Differences in Pod Calcium Concentration for Eight Snap Bean and Dry Bean Cultivars

J.M. Quintana1, H.C. Harrison2, J. Nienhuis3, J.P. Palta2, and K. Kmiecik4

Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706-1590

Abstract. This study was designed to compare snap and dry beans (Phaseolus vulgaris L.) for pod Ca concentration, and to identify genetic resources that might be useful in breeding programs directed to increase Ca concentration in bean pods. Pods from eight snap bean and eight dry bean cultivars were evaluated for Ca concentration during 1995 and 1996 at Hancock, Wis. A randomized complete-block design was utilized with three replications in 1995 and six in 1996. Beans were planted in June and hand-harvested in August for both experiments. Soil Ca at planting time was 580 mg·kg–1 in 1995 and 500 mg·kg–1 in 1996. No additional Ca was added. Plots consisted of 10 plants each. At harvest, a pooled sample of 10 to 15 size no. 4 pods was collected from each plot. Atomic absorption spectrophotometry was used to determine Ca content. Significant differences (P ≤ 0.01) were detected among and within bean types (dry and snap). Although bean type × year interaction was nonsignificant, a strong year effect was observed (P ≤ 0.01). Snap beans (4.6 ± 0.7 mg·g–1 dry weight) had significantly higher pod Ca concentration than did dry beans (4.2 ± 0.6 mg·g–1 dry weight). Within snap beans, ‘Checkmate’ had the highest pod Ca concentration (5.5 ± 0.3 mg·g–1 dry weight) and ‘Nelson’ the lowest (3.8 ± 0.3 mg·g–1 dry weight). Within dry beans, ‘GO122’ had the highest (5.1 ± 0.4 mg·g–1 dry weight) and ‘Porrrillo 70’ the lowest pod Ca concentration (3.6 ± 0.3 mg·g–1 dry weight). Six cultivars had pod Ca concentrations significantly (P ≤ 0.01) higher than the overall mean (4.4 ± 0.3 mg·g–1 dry weight).

Materials and Methods

Plant material. Sixteen bean cultivars commonly used in breeding programs worldwide were evaluated in this study. Eight snap bean and eight dry bean cultivars were selected, based on their geographical origin, phenotypic differences, and market classes, to include a range of variability for color and shape of seed and pod, use (fresh or processing), disease tolerance (mainly to soil pathogen complexes), and yield. Snap bean cultivars were ‘Astro’, ‘Checkmate’, ‘Evergreen’, ‘Hystyle’, ‘Labrador’, ‘Nelson’, ‘TR67.042.211’, and ‘Unidor’. All but ‘Unidor’ (wax bean) had green pods, and all originated in the United States except ‘Unidor’ and ‘Evergreen’, which were developed in Europe. Dry beans utilized were ‘A55’, ‘BM3.056’, ‘Carioca’, ‘GN1140’, ‘GO122’, ‘K407’, ‘Porrrillo’, and ‘Puebla 152’. Their geographical areas of use and origin included Brazil (‘Carioca’), Mexico (‘Puebla 152’), and India (‘GO122’). Color, size, and shape of seed differed among these cultivars, which included black seeded (‘A55’, ‘Puebla 152’, and ‘Porrrillo’), kidney shaped (‘K407’ and ‘GO122’), large white seeded or Great Northern (‘GN1140’), Navy (‘BM3.056’), and brown-beige seeded (‘Carioca’) types.

Received for publication 10 Aug. 1998. Accepted for publication 18 Feb. 1999. Research conducted at the Univ. of Wisconsin–Madison. We appreciate the assistance of Erik V. Nordheim with the statistical analyses and the constructive comments of Dennis P. Stintz and Jack E. Staub. This paper is based on a portion of a thesis submitted by J.M. Quintana in partial fulfillment for the requirements for the PhD degree in horticulture. Research supported by the Graduate Research Committee at the Univ. of Wisconsin–Madison, the College of Agricultural and Life Sciences, and Hatch Act Funds. Use of trade names does not imply endorsement of the products named or criticism of similar ones not named. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

1Graduate Research Assistant.
2Professor.
3Associate Professor.
4Research Plant Breeder.
to 10 per row, 10.2 cm apart. Blocks and rows were spaced 91 cm apart with guard rows planted along the periphery of the experiments, and the total area of each plot was 0.93 m².

Standard cultural practices were followed including: preplant incorporation of the herbicide trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), applications of acephate (methamidophos O,S-dimethyl phosphorothioate) insecticide as needed for leafhoppers, cultivation (20 to 30 d after planting) for weed control, one sidedressed fertilizer application (33.5N–0P–0K) at 100 kg ha⁻¹ over 2 weeks after planting, and 12.5 mm of irrigation water per week from planting time to harvest (Binning et al., 1999). Beans flowered 40 to 45 d after planting. However, considerable variability was observed, with dry beans flowering several days later than snap beans. Most pods were full and seeds small (pod filling) at harvest (Hall, 1991).

Even though dry beans are used mainly as mature seeds, pods were collected from both dry and snap beans at the same physiological age in order to compare pod Ca concentration. Criteria for sampling were based on seed size, using a commercial pocket pod grader to check for maturity. Plots were monitored every 2 d starting 2 weeks after flowering (=55 to 60 d after planting). To ensure proper comparison for pod Ca concentration among cultivars, pods were harvested when most of the seeds were 5 mm long, corresponding to commercial sieve size number 4 (Peck et al., 1989). A pooled sample of 10 to 15 pods was randomly taken from the 10 plants in each plot for Ca determinations.

Laboratory analysis. After harvest, pods were oven-dried at 60 to 65 °C for 48 h, then ground in a Wiley mill to pass a 10-mesh screen. A 0.05- g sample for each treatment was weighed and placed in a 10-mL glass beaker. Samples were dry ashed in a muffle furnace at 450 °C for 5 h. After cooling, the Ca was extracted by adding 5 mL of 2 N HCl. This solution was poured through Whatman no. 540 filter paper and collected in a 50-mL volumetric flask. The filter paper was rinsed with two to three volumes of distilled-deionized water to ensure that all Ca was extracted from the ash. Finally, 10 mL of 0.2 N HCl containing 10 g L⁻¹ lanthanum (as LaCl₃) was added to the Ca extract to overcome chemical interferences, and total volume was brought to 50 mL with distilled-deionized water (Greweling, 1976). Calcium concentrations were determined with an atomic absorption spectrophotometer (model SpectraA-20; Varian Techtron Pty. Ltd., Mulgrave Victoria, Australia). Standards used for calibration were: 0, 1.0, 2.0, 3.0, 4.0, and 5.0 mg L⁻¹ of Ca. When a sample had higher Ca concentration than the highest standard, it was diluted 50% with a solution of 0.2 N HCl containing 2000 mg L⁻¹ lanthanum (as LaCl₃) (Varian, 1986).

Results and Discussion

Overall mean Ca concentration in dried pod tissue for all cultivars evaluated was 4.4 ± 0.3 mg g⁻¹, which was similar to the overall mean of 4.8 ± 0.9 mg g⁻¹ found in previous studies (Quintana et al., 1996). Two dry beans, ‘GO122’ (5.1 mg g⁻¹) and ‘Carioca’ (4.9 mg g⁻¹), and four snap beans, ‘Checkmate’ (5.5 mg g⁻¹), ‘Hystyle’ (5.2 mg g⁻¹), ‘Evergreen’ (5.0 mg g⁻¹), and ‘TR67.042.211’ (4.9 mg g⁻¹) had pod Ca concentrations significantly higher than the overall mean (Table 1). The mean pod Ca concentration (across years and replications) was 8.7% higher for snap beans (4.7±0.7 mg g⁻¹) than for dry beans (4.2±0.6 mg g⁻¹), significant at P ≤ 0.001. Mean pod Ca concentration (tissue dry weight) for all cultivars ranged from a high of 5.5 ± 0.3 mg g⁻¹ for ‘Checkmate’ to a low of 3.6 ± 0.3 mg g⁻¹ for ‘Porrillo 70’. Pod Ca concentration differed significantly among snap bean cultivars. ‘Checkmate’ had the highest concentration and ‘Nelson’ the lowest (3.8 ± 0.3 mg g⁻¹), supporting previous work on snap beans (Quintana et al., 1996). Within dry beans the highest value was 5.1 ± 0.4 mg g⁻¹ for ‘GO122’ and the lowest (3.6 ± 0.3 mg g⁻¹) for ‘Porrillo 70’. Thus, variability for pod Ca concentration in dry beans was as high as that found in snap beans. In general, Ca concentration in dry bean cultivars was 162% higher in immature pods (4.2±0.6 mg g⁻¹) than values reported for mature seeds (1.6 mg g⁻¹) in other studies (Peirce, 1987). Bean cultivars ranked as high accumulators of pod Ca might be used in genetic studies designed to establish the genetic bases for such accumulation.

Environmental effects. No type × year interaction was observed (P = 0.109), suggesting that snap beans had higher pod Ca concentrations than dry beans regardless of year. Similarly, cultivar (type) × year interaction was nonsignificant (P = 0.429), which agrees with previous studies (Quintana, 1998; Quintana et al., 1996). Bean breeding for pod Ca concentration may be facilitated by these findings, because consistency of the rankings across environments suggests that evaluation findings, because consistency of the rankings across environments suggests that evaluation of pod Ca concentration (tissue dry weight) for different years might be attributed to differences in soil Ca content. However, recent studies have shown than an increase in soil Ca beyond sufficiency does not increase pod Ca concentration (mg g⁻¹ dry weight) for eight snap bean and eight dry bean cultivars grown at one location over 2 years.

Year	Type	Mean ± se
1995	All	4.6 ± 0.7 a'
1996	All	4.3 ± 0.6 b
Type	Both years	Mean ± se
	Snap	4.6 ± 0.7 a
	Dry	4.2 ± 0.6 b
Cultivar	Checkmate	5.5 ± 0.3 a
	Hystyle	5.2 ± 0.2 ab
	GO122	5.1 ± 0.4 b
	Evergreen	5.0 ± 0.3 b
	Carioca	4.9 ± 0.3 bc
	TR67.042.211	4.8 ± 0.3 d
	Astro	4.6 ± 0.4 c-e
	GN1140	4.5 ± 0.3 de
	K407	4.4 ± 0.3 ef
	Puebla 152	4.1 ± 0.4 fg
	Unidor	3.9 ± 0.4 gh
	Labrador	3.9 ± 0.2 gh
	BM3.056	3.8 ± 0.3 gh
	Nelson	3.8 ± 0.3 gh
	A55	3.7 ± 0.2 h
	Porrillo 70	3.6 ± 0.3 h
Overall mean	4.4 ± 0.3	

In pods (Quintana, 1998), Lower temperatures and soil moisture can significantly reduce root pressure (Kramer, 1983). Thus, the lower pod Ca accumulation in 1996 may have reflected the influence of environment on root pressure.

This research demonstrates that variation for pod Ca concentration exists among snap and dry beans and that dry beans accumulate less Ca in their pods than do snap beans. The nonsignificant type × year or cultivar × year interactions suggest that environmental variables may not be significant factors in selection, despite differences in accumulated heat units (base 10 °C) and rainfall. Of the 16 genotypes evaluated, the six with highest pod Ca concentrations may be useful in breeding programs targeted to enhance this characteristic.

Literature Cited

Binning, L.K., C.M. Boerboom, L.G. Bundy, T.R. Connell, K.A. Delahaut, H.C. Harrison, K.A. Kelling, D.L. Mahr, S.E.R. Mahr, B.A. Michaelis, W.R. Stevenson, J.L. Wedberg, and J.A. Wyman. 1999. Commercial vegetable production in Wisconsin. Univ. of Wisconsin Ext. Bul. #A3422.

Clark, R.B. 1983. Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth, p. 49–70. In: M.R. Saric and B.C. Loughman (eds.). Genetic aspects of plant nutrition. Developments in plant and soil sciences, Vol. 8. Martinus Nijhoff/Dr W. Junk, New York.

Clark, R.B. and J.C. Brown. 1980. Role of the plant in mineral nutrition as related to breeding and genetics, p. 45–70. In: L.S. Murphy, E.C. Doll, and L.F. Welch (eds.). Moving up the yield curve. Advances and obstacles. Amer. Soc. Agron., Madison, Wis.
Drummond, K.E. 1996. Dictionary of nutrition and dietetics. 1st ed. Van Nostrand Reinhold, New York.

Ensminger, E., M.E. Ensminger, J.E. Konlande, and J.R.K. Robson. 1994. Foods and nutrition encyclopedia. 2nd ed., vol. 1. CRC Press, Boca Raton, Fla.

Epstein, E. and R.L. Jefferies. 1964. The genetic basis of selective ion transport in plants. Annu. Rev. Plant Physiol. 15:169–184.

Fawole, I., W.H. Gabelman, and G.C. Gerloff. 1982. Heritability of efficiency in phosphorus utilization in beans (Phaseolus vulgaris L.) grown under phosphorus stress. J. Amer. Soc. Hort. Sci. 107:94–97.

Food and Agriculture Organization. 1990. FAO production yearbook. Vol. 44. FAO/UN, Rome.

Fryer, H.C. 1966. Concepts and methods of experimental statistics. 4th ed. Allyn and Bacon, Boston.

Greweling, T. 1976. Chemical analysis of plant tissue. Search Agr. 6. Cornell Univ. Agr. Expt. Sta., Ithaca, N.Y.

Grusak, M.A., S. Pezeshgi, K.O. O’Brien, and S.A. Abrams. 1996. Intrinsic 42Ca-labelling of green bean pods for use in human bioavailability studies. J. Sci. Food Agr. 70:11–15.

Hall, R. 1991. Compendium of bean diseases. Amer. Phytopathol. Soc. Press, St. Paul, Minn.

Herbert, V., G.J. Subak-Sharpe, and D.A. Ham-mock. 1990. The Mount Sinai School of Medicine complete book of nutrition. St. Martin’s Press, New York.

Kramer, P.J. 1983. Water relations of plants. 1st ed. Academic Press, New York.

Miglioranza, E., P. Barak, K. Kmiecik, and J. Nienhuis. 1997. Comparison of soil and genotypic effects on calcium concentration of snap bean pods. HortScience 33:68–70.

Peck, N.H., G.E. MacDonald, and A.V. Gardner. 1989. Snap bean plant responses to sources and rates of nitrogen and potassium fertilizers. HortScience 24:619–623.

Peirce, L.C. 1987. Vegetables: Characteristics, production and marketing. 1st ed. Wiley, New York.

Quintana, J.M. 1998. Physiological and genetic factors associated with calcium accumulation in snap beans (Phaseolus vulgaris L.). PhD Diss., Dept. of Horticulture, Univ. of Wisconsin, Madison.

Quintana, J.M., H.C. Harrison, J. Nienhuis, J.P. Palta, and M.A. Grusak. 1996. Variation in calcium concentration among sixty S1 families and four cultivars of snap bean (Phaseolus vulgaris L.). J. Amer. Soc. Hort. Sci. 121:789–793.

Rubatzky, V.E. and M. Yamaguchi. 1997. World vegetables: Principles, production and nutritive values. 2nd ed. Chapman and Hall, New York.

Shea, P.F., W.H. Gabelman, and G.C. Gerloff. 1967. The inheritance of efficiency in potassium utilization in snap beans (Phaseolus vulgaris L.). Proc. Amer. Soc. Hort. Sci. 91:286–293.

Stevens, M.A. 1974. Nutritional quality of fresh fruits and vegetables. Futura Publ., Mt.Kisco, N.Y.

U.S. Dept of Agriculture. 1984. USDA agricultural handbook series 8–11. Composition of foods: Vegetables and vegetable products—Raw, processed, prepared. Nutr. Monitoring Div., Human Nutr. Info. Serv., U.S. Dept. Agr., Hyattsville, Md.

U.S. National Research Council. 1989. Recommended dietary allowances. 10th ed. Food and nutrition board. Commission on life sciences. National Academic Press, Washington, D.C.

Vose, P.B. 1963. Varietal differences in plant nutrition. Herbage Abstr. 33:1–13.