Unintended Bias in Language Model-driven Conversational Recommendations

Tianshu Shen †
University of Toronto
Toronto, ON, Canada
tshen@mie.utoronto.ca

Jiaru Li †
University of Toronto
Toronto, ON, Canada
kellyjiaru.li@mail.utoronto.ca

Mohamed Reda Bouadjeneke
Deakin University
Geelong, VIC, Australia
reda.bouadjeneke@deakin.edu.au

Zheda Mai ‡
Optimy.ai
Toronto, ON, Canada
zheda.mai@mail.utoronto.ca

Scott Sanner*
University of Toronto
Toronto, ON, Canada
ssanner@mie.utoronto.ca

ABSTRACT
Conversational Recommendation Systems (CRSs) have recently started to leverage pretrained language models (LM) such as BERT for their ability to semantically interpret a wide range of preference statement variations. However, pretrained LMs are well-known to be prone to intrinsic biases in their training data, which may be exacerbated by biases embedded in domain-specific language data (e.g., user reviews) used to fine-tune LMs for CRSs. We study a recently introduced LM-driven recommendation backbone (termed LMRec) of a CRS to investigate how unintended bias — i.e., language variations such as name references or indirect indicators of sexual orientation or location that should not affect recommendations — manifests in significantly shifted price and category distributions of restaurant recommendations. The alarming results we observe strongly indicate that LMRec has learned to reinforce harmful stereotypes through its recommendations. For example, offhand mention of names associated with the black community significantly lowers the price distribution of recommended restaurants, while offhand mentions of common male-associated names lead to an increase in recommended alcohol-serving establishments. These and many related results presented in this work raise a red flag that advances in the language handling capability of LM-driven CRSs do not come without significant challenges related to mitigating unintended bias in future deployed CRS assistants with a potential reach of hundreds of millions of end users.

KEYWORDS
Conversational Recommendation Systems, BERT, Contextual Language Models, Bias and Discrimination.

1 INTRODUCTION
With the prevalence of language-based intelligent assistants such as Amazon Alexa and Google Assistant, conversational recommender systems (CRSs) have attracted growing attention as they can dynamically elicit users’ preferences and incrementally adapt recommendations based on user feedback [17, 21]. As one of the most crucial foundations of CRSs, Natural Language Processing (NLP) has witnessed several breakthroughs in the past few years, and the use of pretrained transformer-based language models (LMs) for downstream tasks is one of them [36]. Numerous studies have shown that these transformer-based LMs such as BERT [12], RoBERTa [30] and GPT [40] pretrained on large corpora can learn universal language representations and are extraordinarily powerful for many downstream tasks via fine-tuning [39]. Recently, CRSs have started to leverage pretrained LMs for their ability to semantically interpret a wide range of preference statement variations and have demonstrated their potential to build a variety of strong CRSs [19, 32, 38].

However, pretrained LMs are well-known for exhibiting unintended social biases involving race, gender, or religion [28, 31, 42]. These biases result from unfair allocation of resources [20, 51], stereotyping that propagates negative generalizations about particular social groups [35], as well as differences in system performance for different social groups, text that misrepresents the distribution of different social groups in the population, or language that is denigrating to particular social groups [4, 18, 28]. Moreover, these biases may also be exacerbated by biases used for domain-specific LM fine-tuning used for downstream tasks [22, 35].

In this paper, we study a recently introduced LM-driven recommendation backbone (termed LMRec) for CRSs [19] to investigate how unintended bias manifests in significantly shifted price and category distributions of restaurant recommendations. Specifically, we generate templates with placeholders indicating non-preference-oriented information such as names or relationships that implicitly indicate race, gender, sexual orientation, religion, and study how different substitutions for these placeholders modulate price and category distributions.

Through extensive studies of various unintentional biases, including race, gender, intersectional (race + gender), sexual orientation, location and religion, we observe a number of alarming results:

- LMRec recommends significantly more low-priced establishments when a black-associated name is mentioned compared to a white-associated name.
- LMRec recommends significantly more alcohol-serving establishments when a male-associated name is mentioned compared to a female-associated name.
- LMRec picks up indirect mentions of homosexual relations (e.g. “my brother and his boyfriend”) as indicated by the
While trends such as males receiving more alcohol-related recommendations or mentions of a homosexual relationship leading to a recommendation of “gay bar” may seem innocuous if not stereotypically appropriate, it is important to note that these recommendation distribution shifts did not arise from explicit preferential statements in the conversation, nor recorded preferential history of the user (we operate in the cold-start setting), but rather from embedded stereotypes and contextual inference through offhand mentions of names, relationships, or locations. Should one receive low-priced restaurant recommendations because they mention a black friend or a visit to the mosque? Clearly not, and moreover, not all males drink alcohol nor do all homosexual couples want to go to “gay bars”. On one hand, it’s impressive how much context the LM-driven CRS has picked up from conversation, but on the other hand, one should ask: when has contextual inference gone “too far” or become intrusive as it relates to conversational recommendation?

In short, our goal in this article is not to propose algorithmic solutions nor to recommend policy on (in)appropriate contextual inference, but rather to make a first step in studying the types of bias that can occur in LM-driven CRSs that appear heretofore unstudied. We will discuss the challenges of unintended bias mitigation before concluding that this overall issue in LM-driven CRSs deserves significant attention before the potential harms of such systems become irreversible through widespread deployment.

2 RELATED WORK

This section briefly summarizes how fairness/bias issues have been analyzed in two requisite elements of language model-driven recommender systems: recommendation systems and language models. Recent work on how language models can be leveraged in conversational recommender systems is also covered though we note a conspicuous lack of work on bias in LM-driven CRSs.

2.1 Fairness/Bias in Recommendation Systems

Recommendation Systems (RS) use users with personalized suggestions and can help alleviate information overload [8]. While much recent work in RS investigates improved machine learning models for recommendation [8], recent years have seen a rise in the number of works examining fairness and bias in recommendation. In brief, unfairness in recommendations manifests as systematic discrimination against certain individuals in favor of others [15] based on protected attributes such as gender and age.

Age & Gender Bias: Performance disparities (with NDCG metric) of Collaborative Filtering (CF) algorithms in the recommendation of movies and music have been observed [14], revealing unfairness with regards to users’ age and gender. Studies also show empirically that popular recommendation algorithms work better for males since many datasets are male-user-dominated [13]. One way to measure gender and age fairness of different recommendation models is based on generalized cross entropy (GCE) [10, 11]; specifically, this work shows that a simple popularity-based algorithm provides better recommendations to male users and younger users, while on the opposite side, uniform random recommendations and collaborative filtering algorithms provide better recommendations to female users and older users [11]. Lin et al. [29] study how different recommendation algorithms change the preferences for specific item categories (e.g., Action vs. Romance) for male and female users. They show that neighborhood-based models intensify the preferences toward the preferred category for the dominant user group (males), while some other matrix-based factorization algorithms are likely to dampen these preferences.

Multi-sided Fairness: Recommendation processes involving multiple stakeholders (e.g., Airbnb, Uber) can raise the question of multi-sided fairness [5]. With more than one party in the transaction, multi-sided fairness becomes an issue when considering how one side’s preferences might negatively impact the other side [27]. To achieve multi-sided fairness, Burke et al. [6] propose a regularization-based matrix completion method to balance neighborhood fairness in collaborative filtering recommendation. Prior studies also address individual fairness (for producers and customers specifically) and further promote the long-term sustainability of two-sided platforms [37].

2.2 Fairness/Bias in Language Models

Contextual word embeddings have reached the state-of-the-art achievement for NLP tasks [23]. For instance, transformer-based LMs, such as BERT [12], RoBERTa [30] and GPT [40] are widely used as base models in NLP tasks, where researchers have shown the models’ ability to generalize over a wide distribution of text [31] and to learn universal language representations [39]. However, as these models are trained on human language data, recent years have seen a number of studies document how pretrained LMs are prone to intrinsic bias existing in their training data [28, 31, 42].

Gender Bias: Lu et al. [31] shows that LM-based NLP systems place higher probability on sentences that are consistent with gender/occupation stereotypes such as (he/doctor, she/nurse). Moreover, prior work uses predefined social attributes and shows that female words are more associated with family than career attributes compared to male names [7]. For BERT specifically, the final-layer is shown to have a higher average intensity score for male phrases for joy, fear and anger compared to female phrases [3].

Racial Bias: In language generation using OpenAI’s GTP-2 model, Sheng et al. [42] show that there are more negative associations of the black population when conditioning on context related to respect and occupation. Another study adapts the Sentence Encoder Association Test (SEAT) [34] to analyze potential biases encoded in BERT and GPT-2 with respect to gender, race, and the intersectional identities (gender + race). The empirical analysis shows that BERT has the highest proportion of bias on the race and intersectional tests performed among all contextual word models [46].

Sexual Orientation Bias: The study by Sheng et al. [42] notes that when given a prompt “The gay person was known for”, one example of a generated continuation is “his love of dancing, but he also did drugs”, hence showing a negative association related to
LGBT demographics. By performing a hate speech detection task, Badjatiya et al. [1] shows that sentences containing “gay” and “homosexual” are often wrongly predicted as being “hateful”, indicating that words related to sexual minority can be bias sensitive.

Religion and Occupation Bias: Liang et al. [28] shows harmful tokens (words with largest projection values onto the bias subspace) are automatically detected for some religion social classes, for example, “terrorists” and “murder” for Muslim. We also note the existence of gender-occupation bias in LMs, for instance, female associated words are more associated with arts vs. mathematics than male associated words [7]. The link between gender-occupation bias and gender gaps in real-world occupation participation is proven by the strong correlation between GloVe word embeddings and the composition of female labor in 50 occupations [7].

2.3 CRSs and LMs

Traditional static recommender systems that primarily predict a user’s preference based on historical data (e.g., click history, ratings) have inherent disadvantages in handling some practical scenarios, such as when a user’s preference drifts over time or when the recommendation is highly context-dependent [21]. With the emergence of intelligent conversational assistants such as Amazon Alexa and Google Assistant, conversational recommender systems (CRSs) that can elicit the dynamic preferences of users and take actions based on their current needs through multi-turn interactions have a strong potential to improve different aspects of recommender systems [17] and therefore CRSs have recently seen a growing research interest.

Although recent works have made seminal contributions and built a solid foundation for CRSs [9, 25, 26, 44], building a general natural language capable CRS is still an open challenge. However, powerful pretrained transformer-based LMs have provided a new direction for CRSs, and multiple recent works have demonstrated their potential for CRSs. Penha and Hauff [38] shows that off-the-shelf pretrained BERT has both collaborative- and content-based knowledge stored in its parameters about the content of items to recommend; furthermore, fine-tuned BERT is highly effective in distinguishing relevant responses and irrelevant responses. ReX-Plug [19] exploits pretrained LMs to produce high-quality explainable recommendations by generating synthetic reviews on behalf of the user, and RecoBERT [32] builds upon BERT and introduces a technique for self-supervised pre-training of catalogue-based language models for text-based item recommendations.

In general, pretrained LMs have shown exceptional promise for CRSs. However, it’s still unclear if the unintended biases from pretrained LMs will propagate to CRSs, and there is no existing work investigating this crucial yet overlooked problem for deploying LM-driven CRSs in production. In this paper, we will present novel quantitative and qualitative analyses to identify and measure unintended biases in LM-driven CRS with the aim to inspire more investigation in this important yet currently under-explored topic.

3 METHODOLOGY

In this section, we first provide a brief overview of BERT, followed by the description of LMs for Recommendation (LMRec) and technical details. Finally, we will outline our template-based methodology for exploring unintended bias in LMRec.

3.1 Background: BERT

Pre-trained language models like BERT [12], RoBERTa [30], or ALBERT [24], have made a significant impact on several natural language tasks, such as text classification [43], question answering [52], part-of-speech tagging [47], and various other NLP tasks [12]. Specifically, BERTBASE relies on a deep Transformer architecture [48] of 12 blocks of transformers, with each having 12 self-attention heads and a hidden size of 768 for a total of 110M parameters. The BERT pre-trained language model has been trained with a multi-task objective (masked language modelling and next-sentence prediction) over a 3.3B word English corpus. Unlike the traditional bag-of-words model, BERT provides self-attentive, contextualized word representations based on neighbor tokens.

Given an input sequence $S = \{w_0, w_1, \ldots, w_n\}$, BERT’s deep encoder produces a set of layer activations $H(0), H(1), \ldots, H(L)$, where $H(ℓ) = [h_{0}^{(ℓ)}, h_{1}^{(ℓ)}, \ldots, h_{n}^{(ℓ)}]$ are the activation vectors of the $ℓ$th encoder layer and, $H(0)$ corresponds to the non-contextual word (piece) embeddings. BERT uses special tokens [SEP], [CLS] and [MASK] to interpret inputs properly. In particular, the [SEP] token has to be inserted at the end of a single input or to separate two sentences. The [CLS] is a special classification token, and the last hidden state of BERT corresponding to this token (h_{CLS}) is used for classification tasks. Finally, the [MASK] token can be used to mask specific tokens to help the model generalize better.

In sum, BERTBASE encodes each input S into an $n \times 768$ dimensional vector, to which various classification layers can be connected to fine-tune the model for a particular task.

3.2 LMs for Recommendation (LMRec)

In this paper, we focus our study on an LM-driven recommendation backbone (that we term LMRec), which comprises part of the
Table 1: Demo examples of bias existing in LMRec, the testing input templates used, substitution words for the placeholders, and top recommendation. The placeholders represent each of the bias types we scrutinize. From the result, we notice desserts are likely to recommend to female names such as “Madeline” and “Keisha” (but the item recommended to the black people is relatively cheaper), male homosexual groups receive nightlife activities recommendations, and people receive high-end restaurants from the system when indicating they are going to the psychiatrist.

Bias Type	Example of Input Template with [ATTR] to be Filled	Substitution	Top Recommended Item	Information of Item
Gender	Can you help [GENDER] to find a restaurant?	Madeline(female)	Finale	Desserts, Bakeries, $5
Race	Can you make a restaurant reservation for [RACE]?	Keisha(black)	Caffeine	Desserts, Breakfast&Brunch, $5
Sexual Orientation	Can you find a restaurant for my [ST RELATIONSHIP] and [END RELATIONSHIP]	son, boyfriend	Island Creek Oyster Bar	Nightlife, Seafood, Bars, $5
Location	What should I eat on my way to the [LOCATION]?	psychiatrist	Harbour 60	Steakhouses, Seafood, $$$

ReXPlug CRS [19]. The architecture of LMRec is illustrated in Figure 1 and relies on BERT as a conversational language encoder with an AutoRec-style [41] recommendation decoder head to select a restaurant venue given a textual statement of preference as input.

In more detail, given an input sequence \(S = [w_0, w_1, \ldots, w_n] \) ("Restaurant for my brother and his girlfriend"), the fine-tuned BERT uses the final hidden state \(h_{\text{CLS}} \) as \(\in \mathbb{R}^H \) corresponding to the first input token \(\text{[CLS]} \) as the aggregate input text embedding. Next, a recommendation decoder trained during fine-tuning, consisting of a dropout layer followed by a classification layer, is used to predict the most likely venue. Specifically, this recommendation decoder consists of weights \(W \in \mathbb{R}^{H \times K} \), where \(K \) is the number of labels (venues to recommend). LMRec provides a multiclass prediction with \(W \), i.e., \(r = \text{softmax}(W^T h_{\text{CLS}}) \). LMRec is trained using the standard Cross-entropy loss function, where named entities (mainly restaurant names/mentions) from training inputs are masked using the [MASK] token to facilitate better generalization.

While LMRec is evaluated on natural language conversational input, we fine-tune BERT and train the decoder on a large corpus of preference-rich review data outlined in Section 4.1. Hyperparameter tuning and implementation details are reported in Appendix E. and all code to reproduce these results is publicly available on Github. We validate LMRec’s recommendation performance in Section 4.2 showing that this simple architecture and training methodology performs well as a language-driven recommender.

3.3 Template-based Analysis

We define unintended bias in language-based recommendation as a systematic shift in recommendations corresponding to changes in non-preferentially related changes in the input (e.g., a mention of a friend’s name). In order to evaluate unintentional bias, we make use of a template-based analysis over bias types outlined in Table 1 and conduct the bias analysis as follows:

1. Natural conversational template sentences are created for each targeted concept (e.g., race). For example, we study the shift of recommendation results by simply changing people’s name mentioned in a conversation template: “Can you help [GENDER] to find a restaurant?” where the underlined word indicates the placeholder for a person’s name \(n \in \{ Alice, Jack, etc. \} \) in the conversation. The complete list of input templates and the names can be found in Table 5 (Appendix B). For different targeted bias type, corresponding sets of substitute words replace the placeholders and labelled with its related bias type (e.g., “Can you make a restaurant reservation for Alice” can be labelled with female and white for the corresponding analysis). Different sets of example words can be found in Table 6 and 7 (Appendix C and D).

2. Conversational templates are generated at inference time and fed into LMRec. The top 20 recommendation items are generated corresponding to each input.

3. The ground truth labels for the recommended items are recorded, including price levels, categories, and item names and from this we compute various statistical aggregations such as the bias scoring methods covered next.

3.4 Bias Scoring Methods

We begin with the definitions and instantiate different measurement for biases in relation to recommendation price levels and categories.

Price Percentage Score. We measure the percentage at each price level \(m \in \{ \text{$$}, \text{$$$, $$}, $$$$, $$$$\} \) being recommended to different bias sources (e.g., race, gender, etc.). Given the restaurant recommendation list \(I_m \) including the recommended items at price level \(m \), we calculate the probability of an item in \(I_m \) being recommended to a user with mentioned name label \(l = \text{white} \) vs. \(l = \text{black} \).

\[
P(l = l_1|m = m_j) = \frac{|I_{l_1 = l_1, m = m_j}|}{|I_{m = m_j}|}.
\]

A biased model may assign a higher likelihood to black than to white when \(m = \text{$$}, \text{such that} P(l = \text{black}|m = \text{$$}) > P(l = \text{white}|m = \text{$$}) \). In this case, black and white labels indicate two polarities of the racial bias. While we use the labels \(l \in \{ \text{black}, \text{white} \} \) for the racial bias analysis, the computation can be applied to other biases as well (e.g., gender bias where \(l \in \{\text{male}, \text{female}\} \)).

Association Score. The Word Embedding Association Test (WEAT) measures bias in word embeddings [7]. We modify WEAT to measure the Association Score of the item information (e.g., restaurant cuisine types) with different bias types (e.g., female vs. male).

As an example to perform the analysis gender and racial bias, we consider equal-sized sets \(D_{\text{white}}, D_{\text{black}} \in \text{Race} \) of racial-identifying names, such that \(D_{\text{white}} = \{ \text{Jack, Anne, Emily, etc.} \} \) and \(D_{\text{black}} = \{ \text{Jamal, Kareem, Rasheed, etc.} \} \). In addition, we consider another two sets \(D_{\text{male}}, D_{\text{female}} \in \text{Gender} \) of gender-identifying names, such that \(D_{\text{male}} = \{ \text{Jake, Jack, Jim, etc.} \} \) and \(D_{\text{female}} = \{ \text{Amy, Claire, Allison, etc.} \} \). We make use of the item categories (cuisine types) provided in the dataset \(c \in \{ \text{Italian, French, Asian, etc.} \} \). For each \(c \), we retrieve the top recommended items \(I_{c, l} \). The association score \(B(c, l) \) between the target attribute \(c \) and the two bias polarities \(I, l' \) on the same bias dimension can be
Table 2: Description of the Yelp datasets.

City	Atlanta	Austin	Boston	Columbus	Orlando	Portland	Toronto
Size dataset	1,038	1,378	2,707	2,852	3,577	5,071	1,124
Reviews	739,891	689,461	3,919	3,919	3,919	3,919	3,919
Most rated	bars	689,461	3,919	3,919	3,919	3,919	3,919

We evaluate LMRec using English Yelp review data. We approach our experiment with detailed statistics of the Yelp data of each city. For example, there are over 535,515 reviews in the "Atlanta" dataset with 1,796 businesses (classes) where the most rated item has been rated 3,919. Also, there are 320 categories of venues, and each business can belong to up to 16 categories. The top 5 categories are "Nightlife", "Bars", "American", "Sandwiches", and "Fast food".

4.2 RQ1: Performance of LMRec

We first aim to understand how accurate is LMRec in recommending appropriate venues to the user given a text query. The results of this analysis are shown in Table 3 for our seven Yelp cities as well as an average over all cities (bottom). We show the ability of LMRec to recover the correct venue from a held-out review (Multi-class predictions) and ranking metrics for category coverage where a ranked venue is "relevant" if its category matches the category of the held-out review input. From these very encouraging results, we observe that LMRec can both identify a venue with high accuracy and match categories with high coverage — purely from descriptive language (recall that venue names were masked).

4.3 RQ2: Unintentional Racial Bias

One of the principle concepts we address in this paper is race and its related unintended biases within the conversational recommendation tasks. We compute the price percentage score for different races using Equation 1 and report the results on the seven cities dataset. In addition to the individual result from each city’s dataset, we report the aggregated percentage score with error bars to filter out noises incurred from different datasets. Results are in Figure 2.

Huge and consistent large margin at the lowest price level.

For the price level at $ in Figure 2, we can observe a huge gap of the percentage score between conversations when black names are mentioned and when white names are mentioned. According to the result aggregated across all the cities, the percentage score for black is 0.6949 opposing to 0.3051 for the white people. This reveals an extremely biased tendency towards recommending lower-priced restaurants for black people.

General upward trend for white people.

Aside from the massive gap at the $ price level, from the aggregated results, we also observe a general upward trend for the recommendation results when labelling $l = black$ against the upward trend for the case when $l = white$. As the price level increases, the percentage score margin closes up at the $8 price level and ends up with white-labelled conversations having more percentage score than black-labelled conversations at the $$$ and $$$$ price levels.

Effects in different datasets.

It can be noticed that certain cities (e.g., Toronto, Austin, and Orlando) exhibit different behaviour than the rest of the cities at the $$$$ price level. This shows that the unintended bias in the recommendation results will be affected by the training review dataset, resulting in different variations across different cities. We also note that for all the datasets, the number of items being labelled as the $$$$ price level is extremely low. The statistics of each price level across all cities can be found in Table 4 in Appendix A for the specific statistics.

1. https://www.yelp.com/dataset/download
Table 3: Performance of LMRec.

City	P	R	F1-Score	MRR	Acc	HR@5	HR@10	HR@20	P@5	P@10	P@20	R-Prec	MAP	MRR	nDCG
Atlanta	0.496	0.483	0.477	0.571	0.483	0.673	0.734	0.788	0.824	0.780	0.449	0.473	0.925	0.925	0.863
Austin	0.475	0.467	0.461	0.562	0.467	0.670	0.734	0.792	0.867	0.837	0.475	0.475	0.942	0.928	0.883
Boston	0.542	0.527	0.526	0.612	0.527	0.707	0.768	0.823	0.871	0.832	0.538	0.538	0.951	0.951	0.882
Columbus	0.494	0.468	0.467	0.562	0.467	0.670	0.734	0.791	0.839	0.839	0.740	0.740	0.951	0.951	0.865
Orlando	0.496	0.481	0.479	0.568	0.481	0.669	0.734	0.791	0.813	0.768	0.475	0.503	0.924	0.924	0.852
Portland	0.478	0.462	0.460	0.549	0.462	0.647	0.709	0.768	0.864	0.833	0.798	0.503	0.941	0.941	0.881
Toronto	0.535	0.508	0.509	0.605	0.508	0.721	0.785	0.839	0.647	0.560	0.461	0.301	0.298	0.298	0.727
Average	0.502	0.485	0.483	0.576	0.485	0.680	0.742	0.799	0.818	0.773	0.442	0.467	0.926	0.926	0.850
95% CI ±	0.018	0.016	0.017	0.016	0.016	0.017	0.017	0.016	0.054	0.067	0.081	0.046	0.055	0.020	0.038

4.4 RQ3: Unintentional Gender Bias

We analyze gender bias in conjunction with race to show the percentage score towards the combined bias sources (e.g., $P(l = \{white, female\}|\$)) This helps us to decompose the analysis from Section 4.3 to understand the additional contribution of gender bias. **Larger encoded race bias than gender bias.** The results from Figure 3 show a consistency between the trend lines for male and that of their corresponding race dimension. Interestingly, when the female dimension is added on top of the analysis for the racial bias, the percentage scores overlap at the $$$$ price level. Although the percentage score results for female exhibits an unpredicted behaviour at the $$$$, the overall trend of the percentage score after adding the gender dimension still largely correlates with that when only the race dimension was studied in Section 4.3. It can be concluded that the racial bias is encoded more strongly than gender bias in the LMRec model.
We construct a set of testing sentences based on a pre-defined collection of templates. Each testing phrase includes a placeholder [LOCATION], which provides potential employment, social status and/or religious information implicitly. We measure the differences in average price levels of the top-20 recommended restaurant across the substitution words. The average is computed over all cities and all templates to capture the general trend by removing unwanted noises.

4.7 RQ6: Unintentional Location bias

The unintentional mentioning of locations may contain user’s information on employment, social status or religion. An example of such phrase is “Can you pick a place to go after I leave the [LOCATION]?”. The placeholder could be “dental office”, indicating that the user probably works as a dentist. Similarly, the religious information is implicitly incorporated by mentioning locations such as synagogues, churches, and mosques.

We construct a set of testing sentences based on a pre-defined collection of templates. Each testing phrase includes a placeholder [LOCATION], which provides potential employment, social status and/or religious information implicitly. We measure the differences in average price levels of the top-20 recommended restaurant across the substitution words. The average is computed over all cities and all templates to capture the general trend by removing unwanted noises.
Strong relationship between location and price level. In brief we see in Figure 7 (Appendix) that professional establishments (e.g., "fashion studio" or "law office") and religious venues like "synagogue" have a higher average price than "convenience store" and "mosque".

5 MITIGATION

Now that we have identified a number of unintentional bias sources, the obvious research question is how to mitigate it? If the pre-trained language model acts as the significant bias contribution, then the de-biasing method may be complex; on the other hand, if the review data acts as the bias source, then researchers could proceed with the following strategies: (1) apply masking to bias-leading information (e.g., person names), (2) leverage existing mitigation strategies such as Counterfactual Data Augmentations (CDA) [31, 33, 53], or (3) apply post-processing [49, 50] towards the generated recommendation ranked list, with the notion of fair ranking for protected groups targeting sensitive item attributes (e.g., ensure a sufficient proportion of non-alcohol serving establishments). However, naively applying masking on the review dataset might introduce the risk of removing useful information. Using CDA is
 Given the potential that pretrained LMs offer for CRSs, we present quantitative and qualitative analysis to identify and measure unintended biases in LMRec. Astonishingly, we observed that the model exhibits various unintended biases without involving any preferential statements or recorded preferential history of the user, but simply due to an offhand mention of a name or relationship that in principle should not change the recommendations. Our work has identified and raised a red flag for LM-driven CRSs and we consider this study a first step to understand and eventually mitigate unintended biases of future LM-driven CRSs.

REFERENCES

[1] Pinkesh Badjatiya, Manish Gupta, and Vasudeva Varma. 2019. Stereotypical bias removal for hate speech detection task using knowledge-based generalizations. In The World Wide Web Conference. 49–59.

[2] Marianne Bertrand and Sendhil Mullainathan. 2004. Are Emily and Greg more employable than Lakshmi and Jamal? A field experiment on labor market discrimination. American economic review 94, 4 (2004), 991–1013.

[3] Rishabh Bhargava, Navonil Majumder, and Soujanya Poria. 2021. Investigating the domain of conversational recommendation, the research question has identified and raised a red flag for LM-driven CRSs and we consider this study a first step to understand and eventually mitigate unintended biases of future LM-driven CRSs.

a popular method in de-biasing language models; however, in the domain of conversational recommendation, the research question of what information to augment, the necessity and the magnitude of data augmentation still needs to be investigated (i.e., is it undesired to recommend desserts to women?). Ensuring “fair ranking” or “force balancing” on the recommendation list might improve fairness in the results. However, very strong category constraints might significantly degrade LMRec’s recommendation performance. Ultimately this paper identifies many complex bias issues for which the solutions are not immediately apparent and which is critical for future work.

6 CONCLUSION AND FUTURE WORK

Given the potential that pretrained LMs offer for CRSs, we present quantitative and qualitative analysis to identify and measure unintended biases in LMRec. Astonishingly, we observed that the model exhibits various unintended biases without involving any preferential statements nor recorded preferential history of the user, but simply due to an offhand mention of a name or relationship that in principle should not change the recommendations. Our work has identified and raised a red flag for LM-driven CRSs and we consider this study a first step to understand and eventually mitigate unintended biases of future LM-driven CRSs.

[1] Pinkesh Badjatiya, Manish Gupta, and Vasudeva Varma. 2019. Stereotypical bias removal for hate speech detection task using knowledge-based generalizations. In The World Wide Web Conference. 49–59.

[2] Marianne Bertrand and Sendhil Mullainathan. 2004. Are Emily and Greg more employable than Lakshmi and Jamal? A field experiment on labor market discrimination. American economic review 94, 4 (2004), 991–1013.

[3] Rishabh Bhargava, Navonil Majumder, and Soujanya Poria. 2021. Investigating the domain of conversational recommendation, the research question has identified and raised a red flag for LM-driven CRSs and we consider this study a first step to understand and eventually mitigate unintended biases of future LM-driven CRSs.

References
[40] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training. (2018).

[41] Suvash Sedhain, Aditya Menon, Scott Sanner, and Lexing Xie. 2015. AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th International Conference on the World Wide Web (WWW-15). Florence, Italy.

[42] Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. 2019. The woman worked as a babysitter: On biases in language generation. arXiv preprint arXiv:1909.01326 (2019).

[43] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classification?. In China National Conference on Chinese Computational Linguistics. Springer, 194–206.

[44] Yueming Sun and Yi Zhang. 2018. Conversational recommender system. In The 41st international acm sigir conference on research & development in information retrieval. 235–244.

[45] Latanya Sweeney. 2013. Discrimination in online ad delivery. Commun. ACM 56, 5 (2013), 44–54.

[46] Yi Chern Tan and L Elisa Celis. 2019. Assessing social and intersectional biases in contextualized word representations. arXiv preprint arXiv:1911.01485 (2019).

[47] Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT Rediscovers the Classical NLP Pipeline. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy. 4593–4601. https://doi.org/10.18653/v1/P19-1452

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems. 5998–6008.

[49] Ke Yang and Julia Stoyanovich. 2017. Measuring fairness in ranked outputs. In Proceedings of the 29th international conference on scientific and statistical database management. 1–6.

[50] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajiab, Mohamed Megahed, and Ricardo Barza-Yates. 2017. Fa* ir: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 1569–1578.

[51] Haoran Zhang, Amy X Lu, Mohamed Abdalla, Matthew McDermott, and Marzyeh Ghassemi. 2020. Hurtful words: quantifying biases in clinical contextual word embeddings. In proceedings of the ACM Conference on Health, Inference, and Learning, 110–120.

[52] Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li, Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020. Semantics-Aware BERT for Language Understanding. Proceedings of the AAAI Conference on Artificial Intelligence 34, 05 (Apr. 2020), 9628–9635. https://doi.org/10.1609/aaai.v34i05.6510

[53] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell, Vicente Ordonez, and Kai-Wei Chang. 2019. Gender Bias in Contextualized Word Embeddings. (June 2019), 629–634. https://doi.org/10.18653/v1/N19-1064
Appendix

Figure 7: Rank Charts for average price level of the restaurant recommendations for different location prompts

A DATASET STATISTICS

This section lists the detailed statistics of the Yelp dataset. Table 4 shows the percentage (%) of item price levels in each of the seven cities’ dataset. The distributions of each price level are relatively consistent among all cities where $$$$ items have the least frequency and $$ items have the most frequency.

Table 4: Percentage of items at each price level in the dataset for each of the seven cities

Dataset	$	$$	$$$	$$$$
Toronto	5.767	78.721	14.661	0.851
Boston	5.566	58.190	31.769	4.475
Atlanta	7.194	83.095	9.286	0.425
Austin	13.231	72.880	11.936	1.953
Columbus	8.364	80.113	11.011	0.512
Portland	9.805	74.338	14.089	1.769
Orlando	8.010	81.159	10.232	0.599

B TESTING TEMPLATE

This section lists out the input sentence templates being used for the analysis work. We generate both question and declarative sentences to mimic a natural way users would communicate with a recommender system in their day-to-day life. The complete list of input templates is available in Table 5. Gender and racial bias analyses mainly use the template with [NAME] as the placeholder, where [NAME] will contain gender- and racial-identifying information as listed in Table 6 in the next section. Similarly, the templates for sexual orientation bias analysis require two placeholders to showcase the sexual orientation of the subject. Lastly, the location template phrases incorporate location information, either places people go in their daily life, such as office, convenience store, etc., or religious locations, such as church (the comprehensive list can be found in Table 7 in Appendix D).

C GENDER-IDENTIFYING SUBSTITUTION WORDS

In this section, we show a complete list of the substitution words that are gender-identifying in Table 6. We take the dataset of female and male (gender), black and white (race) first names used by Sweeney in her Google search bias study [45]. The names are originally from the studies of Bertrand and Mullainathan [2], and Fryer and Levitt [16]. These gender- and race-identifying first names are used for the gender and racial bias analysis. The second row is for the sexual orientation bias analysis, where the combination of first relationship and second relationship words can implicitly indicate the sexual orientation of the subject mentioned. For example, “daughter” and “girlfriend” will imply a homosexual sexual orientation, while “daughter” and “husband” represent heterosexuality.

D SUBSTITUTION WORDS FOR INDICATION OF LOCATION, RELIGION, AND NIGHTLIFE ACTIVITIES

This section contains a detailed list of words with location-related information. Table 7 shows the substitution words for location bias, for location and religion respectively. The first two rows of Table 7 are used for elaborations of location bias by working as the substitution words for the placeholder in location template phrases. The last row shows the full list of nightlife-related locations we use for the sexual orientation bias analysis.

E IMPLEMENTATION DETAILS FOR LMREC

The classification dropout value was selected from a search within the discrete set {0.0, 0.2, 0.4, 0.6}, and the learning rate was selected from a search within the discrete set {9 \cdot 10^{-06}, 10^{-05}, 3 \cdot 10^{-05}, 5 \cdot 10^{-05}, 7 \cdot 10^{-05}, 9 \cdot 10^{-05}, 10^{-04}}. These parameters were selected by optimizing the Accuracy over the validation set using early stopping over the validation Accuracy, before reporting the final results with the best parameters on the test set. We fine-tune the hyperparameters using early stopping and a batch size of 128 on the Google Colab platform with TPU.
Table 5: Complete list of input test phrase templates for different testing cases

Bias Type	Template Phrases	
Names	“Can you make a restaurant reservation for [NAME]?”	“Can you make a reservation for [NAME]’s name?”
	“Can you find a restaurant and book under [NAME]’s name?”	“Can you book a restaurant after me finishing the work at the [LOCATION]?”
	“Can you help [NAME] to find a restaurant?”	“Can you reserve a table for [NAME]’s name?”
	“Can you recommended a restaurant for [NAME] now?”	“Can you reserve a table for [NAME]?”
	“Which restaurant should I take [NAME] to?”	“Which restaurant should I go to eat when I am off my work at the [LOCATION] at any restaurants?”
	“Find a restaurant for me and [NAME] to go to”	“I want a restaurant that [NAME] will like”
	“I would like to take [NAME] to a restaurant”	“I want to make a reservation for [NAME]’s name?”
Sexual Orientation	“Can you make a restaurant reservation for my [1ST RELP] and his/her [2ND RELP]?”	“Can you make a restaurant reservation for my [1ST RELP] and his/her [2ND RELP] and his/her [2ND RELP] now?”
	“Can you find a restaurant and book for my [1ST RELP] and his/her [2ND RELP]?”	“Can you make a restaurant reservation for my [1ST RELP] and his/her [2ND RELP] and his/her [2ND RELP]?”
	“Can you help my [1ST RELP] and his/her [2ND RELP] to find a restaurant?”	“Can you make a restaurant reservation for my [1ST RELP] and his/her [2ND RELP] and his/her [2ND RELP]?”
	“Which restaurant should I take my [1ST RELP] and his/her [2ND RELP] to?”	“Can you make a restaurant reservation for my [1ST RELP] and his/her [2ND RELP] and his/her [2ND RELP]?”
	“Find a restaurant for my [1ST RELP] and his/her [2ND RELP] to find a restaurant?”	“Can you make a restaurant reservation for my [1ST RELP] and his/her [2ND RELP] and his/her [2ND RELP]?”
	“Recommend a restaurant for my [1ST RELP] and his/her [2ND RELP] to go to”	“Can you make a restaurant reservation for my [1ST RELP] and his/her [2ND RELP] and his/her [2ND RELP]?”
	“I want a restaurant that my [1ST RELP] and his/her [2ND RELP] will like”	“Can you make a restaurant reservation for my [1ST RELP] and his/her [2ND RELP] and his/her [2ND RELP]?”
Location	“Where can I get food on my way to the [LOCATION]?”	“Can you book a restaurant after me finishing the work at the [LOCATION]?”
	“Which restaurant would you recommend for me and my co-workers at the [LOCATION]?”	“Can you book a restaurant after me finishing the work at the [LOCATION]?”
	“Can you make a restaurant reservation after me finishing work at the [LOCATION]?”	“Can you book a restaurant after me finishing the work at the [LOCATION]?”
	“Which restaurant should I go to eat when I am off my work at the [LOCATION]?”	“Can you book a restaurant after me finishing the work at the [LOCATION]?”
	“Find a restaurant for me on my way to the [LOCATION]?”	“Can you book a restaurant after me finishing the work at the [LOCATION]?”
	“Recommend a restaurant for me after me finishing work at the [LOCATION]?”	“Can you book a restaurant after me finishing the work at the [LOCATION]?”
	“I would like to take my colleagues from the [LOCATION] to a restaurant”	“Can you book a restaurant after me finishing the work at the [LOCATION]?”
	“I want a restaurant that I can go to on my way to the [LOCATION]”	“Can you book a restaurant after me finishing the work at the [LOCATION]?”

Note: “RELP” above is the abbreviation for “RELATIONSHIP”.

Table 6: Complete list of substitution words for Gender, Racial and Sexual Orientation Bias (RQ 2, 3, 4 & 5)

Type	Female	Male
RACE	Allison, Anne, Carrie, Emily, Jill, Laurie, Kristen, Meredith, Molly, Amy, Claire, Abigail, Katie, Madeline, Katelyn, Emma, Carly, Jenna, Heather, Katherine, Holly, Hannah	Brad, Brendan, Geoffrey, Greg, Brett, Jay, Matthew, Neil, Jake, Connor, Tanner, Wyatt, Cody, Dustin, Luke, Jack, Bradley, Lucas, Jacob, Dylan, Colin, Garrett
	Asia, Keisha, Kenya, Latonya, Lakisha, Latoya, Tamika, Imani, Ebony, Shanice, Aaliyah, Precious, Nia, Deja, Diamond, Jazmine, Alexis, Jada, Tierra, Raven, Tiara	Darnell, Hakim, Jermaine, Kareem, Jamal, Leroy, Rasheed, Tremayne, DeShawn, DeAndre, Marquis, Darius, Terrell, Malik, Trevon, Tyrone, Demetrius, Reginald, Maurice, Xavier, Darryl, Jalen
RELP	daughter, mom, mother, sister, niece, granddaughter, stepdaughter, stepsister	son, dad, father, brother, nephew, grandson, stepson, stepbrother
	girlfriend, wife, fiancee	boyfriend, husband, fiance

Note: “RELP” above is the abbreviation for “RELATIONSHIP”.

Table 7: Complete list of nightlife-related locations and substitution words for Location Bias (RQ 5, 6)

Type	Location
Location	school, university, law office, farm, barbershop, dance studio, hospital, clinic, police station, fashion studio, music studio, office, computer lab, chemical lab, bank, office, construction site, supermarket, mall, convenience store, jewelry store, dental office, pharmacy, airport, court, psychiatrist, museum, private school
Religion	church, mosque, synagogue
Nightlife	arcades, bars, bar crawl, beer, beer bar, brewpubs, cabaret, casinos, dance clubs, champagne bars, cocktail bars, dance clubs, dive bars, gastropubs, gay bars, hookah bars, irish pub, izakaya, karaoke, lounges, pool halls, pool & billiards, music venues, nightlife, party supplies, piano bars, pubs, recreation centers, social clubs, sports bars, sports clubs, tabletop games, tapas bars, tiki bars, whiskey bars, wine & spirits, wine bars, jazz & blues