Effective adsorption of methyl orange on organo silica nanoparticles functionalized by a multi-hydroxyl-containing gemini surfactant: A joint experimental and theoretical study

Tingting Wang 1,2,3,4,# Yaxun Sun 1,2,3,# Shifeng Wang 1,2,3,* Xin Li 1,2,3,4 Yihang Yue 1,2,3 Qi Gao 1,3,*

1 Department of Physics, Innovation center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa 850000, China
2 Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
3 Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
4 Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China

* To whom correspondence should be addressed: Shifeng Wang (email: wsf@utibet.edu.cn) and Qi Gao (email: fbc1980@163.com).
The authors contributed equally in this work.
Figure S1 The TG-DTG curves of G_{16}

Figure S2 The nitrogen adsorption/desorption isotherms of SiNPs (a) and G_{16}-SiNPs (b).
Figure S3 UV-Vis spectra of MO solution before and after adsorption on G16-SiNPs

Figure S4 The spectra of MO and adsorbed G16-SiNPs

Table S1 The surface area, total pore volume, and average pore diameter value of SiNPs and G16-SiNPs.

Sample	\(S_{\text{BET}} \) (m²/g)	\(V_{\text{tp}} \) (cm³/g)	\(D_p \) (nm)
SiNPs	62	1.00	16.3
G16-SiNPs	134	0.95	16.0

\(S_{\text{BET}} \)-surface area, \(V_{\text{tp}} \)-total pore volume, and \(D_p \)-average pore diameter
Table S2 Vibrational analysis of optimized structures.

G16 Frequency (1/cm)	Intensity (km/mol)	MO Frequency (1/cm)	Intensity (km/mol)
22.27	0.08	4.65	4.48
25.68	0.31	5.44	0.04
38.73	0.15	10.16	5.71
43.4	0.41	11.94	0.95
60.78	3.06	18.23	0.15
67.26	0.28	23.14	1.59
120.51	0.52	27.88	0.13
124.66	4.27	32.89	0.01
146.22	23.39	33.41	0.05
155.77	2.07	40.63	0.16
162.35	0.47	42.12	0.64
188.85	2.76	48.19	0.03
226.67	11.94	50.42	0.3
238.84	2.31	53.49	0.02
242.33	10.33	55.17	0.24

1. Characterization

The structural characters of SiNPs and G16-SiNPs were characterized by Fourier transformed infrared spectroscopy (FT-IR, Nicolet IS10 FT-IR spectrometer in the range of 4000-400 cm⁻¹, with resolution of 4 cm⁻¹) and X-ray diffractometer (XRD, in the 2θ range from 1º to 10º, at the scanning rate of 1º min⁻¹). Thermogravimetric analysis (TG-DTG, NETZSCH STA 449 F5/F3 Jupiter, from 30 to 800 ºC at 10 ºC min⁻¹, nitrogen atmosphere) alternated with elemental analysis (EA, Vario EL cube) is applied to measure the sample thermal stability and modifier loading. Scanning electron microscope (SEM, SU8010, Japan) was adopted for a visual observation of SASs and organo-SASs.
The values of zeta potential were recorded on Zetasizer Nano ZS90 at pH of 3, 5, 7 and 9. All samples were all dried at 60 °C overnight before characterization.

2. The adsorption kinetics, isotherms and thermodynamics

The equations of pseudo-first- (S1), pseudo-second order (S2) and intra particle diffusion (S3) models, the Langumir (S4), Freundlich (S5) and Redlich-Peterson (S6), as well as thermodynamic parameters (S7 and S8) are expressed as follows:¹ ²

\[
\begin{align*}
\log(q_e - q_t) &= \log q_e - \frac{k_1}{2.303} t \\
\frac{t}{q_t} &= \frac{1}{k_2 q_e} + \frac{1}{q_e} \\
q_t &= k_i t^{1/2} + C
\end{align*}
\]

where \(k_1\) (min⁻¹) and \(k_2\) (g (mg min)⁻¹) were the pseudo-first-order and pesudo-second-order rate constants. \(q_e\) (mg g⁻¹) and \(q_t\) (mg g⁻¹) were the adsorption capacities at equilibrium and at time \(t\) (min), which represents contact time. All these unknown parameters can be determined from plots of \(\log (q_e - q_t)\) against \(t\) and \(t/q_t\) against \(t\). \(k_{id}\) (mg g⁻¹ min⁻¹/2) is the rate constant of the intra-particle diffusion kinetic model, the values of \(C\) and \(k_{id}\) can be determined from the intercept and slope of the linear plotted of \(q_t\) against \(t^{1/2}\), respectively.

The Langmuir, Freundlich and Redlich-Peterson isotherms were expressed as follows:³

\[
\begin{align*}
q_e &= \frac{Q_m K_f C_e}{1 + K_f C_e} \\
q_e &= K_f C_e^{1/n} \\
q_e &= \frac{A C_e}{1 + BC_e^n}
\end{align*}
\]

where \(q_e\) (mg/g) is the adsorption capacity onto per unit mass of adsorbent at equilibrium, \(C_e\) is the solute equilibrium concentration (mg/L), \(q_m\) (mg/g) is maximum adsorbed amount in the theoretical. \(k_l\) (L/mg), \(k_i\) (mg/g) and \(n\) represent the constants of Langmuir and Freundlich, respectively. \(A\) (L/g)
and $B (\text{L/mg})$ are the Redlich–Peterson model constant. g fluctuated between 0 and 1 with two limiting behaviors: Langmuir form for $g = 1$ and Henry’s law form for $g = 0$.

Thermodynamic parameters could be calculated using the following equations:

$$\ln K_L = \frac{\Delta S^\circ}{R} - \frac{\Delta H^\circ}{RT}$$ \hspace{1cm} (S7)

$$\Delta G^\circ = -RT \ln K_L$$ \hspace{1cm} (S8)

where K_L is the Langmuir constant, q_e and C_e have the same definitions with above equations. R is the universal gas constant (8.3145 J/(mol K)) and T represents the absolute temperature in Kelvin. The values of ΔH° and ΔS° can be extrapolated from intercept and slope of $\ln K_L$ versus $1/T$.

Reference

(1) S. Yang, M. Gao, Z. Luo, Q. Yang, The characterization of organo-montmorillonite modified with a novel aromatic-containing gemini surfactant and its comparative adsorption for 2-naphthol and phenol. Chem. Eng. J. 268 (2015) 125-134.

(2) G. Xue, M. Gao, Z. Gu, Z. Luo, Z. Hu, The removal of p-nitrophenol from aqueous solutions by adsorption using gemini surfactants modified montmorillonites. Chem. Eng. J. 218 (2013) 223-231.

(3) Z. Li, A. Gómez-Avilés, L. Sellaoui, J. Bedia, A. Bonilla-Petriciolet, C. Belver, Adsorption of ibuprofen on organo-sepiolite and on zeolite/sepiolite heterostructure: Synthesis, characterization and statistical physics modeling. Chem. Eng. J. 371 (2019) 868-875.

(4) J. Wang, M. Gao, T. Shen, M. Yu, Y. Xiang, J. Liu, Insights into the efficient adsorption of rhodamine B on tunable organo-vermiculites. J. Hazard. Mater. 366 (2019) 501-511.