The reduction of manganese oxide with sulfide in aquatic redox-stratified systems was previously considered to be mainly chemical, but recent isolation of the Black Sea isolate Candidatus Sulfurimonas marisnigri strain SoZ1 suggests an important role for biological catalysis. Here we provide evidence from laboratory experiments, field data, and modeling that the latter process has a strong impact on redox zonation in the Black Sea. High relative abundances of Sulfurimonas spp. across the redoxcline in the central western gyre of the Black Sea coincided with the high-level expression of both the sulfide:quinone oxidoreductase gene (sqr, up to 93% expressed by Sulfurimonas spp.) and other sulfur oxidation genes. The cell-specific rate of manganese-coupled sulfide oxidation by Ca. S. marisnigri SoZ1 determined experimentally was combined with the in situ abundance of Sulfurimonas spp. in a one-dimensional numerical model to calculate the vertical sulfide distribution. Abiotic sulfide oxidation was too slow to counterbalance the sulfide flux from euxinic water. We conclude that microbially catalyzed Mn-dependent sulfide oxidation influences the element cycles of Mn, S, C, and N and therefore the prevalence of other functional groups of prokaryotes (e.g., anammox bacteria) in a sulfide-free, anoxic redox zone.

The ISME Journal (2022) 16:1523–1533; https://doi.org/10.1038/s41396-022-01200-3

INTRODUCTION

In productive aquatic systems, the remineralization of organic matter regularly leads to oxygen (O2) deficiency and finally to anoxia or even euxinia. This transition is accompanied by the establishment of a pelagic redoxcline that separates the oxic surface from reducing bottom waters. Meromictic lakes are especially prone to such developments but semi-restricted water bodies, such as fjords and brackish/marine and hypersaline basins, are vulnerable as well [1–5]. The Black Sea is the world’s largest semi-enclosed basin and the type-locality for density-stratified aquatic systems, as severe bottom water euxinia is prevalent since ~8000 years [6, 7]. In the Black Sea redoxcline, a layer in which O2 and sulfide (S2−, here defined as the sum of H2S, HS−, and S2−) are virtually absent, referred to as the “suboxic zone,” has been frequently reported since 1989 [1, 6, 8–11]. This zone may span tens of meters but it is not well-defined, as some descriptions also encompass waters with low concentrations of O2 (<5 µM [8]; <3 µM [12]; <1 µM [13]) and S2− (<0.2 µM [12]; <0.1 µM [13]). In the following, we refer to the zone of transition from oxic to anoxic and euxinic water conditions as the redoxcline.

Due to the separation of O2 and often nitrate (NO3−) and nitrite (NO2−) from S2− in the redoxcline of the Black Sea, the depletion of S2− at the upper boundary of euxinic water (also known as chemocline) has been attributed to lateral intrusions of oxygenated waters [12, 14] or to the intense cycling of the redox-sensitive trace metal manganese (Mn) [10, 15]. In their one-dimensional biogeochemical model, Yakushev et al. [16] reproduced the vertical geochemical water column profile measured in the Black Sea without lateral intrusion, instead identifying reduced and oxidized Mn species as the main drivers of O2 reduction and S2− oxidation in the redoxcline. Although lateral intrusions from the Bosporus plume may affect the redoxcline in the far southwestern part of the Black Sea [14], extensive data gathered over a two-year period by Stanev et al. using Argo floats [11] support this one-dimensional model and the importance of a manganese shuttle.

During Mn-cycling, dissolved Mn2+ and intermediate Mn3+ are transported upwards by diffusion [1, 12, 15, 17, 18], and thus from reducing towards oxygenated waters, where both Mn species are then oxidized [19]. The resulting Mn (IV) oxide particles (here referred to as MnO2) sink back towards the underlying euxinic water [20], where they are reduced to dissolved Mn3+ and Mn2+ by S2− and/or Fe2+ [21]. The chemical oxidation of S2− by MnO2 in laboratory experiments was shown to occur rapidly (within minutes) [22, 23]. However, in those studies, MnO2 was supplied in millimolar concentrations, i.e., several magnitudes larger than the natural levels in the Black Sea [1, 9, 10]. Because the chemical oxidation of S2− by MnO2 follows second-order reaction kinetics, such that the concentrations of both reactants affect the overall speed of the reaction [23], the laboratory results on chemical oxidation may not represent the in situ processes in the Black Sea.
The recent description of $S^{2−}$ oxidation coupled to the reduction of MnO$_2$ by the Black Sea isolate Candidatus Sulfurimonas marisnigri SoZ1 (phylum Campylobacterota [24]), isolated from the upper boundary of the redoxcline. For this purpose, cell-specific and Mn-reducing bacteria, the impact of Mn-dependent $S^{2−}$ oxidation in the absence of O$_2$ and NO$_3$ [25]. In laboratory experiments, Ca. S. marisnigri SoZ1 oxidized $S^{2−}$, elemental sulfur (S^0), and thiosulfate ($S_2O_3^{2−}$) to sulfate ($SO_4^{2−}$), with MnO$_2$ as the sole electron acceptor [25, 26]. The reduction of MnO$_2$ proceeded by its conversion to Mn$_3^{2+}$ and further to Mn$_2^{3+}$, which precipitated as Ca-rich Mn-carbonate [25]. A biological mode of $S^{2−}$ oxidation with MnO$_2$ may therefore account for the observed accumulation of the intermediate Mn$_3^{2+}$ in the redoxcline [1, 12], for the chemosynthetic production of Campylobacterota in the absence of O_2 and NO$_3$ [27], and for the maintenance of anoxic and non-sulfidic zones in the redoxcline. However, in the absence of data on the abundance, activity, and taxonomy of putative S-oxidizing and Mn-reducing bacteria, the impact of Mn-dependent S oxidation on the water column geochemistry of the Black Sea is unclear and unquantified.

Our study investigated the potential contribution of extent microbial $S^{2−}$ oxidation by Sulfurimonas spp., using MnO$_2$ as terminal electron acceptor, to the overall $S^{2−}$ oxidation in the redoxcline of the Black Sea. For this purpose, cell-specific $S^{2−}$ oxidation rates with MnO$_2$ by the representative isolate Ca. S. marisnigri SoZ1 (JCM 39139; DSM 111879) were determined in laboratory experiments together with assessments of the in situ abundances and gene expression of Sulfurimonas spp. across the redoxcline of the Black Sea. The cell-specific oxidation rates and the in situ abundances were then combined to model the $S^{2−}$-concentration profile in the Black Sea. The results provide strong evidence that the activity of Sulfurimonas spp. contributes significantly to anaerobic sulfide oxidation and to the formation of a sulfide-free, anoxic zone, both in the Black Sea and potentially in other redox-stratified systems.

MATERIAL AND METHODS

The materials and methods are described here in brief. A detailed description of the Material and methods can be found in the supplementary information.

Field sampling

Samples were taken during a cruise with the R/V "Maria S. Merian" (M5M3) in November/December 2013 and sampling was performed as described previously [9]. All data presented herein originated from station 32, located in the western central gyre of the Black Sea (43° 31′ 20″, N, 32° 05′ 00″; water depth 2070 m), with the exception of the high-resolution data on total dissolved Mn (Mn_{diss}) and dissolved reactive Mn (dMn_{react}) [18], obtained from station 66 (43° 31′ 80″, N, 36° 05′ 9.960″; water depth 2177 m). The characteristics of the water columns of stations 32 and 66 were similar, as indicated by the disappearances of O_2 at densities (σ_θ) of 15.93 and 15.94 and of $S^{2−}$ at σ_θ of 16.15 and 16.16, respectively. The profiles of O_2 and $S^{2−}$ at both stations were vertically separated by approx. 15 m thick layer (shown in Fig. 1a for station 32). Water column profiles from successive casts were constructed by aligning the data according to σ_θ of cast P0014F13 (station 32), as done previously [9].

Gases, nutrients, and metals

Data for the water column profiles of dissolved gases (O_2, H$_2$S) and nutrients ($NO_3^{−}$, $NO_2^{−}$, NH_4^{+}) were taken from Schulz-Vogt et al. [9]. The concentrations of Mn_{diss} and dMn_{react} as well as those of particulate Mn (Mn_{part}) were measured by inductively coupled plasma optical emission spectrometry, according to the protocols reported in [18] and [10].

Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH)

CARD-FISH was carried out following the protocols of Pernthaler et al. [28] and Sekar et al. [29], modified as described in [30]. For the enumeration of Bacteria, a mixture of horseradish-peroxidase-labeled oligonucleotide probes (EUB338, EUB338-II, and EUB338-III [31]) was used. Campylobacterota were enumerated using probe EPSY914 [27]. Non-specific binding was determined using the NonEUB probe [32]. Filter sections were counterstained with DAPI (1 mg ml$^{-1}$) and inspected using an epifluorescence microscope.
Sampling, processing, and data analysis of metagenomic and metatranscriptomic data

Amplicon sequencing of the 165 rRNA gene and 16S rRNA. Samples for 165 rRNA and 16S rRNA amplicon sequencing were extracted using the AllPrep DNA/RNA kit (Qiagen; Hilden, Germany). DNA extracts were stored directly; from the extracted RNA, a maximum of 100 ng was DNase-treated using the Turbo DNA-free kit (Thermo Fisher Scientific; Waltham, MA, USA). The DNase-treated RNA (max. 20 ng) was reverse transcribed using MultiScribe RT (Thermo Fisher Scientific). All samples of DNA and treated RNA, including additional Mock Community samples from Zymo Research (Freiburg, Germany) as controls, were sent to LGC Genomics (Berlin, Germany) for sequencing with MiSeq (Illumina). The resulting sequences were analyzed using the SILVA NGS pipeline (release 138.1) [33, 34], with settings and OTU clustering based on 97% similarity, as described previously [35].

Metagenomic and metatranscriptomic analyses

Sampling and processing were done as described [9]. Genes annotated as *Campylobacterota* were extracted and sulfur oxidation genes were identified based on functional annotation, sequence similarity, and gene synteny (detailed description in the supplementary information). The identified genes were taxonomically annotated using CAT (v5.2.3), based on the Diamond aligner (v2.0.147 [36]) in blastp mode against the NCBI’s NR database (as of July 1, 2021), with the r-parameter set to 3 [37].

Estimation of the rates of S2− oxidation with MnO2 by Ca. S. marisnigri SoZ1

The rates of biological S2− oxidation with MnO2 by the isolate Ca. S. marisnigri SoZ1 were determined by spiking anoxic, constantly stirred medium containing MnO2 and Ca. S. marisnigri SoZ1 or no bacteria either five (sterile controls) or eight (with Ca. S. marisnigri SoZ1) times with Na2S to obtain 20–30 µM. The decline in the S2− concentration was documented in three replicates for each treatment using an H2S and pH microsensor (Unisense, Aarhus, Denmark). The reactions in the replicates were then inhibited either by the addition of sodium azide (not shown) or by pasteurization, followed by another three additions of Na2S. The H2S concentrations measured in the experiment were corrected for temperature, salinity, and pH to obtain the S2− values.

The overall reaction can be described by Eq. 1, which can be transposed to Eq. 2 by normalizing the S2− concentration at time t to the S2− concentration at time t0.

\[
[S2^−]_{t0} = \frac{[S2^−]_i}{e^{(k \cdot t)}}
\]

(1)

\[
[S2^−]_{t} = \frac{[S2^−]_i}{e^{(k \cdot t)}}
\]

(2)

where [S2−]i is the concentration of S2− at time t; [S2−]t0 is the initial concentration of S2−; t as a correction factor for the y-intercept; k is the reaction rate coefficient (s−1); and t is the time in seconds.

The non-linear least-squares fit of Eq. 2 was performed with R (version 3.5.1) for individual spikes of Na2S to determine the overall reaction rate coefficient k. The biological reaction rate (kbio) was calculated by subtracting the value of k after pasteurization from the overall reaction rate coefficient k before pasteurization. The value of kbio was divided by the cellular abundance of Ca. S. marisnigri SoZ1 to obtain a cell-specific reaction rate coefficient (kcell), with the mean value (kcell = −1.05 × 10−13 l cell−1 s−1) used in subsequent numerical modeling.

Modeling the S2− concentration profile of the Black Sea

The impact of S2− oxidation activity by *Sulfurimonas* spp. on the geochemical water column profile in the Black Sea was estimated by combining data on the abundance of *Sulfurimonas* spp. in the Black Sea and the cell-specific S2− oxidation rates of Ca. S. marisnigri SoZ1 in a numerical model. In the modeling approach of [38], the differential equation for diffusive transport is described by Eq. 3:

\[
\frac{\partial c}{\partial t} = Dc \frac{\partial^2 c}{\partial x^2}
\]

(3)

where D is the diffusion coefficient; c is the concentration; t is the time; and x is the distance-coordinate. The equation is solved using the explicit numerical solution obtained with Eq. 4, adapted from [9]:

\[
C(t+\Delta t) = C_t + \Delta t \frac{\partial C}{\partial t} + \frac{\partial^2 C}{\partial x^2} / \Delta x^2
\]

(4)

\[
\Delta t \times k_{cell} \times C_{Sulfurimonas}(x) \times C_{Sulfurimonas} \times C_{MnO_2} \times \text{flux of MnO}_2
\]

(4.1)

\[
\Delta t \times k_{cell} \times C_{Sulfurimonas}(x) \times C_{MnO_2} \times \text{flux of MnO}_2
\]

(4.2)

where C2− is the concentration of S2− at a given water depth x and time t, D is the diapycnal diffusivity at water depth x, as determined in [17] (we set 4 × 10−6 or 1 × 10−6 m2 s−1 as the upper and lower limits of diapycnal diffusivity). The consumption of S2− during biological or chemical oxidation was taken into account in Eq. 4, by adding either Eq. 4.1 or Eq. 4.2, respectively. The rate of biological S2− oxidation was calculated by multiplying the cell-specific reaction rate coefficient of Ca. S. marisnigri SoZ1 (kcell = −1.05 × 10−13 l cell−1 s−1) by the cellular abundance of *Sulfurimonas* spp. and the local S2− concentration. The chemical S2− oxidation rate was calculated using a chemical reaction rate coefficient (kchem = −9.53 × 10−4 s−1) [32] based on a constant MnO2 concentration of 10 nM, pH 7, and 10°C and the local S2− concentration. The starting condition of the model was 10 µM S2− at 120-m water depth. Oxidation at the upper boundary of euxinic water (106 m water depth) and above was assumed based on the vertical concentration profile of S2− (see the “Discussion” for details). The Excel-based spreadsheet of the model is provided in the Supplementary Material.

RESULTS

Geochronological structure of the pelagic redoxcline of the Black Sea

In the central western gyre of the Black Sea, the zone where O2 and S2− became undetectable (<0.2 µM O2 or <1 µM S2−) was located roughly between 90 and 105 m water depth (Fig. 1a). Concentrations of O2 above and S2− below this zone increased steadily. Analyses conducted using an ultra-low switchable trace-oxygen sensor (STOX) [41], with a detection limit of <10 nM, did not detect O2 traces below the NO3− peak at 92 m water depth. Thus, at the time of sampling, the redoxcline below 92 m was defined as anoxic. The concentration of NO3− decreased continuously from 80 to 90 m water depth, followed by a steeper slope from 90 m, where the O2 concentration fell to < 0.5 µM, to 95 m, where NO3− was depleted (Fig. 1b). The decrease in NO3− between 90 and 95 m water depth coincided with the marked production of NO3−. Ammonia (NH4+) decreased linearly from the euxinic water towards 95 m water depth, where it became undetectable (Fig. 1b).

Particulate Mn concentrations were highest (50 nM) in the upper part of the redoxcline, where O2 became depleted, with a second peak (16 nM) at ~104 m water depth (Fig. 1c). With the exception of the second peak, the concentration of Mnpart generally decreased with increasing water depth. By contrast, Mnass. increased continuously beginning at ~95 m water depth and continuing into euxinic water, reaching 0 µM at 110 m water depth. Since high-resolution data for Mnass and dMnred were not available for the station in the central western gyre, data from the central eastern gyre (2177 m water depth) were aligned according
to density and shown instead. In agreement with Trouwborst et al. [12] and Dellwig et al. [1], Mn$_{\text{redox}}$ within the redoxcline was almost entirely composed of the intermediate Mn$^{3+}$, measured in this study indirectly as dMn$_{\text{react.}}$ [18]. The concentration of dMn$_{\text{react.}}$ peaked at the upper boundary of euxinic water at ~105 m water depth and then decreased sharply below, that is, in the first few meters of euxinic water.

Cellular abundance and S$^{2-}$ oxidation activity in the redoxcline of the Black Sea

Total cellular abundance at station 32 increased from ~2 x 108 cells l$^{-1}$ above and below the redoxcline to ~3 x 108 cells l$^{-1}$ in the intervening layer (Fig. 1d). Likewise, total bacterial cell counts determined using the FISH probe EUB338[II-III] were elevated within the redoxcline and accounted for 50 to 89% of the total cell counts, depending on the water depth. The abundance of *Campylobacterota* increased steadily towards the euxinic water, from ~2 x 106 cells l$^{-1}$ in oxic water to ~4 x 107 cells l$^{-1}$ at the upper boundary of euxinic water, with the highest abundance (6.5 x 107 cells l$^{-1}$ occurring at 100 m water depth (Fig. 1d). The relative abundance of *Campylobacterota* (% of DAPI counts) increased as well, from >1% at the upper boundary of the redoxcline at 89 m to ~15% at the upper boundary of euxinic water at 106 m water depth (Fig. 1d).

Transcription of the sulfidequinone oxidoreductase gene (sqr), a key enzyme in the oxidation of S$^2-$ to S0 and polysulfides [42], was used as a molecular marker of bacterial S$^{2-}$ oxidation across the redoxcline. The expression of *sqr* was detectable at all sampled water depths and increased across the redoxcline by more than two orders of magnitude, from 2.6 x 103 transcripts 1$^{-1}$ in oxic water to 3.8 x 107 transcripts 1$^{-1}$ at the upper boundary of euxinic water (~105 m), before undergoing a steep decline (by 93%) below (~110 m) (Fig. 1e). Because we chose a conservative method for the taxonomic annotation of *sqr* and other sulfur oxidation genes (CAT with r-parameter set to 3), the taxonomic annotation of these genes was restricted to the family level (*Helicobacteraceae*), but with high confidence. However, since *Sulfurimonas* spp. comprised 99.9–100% of 16S rRNA gene reads related to the family *Helicobacteraceae*, transcription of *sqr* could be assigned exclusively to the genus *Sulfurimonas*. The relative transcription level of *sqr* by *Sulfurimonas* spp. for all detected *sqr* transcripts increased with water depth, from 29.6% at ~86 m to 92.9% at ~110 m. At ~105 m, *Sulfurimonas* spp. expressed 89.2% of the total *sqr* transcripts.

Sequence-based abundance and the taxonomic structure of the phylum Campylobacterota

Relative 16S rRNA gene and 16S rRNA abundances of *Campylobacterota* increased steadily across the redoxcline (Fig. 2), in line with the results of microscopic counting using the CARD-FISH probe EPSY914, targeting the phylum *Campylobacterota* (Fig. 1d). The relative abundance of *Campylobacterota*-related 16S rRNA gene and 16S rRNA reads increased over a water depth of ~82–110 m, from ~0.1% to ~15% and from ~2% to ~35%, respectively (Fig. 2, Tables S1 and S2). Within *Campylobacterota*-specific reads, those belonging to *Sulfurimonas* spp. dominated, accounting for ~70% (16S rRNA gene) and >95% (16S rRNA) at 82 m water depth and >96% (16S rRNA gene) and >99% (16S rRNA) at the upper boundary of euxinic water (Tables S3 and S4). For *Sulfurimonas* spp., relative 16S rRNA abundance was 2.5 times higher than the corresponding relative abundance of the 16S rRNA gene in the same sample (R2 = 0.92). According to these findings, *Sulfurimonas* spp. accounted for almost all of the phylum *Campylobacterota* and was metabolically active across the redoxcline.

Sulfur oxidation activity of Sulfurimonas spp. in the Black Sea redoxcline

The analysis of the S oxidation genes expressed by *Sulfurimonas* spp. revealed, besides *sqr*, two sulfur oxidation (*sox*) clusters (soxXYZAB and soxCYZDH), polysulfide reductase (*psrABC*), and sulfite:cychrome c oxidoreductase (*psrAB*) (Fig. 3). In agreement with the water column profile of S$^2-$, the expression of these genes was highest at the upper boundary of euxinic water (105 m water depth; Fig. 3a–f). The expression of soxCYZDH was approximately two orders of magnitude higher than that of soxXYZAB (Fig. 3a, b). Transcripts of soxY and soxZ were also detected on small contigs that could not be assigned to cluster soxXYZAB or soxCYZDH, respectively (uncertain loci, Fig. 3c, i). The transcript abundance and vertical expression pattern of soxCYZDH were similar to those of *sqr* (Fig. 3b, d), suggesting that S$^{2-}$ oxidation by *sqr* continued via soxCYZDH. The cellular-abundance-related transcription of *Sulfurimonas* spp.-annotated genes was calculated by dividing the respective transcript numbers by the cellular abundance of *Sulfurimonas* spp., determined by multiplying the relative 16S rRNA gene abundance of *Sulfurimonas* by the total cellular abundance of DAPI-stained cells. Cellular-abundance-related (normalized) transcript numbers indicated that *sqr* and soxCYZDH were equally expressed also in the upper part of the redoxcline towards oxic water (Fig. 3h, j). The normalized expression patterns of *psrABC* (Fig. 3k) and *sorb* (Fig. 3l) did not resemble or were far less obvious than those of *sqr* and soxCYZDH, suggesting that *psrABC* and *sorb* activities were not directly coupled to the activities of *sqr* and soxCYZDH.

Rates of manganese-oxide-mediated sulfide oxidation by Ca. S. marisnigris SoZ1 in lab experiments

The slope and linear shape of the vertical concentration profile of S$^2-$ (Fig. 1a) indicated high S$^{2-}$ oxidation rates at the upper boundary of euxinic water (~105 m) in the absence of O$_2$ and NO$_3^-$ (Fig. 1a, b) but in the presence of MnO$_2$ as an available electron acceptor for S$^{2-}$ oxidation (Fig. 1c). The potential impact of biological S$^{2-}$ oxidation on total S$^{2-}$ oxidation was quantified in a lab experiment in which the rate of S$^{2-}$ oxidation by Ca. S. marisnigris SoZ1 using MnO$_2$ as the electron acceptor was...
determined (Fig. 4). In biological treatments containing ~5 × 10^7 Ca. S. marisnigri SoZ1 cells ml^-1, ~30 µM S^2^- was removed within 10 min, compared to ~45 min in the abiotic controls (Fig. 4a). After thermal inhibition by pasteurization (Fig. 4a, red arrow), the speed of S^2^- removal in the biological treatments was indistinguishable from that in the abiotic treatments. The reaction rate coefficient k for the consumption of each S^2^- spike was calculated individually (Fig. 4b) and showed that pasteurization lowered the reaction rate to the chemical background level (Fig. 4c). The biological reaction rate coefficient (k_bio) was calculated by subtracting the S^2^- removal rate after pasteurization from the overall rate before pasteurization; dividing the result by the cellular abundance of Ca. S. marisnigri SoZ1 in the respective replicate yielded the cell-specific kinetic rate coefficient (k_cell). The mean value of k_cell (~1.05 × 10^-13 l cell^-1 s^-1) was used in downstream numerical modeling. To illustrate, with 9 × 10^5 C. Sulfurimonas spp. cells ml^-1, the biological S^2^- oxidation rate in the model would be equal to that of chemical oxidation (k_chem), which is described below.

Modeling sulfide oxidation in the Black Sea redoxcline

The potential impact of S^2^- oxidation by Sulfurimonas spp. on the vertical concentration profile of S^2^- (Fig. 1a) was estimated by assuming either biological or chemical S^2^- oxidation on the diffusive supply of S^2^- from euxinic water at the upper boundary of those waters and above (Fig. 5). For the biological model, the cell-specific S^2^- oxidation rate kinetics (k_cell) estimated with Ca. S. marisnigri SoZ1 (Fig. 4) were combined with the natural abundance of Sulfurimonas spp. (Fig. 5a). Chemical oxidation was considered as constant, with k_chem = ~9.53 × 10^-8 s^-1 (calculated after [23] with 10 nM MnO2, pH 7, and 10 °C).

A steady state was reached in both the chemical and the biological models, but the resulting S^2^- concentration profiles differed (Fig. 5a, c). In the biological model (Fig. 5a, b), 95% of the modeled S^2^- oxidation activity across the redoxcline occurred over a narrow depth horizon, between ~105 m and ~106 m (Dx = 1 × 10^-10 m^2 s^-1; Fig. 5b, violet) or ~103 m and ~106 m (Dx = 4 × 10^-14 m^2 s^-1; Fig. 5b, dark green) water depth, due to the in situ distribution of Sulfurimonas. This led to the almost linear shape of the modeled S^2^- concentration profile (Fig. 5a), which was similar to the observed one (gray dots). The expression of sqr by Sulfurimonas spp. across the redoxcline was in line with the modeled S^2^- oxidation rate (Fig. 5b, black triangles). The modeled S^2^- concentration profile based on a purely abiotic reaction deviated from the measured data (Fig. 5c). In particular, abiotic S^2^- oxidation rates (Fig. 5d) at the upper boundary of euxinic water were at least one order of magnitude lower than the biological S^2^- oxidation rates (Fig. 5b) and too low to counterbalance S^2^- fluxes from euxinic water. In the model based on chemical oxidation, 95% of S^2^- oxidation across the redoxcline occurred over a broad depth horizon, between ~97 m and ~106 m (Dx = 1 × 10^-10 m^2 s^-1; Fig. 5d, violet) or ~90 m and 106 m (Dx = 4 × 10^-16 m^2 s^-1; Fig. 5d, dark green) water depth, which resulted in a large curvature in the S^2^- profile (Fig. 5c).

DISCUSSION

Field-based indications of S oxidation with MnO2 catalyzed by Sulfurimonas spp. in the Black Sea redoxcline

In line with earlier research, an anoxic zone free of O2 and S^2^- spanning ~15 m was detected within the pelagic redoxcline of the
western central gyre (Fig. 1a) [10, 11, 43]. Putative O₂ contamination was avoided during sampling by measuring O₂ directly in the outflow of the pump-CTD system using custom-made microsensors within glass tubes. O₂ traces below 92 m water depth could not be detected, even by the ultra-sensitive O₂ STOX sensors [41] (Fig. 1a). Thus, the redoxcline below 92 m water depth was considered to be completely anoxic. Vertical profiles of dissolved and particulate Mn species indicated the active shuttling of redox equivalents across the redoxcline (Fig. 1c), thereby connecting oxic and euxinic water as previously shown [1, 10, 15, 21]. Based on the S²⁻ concentration profile, S²⁻ oxidation was presumed to proceed at the upper boundary of euxinic water and above, because the linear shape of the profile indicated diffusive transport of S²⁻ towards the redoxcline, with no net production or consumption [44]. Across the redoxcline, Mn₄ass mainly consisted of Mn³⁺ (Fig. 1c), in agreement with previous results [1, 10, 12]. Whether Mn³⁺ was generated via biological or chemical reduction could not be determined. However, the reduction of MnO₂ with S₂O₃²⁻ by Ca. S. marisnigri SoZ1 in laboratory experiments resulted in the accumulation of Mn³⁺ before Mn(II) precipitated as Ca-rich Mn-carbonate [25], suggesting that Mn³⁺ is generated biologically by MnO₂ reduction with S²⁻. The Ca-rich Mn-carbonate that formed in culture [25] may also have been the source of the often-observed second peak of Mn₄part occurring at the lower boundary of the redoxcline [10, 43, 46], since Mn³⁺/²⁻ oxidation to particulate MnO₂ would have been unlikely given the absence of oxidants.

In line with the model’s results, sqr transcription, as an indicator of biological oxidation, peaked at the upper boundary of euxinic water, where the bulk of S²⁻ oxidation activity would be expected, and dropped sharply within euxinic water (Fig. 1e). The sox gene cluster soxCDYZH [47–49] was highly expressed as well (Fig. 3b, d), indicating its functional interaction with sqr. A previous study reported up-regulation of the soxCDYZH cluster under S²⁻ and S⁰ oxidizing conditions [47]. The tetrameric complex Sox(CD)₂ oxidizes the sulfane sulfur bound to SoxYZ to sulfone sulfur, which is hydrolytically released as SO₄²⁻ by SoxB [42, 50]. However, soxB was hardly expressed (Fig. 3a), such that SoxH in the cluster soxCDYZH likely acted as a hydrolase homolog of SoxB, as suggested earlier [47]. The low-level expression of cluster soxXYZAB (Fig. 3a) indicated that S₂O₃²⁻ was not an important intermediate for Sulfurimonas spp. at the upper boundary of euxinic water in the Black Sea water column [47, 51–53]. The expression of psrABC indicated S⁰ reduction [54], possibly using the S⁰ formed, for example, by the abiotic oxidation of S²⁻ with MnO₂ [22, 55, 56] prior to Sqr- and SoxCDYZH-mediated oxidation.
In summary, the pattern of gene expression by *Sulfurimonas* spp. was consistent with the complete oxidation of S^{2-} and S-intermediates to SO_4^{2-} at the upper boundary of euxinic water and in the absence of O_2, NO_3^-, and NO_2^-. Model-derived indication for S^{2-} oxidation with MnO_2 catalyzed by *Sulfurimonas* spp. in the Black Sea redoxcline

The cell-specific S^{2-} oxidation rates of *Ca. S. marisnigri* SoZ1 obtained in the lab experiments were fast enough to account for the S^{2-} concentration profile in the Black Sea obtained in a one-dimensional numerical model based on the in situ abundance of *Sulfurimonas* spp. (Fig. 5a, b). By contrast, the chemical oxidation of S^{2-} with MnO_2 was about one order of magnitude slower (Fig. 5c, d), which resulted in a S^{2-} concentration profile with a large curvature (Fig. 5c). Therefore, S^{2-} oxidation was most likely biological, as also suggested by Mn^{3+} formation (Fig. 1c; [12]), the low concentrations of S-compounds in intermediate oxidation states [57, 58], and the chemosynthetic activity of *Campylobacterota* in the absence of O_2 and NO_3^-. [27]

Nonetheless, our results need to be interpreted cautiously, because the underlying model is a simplification based on several assumptions. First, S^{2-} oxidation was assumed to occur at the upper boundary of euxinic water and above, based on the measured linear concentration profile of S^{2-}, which indicated a diffusive flux towards the redoxcline without net production or consumption below [44]. The gross oxidation of S^{2-} within and below the redoxcline may in fact be higher, with a rate equal to that of S^{2-} production via SO_4^{2-} reduction [13]. This would have led to a cryptic cycle not represented by the model. However, the finding that *sqr* expression fell off sharply below the redoxcline (110 m water depth), indicating negligible biological S^{2-} oxidation activity via the *Sqr* pathway, supports the assumption that S^{2-} oxidation proceeds at the upper boundary of euxinic water and above (Fig. 1e). Second, for the chemical oxidation, a realistic MnO_2 concentration of 10 nM was assumed in the abiotic model. However, even a ten-fold higher concentration was still too low to reproduce the observed profile. The latter therefore implied rapid S^{2-} oxidation and thus a biologically catalyzed process. Lastly, other potential oxidants than MnO_2 have been excluded in the laboratory experiments but might be present in undetectable concentrations in the Black Sea. However, this is rather unlikely based on the data presented in Fig. 1.

Estimation of the contribution of Mn-dependent S^{2-} oxidation to the total oxidation of S^{2-} requires a quantification of the downward-directed flux of MnO_2 particles and the upward-directed flux of S^{2-}. The downward-directed flux of particulate...
MnO₂ should be equal to the upward-directed flux of Mn₄⁺, because once the latter is oxidized to particulate Mn(IV), its movement is unidirectional, in the form of gravitational sinking [15, 20, 21]. For a Mn₄⁺ concentration gradient of 0.32 mmol m⁻³ m⁻¹, the corresponding flux would be in the range of 3.1 × 10⁻² – 1.2 × 10⁻⁶ mmol Mn₄⁺ m⁻² s⁻¹ (Dₓ of 1 or 4 × 10⁻⁶ m² s⁻¹ [17]), although due to riverine inputs of Mn the real flux might be slightly higher [59]. The S²⁻ flux of 6.7 × 10⁻⁷ – 2.68 × 10⁻⁶ mmol S²⁻ m⁻² s⁻¹, based on a S²⁻ gradient of 0.67 mmol m⁻³ m⁻¹ [19], is in agreement with the values reported by Brewer and Spencer (2.31 × 10⁻⁶ mmol S²⁻ m⁻² s⁻¹ [60]), Jørgensen et al. (5.1 × 10⁻⁷ – 3.3 × 10⁻⁶ mmol S²⁻ m⁻² s⁻¹ [58]), calculated based on a diapycnal diffusivity coefficient of 1 or 4 × 10⁻⁶ m² s⁻¹), and by Fuchsman et al. (1.24 × 10⁻⁶ mmol S²⁻ m⁻² s⁻¹ [61]). Assuming both the complete reduction of MnO₂ to Mn(II) and the oxidation of S²⁻ to SO₄²⁻ (and no quantitative importance of Mn₂O₃ reduction by Fe²⁺ [21]), roughly 25% of the total S²⁻ oxidation can be explained by MnO₂. However, some of the electrons derived from S²⁻ are used for chemosynthesis by *Sulfurimonas* spp. Based on the Mn(IV)/Mn(II) to SO₄²⁻/SO₃²⁻ ratio of 3.7 determined in growth experiments with *Ca. S. marisnigri* SoZ1 [25], 7.5% of the electrons from S are used for CO₂ reduction to support autotrophic growth, although larger proportions, up to 20%, have been reported [62]. Chemoautotrophic growth by Mn-reducing chemolithoautotrophic bacteria could therefore account for another 1–11% of the oxidation of the S²⁻ flux, depending on the assumed Mn flux and whether 7.5% or 20% of the electrons derived from S²⁻ are used for CO₂ reduction. In summary, as much as one-third of the total S²⁻ flux may be utilized by chemolithoautotrophic Mn-dependent S²⁻ oxidation by *Sulfurimonas* spp.

Lab-experiment-derived indications of S²⁻ oxidation with MnO₂ by *Sulfurimonas* spp. in the Black Sea redoxcline

Sulfurimonas spp.-mediated S²⁻ oxidation with MnO₂ in the Black Sea is further supported by the experimental data of Henkel et al. [25], obtained in an experiment in which the continuous addition of S²⁻ to MnO₂-spiked medium inoculated with *Ca. S. marisnigri* SoZ1 resulted in bacterial growth and the accumulation of SO₄²⁻. With Na₂S addition reproducing a flux of 1 × 10⁻³ mmol S²⁻ m⁻² s⁻¹ or 2.5 × 10⁻³ mmol Na₂S m⁻² s⁻¹, *Ca. S. marisnigri* SoZ1 abundance plateaued at 1.1 × 10⁷ 2.2 × 10¹⁰ cells m⁻², the equivalent of 3.4 × 10⁻⁶ or 11.6 × 10⁻⁶ mmol S²⁻ cell⁻¹ m⁻² s⁻¹, respectively. In the Black Sea, the S²⁻ flux of 6.7 × 10⁻⁷ – 2.68 × 10⁻⁶ mmol S²⁻ m⁻² s⁻¹ from euxinic water feeds the S²⁻-oxidizing community at the upper boundary of euxinic water. At a cell density of 4 × 10¹⁰ *Sulfurimonas* spp. cells m⁻³ (Fig. 5a), a single *Sulfurimonas* spp. cell is fed by a S²⁻ flux of 1.68 to 6.70 × 10⁻¹⁷ mmol S²⁻ m⁻² s⁻¹. The overall order of magnitude of the S²⁻ flux needed to feed a single cell in lab experiments and in the Black Sea was surprisingly similar, indicating that the natural abundance of *Sulfurimonas* spp. is consistent with the observed input flux of S²⁻ and MnO₂.

Elevated abundance of *Sulfurimonas* spp. as an indicator of the quantitative importance of Mn-dependent S²⁻ oxidation in the Black Sea redoxcline

The present study identified *Sulfurimonas* spp. as a key player in S²⁻ oxidation in the redoxcline of the Black Sea, but their activity may not explain total S²⁻ consumption. Along with *Campylobacter* or *Sulfurimonas* spp., gammaproteobacterial sulfur oxidizers (GSO) of clades SUP05 and BS-GSO2 may contribute quantitatively to S²⁻ oxidation in the Black Sea [13, 27, 61, 63, 64]. In the isolate *Candidatus* Thioglobus autotrophicus EF1 (clade SUP05), S oxidation is coupled to the incomplete reduction of NO₃⁻ to NO₂⁻ [65], in agreement with the lack of nitrite reductases in its genome. Those genes are also absent in the metagenome-assembled-genome (MAG) of *Ca. Thioglobus* pontius (SUP05 from the Black Sea redoxcline) [13]. The Black Sea MAG of *Ca. Thioponita* autotrophica of clade BS-GSO2 indicates the genetic potential to reduce NO₃⁻ and NO₂⁻ based on the presence of nitrate reductase (*narGHI*) and nitrite reductase (*nirBD/K*) genes [13]. However, whether SUP05 or BS-GSO2 also utilizes MnO₂ as a terminal electron acceptor is unknown.

SUP05 are considered to be non-motile [66], evidenced by microscopic inspection and a lack of genes encoding flagella; however, this evidence is inconclusive (Robert Morris, personal communication) and no data are available for clade BS-GSO2. Our results lead to the hypothesis that *Sulfurimonas* spp. dominates the S-oxidizing community in the Black Sea when a stable Mn cycle has developed that separates O₂, NO₃⁻ and NO₂⁻ from S²⁻. A larger role for *Sulfurimonas* spp. than for BS-GSO2 and SUP05 would then be based on the ability to perform active movement and reduce MnO₂, which would favor the success of these bacteria in the presence of a well-developed Mn cycle. Such conditions might be reflected in the accumulation of Mn(II) at pelagic redoxclines, the formation of which requires a hydrographically stable water column without major disturbances such as by lateral intrusions [1]. Whether the remaining S²⁻ oxidation can be explained by the activity of phototrophs [67], the vertical migration of magnetotactic bacteria with internal vacuoles [9], or by as-yet-unidentified mechanisms is unknown.

General implications for geochemical cycles and microbial communities in redoxclines

Microbially catalyzed Mn-dependent S²⁻ oxidation affects the depth of the S²⁻ interface (Fig. 5), thereby fostering the separation of S²⁻ from O₂, NO₃⁻ and NO₂⁻. This separation has consequences for element cycling, e.g., the N-loss processes of denitrfication and anammox. In the central Black Sea, where heterotrophic denitification was generally undetectable within the redoxcline and denitrification via S²⁻ oxidation is excluded due to a missing interface between S²⁻ and NO₂⁻, anammox was the main N-loss process [68]. Although the Black Sea redoxcline is the most prominent system with a zone that simultaneously lacks O₂ and S²⁻, other examples from euxinic systems have been reported. In the central Baltic Sea, Hannig et al. [69] showed a shift in the N-loss process from S²⁻-coupled denitrification to anammox in the redoxcline after saltwater inflows in 2002 and 2003. In 2005, after re-establishment of the redoxcline, a Black Sea-like separation of O₂, NO₃⁻, and NO₂⁻ from S²⁻ was detectable that was accompanied by a 3- to 13-fold increase in the maximum concentrations of reduced and oxidized Mn within the redoxcline. Under these conditions, anammox instead of denitrification was the main N-loss process. The authors suggested that Mn-dependent S²⁻ oxidation, with the subsequent vertical separation of NO₂⁻ and S²⁻, supported anammox rather than denitrification as the dominant N-loss process. Similar indication came from marine sediments. Engström et al. [70] found that the relative contribution of anammox to total N₂ production increased with Mn-oxide content to up to 80%, indicating that Mn-oxides compete with denitrification for substrates, thereby favoring anammox activity. It can therefore be suggested that Mn-cycling eliminates the inhibitory effect of S²⁻ on anammox [71].

Pelagic redoxclines have been reported from stratified systems worldwide, ranging from meromictic and seasonally anoxic lakes (e.g., Fayetteville Green Lake and Lake Dagow [1, 72]) to brackish (e.g., Baltic and Black Seas [10]), marine (e.g., Cariaco basin and anoxic fjords [2, 31], and hypersaline (Orca basin [4]) environments. Despite fundamental differences in the general conditions and patterns of their chemical redox profiles [73], those systems have substantial similarities with respect to the biogeochemical processes at their pelagic redoxclines. A prominent example is the cycling of dissolved and particulate Mn species in the presence of sulfide, which suggests that those redoxclines host microbial communities with a similar niche as reported here for the Black Sea genus *Sulfurimonas*. Thus, chemoautotrophic Mn-dependent S²⁻ oxidation is widespread in marine pelagic environments, and it may be a common and important N-loss process in euxinic systems, including the Black Sea.
CONCLUSIONS

In this study, the geochemistry of the pelagic redoxcline of the Black Sea was characterized at high resolution. The local abundance and gene expression of Sulfurimonas spp. were determined as well, together with laboratory-based assessments on Mn-dependent \(S^2\) oxidation rates by Ca. S. marinigri SoZ1. Sulfurimonas spp. were highly abundant across the redoxcline, where \(O_2\), \(NO_3^-\), and \(NO_2^-\) were absent. The expression of \(sqr\), soxCDYZH, soxXYZAB, psoABC, and sorAB at the upper boundary of euxinic water indicated the complete oxidation of \(S^2\) and \(S^-\) intermediates to \(SO_4^{2-}\) by Sulfurimonas spp., without an important role for \(S_2O_3^{2-}\). The cellular abundance of Sulfurimonas spp. was consistent with the availability of \(MnO_2\) and with \(S^-\) fluxes and suggested the coupling of \(S^-\) oxidation to \(MnO_2\) by this genus. The rapid oxidation of \(S^-\) at the upper boundary of euxinic water was crucial in explaining the observed \(S^-\) concentration profile. Abiotic oxidation of \(S^-\) with \(MnO_2\) was too slow to counterbalance \(S^-\) fluxes from euxinic water. By contrast, the rate of biologically catalyzed oxidation was sufficiently high and consistent with the expression of the \(sqr\), which Sulfurimonas spp. dominated by about 90 percent at the boundary to euxinic water. Biological \(S^-\) oxidation with \(MnO_2\) can explain the accumulation of \(Mn^{3+}\) and offers a plausible explanation for the chemosynthetic activities of Campylobacter in the Black Sea in the absence of \(O_2\), \(NO_3^-\), and \(NO_2^-\) [77]. Our study therefore suggests that, by catalyzing the oxidation of \(S^-\) with \(MnO_2\), Sulfurimonas spp. in the Black Sea redoxcline play a crucial role in the establishment and maintenance of a broad anoxic and non-sulfidic zone separating oxic and euxinic water. This may in turn create ecological niches for other important functional groups of prokaryotes, such as anammox bacteria, that thrive in these zones.

Because the modern Black Sea is a prime example of a redox-stratified aquatic ecosystem, we are confident that our findings are of relevance for other stratified settings worldwide, including lakes, fjords, and semi-restricted brackish/marine basins. As the first indication for biological Mn-dependent \(S^-\) oxidation came from marine sediments [75, 76], the results of the present work may also be relevant for marine sediments, where rapid biological Mn-dependent \(S^-\) oxidation could prevent the escape of sulfide into bottom waters, thereby counteracting the spread of hypoxia.

DATA AVAILABILITY

Metadata for the research cruise can be found at IOWMeta with the identifier MSM33 and under https://doi.org/10.2312/cr.msm33. The contigs and CDS used for the present work are available via DOI 10.12754/data/2021-0005. Sequence data for this study have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI using the data brokerage service of the German Federation for Biological Data (GBFInfo [39]), in compliance with the Minimal Information about any (X) Sequence (MiXs) standard [40]. Raw sequence data for the metagenome, metatranscriptome, and amplicon data were deposited under umbrella project PRJEB46990 with the accession numbers PRJEB46962, PRJEB46963, and PRJEB46963, respectively. The spreadsheet of the Excel-based numerical model and the manual list of \(S\) oxidation genes are available in the supplement.

REFERENCES

1. Dellwig O, Schnetzer B, Brumsack H-J, Grossart H-P, Ullmef L. Dissolved reactive manganese at pelagic redoxclines (part II): hydrodynamic conditions for accumulation. J Mar Syst 2012;90:31–41.

2. Taylor GT, Labichella M, Ho T, Scraton MI, Thunell RC, Muller-Karger F, et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr 2001;46:148–63.

3. Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B. Influence of water column dynamics on sulfide oxidation and other major biochemical processes in the chemocline of Mariager Fjord (Denmark). Mar Chem 2001;74:29–51.

4. Trefry JH, Presley BJ, Keeney-Kennicutt WL, Trocine RP. Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin. Geo-Mar Lett 1984;4:125–30.

5. Dahle BW, Anbar AD, Gordon GW, Rosing MT, Frei R, Canfield DE. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochim Cosmochim Acta 2010;74:144–63.

6. Oszny E, Unluata U. Oceanography of the Black Sea: a review of some recent results. Earth-Sci Rev 1997;42:231–72.

7. Wegwerth A, Eckert S, Dellwig O, Schnetzer B, Severmann S, Weyer S, et al. Redox evolution during Eemian and Holocene sapropel formation in the Black Sea. Palaeogeogr Palaeoclimatol Palaeoecol 2018;489:249–60.

8. Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, et al. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 2008;388:411–3.

9. Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Bahlo R, Dellwig O, et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J 2019;13:1198–208.

10. Dellwig O, Wegwerth A, Schnetzer B, Schulz H, Arz HW. Dissimilator behaviors of the geochemical twins W and Mo in hypoxic-euxinic marine basins. Earth-Sci Rev 2019;193:1–23.

11. Staney EV, Poulain PM, Grayek S, Johnson KS, Claustru H, Murray JW. Understanding the dynamics of the oxic-anoxic interface in the Black Sea. Geophys Res Lett 2018;45:864–71.

12. Trouwborst RE, Soluble Mn(III) in suboxic zones. Science 2006;313:1955–7.

13. Vlet DM, Meijenfeldt FAB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJM, et al. The bacterial sulfate cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol 2021;23:2834–57.

14. Konovalov SK, Luther GW, Friederich GE, Nuzzio DB, Tebo BM, Murray JW, et al. Lateral injection of oxygen with the Bosporus plume-fingers of oxidizing potential in the Black Sea. Limnol Oceanogr: 2003;48:2369–76.

15. Lewis BL, Landing WM. The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Res A Oceanogr Res Pap 1991;38:5773–5803.

16. Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Ullmef L. Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem 2007;107:388–410.

17. Gregg MC, Yakushev E. Surface ventilation of the Black Sea’s cold intermediate layer in the middle of the western gyre. Geophys Res Lett 2005;32:1–4.

18. Schnetzer B, Dellwig O. Dissolved reactive manganese at pelagic redoxclines (part I): a method for determination based on field experiments. J Mar Syst 2012;90:23–30.

19. Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, et al. Biogenic manganese oxides: Properties and mechanisms of formation. Annu Rev Earth Planet Sci 2004;32:287–326.

20. Glockzin M, Pollehne F, Dellwig O. Stationary sinking velocity of authigenic manganese oxides at pelagic redoxclines. Mar Chem 2014;160:67–74.

21. Dellwig O, Leipe T, Marz C, Glockzin M, Pollehne F, Schnetzer B, et al. A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic waters. Geochim Cosmochim Acta 2010;74:7190–7210.

22. Burdige DJ, Nealson KH. Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobiol J 1986;4:361–47.

23. Yao W, Millero FJ. The rate of sulfide oxidation by \(\delta MnO_2\) in seawater. Geochem Cosmochim Acta 1993;57:3359–65.

24. Parks DH, Chuvchina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36:996.

25. Henkel JV, Dellwig O, Pollehne F, Herlemann DPR, Leipe T, Schulz-Vogt HN. A bacterial isolate from the Black Sea oxidizes sulfide with manganese(VI) oxide. Proc Natl Acad Sci USA 2019;116:12153–5.

26. Henkel JV, Vogts A, Werner J, Neu TR, Sposição C, Bunk B, et al. Candidatus Sulfurimonas namarsi sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thioautotrophic manganese oxidizing chemolitoheterotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst Appl Microbiol 2021;44:1–11.

27. Grote J, Jost G, Labrenz M, Hendm DJ, Jürgens K. Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol 2008;74:7546–51.
28. Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and calibrated reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.

29. Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol. 2003;69:2928–35.

30. Grote J, Labrenz M, Göttler B, Jost G, Jürgens K. Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxlines of the central Baltic Sea. Appl Environ Microbiol. 2007;73:1155–61.

31. Daims H, Brühl A, Amann R, Schleifer K, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1997;20:343–44.

32. Wallner G, Amann R, Bisier K. Optimizing fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;11:136–43.

33. Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.

34. Konstandin ND, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6268–64.

35. Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.

36. Van Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019;20:1–14.

37. Schulz HD. Conceptual models and computer models. In: Schulz HD, Zabel M, editors. Marine geochemistry. Springer: Berlin, Heidelberg; 2006. p. 513–47.

38. Diepenbroek M, Glöckner FO, Grobe P, Güntsch A, Huber R, König-Ries B, et al. The conceptual models and archiving platform: the German federation for the curation of biological data (gefd). ISME J. 2011;29:415–20.

39. Revsbech NP, Thamdrup B, Dalsgaard T, Canfield DE. Construction of STOX oxygen sensors and their application for determination of O2 concentrations in oxygen minimum zones. Methods Enzymol. 2011;486:325–41.

40. Dahl C. A biochemical view on the biological sulfur cycle. In: Environmental technologies to treat sulphur pollution: principles and engineering. IWA Publishing; London: 2020;2:55–96.

41. Murray JW, Yakushev EV. Past and present water column anoxia. Past and present water columns. Microbial Ecology of the Ocean, 3rd ed. Hoboken: Wiley; 2018. p. 180–206.

42. Shah V, Chang BX, Morris RM. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 2015;9:2591–603.

43. Jost G, Martens-Habbena W, Labrenz M, Jürgens K. SUP05 Dominates the gammaproteobacterial bacterial sulfur oxidizer assemblages in pelagic redoxlines of the central and black seas. Appl Environ Microbiol. 2013;79:2767–76.

44. Overmann J, Cypionka H, Pfennig N. An extremely low-light-adapted photosynthetic Epsilonproteobacteria subgroup in pelagic redoxlines of the Black Sea. Environ Microbiol. 2012;14:2577–85.

45. Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 2017;11:1545–58.

46. Wang S, Jiang L, Hu Q, Liu X, Yang S, Shao Z. Elemental sulfur reduction by a deep-sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10. Environ Microbiol. 2021;23:965–79.

47. Yilmaz P, Miletto F. Oxidation of hydrogen sulfide by Mn(IV) and Fe(III) oxides in seawater. Mar Chem. 1996;52:1–16.

48. Herszage J, dos Santos Afonso M. Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions. Langmuir. 2003;19:9684–92.

49. Glazer BT, Luther GW, Konovolov SV, Friederich GE, Nuzzio DB, Troubloutre RE, et al. Documenting the suboxic zone of the Black Sea via high-resolution real-time redox profiling. Deep Res II Top Stud Oceanogr. 2006;53:1740–55.

50. Jürgensen BB, Fossing H, Wirsing CF, Jahnch HW. Sulfide oxidation in the anoxic Black Sea chemocline. Deep Sea Res A Oceanogr Res Pap. 1991;38:1083–103.

51. Yigitkarahan O, Murray JW. Trace metal composition of particulate matter of the Danube River and Turkish rivers draining into the Black Sea. Mar Chem. 2008;111:63–76.

52. Brewer PG, Spencer DW. Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases: water. In: The Black Sea–Geology, Chemistry, and Biology. AAPG Special Volumes. AAPG; 1974;137–43.

53. Fuchsmann KA, Kirkpatrick JB, Brazelton WI, Murray JW, Staley JT. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol Ecol. 2011;78:586–603.

54. Kelly DP. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B Biol Sci. 1982;298:499–528.

55. Kirkpatrick JB, Fuchsmann CA, Yakushev EV, Egorov AV, Staley JT, Murray JW. Dark N2 fixation: nfH expression in the redoxcline of the Black Sea. Aquat Micro Ecol. 2018;82:43–58.

56. Glabitz S, Kriefflik C, Meeske C, Labrenz M, Jürgens K. SUP05 Dominates the gammaproteobacterial bacterial sulfur oxidizer assemblages in pelagic redoxlines of the central and black seas. Appl Environ Microbiol. 2013;79:2767–76.

57. Shah V, Chang BX, Morris RM. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 2011;5:263–71.

58. Rogge A, Vogts A, Voss M, Jürgens K, Jost G, Labrenz M. Success of chemolithotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as r- and r-strategists. Environ Microbiol. 2017;19:2495–506.

59. Overmann J, Cypionka H, Pfennig N. An extremely low-light-adapted photosynthetic sulfur bacterium from the Black Sea. Limnol Oceanogr. 1992;37:150–5.

60. Jensen MM, Kuyppers MM, Lavik G, Thamdrup B. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr. 2008;53:23–36.

61. Hannig M, Lavik G, Kuyppers MM, Woebcken D, Martins-Habbenza W, Jürgens K. Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnol Oceanogr. 2007;52:1336–45.

62. Engström P, Dalgaard T, Hulth S, Aller RC. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta. 2005;69:2057–65.

63. Dapena-Mora A, Fernández I, Campos JL, Mosquera-Corral A, Méndez R, Jetten MSM. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzym Micro Technol. 2007;40:859–65.

64. Havig JR, McCormick ML, Hamilton TL, Kump LR. The behavior of biologically important trace elements across the anoxic/euxinic transition of meromictic Lafayette Green Lake, New York, USA. Geochim Cosmochim Acta. 2015;165:389–406.

65. Jones K, Taylor GT. Microbial ecology and biogeochemistry of oxygen-depleted water columns. Microbial Ecology of the Ocean, 3rd ed. Hoboken: Wiley; 2018. p. 231–88.

66. Jost G, Martins-Habbenza W, Polleheve F, Schnetger T, Labrenz M. Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemotrophotaunotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea. FEMS Microbiol Ecol. 2010;71:226–36.

67. Aller RC, Rude PD. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Acta. 1986;50:751–65.

68. King GM. Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiol Ecol. 1990;13:245–53.

69. J.V. Henkel et al.
modeling. We are grateful for the competent technical assistance of Christin Laudan and Anne Köhler. We thank the editors as well as two anonymous reviewers for helpful comments on an earlier version of the manuscript. The cruise was funded by the International Bureau of the Bundesministerium für Bildung und Forschung (grant 01DK12043). The research was supported by the Deutsche Forschungsgemeinschaft grant ANAMARE (awarded to HNS-V, SCHU1416/5-1). SB was funded by a BONUS BLUEPRINT project (03F0679A awarded to KJ; http://blueprint-project.org), supported by BONUS (Art 185), funded jointly by the EU and the German Federal Ministry of Education and Research (BMBF). TS was funded by the German Research Foundation (DFG) (awarded to KJ, JU 367/16-1).

AUTHOR CONTRIBUTIONS

JVH, HNS-V, and KJ designed the research. OD performed analysis of metal species. FP performed nutrient analysis. SB and CM sampled during the field campaign. JVH performed laboratory experiments and modeling. TS, SB, and KJ performed bioinformatics analysis. JVH analyzed the data. JVH wrote the original draft of the manuscript. All authors contributed to the finalization of the manuscript.

FUNDING

Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS

The authors declare no competing interests.