On electrical gates on fungal colony

Alexander E. Beasleya,b, Phil Ayresc, Martin Tegelaard, Michail-Antisthenis Tsompanasb, Andrew Adamatzkyb

aCentre for Engineering Research, University of Hertfordshire, UK
bUnconventional Computing Laboratory, UWE, Bristol, UK
cThe Centre for Information Technology and Architecture, Royal Danish Academy, Copenhagen, Denmark
dMicrobiology Department, University of Utrecht, Utrecht, The Netherlands

Abstract

Mycelium networks are promising substrates for designing unconventional computing devices providing rich topologies and geometries where signals propagate and interact. Fulfilling our long-term objectives of prototyping electrical analog computers from living mycelium networks, including networks hybridised with nanoparticles, we explore the possibility of implementing Boolean logical gates based on electrical properties of fungal colonies. We converted a 3D image-data stack of \textit{Aspergillus niger} fungal colony to an Euclidean graph and modelled the colony as resistive and capacitive (RC) networks, where electrical parameters of edges were functions of the edges’ lengths. We found that AND, OR and AND-NOT gates are implementable in RC networks derived from the geometrical structure of the real fungal colony.

Keywords: mycelium network, Boolean gates, unconventional computing

1. Introduction

Fungi are demonstrated to be at the forefront of environmentally sustainable biomaterials \cite{31,30,16} used in manufacturing of acoustic \cite{11,21,42} and thermal \cite{55,54,23,20,53,15} insulation panels, packaging materials \cite{26,47,39} and adaptive wearables \cite{5,46,31,8,29}. In our project ‘Fungal architectures’ \cite{2} we proposed to grow mycelium bound composites into monolithic building elements \cite{4}. The composite would combine living mycelium, capable of sensing light, chemicals, gases, gravity and electric fields \cite{10,50,33,22,9,28,27}, with dead mycelium functionalised using
nanoparticles and polymers. These living building structures would have embedded bioelectronics electronics [12, 11, 13], implement sensorial fusion and decision making in the mycelium networks [6] and be able to grow monolithic buildings from the functionalised fungal substrate [4].

A decision making feature requires inference logical circuits to be embedded directly into mycelium bonded composites. To check what range and frequencies of logical gates could be implemented in the mycelium bound composites we adopted an approach developed originally in [6, 44]. The technique is based on selecting a pair of input sites, applying all possible combinations of inputs to the sites and recording outputs on a set of the selected output sites. The approach belongs to same family of computation outsourcing techniques as in materio computing [35, 36, 48, 37, 38] and reservoir computing [51, 34, 17, 32, 18]. In our previous studies [6] we demonstrated that logical circuits can be derived from electrical spiking activity of the fungal colony. The approach, whilst elegant theoretically, might lack practical applications because the spiking activity of living fungi is of very low frequency, e.g. a spike per 20 minutes [1, 3]. Thus, we decided to explore electrical properties of the fungal colony, because the electrical analog implementation of logical gates is notoriously fast. In the numerical experiments described here, ‘0’ and ‘1’ signals are represented by low and high voltage applied to the input sites.

2. Methods

A 3D colony of Aspergillus niger fungus was cultured with fluorescent protein and visualised by confocal microscopy as detailed in Sect. 6. Z-stacks of imaged micro-colonies were provided using 100 slices with a slice thickness of 8.35 µm (Fig. 1). The Z-stacks of the colony have been converted to a 3D graph (Fig. 2) as detailed in Sect. 6. The 3D graph was converted to a resistive and capacitive (RC) network, whose magnitudes are a function of the length of the connections. Resistances were in the order of kOhms and capacitance were in the order of pF. Separate models were created with the RC connections modelled either in series or in parallel modules. The networks were parsed for the order one nodes, which are considered to the extent of the sample. The positive voltage and ground nodes were randomly assigned from the sample and 1000 networks are created in each arrangement for analysis. SPICE analysis consisted of transient analysis using a two voltage pulses of 60 mV on the randomly assigned positive nodes with the following
Figure 1: Z-slices of the fungal colony of Aspergillus niger imaged by fluorescence microscopy.
Figure 2: Perspective views of the 3D Graph. Each frame shows the graph after a 36° rotation around the z-axis with origin located approximately in the centre of the colony, on the x-y plane indicated with registration marks.
parameters: $T_{\text{delay}} = 10$ s for V_1 and 20 s for V_2, $T_{\text{rise}} = 0.001$ s, $T_{\text{fall}} = 0.001$ s, $T_{\text{on}} = 10$ s for V_1 and 20 s for V_2, $T_{\text{off}} = 20$ s for V_1 and 20 s for V_2, $N_{\text{cycles}} = 2$ for V_1 and 1 for V_2. Circuit analysis was transient analysis for 40 s in steps of 1 ms. The voltage at each node and current through each link were measured every 1 ms of the simulation. We modelled the fungal colony in serial RC networks and parallel RC networks.

3. Results

In general, there are 16 possible logical gates realisable for two inputs and one output. The gates implying input 0 and evoking a response 1, i.e. $f(0,0) = 1$, are not realisable because the fungal circuit simulated is passive. The remaining 8 gates are AND, OR, AND-NOT (x AND NOT y and NOT x AND y), SELECT (SELECT x and SELECT y) and XOR.

No XOR gates have been found in neither of the RC models of the fungal colony.

In the model of serial RC networks we found gates AND, SELECT and AND-NOT; no OR gates have been found. The number n of the gates discovered decreases by a power low with increase of θ: $n_{\text{AND-NOT}} = 72 \cdot x^{-0.98}$, $n_{\text{SELECT}} = 2203 \cdot x^{-0.48}$, $n_{\text{AND}} = 0.02 \cdot x^{-1.6}$. Frequency of AND gate oscillates, as shown in zoom insert in Fig. 3a, more likely due to its insignificant presence in the samples. The oscillations reach near zero base when θ exceeds 0.001.

In the model of parallel RC networks we found only gates AND, SELECT and OR. The number of OR gates decreases quadratically and becomes nil when $\theta > 0.03$. The number of AND gates increases near linearly, $n_{\text{AND}} = -1.72 \cdot 10^6 + 2.25 \cdot 10^8 \cdot x$, with increase of θ. The number of SELECT gates reaches its maximum at $\theta = 0.023$, and then starts to decreases with the further increase of θ: $n_{\text{SELECT}} = 9.61 \cdot 10^6 + 1.21 \cdot 10^9 \cdot x - 2.7 \cdot x^2$.

4. Discussion

By simulating a fungal colony as an electrical network we discovered families of Boolean gates realisable in the network. Voltage values have been binarised via threshold θ. All non-active, i.e. $f(0,0) \neq 1$, gates but XOR have been discovered and their dynamics in relation to θ. The systems of gates discovered are functionally complete and therefore we can speculate that an arbitrary logical circuit can be realised in living fungal networks by encoding Boolean values in differences of electrical potential. The XOR gates
Figure 3: Occurrences of the gates from the groups AND, black, OR, green, AND-NOT, red, and SELECT, blue, for \(\theta \in [0.0001, 0.05] \), with \(\theta \) increment 0.0001, in (a) fungal colony modelled with serial RC networks, (b) fungal colony modelled with parallel RC networks.
have not been observed in our models. This is unsurprising as the XOR gate is the most rare gate to be discovered in non-linear systems \[7, 45, 25\]. A disadvantage of the electrical analog logical circuits in living fungal colonies would be that the colony requires maintenance and have a relatively short life span. A way forward would be to ‘imprint’ the colony in other long-living materials. This can be done, for example, by means of biolithography as previously tested on slime mould *Physarum polycephalum* \[14\].

5. Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme FET OPEN “Challenging current thinking” under grant agreement No 858132.

6. Appendix

6.1. Fungal colony imaging

Aspergillus niger strain AR9#2 \[52\], expressing Green Fluorescent Protein (GFP) from the glucoamylase (*glaA*) promoter, was grown at 30°C on minimal medium (MM) \[19\] with 25 mM xylose and 1.5% agarose (MMXA). MMXA cultures were grown for three days, after which conidia were harvested using saline-Tween (0.8% NaCl and 0.005% Tween-80). 250 ml liquid cultures were inoculated with 1.25·10⁹ freshly harvested conidia and grown at 200 rpm and 30°C in 1 L Erlenmeyer flasks in complete medium (CM) (MM containing 0.5% yeast extract and 0.2% enzymatically hydrolyzed casein) supplemented with 25 mM xylose (repressing *glaA* expression). Mycelium was harvested after 16 h and washed twice with PBS. Ten g of biomass (wet weight) was transferred to MM supplemented with 25 mM maltose (inducing *glaA* expression).

Fluorescence of GFP was localised in micro-colonies using a DMI 6000 CS AFC confocal microscope (Leica, Mannheim, Germany). Micro-colonies were fixed overnight at 4°C in 4% paraformaldehyde in PBS, washed twice with PBS and taken up in 50 ml PBS supplemented with 150 mM glycine to quench autofluorescence. Micro-colonies were then transferred to a glass bottom dish (Cellview™, Greiner Bio-One, Frickenhausen, Germany, PS, 35/10 MM) and embedded in 1% low melting point agarose at 45°C. Micro-colonies were imaged at 20× magnification (HC PL FLUOTAR L 20 × 0.40 DRY). GFP was excited by white light laser at 472 nm using 50% laser intensity.
(0.1 kW/cm²) and a pixel dwell time of 72 ns. Fluorescent light emission was detected with hybrid detectors in the range of 490–525 nm. Pinhole size was 1 Airy unit.

6.2. Graph extraction

3D projections were made with Fiji [43]. Conversion of the imaged micro-colonies to graph data was accomplished using a publicly available ImageJ macro [1]. The macro was run on the Fiji (ImageJ) platform, version 1.52, with the supplementary 3D ImageJ Suite installed to provide enhanced 3D capabilities [40]. To run the macro, initialisation parameters for expected hypha radius were given as 3 µm [49]; detection sensitivity threshold was set to 8; minimal vessel volume was set to 100 pixels. Key processing tasks performed by the macro were:

1. Morphological closing of tubular structures.
2. Pre-filtering to enhance filamentous voxels.
3. Segmentation of tubular structures.
4. Skeletonisation and analysis of the network.

Results of the segmentation included a Z-stack 3D visualisation of the network with identified branching and end-points, and tabular data including the number of disjoint networks together with constituent branch segments defined by start and end points given in voxel coordinates.

The tabular data was then processed using a custom python script to convert voxel coordinates to real-world coordinates. The set of all vertices was determined and all branch start and end points were indexed. A weighted graph was generated using the NetworkX library for python [24], with graph nodes defined by the vertex index, edges defined between vertex pairs and edge weights given as the euclidean distance of the branch segment (Fig. 2). Graph topology could then be determined using the NetworkX degree function. Shortest weighted paths between source and sink vertices could also be found, allowing a direct correlation to resistive networks.

1 The macro was developed by the Advanced Digital Microscopy Core Facility, IRB Barcelona, to process Z-stack data for blood vessel segmentation and network analysis, see details in adm.irbbarcelona.org/bioimage-analysis/image-j-fiji and biii.eu/blood-vessel-segmentation-and-network-analysis
References

[1] Andrew Adamatzky. On spiking behaviour of oyster fungi pleurotus djamor. *Scientific reports*, 8(1):1–7, 2018.

[2] Andrew Adamatzky, Phil Ayres, Gianluca Belotti, and Han Wöst. Fungal architecture position paper. *International Journal of Unconventional Computing*, 14, 2019.

[3] Andrew Adamatzky and Antoni Gandia. On electrical spiking of ganoderma resinaceum. *bioRxiv*, 2021.

[4] Andrew Adamatzky, Antoni Gandia, Phil Ayres, Han Wöst, and Martin Tegelaar. Adaptive fungal architectures. *LINKs-series*, 5:66–77.

[5] Andrew Adamatzky, Anna Nikolaidou, Antoni Gandia, Alessandro Chiolerio, and Mohammad Mahdi Dehshibi. Reactive fungal wearable. *Biosystems*, 199:104304, 2021.

[6] Andrew Adamatzky, Martin Tegelaar, Han AB Wosten, Anna L Powell, Alexander E Beasley, and Richard Mayne. On boolean gates in fungal colony. *Biosystems*, 193:104138, 2020.

[7] Andy Adamatzky and Larry Bull. Are complex systems hard to evolve? *Complexity*, 14(6):15–20, 2009.

[8] Freek Vincentius Wilhelmus Appels. *The use of fungal mycelium for the production of bio-based materials*. PhD thesis, Universiteit Utrecht, 2020.

[9] Yong-Sun Bahn and Fritz A Mühlchlegel. Co2 sensing in fungi and beyond. *Current opinion in microbiology*, 9(6):572–578, 2006.

[10] Yong-Sun Bahn, Chaoyang Xue, Alexander Idmurm, Julian C Rutherford, Joseph Heitman, and Maria E Cardenas. Sensing the environment: lessons from fungi. *Nature Reviews Microbiology*, 5(1):57, 2007.

[11] Alexander E Beasley, Mohammed-Salah Abdelouahab, René Lozi, Anna L Powell, and Andrew Adamatzky. Mem-fractive properties of mushrooms. *arXiv preprint arXiv:2002.06413*, 2020.
[12] Alexander E Beasley, Anna L Powell, and Andrew Adamatzky. Capacitive storage in mycelium substrate. *arXiv preprint arXiv:2003.07816*, 2020.

[13] Alexander E Beasley, Anna L Powell, and Andrew Adamatzky. Fungal photosensors. *arXiv preprint arXiv:2003.07825*, 2020.

[14] Tatiana Berzina, Alice Dimonte, Andrew Adamatzky, Victor Erokhin, and Salvatore Iannotta. Biolithography: Slime mould patterning of polyaniline. *Applied Surface Science*, 435:1344–1350, 2018.

[15] Juan Pablo Cárdenas-R. Thermal insulation biomaterial based on hydrangea macrophylla. In *Bio-Based Materials and Biotechnologies for Eco-Efficient Construction*, pages 187–201. Elsevier, 2020.

[16] Kustrim Cerimi, Kerem Can Akkaya, Carsten Pohl, Bertram Schmidt, and Peter Neubauer. Fungi as source for new bio-based materials: a patent review. *Fungal biology and biotechnology*, 6(1):1–10, 2019.

[17] Matthew Dale, Julian F Miller, and Susan Stepney. Reservoir computing as a model for in-materio computing. In *Advances in Unconventional Computing*, pages 533–571. Springer, 2017.

[18] Matthew Dale, Julian F Miller, Susan Stepney, and Martin A Trefzer. A substrate-independent framework to characterize reservoir computers. *Proceedings of the Royal Society A*, 475(2226):20180723, 2019.

[19] Ronald P De Vries, Kim Burgers, Peter JI van de Vondervoort, Jens C Frisvad, Robert A Samson, and Jaap Visser. A new black aspergillus species, a. vadensis, is a promising host for homologous and heterologous protein production. *Appl. Environ. Microbiol.*, 70(7):3954–3959, 2004.

[20] Patrick Pereira Dias, Laddu Bhagya Jayasinghe, and Daniele Waldmann. Investigation of mycelium-miscanthus composites as building insulation material. *Results in Materials*, 10:100189, 2021.

[21] Elise Elsacker, Simon Vandelook, Aurélie Van Wylick, Joske Ruytinx, Lars De Laet, and Eveline Peeters. A comprehensive framework for the production of mycelium-based lignocellulosic composites. *Science of The Total Environment*, 725:138431, 2020.
[22] Marina Fomina, Karl Ritz, and Geoffrey M Gadd. Negative fungal chemotropism to toxic metals. *FEMS Microbiology Letters*, 193(2):207–211, 2000.

[23] Carolina Girometta, Anna Maria Picco, Rebecca Michela Baiguera, Daniele Dondi, Stefano Babbini, Marco Cartabia, Mirko Pellegrini, and Elena Savino. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. *Sustainability*, 11(1):281, 2019.

[24] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

[25] Simon Harding, Jan Koutnik, Júrgen Schmidhuber, and Andrew Adamatzky. Discovering boolean gates in slime mould. In *Inspired by Nature*, pages 323–337. Springer, 2018.

[26] GA Holt, Gavin Mcintyre, Dan Flagg, Eben Bayer, JD Wanjura, and MG Pelletier. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. *Journal of Biobased Materials and Bioenergy*, 6(4):431–439, 2012.

[27] Konrad T Howitz and David A Sinclair. Xenohormesis: sensing the chemical cues of other species. *Cell*, 133(3):387–391, 2008.

[28] Mordecai J Jaffe, A Carl Leopold, and Richard C Staples. Thigmo responses in plants and fungi. *American Journal of Botany*, 89(3):375–382, 2002.

[29] Mitchell Jones, Antoni Gandia, Sabu John, and Alexander Bismarck. Leather-like material biofabrication using fungi. *Nature Sustainability*, pages 1–8, 2020.

[30] Mitchell Jones, Andreas Mautner, Stefano Luenco, Alexander Bismarck, and Sabu John. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. *Materials & Design*, 187:108397, 2020.
[31] Elvin Karana, Davine Blauwhoff, Erik-Jan Hultink, and Serena Camere. When the material grows: A case study on designing (with) mycelium-based materials. *International Journal of Design, 12*(2), 2018.

[32] Zoran Konkoli, Stefano Nichele, Matthew Dale, and Susan Stepney. Reservoir computing with computational matter. In *Computational Matter*, pages 269–293. Springer, 2018.

[33] Ching Kung. A possible unifying principle for mechanosensation. *Nature, 436*(7051):647, 2005.

[34] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural network training. *Computer Science Review, 3*(3):127–149, 2009.

[35] Julian F Miller and Keith Downing. Evolution in materio: Looking beyond the silicon box. In *Proceedings 2002 NASA/DoD Conference on Evolvable Hardware*, pages 167–176. IEEE, 2002.

[36] Julian F Miller, Simon L Harding, and Gunnar Tufte. Evolution-in-materio: evolving computation in materials. *Evolutionary Intelligence, 7*(1):49–67, 2014.

[37] Julian F Miller, Simon J Hickinbotham, and Martyn Amos. In materio computation using carbon nanotubes. In *Computational Matter*, pages 33–43. Springer, 2018.

[38] Julian Francis Miller. The alchemy of computation: designing with the unknown. *Natural Computing, 18*(3):515–526, 2019.

[39] Abhik Mojumdar, Himadri Tanaya Behera, and Lopamudra Ray. Mushroom mycelia-based material: An environmental friendly alternative to synthetic packaging. *Microbial Polymers*, pages 131–141, 2021.

[40] Jean Ollion, Julien Cochenec, François Loll, Christophe Escudé, and Thomas Boudier. Tango: a generic tool for high-throughput 3d image analysis for studying nuclear organization. *Bioinformatics, 29*(14):1840–1841, 2013.

[41] MG Pelletier, GA Holt, JD Wanjura, Eben Bayer, and Gavin McIntyre. An evaluation study of mycelium based acoustic absorbers grown
on agricultural by-product substrates. *Industrial Crops and Products*, 51:480–485, 2013.

[42] Owen Robertson et al. Fungal future: A review of mycelium biocomposites as an ecological alternative insulation material. *DS 101: Proceedings of NordDesign 2020, Lyngby, Denmark, 12th-14th August 2020*, pages 1–13, 2020.

[43] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Ruden, Stephan Saalfeld, Benjamin Schmid, et al. Fiji: an open-source platform for biological-image analysis. *Nature methods*, 9(7):676–682, 2012.

[44] Stefano Siccardi, Andrew Adamatzky, Jack Tuszyński, Florian Huber, and Jörg Schnauß. Actin networks voltage circuits. *Physical Review E*, 101(5):052314, 2020.

[45] Stefano Siccardi, Jack A Tuszyński, and Andrew Adamatzky. Boolean gates on actin filaments. *Physics Letters A*, 380(1-2):88–97, 2016.

[46] Jillian Silverman, Huantian Cao, and Kelly Cobb. Development of mushroom mycelium composites for footwear products. *Clothing and Textiles Research Journal*, 38(2):119–133, 2020.

[47] S Sivaprasad, Sidharth K Byju, C Prajith, Jithin Shaju, and CR Rejeesh. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. *Materials Today: Proceedings*, 2021.

[48] Susan Stepney. Co-designing the computational model and the computing substrate. In *International Conference on Unconventional Computation and Natural Computation*, pages 5–14. Springer, 2019.

[49] Martin Tegelaar and Han AB Wösten. Functional distinction of hyphal compartments. *Scientific reports*, 7(1):1–6, 2017.

[50] Ingrid M Van Aarle, Pål Axel Olsson, and Bengt Söderström. Arbuscular mycorrhizal fungi respond to the substrate ph of their extraradical mycelium by altered growth and root colonization. *New Phytologist*, 155(1):173–182, 2002.
[51] David Verstraeten, Benjamin Schrauwen, Michiel d’Haene, and Dirk Stroobandt. An experimental unification of reservoir computing methods. *Neural networks*, 20(3):391–403, 2007.

[52] Arman Vinck, Charissa de Bekker, Adam Ossin, Robin A Ohm, Ronald P de Vries, and Han AB Wösten. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies. *Environmental microbiology*, 13(1):216–225, 2011.

[53] Fei WANG, Hong-qiang LI, Shu-shuo KANG, Ye-fei BAI, Guo-zhen CHENG, and Guo-qiang ZHANG. The experimental study of mycelium/expanded perlite thermal insulation composite material for buildings. *Science Technology and Engineering*, 2016:20, 2016.

[54] Yangang Xing, Matthew Brewer, Hoda El-Gharabawy, Gareth Griffith, and Phil Jones. Growing and testing mycelium bricks as building insulation materials. In *IOP Conference Series: Earth and Environmental Science*, volume 121, page 022032. IOP Publishing, 2018.

[55] Zhaohui Yang, Feng Zhang, Benjamin Still, Maria White, and Philippe Amstislavski. Physical and mechanical properties of fungal mycelium-based biofoam. *Journal of Materials in Civil Engineering*, 29(7):04017030, 2017.