Reduced models for quantum gravity

T. Thiemann∗
Institut für Theoretische Physik
RWTH Aachen
Sommerfeldstrasse, D-52056 Aachen, Germany †

1 Introduction

As outlined in various other lectures given at this meeting, it seems that a quantum theory of gravity can only be constructed in a non perturbative manner (compare, in particular, Ashtekar’s lectures).

Because of that, no calculations, as for example cross sections, decay rates and so on, can be done for the full theory of 3+1 gravity unless one has the full solution space of the quantum constraints and, derived from that, the physical Hilbert space. For a non-gravitational quantum field theory that can be attacked via a perturbative approach one can make quantitative predictions and even make estimates of the error due to higher order corrections while for quantum gravity ‘one would have to consider all orders’. So for the former theories one does have a very good idea of how the exact quantum theory should look like and this is important because intuition gives rise to new lines of attack. Hence unfortunately, for the quantum theory of gravity, we lack this general picture of how the exact theory should look like completely.

The only way that might help to uncover some of the secrets of how to solve the technical and/or conceptual problems of quantum gravity seems to be to study model systems, ideally those that can be solved exactly.

Of course, the lessons that models teach us might be totally misleading and extreme care is due when transferring results from the model to the physical theory of full quantum gravity.

This is the point of view that we adopt in the sequel: The models that we are going to discuss capture some of the technical and conceptual problems of gravity and we will pin these down. We will attempt at drawing some conclusions from the solutions we found but we stress the limitations that arise from the various special features of the models we choose and which are not shared by the full theory of quantum gravity.

∗thiemann@phys.psu.edu
†present address: Center for Gravitational Physics and Geometry, The Pennsylvania State University, University Park, PA 16802, USA
From the various, completely solvable, models that have been discussed in the literature we choose those that we consider as most suitable for our pedagogical reasons, namely $2+1$ gravity and the spherically symmetric model.

The former model arises from a dimensional, the latter from a Killing reduction of full $3+1$ gravity. While $2+1$ gravity is usually treated in terms of closed topologies without boundary of the initial data hypersurface, the topology for the spherically symmetric system is chosen to be asymptotically flat. Finally, $2+1$ gravity is more naturally quantized using the loop representation while spherically symmetric gravity is easier to quantize via the self-dual representation.

Accordingly, both types of reductions, both types of topologies and both types of representations that are mainly employed in the literature in the context of the new variables come into practice.

It is true that both models turn out to have only a finite-dimensional reduced phase space, hence, we are actually dealing only with a quantum mechanical problem and this restricts the usefulness of the results found for the models tremendously when transferring them to quantum gravity which is a theory with an infinite number of physical degrees of freedom. On the other hand, models with a finite number of degrees of freedom make the analysis especially clear and since one of the major motivations of this meeting was that it should serve as an introduction to canonical quantum gravity, we regard it as important to demonstrate the usefulness of the formalism that has been developed in various other lectures of this seminar by means of applying it to models of quantum gravity which are as simple as possible, here formulated in terms of Ashtekar’s new variables.

We adopt the abstract index notation and also the notation used by the other contributors to the seminar.

2 $2+1$ gravity

2.1 Canonical formulation

The model of $2+1$ gravity arises from a dimensional reduction of the Einstein action of full $3+1$ gravity. The first order (Palatini) formulation of $n+1$ gravity is given by

$$S := \frac{1}{2\kappa} \int_M \Omega_{IJ} \wedge \star(e^I \wedge e^J)$$

(2.1)

where the notation is as follows: M is the spacetime manifold ($\dim(M) = n + 1$), κ is the gravitational constant, Ω_{IJ} is the curvature 2-form of the SO(1,n) principal connection ω_{IJ}, \star is the Hodge-duality operator and e^I are the $(n+1)$-bein fields (that is, an orthonormal cobasis field). Internal indices $I,J,K,...$ run from 0 to n and are raised and lowered with respect to the internal Minkowski metric η_{IJ}.

For the canonical formulation we have to do the $n+1$ split of the action by choosing a foliation of M into space and time, that is, we assume that M is topologically $\Sigma \times \mathbb{R}$ where Σ is an n-dimensional spacelike hypersurface. From now on we will restrict ourselves to the case $n = 2$.

As in [1], we choose coordinates x^0, x^1, x^2 and a foliation such that the label of the various
hypersurfaces is given by \(t := x^0 \). Then we obtain from (2.1)

\[
S = \frac{1}{2\kappa} \int dt \int_{\Sigma} \left[\dot{A}_a^t E_t^a - [-\Lambda^I \mathcal{G}_I + N_I C^I] \right].
\]

We now explain the notation: The indices \(a, b, c, \ldots \) are 2-valued and have the meaning of tensor indices with respect to the spatial slice. \(A_a^t \) is simply the pull-back to the spatial slice of the 3-dimensional connection \(\omega^I \) and we have exploited the fact that the defining and adjoint representation of \(\text{SO}(1,2) \) are isomorphic such that we can work with the quantities \(\omega^I := -\frac{1}{2} \epsilon^{IJK} \omega_{JK} \). As is obvious from the action (2.1), in this polarization \(\text{SO}(1,2) \) connection \(A_a^t \) will play the role of a configuration space variable.

Its conjugate momentum is evidently given by the 'electric fields' \(E_a^I := \epsilon_{ab} \epsilon_b^I \) where \(\epsilon_b^I \) is the pull-back of the \(\text{SO}(1,2) \) triad. Geometrically, the electric fields are so(1,2)-valued vector fields of density weight one due to the 2-dimensional (metric-independent) Levi-Civita density \(\epsilon_{ab} \).

The 'Hamiltonian' is a pure constraint. Two kinds of constraints arise. The Gauss constraint

\[
\mathcal{G}_I := D_a E_a^I := \partial_a E_a^I + \epsilon_{IJ} A_a^J E_a^K \tag{2.3}
\]

is manifestly reminiscent of the Gauss constraint for 3+1 gravity while the other 3 constraints

\[
C^I := B^I = \frac{1}{2} \epsilon^{ab} F_{ab}^I \tag{2.4}
\]

tell us that that the magnetic fields (equivalently the curvature \(1/2 F_{ab}^I \) of \(A_a^t \)) vanish, that is, the constraint surface of the phase space contains only flat connections.

It follows from general arguments that the constraints form a first class subalgebra of the Poisson algebra of functions on the phase space since they are either linear in or independent of the momenta.

Immediately, the question arises what these 'flatness' constraints have to do with the constraints of 3+1 gravity (compare Giulini’s lectures). The answer is that, provided that the twice densitized inverted 2-metric

\[
E_a^I E_b^J \eta^{IJ} \tag{2.5}
\]

is nondegenerate, then we can recast these constraints in an 'Ashtekar-like' form:

\[
V_a := \epsilon_{ab} B^I E_b^a : \text{vector constraint and} \tag{2.6}
\]

\[
C := \epsilon_I ^{JK} B^I \epsilon_{ab} E_a^J E_b^K : \text{scalar constraint.} \tag{2.7}
\]

We can interpret this as follows:

Choose the Lagrange multipliers \(\Lambda^I := -\omega^I_t, N_I := -\epsilon_{tI} \) such that

\[
N_I = \frac{1}{2} (N \epsilon_I ^{JK} E_j^a E^K_b + N^a E_t^b) \epsilon_{ab} \tag{2.8}
\]

\(^1 \)a polarization is, roughly, a subdivision of a choice of phase space coordinates, into momenta and configuration space variables.
where $N := \sqrt{\text{det}(g)} N$, N^a are lapse and shift functions and the first term in (2.8) is non-vanishing if and only if (2.5) is invertible. Then $N_I C^I = N^a V_a + \tilde{N} C$.

My personal point of view is that in order to test 3+1 gravity one should actually start from the constraints (2.6) and (2.7) rather than from (2.4) and allow for general, in particular non-flat, connections although the induced 2-metric on the 2-dimensional slice is then in general singular. This is because in 3+1 gravity the first task in the quantization programme is the solution of the constraints and therefore any model should mirror the algebraic form of the constraints as closely as possible. Further, one quantizes 3+1 gravity in the connection representation and thus the state functional will in general have support on non-flat connections.

There has already been done some work in that direction ([2]) : the authors of that paper show that 2 large classes of solutions to the vector and scalar constraint in this ‘degenerate’ sector allow for a reformulation of (2.4) such that one has the vector constraint and either 1) that the magnetic field B^I is null or 2) that the 2 internal vectors E^1_I, E^2_I are colinear. However, since no closed solution to 2+1 gravity for the degenerate sector is known yet, we consider it more appropriate for the present purpose to proceed with the non-degenerate (or Witten-) sector for which the connection is constrained to be flat.

There is still another, quite important, difference between 2+1 gravity and 3+1 gravity : in the 2+1 case the connection is manifestly real whereas in the 3+1 case it is genuinely complex, in general. Since the reality conditions play a major role in the process of selecting an inner product as outlined in earlier lectures (compare those of Giulini, Hajicek and Rendall) we expect that the inner products of the two theories will not be closely related to each other.

To complete the canonical formulation, we have to choose the topology of the initial data hypersurface Σ. In order to avoid technical issues that have to do with the choice of function spaces to which the fields belong (essentially, a choice of fall-off properties at infinity) we will choose a closed topology without boundary as is common in the literature ([3]). The classification of these topologies is well-known. The characterizing parameter is the genus g (number of handles) of Σ.

We will choose later the case of $(g=1)$ (torus) since in this case the quantum theory can be constructed in closed form. We will largely follow ([4]) in the sequel.

2.2 The reduced phase space

We will quantize the present model via the reduced phase space approach, that is, we will determine the gauge invariant information of the phase space before quantizing.

Up to a small degeneracy ([5]) that arises for non-compact gauge groups, the set of traces of the holonomy

$$T^0_\alpha := \text{tr}[h_\alpha[A](t)] := \text{tr}[\mathcal{P} \exp(\oint_\alpha A)]$$

(2.9)

is a good coordinate for the reduced configuration space with respect to the gauge constraint. Here, α is any loop (i.e. an embedding of the circle into Σ), \mathcal{P} means path-ordering and the trace is taken with respect to the 2-dimensional fundamental representation of
SU(1,1) (thereby exploiting that the Lie algebras su(1,1) and so(1,2) are isomorphic). A suitable basis of su(1,1) is given by

\[
\begin{align*}
\tau_0 &:= -\frac{i}{2}\sigma_3, \quad \tau_1 := \frac{1}{2}\sigma_1, \quad \tau_2 := \frac{1}{2}\sigma_2
\end{align*}
\]

where \(\sigma_I\) are the usual Pauli matrices (the index I is 0,1,2) with respect to which the structure constants are given by \(\epsilon_{IJ}^K\). The holonomy itself depends on the starting point \(\alpha(t)\) of the loop (t ranges from 0 to 1 (to be identified) in our choice of parametrization) however the \(T^0\)’s are independent of the starting point. The reason why (2.9) is SU(1,1) invariant (even under large, rather than infinitesimal SU(1,1) transformations) is that the holonomy is conjugated by a gauge transformation \(U\) which drops out under the trace. The \(T^0\)’s are even invariant under the gauge transformations generated by the constraints \(C^I\) because \(C^I\) are independent of the momenta so that the Poisson bracket \(\{T^0, \int_{\Sigma} d^2x N^I C^I\}\) vanishes. Accordingly, \(T^0\) is a Dirac observable by definition. Next, we need to capture gauge invariant information about the momenta. As is suggested by the construction of the loop variables in the 3+1 case (compare Brügmann’s lectures) we consider the ‘smeared’ version of the so-called \(T^1\) variables:

\[
T^1_\alpha := \int_0^1 ds \dot{\alpha}^b(s) \epsilon_{ab} \text{tr}[E^a(\alpha(s))h_A(A)(s)].
\]

Since \(E^a = E^a_I\tau^I\) transforms according to the adjoint representation of SU(1,1), these variables are manifestly gauge invariant. The crucial step is to check its behaviour when taking the Poisson bracket with respect to the flatness constraint. We find

\[
\{T^1_\alpha, \int_{\Sigma} d^2x N^I B^I\} = \int_0^1 ds \dot{\alpha}^a(s) \text{tr}[(\tau_I h_A(A(s))][D_aN^I(\alpha(s))] = \lim_{t \to 0} \frac{1}{t}\{T^0_\alpha[A + tDN] - T^0_\alpha[A]\} = 0
\]

because \(T^0\) is gauge invariant and \(A^I_a \to A^I_a + tD_aN^I\) is an infinitesimal gauge transformation. Hence the \(T^1\)’s are also Dirac observables. Finally, again referring to [4], we learn that up to a small degeneracy the \(T^0, T^1\) capture all the information on the reduced phase space.

On the constraint surface, both Dirac observables have support only on flat connections. It follows that \(T^1_\alpha\) only depends on the homotopy class of the loop \(\alpha\), denoted \([\alpha]\), when restricted to the constraint surface. This can be seen as follows: deform the loop \(\alpha\) infinitesimally to get a new loop \(\alpha’\). It then follows from the Ambrose-Singer theorem (e.g. [3]) that \(T^0_\alpha - T^0_{\alpha'}\) can be expanded in positive powers of coefficients of the curvature of \(A^I_a\) which vanishes on the constraint surface. Therefore, \(T^0_\alpha\) is (weakly) nontrivial only if \(\alpha\) is not contractible. The structure of the reduced phase space will therefore be largely governed by the choice of genus which determines the dimension of the homotopy group of \(\Sigma\).

Choose a basepoint * in \(\Sigma\) and consider all loops starting and ending at *. The composition of loops equips this set of loops with the structure of a semigroup (it is not a group since \(\alpha \circ \alpha^{-1} \neq *\), the trivial loop, and \(\alpha^{-1}\) is the loop \(\alpha\) traversed in opposite
direction). However, \(h_\alpha h_{\alpha^{-1}} = 1 \). Thus, when identifying loops \(\alpha, \beta \) according to the rule \(\alpha \approx \beta \) iff \(h_\alpha(h_\beta)^{-1} = 1 \) we get a group homomorphism
\[
\alpha \rightarrow h_\alpha[A] \text{ such that } h_{\alpha^{-1}} = (h_\alpha)^{-1}
\]
(2.13)
from the so constructed group of loops modulo \(\approx \) (called the hoop group) into SU(1,1) for any connection \(A \).

Now, as derived above, the holonomy actually only depends on the homotopy class of the hoop \(\alpha \), that is \(h_\alpha = h_\alpha[\alpha] \). Therefore, we obtain a homomorphism from the homotopy group of loops (called the set of equitopic hoops in \(\mathbb{H} \)) into SU(1,1).

We now make use of the following fact (\cite{7}, Barrett’s theorem): there is a bijection between (smooth, in Barret’s topology) homomorphisms from the group of hoops into the gauge group under consideration and (smooth, in the usual sense of smooth functions) connections of the associated principal fibre bundle up to gauge equivalence (that means that we have only a one to one correspondence between homomorphisms and gauge equivalence classes of connections). Accordingly, we may think from now on of (the gauge equivalence class of) a given connection as given by the set of all possible smooth homomorphisms \(h_\alpha \) from the fundamental group \(\pi_1(\Sigma) \) of the hypersurface into SU(1,1).

Up to now, the discussion was valid for arbitrary genus. We now specialize to the torus. Exploiting that the homotopy group of the torus is abelian (in terms of generators and relations, for genus \(g \) the homotopy group consists of \(2g \) generators and one relation), compare \(\mathbb{I} \), we have that for any flat connection \(A \) the holonomies of 2 hoops commute:
\[
h_\alpha h_\beta = h_i[\alpha][\beta] = h_i[\beta][\alpha] = h_\beta h_\alpha
\]
(2.14)
which is only possible if for any flat \(A \) all the \(h_\alpha[A] \) lie in the same abelian subgroup of SU(1,1). We conclude that the homomorphism therefore must take the form \(h_\alpha = \pm \exp(a(\alpha)t^I\tau_I) \) where \(a(\alpha) \) is some real number depending on the loop \(\alpha \) and \(t^I \) is some constant (loop-independent) internal vector. The 2 possible signs of the exponential capture the fact that in SU(1,1) not every group element can be written as the exponential of an element of the Lie algebra. This is due to the fact that the group element \(U = -I \) can be written in such a way only if the vector \(t^I \) is timelike : \(-I = \exp(\tau_I t^I 2\pi)\).

Let us write down, for illustrative reasons, a connection in a particular gauge such that we get the above homomorphism with the positive sign:
\[
A^i_a(x) = f^i_a(x)t^I. \quad \text{The flatness condition shows that } f \text{ is a closed one form. It can therefore be labelled by the cohomology class to which it belongs. The } 2 \text{ generators of the first cohomology group of } \Sigma \text{ are just the two angular coordinates } x^i, i = 1, 2 \text{ of the torus such that up to a total differential } f^i_a = a_i x^i_a \text{ and } a_i \text{ are real numbers.}
\]
Explicitly we compute
\[
h_\alpha[A] = \exp(t^I \tau_I a_i \int_{\alpha} dx^i)
\]
(2.15)
which under a SU(1,1) transformation \(U : \Sigma \rightarrow SU(1,1) \) becomes
\[
h_\alpha[A] \rightarrow U(\ast)h_\alpha[A]U^{-1}(\ast) = \exp(t^I U(\ast)\tau_I U^{-1}(\ast)a_i \int_{\alpha} dx^i)
\]
that is, the internal vector \(t^I \) undergoes a constant (since \(U(\ast) \) only depends on the basepoint \(\ast \)) gauge transformation thereby preserving only its timelike, spacelike or null
Note that we could choose the function f in $A^t_\alpha = f_\alpha t^I$ in such a way along the loop α that it is smooth everywhere, vanishing at the parameter values 0 and $1/2$ and so that t^I is a constant timelike vector on the first half of the loop and a constant spacelike vector on the second half of the loop while $\int_0^{1/2} dt f(\alpha(t)) = 2\pi$. Then the holonomy of that connection is still of the general form $\pm \exp(a(\alpha)T_I t^I)$ and there are indeed connections that accommodate for both signs.

Returning to the general case, in order to characterize our homomorphism completely it is sufficient to give the image of the two generators $[\alpha_i]$ of the homotopy group $\pi_1(T^2) = Z \times Z$. This is given by either $+ \exp(a_i T_I t^I)$ or $- \exp(a_i T_I t^I)$ where a_i are again two real numbers.

Let us choose standard internal vectors with norm, respectively, $\pm 1, 0$ in the spacelike, timelike or null sector respectively. In the non-spacelike case these can also be taken to be future directed while in the spacelike case this concept is not gauge invariant.

We now want to divide out by the gauge transformations generated by $U(\ast) \in SU(1, 1)$ to obtain the physically relevant range of the 2 real numbers a_i. Given a pair a_i, t^I one can show that by a SU(1,1) gauge transformation one can get another pair b_i, s^I such that in case that t^I is

a) timelike : $b_i = a_i$ and t^I is any normalized future directed timelike vector,
b) spacelike : $b_i = \pm a_i$ and t^I is any normalized spacelike vector and
c) null : $b_i = sa_i$ and t^I is any future directed null vector.

So we see that t^I is pure gauge up to its causal characterization and that in the timelike, spacelike and null regime respectively, the space coordinatized by the a_i is topologically $S^1 \times S^1$, $(R^1 \times R^1)/Z_2$ and S^1 respectively (to see this in the timelike case, observe that the holonomy is given then up to a sign in terms of sines and cosines).

Another way to see this is by explicit calculation of the exponential part of the homomorphism

$$\exp(a T_I t^I) = \begin{cases}
\cosh(a/2)1 + t^I T_I \sinh(a/2) & : \text{spacelike sector} \\
\cos(a/2)1 + t^I T_I \sin(a/2) & : \text{timelike sector} \\
1 + t^I T_I a & : \text{null sector}
\end{cases}$$

(2.16)

(where we may think of a as $a = a_i \int_0^1 da^I$ in the above mentioned gauge). Taking the trace we infer that the gauge invariant information captured by the exponential part of the holonomy is given by, for the spacelike sector in $a_i \in R^2/Z_2$, for the timelike sector in $a_i \in T^2$ and for the null sector only the angle between a_1, a_2 is gauge invariant since t^I gets not only rotated but also scaled by a positive scale factor so that the reduced configuration space has then the topology of the circle S^1. Note that T^0 does not capture this piece of information in the null regime (\([5]\)). We are not interested in the null regime in the sequel.

Now, let us invoke the piece of information that is captured by the sign of the homomorphism in the non timelike case. Obviously, 4 distinct assignments of signs to the 2 generators are possible, so we get 4 distinct copies of either R^2/Z_2 or S^1. These 4 copies are disconnected since there is no continuous way to get, say, a boost of type $(+, +)$ from a boost of type $(-, +)$.

Finally, we should observe that the timelike sector is connected to the two other causal
sectors at the zero connection. Hence this special point does not correspond to either of these sectors since the causal nature of the zero connection is degenerate. So one should discard this point from either of the three causal sectors to get finally the topology of the reduced configuration space as:

timelike: $T^2 - 0$, spacelike: $(R^2/Z_2 - 0) \times Z_4 \approx (R^2 - 0) \times Z_4$, null: $(S^1 - 0) \times Z_4$ and zero: 0. Thus, the reduced phase space is just the cotangent bundle over the disjoint union of these sectors of the reduced configuration space.

An interesting question is now which of these sectors corresponds to geometrodynamics, that is, such that the intrinsic 2-metric is nondegenerate and has euclidean signature. Here it should be stressed that the Witten formulation of 2+1 gravity differs tremendously from the geometrodynamical formulation: For instance, Witten shows ([1]) that we can write the action (2.2) as the action of a ISO(1,2) or ISU(1,1) Chern-Simons field theory whose connection $\omega_I = A^I_a \tau_I + e^I_a T_I$ (T_I are the generators of the translation subgroup of the Poincaré subgroup) is flat on shell. That means locally we can always gauge ω and in particular the triad to zero, corresponding to a vanishing (!) metric. In other words, the Witten constraints generate more general gauge transformations than only spacetime diffeomorphisms and issues like degeneracy and signature of the induced hypersurface become gauge dependent.

At this point the paper by Mess ([8]) should be mentioned. Mess shows that if one starts from the geometrodynamical formulation for the torus, i.e. a nondegenerate metric on a spacelike hypersurface, then the holonomies are either boosts or the identity map, which means that the associated connection is either spacelike or zero. The interested reader is referred to that paper and also to the papers by Louko and Marolf ([9]).

2.3 Quantization

As outlined in reference [4], the quantization for the timelike sector is much easier than for the spacelike and null sector. In fact, it turns out that the kernel of the naively defined loop transform (compare Brügmann’s lectures) for the spacelike sector is dense in the Hilbert space that is defined by the loop algebra. Although the authors of that paper suggest a way how to define a loop transform for the spacelike sector such that it becomes an isomorphism between the loop representation and the connection representation, the techniques involved would veil the main ideas of the formalism and so we stick to the timelike sector. This, again, does not simulate the 3+1 case because there the T^0’s are unbounded.

Let us start with the construction of the loop representation. The idea of the loop representation is to use a non-canonical subalgebra of the Poisson-algebra as the basic set of classical variables that are to be quantized by demanding that the commutation relations among these variables (which in case of the loop representation are just the

\[e^I_a T_I \text{ are the generators of the translation subgroup of the Poincaré subgroup) is flat on shell. That means locally we can always gauge } \omega \text{ and in particular the triad to zero, corresponding to a vanishing (!) metric. In other words, the Witten constraints generate more general gauge transformations than only spacetime diffeomorphisms and issues like degeneracy and signature of the induced hypersurface become gauge dependent.} \]

\[\text{At this point the paper by Mess ([8]) should be mentioned. Mess shows that if one starts} \]

\[\text{from the geometrodynamical formulation for the torus, i.e. a nondegenerate metric on a} \]

\[\text{spacelike hypersurface, then the holonomies are either boosts or the identity map, which} \]

\[\text{means that the associated connection is either spacelike or zero. The interested reader is} \]

\[\text{referred to that paper and also to the papers by Louko and Marolf ([9]).} \]

\[\text{2.3 Quantization} \]

\[\text{As outlined in reference [4], the quantization for the timelike sector is much easier than} \]

\[\text{for the spacelike and null sector. In fact, it turns out that the kernel of the naively defined} \]

\[\text{loop transform (compare Brügmann’s lectures) for the spacelike sector is dense in the} \]

\[\text{Hilbert space that is defined by the loop algebra. Although the authors of that paper} \]

\[\text{suggest a way how to define a loop transform for the spacelike sector such that it becomes} \]

\[\text{an isomorphism between the loop representation and the connection representation, the} \]

\[\text{techniques involved would veil the main ideas of the formalism and so we stick to the} \]

\[\text{timelike sector. This, again, does not simulate the 3+1 case because there the } T^0 \text{’s are} \]

\[\text{unbounded.} \]

\[\text{Let us start with the construction of the loop representation. The idea of the loop} \]

\[\text{representation is to use a non-canonical subalgebra of the Poisson-algebra as the basic} \]

\[\text{set of classical variables that are to be quantized by demanding that the commutation} \]

\[\text{relations among these variables (which in case of the loop representation are just the} \]

\[\text{2essentially, these authors show that there is a dense subspace of the connection representation w.r.t.} \]

\[\text{which the naively defined loop transform (compare also (2.21)) is faithful; they then Cauchy complete} \]

\[\text{this image w.r.t. the inner product that coincides with that for the connection representation in the pre-} \]

\[\text{image; the two representations are thus unitarily equivalent by construction, for still another procedure} \]

\[\text{refer to [10].} \]
T^0, T^1's) mirror those of the classical analogues. By doing that, one gets rid of the connections and the electric fields. They should, however, be reconstructed by means of the so-called loop transform (refer, for example, to [11] for more details). Let us now make these ideas concrete.

First, we need to compute the classical Poisson algebra among the T^0, T^1 induced by that for E_I, A^I_q. We obtain

$$\{T^0_\alpha, T^0_\beta\} = 0$$
$$\{T^0_\alpha, T^1_\beta\} = \sum_i \Delta_i(\alpha, \beta)[T^0_{\alpha_0, \beta} - T^0_{\alpha_0, \beta^{-1}}]$$
$$\{T^1_\alpha, T^1_\beta\} = \sum_i \Delta_i(\alpha, \beta)[T^1_{\alpha_0, \beta} - T^1_{\alpha_0, \beta^{-1}}]$$

(2.17)

where i labels points of intersection of the two loops involved, \circ_i denotes composition at the intersection point and we have defined the quantity Δ_i which takes values in $\{\pm 1\}$ by

$$\sum_i \Delta_i(\alpha, \beta) := \int_{\alpha \times \beta} dx \wedge dy \delta^{(2)}(x, y).$$

(2.18)

Note also that the T variables are classically real.

We now quantize this algebra by demanding that the commutators among the T's produce $i\hbar$ times the right hand side of the Poisson brackets and by imposing the following *-relations with respect to an abstract involution $*: (\hat{T}^0)^* = \hat{T}^0, (\hat{T}^1)^* = \hat{T}^1$. We choose the loop representation, that is, we represent the T operators on a complex vector space of functions f of loops. Secretely, one should think of such a function as arising from a function \tilde{f} of connections via a heuristic loop transform

$$f(\{\beta\}) = \int_{\mathcal{A}/\mathcal{G}} d\mu[A] \prod_{\beta \in \{\beta\}} T^0_\beta[A] \tilde{f}(A)$$

(2.19)

where $\{\beta\}$ is a set of single loops β and the integration domain is the moduli space \mathcal{A}/\mathcal{G} of (flat) connections modulo gauge transformations.

The analysis is now simplified by the fact that for any subgroup of $SL(2,\mathbb{C})$ that is generated by some real form of $sl(2,\mathbb{C})$ there holds the $SL(2,\mathbb{C})$ Mandelstam identity

$$T^0_{\alpha_0, \beta} + T^0_{\alpha_0, \beta^{-1}} = T^1_\alpha \hat{T}^0_\beta$$

(2.20)

which implies that any analytic function of traces of holonomies can be written as a linear combination of traces of holonomies for single loops. We therefore need only to define the action of our loop operators on functions of single loops :

$$f(\alpha) = \int_{\mathcal{A}/\mathcal{G}} d\mu[A] T^0_\alpha[A] \tilde{f}(A).$$

(2.21)

It turns out that one can implement the algebra (2.17) then as follows

$$(\hat{T}^0_\alpha f)(\beta) := f(\alpha \circ \beta) + f(\alpha \circ \beta^{-1})$$
$$(\hat{T}^1_\alpha f)(\beta) := i\hbar \sum_i \Delta_i(\alpha, \beta)[f(\alpha \circ_i \beta) - f(\alpha \circ_i \beta^{-1})]$$

(2.22)
where the composition \circ is at the basepoint.

In order to make sure that the T observables ‘come from a connection’, we have to impose further the following identities on our representation space

\begin{align*}
\text{i)} & \quad \hat{T}^1_\alpha = \hat{T}^1_{\alpha^{-1}}, \quad \hat{T}^1_{\alpha\beta} = \hat{T}^1_{\beta\alpha} \\
\text{ii)} & \quad \hat{T}^0_{\alpha\beta} + \hat{T}^0_{\alpha\beta^{-1}} = \hat{T}^0_\alpha \hat{T}^0_\beta \\
\text{iii)} & \quad \hat{T}^0_* = 2, \quad \hat{T}^1_* = 0.
\end{align*}

(2.23)

It is easy to check that the analogue of i) for T^0 follows from the SL(2,C) Mandelstam identity ii).

Thus we restrict the representation space further such that the relations i)-iii) hold. One can check that it is enough to demand that (a_i are real quantities)

\[\sum_i a_i f(\alpha_i \circ \beta) = 0 \quad \text{whenever} \quad \sum_i a_i T^0_{\alpha_i} = 0. \]

(2.24)

This, again, follows trivially from the existence of a loop transform (2.19).

Next, we restrict the loop algebra and its representation space to depend only on homotopy classes. For the torus this amounts to the fact that T-operators and the functions of our complex vector space depend only on the winding numbers $n_1, n_2 \in \mathbb{Z}$ of the 2 generators of the abelian fundamental group of Σ. If we denote by $[\alpha_i], \ i = 1, 2$ the generators of $\pi_1(\Sigma)$ then the action (2.22) becomes

\begin{align*}
(\hat{T}^0_{\alpha_1} f)(n_1, n_2) &= f(n_1 + 1, n_2) + f(n_1 - 1, n_2) \\
(\hat{T}^1_{\alpha_1} f)(n_1, n_2) &= \text{i}\hbar n_2 [f(n_1 + 1, n_2) - f(n_1 - 1, n_2)]
\end{align*}

(2.25)

where we have made use of the relation

\[f(n_1, n_2) = f(-n_1, -n_2), \quad (n_1, n_2) \sim (n'_1, n'_2) \iff (n'_1, n'_2) = (-n_1, -n_2) \]

(2.26)

which follows from (2.23). The action of the T operators for the other homotopy class is analogous. The reason for the factor of n_2 in the second line of (2.25) is that any representative of $[\alpha_1]$ will intersect any representative of $[\alpha_1]^{n_1}[\alpha_2]^{n_2}$ precisely $|n_2|$ times with the orientation of this intersection captured by the sign of n_2.

The final task is now to find an inner product such that our basic operators become self-adjoint. The obvious choice is

\[\langle f, g \rangle := \sum_{Z^2/\sim} \bar{f}(n_1, n_2)g(n_1, n_2) \]

(2.27)

and obviously accomplishes our aim.

\section*{2.4 Loop transform}

In order to explicitely construct the loop transform of the present model, we need also the connection representation.
Physical states depend only on the moduli space of flat connections modulo gauge transformations, labelled by the two parameters \(a_1, a_2 \in [-2\pi, 2\pi] \). We realize our basic operators in the connection representation as follows

\[
(\hat{T}_{\alpha}^0 f)(a_1, a_2) := 2 \cos(a_i/2) f(a_1, a_2)
\]

\[
(\hat{T}_{\alpha}^1 f)(a_1, a_2) := -4i \hbar \sin(a_i/2) \frac{\partial f}{\partial a_j}(a_1, a_2), \ i \neq j
\]

(2.28)

and it is straightforward to check that the commutation relations (2.17) are satisfied.

An inner product that makes these operators self-adjoint can be constructed as follows: we make the ansatz

\[
(f, g) := \int_{[-2\pi, 2\pi]^2} da_1 \wedge da_2 \rho(a_1, a_2) \bar{f}(a_1, a_2) g(a_1, a_2)
\]

(2.29)

and try to find a weight factor \(\rho \) such that the \(T \) operators are self-adjoint. We find up to a multiplicative positive constant \(\rho = 1 \).

Alternatively we may apply the following procedure which is appropriate whenever one is confronted with a non-canonical algebra of basic operators (the interested reader is referred to [13]):

Choose some Riemannian background metric on the torus and choose physical states as densities of weight \(1/2 \). Define the vector fields

\[
v_i := 4 \sin(a_i/2) \frac{\partial}{\partial a_j}
\]

(2.30)

and define the action of the \(T \) observables as in (2.28) on half-densities except that

\[
\hat{T}_{\alpha}^1 \bar{f} := -i \hbar \mathcal{L}_{v_i} \bar{f} \text{ where } \mathcal{L} \text{ denotes the Lie derivative.}
\]

It is then easy to check that the scalar product (2.29) with \(\rho = 1 \) is well-defined (that is, frame independent) and that all operators are self-adjoint with respect to it.

We are now finally in the position to look at the loop transform. Taking the Lebesgue measure on the torus as the measure \(\mu \) in (2.21) we obtain

\[
f(n_1, n_2) = \int_{[-2\pi, 2\pi]^2} d^2 a \cos([n_1 a_1 + n_2 a_2]/2) \bar{f}(a_1, a_2)
\]

(2.31)

and one can explicitely check that any of the elementary operators \(\hat{O} \) in (2.25) for the loop representation arises from the operators \(\hat{O} \) in (2.28) for the connection representation via the loop transform, that is

\[
(\hat{O} f)(\alpha) = \int_{A/G} d\mu(A) T_{\alpha}^0(A)(\hat{O} \bar{f})(A)
\]

(2.32)

Note that the space of functions which are either odd or even under reflection of the \(a_i \) is left invariant under the action of the \(T \) operators, so the representation space splits into 2 irreducible representations. It follows that the loop transformation (2.31) is a representation isomorphism for the even sector and has the odd sector as its kernel. Since for the even sector (2.31) is just the Fourier transform, it follows that the Hilbert spaces that we have constructed are unitarily equivalent, that is \(<f, g> = (\bar{f}, \bar{g}) \).
2.5 Discussion

The model of 2+1 pure gravity is a dimensional reduction of 3+1 gravity. It can be cast into a form such that the algebraic structure of the constraints is very similar to that of the full theory. The gauge group, SU(1,1), is not compact and therefore simulates the fact that the traced holonomy for the complex Ashtekar connection in 3+1 gravity is an unbounded function (in the topology of complex numbers). Both, the connection representation and the loop representation, together with the loop transform can be constructed in closed form. This gives one some confidence that a loop representation of the 3+1 theory can be constructed as well.

These were the positive remarks. However, sharp criticism is in order:

The 2+1 theory is manifestly real whereas the 3+1 case is genuinely complex. Since it is fair to say that some of the major difficulties of the physical theory rest in the non-trivial reality structure, one should not expect that the constructions that were used in the model are available in the 3+1 case. This has nothing to do with the fact that we only quantized the sector in which the \(T^0\)'s are bounded because, as mentioned, one can take care of the spacelike sector. Rather what we point out here is that a genuinely complex connection gives rise to additional difficulties, for example the \(T^0, T^1\) Poisson algebra is not even a \(*\)-algebra in this case.

Next, in the above analysis we restricted ourselves to the Witten sector. Thus, we did not use the form of the constraints that actually equals that of 3+1 gravity. The connection of 3+1 gravity is not flat in general, the theory is not topological and, most seriously, maybe the major difficulty of the full theory is that the scalar constraint is quadratic in the momenta. However, we used only constraints that are linear in or independent of the momenta. Accordingly, 2+1 gravity neither accounts for this issue.

Last but not least, the fact that the reduced phase space is finite dimensional is a severe deviation from the 3+1 case because all the divergencies of quantum field theory occur due to the infinite number of degrees of freedom. We were thus unable to deal with this technical problem.

3 Spherically symmetric gravity

3.1 Canonical formulation

The model of spherically symmetric gravity arises from a Killing reduction of 3+1 gravity. We will follow largely reference \[14\] in the sequel.

We first summarize the Killing reduction first given in \[15\].

One imposes spherical symmetry on the geometrodynamical phase space by requiring that the induced metric on the Cauchy hypersurface \(\Sigma\) (foliated by SO(3) orbits) and its extrinsic curvature be Lie-annihilated by three Killing vector fields \(K_i\) which form an SO(3) subalgebra of the Lie algebra of all vector fields on \(\Sigma\). In case of the Ashtekar phase space, one has to look for analogous conditions for the triad and the Ashtekar connection.

\[3\]

In order to make contact with ref. \[15\], one has to exchange the labels I=2 and I=3 and to replace \(A_3 + \sqrt{2}\) there by \(A_3\) in order to get \(A_3\) here.

12
Let us start with the triad. We have

\[\mathcal{L}_{K_l} q_{ab} = 2\delta_{ij} e^i_a \mathcal{L}_{K_l} e^j_b = 0 \]

and the most general solution of this equation is given by

\[\mathcal{L}_{K_l} e^i_a = \epsilon^i_{lk} e^k_a , \] (3.1)

that is, a rotation of the triad in the tangent space in either of the three Killing directions is compensated by a corresponding rotation in the internal space.

The idea is now as follows: obtain the general solution of (3.1). This is then the general form of a 1-form that transforms according to the defining representation of SO(3). Since the defining and the adjoint representation of SO(3) are isomorphic, the solution of (3.1) is also the general form of an so(3)-valued 1-form. Finally, since the three infinitesimal internal rotations parametrized by \(\Lambda^i_l = \delta^i_l \) involved in (3.1) are global ones, the inhomogenous term in the transformation law of the (pull-back to the base manifold of a) connection \(\omega^i_a \rightarrow -\partial_a \Lambda^i + \epsilon_{ijk} \Lambda^j \omega^k_a \) drops out so that the solution to (3.1) also gives us the general form of a SO(3)-connection. To obtain then the general form of a SO(3) valued vector or vector density, one simply contracts the solution to (3.1) with \(q^{ab} \) times an appropriate power of \(\sqrt{\det(q)} \) since the three-metric is Lie-derived by the Killing-fields.

The form of \(q_{ab} \) is already known from the solution to (3.1). We will shortly sketch the calculations. Fix a local frame \((r, \theta, \phi)\) on \(\Sigma \) where \(r \) is a local radial coordinate and \(\theta, \phi \) are global angular coordinates. We can then write the rotational Killing fields as follows (compare any textbook in quantum mechanics):

\[-K_1 = -\sin(\phi) \partial_\theta - \cot(\theta) \cos(\phi) \partial_\phi\]
\[-K_2 = \cos(\phi) \partial_\theta - \cot(\theta) \sin(\phi) \partial_\phi\]
\[-K_3 = \partial_\phi\]

and plugging these expressions into (3.1) we obtain a system of partial differential equations of first order. One solves it for the partial derivatives of \(e^i_a \) wrt \(\theta, \phi \) and after some algebraic manipulations one sees that one can decouple the equations. The final, unique solution is then

\[(e^i_r, e^i_\theta, e^i_\phi) = (f n^i_r, g n^i_\theta + h n^i_\phi, g n^i_\phi - h n^i_\theta)\]

where \(n^i_a \) is the standard orthonormal base in internal space (that is \(n^i_r = (\sin(\theta) \cos(\phi), \sin(\theta) \sin(\phi), \cos(\theta)) \), \(n^i_\theta = \partial_\theta n^i_r \), \(\sin(\theta) n^i_\phi = \partial_\phi n^i_r \)) and \(f, g \) and \(h \) are arbitrary real functions of the radial \(r \) and time \(t \) variable only. From this we conclude, as expected, the general form of the 3-metric

\[q_{ab} = q_{rr}(r,t)r_a r_b + q_{\theta\theta}(r,t)h_{ab} \] (3.2)

where \(h_{ab} \) is the standard line element on the 2-sphere.

Inverting (3.2), computing \(E^a_i = \sqrt{\det(q)} q^{ab} e^b_i \) we see that we can parametrize the general form of the conjugate variables of the Ashtekar phase space as follows (the numerical
factors are chosen for convenience)

\[
(E_i^r, E_i^\theta, E_i^\phi) = (E_1 n_r^i \sin(\theta), \frac{\sin(\theta)}{\sqrt{2}}(E_2 n_\theta^i + E_3 n_\phi^i), \frac{1}{\sqrt{2}}(E_2 n_\phi^i - E_3 n_\theta^i)) \tag{3.3}
\]

\[
(A_i^r, A_i^\theta, A_i^\phi) = (A_1 n_r^i, \frac{1}{\sqrt{2}}(A_2 n_\theta^i + (A_3 - \sqrt{2})n_\phi^i), \frac{\sin(\theta)}{\sqrt{2}}(A_2 n_\phi^i - (A_3 - \sqrt{2})n_\theta^i)) .
\tag{3.4}
\]

The arbitrary complex functions \(E^I = E^I(t, r), \ A_I = A_I(t, r); I = 1, 2, 3 \) depend on \(t \) and \(r \) only. One now simply inserts this into Ashtekar’s action of full gravity (compare Giulini’s lectures), integrates out the angles (in particular the factor \(\sin \theta \) contained in \(\sim \) drops out) and finally ends up with the following action

\[
S = \frac{4\pi}{\kappa} \int_R d\tau \left[\int_{\Sigma} d^2r [-iA_1 E^I - i\Lambda G - iN^V + N C] + b \right) . \tag{3.5}
\]

The explanation of the various quantities involved in (3.5) is as follows:

All quantities only depend on \(r, t \) (expanding all quantities in terms of spherical functions, only the angle-independent terms survive after integrating over \(S^2 \)). The Lagrange multipliers and constraint functions are related to those of the full theory by \(\Lambda = \Lambda^i(n_r)^i, \sin(\theta)G = G_i(x)^i, \ N^r = N^a r_a, \sin(\theta)V = V a r_a, \ N = \sin(\theta)N_{full}, \ 2\sin^2(\theta)C = C_{full}; \ \kappa/8\pi \) is Newton’s constant.

The constraint functionals take the following form

\[
G = (E^1)’ + A_2 E^3 - A_3 E^2 : \text{Gauss constraint,} \tag{3.6}
\]

\[
V = B^2 E^3 - B^3 E^2 : \text{Vector constraint,} \tag{3.7}
\]

\[
C = \frac{1}{2}(E^2(2B^2 E^1 + B^1 E^2) + E^3(2B^3 E^1 + B^1 E^3)) : \text{Scalar constraint.} \tag{3.8}
\]

Here we have used the reduction to spherical symmetry of the magnetic fields \(B_i^a = 1/2\varepsilon^{abc}F_{ab} \) (where \(F \) denotes the field strength of the Ashtekar connection)

\[
(B_i^r, B_i^\theta, B_i^\phi) = (B_1 n_r^i \sin(\theta), \frac{\sin(\theta)}{\sqrt{2}}(B_2 n_\theta^i + B_3 n_\phi^i), \frac{1}{\sqrt{2}}(B_2 n_\phi^i - B_3 n_\theta^i)) \tag{3.9}
\]

and one can check that

\[
(B_1, B_2, B_3) = (\frac{1}{2}((A_2)^2 + (A_3)^2), (A_3)’ + A_1 A_2, - (A_2)’ + A_1 A_3) \tag{3.10}
\]

where a prime denotes differentiation with respect to \(r \).

Since we are interested in asymptotically flat topologies in contrast to the first model, there is also a boundary term \(b \) involved in the action which is to make the action functionally differentiable. It reads

\[
b = \int_{\partial\Sigma} iN^r (A_2 E^2 + A_3 E^3) + N(A_2 E^3 - (A_3 - \sqrt{2})E^2) E^1 \tag{3.11}
\]
and can be recognized as the sum of ADM momentum and energy. It is also obvious from
the action (3.5) that A_1, E^i form a canonical pair. With this boundary term we are able
to derive the following equations of motion

\[
\begin{align*}
\frac{d}{dt} A_1 &= i[-i\Lambda + \nabla (B^2 E^2 + B^3 E^3)], \\
\frac{d}{dt} A_2 &= i[-i\Lambda A_3 + iN^r B^3 + \tilde{\nabla} (B^2 E^1 + B^1 E^2)], \\
\frac{d}{dt} A_3 &= i[(+i\Lambda A_2 - iN^r B^2 + \tilde{\nabla} (B^3 E^1 + B^1 E^3)], \\
\frac{d}{dt} E^1 &= -i[-iN^r (A_2 E^3 - A_3 E^2) + \tilde{\nabla} (A_2 E^2 + A_3 E^3)E^1], \\
\frac{d}{dt} E^2 &= -i[i(\Lambda - N^r A_1) E^3 + i(N^r E^2)' + \tilde{\nabla} (A_1 E^1 E^2 + \frac{1}{2} EA_2) \\
&\quad + (\nabla E^1 E^3)',] \\
\frac{d}{dt} E^3 &= -i[-i(\Lambda - N^r A_1) E^2 + i(N^r E^3)' + \tilde{\nabla} (A_1 E^1 E^3 + \frac{1}{2} EA_3) \\
&\quad - (\nabla E^1 E^2)'].
\end{align*}
\]

We can also display the classical canonical constraint algebra (we abbreviate $f \circ g := \int_\Sigma dr f(r) g(r) ; \xi := V - A_1 \mathcal{G}$):

\[
\begin{align*}
\{A_1 \circ \mathcal{G}, A_2 \circ \mathcal{G}\} &= 0, \\
\{N \circ \xi, \Lambda \circ \mathcal{G}\} &= -i\Lambda A' \circ \mathcal{G}, \\
\{\nabla \circ H, \Lambda \circ \mathcal{G}\} &= 0, \\
\{M \circ \xi, N \circ \xi\} &= i(MN' - M'N) \circ \xi, \\
\{M \circ \xi, \nabla \circ H\} &= i(M\nabla' - M'\nabla) \circ H, \\
\{M \circ H, \nabla \circ H\} &= i(M\nabla' - M'\nabla) \circ (E^1)^2 H_x
\end{align*}
\]

and it is obvious that the model is still first class (recall Wipf’s lectures).

The set of equations (3.12) and (3.13) allow for the following interpretation:

The diffeomorphisms have been frozen to the r-direction, the internal rotations to the
n_r-direction. A_1 plays the role of an $O(2)$ gauge potential, E^1 is $O(2)$-invariant while
the vectors (E^2, E^3), (A_2, A_3) transform according to the defining representation of $O(2)$.

A_1, E^2, E^3 are densities of weight one in one dimension, while E^1, A_2, A_3 are scalars.

For the discussion of the reality conditions the reduction to spherical symmetry of the
spin connection is needed:

\[
\begin{align*}
(G^i_r, G^i_\theta, G^i_\phi) &= (\Gamma^i_n, \sqrt{\frac{1}{2}} \Gamma^i_2 n^i_n + (\Gamma^i_3 - \sqrt{2})n^i_\phi), \\
&\sqrt{\frac{1}{2}} (\Gamma^i_2 n^i_\phi - (\Gamma^i_3 - \sqrt{2})n^i_\phi) \sin(\theta)), \\
(\Gamma_1, \Gamma_2, \Gamma_3) &= (-\beta', -(E^1)^3 E^2 E^3, (E^1)\frac{E^2}{E}, (E^1)\frac{E^3}{E}), \quad \beta' = \frac{E^2 E^3 - E^3 E^2}{E}
\end{align*}
\]

\[15\]
and we have introduced the following quantities:

\[\alpha := \arctan \left(\frac{A_3}{A_2} \right), \quad \beta := \arctan \left(\frac{E_3}{E_2} \right), \quad A := (A_2)^2 + (A_3)^2, \quad E := (E_2)^2 + (E_3)^2. \] (3.16)

The metric is given, in these variables, by

\[q_{ab} = \frac{E}{2E} r_{a r_b} + E^4 h_{ab} . \] (3.17)

Then the reality conditions become simply

\[E^I = \text{real and } A^I - \Gamma^I = \text{imaginary.} \] (3.18)

To complete the Hamiltonian formulation we have to agree on the topology of the 1-dimensional hypersurface \(\Sigma \) as well as on the fall-off properties of the fields at spatial infinity.

First note that the 3-dimensional hypersurface is related to our 1-dimensional one by \(\Sigma^{(3)} = \Sigma \times S^2 \). Now we can choose \(\Sigma \) either to be closed or open. That is, we choose its topology to be either \(S^1 \), the circle, or \(R^1 \), the real line. In the first case we are dealing with a compactified wormhole, in the second with a black hole with two asymptotic regions. One can, at the price of inventing additional assumptions, generalize to more than 2 asymptotic ends ([14]) but we refrain from doing that here for the sake of brevity. In the asymptotically flat case we also have to deal with boundary conditions on the fields.

First, we choose the hypersurface label \(r \in [-\infty, \infty] \) to become asymptotically \(r^2 = (x^1)^2 + (x^2)^2 + (x^3)^2 \) with respect to an asymptotical cartesian frame \(\{ x^a \} \) which means that it is appropriate to describe fall-off properties in powers of \(r \).

Next, following reference [16], we adopt the requirements of that paper to our situation. The guiding principle for choosing fall-off properties are:

1) finiteness of the symplectic structure,
2) finiteness and functional differentiability of the constraint functionals.

Requirement 2) further depends on the set of asymptotic symmetries that one is willing to allow.

In [13] (which is based on the old (ADM) variables) these requirements 1) and 2) including asymptotical Poincare transformations can be satisfied as follows:

\[q_{ab} \to \delta_{ab} + \frac{f_{ab}(x^c/r, t)}{r} + O(1/r^2) \]

\[p^{ab} \to \frac{k^{ab}(x^c/r, t)}{r^2} + O(1/r^3) \] (3.19)
as \(r \to \infty \). Furthermore, it must be required that the functions \(f_{ab} \) and \(k^{ab} \) respectively are even and odd respectively under reflections of the asymptotically flat frame.

It is clear that for spherical symmetry we are not able to impose the above parity conditions because the reduction to spherical symmetry excludes all modes of the fields (regarded as expanded into spherical harmonics) which have angular momentum different
from zero. Hence we have to modify the strategy slightly.
Comparing the spherically symmetric metric (3.17) with the Euclidean metric in spherical coordinates
\[\delta_{ab} = r_{,a} r_{,b} + r^2 h_{ab}, \]
we conclude the following fall-off properties:

\[(E^1, E^2, E^3) \to (r^2[1 + \frac{f^1(t)}{r} + O(1/r^2)], \]
\[\sqrt{2}r[E^2 + \frac{f^2(t)}{r} + O(1/r^2)], \sqrt{2}r[E^3 + \frac{f^3(t)}{r} + O(1/r^2)] \]

(3.21)

whereby \((\bar{E}^2)^2 + (\bar{E}^3)^2 = 1\). Inserting this into the formula \(A_i^a = \Gamma^a_i + iK^i_a\) (recall Giulini’s lecture), using (3.15), (3.19) and (3.3) one concludes that

\[(A_1, A_2, A_3 - \sqrt{2}) \to (\frac{a_1(t)}{r^2} + O(1/r^3), \frac{a_2(t)}{r} + O(1/r^2), \frac{a_3(t)}{r} + O(1/r^2)) \]

(3.22)

Since, as we noted before, there is no parity freedom left, the requirements 1) and 2) discussed above will not be satisfied yet. Let us explore what further restrictions are there to be imposed.

The symplectic structure on the large phase space can be read off from the action (we can drop the prefactor of the action for the case of pure gravity):

\[\Omega = \int_{\Sigma} dr \left[-i dE^I \wedge dA_I \right] \]
\[= \int_{\Sigma} dr \left[\frac{-i}{r^2} (da_1 \wedge df^1 + \sqrt{2}(da_2 \wedge df^2 + da_3 \wedge df^3)) + O(1/r^2) \right]. \]

(3.23)

Hence we can satisfy requirement 1) by restricting the variations to be such that

\[da_1 \wedge df^1 + \sqrt{2}(da_2 \wedge df^2 + da_3 \wedge df^3) = 0. \]

(3.24)

As for requirement 2) we first have to agree on the set of allowed symmetries at infinity. We want to incorporate only asymptotic translations. Why do we not consider asymptotic boosts of the 2-dimensional flat structure (rotations do not exist in 1 dimension anyway)? In the literature, one looks at Schwarzschild-solutions in arbitrarily boosted frames (see ref. [16], for example). However, these boosts are really boosts with respect to the 4-dimensional spacetime which violate spherical symmetry of the initial data. The 'boosts' that we were able to discuss here must be meant with respect to the effective 2-dimensional spacetime coordinatized by the variables \(r\) and \(t\) in order not to violate spherical symmetry, they are thus not physical anyway. But since we do not have this parity freedom at our disposal our 'boost' generator diverges. So we would have to impose much more restrictive fall-off conditions than above which, in particular, would exclude Schwarzschild configurations and for that reason we refrain from doing so.

The same is actually also true for asymptotic spatial translations: only radial translations preserve the spherical symmetry of the fields, that is, translations of the form \(x^a \to x^a + cx^a/r\) where \(c\) is a constant but these are then position-dependent (on the sphere)
and do not correspond to the translation subgroup of the Poincaré group. However, we will keep them for completeness sake. Obviously, we have then for symmetry transformations the following fall-off behaviour of the Lagrange multipliers:

\[(\Lambda, N^x, \mathcal{N}) \rightarrow \left(\frac{\text{const.}}{r^2} + O(1/r^3), \text{const.} + O(1/r), \frac{\text{const.}}{r^2} + O(1/r^3) \right) \]

(3.25) while for gauge transformations we require, for simplicity, that the Lagrange multipliers are of compact support.

We now compute the leading order behaviour of the integrands of the constraint functionals:

\[E \rightarrow 2r(1 - \bar{E}^2) + f^1 + \sqrt{2}(a_2 \bar{E}^3 - \sqrt{2}f^2 - \bar{E}^3a_3) + O(1/x) \]

(3.26) which becomes a finite and differentiable functional when imposing \(\bar{E}^2 = 1 \) i.e. \(\bar{E}^3 = 0 \).

Note that weakly (i.e. on the constraint surface) we have from the Gauss constraint at infinity

\[f^1 - 2f^2 - \sqrt{2}a_3 = 0. \]

(3.27)

It is convenient first to compute the asymptotic form of the magnetic fields

\[
\begin{align*}
B^1 & \rightarrow -\frac{\sqrt{2}a_3}{r} + O(1/r^2), \\
B^2 & \rightarrow \frac{a_3}{r^2} + O(1/r^3), \\
B^3 & \rightarrow \frac{a_2 + \sqrt{2}a_1}{r^2} + O(1/r^3)
\end{align*}
\]

(3.28)

to conclude for the vector constraint

\[V \rightarrow \sqrt{2} \frac{a_2 + \sqrt{2}a_1}{r} + O(1/r^2). \]

(3.29)

Hence we have to impose

\[a_2 + \sqrt{2}a_1 = 0 \]

(3.30)
in order to make this functional finite and differentiability can be achieved by adding the ADM-momentum. Finally, it is easy to see that with this restriction the scalar constraint functional is already finite and functionally differentiable when adding the ADM-energy.

Now it is possible to make the restriction that comes from requirement 1) more concrete. We have

\[
0 = da_1 \wedge df^1 + \sqrt{2}(da_2 \wedge df^2 + da_3 \wedge df^3) \\
= -\frac{1}{\sqrt{2}} da_2 \wedge d(f^1 - 2f^2) + \sqrt{2}da_3 \wedge df^3 \\
= -\frac{1}{\sqrt{2}} da_2 \wedge d(f^1 - 2f^2 - \sqrt{2}a_3) + da_3 \wedge d(\sqrt{2}f^3 + a_2).
\]

(3.31)

Note that the bracket of the 1st wedge product in the last line of (3.31) vanishes weakly according to (3.27). Hence it is consistent with the constraint equations to impose

\[\sqrt{2}f^3 + a_2 = 0. \]

(3.32)
This completes the analysis of the boundary conditions.
It is clear that the present model bears a strong resemblance to the full theory: the algebraic structure of the constraints is very similar, the reality conditions are non-trivial, the constraints are quadratic in the momenta.

3.2 Symplectic reduction

Let us first recall some basic facts from the theory of symplectic reduction (for an extensive treatment, see ref. [17] and [18]).

We showed in the previous section that the present model is a field theory with first class constraints. Let Γ, $\bar{\Gamma}$ and $\hat{\Gamma}$ denote the full phase space, its constraint surface (where the constraints are identically satisfied) and its reduced phase space (i.e. the constraint surface, but points in it are identified provided they are gauge related). The (local) existence of the latter follows from general theorems that are valid for first class systems.

Let $\iota : \bar{\Gamma} \to \Gamma$ and $\pi : \bar{\Gamma} \to \hat{\Gamma}$ (3.33)

denote the (local) imbedding and projection into the large phase space and onto the reduced phase space respectively. Call the symplectic structures on the 2 phase spaces Ω and $\hat{\Omega}$ respectively. Then the presymplectic structure on $\bar{\Gamma}$ is defined by the pull-backs

$$\pi^*\hat{\Omega} := \hat{\Omega} := \iota^*\Omega.$$ (3.34)

(More precisely, in practice one computes the constraint surface and thus obtains the imbedding. One then defines the presymplectic structure by the pull-back under the imbedding. After that one computes the gauge orbits and obtains the projection. The reduced symplectic structure is then defined by the pull-back under the projection).

On the other hand, if Θ and $\hat{\Theta}$ are the symplectic potentials for the symplectic structures, we obtain

$$d \wedge (\iota^*\Theta - \pi^*\hat{\Theta}) = \iota^*\Omega - \pi^*\hat{\Omega} = 0$$ (3.35)

whence

$$dS := \iota^*\Theta - \pi^*\hat{\Theta}$$ (3.36)

is (locally) is exact. S is the Hamilton-Jacobi functional, it is the generator of a singular canonical transformation from the large to the reduced phase space. Substituting the momenta on Γ by the the functional derivatives of S with respect to the coordinates on Γ solves the constraints because by doing this substitution one pulled back the momenta to $\bar{\Gamma}$. Hence, one way of obtaining the reduced phase space is to solve the Hamilton-Jacobi equation for constrained systems.

Another method is suggested by looking at formula (3.36): it says that, up to a total differential, one obtains the reduced symplectic potential simply by inserting the solution of the constraint equations into the full symplectic potential. For field theories, there might also be boundary terms involved in this reduction process, whose contribution to the reduced symplectic structure does not vanish. They may be neglected at a first stage because they will be recovered when one checks whether the observables of the reduced phase space are finite and functionally differentiable.
3.3 The reduced phase space

It will turn out that for this model the second method is more appropriate. We are thus interested in the solutions of constraint equations.

We first take the following linear combinations of the vector and the scalar constraint functional

\begin{align*}
E_1 E^2 V + E^3 C &= E (E^1 B^3 + \frac{1}{2} E^3 B^1) \\
-E_1 E^3 V + E^2 C &= E (E^1 B^2 + \frac{1}{2} E^2 B^1),
\end{align*}

(3.37)

where \(E = (E^2)^2 + (E^3)^2 \).

Setting these expressions strongly zero we obtain 2 possible solutions:

Case I: \(E = 0 \) (degenerate case)

Looking at the formula for the metric (3.17) we see that there is no radial distance now. From the reality of the triads we conclude further that \(E^2 = E^3 = 0 \) whence we conclude \(E_1 = E^1(t) \) via setting the Gauss constraint equal to zero. Obviously this solution of the constraint equations is not valid in the asymptotic ends since it violates the asymptotic conditions on the fields. It can therefore only hold inside the hypersurface and we should glue it to a solution of the constraints appropriate for the asymptotic regions. For compact topologies it is a global solution of the constraints. Applying the framework of the previous subsection we obtain for the reduced symplectic potential

\[\dot{\Theta} = -i E_1 \frac{d}{dt} \int_{\Sigma} dr A_1. \]

(3.38)

Case II: \(E \neq 0 \) (nondegenerate case)

We now conclude

\begin{align*}
0 &= E_1 B^3 + \frac{1}{2} E^3 B^1 \\
0 &= E_1 B^2 + \frac{1}{2} E^2 B^1
\end{align*}

(3.39)

and can further distinguish between a) \(B^1 = 0 \) and b) \(B^1 \neq 0 \).

Subcase a)

Then either \(B^2 = B^3 = 0 \) or \(E^1 = 0 \). Consider first the case \(B^I = 0 \). Then an elementary calculation shows (recall the abbreviations (3.16)) \((B^2)^2 + (B^3)^2 = (A')^2/A + A(A_1 + \alpha')^2 = 2(A_1 + \alpha')^2 = 0 \) whence \(\gamma := A_1 + \alpha' = 0 \). Now, by writing the symplectic potential in terms of ‘cylindrical coordinates’, that is, by plugging \((A_2, A_3) = \sqrt{A}(\cos(\alpha), \sin(\alpha)) \) and \((E^2, E^3) = \sqrt{E}(\cos(\beta), \sin(\beta)) \) into \(\Theta = -i \int_{\Sigma} dr A_I E^I \) we easily obtain up to a total differential

\[\Theta = \int_{\Sigma} dr [\dot{\gamma} E^1 + \dot{\beta} \sqrt{\frac{E}{A}} \cos(\alpha - \beta) + \alpha G]. \]

(3.40)

Accordingly, the symplectic structure pulled back to the Gauss reduced phase space vanishes identically if \(B^1 = 0 \). We are not interested in this trivial case of a reduced phase
space consisting of only one point any longer.

Subcase b)
We can divide by B^1 (everywhere except for isolated points) to solve eqs. (3.39) for the momenta E^2 and E^3

\[E^2 = -\frac{2E^1}{B^1}B^2 \quad \text{and} \quad E^3 = -\frac{2E^1}{B^1}B^3 \quad (3.41) \]

and insert this into into the Gauss constraint :

\[0 = B^1(E^1)' + 2E^3(B^1)' \quad . \quad (3.42) \]

Eqn. (3.42) can be integrated :

\[E^1 = \frac{m^2}{(B^1)^2} \quad (3.43) \]

where the constant of integration m takes real values in the asymptotically flat case for the following reason : we will show later that B^1 is real on the constraint surface. Moreover, E^1 becomes r^2 at infinity. Thus, m^2 must be a real positive constant.

The last step is then to pull back the symplectic potential. One can check that modulo a total differential

\[(\iota^*\Theta)[\partial_t] = -im^2\int_\Sigma dr\left[\frac{1}{(B^1)^2} + \dot{A}_1 - \frac{2B^2}{(B^1)^3} + \dot{A}_2 - \frac{2B^3}{(B^1)^3} \right] \]

\[= -im^2\frac{d}{dt}\int_\Sigma dr\left(\frac{\gamma}{(B^1)^2} \right) . \quad (3.44) \]

One can check that the integrand in the last line of (3.44) vanishes on the constraint surface as $1/r^2$ at infinity, and thus the integral is well defined. However, it is functionally differentiable only if we require $\delta a_2 = \delta a_3 = 0$ in addition to the requirements derived in section 3.1.

3.4 Reality conditions

The reality conditions in the degenerate case are obscure because the spin connection coefficients are ill-defined (they are homogenous functions of degree zero, so their value on the constraint surface depends on the way the limit is taken). Therefore, we focus on the non-degenerate case in the sequel.

First we prove that the magnetic fields are weakly real :

To begin with we have (recall (3.18))

\[\bar{A} = (A_2 - 2\Gamma_2)^2 + (A_3 - 2\Gamma_3)^2 = A + 4[-A_2\Gamma_2 - A_3\Gamma_3 + (\Gamma_2)^2 + (\Gamma_3)^2] = A + 4\frac{(E^1)'}{E}G \quad (3.45) \]

which proves that B^1 is weakly real. We now solve the constraints for the remaining magnetic fields

\[B^2 = -\frac{E^1}{2E^2}B^1 \quad \text{and} \quad B^3 = -\frac{E^1}{2E^3}B^1 \]
to conclude from the reality of the triads that also B^2, B^3 are weakly real.

We now exploit this result to show that γ is weakly imaginary. Since $A\gamma = A_2 B^2 + A_3 B^3$ we have (\approx means = on the constraint surface)

$$\bar{\gamma} \approx -\gamma + 2 \frac{\Gamma_2 B^2 + \Gamma_3 B^3}{A} = -\gamma - 2 \frac{(E_1)'}{EA} V.$$

(3.46)

Accordingly, the momentum conjugate to $P := m^2$, $Q := -i \int_{\Sigma} d\tau \bar{\gamma}$, is weakly real. The reduced phase space is therefore the cotangent bundle over the positive real line. However, it proves convenient for the interpretation of our Dirac observables to make a canonical transformation and to describe the reduced phase space in terms of m and $T := 2mQ$.

3.5 Interpretation

Let us explore what the geometrical meaning of m is.

Using the fall-off properties of the fields of section 3.1 and in particular eqn. 3.27 we find that $q_{rr} \rightarrow 1 - \sqrt{2}a_3/r + O(1/r^2)$. Comparing this with the asymptotical form of a Schwarzschild metric of mass M we find

$$a_3 = -\sqrt{2}M$$

(3.47)

whereas from equation (3.43) we have that (recall that $E_1 \rightarrow r^2 + O(r)$), $m^2 = 2(a_3)^2$, whence

$$m = \pm 2M$$

(3.48)

i.e. m is twice the Schwarzschild mass of the given solution. If we apply the positive censureship conjecture we find that m has range on half the real line only ([19]).

Next we have a look at the reduced action. Plugging the solution of the constraint equations into the action and using the fall-off properties of the fields we find the reduced Hamiltonian in the asymptotically flat context to be equal to

$$H = (N_\infty - N_{-\infty})m$$

(3.49)

where $N_{\pm\infty}$ is the lapse at $r = \pm\infty$. Accordingly, the solution of the equations of motion for the canonical pair (m, T) turns out to be

$$m = \text{const.} \quad \text{and} \quad T = \text{const.} + \tau_+ - \tau_-$$

(3.50)

where $\tau_\pm(t) = N_{\pm\infty}(t)$, that is, τ_\pm is the eigentime of an asymptotic observer at positive or negative spatial infinity (recall that $ds = -g_{tt} dt$ is the eigentime interval associated with the time label interval dt and that $g_{tt} = -N^2$ at spatial infinity for asymptotically vanishing shift). Thus, on shell T can be identified with the difference τ of these eigentimes. In particular, T is a constant if and only if both clocks run at equal velocities, that is, $N_\infty = N_{-\infty}$ as is the case for the Kruskal solution.

To summarize, spherically symmetric canonical gravity adopts the form of an integrable system where the role of the action and angle variable respectively is played by the mass and the difference of eigentimes at both asymptotic ends respectively. In the case of closed topologies the reduced Hamiltonian vanishes identically and T is a constant of the motion, too.
3.6 Quantization

In the reduced phase space approach one quantizes the classically reduced phase space. In our case, we have that the reduced phase space is a cotangent bundle over either the real or half the real line. In the latter case one would proceed to quantize the canonical pair \((\ln(\pm m), \pm mT)\) which again provides one with a cotangent bundle over the real line. So there is nothing essentially new coming from this case and we therefore concentrate on the first case.

We choose the representation in which \(T\) is diagonal and arrive at the following operator equivalents of our basic variables

\[
\hat{m} := -i\hbar \frac{\partial}{\partial T}, \quad \hat{T} = T.
\]

The physical Hilbert space consists of the usual complex-valued, square integrable functions of \(T\). The solutions of the Schroedinger equation

\[
i\hbar \frac{\partial \Psi}{\partial t}(T) = \hat{H}\Psi(T) = -i\hbar \frac{d\tau}{dt} \frac{\partial \Psi}{\partial T}(T)
\]

are given by

\[
\Psi(t, T) = f(T - \tau(t))
\]

i.e. it is an arbitrary function of the argument displayed. Of course, only normalizable functions \(f\) should be considered. In particular the eigenfunctions of the Hamiltonian, \(f = \exp(ik(T - \tau))\) are not normalizable.

In the operator constraint (Dirac) approach, one solves the constraints after quantizing. Let us follow the steps of this quantization procedure.

Step1): Quantize a complete set of basic operators such that its commutator algebra mirrors the associated classical Poisson algebra. We choose

\[
[\hat{A}_I(x), \hat{A}_J(y)] = [\hat{E}^I(x), \hat{E}^J(y)] = 0, \quad [\hat{A}_I(x), \hat{E}^J(y)] = -\hbar \delta^J_I \delta(x, y).
\]

Step2): Choose a representation of this algebra on a complex vector space \(V\). We choose the self-dual representation, that is, \(V\) consists of holomorphic functionals of the connection. Our operators are then represented as follows:

\[
(\hat{A}_I(x)\Psi)[A] := A_I(x)\Psi[A], \quad (\hat{E}^I(x)\Psi)[A] := \hbar \frac{\delta \Psi[A]}{\delta A_I(x)}
\]

where \(\delta/\delta A_I(x)\) is the functional derivative.

Step3): Try to find a consistent ordering of the constraints, that is, they should form a commutator subalgebra in the sense that the constraint operators appear always ordered to the right after commuting two constraints (this is is a nontrivial requirement because the

\(^4\)If it exists, the functional derivative is defined by \(\int_\Sigma d\xi(r) \delta f[\phi]/\delta \phi(r) := \lim_{s \to 0}(f[\phi + s\xi] - f[\phi])/s\) for any test function \(\xi\) of compact support.
structure functions for constraints bilinear in the momenta turn out to be operator valued, compare Wipf’s lectures). As we analyzed in section 3.3, for our model it is actually possible to cast the constraints into a form in which they are linear in the momenta. Therefore, we do not have any problems with this step : just order the scalar constraint in such a way that the operators linear in the momenta which are to vanish appear to the right handside and order the momenta to the right in the remaining constraints. Thus, for sector I we would write

\[\hat{C} = \hat{E}^1 (\hat{B}^2 \hat{E}^2 + \hat{B}^3 \hat{E}^3) + \frac{1}{2} \hat{B}^1 (\hat{E}^2 \hat{E}^2 + \hat{E}^3 \hat{E}^3) \]

(3.56)

whereas for sector II we would order as

\[\hat{C} = \hat{E}^2 (\hat{B}^2 \hat{E}^1 + \frac{1}{2} \hat{B}^1 \hat{E}^2) + \hat{E}^3 (\hat{B}^3 \hat{E}^1 + \frac{1}{2} \hat{B}^1 \hat{E}^3) \]

(3.57)

and one can explicitely check that the commutator algebra closes in the sense that the operators linear in the momenta which are to annihilate the physical states always appear to the right.

Note that we should actually regulate the scalar constraint since it is bilinear in the momenta. However, since we are effectively working with a rewritten version which is linear in the momenta, we can circumvent this step.

Step 4) : Solve the constraints, that is, find the physical subspace \(V_{\text{phys}} \) of the vector space \(V \).

For sector I this amounts to imposing

\[\frac{\delta \Psi}{\delta A_2(x)} = \frac{\delta \Psi}{\delta A_3(x)} = \left(\frac{\delta \Psi}{\delta A_1(x)} \right)' = 0 \]

(3.58)

the unique solution of which is given by

\[\Psi[A] = f(\int_{\Sigma} dr A_1(r)) . \]

(3.59)

For sector II the kernel of the constraint operators consists of the functions satisfying

\[0 = \hat{B}^2 \frac{\delta \Psi}{\delta A_1} + \frac{1}{2} \hat{B}^1 \frac{\delta \Psi}{\delta A_2} \]

\[0 = \hat{B}^3 \frac{\delta \Psi}{\delta A_1} + \frac{1}{2} \hat{B}^1 \frac{\delta \Psi}{\delta A_3} \]

\[0 = \hat{B}^1 \left(\frac{\delta \Psi}{\delta A_1} \right)' + 2(\hat{B}^1)' \frac{\delta \Psi}{\delta A_1} \]

(3.60)

the unique solution of which is given by

\[\Psi[A] = f(\int_{\Sigma} dr \frac{A_1 + (\arctan(\frac{A_3}{A_2}))'}{(B^1)^2}) . \]

(3.61)

Thus, for both cases the solution consists of arbitrary functions of the functionals displayed.
Step 5) Find a complete algebra of basic quantum observables.

By definition, observables leave the physical subspace invariant. Accordingly, we choose them to be the multiplication and differentiation operators with respect to the argument of the functions of the physical subspace. For sector I we thus have

$$\hat{Q} := -i \int_{\Sigma} dA_1, \quad \hat{P} := \hat{E}^1(x)$$

(3.62)

whereas for sector II we obtain

$$\hat{Q} := -i \int_{\Sigma} dA_1 + (\arctan(\frac{A_4}{A_3}))', \quad \hat{P} := (\hat{B}^1)^2(x) \hat{E}^1(x) .$$

(3.63)

In both cases the argument x of the operator \(\hat{P}\) is irrelevant since it is a spatial constant on the physical subspace.

Step 6) Equip \(V_{phys}\) with a Hilbert space structure by demanding that the reality conditions induced on the quantum observables become adjointness conditions with respect to that inner product.

It follows from the analysis in section 3.6 that for sector II the classical analogues Q and P of the observables found in step 5 are real. Since the observables \(\hat{Q}, \hat{P}\) found in step 5 are canonically conjugate, \([\hat{Q}, \hat{P}] = i\hbar\), we will also postulate for sector I that Q is classically real (its imaginary part arises then classically from a canonical transformation).

The classical range of P is positive in case of sector II. Accordingly, we either choose a representation in which \(\hat{P}\) is diagonal and proceed along the lines of [12] or we allow for classically not allowed regions of the quantum theory and can stay within the representation such that \(\hat{Q}\) is diagonal. Let us choose the latter option.

Then in both sectors, the unique inner product that accomplishes our aim is just \(L^2(R, dQ)\).

One could finally form the direct sum of both Hilbert spaces, thus producing sectors in the technical sense of the word because states of different sectors cannot be superposed (they are not annihilated by the same constraint operators).

Altogether, in the present model both quantization procedures give equivalent answers.

3.7 Loop representation

In one dimension, except for the case of a closed topology, there are no loops. However, in order to test the 3-dimensional theory, one should rather look at loop variables for the 3+1 case restricted to spherical symmetry. It turns out that one can find a subset of loops which form a closed loop subgroup such that one can express all O(2)-invariant quantities in terms of them. When expressing the Dirac observables found for the present model in terms of them, the expressions become rather horrible for the non-degenerate sector but become very simple for the degenerate sector. This is in accordance to the fact that all solutions to the constraints in the 3+1 case that have been found so far belong to the degenerate sector but that no solutions are known for the non-degenerate sector.

More details are given in [14]. We refrain from giving them here because issues like a loop transform and an algebra of loop operators have not been worked out yet.
3.8 Discussion

The model of spherically symmetric gravity has been successfully quantized, both, via the reduced phase space and the operator constraint approach. The model captures various technical problems of the full 3+1 case:
Its reality structure is non-trivial, the constraints mirror those of the full 3+1 theory, in particular they are bilinear in the momenta. What comes out as a surprise is that the Dirac observables (3.63) have such a simple reality structure. That raises the hope that also in the full theory the reality structure of the reduced phase space turns out to be rather simple.
Also, all the results given here in terms of Ashtekar’s variables can also be written in terms of geometrodynamical (ADM) variables. In particular, it is possible to write down a one parameter family of exact solutions to the Hamilton-Jacobi equation associated with the Wheeler-DeWitt equation (14).
These are the positive remarks. Again sharp criticism is in order:
We actually exploited the fact that the scalar constraint could be cast in such a form that it is linear in the momenta. This technical help will not be available in the full theory and we cannot expect to solve the quantization programme without regularizing and renormalizing the constraint operators.
The other issue is of course that again we are effectively dealing with quantum mechanics rather than quantum field theory.

Acknowledgements

It is my pleasure to thank the relativity group at the Max-Planck-Institute for Astrophysics in Munich for having invited me to give a talk at the 117th WE-Heraeus seminar 'The Canonical Formalism in Classical and Quantum General Relativity'. In particular, I would like to thank Dr. Helmut Friedrich for his efforts in the organization of the meeting. This work was supported by the Graduierten-Programm of the Deutsche Forschungsgemeinschaft (DFG).

References

[1] E. Witten, Nucl. Phys. B311(1988)46
[2] F. Barbero, M. Varadarajan, Syracuse preprint (1993), Syracuse/NY, USA
[3] S. Carlip, Phys. Rev. D42(1990)2647
V. Moncrief, Journ. Math. Phys. 30(1989)2907
P. Peldan, Class. Quantum Grav. 9(1992)2097
N. Manojlovic, Nucl. Phys. B385(1992)571
[4] A. Ashtekar et al, Class. Quantum Grav. 6(89)L185
[5] J. N. Goldberg, J. Lewandowski, C. Stornailo, Comm. Math. Phys. 148 (1992) 377

[6] Y. Choquet-Bruhat, C. DeWitt-Morette, *Analysis, Manifolds and Physics*; North Holland, New York (1989)

[7] J. W. Barrett, Int. Journ. Theor. Phys. 30 (1991) 1171

[8] G. Mess, Preprint IHES/M/90/28, Inst. des Hautes Etudes Scientifiques (1990)

[9] D. M. Marolf, Syracuse preprint (1993), Syracuse, NY 13244, USA
 J. Louko, D. M. Marolf, Syracuse preprint, Syracuse, NY 13244, USA

[10] A. Ashtekar, R. Loll, CGPG preprint, University Park, PA 16802, USA

[11] C. Rovelli, L. Smolin, Nucl. Phys. B 331 (1990) 80

[12] C. J. Isham in *Relativity, groups and topology II*, Les Houches Lectures (1983), ed. B. S. DeWitt, R. Stora, North Holland, Amsterdam (1994)

[13] A. Ashtekar, Comm. Math. Phys. 71 (1980) 59

[14] T. Thiemann, diplom thesis, April 1992, RWTH Aachen, Germany
 T. Thiemann, H. A. Kastrup, Nucl. Phys. B 399 (1993) 211
 T. Thiemann, PITHA-preprint 93-32, August 1993, RWTH Aachen, Germany
 T. Thiemann, PhD thesis, December 1993, RWTH Aachen, Germany
 T. Thiemann, H. A. Kastrup, PITHA preprint 93-35, October 1993, RWTH Aachen, Germany

[15] I. Bengtsson, Class. Quantum Grav. 7 (1990) 27

[16] R. Beig, N. ó Murchadha, Ann. Phys. 174 (1987) 463

[17] N. Woodhouse, *Geometric Quantization*, Clarendon Press, Oxford (1980)

[18] E. T. Newman, C. Rovelli, Phys. Rev. Lett. 69 (1992) 1300

[19] E. Witten, Comm. Math. Phys. 80 (1981) 381