Quantitative Analysis of Fragrance and Odorants Released from Fresh and Decaying Strawberries

Yong-Hyun Kim 1, Ki-Hyun Kim 1,*, Jan E. Szulejko 1 and David Parker 2

1 Atmospheric Environment Laboratory, Department of Environment & Energy, Sejong University, Seoul 143-747, Korea; E‑Mails: innocent01@nate.com (Y.-H.K.); jan.szulejko@btinternet.com (J.E.S.)
2 Palo Duro Research Center, West Texas A&M University, Canyon, TX 79016, USA; E‑Mail: dparker@mail.wtamu.edu

* Author to whom correspondence should be addressed; E‑Mail: khhkim@sejong.ac.kr; Tel.: +82-2-3408-3233; Fax: +82-2-3408-4320.

Received: 18 April 2013; in revised form: 7 June 2013 / Accepted: 13 June 2013 / Published: 20 June 2013

Abstract: The classes and concentrations of volatile organic compounds (VOC) released from fresh and decaying strawberries were investigated and compared. In this study, a total of 147 strawberry volatiles were quantified before and after nine days of storage to explore differences in the aroma profile between fresh strawberries (storage days (SRD) of 0, 1, and 3) and those that had started to decay (SRD = 6 and 9). In terms of concentration, seven compounds dominated the aroma profile of fresh strawberries (relative composition (RC) up to 97.4% by mass, sum concentration): (1) ethyl acetate = 518 mg·m⁻³, (2) methyl acetate = 239 mg·m⁻³, (3) ethyl butyrate = 13.5 mg·m⁻³, (4) methyl butyrate = 11.1 mg·m⁻³, (5) acetaldehyde = 24.9 mg·m⁻³, (6) acetic acid = 15.2 mg·m⁻³, and (7) acetone = 13.9 mg·m⁻³.

In contrast, two alcohols dominated the aroma profile of decayed samples (RC up to 98.6%): (1) ethyl alcohol = 94.2 mg·m⁻³ and (2) isobutyl alcohol = 289 mg·m⁻³. Alternatively; if the aroma profiles are re-evaluated by summing odor activity values (ΣOAV); four ester compounds ((1) ethyl butyrate (6,160); (2) ethyl hexanoate (3,608); (3) ethyl isovalerate (1,592); and (4) ethyl 2-methylbutyrate (942)) were identified as the key constituents of fresh strawberry aroma (SRD-0). As the strawberries began to decay; isobutyl alcohol recorded the maximum OAV of 114 (relative proportion (RP) (SRD = 6) = 58.3%). However, as the decay process continued, the total OAV dropped further by 3 to 4 orders of magnitude—decreasing to 196 on SRD = 6 to 7.37 on SRD = 9. The overall results of this study confirm dramatic changes in the aroma profile of strawberries over time, especially with the onset of decay.
Keywords: fresh and decaying strawberry; strawberry fragrances; mass concentration; threshold; odor activity value (OAV)

1. Introduction

Strawberries are one of the most widely consumed fruits with a good flavor and high nutritional value [1,2]. The aroma and odor-quality of strawberries depend on the type and concentration of volatile hydrocarbons (HC) in the aroma profile [3–5]. In fact, it is estimated that more than 360 volatile organic compounds (VOC) are emitted from strawberries [6,7]. However, only a small number of these contribute significantly to the strawberry fragrance and impact its perceived quality [8]. The intensity of strawberry fragrance has also been found to vary with the degree of freshness of the fruit. If the characteristics of VOC emitted from strawberries are evaluated thoroughly over time, this information can be used to improve our understanding of the natural strawberry fragrance and allow growers and retailers to optimize their harvesting, packing, storage and retail display procedures.

In order to assess the VOCs released from strawberry, researchers have used several different analytical approaches. Gas chromatographs (GCs) equipped with either flame ionization (FID) or mass spectrometer (MS) detectors have been the most common choices [9–11]. Recently, strawberry fragrances were also evaluated by combining olfactometry and GC techniques—i.e., harnessing state-of-the-art analytical technology alongside the particular selectivity of the human nose [1,2,12].

In this study, the concentrations and chemical types of strawberry volatiles were analyzed to characterize the fragrance (aroma profile: freshness staging) and offensive odorants (due to decay). All volatile compounds released from strawberry samples were collected at five different intervals (up to 9 days of storage period) at 25°C. For the quantification of volatile components, liquid-phase standard was prepared containing a total of 19 odorous compounds for external calibration (Table 1S) The numbering of all supplementary (S) Tables and Figures are made with an S symbol following the number and placed in the Appendix section at the end. These calibration results were then used to develop predictive equations based on effective carbon number (ECN) [13]. These equations were then used for an extensive list of ‘compounds lacking authentic standards/surrogates (CLASS)’ due to the absence of standard material (i.e., authentic compounds) or to the synthesis complexities or costs involved in standard preparation [14]. The use of the predictive equations based on response factor vs. effective carbon number (ECN) linear correlation allowed robust, statistical estimation of all CLASS. The results of this approximation method allowed us to characterize the emission pattern of most fragrance and odorous components released from strawberry samples in a quantitative manner. In this research, we undertook measurements of strawberry aromas and odorants to provide detailed descriptions on their emission patterns in relation to storage duration. The results of this study will thus help us understand the characteristics of the flavor changes in strawberries that occur during storage.
2. Materials and Methods

In this research, a total of 19 VOCs that had relatively strong odor intensities with a wide range of volatility and polarity were selected for external calibration (Table 1S). The calibration results obtained using this standard mixture was used to derive predictive equations based on ‘effective carbon number (ECN)’ theory [13]. These ECN-based predictive equations were then used to calculate the concentrations of ‘CLASS’ due to the absence of standard material (i.e., authentic compounds) or to the complexity involved in standard preparation [14].

Liquid-phase working standards (L-WS) of 19 VOCs in methanol were prepared to include: (1) five aldehydes: acetaldehyde (AA), propionaldehyde (PA), butyraldehyde (BA), isovaleraldehyde (IA), and n-valeraldehyde (VA), (2) six aromatics hydrocarbons: benzene (B), toluene (T), styrene (S), p-xylene (p-X), m-xylene (m-X), and o-xylene (o-X), (3) two ketones: methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK), (4) one alcohol: isobutyl alcohol (i-BuAl), (5) one ester: n-butyl acetate (BuAc), and (6) four volatile fatty acids: propionic acid (PPA), butyric acid (BTA), isovaleric acid (IVA), and n-valeric acid (VLA) (Table 1S). The detailed procedures to make the L-WS are described in Table 2S.

The concentrations of CLASS were derived from the predictive equations based on linear regression equations between RF values of target standard compounds (Table 3S) and their effective carbon numbers (ECNs). The ECN was determined by counting the number of the atoms (C, H, and O) and moieties in functional groups (e.g., ether, carbonyl, and methyl groups) in terms of ‘carbon number equivalent (CNE)’ in light of their approximate relative contribution to the sensitivity (RF) in the MS system: ECN = I × (CNE of C) + J × (CNE of H) + K × (CNE of O) + (CNE of > C = O) + M × (CNE of -O-) + N × (CNE of -CH3) (Figure S1): (1) C = 1, (2) H = −0.035, (3) O = 0, (4) >C = O = −0.95, (5) -O- = 0.55, and (6) -CH3 = 0.15. As 10 out of 147 volatiles detected from the strawberry samples matched with 19 VOCs contained in the L-WS, they were quantified directly using the calibration data of the L-WS. However, we did not prepare standards for the remaining 137 volatiles for many different reasons. For simple quantitation of those strawberry aroma components, we treated them as CLASS to quantify their concentrations based on the ECN approach (Table 4S).

2.1. Approaches for the Collection of Volatile Components and Instrumental Setup

2.1.1. The Collection of Strawberry Volatiles

The sorbent tube sampling method was used for the collection of the VOCs released from the cut strawberry sample. In the case of ammonia and RSC, the bag sampling method (polyester aluminum-PEA bag) was used as discussed in the next subsection. The sorbent tube was prepared as a three-bed sorbent by packing with 100 mg of Tenax TA, Carbopack B, and Carboxen 1000 (Supelco, Bellefonte, PA, USA) in a SS tube holder (tube size: length: 9 cm, OD: 6 mm, and ID: 5 mm; Camsco, Houston, TX, USA). The strawberries for this study were grown in Jin Ju city, Gyeong Nam Do Province, Korea. The strawberries (1 kg in a Styrofoam tray) were purchased from a local market within one day after harvesting. An approximately 50 gram of strawberry sample was sliced and placed inside a 750 mL capacity impinger with the gas inlet and outlet positioned as the side arm and nozzle cap, respectively (ID: 3 mm and length: 30 mm). The strawberry samples were cut into four pieces (3 cm ×
3 cm × 5.5 cm) (The weight of sample was adjusted to ~50 g) (Figure S2). The inlet and outlet of the impinger were connected to a 10 L PEA bag filled with back-up gas (ultra-pure nitrogen > 99.999%) and the inlet of the sorbent tube (ST), respectively. A Teflon tube was used to connect the impinger and the PEA bag at one end and the ST at the other. The outlet of the ST was connected to the mini vacuum pump interfaced with mass flow controller (MFC) (Shibata ΣMP-30, Saitama, Japan) using silicon tubing. The VOCs emitted from the strawberry were flushed onto the ST by pumping the nitrogen gas through the impinger containing the strawberry samples at a flow rate of 50 mL·min⁻¹ for 1 min. The impinger was maintained at 25 °C using a temperature-controlling water bath (Figure 1). VOCs emitted from the strawberry sample were collected five times during the entire storage period of 9 days set for this study at 0, 1, 3, 6 and 9 days (Table 5S). For each selected day, the collection of samples was made as replicate for each target group (VOC, RSC, ammonia, and olfactory analysis). To initiate each sampling at a given day, a pre-purge was conducted by supplying ultra-pure nitrogen into the impinger at a flow rate of 50 mL·min⁻¹ for 20 min. Throughout the storage period, the strawberry sample in the impinger was maintained in an aerobic state as the inlet and outlet of the impinger were left open to the air in the laboratory.

Figure 1. Illustration of the impinger system for the collection of VOCs emitted from strawberry samples. Labels: (1) 10 L polyester aluminum bag filled with ultra-pure nitrogen; (2) Silicon tubing; (3) Impinger bottle; (4) Aluminum container; (5) Water heated to 25 °C; (6) Heater; (7) Sensor; (8) Temperature regulator; (9) Strawberry slices; (10) Sorbent tube; (11) Mini vacuum pump; and (12) Teflon tubing.
2.1.2. Instrumental Setup for VOC Analysis

All the analyses in this study were carried out using a GC-2100 (Shimadzu, Kyoto, Japan) equipped with a QP2010 MS (Shimadzu) and a UNITY thermal desorber (TD: Markes International, Ltd, Llantrisant, UK). The TD focusing cold trap was packed with Tenax TA and Carbopack B in a 1:1 volume ratio (inner diameter = 2 mm and total sorbent bed length: 50 mm). The VOCs were separated on a CP Wax column (diameter = 0.25 mm, length = 60 m, and film thickness = 0.25 μm) using a 50 min GC analytical cycle. The separated VOCs were detected by MS system and identified through library searching (NIST mass spectral library, NIST, Gaithersburg, MD, USA). The detailed conditions are also presented in Table 5S.

2.2. Calibration of the Liquid Working Standards of VOCs

Five-point calibration curves were prepared by analyzing sorbent tubes loaded with 1 μL of L-WS at these different concentration levels: (1) 1.30, (2) 6.52, (3) 13.0, (4) 26.1, and (5) 65.2 ng·μL⁻¹ (Table 2S). Details of the approach used to introduce the liquid standards to the sorbent tubes in the vapor phase have been described in detail elsewhere [15]. In short, a micro-syringe was used to introduce the liquid standard into the sampling end of the ST in a 50 mL·min⁻¹ flow of nitrogen for 10 minutes. Each loaded sorbent tube was then analyzed by the TD-GC-MS system described below.

The sensitivity of the instrumental system remained fairly constant leading to stable response factors throughout the 9-day study period (Table 3S). All coefficients of variation (CV (%): SD/mean × 100) for the RF values were fairly stable (CV = 1.46 ± 1.29% (<4%)) allowing mean RF values to be applied to all the data. The correlation coefficients (R²) of nearly all VOCs were above 0.99 (mean = 0.9954 ± 0.0075%), although there was a slight anomaly in the case of AA (0.9619 (SRD = 0) and 0.9698 (SRD-9)). In addition, to assess reproducibility, the L-WS with a mean of 26.1 ng·μL⁻¹ was analyzed repeatedly prior to analysis of each batch of samples (SRD -0, 1, 3, 6, and 9). If the RF values of the 19 VOCs determined using this consecutive series of analyses, the RSE values generally fell below 4% (mean RSE = 1.39 ± 0.82%).

2.3. The Analysis of Ammonia and Reduced Sulfur Species

Although strawberries are noted for their attractive fragrance, the fruit can release unpleasant odors if stored for too long. Important offensive odorants such as ammonia and reduced sulfur compounds (RSC) [16,17] were therefore also quantified in this study. As expected, these compounds were found to be difficult to detect in the fresh fruit but they became increasingly abundant as the decay progressed. The TD-GC-MS setup optimized for the VOC analysis in this study is not optimal choice for ammonia or RSCs, thus these compounds were determined using alternative analytical approaches.

For the collection of samples to analyze for ammonia and RSC, the bag sampling method (PEA bag) was employed. The inlet and outlet of the impinger filled with the strawberry samples were connected to a gas cylinder filled with ultra-pure air (>99.999%) and a 10 L empty PEA bag, respectively. Teflon tubing was used to connect the impinger and the gas cylinder at one end and the empty PEA bag at the other. Air for the cylinder was plowed through the impinger containing the strawberry sample and into the 10 L empty PEA bag at a flow rate of 100 mL·min⁻¹ for 100 min aftera
pre-purge was conducted by supplying ultra-pure air into the impinger at a flow rate of 100 mL·min$^{-1}$ for 10 min. Ammonia was analyzed using absorption photometry (Genysys 10 series, Thermo Scientific, Waltham, MA, USA) based on the indophenol method, a well-known approach for amino compounds [18,19]. The reduced sulfur compounds were analyzed using an on-line thermal desorption system (UNITY-Air Server, Markes International, Ltd.) coupled with a GC (CP-3800, Varian, Palo Alto, CA, USA) and pulsed flame photometric detector (PFPD: Varian). The RSCs in the PEA bag were transferred to the TD system using pump and collected into the focusing trap (cold trap) in TD system. The RSCs loaded on the focusing trap were then thermally desorbed and transferred to the GC column for separation and detection. Finally, the dilution-to-threshold (D/T) ratios of the strawberry samples were also determined using an air dilution sensory (ADS) test, as a direct means to assess odor intensity [20].

3. Results and Discussion

3.1. Major Volatile Components Emitted from Strawberry Samples

The concentration and occurrence frequency of these species is classified in terms of functional groups in Table 1. The types and concentration levels of 147 VOCs detected from all strawberry samples are also summarized in Table 6S. If they are arranged by the chemical grouping and occurrence frequency, they can be classified as follows: (1) ester = 61, (2) alcohol = 21, (3) aldehyde = 11, (4) ketone = 9, (5) fatty acid = 5 and (6) miscellaneous (etc.) = 40.

Esters (n = 47), with total concentration of 52,648 μg·m$^{-3}$ (76.8% by mass), represented more than half of the 81 VOCs detected at the start of the study (SRD = 0). Similarly, approximately 130 different types of esters have been reported from strawberry fragrances [21], where they were found to represent 25 to 90% of strawberry volatiles [22–24]. At SRD-1, esters (n = 38) still recorded the highest concentration (42,713 μg·m$^{-3}$). By day 3, while the total concentration of esters had continued to increase (sum concentration = 705,447 μg·m$^{-3}$) their numbers had fallen down to 31. However, once decay had started, their concentration dropped dramatically down to 533 (SRD = 6) and 45.7 μg·m$^{-3}$ (SRD = 9). In contrast, alcohols exhibited a reversed trend. Although alcohols were much less abundant in fresh strawberries (sum concentration of SRD-0, 1, and 3 = 1,582 μg·m$^{-3}$), they tended to peak noticeably at 380 mg·m$^{-3}$ on SRD-6. Thus, the best indicators of the fresh and decayed stages of strawberries are identified as esters and alcohols, respectively. If the other classes of chemicals are considered, aldehydes were detected in all samples and recorded the highest concentration (19,054 μg·m$^{-3}$) on day 3. Ketones and fatty acids were also relatively abundant in fresh strawberries, although they faded away during decay (Figure 2).

In order to evaluate the indicative fragrance of strawberry, the relative composition (RC) of the strawberry volatiles was assessed initially by normalizing the concentration of an individual compound against the total concentration of all species at each sampling day (Table 2). If any compound with more than 0.05% of RC (total mass) on one or more sampling day was selected, 53 were observed. The compound contribution pattern of these 53 VOCs was then analyzed both in terms of concentration and odor intensity. The sum concentration for these major VOCs (RC > 0.05%) generally exceeded 99.9% of the total mass of VOCs from each individual measurement (99.4% (SRD-0) to 99.99% (SRD-6)).
Table 1. Occurrence frequency and summed concentration of VOC groups emitted from strawberry samples during the whole study period.

Sample Code	A. Ester	B. Alcohol	C. Aldehyde	D. Ketone	E. Fatty Acid	F. etc.	Total
[A] Frequency (Number of chemical compounds for each functional group)							
SRD-0	47	7	3	6	3	15	81
SRD-1	38 (34)	5 (4)	1 (1)	4 (4)	1 (1)	12 (7)	61 (51)
SRD-3	31 (24)	8 (3)	3 (1)	5 (2)	1 (1)	7 (5)	55 (36)
SRD-6	18 (14)	17 (7)	8 (2)	5 (2)	2 (1)	15 (3)	65 (29)
SRD-9	4 (3)	16 (16)	8 (7)	4 (4)	2 (1)	21 (8)	55 (39)
Total	61	21	11	9	5	40	147
[B] Summed concentration (μg m⁻³)							
SRD-0	52,648	140	2,918	6,251	6,390	221	68,569
SRD-1	42,713	364	2,959	7,649	4,703	115	58,503
SRD-3	705,447	1,078	19,054	589	4,319	105	730,593
SRD-6	533	379,789	1,338	35.0	516	35.1	382,245
SRD-9	45.7	4,658	1,022	73.9	212	73.4	6,086
Total	801,386	386,029	27,292	14,598	16,139	550	1,245,995

*No. of compounds detected consistently from the previous sample is given in the parenthesis: 33 out of 37 compounds in SRD-1 were for example, also seen in SRD-0.
Figure 2. Comparison of frequency pattern and log concentration of strawberry volatiles (compounds sorted by functional group).

A. Frequency pattern of strawberry volatiles by functional group (No. of compounds)

B. Log (concentration (μg·m⁻³))
Table 2. Concentration (in both ppb and μg m⁻³) and the corresponding relative (mass) composition (RC) of the major strawberry volatiles (mass concentration abundance \(^a \geq 0.05\%\); \(n = 53\)).

Order	Compounds	Concentration	Relative composition \(^a\) (RC: %)									
		ppb	\(\mu g\) m⁻³									
		\(\mu g\) m⁻³	SRD									
A. Ester	Methyl acetate	3.949 3.875	71.077 1.57	0.75	11.945 11.720 214.987	4.76	2.28	17.4	20.0	29.4	125E-03	0.04
	Ethyl acetate	4.793 4.277	134.969 130	11.8	17.240 15.384 485.476	467	42.5	25.1	26.3	66.4	0.12	0.70
	Methyl propionate	40.8 51.0	23.6 0.17	8.75E-03	147 183 85.0	0.63	3.15E-02	0.21	0.31	0.01	1.64E-04	
	S-Methyl thioacetate	94.2 129.3	3.07E-02 3.07E-02	3.07E-02	346 476 11.3E-01	11.3E-01	11.3E-01	0.51	0.81			
	Isopropyl acetate	52.8 16.7	27.5 4.95E-03 4.95E-03	220 69.5 114 2.06E-02 2.06E-02	0.32	0.12	0.02					
	Ethyl propionate	52.7 5.19E-03 53.5 5.19E-03 5.19E-03	220 2.17E-02 223 2.17E-02 2.17E-02	0.32	0.03							
	Propyl acetate	5.19E-03 5.19E-03	185 0.72	5.19E-03	2.17E-02 2.17E-02 769	3.02	2.17E-02	0.11	7.90E-04			
	Methyl butyrate	1.194 1.384	88.8 0.47	5.19E-03	4.977 5.772 370	1.95	2.17E-02	7.26	9.9	0.05	5.10E-04	
	Methyl 2-methylbutanoate	21.8 21.7	13.2 1.08	3.35E-03	103 103 62.7	5.14	1.59E-02	0.15	0.18	0.01	1.35E-03	
	Isobutyl acetate	9.11 7.00	88.9 1.86	3.35E-03	43.2 33.2	421 8.80	1.59E-02	0.06	0.06	0.06	2.30E-03	
	Methyl isovalerate	54.8 56.9	7.78 3.35E-03 3.35E-03	260 270 36.9	1.59E-02 1.59E-02	0.38	0.46	0.01				
	Ethyl butyrate	1.537 1.142	171 1.50	3.48E-03	7.290 5.415	812	7.10	1.65E-02	10.6	9.3	0.11	1.86E-03
	Butyl acetate	3.42 36.5	26.4 0.05	3.49E-03	162 173	125	0.24	1.65E-02	0.24	0.30	0.02	6.19E-05
	Isopropyl butyrate	30.7 25.9	2.43E-03 2.43E-03	2.43E-03	163 138	1.29E-02 1.29E-02	0.24	0.24				
	Ethyl 2-methylbutyrate	63.0 23.8	66.3 3.13	2.43E-03	335 126	352	16.6	1.29E-02	0.49	0.22	0.05	4.35E-03
	Ethyl isovalerate	142 67.2	36.1 0.70	2.43E-03	753 357	192	3.73	1.29E-02	1.10	0.61	0.03	9.76E-04
	Isoamyl acetate	81.3 69.1	165 121	2.43E-03	432 367	878	6.43	1.29E-02	0.63	0.63	0.12	1.68E-03
	Ethyl valerate	7.31 1.73	2.51E-03 2.51E-03	2.51E-03	38.8 9.22	1.33E-02 1.33E-02	0.06	0.02				
	Methyl hexanoate	469 185	11.4 2.51E-03 2.51E-03	2.492 982	603	1.33E-02 1.33E-02	3.63	1.68	0.01			
	trans-2-Hexenyl acetate	38.6 1.78	1.90E-03 1.90E-03	1.90E-03	224 10.4	1.11E-02 1.11E-02	0.33	0.02				
	Ethyl hexanoate	725 1.37	20.8 0.03	1.90E-03	4.270 808	123	0.16	1.12E-02	6.23	1.38	0.02	4.28E-05
	Hexyl acetate	110 25.5	4.70 1.90E-03 1.90E-03	647 150	27.7	1.12E-02 1.12E-02	0.94	0.26	3.79E-03			
	Methyl octanoate	5.84 0.88	1.49E-03 1.49E-03	1.49E-03	37.7 5.71	9.64E-03 9.64E-03	0.06					

\(^a\) Concentration or its RC (enter). SRD = standard reported deviation. **lowest level of detection**.
Table 2. Cont.

C. Aldehyde

	Compound	1	1.618	2.514	54.0	4.62	5.64	6,195	2.16E-03	3.21E-03	3.14E-03	3.21E-03
1	Acetaldehyde		1.646	10.584	730	540	2.909	2.959	19.035	1313	971	4.24
2	Allyl aldehyde (Acrolein)	8.24E-02	8.24E-02	8.24E-02	5.08	6.90	1.89E-01	1.89E-01	1.89E-01	11.6	15.8	3.04E-03
3	Methylacryl aldehyde	1.59E-02	1.59E-02	1.59E-02	1.80	3.33	4.54E-02	4.54E-02	4.54E-02	5.14	9.52	1.34E-03
4	Isobutyraldehyde	1.48E-02	1.48E-02	1.48E-02	0.24	3.80	4.30E-02	4.30E-02	4.30E-02	0.71	11.2	1.85E-04
5	Isovaleraldehyde	8.52E-03	8.52E-03	8.52E-03	1.03	2.45	2.99E-02	2.99E-02	2.99E-02	3.60	8.62	9.43E-04

| | Concentration or its RC (all) | 2.909 | 2.959 | 19.035 | 1.334 | 1.016 | 4.24 | 5.06 | 2.61 | 0.35 | 16.7 |

D. Ketone

	Compound	1	2.514	3.131	224	7.35	28.0	5.960	7.422	532	17.4	66.5	8.69	12.7	0.07	4.58E-03	1.09
1	Acetone		1.38E-02	1.38E-02	1.38E-02	1.15	1.35	4.05E-02	4.05E-02	4.05E-02	3.39	3.96	8.66E-04	0.07			
2	Methyl ethyl ketone		54.0	47.1	7.58E-03	7.58E-03	7.58E-03	190	165	2.66E-02	2.66E-02	2.66E-02	0.28	0.28			
3	Methyl n-propyl ketone		4.62	7.50	1.11	4.11E-03	4.11E-03	18.9	30.7	4.53	1.68E-02	1.68E-02	0.03	0.05	6.19E-04		
4	Methyl isobutyl Ketone		5.64	6.52	3.28E-03	0.51	0.61	26.3	30.4	1.50E-02	2.36	2.85	0.04	0.05	6.18E-04		

| | Concentration or its RC (ketone) | 6,195 | 7.649 | 536 | 23.2 | 73.3 | 9.04 | 13.1 | 0.07 | 6.08E-03 | 1.20 |

E. Fatty acid

	Compound	1	2.519	1.918	1.761	210	86.3	6,177	4,703	4,319	514	212	9.01	8.04	0.59	1.35E-01	3.48
1	Acetic acid		69.6	2.35E-02	2.35E-02	2.35E-02	2.35E-02	199.3	67.1E-02	6.71E-02	6.71E-02	6.71E-02	0.29				

| | Concentration or its RC (fatty acid) | 6,376 | 4,703 | 4,319 | 514 | 212 | 9.30 | 8.04 | 0.59 | 1.35E-01 | 3.48 |

E. etc.

	Compound	1	12.1	6.63E-03	6.63E-03	0.29	2.20	35.7	1.95E-02	1.95E-02	0.86	6.48	0.05	2.26E-04	0.11			
2	Ethyl ether		7.28E-03	7.28E-03	0.70	0.41	1.45	2.20E-02	2.20E-02	2.12	1.23	4.38	2.90E-04	3.21E-04	0.07			
3	1,3-Hexadiene		25.0	1.77	4.58E-03	4.58E-03	4.58E-03	83.9	5.94	1.53E-02	1.53E-02	1.53E-02	0.12	0.01				
4	n-Hexane		1.21	1.02	1.02	4.33E-03	8.03	4.27	3.60	3.57	1.52E-02	28.2	0.01	0.01	4.89E-04	0.46		
5	Toluene		3.14E-03	3.14E-03	3.14E-03	3.14E-03	2.48	1.18E-02	1.18E-02	1.18E-02	1.18E-02	9.32	0.15					
6	Styrene		10.0	12.0	19.4	3.03	3.03	10.9	42.7	51.0	82.5	12.9	4.64	0.06	0.09	0.01	3.38E-03	0.08
7	2,4-Dimethyl-6-undecyl-2H-chromene	1.42	1.96E-03	1.96E-03	2.66	0.88	8.23	1.14E-02	1.14E-02	15.5	5.08	0.01	4.04E-03	0.08				

| | Concentration or its RC (etc) | 175 | 60.5 | 88.2 | 30.4 | 58.1 | 0.25 | 0.10 | 0.01 | 0.01 | 0.90 |

| | Concentration or its RC (all) | 68.139 | 58.281 | 730.144 | 382.209 | 6.055 | 99.4 | 99.6 | 99.9 | 99.9 | 99.5 |

	RC = [Mass concentration (‘i’th compound) / mass concentration (sum) at a given exp day] × 100
a	Values below detection limit (BDL) are underlined (calculated as method detection limit)

Ethyl acetate [mass concentration = 17,240 μg·m⁻³ (25.1%)] and methyl acetate 11,945 μg·m⁻³ (17.4%) were the highest from the SRD-0 sample along with ethyl butyrate (7,290 μg·m⁻³), methyl butyrate (4,977 μg·m⁻³), ethyl hexanoate (4,270 μg·m⁻³), and methyl hexanoate (2,492 μg·m⁻³). These six esters thus showed the highest RC (70.3%) at SRD-0. Other than esters, acetone and acetic acid had relatively high concentrations of 5,960 and 6,177 μg·m⁻³ at SRD-0.

If the results of all fresh stages (SRD-0, 1, and 3) are combined together, esters maintained the maximum abundance (n = 23) with the sum of 80,015 μg·m⁻³ (93.4%). However, patterns changed dramatically during decay, esters dropped down to 20 μg·m⁻³ (n = 22) in SRD-6 after excluding ethyl acetate (SRD-6 = 467 μg·m⁻³). Acetaldehyde also underwent 15-fold reduction to 1,313 μg·m⁻³ in SRD-6 compared to its maximum at (SRD-3). In contrast, two alcohols rose significantly to 287,758 μg·m⁻³ [75.3% (isobutyl alcohol)] and 91,537 μg·m⁻³ [23.9% (ethyl alcohol)] at SRD-6. In the case of SRD-9, the concentrations of those alcohols decreased to 967 (15.9%) and 2,665 μg·m⁻³ (43.8%), respectively. Moreover the sum quantity (μg·m⁻³) of strawberry volatiles detected recorded the lowest value of 6,055 at SRD-9 [(RC [SRD-9/Σ SRD-all] x 100) = 0.49%] compared with all other periods (58,281 (SRD-2) to 730,144 μg·m⁻³ (SRD-3)).

Although our analysis focused mainly on volatile organics by GC-MS, we also analyzed some offensive odorants like reduced sulfur compounds (RSC) and NH₃ (Table 7S). It can be seen that three RSCs and ammonia were detected from the strawberry sample. Especially, methane thiol and dimethyl disulfide were seen fairly consistently and recorded fairly high concentrations of 267 μg·m⁻³ and 196 μg·m⁻³ in SRD-1, respectively. In contrast, ammonia was detected apparently only under the decaying conditions (concentration (μg·m⁻³) = 169 (SRD-6) and 445 (SRD-9)) relative to the fresh period below 81.3 (SRD-0, 1, and 3).

3.2. The Variety of VOC Threshold Values for Strawberry Volatiles and Their Relationship with Molecular Weights

The odor threshold of a compound is defined as the lowest concentration that can be detected by human olfaction [25]. The lower the odor threshold, the stronger the odorant will be. However, many authors have investigated the threshold values of various volatiles and results for individual compounds can be very variable. In this study, a literature survey was conducted for the odor strengths (thresholds) of the strawberry volatiles. Although we measured a total of 147 VOCs during this study period, we were only able to obtain threshold values for up to of 79 species (Table 6S). The results of this survey are also summarized in Table 8S.

As reported previously, the odor strengths of VOCs tend to exhibit strong relationships with their physicochemical properties, e.g., the number of carbons and molecular weight [26]. Hence, a number of combinations between such variables (e.g., log thresholds vs. molecular weights) were tested to seek for such linear relationship. For this comparative analysis, fatty acids and some miscellaneous groups were however excluded due to the lack of threshold data. As shown in Table 9S, an inverse correlation was seen consistently between the log (thresholds) and molecular weights of VOCs without a single exception. However, the magnitude of slope values differed greatly between the VOC groups, while the strongest correlation with molecular weights was seen from the maximum (out of all available) threshold values.
As shown in Figure 3, the strongest correlations were seen from a pair of log-maximum threshold values and molecular weight among all matching combinations (<1> for all data (n = 62): (1) R^2 (maximum) = 0.4260, (2) R^2 (minimum) = 0.2171, and (3) R^2 (geometric mean) = 0.3384, and <2> For optimal fit (n = 54): (1) R^2 (maximum) = 0.5743, (2) R^2 (minimum) = 0.2897, and (3) R^2 (geometric mean) = 0.4473).

Figure 3. Plots of correlation between molecular weight and log (odor thresholds (ppbv)) for all data (n = 62) and optimal fit (n = 54) of the four major VOC groups (Ester, Alcohol, Aldehyde, and Ketone) emitted from strawberry samples.
3.3. The Evaluation of the Odor Strengths with Changes in Freshness Status

In previous sections, the changes of VOC quantities and their threshold values were evaluated from fresh to decayed stages of strawberry. To learn more about strawberry fragrance, our results were examined further with respect to type and strength of strawberry odors. The selection of reasonable threshold value is important to help understand the contribution of a compound at its given concentration level to the overall perception of odor. It is however difficult to assign a single meaningful figure because the threshold of a given compound is often available as multiple reported values.

In this study, the odor strengths of strawberry were calculated in terms of odor activity values (OAV) by dividing the concentrations of the VOCs with the corresponding threshold in the same concentration unit: \(\text{OAV} = \frac{\text{concentration (ppbv)}}{\text{threshold value (ppbv)}} \) [27]. For the 53 selected major VOCs, multiple threshold values have been reported for many (21 (one value), 21 (two values), 10 (three values), and 1 (four values)). In case of two or more reported value thresholds, the one with maximum value was used to calculate the OAVs in light of consistency as seen in correlation analysis.

Table 3 presents the specific description of odor types for each of the major VOCs with their OAV \((n = 53)\). Information of the odor types was obtained by surveying the GC-olfactometry analysis of VOC [refer to a list of references \((n = 24)\) in Table 3]. The \(\Sigma\text{OAV}\) values of the strawberries tended to decrease abruptly with storage time from their maximum at SRD-0 (OAV from SRD-0 to SRD-9 were 12,972, 6,992, 2,524, 196 and 7.37, respectively). The OAV values at SRD-0 decreased in order of ethyl butyrate (6,160), ethyl hexanoate (3,608), ethyl isovalerate (1,592), and ethyl 2-methylbutyrate (942).
Table 3. Relationship between relative composition (RP) and odor activity values (OAV) of the major VOCs (n = 53) emitted from strawberry.

Order	Compounds	OAV (concentration/ threshold)	Relative proportion (RP, %)	Odor type / descriptor												
		SRD-0	SRD-1	SRD-3	SRD-6	SRD-9	SRD-0	SRD-1	SRD-3	SRD-6	SRD-9	SRD-0	SRD-1	SRD-3	SRD-6	SRD-9
A.	Methyl acetate	0.64	0.63	11.52	2.55E-04	1.22E-04	4.93E-03	8.99E-03	0.46	1.30E-04	1.66E-03	sweet fruit, grape, contact glue, fruity, pineapple^2				
	Ethyl acetate	1.82	1.63	51.30	0.05	4.49E-03	0.01	0.02	2.03	0.03	0.06					
	Methyl propionate	0.42	0.24	0.24	1.78E-03	3.21E-03	0.01	0.01	9.08E-04							
	S-Methyl thioacetate	58.6	80.4	0.45	1.15											
	Isopropyl acetate	0.02	0.01	0.01	1.70E-04	9.93E-05	4.53E-04									
	Ethyl propionate	7.53	7.65	0.06	0.30											
	Propyl acetate	0.19	7.54E-04	0.01	3.85E-04											
	Hexyl butyrate	168	195	12.5	0.07	1.30	2.79	0.50	0.03							
	Ethyl 2-methylbutanoate	218	217	132	10.86	1.68	3.10	5.25	5.54							
	Isoamyl acetate	0.02	0.01	0.19	3.88E-03	1.47E-04	2.09E-04	0.01	1.98E-03							
	Methyl isovalerate	24.9	25.9	3.54	0.19	0.19	0.37	0.14								
	Ethyl isovalerate	6,160	4,576	686	6.00	47.5	65.4	27.2	3.06							
	Butyl acetate	0.18	0.19	0.14	2.56E-04	1.35E-03	2.68E-03	0.01	1.31E-04							
	Isoamyl isovalerate	4.95	4.18	0.04	0.06											
	Ethyl 2-methylbutyrate	942	356	993	46.9	7.26	5.08	39.3	23.9							
	Ethyl isovalerate	1,592	755	405	7.88	12.3	10.8	16.0	4.02							
	hexyl acetate	21.4	18.2	43.5	0.32	0.16	0.26	1.72	0.16							
	Ethyl valerate	21.9	5.19	0.17	0.07											
	Methyl hexanoate	30.1	11.9	0.73	0.23	0.17	0.03									
	trans-2-Hexenyl acetate	0.90	0.04	0.01	0.001											
	Ethyl hexanoate	3,608	683	103.7	0.14	27.8	9.77	4.11	0.07							
	Hexyl acetate	54.7	12.7	2.34	0.42	0.18	0.09									
	Methyl octanoate	0.16	0.02	1.23E-03	3.45E-04											

| Concentration (ester) | 12.917 | 6.942 | 2.453 | 72.2 | 4.61E-03 | 99.6 | 99.3 | 97.2 | 36.8 | 0.06 |

B. Alcohol

Order	Compounds	OAV (concentration/ threshold)	Relative proportion (RP, %)	Odor type / descriptor							
	Ethyl alcohol	0.01	1.69	0.05	2.52E-04	0.86	0.67				
	Isopropyl Alcohol	3.37E-04	1.78E-04	1.74E-03	3.57E-03	0.01	1.30E-04	1.82E-03	0.14		
	n-Propyl alcohol	0.01	0.02	0.02	5.02E-04	0.01	0.20				
	Isoamyl alcohol	0.04	114	0.38	1.52E-03	58.3	5.22				
	Isopropenylethyl alcohol	9.64E-04	1.79E-03	1.74E-03	5.02E-04	0.01	0.20				
	3-Methyl-1-butanol	0.02	0.03	1.13	0.60	0.97	1.87E-04	4.10E-04	0.04	0.31	13.2
	2-Methyl-1-butanol	0.23	0.48	0.12	6.49						
	n-Pentanol	1.21E-03	1.84E-03	0.001	0.02						
	1-Chloro-2-propanol	0.02	0.08	1.54E-04	1.15E-03						
	n-Hexanol	0.01	0.03	3.45E-03	0.02	9.16E-05	1.05E-03	1.76E-03	0.34		
	Limonol	27.4	27.0	0.21	0.39	0.05	59.6	26.3			

| Concentration or its RC (alcohol) | 27.4 | 27.1 | 1.22 | 117 | 1.94 | 0.21 | 0.39 | 0.05 | 59.6 | 26.3 |
Table 3. Cont.

C. Aldehyde
1. Acetaldhyde
2. Allyl aldehyde (Acrolein)
3. Methylacyl aldehyde
4. Isoxlytaldehyde
5. Isovaleraldehyde

ΣConcentration or its RC (aldehyde) | 8.70 | 8.85 | 56.9 | 4.63 | 4.52 | 6.70E-02 | 0.13 | 2.25 | 2.36 | 61.4 |

D. Ketone
1. Acetone
2. Methyl ethyl ketone
3. Methyl n-propyl ketone
4. Methyl isobutyl ketone
5. Methyl n-amyl ketone

ΣConcentration or its RC (ketone) | 0.143 | 0.165 | 7.40E-03 | 3.92E-03 | 5.18E-03 | 1.10E-03 | 2.36E-03 | 2.93E-04 | 2.00E-03 | 0.07 |

E. Fatty acid
1. Acetic acid
2. 2-PROPYNOIC ACID

ΣConcentration or its RC (fatty acid) | 18.1 | 13.2 | 12.1 | 1.45 | 0.60 | 0.14 | 0.19 | 0.48 | 0.74 | 8.08 |

E. etc.
1. n-Pentane
2. Ethyl ether
3. 1,3-Hexadiene
4. n-Hexane
5. Toluene
6. Styrene
7. 2,5-Dimethyl-4-methoxy-3(2H)-furanone

ΣConcentration or its RC (etc) | 0.73 | 0.34 | 0.56 | 0.90 | 0.31 | 0.01 | 0.00 | 0.02 | 0.46 | 4.15 |

ΣConcentration or its RC (all) | 12.97E-02 | 6.99E-02 | 2.52E-02 | 1.96 | 7.37 | 100 | 100 | 100 | 100 |

References: a. Du et al. [1], b. Ulrich et al. [2], c. Schulbach et al. [28], d. Schieberle and Hofmann [29], e. Aznar et al. [30], f. Buchbauer et al. [31], g. Cai et al. [32], h. Clausen et al. [33], i. Larsen and Poll [34], j. Semmelroch and Grosch (1995) [35], k. Komes et al. [36], l. Arora et al. [37], m. Carpio and Mallia [38], n. Kubek ova and Grosch [39], o. Kubicková and Grosch [40], p. Le Quéré et al. [41], q. Moio and Addeo [42], r. Moio et al. [43], s. Moio et al. [44], t. Rychlik and Bosset [45], u. Christensen and Reineccius [46], v. Milo and Reineccius [47], w. Preininger and Grosch [48], x. Preininger et al. [49]
To assess the relative contribution of a given compound in terms of OAV, its relative proportion (RP) was also calculated by dividing OAV (a given compound) with ΣOAV (all) (Table 3). This RP term for OAV is distinguished from the RC term used for relative mass concentration. If OAVs of these four esters are summed, their RP represents 94.8% of total OAV at SRD-0. It thus suggests that the fragrance of fresh strawberries is governed predominantly by these four esters. The scent of these esters is characterized as fruity, apple, and sweet (Table 3). Although their OAVs decreased from SRD-0 to SRD-1, they still recorded the highest OAVs among all the VOCs evaluated at SRD-1 with ΣRP = 91.1%. The fragrance pattern of SRD-0 and -1 is not likely to have changed because the key volatiles (the four esters) remained constant. In case of SRD-3, esters had high OAV along with significantly large ΣRP (97.2%), although their ΣOAV decreased considerably to 2,453 in SRD-3 relative to the earlier period (SRD-0 (12,917) and SRD-1 (6,942)). As a result, we were able to confirm that the esters should dominate the quality of fresh strawberry fragrance (SRD-0, 1, and 3).

To evaluate the occurrence patterns of fresh strawberry volatiles, our results were compared to a number of previous studies. Du et al. [1] analyzed the volatiles emitted from fresh strawberries using solid-phase micro-extraction (SPME)-GC-MS analysis. A total of 54 volatiles from two cultivar samples (Strawberry Festival and Florida Radiance) were selected as the main target compounds (with their respective standards). It is interesting to note that 52 target volatiles were found in both samples, while 23 of them were seen consistently in all fresh stage samples in this study. They further calculated the OAVs of detected volatiles using thresholds of 44 compounds. Accordingly, OAVs were seen to be dominated by two esters (ethyl butyrate and methyl butyrate), 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF), and linalool in two samples ((1) Strawberry Festival = 461 (ethyl butyrate: RP = 28.7%), 358 (methyl butyrate: 22.3%), 424 (DMHF: 26.4%), and 102 (linalool: 6.3%) and (2) Florida Radiance = 553 (ethyl butyrate: 33.7%) and 261 (methyl butyrate: 15.9%), 359 (DMHF: 21.9%), and 162 (linalool: 9.9%)). In this study, ethyl butyrate exhibited relatively high OAV in fresh stages with its RP ((1) 47.5% (SRD-0), 65.4% (SRD-1), and 27.2% (SRD-3)). Likewise, methyl butyrate also showed high OAV with the RP values of 1.30% (SRD-0), 2.79% (SRD-1), and 0.50% (SRD-3). In contrast, the RP values of DMHF and linalool were relatively insignificant, although they were selected as the major VOCs in this study.

Nuzzi et al. [12] analyzed strawberry fragrances of six different cultivars such as ApoScaligera ((1) Darselect, (2) Eva, and (3) VR4) and Cesena area in Italy ((4) Alba, (5) Dora, and (6) CS4). The volatiles from these samples were collected by a charcoal adsorption tube and extracted using dichloromethane solution. Lastly, the GC-MS analysis of these extracts yielded a total of 37 volatiles (ester = 28, alcohol = 2, sulfide = 2, lactone = 2, and 3 others (2-pentanone, limonene, and linalool)) in their fresh stage. If the OAV is computed for each compound, nine of them showed the highest contributions with ΣRP = 96.7% (consisting of methyl 2-methylbutyrate (3.46%) to dimethyl trisulfide (23.2%)). Eight out of the nine volatiles with the high RP measured in studies of Nuzzi et al. [12] were also detected from our fresh strawberry samples (SRD-0 ,1, and 3). Especially, ethyl butyrate, ethyl 2-methylbutyrate, ethyl hexanoate, and ethyl isovalerate had the highest contribution to OAV in fresh periods. As such, the results of previous studies confirmed the significant role of esters in the fresh strawberries [1,12].

During decay, ΣOAVs of all detected esters (except ethyl 2-methylbutyrate with OAV = 46.9) were below 10, while accounting for 12.9% by ΣRP (ester (n = 12)). In contrast, isobutyl alcohol exhibited
the highest OAV of 114 in SRD-6 (RP = 58.3%). As the odor of isobutyl alcohol is characterized as plastic and bad, it is distinguishable from pleasant fresh scents. As a result, odor intensity decreased with the progress of strawberry decay with the emergence of some offensive odors (e.g., ΣOAV of 7.37 in SRD-9). In SRD-9, only two compounds (acetaldehyde and isovaleraldehyde) showed OAVs above 1. For the reader’s reference, volatiles that showed up at least once in terms of either OAV (above 100) or RP (above 5%) during the whole study period are illustrated in Figure 4.

Figure 4. Comparison between (odor activity value) OAV and relative proportion (RP) of the major VOCs which had OAV and RP of above 100 and 5%, respectively at storagetime of 0, 1, 3, 6, and 9 days.

![Comparison between OAV and RP of major VOCs](image-url)
If the OAVs of the RSCs and ammonia detected in strawberry aroma profiles are examined, their values from decayed strawberry samples (SRD-6 and 9) generally had very low OAV (below 1). Only methanethiol had high OAVs above 10 in SRD-0 and SRD-1 (OAV = 14.9 (SRD-0) and 64.6 (SRD-1)] compared with other RSCs or ammonia. However, if these results are compared with ΣOAV (all) of all hydrocarbons in fresh strawberry samples (SRD-0 and 1), the RP value of methane thiol were as low as 0.13% (SRD-0) and 1.04% (SRD-1). As a result, it is reasonable to infer that the volatile hydrocarbons should represent the odor/fragrance characteristics of strawberry most effectively.

3.4. Comparison between Odor Activity Value (OAV) and Dilution-to-Threshold Ratio

In this section, the TD-GC-MS odor profiles were compared between fresh and decaying strawberries. The results were then evaluated to assess the relationship between the classes of volatile components and their odor intensity. To estimate the key volatiles which dominate the strawberry scent, the odor strengths (OAV) were examined against the relative (mass) composition. Evaluation of our data indicated that the use of ΣOAV was useful to assess the actual occurrence of fragrance/odor from strawberry samples. As another means to explore the odor intensities of strawberry samples, we estimated the dilution-to-threshold (D/T) ratio derived experimentally based on air dilution sensory (ADS) test [20]. The D/T ratio is commonly used as a tool to measure the level of dilution by which the odor threshold is recognized [20]. As the D/T ratio of strawberry samples was measured concurrently with the analysis of their chemical composition, the ΣOAV values at each SRD interval can also be evaluated in relation to the D/T ratio.

The results of correlation analyses between storage day and log odor intensities (log ΣOAV and log D/T ratio) are plotted in Figure S3(A). In compliance with general expectation, the log D/T ratio decreased with the progress of decay to show the slope values of −0.2185 (with $R^2 = 0.8646$ and p-value = $2.21E\text{-}2$) (log D/T ratio). A similar trend is also observable from ΣOAV. As such, the results of this correlation analysis between the log ΣOAV and log D/T ratio show a strong correlation with $R^2 = 0.9338$ (p-value = $7.33E\text{-}3$). As a result, the computation of ΣOAV values can be used as sensitively as that of the D/T ratios to assess the fragrance occurrence pattern. In other words, the ΣOAV should be considered a good criterion to assess the fragrance or odor intensity of strawberry samples.

4. Conclusions

The volatiles emitted from strawberry are important components to accurately assess its fragrance. Although the fragrance of the strawberry can influence its flavor and taste, its smell types can vary greatly with aging conditions. If the volatiles from strawberry were analyzed at the fresh stage, the results should be useful enough to understand the natural flavor of strawberries. In this study, the mass concentrations and odor strength (odor activity values: OAV) from strawberries were analyzed by the sorbent tube method at storage times of 0, 1, 3, 6 and 9 days at 25 °C.

The results of our analysis indicated that the mass concentration (µg·m$^{-3}$) of all strawberry volatiles varied greatly over time: 68,569 (SRD-0), 58,503 (SRD-1), 730,593 (SRD-3), 382,245 (SRD-6), and 6,086 (SRD-9). The concentrations of strawberry volatiles released at fresh period before (SRD-3) were absolutely dominated in this order, ethyl acetate, methyl acetate, ethyl butyrate, methyl butyrate,
acetaldehyde, acetic acid, and acetone (ΣRC of 97.4%). However, as the strawberry samples began to decay, its RC was dominated by two alcohols (isobutyl alcohol and ethyl alcohol) with significant reductions in their summed concentration.

In this study, we were able to quantify a total of 147 strawberry volatiles (with 79 corresponding odor threshold values from literature survey). In order to assess the fragrance/odorant characteristics of strawberries, the OAV values were calculated for a total of 53 major volatiles that comprised more than 0.05% in mass concentration of all strawberry volatiles. The OAV values decreased abruptly with storage time (ΣOAV: SRD-0 (12,972) to SRD-9 (7.37)). If the ΣOAV values of a given strawberry volatiles are computed for the whole fresh period, their magnitude was dominated by four esters with fruity and sweet scents [(1) ethyl butyrate (11,422), (2) ethyl hexanoate (4,395), (3) ethyl isovalerate (2,751), and (4) ethyl 2-methylbutyrate (2,290)] [ΣRP (four esters) of 92.8%]. However, relative dominance of esters as the key strawberry fragrance changed abruptly with the onset of decay. Hence, as the transition proceeds, relationships between key parameters tended to vary widely. In case of SRD-6, the ΣOAV of the four esters decreased to 60.9 with ΣRC of below 1%, while isobutyl alcohol exhibited the highest OAV of 114 with RC of 75.3%. The ΣOAV was reduced further to reach the minimum value of 7.37 in SRD-9.

In this study, the strawberry volatiles were analyzed from fresh stage to 9 day storage at 25 °C, and the concentration of the strawberry volatiles were evaluated in relation to their occurrence patterns and olfaction data derived as D/T ratio. The overall results of our study suggest that strawberry volatiles are useful indicators to characterize the flavor changes of strawberry at the latter stages of its storage period.

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (No. 2009-0093848).

Conflict of Interest

The authors declare no conflict of interest.

References

1. Du, X.; Plotto, A.; Baldwin, E.; Rouseff, R. Evaluation of volatiles from two subtropical strawberry cultivars using GC-olfactometry, GC-MS odor activity values, and sensory analysis. J. Agric. Food Chem. 2011, 59, 12569–12577.
2. Ulrich, D.; Hoberg, E.; Rapp, A. Analysis of strawberry flavor-discrimination of aroma types by quantification of volatile compounds. Z. Lebensm. Unters. Forsch. A. 1997, 205, 218–223.
3. Pickenhagen, W. Enantioselectivity in odor perception. ACS. Symp. Ser. 1989, 388, 151–157.
4. Werkhoff, P.; Brennecki, S.; Bretschneider, W. Fortschritte bei der dihrospazifischen analyse natürlicher riech-und Aromastoffe. Ache. Mikrobiol. Technol. Lebensm. 1991, 13, 129–152 (in German).
5. Werkhoff, P.; Brennecke, S.; Bretschneider, W.; Güntert, M.; Hopp, R.; Surburg, H. Chirospecific analysis in essential oil, fragrance and flavor research. *Z. Lebensm. Unters. Forsch.* 1993, 196, 307–328.

6. *Volatile Compounds in Foods and Beverages*; Maarse H., ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 1–39.

7. Schieberle, P.; Hofmann, T. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. *J. Agric. Food Chem.* 1997, 45, 227–232.

8. Larsen, M.; Poll, L.; Olsen, C.E. Evaluation of the aroma composition of some strawberry (*Fragaria ananassa* Duch) cultivars by use of odour threshold values. *Z. Lebensm. Unters. Forsch.* 1992, 195, 536–539.

9. Lambert, Y.; Demazeau, G.; Largeteau, A.; Bouvier, J.-M. Changes in aromatic volatile composition of strawberry after high pressure treatment. *Food Chem.* 1999, 67, 7–16.

10. Jetti, R.R.; Yang, E.; Kurnianta, A.; Finn, C.; Qian, M.C. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. *J. Food Sci.* 2007, 72, 487–496.

11. Li, H.; Tao, Y.-S.; Wang, H.; Zhang, L. Impact odorants of Chardonnay dry white wine from Changli County (China). Evaluation of fruit aroma quality: Comparison between gas chromatography-olfactometry (GC-O) and odour activity value (OAV) aroma patterns of strawberries. *Eur. Food Res. Technol.* 2008, 227, 287–292.

12. Nuzzi, M.; Scalzo, R.L.; Testoni, A.; Rizzolo, A. Evaluation of fruit aroma quality: Comparison between gas chromatography-olfactometry (GC-O) and odour activity value (OAV) aroma patterns of strawberries. *Food Anal. Methods* 2008, 1, 270–282.

13. Szulejko, J.E.; Kim, Y.-H.; Kim, K.-H. Prediction of response factors for the quantitation of volatile organic compounds based on effective carbon number (ECN) approach with TD/GC/QMS at 70 eV EI. in prep.

14. Kim, Y.-H.; Kim, K.-H. A Statistical Estimation Approach for Quantitative Concentrations of “Compounds Lacking Authentic Standards/Surrogates (CLASS)” based on Linear Correlations between Directly Measured Detector Responses and Carbon Number (CN) of Different Functional Groups. *Sci. World J.* 2013, doi:10.1155/2013/241585.

15. Kim, Y.-H.; Kim, K.-H. Novel approach to test the relative recovery of liquid-phase standard in sorbent-tube analysis of gaseous volatile organic compounds. *Anal. Chem.* 2012, 84, 4126–4139.

16. Lacey, R.E.; Redwine, J.S.; Parnell, C.B., Jr. Particulate matter and ammonia emission factors for tunnel-ventilated broiler production houses in the southern U.S. *Trans. ASAE* 2003, 46, 1203–1214.

17. Jo, S.-H.; Kim, K.-H.; Shon, Z.-H.; Parker, D. Identification of control parameters for the sulfur gas storability with bag sampling methods. *Anal. Chim. Acta.* 2012, 738, 51–58.

18. Scheiner, D. Determination of ammonia and Kjeldahl nitrogen by indophenol method. *Water Res.* 1976, 10, 31–36.

19. Berg, B.R.; Abdullah, M.I. An automatic method for the determination of ammonia in sea water. *Water Res.* 1977, 11, 637–638.

20. Kim, K.-H.; Park, S.-Y. A comparative analysis of malodor samples between direct (olfactometry) and indirect (instrumental) methods. *Atmos. Environ.* 2008, 42, 5061–5070.
21. Forney, C.F.; Kalt, W.; Jordan, M.A. The composition of strawberry aroma is influenced by cultivar, maturity, and storage. *HortScience* **2000**, *35*, 1022–1026.

22. Pyysalo, T.; Honkanen, E.; Hirvi, T. Volatiles of wild strawberries, *Fragaria vesca* L., Compared to those of cultivated berries, *Fragaria X ananassa* cv. Senga Sengana. *J. Agric. Food Chem.* **1979**, *27*, 19–22.

23. Schreier, P. Quantitative composition of volatile constituents in cultivated strawberries, *Fragaria ananassa* cv. Senga Sengana, sengalitessa and sengagourmella. *J. Sci. Food Agric.* **1980**, *31*, 487–494.

24. Douillard, C.; Guichard, E. The aroma of strawberry (*Fragaria ananassa*): Characterization of some cultivars and influence of freezing. *J. Sci. Food Agric.* **1990**, *50*, 517–531.

25. Leonardos, G.; Kendall, D.; Barnard, N. Odor threshold determinations of 53 odorant chemicals. *J. Air Pollut. Control Ass.* **1969**, *19*, 91–95.

26. Nagata, Y. Measurement of odor threshold by triangle odor bag method. In *Odor Measurement Review*; Office of Odor, Noise and Vibration, Environmental Management Bureau, Ministry of Environment: Tokyo, Japan, 2003; pp. 118–127 (in Japanese).

27. Rothe, M.; Thomas, B. Aromastoffe des brotes: Versuch einer auswertung chemischer geschmacksanalysen mit hilfe des schwellenwertes. *Z. Lebensm. Unters. Forsch.* **1963**, *119*, 302–310 (in German).

28. Schulbach, K.F.; Rouseff, R.L.; Sims, C.A. Relating descriptive sensory analysis to gas chromatography/olfactometry ratings of fresh strawberries using partial least squares regression. *J. Food Sci.* **2004**, *69*, 273–277.

29. Schieberle, P.; Hofmann, T. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. *J. Agric. Food Chem.* **1997**, *45*, 227–232.

30. Aznar, M.; López, R.; Cacho, J.F.; Ferreira, V. Identification and quantification of impact odorants of aged red wines from Rioja. GC-olfactometry, quantitative GC-MS, and odor evaluation of HPLC Fractions. *J. Agric. Food Chem.* **2001**, *49*, 2924–2929.

31. Buchbauer, G.; Jirovetz, L.; Nikiforov, A. Comparative investigation of essential clover flower oils from Austria using gas chromatography-flame ionization detection, gas chromatography-mass spectrometry, and gas chromatography-olfactometry. *J. Agric. Food Chem.* **1996**, *44*, 1827–1828.

32. Cai, L.; Koziel, J.A.; Lo, Y.-C.; Hoff, S.J. Characterization of volatile organic compounds and odorants associated with swine barn particulate matter using solid-phase microextraction and gas chromatography-mass spectrometry-olfactometry. *J. Chromatogr. A* **2006**, *1102*, 60–72.

33. Clausen, P.A.; Knudsen, H.N.; Larsen, K.; Kofoed-Sørensen, V.; Wolkoff, P. Use of thermal desorption gas chromatography-olfactometry/mass spectrometry for the comparison of identified and unidentified odor active compounds emitted from building products containing linseed oil. *J. Chromatogr. A* **2008**, *1210*, 203–211.

34. Larsen, M.; Poll, L. Odour thresholds of some important aroma compounds in strawberries. *Z. Lebensm. Unters. Forsch.* **1992**, *195*, 120–123.

35. Semmelroch, P.; Grosch, W. Analysis of roasted coffee powders and brews by gas chromatography-olfactometry of headspace samples. *Lebensmittel-Wissenschaft und-Technologie* **1995**, *28*, 310–313.
36. Komes, D.; Ulrich, D.; Lovric, T. Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje. *Eur. Food Res. Technol.* **2006**, *222*, 1–7.

37. Arora, G.; Cormier, F.; Lee, B. Analysis of odor-active volatiles in Cheddar cheese headspace by multidimensional GC/MS sniffing. *J. Agric. Food Chem.* **1995**, *26*, 187–191.

38. Carpino, S.; Mallia, S. Consorzio Ricerca Filiera Lattiero-Casearia, Ragusa, Italy. Personal Communication.

39. Kubicková, J.; Grosch, W. Evaluation of potent odorants of Camembert cheese by dilution and concentration techniques. *Int. Dairy J.* **1997**, *7*, 65–70.

40. Kubicková, J.; Grosch, W. Evaluation of flavor compounds of Camembert cheese. *Int. Dairy J.* **1998**, *8*, 11–16.

41. Le Quéré, J.L.; Septier, C.; Demaizières, D.; Salles, C. Identification and Sensory Evaluation of the Character-Impact Compounds of Goat Cheese Flavor. In Proceedings of the 8th Weurman Flavour Research Symposium, Reading, UK, 23–26 July 1996; pp. 325–330.

42. Moio, L.; Addeo, F. Grana Padano cheese aroma. *J. Dairy Res.* **1998**, *65*, 317–333.

43. Moio, L.; Dekimpe, J.; Etiévant, P.X.; Addeo, F. Volatile flavor compounds of water buffalo Mozzarella cheese. *Ital. J. Food Sci.* **1993**, *5*, 57–68.

44. Moio, L.; Piombino, P.; Addeo, F. Odour-Impact compounds in Gorgonzola cheese. *J. Dairy Res.* **2000**, *67*, 273–285.

45. Rychlik, M.; Bosset, J.O. Flavor and off-flavour compounds of Swiss Gruyère cheese. Evaluation of potent odorants. *Int. Dairy J.* **2001**, *11*, 895–901.

46. Christensen, K.R.; Reineccius, G.A. Aroma extract dilution analysis of aged Cheddar cheese. *J. Food Sci.* **1995**, *60*, 218–220.

47. Milo, C.; Reineccius, G.A. Identification and quantification of potent odorants in regular-fat and low-fat mild Cheddar cheese. *J. Agric. Food Chem.* **1997**, *45*, 3590–3594.

48. Preininger, M.; Grosch, W. Evaluation of key odorants of the neutral volatiles of Emmentaler cheese by the calculation of odour activity values. *LWT-Food Sci. & Technol.* **1994**, *27*, 237–244.

49. Preininger, M.; Rychlik, M.; Grosch, W. Potent odorants of the neutral volatile fraction of Swiss cheese (Emmentaler). *Develop. Food Sci.* **1994**, *35*, 267–270.

50. van Gemert, L.J. *Compilations of Odour Threshold Values in Air, Water and Other Media*; Oliemans Punter & Partners: Huizen, the Netherlands, 2003.

51. Devos, M.; Patte, F.; Rouault, J.; Laffort, P.; van Gemert, L.J. Standardized Human Olfactory Thresholds; IRL Press at Oxford University Press: New York, NY, USA, 1990.

52. Ruth, J.H. Odor thresholds and irritation levels of several chemical substances: A review. *Am. Ind. Hyg. Assoc. J.* **1986**, *47*, 142–151.

53. Woodfield, M.; Hall, D. *Odour Measurement and Control—An Update*; AEA Technology: Abingdon, Oxfordshire, UK, 1994.

54. Duerksen-Hughes, P. J.; Yang, J.; Ozcan, O. p53 induction as a genotoxic test for twenty-five chemicals undergoing in vivo carcinogenicity testing. *Envirom Health Pers.* 1999, *107*, 805.

55. Chicago Evans, C.D.; Moser, H.A.; List, C.D. Odor and flavor responses to additives in edible oils. *J. Am. Oil Chem. Soc.* **1971**, *48*, 495–498.
56. *Occupational Health Guideline for Ethyl Ether*; Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health (NIOSH): Atlanta, GA, USA, 1978; pp.1–5.

57. Amoore, J.E.; Hautala, E. Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. *J. Appl. Toxicol.* **1983**, *3*, 272–290.

58. Schiffman, S.S.; Bennett, J.L.; Raymer, J.H. Quantification of odors and odorants from swine operations in North Carolina. *Agr. Forest Meteorol.* **2001**, *108*, 213–240.

59. The Science of Smell Part 1: Odor Perception and Physiological Response. Available online: http://www.extension.iastate.edu/Publications/pm1963A.pdf (accessed on 1 May 2013)

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Appendix

Table 1S. List of 19 VOCs selected as model compounds for the predictive estimation of concentration values for “compounds lacking authentic standards/surrogates (CLASS)” that are emitted from strawberry.

Order	Group	Compounds	Short name	MW (g mol⁻¹)	Density (g cm⁻³)	Boiling point (°C)	Formula	CAS number
1	Aldehyde	Acetaldehyde	AA	44.1	0.785	20.2	C₂H₄O	75-07-0
2	Aldehyde	Propionaldehyde	PA	58.1	0.798	46–50	C₃H₆O	123-38-6
3	Aldehyde	Butyraldehyde	BA	72.1	0.805	74.8	C₄H₈O	123-72-8
4	Aldehyde	Isovaleraldehyde	IA	86.1	0.797	90–93	C₅H₁₀O	590-86-3
5	Aldehyde	n-Valeraldehyde	VA	86.1	0.81	102–103	C₅H₁₀O	110-62-3
6	Aromatic	Benzene	B	78.11	0.878	80.1	C₆H₆	71-43-2
7	Aromatic	Toluene	T	92.14	0.866	111	C₇H₈	108-88-3
8	Aromatic	Styrene	S	104.2	0.906	145	C₈H₁₀	100-42-5
9	Aromatic	p-Xylene	p-X	106.2	0.865	138	C₈H₁₀O	106-42-3
10	Aromatic	m-Xylene	m-X	106.2	0.865	139	C₈H₁₀O	108-38-3
11	Aromatic	o-Xylene	o-X	106.2	0.88	144	C₈H₁₀O	95-47-6
12	Ketone	Methyl ethyl ketone	MEK	72.11	0.805	79.64	C₄H₈O	78-93-3
13	Ketone	Methyl isobutyl ketone	MIBK	102.0	0.802	117–118	C₆H₁₂O	108-10-1
14	Alcohol	Isobutyl alcohol	i-BuAl	74.12	0.801	108	C₆H₁₂O	78-83-1
15	Ester	n-Butyl acetate	BuAc	116.2	0.881	126	C₆H₁₂O₂	123-86-4
16	Fatty acid	Propionic acid	PPA	74.1	0.99	141	C₃H₈O₂	79-09-04
17	Fatty acid	n-Butyric acid	BTA	88.1	0.958	163.5	C₅H₁₀O₂	107-92-6
18	Fatty acid	i-Valeric acid	IVA	102	0.925	175–177	C₅H₁₀O₂	503-74-2
19	Fatty acid	n-Valeric acid	VLA	102	0.938	186–187	C₅H₁₀O₂	109-52-4
Table 2S. Preparation of liquid phase VOC standard for the analysis by the TD-GC-MS system.

A. Preparation of liquid phase standard for 19 VOCs

| Compounda | Methanol | AA | PA | BA | IA | VA | B | T | S | p-X | m-X | o-X | MEK | MIBK | i-BuAl | BuAc | PPA | BTA | IVA | VLA |
|-----------|----------|----|----|----|----|----|---|---|---|-----|-----|-----|-----|-----|-------|------|-----|-----|-----|-----|-----|
| Primary grade chemical | Concentration (%) | 99.0 | 97.0 | 99.0 | 97.0 | 99.5 | 99.0 | 99.0 | 99.0 | 97.0 | 99.0 | 98.5 | 99.0 | 98.5 | 99.0 | 99.0 | 99.0 |
| PSb | Volume (μL) | 13,700 | 900 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
| | Concentration (ng·μL⁻¹) | 34,972 | 11,611 | 11,954 | 11,786 | 13,104 | 12,845 | 12,845 | 11,954 | 11,954 | 13,149 | 14,702 | 14,226 | 13,736 | 13,929 | |
| 1st L-WSb | volume (μL) | 19,800 | 200 (of PS) | 200 | 116 | 120 | 116 | 118 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 |
| | Concentration (ng·μL⁻¹) | 350 | 116 | 120 | 116 | 118 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 |

a PS: Dilution of pure chemical (primary grade chemical) to make 20 mL solution
b 1st L-WS: Dilution of PS to make 20 mL solution

B. Preparation of final working standard (F-WS) for 5 point calibration: absolute mass (ng) of VOC loaded on tube sampler

| Order | Mixing volume (μL) | Concentrationc (ng·μL⁻¹) | Methanol | AA | PA | BA | IA | VA | B | T | S | p-X | m-X | o-X | MEK | MIBK | i-BuAl | BuAc | PPA | BTA | IVA | VLA |
|-------|------------------|------------------------|----------|----|----|----|----|----|---|---|---|-----|-----|-----|-----|-----|-------|------|-----|-----|-----|-----|-----|
| 1 | 14 | 1,486 | 3.26 | 1.08 | 1.12 | 1.08 | 1.10 | 1.22 | 1.21 | 1.26 | 1.20 | 1.20 | 1.12 | 1.11 | 1.23 | 1.37 | 1.33 | 1.28 | 1.30 |
| 2 | 70 | 1,430 | 16.3 | 5.42 | 5.58 | 5.41 | 5.50 | 6.12 | 6.03 | 6.28 | 5.99 | 5.99 | 5.88 | 5.59 | 5.55 | 6.14 | 6.86 | 6.64 | 6.41 | 6.50 |
| 3 | 140 | 1,360 | 32.6 | 10.8 | 11.2 | 10.8 | 11.0 | 12.2 | 12.1 | 12.6 | 12.0 | 12.0 | 11.2 | 11.1 | 12.3 | 13.7 | 13.3 | 12.8 | 13.0 |
| 4 | 280 | 1,220 | 65.3 | 21.7 | 22.3 | 21.6 | 22.0 | 24.5 | 24.1 | 25.1 | 24.0 | 24.0 | 23.9 | 22.3 | 22.3 | 22.2 | 24.5 | 27.4 | 26.6 | 25.6 | 26.0 |
| 5 | 700 | 800 | 163 | 54.2 | 55.8 | 54.1 | 55.0 | 61.2 | 60.3 | 62.8 | 59.9 | 59.9 | 59.8 | 55.9 | 55.5 | 61.4 | 68.6 | 66.4 | 64.1 | 65.0 |

c Analysis volume: 1 μL
Table 3S. Comparison of calibration results determined at the start and end of experiments: Response factor (RF), coefficient of determination (R²), and relative standard errors (RSE).

Order	Group	Compound	RF Exp_day 0	RF Exp_day 9	Mean	CV	R² Exp_day 0	R² Exp_day 9	Mean	RSE a (%)
1		AA	522	497	509.5	3.47	0.9619	0.9698	0.9659	2.52
2		PA	12,017	11,950	11,984	0.40	0.9991	0.9991	0.9991	3.49
3	Aldehyde	BA	43,572	43,467	43,520	0.17	0.9963	0.9938	0.9951	1.05
4		IA	66,125	65,836	65,981	0.31	0.9962	0.9932	0.9947	1.93
5		VA	59,322	59,804	59,563	0.57	0.9973	0.9973	0.9973	1.35
6		B	131,760	131,280	131,520	0.26	0.9909	0.9930	0.9920	2.06
7		T	168,602	165,819	167,211	1.18	0.9995	0.9995	0.9995	0.83
8	Aromatic	S	188,198	191,709	189,954	1.31	0.9995	0.9997	0.9996	1.32
9		p-X	188,510	184,038	186,274	1.70	0.9997	0.9987	0.9992	0.49
10		m-X	197,068	193,888	195,478	1.15	0.9992	0.9994	0.9993	0.56
11		o-X	198,376	194,140	196,258	1.53	0.9991	0.9991	0.9991	0.73
12	Ketone	MEK	48,980	48,566	48,773	0.60	0.9969	0.9987	0.9978	1.79
13		MIBK	117,383	117,646	117,515	0.16	0.9998	0.9985	0.9992	0.85
14	Alcohol	i-BuAl	93,667	92,778	93,223	0.67	0.9969	0.9972	0.9971	1.73
15	Ester	BuAc	113,114	117,791	115,453	2.86	0.9982	0.9973	0.9978	0.79
16		PPA	25,574	26,963	26,269	3.74	0.9977	0.9953	0.9965	1.68
17	Carboxyl	BTA	71,259	67,832	69,546	3.48	0.9963	0.9967	0.9965	0.13
18		IVA	99,441	94,589	97,015	3.54	0.9965	0.9935	0.9950	2.09
19		VLA	79,615	78,950	79,283	0.59	0.9918	0.9925	0.9922	0.97
Mean							1.46		0.9954	1.39
SD							1.29		0.0075	0.82

a Five replicate analyses of 26.1 ng (mean mass) of analytes per 1 µL injection of F-WS (4th calibration point)

b CV (coefficient of variation) = SD/mean * 100
Table 4S. Comparison of RF values between actual experiment and the effective carbon number (ECN) approach.

Order	Group	Compounds	Short name	C	H	O	(>C=O)	(O-)	(CH3)	ECN^c	RF values	PD^e
1		Acetaldehyde	AA	2	4	1	1	0	1	1.06	510	-15,532
2		Propionaldehyde	PA	3	6	1	1	0	1	1.99	11,984	12,921
3	Aldehyde	Butyraldehyde	BA	4	8	1	1	0	1	2.92	43,520	41,375
4		Isovaleraldehyde	IA	5	10	1	1	0	2	4.00	65,981	74,418
5		n-Valeraldehyde	VA	5	10	1	1	0	1	3.85	59,563	69,828
6		Benzene	B	6	6	0	0	0	0	5.79	131,520	129,183
7		Toluene	T	7	8	0	0	0	1	6.87	167,211	162,226
8	Aromatic	Styrene	S	8	8	0	0	0	0	7.72	189,954	188,232
9		p-Xylene	p-X	8	10	0	0	0	2	7.95	186,274	195,269
10		m-Xylene	m-X	8	10	0	0	0	2	7.95	195,478	195,269
11		o-Xylene	o-X	8	10	0	0	0	2	7.95	196,258	195,269
12	Ketone	Methyl ethyl ketone	MEK	4	8	1	1	0	2	3.07	48,773	45,964
13		Methyl isobutyl ketone	MIBK	6	12	1	1	0	3	5.08	117,515	107,460
14	Alcohol	Isobutyl alcohol	i-BuAl	4	10	1	0	1	2	4.50	93,223	89,715
15		n-Butyl acetate	BuAc	6	12	2	1	1	2	5.48	115,453	119,698
16		Propionic acid	PPA	3	6	2	1	1	1	2.54	26,269	29,748
17	Fatty	n-Butyric acid	BTA	4	6	2	1	1	1	3.54	69,546	60,344
18		i-Valeric acid	IVA	5	10	2	1	1	1	4.55	97,015	91,245
19		n-Valeric acid	VLA	5	10	2	1	1	1	4.40	79,283	86,656

Mean: 6.52 ± 4.99

^aCarbon number equivalent for each atom and functional group (CNE): (1) C = 1, (2) H = −0.035, (3) O = 0, (4) >C=O = −0.95, (5) -O- = 0.55, and (6) -CH3 = 0.15

^bI, J, K, L, M and N = number of C, H, O, >-O-, -O-, CH3 (atoms or functional groups) in each VOC, respectively

^cECN = I + J*CNE of -H) + L*CNE of >C=O + M*CNE of -O-) + N*CNE of -CH3

^dThe predictive equation (by ECN approach) for estimation of VOC concentration was determined using 18 liquid working standards except for AA:

(1) RF = 30,595, (2) intercept = -47,963, and (3) R2 = 0.9901

^ePercent different (PD, %) = ABS{[RF (actual exp)−RF (ECN approach)] / RF (actual exp) * 100}
Table 5S. Operational conditions of TD-GC-TOF MS system for the analysis of fresh and decaying strawberry.

[A] Sampling information of strawberry volatiles

Order	Sample code	Storage time (day)	Storage temp. (°C)
1	SRD-0	0	25
2	SRD-1	1	25
3	SRD-3	3	25
4	SRD-6	6	25
5	SRD-9	9	25

Initial weight = 50.09 g

[b. Sampling approach]

Sampler:	3 bed sorbent tube
Purge gas:	Nitrogen (>99.999%)
Purge gas flow:	50 mL·min⁻¹
Pump model:	MP-Σ30 (Sibata, Japan)
Heater model:	TC200P (Korea)

[B] Instrumental setups for VOC analysis

[a. GC (Shimadzu GC-2010, Japan) and MS (Shimadzu GCMS-QP2010, Japan)]

Column: CP Wax (diameter: 0.25 mm, length: 60 m, and film thickness: 0.25 µm)

Oven setting	Detector setting
Initial temp:	35 °C (10 min)
Ramp rate:	6 °C·min⁻¹
Max oven temp:	215 °C (10 min)
Total time:	50 min
Carrier gas:	He (99.999%)
Carrier gas flow:	1 mL·min⁻¹

Ionization mode: EI (70 eV)
Ion source temp.: 200 °C
Interface temp.: 200 °C
TIC scan range: 35~260 m/z

[b. Thermal desorber (Unity, Markes, UK)]

Cold trap sorbent: Tenax TA + Carbopack B (volume ratio=1:1) (diameter: 2 mm and sorbent bed length = 5 mm)
Split ratio: 1:5
Split flow: 5 mL·min⁻¹
Trap hold time: 20 min
Adsorption temp.: −10 °C
Desorption temp.: 320 °C
Flow path temp.: 150 °C

[c. Sorbent (Sampling) Tube]

Sorbent material: Tenax TA + Carbopack B + Carboxen 1000 (mass (mg)=100 : 100: 100)
Desorption flow: 50 mL·min⁻¹
Desorption time: 5 min
Desorption temp.: 300 °C
Table 6S. A list of individual VOC determined by the TD-GC-MS system from all strawberry samples throughout the study period.

Order	Compounds	MW	Formula	Concentration (ppb)	Odor threshold (ppbv)	Odor threshold (μg m⁻³)	Averaged Similarity (%)	
				sbd 0 sbd 1 sbd 3 sbd 6 sbd 9	sbd 0 sbd 1 sbd 3 sbd 6 sbd 9	sbd 0 sbd 1 sbd 3 sbd 6 sbd 9		
1	Methyl acetate	74	C3H6O2	3.949 3.875 71.077 1.57 0.75	11.945 11.720 214.987 4.76 2.28	1.700-6.170 5.142-18.662	b, c	
2	Ethyl acetate	88	C4H8 O2	4.793 4.277 134.969 13.00 11.80	17.240 15.384 485.476 467 42.5	610-320 1,183-9.460	a, b, c, e	
3	Methyl propionate	88	C4H8O2	40.8 51.0 23.6 0.17 0.009	147 183 85.0 0.63 0.031	98 352	b	
4	S-Methyl thioacetate	90	C3H6 O S	94.2 130 0.031 0.031 0.031	346 475.8 0.113 0.113 0.113	1.6 5.9	a	
5	Methyl trans-crotonate	100	C5 H8 O2	2.77 3.16 8.51 0.005 0.005	11.3 12.9 34.8 0.021 0.021	97.0	92.0	
6	Isopropyl acetate	102	C3H10O2	52.8 16.7 27.5 0.005 0.005	220 69.5 114.5 0.021 0.021	290-2,400 1,209-10,006	a, b, c	
7	Methyl isobutyrate	102	C3H10O2	0.005 0.005 0.005 0.005 0.005	0.021 0.021 0.021 1.77 0.021	1.9 7.9	b	
8	Ethyl propionate	102	C5 H10 O2	52.7 0.005 53.5 0.005 0.005	219.8 0.022 223 0.022 0.022	7 29	b	
9	Propyl acetate	102	C3 H10 O2	0.005 0.005 185 0.72 0.005	0.022 0.022 769 3.02 0.022	568-960 2,367-4.002	a, b, c	
10	Methyl butyrate	102	C5 H10 O2	1.194 1.384 88.8 0.47 0.005	4.977 5.772 370 1.95 0.022	2.8-7.1	12-30	a, b
11	Ethyl crotonate	114	C6 H10 O2	7.13 4.49 26.2 0.003 0.003	33.22 20.91 122 0.016 0.016	97.7	95.0	
12	Methyl tiglate	114	C6 H10 O2	0.003 0.003 1.26 0.003 0.003	0.016 0.016 5.88 0.016 0.016	0.013	0.10	b
13	Ethyl isobutyrate	116	C6 H12 O2	3.80 1.29 8.57 0.86 0.003	18.0 6.11 40.6 4.07 0.016	0.22	0.10	b
14	Methyl 2-methylbutanoate	116	C6 H12O2	21.8 21.7 13.2 1.08 0.003	104 103 62.7 5.14 0.016	0.1 0.5	a	
15	Isobutyl acetate	116	C6 H12O2	9.11 7.00 88.9 1.86 0.003	43.2 33.2 421 8.80 0.016	8-479	38.2-271	b, c
16	Methyl isovalerate	116	C5 H12 O2	54.8 56.9 7.78 0.003 0.003	260 270 36.9 0.016 0.016	1.1-2.2	5.2-10	a, b
17	Ethyl butyrate	116	C6 H12 O2	1.537 1.142 171 1.50 0.003	7.290 5.415 812 7.10 0.017	0.04-0.2	0.19-1.2	a, b
18	Butyl acetate	116	C6 H12 O2	34.2 36.5 26.4 0.05 0.003	162 173 125 0.24 0.017	10.7-195	50.9-925	a, b, c
19	Methyl valerate	116	C6 H12 O2	3.91 1.74 0.003 0.003 0.003	18.5 8.26 0.017 0.017 0.017	2.2 10	b	
20	S-Methyl thiobutirate	118	C5H10O-S	0.006 4.47 0.006 0.006 0.006	0.027 21.57 0.027 0.027 0.027	92.0	94.5	
21	Methyl 2-vinylbutanoate	128	C7 H12 O2	0.77 0.003 0.003 0.003 0.003	4.03 0.013 0.013 0.013 0.013	96.0	91.3	
22	4-Penten-1-yl acetate	128	C7 H12 O2	2.65 0.80 3.74 0.003 0.003	13.8 4.20 19.6 0.014 0.014	91.3	94.5	
23	Ethyl tiglate	128	C7H12O2	0.002 1.41 16.6 0.002 0.002	0.013 7.40 86.7 0.013 0.013	91.0	91.0	
24	cis-2-Penten-1-yl acetate	128	C7 H12 O2	4.96 0.003 0.003 0.003 0.003	25.95 0.013 0.013 0.013 0.013	96.0	96.0	
25	Prenyl acetate	128	C7H12O2	0.48 2.63 0.002 0.002 0.002	2.52 14.81 0.013 0.013 0.013	96.0	96.0	
No.	Compounds	Molecular Formula	CAS	HMW	α1			
-----	--------------------------------	-------------------	-----------	------	------			
26	Methyl (2E)-2-hexenoate	C7H12O2	128	1.66	0.89			
27	Isopropyl butyrate	C3H7O2	130	30.7	25.9			
28	Ethyl 2-methylbutyrate	C7H14O2	130	63.0	23.8			
29	Ethyl isovalerate	C7H14O2	130	7.31	1.73			
30	Isoamyl acetate	C7H14O2	130	81.3	69.1			
31	Ethyl valerate	C8H14O2	130	3.98	1.17			
32	Methyl 4-methylvalerate	C7H14O2	130	2.58	0.96			
33	Methyl hexanoate	C7H14O2	130	469	185			
34	3-Methyl-2-butyl acetate	C8H14O2	130	0.02	0.02			
35	Hex-5-enonic acid, ethyl ester	C8H14O2	142	3.29	1.24			
36	cis-3-Hexenyl acetate	C8H14O2	142	2.43	0.02			
37	(4E)-4-Hexenyl acetate	C8H14O2	142	5.41	2.68			
38	trans-2-Hexenyl acetate	C8H14O2	142	38.6	1.78			
39	Ethyl 2-hexenoate	C8H14O2	142	12.4	0.02			
40	Methyl amyln acetate	C8H14O2	144	0.02	0.02			
41	Isobutyl butyrate	C8H16O2	144	0.02	1.13			
42	Propyl isovalerate	C8H16O2	144	0.39	0.48			
43	Butyl butyrate	C8H16O2	144	0.78	1.37			
44	Ethyl hexanoate	C8H16O2	144	725	137			
45	Hexyl acetate	C8H16O2	144	110	25.5			
46	Valeric acid, thio-, S-ethyl ester	C7H14O2	146	0.89	0.03			
47	Ethyl 3-hydroxy-3-methylenacetate	C7H14O3	146	0.02	0.02			
48	Ethyl benzoate	C9H10O2	150	0.39	0.02			
49	Isovalyl isovalerate	C9H14O2	158	0.001	0.001			
50	Nonpentyl butyrate	C9H14O2	158	0.001	0.001			
51	Isoamyl butyrate	C9H18O2	158	1.58	1.53			
52	Heptyl acetate	C9H18O2	158	0.29	0.01			
53	Methyl octanoate	C9H18O2	158	5.84	0.88			
54	Octyl acetate	C10H20O2	172	0.55	0.01			
55	Hexyl butyrate	C10H20O2	172	0.52	0.01			

Table 6S. Cont.
Compound Name	Compound Formula	% Yield	Molecular Weight (Da)	Concentration (ester)
Ethyl octanoate	C10H20O2	4.55	219	0.0001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Octyl acetate	C10H20O2	1.25	219	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Cyclopentanecarboxylic acid, decyl ester	C16H30O2	0.0005	270	0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
2-(Dodecylxylyl)ethyl acetate	C16H32O3	0.0004	282	0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
Limonanethrinate	C17H23 N O 2	0.44	291	0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
N-tetrahydroxybenzylethoxycarbonyl-glucosylglycin	C10H21N3O5S	0.001	302	0.0001 0.0001 0.0001 0.05 0.03

Table 6S. Cont.

Alcohol (21)	Concentration (ester)																
Ethyl alcohol	0.037 0.037 0.039 48.685 1.417																
Isopropyl alcohol	0.014 0.014 0.020 46.6 36.1																
n-Propyl alcohol	0.007 0.007 0.007 0.56 0.55																
sec-Butyl alcohol	0.007 0.007 0.007 31.8 95.136 319.8																
Isobutyl alcohol	0.008 0.005 0.008 0.86 0.37																
n-Butyl alcohol	0.005 0.005 0.005 0.05 0.005																
1-Penten-3-ol	0.005 0.005 0.005 0.61 0.005																
Isopropanylethyl alcohol	0.005 0.005 0.005 0.005 0.005																
3-Methyl-1-butanol	0.19 0.12 0.50 0.29 0.41																
2-Methyl-1-butanol	0.005 0.005 0.005 0.98 0.006																
n-Pentanol	0.005 0.005 0.005 0.99 0.006																
1-Chloro-2-propanol	0.20 0.03 0.009 0.009 0.009																
3-Methylpentanol	0.003 0.003 0.003 0.05 0.034																
n-Hexanol	0.52 0.003 1.16 0.15 0.18																
2-Heptanol	0.02 0.002 0.02 0.02 0.42 0.17																
Phenylnitrobenzal	0.002 0.002 0.002 0.15 0.13																
(E)-2-Octen-1-ol	0.25 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002																
1-Octen-3-ol	0.002 0.002 0.002 0.02 0.12																
2-Ethylhexanol	0.42 0.002 0.002 0.05 0.12																
Linalool	154 5.14 5.08 0.001 0.001 0.001 0.001 0.001 0.001 0.001																
	alpha-Methyl-alpha-{4-methyl-3-pentenyl}oxiranemethanol	C10H18O2	0.001	0.001	0.001	0.03	0.001	0.007	0.007	0.17	0.007						
-----	--	-----------	-------	-------	-------	------	-------	-------	-------	------	-------	-----					
Sum			140	364	1,078	379,789	4,658										
C.	Aelterdehdy (11)																
83	Acetaldehyde	44	C2H4O	1.618	1.646	10.584	730	540	2.909	2.959	19.035	1,313	971	1.5-186	2.7-335	b, c	99.2
84	Allyl aldehyde (Acrolein)	56	C3H4O	0.082	0.082	0.082	5.08	6.90	0.189	0.189	0.189	11.62	15.8	3.6-174	8.2-398	b, c	98.0
85	Methylacryl aldehyde	70	C4H6O	0.016	0.016	0.016	1.80	3.33	0.045	0.045	0.045	5.14	9.52	8.5	24	b	
86	Isobutyaldehyde	72	C4H8O	0.015	0.015	0.015	0.24	3.80	0.043	0.043	0.043	0.71	11.17	0.35-40.7	1.03-120	b, c	93.5
87	Butyaldehyde	72	C4H8O	0.015	0.015	0.015	0.35	0.15	0.045	0.045	0.045	1.04	0.045	0.67-8.91	1.97-26.2	b, c	96.0
88	Methylmethacetaldehyde	86	C5H10O	0.008	0.008	0.008	0.15	0.51	0.027	0.027	0.027	0.52	1.79	94.5			
89	Isovaleraldehyde	86	C5H10O	0.009	0.009	0.009	1.03	2.45	0.030	0.030	0.030	3.60	8.62	0.1-2.24	0.4-7.87	b, c	96.0
90	n-Capraldehyde	100	C6H12O	1.38	0.005	0.77	0.005	0.005	5.66	0.020	3.14	0.020	0.020	0.28-13.8	1.14-56.4	a, b, c	91.0
91	Benaldehyde	106	C7H6O	0.003	0.003	3.71	0.50	0.22	0.015	0.015	16.1	2.16	0.97	41.7	181	c	94.3
92	n-Nonylaldehyde	142	C9H18O	0.55	0.002	0.002	0.002	0.002	3.17	0.011	0.011	0.011	0.011	0.34-2.24	1.97-13.0	b, c	91.0
93	2,4-dihydroxy-6-(2-cyanoethyl)benzaldehyde	250	C14H18O4	0.001	0.001	0.001	0.001	0.36	0.006	0.006	0.006	0.006	3.64	96.0			

D.	Ketone (9)																
94	Acetone	58	C1H6O	2.514	3.131	224	7.35	28.0	5.960	7.422	532	17.43	66.5	4,580-42,000	10,858-99,570	b, c, e	97.8
95	Methyl vinyl ketone	70	C4H6O	0.016	0.016	1.25	0.016	0.016	0.041	0.041	0.041	3.39	3.96	270-7,760	795-22,837	b, c, e	93.0
96	Methyl ethyl ketone	72	C4H8O	0.014	0.014	0.014	1.15	1.35	0.041	0.041	0.041	3.39	3.96	270-7,760	795-22,837	b, c, e	93.0
97	Methyl n-propyl ketone	86	C5H10O	54.0	47.1	0.008	0.008	0.008	190	166	0.027	0.027	0.027	28.1-550	98-5,449	b, c	93.5
98	Dimethyl diketone	86	C6H8O2	13.7	0.030	13.9	3.21	0.030	48.10	0.104	48.89	11.3	0.104	4.37	15.4	c	96.3
99	Methyl Isobutyrl Ketone	100	C6H10O	4.62	7.50	3.11	0.004	0.004	18.87	30.7	4.53	0.017	0.017	121-537	495-2,195	b, c, e	95.0
100	Methyl acyl ketone	114	C7H14O	5.64	6.52	0.003	0.51	0.61	26.28	30.4	0.015	2.36	2.85	35.6-141	166-657	a, b, c	97.8
101	Spirol[3,6]deca-5,7-diene-1-one	148	C10H12O	0.001	0.001	0.15	0.001	0.001	0.009	0.009	0.91	0.009	0.009	94.0			
102	Phenyl methyl ketone	120	C8H8O	1.56	0.002	0.002	0.10	0.13	7.67	0.012	0.012	0.50	0.62	363	1,780	c	91.3

| Sum | | 6,251 | 7,649 | 589 | 35 | 74 | |
Table 6S. Cont.

E. Fatty acid (5)	F. etc. (40)
103 Acetic acid	108 Isoprene
60 C2H4O2	68 C5 H8
2.519 1.918 1.761 210 86	3.98 6.11 4.08 0.007 0.77
6.177 4.703 4.319 514 212	11.06 17.0 11.34 0.020 2.13
186 3.92 1.93 0.009 0.001	4.86 4.14 0.200 0.46 0.020
6.212	91.05 0.09 0.022 0.014
104 2-Propynoic acid	109 Ethylideneacyclopropane
70 C3 H2 O2	68 C5 H8
69.6 0.023 0.023 0.023 0.023	0.007 0.007 0.006 0.007
199 0.067 0.067 0.067 0.067	0.020 0.020 0.020 0.17 0.020
94 269	48.455 133-1,265 b. e
93.0	95.3
105 Methacrylic acid	110 cis-Piperylene
86 C4H6O2	68 C5 H8
3.92 0.009 0.009 0.009 0.009	1.54 0.49 0.007 0.17 0.007
13.8 0.033 0.033 0.033 0.033	4.29 4.14 0.200 0.46 0.020
93.0	89.3
106 2-Methylbutanoic acid	111 Methylene cyclobutane
102 C5 H10 O2	68 C5 H8
0.005 0.005 0.005 0.31 0.005	0.007 0.007 0.007 0.007
0.022 0.022 0.022 0.130 0.022	0.020 0.220 1.44 0.020 0.020
0.022 0.022 0.022 1.30 0.022	48.455 133-1,265 b. e
117 Undec-10-ynoic acid	112 Divinylene oxide
182 C11H18O2	68 C4H4O
0.001 0.001 0.001 0.001 0.001	0.008 0.008 0.008 0.008
0.008 0.008 0.008 0.008	0.023 0.023 0.023 0.023
0.008 0.008 0.008 0.008	0.039 0.039 0.039 0.039
92.0	97.0
113 Propylethylene	118 Furane 2-methyl-
70 C5 H10	82 C5 H6 \ O
0.007 0.007 0.007 0.74	0.005 0.005 0.005 0.005
0.007	0.007 0.007 0.007
0.020 0.020 0.020 0.020	0.020 0.220 1.44 0.020 0.020
0.020	48.455 133-1,265 b. e
90.0	97.0
114 n-Pentane	119 Methylcyclopentane
72 C5 H12	84 C6 H12
12.1 0.007 0.007 0.29 2.20	0.005 0.005 0.005 0.005 0.005
35.7 0.019 0.019 0.86 6.48	0.016 0.016 0.016 0.016 0.016
1,400-31,600 4.120-92,997 b. c	5.94 1.65
96.3	97.0
115 Furandine	120 n-Hexane
72 C4H8O	86 C6 H14
0.008 0.008 0.008 0.008 0.008	3.49 0.004 0.004 0.004 0.004
0.024 0.024 0.024 0.024 0.024	12.27 0.014 0.014 0.014 0.014
48.455 133-1,265 b. e	1.400-31,600 4.120-92,997 b. c
97.0	90.0
116 Ethyl ether	121 2,2-Dimethylbutane
74 C4 H10 O	86 C6 H14
0.007 0.007 0.70 0.41 0.45	0.005 0.005 0.005 0.005 0.005
0.022 0.022 0.212 1.23 4.38	0.016 0.016 0.016 0.016 0.016
330 998 h	24.678 82,713 d
93.7	93.0
117 L,3-Hexadiene	122 Toluen
82 C6 H10	92 C7H8
25.0 1.77 0.005 0.005 0.005	0.003 0.003 0.003 0.003 0.003
83.9 5.94 0.155 0.155 0.155	0.003 0.003 0.003 0.003 0.003
514 514	1,500-21,900 5,273-76,983 b. c
94.3	97.0
123 Phenol	126 Styrene
94 C6H6O	104 C8 H8
0.004 0.004 0.004 0.22 0.004	10.05 11.99 19.41 3.03 1.09
0.014 0.014 0.014 0.014 0.014	42.7 51.0 82.5 12.9 4.64
46.4 4.64 34.3-5 146-149 b. c	1,400-31,600 4.120-92,997 b. c
97.0	93.2
124 1-Heptene	127 Ethyl benzene
98 C7H14	106 C8H10
0.42 0.63 0.47 0.17 0.56	1.65 0.002 0.002 0.002 0.10
1.09 2.51 1.87 0.68 2.24	7.16 0.010 0.010 0.010 0.010
840 3.433	4.28-170 12.5-737 b. c
94.4	94.5
125 2-Methylhexane	128 p-Xylene
100 C7H16	106 C8H10
0.003 0.003 0.003 0.003 0.003	0.32 0.002 0.002 0.002 0.002
0.012 0.012 0.012 0.012 0.012	1.39 0.011 0.011 0.011 0.011
251-2,123 b. c	58-490 251-2,123 b. c
93.0	93.0
Table 6S. Cont.

Compound	Formula	Molecular Weight	Mean Similarity	Detection Limit
3-Cyclohexenyl cyanide	C7H9N	107	0.003 0.001	1.28 1.28
Anisole	C7H8O	108	0.002 0.002	0.001 0.001
n-Octane	C8H18	114	0.002 0.002	0.002 0.002
p-Allyltoluene	C10H12	132	0.52 0.001	0.008 0.008
p-Isopropyphenol	C9H12O	136	0.001 0.001	0.008 0.008
2-Methyl-6-methylene-2,7-octadiene	C10H16	136	0.001 0.42	0.008 2.34
1-Limonene	C10H16	136	0.25 0.01	0.008 0.008
(E)-beta-Ocimene	C10H16	136	0.24 0.001	0.008 0.008
Tetramethylbutanedinitrile	C8H12N2	136	0.59 0.002	0.008 0.008
2,2,3,3-Tetramethyloxane	C10H22	142	0.001 1.65	0.008 9.57
2,5-Dimethyl-4-methoxy-3(2H)-furanone	C7H10O3	142	1.42 0.002	15.5 0.011
m-Dichlorobenzene	C6H4Cl2	146	0.003 0.003	0.015 0.015
3,5-Dihydroxybenzamide	C7H7NO3	153	0.002 0.002	0.012 0.012
3-n-Butanolic anhydride	C8H14O3	158	0.002 0.53	0.013 0.013
Genitrofuran	C8H12N4	164	0.001 0.001	0.010 0.010
2-Propylthiobut-2H-thiocromene	C12H22S	198	0.001 0.001	0.007 0.007
1-Caryophyllene	C15H24	204	0.001 0.001	0.005 0.005
alpha-Mustrolene	C15H24	204	0.001 0.001	0.005 0.005
2,3-Epoxy-beta-ionone	C13H20O2	208	0.001 1.28	0.006 10.9

Below detection limit

References: a. Van Gemert [50], b. Nagata [26], c. Devos et al. [51], d. Ruth [52], e. Woodfield and Hall [53], f. Chemwatch [54], g. Evans et al. [55], h. U.S. Department of Labor [56], and i. Amoore and Hautala [57].

* Mean similarity of mass spectra between actual experiment and library (NIST)
Table 7S. Concentrations of reduced sulfur compounds (RSC) and ammonia measured separately by GC-PFPD and absorption photometry.

[A] Concentration (μg m\(^{-3}\))

Order	Compounds	SRD-0	SRD-1	SRD-3	SRD-6	SRD-9	Thresholds \(b\) (μg m\(^{-3}\))	Reference
1	Hydrogen sulfide	0.02	0.02	0.02	0.02	0.02	24.8	Schiffman et al. [58]
2	Sulfur dioxide	0.03	0.03	0.03	0.03	0.03	1,635	Nagata [26]
3	Methanethiol	61.4	267	0.79	0.02	0.49	4.13	Iowa State University [59]
4	Dimethyl sulfide	0.02	3.83	0.91	0.02	0.02	7.60	Nagata [26]
5	Dimethyl disulfide	18.9	196	35.8	0.57	0.79	47.3	Schiffman et al. [58]
6	Ammonia	81.3	81.3	81.3	169	445	1,042	Nagata [26]

[B] Odor activity value (OAV: concentration/ threshold)

Order	Compounds	Hydrogen sulfide	Sulfur dioxide	Methanethiol	Dimethyl sulfide	Dimethyl disulfide	Ammonia
1	Hydrogen sulfide	2					
2	Sulfur dioxide						
3	Methanethiol	14.9	64.6	0.19	0.50	0.40	0.16
4	Dimethyl sulfide	0.12					
5	Dimethyl disulfide	0.12					0.43
6	Ammonia	0.12					

\(^a\)Values below detection limit are underlined (calculated as method detection limit)
Table 8S. The basic statistics on threshold values\(^a\) (n = 79) of VOC.

[A] Number of contrasting sources for the VOC with odor thresholds

No. of sources for odor thresholds	0 (no data)	1	2	3	4	Total
No. of VOC	73	35	31	12	1	152

[B] The basic statistics of threshold values of VOCs (n = 79)

Statistical parameter	Mean	SD	CV\(^b\)	Minimum	Maximum	Median	Sum
Minimum	1,929	8,272	429	0.058	69,896	28	152,379
Maximum	7,576	19,199	253	0.088	84,140	227	598,518
Geo mean	3,077	9,552	310	0.088	69,896	123	243,085

\(^a\)We determined the 79 threshold values out of the 147 VOCs detected from strawberry samples from previous studies (references from Table 5S)

\(^b\)CV (coefficient of variation) = SD/mean × 100
Table 9S. Log normal relationship between different types of odor threshold (ppbv) and molecular weight to assess the odor strength patterns of strawberry volatiles.

Groups	A. Ester	B. Alcohol	C. Aldehyde	D. Ketone	Sum of all groups
	All data	Optimal fit	All data	Optimal fit	All data
Number of data	(n = 31)	(n = 28)	(n = 14)	(n = 9)	(n = 8)
[A] Slope					
Min	-0.0237	-0.0336	-0.0357	-0.0043	-0.0152
Max	-0.0296	-0.0406	-0.0507	-0.0161	-0.0253
Geo mean	-0.0263	-0.0367	-0.0432	-0.0098	-0.0197
[B] R²					
Min	0.1511	0.2842	0.5048	0.4825	0.1360
Max	0.1906	0.3363	0.8397	0.8833	0.2113
Geo mean	0.1743	0.3188	0.7164	0.8730	0.1885
[C] p-value					
Min	3.07E−02	3.49E−03	4.40E−03	6.96E−01	3.69E−01
Max	1.41E−02	1.22E−03	4.12E−06	5.16E−02	3.52E−03
Geo mean	1.94E−02	1.75E−03	1.35E−04	2.36E−01	2.82E−01

* After excluding outlying data points
* Sum of the four major VOC groups (Ester, Alcohol, Aldehyde, and Ketone)
* Results of linear regression analysis between odor threshold and molecular weights: for this comparison, results are compared between minimum, maximum, and geometric mean of threshold values available from previous studies
Figure 1S. The linear regression analysis between the response factors (RF) and effective carbon number (ECN) for each atom and function group (e.g., C, H, O, >C=O, -O-, and -CH$_3$).

\[y (\text{ECN approach}) = 30,595x - 47,963 \]
\[R^2 = 0.9901 \]
\[P\text{-value} = 1.83E-17 \]
Figure 2S. Photographs showing strawberry samples in impinge.

(A) Storage time = 0 day
(B) Storage time = 3 days
(C) Storage time = 6 days
(D) Storage time = 9 days
Figure 3S. Relationship between Σodor activity values (OAV) and dilution-to-threshold (D/T) ratio.

A. Correlation between log-ΣOAV (all) (and dilution factor) vs. storage time (day)

B. Correlation between log ΣOAV (all) and log D/T ratio
Copyright of Sensors (14248220) is the property of MDPI Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder’s express written permission. However, users may print, download, or email articles for individual use.