A CRITERION FOR REFLEXIVITY OF MODULES

NAOKI ENDO AND SHIRO GOTO

Abstract. Let M be a finitely generated module over a ring Λ. With certain mild assumptions on Λ, it is proven that M is a reflexive Λ-module, once $M \cong M^{**}$ as a Λ-module.

Let Λ be a ring. For each left Λ-module X, let $X^* = \text{Hom}_\Lambda(X, \Lambda)$ denote the Λ-dual of X. This note aims at reporting the following.

Proposition 1. Let Λ be a ring and let M be a finitely generated left Λ-module. Assume that one of the following conditions is satisfied.

1. Λ is a left Noetherian ring.
2. Λ is a semi-local ring, that is $\Lambda/J(\Lambda)$ is semi-simple, where $J(\Lambda)$ denotes the Jacobson radical of Λ.
3. Λ is a module-finite algebra over a commutative ring R.

Then, M is a reflexive Λ-module, that is the canonical map $M \xrightarrow{h} M^{**}$ is an isomorphism if and only if there is at least one isomorphism $M \cong M^{**}$ of Λ-modules.

To show the above assertion, we need the following. This is well-known, and the proof is standard.

Lemma 2. Let N be a right Λ-module and set $M = N^*$. Then the composite of the homomorphisms

$$M \xrightarrow{h} M^{**} \xrightarrow{(h_N)^*} M$$

equals the identity 1_M.

Proof of Proposition 1. We have only to show the if part. Thanks to Lemma 2, we have a split exact sequence

$$0 \rightarrow M \xrightarrow{h} M^{**} \rightarrow X \rightarrow 0$$

of left Λ-modules, so that $M \cong M \oplus X$, since $M \cong M^{**}$. Therefore, we get a surjective homomorphism $\varepsilon : M \rightarrow M$ with $\text{Ker} \varepsilon = X$. Hence, if Condition (1) is satisfied, then $X = (0)$, so that M is a reflexive Λ-module. If Condition (2) is satisfied, then, setting $J = J(\Lambda)$, we get

$$\Lambda/J \otimes_\Lambda M \cong (\Lambda/J \otimes_\Lambda M) \oplus (\Lambda/J \otimes_\Lambda X)$$

whence $\Lambda/J \otimes_\Lambda X = (0)$ by Krull-Schmidt’s theorem, so that $X = (0)$. Suppose that Condition (3) is satisfied. Then, $M \cong M \oplus X$ as an R-module, where M is finitely

2020 Mathematics Subject Classification. 13C13, 13D30, 13C12.

Key words and phrases. reflexive module, q-torsionfree module, semi-local ring.

The first author was partially supported by JSPS Grant-in-Aid for Young Scientists 20K14299. The second author was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 21K03211.
generated also as an R-module. Consequently, for every $p \in \text{Spec } R$, we get $M_p \cong M_p \oplus X_p$ as an R_p-module, whence by the case where Condition (2) is satisfied, $X_p = (0)$ for all $p \in \text{Spec } R$. Thus, $X = (0)$, as claimed. \hfill \Box

Corollary 3. Let R be a commutative ring and M a finitely generated R-module. If $M \cong M^{**}$ as an R-module, then M is a reflexive R-module.

Remark 4. Let Λ be a ring and let $a, b \in \Lambda$ such that $ab = 1$ but $ba \neq 1$. We then have the homomorphism

$\widehat{b} : \Lambda \Lambda \rightarrow \Lambda \Lambda, \quad x \mapsto xb$

is surjective but not an isomorphism. Therefore, setting $X = \text{Ker } \widehat{b}$, we get

$\Lambda \Lambda \cong \Lambda \Lambda \oplus X$.

This example shows that X does not necessarily vanish, even if $M \cong M \oplus X$ and M is a finitely generated module. This example seems also to suggest that Proposition 1 doesn’t hold true without any specific conditions on Λ.

Let us note one example in order to show how Corollary 3 works at an actual spot. See [1, p.137, the final step of the proof of (4.35) Proposition] also, where one can find a good opportunity of making use of it, from which the motivation for the present research has come.

Example 5. Let $k[s, t]$ be the polynomial ring over a field k and set $R = k[s^3, s^2t, st^2, t^3]$. Then R is a normal ring and the graded canonical module K_R of R is given by $K_R = (s^2t, s^3)$. We set $I = (s^2t, s^3)$. Then, since I is a reflexive R-module, but not 3-torsionfree in the sense of Auslander-Bridger [1, (2.15) Definition] (because R is not a Gorenstein ring), we must have $\text{Ext}^1_R(R : I, R) \neq (0)$ by [1, (2.17) Theorem]. In what follows, let us check that $\text{Ext}^1_R(R : I, R) \neq (0)$ directly.

First, consider the exact sequence

$0 \rightarrow R \rightarrow R : I \rightarrow \text{Ext}^1_R(R/I, R) \rightarrow 0$

induced from the sequence $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$. Taking the R-dual of it again, we get the exact sequence

$0 \rightarrow R : (R : I) \rightarrow R \rightarrow \text{Ext}^1_R(\text{Ext}^1_R(R/I, R), R) \rightarrow \text{Ext}^1_R(R : I, R) \rightarrow 0$,

that is

$0 \rightarrow R/I \rightarrow \text{Ext}^1_R(\text{Ext}^1_R(R/I, R), R) \rightarrow \text{Ext}^1_R(R : I, R) \rightarrow 0$.

Therefore, the homomorphism

$\sigma : R/I \rightarrow \text{Ext}^1_R(\text{Ext}^1_R(R/I, R), R)$

should not be an isomorphism. Because

$\text{Hom}_{R/(f)}(\text{Hom}_{R/(f)}(R/I, R/(f)), R/(f)) \cong \text{Ext}^1_R\text{Ext}^1_R(R/I, R), R)$

for every $0 \neq f \in I$, thanks to Corollary 3, the assertion that σ is not an isomorphism is equivalent to saying that R/I is not a reflexive $R/(f)$-module for some $0 \neq f \in I$. In the following, we shall confirm that R/I is not a reflexive $R/(s^3)$-module. Before starting
work, we would like to note here and emphasize that if we do not make use of Corollary 3, we must certify the above homomorphism σ to be induced from the canonical map

$$\frac{R}{I} \xrightarrow{h_{R/I}} \text{Hom}_{R/(s^3)}(\text{Hom}_{R/(s^3)}(\frac{R}{I}, \frac{R}{(s^3)}), \frac{R}{(s^3)}),$$

which provably makes a tedious calculation necessary.

We set $T = \frac{R}{(s^3)}$ and $J = (\overline{s^2t}, \overline{st^2})$ in T, where $\overline{\cdot}$ denotes the image in T. Notice that $\text{Hom}_T(\frac{R}{I}, T) \cong (0) :_T I = J$ and $\text{Hom}_T(T/J, T) \cong (0) :_T J = (\overline{s^2t})$. Therefore, from the exact sequence

$$0 \to J \to T \to T/J \to 0,$$

we get the exact sequence

$$0 \to (\overline{s^2t}) \to T \to \text{Hom}_T(J, T) \to \text{Ext}^1_T(T/J, T) \to 0,$$

that is the exact sequence

$$(E) \quad 0 \to \frac{R}{I} \to \text{Hom}_T(J, T) \to \text{Ext}^1_T(T/J, T) \to 0,$$

which guarantees it suffices to show $\text{Ext}^1_T(T/J, T) \neq (0)$, since $\text{Hom}_T(J, T) = \text{Hom}_T(\text{Hom}_T(\frac{R}{I}, T), T)$. We now identify

$$R = k[X, Y, Z, W]/I_2(\frac{X}{Y} \frac{Z}{W}),$$

where $k[X, Y, Z, W]$ denotes the polynomial ring over k, $I_2(\mathbb{M})$ stands for the ideal of $k[X, Y, Z, W]$ generated by the 2×2 minors of a matrix \mathbb{M}, and X, Y, Z, W correspond to s^3, s^2t, st^2, t^3, respectively. We denote by x, y, z, w the images of X, Y, Z, W in T. Then, T/J has a T-free resolution

$$\ldots \to T^\oplus 6 \begin{pmatrix} y & z & 0 & 0 & 0 & 0 \\ -x & 0 & w & 0 & 0 & 0 \\ 0 & -x & -z & 0 & 0 & 0 \\ 0 & y & z & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \to T^3 \xrightarrow{(x \ y \ z)} T \to T/J \to 0.$$

Taking the T-dual of the resolution, we have $\begin{pmatrix} x \\ 0 \end{pmatrix} \in \text{Ker} [T^\oplus 3 \xrightarrow{T^3} T^\oplus 6]$, but $\begin{pmatrix} y \\ 0 \end{pmatrix} \neq \alpha \begin{pmatrix} x \\ y \end{pmatrix}$ for any $\alpha \in T$. Thus, $\text{Ext}^1_T(T/J, T) \neq (0)$, so that the exact sequence (E) shows $\frac{R}{I}$ is not a reflexive T-module. Hence, by Corollary 3 the homomorphism

$$\sigma : \frac{R}{I} \to \text{Ext}^1_R(\text{Ext}^1_R(\frac{R}{I}, R), R)$$

is not an isomorphism. Thus, $\text{Ext}^1_R(K^*_R, R) \neq (0)$, and K_R is not 3-torsionfree.

References

[1] M. Auslander and M. Bridger, Stable module theory, Amer. Math. Soc., Memoirs, 94, 1969.