Subject headings irsogladine; rebamipide; monochloramine; gastric mucosal lesions; rats; comparative study

Abstract

AIM To examine the effect of irsogladine, a novel antiulcer drug, on the mucosal ulcerogenic response to monochloramine (NH₂Cl) in rat stomach, in comparison with rebamipide, another antiulcer drug with cytoprotective activity.

METHODS AND RESULTS Oral administration of NH₂Cl (120 mM) produced severe hemorrhagic lesions in unanesthetized rat stomachs. Both irsogladine (1 mg/kg-10 mg/kg, po) and rebamipide (30 mg/kg-100 mg/kg, po) dose-dependently prevented the development of these lesions in response to NH₂Cl, the effect of irsogladine was significant at 3 mg/kg or greater, and that of rebamipide only at 100 mg/kg. The protective effect of irsogladine on NH₂Cl-induced gastric lesions was significantly reduced by N⁶-nitro-L-arginine methyl ester (L-NAME) but not by indomethacin, while that of rebamipide was significantly mitigated by indomethacin but not by L-NAME. Topical application of NH₂Cl (20mM) caused a marked reduction of potential difference (PD) in ex-vivo stomachs. This PD reduction was not affected by mucosal application of irsogladine, but significantly prevented by rebamipide. The mucosal exposure to NH₂OH (120 mM) also caused a marked PD reduction in the ischemic stomach (bleeding from the carotid artery), resulting in gastric lesions. These ulcerogenic and PD responses caused by NH₄OH plus ischemia were also significantly mitigated by rebamipide, in an indomethacin-sensitive manner, while irsogladine potently prevented such lesions without affecting the PD response, in a L-NAME-sensitive manner.

CONCLUSION These results suggest that 1) NH₂Cl generated either exogenously or endogenously damages the gastric mucosa, 2) both irsogladine and rebamipide protect the stomach against injury caused by NH₂Cl, and 3) the mechanism underlying the protective action of irsogladine is partly mediated by endogenous nitric oxide, while that of rebamipide is in part mediated by endogenous prostaglandins.

INTRODUCTION

Helicobacter pylori, recognized as the major cause of gastritis and peptic ulcer diseases[1-3] has a high activity of urease, resulting in a high concentration of ammonia (NH₄OH) in the stomach of infected patients[3]. Since H. pylori associated chronic active gastritis is characterized by an invasion of neutrophils in the gastric mucosa[4,5,6] and since neutrophils utilize the H₂O₂-myeloperoxidase-halide system to generate an oxidant capable of destroying a variety of mammalian cell targets as well as microorganisms[5,6], it is assumed that neutrophil-derived hypochlorous acid (HClO) interacts with NH₄OH to generate cytotoxic monochloramine (NH₂Cl)[7,8]. Indeed, it has been shown that NH₂Cl plays a role in the pathogenesis of NH₄OH-induced gastric lesions in rats[9,10]. We have also reported previously that both endogenous and exogenous NH₂Cl damaged the gastric mucosa at much lower concentrations than NH₄OH[11,12].

Irsogladine, a novel antiulcer drug [2, 4-diamino-6- (2, 5- dichlorophenyl)-s-triazine maleate], has been shown to not only prevent gastric mucosal lesions in a wide variety of experimental models but show the healing promoting action of gastric ulcers as well, without any suppression of gastric secretion[13-15]. These
effects of irsogladiine may be accounted for by cytoprotective activity, yet the detailed mechanism is not fully understood. Thus, it is of interest to test whether this agent has any prophylactic action against NH₂Cl-induced gastric lesions.

In the present study, we examined the effects of irsogladiine on the mucosal ulcerogenic response induced by NH₂Cl, either administered exogenously or occurring endogenously, and compared those with the effects of another cytoprotective drug, rebamipide. We also investigated the underlying mechanism of their protection, especially in relation to endogenous prostaglandins (PGs) and nitric oxide (NO).

MATERIALS AND METHODS

Animals

Male Sprague-Dawley rats (200 g-240 g in weight, Nippon Charles River, Shizuoka, Japan) were used in all experiments. The animals, kept in separate cages with raised mesh bottoms, were deprived of food but allowed free access to tap water for 18 hours prior to the experiments. Studies were carried out using four to eight rats under either conscious or anesthetized conditions induced by urethane (1.25 g/kg, ip). All experimental procedures described here were approved by the Experimental Animal Research Committee of the Kyoto Pharmaceutical University.

General procedures

The experiments were classified into roughly two studies: one was to investigate the effects of irsogladiine and rebamipide on gastric ulcerogenic response to exogenously administered NH₂Cl in unanesthetized rats, and the other was to investigate their effects on gastric ulcerogenic response to NH₂OH in anesthetized rats subjected to ischemia. In the latter situation, it is assumed that NH₂Cl is generated endogenously from interaction of NH₂OH with neutrophil-derived HClO[10].

Induction of gastric lesions induced by NH₂Cl

The effects of irsogladiine and rebamipide on gastric mucosal ulcerogenic response induced by exogenous NH₂Cl. The animals were administered 1 ml of NH₂Cl (120 mM)-po by esophageal intubation. The solution of NH₂Cl was prepared by mixing NH₂OH (240 mM) and HClO (240 mM) in a test tube, immediately before the administration. The animals were sacrificed 1 hour after the administration of NH₂Cl, and the stomachs were removed, inflated by injecting 8 mL of 2% formalin and immersed in 2% formalin for 10 min to fix the gastric wall, and opened along the greater curvature. The area (mm²) of hemorrhagic lesions was measured under a dissecting microscope with a square grid (×10).

The person measuring the lesions did not know the treatment given to the animals. These procedures were used in all the subsequent studies for evaluating macroscopical lesions. Irsogladiine (1, 3 and 10 mg/kg) and rebamipide (30 and 100 mg/kg) were administered po 30 min before NH₂Cl treatment. In some cases, indomethacin (10 mg/kg, sc) or L-NAME (10 mg/kg, iv) was given 60 min or 40 min before NH₂Cl treatment.

Measurement of transmucosal potential difference

Transmucosal potential difference (PD) was measured in chambered stomachs of anesthetized rats as previously described[15]. Briefly, a rat stomach was mounted on an ex-vivo chamber (area exposed 3.14 cm²) and perfused at a flow rate of 1 mL/min with saline (154 mM-NaCl). PD was determined using two agar bridges, one positioned in the chamber and the other in the abdominal cavity, and monitored continuously on a recorder (U-228, Tokai-Irika, Tokyo, Japan). Approximately 1h after PD was stabilized, the perfusion system was interrupted and the solution in the chamber was withdrawn, and the mucosa was exposed to 1 mL carboxymethyl cellulose (CMC) solution (control group), 20 min later followed by 1 mL NH₂Cl (20 mM, the final concentration is 100 mM) for 10 min. After application of NH₂Cl, the mucosa was rinsed with saline, another 2 mL saline was instilled, and the perfusion system was resumed. Irsogladiine (3 mg/kg) or rebamipide (100 mg/kg) was applied to the chamber for 30 min in place of CMC solution, starting 20 min before NH₂Cl treatment. In a separate experiment, the animals were subjected to ischemia by bleeding from the carotid artery (1 mL/100 g body weight), then the mucosa was exposed to 1 mL CMC, 20 min later followed by 1 mL of NH₂OH (120 mM, the final concentration is 60 mM) for 1 hour. At the end of the experiment, the mucosa was excised, and the area (mm²) of hemorrhagic lesions was measured as described above. Irsogladiine (3 mg/kg) or rebamipide (100 mg/kg) was applied to the chamber 10 min before the onset of ischemia plus NH₂OH treatment. Control animals received CMC as the vehicle. In some cases, indomethacin (10 mg/kg) was given sc 30 min before rebamipide, while L-NAME (10 mg/kg) was given iv 10 min before irsogladiine treatment.

Preparation of drugs

Drugs used in this study were urethane (Tokyo Kasei, Tokyo, Japan), irsogladiine (Nihon-Shinyaku Co., Kyoto, Japan), rebamipide (Otsuka Pharmaceutical Co., Tokushima, Japan), indomethacin and L-NAME (Sigma Chemicals, St. Louis, MO, USA). Indomethacin was suspended in
saline with a drop of Tween 80 (Wako, Osaka, Japan), while L-NAME was dissolved in saline. Other drugs were suspended with 0.5% CMC solution. Each drug was prepared immediately before use and administered poorsc in a volume of 0.5 mL/100 g body weight or iv in a volume of 0.1 mL/100 g body weight or applied topically to the chamber in a volume of 1mL/stomach.

Statistics
Data are presented as the means±SE from 4 to 8 rats per group. Statistically analyses were performed using two-tailed Student’s t test or Dunnett’s mult ile comparison test, and P<0.05 values were regarded as significant.

RESULTS

Effects of irsogladine on gastric ulcerogenic response to NH2Cl

Intragastric administration of NH2Cl caused severe band-like hemorrhagic lesions in the gastric mucosa, the lesion score being 138.0 mm² ± 19.0 mm². Pretreatment of the animals with irsogladine (1, 10 mg/kg, po) significantly reduced the severity of gastric lesions in response to NH2Cl in a dose-dependent manner. The degree of inhibition was 35.1%, 86.3% and 83.3%, respectively (Figure 1). Rebamipide (100 mg/kg, po) also lowered the severity of gastric lesions induced by NH2Cl, but the degree of inhibition at 100mg/kg was 59.3%, which was less than that observed by irsogladine at 3mg/kg.

Effects of L-NAME and indomethacin on protective action of irsogladine against NH2Cl-induced gastric lesions

The severity of gastric lesions induced by NH2Cl was not affected by prior administration of either indomethacin (5mg/kg, sc) or L-NAME (10 mg/kg, iv), the lesion score being 146.8mm²±9.8mm² or 135.6 mm²±7.0 mm², respectively (Figure 2). However, the protective action of irsogladine (3 mg/kg, po) against NH2Cl-induced gastric lesions was significantly mitigated by prior administration of L-NAME but not indomethacin; the lesion score in the presence of L-NAME was 72.8 mm²±9.1 mm², which was significantly greater than that observed in the absence of L-NAME (19.8 mm²±3.1 mm²). By contrast, indomethacin but not L-NAME significantly antagonized the protective action of rebamipide (100 mg/kg, po) against these lesions.

Effects of irsogladine on mucosal PD response induced by NH2Cl

Normal stomachs mounted on the chamber and perfused with saline generated a stable PD of -30 to -38 mV (mucosa negative), and the values remained relatively unchanged during a 2-hour test period. Mucosal exposure to NH2Cl (10 mM) caused a marked reduction of PD to 60.0%±6.2% of basal values within 10 min, and the PD remained low for 1 hour thereafter (Figure 3). The PD reduction in response to NH2Cl was not affected by prior exposure of the mucosa to irsogladine (3 mg/kg). However, the reduced PD response to NH2Cl was significantly mitigated when the mucosa was pre-exposed to rebamipide (100 mg/kg) for 30 min; the PD reduced to 57.7%±3.1% of basal values 10 min later, which was significantly less as compared with that (60.0%±6.2% of basal values) in control rats.

Effects of irsogladine on mucosal ulcerogenic and PD responses induced by NH2OH under ischemic conditions

To confirm the protective action of irsogladine and rebamipide on NH2Cl-induced gastric toxicity, we tested the effects of these drugs on the mucosal ulcerogenic and PD responses induced by endogenously generated NH2Cl by application of a low concentration of NH2OH (60 mM) in the ischemic stomach[9]. As shown in Figure 4, topical application of NH2OH at 60 mM produced a persistent reduction of PD in the stomach made ischemic by bleeding; the PD was reduced to 42.6%±6.2% of basal values within 10min and remained low thereafter. This concrntion of NH2OH did not have any effect on PD in normal stomachs without subjecting to ischemia (not shown). The reduced PD response to NH2OH plus ischemia was not affected by prior exposure of the mucosa to irsogladine (3 mg/kg), in the absence or presence of L-NAME. By contrast, rebamipide (100 mg/kg)–pre-exposed to the mucosa significantly attenuated the PD reduction in response to NH2OH plus ischemia. In these animals the recovery of PD was also significantly expedited, and the PD almost completely normalized within 60min after NH2OH plus ischemia. In addition, the preventive effect of rebamipide on the PD response to NH2OH plus ischemia was also significantly antagonized in the presence of indomethacin.

On the other hand, the mucosal exposure to NH2OH in the ischemic stomachs resulted in severe hemorrhagic lesions within 1 hour; the lesion score being 53.6 mm²±12.2 mm² (Figure 5). The development of gastric lesions induced by NH2OH plus ischemia was significantly prevented by irsogladine (3 mg/kg) as well as rebamipide (100 mg/kg), the inhibition being 79.5% and 82.3%, respectively. The protective effect of irsogladine or rebamipide against NH2OH plus ischemia-induced gastric lesions was significantly antagonized by L-NAME or indomethacin, respectively.
Figure 1 Effects of irsogladine and rebamipide on gastric lesions induced by NH₂Cl in rats. The animals were given NH₂Cl (120 mM; 5 mL/kg) po, and sacrificed 1 hour later. Irsogladine (1 mg/kg-10 mg/kg) or rebamipide (30, 100 mg/kg) was given po 30 min before administration of NH₂Cl. Data are presented as the mean±SE from 5-7 rats. *Statistically significant difference from control (P<0.05).

Figure 2 Effects of indomethacin and L-NAME on the mucosal protective action of irsogladine and rebamipide against NH₂Cl-induced gastric lesions in rats. The animals were administered po with 1 mL of NH₂Cl (120 mM), and sacrificed 1 hour later. Irsogladine (3 mg/kg) or rebamipide (100 mg/kg) was given po 30 min before NH₂Cl treatment. Indomethacin (5 mg/kg, sc) or L-NAME (10 mg/kg, iv) was given 30 or 10 min before the above agents. Data are presented as the mean±SE from 5-8 rats. Statistically significant difference at P<0.05; *from the corresponding control (CMC); #from the corresponding value in normal group.

Figure 3 Effects of irsogladine and rebamipide on changes in transmucosal PD in response to NH₂Cl in anesthetized rat stomachs. The stomach was mounted on an ex-vivo chamber, and NH₂Cl (20 mM; 1 mL) was applied topically to the stomach for 10 min. Irsogladine (3 mg/kg) or rebamipide (100 mg/kg) was applied to the chamber for 30 min, starting 20 min before exposure to NH₂Cl. Data are presented as the mean±SE determined every 5 min from 5-7 rats. *Statistically significant difference from control, P<0.05.

Figure 4 Effects of irsogladine and rebamipide on changes in transmucosal PD in response to NH₄OH in rat stomachs under ischemic conditions. The stomach mounted on an ex-vivo chamber was subjected to ischemia by bleeding from the carotid artery (1 mL/100 g body wt), and then exposed to NH₄OH (120 mM; 1 mL) for 1 h thereafter. Irsogladine (3 mg/kg) or rebamipide (100 mg/kg) was applied to the chamber 20 min before the onset of ischemia and NH₄OH treatment. Indomethacin (5 mg/kg, sc) or L-NAME (10 mg/kg, iv) was given 30 or 10 min before the above agents. Data are presented as the mean±SE of values determined every 5 min from 5-6 rats. Statistically significant difference at P<0.05; *from control; # from vehicle.

Figure 5 Effects of irsogladine and rebamipide on gastric mucosal lesions induced by NH₄OH in anesthetized rat stomachs under ischemic conditions. The stomach mounted on an ex-vivo chamber was subjected to ischemia by bleeding from the carotid artery (1 mL/100 g body weight), and then exposed to NH₄OH (120 mM) for 1 h thereafter. Irsogladine (3 mg/kg) or rebamipide (100 mg/kg) was applied to the chamber 20 min before the onset of ischemia and NH₄OH treatment. Indomethacin (5 mg/kg, sc) or L-NAME (10 mg/kg, iv) was given 30 or 10 min before the above agents. Data are presented as the mean±SE from 4-6 rats. Statistically significant difference at P<0.05; *from control; # from vehicle.
DISCUSSION

The present study demonstrated that irsogladine, a novel antiulcer drug, conferred a protection against gastric damage induced in rat stomachs by NH$_2$Cl, either given exogenously or occurred endogenously. We also found that rebamipide, another antiulcer drug, showed similar protection against such damage, although the effect was less potent than that of irsogladine. In addition, the present results suggest that the mechanisms underlying their protection are different; the protective action of irsogladine is partly mediated by endogenous NO, while that of rebamipide is accounted for by endogenous PGs as well as a radical scavenging action.

H. pylori has a high urease enzyme activity, resulting in an abnormally high concentration of ammonia (NH$_2$OH) in the stomach of infected patients3. It is also known that NH$_2$OH interacts with neutrophil-derived HClO to generate cytotoxic NH$_2$Cl, a powerful oxidant capable of destroying a variety of micro-organisms as well as mammalian cell targets$^{[6-7]}$. Murakami et al.$^{[17]}$ demonstrated in rats that NH$_2$OH-induced gastric mucosal lesions were significantly inhibited by taurine, a scavenger of HClO, suggesting a pathogenic role of NH$_2$Cl in the development of such lesions. We also found previously that the mixture of low concentration of NH$_2$OH and HClO, which did not have any gastric mucosal toxicity by each alone, caused severe lesions in the rat gastric mucosa under unanesthetized conditions$^{[11,12]}$. In addition, we reported that the gastric lesions induced by endogenously generated NH$_2$Cl by a low concentration of NH$_2$OH plus ischemia were totally prevented by taurine in anesthetized ex-vivo stomachs$^{[11,12]}$. It is known that taurine activates xanthine oxidase, which is responsible for the production of reactive oxygen metabolites such as H$_2$O$_2$, and that the generation of HClO by neutrophils is dependent on the quantity of H$_2$O$_2$ produced$^{[65]}$. It may therefore be assumed that NH$_2$OH even at low concentrations produces NH$_2$Cl by interaction with HClO in the ischemic stomach, resulting in damage to the mucosa.

The gastric lesions induced by oral administration of NH$_2$Cl were significantly prevented by irsogladine as well as rebamipide in a dose-dependent manner, although the effect of irsogladine was more potent than that of rebamipide. Similar results were obtained by these drugs against gastric lesions induced by NH$_2$OH plus ischemia, where NH$_2$Cl is assumed to be generated endogenously from interaction of NH$_2$OH with neutrophil-derived HClO$^{[10]}$. These results clearly showed that both irsogladine and rebamipide conferred a protection against damage induced by NH$_2$Cl, either administered exogenously or occurring endogenously. However, the mechanisms underlying gastric protection seemed to be different between these two drugs. The protective action of irsogladine was significantly attenuated by pretreatment with L-NAME but not indomethacin, while that of rebamipide was attenuated by indomethacin but not L-NAME. These results suggest that the protective action of irsogladine and rebamipide may be mediated by endogenous NO and PGs, respectively. Moreover, these drugs caused different effects on the PD response induced by NH$_2$Cl or NH$_2$OH plus ischemia. Rebamipide significantly prevented the PD reduction in response to these treatments while irsogladine had no effect on such PD responses. It is considered that gastric PD is one of the indicators for the integrity of the gastric mucosa, including the development of mucosal injury as well as the recovery from injury$^{[18,19]}$. From the present results, it is suggested that irsogladine does not inhibit the onset of injury caused by NH$_2$Cl but prevents the ultimate generation of gastric damage, probably by preventing the later extension of injury, while rebamipide reduced the gastric ulcerogenic response by inhibiting the initial irritating action of NH$_2$Cl on the mucosa.

The local release of NO regulates the gastric mucosal microcirculation and maintains the mucosal integrity in collaboration with PGs and sensory neurons$^{[20,21]}$. At present, the mechanism by which irsogladine stimulates the release of NO in the gastric mucosa remains unknown. We previously reported that mucosal application of NO donor prevented the development of gastric lesions induced by NH$_2$Cl without any influence on the PD responses$^{[11,12]}$. These data are in agreement with the present findings that irsoglandine reduced the severity of NH$_2$Cl-induced gastric lesions but had no effect on the reduced PD response. On the other hand, it has been shown that rebamipide protects the gastric mucosa from various necrotizing agents by increasing PG biosynthesis in the mucosa and scavenging free radicals$^{[22-24]}$. Exogenous PGE$_2$ has also been shown to inhibit gastric lesions in response to NH$_2$Cl or NH$_2$OH plus ischemia$^{[25]}$. These data support the present observation that rebamipide protected the stomach against NH$_2$Cl-induced damage, in an indomethacin-sensitive manner. It should also be noted in the present study that rebamipide prevented the PD reduction in response to NH$_2$Cl or NH$_2$OH plus ischemia. Since taurine, a scavenger of HClO, markedly suppressed the PD reduction caused by NH$_2$Cl$^{[11,12]}$, it is likely that rebamipide may prevent gastric ulcerogenic and PD responses to NH$_2$Cl through a radical scavenging
action, in addition to mediation by endogenous PGs.

In conclusion, the present results taken together suggest that NH$_2$Cl generated either endogenously or exogenously, damages the gastric mucosa at a low concentration. Gastric mucosal lesions caused by NH$_2$Cl was prevented by both irsogladine and rebamipide, although the former action was more potent than the latter. Although the exact mechanisms underlying gastroprotection afforded by irsogladine and rebamipide remain unknown, it is assumed that their mechanisms are different; the effect of irsogladine is mediated at least partly by endogenous NO, while that of rebamipide is attributable to endogenous PGs as well as its radical scavenging action. Since an important feature of $H.~pylori$ infection is neutrophil infiltration in the gastric mucosa1,2, it is possible that NH$_2$Cl is formed in the inflammed gastric mucosa, where neutrophil and $H.~pylori$ are located in juxtaposition. Thus, the present study also suggests that irsogladine may have therapeutic potential in the prevention and/or treatment of gastric mucosal damage related to $H.~pylori$.

REFERENCES

1 Marshall BJ, Warren JR. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet, 1983;1:1273-1275
2 Graham DY. Campylobacter pylori and peptic ulcer disease. Gastroenterology, 1989;96(Suppl):615-625
3 Marshall BJ, Langton SR. Urea hydrolysis of patients with Campylobacter pyloridis infection. Lancet, 1983;1:965-966
4 Whitehead R, Tuelove SC, Gear ML. The histological diagnosis of chronic gastritis in fibrotic gastroscopy biopsy specimens. J Clin Pathol, 1972;25:1-11
5 Badwey JA, Karnovsky ML. Active oxygen species and the functions of phagocytic leukocytes. Ann Rev Biochem, 1980;46:695-726
6 Klevanoff SJ. Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med, 1980;93:480-489
7 Grisham MB, Jefferson MM, Thomas EL. Chlorination of endogenous amines by isolated neutrophil. Am J Physiol, 1982;243:E140-1426
8 Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol, 1986;251:G567-G574
9 Murakami M, Asagoe K, Dekigai H, Kusaka S, Saita H, Kita T. Products of neutrophil metabolism increase ammonia induced gastric mucosal damage. Dig Dis Sci, 1995;40:268-273
10 Dekigai H, Murakami M, Kita T. Mechanism of Helicobacter pylori associated gastric mucosal damage. Dig Dis Sci, 1995;40:1332-1339
11 Nishikawa H, Kato S, Takeuchi K. Irritant action of monochloramine in rat gastric mucosa. Gen Pharmacol, 1997;29:713-718
12 Kato S, Nishikawa H, Kanaka A, Takeuchi K. Mucosal ulcerogenic action of monochloramine in rat stomachs. Dig Dis Sci, 1977;42:2156-2161
13 Ueda F, Aratani S, Mimura K, Kimura K, Nomura A, Enomoto H. Effect of 2,4 diamino 6 (2,5-dichlorophenyl) s triazine maleate (MN-1695) on gastric ulcers and gastric secretion in experimental animals. Arzneimittelforschung, 1984;34:474-477
14 Ueda F, Aratani S, Mimura K, Kimura K, Nomura A, Enomoto H. Effect of 2,4ºdiamino 6 (2,5-dichlorophenyl) s triazine maleate (MN-1695) on gastric mucosal damage induced by various necrotizing agents in rats. Arzneimittelforschung, 1984;34:478-484
15 Okabe S, Takeuchi K, Ishihara Y, Kunihi. Effect of 2,4 diamino 6 (2,5-dichlorophenyl) s triazine maleate (MN-1695) on gastric secretion and on experimental gastric ulcers in rats. Pharmacometrics, 1984;24:683-689
16 Takeuchi K, Ishihara Y, Okada M, Nuida H, Okabe S. A continuous monitoring of mucosal integrity and secretory activity in rat stomach. A preparation using a lucrete chamber. Jpn J Pharmacol, 1989;49:235-244
17 Murakami M, Saita H, Teramoto S, Dekigai H, Asagoe K, Kusaka S, Kita T. Gastric ammonia has a potent ulcerogenic action on the rat stomach. Gastroenterology, 1993;105:1710-1715
18 Ivy KJ, Den Bestenbem L, Gifford DA. Effect of bile salts on ion movement across the human gastric mucosa. Gastroenterology, 1970;59:683-690
19 Swanes K, Ito S, Takeuchi K, Silen W. Restoration of the surface epithelium of the in vitro frog gastric mucosa after damage with hyperosmolar sodium chloride; morphologic and physiologic characteristic. Gastroenterology, 1982;82:1409-1426
20 Whittle BJ, Lopez Belmonte J, Moncada S. Regulation of gastric mucosal integrity by endogenous nitric oxide; interactions with prostanooids and sensory neuropeptides in the rat. Br J Pharmacol, 1990;99:607-611
21 Tepperman BL, Whittle BJ. Endogenous nitric oxide and sensory neuropeptides interact in the modulation of the rat gastric microcirculation. Br J Pharmacol, 1992;105:171-175
22 Ishihara K, Komuro Y, Nishiyama N, Yamazaki K, Hotta K. Effect of rebamipide on mucus secretion by endogenous prostaglandin-independent mechanism in rat gastric mucosa. Arzneimittelforschung, 1992;42:1462-1466
23 Yamashita K, Kanbe T, Chijwiwa T, Ishihara H, Morita S. Gastric mucosal protection by OPC-12759, a novel antiulcer compound in the rat. Eur J Pharmacol, 1987;142:23-29
24 Yoshikawa T, Naito Y, Tanigawa T, Kondo M. Free radical scavenging activity of the novel anti ulcer agent rebamipide studied by electron spin resonance. Arzneimittelforschung, 1993;43:363-366

Edited by MA Jing-Yun
Proofread by MIAO Qi-Hong