Green building design evaluation based on grey clustering method

Jinping Man¹, Lijun Zhang¹,*

¹School of Civil Engineering, Qinghai University, Xining 810016, Qinghai, China
²School of Qinghai College of Architectural Technology, Xining 810012, Qinghai, China

*Corresponding author Email: 459176911@qq.com, manjinping100@163.com

Abstract. This paper sets up a green building evaluation system based on grey clustering method for the rational evaluation of green building design. First, the index weight is determined by the analytic hierarchy process (AHP), and then the grey clustering method based on the triangular whitening weight function is used. Finally, the green building design is evaluated according to the green building evaluation standard in this area.

1. Preface
With the rapid economic growth of the construction industry in China. This economic growth mode has a certain impact on our country's ecology and environment. The construction industry is one of the three energy consuming industries in China. The construction industry has great potential for optimization [1]. The green development of the national economy is the only way for China's environmental protection. Therefore, it is an inevitable choice for China's construction industry to develop green building vigorously. This idea is being paid more and more attention and advocated by many people [2]. In recent years, China has promulgated a series of relevant green building assessment criteria and evaluation methods. Many scholars are fuzzy in the assessment of "regional characteristics" in the assessment of existing buildings. In order to fully reflect the concept of green buildings, the evaluation of green buildings should be combined with "regional characteristics". There are great differences in climate, environment, resources, economy and folk culture in Qinghai province. In the evaluation, we should consider the characteristics of the area where the building is located, and follow the principle of local conditions [3]. This paper draws on the existing evaluation theory of green buildings both at home and abroad, and combines "Qinghai green building evaluation standard" [4], taking a residential district in Haidong city as an example, to establish an evaluation model in accordance with this region.

2. Evaluation model of green building design based on Grey Clustering

2.1. The construction of the index system
There are many evaluation indexes in green building design. In order to make the evaluation system concise and applicable, we should select representative indexes. The target layer of the evaluation system is A, the standard layer is B, and the standard layer is evaluated from the aspects of land saving,
energy saving, water saving, timber saving, indoor and outdoor environmental quality according to the green building evaluation standard of Qinghai province. The index layer is C, including the item. The evaluation index system of green building design is shown in Table 1.

Table 1. Evaluation index system of green building design

Target layer A	Standard layer B	Index layer C
Evaluation of green building design	Ground and outdoor environment B1	Setting green land C1
		Rational exploitation and utilization of C2 in underground space
		Indoor air environment C3
	Energy saving and energy utilization B2	External wall insulation system C5
		Solar hot water system C6
		Super quiet new wind system C7
	Water saving and water resources utilization B3	Rainwater reinfiltation C8
		Use of water-saving apparatus C9
		Using water saving technology C10
		Use of non-traditional water source C11
	Utilization of material and material resources by B4	Use the local material C12
		Repeated use of C13
		Using prefabricated C14
		Existing materials using C15
	Indoor and outdoor environmental quality B5	Noise reduction measures C16
		Indoor light environment C17
		Indoor and outdoor air quality C18

2.2. Determination of weight by analytic hierarchy process

Analytic hierarchy process (AHP) is a quantitative and qualitative evaluation method, which is simple and feasible. Select the knowledgeable experts to determine the relative importance of the index, and then determine the weight of the index through analysis.

1. Establishing analytic hierarchy process
 - First, the problems to be solved are organized and the structural models are established hierarchically.

2. Structural judgment matrix
 - Different levels of factors are compared to construct judgement matrix. According to the 1-9 comparison scale, we can determine the important sequence and judge the scale and definition of matrix as shown in Table 2.

Table 2. Judgement matrix scale

Scale value	Rank of importance
1	Compared to the two factors of a and b, they are equally important.
3	Compared to the two factors of a and b, a is a little more important than the b factor
5	Compared to the two factors of a and b, a is more important than the b factor
7	Compared to the two factors of a and b, a is more important than the b factor
9	Compared to the two factors of a and b, a is more important than the b factor
2, 4, 6, 8	The importance of X and Y two factors is between the above figures.

3. Calculation of relative weight
 - First, the relative weight is calculated by the eigenvalue method, and the maximum eigenvalue and eigenvector are calculated by geometric mean method.
④ Consistency test
In order to ensure the validity of the result, we need to carry out consistency checking, and do not accord with the requirement of consistency.

⑤ Weight of calculation index
After calculating the importance of each factor relative to the target layer, the absolute weight is calculated from top to bottom.

2.3. The establishment of grey clustering evaluation model
By using the grey clustering method, we must first define the classification and classify the measured data and objects by whitening weight function. In order to make the same level factors consistent, the triangle whitening weight function is selected as the grey clustering evaluation method because of the fuzzy and correlation factors in the evaluation of the green building design.

The triangle whitening weight function based on the endpoint [5] is set “w” as a cluster index, and “n” as a grey class number and \(\chi_j \) as an index (\(j = 1, 2, \ldots, W \)) the sample observation value, the grey clustering evaluation object has the number of “n”, the range of “J” \([a_1, a_{n+1}]\) can be divided into \([a_1, a_2], \ldots, [a_{k-1}, a_k], \ldots, [a_{n-1}, a_n], [a_n, a_{n+1}]\), for the evaluation datum is not consistent, the range of the value of the \(a_k \) is determined according to the actual situation. Set \(a_k \) and \(a_{k+1} \) the value of the midpoint \(\frac{a_k + a_{k+1}}{2} \) triangle whitening weight function \(f_j^k \left(\frac{a_k + a_{k+1}}{2} \right) = 1 \), connect \(\left(\frac{a_k + a_{k+1}}{2} \right), a_k, a_{k+1} \) these three points and join, and get the whitening weight function “K” of grey index “J”: \(f_j^k \left(\bullet \right) \left(j = 1, 2 \ldots w; k = 1, 2, \ldots n \right) \). \(f_j^1 \left(\bullet \right) \) and \(f_j^n \left(\bullet \right) \) expand the range of the index “j” to the left to the right to \(a_0, a_{n+2} \), as shown in Figure 1:

![Figure 1. Trigonometric whitening weight function](image)

In the middle class whitening weight function, the observation value “x” of the index of “j” . The membership function of grey class \(k \left(k = 1, 2, \ldots n \right) \) is expressed as follows:

\[
f_j^k \left(x \right) = \begin{cases}
0, x \notin [\sigma_j, \sigma_{j+1}] \\
\frac{x - \sigma}{\sigma_j - \sigma_{j+1}}, \ x \notin [a_j, a_{j+1}] \\
\frac{\sigma_j - x}{\sigma_j - \sigma_{j+1}}, \ x \notin [a_j, a_{j+1}] \\
\left(a_j + a_{j+1} \right) / 2
\end{cases}
\]

(1)
2.4. Determination of the weight of each level of evaluation index

In this paper, the expert scoring method is used to obtain the data structure judgment matrix, and the experts of the green building in Qinghai province are invited to score the standard layer, and the quantitative analysis of the green building technology related data is made. The weight of data is obtained after analyzing and processing data.

Table 3. AHP model evaluation index weight value

Standard layer	Absolute weight	Index layer	Code	Relative weight	Absolute weight
Ground and outdoor environment B1	0.2100	Setting green land C1	X11	0.3868	0.0812
Rational exploitation and utilization of C2 in underground space			X12	0.2312	0.0486
Indoor air environment C3			X13	0.3820	0.0802
Energy saving and energy utilization B2	0.2500	External wall insulation system C5	X21	0.3334	0.0834
Solar hot water system C6			X22	0.3521	0.0880
Super quiet new wind system C7			X23	0.3145	0.0786
Water saving and water resources utilization B3	0.1800	Rainwater reinfiltiration C8	X31	0.3962	0.0713
Use of water-saving apparatus C9			X32	0.1094	0.0197
Using water saving technology C10			X33	0.1094	0.0197
Use of non-traditional water source C11			X34	0.3850	0.0693
Utilization of material and material resources by B4	0.1700	Use the local material C12	X41	0.3813	0.0648
Repeated use of C13			X42	0.1862	0.0317
Using prefabricated C14			X43	0.3566	0.0606
Existing materials using C15			X44	0.0759	0.0129
Indoor and outdoor environmental quality B5	0.1900	Noise reduction measures C16	X51	0.3881	0.0737
Indoor light environment C17			X52	0.3119	0.0593
Indoor and outdoor air quality C18			X53	0.3000	0.0570

2.5. Determination of evaluation criteria

According to the green building evaluation system established in this paper, combined with the green building evaluation standard issued by Qinghai Province, The evaluation of green building performance is based on the system of ten grades, The grading standard is shown in Table 4.
Table 4. Grading standard for green building design

Two level index	Index parameter	Grading standard		
		1-4 point	4-7 point	7-10 point
Setting green land C1	Per capita public green space in residential area	1.0-1.3	1.3-1.5	≥ 1.5
Rational use of C2 in underground space	The ratio of the area of the underground building to the ground floor area	5%-10%	10%-20%	≥ 20%
Wind environment in the site C3	Natural ventilation efficiency	≤50%	50%-80%	≥80%
External wall insulation system C5	The improvement of the thermal performance of the enclosure structure	≤5%	5%-10%	≥10%
Solar hot water system C6	Performance of the enclosure structure	≤1%	1%-2%	≥2%
Super quiet new wind system C7	The reduction of energy consumption in the system	5%-10%	10%-15%	≥15%
Rainwater reinfiltration C8	Utilization of rainwater	≤5%	5%-10%	≥10%
Use of water-saving apparatus C9	Saving rate of water	≤4%	4%-10%	≥10%
Use of non-traditional water source C11	Utilization of non-traditional water sources	≤5%	5%-30%	≥30%
Use the local material C12	Utilization of local materials	60%-70%	70%-90%	≥90%
Repeated use of C13	Reusable partition ratio	30%-50%	50%-80%	≥80%
Using prefabricated C14	Prefabricated component	15%-30%	30%-50%	≥50%
Use of C15 for existing materials	Availability of existing materials	≤10%	10%-40%	≥40%
Noise reduction measures C16	Noise level	>50dB	40dB-50dB	≤40dB
Indoor light environment C17	Light recovery coefficient	≤1.5%	1.5%-1.8%	1.8-2%
Indoor and outdoor air quality C18	Standard rate of atmospheric environment quality	<90%	90%-95%	≥95%

3. Engineering example analysis

3.1. Engineering project survey
Haidong City, a residential area, with a total construction area of 420 thousand square meters. Large number of new materials and technologies for residential use in this area are adopted.

3.2. Construction and grading of evaluation index set of green building
The evaluation range of green building design evaluation is that the index comments of the ten values are: (extremely poor, poor, poor, poor, general, general, good, good, good, very good), the average result of the score of ten experts can get the evaluation of green building, as shown in table 5.
Table 5. Evaluation value of green building design

Code name	X11	X12	X13	X21	X22	X23	X31	X32	X33	X34
Implementation value	8.1	7.0	6.9	8.0	8.5	8.2	9.2	6.9	7.9	7.9

Code name	X41	X42	X43	X44	X51	X52	X53
Evaluation value	7.3	7.4	6.8	7.9	8.9	8.8	8.0

3.3. Evaluation of classification of grey category and selection of threshold

The evaluation of these three kinds of green buildings are evaluated, that is $k = 1, 2, 3$, the grade of grey category representing green buildings is: one star, two star, and three-star level, and the range of each grey category has three intervals: $[a_1, a_2], [a_2, a_3], [a_3, a_4] = [1, 4], [4, 7], [7, 10]$.

3.4. The establishment of the trigonometric whitening weight function

Set $\left(\frac{a_k + a_{k+1}}{2}\right)$ belongs to the “k” grey class, and the whitening weight is: $f_j^i\left(\frac{a_k + a_{k+1}}{2}\right) = 1$, to connect the three points: $\left(\frac{a_k + a_{k+1}}{2}\right)$, the starting point of the grey class a_{k-1} and the end of the ash class a_{k-2}, and get the trigonometric whitening weight function $f_j^i(\bullet)(j = 1, 2, \cdots, w; k = 1, 2, 3)$, and then extend the value range of the $f_j^i(\bullet)$ and $f_j^i(\bullet)$ to the left and right to the right to get the ν_j^0 and ν_j^4, respectively. The range of grey matter is extended to the left and right to the right to $a_0 = -2, a_5 = 13$. The green building design rating of the index “j” is constructed, and the trigonometric whitening function is constructed as follows:

$$f_j^1(x) = \begin{cases} 0, x \in [-2, 7] \\ \frac{x - (-2)}{2.5 - (-2)}, x \in [-2, 2.5] \\ \frac{7 - x}{7 - 2.5}, x \in [2.5, 7] \end{cases} \quad (3)$$

$$f_j^2(x) = \begin{cases} 0, x \in [1, 10] \\ \frac{x - 1}{5.5 - 1}, x \in [1, 5.5] \\ \frac{10 - x}{10 - 5.5}, x \in [5.5, 10] \end{cases} \quad (4)$$

$$f_j^3(x) = \begin{cases} 0, x \in [4, 13] \\ \frac{x - 4}{8.5 - 4}, x \in [4, 8.5] \\ \frac{13 - x}{13 - 8.5}, x \in [8.5, 13] \end{cases} \quad (5)$$

Therefore, according to the formula, the value of triangular whitening weight function of each index is calculated as shown in Table 6.
Table 6. Evaluation index of trigonometric whitening weight function

Green building design	Measured value	$f_1^j (v)$	$f_2^j (v)$	$f_3^j (v)$
X_{11}	8.1	0	0.42	0.91
X_{12}	7.0	0	0.67	0.67
X_{13}	6.9	0.02	0.69	0.64
X_{21}	8.0	0	0.44	0.89
X_{22}	8.5	0	0.33	1
X_{23}	8.2	0	0.40	0.93
X_{31}	9.2	0	0.18	0.84
X_{32}	6.9	0.02	0.69	0.64
X_{33}	7.9	0	0.47	0.87
X_{34}	7.9	0	0.47	0.87
X_{41}	7.0	0	0.60	0.73
X_{42}	7.1	0	0.58	0.76
X_{43}	6.6	0.04	0.71	0.62
X_{44}	8.0	0	0.47	0.87
X_{51}	8.9	0	0.24	0.91
X_{52}	8.8	0	0.27	0.93
X_{53}	8.0	0	0.44	0.89

3.5. Calculation of comprehensive clustering coefficient

Combined with the weight of each index calculated above, the comprehensive clustering coefficient σ_i^k corresponding to the three grey classes $k (k = 1, 2, 3)$ can be obtained, as shown in Table 7.

Table 7. Evaluation index of comprehensive clustering coefficient

Green building design	Weight	$f_1^j (x_j)\eta_j$	$f_2^j (x_j)\eta_j$	$f_3^j (x_j)\eta_j$
X_{11}	0.0812	0.0000	0.0341	0.0739
X_{12}	0.0486	0.0000	0.0326	0.0326
X_{13}	0.0802	0.0016	0.0553	0.0513
X_{21}	0.0834	0.0000	0.0367	0.0742
X_{22}	0.0880	0.0000	0.0290	0.0880
X_{31}	0.0786	0.0000	0.0314	0.0731
X_{32}	0.0197	0.0004	0.0136	0.0126
X_{33}	0.0197	0.0000	0.0093	0.0171
X_{34}	0.0693	0.0000	0.0326	0.0603
X_{41}	0.0648	0.0000	0.0389	0.0473
X_{42}	0.0317	0.0000	0.0184	0.0241
X_{43}	0.0606	0.0024	0.0430	0.0376
X_{44}	0.0129	0.0000	0.0061	0.0112
X_{51}	0.0737	0.0000	0.0177	0.0671
X_{52}	0.0593	0.0000	0.0160	0.0551
X_{53}	0.0570	0.0000	0.0251	0.0507

$$\sum_{j=1}^{12} f_j (x_j)\eta_j = 0.0044$$

The following results can be obtained:
\[
\sigma_i^3 = \sum_{j=1}^{19} f_j^i(x_j) \cdot \eta_j = 0.0044 \quad \sigma_i^2 = \sum_{j=1}^{19} f_j^i(x_j) \cdot \eta_j = 0.4526 \quad \sigma_i^1 = \sum_{j=1}^{19} f_j^i(x_j) \cdot \eta_j = 0.8362
\]

3.6 Evaluation results
According to the principle of maximum membership degree of green building design evaluation, it comes to \(\max_{1 \leq i \leq 3} \{\sigma_i^i\} = \sigma^3\). The evaluation grade of the green building project is "three-star", which can be certified by the three-star marking of green building, and the performance of green building belongs to a good level.

4. Conclusion
In this paper, according to the local evaluation standard of green building in Qinghai Province, according to the theory of analytic hierarchy process, we calculate the weight of the evaluation index of green building, establish the grey clustering evaluation model, and consider the regional characteristics, establish the green building evaluation system which conforms to the case location. In the future green building evaluation project of Qinghai Province, the index factors of various locals should be selected to establish a scientific and reasonable evaluation index system in order to take reasonable and effective measures in the design of green building projects in Qinghai Province, so as to promote the development of green buildings in this area.

Acknowledgments
Fund Project: “Chunhui Project” Research Fund Project of the Ministry of Education “Research on Green Building Evaluation Index System in Qinghai Region” (Z2015061).

References
[1] Liu Sha, Liu Jiaqi. Optimization of green building design based on life cycle cost and carbon emissions [J]. Building economy 2017 (10): 59-65.
[2] He Xiaoyu, Yang Luping. Application of group analytic hierarchy process (AHP) and evidence reasoning method in green building evaluation [J]. System engineering 2016 (2): 76-81.
[3] Zhou Xiaoyan, Liu Min. Regional green architecture: building and local natural environment harmonious symbiosis [J]. Ecological economy, 2010 (8): 188-192.
[4] Qinghai Provincial Department of housing and urban rural construction. DB63/T1110-2015. Qinghai green building evaluation standard [S].2015.
[5] Liu Sifeng, Yang Yingjie, Wu Lifeng. Grey system theory and its application (Seventh Edition) [M].2014.