How Does Industry Specialization Affect the Efficiency of Regional Innovation Systems?

by

Michael Fritsch
Viktor Slavtchev

www.jenecon.de

ISSN 1864-7057

The JENA ECONOMIC RESEARCH PAPERS is a joint publication of the Friedrich Schiller University and the Max Planck Institute of Economics, Jena, Germany. For editorial correspondence please contact m.pasche@wiwi.uni-jena.de.

Impressum:

Friedrich Schiller University Jena
Carl-Zeiss-Str. 3
D-07743 Jena
www.uni-jena.de

Max Planck Institute of Economics
Kahlaische Str. 10
D-07745 Jena
www.econ.mpg.de

© by the author.
How Does Industry Specialization Affect the Efficiency of Regional Innovation Systems?

Michael Fritsch a, b
Viktor Slavtchev b

Abstract

This study analyzes the relationship between the specialization of a region in certain industries and the efficiency of the region in generating new knowledge. The efficiency measure is constructed by relating regional R&D input and output. An inversely u-shaped relationship is found between regional specialization and R&D efficiency, indicating the presence of externalities of both Marshall and Jacobs’ type. Further factors influencing efficiency are spillovers within the private sector as well as from public research institutions. The impact of both the specialization and the additional factors is, however, different for regions at different efficiency levels.

JEL-classification: O31, O18, R12

Keywords: Efficiency, innovation, spillovers, patents, regional analysis.

a Friedrich-Schiller-University Jena, Faculty of Economics and Business Administration, Carl-Zeiss-Str. 3, 07743 Jena, and German Institute of Economic Research (DIW-Berlin), Germany

b Max Planck Institute of Economics, Jena, Germany

E-mail: m.fritsch@uni-jena.de; slavtchev@econ.mpg.de
Contents

1. Introduction .. 1

2. Why should industry specialization of a region stimulate or impede innovation? .. 1

3. Empirical evidence .. 4

4. Assessing the efficiency of RIS ... 5

5. Data and measurement issues ... 7

6. The distribution of efficiency across German regions 10

7. Industry specialization and the efficiency of RIS ... 12

8. Conclusions ... 20

Appendix ... 25
1. Introduction

The supposition that agglomerations are much better suited for innovation activity than sparsely populated rural regions has a long tradition in economics and economic geography. The idea behind this conjecture is rather simple. First, innovative activities may be stimulated by the easy availability of inputs at the respective location. Second, innovating firms are not isolated, self-sustained entities but rather are highly linked to their environment. Accordingly, innovative processes are characterized by pronounced degree of labor division and knowledge spillovers so that spatial proximity to other innovating actors is important. Therefore, a certain degree of agglomeration or clustering of innovators within a particular area should be conducive to innovation activities (Baptista and Swann 1998; Porter 1998). In particular, there are two prominent hypotheses that pertain to the industry structure of the regional environment. One of these hypotheses states that the geographic concentration, i.e. the co-localization of firms that belong to the same industry or to related industries is conducive to innovation. Another hypothesis assumes that it is the diversity of industries and activities in a region, not the concentration in a certain industry that has a stimulating effect.

In this study, we test these two hypotheses by linking industry specialization of a region to its innovative performance. The next two sections elaborate on the theoretical background of the two hypotheses (section 2) and review the empirical evidence attained thus far (section 3). Section 4 introduces our concept of efficiency of a region in generating new knowledge, and section 5 deals with data and measurement issues. We then give an overview on the efficiency of German regions (section 6) and investigate the role of industry specialization (section 7). The conclusions are presented in the last section (section 8).

2. Why should industry specialization of a region stimulate or impede innovation?

Innovation activity is characterized by interaction and transfer of knowledge between actors and institutions. It can be regarded as a collective learning
process taking place in a system of interconnected actors. The efficiency of the system may, therefore, be influenced by both the availability of actors as well as by the intensity of interaction and the respective knowledge flows (spillovers). Interactions of a particular kind can occur between all the elements (or actors) constituting the system such as innovating private firms, public research institutes, suppliers of innovative inputs and services as well as public policy. For instance, the importance of backward and forward linkages has been pointed out by Kline (1985) and Kline and Rosenberg (1986), while Hippel (1986) and Urban and Hippel (1988) have referred particularly to the importance of lead users for inducing innovation. Hence, the density and industrial composition of the regional actors, the accessibility of the region as well as the technological, industrial, and institutional infrastructure (e.g., the ‘networks’) may play an important role. Accordingly, differences in the socio-economic conditions that shape the creation of knowledge may lead to diverging innovative performance across regions (Cooke, Uranga, and Etxebarria 1997). Moreover, the interactions between the different elements of a regional innovation system (RIS) generate partly self-enforcing systemic effects that may result in region specific knowledge as well as in specific technologies and methods of problem solving (Gertler 2003), which can be expected to affect the workability of the system (Leydesdorff and Fritsch 2006).

The specialization of a certain region in a particular industry is believed to be conducive to innovation activities of firms affiliated with this industry for a number of reasons. Accordingly, the co-location of a large number of firms that are operating in similar or related technological fields may induce localization advantages since:

- the aggregate demand of a relatively large amount of firms of an industry may result in a pool of regional workforce with certain industry-specific skills that can be utilized by all firms belonging to that particular industry and located in the region (Marshall 1890; Ellison and Glaeser 1999);
- this aggregate demand of the regional firms can also induce a rich regional supply of other relevant inputs such as specialized business services, banks and credit institutions, or certain kinds of infrastructure (Bartelsman, Caballero, and Lyons 1994);
the industry specialization of a region may promote a high level of knowledge spillovers between the firms which are sharing the same technological base (Mowery, Oxley, and Silverman 1998; Beaudry and Breschi 2003);

geographically bounded knowledge spillovers may be conductive for local collective learning processes (Lawson and Lorenz 1999; Maskell and Malmberg 1999).

These benefits of specialization within a certain industry are external to the firm belonging to that industry but remain largely internal to the particular region. Such effects that result from the specialization of regional economic activities in the same industry are labeled Marshall-Arrow-Romer externalities\(^1\) (MAR externalities) according to the authors who have created this concept (Glaeser et al. 1992).

However, the concentration of several firms of the same industry in a region can also be disadvantageous if it leads to lock-in effects. Such lock-in effects may occur if the specialization of the regional knowledge and resources deter the emergence and evolution of other fields of innovation (Grabher 1993). In particular, specialization may hamper the exchange between heterogeneous actors with different, but often complementary types of knowledge. As argued by Jacobs (1969), many ingenious ideas are born in the exchange process that occurs between different fields of knowledge. This means that diversity may lead to advantages of innovation activity which are comprised of different technological fields. Hence, it may be the industrial variety in a region that is conducive to innovation activity. Such effects of industrial variety are also labeled Jacobs’ externalities and are supposed to be external to the firms and industries but internal to the respective geographical location. Moreover, as

\(^1\) Based on Marshall (1890), Arrow (1962), and Romer (1986).
pointed out by Jacobs (1969), these effects can be expected to be greater in densely populated regions. Therefore, regions with diverse kinds of activities and a high degree of agglomeration, particularly cities, may have a comparative advantage over less densely populated areas which are usually characterized by a lesser variety of actors, institutions, and industries. Henderson (1997) showed for the USA that although a number of certain industries tend to be concentrated in agglomerations and large cities, these locations still remain more diversified.

3. Empirical evidence

The answer to the question if specialization or diversity in a region is conducive to innovation activity is still largely unclear. For example, Glaeser et al. (1992) found that diversity rather than regional specialization had a positive impact on employment growth in US-American cities in the 1956-1987 period. This study is, however, not directly linked to innovative activities. Feldman and Audretsch (1999) analyzed the effect of industry specialization on innovative output on the basis of innovation counts, which were attributed to four-digit SIC industries at the city level. They found that innovative output of an industry tends to be lower in cities which are specialized in that particular industry. This result supports the idea that diversity rather than specialization plays a major role (Jacobs 1969). In an earlier studies for the USA, Audretsch and Feldman (1996a, b) found that a high share of certain industries in a region is not an important determinant for explaining innovative output. Obviously, Jacobs’ thesis seems to hold for the US and can, according to Duranton and Puga (2000), be regarded as a stylized fact.

Many of the respective studies for European regions explicitly tested for both types of externalities. Paci and Usai (2000a) provide clear evidence for a significantly positive relationship between industry specialization and innovative output at the level of European NUTS-1 regions. The authors conclude that innovations simply occur in locations with pronounced manufacturing activities. However, there are typically a number of different knowledge sources (e.g.,
universities and other public R&D laboratories) and other supporting facilities in such locations that are not included in their analysis. In the case of Italy, Paci and Usai (1999, 2000b) found evidence for both Jacobs’ externalities as well as MAR externalities. With respect to the latter, the authors conclude that innovative activities in a certain industry, as measured by the number of patents, tend to be higher in geographic locations which are specialized in that particular industry. In a more recent study, Greunz (2004) tested the impact of industry specialization on the number of patents at the level of European NUTS-2 regions and clearly confirmed these results. There is also some evidence from other European countries. For the Netherlands, van Oort (2002) and Ouwersloot and Rietveld (2000) found positive diversification externalities for innovation in manufacturing industries. Also for the Netherlands, van der Panne (2004) identified a positive impact of regional specialization on the probability of firms to announce a new product, while diversification was insignificant. For Sweden, Andersson, Quigley, and Wilhelmsson (2005) concluded that there is a negative impact of regional diversity on innovative performance of firms. Also studies at the firm level provide ambiguous evidence (Baptista and Swann 1998; Beaudry and Breschi 2003).

Overall, previous analyses could not provide an unambiguous answer to the question whether industry specialization or diversity in a region stimulates innovation activities. In contrast to previous studies that focused on the impact of MAR- and Jacobs’-externalities on the number of innovations or patents, we use the efficiency of regions in generating new knowledge as a performance indicator. Moreover, our analysis focuses not only on the role of specialization or diversity, but it also accounts for other key determinants of the efficiency of RIS.

4. Assessing the efficiency of RIS

The term efficiency is used in a variety of ways. Our understanding of the efficiency of RIS corresponds to the concept of technical efficiency as introduced by Farrell (1957). Technical efficiency is defined as the generation of a maximum output from a given amount of resources. A firm is regarded as being technically inefficient if it fails to obtain the possible maximum output.
Reasons for technical inefficiency can be manifold and comprise all kinds of mismanagement such as inappropriate work organization and improper use of technology (Fritsch and Mallok 2002), bottlenecks in regard to certain inputs as well as X-inefficiency as exposed by Leibenstein’s (1966) seminal work. Applying this definition to a regional concept means that a region is technically efficient if it is able to produce a possible maximum of innovative output from a given amount of innovative input. Accordingly, the inefficiency of a region results from the failure to meet the best practice of conducting innovation activity.

We assume that inventions do not ‘fall from heaven’ but result predominantly from systematic R&D efforts, i.e.

\[
R \& D \text{ output} = f (R \& D \text{ input}).
\]

Adopting the Cobb-Douglas form of a production function (Griliches 1979; Jaffe 1989), the basic relationship between regional R&D output and input can be written as

\[
R \& D \text{ output} = A \times R \& D \text{ input}^\beta \times \epsilon^\varepsilon,
\]

where the term A represents a constant factor, \(\beta\) denotes the output elasticity of the input to the R&D process and \(\varepsilon\) is an additional stochastic noise component.

The output of the regional R&D process may differ because of two reasons: the output elasticity of R&D input, \(\beta\), and the constant term, A. For example, an increase in the quality of inputs to the R&D process or more pronounced spillovers from the R&D activities of other actors in the region may lead to a rising output elasticity of R&D. Differences between regions in regard to the constant term indicate higher innovative output at any level of input. Such differences in the constant term may be explained by all kinds of characteristics of a region that influence average productivity of R&D input but do not necessarily affect marginal productivity. An illustrative example of such differences that only pertain to the average productivity of R&D input and not to marginal productivity is an innovation that is not entirely based on current R&D but also on the existing stock of ‘old’ knowledge. Since, in practice, we are only
able to assess the relevant knowledge stock rather incompletely, differences in regard to the constant term may also reflect a misspecification or incomplete measurement of the input variable. We, therefore, restrict ourselves here to the assessment based on the marginal productivity of R&D input. Analyses of the two measures show that they lead to a quite similar assessment of the innovative performance of regions (Fritsch and Slavtchev 2006). Based on the estimates of the output elasticity of R&D input in each region, the efficiency E_r of the region r is then calculated as

\[E_r = \left(\frac{\hat{\beta}_r}{\max \hat{\beta}_r} \right) \times 100 \, \% . \]

According to this approach, at least one region will meet the benchmark value and the remaining regions will have efficiency values between 0 and 100 percent of this benchmark value.

5. Data and measurement issues

In this study, we use the number of disclosed patent applications as an indicator of the innovative output of regions. The patent applications in the data are assigned to the main residence of inventors. Information on the yearly number of disclosed patent applications is available for the 1995 to 2000 period from Greif and Schmiedl (2002). A patent application indicates that an invention has been made which is expected to have some economic value. However, using patents as an indicator of new knowledge has some shortcomings (Brouwer and Kleinknecht 1996; Acs, Anselin, and Varga 2002; Griliches 1990). On the one hand, patents may underestimate the output of R&D activity for several reasons. One of these reasons is that the results of basic research cannot be patented in Germany. Moreover, firms may not file all of their inventions for patenting or, in some cases, do not patent at all (Cohen, Nelson, and Walsh 2000). In this context, it is well known that firms tend to patent product

2 See Fritsch and Slavtchev (2008a) for an alternative approach.

3 However, as we consider that differences in the innovative performance of regions are only due to regional differences in the output elasticity of R&D input, our measure of efficiency slightly differs from Farell's original concept (see for discussion Kalirajan and Shand 1999).
innovations rather than process innovations. On the other hand, the actual R&D output may also be overestimated on the basis of patent data in the event that the firms file blocking patents, which are typically applied around one core invention in a fairly new technological field and where there may be many potential applications which are not yet known. Although patents as an indicator of innovation have such shortcomings, we follow previous studies by assuming that patents are the best indicator of innovative output that is currently available.

In an analysis of the knowledge sources of innovation for West German NUTS-3 regions (Kreise) as well as for the German planning regions (Raumordnungsregionen) with the number of patent applications as the dependent variable, we found a dominant effect for the number of private sector R&D employees in the region (Fritsch and Slavtchev 2007, 2008b). Further knowledge sources that had a significant effect on innovative output of a region were the number of private sector R&D employees in adjacent regions indicating the presence of spatial knowledge spillovers, the quality of research conducted by public research institutions as well as the intensity of their cooperations with private sector firms. As this study focuses on the efficiency of private sector R&D, we consider the number of private sector R&D employees as the main knowledge input. The main reason is that the private sector actors are those who are mainly interested in the commercialization of knowledge. In doing so, we implicitly assume that all other potential inputs in the knowledge production function operate identically across regions and, therefore, affect the magnitude of the estimated output elasticity of R&D input in all regions equally. Moreover, knowledge spillovers from adjacent regions as well as the presence of public research institutions can be regarded as determinants of the productivity of private sector R&D input and should, therefore, not be used for measuring the R&D performance. Information on the number of R&D employment in the private sector stems from the German Social Insurance Statistics (Statistik der sozialversicherungspflichtig Beschäftigten) as described and documented by Fritsch and Brixey (2004). Employees are
classified as working in R&D if they have a tertiary degree in engineering or in natural sciences.⁴

When relating knowledge input to innovation output we have to assume that there is a time lag between the respective indicators for two reasons. Firstly, R&D activity requires time for attaining a patentable result. Secondly, patent applications are disclosed only about twelve to eighteen months after submission. This is the time necessary for the patent office to verify whether an application fulfills the basic preconditions for being granted a patent (Greif and Schmiedl 2002). The patent application has to be disclosed eighteen months after submission (Hinze and Schmoch 2004). Hence, at least two or three years should be an appropriate time lag between input and output of the R&D process.⁵ However, since reliable data on R&D employment in East Germany are only available for the years 1996 onwards, a time lag of two or three years would lead to too few observations per region for estimating a region-specific efficiency. In order to have more observations available, we reduce the time lag between R&D input and the patent application to a period of one year.⁶ In other words, R&D output in the period from 1997 to 2000 is related to R&D input between 1996 and 1999.

The spatial pattern used for the analysis is given by the 97 German planning regions.⁷ The spatial concept of planning regions focuses on commuter distances; therefore, they account for travel to work areas and are well suited to represent functional spatial economic entities. In general, planning

⁴ Private sector employees with tertiary degree in engineering or in natural sciences are only proxy for the actual R&D employees. However, this measure is highly correlated with the actual R&D employees of private sector firms (about 0.95). Unfortunately, the actual private sector R&D employees are not publicly available for the period of investigation in this study.

⁵ Fritsch and Slavtchev (2005, 2007) relate patenting activities in West Germany to R&D activities three years ago. Acs, Anselin, and Varga (2002) report that US innovation records in 1982 resulted from inventions that had been made 4.3 years earlier. Fischer and Varga (2003) used a two-year lag between R&D efforts and patent counts in Austria in 1993. Ronde and Hussler (2005) linked the innovative output, the number of patents between 1997 and 2000, to R&D efforts in 1997.

⁶ Bode (2004) also uses a time lag of one year when relating patent output to R&D employment across German planning regions.

⁷ For this definition of the planning regions, see the Federal Office for Building and Regional Planning (Bundesamt fuer Bauwesen und Raumordnung, BBR) (2003).
regions consist of several districts and include at least one core city as well as its surroundings. For historical reasons, the cities of Berlin, Hamburg, and Bremen are defined as planning regions even though they are not functional economic units. In order to create functional units, we merge these cities with adjacent planning regions for the analysis. Berlin was merged with the region Havelland-Flaeming, Hamburg with the region Schleswig-Holstein South, Bremen with Bremerhaven and with the region Bremen-Umland. Hence, the estimation approach applied in this study is based on observations for 93 regions over 4 years.

To estimate the efficiency of regions, we include a binary dummy variable for each region which is multiplied with the respective number of private sector R&D employees. This dummy variable assumes the value one for the respective region and otherwise has the value zero. The constant term, \(A \), is assumed to be the same for all regions. Hence, after taking logarithms of both sides, the equation (2) can be rewritten as

\[
(4) \quad \ln(\text{Number of patents}_r) = \ln A + \sum_{r} \beta_r \ln(\text{R & D priv}_r) + \epsilon_r,
\]

where \(\beta_r \) is a measure of the output elasticity of private sector R&D employment in the \(r^{th} \) region (\(r = 1, ..., 93 \)). The output elasticity of R&D in the region, \(\beta_r \), is estimated by means of robust negative-binomial regression technique. The data have been pooled. The efficiency measure, \(E_r \), is then computed according to equation (3). The results are reported in table A1 in the Appendix.

6. The distribution of efficiency across German regions

There is a wide dispersion of efficiency among the planning regions. The values for efficiency are within the range between 53 and 100 percent, meaning that productivity of private R&D input in the best practice region is about twice the

\[\text{...93, r}\]

\[8\] See Greene (2003, 931-939). We find at least one patent per year for each region in our data; thus, the problem of having "too many zero values" does not apply. In the presence of over dispersion, i.e. the pronounced skewness to the left of the distribution of patent records, the negative binominal estimation technique is strongly favored over Poisson regression technique.
productivity in the least efficient region (see table A1 in the Appendix as well as Fritsch and Slavtchev 2006 for details).

Figure 1: The distribution of efficiency in German planning regions

Generally, the efficiency values tend to be higher in regions with large, densely populated agglomerations such as Munich, Stuttgart, Cologne, Frankfurt, and Hamburg. The lowest efficiency estimates are found for regions in the northeast such as “Mecklenburgische Seenplatte,” “Vorpommern,” and “Altmark” located in East Germany, the former German Democratic Republic (GDR). The Berlin region, showing a relatively high efficiency, is an exception in the East German innovation landscape. The relatively low efficiency values in East Germany indicate that the innovation processes in this part of the country tend to be rather inefficient. Most of the relatively efficient regions are located in
the southern and in the western part of the country. We find evidence for spatial clustering of regions with similar levels of efficiency (see Fritsch and Slavtchev 2006 for details). This indicates that some of the determinants of the efficiency apply to larger geographical units than planning regions.

7. Industry specialization and the efficiency of RIS

To estimate the relative impact of different determinants of the efficiency of RIS, a robust OLS cross-section regression technique can be applied. A critical assumption of such an empirical approach is that whatever the sources of efficiency are, they operate identically in all regions whether they are highly efficient or not. However, the relative importance of the possible determinants of RIS’s efficiency may differ for regions at different efficiency levels. We, therefore, apply simultaneous quantile regressions for analyzing this question. Differences in the effects between regions imply that the respective policy recommendations may only hold for certain types of regions.

Quantile regression was originally discussed in Koenker and Basset (1982) and Rogers (1993) as a robust regression technique alternative to OLS. This technique differs from OLS in the estimation of the coefficients of the equation as it minimizes the sum of absolute error values rather than the sum of squared errors. More important for the problem here is that the coefficients can be estimated for a particular point, \(q \), in the distribution of the dependent variable:

\[
Q_q(y) = \alpha_q + \beta_{q,1}x_1 + \ldots + \beta_{q,n}x_n.
\]

Thus, assertions for different stages on the efficiency scale can be made. Although the estimated coefficients refer to a particular point in the distribution, all observations are used in calculating the coefficients for that particular quantile. For example, concerning median regression all residuals become equally weighted; while when fitting the \(q^{th} \) quantile, negative residuals are weighted by \(2(1-q) \) and positive residuals by \(2q \). Here we apply a simultaneous quantile regression technique. The difference to a standard quantile regression is that the equations are estimated simultaneously and an estimate of the entire variance-covariance matrix is obtained by bootstrapping (Gould 1992). A main
advantage of this method is that the estimated coefficients can be easily compared across equations (quantiles).

Table 1: Definition of variables and data sources

Variable	Description	Definition	Source
Patents	Number of disclosed patent applications in the region, 1997-2000		German Patent and Trademark Office (DPMA)
R&D\textsubscript{PRIV}	Number of private sector R&D employees in the region, 1996-1999	Number of employees with tertiary degree in engineering and natural sciences in the region	German Social Insurance Statistics
Efficiency	Efficiency of RIS, 1997-2000 average	See equation 3	See equation 3
R&D\textsubscript{PRIV} [share]	Share of private sector R&D employees in the region, 1996-1999 average	Number of employees with tertiary degree in engineering and natural sciences in the region / Number of employees in the region	German Social Insurance Statistics
TPF\textsubscript{IND} per professor	Universities third-party funds from private companies per professor in the region, 1996-1999 average	Volume of third-party funds that universities in the region gain from private sector actors [1,000 Euro] / Number of professors at universities in the region	German University Statistics available at the Federal Statistical Office
∅ FSIZE	Average firm size in the region, 1996-1999 average	Number of employees in the region / Number of firms in the region	German Social Insurance Statistics
POPden	Population density in the region, 1996-1999 average	Number of inhabitants per km2	Federal Office for Building and Regional Planning
SERVICES	Service sector relative size in the region, 1996-1999 average	Share of employment in services in the region divided by the share of employment in services in the entire economy. This index is standardized in [-1;1]	German Social Insurance Statistics
ELECTR\textsubscript{ENG}	Share of employment in electrical engineering in the region, 1996-1999 average	Number of employees in electrical engineering in the region / Number of regional employment	German Social Insurance Statistics
DIV	Regional index of industrial diversity, 1996-1999 average	Inverse of the Donaldson-Weymark relative S-Gini coefficient on basis of 58 industries (industrial classification WZ58)	German Social Insurance Statistics
Dummy West	Region located in West Germany	Regions in former German Federal Republic = 1; regions in former GDR and Berlin = 0	
Dummy Periphery	Region located at the border of Germany	Regions located at the border of Germany = 1, otherwise dummy = 0	

Although the main focus of this study is on the relationship between industry specialization in a region and productivity of R&D employment, a number of further important determinants of efficiency as well as a number of control variables are included. Table 1 gives an overview on the definition of variables and respective data sources. Descriptive statistics are presented in
Table 2 shows the regression results. Correlation coefficients for the relationship between the variables are given in table A2 in the Appendix.

Table 2: Descriptive statistics

Variable	Obs.	Mean	Std. Dev.	Min	Max	Median
Patents \(^a\)	372	395.50	508.60	11.778	3,652.7	245.75
R&D\(_{PRIV}\) \(^a\)	372	6,674.0	8,724.1	649.00	48,968	3,690.0
Marginal productivity of R&D\(_{PRIV}\) [\(\hat{\beta}\)]	93	0.6513	0.0893	0.4119	0.7779	0.6768
Efficiency [%]	93	83.717	11.480	52.941	100.00	87.005
R&D\(_{PRIV}\) [Share]	93	0.0223	0.0089	0.0089	0.0528	0.0200
SERVICES	93	0.0481	0.0818	-0.2255	0.1999	-0.0556
POPden	93	336.99	507.56	53.425	3,886.29	180.67
\(\varnothing\) FSIZE	93	13.204	1.6957	8.5294	18.2661	13.308
TPF\(_{IND}\) per professor	93	11.062	14.735	0	97.067	7.1950
DIV	93	1.4979	0.0825	1.3076	1.6785	1.5023
ELECTR_ENG	93	0.0354	0.0233	0.0038	0.1227	0.0292

\(^a\) Pooled yearly values.

A significantly positive impact on efficiency of RIS can be found for the share of private sector R&D employment. The estimated coefficient over the entire distribution provides clear evidence for scale economies. This means that an increase in the share of private sector R&D employment at a certain location may make innovation processes more efficient. Such scale economies could result from increasing opportunities for R&D cooperation and networking that are associated with intensive knowledge flows between actors and, therefore, may lead to a relatively high level of spillovers. However, as indicated by the quantile regressions, this pertains mainly to regions with a medium level of efficiency since regions at both ends of distribution do not seem to benefit from such positive externalities.

The average amount of third-party funds from private sector firms per university professor (TPF\(_{IND}\)) has a positive impact on the RIS efficiency. Universities' third-party funds in general can be regarded as an indicator of the quality of their research. The main reason is that the allocation of universities’ third-party funds is usually based on some competitive procedure and is, therefore, largely dependent on the quality of the research conducted. According to Hornbostel (2001), there is a distinct correspondence between indicators that are based on third-party funds and bibliometric indicators for high quality research such as SCI publications. Funds from private sector firms, in
particular, can be regarded as compensation for academic R&D or for other services that universities perform for private companies. Hence, these revenues are well suited to indicate the relevance of academic research for commercial applications as well as the intensity of formal university-industry linkages (e.g., R&D cooperation), which may lead to pronounced knowledge spillovers (Fritsch and Slavtchev 2007, 2008b). In order to avoid possible scale effects of large universities, which are likely to attract larger amounts of third-party funds from private firms, we use the average amount of third-party funds from private sector firms per university professor. Hence, the results for TPFIND suggest that the intensity of knowledge flows from universities due to formal university-industry linkages is conducive to the efficiency of regional innovation activity.

According to the quantile regressions, such a positive impact of university-industry relationship on the efficiency of RIS is found for regions at the lower end and at the upper mid-range of the efficiency distribution. The impact of the intensity of university-industry interactions is less pronounced and becomes insignificant for regions with efficiency values belonging to the upper end of the distribution.

The industrial diversity index is the inverse value of the Gini coefficient calculated on the basis of the number of employees in 58 different industries. Considering the quantile regression approach, we find that the efficiency increases with industrial variety for regions with relatively low efficiency up to the median value and decreases for regions with efficiency above the median level. According to table 3, the estimated coefficients for industrial diversity are not statistically significant for relatively less efficient regions as well as for regions at the upper end of the distribution. This pattern suggests that the impact of the industrial diversity differs for regions at different efficiency levels (table 2).
Table 3: Determinants of efficiency

Simultaneous quantile regressions (2,500 bootstrap replications)	OLS, robust covariance matrix estimator.														
Q5	Q15	Q20	Q30	Q40	Q50	Q60	Q70	Q80	Q85	Q95	R² pseudo	R² adj	Pseudo R²		
R&Dpriv [Share (ln)]	0.062	0.084*	0.095*	0.091*	0.107**	0.107**	0.097*	0.108**	0.070	0.078	0.016	0.097**	0.090**	(4.17)	(4.04)
(1.10)	(1.98)	(2.25)	(2.35)	(2.85)	(2.50)	(2.66)	(1.52)	(1.58)	(0.25)						
TPFind per professor (in)	0.022*	0.018*	0.015	0.015*	0.010	0.012	0.019*	0.016*	0.009	0.007	-0.005	0.019*	0.017*	(2.51)	(2.07)
(2.00)	(1.97)	(1.85)	(1.97)	(1.14)	(1.38)	(2.16)	(2.04)	(0.89)	(0.62)	(0.35)					
Ø FSIZE (ln)	-0.295	-0.349*	-0.255	-0.325*	-0.302*	-0.349**	-0.307**	-0.279*	-0.270*	-0.302*	-0.249*	-0.316**	-0.288**	(3.41)	(3.06)
(1.52)	(2.18)	(1.86)	(2.27)	(2.36)	(2.85)	(2.54)	(2.28)	(2.11)	(2.42)	(1.96)					
POPden (ln)	0.074**	0.071**	0.050*	0.066**	0.052*	0.056*	0.056*	0.062*	0.060*	0.055*	0.032	0.064**	0.060**	(4.46)	(3.69)
(3.03)	(3.33)	(2.48)	(3.28)	(3.23)	(2.25)	(2.24)	(2.54)	(2.63)	(2.51)	(1.28)					
SERVICES [Share (ln)]	-0.419**	-0.339**	-0.252**	-0.207*	-0.209*	-0.234**	-0.225*	-0.302**	-0.235*	-0.214*	-0.112	-0.259**	-0.250**	(5.00)	(4.80)
(3.69)	(3.62)	(2.82)	(2.49)	(2.51)	(2.70)	(2.45)	(3.26)	(2.53)	(2.31)	(0.93)					
ELECTR_ENG [Share (ln)]	0.069*	0.036	0.036	0.024	0.018	0.020	0.021	0.021	0.055*	0.053*	0.033	0.035*	0.035*	(2.41)	(2.39)
(2.40)	(1.63)	(1.76)	(1.19)	(0.87)	(0.86)	(0.80)	(0.80)	(2.25)	(2.33)	(1.41)					
DIV (ln)	-0.327	0.154	0.377	0.489*	0.579*	0.643*	0.555*	0.333	-0.064	0.009	-0.462	0.375*	2.763*	(2.17)	(2.35)
(0.75)	(0.45)	(1.46)	(2.00)	(2.17)	(2.23)	(1.99)	(1.39)	(0.18)	(0.02)	(1.00)					
DIV² (ln)	-0.002	0.022	-0.009	-0.018	-0.027	-0.042	-0.040	-0.025	-0.021	-0.035	-0.002	0.197**	0.191**	(7.35)	(7.08)
Dummy West (1 = yes)	0.233**	0.225**	0.215**	0.201**	0.228**	0.212**	0.207**	0.186**	0.172**	0.172**	0.166**	0.197**	0.191**	(7.35)	(7.08)
(3.59)	(4.45)	(4.60)	(4.97)	(5.69)	(4.98)	(4.45)	(3.99)	(4.12)	(4.35)	(4.42)					
Dummy Periphery (1 = yes)	0.018	0.008	-0.009	-0.018	-0.027	-0.042	-0.040	-0.025	-0.021	-0.035	-0.002	-0.022	-0.020	(1.57)	(1.39)
(0.60)	(0.32)	(0.37)	(0.82)	(1.17)	(1.70)	(1.66)	(1.11)	(1.03)	(1.65)	(0.09)					
Intercept	4.285**	4.510**	4.469**	4.596**	4.657**	4.726**	4.623**	4.614**	4.685**	4.846**	4.953**	4.624**	4.093**	(16.33)	(9.81)
(7.14)	(8.56)	(8.91)	(9.91)	(11.44)	(12.52)	(12.71)	(12.29)	(11.06)	(11.29)	(12.59)					
R² pseudo / R² adj.	0.73	0.70	0.70	0.66	0.62	0.57	0.51	0.47	0.42	0.41	0.42	0.81	0.82	(-)	(-)
Percentile value	4.087	4.244	4.291	4.371	4.442	4.466	4.503	4.521	4.533	4.540	4.579	(-)	(-)	(-)	(-)

* Bootstrap t-statistics in parentheses; ** robust t-statistics in parentheses; * statistically significant at the 5% level; ** statistically significant at the 1% level; number of observations: 93
Figure 2: *Industrial variety and efficiency at the level of the German planning regions*

The OLS approach also provides evidence for nonlinear relationship between the degree of industrial diversity and the innovative performance of a region when introducing the inverse of the Gini coefficient and its squared value.\(^9\) The positive sign for the industrial diversity index suggests that the efficiency of regional innovation activity increases with the variety of industries in the region and that interaction of actors with different knowledge endowments stimulates the generation of new ideas rather than specialization (Jacobs’ externalities). However, the negative sign for the squared value of the diversity index indicates a nonlinear relationship with the efficiency that has the shape of an inverse ‘U’ that is truncated close behind the maximum value. Indeed, the

\(^9\) No relationship of third or higher polynomial order can be found between the degree of industrial diversity and efficiency. Furthermore, there is no relationship of second or higher polynomial order between any other exogenous variables and the efficiency.
same pattern can be directly observed in the data (figure 2).10 This pattern implies that an optimum degree of industrial diversity exists and that a further increase beyond this level has an unfavorable effect. Obviously, both of the extremes, broad diversity as well as narrow specialization, may be unfavorable for the performance of a region. Even after introducing a number of additional variables in order to control for further effects, the estimated pattern for industrial diversity remains remarkably stable.

Our results suggest that externalities of both Marshall and Jacobs’ type affect the efficiency of regions in producing innovative output. This confirms previous results of Paci and Usai (1999, 2000b) who used the Herfindahl index as a measure of industrial diversity, and it also parallels the findings of Greunz (2004) who tested the impact of the industrial structure on innovation in European regions by means of Gini coefficients.

Because the specialization of a region in a certain industry with a relatively high level of patenting may significantly influence its innovative output and, therefore, the efficiency, a control for such industry-specific effects appears appropriate. Therefore, we account for the share of employees in the transportation engineering, electrical engineering, measurement engineering and optics, and chemistry, biochemistry inclusively. These are, according to Greif and Schmiedl (2002), the technological fields in which most of the patent applications in Germany are generated.11 However, only regional specialization in electrical engineering appears to have a significant effect on RIS efficiency. The OLS approach as well as the quantile regressions suggest that there is a concentration of electrical engineering industry in high efficiency regions. The estimates for transportation engineering, measurement engineering, and optics as well as for chemistry are not statistically significant and, therefore, are not reported here.

10 High values indicate high levels of industry diversification. Such an inverse ‘U’-shaped relationship between industrial diversity and efficiency may cause the insignificant coefficient estimated by means of quantile regression approach at the upper end of the distribution.

11 In the 1995-2000 period, about 9.6 percent of all patent applications have been submitted in the field of transportation engineering, 13 percent in electrical engineering, and 7.4 percent in measurement engineering/optics (Greif and Schmiedl 2002).
Since firms in different industries tend to differ with respect to their minimum efficient size, we include the average firm size in the region in order to control for further industry-specific effects that are yet not captured. As indicated by the significantly negative coefficient for average firm size, efficiency of innovation activity tends to be lower in regions that are dominated by large scale industries. This confirms other studies which suggest that the number of patents per unit of R&D input is higher in smaller firms than in larger ones (Acs and Audretsch 1990; Cohen and Klepper 1996).

Another common assumption in the innovation literature is that services, particularly knowledge intensive business services (KIBS), may produce and diffuse knowledge that is crucial for innovation processes (Muller and Zenker 2001; Anselin, Varga, and Acs 2000). In order to test the impact of the service supply in a region on the efficiency, we include the relative size of that sector (in terms of employment) into the model. However, our results indicate that the share of the service sector always has a negative impact on the efficiency of regions. This means that despite their supporting function, resources allocated to the service sector are less efficient in terms of patenting. This corresponds to the relatively low share of patents in services.

The positive coefficient for population density indicates the presence of urbanization economies. This means that densely populated regions provide a variety of opportunities for interaction in addition to often abundant supplies of input as well as a rich physical and institutional infrastructure, which may be advantageous for economic and innovation activity (Ciccone and Hall 1996; Crescenzi et al. 2007; Carlino et al. 2007).

The results of the analysis provide robust evidence that regions located in the western part of Germany are more efficient than regions located in the eastern part of the country. This suggests the presence of further region-specific factors (e.g. organization of the R&D process, institutions etc.) which also influence the efficiency of the R&D processes. The statistically insignificant coefficient for the dummy variable for location at the periphery indicates that such regions do not tend to be relatively inefficient in comparison to the non-peripheral areas.
8. Conclusions

This study investigated the effect of a region’s specialization in certain industries on its efficiency in producing knowledge. Our answer to the question “Is regional specialization in a certain industry conducive to the innovative performance of regions?” is “Yes, but only to a certain degree.” In fact, the analysis suggests that the relationship between specialization and the performance of a region has the form of an inverse ‘U’. This means that when a certain level of specialization is reached, any further specialization in a particular industry tends to be unfavorable for the efficiency of the region. High specialization as well as great diversity of a region’s industry structure are associated with a relatively low level of efficiency.

The results of the quantile regressions clearly indicate that the impact of different factors that determine the efficiency of RIS may not be identical at all levels of efficiency. In our analysis this pertained particularly to industrial diversity, to the amount of private sector R&D, and to the quality of university research and interaction with the private sector firms (as indicated by their third-party funds from private sector firms). These results imply that there are no one-size-fits-all policy recommendations for stimulating the innovative performance in all kinds of regions. Clearly, policy should be well aware of regional idiosyncrasies and should properly account for these region-specific factors.

The results of this study raise some important questions for further research. First, the determinants of knowledge spillovers within the private sector as well as the industry-universities relationships should be more illuminated, as such interactions seem to be conducive to the regional innovative performance. Second, additional research is required in order to answer the question about what the forces are that determine the industrial structure of regions. Moreover, regarding the role of industrial diversity for innovation, more information about the ways in which knowledge spills over between industries should be helpful in order to derive reasonable policy implications.
References

Acs ZJ, Audretsch DB (1990) Innovation and Small Firms. Cambridge University Press, Cambridge

Acs ZJ, Anselin L, Varga A (2002) Patents and Innovation Counts as measures of regional production of New Knowledge. Res Policy 31:1069-1085

Andersson R, Quigley JM, Wilhelmsson M (2005) Agglomeration and the spatial distribution of creativity. Pap Reg Sci 84:445-464

Anselin L, Varga A, Acs ZJ (2000) Geographic and sectoral characteristics of academic knowledge externalities. Pap Reg Sci 79:435-443

Arrow KJ (1962) The economic implications of learning by doing. Rev Econ Stud 29:155-173

Audretsch DB, Feldman MP (1996a) R&D spillovers and the geography of innovation and production. Am Econ Rev 86:631-640

Audretsch DB, Feldman MP (1996b) Innovative clusters and the industry life cycle. Rev Indus Organizat 11:253-273

Baptista R, Swann P (1998) Do firms in clusters innovate more? Res Policy 27:525-540

Bartelsman EJ, Caballero RJ, Lyons RK (1994) Customer- and supplier-driven externalities. Am Econ Rev 84:1075-1084

Beaudry C, Breschi S (2003) Are Firms in Clusters Really More Innovative? Econ Innov New Techn 12: 325–342

Bode E (2004) The spatial pattern of localized R&D spillovers: an empirical investigation for Germany. J Econ Geogr 4:43-64

Brouwer E, Kleinknecht A (1996) Determinants of innovation: a microeconomic analysis of three alternative innovation indicators. In: Kleinknecht A (ed) Determinants of Innovation: The Message from New indicators. Macmillan, Basingstoke

Bundesamt fuer Bauwesen und Raumordnung – BBR (2003) Aktuelle Daten zur Entwicklung der Staedte, Kreise und Gemeinden 17. BBR, Bonn

Carlino G A., Chatterjee S, Hunt R M (2007) Urban density and the rate of invention. J Urban Econ 61:389–419

Ciccone A, Hall RE (1996) Productivity and the density of economic activity. Am Econ Rev 86:54-70

Cohen WM, Klepper S (1996) A Reprise of Size and R&D, Econ J 106:925-951

Cohen WM, Nelson RR, Walsh JP (2000) Protecting their intellectual assets: appropriability conditions and why US manufacturing firms patent (or not). NBER Working Paper Series No 7552

Cooke P, Uranga MG, Etxebarria G (1997) Regional innovation systems: Institutions and organisational dimensions. Res Policy 26:475-491
Crescenzi R, Rodriguez-Pose A, Storper M (2007) The territorial dynamics of innovation: a Europe-United States comparative analysis. J Econ Geogr 7:673-709

Duranton G, Puga D (2000) Diversity and specialization in cities. Why, where and when does it matter? Urban Stud 37:533-555

Ellison G, Glaeser EL (1999) The geographic concentration of industry: does natural advantages explain agglomeration? Am Econ Rev 89:301-316

Farrell MJ (1957) The Measurement of Productive Efficiency. J Royal Stat Soc 120:253-282

Feldman MP, Audretsch DB (1999) Innovation in cities: Science-base diversity, specialization and localized competition. Eur Econ Rev 43:409-429

Fischer MM, Varga A (2003) Spatial Knowledge Spillovers and University Research: Evidence from Austria. Ann Reg Sci 37:303-322

Fritsch M, Mallok J (2002) Machinery and Productivity - A Comparison of East and West German Manufacturing Plants. In: Schaezle L, Diez JR (eds) Technological Change and Regional Development in Europe. Physica, Berlin Heidelberg New York

Fritsch M, Brixy U (2004) The Establishment File of the German Social Insurance Statistics. Schollers Jahrbuch / J Appl Soc Sci Stud 124:183-190

Fritsch M, Slavtchev V (2006) Measuring the Efficiency of Regional Innovation Systems – An Empirical Assessment. Working Paper 8/2006, Faculty of Economics and Business Administration, Technical University Bergakademie Freiberg, Freiberg

Fritsch M, Slavtchev V (2007) Universities and Innovation in Space. Ind Innovat 14:201-218

Fritsch M, Slavtchev V (2008a) Determinants of the Efficiency of Regional Innovation Systems. Reg Studies (forthcoming)

Fritsch M, Slavtchev V (2008b) Local Knowledge Sources, Spillovers and Innovation, School of Economics and Business Administration, Friedrich-Schiller-University Jena, Germany, mimeo

Gertler MS (2003) Tacit knowledge and the economic geography of context, or the undefinable tacitness of being (there). J Econ Geogr 3:75-99

Glaeser EL, Kallal HD, Scheinkam JA, Shleifer A (1992) Growth in cities. J Polit Econ 100:1126-1152

Gould WW (1992) Quantile regression with bootstrapped standard errors. Stata Tech Bull 9:19-21

Grabher G (1993) The weakness of strong ties: the lock-in of regional developments in the Ruhr area. In: Grabher G (ed) The embedded firm – On the socioeconomics of industrial networks. Routledge, London

Greene WH (2003) Econometric Analysis. Prentice Hall, New York

Greif S, Schmiedl D (2002) Patentatlas Deutschland. Deutsches Patent- und Markenamt, Munich
Greunz L (2004) Industrial structure and innovation – evidence from European regions. J Evol Econ 14:563-592
Griliches Z (1979) Issues in Assessing the Contribution of Research and Development to Productivity Growth. Bell J Econ 10:92-116
Griliches Z (1990) Patent statistics as economic indicators: a survey, J Econ Lit 28:1661-1707
Henderson V (1997) Medium size cities. Reg Sci Urban Econ 27:583-612
Hinze S, Schmoch U (2004) Analytical approaches and their impact on the outcome of statistical patent analysis. In: Moed HF, Glaenzel W, Schmoch U (eds) Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of S&T systems. Kluwer Academic Publishers, Dordrecht
Hippel E (1986) Lead User: A Source Of Novel Product Concepts. Man Sci 32:791-805
Hornbostel S (2001) Third party funding of German Universities. An indicator of research activity. Scientometrics 50:523-537
Kalirajan KP, Shand RT (1999) Frontier Production Functions and technical efficiency measures. J Econ Surv 13:149-172
Kline SJ (1985) Innovation is not a linear process. Res Man 28:36-45
Kline SJ, Rosenberg N (1986) An Overview of Innovation, in Landau R, Rosenberg N (eds) The Positive Sum Strategy, pp. 275-305. National Academy Press, Washington, DC
Koenker R, Bassett G (1982) Robust tests for heteroscedasticity based on regression quantiles. Econometrica 50:43-61
Jacobs J (1969) The economy of cities. Vintage, New York
Jaffe A (1989) Real effects of Academic Research. Am Econ Rev 79:957-970
Lawson C, Lorenz E (1999) Collective learning, tacit knowledge and regional innovative capacity. Reg Stud 33:305-317
Leibenstein H (1966) Allocative efficiency vs. “X-efficiency”. Am Econ Rev 56:392-415
Leydesdorff L, Fritsch M (2006) Measuring the knowledge base of regional innovation systems in Germany in terms of a Triple Helix dynamics. Res Policy 35:1538-1553
Marshall A (1890) Principles of Economics. Macmillan, London
Maskell P, Malmberg A (1999) Localized learning and industrial competitiveness. Cam J Econ 23:167-185
Mowery DC, Oxley JE, Silverman BS (1998) Technological overlap and interfirm cooperation: implications for the resource-based view of the firm. Res Policy 27:507-523
Muller E, Zenker A (2001) Business services as actors of knowledge transformation: the role of KIBS in regional and national innovation systems. Res Policy 30:1501-1516
Ouwersloot H, Rietveld P (2000) The geography of R&D: tobit analysis and a Bayesian approach to mapping R&D activities in the Netherlands. Envir Plan A 32:1673-1688

Paci R, Usai S (1999) Externalities, knowledge spillovers and the spatial distribution of innovation. GeoJournal 49:381-390

Paci R, Usai S (2000a) Technological enclaves and industrial districts: An analysis of the regional distribution of innovative activity in Europe. Reg Stud 34:97-114

Paci R, Usai S (2000b) The role of specialization and diversity externalities in the agglomeration of innovative activities. Riv Ital Econ 2:237-268

Porter ME (1998) Clusters and the new economics of competition. Harv Bus Rev 76:77-90

Rogers WH (1993) Calculation of quantile regression standard errors. Stata Tech Bull 13:18-19

Romer PM (1986) Increasing returns and long run growth. J Polit Econ 94:1002-1037

Ronde P, Hussler C (2005) Innovation in regions: What does really matter? Res Policy 34:1150-1172

van der Panne G (2004) Agglomeration externalities: Marshall versus Jacobs, J Evo Econ 14:593-604

van Oort F (2002) Innovation and agglomeration economies in the Netherlands. J Econ Soc Geogr 93:344-360

Urban GL, Hippel E (1988) Lead User Analyses For The Development Of New Industrial Products. Man Sci 34:569-582
Appendix

Table A1: The distribution of efficiency in the German planning regions

Code	Name	Estimated production elasticities	Efficiency [%]	Rank
1	Schleswig-Holstein North	0.5685	73.07	75
2	Schleswig-Holstein South-West	0.5412	69.57	80
3	Schleswig-Holstein Central	0.6104	78.46	67
4	Schleswig-Holstein East	0.5991	77.02	70
5 & 6	Schleswig-Holstein South & Hamburg	0.6857	85.57	55
7	Western Mecklenburg	0.4634	59.57	88
8	Central Mecklenburg/Rostock	0.5163	66.37	84
9	Western Pomerania	0.4479	57.58	91
10	Mecklenburgische Seenplatte	0.4119	52.94	93
11 & 13 & 15	Bremen & Bremerhaven & Bremen-Umland	0.6123	78.71	66
12	East Frisian	0.5866	75.41	71
14	Hamburg-Umland-South	0.6778	87.12	46
16	Oldenburg	0.6008	77.22	69
17	Emsland	0.5823	74.85	72
18	Osnabruck	0.6767	86.99	48
19	Hanover	0.6691	86.01	53
20	Suederheide	0.6290	80.85	65
21	Luneburg	0.5726	73.60	73
22	Brunswick	0.7250	93.19	18
23	Hildesheim	0.6713	86.29	50
24	Gottingen	0.6817	87.62	45
25	Prignitz-Obbehavel	0.4859	62.46	87
26	Uckermark-Barnim	0.4542	58.38	90
27	Oderland-Spree	0.4899	62.98	86
28	Lunatia-Spreeal	0.5389	69.28	81
29 & 30	Havelland-Flaeming & Berlin	0.6833	87.83	44
31	Altmark	0.4247	54.59	92
32	Magdeburg	0.5550	71.34	78
33	Dessau	0.4634	59.56	89
34	Halle/ Saale	0.5604	72.04	77
35	Muenster	0.7112	91.42	31
36	Bielefeld	0.7150	91.91	28
37	Paderborn	0.6673	85.78	54
38	Arnsberg	0.6692	86.03	52
39	Dortmund	0.6403	82.31	58
40	Emscher-Lippe	0.6768	87.01	47
41	Duisburg/Essen	0.6714	86.31	49
42	Duesseldorf	0.7335	94.29	12
43	Bochum/Hagen	0.7171	92.18	26
44	Cologne	0.7018	90.21	38
45	Aachen	0.7237	93.02	19
46	Bonn	0.7149	91.90	29
47	Siegen	0.7049	90.61	35
48	Northern Hesse	0.6353	81.66	62
49	Central Hesse	0.7282	93.61	15
50	Eastern Hesse	0.6306	81.07	64
51	Rhine-Main	0.7107	91.36	32
52	Starkenburg	0.7185	92.35	25
53	Northern Thuringia	0.5008	64.37	85
54	Central Thuringia	0.5858	72.74	76
55	Southern Thuringia	0.5698	73.24	74
56	Eastern Thuringia	0.6349	81.61	63
57	Western Saxony	0.5347	68.74	83
58	Upper Elbe Valley / Eastern Ore Mountains	0.6387	82.10	59
Region	Value 1	Value 2	Value 3	Value 4
---	---------	---------	---------	---------
Upper Lusatia-Lower Silesia	0.5356	0.2440	68.85	82
Chemnitz-Ore Mountains	0.6087	0.2254	78.25	68
South West Saxony	0.5520	0.2446	70.96	79
Middle Rhine-Nahe	0.7033	0.2385	90.40	37
Trier	0.6370	0.2847	81.89	61
Rhine-Hesse-Nahe	0.7220	0.2427	92.81	22
Western Palatinate	0.6619	0.2659	85.08	56
Rhine Palatinate	0.7339	0.2229	94.34	11
Saar	0.6591	0.2354	84.73	57
Upper Neckar	0.7084	0.2137	91.06	33
Middle Rhine-Nahe	0.7292	0.2348	93.73	14
Upper Neckar	0.6975	0.2158	89.66	40
Stuttgart	0.7556	0.1869	97.13	5
Eastern Wuertember	0.7631	0.2459	98.09	3
Danube-iller (BW)	0.6950	0.2373	89.34	41
Neckar-Alb	0.7295	0.2390	93.77	13
Black Forest-Baar-Heuberg	0.7498	0.2501	96.39	7
Southern Upper Rhine	0.7141	0.2344	91.80	30
High Rhine-Lake Constance	0.7226	0.2397	92.88	20
Lake Constance-Upper Swabia	0.7198	0.2282	92.53	23
Bavarian Lower Main	0.7254	0.2604	93.24	17
Wurzburg	0.7083	0.2495	91.05	34
Main-Rhone	0.7531	0.2603	96.81	6
Upper Franconia-West	0.7407	0.2558	95.21	8
Upper Franconia-East	0.6377	0.2599	81.97	60
Upper Franconia-North	0.6868	0.2669	88.28	43
Industrial Region Central Franconia	0.7167	0.2021	92.13	27
Augsburg	0.7281	0.2885	93.60	16
Upper Franconia-West	0.6910	0.2305	88.83	42
Inolstadt	0.7189	0.2545	92.40	24
Regensburg	0.7354	0.2384	94.53	10
Danube-Forest	0.6984	0.2658	89.78	39
Landshut	0.6713	0.2702	86.29	51
Munich	0.7379	0.1868	94.85	9
Danube-iller (BY)	0.7223	0.2578	92.85	21
Allgaeu	0.7041	0.2612	90.51	36
Oberland	0.7779	0.2693	100.00	1
Southeast Upper Bavaria	0.7723	0.2441	99.27	2

Results of robust (cluster) negative-binomial regression. Estimated intercept = -0.0225, robust standard error = 2.0049. Log pseudolikelihood = -1,749.860.
Table A2: Correlation of variables

Variable	1	3	4	5	6	7	8	9
1 Patents *								
2 R&D_PRIV *								
3 Efficiency								
4 R&D_PRIV [Share]	0.22	1.00						
5 SERVICES	0.08	0.44	1.00					
6 POPden	0.17	0.38	0.47	1.00				
7 Ø FSIZE	0.08	0.58	0.19	0.46	1.00			
8 TPF_IND per professor	0.23	0.33	0.20	0.04	0.20	1.00		
9 DIV	0.66	-0.09	-0.12	-0.05	-0.05	0.10	1.00	
10 ELECTR_ENG	0.55	0.26	-0.11	0.02	0.18	0.21	0.44	

* Pooled yearly values.