Geographical and altitudinal distribution of *Brachycephalus* (Anura: Brachycephalidae) endemic to the Brazilian Atlantic Rainforest

Marcos R. Bornschein, Carina R. Firkowski, Ricardo Belmonte-Lopes, Leandro Corrêa, Luiz F. Ribeiro, Sérgio A. A. Morato, Reuber L. Antoniazzi-Jr., Bianca L. Reinert, Andreas L. S. Meyer, Felipe A. Cini, Marcio Pie

Mountains of the Brazilian Atlantic Forest can act as islands of cold and wet climate, leading to the isolation and speciation of species with low dispersal capacity, such as the toadlet species of the genus *Brachycephalus*. This genus is composed primarily by diurnal species, with miniaturized body sizes (< 2.5 cm), inhabiting microhabitats in the leaf litter of montane forests. Still little is known about the geographical distribution, altitudinal range, and ecological limits of most *Brachycephalus* species. In this study we review the available data on the geographical and altitudinal distribution of *Brachycephalus* based on occurrence records compiled from literature and museums, both for the genus as a whole and separately for the three recently proposed groups of species (*ephippium*, *didactylus*, and *pernix*). The final ensemble dataset comprised 333 records, 120 localities, 28 described species, and six undescribed ones. Species were recorded in six relief units, the richest of which being the Serra do Mar, with 30 species. When the Serra do Mar is subdivided into three subunits, Northern, Central and Southern Serra do Mar, the number of species increase from north to the south, with records of six, nine, and 16 species, respectively. We were able to estimate the extent of occurrence of nearly half of the described species, and the resulting estimates indicate that many of them show remarkably small ranges, some of which less than 50 ha. *Brachycephalus* species are present from sea level to roughly 1,900 m a.s.l., with the highest richness being found between 751 and 1,000 m a.s.l. (21 spp.). The species with the broadest altitudinal range
were *B. didactylus* (1,075 m) and *Brachycephalus* sp. 1 (1,035 m), both in the *didactylus* group, and *B. ephippium* (1,050 m), of the *ephippium* group. The broadest altitudinal amplitude for species of the *pernix* group was recorded for *B. brunneus* (535 m). The lowest altitudinal records for the *pernix* group were at 845 m a.s.l. in the state of Paraná and at 455 m a.s.l. in the state of Santa Catarina. The altitudinal occurrence in the *pernix* species group seems to decrease southward. Syntopy between species is also reviewed.
Geographical and altitudinal distribution of *Brachycephalus* (Anura: Brachycephalidae) endemic to the Brazilian Atlantic Rainforest

Marcos R. Bornschein\(^1,2,9\), Carina R. Firkowski\(^3\), Ricardo Belmonte-Lopes\(^2,3,4\), Leandro Corrêa\(^2\), Luiz F. Ribeiro\(^2,3,5\), Sérgio A. A. Morato\(^6\), Reuber Lana Antoniazzi-Jr\(^7\), Bianca L. Reinert\(^2,8\), Andreas L. S. Meyer\(^3,4\), Felipe A. Cini\(^3\) & Marcio R. Pie\(^2,3,4\)

1 Instituto de Biociências, Universidade Estadual Paulista, Campus do Litoral Paulista, Praça Infante Dom Henrique s/no, Parque Bitaru, CEP 11330–900, São Vicente, São Paulo, Brazil
2 Mater Natura - Instituto de Estudos Ambientais, Rua Lamenha Lins 1080, CEP 80250–020, Curitiba, Paraná, Brazil
3 Departamento de Zoologia, Universidade Federal do Paraná, CEP 81531–990, Curitiba, Paraná, Brazil
4 Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Universidade Federal do Paraná, CEP 81531–990, Curitiba, Paraná, Brazil
5 Escola de Saúde, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Prado Velho, CEP 80215–901, Curitiba, Paraná, Brazil
6 STCP Engenharia de Projetos Ltda., Rua Euzébio da Motta, 450, CEP 80.530–260, Curitiba, Paraná, Brazil
7 Laboratório de Ecologia de Insetos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270–901, Belo Horizonte, Minas Gerais, Brazil
8 Laboratório de Biodiversidade, Conservação e Ecologia de Animais Silvestres, Departamento de Zoologia, Universidade Federal do Paraná, CEP 81531–990, Curitiba, Paraná, Brazil
9 Corresponding author: Marcos R. Bornschein. E-mail: bornschein.marcao@gmail.com

Short title: Distribution of *Brachycephalus* spp.
Abstract
Mountains of the Brazilian Atlantic Forest can act as islands of cold and wet climate, leading to the isolation and speciation of species with low dispersal capacity, such as the toadlet species of the genus *Brachycephalus*. This genus is composed primarily by diurnal species, with miniaturized body sizes (< 2.5 cm), inhabiting microhabitats in the leaf litter of montane forests. Still little is known about the geographical distribution, altitudinal range, and ecological limits of most *Brachycephalus* species. In this study we review the available data on the geographical and altitudinal distribution of *Brachycephalus* based on occurrence records compiled from literature and museums, both for the genus as a whole and separately for the three recently proposed groups of species (*ephippium*, *didactylus*, and *pernix*). The final ensemble dataset comprised 333 records, 120 localities, 28 described species, and six undescribed ones. Species were recorded in six relief units, the richest of which being the Serra do Mar, with 30 species. When the Serra do Mar is subdivided into three subunits, Northern, Central and Southern Serra do Mar, the number of species increase from north to the south, with records of six, nine, and 16 species, respectively. We were able to estimate the extent of occurrence of nearly half of the described species, and the resulting estimates indicate that many of them show remarkably small ranges, some of which less than 50 ha. *Brachycephalus* species are present from sea level to roughly 1,900 m a.s.l., with the highest richness being found between 751 and 1,000 m a.s.l. (21 spp.). The species with the broadest altitudinal range were *B. didactylus* (1,075 m) and *Brachycephalus* sp. 1 (1,035 m), both in the *didactylus* group, and *B. ephippium* (1,050 m), of the *ephippium* group. The broadest altitudinal amplitude for species of the *pernix* group was recorded for *B. brunneus* (535 m). The lowest altitudinal records for the *pernix* group were at 845 m a.s.l. in the state of Paraná and at 455 m a.s.l. in the state of Santa Catarina. The altitudinal occurrence in the *pernix* species group seems to decrease southward. Syntopy between species is also reviewed.

Introduction

Brachycephalus Fitzinger is a genus of miniaturized diurnal toadlets (usually < 2.5 cm in snout-vent length) that inhabit the forest floor of montane regions along the Atlantic Rainforest of southeastern and southern Brazil (Izecksohn 1971; Giaretta & Sawaya 1998; Pombal et al. 1998;
Napoli et al. 2011; Pie et al. 2013; see Rocha et al. [2000] and Pombal & Izecksohn [2011] for reports of nocturnal activity). _Brachycephalus_ presents direct development and a reduction in the number and size of digits (Hanken & Wake 1993; Pombal 1999; Yeh 2002). Some species are aposematic (yellow, orange or yellow with light red), of which some were confirmed as harboring neurotoxins (tetrodotoxin and analogues; Sebben et al. [1986]; Pires et al. [2002, 2003]; Schwartz et al. [2007]).

Recently, Kaplan (2002) proposed that the genus _Psyllophryne_ Izecksohn should be considered a junior synonym of _Brachycephalus_. _Psyllophryne_ included two species, _P. didactyla_ and _P. hermogenesi_, “with dorsal surfaces brown, tiny body sizes [snout-vent length 8.6–10.2 mm], body leptodactyliform, and long-distance jumpers” (Napoli et al. 2011). There are currently 29 described species of _Brachycephalus_ (Frost 2015; see Pie & Ribeiro 2015; Ribeiro et al. 2015), and although 20 of them were described within the last 10 years, it is likely that many more species are still waiting to be described. Moreover, ecological data on species of the genus _Brachycephalus_ is still limited. To date it only includes data on the breeding behavior of _B. ephippium_ (Pombal et al. 1994; Pombal 1999); vocal activity of _B. hermogenesi_ (Verdade et al. 2008); advertisement calls of _B. ephippium_ (Pombal et al. 1994), _B. hermogenesi_ (Verdade et al. 2008), _B. pitanga_ (Araújo et al. 2012), _B. tridactylus_ (Garey et al. 2012), and _B. crispus_ (Condez et al. 2014); abundance estimates of _B. didactylus_ (Van Sluys et al. 2007; Almeida-Santos et al. 2011; Rocha et al. 2013; Siqueira et al. 2014) and its diet (Almeida-Santos et al. 2011); the diet of _B. brunneus_ (Fontoura et al. 2011), _B. garbeanus_ (Dorigo et al. 2012), and _B. pitanga_ (Oliveira & Haddad 2015); and microhabitat preference of _B. garbeanus_ (Dorigo et al. 2012).

A recently-proposed phylogenetic hypothesis for the genus indicated their separation into three main clades, with still some uncertainty regarding relationships within each clade (Clemente-Carvalho et al. 2011a). Based on the species studied by Clemente-Carvalho et al. (2011a), one clade included _B. didactylus_ and _B. hermogenesi_; a second clade, included _B. brunneus, B. ferruginus, B. izecksohni, B. pernix_, and _B. pombali_; and a third clade included _B. alipioi, B. ephippium, B. garbeanus, B. nodoterga, B. pitanga, B. toby_, and _B. vertebralis_. Two morphological traits - the presence/absence of dermal co-ossification and body shape - were used to distinguish three groups of species (Ribeiro et al. 2015), namely _ephippium, didactylus_, and _pernix_ groups. The first was defined by the presence of dermal co-ossification and bufoniform
body shape and includes the following species, distributed in southeastern Brazil (from the state of Espírito Santo south to the state of São Paulo): *B. alipioi*, *B. bufonoides*, *B. crispus*, *B. ephippium*, *B. garbeanus*, *B. guarani*, *B. margaritatus*, *B. nodoterga*, *B. pitanga*, *B. toby*, and *B. vertebralis* (Ribeiro et al. 2015). The *didactylus* group was defined by the absence of dermal co-ossification and a leptodactyliform body shape and includes *B. didactylus*, *B. hermogenesi*, and *B. pulex* (Ribeiro et al. 2015). Finally, the *pernix* group was defined by the absence of dermal co-ossification and bufoniform body shape, and includes the following species, distributed in southern Brazil (states of Paraná and Santa Catarina): *B. auroguttatus*, *B. boticario*, *B. brunneus*, *B. ferruginus*, *B. fuscolineatus*, *B. izecksohni*, *B. leopardus*, *B. mariaeterezae*, *B. olivaceus*, *B. pernix*, *B. pombali*, *B. tridactylus*, and *B. verrucosus* (Ribeiro et al. 2015). Later, an additional species from the *pernix* group was described from southern Brazil (Pie & Ribeiro 2015): *B. quiririensis*. On the other hand, the holotype of *Brachycephalus atelopoide* is currently missing (Pombal 2010) and no population of this species in nature is known. Therefore, given that diagnostic characters could not be inspected, *B. atelopoide* was not assigned to any of the species groups (Ribeiro et al. 2015). A recent study by Padial et al. (2014) indicated that *B. hermogenesi* would be closely related to a species of the *ephippium* group, implying that the *didactylus* and *ephippium* clades were not monophyletic, but the authors used the same dataset as the original Clemente-Carvalho et al. (2011a) study. One possibility for this incongruence is that Padial et al. (2014) only analyzed the concatenated dataset, which could have masked variations among different among loci that were accounted for in species tree analyses by Clemente-Carvalho et al. (Ribeiro et al. 2015).

An intriguing aspect of *Brachycephalus* is the high level of microendemism found in most of its species. For instance, extensive field surveys often find species confined to one or a few adjacent mountaintops along the Atlantic Forest (Pie et al. 2013), suggesting that their diversification is strongly linked to the topographical characteristics of their habitats. Therefore, to understand the origin and distribution of *Brachycephalus*, it is crucial to integrate species occurrence data with the geographical attributes of the biomes where they are found. The Atlantic Forest, the second largest forested biome of South America, can be divided at least into eight broad relief units, of which three correspond to higher altitude regions, namely plateaus (“Planaltos”), mountain ranges (“Serras”), and escarpments (“Escarpas”) (IBGE 1993). The highest mountains of the Atlantic Forest biome occur in the Serra da Mantiqueira and Serra do
Mar. Their formation is associated with tectonic events dating back to the Paleocene, which caused an uplift of an eastern sector of southeastern Brazil and led to a depression in the eastern border. This region was subsequently submerged by the ocean and led to the formation of the Santos basin (Almeida & Carneiro 1998). A second downgrade occurred further inland, establishing the Serra da Mantiqueira (it extends throughout the states of Espírito Santo, Minas Gerais, Rio de Janeiro, and São Paulo; Almeida & Carneiro [1998]), which is currently divided by the “Paraíba do Sul” river valley into northern and southern rims (IBGE 1993, 2006; IBAMA 2007). The Serra do Mar, formed between 300 and 400 million years before present, constitutes the new eastern border of the Brazilian plateau that was progressively eroded westward, leaving remnants that formed coastal islands (Almeida & Carneiro 1998). This edge of the plateau, called Serra do Mar, was interrupted from the southern state of São Paulo by headward erosion of the Ribeira river valley and from its lower limit in northeastern state of Santa Catarina by headward erosion of the Itajaí Açu river valley (Almeida & Carneiro 1998).

Millions of years of erosion processes have shaped the escarpments and mountains in eastern and southern Brazil. Instead of forming a continuous massif range, several blocks of high elevation isolated by lower areas have been formed, constituting a mountain range. These blocks receive one or more regional names of “Serras”, the highest of which being Serra do Caparaó (2,892 m a.s.l.) and Serra do Itatiaia (2,791 m a.s.l.), both part of Serra da Mantiqueira. The Serra do Mar in its northern limit (northern state of Rio de Janeiro) is characterized by several “Serras”, with the highest peak reaching up to 2,230 m a.s.l. Its middle section presents a distinctive structure, featuring a high plateau at the border between the states of Rio de Janeiro and São Paulo, which decreases in altitude southward until southeast of São Paulo city. In this region around the São Paulo city, the Serra do Mar is characterized as a border of the plateau (Almeida & Carneiro 1998), reaching 800–900 m a.s.l., whereas in the border between the states of São Paulo and Rio de Janeiro its altitude reaches up to 2,050 m a.s.l. In the state of Paraná, the Serra do Mar is characterized again by several “Serras” with altitudes from 500 to 1,000 m above the plateau (Maack 1981); the highest peak reaches up to 1,800 m a.s.l. (sensu Google Earth [satellite image from 2015], or 1,922 m a.s.l., sensu Maack [1981]). The Serra do Mar in the state of Santa Catarina has a very short extension (about 45 km in a north/south straight line). The highest altitudes are found only near the border with the state of Paraná, where it reaches up to
1,524 m. Further south, the Serra do Mar becomes increasingly lower, reaching only ~600 m a.s.l. on the southern edge of occurrence of this relief unit.

The mountainous regions of the Atlantic Forest might have contributed to the formation and distribution limits of Brachycephalus in several ways. For instance, mountains could have supported population remnants of many species during warmer periods throughout the Quaternary (e.g. Carnaval et al. [2009]; Brunes et al. [2010]; Thomé et al. [2010]; Amaro et al. [2012]; see also Wollenberg et al. [2011]; Páez-Moscoso & Guayasamin [2012], and Giarla et al. [2014] for similar scenarios in other montane regions), mainly due to their distinctly colder and wetter climatic conditions. Hence, they played an important role in the diversification of animals with low dispersion capacities, including certain birds (Mata et al. 2009) and amphibians (Cruz & Feio 2007; Brunes et al. 2010; Thomé et al. 2010). This has been confirmed in an investigation of the environmental niches of different Brachycephalus species groups, given that they were shown to occupy distinct regions of climatic space (Pie et al. 2013). That analysis included most of the described species (as well some that were undescribed) and was based occurrence records associated with species descriptions, museum specimens, and a few comprehensive references. They have also presented new geographical distribution limits for the genus and records of altitude for all species. However, no study to date has explored explicitly the altitudinal variation and provided estimates of geographical distributions of Brachycephalus species.

Understanding the ecological limits, geographical distributions, and altitudinal ranges of Brachycephalus species is of considerable importance, particularly to direct more effective conservation actions. In the present study, we address the aforementioned aspects by reviewing the geographical and altitudinal distribution of Brachycephalus based on records compiled from literature and museum specimens. In particular, expanding a previous effort by Pie et al. (2013), we now include the entire literature on Brachycephalus, which nearly tripled the number of sources in relation to that study. We analyze the geographical distribution and altitudinal amplitude of occurrence of the genus as a whole, as well as separately based on their species groups.

Materials and methods

Species records
In an earlier paper (Pie et al. 2013), occurrence records of *Brachycephalus* species were obtained from the SpeciesLink portal (www.splink.org.br), as well as from DZUP (Coleção de Herpetologia, Departamento de Zoologia, Universidade Federal do Paraná, state of Paraná, Brazil) and MHNCI (Museu de História Natural Capão da Imbuia - Prefeitura Municipal de Curitiba) collections, and from the species descriptions themselves. For this paper we expanded that dataset by compiling additional records from DZUP and from a broader review of the literature. A few unpublished records obtained by the authors in southern Brazil were also included to improve the dataset. Collection, handling and preservation permits were issued by ICMBIO (22470–1 and 22470–2). We carried out the same careful analysis as in Pie et al. (2013) to check the precise geographical coordinates of point records using topographic maps (at different scales), resources of the Google Earth software, including the titles of photographs associated with different locations, and descriptive information of localities in other publications. The final dataset used for the analyses included only those records which coordinate precision index value was between 1.1 and 3.0, according to McLaren et al., reprinted in Knyazhnitskiy et al. (2000). To help further revisions, we also listed occurrence records considered imprecise after our revision (see Results). Although there are methods for georeferencing imprecise locations (e.g. Wieczorek et al. 2004), we preferred to discard the records that did not meet these standards.

Altitudinal records were either compiled from the literature or, when that information was unavailable, by plotting occurrence records on Google Earth. The altitudinal range of some species were obtained directly from the literature or from the field by the authors. The altitudinal range represents the lower and higher altitudinal occurrence record of a species in a given locality. Although some records had precise locations, they were located on slopes where the exact altitude of the record was difficult to ascertain and therefore were omitted from further analysis, but not from the compiled table, to assist future revisions.

All records were associated with Brazilian relief units (IBAMA 2007) by simply plotting each record against a map of the limits of different relief units. In two of the major relief units, we also analyzed our data separately for their subunits as follows: the Serra da Mantiqueira as “Northern Serra da Mantiqueira” (states of Espírito Santo and adjacent Minas Gerais) and “Southern Serra da Mantiqueira” (states of Minas Gerais, Rio de Janeiro, and São Paulo), and the Serra do Mar as “Northern Serra do Mar” (state of Rio de Janeiro), “Central Serra do Mar”
(southern state of Rio de Janeiro and state of São Paulo), and “Southern Serra do Mar” (southern state of São Paulo and states of Paraná and Santa Catarina). The Serra da Mantiqueira we subdivided into two sectors because this unit comprises naturally two sectors, isolated by the “Paraíba do Sul” relief unit (IGBE 1993, 2006; IBAMA 2007). The Serra do Mar we subdivided into sectors according to the interruption of escarpments (IGBE 2006). Geographical coordinates are based into the WGS84 datum.

Geographical distribution measurement

We tentatively provide estimates of species geographical distributions as their “extent of occurrence”, sensu IUCN (2012), using two methods. The first is an adaptation of “minimum convex polygon” (Mohr 1947), as Reinert et al (2007), which allowed for changing the shape of the minimum convex polygon, whenever it was possible, to remove areas that are obviously unsuitable for the persistence of the species, such as cities, plantations, bodies of water, and vegetation in the early stages of regeneration, as well areas beyond the altitudinal amplitude record of the species. In the second method, we made polygons by considering the lowest altimetric quota with records of the species, while also omitting unsuitable areas (as above). We made these environmental and altitudinal assessments and produced the resulting polygons using Google Earth Pro 7.1.4.1529. We then measured the areas encompassed by each polygon using GEPath 1.4.5. Although we disregarded unsuitable areas when drawing the polygons, we treated the resulting measurements as “extent of occurrence” and not “area of occupancy” (sensu IUCN 2012) because micro habitat requirements can prevent the species from occurring in some parts of the area within the polygons. Unfortunately, we were unable to determine occurrence polygons of many species when the abovementioned criteria led to obviously unrealistic distribution polygons, primarily for the following reasons: 1) when there were exceedingly few records that were usually very scattered and/or encompassed vast degraded areas, or 2) when the altitudinal range of occurrence of a species based on their altitudinal limits encompassed unreasonably large areas (usually heading west).

Species groups

All described species in the present compilation were assigned to one of the three species groups by Ribeiro et al. (2015), except for B. atelopoide (see above). The present compilation also
includes some undescribed species not yet assigned to one of the three groups; all of them were
discussed as new species or potentially new species in the respective source of their records.
Two of them were here assigned to the *ephippium* group because they probably represent
populations of *B. ephippium* that could be split into two species, one of which from the state of
Rio de Janeiro (Siqueira et al. 2013; see also Siqueira et al. 2011) and the other from the state of
São Paulo (Pie et al. 2013). A third undescribed species was assigned to the *didactylus* group
because it represents a population to be split from *B. hermogenesi* (Pie et al. 2013), a
representative species from the *didactylus* group. Finally, the other three populations were
assigned to the *pernix* group because they were previously assigned to the “pernix clade” (Pie et
al. 2013), whose members all belong to the *pernix* group (Ribeiro et al. 2015).

Results

The final dataset is composed of 333 records (from 73 distinct sources) of 120 localities (three of
which representing novel unpublished records). These records involve the geographic occurrence
of 28 formally known and six undescribed species, including 82 previous records that had been
excluded based on the accuracy criteria indicated above (Tab. 1). Species were recorded in six
relief units, the richest of them being Serra do Mar, with 30 species (six undescribed; Fig. 1),
followed by Serra da Mantiqueira and Leste Catarinense, with three species each (Tab. 2).
Northern Serra da Mantiqueira has records of all three species of this relief unit, while Southern
Serra da Mantiqueira has records of only one species. In Serra do Mar, species richness increases
from north to south, with records of six species (one undescribed) in Northern Serra do Mar, nine
(one undescribed) in Central Serra do Mar, and 16 (four undescribed) in Southern Serra do Mar
(Tab. 2; Fig. 1). Finally, Pré-Litorâneas, Paraiba do Sul, and Paranapiacaba relief units have
records of only one species each (Paranapiacaba has records of an undescribed species; Tab. 2).
The northernmost and southernmost records are 1,592 km distant from each other in a straight
line; the species recorded in these limits are *B. pulex* and *B. fuscolineatus*, respectively (Tab. 1).
The *didactylus* group comprises four species (one undescribed) encompassing the broadest
geographical distribution of all three groups, from the northernmost record for the genus (state of
Bahia, with *B. pulex*) southward to the north of Santa Catarina state, with *Brachycephalus* sp. 1
(Tab. 1; Fig. 2B). Three species occur in Serra do Mar (one undescribed), but only one species
occurs in each of Northern, Central and Southern Serra do Mar (Southern Serra do Mar has records of one undescribed species; Tab. 3). Only one species occurs in the three remaining relief units with presence of this group (Pré-Litorâneas, Serra da Mantiqueira, and Paranapiacaba, with the latter being represented by an undescribed species; Tab. 3). There are no records of this group inland in the “Southern Serra da Mantiqueira” but there are records relatively further inland in “Paranapiacaba”, in the state of Paraná (Fig. 2B).

The *ephippium* group comprises 13 species (two undescribed; Tab. 1). It has a more intermediate geographical distribution in relation to the overall latitudinal distribution of the genus, from the state of Espírito Santo to southern state of São Paulo (Fig. 2C); the species recorded in those extreme geographical limits are *B. alipioi* and *B. ephippium*, respectively. The group is represented in all relief units encompassed in this region (Serra da Mantiqueira, Paraíba do Sul, and Serra do Mar; Tab. 1; Fig. 2C). It is highly represented by species in Serra do Mar (12 species, two of which undescribed; Fig. 1), whereas in Serra da Mantiqueira there is records of two species and in Paraíba do Sul of only one (Tab. 3). Northern Serra da Mantiqueira has two species, while Southern Serra da Mantiqueira has only one (Tab. 3). Northern Serra do Mar has five species (one undescribed) and Central Serra do Mar has eight species (also with one undescribed); Southern Serra do Mar does not harbor any species of this group (Tab. 3; Fig. 1).

The *pernix* group is the most species-rich group, with 17 species (three undescribed; Tab. 1). It has the smallest geographical distribution, restricted to the states of Paraná and Santa Catarina, southern Brazil (Fig. 1D), comprising the southernmost distribution of the genus, with *B. fuscolineatus* being recorded 87 km south of the border of the state of Paraná; the northernmost species is *B. tridactylus* (Tab. 1). Per relief unit, 15 species (three undescribed) occurs in Southern Serra do Mar and three in Leste Catarinense (Tab. 3; Fig. 1).

We were able to determine the extent of occurrence of 17 species (51.5% of all species with records at precise locations; Tab. 4). Two species of the *didactylus* group have the highest estimated extent of occurrence, with over 500 thousand ha, namely *Brachycephalus* sp. 1 and *B. hermogenesi*. On the other hand, estimates of extents of occurrence for all remaining species did not reach 20 thousand ha. With proportionally intermediate extent of occurrence, there are tree species from the *ephippium* group (*B. garbeanus*, *B. margaritatus*, and *B. pitanga*), with estimates between 2-19 thousand ha, and five species from the *pernix* group (*B. olivaceus*, *B. brunneus*, *B. ferruginus*, *Brachycephalus* sp. 6, and *B. quiririensis*), with estimates between 1-6
There are four species with small extent of occurrence, between 100-500
hectares, one from the didactylus group - *B. pulex* - and three from the pernix group - *B. pernix*,
B. izecksohni, and *B. leopardus* (Tab. 4). Finally, there are three species from the pernix group
with highly reduced extents of occurrence, namely *B. tridactylus*, *B. fuscolineatus*, and *B.
boticario*, with 41.42 ha, 23.63 ha, and 11.07 ha, respectively (Tab. 4).

Brachycephalus species are found from sea level to at least 1,900 m a.s.l. (Tab. 1 and 3).
The ephippium group was characterized by species with the broadest altitudinal amplitude (1,700
m; Tab. 4). The didactylus and pernix groups had similar altitudinal amplitude (1,110 m and
1,185 m, respectively; Tab. 4). However, the altitudinal occurrence of the didactylus group
started at sea level, whereas the pernix group began at mid-elevations (455 m a.s.l.; Tab. 4).

The altitudinal class with the highest species richness was 751–1,000 m a.s.l., with 21
species (three undescribed; Fig. 3A). The highest species richness for the didactylus group was
also found between 751–1,000 m a.s.l., including all four species of the group (one undescribed;
Fig. 3B). The highest richness of the ephippium group was evenly recorded between 751–1,000
m, comprising eight species (one undescribed; Fig. 3C). Finally, most species of the pernix group
were found between 1,001–1,250 m a.s.l., totaling 10 species (three undescribed; Fig. 3D).

The species with the broadest altitudinal range was *B. didactylus* (1,075 m; starting at 35 m
a.s.l.) and *Brachycephalus* sp. 1 (1,035 m; starting at 25 m a.s.l.), both included in the didactylus
group, and *B. ephippium* (1,050 m; starting from 200 m a.s.l.), included in the ephippium group
(Tab. 4). The largest altitudinal occurrence amplitude for species of the pernix group was
recorded in *B. brunnneus* (535 m; starting at 1,095 m a.s.l.; Tab. 4). The lowest records for the
pernix group were at 845 m a.s.l. in the state of Paraná and at 455 m a.s.l. in the state of Santa
Catarina, southern Brazil (Tab. 1). This illustrates the tendency for the altitudinal distribution of
species of the pernix group to decrease with increasing latitude (Fig. 4).

Syntopy in *Brachycephalus* is rare, being reported for the didactylus and ephippium groups
in state of Rio de Janeiro and São Paulo, and for the didactylus and pernix groups in the state of
Paraná and Santa Catarina (Tab. 1). Between didactylus and ephippium groups, syntopy has been
reported in four localities: between *B. didactylus* and *B. ephippium* in the Reserva Ecológica Rio
das Pedras, Rio de Janeiro (Carvalho-e-Silva et al. 2008; Almeida-Santos et al. 2011; Rocha et
al. 2013); between *B. didactylus* and *B. margaritatus* in the Sacra Família do Tinguá, Rio de
Janeiro (Izecksohn 1971; Pombal 2001; Ribeiro et al. 2005; Alves et al. 2006, 2009; Silva et al.
2007; Verdade et al. 2008; Clemente-Carvalho et al. 2009; Campos 2011; Pombal & Izecksohn 2011; Pie et al. 2013); between *B. didactylus* and *Brachycephalus* sp. 2 in Theodoro de Oliveira, Rio de Janeiro (Siqueira et al. 2011, 2013); and between *B. hermogenesi* and *B. ephippium* in the Reserva Florestal de Morro Grande, São Paulo (Dixo & Verdade 2006; Verdade et al. 2008).

Between *didactylus* and *pernix* groups, two cases of syntopy have been recorded (MRB, LFR & MRP, pers. obs.), one between *Brachycephalus* sp. 1 (*didactylus* group) and *B. tridactylus*, in Reserva Particular do Patrimônio Natural Salto Morato, at 900 m a.s.l., and the another one between *Brachycephalus* sp. 1 and *B. olivaceus* at Castelo dos Bugres, between 800–835 m a.s.l. (Tab. 1).

Sympatry and possibly syntopy also between *didactylus* and *ephippium* groups was reported in the state of São Paulo in two localities (Tab. 1): between *B. hermogenesi* and *Brachycephalus* sp. 3 in the Reserva Biológica do Alto da Serra de Paranapiacaba (Verdade et al. 2008; Pie et al. 2013) and between *B. hermogenesi* and *B. nodoterga* in the Estação Biológica de Boracéia (Pombal et al. 1998; Pombal 2001, 2010; Ribeiro et al. 2005; Alves et al. 2006, 2009; Pimenta et al. 2007; Verdade et al. 2008; Haddad et al. 2010; Pombal & Izecksohn 2011; Pie et al. 2013). A sympatry may occur between species of a single group, particularly the *ephippium* group, in the state of Rio de Janeiro (Tab. 1): between *B. bufonoides* and *B. garbeanus* in the Serra de Macaé (Miranda-Ribeiro 1920; Pombal 2010; Pombal & Izecksohn 2011) and between *B. ephippium* and *B. vertebralis* in the Pedra Branca, municipality of Parati (Pombal 2001, 2010; Clemente-Carvalho et al. 2009; Pombal & Izecksohn 2011; Pie et al. 2013). Both need confirmation (see Pombal 2001).

Discussion

The northernmost and southernmost relief units are poorly represented by records of *Brachycephalus*, namely Pré-Litorâneas and Leste Catarinense, respectively. This suggests the possibility that the genus occurs farther north and south from the most extreme records known today (see Fig. 2). Interestingly, the potential distribution of *Brachycephalus* through environmental niche modeling (Pie et al. 2013) is consistent with the possibility of a wider distribution of the genus to the south of the current distribution, spreading widely through the Leste Catarinense relief unit (see Figs 3a, b, e, f and Fig 4a of Pie et al [2013]). Forests at lower
altitudes in the Pré-Litorâneas region are different from those in mountains at higher altitudes, displaying, for example, little moss on tree trunks and scarce epiphytic plants (MRB & RB-L per. obs.). We believe it is possible that the occurrence of the genus in this relief unit is restricted to mountains. Examples of locations of scarce humid mountains of this region can be seen in Maurício et al. (2014), who mapped the occurrence of an endemic mountain bird to the Pré-Litorâneas relief unit, the *Scytalopus gonzagai*. The environmental niche modeling of *Brachycephalus* indeed indicates a small area of suitable habitats in this region (see Fig. 3b of Pie et al. [2013]).

The occurrence of *B. ephippium* in distinct relief units should be the subject of further scrutiny. In particular, populations under that name might indeed represent cryptic species that would have to be split (see also Dixo & Verdade 2006; Silva et al. 2007; Clemente-Carvalho et al. 2008, 2011b; Campos et al. 2010; Campos 2011; Siqueira et al. 2013; Trevine et al. 2014). Similar conditions were detected in a montane bird, *Scytalopus speluncae* (taxonomy according to Maurício et al. [2010]), which has to be split into several new species. In fact, the distribution of *S. speluncae* is congruent with that of *B. ephippium* in some relief units (Mata et al. 2009; MRB & RB-L pers. obs.). The occurrence of *B. ephippium* around the city of São Paulo is of particular interest, given this region is characterized as a contact between Serra da Mantiqueira and Serra do Mar relief units (IBGE 1993).

For a long time, all known species of *Brachycephalus* of the *pernix* group had their geographical distribution limited to a single “Serra”, i.e., in a massif range with high altitudes, isolated from other “Serras” by areas of lower altitudes. Pie et al. (2013) were the first to report the occurrence of more than one species of the *pernix* group in a single “Serra”, and here we report on other similar situations. In addition, the present study is the first to report the occurrence of a species of this group distributed in two “Serras”. This is the case of *B. brunneus*, distributed in Serra dos Órgãos (not to be confused with the homonym “Serra” of the state of Rio de Janeiro) and Serra da Graciosa (Tab. 1). Distributions of more than one species in a single “Serra” involve the cases of *B. ferruginus* and *Brachycephalus* sp. 4, distributed in Serra do Marumbi, and *B. leopardus*, *B. auroguttatus*, and *B. quiririensis*, distributed in Serra do Araçatuba/Serra do Quiriri, a single mountain massif in the border of the states of Paraná and Santa Catarina (Tab. 1). These cases do not represent syntopy because all of them are isolated from each other by more than 3 km. The occurrence of two species of the *ephippium* group in a
single Serra are known for long time, i.e. 1920 (involving *B. bufonoides* and *B. garbeanus*; Miranda-Ribeiro [1920]) and 2001 (involving *B. ephippium* and *B. vertebralis*; Pombal [2001]).

It is interesting to note that the species with low altitudinal records (and also with high altitudinal amplitude of occurrence) are the ones of greatest extent of occurrence measured, perhaps indicating that its relatively plastic condition provide them of major opportunity to establishment through a continuous Atlantic Forest. In the other way, species with medium to high lower limit of altitudinal occurrence, and also with moderate altitudinal amplitude of occurrence, have very reduced extent of occurrence, indicating proportionally reduced plasticity and subjection of environmental and topographic constrains. In a study on a Neotropical bird, Reinert et al. (2007) showed that a very detailed estimate of the species extent of occurrence resulted in an area seven times greater than the area of occupancy, which underscores how much the extent of occurrence of *Brachycephalus* could be overestimated. In comparison, the small extent of occurrence of the *Brachycephalus* are not the smaller “range” of species in the world; among the smaller, there are an isopod and a fish, with less than 0.01 ha of occurrence, each (Brown et al. 1996). However, there are between the smallest “ranges” of vascular plants and fishes of the world (< 100 ha) and much smaller than the smallest “ranges” of birds and mammals of the world (~1,000,000 ha; Brown et al. [1996]).

The altitudinal records indicate that the *pernix* and *ephippium* groups are indeed “montane groups” (Figs. 1 and 3), even though the altitudinal amplitude of species of the *ephippium* group might be underestimated. Occasional records below 500 m a.s.l. for species of both montane groups do not mean that all “montane species” of the genus normally occur at lower altitudes, with the absence of lower records resulting from sampling bias. Rather, one could expect that species of the *pernix* group at higher latitudes would tend to be recorded at lower altitudes due to climatic compensation. Moreover, local records at lower altitudes of species of montane groups can be due to particular local conditions of high moisture resulting from peculiar topographical features. Regardless of the extreme altitudinal records, each species must have an altitudinal range that corresponds to its climatic optimum (see Fig. 1). Studies estimating abundance along altitudinal transects can be used not only to determine altitudinal ranges but also the climatic optimum for each species. These data are of particular interest in the context of long-term studies to assess the impact of climatic changes, with gradual modification in the abundances and even changes in the altitudinal range being expected over time (see Corn 2005; Jump et al. 2012).
All records of \textit{pernix} group species in the state of Paraná were either made in cloud forests ("Floresta Ombrófila Densa Alto-montana" \textit{sensu} Veloso et al. [1991]) or in the transition zones between cloud forest and montane forests ("Floresta Ombrófila Densa Montana"). The only exception is \textit{B. tridactylus}, which occurs in montane forest (this study, since there is no available description for the forest type in the species description by Garey et al. [2012]). Cloud or elfin forests are pygmy tropical forests that occur in highly humid regions at the cloud level, between 1,000 to 2,500 m a.s.l. (Walter 1977). In the state of Paraná, these forests occur from 900 m to about 1,850 m a.s.l. (Struminski 1997; Bornschein et al. 2012). The lowest record of \textit{B. pombali} (845 m a.s.l.), in the transition between cloud forest and montane forest, probably represents the lowest altitude of this transition in the state of Paraná. In Santa Catarina, species from the \textit{pernix} group occur in cloud forests, montane forests, and in the transition between them. The only known exception of forest habitat in the \textit{pernix} group involves the observation of \textit{B. izecksohni}, also in herbaceous montane fields ("campos de altitude" or “Refúgio Vegetacional", \textit{sensu} Veloso et al. [1991]; MRB pers. obs.).

The few cases of syntopy between species, not only show little altitudinal overlap, but also involve species of different groups, consistent with the notion that closely related species remain allopatric. Localities with sympatry and syntopy are particularly interesting for further studies related to the altitudinal distribution of species. On the other hand, sympathy between species of the groups \textit{ephippium} and \textit{pernix} is not expected, given that a gap of 208 km occurs between species of these groups. It is interesting to note that only the montane species groups, i.e. \textit{ephippium} and \textit{pernix}, are highly species-rich, yet they tend not to show sympathy (although there are some species distributed very close each other, and that there are cases of distinct species occurring in a single “Serra”). We believe that these conditions suggest that these groups evolved in allopatry and/or parapatry while the Atlantic Forest experienced retraction and isolation as island between grasslands. During the Quaternary, climatic conditions changed cyclically from cold and dry to warmer and wet periods, and these shifts were responsible for the cyclical retraction and expansion of forest coverage, respectively (e.g. Behling & Lichte 1997; Behling et al. 2002, 2005, 2007; Behling 2007; Langone et al. 2008; Behling & Safford 2010; Enters et al. 2010; Hessler et al. 2010). In colder climates, montane forests may have migrated to lower altitudes, allowing species of \textit{Brachycephalus} to disperse. In subsequent warmer and wet
climate, the montane forest may have migrated to higher altitudes, isolating populations of
Brachycephalus and favoring speciation.

In relation to the species distributed close to each other or in single “Serras”, without
apparent geographic barriers, it is possible that the expansion and retraction of forests did not
occur homogeneously across attitudinal quotas, but it might have occurred as isolated patches
even in restricted areas. In areas where climatic conditions favored the return of a vast forest
cover, geographically close species would have lost the corresponding environmental barriers,
remaining allopatric probably due to ecological requirements. The most notable case of
proximity between species occurs in northeastern state of São Paulo, where higher mountains are
absent and five species occur in a single plateau (B. crispus, B. guarani, B. pitanga, B. toby, and
B. vertebralis). In this region, the forests may have been confined in valleys during the periods of
retraction in the forest distribution.

In conclusion, Brachycephalus is restricted to the eastern portion of the Atlantic Forest
biome, with species occurring in allopatry or at least in parapatry, with rare cases of syntopy.
The species of the genus are segregated in three groups of species, with one of them (didactylus)
including species that respond differently to altitude, occurring in lower altitudes and having
greater geographic distributions, being much more ecologically tolerant and plastic. Species from
the remaining groups (ephippium and pernix) depend on high altitude conditions and can be
found locally in lower altitudes, probably in response to particular microclimatic conditions.
Sympatric species include members of distinct species groups and are in contact only in the
altitudinal limits of each other (higher limit for the “lowland” species and lower limit for the
“montane” species). Apart from a few species, most of them have restricted extents of
occurrence, to the point that many are microendemic, occurring in mountain tops with a total
extent of occurrence comparable to the smallest range from species around world. The
microhabitat requeriments of the species can prevent more realistic estimatives of extent of
occurrence, with traditional methodologies possibly resulting in substantial bias. This same
feature makes the species of particular interest to monitor climate change through their
abundances along altitudinal gradients. The genus also can be used as excellent model to infer
historical environmental changes due past climatic changes, given that they are thought to have
resulted from vicariant processes following upward migration of montane forests through
altitudinal ranges, in past warm and wet climates.
We thank Magno V. Segalla and Camila R. Alves for valuable assistance during fieldwork. Claudia Golec helped in the compilation of bibliography. Two anonymous referees improved the manuscript with valuable comments and suggestions.

References

Abegg, A.D.; Ortiz, F.R.; Rocha, B. & Condez, T.H. 2015. A new record for Brachycephalus nodoterga (Amphibia, Anura, Brachycephalidae) in the state of São Paulo, Brazil. Check List 11: 1769.

Almeida, F.F.M. de & Carneiro, C.dal R. 1998. Origem e evolução da Serra do Mar. Revista Brasileira de Geociências 28: 135–150.

Almeida-Santos, M.; Siqueira, C.C.; Van Sluys, M. & Rocha, C.F.D. 2011. Ecology of the Brazilian flea frog Brachycephalus didactylus (Terraran: Brachycephalidae). Journal of Herpetology 45: 251–255.

Alves, A.C.R.; Ribeiro, L.F.; Haddad, C.F.B. & Reis, S.F. dos. 2006. Two new species of Brachycephalus (Anura: Brachycephalidae) from the Atlantic Forest in Paraná State, southern Brazil. Herpetologica 62: 221–233.

Alves, A.C.R.; Sawaya, R.J.; Reis, S.F. dos & Haddad, C.F.B. 2009. New species of Brachycephalus (Anura: Brachycephalidae) from the Atlantic Rain Forest in São Paulo State, Southeastern Brazil. Journal of Herpetology 43: 212–219.

Amaro, R.C.; Rodrigues, M.T.; Yonenaga-Yassuda, Y. & Carnaval, A.C. 2012. Demographic processes in the montane Atlantic rainforest: Molecular and cytogenetic evidence from the endemic frog Proceratophrys boiei. Molecular Phylogenetics and Evolution 62: 880–888.

Ananias, F.; Giaretta, A.A. & Recco-Pimentel, S.M. 2006. Cytogenetics of Brachycephalus ephippium (Anura, Brachycephalidae) with comments on its relationship to the Bufonidae. Amphibia-Reptilia 27: 121–125.

Araújo, C.B. de; Guerra, T.J.; Amatuzzi, M.C.O. & Campos, L.A. 2012. Advertisement and territorial calls of Brachycephalus pitanga (Anura: Brachycephalidae). Zootaxa 3302: 66–67.
Behling, H. 2007. Late Quaternary vegetation, fire and climate dynamics of Serra do Araçatuba in the Atlantic coastal mountains of Paraná State, southern Brazil. Vegetation History and Archaeobotany 16: 77–85.

Behling, H.; Arz, H.W.; Pätzold, J.; & Wefer, G. 2002. Late Quaternary vegetational and climate dynamics in southeastern Brazil, inferences from marine cores GeoB 3229-2 and GeoB 3202-1. Palaeogeography, Palaeoclimatology, Palaeoecology 179: 227–243.

Behling, H.; Dupont, L.; Safford, H. D. & Wefer, G. 2007. Late Quaternary vegetation and climate dynamics in the Serra da Bocaina, southeastern Brazil. Quaternary International 161: 22–31.

Behling, H. & Lichte, M. 1997. Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research 48: 348–358.

Behling, H.; Pillar, V. DePatta & Bauermann, S.G. 2005. Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Review of Palaeobotany and Palynology 133: 235–248.

Behling, H. & Safford, H.D. 2010. Late-glacial and Holocene vegetation, climate and fire dynamics in the Serra dos Órgãos, Rio de Janeiro State, southeastern Brazil. Global Change Biology 16: 1661–1671.

Bornschein, M.R.; Belmonte-Lopes, R.; Ribeiro, L.F.; Maurício, G.N. & Pie, M.R. 2015. Rectification of the position of the type locality of Brachycephalus tridactylus (Anura: Brachycephalidae), a recently described species from southern Brazil. Zootaxa 4007: 149–150.

Bornschein, M.R.; Corrêa, L.; Belmonte-Lopes, R.; Klemann Júnior, L.; Cáceres, N.C. & Pie, M.R. 2012. The use of highlands by the Lowland Tapir (Tapirus terrestris) in the southern Brazilian Atlantic Forest. Neotropical Biology and Conservation 7: 210–213.

Brown, J.H.; Stevens, G.C. & Kaufman, D.M. 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics 27: 597–623.

Brunes, T.O.; Sequeira, F.; Haddad, C.F.B. & Alexandrino, J. 2010. Gene and species trees of a Neotropical group of treefrogs: genetic diversification in the Brazilian Atlantic Forest and the origin of a polyploid species. Molecular Phylogenetics and Evolution 57: 1120–1133.
Campos, L.A. 2011. Sistemática filogenética do gênero *Brachycephalus* Fitzinger, 1826 (Anura: Brachycephalidae) com base em dados morfológicos. Thesis. Brasília, Universidade de Brasília, 67 p.

Campos, L.A.; Silva, H.R. da & Sebben, A. 2010. Morphology and development of additional bony elements in the genus *Brachycephalus* (Anura: Brachycephalidae). Biological Journal of the Linnean Society 99: 752–767.

Carnaval, A.C.; Hickerson, M.J.; Haddad, C.F.B.; Rodrigues, M.T. & Moritz, C. 2009. Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323: 785–789.

Carvalho-e-Silva, A.M.T. de; Silva, G.R. da & Carvalho-e-Silva, S.P. de. 2008. Anuros da Reserva Rio das Pedras, Mangaratiba, RJ, Brasil. Biota Neotropica 8: 199–209.

Clemente-Carvalho, R.B.G.; Alves, A.C.R.; Perez, S.I.; Haddad C.F.B. & Reis, S.F. dos. 2011b. Morphological and molecular variation in the Pumpkin Toadlet, *Brachycephalus ephippium* (Anura: Brachycephalidae). Journal of Herpetology 45: 94–99.

Clemente-Carvalho, R.B.G.; Antoniazzi, M.M.; Jared, C.; Haddad, C.F.B.; Alves, A.C.R.; Rocha, H.S.; Pereira, G.R.; Oliveira, D.F.; Lopes, R.T. & Reis, S.F. dos. 2009. Hyperossification in miniaturized toadlets of the genus *Brachycephalus* (Amphibia: Anura: Brachycephalidae): Microscopic structure and macroscopic patterns of variation. Journal of Morphology 270: 1285–1295.

Clemente-Carvalho, R.B.G.; Klaczko, J.; Perez, S.I.; Alves, A.C.R.; Haddad, C.F.B. & Reis, S.F. dos. 2011a. Molecular phylogenetic relationships and phenotypic diversity in miniaturized toadlets, genus *Brachycephalus* (Amphibia: Anura: Brachycephalidae). Molecular Phylogenetics and Evolution 61: 79–89.

Clemente-Carvalho, R.B.G.; Giaretta, A.A.; Condez, T.H.; Haddad, C.F.B. & Reis, S.F. dos. 2012. A new species of miniaturized toadlet, genus *Brachycephalus* (Anura: Brachycephalidae), from the Atlantic Forest of southeastern Brazil. Herpetologica 68: 365–374.

Clemente-Carvalho, R.B.G.; Monteiro, L.R.; Bonato, V.; Rocha, H.S.; Pereira, G.R.; Oliveira, D.F.; Lopes, R.T.; Haddad, C.F.B.; Martins, E.G. & Reis, S.F. dos. 2008. Geographic variation in cranial shape in the Pumpkin Toadlet (*Brachycephalus ephippium*): a geometric analysis. Journal of Herpetology 42: 176–185.
Clemente-Carvalho, R.B.G.; Perez, S.I.; Tonhatti, C.H.; Condez, T.H.; Sawaya, R.J.; Haddad, C.F.B. & Reis, S.F. dos. 2016. Boundaries of morphological and molecular variation and the distribution range of a miniaturized froglet, *Brachycephalus nodoterga* (Anura: Brachycephalidae). Journal of Herpetology 50: 169–178.

Condez, T.H.; Sawaya, R.J. & Dixo, M. 2009. Herpetofauna dos remanescentes de Mata Atlântica da região de Tapiraí e Piedade, SP, sudeste do Brasil. Biota Neotropica 9: 157–185.

Condez, T.H.; Clemente-Carvalho, R.B.G.; Haddad, C.F.B. & Reis, S.F. dos. 2014. A new species of *Brachycephalus* (Anura: Brachycephalidae) from the highlands of the Atlantic Forest, southeastern Brazil. Herpetologica 70: 89–99.

Corn, P.S. 2005. Climate change and amphibians. Animal Biodiversity and Conservation 28: 59–67.

Cruz, C.A.G. & Feio, R.N. 2007. Endemismos em anfíbios em áreas de altitudes na Mata Atlântica no sudeste do Brasil. In: Nascimento, L.B. & Oliveira, M.E. (Eds), Herpetologia no Brasil II. Belo Horizonte, Sociedade Brasileira de Herpetologia, pp. 117–126.

Cunha, A.K.; Oliveira, I.S. de & Hartmann, M.T. 2010. Anurofauna da Colônia Castelhanos, na Área de Proteção Ambiental de Guaratuba, Serra do Mar paranaense, Brasil. Biotemas 23: 123–134.

Dixo, M. & Verdade, V.K. 2006. Herpetofauna de serrapilheira da Reserva Florestal de Morro Grande, Cotia (SP). Biota Neotropica 6: 1–20.

Dorigo, T.A.; Siqueira, C.C.; Vrcibradic, D.; Maia-Carneiro, T.; Almeida-Santos, M. & Rocha, C.F.D. 2012. Ecological aspects of the pumpkin toadlet, *Brachycephalus garbeanus* Miranda-Ribeiro, 1920 (Anura: Neobatrachia: Brachycephalidae), in a highland forest of southeastern Brazil. Journal of Natural History 46: 2497–2507.

Enters, D.; Behling, H.; Mayr, C.; Dupont, L. & Zolitschka, B. 2010. Holocene environmental dynamics of south-eastern Brazil recorded in laminated sediments of Lago Aleixo. Journal of Paleolimnology 44: 265–277.

Firkowski, C.R. 2013. Diversification and microendemism in montane refugia from the Brazilian Atlantic Forest. Dissertation. Curitiba, Universidade Federal do Paraná, 59 p.
Fontoura, P.L.; Ribeiro L.F. & Pie, M.R. 2011. Diet of Brachycephalus brunneus (Anura: Brachycephalidae) in the Atlantic Rainforest of Paraná, southern Brazil. Zoologia 28: 687–689.

Frost, D.R. 2015. Amphibian species of the world. An online reference. Version 6.0 Eletronic Available from http://research.amnh.org/herpetology/amphibia/index.html (accessed 12 September 2015).

Garey, M.V.; Lima, A.M.X.; Hartmann, M.T. & Haddad, C.F.B. 2012. A new species of miniaturized toadlet, genus Brachycephalus (Anura: Brachycephalidae), from southern Brazil. Herpetologica 68: 266–271.

Giaretta, A.A. 1999. Diversidade e densidade de anuros de serapilheira num gradiente altitudinal na mata atlântica costeira. Thesis. Campinas, Universidade Estadual de Campinas, 140 p.

Giaretta, A.A.; Facure, K.G.; Sawaya, R.J.; Meyer, J.H. de M. & Chemin, N. 1999. Diversity and abundance of litter frogs in a montane forest of Southeastern Brazil: Seasonal and altitudinal changes. Biotropica 31: 669–674.

Giaretta, A.A. & Sawaya, R.J. 1998. Second species of Psyllophryne (Anura: Brachycephalidae). Copeia 1998: 985–987.

Giaretta, A.A.; Sawaya, R.J.; Machado, G.; Araújo, M.S.; Facure, K.G.; Medeiros, H.F. de & Nunes, R. 1997. Diversity and abundance of litter frogs at altitudinal sites at Serra do Japi, Southeastern Brazil. Revista Brasileira de Zoologia 14: 341–346.

Giarla, T.C.; Voss, R.S. & Jansa, S.A. 2014. Hidden diversity in the Andes: comparison of species delimitation methods in montane marsupials. Molecular Phylogenetics and Evolution 70: 137–151.

Haddad, C.F.B.; Alves, A.C.R.; Clemente-Carvalho, R.B.G. & Reis, S.F. dos. 2010. A new species of Brachycephalus from the Atlantic Rain Forest in São Paulo state, southeastern Brazil (Amphibia: Anura: Brachycephalidae). Copeia 2010: 410–420.

Hanken, J. & Wake, D.B. 1993. Miniaturization of body size: Organismal consequences and evolutionary significance. Annual Review of Ecology and Systematics 24: 501–519.

Hessler, I.; Dupont, L.; Bonnefille, R.; Behling, H.; González, C.; Helmens, K.F.; Hooghiemstra, H.; Lebamba, J.; Ledru, M.-P.; Lézine, A.-M.; Maley, J.; Marret, F. & Vincens, A. 2010. Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial. Quaternary Science Reviews 29: 2882–2899.
IBAMA. 2007. Sistema compartilhado de informações ambientais – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Available from http://siscom.ibama.gov.br/shapes (accessed 15 April 2012)

IBGE. 1993. Mapa de unidades de relevo do Brasil. Rio de Janeiro, Instituto Brasileiro de Geografia e Estatística - IBGE.

IBGE. 2006. Mapa de unidades de relevo do Brasil. Rio de Janeiro, Instituto Brasileiro de Geografia e Estatística - IBGE.

IUCN. 2012. IUCN Red List categories and criteria: Version 3.1. Second edition. Gland, Switzerland and Cambridge, International Union for Conservation of Nature - IUCN.

Izecksohn, E. 1971. Novo gênero e nova espécie de Brachycephalidae do Estado do Rio de Janeiro, Brasil. Boletim do Museu Nacional, Zoologia 280: 1–12.

Jump, A.S.; Huang, T.J. & Chou, C.H. 2012. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35: 204–210.

Kaplan, K. 2002. Histology of the anteroventral part of the breast-shoulder apparatus of Brachycephalus ephippium (Brachycephalidae) with comments on the validity of the genus Psyllophryne (Brachycephalidae). Amphibia-Reptilia 23: 225–227.

Knyazhnitskiy, O.V.; Monk, R.R.; Parker, N.C. & Baker, R.J. 2000. Assignment of Global Information System coordinates to classical museum localities for relational database analyses. Occasional Papers 199: 1–15.

Langone, J.A.; Segalla, M.V.; Bornschein, M. & Sá, R.O. de. 2008. A new reproductive mode in the genus Melanophryniscus Gallardo, 1961 (Anura: Bufonidae) with description of a new species from the state of Paraná, Brazil. South American Journal of Herpetology 3: 1–9.

Maack, R. 1981. Geografia física do estado do Paraná. Rio de Janeiro, Livraria José Olympio Editora, 450 p.

Mariotto, L.R. 2014. Anfíbios de um gradiente altitudinal em mata atlântica. Dissertation. Curitiba, Universidade Federal do Paraná, 174 p.

Mata, H.; Fontana, C.S.; Mauricio, G.N.; Bornschein, M.R.; Vasconcelos, M.F. de & Bonatto, S.L. 2009. Molecular phylogeny and biogeography of the eastern Tapaculos (Aves: Rhinocryptidae: Scytalopus, Eleoscytalopus): Cryptic diversification in Brazilian Atlantic Forest. Molecular Phylogenetics and Evolution 53: 450–462.
Maurício, G.N.; Belmonte-Lopes, R.; Pacheco, J.F.; Silveira, L.F.; Whitney, B.M. & Bornschein, M.R. 2014. Taxonomy of “Mouse-colored Tapaculos” (II): An endangered new species from the montane Atlantic Forest of southern Bahia, Brazil (Passeriformes: Rhinocryptidae: Scytalopus). The Auk 131: 643–659.

Maurício, G.N.; Bornschein, M.R.; Vasconcelos, M.F. de; Whitney, B.M.; Pacheco, J.F. & Silveira, L.F. 2010. Taxonomy of “Mouse-colored Tapaculos”. I. On the application of the name Malacorhynchus speluncae Ménétriés, 1835 (Aves: Passeriformes: Rhinocryptidae). Zootaxa 2518: 32–48.

Miranda-Ribeiro, A. de. 1920. Os brachycephalideos do Museu Paulista (com tres especies novas). Revista do Museu Paulista 12: 306–318.

Mohr, C. 1947. Table of equivalent populations of North American small mammals. American Midland Naturalist 37: 223–249.

Napoli, M.F.; Caramaschi, U.; Cruz, C.A.G. & Dias, I.R. 2011. A new species of flea-toad, genus Brachycephalus Fitzinger (Amphibia: Anura: Brachycephalidae), from the Atlantic rainforest of southern Bahia, Brazil. Zootaxa 2739: 33–40.

Oliveira, E.G. de. 2013. História natural de Brachycephalus pitanga no Núcleo Santa Virgínia, Parque Estadual da Serra do Mar, Estado de São Paulo. Dissertation. Rio Claro, Universidade Estadual Paulista “Júlio de Mesquita Filho”, 78 p.

Oliveira, E.G. de & Haddad, C.F.B. 2015. Diet seasonality and feeding preferences of Brachycephalus pitanga (Anura: Brachycephalidae). Journal of Herpetology 49: 252–256.

Oliveira, A.K.C. de; Oliveira, I.S. de; Hartmann, M.T.; Silva, N.R. da & Toledo, L.F. 2011. Amphibia, Anura, Brachycephalidae, Brachycephalus hermogenesi (Giaretta and Sawaya, 1998): New species record in the state of Paraná, southern Brazil and geographic distribution map. Check List 7: 17–18.

Oliveira, J.C.F. de; Coco, L.; Pagotto, R.V.; Pralon, E.; Vrcibradic, D.; Pombal Jr., J.P. & Rocha, C.F.D. 2012. Amphibia, Anura, Brachycephalus didactylus (Izecksohn, 1971) and Zachaenus parvulus (Girard, 1853): Distribution extension. Check List 8: 242–244.

Oliveira, J.C.F.; Pralon, E.; Coco, L.; Pagotto, R.V. & Rocha, C.F.D. 2013. Environmental humidity and leaf-litter depth affecting ecological parameters of a leaf-litter frog community in an Atlantic Rainforest area. Journal of Natural History 47: 2115–2124.

Padial, J.M.; Grant, T. & Frost, D.R. 2014. Molecular systematics of terraranas (Anura: Brachycephalus hermogenesi (Giaretta and Sawaya, 1998): New species record in the state of Paraná, southern Brazil and geographic distribution map. Check List 7: 17–18.
Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria.

Zootaxa 3825: 1–132.

Páez-Moscoso, D.J. & Guayasamin, J.M. 2012. Species limits in the Andean toad genus Osornophryne (Bufonidae). Molecular Phylogenetics and Evolution 65: 805–822.

Pereira, M. dos S.; Candaten, A.; Milani, D.; Oliveira, F.B. de; Gardelin, J.; Rocha, C.F.D. & Vrcibradic, D. 2010. Brachycephalus hermogenesi. Herpetological Review 41: 506.

Pie, M.R.; Meyer, A.L.S.; Firkowski, C.R.; Ribeiro, L.F. & Bornschein, M.R. 2013. Understanding the mechanisms underlying the distribution of microendemic montane frogs (Brachycephalus spp., Terraranana: Brachycephalidae) in the Brazilian Atlantic Rainforest. Ecological Modelling 250: 165–176.

Pie, M.R. & Ribeiro, L.F. 2015. A new species of Brachycephalus (Anura: Brachycephalidae) from the Quiriri mountain range of southern Brazil. PeerJ 3: e1179.

Pimenta, B.V.S.; Bérnils, R.S. & Pombal Jr., J.P. 2007. Amphibia, Anura, Brachycephalidae, Brachycephalus hermogenesi: Filling gap and geographic distribution map. Check List 3: 277–279.

Pires Jr., O.R.; Sebben, A.; Schwartz, E.F.; Bloch Jr., C.; Morales, R.A.V. & Schwartz, C.A. 2003. The occurrence of 11-oxotetrodotoxin, a rare tetrodotoxin analogue, in the brachycephalidae (sic) frog Brachycephalus ephippium. Toxicon 42: 563–566.

Pires Jr., O.R.; Sebben, A.; Schwartz, E.F.; Largura, S.W.R.; Bloch Jr., C.; Morales, R.A.V. & Schwartz, C.A. 2002. Occurrence of tetrodotoxin and its analogues in the Brazilian frog Brachycephalus ephippium (Anura: Brachycephalidae). Toxicon 40: 761–766.

Pires Jr, O.R.; Sebben, A.; Schwartz, E.F.; Morales, R.A.V.; Bloch Jr, C. & Schwartz, C.A. 2005. Further report of the occurrence of tetrodotoxin and new analogues in the Anuran family Brachycephalidae. Toxicon 45: 73–79.

Pombal Jr., J.P. 1999. Oviposição e desenvolvimento de Brachycephalus ephippium (Spix) (Anura, Brachycephalidae). Revista Brasileira de Zoologia 16: 967–976.

Pombal Jr., J.P. 2001. A new species of Brachycephalus (Anura: Brachycephalidae) from Atlantic Forest of southeastern Brazil. Amphibia-Reptilia 22: 179–185.

Pombal Jr., J.P. 2010. A posição taxonômica das “variedades” de Brachycephalus ephippium (Spix, 1824) descritas por Miranda-Ribeiro, 1920 (Amphibia, Anura, Brachycephalidae). Boletim do Museu Nacional, Zoologia 526: 1–12.
Pombal Jr., J.P. & Gasparini, J.L. 2006. A new *Brachycephalus* (Anura: Brachycephalidae) from the Atlantic Rainforest of Espírito Santo, southeastern Brazil. South American Journal of Herpetology 1: 87–93.

Pombal Jr., J.P. & Izecksohn, E. 2011. Uma nova espécie de *Brachycephalus* (Anura, Brachycephalidae) do Estado do Rio de Janeiro. Papéis Avulsos de Zoologia 51: 443–451.

Pombal Jr., J.P.; Sazima, I. & Haddad, C.F.B. 1994. Breeding behavior of the pumpkin toadlet, *Brachycephalus ephippium* (Brachycephalidae). Journal of Herpetology 28: 516–519.

Pombal Jr., J.P.; Wistuba, E.M. & Bornschein, M.R. 1998. A new species of brachycephalid (Anura) from the Atlantic Rain Forest of Brazil. Journal of Herpetology 32: 70–74.

Reinert, B.L., Bornschein, M.R. & Firkowski, C. 2007. Distribuição, tamanho populacional, hábitat e conservação do bicudinho-do-brejo *Stymphalornis acutirostris* Bornschein, Reinert e Teixeira, 1995 (Thamnophilidae). Revista Brasileira de Ornitologia 15: 493–519.

Ribeiro, R. da S. 2006. Ecologia alimentar das quatro espécies dominantes da anurofauna de serapilheira em um gradiente altitudinal na ilha de São Sebastião, SP. Dissertation. Rio Claro, Universidade Estadual Paulista “Júlio de Mesquita Filho”, 124 p.

Ribeiro, L.F.; Alves, A.C.R. & Haddad, C.F.B. 2005. Two new species of *Brachycephalus Günther*, 1858 from the state of Paraná, southern Brazil (Amphibia, Anura, Brachycephalidae). Boletim do Museu Nacional, Zoologia 519: 1–18.

Ribeiro, L.F.; Bornschein, M.R.; Belmonte-Lopes, R.; Firkowski, C.R.; Morato, S.A.A. & Pie, M.R. 2015. Seven new microendemic species of *Brachycephalus* (Anura: Brachycephalidae) from southern Brazil. PeerJ 3: e1011.

Rocha, C.F.D.; Ströher, P.R.; Firkowski, C.R.; Cini, F.A.; Bornschein, M.R. & Pie, M.R. 2014. *Brachycephalus pernix* (Anura: Brachycephalidae), a new host of *Ophiotaenia* (Eucestoda: Proteocephalidea). Herpetology Notes 7: 291–294.

Rocha, C.F.D.; Van Sluys, M.; Alves, M.A.S.; Bergallo, H.G. & Vrcibradic, D. 2000. Activity of leaf-litter frogs: When should frogs be sampled? Journal of Herpetology 34: 285–287.

Rocha, C.F.D.; Van Sluys, M.; Alves, M.A.S.; Bergallo, H.G. & Vrcibradic, D. 2001. Estimates of forest floor litter frog communities: A comparison of two methods. Austral Ecology 26: 14–21.

Rocha, C.F.D.; Vrcibradic, D.; Kiefer, M.C.; Almeida-Gomes, M.; Borges-Junior, V.N.T.; Menezes, V.A.; Ariani, C.V.; Pontes, J.A.L.; Goyannes-Araújo, P.; Marra, R.V.; Guedes,
D.M.; Siqueira, C. da C. & Van Sluys, M. 2013. The leaf-litter frog community from Reserva Rio das Pedras, Mangaratiba, Rio de Janeiro State, Southeastern Brazil: species richness, composition and densities. North-Western Journal of Zoology 9: 151–156.

Roderjan, C.V. 1994. O gradiente da Floresta Ombrófila Densa no Morro Anhangava, Quatro Barras, PR - aspectos climáticos, pedológicos e fitossociológicos. Thesis. Curitiba, Universidade Federal do Paraná, 118 p.

Santos-Pereira, M.; Candaten, A.; Milani, D.; Oliveira, F.B.; Gardelin, J. & Rocha, C.F.D. da. 2011. Seasonal variation in the leaf-litter frog community (Amphibia: Anura) from an Atlantic Forest area in the Salto Morato Natural Reserve, southern Brazil. Zoologia 28: 755–761.

Schwartz, C.A.; Castro, M. de S.; Pires Júnior, O.R.; Maciel, N.M.; Schwartz, E.N.F. & Sebben, A. 2007. Princípios bioativos da pele de anfíbios: panorama atual e perspectivas. In: Nascimento, L.B. & Oliveira, M.E. (Eds), Herpetologia no Brasil II. Belo Horizonte, Sociedade Brasileira de Herpetologia, pp. 146–168.

Sebben, A.; Schwartz, C.A.; Valente, D. & Mendes, E.G. 1986. A tetrodotoxin-like substance found in the Brazilian frog Brachycephalus ephippium. Toxicon 24: 799–806.

Silva, H.R. da; Campos, L.A. & Sebben, A. 2007. The auditory region of Brachycephalus and its bearing on the monophyly of the genus (Anura: Brachycephalidae). Zootaxa 1422: 59–68.

Siqueira, C.C.; Vrcibradic, D.; Almeida-Gomes, M.; Borges-Jr., V.N.T.; Almeida-Santos, P.; Almeida-Santos, M.; Ariani, C.V.; Guedes, D.M.; Goyannes-Araújo, P.; Dorigo, T.A.; Van Sluys, M. & Rocha, C.F.D. 2009. Density and richness of the leaf litter frogs of an Atlantic Rainforest area in Serra dos Órgãos, Rio de Janeiro State, Brazil. Zoologia 26: 97–102.

Siqueira, C.C.; Vrcibradic, D.; Dorigo, T.A. & Rocha, C.F.D. 2011. Anurans from two high-elevation areas of Atlantic Forest in the state of Rio de Janeiro, Brazil. Zoologia 28: 457–464.

Siqueira, C.C.; Vrcibradic, D.; Nogueira-Costa, P.; Martins, A.R.; Dantas, L.; Gomes, V.L.R.; Bergallo, H.G. & Rocha, C.F.D. 2014. Environmental parameters affecting the structure of leaf-litter frog (Amphibia: Anura) communities in tropical forests: a case study from an Atlantic Rainforest area in southeastern Brazil. Zoologia 31: 147–152.
Siqueira, C.C.; Vrcibradic, D. & Rocha, C.F.D. 2013. Altitudinal records of data-deficient and threatened frog species from the Atlantic Rainforest of the Serra dos Órgãos mountains, in southeastern Brazil. Brazilian Journal of Biology 73: 229–230.

Struminski, E. 1997. Parque Estadual Pico do Marumbi, estudo de vegetação e análise de áreas de instabilidade ambiental. Agrárias 16: 107–119.

Tandel, M. da C.F.F.; Loibél, S.; Oliveira, E.G. de & Haddad, C.F.B. 2014. Diferenciação de 3 tipos de vocalizações (cantos) na espécie Brachycephalus pitanga. Revista da Estatística da Universidade Federal de Ouro Preto 3: 374–386.

Thomé, M.T.C.; Zamudio, K.R.; Giovanelli, J.G.R.; Haddad, C.F.B.; Baldissera Jr., F.A. & Alexandrino, J. 2010. Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest. Molecular Phylogenetics and Evolution 55: 1018–1031.

Trevine, V.; Forlani, M.C.; Haddad, C.F.B. & Zaher, H. 2014. Herpetofauna of Paranapiacaba: expanding our knowledge on a historical region in the Atlantic forest of southeastern Brazil. Zoologia 31: 126–146.

Van Sluys, M.; Vrcibradic, D.; Alves, M.A.S.; Bergallo, H.G. & Rocha, C.F.D. 2007. Ecological parameters of the leaf-litter frog community of an Atlantic Rainforest area at Ilha Grande, Rio de Janeiro state, Brazil. Austral Ecology 32: 254–260.

Veloso, H.P.; Rangel-Filho, A.L.R. & Lima, J.C.A. 1991. Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro, Instituto Brasileiro de Geografia e Estatística – IBGE, 123 p.

Verdade, V.K.; Rodrigues, M.T.; Cassimiro, J.; Pavan, D.; Liou, N. & Lange, M. 2008. Advertisement call, vocal activity, and geographic distribution of Brachycephalus hermogenesi (Giaretta and Sawaya, 1998) (Anura, Brachycephalidae). Journal of Herpetology 42: 542–549.

Walter, H. 1977. Zonas de vegetación y clima. Barcelona, Ediciones Omega, 245 p.

Wieczorek, J.; Guo, Q. & Hijmans, R.J. 2004. The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. International Journal of Geographical Information Science 18: 745–767.

Wistuba, E.M. 1998. História natural de Brachycephalus pernix Pombal, Wistuba & Bornschein, 1998 (Anura) no Morro Anhangava, Município de Quatro Barras, Estado do Paraná. Dissertation. Curitiba, Universidade Federal do Paraná, 89 p.
Wollenberg, K.C.; Vieites, D.R.; Glaw, F. & Vences, M. 2011. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evolutionary Biology 11: 217.

Yeh, J. 2002. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56: 628–641.

Zaher, H.; Aguiar, E. & Pombal, J.P. 2005. Paratelmatobius gaigeae (Cochran, 1938) rediscovered (Amphibia, Anura, Leptodactylidae). Arquivos do Museu Nacional 63: 321–328.
Table 1. Records of *Brachycephalus* spp. Altitude is provided in meters (above sea level).

Species	Relief units	Group	Locality	State	Altitude	Source
B. didactylus	Northern Serra da Mantiqueira	didactylus	Monumento Natural Serra das Torres (21°00′04″S, 41°13′17″W), municipality of Atilio Viváqua	ES	? (600–900?)	Oliveira et al. (2012, 2013)
B. didactylus	Northern Serra do Mar	didactylus	Fazenda Santa Bárbara (22°25′17″S, 42°35′01″W), Parque Estadual dos Três Picos, municipality of Cachoeiras de Macacu	RJ	500–800	Siqueira et al. (2009), Almeida-Santos et al. (2011)
B. didactylus	Northern Serra do Mar	didactylus	Reserva Ecológica de Guapiaçu (22°24′00″S, 42°44′00″W), municipality of Cachoeiras de Macacu	RJ	300–520	Siqueira et al. (2014)
B. didactylus	Northern Serra do Mar	didactylus	Reserva Ecológica Rio das Pedras (22°59′00″S, 44°06′45″W), municipality of Mangaratiba	RJ	200–1,110	*, Carvalho-e-Silva et al. (2008), Almeida-Santos et al. (2011), Rocha et al. (2013)
B. didactylus	Northern Serra do Mar	didactylus	Sacra Familia do Tinguá (22°29′11″S, 43°36′18″W), municipality of Engenheiro Paulo de Frontin	RJ	600	Izecksohn (1971), Pombal (2001), Ribeiro et al. (2005), Alves et al. (2006, 2009), Silva et al. (2007), Verde et al. (2008), Clemente-Carvalho et al. (2009), Campos (2011), Pombal & Izecksohn (2011), Pie et al. (2013)
Species	Relief units	Group	Locality	State	Altitude	Source
---------------	------------------	-------	--	-------	----------	---
B. didactylus	Northern Serra do Mar	didactylus	Theodoro de Oliveira (first position: 22°22’11”S, 42°33’25”W), Parque Estadual dos Três Picos, municipality of Nova Friburgo	RJ	?	* , Siqueira et al. (2011)
B. didactylus	Northern Serra do Mar	didactylus	Tinguá (22°35’51”S, 43°24’54”W), municipality of Nova Iguaçu	RJ	35	Izecksohn (1971)
B. didactylus	Northern Serra do Mar	didactylus	Vila Dois Rios (23°11’01”S, 44°12’23”W), Ilha Grande, municipality of Angra dos Reis	RJ	220–240	* , Rocha et al. (2000, 2001), Van Sluys et al. (2007)
B. hermogenesi	Central Serra do Mar	didactylus	Corcovado (23°28’08”S, 45°11’29”W), municipality of Ubatuba	SP	? (70?)	Giaretta & Sawaya (1998), Verdade et al. (2008)
B. hermogenesi	Central Serra do Mar	didactylus	Estação Biológica de Boracéia (first position: 23°39’10”S, 45°53’05”W), municipality of Salesópolis	SP	900	Pimenta et al. (2007), Verdade et al. (2008)
B. hermogenesi	Central Serra do Mar	didactylus	Fazenda Capricórnio (23°23’27”S, 45°04’26”W), municipality of Ubatuba	SP	60	Giaretta & Sawaya (1998), Verdade et al. (2008)
B. hermogenesi	Central Serra do Mar	didactylus	Picinguaba (23°22’21”S, 44°49’53”W), Parque Estadual da Serra do Mar, municipality of Ubatuba	SP	0–700	Giaretta & Sawaya (1998), Pimenta et al. (2007), Verdade et al. (2008), Clemente-Carvalho et al. (2009), Pie et al. (2013)
Species	Relief units	Group	Locality	State	Altitude	Source
---------	--------------	-------	----------	-------	----------	--------
B. hermogenesi	Central Serra do Mar	*didactylus*	Reserva Biológica do Alto da Serra de Paranapiacaba (23°46’40”S, 46°18’45”W), municipality of Santo André	SP	? (800?)	Verdade et al. (2008)
B. hermogenesi	Central Serra do Mar	*didactylus*	Reserva Florestal de Morro Grande (23°42’08”S, 46°58’22”W), municipality of Cotia	SP	? (990?)	Dixo & Verdade (2006), Verdade et al. (2008)
B. pulex	Pré-Litorâneas	*didactylus*	Serra Bonita (15°23’28”S, 39°33’59”W), municipality of Camacan	BA	800–930	Napoli et al. (2011)
Brachycephalus sp. 1	Paranapiacaba	*didactylus*	Caratuval (24°51’17”S, 48°43’43”W), near the Parque Estadual das Lauráceas, municipality of Adrianópolis	PR	900	Firkowski (2013; without species identification), Pie et al. (2013; as “*Brachycephalus sp. nov. 1*”)
Brachycephalus sp. 1	Paranapiacaba	*didactylus*	Caratuval (24°51’14”S, 48°42’01”W), Parque Estadual das Lauráceas, municipality of Adrianópolis	PR	890	Pie et al. (2013; as “*Brachycephalus sp. nov. 1*”)
Brachycephalus sp. 1	Paranapiacaba	*didactylus*	Fazenda Primavera (24°53’08”S, 48°45’51”W), municipality of Tunas do Paraná	PR	1,060	Pie et al. (2013; as “*Brachycephalus sp. nov. 1*”)
Brachycephalus sp. 1	Paranapiacaba	*didactylus*	Fazenda Thalia (25°30’58”S, 49°40’12”W), municipality of Balsa Nova	PR	1,025	Firkowski (2013; without species identification), Pie et al. (2013; as “*Brachycephalus sp. nov. 1*”)
Species	Relief units	Group	Locality	State	Altitude	Source
-------------	--------------	---------	--	-------	----------	---
Brachycephalus sp. 1	Paranapiacaba	*didactylus*	Base of the Serra Água Limpa (24°28’52”S, 48°47’12”W), municipality of Apiaí	SP	920	*, DZUP, Firkowski (2013; without species identification)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Alto Quiriri (26°05’34”S, 48°59’41”W), municipality of Garuva	SC	240	Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Castelo dos Bugres (first position: 26°13’47”S, 49°03’20”W), municipality of Joinville	SC	790–860	Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Colônia Castelhanos (25°47’58”S, 48°54’40”W), municipality of Guaratuba	PR	290	Cunha et al. (2010; as “*Brachycephalus aff. hermognesi*”), Oliveira et al. (2011; as “*B. hermognesi*”), Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Corvo (25°20’17”S, 48°54’56”W), municipality of Quatro Barras	PR	930	Firkowski (2013; without species identification), Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Dona Francisca (26°09’52”S, 48°59’23”W), municipality of Joinville	SC	150	Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Estrada do rio do Júlio (26°17’02”S, 49°06’08”W), municipality of Joinville	SC	650	Mariotto (2014; as “*Brachycephalus* sp.”)
Species	Relief units	Group	Locality	State	Altitude	Source
---------	--------------	-------	----------	-------	----------	--------
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Fazenda Pico Paraná (25°13’29”S, 48°51’17”W), municipality of Campina Grande do Sul	PR	1,050	Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Mananciais da Serra (25°29’29”S, 48°58’40”W), municipality of Piraquara	PR	1,050	*, DZUP, Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Pico Agudinho (25°36’24”S, 48°43’33”W), Serra da Prata, municipality of Morretes	PR	385	Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Recanto das Hortências (25°33’24”S, 48°59’38”W), municipality of São José dos Pinhais	PR	975	*, DZUP
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Reserva Particular do Patrimônio Natural Salto Morato (25°10’00”S, 48°17’21”W), municipality of Guarapuava	PR	45–900	*, Pereira et al. (2010; as “*B. hermogenesi*”), Santos-Pereira et al. (2011; as “*B. hermogenesi*”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Sítio Ananias (25°47’08”S, 48°43’03”W), municipality of Guaratuba	PR	25	Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Brachycephalus sp. 1	Southern Serra do Mar	*didactylus*	Truticultura (26°01’33”S, 48°52’02”W), municipality of Garuva	SC	90	Pie et al. (2013; as “*Brachycephalus* sp. nov. 1”)
Species	Relief units	Group	Locality	State	Altitude	Source
-------------	----------------------------	----------	--	-------	----------	-----------------------------
B. alipioi	Northern Serra da Mantiqueira	ephippium	Fazenda Aoki or Fazenda dos Japoneses (20°28′24″S, 41°00′36″W), boundary of the municipalities of Vargem Alta and Domingos Martins	ES	1,070–1,100	Pombal & Gasparini (2006), Clemente-Carvalho et al. (2009, 2011a, 2012), Pombal & Izecksohn (2011), Pie et al. (2013)
B. alipioi	Northern Serra da Mantiqueira	ephippium	Forno Grande (20°31′41″S, 41°06′51″W), Parque Estadual de Forno Grande, municipality of Castelo	ES	?	Pie et al. (2013)
B. bufonoides	Northern Serra do Mar	ephippium	Serra de Macaé (22°18′02″S, 42°18′20″W), municipality of Nova Friburgo	RJ	?	Miranda-Ribeiro (1920), Pombal (2010), Pombal & Izecksohn (2011)
B. crispus	Central Serra do Mar	ephippium	Bacia B, Núcleo Cunha, Parque Estadual da Serra do Mar (23°15′15″S, 45°01′58″W), municipality of Cunha	SP	800–1,100	Condez et al. (2014)
B. ephippium	Northern Serra da Mantiqueira	ephippium	Serra do Pai Inácio (20°48′13″S, 42°29′07″W), Parque Estadual da Serra do Brigadeiro, boundary of the municipalities of Ervália and Miradouro	MG	?	Pombal & Izecksohn (2011)
B. ephippium	Southern Serra da Mantiqueira	ephippium	Condomínio Ermida (23°14′13″S, 46°58′52″W), Serra do Japi, municipality of Jundiaí	SP	1,225	Pie et al. (2013)
Species	Relief units	Group	Locality	State	Altitude	Source
------------------	-------------------------	----------	---	-------	----------	---------------------------------
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Hotel Fazenda Pé da Serra (22°51′56″S, 45°31′40″W), municipality of Pindamonhangaba	SP	700	Pie et al. (2013)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Lago Azul (22°27′23″S, 44°36′34″W), Parque Nacional do Itatiaia, municipality of Itatiaia	RJ	750	Pie et al. (2013)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Maromba (22°25′43″S, 44°37′11″W), Parque Nacional do Itatiaia, municipality of Itatiaia	RJ	1,125	Pie et al. (2013)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Monteiro Lobato (22°57′07″S, 45°50′20″W), municipality of Monteiro Lobato	SP	700	Pombal & Izecksohn (2011)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Observatório de Capricórnio (22°53′54″S, 46°49′01″W), Serra das Cabras, Joaquim Egidio District, boundary of the municipalities of Campinas and Morungaba	SP	1,085	Pombal (1999), Pombal et al. (1994), Pombal & Izecksohn (2011), Pie et al. (2013)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Parque Municipal de Itapetinga (Grota Funda) (23°11′07″S, 46°31′47″W), municipality of Atibaia	SP	900–1,250	Giaretta (1999), Giaretta et al. (1999), Clemente-Carvalho et al. (2009, 2011a), Pie et al. (2013)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Reserva Biológica da Serra do Japi (23°17′07″S, 47°00′05″W), Serra do Japi, boundary of the municipalities of Jundiaí and Cabreúva	SP	1,000	Giaretta et al. (1997), Pombal & Izecksohn (2011), Clemente-Carvalho et al. (2009, 2016), Pie et al. (2013)
Species	Relief units	Group	Locality	State	Altitude	Source
----------------------	-----------------------	--------	---	-------	----------	---
B. ephippium	Southern Serra da Mantiqueira	ephippium	Reserva Ecológica do Trabiju (22°48’01"S, 45°32’03"W), Trabiju, municipality of Pindamonhangaba	SP	? (1,000?)	Pombal & Izecksohn (2011)
B. ephippium	Southern Serra da Mantiqueira	ephippium	Reserva Pedra Branca (22°56’22"S, 45°41’04"W), municipality of Tremembé	SP	? (890?)	Pombal & Izecksohn (2011)
B. ephippium	Southern Serra da Mantiqueira	ephippium	Santo Antônio do Pinhal (22°49’28"S, 45°40’20"W), municipality of Santo Antônio do Pinhal	SP	1,080	Pombal & Izecksohn (2011)
B. ephippium	Southern Serra da Mantiqueira	ephippium	São Francisco Xavier (22°53’44"S, 45°58’04"W), municipality of São José dos Campos	SP	1,000	Clemente-Carvalho et al. (2008, 2011b, 2016), Pombal & Izecksohn (2011), Pie et al. (2013)
B. ephippium	Southern Serra da Mantiqueira	ephippium	Serra Negra (21°57’28"S, 43°47’20"W), municipality of Santa Bárbara do Monte Verde	MG	?	Campos (2011; as “BMV MG2”)
B. ephippium	Paraiba do Sul	ephippium	Serra da Concórdia (22°20’30"S, 43°44’04"W), Parque Estadual Serra da Concórdia, Barão de Juparanã, municipality of Valença	RJ	? (900?)	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	ephippium	Alto do Soberbo (22°27’15"S, 42°59’21"W), municipality of Teresópolis	RJ	1,250	Pombal & Izecksohn (2011)
Species	Relief units	Group	Locality	State	Altitude	Source
---------	--------------	-------	----------	-------	----------	--------
B. ephippium	Northern Serra do Mar	ephippium	Comary (22°27′22″S, 42°58′24″W), municipality of Teresópolis	RJ	990	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	ephippium	Floresta dos Macacos (22°58′15″S, 43°15′24″W), municipality of Rio de Janeiro	RJ	? (450?)	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	ephippium	Garrafão (22°28′04″S, 43°01′52″W), municipality of Guapimirim	RJ	? (1,785?)	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	ephippium	Pedra Branca (22°55′55″S, 43°28′23″W), Serra da Pedra Branca, municipality of Rio de Janeiro	RJ	1,000	Pombal (2001), Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	ephippium	Represa do Rio Grande (22°55′58″S, 43°26′36″W), Parque Estadual da Pedra Branca, municipality of Rio de Janeiro	RJ	? (150?)	Pombal & Izecksohn (2011), Pie et al. (2013)
B. ephippium	Northern Serra do Mar	ephippium	Reserva Ecológica Rio das Pedras (22°59′00″S, 44°06′45″W), municipality of Mangaratiba	RJ	200-1,110	Carvalho-e-Silva et al. (2008)
B. ephippium	Northern Serra do Mar	ephippium	Riacho Beija-flor (22°27′04″S, 43°00′04″W), Parque Nacional da Serra dos Órgãos, municipality of Teresópolis	RJ	1,195	Pie et al. (2013)
Species	Relief units	Group	Locality	State	Altitude	Source
-----------	---------------	--------	---	-------	----------	-----------------------------
B. ephippium	Northern Serra do Mar	*ephippium*	Rocio District (22°28’23”S, 43°14’38”W), municipality of Petrópolis	RJ	950	Pie et al. (2013)
B. ephippium	Northern Serra do Mar	*ephippium*	Serra do Tinguá (22°35’31”S, 43°28’16”W), municipality of Nova Iguaçu	RJ	? (950?)	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	*ephippium*	Vale da Revolta (22°26’17”S, 42°56’19”W), municipality of Teresópolis	RJ	1,035	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	*ephippium*	Varginha (22°24’34”S, 42°52’11”W), municipality of Teresópolis	RJ	? (825?)	Pombal & Izecksohn (2011)
B. ephippium	Central Serra do Mar	*ephippium*	Bonito (22°42’51”S, 44°34’39”W), Serra da Bocaina, municipality of São José do Barreiro	SP	?	(1,660?) Pombal & Izecksohn (2011)
B. ephippium	Central Serra do Mar	*ephippium*	Estação Ecológica de Bananal (22°48’05”S, 44°22’12”W), Serra da Bocaina, municipality of Bananal	SP	?	(1,200?) Zaher et al. (2005)
B. ephippium	Central Serra do Mar	*ephippium*	Lídice District (22°50’01”S, 44°11’32”W), municipality of Rio Claro	RJ	? (650?)	Pombal (2001), Pombal & Izecksohn (2011)
B. ephippium	Central Serra do Mar	*ephippium*	Pedra Branca (23°10’38”S, 44°47’19”W), Serra da Bocaina, municipality of Parati	RJ	? (630?)	Pombal (2001), Pombal & Izecksohn (2011)
Species	Relief units	Group	Locality	State	Altitude	Source
---------	--------------	-------	----------	-------	----------	--------
B. ephippium	Central Serra do Mar		Penísula do Bororé (23°47’11”S, 46°38’45”W), Represa Billings, Grajaú District, municipality of São Paulo	SP	780	Pie et al. (2013; as “Brachycephalus nodoterga”), Abbeg et al. (2015; as “clearly refers to another species [than B. nodoterga of Pie et al. 2013]”)
B. ephippium	Central Serra do Mar		Reserva Florestal de Morro Grande (23°42’08”S, 46°58’22”W), municipality of Cotia	SP	? (990?)	Dixo & Verde (2006)
B. garbeanus	Northern Serra do Mar		Alto Caledônia (22°20’10”S, 42°33’20”W), municipality of Nova Friburgo	RJ	? (1,070?)	Pombal & Izecksohn (2011)
B. garbeanus	Northern Serra do Mar		Baixo Caledônia (22°21’33”S, 42°34’12”W), municipality of Nova Friburgo	RJ	1,600-1,900	Pombal & Izecksohn (2011); Siqueira et al. (2011, 2013), Dorigo et al. (2012)
B. garbeanus	Northern Serra do Mar		Macaé de Cima (22°21’37”S, 42°17’50”W), municipality of Nova Friburgo	RJ	1,130	Clemente-Carvalho et al. (2008 [as “B. ephippium”], 2009 [as “B. ephippium”], 2011a,b [“b”, as “B. ephippium”]), Pombal & Izecksohn (2011), Pie et al. (2013)
B. garbeanus	Northern Serra do Mar		Morro São João (22°22’47”S, 42°30’34”W), municipality of Nova Friburgo	RJ	? (1,550?)	Pombal & Izecksohn (2011)
Species	Relief units	Group	Locality	State	Altitude	Source
------------------	--------------------	-----------	---	-------	----------	---
B. garbeanus	Northern Serra do Mar	*ephippium*	Serra de Macaé (22°18’02”S, 42°18’20”W), municipality of Nova Friburgo	RJ	?	Miranda-Ribeiro (1920), Pombal (2010), Pombal & Izecksohn (2011)
B. garbeanus	Northern Serra do Mar	*ephippium*	Serra Nevada (22°21’46”S, 42°32’48”W), municipality of Nova Friburgo	RJ	1,190	Pombal & Izecksohn (2011)
B. garbeanus	Northern Serra do Mar	*ephippium*	Theodoro de Oliveira (second position: 22°21’48”S, 42°33’13”W), Parque Estadual dos Três Picos, municipality of Nova Friburgo	RJ	1,400	Pombal & Izecksohn (2011), Siqueira et al. (2011, 2013)
B. guarani	Central Serra do Mar	*ephippium*	Morro Prumirim (23°20’50”S, 45°01’37”W), municipality of Ubatuba	SP	500–900	Giaretta (1999; altitude determined by Clemente-Carvalho et al. [2012]), Clemente-Carvalho et al. (2012), Condez et al. (2014)
B. margaritatus	Northern Serra do Mar	*ephippium*	Castelo Country Club (22°32’21”S, 43°13’08”W), municipality of Petrópolis	RJ	980	Pombal & Izecksohn (2011)
B. margaritatus	Northern Serra do Mar	*ephippium*	Castelo Montebello (22°24’24”S, 42°58’06”W), municipality of Teresópolis	RJ	920	Pombal & Izecksohn (2011)
B. margaritatus	Northern Serra do Mar	*ephippium*	Independência (22°32’58”S, 43°12’27”W), municipality of Petrópolis	RJ	860	Pombal & Izecksohn (2011)
Species	Relief units	Group	Locality	State	Altitude	Source
------------------	-----------------------	------------	---	-------	----------	---
B. margaritatus	Northern Serra do Mar	ephippium	Morro Azul (22°28’34"S, 43°34’40"W), municipality of Engenheiro Paulo de Frontin	RJ	620	Campos (2011; as “BPF RJ2”), Pombal & Izecksohn (2011)
B. margaritatus	Northern Serra do Mar	ephippium	Quitandinha (22°31’47"S, 43°12’26"W), municipality of Petrópolis	RJ	925	Pombal & Izecksohn (2011)
B. margaritatus	Northern Serra do Mar	ephippium	Sacra Família do Tinguá (22°29’11"S, 43°36’18"W), municipality of Engenheiro Paulo de Frontin	RJ	600	Izecksohn (1971; as “*B. ephippium*”), Pombal (2001; as “*Brachycephalus cf. ephippium*”), Pombal & Izecksohn (2011), Pie et al. (2013; as “*B. ephippium*”)
B. nodoterga	Central Serra do Mar	ephippium	Estação Biológica de Boracéia (second position: 23°38’00"S, 45°52’00"W), municipality of Salesópolis	SP	945	Pombal et al. (1998), Pombal (2001, 2010), Ribeiro et al. (2005), Alves et al. (2006, 2009), Haddad et al. (2010), Pombal & Izecksohn (2011), Pie et al. (2013), Abegg et al. (2015), Clemente-Carvalho et al. (2016)
B. nodoterga	Central Serra do Mar	ephippium	Fazenda Paiva Ramos (23°28’21"S, 46°47’25"W), Serra de São Roque, municipality of Osasco	SP	820	Abegg et al. (2015)
Species	Relief units	Group	Locality	State	Altitude	Source
---------	--------------	-------	----------	-------	----------	--------
B. nodoterga	Central Serra do Mar	ephippium	Pico do Ramalho (23°51'42"S, 45°21'28"W), Ilha de São Sebastião, municipality of Ilhabela	SP	700–900	Ribeiro (2006; as “Brachycephalus sp. aff. nodoterga”), Pombal & Izecksohn (2011), Pie et al. (2013), Abegg et al. (2015), Clemente-Carvalho et al. (2016)
B. nodoterga	Central Serra do Mar	ephippium	Serra da Cantareira (23°27'13"S, 46°38'11"W), Parque Estadual da Cantareira, municipality of São Paulo	SP	850 (?850?)	Miranda-Ribeiro (1920), Ribeiro et al. (2005), Alves et al. (2006, 2009), Clemente-Carvalho et al. (2009, 2011a, 2012, 2016), Haddad et al. (2010), Pombal (2010), Pombal & Izecksohn (2011), Condez et al. (2014), Abegg et al. (2015)
B. pitanga	Central Serra do Mar	ephippium	Fazenda Capricórnio (23°22'36"S, 45°04'07"W), municipality of Ubatuba	SP	450 (?)	Alves et al. (2009), Campos et al. (2010; as “Brachycephalus sp. 2”), Campos (2011), Pie et al. (2013)
B. pitanga	Central Serra do Mar	ephippium	Núcleo Santa Virgínia (23°19'23"S, 45°05'19"W), Parque Estadual da Serra do Mar, municipality of São Luis do Paraitinga	SP	980–1,140	Oliveira (2013), Tandel et al. (2014), Oliveira & Haddad (2015)
B. pitanga	Central Serra do Mar	ephippium	SP 125 - municipality of São Luis do Paraitinga (23°22'57"S, 45°09'59"W)	SP	935–950	*, DZUP
Species	Relief units	Group	Locality	State	Altitude	Source
---------------	--------------	-----------	---	-------	-----------	---
B. pitanga	Central Serra do Mar	*ephippium*	Trilha do Ipiranga 50 m from the Rio Ipiranga (23°20′39″S, 45°08′16″W), Núcleo Santa Virginia, Parque Estadual da Serra do Mar, municipality of São Luis do Paraitinga	SP	900–960	Alves et al. (2009), Clemente-Carvalho et al. (2009, 2011a), Araújo et al. (2012), Oliveira (2013), Pie et al. (2013)
B. toby	Central Serra do Mar	*ephippium*	Morro do Corcovado (23°27′20″S, 45°11′49″W), Parque Estadual da Serra do Mar, municipality of Ubatuba	SP	750	Haddad et al. (2010), Clemente-Carvalho et al. (2011a, 2012), Pie et al. (2013), Condez et al. (2014)
B. vertebralis	Central Serra do Mar	*ephippium*	Morro Cuzcuzeiro (23°18′03″S, 44°47′30″W), Núcleo Picinguaba, Parque Estadual da Serra do Mar, municipality of Ubatuba	SP	900	Clemente-Carvalho et al. (2011a), Pie et al. (2013), Condez et al. (2014)
B. vertebralis	Central Serra do Mar	*ephippium*	Pedra Branca (23°10′38″S, 44°47′19″W), Serra da Bocaina, municipality of Parati	RJ	? (630?)	Pombal (2001, 2010), Clemente-Carvalho et al. (2009), Pie et al. (2013)
Brachycephalus sp. 2	Northern Serra do Mar	*ephippium*	Theodoro de Oliveira (first position: 22°22′11″S, 42°33′25″W), Parque Estadual dos Três Picos, municipality of Nova Friburgo	RJ	1,100–1,200	Siqueira et al. (2011 [as “Brachycephalus sp.”], 2013 [as “Brachycephalus sp. nov.”])
Brachycephalus sp. 3	Central Serra do Mar	*ephippium*	Paranapiacaba (23°46′30″S, 46°17′57″W), municipality of Santo André	SP	825	Pombal & Izecksohn (2011; as “B. ephippium”), Pie et al. (2013; as “Brachycephalus sp. 1”)
Species†	Relief units	Group	Locality	State	Altitude	Source
---------	--------------	-------	----------	-------	----------	--------
Brachycephalus sp. 3	Central Serra do Mar	*ephippium*	Parque Natural Municipal Nascentes de Paranapiacaba (23°46′10″S, 46°17′36″W), municipality of Santo André	SP	? (800–1,164?)	Trevine et al. (2014; as “*Brachycephalus* sp.”)
Brachycephalus sp. 3	Central Serra do Mar	*ephippium*	Reserva Biológica do Alto da Serra de Paranapiacaba (23°46′40″S, 46°18′45″W), municipality of Santo André	SP	800	Pie et al. (2013; as “*Brachycephalus* sp. 1”)
B. auroguttatus	Southern Serra do Mar	*pernix*	Pedra da Tartaruga (26°00′21″S, 48°55′25″W), municipality of Garuva	SC	1,070–1,100	*, DZUP, Firkowski (2013; without species identification), Ribeiro et al. (2015)
B. boticario	Leste Catarinense	*pernix*	Morro do Cachorro (26°46′42″S, 49°01′57″W), boundary of the municipalities of Blumenau, Gaspar, and Luiz Alves	SC	755–795	*, DZUP, Firkowski (2013; without species identification), Ribeiro et al. (2015)
B. brunneus	Southern Serra do Mar	*pernix*	Camapuã (25°15′59″S, 48°50′16″W), Serra dos Órgãos, boundary of the municipalities of Campina Grande do Sul and Antonina	PR	1,595	Fontoura et al. (2011), Firkowski (2013; without species identification), Pie et al. (2013)
B. brunneus	Southern Serra do Mar	*pernix*	Caranguejeira (25°20′27″S, 48°54′31″W), Serra da Graciosa, municipality of Quatro Barras	PR	1,095–1,110	*, DZUP, Firkowski (2013; without species identification)
Species	Relief units	Group	Locality	State	Altitude	Source
---------	--------------	-------	----------	-------	----------	--------
B. brunneus	Southern Serra do Mar	pernix	Caratuva (25°14’33”S, 48°50’04”W), Serra dos Órgãos, municipality of Campina Grande do Sul	PR	1,300–1,630	Ribeiro et al. (2005), Clemente-Carvalho et al. (2009, 2011a), Campos (2011), Fontoura et al. (2011), Pombal & Izecksohn (2011; including “Pico Paraná”), Firkowski (2013; without species identification; including “Pico Paraná”), Pie et al. (2013)
B. brunneus	Southern Serra do Mar	pernix	Getúlio (25°14’18”S, 48°50’13”W), Serra dos Órgãos, municipality of Campina Grande do Sul	PR	1,450–1,490	*, Pie et al. (2013)
B. brunneus	Southern Serra do Mar	pernix	Mãe Catira (25°20’51”S, 48°54’25”W), Serra da Graciosa, municipality of Quatro Barras	PR	1,135–1,405	Firkowski (2013; without species identification), Pie et al. (2013; as “Brachycephalus sp. nov. 2”)
B. brunneus	Southern Serra do Mar	pernix	Tupipiá (25°14’31”S, 48°47’47”W), Serra dos Órgãos, municipality of Antonina	PR	1,260	Firkowski (2013; without species identification), Pie et al. (2013)
B. ferruginus	Southern Serra do Mar	pernix	Olimpo (25°27’03”S, 48°54’59”W), Serra do Marumbi, municipality of Morretes	PR	965–1,470	Alves et al. (2006), Clemente-Carvalho et al. (2009, 2011a), Pombal & Izecksohn (2011), Firkowski (2013; without species identification), Pie et al. (2013)
Species	Relief units	Group	Locality	State	Altitude	Source
---------------	--------------	-------	---	-------	-----------	---
B. fuscolineatus	Leste Catarinense	pernix	Morro do Baú (26°47′58″S, 48°55′47″W), municipality of Ilhota	SC	640–790	Firkowski (2013; without species identification), Pie et al. (2013; as “Brachycephalus sp. nov. 9”), Ribeiro et al. (2015)
B. izecksohni	Southern Serra do Mar	pernix	Torre da Prata, Serra da Prata (25°37′25″S, 48°41′31″W), boundary of the municipalities of Morretes, Paranaguá, and Guaratuba	PR	980–1,340	Ribeiro et al. (2005), Clemente-Carvalho et al. (2009, 2011a), Pombal & Izecksohn (2011), Firkowski (2013; without species identification), Pie et al. (2013)
B. leopardus	Southern Serra do Mar	pernix	Morro dos Perdidos (25°53′22″S, 48°57′22″W), municipality of Guaratuba	PR	1,400–1,420	Firkowski (2013; without species identification), Pie et al. (2013; as “Brachycephalus sp. nov. 4”)
B. leopardus	Southern Serra do Mar	pernix	Serra do Araçatuba (25°54′07″S, 48°59′47″W), municipality of Tijucas do Sul	PR	1,640	Firkowski (2013; without species identification), Pie et al. (2013; as “Brachycephalus sp. nov. 4”), Ribeiro et al. (2015)
B. mariaeterezae	Southern Serra do Mar	pernix	Reserva Particular do Patrimônio Natural Caetezal, top of the Serra Queimada (26°06′51″S, 49°03′45″W), municipality of Joinville	SC	1,265–1,270	Firkowski (2013; without species identification), Pie et al. (2013; as “Brachycephalus sp. nov. 6”), Ribeiro et al. (2015)
B. olivaceus	Southern Serra do Mar	pernix	Castelo dos Bugres (second position: 26°13′59″S, 49°03′13″W), municipality of Joinville	SC	800–835	Firkowski (2013; without species identification), Pie et al. (2013; as “Brachycephalus sp. nov. 7”), Ribeiro et al. (2015)
Species	Relief units	Group	Locality	State	Altitude	Source
---------	--------------	-------	----------	-------	----------	--------
B. olivaceus	Southern Serra do Mar	*pernix*	Base of the Serra Queimada (26°04′57″S, 49°03′59″W), municipality of Joinville	SC	985	Pie et al. (2013; as “Brachycephalus sp. nov. 7”), Ribeiro et al. (2015)
B. olivaceus	Leste Catarinense	*Pernix*	Morro do Boi (26°24′42″S, 49°12′59″W), municipality of Corupá	SC	690–920	*, MHNCI, Pie et al. (2013; as “Brachycephalus sp. 3”)
B. pernix	Southern Serra do Mar	*pernix*	Anhangava (25°23′19″S, 49°00′15″W), Serra da Baitaca, municipality of Quatro Barras,	PR	1,135–1,405	Pombal et al. (1998), Wistuba (1998), Pires et al. (2005), Silva et al. (2007), Clemente-Carvalho et al. (2009, 2011a), Campos et al. (2010), Campos (2011), Pombal & Izecksohn (2011), Firkowski (2013; without species identification), Pie et al. (2013), Ribeiro et al. (2014)
B. pombali	Southern Serra do Mar	*pernix*	Morro dos Padres (25°36′40″S, 48°51′22″W), Serra da Igreja, municipality of Morretes	PR	1,060–1,300	Alves et al. (2006), Clemente-Carvalho et al. (2009, 2011a), Firkowski (2013; without species identification), Pie et al. (2013)
B. pombali	Southern Serra do Mar	*pernix*	trail to Morro dos Padres (25°35′58″S, 48°51′57″W), municipality of Morretes	PR	845–1,060	Pie et al. (2013)
B. quiririensis	Southern Serra do Mar	*pernix*	Serra do Quiriri (26°01′17″S, 48°59′47″W), municipality of Campo Alegre	SC	1,240–1,318	Firkowski (2013; without species identification), Pie et al. (2013; as “Brachycephalus sp. nov. 5”), Pie & Ribeiro (2015)
Species	Relief units	Group	Locality	State	Altitude	Source
-------------------------	--------------------	-------------	---	-------	----------	---
B. quiririensis	Southern Serra do Mar	pernix	Serra do Quiriri (26°01’42”S, 48°57’11”W), municipality of Garuva	SC	1,320–1,380	Pie et al. (2013; as “Brachycephalus sp. nov. 5”), Pie & Ribeiro (2015)
B. tridactylus	Southern Serra do Mar	pernix	Serra do Morato (25°08’09”S, 48°17’59”W), Reserva Natural Salto Morato, municipality of Guaraqueçaba	PR	805–910	*, DZUP, Garey et al. (2012), Bornschein et al. (2015)
B. verrucosus	Southern Serra do Mar	pernix	Morro da Tromba (26°12’44”S, 48°57’29”W), municipality of Joinville	SC	455–945	Firkowski (2013; without species identification), Pie et al. (2013; as “Brachycephalus sp. nov. 8”), Ribeiro et al. (2015)
Brachycephalus sp. 4	Southern Serra do Mar	pernix	Morro do Canal (25°30’55”S, 48°58’56”W), municipality of Piraquara	PR	1,320	DZUP, Firkowski (2013; without species identification)
Brachycephalus sp. 4	Southern Serra do Mar	pernix	Morro do Vigia (25°30’33”S, 48°58’58”W), municipality of Piraquara	PR	1,250	Firkowski (2013; without species identification), Pie et al. (2013; as “Brachycephalus sp. nov. 3”)
Brachycephalus sp. 5	Southern Serra do Mar	pernix	Pedra Branca do Araraquara (25°56’00”S, 48°52’50”W), Serra do Araraquara, municipality of Guaratuba	PR	1,000	*, DZUP
Species	Relief units	Group²	Locality	State	Altitude	Source
------------------	--------------------	----------	---	-------	----------	---
Brachycephalus sp. 5	Southern Serra do Mar	*pernix*	Serra Canasvieiras (25°36’58”S, 48°46’59”W), boundary of the municipalities of Guaratuba and Morretes	PR	1,080	*, DZUP, Firkowski (2013; without species identification)
Brachycephalus sp. 6	Southern Serra do Mar	*pernix*	Serra do Salto (25°42’07”S, 49°03’44”W), Malhada District, municipality of São José dos Pinhais	PR	1,095–1,160	*, DZUP, Firkowski (2013; without species identification), Pie et al. (2013; as “*Brachycephalus* sp. 2”)

Excluded records

B. hermogenesi	Central Serra do Mar	*didactylus*	Ubatuba	SP	?	Silva et al. (2007), Campos et al. (2010), Campos (2011)
B. hermogenesi	Paranapiacaba	*didactylus*	Municipality of Piedade	SP	?	Condez et al. (2009), Clemente-Carvalho et al. (2011a)
B. alipoi	Northern Serra da Mantiqueira	*ephippium*	Santa Teresa	ES	?	Pombal & Gasparini (2006), Pombal & Izecksohn (2011)
B. cf. crispus	Central Serra do Mar	*ephippium*	Cunha	SP	?	Campos et al. (2010; as “*Brachycephalus* sp. 3”), Campos (2011; as “BCU SP2”)
Species	Relief units	Group	Locality	State	Altitude	Source
------------	-------------------------	--------	-----------------	-------	----------	--
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Atibaia	SP	?	Pires et al. (2003, 2005), Ananias et al. (2006), Clemente-Carvalho et al. (2008, 2009, 2011a,b, 2016), Campos et al. (2010), Campos (2011; as “BAT SP3”), Pombal & Izecksohn (2011)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Itamonte	MG	?	Silva et al. (2007), Campos et al. (2010), Campos (2011; as “BIT MG1”)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Itatiaia	RJ	?	Pombal & Izecksohn (2011)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Joaquin Egidio	SP	?	Clemente-Carvalho et al. (2016)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Jundiaí	SP	?	Miranda-Ribeiro (1920), Clemente-Carvalho et al. (2008, 2011b)
B. ephippium	Southern Serra da Mantiqueira	*ephippium*	Piquete	SP	?	Miranda-Ribeiro (1920), Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	*ephippium*	Angra dos Reis	RJ	?	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	*ephippium*	Floresta da Tijuca, municipality of Rio de Janeiro	RJ	?	Pombal & Izecksohn (2011)
Species¹	Relief units²	Group³	Locality⁴	State	Altitude	Source⁵
----------	---------------	--------	--	-------	----------	-----------------------
B. ephippium	Northern Serra do Mar	*ephippium*	Guapiaçu (22°26′34″S, 42°45′38″W), municipality of Cachoeira de Macacu	RJ	35	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	*ephippium*	Mangaratiba	RJ	?	Campos (2011; as “BMA RJ1”), Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	*ephippium*	Parque Nacional da Serra dos Órgãos	RJ	?	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	*ephippium*	Rio de Janeiro	RJ	?	Pombal & Izecksohn (2011)
B. ephippium	Northern Serra do Mar	*ephippium*	Teresópolis	RJ	?	Pires et al. (2002, 2005), Silva et al. (2007), Campos et al. (2010), Campos (2011; as “BTE RJ4”), Pombal & Izecksohn (2011)
B. ephippium	Central Serra do Mar	*ephippium*	Bocaina	SP	?	Pombal & Izecksohn (2011)
B. ephippium	Central Serra do Mar	*ephippium*	Cotia	SP	?	Silva et al. (2007), Campos et al. (2010), Campos (2011; as “BCO SP5”)
B. ephippium	Central Serra do Mar	*ephippium*	Fazenda Papagaío, Serra da Bocaina	SP	?	Pombal & Izecksohn (2011)
Species¹	Relief units²	Group³	Locality⁴	State	Altitude	Source⁵
----------	---------------	--------	-----------	-------	----------	---------
B. ephippium	Central Serra do Mar	*ephippium*	Mogi das Cruzes	SP	?	Pires et al. (2005), Silva et al. (2007), Campos et al. (2010), Campos (2011; as “BMC SP4”), Pombal & Izecksohn (2011)
B. ephippium	Central Serra do Mar	*ephippium*	Serra da Bocaina	SP/RJ	?	Pombal & Izecksohn (2011)
B. garbeanus	Northern Serra do Mar	*ephippium*	Nova Friburgo	RJ	?	Silva et al. (2007; as “*B. ephippium*”), Campos et al. (2010; as “*B. ephippium*”), Campos (2011)
B. margaritatus	Northern Serra do Mar	*ephippium*	Sítio do Pau Ferro, Morro Azul, municipality of Engenheiro Paulo de Frontin	RJ	?	Pombal & Izecksohn (2011)
B. cf. margaritatus	Northern Serra do Mar	*ephippium*	Petrópolis	RJ	?	Campos (2011; as “BPT RJ3”)
B. nodoterga	Central Serra do Mar	*ephippium*	Salesópolis	SP	?	Pires et al. (2005)
B. nodoterga	Central Serra do Mar	*ephippium*	Santana de Parnaíba	SP	?	Abegg et al. (2015)
Species	Relief units	Group	Locality	State	Altitude	Source
-----------------------	----------------------	--------	------------------	-------	----------	---
B. toby	Central Serra do Mar	*ephippium*	Ubatuba	SP	?	Silva et al. (2007; as “Brachycephalus cf. vertebralis”), Campos et al. (2010; as “Brachycephalus cf. vertebralis”), Campos (2011)
B. vertebralis	Central Serra do Mar	*ephippium*	Cunha	SP	?	Pombal (2001)
B. vertebralis	Central Serra do Mar	*ephippium*	Parati	RJ	?	Silva et al. (2007), Campos et al. (2010), Campos (2011)
Brachycephalus sp.	Central Serra do Mar	*ephippium*	Biritiba-Mirim	SP	?	Silva et al. (2007; as “B. nodoterga”), Campos et al. (2010; as “Brachycephalus sp. 1”), Campos (2011; as “BBM SP1”)
B. brunneus	Southern Serra do Mar	*pernix*	Campina Grande do Sul	PR	?	Silva et al. (2007), Campos et al. (2010), Campos (2011)
Brachycephalus	Southern Serra do Mar	*pernix*	Tijucas do Sul	PR	?	Campos (2011; as “BTS PR”)
B. atelopoide	Southern Serra da Mantiqueira	?	Piquete	SP	?	Miranda-Ribeiro (1920)
Brachycephalus sp.	Paranapiacaba	*didactylus*	Municipality of Ribeirão Grande	SP	?	Verdade et al. (2008; as “B. hermogenesi”)
Species	Relief units	Group	Locality	State	Altitude	Source
---------	--------------	-------	----------	-------	----------	--------
Brachycephalus sp. cf. *Brachycephalus* sp. 1	Paranapiacaba	didactylus	Municipality of Tapirai	SP	?	Verdade et al. (2008; as “*B. hermogenesi*”), Condez et al. (2009; as “*B. hermogenesi*”)
Brachycephalus sp. cf. *Brachycephalus* sp. 1	Paranapiacaba	didactylus	Municipality of Juquitiba	SP	?	Verdade et al. (2008; as “*B. hermogenesi*”)
Brachycephalus sp. cf. *Brachycephalus* sp. 1	Central Serra do Mar	didactylus	Estação Ecológica Juréia-Itatins, municipality of Iguape	SP	?	Verdade et al. (2008; as “*B. hermogenesi*”)
Brachycephalus sp. cf. *Brachycephalus* sp. 1	Southern Serra do Mar	didactylus	Ilha do Cardoso, municipality of Cananéia	SP	?	Verdade et al. (2008; as “possibly *B. hermogenesi*”)

1 Species and records are ordered by the following criteria: alphabetic order of groups and alphabetic order of species by groups.
2 According to IBAMA (2007), with additional subdivisions (see Materials and methods).
3 For group definitions, see Materials and methods.
4 Geographical coordinates are based on the datum WGS84.
5 DZUP = Coleção de Herpetologia, Departamento de Zoologia, Universidade Federal do Paraná, state of Paraná, Brazil; MHNCI = Museu de História Natural Capão da Imbuia, Prefeitura Municipal de Curitiba, state of Paraná, Brazil.
6 Excluded records represent vague localities, general reference of municipality of locality, and localities that were specified but could not be located or were questionable given exceedingly low associated altitude.

* = This study (unpublished data).
Table 2. Number of species of *Brachycephalus* per relief unit.

Relief unit	Number of groups	Number of species (undescribed species included)
Pré-Litorâneas	1	1 (0)
Serra da Mantiqueira	2	3 (0)
Northern Serra da Mantiqueira	2	3 (0)
Southern Serra da Mantiqueira	1	1 (0)
Paraíba do Sul	1	1 (0)
Serra do Mar	3	30 (6)
Northern Serra do Mar	2	6 (1)
Central Serra do Mar	2	9 (1)
Southern Serra do Mar	2	16 (4)
Paranapiacaba	1	1 (1)
Leste Catarinense	1	3 (0)

1 According to IBAMA (2007), with additional subdivisions in the units Serra da Mantiqueira and Serra do Mar (see Materials and methods).
Table 3. Number of species of *Brachycephalus* per group in each relief unit.

Relief unit	didactylus	ephippium	pernix
Pré-Litorâneas	1 (0)	0	0
Serra da Mantiqueira	1 (0)	2 (0)	0
Northern Serra da Mantiqueira	1 (0)	2 (0)	0
Southern Serra da Mantiqueira	0	1 (0)	0
Paraíba do Sul	0	1 (0)	0
Serra do Mar	3 (1)	12 (2)	15 (3)
Northern Serra do Mar	1 (0)	5 (1)	0
Central Serra do Mar	1 (0)	8 (1)	0
Southern Serra do Mar	1 (1)	0	15 (3)
Paranapiacaba	1 (1)	0	0
Leste Catarinense	0	0	3 (0)

1 According to IBAMA (2007), with additional subdivisions in the units Serra da Mantiqueira and Serra do Mar (see Materials and methods).
Table 4. Altitudinal distribution and “extent of occurrence” (sensu IUCN 2012) of *Brachycephalus* spp. Only confirmed altitudinal records are considered. Extent of occurrence by altitude (Alt) or by an adaptation of the minimum convex polygon (MCP; see text for details).

Species¹	Altitudinal distribution (m a.s.l.)	Extent of occurrence (ha)		
	Range	Amplitude	Alt	MCP
didactylus group				
B. didactylus (dida)	35–1,110	1,075	?	?
B. hermogenesi (herm)	0–900	900	-	567,589.87
B. pulex	800–930	130	488.25	-
Brachycephalus sp. 1 (sp.1)	25–1,060	1,035	-	778,458.42
ephippium group				
B. alipioi	1,070–1,100	30	?	?
B. crispus (cris)	800–1,100	300	?	?
B. ephippium (ephi)	200–1,250	1,050	?	?
B. garbeanus (garb)	1,130–1,900	770	-	12,268.00
B. guarani (guar)	500–900	400	?	?
B. margaritatus (marg)	600–980	380	-	18,272.87
B. nodoterga (nodo)	700–945	245	?	?
B. pitanga (pita)	900–1,140	240	-	2,377.07
B. toby (toby)	750	0	?	?
B. vertebralis (vert)	900	0	?	?
Brachycephalus sp. 2 (sp.2)	1,100–1,200	100	?	?
Brachycephalus sp. 3 (sp.3)	800–825	25	?	?
pernix group				
B. auroguttatus (auro)	1,070–1,100	30	?	?
B. boticario	755–795	40	11.07	-
B. brunneus (brun)	1,095–1,630	535	5,687.08	-
B. ferruginus (ferr)	965–1,470	505	5,475.51	-
B. fuscolineatus	640–790	150	23.63	-
B. izecksohni (izec)	980–1,340	360	350.43	-
B. leopardus (leop)	1,400–1,640	240	176.73	-
Species	Altitudinal distribution (m a.s.l.)	Extent of occurrence (ha)		
-------------------------------	--------------------------------------	---------------------------		
	Range/Amplitude	Alt/MCP		
B. mariaeeterezae (mari)	1,265–1,270/5	?/?		
B. olivaceus (oliv)	690–985/295	-/12,531.64		
B. pernix (pern)	1,135–1,405/270	432.10/-		
B. pombali (pomb)	845–1,300/455	?/?		
B. quiririensis (quir)	1,240–1,380/140	1,338.97/-		
B. tridactylus (trid)	805–910/105	41.42/-		
B. verrucosus (verr)	455–945/490	?/?		
Brachycephalus sp. 4 (sp.4)	1,250–1,320/70	?/?		
Brachycephalus sp. 5 (sp.5)	1,000–1,080/80	?/?		
Brachycephalus sp. 6 (sp.6)	1,095–1,160/65	2,211.54/-		

1 Abreviation in parentheses refers to species acronyms in Fig. 1.
Figure 1. Geographical and altitudinal distribution of *Brachycephalus* spp. according to their respective species group (light gray = *didactylus*, black = *ephippium*, and dark gray = *pernix* group) across the three sectors of the Serra do Mar relief unit. The species connections represent the occurrence in each sector of the relief unit (left boxes) and in altitudinal quotas (left boxes). The width of the connections (in both directions) represents the proportional amount of citations...
in the bibliography for each sector and altitude quotas (wider = more citations). See Tab. 4 for the correspondence of the acronyms with the species name.
Figure 2. Occurrence records of *Brachycephalus* spp. A = all species; B = species of the *didactylus* group; C = species of the *ephippium* group; D = species of the *pernix* group. Diamonds = records of the *ephippium* group; circles = records of the *didactylus* group; and squares = records of the *pernix* group. Abbreviations: BA = Bahia; MG = Minas Gerais; ES = Espírito Santo; RJ = Rio de Janeiro; SP = São Paulo; PR = Paraná; and SC = Santa Catarina. Relief units modified from IBAMA (2007).
Figure 3. Species richness of *Brachycephalus* in each altitudinal class (including undescribed species). A = all species; B = species of the *didactylus* group; C = species of the *ephippium* group; D = species of the *pernix* group.
Figure 4. Altitudinal amplitude records of *Brachycephalus* spp. from the *pernix* group binned into latitudinal classes (including undescribed species). Diamonds indicate median values.