Diagnostic and Vaccine Potentials of ESAT-6 Family Proteins Encoded by M. tuberculosis Genomic Regions Absent in M. bovis BCG

Abu Salim Mustafa
Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait

Abstract
Tuberculosis is a major international health problem and its control requires cost-effective diagnostic reagents and protective vaccines. Among the candidates advocated for both applications is the immunodominant 6 kDa early secreted antigenic target (ESAT-6) of M. tuberculosis. The esat6 gene is located in the M. tuberculosis-specific genomic region of difference 1 (RD1), which is absent in all vaccine strains of M. bovis BCG. In addition to ESAT6, RD1 contains the gene for another immunodominant low molecular weight culture filtrate protein 10 (CFP-10). Both ESAT-6 (ESXA) and CFP10 (ESXB) belong to the ESAT-6 family. The sequences of ESXA and ESXB lack significant homology with each other and any other member of ESAT-6 family. Furthermore, four additional immune dominant proteins belonging to ESAT-6 family have been identified, whose genes are present in M. tuberculosis-specific genomic regions absent in M. bovis BCG, i.e. Rv2346c/ESXO and Rv2347c/ESXP in RD7, and Rv3619c/ESXV and Rv3620c/ESXW in RD9. ESXO and ESXV belong to ESAT-6 subfamily-1 and ESXP and ESXW to ESAT-6 subfamily 2. Each subfamily contains five members and has orthologs in M. bovis BCG. Although, members of subfamily 1 lack sequence identity with members of subfamily 2, each of the five members within a given family share >92% sequence identity. Immunization with RD proteins of ESAT-6 family protects animals against challenge with M. tuberculosis, but due to the immunodominant recognition by the majority of TB-infected and exposed individuals, and the absence in M. bovis BCG, ESXA and ESXB should be reserved for diagnostic applications, and the ESAT-6 subfamily 1 and 2 proteins deserve to be considered as subunit vaccine candidates.

Keywords: Tuberculosis; ESAT-6 family proteins; Diagnosis; Vaccine

Introduction
Tuberculosis (TB) is a global infectious disease problem known to mankind since antiquity. The main causative organism of TB, i.e. M. tuberculosis, was discovered by Robert Koch in 1882, and since then, diagnostic reagents and vaccines have been developed and used to control TB [1]. However, in spite of these developments, TB remains a major threat to human health even in the 21st century. The worldwide estimates suggest that about 1/3rd of the global population is latently infected with M. tuberculosis and 5-10% of these people will develop active TB in their life time [1]. Furthermore, according to the most recent estimates by the World Health Organization, 8 to 9 million people developed active disease and 1.3 to 1.5 million people died of TB in 2011 [2]. The global control and possible eradication of TB requires identification of M. tuberculosis antigens useful for specific diagnosis and development of effective vaccines to protect against all forms of TB [3-5].

The only licensed vaccine against TB is the Bacillus Calmette-Guerin (BCG), which is widely used to protect against TB in humans. BCG was developed by two French Scientists, Albert Calmette and Camille Guerin, by attenuation of virulent Mycobacterium bovis during 1908 to 1921, by sub-culturing on synthetic media. Although, M. bovis BCG is among the world’s most widely used vaccines, its use is controversial because of the failure to protect against pulmonary TB in adults, particularly in poor countries of Asia and Africa, which are the epicenter of TB epidemic [6,7]. In addition, the M. bovis BCG vaccine faces two other problems: i. It induces the delayed type hypersensitivity (DTH) skin response to tuberculin (purified protein derivative of M. tuberculosis, PPD), which cannot be distinguished from exposure to M. tuberculosis, and therefore M. bovis BCG vaccination compromises the use of tuberculin for diagnosis or epidemiological investigations [6]. ii. M. bovis BCG, being a live vaccine, is contraindicated in HIV-infected individuals, because due to their immunocompromised state, the live M. bovis BCG organisms can cause disease in them [8].

With respect to diagnosis, tuberculin/PPD, prepared from the culture filtrate of M. tuberculosis, is routinely applied as a skin test reagent for detection of M. tuberculosis infection [6]. However, in all cases, a negative tuberculin test does not rule out active TB but may reflect non-responsiveness because of immunocompromised state of the patient or incorrect administration of the test [7]. In addition, due to antigenic crossreactivity between PPD, M. bovis BCG and environmental mycobacteria, a positive PPD test may not distinguish between active/latent disease, M. bovis BCG vaccination and exposure to environmental mycobacteria [9]. Moreover, antigenic components in PPD are not standardized and therefore PPD from different sources may vary in the skin test response [6]. Thus, there is an urgent need to identify the antigens of M. tuberculosis, which could be candidates to develop improved vaccines with universal efficacy and for specific diagnostic of active and latent TB.

ESAT-6 family of proteins
ESAT-6 is a low molecular weight and immunodominant protein first identified from the short term culture filtrate of M. tuberculosis

*Corresponding author: Abu Salim Mustafa, Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait, Tel: (965)24636505; Fax: 9653532719; E-mail: abusalim@hsc.edu.kw

Received August 20, 2013; Accepted September 24, 2013; Published September 28, 2013

Citation: Mustafa AS (2013) Diagnostic and Vaccine Potentials of ESAT-6 Family Proteins encoded by M. tuberculosis genomic regions absent in M. bovis BCG. J Mycobac Dis 3: 129. doi:10.4172/2161-1068.1000129

Copyright: © 2013 Mustafa AS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
using interferon gamma secretion by cells from mice infected with *M. tuberculosis* [10]. A detailed search in the *M. tuberculosis* H37Rv genome data base identified 23 genes (essA to essW) related to the esat6 operon [11], defining a novel gene family encoding proteins known as ESAT-6 family proteins (Table 1). Many of these genes are predicted to encode hypothetical proteins with unknown functions. Although, these genes have only 10–35% homology to esat6, they are approximately of the same size (ca 100 aa) and share a similar genomic organization. Because of the immunodominance of ESAT-6 (ESXA) [12–18], other ESAT-6 family proteins have also received considerable attention for immunological evaluation [19–21]. As given below, the genes of some of these proteins are present in *M. tuberculosis*-specific genomic regions, and therefore they have been considered useful in the diagnostic and vaccine applications [2–6].

Immunodominance of ESAT-6 family proteins encoded by genes present in *M. tuberculosis*-specific genomic regions

M. tuberculosis and *M. bovis* BCG belong to the organisms of *M. tuberculosis* complex and share >99.9% sequence identity [22]. However, the existence of an *M. tuberculosis*-specific genomic region, i.e. region of difference (RD1) present in all of the tested *M. tuberculosis* isolates but deleted in all *M. bovis* BCG strains was described by Mahairas et al. in 1996 by using DNA hybridization techniques [23]. The analysis of RD1 genomic segment for putative proteins using bioinformatics analysis suggested the presence of immunodominant antigens in RD7 and RD9 i.e. antigen-induced proliferation and IFN-γ responses of cells (PBMCs) from active TB patients and pools of synthetic peptides each RD have been performed by using peripheral blood mononuclear cells (PBMCs) from active TB patients and pools of synthetic peptides corresponding to each RD in cell mediated immunity (CMI) assays, i.e. antigen-induced proliferation and IFN-γ secretion. The results have suggested the presence of immunodominant antigens in RD7 and RD9 [49–53]. However, peptide pools of these RDs were also recognized in the same assays by cells from *M. bovis* BCG-vaccinated healthy subjects [49,53]. Further testing of the individual proteins present in RD7 and RD9, identified two immune dominant proteins from both regions, i.e. *M. bovis*, but not uninfected and *M. bovis* BCG-vaccinated subjects [25–31]. In addition, both proteins have multiple epitopes and are HLA promiscuous for presentation to T cells, and thus their application in various human populations, for diagnostic and vaccine applications, will not be restricted due to the high degree of HLA polymorphisms in human populations [29,38–40]. However, homologs of these proteins are present in some pathogenic and environmental mycobacteria [41–43], and therefore the use of these proteins in diagnostic assays many not be absolutely specific to diagnose diseases caused by pathogenic organisms included in the *M. tuberculosis* complex [41–43]. The application of species-specific and selected peptides of ESAT-6 and CFP10 in diagnostic assays has been suggested to improve the diagnostic efficacy of these proteins [44–46].

The sequencing of complete genome of *M. tuberculosis* H37Rv in 1998 by Cole et al. [47] facilitated comparative genome analyses of *M. tuberculosis* with pathogenic *M. bovis* and different vaccine strains of attenuated *M. bovis* BCG. In a study conducted by Behr et al. using DNA microarray analysis, 11 regions present in *M. tuberculosis* (RD1, RD4-RD7, RD9-RD13 and RD15), were found absent in all *M. bovis* BCG strains [48]. Except RD1 and RD13, other 9 regions are also absent in all tested strains of pathogenic *M. bovis* [48], and therefore, the immunodominant antigens of these regions could be highly specific for *M. tuberculosis* in diagnostic and vaccine applications. The immunological evaluations of proteins encoded by each RD have been performed by using peripheral blood mononuclear cells (PBMCs) from active TB patients and pools of synthetic peptides corresponding to each RD in cell mediated immunity (CMI) assays, i.e. antigen-induced proliferation and IFN-γ secretion. The results have suggested the presence of immunodominant antigens in RD7 and RD9 [49–53]. However, peptide pools of these RDs were also recognized in the same assays by cells from *M. bovis* BCG-vaccinated healthy subjects [49,53]. Further testing of the individual proteins present in RD7 and RD9, identified two immune dominant proteins from both regions, i.e.

Gene Name, Length and Annotation, and Protein Length and Description of ESAT-6 family proteins present in *M. tuberculosis* H37Rv.

Gene Name	Length (bp)	Annotation	Protein Length (bp)	Description
essA	288	Rv3875	95	6 kDa early secretory antigenic target ESXA (ESAT-6)
essB	303	Rv3874	100	10 kDa culture filtrate antigen ESXB (h) (cfp10)
essC	288	Rv3890	95	ESAT-6 like protein ESXC (ESAT-6 like protein 11)
essD	324	Rv3891	107	Possible ESAT6 like protein ESXD
essE	273	Rv3904	90	Putative ESAT6 like protein ESXE (hypothetical alanine rich protein)
essF	312	Rv3905	103	Putative ESAT6 like protein ESXF (hypothetical alanine and glycine rich Protein)
essG	294	Rv3928	97	ESAT6 like protein ESXG (conserved hypothetical protein TB9.8)
essH	291	Rv0288	96	Low molecular weight protein antigen 7, ESXH (10 kDa antigen, CFP7, TB10.4)
essI	285	Rv1037c	94	Putative ESAT6 like protein ESXI (ESAT-6 like protein 1)
essJ	297	Rv1038c	98	ESAT6 like protein ESXJ (ESAT-6 like protein 2)
essK	297	Rv1197	98	ESAT6 like protein ESXK (ESAT-6 like protein 3)
essL	285	Rv1198	94	Putative ESAT6 like protein ESXL (ESAT-6 like protein 4)
essM	297	Rv1792	98	ESAT6 like protein ESXM
essN	285	Rv1793	94	Putative ESAT6 like protein ESXN (ESAT-6 like protein 5)
essO	285	Rv2348c	94	Putative ESAT6 like protein ESXO (ESAT-6 like protein 6)
essP	297	Rv2347c	98	Putative ESAT6 like protein ESXP (ESAT-6 like protein 7)
essQ	363	Rv3017	120	ESAT6 like protein ESXQ (TB12.9) (ESAT-6 like protein 8)
essR	291	Rv3019c	96	Secreted ESAT-like proteins ESXR (TB10.3) (ESAT-6 like protein 9)
essS	294	Rv3020c	97	ESAT6 like protein ESXS
essT	303	Rv3444c	100	Putative ESAT6 like protein ESXT
essU	378	Rv3445c	125	ESAT6 like protein ESXU
essV	285	Rv3619c	94	Putative ESAT6 like protein ESXV (ESAT-6 like protein 1)
essW	297	Rv3620c	98	Putative ESAT6 like protein ESXW (ESAT-6 like protein 10)

Table 1: Gene name, length and annotation, and protein length and description of ESAT-6 family proteins present in *M. tuberculosis* H37Rv.
Rv2346c and Rv2347c in RD7, and Rv3619 and Rv3620 in RD9 [53]. All these four proteins belong to the ESAT-6 family and are also known as ESAT-6 like proteins (Table 1).

The amino acid (aa) sequence analysis has shown that in addition to Rv2346 (ESXO) and Rv3619 (ESXV), _M. tuberculosis_ genome has genes capable of encoding three other homologous proteins, i.e. Rv1037 (ESXI), Rv1198 (ESXJ) and Rv1793 (ESXN) [11] (Table 2). All of these five proteins belong to ESAT-6 subfamily 1 (Table 3), and share 92 to 100% sequence identity with each other (Table 2). Similarly, in addition to Rv2347 (ESXP) and Rv3620 (ESXW), _M. tuberculosis_ genome has genes encoding three other homologous proteins, i.e. Rv1038 (ESXJ), Rv1197 (ESXK) and Rv1792 (ESXM) [11] (Table 2), which belong to ESAT-6 subfamily 2 (Table 3), and share 98% sequence identity with each other (Table 2). In addition to being present in the _M. tuberculosis_ genome, orthologs of genes encoding ESAT-6 subfamily 1 and 2 proteins, other than the ones belonging to RD7 and RD9, are also present in the genomes of _M. bovis_ and _M. bovis_ BCG [54] (Table 3). These observations provide the explanation for strong CMI reactivity of ESAT6 subfamily 1 and 2 proteins encoded by genes in RD7 and RD9 in _M. bovis_ BCG-vaccinated healthy subjects.

Relevance of ESAT-6 family proteins in diagnosis and vaccine development

A lot of work has been done with the RD1-encoded ESXA and ESXB proteins as antigens for the immunodiagnosis of TB. Both of these proteins, when used as recombinant antigens, overlapping synthetic peptides or single immunodominant peptides, have been reported to be useful in the specific diagnosis of active and latent TB and monitoring the efficacy of chemotherapy against TB using interferon-gamma release assays (IGRAS) [55-62]. Furthermore, the IGRAS have also been useful in the diagnosis of TB in children and immune compromised subjects [63-66]. However, IGRAS are technically demanding and costly; therefore the use of IGRAS in poor developing countries of Africa and Asia on a large scale will not be economically feasible. Ideally, low cost tests, like tuberculin skin test, should be developed for application in resource-poor counties. When tested in tuberculin-type DTH skin responses in animals, both proteins (ESAT-6 and CFP10) induced positive DTH responses in animals infected with _M. tuberculosis/_M. bovis but not with _M. bovis_ BCG and other mycobacteria [67-69]. Furthermore, immunizations with these proteins have been shown to provide protection in animals challenged with virulent _M. tuberculosis_ and _M. bovis_ [70-72]. However, it will not be possible to use the same set of proteins for diagnosis as well as vaccination because it will jeopardize their diagnostic value to detect infection with _M. tuberculosis_.

Immunization studies have been performed with Rv3619c (ESXV) and/or Rv3620c (ESXW) in animals to assess their vaccine and diagnostic potentials. The results in mice have shown induction of cellular immune responses, characterized by increased levels of interferon-γ and interleukin-12, indicating a dominant Th1 response [21], which is mandatory for protection against TB [53]. Archaeosome-based subunit vaccine containing Rv3619c (ESXV) elicited effective T cell memory response in mice and provided protection by reducing mycobacterial burden in animals challenged with _M. tuberculosis_ [73]. Immunization with Rv3620c (ESXW), in combination with non-ESAT-6 family proteins, provided protection against the growth of _M. tuberculosis_ in mice [74]. However, when tested for DTH responses, Rv3619c induced positive responses in both _M. tuberculosis_ and _M. bovis_ BCG immunized mice [32], suggesting that this protein will be best suited as a vaccine candidate.

ESAT-6 family protein	Comparison with	Identity score
ESXA	ESXB and other members of ESAT-6 family	6 to 20%
ESXB	ESXA and other members of ESAT-6 family	6 to 20%
ESXV (Rv3619)	ESXI (Rv1037)	100%
	ESXL (Rv1198)	97%
	ESXN (Rv1793), ESXO (Rv2346)	92%
ESXW (Rv3620)	ESXP(Rv2347)	98%
	ESXJ (Rv1038)	98%
	ESXK (Rv1197)	98%
	ESXM (Rv1792)	98%

Table 2: Amino acid sequence identities of RD1-encoded ESXA and ESXB proteins with other ESAT-6 family proteins, and homologs of RD7 and RD9-encoded ESAT-6 family proteins in _M. tuberculosis._

Protein	Gene location in _M. tuberculosis_ genome	Designation In	_M. bovis_	_M. bovis_ BCG
ESXI(Rv1037c)	1160.83	1160.83	BCG1095c	
ESXL(Rv1198)	1341.01	1341.01	BCG1258	
ESXN(Rv1793)	2030.69	2030.69	BCG1825	
ESXO(Rv2346c)	2626.17	2626.17	BCG2369c	
ESXV(Rv3619c)	4060.27	4060.27	NA	

Table 3: Gene locations of proteins of ESAT-6 subfamilies 1 and 2 in _M. tuberculosis_, and designation of their orthologs in _M. bovis_ and _M. bovis_ BCG.
Conclusion

The ESAT-6 family proteins ESXA and ESXB are encoded by M. tuberculosis-specific genomic segment RD1 and lack significant sequence homology with other ESAT6-like proteins or any other protein of M. tuberculosis and M. bovis BCG, and thus these proteins can differentiate between TB infection and M. bovis BCG vaccination. Hence, these proteins may be reserved for TB diagnosis. The other immunodominant ESAT6-family proteins (ESXO, ESXP, ESXV and ESXW) encoded by M. tuberculosis-specific genomic segments RD7 and RD9 belong to subfamily 1 and 2. Since orthologs of each subfamily proteins are also present in M. bovis BCG, they cannot differentiate between TB infection and M. bovis BCG vaccination. However, these proteins are strong candidates as subunit vaccine because immunization with them provides protection against M. tuberculosis challenge in animals.

Acknowledgment

The work was supported by Kuwait University Research Sector grants MI01/10, MI02/12 and MRUL02/13.

References

1. Mustafa AS (2001) Biotechnology in the development of new vaccines and diagnostic reagents against tuberculosis. Curr Pharm Biotechnol 2: 157-173.
2. World Health Organization (2012) Global Tuberculosis Report 2012. WHO/HTMTTB/2012.6.
3. Mustafa AS (2009) Vaccine potential of Mycobacterium tuberculosis-specific genomic regions: in vitro studies in humans. Expert Rev Vaccines 8: 1309-1312.
4. Mustafa AS (2012) What’s new in the development of tuberculosis vaccines. Med Princ Pract 21: 195-196.
5. Mustafa AS (2012) Proteins and peptides encoded by M. tuberculosis-specific genomic regions for immunological diagnosis of tuberculosis. Mycobac Dis 2.
6. Mustafa Abu S, Al-Attiyah R (2003) Tuberculosis: looking beyond BCG vaccines. J Postgrad Med 49: 134-140.
7. Crampin AC, Glynn JR, Fine PE (2009) What has Karonga taught us? Tuberculosis studied over three decades. Int J Tuberc Lung Dis 13: 153-164.
8. Hesseling AC, Caldwell J, Cotton MF, Eley BS, Jaspan HB, et al. (2009) BCG vaccination in South African HIV-exposed infants---risks and benefits. S Afr Med J 99: 88-91.
9. Mustafa AS (2013) BCG, pros & cons & new/improved vaccines for tuberculosis. Text Book of Biochemistry, Biotechnology, Allied and Molecular Medicine, Editors: GP Talwar, S Sarin & S Hasnain, Publisher: Darshan Kumar, Prentice Hall of India. In press.
10. Andersen P, Andersen AB, Sørensen AL, Nagai S (1995) Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice. J Immunol 154: 3359-3372.
11. Lew JM, Mao C, Shukla M, Warren A, Will R, et al. (2013) Database resources for the tuberculosis community. Tuberculosis (Edinb) 93: 12-17.
12. Brandt L, Oettinger T, Holm A, Andersen AB, Andersen P (1996) Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis. J Immunol 157: 3527-3533.
13. Pollock JM, Andersen P (1997) Predominant recognition of the ESAT-6 protein in the first phase of interferon with Mycobacterium bovis in cattle. Infect Immun 65: 2587-2592.
14. Mustafa AS, Amoudy HA, Wiker HG, Abal AT, Ravn P, et al. (1998) Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis. Scand J Immunol 48: 535-543.
15. Al-Attiyah R, Madi N, El-Shamy AS, Wiker H, Andersen P, et al. (2006) Cytokine profiles in tuberculosis patients and healthy subjects in response to complex and single antigens of Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 47: 254-261.
16. Al-Attiyah R, Mustafa AS, Abal AT, Madi NM, Andersen P (2003) Restoration of mycobacterial antigen-induced proliferation and interferon-gamma responses in peripheral blood mononuclear cells of tuberculosis patients upon effective chemotherapy. FEMS Immunol Med Microbiol 38: 249-256.
17. Al-Attiyah RJ, Mustafa AS (2009) Mycobacterial antigen-induced T helper type 1 (Th1) and Th2 reactivity of peripheral blood mononuclear cells from diabetic and non-diabetic tuberculosis patients and Mycobacterium bovis bacilli Calmette-Guérin (BCG)-vaccinated healthy subjects. Clin Exp Immunol 158: 64-73.
18. Mustafa AS, Shaban F (2010) Mapping of Th1-cell epitope regions of Mycobacterium tuberculosis protein MPT64 (Rv1980c) using synthetic peptides and T-cell lines from M. tuberculosis-infected healthy humans. Med Princ Pract 19: 122-128.
19. Skjåk RL, Oettinger T, Rosenkrands I, Ravn P, Brock I, et al. (2000) Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect Immun 68: 214-220.
20. Skjåk RL, Brock I, Arend SM, Munk ME, Thelsen M, et al. (2002) Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect Immun 70: 5446-5453.
21. Mahmood A, Srivastava S, Tripathi S, Ansari MA, Ovais M, et al. (2011) Molecular characterization of secretory proteins Rv3619c and Rv3620c from Mycobacterium tuberculosis H37Rv. FEBS J 278: 341-353.
22. Inwald J, Hinds J, Palmer S, Dale J, Butcher PD, et al. (2003) Genomic analysis of Mycobacterium tuberculosis complex strains used for production of purified protein derivative. J Clin Microbiol 41: 3929-3932.
23. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178: 1274-1282.
24. Amoudy HA, Al-Turab MB, Mustafa AS (2006) Identification of transcriptionally active open reading frames within the RD1 genomic segment of Mycobacterium tuberculosis. Med Princ Pract 15: 137-144.
25. Mustafa AS, Cockle PJ, Shaban F, Hewinson RG, Vordermeier HM (2002) Immunogenicity of Mycobacterium tuberculosis RD1 region gene products in infected cattle. Curr Pharm Biotechnol 2: 157-164.
26. Mustafa AS, Al-Attiyah R (2004) Mycobacterium tuberculosis antigens and peptides as new vaccine candidates and immunodiagnostic reagents against tuberculosis. Kuwait Med J 36: 171-176.
27. Mustafa AS (2005) Mycobacterial gene cloning and expression, comparative genomics, bioinformatics and proteomics in relation to the development of new vaccines and diagnostic reagents. Med Princ Pract 14 Suppl 1: 27-34.
28. Mustafa AS (2005) Recombinant and synthetic peptides to identify Mycobacterium tuberculosis antigens and epitopes of diagnostic and vaccine relevance. Tuberculosis (Edinb) 85: 367-376.
29. Mustafa AS, Shaban FA (2006) ProPred analysis and experimental evaluation of promiscous T-cell epitopes of three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis (Edinb) 86: 115-124.
30. Hanif SN, El-Shamy AM, Al-Attiyah R, Mustafa AS (2008) Whole blood assays to identify Th1 cell antigens and peptides encoded by Mycobacterium tuberculosis-specific RD1 genes. Med Princ Pract 17: 244-249.
31. Mustafa AS, Al-Attiyah R, Hanif SN, Shaban FA (2008) Efficient testing of large pools of Mycobacterium tuberculosis RD1 peptides and identification of major antigens and immunodominant peptides recognized by human Th1 cells. Clin Vaccine Immunol 15: 916-924.
32. Mustafa AS, El-Shamy AM, Madi NM, Amoudy HA, Al-Attiyah R (2008) Cell-mediated immune responses to complex and single mycobacterial antigens in tuberculosis patients with diabetes. Med Princ Pract 17: 325-330.
33. Hanif SN, Al-Attiyah R, Mustafa AS (2010) Species-specific antigenic Mycobacterium tuberculosis proteins tested by delayed-type hypersensitivity response. Int J Tuberc Lung Dis 14: 489-494.
34. Hanif SNM, Al-Attiyah R, Mustafa AS (2010) Molecular cloning, expression, purification and immunological characterization of three low molecular weight proteins encoded by genes in genomic regions of difference of Mycobacterium tuberculosis, Scand J Immunol 71: 353-361.
35. Hanif SN, Al-Attiyah R, Mustafa AS (2010) DNA vaccine constructs expressing...
Mycobacterium tuberculosis-specific genes induce immune responses. Scan J Immunol 72: 408-415.

36. Shaban K, Amoudy HA, Mustafa AS (2013) Cellular immune responses to recombinant Mycobacterium bovis BCG constructs expressing major antigens of region of difference 1 of Mycobacterium tuberculosis. Clin Vaccine Immunol 20: 1230-1237.

37. Berthet FX, Rasmussen PB, Rosenkranz I, Andersen P, Gicquel B (1998) A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144: 3195-3203.

38. Ravn P, Demissie A, Eguale T, Wondwessos H, Lein D, et al. (1999) Human T cell responses to the ESAT-6 antigen from Mycobacterium tuberculosis. J Infect Dis 179: 637-645.

39. Mustafa AS, Shaban FA, Al-Attiyah R, Abal AT, EI-Shamy AM, et al. (2003) Human Th1 cell lines recognize the Mycobacterium tuberculosis ESAT-6 antigen and its peptides in association with frequently expressed HLA class II molecules. Scan J Immunol 57: 125-134.

40. Mustafa AS, Oftung F, Amoudy HA, Madi NM, Abal AT, et al. (2000) Multiple epitopes from the Mycobacterium tuberculosis ESAT-6 antigen are recognized by antigen-specific human T cell lines. Clin Infect Dis 30 Suppl 3: S201-205.

41. Geluk A, van Meijgaarden KE, Franken KL, Subronto YW, Wielies B, et al. (2002) Identification and characterization of the ESAT-6 homologue of Mycobacterium leprae and T-cell cross-reactivity with Mycobacterium tuberculosis. Infect Immun 70: 2544-2558.

42. Geluk A, van Meijgaarden KE, Franken KL, Wielies B, Arend SM, et al. (2004) Immunological crossreactivity of the Mycobacterium leprae CFP-10 with its homologue in Mycobacterium tuberculosis. Scan J Immunol 57: 66-70.

43. Spencer JS, Kim HJ, Marques AM, Gonzalez-Juarrero M, Lima MC, et al. (2004) Comparative analysis of B- and T-cell epitopes of Mycobacterium leprae and Mycobacterium tuberculosis culture filtrate protein 10. Infect Immun 72: 3161-3170.

44. Goletti D, Carrara S, Vincenti D, Saltini C, Rizzi EB, et al. (2006) Accuracy of an immune diagnostic assay based on RD1 selected epitopes for active tuberculosis in a clinical setting: a pilot study. Clin Microbiol Infect 12: 544-550.

45. Vincenti D, Carrara S, Butera O, Bizzoni F, Casetti R, et al. (2007) Response to region of difference 1 (RD1) epitopes in human immunodeficiency virus (HIV)-infected individuals enrolled with suspected active tuberculosis: a pilot study. Clin Exp Immunol 150: 91-98.

46. Geluk A, van der Ploeg J, Teles RO, Franken KL, Prins C, et al. (2008) Rational combination of peptides derived from different Mycobacterium leprae proteins improves sensitivity for immunodiagnosis of M. lepra infection. Clin Vaccine Immunol 15: 522-533.

47. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537-544.

48. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, et al. (2000) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284: 1520-1523.

49. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537-544.

50. Brézin C, Groux H, Biguenet S, barsolome D, Martinez S, et al. (2004) Identification of Mycobacterium tuberculosis-specific genomic regions encoding antigens inducing protective cellular immune responses. Indian J Exp Biol 42: 496-504.

51. Mustafa AS, Al Said F, EI-Shamy AS, Al-Attiyah R (2011) Cytokines in response to proteins predicted in genomic regions of difference of Mycobacterium leprae. Microbiol Immunol 55: 267-278.

52. Al-Attiyah R, EI-Shazy A, Mustafa AS (2012) Comparative analysis of spontaneous and mycobacterial antigen-induced secretion of Th1, Th2 and pro-inflammatory cytokines by peripheral blood mononuclear cells of tuberculosis patients. Scan J Immunol 75: 623-632.

53. Mustafa AS (2013) In silico analysis and experimental validation of Mycobacterium tuberculosis-specific proteins and peptides of Mycobacterium tuberculosis for immunological diagnosis and vaccine development. Med Princ Pract.

54. TB Genomes Data Base. http://genome.tbdb.org/, accessed on July 23, 2012.

55. Menzies D, Pai M, Comstock G (2007) Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann Intern Med 146: 340-354.

56. Ariga H, Harada N (2008) [Evolution of IGRA researches]. Kekkaku 83: 641-652.

57. Diei R, Loddenkemper R, Meywald-Walter K, Gottschalk R, Nienhaus A (2009) Comparative performance of tuberculosis skin test, QuantIFERON-TB-Gold In Tube assay, and T-Spot.TB test in contact investigations for tuberculosis. Chest 135: 1010-1018.

58. Diei R, Loddenkemper R, Meywald-Walter K, Niemann S, Nienhaus A (2008) Predictive value of a whole blood IFN-gamma assay for the development of active tuberculosis disease after recent infection with Mycobacterium tuberculosis. Am J Respir Crit Care Med 177: 1164-1170.

59. Morf T (2009) Usefulness of interferon-gamma release assays for diagnosing TB infection and problems with these assays. J Infect Chemother 15: 143-155.

60. Barth RE, Mudrikova T, Hoepelman AI (2008) Interferon-gamma release assays (IGRAs) in high-endemic settings: could they play a role in optimizing global TB diagnostics? Evaluating the possibilities of using IGRAs to diagnose active TB in a rural African setting. Int J Infect Dis 12: e1-6.

61. Dheda K, van Zyl Smit R, Badri M, Pai M (2009) T-cell interferon-gamma release assays for the rapid immunodiagnosis of tuberculosis: clinical utility in high-burden vs. low-burden settings. Curr Opin Pulm Med 15: 188-200.

62. Mustafa AS (2010) Cell-mediated immunity assays identify proteins of diagnostic and vaccine potential from genomic regions of difference of Mycobacterium tuberculosis. Kuwait Med J 42: 98-105.

63. Nicol MP, Pienaar D, Wood K, Eley B, Wilkinson RJ, et al. (2005) Enzyme-linked immunosorbent assay responses to early secretory antigenic target 6, culture filtrate protein 10, and purified protein derivative among children with tuberculosis: implications for diagnosis and monitoring of therapy. Clin Infect Dis 40: 1301-1308.

64. Goletti D, Carrara S, Mayanja-Kizza H, Baseke J, Mugwera MA, et al. (2008) Response to M. tuberculosis selected RD1 peptides in Ugandan HIV-infected patients with smear positive pulmonary tuberculosis: a pilot study. BMC Infect Dis 8: 11.

65. Goletti D, Carrara S, Mayanja-Kizza H, Baseke J, Mugwera MA, et al. (2008) Response to M. tuberculosis selected RD1 peptides in Ugandan HIV-infected patients with smear positive pulmonary tuberculosis: a pilot study. BMC Infect Dis 8: 11.

66. Ciampelli E, Bonsignori F, Accetta G, Boddi V, Gali L, et al. (2012) Interferon-γ release assays for the diagnosis of Mycobacterium tuberculosis infection in children: a literature review. Int J Infect Dis 15: 335-343.

67. Elhay MJ, Oettiger T, Andersen P (1998) Delayed-type hypersensitivity responses to ESAT-6 and MPT64 from Mycobacterium tuberculosis in the guinea pig. Infect Immun 66: 3454-3456.

68. Whelan AO, Clifford D, Upadhayay B, Breadon EL, McNair J, et al. (2010) Development of a skin test for bovine tuberculosis for differentiating infected from vaccinated animals. J Clin Microbiol 48: 3176-3181.

69. Kalra M, Khuller GK, Sheikh JA, Verma I (2010) Evaluation of Mycobacterium tuberculosis specific RD antigens for delayed type hypersensitivity responses in guinea pig. Indian J Exp Biol 48: 117-123.

70. Zhang H, Shi CH, Xue Y, Bai YL, Wang LM, et al. (2006) [Immune response and protective efficacy induced by fusion protein ESAT6-CFP10 of M tuberculosis in mice]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 22: 443-446.

71. Bai Y, Xue Y, Gao H, Wang L, Ding T, et al. (2008) Expression and purification of Mycobacterium tuberculosis ESAT-6 and MPT64 fusion protein and its immunoprototypic potential in mouse model. Protein Expr Purif 59: 189-196.

72. Maue AC, Waters WR, Palmer MV, Nonnecke BJ, Minion FC, et al. (2007) An ESAT-6-CFP10 DNA vaccine administered in conjunction with Mycobacterium bovis BCG confers protection to cattle challenged with virulent M. bovis. Vaccine 25: 4735-4746.

73. Ansari MA, Zubair S, Mahmood A, Gupta P, Khan AA, et al. (2011) RD antigen based nanovaccine imparts long term protection by inducing memory response against experimental murine tuberculosis. PLoS One 6: e22889.

74. Baldwin SL, Bertholet S, Kahn M, Zharkikh I, Ircen GC, et al. (2009) Intradermal immunization improves protective efficacy of a novel TB vaccine candidate. Vaccine 27: 3063-3071.

J Mycobac Dis
ISSN: 2161-1068 MDTL, an open access journal
Volume 3 • Issue 2 • 1000129