Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations

Charlotte R. Bell, Victoria S. Pelly, Agrin Moeini, Shih-Chieh Chiang, Eimear Flanagan, Christian P. Bromley, Christopher Clark, Charles H. Earnshaw, Maria A. Koufaki, Eduardo Bonavita & Santiago Zelenay

Cytotoxic therapies, besides directly inducing cancer cell death, can stimulate immune-dependent tumor growth control or paradoxically accelerate tumor progression. The underlying mechanisms dictating these opposing outcomes are poorly defined. Here, we show that cytotoxic therapy acutely upregulates cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) production in cancer cells with pre-existing COX-2 activity. Screening a compound library of 1280 approved drugs, we find that all classes of chemotherapy drugs enhance COX-2 transcription whilst arresting cancer cell proliferation. Genetic manipulation of COX-2 expression or its gene promoter region uncover how augmented COX-2/PGE2 activity post-treatment profoundly alters the inflammatory properties of chemotherapy-treated cancer cells in vivo. Pharmacological COX-2 inhibition boosts the efficacy of the combination of chemotherapy and PD-1 blockade. Crucially, in a poorly immunogenic breast cancer model, only the triple therapy unleashes tumor growth control and significantly reduces relapse and spontaneous metastatic spread in an adjuvant setting. Our findings suggest COX-2/PGE2 upregulation by dying cancer cells acts as a major barrier to cytotoxic therapy-driven tumor immunity and uncover a strategy to improve the outcomes of immunotherapy and chemotherapy combinations.
Immune checkpoint blockade (ICB) therapies targeting the cytotoxic T lymphocyte-associated antigen-4 and programmed cell death (PD)–1 pathways have transformed the landscape of cancer treatment. Despite these advances, cytotoxic therapies, such as chemotherapy (CTX) or radiotherapy, remain the standard of care for most unresectable or advanced malignancies, including in adjuvant and neoadjuvant settings.

Tumor shrinkage following CTX and radiotherapy has been largely attributed to the damaging effects of these cytotoxic agents on rapidly proliferating cancer cells. In addition to their direct killing of cancer cells, numerous studies have also highlighted a major role for the immune system in mediating the efficacy of these therapies. Hallmark cellular and molecular mediators of anti-cancer immune responses are indispensable for, and correlate with, the efficacy of cytotoxic therapy in animal models and human cancers, respectively. These observations are consistent with the view that release of damage-associated molecular patterns (DAMPs) and production of inflammatory mediators by dying cancer cells can boost cancer-restraining immune responses. Certain modalities of cell death can drive tumor-specific T cell responses and growth control through exposure of cancer cell-associated target antigens and stimulation of antigen-presenting cells. Moreover, some cytotoxic agents, often referred to as immunogenic cell death (ICD) inducers, have been shown to be more efficient than others at promoting immunemediated control. Accordingly, various studies exposed the benefit of combining immune checkpoint inhibitors and cytotoxic therapy and numerous clinical trials are currently evaluating these combinations across cancer types. In non-small cell lung cancer (NSCLC) and urothelial cancer and triple negative breast cancer (TNBC), among other cancer types, combinations of CTX and ICB are already approved and used as first-line treatments.

In sharp contrast with these findings supporting immunemediated benefit of cytotoxic agents, preclinical and clinical data indicate that these treatments can paradoxically have detrimental protumorigenic effects. Various mechanisms have been proposed to explain the latter, among which is the Révész effect, a longappreciated phenomenon by which lethally-irradiated cancer cells stimulate the growth of live cells. Similarly, extensive evidence supports the notion that dead cells can promote immunological tolerance or drive inflammatory responses that fuel tumor progression. Shaped by the exposure of pro-inflammatory features of CTX-treated cells in vivo, and assess the inflammatory mediators by monitoring the growth of cancer cells alongside induction of the COX-2/PGE2 pathway following CTX treatment. We use this system for a high-throughput compound library screen containing 1280 marketed, approved drugs and covering multiple CTX drugs with differing mechanisms of action. To support this, we analyze COX-2 expression changes over time by mining a database of 60 human tumor cell lines treated with various CTX drugs. Finally, we examine the impact of COX-2/PGE2 upregulation on the inflammatory features of CTX-treated cells in vivo, and assess the value of pharmacological COX-2 inhibition during the combination of CTX and ICB in murine models, including a poorly immunogenic, spontaneously metastatic TNBC model insensitive to dual chemoimmunotherapy.

Results

Cytotoxic therapy induces COX-2-mediated PGE2 release from cancer cells naturally expressing COX-2. To test whether and how cytotoxic therapy increases the release of PGE2 from cancer cells and the kinetics of this phenomenon, we treated 4T1 breast cancer cells, previously shown to release PGE2 after radiotherapy, with the widely used CTX drugs cisplatin or 5-fluorouracil (5-FU). Both drugs led to a substantial increase in the levels of PGE2 in the culture medium compared with DMSO-treated control cells (Fig. 1a). Whilst PGE2 reached its maximum levels at 8 h post-cisplatin treatment, it continued to rise following 5-FU treatment reaching a seven-fold increase at 48 h compared with control cells. In line with the kinetics of PGE2 release, COX-2 protein levels showed a similar kinetic of upregulation (Fig. 1b). The selective COX-2 inhibitor celecoxib (CXB) blunted PGE2 synthesis from both control and CTX-treated cells (Fig. 1c), indicating a major contribution for COX-2 and not COX-1 in PGE2 induction following treatment. Irradiation of cells with ionizing X-rays or UV light also promoted a marked increase in PGE2 release over time (Supplementary Fig. 1a, b).

Next, we examined how prevalent PGE2 and COX-2 upregulation was post-CTX treatment across multiple murine cancer cell lines of different tissue origins, covering breast, colorectal, melanoma, pancreatic, lung and renal cancer. PGE2 induction following CTX was a common phenomenon which was accompanied by a marked increase in Ptg2 (the gene encoding for COX-2) mRNA levels (Fig. 1d). Interestingly, however, the rise in PGE2 occurred exclusively in cancer cells that have detectable baseline levels of PGE2 and Ptg2 (Fig. 1d). Notably, the magnitude of Ptg2 induction post-treatment was strictly proportional to Ptg2 baseline expression levels across all cell lines tested (Fig. 1d, e). All cells treated with CTX ultimately died following treatment, becoming apoptotic and then secondary necrotic as revealed by monitoring caspase-3/7 proteolytic activity and membrane permeability using propidium iodide (PI), respectively (Supplementary Fig. 2a, b). Together, these data establish activation of the COX-2/PGE2 axis post-cytotoxic therapy as a widespread phenomenon that uniformly occurs in cancer cells, but only in those with prior activation of the pathway.

The rise in PGE2 production following CTX is strictly dependent on transcriptional upregulation of Ptg2. Given that CTX-driven COX-2 upregulation and PGE2 release occurred only in
with baseline Ptgs2 expression (Fig. 1d), we reasoned that treatment-driven PGE₂ induction might depend on de novo Ptgs2 transcription. To test this, we compared the effect of 5-FU treatment in 4T1 parental COX-2-expressing (COX-2WT) cells, CRISPR-generated COX-2-deficient (COX-2KO) cells or COX-2-deficient cells with restored COX-2 expression (COX-2 REST) (Fig. 1g). In the latter, COX-2 expression is driven by an unrelated constitutive promoter. Hence, if PGE₂ enhancement relies on increased Ptgs2 transcription via specific activation of its promoter regulatory region, it should not occur in COX-2 REST 4T1 cells. In agreement with this hypothesis, 5-FU failed to upregulate COX-2 protein and PGE₂ in COX-2 REST cells, while basal levels were comparable between untreated COX-2WT and COX-2 REST cells (Fig. 1h, i). The dependence on endogenous COX-2 promoter activity for PGE₂ induction was also validated in CT26 colorectal COX-2 REST cells (Fig. 1i). Altogether, these data formally established specific transcriptional activation of the COX-2 gene as the underlying mechanism responsible for the elevated PGE₂ production in CTX-treated cancer cells.

Caspase activity, ROS production, NF-κB and C/EBPβ signaling contribute to, but are dispensable for, COX-2/PGE₂ pathway upregulation post-CTX. Enhanced PGE₂ release by dying cells post-cytotoxic therapy has been attributed to caspase-3-mediated activation of calcium-independent phospholipase A₂. In our experimental system, caspase-3/-7 activity was detected at least 12 h later than the peak in PGE₂ release from cisplatin and 5-FU-treated cells (Fig. 1a, Fig. 2a, Supplementary Fig. 2a, b), suggesting CTX-driven PGE₂ upregulation can occur in a caspase-3-independent manner. To explore this further, we used the pan-caspase inhibitor z-VAD-FMK, which effectively

Diagram and Table Descriptions

Fig. 1a	Time (h)	PGE₂ (ng/ml)
0	0	20
8	2	50
24	60	
48	100	

Fig. 1b	Time (h)	COX-2
0	0	
8	4	
24	22	

Fig. 1c	PGE₂ (ng/ml)
DMSO	20
5-FU	100

Fig. 1d	Ptgs2 relative expression
CT26	0.0
4T1	20.0
5555	50.0
TB32047	100.0
4434	0.5
3LL	20.0
YUMM1.1	50.0
B16F10	100.0
Renca	0.0

Fig. 1e	COX-2 mRNA expression
DMSO [log₁₀]	0.0
5-FU induction [log₁₀]	2.0

Fig. 1f	Ptgs2
COX-2WT	491
COX-2KO	1417
COX-2 REST	6370

Fig. 1g	COX-2WT	Pigs2
DMSO	0.0	
5-FU	50.0	

Fig. 1h	Ptgs2 relative expression
COX-2WT	0.0
COX-2KO	20.0
COX-2 REST	50.0

Fig. 1i	PGE₂ (ng/ml)
DMSO	20
5-FU	100

Figure Legends

- **Fig. 1a**: PGE₂ (ng/ml) vs. Time (h) for DMSO and 5-FU treatments. DMSO: 200 ng/ml, 5-FU: 150 ng/ml. **Fig. 1b**: COX-2 expression levels over time. **Fig. 1c**: PGE₂ levels at 0, 8, and 24 hours for DMSO and 5-FU. **Fig. 1d**: Ptgs2 relative expression across different cell lines. **Fig. 1e**: COX-2 mRNA expression fold change with 5-FU induction. **Fig. 1f**: Ptgs2 expression levels across different cell lines. **Fig. 1g**: Schematic of Ptgs2 promoter regulation in 4T1 cells. **Fig. 1h**: Ptgs2 relative expression in COX-2WT, COX-2KO, and COX-2 REST cells. **Fig. 1i**: PGE₂ production in WT, KO, and REST conditions.
inhibited caspase-3/-7 activity in CTX-treated cells without preventing cancer cell arrest and eventual death, as determined by PI staining (Fig. 2a, Supplementary Fig. 2a, b). Whilst z-VAD-FMK decreased the levels of PGE2 levels measured in the supernatant from cisplatin- or 5-FU-treated cells, the magnitude of induction was not significantly altered (Fig. 2b, Supplementary Fig. 3a). Similarly, 5-FU-induced COX-2 transcript levels were reduced in the presence of caspase inhibition but a marked induction was still observed from z-VAD-FMK-treated control cells (Fig. 2c).

Reactive oxygen species (ROS), typically produced by stressed cells, have also been implicated in COX-2 upregulation. To test their involvement, we treated cancer cells with cisplatin or 5-FU treatment. An analogous effect led to a partial but significant decrease in PGE2 production with caspase inhibition but a marked induction was still pronounced in their absence suggesting potential redundancy or the activity of a yet to be identified pathway.

All classes of CTX drugs induce Ptgs2 upregulation whilst concomitantly arresting cancer cell proliferation. We next sought to investigate in closer detail the kinetics of Ptgs2 transcriptional upregulation post-CTX relative to the treatment effects on cancer cell growth. To this aim, we generated COX-2 transcription reporter cells stably expressing destabilized GFP (d2EGFP) under the control of the endogenous COX-2 promoter, such that we could concomitantly monitor Ptgs2 upregulation alongside cancer cell growth (Fig. 3a). We used a region of the Ptgs2 promoter spanning about one kilobase (kb) upstream of the transcription start site which contains the key regulatory elements that control Ptgs2 transcription. 4T1 cells retrovirally transduced with this construct expressed GFP, and showed a dramatic increase in GFP fluorescence intensity post-CTX treatment (Fig. 3b, c, Supplementary Fig. 4a), whereby the GFP mean intensity at a particular time was calculated by averaging across all GFP-positive cells in a given well (see Methods). Live-imaging of these cells treated with cisplatin showed a steady increase in GFP fluorescence intensity over time, peaking around 24 h and subsequently decreasing (Fig. 3c). The decay in GFP signal coincided with the detection of caspase-3/-7 proteolytic activity, and continued waning whilst the cells became macroscopically apoptotic and eventually secondary necrotic (Fig. 3c, Supplementary Fig. 4b). Titrating doses of 5-FU revealed a clear time- and dose-dependent increase in GFP signal which peaked at 48 h, one day later than in cisplatin-treated cells. These differences in GFP induction are in agreement with the different kinetics of GFP upregulation closely reflecting those of Ptgs2 (Supplementary Fig. 4a–c).

We exploited this reporter cell line and devised a high throughput system to screen a comprehensive library of 1280 antibacterial (13%), anti-inflammatory (8%), antihypertensive (8%), antineoplastic (5%) and analgesic (5%) drugs being the top
Fig. 2 Chemotherapy-induced PGE$_2$ release occurs prior to caspase-3/-7 activation and caspase, ROS, NF-κB and C/EBPβ signaling contribute to chemotherapy-driven Ptgs2 transcription. a Caspase-3/-7 activation in 4T1 cells treated with cisplatin (50 µM) or 5-FU (100 µM) in the presence or absence of pan-caspase inhibitor z-VAD-FMK (z-VAD, 100 µM). Mean ±SEM of duplicate wells, representative plot shown of $n = 3$ independent experiments. b PGE$_2$ release from 4T1 cells treated with cisplatin (50 µM) for 8 h (left panel) or 5-FU (100 µM) for 24 h (right panel) in the presence or absence of z-VAD. Mean ±SEM of $n = 3$ independent experiments with duplicate wells. c Ptgs2 expression relative to Hprt in 4T1 cells following 24 h 5-FU (100 µM) and/or z-VAD (100 µM) treatment. Mean ±SEM of triplicate wells, representative plot shown of $n = 2$ independent experiments. d Reactive oxygen species (ROS) produced by 4T1 cells treated with cisplatin (50 µM) in the presence or absence of ROS scavenger N-acetyl-L-cysteine (NAC; 5 mM). Mean ±SEM of duplicate wells. e PGE$_2$ release from 4T1 cells treated with cisplatin (50 µM) for 8 h (left panel) or 5-FU (100 µM) for 24 h (right panel) in the presence or absence of NAC (5 mM). Mean ±SEM of $n = 3$ independent experiments with duplicate wells. f Ptgs2 expression relative to Hprt in 4T1 cells following 24 h 5-FU (100 µM) and/or NAC (5 mM) treatment. Mean ±SEM of triplicate wells, representative plot shown of $n = 2$ independent experiments. g, h COX-2 mRNA (relative to Hprt) and protein levels in 4T1 cells following 24 h 5-FU (100 µM) treatment. Mean ±SEM representative of triplicate wells, representative plot and westerns shown of $n = 2$ independent experiments. β-Tubulin or β-Actin loading controls from the same membrane are shown. ns = not significant, *$p < 0.05$, **$p < 0.01$, ***$p < 0.001$, ****$p < 0.0001$ as determined by one-way ANOVA with Tukey’s multiple comparisons test. Source data and exact p values are provided as a Source Data file.

Fig. 3 (continued) a IncuCyte platform, we monitored cell confluence and GFP expression by real-time live-imaging for a period of 72 h (Fig. 3e). b To compare the effect of the multiple library compounds, we calculated cell confluence scores by averaging the fold change in confluence over the whole culture time relative to DMSO-treated controls run in each individual 384-well plate (see Methods). We also generated GFP scores by calculating the area under the curve (AUC) of the fold change in GFP fluorescence intensity for each
compound relative to DMSO-treated controls over 72 h. This analysis showed that drugs that resulted in a noticeable increase in GFP fluorescence (GFP score >5) also greatly reduced cell growth (confluency score <0.65) (Fig. 3g). In particular, from the total 69 bona fide antineoplastic drugs tested, all compounds that diminished 4T1 cell proliferation also increased GFP. Indeed, there was a striking anti-correlation between cell confluency and GFP scores for this subgroup of drugs (Spearman $r = -0.70$, $p < 0.0001$), irrespective of their varied mechanisms of action. Anthelmintics, another group of compounds highly represented in this category (confluency score <0.65, GFP score >5) and with reported antineoplastic effects42,43, similarly induced GFP whilst
concomitantly restricting tumor cell growth (Spearman $r = -0.73, p = 0.0001$). Examination of cell growth and GFP fluorescence kinetics over time indicated that GFP induction largely coincided with the point at which exponential cell growth plateaued and the cells started dying (Fig. 3h, Supplementary Fig. 4e). Of note, anthracyclines, prototypical inducers of ICD, and non-ICD inducing agents, such as gemcitabine, equally showed this pattern. Therefore, high throughput screening of a large market-approved compound library on COX-2-reporter 4T1 cells revealed that all classes of CTX drugs drive Ptgs2 upregulation alongside inhibiting tumor cell proliferation.

CTX universally increases COX-2 mRNA levels in human cells with basal COX-2 expression. We next evaluated if upregulation of COX-2 transcription also occurred in human cancer cells and was similarly independent of the class of CTX drug. For this, we interrogated a dataset of the NCI-60 human cancer cell line panel, in which cancer cells from nine different tumor types (Fig. 4a) were treated with diverse anti-cancer drugs and the transcriptome analyzed over time34. CTX drugs, irrespectively of their mechanism of action and tissue of origin, raised PTGS2 transcript levels in a time-dependent manner in approximately half of all cell lines tested (Fig. 4b). We investigated whether this upregulation was dependent on baseline PTGS2 expression, as described above in murine cancer cells. For this, we separated the NCI-60 panel into PTGS2 positive (PTGS2POS, $n = 26$) and negative (PTGS2NEG, $n = 34$) according to their basal expression levels (Fig. 4c). In line with the mouse data, the vast majority of PTGS2POS but only a few PTGS2NEG cancer cell lines upregulated COX-2 transcription post-CTX treatment (Fig. 4b). Likewise, a prototypical ICD-inducer, doxorubicin, and a non-ICD drug, cisplatin, similarly induced PTGS2 (Fig. 4d). We also validated CTX-induced PGE$_2$ release in a PTGS2 positive human cell line but did not detect PGE$_2$ from a PTGS2 negative line (Supplementary Fig. 5).

We further explored whether there was an association with responsiveness to treatment, given the observed relationship with COX-2 upregulation and proliferation arrest in mouse cancer cells. For 3/5 of the CTX drugs, there was a significant inverse correlation between the sensitivity of the cancer cells to the drug (expressed as the mean 50% growth inhibitory concentration, GI$_{50}$) and PTGS2 induction (Fig. 4e; f, Supplementary Fig. 6a, b). More sensitive cancer cell lines, with a lower GI$_{50}$, were those which typically displayed enhanced PTGS2 expression after treatment. Therefore, COX-2/PGE$_2$ axis activation by CTX-treated cancer cells is a prevalent phenomenon conserved in mice and humans, which occurs irrespective of the tissue of origin and antineoplastic agent used, but is reliant on baseline cancer cell expression of COX-2 and sensitivity to drug treatment. CTX-induced COX-2 upregulation modifies the inflammatory response to dying tumor cells in vivo. Cancer cell-derived PGE$_2$ is a major regulator of the intratumoral inflammatory response$^{27-29}$. Thus, we next sought to determine the impact of increased COX-2/PGE$_2$ activity on the inflammatory features of CTX-treated cancer cells in vivo. In order to specifically dissect the inflammatory potential of CTX-treated cancer cells without confounding effects of CTX treatment on non-tumor cells, we modified a well-described experimental system in which cells are injected into the peritoneal cavity of wild-type animals to study the acute inflammatory response to necrotic cells44,45. The inflammatory features of the injected cells can then be examined by monitoring their ability to recruit immune cells or measuring the levels of cytokines and chemokines in the peritoneal cavity (Fig. 5a, Supplementary Fig. 7). CTX pre-treatment profoundly altered the proportion and absolute number of immune cells recruited 18 h post-injection when compared with PBS-injected mice or mice receiving an equal number of untreated live 4T1 cells (Fig. 5b–d). Both cisplatin- and 5-FU-treated cells promoted the accumulation of neutrophils and/or monocytes, but to dissimilar degrees consistent with the different kinetics of cell death and COX-2/PGE$_2$ upregulation induced by these two drugs (Fig. 1a, b, 2a, Supplementary Fig. 2a, b). The number of other immune cell subsets, including peritoneum-resident leukocyte subsets like large peritoneal macrophages (LPM) and B cells were not noticeably increased compared with mice receiving untreated live 4T1 cells (Fig. 5b).

We next compared the effect of the ICD-inducing agent doxorubicin with that of cisplatin, a non-ICD inducer. Both drugs significantly and similarly increased the recruitment of neutrophils and monocytes compared with untreated 4T1 cells (Fig. 5d, Supplementary Fig. 8). Together, these data suggested that the acute inflammatory features of cancer cells are profoundly altered by CTX treatment. Specifically, treatment with either ICD or non-ICD inducing CTX drugs stimulated a rapid accumulation of myeloid cells, including both neutrophils and monocytes, from the bloodstream.

To assess the contribution of the COX-2/PGE$_2$ axis to the inflammatory phenotype of CTX-treated cells, we compared the effect of injecting cisplatin- or 5-FU-treated COX-2WT and COX-2KO 4T1 cells. Remarkably, CTX-treated COX-2KO cells attracted far fewer neutrophils or monocytes than their parental COX-2-expressing counterpart, similar to untreated 4T1 cells (Fig. 5e), exposing a major contribution of cancer cell-intrinsic COX-2 activity. To determine whether the heightened inflammatory properties of CTX-treated 4T1 cells resulted from enhanced COX-2/PGE$_2$ activity selectively post-treatment, we used COX-2REST 4T1 cells, which have the pathway constitutively active but do not upregulate it post-CTX treatment (Fig. 1h, i). Pre-treated with either cisplatin or 5-FU, COX-2REST cells were
less potent than COX-2^WT^ cells at recruiting neutrophils and monocytes and largely phenocopied CTX-treated COX-2^KO^ cells (Fig. 5e). Together, these results indicated that transcriptional upregulation of COX-2 by cancer cells after CTX, and not their basal expression, largely accounts for their ability to stimulate inflammatory myeloid cell recruitment.

Using the same experimental setup, we next determined the expression levels of multiple cytokines, chemokines and growth factors in the peritoneal lavage (Fig. 5a). In keeping with the changes in leukocyte composition, we found that the levels of IL-6 were markedly and selectively increased following the injection of cisplatin- or 5-FU-treated COX-2^WT^ cells relative to untreated
Fig. 4 Chemotherapy drugs with different mechanisms of action increase COX-2 mRNA levels in human cancer cells with high basal COX-2 expression. a Composition of the total NCI-60 panel of human cancer cell lines by tumor type (left) and frequency of tumor types defined as PTGS2pos (right). b Heatmap showing log2 fold change in PTGS2 expression in 60 human tumor cell lines treated with different chemotherapeutics for 2, 6 h or 24 h. Cell lines are ranked from highest to lowest PTGS2 expression at baseline, those defined as PTGS2pos are shown in blue and PTGS2neg in pink. A cross is shown where data were not available. c Baseline expression of PTGS2 per cell line, segregated into PTGS2pos (n = 26) or PTGS2neg (n = 34). d Log2 fold change in PTGS2 expression over time for PTGS2pos or PTGS2neg cell lines treated with cisplatin or doxorubicin. *p < 0.05, **p < 0.01 as determined by mixed-effects analysis with Sidak’s multiple comparisons test. e Dot plot showing log2 fold change in PTGS2 at 24 h against log10 GI50 values for cisplatin. Cell lines with available GI50 data (n = 38) were separated into quartiles with the most sensitive (red) to most resistant (dark blue) shown. Spearman’s rank correlation coefficient r and p value is shown. f Log2 fold change in PTGS2 values over time for cell lines treated with cisplatin, grouped based on GI50 quartile. Most sensitive Q1 (red, n = 8), Q2 (orange, n = 10), Q3 (light blue, n = 10), most resistant Q4 (dark blue, n = 10). Log2 fold change and GI50 data were downloaded from the NCI Transcriptional Pharmacodynamics Workbench34. Source data and exact p values are provided as a Source Data file.

COX-2WT, CTX-treated COX-2KO or COX-2REST 4T1 cells (Fig. 5f–h). A similar effect was noticed for CCL2, CCL4, CCL5, CCL7 and CXCL10 with cisplatin-treated cells and IL-1a with 5-FU-treated cells. CXCL1, a major neutrophil chemoattractant, and other inflammatory mediators were detected in the peritoneal cavity, however their levels were either not changed or only moderately different between groups (Fig. 5h). CCL3, CCL2, CCL5, CXCL5, CXCL9, GM-CSF, IL-1β, IL-10, IL-12p40, IFNa, IFNy, TNF and VEGF-A were also measured but undetectable within the lavage. Finally, addition of CXB during pre-treatment of COX-2WT 4T1 cells with 5-FU reduced the levels of IL-6 and IL-1α detected in the peritoneum (Fig. 5g, h), further exposing the major contribution of COX-2 enzymatic activity for the inflammatory properties of CTX-treated cancer cells in vivo. We conclude that transcriptional upregulation of COX-2 and subsequent PGE2 release following CTX-treatment is a key determinant of the cellular and molecular features underpinning the inflammatory response induced by dying cancer cells in vivo.

Co-administration of a COX-2 inhibitor is essential to drive tumor control during ICB and CTX combination therapy. The above results, alongside our recent findings showing that oral administration of CXB can improve the efficacy of ICB38, prompted us to evaluate if pharmacological COX-2 inhibition would improve the efficacy of CTX and ICB combinations. To this aim, we tested the effect of systemic CTX and ICB treatment, using cisplatin and PD-1 blockade, with or without daily oral CXB treatment in mice bearing 4T1 tumors (Fig. 6a). These tumors are very poorly immunogenic and typically unresponsive to cytotoxic therapy or ICB39,40,41,46,47. Accordingly, cisplatin monotherapy led to a modest delay in tumor growth compared with control-treated mice, with no further benefit derived from the addition of PD-1 blockade (CTX + ICB; Fig. 6b). Dual combinations of CTX and CXB or ICB and CXB failed to induce significant tumor control compared with vehicle-treated mice (Fig. 6b). Crucially, however, triple therapy combining CTX, ICB and COX-2 inhibition uniquely impaired tumor progression, with approximately 30% of mice exhibiting tumor shrinkage two weeks following treatment (Fig. 6b, c).

To test if COX-2 inhibition would enhance the efficacy of chemoimmunotherapy in a different tumor model, using a different CTX drug, we treated CT26 colorectal tumors using 5-FU, commonly used in first-line CTX regimens for the treatment of colorectal cancer (Supplementary Fig. 9a). In line with our recent findings30, this tumor model responded vigorously to ICB + CXB, and dual 5-FU and ICB combination also led to a potent response (Supplementary Fig. 9b–d). Yet, mice treated with the triple CTX + ICB + CXB therapy achieved more and faster rejections, with half of the mice having fully rejected their tumor two-weeks post-treatment start (Supplementary Fig. 9b–d). Together, these data demonstrated that concomitant COX-2 inhibition enhances the response to chemoimmunotherapy regimens in models sensitive or refractory to the dual combination.

We next analyzed the effect of treatment on the composition of circulating and tumor-infiltrating immune cells in 4T1 tumor-bearing mice (Supplementary Fig. 10a–c). In the blood, the frequency of neutrophils was lower in CTX + ICB + CXB-treated mice relative to vehicle- or CTX + ICB-treated animals (Fig. 6d). Conversely, the percentage of CD4+ and CD8+ T cells was highest in mice treated with the triple combination (Fig. 6d). In agreement with these systemic effects, the frequency and number of tumor-infiltrating neutrophils and monocytes were reduced in mice receiving the triple therapy (Fig. 6e, f). Additionally, the fraction of intratumoral CD8+ and CD4+ T cells was higher in CTX + ICB + CXB-treated mice compared with CTX + ICB- or control-treated mice, with no clear difference in their number per gram of tumor across any of the groups (Fig. 6g, h). Immune phenotypic analysis of tumor-infiltrating T cells revealed that co-administration of CXB to the combination of CTX and ICB boosted the activation of CD8+ and CD4+ T cells, which displayed significantly higher production of IFNγ and surface expression of the activation marker CD44 (Fig. 6i, j). This immune-infiltrate analysis is consistent with the impaired tumor growth following the triple therapy being immune-mediated. In line with this, the triple combination failed to induce tumor control in immunodeficient NSG mice (Supplementary Fig. 10d, e). Altogether, these data support a model whereby COX-2 inhibition, by altering the inflammatory properties of CTX-treated cancer cells, limits the recruitment of myeloid cells, favors T cell effector function and thereby immune-mediated tumor control when in combination with both CTX and ICB.

Finally, we devised an experimental system to model adjuvant treatment, as TNBC patients often experience tumor relapse following resection of the primary tumor18. We implanted 4T1 cells, considered a TNBC experimental model, orthotopically into the mammary fat pad and two weeks later surgically removed the tumors when they were approximately 300 mm3 (Fig. 7a). Using this approach, we monitored the efficacy of chemoimmunotherapy with or without COX-2 inhibition in controlling tumor re-emergence at the primary site and the metastatic spread of 4T1 cells starting treatment post-tumor resection (Fig. 7a). Crucially, the triple combination significantly prevented tumor regrowth at the surgery site, whereas tumors in CTX + ICB treated mice reoccurred at a similar rate to control treated mice (Fig. 7b). Furthermore, the growth of relapsing tumors was greatly impaired only in triple combination-treated mice compared with vehicle-treated animals, with the dual CTX + ICB combo showing lower and delayed efficacy (Fig. 7c). Lastly, both control and CTX + ICB-treated mice exhibited a comparable number of macroscopic lung metastases, significantly higher than mice treated with CTX + ICB + CXB (Fig. 7d). Together, these results suggest that the triple combination of COX-2 inhibition
with cytotoxic therapy and immunotherapy can improve outcomes by limiting tumor relapse and metastasis in an adjuvant setting of TNBC, where improvements in therapeutic outcome are urgently required.

Discussion

Chemotherapy and radiotherapy constitute pillars of oncology treatments and remain mainstream treatment modalities for patients with unresectable cancers. While the value of their direct tumor debulking effects is unquestionable, how cytotoxic therapies influence the inflammatory response and tumor-specific immunity post-treatment is still disputed. Multiple preclinical and clinical studies support a beneficial immune-mediated anti-cancer effect, largely attributed to the induction of ICD, whereby dying or dead tumor cells stimulate T cell-immunity against dead cell-associated antigens. **In sharp contrast, abundant evidence exists indicating cytotoxic therapy can paradoxically fuel**...
tumor progression post-treatment, in part through provoking a wound-healing response or pro-tumorigenic cancer inflammation. Given our recent work uncovering a dominant role for cancer cell-intrinsic COX-2/PGE2 expression in tumor inflammation and immune evasion, we here investigated the impact of the pathway in the inflammatory response induced by cytotoxic therapy-treated cancer cells.

By analyzing multiple cancer lines, we found that enhanced COX-2 expression and PGE2 synthesis is an active process that occurs universally across murine and human cancer cells, provided that the COX-2 gene is already being transcribed. High throughput screening of COX-2 transcription using a compound library of 1280 market-approved drugs, combined with quantitative real-time live cell-imaging, revealed that all classes of CTX agents induce Ptgs2 transcriptional upregulation while concomitantly arresting tumor cell growth, independently of their mechanism of action. Curiously, anthelmintic drugs also showed a similar phenomenon, with these compounds reported to induce cell death by interfering with microtubule dynamics, the mechanism of action of mitotic spindle poison CTX drugs such as paclitaxel. These observations suggest there might be a widely conserved mechanism responsible for the acute upregulation of Ptgs2 transcription, such as early apoptotic mediators, DNA damage response or stress pathways. Indeed, our analysis of human cancer cell lines also indicates that upregulation of COX-2 expression is coupled with sensitivity to drug treatment.

Dissecting the mechanistic basis for the increase in PGE2 synthesis in cancer cells during cytotoxic therapy, in contrast to previous reports, we found the rise in PGE2 synthesis preceded caspase-3 proteolytic activity. Moreover, caspase inhibition which has been shown to drive augmented production of inflammatory mediators by dying cells via NF-kB activation, did not increase PGE2 production. Instead, PGE2 levels post-treatment strictly depended on the transcriptional upregulation of Ptgs2, and accurately correlated with its basal expression levels in mouse and human cancer cells. Our analysis excluded a requirement for the transcription factors Sp1 and AP-1, but implicated a partial role for NF-kB and C/EBPβ, as well as caspase activity and ROS in strengthening Ptgs2 induction following CTX treatment. Given how prevalent this phenomenon was across mouse and human cells, and the variety of treatments that could trigger it, we speculate that this response can be induced through multiple distinct pathways acting in concert on the complex regulatory promoter sequence upstream of the COX-2 gene. Indeed, similar to what has been reported for constitutive COX-2 expression across different tissues, our findings highlight the need for a more complete understanding of COX-2 transcriptional regulation in inflammation and cancer.

The compound library screen also uncovered different kinetics of cell growth arrest and apoptotic induction by multiple CTX drugs. Interestingly, the halt in proliferation largely coincided with the point at which Ptgs2 upregulation began, with no drug in the wide-ranging library greatly inducing Ptgs2 without diminishing tumor cell proliferation. Crucially, induction of Ptgs2 transcription happened broadly for cytotoxic treatments irrespective of whether they can trigger ICD. Anthracyclines, prototypical ICD-inducers, upregulated Ptgs2 transcription similar to drugs not linked to the induction of T cell immunity post-treatment, such as cisplatin or gemcitabine. Of note, a recent study reported that gemcitabine can be converted into an ICD-inducing drug through PGE2 blockade. Our data are in line with these results, but argue that activation of the COX-2/PGE2 pathway occurs irrespective of the cytotoxic therapy agent used and as long as there is prior pathway activity. This finding has important implications for guiding treatment selection in the clinic, as tumors with low or no basal cancer cell COX-2 expression might not show acute increased COX-2 activity. COX-2 upregulation post-cytotoxic therapy has been reported in NSCLC patients but requires further investigation across different cancer types. Currently available datasets of tumor specimens from patients treated with conventional CTX or radiotherapy mostly correspond to tumor biopsies or resections obtained sometime after and not during or immediately post-treatment, where we speculate evidence of pathway induction should be examined. Additionally, other cell types within the tumor microenvironment can express high levels of COX-2, such as neutrophils and fibroblasts. Whether non-tumor cells exposed to cytotoxic therapy also upregulate the COX-2/PGE2 axis and influence the inflammatory response warrants further investigation.

By CRISPR-mediated ablation of COX-2 or genetic engineering of its transcriptional activity by swapping the regulatory promoter region controlling Ptgs2 transcription, we were able to expose the selective and profound impact of augmented COX-2 activity on the inflammatory properties of CTX-treated cancer cells in vivo. Modifying an experimental system to enable interrogation of the effects of CTX drugs on cancer cells without the pleiotropic and confounding effects of CTX on non-tumor cells, we found that treatment-induced upregulation of the COX-2 pathway drives acute recruitment of circulating neutrophils and monocytes. Equally, CTX-treated cancer cells led to a marked increase in inflammatory cytokines and chemokines, which depended on the transcriptional upregulation of COX-2 specifically post-CTX. Pharmacological inhibition of COX-2 enzymatic activity with a selective inhibitor prevented the increase in these soluble factors, confirming the dominance of COX-2 activity for the inflammatory effects of the dying cancer cells. Interestingly, 5-FU-treated cells were consistently more potent at recruiting neutrophils in this experimental system compared with cisplatin-treated cells. We observed that 5-FU-treated cells exhibited slower cell death

Fig. 5 Chemotherapy-induced COX-2 expression modulates the inflammatory response to dying tumor cells. a 4T1 tumor cells were pre-treated with cisplatin (50 µM) or doxorubicin (10 µM) for 4 h or 5-FU (100 µM) for 24 h. Cells were injected intraperitoneally (i.p.) and the next day the peritoneal lavage was collected for analysis. b Frequency (left panel) and total number (right panel) of live CD45+ immune cells present in mice injected with PBS (-), untreated, cisplatin or 5-FU treated 4T1 cells. LPM = large peritoneal macrophages, SPM = small peritoneal macrophages. n = 4 (cisplatin) or 5 (PBS, untreated, 5-FU) mice per group. c, d Total number of neutrophils and monocytes recruited by i.p. injection of untreated or CTX-treated 4T1 cells. n = 4 (cisplatin) or 5 (untreated, 5-FU, doxorubicin) mice per group. e Total number of neutrophils and monocytes recruited by i.p. injection of untreated or CTX-treated 4T1 COX-2−/−, COX-2−/+ or COX-2+/+ cells. n = 4 (untreated COX-2−/−, COX-2−/+ or COX-2+/+ cells) mice per group. f, g Concentrations of soluble factors measured within the peritoneal lavage in mice injected with untreated, cisplatin treated cells (f) or 5-FU treated cells (g). WT + CXB group received cells pre-treated with 5-FU in the presence of the COX-2 inhibitor celecoxib (CXB, 5 µM). n = 5 mice per group. h Heatmaps showing detectable soluble factors within the peritoneal lavage. Rows represent z-score normalized ng/ml values, each column represents one mouse, n = 5 mice per group. Data in b–g are represented as mean ± SEM of individual mice, ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as determined by one-way ANOVA with Tukey’s multiple comparisons test or Kruskal–Wallis test with Dunn’s multiple comparisons test for non-parametric data. Source data and exact p values are provided as a Source Data file.
Fig. 6 COX-2 inhibition is essential for tumor control during chemotherapy and immunotherapy combination treatment.

a Mice were inoculated subcutaneously with 4T1 tumor cells and treatment began on day 5-6 post-injection when tumor volumes were 94.0 ± 4.6 mm³ (mean ± SEM).

b Waterfall plot showing percent change in tumor size two weeks post-treatment start, each bar represents one mouse (n = 6 (ICB + CXB), 7 (CTX + CXB), 16 (CTX + ICB), 18 (control and CTX) or 27 (CTX + ICB + CXB) per group, pool of four independent experiments).

c Growth curves of tumors in mice treated with control (n = 10), CTX + ICB (n = 10) and CTX + ICB + CXB (n = 12), pool of two independent experiments. Arrow indicates treatment start, mice received CXB or vehicle treatment bidaily.

d Analysis of circulating leukocytes in peripheral blood two weeks on-treatment in mice treated with control (n = 5), CTX + ICB (n = 5) and CTX + ICB + CXB (n = 7), representative plot shown of two independent experiments. Statistical significance for neutrophils, monocytes, CD8⁺ and CD4⁺ T cells is shown.

e-j Analysis of tumor-infiltrating leukocytes three weeks on-treatment in mice treated with control (n = 10), CTX + ICB (n = 10) and CTX + ICB + CXB (n = 12), pool of two independent experiments. Frequency and absolute number normalized per gram of tumor for neutrophils (e), monocytes (f), CD8⁺ (g) and CD4⁺ T cells (h). Frequency of IFNγ⁺ (i) and CD44⁺ (j) of CD8⁺ and CD4⁺ T cells. Data in e-j are represented as mean ± SEM, ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as determined by one-way ANOVA with Tukey’s multiple comparisons test or Kruskal-Wallis test with Dunn’s multiple comparisons test for non-parametric data (b, e-j) or two-way ANOVA (c).

Source data and exact p values are provided as a Source Data file.
kinetics in vitro, undergoing proliferative arrest for a longer time period with enhanced PGE2 release compared with cisplatin-treated cells. We therefore speculate the strength of the inflammatory response depends upon the kinetics of COX-2 upregulation and cell death induced by different cytotoxic agents.

Whether the observed COX-2-mediated inflammatory effects of CTX-treated dying cancer cells promote or hinder CTX efficacy cannot be easily inferred. PGE2 can have pleiotropic and often contrasting effects on the immune system52,53, recently implicating both in subverting anti-tumor immunity27 and ICB, and their approved use in various settings, including as first-line treatments in TNBC, urothelial and NSCLC patients11,12,14,18. Indeed, trials of certain combinations of CTX and ICB have recently failed to confirm benefit despite their accelerated approval status50, further highlighting the need for better combinations in the clinic. Our data are consistent with a model whereby dying cancer cell-derived PGE2 contributes to cytotoxic therapy failure by hindering the cancer-restraining T

Fig. 7 COX-2 inhibition alongside chemotherapy and immunotherapy combination treatment controls tumor relapse and limits metastatic spread in an adjuvant surgery model. a Mice were inoculated orthotopically with 4T1 tumor cells, tumors surgically removed two weeks post-inoculation and treatment began the day after surgery. b Fraction of tumor-free mice over time (defined as local regrowth at orthotopic site <50 mm3). Control (n = 24), dual combination (n = 11) or triple combination (n = 28). c Growth profiles of relapsing tumors for mice in (b). d Number of macroscopic lung nodules in control (n = 21), dual combination (n = 7) or triple combination (n = 16) treated animals analyzed within 30 days of surgery (pool of four independent experiments). Data in (c, d) are represented as mean ± SEM, ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001 as determined by Log-rank (Mantel-Cox) test (b), two-way ANOVA (c) and Kruskal-Wallis test with Dunn’s multiple comparisons test (d). Source data and exact p values are provided as a Source Data file.
cell-mediated immune response that follows treatment. Lastly, the triple combination of CTX, ICB, and CXB uniquely improved tumor regrowth and metastasis following resection of orthotopic breast tumors. This further supports the rationale for inhibiting the COX-2/PGE2 pathway alongside immunotherapy and cytotoxic therapy to improve the efficacy of this combination in both adjuvant and advanced disease settings.

Methods

Mice. All procedures involving animals were performed in accordance with the PDCDC3AAF license approved by the Animal Welfare and Ethical Review Bodies (AWEBB) of the CRUK Manchester Institute and in accordance with National Home Office regulations under the Animals (Scientific Procedures) Act 1986. Female wild-type BALB/c mice aged 6-12 weeks (Envigo) and NSG mice aged 12 weeks (Charles River) were housed under specific pathogen-free conditions and in individually ventilated cages. Tumor volumes did not exceed 1500 mm³, the guideline size in a Comet of the National Cancer Research Institute as stipulated by the AWEBB.

Cell lines and cell culture. All cancer cell lines were cultured under standard conditions in RPMI-1640 (Lonza) supplemented with 1% Penicillin/Streptomycin (Thermo Fisher Scientific) and 10% fetal bovine serum (FBS; Life Technologies) and routinely confirmed to be mycoplasma-free (VetScreen® GeM eGFP Mycoplasma Detection System) and mouse cell virus-free (QIAamp DNA Mini extraction kit, Qiagen) by qPCR. CT26 COX-2KO cells were generated by CRISPR/Cas9-mediated genome engineering as previously described. 4T1 COX-2KO cells were generated by ribonuclease (RN)-mediated CRISPR/Cas9-mediated editing (Integrated DNA Technologies) following manufacturer’s protocol. To produce the RNP complex, 1.5 pmol Cas9 enzyme was combined with 1 pmol crRNA:trRNA duplex (COX-2 crRNA: 5'-AGATGACTGCC-CAGCTCCT-3') in Opti-MEM media (Gibco) and incubated at room temperature for 5 min. The RNP complex was then combined with Lipofectamine RNAiMAX (Invitrogen) and Opti-MEM and incubated at room temperature for 20 min. 4T1 cells were trypsinized, washed with PBS and 4 x 10⁶ cells were added to the transfection mixture in 96-well plates. Cells were incubated for 48 h before being trypsinized and re-plated by single cell limiting dilution to obtain single cell clones. Lack of COX-2 expression and reduced PGE2 production was verified by western blotting using anti-COX-2 specific antibodies (Cell Signaling Technology) and by measuring the concentration of PGE2 in cell supernatants by ELISA (R&D Systems). CT26 cells were harvested in the exponential phase of growth by trypsinization and cultured in complete RPMI on ice. The surface of tumor samples were dried with paper towels and 200 µl saline s.c. and were placed in a heated cage and monitored until they recovered.

In vivo treatments. Cisplatin (Sigma, P4394) was diluted in saline to a concentration of 1 mg/ml and 100 µl (5 mg/kg) administered intraperitoneally (i.p.) once weekly for two doses. 5FU (30 mg/kg, for two doses) 0.05 ml/25 g Buprecare was administered intraperitoneally (i.p.) once weekly for two doses. Lyophilized celocobis (CXB, LC Labs) was washed twice using a fine balance and dissolve in 10% DMSO (1 part, Sigma)/PEG400 (5 parts, Sigma)–dH₂O at a concentration of 3 mg/ml. 200 µl (30 mg/kg) was given by oral gavage once or twice daily (see figure legends for details). Control treated mice received 100 µl saline or PBS once weekly for 2 doses. Buprecare was administered 200 µl twice weekly for 6 doses and vehicle (60/40 ratio of DMSO:PEG400) by oral gavage once or twice daily.

Peritoneal lavage: flow cytometry and analysis of soluble factors. 4T1 tumor cells were treated with 50 µl cisplatin or 10 µM doxorubicin for 4 h or 100 µM 5-FU for 24 h, harvested by trypsinization (Sigma), washed 3 times with cold PBS (ThermoFisher) and centrifugation steps at 300 x g for 5 min at 4°C, filtered through a 70 µm cell strainer (ThermoFisher) and resuspended in cold PBS. 5 x 10⁶ total cells were injected i.p. into mice in 200 µl PBS. Approximately 18 h later, mice were washed by collecting the peritoneal fluid and collected by a 350 µl pipette. Peritoneal lavage was massaged and a 25 G needle used to collect the lavage into tubes on ice. Recovered lavage volumes were recorded, cells pelleted by centrifugation (300 x g for 5 min at 4°C) and resuspended in FACs buffer (PBS containing 1% FBS and 0.01% sodium azide) before being washed through a 70 µm cell strainer and saturated with anti-Cd16/32 (1:250, clone 93, Biolegend) 5 min before staining. Cell viability was determined by Aqua LIVE/Dead-405 nm staining (Invitrogen). Samples were stained with combinations of the following antibodies: CD45-V605 (Clone 30-F11, 1:200, #130140), CD11b-V585 (Clone M1/70, 1:300, #114.15.2, 1:300, #47-5321-82), CD274 (Clone MIH5, 1:100, #12-5982-82), CD19-PE (Clone 1D3, 1:400, #557399), Ly6C-V421 (Clone H14.1, 1:400, #120832), Ly6G-FITC (Clone IA/8, 1:400, #128064), F4/80-PE-Cy7 (Clone BM10, 1:800, #1213114), CD11c-AF700 (Clone N418, 1:200, #117280), MCH1-I-A-I-E-Per-CpCy5.5 (Clone M5/114.15.2, 1:300, #107626), CD49b-APC-Cy7 (Clone DX5, 1:500, #108910), CD3e-PE-CF594 (Clone 145-2C11, 1:200, #1018348) from eBioscience, Biologend or BD Biosciences. Live cell counts were calculated from the acquisition of a fixed number (5000) of 10 µm latex beads (Beckman Coulter) mixed with a known volume of cell suspension and counts were normalized by the recovered lavage volume. Spectral overlap was calculated using live cells and cells were acquired on a Fortessa X-20 (BD Biosciences). For analysis of soluble factors, the cell suspension and protein concentration were normalized by the recovered lavage volume. Spectral overlap was calculated using live cells and cells were acquired on a Fortessa X-20 (BD Biosciences) and normalized by the recovered lavage volume. After cell acquisition, the peritoneal lavage was analyzed using mouse Simplex ProcLx kits (Thermo Fisher Scientific) multiplexed to measure different cytokines, chemokines & growth factors. Samples were analyzed on a MAGPIX (Lumienx).

Flow cytometry of peripheral blood and tumor-infiltrating leukocytes. For analysis of peripheral blood leukocytes, 50 µl peripheral blood was taken from mice via tail-vein into an EDTA-coated capillary and then 1.5 ml tubes on ice. Samples were centrifuged at 300 x g for 6 min at 4°C to separate plasma and cells, FACs buffer was added to the cell pellet and cell suspensions were moved to a 96-well V-bottom plate for antibody staining. Red blood cells were lysed using ACK buffer for 1 min (Gibco). For analysis of tumor-infiltrating leukocytes, tumors were collected into complete RPMI on ice. The surface of tumor samples were dried with paper and cells were collected into a centrifuge tube containing RPMI and Collagenase IV (200 U/ml, Walthoming Biological) and DNase I (0.2 mg/ml, Roche), then mincing using scissors. The C-tubes were placed in a GentleMACS OCTO Dissociator (Miltenyi Biotech), and tumors disaggregated with 2 rounds of the automated protocol m_inj_Tumor_02_01. Dissociated tumoral cells were incubated for 30 min at 37°C and disrupted using a pipette tip. The C-tubes were centrifuged (300 x g for 5 min at 4°C) and pellets resuspended in cold complete RPMI before being filtered through a 70 µm cell strainer and pelleted. Cell suspensions were resuspended in FACs buffer. FC receptors were saturated with anti-CD16/32 (1:250, clone 93, eBioscience) 5 min before staining. Cell viability was determined by Aqua LIVE/Dead-405 nm staining (Invitrogen). Tumor or blood samples were stained with combinations of the following antibodies:

CD45-V605 (Clone 30-F11, 1:200, #130140), CD11b-V785 (Clone M1/70, 1:300, #114.15.2, 1:300, #47-5321-82), Ly6G-PE-CF594 (Clone IA/8, 1:400, #120832), Ly6C-FITC (Clone IA/8, 1:400, #127648), Ly6G-FITC (Clone IA/8, 1:400, #127648), F4/80-PE-Cy7 (Clone BM10, 1:800, #1213114), CD3e-PE-CF594 (Clone 145-2C11, 1:200, #1018348), CD19-PE-CF594 (Clone 1D3, 1:400, #557399), CD49b-APC-Cy7 (Clone DX5, 1:500, #108910), CD3e-PE-CF594 (Clone 145-2C11, 1:200, #1018348).
Treatment of cancer cells in vitro

1. **latex beads (Beckman Coulter) mixed with a known volume of cell suspension.**
2. **NATURE COMMUNICATIONS**
3. **(2022) 13:2063 | https://doi.org/10.1038/s41467-022-29606-9 | www.nature.com/naturecommunications
4. **#105610), CD3**
5. **NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29606-9 ARTICLE**
6. **before the staining and non-specific binding of intracellular epitopes was blocked by pre-incubation of cells with 2% Normal Rat Serum (ThermoFisher). Live cell counts were calculated from the acquisition of a fixed number (5000) of 10 µm latex beads (Beckman Coulter) mixed with a known volume of cell suspension.**
7. **Spectral overlap was calculated using live cells or VersaComp antibody capture beads (Beckman Coulter). Cells were acquired on a Novocyte (ACEA).**

Western blotting

NP40 cell lysis buffer (Invitrogen) supplemented with PMSF (Sigma) and cComplete protease inhibitor cocktail (Roche) was added directly to PBS-washed cells in a 6-well plate on ice, cells were scraped to collect lysates. Lysates were centrifuged at 21000 x g for 20 min at 4°C and protein quantified using the Pierce BCA Protein Assay kit (Thermo Fisher Scientific). 25 µg of protein was loaded and separated on 10% SDS-PAGE gels. Gels were stained with Coomassie (Bio-Rad) before being transferred to nitrocellulose membranes by the Trans-Blot Turbo system (Bio-Rad) and membranes blocked with Intersect PBS blocking buffer (Li-COR) for 1 h at room temperature. Membranes were incubated overnight at 4°C in Intersect blocking buffer containing vector specific antibodies. Following incubation with goat anti-rabbit and goat anti-mouse secondary antibodies against COX-2 (D5H5, 1:1000, #12282), β-Tubulin (D3U1W, 1:2000, #86298), NFKB p65 (D1E14E1, 1:2000, #8242), α-tubulin (IBL, 1:1000, #12282) and β-Actin (D6A8, 1:4000, #8457) all from Cell Signaling Technology, α-CFβ (H-7, 1:500, #5c-7962) from Santa Cruz Biotechnology or Sp1 (1:1000, #NB600-332) from Novus Biologicals. Membranes were washed with PBS containing 0.1% Tween-20 and 10% milk and incubated with secondary antibodies IRDye 680RD Goat Anti-Mouse IgG and IRDye 800CW Goat Anti-Rabbit IgG (both 1:1000, Li-COR, #926-68070 and #926-32211) for 1 h at room temperature. Membranes were again washed with PBS containing 0.1% Tween-20 and protein bands were visualized using the Odyssey CLX system (Li-COR) and analyzed using Image Studio Lite (v.5.2.5).

Incucyte live-cell imaging

Imaging of cells was performed using an Incucyte S3 imaging system (Essen BioScience). Imaging was performed using 10x magnification, capturing 4 fields of view per well of a 96-well plate every 2 h. For kinetics of cell death, caspase-3/-7 green reagent (Essen BioScience) or Propidium Iodide (PI, Sigma) was added directly into the cell culture medium at final concentrations of 2.5 µM and 1 µg/ml respectively. For measuring cell cycle progression, 100X green reagent (Thermo Fisher Scientific) was added directly into the cell culture medium at a final concentration of 5 µM.

Quantitative real-time PCR (qPCR)

Total RNA was extracted from cells using RLT lysis buffer (QiAGEN) and purified using RNeasy RNA isolation kit (QIA-GEN). RNA was quantified using a NanoDrop One (ThermoFisher) and cDNA was synthesized from reverse transcription using TaqMan Gen. MicroRNA PCR Array (Applied Biosystems) and quantitative real-time PCR was performed using TaqMan probes (Applied Biosystems) using a Q5 fast real-time PCR system (Applied Biosystems). Data were analyzed with the ∆∆CT method. TaqMan probes used were: Hprt (NM_003824_0.5), Psg2 (NM_004873_7.4), Hb (NM_004461_190), HIF1 (HIF2#8082095_9) and PTGS2 (HIF3#8013355_9).

PrimeFlow RNA assay

4T1 cells were treated with 100 µM 5-FU for 24 h, trypsinized and collected into 96-well V-bottom plates for staining. Detection of Psg2 mRNA was performed using PrimeFlow RNA assay kit (Thermo Fisher Scientific) with a 1 type 1 probe set (Alexa Fluor 647) following manufacturer’s instructions. Cells were stained with Alexa LIVE/Dead-405 nm (Invitrogen) prior to fixation and probe hybridization. Gapdh mRNA was detected using a type 1 probe set (Alexa Fluor 488). Cells were acquired on a Fortessa X-20 (BD Biosciences).

Compound library screen.

4T1 COX-2 GFP reporter cells were seeded in black wall 384-well plates (Greiner) at a density of 2000 cells per well in 30 µl complete RPMI. Only the inner 240 wells were used per plate, with the outer two rows and columns filled with 30 µl PBS. Cells were left to adhere overnight and the next day, the 240 wells were filled with 100 µM 5-FU or 100 µM 5-FU followed by 24 h of treatment. A 25 µl volume was dispensed using an Echo liquid handling machine (LabCyte). The 384-well plates with cells were inverted over a source plate and compounds dispensed using acoustic energy to transfer 30 nl of compound into the cell culture medium, for a final concentration of 10 µM in 30 µl DMSO (0.3%) was run as a negative control and 100 µM 5-FU as a positive control, both dispensed in triplicate across each individual 384-plate in the upper left, middle and bottom right wells (total of nine DMSO or 5-FU control wells per plate) to account for potential intra- and inter-plate variation. Plates were imaged using an Incucyte S3 live-cell imaging system at 10x magnification with one image taken per well every 2 h over a 72 h period. A maximum of 6 plates were run at one-time, therefore to cover the total compound library three separate runs were performed over the course of two weeks. Anti-neoplastic agents were re-run in a subsequent screen to confirm the obtained results. To analyse the data, analysis settings were defined as described below and the average change in fluorescence of cell clusters was calculated with the mean of all 4000 objects across the image/well used to generate the mean intensity value per well. Raw mean intensity and percent confluency data were exported and used for downstream analysis.

Analysis of the NCI-60 human cancer cell line dataset

Transcriptomic data collected from untreated control and CTX-treated cells at 2 h, 6 h and 24 h were downloaded from NCI Gene Expression Omnibus database through the GEO reference series GSE114526 related to the NCI Translational Pharmacodynamics Workbench (NCI TPW)34. In accordance with the NCI TPW, gene expression fold changes are de-identified as the relative difference in log2 expression between treated and corresponding untreated cells at each time-point. Log10 GI50 data de-identified by Sanger sequencing and co-transfected with the retroviral envelope vector pVSV-G into the viral packaging cell line GP2-293 (Takara Bio) with Lipofectamine 2000 (Invitrogen). 48 h post-transfection, the supernatant was used to transduce 4T1 cells and plates centrifuged at 1200 g for 90 min at 32°C to enhance transduction efficiency. Transduced cells were re-plated in a 90 mm dish in the presence of 300 µg/ml G418 (Sigma) for 72 h.

Compound library screen.

4T1 COX-2 GFP reporter cells were seeded in black wall 384-well plates (Greiner) at a density of 2000 cells per well in 30 µl complete RPMI. Only the inner 240 wells were used per plate, with the outer two rows and columns filled with 30 µl PBS. Cells were left to adhere overnight and the next day, the 240 wells were filled with 100 µM 5-FU or 100 µM 5-FU followed by 24 h of treatment. A 25 µl volume was dispensed using an Echo liquid handling machine (LabCyte). The 384-well plates with cells were inverted over a source plate and compounds dispensed using acoustic energy to transfer 30 nl of compound into the cell culture medium, for a final concentration of 10 µM in 30 µl DMSO (0.3%) was run as a negative control and 100 µM 5-FU as a positive control, both dispensed in triplicate across each individual 384-plate in the upper left, middle and bottom right wells (total of nine DMSO or 5-FU control wells per plate) to account for potential intra- and inter-plate variation. Plates were imaged using an Incucyte S3 live-cell imaging system at 10x magnification with one image taken per well every 2 h over a 72 h period. A maximum of 6 plates were run at one-time, therefore to cover the total compound library three separate runs were performed over the course of two weeks. Anti-neoplastic agents were re-run in a subsequent screen to confirm the obtained results. To analyse the data, analysis settings were defined as described below and the average change in fluorescence of cell clusters was calculated with the mean of all 4000 objects across the image/well used to generate the mean intensity value per well. Raw mean intensity and percent confluency data were exported and used for downstream analysis.

Analysis of the NCI-60 human cancer cell line dataset

Transcriptomic data collected from untreated control and CTX-treated cells at 2 h, 6 h and 24 h were downloaded from NCBIs Gene Expression Omnibus database through the GEO reference series GSE114526 related to the NCI Translational Pharmacodynamics Workbench (NCI TPW)34. In accordance with the NCI TPW, gene expression fold changes are de-identified as the relative difference in log2 expression between treated and corresponding untreated cells at each time-point. Log10 GI50 data de-identified by Sanger sequencing and co-transfected with the retroviral envelope vector pVSV-G into the viral packaging cell line GP2-293 (Takara Bio) with Lipofectamine 2000 (Invitrogen). 48 h post-transfection, the supernatant was used to transduce 4T1 cells and plates centrifuged at 1200 g for 90 min at 32°C to enhance transduction efficiency. Transduced cells were re-plated in a 90 mm dish in the presence of 300 µg/ml G418 (Sigma) for 72 h.
cytometry standard (fcs) files were analyzed using FlowJo v10.8.0 (Tree Star Inc.). Incucyte images were analyzed using Incucyte software GUI v2020C Rev1 (Essen BioScience). Statistics were calculated with GraphPad Prism and values expressed as mean ± SEM. Data were analyzed with the following tests (see figure legends for details): Unpaired two-tailed Student’s t-test, Log-rank (Mantel-Cox) test, one-way ANOVA tests adjusted for multiple comparisons using Tukey’s test, Kruskal-Wallis test with Dunn’s multiple comparisons test for non-Gaussian distributed data, two-way ANOVA or mixed-effects model analysis with Sidak’s multiple comparison A p value < 0.05 (⁎p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001) was considered significant. Exact p values are provided in the Source Data file.

Reporting summary. Further information on research development is available in the Nature Research Reporting Summary linked to this article.

Data availability. The NCI-60 human cancer cell publicly available data used in this study are available in the NCBI Gene Expression Omnibus database under accession code GSE166436. Source data are provided with this paper. The relevant data supporting the findings in this study are available in the Article, Supplementary Information, or Source Data file. Source data are provided with this paper.

Received: 16 July 2021; Accepted: 19 March 2022; Published online: 19 April 2022

References.

1. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. *Science* **359**, 1350–1355 (2018).
2. Rodriguez-Ruiz, M. E., Vitale, I., Harrington, K. J., Melero, I. & Galluzzi, L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. *Nat. Immunol.* **21**, 120–134 (2020).
3. Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. *Nat. Rev. Clin. Oncol.* **17**, 725–741 (2020).
4. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. *Nat. Rev. Immunol.* **17**, 97–111 (2017).
5. Giampazolias, E. et al. Mitochondrial permeabilization engages NF-kB-dependent anti-tumour activity under caspase deficiency. *Nat. Cell Biol.* **19**, 1116–1129 (2018).
6. Yatim, N. et al. RIPK1 and NF-kB signaling in dying cells determines cross-priming of CD8+ T cells. *Science* **350**, 328–334 (2015).
7. Zelenay, S. & Reis e Sousa, C. Adaptive immunity after cell death. *Trends Immunol.* **32**, 227–228 (2013).
8. Cubas, R. et al. Chemotherapy combines effectively with anti-PD-L1 treatment and can augment antitumor responses. *J. Immunol.* **201**, 2273–2286 (2018).
9. Ariyan, C. E. et al. Robust antitumor responses result from local chemotherapy and CTLA-4 blockade. *Cancer Immunol. Res.* **6**, 189–200 (2018).
10. Pirscher, C. et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. *Immunity* **44**, 343–354 (2016).
11. Salas-Benito, D. et al. Paradigms on immunotherapy combinations with chemotherapy. *Cancer Discov.* **11**, 1353–1367 (2021).
12. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. *N. Engl. J. Med.* **378**, 2078–2092 (2018).
13. West, H. et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMPower130): a multicentre, randomised, open-label, phase 3 trial. *Lancet Oncol.* **20**, 924–937 (2019).
14. Galky, M. D. et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor210): a multicentre, randomised, placebo-controlled phase 3 trial. *Lancet Oncol.* **39**, 1547–1557 (2020).
15. Savas, P. & Loi, S. Expanding the role for immunotherapy in triple-negative breast cancer. *Cancer Cell* **37**, 623–624 (2020).
16. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. *N. Engl. J. Med.* **382**, 810–821 (2020).
17. Schmid, P. et al. Atezolizumab plus nab-paclitaxel as first-line treatment for previously untreated, locally advanced or metastatic triple-negative breast cancer (IMPassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Oncol.* **21**, 44–59 (2020).
18. Narayan, P. et al. FDA approval summary: atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. *Clin. Cancer Res.* **26**, 2284–2289 (2020).
Acknowledgements
This work was supported by a Cancer Research UK Institute Award (C5759/A20971 and A27412). F. Bonavita received additional funding from an EMBO advanced fellowship (aALT-638-2108) and C.P. Broomley from the NIHR Manchester Biomedical Research Centre. We thank colleagues in the CRUK Manchester Institute Core facilities (Biological Resource Unit, Molecular Biology, Computational Biology, Histology, Flow Cytometry and Visualisation, Irradiation and Analysis) for their support. Schematics in this manuscript were created using graphics from BioRender.com.

Author contributions
C.R.B. designed and conducted experiments, analyzed data and wrote the manuscript. V.S.P designed, supervised and conducted experiments and analyzed data. A.M. and E.B. supervised, conducted experiments and analyzed data. S.C.D.C. and M.A.K. helped perform experiments. S.Z. conceived and supervised the study, analyzed data, and wrote the manuscript. All co-authors reviewed and edited the manuscript.

Competing interests
Outside this current work, S.Z. reports a grant from Ono Pharmaceutical. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29606-9.

Correspondence and requests for materials should be addressed to Santiago Zelenay.

Peer review information Nature Communications thanks Hideyuki Yanai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.