Quasi-continuous random variables and processes under the G-expectation framework

Mingshang Hu∗ Falei Wang† Guoqiang Zheng‡

Abstract

In this paper, we use PDE and probabilistic methods to obtain a kind of quasi-continuous random variables. We also give a characterization of $M^p_G(0,T)$ and get a kind of quasi-continuous processes by applying Krylov's estimates. Furthermore, the Itô-Krylov formula under the G-expectation framework is established.

Key words: G-expectation, G-Brownian motion, quasi-continuous, Krylov’s estimates, Itô-Krylov’s formula.

MSC-classification: 60H10, 60H30

1 Introduction

Let $\Omega = C^d_0(\mathbb{R}^+)$ and $L_{ip}(\Omega)$ be the space of all bounded and Lipschitz cylinder functions on Ω (see Section 2 for definition). Motivated by model uncertainty in finance, Peng 2004-2005 firstly constructed a kind of dynamically consistent fully nonlinear expectations on $(\Omega, L_{ip}(\Omega))$ by stochastic control and PDE methods (see [9, 10]). An important case is G-expectation $\hat{E}[\cdot]$, which is a sublinear expectation. Under G-expectation $\hat{E}[\cdot]$, the canonical process $(B_t)_{t\geq 0}$ is called G-Brownian motion. The completion of $L_{ip}(\Omega)$ under the norm $||X||_{L^p_G} := (\hat{E}[(|X|^p)]^{1/p}, p \geq 1$, is denoted by $L^p_G(\Omega)$. Under the G-expectation framework, the corresponding stochastic calculus of Itô's type and the existence and uniqueness theorem of G-SDEs were also established by Peng in [11,12].

Denis et al. [4] obtained a representation theorem of G-expectation $\hat{E}[\cdot]$ by using stochastic control method:

\[\hat{E}[X] = \sup_{P \in \mathcal{P}} E_P[X] \quad \text{for} \quad X \in L_{ip}(\Omega), \]

*Qilu Institute of Finance, Shandong University, humingshang@sdu.edu.cn. Research supported by NSF (No. 11201262, 11101242 and 11301068) and Shandong Province (No. BS2013SF020).
†School of Mathematics, Shandong University, flwang2011@gmail.com.
‡School of Mathematics, Shandong University, zhengguoqiang.ori@gmail.com. Hu, Wang and Zheng’s research was partially supported by NSF (No. 10921101) and by the 111 Project (No. B12023).
where \mathcal{P} is a family of weakly compact probability measures on $(\Omega, \mathcal{B}(\Omega))$. Furthermore, they gave a characterization of the space $L^p_G(\Omega)$, which shows that every element in $L^p_G(\Omega)$ is quasi-continuous (see Section 2 for definition). The representation theorem of G-expectation $\hat{\mathbb{E}}[\cdot]$ were also obtained in [5] by using a simple probabilistic method. Based on representation theorem, the properties of the solutions to G-SDEs were discussed in [2]. On the classical probability space $(\Omega, \mathcal{B}(\Omega), P)$, every random variable is quasi-continuous (Lusin’s theorem). But under the G-expectation framework, it is difficult to verify that whether a random variable is quasi-continuous or not, because the elements in \mathcal{P} are singular. The question is how big the space $L^p_G(\Omega)$? Whether $f(\xi) \in L^p_G(\Omega)$, where $\xi \in L^p_G(\Omega; \mathbb{R}^n)$ and f is a bounded Borel measurable function on \mathbb{R}^n. In particular, whether $I_A(B_t) \in L^p_G(\Omega)$, where $A = [a, b]$ or $A = \{x \in \mathbb{R}^d : |x - x_0| \leq r\}$. The similar questions also exist for processes in $M^p_G(0, T)$ (see Section 2 for definition).

In this paper, we partly solve this kind of problems, but our results imply that the space $L^p_G(\Omega)$ (resp. $M^p_G(0, T)$) is big enough to contain some useful random variables (resp. processes). We first use PDE and probabilistic methods to obtain some polar sets associated to X_t, which is the solution to a multi-dimensional G-SDE. Then we apply these polar sets to obtain some quasi-continuous random variables. In particular, $I_{\{X_t \in [a, b]\}}$ is quasi-continuous. Next we give the characterization of $M^p_G(0, T)$, which is useful for the study of G-stochastic processes. Finally, we use Krylov’s estimates to get a kind of processes in $M^p_G(0, T)$. Moreover, we also obtain dominated convergence theorem and Itô-Krylov’s formula for the G-Itô processes.

This paper is organized as follows. In section 2, we recall some necessary notations and results of G-expectation theory. In section 3, we study the polar sets and give some useful quasi-continuous random variables. In section 4, we obtain the characterization of $M^p_G(0, T)$, state Krylov’s estimates of G-diffusion processes and establish Itô-Krylov’s formula under the G-expectation framework.

2 Preliminaries

The main purpose of this section is to recall some basic notions and results of G-expectation, which are needed in the sequel. The readers may refer to [11], [12], [13] [14] for more details.

Let $\Omega = C^0_0(\mathbb{R}^+)\subseteq \mathbb{R}$ be the space of all \mathbb{R}^d-valued continuous paths $(\omega_t)_{t \geq 0}$, with $\omega_0 = 0$, equipped with the distance

$$\rho(\omega^1, \omega^2) := \sum_{i=1}^{\infty} 2^{-i}\left(\max_{t \in [0, i]}|\omega^1_t - \omega^2_t|\right) \wedge 1.$$

For each $t \in [0, \infty)$, we denote

- $B_t(\omega) := \omega_t$ for each $\omega \in \Omega$;
• $\mathcal{B}(\Omega)$: the Borel σ-algebra of Ω, $\Omega_t := \{\omega \land t : \omega \in \Omega\}$, $\mathcal{F}_t := \mathcal{B}(\Omega_t)$;

• $L^0(\Omega_t)$: the space of all $\mathcal{B}(\Omega_t)$-measurable real functions;

• $B_b(\Omega)$: all bounded elements in $L^0(\Omega)$; $B_b(\Omega_t) := B_b(\Omega) \cap L^0(\Omega_t)$;

• $C_b(\Omega)$: all continuous elements in $B_b(\Omega)$; $C_b(\Omega_t) := C_b(\Omega) \cap L^0(\Omega_t)$;

• $L_{lip}(\Omega) := \{\varphi(B_{t_1}, \ldots, B_{t_k}) : k \in \mathbb{N}, t_1, \ldots, t_k \in [0, \infty), \varphi \in C_b, L_{lip}(\mathbb{R}^{k \times d})\}$, where $C_b, L_{lip}(\mathbb{R}^{k \times d})$ denotes the space of bounded and Lipschitz functions on $\mathbb{R}^{k \times d}$, $L_{lip}(\Omega_t) := L_{lip}(\Omega) \cap L^0(\Omega_t)$.

For each given monotonic and sublinear function $G : S(d) \to \mathbb{R}$, let the canonical process $B_t = (B_t^i)_{i=1}^d$ be the d-dimensional G-Brownian motion under the G-expectation space $(\Omega, L_{lip}(\Omega), \hat{E}[-], (\hat{E}[-])_{t \geq 0})$, where $S(d)$ denotes the space of all $d \times d$ symmetric matrices. For each $p \geq 1$, the completion of $L_{lip}(\Omega)$ under the norm $\|X\|_{L^p_G} := (\hat{E}|X|^p)^{1/p}$ is denoted by $L^p_G(\Omega)$. Similarly, we can define $L^p_{\omega}(\Omega, T)$ for each fixed $T \geq 0$. In this paper, we suppose that G is non-degenerate, i.e., there exist two constants $0 < \underline{\sigma}^2 \leq \overline{\sigma}^2 < \infty$ such that

$$\frac{1}{2}\overline{\sigma}^2 \text{tr}[A - B] \leq G(A) - G(B) \leq \frac{1}{2}\underline{\sigma}^2 \text{tr}[A - B]$$
for $A \succeq B$.

From this we can deduce that $|G(A)| \leq \frac{1}{2}\overline{\sigma}^2 \sqrt{d} \sqrt{\text{tr}[AA^T]}$ for any $A \in S(d)$.

Denis et al. [1] proved that the completions of $C_b(\Omega)$ and $L_{lip}(\Omega)$ under $\| \cdot \|_{L^p_G}$ are the same.

Theorem 2.1 ([1] [5]) There exists a weakly compact set $\mathcal{P} \subset \mathcal{M}_1(\Omega)$, the set of probability measures on $(\Omega, \mathcal{B}(\Omega))$, such that

$$\hat{E}[\xi] = \sup_{P \in \mathcal{P}} E_P[\xi]$$
for all $\xi \in L^1_{\omega}(\Omega)$.

\mathcal{P} is called a set that represents \hat{E}.

Let \mathcal{P} be a weakly compact set that represents \hat{E}. For this \mathcal{P}, we define capacity

$$c(A) := \sup_{P \in \mathcal{P}} P(A), \ A \in \mathcal{B}(\Omega).$$

An important property of this capacity is that $c(F_n) \downarrow c(F)$ for any closed sets $F_n \downarrow F$.

A set $A \in \mathcal{B}(\Omega)$ is polar if $c(A) = 0$. A property holds “quasi-surely” (q.s.) if it holds outside a polar set. In the following, we do not distinguish two random variables X and Y if $X = Y$ q.s.

Definition 2.2 A real function X on Ω is said to be quasi-continuous if for each $\varepsilon > 0$, there exists an open set O with $c(O) < \varepsilon$ such that $X|_{\Omega^c}$ is continuous.
Definition 2.3 We say that $X : \Omega \to \mathbb{R}$ has a quasi-continuous version if there exists a quasi-continuous function $Y : \Omega \to \mathbb{R}$ such that $X = Y$, q.s.

Theorem 2.4 (\cite{1, 5}) We have

\[L^p_G(\Omega) = \{ X \in L^0(\Omega) : \lim_{N \to \infty} \hat{E}[|X|^p \mathbb{I}_{|X| \geq N}] = 0 \text{ and } X \text{ has a quasi-continuous version} \} \]

Theorem 2.5 (\cite{1, 5}) Let $X_k \in L^1_G(\Omega)$, $k \geq 1$, be such that $X_k \downarrow X$ q.s.. Then $\hat{E}[X_k] \downarrow \hat{E}[X]$. In particular, if $X \in L^1_G(\Omega)$, then $\hat{E}[|X_k - X|] \downarrow 0$.

Definition 2.6 Let $M^2_G(0, T)$ be the collection of processes of the following form: for a given partition $\{t_0, \ldots, t_N\} = \pi_T$ of $[0, T]$,

\[\eta(t) = \sum_{i=0}^{N-1} \xi_i(t) I_{[t_i, t_{i+1})}(t), \]

where $\xi_i \in L^p_G(\Omega_{t_i})$, $i = 0, 1, 2, \ldots, N - 1$. For each $p \geq 1$, denote by $M^p_G(0, T)$ the completion of $M^2_G(0, T)$ under the norm $||\eta||_{M^p_G} := (\hat{E}[\int_0^T |\eta|^p dt])^{1/p}$.

For each $\eta \in M^2_G(0, T)$, the G-Itô integral $\{ \int_0^t \eta_s dB_s \}_{t \in [0, T]}$ is well defined, see Peng \cite{12} and Li-Peng \cite{8}.

3 Quasi-continuous random variables

In this section, we shall find some sufficient conditions for some Borel measurable functions on Ω to be quasi-continuous by virtue of a PDE approach. We consider the following type of G-SDEs (in this paper we always use Einstein’s summation convention): for each given $x = (x_1, \ldots, x_n)^T \in \mathbb{R}^n$ and $q \leq i \leq n$,

\[X^{i, i}_t = x_i + \int_0^t b_i(s, X^x_s) ds + \int_0^t h^i_j(s, X^x_s) dB^j_s + \int_0^t \sigma_i(s, X^x_s) dB_s, \]

where $b(t, x) = (b_1(t, x), \ldots, b_n(t, x))^T$, $h^i_k(t, x) = (h^i_1(t, x), \ldots, h^i_n(t, x))^T : [0, \infty) \times \mathbb{R}^n \to \mathbb{R}^n$, $h^i_k(t, x) = h^i_j(t, x)$, $\sigma(t, x) : [0, \infty) \times \mathbb{R}^n \to \mathbb{R}^{n \times d}$ are deterministic functions and σ_i is the i-th row of σ. Denote by $X^x = (X^{x, i}_1, \ldots, X^{x, n}_n)^T$.

Then the above G-SDE can be written as

\[X^x_t = x + \int_0^t b(s, X^x_s) ds + \int_0^t h^i_j(s, X^x_s) dB^j_s + \int_0^t \sigma(s, X^x_s) dB_s. \]

In this paper, we shall use the following assumptions on the coefficients of G-SDE (\textbf{H1}):

(\textbf{H1}) There exist two nonnegative constants C and C' such that for each $(t, x), (t, x') \in [0, \infty) \times \mathbb{R}^n$,

\[|b(t, x) - b(t, x')| + |h^i_k(t, x) - h^i_k(t, x')| \leq C|x - x'|, \]

\[|\sigma(t, x) - \sigma(t, x')| \leq C'|x - x'|; \]
(H2) \(b, h^{jk}, \sigma \) are continuous in \(t \);

(H3) There exist two constants \(0 < \lambda < \Lambda < \infty \) such that for each \((t, x) \in [0, \infty) \times \mathbb{R}^n \),
\[
\lambda I_{n \times n} \leq \sigma(t, x)(\sigma(t, x))^T \leq \Lambda I_{n \times n} \text{ if } n \leq d, \\
\lambda I_{d \times d} \leq (\sigma(t, x))^T \sigma(t, x) \leq \Lambda I_{d \times d} \text{ if } n > d;
\]

(H4) There exists a constant \(L > 0 \) such that for each \((t, x) \in [0, \infty) \times \mathbb{R}^n \),
\[
|b_i(t, x)| \leq L, \\
|h^{jk}(t, x)| \leq L \text{ for } j, k \leq d \text{ and } i \leq n;
\]

(H5) There exist two constants \(0 < \gamma < \Gamma < \infty \) such that for each \((t, x) \in [0, \infty) \times \mathbb{R}^n \),
\[
\gamma \leq |\sigma_i(t, x)|^2 = \sigma_i(t, x)(\sigma_i(t, x))^T \leq \Gamma \text{ for } i \leq n.
\]

Remark 3.1 If \(n \leq d \), then (H3) is stronger than (H5).

For each fixed \(t \geq 0 \) and for each given \(\xi \in L^2_G(\Omega_t; \mathbb{R}^n) \), consider the following G-SDE:
\[
X^{t, \xi}_s = \xi + \int_t^s b(r, X^{t, \xi}_r)dr + \int_t^s h^{jk}(r, X^{t, \xi}_r)d\langle B^j, B^k \rangle_r + \int_t^s \sigma(r, X^{t, \xi}_r)dB_r. \tag{2}
\]

Theorem 3.2 (\cite{13}) Assume (H1) and (H2) hold. Then G-SDE (2) has a unique solution \((X^{t, \xi}_s)_{s \in [t, T]} \in M^2_G(t, T; \mathbb{R}^n)\) for each \(T > t \).

For each fixed \(T > t \) and \(\Phi \in C_{b, \text{Lip}}(\mathbb{R}^n) \), we define
\[
Y^{t, \xi}_s = \hat{E}_s[\Phi(X^{t, \xi}_T)].
\]

In particular, for each \(x \in \mathbb{R}^n \), we set
\[
u(t, x) = Y^{t, x}_t.
\]

It is important to note that \(\nu(0, x) = \hat{E}[\Phi(X^{0, x}_T)] = \hat{E}[\Phi(X^{0, x}_T)] \).

Theorem 3.3 (\cite{4, 13}) Assume (H1) and (H2) hold. Then we have

(1) \(\nu(t, x) \) is a deterministic continuous function of \((t, x)\);

(2) For each \(\xi \in L^2_G(\Omega_t; \mathbb{R}^n) \), \(Y^{t, \xi}_t = \nu(t, \xi) \);

(3) \(\nu \) is the unique viscosity solution of the following PDE:
\[
\begin{cases}
\partial_t \nu + G(\sigma^T D^2_x \nu + H(D_x \nu, x, t)) + \langle b, D_x \nu \rangle = 0, & (t, x) \in [0, T) \times \mathbb{R}^n, \\
\nu(T, x) = \Phi(x),
\end{cases}
\]

where \(H_{jk} = 2\langle h^{jk}(t, x), D_x u \rangle \).
Lemma 3.4 Assume (H1), (H2) and (H3) hold. Let $T > 0$, $\alpha = (n \land d) \lambda \sigma^2 (8d\bar{\sigma}^2 \Lambda)^{-1}$, $\beta = (2d\bar{\sigma}^2 \Lambda)^{-1}$, $\varepsilon = (8\kappa)^{-1} \land T$, $m \geq 8\kappa$ and u_m be the solution of PDE (3) with the terminal condition $u_m(T,x) = \exp(-\frac{m\beta|x-a|^2}{2})$, where $a = (a_1, \ldots, a_n)^T \in \mathbb{R}^n$, $n \land d = \min\{n, d\}$.

$$\kappa = C(\bar{\sigma}^2 d\sqrt{d} + 1) + \delta_{a,T}(\bar{\sigma}^2 d\sqrt{d} + 1)^2 ((n \land d) \lambda \sigma^2)^{-1},$$

$$\delta_{a,T} = \max_{t \leq T}\{|h^j(t,a)|, |b(t,a)| : j, k = 1, \ldots, d\}.$$ Then for any $(t,x) \in [T - \varepsilon, T) \times \mathbb{R}^n$, we have

$$0 \leq u_m(t,x) \leq (1 + m(T-t))^{-\alpha}. \quad (4)$$

Proof. It is easy to check that $\bar{u}_m(t,x) = 0$ is a viscosity subsolution of PDE (3). Thus by comparison theorem we get $u_m(t,x) \geq 0$ for each $(t,x) \in [0,T] \times \mathbb{R}^n$. Set

$$\tilde{u}_m(t,x) = (1 + m(T-t))^{-\alpha} \exp(-\frac{m\beta|x-a|^2}{2(1 + m(T-t))}). \quad (5)$$

It is obvious that $\tilde{u}_m(T,x) = \exp(-\frac{m\beta|x-a|^2}{2})$. In the following, we show that \tilde{u}_m is a viscosity supersolution of PDE (3) on $t \geq T - \varepsilon$. It is easy to verify that

$$\partial_t \tilde{u}_m = \frac{\alpha m}{1 + m(T-t)} \tilde{u}_m - \frac{m^2 \beta |x-a|^2}{2(1 + m(T-t))^2} \tilde{u}_m,$$

$$\partial_{x_i} \tilde{u}_m = \frac{m\beta(x_i - a_i)}{1 + m(T-t)} \tilde{u}_m,$$

$$\partial_{x_i x_i} \tilde{u}_m = -\frac{m\beta}{1 + m(T-t)} \tilde{u}_m + \frac{m^2 \beta |x_i - a_i|^2}{(1 + m(T-t))^2} \tilde{u}_m,$$

$$\partial_{x_i x_j} \tilde{u}_m = \frac{m^2 \beta (x_i - a_i)(x_j - a_j)}{(1 + m(T-t))^2} \tilde{u}_m, \quad i \neq j.$$ By the assumptions (H1)-(H3), we obtain that

$$G(-\sigma^T \sigma) \leq -\frac{\sigma^2}{2} \text{tr}[\sigma^T \sigma] \leq -\frac{1}{2}(n \land d) \lambda \sigma^2,$$

$$G(\sigma^T (x-a)(x-a)^T \sigma) \leq \frac{\sigma^2}{2} |x-a|^2 \text{tr}[\sigma^T \sigma] \leq \frac{1}{2} d\Lambda \sigma^2 |x-a|^2,$$

$$G((-\langle h^j(t,x), x-a \rangle)^d_{j,k=1}) \leq G((-\langle h^j(t,x) - h^j(t,a), x-a \rangle)^d_{j,k=1}) + G((-\langle h^j(t,a), x-a \rangle)^d_{j,k=1})$$

$$\leq \frac{1}{2} \sigma^2 d\sqrt{d}(C|x-a|^2 + \delta_{a,T}|x-a|),$$

$$-\langle b(t,x), x-a \rangle = -\langle b(t,x) - b(t,a) + b(t,a), x-a \rangle \leq C|x-a|^2 + \delta_{a,T}|x-a|. \quad (6)$$
Theorem 3.7 The proof is the same without any difficulty.

where \(f \) is a Lipschitz continuous function satisfying \(f_1(t, D_xu) + f_2(t, D_xu) = 0 \), is a Lipschitz continuous function satisfying \(f_1(t, 0) = 0 \). The proof is the same without any difficulty.

Remark 3.6 We remark that there is a potential to extend our results to a much more general nonlinear expectation setting. In particular, by slightly more involved estimates, our results still hold for the following PDE (see [3, 4]):

\[
\begin{align*}
\partial_t u &+ G(\sigma^T D_x^2 u)\sigma + H(D_x u, x, t) + f_1(t, D_x u) + \langle b, D_x u \rangle + f_2(t, D_x u) = 0, \\
u(T, x) & = \Phi(x),
\end{align*}
\]

where \(f_i, i = 1, 2 \), is a Lipschitz continuous function satisfying \(f_i(t, 0) = 0 \). The proof is the same without any difficulty.

Theorem 3.7 Under the same assumptions as in Lemma 3.4, we have for each \(T > 0 \)

\[
\mathbb{E} [\exp(-\frac{m\beta |X_T^a - a|^2}{2})] \leq (1 + m(T \wedge \varepsilon))^{-\alpha}. \tag{6}
\]

Furthermore, we have

\[
c(|\{X_T^a = a\}) = 0. \tag{7}
\]
Proof. If \(T \leq \varepsilon \), it follows form Lemma 3.4 and \(\hat{E}[\exp(-\frac{m\beta}{2}|X_T^x-a|^2)] = u_m(0, x) \) that \(\hat{E}[\exp(-\frac{m\beta}{2}|X_T^x-a|^2)] \leq (1 + mT)^{-\alpha} \). If \(T > \varepsilon \), by Theorem 3.3 and Lemma 3.4, we get that

\[
\hat{E}[\exp(-\frac{m\beta}{2}|X_T^x-a|^2)] = \hat{E}[\hat{E}_{T-\varepsilon}[\exp(-\frac{m\beta}{2}|X_{T-\varepsilon}^x-a|^2)]]
\]

\[
= \hat{E}[u_m(T - \varepsilon, X_{T-\varepsilon}^x)]
\]

\[
\leq \hat{E}[(1 + m\varepsilon)^{-\alpha}]
\]

\[
= (1 + m\varepsilon)^{-\alpha}.
\]

Thus we obtain equation (6). Note that \(\exp(-\frac{m\beta}{2}|X_T^x-a|^2) \geq I_{\{X_T^x=a\}} \), then

\[
c(\{X_T^x=a\}) \leq \hat{E}[\exp(-\frac{m\beta}{2}|X_T^x-a|^2)] \leq (1 + m(T \wedge \varepsilon))^{-\alpha}.
\]

Thus we can get \(c(\{X_T^x=a\}) = 0 \) by letting \(m \to \infty \). ■

Corollary 3.8 Assume \(b = h^k = 0 \) and (H1), (H2), (H3) hold. If \(\phi \) is a continuous function with a compact support on \(\mathbb{R}^n \), then

\[
\lim_{t \to \infty} \hat{E}[\phi(X_T^x)] = 0.
\]

Proof. Since \(\phi \) is a continuous function with a compact support, we can assume \(|\phi(x)| \leq MI_{\{|x| \leq N\}} \) for two constants \(N, M > 0 \). By the scaling property of \(G \)-Brownian motion, it is easy to check that \(X_T^x \) and \(\sqrt{t}X_1^{t,x} \) are identically distributed, where

\[
\hat{X}_1^{t,x} = \frac{x}{\sqrt{t}} + \int_0^1 \sigma(ts, \sqrt{t}\hat{X}_s^{t,x})dB_s.
\]

Note that \(|\phi(X_T^x)| \leq M I_{\{|X_T^x| \leq N\}} \). Consequently,

\[
\hat{E}[|\phi(X_T^x)|] \leq M \hat{E}[I_{\{|X_T^x| \leq N\}}] = M \hat{E}[I_{\{|X_1^{t,x}| \leq N\}}].
\]

By Remark 3.3 and Theorem 3.7, we obtain for each \(m \geq 0 \),

\[
\hat{E}[\exp(-\frac{m\beta}{2}|X_1^{t,x}|^2)] \leq \frac{1}{(1 + m)^\alpha}.
\]

Thus we get for each \(m \),

\[
\hat{E}[I_{\{|X_1^{t,x}| \leq \frac{N}{\sqrt{t}}\}}] \leq \exp(\frac{m\beta N^2}{2t})\hat{E}[\exp(-\frac{m\beta}{2}|X_1^{t,x}|^2)] \leq \exp(\frac{m\beta N^2}{2t})(1 + m)^\alpha.
\]

By equation (8) and sending \(t \to \infty \), we get

\[
\lim_{t \to \infty} \hat{E}[|\phi(X_T^x)|] \leq M \lim_{t \to \infty} \exp\left(\frac{m\beta N^2}{2t}\right) = \frac{M}{(1 + m)^\alpha}.
\]

Letting \(m \to \infty \), we conclude the desired result. ■
Corollary 3.9 Assume \(b = h^k = 0 \) and (H1), (H2), (H3) hold. Then for each \(t > 0, \ y \in \mathbb{R}^n \) and \(\epsilon > 0 \), we have

\[
c(|X_t^x - y| \leq \epsilon) \leq \exp\left(\frac{\beta \epsilon^2}{2} t^{-\alpha}\right),
\]

where \(\alpha = (n \wedge d)\lambda \gamma^2 (2d\bar{\sigma}^2\Lambda)^{-1}, \ \beta = (d\bar{\sigma}^2\Lambda)^{-1}. \) In particular,

\[
\lim_{\epsilon \downarrow 0} \sup_{y \in \mathbb{R}^d} c(|X_t^x - y| \leq \epsilon) = 0.
\]

Proof. By Remark 3.5 and Theorem 3.7, we obtain for each \(y \in \mathbb{R}^n \) and \(m \geq 0, \)

\[
\mathbb{E}[\exp(-\frac{m\beta|X_t^x - y|^2}{2})] \leq \frac{1}{(1 + mt)^\alpha}.
\]

Thus we get for each \(m \) and \(\epsilon > 0, \)

\[
\mathbb{E}[I_{\{|X_t^x - y| \leq \epsilon\}}] \leq \exp\left(\frac{m\beta\epsilon^2}{2}\right)\mathbb{E}[\exp(-\frac{m\beta|X_t^x - y|^2}{2})] \leq \exp\left(\frac{m\beta\epsilon^2}{2}\right) \frac{1}{(1 + mt)^\alpha}.
\]

In particular, taking \(m = \frac{1}{\epsilon^2}, \) we get for each \(y \in \mathbb{R}^n, \)

\[
c(|X_t^x - y| \leq \epsilon) \leq \exp\left(\frac{\beta \epsilon^2}{2} t^{-\alpha}\right),
\]

which completes the proof. \(\blacksquare \)

Remark 3.10 From the Corollary 3.9, we can obtain that for each \(t > 0, \ y \in \mathbb{R}^d \) and \(\epsilon > 0 \), we have

\[
c(|B_t - y| \leq \epsilon) \leq \exp\left(\frac{\beta \epsilon^2}{2} t^{-\alpha}\right),
\]

where \(\alpha = \frac{\gamma^2}{2d^2}, \ \beta = (d\bar{\sigma}^2)^{-1}. \)

Next we shall show that \(c(\{X_t^x; i = a_i\}) = 0 \) for any \(t > 0, \ i \leq n \) and \(a_i \in \mathbb{R}. \)

Lemma 3.11 Assume (H1), (H2), (H4) and (H5) hold. Let \(T > 0, \ \alpha = \gamma^2 (8\bar{\sigma}^2\Gamma)^{-1}, \ \beta = (2\bar{\sigma}^2\Gamma)^{-1}, \ \epsilon = (8\kappa)^{-1} \wedge T, \ m \geq 8\kappa \) and \(u_m \) be the solution of PDE (3) with terminal condition \(u_m(T, x) = \exp(-\frac{m\beta|x_i - a_i|^2}{2}), \) where \(a_i \in \mathbb{R}, \ i \leq n, \ \kappa = L^2(\bar{\sigma}^2d\sqrt{d+1})^2(\gamma \sigma^2)^{-1}. \) Then for any \((t, x) \in [T - \epsilon, T) \times \mathbb{R}^n, \) we have

\[
0 \leq u_m(t, x) \leq (1 + m(T - t))^{-\alpha}.
\]

Proof. The proof of \(u_m(t, x) \geq 0 \) is the same as in Lemma 3.4. Set

\[
\tilde{u}_m(t, x) = (1 + m(T - t))^{-\alpha} \exp(-\frac{m\beta|x_i - a_i|^2}{2(1 + m(T - t))}).
\]
Furthermore, we have \(\hat{u}_m(T, x) = \exp\left(-\frac{m\beta|x_i - a_i|^2}{2}\right) \). In the following, we show that \(\hat{u}_m \) is a viscosity supersolution of PDE (3) on \(t \geq T - \varepsilon \). It is easy to verify that

\[
\begin{align*}
\partial_t \hat{u}_m &= \frac{\alpha m}{1 + m(T - t)} \hat{u}_m - \frac{m^2 \beta |x_i - a_i|^2}{2(1 + m(T - t))^2} \hat{u}_m, \\
\partial_{x_i} \hat{u}_m &= -\frac{m \beta (x_i - a_i)}{1 + m(T - t)} \hat{u}_m, \\
\partial_{x_i,x_i}^2 \hat{u}_m &= -\frac{m \beta}{1 + m(T - t)} \hat{u}_m + \frac{m^2 \beta^2 |x_i - a_i|^2}{(1 + m(T - t))^2} \hat{u}_m, \\
\partial_{x_j} \hat{u}_m &= 0, \quad \partial_{x_i,x_j}^2 \hat{u}_m = 0, \quad j \neq i, \\
\sigma^T D^2 \hat{u}_m \sigma &= (\partial_{x_i,x_i}^2 \hat{u}_m) \sigma_i^T \sigma_i, \\
G(-\sigma_i^T \sigma_i) &\leq -\frac{\bar{\sigma}_i^2}{2}; \quad G(\sigma_i^T \sigma_i) \leq \frac{\bar{\sigma}_i^2}{2}, \\
(h^{jk}(t, x), D_x \hat{u}_m)^{d}_{j,k=1} = (\partial_{x_i} \hat{u}_m)(h^{jk}_i(t, x))^{d}_{j,k=1}.
\end{align*}
\]

Then for each \((t, x) \in [T - \varepsilon, T) \times \mathbb{R}^n \), we have

\[
\begin{align*}
\partial_t \hat{u}_m + G(\sigma^T D^2 \hat{u}_m \sigma + (2(h^{jk}(t, x), D_x \hat{u}_m)^{d}_{j,k=1}) + \langle b, D_x \hat{u}_m \rangle \\
\leq \partial_t \hat{u}_m + \frac{m \beta \hat{u}_m}{1 + m(T - t)} G(-\sigma_i^T \sigma_i) + \frac{m^2 \beta^2 \hat{u}_m |x_i - a_i|^2}{(1 + m(T - t))^2} G(\sigma_i^T \sigma_i) \\
+ \frac{2m \beta \hat{u}_m}{1 + m(T - t)} G(\langle -(x_i - a_i) h^{jk}_i(t, x) \rangle^{d}_{j,k=1}) - \frac{m \beta \hat{u}_m}{1 + m(T - t)} (x_i - a_i) b_i \\
\leq -\frac{m \beta \hat{u}_m}{1 + m(T - t)} |x_i - a_i|^2 \left(\frac{m}{4(1 + m\varepsilon)} - \kappa\right) \\
\leq 0,
\end{align*}
\]

which implies that \(\hat{u}_m \) is a viscosity supersolution of PDE (3) on \(t \geq T - \varepsilon \). Thus by comparison theorem we obtain for \((t, x) \in [T - \varepsilon, T) \times \mathbb{R}^n \),

\[
u_m(t, x) \leq \hat{u}_m(t, x) \leq (1 + m(T - t))^{-\alpha}.
\]

The proof is complete. \(\blacksquare \)

Remark 3.12 From the above proof, we know that the above result still holds if assumptions (H4) and (H5) just hold for some \(i \).

Theorem 3.13 Under the same assumptions as in Lemma 3.11, we obtain that for each \(i \leq n \) and \(T > 0 \)

\[
\mathbb{E}[\exp\left(-\frac{m \beta |X^x_{T,i} - a_i|^2}{2}\right)] \leq (1 + m(T \wedge \varepsilon))^{-\alpha}.
\] (11)

Furthermore, we have

\[
c(\{X^x_T = a_i\}) = 0.
\] (12)
Proof. The proof is the same as in Theorem 3.7 and we omit it. ■

Finally, we shall study the capacity of a curve.

Theorem 3.14 Assume (H1), (H2), (H4) and (H5) hold. Suppose \(f \) satisfies \(\partial_x f, \partial^2_{x,x_j} f \in \mathcal{C}_{\text{b}, \text{Lip}}(\mathbb{R}^n) \) and there exist two constants \(0 < \delta \leq \Delta < \infty \) such that

\[
\delta \leq \left| \sum_{i=1}^n \partial_x f \sigma^i \right|^2 \leq \Delta.
\]

Then for each \(T > 0 \) we have

\[
c(\{f(X^x_T) = 0\}) = 0.
\]

Proof. Applying the \(G \)-Itô formula yields that

\[
f(X^x_T) = f(x) + \int_0^T \partial_x f b_i(s, X^x_s) ds + \int_0^T \left[\partial_x f h_{j}^k + \frac{1}{2} \partial^2_{x,x_i} f \sigma^i \sigma^k \right] (s, X^x_s) d(B^j, B^k)_s
\]

\[
+ \int_0^T \partial_x f \sigma^i (s, X^x_s) dB_s.
\]

Thus \(\tilde{X}^x_t = ((X^x_t)^T, f(X^x_t))^T \) can be seen as the solution to the \(G \)-SDE (1) with

\[
\tilde{b}(t, x) = \begin{pmatrix} b(t, x) \\ \partial_x f b_i(t, x) \end{pmatrix}, \tilde{\sigma}(t, x) = \begin{pmatrix} \sigma(t, x) \\ \partial_x f \sigma^i(t, x) \end{pmatrix}
\]

and

\[
\tilde{h}^{jk}(t, x) = \begin{pmatrix} h_{j}^k(t, x) \\ [\partial_x f h_{j}^k(t, x) + \frac{1}{2} \partial^2_{x,x_i} f \sigma^i \sigma^k(t, x)] \end{pmatrix}.
\]

It follows from Theorem 3.13 that \(c(\{f(X^x_T) = 0\}) = 0 \) and this completes the proof. ■

Remark 3.15 It is very difficult to find a supersolution for a curve. Here we deal with this question by a probabilistic method instead of a PDE approach.

Remark 3.16 If we take \(n = d, x = 0, b = 0, h^j = 0 \) and \(\sigma = I_{d \times d} \), then \(X^x_T = B_T \). Thus the above results still hold for \(G \)-Brownian motion. In particular, [17] studies some sample path properties of 1-dimensional \(G \)-Brownian motion.

Example 3.17 If we take \(n = 2, d = 1, x = 0, b = 0, h^j = 0, \sigma = (1, -1)^T \) and \(f(x, y) = x - y \). Then \(f(B_T, B_T) = 0, q.s. \). However \(\partial_x f \sigma^1 + \partial_y f \sigma^2 = 0 \).

3.2 Some applications

In this subsection, we shall prove that some Borel measurable functions on \(\Omega \) are quasi-continuous. In the sequel, we always assume (H1), (H2), (H4) and (H5) hold.
Theorem 3.18 Let $\xi \in L^1_G(\Omega; \mathbb{R}^k)$ and $A \in \mathcal{B}(\mathbb{R}^k)$ with $c(\{\xi \in \partial A\}) = 0$. Then $I_{\{\xi \in A\}} \in L^1_G(\Omega)$.

Proof. For each $\epsilon > 0$, since $\xi \in L^1_G(\Omega; \mathbb{R}^k)$, we can find an open set $O \subset \Omega$ with $c(O) \leq \frac{\epsilon}{2}$ such that $\xi|_O$ is continuous. Set $D_\epsilon = \{x \in \mathbb{R}^k : d(x, \partial A) \leq \frac{\epsilon}{2}\}$ and $A_\epsilon = \{x \in \mathbb{R}^k : d(x, \partial A) < \frac{\epsilon}{2}\}$, it is easy to check that $\{\xi \in D_\epsilon\} \cap O^c$ is closed, $\{\xi \in A_\epsilon\} \subset \{\xi \in D_\epsilon\}$ and $\{\xi \in D_\epsilon\} \cap O^c \subset \{\xi \in \partial A\} \cap O^c$. Then we have

$$c(\{\xi \in D_\epsilon\} \cap O^c) = c(\{\xi \in \partial A\} \cap O^c) = 0.$$

Thus we can find an i_0 such that $c(\{\xi \in A_{i_0}\} \cap O^c) \leq \frac{\epsilon}{2}$. Set $O_1 = \{\xi \in A_{i_0}\} \cup O$, it is easy to verify that $c(O_1) \leq \epsilon$, $O^c_1 = \{\xi \in A_{i_0}^c\} \cap O^c$ is closed and $I_{\{\xi \in A\}}$ is continuous on O^c_1. Thus $I_{\{\xi \in A\}}$ is quasi-continuous, which implies $I_{\{\xi \in A\}} \in L^1_G(\Omega)$. \blacksquare

We first consider the capacity of $X^t_s\xi$ on the boundary of cubes. Then by the above theorem, we can get a kind of quasi-continuous random variables associated to G-SDEs.

Lemma 3.19 Let $A = [a, b]$, where $a, b \in \mathbb{R}^n$ with $a \leq b$. Then $c(\{X^t_s \in \partial A\}) = 0$ for any $t > 0$ and $x \in \mathbb{R}^n$.

Proof. It is easy to verify that

$$\{X^t_s \in \partial A\} \subset \bigcup_{i=1}^n (\{X^t_s;i = a_i\} \cup \{X^t_s;i = b_i\}).$$

Thus by Theorem 3.13 we can get $c(\{X^t_s \in \partial A\}) = 0$. \blacksquare

Lemma 3.20 Let $A = [a, b]$, where $a, b \in \mathbb{R}^n$ with $a \leq b$. Then for each given $t \geq 0$, $\xi \in L^2_G(\Omega_t; \mathbb{R}^n)$, $s > t$, we have $c(\{X^t_s\xi \in \partial A\}) = 0$.

Proof. We can choose a sequence $\varphi_k \in C_{b, lip}(\mathbb{R}^n)$, $k \geq 1$, such that $\varphi_k \downarrow I_{\partial A}$. By Theorem 3.3 we have

$$\tilde{E}[\varphi_k(X^t_s\xi)] = \tilde{E}[\tilde{E}[\varphi_k(X^t_s\xi)|x = \xi]] = \tilde{E}[\phi_k(\xi)],$$

where $\phi_k(x) = \tilde{E}[\varphi_k(X^t_s\xi)|x = x]$. For each fixed $x \in \mathbb{R}^n$, by Theorem 2.5 and Lemma 3.19 we obtain

$$\tilde{E}[\varphi_k(X^t_s\xi)|x = x] \leq \tilde{E}[\tilde{E}[\varphi_k(X^t_s\xi)|x = x]] = c(\{X^t_s\xi \in \partial A\}) = 0,$$

which implies $\phi_k(\xi) \leq 0$. By Theorem 2.5 we get $\tilde{E}[\phi_k(\xi)] \downarrow 0$. Note that $c(\{X^t_s\xi \in \partial A\}) \leq \tilde{E}[\varphi_k(X^t_s\xi)]$, then we get $c(\{X^t_s\xi \in \partial A\}) = 0$. \blacksquare

Theorem 3.21 Let $A_i = [a^i, b^i]$ with $a^i \leq b^i$ for $i \geq 1$ and $D \in \mathcal{B}(\mathbb{R}^n)$ with $\partial D \subset \bigcup_{i=1}^\infty \partial A_i$. Then for each given $t \geq 0$, $\xi \in L^2_G(\Omega_t; \mathbb{R}^n)$, $s > t$, we have $I_{\{X^t_s\xi \in D\}} \in L^1_G(\Omega_s)$. In particular, $I_{\{X^t_s \in \partial D\}} \in L^1_G(\Omega_s)$.

12
Proof. This is a direct consequence of Lemma 3.20 and Theorem 3.18.

In the following, we only consider the capacity of B_t on the spheres for simplicity. But the method can be extended to X_t.

Lemma 3.22 Let D be a d-dimensional sphere. Then we have for each $t > 0$,

$$c(\{B_t \in \partial D\}) = 0.$$

Proof. Without loss of generality, we assume D is the unit sphere. Set $\bar{x} = (x_1, \ldots, x_{d-1})$ and denote functions

$$f(\bar{x}) := \sqrt{1 - |\bar{x}|^2} I_{\{|\bar{x}|^2 \leq 1\}}.$$

For each $\epsilon > 0$, there exists a nonnegative function $J^*(\bar{x}) \in C_0^\infty(\mathbb{R}^{d-1})$ such that

$$J^*(\bar{x}) = \begin{cases} 1, & \text{if } |\bar{x}| \leq 1 - 2\epsilon; \\ 0, & \text{if } |\bar{x}| \geq 1 - \epsilon. \end{cases}$$

Then define function $f^*(x) := x_d - J^*(\bar{x}) f(\bar{x})$. It is easy to check that $J^*(\bar{x}) f(\bar{x}) \in C_0^\infty(\mathbb{R}^{d-1})$. Moreover, $|\sum_{i=1}^d \partial_x f^*(x) e_i|^2 = \sum_{i=1}^{d-1} |\partial_x f^*(x)|^2 + 1$. Then applying Theorem 3.14, we obtain for each given $t > 0$,

$$c(\{B_t^d - J^*(\bar{B}_t) f(\bar{B}_t) = 0\}) = 0,$$

where $\bar{B}_t = (B_t^1, \ldots, B_t^{d-1})$. Consequently,

$$c(\{B_t^d - f(\bar{B}_t) = 0\} \cap \{|\bar{B}_t|^2 \leq 1 - 2\epsilon\}) = 0.$$

As $\{B_t^d - f(\bar{B}_t) = 0\} \cap \{|\bar{B}_t|^2 \leq 1 - 2\epsilon\} \cup \{B_t^d - f(\bar{B}_t) = 0\} \cap \{|\bar{B}_t|^2 < 1\}$, then by taking $\epsilon \downarrow 0$ we get that

$$c(\{B_t^d - f(\bar{B}_t) = 0\} \cap \{|\bar{B}_t|^2 < 1\}) = 0.$$

From Theorem 3.13 we get $c(\{B_t^d = 0\}) = 0$. Therefore, we deduce that

$$c(\{B_t^d - f(\bar{B}_t) = 0\}) \leq c(\{B_t^d - f(\bar{B}_t) = 0\} \cap \{|\bar{B}_t|^2 < 1\}) + c(\{B_t^d = 0\} = 0).$$

By a similar analysis, we also get $c(\{B_t^d + f(\bar{B}_t) = 0\}) = 0$. Thus

$$c(\{B_t \in \partial D\}) \leq c(\{B_t^d - f(\bar{B}_t) = 0\}) + c(\{B_t^d + f(\bar{B}_t) = 0\}) = 0,$$

which is the desired result.

Remark 3.23 For each $0 \leq t_1 \leq t_2 < \infty$, by Lemmas 3.20 and 3.22, we can also obtain that $c(\{|B_{t_1}|^2 + |B_{t_2}|^2 = 1\}) = 0$.

The following result is a direct consequence of Lemmas 3.19 and 3.22.

Theorem 3.24 Suppose A_t is a d-dimensional sphere or $|a^i, b^i|$ with a^i, $b^i \in \mathbb{R}^d$, $a^i \leq b^i$ for $i \geq 1$ and $D \in \mathcal{B}(\mathbb{R}^d)$ with $\partial D \subset \cup_{i=1}^\infty \partial A_i$. Then $I_{\{B_t \in D\}} \in L_2(\Omega_t)$ for any $t > 0$.
4 Quasi-continuous processes

In this section, we first consider the characterization of $M_p^G(0, T)$. And then we study the applications of Krylov’s estimates under G-expectation. In particular, we show that some Borel measurable functions on $[0, T] \times \Omega$ are in $M_p^G(0, T)$, $p \geq 1$.

4.1 Characterization of $M_p^G(0, T)$

We shall give a characterization of the space $M_p^G(0, T)$ for each $T > 0$ and $p \geq 1$, which generalizes the results in [1].

Set $F_t = B(\Omega_t)$ for $t \in [0, T]$ and the distance

$$\rho((t, \omega), (t', \omega')) = |t - t'| + \max_{s \in [0, T]} |\omega_s - \omega'_s|$$

for $(t, \omega), (t', \omega') \in [0, T] \times \Omega_T$.

Define, for each $p \geq 1$,

$$M_p^G(0, T) = \{ \eta : \text{progressively measurable on } [0, T] \times \Omega_T \text{ and } \hat{\mathbb{E}}[\int_0^T |\eta_t|^p dt] < \infty \}$$

and the corresponding capacity

$$\hat{c}(A) = \frac{1}{T} \hat{\mathbb{E}}[\int_0^T I_A(t, \omega) dt]$$

for each progressively measurable set $A \subset [0, T] \times \Omega_T$.

Proposition 4.1 Let A be a progressively measurable set in $[0, T] \times \Omega_T$. Then $I_A = 0$ \hat{c}-q.s. if and only if $\int_0^T I_A(t, \cdot) dt = 0$ c-q.s.

Proof. It is obvious $\int_0^T I_A(t, \cdot) dt \geq 0$. Thus we can easily get $\hat{\mathbb{E}}[\int_0^T I_A(t, \omega) dt] = 0$ if and only if $c(\{ \int_0^T I_A(t, \cdot) dt > 0 \}) = 0$, which completes the proof. ■

In the following, we do not distinguish two progressively measurable processes η and η' if $\hat{c}(\{ \eta \neq \eta' \}) = 0$.

Proposition 4.2 For each $p \geq 1$, $M_p^G(0, T)$ is a Banach space under the norm

$$||\eta||_{M_p} := (\hat{\mathbb{E}}[\int_0^T |\eta_t|^p dt])^{1/p}.$$

Proof. The proof is similar to the classical results and we omit it. ■

It is clear that $M_p^G(0, T) \subset M_p^G(0, T)$ for any $p \geq 1$. Thus $M_p^G(0, T)$ is a closed subspace of $M_p^G(0, T)$. Also we set

$$M_c(0, T) = \{ \text{all adapted processes } \eta \text{ in } C_b([0, T] \times \Omega_T) \}.$$
Theorem 4.7
For each \(R \) has a quasi-continuous version if there exists a quasi-continuous process \(\hat{\eta} \) such that

\[
\text{in } [0, T] \text{ the one in [15, 16]}. \]

Remark 4.5
This definition of quasi-continuous of a process is different from

Thus \(\eta \) is quasi-continuous (q.c.) if for each \(\varepsilon > 0 \), since \(\mathcal{P} \) is weakly compact, there exists a compact set \(K \subset \Omega_T \) such that \(\mathbb{E}[I_{K^c}] \leq \varepsilon \).

Therefore

\[
\mathbb{E}\left[\int_0^T |\eta - \eta_k^p| \, dt\right] \leq \mathbb{E}[I_K] \int_0^T |\eta - \eta_k^p|^p \, dt + \mathbb{E}[I_{K^c}] \int_0^T |\eta - \eta_k^p|^p \, dt \\
\leq \sup_{(t, \omega) \in [0, T] \times K} T|\eta_t(\omega) - \eta_k^p(\omega)|^p + (2l)^p T \varepsilon,
\]

where \(l \) is the upper bound of \(\eta \). Noting that \([0, T] \times K \) is compact and \(\eta \in C_b([0, T] \times \Omega_T) \), thus

\[
\lim_{k \to \infty} \mathbb{E}\left[\int_0^T |\eta - \eta_k^p| \, dt\right] \leq (2l)^p T \varepsilon.
\]

Since \(\varepsilon \) is arbitrary, we get \(\|\eta_k - \eta\|_{\mathcal{M}^p} \to 0 \) as \(k \to \infty \). Thus \(\eta \in \mathcal{M}_G^0(0, T) \), which implies the desired result.

Proof. We first prove that the completion of \(\mathcal{M}_c(0, T) \) under the norm \(\|\cdot\|_{\mathcal{M}^p} \) belongs to \(\mathcal{M}_G^0(0, T) \). For each fixed \(\varepsilon > 0 \), since \(\mathcal{P} \) is weakly compact, there exists a compact set \(K \subset \Omega_T \) such that \(\mathbb{E}[I_{K^c}] \leq \varepsilon \).

\[
\mathbb{E}\left[\int_0^T |\eta - \eta_k^p| \, dt\right] \leq \mathbb{E}[I_K] \int_0^T |\eta - \eta_k^p|^p \, dt + \mathbb{E}[I_{K^c}] \int_0^T |\eta - \eta_k^p|^p \, dt \\
\leq \sup_{(t, \omega) \in [0, T] \times K} T|\eta_t(\omega) - \eta_k^p(\omega)|^p + (2l)^p T \varepsilon,
\]

where \(l \) is the upper bound of \(\eta \). Noting that \([0, T] \times K \) is compact and \(\eta \in C_b([0, T] \times \Omega_T) \), thus

\[
\lim_{k \to \infty} \mathbb{E}\left[\int_0^T |\eta - \eta_k^p| \, dt\right] \leq (2l)^p T \varepsilon.
\]

Since \(\varepsilon \) is arbitrary, we get \(\|\eta_k - \eta\|_{\mathcal{M}^p} \to 0 \) as \(k \to \infty \). Thus \(\eta \in \mathcal{M}_G^0(0, T) \), which implies the desired result.

Now we prove the converse part. For each given \(\eta_k = \sum_{i=0}^{N-1} \xi_i I_{[t_i, t_{i+1})}(t) \in \mathcal{M}_G^0(0, T) \), it is easy to find \(\{\phi_i^k : k \geq 1\} \subset C([0, \infty)) \), \(i < N \), \(k \geq 1 \) such that \(supp(\phi_i^k) \subset (t_i, t_{i+1}) \) and \(\int_0^T |\phi_i^k(t) - I_{[t_i, t_{i+1})}(t)|^p \, dt \to 0 \) as \(k \to \infty \). Set \(\eta^k = \sum_{i=0}^{N-1} \xi_i \phi_i^k(t) \), it is easy to check that \(\eta^k \in \mathcal{M}_c(0, T) \) and \(\|\eta^k - \eta\|_{\mathcal{M}^p} \to 0 \) as \(k \to \infty \). Thus \(\mathcal{M}_G^0(0, T) \) belongs to the completion of \(\mathcal{M}_c(0, T) \) under the norm \(\|\cdot\|_{\mathcal{M}^p} \), which completes the result. \(\blacksquare \)

Definition 4.4 A progressively measurable process \(\eta : [0, T] \times \Omega_T \to \mathbb{R} \) is called quasi-continuous (q.c.) if for each \(\varepsilon > 0 \), there exists a progressive open set \(G \) in \([0, T] \times \Omega_T \) such that \(\mathbb{P}(G) < \varepsilon \) and \(\eta|_{\partial G} \) is continuous.

Remark 4.5 This definition of quasi-continuous of a process is different from the one in [10].

Definition 4.6 We say that a progressively measurable process \(\eta : [0, T] \times \Omega_T \to \mathbb{R} \) has a quasi-continuous version if there exists a quasi-continuous process \(\eta' \) such that \(\mathbb{P}(\{\eta \neq \eta'\}) = 0 \).

Theorem 4.7 For each \(p \geq 1 \),

\[
\mathcal{M}_G^p(0, T) = \{\eta \in \mathcal{M}^p(0, T) : \lim_{N \to \infty} \mathbb{E}\left[\int_0^T |\eta| \, dt \right] = 0 \text{ and } \eta \text{ has a quasi-continuous version}\}.
\]
\textbf{Proof.} We denote

\[J_p = \{ \eta \in M^p(0,T) : \lim_{N \to \infty} \hat{E}\left[\int_0^T |\eta_t|^p I_{\{|\eta_t| \geq N\}} dt \right] = 0 \} \]

\eta \text{ has a quasi-continuous version}. \]

Noting that the completion of \(M_c(0,T) \) under the norm \(\| \cdot \|_{M^p_c} \) is \(M^p_G(0,T) \), then, by the same analysis as in Propositions 18 and 24 in [1], we can get \(M^p_G(0,T) \subset J_p \).

On the other hand, for each \(\eta \in J_p \), we want to prove that \(\eta \in M^p_G(0,T) \).

We may assume that \(\eta \) is quasi-continuous. For each \(N > 0 \), set \(\eta^N = (\eta \wedge N) \vee (-N) \), since \(\hat{E}\left[\int_0^T |\eta_t - \eta_t^N|^p dt \right] \leq \hat{E}\left[\int_0^T |\eta_t|^p I_{\{|\eta_t| \geq N\}} dt \right] \to 0 \) as \(N \to \infty \), we only need to show that \(\eta^N \in M^p_G(0,T) \) for each fixed \(N > 0 \). For each \(\varepsilon > 0 \), there exist a compact set \(K_\varepsilon \subset \Omega_T \) such that \(\hat{E}[I_{K_\varepsilon}] \leq \varepsilon \) and a progressive open set \(G_\varepsilon \subset [0,T] \times \Omega_T \) such that \(\hat{E}(G_\varepsilon) < \varepsilon \) and \(\eta^N|_{G_\varepsilon} \) is continuous. By Tietze’s extension theorem, there exists an \(\hat{\eta}^{N,\varepsilon} \in C_b([0,T] \times \Omega_T) \) such that \(|\hat{\eta}^{N,\varepsilon}| \leq N \) and \(\hat{\eta}^{N,\varepsilon}|_{G_\varepsilon} = \eta^N|_{G_\varepsilon} \). For each \(k \geq 1 \), set \(t^k_i = \frac{i}{k}T \) for \(i = 0, \ldots, k \). We also set \(F^{i,k}_\varepsilon = G^\varepsilon \cap ([t^k_i, t^{k+1}_i] \times \Omega_T) \) for \(i \leq k-1 \). Since \(G^\varepsilon \) is progressively measurable, we can get \(F^{i,k}_\varepsilon \in B([0,t^{k+1}_i]) \times B(\Omega_{t^{k+1}_i}) \). It is easy to check that \(F^{i,k}_\varepsilon \) is closed.

By Tietze’s extension theorem, there exists a \(\zeta^{N,i,k} \in C_b([0,t^{k+1}_i] \times \Omega_T) \) such that \(\zeta^{N,i,k} \in B([0,t^{k+1}_i]) \times B(\Omega_{t^{k+1}_i}) \), \(|\zeta^{N,i,k}| \leq N \) and \(\zeta^{N,i,k}|_{F^{i,k}_\varepsilon} = \eta^N|_{F^{i,k}_\varepsilon} \). We denote \(\tilde{\eta}^{N,i,k}_t(\omega) = \sum_{i=0}^{k-1} \zeta^{N,i,k}(t,\omega)I_{[t^k_i, t^{k+1}_i]}(t) \) and

\[\hat{\eta}^{N,i,k}_t = \hat{\eta}^{N,k}_t(t - \frac{T}{k},\omega)I_{[t^k_i, t^{k+1}_i]}(t), \quad \tilde{\eta}^{N,i,k}_t = \tilde{\eta}^{N,k}_t(t - \frac{T}{k},\omega)I_{[t^k_i, t^{k+1}_i]}(t). \]

Similar to the analysis as in Proposition [4,3], we can get \(\hat{\eta}^{N,i,k}_t \in M^p_G(0,T) \). We have also

\[\hat{E}\left[\int_0^T |\eta^N_t - \hat{\eta}^{N,i,k}_t|^p dt \right] \]

\[\leq 3^{p-1} \hat{E}\left[\int_0^T |\eta^N_t - \tilde{\eta}^{N,i,k}_t|^p dt \right] + \hat{E}\left[\int_0^T |\tilde{\eta}^{N,i,k}_t - \hat{\eta}^{N,i,k}_t|^p dt \right] + \hat{E}\left[\int_0^T |\hat{\eta}^{N,i,k}_t - \tilde{\eta}^{N,i,k}_t|^p dt \right] \]

\[\leq 3^{p-1} \left(2(2N)^pT \varepsilon + \hat{E}\left[\int_0^T |\eta^N_t - \tilde{\eta}^{N,i,k}_t|^p dt \right] \right) \]

\[\leq 3^{p-1} \left(2(2N)^pT \varepsilon + (2N)^pT \varepsilon + \hat{E}\left[\int_0^T |\eta^N_t - \tilde{\eta}^{N,i,k}_t|^p dt \right] \right) \]

\[\leq 3^{p-1} \left(2(2N)^pT \varepsilon + (2N)^pT \varepsilon + \sup_{(t,\omega) \in [0,T] \times \Omega} \|T|\hat{\eta}^{N,i,k}_t(t,\omega) - \tilde{\eta}^{N,i,k}_t(t,\omega)|^p \right). \]

16
Noting that \([0, T] \times K_\varepsilon\) is compact and \(\tilde{\eta}^N, \varepsilon \in C_b([0, T] \times \Omega_T)\), thus
\[
\limsup_{k \to \infty} \hat{\varepsilon}\int_0^T |\eta_t^N - \tilde{\eta}_t^{N,k}|^p dt \leq (6N)^p T \varepsilon,
\]
which implies \(\eta^N \in M^p_G(0, T)\). The proof is complete. \(\blacksquare\)

Corollary 4.8 Let \(\eta \in M^1_G(0, T)\) and \(f \in C_b([0, T] \times \mathbb{R})\). Then \((f(t, \eta_t))_{t \leq T} \in M^p_G(0, T)\) for any \(p \geq 1\).

Theorem 4.9 Let \(\eta^k \in M^1_G(0, T)\), \(k \geq 1\), be such that \(\eta^k \downarrow \eta\) \(\hat{\varepsilon}\)-q.s.. Then \(\hat{\mathbb{E}}[\int_0^T \eta^k_t dt] \downarrow \hat{\mathbb{E}}[\int_0^T \eta_t dt]\). Moreover, if \(\eta \in M^1_G(0, T)\), then \(\hat{\mathbb{E}}[\int_0^T |\eta^k_t - \eta_t| dt] \downarrow 0\).

Proof. Since \(\eta^k \in M^1_G(0, T)\), we can choose \(\eta^{k,N} \in M^1_G(0, T)\) such that \(\hat{\mathbb{E}}[\int_0^T |\eta^k_t - \eta^{k,N}_t| dt] \to 0\) as \(N \to \infty\). It is easy to check that \(\int_0^T \eta^{k,N}_t \in L^1_G(\Omega_T)\) and \(\hat{\mathbb{E}}[\int_0^T \eta^{k,N}_t dt] \leq \hat{\mathbb{E}}[\int_0^T |\eta^k_t - \eta^{k,N}_t| dt]\). Thus \(\int_0^T \eta^k_t \in L^1_G(\Omega_T)\) for \(k \geq 1\). By Proposition 4.1 and Theorem 4.7, it is easy to verify that \(\int_0^T \eta^k_t dt \downarrow \int_0^T \eta_t dt\) \(\hat{\varepsilon}\)-q.s.. Thus by Theorem 2.5 we get \(\hat{\mathbb{E}}[\int_0^T |\eta^k_t - \eta_t| dt] \downarrow 0\). If \(\eta \in M^1_G(0, T)\), then \(|\eta^k - \eta| \in M^1_G(0, T)\) and \(|\eta^k - \eta| \downarrow 0\) \(\hat{\varepsilon}\)-q.s.. Thus \(\hat{\mathbb{E}}[\int_0^T |\eta^k_t - \eta_t| dt] \downarrow 0\). \(\blacksquare\)

The following example shows that \(M^p_G(0, T)\) is strictly contained in \(M^p(0, T)\).

Example 4.10 Suppose \(0 < \sigma^2 < \bar{\sigma}^2 < \infty\), \(T > 0\). We consider 1-dimensional G-Brownian motion \((B_t)_{t \geq 0}\). \((B_t)_{t \geq 0}\) is the quadratic process of \((B_t)_{t \geq 0}\). Let
\[
\eta_t = I_{\{(B_t) = \sigma^2 + \bar{\sigma}^2 \}}\text{ for } t \leq T.
\]

In the following we show that \(\eta \notin M^1_G(0, T)\). We can choose \(f^k(t, x) \in C_b([0, T] \times \mathbb{R})\), \(k \geq 1\), such that
\[
f^k(t, x) = 1 \text{ for } |x - \left(\frac{\sigma^2 + \bar{\sigma}^2}{2}\right)t| \leq \frac{T}{k}, f^k(t, x) = 0 \text{ for } |x - \left(\frac{\sigma^2 + \bar{\sigma}^2}{2}\right)t| \geq \frac{2T}{k}.
\]
Set \(g^k = \bigwedge_{i=1}^k f^i\), it is easy to check that \(g^k \in C_b([0, T] \times \mathbb{R})\), \(g^k(t, x) = 1 \text{ for } |x - \left(\frac{\sigma^2 + \bar{\sigma}^2}{2}\right)t| \leq \frac{T}{k}\) and \(g^k \downarrow I_{\{x = \left(\frac{\sigma^2 + \bar{\sigma}^2}{2}\right)t\}}\). Thus \(g^k(t, (B_t)) \downarrow \eta_t\). By Corollary 4.8, we have \(g^k(t, (B_t)) \in M^1_G(0, T)\). If \(\eta \in M^1_G(0, T)\), then by Theorem 4.9 we get \(\hat{\mathbb{E}}[\int_0^T |g^k(t, (B_t)) - \eta_t| dt] \downarrow 0\). On the other hand, by the representation of \(\hat{\mathbb{E}}[\cdot]\) in (4.1), there exists a probability measure \(P \in \mathcal{P}\) such that \(\langle B_t \rangle = ((\sigma^2 + \bar{\sigma}^2) - \frac{1}{k}) \wedge \sigma^2)t\) \(P\)-a.s.. Thus \(\hat{\mathbb{E}}[\int_0^T |g^k(t, (B_t)) - \eta_t| dt] \geq E_P[\int_0^T g^k(t, (B_t)) - \eta_t| dt] = 1\). This contradiction implies that \(\eta \notin M^1_G(0, T)\).
4.2 Some applications of Krylov’s estimates

Assume \(n \leq d \) and consider the following \(n \)-dimensional G-Itô process: for each \(t \geq 0 \),

\[
X_t = x_0 + \int_0^t \alpha_s ds + \int_0^t \beta^{jk}_s d(B^j, B^k)_s + \int_0^t \sigma_s dB_s,
\]

where \(x_0 \in \mathbb{R}^n \) and the processes \(\alpha, \beta^{jk} \in \mathcal{M}^2_G(0, T; \mathbb{R}^n), \sigma \in \mathcal{M}^2_G(0, T; \mathbb{R}^{n \times d}) \).

In this subsection, we make the following assumptions:

(B1) There exists a constant \(L > 0 \) such that for each \(t \geq 0 \),

\[
|\alpha_t| \leq L, \quad |\beta^{jk}_t| \leq L \text{ for } j, k \leq d;
\]

(B2) There exists a constant \(\bar{\lambda} > 0 \) such that for each \(t > 0 \),

\[
\sigma_t(\sigma_t)^T \geq \bar{\lambda} I_{n \times n};
\]

(B3) There exists a constant \(\bar{\Lambda} > 0 \) such that for each \(t > 0 \),

\[
\sigma_t(\sigma_t)^T \leq \bar{\Lambda} I_{n \times n}.
\]

Definition 4.11 A stopping time \(\tau \) relative to the filtration \((\mathcal{F}_t)_{t \geq 0} \) is a map on \(\Omega \) with values in \([0, \infty)\), such that for every \(t \),

\[
\{ \tau \leq t \} \in \mathcal{F}_t.
\]

Theorem 4.12 Assume (B1) and (B2) hold. Let \(D \) be a bounded region in \(\mathbb{R}^n \) and \(\tau \) be a stopping time with \(\tau \leq \tau_D \), where \(\tau_D \) is the first exit time of \(X_t \) from \(D \). Then for each \(x_0 \in \mathbb{R}^n \), \(T \geq 0 \) and \(p \geq n \), there exists a constant \(\bar{N} \) depending on \(p, \bar{\lambda}, L, G, T \) and \(D \) such that for each \(t \in [0, T] \) and all Borel function \(f(t, x), g(x) \),

\[
\hat{E}[\int_0^{t \wedge \tau} |f(t, X_t)| dt] \leq \bar{N} \| f \|_{L^{p+1}([0, T] \times D)};
\]

\[
\hat{E}[\int_0^{t \wedge \tau} |g(X_t)| dt] \leq \bar{N} \| g \|_{L^p(D)}.
\]

Proof. Let \(\mathcal{P} \) be the weakly compact set that represents \(\hat{E} \). By Corollary 5.7 in Chapter 3 of [13], we obtain that \(d(B^j, B^k)_t = \gamma_t^{jk} dt \) q.s. and \(\sigma^2 t I_{d \times d} \leq \gamma_t = (\gamma_t^{jk})_{j, k=1}^d \leq \sigma^2 t I_{d \times d} \). Note that \(B \) is a martingale on the probability space \((\Omega, (\mathcal{F}_t)_{t \geq 0}, P)\) for each \(P \in \mathcal{P} \). Then it is easy to check that

\[
W_t^P := \int_0^t \gamma_s^{-\frac{1}{2}} dB_s, \quad P - a.s.
\]

is a Brownian motion on \((\Omega, (\mathcal{F}_t)_{t \geq 0}, P)\). Thus we have

\[
X_t = x_0 + \int_0^t \alpha_s ds + \int_0^t \beta^{jk}_s \gamma_t^{jk} ds + \int_0^t \sigma(s, X_s) \gamma_t^{\frac{1}{2}} dW_t^P, \quad P - a.s.
\]
Applying Theorem 2.4 in Chapter 2 of Krylov [6] (see also [7]), we can find a constant \bar{N} depending on $p, \bar{\lambda}, L, G, T$ and D such that for all Borel function $f(t, x)$,

$$E_P[\int_0^{t \wedge \tau} |f(t, X_t)|dt] \leq \bar{N}\|f\|_{L^{p+1}([0, T] \times D)}.$$

Therefore, we have

$$\hat{\mathbb{E}}[\int_0^{t \wedge \tau} |f(t, X_t)|dt] = \sup_{P \in \mathbb{P}} E_P[\int_0^{t \wedge \tau} |f(t, X_t)|dt] \leq \bar{N}\|f\|_{L^{p+1}([0, T] \times D)}$$

and the second inequality can be proved in a similar way.

Theorem 4.13 Assume (B1), (B2) and (B3) hold. Then for each $\delta > 0$ and $p \geq n$, there exists a constant N depending on $p, \bar{\lambda}, \bar{\Lambda}, L, G$ and δ such that for all Borel function $f(t, x)$ and $g(x)$,

$$\hat{\mathbb{E}}[\int_0^{\infty} \exp(-\delta t)|f(t, X_t)|dt] \leq N\|f\|_{L^{p+1}([0, \infty] \times \mathbb{R}^n)},$$

$$\hat{\mathbb{E}}[\int_0^{\infty} \exp(-\delta t)|g(X_t)|dt] \leq N\|g\|_{L^p(\mathbb{R}^n)}.$$

Proof. The proof is immediate from the proof of Theorem 4.12 and Theorem 3.4 in Chapter 2 of [6].

Remark 4.14 Theorems 4.12 and 4.13 are called Krylov’s estimates.

The following results are direct consequences of Theorem 4.13.

Corollary 4.15 Under the assumptions (B1)-(B3), for each $T > 0$ and $p \geq n$, there exists a constant N_T depending on $p, \bar{\lambda}, \bar{\Lambda}, L, G$ and T such that for all Borel function $f(t, x)$ and $g(x)$,

$$\hat{\mathbb{E}}[\int_0^{T} |f(t, X_t)|dt] \leq N_T\|f\|_{L^{p+1}([0, T] \times \mathbb{R}^n)},$$

$$\hat{\mathbb{E}}[\int_0^{T} |g(X_t)|dt] \leq N_T\|g\|_{L^p(\mathbb{R}^n)}.$$

Corollary 4.16 Assume (H1), (H2), (H4) and (H5) hold. Then for each $p \geq 1, i \leq n$ and the solution $X_t^{x;i}$ to G-SDE (1), we can find a constant N_T depending on p, γ, Γ, L, G and T such that for all Borel function $g(x)$,

$$\hat{\mathbb{E}}[\int_0^{T} |g(X_t^{x;i})|dt] \leq N_T\|g\|_{L^p(\mathbb{R}^1)}.$$

In the following, we first use Krylov’s estimates to get quasi-continuous processes.
Lemma 4.17 Assume (B1)-(B3) hold.

(i) If ψ is in $L^p([0, T] \times \mathbb{R}^n)$ with $p \geq n + 1$, then for each $T > 0$, we have $(\psi(t, X_t))_{t \leq T} \in M^1_{\mathcal{L}}(0, T)$. Moreover, for each $\psi' = \psi$, a.e., we have $\psi' : (\cdot, X) = \psi(\cdot, X)$.

(ii) If φ is in $L^p(\mathbb{R}^n)$ with $p \geq n$, then for each $T > 0$, we have $(\varphi(X_t))_{t \leq T} \in M^1_{\mathcal{L}}(0, T)$. Moreover, for each $\varphi' = \varphi$, a.e., we have $\varphi'(X) = \varphi(X)$.

Proof. We only prove (ii) and (i) can be proved similarly. Note that there exists a sequence bounded and continuous functions φ^k such that φ^k converges in $L^p(\mathbb{R}^n)$ to φ. Then by Corollary 4.15 there exists a constant C' such that

$$
\lim_{k \to \infty} \hat{E}\int_0^T |\varphi^k - \varphi|(X_t)dt \leq C' \lim_{k \to \infty} \|\varphi^k - \varphi\|_{L^p(\mathbb{R}^n)} = 0.
$$

By Theorem 4.4 we can get $(\varphi^k(X_t))_{t \leq T} \in M^1_{\mathcal{L}}(0, T)$ for each $k \geq 1$. Thus we conclude $(\varphi(X_t))_{t \leq T} \in M^1_{\mathcal{L}}(0, T)$.

Assume $\varphi = \varphi'$, a.e. Then

$$
\hat{E}\int_0^T |\varphi' - \varphi|(X_t)dt \leq C'\|\varphi' - \varphi\|_{L^p(\mathbb{R}^n)} = 0,
$$

which completes the proof. \hfill \blacksquare

Theorem 4.18 Assume (B1)-(B3) hold. Let $(\varphi^k)_{k \geq 1}$ be a sequence of \mathbb{R}^n-Borel measurable functions and $|\varphi^k(x)| \leq \bar{C}(1 + |x|^l)$, $k \geq 1$ for some constants C and l. If $\varphi^k \to \varphi$, a.e., then for each $T > 0$ and $p \geq 1$,

$$
\lim_{k \to \infty} \hat{E}\int_0^T |\varphi^k(X_t) - \varphi(X_t)|^pdt = 0.
$$

Proof. By Lemma 4.17, we may assume that $|\varphi(x)| \leq \bar{C}(1 + |x|^l)$. For each fixed $N > 0$, we have

$$
\hat{E}\int_0^T |\varphi^k(X_t) - \varphi(X_t)|^pdt \leq \hat{E}\int_0^T |\varphi^k(X_t) - \varphi(X_t)|^pI_{\{|X_t| \leq N\}}dt
$$
$$
+ \hat{E}\int_0^T |\varphi^k(X_t) - \varphi(X_t)|^pI_{\{|X_t| \geq N\}}dt.
$$

By Corollary 4.15 there exists a constant C' independent of k such that

$$
\hat{E}\int_0^T |\varphi^k(X_t) - \varphi(X_t)|^pI_{\{|X_t| \leq N\}}dt \leq C'\int_{\{|x| \leq N\}} |\varphi^k(x) - \varphi(x)|^pdxd\nu^{1/p}.
$$

Then applying dominated convergence theorem yields that

$$
\hat{E}\int_0^T |\varphi^k(X_t) - \varphi(X_t)|^pI_{\{|X_t| \leq N\}}dt \to 0 \text{ as } k \to \infty.
$$
Noting that \(|\varphi^k(X_t) - \varphi(X_t)|^p I_{\{|X_t| \geq N\}} \leq \frac{(2\tilde{C})^p}{N}(1 + |X_t|^p)|X_t| \), then we get
\[
\limsup_{k \to \infty} \mathbb{E}\left[\int_0^T |\varphi^k(X_t) - \varphi(X_t)|^p dt \right] \leq \frac{(2\tilde{C})^p}{N} \int_0^T \mathbb{E}(1 + |X_t|^p)|X_t| dt.
\]
Since \(N \) can be arbitrarily large, we obtain
\[
\lim_{k \to \infty} \mathbb{E}\left[\int_0^T |\varphi^k(X_t) - \varphi(X_t)|^p dt \right] = 0,
\]
which is the desired result. ■

Theorem 4.18 can be seen as the dominated convergence theorem of the G-Itô processes.

Theorem 4.19 Assume (B1)-(B3) hold. If \(\varphi \) is a \(\mathbb{R}^n \)-Borel measurable function of polynomial growth, then for each \(T > 0 \), we have \((\varphi(X_t))_{t \leq T} \in \mathcal{M}_G^n(0, T) \)

Proof. We can find a sequence of continuous functions \(\varphi^k, k \geq 1 \), with compact support, such that \(\varphi^k \) converges to \(\varphi \) a.e. and \(|\varphi^k(x)| \leq \tilde{C}(1 + |x|^l) \), where \(\tilde{C} \), \(l \) are constants independent of \(k \). Then by Theorem 4.18 for each \(T > 0 \), we conclude that
\[
\lim_{k \to \infty} \mathbb{E}\left[\int_0^T |\varphi^k - \varphi|^2(X_t) dt \right] = 0.
\]
Since \((\varphi^k(X_t))_{t \leq T} \in \mathcal{M}_G^n(0, T) \) for each \(k \) by Theorem 4.18 we derive that \((\varphi(X_t))_{t \leq T} \in \mathcal{M}_G^n(0, T) \) and this completes the proof. ■

Now we give Itô-Krylov’s formula for \(G \)-diffusion processes. Let us recall some notations.

- \(\mathcal{W}_p^2(\mathbb{R}^n) \): the space of all functions \(u \) defined on \(\mathbb{R}^n \) such that \(u \in C(\mathbb{R}^n) \) and its generalized derivatives \(\partial_x u, \partial^2_{x,x} u \) belong to \(L^p(\mathbb{R}^n) \),
- \(\mathcal{W}_{p,\text{loc}}^2(\mathbb{R}^n) \): the space of all functions \(u \) defined on \(\mathbb{R}^n \) such that \(u \in C(\mathbb{R}^n) \) and its generalized derivatives \(\partial_x u, \partial^2_{x,x} u \) belong to \(L^p_{\text{loc}}(\mathbb{R}^n) \),
- \(\mathcal{W}^{1,2}_p([0, T] \times \mathbb{R}^n) \): the space of all functions \(u \) defined on \(\mathbb{R}^n \) such that \(u \in C([0, T] \times \mathbb{R}^n) \) and its generalized derivatives \(\partial_t u, \partial_x u, \partial^2_{x,x} u \in L^p([0, T] \times \mathbb{R}^n) \),
- \(\mathcal{W}^{1,2}_{p,\text{loc}}([0, T] \times \mathbb{R}^n) \): the space of all functions \(u \) defined on \(\mathbb{R}^n \) such that \(u \in C([0, T] \times \mathbb{R}^n) \) and its generalized derivatives \(\partial_t u, \partial_x u, \partial^2_{x,x} u \in L^p_{\text{loc}}([0, T] \times \mathbb{R}^n) \).

Remark 4.20 We remark that \(\mathcal{W}_{p,\text{loc}}^2(\mathbb{R}^n) \) and \(\mathcal{W}^{1,2}_{p,\text{loc}}([0, T] \times \mathbb{R}^n) \) are subsets of the ordinary Sobolev spaces (see also Section 2.1 in Krylov [3]).

Theorem 4.21 Assume (B1)-(B3) hold. Then, for each function \(u \in \mathcal{W}_{p,\text{loc}}^2(\mathbb{R}^n) \) with \(p > n \), we have
\[
u(X_t) = u(x_0) + \int_0^t \partial_x u(X_s) \sigma^i_s dB^i_s + \int_0^t \partial_{x,x} u(X_s) \beta^{ijk}_s dB^j_s B^k_s \tag{13}
\]
\[
+ \int_0^t \partial_x u(X_s) \sigma^i_s dB^i_s + \frac{1}{2} \int_0^t \partial_{x,x} u(X_s) \sigma^{ij}_s \sigma^{kl}_s dB^j s B^k_s, \text{ q.s.}
\]
Proof. Applying Sobolev's embedding theorem yields that $\partial_x u \in C(\mathbb{R}^n)$, a.e.. Thus recalling Lemma 14.7 it suffices to prove the result under assumption

$$u \in C^1(\mathbb{R}^n) \cap W^{2,p}_{\text{loc}}(\mathbb{R}^n).$$

For each $R > 0$, we define $\tau_R := \inf \{ t > 0 : |X_t^x| \geq R \}$. Then there exists a sequence of functions $u^\rho \in C^2(\mathbb{R}^n)$ such that:

(i) u^ρ converges uniformly to u in the sphere $\{ x : |x| \leq R \}$;

(ii) $\partial_x u^\rho$ converges uniformly to $\partial_x u$ in the sphere $\{ x : |x| \leq R \}$;

(iii) $\partial^2_{x,x} u^\rho$ converges in $L^p(\{ x : |x| \leq R \})$ to $\partial^2_{x,x} u$.

Applying G-Itô's formula given in [3] yields that

$$u^\rho(X_{t\wedge \tau_R}) = u^\rho(0) + \int_0^{t\wedge \tau_R} \partial_x u^\rho(X_s) \sigma_s^i \sigma_s^j \sigma_s^k d\langle B^j, B^k \rangle_s + \int_0^{t\wedge \tau_R} \partial_x u^\rho(X_s) \beta_s^i \sigma_s^j d\langle B^j \rangle_s$$

By the above properties (i) and (ii), we obtain

$$\lim_{\rho \to \infty} u^\rho(X_{t\wedge \tau_R}) \to u(X_{t\wedge \tau_R})$$

and

$$\lim_{\rho \to \infty} \mathbb{E} \left[\int_0^{t\wedge \tau_R} |\partial_x u^\rho(X_s) - \partial_x u(X_s)|^2 |\sigma_s^i|^2 ds \right] \leq C t \lim_{\rho \to \infty} \sup_{|x| \leq R} |\partial_x u^\rho(x) - \partial_x u(x)|^2 = 0,$$

where C is some constant depending only on Λ. Thus we get

$$\lim_{\rho \to \infty} \int_0^{t\wedge \tau_R} \partial_x u^\rho(X_s) \sigma_s^i \sigma_s^j dB_s^j = \int_0^{t\wedge \tau_R} \partial_x u(X_s) \sigma_s^i \sigma_s^j dB_s^j, \text{ q.s..}$$

By a similar analysis, we also derive that

$$\int_0^{t\wedge \tau_R} \partial_x u^\rho(X_s) \sigma_s^i \sigma_s^j \sigma_s^k dB_s^j = \int_0^{t\wedge \tau_R} \partial_x u(X_s) \sigma_s^i \sigma_s^j \sigma_s^k dB_s^j, \text{ q.s..}$$

as $\rho \to 0$.

Then from the above property (iii) and Theorem 4.12 we can find some constant C' depending on $p, \lambda, \Lambda, L, G$ and R so that

$$\lim_{\rho \to \infty} \mathbb{E} \left[\int_0^{t\wedge \tau_R} |\partial^2_{x,x} u^\rho(X_s) \sigma_s^i \sigma_s^j \sigma_s^k d\langle B^j, B^k \rangle_s - \partial^2_{x,x} u(X_s) \sigma_s^i \sigma_s^j \sigma_s^k d\langle B^j, B^k \rangle_s| \right]$$

$$\leq C' \lim_{\rho \to \infty} \int_{\{|x| \leq R\}} |\partial^2_{x,x} u^\rho(x) - \partial^2_{x,x} u(x)|^p dx \leq 0.$$
Thus
\[
\lim_{\rho \to \infty} \int_0^{t \wedge \tau_R} \partial_{x,x_1}^2 u(x,s) \sigma_s^{ij} \sigma_s^{lk} \, dB^i_s \, dB^k_s = \int_0^{t \wedge \tau_R} \partial_{x,x_1}^2 u(x,s) \sigma_s^{ij} \sigma_s^{lk} \, dB^i_s \, dB^k_s, \quad q.s.
\]

Consequently, sending \(\rho \to \infty\), we derive that
\[
u(X_{t \wedge \tau_R}) = u(x_0) + \int_0^{t \wedge \tau_R} \partial_x u(X_s) \alpha_s^i \, ds + \int_0^{t \wedge \tau_R} \partial_x u(X_s) \beta_s^{ijk} \, dB^i_s \, dB^j_s \, dB^k_s
+ \int_0^t \partial_x u(X_s) \sigma_s^{ij} \, dB^j_s + \frac{1}{2} \int_0^t \partial_{x,x_1}^2 u(X_s) \sigma_s^{ij} \sigma_s^{lk} \, dB^i_s \, dB^j_s \, dB^k_s.
\]

Note that \(\tau_R \to \infty\) as \(R \to \infty\). Then we can get equation (13) by sending \(R \to \infty\).

Remark 4.22 Following Li-Peng [8], the definition of Itô’s integral is defined by
\[
\int_0^t \partial_x u(X_s) \sigma_s^{ij} \, dB^j_s = \lim_{R \to \infty} \int_0^{t \wedge \tau_R} \partial_x u(X_s) \sigma_s^{ij} \, dB^j_s.
\]

Corollary 4.23 Assume (B1)-(B3) hold. Then, for each function \(u \in \mathcal{W}_p^2(\mathbb{R}^n)\) with \(p \geq 2n\), we have in \(L^2_G(\Omega_t)\),
\[
u(X_t) = u(x_0) + \int_0^t (\partial_x u(X_s) \alpha_s^i) \, ds + \int_0^t \partial_x u(X_s) \beta_s^{ijk} \, dB^i_s \, dB^j_s \, dB^k_s
+ \int_0^t \partial_x u(X_s) \sigma_s^{ij} \, dB^j_s + \frac{1}{2} \int_0^t \partial_{x,x_1}^2 u(X_s) \sigma_s^{ij} \sigma_s^{lk} \, dB^i_s \, dB^j_s \, dB^k_s.
\]

Proof. By Lemma 4.17 one can easily check that the right hand side of the above equations is in \(L^2_G(\Omega_t)\). Thus by Theorem 4.21 \(u(X_t) \in L^2_G(\Omega_t)\) and the proof is complete.

By a similar analysis, we can also obtain the following generalized Itô-Krylov’s formula of \(G\)-Itô processes.

Theorem 4.24 Assume (B1)-(B3) hold. Then, for each function \(u \in \mathcal{W}_{p,loc}^{1,2}([0,T] \times \mathbb{R}^n)\) (resp. \(\mathcal{W}_{p,loc}^{1,2}([0,T] \times \mathbb{R}^n)\)) with \(p > n + 2\) (resp. \(\geq 2(n+1)\)), we have q.s.

(\(L^2_G(\Omega_t)\)),
\[
u(t,X_t) = u(0,x_0) + \int_0^t (\partial_s u(s,X_s) + \partial_x u(s,X_s) \alpha_s^i) \, ds + \int_0^t \partial_x u(s,X_s) \beta_s^{ijk} \, dB^i_s \, dB^j_s \, dB^k_s
+ \int_0^t \partial_x u(s,X_s) \sigma_s^{ij} \, dB^j_s + \frac{1}{2} \int_0^t \partial_{x,x_1}^2 u(s,X_s) \sigma_s^{ij} \sigma_s^{lk} \, dB^i_s \, dB^j_s \, dB^k_s.
\]

In particular, we have the following dominated convergence theorem for \(G\)-random variables.
Theorem 4.25 Assume (B1)-(B3) hold. Let $u, u^\rho \in W^{1,2}_{p,loc}([0, T] \times \mathbb{R}^n)$ with $p > (n+2)$ for $\rho \geq 1$. Moreover, u^ρ converges pointwise to u and $\partial_t u^\rho, \partial_x u^\rho, \partial^2_{x,i} u^\rho$ a.e. converge to $\partial_t u, \partial_x u, \partial^2_{x,i} u$. If there exist some constants \tilde{C} and l such that

$$(|\partial_t u^\rho| + |\partial_x u^\rho| + |\partial^2_{x,i} u^\rho|)(t, x) \leq \tilde{C}(1 + |x|^l),$$

then for each $p \geq 1$,

$$\lim_{\rho \to \infty} \mathbb{E}[|u^\rho(t, X_t) - u(t, X_t)|^p] = 0.$$

Proof. The proof is immediate from Theorems 4.18 and 4.24. \[\blacksquare\]

Acknowledgement: The authors would like to thank Prof. Peng, S. for his helpful discussions and suggestions.

References

[1] Denis, L., Hu, M. and Peng S. (2011) Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal., 34, 139-161.

[2] Gao, F. (2009) Pathwise properties and homomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Processes and their Applications, 119, 3356-3382.

[3] Hu, M., Ji, S., Peng, S. and Song, Y. (2014) Backward stochastic differential equations driven by G-Brownian motion. Stochastic Processes and their Applications, 124, 759-784.

[4] Hu, M., Ji, S., Peng, S. and Song, Y. (2014) Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion. Stochastic Processes and their Applications, 124, 1170-1195.

[5] Hu, M. and Peng, S. (2009) On representation theorem of G-expectations and paths of G-Brownian motion. Acta Mathematicae Applicatae Sinica, 20, 1-24.

[6] Krylov, N.V. (1980) Controlled diffusion processes, Springer Verlag.

[7] Krylov, N. V. (1987) On estimates of the minimum of a solution of a parabolic equation and estimates of the distribution of a semimartingale. Math. USSR Sbornik, 58(1), 207-221.

[8] Li, X. and Peng, S. (2011) Stopping times and related Itô’s calculus with G-Brownian motion. Stochastic Processes and their Applications, 121, 1492-1508.

[9] Peng, S. (2004) Filtration consistent nonlinear expectations and evaluations of contingent claims. Acta Mathematicae Applicatae Sinica, 20, 1-24.
[10] Peng, S. (2005) Nonlinear expectations and nonlinear Markov chains. Chin. Ann. Math., 26B(2) 159-184.

[11] Peng, S. (2007) G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô type. Stochastic analysis and applications, 541-567, Abel Symp., 2, Springer, Berlin.

[12] Peng, S. (2008) Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Processes and their Applications, 118(12), 2223-2253.

[13] Peng, S. (2010) Nonlinear expectations and stochastic calculus under uncertainty, arXiv:1002.4546v1.

[14] Peng, S. (2010) Backward stochastic differential equation, nonlinear expectation and their applications, in Proceedings of the International Congress of Mathematicians Hyderabad, India. 281-307.

[15] Song, Y. (2011) Some properties on G-evaluation and its applications to G-martingale decomposition. Science China Mathematics, 54, 287-300.

[16] Song, Y. (2012) Uniqueness of the representation for G-martingales with finite variation. Electron. J. Probab, 17, 1-15.

[17] Wang, F. and Zheng, G. (2014) Some sample path properties of G-Brownian motion, in arxiv: 1407.0211.