PDGFRα⁺ Interstitial Cells are Effector Cells of PACAP Signaling in Mouse and Human Colon

Masaaki Kurahashi,1 Salah A. Baker,2 Yoshihiko Kito,3 Allison Bartlett,2 Masayasu Hara,4 Hiromitsu Takeyama,4 Hikaru Hashitani,5 and Kenton M. Sanders2

1Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa, Iowa City, Iowa, USA; 2Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA; 3Department of Pharmacology, Faculty of Medicine, Saga University, Saga, Japan; 4Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and 5Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan

SUMMARY

Platelet-derived growth factor receptor α-positive interstitial cells (PIC) inhibit colonic contractions through PAC1R-SK channel signal pathway activated by pituitary adenylate cyclase-activating polypeptide in mouse and human colon. PIC integrate inhibitory inputs from several neurotransmitters to regulate colonic contractions. Further investigation of the functional roles of PIC in physiology and pathophysiology of colonic motility might lead to development of new treatments for functional bowel disorders.

METHODS: Gene expression analysis, Ca2⁺ imaging, and contractile experiments were performed on mouse colonic muscles. Ca2⁺ imaging, intracellular electrical recordings, and contractile experiments were performed on human colonic muscles.

RESULTS: Adcyap1r1 (encoding PAC1R) is highly expressed in mouse PIC. Interstitial cells of Cajal (ICC) and SMCs expressed far lower levels of Adcyap1r1. Vipr1 and Vipr2 were expressed at low levels in PIC, ICC, and SMCs. PACAP elicited Ca2⁺ transients in mouse PIC and inhibited spontaneous phasic contractions via SK channels. In human colonic muscles, PAC1R agonists elicited Ca2⁺ transients in PIC, hyperpolarized SMCs through SK channels and inhibited spontaneous phasic contractions.

CONCLUSIONS: PIC of mouse and human colon utilize PAC1R-SK channel signal pathway to inhibit colonic contractions in response to PACAP. Effects of PACAP are in addition to the previously described purinergic and sympathetic inputs to PIC. Thus, PIC integrate inhibitory inputs from at least 3 neurotransmitters and utilize several types of receptors to activate SK channels and regulate colonic contractile behaviors. (Cell Mol Gastroenterol Hepatol 2022;14:357–373; https://doi.org/10.1016/j.jcmgh.2022.05.004)

Keywords: Colon; Inhibitory Effects; Interstitial Cells; Peptidergic Neurotransduction.

BACKGROUND & AIMS: Platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PIC) are interposed between enteric nerve fibers and smooth muscle cells (SMCs) in the tunica muscularis of the gastrointestinal tract. PIC have robust expression of small conductance Ca2⁺ activated K⁺ channels 3 (SK3 channels) and transduce inhibitory inputs from purinergic and sympathetic nerves in mouse and human colon. We investigated whether PIC also express pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, PAC1 (PAC1R), and are involved in mediating inhibitory regulation of colonic contractions by PACAP in mouse and human colons.
Platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PIC) are interstitial cells interposed between enteric nerve fibers and smooth muscle cells (SMCs) in the tunica muscularis of the gastrointestinal (GI) tract. PIC, along with interstitial cells of Cajal (ICC), wrap around the varicose processes of enteric motor neurons that innervate the muscle layers along the length of GI tracts of mice and human.1,2 SMCs are electrically coupled to ICC and PIC via gap junctions, and the 3 types of cells operate together as a syncytium (referred to as the SIP syncytium), regulating the excitability and contractility of the GI musculature.3-5 PIC display robust expression of apamin-sensitive small conductance Ca\(^{2+}\) activated potassium channels 3 (SK3 channels), and, when activated, this conductance hyperpolarizes electrically coupled SMCs and causes inhibition of phasic contractions and relaxation.2,6-9 PIC have been reported to transduce inputs from enteric inhibitory motor neural signals by purinergic enteric neurons and sympathetic nervous system to membrane hyperpolarization by purinergic enteric neurons and sympathetic nerve stimulation6,7,9 may be available for neurotransduction of PACAP. We investigated the responses of PIC to PACAP and a PAC1R agonist and the effects of PIC activated by them on the colonic contractility in mouse and human colon.

Results

Adcyap1r1 is Expressed in PIC of Mouse Colon

Gene expression analysis was performed using quantitative polymerase chain reaction (qPCR) on RNA extracted from PIC, ICC, and SMCs isolated from colonic muscles and sorted to purity by FACS to confirm previous transcriptome data (Figure 1).13,22,23 These experiments confirmed that Adcyap1r1 (encoding PAC1R) is highly expressed in PIC and showed far lower expression in ICC and SMCs (Figure 1, B). Vipr1 and Vipr2 (encoding VPAC1R and VPAC2R, respectively) displayed low expression in PIC, ICC, and SMCs.

PACAP Elicited Ca\(^{2+}\) Transients in PIC of Mouse Distal Colon but not VIP

Ca\(^{2+}\) dynamics in PIC of the distal colon of PDGFRα-Cre-
GaMP6f mice and responses to PACAP were evaluated. Spindle-shaped cells and their responses to MRS2365 (P2Y1-specific agonist) were identified as PIC in the circular muscle (CM) layer of the colon, as previously described. Tetrodotoxin (TTX) (1 µM) was added throughout the experiments to eliminate neuronal influences on the Ca\(^{2+}\) signaling in PIC. A combination of atropine (1 µM) and N-Nitro-L-arginine methyl ester hydrochloride (L-NNA) (100 µM) were also used to reduce contamination from cholinergic and nitrogem responses throughout the experiments. Under these control conditions, PIC fired discrete and localized Ca\(^{2+}\) transients, which occurred in 17.3% ± 4% of cells at an average of 4.6 ± 0.9 events/min (range, 2–8 events/min; n = 5). PACAP (100 nM; Figure 2, C–E) increased Ca\(^{2+}\) transients in PIC. The

Abbreviations used in this paper: AUC, area under the curve; [Ca\(^{2+}\)]i, intracellular Ca\(^{2+}\) concentration; CM, circular muscle; EFS, electrical field stimulation; FACS, fluorescence-activated cell sorting; GI, gastrointestinal; GPCR, G-protein coupled receptors; ICC, interstitial cells of Cajal; IP3, inositol triphosphate; KRB, Krebs-Ringer bicarbonate solution; L-NNA, N-Nitro-L-arginine methyl ester hydrochloride; MXD, maxadilan; NE, norepinephrine; PACAP, pituitary adenylate-cyclase-activating polypeptide; PDGFRα, platelet-derived growth factor receptor α; PE, phenylephrine; PIC, PDGFRα-positive interstitial cells; PSS, physiological salt solution; qPCR, quantitative polymerase chain reaction; SK, smooth muscle cells; SPCs, smooth muscle cells; STM, spatiotemporal maps; T1/2, half-times of the hyperpolarization responses; TTX, tetrodotoxin; VIP, vasoactive intestinal polypeptide.
The role of PIC for PACAP signaling in colon.

Figure 1. The expression of PAC1R gene in SIP syncytium. A, The graph depicting the expression of the genes of PAC1R (Adcyap1r1), VPAC1R (Vipr1), and VPAC2R (Vipr2) created from the transcriptome data of SIP syncytium of mouse colon that were published in 2015 to 2017. Fragments per kilobase of transcript per million (FPKM) of Adcyap1r1, Vipr1, and Vipr2 were 290.71, 0.12, and 4.28 in PIC, 28.19, 0.12, and 1.04 in ICC, and 1.97, 0.00, and 4.19 in SMCs, respectively. B, The graph of the expression of Adcyap1r1, Vipr1, and Vipr2 in each of cells in SIP syncytium analyzed by qPCR from 3 mouse colonic mucosal muscles of each of SMC-eGFP, ICC-copGFP, and PDGFRα-eGFP mice. Bars and vertical lines represents means and standard deviation, respectively. As the transcriptome data, Adcyap1r1 was predominantly expressed in PIC.

The majority of these responses were initiated with high amplitude Ca$^{2+}$ transients, which were followed by a sustained series of Ca$^{2+}$ oscillations that tapered off gradually. PACAP significantly increased the frequency of Ca$^{2+}$ transients in PIC from 4.6 ± 1.2 to 37.8 ± 3.9 per minute (Figure 2, F) (P < .0001; n = 5) and increased Ca$^{2+}$ transient amplitude from 78.8 ± 8.9 to 141.4 ± 10.5 (Figure 2, G) (P < .0019; n = 5). The duration and spatial spread of Ca$^{2+}$ transients did not change significantly (Figure 2, H–J) (P < .8 and P < .4, respectively; n = 5). Pretreatment of colonic muscles with PAC1 antagonists, PACAP 6-38 (1 μM), had no effect on basal Ca$^{2+}$ transients in PIC (frequency 4.6 ± 1.2 per minute), but it blocked the response to PACAP. Frequency (Figure 2, F) (P < .13), amplitude (Figure 2, G) (P < .8), duration (Figure 2, H) (P < .9), and spatial spread (Figure 2, I) (P < .79) of Ca$^{2+}$ transient parameters were unchanged by PACAP in the presence of PACAP 6-38. Application of VIP 100 nM had no significant effects on PIC Ca$^{2+}$ transients across all parameters (Figure 3).

PACAP Elicited Ca$^{2+}$ Transients in PIC of Human Sigmoid Colon

We evaluated Ca$^{2+}$ signaling in PIC of human sigmoid colon in response to PACAP using a wide field imaging system. Based on the finding in our previous study, PIC were identified as stellate-shaped cells at myenteric plexus that responded to electrical field stimulation (EFS) in a MRS2500 (selective P2Y1 purinoceptor antagonist)-sensitive manner (Figure 5, A–C) or with increased Ca$^{2+}$ responses to phenylephrine (PE) in 10–100 μM (21 cells; n = 3). Thus, EFS or PE (10 μM) accelerated and enlarged spontaneous Ca$^{2+}$ transients in PIC or induced sustained Ca$^{2+}$ oscillations in basal Ca$^{2+}$ levels. PACAP (100 nM) enhanced spontaneous Ca$^{2+}$ transients or developed a transient rise in the basal Ca$^{2+}$ level in those PIC with a variable latency (Figure 5, D) (14 cells; n = 3).

Maxadilan Hyperpolarizes SMCs Through SK Channels

In the next series of experiments, we tested the effects of maxadilan (MXD), a selective PAC1R agonist, on membrane potentials of human colonic muscles using intracellular electrical recording. Human S colon CM cells had resting membrane potentials averaging −46 ± 1.2 mV (n = 10).
MXD (10 nM) evoked slow hyperpolarization of -9.8 ± 1.5 mV ($n = 4$) (Figure 6, Aa, left panel). Apamin (100 nM) depolarized cells by 1.9 ± 0.5 mV ($n = 4$) and inhibited hyperpolarization responses to MXD ($n = 4$) (Figure 6, Aa, right panel), indicating that the responses to MXD were caused by opening of SK channels.

To characterize the responses of human colonic muscles to PAC1R agonist, we compared it with the responses to P2Y1 receptor agonist MRS2365 and norepinephrine (NE). MRS2365 (100 nM) and NE (10 μM) also hyperpolarized human colonic muscles via activation of SK channels in PIC (MRS2365, -9.1 ± 1.2 mV, $n = 6$; NE, -16.3 ± 1.7 mV, $n = 4$) (Figure 6, Ba right panel), as previous described, but the hyperpolarization induced by MXD (10 nM) reached the maximum hyperpolarized level much more slowly than the responses to MRS2365 or NE (Figure 6, Ba, right panel). To assess the time course of hyperpolarization induced by the 3 drugs, the half-times of the hyperpolarization responses ($T_{1/2}$) were measured as illustrated in Figure 6, Ba. Figure 6, Bb shows that $T_{1/2}$ for responses induced by MXD was significantly longer than responses induced by MRS2365 or NE.

PACAP and MXD Inhibited SPCs of Human Sigmoid Colon Through SK Channels

Contractile experiments were performed to test the effects of PACAP and PAC1R agonist MXD on SPCs of CM of human sigmoid colon (Figure 7 and 8). These experiments were conducted in the presence of TTX. PACAP and MXD inhibited the amplitude of SPCs in a concentration-dependent manner (Figure 7, Aa and 8, Aa; $n = 6$). Apamin (100 nM; $n = 6$) significantly reduced the inhibitory effects of PACAP and MXD on SPCs (Figure 7, Ab and 8, Ab).
indicating that the inhibitory effects of PACAP and MXD were mediated by SK channels. Figures 7, B and 8, B show summary data for the effects of PACAP and MXD and these drugs in the presence of apamin for AUC (Figures 7, Ba and 8, Ba), amplitude (Figures 7, Bb and 8, Bb), tone (Figures 7, Bc and 8, Bc), and frequency (Figures 7, Bd and 8, Bd) of SPCs of CM of human sigmoid colon. The values of those 4 parameters are shown in Table 2 and 3.

Discussion

Interstitial cells different from ICC have been reported in the smooth muscle tissues of the GI tract since the 1980s. These unique interstitial cells were called 'fibroblast-like cells' because of their ultrastructural features. In 2009, lino et al reported that the fibroblast-like cells expressed PDGFRα as a cell-specific marker and, therefore, these cells...
began to be known as PDGFRα+ cells.1 We reported that PDGFRα+ cells exist in human colon in the same anatomical niches as in mouse colon, exhibit robust expression of SK3 channels, and are the effector cells, in which P2Y1 receptor binding activates SK channels in PDGFRα+ cells, the hallmark of the purinergic component of enteric inhibitory signaling, and, also, α1A adrenoceptor (α1A AR) binding activates SK channels in PDGFRα+ cells, mediating sympathetic inhibitory inputs in mouse and human colon.2,6,7,9,12 PDGFRα+ cells have been reported to exist in the lamina propria of GI mucosa,27 and, therefore, we suggested referring to them as PDGFRα+ interstitial cells (PIC) to distinguish them from the other types of cells that express PDGFRα.

Nerve fibers with PACAP-like immunoreactivity have been reported in GI tract and located in myenteric plexus, submucosal plexus, some enteric neurons’ nerve processes in the circular and longitudinal muscle layers of rat, guinea pig, and human.28-30 PIC are in close contact with enteric ganglia and nerve bundles, forming a mesh-like network in all layers (ie, plane of the myenteric plexus and circular and longitudinal muscle layers) of mouse and human colon.1,2,6 Thus, it is likely that PACAP released from enteric motor neurons binds to receptors expressed by PIC.

Experiments on mouse colon in this study confirmed that Adcyap1r1 is highly expressed by PIC in the SIP syncytium, and far lower levels of expression were detected in SMCs and ICC (Figure 1). It is also interesting that expression of Vipr1 and Vipr2 were very low in SIP cells, although resolvable expression was detected in PIC and ICC. These results suggest that PIC could be the major cells in which PACAP neurotransduction occurs. Serio et al reported that PACAP caused hyperpolarization of CM in mouse distal colon by a mechanism similar to adenosine 5’ triphosphate, as responses to both agonists were inhibited by apamin.20 These findings suggest the involvement of SK channels in transduction of both adenosine 5’ triphosphate and PACAP, and our experiments showed that Ca2+ transients were increased in PIC in response to PACAP (Figure 2). Increasing Ca2+ transients by PACAP is an appropriate signal for increasing the open probability of SK channels, because these channels are activated by [Ca2+]i. Contractions of CM from mouse distal colons were inhibited by PACAP, and these responses were blocked by apamin, an SK channel antagonist (Figure 4). SK channels (ie, SK3) are expressed predominantly in PIC.6,8,13,31 Taken together, our data show that the primary receptor for PACAP, PACR, is highly expressed in PIC, and PACAP binding to this receptor activates Ca2+ transients that would be expected to activate SK3 channels in PIC. Utilizing this pathway, PACAP inhibits colonic contractions, and these responses are sensitive to block by apamin. Thus, our data are consistent with PIC being a primary post-junctional target for PACAP neurotransmission in mouse colon. The limitation of our

Table 1. Tables Summarizing Means ± SD of 4 Parameters of Spontaneous Contractions of Circular Muscle Layers of Mouse Distal Colon for 5 Minutes After Adding PACAP 1 nM to 100 nM to Organ Baths

	AUC, mN·min	Amplitude, mN	Tone, mN	Frequency, cont/min
	1 nM	10 nM	100 nM	
TTX (5)	45.63 ± 5.85	35.73 ± 6.53	30.07 ± 6.61	
TTX + Apa (6)	49.97 ± 8.17	43.14 ± 7.52	37.94 ± 6.03	
	1 nM	10 nM	100 nM	
TTX (5)	10.26 ± 2.49	4.32 ± 1.17	1.36 ± 0.23	
TTX + Apa (6)	16.40 ± 5.11	12.58 ± 5.65	10.77 ± 5.85	
	1 nM	10 nM	100 nM	
TTX (5)	6.06 ± 1.40	5.82 ± 1.45	5.50 ± 1.37	
TTX + Apa (6)	6.07 ± 1.39	5.80 ± 1.34	5.60 ± 1.37	
	1 nM	10 nM	100 nM	
TTX (5)	2.12 ± 0.27	2.04 ± 0.33	1.88 ± 0.44	
TTX + Apa (6)	2.87 ± 0.69	2.63 ± 0.46	2.33 ± 0.21	

Apa, Apamin; AUC, area under the curve; PACAP, pituitary adenylate-cyclase-activating polypeptide; SD, standard deviation; TTX, tetrodotoxin; WT, wild type.

In amplitude, 2 groups had significant differences at PACAP 10 nM (P = .0019) and 100 nM (P = .0001).

*Numbers in parentheses represent the number of mice in each of the protocols.
study is not to have used PIC-specific knock-out mice of PAC1R or SK3 channels, which would provide more definitive evidence of the roles of these cells in PACAP signaling for colonic motility. Further studies are required.

We also found that PACAP induced or enhanced Ca^{2+} transients in PIC in human colon. PIC were identified in human muscles by their signature responses to phenylephrine or MRS2500-sensitive responses to electrical nerve stimulation (Figure 5). Membrane potential recordings from CM of human sigmoid colon demonstrated that PAC1R agonist MXD evoked the hyperpolarization, which was inhibited significantly by apamin (Figure 6). These data suggest that the rise of Ca^{2+} in PIC in response to binding of PACAP receptors triggers the opening of SK channels and the development of hyperpolarization. These responses can be conducted to SMCs due to the gap junction coupling between SMCs and PIC.3 Contractile experiments showed that SPCs of colonic muscles were inhibited significantly by PACAP or MXD, and the inhibitory responses were reduced by apamin (Figures 7 and 8). SK3 channels are the dominant subtype of SK channels in human colon (nTPM of SK1, SK2, and SK3 are 0.3, 0.9, and 5.6, respectively) (www.proteinatlas.org), and SK3 channels are expressed predominantly in human PIC.4 These data suggest that a PAC1R-SK channel signal pathway is also available in human colonic muscles, and, as in mice, PIC are post-junctional targets for PACAP transmission. A schematic diagram of PACAP signaling, as supported by the results of this study, is depicted in Figure 10.

Responses of mouse PIC and human PIC to PACAP were similar, but not identical, in this study. In human contractile experiments, the latency of the responses to PACAP and MXD were significantly longer than NE with propranolol (stimulation of α1 adrenoceptor) (Figure 9). However, in mouse colon, the difference of the latency of responses to PACAP and phenylephrine are not significant (Figure 4).9 This can also be seen in the electrophysiological responses induced by MXD that were significantly slower to develop than responses to NE and MRS2365, a selective P2Y1 receptor agonist (Figure 6, B). The receptors for responses in PIC to NE and MRS2365 are α1A AR and P2Y1 receptor, respectively, which are GPCRs,9,12 and both of these receptors are coupled through Gq/11.33,34 PAC1R displays mixed coupling through both Gs and Gq/11, the characteristics of which vary depending upon the splice variants expressed.24 It has been reported that GPCR coupled through Ga reduces [Ca^{2+}]i and inhibits signaling of GPCR through Gq/11.35,36 Therefore, the slower and delayed responses of PIC in human colon and the difference of the responses of mouse and human PIC to PAC1R agonists might
be attributed to relative influences of coupling via Gs vs Gq/11 or to the balance of expression of VPAC1R or VPAC2R in human PIC. Further study will be required to address these questions.

PACAP and VIP are inhibitory peptidergic neurotransmitters with different signaling pathways in GI muscles.\(^{19,37,38}\) In the gene expression analysis performed in this study, Vipr1 and Vipr2, as well as Adcyap1r1, were expressed in cells of the SIP syncytium in the mouse but Vipr1 and Vipr2 transcripts were expressed at much lower level than Adcyap1r1. VPAC1R and VPAC2R are coupled with Gs\(^39\) and, therefore, VIP has been presumed to inhibit contractions of colonic muscles by activating K\(^+\) channels via cAMP signaling pathway\(^{19,37,38}\) or by reducing \([Ca^{2+}]_i\) and inhibiting the signaling of GPCR through Gq/11, as described above. If the latter mechanism is important, VIP is likely to use ICCs or SMCs as effector cells, but not PIC. This is because reducing \([Ca^{2+}]_i\) in PIC would inhibit openings of SK channels and reduce the inhibitory drive on the SIP syncytium, which in essence would be an excitatory influence rather than inhibitory drive on SMCs. In this study, VIP 100 nM did not significantly affect \([Ca^{2+}]_i\) transients in PIC (Figure 3). Therefore, it seems likely that PACAP and VIP utilize different effector cells to exert inhibitory effects on colonic muscle contractions.

PACAP is reported to be released under stressful conditions and cause catecholamine secretion from chromaffin cells.\(^{40}\) In our recent human tissue study,\(^{12}\) we found that the effects of catecholamine on PIC desensitized as a function of time and SPCs came back within 20 minutes after administration of NE 10 \(\mu\)M in the presence of TTX 1 \(\mu\)M and propranolol 1 \(\mu\)M in 11 of 11 cases (100%), whereas in this study, the effects of PAC1R agonists were more persistent, and SPCs came back within 20 minutes after administration of PACAP 100 nM or MXD 10 nM in only 1 of 11 cases (9%) in human study. The slower and prolonged inhibitory effects of PAC1R agonists on colonic contractility might be a means of compensating for the brevity of catecholamine effects during sustained stress. Additionally, we did not detect any differences between males and females in the effects of NE and PACAP on mouse and human colon,

Figure 6. The effects of MXD on membrane potentials of human sigmoid colonic circular smooth muscle cells. A, MXD-induced hyperpolarization was inhibited by pretreatment of Apamin (Apa) 0.1 \(\mu\)M (n = 4). Two traces were recorded from the same impalement with a resting membrane potential of −44 mV (Aa). Ab depicts summarized graphs showing the effects of Apa on MXD-induced hyperpolarization (Ab; n = 4). **P < .01, significant difference from control responses. B, The half-hyperpolarizing time (T\(_{1/2}\)) was measured as the mean time taken for 50% hyperpolarization in the amplitude of the peak hyperpolarization (Ba, left panel). Ba, right panel depicts high-speed traces of hyperpolarization produced by MRS2365 (100 nM), norepinephrine (NE; 10 \(\mu\)M), and MXD (10 nM). Bb depicts summarized graphs showing T\(_{1/2}\) (sec) calculated from the hyperpolarization induced by MRS2365 (100 nM) (n = 6), NE (10 \(\mu\)M) (n = 4), and MXD (10 nM) (n = 4). T\(_{1/2}\) of the response to MXD was significantly longer than the ones to MRS2365 and NE. **P < .01, significant difference from MRS2365 and NE. In all graphs, boxes, dots, and vertical lines represent means, individual values, and standard deviation, respectively.
which suggests that the stress might be able to cause the inhibition of colonic motility by NE and PACAP equally for both genders.

In conclusion, the present study demonstrates that PIC in mouse and human colon express and utilize a PAC1R-SK channel signal pathway to mediate inhibitory regulation of colonic contractile activity by PACAP. PIC also have receptors for purines (P2Y1) and catecholamines (α1A AR), suggesting that these cells receive and integrate inhibitory neural signals to the SIP syncytium and provide important inhibitory regulation of colonic motility. Further investigation of functional roles of PIC in physiology and pathophysiology of colonic motility might lead to the development of new treatments for functional bowel disorders.

Methods

Animals

B6.129S4-Pdgfra^{tm11(EGFP)Sor}/J heterozygote mice (PDGFRα-eGFP mice), which express enhanced green fluorescent protein (eGFP) in nuclei of PDGFRα expressing cells throughout the body (Hamilton 2003),⁴¹ their wild-type siblings (C57BL/6), C57BL/6-Tg(Pdgfra-cre)1Cic/J (PDGFRα-Cre mice), B6.Cg-Tg(Myh11-cre,-EGFP)2Mik/J (SMC-eGFP mice), and B6;129S-Gt(Rosa)26Sortm95.1(CAG-GCaMP6f)Hze/J (GCaMP6 mice) were obtained from Jackson Laboratory (Bar Harbor, ME). The PDGFRα-Cre-GCaMP6f mouse strain was developed by crossing PDGFRα-Cre mice and GCaMP6 mice. Kit^{+/copGFP} mice (ICC-copGFP mice) was previously generated in University of Nevada.⁴² Animals (6–12 weeks post-partum) were
anesthetized by isoflurane (AErrane; Baxter, Deerfield, IL) and killed by cervical dislocation. The abdomens were opened, and colons were removed and used for experiments. Mice were maintained and the experiments performed in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and the Institutional Animal Care and Use Committee at the University of Nevada, Reno, NV, approved experimental protocols.

Human Tissue

Human tissue samples were obtained from surgical waste of total 58 patients (34 males aged 50–83 years and 24 females aged 35–90 years) who underwent colectomy for colorectal cancer at the Department of Gastroenterological Surgery, Nagoya City University from 2016 to 2017. All subjects were given written informed consent. The tumor-free parts of the human colorectum were used for experiments. The study design was approved by the Institutional Review Board of Nagoya City University. All samples were de-identified.

Analysis of Gene Expressions in PIC

SMC-eGFP, ICC-copGFP, and PDGFRα-eGFP mice colonic muscles were equilibrated in Ca2+-free Hank’s solution, and cells were dispersed as described previously.

Fluorescence-activated cell sorting. GFP+ cells were sorted by FACS with a Becton Dickinson FACSARia II™ instrument using a blue laser (488 nm) and the GFP/FITC emission detector (530/30 nm BP and 505 nm LP). Sorting was performed using a 130 μm nozzle at a sheath pressure of 75 psi.
of 12 psi and sort rate of 1000 to 3000 events per second. Live cells gated on exclusion of Hoechst 33258 viability indicator dye (data not shown) were subsequently gated on GFP fluorescence intensity.

Isolation of total RNA and qPCR. Total RNA was isolated from sorted GFP+ cells and unsorted cells using illustra RNAspin Mini RNA Isolation kit (GE Healthcare, Little Chalfont, UK). Concentration and purity of RNA were checked using an ND-1000 Nanodrop Spectrophotometer (Nanodrop, Wilmington, DE), comparative amount of RNA was used for first-strand cDNA synthesized with SuperScript III (Invitrogen, Carlsbad, CA), according to the manufacturer’s instructions. qPCR was performed with specific primers (Table 4) using Fast Sybr green chemistry (Applied Biosystems, Foster City, CA) on the 7900HT Real Time PCR System (Applied Biosystems).

Ca2+ Imaging in Mice

Isolated distal colons (1.5–2.0 cm), 1.5 cm rostral to the anus, were removed and placed in a Krebs-Ringer bicarbonate solution (KRB) and opened along the mesenteric border. Inside contents were cleared and the mucosal layers were removed by sharp dissection. Tissues were isolated and pinned to the base of a Sylgard-coated dish with the serosal aspect of the colon facing down. The preparation was continuously perfused with the KRB solution at 37°C for an equilibration period of 1 hour. Preparations were then visualized and imaged using a spinning-disk confocal microscope (CSU-W1 spinning disk; Yokogawa Electric Corporation, Tokyo, Japan) mounted to an upright Eclipse FN1 microscope equipped with a continuous KRB perfusion of approximately 2 mL per minute as previously described.8,44 The GCaMP6f Ca2+ indicator expressed in PICs was excited at 488 nm using a laser coupled to a Borealis system (ANDOR Technology, Belfast, UK) to increase laser intensity and uniformity. The fluorescence emission (>515 nm) was captured using a high-speed EMCCD Camera (Andor iXon Ultra; ANDOR Technology). Experiments were performed in the presence of TTX, atropine, and L-NNA to exclude effects from neurogenic, cholinergic and nitrergic pathways.

Ca2+ event analysis. All image sequences and movies of Ca2+ activity was collected at 33 fps using MetaMorph (Molecular Devices, San Jose, CA) as previously described.8,44 Movies were converted to stacked TIFF (tagged image file format) images and image processing and analysis was done using a custom software (Volumetry G8a, G.W.H.). Tissue movement was stabilized to ensure accurate measurements of Ca2+ transients from identified cells and background subtraction was applied to movies to better enhance the dynamic contrast of Ca2+ transients shown in

| Table 2. Tables Summarizing Means ± SD of 4 Parameters of Spontaneous Contractions of Circular Muscle Layers of Human Sigmoid Colon for 10 Minutes After Adding PACAP 1 nM to 100 nM to Organ Baths |
|---|---|---|
| | 1 nM | 10 nM | 100 nM |
| **AUC, mN-min** | | | |
| TTX (6)* | 73.56 ± 19.25 | 39.09 ± 27.01 | 15.31 ± 10.95 |
| TTX + Apa (6) | 58.06 ± 22.96 | 46.65 ± 20.77 | 19.18 ± 13.31 |
| **Amplitude, mN** | | | |
| TTX (6) | 15.57 ± 4.72 | 8.94 ± 6.92 | 0.74 ± 1.69 |
| TTX + Apa (6) | 15.65 ± 5.19 | 16.11 ± 6.14 | 6.85 ± 5.90 |
| **Tone, mN** | | | |
| TTX (6) | 2.37 ± 1.03 | 1.70 ± 0.94 | 1.32 ± 0.73 |
| TTX + Apa (6) | 1.32 ± 0.53 | 1.09 ± 0.44 | 0.78 ± 0.32 |
| **Frequency, cont/min** | | | |
| TTX (6) | 3.92 ± 0.80 | 2.80 ± 0.66 | 2.28 ± 0.52 |
| TTX + Apa (6) | 3.03 ± 0.87 | 2.57 ± 0.84 | 1.90 ± 0.61 |

Apa, Apamin; AUC, area under the curve; PACAP, pituitary adenylate-cyclase-activating polypeptide; SD, standard deviation; TTX, tetrodotoxin; WT, wild type.
In amplitude, 2 groups had significant differences at PACAP 10 nM (P = .03) and 100 nM (P = .04). In AUC, 2 groups had significant differences at PACAP 10 nM (P = .01).
*Numbers in parentheses represent the number of mice in each of the protocols.
PIC. Single whole-cell ROIs were used to generate spatio-temporal maps (STMaps) of Ca2+ activity in PICs recorded in situ. STMaps were then imported as TIFF files into ImageJ (version 1.40, National Institutes of Health, MD, USA, http://rsbweb.nih.gov/ij) for post hoc quantification analysis of Ca2+ events. The STMapAuto plugin was utilized for uniform STMap quantification, as described previously.45

Mechanical Tension Recordings of Circular Muscle Strips of Mouse Distal Colon

Distal colon was dissected from wild-type mice, and the mucosa was peeled off. Threads were tied at both end of the strips of it, and contractions of circular muscle layer were measured using an isometric force transducer (model TST105A; Biopac Systems Inc, Santa Barbara, CA) and the Biopac AcqKnowledge software (Biopac Systems Inc). The muscle strips were perfused with oxygenated, warmed (36°C) Krebs solution for 1 hour, and then the muscles were stretched (20–30 mN). The experimental protocols were started when the SPCs and basal tension became consistent, about 1 hour after applying the initial stretch. Each of the experimental protocols was applied to one sample, and any multiple experimental protocols were not applied in one single sample. To analyze the responses of SPCs to PACAP in the specific conditions, 4 parameters of SPCs (AUC, amplitude, tone, and frequency) were measured for 5 minutes after adding PACAP 1 nM to 10 nM. The amplitude of PACAP was calculated as the average of the difference of tension from the bottom to the peak of the trace of SPCs, and the tone was calculated as the average of the tension at the bottom of the trace of SPCs. All experiments were performed under the presence of TTX 1 \(\mu \)M to eliminate neural effects to muscle contractility.

Ca2+ Imaging in Human Tissues

Longitudinal muscle preparations with adherent myenteric layer of human colon (approximately 5-mm square) were prepared by removing the mucosal and circular muscle layers. The preparations were pinned flatly on a Sylgard plate (silicone elastomer, Dow Corning Corporation, Midland, MI) at the bottom of the recording chamber (volume, approximately 1 mL), and superfused with warmed (36°C) physiological salt solution (PSS) at a constant flow rate (2 mL/min) and equilibrated for 60 minutes.

To visualize intracellular Ca2+ dynamics in PICs, preparations were incubated in low Ca2+ PSS ([Ca2+]\textsubscript{o} = 0.1 mM) containing 1 to 3 \(\mu \)M Cal-520 AM (AAT Bioquest Inc) and cremophor EL (0.01 %, Sigma) for 20 to 30 minutes at 35°C, then 10 to 15 minutes at room temperature.12

Following incubation, the recording chamber was mounted on the stage of an upright epifluorescence microscope (BX51WI, Olympus, Tokyo, Japan) equipped with a

| Table 3. Tables Summarizing Means ± SD of 4 Parameters of Spontaneous Contractions of Circular Muscle Layers of Human Sigmoid Colon for 10 Minutes After Adding MXD 100 pM to 10 nM to Organ Baths |
|---|---|---|
| **AUC, mN·min** | 100 pM | 1 nM | 10 nM |
| TTX (6)a | 43.62 ± 25.67 | 18.69 ± 17.02 | 8.10 ± 3.59 |
| TTX + Apa (6) | 59.20 ± 19.63 | 36.11 ± 17.72 | 22.71 ± 15.67 |
| **Amplitude, mN** | 100 pM | 1 nM | 10 nM |
| TTX (6) | 8.81 ± 4.16 | 2.74 ± 4.09 | 0.07 ± 0.05 |
| TTX + Apa (6) | 13.13 ± 4.20 | 7.63 ± 6.05 | 4.21 ± 3.29 |
| **Tone, mN** | 100 pM | 1 nM | 10 nM |
| TTX (6) | 1.38 ± 0.75 | 0.97 ± 0.46 | 0.78 ± 0.35 |
| TTX + Apa (6) | 1.49 ± 0.75 | 1.04 ± 0.53 | 0.90 ± 0.50 |
| **Frequency, cont/min** | 100 pM | 1 nM | 10 nM |
| TTX (6) | 4.00 ± 1.15 | 2.82 ± 1.22 | 2.28 ± 0.50 |
| TTX + Apa (6) | 3.80 ± 0.58 | 3.15 ± 0.48 | 2.95 ± 0.69 |

Apa, Apamin; AUC, area under the curve; MXD, maxadilan, pituitary adenylate-cyclase-activating polypeptide; SD, standard deviation; TTX, tetrodotoxin; WT, wild type.

aNumbers in parentheses represent the number of mice in each of the protocols.
back-thinned electron multiplying CCD camera (C9100-13, Hamamatsu Photonics, Hamamatsu, Japan). Preparations were superfused with dye-free PSS containing 2.5 mM Ca$^{2+}$, viewed with a water immersion objective (LUMPlanFL×40, ×60, Olympus) and illuminated at 495 nm. Fluorescence was captured through a barrier filter above 515 nm, and images were obtained every 100 to 137 ms (frame interval) with an exposure time of 70 to 100 ms using a micro-photoluminescence measurement system (AQUACOSMOS, Hamamatsu Photonics). Relative amplitudes of Ca$^{2+}$ transients were expressed as $\frac{D}\text{F}_{t}/\text{F}_{0} = \frac{\text{F}_{t} - \text{F}_{0}}{\text{F}_{0}}$, where F_{t} is the fluorescence generated by an event, and baseline F_{0} is the basal fluorescence.

EFS was applied by passing brief currents (50 μs duration, 10 Hz or 20 Hz, 1 s, supramaximal voltage [approximately 100 V]) between a pair of platinum plate electrodes in the recording chamber using an electronic stimulator (SEN-3301; Nihon Kohden, Tokyo, Japan) and isolators (SS-104J; Nihon Kohden, Tokyo, Japan). Neural selectivity of EFS was confirmed by the sensitivity of EFS-induced responses to 1 μM TTX.

Intracellular Electrical Recordings

A tissue segment of human S colon circular muscles (1 × 3 mm) was pinned to the floor of a recording chamber. The tissue was superfused with warmed (35 °C) and oxygenated Krebs solution, at a constant flow rate of approximately 2 mL/min. Experiments were carried out in the presence of 3 μM nifedipine to minimize muscle movements. Conventional microelectrode techniques were used to record transmembrane potentials from human colonic muscle strips. Glass capillary microelectrodes (outer diameter, 1.5 mm;
inner diameter, 0.86 mm; Hilgenberg, Malsfeld, Germany) were filled with KCl 2 M and had tip resistances ranging between 50 and 80 MΩ. Electrical responses were recorded via a high input impedance amplifier (Axoclamp-2B; Axon Instruments, San Jose, CA) and stored on a computer for subsequent analysis and display.

Mechanical Tension Recordings of CM Strips of Human Sigmoid Colon

Immediately after the colorectal resections, pieces of human colonic specimens were dissected out and kept in Krebs solution containing indomethacin 1 µM cooled in ice to reduce inflammatory responses. Small muscle strips with 10 mm long and 2 mm width along the direction of circular muscle fibers were prepared. Threads were tied around both ends of the strips; one thread was fixed at the bottom of an organ bath chamber, and the other was connected to an isometric force transducer with a bridge amplifier (ADInstruments Ltd, Hasting, UK). Tension was digitized at a constant flow rate of 1 mL/min with oxygenized, warmed (36 °C) Krebs solution for 1 hour, and then initial tension of 5 to 10 mN was applied. The experimental protocols were started when SPCs and basal tension became stable 1 hour or longer after applying the initial tension. Each of the experimental protocols was applied to one sample, and any multiple experimental protocols were not applied in one single sample. To analyze the responses of SPCs to PACAP and MXD in the specific conditions, 4 parameters of SPCs (AUC, amplitude, tone, and frequency) were measured for 10 minutes after adding PACAP and MXD at the various concentrations. The amplitude of SPCs was calculated as the average of the difference of tension from the bottom to the peak of the trace of SPCs, and the tone was calculated as the average of the tension at the bottom of the trace of SPCs. All experiments were performed under the presence of TTX 1 µM to eliminate neural effects to muscle contractility.

Solutions and Drugs

Composition of Krebs solution was (mM): Na⁺ 137.5; K⁺ 5.9; Ca²⁺ 2.5; Mg²⁺ 1.2; HCO₃⁻ 15.5; H₂PO₄⁻ 1.2; Cl⁻ 134; glucose 11.5. The solution was bubbled with 95% O₂ and 5% CO₂ and the pH of solution was maintained at 7.3 to 7.5. Reagents used in this study were: PACAP-38 (PACAP in this study), PACAP 6-38 (selective PAC₁R antagonist), Maxadilan (selective PAC₂R agonist), and VIP from BACHEM (Torrance, CA); MRS2500 (selective P2Y1 purinoceptor antagonist) and MRS2365 (selective P2Y1 purinoceptor agonist) from Tocris Bioscience (Ellisville, MO, USA); TTX from Wako (Osaka, Japan) or Sigma (St. Louis, MO, USA); Atropine and L-NNA from MilliporeSigma (Burlington, MA).

Table 4. Primers for qPCR

Gene name	Primer sequence	Product length, bp	Accession number
Gapdh	F- GCCGATGCCCCCATGTGTTGGA G- GGTTGCAGTGATGCCAGGAC	178	NM_000504
Adcyap1r1	F- AACGACCTGATGGCCAAAGGAA G- GTCCACAGACTTGTGTCGC	153	NM_007407
Vipr1	F- TCAATGGCGAGGTGCAGGCAG G- GTGTTGTGCGAGCAGACGCC	127	NM_011703
Vipr2	F- AAGGAACTGACCTGACAAAGGAA G- GAGCTTGCAGCCAACCCAGGA	159	NM_009511

Statistical Analysis

Experimental values were represented with means ± standard deviation. All statistical analysis were performed with GraphPad Prism. Statistical significance was tested with 1-way analysis of variance or paired t test, and probabilities of less than 5% (P < .05) were considered significant.

References

1. Iino S, Horiguchi K, Horiguchi S, Nojyo Yoshiaki. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature. Histochem Cell Biol 2009; 131:691–702.
2. Kurahashi M, Nakano Y, Henning GW, Ward SM, Sanders KM. Platelet-derived growth factor receptor α-positive cells in the tunica muscularis of human colon. J Cell Mol Med 2012;16:1397–1404.
3. Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol 1999;62:295–316.
4. Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility-insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012;9:633–645.
5. Sanders KM, Kito H, Hwang SJ, Ward SM. Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiol 2016;31:316–326.
6. Kurahashi M, Zheng H, Dwyer L, Ward SM, Koh SD, Sanders KM. A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscle. J Physiol 2011; 589:697–710.
7. Kurahashi M, Mutafova-Yambolieva V, Koh SD, Sanders KM. Platelet-derived growth factor receptor-α-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am J Physiol Cell Physiol 2014;307:C561–C570.

8. Baker SA, Hennig GW, Ward SM, Sanders KM. Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon. J Physiol 2015;593:1945–1963.

9. Kurahashi M, Kito Y, Baker SA, Jennings LK, Dowers JGR, Koh SD, Sanders KM. A novel post-synaptic signal pathway of sympathetic neural regulation of murine colonic motility. FASEB J 2020;34:5563–5577.

10. Gallego D, Hernández P, Clavé P, Jiménez M. P2Y1 receptors mediate inhibitory purinergic neurotransmission in the human colon. Am J Physiol Gastrointest Liver Physiol 2006;291:G584–G594.

11. Hwang SJ, Blair PJ, Durnin L, Mutafova-Yambolieva V, Sanders KM, Ward SM. P2Y1 purinoceptors are fundamental to inhibitory motor control of murine colonic excitability and transit. J Physiol 2012;590:1957–1972.

12. Kurahashi M, Kito Y, Hara M, Takeyama H, Sanders KM, Hashitani H. Noradrenaline has dual effects on human colonic contractions through distinct subtypes of alpha 1 adrenoceptors. Cell Mol Gastroenterol Hepatol 2020;10:658–671.e1.

13. Ha SE, Lee MY, Kurahashi M, Wei L, Jorgensen BG, Park C, Park PJ, Redelman D, Sasse KC, Becker LS, Sanders KM, Ro S. Transcriptome analysis of PDGFRα+ cell hyperplasia. PLoS One 2017;12:e0182265.

14. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylyl cyclase in pituitary cells. Biochim Biophys Acta 1989;1064:567–574.

15. Arimura A. Pituitary adenylyl cyclase activating polypeptide (PACAP): discovery and current status of research. Regul Pept 1992;37:287–303.

16. Ishihara T, Shigemoto R, Morii K, Takahashi K, Nagata S. Pituitary adenylate cyclase-activating polypeptide is a potent modulator of human colonic motility. Scand J Gastroenterol 1993;28:625–632.

17. Schworer H, Clemens A, Katsoulis S, Kohler H, Creutzfeldt W, Schmidt WE. Pituitary adenylyl cyclase-activating peptide is a potent modulator of human colonic motility. Scand J Gastroenterol 1993;28:625–632.

18. Vaudry D, Falluel-Mrel A, Bourgault S, Basile M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylyl cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009;61:283–357.

19. Uhlen M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigiarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, Feilten K, Forsberg M, Persson L, Johansson F, Zawalen M, von Hjöne G, Nielsen J,
33. Piascik MT, Perez DM. Alpha1-adrenergic receptors: new insights and directions. J Pharmcol Exp Ther 2001; 298:403–410.

34. Wood JD. The enteric purinergic P2Y1 receptor. Curr Opin Pharmacol 2006; 6:564–570.

35. Parker I, Ito Y, Kuriyama H, Miledi R. Beta-adrenergic agonists and cyclic AMP decrease intracellular resting free-calcium concentration in ileum smooth muscle. Proc R Soc Lond B Biol Sci 1987; 230:207–214.

36. Bai Y, Sanderson MJ. Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IP3 receptor. Respir Res 2006; 7:34.

37. Kishi M, Takeuchi T, Suthamnatpong N, Ishii T, Nishio H, Hata F, Takewaki T. VIP- and PACAP-mediated non-adrenergic, noncholinergic inhibition in longitudinal muscle of rat distal colon: involvement of activation of charybdotoxin- and apamin-sensitive K+ channels. Br J Pharmacol 1996; 119:623–630.

38. Matsuda NM, Miller SM. Non-adrenergic non-cholinergic inhibition of gastrointestinal smooth muscle and its intracellular mechanism(s). Fundam Clin Pharmacol 2010; 24:261–268.

39. Laburthe M, Couvineau A. Molecular pharmacology and structure of VPAC receptors for VIP and PACAP. Regul Pept 2002; 108:165–173.

40. Eiden LE, Emery AC, Zhang L, Smith CB. PACAP signaling in stress: insights from the chromaffin cell. Pflugers Arch 2018; 470:79–88.

41. Hamilton TG, Klinghoffer RA, Corrin PD, et al. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol 2003; 23:4013–4025.

42. Zhu MH, Kim TW, Ro S, et al. A Cal(2+)+-activated Cl(−) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 2009; 587:4905–4918.

43. Koh SD, Dick GM, Sanders KM. Small-conductance Cal(2+)-depndent K+ channels activated by ATP in murine colonic smooth muscle. Am J Physiol 1997; 273:C2010–C2021.

44. Baker SA, Leigh WA, Vallee GD, De Yturriaga IF, Ward SM, Cobine CA, Drum BT, Sanders KM. Ca(2+) singlising driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon. Elife 2021; 10:e64099.

45. Leigh WA, Vallee GD, Kamran SA, Drum BT, Tavakkoli A, Sanders KM, Baker SA. A high throughput machine-learning driven analysis of Ca2+ spatio-temporal maps. Cell Calcium 2020; 91:102260.

Received February 6, 2022. Accepted May 5, 2022.

Correspondence
Address correspondence to: Masaaki Kurahashi, MD, PhD, 200 Hawkins Dr, University of Iowa, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Iowa City, IA 52242. e-mail: masaaki-kurahashi@uiowa.edu; tel: (319) 467-8963.

CRediT Authorship Contributions
Masaaki Kurahashi, MD, PhD (Conceptualization: Lead; Data curation: Lead; Formal analysis: Lead; Funding acquisition: Lead; Investigation: Lead; Methodology: Lead; Project administration: Lead; Resources: Lead; Software: Lead; Supervision: Lead; Validation: Lead; Visualization: Lead; Writing – original draft: Lead; Writing – review & editing: Lead)

Salah A. Baker, PhD (Data curation: Supporting; Formal analysis: Supporting; Investigation: Supporting; Methodology: Supporting; Software: Supporting; Writing – review & editing: Supporting)

Yoshihiko Kito, PhD (Data curation: Supporting; Formal analysis: Supporting; Investigation: Supporting; Methodology: Supporting; Software: Supporting; Writing – review & editing: Supporting)

Allison Bartlett (Data curation: Supporting; Investigation: Supporting; Writing – review & editing: Supporting)

Masayasu Hara, MD & PhD (Data curation: Supporting; Investigation: Supporting; Writing – review & editing: Supporting)

Hiromitsu Takeyama, MD & PhD (Data curation: Supporting; Investigation: Supporting; Writing – review & editing: Supporting)

Hikaru Hashitani, MD & PhD (Data curation: Supporting; Investigation: Supporting; Writing – review & editing: Supporting)

Kenton M. Sanders, PhD (Funding acquisition: Equal; Project administration: Equal; Writing – original draft: Equal; Writing – review & editing: Equal)

Conflicts of interest
The authors disclose no conflicts.

Funding
This study was funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Grant R01-DK-091336