Effect of dietary supplementation of *Lactobacillus acidophilus* on blood biochemical profile, antioxidant activity and plasma immunoglobulin level in neonatal Murrah buffalo calves

LAMELLA OJHA1, SACHIN KUMAR2, NEELAM KEWALRAMANI3, SROBANA SARKAR4, ABHISHEK KUMAR SINGH5 and AMRISH KUMAR TYAGI6

ICAR-National Dairy Research Institute, Karnal, Haryana 320 001 India

ABSTRACT

An experiment was designed to evaluate the effect of dietary supplementation of *Lactobacillus acidophilus* on blood biochemical profile, antioxidant activity and plasma immunoglobulin level in neonatal Murrah buffalo calves. The 90 day trial was conducted on 24 neonatal Murrah buffalo calves randomly divided into 4 dietary treatments, viz. CON (basal diet alone), T1 (basal diet + *L. acidophilus* as a fermented milk @ 100 mL/calf/day having 10⁸ CFU/mL), T2 (basal diet + *L. acidophilus* as a fermented milk @ 200 mL/calf/day having 10⁸ CFU/ml) and T3 (basal diet + *L. acidophilus* as a fermented milk @ 300 ml/calf/day having 10⁸ CFU/mL). Supplementation of probiotics improved the plasma glucose level in T2 and T3 as compared to CON. Total protein (TP), plasma albumin (A), plasma globulin (G) and A:G ratio did not change with the supplementation of probiotic in calves. Total cholesterol and HDL cholesterol levels in plasma remained same in all the 4 groups. Total antioxidant (TA) activity was higher in T2 and T3 as compared to CON, whereas it was intermediate in T1. Super oxide dismutase (SOD) activity was significantly higher in T1, T2 and T3 groups as compared to CON whereas catalase and glutathione peroxidase (GPx) activity remained same in all groups throughout experimental period. The total plasma immunoglobulin and plasma IgG remained uninfluenced in all the groups. In conclusion, supplementation of *L. acidophilus* improved energy metabolism and antioxidant capacity in neonatal Murrah buffalo calves.

Key words: Antioxidant activity, *Lactabacillus acidophilus*, Murrah, Neonatal calves, Probiotic

India has 111.30 million buffalo is which is 57.3% of the total world buffalo population (194.2 million). Presently milk production in India is 127.3 million tonnes milk, out of which the buffalo contributes about 62.35% of the total milk produced (BAHS 2012). Buffalo husbandry in our country is playing a pivotal role in augmenting income and uplifting livelihood of the disadvantageous section of Indian society. The name “Black Gold” has emerged as a synonym for the most popular breed of buffaloes in our country, i.e. Murrah, which serve as a capital reserve or cash crop to the rural society by providing economic stability, livelihood security and social status to the farmers (Balbhadra 2013). Calves are the future for successful dairy enterprise in India. Therefore, calf health status is not only essential for sustenance of the livestock industry but is also indispensable in the wake of preserving and maintaining good quality germplasm. Sudden changes in diet or environment, disease or other stress can cause alteration in microbial ecosystem (Krehbiel et al. 2003). Newborn calves exposed to high levels of stress during the first to fourteen day of life because they suffer from change in environment, diet, feeding condition, handling stress and low immunity. The two causative pathogens such as *Salmonella* spp. (Gill et al. 2001) and *Escherichia coli* (Shu and Gill 2002) are the most frequent etiologic agents in neonatal calf scours during the first week of life (Barrington et al. 2002).

Since 1940, administration of antibiotics in both therapeutic and sub-therapeutic levels has been the standard practice for dealing with pathogenic bacteria problems in dairy animals in addition to obtain economic benefits in terms of improved calf performance and reduced medicinal costs (Masucci et al. 2011). The widespread usage of antibiotics in dairy animal has led to antibiotic residues found in animal products and increased the emergence of drug-resistant bacteria in human beings (Abu-Tarboush et al. 1996). So, use of all antibiotics as additives in animal feed has been banned in EU (Commission Regulation EC No 2200/2001) since 2006.

Probiotics came up as a good adjuvant to promote the overall health in general and stabilization of gastrointestinal microbiota in particular as an alternative to antibiotics and becoming widely popular in this regards. It is well known that feeding calves with probiotics, especially lactic acid bacteria (Sharma et al. 2016), improves gut health of neonate with a subsequent increase in digestion efficiency.
and it lead to better growth performance (Frizzo et al. 2010). Scanty information is available regarding *L. acidophilus* action on blood biochemical profile, antioxidant modulation and plasma immunoglobulin level, particularly in neonatal Murrah buffalo calves. Keeping the above background in view, we hypothesized that dietary supplementation of *L. acidophilus* could improve blood biochemical profile, antioxidant activity and plasma immunoglobulin level in neonatal Murrah buffalo calves.

MATERIALS AND METHODS

Animals, experimental design and diet: The present experiment was conducted in the Livestock Research Centre of the Institute. The animal experimental design was approved by the Institutional Animal Ethics Committee (IAEC) and conducted as per the guidelines of Committee for the Purpose of Control and Supervision of Experiments in Animals (CPCSEA), Ministry of Environment, Forests and Climate Change, Government of India.

A freeze-dried pure culture of *L. acidophilus* NCDC-15 strain was taken from the National Centre for Dairy Culture (NCDC), Department of Dairy Microbiology of the Institute for preparation of probiotic culture. The freeze-dried form of *L. acidophilus* was revived in MRS broth and then one loop of *L. acidophilus* inoculums was inoculated in milk and kept for 24 h at 37–39°C for fermentation milk. Next day, the same fermented of milk was used as an inoculum for the next coming day and such process was continued for 7 days. After 7 day, glycerol stock was used to prepare fermented milk. The colony forming unit (CFU) / gram of fermented feed was counted at every alternate day to check the viability of bacterial cells and was maintained at the level of 10^8 CFU/mL throughout the feeding period.

Neonatal Murrah buffalo calves (24) of 5–7 d old and 36±2.0 kg of body weight (BW) were randomly assigned into 4 groups (CON, T1, T2 and T3) with 6 animals in each group. Murrah buffalo calves were removed from their dams into 4 groups (CON, T1, T2 and T3) with 6 animals in each group. The calves of Gr 1 (CON) fed on a basal diet (concentrate mixture and green fodder) alone while calves of Gr 2 (T1), Gr 3 (T2) and Gr 4 (T3) were supplemented with *L. acidophilus* in the form fermented milk @ 100 mL / calf/day having 10^8 CFU/mL, 200 mL/calf/day having 10^8 CFU/mL and 300 mL/calf/day having 10^8 CFU/mL, respectively.

The milk feeding was carried out two times in a day and whole milk fed to the calves @ 1/10th of BW up to 2nd week, 1/15th of BW in third to fourth week, 1/20th of BW in fifth and sixth week, 1/25th in the seventh to eighth week. Calf starter was offered from second week onwards (Table 1). The concentrate feed mixture contained maize, bajra, groundnut cake (GNC), soybean meal (SBM), mustard oil cake (MOC), wheat bran, rice polish and mineral mixture. Maize and sorghum were provided as green fodder.

Calves age (day)	Whole milk	Skim milk	Concentrate mixture	Fodder
1–15	1/10 of body wt	–	Introduced after 7 day	ad lib.
16–30	1/15 of body wt	–	7 day	ad lib.
31–45	1/20 of body wt	–	ad lib.	ad lib.
45–60	–	1/25 of body wt	ad lib.	ad lib.
61–90	–	–	ad lib.	ad lib.

All the buffalo calves were fed ad lib. concentrate and green (Ramaswami et al. 2005). Clean water was offered ad lib. to the calves.

Blood sampling and analyses: Blood samples were taken at monthly interval. The blood collection site was aseptically prepared by clipping the hairs from the collection site and using sterile gauze piece and spirit. Blood sample (6 mL) was collected from jugular vein aseptically using a disposable syringe (Dispovan HSM) with 18 gauge hypodermic needle early in the morning at 7 AM. Blood (6 ml) after the collection was transferred into 2 (4 mL) EDTA coated tubes each and the blood samples were immediately transported to the laboratory in a box containing ice packs.

Plasma was extracted to study plasma total protein, plasma albumin, glucose, plasma cholesterol by using analytical kit (Recombigen Laboratories Pvt. Ltd., New Delhi, India). The globulin concentration was calculated by subtracting the albumin from total protein.

Total antioxidant was determined by enzymatic colorimetric method by using readymade diagnostic kit (Cayman chemicals, USA) according to Halliwell et al. (1996). Catalase was determined by enzymatic colorimetric method by using readymade kit (Cayman Chemicals, USA) according to Johansson and Borg (1988). SOD was determined by enzymatic colorimetric method by using readymade diagnostic kit (Cayman Chemicals, USA) according to Sandstrom et al. (1994). GPx was determined by enzymatic colorimetric method by using readymade diagnostic kit provided by (Cayman Chemicals, USA according to Forstrom et al. (1978).

Immunoglobulin G (IgG) was determined in plasma of calves by Bovine IgG ELISA kit (Bethyl Laboratories, Montgomery, USA). Total immunoglobulin was estimated in the plasma sample by Zn turbidity method reported by McEwan et al. (1970).

Statistical analysis: The data were analysed using the general linear model procedure of Statistical Package for the Social Sciences (SPSS for Windows, v21.0; SPSS Inc., Chicago, IL, USA). To estimate the effect of treatment and period, and their interaction, the following model was used:

\[Y_{ijk} = \mu + T_i + D_j + (T \times D)_{ij} + e_{ijk} \]

where \(Y_{ijk} \) dependent variable; \(\mu \), overall mean of the
population; Ti, mean effect of the ith treatments; Dj, mean effect of day of sampling with day as a repeated factor (j=0, 30, 60 and 90 days of dietary treatment); (T×D)ij, effect of the interaction between effects of treatment and day of sampling; and eijk, unexplained residual element assumed to be independent and normally distributed. The individual animal was used as the experimental unit for all data. The pair-wise comparison of means was carried out using “Tukey’s honest significant difference (HSD) test”. Significance was determined at P<0.05.

RESULTS AND DISCUSSION

Effect of Lactobacillus acidophilus on plasma biochemical profile: The plasma level of glucose was statistically (P<0.05) higher in both T2 and T3 as compared to the CON group, with intermediate level in T1. Further, a significant reduction (P<0.001) in plasma glucose was also evident when period-wise comparison was made, with the value at 60 days being lower than that of the 0 day value. However, there was no significant difference between 0 day as compared to 90 days and 30 days as compared to 60 days (Table 2). The plasma glucose level indicates the physiological condition of the animals. Glucose is synthesized from carbohydrates, which are supplied to cell from body fluids. The serum glucose levels were within the normal range (Kaneko et al. 1997) though it was statistically (P<0.05) higher in both the treatment groups as compared to control. Hence, S. cerevisiae supplementation enhanced the serum glucose level in growing calves. Similarly, Abdalla et al. (2013) showed the significant effect on glucose level in the probiotic supplemented group as compared to control group. Hossain et al. (2012) and Hammon et al. (2002) also reported that due to supplementation of live yeast culture on calves, there was higher glucose concentration in supplemented group as compared to control group.

Supplementation of probiotic in calves did not effect (P>0.05) total protein (TP), plasma albumin (A), plasma globulin (G) and A : G (Table 2). Plasma total protein consists mainly of albumin and globulin. The plasma protein level at any given time inturn is a function of nutritional status, hormonal balance, water balance and other factors.

Attribute	Dietary groups	Period Mean	Significance					
Glucose (mg/dL)								
0d	94.21±1.09	95.23±0.33	95.05±0.19	95.55±0.53	95.01±0.31	0.013	<0.001	0.005
30d	86.45±1.09	87.79±2.06	87.94±2.92	86.75±2.28	87.23±0.41	0.985	0.315	0.998
60d	82.36±1.99	83.55±3.64	84.00±2.84	82.64±4.18	83.14±1.53	0.962	0.016	1.000
90d	70.77±3.13	94.79±7.56	97.91±5.98	99.62±8.39	90.77±3.92	0.955	0.065	0.997
Average	83.45±1.99	90.34±2.26	91.23±2.04	91.14±2.66		1.023	0.695	0.997
Total protein (g/dL)								
0d	7.58±0.23	7.67±0.25	7.61±0.36	7.68±0.19	7.64±0.13	0.962	0.016	1.000
30d	8.18±0.24	7.71±0.34	8.04±0.21	8.03±0.52	7.99±0.17	1.023	0.695	0.997
60d	7.95±0.25	8.07±0.14	8.03±0.17	7.94±0.32	8.00±0.11	0.962	0.016	1.000
90d	7.91±0.11	7.83±0.16	7.89±0.14	7.87±0.18		1.023	0.695	0.997
Albumin (g/dL)	3.35±0.28	3.62±0.12	3.35±0.41	3.36±0.44	3.42±0.16	1.000	0.005	0.997
30d	3.48±0.20	3.46±0.45	3.66±0.41	3.70±0.63	3.57±0.21	1.000	0.005	0.997
60d	3.86±0.24	4.00±0.44	3.90±0.33	3.94±0.72	3.92±0.22	1.000	0.005	0.997
90d	4.21±0.47	4.32±0.37	4.42±0.55	4.52±0.56	4.37±0.23	1.000	0.005	0.997
Average	3.72±0.16	3.85±0.19	3.83±0.22	3.88±0.29		1.000	0.005	0.997
Globulin (g/dL)	4.23±0.47	4.45±0.15	4.26±0.44	4.58±0.36	4.38±0.18	1.000	0.005	0.997
30d	4.70±0.31	4.25±0.67	4.38±0.28	4.34±0.49	4.42±0.22	1.000	0.005	0.997
60d	4.08±0.25	3.56±0.65	3.96±0.36	3.89±0.73	3.87±0.25	1.000	0.005	0.997
90d	3.74±0.59	3.75±0.49	3.61±0.52	3.42±0.63	3.63±0.26	1.000	0.005	0.997
Average	4.19±0.21	4.00±0.26	4.05±0.20	4.06±0.28		1.000	0.005	0.997
A:G	0.87±0.15	0.82±0.05	0.87±0.20	0.80±0.19	0.84±0.07	0.636	0.051	0.987
30d	0.76±0.08	1.09±0.39	0.88±0.15	1.05±0.39	0.95±0.14	1.000	0.005	0.997
60d	0.98±0.12	1.35±0.29	1.05±0.15	1.83±1.02	1.30±0.26	1.000	0.005	0.997
90d	1.47±0.46	1.42±0.43	1.50±0.40	1.71±0.45	1.52±0.20	1.000	0.005	0.997
Average	1.02±0.13	1.17±0.16	1.07±0.13	1.35±0.29		1.000	0.005	0.997

*Basal diet with no supplementation (CON) or supplemented as Lactobacillus acidophilus T1 (100 g/calf/d), T2 (200 g/calf/d), T3 (300 g/calf/d). a,b,p,q,rMeans bearing different superscripts in a row (a,b) or column (p,q,r) differ significantly (P<0.05). *Significant effects of dietary treatment (T), period (P) or their interaction (T×P).
affecting the state of health. Noori et al. (2016) also observed no effect on TP levels. Al-Saidy (2010) demonstrated that serum TP, A and G levels were comparable between probiotic supplemented groups as compared to control group. Lesmeister et al. (2004) and Chaudhary et al. (2008) also reported similar total protein, albumin and globulin concentration in control animals and the animals given probiotics. However, Hossain et al. (2012) reported that serum profiles of total protein and globulin significantly (P<0.05) higher in probiotic supplemented group as compared to T1 group.

There was no influence (P>0.05) of the dietary intervention on the plasma total cholesterol and plasma HDL cholesterol levels among the 4 groups (Table 3). Singh et al. (2016) reported that there were significantly (P<0.05) lower cholesterol concentration in the probiotic fed group compared to control. The lower level of cholesterol may be attributed to stimulation of bacterial lipid synthesis or due to antichol estroleamic effect of yeast culture treatment (Fuller 1989). Al-Saiedy (2010) reported that probiotic bacteria (L. acidophilus and L. plantarum) fed to Holstein Friesian calves (3–4 day old) and serum cholesterol level found significantly reduced. Noori et al. (2016) reported that supplementation of probiotic improved serum triglyceride (P<0.01) and cholesterol (P<0.05) levels.

Effect of *Lactobacillus acidophilus* on erythrocytic antioxidant enzyme activity: The level of total antioxidant (TA) was higher (P=0.007) in T2 and T3 as compared to CON, whereas T1 level was intermediate. Due to supplementation of probiotic the activity of Super oxide dismutase (SOD) was significantly increased (P<0.05) in T1, T2 and T3 groups as compared to CON. While no effect (P>0.05) of probiotic supplementation was evident on the Glutathione peroxidase (GPx) and catalase (CAT) activity (Table 4). The probiotic have defence mechanisms against the damaging effects of reactive oxygen species (ROS) by involving both in enzymatic (SOD and catalase) and non-enzymatic components. The lactic acid bacteria decreased the activity of ROS through the production of SOD that converts superoxide radicals to oxygen and hydrogen peroxide. Tunç et al. (2017) reported that the level of SOD were not affected from humate and probiotic additives whereas the additives decreased the GPx (P>0.05) level in brown swiss calves. Seifzadeh et al. (2016) reported that supplementation of medical plant mixture and a probiotic to calves enhanced the plasma anti-oxidant activity (P<0.05).

Table 3. Effect of dietary supplementation of *Lactobacillus acidophilus* on blood lipid profile of Murrah buffalo calves

Attribute	CON	T1	T2	T3	Period Mean	Significance
Total cholesterol (mg/mL)						
0d	142.1±3.14	142.88±3.76	142.5±3.59	142.9±0.59	142.59±1.42	0.151
30d	141.7±4.04	144.38±2.66	145.1±2.26	145.1±1.77	144.05±1.34	0.748
60d	140.7±6.08	145.80±2.85	146.7±1.87	145.8±1.24	144.74±1.72	0.984
90d	138.7±5.94	141.0±1.84	147.4±2.04	147.2±2.44	144.83±1.79	
Average	140.8±3.33	144.79±1.36	145.4±1.24	145.2±0.84		
HDL (mg/dL)						
0d	83.42±5.59	84.32±2.30	85.4±1.99	84.7±2.73	84.44±1.62	0.991
30d	83.85±6.51	86.53±3.34	87.1±4.99	85.8±4.29	85.83±2.31	0.966
60d	84.24±6.55	87.56±2.65	87.6±3.98	87.2±4.28	86.66±2.16	
90d	93.38±7.69	86.18±3.56	86.7±2.14	85.0±2.51	87.84±2.23	
Average	86.22±3.21	86.15±1.42	86.7±1.65	85.7±1.67		

†Basal diet with no supplementation (CON) or supplemented as *Lactobacillus acidophilus* TI (100 g/calf/d), T2(200 g/calf/d), T3 (300 g/calf/d). p,qMeans bearing different superscripts in a column (p,q) differ significantly (P<0.05). $Significant effects of dietary treatment (T), period (P) or their interaction (T×P).
probiotic in calves, the total serum IgG and IgA decreased up to 20d and thereafter increased in the calves of both control as well as supplemented group. Supplementation of probiotic in calves significantly improved serum IgG concentration in probiotic treated groups as compared to control group (Al-Saiady 2010). Hong et al. (2005) hypothesized that addition of probiotic, prebiotic and synbiotic to milk would stimulate an increase in plasma IgG concentration as an anti-spore immune response in animal. However, Morill et al. (1995) showed that supplementation of probiotic in calves had no effect on IgG levels. Riddell et al. (2010) observed that supplementation

Attribute	Dietary groups†	Period Mean	Significance$					
	Con	T1	T2	T3	T P T×P			
Total antioxidant (mmol/l)								
0d	0.42±0.06	0.50±0.06	0.50±0.05	0.48±0.06	0.49±0.03	0.007	0.007	0.849
30d	0.42±0.04	0.52±0.02	0.53±0.02	0.50±0.04	0.49±0.02			
60d	0.50±0.07	0.55±0.02	0.60±0.03	0.60±0.04	0.56±0.02			
90d	0.47±0.04	0.58±0.02	0.63±0.02	0.60±0.03	0.57±0.02			
Average	0.47±0.03	0.54±0.02	0.57±0.02	0.55±0.02				
Super oxide dismutase (U/ml)								
0d	5.35±0.40	5.37±0.46	5.35±0.37	5.37±0.52	5.36±0.21	0.002	<0.00	0.435
30d	5.95±0.89	6.35±0.24	6.53±0.22	6.65±0.26	6.37±0.24			
60d	6.74±0.35	7.84±0.21	7.99±0.37	8.26±0.22	7.71±0.18			
90d	6.95±0.20	8.48±0.03	8.64±0.04	8.19±0.16	8.07±0.15			
Average	6.25±0.28	7.01±0.29	7.13±0.30	7.12±0.29				
Glutathione peroxidase (nmol/min/ml)								
0d	5.01±0.18	5.27±0.47	5.25±0.53	5.28±0.33	5.20±0.19	0.071	1.650	0.213
30d	4.85±0.25	4.88±0.48	4.96±0.32	4.94±0.17	4.91±0.15			
60d	4.91±0.35	4.73±0.46	4.79±0.22	4.72±0.16	4.79±0.15			
90d	5.08±0.35	5.23±0.25	5.24±0.17	5.26±0.14	5.20±0.11			
Average	4.96±0.14	5.03±0.20	5.06±0.16	5.05±0.11				
Catalase (nmol/min/ml)								
0d	20.48±1.42	20.66±0.99	20.58±0.65	20.70±1.04	20.60±0.50	0.909	<0.00	0.992
30d	19.12±1.16	19.52±1.61	20.68±0.60	20.46±0.67	19.95±0.53			
60d	20.81±1.77	20.67±0.75	20.19±0.92	20.32±0.68	20.50±0.52			
90d	22.17±0.57	23.43±1.47	23.16±0.92	22.76±0.92	22.88±0.49			
Average	20.65±0.65	21.07±0.66	21.15±0.44	21.06±0.44				

†Basal diet with no supplementation (CON) or supplemented as Lactobacillus acidophilus T1 (100 g/calf/d), T2 (200 g/calf/d), T3 (300 g/calf/d). p,qMeans bearing different superscripts in a column (p,q) differ significantly (P<0.05). $Significant effects of dietary treatment (T), period (P) or their interaction (T×P).

Attribute	Dietary groups†	Period Mean	Significance$					
	Con	T1	T2	T3	T P T×P			
Total immunoglobulin (mg/ml)								
0d	61.66±25.17	62.89±25.67	62.66±25.58	62.79±25.63	62.50±12.76	0.944	0.006	0.889
30d	62.23±25.41	60.53±24.71	61.34±25.04	62.79±25.63	61.72±12.60			
60d	63.44±25.90	64.31±26.25	63.70±26.01	63.14±25.77	63.65±12.99			
90d	63.68±26.00	64.40±26.29	64.41±26.29	64.09±26.16	64.14±13.09			
Average	62.75±12.81	63.03±12.87	63.03±12.87	63.20±12.90				
Plasma IgG (mg/ml)								
0d	6.50±0.08	6.51±0.02	6.56±0.08	6.51±0.07	6.52±0.03	0.826	<0.00	0.991
30d	5.67±0.05	5.68±0.06	5.71±0.05	5.70±0.03	5.69±0.02			
60d	5.76±0.17	5.72±0.07	5.72±0.07	5.73±0.03	5.73±0.05			
90d	6.55±0.05	6.67±0.06	6.68±0.05	6.68±0.10	6.65±0.03			
Average	6.12±0.10	6.15±0.10	6.16±0.10	6.16±0.10				

†Basal diet with no supplementation (CON) or supplemented as Lactobacillus acidophilus T1 (100 g/calf/d), T2 (200 g/calf/d), T3 (300 g/calf/d). p,qMeans bearing different superscripts in a column (p,q) differ significantly (P<0.05). $Significant effects of dietary treatment (T), period (P) or their interaction (T×P).
of probiotic had no significant effect on plasma IgG1 concentration of pre ruminant calves. Roodposhti and Dabiri (2012) reported that plasma IgG1 concentration was higher in synbiotic and prebiotic treatments but the difference was not significant.

The results of the present study showed a positive effect on energy metabolism reflected in the higher plasma glucose level due to the feeding of the \textit{L. acidophilus} as fermented milk. The antioxidative capacity of the animals improved as the total antioxidant level and the super oxide dismutase level increased. Therefore, the use \textit{L. acidophilus} is effective for maintaining the health status and performance of the neonatal Murrah buffalo calves.

REFERENCES

Abdalla O A, EL-Boshy M E, Hamid F M A and Ali N M. 2013. Clinicopathological studies of dietary supplementation of \textit{Saccharomyces cerevisiae} in calves. \textit{Journal of American Science} \textbf{9}(9).

Abu-Tarboush H M, Al-Saiady M Y and Al-Din A H K. 1996. Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves. \textit{Animal Feed Science and Technology} \textbf{57}: 39–49.

Al-Saiady M Y. 2010. Effect of probiotic bacteria on immunoglobulin G concentration and other blood components of newborn calves. \textit{Journal of Animal and Veterinary Advances} \textbf{9}: 604–09.

BAHS 2012. \textit{Basic Animal Husbandry Statistics}. http://www.dahd.nic.in.

Balbhadra S. 2013. Success stories CIRB achieved significant reduction in mortality in Murrah Buffaloes. ICAR Central Institute for Research on buffaloes. www.cirb.res.in/index.

Bakhshi N, Ghorbani G R, Rahmani H R and Samie A. 2006. Effect of probiotic and milk feeding frequency on performance of dairy Holstein calves. \textit{International Journal of Dairy Science} \textbf{1}: 113–19.

Barrington G M, Gay J M and Evermann J F. 2002. Biosecurity for neonatal gastrointestinal diseases. \textit{Veterinary Clinics of North America: Food Animal Practice} \textbf{18}(1): 7–34.

Brakefield K, Godden S, Fetrow J, Rapnicki P, Jones C, Bey R and Haines D. 2010. Effect of feeding Bovamine® probiotic on passive transfer of immunoglobulin G in newborn calves.

Besser T E and Gay C C. 1994. The importance of colostrum to ruminant calves. \textit{Journal of Animal and Veterinary Advances} \textbf{7}: 107–17.

Chaudhary L C, Sahoo A, Agrawal N, Kamra D N and Pathak N N. 2008. Effect of direct fed microbials on nutrient utilization, rumen fermentation, immune and growth response in crossbred cattle calves. \textit{Indian Journal of Animal Sciences} \textbf{78}: 515–21.

Frizzo L S, Soto L P, Zbrun M V, Bertozzi E, Sequeira G, Armosto R R and Rosmini M R. 2010. Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. \textit{Animal Feed Science and Technology} \textbf{157}(3): 159–67.

Forstrom J W and Tappel A L. 1979. Donor substrate specificity and thiol reduction of glutathione disulfide peroxidase. \textit{Journal of Biological Chemistry} \textbf{254}(8): 2888–91.

Fuller R. 1989. Probiotics in man and animals. \textit{Journal of Applied Bacteriology} \textbf{66}: 365–78.

Kaneko J J, Harvey J W and Bruss M L. 1997. \textit{Clinical Biochemistry of Domestic Animals}. 5th edn. Academic Press, San Diego, California, USA.

Kim M K, Lee H G, Park J A, Kang S K and Choi Y J. 2011. Effect of feeding direct-fed microbial as an alternative to antibiotics for the prophylaxis of calf diarrhea in Holstein calves. \textit{Asian Australasian Journal of Animal Sciences} \textbf{24}(5): 643–49.

Krehbiel C R, Rust S R, Zhang G and Gillil S E. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. \textit{Journal of Animal Science} \textbf{81}(4): E120–32.

Galvão K N, Santos J E, Coscioni A, Villaseñor M, Sischo W M and Berge A C B. 2005. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal \textit{Escherichia coli}. \textit{Reproduction Nutrition Development} \textbf{45}(4): 427–40.

Gill H S, Rutherford K J, Cross M L and Gopal P K. 2001. Enhancement of immunity in the elderly by dietary supplementation with the probiotic \textit{Bifidobacterium lactis} HN019. \textit{American Journal of Clinical Nutrition} \textbf{74}: 833–39.

Halliwell B. 1996. Antioxidants in human health and disease. \textit{Annual Review Nutrition} \textbf{16}: 33–50.

Hammon H M, Schiessler G, Nussbaum A and Blum J W. 2002. Feed intake patterns, growth performance, and metabolic and endocrine traits in calves fed unlimited amounts of colostrum and milk by automate, starting in the neonatal period. \textit{Journal of Dairy Science} \textbf{85}: 352–62.

Hong H A, Duc L H and Cutting S. 2005. The use of bacterial spore formers as probiotics. \textit{FEMS Microbiology Reviews} \textbf{29}: 813–35.

Hossain S A, Parnerkar S, Haque N, Gupta R S, Kumar D and Tyagi A K. 2012. Influence of dietary supplementation of live yeast (\textit{Saccharomyces cerevisiae}) on nutrient utilization, ruminal and biochemical profiles of Kankrej calves. \textit{International Journal of Applied Animal Sciences} \textbf{1}(1): 30–38.

Johansson L H and Borg L H. 1988. A spectrophotometric method for determination of catalase activity in small tissue samples. \textit{Analytical Biochemistry} \textbf{174}(1): 331–36.

Kaneko J J, Harvey J W and Bruss M L. 1997. \textit{Clinical Biochemistry of Domestic Animals}. 5th edn. Academic Press, San Diego, California, USA.

Kim H G, Lee S Y, Kim N R, Lee H Y, Ko M Y, Jung B J, Kim C M, Lee J M, Park J H, Han S H and Chung D K. 2011. \textit{Lactobacillus plantarum} lipoteichoic acid down-regulated \textit{Shigella flexneri} peptidoglycan-induced inflammation. \textit{Molecular Immunology} \textbf{48}: 382–91.

Krehbiel C R, Rust S R, Zhang G and Gilliland S E. 2003. Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. \textit{Journal of Animal Science} \textbf{81}: E120–32.

Lesmeister K E A, Heinrichs and Gabier M T. 2004. Effects of supplemental yeast culture on rumen development, growth character and blood parameters in neonatal dairy calves. \textit{Journal of Dairy Science} \textbf{87}: 1832–39.

McEwan A D, Fisher E W, Selman I E and Penhale W J. 1970. A turbidity test for the estimation of immune globulin levels in neonatal calf serum. \textit{ClinChimActa} \textbf{27}(1): 155–63.

Masucci F, De Rosa G, Grasso F, Napolitano F, Esposito G and Di Francia A. 2011. Performance and immune response of buffalo calves supplemented with probiotic. \textit{Livestock Science} \textbf{137}(1): 24–30.

Morrill J L, Morrill J M, Feyerherm A M and Laster J F. 1995. Plasma proteins and a probiotic as ingredients in milk replacer
1. Journal of Dairy Science 78(4): 902–07.
Noori M, Alikhani M and Jahanian R. 2016. Effect of partial substitution of milk with probiotic yogurt of different pH on performance, body conformation and blood biochemical parameters of Holstein calves. Journal of Applied Animal Research 44(1): 221–29.
Ramawami N, Chaudhary L C, Agarwal N and Kamra D N. 2005. Effect of lactic acid producing bacteria on the performance of male crossbred calves fed roughage based diet. Asian Australasian Journal of Animal Science 18(8): 1110.
Riddell J B, Gallegos A J, Harmon D L and McLeod K R. 2010. Addition of a Bacillus based probiotic to the diet of preruminant calves: Influence on growth, health, and blood parameters 1, 2, 3.
Roodposhti P M and Dabiri N. 2012. Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian Australasian Journal of Animal Science 25(9): 1255–61.
Sandström J, Nilsson P, Karlsson K and Marklund S L. 1994. 10-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. Journal of Biological Chemistry 269(29): 19163–66.
Sharma P K, Prajapati K A and Choudhary M K. 2016. Effect of probiotic supplementation on growth performance of preruminant buffalo calves. Journal of Krishi Vigyan 4(2): 37–39.
Seifzadeh S, Aghjeh-Gheshlagh F M, Abdi-Benemar H, Seifdavati J and Navidshad B. 2016. The effects of a medical plant mixture and a probiotic on performance, antioxidant activity and weaning age of newborn holstein calves. Iranian Journal of Applied Animal Science 6(2): 285–91.
Shu and Gill. 2002. Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001(DR20TM) against Escherichia coli O157:H7 infection in mice. FEMS Immunology and Medical Microbiology 34: 59–64.
Singh N, Jain A, Roy B and Thakur M S. 2016. Effect of dietary probiotic supplementation on biochemical profile of Murrah buffalo calves. Indian Journal of Animal Production and Management 32(1–2):18–21.
Tunc M A and Yoruk M A. 2017. Effects of humate and probiotic on the number of Escherichia coli, blood and antioxidant parameters in suckling period of calves. Asian Journal of Animal and Veterinary Advances 12: 169–76.