Abstract

Background: Previous study has reported that Fuyuan Xingnao Decoction (FYXND) can be utilized for the treatment of patients with diabetes mellitus (DM) combined cerebral infarction (CI) effectively.

Methods: We will search from the following databases of MEDLINE, EMBASE, Cochrane Library, PsycINFO, Global Health, Web of Science, Allied and Complementary Medicine Database, Chinese Biomedical Literature Database, and China National Knowledge Infrastructure. All databases will be searched from the inception to the present without language limitation. Two independent authors will perform literature selection, information collection, and methodological quality assessment. Statistical analysis will be carried out using RevMan 5.3 software.

Results: This study will provide accurate results on the effectiveness and safety of FYXND on DM and CI through primary and secondary outcomes. The primary outcome is neurological deficit. The secondary outcomes consist of fasting blood glucose, hemoglobin Alc, fasting insulin, quality of life, and adverse effects.

Conclusions: This well-designed study will establish high quality evidence of the effectiveness and safety of FYXND for DM and CI to facilitate the clinical practice and guideline development.

Abbreviations: CI = cerebral infarction, DM = diabetes mellitus, FYXND = Fuyuan Xingnao Decoction, RCTs = randomized controlled trials.

Keywords: cerebral infarction, diabetes mellitus, effectiveness, Fuyuan Xingnao Decoction, randomized controlled trial, safety

1. Introduction

Diabetes mellitus (DM) is a metabolic disorder and an independent risk factor of first stroke, and also an important factor for cerebral infarction (CI). It is characterized by elevated blood glucose and has been a public health problem. It has been estimated that the incidence in patients with DM is 2.5 to 3.5 times higher than patients with non-DM. In addition, about 20% of patients with CI have DM.

There are several managements for patients with DM and CI. These interventions include mecobalamin, α-Lipoic acid, and Chinese herbal medicine (such as Fuyuan Xingnao Decoction [FYXND], Huoxue Jiangtang Decoction). Of those, FYXND is widely used for the treatment of patients with DM and CI. However, its efficacy is still inconclusive. Therefore, this study will firstly assess the efficacy and safety of FYXND for the treatment of patients with DM and CI.

2. Methods

2.1. Criteria for including studies

2.1.1. Types of studies. All randomized controlled trials (RCTs) of FYXND for treating patients with DM and CI will be considered for inclusion. However, any other studies, such as animal studies, non-clinical studies, non-controlled studies, and quasi-RCTs will all be excluded.

2.1.2. Types of interventions. The patients in the experimental group must receive FYXND.
The patients in the control group can receive any treatments, except any forms of FYXND.

2.1.3. Types of patients. Participants diagnosed with DM combined CI will be included without any limitations of race, sex, and age.

2.1.4. Types of outcome measurements. The primary outcome is neurological deficit, as measured by National Institutes of Health Stroke Scale or other scales. The secondary outcomes consist of fasting blood glucose; hemoglobin A1c; fasting insulin; quality of life, as assessed by activities of daily living; and adverse effects.

2.2. Search strategy

A systematic search of the following databases from the inception to the present without language limitation to identify relevant studies: MEDLINE, EMBASE, Cochrane Library, PsycINFO, Global Health, Web of Science, Allied and Complementary Medicine Database, Chinese Biomedical Literature Database, and China National Knowledge Infrastructure. The search strategy from MEDLINE is presented in Table 1. Any similar search strategies for other electronic databases will be adapted.

| Table 1: Search strategy utilized for MEDLINE database. |
|---------------------------------|---|
Number	Search terms
1	Diabetes mellitus
2	Diabetes
3	Diabetes mellitus, ketoacidosis prone
4	Diabetes, autoimmune
5	Diabetes mellitus, juvenile onset
6	Diabetes mellitus, sudden onset
7	Diabetes mellitus, insulin dependent
8	Or 1–7
9	Stroke
10	Cerebrovascular accident
11	CVAs
12	Brain vascular accident
13	Apoplexy
14	Apoplexia
15	Cerebral infarction
16	Brain infarction
17	Or 9–16
18	Herbal medicine
19	Chinese herbal medicine
20	Herbal formulation
21	Fuyuan Yinguo Decoction
22	Or 18–21
23	Randomized controlled trials
24	Clinical trials
25	Random
26	Randomly
27	Control
28	Allocation
29	Placebo
30	Blind
31	Trials
32	RCTs
33	Clinical study
34	Or 23–33
35	6 and 17 and 22 and 34

RCTs = randomized controlled trials.

Additionally, we will also search clinical registry, conference proceedings, and reference lists of included studies.

2.3. Data collection and analysis

2.3.1. Study selection. Two independent authors will scan the titles and abstracts yielded from the electronic databases searches against the pre-designed inclusion criteria. If the titles and abstracts indicate that literature is uncertain, the full-text records will be read further to help decide. If there is still some insufficient information for a decision to be made about eligibility, we will inquire additional information from the primary study authors. All excluded studies with record reasons will be presented. Any disagreements will be resolved by mutual discussion with the help of a third author. The process of study selection will be showed in flowchart.

2.3.2. Data extraction. Two independent authors will collect data from all eligible studies. Any discrepancy will be settled down by a third author through discussions or consultations with a third author. We will collect following information: study characteristics, including title, first author, year of publication, location, language, eligibility criteria, etc; patient characteristics, including sex, age, comorbidities, sample size, etc; study setting; study methods, including randomization, blinding, concealment, etc; treatment details; outcome measurements, safety, conflict of interests, and others.

2.3.3. Missing data dealing with. Where the data is unclear, insufficient, or missing, original authors of primary eligible studies will be contacted to require those data. If we cannot achieve that data, only available data will be analyzed and will be discussed in the text.

2.3.4. Risk of bias assessment. We will utilize the Cochrane risk of bias tool for the methodological quality assessment for each eligible study. Seven aspects of this tool will be evaluated, and each item will be further assessed as low, unclear, and high risk of bias. Two independent authors will perform risk of bias assessment, and any different opinions will be solved through discussion with a third senior author.

2.3.5. Methods of treatment measurements. We will apply risk ratio and 95% confidence intervals for dichotomous data, and mean difference or standardized mean difference for continuous data.

2.3.6. Assessment of heterogeneity. I² statistics will be used for identifying heterogeneity for each outcome among eligible studies. I² ≤ 50% indicates acceptable heterogeneity, while I² > 50% means significant heterogeneity.

2.3.7. Assessment of reporting bias. We will assess the possibility of reporting bias using funnel plot and Egger regression test if > 10 eligible studies are included.28,29

2.4. Data synthesis

We will use RevMan 5.3 software for statistical analysis. If the heterogeneity is acceptable (I² ≤ 50%), a fixed-effect model will be used for data synthesis, and meta-analysis will be carried out. On the other hand, if the heterogeneity is significant (I² > 50%), a random-effect model will be utilized for data synthesis, and subgroup analysis will be performance. If there is still significant heterogeneity after subgroup, a narrative description of the outcome results will be reported instead of meta-analysis.
2.4.1. **Subgroup analysis.** We will perform subgroup analysis and meta-regression to identify any sources of substantial heterogeneity if necessary according to different types of treatments, comparators, and outcome measurements.

2.4.2. **Sensitivity analysis.** We will investigate the robustness of pooled results by removing studies with high risk of bias.

3. Discussion

Numerous studies have reported that FYXND can be used for the treatment of patients with DM and CI effectively. However, no study has systematically assessed the efficacy and safety of FYXND for DM and CI. The results of this study will summarize the latest evidence of FYXND for treating patients with DM and CI. This study will also provide helpful evidence and research directions for further researchers and clinicians.

Author contributions

Conceptualization: Chao Jiang, Ting Wang, Zhen Ma, Bang-jiang Fang.

Data curation: Ting Wang, Bang-jiang Fang.

** Formal analysis:** Chao Jiang, Ting Wang, Zhen Ma.

** Funding acquisition:** Bang-jiang Fang.

Investigation: Bang-jiang Fang.

Methodology: Ting Wang, Zhen Ma.

Project administration: Bang-jiang Fang.

Resources: Chao Jiang, Ting Wang, Zhen Ma.

Software: Chao Jiang, Ting Wang, Zhen Ma.

Supervision: Bang-jiang Fang.

Validation: Chao Jiang, Ting Wang, Zhen Ma, Bang-jiang Fang.

Visualization: Chao Jiang, Ting Wang, Zhen Ma, Bang-jiang Fang.

Writing – original draft: Chao Jiang, Ting Wang, Zhen Ma, Bang-jiang Fang.

Writing – review & editing: Chao Jiang, Ting Wang, Zhen Ma, Bang-jiang Fang.

References

[1] Update of ADA’s major position statementStandards of medical care in diabetes. Introduction. Diabetes Care 2011;34(suppl):S1–2.

[2] Diagnosis, classification of diabetes mellitusAmerican Diabetes Association. Diabetes Care 2014;37(suppl):S81–90.

[3] Idriis I, Thomson GA, Sharma JC. Diabetes mellitus and stroke. Int J Clin Pract 2006;60:48–56.

[4] NCD Risk Factor Collaboration (NCD-RisC)Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016;387:1513–30.

[5] Moreno PR, Fuster V. New aspects in the pathogenesis of diabetic atherothrombosis. J Am Coll Cardiol 2004;44:2293–300.

[6] Jin WA, Zai-li LI, Peng LI, et al. The screening of vascular risk factors for cognitive dysfunction in population with high risk of stroke. Chin J Cont Neurol Neurosurg 2017;17:138–42.

[7] Jakobsen S, Bergstrøm L, Bjørklund F, et al. Risk of ischemic stroke after an acute myocardial infarction in patients with diabetes mellitus. Circ Cardiowlas Qual Outcomes 2014;7:95–101.

[8] Huang YH, Xia ZX, Wei W, et al. The impact of leucoaraiosis on neurological function recovery in elderly patients with acute cerebral infarction: clinical study involving 279 Chinese patients. J Int Med Res 2014;42:857–62.

[9] Qiu W, Zhao HX, Liu DL, et al. Effect of huxue jiangtang decoction on diabetes mellitus with cerebrovascular disease. Chin Contemp Med 2019;26:26–9.

[10] Ding SG. Clinical efficacy of mecobalamin in the treatment of 132 patients with diabetic cerebrovascular disease and peripheral neuropathy. Chin Prescrip Drugs 2017;15:45–6.

[11] Lei J, Wang JF, Zhang L, et al. Relationship between homocysteine and acute cerebral infarction complicated with diabetes mellitus and hypertension. Gansu Med J 2017;36:618–21.

[12] Zheng ZT. Therapeutic effect of Yinxingdamo on diabetes mellitus complicated with ischemic cerebrovascular disease. New World Diab 2017;20:87–8.

[13] Han Y, Wang Z, Zhu M, et al. Study of platelet membrane glycoproteins and its fibrinogen binding reaction in patients with cerebral infarction and diabetes mellitus. Zhonghua Xue Ye Xue Za Zhi 2000;21:129–31.

[14] Long Y, Zhan Q, Yuan M, et al. The expression of microRNA-223 and FAMSC in cerebral patients with diabetes mellitus. Cardiovasc Toxicol 2017;17:42–8.

[15] Guo YB, Ji TF, Zhou HW, et al. Effects of microRNA-21 on nerve cell regeneration and neural function recovery in diabetes mellitus combined with cerebral infarction rats by targeting PDCD4. Mol Neurobiol 2018;55:2494–505.

[16] Kobayashi S. Progress in diagnosis of and therapy for cerebral infarction in patients with diabetes mellitus. Nihon Naika Gakkai Zasshi 2004;93:1532–8.

[17] Cambon H, Derouesné C, Yelnik A, et al. Effect of diabetes mellitus and blood glucose on the size of cerebral infarction and causes of death. Neuropathological study of 77 cases of infarction in the sylvian artery area. Rev Neurol (Paris) 1991;147:727–34.

[18] Du L, Ma J, Zhang X. Higher serum uric acid may contribute to cerebral infarction in patients with type 2 diabetes mellitus: a meta-analysis. J Mol Neurosci 2017;61:25–31.

[19] Zhao L, Hu FX. α-Lipoic acid treatment of aged type 2 diabetes mellitus complicated with acute cerebral infarction. Eur Rev Med Pharmacol Sci 2014;18:3715–9.

[20] Chen J, Ma Y, Liang H. Effect of different injections of Chinese herbal medicine on stress hormones and immune cell factors in patients of type 2 diabetes mellitus complicated with acute cerebral infarction. Zhongguo Zhong Xi Yi Jie He Za Zhi 2000;20:815–7.

[21] Dai ZY. The effect and safety of Fuyuan Xingnao Decoction in treating diabetes mellitus complicated with cerebral infarction. China Contemp Med 2015;7:2336–7.

[22] Wang ZF. Clinical observation of Fuyuan Xingnao Decoction in treating diabetes mellitus with cerebral infarction. Guangming Chin Med 2018;33:1736–7.

[23] Yang LF. Therapeutic effect of Fuyuan Xingnao Decoction combined with Yinxingdamo Injection on type 2 diabetes mellitus complicated with cerebral infarction. J Trad Chin Med 2018;33:741–6.

[24] Xu ZL. Clinical efficacy of Fuyuan Xingnao Decoction in the treatment of diabetic cerebral infarction. Psychol Month 2019;14:113.

[25] Wang ZH. Clinical observation of Fuyuan Xingnao Decoction in treating patients with cerebral infarction. J Herbs Univ Trad Chin Med 2017;19:70–3.

[26] Wang ZH. Therapeutic effect of Fuyuan Huoxue Decoction on diabetic patients with cerebral infarction. Shaxinni Chin Med 2015;36:470–1.

[27] He SH. Research on the mechanism of Fuyuan Xingnao Decoction in the treatment of diabetes complicated with cerebral infarction. China Continu Med Educ 2015;7:233–4.

[28] Sutton AJ, Duval SJ, Tweedie RL, et al. Empirical assessment of effect of publication bias on meta-analyses. BMJ 2000;320:1574–7.

[29] Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.