Vitality Burglary Recognition and Issue Investigation Dependent on IOT

R Saranraj¹, Aruljothi Kuppannan², V Sunil Kumar³, M Kishore⁴, S Lalith⁵

¹Assistant Professor/ EEE, K. Ramakrishnan college of Engineering, Trichy, India.
²Assistant Professor/ EEE, J.K.K.N college of Engineering & Technology, Erode, India.
³IV Year/EEE Department, K. Ramakrishnan college of Engineering, Trichy, India.
⁴⁵III Year/EEE Department, K. Ramakrishnan college of Engineering, Trichy, India.

Abstract. The proposed idea on this paper pursuits on the format and usage rendition of electrical vitality theft recognition and fault assessment. The unlawful use of intensity must be fathomed through advanced way, with no human cooperation. The reason for this work is to give a usage approach to control burglary discovery and controlling which licenses violators to be recognized at a faraway region. This design integrates various approach for problems faced by way of energy distribution device inclusive of power theft and transmission line fault. It consists of IOT era to discover the electrical theft and transmission line fault. In the proposed approach we offer alert to the authorized electricity issuer via an alert message which eliminates the diverse problems associated with the meter studying and theft detection and it blocks the energy deliver to the specific vicinity.

Keywords: IOT, Potentiometer, Arduino Uno R3.

1. Introduction
Generally electrical power involve many operational losses in various stages from supplier to consumer. We can described the losses in technically however distribution and transmission losses can't be actually evaluated with the end realities. This represents the inclusion of nontechnical parameter in transmission and conveyance of power. In addition specialized misfortunes emerge clearly and are hastened because of influence scattering in transmission lines, transformers. The gadget forestalls the unlawful use of power. At this factor of mechanical improvement the issue of unlawful use of vitality can be illuminated with no human control utilizing IOT. It consists of IOT approach to discover the electrical theft and transmission line fault. Moreover gathering the meter readings for billing approaches from all clients is a difficult and time consuming mission which requires a tremendous variety of labors. By implementing our challenge we will locate the exact region of the fault and theft. In all likelihood it saves time to discover the vicinity and reduces the labor value.

2. Design Components
The components used are
- Arduino Uno
- LCD display 2x16
Step down transformer
LED, bulb
IOT module
Potentiometer
Relay

Arduino Uno R3

Arduino is an open-supply device with programming layout, client arrange the plans and makes microcontrollers and microcontroller packs for building advanced gadgets. Arduino board plans utilize a choice of microchips and controller.

Internet of things (IOT)

The web of things or IOT, is a framework that is connected between the gadgets, simple, mechanical and computerized machines, contraptions which are furnished with specific identifiers (UIDs) and the possibility to sending insights over a system without interactions. The IOT defines “Network of Internet related item able to gather and transfer records”. IOT is the concept of connecting any device with an ON and OFF transfer to the net after which provide an appropriate output.

3. Block Diagram

The below diagram illustrates the general block diagram to analyze theft and fault analysis.
Energy theft detection and fault analysis based on IOT. This measures the faults in transformers LED is used for indication of faults in transformer. In this system energy theft detection implemented using POT. The condition about this system is updated to the web server using IOT.

The working process is initiated by supplying an AC voltage. The applied AC voltage is given to the step down transformer which converts 220v to 12v AC supply. Thus the working process is categorized into two different cases.

Case 1 - Energy theft

By taking the AC supply it is given to the Power supply unit. The power supply unit contains the bridge rectifier, the output from the bridge rectifier is given to the relay. As power supply to load is normal it displays **(P-N) POWER –NORMAL**. When another external load is acted upon the same supply (it means that theft) then it detects that energy theft has happened and it displays **(P-T-D) POWER –THEFT DETECTED**. And suddenly the power supply is disconnected form the particular location. And the location data is provided by IOT.

Case 2 - Fault analysis

There are mainly three faults occurs in receiving end [load side] namely L-G, L-L & L-L-G faults [L refers line and G refers Ground]. Around 70 percent of deficiencies are of L-G Fault. By using Arduino we can detect what is the nature of the fault and location of the fault. The installation of the device can be installed in home, distribution units.

4. Mathematical Analysis

On each occasion the input energy passes from provider to the consumer and the entire amount of electricity gets by means of the receiver are not equal indicates a possibility of robbery of energy. Following mathematical evaluation happens in the comparison unit of the theft detection device.
Total sent power = Total consumed power + Loss (No Energy Theft)
Total sent power ≠ Total consumed power + Loss (Energy Theft Occurs)

Where,
Sent power refers Meter facts of the strength introduced to the patron,
Consumed power refers Meter records of the electricity consumed by using a patron

5. Software Results
The below image shows the simulation setup for the project. This is done by using EMBEDDED C in PROTEUS

Figure 4. Simulation Diagram-1

Figure 5. Simulation Diagram with Output
Figure 6. Current Waveform during Normal Condition

Figure 7. Current Output Waveform on Fault Checking Condition

Figure 8. Voltage Waveform during Normal Condition
6. Conclusion
With help of robbery detection gadget, energy Distribution Company will conquer the unlawful power theft and will deliver profit to Distribution Company. As well as we are able to locate the fault vicinity without difficulty between the transmission line and the nature of the fault occurred.

References
[1] Dhayalini. K, 2016, Optimization Of Wind-Thermal Coordination Dispatch Using Flower Pollination Algorithm, International Journal of Advancement in Chemistry, vol. 12, no.16, pp. 4963 – 4970.
[2] R. Manivasagam and V. Dharmalingam, "Power quality problem mitigation by unified power quality conditioner: An adaptive hysteresis control technique," International Journal of Power Electronics, vol. 6, pp. 403-425, 2014.

[3] A.Subramaniya siva, M.Bhavani “ Mitigation of harmonics by shunt active power filter using synchronous detection method “ IJETT volume 4 issue 6 2013

[4] A.Subramaniya siva, S.Sathiesh kumar & T.Santhosh Kumar “ Investigation of Harmonics & optimal Power flow in IEEE 14 bus system using ETAP software” IJSTR vol 9, issue 4, 2020.

[5] Ronald Armstrong-su-gao- Lei Lei —A zero-inventory production and distribution problem with a fixed customer sequence, Springer science business Media, LLC 2008.

[6] A.Subramaniya siva, N.Vinothini, S.Sathiesh kumar “Piezoelectric based electric energy generation from Sound energy” IJSTR vol 9, issue 4, 2020.

[7] R.Illango, T.Santhosh Kumar, S.Sathiesh kumar “Load flow & transient stability analysis for IEEE5 bus system using UPFC” IJSTR vol 9, issue 4, 2020.

[8] R. Manivasagam and D. Aarthi, "Design of UPFC using ten switch converter with switch reduction," International Journal for Scientific Research & Development, vol. 5, pp. 490-493, 2017.

[9] R.Manivasagam & D Aarthi —Design and Implementation of UPFC Using Ten Switch Converter With Switch Reduction, International Journal Of Engineering And Computer Science, vol.6,Issue.6, 2017, Page no. 21861-21869.

[10] Titus Sigamani, Ram Prakash Ponraj “ Modified Multi level boost inverter for hybrid energy systems” IJSTR vol 9, issue 4, 2020.

[11] Manivasagam Rajendran ,Saranraj rajendran “Wind turbine manufacturing supply chain “IJSTR vol 9, issue 3, 2020.

[12] Mendalka, M.; Gadaj, M.; Kulas, L.; Nyka, K., WSN for intelligent street lighting system, Information Technology (ICIT), 2010 2nd International Conference on, vol., no., p.99,100, 28-30 June 2010.

[13] Sunil Chopra and Peter Meindi, —Supply Chain Management –Strategy Planning and Operation, Third Indian Reprint, Pearson Education, New jersey, 2004.

[14] R.Saranraj, P.Vigneshwaran ,C.Dinesh Kumar “Domestic LPG monitoring and regulating Systems using IOT”IJREAM vol 5,issue 12,2020

[15] Michael H.Veatch and Francis De Vericourt “ZeroInventory Conditions for a Two-Part-Type Make-to –stock production system” Klwer Academic Publishers, Queueing systems Vol 43,2003,pp.251266. in IEEE Xplore Digital Library, pp: 96-99.