In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators

Jennifer L. Franks
The University of North Carolina at Chapel Hill

Raquel C. Martinez-Chacin
The University of North Carolina at Chapel Hill

Xianxi Wang
The University of North Carolina at Chapel Hill

Rochelle L. Tiedemann
Van Andel Research Institute

Thomas Bonacci
The University of North Carolina at Chapel Hill

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.pacific.edu/cop-facarticles

Part of the *Chemistry Commons*

Recommended Citation

Franks, J. L., Martinez-Chacin, R. C., Wang, X., Tiedemann, R. L., Bonacci, T., Choudhury, R., Bolhuis, D. L., Enrico, T. P., Mouery, R. D., Damrauer, J. S., Yan, F., Harrison, J. S., Major, M. B., Hoadley, K. A., Suzuki, A., Rothbart, S. B., Brown, N. G., & Emanuele, M. J. (2020). In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. *PLoS Biology, 18*(12), DOI: 10.1371/journal.pbio.3000975
https://scholarlycommons.pacific.edu/cop-facarticles/835

This Article is brought to you for free and open access by the All Faculty Scholarship at Scholarly Commons. It has been accepted for inclusion in College of the Pacific Faculty Articles by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.
Authors
Jennifer L. Franks, Raquel C. Martinez-Chacin, Xianxi Wang, Rochelle L. Tiedemann, Thomas Bonacci, Rajarshi Choudhury, Derek L. Bolhuis, Taylor P. Enrico, Ryan D. Mouery, Jeffrey S. Damrauer, Feng Yan, Joseph S. Harrison, M. Ben Major, Katherine A. Hoadley, Aussie Suzuki, Scott B. Rothbart, Nicholas G. Brown, and Michael J. Emanuele

This article is available at Scholarly Commons: https://scholarlycommons.pacific.edu/cop-facarticles/835
In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators

Jennifer L. Franks1,2, Raquel C. Martinez-Chacin1, Xianxi Wang2, Rochelle L. Tiedemann3, Thomas Bonacci2, Rajarshi Choudhury2, Derek L. Bolhuis1, Taylor P. Enrico1,2, Ryan D. Mouery1,4, Jeffrey S. Damrauer1,2, Feng Yan2, Joseph S. Harrison5, M. Ben Major6, Katherine A. Hoadley2,4, Aussie Suzuki7, Scott B. Rothbart1,2, Nicholas G. Brown1,2*, Michael J. Emanuele1,2*

1 Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 2 Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 3 Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America, 4 Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 5 Department of Chemistry, University of the Pacific, Stockton, California, United States of America, 6 Department of Cell Biology and Physiology, Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri, United States of America, 7 McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, Wisconsin, United States of America

* nbrown1@med.unc.edu (NGB); emanuele@email.unc.edu (MJE)

Abstract

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.

Introduction

Regulated protein degradation is central to cell and organismal physiology and plays a particularly important role in proliferation. In eukaryotes, protein degradation is controlled largely by...
The anaphase-promoting complex/cyclosome (APC/C) is a 1.2-MDa, multi-subunit E3 ligase and essential cell cycle regulator. APC/C utilizes 2 coactivators, Cdc20 and Cdh1, which directly bind substrates, recruiting them to the E3 complex [2]. APC/C^{Cdc20} becomes active in mid-mitosis and promotes the metaphase to anaphase transition. APC/C^{Cdh1} becomes active in late mitosis and remains active until the end of G1, during which time it prevents S-phase entry [3]. Thus, APC/C^{Cdc20} and APC/C^{Cdh1} play opposing roles, the former promoting cell cycle progression in mitosis and the latter inhibiting cell cycle progression in G1.

In addition to its role in normal cell cycles, APC/C dysfunction has been implicated in disease. Cdh1 is a haploinsufficient tumor suppressor in mice and cooperates with the retinoblastoma protein to restrain proliferation [4–8]. Several oncogenic kinase cascades impinge on Cdh1 function, further supporting a role for APC/C^{Cdh1} in tumor suppression [9–11]. In addition, the APC/C subunit Cdc27 is mutated in cancer and associated with aneuploidy [12]. APC/C is also linked to inherited disorders that give a range of disease phenotypes, including microcephaly, cancer predisposition, and skeletal abnormalities [13,14].

Cdh1 and Cdc20 bind substrates through short, linear sequence motifs termed degrons. The most well-defined APC/C degron motifs are the KEN-box and D-box [15,16]. In addition, the binding of Cdc20 and Cdh1 to APC/C promotes a conformational change in the E3 that stimulates ligase activity [17]. This results in substrate poly-ubiquitylation by its 2 cognate E2 enzymes. UBE2C/UbcH10 deposits the first Ub monomers onto substrates and forms short free linear chains, whereas UBE2S elongates poly-Ub chains [18–21].

Most known APC/C substrates are linked to cell cycle processes, including mitotic progression, spindle function, and DNA replication. The paramount importance of APC/C in cell cycle and non-cell cycle processes, and its dysfunction in disease, highlights the importance of systematically defining substrates, whose regulation (or dysregulation) will likely contribute to proliferation and disease phenotypes. Nevertheless, barriers exist to the identification of APC/C substrates, as well as most other E3s. E3-substrate interactions are dynamic, and binding often triggers substrate proteolysis. Additionally, the abundance of most substrates is low, and for APC/C, most targets are cell cycle regulated. Furthermore, since APC/C is a massive complex with many substrates, the relative binding stoichiometry to each individual substrate is low. Finally, degron sequences are short and occur vastly across proteomes, making it difficult to predict substrates.

We developed a simple in silico approach to identify potential APC/C targets. We took advantage of common features among known substrates, namely, their transcriptional regulation during cell cycle and the presence of a degron motif. These features were super-imposed onto the human proteome, enriching for known substrates and suggesting previously undescribed targets.

This analysis revealed a role for APC/C in chromatin biology. We validate several substrates involved in chromatin dynamics, highlighting a previously underappreciated role for APC/C in chromatin regulation. We further define the mechanisms of ubiquitylation for ubiquitin-like with PHD and RING finger domains 1; Ub, ubiquitin; WB, western blotting; GEO, Gene Expression Omnibus.

The ubiquitin (Ub) system. E3 Ub ligases provide substrate specificity and facilitate the transfer of Ub onto substrates. The formation of poly-Ub chains on substrates provides a signal that often targets substrates to the proteasome for degradation [1].

Competing interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: NGB is a consultant for Cullgen, Inc.

Abbreviations: APC/C, anaphase-promoting complex/cyclosome; colP, co-immunoprecipitation; DMEM, Dulbecco’s Modified Eagle Medium; PBS, fetal bovine serum; FL, full-length; GO, gene ontology; GPS, Global Protein Stability Profiling; IP, immunoprecipitation; MDS, multidimensional scaling; STY, serine, threonine and tyrosine; TTS, transcription termination sites; UHRF1, ubiquitin-like with PHD and RING finger domains 1; Ub, ubiquitin; WB, western blotting; GEO, Gene Expression Omnibus.
suggest that cell cycle–regulated protein degradation helps organize the epigenetic landscape during proliferation. This suggests a potential mechanistic link contributing to changes in the chromatin landscape observed between proliferating and non-proliferating cells [32,33]. We predict that altering APC/C function could promote changes in the histone and DNA modification landscape and that these effects could contribute to the biochemical and phenotypic features of diseases, including cancer and neurological disorders.

Results

Identification of APC/C substrates

To identify human APC/C substrates, we first performed FLAG immunoprecipitations (IP) from asynchronous HEK-293T cells expressing amino-terminal-tagged FLAG-Cdh1 or an empty vector and analyzed precipitated proteins by mass spectrometry (S2 Data). Several APC/C complex components and known substrates, including Rrm2, Kif11, Claspin, and cyclin A, were enriched in Cdh1 pulldowns. Compared with a previously established dataset [34], we identified 15 out of 53 known substrates. However, hundreds of proteins were enriched over controls and many known substrates scored weakly. For example, a single spectral count was observed for the substrate Kif22/KID [35,36]. The prevalence of non-specific interactors and other non-substrate-binding proteins confounded our ability to prioritize these data to identify new substrates.

We considered computationally identifying substrates based on features common among substrates. APC/C binds substrates most often through D- and KEN-box degron motifs. The minimal D-box motif (R-x-x-L) is present in most human proteins and insufficient as a prediction tool. The KEN-motif is found in approximately 10% of human proteins (2,206; S3 Data), and several D-box-regulated substrates also contain a KEN-motif, including Securin and Cdc6 [37,38]. In addition, the gene expression of most APC/C substrates oscillates during the cell cycle [39]. We cross-referenced the KEN-motif containing proteins against a set of 651 proteins whose mRNAs scored in at least 2 cell cycle mRNA profiling studies [40–43]. Overlapping the 2,206 KEN-motif containing proteins with 651 transcriptionally controlled genes produced a set of 145 proteins, which represent known and putative APC/C substrates (Fig 1A and S3 Data).

We compared our in silico analysis with 2 previously curated datasets, 1 containing 53 known APC/C targets [34] and a second containing 33 specifically KEN-dependent APC/C substrates [16]. When compared with these lists of 53 and 33 substrates, our dataset captured 26 and 22 of them, respectively, the latter representing an enrichment of more than 140-fold, compared with what would be expected by chance (Fig 1B). We compared both our Cdh1 IP/MS dataset and in silico analysis to several other studies that identified APC/C substrates, interactors, proteins degraded at mitotic exit, or proteins ubiquitylated in mitosis (S4 Data) [34,44–49]. Our in silico analysis identified the most KEN-dependent substrates relative to these studies (Fig 1C and S4 Data). When compared to the set of 53 substrates, which includes both D- and KEN-box-dependent substrates, our dataset captured 26 out of 53 known substrates, despite not focusing on D-box substrates. Combining the in silico predictions with our Cdh1-pulldown proteomics data, we captured 31 out of 53 substrates.

Among the 145 computationally identified known and potential substrates, gene ontology (GO) analysis showed a strong enrichment for processes linked to various aspects of cell division (Fig 1D). Whereas the analysis of cell cycle genes expectedly enriched for GO terms related to cell division (Fig 1D), these same terms were more significantly enriched when the analysis was restricted to those cell cycle genes that encode proteins containing a KEN-motif. Manual curation demonstrated that nearly half of the proteins we identified (70 of 145) have
well-established roles in cell cycle. These were subclassified into the following subcategories: cytoskeleton and motors, centromere-kinetochore, APC/C and spindle checkpoint, cytokinesis, mitotic entry, cell cycle transcription, cohesion and condensation, and DNA replication (Fig 1E). Among these 70 proteins, 50% have literature evidence for regulation by APC/C, highlighting our enrichment for APC/C substrates (Fig 1E; shown in magenta). All 145 proteins, their known function, subcategory, KEN-box sequence motif with flanking sequence, aliases, and citations describing regulation by APC/C are detailed in S3 Data.

Regulated degradation of chromatin factors

Unexpectedly, our dataset revealed several proteins involved in chromatin regulation (Fig 2A) and an enrichment for GO processes related to chromatin (Fig 2B). The dataset includes readers and writers of histone posttranslational modifications, including the lysine acetyltransferases, PCAF/KAT2B and NCOA3/KAT13B, the lysine methyltransferase MLL2/KMT2D, the chromatin reader and histone Ub ligase UHRF1, and the mitotic histone H3 kinase Aurora B (Figs 2A and 1E). We identified proteins involved in chromatin assembly and structure, including CHAF1B, a component of the CAF-1 nucleosome assembly complex; TTF2, a Swi2/Snf2 family member and DNA-dependent ATPase; KI-67, which prevents chromosome aggregation in mitosis and regulates histone posttranslational modifications; and proteins associated with cohesion and condensation such as SMC4 and NIPBL (Fig 1E). We also identified proteins involved in DNA damage repair.

To validate potential substrates, we developed an in vivo APC/C activation assay that is amenable to analysis of endogenous or exogenously expressed proteins and which is similar to approaches described elsewhere [50]. U2OS cells were synchronized in mitosis with the microtubule poison nocodazole. After harvesting cells by mitotic shake-off, CDK1 was inactivated with either the CDK1-specific inhibitor RO-3306 or pan-CDK inhibitor Roscovitine, driving cells out of mitosis and triggering APC/C activation and destruction of substrates, including FoxM1, NUSAP1, and cyclin B (Fig 2C and S1 Fig) [51].

Using a combination of exogenous expression and endogenous protein analysis, we examined the levels of chromatin-related proteins not previously shown to be APC/C substrates. Using this assay, we detected a decrease in the levels of several writers of histone modifications, including UHRF1, PCAF, TTF2, and NCOA3 (Fig 2C and S1A and S1B Fig). We observed a decrease in the levels of the chromatin assembly factors NASP and CHAF1B as well as the RNA processing proteins LARP1 and LARP7 (Fig 2C and S1A and S1B Fig). All of these have been previously identified as ubiquitylated in proteomics studies by an unknown E3 ligase [52–56].

Since the role of APC/C in chromatin regulation is not well established, we focused our attention on the potential regulation of chromatin proteins by APC/C. We determined the ability of a subset to bind Cdh1 by co-immunoprecipitation (coIP). CHAF1B, PCAF, NCOA3, and TTF2 interact with Cdh1 by coIP in 293T cells (Fig 2D–2G). Accordingly, the levels of
Chromatin regulation by APC/C

A. Chromatin chaperone and organization
- CHAF1B (CAF-1)
- NME1 (TTK1)
- HELLS
- MKI67 (Ki-67)
- TLK2
- TOP1
- TOP2A
- TTF2
- ZBTB11

B. KEN + CCR: GO Biological Process

C. RO-3306 and Roscovitine

D. Input, HA IP
- Myc-CHAF1B
- HA-Cdh1

E. Input, HA IP
- FLAG-PCAF
- HA-Cdh1

F. Input, HA IP
- Myc-NCOA3
- HA-Cdh1

G. Input, HA IP
- Myc-TTF2
- HA-Cdh1

H. Mitotic block and release

- CHAF1B
- TTF2
- NCOA3
- Cyclin B
- GAPDH

DNA damage repair
- BRCA1
- CLASPIN
- DCLRE1C (ARM140)
- EXO1
- H2A
- NCOA3 (KAT13B)
- PCAF (KAT2B)
- UHRF1
- USP1
- WEHI1 (AND1)

RNA regulation and processing
- CLK4
- DZIP3
- LARP1
- LARP7
- Pcn11
- PNN
- RNPS1

Chromatin readers and writers
- AURORA B
- BRCA1
- CLASPIN
- DCLRE1C (ARM140)
- EXO1
- H2A
- H2B
- H3
- NCOA3 (KAT13B)
- PCAF (KAT2B)
- UHRF1
- USP1
- WEHI1 (AND1)
endogenous CHAF1B, TTF2, and NCOA3 oscillate during the cell cycle in U2OS, analyzed following a nocodazole-induced block in mitosis and then released into the cell cycle (Fig 2H). PCAF levels did not decrease at mitotic exit in U2OS (S1C Fig) but do decrease at mitotic exit in HeLa cells (S1C Fig), suggesting a potentially complex regulation. Finally, we purified recombinant TTF2 and found that APC/C could trigger its ubiquitylation in vitro (S2 Fig). A table of all proteins tested in these assays and their validation is shown in S5 Data. Taken together, this analysis uncovered new APC/C substrates and a role for APC/C in controlling chromatin regulators.

UHRF1 regulation by APC/C_{Cdh1}

To further understand the function of APC/C in chromatin biology, we pursued UHRF1, a key chromatin regulator that reads and writes histone modifications. UHRF1 associates with the DNA methyltransferase DNMT1 and is required for DNA methylation [26]. UHRF1 has also been implicated in replisome assembly [57,58] and its phosphorylation oscillates during the cell cycle [59].

We examined UHRF1 protein levels following a mitotic block and release. Immunoblotting for UHRF1 and other cell cycle markers showed that UHRF1 protein levels decrease during mitotic exit in HeLa S3, HeLa, and U2OS cell lines (Fig 3A and S3A and S3B Fig). In each cell line, UHRF1 levels remain low in G1 and then reaccumulate starting around G1/S-phase, based on the expression of other cell cycle markers, such as cyclin E and cyclin A, and then further increasing throughout the subsequent G2/M phase.

We performed several assays to assess whether UHRF1 is regulated by APC/C. We analyzed UHRF1 in the aforementioned in vivo APC/C activation assay. U2OS cells were arrested in mitosis and then treated with RO-3306. We observed a decrease in UHRF1 that was partially mitigated by the proteasome inhibitor, MG-132, indicating that the reduction is dependent on the proteasome (Fig 3B). In addition, transient small interfering RNA (siRNA) depletion of Cdh1 (Fzr1 mRNA transcript) augmented UHRF1 protein levels (Fig 3C). Conversely, ectopic expression of increasing concentrations of FLAG-Cdh1 led to a dose-dependent decrease in both exogenous and endogenous UHRF1 protein levels (Fig 3D). Moreover, Cdh1-depleted cells undergoing mitotic exit showed delayed endogenous UHRF1 degradation, comparable with well-established APC/C substrates (Fig 3E). Additionally, utilizing a cell-free human extract system that recapitulates APC/C substrate degradation, we observed UHRF1 levels
A. Mitotic block and release

Time (hours)	AS	0	2	4	6	8	10	12	14	16
UHRF1										
Cdhl										
Cyclin E										
Cyclin A										
Cyclin F										
pH3-S10										
GAPDH										

HeLaS3

B. Time with drug (hr)

- MG132
- RO-3306 (CDK1 inh.)

Time with drug (hr)	0	1	1	1
UHRF1				
Cyclin B				
GAPDH				

C. siFF, siFZR1

- UHRF1
- Cdhl
- GAPDH

D. Myc-UHRF1

- FLAG-Cdhl

- Myc-UHRF1
- UHRF1
- FLAG-Cdhl
- GAPDH

E. Time (hours)

siFF	siFZR1
0	1
2	4

- UHRF1 (long exp.)
- UHRF1 (short exp.)
- GAPDH
- Cdhl
- Cdc20
- FoxM1
- Aurora A
- Cyclin B
- pH3-S10
- GAPDH

F. siFF, siUbe2S

siFF	siUbe2S
0	40
60	120

- UHRF1
- Securin
- Ube2S
- Vinculin
decrease similar to Securin, a well-established APC/C substrate, and this degradation depends on the E2-conjugating enzyme UBE2S (Fig 3F). We also examined UHRF1 levels in cells that were first synchronized in G1 by a mitotic block and release and then treated with the pharmacological APC/C inhibitor proTAME for 90 min (S3C Fig). This led to an increase in endogenous UHRF1 levels. Together, these data suggest that APC/C controls UHRF1 in vivo.

UHRF1 ubiquitylation by APC/C

UHRF1 is a multi-domain protein (Fig 4A) that exhibits multivalent binding with chromatin through histone and DNA binding domains [24,60,61]. Additionally, UHRF1 is a RING domain E3 that ubiquitylates histone H3 [22,23,25]. To determine whether UHRF1 is a direct APC/C-Cdh1 substrate, we tested its binding to Cdh1. Endogenous Cdh1 protein interacted with endogenous UHRF1 by co-IP in mitotic synchronized cells (Fig 4B). Next, we examined binding by expressing HA-Cdh1 and Myc-UHRF1 in HEK-293T cells. Cells were treated with the proteasome inhibitor MG-132 prior to harvesting to prevent UHRF1 degradation. Myc-UHRF1 was enriched in the HA-Cdh1 pull-down, and HA-Cdh1 was enriched in the Myc-UHRF1 pull-down (Fig 4C and 4D).

Next, we purified and fluorescently labeled recombinant, bacterially expressed, full-length (FL) UHRF1 (FL-UHRF1∗, where the * denotes fluorescently labeled protein). We found that FL-UHRF1∗ was ubiquitylated in an APC/C- and Cdh1-dependent manner using an entirely in vitro recombinant system (Fig 4E). Multiple, high molecular weight ubiquitylated forms are observed using either wild-type Ub or methylated-Ub, the latter of which cannot form poly-Ub chains. This indicates that APC/C ubiquitylates multiple lysines in UHRF1 (Fig 4E and S4A and S4B Fig).

Since UHRF1 can auto-ubiquitylate itself through its RING domain, we confirmed that its ubiquitylation is APC/C dependent. First, we purified a version of APC/C selectively missing the APC2 WHB domain and the APC11 RING domain, which are required to recruit its initiating E2 UBE2C (designated ΔRINGΔWHB) [62,63]. This version of APC/C was unable to ubiquitylate UHRF1 (Fig 4F).

Next, we purified and fluorescently labeled a truncated version of UHRF1 that contains the Linker, PHD, and SRA domains (termed (LPS)), spanning amino acids 287–715 (Fig 4A). The LPS fragment omits 3 potential APC/C D-box degron motifs, as well as the RING domain, excluding auto-ubiquitylation. A D-box motif remains in the highly structured SRA domain but is unlikely to be accessible as a degron motif [64].

Significantly, LPS-UHRF1∗ is more robustly ubiquitylated in an APC/C- and Cdh1-dependent manner compared to FL-UHRF1∗ (Fig 4E and 4F). Moreover, UHRF1 ubiquitylation is fully inhibited by the APC/C inhibitor Emi1 (Fig 4G). Ubiquitylation of UHRF1 is initiated by
UHRF1 binding and ubiquitylation by APC/C depends on KEN degron.

(A) Schematic of UHRF1 domain structure with location of KEN degron in both FL and truncated LPS UHRF1. (B) Endogenous IP of UHRF1 with Cdh1 in cells at pro-metaphase arrest and during mitotic exit. HeLa S3 cells were synchronized by nocodazole block and release as described previously. Cells were collected at 0 h and 1 h after release, flash frozen prior to α-Cdh1 IP, and analyzed by immunoblot. Data representative of n = 5 experiments. (C) coIP of HA-Cdh1 with Myc-UHRF1 in transiently transfected HEK-293T cells treated with proteasome inhibitors prior to harvesting and α-Myc IP. Input equal to 1% of IP, here and below. Data representative of n = 4 experiments. (D) coIP of Myc-UHRF1 with HA-Cdh1 in transiently transfected HEK-293T cells treated with proteasome inhibitors prior to harvesting and α-HA IP. Data representative of n = 3 experiments. (E) Ubiquitylation reactions with APC/C depletion of UBE2C, FL, UHRF1* or LPS UHRF1*, and WT Ub. UHRF1 was detected by fluorescence scanning (* indicates fluorescently labeled protein). Data representative of n = 3 experiments. (F) Ubiquitylation reactions similar as in (D) but using 2 variants of APC/C: WT and catalytically dead APC/C, KENΔRINGωRINGω, a version of APC/C that can neither recruit nor activate its E2, UBE2C. UHRF1 was detected by fluorescence scanning. Samples were collected at 30 min. Data representative of n = 3 experiments. (G) Representative in vitro ubiquitylation reactions showing UBE2S-dependent chain elongation reactions of LPS UHRF1*. Titration of UBE2S: 0 μM, 0.1 μM (+), and 0.5 μM (++). The addition of E1α completely inhibited the reaction. UHRF1 was detected by fluorescence scanning. Samples were collected at 30 min. Data representative of n = 3 experiments. (H) coIP of HA-Cdh1 with Myc-UHRF1WT or Myc-UHRF1KENAAA in transiently transfected HEK-293T cells treated with proteasome inhibitors prior to harvesting and α-Myc IP. Data representative of n = 2 experiments. (I) Polyubiquitylation reactions of FL-UHRF1* and LPS-UHRF1* by APC/CΔcCdh1, UBE2C, and UBE2S. UHRF1 ubiquitylation by APC/CΔcCdh1 is dependent on the KEN degron motif (lane 4 in both gels). UHRF1 was detected by fluorescence scanning. Samples were collected at 30 min. Data representative of n = 3 experiments. (J) Dependence of UHRF1 ubiquitylation on phosphorylation state of the APC/C (referred to as pE-APC/C) and subsequent coactivator recruitment. The well-established APC/C substrates, Cyclin B (CycBWT) and Securin*, are ubiquitylated by either APC/CΔcCdh1 or APC/CΔcCdh1*, whereas UHRF1 is only ubiquitylated by APC/CΔcCdh1. Reactions were run in parallel. Collections taken at 1 h (for FL and LPS UHRF1*) and 30 min (for CycBWT* and Securin*). Ubiquitylated proteins were detected by fluorescence scanning. Data representative of n = 3 experiments. APC/C, anaphase-promoting complex/cyclosome; coIP, co-immunoprecipitation; FL, full-length; IP, immunoprecipitations; LPS, Linker, PHD, and SRA domains; Ub, ubiquitin; UHRF1, ubiquitin-like with PHD and RING finger domains 1; WT, wild-type.
immunoblotting for the APC/C substrates cyclin A, cyclin B, cyclin F, and Aurora A, which are degraded with normal kinetics (Fig 5B). Thus, the KEN-box regulates UHRF1 ubiquitylation in vitro and degradation in vivo. In addition, the mild overexpression of UHRF1 in these cells does not affect overall APC/C activity.

UHRF1 degradation and cell cycle progression

Since many APC/C substrates are linked to proliferative control, we examined the contribution of UHRF1, and its degradation by APC/C, to cell cycle. Consistent with prior reports, UHRF1 depletion using 3 independent siRNAs increased the fraction of cells in G1 phase (S5A Fig; [65]). To further investigate the role of UHRF1 in cell cycle, we examined mitotic
cells following UHRF1 depletion. We observed an approximately 3-fold increase in cells with misaligned chromosomes in metaphase and anaphase in UHRF1 depleted cells using 2 independent siRNA oligonucleotides (S5B Fig). Surprisingly, there was no statistically significant difference in the overall percentage of mitotic cells.

To determine the role of UHRF1 degradation in cell cycle, we examined cell cycle markers in cells expressing UHRF1WT or UHRF1KEN:AAA. In HeLa cells traversing the cell cycle after synchronization at G1/S, following a double thymidine block and release, we found that the GFP-UHRF1KEN:AAA cells contain more of the G1/S regulator cyclin E (S6A Fig). This was also evident in cells that had been synchronized in mitosis and released into G1 (Fig 5B). This suggested that an inability to degrade UHRF1 in G1 alters cyclin E expression, a key driver of S-phase entry. UHRF1 depletion increased the percentage of G1 phase cells and expression of nondegradable mutant accelerated G1 progression. Together, these data suggested that UHRF1 might promote progression into S-phase and that a failure to degrade UHRF1 could shorten the duration of G1. To better address this possibility, we depleted endogenous UHRF1 with an shRNA targeting the UHRF1 3UTR [66]. Cells expressing GFP-UHRF1WT or GFP-UHRF1KEN:AAA were synchronized in mitosis, released into the cell cycle, and analyzed by immunoblot. Increased expression of GFP-UHRF1KEN:AAA is evident and consistent with its increased stability. Some residual degradation is evident in KEN-mutant expressing cells passing through G1-phase, which could be due to unrealized contributions from other degron sequences (see Discussion). Nevertheless, several markers of S-phase entry accumulate early in cells expressing GFP-UHRF1KEN:AAA compared with GFP-UHRF1WT. Both cyclin E and the G1/S transcription factor E2F1 are elevated at early time points following release from mitosis (Fig 6A). Elevated levels of cyclin E and E2F1 are evident in asynchronous RPE1-hTRET cells and to a lesser extent in asynchronous HeLa S3 cells, where cell cycle transcription is perturbed due to HPV oncoproteins (S6B and S6C Fig).

To analyze G1 duration, cells were release from a mitotic block and pulsed with EdU prior to harvesting for flow cytometry to determine the percent of cells that were in S-phase. GFP-UHRF1KEN:AAA expressing cells begin S-phase earlier than control cells (Fig 6B). Six hours after release into the cell cycle, 3.6% of control cells had entered S-phase, whereas 9.6% of GFP-UHRF1KEN:AAA expressing cells had started S-phase. Thus, a failure to degrade UHRF1 accelerates G1, indicating a key role for UHRF1 destruction in determining timing between the end of mitosis and start of DNA synthesis.

UHRF1 degradation and DNA methylation homeostasis

UHRF1 is required for DNA methylation maintenance [26]. To determine if stabilizing UHRF1 in G1 affects DNA methylation, we performed base-resolution DNA methylation analysis at approximately 850,000 unique human CpG loci spanning all genomic annotations and regulatory regions using the Infinium MethylationEPIC BeadChip (EPIC arrays, Illumina, Madison, Wisconsin) [67,68]. We compared parental U2OS cells and those expressing GFP-UHRF1WT or GFP-UHRF1KEN:AAA. Considering all probes, DNA methylation changes between parental, GFP-UHRF1WT, and GFP-UHRF1KEN:AAA were insignificant (Fig 7A). However, multidimensional scaling (MDS) of the top 50,000 variable CpG probes among all samples/replicates (agnostic of sample group) clustered experimental conditions (Fig 7B), indicating a unique and reproducible profile of methylation patterning.

We queried the GFP-UHRF1WT and GFP-UHRF1KEN:AAA samples for differentially methylated CpGs relative to the parental controls. Consistent with a previous report [29], expression of GFP-UHRF1WT and GFP-UHRF1KEN:AAA induced a comparable number of hypomethylation events (Fig 7C). Alternatively, GFP-UHRF1KEN:AAA induced approximately
2-fold more hypermethylated CpGs compared with GFP-UHRF1WT (Fig 7C). Analysis of differentially methylated CpG probes between GFP-UHRF1WT and GFP-UHRF1KEN:AAA revealed a 32% overlap in hypomethylated probes and a 17% overlap in hypermethylated probes (Fig 7D). Significantly, hypermethylated CpG probes in the GFP-UHRF1KEN:AAA...
expressing cells were 2.5-fold more abundant compared with GFP-UHRF1 WT, despite no significant change in hypomethylated CpG probes. Thus, the nondegradable form of UHRF1 induces site-specific DNA hypermethylation (Fig 7D).

The CpGs that were hypermethylated in GFP-UHRF1 KEN:AAA-expressing cells started with a higher methylation level than other categories and gained methylation due to expression of nondegradable mutant (Fig 7E). Enrichment analysis of the differentially methylated CpGs revealed that gene body annotations, including exons, introns, and transcription termination sites (TTS), were positively enriched for hypermethylation in GFP-UHRF1 WT and GFP-UHRF1 KEN:AAA sample groups. (E) DNA methylation levels of significantly hypermethylated (left) or hypomethylated (right) CpG probes between GFP-UHRF1 WT and GFP-UHRF1 KEN:AAA sample groups. (F) Enrichment bias analysis of significantly hypermethylated (left) or hypomethylated (right) CpG probes among genomic annotations and U2OS replication timing data. *p-value ≤ 1E−300 for positive enrichment of the feature by hypergeometric testing. GEO, accession GSE137913; MDS, multidimensional scaling; UHRF1, ubiquitin-like with PHD and RING finger domains 1; WT, wild-type.

Discussion
Identification of new E3 ligase substrates

APC/C is a core component of the cell cycle oscillator and mounting evidence points to its dysfunction in cancer and neurological disease. Here, we provide an unencumbered, annotated list of known and candidate KEN-dependent APC/C substrates. Our data highlight the importance of APC/C in various aspects of proliferative control and points to its potentially broader impact on unanticipated cellular processes, including chromatin organization.

Identifying E3 substrates remains technically challenging. Since E3-substrate interactions exhibit low stoichiometry, mapping substrates by defining interactors is difficult. In addition, Ub ligase substrates are often in low abundance. APC/C is inhibited throughout the cell cycle by myriad mechanisms [72], and the time when APC/C binds substrates coincides with when targets are being degraded and thus at their lowest abundance. This complicates many proteomics-based approaches. Alternative techniques for identifying E3 ligase substrates, including Global Protein Stability Profiling (GPS) and in vitro expression cloning, circumvent these challenges by measuring changes in substrate stability using fluorescent reporters or metabolic labeling with radioisotopes. These represent powerful tools for mapping E3 substrates [56, 73]. However, both approaches are laborious and time intensive, require significant technical
expertise, and depend on gene expression libraries, which are neither complete nor available to most laboratories. We bypass these challenges using a simple in silico approach based on publicly available information, which is simple, inexpensive, and easily repeated with different variables. While our approach shares some similarities with previous approaches, it improves upon those in its simplicity, expanded use of multiple cell cycle mRNA datasets, and inclusion of a degron motif in the search criteria [35,39,74]. Its success stems from the use of orthogonal filtering criteria, that is, unlinked features between mRNA and proteins. While our current approach was limited to substrates whose mRNAs are cell cycle regulated and proteins that contain a KEN-box degron, repeating this analysis with datasets capturing cell cycle protein dynamics, as they come available and more reliable, along with other known degrons, represents an interesting future approach. We predict that similar uses of unrelated properties could be leveraged for mapping targets of other enzymes such as kinases where defining substrates has proven similarly challenging. It is notable that degron sequences remain unknown for most Ub ligases, highlighting the importance of mechanistic studies in enabling systems-level discoveries.

Involvement of APC/C in chromatin regulation

Determining the enzymes and substrates in kinase signaling cascades has been instrumental in determining proliferative controls in normal cells, their responses to stress and damage, and disease phenotypes and treatments. Relatedly, decoding Ub signaling pathways involved in proliferation is likely to provide insight into enzyme function in normal cell physiology as well as in disease.

A major finding of this work is that numerous chromatin regulators are controlled temporally during proliferation by APC/C. Impairing the degradation of one such substrate, UHRF1, altered the timing of cell cycle events and changed global patterns of DNA methylation. Since numerous chromatin regulators are controlled by APC/C, we anticipate widespread, pleiotropic effects on chromatin in cells where APC/C activity is impaired, either physiologically or pathologically.

Our observations raise the possibility that dysregulation of the cell cycle machinery, as is seen in diseases such as cancer, could alter the chromatin environment. The discovery that many chromatin regulators are mutated in cancer, a disease of uncontrolled proliferation, together with our data, imply a bidirectional relationship between the chromatin landscape and the cell cycle oscillator. Consistent with the notion that dysregulation of APC/C controlled proteins could play important roles in determining the chromatin environment in disease, the mRNA expression of our 145 known and putative substrates strongly predict breast cancer aneuploidies and copy number variations (S7 Fig). This observation is not due solely to the selection of specific breast cancer subtypes since our gene signature is elevated in multiple breast cancer subtypes. Interestingly, the expression of this signature correlates with the CIN70 signature, which was previously developed based on gene expression in chromosomally unstable cancers [75]. We observed an extraordinary correlation between the CIN70 and our 145 gene signature in breast cancer (S7 Fig). This is remarkable since our signature was generated completely independent of gene expression in cancer and was instead derived, in part, by short sequence motifs on proteins.

Multiple lines of in vitro and in vivo evidence support the regulation of UHRF1 by APC/C during the cell cycle. However, UHRF1 mRNA expression is also regulated during the cell cycle. In fact, cell cycle–dependent transcription was an inclusion criterion for our in silico analysis since most known APC/C substrates are dynamically expressed in cycling cells. Accordingly, it remains difficult to assess the relative contributions of mRNA expression and
protein degradation to overall protein expression during cell cycle. It is also unknown if other ubiquitin ligases might control UHRF1 during cell cycle, as is the case for some APC/C substrates [76,77]. The overall contributions of mRNA expression or additional E3s to the dynamics of protein expression during cell cycle are unknown for most APC/C substrates. Others have sought to address these concerns for some APC/C substrates with live cell imaging of exogenous, transiently expressed, and fluorescently tagged proteins. For UHRF1, and many other APC/C substrates, these studies represent an area of future investigation.

APC/C_{Cdh1}, but not APC/C_{Cdc20}, ubiquitylates UHRF1 in vitro. This ubiquitylation is dependent on a KEN-box motif in UHRF1. Interestingly, there are several other potential D-box motifs in UHRF1 that could also contribute to APC/C binding, particularly since APC/C can bind D-box and KEN-box motifs simultaneously [15,63]. This UHRF1 ubiquitylation is notable because the Cdh1-bound form of APC/C is active both G1 and quiescent cells and is critical for restraining S-phase entry. Our findings suggest that impaired UHRF1 degradation promotes a premature G1/S transition. We propose that the proper degradation of UHRF1, and other chromatin regulators, serves to integrate growth factor-dependent proliferative decisions with the chromatin regulatory environment. This regulation could help explain the complex chromatin rearrangements observed in quiescent cells, where APC/C_{Cdh1} is active [32,33,78]. Further, APC/C controls key cell cycle transcriptional regulators, including the G2/M transcription factor FoxM1 and the repressor E2F proteins, E2F7 and E2F8 [77,79]. Thus, our data point to a higher-order role regulatory role for APC/C in gene regulation, by controlling transcription factors (i.e., FoxM1), transcriptional repressors (i.e., E2F7, E2F8), and chromatin modifiers. A few studies have also linked UHRF1 to DNA damage repair [80], and it is also possible that this role of UHRF1 contributes to altered cell cycles and the expression of cell cycle proteins in our assays.

Aberrant DNA methylation is a hallmark of cancer [81]. UHRF1 promotes DNA methylation maintenance, and too much or too little UHRF1 expression is detrimental to methylation stasis [26,29]. It is interesting to speculate that the redistribution of DNA methylation in disease could be caused, in part, by the aberrant stabilization of UHRF1, resulting from APC/C_{Cdh1} inactivation. In the future, it will be important to determine if oncogene activation acts through the APC/C to reorganize the chromatin landscape. Furthermore, determining Ub ligase substrates, like UHRF1, that might be dysregulated in pathological settings via altered degradative mechanisms could suggest therapeutic strategies to reverse their effects.

Materials and methods

Computational identification of putative APC/C substrates

Human proteins containing a KEN-box sequence (amino acid sequence K-E-N) were identified using the “Find a Sequence Match” feature on the Scansite web search platform (currently https://scansite4.mit.edu/4.0/#home). Proteins with cell cycle–regulated mRNA were curated from 4 independent cell cycle transcriptional studies [40–43]. The genes that scored in 2 or more of these screens were previously compiled in the supplemental data of Grant and colleagues [41]. Gene and protein name conversions were performed using the DAVID online tool (https://david.ncifcrf.gov/conversion.jsp). The overlapping set 145 proteins, which contain a KEN sequence and exhibit oscillating cell cycle–regulated mRNA expression, were identified. For all 145 proteins, we manually curated information on their alias, function, sequence flanking the KEN motif, and evidence for regulation by APC/C from various online databases and repositories, including UNIPROT, PubMed, and Genecards.

The set of 33 well-validated, KEN-containing human APC/C substrates was derived from [16]. Our own FLAG-Cdh1 IPs were compared with other APC/C substrate discovery efforts.
Singh and colleagues identified “clusters” of proteins whose levels changed at mitotic exit. For each cluster, they reported a top percentile, and for the clusters that most accurately revealed APC/C substrates [1–3], we compile their data in S4 Data in terms of which KEN-dependent substrates were identified. Their data from Cluster 1, which identified the most KEN-containing APC/C substrates, are shown in Fig 1C. Lafranchi and colleagues rank ordered proteins based on the degree of change from mitosis to G1, analyzed by proteomics. We curated their data to identify the cut-off point where the last KEN-dependent APC/C substrate was identified among their rank-ordered list. Since they provided no cut-off point, the data comparison in Fig 1C represents the best estimate of their ability to capture APC/C substrates.

Cell culture

HeLa, HeLa S3, U2OS, HEK-293T, RPE-1, and HCT116 cells were grown in 10% fetal bovine serum (FBS) with high glucose DMEM without antibiotics. Cell culturing utilized standard laboratory practices whereby cells were grown and incubated at 37°C containing 5% CO₂. Frozen cell stocks were stored under liquid nitrogen in 10% DMSO/90% FBS.

GFP-UHRF1_{WT} and GFP-UHRF1_{KENAAA} stable overexpression cells were generated by transducing HeLa S3, U2OS, and RPE-1-hTERT cell lines with pHAGE-GFP lentivirus that had been produced in HEK-293T cells. Infections were performed in the presence of 8-μg/mL polybrene for 48 h prior to antibiotic selection. Cells were selected for 5 to 7 days with 8 μg/mL (HeLa S3 and U2OS) or 10 μg/mL (RPE-1) Blasticidin. Lentiviral particles were produced by transfecting HEK-293T cells with Tet, VSVg, Gag/pol, and Rev viral packaging vectors together with the pHAGE-GFP lentiviral vectors using TransIT MIRUS (cat no. MIR 2700). Viral particles were collected 48 and 72 h after transfection and stored at −80°C prior to transduction.

To generate the rescue cell lines, the U2OS and HeLa S3 stable GFP-UHRF1_{WT} and GFP-UHRF1_{KENAAA} expression cell lines were transduced with previously described and validated pLKO.1 lentiviral vectors encoding either shControl or 3′ UTR targeting shUHRF1 [66], using 8 μg/mL polybrene to aid infection. After 48 h, cells were selected with 2-μg/mL Puromycin for 3 to 5 days. Viral particles were produced by transfecting HEK-293T cells with the pLKO.1 constructs and psPAX2 and pMD2.G packaging vectors using TransIT MIRUS, collected after 48 and 72 h as mentioned previously.

Mitotic block was induced by treating 25% confluent HeLa S3 cells with 2 mM thymidine for 24 h. After washing the plates 3 to 4 times with warm media and incubating in drug-free media for 3 to 4 h, cells were treated with 100 ng/mL nocodazole for 11 h prior to harvesting by mitotic shake-off. Samples were washed 3 or 4 times with warm media, counted, and replated for indicated time points.

To synchronize cells in G1/S, HeLa S3 were plated at 20% confluency prior to addition of 2 mM thymidine. After 16 h, cells were washed 3 times with warm media and left to incubate for 8 h before the second block in 2-mM thymidine for another 16 h. Cells were washed 3 times in warm media and collected at specific time points as they progressed through the cell cycle.

To transiently inactivate the APC/C, HCT116 or U2OS cells were treated with 15 μM proTAME (Thermo Fisher, Waltham, Massachusetts, cat no. I-440-01M), a pan-APC/C inhibitor [82], for 90 min prior to harvest and immunoblotting. Cells had been released from nocodazole-induced mitotic block for 90 min in drug-free media prior to addition of drug.

In vivo APC/C activation assay

A total of 70% to 80% confluent U2OS cells were transfected with the indicated plasmids for 24 h and then exchanged into fresh media. Alternatively, untransfected cells were used to
analyze endogenous proteins. After an 8-h incubation in fresh media following transfection, cells were treated with 250-ng/mL nocodazole for 16 h. Mitotic cells were isolated by shake-off, washed once in prewarmed media, counted, and divided equally among 15-mL conical tubes. Cells in suspension were treated with DMSO, RO-3306 (10 μM), Roscovitine (10 μM), or MG-132 (20 μM) for the indicated amount of time at 37˚C. Identical volumes of cells were removed from cell suspensions by pipetting, isolated by centrifugation, and frozen at −20˚C prior to processing for immunoblot.

Cell-free, G1 extract APC/C substrate degradation assay

UHRF1 degradation in G1 phase-synchronized HeLa S3 cell extracts was performed as described in [83] Briefly, confluent HeLa S3 cells were seeded to 25% confluence (3 million cells) in 15-cm plates. Next day, cells were transfected with 20 nM of control FF or 2 independent UBE2S siRNAs [18] using Lipofectamine RNAiMAX reagent (Life Technologies) according to the manufacturer’s protocol. After 8 h, 2 mM thymidine was added to the cell medium for 24 h, after which cells were washed with warm PBS once, twice with Dulbecco’s Modified Eagle Medium (DMEM), and released for 4 h before treatment with 100 ng/mL of nocodazole in DMEM for 11 h. To obtain a G1 phase population, cells were washed as described previously and released for 2 h before collection. Extract preparation was performed exactly as described [84,85]. The resulting G1 extracts were mixed in a 1:1 ratio with SB buffer and supplemented with energy mix and Ub to monitor APC/C substrate degradation. Reactions were incubated at 30˚C for the indicated times, quenched with equal volume of 2× SDS sample buffer, boiled, and analyzed by SDS-PAGE and western blot.

Molecular biology

Plasmid transfection of HEK-293T, U2OS, and HCT116 was performed with either TransIT MIRUS or PolyJet (cat no. SL100688) at 1:3 or 1:4 DNA:plasmid ratio on cells with 50% to 60% confluency. After 24 h, the media was changed, and cells were expanded to larger dishes as needed. Samples were collected 24 to 48 h after siRNA transfection was performed using a 1:3 ratio of RNAi oligonucleotide to RNAiMAX (cat no. 13778–030). UHRF1 was cloned into the indicated lentiviral vectors mentioned previously using standard gateway recombination cloning. Other APC/C substrates tested for binding to Cdh1 or degradation in the APC/C activation assay were obtained from either the ORFeome collection and cloned into the indicated vectors using gateway recombination cloning or from Addgene (S6 Data) [86].

Cell lysis and immunoblotting

Cells were lysed on ice for 20 min in phosphatase lysis buffer (50 mM NaH₂PO₄, 150 mM NaCl, 1% Tween-20, 5% Glycerol (pH 8.0) filtered) or NETN (20 mM Tris (pH 8.0), 100 mM NaCl, 0.5 mM EDTA, 0.5% NP40) supplemented with 10 μg/mL each of aprotonin, pepstatin A, and leupeptin; 1 mM sodium orthovanadate; 1 mM NaF; and 1-mM AEBSF (4-[2-aminoethyl] benzenesulfonyl fluoride). Following incubation on ice, cell lysates were centrifuged at (20,000 × g) in a benchtop microcentrifuge at 4˚C for 20 min. Protein concentration was estimated by BCA assay (Thermofisher cat no. PI-23227) according to manufacturer’s protocol. Cell extracts were diluted with SDS-PAGE Gel Loading Buffer (Laemmli Buffer) prior to analysis by SDS-PAGE. Typically, 20 to 40 μg of protein were loaded on SDS gels (either BioRad 4% to 12% Bis-Tris or homemade SDS-PAGE gels) and separated at 140 to 200 V for approximately 1 h. Proteins were transferred by wet-transfer methods onto nitrocellulose membrane, typically at 100 V for 1 h or 10 to 17 V overnight at 4˚C. Nitrocellulose membranes were then incubated with TBST (137 mM NaCl, 2.7 mM KCl, 25 mM Tris (pH 7.4), 0.5%
Tween-20) supplemented with either 5% bovine serum albumin or non-fat dry milk for at least 1 h or overnight at 4°C. Blocked membranes were incubated overnight with primary antibodies at 4°C, washed in TBST, incubated in appropriate secondary antibodies for 1 h at room temperature, and then developed by chemiluminescence using Pierce ECL (ThermoFisher) or Clarity ECL (Bio-Rad, Hercules, California). See reagent list in the Supplement information for detailed primary and secondary antibody information.

Immunoprecipitation

For exogenous coIP experiments, cells were lysed in NETN for 20 min on ice and then centrifuged in a benchtop centrifuge on maximum speed (20,000 × g) for 20 min at 4°C, prior to determining protein concentration by either Bradford or BCA assay. A master mix of 1 to 2 mg/mL protein concentration was calculated, 10% of which was retained as input while the remaining 90% was used for coIP. Prior to coIP, 50 μL of antibody-coated beads were pre-washed with 1 mL of 1× PBST (0.1% Tween-20) 3 times and then preblocked with 1 mL PBS/1% BSA for 1 h at 4°C. Clarified cell lysates were also precleared by incubation with the same volume (50 μL) of empty Protein A/G agarose beads, rotating at 4°C for 1 h. After preblocking, beads were washed 3 times in lysis buffer, using low-speed centrifugation to collect beads. Buffers were removed using a small orifice, gel-loading tip to limit bead aspiration between washes. After preclearing the lysates, they were centrifuged at low speed to collect Protein A/G beads at the bottom of the tubes. Samples were carefully pipetted from the same tubes without disturbing the resin. Cell lysates were immunoprecipitated for 2 to 4 h at 4°C with 50 μL of EzView M2- or Myc-antibody beads (F2426-1ML or E6654-1ML). After coIP, beads were pelleted at low-speed centrifugation, washed 3 times with wash buffer (NETN containing additional 1% Triton-X-100, no inhibitors added), and transferred to new microfuge tubes for 1 final wash with lysis buffer to remove unbound/contaminating proteins. Wash buffer was removed from beads using small orifice, gel-loading tip as above. After removal of the final wash, beads were resuspended in 50 μL of 2× SDS-PAGE Gel Loading Buffer (Laemmli Buffer) and boiled 5 to 10 min at 95°C. Samples were removed from the beads using a 27-gauge needle to avoid bead aspiration after boiling and transferred to new microfuge tubes. Typically, 20 μL of the coIP was loaded alongside 1% of the input volume. Samples were analyzed by immunoblotting as described.

For endogenous coIP, liquid nitrogen, flash-frozen pellets previously stored at −80°C were resuspended in phosphate lysis buffer containing protease and phosphatase inhibitors (as described above) for 20 min on ice and then centrifuged in a benchtop centrifuge on maximum speed (20,000 × g) for 20 min at 4°C, prior to determining protein concentration by BCA assay. A master mix of 4.2 mg/mL protein concentration was calculated, 10% of which was retained as input while the remaining 90% was used for coIP. Prior to coIP, approximately 130 μL slurry of SureBeads Protein G magnetic beads/sample (Bio-Rad, #161–4023) was pre-washed 3 times with 1 mL of 1× PBST (0.1% Tween-20) and 1 time with lysis buffer before incubating the beads with cell extract for 1 h, rotating at 4°C. Cell lysates were incubated overnight, rotating at 4°C, with 2-μg antibody/mg protein (8.4 μg) using either control mouse IgG (Santa Cruz, Dallas, Texas, #sc-2025) or mouse Cdh1 (clone DCS-266) (Santa Cruz, #sc-56312) antibodies. After coIP, magnetic beads were incubated with antibody-containing cell lysates for 1 to 2 h, rotating at 4°C. Then, beads were centrifuged briefly and pelleted using magnetic rack. Beads were washed by gentle pipetting 3 times with phosphate lysis buffer (without any inhibitors) and then transferred to new microfuge tubes for 1 final wash to remove unbound/contaminating proteins. After aspiration of the final wash, beads were resuspended in 50-μL 2X SDS-PAGE Gel Loading Buffer (Laemmli Buffer) and boiled for 10 min at
70˚C. Samples were removed from the boiled beads with the magnetic rack and transferred to new microfuge tubes. Samples were analyzed by immunoblotting as described.

Protein purification

Substrates for in vitro ubiquitylation assays were expressed as N-terminal GST-TEV-fusion (TTF2) or His-MBP-TEV-fusions (FL-UHRF1^{WT}, LPS-UHRF1^{WT}, FL-UHRF1^{KEN:AAA}, LPS-UHRF1^{KEN:AAA}) in BL21 (DE3) codon plus RIL cells. TTF2 was purified by glutathione-affinity chromatography, treated with TEV protease to liberate GST, and further purified by ion exchange chromatography. UHRF1 wild-type and variants were purified by amylose-affinity chromatography, treated with TEV, and followed by ion exchange chromatography. Fluorescently labeled substrates were generated by incubating 1 μM Sortase, 20× 5-carboxyfluorescein (5-FAM)-PEG-LPETGG peptide, and substrates in 10 mM HEPES (pH 8), 50 mM NaCl, and 10 mM CaCl₂. After 2 h of incubation at 4 °C, reactions were stopped by removing the His₆-tagged Sortase by nickel affinity chromatography. Then, excess 5-FAM-L-PETGG was removed by size exclusion chromatography.

Expression and purification of UBA1, UBE2C, UBE2S, recombinant APC/C and pE-APC/C, Cdh1, Cdc20, Emi1, ubiquitin, and methylated ubiquitin were performed as described previously in Brown and colleagues [87–91].

APC/C ubiquitylation assays

Qualitative assays to monitor APC/C-dependent ubiquitylation were performed as previously described [91]. In brief, reactions were mixed on ice, equilibrated to room temperature before the reactions are initiated with Ub or meUb, and quenched at the indicated time points with SDS. TTF2 ubiquitylation was monitored by mixing 100 nM APC/C, 1 μM Cdh1, 5 μM UBE2C, 5 μM UBE2S (when indicated), 1 μM UBA1, 5 μM TTF2, 5 mM Mg-ATP, and 150 μM Ub or meUb (S2 Fig). Ubiquitylation of UHRF1 wild type or its variants by APC/C were performed with 100 nM APC/C or pE-APC/C, 1 μM Cdh1 or Cdc20, 0.4 μM UBE2C, 0.4 μM UBE2S (when indicated), 1 μM UBA1, 0.4 μM UHRF1, 5 mM Mg-ATP, and Ub or meUb (Fig 4 and S4 Fig). Following SDS-PAGE, ubiquitylation products of the fluorescently labeled substrates were resolved by SDS-PAGE and imaged with the Amersham Typhoon 5 (Cytiva Life Sciences, Logan, Utah).

Flow cytometry cell cycle analysis

HeLa S3 GFP-UHRF1^{WT} and GFP-UHRF1^{KEN:AAA} (shUHRF1) cells were synchronized in mitosis by sequential thymidine-nocodazole treatment as described above, using 2 mM thymidine and 100 ng/mL nocodazole. After release, cells were pulsed with 10 μM EdU 30 min prior to collection at specific time points. After counting the cells, 2 million cells were retained for western blotting (WB) analysis, and 1 million cells were fixed for flow cytometry. For WB, cells we pelleted and washed once with cold PBS prior to freezing at −20˚C. For flow cytometry, cells were fixed in 4% formaldehyde/PBS for 15 min at room temperature. Cells were pelleted and resuspended in 1% BSA/PBS and stored overnight at 4˚C. In the next day, cells were pelleted and resuspended in 1% BSA/PBS/0.5% Triton X-100 for 15 min at room temperature. Cells were pelleted, resuspended with labelling solution (100 mM ascorbic acid, 1 mM CuSO₄, 2 μM Alexa Fluor 488 azide in PBS), and incubated for 30 min in the dark at room temperature. After addition of 1% BSA/PBS/0.5% Triton X-100, cells were pelleted and stained with 1 μg/mL DAPI in 1% BSA/PBS/0.5% Triton X-100 for 1 h in the dark at room temperature. Flow cytometry was performed on an Attune Nxt Flow Cytometer (Thermo Fisher Scientific). Channel BL1 was used for Azide 488 dye. Channel VL1 was used for DAPI dye. Following acquisition, data were analyzed using FlowJo software.
For the siRNA UHRF1 depletion experiments, asynchronous U2OS cells were transfected with 3 independent siRNAs against UHRF1 for 48 h prior to a 30 min EdU pulse (10 μM). Samples were collected for flow cytometry as described above, except for 70% ethanol fixation and 4˚C overnight storage prior to staining and analysis.

Immunofluorescence imaging

HeLa cells were plated on poly-L-lysine-coated #1.5 coverslips. Next day, cells were treated with siRNA (control siFF and siUHRF1) and RNAiMax according to manufacturer’s protocol (Invitrogen). After 48 h of siRNA treatments, cells were fixed in 3% paraformaldehyde in PHEM buffer (60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2 (pH 7.0)) for 15 min at 37˚C. Then, cells were washed with PHEM buffer and permeabilized using 0.5% of Nonidet P-40 in PHEM buffer for 15 min at room temperature. Cells were washed and then blocked with 5% BSA in PHEM. Primary antibodies used were α-CENP-C (MBL:1:1000) as a kinetochore marker and α-tubulin (Sigma, St. Louis, Missouri: 1:500). Samples were incubated in primary antibody solution for 1 h at 37˚C. All fluorescently labeled secondary antibodies (anti-mouse Alexa 488, anti-guinea pig 564) were diluted 1:200 dilution, and cells were incubated for 1 h at 37˚C. DNA was counterstained with DAPI for 15 min at room temperature after washing out secondary antibodies. All samples were mounted onto glass slides in Prolong Gold antifade (Invitrogen). For image acquisition, three-dimensional stacked images were obtained sequentially at 200 nm steps along the z axis through the cell using MetaMorph 7.8 software (Molecular Devices, San Jose, California) and a Nikon Ti-inverted microscope equipped with the spinning disc confocal head (Yokogawa, Sugar Land, Texas), the Orca-ER cooled CCD camera (Nikon, Melville, New York), and an x100/1.4 NA PlanApo objective (Nikon).

Genomic DNA isolation for methylation analysis

Genomic DNA was isolated from Parental U2OS cells and U2OS cells overexpressing either GFP-UHRF1WT or GFP-UHRF1KEN:AAA. All samples groups were processed in biological triplicates. Briefly, cells were lysed overnight at 37˚C in 2 mL of TE-SDS buffer (10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA, 0.5% SDS), supplemented with 100 μL of 20 mg/mL proteinase K. DNA was purified by phenol:chloroform extraction in 3 phases: [1] 100% phenol, [2] phenol:chloroform:isoamyl alcohol (25:24:1), and [3] chloroform:isoamyl alcohol (24:1). For each phase, the aqueous layer was combined with the organic layer in a 1:1 ratio. Samples were quickly shaken, allowed to sit on ice for approximately 5 min, and then separated by centrifugation at 1,693 RCF for 5 min at 4˚C. The top aqueous layer was then transferred to a new tube for the next organic phase. Following extraction, DNA was precipitated with 1/10 volume 3 M sodium acetate (pH 4.8) and 2.5 volume 100% ethanol and stored overnight at −20˚C. Precipitated DNA was pelleted by centrifugation at 17,090 RCF for 30 min at 4˚C. The pellet DNA was washed twice with 70% ethanol, allowed to dry for 15 min, and resuspended in TE buffer (10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA). Samples were then treated with 1 mg/mL RNAse A at 37˚C for 30 min and then repurified by ethanol precipitation as described above.

Infinium methylation EPIC BeadChip (EPIC array)

Genomic DNA was quantified by High Sensitivity Qubit Fluorometric Quantification (Invitrogen), and 1.5 μg of genomic DNA was submitted to the Van Andel Institute Genomics Core for quality control analysis, bisulfite conversion, and DNA methylation quantification using the Infinium Methylation EPIC BeadChIP (Illumina) processed on an Illumina iScan system following the manufacturer’s standard protocol [67,68].
EPIC array data processing

All analyses were conducted in the R statistical software (Version 3.6.1) (R Core Team [92]). R script for data processing and analysis is available in S1 Text.

Raw IDAT files for each sample were processed using the Bioconductor package “SeSAMe” (Version 1.2.0) for extraction of probe signal intensity values, normalization of probe signal intensity values, and calculation of β-values from the normalized probe signal intensity values [93–95]. The β-value is the measure of DNA methylation for each individual CpG probe, where a minimum value of 0 indicates a fully unmethylated CpG and a maximum value of 1 indicates a fully methylated CpG in the population. CpG probes with a detection p-value of >0.05 in any one sample were excluded from the analysis.

Genomic and replication timing annotation

CpG probes were mapped to their genomic coordinate (hg38) and were then annotated to their genomic annotation relationship (promoter-TSS, exon, etc.) using HOMER (Version 4.10.3) [96].

Repli-seq data for U2OS cells used for determining CpG probe localization relative to replication timing was generated by Dr. David Gilbert’s lab (Florida State University) as part of the 4D Nucleome project (Experiment #4DNEXWN33S2) [69]. Genomic regions were considered early-replicating if the replication timing value was >0 and late-replicating if <0. CpG probes were annotated for replication timing domains by intersecting the Repli-seq genomic coordinates with CpG probe coordinates using BEDTools (Version 2.16.2) [97].

Identification of differentially methylated CpG probes

The Bioconductor package “limma” (Version 3.40.6) was used to determine differential methylation among sample groups and perform MDS analysis [94,95,98]. For statistical testing of significance, β-values were logit transformed to M-values: $M = \log_2 \left(\frac{\beta + 1}{\beta - 1} \right)$. M-values were then used for standard limma workflow contrasts to determine differential methylation of U2OS GFP-UHRF1WT or GFP-UHRF1KEN:AAA overexpression to Parental U2OS cells [98,99]. CpG probes with an adjusted p-value of ≤ 0.05 were considered significant, and log fold-change of the M-value was used to determine hypermethylation (logFC >0) or hypomethylation (logFC <0) relative to U2OS parental cells.

Enrichment bias calculation and hypergeometric distribution testing

Enrichment bias calculations were done by first determining the following values for each feature (e.g., genomic annotation, replication timing):

$q = \text{Number of CpGs that are differentially methylated in feature (e.g., exon)}$

$m = \text{Total number of CpGs on the EPIC array that match feature (e.g., exon)}$

$n = \text{Total number CpGs on the EPIC array that do not match feature (e.g., everything that is not an exon)}$

$k = \text{Total number of all differentially methylated CpGs}$

Next, the expected number of CpGs that would be differentially methylated in that feature by random chance was determined with the following equation:

$$e = \left(\frac{m}{m+n} \right)^k$$
Finally, percentage enrichment bias was calculated with the following equation:

\[
\text{% enrichment bias} = \left(\frac{q - e}{k} \right) \times 100,
\]

where positive or negative enrichment values indicate more or less enrichment for a feature than would be expected by random chance, respectively.

Hypergeometric distribution testing for determining significance of enrichment bias was performed using the phyper() function in R with the following values: \(q, m, n, k\).

Data access

EPIC array data can be found under GEO Accession # GSE137913.

To review GEO accession GSE137913:

Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137913

Signature evaluation in TCGA BRCA samples

Upper quartile normalized RSEM gene expression data for TCGA BRCA (\(n = 1201\)) was downloaded from the GDC legacy archive (https://portal.gdc.cancer.gov). The data was log2 transformed and median centered. To determine the per sample UB signature score, the samples were ranked by the median expression of the 145 UB gene signature. Samples were then divided at the median and grouped as high or low based on rank. Copy number burden, aneuploidy, and homologous recombination deficiency data were extracted from Thorsson and colleagues [100] and plotted by UB signature group and PAM50 subtype [101]. Significance was calculated by \(t\) test. The CIN70 score was determined as previously described in Fan and colleagues [102]. The CIN70 was plotted against the UB, colored by PAM50 subtype, and \(r^2\) and Pearson correlation were calculated. All analysis was performed in R (v3.5.2).

Cdh1 pulldown for analysis of interactors by mass spectrometry

FLAG-tagged Cdh1 was expressed in HEK-293T cells for 24 h by transient transfection. Transfections were performed on 150 mm dishes (8 per condition) using Mirus TransIT-LT1 Transfection Reagent (Mirus Bio, Madison, Wisconsin) and Lipofectamine 2000 (Life Technologies). Cells were treated with MG-132 (10 \(\mu\)M for 4 h) in culture prior to lysis, dislodged by trypsinization, washed with PBS, and lysed in NETN supplemented with 2 \(\mu\)g/mL pepstatin, 2 \(\mu\)g/mL aprotinin, 10 \(\mu\)g/mL leupeptin, 1 mM AEBSF, 1 mM Na\(_3\)VO\(_4\), and 1 mM NaF on ice for 20 min. Cell lysates were then clarified by centrifugation at 15,000 rpm for 15 min.

Anti-FLAG M2 agarose (Sigma, catalog no. F2426) was used for precipitation (6 h at 4°C). The beads were washed with NETN 3 times and eluted twice with 150 \(\mu\)L of 0.1 M Glycine-HCl (pH 2.3) and then neutralized with Tris 1M (pH 10.0). The total eluted protein was reduced (5 mM DTT) and alkylated using iodoacetamide (1.25 mM) for 30 min in the dark. The resultant protein was then digested overnight with sequencing grade trypsin (Promega). The trypsin:protein ratio was maintained at 1:100. Total peptides were purified on Pierce C18 spin columns (Cat 89870) using the manufacturer’s protocol. Peptides were eluted using 70% acetonitrile and 0.1% TFA solution in 50 \(\mu\)L volumes twice, dried on a SpeedVac at room temperature, and processed by mass spectrometry proteomic analysis.

Mass spectrometry

Peptides were separated by reversed-phase nano-high-performance liquid chromatography using a nanoAquity UPLC system (Waters Corp., Milford, Massachusetts). Peptides were first trapped in a 2-cm trapping column (Acclaim PepMap 100, C18 beads of 3.0 \(\mu\)m particle size,
100 Å pore size) and a 25-cm EASY-spray analytical column (75 μm inner diameter, C18 beads of 2.0 μm particle size, 100 Å pore size) at 35°C. The flow rate was 250 nL/minute over a gradient of 1% buffer B (0.1% formic acid in acetonitrile) to 30% buffer B in 150 min, and an in-line Orbitrap Elite mass spectrometer (Thermo Scientific) performed mass spectral analysis. The ion source was operated at 2.6 kV with the ion transfer tube temperature set at 300°C. A full MS scan (300 to 2000 m/z) was acquired in Orbitrap with a 120,000 resolution setting, and data-dependent MS2 spectra were acquired in the linear ion trap by collision-induced dissociation using a 2.0 m/z wide isolation window on the 15 most intense ions. Precursor ions were selected based on charge states (+2, +3) and intensity thresholds (above 1e5) from the full scan; dynamic exclusion (one repeat during 30 s, a 60-s exclusion time window) was also used. The polysiloxane lock mass of 445.120030 was used throughout spectral acquisition.

Raw mass spectrometry data files were searched using SorcererTM-SEQUENT (build 5.0.1, Sage N Research), the Transproteomic Pipeline (TPP v4.7.1), and Scaffold (v4.4.1.1) with the UniProtKB/Swiss-Prot human canonical sequence database (20,263 entries; release 07/2013). The search parameters used were a precursor mass between 400 and 4500 amu, zero missed cleavages, a precursor ion tolerance of 3 amu, accurate mass binning within PeptideProphet, fully tryptic digestion, a static carbamidomethyl cysteine modification (+57.021465), variable methionine oxidation (+15.99492), and variable serine, threonine and tyrosine (STY) phosphorylation (79.966331). A 1% protein-level FDR was determined by Scaffold.

Supporting information

S1 Fig. Analysis of putative APC/C substrates. (A) U2OS cells were arrested in mitosis with nocodazole, collected by shake-off, treated with the CDK1 inhibitor RO-3306, and harvested for immunoblot at the indicated time points. Cyclin B and NUSAP1 serve as positive APC/C controls. Data representative of n = 3 experiments. (B) U2OS cells were transiently transfected with the indicated plasmids, arrested in mitosis with nocodazole, collected by shake-off, treated with the CDK1 inhibitor RO-3306, and harvested for immunoblot after 2 h. FoxM1 serves as a positive control for APC/C activation. Data representative of n = 3 experiments. (C) HeLa and U2OS cells were synchronized in mitosis by nocodazole and released by mitotic shake-off. Time points were collected as shown and analyzed by immunoblot. FoxM1 serves as positive APC/C control that is degraded at M/G1 phases. Data representative of n = 2 experiments. (TIF)

S2 Fig. TTF2 is ubiquitylated by APC/C in vitro. (A) Ubiquitylation reactions of TTF2* by UBE2C using methylated Ub or wild-type Ub (lanes 1–6) in combination with APC/C/Cdh1, APC/C alone, or Cdh1 alone. Ubiquitylation reactions of TTF2* by both E2s, UBE2C, and UBE2S, (lanes 7–9) in combination with APC/C/Cdh1, APC/C alone, or Cdh1 alone. Ubiquitylation was detected by fluorescence scanning at 60 min time points. Data representative of n = 3 experiments. (B) Ubiquitylation reactions with APC/C/Cdh1, UBE2C, FL NASP*, or control CyclinB*, and wild-type ubiquitin. NASP* and CyclinB* were detected by fluorescence scanning (* indicates fluorescently labeled protein). Data representative of n = 2 experiments. (TIF)

S3 Fig. UHRF1 protein levels are cell cycle regulated and sensitive to APC/C inhibition with the small-molecule inhibitor proTAME. (A) HeLa cells were synchronized in mitosis, collected by shake-off, released into the cell cycle, and analyzed by immunoblot at the indicated time points. Data representative of n = 3 experiment. (B) U2OS cells were synchronized in mitosis, collected by shake-off, released into the cell cycle, and analyzed by immunoblot at
the indicated time points. Line indicates samples that were run on separate gels, with appropriate corresponding loading controls for each gel. Data representative of \(n = 3 \) experiments. (C) HCT116 and U2OS cells were released into G1 from a mitotic block for 1.5 h and then were subsequently treated with proTAME for 1.5 h. Endogenous UHRF1 and Cdh1 were analyzed by immunoblot. Data representative of \(n = 1 \) experiment.

S4 Fig. UHRF1 ubiquitylation by APC/C. (A) Ubiquitylation reactions of FL-UHRF1\(^* \) by UBE2C with either methylated Ub or wild-type Ub. Reactions were performed using UHRF1\(^{WT} \) or a variant harboring alanine substitution in the KEN-box (KEN:AAA). KEN degron motif mutants in UHRF1 are shown in lanes 4 and 8. Ubiquitylation was detected by fluorescence scanning at 30 min time points. Data representative of \(n = 3 \) experiments. (B) Ubiquitylation reactions of LPS-UHRF1\(^* \) by UBE2C with either methylated Ub or wild-type Ub. Reactions were performed using UHRF1\(^{WT} \) or a variant harboring alanine substitution in the KEN-box (KEN:AAA). KEN degron motif mutants in UHRF1 are shown in lanes 4 and 8. Ubiquitylation was detected by fluorescence scanning at 30 min time points. Data representative of \(n = 3 \) experiments. (C) Ubiquitylation reactions of FL-UHRF1\(^* \) and LPS-UHRF1\(^* \) are exclusive to Cdh1 as the coactivator. Ubiquitylation reactions were performed using wild-type APC/C\(^{Cdh1} \), which can only utilize Cdh1, but not Cdc20, as well as pE-APC/C\(^{Cdh1} \), which mimics the APC/C phosphorylated state and can therefore use either Cdc20 or Cdh1. In parallel, we analyzed ubiquitylation of CycB\(^{NTD} \) and Securin\(^* \), which can be ubiquitylated by both APC/C\(^{Cdc20} \) and APC/C\(^{Cdh1} \). Data representative of \(n = 3 \) experiments.

S5 Fig. UHRF1 depletion impairs chromosome alignment. (A) U2OS cells were treated with control siRNAs targeting firefly luciferase or three independent UHRF1 siRNAs. After 48 h, cells were treated with EdU, harvested 30 min later, and analyzed by flow cytometry for EdU incorporation and DNA content. Flow cytometry blots are shown (top) and quantification of the percent of cells in each cell cycle phase (bottom). Data representative of 3 independent experiments, each analyzing 10,000 cells per condition. (S1 Data) (B) HCT116 cells were depleted of UHRF1 using 2 independent siRNA oligonucleotides. Cells were fixed and stained with antibodies to the kinetochore protein CENP-C and microtubules. Data representative of \(n = 2 \) experiments, counting a total of 319 mitotic cells (control), 318 mitotic cells (siUHRF1-1), and 329 mitotic cells (siUHRF1-2) (these numbers are the sum of 2 replicates). (S1 Data)

S6 Fig. Progression through S/G2 phases in cells expressing nondegradable UHRF1. (A) HeLa S3 cells stably expressing GFP-UHRF1\(^{WT} \) or GFP-UHRF1\(^{KEN:AAA} \) were synchronized at G1/S by double thymidine block, released in the cell cycle, and analyzed by immunoblot at the indicated time points. Cells progressed through S/G2 phases with minimal differences except for an increase in cyclin E levels. Data representative of \(n = 1 \) experiment. (B) Asynchronous RPE-1 cells stably expressing GFP-UHRF1\(^{WT} \) or GFP-UHRF1\(^{KEN:AAA} \) were harvested for immunoblotting for cell cycle markers as shown. Data representative of \(n = 1 \) experiment. (C) Asynchronous HeLa S3 cells stably expressing GFP-UHRF1\(^{WT} \) or GFP-UHRF1\(^{KEN:AAA} \) along with 3’UTR targeting shUHRF1 were harvested for immunoblotting for cell cycle markers as shown. Data representative of \(n = 1 \) experiment.

S7 Fig. A 145 gene signature derived from KEN-containing proteins, which have cell cycle–dependent gene transcription, is associated with makers of chromosome instability in breast cancer. (A) TCGA BRCA samples (\(n = 1,201 \)) were assigned to High or Low based on
the ranked median value of the 145 gene signature score. Samples were then plotted for the
given genomic feature based on Thorsson and colleagues by both gene signature group and
PAM50 subtype. Significant was determined by t test or ANOVA where appropriate. The
median 145 gene signature score was plotted against the chromosome instability score
(CIN70) (r² = 0.72, Pearson correlation p < 0.001). Colors indicate PAM50 subtypes. (S1
Data)

S1 Data. The underlying raw data for all relevant figures.
(XLSX)

S2 Data. FLAG:Cdh1 IP from 293T cells, analyzed by mass spectrometry.
(XLSX)

S3 Data. Data tables protein and gene information for (1) human proteins containing a
KEN-sequence motifs; (2) genes that are cell cycle regulated based on previous transcrip-
tomic studies; and (3) the overlapping set of genes/proteins which are putative APC/C sub-
strates.
(XLSX)

S4 Data. Comparison of APC/C substrates identified here to other studies which identified
APC/C substrates using alternative methods.
(XLSX)

S5 Data. Proteins tested as potential APC/C substrates in this study using different meth-
ods.
(XLSX)

S6 Data. List of siRNA, shRNA, plasmids, primers, and antibodies and their respective
sources used in this study.
(XLSX)

S1 Text. Code used in R to analyze EPIC array data.
(TXT)

Acknowledgments
We thank Brian Strahl (UNC) and members of the Emanuele and Brown labs for helpful dis-
cussions throughout this project. We thank Marie Adams and Julie Koeman from the Van
Andel Institute Genomics Core for their assistance with Illumina Infinium MethylationEPIC
BeadChip processing.

Author Contributions

Conceptualization: Jennifer L. Franks, Raquel C. Martinez-Chacin, Scott B. Rothbart, Nicho-
las G. Brown, Michael J. Emanuele.

Data curation: Jennifer L. Franks, Raquel C. Martinez-Chacin, Xianxi Wang, Rochelle L. Tied-
emann, Rajarshi Choudhury, Jeffrey S. Damrauer, Feng Yan, M. Ben Major, Katherine A.
Hoadley, Nicholas G. Brown.

Formal analysis: Jennifer L. Franks, Raquel C. Martinez-Chacin, Rochelle L. Tiedemann,
Nicholas G. Brown, Michael J. Emanuele.

Funding acquisition: Nicholas G. Brown, Michael J. Emanuele.
Investigation: Jennifer L. Franks, Raquel C. Martinez-Chacin, Xianxi Wang, Rochelle L. Tiedemann, Thomas Bonacci, Rajarshi Choudhury, Derek L. Bolhuis, Taylor P. Enrico, Ryan D. Mouery, Aussie Suzuki, Scott B. Rothbart.

Resources: Joseph S. Harrison.

Visualization: Jeffrey S. Damrauer, Katherine A. Hoadley.

Writing – original draft: Jennifer L. Franks, Scott B. Rothbart, Nicholas G. Brown, Michael J. Emanuele.

Writing – review & editing: Michael J. Emanuele.

References

1. Oh E, Akopian D, Rape M. Principles of Ubiquitin-Dependent Signaling. Annu Rev Cell Dev Biol. 2018; 34:137–62. https://doi.org/10.1146/annurev-cellbio-100617-062802 PMID: 30110556

2. Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol. 2017. https://doi.org/10.1098/rsob.170204 PMID: 29167309

3. Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol. 2015; 16:82–94. https://doi.org/10.1038/nrc1742 PMID: 25604195

4. García-Higuera I, Manchado E, Dubus P, Cañamero M, Méndez J, Moreno S, et al. Genomic stability and tumor suppression by the APC/C cofactor Cdh1. Nat Cell Biol. 2008; 10:802–11. https://doi.org/10.1038/ncomms9525 PMID: 18552834

5. The I, Ruijtenberg S, Bouchet BP, Cristobal A, Prinsen MBW, van Mourik T, et al. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nat Commun. 2015; 6:5906. https://doi.org/10.1038/ncomms6906 PMID: 29167309

6. Fay DS, Keenan S, Han M. fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes Dev. 2002; 16:503–17. https://doi.org/10.1101/gad.952302 PMID: 11850412

7. Buttitta LA, KatzaroﬀAJ, Edgar BA. A robust cell cycle control mechanism limits E2F-induced proliferation of terminally differentiated cells in vivo. J Cell Biol. 2010; 189:981–96. https://doi.org/10.1083/jcb.200910006 PMID: 20548101

8. Cappell SD, Chung M, Jaimovich A, Spencer SL, Meyer T. Irreversible APC/Cdh1 inactivation underlies the pPoint of rNo rTurnover for cCell-cCycle eEntry. Cell. 2016; 166:167–80. https://doi.org/10.1016/j.cell.2016.05.077 PMID: 27368103

9. Choudhury R, Bonacci T, Wang X, Truong A, Arceci A, Zhang Y, et al. The E3 Ubiquitin Ligase SCF (Cyclin F) Transmits AKT Signaling to the Cell-Cycle Machinery. Cell Rep. 2017; 20:3212–22. https://doi.org/10.1016/j.celrep.2017.08.099 PMID: 28952436

10. Wan L, Chen M, Cao J, Dai X, Yin Q, Zhang J, et al. The APC/C E3 ligase complex activator fzr1 restricts braf oncogenic function. Cancer Discov. 2017; 7:424–41. https://doi.org/10.1158/2159-8290. CD-16-0647 PMID: 28174173

11. Lukas C, Sørensen CS, Kramer E, Santoni-Rugiu E, Lindeneg C, Peters JM, et al. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature. 1999; 401:815–8. https://doi.org/10.1038/44611 PMID: 10548110

12. Sansregret L, Patterson JO, Dewhurst S, López-García C, Koch A, McGranahan N, et al. APC/C dysfunction limits excessive cancer chromosomal instability. Cancer Discov. 2017; 7:218–33. https://doi.org/10.1158/2159-8290.CD-16-0645 PMID: 28069571

13. Ajeawung NF, Nguyen TTM, Lu L, Kucharski TJ, Rousseau J, Molidpeere S, et al. Mutations in ANAPC1, Encoding a Scaffold Subunit of the Anaphase-Promoting Complex, Cause Rothmund-Thomson Syndrome Type 1. Am J Hum Genet. 2019. https://doi.org/10.1101/2159-8290. CD-16-0645 PMID: 31303264

14. Rodríguez C, Sánchez-Morón I, Álvarez S, Tirado P, Fernández-Mayoralas DM, Calleja-Pérez B, et al. A novel human Cdh1 mutation impairs anaphase promoting complex/cyclosome activity resulting in microcephaly, psychomotor retardation, and epilepsy. J Neurochem. 2019. https://doi.org/10.1111/jnc.14828 PMID: 91318984

15. He J, Chao WCH, Zhang Z, Yang J, Cronin N, Barford D. Article Insights into Degron Recognition by APC/C Coactivators from the Structure of an Acm1-Cdh1 Complex. Mol Cell. 2013; 50:649–60. https://doi.org/10.1016/j.molcel.2013.04.024 PMID: 23707760
16. Davey NE, Morgan DO. Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. Mol Cell. 2016; 64:12–23. https://doi.org/10.1016/j.molcel.2016.09.006 PMID: 27716480

17. Chang L, Zhang Z, Yang J, McLaughlin SH, Barford D. Molecular architecture and mechanism of the anaphase-promoting complex. Nature. 2014; 17:13–7. https://doi.org/10.1038/nature13543 PMID: 25043029

18. Meyer H-J, Rape M. Enhanced protein degradation by branched ubiquitin chains. Cell. 2014; 157:910–21. https://doi.org/10.1016/j.cell.2014.03.037 PMID: 24813613

19. Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature. 2013; 502:249–53. https://doi.org/10.1038/nature12488 PMID: 24013172

20. Qin W, Wolf P, Liu N, Link S, Smets M, La Mastra F, et al. DNA methylation requires a Dnmt1 ubiquitin-interacting motif (UIM) and histone ubiquitination. Cell Res. 2015; 25:911–29. https://doi.org/10.1038/cr.2015.72 PMID: 26065575

21. Harrison JS, Cornett EM, Goldfarb D, DaRosa PA, Li ZM, Yan F, et al. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. elife. 2016; 5:1–24. https://doi.org/10.7554/eLife.17101 PMID: 27595565

22. Tian Y, Paramasivam M, Ghosal G, Chen D, Shen X, Huang Y, et al. UHRF1 Contributes to DNA Damage Repair as a Lesion Recognition Factor and Nuclease Scaffold. Cell Rep. 2015; 10:1957–66. https://doi.org/10.1016/j.celrep.2015.03.038 PMID: 25818288

23. Muddhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI, et al. UHRF1 overexpression drives DNA hypomethylation and hepato cellular carcinoma. Cancer Cell. 2014; 25:196–209. https://doi.org/10.1016/j.ccr.2014.01.003 PMID: 24486181

24. Kong X, Chen J, Xie W, Brown SM, Cai Y, Wu K, et al. Defining UHRF1 Domains that Support Maintenance of Human Colon Cancer DNA Methylation and Oncogenic Properties. Cancer Cell. 2019. https://doi.org/10.1016/j.ccell.2019.03.003 PMID: 30956060

25. Ma Y, McKay DJ, Buttitta L. Changes in chromatin accessibility ensure robust cell cycle exit in terminally differentiated cells. PLoS Biol. 2019. https://doi.org/10.1371/journal.pbio.3000378 PMID: 31479438

26. Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA. H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell. 2013; 24:3025–37. https://doi.org/10.1091/mbc.E12-07-0529 PMID: 23924899

27. Bakos G, Yu L, Gak IA, Roumeliotis TI, Liakopoulos D, Choudhary JS, et al. An E2-ubiquitin thioester-driven approach to identify substrates modified with ubiquitin and ubiquitin-like molecules. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-07251-5 PMID: 30429481

28. Feine O, Zur A, Mahubani H, Brandeis M. Human Kid is degraded by the APC/C(Cdh1) but not by the APC/C(Cdc20). Cell Cycle. 2007; 6:2516–23. https://doi.org/10.4161/cc.6.20.4791 PMID: 17726374
36. Funabiki H, Murray AW. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell. 2000; 102:411–24. https://doi.org/10.1016/s0092-8674(00)00047-7 PMID: 10966104

37. Mailand N, Diffley JFX. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell. 2005; 122:915–26. https://doi.org/10.1016/j.cell.2005.08.013 PMID: 16153703

38. Zur A, Brandeis M. Securin degradation is mediated by Ify and Fzr, and is required for complete chromatin separation but not for cytokinesis. EMBO J. 2001; 20:792–801. https://doi.org/10.1093/emboj/20.4.792 PMID: 11179223

39. Ostanenko D, Solomon MJ. Anaphase promoting complex-dependent degradation of transcriptional repressors Nrm1 and Yhp1 in Saccharomyces cerevisiae. Mol Biol Cell. 2011. https://doi.org/10.1091/mbc.E11-01-0031 PMID: 21509597

40. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, et al. Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors. Mol Biol Cell. 2002; 13:1977–2000. https://doi.org/10.1093/mboce/13.4.792 PMID: 11179223

41. Grant GD, Sherlock G, Whitfield ML, Wood TA, Martyanov V, Zhang X, et al. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. 2013; 24:3634–50. https://doi.org/10.1091/mbcE13-05-0026 PMID: 24109597

42. Pena-Diaz J, Hegre SA, Andersen E, Aas PA, Mjelle R, Gillilian GD, et al. Transcription profiling during the cell cycle shows that a subset of Polycomb-targeted genes is upregulated during DNA replication. Nucleic Acids Res. 2013; 41:2846–56. https://doi.org/10.1093/nar/gks1336 PMID: 23325852

43. Bar-Joseph Z, Siegfried Z, Brandeis M, Brors B, Lu Y, Elis R, et al. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc Natl Acad Sci U S A. 2008; 105:955–60. https://doi.org/10.1073/pnas.0704723105 PMID: 18195366

44. Min M, Mayor U, Dittmar G, Lindon C. Using in Vivo Biotinylated Ubiquitin to Describe a Mitotic Exit Ubiquitome from Human Cells. Mol Cell Proteomics. 2014. https://doi.org/10.1074/mcp.M113.033498 PMID: 24857844

45. Merbl Y, Kirschner MW. Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays. Proc Natl Acad Sci U S A. 2009; 106:2543–8. https://doi.org/10.1073/pnas.0812892106 PMID: 19181856

46. Merbl Y, Refour P, Patel H, Springer M, Kirschner MW. Profiling of ubiquitin-like modifications reveals features of mitotic control. Cell. 2013; 152:1160–72. https://doi.org/10.1016/j.cell.2013.02.007 PMID: 23452859

47. Lafranchi L, de Boer HR, de Vries EGE, Ong S, Sartori AA, van Vugt MATM. APC/C(Cdh1) controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J. 2014; 33:2860–79. https://doi.org/10.15252/embj.201489017 PMID: 25349195

48. Singh SA, Winter D, Kirchner M, Chauhan R, Ahmed S, Ozlu N, et al. Co-regulation proteomics reveals substrates and mechanisms of APC/C-dependent degradation. EMBO J. 2014; 33:385–99. https://doi.org/10.1002/embj.201385876 PMID: 24510915

49. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell. 2015; 162:425–40. https://doi.org/10.1016/j.cell.2015.06.043 PMID: 26186194

50. Gurden MDJ, Holland AJ, van Zon W, Tighe A, Vergnolle MA, Andres DA, et al. Cdc20 is required for the post-anaphase KEN-dependent degradation of centromere protein F. J Cell Sci. 2010; 123:321–30. https://doi.org/10.1242/jcs.062075 PMID: 20053638

51. Potapova TA, Daum JR, Pittman BD, Hudson JR, Jones TN, Satinover DL, et al. The reversibility of mitotic exit in vertebrate cells. Nature. 2006; 440:954–8. https://doi.org/10.1038/nature04652 PMID: 16612388

52. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011; 44:325–40. https://doi.org/10.1016/j.molcel.2011.08.025 PMID: 21990983

53. Rose CM, Isasa M, Ordureau A, Prado MA, Beausoleil SA, Jedrychowski MP, et al. Highly Multiplexed Quantitative Mass Spectrometry Analysis of Ubiquitylomes. Cell Syst. 2016; 3:395–403.e4. https://doi.org/10.1016/j.cels.2016.08.009 PMID: 27667366

54. Wagner S a, Beli P, Weinel BT, Nielsen ML, Cox J, Mann M, et al. A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles. Mol Cell Proteomics. 2011; 10.M111.013284–4. https://doi.org/10.1074/mcp.M111.013284 PMID: 21890473
55. Elia AEH, Boardman AP, Wang DC, Huttlin EL, Everley RA, Dephoure N, et al. Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response. Mol Cell. 2015; 59:867–81. https://doi.org/10.1016/j.molcel.2015.05.006 PMID: 26051181

56. Emanuele MJ, Elia AEH, Xu Q, Thoma CR, Izhar L, Leng Y, et al. Global identification of modular culin-RING ligase substrates. Cell. 2011; 147:459–74. https://doi.org/10.1016/j.cell.2011.09.019 PMID: 21963094

57. Lopez-Contreras AJ, Ruppen I, Nieto-Soler M, Murga M, Rodriguez-Acebes S, Remeseiro S, et al. A proteomic characterization of factors enriched at nascent DNA molecules. Cell Rep. 2013; 3:1105–16. https://doi.org/10.1016/j.celrep.2013.03.009 PMID: 23545495

58. Xiang H, Yuan L, Gao X, Alexander PB, Lopez O, Lau C, et al. UHRF1 is required for basal stem cell proliferation in response to airway injury. Cell Discov. 2017; 3:17019. https://doi.org/10.1038/celldisc.2017.19 PMID: 28626588

59. Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalis JC, Prochownik EV, et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008; 105:10762–7. https://doi.org/10.1073/pnas.0804762105 PMID: 18669648

60. Tauber M, Fischle W. Conserved linker regions and their regulation determine multiple chromatin-binding modes of UHRF1. Nucleus. 2015; 6:123–32. https://doi.org/10.1080/19491034.2015.1026022 PMID: 25825779

61. Xie S, Qian C. The Growing Complexity of UHRF1-Mediated Maintenance DNA Methylation. Genes (Basel). 2018. https://doi.org/10.3390/genes9120600 PMID: 30513966

62. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010; 3:ra3. https://doi.org/10.1126/scisignal.2000475 PMID: 20068231

63. Brown NG, VanderLinden R, Watson ER, Qiao R, Grace CRR, Yamaguchi M, et al. RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex. Proc Natl Acad Sci U S A. 2015; 112:5272–9. https://doi.org/10.1073/pnas.1501611112 PMID: 25825779
75. Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, Tan P, et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 2011; 71:3447–52. https://doi.org/10.1158/0008-5472.CAN-10-3667 PMID: 21270108

76. Wasserman D, Nachum S, Cohen M, Enrico TP, Noach-Hirsh M, Parasol J, et al. Cell cycle oscillators underlying orderly proteolysis of E2F8. Mol Biol Cell. 2020. https://doi.org/10.1091/mbc.E19-12-0725 PMID: 31995441

77. Cohen M, Vecsler M, Liberzon A, Noach M, Zlotorynski E, Tzur A. Unbiased transcriptome signature of in vivo cell proliferation reveals pro- and antiproliferative gene networks. Cell Cycle. 2013. https://doi.org/10.4161/cc.26030 PMID: 23974109

78. Wasserman D, Nachum S, Cohen M, Enrico TP, Noach-Hirsh M, Parasol J, et al. Cell cycle oscillators underlying orderly proteolysis of E2F8. Mol Biol Cell. 2020. https://doi.org/10.1091/mbc.E19-12-0725 PMID: 31995441

79. Cohen M, Vecsler M, Liberzon A, Noach M, Zlotorynski E, Tzur A. Unbiased transcriptome signature of in vivo cell proliferation reveals pro- and antiproliferative gene networks. Cell Cycle. 2013. https://doi.org/10.4161/cc.26030 PMID: 23974109

80. Zhang H, Liu H, Chen Y, Yang X, Wang P, Liu T, et al. A cell cycle-dependent BRCA1-UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nat Commun. 2016; 7:10201. https://doi.org/10.1038/ncomms10201 PMID: 26727879

81. Hanahan D, Weinberg RA. Review Hallmarks of Cancer: The Next Generation. Cell. 2011; 144:646–74. https://doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

82. Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff KL, Oh D-C, et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell. 2010; 18:382–95. https://doi.org/10.1016/j.ccr.2010.08.010 PMID: 20951947

83. Martinez-Chacín R, Bodrug T, Bolhuis D, Brunner M, Gibbs M, Wang X, et al. Activation of the RING E3 Anaphase-Promoting Complex/Cyclosome (APC/C) by the E2 UBE2S. Nat Struct Mol Biol. 2020.

84. Bonacci T, Suzuki A, Grant GD, Stanley N, Cook JG, Brown NG, et al. Cezanne /OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J. 2018; 37:e98701. https://doi.org/10.15252/embj.201798701 PMID: 29973362

85. Williamson A., Jin L., and Rape M. (2009) Preparation of Synchronized Human Cell Extracts to Study Ubiquitination and Degradation. in Methods in molecular biology (Clifton, NJ), pp. 301–312, 545 https://doi.org/10.1007/978-1-60327-993-2_19 PMID: 19475397

86. Yang XJ, Ogryzko VV, Nishikawa JI, Howard BH, Nakatani Y. A p300/CPB-associated factor that competes with the adenoviral oncoprotein E1A. Nature. 1996. https://doi.org/10.1038/382319a0 PMID: 8684459

87. Frye JJ, Brown NG, Petzold G, Watson ER, Grace CRR, Nourse A, et al. Electron microscopy structure of human APC/C(CDH1)-EMI1 reveals multimodal mechanism of E3 ligase shutdown. Nat Struct Mol Biol. 2013; 20:827–35. https://doi.org/10.1038/nsmb.2593 PMID: 23708605

88. Qiao R, Weissmann F, Yamaguchi M, Brown NG, VanderLinden R, Imre R, et al. Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc Natl Acad Sci U S A. 2016; 113:E2570–8. https://doi.org/10.1073/pnas.1604929113 PMID: 27114540

89. Pickart CM, Raasi S. Controlled synthesis of polyubiquitin chains. Methods Enzymol. 2005. https://doi.org/10.1016/S0076-6879(05)99002-2 PMID: 16338346

90. White HD, Rayment I. Kinetic Characterization of Reductively Methylated Myosin Subfragment. Biochemistry. 1993. https://doi.org/10.1021/bi00088a042 PMID: 8373784

91. Brown NG, VanderLinden R, Watson ER, Weissmann F, Oorduere A, Wu KP, et al. Dual RING E3 architectures regulate mult ubiquitination and ubiquitin chain elongation by APC/C. Cell; 2016; 165:1440–53. https://doi.org/10.1016/j.cell.2016.05.037 PMID: 27259151

92. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.r-project.org/.

93. Zhou W, Triche TJ, Laird PW, Shen H. SeSAMe: reducing artificial detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 2018; 46:e123. https://doi.org/10.1093/nar/gky691 PMID: 30085201

94. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015; 12:115–21. https://doi.org/10.1038/nmeth.3252 PMID: 25633503

95. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudidot S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004; 5:R80. https://doi.org/10.1186/gb-2004-5-10-r80 PMID: 15461798
96. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol Cell. 2010; 38:576–89. https://doi.org/10.1016/j.molcel.2010.05.004 PMID: 20513432

97. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–2. https://doi.org/10.1093/bioinformatics/btq033 PMID: 20110278

98. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43:e47. https://doi.org/10.1093/nar/gkv007 PMID: 25605792

99. Maksimovic J, Phipson B, Oshlack A. A cross-package bBioconductor workflow for analysing methylation array data. F1000Research. 2016; 5:1281. https://doi.org/10.12688/f1000research.8839.3 PMID: 27347385

100. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The Immune Landscape of Cancer. Immunity. 2018. https://doi.org/10.1016/j.immuni.2018.03.023 PMID: 29628290

101. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell. 2018. https://doi.org/10.1016/j.cell.2018.03.022 PMID: 29625048

102. Fan C, Prat A, Parker JS, Liu Y, Carey LA, Troester MA, et al. Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures. BMC Med Genet. 2011. https://doi.org/10.1186/1755-8794-4-3 PMID: 21214954