Uncover Itchy Leaves Ethnomedicine Usage: A Preliminary Study on Characterization and Bioactivity of Laportaea Spp

Lukman La Basy1,2, Djoko Santosa3, Retno Murwanti4, Triana Hertiani3,*

ABSTRACT
Background: Laportea decumana (Roxb.) Weedd. and Laportea stimulans (L.f.) Miq. (Urticaceae) or itchy leaves are endogenous plants from The Maluku Islands, Indonesia, which are used topically as analgesics by local people. Objective: As part of a preliminary investigation on the itchy leaves, this study was conducted to provide information on their macroscopic and microscopic characteristics, phytochemical profiles, and bioactivities according to the ethnomedical usages. Materials and Methods: The macroscopic examination was carried out on fresh leaves. The microscopic examination was carried out on leaf powder under a light microscope. The phytochemical analyses using TLC were conducted on those crude extracts and fractions. The bioactivity assays were conducted in vitro as Cox-2 inhibitor and DPPH radical scavenging activities. Results: reveal similar characteristics in the macroscopic and microscopic properties of both Laportaea spp. leaves. Calcium oxalate crystals were observed in L. decumana but not found in L. stimulans. Both species have stomata with anisocytic type. More trichomes are found in the leaves of L. decumana, yet smaller and easily detachable. TLC analyses exhibited slightly different profiles. The crude extracts and fractions at 10 μg/ml showed similar inhibitory percentages on Cox-2. The DPPH scavenging activities of the crude extracts and fractions of L. decumana showed active moderate activity with an IC50 value < 250 μg/ml, while those of L. stimulans showed moderate to weak potency with an IC50 value < 500 μg/ml. Conclusion: Further exploration on Laportea spp. pharmacological activity is recommended to provide stronger evidence for its ethnomedical usage.

Key words: Laportea decumana (Roxb.) Weedd, Laportea stimulans (L.f) Gaud, Itchy leaves, Characterization, Phytochemical profiles, Cox-2 inhibitor, DPPH radical scavenging activity.

INTRODUCTION
With a vast biodiversity of 20,000 types of plants,1 Indonesia provides various indigenous medicinal plants used for generations2,3 based on indigenous knowledge and local wisdom.4 Despite broader knowledge and local wisdom,5 despite broader knowledge and local wisdom,6 a lack of scientific data is a significant issue for traditional medicine development, worldwide.8 Itchy leaves are plants used traditionally by local people in eastern Indonesia, mainly in the Maluku Islands, to relieve muscle aches following hard work in the field. Records of the ethnobotanical use of itchy leaves are to reduce pain, fatigue, headaches, stomachaches, and muscle pain.4,7 At least two main species named itchy leaves were identified later as two different species,9 Laportea decumana and Laportea stimulans8 belong to family of Urticaceae, which are typical plants that grow in Maluku9 dan Papua.7 Laportaea ssp. is widely distributed in Maluku and Papua.10 The community cultivates those plants in the house yard and sells the leaves in traditional markets.10,11 The L. decumana11 is used more often by the local people since it is relatively easier to be found and more convenient to apply on skin.10

In an effort to widen the itchy leaves utilization as herbal products, a thorough investigation of the plants’ pharmacological effects should be accompanied with a proper quality assurance process.11 Considering there are plants with similar local name, it is of importance to provide a source identification as the initial stage in determining the bioactive components of a plant and ensuring the correctness, quality, and proper use of the plant.12 This purpose can be achieved through a macroscopic, microscopic, and phytochemical comparison of the leaves of these similar plants, Laportea decumana and Laportea stimulans.13,14,15,16

This study aims to characterize the leaves of L. decumana and L. stimulans macroscopically and microscopically, as well as to conduct a phytochemical screening of these plants by using Thin Layer Chromatography. A preliminary investigation of the bioactivities was conducted by evaluating their Cox-2 inhibitory assay and DPPH radical scavenging activity by in vitro methods.

MATERIALS AND METHODS
Materials
Materials include the following: Cox-2 (human) inhibitor screening assay kit (Cayman Chemical); n-hexane, ethyl acetate, methanol, formic acid, 96% ethanol, all solvents are pro analyses grade (Merck, Darmstadt, Germany); distilled water; DPPH radical (2,2-diphenyl-1-phycrilhydrazyl) (Sigma Adrich); standard used for the TLC are quercetin, gallic acid, quinine, stigmasterol (Merck, Germany); spraying reagents used are FeCl3, AlCl3, Dragendorff, annisaldehyde, H2SO4 (Merck, Germany).

Equipments
Linomat4® (Camag Linomat 5), Chamber (Durant), Microscope binocular XSG, Spectrophotometer (Geneys 10 UV Scanning, 335903).

Cite this article: Basy LL, Santosa D, Murwanti R, Hertiani T. Uncover Itchy Leaves Ethnomedicine Usage: A Preliminary Study on Characterization and Bioactivity of Laportaea Spp. Pharmacogn J. 2022;14(4): 286-295.
Plant taxonomy determination

Plants’ taxonomy determination was conducted in the Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta Indonesia under specimen Number 05 with certificate number 10.25.03/UN1/FFA/BF/PT/2021. The plants were identified as Laportea decumana (Roxb.) Wedd. and Laportea stimulans (L.f.) Miq. (Urticaceae).

Macroscopic characterization

Macroscopic examination was carried out by observing the morphology and size of the fresh leaves and carrying out organoleptic tests including the taste, flavor, and color of the dried powder.17

Microscopic characterization

Microscopic examination, the observed part includes, the upper epidermis section of the section used is leaf slices from the upper leaf surface measuring 1x1 cm. For examination of leaf powder used powder from the leaves. Prepare a glass object and drop it with 1-2 drops of chloral hydrate, then heat it over a spirit lamp and then cover it with a glass cup. Then observed under a microscope with revolver objective lens of 40 × magnification.17

Sample preparation

Leaves were collected from village Nuanea districts center of the Maluku Islands, Seram Island, Indonesia on December 2021. Leaves samples were immediately processed to avoid damage of the secondary metabolites contained therein;18 washed, chopped, and dried. The drying process was done at room temperature protected from direct sunlight. Afterward the dried samples were powdered.19

Extraction

Dried powder was macerated by using 96% ethanol p.a as a solvent in a ratio of 1:10.19 The macerate was filtered by using a Buchner funnel, followed by evaporation with a rotary vacuum evaporator at a temperature of 60 °C at a speed of 80-110 rpm to obtain a thick extract.20,21

Fractionation

The fractionation process is carried out using the liquid-liquid partition method using a separating funnel. The crude extract was successively partitioned to gain the n-hexane and ethyl acetate fractions.20,21

Phytochemical screening

The screening was carried out semi-quantitatively with thin layer chromatography technique.20,21 The plate was activated by heating it in an oven at 50 °C, approximately10 minutes prior sample application.1

Detection for flavonoid compound

Extracts from L. decumana and L. stimulans were separately dissolved in methanol and then each was applied 1 mg/mL using Linomat® on to a precoated silica gel plate F254 and eluted using the aforementioned mobile phase. Afterwards, dried plate was sprayed by a FeCl3 reagent. The plate was observed under UV lamps of 254 nm and 366 nm before and after spraying. Quercetin was used as a reference standard.

Detection for phenolic compounds

Extracts from L. decumana and L. stimulans were dissolved methanol with a concentration of 1 mg/mL and then each was applied 3 µL using Linomat® on to a precoated silica gel plate F254 and eluted using the aforementioned mobile phase. Afterwards, dried plate was sprayed by a FeCl3 reagent. The plate was observed under UV lamps of 254 nm and 366 nm before and after spraying. Gallic acid was used as a reference standard.

Detection for alkaloids compounds

Extracts from L. decumana and L. stimulans were dissolved methanol with a concentration of 1 mg/mL and then each was applied 3 µL using Linomat® on to a precoated silica gel plate F254 and eluted using the aforementioned mobile phase. The plate was observed under UV lamps of 254 nm and 366 nm and sprayed by a dragendorff reagent. Quinine was used as a reference standard.

Detection for terpenoids compounds

Extracts from L. decumana and L. stimulans were dissolved in methanol with a concentration of 1 mg/mL and then each was applied 3 µL Linomat onto a precoated silica gel plate F254 and eluted using the aforementioned mobile phase. Then the plate was dried and sprayed with annisaldehyde H2SO4 and observed under UV lamps at 245 nm and 366 nm. Stigmasterol was used as a reference standard.

Cox-2 inhibitory assay

The assay was carried out in vitro using a Cox-2 (human) inhibitor screening assay kit (Cayman Chemical) in accordance with the standard procedures listed on the kit and was dissolved methanol with a concentration of extract and fraction used 10 µg/mL.22,23 The assay was done in triplicates. The percentage of inhibition was calculated by the equation as follows:

\[
\% \text{Inhibition} = \frac{Abs \text{ control} - (Abs \text{ extract} - Abs \text{ blanko})}{Abs \text{ control}} \times 100\%
\]

DPHP radical scavenging activity

The extracts and fractions were separately dissolved in methanol p.a followed by a serial dilution. To each solution was added 0.1 mM DPHP solution in a ratio of 2:1. followed by homogenization.24 The solution was then incubated for 30 min in the dark, and the absorbance was measured at a wavelength of 516 nm.25 The blank solution used methanol p.a. The assay was done in triplicates. The ability to inhibit DPHP radicals was calculated by the equation as follows:

\[
\% \text{radical scavenging activity} = \frac{Abs \text{ control} - Abs \text{ sample}}{Abs \text{ control}} \times 100\%
\]

Statistical analysis

The data obtained from the Cox-2 inhibitory and the DPHP radical scavenging activity were analyzed statistically by one-way ANOVA or Kruskal-Wall’s test with 95% significance level, which were processed by SPSS 24.

RESULTS

Macroscopic characterization

The macroscopic observation was conducted to differentiate the morphology, size, colour of the leaves of L. decumana and L. stimulans. Prior to the macroscopic examination, organoleptic tests were carried out, including taste, flavour and colour (Table 1).
Table 1: Organoleptic observation of samples.

Plant	Sample	Color	Taste	Flavor
L. decumana	Fresh leaves	Green	typical	Bland taste
	Dried powder	Slightly brownish green	typical	Bland taste
L. stimulans	Fresh leaves	green	typical	Bland taste
	Dried powder	Slightly brownish green	typical	Bland taste

Figure 1: L. decumana (left) L. stimulans (right).

Figure 2: Microscopic observation of the fresh leaf of L. decumana (40x magnification).

Figure 3: Microscopic observation of the fresh leaf of L. stimulans (40x magnification).
L. decumana leaf is a green heart-shaped which tip is pointed, and the leaf edge is serrated and oval. It has trichomes on the leaf surface, behind the leaves and bones, and the petiole is red and has a length of 24.5 cm and a width of 14.7 cm. **L. stimulans** leaf color is green, oval shape, pointed tip, and elliptical leaf edge. There are trichomes on the surface of the leaves, behind the leaves, and the bones and stalks. The leaf has a length of 32 cm and a width of 15 cm (Figure 1).

L. decumana leaf has a light green color on its upperside, while on the other side is purplish red. **L. stimulans** leaf has a dark green upperside, and the other side of the leaves was green. **L. decumana** has an oval leaf shape and tapered leaf tips in all parts of the leaf. They are many tight trichomes. While **L. stimulans** has an oval leaf shape and pointed leaf tip, the shape is larger, and the trichomes are rare but firm on the upperside and and the other side of the leaves.

Microscopic characterization

Result of the microscopic observation of **L. decumana** fresh leaf as described on Figure 2, exhibited a phloem and xylem ladder form, secretory cells located on the upper epidermis and there are 3-7 palisade cells located on the upper epidermis (Figure 2).

Result of the microscopic observation of **L. stimulans** fresh leaf as described on Figure 3, exhibited carrier bundles as ladder-shaped, secretory cells located on the upper epidermis and stomata of an anisocytic type.

Phytochemical screening

Phytochemical screening exhibits similar TLC profiles of both crude extracts having similar Rx for the spots reacted to the flavonoids, phenolics and terpenoids reagents sprayed while exhibited different Rx for the spots reacted to AlCl₃ and FeCl₃ (Table 2 and 3). Both crude extracts showed similar Rx and colour change following the annisaldehyde H₂SO₄ spraying (Table 2, 3 and 4). DPPH spraying showed similar positive spots of both Laportea however those of **L. decumana** exhibited additional positive spots. Table 4 summarize the results while also exhibited the positive result of the alkaloids detection by using dragendorff as the spraying agent.

DISCUSSION

Research on medicinal plants and herbs ("Ristoja") in 2017 reported Indonesia biodiversity covers 11,218 medicinal plants, of which 9,516 plant species used as part of traditional remedy.²⁰ The 2018 Basic Health Research Report ("Risksdas") revealed traditional medicine usage by the Mollucas as 39.03% of which 78.22% are self-made.

Itchy leaves are typical plants found in the eastern Indonesia which was identified as **Laportea decumana** (Roxb.) Wedd. and **Laportea stimulans** (L.f.) Miq. (Family: Urticaceae). The people of Mollucas and Papua have used itchy leaves¹⁰ to overcome various health complaints. Itchy leaves are used topically to relieve aches, fatigue, headaches, stomach aches, joint and muscle aches, and bruises. The local people usually rub the leaves on the painful area, and afterwards there will be a stinging sensation followed by numb and anesthetic sensation.

L. decumana widely grows and well distributed in the Maluku Islands and Papua. It can be found in humid areas, and most of these plants grow side by side with Sago palms, next to a small river.¹¹ The plant is also cultivated in the houseyard, and easily found also in the traditional markets.¹⁰,¹²

On the other hand, the **L. stimulans** is also named by the local people as itchy leaves, while it also can cause itching when is applied on skin.

![Table 2: TLC profiles of L. decumana Crude extract and fractions.](image)

Sample	Before spraying	After spraying					
	UV 254	UV 366	AlCl₃	FeCl₃	Drangendorff	annisaldehyde	DPPH
L. decumana extract	27	+	+	-	-	-	-
	37	+	+	Dark yellow	-	-	+
	42	+	+	Dark yellow	Dark blue	Brick red	+
	61	+	+	Dark yellow	Dark blue	Brick red	+
	71	-	+	-	-	-	-
n-Hexane fraction	12	-	+	-	-	-	-
	18	-	+	-	-	-	-
	27	+	+	-	-	-	-
	37	-	+	-	-	-	-
	42	+	+	Dark yellow	-	-	-
	59	+	+	Dark yellow	Dark blue	Brick red	+
	61	+	+	Dark blue	-	+	+
	80	-	+	-	-	-	-
	6	+	-	-	-	-	-
	12	+	Blue	-	-	-	+
	21	+	Blue	-	-	-	+
Ethyl acetate fraction	31	-	+	-	-	-	-
	43	-	+	Dark yellow	-	-	-
	51	-	+	Dark yellow	Dark blue	-	-
	60	+	+	Dark blue	-	Brick red	+
	75	-	+	-	-	Brick red	+
Water fraction	81	+	Blue	Light yellow	Light blue	Brick red	+

Notes: + : probably contains the respective compound group, - : no compound group detect samples were spotted on to the silica gel TLC plate and analyzed by using different spraying reagents. The mobile phases used was a mixture of n-hexane: ethyl acetate (7:3) v/v (for crude extract, n-hexane, and ethyl acetate fractions); while the water fraction was eluted by using the mobile phase methanol: ethyl acetate: formic acid (7:3:0.2) v/v.

Pharmacognosy Journal, Vol 14, Issue 4, July-Aug, 2022
Table 3: TLC profiles of L. stimulans crude extract and fractions.

Sample	hRf	Before spraying	After spraying						
		UV 254	UV 366	AlCl₃	FeCl₃	Dragendorff	annisaldehyde	H₂SO₄	DPPH
L. stimulans extract	27	-	+	Dark yellow	-	-	-	-	-
	53	-	+	Dark yellow	Dark blue	-	Brick red	+	-
	70	-	+	-	-	-	-	-	-
	80	-	+	-	-	-	-	-	-
	26	-	+	-	-	-	-	-	-
	40	-	+	-	-	-	-	-	-
	53	-	+	Dark yellow	-	-	-	-	-
n-hexane fraction	55	-	+	-	-	-	-	-	-
Ethyl acetate fraction	60	+	+	Dark yellow	Dark blue	-	Brick red	+	-
	68	-	+	-	-	-	-	-	-
	80	-	+	-	-	-	-	-	-
	6	-	+	-	-	-	-	-	-
	26	-	+	-	-	-	-	-	-
Water fraction	57	-	+	Dark yellow	-	-	-	-	-

Table 4: Summary of the phytochemical screening results.

Group of compounds	Reference standards	L. decumana	L. stimulans	Group of compound identifications / DPPH
Flavonoids	Quercetin	37	27	+
Phenolics	Gallic acid	42	53	6.62
Terpenoids	Stigmasterol	61	60	+
Alkaloids	Quinine	0	0	-
Flavonoids	Quercetin	42	53	6.62
Phenolics	Gallic acid	53	53	4.4
Terpenoids	Stigmasterol	61	60	+
Alkaloids	Quinine	0	0	-
Unidentified		12	-	+
Phenolics	Quercetin	43	36	3
Phenolics	Gacllic acid	51	43	5.3
Terpenoids	Stigmasterol	60	60	1
Alkaloids	Quinine	0	0	-
Unidentified		21	-	+
Phenolics	Quercetin	81	75	0.10
Phenolics	Gallic acid	81	75	0.10
Terpenoids	Stigmasterol	81	75	0.83
Alkaloids	Quinine	-	-	-

Table 5: Cox-2 inhibition following samples application at 10 µg/ml.

Sample	% Inhibition	Average inhibition ± SD				
	Replication I	Replication II	Replication III			
L. decumana						
Crude extract	79	79	89	83 ± 0.05		
n-hexane fraction	67	72	75	72 ± 0.04		
Ethyl acetate fraction	82	86	75	81 ± 0.0		
Water fraction	78	77	67	74 ± 0.05		
L. stimulans						
Crude extract	78	76	73	76 ± 0.02		
n-hexane fraction	79	74	76	76 ± 0.02		
Ethyl acetate fraction	80	75	77	78 ± 0.02		
Water fraction	79	75	69	74 ± 0.07		

Note: Statistical analysis with 95% significance level showed no significant difference between the extracts and the fractions of L. decumana with a value of 0.066 > 0.05; while those of L. stimulans showed a value 0.05.
Table 6: DPPH radical scavenging activity of *L. decumana* crude extract and fractions.

Sample	Concentration (ppm)	Replication I	Replication II	Replication III	Average % Inhibition ± SD	IC (µg/ml)	Antioxidant activity
Crude extract	25	20.33	16.94	16.69	17.00±2.03		
L. decumana	50	25.72	26.10	24.59	25.47±0.78		
	75	32.24	31.99	33.00	39.36±0.69		
	100	38.64	39.40	40.02	39.36±0.69		
	125	39.65	45.04	44.79	43.16±3.04		
n-Hexane fraction	25	24.61	20.37	19.63	21.53±2.68		
	50	25.09	25.21	25.58	25.29±0.25		
	75	30.79	31.64	32.24	31.56±0.73		
	100	33.33	34.54	33.58	33.82±0.64		
	125	37.33	32.21	38.54	36.36±2.78		
Ethyl acetate	25	15.54	15.42	14.93	15.30±0.32		
fraction	50	22.64	23.62	23.26	23.17±0.49		
	75	27.17	29.25	29.38	28.60±1.24		
	100	33.05	43.64	34.27	33.97±0.08		
	125	37.94	45.04	44.79	43.16±3.04		
Water	25	30.63	23.80	25.67	26.80±3.53		
fraction	50	40.25	41.27	41.77	41.10±0.77		
	75	57.21	55.57	56.46	56.41±0.82		
	100	68.35	69.49	69.11	68.99±0.58		
	125	80.13	81.14	80.52	80.93±0.72		

Note: Statistical analyses on *L. decumana* showed significant difference between the extract and the fractions at various concentrations following the DPPH radical scavenging assay with a value 0.027 <0.05.

Table 7: DPPH radical scavenging activity of *L. stimulans* crude extract and fractions.

Sample	Concentration (ppm)	Replication I	Replication II	Replication III	Average % Inhibition ± SD	IC (µg/ml)	Antioxidant activity
Crude extract	25	11.92	10.54	10.03	10.83±0.97	322.45	weak
L. stimulans	50	12.42	12.67	12.67	11.44±0.78		
	75	14.05	16.56	16.31	15.64±1.38		
	100	17.81	17.81	17.44	17.69±0.21		
n-Hexane fraction	25	16.36	13.18	13.81	14.66±1.47		
	50	18.57	17.81	17.81	18.07±0.43		
	75	14.91	12.00	10.18	12.36±2.38		
	100	16.36	13.18	13.81	14.66±1.47		
	125	15.72	15.27	15.75	15.92±0.74		
Ethyl acetate	25	17.09	16.89	17.38	17.09±1.02		
fraction	50	11.51	10.04	10.16	10.57±0.81		
	75	13.34	12.24	13.10	12.89±0.58		
	100	15.91	16.16	16.20	16.20±0.31		
	125	8.93	8.08	7.59	8.20±0.68		
Water	25	15.91	16.16	16.20	16.20±0.31		
fraction	50	8.23	7.21	6.58	7.34±0.83	469.96	weak
	75	9.49	8.99	7.72	8.73±0.91		
	100	9.87	9.62	9.75	9.75±0.13		
	125	12.15	11.90	12.02	12.02±0.13		

Note: Statistical analyses on *L. decumana* showed significant difference between the extract and the fractions at various concentrations following the DPPH radical scavenging assay with a value 0.001 <0.05.

It grows well in the Maluku area but not as much as *L. decumana*. It is rarely used topically since it induces pain following application.

The leaves of *L. decumana* and *L. stimulans* can be easily differentiated macroscopically (Figure 1). On the other hand, the major difference of the microscopic characteristics was observed on the absent of oxalate crystals in *L. stimulans*. Trichomes of the family of *Urticacae* easily fall off by touch; and have a sharp shape like syringes.27 Syringes can penetrate the skin and release irritants.28 In *L. decumana* the presence of more dense and dense trichomes are located on the leaf surface but easily detached, biomineralized, and less sharp in contrast to *L. stimulans* trichomes, which are rare on the leaf surface but have a more muscular shape and
are attached to the leaf base which can penetrate the skin and provide more pungent irritant.29-34 The trichomes in *L. decumana* are easy to be detached. When the trichomes are separated from the base of the leaves, the injured plant cells cause the cells to secrete formic acid compounds, which provide an analgesic effect. When *L. decumana* is applied to the skin surface, formic acid secretion occurs from the leaf trichomes, which will cause the skin pores to widen and further relieves aches, pains, and fatigue in the muscles and body. The exact mechanism is not fully understood. At the same time, the trichomes of *L. stimulans* are fewer but larger in size to induce more dominant pain.

The phytochemical screening of both crude extracts detected the presence of flavonoids, phenolics, alkaloids, and terpenoids. Both leaves seem to have a similar chemical content based on the TLC profile focusing on phytochemical groups characterization; however different TLC profiles were observed amongst crude extracts and the respective fractions following the DPPH spraying. This finding is consistent with the results of the DPPH radical scavenging activity, showing that the *L. decumana* crude extracts and fractions have higher activity in comparison to those of *L. stimulans*.

The crude extracts and the fractions from both leaves exhibited similar Cox-2 inhibition assayed on 10 µg/ml (Table 5). Several phytochemicals have been reported elsewhere to exhibit analgesic and anti-inflammatory activities by inhibiting Cox enzymes31,32 of which some refers to terpenoids, phenolics, and flavonoids as the responsible bioactive compounds.33,34 Plant extract might serve as a pain reliever some refers to terpenoids, phenolics, and flavonoids as the responsible compounds, which provide an analgesic effect.7 When the trichomes are separated from the base of the leaves, the injured plant cells cause the cells to secrete formic acid compounds, which provide an analgesic effect. When *L. decumana* is applied to the skin surface, formic acid secretion occurs from the leaf trichomes, which will cause the skin pores to widen and further relieves aches, pains, and fatigue in the muscles and body. The exact mechanism is not fully understood. At the same time, the trichomes of *L. stimulans* are fewer but larger in size to induce more dominant pain.

The fact that the crude extract and fractions are *L. decumana* consistently exhibited a radical scavenging activity, supports the preference of its usage by the local community, besides its more convenient usage. Itchy leaves, i.e., *L. decumana* and *L. stimulans* are both used topically as analgesic by the local people in the Moluccas and Papua. However, there are also other types of itchy leaves plants reported from the same ordo. i.e., *Laportea bulbifera*, *Laportea interrupta*.50-52 A further study on the potency of the itchy leaves extracts according to the ethnomedicinal usage are necessary to be conducted to support its development as a standardized and scientifically proofed herbal medicinal products.

CONCLUSION

Itchy leaves of *L. decumana* and *L. stimulans* can be differentiated easily according to its appearance in color, shapes of fresh leaves, as well as the typical trichomes and the absent of the oxalate crystals in *L. stimulans*. Despite having similar COX-2 inhibition activity, *L. decumana* crude extract and fractions showed higher potency as the DPPH radical scavenging activity in comparison to *L. stimulans*. TLC profiles suggesting different chemical contents which responsible for the pharmacological activity. It is noteworthy to further investigate the active ingredients of the leaves as well as to provide pharmacological evidence by an in vivo assay to support the ethnomedicinal usage.

ACKNOWLEDGMENT

Authors gratefully acknowledge the research funding from the Faculty of Pharmacy, Universitas Gadjah Mada in 2022.

CONFLICTS OF INTEREST

None declared.

REFERENCES

1. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African J Tradit Complement Altern Med. 2011;8(1):1-10.
2. Pratama BP, Supriyadi, Swasono RT, Pranoto Y. Different leaf maturities and withering durations affect the antioxidant potential and aroma compound of Indonesian bay leaf [Syzygium polyanthum (Wight) Walp]. 2021;28(6):1196-203.
3. Bari IN, Herawati N, Putri SN. Effects of Oleander Leaves (Nerium oleander) against Metabolism, Activity Pattern, and the Leaves Potency as Rice-Field Rat Repellent (Rattus argentiventer). Biol Life Sci Forum. 2020;4(1):37.
4. Nursalam. Potensi Dan Pengembangan Jenis Tanaman Obat Didesa Meranjat Kecamatan Indralaya Selatan. J Chem Inf Model. 2017;53(9):1689-99.
5. Utami S, Haneda F, Silvikultur D, Bogor IP, Akademik JL, Dramaga KIPB. Pemanfaatan Etobotani dari Hutan Tropis Bengkulu sebagai Pestisida. J Manaj Hutan Trop. 2010;16(3):143-7.
6. Dpekpe RI. Kebijakan Obat Tradisional Nasional. Edisi I. 2007.
7. Simaremare ES. Skrining Fitokimia Ekstrak Etanol Daun Gatal (Laportea decumana (Roxb.) Wedd). Pharmacy. 2014;11(1):98-107.
8. Trimble S. News of C-17’s demise greatly exaggerated. Jane’s Def Ind. 2006.
9. Liswandari AV. Kajian Bioprospeksi Zat Aktif Daun Gatal (Laportea Decumana) Kemaduhi (Dendrocide stimulans (L.f.) Chew) dan Bedor (Girardinia palmata Gaud). 2020.
10. Tualeka S. Pemenraksan Farmakognostik dan Usaha Skrining Komponen secara Kromatografi Lapis Tipis daun gatal (Laportrea decumana(rxb.) Wedd) asal Maluku. 1996.
11. Puro I. Kajian Aktivitas Antebakteber Daun Gatel (Laportea Decumana (Roxb.) Wedd.) Dan Daun Benalu Cengkeh. 2012.
12. Ariastuti R, Anam K, Pamungkas IY. Efektivitas Analgesik Daun Gatal (Laportea decumana) pada Penderita Myalgia di Kampung ATSJ Distrik Kapatuan Asmat Provinsi Papua. J Kebidanan. 2018;10(1):50-61.
13. Basy LLA, Hamzah H, Jabbar A. Review: Activity Study of Itchy Leaves (Laportea decumana (Roxb) Wadd) as a Medicinal Plant. Int J Pharm Res. 2021;13(1):3323-31.
14. Serrano R, Silva G da, Silva O. Application of Light and Scanning Electron Microscopy in the Identification of Herbal Medicines. Microsc Sci Technol Appl Educ. 2010;2014:182-90.
15. Dwiatmaka Y, Jumpowati MDB. Identifikasi Mikroskop Batang Masoyi (Massola aromaticBecc). J Indones Med Plants. 1999;5(2):1-3.
16. Yuda PESK, Cahanjingsih E, Winariyanti NPY. Skrining Fitokimia Dan Analisis Kromatografi Lapis Tipis Ekstrak Tanaman Patikan Kebo (Euphorbia hirta L.). J Ilm Medicam. 2017;3(2):61-70.
17. Mulyani S, Nugraheni ND, Sari HM, Zulvita, Siswondo AA. Skrining Fitokimia Ekstrak Etanol Daun Gatal (Laportea Decumana (roxb.) Wedd) asal Maluku. 1986.
18. Depkes RI. Kebijakan Obat Tradisional Nasional. Edisi I. 2007.
19. Pandey A, Tripathi S, Pandey CA. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem JPP. 2014;115(25):115-9.
20. Wedagama DM. Antibacterial Activity of Red Pine. 2021;241:559-62.
21. Ramamoorthy SKP, Manickam D, Subramaniam S, Subramaniam S. Standardisation and Phytochemical Screening of Traditional Formulation. Int J Curr Pharm Res. 2016;9(1):70.
22. Cayman Chemical. COX-2 (human) Inhibitor Screening Assay Kit. 2019. https://www.caymanchem.com/pdfs/701080.pdf
23. Soekaryo. ISSN 2407-9189 The 4 th University Research Colloquium 2016 Uji Inhibis Enzm Sikloksigenase-2 (COX-2) Dari Ekstrak Daun terjadi terus menerus dalam waktu lama maka merupakan salah satu faktor risiko timbulnya kanker. Infamasi kronik yang terjadi akan. 2016;2:485-92.
24. Correa G, Montero AV. Uji Aktivitas Antiksidan Ekstrak Metanol Buah Lakum (Cayratia Trifolia) Dengan Metode Dpph (2,2-Difenil-1-Pikrilhidrazil). 2013;1-10.
25. Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen U. Determination of DPPH Radical Oxidation Caused by Linear Regression Analysis of Spectrophotometric Measurements. Sensors. 2007;7(10):2080-96.
26. Litbangkes. Laporan Provinsi Maluku Riskesdas. 2019.
27. DeVore ML, Nyandwi A, Eckwardt W, Bizuru E, Mujawariyana M, Pigg KB. Urticaceae leaves with stinging trichomes were already present in latest early Eocene Okanagan Highlands, British Columbia, Canada. Am J Bot. 2020;107(10):1449-56.
28. Vassilyev A, Akhalkatsi M. Structural and functional characterization of capitate trichomes in some Urticaceae. Bot Jour. 1993;78(12):1-8.
29. Mustafa A, Enisikat HJ, Heigend M. Stinging hair morphology and wall biomineralization across five plant families: Conserved morphology versus divergent cell wall composition. Am J Bot. 2018;105(7):1109-22.
30. Mustafa A, Enisikat HJ, Heigend M. Ontogeny and the process of biomineralization in the trichomes of loasaceae. Am J Bot. 2017;104(3):367-78.
31. Kumaresan GD, Dhanraj M. Efficacy of Cox-2 inhibitors in the Clinical Management of TMJ Arthritis: A Review. Res J Pharm Technol. 2017;10(12):4439.
32. Praveen DC, RC P, Thanmayi G, Poojitha G, VA M. Antioxidant and Analgesic Activity of Leaf Extracts of Artocarpus heterophyllus. Res Pharm Tech. 2016;9(3):257-61.
33. Zachak SM, Gautam R, Selvam C, Madhan H, Srivastava A, Khan T. Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of Tridax procumbens L. Fitteratura. 2011;82(2):173-7.
34. Mura MNO, Kasemura K, Fujihara Y, Inoue T. Proinflammatory Cytokine (TNF-a) Suppression of Various Terpenoids to Human Monocytic Cell Aromadendrum Aromadendrum epoxide. 2003;37:1-5.
35. Yu SH, Kim HJ, Jeon SY. Anti-inflammatory and anti-nociceptive activities of Alpinia oxyphylla Microel extracts in animal models. J Ethnopharmacol. 2020;260(6):112985.
36. Weleitnase T, Hiltska K, Tadege T. Phytochemical analysis and in vitro screening of putative dual COX-2 / 5-LOX inhibitors from Curcumin roots as an anti-inflammatory agent. Res Pharm Technol. 2019;12(11):8240-6.
37. Shukla RK, Kishan. A review on European plum (Prunus domestica) for its pharmacological activities and phytochemicals. Res J Pharm Technol. 2021;14(2):1165-62.
38. Pavithra S, Banu N. Free Radical Scavenging Activity and Total Antioxidant Capacity of Tin Chloride from Morinda citrifolia L. Res J Pharm Technol. 2017;10(2):453-5.
39. Sharma JB, Sherry, Bhatt S, Saini V, Kumar M. Development and validation of uv-visible spectrophotometric method for the estimation of curcumin and tetrahydrocurcumin in simulated intestinal fluid. Res Pharm Technol. 2014;14(6):297-5.
40. Yang MH, Yoon KD, Chin YW, Park JH, Jeon SY. Anti-inflammatory and anti-nociceptive activities from Dioscorea opposita activities from Dioscorea opposita. Bioorganic Med Chem. 2010;18(2):67-74.
41. Capes IC, Universidade L, Lib D, Copyrighted I. Inhibitory, and Free Radical Scavenging Effects of Dioscorea opposita. Planta Medicaica. 2010;76(14):1564-9.
Utami DT, Pratiwi SUT, Haniastuti T, Hertiani T. Degradation of Oral Biofilms by Zerumbone from Zingiber zerumbet (L.). Res J Pharm Technol. 2020;13(8):3559-64.

Umavandhana R, Jayanthi S. Analysis of Phytochemical compounds and DPPH radical scavenging activity of Dictyotadichotoma and Halimedamacroloba. Res J Pharm Technol. 2018;11(8):3440-4.

Dhanalakshmi S, Abinaya, Devi K, Lakshmi. In Vitro Anti- Oxidant Study of Herbal Extract Mixture by Nitric oxide and DPPH Method. Res J Pharm Technol. 2017;10(1):277-80.

Maesaroh K, Kurnia D, Al Anshori J. Perbandingan Metode Uji Aktivitas Antioksidan DPPH, FRAP dan FIC Terhadap Asam Ascorbat, Asam Galat dan Kuersetin. Chim Nat Acta. 2018;6(2):93.

Hamzah H, Hertiani T, Pratiwi SUT, Murti YB, Nuryastuti T. The Inhibition and Degradation Activity of Demethoxycurcumin as Antibiofilm on C. albicans ATCC 10231. Res J Pharm Technol. 2020;13(1):377-82.

Marjoni MR, Zulfisa A. Antioxidant Activity of Methanol Extract/Fractions of Senggani Leaves (Melastoma candidum D. Don). Pharm Anal Acta. 2017;8(8):1-6.

Putra IMWA, Fakhrudin N, Kusumawati IGAW, Nurrochmad A, Wahyuono S. Antioxidant properties of extract combination of Coccinia grandis and Blumea balsamifera: An in vitro synergistic effect. J HerbMed Pharmacol. 2022;11(1):85-62.

Yang MC, Choi SZ, Lee SO. Flavonoid constituents and their antioxidant activity of Laportea bulbifera Weddell. Korean J Pharmacogn. 2003;34(1):18-24.

Selvam T, Kr S, Vasanth KG, Vc D, Acharya MV. Physico-chemical, Phytochemical and Spectroscopic Characteristics of Aqueous and Methanolic Extracts of Laportea interrupta L. Chew Leaf. 2016;3(2):309-14.

Oloyede GK, Ayanbadejo OE. Phytochemical, toxicity, antimicrobial and antioxidant screening of extracts obtained from Laportea aestuans (Gaud). J Med Sci. 2014;14(2):51-9.
ABOUT AUTHORS

Prof. Dr. rer. nat. Triana Hertiani is a Professor at the Pharmaceutical Biology Department, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia. She graduated and licensed as a pharmacist in 1997 and hold her Master of Science in Pharmaceutical Sciences in 2000 from the same Faculty. She completed her Doctoral degree at the Pharmaceutical Biology and Biotechnology Department, University of Heinrich-Heine, Duesseldorf, Germany in 2007. Triana Hertiani began her career as a lecturer at the Pharmaceutical Biology Department, Faculty of Pharmacy, Universitas Gadjah Mada, in 1998. Her research interest is to explore Indonesian natural resources as new anti-infective and to provide scientific support for establishing Jamu as Indonesian traditional medicine.

Dr. Retno Murwanti, M.P., Ph.D. is a lecturer at the Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia. She graduated from the Faculty of Veterinary Medicine, Universitas Gadjah Mada in 1996 and hold her Master of Veterinary Science in 2003 from the same Faculty. She completed her Doctoral degree at the Graduate School of Pharmaceutical Science, The University of Tokyo, Japan in 2011. Her research interests are in the field of cancer therapy, histopathology, immunology and toxicology

Dr. Djoko Santosa, M.Si. is a lecturer at the Pharmaceutical Biology Department, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia. He graduated from the Faculty of Biology, Universitas Gadjah Mada in 1996 and hold his Master of Science in Biology in 2003 from the same Faculty. He completed his Doctoral degree from the Faculty of Pharmacy Universitas Gadjah Mada, in 2018. His research is in the field of ethno botany, medicinal plants ecology, pharmaceutical botany, and plant tissue culture (cultivation of medicinal plants).

Lukman La Basy, M.Sc., Pharmacist, is a lecturer at the Pharmacy Department, Stikes Maluku Husada, Maluku and also a doctor candidate from the Pharmaceutical Sciences Doctoral Study Program, Faculty of Pharmacy, Universitas Gadjah Mada. He involves in researches that study pharmacology of medicinal plants.

Cite this article: Basy LL, Santosa D, Murwanti R, Hertiani T. Uncover Itchy Leaves Ethnomedicine Usage: A Preliminary Study on Characterization and Bioactivity of Laportea Spp. Pharmacogn J. 2022;14(4): 286-295.