An Extended Proteome Map of the Lysosomal Membrane Reveals Novel Potential Transporters*

Agnès Chapel‡§¶, Sylvie Kieffer-Jaquinod‡¶¶, Corinne Sagné||, Quentin Verdon||§§, Corinne Ivaldi‡¶¶, Mourad Mellal‡¶¶, Jaqueline Thirion**, Michel Jadot**, Christophe Bruley‡¶¶, Jérôme Garin‡¶¶, Bruno Gasnier||, and Agnès Journet‡¶¶‡‡

Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions. Molecular & Cellular Proteomics 12: 10.1074/mcp.M112.021980, 1572–1588, 2013.

Lysosomes are membrane-bound intracellular organelles that are key players in the degradation and recycling of biological material. Their crucial role in cell physiology is underlined by the existence of ~50 lysosomal storage diseases caused by genetic defects in lysosomal proteins or proteins involved in lysosome biogenesis (1). The degradative function is carried out in the lysosomal lumen by the concerted action of over 60 hydrolases and accessory proteins (2). Although these soluble lysosomal proteins have been extensively studied, knowledge about membrane proteins remains rather limited, despite the multiple and crucial functions fulfilled by the membrane. It is indeed responsible for establishing and maintaining pH and ionic gradients, transporting degradation substrates and products from/into the cytosol, and maintaining lysosome integrity. Additionally, the lysosomal membrane is subjected to multiple fusion and fission events with other endocytic or biosynthetic compartments. Substrates for degradation are conveyed to lysosomes from the extracellular milieu, the plasma membrane, or the cytoplasm through the endocytic, phagocytic, and autophagic routes. Delivery of newly synthesized material to lysosomes requires exchanges between endocytic or biosynthetic organelles on the one hand and lysosomes on the other hand. These numerous trafficking events are supported by molecular machineries that associate with the lysosomal membrane (3).

In the last decade, large scale mass spectrometry-based approaches have been exploited to study the lysosome protein composition. The soluble content has first been analyzed by the use of an affinity purification protocol based on the mannose 6-phosphate modification (4–11) that is characteristic of soluble lysosomal proteins (12). This has resulted in the identification of about 60 known luminal lysosomal proteins, as well as of many mannose 6-phosphate-containing proteins that were not previously thought to carry out a lysosomal
function (13). To gain insight into the membrane composition, several groups have used preparative subcellular fractionation to recover samples enriched in lysosomes (14–18). Despite the experimental limitations of the latter methods that are unable to completely separate organelles, the use of comparative strategies and statistical tools (14, 16, 17) allowed the identification of novel putative resident lysosomal membrane proteins, including a few potential transporters, such as SLC12A4, SLC44A2, C19ORF28 (MFSID2), SIDT2, and MFSID1 (14, 16). More recently, the coupling of selective lysosome density shift and MS quantification was shown to allow simultaneous identification and validation of lysosomal lysosomopathy. Transporters are integral membrane proteins (IMPs)1 displaying multiple transmembrane domains, and such IMPs are usually difficult to identify by mass spectrometry because of their high hydrophobicity and low abundance (34, 35). Therefore, to extend our protein identification capacities, we used a combination of subcellular and biochemical fractionations prior to MS analysis. We first established an overall list of 2,385 gene products from lysosome-enriched and lysosome-nonenriched fractions. Then, a comparative proteomics analysis based on spectral counts led to the selection of 734 candidates, highlighting by the demonstration of the effective lysosomal residency of several selected proteins (16, 20–29). Concerning membrane proteins, these studies have led to a list of about 45 integral membrane lysosomal proteins for which evidence of the lysosomal localization has been obtained by at least overexpression of epitope-tagged fusion proteins (30).

However, despite the expanded knowledge provided by these recent studies, many lysosomal actors are still missing. For instance, although more than 20 lysosomal transport activities have been biochemically described (31, 32), many of these transport functions remain orphans because the underlying proteins have not been identified yet (33). The aim of the present proteomic study was to gain deeper insight into the characterization of the lysosomal membrane and its associated proteins, with a particular interest in novel potential lysosomal transporters, given their major role in lysosomal physiology. Transporters are integral membrane proteins (IMPs)1 displaying multiple transmembrane domains, and such IMPs are usually difficult to identify by mass spectrometry because of their high hydrophobicity and low abundance (34, 35). Therefore, to extend our protein identification capacities, we used a combination of subcellular and biochemical fractionations prior to MS analysis. We first established an overall list of 2,385 gene products from lysosome-enriched and lysosome-nonenriched fractions. Then, a comparative proteomics analysis based on spectral counts led to the selection of 734 candidates. They included on the one hand 94 novel potentially lysosomal proteins and, on the other hand, 46 established or putative transporters for which lysosomal residency is suggested by this study. The lysosomal localization has been validated for nine candidates, including five transporters. Moreover, we recently showed elsewhere that another candidate identified during this proteomic study, PQLC2, is a novel lysosomal amino acid transporter (36).

1 The abbreviations used are: IMP, integral membrane protein; CM, chloroform/methanol; Nsc, normalized spectral count; SpI, spectral index; PM, plasma membrane; EL, endo-lysosome; MFS, major facilitating superfamily; SLC, solute carrier; mTOR, mammalian target of rapamycin; CMI, CM-insoluble; CMS, CM-soluble; ER, endoplasmic reticulum; TGN, trans-Golgi network; L, light mitochondrial.

EXPERIMENTAL PROCEDURES

Subcellular Fractionation—All experiments involving rats were conducted in compliance with approved Institutional Animal Use Committee protocols. Livers were obtained from male Wistar rats. Each preparation was performed on four rat livers essentially as described previously (37). Briefly, fractionation of subcellular organelles by differential centrifugation produced nucleus and heavy mitochondrial (NM), light mitochondrial (L), and microsomal and soluble (PS) fractions. The L fraction was subjected to isopycnic centrifugation on a discontinuous Nycodenz density gradient. Conditions of the gradient were essentially the same as described in the original publication (37), except that Nycodenz was used instead of metrizamide. The following density layers were successively loaded on top of the L fraction: 1.16 (7 ml), 1.145 (6 ml), 1.135 (7 ml), and 1.10 (7 ml). Centrifugation was performed at 83,000 × g for 2 h 30 min in an SW28 Beckman rotor. Fraction 2 (the interface between the layers of respective densities, 1.10 and 1.135 g/ml) was recovered as the L+ (“lysosome-enriched”) fraction. Fractions 1, 3, and 4 (upper and lower fractions) were pooled as the L− (“lysosome-nonenriched”) fraction. Organelles from both L+ and L− fractions were separately diluted in 0.25 M sucrose, pelleted by ultracentrifugation (100,000 × g, 4°C, 1 h), and subjected to a hypotonic shock in buffer A (10 mM Hepes, pH 7.8, supplemented with protease inhibitors (Complete, Roche Applied Science)). Membranes (Mbl− and Mbl+) were recovered by ultracentrifugation (100,000 × g, 4°C, 1 h), extensively washed in buffer A, and resuspended in 200 μl of buffer A before storage at −80°C.

**Recovery of lysosomes in the fractions resulting from differential centrifugation and from the Nycodenz gradient was followed by β-galactosidase activity measurement (38). These data along with the protein amounts recovered in each fraction allowed calculation of purification factors as compared with the initial homogenate. Protein concentration was evaluated using a Micro BCA™ protein assay kit (Thermo Scientific).

Chloroform/Methanol Extraction—Chloroform/methanol (CM) fractionation of proteins was performed according to Salvi et al. (39). Briefly, 250 μg of organelle membranes (1–10 mg/ml) in buffer A were sonicated, left for 15 min on ice, and ultracentrifuged for 40 min at 100,000 × g and at 4°C. Membranes pellets were then gently resuspended in 100 μl of buffer A and slowly diluted in 900 μl of cold CM (5:4, v/v) on ice. The mixture was left 15 min on ice, with periodic agitation, and then centrifuged (15 min, 15,000 × g, 4°C) to produce a pellet (the CM-insoluble fraction, CMI) and a supernatant (the CM-soluble fraction, CMS, containing the most hydrophobic proteins). Solvent from the CMS fraction was evaporated under nitrogen, down to 100 μl, and proteins were acetone-precipitated. Proteins from the CMI and CMS pellets were dissolved in Laemmli buffer for SDS-PAGE separation.

Triton X-114 Phase Separation—Triton X-114 phase separation was performed according to Donoghue et al. (40). Briefly, 250 μg of organelle membranes (1–10 mg/ml) in buffer A were sonicated, left for 15 min on ice, and ultracentrifuged for 40 min, at 100,000 × g and at 4°C. Membranes pellets were then gently resuspended in 800 μl of cold PBS, and 200 μl of 10% Triton X-114 (Sigma-Aldrich) was added. The mixture was gently agitated on a rotating wheel overnight at 4°C and cleared by centrifugation (30 min, 20,000 × g, 4°C). The supernatant was warmed at 37°C for 30 min and centrifuged (30 min, 5,000 × g, 25°C) for phase separation. The upper aqueous phase (AQ) and lower detergent phase (DT) were mixed, respectively, with 200 μl of 10% Triton X-114 and 800 μl of cold PBS, incubated for 15 min at 37°C, and centrifuged as described previously. This step was repeated three times, before recovering the final AQ and DT phases as well as a pellet present in the DT fraction (DTP). AQ and DT proteins were acetone-precipitated, and all samples were finally dissolved in Laemmli buffer for SDS-PAGE separation. AQ samples from the first replicate were not kept.
Proteomics Analysis of Lysosomal Membranes

SDS-PAGE Protein Separation and Western Blots—For Western blots, proteins were separated by SDS-PAGE as described previously (41), transferred to PVDF membranes (Immobilon P, Millipore), and immunodetected with the following antibodies directed against subcellular organelles markers: monoclonal mouse anti-raft LAMP2, 1:5 (10D10; homemade); rabbit polyclonal anti-OSCP, 1:50,000 (kind gift from G. Brandolin), rabbit polyclonal anti-GPR78, 1:250 (BiP; Abcam, ab2902); mouse monoclonal anti-TGN38, 1:250 (Transduction Laboratories, T69020); rabbit polyclonal anti-SK protein, 1:500 (FTCD; Abcam, ab5820); rabbit polyclonal anti-Rab5, 1:2,000 (StressGen, KAP-GP006); and mouse monoclonal anti-α1 sodium potassium ATPase, 1:5,000 (Abcam, ab7671). Proteins were revealed with the Western Lightning Plus-ECL reagent (PerkinElmer Life Sciences) and visualized on autoradiography films (Kodak Biomax XAR).

For MS analysis, SDS-PAGE separation of the reduced proteins was performed on 4–12% gradient acrylamide gels (NuPAGE, Invitrogen). Proteins were stained by Bio-Safe Coomassie stain or Coomassie Brilliant Blue R-250 (Bio-Rad). The amount of loaded proteins and the migration length were adapted to the protein sample complexity.

MS Sample Preparation—For protein digestion each SDS-polyacrylamide gel lane was systematically cut into 1-mm bands that were washed several times by successive incubations in 25 mM NH₄HCO₃ for 15 min and in 50% (v/v) acetonitrile, 25 mM NH₄HCO₃ for 15 min. Gel pieces were dehydrated by 100% acetonitrile and then incubated with 7% H₂O₂ for 15 min before being washed again with the destaining solutions described above. 0.15 µg of modified trypsin (Promega, sequencing grade) in 25 mM NH₄HCO₃ was added to the dehydrated gel pieces for an overnight incubation at 37°C. Peptides were extracted from gel pieces in three 15-min sequential extraction steps in 30 µl of 50% acetonitrile, 30 µl of 5% formic acid, and 30 µl of 100% acetonitrile. The pooled supernatants were finally dried under vacuum.

NanoLC-MS/MS Analysis—The dried extracted peptides were re-suspended in 30 µl in 4% acetonitrile, 0.5% trifluoroacetic acid and analyzed by on-line nanoLC-MS/MS (Ultimate 3000 and LTQ-Orbitrap, Thermo Fisher Scientific). The nanoLC method consisted of a 40-min gradient ranging from 5 to 55% acetonitrile in 0.1% formic acid at a flow rate of 300 nL/min. Peptides were sampled on a 300-µm × 5-mm PepMap C18 precolumn and separated on a 75-µm × 150-mm C18 column (Gemini C18, Phenomenex). MS and MS/MS data were acquired using Xcalibur (Thermo Fisher Scientific) and processed automatically using Mascot Daemon software (version 2.1, Matrix Science).

Database Searching and Criteria for Protein Identification—Consecutive searches against the IPI_rat_decoy_database (based on the IPI-Rat version 3.48 database; 80,082 entries including the reverse protein entries and is calculated over all segments. When several protein groups corresponded to the same gene name, they were all kept.

The TMHHMM version 2.0 server (Center for Biological sequence analysis, Lyngby, DK) was used for predictions of membrane-spanning regions (i.e., transmembrane domains). Protein functional annotation and subcellular localization information, either experimental or predicted, were collected from the IPI, Uniprot, or QuickGO sites and from the bibliography.

Spectral Counting and Semi-quantitative Analysis—For each identified protein p, the spectral count values (s_{p,s} = number of spectra assigned per protein in a given sample s) were determined with the homemade hEIDI software (supplemental Tables S1 and S2). All spectra pointing to a given protein after the filtering steps were considered. Spectra matching the protein isoforms were counted once for each protein group containing one or several of the isoforms. These spectral count values were then normalized to the equivalent amount (in micrograms) of total membrane protein prior to CM or Triton X-114 extraction (Fig. 1), which had been injected in the spectrometer. The normalized spectral count (Nsc) thus corresponds to a number of spectra per microgram of total MbL⁺ or MbL⁻ proteins. For each identified protein p, the Nsc value was first calculated for each sample s (Nsc_{p,s}), then for each fraction f (MbL⁺ or MbL⁻; Nsc_{p,f}) in each replicate, as the sum of the Nsc_{p,s} in the CMS, CMI, AQ, DTP, and DT samples and at last for each of the MbL⁺ or MbL⁻ fractions by summing the Nsc_{p,f} obtained for the three replicates. Evaluation of the relative abundance of a protein in a given sample or fraction was based on the label-free spectral counting method (44), and performed by dividing Nsc_{p,s} or Nsc_{p,f} by the total Nsc of the considered sample or fraction.

For each protein, a spectral index (SpI) comprising both relative protein abundance and number of samples containing this protein was then calculated as indicated in Fu et al. (45) to allow comparison between MbL⁻ and MbL⁺ samples. Confidence intervals were established through permutation analysis (45) and used for determination of proteins significantly enriched in MbL⁻ (lysosomal protein candidates).

**Molecular Cloning—IMAGE or ORFEOME clones coding for the following proteins were obtained from Source Bioscience: LOH12CR1, MFS01, PTGG11P, SLC37A2, SLC38A7, SLC46A3, SLC02B1, STARD10, TMEM104, TMEM104, TTYH2, and TTYH3. Inserts were amplified by PCR using the Phusion polymerase (New England Biolabs) and the commercial plasmids as template and cloned for heterologous expression of GFP or YFP fusion proteins. Original plasmids, DNA accession numbers, primers, and expression vectors are given in supplemental Table S3.

Cell Culture and Fluorescence Studies—HeLa cells were from the American Type Culture Collection (ATCC) and were grown in DMEM/ GlutaMAXI supplemented with 10% FBS. Media and serum were from PAA Laboratories and Invitrogen, respectively. Cells were transiently transfected using electroporation or lipofection with Lipofectamine 2000 and processed for epifluorescence 2 days after transfection. Cells were fixed at room temperature in 4% paraformaldehyde. Antibodies were used at the following dilutions: mouse monoclonal anti-human LAMP1, 1:2,000 (H4A5, Developmental Studies Hy-

2 hEIDI: Hesse, A.-H., Adam, A., Dupriess, V., Court, M., Barthe, D., Ernadali, A., Masselon, C., Ferro, M., and Bruley C., manuscript in preparation.
RESULTS

To extend our knowledge of the lysosomal protein content, with a particular focus on membrane proteins and especially transporters, we performed a semi-quantitative and comparative proteomics analysis of membranes from rat liver fractions enriched and nonenriched in lysosomes. As novel proteins remaining to be discovered have a low abundance, we maximized protein resolution and coverage by analyzing several biological replicates and by reducing sample complexity using membrane protein subfractionation and SDS-PAGE. The label-free spectral counting method, based on the number of redundant peptides that identify a protein (44, 46), was used to evaluate the relative abundance of each protein. Further selection of lysosomal protein candidates resulted from a statistical comparison between lysosome-enriched and nonenriched fractions (45). Finally, novel candidate lysosomal transporters were identified among the multipass transmembrane proteins.

Preparation of Samples from Lysosome-enriched and -nonenriched Fractions—We essentially followed the well-established protocol of Wattiaux et al. (37) for preparation of lysosomal fractions (Fig. 1). Rat liver homogenates were first fractionated by differential centrifugation, and the primary lysosome-enriched fraction (fraction L) was further separated on a discontinuous Nycodenz density gradient (47), resulting in secondary L+ and L− fractions. Nycodenz is a gradient medium that displays very similar banding density for various organelles as the originally described metrizamide medium (48). Three independent preparations (biological replicates) were made. Our protocol aimed at improving the identification of IMPs, because their hydrophobicity and usually low abundance hinder their MS detection and identification in highly complex protein samples (34, 35). However, we also attempted to retain peripheral membrane associated proteins. These membrane associated proteins indeed include various trafficking machineries and cytoskeleton-associated proteins, which are crucial for the biogenesis and function of endolysosomes. We thus avoided harsh treatments that would have removed membrane-associated proteins, such as alkaline washes, to prepare L+ and L− membranes (respectively MbL+ and MbL− fractions). We then subfractionated both fractions according to protein hydrophobicity by two independent treatments, chloroform/methanol extraction (39) and Triton X-114 phase separation (Fig. 1) (40, 49). All resulting samples were finally separated by 1D electrophoresis, before being processed for MS analysis.

The β-galactosidase activity was measured to follow the recovery of lysosomes along the fractionation process, for the three replicates. These measurements indicated that the L, L+, and L− fractions were enriched 9–13-, 65–75-, and 7–9.5-fold, respectively, in lysosomes relative to the initial liver homogenate. These values, consistent with published data (37, 47), demonstrated the enrichment and nonenrichment of L+ and L−, respectively, as compared with L, and the much higher concentration (7–9-fold) of lysosomes in L+ as compared with L−. These fractions are thus described as lysosome-enriched and lysosome-nonenriched, respectively, and evaluation of “enrichment” will hereafter always be based on the comparison between L+ and L− fractions.

We then analyzed the enrichment of several subcellular compartments by immunodetection of organelle markers in the NM, L, and PS fractions resulting from differential centrifugation, as well as in the membranes of the L, L+, and L− fractions (Fig. 2). The lysosomal protein LAMP2 was the only protein that was strongly enriched in both L and MbL+ fractions. Rab5 (early endosome), the α1 subunit of the sodium potassium ATPase (plasma membrane), TGN38 (TGN), and
528 proteins were present in the MbL gene products, hereafter named the MbL2385 list. In this list, least two unique peptides led to a list of 2,385 nonredundant keratins as contaminants and retaining proteins identified by at least one half (H11001 to both MbL and MbL fractions). Thus, most of the proteins were common to both MbL+ and MbL− fractions, comparing their number was less informative and relevant than comparing their abundance (compare Fig. S1 with supplemental Fig. S1). Abundance information was extracted from spectral count data (supplemental Table S1), according to the spectral counting semi-quantitative approach (44, 46). The relative abundance for any given protein was derived from the Nsc calculated as indicated under “Experimental Procedures” using merged data issued from all MbL+ or MbL− samples (supplemental Table S1).

MbL+ and MbL− Fractions Display Different Organellar Profiles—We then analyzed the known or predicted subcellular localization of proteins from the MbL2385 list by manually collecting this information in protein databases (IPI, UniProtKB, and QuickGO) and bibliography. For IPI entries without any attributed gene name, homologs were previously searched in a mammalian subset of the Uniprot database using Blastp. This allowed comparison of protein abundances in MbL+ and MbL− according to the following subcellular categories: endo-lysosomes (EL), plasma membrane (PM), mitochondria, peroxisomes and nucleus (MPN), endoplasmic reticulum (ER), Golgi (G), cytoplasm (C), cytoskeleton (CS), secreted (S), miscellaneous (Misc; vesicles, granules, and multiple localizations) and Unknown. The comparison of protein abundances in MbL+ and MbL− according to the subcellular distribution showed striking differences (Fig. 3, left panel; supplemental Table S5c); EL and PM proteins were clearly enriched in MbL+, as they altogether accounted for 34% of the material, as compared with 4.7% only in MbL−. By contrast, proteins from the ER and MPN compartments were depleted from MbL+ relative to MbL− (34.2 and 73.7%, respectively). The similar behaviors of EL and PM proteins on the one hand and ER and MPN proteins on the other hand were systematically observed in subsequent analyses. Despite its slight enrichment in the MbL+ fraction (0.59% of the abundance in MbL+ versus 0.15% in MbL−), the small set of Golgi proteins (n = 30) has been ranked as “Contaminants,” along with ER and MPN proteins, in subsequent quantitative analyses (see below). Except for the cytoplasm, the other subcellular constituents (CS, S, and Misc) were slightly enriched in the MbL+ fraction (15.6 versus 7.1%). Proteins of unknown localization represented 11.2 and 10.0% in number but 6.3 and 3.8% in abundance in MbL+ and MbL−, respec-
the typical lysosomal marker MbL/H11002, similarly, for instance, to the observed enrichment of those significantly enriched in MbL indeed novel potential lysosomal proteins. We thus aimed at study was to identify which proteins identified in MbL 2) (37). The substantial presence of contaminant organelles in expectations based on a restricted set of organelle markers (Fig. our spectral count data were consistent with qualitative ex-

Assignment of Proteins to Lysosomes—The next step in our study was to identify which proteins identified in MbL+ were indeed novel potential lysosomal proteins. We thus aimed at identifying those significantly enriched in MbL+ relative to MbL−, similarly, for instance, to the observed enrichment of the typical lysosomal marker β-galactosidase in L+ relative to L−. Proteins from the MbL+ fraction were either exclusively detected in MbL+ or common to both fractions (supplemental Table S4a). Among the 528 proteins exclusively present in MbL+, we chose to consider as potentially lysosomal only those present in at least two out of the three biological replicates and identified by at least five spectra (356 proteins; supplemental Table S4b). Among the proteins common to MbL+ and MbL−, lysosomal candidates were selected according to their SpI (45), a parameter that takes into account both the relative protein abundance (estimated by normalized spectral counts) and the number of replicates in which the protein has been found (supplemental Tables S1 and S4a). SpI values range from −1 to +1, the lower and upper extreme values corresponding to proteins almost exclusively detected in MbL− and MbL+ fractions, respectively. These values displayed a roughly bimodal distribution in the MbL2385 list, with a massive peak covering negative values and a second subset rising toward an SpI of +1 (Fig. 4A). The SpI analysis highlighted the different distributions between MbL+ and MbL− of proteins from various annotated subcellular categories (Fig. 4B). Indeed, proteins from contaminants (essentially mitochondrial, ER and peroxisomal proteins) were the main contributors to the massive peak of negative SpI, whereas EL and PM proteins demonstrated a strong tendency to score high SpI values, with respective median values of 0.77 and 0.60. Confidence intervals were established through permutation analysis (45). Proteins were considered as significantly enriched in MbL+ when their SpI was higher than the 95th percentile cutoff value (SpI ≥0.594), a level reached by 378 proteins out of 1,700 (supplemental Table S4b).

Altogether, our selection criteria for significant enrichment in MbL+ led us to sort 734 proteins (Lys-734 list; supplemental Table S4b) out of 2,385. This selection included 79.3% (n = 207) of the EL-annotated proteins, 56% (n = 132) of the PM-annotated ones, and only 3.2% (n = 28) of the contaminant proteins (Fig. 5A and supplemental Table S5d). The C, CS, S, and Misc categories were represented by a total of 273 proteins. To our knowledge, 38 of the 94 proteins without any subcellular localization annotation (Table I) were completely novel lysosomal candidates, because they have not been identified in previous proteomic studies of lysosomes (14–17, 19).

As it was recently shown that most known lysosomal genes exhibit a coordinated transcriptional behavior regulated by the transcription factor TFEB, we compared our Lys-734 list to the list of 291 genes up-regulated following TFEB overexpression in HeLa cells (50). This comparison pointed to 38 common proteins, among which 30 were EL-annotated proteins and one, the product of the Wdr81 gene, was of unknown annotated localization.

Extraction from protein databases or bibliography, and analysis of known or predicted functional annotation showed that all defined functional processes were represented in the Lys-734 list, although only two “polypeptide transport” annotated proteins remained (Fig. 5B). Transporters, channels, and pumps of ions and small molecules represented the most

Fig. 3. Subcellular distribution of the proteins in MbL+ and MbL−. The relative abundance of proteins in MbL+ (black bars) or in MbL− (gray bars) is compared, according to their subcellular classification. Left panel, distribution of all proteins. Right panel, distribution of polytopic proteins (i.e. harboring at least two transmembrane domains).
abundant functional class, despite its third position by protein number. Metabolism-associated proteins were the most numerous but ranked second in abundance (supplemental Table S5e). As for the 94 proteins without subcellular annotation, one-third had no functional annotation either; more than one-quarter were various metabolic enzymes; and the remaining were distributed between the “miscellaneous,” “transporters, channels, and ion pumps,” and “receptors and signaling” classes with rather similar abundances (Fig. 5A).

Identification of Novel Putative Lysosomal Transporters—In addition to extending the current list of known lysosomal proteins, our interest was focused on the discovery of potential novel lysosomal transporters. As transporters display multiple membrane spanning domains (35), we filtered the Lys-734 list for polytopic proteins. Among the 136 MbL+/H11001-enriched polytopic proteins, 10% (n = 11) had no attributed function and more than half (n = 72; 67.5% of the Lys-734 IMPs abundance) belonged to the transporters, channels, and ion pumps class. This protein set contains numerous subunits of ATPases (v-ATPase (n = 6); P-ATPases (n = 5)), ATP-binding cassette (ABC) transporters (n = 9), channels (n = 10), and secondary active transporters (n = 42). The latter include the recently discovered potential or effective lysosomal transporters C2ORF18 (21, 51), DIRC2 (27), LMBD1 (52), and MFSD8 (53) (Fig. 6). During the revision of our manuscript, the lysosomal localization of the ABC transporter ABCD4 was established (29), and we showed in a separate study the lysosomal localization and transport function of the PQLC2 protein (36).

Removal of the transporters already annotated as endolysosomal led to a set of 46 novel potentially lysosomal transporters that notably included 27 plasma membrane proteins.
TABLE I

List of potential novel lysosomal proteins

Proteins from the Lys-734 list without any subcellular localization annotation are given. The functions are as follows: I, immune function; M, metabolism; Misc, miscellaneous; MT, membrane trafficking; R/S, receptors and signaling; T, transporters, channels, and ion pumps; U, unknown; TM, number of transmembrane domains; SpI, spectral index; NA, not applicable (protein identified in MbL/H11001 exclusively). The lysosomal localization of MFSD1 has been shown during the course of this work (66).

Gene name	Description	Accession no.	TM	Function	Spi	No. of peptides	Coverage
Abca6	Abca6, similar to ATP-binding cassette, subfamily A (ABC1), member 6	IPI00762951	13	T	0.76	6	4.61
Acp1	Acp1, isoform 1 of low molecular weight phosphotyrosine protein phosphatase	IPI00206664	0	R/S	NA	2	12.66
Afmid	LOC688283, similar to kynurenine formamidase	IPI00882532	0	M	NA	7	27.45
Ahcy	Ahcy, adenosylhomocysteinase	IPI00476295	0	M	0.60	16	38.66
Ak1r1c12I	RGD1559604, similar to protein RAKd	IPI00557070	0	M	NA	4	13.31
Ak1r1c13	LOC364773, 17β-hydroxysteroid dehydrogenase	IPI00387641	0	M	NA	5	19.38
Aox3	Aox3, aldehyde oxidase 1	IPI00205560	0	M	0.88	26	25.11
Apo2	Kiaa0415, hypothetical protein LOC641386	IPI00363750	0	MT	NA	8	11.03
Atp1c-ps1	128-kDa protein	IPI00370178	8	T	0.63	25	27.32
C10orf32	RGD1311783, hypothetical protein	IPI00371685	0	U	NA	10	59.06
C16orf62	LOC361635, UPF0505 protein C16orf62 homolog	IPI00569226	0	M	0.80	5	5.61
C17orf59	LOC497954, uncharacterized protein C17orf59 homolog	IPI00188598	0	U	0.87	11	22.16
C1galt1	C1galt1, glycoprotein-N-acetylglactosamine 3β-galactosyltransferase 1	IPI00200858	1	M	NA	7	19.83
C1galt1c1	C1galt1c1, C1GALT1-specific chaperone 1	IPI00197034	1	Misc	NA	3	11.08
C2orf72	18-kDa protein	IPI00188569	0	U	NA	4	36.9
C6orf58	RGD1311933, hypothetical protein	IPI00358842	0	U	0.95	9	29.97
C9orf91	RGD1304595, hypothetical protein LOC298104	IPI00357901	2	U	NA	7	22.51
Ca2	Car2, carbonic anhydrase 2	IPI00230787	0	U	NA	2	8.85
Cacfd1	RGD1311501, hypothetical protein LOC296599	IPI00198598	0	U	0.87	11	22.16
Ccdc22	Ccdc22, similar to coiled-coil domain containing 22	IPI00362580	0	U	NA	11	23.6
Cccd93	Cccd93, coiled-coil domain-containing protein 93	IPI00371846	0	U	NA	10	18.28
Cd302	Cd302, Cd302 antigen	IPI00372762	1	R/S	NA	4	15.79
Clec4f	Clec4f, C-type lectin domain family 4 member F	IPI00193212	1	R/S	0.98	20	33.64
Clec4g	Clec4g, similar to C-type lectin domain family 4, member g	IPI00764324	1	U	NA	4	14.65
Cnp	Cnp, 2’,3’-cyclic-nucleotide 3’-phosphodiesterase	IPI00199394	0	M	0.78	5	13.81
Commd10	Commd10, COMM domain containing 10	IPI00365023	0	U	NA	8	36.63
Commd2	Commd2, COMM domain containing 2	IPI00372217	0	U	NA	2	8.54
Commd3	Commd3, COMM domain containing 3	IPI00400613	0	U	NA	6	36.92
Commd7	Commd7, COMM domain containing 7	IPI00373166	0	Misc	NA	5	31
Commd9	Commd9, COMM domain containing 9	IPI00210812	0	U	NA	8	58.59
Cpsn5	Cpsn5, copine V	IPI00360489	0	MT	0.60	2	3.04
Crip2	Crip2, cysteine-rich protein 2	IPI00200352	0	Misc	NA	3	33.65
Csad	Csad, cysteine sulfenic acid decarboxylase	IPI00214394	0	M	0.74	12	32.86
Csnk2a1	Csnk2a1, casein kinase II subunit α	IPI00192586	0	R/S	NA	4	10.23
Dak	Dak, dihydroxyacetone kinase	IPI00372498	0	M	0.81	22	46.71
Dnajc13	Dnajc13, 108-kDa protein	IPI00366703	0	U	NA	3	5.59
Dnajc17	Dnajc13, Dnaj (Hsp40) homolog, subfamily C, member 13	IPI00870706	0	U	NA	6	4.14
Dnajc5	Dnajc5, Dnaj homolog subfamily C member 5	IPI00210881	0	Misc	0.63	6	31.31
Enpp4	Enpp4, ectonucleotide pyrophosphatase/phosphodiesterase 4	IPI00371761	1	M	0.89	5	11.07
Eprf	Eprs, LRRGT00050	IPI00476855	0	M	NA	4	2.76
Fh1f1	Fh1f1, ferritin heavy chain	IPI00777061	0	Misc	0.70	14	59.34
Gna11	Gna11, guanine nucleotide-binding protein α-11 subunit	IPI00200437	0	R/S	0.86	13	36.21
Gna13	Gna13, Gα13	IPI00422053	0	R/S	0.79	13	34.22
Gna14	Gna14, guanine nucleotide-binding protein, α14	IPI00360645	0	R/S	0.86	3	12.68

Proteomics Analysis of Lysosomal Membranes

Molecular & Cellular Proteomics 12.6
Gene name	Description	Accession no.	TM	Function	Spl	No. of peptides	Coverage
Gna3	Gna3, guanine nucleotide-binding protein G(k) subunit α	IPI00231726	0	R/S	0.88	12	43.22
Gpr155	Gpr155 G protein-coupled receptor 155	IPI00365274	17	R/S	0.89	9	14.29
Grhpr	Grhpr, Grhpr protein	IPI00767591	0	M	0.87	7	24.18
Haoo	Haoa 3-hydroxyanthranilate 3,4-dioxygenase	IPI00339188	0	M	NA	9	22.03
Iah1	Iah1, isoamyl acetate-hydrolyzing esterase 1 homolog	IPI00421610	0	M	NA	5	16.47
Igtp	Igtp Ac2-233	IPI00369234	0	M	NA	5	5.73
Itfg3	Itfg3 protein ITFG3	IPI00372350	1	U	NA	5	11.78
Jak1	Jak1, similar to tyrosine-protein kinase JAK1	IPI00212981	0	R/S	0.75	3	2.84
Kctd12	Kctd12, similar to potassium channel tetramerization domain-containing protein 12	IPI00767085	0	Misc	NA	3	9.77
Kxd1	LOC498606, UPF0459 protein C19orf50 homolog	IPI00197953	0	U	NA	7	28.25
Lgals5	Lgals5, galectin-5	IPI00231663	0	Misc	0.94	8	55.17
Loh12cr1	Loh12cr1, loss of heterozygosity, 12, chromosomal region 1 homolog	IPI00189639	0	Misc	0.94	22	80.51
Mic1	RGD1311805, similar to RIKEN cDNA 2400010D15	IPI00363472	0	U	NA	25	41.55
Mios	RGD1308432, similar to missing oocyte CG7074-PA	IPI00199953	0	U	NA	7	8.11
Mon1b	Mon1b, MON1 homolog b	IPI00359673	0	MT	0.93	23	53.86
Mpeg1	Mpeg1, macrophage-expressed gene 1 protein	IPI00204417	1	U	0.80	18	39.92
Myadm	Myadm, myeloid-associated differentiation marker	IPI00339007	8	U	0.76	2	8.49
Nagp	LOC682827, 35-kDa protein	IPI00367524	0	MT	0.92	28	52.24
Oplah	Oplah, 5-oxoprolinase	IPI00230937	0	Misc	0.68	5	43.85
Pah	Pah, phenylalanine-4-hydroxylase	IPI00191367	11	T	NA	6	18.75
Pbid	Pbid, phenazine biosynthesis-like domain-containing protein	IPI00200041	0	M	NA	6	32.64
Pebp1	Pebp1, phosphatidylethanolamine-binding protein 1	IPI00230937	0	Misc	0.68	5	43.85
Pik3ca	Pik3ca, similar to phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α isoform	IPI00955176	0	R/S	0.64	2	2.06
Pla2g2a	Pla2g2a, phospholipase A2, membrane-associated	IPI00205248	0	M	0.86	18	43.55
Ppa1	Ppa1, similar to pyrophosphatase	IPI00371957	0	M	NA	3	11.63
Prkag1	Prkag1, 5'-AMP-activated protein kinase subunit γ-1	IPI00196645	0	R/S	0.72	5	20
Rbp1	Rbp1, retinol-binding protein 1	IPI00231825	0	T	NA	5	29.63
Sec14/4	Sec14/4, SEC14-like 4	IPI00240634	0	Misc	0.66	11	31.07
Slc38a7	SLC38A7, putative sodium-coupled neutral amino acid transporter 7	IPI00421684	11	T	NA	7	10.8
Sld6a3	SLC6A3, solute carrier family 6 member 3	IPI00364398	11	T	NA	2	5.86
Slco2b1	Slco2b1, solute carrier organic anion transporter family member 2B1	IPI00230858	12	T	0.75	3	5.56
Sortd	Sortd, sorbitol dehydrogenase	IPI00760137	0	M	0.68	16	45.1
Stard10	Stard10, START domain containing 10	IPI00555188	0	U	NA	5	16.21
Tagln3	Tagln3, transgelin-3	IPI00210532	0	U	NA	5	11.47
Tgm2	Tgm2, transglutaminase 2, C polypeptide	IPI00205135	0	M	NA	6	11.81
Tm9sf4	Tm9sf4, transmembrane 9 superfamily member 4	IPI00373155	9	Misc	NA	9	13.84
Tmem104	Tmem104, similar to CG5262-PA	IPI00775680	11	T	NA	6	11.62
Tmem144	Tmem144, transmembrane protein 144	IPI00373219	10	U	0.95	5	23.85
Tmem175	Tmem175, transmembrane protein 175	IPI00211068	9	U	NA	5	18.44
and 12 proteins of unknown localization (Table II). To our knowledge, 9 out of these 46 proteins (ABCA6, C7ORF23, C9ORF91, CACFD1, SLC26A1, SLC38A7, SLC40A1, SLC46A3, and TMEM50b) have not been identified in previous proteomic analyses of mammalian lysosomes, phagosomes, or lysosome-related organelles (14–17, 19, 54–61).

Validation of Selected Candidates—Twelve candidates, LOH12CR1, STARD10, PTTG1IP, MFSD1, SLC37A2, SLC38A7, SLC46A3, SLCO2B1, TMEM104, TMEM175, TTYH2 and TTYH3, were chosen to validate independently the proteomic data. Peptides allowing their identification are given in supplemental Table S6. LOH12CR1 and STARD10 are putative cytosolic proteins. PTTG1IP is predicted to be an integral membrane protein with a role in cellular trafficking. Its subcellular localization is unclear as it has been observed in cytosol and nucleus by some authors (62) and in late endosomes by others (63). All other candidates are multispanning transmembrane proteins. TMEM175 has no homology with

Table I—continued

Gene name	Description	Accession no.	TM	Function	SpI	No. of peptides	Coverage
UBB	LOC679594:LOC682397 similar to polyubiquitin	IPI00763565	0	M	0.88	3	38.96
Ubli3	Ubli3, ubiquitin-like protein 3	IPI00358637	0	U	NA	6	47.01
Uroc1	Uroc1, similar to urocanase domain containing 1	IPI00388707	0	M	NA	8	14.35
UST4r	UST4r, putative integral membrane transport protein	IPI00202688	7	T	0.89	6	10.33
Vs1g4	Vs1g4, V-set and immunoglobulin domain-containing 4	IPI00372986	1	R/S	NA	5	17.19

Fig. 6. Lysosomal transportome. All known and potential transporters or channels retained as selectively enriched in MbL+ are represented. These proteins display at least two transmembrane domains, they either belong to the functional class “transporters, channels, and ion pumps” or have no functional annotation. They are classified according to their functional and subcellular annotations. Different categories of transporters are depicted by different colors (ABC transporters, green; MFS transporters, pink; SLC family members, purple; ATPases, deep blue; V-ATPase subunits, light blue; channels, brown; miscellaneous, black). Validated candidates are in boldface.
Table II

List of potential novel lysosomal transporters

Candidates with two TM or more, of unknown function or with an attributed transport function, are shown. The localizations are as follows: ER, endoplasmic reticulum; Golgi; EL, endo-lysosomes; Misc, miscellaneous; PM, plasma membrane; U, unknown. The functions are as follows: T, transporters, channels, and ion pumps; U, unknown; TM, number of transmembrane domains; SpI, spectral index; NA, not applicable (proteins identified in MbL+/H11001 exclusively). The lysosomal localization of MFSD1 has been shown during the course of this study (66).

Gene name	Description	Accession no.	TM	Localization	Function	SpI	No. of peptides	Coverage
Abca6	Abca6, similar to ATP-binding cassette, subfamily A (ABC1), member 6	IPI00762951	13	U	T	0.76	6	4.61
Abca8a	Abca8a, similar to ATP-binding cassette, subfamily A (ABC1), member 8a	IPI00763783	11	PM	T	NA	4	1.18
Abcb11	Abcb11, bile salt export pump	IPI00195615	12	PM	T	NA	4	1.18
Abcc10	Abcc10, ATP-binding cassette, subfamily C (CFTR/MRP), member 10	IPI00371742	14	PM	T	0.84	15	10.85
Abcc2	Abcc2, canalicular multispecific organic anion transporter 1	IPI00205806	14	PM	T	0.94	28	24.08
Abcc6	Abcc6, multidrug resistance-associated protein 6	IPI00207513	12	PM	T	0.97	17	17.58
Ank	Ank, progressive ankylosis protein homolog	IPI00765376	8	PM	T	NA	2	6.63
Atp11c-ps1	Atp11c-ps1, 128-kDa protein	IPI00370178	8	U	T	NA	2	6.63
Atp2b1	Atp2b1, isoform D of plasma membrane calcium-transporting ATPase 1	IPI00231268	7	PM	T	NA	5	4.26
Atp8a1	Atp8a1, similar to ATPase, aminophospholipid transporter (APL), class I, type 8A, member 1	IPI00952342	8	PM	T	NA	10	9.08
C7orf23	C7orf23, hypothetical protein LOC499990	IPI00565669	3	MPN	U	0.60	4	23.73
C9orf91	C9orf91, hypothetical protein LOC298104	IPI00357901	2	U	U	NA	7	22.51
Capc1f1	Capc1f1, hypothetical protein LOC296599	IPI00363948	3	U	T	NA	2	14.62
Gjb1	Gjb1, Gap junction β-1 protein	IPI00207919	4	PM	T	NA	4	15.19
Mfsd1	Mfsd1, similar to major facilitator superfamily domain containing 1	IPI00373212	11	U	T	NA	6	18.75
Myadm	Myadm, myeloid-associated differentiation marker	IPI00393007	8	U	U	0.76	2	8.49
P2rx4	P2rx4, P2X purinoceptor 4	IPI00324987	2	PM	T	0.87	13	38.4
Sdit2	Sdit2, SID1 transmembrane family, member 2	IPI00369576	9	EL	U	0.82	4	6.23
Slc12a9	Slc12a9, solute carrier family 12 member 9	IPI00198772	11	PM	T	NA	6	9.85
Slc22a1	Slc22a1, isoform 1 of solute carrier family 22 member 1	IPI00213324	10	PM	T	0.77	6	15.81
Slc22a7	Slc22a7, solute carrier family 22 member 7	IPI00203971	11	PM	T	0.83	12	25.23
Slc24a6	Slc24a6, sodium/potassium/calcium exchanger 6	IPI00465272	12	PM	T	0.92	5	12.27
Slc26a1	Slc26a1, sulfate anion transporter 1	IPI00207298	9	PM	T	0.74	10	25.6
Slc31a1	Slc31a1, high affinity copper uptake protein 1	IPI00231403	3	PM	T	0.79	5	16.58
Slc37a2	Slc37a2, similar to solute carrier family 37	IPI00569704	12	ER	T	0.98	5	16.4
Slc38a4	Slc38a4, sodium-coupled neutral amino acid transporter 4	IPI00189469	11	PM	T	0.95	7	14.63
Slc38a7	Slc38a7, putative sodium-coupled neutral amino acid transporter 7	IPI00421684	11	U	T	NA	7	10.8
Slc39a1	Slc39a1, similar to zinc transporter ZIP1	IPI00373235	6	PM	T	0.96	6	19.75
Slc40a1	Slc40a1, solute carrier family 40 member 1	IPI00326002	10	PM	T	NA	2	5.61
Slc46a3	Slc46a3, solute carrier family 46 member 3	IPI00364398	11	U	T	NA	2	5.86
Slc4a1	Slc4a1, solute carrier family 4, member 1	IPI00231379	10	PM	T	NA	6	8.41
Slc7a2	Slc7a2, cationic amino acid transporter-2	IPI00608159	16	PM	T	0.92	9	14.63
Slc7a2	Slc7a2, cationic amino acid transporter-2A	IPI00206144	14	PM	T	0.95	6	8.98
Sloc1b2	Sloc1b2, isoform 1 of solute carrier organic anion transporter family member 1B2	IPI00215390	11	PM	T	0.73	14	27.91
Sloc2a1	Sloc2a1, solute carrier organic anion transporter family member 2A1	IPI00231272	11	PM	T	0.76	3	5.13
Sloc2b1	Sloc2b1, solute carrier organic anion transporter family member 2B1	IPI00230858	12	U	T	0.75	3	5.56
Syngr2	Syngr2, synaptogyrin 2	IPI00200093	4	PM	T	0.72	2	4.7
Syp1	Syp1, synaptophysin-like protein	IPI00471762	3	Misc	U	0.95	4	20.16
Tmem104	Tmem104 similar to CGS2622-PA	IPI00778760	11	U	T	NA	6	11.29
Tmem144	Tmem144, transmembrane protein 144	IPI00373219	10	U	U	0.95	5	23.85

Proteomics Analysis of Lysosomal Membranes
functionally known proteins, and there is no other clue about its function. TTYH2 and TTYH3 may represent large conductance anion channels (64). The remaining candidates correspond to orphan members from distinct transporter families.

SLC46A3 (SoLute Carrier family 46 member 3), SLC37A2 (SoLute Carrier 37 family member 2), and MFSD1 (Major Facilitator Superfamily Domain-containing protein 1) belong to distant families within the Major Facilitator Superfamily of secondary transporters (65). MFSD1, which has previously been identified in proteomics analyses of lysosomes and phagosomes (14, 16, 19, 54, 59, 60), is responsive to the transcription factor TFEB, and it was considered as a promising lysosomal protein candidate (16, 50). Its lysosomal localization has been confirmed independently during the course of our study (66). SLC37A2 mediates sugar-phosphate/phosphate and phosphate/phosphate exchange in proteoliposomes (67).

SLC38A7 (SoLute Carrier family 38 member 7) belongs to the amino acid/polyamine/organocation superfamily (68). It has been reported to transport neutral and cationic amino acids at the plasma membrane during the course of this study (69), but signal-to-noise ratios were intriguingly low, suggesting that the actual role of SLC38A7 deserves further investigation. SLC02B1/SLC21A9/OATP2B1 is an organic anion transporter that is stimulated at acidic pH (70). TMEM104 is an orphan member of the amino acid and auxin permease transporter family.

These candidates were transiently expressed as GFP or YFP fusion proteins in HeLa cells, and their intracellular distribution was compared with the lysosomal/late endosomal marker LAMP1. Interestingly, only three candidates did not overlap with LAMP1 but localized instead at the plasma membrane (STARD10 and SLCO2B1) or in LAMP1-negative puncta (LOH12CR1; data not shown). By contrast, the distribution of the nine other candidates extensively overlapped with LAMP1 (Fig. 7), thus confirming that they reside in lysosomes and validating the predictive value of the Lys-734 list.

DISCUSSION

The main concern in lysosome-oriented proteomic studies based on subcellular fractionation is the identification of true lysosomal residents, because of cofractionation of other organelles (37, 71). Thus, identification of lysosomal candidates requires comparison of lysosome-enriched and -nonenriched fractions. A pioneer study performed by Callaghan and co-workers (15) aimed at identifying lysosomal membrane proteins from Triton WR1339 density-shifted lysosomes, also referred to as tritosomes. However, the actual lysosomal residency of several proteins identified in this study could not be established, because of the lack of comparative approach. Later on, a study of placental lysosomal proteins took advantage of the comparison between successive steps of the preparation and used a semi-quantitative label-free spectral counting method to select 86 lysosomal candidates (16). More recently, Lobel and co-workers (19) demonstrated the potential of coupling the selective lysosome density shift induced by Triton WR-1339 injection in rats with MS quantification by isobaric peptide labeling, for simultaneous identification and validation of lysosomal candidates. In this work, we compared lysosome-enriched and -non-enriched fractions obtained from rat liver by differential centrifugation and isopycnic density gradient centrifugation, followed by detergent or organic solvent extraction steps to reduce sample complexity prior to MS analysis. Our spectral count-based analysis provided us with an extensive list of 2,385 proteins (MbL2385 list), including 32% of IMPs. Among these proteins, 734 were selected as significantly enriched in the lysosomal fraction (Lys–734 list).

To our knowledge, the MbL2385 list is the most extensive published to date for lysosomes (15–17, 19, 72), phagosomes (54–56, 59, 60, 73, 74), or lysosome-related organelles (57, 58, 75–78). Its IMP content (32%) is much higher than that commonly obtained if no specific subfractionation treatment is performed (5–15% IMPs (34)), but it is very similar to that obtained in a study of placental lysosomal membranes that also used an organic solvent treatment (16). Because of our preparation protocol, we identified altogether IMPs and membrane-associated proteins, but soluble proteins as well, such as luminal lysosomal hydrolases. Indeed, centrifugation of the lysosomal membranes leads to sedimentation of aggregated inclusions from the lysosomal matrix and thus induces the presence of soluble lysosomal enzymes and of proteins being degraded (30). Moreover, soluble proteins might also be retained as entrapped in membrane fragments generated upon hypotonic lysis and subsequent resealing of the organelles. The Lys–734 list is also longer than those pre-

Gene name	Description	Accession no.	TM	Localization	Function	Spl	No. of peptides	Coverage
Tmem175	Tmem175, transmembrane protein 175	IPI00211068	9	U	U	NA	5	18.44
Tmem192	Tmem192, transmembrane protein 192	IPI00364640	4	EL	U	NA	4	12.78
Tmem50b	Tmem50b, transmembrane protein 50B	IPI00373040	4	ER	U	NA	2	12.03
Tmem63a	Tmem63a, similar to transmembrane protein 63a	IPI00363369	11	EL	U	NA	4	5.1
Ttyh2	Ttyh2, similar to tweety 2	IPI00763162	6	PM	T	NA	5	4.81
Ttyh3	Ttyh3, tweety homolog 3	IPI00363776	5	PM	T	NA	4	7.44
UST4r	UST4r, putative integral membrane transport protein	IPI00202688	7	U	T	0.89	6	10.33
Proteomics Analysis of Lysosomal Membranes

sented in other comparative proteomic studies (124 proteins in Ref. 16 and 76 in Ref. 19). Comparison of these datasets indicates nevertheless rather important overlaps of 69 and 51 proteins, respectively.

As ~80% of the EL-annotated proteins but only 3.2% of contaminant proteins were recovered in the Lys-734 list, our semi-quantitative approach was able to strongly discriminate endo-lysosomal proteins from those of recognized contaminating organelles, such as mitochondria or endoplasmic reticulum. Nevertheless, the presence of proteins annotated as non-endo-lysosomal questions the significance of their selection, beside the possibility of false-positive retention. Additionally, among the EL proteins themselves, lysosomal proteins are not distinguished from proteins from other endocytic compartments (early or late endosomes).

The presence of proteins annotated to other compartments than lysosomes may represent true lysosomal residents with multiple subcellular locations, the lysosomal residency being either predominant or secondary. Indeed, as our data were restricted to fractions issued from the isopycnic density gradient, we do not know if the “lysosome-like” behavior observed for a given protein is representative of the whole cellular pool of protein or restricted to a small, specific subset.

For instance, the TGN marker TGN38 is depleted from the L fraction and mainly recovered in the PS fraction after differential centrifugation (Fig. 2). However, the minority of TGN38 proteins that cosegregated with lysosomes during differential centrifugation was concentrated in the MbL fraction after the subsequent centrifugation on a Nycodenz gradient (Fig. 2). A surprisingly high number of PM proteins (56%) was retained in the Lys-734 list. The presence of PM in the lysosome-enriched fraction has been discussed previously (37); it was shown that the small amount of PM proteins recovered in the L fraction (~5%) behaves like lysosomes on a metrizamide gradient, either as true PM residents or as lysosomal proteins. Migration of PM proteins between PM and lysosomes is conceivable. Indeed, the endocytic pathway constitutes a link between these two compartments, as numerous fusion/fission events occur between the various entities of the pathway (PM, endocytic vesicles, early and late endosomes, and lysosomes). Moreover, lysosomes are known to directly fuse with the PM in given circumstances (3). Such a dual localization has been suggested by observations of 5’-nucleotidase reactivity on the cytoplasmic face of lysosomes (37). This protein, which is considered as a PM marker, is notably present in the Lys-734 list.

Fig. 7. Subcellular localization of candidates in HeLa cells. HeLa cells transiently expressing GFP- or YFP-tagged candidates were fixed, immunostained with an antibody directed against LAMP1, a late endosome and lysosome marker, and imaged by epifluorescence followed by deconvolution. Fluorescent protein-associated fluorescence, LAMP1 immunostaining, and merged images are shown from left to right. Insets are x3 magnification of the squared area. Scale bar, 20 µm.
The non-EL annotation of a candidate may also be too restrictive. For example, numerous proteins annotated as cytoplasmic or belonging to the cytoskeleton might in fact be associated with endo-lysosomes as constituents of membrane trafficking machineries that allow membrane exchange between lysosomes and other organelles or as belonging to the microtubules along which endo-lysosomes move inside the cell (79, 80). Finally, if not true lysosomal residents, the candidate proteins may be targeted to lysosomes for degradation through endocytosis or autophagy. For instance, many PM tyrosine kinase receptors, such as the EGF receptor, are down-regulated by this process (81). Only a few receptors of this type, including the EGF receptor, were, however, identified in our work.

The robustness and sensitivity of our approach were underscored by the close-to-completion identification in the Lys-734 list of numerous structural (i.e. vacuolar ATPase) or functional (i.e. γ-secretase, trafficking and nutrient-sensing machineries) complexes, known to act at the late endosomal and lysosomal membranes (detailed in Fig. 8). Many subunits of these complexes have been identified in previous proteomic studies of lysosomes (15–17, 19, 72), phagosomes (54–56, 59, 60, 73, 74), or lysosome-related organelles (57, 58, 75–78). However, these complexes were most often not as extensively documented as in this work. A few specific points are discussed below.

Beside its major role as a cytosolic proteolytic machine, the proteasome is also required for endocytic transport and sorting of receptors toward inner membranes of the multivesicular bodies (82, 83), through a specific interaction between Rab7 and the proteasome α-subunit PMSA7 (84). Accordingly, numerous subunits (n = 28) of the proteasome were present in the Lys-734 list. In a previous study, 24 proteasome subunits had been found in placental lysosome membranes, although not considered as lysosomal candidates (16). Proteasome subunits had also been identified, although to a lesser extent,
in proteomic studies of phagosomes (54), lysosome-related organelles (57), or Arabidopsis thaliana vacuoles.\(^3\)

Biogenesis of the lysosomes and delivery of endocytic cargo to these organelles involve numerous and highly dynamic membrane fusion and fission events between compartments of the endocytic pathway and with the secretory pathway, thus allowing protein import to, or retrieval from, lysosomes (3, 85). All complexes involved in these processes were present in the Lys-734 list (Fig. 8). Whereas numerous components of the ESCRT-III (Endosomal Sorting Complex Required for Transport-III) complex, which mediates the abscission of the newly forming intraluminal vesicles (86), were selected, none of the components of the ESCRT-0, -I, or -II complexes was identified. This was already the case in our recent proteomic analysis of the endocytic pathway of Dictyostelium discoideum (87) or in studies performed on the vacuolar membrane of Arabidopsis thaliana.\(^3\) The origin of this apparently “tighter” association of ESCRT-III with endo-lysosomal membranes (in contrast, ESCRT-0 and -I were detected in phagosomes (54)) deserves further investigation. As for the process of homo- or heterotypic fusion between late endosomes and lysosomes, it implies an initial tethering step mediated by the HOPS (homotypic fusion and vacuole protein sorting) complex (88). Very similarly, tethering in early endosomes homotypic fusion is performed by the CORVET (class C core vacuole-endosome transport) complex, which shares four subunits with HOPS (89). Interestingly, all HOPS components were present in the Lys-734 list, although none of the specific CORVET subunits could be detected. This is similar to what was observed in a proteomic study of the yeast vacuolar membrane (90).

Similarly to endosomes (91), lysosomes are now emerging as signaling platforms with the capability to detect modifications of the cell environment, such as energy, growth factors, and nutrient levels (92). Accordingly, many actors of signaling processes were enriched in the Mbl+ fraction, such as receptors, α subunits of the heterotrimeric G proteins, protein kinases and a few Ras-related proteins. As half of these signaling proteins were PM-annotated, their additional endocytic localization might have been ignored until now. A key signaling pathway in nutrient sensing involves the master cell growth regulator mTOR that controls autophagy in response to a wide range of signals, including amino acid availability (93). Recent studies showed that the lysosome acts as an assembly site for a sensing device, the “nutrisome,” which is composed of the RagA/B-RagC/D heterodimer, the Ragulator and mTORC1 complexes, the Rheb GTPase, and the V-ATPase (92, 94). Most proteins from this pathway were present in the Lys-734 list (Fig. 8).

Conclusions and Perspectives—Almost a hundred proteins, in which subcellular localization had never been described nor predicted, were sorted out as novel putative lysosomal proteins in this study. Concerning membrane transporters, 46 candidates were selected, most of which were either devoid of subcellular annotation or annotated as plasma membrane proteins, suggesting a dual localization for the latter. The lysosomal subcellular localization was validated for nine candidates, including five secondary transporters, further supporting the relevance of our list of candidate lysosomal proteins. The numerous novel candidates revealed by this work should promote new research and help with understanding the cell biology, physiology, and pathophysiology of this important organelle.

Acknowledgments—We thank L. Aubry and G. Klein for their stimulating support and L. Aubry for critical reading of the manuscript. We thank A. Kraut for technical help; C. Adam, D. Barthe, and V. Dupièri for the homemade software support, and Y. Vandenbrouck for Blast searches. We also thank M. Court and C. Masselon for writing the Spl analysis script. Author contributions: J.G., B.G., M.J., and A.J. conceived the project. J.T. and A.C. prepared samples for proteomics analysis. S.K.J. performed the mass spectrometry analysis. A.J. analyzed proteomic data. M.M. and A.J. performed statistical analysis. A.J., C.S., C.I., and Q.V. performed molecular biology experiments and subcellular localization analyses. C.B. supervised software developments for protein identification and parsimony analysis. A.J., B.G., M.J., and J.G. wrote the manuscript.

\(^3\) N. Jarno and M. Jaquinod, personal communication.
Proteomics Analysis of Lysosomal Membranes

30. Schroeder, B. A., Wrocklage, C., Hasilik, A., and Saftig, P. (2010) The proteome of lysosomes. *Biochim. Biophys. Acta* 1071, 351–373

32. Mancini, G. M., Havelaar, A. C., and Verheijen, F. W. (2000) Lysosomal transport disorders. *J. Inherit. Metab. Dis.* 23, 278–292

33. Sagné, C., and Gasnier, B. (2008) Molecular physiology and pathophysiology of lysosomal membrane transporters. *J. Inherit. Metab. Dis.* 31, 258–266

34. Speers, A. E., and Wu, C. C. (2007) Proteomics of integral membrane proteins–theory and application. *Chem. Rev.* 107, 3687–3714

35. Tan, S., Tan, H. T., and Chung, M. C. (2008) Membrane proteins and membrane proteomics. *Proteomics* 8, 3924–3932

36. Jézégou, A., Linares, E., Anne, C., Kieffer-Jaquinod, S., O’Regan, S., Apetel, J., Chabill, A., Sagné, C., Debacker, Ch., Chadeauf-Vekemans, B., Journet, A., André, B., and Gasnier, B. (2012) Hepatihelic protein PQLC2 is a lysosomal catioic amino acid exporter underlying the action of proteins–in cystinosis therapy. *Proc. Natl. Acad. Sci. U.S.A.* 109, E3433–E3443

37. Wattiaux, R., Wattiaux-De Coninck, S., Ronveaux-dupai, M. F., and Dubois, F. (1978) Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. *J. Cell Biol.* 78, 349–368

38. Peters, T. J., Müller, M., and De Cuve, C. (1972) Lysosomes of the arterial wall. I. Isolation and subcellular fractionation of cells from normal rabbit aorta. *Exp. Med. Biol.* 36, 933–939

39. Salvi, D., Rolland, N., Joyard, J., and Ferro, M. (2008) Purification and proteomic analysis of chloroplasts and their sub-organelar compartments. *Methods Mol. Biol.* 432, 19–36

40. Donoghue, P. M., Hughes, C., Vissers, J. P., Langridge, J. I., and Dunn, M. J. (2008) Nonionic detergent phase extraction for the proteomic analysis of heart membrane proteins using label-free LC-MS. Proteomics 8, 3895–3905

41. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227, 680–685

42. Dupierris, V., Masselon, C., Court, M., Kieffer-Jaquinod, S., and Bruley, C. (2009) A toolbox for validation of mass spectrometry peptides identifiication and generation of database: IRMa. *Bioinformatics* 25, 1980–1981

43. Vizzaino, J. A., Côté, R., Reisinger, F., Foster, J. M., Mueller, M., Rameseder, J., Hermjakob, H., and Martens, L. (2009) A guide to the Proteomics Identifications Database proteomics data repository. *Proteomics* 9, 4276–4283

44. Liu, H., Sadovy, R. G., and Yates, J. R., 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. *Anal. Chem.* 76, 4193–4201

45. Fu, X., Gharib, S. A., Green, P. S., Atkken, M. L., Frazer, D. A., Park, D. R., Vaisar, T., and Heinecke, J. W. (2008) Spectral index for assessment of different protein expression in shotgun proteomics. *J. Proteome Res.* 7, 845–854

46. Gilchrist, A., Au, C. E., Hiding, J., Bell, A. W., Fernandez-Rodriguez, J., Lesimple, S., Nagaya, H., Roy, L., Gosline, S. J., Hallett, M., Paiement, J., Kearney, R. E., Nilsson, T., and Bergeron, J. J. (2006) Quantitative proteomics analysis of the secretory pathway. *Cell* 127, 1265–1281

47. Olsson, G. M., Svensson, I., Zdolsek, J. M., and Brunk, U. T. (1989) Lysosomal enzyme leakage during the hypoxanthine/xanthine oxidase reaction. *Virochows Arch. B Cell Pathol. Incl. Mol. Pathol.* 56, 385–391

48. Ford, T., Rickwood, D., and Graham, J. (1983) Buoyant densities of macromolecules, macromolecular complexes, and cell organelles in Nycodenz gradients. *Anal. Biochem.* 128, 232–239

49. Bordier, C. (1981) Phase separation of integral membrane proteins in Triton X-114 solution. *J. Biol. Chem.* 256, 1604–1607

50. Barrios, J. M., Palmeri, M., di Ronza, A., Medina, D. L., Valenza, M., Gennario, V. A., Di Malta, C., Donaudy, F., Embrione, V., Polischuk, R. S., Banti, S., Parenti, G., Cattaneo, E., and Ballabio, A. (2009) A gene network regulating lysosomal biogenesis and function. *Science* 325, 473–477

51. Boonen, M., Zendeza de Castro, R., Cuvelier, G., Hamer, I., and Jadot, M. (2008) A dileucine signal situated in the C-terminal tail of the lysosomal membrane protein p40 is responsible for its targeting to lysosomes. *Biochem. J.* 414, 431–440

52. Rutsch, F., Galius, S., Miosuse, I. R., Suomala, T., Sagné, C., Tolt, M. R., Nürnberg, G., Wittkampf, T., Buer, I., Sharifi, A., Stucki, M., Becker, C., Baumgartner, M., Robenek, H., Marquardt, T., Höhne, W., Gasnier, B., Rosenblatt, D. S., Fowler, B., and Nürnberg, P. (2009) Identification of a putative lysosomal cobalamin transporter altered in the cbf1 defect of...
Proteomics Analysis of Lysosomal Membranes

vitamin B₁₂ metabolism. Nat. Genet. 41, 234–239

53. Siintola, E., Topcu, M., Aula, N., Lohi, H., Minassian, B. A., Paterson, A. D., Liu, X. Q., Wilson, C., Laitinen, U., Anttonen, A. K., and Lehesjoki, A. E. (2007) The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am. J. Hum. Genet. 81, 136–146

54. Bouilais, J., Treon, M., Landry, C. R., Dieckmann, R., Levy, E. D., Soldati, T., Michnick, S. W., Thibault, P., and Desjardins, M. (2010) Molecular characterization of the evolution of phagosomes. Mol. Syst. Biol. 6, 423

55. Buschow, S. I., Lasonder, E., Szklarczyk, R., Oud, M. M., de Vries, I. J., and Figdor, C. G. (2012) Unraveling the human dendritic cell phagosome proteome by organellar enrichment ranking. J. Proteomics 75, 1547–1562

56. Li, Q., Singh, C. R., Ma, S., Price, N. D., and Jagannath, C. (2011) Label-free proteomics and systems biology analysis of mycobacterial phagosomes in dendritic cells and macrophages. J. Proteome Res. 10, 2425–2439

57. Raymond, A. A., Gonzalez de Peredo, A., Stella, A., Ishida-Yamamoto, A., Bouysse, D., Serre, G., Monsarrat, B., and Simon, M. (2008) Lamellar bodies of human epithelium: proteomics characterization by high throughput mass spectrometry and possible involvement of CLIP-170 in their trafficking/secretion. Mol. Cell. Proteomics 7, 2151–2175

58. Schmidt, H., Gelhaus, C., Nebendahl, M., Lettau, M., Lucius, R., Leppé, M., Kabelitz, D., and Janssen, O. (2011) Effector granules in human T lymphocytes: proteomic evidence for two distinct species of cytotoxic effector vesicles. J. Proteome Res. 10, 1603–1620

59. Shui, W., Sheu, L., Liu, J., Smart, B., Petzold, C. J., Hsieh, T. Y., Pitcher, A., Keasling, J. D., and Bertozzi, C. R. (2011) Organelle membrane proteome by organellar enrichment ranking. J. Proteome Res. 10, 339–348

60. Trost, M., English, L., Lemiux, S., Courcelles, M., Desjardins, M., and Thibault, P. (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30, 143–154

61. Huang, X., and Wei, L. (2010) A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J. Biol. Chem. 285, 19422–19427

62. Smith, V. E., Read, M. L., Turnell, A. S., Sharma, N., Wang, Y. G., Dond, J. C., Seed, R. I., Kwan, P., Yang, G., Mehnaha, H., Chao, S. Y., Darras, V. M., Boelaert, K., Franklyn, J. A., and McCabe, C. J. (2012) PTG-binding factor (PBF) is a novel regulator of the thyroid hormone transport receptor MCT8. Endocrinology 153, 3526–3536

63. Suzuki, M., and Mizuno, A. (2004) A novel human Cl[–] channel family related to Drosophila flightless locus. J. Biol. Chem. 279, 22461–22468

64. Pao, S. S., Paulsen, I. T., and Saier, M. H. J. (1998) Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34

65. Palmeri, M., Impex, S., Kang, H., di Ronza, A., Pelz, C., Sardiello, M., and Ballabio, A. (2011) Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852–3866

66. Pan, C. J., Chen, S. Y., Jun, H. S., Lin, S. R., Mansfield, B. C., and Chou, J. Y. (2011) SLCO3A1 and SLCO3A2 are phosphate-linked, glucose 6-phosphate antiporters. PLoS ONE 6, e23157

67. Jack, D. L., Paulsen, I. T., and Saier, M. H. (2000) The amino acid/polyamine/oxygenation (APC) superfamily of transporters specific for amino acids, polyamines, and organocarbons. Microbiology 146, 1797–1814

68. Hägglund, M. G., Sreedharan, S., Nilsson, V. C., Shaik, J. H., Almkvist, I. M., Bäcklin, S., Wrangle, O., and Fredriksson, R. (2011) Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in lung lamellar bodies and lysosome-related organelles. PLoS ONE 6, e16482

69. Haggblom, M. G., Sreedharan, S., Nilsson, V. C., Shaik, J. H., Almkvist, I. M., Bäcklin, S., Wrangle, O., and Fredriksson, R. (2011) Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in lung lamellar bodies and lysosome-related organelles. PLoS ONE 6, e16482

70. Lominadze, G., Powell, D. W., Luerman, G. C., Link, A. J., Ward, R. A., and McLeish, K. R. (2005) Proteomic analysis of human neutrophil granules. Mol. Cell. Proteomics 4, 1503–1521

71. Basrur, V., Yang, K., Kushimoto, T., Higashimoto, Y., Yasumoto, K., Valenc, J., Muller, J., Vieira, W. D., Watabe, H., Shabanowitz, J., Hiers, V. J., Hunt, D. F., and Appella, E. (2003) Proteomic analysis of early melanosomes: identification of novel melanosomal proteins. J. Proteome Res. 2, 69–79

72. Caviston, J. P., and Holzbaur, E. L. (2006) Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 16, 530–537

73. Krendel, M., and Moorese, M. S. (2005) Myosins: tails (and heads) of functional diversity. Physiology 20, 239–251

74. Rogers, L. D., and Foster, L. J. (2007) The dynamic phagosomal proteome required for transport of the EGF receptor to inner membranes of multivesicular bodies. J. Cell Biol. 175, 843–854

75. Dong, J., Chen, W., Welford, A., and Wandinger-Ness, A. (2004) The proteasome α-subunit XAPC7 interacts specifically with Rab7 and late endosomes. J. Biol. Chem. 279, 21334–21342

76. McLough, I. J., and Cullen, P. J. (2011) Recent advances in retromer biology. Traffic 12, 963–971

77. Adell, M. A., and Teis, D. (2011) Assembly and disassembly of the ESCRT-III membrane scission complex. FEBS Lett. 585, 3191–3196

78. Jouret, A., Klein, G., Brugière, S., Vandenbrouck, Y., Chapel, A., Kieffer, S., Bruley, C., Masselot, C., and Aubry, L. (2012) Investigating the macropinocytic proteome of Dictyostelium amoebae by high-resolution mass spectrometry. Proteomics 12, 241–245

79. Pryor, P. R., and Luzio, J. P. (2009) Delivery of endocytosed membrane proteins to the lysosome. Biochem. Biophys. Acta 1793, 615–624

80. Epp, N., Rathemeyer, R., Krämer, L., and Ungermann, C. (2011) Membrane dynamics and fusion at late endosomes and vacuoles–Rab regulation, multisubunit tethering complexes and SNAREs. Eur. J. Cell Biol. 90, 779–785

81. Wiederhold, E., Gandhi, T., Permentier, H. P., Bretting, R., Poolman, B., and Slottboom, D. J. (2009) The yeast vacuolar membrane proteome. Mol. Cell. Proteomics 8, 380–392

82. Scita, G., and Di Fiore, P. P. (2010) The endocytic matrix. Nature 463, 464–473

83. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., and Sabatini, D. M. (2010) Regulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303

84. Sengupta, S., Peterson, T. R., and Sabatini, D. M. (2010) Regulation of the mTORC1 pathway by nutrients, growth factors, and stress. Mol. Cell 40, 310–322

85. Zoncu, R., Bar-Peled, L., Eleyan, A., Wang, S., Sancak, Y., and Sabatini, D. M. (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H⁺-ATPase. Science 334, 678–683