L^1-determined ideals in group algebras of exponential Lie groups

O. Ungermann

Abstract. A locally compact group G is said to be $*$-regular if the natural map $\Psi : \text{Prim} C^*(G) \to \text{Prim}_* L^1(G)$ is a homeomorphism with respect to the Jacobson topologies on the primitive ideal spaces $\text{Prim} C^*(G)$ and $\text{Prim}_* L^1(G)$. In 1980 J. Boidol characterized the $*$-regular ones among all exponential Lie groups by a purely algebraic condition. In this article we introduce the notion of L^1-determined ideals in order to discuss the weaker property of primitive $*$-regularity. We give two sufficient criteria for closed ideals I of $C^*(G)$ to be L^1-determined. Herefrom we deduce a strategy to prove that a given exponential Lie group is primitive $*$-regular. The author proved in his thesis that all exponential Lie groups of dimension ≤ 7 have this property. So far no counter-example is known. Here we discuss the example $G = B_5$, the only critical one in dimension ≤ 5.

2000 Mathematics Subject Classification: 43A20; 22D10, 22D20, 22E27.

1 Introduction

Let \mathcal{A} be Banach $*$-algebra and $C^*(\mathcal{A})$ its enveloping C^*-algebra in the sense of Dixmier, see Chapter 2.7 of [S]. The C^*-norm on $C^*(\mathcal{A})$ is given by

$$|a|_* = \sup_{\pi \in \hat{\mathcal{A}}} |\pi(a)|$$

for all $a \in \mathcal{A}$ where $\hat{\mathcal{A}}$ is the set of equivalence classes of topologically irreducible $*$-representations of \mathcal{A} in Hilbert spaces. Let $\text{Prim} C^*(\mathcal{A})$ be the set of primitive ideals in $C^*(\mathcal{A})$, and $\text{Prim}_* \mathcal{A}$ the set of kernels of representations in $\hat{\mathcal{A}}$. For ideals I of $C^*(\mathcal{A})$ we define their hull $h(I) = \{ P \in \text{Prim} C^*(\mathcal{A}) : P \supset I \}$ in $\text{Prim} C^*(\mathcal{A})$, and for subsets X of $\text{Prim} C^*(\mathcal{A})$ their kernel $k(X) = \cap \{ P : P \in X \}$ in $C^*(\mathcal{A})$. In the sequel all ideals are assumed to be two-sided and closed in the respective norm. Closed ideals I of C^*-algebras are automatically involutive and satisfy $I = k(h(I))$, see Proposition 1.8.2 and Theorem 2.6.1 of [S].

Recall that $\text{Prim} C^*(\mathcal{A})$ is a topological space w. r. t. the Jacobson topology, i.e., $X \subset \text{Prim} C^*(\mathcal{A})$ is closed if and only if there exists an ideal I of $C^*(\mathcal{A})$ such that
Likewise we can state the according definitions of hulls and kernels for A and we provide Prim_A with the Jacobson topology as well. Let I' denote the preimage of the ideal I under the natural map $A \longrightarrow C^*(A)$. For simplicity we write $I' = I \cap A$. The map

$$\Psi : \text{Prim} C^*(A) \longrightarrow \text{Prim} A \quad \text{given by} \quad \Psi(P) = P' = P \cap A$$

is continuous and surjective and evidently satisfies $k(\Psi(X)) = k(X) \cap A$ and $h(I) \subset \Psi^{-1}(h(I'))$. The next definition is basic for the subsequent investigation.

Definition 1.1. A closed ideal I of $C^*(A)$ is called A-determined if and only if the following (obviously) equivalent conditions hold:

1. $I' \subset J'$ implies $I \subset J$ for all ideals J of $C^*(A)$,
2. $I' \subset P'$ implies $I \subset P$ for all $P \in \text{Prim} C^*(A)$, i.e., $h(I) = \Psi^{-1}(h(I'))$,
3. I' is dense in I w. r. t. the C^*-norm,
4. $C^*(A/I') \cong C^*(A)/I$.

In the introduction of [2] Boidol defined $*$-regularity of Banach $*$-algebras. We restate his definition and add the notion of primitive $*$-regularity.

Definition 1.2. A Banach $*$-algebra A is called (primitive) $*$-regular if and only if every closed (primitive) ideal of $C^*(A)$ is A-determined.

The group algebra $L^1(G)$ of a locally compact group G is a $*$-semisimple Banach $*$-algebra with bounded approximate identities. We say that G is (primitive) $*$-regular if $L^1(G)$ has this property. Similarly $*$-regularity of (real) Lie algebras g is defined by means of the (unique) connected, simply connected Lie group G with $\text{Lie}(G) = g$.

Part (ii) of the next lemma shows that Definition 1.2 is equivalent to Boidol’s original definition, a characterization which has already been proved in [3].

Lemma 1.3.

(i) If A is primitive $*$-regular, then $\Psi : \text{Prim} C^*(A) \longrightarrow \text{Prim} A$ is injective.

(ii) A Banach $*$-algebra A is $*$-regular if and only if Ψ is a homeomorphism with respect to the Jacobson topologies on $\text{Prim} C^*(A)$ and $\text{Prim} A$.

Proof. If A is primitive $*$-regular, then $P = \overline{\Psi(P)}$ is uniquely determined by $\Psi(P)$ for all $P \in \text{Prim} C^*(A)$. This proves (i). In order to prove (ii), let us suppose that A is $*$-regular. Since Ψ is a continuous bijection, it suffices to prove that Ψ maps closed sets onto closed sets. But if X is a closed subset of $\text{Prim} C^*(A)$, then there exists a closed ideal I of $C^*(A)$ such that $X = h(I)$ and we see that $\Psi(X) = h(I')$ is closed in $\text{Prim} A$ because I is A-determined. Now we prove the opposite implication. Assume
that Ψ is a homeomorphism, I a closed ideal of $C^*(A)$, and $P \in \text{Prim } C^*(A)$ such that $I' \subset P'$. Define $X = h(I)$. Since $I' = k(\Psi(X))$, it follows

$$h(I') = h(k(\Psi(X))) = \overline{\Psi(X)} = \Psi(X)$$

because Ψ maps closed sets onto closed sets. Now $P' \in \Psi(X)$ implies $P \in X$ so that $P \supset I$ because Ψ is injective. This proves the asserted equivalence. \hfill \square

Because of its technical importance we state the following fact as a lemma, but we omit the easy proof.

Lemma 1.4. Let $I \subset J$ be closed ideals of $C^*(A)$ such that I is A-determined. Then J is A-determined if and only if the ideal J/I of $C^*(A)/I = C^*(A/I')$ is A/I'-determined.

This lemma can be applied in the following situation: If A is a closed normal subgroup of G and $\hat{G} = G/A$, then $T_A f(\hat{x}) = \int_A f(xa) \, da$ defines a quotient map of Banach $*$-algebras from $L^1(G)$ onto $L^1(\hat{G})$ which extends to a quotient map from $C^*(G)$ onto $C^*(\hat{G})$, compare p. 68 of [29]. It is easy to see that $I = \ker C^*(G) T_A$ is $L^1(G)$-determined.

Lemma 1.5. A finite intersection of A-determined ideals is A-determined.

Proof. Let I_1 and I_2 be A-determined ideals of $C^*(A)$. Let $P \in \text{Prim } C^*(A)$ such that $I_1' \cdot I_2' \subset I_1' \cap I_2' \subset P'$. Since P' is a prime ideal of A, it follows $I_1' \subset P'$ or $I_2' \subset P'$. Since I_1 and I_2 are A-determined, we obtain $I_1 \subset P$ or $I_2 \subset P$ and thus $I_1 \cap I_2 \subset P$. Consequently $I_1 \cap I_2$ is A-determined and the assertion of this lemma follows by induction. \hfill \square

Remark 1.6. Here are a few examples of $*$-regular Banach $*$-algebras: If G is a connected locally compact group such that its Haar measure has polynomial growth, then G is $*$-regular. Boidol proved this fact in Theorem 2 of [4] based on ideas of Dixmier in [7]. Jenkins has shown in Theorem 1.4 of [15] that connected nilpotent Lie groups have polynomial growth. If G is a metabelian connected locally compact group, then G is $*$-regular, see Theorem 3.5 of [2]. Moreover the following is true: If G is a compactly generated, locally compact group with polynomial growth and if w is a symmetric weight function on G which satisfies the non-abelian-Beurling-Domar condition (BDna) of [10], then $L^1(G, w)$ is $*$-regular. Compare Proposition 5.2 and Theorem 5.8 of [10].

In the next paragraphs we formulate sufficient criteria for ideals of the group algebra $C^*(G)$ of exponential Lie groups to be $L^1(G)$-determined, see Proposition 2.12 and Proposition 4.14.

2 Inducing primitive ideals from a stabilizer

We shall use the concept of the adjoint algebra (double centralizer algebra) of a Banach $*$-algebra, compare Paragraph 3 of [16] and Chapter 2.3 of [28]. Let $\mathcal{C}_0(G)$ denote the
continuous functions of compact support on G. If H is a closed subgroup of G, then $C_0(H)$ acts as an algebra of double centralizers on $C_0(G)$ by convolution
\[(a * f)(x) = \int_H a(h) f(h^{-1}x) \, dh\]
from the left, and by
\[(f * a)(x) = \int_H f(xh) \Delta_{G,H}(h^{-1}) a(h^{-1}) \, dh\]
from the right where $\Delta_{G,H}(h) = \Delta_H(h)\Delta_G(h)^{-1}$. These actions extend to actions of $C^*(H)$ on $C^*(G)$ such that $(a * f)^* = f^* * a^*$ and $f * (a * g) = (f * a) * g$ for all $f, g \in C^*(G)$ and $a \in C^*(H)$.

Definition 2.1. Let H be a closed subgroup of the locally compact group G. If J is an ideal of $C^*(H)$, then
\[\text{ind}_{G}^{H}(J) = (C^*(G) * J * C^*(G))^\perp\]
denotes the induced ideal of $C^*(G)$. If I is an ideal of $C^*(G)$, then the ideal
\[\text{res}_{G}^{H}(I) = \{a \in C^*(H) : a * C^*(G) \subset I\}\]
is its restriction to H. An ideal I of $C^*(G)$ is said to be induced from H if there exists an ideal J of $C^*(H)$ such that $I = \text{ind}_{G}^{H}(J)$.

If $I = \ker_{C^*(G)} \pi$ for some unitary representation π of G, then $\text{res}_{G}^{H}(I) = \ker_{C^*(H)} \pi$. If I is induced from H, then $I = \text{ind}_{G}^{H}(\text{res}_{G}^{H}(I))$. Note that $I = \text{ind}_{G}^{H}(J)$ is minimal among all ideals of $C^*(G)$ whose restriction contains J.

It is interesting to compare our definition of induced ideals to that of Green and Rieffel in Section 3 of [13] involving C^*-imprimitivity bimodules. To this end we assume that there exists a G-invariant measure on the homogeneous space G/H so that the character $\Delta_{G,H}$ of H is trivial. This is the case e.g. if H is a normal subgroup of G. We follow the considerations of Section 4 of Rieffel’s article [30]. Note that the right action of $C_0(H)$ on $X_0 = C_0(G)$ defined in [30] coincides with that of convolution from the right because the function $\gamma = \Delta_{G,H}^{-1/2}$ used there is also trivial. The $C_0(H)$-valued inner product
\[\langle f | g \rangle_{C_0(H)}(h) = (f^* g)(h) = \int_G \overline{f(y)} g(yh) \, dy\]
defines a norm $\|f\|_{C^*(H)} = (\langle f | f \rangle_{C_0(H)})^{1/2}$ on X_0 where the norm on the right is the C^*-norm of $C^*(H)$. Further $C_0(G)$ acts on X_0 by convolution from the left so that
L^1-determined ideals in group algebras

X_0 becomes a $C_0(G)$-$C_0(H)$-bimodule, and $\langle f \mid g \rangle_{C_0(G)} = f \ast g^*$ defines a $C_0(G)$-valued inner product $C^*_c(G)\langle \cdot \mid \cdot \rangle$ on X_0. Completion of X_0 with respect to the norm $| \cdot |_{C^*_c(H)}$ gives a right-$C^*_c(H)$-rigged space X on which $C^*_c(G)$ acts from the left. From

$$\text{ind}_H^G(J) = \overline{\text{span}} \{ C^*_c(G)\langle f \ast a \mid g \rangle : f, g \in X \text{ and } a \in J \} = X - \text{ind}_H^G(J)$$

we learn that, at least in the case of $\Delta_{G,H}$ being trivial, our definition coincides with that of Rieffel and Green.

It is well-known that for C^*-imprimitivity bimodules X the Rieffel correspondence $X - \text{ind}_H^G$ is compatible with inducing representations in the sense that

$$(2.2) \quad X - \text{ind}_H^G(\ker \sigma) = \ker(X - \text{ind}_H^G \sigma),$$

compare Chapter 3.3 of [28]. But in general the bimodule X from above is not a $C^*_c(G)$-$C^*_c(H)$-imprimitivity bimodule because the crucial equality $C^*_c(G)\langle f \mid g \rangle_{C^*_c(H)} \ast h = f \ast (g \mid h)_{C^*_c(H)}$ is not necessarily satisfied. The norms $| \cdot |_{C^*_c(H)}$ and $| \cdot |_{C^*_c(G)}$ might be different. In fact, the imprimitivity algebra of the $C^*_c(H)$-rigged space X is known to be isomorphic to the covariance algebra $C^*_c(G, C_\infty(G/H))$. As we will see, Equation (2.2) holds true for the C^*-bimodule X defined above if G/H is amenable.

In analogy to results of Leptin [17] and Hauenschild, Ludwig [14] for the L^1-case, we will characterize those ideals I of $C^*_c(G)$ which are induced from a given closed normal subgroup H of G. This turns out to be possible if H is normal and G/H amenable. In order to prepare the proof of Theorem 2.6 we recall the well-known restriction-induction-lemma of Fell, see Theorem 3.1 and Lemma 4.2 of [11]. A proof can also be found on p. 32 of [19]. We presume the definition of induced representations.

Lemma 2.3. Let H be a closed subgroup of a locally compact group G. Let π be a unitary representation of G and $\pi \mid H$ its restriction to H.

(i) If τ is a unitary representation of H, then the Kronecker product $\text{ind}_H^G((\pi \mid H) \otimes \tau)$ is unitarily equivalent to $\pi \otimes \text{ind}_H^G \tau$.

(ii) In particular $\text{ind}_H^G(\pi \mid H)$ is unitarily equivalent to $\pi \otimes \lambda$ where λ denotes the left regular representation of G in $L^2(G/H)$.

Note that conjugation $f^z(x) = \Delta_G(z^{-1}) f(zxz^{-1})$ for $f \in L^1(G)$ and $z \in G$ extends to a strongly continuous action of G on $C^*_c(G)$ by isometric automorphisms. Using an approximate identity of $C^*_c(G)$, one can prove that every closed ideal I of $C^*_c(G)$ is two-sided translation-invariant, and hence invariant under conjugation, i.e. $I^z = I$.

If H is a closed normal subgroup of G, then G acts on H by conjugation $n^z = z^{-1}nz$. Further $a^z(n) = \delta(z^{-1}) a(n^{-1})$ for $a \in L^1(H)$ and $z \in G$ yields a strongly continuous, isometric action of G on $C^*_c(H)$. If I is a closed ideal of $C^*_c(G)$, then $J = \text{res}_H^G(I)$ is a G-invariant ideal of $C^*_c(H)$, i.e. $J^z = J$, because $(a \ast f)^z = a^z \ast f^z$ and $I^z = I$.
Lemma 2.4. Let H be a closed normal subgroup of a locally compact group G. Let σ be a unitary representation of H and $\pi = \text{ind}_H^G \sigma$. Then $\pi \mid H$ is weakly equivalent to the orbit $G \cdot \sigma$ which means

$$\ker_{C^*(H)} \pi = k(G \cdot \sigma) = \bigcap_{x \in G} \ker_{C^*(H)} x \cdot \sigma.$$

Proof. Let \mathcal{S} be the representation space of σ. As usual $C_0^*(G, \mathcal{S})$ denotes the vector space of all continuous functions on G which satisfy $\varphi(xh) = \sigma(h)^* \varphi(x)$ for $h \in H$, $x \in G$ and have compact support modulo H. Then $\pi = \text{ind}_H^G \sigma$ is defined in $L^2(G, \mathcal{S})$, the completion of $C_0^*(G, \mathcal{S})$ with respect to the L^2-norm given by integration with respect to the Haar measure of the group G/H. We get

$$\pi(h)\varphi(x) = \varphi(h^{-1}x) = \sigma(h^x) \cdot \varphi(x)$$

for $h \in H$. It follows that $\pi \mid H$ is given by $\pi(a)\varphi(x) = \sigma(a^x) \cdot \varphi(x)$ for $a \in C^*(H)$. Hence π is essentially a direct integral of the representations $\{x \cdot \sigma : x \in G\}$ so that the assertion of this lemma becomes clear.

The importance of the left regular representation λ of G in $L^2(G/H)$ has already been indicated by Lemma 2.3.

Definition 2.5. Let H be a closed normal subgroup of a locally compact group G. An ideal I of $C^*(G)$ is said to be $(G/H)^\sim$-invariant if π is weakly equivalent to $\pi \otimes \lambda$ (in symbols $\pi \approx \pi \otimes \lambda$) for all unitary representations π of G such that $I = \ker_{C^*(G)} \pi$.

Theorem 1 of [12] shows that $\pi \approx \pi \otimes \lambda$ for at least one such π is sufficient for I to be $(G/H)^\sim$-invariant. Now we can state the announced characterization of induced ideals.

Theorem 2.6. Let H be a closed normal subgroup of a locally compact group G such that G/H is amenable. Then there are equivalent:

(i) $I = \text{ind}_H^G (\text{res}_H^G(I))$ is induced from H.

(ii) $I = \ker_{C^*(G)} \pi$ is the kernel of some induced representation $\pi = \text{ind}_H^G \sigma$.

(iii) I is $(G/H)^\sim$-invariant.

Proof. First we verify (i) \Rightarrow (ii). Suppose that I is induced from H. Since $J = \text{res}_H^G(I)$ is a G-invariant ideal of $C^*(H)$, its hull $\Omega = h(J) \subset \hat{H}$ is G-invariant, too. Define $\sigma = \sum_{\tau \in \Omega} \tau$ and $\pi = \text{ind}_H^G \sigma$. Lemma 2.4 implies $\ker_{C^*(H)} \pi = k(G \cdot \sigma) = k(\Omega) = J$. Hence $I = \text{ind}_H^G(J) \subset \ker_{C^*(G)} \pi$. We must prove the opposite inclusion: Let $\rho \in \hat{G}$ be arbitrary such that $I \subset \ker_{C^*(G)} \rho$. Then $k(G \cdot \sigma) = J \subset \ker_{C^*(H)} \rho$ which means that $\rho \mid H$ is weakly contained in $G \cdot \sigma$ (in symbols $\rho \mid H \ll G \cdot \sigma$). Since G/H is amenable, we have $1_G \ll \lambda = \text{ind}_H^G 1_H$ and hence $\rho \otimes 1_G \ll \rho \otimes \lambda$ by Theorem 1 of [12]. For inducing
representations is continuous w. r. t. the Fell topologies of \(\hat{H} \) and \(\hat{G} \), it follows from part (ii) of Lemma 2.3 that

\[
\rho \cong \rho \otimes 1_G \ll \rho \otimes \lambda \cong \text{ind}_H^G(\rho|H) \ll \text{ind}_H^G(G \cdot \sigma) \approx \text{ind}_H^G \sigma = \pi
\]

because the representations \(\text{ind}_H^G(z \cdot \sigma) \), \(z \in G \), are all unitarily equivalent. Thus \(\ker_{C^*_{\sigma}(G)} \pi \subset \ker_{C^*_{\sigma}(G)} \rho \). Since \(\rho \) is the intersection of all primitive ideals of \(C^*_{\sigma}(G) \) containing \(\pi \) by Theorem 2.9.7 of [8], we obtain \(\rho = \ker_{C^*_{\sigma}(G)} \pi \).

Next we show (ii) \(\Rightarrow \) (iii). Suppose that \(\rho = \ker_{C^*_{\sigma}(G)} \pi \) for some \(\pi = \text{ind}_H^G \sigma \). By Lemma 2.4 we know \(\pi|H \approx G \cdot \sigma \). Thus \(\pi \otimes \lambda \cong \text{ind}_H^G(\pi|H) \approx \text{ind}_H^G \sigma = \pi \) which proves \(\rho \) to be \((G/H)^{\sim} \)-invariant.

Finally we prove (iii) \(\Rightarrow \) (i). Suppose that \(\rho \) is \((G/H)^{\sim} \)-invariant. Let \(J = \text{res}_H^G(\rho) \). Clearly \(\text{ind}_H^G(J) \subset \rho \). It remains to verify the opposite inclusion: Choose a unitary representation \(\pi \) of \(G \) such that \(\rho = \ker_{C^*_{\sigma}(G)} \pi \). Let \(\rho \) be arbitrary such that \(\text{ind}_H^G(J) \subset \ker_{C^*_{\sigma}(G)} \rho \). Then \(\ker_{C^*_{\sigma}(H)} \pi = J \subset \ker_{C^*_{\sigma}(H)} \rho \) and hence \(\rho|H \ll \pi|H \).

Since \(G/H \) is amenable, we get

\[
\rho = \rho \otimes 1 \ll \rho \otimes \lambda = \text{ind}_H^G(\rho|H) \ll \text{ind}_H^G(\pi|H) = \pi \otimes \lambda \approx \pi
\]

because \(\rho \) is \((G/H)^{\sim} \)-invariant. Thus \(\rho = \ker_{C^*_{\sigma}(G)} \pi \subset \ker_{C^*_{\sigma}(G)} \rho \). Now Theorem 2.9.7 of [8] implies \(\rho = \text{ind}_H^G(J) \). The proof is complete.

The proof of (i) \(\Rightarrow \) (ii) of Theorem 2.4 shows that \(J = \text{res}_H^G(\text{ind}_H^G(J)) \) for every \(G \)-invariant ideal \(J \) of \(C^*_{\sigma}(H) \). The preceding results can be summarized as follows:

Theorem 2.7. Let \(H \) be a closed normal subgroup of a locally compact group \(G \) such that \(G/H \) is amenable. Induction and restriction give bijections between the set of all \((G/H)^{\sim} \)-invariant ideals \(I \) of \(C^*_{\sigma}(G) \) and the set of all \(G \)-invariant ideals \(J \) of \(C^*_{\sigma}(H) \) which are inverses of one another.

An immediate consequence is

Corollary 2.8. Let \(H \) be a closed normal subgroup of a locally compact group \(G \) such that \(G/H \) is amenable. If the ideals \(\{I_k : k \in \Lambda\} \) of \(C^*_{\sigma}(G) \) are induced from \(H \), then their intersection \(I = \bigcap \{I_k : k \in \Lambda\} \) is also induced from \(H \).

Proof. Let \(\pi_k \) be a unitary representation of \(G \) such that \(I_k = \ker_{C^*_{\sigma}(G)} \pi_k \). We know \(\pi_k \otimes \lambda \approx \pi_k \) by Theorem 2.4. If we define \(\pi = \sum_{k \in \Lambda} \pi_k \), then \(I = \ker_{C^*_{\sigma}(G)} \pi \) and \(\pi \otimes \lambda \approx \{\pi_k \otimes \lambda : k \in \Lambda\} \approx \{\pi_k : k \in \Lambda\} \approx \pi \). Thus \(I \) induced from \(H \) by Theorem 2.4.

Suppose that \(H \) is a coabelian normal subgroup of \(G \) so that \(G/H \) is amenable as an abelian group. In this case \((\chi \cdot f)(x) = \chi(x) f(x) \) for \(f \in L^1(G) \) extends to an isometric, strongly continuous action of the Pontryagin dual \((G/H)^{\sim} \) on \(C^*_{\sigma}(G) \). Note that \(\pi(\chi \cdot f) = (\pi \otimes \chi)(f) \) for any unitary representation \(\pi \) of \(G \).
Corollary 2.9. Let H be a coabelian normal subgroup of G. An ideal I of $C^*(G)$ is induced from H if and only if it is $(G/H)^{\sim}$-invariant in the sense that $\chi \cdot I = I$ for all $\chi \in (G/H)^{\sim}$.

Proof. Let π be a unitary representation of G such that $I = \ker_{C^*(G)} \pi$. Theorem 2.6 shows that I is induced from H if and only if $\pi \simeq \pi \otimes \lambda$. Since G/H is abelian, it follows $\lambda \simeq \{ \chi : \chi \in (G/H)^{\sim} \}$ and hence

$$\ker_{C^*(G)} \pi \otimes \lambda = \bigcap_{\chi \in (G/H)^{\sim}} \ker_{C^*(G)} \pi \otimes \chi \subseteq \ker_{C^*(G)} \pi.$$

Thus we see that $\pi \otimes \lambda \simeq \pi$ if and only if $\ker_{C^*(G)} \pi \otimes \chi = \ker_{C^*(G)} \pi$ for all χ. This is the case if and only if $\chi \cdot I = I$ for all $\chi \in (G/H)^{\sim}$. \hfill \qed

The preceding corollary displays a close connection to the L^1-results of Leptin and Hauenschild, Ludwig. In 1968 Leptin characterized the induced ideals of generalized L^1-algebras / twisted covariance algebras $L^1(G, A, \tau)$, see Satz 8 and Satz 9 of [14]. His results imply Theorem 2.10 and Lemma 2.11 below. In 1981 Hauenschild and Ludwig gave a different proof of Theorem 2.10 using L^1-L^∞-duality, see Theorem 2.3 of [14]. These L^1-results hold true without the additional assumption of amenability.

An ideal I of $L^1(G)$ is said to be induced from H if there exists an ideal J of $L^1(H)$ such that $I = \text{ind}_{\hat{H}}^G(J) = (L^1(G) * J * L^1(G))^-$.

Theorem 2.10. Let H be a closed normal subgroup of a locally compact group G. An ideal I of $L^1(G)$ is induced from H if and only if it is $C_\infty(G/H)$-invariant. Induction and restriction gives a bijection between the set of all $C_\infty(G/H)$-invariant ideals I of $L^1(G)$ and the set of all G-invariant ideals J of $L^1(H)$.

Here $C_\infty(G/H)$ denotes the continuous functions on G/H vanishing at infinity.

Lemma 2.11. Let H be a closed normal subgroup of a locally compact group G. If J is a closed, G-invariant ideal of $L^1(H)$, then $J * L^1(G)$ is contained in the closure of $L^1(G) * J$. Similarly $L^1(G) * J$ is contained in the closure of $J * L^1(G)$.

This implies $I = \text{ind}_{\hat{H}}^G(J) = (J * L^1(G))^- = (L^1(G) * J)^-$. For G-invariant C^*-ideals we even know $J * C^*_r(G) = C^*_r(G) * J$ by Corollary 2.3 of the main lemma in [31].

Now we can state our first criterion for ideals of $C^*_r(G)$ to be $L^1(G)$-determined.

Proposition 2.12. Let G be a locally compact group and H a $*$-regular closed subgroup. If the ideal I of $C^*_r(G)$ is induced from H, then I is $L^1(G)$-determined.

Proof. Let $J = \text{res}^G_H(I)$ so that $I = \text{ind}_H^G(J)$. If $\rho \in \hat{G}$ with $I' = I \cap L^1(G) \subset \ker_{L^1(G)} \rho$, then $J' \subset \ker_{L^1(H)} \rho$. Since H is $*$-regular, it follows $J \subset \ker_{C^*_r(H)} \rho$. This implies $I = \text{ind}_H^G(J) \subset \text{ind}_H^G(\ker_{C^*_r(H)} \rho) \subset \ker_{C^*_r(G)} \rho$. \hfill \qed
In the rest of this article we will focus on exponential Lie groups (i.e. connected, simply connected, solvable Lie groups G such that the exponential map $\exp : g \to G$ is a global diffeomorphism). We will use the construction of irreducible representations $\pi = K(f) = \text{ind}^G_f \chi_f$ via Pukanszky / Vergne polarizations p at f and the bijectivity of the Kirillov map $K : g^* / Ad^*(G) \to \hat{G}$, see Chapters 4 and 6 of [1], and Chapter 1 of [1]. Mostly we regard K as a map from g^* onto \hat{G} which is constant on coadjoint orbits.

Lemma 2.13. Let G be an exponential Lie group with Lie algebra g. Let $f \in g^*$ and $q \in [g, g]^\perp \subset g^\perp$. If we define $\pi = K(f)$ and the character $\alpha(exp X) = e^{q(X)}$ of G, then $K(f + q)$ and $\pi \otimes \alpha$ are unitarily equivalent.

Proof. Let $p \subset g$ be a Pukanszky polarization at f, and hence also at $f + q$. Let χ_f and χ_{f+q} denote characters of P with differential f and $f + q$. By definition of the Kirillov map we have $\pi = \text{ind}^G_f \chi_f$ and $\rho = K(f + q) = \text{ind}^G_p \chi_{f+q}$. Now one verifies easily that $(U \varphi)(x) = \alpha(x) \varphi(x)$ defines a unitary isomorphism from $\hat{\mathcal{H}}_\pi = L^2_{\chi_f}(G)$ onto $\hat{\mathcal{H}}_\rho = L^2_{\chi_{f+q}}(G)$ such that $\rho = U(\pi \otimes \alpha)U^{-1}$. This proves our claim. \hfill \qed

The next proposition enlightens the significance of the 'stabilizer' M.

Proposition 2.14. Let G be an exponential Lie group, n a coabelian (nilpotent) ideal of its Lie algebra g, and $f \in g^\perp$. Let M denote the connected subgroup of G with Lie algebra $m = g_f + n$. If $\pi = K(f)$, then the primitive ideal $\ker_{C^*(G)} \pi$ is induced from the stabilizer M.

Proof. First we observe that the orbit $\text{Ad}^*(G)f$ is saturated over m: Let G_l denote the (connected) stabilizer of $l = f \mid n$ in G. Since $\text{Ad}^*(G_l)f = f + m^\perp$, it follows $\text{Ad}^*(G)f = \text{Ad}^*(G)f + m^\perp$, compare p. 23 of [1]. Now the preceding lemma implies $\pi \otimes \alpha = K(f + q) = K(f) = \pi$ for all $q \in m^\perp$ and characters $\alpha(exp X) = e^{q(X)}$ of G/M proving $\ker_{C^*(G)} \pi$ to be $(G/M)^\sim$-invariant. Hence $\ker_{C^*(G)} \pi$ is induced from M by Corollary 2.9. \hfill \qed

3 The ideal theory of $*$-regular exponential Lie groups

The results of this subsection are not new. They can be found in Boidol’s paper [2], and in a more general context in [3]. For the convenience of the reader we give a short proof for the if-part of Theorem 5.4 of [2] using the results of the previous section. The following definition has been adapted from the introduction of [3].

Definition 3.1. Let G be a locally compact group. If A is a closed normal subgroup of G and $G = G/A$, then T_A denotes the quotient map from $C^*(G)$ onto $C^*(G/A)$. We say that a closed ideal I of $C^*(G)$ is essentially induced from a $*$-regular subgroup if there exist closed subgroups $A \subset H$ of G with A normal in G such that the following conditions are satisfied:

(i) $\ker_{C^*(G)} T_A \subset I$,

Further there exists a decomposition $\Lambda = \ast$.

If we pass to the quotient $\dot{\Lambda}$, then it follows from Proposition 2.12 that all ideals I of $\mathcal{C}^*(G)$ which are essentially induced from a \ast-regular subgroup are $L^1(G)$-determined.

Definition 3.2. Let g be an exponential Lie algebra and $n = [g, g]$ its commutator ideal. We say that g satisfies condition (R) if the following is true: If $f \in g^*$ is arbitrary and $m = g_f + n$ is its stabilizer, then $f = 0$ on $m^\infty = \cap_{k=1}^\infty C^k\!m$. Here the $C^k\!m$ are the ideals of the descending central series. Recall that m^∞ is the smallest ideal of m such that m/m^∞ is nilpotent.

Note that the stabilizer $m = g_f + n$ depends only on the orbit $\mathrm{Ad}^\ast(G)f$. The following observation is extremely useful: Let $f \in g^*$ and $m = g_f + n$ be its stabilizer such that m/m^∞ is nilpotent. If $\gamma_1, \ldots, \gamma_r$ are the roots of g, then we define the ideal $\tilde{m} = \cap_{i \in S} \ker_\gamma_i$ of g where $S = \{i : \ker_\gamma_i \supset n\}$. It is easy to see that $m \subseteq \tilde{m}$ and that \tilde{m}/m^∞ is nilpotent, too. Further there are only finitely many ideals \tilde{m} of this kind.

Theorem 3.3. Let G be an exponential Lie group such that its Lie algebra g satisfies condition (R). Then any ideal I of $\mathcal{C}^*(G)$ is a finite intersection of ideals which are essentially induced from a nilpotent normal subgroup. In particular G is \ast-regular.

Proof. Let $I \triangleleft \mathcal{C}^*(G)$ be arbitrary. Since $I = k(h(I))$ by Theorem 2.9.7 of [8], there is a closed, $\mathrm{Ad}^\ast(G)$-invariant subset Λ of g^* such that $I = \cap \{\ker_{\mathcal{C}^*(G)}(f) : f \in \Lambda\}$. Further there exists a decomposition $\Lambda = \cup_{k=1}^r \Lambda_k$ and ideals $\{\tilde{m}_k : 1 \leq k \leq r\}$ of g as in the preceding remark such that $g_f + n \subseteq \tilde{m}_k$ for all $f \in \Lambda_k$ where $n = [g, g]$. By induction in stages it follows from Proposition 2.14 that $\ker_{\mathcal{C}^*(G)}(f)$ is induced from \tilde{M}_k for all $f \in \Lambda_k$. Let us define $I_k = \cap \{\ker_{\mathcal{C}^*(G)}(f) : f \in \Lambda_k\}$. Since $f = 0$ on \tilde{m}_k^∞ by condition (R) and M_k/M_k^∞ is nilpotent, we conclude from Corollary 2.18 that I_k is essentially induced from a nilpotent (and hence \ast-regular) normal subgroup. Finally Lemma 4.1 implies that the ideal $I = \cap_{k=1}^r I_k$ is $L^1(G)$-determined. \qed

4 Closed orbits in the unitary dual of the nilradical

First we recall how to compute the \mathcal{C}^*-kernel of $\pi \mid N$ in the Kirillov picture, compare Theorem 9 in Section 5 of Chapter 1 in [19]. Note that the linear projection $r : g^* \longrightarrow n^*$ given by restriction is $\mathrm{Ad}^\ast(G)$-equivariant so that $r(\mathrm{Ad}^\ast(G)f) = \mathrm{Ad}^\ast(G)l$.

Lemma 4.1. Let G be an exponential Lie group and n a coabelian ideal of its Lie algebra g. Let $f \in g^*$, $\pi = \mathcal{K}(f) \in \hat{G}$, $l = f \mid n$, and $\sigma = \mathcal{K}(l) \in \hat{N}$. Then

\begin{equation}
\ker_{\mathcal{C}^*(N)}\pi = k(G, \sigma) = \cap_{h \in \mathrm{Ad}^\ast(G)l} \ker_{\mathcal{C}^*(N)}\mathcal{K}(h).
\end{equation}
Our main result is Proposition 4.14 which states that the primitive ideal \(\ker L) \) closely related to the classification of simple \(L) \)-modules, \(G \) an exponential Lie group, established by Poguntke in [26].

Let \(g \) be a Pukanszky polarization at \(f \in g^* \). By induction in stages we obtain \(\pi = \text{ind}_{g}^{c} \chi f = \text{ind}_{N}^{c} \sigma \) so that \(\ker_{C^\ast(G)} \pi = k(G \cdot \sigma) \) by Lemma 4.11. Next we assume \(g_f \subset n \). Using the concept of Vergne polarizations passing through \(n \) we see that there exists a Pukanszky polarization \(p \subset g \) at \(f \in g^* \) such that \(q = p \cap n \) is a Pukanszky polarization at \(l \in n^* \). We point out that the restriction of functions from \(G \) to \(N \) gives a linear isomorphism \(C_0^l(G) \to C_0^l(N) \) which extends to a unitary isomorphism \(U \) from \(s = L_{c}^l(G) \) onto \(s = L_{c}^l(N) \). Clearly \(U \) intertwines \(\pi \mid H \) and \(\sigma \). On the other hand \(g = g_f + n \) implies \(\text{Ad}^*(G) = \text{Ad}^*(N) \) and thus \(G \cdot \sigma = \{ \sigma \} \). This proves \(\ker_{C^\ast(N)} \pi = \ker_{C^\ast(N)} \sigma = k(G \cdot \sigma) \).}

In the sequel we suppose that \(n \) is nilpotent and coabelian. Note that the orbit \(G \cdot \sigma \subset \hat{N} \) is uniquely determined by Equality (1.2) because it is locally closed (open in its closure): Pukanszky showed in Corollary 1 of [27] that \(Ad^*(G) \) is locally closed in \(N^* \) and Brown proved in [5] that the Kirillov map of the connected, simply connected, nilpotent Lie group \(N \) is a homeomorphism.

Our main result is Proposition 4.14 which states that the primitive ideal \(\ker_{C^\ast(G)} \pi \) is \(L^1(G) \)-determined if \(G \cdot \sigma \) is closed in \(\hat{N} \). This result is a consequence of arguments closely related to the classification of simple \(L^1(G) \)-modules, \(G \) an exponential Lie group, established by Poguntke in [26].

Let \(\pi, f, \sigma, l \) be as in Lemma 4.11. It is easy to see that \(g = g_f + n \) is sufficient for \(G \cdot \sigma \) to be closed in \(\hat{N} \): Theorem 3.1.4 of [1] implies that \(\text{Ad}^*(G) \) is closed in \(n^* \) because \(N \) acts unipotently on \(n^* \). Since the Kirillov map of \(N \) is a homeomorphism, it follows that \(G \cdot \sigma = \{ \sigma \} \) is closed in \(\hat{N} \). Alternatively one can resort to the results of Moore and Rosenberg: It follows from Theorem 1 of [22] that \(\hat{N} \) is a \(T_1 \)-space so that its one-point subsets are closed. Let us give a third proof of this fact: Since \(L^1(N) \) is symmetric for nilpotent connected Lie groups \(N \) by Satz 2 of [23], it follows \(\text{Prim}_s L^1(N) = \text{Max} L^1(N) \) by (6) of [18] so that points \(\{ \sigma \} \) are closed in \(\hat{N} \) because \(N \) is \(s \)-regular.

Poguntke proved in Theorem 7 of [24] that if \(E \) is a simple \(L^1(G) \)-module and \(N \) is a connected, coabelian, nilpotent subgroup of \(G \), then there exists a unique orbit \(G \cdot \sigma \subset \hat{N} \) such that \(\text{Ann}_L^1(E) = k(G \cdot \sigma) \). More generally, Ludwig and Molitor-Braun showed in [21] that if \(T \) is a topologically irreducible, bounded representation of \(L^1(G) \), then \(\ker_{L^1(T)} = k(G \cdot \sigma) \) for some \(\sigma \in \hat{N} \).

We need the following well-known facts about simple modules and minimal hermitian idempotents. In the following irreducible means topologically irreducible.

Lemma 4.3. Let \(B \) be a Banach *-algebra and \(\pi \) an irreducible *-representation of \(B \) in
a Hilbert space \mathcal{H}.

(i) Let $\xi \in \mathcal{H}$ be non-zero. Then the subspace $\pi(B)\xi$ is non-zero and dense in \mathcal{H}. If I is an ideal of B such that $I \not\subset \ker \pi$, then $\pi(I)\xi$ is also non-zero and dense.

(ii) Suppose that the ideal I of all $f \in B$ such that $\pi(f)$ has finite rank is non-zero. Then the $\pi(B)$-invariant subspace $E = \pi(I)\mathcal{H}$ generated by $\{\pi(f)\eta : f \in I, \eta \in \mathcal{H}\}$ is a simple B-module such that $\text{Ann}_B(E) = \ker B \pi$.

Proof. Part (i) is obvious. The proof of (ii) follows Dixmier’s proof of Théorème 2 in [7]. Let $\xi \in E$ be non-zero. For every $f \in I$ the subspace $\pi(f)\pi(B)\xi$ is dense in $\pi(f)\mathcal{H}$ so that $\pi(f)\pi(B)\xi = \pi(f)\mathcal{H}$ because $\pi(f)\mathcal{H}$ is finite-dimensional. This proves $\pi(f)\mathcal{H} \subset \pi(I)\xi$ for every $f \in I$. Thus $E = \pi(I)\mathcal{H} = \pi(I)\xi$. The rest is obvious.

A hermitian idempotent $q \in B$ satisfies $q^2 = q = q^*$. We say that q is minimal in B if it is non-zero and if $qBq = \mathbb{C}q$.

Lemma 4.4. Let B be Banach *-algebra.

(i) Let π be a faithful irreducible *-representation of B in a Hilbert space \mathcal{H}. Then $q \in B$ is a minimal hermitian idempotent if and only if $\pi(q)$ is a one-dimensional irreducible *-representation.

(ii) Assume that there exist minimal hermitian idempotents in B. If π, ρ are faithful irreducible *-representations of B, then π and ρ are unitarily equivalent.

Proof. Clearly q is a hermitian idempotent if and only if $\pi(q)$ is an orthogonal projection because π is faithful. If $\pi(q)\mathcal{H}$ is a one-dimensional, then $\pi(\mathbb{C}q) = \mathbb{C}\pi(q) = \pi(q)\pi(B)\pi(q) = \pi(qBq)$ and thus $qBq = \mathbb{C}q$ because π is faithful. For the converse assume $qBq = \mathbb{C}q$. Since $\pi(qBq)$ and hence $\pi(q)$ acts irreducibly on $\pi(q)\mathcal{H}$, it follows that this subspace is one-dimensional.

Now we prove (ii). Let $q \in B$ be a minimal hermitian idempotent and π, ρ faithful irreducible *-representations in Hilbert spaces \mathcal{H}_π and \mathcal{H}_ρ. Since $\pi(q)$ and $\rho(q)$ are one-dimensional orthogonal projections by (i), there exist unit vectors $\xi \in \mathcal{H}_\pi$ and $\eta \in \mathcal{H}_\rho$ such that $\pi(q) = \langle -, \xi \rangle \xi$ and $\rho(q) = \langle -, \eta \rangle \eta$. Let us consider the positive linear functionals f_π, f_ρ on B given by $f_\pi(a) = \langle \pi(a)\xi, \xi \rangle$ and $f_\rho(a) = \langle \rho(a)\eta, \eta \rangle$. Since qBq is one-dimensional and $f_\pi(q) = 1 = f_\rho(q)$, it follows $f_\pi(a) = f_\pi(qaq) = f_\rho(qaq) = f_\rho(a)$ for all $a \in B$, i.e., the positive linear forms of the cyclic representations π and ρ coincide. Now Proposition 2.4.1 of [8] shows that π and ρ are unitarily equivalent.

Poguntke proved in [25] that for exponential G and $\rho \in \hat{G}$ there exists some $q \in L^1(G)$ such that $\pi(q)$ is a one-dimensional orthogonal projection. Note that the canonical image of q in $L^1(G)/\ker L^1(G)\pi$ is a minimal hermitian idempotent. Part (ii) of Lemma 4.4 shows us that $\ker L^1(G)\pi = \ker L^1(G)\rho$ for $\pi, \rho \in \hat{G}$ implies that π and ρ are unitarily equivalent. In particular G is a type I group. Furthermore the natural map $\Psi : \text{Prim} \xi^*(G) \longrightarrow \text{Prim}_\rho L^1(G)$ is injective, which is necessary for G to be primitive
*-regular by Lemma 1.3.

If E is a simple \mathcal{B}-module, then there exists a complete norm on E such that $|a \cdot \xi| \leq |a| |\xi|$ for $a \in \mathcal{B}$ and $\xi \in E$: Recall that E is algebraically isomorphic to \mathcal{B}/L for some maximal modular left ideal L which is closed in the Banach algebra \mathcal{B}. The quotient norm of $E \cong \mathcal{B}/L$ has the desired property. In particular we see that primitive ideals $P = \text{Ann}_\mathcal{B}(E)$ are closed. Furthermore primitive ideals are prime. Hence the set $\text{Prim} \mathcal{B}$ of all primitive ideals of \mathcal{B} can be endowed with the Jacobson (hull-kernel) topology.

In the sequel we work with hermitian idempotents in the adjoint algebra \mathcal{B}^b of \mathcal{B}, compare [16], which is also known as the multiplier or double centralizer algebra of \mathcal{B}.

Proposition 4.5. Let \mathcal{B} be a Banach *-algebra and $q \in \mathcal{B}^b$ a hermitian idempotent.

1. $q\mathcal{B}q$ is a closed *-subalgebra of \mathcal{B}.

2. If E is a simple \mathcal{B}-module, then there exists a unique (simple) \mathcal{B}^b-module structure on E such that $M \cdot (a \cdot \xi) = (Ma) \cdot \xi$ for all $M \in \mathcal{B}^b$, $a \in \mathcal{B}$, and $\xi \in E$.

3. If E is a simple \mathcal{B}-module such that $q \cdot E \neq 0$, then $q \cdot E$ is a simple $q\mathcal{B}q$-module with annihilator $\text{Ann}_{\mathcal{B}^b}(q \cdot E) = q\mathcal{B}q \cap \text{Ann}_\mathcal{B}(E) = q\text{Ann}_\mathcal{B}(E)q$.

4. The assignment $[E] \mapsto [q \cdot E]$ gives a bijection from the set of isomorphism classes of simple \mathcal{B}-modules E such that $q \cdot E \neq 0$ onto the set of isomorphism classes of simple $q\mathcal{B}q$-modules.

5. Further $P \mapsto q\mathcal{B}q \cap P$ is a homeomorphism from the open subset $\text{Prim} \mathcal{B} \setminus h(\mathcal{B}q\mathcal{B})$ onto $\text{Prim}(q\mathcal{B}q)$ w. r. t. the Jacobson topology.

Proof. A proof of parts 1. to 4. of this proposition can also be found in [20].

1. Clearly $q\mathcal{B}q$ is a *-subalgebra of \mathcal{B} because q is hermitian. The map $a \mapsto qaq$ is a continuous, linear projection. Its image $q\mathcal{B}q$ is closed.

2. Recall that \mathcal{B} is an ideal of \mathcal{B}^b. Let E be a simple \mathcal{B}-module. If $a \cdot \xi = 0$, then $\mathcal{B} \cdot (Ma) \cdot \xi = (BM) \cdot (a \cdot \xi) = 0$ which implies $(Ma) \cdot \xi = 0$. Thus $M \cdot (a \cdot \xi) = (Ma) \cdot \xi$ defines a \mathcal{B}^b-module structure on E. The rest is obvious.

3. Let E be a simple \mathcal{B}-module. Clearly $q \cdot E$ is a $q\mathcal{B}q$-module. If $0 \neq \xi \in q \cdot E$, then $(q\mathcal{B}q) \cdot \xi = q\mathcal{B} \cdot \xi = q \cdot E$. Thus $q \cdot E$ is simple. The equality for its annihilator is clear.

4. Since any simple \mathcal{B}-module is isomorphic to one of the form \mathcal{B}/L, L a maximal left ideal of \mathcal{B}, the isomorphism classes of simple \mathcal{B}-modules form a set. Note that any \mathcal{B}-linear map is also \mathcal{B}^b-linear.

The map $\alpha([E]) = [q \cdot E]$ is well-defined because any \mathcal{B}-linear isomorphism φ
from E_1 onto E_2 restricts to a qBq-linear isomorphism φ' from $q \cdot E_1$ onto $q \cdot E_2$. Further α is injective because any qBq-linear isomorphism $\varphi' : q \cdot E_1 \to q \cdot E_2$ extends to a B-linear isomorphism $\varphi : E_1 \to E_2$: To see this, choose a non-zero $\xi \in q \cdot E$ and define $\varphi(a \cdot \xi) = a \cdot \varphi'(\xi)$. Finally, it remains to verify that α is surjective: Let E' be a simple qBq-module. Since $qBq \subset (qBq)^b$, we can define $E_0 = B \otimes_{qBq} E' = Bq \otimes_{qBq} E'$. Observe that $q \cdot E_0 = q \otimes_{qBq} E' \cong E'$. By Zorn’s Lemma there exists a maximal B-invariant subspace U of E_0 such that $U \cap q \cdot E_0 = \{0\}$. Put $E = E_0/U$. Clearly $q \cdot E \cong E'$. We claim that E is simple: If $\eta \notin U$, then the B-invariant subspace $\bar{U} = B \cdot \eta + U$ satisfies $\bar{U} \cap q \cdot E_0 \neq \{0\}$ and hence $q \cdot \bar{U} \neq 0$. This implies $qBq \cdot \bar{U} = q \otimes_{qBq} E'$ and $BqBq \cdot \bar{U} = B \otimes_{qBq} E' = E_0$.

5. Part 3 implies $\beta(P) = qBq \cap P \in \text{Prim}(qBq)$ for all $P \in \text{Prim}(B) \setminus h(BqB)$. It follows from 4. that any simple qBq-module is isomorphic to one of the form $q \cdot E$, E a simple B-module. Hence β is surjective. We will resort to the following preliminary remark: If $P \in \text{Prim}(BqB)$ and I is an ideal of B, then $I \subset P$ if and only if $qIQ \subset qPq$. The only-if part is obvious. Suppose $I \subsetneq P$. Choose a simple B-module E such that $q \cdot E \neq 0$ and $P = \text{Ann}(E)$. If $a \in I$ and $a \notin P$, then $qBaq \subset qIQ$ and $qBaq \cdot E = q \cdot E \neq 0$ which proves $qIQ \subset qPq$.

In particular the preceding remark shows that β is injective. Furthermore it is easy to see that β is continuous: If $A' \subset \text{Prim}(qBq)$ is closed and $P \in \beta^{-1}(A')^{-}$, then $P \supsetneq \cap\{Q : qQq \in A'\}$ and hence $qPq \supseteq Q'$ for all $Q' \in A$. This shows $qPq \in A' = A'$ and thus $P \in \beta^{-1}(A')$. Finally we prove that β is a closed map: Suppose that A is a closed subset and P an element of $\text{Prim} B \setminus h(BqB)$ such that $qPq \in \beta(A)^-$ which means $qPq \supset \cap\{qQq : Q \in A\} \supset qk(A)q$. Now the preliminary remark implies $P \supset k(A)$ and thus $P \in A = A$ and $\beta(P) \in \beta(A)$. This finishes our proof.

Subalgebras of the form qBq for hermitian idempotents $q \in B^b$ are called corners.

The representation theory of exponential Lie groups is dominated by the fact that certain subquotients $q \ast (L^1(G)/I) \ast q$ of the group algebra turn out to be isomorphic to (twisted) weighted convolution algebras on abelian groups.

In this context the smooth terminology of twisted covariance algebras (L^1-version) is profitable, compare [13], [30]. By definition a twisted covariance system (G, A, τ) consists of (1) a locally compact group G acting strongly continuously on a Banach $*$-algebra A by isometric $*$-isomorphisms and (2) a twist τ defined on a closed normal subgroup H of G (i.e. a strongly continuous group homomorphism of H into the group of units of the adjoint algebra A^0 of A) such that $\tau(h^x) = \tau(h)^x$ and $a^h = \tau(h)^a \tau(h)$ for all $x \in G, h \in H$, and $a \in A$. Let $C_0(G, A, \tau)$ denote the space of all continuous functions $f : G \to A$ such that $f(xh) = \tau(h)^x f(x)$ for all $x \in G, h \in H$ and such that f has compact support modulo H. The closure $L^1(G, A, \tau)$ of $C_0(G, A, \tau)$ with respect to the norm $|f|_1 = \int_{G/H} |f(x)| \, dx$ is a Banach $*$-algebra with convolution and
involution given by
\[(f * g)(x) = \int_{G/H} f(xy)^{y^{-1}} g(y^{-1}) \, dy, \quad f^*(x) = \Delta_{G/H}(x^{-1}) (f(x^{-1})^*)^x.\]

A covariance pair \((\pi, \gamma)\) is a unitary representation \(\pi\) of \(G\) and a \(*\)-representation \(\gamma\) of \(A\) in the same Hilbert space \(\mathcal{H}\) such that \(\gamma(a^x) = \pi(x)^* \gamma(a) \pi(x)\) and \(\gamma(\tau(h)) = \pi(h)\). It is well-known that covariance pairs \((\pi, \gamma)\) correspond to \(*\)-representations of the twisted covariance algebra \(L^1(G, A, \tau)\).

Definition 4.6. Let \((G, A, \tau)\) be a twisted covariance system. A family \(\{A_x : x \in G\}\) of closed subspaces of \(A\) is said to be compatible with \((G, A, \tau)\) if \(\tau(h)^* A_x = A_{xh}, (A_{xy})^{y^{-1}} A_y^{-1} \subset A_x\), and \(((A_{x^{-1}})^*)^x = A_x\) for all \(x, y \in G\) and \(h \in H\).

If \(\{A_x : x \in G\}\) is compatible, then \(C_0(G, A_x, \tau) = \{f \in C_0(G, A, \tau) : f(x) \in A_x\}\) defines a subalgebra of \(C_0(G, A, \tau)\). This bears a meaning only if the \(A_x\) are chosen continuously so that \(C_0(G, A_x, \tau)\) and hence its closure \(L^1(G, A_x, \tau)\) are non-zero. One might think of \(\{A_x : x \in G\}\) as a ‘bundle’ over \(G\) and ask for trivializations.

Definition 4.7. Let \((G, A, \tau)\) be a twisted covariance system and \(\{A_x : x \in G\}\) a compatible family of one-dimensional subspaces of \(A\). We say that a continuous function \(v : G \to A\) is a trivialization for \(\{A_x : x \in G\}\) if \(v(x) \in A_x, |v(x)| \geq 1, v(xh) = \tau(h)^* v(x), v(xy)^{y^{-1}} v(y^{-1}) = v(x)\), and \((v(x^{-1})^*)^x = v(x)\) for \(x, y \in G, h \in H\).

Proposition 4.8. Let \((G, A, \tau)\) be a twisted covariance system. If \(v\) is a trivialization of the compatible family \(\{A_x : x \in G\}\) of one-dimensional subspaces of \(A\), then the subalgebra \(L^1(G, A_x, \tau)\) is isomorphic to the Beurling algebra \(L^1(G/H, w)\) given by the symmetric weight function \(w(x) = |v(x)|\).

Proof. One checks easily that \(\Phi(b)(x) = b(\hat{x}) v(x)\) defines an isometric isomorphism from \(L^1(G/H, w)\) onto \(L^1(G, A_x, \tau)\).

Let \(q \in A \subset L^1(G, A, \tau)\) be a hermitian idempotent. Since \((q * f * q)(x) = q^x f(x) q\) for all \(f \in L^1(G, A, \tau)\), it follows \(q * L^1(G, A, \tau) * q = L^1(G, q^2 A q, \tau)\). In Theorem 4.9 we treat the case where \(q\) is minimal and the \(q^2 A q\) are one-dimensional.

The following theorem is due to Poguntke, see part (4) and (5) of the proof of the main theorem in [25]. The idea goes back to Theorem 5 of Leptin and Poguntke in [20].

Theorem 4.9. Let \((\pi, \gamma)\) be a covariance pair of the twisted covariance system \((G, A, \tau)\) such that \(\gamma\) is irreducible and faithful. Suppose that there exists a minimal hermitian idempotent \(q \in A\). Then the corner \(q * L^1(G, A, \tau) * q = L^1(G, q^2 A q, \tau)\) is isometrically isomorphic to a weighted Beurling algebra \(L^1(G/H, w)\) where \(w\) is a symmetric weight function on \(G/H\).

Proof. By Lemma 4.4(i) there exists a unit vector \(\lambda \in \mathcal{H}\) such that \(\gamma(q) \xi = \langle \xi, \lambda \rangle \lambda\). Now \(\gamma(q^2 a q) = \pi(x)^* \gamma(q) \pi(x) \gamma(a) \gamma(q)\) implies
\[\gamma(q^2 a q) \xi = \langle \pi(x) \gamma(a) \lambda, \lambda \rangle \langle \xi, \lambda \rangle \pi(x)^{-1} \lambda.\]
For every $x \in G$ there exists some $a \in A$ such that $\langle \pi(x)\gamma(a)\lambda, \lambda \rangle$ is non-zero because γ is irreducible. This shows $\gamma(q^*Aq) = \mathbb{C}\pi(x)^{-1}\gamma(q)$ so that q^*Aq is one-dimensional. There is a unique element $v(x) \in A$ such that $\gamma(v(x))\xi = \langle \xi, \lambda \rangle\pi(x)^{-1}\lambda$. Clearly $v : G \to A$ is continuous and $|v(x)| \geq |\gamma(v(x))| = 1$. Further one computes

$$
\gamma(v(xh)) = \pi(h)^*\gamma(v(x)) = \tau(h)^*\gamma(v(x))
$$

$$
\gamma(v(x)) = \gamma \left((v(xy)^{y^{-1}}v(y^{-1}) \right)
$$

$$
\gamma(v(x)) = \gamma((v(x^{-1})^*x)
$$

which proves that v is a trivialization for $\{q^*Aq : x \in G\}$ because γ is faithful. Now Proposition 4.8 gives the desired result. \hfill \Box

Our aim is to apply Theorem 4.9 to certain quotients of group algebras: Let H be a closed normal subgroup of G. It is known that $L^1(G)$ is isomorphic to the twisted covariance algebra $L^1(G, L^1(H), \tau)$ with G-action $a^* (h) = \delta_H(x^{-1})a(hx^{-1})$ and twist $\tau(k)a(h) = a(k^{-1}h)$, compare the corollary to Proposition 1 in [13]. Suppose that γ is an irreducible representation of H. The crucial assumption in Theorem 4.9 is that γ can be completed to a covariance pair (π, γ) of $(G, L^1(H), \tau)$, or equivalently, that it can be extended to a representation π of G, which is only possible if $x^*\gamma$ is unitarily equivalent to γ for all $x \in G$. If such a π exists, then the ideal $I' = \ker L^1(H)\gamma$ is G- and τ-invariant so that the covariance algebra $L^1(G, L^1(H)/I', \hat{\tau})$ with induced G-action and twist is well-defined. This algebra is isomorphic to the quotient $L^1(G)/I$ where $I = \text{ind}^G_H(I')$. To apply Theorem 4.9 it remains to find minimal hermitian idempotents in $L^1(H)/I'$.

The existence of an extension π of γ is guaranteed under the assumptions of

Proposition 4.10. Let G be an exponential Lie group, $f \in \mathfrak{g}^*$, and $\pi = K(f) \in \hat{G}$. Suppose that \mathfrak{h} is an ideal of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{g}_f + \mathfrak{h}$. Let $f_0 = f|\mathfrak{h}$ and $\gamma = \mathcal{K}(f_0)$. Then $\pi|_H$ is unitarily equivalent to γ. This means that π yields an extension of γ.

Proof. Recall that there exists a \mathfrak{g}_f-invariant Pukanszky polarization $\mathfrak{p}_0 \subset \mathfrak{h}$ at $f_0 \in \mathfrak{h}^*$ because \mathfrak{g} is exponential, see §4, Chapter I of [19] and Chapter 5 of [1]. We shall verify that $\mathfrak{p} = \mathfrak{g}_f + \mathfrak{p}_0 \subset \mathfrak{g}$ defines a Pukanszky polarization at $f \in \mathfrak{g}^*$: Clearly $[\mathfrak{p}, \mathfrak{p}] \subset [\mathfrak{g}_f, \mathfrak{g}_f] + [\mathfrak{g}_f, \mathfrak{p}_0] + [\mathfrak{p}_0, \mathfrak{p}_0] \subset \mathfrak{p} \cap \ker f$. Note that $\mathfrak{p}_0 = \mathfrak{p} \cap \mathfrak{h}$ and $h_{f_0} = \mathfrak{g}_f \cap \mathfrak{h}$. Using the canonical isomorphisms $\mathfrak{h}/h_{f_0} \cong \mathfrak{g}/\mathfrak{g}_f$ and $\mathfrak{p}_0/h_{f_0} \cong \mathfrak{p}/\mathfrak{g}_f$ we conclude that $\dim \mathfrak{g}/\mathfrak{g}_f = \frac{1}{2} \dim \mathfrak{p}/\mathfrak{g}_f$. It remains to prove that $\text{Ad}^* (P)f = f + \mathfrak{p}^\perp$. If $h \in \mathfrak{p}^\perp$, then $h_0 = h|_{\mathfrak{h}} \in \mathfrak{p}_0^\perp \subset \mathfrak{h}^*$. Since \mathfrak{p}_0 is a Pukanszky polarization at f_0, there exists some $x \in P_0$ such that $\text{Ad}^* (x)f_0 = f_0 + h_0$. This implies $\text{Ad}^* (x)f = f + h$ because $\mathfrak{g} = \mathfrak{g}_f + \mathfrak{h}$. Thus $\text{Ad}^* (P)f = f + \mathfrak{p}^\perp$.

Fix a relatively G-invariant measure on G/P. There exists a unique relatively H-invariant measure on H/P_0 such that the canonical H-equivariant diffeomorphism $H/P_0 \to G/P$ is measure-preserving. The modular functions of these measures satisfy
$\Delta_{G,P}|H = \Delta_{H,R}$. Now it follows that $\varphi \mapsto \varphi|H$ defines a unitary isomorphism from $L^2(G, \chi_f)$ onto $L^2(H, \chi_{f_0})$ which intertwines $\pi|H$ and γ. This completes the proof. \qed

The next theorem results from the achievements of Poguntke in [26] concerning the parametrization of simple $L^1(G)$-modules. In [21] Ludwig and Molitor-Braun gave a simplified proof of Theorem 4.11 which in particular avoids projective representations. The decisive idea of Ludwig and Molitor-Braun may be recapitulated as follows: If \mathcal{H}/\mathcal{N} is chosen to be a vector space complement to \mathcal{M}/\mathcal{N} instead of \mathcal{K}/\mathcal{N} as in [26], then one ends up directly with a commutative subquotient.

Recall that any simple $L^1(G)$-module can be regarded as an $L^1(G)^b$-module. In particular, if \mathcal{N} is a closed subgroup of G, then \mathcal{E} becomes an $L^1(\mathcal{N})$-module so that $\text{Ann}_{L^1(\mathcal{N})}(\mathcal{E})$ is defined.

Let (G, \mathcal{A}) be a covariance system. A G-invariant ideal J of \mathcal{A} is called G-prime if $J_1 J_2 \subset J$ for G-invariant ideals J_1, J_2 of \mathcal{A} implies $J_1 \subset J$ or $J_2 \subset J$. If \mathcal{N} is a closed normal subgroup of G, then one has the covariance system $(G, L^1(\mathcal{N}))$ with G-action $a^*(n) = \delta_N(x^{-1})a(n^{-1})x.$

Theorem 4.11. Let \mathcal{N} be a closed, connected, coabelian, nilpotent subgroup of the exponential Lie group G.

1. If \mathcal{E} is a simple $L^1(G)$-module, then $\mathcal{J} = \text{Ann}_{L^1(\mathcal{N})}(\mathcal{E})$ is G-prime.

2. Conversely let J be a G-prime ideal of $L^1(\mathcal{N})$. Define $I = \text{ind}_{\mathcal{N}}^G(J)$. The simple $L^1(G)$-modules \mathcal{E} such that $J \subset \text{Ann}_{L^1(\mathcal{N})}(\mathcal{E})$ are in a canonical bijection with the simple modules of $\mathcal{B} = L^1(G)/I$. Moreover, there exist hermitian idempotents $q \in \mathcal{B}^b$ such that the corner $q \ast \mathcal{B} \ast q$ is commutative and such that $q \ast \mathcal{E} \neq 0$ exactly for those simple \mathcal{B}-modules \mathcal{E} with $J = \text{Ann}_{L^1(\mathcal{N})}(\mathcal{E})$.

Proof.

1. Recall that $\lambda(x)f(y) = f(x^{-1}y)$ defines a group homomorphism from G into the unitary group of $L^1(G)^b$. Since $a^*\xi = \lambda(x^{-1})(a(\lambda(x)\xi))$ for $a \in L^1(\mathcal{N}), x \in G$, and $\xi \in \mathcal{E}$, it follows that J is G-invariant. Now let J_1, J_2 be G-invariant ideals of $L^1(\mathcal{N})$ such that $J_1 \ast J_2 \subset J = \text{Ann}_{L^1(\mathcal{N})}(\mathcal{E})$. Then

$$\text{ind}_{\mathcal{N}}^G(J_1) \ast \text{ind}_{\mathcal{N}}^G(J_2) \subset \left(L^1(G) \ast J_1 \ast L^1(G) \ast J_2 \ast L^1(G) \right)$$

$$\subset \left(L^1(G) \ast J_1 \ast J_2 \ast L^1(G) \right) \subset \text{Ann}_{L^1(G)}(\mathcal{E}).$$

The first inclusion is obvious and the second one results from Lemma 2.11. For the third one we use the fact that $\text{Ann}_{L^1(G)}(\mathcal{E})$ is closed. Since this ideal is prime, it follows $\text{ind}_{\mathcal{N}}^G(J_k) \subset \text{Ann}_{L^1(G)}(\mathcal{E})$ for $k = 1$ or 2. Finally we obtain $J_k \subset \text{Ann}_{L^1(\mathcal{N})}(\mathcal{E})$ because \mathcal{E} is a simple $L^1(G)$-module.
2. Let J be a G-prime ideal of $L^1(N)$ and $I = \text{ind}^G_N(J)$. In order to prove the first assertion of 2, it suffices to verify that $J \subset \text{Ann}_{L^1(N)}(E)$ if and only if $I \subset \text{Ann}_{L^1(G)}(E)$. The only-if part is obvious. Suppose that $I \subset \text{Ann}_{L^1(G)}(E)$. Then $L^1(G)\cdot(J\cdot E) \subset \text{ind}^G_N(J)\cdot E = I\cdot E = 0$ implies $J\cdot E = 0$ because E is simple. This means $J \subset \text{Ann}_{L^1(N)}(E)$.

Next we prove the existence of appropriate hermitian idempotents in the adjoint algebra of $B = L^1(G)/I$: Generalizing a theorem of Poguntke in [26], Ludwig and Molitor-Braun proved in Theorem 1.1.6 of [21] that there exists a unique orbit $G\cdot\sigma$ in \tilde{N} such that $J = k(G\cdot\sigma)$. Since the Kirillov map of N is bijective, we can choose $l \in n^*$ such that $K(l) = \sigma$ and $f \in g^*$ such that $f|n = l$. We stress that the definition of the stabilizer $m = g_f + n$ depends only on the orbit $\text{Ad}^*(G)l$, i.e., on the G-prime ideal J. As usual M denotes the closed, connected subgroup of G with Lie algebra m. In addition we fix a closed, connected subgroup H of G containing N such that H/N is complementary to M/N in the vector space G/N. In particular $G = G_fH$.

The ideal $I' = \text{ind}^H_f(J)$ is invariant under the G-action $b^x(h) = \delta_H(x^{-1})b(hx^{-1})$ and the twist $\tau(k)b(h) = b(k^{-1}h)$ in $L^1(H)$. Since $I = \text{ind}^H_f(I')$, the quotient $B = L^1(G)/I$ can be identified with $L^1(G,L^1(H)/I',\hat{\tau})$.

Let $f_0 = f|\mathfrak{h} \in \mathfrak{h}^*$ and $\gamma = K(f_0) \in \widehat{H}$. Since $\mathfrak{g} = \mathfrak{g}_f + \mathfrak{h}$, Proposition 4.10 implies that $\pi = K(f)$ furnishes an extension of γ. Note that $\mathfrak{h}f_0 = \mathfrak{g}_f \cap \mathfrak{h} \subset \mathfrak{n}$. This shows that $\text{Ad}^*(H)f_0$ is saturated over \mathfrak{n}, i.e., $\text{Ad}^*(H)f_0 = f_0 + \mathfrak{n}^\perp$. In particular $\ker_{L^1(H)}\gamma$ is invariant under multiplication by characters of H/N, and hence $C_\infty(H/N)$-invariant. Now Theorem 4.10 implies $\ker_{L^1(H)}\gamma = \text{ind}^H_f(J) = I'$ because $\ker_{L^1(N)}\gamma = k(G\cdot\sigma) = J$ by Lemma 4.1. We have shown that γ yields a faithful irreducible representation of $A = L^1(H)/I'$ which admits an extension π.

Let us fix an arbitrary minimal hermitian idempotent $q \in A = L^1(H)/I'$. Since H is an exponential Lie group, the existence such idempotents is guaranteed by Poguntke’s results in [25]. Finally Theorem 4.9 shows that the corner $q\ast B \ast q$ is commutative as it is isomorphic to a weighted Beurling algebra $L^1(G/H,w)$ on the commutative group G/H.

Let E be a simple $L^1(G)$-module such that $J \subset \text{Ann}_{L^1(N)}(E)$. It remains to be shown that $q\cdot E \neq 0$ if and only if $J = \text{Ann}_{L^1(N)}(E)$. The subsequent proof of the if-part is from [26]. We begin with a preliminary remark: Let Q_0' denote the ideal of all $b \in L^1(H)$ such that $\gamma(b)$ has finite rank. Clearly $I' \subset Q_0'$ and $q \notin Q_0' \setminus I'$. Let \mathfrak{H} denote the representation space of γ, and F the simple module associated to γ in the sense of Lemma 4.3. It is known that $\gamma(Q_0')$ is equal to the algebra of all finite rank operators A of \mathfrak{H} such that $A(\mathfrak{H}) \subset F$ and $A^*(\mathfrak{H}) \subset F$, compare Théorème 2. of Dixmier in [7]. From this we deduce $(Q_0'/I') \ast b \ast (Q_0'/I') = Q_0'/I'$.
for all $b \in Q_0' \setminus I'$. In particular we see that either $Q_0' \subset \text{Ann}_{L^1(H)}(E)$ or $b \cdot E \neq 0$ for all $b \in Q_0' \setminus I'$.

Suppose that $J = \text{Ann}_{L^1(N)}(E)$. Since $\text{Ad}^*(H)f_0$ is saturated over n, it follows that $\gamma \otimes \alpha$ is unitarily equivalent to γ for all $\alpha \in (H/N)^\sim$. Thus Q_0' and hence its closure Q' are $(H/N)^\sim$-invariant. By Theorem 2.10 there exists an H-invariant ideal R of $L^1(N)$ such that $Q' = \text{ind}_{N}^{H}(R)$. Note that R is not contained in J. Thus $Q = \text{ind}_{N}^{H}(R) = \text{ind}_{H}^{N}(Q')$ is not contained in $\text{Ann}_{L^1(G)}(E)$ because E is simple. Consequently Q_0' is not contained in $\text{Ann}_{L^1(H)}(E)$ so that $q \cdot E \neq 0$ by the preliminary remark.

In order to prove the only-if-part we suppose $q \cdot E \neq 0$. The preceding remark implies $Q_0' \cap \text{Ann}_{L^1(H)}(E) \subset I'$. Now we conclude $Q' \cdot \text{Ann}_{L^1(H)}(E) \subset I'$. Since I' is G-prime and Q', $\text{Ann}_{L^1(H)}(E)$ are G-invariant ideals, we get $\text{Ann}_{L^1(H)}(E) \subset I'$ because $Q' \not\subset I'$. Let $a \in \text{Ann}_{L^1(N)}(E)$. Since $L^1(H) \ast a \ast L^1(H)$ is contained in $I' = \ker_{L^1(H)} \gamma$, it follows $a \in \ker_{L^1(N)} \gamma = k(G \cdot \sigma) = J$ because γ is irreducible.

Let J a given G-prime ideal of $L^1(N)$. In combination with part 4. of Proposition 4.5 the preceding theorem shows that the equivalence classes of all simple $L^1(G)$-modules E with annihilator $\text{Ann}_{L^1(N)}(E) = J$ are in a one-to-one correspondence with the characters of the commutative Beurling algebra $q \ast (L^1(G)/I) \ast q \cong L^1(G/H, w)$.

Here we are content with this rough description and deliberately renounce more delicate questions such as obtaining estimates for the weight w, which can be found in [26].

Corollary 4.12. If E, F are simple $L^1(G)$-modules with $\text{Ann}_{L^1(G)}(E) \subset \text{Ann}_{L^1(G)}(F)$ and $J = \text{Ann}_{L^1(N)}(E) = \text{Ann}_{L^1(N)}(F)$, then E and F are isomorphic.

Proof. Note that E and F can be regarded as \mathcal{B}-modules where $\mathcal{B} = L^1(G) / \text{ind}_{N}^{H}(J)$. Let $q \in \mathcal{B}$ be a hermitian idempotent as in part 2. of Theorem 1.11. By definition $q \cdot E$ and $q \cdot F$ are non-zero. Hence they are simple modules over the commutative \ast-algebra $q \ast \mathcal{B} \ast q$ with annihilators $\text{Ann}_{q \ast \mathcal{B} \ast q}(q \cdot E) \subset \text{Ann}_{q \ast \mathcal{B} \ast q}(q \cdot F)$, compare Proposition 1.5. It results from Schur’s Lemma that $q \cdot E$ and $q \cdot F$ are one-dimensional, have the same annihilator, and are thus isomorphic. Finally Proposition 1.5.4. shows that E and F are isomorphic as \mathcal{B}-modules, and also as $L^1(G)$-modules.

Corollary 4.13. If $\pi, \rho \in \hat{G}$ are irreducible such that $\ker_{L^1(G)} \pi \subset \ker_{L^1(G)} \rho$ and $\ker_{L^1(N)} \pi = \ker_{L^1(N)} \rho$, then π and ρ are unitarily equivalent.

Proof. Let E, F denote the simple $L^1(G)$-modules associated to π, ρ respectively in the sense of Lemma 4.3 (ii). By definition $\text{Ann}_{L^1(G)}(E) \subset \text{Ann}_{L^1(G)}(F)$ and $J = \text{Ann}_{L^1(N)}(E) = \text{Ann}_{L^1(N)}(F)$. Thus E and F are isomorphic by Corollary 4.12. This means $\ker_{L^1(G)} \pi = \text{Ann}_{L^1(G)}(E) = \text{Ann}_{L^1(G)}(F) = \ker_{L^1(G)} \rho$. Finally π and ρ are unitarily equivalent by Lemma 4.4 (ii).
These preparations make it easy to prove the main result of this section.

Proposition 4.14. Let G be an exponential Lie group and N a closed, connected, coabelian, nilpotent subgroup. Let $\pi \in \hat{G}$ and $G\sigma$ be the unique G-orbit in \hat{N} such that $k(G\sigma) = \ker C^*(\pi)$. If $G\sigma$ is closed in \hat{N}, then $\ker C^*(\pi)$ is $L^1(G)$-determined.

Proof. Let ρ be in \hat{G} such that $\ker L^1(G) \pi \subset \ker L^1(G) \rho$. Restricting to N we obtain $\ker L^1(N) \pi \subset \ker L^1(N) \rho$. Since N is $*$-regular as a connected nilpotent Lie group, it follows $k(G\sigma) = \ker C^*(N) \pi \subset \ker C^*(N) \rho$. This yields $\ker C^*(N) \pi = \ker C^*(N) \rho$ because the orbit $G\cdot \sigma$ is closed. Finally Corollary 4.13 implies that π and ρ are unitarily equivalent so that in particular $\ker C^*(G) \pi = \ker C^*(G) \rho$. \hfill \square

However, the preceding results are limited to the case when $G\sigma$ is closed in \hat{N}.

Remark 4.15. Let N be a coabelian, nilpotent subgroup of G and $\pi \in \hat{G}$ such that $G\sigma$ is not closed in \hat{N}. To prove that $\ker C^*(G) \pi$ is $L^1(G)$-determined, one must show that $\ker C^*(G) \pi \not\subset \ker C^*(G) \rho$ implies $\ker L^1(G) \pi \not\subset \ker L^1(G) \rho$ for all $\rho \in \hat{G}$. Note that $J = \ker L^1(N) \pi$ is G-prime and define $I = \mathrm{ind}^G_N(I)$. To avoid trivialities we can assume $\ker L^1(N) \pi \subset \ker L^1(N) \rho$ so that π and ρ factor to representations of $B = L^1(G)/I$. In addition we suppose that $\ker L^1(N) \pi \not\subset \ker L^1(N) \rho$. Such representations ρ are likely to exist if $G\sigma$ is not closed. If $q \in B^k$ is a hermitian idempotent as in Theorem 4.11 then $\rho(q) = 0$. This means that restriction to the subquotient qBq is not appropriate for proving $\ker L^1(G) \pi \not\subset \ker L^1(G) \rho$ in this case.

5 A strategy to prove primitive $*$-regularity

Let G be an exponential Lie group and \mathfrak{a} a coabelian nilpotent ideal of its Lie algebra \mathfrak{g}. In order to prove that G is primitive $*$-regular, one must show that $\ker C^*(G) \pi$ is $L^1(G)$-determined for all $\pi \in \hat{G}$, i.e., according to Definition 4.1 one must prove that

$$\ker C^*(G) \pi \not\subset \ker C^*(G) \rho \quad \text{implies} \quad \ker L^1(G) \pi \not\subset \ker L^1(G) \rho$$

for all $\rho \in \hat{G}$. Let $f, g \in \mathfrak{g}^*$ such that $\pi = \mathcal{K}(f)$ and $\rho = \mathcal{K}(g)$. Since the Kirillov map of G is a homeomorphism with respect to the Jacobson topology on the primitive ideal space $\mathrm{Prim} C^*(G)$ and the quotient topology on the coadjoint orbit space $\mathfrak{g}^*/\mathrm{Ad}^*(G)$, the relation for the C^*-kernels is equivalent to $\mathrm{Ad}^*(G)g \not\subset (\mathrm{Ad}^*(G)f)^{-}$. From the preceding subsections we extract the following observations:

1. Let \mathfrak{a} be a non-trivial ideal of \mathfrak{g} such that $f = 0$ on \mathfrak{a}. Let A be the connected subgroup of G with Lie algebra \mathfrak{a}. Since $\pi = 1$ on A, we can pass over to a representation $\hat{\pi}$ of the quotient $G = G/A$. It follows from Lemma 4.4 that $\ker C^*(G) \pi$ is $L^1(G)$-determined if and only if $\ker C^*(G) \hat{\pi}$ is $L^1(\hat{G})$-determined. Often \hat{G} is known to be primitive $*$-regular by induction. If this is the case for all proper quotients \hat{G} of G, then we can assume that f is in general position, i.e., $f \neq 0$ on all non-trivial ideals \mathfrak{a} of \mathfrak{g}.
2. If the stabilizer $m = g_f + n$ is nilpotent, then $\ker_{C^* (G)} \pi$ is $L^1 (G)$-determined by Propositions 2.12 and 2.14 because M is $*\text{-regular}$.

3. If $g = g_f + n$, then $\ker_{C^* (G)} \pi$ is $L^1 (G)$-determined by Proposition 4.14. Here and in the sequel f denotes the restriction of f to n.

4. If $\text{Ad}^* (G) g'$ is not contained in the closure of $\text{Ad}^* (G) f'$, then it follows $\ker_{C^* (N)} \pi \not\subset \ker_{C^* (N)} \rho$ because the Kirillov map is a homeomorphism. Since N is $*\text{-regular}$, we obtain $\ker_{L^1 (N)} \pi \not\subset \ker_{L^1 (N)} \rho$ and hence $\ker_{L^1 (G)} \pi \not\subset \ker_{L^1 (G)} \rho$.

Lemma 5.1. If there exists a one-codimensional nilpotent ideal n of g, then G is primitive $*\text{-regular}$.

Proof. Let $f \in g^*$ be arbitrary and $\pi = K (f)$. The assumption $\dim g / n = 1$ implies that either $g = g_f + n$, or that $m = g_f + n = n$ is nilpotent. Clearly the preceding remarks show that $\ker_{C^* (G)} \pi$ is $L^1 (G)$-determined.

Definition 5.2. Let $f \in g^*$ be in general position. As before $r : g^* \to n^*$ is given by $r (g) = g' = g | n$. We define Ω as the r-preimage of the closure of $\text{Ad}^* (G) f'$ in n^*. Note that Ω is a closed subset of g^* containing $\text{Ad}^* (G) f$ and that $g \in \Omega$ if and only if g' is in the closure of $\text{Ad}^* (G) f'$. We say that g is critical for the orbit $\text{Ad}^* (G) f$ if $g \in \Omega \setminus (\text{Ad}^* (G) f)^\ominus$. By Proposition 4.14 we can even assume $\text{Ad}^* (G) g' \neq \text{Ad}^* (G) f'$.

In order to prove the primitive $*\text{-regularity of } G$ it thus suffices to verify the following two assertions:

1. Every proper quotient \hat{G} of G is primitive $*\text{-regular}$.

2. If $f \in g^*$ is in general position such that the stabilizer $m = g_f + n$ is a proper, non-nilpotent ideal of g and if $g \in g^*$ is critical for the orbit $\text{Ad}^* (G) f$, then it follows $\ker_{L^1 (G)} \pi \not\subset \ker_{L^1 (G)} \rho$.

Let d_1, \ldots, d_m be a coexponential basis for m in g. We obtain a diffeomorphism from \mathbb{R}^m onto G / M by composing the smooth map $E (s) = \exp (s_1 d_1) \cdots \exp (s_m d_m)$ with the quotient map $G \to G / M$. Define $\tilde{f} = f | m$, $\tilde{f}_s = \text{Ad}^* (E (s)) \tilde{f}$ in m^*, and $\tilde{\pi}_s = K (\tilde{f}_s)$ in \tilde{M}.

Two properties of π and their counterpart in the Kirillov picture are worth mentioning. First $\pi | M$ is reducible. By Lemma 4.1 we know that $\pi | M$ is weakly equivalent to the subset $\{ \tilde{\pi}_s : s \in \mathbb{R}^m \}$ of \tilde{M}. In the orbit picture $\text{Ad}^* (G) \tilde{f}$ decomposes into the disjoint union of the orbits $\{ \text{Ad}^* (M) \tilde{f}_s : s \in \mathbb{R}^m \}$.

Secondly, $\ker_{C^* (G)} \pi$ is induced from M by Proposition 2.14. Hence $\ker_{C^* (G)} \pi \subset \ker_{C^* (G)} \rho$ is equivalent to the corresponding inclusion in $C^* (M)$. The same holds true in $L^1 (M)$. In the Kirillov picture we have $\text{Ad}^* (G) \tilde{f} = \text{Ad}^* (G) f + m^\perp$ so that g is in $(\text{Ad}^* (G) f)^\ominus$ if and only if \tilde{g} is in the closure of $\text{Ad}^* (G) \tilde{f}$.

In analogy to Definition 5.2 we define $\tilde{\Omega} \subset m^*$ and critical \tilde{g} for the orbit $\text{Ad}^*(G)\tilde{f}$ in m^*. We say that \tilde{f} is in general position if $f(a) \neq 0$ on any non-trivial ideal a of g such that $a \subset m$. Now it is easy to see that we can replace the second assertion by the following equivalent one:

3. Let m be a proper, non-nilpotent ideal of g such that $m \supset n$. If $\tilde{f} \in m^*$ is in general position such that $m = m_f + n$ and if $\tilde{g} \in m^*$ is critical for the orbit $\text{Ad}^*(G)\tilde{f}$, then the relation

$$\bigcap_{s \in \mathbb{R}^m} \ker L_1(M) \tilde{\pi}_s \not\subset \ker L_1(M) \tilde{\rho}$$

holds for the representations $\tilde{\pi}_s = K(\tilde{f}_s)$ and $\tilde{\rho} = K(\tilde{g})$.

In this situation producing functions $c \in L^1(M)$ such that $\pi_s(c) = 0$ for all s and $\rho(c) \neq 0$ turns out to be a great challenge.

Remark 5.4. The stabilizer $m = g_f + n$ has a remarkable algebraic property. Note that the ideal $[m, 3n] = [m_f, 3n]$ is contained in $\ker f$. If in addition f is in general position, then it follows $[m, 3n] = 0$ so that $3n \subset 3m$.

Lemma 5.5. If g is an exponential Lie algebra such that $[g, g]$ is commutative, then G is $*$-regular.

Proof. Let $f \in g^*$ be arbitrary. If a denotes the largest ideal of g contained in $\ker f$, then \tilde{f} on $\hat{g} = g/a$ is in general position. By Remark 5.4 we obtain $\hat{n} = [\hat{g}, \hat{g}] = 3n \subset 3m$. Thus the quotient \hat{m} of $m = g_f + n$ is 2-step nilpotent so that g satisfies condition (R). Now Theorem 3.3 yields the assertion of this lemma. \qed

6 A non-$*$-regular example

Let g be an exponential Lie algebra of dimension ≤ 5. In view of Lemma 5.1 and 5.3 we assume that the nilradical n (the maximal nilpotent ideal) of g is not commutative and of dimension ≤ 3, i.e., $n = \langle e_1, e_2, e_3 \rangle$ is a 3-dimensional Heisenberg algebra. Further we suppose that $f \in g^*$ is general position (so that $f(e_3) \neq 0$) and that the stabilizer $m = g_f + n$ is a proper, non-nilpotent ideal. These assumptions imply that g has a basis d, e_0, \ldots, e_3 satisfying the commutator relations $[e_1, e_2] = e_3, [e_0, e_1] = -e_1, [e_0, e_2] = e_2, [d, e_2] = e_2, [d, e_3] = e_3$. The algebra g and the stabilizer $m = \langle e_0, \ldots, e_3 \rangle$ are specified as $g = b_5$ and $m = g_{4,0}(0)$ in the (complete) list of all non-symmetric Lie algebras up to dimension 6 in [24], whereas symmetry is equivalent to $*$-regularity by Theorem 10 of [26].

We work in coordinates of the second kind w. r. t. the above Malcev basis, given by the diffeomorphism $\Phi(t, x) = \exp(te_0) \exp(x_1e_1) \exp(x_2e_2 + x_3e_3)$ from \mathbb{R}^4 onto M.

Denote $f|\mathfrak{m}$ again by f and let $f_s = \text{Ad}^*(\exp(sd))f$. By choosing an appropriate representative on the orbit $\text{Ad}^*(G)f$ we can achieve $f(e_3) = 1$ and $f(e_1) = f(e_2) = 0$. Now we compute

$$
\text{Ad}^* (\exp(sd) \Phi(t, x)) f(e_0) = f(e_0) - x_1x_2,
$$

$$(e_1) = e^t x_2,$$

$$(e_2) = -e^{-s} e^{-t} x_1,$$

$$(e_3) = e^{-s}.$$

These formulas for the coadjoint representation suggest to define the $\text{Ad}^*(M)$-invariant polynomial function

$$p = e_0 e_3 - e_1 e_2 - f(e_0)e_3$$

on \mathfrak{m}^* such that $p(h) = 0$ for all $h \in X = \text{Ad}^*(G)f = \cup \{\text{Ad}^*(M)f_s : s \in \mathbb{R}\}$. Here e_{ν} is interpreted as the linear function $e_{\nu}(h) = h(e_{\nu})$ on \mathfrak{m}^* and $f(e_0)$ is a constant. Note that p is even $\text{Ad}^*(G)$-semi-invariant. The closure of the orbit $X = \text{Ad}^*(G)f$ in \mathfrak{m}^* can be characterized by means of the $\text{Ad}^*(M)$-invariant polynomial p.

Lemma 6.1. Let $g \in \Omega \subset \mathfrak{m}^*$. Then $g \in \overline{X}$ if and only if $p(g) = 0$.

Proof. The only-if-part is obvious because $p(h) = 0$ for all $h \in X$. Let us prove the opposite direction. Let $g \in \Omega$ such that $p(g) = 0$. We must distinguish four cases. First we assume $g(e_3) \neq 0$. Since $g \in \Omega$, it follows $g(e_3) > 0$. Without loss of generality we can assume $g(e_3) = 1 = f(e_3)$ and $g(e_1) = g(e_2) = 0$. Now $p(g) = 0$ implies $g(e_0) = f(e_0)$ so that $g \in X$. Next we consider the case $g(e_3) = g(e_2) = 0$ and $g(e_1) \neq 0$. If we define $s_n = n$, $x_{n1} = (g(e_0) - f(e_0))/g(e_1)$, and $x_{n2} = g(e_1)$, then it follows $f_n \rightarrow g$ for

$$f_n = \text{Ad}^* (\exp(s_n d) \Phi(0, x_n)) f$$

in X so that $g \in \overline{X}$. The third case is $g(e_3) = g(e_1) = 0$ and $g(e_2) \neq 0$. If we set $s_n = n$, $x_{n1} = -e^{2n}g(e_2)$, and $x_{n2} = -e^{-n}(f(e_0) - g(e_0))/g(e_2)$, then it follows $f_n \rightarrow g$. Finally we assume $g(e_{\nu}) = 0$ for $1 \leq \nu \leq 3$. In this case $s_n = n$, $x_{n1} = e^{n/2}$, and $x_{n2} = e^{-n/2}(f(e_0) - g(e_0))$ yields $f_n \rightarrow g$ so that $g \in \overline{X}$.

The preceding lemma implies that the set of critical linear functionals is given by $\Omega \setminus \overline{X} = \{ g \in \mathfrak{m}^* : g(e_3) = 0 \text{ and } g(e_1)g(e_2) \neq 0 \}$. Let us compute the relevant unitary representations: Using $p = \langle e_0, e_2, e_3 \rangle$ as a Pukanszky polarization at $f_s \in \mathfrak{m}^*$ for all $s \in \mathbb{R}$, one computes that $\pi_s = K(f_s) = \text{ind}_0^M \chi_{f_s}$ in $L^2(\mathbb{R})$ is infinitesimally given by

$$d\pi_s(e_0) = f_0 + \xi D_\xi - i/2,$$

$$d\pi_s(e_1) = -D_\xi,$$

$$d\pi_s(e_2) = e^{-s} \xi,$$

$$d\pi_s(e_3) = e^{-s}.$$

Here $\check{e}_\nu = -ie_{\nu}$ is in the complexification $\mathfrak{m}_\mathbb{C}$ of \mathfrak{m}, ξ is the multiplication operator and $D_\xi = -i\partial_\xi$ is the differential operator in $L^2(\mathbb{R})$. We observe that these equations
bear a striking resemblance to the formulas for $\text{Ad}^*(\Phi(t,x))f(e_\rho)$: simply substitute $e^{-t}x_1$ by ξ and $e^t x_2$ by D_ξ. On the other hand, if $g \in \Omega \setminus \overline{X}$, then n is a Pukanszky polarization at $g \in \mathfrak{m}^*$ and $\rho = \mathcal{K}(g) = \text{ind}_M^\Sigma \chi_g$ in $L^2(\mathbb{R})$ is given by

$$
\begin{align*}
 d\rho(\dot{e}_0) &= -D_\xi, \\
 d\rho(\dot{e}_1) &= e^\xi g_1, \\
 d\rho(\dot{e}_2) &= e^{-\xi} g_2, \\
 d\rho(\dot{e}_3) &= 0.
\end{align*}
$$

Symmetrization gives a linear isomorphism from the symmetric algebra $\mathcal{S}(\mathfrak{m}_\Sigma) = \mathcal{P}(\mathfrak{m}^*)$ onto the universal enveloping algebra $\mathcal{U}(\mathfrak{m}_\Sigma)$ of \mathfrak{m}_Σ, which maps the subspace of $\text{Ad}(M)$-invariant polynomials onto the center $Z(\mathfrak{m}_\Sigma)$ of $\mathcal{U}(\mathfrak{m}_\Sigma)$, compare Chapter 3.3 of [9]. Note that $p \in \mathcal{P}(\mathfrak{m}^*)^{\text{Ad}(M)}$ corresponds to

$$
W = \dot{e}_3 \dot{e}_0 - \frac{1}{2}(\dot{e}_2 \dot{e}_1 + \dot{e}_1 \dot{e}_2) - f_0 \dot{e}_3 = \dot{e}_3 \dot{e}_0 - \dot{e}_2 \dot{e}_1 - (f_0 - \frac{i}{2})\dot{e}_3
$$

in $Z(\mathfrak{m}_\Sigma)$. One verifies easily that $d\tau(W) = p(h)$ holds for all $h \in \mathfrak{m}^*$ and $\tau = \mathcal{K}(h)$. For the Lie algebra \mathfrak{m} under consideration the symmetrization map coincides with the so-called Duflo isomorphism so that $d\tau(W) = p(h)$ can also be seen as a consequence of Théorème 2 of [9].

Furthermore we recall that if $\lambda(m)a(y) = a(m^{-1}y)$ denotes the left regular representation of M in $L^2(M)$, then

$$
d\lambda(X)a(y) = \left. \frac{d}{dt} \right|_{t=0} a(\exp(-tX)y)
$$

defines a representation of \mathfrak{m} in $\mathcal{C}^\infty_0(M)$, which extends to $\mathcal{U}(\mathfrak{m}_\Sigma)$. Note that $\mathcal{U}(\mathfrak{m}_\Sigma)$ acts as an associative algebra of right invariant vector fields. Let us write $V \ast a = d\lambda(V)a$ for $V \in \mathcal{U}(\mathfrak{m}_\Sigma)$ and $a \in \mathcal{C}^\infty_0(M)$. It is known that $\tau(V \ast a) = d\tau(V)\tau(a)$ holds for all V, a and all unitary representations τ of M.

Lemma 6.2. If $g \in \Omega \setminus \overline{X}$ and $\rho = \mathcal{K}(g)$, then $\bigcap_{x \in \mathbb{R}} \ker \text{L}^1(M) \pi_s \not\subset \ker \text{L}^1(M) \rho$. In particular G is primitive *-regular.

Proof. Since $\mathcal{C}^\infty_0(M)$ is dense in $L^1(M)$, there exists a function $a \in \mathcal{C}^\infty_0(M)$ such that $\rho(a) \neq 0$. Now $b = W \ast a$ satisfies $\pi_s(b) = d\pi_s(W)\pi_s(a) = p(f)_s\pi_s(a) = 0$ for all $s \in \mathbb{R}$ and $\rho(b) = d\rho(W)\rho(a) = p(g)\rho(a) \neq 0$ because $g \not\in \overline{X}$. \hfill \Box

A priori this result does not seem unlikely because the nature of X is essentially different from that of typical non-*-regular subsets of $\mathfrak{m}^*/\text{Ad}^*(M)$. In the preceding lemma $X/\text{Ad}^*(M)$ is a graph over $3\mathfrak{m}^*$ in the sense that the orbit $\text{Ad}^*(M)h$ is uniquely determined by $h \mid 3\mathfrak{m}$ for all $h \in X$. Whereas basic examples of non-*-regular subsets X consist of linear functionals $h \in \mathfrak{m}^*$ over a common character $\zeta = h \mid 3\mathfrak{m}$ of the center such that the set of limit points of $X/\text{Ad}^*(M)$ in $\mathfrak{m}^*/\text{Ad}^*(M)$ is not empty.
Since $\mathfrak{g} = \mathfrak{b}_5$ is the only exponential Lie algebra in dimension ≤ 5 such that there exist $f \in \mathfrak{g}^*$ in general position with non-nilpotent, proper stabilizer and critical functionals $g \in \mathfrak{g}^*$ w. r. t. the orbit $\text{Ad}^*(G)f$, it follows from Lemma 6.2 that all exponential Lie groups up to dimension 5 are primitive $*$-regular.

Note that in the particular case $\mathfrak{g} = \mathfrak{b}_5$ the relation $\cap_s \ker L_1(M) \pi_s \not\subset \ker L_1(M) \rho$ implies $\cap_s \ker U(m_G) \pi_s \not\subset \ker U(m_G) \rho$, but in general, as one might expect, the features of the universal enveloping algebra do not suffice for this purpose. However, we anticipate that $\text{Ad}(M)$-invariant polynomials p corresponding to elements $W \in Z(m_G)$ will play an important role in further investigations of primitive $*$-regularity.

Acknowledgment. The author would like to thank D. Poguntke for suggesting the possibility of proving Proposition 4.14 by means of the results in [26]. This article owes a lot to his valuable remarks and comments.

References

[1] P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard, and M. Vergne. *Représentations des groupes de Lie résolubles*. Dunod, Paris, 1972. Monographies de la Société Mathématique de France, No. 4.

[2] J. Boidol. $*$-regularity of exponential Lie groups. *Invent. Math.*, 56(3):231–238, 1980.

[3] J. Boidol. Connected groups with polynomially induced dual. *J. Reine Angew. Math.*, 331:32–46, 1982.

[4] J. Boidol, H. Leptin, J. Schürman, and D. Vahle. Räume primitiver Ideale von Gruppenalgebren. *Math. Ann.*, 236(1):1–13, 1978.

[5] Ian D. Brown. Dual topology of a nilpotent Lie group. *Ann. Sci. École Norm. Sup. (4)*, 6:407–411, 1973.

[6] Lawrence J. Corwin and Frederick P. Greenleaf. *Representations of nilpotent Lie groups and their applications. Part I*, volume 18 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1990. Basic theory and examples.

[7] Jacques Dixmier. Opérateurs de rang fini dans les représentations unitaires. *Inst. Hautes Études Sci. Publ. Math.*, (6):13–25, 1960.

[8] Jacques Dixmier. *Les C^*-algèbres et leurs représentations*. Deuxième édition. Cahiers Scientifiques, Fasc. XXIX. Gauthier-Villars Éditeur, Paris, 1969.

[9] Michel Duflo. Opérateurs différentiels bi-invariants sur un groupe de Lie. *Ann. Sci. École Norm. Sup. (4)*, 10(2):265–288, 1977.

[10] Jacek Dziubanski, Jean Ludwig, and Carine Molitor-Braun. Functional calculus in weighted group algebras. *Rev. Mat. Complut.*, 17(2):321–357, 2004.

[11] J. M. G. Fell. Weak containment and induced representations of groups. *Canad. J. Math.*, 14:237–268, 1962.
[12] J. M. G. Fell. Weak containment and Kronecker products of group representations. Pacific J. Math., 13:503–510, 1963.

[13] Philip Green. The local structure of twisted covariance algebras. Acta Math., 140(3-4):191–250, 1978.

[14] Wilfried Hauenschild and Jean Ludwig. The injection and the projection theorem for spectral sets. Monatsh. Math., 92(3):167–177, 1981.

[15] J. W. Jenkins. Growth of connected locally compact groups. J. Functional Analysis, 12:113–127, 1973.

[16] Horst Leptin. Verallgemeinerte L^1-Algebren und projektive Darstellungen lokal kompakter Gruppen. I, II. Invent. Math. 3 (1967), 257-281; ibid., 4:68–86, 1967.

[17] Horst Leptin. Darstellungen verallgemeinerter L^1-Algebren. Invent. Math., 5:192–215, 1968.

[18] Horst Leptin. Symmetrie in Banachischen Algebren. Arch. Math. (Basel), 27(4):394–400, 1976.

[19] Horst Leptin and Jean Ludwig. Unitary representation theory of exponential Lie groups, volume 18 of de Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 1994.

[20] Horst Leptin and Detlev Poguntke. Symmetry and nonsymmetry for locally compact groups. J. Funct. Anal., 33(2):119–134, 1979.

[21] J. Ludwig and C. Molitor-Braun. Repr´ esentations irr´ educibles born´ ees des groupes de Lie exponentiels. Canad. J. Math., 53(5):944–978, 2001.

[22] Calvin C. Moore and Jonathan Rosenberg. Groups with T_1 primitive ideal spaces. J. Functional Analysis, 22(3):204–224, 1976.

[23] Detlev Poguntke. Nilpotente Liesche Gruppen haben symmetrische Gruppen-algebren. Math. Ann., 227(1):51–59, 1977.

[24] Detlev Poguntke. Nichtsymmetrische sechsdimensionale Liesche Gruppen. J. Reine Angew. Math., 306:154–176, 1979.

[25] Detlev Poguntke. Operators of finite rank in unitary representations of exponential Lie groups. Math. Ann., 259(3):371–383, 1982.

[26] Detlev Poguntke. Algebraically irreducible representations of L^1-algebras of exponential Lie groups. Duke Math. J., 50(4):1077–1106, 1983.

[27] L. Pukánszky. On the unitary representations of exponential groups. J. Functional Analysis, 2:73–113, 1968.

[28] Iain Raeburn and Dana P. Williams. Morita equivalence and continuous-trace C^*-algebras, volume 60 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.

[29] Hans Reiter and Jan D. Stegeman. Classical harmonic analysis and locally compact groups, volume 22 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York, second edition, 2000.

[30] Marc A. Rieffel. Induced representations of C^*-algebras. Advances in Math., 13:176–257, 1974.
[31] Marc A. Rieffel. Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner. In *Studies in analysis*, volume 4 of *Adv. in Math. Supl. Stud.*, pages 43–82. Academic Press, New York, 1979.

O. Ungermann
Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
D-33501 Bielefeld
Germany
uongerma@math.uni-bielefeld.de