DNA accessibility of chromatosomes quantified by automated image analysis of AFM data

Martin Würtz¹,³, Dennis Aumiller², Lina Gundelwein², Philipp Jung², Christian Schütz², Kathrin Lehmann¹,⁵, Katalin Tóth³ & Karl Rohr³,⁴

DNA compaction and accessibility in eukaryotes are governed by nucleosomes and orchestrated through interactions between DNA and DNA-binding proteins. Using QuantAFM, a method for automated image analysis of atomic force microscopy (AFM) data, we performed a detailed statistical analysis of structural properties of mono-nucleosomes. QuantAFM allows fast analysis of AFM images, including image preprocessing, object segmentation, and quantification of different structural parameters to assess DNA accessibility of nucleosomes. A comparison of nucleosomes reconstituted with and without linker histone H1 quantified H1’s already described ability of compacting the nucleosome. We further employed nucleosomes bearing two charge-modifying mutations at position R81 and R88 in histone H2A (H2A R81E/R88E) to characterize DNA accessibility under destabilizing conditions. Upon H2A mutation, even in presence of H1, the DNA opening angle at the entry/exit site was increased and the DNA wrapping length around the histone core was reduced. Interestingly, a distinct opening of the less bendable DNA side was observed upon H2A mutation, indicating an enhancement of the intrinsic asymmetry of the Widom-601 nucleosomes. This study validates AFM as a technique to investigate structural parameters of nucleosomes and highlights how the DNA sequence, together with nucleosome modifications, can influence the DNA accessibility.

In 1974, a “beads on a string” structure was discovered in micrographs, and the spheroid unit was dubbed nucleosome¹. Nucleosomes are the basic unit of chromatin compaction and play a key role in gene regulation. Individual nucleosomes consist of a histone octamer, which is built up by two histone H2A-H2B dimers and one histone (H3–H4)₂ tetramer²,³. Around the octamer, a stretch of DNA folds around with a wrapping length of approximately 150 bp³,⁴, leading to a solenoid structure with a total diameter of 11 nm. The wrapping length depends on nucleosome integrity and is thus a measure for DNA accessibility. In vivo, DNA accessibility - and hence gene regulation - is orchestrated by many factors, for example, the presence of linker histones, post-translational modifications, or histone variants. The linker histones H1 and H5 bind to nucleosomes in the region of the DNA entry/exit site⁵–¹¹ and can thereby increase compaction of the resulting chromatosome (nucleosome with histone H1). Early experiments with microbial nuclease digestions indicated that linker histone H1 increases the wrapping length of nucleosomes by roughly 20 bp¹². Recent electron cryo-microscopy and crystallization studies provided detailed structural information, for example, of a 197 bp nucleosome containing the linker histone H1⁶. However, determining the exact binding configuration of the linker histone to the nucleosome is challenging since it depends on many factors like histone variants or DNA sequence¹³,¹⁴.

Post-translational modifications on histone proteins¹⁵ or histone variants¹⁶–¹⁸ have ambiguous effects on the nucleosome, since they can lead to either a more open or a more condensed structure of the chromatin. The H2A.Bbd variant, for example, preserves only 48% sequence identity to canonical H2A¹⁹. Nucleosomes

¹German Cancer Research Center, Division Biophysics of Macromolecules, Heidelberg, 69120, Germany. ²Heidelberg University, Institute of Computer Science, Heidelberg, 69120, Germany. ³Heidelberg University, BioQuant and IPMB, Biomedical Computer Vision Group, Heidelberg, 69120, Germany. ⁴German Cancer Research Center, Heidelberg, 69120, Germany. ⁵Simon Fraser University, Department of Physics, Burnaby, BC, V5A 1S6, Canada. Katalin Tóth and Karl Rohr contributed equally. Correspondence and requests for materials should be addressed to K.R. (email: k.rohr@dkfz.de)
developed image analysis method QuantAFM is given in Fig. 1a. The general structure is similar to related work but the method includes a new combination of algorithms and improvements on certain aspects. DNA wrapping length) for mutated nucleosomes without and with H1. Interestingly, our AFM data unravel an influence on the entry/exit DNA arms measured by the opening angle as well as the increase in DNA wrap-

Figure 1. Schematic overview of the automated image analysis method and extracted parameters. (a) Example results illustrating the algorithmic steps of the image analysis method QuantAFM. (i) Original input image, (ii) denoising step with Non-Local Means filtering resulting in less variation of background noise, (iii) additional mean and low-pass filtering for further removing the noise levels of the AFM tip, (iv) initial binarization yielding a rough segmentation result, (v) refined segmentation result after background equalization and removal of small as well as large objects, (vi) extraction of nucleosome candidates with the Hough Transform indicated by red circles, and (vii) simultaneous thinning step. (viii) Results for the thinned fragments and nucleosomes are merged based on physical proximity. Subsequently, length and angles are determined for valid fragments. (b) Enlarged sample nucleosome object. Determined parameters include nucleosome radius r (black), opening angle $θ$ (yellow), and long (blue) and short (magenta) filament protruding DNA arm lengths. If no nucleosome is present, the total contour length is determined instead.

containment of the image quality with deteriorating dullness of the tip, violating the assumption of equal noise distribution within an image collection. The main performance increase was achieved by introducing a
Non-Local Means Filter as a first step, and an additional low-pass filtering further helps to cope with distortions due to the scan lines of the AFM tip, see Supplementary A and Fig. 1a(ii,iii). To identify and discard image contaminations, we calculate an initial threshold based on the expected size of filaments in the data, and reset the intensities of contaminated regions to the average background intensity, see Fig. 1a(iv). Subsequently, we re-calculate the threshold based on the corrected image, which generally allowed discarding artifacts outside of the size range, compare Fig. 1a(v). Both binarization steps are performed with Otsu’s method, which outperformed alternative methods for cross-dataset performance (see Supplementary Section A.3). These processing steps allow quantifying objects even in difficult images with strong contaminations and artifacts (see Supplementary Fig. S3).

After binarization, filaments are processed by thinning single strands to a backbone, and their respective lengths are determined based on the Kulpa estimator. To further improve the accuracy, we take the shortening caused by the thinning process into account. Results in Table 1 show high agreement with theoretical contour lengths and values obtained by manual analysis, for DNA strands of two fragment lengths, 464 bp (157.8 nm) and 599 bp (203.7 nm). Pruning of ambiguous thinning results (i.e. where a unique backbone could not be determined) was fortunately not necessary, which thus avoids discarding of objects. Instead, we determine the maximum length based on maximum distance within the pixels of a single graph-based filament path.

In addition to determining the contour length, our method enables fully automated recognition of nucleosomes (Fig. 1a(vi)), which to our knowledge was not possible with previous methods. Nucleosomes have a circular shape in AFM images, attached to the filament strands. Given a radius range specified by the user, the Hough Transform is used to detect circular structures in the images. These nucleosome candidates are associated with a position in the image and a radius. They are then matched to the respective detected filaments based on their vicinity using the Euclidean distance. Associated pairs are only further evaluated if a unique match is possible (i.e. if there are not multiple nucleosome candidates attached to the same DNA strand). Beyond the nucleosome position and radius, we further determine the opening angle for wrapped DNA, and the lengths of the respective protruding DNA arms, which is measured from the intersection of strand and nucleosome. For 90% of the cases, the opening angle was determined correctly. For some objects the angle could not be exactly determined because of inverted angles, due to ambiguities of the orientation.

Analysis of our dataset for wt nucleosomes (599 bp) consisting of a total of 10 images with a total of 254 valid objects yielded 65% correctly recognized nucleosomes, compared to only about 15% without Non-Local Means filtering and background equalization (see Supplementary Section B). We note that results for detection without additional filters depend on the quality of the original images. Since detection rates were determined for a single threshold setting only, a higher accuracy could be achieved by iterating over different threshold values.

The focus of developing our software was on the performance and flexibility to enable application for a variety of tasks. During the runtime, QuantAFM does not require any supervision, and stores intermediate results for subsequent analysis. Even when applying our software with different sets of parameters, this is much faster than laborious manual annotation. Parameters include the enabling/disabling of several of the previously mentioned steps of the method, as well as a concise representation of filament objects and their determined parameters. QuantAFM allows easy association of extracted parameters to the respective objects in the image, enabling the user to confirm output quality of individual objects, and further accelerates supplementation of manual analysis. Importantly, we also support different resolutions both for the physical experiment, and the resulting image. Our software is implemented in MATLAB and the source code is available online.

AFM imaging of chromatosomes.

To demonstrate the suitability of QuantAFM for biologically relevant questions, we analyzed AFM data from wild type (wt) and H2A R81E/R88E mutated (mut) mono-nucleosomes with and without linker histone H1 to investigate how DNA accessibility is affected upon mutation in H2A or histone H1 interaction. Therefore, nucleosomes were reconstituted on 464 bp long DNA containing the positioning sequence Widom-601. Nucleosome reconstitution, as well as initial binding of histone H1 to both wt and mutated nucleosomes, was confirmed via electrophoretic mobility shift assay (EMSA, Supplementary Fig. S7). AFM imaging was performed via established protocols using Poly(L)lysine (PL) for surface modification, and mutated nucleosomes, was confirmed via electrophoretic mobility shift assay (EMSA, Supplementary Fig. S7). AFM imaging was performed via established protocols using Poly(L)lysine (PL) for surface modification, and mutated nucleosomes, was confirmed via electrophoretic mobility shift assay (EMSA, Supplementary Fig. S7). AFM imaging was performed via established protocols using Poly(L)lysine (PL) for surface modification, and mutated nucleosomes, was confirmed via electrophoretic mobility shift assay (EMSA, Supplementary Fig. S7). AFM imaging was performed via established protocols using Poly(L)lysine (PL) for surface modification, and mutated nucleosomes, was confirmed via electrophoretic mobility shift assay (EMSA, Supplementary Fig. S7).

Sample	Estimated contour length mean ± sd [nm]	Detection rate
464 bp DNA automated (n = 693)	158.2 ± 6.3	80%
464 bp DNA manual (n = 162)	157.3 ± 6.2	
599 bp DNA automated (n = 754)	201.0 ± 8.0	76%
599 bp DNA manual (n = 180)	200.9 ± 7.4	

Table 1. Comparison of estimated and manual extracted contour lengths, determined for DNA of 464 bp and 599 bp. Our image analysis method shows consistent results for both DNA lengths, as well as good detection rates for free DNA (see Supplementary Section B). Manually analyzed fragments are a subset of automated analyzed fragments.
Therefore, we verified that H1 binding persists upon PL deposition via surface adsorption experiments with fluorescently labeled histone H1 (Supplementary Fig. S7). Using QuantAFM for the acquired AFM data, we quantified the influence of histone H1 on wt and especially on mutated nucleosomes to examine if histone H1 interaction can compensate the suggested destabilized behavior of the mutated nucleosomes\(^2\). Extracted parameters for in total \(n = 1,781\) nucleosome objects (Table 2) were used to compare the four classes (wt and mutated nucleosomes without and with histone H1). The determined mean values of the radius indicate that the radii of nucleosomes in the images appear, due to a AFM imaging artifact, as roughly twice the known radius. This has to be taken into consideration when determining the DNA wrapping length \(l_w\), i.e. the length of DNA bound to the histones. Therefore, to calculate the \(l_w\) for each individual nucleosome object, we corrected the automatically determined contour lengths of the protruding DNA arms using a correction factor, and subtracted the corrected value from the mean value of the total contour length of free 464 bp DNA molecules (see Methods AFM data evaluation). The contour length of free DNA molecules was measured under the same conditions as nucleosome samples, resulting in a mean value of 158.2 nm ± 6.3 nm \((n = 693\) objects), which corresponds to the expected nm/bp ratio of 0.34 ± 0.01 nm/bp.

Figure 2. AFM imaging of chromatosomes. Nucleosome complexes deposited on PL coated surface. (a and b) Example images of wt nucleosomes reconstituted on 464 bp DNA, without and with histone H1, respectively. The images show that nucleosomes are clearly distinguishable from background and free DNA (black circle). Example images for mutated nucleosomes are shown in Supplementary Fig. S8. (c) Enlarged sections for each nucleosome class, selected from different images, with representative DNA wrapping length \(l_w\) and trend of the opening angle \(\theta\). All selected complexes show a central positioning on the DNA. Mutated nucleosomes show a more open conformation. For mut \(+H1\) a highly wrapped and less wrapped object is shown.

Table 2. Mean values (mean) with standard deviation (sd) of extracted structural parameters of automatically analyzed AFM images from 464 bp nucleosome objects.
To illustrate the structural differences between the classes (Table 2) regarding contour lengths of the protruding DNA arms and DNA opening angle (θ), Fig. 2c presents for each class an individual object representing the mean characteristics of its class. The selected objects show central positioning on the DNA for all classes indicating a reconstitution on the Widom-601 sequence, and that mutated nucleosomes have a more open conformation compared to wt. The wild type chromatosome (wt + H1) shows an increased \(l_w \) compared to wt without histone H1. For mutated chromatosomes (mut + H1), two objects were selected underlining that within classes the complexes display large heterogeneity, which was also observed in other AFM studies with nucleosomes\(^{21,40}\). Nevertheless, on the basis of a statistically relevant number of analyzed objects a detailed comparative analysis is possible as performed in this work. In the following, we describe a comparison of the distributions of the DNA opening angle, the DNA wrapping length and the nucleosome positioning, which underpins the characteristic features of each class presented in Fig. 2c.

Binding of histone H1 affects DNA opening angle and wrapping length. A major improvement of our image analysis method compared to previous work is that the opening angle θ of the nucleosomes is quantified automatically. Figure 3 illustrates the distribution of θ for the different classes and statistical analysis was performed as described in Methods (Section Statistical data analysis). For wt nucleosomes about 70% of the opening angles are below 90° (Fig. 3a), while for mutated nucleosomes about 70% of the opening angles are above 90° (Fig. 3c). This means a significant shift towards a more open structure of the mutated nucleosome (\(p = 0.005 \)). Similar observations were made for H2A.Bdb containing nucleosomes\(^{20}\).

The distribution of wt with linker histone H1 does not differ significantly from the distribution without H1, but H1 induces a preferred θ population between 60° and 90° resulting in a distinct DNA entry/exit site conformation (see Fig. 2c). Although for mutated nucleosomes with linker histone H1 (Fig. 3d) the majority of objects are in a more open structure with higher values of θ, the frequency of lower values of θ around 90° is also increased compared to mutated nucleosomes without H1 (\(p = 0.019 \)). The evident difference for the opening angles between wt and mutated nucleosomes underlines the impact of the charge-modifying mutations on the nucleosome conformation also in the presence of linker histone H1.

Since our method does not only determine the opening angles but also the relevant contour length parameters of the objects, a multifaceted analysis is feasible. To emphasize the heterogeneity in object conformation, scatter plots of the opening angle versus contour length of the protruding DNA arms for wt without and with histone H1, respectively, are shown in Fig. 4a,b (scatter plots for mutated nucleosomes are shown in Supplementary Fig. S8). Upon histone H1 binding (Fig. 4b) the heterogeneity decreases with more pronounced clustering of the distribution between 60°–90° opening angle and 80 nm–100 nm protruding DNA arm contour length. As discussed for Fig. 3c, this clustering of the opening angle indicates a preferred conformation of the DNA arms at the entry/exit site. Moreover, compared to wt without H1 (Fig. 4a), the scatter plot of wt with H1 (Fig. 4b) shows that this

Figure 3. DNA opening angles are affected by mutation and histone H1 interaction. Normalized probabilities of the opening angles θ were plotted in 15° binned sectors for the different cases. The small example images in (a) represent nucleosome objects with the corresponding DNA opening angle. For each case, (a) wt, (b) wt + H1, (c) mut and (d) mut + H1 all opening angles are plotted (\(n_{wt} = 444, n_{wt + H1} = 445, n_{mut} = 444, n_{mut + H1} = 448 \)). Diagrams for samples with histone H1 are shown in red. Linker histone H1 induces a distinct population between 60° and 90° in the distribution of the opening angle for wt. Compared to wt, mutated nucleosomes show higher opening angles.
clustering of \(\theta \) is accompanied by a reduced protruding DNA arm contour length. This clearly indicates that histone H1 interaction results in further compaction of the DNA, as the changes in both parameters reveal an increased \(l_w \). Therefore, Fig. 4c presents the distributions of calculated \(l_w \) for wt nucleosomes with and without H1. The obtained mean of 145 bp ± 28 bp for \(l_w \) for wt without histone H1 is in agreement with comparable AFM studies \(^{21,22,33,35,37} \) and is a clear indication for the reliability of the here performed AFM experiments and the accuracy of QuantAFM also compared to the value of \(l_w \) determined by crystal structure analysis \(^{3,4} \). Histone H1 significantly increases the mean \(l_w \) (\(p < 0.05 \)), shifting its distribution to a mean value of 163 bp ± 28 bp. This increase of DNA wrapping length of about 20 bp is in agreement with nuclease digestion experiments \(^{12} \) and molecular structures analysis \(^{6,10} \). From the observed changes of structural parameters extracted from the AFM images, we could confirm the binding of histone H1 to mono-nucleosomes and characterize the influence on the DNA entry/exit region resulting in a more compact conformation with increased DNA wrapping and therefore decreased DNA accessibility, which is in agreement with previous reports \(^{6,7,60} \).

Figure 4d shows the distributions of \(l_w \) for mutated nucleosomes with and without H1. The distribution of \(l_w \) of mutated nucleosome is, in comparison to wt, significantly shifted to lower values with a peak between 105 bp–120 bp (\(p < 0.05 \)). The resulting mean value of 121 bp ± 32 bp supports earlier findings \(^{24} \), indicating a destabilizing effect of the H2A mutated nucleosomes. Histone H1 induced a significant increase in mean \(l_w \) (\(p < 0.05 \)) of roughly 20 bp (143 bp ± 33 bp). The distribution of \(l_w \) of mut +H1 shows a clear peak between 120 bp–135 bp and more complexes with \(l_w \) above 150 bp compared to mut (38% of objects with H1 are above 150 bp, whereas only 16% of objects without H1). The increased number of complexes with DNA wrapping above 150 bp may represent a population of the mutated nucleosomes where H1 binding increases the compaction similarly to wt nucleosomes (68% of wt chromatosomes have wrapping above 150 bp). Further we see also a shift of roughly 15 bp in lower \(l_w \) regime. These changes confirm the influence of histone H1 for the mutated nucleosomes even after deposition on the PL coated surface. Our observations indicate that histone H1 induces
compaction of the mutated nucleosomes, but the DNA accessibility in the chromatosomes is still substantially increased compared to wt. This suggests that histone H1 cannot completely compensate the altered nucleosome conformation induced by the charge-modifying mutations in H2A.

Nucleosome positioning as indication for asymmetric unwrapping of mutated nucleosomes.

Besides θ and l_α, the positioning of nucleosomes can also be determined using QuantAFM. Previously it was shown that the positioning of the nucleosomes on the Widom-601 can be accurately determined in AFM experiments by analyzing the relative length of the protruding DNA arm by the sum of the corrected lengths of both protruding DNA arms (see AFM data evaluation). Therefore, the positioning of the nucleosome on the DNA is expressed via values ranging from 0 to 0.5 for the end to the central region of the DNA. For wt, the median of sa-ratio, distribution was 0.468. This is close but somewhat smaller than the theoretical value, as we extended the Widom-601 with 153 bp and 164 bp overhangs resulting in a theoretical value of 0.483. The median of the sa-ratio, for mutated nucleosomes is slightly lower, with a value of 0.455. In both cases, sa-ratio, shows that the nucleosomes are located centrally on the DNA indicative for a strong positioning on the Widom-601 sequence. For comparing positioning, the small fraction of analyzed nucleosomes with sa-ratio, < 0.3 was not considered ($< 1\%$ for wt and 1% for mutated nucleosomes). This small fraction of nucleosomes positioned far apart from the Widom sequence is in agreement with Menshikova et al. They observed in an AFM study that a fraction of less than 5% of nucleosomes was positioned apart from the Widom-601 38. The high affinity of the Widom-601 sequence was shown and utilized in several other AFM studies21,22,35,49.

However, we find a small but significant difference in the distributions of sa-ratio, between wt and mutants (0.013 different median, $p < 0.05$). As described above, l_α is lower for mutated nucleosomes. An opening with symmetric increase in contour length of both protruding DNA arms would result in no change of the sa-ratio. Therefore, the change in sa-ratio, upon mutation can be explained by higher accessibility of one particular protruding DNA arm, indicating an asymmetric opening. As the Widom-601 sequence is non-palindromic, we named the two halves of the DNA α and β-side (Supplement Section C). For 464 bp DNA the data indicate that over the population of all mutated nucleosomes the by design longer α-side DNA arm is more accessible. This can be derived from the shift of the sa-ratio, distribution to lower values compared to wt. However, as the difference between both DNA arms is only 11 bp (3.74 nm), which is inside the standard deviation of the measured contour lengths of the protruding DNA arms (Table 2), we cannot reliably distinguish which DNA arm belongs to which side (α or β). Therefore, we performed the same experiments with 599 bp long DNA fragments, to further investigate which DNA side becomes preferentially accessible upon mutation.

We extended the Widom-601 sequence so that nucleosomes have two protruding DNA arms, which clearly differ in length (183 bp and 269 bp) resulting in a theoretical sa-ratio, of 0.405. In contrast to the 464 bp fragments, for the 599 bp DNA the shorter DNA arm corresponds to the β-side (Fig. 5a). EMSA results as well as the trends of extracted structural parameters from automated AFM image analysis were the same for both (464 bp and 599 bp) DNAs (Supplementary Fig. S9). In Fig. 5b the calculated values of sa-ratio, are plotted for all classes (464 bp and 599 bp DNA, with and without H1) as relative cumulative frequency curves. This representation of the sa-ratio, distributions shows the differences in the positioning of wt and mutated nucleosome objects via the horizontal separation of the curves. The median of each distribution (sa-ratio, value at 0.5 relative cumulative frequency) is plotted in Fig. 5c with highlighted values of theoretical sa-ratio, (0.483 and 0.405, black arrows).

The shift to lower cumulative sa-ratio, frequencies for wt samples recomposed on 599 bp DNA (median of 0.413) in comparison to those recomposed on 464 bp DNA (0.468) clearly demonstrates the positioning on the Widom-601 sequence. As mentioned, values for mutated 464 bp nucleosome objects are lower than those for wt, which is indicated in Fig. 5b by the separation of the curves. On the other hand, values of mutated nucleosome objects from 599 bp DNA (median of 0.423) are significantly shifted to higher values compared to wt ($p = 0.007$). Histone H1 binding to nucleosomes (wt or mut) resulted in no significant shift of the sa-ratio, distributions. But the evident difference in sa-ratio, between wt and mutated samples is for both DNA fragments more distinct in the presence of H1, resulting in a difference of the median value of 0.018 and 0.022 for 464 bp and 599 bp samples, respectively. Although we have no direct marker for the corresponding DNA arm sides (α and β) the experimental setup with the two differently designed DNA fragments strongly indicates that for mutants with and without H1 one side (the α-side) is preferentially more accessible. This implies that H2A mutated nucleosomes are more susceptible to DNA sequence dependent opening, even in the presence of H1.

Our results reveal that the enhanced DNA accessibility upon mutation with and without histone H1, indicated by increased DNA opening angle and decreased DNA wrapping length cohere with an asymmetric DNA unwrapping on the less bendable α-side. This asymmetric unwrapping from the α-side was reported earlier by other techniques$^{30-31}$. In the present study, using our automated image analysis method, we found this phenomenon via optical tweezers on nucleosomes attached to the surface31. Subsequently, we could show the same effect for freely diffusing nucleosomes in NaCl

Discussion

Gene regulation is highly influenced by DNA compaction via histone proteins. A growing number of in vivo and in vitro studies describe the impact of factors like the DNA sequence on the dynamics of nucleosomes as well as the role of nucleosome dynamics on the accessibility of DNA41. For in vitro studies, the most often used nucleosome positioning sequence is the Widom-60125. Recently, the intrinsic asymmetry of the Widom-601 resulting in a preferred DNA unwrapping of the less bendable α-side was found using optical tweezers on nucleosomes attached to the surface31.
induced destabilization assays. Monte Carlo simulations supported by SAXS and FRET measurements has revealed the same sequence dependent asymmetric opening for core particles on the Widom-601 but not on the more random 5S DNA. In the present study, via accurate analysis of PL absorbed wt and mutated nucleosome complexes using our automated image analysis method QuantAFM, we found that DNA accessibility is asymmetrically enhanced upon this mutation. In comparison to wt, mutated nucleosomes with and without histone H1 show a more open conformation, where preferentially the α-side has opened. We conclude this from three characteristics deduced from automatically extracted structural parameters of more than 2000 analyzed individual nucleosome objects: 1) In contrast to wt, mutated nucleosomes with and without H1 show a rather open “beads on a string” conformation with opening angles above 90° (Fig. 3). 2) For mutated nucleosomes without and with histone H1 the sa-ratio was clearly decreased in comparison to wt (Fig. 4). 3) Our analysis of the nucleosome positioning reveals that especially the contour length of the α-side DNA arm was increased in mutated nucleosome complexes compared to wt (Fig. 5). Similar comparisons of the positioning of wt nucleosomes and nucleosomes containing different H2A variants reconstituted on the Widom-601 were done in several AFM studies. DNA wrapping was also reduced compared to wt for nucleosomes containing H2A.Bdb variant. Interestingly, the relative positioning on the DNA fragments did not change and therefore a symmetric increase in DNA arm length was suggested. Although time-lapse and high-speed AFM are suitable to monitor the nucleosome unwrapping process, this dominant α-side unwrapping of mono-nucleosomes reconstituted on the Widom-601 was to our knowledge not yet reported for AFM. This underlines that the conformation with preferentially opened α-side is a feature of our mutated nucleosomes on the Widom-601, which is preserved upon surface immobilization and drying applied for AFM imaging.
Earlier we suggested a pathway of nucleosome unwrapping from the Widom-601 sequence, which starts with the linker DNA opening on the α-side, followed by eviction of the H2A-H2B dimer on this opened side. Results for nucleosomes with the milder mutation (H2A R81A) revealed that the suggested unwrapping pathway is accelerated upon mutation in the α3 helices of histone H2A. Our study supports the findings obtained by single molecule FRET, via visualization of the dominantly more accessible α-side of H2A R81E/R88E mutants using AFM. In this context, a recent cryo-EM study of partially unwrapped nucleosome states gave interesting structural insights on how the histone octamer adapts to opening DNA arm via plasticity and reorientation. This study could show in agreement with that the H2A-H2B dimer on the opened DNA side shows more dynamics in contrast to the dimer at the wrapped DNA side. Moreover, it was evident that the reorientation of the H2A-H2B dimer is important for interacting and stabilization of partially unwrapped DNA arm. This suggests that due to the destabilized dimer/tetramer interface and changed electrostatic environment for H2A R81E/R88E nucleosomes, the interaction to the less bendable, opening DNA arm (α-side), is altered, which results in the open conformations. Similar to our findings, Doyen et al. described in EM experiments an open conformation for nucleosomes containing H2A.Bbd variant, which showed also a reduced DNA wrapping in AFM experiments. Shukla et al. expanded these studies on the H2A.Bbd variant investigating the interaction with histone H1. They suggested an impeded binding of histone H1 to H2A.Bbd containing nucleosomes. In contrast to the H2A.Bbd nucleosomes, histone H1 binding could be confirmed for H2A R81E/R88E mutated nucleosomes via extraction and comparison of structural features collected by AFM and also by EMSA. Further, our experiments with fluorescently labeled histone H1 verified the presence of linker histone after deposition for AFM experiments (Supplementary Fig. 7). However, the portion of mutated chromatosomes which showed l above 150 bp (38%) was significantly decreased compared to wt chromatosomes (68%). Bednar et al. found on the basis of the structural information of a 197 bp chromatosome that linker DNA arm flexibility can influence histone H1 interaction. They suggested that factors that affect DNA arm/exit angle could have an impact on histone H1 interaction as they observed a loss of interaction to one of the linker DNA. In this context, it is a striking observation that the difference between wt and mutants in apparent positioning was more distinct in the presence of H1. We hypothesize that the interaction between histone H1 and the DNA arm is disrupted whereas the β-side is unaffected, leading to the pronounced difference in positioning. Therefore, our findings unveil that the impact of the influence of DNA sequence properties on nucleosome dynamics can be amplified by internal nucleosome modification or vice versa, which could not completely be compensated by histone H1 interaction. However, the determined values for wt chromatosomes underline the histone H1 induced compaction. This is to our knowledge the first report in AFM studies describing the impact of histone H1 on DNA wrapping and DNA opening angle in a consistent manner. With the automated detection and feature extraction of nucleosome-like objects, our here presented image analysis method QuantAFM demonstrated its ability to facilitate quantification of AFM images and could be adapted and improved with regard to similar investigations.

Methods

DNA fragments. The 464 bp and 599 bp DNA fragments containing the 147 bp long Widom-601 sequence were produced via PCR on the pGEM-3z/601 plasmid (Widom-601, Addgene plasmid #26656; http://n2t.net/addgene:26656; RRID:Addgene_26656) and purified on Gen−Pak FAX HPLC (Waters). The primers (Sigma Aldrich, USA) as well as the DNA sequence of the two fragments are listed in (Supplementary Section C).

Histone proteins. The recombinant *Xenopus laevis* core histones were purchased from Planet Protein (Colorado State University, USA). Mutated *Xenopus laevis* histone H2A (R81E/R88E) as well as recombinant *Human* linker histones (H1.0a) were expressed in *E. coli*, purified, and the histone H1-T77C was labeled with Alexa488-maleimide (H1-T77C-Alexa488) as described.

Nucleosome experiments. The histone octamers were reconstituted following the protocols described earlier. Nucleosomes with and without histone H1 were reconstituted in a molar ratio of DNA: octamer of 1:2 for the 464 bp DNA and 1:3 for 599 bp DNA via salt dialysis as described earlier. Briefly, DNA and octamers were mixed in (10 mM Tris-HCl, 0.1 mM EDTA, 2 M NaCl) and slowly dialyzed at 4 °C in Slide-A Lyzer Mini Dialysis Units, 7000 MWCO (Thermo Scientific, USA) down to 5 mM NaCl concentration. For reconstitution of chromatosomes, histone H1 was added in excess up to a molar ratio of 1:4 (DNA: histone H1) during the reconstitution process at NaCl concentration around 600 mM. Reconstitution was controlled via agarose gel electrophoresis. Samples were loaded together with 1 kb DNA ladder (Bioron, Germany) on 1% agarose gels in TBE buffer (pH 7.5). After electrophoresis, gels were incubated for 15 min in an ethidium bromide solution and imaged under UV light.

AFM experiments. AFM experiments in air were performed after established protocols using Poly(L)lysine (PLL) (Sigma-Aldrich) modified mica surfaces. Therefore, 30 μl of a 10 μg/μl PL solution was deposited for 1−2 min on the freshly cleaved mica (Plano, Germany). After incubation, the surface was washed with 1.5 ml ddH2O and dried under a nitrogen stream. Afterwards, 30 μl of the nucleosome suspension (10 mM Tris-HCl, 0.1 mM EDTA, 15 mM NaCl, pH 7.5 and 1 nM−5 nM nucleosome concentration) was deposited on the surface and immediately washed with 1.5 ml ddH2O and dried under nitrogen stream. Measurements were performed using Nanoscope V, Digital Instruments (Santa Barbara, USA) with Nanoscope software (version 7.13, Veeco Instruments) running in tapping mode with silicon probes (type: PointProbePlus, NCH, Nanoworld, Switzerland) at drive frequencies of 300 kHz−400 kHz with a set point between 2.0 V−3.0 V. The scan rate was 1.36 Hz with a scan size and 1024 × 1024 image size. AFM images were flattened and converted into 8-bit tagged image file format (TIFF). Experiments with different DNA sizes were performed in at least three replicates each (replicates are nucleosome reconstitutions, controlled via EMSA and AFM imaging with at least two independent fixations on the PL coated mica surface).
AFM data evaluation. For automated analysis of AFM data, our image analysis method QuantAFM (see Supplementary Section A) with standard thresholding and background threshold level of 90 was used. The range of radii for Hough voting was set to 8.5 nm to 14.0625 nm, and the sensitivity for Hough voting was varied between 0.90 and 0.96. To determine the opening angle θ, line fitting for 5 pixels (roughly 10 nm) was performed. For contour length determination, the average length was computed. For the other parameters default values were employed. For comparative analysis of nucleosome objects, the same parameter setting was used for all data. Only objects within the expected contour length range (464 bp, 65 nm–155 nm; 599 bp, 130 nm–190 nm) which showed no major abnormalities (wrong DNA backbone path, intersections, strong contaminations) were included in the analysis, the other objects were discarded. From every automatically analyzed image, quantified parameters of all valid objects, as well as manually determined parameters for objects, where the automated image analysis method could not determine all parameters (below 25% of all evaluated objects), were used for our evaluation. Supplementation with manual analysis was done to ensure that all object conformations on the images are considered. Therefore, we used at least 60% of the valid objects on the analyzed images for our evaluation. In cases where QuantAFM yielded a wrong opening angle θ (identified by visual inspection), θ was replaced by the inverse angle 180 − θ. Manual image analysis was performed using the Fiji software®. Contour lengths were determined by tracing centrally through the fragments using the Segmented Line Selection Tool, and θ was determined using the Angle tool. The nm/bp ratio, which is the distance in nm between two bp of the DNA, was determined by measuring the contour length of free DNA fragments. The mean value of the contour length of DNA filaments was divided by the number of bp of the corresponding DNA fragment. Due to the broadening artifacts in AFM measurements, the radius of a nucleosome appears to be approximately twice as large as its known radius (Table 2). Hence, for an estimation of the DNA wrapping length and nucleosome positioning, the length of each protruding DNA arm needs to be corrected by adding the difference between the automatically determined radius of an individual object and the known radius of the nucleosome (5.5 nm)3. The DNA wrapping length Lc was calculated by subtracting the corrected contour length of the protruding DNA arms from the mean value of the free DNA fragment length and then converted into bp via division with the nm/bp ratio (0.34 nm/bp for our experiments). The positioning of the nucleosomes on the DNA fragments was quantified by the corrected short DNA arm ratio (sa-ratio), which is a slightly modified version of the r-ratio described earlier39. For each individual object, the corrected length of the short protruding DNA arm was divided by the sum of both corrected protruding DNA arms, resulting in a sa-ratio, ranging from 0 to 0.5.

Statistical data analysis. To analyze and compare the parameters of the DNA and nucleosome classes the mean value (mean) with standard deviation (sd) or median with 95% confidential interval (CI) were calculated. For statistical analysis, distributions were tested for normality using Shapiro-Wilk normality test. Normal distributed data were compared using unpaired two-tailed t-test, otherwise Mann-Whitney U test was used. Multiple comparisons were done using One-way ANOVA or Kruskal-Wallis test with following Tukey’s post-test or Dunn’s post test, respectively. The significance level was p < 0.05. The p-values for the comparison of DNA opening angles, DNA wrapping length and sa-ratio, were determined using Kruskal-Wallis test with subsequent Dunn’s post test. Data were analyzed using GraphPad Prism version 8.1.2 for Mac (GraphPad Software, La Jolla California USA).

Test experiments with fluorescently labeled histone H1. Persistence of histone H1 binding to nucleosomes after absorption to PL coated surface (for AFM imaging protocol) was evaluated with fluorescently labeled histone (H1-T77C-Alexa488). The fluorescence signal of the samples on PL coated circular glass slides (8 mm diameter coverslips) was detected with Typhoon multimode imager (GE Healthcare, Germany). The excitation was at 488 nm wavelength with BP 520/40 nm emission filter. The fluorescence intensity was measured by setting the amplification to 650 V and the image was scanned with 100 μm resolution (see Supplementary Section D).

Data Availability

The source code of our software as well as example images are available online (https://github.com/dennlinger/quantAFM). The whole datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Olins, A. L. & Olins, D. E. Spheroid chromatin units (v bodies). Science (New York, NY) 183, 330–332 (1974).
2. Van Holde, K. E. Chromatin (Springer-Verlag, New York, 1989).
3. Luguer, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260, https://doi.org/10.1038/38444 (1997).
4. Vasudevan, D., Chua, E. T. & Davey, C. A. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J Mol Biol 403, 1–10, https://doi.org/10.1016/j.jmb.2010.08.039 (2010).
5. Kinkade, J. & Cole, R. The resolution of four lysine-rich histones derived from calf thymus. J Biol Chem 241 (1966).
6. Bednar, J. et al. Structure and dynamics of a 197 base-pair nucleosome in complex with linker histone H1. Molecular Cell 66, 384–397.e8, https://doi.org/10.1016/j.molcel.2017.04.012 (2017).
7. Hamiche, A., Schultz, P., Ramakrishnan, V., Oudet, P. & Prunell, A. Linker Histone-dependent DNA Structure in Linear Mononucleosomes. Journal of Molecular Biology 257, 30–42, https://doi.org/10.1006/jmbi.1996.0144 (1996).
8. Parseghian, M. H. What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery. AIMS Biophysics 2, 724–772, https://doi.org/10.3934/biop.2015.4.724 (2015).
9. Syed, S. H. et al. Sinope base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proceedings of the National Academy of Sciences of the United States of America 107, 9620–9625, https://doi.org/10.1073/pnas.1003091107 (2010).
10. Zhou, B.-R. et al. Structural insights into the histone H1-nucleosome complex. Proceedings of the National Academy of Sciences 110, 19390–19395 (2013).
63. Miyagi, A., Ando, T. & Lyubchenko, Y. L. Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy.

64. Lyubchenko, Y. L. & Shlyakhtenko, L. S. AFM for analysis of structure and dynamics of DNA and protein-DNA complexes.

65. Bilokapic, S., Strauss, M. & Halic, M. Histone octamer rearranges to adapt to DNA unwrapping.

52. Marek, J.

66. Biswas, M., Voltz, K., Smith, J. C. & Langowski, J. Role of histone tails in structural stability of the nucleosome.

68. Schindelin, J.

58. Bussiek, M., Mucke, N. & Langowski, J. Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res 31, e137 (2003).

62. Syed, S. H.

54. Otsu, N. A threshold selection method from gray-level histograms.

56. Kulpa, Z. Area and perimeter measurement of blobs in discrete binary pictures. Computer Graphics and Image Processing 6, 434–451, https://doi.org/10.1016/S0168-5838(77)80021-X (1977).

67. Duda, R. O. & Hart, P. E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 15, 11–15, https://doi.org/10.1145/361237.361242 (1972).

69. Bussiek, M., Muller, G., Waldeck, W., Diekmann, S. & Langowski, J. Organisation of nucleosomal arrays reconstituted with repetitive African green monkey alpha-satellite DNA as analysed by atomic force microscopy. Eur Biophys J 37, 81–93, https://doi.org/10.1007/s00249-007-0166-y (2007).

59. Fan, L. & Roberts, V. A. Complex of linker histone H5 with the nucleosome and its implications for chromatin packing. Proceedings of the National Academy of Sciences of the United States of America 103, 8384–8389, https://doi.org/10.1073/pnas.0508951103 (2006).

61. Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Review. Molecular Cell Biology 18, 548–562, https://doi.org/10.1038/mcb.2017.47 (2017).

63. Liu, B., Hertz, G. Z., Frasch, M. C., Schulz, C., Luger, K. & Meier, R. A. Histone H3/H4 tetramer structure reveals the dimensions of DNA templates. Nature 495, 322–325, https://doi.org/10.1038/nature11959 (2013).

Acknowledgements

We thank Philip Hausner, Susanne Ibing, Schradon, Roman Spilger, and Oskar Staufer, for their contributions to the original project pipeline. Plasmids for recombinant human linker histones were kindly gifted by J. Hayes. We further thank Madhura De for providing unlabeled and labeled histone H1 proteins, and Norbert Mücke for help with the AFM measurements. We acknowledge financial support by Deutsche Forschungsgemeinschaft (DFG) postdoctoral fellowship to K.L. K.R. acknowledges support of the Federal Ministry of Education and Research (de.NBI, CancerTelSys) and the German Research Foundation (SFB 1129, RTG 1653, SSP 2202).

Author Contributions

M.W.: Designed, performed and analyzed biochemical and AFM experiments, wrote main manuscript text and prepared Figures 2–5, Figures S7–S9 as well as Tables 1 and 2; D.A.: Development of the image analysis method, contributed to main manuscript text and prepared Figure 1 and S1–S6; C.S., L.G. and P.J. were involved in the programming of the image analysis method. K.T. and K.R. supervised the project. All authors reviewed the manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-49163-4.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019