The emerin-binding transcription factor Lmo7 is regulated by association with p130Cas at focal adhesions

Loss of function mutations in the nuclear inner membrane protein, emerin, cause X-linked Emery-Dreifuss muscular dystrophy (X-EDMD). X-EDMD is characterized by contractures of major tendons, skeletal muscle weakening and wasting, and cardiac conduction system defects. The transcription factor Lmo7 regulates muscle- and heart-relevant genes and is inhibited by binding to emerin, suggesting Lmo7 misregulation contributes to EDMD disease. Lmo7 associates with cell adhesions and shuttles between the plasma membrane and nucleus, but the regulation and biological consequences of this dual localization were unknown. We report endogenous Lmo7 also associates with focal adhesions in cells, and both co-localizes and co-immunoprecipitates with p130Cas, a key signaling component of focal adhesions. Lmo7 nuclear localization and transcriptional activity increased significantly in p130Cas-null MEFs, suggesting Lmo7 is negatively regulated by p130Cas-dependent association with focal adhesions. These results support EDMD models in which Lmo7 is a downstream mediator of integrin-dependent signaling that allows tendon cells and muscles to adapt to and withstand mechanical stress.
The emerin-binding transcription factor Lmo7 is regulated by association with p130Cas at focal adhesions

Michele A. Wozniak¹,², Brendon M. Baker², Christopher S. Chen², and Katherine L. Wilson¹*

¹Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore MD 21205
²Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104

*Author for correspondence: klwilson@jhmi.edu
INTRODUCTION

Lim domain only 7 (Lmo7) is a transcription factor with major roles in muscle, heart and other tissues (Ott, van den Akker et al. 2008) including lung epithelium, where Lmo7 is proposed to function as a tumor suppressor (Ott, van den Akker et al. 2008; Tanaka-Okamoto, Hori et al. 2009). Lmo7 regulates breast cancer cell migration by acting synergistically with the small GTPase RhoA to reduce G:F-actin ratios, leading to the activation of myocardin-related transcription factor (MRTF; also known as MAL or MKL1), a serum response factor (SRF) cofactor that activates cytoskeletal genes (Hu, Guo et al. 2011; Ho, Jaalouk et al. 2013). Lmo7 shuttles into and out of the nucleus (Holaska, Rais-Bahrami et al. 2006), and positively regulates many muscle- and heart-relevant genes (Holaska, Rais-Bahrami et al. 2006; Ott, van den Akker et al. 2008). Among these genes is EMD, which encodes a conserved nuclear membrane protein named emerin (Berk, Tifft et al. 2013). Emerin, a LEM-domain protein, directly binds to membrane components of ‘LINC’ complexes (SUN-domain proteins, nesprins; (Mislow, Holaska et al. 2002; Zhang, Ragnauth et al. 2005; Haque, Mazzeo et al. 2010)) and to the nucleoskeletal proteins lamin A and actin (Lee, Haraguchi et al. 2001; Holaska, Lee et al. 2003; Holaska, Kowalski et al. 2004). However emerin also directly binds transcription regulators including β-catenin (Markiewicz, Tilgner et al. 2006) and— notably— Lmo7 itself (Holaska, Rais-Bahrami et al. 2006). In emerin-downregulated cells, Lmo7 nuclear localization is decreased or undetectable (Holaska, Rais-Bahrami et al. 2006). In cells subjected to external mechanical force, emerin is required to activate specific ‘mechano-sensitive’ genes in response to force (Lammerding, Hsiao et al. 2005).

Loss of emerin, mutations in emerin-associated proteins (A-type lamins, nesprin-1, nesprin-2, LUMA) or mutations in transcription factor FHL1 are all genetically linked to Emery-Dreifuss muscular dystrophy (EDMD) (Meinke, Nguyen et al. 2011). These ‘EDMD
genes' suggest proper functioning of the affected tissues (heart, cardiac conduction system, specific skeletal muscles, major tendons) requires an emerin-containing multi-protein complex at the nuclear envelope (Simon and Wilson 2011). Lmo7 is required for heart development in zebrafish, including development of the cardiac conduction system (Ott, van den Akker et al. 2008). The transcription-activator role of Lmo7 is inhibited by binding emerin, suggesting the emerin protein negatively feedback-regulates Lmo7 activity in the nucleus (Holaska, Rais-Bahrami et al. 2006; Dedeic, Cetera et al. 2011).

As a binding partner for emerin, Lmo7 was of particular interest because it localizes at cell-cell adhesions (Ooshio, Irie et al. 2004; Yamada, Irie et al. 2004), and might therefore transmit adhesion signals to the nucleus. Previous work suggested Lmo7 might also localize at focal adhesions, since a polypeptide comprising the C-terminal half of human Lmo7 ('hLmo7C'; residues 888-1683) was detected both at the nuclear envelope and cell surface, where it co-localized with paxillin, when expressed transiently in HeLa cells (Holaska, Rais-Bahrami et al. 2006). We report that endogenous Lmo7 associated with focal adhesions in both HeLa cells and mouse embryonic fibroblasts (MEFs), and co-immunoprecipitated with p130Cas, a major scaffolding and signaling component of focal adhesions (Defilippi, Di Stefano et al. 2006) that also influences myogenic differentiation (Kawauchi, Tan et al. 2012). The nucleocytoplasmic distribution of Lmo7, and the expression of six (of nine tested) Lmo7-regulated genes, were significantly altered in p130Cas-null MEFs. These results suggest Lmo7 activity is regulated by p130Cas-dependent association with focal adhesions. These findings are discussed in the light of a Drosophila study that showed A-type lamins exert their critical function in tendon cells (Uchino, Nonaka et al. 2013), which connect to muscle cells via the extracellular matrix, and evidence that integrin-dependent signaling is important for cells to respond to and withstand mechanical stress (Pines, Das et al. 2012).
Materials and Methods

Cell culture and transfections
HeLa cells, wildtype MEFs and p130Cas-/- MEFs were maintained in 10% FBS in DMEM. HeLa cells were transiently transfected to express GFP (eGFP-C2; Clontech), GFP-rLmo7a, pcDNA3.1 myc, or myc-p130Cas using Lipofectamine PLUS (Invitrogen) per manufacturer instructions. The GFP-rLmo7a construct was a gift from Y. Takai (Osaka University). HeLa cells were obtained from C. Machamer (Johns Hopkins School of Medicine). Wildtype and p130Cas-/- MEFs and Myc constructs were gifts from P. Keely (University of Wisconsin-Madison). Mammalian cells were used under Johns Hopkins University Institutional Review Board approval (#B0807070104).

Indirect immunofluorescence and microscopy
To stain focal adhesions, cells were plated on fibronectin-coated coverslips for 30 min, two hours or six hours, then fixed (3.7% formaldehyde, 15 min), quenched (0.15 M glycine, 10 min), made permeable (0.2% Triton X-100; 10 min), blocked (1% bovine serum albumin in PBS; 1 h, 22-25°C) and incubated with primary antibodies (30 min, 22-25°C) specific for Lmo7 (H00004008-A01 from Novus, or HPA020923 from Sigma), vinculin (h-VIN-1; Sigma) or pFAK (4424G; Invitrogen), each at 1:100 dilution, or antibodies specific for p130Cas (06-500; Millipore; 1:20 dilution). Cells were rinsed with PBS and incubated 30 min (22-25°C) with DAPI (1:4000) plus either Alexa Fluor488- or Alexa Fluor555-conjugated anti-mouse or anti-rabbit secondary antibodies (1:200) from Invitrogen. Coverslips were rinsed in PBS and mounted on glass slides in PBS. For conventional epifluorescence imaging, coverslips were mounted in PBS with ProLong Gold Antifade reagent (Molecular Probes/Life Technologies, Grand Island, NY), and images were acquired using a Nikon Eclipse E600 microscope equipped with a Q-imaging Retiga EXi CCD camera and IPLab v3.9 software, or a Nikon TE200 microscope equipped with a Spot CCD camera and Spot software (Diagnostic Instruments). Total internal reflectance
fluorescence (TIRF) microscopy was performed using a Nikon Eclipse Ti equipped with a CFI Apo TIRF 60x oil (N.A. 1.49) objective and Evolve EMCCD camera (Photometrics). To highlight colocalization, correlation images were created using a custom Matlab script: the intensities of two corresponding image channels at each pixel location were multiplied, and the resulting image was rescaled to its minimum and maximum values.

Generation of GST-fused domains of rLmo7a

The cDNA encoding each rLmo7a domain was amplified from a FLAG-rLmo7a construct ((Ooshio, Irie et al. 2004); a gift from Y. Takai [Osaka University]) using the following primers, which included BamH1 and Xho1 restriction sites: CH domain primers were GGATCCGAGGCTCAGAGATGGGTGGAG and CTCGAGTTGTGCTTTTCTTCCCAGCCAGTA; F-Box primers were GGATCCCTACCTCCAGAAATCCAAGCGAAATTTCTC and CTCGAGAGTCAACATGTCGTCTTTCTTCAGTC; PDZ domain primers were GGATCCCCCGGGACCAAACATGACTTTGG and CTCGAGTCCGTAGCGCCTGACATCC; and the LIM domain primers were GGATCCGTGTGCTCCTACTGTAATAGCATT and CTCGAGAGATTTGAATCGGAGATAGCAGTC. The resulting PCR products were ligated into the pGEM-T Easy vector (Promega) per manufacturer instructions. Ligation products were transformed into *E. coli*, and plasmids were purified. The pGEM-T-CH, -FBox, -PDZ or -LIM constructs were then excised by restriction with BamH1 and Xho1, ligated into the BamH1/Xho1-restricted pGEX 4T-3 vector for fusion to GST, and transformed into *E. coli*. Positive clones were identified by restriction analysis and verified by DNA sequencing.

Purification of GST-fused proteins

Transfected bacteria treated four hours with isopropyl β-D-1-thiogalactopyranoside (IPTG) were pelleted, resuspended in Tris-buffered saline (TBS) and sonicated. Triton X-100 was added to 1% (v/v) and lysates were rotated (15 min, 4°C). After centrifugation (12,000 rpm, 15 min, 4°C)
we added 75 µl glutathione sepharose (Sigma) to the supernatant, then rotated (1 h, 4°C), briefly centrifuged to collect the beads, and washed three times in TBS.

Immunoprecipitations

Cells that transiently expressed GFP- or myc-tagged constructs for two days were lysed in Triple Detergent Lysis Buffer (50 mM Tris-Cl pH 8, 150 mM NaCl, 0.1% SDS, 1% NP40, 1% Triton X-100, Roche protease inhibitor complete mini tablet), and cleared by centrifugation. To immunoprecipitate GFP, lysates were incubated with 15 µl Protein A sepharose plus 2.5 µl GFP antibody (A6455, Molecular Probes) and rotated overnight (4°C). To immunoprecipitate Myc, cell lysates were incubated with 10 µl GammaBind G sepharose (Amersham Biosciences) plus 4 µg myc antibody (9E10, Santa Cruz) and rotated two hours (4°C). Bound proteins were collected by centrifugation, washed three times with Triple Detergent Lysis Buffer and eluted with SDS sample buffer. Proteins were resolved by SDS-PAGE, transferred to PVDF membrane and probed with antibodies against Lmo7 (CO5 or NO2, gifts from Y. Takai; Osaka University; 1:5000), p130Cas (clone 21, BD Transduction Laboratories; 1:1000), talin (05-385, Millipore; 1:1000), emerin (serum 2999; (Lee, Haraguchi et al. 2001); 1:5000) or Myc (A-14, Santa Cruz; 1:1000). HRP-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories; 1:5000) were detected by horseradish peroxidase chemiluminescence (Amersham).

GST pulldowns

HeLa cells were lysed in GST Lysis Buffer (100 mM HEPES pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton X-100, 1 mM DTT, Roche protease inhibitor complete mini tablet), and cleared by centrifugation (12,000g, 12 min, 4°C). The supernatant (lysate) was incubated (1.5 h, 4°C) with 15 µg recombinant GST, GST-CH, GST-F-Box, GST-PDZ or GST-LIM (see above). Beads were washed three times (GST Lysis Buffer); proteins were eluted with SDS sample buffer.
buffer, resolved by SDS-PAGE, transferred to PVDF and probed with antibodies to GST (Santa Cruz Biotechnology, 1:1000), p130Cas (see above), or paxillin (BD Transduction Laboratories, 1:1000) as described above.

Cell fractionation

Cells were plated on fibronectin-coated petri dishes overnight, then fractionated using the NE-PER Kit (Thermo Scientific) per manufacturer instructions. Equal protein amounts (10 µg) of each fraction were resolved by SDS-PAGE and immunoblotted with antibodies to Lmo7 (Novus, 1:1000), β-tubulin (Sigma, 1:1000) or lamins A/C (Novacastra, 1:1000) as described above.

Quantitative real-time PCR

MEFs were rinsed with PBS and total RNA was extracted using the RNeasy mini kit (Qiagen). RNA (0.5 µg) was reverse transcribed using the high-capacity cDNA reverse transcription kit (Applied Biosystems) and the resulting cDNAs were amplified in an ABI 7300 system (Applied BioSystems). Results were analyzed using the ddCT method and normalized to 18S. Primers used were: 18s, GTAACCCTTGAAACCCATT and CCATCCAATCGGTAGTAGCG; mef2D, CCTCAACAGTCTAATGGAGCC and CCAAGTATCCAGCCGCATCC; Rbl1, GAATGCCTCTTGGATCTTTCC and GTGAACTTTCGAGGTGTTCCA; mef2C, ATGGGGAGAAAAAATTCAGATTACG and GCATGCGACTCTCTGAAGGATGGGC; Id2, ATGAAAGCCTTCAGTCCGGTGAGG and GCAAAGTACTCTGTGGCTAA; crebbp, TCCAGGGCGAGAATGTGACC and CCCTGTGCAGTCTCCACGGC; pcaf, AGCTGAACCCTCAGATCCCA and CACTTGTCAATCAACCCTGC; mbnl, GTTTGCCTGCAATGGTACTGT and CAAGCACTTTAACCCTGAGC.
RESULTS

To test potential focal adhesion localization of endogenous Lmo7, HeLa cells were cultured two hours on fibronectin-coated coverslips to allow focal adhesions to form, then double-stained by indirect immunofluorescence using antibodies specific for either Lmo7, vinculin or activated (Y397-phosphorylated) focal adhesion kinase (‘pFAK’). Because nuclear signals (typically ~0.2 µm from the cell surface) are not reliably detected by TIRF microscopy, cells were imaged using either epifluorescence microscopy (Figure 1A) or TIRF microscopy (Figure 1B). Colocalization signals were further visualized using heat maps generated by multiplying intensities across fluorescent channels (Figure 1, ‘cross-correlation’; see Methods). Lmo7 was detected in the nucleus (Figure 1A) as expected. Lmo7 also localized at pFAK- and vinculin-positive focal adhesion sites (Figure 1A and 1B), and at structures near the cell surface that resembled actin stress fibers (Figure 1B). To determine if Lmo7 focal adhesion localization changed over time, we also used TIRF microscopy to image HeLa cells cultured on fibronectin-coated coverslips for thirty minutes or six hours (Figure 1C). Lmo7 focal adhesion localization signals were highest at thirty minutes, when Lmo7 colocalized strongly with vinculin (unpublished observations) and with pFAK at focal adhesion puncta located distal to the cell edge (Figure 1C). Lmo7 did not co-localize perfectly with either pFAK or vinculin, consistent with many other focal adhesion proteins (Kanchanawong, Shtengel et al.). These results supported the hypothesis that endogenous Lmo7 can localize at focal adhesions.

GFP-Lmo7a association with candidate focal adhesion proteins

The full Lmo7 polypeptide includes four homology domains (CH, F-box, PDZ and LIM domains; Figure 2A) (Ooshio, Irie et al. 2004), some of which were candidate mediators of binding to focal adhesions. For example, LIM domains in other proteins can form homo- or hetero-dimers
(Dawid, Breen et al. 1998), and several resident focal adhesion proteins either have a LIM
domain (e.g., paxillin (Turner and Miller 1994) and zyxin (Sadler, Crawford et al. 1992)), or bind
to LIM-domain proteins (e.g., talin, which binds the LIM-domain of muscle protein NRAP (Luo,
Herrera et al. 1999), and p130Cas, which binds the LIM-domain of zyxin (Yi, Kloeker et al.
2002)). We tested potential Lmo7 association with three candidate endogenous focal adhesion
proteins—talin, paxillin, and p130Cas—in HeLa cells that transiently expressed either GFP or
GFP-fused full-length rat Lmo7 splicing variant a (GFP-rLmo7a; Figure 2A), which is 71.8%
identical to human Lmo7. Whole cell protein lysates were immunoprecipitated using GFP
antibodies, resolved by SDS-PAGE and immunoblotted with antibodies specific for endogenous
talin, paxillin or p130Cas. The endogenous proteins were each detected in input lysates (“I”;
Figure 2B; 5% loaded; talin not shown), and did not co-immunoprecipitate with GFP alone
(Figure 2B). GFP-rLmo7a showed no detectable association with talin (unpublished
observations); however it co-immunoprecipitated weakly with paxillin and robustly with
endogenous p130Cas (Figure 2B, “P”; 80% loaded; n=4), suggesting Lmo7 associates with
p130Cas in vivo.

Paxillin and p130Cas association with specific Lmo7 domains

To independently test candidate interactors, and potentially map binding region(s) within Lmo7,
we fused GST to the N-terminus of the predicted CH, F-Box, PDZ or LIM domains of Lmo7 as
depicted in Figure 2A. Each purified recombinant polypeptide (Figure 2C) was incubated with
HeLa cell protein lysates, and glutathione-bound proteins were eluted with SDS-sample buffer
and resolved in duplicate SDS-PAGE gels, which were either coomassie-stained (Figure 2D) or
immunoblotted for either endogenous p130Cas (130 kD; Figure 2E) or paxillin (∼68 kDa; Figure
2F). Qualitative inspection of coomassie-stained gels showed large amounts of each GST-fused
‘bait’, a low amount of each corresponding GST-dimer band (Figure 2D, black squares), and
additional unidentified bands; these included bands consistent with p130Cas (e.g., Figure 2D,
PDZ lane) and paxillin (e.g., Figure 2D, F-box lane). Three different regions of Lmo7 (GST-CH, GST-PDZ, and GST-LIM) each consistently retained endogenous p130Cas (Figure 2E, n=3), but one— GST-PDZ— consistently retained the highest p130Cas signals. Paxillin was retained weakly by GST-LIM, and at high levels by GST-F-box (Figure 2F; n=3). These assays were qualitative, and did not distinguish between direct versus indirect binding to each Lmo7 fragment. Nevertheless, specific retention of paxillin by the F-box of Lmo7, and retention of p130Cas by three other domains (CH, PDZ, LIM), suggested that Lmo7 association with focal adhesions is mediated by association (direct or indirect) with paxillin and p130Cas. Further studies focused on p130Cas because it is a major focal adhesion scaffolding protein (Defilippi, Di Stefano et al. 2006) that binds zyxin, which (like Lmo7) shuttles to the nucleus (Nix, Fradelizi et al. 2001).

Endogenous Lmo7 associates with p130Cas-myc and colocalizes with endogenous p130Cas in vivo

Lysates from HeLa cells that transiently expressed the empty Myc vector, or C-terminally Myc-tagged p130Cas (Cary, Han et al. 1998), were precipitated using Myc antibodies and immunoblotted for endogenous Lmo7 (Figure 3A). A large (~200 kD) endogenous Lmo7 isoform co-immunoprecipitated consistently with Myc-p130Cas (Figure 3A; n=3). Furthermore, in both HeLa cells (n=2) and MEFs (n=3) plated on fibronectin-coated coverslips for two hours, indirect immunofluorescence double-staining showed a subset of endogenous Lmo7 co-localized with endogenous p130Cas in discrete puncta at focal adhesions, as visualized by epifluorescence microscopy (Figure 3B) and TIRF imaging (Figure 3C). We concluded Lmo7 associates with p130Cas at focal adhesions.

Lmo7 localization and gene regulation in p130Cas-/- cells
To determine if p130Cas influenced the nucleocytoplasmic distribution of Lmo7, we localized endogenous Lmo7 in wildtype versus p130Cas-/- MEFs (Honda, Oda et al. 1998). Indirect immunofluorescence staining and epifluorescence of p130Cas-/- MEFs revealed little or no detectable Lmo7 at the cell surface, and substantially higher nuclear signals, compared to wildtype MEF controls (Figure 4A; n=3). There were greatly reduced, but detectable, signals for endogenous activated (Y397-phosphorylated) FAK (‘pFAK’) at the cell surface and cytoplasm (Figure 4A, α-pFAK). This suggested p130Cas was important, but not essential, for pFAK localization. The altered subcellular distribution of Lmo7 observed by epifluorescence was independently verified by cell fractionation and immunoblotting. Wildtype and p130Cas-/- MEFs were fractionated to separate nuclei from cytoplasm, and protein lysates were resolved by SDS-PAGE and probed with antibodies specific for Lmo7, A-type lamins (nuclear marker) or β-tubulin (cytoplasmic marker; Figure 4B, n=3). The nuclear and cytoplasmic markers were each enriched in the appropriate fraction (Figure 4B). Densitometry and quantification of the nuclear-to-cytoplasmic signal ratio for Lmo7, relative to wildtype controls, confirmed the predominantly nuclear distribution of Lmo7 in p130Cas-/- cells (Figure 4C). The difference in signal ratios was significant (p<0.05 by the paired t-test; n=3). We concluded that p130Cas regulates the subcellular distribution of Lmo7, and might normally retain Lmo7 outside the nucleus.

p130Cas influences Lmo7-dependent gene regulation

To determine if p130Cas-dependent Lmo7 localization was biologically relevant to genes regulated by Lmo7, we used quantitative real-time PCR to measure the mRNA levels of two genes (encoding Mef2D and Rbl1) that are negatively regulated by Lmo7, and seven genes (encoding Id2, Crebbp, PCAF, Mbnl, Mef2B, Mef2C, Emerin) positively regulated by Lmo7 (Holaska, Rais-Bahrami et al. 2006). Relative to wildtype MEF controls, the mRNA levels of five
Lmo7-activated genes (Id2, Crebbp, Pcaf, Mbnl and Mef2B) were significantly higher in p130Cas-/- MEFS (Figure 4D; n=4; p<0.05 and Supplemental Figure 1). The magnitude of this increase ranged from 40% (Crebbp) to 70% (Pcaf, Mef2B) to 350-400% (Id2, Mbnl). Of the Lmo7-inhibited genes, mRNA levels of one (Rbl1) were unaffected, whereas the other (Mef2D) decreased significantly (by 70%) relative to wildtype MEFs (Figure 4D; n=4; p<0.05 by paired t-test and Supplemental Figure 1). Thus, six of nine tested genes responded in a manner consistent with higher Lmo7 activity in the nucleus of p130Cas-/- MEFs. These results demonstrated p130Cas is biologically relevant to the nuclear activity of Lmo7.

DISCUSSION

Focal adhesion signaling regulates gene expression through mechanisms that remain unclear. Some focal adhesion proteins activate MAP kinase signaling and downstream gene expression (Howe, Aplin et al. 2002). By contrast other focal adhesion components transmit signals by directly translocating to the nucleus. These ‘direct translocators’ include zyxin, paxillin, Crp, FHL3 and Abl, all of which have a LIM domain(s) (Hervy, Hoffman et al. 2006), and most of which influence transcription (Krcmery, Camarata et al. 2010). Some including nTrip6, paxillin and Hic5 are transcriptional co-activators. Nuclear Abl, a nonreceptor tyrosine kinase, has many roles in the nucleus (Hervy, Hoffman et al. 2006) and can also phosphorylate emerin directly in vitro (Tifft, Bradbury et al. 2009). Our finding that endogenous Lmo7 localizes at focal adhesions, and is negatively regulated by association with p130Cas, coupled to evidence that Lmo7 is a ‘shuttling’ transcription factor (Holaska, Rais-Bahrami et al. 2006), strongly supports the hypothesis that Lmo7 transmits signals from focal adhesions to the nucleus.

Lmo7 might resemble other transcription-regulating PDZ-LIM proteins, for which sequestration in the cytoplasm is important to ‘fine-tune' cell- and tissue-specific activity in neurons (Kurooka and Yokota 2005; Lasorella and Iavarone 2006) and the heart (Camarata, Krcmery et al. 2010; Krcmery, Camarata et al. 2010). Since most Lmo7 distributes throughout
the cytoplasm and can also associate with cell adhesions, our findings suggest Lmo7 is
dynamically regulated by a p130Cas-scaffolded focal adhesion kinase(s) or other signaling
component(s) as it 'cycles' on and off focal adhesions.

Epifluorescence images (Figure 3B) suggested p130Cas also localizes in the nucleus.
However this localization is debated. For example GFP-p130Cas localizes at high levels in the
nucleus (Kim, Kook et al. 2004), and polyclonal antibodies raised against GST-fused p130Cas
residues 318-486 or 670-896 also stain the nucleus (Harte, Hildebrand et al. 1996). Monoclonal
antibody 4F4 detected nuclear signals in primary chicken embryonic cells; after Src-mediated
transformation this signal localized at the cell surface (Kanner, Reynolds et al. 1991). Two
studies suggest nuclear-localized p130Cas is less phosphorylated, hence potentially inactive
(Kanner, Reynolds et al. 1991; Petch, Bockholt et al. 1995). However other antibodies do not
detect p130Cas in the nucleus (e.g., (Harte, Hildebrand et al. 1996)). Thus the nuclear
localization and potential function of nuclear p130Cas are open questions.

How might p130Cas-dependent focal adhesion regulation of Lmo7 relate to
Emery-Dreifuss muscular dystrophy (EDMD)? The major clinical aspect of EDMD is its affect on
the heart (cardiomyopathy with potentially lethal cardiac conduction system defects), with major
tendons and a subset of skeletal muscles also affected (Emery 1987). Lmo7 is required for
mouse C2C12 myoblasts to differentiate (Dedeic, Cetera et al. 2011). Lmo7 activates
muscle-specific genes such as myoD and pax3 early in differentiation; later (after myotube
formation) Lmo7 localizes predominantly in the cytoplasm (Dedeic, Cetera et al. 2011). Because
sustained activation of pax3 inhibits myogenic differentiation (Boutet, Disatnik et al. 2007), we
speculate that Lmo7 localization during muscle differentiation might be 'fine-tuned' by focal
adhesion/p130Cas-dependent sequestration in the cytoplasm.

Our study did not reveal which domain(s) of p130Cas associate (directly or indirectly)
with Lmo7, or, more importantly, how their association is regulated. However, our findings are
consistent with a recent focal adhesion proteome study that reported myosin II-dependent
recruitment of Lmo7 to focal adhesions in human foreskin fibroblasts (Kuo, Han et al. 2011).

Since focal adhesions grow and integrin-cytoskeleton connections are strengthened in response to myosin-mediated contractility and mechanical force (Chrzanowska-Wodnicka and Burridge 1996; Choquet, Felsenfeld et al. 1997), we propose Lmo7 is involved in mechanical force-induced signaling. Supporting this idea, cell migration— which is strongly regulated by mechanically-induced signals (Lo, Wang et al. 2000) — is disrupted by loss of emerin (Emerson, Holt et al. 2009), p130Cas (Honda, Oda et al. 1998) or Lmo7 (Hu, Guo et al. 2011).

The proposed mechanotransduction function of Lmo7 might, we speculate, provide physiological feedback regulation of muscle contraction. Interestingly, p130Cas is one of several proteins that undergo physical extension in response to mechanical force (Sawada, Tamada et al. 2006; Johnson, Tang et al. 2007; Grashoff, Hoffman et al. 2010). In fibroblasts, mechanical stretch is proposed to extend the substrate domain of p130Cas to expose fifteen YXXP motifs for phosphorylation by Src family kinases (Sawada, Tamada et al. 2006). Tyrosine phosphorylation recruits signaling proteins such as Crk (Sakai, Iwamatsu et al. 1994), Nck (Schlaepfer, Broome et al. 1997), and PTP-PEST (Garton, Burnham et al. 1997), which then trigger downstream pathways involved in cell adhesion, migration and proliferation. Whether Lmo7 is influenced by stretch-induced phosphorylation of p130Cas is a new question raised by our findings.

p130Cas-dependent regulation of Lmo7 may be relevant to EDMD heart defects, since both proteins are important in the heart. In zebrafish, Lmo7 knockout leads to cardiac conduction system defects, including arrhythmia (Ott, van den Akker et al. 2008). In mice, p130Cas knockout is lethal during embryogenesis, with defects in cardiovascular development; cardiomyocytes have disorganized myofibrils and disorganized Z-disks (Honda, Oda et al. 1998), the cell surface structures that mechanically link the sarcomeres (contractile networks) of neighboring cardiomyocytes. Our discovery that p130Cas negatively regulates Lmo7 suggests the cardiovascular phenotypes of p130Cas-null mice arise at least in part from excess nuclear
Lmo7 and consequent misregulation of Lmo7-dependent genes. In our study, loss of p130Cas affected six (of nine tested) Lmo7-regulated genes in a manner consistent with excess Lmo7 transcriptional activity in the nucleus. The three exceptions were mRNAs encoding Mef2C and emerin (which failed to increase in p130Cas-null MEFs) and Rbl1, which remained high in p130Cas-null MEFs. Further work is needed to understand why these genes ‘resisted’ transcriptional control by excess Lmo7 in MEFs. However we speculate that Lmo7 control over these ‘resistant’ genes might require a second p130Cas-dependent focal adhesion signaling event; possibilities include emerin phosphorylation by activated Abl or Src (Tifft, Bradbury et al. 2009). Indeed Src phosphorylates a region of emerin required to bind Lmo7 and other transcription regulators (Tifft, Bradbury et al. 2009).

The third EDMD-affected tissue, tendons, was recently studied in a *Drosophila* EDMD model with mutations in the A-type lamin (lamin ‘C’). Remarkably, the critical function of lamin C is exerted in tendon cells, not muscle, and involves the spectraplakin-dependent stabilization of the cytoskeleton (Uchino, Nonaka et al. 2013). Mammalian tendons are maintained by fibroblasts, which actively migrate and proliferate in response to injury (Arnesen and Lawson 2006). Bone marrow mesenchymal stem cells can be triggered to differentiate into tendon cells (‘tenocytes’) by mechanical stretching, through a pathway that requires focal adhesion kinase and RhoA/ROCK (Xu, Song et al. 2012). Stretch drives both focal adhesion growth (Shikata, Rios et al. 2005) and ROCK-mediated contractility (Xu, Song et al. 2012), and stabilizes integrin-dependent force signaling at sites of muscle-tendon attachment (Pines, Das et al. 2012). Hence our results identify Lmo7 as a downstream mediator of integrin-dependent signaling, and suggest that defects in focal adhesion signaling contribute to EDMD disease, particularly in tendons and muscle. Interestingly these results raise the possibility that a second p130Cas-dependent signal, speculated to involve Src or Abl, is required for Lmo7 to control a subset of genes, including those that encode emerin, Rbl1 and mef2C.
Acknowledgements

The authors are grateful to Yoshimi Takai (Osaka University, Japan) for the rLmo7 constructs and Lmo7 antibodies, Patricia Keely (University of Wisconsin) for the wildtype and p130Cas(-/-) MEFs and myc constructs, and the Wilson Lab for helpful discussions.
References

Arnesen, S. M. and M. A. Lawson (2006). "Age-related changes in focal adhesions lead to altered cell behavior in tendon fibroblasts." Mech Ageing Dev 127(9): 726-32.

Berk, J. M., K. E. Tifft, et al. (2013). "The nuclear envelope LEM-domain protein emerin." Nucleus In press.

Boutet, S. C., M. H. Disatnik, et al. (2007). "Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors." Cell 130(2): 349-62.

Camarata, T., J. Krcmery, et al. (2010). "Pdlim7 (LMP4) regulation of Tbx5 specifies zebrafish heart atrio-ventricular boundary and valve formation." Dev Biol 337(2): 233-45.

Cary, L. A., D. C. Han, et al. (1998). "Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration." J Cell Biol 140(1): 211-21.

Choquet, D., D. P. Felsenfeld, et al. (1997). "Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages." Cell 88(1): 39-48.

Chrzanowska-Wodnicka, M. and K. Burridge (1996). "Rho-stimulated contractility drives the formation of stress fibers and focal adhesions." J Cell Biol 133(6): 1403-15.

Dawid, I. B., J. J. Breen, et al. (1998). "LIM domains: multiple roles as adapters and functional modifiers in protein interactions." Trends Genet 14(4): 156-62.

Dedeic, Z., M. Cetera, et al. (2011). "Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes." J Cell Sci 124(Pt 10): 1691-702.

Defilippi, P., P. Di Stefano, et al. (2006). "p130Cas: a versatile scaffold in signaling networks." Trends Cell Biol 16(5): 257-63.

Emerson, L. J., M. R. Holt, et al. (2009). "Defects in cell spreading and ERK1/2 activation in fibroblasts with lamin A/C mutations." Biochim Biophys Acta 1792(8): 810-21.

Emery, A. E. (1987). "X-linked muscular dystrophy with early contractures and cardiomyopathy (Emery-Dreifuss type)." Clin Genet 32(5): 360-7.

Garton, A. J., M. R. Burnham, et al. (1997). "Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition." Oncogene 15(8): 877-85.

Grashoff, C., B. D. Hoffman, et al. (2010). "Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics." Nature 466(7303): 263-6.

Haque, F., D. Mazzeo, et al. (2010). "Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes." J Biol Chem 285(5): 3487-98.

Harte, M. T., J. D. Hildebrand, et al. (1996). "p130Cas, a substrate associated with v-Src and v-Crk, localizes to focal adhesions and binds to focal adhesion kinase." J Biol Chem 271(23): 13649-55.

Hervy, M., L. Hoffman, et al. (2006). "From the membrane to the nucleus and back again: bifunctional focal adhesion proteins." Curr Opin Cell Biol 18(5): 524-32.

Ho, C. Y., D. E. Jaalouk, et al. (2013). "Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics." Nature 497(7450): 507-11.

Holaska, J. M., A. K. Kowalski, et al. (2004). "Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane." PLoS Biol 2(9): E231.

Holaska, J. M., K. K. Lee, et al. (2003). "Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro." J Biol Chem 278(9): 6969-75.
Holaska, J. M., S. Rais-Bahrami, et al. (2006). "Lmo7 is an emerin-binding protein that regulates the transcription of emerin and many other muscle-relevant genes." *Hum Mol Genet* **15**(23): 3459-72.

Honda, H., H. Oda, et al. (1998). "Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas." *Nat Genet* **19**(4): 361-5.

Howe, A. K., A. E. Aplin, et al. (2002). "Anchorage-dependent ERK signaling--mechanisms and consequences." *Curr Opin Genet Dev* **12**(1): 30-5.

Hu, Q., C. Guo, et al. (2011). "LMO7 mediates cell-specific activation of the Rho-myocardin-related transcription factor-serum response factor pathway and plays an important role in breast cancer cell migration." *Mol Cell Biol* **31**(16): 3223-40.

Johnson, C. P., H. Y. Tang, et al. (2007). "Forced unfolding of proteins within cells." *Science* **317**(5838): 663-6.

Kanchanawong, P., G. Shtengel, et al. "Nanoscale architecture of integrin-based cell adhesions." *Nature* **468**(7323): 580-4.

Kanner, S. B., A. B. Reynolds, et al. (1991). "The SH2 and SH3 domains of pp60src direct stable association with tyrosine phosphorylated proteins p130 and p110." *Embo J* **10**(7): 1689-98.

Kawauchi, K., W. W. Tan, et al. (2012). "p130Cas-dependent actin remodelling regulates myogenic differentiation." *Biochem J* **445**(3): 323-32.

Kim, W., S. Kook, et al. (2004). "The 31-kDa caspase-generated cleavage product of p130cas functions as a transcriptional repressor of E2A in apoptotic cells." *J Biol Chem* **279**(9): 8333-42.

Krcmery, J., T. Camarata, et al. (2010). "Nucleocyttoplasmic functions of the PDZ-LIM protein family: new insights into organ development." *Bioessays* **32**(2): 100-8.

Kuo, J. C., X. Han, et al. (2011). "Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation." *Nat Cell Biol* **13**(4): 383-93.

Kurooka, H. and Y. Yokota (2005). "Nucleo-cyttoplasmic shuttling of Id2, a negative regulator of basic helix-loop-helix transcription factors." *J Biol Chem* **280**(6): 4313-20.

Lammerding, J., J. Hsiao, et al. (2005). "Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells." *J Cell Biol* **170**(5): 781-91.

Lasorella, A. and A. Iavarone (2006). "The protein ENH is a cytoplasmic sequestration factor for Id2 in normal and tumor cells from the nervous system." *Proc Natl Acad Sci U S A* **103**(13): 4976-81.

Lee, K. K., T. Haraguchi, et al. (2001). "Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF." *J Cell Sci* **114**(Pt 24): 4567-73.

Lo, C. M., H. B. Wang, et al. (2000). "Cell movement is guided by the rigidity of the substrate." *Biophys J* **79**(1): 144-52.

Luo, G., A. H. Herrera, et al. (1999). "Molecular interactions of N-RAP, a nebulin-related protein of striated muscle myotendon junctions and intercalated disks." *Biochemistry* **38**(19): 6135-43.

Markiewicz, E., K. Tilgner, et al. (2006). "The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus." *Embo J* **25**(14): 3275-85.

Meinke, P., T. D. Nguyen, et al. (2011). "The LINC complex and human disease." *Biochem Soc Trans* **39**(6): 1693-7.

Mislow, J. M., J. M. Holaska, et al. (2002). "Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro." *FEBS Lett* **525**(1-3): 135-40.

Nix, D. A., J. Fradelizi, et al. (2001). "Targeting of zyxin to sites of actin membrane interaction and to the nucleus." *J Biol Chem* **276**(37): 34759-67.
Ooshio, T., K. Irie, et al. (2004). "Involvement of LMO7 in the association of two cell-cell adhesion molecules, nectin and E-cadherin, through afadin and alpha-actinin in epithelial cells." J Biol Chem 279(30): 31365-73.

Ott, E. B., N. M. van den Akker, et al. (2008). "The lim domain only protein 7 is important in zebrafish heart development." Dev Dyn 237(12): 3940-52.

Petch, L. A., S. M. Bockholt, et al. (1995). "Adhesion-induced tyrosine phosphorylation of the p130 src substrate." J Cell Sci 108 (Pt 4): 1371-9.

Pines, M., R. Das, et al. (2012). "Mechanical force regulates integrin turnover in Drosophila in vivo." Nat Cell Biol 14(9): 935-43.

Sadler, I., A. W. Crawford, et al. (1992). "Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton." J Cell Biol 119(6): 1573-87.

Sakai, R., A. Iwamatsu, et al. (1994). "A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner." Embo J 13(16): 3748-56.

Sawada, Y., M. Tamada, et al. (2006). "Force sensing by mechanical extension of the Src family kinase substrate p130Cas." Cell 127(5): 1015-26.

Schlaepfer, D. D., M. A. Broome, et al. (1997). "Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins." Mol Cell Biol 17(3): 1702-13.

Shikata, Y., A. Rios, et al. (2005). "Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells." Exp Cell Res 304(1): 40-9.

Simon, D. N. and K. L. Wilson (2011). "The nucleoskeleton as a genome-associated dynamic network of networks." Nat Rev Mol Cell Biol 12(11): 695-708.

Tanaka-Okamoto, M., K. Hori, et al. (2009). "Increased susceptibility to spontaneous lung cancer in mice lacking LIM-domain only 7." Cancer Sci 100(4): 608-16.

Tiff, K. E., K. A. Bradbury, et al. (2009). "Tyrosine phosphorylation of nuclear-membrane protein emerin by Src, Abl and other kinases." J Cell Sci 122(Pt 20): 3780-90.

Turner, C. E. and J. T. Miller (1994). "Primary sequence of paxillin contains putative SH2 and SH3 domain binding motifs and multiple LIM domains: identification of a vinculin and pp125Fak-binding region." J Cell Sci 107 (Pt 6): 1583-91.

Uchino, R., Y. K. Nonaka, et al. (2013). "Loss of Drosophila A-type lamin C initially causes tendon abnormality including disintegration of cytoskeleton and nuclear lamina in muscular defects." Dev Biol 373(1): 216-27.

Xu, B., G. Song, et al. (2012). "RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells." J Cell Physiol 227(6): 2722-9.

Yamada, A., K. Irie, et al. (2004). "Requirement of the actin cytoskeleton for the association of nectins with other cell adhesion molecules at adherens and tight junctions in MDCK cells." Genes Cells 9(9): 843-55.

Yi, J., S. Kloecker, et al. (2002). "Members of the Zyxin family of LIM proteins interact with members of the p130Cas family of signal transducers." J Biol Chem 277(11): 9580-9.

Zhang, Q., C. D. Ragnauth, et al. (2005). "Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle." J Cell Sci 118(Pt 4): 673-87.
FIGURE LEGENDS

Figure 1. Endogenous Lmo7 co-localizes with vinculin and pFAK at focal adhesions in HeLa cells. HeLa cells plated on fibronectin-coated coverslips for two hours (A,B) or other times (30 min or six hours; C) were fixed and stained by indirect immunofluorescence for endogenous Lmo7 (green) plus endogenous vinculin or pFAK (red). Cells were imaged by epifluorescence (A) or TIRF (B,C) microscopy, and co-localization was highlighted by cross-correlation analysis. Scale bars, 10 µm. Insets show each white-boxed region at higher magnification.

Figure 2. Lmo7 association with focal adhesion protein p130Cas. (A) Schematic of the rat Lmo7a polypeptide and GFP-, Flag- or GST-fused constructs used in this study. CH, predicted Calponin Homology domain. F, predicted F-box domain. PDZ, predicted PSD95/Dlg1/Zo-1 domain. NLS, predicted nuclear localization signal. LIM, LIM-domain. Boxes above rLmo7a indicate regions sufficient for direct binding to α-actinin (Ooshio, Irie et al. 2004), afadin (Ooshio, Irie et al. 2004) or emerin (Holaska, Rais-Bahrami et al. 2006). (B) Whole cell protein lysates from HeLa cells that expressed GFP or GFP-rLmo7a for two days were immunoprecipitated with GFP antibodies, resolved by SDS-PAGE and immunoblotted with antibodies specific for paxillin or p130Cas. I, input (5% loaded). P, pellet (80% loaded). (C) Purified recombinant GST-fused Lmo7 polypeptides, resolved by SDS-PAGE and stained with Coomassie. (D-F) GST-pulldowns from whole HeLa cell lysates. Each GST-fused Lmo7 polypeptide (GST-CH, GST-F-box, GST-PDZ, GST-LIM), or GST alone, was incubated with HeLa cell lysates, then bound to glutathione, washed, eluted and resolved by SDS-PAGE. Bound proteins were detected in separate gels that were either stained with Coomassie (D), or immunoblotted for p130Cas (E) or paxillin (F). The black boxes in (D) indicate GST-fused proteins that migrated as SDS-resistant dimers.
Figure 3. p130Cas associates with Lmo7 in HeLa cells and MEFs. (A) HeLa cells that transiently expressed Myc-tagged p130Cas were immunoprecipitated with Myc antibodies and immunoblotted for endogenous Lmo7. (B,C) HeLa cells or MEFs were plated on fibronectin-coated coverslips two hours, fixed and double-stained by indirect immunofluorescence for endogenous Lmo7 (green) and endogenous p130Cas (red), then imaged by epifluorescence (B) or TIRF microscopy (C). Scale bars, 10 µm. Insets show each white-boxed region at higher magnification.

Figure 4. p130Cas regulates Lmo7 localization and Lmo7-dependent transcription. (A) Indirect immunofluorescence images of wildtype (control) and p130Cas null (-/-) MEFs plated on fibronectin for two hours, then fixed and stained for endogenous Lmo7 (green) and pFAK (red), and imaged by epifluorescence microscopy. Scale bars, 10 µm (1 µm in insets). Insets show each white-boxed region at higher magnification. (B) Immunoblot of nuclear versus cytoplasmic fractions of wildtype (control) and p130Cas null (-/-) MEFs, resolved by SDS-PAGE and probed with antibodies specific for Lmo7, A-type lamins (nuclear marker) or β-tubulin (n=3). (C) Quantification of the nuclear-to-cytoplasmic ratio of Lmo7 in wildtype (control) and p130Cas-null (-/-) MEFs (*p<0.05, paired t-test, n=3). (D) Quantitative real-time PCR analysis of mRNAs from genes known to be activated by Lmo7 (Mef2C, Id2, Crebbp, Pcaf, Mbnl, Mef2B, emerin) or repressed by Lmo7 (Mef2D, Rbl1), in control or p130Cas(-/-) MEFs. *p<0.05 by the paired t-test; n=4.
Figure 1

Endogenous Lmo7 co-localizes with vinculin and pFAK at focal adhesions in HeLa cells.

HeLa cells plated on fibronectin-coated coverslips for two hours (A,B) or other times (30 min or six hours; C) were fixed and stained by indirect immunofluorescence for endogenous Lmo7 (green) plus endogenous vinculin or pFAK (red). Cells were imaged by epifluorescence (A) or TIRF (B,C) microscopy, and co-localization was highlighted by cross-correlation analysis. Scale bars, 10 μm. Insets show each white-boxed region at higher magnification.
Figure 1

A

\(\alpha \) Lmo7 (green) FA (red) Merge Cross-correlation Inset

2 hours

\(\alpha \) Vinculin

\(\alpha \) pFAK

B

\(\alpha \) Lmo7 (green) FA (red) Merge Cross-correlation Inset

2 hours

\(\alpha \) Vinculin

\(\alpha \) pFAK

C

\(\alpha \) Lmo7 (green) \(\alpha \) pFAK (red) Merge Cross-Correlation Inset

30 min

6 hours
Figure 2

Lmo7 association with focal adhesion protein p130Cas.

(A) Schematic of the rat Lmo7a polypeptide and GFP-, Flag- or GST-fused constructs used in this study. CH, predicted Calponin Homology domain. F, predicted F-box domain. PDZ, predicted PSD95/Dlg1/Zo-1 domain. NLS, predicted nuclear localization signal. LIM, LIM-domain. Boxes above rLmo7a indicate regions sufficient for direct binding to α-actinin (Ooshio, Irie et al. 2004), afadin (Ooshio, Irie et al. 2004) or emerin (Holaska, Rais-Bahrami et al. 2006). (B) Whole cell protein lysates from HeLa cells that expressed GFP or GFP-rLmo7a for two days were immunoprecipitated with GFP antibodies, resolved by SDS-PAGE and immunoblotted with antibodies specific for paxillin or p130Cas. I, input (5% loaded). P, pellet (80% loaded). (C) Purified recombinant GST-fused Lmo7 polypeptides, resolved by SDS-PAGE and stained with Coomassie. (D-E) GST-pulldowns from whole HeLa cell lysates. Each GST-fused Lmo7 polypeptide (GST-CH, GST-F-box, GST-PDZ, GST-LIM), or GST alone, was incubated with HeLa cell lysates, then bound to glutathione, washed, eluted and resolved by SDS-PAGE. Bound proteins were detected in separate gels that were either stained with Coomassie (D), or immunoblotted for p130Cas (E) or paxillin (F). The black boxes in (D) indicate GST-fused proteins that migrated as SDS-resistant dimers.
Figure 2

A

rLmo7a

CH	549-590
17-129	1076-1152
1659-1723	

B

GFP

GFP-

rLmo7a

α-actinin binding

Afadin binding

Emerin binding

GST CH

GST PDZ

GST LIM

75-

α p130Cas

α paxillin

C

D

E

F

GST fused to:

CH F PDZ LIM

GST fused to:

CH F PDZ LIM

GST fused to:

CH F PDZ LIM

α p130Cas

α paxillin

Coomassie

Coomassie

Coomassie
Figure 3

p130Cas associates with Lmo7 in HeLa cells and MEFs

(A) HeLa cells that transiently expressed Myc-tagged p130Cas were immunoprecipitated with Myc antibodies and immunoblotted for endogenous Lmo7. (B,C) HeLa cells or MEFs were plated on fibronectin-coated coverslips two hours, fixed and double-stained by indirect immunofluorescence for endogenous Lmo7 (green) and endogenous p130Cas (red), then imaged by epifluorescence (B) or TIRF microscopy (C). Scale bars, 10 μm. Insets show each white-boxed region at higher magnification.
Figure 3

A

B α Lmo7 (green) α p130Cas (red) Merge Cross-correlation Inset

HeLa

MEF

C

HeLa

MEF
Figure 4

p130Cas regulates Lmo7 localization and Lmo7-dependent transcription

(A) Indirect immunofluorescence images of wildtype (control) and p130Cas null (-/-) MEFs plated on fibronectin for two hours, then fixed and stained for endogenous Lmo7 (green) and pFAK (red). Scale bars, 10 μm (1 μm in insets; boxed). (B) Immunoblot of nuclear versus cytoplasmic fractions of wildtype (control) and p130Cas null (-/-) MEFs, resolved by SDS-PAGE and probed with antibodies specific for Lmo7, A-type lamins (nuclear marker), or β-tubulin (n=3). (C) Quantification of the nuclear-to-cytoplasmic ratio of Lmo7 in wildtype (control) and p130Cas-null (-/-) MEFs (*p<0.05, paired t-test, n=3). (D) Quantitative real-time PCR analysis of mRNAs from genes known to be activated by Lmo7 (Mef2C, Id2, Crebbp, Pcaf, Mbnl, Mef2B, emerin) or repressed by Lmo7 (Mef2D, Rbl1), in control or p130Cas(-/-) MEFs. *p<0.05 by the paired t-test; n =4.
Figure 4

A

\(\alpha \)-Lmo7 \(\alpha \)-pFAK Merge Inset

WT MEFs

p130Cas-/- MEFs

B

	WT C	WT N	-/- C	-/- N
225				
150				
52				
52				

\(\alpha \) Lmo7 \(\alpha \) Lamin A/C \(\alpha \) \(\beta \)-tubulin

C

Nuclear/Cytoplasmic Lmo7

Wild-type p130Cas-/-

D

Normalized Expression

	Wild-type	p130Cas-/-
MuRF1		
Id2		
Cebp	*	*
Pca1	*	*
MsnH1		
Msn2B		
emnin		

Normalized Expression

	MuRF1	Id2
p120D	*	
Rb11		*