (with ϵ taken as 0.2). This solution has a pronounced cross-shape overall structure. In the central region of the (x, y) plane, the solution at each lattice center is an almost-circular positive spike, which recedes to negative backgrounds away from the lattice center. Thus we may call this solution a spike-array gap soliton.

(ii) $A_1 > 0, A_2 < 0$. In this case, envelope functions A_1 and $|A_2|$ are similar to those of Fig. 9(a, b), thus not shown. The corresponding leading-order analytical solution $u_0(x, y)$ is plotted in Fig. 9(d) (with $\epsilon = 0.2$). This solution also has a pronounced cross shape. In its central region, the solution resembles an array of quadrupoles, thus we can call this solution a quadrupole-array gap soliton.
VI. FAMILIES OF SOLITARY WAVES BIFURCATED FROM BAND EDGES

The above multi-scale perturbation analysis predicts various types of low-amplitude solitary waves when the propagation constant μ is near edges of Bloch bands. As the propagation constant moves away from band edges, these solitary waves will become more localized, and their amplitudes will increase. From an experimental point of view, more localized solitary waves are often easier to observe. For more localized solutions, the above perturbation analysis starts to break down, and numerical methods need to be employed. In this section, we compute whole families of solitary waves bifurcated from edges of Bloch bands. The numerical method we will use is the modified squared-operator iteration method developed in [35].

For illustration purpose, we determine families of solutions bifurcated from points C, D and E of Fig. 3(b). Leading-order analytical approximations on low-amplitude solutions of these families have been presented in Figs. 5 to 9. Note that solution families bifurcated from points A and B have been reported before in [15, 21, 23], thus they will not be computed in this article.

A. Solution families bifurcated from point C

At point C, three types of solitary waves have been predicted in the previous section under focusing nonlinearity: single-Bloch-mode solitons, dipole-array solitons, and vortex-array solitons, see Figs. 5(b), 5(c, d) and 5(e, f) respectively. They all exist in the first bandgap, bifurcated from the edge point C of the second Bloch band. Numerically, we have obtained the entire families of these three types of solutions. Their power curves are displayed in Fig. 10.

Here the power is defined as

$$P = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |u(x, y)|^2 dx dy.$$ \hspace{1cm} (6.1)

All the three power curves are non-monotonic. They have non-zero minimum values inside the bandgap, below which solitary waves of the respective family do not exist. This contrasts the 1D case where solitary waves exist at all power levels [20]. Of these three power curves, the one for the single-Bloch-mode family is the lowest. Thus single-Bloch-mode solitons take the least power amount to excite. Solitary waves of all three families at $\mu = 7.189$ and 6.189, which are 0.04 and 1.04 below the edge point C (where $\mu_0 = 7.229$), are plotted in Fig. 11. Note that the shorter separation $\mu - \mu_0 = -0.4$ is chosen so that $\mu - \mu_0 = -\epsilon^2$, where $\epsilon = 0.2$ is the value we have used when plotting all analytical solutions $u_0(x, y)$ in Figs. 5 and 6. The solitons at $\mu = 7.189$, shown in Fig. 11(a, c, f), are weakly localized and have low amplitudes, and they are close to the band edge C. These numerical solutions are almost identical to the analytical ones shown in Figs. 5(b), 5(c) and 5(e) (the phase fields of solitons in Fig. 11(c, f) are also almost identical to the analytical ones in Fig. 5(d, f) and thus not shown). Thus the numerical results corroborate the analytical theory of the previous section. More significant solutions in Fig. 11 are the three solitons at the other propagation constant $\mu = 6.189$, which is deep inside the first bandgap. These solutions, displayed in Fig. 11(b), (d) and (g, h), are strongly localized. Indeed, the soliton of the single-Bloch-mode family in Fig. 11(b) almost becomes a single dipole aligned along the y axis at the lattice site of origin $(x, y) = (0, 0)$; the soliton of the dipole-array family in Fig. 11(d, e) almost becomes a single dipole aligned along the $y = -x$ direction at the lattice site of origin; and the soliton of the vortex-array family in Fig. 11(g, h) almost becomes a single vortex at the lattice site of origin. The phase structures of these strongly localized solitons, however, still resemble those of weakly localized ones (see Figs. 6(d, f) and 11(c, e, h)). This strong localization of solitons in these solution families makes them amiable for on-axis excitation in photorefractive crystals. Indeed, the soliton of vortex-array family in Fig. 11(g, h) looks almost identical to the gap vortex soliton observed in [27] with on-axis excitation. It should be noted that reduced-symmetry solitons observed in [20] also bifurcate from single Bloch modes at point C. However, such solitons observed in [20] at high powers look a little different from that in Fig. 11(b): their solitons are confined to three lattice sites, with the middle-site peak intensity higher than those at the two neighboring sites; while the soliton of Fig. 11(b) is confined to two lattice sites with equal peak intensities. The reason for this difference is the following. As we have explained in Sec. IV(B), envelopes of Bloch modes can be centered at four locations (see Eq. (4.44)). For the single-Bloch-mode soliton family shown in Figs. 11 and 11(a, b), the envelope was centered at the origin $(x_0, y_0) = (0, 0)$, which leads to a dipole structure under strong localization. If the envelope is centered at $(x_0, y_0) = (0, L/2) = (0, \pi/2)$ instead, solitons under strong localizations would have a central peak shouldered by two equal but lower intensity peaks just like those observed in [20]. Thus, solitons observed in [20] belong to the single-Bloch-mode soliton family of point C with the envelope centered at $(0, \pi/2)$ rather than $(0, 0)$. From the experimental point of view, dipole-array solitons as shown in Fig. 11(c, d, e), as well as the strongly localized single-Bloch-mode soliton of dipole-type in Fig. 11(b), have never been observed before, and they still await experimental demonstration.
FIG. 10: (color online) Power diagrams of the three families of solitary waves bifurcated from the edge point C (under focusing nonlinearity). Bottom curve: single-Bloch-mode branch (marked by letter 's'); middle curve: dipole-array branch (marked by letter 'd'); top curve: vortex-array branch (marked by letter 'v'). The marked thick dot points are 0.04 and 1.04 below the band edge C.

FIG. 11: (color online) Weakly and strongly localized solutions on the three soliton branches bifurcated from the edge point C in Fig. 10. Propagation constants of these solutions are $\mu = 6.189$ and 7.189, which are marked by thick dots in Fig. 10. Top row: single Bloch-mode solitons; $u(x, y)$ is shown; (a) $\mu = 7.189$; (b) $\mu = 6.189$. Middle and bottom rows: dipole-array and vortex-array solitons respectively; (c, f) amplitudes ($|u(x, y)|$) at $\mu = 7.189$; (d, e) amplitude and phase of the dipole-array soliton at $\mu = 6.189$; (g, h) amplitude and phase of the vortex-array soliton at $\mu = 6.189$.
B. Solution families bifurcated from point D

At point D, three types of solitary waves were predicted in Sec. V under defocusing nonlinearity: single-Bloch-mode solitons, dipole-cell solitons, and vortex-cell solitons, see Figs. 7(b), 8(c, d) and 8(e, f) respectively. They all exist in the second bandgap, bifurcated from the edge point D of the second Bloch band. Numerically, we have obtained the entire families of these three types of solutions. Their power curves are displayed in Fig. 12. These power curves are also non-monotonic and have non-zero minimum values inside the bandgap. Solitary waves of these three families at $\mu = 9.121$ and 9.621, which are 0.04 and 0.54 above the edge point D (where $\mu_0 = 9.081$), are plotted in Fig. 13. The solitons at $\mu = 9.121$, shown in Fig. 13(a, c, f), are weakly localized and have low amplitudes. They are located close to the band edge D. These numerical solutions are almost indistinguishable from the analytical ones shown in Figs. 7(b), 8(c) and 8(e) where $\epsilon = 0.2$ (the phase fields of solitons in Fig. 13(c, f) are also almost indistinguishable from the analytical ones in Fig. 8(d, f) and thus not shown), thus numerical and analytical solutions near the band edge D are in agreement. Solutions at $\mu = 9.621$ away from the edge point D are more localized. These solutions are displayed in Fig. 13(b), (d, e) and (g, h) respectively. The single-Bloch-mode soliton in Fig. 13(b) is confined to only one lattice site along the x direction, but occupies quite a few lattice sites along the y direction. Thus this soliton will be highly mobile along the y direction and strongly trapped along the x direction. The dipole-cell soliton in Fig. 13(d, e) is largely confined to the single lattice site at the origin as a dipole aligned along the $y = -x$ direction, with long tails stretching along the horizontal and vertical (i.e. lattice) directions in a cross pattern. The vortex-cell soliton in Fig. 13(g, h) is also largely confined to the single lattice site at the origin in the form of a vortex-ring with charge -1, with long tails along the horizontal and vertical axes as well. None of these solitary wave structures in Fig. 13 was theoretically predicted or experimentally observed before. These structures exist under defocusing nonlinearity. Such nonlinearity can be obtained in photorefractive crystals with a negative bias charge or in Bose-Einstein condensates for certain types of atoms such as 87Rb and 23Na [14].

C. Solution families bifurcated from point E

At point E, two types of solitary waves were predicted in Sec. V under focusing nonlinearity: spike-array solitons and quadrupole-array solitons, see Fig. 9(c, d). They exist in the second bandgap, bifurcated from the edge point E of the third Bloch band. Numerically, we have obtained families of these two types of solutions. Their power curves are displayed in Fig. 14. These power curves are also non-monotonic and have non-zero minimum values inside the bandgap. Solitary waves of these families at $\mu = 9.77$ and 9.33, which are 0.04 and 0.48 above the edge point E (where $\mu_0 = 9.81$), are plotted in Fig. 15. The solitons at $\mu = 9.77$, shown in Fig. 15(a, c), are weakly localized and have low amplitudes. They are almost the same as the analytical solutions in Fig. 9(c, d) where $\epsilon = 0.2$, which is expected. The solutions at $\mu = 9.33$ away from the edge point E are more localized. These solutions are displayed in Fig. 15(b).
FIG. 13: (color online) Weakly and strongly localized solutions on the three soliton branches bifurcated from the edge point D in Fig. 12. Propagation constants of these solutions are $\mu = 9.121$ and 9.621, which are marked by thick dots in Fig. 12. Top row: single Bloch-mode solitons; $u(x, y)$ is shown; (a) $\mu = 9.121$; (b) $\mu = 9.621$. Middle and bottom rows: dipole-cell and vortex-cell solitons respectively; (c, f) amplitudes ($|u(x, y)|)$ at $\mu = 9.121$; (d, e) amplitude and phase of the dipole-cell soliton at $\mu = 9.621$; (g, h) amplitude and phase of the vortex-cell soliton at $\mu = 9.621$.

d). The localized solution of the spike-array soliton family in Fig. 15(b) is now confined to only a few lattice sites on the x and y axes, with a dominant circular spike in its center. The localized solution of the quadrupole-array soliton family in Fig. 15(d) is confined also to only a few lattice sites on the x and y axes, with a quadrupole in its center. These types of solitary waves are novel and have not been reported before.

VII. TIME-DEPENDENT ENVELOPE EQUATIONS

In the previous sections, our focus was to obtain solitary waves in Eq. (2.1), thus our envelope equations (4.16)-(4.17) and (4.24) were time-independent. If we look beyond solitary waves, we can further study how slowly modulated low-amplitude Bloch-wave packets evolve with time under nonlinear effects. In such a study, envelope equations of Bloch modes will be time-dependent. Such time-dependent envelope equations are essential not only for the tracking of Bloch-wave packets’ movement, but also for the stability analysis of stationary envelope solutions obtained in Sec. IV. This is analogous to the role the nonlinear Schrödinger equation played in the study of water wave packets and light pulses in nonlinear optics [40, 41]. Derivation of time-dependent envelope equations is a simple extension of the analysis in Sec. IV and will be performed briefly below. As before, the derivation will be carried out for the slightly more complicated case where the solution is near band edges with two different Bloch modes. Results for the simpler case of the solution being near band edges with a single Bloch mode will be given without elaboration.

Consider the evolution of low-amplitude Bloch-wave packets in Eq. (2.1) near a band edge $\mu = \mu_0$ with two different
FIG. 14: (color online) Power diagrams of the two families of solitary waves bifurcated from the edge point E (under focusing nonlinearity). Upper curve: the spike-array branch (marked by letter 's'); lower curve: the quadrupole-array branch (marked by letter 'q'). The marked thick dot points are 0.04 and 0.48 below the band edge E.

FIG. 15: (color online) Weakly and strongly localized solutions on the two soliton branches bifurcated from the edge point E in Fig. 14. Upper row: spike-array solitons; lower row: quadrupole-array solitons. Propagation constants of these solutions are \(\mu = 9.77 \) (left column) and 9.33 (right column), which are marked by thick dots in Fig. 14.

Bloch modes \(p_1(x)p_2(y) \) and \(p_2(x)p_1(y) \). The solution can be expanded into the following perturbation series:

\[
U(x, y, t) = e^{-i\mu_0 t} \left(\epsilon U_0 + \epsilon^2 U_1 + \epsilon^3 U_2 + \ldots \right),
\]

(7.1)

where

\[
U_0 = A_1(X, Y, T)p_1(x)p_2(y) + A_2(X, Y, T)p_2(x)p_1(y),
\]

(7.2)

\(\epsilon \ll 1 \), \(X = \epsilon x, Y = \epsilon y \) are slow spatial variables, and \(T = \epsilon^2 t \) is the slow time variable. When this expansion is substituted into Eq. (2.1), we find at \(O(\epsilon^2) \) that the equation for \(U_1 \) is simply Eq. (1.3) with \(u_k (k = 0, 1) \) replaced by \(U_k \), and with an additional term \(i\partial U_1/\partial t \) added onto its left hand side. The solution for \(U_1 \) is still given by Eq.
At $O(\epsilon^3)$, we find that the equation for U_2 is Eq. (4.11) with $u_k (k = 0, 1, 2)$ replaced by U_k, with an additional term $i \partial U_2 / \partial t$ added onto its left hand side, and with $\eta \psi_0$ replaced by $i \partial U_0 / \partial T$. Requiring the U_2 solution not to grow linearly with time t (suppression of secular terms), the following time-dependent equations will be derived for the envelope functions $A_1(X,Y,T)$ and $A_2(X,Y,T)$:

$$i \frac{\partial A_1}{\partial t} + D_1 \frac{\partial^2 A_1}{\partial X^2} + D_2 \frac{\partial^2 A_1}{\partial Y^2} + \sigma [\alpha |A_1|^2 A_1 + \beta (\bar{A}_1 A_2^2 + 2A_1 |A_2|^2) + \gamma (|A_2|^2 A_2 + \bar{A}_2 A_1^2 + 2A_2 |A_1|^2)] = 0, \quad (7.3)$$

$$i \frac{\partial A_2}{\partial t} + D_2 \frac{\partial^2 A_2}{\partial X^2} + D_1 \frac{\partial^2 A_2}{\partial Y^2} + \sigma [\alpha |A_2|^2 A_2 + \beta (\bar{A}_2 A_1^2 + 2A_2 |A_1|^2) + \gamma (|A_1|^2 A_1 + \bar{A}_1 A_2^2 + 2A_1 |A_2|^2)] = 0. \quad (7.4)$$

Here all coefficients D_1,D_2,α,β and γ are the same as those given in Eqs. (4.10) and (4.18)-(4.20).

If the solution of Eq. (2.1) is a low-amplitude Bloch-wave packet near a band edge $\mu = \mu_0$ where a single Bloch mode $p_1(x)p_1(y)$ exists, the perturbation expansion for the solution U is still Eq. (7.1), except that

$$U_0 = A_1(X,Y,T)p_1(x)p_1(y) \quad (7.5)$$

now. In this case, the equation for the envelope function $A_1(X,Y,T)$ reduces to

$$i \frac{\partial A_1}{\partial t} + D_1 \left(\frac{\partial^2 A_1}{\partial X^2} + \frac{\partial^2 A_1}{\partial Y^2} \right) + \sigma \alpha_0 |A_1|^2 A_1 = 0, \quad (7.6)$$

where the coefficients D_1 and α_0 are given in Eqs. (4.15) and (4.25).

Using the above time-dependent envelope equations, one can study the time evolution of Bloch-wave packets. In addition, one can analyze linear and nonlinear stabilities of stationary Bloch-wave packet solutions (i.e. solitary waves in Eqs. (7.3)-(7.4) and (7.6)). Such studies lie outside the scope of the present article.

VIII. SUMMARY AND DISCUSSION

In this paper, we systematically studied various families of solitary waves which are bifurcated from Bloch-band edges in the two-dimensional NLS equation with a periodic potential. Near the band edges, we analytically derived envelope equations for low-amplitude Bloch-wave packets. Based on these envelope equations, many novel types of solitary waves inside bandgaps were predicted, including dipole-array solitons, dipole-cell solitons, vortex-cell solitons, etc. Away from the band edges, solitary waves were traced numerically, and strongly localized solitary waves of respective families were obtained. These solitary waves have distinctive intensity and phase patterns such as cross-shape intensity distributions and vortex-cell phase profiles. Certain solitary waves previously reported in 2D photonic lattices such as reduced-symmetry solitons [30] and gap vortex solitons [27] were found to be special cases of our general classes of solutions.

In this paper, the relatively simple and obvious types of solutions in envelope equations were determined, and their induced solitary wave families computed. Whether other solutions of envelope equations would generate additional families of solitary waves is still an open question. For instance, the single-envelope equation (4.23) also admits vortex-ring solutions of the type $f(R)e^{im\phi}$. Whether such solutions would lead to new families of vortex-type lattice solitons remains to be seen. For the coupled envelope equations (4.16)-(4.17), it is not even clear what kind of additional solutions they admit beyond the ones we presented in this article. Thus a classification of solutions in the coupled envelope equations (4.16)-(4.17) is highly desirable. Linear and nonlinear stabilities of solitary waves reported in this paper is another open question which merits careful investigation. From the experimental point of view, the challenge is to experimentally demonstrate the new types of solitary waves obtained in this article, such as dipole-array solitons and vortex-cell solitons. These open questions are beyond the scope of the present article, and will be left for future studies.
Acknowledgments

The authors appreciate helpful discussions with Dr. Zhigang Chen. This work was partially supported by the Air Force Office of Scientific Research under grant USAF 9550-05-1-0379.

[1] J.D. Joannopoulos, R.D. Meade, and J.N. Winn, *Photonic Crystals: Molding the Flow of Light*, Princeton University Press, 1995.
[2] P. Russell, "Photonic Crystal Fibers", Science, 299, pp. 358 - 362 (2003).
[3] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Discrete Spatial Optical Solitons in Waveguide Arrays, Phys. Rev. Lett. 81, 3383-3386 (1998).
[4] Z. Chen and K. McCarthy, "Spatial soliton pixels from partially incoherent light", Opt. Lett. 27, 2019 (2002).
[5] J.W. Fleischer, M. Segev, N.K Efremidis, and D.N Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices", Nature 422, 147 (2003).
[6] M. Petrovic, D. Trager, A. Strinic, M. Belic, J. Schroeder, and C. Denz, "Solitonic lattices in photorefractive crystals", Phys. Rev. E 68:055601 (2003).
[7] H. Martin, E.D., Eugenieva, Z. Chen and D.N. Christodoulides, Discrete solitons and soliton-induced dislocations in partially-coherent photonic lattices, Phys. Rev. Lett. 92, 123902 (2004).
[8] R. Iwanow, R. Schick, G. I. Stegeman, T. Pertsch, F. Lederer, Y. Min, and W. Sohler, Observation of Discrete Quadratic Solitons, Phys. Rev. Lett. 93, 113902(2004).
[9] U. Peschel, R. Morandotti, J.S. Aitchison, H. S. Eisenberg and Y. Silberberg, "Nonlinearly induced escape from a defect state in waveguide arrays", Appl. Phys. Lett. 75:1348 (1999).
[10] F. Fedele, J. Yang, and Z. Chen, "Defect modes in one-dimensional photonic lattices." Opt. Lett. 30, 1506 (2005).
[11] F. Fedele, J. Yang, and Z. Chen, "Properties of defect modes in one-dimensional optically-induced photonic lattices." Stud. Appl. Math. 115, 279-301 (2005)
[12] I. Makasyuk, Z. Chen and J. Yang, "Bandgap guidance in optically-induced photonic lattices with a negative defect", Phys. Rev. Lett. 96, 223903 (2006).
[13] X. Wang, J. Young, Z. Chen, D. Weinstein, and J. Yang, "Observation of lower to higher bandgap transition of one-dimensional defect modes", Opt. Express 14, 7362-7367 (2006).
[14] D. Neshev, E. Ostrovskaya, Yu.S. Kivshar, W. Krolikowski, Spatial solitons in optically induced gratings, Opt. Lett. 28, 710 (2003).
[15] D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, "Bifurcations and stability of gap solitons in periodic potentials", Phys. Rev. E 70, 036618 (2004).
[30] R. Fischer, D. Trager, D.N. Neshev, A.A. Sukhorukov, W. Krolikowski, C. Denz, and Y.S. Kivshar, "Reduced-Symmetry Two-Dimensional Solitons in Photonic Lattices", Phys. Rev. Lett. 96, 023905 (2006).
[31] D. Trger, R. Fischer, D. N. Neshev, A. A. Sukhorukov, C. Denz, W. Krlikowski, and Y. S. Kivshar, "Nonlinear Bloch modes in two-dimensional photonic lattices," Opt. Express 14, 1913-1923 (2006).
[32] Y.V. Kartashov, V.A. Vysloukh, and L. Torner, "Rotary Solitons in Bessel Optical Lattices", Phys. Rev. Lett. 93, 093904 (2004).
[33] X. Wang, Z. Chen, and P. G. Kevrekidis, "Observation of discrete solitons and soliton rotation in periodic ring lattices", Phys. Rev. Lett. 96, 083904 (2006).
[34] M.J. Ablowitz, B. Ilan, E. Schonbrun, and R. Piestun, "Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures", Phys. Rev. E 74, 035601 (2006).
[35] J. Yang and T.I. Lakoba, "Squared-operator iteration methods for solitary waves in general nonlinear wave equations." Stud. Appl. Math. 118, 153-197 (2007).
[36] J. Yang. Stability of vortex solitons in a photorefractive optical lattice. New Journal of Physics 6, 47 (2004).
[37] B.B. Baizakov, V.V. Konotop and M. Salerno, “Regular spatial structures in arrays of BoseEinstein condensates induced by modulational instability”, J. Phys. B: At. Mol. Opt. Phys. 35, 5105-5119 (2002).
[38] T.S. Yang and T.R. Akylas, "On asymmetric gravity-capillary solitary waves”, J. Fluid Mech. 330, 215-232 (1997).
[39] D. N. Christodoulides and E. D. Eugenieva,"Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays", Phys. Rev. Lett. 87, 233901 (2001).
[40] D.J. Benney, and G.J. Roskes, "Wave instabilities", Stud. Appl. Math. 48, 377385 (1969).
[41] A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Clarendon, Oxford (1995).