Thymus-Associated Parathyroid Hormone Has Two Cellular Origins with Distinct Endocrine and Immunological Functions

Citation for published version:
Liu, Z, Farley, A, Chen, L, Kirby, BJ, Kovacs, CS, Blackburn, CC & Manley, NR 2010, 'Thymus-Associated Parathyroid Hormone Has Two Cellular Origins with Distinct Endocrine and Immunological Functions', PLoS Genetics, vol. 6, no. 12, e1001251, pp. -. https://doi.org/10.1371/journal.pgen.1001251

Digital Object Identifier (DOI):
10.1371/journal.pgen.1001251

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS Genetics

Publisher Rights Statement:
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Thymus-Associated Parathyroid Hormone Has Two Cellular Origins with Distinct Endocrine and Immunological Functions

Zhijie Liu1, Alison Farley2, Lizhen Chen1, Beth J. Kirby3, Christopher S. Kovacs3, C. Clare Blackburn2, Nancy R. Manley1*

1 Department of Genetics, University of Georgia, Athens, Georgia, United States of America, 2 Medical Research Council Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom, 3 Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada

Abstract

In mammals, parathyroid hormone (PTH) is a key regulator of extracellular calcium and inorganic phosphorus homeostasis. Although the parathyroid glands were thought to be the only source of PTH, extra-parathyroid PTH production in the thymus, which shares a common origin with parathyroids during organogenesis, has been proposed to provide an auxiliary source of PTH, resulting in a higher than expected survival rate for aparathyroid Gcm2−/− mutants. However, the developmental ontology and cellular identity of these “thymic” PTH–expressing cells is unknown. We found that the lethality of aparathyroid Gcm2−/− mutants was affected by genetic background without relation to serum PTH levels, suggesting a need to reconsider the physiological function of thymic PTH. We identified two sources of extra-parathyroid PTH in wild-type mice. Incomplete separation of the parathyroid and thymus organs during organogenesis resulted in misplaced, isolated parathyroid cells that were often attached to the thymus; this was the major source of thymic PTH in normal mice. Analysis of thymus and parathyroid organogenesis in human embryos showed a broadly similar result, indicating that these results may provide insight into human parathyroid development. In addition, medullary thymic epithelial cells (mTECs) express PTH in a Gcm2-independent manner that requires TEC differentiation and is consistent with expression as a self-antigen for negative selection. Genetic or surgical removal of the thymus indicated that thymus-derived PTH in Gcm2−/− mutants did not provide auxiliary endocrine function. Our data show conclusively that the thymus does not serve as an auxiliary source of either serum PTH or parathyroid function. We further show that the normal process of parathyroid organogenesis in both mice and humans leads to the generation of multiple small parathyroid clusters in addition to the main parathyroid glands, that are the likely source of physiologically relevant “thymic PTH.”

Introduction

Mammals have evolved an integrated system consisting of the parathyroid glands, bone, kidney and the intestine, to regulate ionized calcium and inorganic phosphorus homeostasis in the extracellular environment [1]. Circulating ionized Ca2+ and inorganic phosphorus are required for a wide range of physiological activities, including neuromuscular excitability, muscle contraction, energy storage, bone mineralization, blood coagulation and cardiovascular functions. Parathyroid hormone (PTH) produced by the parathyroids acts as the key endocrine regulator to modulate the physiological actions in the bone, kidney and the intestine to maintain the homeostasis of ionized calcium and inorganic phosphorus concentrations in the extracellular environment. Failure of calcium and phosphorus homeostasis, which can result from PTH production disorders, causes serious physiological consequences in human [2].

The parathyroid glands were long thought to be the sole source of PTH production and secretion. However, analysis of the aparathyroid Gcm2 null mouse mutant phenotype identified the thymus, a primary lymphoid organ, as an auxiliary source of circulating PTH in addition to the parathyroids in mice [3,4]. Thymic PTH was found to come from small clusters of unidentified cells under the thymic capsule in wild-type mice, although the ontogeny of these intrathymic PTH-expressing cells and the regulation of PTH expression in these cells are not clear. In humans, ectopic parathyroid cells have been found in a variety of different locations, most commonly in the thymus [5], which was thought to account for the origin of intrathymic parathyroid adenomas in some patients [6]. However, the significance of thymus-associated PTH for the survival of Gcm2−/− mice mutants was called into question by the phenotype of Pth−/− null mutants, which can survive in the complete absence of PTH [7,8].

Despite their distinct primary functions, the parathyroid and thymus organs have a close relationship during organogenesis, initially developing from two shared parathyroid/thymus primordia originating from the bilateral 3rd pharyngeal pouches [9]. Analysis of mouse mutants has shown that initial formation and
Author Summary

Due to the important role of PTH in the regulation of physiological activities, disorders in PTH production can cause many diseases in humans. Thus it is very important to understand where PTH is produced and how it is regulated. Many people have been found to have ectopic and supernumerary parathyroid glands without clear ontogeny. In addition, the thymus, which develops together with the parathyroid during embryogenesis, has been proposed to be an auxiliary source of PTH with endocrine function; however, PTH is also a tissue-restricted self-antigen expressed by the thymus. In this paper, we provide insights into the ontogeny and function of thymus-associated PTH. We found that ectopic and supernumerary parathyroid glands originate from the normal developmental process underlying the separation of parathyroid and thymus, resulting in misplaced parathyroids close or attached to thymus. In the thymus, thymic epithelial cells can produce a low level of PTH via a different mechanism than the parathyroid and provide functional data that TEC-derived PTH does not have endocrine function. In summary, our data show that the thymic source of PTH has no endocrine function and, instead, has an expression pattern in the thymus consistent with that of a self-antigen for negative selection.

Two Cellular Origins for Thymic PTH

organogenesis. Analysis of parathyroid organogenesis in human embryos showed a similar phenomenon. Absence of these misplaced parathyroid cells in the thymus in Gcm2−/− mice caused a significant decrease of thymic PTH expression but still left a low level of thymic PTH expression, which we identified as originating from mTECs expressing PTH in a Gcm2-independent but Foxn1-dependent manner. Our results indicate that mTEC-derived PTH is not secreted into the general circulation and does not function as a backup mechanism of parathyroid glands, but may function as a self-antigen for negative selection. We further show that the lethality associated with Gcm2 mutation is not related to the presence of thymic PTH or serum PTH levels. Our results also have implications for the molecular mechanism of promiscuous gene expression of tissue-restricted self-antigens in mTECs. Our data also provide an explanation for the origin of ectopic parathyroid adenomas that are often associated with human hyperparathyroidism.

Results

Survival of Aparathyroid Gcm2−/− Mice Is Dependent on Genetic Background without Rescue from Hydroparathyroidism

We compared the phenotypes of Gcm2−/− mutants on the C57BL/6J and 129/C57BL/6J F1 genetic backgrounds for survival and parathyroid function. We found that Gcm2−/− mutants on a C57BL/6J genetic background had a nearly 100% lethality rate (Figure 1A), compared to 56% on the 129/C57BL/6J F1 genetic background (Figure 1B) and to about 30% with additional backcross generations onto 129S6 (Table 1), confirming the original report [4]. Analysis of fetal parathyroid organogenesis in mutants from both genetic backgrounds confirmed our earlier data showing a complete absence of Pth-positive parathyroid cells [3] (Figure 2B, 2D and 2E). These data show that the reduced lethality on the 129/C57BL/6J hybrid background is not due to incomplete deletion of the parathyroids.

To test whether 129/C57BL/6J hybrid Gcm2−/− mutants had a higher serum PTH concentration than the C57BL/6J Gcm2−/− mutants that failed to survive, we measured serum PTH levels in E18.5 fetal Gcm2−/− mutants with different genetic backgrounds. Most Gcm2−/− mutants on both genetic backgrounds had undetectable serum PTH levels, with only a few individuals of each genetic background showing variable levels above the detection limit (3/23 for 129/C57BL/6J; 3/13 for C57BL/6J; Figure 1C). This dramatic reduction of serum PTH levels in Gcm2−/− mutants is consistent with other reports on a variety of genetic backgrounds [18,19]. These results show that serum PTH levels in the Gcm2−/− mutants are not affected by genetic background, and that the lethality phenotype observed in Gcm2−/− mutants is not related to serum PTH levels.

Heterozygotes on the 129/C57Bl6 hybrid genetic background also had low or undetectable serum PTH levels. This difference in steady-state PTH levels was not correlated with differences in maternal ionized calcium levels, which were similar in heterozygote and wild-type females from both strains, and parathyroid glands in heterozygotes from the hybrid background were histologically normal (data not shown). Variations in PTH levels have been reported between C3H/HeJ and C57BL/6 mice, including change in PTH levels in response to altering the calcium content of the diet, as well as differences between strains in BMD, calcium absorption, serum calcium, and calcitriol levels [20]. As serum chemistry was normal, this result further supports our observation that serum PTH levels do not correlate with lethality.
Misplaced Parathyroid Cells Result from Incomplete Parathyroid/Thymus Separation during Organogenesis

To investigate the possible role of thymic PTH in the lethality of Gcm2 mutants, we designed experiments to determine the ontogenesis of extra-parathyroid PTH-expressing cells. Since the parathyroids and thymus arise from the same embryonic structure, we tracked the process by which the parathyroid and thymus domains resolve into separate primordia in mice using in situ hybridization for PTH and Gcm2. At E12, Gcm2/PTH expression in the parathyroid/thymus common primordia specifically marked the anterior/dorsal Gcm2-positive parathyroid domain with a clear interface at the posterior/ventral Foxn1-positive thymus domain [3,21] (Figure 2A-I). At E13, the Gcm2/PTH-positive parathyroid domain had started to separate from the thymus domain, and some parathyroid cells were located outside the major parathyroid domain (Figure 2A-II). At E18.5, small clusters of parathyroid cells were located between the parathyroids and thymus or directly associated with the thymus, in some cases under the developing thymic capsule (Figure 2A-III and 2C). This phenotype was seen in all 11 E16.5–18.5 wild-type embryos on multiple genetic backgrounds (C57BL/6j, 129/C57BL/6j F1 hybrid, or 129S6; Figure 2A-2D), which indicates that this incomplete separation pattern is a common phenomenon in the mouse.

RT-PCR using cDNA made from total thymus and other organs from wild-type mice confirmed that co-expression of Gcm2 and PTH was detected only in the thymus (Figure 3A). Gcm2 and PTH expression could be detected as early as E13.5 in dissected whole thymus, when the thymus had just separated from the parathyroids, and at all later stages (Figure 3B). If these misplaced Gcm2/PTH-positive cells are authentic parathyroid cells, Gcm2 should regulate their differentiation and survival [3]. As predicted, all misplaced parathyroid cells were ablated in Gcm2/2 mutants (Figure 2B, 2D and 2E). The thymic PTH expression level was also greatly reduced relative to wild-type, while the expression of the TEC marker Foxn1 was not affected (Figure 3C). These data suggest that misplaced parathyroid cells in the thymus are the primary source of thymic PTH in wild-type mice, and that these cells are absent in Gcm2/2 mutants.

Ectopic Parathyroid Tissue Is Observed in the Human Embryo from Early Week 7

To test whether a similar phenomenon occurs in human embryogenesis, we used whole-mount in situ hybridization for
Table 1. Survival rates of thymectomized Gcm2^{−/−} mutants and Gcm2^{/−} control littermates on the 129S6 background at weaning.

Experimental Group	Total at newborn	Survival at weaning	Survival rate
Gcm2^{−/−} (no Surgery)	19	19	100%
Gcm2^{−/−} (no Surgery)	24	17	70.8%
Gcm2^{−/−} (mock)	16	15	93.8%
Gcm2^{−/−} (mock)	19	14	73.7%
Gcm2^{−/−} (thymectomy)	19	15	78.9%
Gcm2^{−/−} (thymectomy)	10	6	60%

Gcm2^{−/−} in early week 6 to mid week 8 human embryos or dissected parathyroids and thymic lobes. At early week 6, Gcm2 was expressed in the dorsal region of the 3rd and 4th pharyngeal pouches (Figure 4A, 4B; 2/2 embryos). By early week 7 the common parathyroid/thymic primordia (derived from the 3rd pouches) have detached from the pharynx. Throughout week 7, clusters of Gcm2 expressing cells were located in the anterior portion of the common primordium (4/4 embryos) and at the posterior tip (1/4 embryos) of the migrating elongated thymic structure (Figure 4C–4H). Similar to the phenomenon we found in mouse (Figure 2A-I), small clusters of ‘stray’ GCM2-positive cells were often present (Figure 4E, *). By late week 7, although Gcm2 positive cells were still attached to the common primordium, separate parathyroid rudiments were present, as well as small Gcm2 expressing clusters that may represent accessory parathyroids (Figure 4F–4H; 1/1 embryo).

Dissected parathyroids and thymic lobes from one side of early and mid week 8 embryos showed three major Gcm2 expressing parathyroids (black arrowheads) and a smaller Gcm2 expressing accessory parathyroid (red arrowhead) associated with a single thymic lobe (Figure 4I–4K; 3/3 embryos). Of the major parathyroid rudiments, one is clearly associated with the thymic parathyroid primordium at late week 7 and therefore appears to derive from the 3rd pharyngeal pouch, while the other is clearly outside the common thymus-parathyroid primordium and thus most likely separates, some of the two bilateral primordia (Figure 4H). Furthermore, as in the mouse, ectopic parathyroids exist from week 6 to mid week 8 human embryos or dissected parathyroids and thymic lobes. At early week 6, GCM2 expression was greater in the 3rd and 4th pharyngeal pouch (note that GCM2 expression is clearly evident in the 4th pouch at week 6) (Figure 4I–4K). In addition, a smaller parathyroid rudiment was consistently associated with the terminal tip of the thymus primordium, while the other is clearly outside the common thymus-parathyroid primordium and thus most likely derives from the 4th pharyngeal pouch (note that GCM2 expression is clearly evident in the 4th pouch at week 6) (Figure 4I–4K). In addition, a smaller parathyroid rudiment was consistently associated with the posterior tip of the thymus primordium of the common primordium at week 7 and week 8 (Figure 4D–4J), although at least in late week 7 this appeared to be present only in one of the two bilateral primordia (Figure 4H). Furthermore, as the parathyroid separates, some Gcm2 expressing cells are left attached to the upper cordlike thymic structure (Figure 4J, 4K, white arrows). These data demonstrate that similar to our observations in the mouse, ectopic parathyroids exist from week 7 in the human embryo, and that the presence of intrathymic parathyroids in adulthood may be in part due to incomplete separation from the thymus.

Thymic Epithelial Cells Express Thymic PTH Via a Gcm2-Independent Pathway

RT-PCR using total thymus cDNA from Gcm2^{−/−} mice could still amplify Pth at high cycle numbers (Figure 3C), suggesting that the misplaced parathyroid cells were not the only source of thymic PTH. Quantitative RT-PCR using total thymus cDNA from wild-type and Gcm2^{−/−} mice on a C57BL/6 genetic background showed that the second source of thymic PTH in the Gcm2^{−/−} mouse is about 1/350 of the level in the wild-type mice on the C57Bl/6 background (Figure 3D). We therefore investigated this Gcm2-independent source of thymic PTH expression.

The thymus is a complex immune organ composed of hematopoietic cell-derived thymocytes and multiple types of stromal cells [22]. TECs play a required role in the production of a self-restricted and self-tolerant T-cell repertoire through positive selection and negative selection [22]. Negative selection occurs in the medullary region, where medullary TECs (mTECs) promiscuously express many tissue-restricted self-antigens (TRAs) that are required for negative selection to establish central tolerance and prevent autoimmunity [23]. To test whether thymic PTH expression was due to TRA expression in mTECs, we performed RT-PCR on sorted TECs (Figure 5). TECs expressed both Foxn1 and Pth, and expression levels were similar in TECs sorted from wild-type controls and Gcm2^{−/−} mutants (Figure 5B and 5C). We did not detect Gcm1 or Gcm2 expression in the purified TECs (Figure 5C), indicating that Pth expression in these cells is not controlled by Gcm2, and arguing against a previously proposed role for Gcm1 in regulating thymic PTH expression [4].

Ph expression was not found in other thymic cell types by RT-PCR or microarray analyses, including T cells, macrophages, and dendritic cells (Figure 5B) [24]. Microarray data from sorted mTECs or cTECs also showed that Pth transcripts were present only in mTECs [24]. We further confirmed the expression of Pth in mTECs using Rag2^{−/−} mutant mice, which have a normal cortical structure but lack an organized medulla [25,26]. Thymic Pth expression was greatly reduced in Gcm2^{−/−}; Rag2^{−/−} double mutants (Figure 5D), although not totally ablated, consistent with the incomplete block in mTEC differentiation in Rag2 mutants.

Analysis of Gcm2;Foxn1 Double Mutants

As a genetic test of the TEC origin of thymic Pth expression, we generated Gcm2^{−/−}; Foxn1^{nu/nu} double mutant mice that have no parathyroids and in which TEC differentiation is blocked [27]. We failed to detect any thymic Pth expression in the thymic epithelial rudiments of Gcm2;Foxn1 double mutants (Figure 5E). These results further supported the conclusion that thymic Pth expression has only two sources: misplaced authentic parathyroid cells that express Pth in a Gcm2-dependent manner; and differentiated mTECs that express Pth independent of Gcm2.

The initial report of the Gcm2 single mutant phenotype invoked the 100% neonatal lethality of Hoxa3 mutants, which are apanathyroid and athymic, in support of the proposal that thymus-derived PTH ameliorated the lethality phenotype of Gcm2 mutants [4]. As Hoxa3 mutants have a variety of other defects that could contribute to lethality [28,29], we used the Gcm2^{−/−}; Foxn1^{nu/nu} double mutants as a more appropriate test of
this possibility. These double mutants have a specific genetic deletion of both parathyroids and thymus, without any known potentially confounding phenotypes. In double heterozygote intercrosses, all genotypes were present in the expected Mendelian ratios at the newborn stage. Adult mice had reduced numbers of genotypes homozygous for the Gcm2 mutation (Table 2), consistent with the rate of lethality of Gcm2/2 mutants on this mixed genetic background. Surprisingly, compared with a survival rate of about 55% for Gcm2/2 mutants in these crosses, Gcm2/2 Foxn1nu/nu double mutants had a lower survival rate of about 18% (Table 2). However, the ionized calcium and inorganic phosphorus concentrations in both newborn and adult mice were not significantly different between wild-type and Foxn1nu/nu mutant mice, or between Gcm2/2 mutants and Gcm2;Foxn1 double mutants (Figure 6C–6F). These results indicate that Foxn1-dependent Pth

Figure 2. Incomplete separation of parathyroid and thymus organs results in extra-parathyroid PTH production. Paraffin section in situ hybridization for Gcm2 (A) and Pth (A–E); sections were cut in the sagittal plane. In all figures, anterior is up, and dorsal is to the right. Ages of embryos are in the upper left corner of each panel. Probes used for in situ hybridization are in the lower right. (A) Wild-type embryos at E12 (I), E13 (II) and E18.5 (III) show the separation of parathyroid and thymus organs from the common primordium. The parathyroid/thymus common primordia in panels A–I are outlined. (B) Loss of both parathyroid gland and misplaced parathyroid cells in Gcm2−/− mutants. (C) Location of PTH-expressing cells that were close to or attached to the wild-type thymus. In panels A–C, embryos used were on C57BL/6J genetic background. (D–E) The aparathyroid phenotype caused by Gcm2 null mutation also happens in the 129S6 genetic background. In all panels, black arrows point to the parathyroid. White arrows point to the thymus domain. Arrowheads point to misplaced parathyroid cells. pt, parathyroid; th, thymus; tr, thyroid. Scale bars = 0.1 mm.

doi:10.1371/journal.pgen.1001251.g002

Figure 3. Pth expression in misplaced parathyroid cells was co-expressed with Gcm2 and down-regulated in Gcm2-null mutant mice. (A) RT-PCR using cDNA made from different tissues to show the co-expression of Gcm2 with Pth only in thymus, but not in other organs tested. (B) RT-PCR using thymus cDNA from different stages. The expression of Gcm2 and Pth was detected in all stages tested. (C) Semi-quantitative RT-PCR on thymus cDNA from newborn wild-type and Gcm2−/− mutants. PCR amplification cycle numbers are indicated at the top. β-actin was used as a loading control. Foxn1 was a positive control for TECs. Gcm2 transcripts were absent and Pth transcription levels were much lower in Gcm2−/− mutants. (D) Realtime PCR of Pth was performed for total thymus cDNA samples from wild-type and Gcm2−/− mutants on the C57BL/6J or 129S6 (129) and C57BL/6J (B6) F1 hybrid background. In panel D, n = 4. RQ is the relative quantitative expression level of Pth.

doi:10.1371/journal.pgen.1001251.g003
expression in mTECs does not contribute to serum calcium physiology. While the reason for the increased lethality of double mutants is as yet unclear, these data provide further evidence that the lethality phenotype of Gcm2−/− and Gcm2−/− Foxn1−/− mutants was not PTH-related.

mTEC-Derived PTH Does Not Have Endocrine Function in Gcm2-Null Mutant Mice

The initial report of the Gcm2 null mutant phenotype showed that surgical removal of both the thymus and parathyroids from wild-type adults resulted in lethality [4]. As our data shows that parathyroid cells are normally associated with the thymus due to the incomplete organ separation during development, this result could have been due to the removal of thymus-associated parathyroids, rather than to the removal of thymus-produced PTH. Although there was no detectable serum PTH in most Gcm2 mutants (Figure 1C), we tested whether thymic PTH participates in endocrine function by determining whether the removal of the thymus from Gcm2−/− mutants would increase lethality on the 129/C57BL/6 hybrid background. First, we performed thymectomy surgery on newborn Gcm2−/− mutants on the 129S-C57Bl/6 genetic background. Unmanipulated and mock surgery groups from the same 129S6/C57Bl/6j hybrid genetic background were used as controls. Thymectomized Gcm2−/− mutants did not show increased lethality (Table 1), and serum biochemistry did not show any difference in ionized calcium or inorganic phosphorus levels between surviving Gcm2−/− mutants with mock surgery and Gcm2−/− mutants with thymectomy (Figure 6A, 6B). These data, in combination with the analysis of Gcm2/Foxn1 double mutants, therefore demonstrate that the thymus does not provide any PTH-related endocrine function in mice.

Discussion

Our data reveal two cellular sources of extra-parathyroid PTH. The first source is misplaced authentic parathyroid cells that arise during normal organogenesis, which express PTH in the same way as the parathyroid glands and are ablated in the Gcm2 null mutants. The second source is mTECs, which express PTH independently of Gcm2, but dependent on Foxn1-mediated TEC differentiation. We also define two different physiological functions for the PTH derived from these two different sources. We propose that parathyroid cells, including those in the main parathyroid glands and the misplaced parathyroid cells, are the only physiologically relevant postsatrical source of serum PTH, and that the thymus has no contribution to serum PTH or calcium physiology. mTECs also express PTH, probably as a self-antigen, translated in the mTECs is degraded into short peptides to be used for negative selection.

Based on our observations in both mouse and human, the separation process of the parathyroids from the thymus results in multiple “micro-parathyroids” in addition to the main parathyroid glands. Parathyroid adenomas have been found in the human thymus, and have been shown to express Gcm2, indicating that intrathymic adenomas could be the result of uncontrolled growth of the misplaced parathyroid cells [5,6,33]. These misplaced
parathyroid cells could receive signals from the inappropriate microenvironment, causing them to secrete high PTH or overproliferate; alternatively, these small groups of parathyroid cells may respond inappropriately to homeostatic mechanisms.

Our analysis presents the first genetic marker study of human parathyroid development, and reveals new information about parathyroid development that differs from the original descriptions of human parathyroid organogenesis based on histological studies. Our results on the ontogeny of these extra-parathyroid PTH-expressing cells provide insight into understanding the etiology of some hyperparathyroid disorders caused by ectopic parathyroid glands and intrathymic parathyroid adenomas [5,6]. It is widely accepted that in humans four parathyroids develop during embryogenesis, giving rise to the superior and inferior parathyroids, and that ectopic and supernumerary parathyroids, often associated with the thymus, can cause primary hyperparathyroidism due to hyperplasia, adenomas, and carcinomas [5,34]. Our data indicate that more than four major parathyroid rudiments are present by week 7 in the human fetus and that accessory parathyroids are present in the majority of fetuses at week 7 to week 8, and are therefore more frequent than previously documented [12,35]. Our ability to identify these additional parathyroid structures is due to the increased resolution of analysis provided by in situ hybridization. Morphological studies would not identify all of the smaller accessory parathyroids, and may have annotated some parathyroid primordia as other structures.

Figure 5. mTEC-derived PTH expression is Gcm2-independent but requires Foxn1-mediated TEC differentiation. (A) TEC sorting from control or Gcm2−/− adult thymus. TEC were labeled by activating expression from the R26YFP indicator using Foxn1Cre; cells were stained with anti-CD45-PE to gate out CD45+ thymocytes. FACS analysis was used to check the purity after cell sorting. (B) Real-time PCR for Pth was performed on cDNA synthesized from sorted TECs from wild-type and Gcm2−/− adult thymus. Sorted CD45+ thymocytes were negative for Pth. (C) RT-PCR using cDNA synthesized from sorted TECs from wild-type (WT) or Gcm2−/− adult thymus. (D) Real-time PCR for Pth from total thymus cDNA samples from newborn wild-types (WT), Rag2−/−, Gcm2−/−, and Gcm2−/−;Rag2−/− mutants. (E) Real-time PCR for Pth from total thymus from newborn wild-types, Foxn1nu/nu, Gcm2−/−; and Gcm2−/−;Foxn1nu/nu mutants. RQ is the relative quantitative expression level of Pth. In panels B,D and E, n = number of thymi analyzed.

doi:10.1371/journal.pgen.1001251.g005
null mutants have very similar phenotypes, both of which are milder than the Hoxa3 null when all are on the Black Swiss genetic background [19]. Hoxa3 null mutants have phenotypes similar to the PTH/PTHrP null, which also die at birth, suggesting that Hoxa3 may play some role in calcium physiology outside the parathyroid. In part, the answer may lie outside of calcium physiology. Hoxa3 mutants have other defects that could contribute to lethality [28,29]. The increased postnatal lethality of the Gcm2/Foxn1 double mutants may also be due to as yet unidentified functions for both of these transcription factors in other tissues; expression of both Foxn1 and Gcm2 has been identified in the postnatal central nervous system (http://mouse.brain-map.org/brain/Foxn1.html; http://www.ncbi.nlm.nih.gov/projects/gensat/).

Two models have been proposed for the mechanism that regulates the promiscuous expression of TRAs in mTECs. The progressive restriction model proposes a mosaic of TRA expression in immature mTECs characteristic of multi-lineage differentiated cells of endoderm-derived organs, and expressed by the same tissue-specific regulators as in their ‘normal’ tissues [36]. In contrast, the terminal differentiation model proposes that some mTECs have an autonomous property to express TRAs by a different mechanism compared to their tissue-specific regulation, characterized by lower transcriptional levels and independence from tissue-specific transcriptional regulators [24]. This latter model is supported by single-cell PCR of individual mTECs, and by the analysis of cascin beta gene expression in mTECs compared to mammary gland cells [37]. Given the pharyngeal endodermal origin of parathyroid cells, PTH should be a good candidate for the progressive restriction model, as discussed above. However, our data showed a much lower Pth expression level in mTECs and a Foxn1-dependent and Gcm2-independent pathway for PTH expression in mTECs, more consistent with the terminal differentiation model; Gcm2-dependent PTH in the thymus came exclusively from misplaced parathyroid cells. Microarray analysis indicates that PTH expression in mTECs is Aire-independent [38], consistent with immunolocalization studies [39]. It is still an open question whether the regulation mechanism for thymic PTH in mTECs is common to other Aire-independent TRAs.

Table 2. Survival rates of Gcm2^{−/−} single and Gcm2^{−/−}; Foxn1^{nu/nu} double mutants on the 129S6/C57Bl6 hybrid background at weaning.

Genotype	Mendel Ratio	Observed number	Expected number	Survival rate	d²	d²/e
Gcm2^{+/+}; Foxn1^{T/+}	9/16	116	102.375	185.6	1.81	
Gcm2^{+/+}; Foxn1^{nu/nu}	3/16	45	34.125	118.3	3.47	
Gcm2^{−/−}; Foxn1^{T/+}	3/16	19	34.125	228.8	6.70	
Gcm2^{−/−}; Foxn1^{nu/nu}	1/16	2	11.375	87.9	7.73	
total	1	182	182			19.71

*χ² = deviation value, or subtraction of the expected from observed for each group. e = expected number.

chi-square value (X²) = 19.71; P<0.001; degrees of freedom (df) = 3.

doi:10.1371/journal.pgen.1001251.t002
Materials and Methods

Ethics Statement

All experiments using mice were carried out at UGA with the approval of the UGA Institutional Animal Care and Use Committee. First and second trimester human fetuses were obtained in collaboration with the Reproductive Biology Unit, Little France, Edinburgh. Ethical approval for use of human fetal tissue was granted by the Lothian University Hospitals NHS Trust and the Lothian Research Ethics Committee: Smith et al. ‘Isolation and propagation of fetal stem cells’ LREC/2002/6/15. Consent was obtained from all donors, and the tissue was anonymized before being made available for research. Use and disposal of tissues are strictly regulated in accordance with conditions stipulated in the Ethics approval and in the University of Edinburgh Health and Safety regulations regarding use of human tissue. All experiments using human tissue were performed at the University of Edinburgh.

Figure 6. Neither thymectomy nor the Foxn1nu mutation exacerbated the hypoparathyroidism phenotype in Gcm2−/− mutants. (A–B) Ionized calcium and inorganic phosphorus concentrations of Gcm2−/− mutants and Gcm2+− controls from mock and thymectomized groups. Thymectomy surgery did not alter ionized calcium and inorganic phosphorus concentration among mock and thymectomized groups with the same genotype (t test, P >0.05). Serum samples were collected from 1 month old adult mice. (C–D) Ionized calcium and inorganic phosphorus concentrations of newborn wild-type (WT), Foxn1nu/nu mutants, Gcm2−/− mutants and Gcm2−/− and Foxn1nu/nu double mutants. The serum samples were collected from newborn mice on the 129S6 and C57BL/6J F1 hybrid genetic background. (E–F) Ionized calcium and inorganic phosphorus concentrations of adult wild-type (WT), Foxn1nu/nu mutants, Gcm2−/− mutants and Gcm2−/− and Foxn1nu/nu double mutants. The serum samples were collected from 1 month-old adult mice on the 129S6 and C57BL/6J F1 hybrid genetic background. In panels C–F, Foxn1 null mutation did not alter ionized calcium and inorganic phosphorus concentration between groups with the same Gcm2 genotype (t test, P >0.05). In all panels, n = the number of mice analyzed.

doi:10.1371/journal.pgen.1001251.g006
Mice

The generation and genotyping of Gen2 null mutant has been described [4]. Gen2 mutant mice on a 129/SvEv-C57BL/6J genetic background were backcrossed to C57BL/6J mice for more than 5 generations. These majority C57BL/6J Gen2 mutant mice were then backcrossed to 129Sv mice (Taconic) to obtain 129Sv/C57BL/6 F1 hybrids.

Foxn1-nude mice (Jackson Labs) and R26YFP reporter mice [40] were maintained on a C57BL/6J and 129SvJ hybrid background. C57BL/6J Rag2 null mutant mice were a generous gift from Dr. E. V. Rothenberg. The Foxn1Cre allele of Foxn1 was previously described [41].

Analysis of Gen2;Foxn1 double mutants was done by mating Gen2+/−; Foxn1+/+ males with Gen2+/−; Foxn1+/+ females. A total of 182 one month old mice from Gen2+/−; Foxn1+/+ mating were genotyped at weaning. Reduced survival of genotypes homozygous for the Gen2 mutation was significant using the chi-square test. Since there were no survival defects detected in Gen2+/− or Foxn1+/+ heterozygous mice, we combined heterozygous mice with wild-type mice as a control group.

In all crosses, for calculating the % survival, the survival of wild-type mice was set at 100%. For staging of embryos, noon of the vaginal plug was designated as E0.5.

Human Fetal Tissue

Embryos were staged according to the standard head/rump measurement and classified according to Carnegie stages. Embryos used in this study were from week 6 (Carnegie stage 16–17), week 7 (Carnegie stage 18–19) and early to mid-week 8 (Carnegie stage 20–21). Embryos were fixed in 4% PFA for 24 hours and stored at −20°C in 100% methanol until used for analysis.

RT-PCR and Semi-Quantitative RT-PCR

Isolation of RNA and RT-PCR were performed as described [42]. Tissues were dissected from embryos, newborns, or adult mice and total RNA was isolated with Trizol. Genomic DNA was removed using DNase I. Reverse transcription was performed using SuperScript III Reverse Transcriptase (Invitrogen), then cDNA was subjected to PCR. The following primers were used: β-actin forward 5′-TGGAGATCCCTTGAGGATCCATGAAAC-3′, β-actin reverse 5′-TAAACCCAGCTCAGTAAAGCTCCG-3′, Pth forward 5′-CTGCACTGTCATCTCAGAC-3′, Pth reverse 5′-AAAGCTTGGAAAAGTACCGACA-3′, Gen2 forward 5′-CA- TCAATGACCCAGCATGC-3′, Gen2 reverse 5′-GGGAGC- TTCTTCTGGGCCGTCTG-3′, Foxn1 forward 5′-TGAGCGAG- CACCTGCCTTTAG-3′, Foxn1 reverse 5′-GGGAAGGGTGG- GTATGGCT-3′, Gen1 forward 5′-TGGAAACCAAGCC- CTTGAC-3′ and Gen1 reverse 5′-TGGGGCTTGTGCAC- GATGG-3′. Both Gen2 and Pth RT-PCR products were confirmed by sequencing.

In Situ Hybridization

Paraffin section in situ hybridization for Gen2 and Pth was performed as described [3]. Staged embryos were fixed in 4% paraformaldehyde overnight and processed for paraffin embedding. 8-10 μm sections were hybridized with digoxigenin-labeled RNA probes at 0.5 μg/ml. Alkaline phosphatase-conjugated antidigoxigenin Fab fragments were used at 1:5000; BM-purple (Roche) was used as a chromagen to localize hybridized probe. Nuclear fast red was used as a counterstain.

Whole-mount in situ hybridization on human fetal tissue was performed as described [21]. Gen2 probes used were generated by PCR amplification from microdissected human fetal thymic/parathyroid tissue using the following primers: Gcm2F, 5′-GGGGCCACCTCCTATGAAAAT-3′; Gcm2R, 5′-GCAAGCCT- TCAGGGATGTGA-3′. NBT/BCIP (Roche) was used to localize the hybridized probe. Embryos were embedded in paraffin and sectioned after staining in whole mount.

Thymic Epithelial Cell Purification

Thymic stromal cell isolation was modified from a previously described method [43]. Thymi from Foxn1+/−;R26-YFP/+ mice were dissected, minced into small pieces and agitated in RPMI1640 with 2% FBS to remove most thymocytes. The remaining tissue pieces were collected and resuspended in RPMI1640 and 0.2 mg/ml collagenase for 20 minutes at 37°C with gentle stirring. The tissue pieces were allowed to settle for 5 minutes, the supernatant was discarded, and the tissue was resuspended in dispase media (0.2 mg/ml of dispase, 0.2 mg/ml of collagenase and 25 μg/ml of DNaseI in RPMI 1640) for 20 minutes at 37°C with gentle stirring. The supernatant was discarded and the tissue chunks resuspended in fresh dispase media for 30–45 minutes at 37°C. The digested products were then passed through a 25 G needle, centrifuged at 800 x g for 3 minutes, resuspended in PBS containing 2% FBS and 5 mM EDTA, and then filtered through a 70 μm cell strainer. The filtered cells were stained with anti-mouse CD45-PE (BD pharmmingen) antibody before being subjected to sorting using a MoFlo cell sorter (Dako) to isolate PE-, YFP+ TECs. The yield of TECs was about 20,000 cells per adult thymus, with about 93% purity.

RNA Preparation and Quantitative RT-PCR

Total RNA from sorted TECs was extracted with the RNaseq Micro kit according to manufacturer’s instructions (Qiagen). Total RNA from whole thymus was isolated with Trizol (Invitrogen). First-strand cDNA was reverse transcribed using superscript III (Invitrogen). Quantitative PCR was performed on an ABI 7500 real time PCR system with Taqman universal PCR mix (Applied Biosystems). 18S rRNA VIC/TAMRA primer-probe (Applied Biosystems) was used as endogenous control. Pb FAM primer-probe (Assay ID: Mm00451600-g1) was purchased from Applied Biosystems. PCR was performed at 50°C, 2 min; 95°C, 10 min; 40 cycles of 95°C for 15 sec, 60°C for 1 min. The relative quantity of gene expression was determined using 7500 SDS software (Applied Biosystems).

Serum Biochemistry

Serum sample collection from E18.5 fetal, newborn or adult mice has been described [44,45]. For fetal or newborn mice, the neck was incised to transect the carotid and jugular, and whole blood was collected into plain capillary tubes. For adult mice, blood samples were collected into capillary tubes from tail vein right after mice were sacrificed by cervical dislocation, or a cardiac puncture was used to obtain larger samples. Serum samples were prepared by centrifugation to remove blood cells, then stored at −20°C until assayed. The inorganic phosphorus and ionized calcium levels were measured using kits 117-30 (for phosphorus) and 140-20 (for calcium) from Diagnostic Chemicals Limited (Canada). Serum PTH was measured with a rodent PTH 1-34 Elisa kit with a detection limit of 1.6 pg/ml (Immutopics, San Clemente, CA). PTH values that were below the detection limit of 1.6 were reassigned a value equal to the detection limit.
Acknowledgments

We thank Gerard Karsenty (Baylor College of Medicine) for the Gcm2 mutant mice and Bruno Kyewski (German Cancer Research Center, Germany) for sharing microarray data onPTH expression prior to publication. Thanks to Julie Nelson in the CTEDG Flow Cytometry Facility in University of Georgia for cell sorting. Thanks to Julie Gordon for helpful discussions and for collecting serum for PTH measurements and to Koiko Masuda for providing expertise with neonatal thymectomy. We also thank Richard Anderson, Anne Sauderson, Isobel Morton, Joan Creiger, and the staff of the Bruntsfield Suite of the Royal Infirmary of Edinburgh for patient recruitment provision of samples to the Blackburn lab for these studies.

Author Contributions

Conceived and designed the experiments: ZL AF CSK CCB NRM. Performed the experiments: ZL AF LC BJK. Analyzed the data: ZL AF LC BJK CCB CCB NRM. Wrote the paper: ZL AF CSK CCB NRM.

References

1. Ramasamy I (2006) Recent advances in physiological calcium homeostasis. Clin Chem Lab Med 44: 237–237.
2. Thakker RV (2001) Genetic developments in hypoparathyroidism. Lancet 357: 974–976.
3. Liu Z, Yu S, Manley NR (2007) Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev Biol 305: 333–346.
4. Gunther T, Chen ZF, Kim J, Priemel M, Ruerger JM, et al. (2000) Genetic ablation of parathyroid gland reveals another source of parathyroid hormone. Nature 406: 199–203.
5. Phiyatayakorn R, McHenry CR (2006) Incidence and location of ectopic abnormal parathyroid glands. Am J Surg 191: 416–423.
6. Maret A, Bourdeau I, Ding C, Kadkhod SS, Weusta VH, et al. (2004) Expression of GCMB by intrathyroidal parathyroid hormone-secreting adenomas indicates their parathyroid cell origin. J Clin Endocrinol Metab 89: 8–12.
7. Miao D, He B, Karaplis AC, Goltzman D (2002) Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 109: 1173–1182.
8. Xue Y, Karaplis AC, Hendy GN, Goltzman D, Miao D (2005) Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development. Hum Mol Genet 14: 1515–1528.
9. Blackburn CC, Manley NR (2004) Developing a new paradigm for thymus organogenesis. Nat Rev Immunol 4: 278–289.
10. Manley NR, Blackburn CC (2003) A developmental look at thymus organogenesis: where do the non-hematopoietic cells in the thymus come from? Curr Opin Endocrinol Diabetes Obes 10: 225–229.
11. Manley NR, Condie BG (2010) Transcriptional regulation of thymus organogenesis and thymus epithelial cell differentiation. Prog Mol Biol Transl Sci 92: 183–120.
12. Gilmour J (1937) The embryology of the parathyroid glands, the thymus, and certain associated rudiments. Journal of Pathology 45: 507–522.
13. Weller G (1933) Development of the thyroid, parathyroid and thymus glands in man. Contrib Embryol 24: 93–142.
14. Norris E (1938) The morphogenesis and histogenesis of the thymus gland in certain associated rudiments. Journal of Pathology 45: 507–522.
15. Van Dyke J (1959) Aberrant parathyroid tissue and the thymus: postnatal development of accessory parathyroid glands n the rat. Anatomical Record. pp 185–203.
16. Baumber L, Tufarelli C, Patel S, King P, Johnson CA, et al. (2005) Identification of a novel mutation disrupting the DNA binding activity of GCM2 in autosomal recessive familial isolated hypoparathyroidism. J Med Genet 42: 443–448.
17. Ding C, Buckingham B, Levine MA (2001) Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest 109: 1032–1039.
18. Tu Q, Pi M, Karsenty G, Simpson L, Liu S, et al. (2003) Rescue of the skeletal development of accessory parathyroid glands by transfer onto the Gcm2 null background. J Clin Invest 111: 1029–1037.
19. Siemons CS, Karsenty G, Karaplis AC, Kovacs CS (2010) Parathyroid hormone regulates fetal-placental mineral homeostasis. Journal of Bone and Mineral Research 25: 594–603.
20. Chen C, Kahn DN (1999) Strain differences in bone density and calcium metabolism between C57BL/HcJ and C57BL/6J mice. Bone 25: 413–420.
21. Gordon J, Bennett AR, Blackburn CC, Manley NR (2001) Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing thymic epithelium. Mech Dev 103: 141–143.
22. Andersson G, Moore NC, Owen JJ, Jenkinson EJ (1996) Cellular interactions in thymocyte development. Ann Rev Immunol 14: 73–99.
45. Woodrow JP, Sharpe CJ, Fudge NJ, Hoff AO, Gagel RF, et al. (2006) Calcitonin plays a critical role in regulating skeletal mineral metabolism during lactation. Endocrinology 147: 4010–4021.

46. Fukuma K, Sakaguchi S, Kuribayashi K, Chen WL, Morishita R, et al. (1988) Immunologic and clinical studies on murine experimental autoimmune gastritis induced by neonatal thymectomy. Gastroenterology 94: 274–283.