Research Article

Anticoagulant and antiplatelet properties of the latex of unripe fruits of *Carica papaya* L. (Caricaceae)

Frederick Asare¹, George Asumeng Koffuor¹*, Wilson B. Nyansah¹, Linda Gyanfosu¹, Akua A. Abruquah²

¹Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. ²Department of Pharmaceutical Sciences, Faculty of Health Sciences, Kumasi Polytechnic, Kumasi, Ghana

Received: 06 October 2015
Accepted: 14 November 2015

*Correspondence to:
Dr. George Asumeng Koffuor,
Email: gkoffuor@yahoo.com

ABSTRACT

Background: Anticoagulants have found use clinically in the management of coagulation disorders. The aim of this study therefore was to ascertain the anticoagulant and antiplatelet properties of the latex of the unripe fruits of *Carica papaya* (CPUFL) using *in vitro* and *in vivo* models.

Methods: CPUFL was screened for phytochemicals. The time taken, for 100 μL quantities of plasma or whole blood mixed with 100, 300, and 600 μg of CPUFL and standard assay reagents, to form clots in the prothrombin time (PT), activated partial thromboplastin time (aPTT), and clotting time tests were determined (using 1 mg rivaroxaban, 50 IU heparin, or plasma as references). The time taken for cessation of induced marginal ear vein bleeding of New Zealand White rabbits pre-treated orally with either CPUFL (4-12 mg/kg), 2 mg/kg aspirin, or 1 ml/kg distilled water, or 1.5 mg/kg heparin intraperitoneally for 30 mins was also determined.

Results: Saponins, tannins, glycosides, terpenoids, flavonoids, and alkaloids were present in CPUFL. Treatment with CPUFL (100-600 µg), increased both PT and aPTT significantly (p≤0.01-0.0001). There was also a significant increase (p≤0.0001) in clotting time of whole blood at 600 µg/100 µL. CPUFL treatment (4, 8, and 12 mg/kg) showed a dose-dependent increase (p≤0.0001) in bleeding time. Effect between CPUFL, heparin, and aspirin treatment were not significantly different.

Conclusion: The latex of unripe fruits of *C. papaya* L. exhibited anticoagulant and antiplatelet properties suggesting its potential usefulness in the management of blood coagulation disorders.

Keywords: Activated partial thromboplastin time, Bleeding time, Clotting time, Marginal ear vein, Prothrombin time

INTRODUCTION

Anticoagulants are chemical agents that inhibit blood clotting.¹ They are categorized broadly as: agents that inhibit clotting factors in the intrinsic pathway through enhancing the effect of antithrombin III (AT III) (e.g., unfractionated heparin and low molecular weight heparin), agents that exert their anticoagulant effect by inhibiting Vitamin K reductase which invariably prevents the gamma-carboxylation of glutamic acid residue of factors II, VII, IX, and X (e.g., warfarin), agents that inhibit specific clotting factors (e.g., rivaroxaban - factor Xa inhibitor, or dabigatran - thrombin inhibitor), and agents that prevent platelet activation and aggregation thereby preventing primary hemostasis (e.g., aspirin, ticlopidine, tirofiban, and clopidogrel).² Anticoagulants have found use clinically in the management of cardiovascular disorders.

In 2010, there were 52.8 million deaths globally with non-communicable diseases accounting for 34.5 million of these deaths.³ Cardiovascular diseases were the leading contributor to the deaths caused by non-communicable diseases with thrombosis being the most common underlying pathology of the three major cardiovascular disorders, i.e., ischemic heart disease (acute coronary syndrome), stroke, and venous thromboembolism. Ischemic heart disease (7.0 million
deaths) and stroke (5.9 million deaths) collectively caused one in four deaths worldwide.3

Drugs currently used as anticoagulants have various limitations, thus being far from ideal.4 Warfarin has numerous interactions with diet and other medications, requires complex individualized dosing, and has a delayed onset of action.5 Unfractionated heparins and low-molecular-weight heparins, which require parenteral administration, pose a risk of heparin-induced thrombocytopenia, osteoporosis, and hemorrhage.6 Bleeding is the major toxicity of the antiplatelet agents, but thrombocytopenia and neutropenia can also occur.7 Such significant drawbacks make these agents problematic and inconvenient for clinicians and patients alike, thus prompting research into novel drugs that could offer such advantages as oral mode of administration, more predictable anticoagulant response, greater specificity with no requirement for AT action, and no need for routine patient monitoring.7,9 Traditionally, some medicinal plants have shown good anticoagulant effects comparable to orthodox drugs.10 There is, therefore, a need to scientifically validate these effects for laboratory and medical practice. One such plant with this property is Carica papaya.

C. papaya L. (Caricaceae) has been extensively used in Ghana and other parts of the world as medication for various diseases including cardiovascular disorders. Major chemical compounds responsible for C. papaya remedies include vitamins, minerals, polysaccharides, proteolytic enzymes, citric acid, alkaloids, flavonoids, and proteins such as chemopapain, papain, and carpain. Different concentrations of those bioactive compounds render different parts of papaya a wide spectrum of medicinal uses.11 The present study, therefore, examined the anticoagulant and antiplatelet properties of the latex of unripe fruit of C. papaya by in vitro and in vivo experimental protocols.

METHODS

Collection of latex of unripe fruit of C. papaya

Fresh latex of the unripe fruit of C. papaya L. was collected from locally grown plants at Tepa, in the Ahafo Ano North District, of the Ashanti Region of Ghana, after pictures of the flowers, fruits, and whole plant had been sent to the herbarium of the Herbal Medicine Department of Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST) for verification. Between 0600 and 0800 hrs each day, 4-6 longitudinal incisions, 3 mm deep, were made on the unripe mature fruit surface (from fruit stalk end to the tip of the fruit) using a stainless steel knife. The exuded latex was allowed to run down the fruit and drip into collecting devices (plastic trays) raised on the trunk of the tree (Figure 1). The incisions were repeated 4 times at 3 days interval.12,13 The collected latex was spread on trays and left for drying at 40°C for 14 hrs. The latex was grinded using a laboratory grinding machine producing a greenish or gray powder and labeled C. papaya unripe fruit latex (CPUFL).

Drugs and chemicals used

The drugs and chemicals used in this study included: heparin (Mayne Pharma, Espana), soluble aspirin tablets 75 mg (Bristol laboratories Ltd., UK), rivaroxaban tablet 10 mg (Bayer Pharma AG, Berlin, Germany).

Animals

New Zealand White rabbits (1.3-2.4 kg) of either sex were used. These were obtained from the animal house of the Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, KNUST, Kumasi, Ghana. The rabbits were kept in standard metallic cages in the animal house under ambient humidity, temperature, and light conditions. They were allowed access to normal rabbit feed from Agricare Ltd., Tanoso, Kumasi and water ad-libitum.

Qualitative analysis of phytochemicals

Standard methods used for preliminary phytochemical screening were as described by Sofowora.14

In vitro anticoagulation assay

Blood (5 ml) each was drawn from the marginal ear vein of healthy rabbits by vein puncture. Nine parts of blood collected were mixed with one part of 3.2% sodium citrate. The blood was centrifuged at 5000 rpm for 10 mins, and the supernatant was collected immediately using a plastic pipette into a plastic tube (FL medical, Italy) and maintained at 2-8°C. It was then used for prothrombin time (PT) and activated partial thromboplastin time (aPTT) tests.
Effect of CPUFL on PT

PT test was performed by the standard PT assay Kit (Cypress Diagnostics, Langdorp - Belgium). 100 μL quantities of plasma were mixed with 100, 300, or 600 μg of CPUFL and incubated for 2 mins at 37°C. Clotting was then induced by the addition of 200 μL of the thromboplastin reagent (calcium rabbit brain thromboplastin: a freeze dried extract of rabbit brain thromboplastin, combined with calcium chloride, buffer, and stabilizers). The time of the formation of a clot was determined using a stopwatch. The determinations were also carried out using plasma and 1 mg rivaroxaban as controls. Seven determinations of the processes were done.

Effect of CPUFL on aPPT

This assay was performed using the standard aPTT assay Kit (Cypress diagnostics, Belgium). 100 μL quantities of plasma were mixed with 100, 300, or 600 μg of CPUFL after which 100 μL of pre-warmed aPTT assay reagent (lyophilized rabbit brain cephalin and micronized silica in buffered medium with stabilizer) was added and incubated for 3 mins at 37°C. Then 100 μL of 0.025M CaCl$_2$ was added and the time taken for the formation of the clot was recorded. The above procedure was repeated using only the plasma to serve as control and using heparin 50 IU as standard. The test was repeated seven times.

Effect of CPUFL on clotting time

Whole blood (5 ml) drawn from the marginal ear vein of the rabbit was divided into five plastic test tubes (FL medical, Italy) labeled I-V each with a quantity of 100 μL. In a water bath with gentle shaking; test tube I (positive control) was tested to determine the normal clotting time; test tube II (1 mg/100 μL rivaroxaban) was treated with 1 mg rivaroxaban to serve as reference; Test tubes III, IV, and V (CPUFL tests) were treated with 100, 300, and 600 μg of CPUFL. All the samples were incubated at 37°C for 1 min after which clotting was induced by adding 100 μL of 0.025 M CaCl$_2$ to counteract the sodium citrate and allow clotting to proceed. The time of the clot formation was recorded.

Effect of CPUFL on the bleeding time

An *in vivo* anticoagulant effect of CPUFL was investigated as previously described by Elg et al., with modifications. In this determination, rabbits were put into six groups (n=5) and pre-treated orally with either CPUFL (4, 8, or 12 mg/kg; p.o.), aspirin (2 mg/kg; p.o.), heparin (1.5 mg/kg; i.p.), or distilled water (1 ml/kg; p.o.) for 30 mins after which the marginal ear vein was picked with a twist lancet (Yancheng Huida Medical Instruments Co., Ltd., China) to cause bleeding. The bleeding vein was gently blotted with Whatman No. 1 filter paper, every 5 sec until cessation of bleeding (no bleeding for 1 min) was noted. The observation time was limited to 10 mins. Care was taken that no pressure was exerted on the bleeding vein that could cause hemostasis. A baseline bleeding time was determined before any drug treatment.

Statistical analysis

GraphPad Prism for Windows Version 5 (GraphPad® Software, San Diego, CA, USA) was used for all statistical analysis. All results are presented as mean±standard error of mean. Differences between groups were analyzed using one-way analysis of variance followed by Sidak’s multiple comparisons *post-hoc* test when comparing control with treatment groups.

RESULTS

Qualitative phytochemical analysis

The analysis revealed the presence of flavonoids, alkaloids, condensed tannins, saponins, cardiac glycosides, and terpenoids in CPUFL.

Effect of CPUFL on PT

The baseline PT obtained for the blood sample was 10.79±1.14 sec. After treatment with CPUFL (100-600 µg), PT values increased significantly (p≤0.01-0.001) and concentration-dependently; effects were similar to that of 1 mg rivaroxaban (Figure 2).

Effect of CPUFL on aPTT

The baseline aPTT was 41.43±4.68 sec. CPUFL treatments (100, 300, and 600 μg/100 μL caused significant (p≤0.0001) and concentration-dependently; effects were similar to that of 1 mg rivaroxaban (Figure 2).

Effect of CPUFL on clotting time

The baseline aPTT was 41.43±4.68 sec. CPUFL treatments (100, 300, and 600 μg/100 μL caused significant (p≤0.0001)
and concentration-dependent increments in aPTT. A similar effect was seen with heparin (Figure 3).

Effect of CPUFL on clotting time

Treatment of blood samples with CPUFL resulted in an increase in the clotting time of whole blood, but this was significant \(p \leq 0.0001 \) at a concentration of 600 \(\mu \)g/100 \(\mu \)L as compared to the control. This effect was similar to the 1 mg/100 \(\mu \)L rivaroxaban treatment (Figure 4).

Effect of CPUFL on bleeding time

CPUFL treatment (4, 8, and 12 mg/kg) showed a dose-dependent increase \(p \leq 0.0001 \) in bleeding time compared to the control. There were also dose-dependent significant differences \(p \leq 0.01 \) in effects between CPUFL, heparin, and aspirin treatments (Figure 5).

DISCUSSION

In recent years, naturally occurring chemical substances of plant origin have attracted interest as possible treatments for coagulation disorders such as stroke and myocardial infarction. This study was, therefore, conducted to assess the anticoagulant, and antiplatelet properties of the latex of the unripe fruit of *C. papaya* L. This was to be achieved by investigating the effect of CPUFL on; PT, aPTT, clotting time of whole blood and bleeding time in rabbits.

Results indicated that CPUFL prolonged PT in a manner similar to rivaroxaban; an oral direct Factor Xa inhibitor. Factor Xa inhibition reduces the thrombin burst in the propagation phase of the coagulation cascade since the conversion of prothrombin to thrombin depends on FXa. Any drug that inhibits FXa or any of the serine proteases that are involved in the formation of FXa will cause an increase in the PT.

aPTT was increased with CPUFL and heparin treatments. Thromboplastin is a complex enzyme that is found in the...
brain, lung, and other tissues and especially in blood platelets and functions in the conversion of prothrombin to thrombin in the clotting of blood.9 When manipulated, a derivative is created called partial thromboplastin. Partial thromboplastin is used to measure the intrinsic pathway as it monitors factors XII, XI, IX, VIII, V, II, I, prekallikrein, and high molecular weight kininogen. The aPTT is utilized to detect congenital and acquired abnormalities of the intrinsic coagulation pathway and to monitor patients receiving heparin.18 Heparin shows the anticoagulant effect by inactivating thrombin and activated factor X (Xa) through an AT-dependent mechanism.2 It acts as a catalyst to markedly accelerate the rate at which AT III neutralizes thrombin and activated coagulation factor X (Xa).2 AT III generally neutralizes these activated coagulation factors slowly and irreversibly; however, in the presence of heparin it neutralizes these factors almost instantaneously.19.

The clotting time of whole blood was affected significantly by CPUFL at 600 µg/100 µL. This effect was similar to the 1 mg/100 µL Rivaroxaban treatment. Clotting time test is a very significant indicator of blood clotting and clot retraction. Combining findings from PT, aPTT, clotting time tests, it is suggestive that CPUFL has components that affect the blood clotting cascade by possibly inhibiting clotting factors in the intrinsic clotting pathway or by increasing AT III activity.

The antiplatelet activity of CPUFL was revealed as it showed a significant increase in bleeding time in vivo, comparable to aspirin. In bleeding the animals, blood vessels were broken/damaged which needed to be plugged to stop the bleeding. During clot formation, platelets adhere at the site of vascular injury, become activated and release chemicals like thromboxane and ADP, which are important platelet agonists (ADP), p-selectin, 5-HT, etc. This leads to platelet aggregation and activation of the blood coagulation mechanism to form the plug.

Activation of platelets by collagen is a multistep event. In fact, after an initial attachment to platelets through second messenger pathways, collagen stimulates the release of thromboxane and ADP, which are important platelet agonists that induce aggregation.20 Prolongation of bleeding time when a blood vessel is injured involves inhibition of platelet activation and aggregation (primary hemostasis) even, therefore, inhibition of the coagulation cascade (including extrinsic, intrinsic or common pathways) as established for heparin. Aspirin, a reference antiplatelet drug, blocks production of thromboxane A\(_2\) by acetylatng a serine residue near the active site of platelet cyclooxygenase-1 (COX-1), the enzyme that produces the cyclic endoperoxide precursor of thromboxane A\(_2\), or dissolution of fibrin clot formed.21 The extract significantly prolonged the bleeding time as compared to aspirin and heparin suggesting a possible antiplatelet activity and confirming anticoagulant activity.

Although the precise mechanism by which the CPUFL inhibit blood coagulation cannot be elucidated from this study, widespread research on natural products shows that plant constituents such as alkaloids, flavonoids, glycosides, terpenes, and many other secondary metabolites may exhibit both anticoagulant and antiplatelet effects. The effects of the plant constituents may be inhibition of one or more of the following; platelet plug formation (platelet activation and aggregation), conversion of the serine proteases (zymogens) into active forms, activated forms of the clotting factors (such as Xa and thrombin), calcium release from the cytosol or enhancing the effects of the natural anticoagulants such as thrombin-activatable fibrinolysis inhibitor, AT III, and protein C.

The phytochemical analysis of CPUFL showed that the latex contained flavonoids, saponins, condensed tannins, cardiac glycosides, alkaloids, and terpenoids, which could have conferred anticoagulant activity to the latex. Studies have shown that flavonoids inhibited platelet aggregation in vitro.22-24 Guglielmone et al.,25 found that quercetin 3-acetyl-7,3',4'-trisulfate and quercetin 3,7,3',4'-tetrusulfate obtained from Flaveria bidentis shows significant prolongation of the aPTT. It has been suggested that the effect of flavonoids on platelet aggregation is dependent on the inhibition of the COX pathway, resulting from the inhibitory effect of flavonoids on the platelet formation of thromboxane A\(_2\), a potent aggregating and vasoconstricting agent.25-24 In a study by Akiyama et al.,26 on antibacterial action of several tannins against Staphylococcus aureus, indicated that tannins exhibit anticoagulant effect as a result of decrease in ionic calcium concentration, inhibition of enzyme production, and hindrance of enzymatic reactions. Another study by Zhang et al.,27 showed the effect of saponins on blood coagulation. Total steroidal saponins extracted from the rhizome of Dioscorea zingiberensis inhibited platelet aggregation, prolonged aPTT, inhibited factor VIII activities in rats, and increased the protection rate in mice in a dose-dependent manner. They speculated that the saponin may execute anti-thrombotic activity through inhibiting factor VIII activities and platelet aggregation. Alkaloids also have an anticoagulant effect. A study by Singh and Singh on an alkaloid of tobacco, (nicotine) affected the clot-formation property of thrombin, on fibrinogen (thrombin time). Higher concentrations of nicotine retarded the clot-formation property of thrombin. From this experimental evidence, it is suggested that nicotine being an alkaloid does alter the clot-forming properties of thrombin on fibrinogen.28

CONCLUSION

Latex from the unripe fruit of C. papaya L. has anticoagulant and antiplatelet properties and would, therefore, be useful as adjunctive therapy in the management of blood coagulation disorders.

ACKNOWLEDGMENTS

We will be very grateful to the laboratory technicians of the Department of Pharmacology especially Mr. Thomas Ansh, Mr. Fulgence Somkang, and Mr. Edmund Dery. It is only
with exceptional luck that one gets the opportunity to work with such individuals who are so dedicated to their work.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Animal Ethics Committee

REFERENCES

1. Pereira MS, Mulloy B, Mourão PA. Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem. 1999;274(12):7656-67.

2. Majerus PW, Tollesfson DM. Blood coagulation and anticoagulant, thrombolytic, and antiplatelet drugs. Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 11th Edition, Chapter 54. New York, NY: McGraw-Hill; 2006.

3. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095-128.

4. Albuquerque IR, Queiroz KC, Alves LG, Santos EA, Leite EL, Rocha HA. Heterofucans from Dicyota menstrualis have anticoagulant activity. Braz J Med Biol Res. 2004;37(2):167-71.

5. Samama MM, Guinet C. Laboratory assessment of new anticoagulants. Clin Chem Lab Med. 2011;49(5):761-72.

6. Samama MM, Martinoli JL, LeFlem L, Guinet C, Plu-Bureau G, Depasse F, et al. Assessment of laboratory assays to measure rivaroxaban – an oral, direct factor Xa inhibitor. Thromb Haemost. 2010;103(4):815-25.

7. Hillarp A, Baghaei F, Fagerberg Blixter I, Gustafsson KM, Stigendal L, Sten-Linder M, et al. Effects of the oral, direct factor Xa inhibitor rivaroxaban on commonly used coagulation assays. J Thromb Haemost. 2011;9(1):133-9.

8. Lindhoff-Last E, Samama MM, Ortel TL, Guinet C, Plu-Bureau G, Depasse F, et al. Assessment of laboratory assays to measure rivaroxaban: their suitability and limitations. Ther Drug Monit. 2010;32(6):673-9.

9. van Ryn J, Stangier J, Stangier J, Haertter S, Liesenfeld KH, Wienen W, Feuring M, et al. Dabigatran etexilate – a novel, reversible, oral direct thrombin inhibitor: interpretation of coagulation assays and reversal of anticoagulant activity. Thromb Haemost. 2010;103(6):1116-27.

10. Bielory L. Complementary and alternative interventions in asthma, allergy, and immunology. Ann Allergy Asthma Immunol. 2004;93 2 Suppl 1:S45-54.

11. Canini A, Alesiani D, D’Arcangelo G,Tagliatesta P. Gas chromatography-mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J Food Compost Anal. 2007;20:584-90.

12. Nitsawang S, Kaulb RH, Kanasawad P. Purification of papain from Carica papaya Latex: aqueous two - phase extraction versus two-step salt precipitation. Enzyme Microb Technol. 2006;39(5):1103-7.

13. Kamalkumar R, Amutha R, Muthulaksmi S, Mareeswari P, Baby RW. Screening of Dioecious papaya hybrids for papain yield and enzyme activity. Res J Agric Biol Sci. 2007;3(5):447-9.

14. Sofowora A. Medicinal Plants and Traditional Medicine in Africa. Chichester: John Willey and Sons; 1982: 221-3.

15. Elg M, Carlsson S, Gustafsson D. Effects of agents, used to treat bleeding disorders, on bleeding time prolonged by a very high dose of a direct thrombin inhibitor in anesthetized rats and rabbits. Thromb Res. 2001;101(3):159-70.

16. Lee W, Yang EJ, Ju SK, Song KS, Bae JS. Anticoagulant activities of oleanolic acid via inhibition of tissue factor factor expressions. BMB Rep. 2012;45(7):390-5.

17. Winter Y, Richard D, Alexei K, Martin G, Wolfgang HO, Tobias B. Clinical and pharmacological properties of new oral anticoagulants for the prevention of cerebral thromboembolism: factor Xa and thrombin inhibitors. World J Neurosci. 2012;2:7-14.

18. Asaf T, Reuveni H, Yermilau T, Leiberman A, Gurman G, Port A, et al. The need for routine pre-operative coagulation screening tests (prothrombin time PT/partial thromboplastin time PTT) for healthy children undergoing elective tonsillectomy and/or adenoidectomy. Int J Pediatr Otorhinolaryngol. 2001;61(3):217-22.

19. Laffan M, Manning R. Investigation of haemostasis. In: Practical Haematology. India: Elsevier; 2010: 379-440.

20. Kinlough-Rathbone RL, Packham MA, Reimers HJ, Cazenave JP, Mustard JF. Mechanisms of platelet shape change, aggregation, and release induced by collagen, thrombin, or A23,187. J Lab Clin Med. 1977;90(4):707-19.

21. Katzung BG. Drugs used in disorders of coagulation. In: Basic and Clinical Pharmacology. 10th Edition. San Francisco: McGraw Hill Company; 2007: 542-60.

22. Janssen K, Mensink RP, Cox FJ, Harryvan JL, Hovenier R, Hollman PC, et al. Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr. 1998;67(2):255-62.

23. Pace-Aciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta. 1995;235(2):207-19.

24. Pace-Aciak CR, Rounova O, Hahn SE, Diamandis EP, Goldberg DM. Wines and grape juices as modulators of platelet aggregation in healthy human subjects. Clin Chim Acta. 1996;246(1-2):163-82.

25. Guglielmone HA, Agnese AM, Núñez Montoya SC, Cabrera JL. Anticoagulant effect and action mechanism of sulphated flavonoids from Flaveria bidentis. Thromb Res. 2002;105(2):183-8.

26. Akiyama H, Fujii K, Yamasaki O, Oono T, Iwatsuki K. Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother. 2001;48(4):487-91.

27. Zhang R, Huang B, Du D, Guo X, Xin G, Xing Z, et al. Anti-thrombosis effect of diosgenyl saponins in vitro and in vivo. Steroids. 2013;78(11):1064-70.

28. Singh JM, Singh MD. Alkaloids of tobacco and blood coagulation: effect of nicotine on thrombin and fibrinogen. Clin Toxicol. 1975;8(1):43-52.

Cite this article as: Asare F, Koffuor GA, Nyansah WB, Gyanfosu L, Abraquah AA. Anticoagulant and antiplatelet properties of the latex of unripe fruits of Carica papaya L. (Caricaceae). Int J Basic Clin Pharmacol 2015;4:1183-8.