The $pd \rightarrow ^3 H_ΛK^+$ reaction cross section

V.I. Komarov, A.V. Lado, *
Yu.N. Uzikov

Laboratory of Nuclear Problems,
Joint Institute for Nuclear Research, Dubna, Moscow reg. 141980, Russia

October 9, 2018

PACS: 25.40.-h; 25.80.-e;13.75.-n

e-mail uzikov@nusun.jinr.dubna.su

*Permanent address: Kazakh State University, Department of Physics, Timiryasev str. 47, 480121 Alma-Ata, Kazakh Republic
Abstract

The one- and two-step mechanisms of the $pd \rightarrow ^3H \Lambda K^+$ reaction in the range of incident proton kinetic energy $T_p = 1.13 - 3.0 \text{ GeV}$ have been investigated for the first time. A remarkable peculiarity of the two-step mechanism which incorporates subprocesses $pp \rightarrow d\pi^+$ and $\pi^+n \rightarrow K^+\Lambda$ is the so called velocity matching providing the presence of all intermediate particles nearly to the on-mass-shell. The differential cross section has been calculated using a realistic model for the hypertritium $^3H_\Lambda$ wave function. The maximum value of the cross section is estimated as $\sim 1\text{nb/sr}$. The contribution of the one-step mechanism with the elementary process $pN \rightarrow NK\Lambda$ into the cross section has been found to be two - three orders of magnitude smaller in comparison with the two-step mechanism.
The K^+ meson production in proton-nucleus collisions is of great interest as these reactions allow one to investigate the nuclear structure at short distances between nucleons \[1\]. While the experimental research programs \[2\] are supposed for the target nuclei with $A \geq 12$ the clearest theoretical analysis can be done for the lightest nuclei. The $pd \rightarrow ^3H \Lambda K^+$ reaction investigated here is a process with high momentum transfer. So, at the threshold of this reaction ($T_p = 1132 \text{MeV}$) initial proton and deuteron have momenta $\sim 1 \text{ GeV/c}$ in the c.m.s. but in the final state all nucleons are at rest. At the proton kinetic energy in the laboratory system T_p below 1580 MeV the $p + N \rightarrow N + \Lambda + K$ process on a free nucleon N at rest is forbidden by the energy-momentum conservation. Therefore the $pd \rightarrow ^3H \Lambda K^+$ reaction in this region occurs either through involving high momentum components of the deuteron wave function when incident proton collides with one of its nucleons (one-step mechanism, Fig. 1, a) or by means of active interaction with two nucleons of the deuteron (two-step mechanism, Fig.1, b). It seems less obvious that in the last case the high momentum components of the wave function will be required. In this respect the $pd \rightarrow ^3H \Lambda K^+$ reaction is similar to $pd \rightarrow ^3He \pi^0$ \[3\] and $pd \rightarrow ^3He \eta$ \[4\] reactions for which the two-step mechanism (called a three-body one in literature) was found to dominate \[4\]. Indeed, the $pd \rightarrow ^3H \Lambda + K^+$ and $pd \rightarrow ^3He \eta$ reactions have deeper analogy in the framework of the two-step mechanism with subprocesses $pp \rightarrow d\pi^+$ and $\pi^+n \rightarrow \Lambda K^+$ or $\pi^+n \rightarrow p\eta$ respectively. The relation between masses of initial and final particles in these reactions is such that at the corresponding threshold of the reaction as well as for the angles $\theta_{c.m.} \sim 90^\circ$ which determines the direction of the final meson momentum in respect to the incident beam, all intermediate particles ($\pi-$meson, deuteron, nucleon) are near to on-mass-shell in a very wide energy range above the threshold \[4\]. For this reason the two-step mechanism corresponding to the Feynman graph in Fig.1, b seems to be the most realistic model of this reaction. It should be noted that for production of $\pi-$mesons
and heavier mesons (ω, ϕ, η') as well as for target-nuclei with $A \geq 3$ the above mentioned velocity matching does not take the place.

Another interesting aspect of the $pd \rightarrow ^3H\Lambda K^+$ reaction is connected with formation of the hypertritium nucleus $^3H_\Lambda$ in the final state. The $^3H_\Lambda$ nucleus is a loosely bound system with the binding energy $\varepsilon \sim 2.35 MeV$ which probably has a configuration of the $^3H_\Lambda \rightarrow d + \Lambda$ [4]. An investigation of the $pd \rightarrow ^3H\Lambda K^+$ reaction can give a new independent information about the wave function of the $^3H_\Lambda$ nucleus.

In the framework of the two-step mechanism the amplitude $A^{twost}(pd \rightarrow ^3H\Lambda K^+)$ of the $pd \rightarrow ^3H\Lambda K^+$ reaction can be written in the full analogy with the amplitude of the $pd \rightarrow ^3He\eta$ reaction [5]. As a result, we get

$$A^{twost}(pd \rightarrow ^3H\Lambda K^+) = C \frac{\sqrt{3}}{2m} A_1(pp \rightarrow d\pi^+) A_2(\pi^+n \rightarrow K^+\Lambda) \mathcal{F}(P_0, E_0) \quad (1)$$

where A_1 and A_2 are the amplitudes of the processes $pp \rightarrow d\pi^+$ and $\pi^+n \rightarrow K^+\Lambda$ respectively, m is the nucleon mass, $C = 3/2$ is the isotopic spin factor allowing for the summation over isotopic spin indices in the intermediate state; the nuclear formfactor in exp. (1) is defined as

$$\mathcal{F}(P_0, E_0) = \int \frac{d^3q_1}{(2\pi)^3} \frac{d^3q_2}{(2\pi)^3} \frac{\Psi_d(q_1)\Psi_H(q_2)}{E_0^2 - (P_0 + q_1 + q_2)^2 + i\epsilon}. \quad (2)$$

Here $\Psi_d(q_1)$ is the wave function of the deuteron and $\Psi_H(q_2)$ is the wave function of the $^3H_\Lambda$ nucleus in the $^3H_\Lambda \rightarrow d + \Lambda$-channel in momentum space; E_0 and P_0 are the energy and momentum of the intermediate $\pi-$ meson at zero momenta of nucleons in the nuclear vertices $q_1 = q_2 = 0$:

$$E_0 = E_K + \frac{1}{3}E_H - \frac{1}{2}E_d, \quad P_0 = \frac{2}{3}P_H + \frac{1}{2}P_d, \quad (3)$$

where E_j is the energy of the jth particle in the c.m.s., P_d and P_H are the momenta in the initial deuteron and the $^3H_\Lambda$ nucleus in the c.m.s. respectively.

According to the paper [3], when deriving exp. (2) we neglect zero components
\(q_{10} \) and \(q_{20} \) of the 4-momenta \(q_1 \) and \(q_2 \) in the 4-dimensional propagator of \(\pi^{-} \)-meson

\[
(p_{\pi}^2 - m_{\pi}^2 + i\varepsilon)^{-1} = ((p_K + \frac{1}{3}P_H - \frac{1}{2}P_d + q_1 - q_2)^2 - m_{\pi}^2 + i\varepsilon)^{-1}
\]

in comparison with the energies \(E_k, E_H, E_d \). The 3-momenta \(q_1 \) and \(q_2 \) are taken exactly. Recently there has appeared a calculation \([5]\) for the \(pd \rightarrow ^3He\eta \) reaction near the threshold in the two-step model which is very similar to that developed in paper \([3]\) and used here. The authors of paper \([5]\) apply the 3-dimensional diagram technique and instead of the 4-dimensional \(\pi^{-} \)-meson propagator \((p_{\pi}^2 - m_{\pi}^2 + i\varepsilon)^{-1}\) they deal with the energy denominator \((\sqrt{s_{pd}} - E_{\pi} - E_n - E_d + i\varepsilon)^{-1}\). The linearization procedure over Fermi momenta \(q_1 \) and \(q_2 \) is used in order to perform integration over \(dq_1 \) and \(dq_2 \). Exp. \((2) \) for the nuclear formfactor differs from that in paper \([3]\) while in the both cases it is a rather smooth function of kinematic variables. It is obvious that the reasons for this difference are different means for consideration of relativistic effects in the two-step models \([3]\) and \([5]\).

The amplitude \((1)\) is connected to the differential cross section of the \(pd \rightarrow ^3H\Lambda K^+ \) reaction by the following expression

\[
d\sigma = \frac{1}{64\pi^2 s_{pd}} \frac{|P_H|}{|P_d|} |A(pd \rightarrow ^3H\Lambda K^+)|^2,
\]

where \(s_{pd} \) is the invariant mass of the initial p+d state. The amplitudes \(A_1(pp \rightarrow d\pi^+) \) and \(A_2(\pi^+n \rightarrow \Lambda K^+) \) are related to the corresponding differential cross sections by analogous relations. One should note that the amplitudes \(A_1 \) and \(A_2 \) are factored outside the integral sign at the point \(q_1 = q_2 = 0 \). As mentioned in paper \([3]\), factorisation of the \(pd \rightarrow ^3HeX \) cross section in the product of \(pp \rightarrow d\pi^+ \) and \(\pi^+n \rightarrow \eta p \) cross sections takes place if only one of two invariant forward \(pp \rightarrow d\pi^+ \) amplitudes dominates. For simplicity we assume here that this condition is fulfilled.

The amplitude of the one-step mechanism corresponding to the Feynman graph
in Fig.1, \(a \) can be written as
\[
A^{\text{onest}}(pd \to ^3H\Lambda K^+) = \sqrt{\frac{3}{m}} A_3(pN \to N\Lambda K^+) \Phi(Q), \tag{5}
\]
where \(A_3 \) is the \(pN \to N\Lambda K^+ \) process amplitude which is factored outside the two-loop integration sign. The nuclear formfactor \(\Phi(Q) \) is defined by
\[
\Phi(Q) = \int d^3r \varphi_d(r) \varphi_d^+(r) \psi_H^+(r) \exp(iQr), \tag{6}
\]
where
\[
Q = \frac{1}{3} P_H - \frac{1}{2} P_d. \tag{7}
\]
One should note that integral (6) has a meaning of the deuteron elastic formfactor \(F_d(2Q) \) at the transferred momentum \(\Delta = 2Q \) modified by the presence of the hypertritium wave function \(\psi_H^+(r) \) in the integrand. It is obvious that the formfactor \(\Phi(Q) \) decreases fast with growing \(Q \).

The one-step amplitude has been numerically calculated here using both \(S- \) and \(D- \) components of the deuteron wave function for the RSC potential in parametrisation [9]. Using the experimental data on the total cross section \(\sigma_{NN \to K^+\Lambda N} \) [10] we estimated here the squared amplitude \(|A_3(pN \to N\Lambda K^+)|^2 \) as \(\sim 250 \div 450 GeV^{-2} \) in the initial proton energy range \(1.6 \div 3.0 GeV \). The numerical calculations for the two-step mechanism are performed in the s-wave approximation for the deuteron wave function [9]. (As was shown by our calculations, the contribution of the deuteron D-component to the cross section is about 10 %). For the wave function of the \(^3H\Lambda \) nucleus the \(d + p \)-model developed in Ref. [8] on the basis of separable \(\Lambda N \)-interaction is used. In this model the \(^3H\Lambda \) wave function only contains the \(S \)-component. In the S-wave approximation the factor (2) takes the form
\[
\mathcal{F}_{000}(P_0, E_0) = \frac{1}{4\pi} \int_0^\infty j_0(P_0r) \exp(iE_0r)\varphi_d(r)\varphi_H(r)r \, dr. \tag{8}
\]
For the differential cross section of the reaction \(pp \to d\pi^+ \) the parametrisation of Ref. [11] is used here. For the \(\pi^+n \to \Lambda K^+ \) differential cross section the parametrisation
of the total cross section from Ref. [12] is used and isotropic behaviour of the cross section is assumed.

We have investigated here numerically the behaviour of the formfactor $F_{000}(P_0, E_0)$ as a function of incident proton kinetic energy T_p at different K^+-meson scattering angles $\theta_{c.m.}$. The momentum P_0 is a rather fast decreasing function of T_p at $\theta_{c.m.} = 180^{\circ}$ ($P_0 = 0.5 - 0.1 GeV/c$ in the range $T_p = 1.1 - 3.0 GeV$). On the contrary, at the scattering angles $\theta_{c.m.} = 0^{\circ}$ and 90° both the energy E_0 and momentum P_0 are increasing functions of T_p ($E_0, P_0 \sim 0.5 - 1.2 GeV$). This behaviour of P_0 results in a large value of the formfactor $|F_{000}(P_0, E_0)|^2$ at $\theta_{c.m.} = 180^{\circ}$ in comparison to the ones at $\theta_{c.m.} = 0^{\circ}$ and 90°. If one substitutes the wave function of the 3He nucleus in the $d+p-$ channel [13] instead of the 3H$_\Lambda$ hypernucleus in exp. (8) then the squared formfactor $|F_{000}(P_0, E_0)|^2$ corresponds to the one for the $pd \rightarrow ^3H\eta$ reaction and it turns out to decrease faster with growing incident energy T_p and its value at the threshold increases by a factor of 3 - 5.

The calculated differential cross sections of the $pd \rightarrow ^3H\Lambda K^+$ reaction are presented in Fig.2. One can see from this picture that for any scattering angle the differential cross section has a sharp maximum at the proton energy $T_p \sim 1.2 GeV$, which displays the corresponding sharp peak observed in the total cross section of the $\pi^+N \rightarrow \Lambda + K^+$ reaction (see Ref. [12] and references therein). On the whole, the relations between differential cross sections at the angles $\theta_{c.m.} = 0^{\circ}, 90^{\circ}$ and 180° follow from corresponding relations between formfactors $|F_{000}(P_0, E_0)|^2$.

The differential cross section of the $pd \rightarrow ^3H\Lambda K^+$ reaction predicted by the two-step model differs from that for the $pd \rightarrow ^3H\eta$ reaction in two respects [1]. First, the maximum value of the K^+-meson production cross section $\sim 1 nb/sr$ is about 50 times smaller than that for the $\eta-$meson production. Secondly, the $pd \rightarrow ^3H\Lambda K^+$ reaction cross section is a smoother decreasing function of incident proton energy in comparison with the cross section of the $pd \rightarrow ^3H\eta$ reaction. As
follows from the behaviour of the formfactor $|\mathcal{F}_{000}(P_0, E_0)|^2$ both these peculiarities are in part connected to the form of the wave function of the $^3H_\Lambda$ nucleus.

The results of calculation in the framework of the one-step mechanism are presented in Fig.3. One can see that the contribution of this mechanism is two-three orders of magnitude smaller than that following from the two-step model.

In conclusion, we note that the two-step mechanism of the $pd \rightarrow ^3H_\Lambda K^+$ reaction is used owing to the velocity matching. In the case of η–meson production this mechanism explains qualitatively the energy dependence of the cross section above the threshold [5]. However, just at the threshold this model is in strong contradiction with the experimental data on the $pd \rightarrow ^3He\eta$ reaction [5]. One of a reason for it is probably a strong attractive interaction in the final $\eta – ^3He$ state caused by an excitation of the nucleon $N^*(1535)$ resonance [5, 14]. At present there are no experimental data pointing to the presence of strong coupling of the K^+–meson to any nucleon resonance in the resonance mass region of $1.2 – 2.0 \, GeV$. Therefore one can suppose that final state interaction in the $pd \rightarrow ^3H_\Lambda K^+$ reaction will not be of great importance in contrast to the η–production.
Authors are sincerely grateful to A.V. Kondratyuk and L. Mailing for useful discussion. This work was supported in part by grant N° 93-02-3745 of the Russian Foundation for Fundamental Researches.
References

[1] Cassing W, Batko G, Mosel U, Niita K, Shult O, Wolf Gy. 1990 Phys. Lett. B 238 (1990) 25; Sibirtsev A, Büşher M. 1994 Z. Phys. A347 191; Kacharava A, Macharashvili G, Mamulashvili A, Menteshashvili Z, Nioradze M, Komarov V I. 1994 HEPI TSU 12-14.

[2] Sistemich K. et al. 1992 COSY Proposal № 18.

[3] Laget J M, Lecolley J F. 1987 Phys. Lett. B 194 177.

[4] Laget J M, Lecolley J F. 1988 Phys. Rev. Lett. 61 2069.

[5] Kondratyuk L A, Lado A V, Uzikov Yu N. 1995 Yad.Fiz. 57 524.

[6] Fäl dt G , Wilkin C. 1995 Nucl. Phys. A587 769.

[7] Kilian K, Nann H. Preprint KFA, Juelich (1989).

[8] Congleton J G. 1992 J. Phys.G: Nucl. Part. 18 339.

[9] Alberi G, Rosa L P, Thome Z D. 1975 Phys. Rev. Lett. 34 503.

[10] Zwereman W. 1988 Mod. Phys. Let. A 3 251.

[11] Ritchie B G. 1991 Phys.Rev. C44 533.

[12] Cugnon J, Lombard R M. 1984 Nucl. Phys. A 422 635.

[13] Zhusupov M A, Uzikov Yu N, Yuldasheva G A. 1986 Izv. AN KazSSR, ser.fiz.-mat. 6 69.

[14] Wilkin C. 1993 Phys. Rev. C47 R938.
Figure 1:

Figure captions

Fig.1 The one-step (a) and two-step (b) mechanisms of the $pd \rightarrow ^3 H\Lambda K^+$ reaction.

Fig.2. The differential cross section of the $pd \rightarrow ^3 H\Lambda K^+$ reaction calculated for the two-step mechanism as a function of incident proton kinetic energy at different angles of K^+-meson $\theta_{c.m.} = 0^\circ, 90^\circ, 180^\circ$

Fig.3. The same as in Fig.3 but for the one-step mechanism
Figure 2:
Figure 3: