Introduction

Staphylococcus aureus is an opportunistic human pathogen that can cause a variety of infections [1]. The expression of virulence factors is to a large extent controlled by the agr quorum sensing (QS) system composed of the response regulator, AgrA and the sensor histidine kinase, AgrC that in response to auto-inducing peptides expresses a regulatory RNA, RNAIII. At high cell density RNAIII mediates the transition from production of host matrix binding and immune evasion proteins to expression of a large number of extracellular toxins including the α-hemolysin encoded by hla [2]. Within RNAIII itself a toxin, the δ toxin, is also encoded [3]. S. aureus QS has been demonstrated to be important for virulence in several animal models of acute infection, including infective endocarditis, skin and soft tissue infections and septic arthritis [4–6]. Yet S. aureus QS defective mutants are commonly found in clinical isolates and they are associated with a wide range of infections such as persistent bacteremia; infections of the lungs of cystic fibrosis patients and with higher mortality in general [7–11]. Also, in the laboratory they arise spontaneously at high frequencies [12–14]. Recently we showed that exposure to sub-lethal antibiotic concentrations increases the fitness cost of the agr system by inducing RNAIII expression levels [15]. The fitness advantage of the agr mutant over the wild type (WT) strain could not be related to any differences in exponential growth rate and was only detected in competition between the two strains [15]. These observations prompted us to examine the hypothesis that the apparent fitness advantage of the agr mutant cells compared to the WT can be explained by differences in viability.
Main text

Methods

Bacterial strains and growth conditions

Staphylococcus aureus strains (Additional file 1: Table S1) were grown in Tryptic Soy Broth (TSB) containing 2.5 g/l glucose (Sigma-Aldrich) or in Bacto™ Tryptic Soy Broth without glucose, Benton Dickson (BD286220). Blood agar plates contained 1.5% Agar (Difco) and 5% calf’s blood. Antibiotics were added in the following concentrations: tetracycline 2 μg/ml; chloramphenicol 10 μg/ml; erythromycin 10 μg/ml (Sigma-Aldrich). Mutations and plasmids were transferred by transduction using phage φ11 [16, 17]. Transposon mutant clones were obtained from the Network on Antimicrobial Resistance in *S. aureus* (NARSA). *agr* activity was assayed on blood agar plates and hemolysis was scored for approximately 100 colonies.

For hld overexpression, pTXΔ-RNAIII, was equipped with an *E. coli* replication origin and ampicillin selection marker from pUC19 using primers pUC-1 and pUC-2 (Additional file 1: Table S2) through SmaI/SacI restriction sites yielding plasmid pTXΔ-RNAIII-pucori. The hld coding sequence was amplified using primers Hld1 and Hld2 (Additional file 1: Table S2) followed by the substitution of RNAIII for hld using restriction sites BamHI/MluI yielding plasmid pTXΔ-Hld-pucori.

Competition experiment

Five independent cultures of Δ*agrA* plus WT cells were grown in TSB with or without glucose for 100 generations (10 passages) with 1 × 10⁶ bacteria transferred daily into fresh growth medium. The ratio of the tetracycline-resistant Δ*agrA* mutant cells to WT cells was determined on TSB agar plates with and without tetracycline after 30, 50 and after 100 generations of growth.

Live/dead staining

Staining was performed with thiazol orange (TO) (Sigma-Aldrich) at 0.168 μM and propidium iodide (PI) (Sigma-Aldrich) at 8 μM, staining 10⁶ cells/ml for 15 min under dark conditions at room temperature. The flow cytometry data was recorded with a BD Biosciences Accuri C6 flow cytometer counting 50,000 cells at a flow rate of 35 μl/min and with a core size of 16 μm. Stained cells were excited with a 488 nm argon laser and emission was detected with the FL1 emission filter at 533/30 nm using FL1 photomultiplier tube and in FL-3 emission filter at 670 nm using FL3 photomultiplier tube.

Quantitation of RNAIII expression and eDNA levels by real-time qPCR

The SV RNeasy Mini Kit (Qiagen) was used for isolation of RNA; cDNA RT kit (Applied Biosystems) for cDNA synthesis (using an RNase inhibitor, Applied Biosystems) and the FastStart Essential DNA Green Master (Roche) for qPCR in a Lightcycler 96 (Roche) with the primers listed in Additional file 1: Table S2. Data analysis was performed in the LightCycler Application Software, version 1.1 (Roche). Extracellular, chromosomal DNA (eDNA) was quantified by qPCR amplifying the *ileS* sequence directly on 100-fold diluted and heat-treated culture supernatants. The eDNA concentration in the supernatants were subsequently calculated from a standard curve of purified genomic DNA and normalized using an exogenous DNA spike which was added to all samples. The DNA spike was PCR product of the GFP gene and 10,000 copies were added to each qPCR reaction (primers used are listed in Additional file 1: Table S2).

Growth potential of lysed cells

Staphylococcus aureus cells in TSB were lysed by applying bead-beating (FastPrep®-24, MP Biomedicals). Increasing concentrations of lysate were added to TSB diluted 1:10 with water, inoculated with *S. aureus* Newman overnight cultures (diluted 1:100) and incubated in a Bioscreen C reader (Thermo Labsystems) at 37 °C for 24 h. Technical quadruplicates and biological triplicates were included for each condition.

Results

Cell death is reduced in *agrA* and RNAIII mutant cells

Initially we assessed the frequency with which *agr* negative cells arise in strain Newman by passaging five individual WT colonies in serial batch cultures and determining the frequency of hemolysin negative mutants on blood agar plates. Although only a fraction of *agr* mutations will eliminate hemolysis it has previously been used as an indicator of *agr* activity [14]. Non-hemolytic colonies appeared on day 7 and by day 19 haemolytic colonies could only be detected in one lineage (Additional file 1: Figure S1). Thus, in line with findings for other *S. aureus* strains [14], *agr* mutants readily arise in cultures of stain Newman during serial passage.

Since the selection for *agr* negative cells during the serial passage cannot readily be explained by differences in growth rate and is primarily detected in competition with WT cells [14, 15] we examined the viability of *agr* positive and negative cells. Stationary phase cultures of Newman WT, Δ*agrA* and ΔRNAIII mutant derivatives were live/dead stained with propidium iodine (PI) and thiazole orange (TO) and analysed by flow cytometry. Interestingly, we observed a significantly higher fraction (p<0.05) of dead WT cells compared to ΔagrA or ΔRNAIII mutant cells (Fig. 1a) indicating that a fraction of *agr* positive cells loose viability by a process not taking place in ΔagrA or ΔRNAIII mutant cells.
RNAIII overexpression induces lysis

To address if RNAIII may be the factor reducing the viability in agr positive cells, we examined populations of WT cells containing an empty vector, pTXΔ, or a plasmid constitutively expressing RNAIII, pTXΔRNAIII. Cultures of both strains were inoculated to a cell density of 5×10^6 colony forming units per ml, growth as well as the live/dead ratio was continuously monitored with flow cytometry. We observed that with the pTXΔRNAIII construct, substantial cell death occurred after 6 h of growth with more than 60% of the population stained as dead cells (Fig. 1b) whereas few dead cells were observed in cells carrying the empty vector, pTXΔ. At this time-point the cells carrying pTXΔRNAIII overproduced RNAIII tenfold above the level in cells carrying the vector (Additional file 1: Figure S2). Upon progression into stationary growth phase, the number of cells stained as dead decreased with RNAIII overproduction (Fig. 1b) indicating that dead cells lyse and consequently are not detected in the flow cytometer. This observation was confirmed by monitoring the release of chromosomal DNA by qPCR. After 7 h of growth, extracellular DNA (eDNA) could only be observed in the supernatant of cells with RNAIII overproduction and it appeared at a concentration of 13.9 µg/ml (\pm 4.0) eDNA detected, corresponding to the DNA content of 5×10^9 S. aureus cells/ml. To assess whether the pronounced cell death observed with RNAIII overexpression was due to overproduction of the δ-toxin encoded by hld within the RNAIII transcript, we overproduced δ-toxin from a construct not expressing RNAIII. With this plasmid cell death was reduced to only 10% of that seen with the RNAIII-overproducing plasmid showing that the effect is mediated via RNAIII and not the δ-toxin.

Bacterial lysis releases resources supporting growth

Since dead cells potentially are cannibalized we examined whether lysed S. aureus cells could support growth. For this purpose, we inoculated WT cells in dilute TSB broth (0.1 × TSB) supplemented with varying amounts of staphylococcal lysate obtained from mechanical disruption of S. aureus WT cells and observed that increasing amounts of lysate stimulates growth as observed by a higher final optical cell density (Additional file 1: Figure S3).

Staphylococcus aureus is known to encode a number of autolysins and we speculated that one of these might be responsible for the cell death. However, upon transduction of mutations in lrgB, cidA, lrgA, lytM, tagX, a lysM domain protein (NE1640) and an autolysin (NE1948) from the NARSA transposon library into Newman + pTXΔRNAIII none of the mutations altered the lysis phenotype elicited by RNAIII overproduction (data not shown) indicating that the examined gene products are not responsible for the RNAIII mediated cell death.

Modulation of RNAIII expression eliminates the competitive advantage of agr negative cells

To determine if RNAIII expression levels influences the competition between WT and agr mutant cells we competed ΔagrA with WT cells and observed that ΔagrA cells quickly outcompeted the WT in regular TSB medium (Fig. 2) while this was not the case in TSB lacking glucose where RNAIII expression has been demonstrated to be reduced [18] (Fig. 2). These data suggest that...
the competitive advantage of being *agr* negative is associated with less RNAIII expression and less lysis of cells.

Discussion

Here we show that a small fraction of a WT *S. aureus* population undergoes cell death and that this does not take place in mutant cells lacking the *agr* QS system. Since both *agr* positive and negative cells multiply on lysed staphylococcal cells, *agr* negative cells have an advantage over WT cells. We propose that this phenomenon contributes to the frequent manifestation of *agr* mutant cells both in vivo and in vitro during serial passage [14]. Our results agree with previous findings that the apparent fitness advantage of *agr* negative cells is particularly evident in competition assays [15]. Currently we do not know the molecular details of the killing process nor the mechanism behind the stochasticity by which it occurs. However, it has been noted that *agr* mutant cells are less prone to Triton X-100 mediated lysis and are more resistant to lysis by Penicillin G compared to wild type cells [19] indicating that there is an overall basic physiological difference between *agr* positive and negative cells.

In *P. aeruginosa* QS has also been linked with decreased viability as a mutant lacking the *las* QS system resists autolysis at high cell densities resulting in about tenfold increase in *lasR* mutant-to-wild-type ratio in mixed cultures [20]. Interestingly QS negative cells of both *S. aureus* and *P. aeruginosa* appear under chronic infections experiencing prolonged antibiotic exposure [20]. In *S. aureus*, some antibiotics are known to increase expression of RNAIII [9, 21]. We speculate that this induction may lead to increased cell death in WT populations of cells and enhanced the appearance of *agr* mutant cells.

The biological impact of differential death of *agr* positive cells remain obscure. It may contribute to biofilm formation via the DNA released [22] but it may also serve the purpose of establishing mixed populations of *agr* positive and negative cells. As the fraction of *agr* negative cells increases, the induction of *agr* expression in WT cells will decrease and consequently also the RNAIII mediated lethality. In *Salmonella enterica sero*-var Typhimurium it has been shown that expression of a phenotypically avirulent subpopulation promotes the evolutionary stability of virulence [35] and similar cooperation may take place in *S. aureus*.

Limitations

While the phenomenon reported in our study is observed for several strains of *S. aureus* we do not know the extent to which cell death in stationary phase occurs in clinical strains.

Additional file

Additional file 1: Figure S1. Hemolysis negative cells arise in *S. aureus* Newman. Five parallel cultures of WT were passaged in TSB for 24 days. Every second day suitable dilutions were plated out on TSB agar with 5 % calf’s blood and each colony was scored for hemolysis by comparing to WT freshly inoculated from the freeze stock. Zones of hemolysis smaller than ~0,5 mm were scored as hemolysis negative. Figure S2. RNAIII overexpression with pTX3RNAIII. RT-qPCR was used to measure expression of RNAIII in *S. aureus* Newman carrying vector (pTX3) or RNAIII overproducing plasmid (pTX3RNAIII) after 6 hours of growth in TSB. Data represent three biological replicates and are shown as mean ratios normalized to a run calibrator of genomic DNA. Error bars represent the standard deviation. Figure S3. Lysed bacteria supports growth. WT cells were grown in diluted 0.1xTSB supplemented with increasing amounts of bacterial lysate, and growth was measured in a Bioscreen at OD600. The experiment was performed with biological triplicates for each condition and the data represent the mean OD600 and standard deviation. Table S1. Strains and plasmids used in this study. Table S2. Oligonucleotides used in this study.

Abbreviations

QS: quorum sensing; *TSB*: tryptic soy broth; *eDNA*: extracellular chromosomal DNA.

Authors’ contributions

WP, ANV and HI developed the study design, WP, ANV, MSB, CF, KB conducted experiments, WP, ANV, HI analysed the data, ANV, WP and HI wrote the manuscript. All authors read and approved the manuscript.

Author details

1 Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark. 2 Present Address: ALK-Abelló, Horsholm, Denmark. 3 Present Address: Novo Nordisk, Gentofte, Denmark. 4 Imperial College London, London, UK.

Acknowledgements

We acknowledge the NARSA program for providing isolates used in this study.
Competing interests
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article (and its additional file(s)).

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
HL was supported by grants from the Danish Research Council of Independent Research (12-127417) and Danish National Research Foundation’s Centre of Excellence Bacterial Stress Response and Persistence (grant identifier DNRF120). WP was supported by grants from the Danish Research Council of Independent Research (09-069656) and Ung Eliteforskerpris (09-076146).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 May 2018 Accepted: 12 July 2018
Published online: 24 July 2018

References
1. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520–32.
2. Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S. Genetic systems in staphylococci. Methods in enzymology, vol. 204. Cambridge: Academic Press; 1991. p. 587–636.
3. Janzon L, Lofdahl S, Arvidson S. Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Mol Gen Genet. 1989;219:480–5.
4. Cheung AL, Eberhardt KJ, Chung E, Yeaman MR, Sullam PM, Ramos M, Bayer AS. Diminished virulence of a sar/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. J Clin Invest. 1994;94:1815–22.
5. Kobayashi SD, Malachowa N, Whitney AR, Braughton KR, Gardner DJ, Long D, Bubeck Wardenburg J, Schneewind O, Otto M, Deleo FR. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis. 2011;204:937–41.
6. Abdelnour A, Arvidson S, Bremell T, Rønsted T, Tarkowski A. The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun. 1993;61:3979–85.
7. Fowler VG Jr, Stryjewski ME, Eliopoulos GM, Reller LB, Corey GR, Jones T, Lucindo N, Yeaman MR, Bayer AS. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J Infect Dis. 2004;190:1140–9.
8. Goerke C, Campana S, Bayer MG, Dörring G, Botzenhart K, Wolz C. Direct quantitative transcript analysis of the agr regulon of Staphylococcus aureus during human infection in comparison to the expression profile in vitro. Infect Immun. 2006;78:1304–11.
9. Traber KE, Lee E, Benson S, Corrigan R, Cantera M, Shopsin B, Novick RP. agr function in clinical Staphylococcus aureus isolates. Microbiology. 2008;154:2265–74.
10. Schweizer ML, Furuno JP, Sakoulas G, Johnson JK, Harris AD, Stallard MD, McGregor JC, Thom KA, Perencevich EN. Increased mortality with accessory gene regulator (agr) dysfunction in Staphylococcus aureus among bactereemic patients. Antimicrob Agents Chemother. 2011;55:1082–7.
11. Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. 2014;22:676–85.
12. Chen J, Novick RP. swrA, a multi-drug exporter, does not control agr. Microbiology. 2007;153:1604–8.
13. Adhikari RP, Arvidson S, Novick RP. A nonsense mutation in agrA accounts for the defect in agr expression and the avirulence of Staphylococcus aureus 8325-4 trafk(X). Infect Immun. 2007;75:4534–40.
14. Somerville GA, Beres SB, Fitzgerald JR, DeLeo FR, Cole RL, Hoff JS, Musser JM. In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. J Bacteriol. 2002;184:1430–7.
15. Paulander W, Nissen Varming A, Baek KT, Haaber J, Frees D, Ingmer H. Antibiotic-mediated selection of quorum-sensing-negative Staphylococcus aureus. mBio. 2013;4:e00459-12.
16. Novick RP. Genetic systems in staphylococci. Methods in enzymology, vol. 204. Cambridge: Academic Press; 1991. p. 587–636.
17. Schenk S, Laddaga RA. Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett. 1992;73:133–8.
18. Seidl K, Stucki M, Ruegg M, Goerke C, Wolz C, Harris L, Berger-Bächi B, Bischoff M. Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. Antimicrob Agents Chemother. 2006;50:1183–94.
19. Fujimoto DF, Bayles KW. Opposing roles of the agrA and agrB accessory gene regulator (agr) virulence regulators, Agr and Sar, in Triton X-100- and penicillin-induced autolysis. J Bacteriol. 1998;180:3724–6.
20. Heurlier K, Derenaval V, Haenni M, Guy L, Krishnapillai V, Haas D. Quorum-sensing-negative (isr) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J Bacteriol. 2005;187:4975–83.
21. Joo HS, Chan J, Cheung GY, Otto M. Subinhibitory concentrations of protein synthesis-inhibiting antibiotics promote increased expression of the agr virulence regulator and production of phenol-soluble modulin cytotoxins in community-associated methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54:4942–4.
22. Grande R, Nistico L, Sambanthamoorthi K, Longwell M, Iannitelli A, Cellini L, Di Stefano A, Hall Stoodley L, Stoodley P. Temporal expression of agrB, cidA, and dls in the early development of Staphylococcus aureus UAMS-1 biofilm formation and the structural role of extracellular DNA and carbohydrates. Pathog Dis. 2014;70:414–22.