Phosphorus Supply per Capita from Food in Japan between 1960 and 1995

Eiji Takeda1,*, Kyoko Sakamoto1, Kumi Yokota1, Mari Shinhara1, Yutaka Takedani1, Kyoko Morita1, Hiromori Yamamoto1, Ken-Ichi Miyamoto1 and Mitsuo Shibayama2

1 Department of Clinical Nutrition, School of Medicine, The University of Tokushima, Tokushima 770–8503, Japan
2 ASTIS Co., Ltd., Tokushima 770–8011, Japan

Summary The awareness of phosphorus intake is important because hyperphosphatemia and hypophosphatemia both impair bone metabolism. Phosphorus consumption from food was obtained from values in the Food Balance Sheet (FBS) of Japan from 1960 to 1995. The amounts of phosphorus calculated from the FBS increased gradually from 1,243 mg/d in 1960 to 1,332 mg/d in 1975 and to 1,421 mg/d in 1995. This is explained by the increased consumption of cow's milk and milk products, meat, and chicken eggs. The main foods supplying phosphorus in 1995 were cereals, milk and milk products, fishes and shellfishes, and vegetables; their contributions were 24.4, 1.58, 14.2, and 10.9%, respectively. The phosphorus-to-calcium ratio calculated from the FBS was 3.51 in 1960, which decreased to 2.89 in 1975 and 2.44 in 1995. Therefore total phosphorus consumption in 1995 was presumably more than 1,500 mg/d when imported food containing phosphorus and the consumption of phosphorus-containing food additives in Japan are also considered. These findings suggest that the phosphorus consumption estimated from the FBS is increasing and that more attention should be paid to the maintenance of healthy bones in Japan, where the average amount of calcium intake is less than 600 mg/d.

Key Words phosphorus, calcium, the Food Balance Sheet, diet, bone

Phosphorus is an important nutrient in the processes of glycolysis, gluconeogenesis, energy metabolism, and bone metabolism (1). The daily recommended dietary allowance (RDA) of phosphorus is not strictly determined, but the appropriate amount is thought to be from half to twice the calcium intake (2). Hyperphosphatemia frequently observed in chronic renal failure leads to decreased 25-hydroxyvitamin D-1α-hydroxylase activity and 1,25-dihydroxyvitamin D concentration, which reduces intestinal calcium absorption and stimulates parathyroid hormone excretion (3, 4). Parathyroid hormone accelerates the release of bone mineral and results in osteitis fibrosa and ectopic calcification (5). In contrast, hypophosphatemia, resulting from impaired renal phosphate reabsorption manifesting rickets and osteomalacia, is treated with supplemental vitamin D and phosphorus (6). These findings suggest that the attention to the amount of daily phosphorus is important in the maintenance of healthy bones.

Protein intake, particularly animal protein, has markedly increased because of recent changes in diet in Japan. The use of phosphorus-containing food additives has also increased 17% over the last decade (7). This suggests that the phosphorus intake from food and additives is increasing. In a survey in the United States, phosphorus intake has increased, but the amount of phosphorus as food additives was not completely estimated (8). Several studies on the amount of phosphorus intake in Japanese reported 1,200–1,300 mg/d from 1980 to 1982 (9–12). To understand the situation of Japanese food intake, the National Nutrition Survey (NNS) was conducted by the Ministry of Health and Welfare of Japan. However, the amount of phosphorus intake has not been reported, though the daily calcium intake in adults was reported to be lower than the 600 mg/d of RDA in Japan. The Food Balance Sheet (FBS), which shows the demand and supply of staple foods, was prepared by the Minister’s Secretariat, Ministry of Agriculture, Forestry and Fisheries, according to the form requested by the Food and Agriculture Organization of the United Nations (FAO). The FBS depicts the overall pattern of a nation’s food supply and utilization. Therefore this information is useful for an understanding of the trend in food supply, the level and composition of supplied nutrients, and the pattern of food consumption change year by year. To understand the transition of phosphorus intake in Japan, we therefore calculated the amount of phosphorus from food from the values in the FBS and compared it with those from the NNS for every 5 y from 1960 to 1995.

MATERIALS AND METHODS

The food supply information was obtained from the FBS. All foods in the food consumption database were divided into 16 major food groups according to the major ingredients of the food following the FBS’s food-
grouping classification system. The 16 groups included cereals, potatoes and sweet potatoes, starches, pulses, vegetables, fruits, meats, chicken eggs, cow's milk and milk products, fishes and shellfishes, seaweeds, sugar, fats and oils, miso bean paste, soy sauce. The per capita estimate of each food item was calculated by dividing the total supply of each food available for human consumption by the population of Japan (Table 1). The amounts of calcium and phosphorus content in 100 g of each group were obtained by multiplying the calculated percent contribution of each food in each group shown in Table 1 and the values of calcium and phosphorus content referring to the fourth Japanese Food Composition Table prepared by the Department of Scientific Technology of Japan (13) (Table 2).

RESULTS

The transition of calcium and phosphorus consumption calculated from the FBS

The daily personal possible consumption of calcium and phosphorus was obtained from the per capita estimate of each food item shown in Table 1 and those contents in 100 g of each food group shown in Table 2 (Tables 3 and 4). The amounts of calcium and phosphorus calculated from the FBS increased gradually from 354 mg/d and 1,243 mg/d in 1960 to 461 mg/d and 1,332 mg/d in 1975 and to 582 mg/d and 1,421 mg/d in 1995, respectively. The percentages of calcium and phosphorus consumption in 1995 was 126% and 107% of those in 1975 and 165% and 114% of those in 1960. In contrast, the amount of calcium intake in the NNS increased from 389 mg/d in 1960 to 552 mg/d in 1975, but it did not change significantly after that and

Table 1. The amounts of daily personal food consumption calculated from the Food Balance Sheet.

Year	1960	1965	1970	1975	1980	1985	1990	1995
Cereals	408.8*	397.4	351.6	339.1	309.4	295.6	283.6	278.9
Rice	314.9	306.2	260.6	240.6	216.3	204.3	191.9	185.3
Wheat	70.6	79.4	84.3	86.1	88.3	86.9	86.9	89.6
Barley	10.6	5.4	2.0	2.7	1.4	0.8	0.5	0.6
Rye	11.6	4.5	2.3	0.4	0.4	0.3	0.2	0.2
Corn	0.4	0.6	1.1	0.9	1.5	1.8	2.5	1.5
Others	1.7	1.3	1.2	1.2	1.5	1.5	1.6	1.7
Potatoes and sweet potatoes	83.5	58.5	44.2	43.6	47.3	51.0	56.4	56.6
Sweet potatoes	40.3	19.9	11.2	11.7	10.6	13.1	14.0	12.8
Potatoes	43.2	38.6	33.0	31.9	36.7	37.9	42.4	43.8
Starches	17.9	22.7	22.1	20.6	31.8	38.5	43.7	42.7
Pulses	27.7	26.2	27.8	25.7	23.2	24.8	25.4	24.2
Soybeans	15.2	12.9	15.3	15.8	14.4	16.7	17.7	17.1
Others	12.5	13.3	12.5	9.9	8.8	8.1	7.7	7.1
Vegetables	273.0	296.4	312.8	299.0	306.8	320.0	293.8	288.2
Green/yellow vegetables	287.2	30.1	28.8	31.0	33.7	34.2	37.6	37.6
Others	247.3	268.8	282.7	270.2	275.8	268.3	259.6	250.6
Fruits	61.3	78.0	104.3	116.3	106.4	100.7	102.6	111.2
Mandarin oranges	16.3	19.9	37.9	51.8	39.2	31.9	21.6	17.8
Apples	19.3	23.6	20.3	16.8	17.6	16.2	21.4	25.8
Others	25.7	34.5	46.1	47.7	49.6	52.6	59.6	67.6
Meats	14.2	25.3	36.6	48.8	61.6	68.8	78.2	85.6
Beef	3.1	4.1	5.9	7.0	9.6	12.0	16.6	22.8
Pork	3.1	8.2	14.4	19.9	26.4	28.2	31.4	31.3
Chicken meat	2.3	5.2	10.1	14.4	21.1	25.0	28.1	29.9
Whale meat	4.5	5.7	3.3	2.6	1.1	0.7	0.1	0.1
Others	1.2	2.1	2.9	4.9	3.4	2.9	2.0	1.5
Chicken eggs	17.2	30.9	39.8	37.5	39.2	40.8	45.1	48.0
Cow's milk and milk products	60.9	102.8	137.2	146.5	179.0	193.6	228.0	249.2
Fishes and shellfishes	76.1	77.0	86.5	95.4	95.3	98.1	101.6	104.4
Seaweeds	1.8	2.0	2.5	3.1	3.7	3.6	3.9	3.9
Sugar	41.2	51.4	73.7	68.5	63.9	59.4	57.5	52.3
Fats and oils	11.9	17.7	24.5	29.7	34.6	38.2	39.0	39.8
Miso bean paste	24.1	21.4	20.1	17.4	16.5	14.8	13.4	12.3
Soy sauce	37.6	32.0	32.4	30.2	30.1	27.4	26.3	24.6
Others	—	4.3	5.1	8.7	7.2	8.5	10.5	11.1

* g/person per day.
Table 2. The amounts of calcium and phosphorus contents in 100 g of each food group, from the Japanese Food Composition Table.

Year	1960 Calcium	1960 Phosphorus	1965 Calcium	1965 Phosphorus	1970 Calcium	1970 Phosphorus	1975 Calcium	1975 Phosphorus	1980 Calcium	1980 Phosphorus	1985 Calcium	1985 Phosphorus	1990 Calcium	1990 Phosphorus	1995 Calcium	1995 Phosphorus
Cereals	10.7*	138	10.4	132	10.8	129	11.1	127	11.5	126	11.7	126	11.9	126	12.2	124
Potatoes and sweet potatoes	18.1	49.7	14.2	51.3	12	52.3	12.2	51.8	11	52.6	12	52.2	11.7	52.3	11.1	52.5
Starches	19.6	21.2	19.4	21.1	19.5	21.3	19.4	21.4	19.5	21.1	19.5	21.3	19.7	21.3	19.7	21.3
Pulses	157	441	146	433	156	441	164	451	165	451	171	459	175	463	176	464
Vegetables	30.1	50.7	30.2	50.7	30.2	50.6	28.2	51.5	28.2	51.4	28.3	51.2	32.2	53.3	32.6	53.8
Fruits	11.7	15.3	12.3	15.6	14.3	16.5	15.6	16.9	14.6	16.9	14.2	17.1	12.8	16.9	12.1	16.7
Meats	4.9	156	6.3	153	6.8	154	7	154	7.1	152	7.3	152	7.2	151	7.1	151
Chicken eggs	60	220	60	220	60	220	60	220	60	220	60	220	60	220	60	220
Cow's milk and milk products	100	90.1	100	90	100	90	100	90	100	90	100	90	100	90	100	90
Fishes and shellfishes	44.2	189	47.7	190	47.3	187	43	190	50.2	193	54.2	194	55.3	195	45.3	193
Seaweeds	661	350	655	370	652	400	645	384	641	400	639	392	633	395	628	397
Sugar	21.1	1.9	15	1	9.8	0.4	10.1	0.4	9.9	0.5	10.8	0.5	9.4	0.3	9.9	0.4
Fats and oils	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Miso bean paste	99.2	186	99.1	186	99	186	98.9	186	98.8	186	99.3	187	99.3	187	99.2	186
Soy sauce	22.8	146	22.8	146	22.8	146	22.8	146	22.8	146	22.8	146	22.8	146	22.8	146
Others	--	--	79.1	174	66.7	163	70.1	164	51.4	143	48.2	139	44.8	135	36	125

* mg/100 g.
was 585 mg/d in 1995 (Fig. 1).

The actual amounts of calcium intake in the NNS were 110% in 1960, 120% in 1975, and 101% in 1995 of those of the FBS. The main foods supplying calcium from the FBS in 1995 were cow’s milk and milk products, vegetables, fishes and shellfishes, and pulses, and their percent contributions were 42.8, 16.2, 8.1, and 7.3%, respectively (Table 3). The main food supplying phosphorus from the PBS in 1995 were cereals, cow’s milk and milk products, fishes and shellfishes, and vegetables, and their percent contributions were 24.4, 15.8, 14.2, and 10.9%, respectively (Table 4).

Table 3. The amounts of calcium intake from each food.

Year	1960	1965	1970	1975	1980	1985	1990	1995
Cereals	43.8*	41.2	38.1	36.7	35.7	34.5	33.7	34.0
Potatoes and sweet potatoes	15.1	8.3	5.3	5.3	5.2	6.1	6.6	6.3
Starches	3.5	4.4	4.3	4.0	6.2	7.5	8.6	8.4
Pulses	43.1	38.8	43.3	42.1	38.2	42.5	44.4	42.6
Vegetables	82.3	89.4	94.6	84.2	86.6	85.5	94.7	94.0
Fruits	7.2	9.6	14.9	18.1	15.5	14.3	13.1	13.5
Meats	0.7	1.6	2.5	3.4	4.4	5.0	5.6	6.1
Chicken eggs	10.3	18.5	23.9	22.5	23.5	24.5	27.1	28.8
Cow’s milk and milk products	60.9	103	137	147	179	194	228	249
Fishes and shellfishes	33.6	36.7	40.9	41.0	47.8	53.2	56.2	47.3
Seaweeds	11.9	13.1	16.3	20.0	23.7	23.0	24.7	24.5
Sugar	8.7	7.7	7.2	6.9	6.3	6.4	5.4	5.2
Fats and oils	0	0	0	0	0	0	0	0
Miso bean paste	23.9	21.2	19.9	17.2	16.3	14.7	13.3	12.2
Soy sauce	8.6	7.3	7.4	6.9	6.9	6.2	6.0	5.6
Others	—	3.4	3.4	6.1	3.7	4.1	4.7	4.0
Total	**354**	**404**	**459**	**461**	**499**	**521**	**572**	**582**

* mg/person per day.

Table 4. The amounts of phosphorus intake from each food.

Year	1960	1965	1970	1975	1980	1985	1990	1995
Cereals	562*	525	455	422	391	372	357	347
Potatoes and sweet potatoes	41.5	30.0	23.1	22.6	24.9	26.6	29.5	29.7
Starches	3.8	4.8	4.7	4.4	6.7	8.2	9.3	9.1
Pulses	122	113	123	136	105	114	117	112
Vegetables	158	120	158	154	158	155	157	155
Fruits	9.4	12.2	17.2	19.6	18.0	17.2	17.3	18.6
Meats	22.2	39.2	56.2	75.1	93.6	104.2	118.0	129.0
Chicken eggs	37.8	68.0	87.6	82.5	86.2	89.8	99.2	105.6
Cow’s milk and milk products	54.8	92.5	124	82.5	161	174	205	224
Fishes and shellfishes	144	146	161	132	184	190	198	201
Seaweeds	6.3	7.4	10.0	18.1	14.8	141.0	15.4	15.5
Sugar	0.8	0.5	0.3	11.9	0.3	0.3	0.2	0.2
Fats and oils	—	0	0	0	0	0	0	0
Miso bean paste	44.9	39.9	37.4	32.4	30.7	27.6	25.0	22.9
Soy sauce	54.9	46.7	47.3	44.1	43.9	40.0	38.4	35.9
Others	7.5	8.3	14.3	10.3	11.8	14.2	13.9	
Total	**1,243**	**1,283**	**1,312**	**1,332**	**1,327**	**1,345**	**1,400**	**1,421**

* mg/person per day.

The transition of calcium and phosphorus amounts in food calculated from the FBS

As shown in Table 1, the consumption of starches, meat, chicken eggs, and cow milk and milk products increased 2.4- to 6.3-fold from 1960 to 1995; in contrast, cereals in 1995 decreased and reached 68% of consumption in 1960. The amount of calcium from cow’s milk and milk products increased to 241% in 1975 and to 409% in 1995 in comparison with 1960. The supply of phosphorus from cow’s milk and milk products, meat, and chicken eggs respectively increased to 151, 338, and 218% in 1975, and to 409, 581, and 279%...
Fig. 1. The amounts of calcium and phosphorus intake calculated from the Food Balance Sheet and the National Nutrition Survey. □: The phosphorus intake calculated from the Food Balance Sheet in the present study. ■: The calcium intake calculated from the Food Balance Sheet. ▣: The calcium intake reported in the National Nutrition Survey.

Fig. 2. Transition of the phosphorus-to-calcium ratios calculated from the Food Balance Sheet.

in 1995, compared with 1960. However, phosphorus from cereals decreased to 75% in 1975 and to 62% in 1995 in comparison with 1960. Thus the increased amounts of calcium and phosphorus mainly reflected an increased consumption of cow's milk and milk products. In contrast, the increased amounts of other foods such as meat and chicken eggs mainly contributed to the increased phosphorus amounts, but not to the calcium amount (Tables 3 and 4).

The transition of phosphorus-to-calcium ratio in food calculated from the FBS

The ratios of phosphorus to calcium content in meat, cereals, chicken eggs, pulses, and fishes and shellfishes were in the 20–35, 15–20, 2–5 range, respectively. The ratio in vegetables was less than 2 and in cow's milk and milk products, the primary source of calcium in the diet, it was 0.9. The average ratio calculated from the FBS was 3.51 in 1960 and decreased to 2.89 in 1975 and to 2.44 in 1995 (Fig. 2). Thus the gradual decrease in the ratio year by year was reflected by the increased cow's milk and milk product consumption and by the decreased cereal intake.

DISCUSSION

The findings from the FBS estimate the food available for human consumption at the national level, taking into account production, foreign trade, storage, losses through processing, industrial uses, and farm inputs. The database of NNS contained 1 or 3 d dietary intake data from 15,000 to 20,000 people of all ages and both genders selected from a multistage probability sample drawn from 47 prefectures to provide estimates of the Japanese population. In the present study, the amounts of calcium intake calculated from the FBS were similar to those in the NNS. This indicated that the information concerning phosphorus consumption obtained from the FBS might be reliable.

Because phosphorus affects the regulation of calcium metabolism, the balance of these nutrients is important. The desired ratio of phosphorus to calcium intake was suggested to be from 0.5 to 2.0 (2). The present findings showed that the actual ratios from 1960 to 1995 were above this level in Japan. Previous findings indicated that phosphorus-to-calcium ratios of lower calcium consumers were much higher than those of higher calcium consumers (8). This basic finding agrees with nutritional scientists of many countries, though the daily RDA of phosphorus was not determined by designed experiments (14). Phosphorus-containing food additives are used extensively in the processing of foods (15). More than 45 phosphorus-containing compounds are now approved for use in food processing as nutrients or dietary supplements or for functional purposes, such as preserving moisture or color, and as emulsifiers or sequestrants (9). As a consequence, phosphorus intake has probably been increasing, which is in contrast to the low calcium intake in Japanese.

In previous studies of Japanese phosphorus intake, adult males consumed approximately 1,200 mg/d from 1975 to 1979; this was calculated from the amount of recommended food intake (9). Hirata et al. showed that phosphorus amount calculated from the amount of calcium intake in the NNS was 1,300 mg/d in 1979 (10). The amount from food intake and food additives was predicted as 1,200–1,300 mg/d in 1979 (11). Another study reported that each Japanese consumed 1,330 mg/d of phosphorus from food and 58.2 mg/d from food additives (12).

In the present study, the average amounts of calcium and phosphorus consumption from food in 1995 reached 582 mg/d and 1,421 mg/d; these values were 165% and 114% of those in 1960. Although food additives containing calcium are also available, the true amount of its consumption has not been reported. Companies in the United States produced 28.8 kg of phosphorus in 1973, which is the equivalent of 375 mg of phosphorus additives per person per day. This indicated that more than 30% of the...
phosphorus intake came from food additives in the U.S. (16). Because the amount of phosphorus intake has not been correctly investigated, more phosphorus than reported might be consumed (17). Therefore the sum of per capita Japanese phosphorus consumption in 1995 is presumably more than 1,500 mg/d when imported food consumption of phosphorus and phosphorus-containing food additives are accounted for.

The effects of excess phosphorus on humans have not been sufficiently clarified. Calcium absorption was not affected when phosphorus intake was from 550 mg/d to 1 g/d, but the calcium balance became negative when more than 2 g/d of phosphorus was administered to healthy adult males (18). Two grams of phosphorus in a 700 mg calcium diet reduced the serum calcium concentration and urinary calcium excretion, and it increased urinary hydroxyproline and CAMP excretion, which indicated hyperparathyroidism (19). A long-term administration of 1 g/d of phosphorus besides regular food to postmenopausal women induced decreased bone formation and increased bone resorption (20). A high phosphorus (1,700 mg/d) and low calcium (400 mg/d) diet in young women impaired the adaptation to hypocalcemia because of continuous hyperparathyroidism (21, 22). These findings clearly showed that high phosphorus and moderately low calcium intake produced hormonal changes of mild secondary hyperparathyroidism in humans, and with prolonged intake lower calcitriol concentrations, the body’s main homeostatic mechanism for adaptation to low dietary calcium. Thus it is thought that excess amounts of phosphorus intake for long periods are a strong factor in bone impairment. Phosphorus-containing food increased approximately 17% for the decade until 1993 (7), and the use of phosphorus as food additives may continue to increase. Therefore passive calcium intake and also a restriction of phosphorus intake are important to maintain healthy bones. Therefore, human lifestyle must be changed, especially on food the consumption habits in regard to specifically processed foods.

In conclusion, Japanese phosphorus consumption estimated from the FBS is increasing and more attention should be paid to the maintenance of bone health. However, Nougyou-Hakusyo reported in 1999 that a large amount (19.3 million tons) of food had been discarded in 1996. Therefore further studies on the amount and the source of phosphorus intake is important, particularly in regard to the amount of phosphorus from Japanese processed foods, imported foods, and phosphorus-containing food additives.

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (13470013) from the Ministry of Education, Science, and Culture, and by a grant from the Setsuro Fujii Memorial Foundation (to E. Takeda).

REFERENCES

1) Knochel JP. 1999. Phosphorus. In: Modern Nutrition in Health and Disease (Shils ME, Olson JA, Shike M, Ross AC, eds), p 157–167. Lippincott Williams & Wilkins, Philadelphia.

2) Warren M, Cox JR, Marian I. 1936. The role of calcium and phosphorus in determining reproductive success. J Nutr 11: 147–176.

3) Almaden Y, Canalejo A, Hernandez A, Ballesteron E, Garcia-Navarro S, Torres A, Rodriguez M. 1996. Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 11: 970–976.

4) Lopez-Hilkert S, Adriana SD, Rapp NS, Martin KJ, Slatopolovsky E. 1990. Phosphorus restriction reverses hyperparathyroidism in uremia independent of changes in calcium and calcitriol. Am J Physiol 259: F432–F437.

5) Slatopolovsky E, Finch J, Denda M, Ritter C, Zhong M, Dusso A, MacDonald PN, Brown AJ. 1996. Phosphorus restriction prevents parathyroid gland growth: high phosphorus directly stimulates PTH secretion in vitro. J Clin Invest 97: 2534–2540.

6) Drezn M. 1997. Clinical disorders of phosphate homeostasis. In: Vitamin D (Feldman D, Glorieux FR, Piche JW, eds), p 733–753. Academic Press, San Diego, CA.

7) Calvo MS. 1993. Dietary phosphorus, calcium metabolism, and bone. J Nutr 123: F1627–F1633.

8) Calvo MS, Park YK. 1996. Changing phosphorus content of the U.S. diet: Potential for adverse effects on bone. J Nutr 126: 11688–11808.

9) Teraoka H, Morii H, Kobayashi J. 1981. The amounts of 24 minerals contained in food and daily those intakes. Eisei to Syokuryou 34: 221–239 (in Japanese).

10) Hirota K, Kikuchi H, Ozawa H, Hanaoka H, Kondo O, Morimoto S. 1982. The amounts of intakes of calcium and phosphorus and urinary excretion. Nihon Rinshyo 40: 2565–2570 (in Japanese).

11) Goto S. 1980. Factors that affect intestinal calcium absorption. Tokyo Nogyo Daigaku Nougakusguho 24: 211–233 (in Japanese).

12) Kato A. 1980. Intakes of calcium and phosphorus in Japan. New Food Ind 22: 50–55 (in Japanese).

13) Yamaguchi M. 1997. The Values of the Japanese Standard Food Component. Ishiyaku Publishers, Tokyo.

14) Iwao H. 1983. Recommended dietary allowance of phosphorus. In: The Function of Phosphorus: Its Importance (Obara T, Iwao H, Hukuba H, eds), p 135–144, Daichishiyuppan, Tokyo (in Japanese).

15) Dziezak JK. 1990. Phosphates improve many foods. Food Technol 44: 80–92.

16) Greger JL, Krystofliak M. 1982. Phosphorus intake of Americans. Food Technol 36: 78–84.

17) Oenning LJ, Vogel J, Calvo MS. 1988. Accuracy of methods estimating calcium and phosphorus intake in daily diets. J Am Diet Assoc 88: 1076–1078.

18) Koshino T. 1955. Study on dietary intake of calcium to phosphorus ratio: effect of different phosphorus amounts under constant calcium. Juzen Igakukai Zasshi 57: 1409–1422 (in Japanese).

19) Bell RR, Draper HH, Tseng DYM, Shin HK, Schm SR. 1977. Physiological responses of human adults to foods containing phosphate additives. J Nutr 108: 42–50.

20) Goldsmith RS, Jowsey J, Dube WJ, Riggs BL, Arnaud CD, Kelly PJ. 1976. Effects of phosphorus supplementation on serum parathyroid hormone and bone morphology.
21) Calvo MS, Kumar R, Heath H III. 1988. Elevated secretion and action of serum parathyroid hormone in young adults consuming high phosphorus, low calcium diets assembled from common foods. *J Clin Endocrinol Metab* 66: 823–829.

22) Calvo MS, Kumar R, Heath H III. 1990. Persistently elevated parathyroid hormone secretion and action in young woman after four weeks of inesting high phosphorus low calcium diets. *J Clin Endocrinol Metab* 70: 1334–1340.