Pediatric Sleep Tools: An Updated Literature Review

Tabitha Sen1 and Karen Spruyt2*

1 School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia, 2 Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, University Claude Bernard, School of Medicine, Lyon, France

Since a thorough review in 2011 by Spruyt, into the integral pitfalls of pediatric questionnaires in sleep, sleep researchers worldwide have further evaluated many existing tools. This systematic review aims to comprehensively evaluate and summarize the tools currently in circulation and provide recommendations for potential evolving avenues of pediatric sleep interest. 144 "tool"-studies (70 tools) have been published aiming at investigating sleep in primarily 6–18 years old per parental report. Although 27 new tools were discovered, most of the studies translated or evaluated the psychometric properties of existing tools. Some form of normative values has been established in 18 studies. More than half of the tools queried general sleep problems. Extra efforts in tool development are still needed for tools that assess children outside the 6-to-12-year-old age range, as well as for tools examining sleep-related aspects beyond sleep problems/disorders. Especially assessing the validity of tools has been pursued vis-à-vis fulfillment of psychometric criteria. While the Spruyt et al. review provided a rigorous step-by-step guide into the development and validation of such tools, a pattern of steps continue to be overlooked. As these instruments are potentially valuable in assisting in the development of a clinical diagnosis into pediatric sleep pathologies, it is required that while they are primary subjective measures, they behave as objective measures. More tools for specific populations (e.g., in terms of ages, developmental disabilities, and sleep pathologies) are still needed.

Keywords: sleep duration, sleep quality, sleep hygiene, questionnaire, child, review

INTRODUCTION

There is significant power in the efficiency and cost-effective nature of questionnaires and surveys as contributors to aetiological discoveries of a wide range of medical disorders. These instruments however, do not always possess the objective nature of medically advised and established tools, e.g., polysomnography, and can become a hindrance to adequate diagnoses, particularly when neglecting recommendations of their development (1). Despite these problems, there has been considerable effort to transform the structure of health questionnaires, specifically in the field of pediatric sleep, to reflect a systematic approach of the highest concordance to medical diagnostic standards.

Abbreviations: AAP, American Academy of Pediatrics; ADHD, attention deficit hyperactivity disorder; ASDC, Association of Sleep Disorders Centers classification; DSM, Diagnostic and Statistical Manual of Mental Disorders; ICD, International Classification of Diseases; ICSD, International Classification of Sleep Disorders; PSG, polysomnography; RLS, Restless Legs Syndrome; ROC, Receiver Operating Characteristic curve.
The systematic review by Spruyt et al. (2, 3) in 2011, publicly summarized the shortcomings of questionnaires and their developmental standards while advising a thorough procedure in which to follow to adequately evaluate or develop a tool.

Since this time, a variety of tools have been established, both adhering to and overlooking the recommended steps. More detailed information on the 11 steps can be found in Spruyt et al. (3). Briefly, Step 1 is to reflect on the variable(s) of interest and targeted sample(s). Step 2 is to consider the research question that the instrument will be used to address. Thus, the goal of this step is to reflect on whether the tool will be suitable to collect the type of data required to address your hypothesis. Steps 3 (response format) and Step 4 (items) build on the two preceding steps. They allow us to reflect not only on “which” questions and “which” answers assess the variable(s) of interest, but also on “how” a question is formulated and “how” it can be answered. The common goal of steps 1–4 is that we want the underlying “concepts” and/or “assumptions” contained in the questions, such as language (e.g., jargon), meaning and interpretation of the wording to be identically understood by all respondents. Getting as close as this ideal as possible will minimize errors of comprehension and completion. Step 5 involves piloting of your drafted tools. Piloting also prevents disasters with the actual data collection. In fact, Steps 2–5 should be an iterative process, meaning that we do them repeatedly, until a consensus has been reached among experts and/or respondents.

Steps 6 and 7 are about assessing the reliability and validity, respectively. Reliability does not imply validity, although a tool cannot be considered valid if it is not reliable! Several statistical, or psychometric, tests allow us to assess a tool’s reliability and validity (cfr. textbooks written on this topic). For instance, validation statistics of the tool may involve content validity, face validity, criterion validity, concurrent validity or predictive validity. Step 10 is about verifying the stability, or robustness, of the aforementioned steps. It is the step in which you assess the significance, inference, and confidence (i.e., minimal measurement error) of your tool, using the sample(s) for which it was designed. Step 11 involves standardization and norm development, allowing large-scale usage of your tool.

This review aims to conclude the trends associated with these questionnaires, and reinforce the importance of certain stages of tool development and highlight the direction of research that would be ideal to follow.

MATERIALS AND METHODS

To achieve consistency and retrieve relevant studies to the Spruyt (2, 3) review, the search terms(*) and databases were mirrored; “Sleep” AND (“infant” OR “child” OR “adolescent”) AND (“questionnaire,” “instrument,” “scale,” “checklist,” “assessment,” “log,” “diary,” “record,” “interview,” “test,” “measure”). The databases included PubMed, Web of Science (WOS), and EBSCOHOST (per PRISMA guidelines). Additional limitations to the search criteria were applied for date and age range of the respective study populations. Database-wide searches were conducted between 18th of April 2010 (Spruyt, 2011 publication date of search) and 1st of January 2020. Age categories listed in PubMed filters between 0 and 18 years were also applied to restrict the search to pediatric populations alone. Contrastingly, language criteria were not specified but post hoc constrained to English. Papers in other languages could not be evaluated by one of the authors, in case a consensus on the psychometric evaluation was needed. The search for relevant studies extended to authors in listserver groups PedSleep2.0 and the International Pediatric Sleep Association (IPSA) in order to achieve maximal inclusion. The refinement of these study characteristics ensured that the systematic review would evaluate relevant studies in pediatric tool development, adaptation, and validation. Final search count was sizeable (refer to Figure 1).

Full-text access was achieved through the literary database “Library Genesis” or author contact if necessary (see Acknowledgments). All flagged citations were then manually screened for relevant keywords in their respective titles, abstracts and methods to further refine studies relevant to the systematic review—these being 11 psychometric steps (2, 3) and 7 sleep categories (sleep quantity, sleep quality, sleep regularity, sleep hygiene, sleep ecology, and sleep treatment) (4). Consequently, independent studies were highlighted and screened, and each study’s descriptive variables were extracted and collated. Any absence of indispensable information regarding the tools use was addressed through contact of authors.

Statistical Analysis

A total of 11 steps (2) and 7 sleep categories (4) were extracted and were statistically analyzed for frequency and descriptive assessment (refer to Tables 1 and 2). Any variables unmentioned or neglected were described as “empty,” and tabulated as such in the forthcoming interpretations. Continuous variables will be described as mean values (+ standard deviation) and categorical variables will be shown as absolute and relative values. Statistical analyses were performed with Statistica version 13 (StatSoft, Inc. (2009), STATISTICA, Tulsa, OK).

RESULTS

Studies Included

As described by Figure 1, the total number of studies generated from the database search was sizeable, at n=341. Key emphasis of a pediatric diagnostic tools’ use, development or validation deemed it eligible for review, as well as the general translation and consequent adaptation of any pediatric questionnaire, survey, log, diary, etc. The titles and abstracts of each report
were screened accordingly, resulting in the omission of 193 articles and final inclusion of 144 articles. Exported abstracts were then assigned their respective full-text. Complete text access was not available for 14, while retrieved from either the literature database “Library Genesis” or via author permission (n=4, see Acknowledgments), leaving 144 or 70 tools eligible for review based on the search conducted.

A more thorough examination of methodological processes was then executed to reveal categories to which each article was suitably assigned for ease of future assessment (refer to Table 1): “New Development (N),” “Psychometric Analysis (P),” and “Translation (T)/Adaptation (A),” or a combination thereof. Each paper was assigned to the appropriate criteria; “Development” if the report’s main purpose was to produce an unprecedented tool, “Psychometric Analysis” if the explicit objective was to assess the reliability and validity of said tool, and “Translation and/or Adaptation” for all studies that in any way translated or altered a tool to suit a specific population, culture, and/or nation. Overall (Table 2), 36.8% of the studies aimed to merely psychometrically evaluate a pediatric sleep tool, while 9% additionally translated it. 24.3% of the studies aimed to independently translate while 4.2% additionally adapted their tool. As for lone adaptations, there were 4.2% of studies that performed this, while 18.8% created an entirely new tool. 1.4% of the studies conducted both a new tool development and translation and alike, 0.7% of studies adapted their new tool to particular population, culture, or other.

Study Characteristics

The structural organization and publication features of each study are detailed in Table 1. In the Appendix are the acronyms for each tool reviewed. Since the 2011 Spruyt review on pediatric diagnostic and epidemiological tools, approximately 144 “tool”-studies have been published. The focus into pediatric tool evaluation peaked in 2014 where 16.7% of all studies were conducted, closely followed by 2017 (13.9%), and 2016 and 2019, each at 13.2% as well as 2015 at 12.5%. As for the remaining years of this decade, between 2010 and 2014, 2018, the percentage of total studies published ranged from 0.7%–9.7% (n=1–10) per year. Over a third of the total studies were published in Europe (38.9%), followed by North America (25%), Asia (18.1%), Middle East (2.8%), South America (7.6%), Australia and Oceania (6.3%), and the United Kingdom (1.4%).

Across all 144 studies evaluated, it was evident that sleep tools were predominantly developed and evaluated for a combination of children and adolescents between the ages of 6–18 years (27.1%), followed closely by tools for preschool-aged children (2–5 years) at 22.2% and children 6–12 years alone at 16.7%. Only 10 studies covered the 0–18 years age range, and one did not define its range (82). Meanwhile, only 5.6% of all the studies assessed tools for preschool-aged children (2–5 years) alone and 1.4% for infants (0–23 months) alone. As for the studies remaining, a combination of age ranges was investigated with the most predominant combination being both preschool children and children (ages of 2–12 years) at 8.3% of the total studies. The
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
AIS (5)	Chung	2011	Hong Kong, China	1,516	12–19	8	three-point Likert	self	in the last month	no	1,2,4,5,6,7,8,9
ASHS (6)	Storfer-Isser	2013	Boston, USA	514	16–19	32	six-point ordinal	self	in the past month	no	1,2,6,7,8,9,10
ASHS (7)	de Bruin	2014	Amsterdam, Netherlands	186 normal and 112 insomnia	12–19	28	six-point rating	self	in the past month	yes	1,2,8,9
ASHS (8)	Chehri	2017	Basel, Switzerland	1,013	12–19	24	six-point rating	self	in the past month	no	1,2,4,6,7,8,9,10
ASHS (9)	Lin	2018	Qazvin, Iran	389	14–18	24	six-point rating	self	in the past month	no	1,2,4,5,6,7,8,9,10
ASQ (10)	Arroll	2011	Auckland, New Zealand	36	>15	30	mixed	mixed	mixed	yes	1,2,3,4,5,6,9
ASWS (11)	Sufrinko	2015	north Carolina, USA	467	12–18	10	self	no	1,2,6,7,8,9,10		
ASWS (12)	Essner	2015	Seattle, USA	491	12–18	28	six-point Likert	self	previous month	no	1,2,7,8,9
BEARS (13)	Bastida-Pozuelo	2016	Murcia, Spain	60	2–16	7	yes/no	parent	no	1,2,4,6,9	
BEDS (14)	Ebenson	2017	Ohio, USA	30	6–17	28	five-point Likert	parent	in last 6 months	no	1,2,6,8,9
BISQ (15)	Casanello	2018	Barcelona, Spain	87	3–30 months	14	mixed	parent	yes	1,2,4,5,6,8,9	
BRIAN-K (16)	Berny	2018	Porto Alegre, RS, Brazil	373	7–8	17	three-point Likert	parent	in the last 15 days	yes	1,2,3,4,5,6,7,8,9

(Continued)
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled	
CAS-15 (17)	Goldstein	2012	New York, USA	100	2–12	15	mixed	clinician	yes	all steps except 10		
CBCL (18)	Becker	2015	Cincinnati, OH, USA	383	6–18	7 sleep items	three-point Likert	parent/self	no	1,2,6,8,9		
CCTQ (19)	Dursun	2015	Erzurum, Turkey	101	9–18	27	mixed	parent	on work and free days	no	1,2,6,8,9	
CCTQ (20)	Ishihara	2014	Tokyo, Japan	346	3–6	27	mixed	parent	on work and free days	no	1,2,6,8,9	
CCTQ (21)	Yeung	2019	Hong Kong, China	555	7–11	27	mixed	parent	no	1,2,3,4,5,6,8,9		
CRSP (22)	Cordts	2016	Kansas, USA	155	9.82	62	self	no	1,2,6,7,9,10			
CRSP (23)	Meltzer	2013	Denver, Colorado, USA	456	8–12	60	mixed	self	mixed	yes	1,2,4,8,9,10	
CRSP (24)	Meltzer	2014	Denver, Colorado, USA	570	13–18	76	mixed	self	mixed	no	1,2,4,7,8,9,10	
CRSP (25)	Steur	2019	Amsterdam, Netherlands	n= 619 general	7–12	26 (total score on 23)	three-point Likert	self	one week	no (English items listed)	1,4,7,8,9,10,11	
CRSP-S (26)	Meltzer	2012	Denver, Colorado, USA	388	8–12	5	5-point rating	self	no	1,2,6,7,8,9,10		
CSAQ (27)	Chuang	2016	Taichung, Taiwan	362	8–9	44	four-point Likert	parent	no	all steps except 11		
CSHQ (28)	Markovich	2015	Halifax, Canada	30	6–12	45 (33 scored question)	three-point Likert	parent	in the previous week	no	1,2,8,9	
CSHQ (29)	Dias	2018	Braga, Portugal	299	2 weeks–12 months	48	four-point Likert	parent	mixed	yes	1,2,4,5,6,7,8,9	
CSHQ (30)	Ren	2013	Beijing, China	912	6–12	33	three-point Likert	parent	no	1,2,6,7		

(Continued)
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
CSHQ (31)	Liu	2014	Chengdu, China	3,324	3–6	33	three-point Likert	parent	a typical week	no	1,2,6,7,8,9,10
CSHQ (32)	Tan	2018	Shanghai, China	171	4–5	33	three-point and four-point Likert	parent	no	1,2,6,7,8,9,10	
CSHQ (33)	Waumans	2010	Amsterdam, Netherlands	1,502	5–12	33	four-point Likert	parent	no	1,2,4,5,6,7,8,10	
CSHQ (34)	Steur	2017	Amsterdam, Netherlands	201	2–3	33	three-point Likert	parent	1-week	no	1,2,4,6,7,8,10,11
CSHQ (35)	Mavroudi	2018	Thessaloniki, Greece	112	6–14	45	four-point Likert	parent	a “common” recent week	no	1,2,8,9
CSHQ (36)	Johnson	2016	Florida, USA	310 (177+34+99)	2–10	33	a 1–3 rating + yes/no	parent	no	1,2,6,7,8	
CSHQ (37)	Sneddon	2013	Vancouver, BC, Canada	105	2–5	33	three-point Likert	mother	no	1,2,6,7,8,9	
CSHQ (short) (38)	Masakazu	2017	Tokyo, Japan	178; 432; 330	6–12	19	three-point rating	parent	a typical recent week	no	1,2,3,4,5,6,8,9,10
CSHQ (39)	Schlarb	2010	Tübingen, Germany	298:45	4–10	48	three-point + yes/no	parent	no	1,2,4,6,7,8,9	
CSHQ (40)	Silva	2014	Lisbon, Portugal	315	2–10	33	three-point rating	parent	a recent more typical week	no	1,2,4,5,6,7,8,9
CSHQ (41)	Lucas-de la Cruz	2016	Cuenca, Spain	286	4–7	33	three-point rating	parent	no	1,2,4,6,7,8,9	
CSHQ (42)	Falahzadeh	2015	Kashan, Iran	300	5–10	33	three-point rating	parent	no	1,2,4,5,6,7,8,9	
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
--------------	--------------	------	-----------------	-------------	-------------	--------------------	-------	-------------	-----------	--------------------------------	-----------------
CSHQ (43)	Loureiro	2013	Lisbon, Portugal	574	7–12	26	three-point Likert	parent	no	1,2,4,5,6,8,9	
setting: community and clinical samples											
CSHQ (short) (44)	Bonuck	2017	Boston, Massachusetts	151,218	4–10; 24–66 months	23	parent	no	1,2,6,9		
setting: clinic sample data (two datasets were reused for this study: Owens (1997/8) and Goodlin-Jones (2003-5), respectively)											
CSHQ (14)	Esbensen	2017	Cincinnati, OH, USA	30	6–17	33	three-point Likert	parent	no	1,2,6,8,9	
setting: community-based study in children with Down syndrome											
CSM (45)	Jankowski	2015	Warsaw, Poland	952	13–46	13	mixed	self	yes	1,2,4,6,8,9	
setting: residents from Warsaw and Mielec districts											
CSRQ (46)	Dewald	2012	Amsterdam, Netherlands	166; 236	12.2–16.5; 13.3–18.9	20	ordinal response categories ranging from 1 to 3	self	previous 2 weeks	no	1,2,4,6,7,8,10
setting: five high schools in and around Amsterdam and from five high schools in Adelaide and Outer Adelaide											
CSRQ (47)	Dewald-Kaufmann	2018	Amsterdam, Netherlands	298		20	ordinal response categories ranging from 1 to 3	self	previous 2 weeks	no	1,2,9,11
setting: participants were recruited from high schools around Amsterdam; referred to the Centre for Sleep–Wake Disorders and Chronobiology of Hospital Gelderse Vallei in Ede, the Netherlands; adolescents who received cognitive behavioural therapy for their sleep onset and maintenance problems (see de Bruin et al)											
CSWS (48)	LeBourgeois	2016	Boulder, CO, USA	161; 485; 751; 55; 85	2–8 (different across studies)	25 (different across studies)	four-point Likert	parent	no	all steps except 11	
setting: 5 studies with independent samples (different across studies)											
DBAS (49)	Lang	2017	Basel, Switzerland	864	17.9	16	10-point Likert	self	no	1,2,4,6,7,8,9,10	
setting: students in vocational education and training; in a classroom setting											
DBAS (50)	Blunden	2012	Queensland Australia	134	11–14	10	mixed	self	no	1,2,3,4,5,6,7,8,9	
setting: From sleep education intervention											
ESS (51)	Krishnamoorthy	2019	Puducherry, India	789	10–19	8	four-point Likert	self	no	all steps	
setting: villages of rural Puducherry, a union territory in South India											
ESS (52)	Crabtree	2019	Memphis, Tennessee	66	6–20	8	four-point Likert	self	in various everyday situations	no	1,2,8,9,11
setting: children and young adults (ages 6 to 20 years) were assessed by the M-ESS after surgical resection, if performed, and before proton therapy											
ESS-CHAD (53)	Janssen	2017	Victoria, Australia	297	12–18	8	four-point Likert	self	thinking of the last two weeks	no	1,2,6,7,8,9,10
setting: Part of a broader research project; schools in regional Victoria (Qualtrics survey)											

(Continued)
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
FoSI (54)	Brown	2019	Washington, DC, USA	147	14–18	11	five-point Likert	self	last month	no	1,2,6,7,8,9,10
setting: two school-based health centers in the Washington Metropolitan Area											
I SLEEPY (55)	Kadmon	2014	Ontario, Canada	150	3–18	8	yes/no	parent/self	yes	1,2,4,5,6,9	
setting: referred for evaluation at a pediatric sleep clinic											
IF SLEEPY (55)	Kadmon	2014	Ontario, Canada	150	3–18	8	yes/no	parent/self	yes	1,2,4,5,6,9	
setting: referred for evaluation at a pediatric sleep clinic											
I'M SLEEPY (55)	Kadmon	2014	Ontario, Canada	150	3–18	8	yes/no	parent/self	yes	1,2,4,5,6,9	
setting: referred for evaluation at a pediatric sleep clinic											
ISI (5)	Chung	2011	Hong Kong, China	1,516	12–19	8	five-point Likert	self	in last 2 weeks	no	1,2,4,5,6,7,8,9
setting: three schools with different levels of academic achievement											
ISI (56)	Kanstrup	2014	Solna, Sweden	154	10–18	5	five-point rating	self	past 2 weeks	no	1,2,4,6,8,9
setting: patients with chronic pain referred to a tertiary pain clinic upon first visit											
ISI (57)	Gerber	2016	Basel, Switzerland	1,475 adolescents, 862 university students and 533 adults	11–16	7	eight-point Likert	self	yes	1,2,4,6,7,8,9,10	
setting: 3 cross-sectional studies; via schools											
JSQ (58)	Kuwada	2018	Osaka, Japan	4,369; 100	6–12	38	mixed (6 point intensity rating)	parent	no	1,2,7,8,9,10,11	
setting: 17 elementary schools; 2 pediatric sleep clinic											
JSQ (preschool)	Shimizu	2014	Osaka, Japan	2,998;102	2–6	39	six-point Likert	parent	no	1,2,4,6,7,8,9,11	
setting: private kindergarten, nursery school, and recipients of regular physical examinations at the age of 3 years; two pediatric sleep clinics											
LSTCHQ (60)	Garmy	2012	Lund, Sweden	116 child respondents; 44 parent respondents	6–13	11	mixed	parent/self	yes	1,2,4,5,8,9	
setting: school-based distriution											
MCTQ (61)	Roenneberg	2003	Basel, Switzerland	500 (142 being <21 years)	6–18	9	seven-point rating; mixed	self	free/work days	yes	1,2,5,6
setting: distributed in Germany and Switzerland in high schools, universities, and the general population. This paper was added because of its relevance despite being outside the timeframe of the current review											
MEQ (62)	Cavallera	2015	Milan, Italy	292	11–15	17	self	no	1,2,4,5,7,8,9		
setting: convenience school-based samples											
(r)MEQ (63)	Danielsson	2019	Uppsala, Sweden	671	16–26	5	self	no	1,2,6,7,8,9		
setting: selected randomly from the Swedish Population Register											
aMEQ (64)	Rodrigues	2016	Aveiro district, Portugal	300	12–14	19	mixed	self	no	1,2,4,5,6,8,9,11	

(Continued)
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
aMEQ-R (65)	Rodrigues	2019	Aveiro district, Portugal	n1=300 (same 2016), n2= 217	12–14	10	mixed	self	no	1,2,4,5,6,8,9,11	
setting: several schools of the Aveiro district											
MESC (66)	Díaz-Morales	2015	Madrid, Spain	5,387	10–16		self	no	1,2,4,6,7,8,9,10		
setting: public high schools in Madrid and the surrounding area											
MESSi (67)	Demirhan	2019	Sakarya, Turkey	1,076	14–47	15	five-point Likert	self	yes	1,4,5,7,8,9,10	
setting: high school and university students											
MESSi (68)	Weidenauer	2019	Tuebingen, Germany	215	11–17	15	five-point Likert	self	yes	1,6,8,9,10	
setting: three different gymnasia (highest stratification level of school teaching) in SW Germany, Baden-Wuerttemberg											
My Sleep and I (69)	Rebelo-Pinto	2014	Lisbon, Portugal	654	10–15	27	five-point Likert	self	no	1,2,3,4,7,8,9,10	
setting: schools in Portugal part of project Sleep More to Read Better											
My children's sleep* (69)	Rebelo-Pinto	2014	Lisbon, Portugal	612	21–68	27	five-point Likert	parent	no	1,2,3,4,7,8,9,10	
setting: schools in Portugal part of project Sleep More to Read Better											
NARQoL-21 (70)	Chaplin	2017	Gothenburg, Sweden	158	8–13; 15–17	21	five-point Likert	self	no	all steps	
setting: patient and control group											
NSD (71)	Yoshida	2011	Tochigi, Japan	40	6 months–6 years	2		parent	diary	yes	1,2,3,4,5,6
setting: take home diary											
NSS (72)	Ouyang	2019	Beijing, China	n=53 pediatric n= 69 adult	2–6 years	15			no	1, 2, 7, 8, 9	
setting: sleep lab											
OSA Screening Questionnaire (73)	Sanders	2015	Southampton, UK	infancy to 6 years		33		parent	over a week	yes	1,2,3,4,5,6,9
setting: via a local Down syndrome parent support group											
OSA-18 Questionnaire (74)	Huang	2015	Hsinchu, Taiwan	163	6–12	18	seven-point ordinal	parent	past 4 weeks	yes (English)	1,2,4,7,8,9,10
setting: via schools											
OSA-18 Questionnaire (75)	Kang	2014	Taipei, Taiwan	109	2–18	18	seven-point ordinal	parent	yes	1,2,4,6,8,9	
setting: recruited from the respiratory, pediatric, psychiatric, and otolaryngologic clinics											
OSA-18 Questionnaire (76)	Bannink	2011	Rotterdam, Netherlands	119 patients; 162 (child);459 parent	2–18	18; OSA-12 in children, OSA-18 in parents	seven-point ordinal	parent/self	yes	1,2,4,6,8,9	

(Continued)
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
OSA-18 Questionnaire (77)	Mousailidis	2014	Athens, Greece	141	3–18	18	seven-point ordinal	parent	yes	1,2,4,6,8,9	
setting: patients with syndromic craniosynostosis; convenience sample of parents											
OSA-18 Questionnaire (78)	Fernandes	2013	Guimarães, Portugal	51	2–12	18	seven-point ordinal	parent	past 4 weeks	yes (English)	1,2,4,5,6,8,9
setting: children who were referred for overnight polysomnography at the Sleep Disorders Laboratory											
OSA-18 Questionnaire (79)	Chiner	2016	Alicante, Spain	60	2–14	18	seven-point ordinal	parent	4 weeks	yes	1,2,4,6,7,8,9
setting: children with suspected apnea-hypopnea syndrome were studied with polysomnography											
OSA-5 Questionnaire (short) (80)	Soh	2018	Melbourne, Australia	366 and 123	2–17.9	5	four-point Likert	parent	past 4 weeks	yes	all steps except 11
setting: Melbourne Children’s Sleep Centre for polysomnography											
OSD-6 QoL Questionnaire (81)	Lachanas	2014	Larissa, Greece	91	3–15	6	seven-point ordinal	parent	yes (Greek and English)	1,2,4,5,6,8,9	
setting: children undergoing polysomnography											
OBD and AT (82)	Links	2017	Baltimore, USA	32	39	three-point rating	parent	yes	1,2,4,6,8,9		
setting: via online Questionnaire											
OSPQ (83)	Biggs	2012	Adelaide, Australia	1,904	5–10	26	four-point Likert	parent	last typical school week	no	1,2,4,5,6,7,8,10,11
setting: via 32 elementary schools in Adelaide											
PADSS (84)	Arnulf	2014	Paris, France	73; 98	>15	17	self	no	1,2,3,4,5,6,7,8,9		
setting: patients with sleepwalking or sleep terror referred to the sleep disorder unit; controls											
PDSS (85)	Felden	2015	Curitiba, Brazil	90	10–17	8	five-point Likert	self	yes	1,2,4,5,8,9	
setting: two private schools											
PDSS (86)	Komada	2016	Tokyo, Japan	492	11–16	8	self	no	1,2,4,5,6,7,8,9		
setting: one elementary school, one junior high school and one high school, located in suburbs of Japan											
PDSS (87)	Bektas	2015	Izmir, Turkey	522	5–11	8	four-point Likert	self	no	1,2,4,5,6,7,8,9,10	
setting: students were in grade 5-11											
PDSS (88)	Ferrari Junior	2018	Florianópolis, SC, Brazil	773	14–19	8	five-point Likert	self	no	1,7,8,9,10	
setting: state schools of Paranaguá, Paraná											
PDSS (89)	Randler	2019	Petrozavodsk, Russia	n1 = 285	n2 = 267	n3 = 204	7–12	five-point Likert	self	yes	1,2,4,5,6,7,8,9,10
setting: Schools from six different settlements located in North-Western Russia (Murmansk region) participated in the study during our framework project “Sleep Health in Russian Arctic”											
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
--------------	--------------	------	-----------------	-------------	-------------	--------------------	-------	-------------	-----------	----------------------------	----------------
Pediatric Sleep CGIs (90)	Malow	2016	Nashville, USA	20	5.3	14	seven-point rating	parent	yes (link)	1,2,4,5,6,9	

setting: participants in a 12-week randomized trial of iron supplementation in children with autism spectrum disorders

| PedsQL (fatigue scale) | Al-Gamal | 2017 | Amman, Jordan | 70 | 5–18 | 18 | three- and five-point Likert | self | no | 1,2,4,5,6,8,9 |

setting: oncology outpatient clinic

| PedsQL (fatigue scale) | Qimeng | 2016 | Guangzhou, China | 125 | 2–4 | 18 | five-point Likert | parent | no | 1,2,4,5,6,7,8,9 |

setting: diagnosed to have acute leukemia for 1 month at the least

| PedsQL (fatigue scale) | Nascimento | 2014 | São Paolo, Brazil | 216; 42 children (8–12 years), 68 teenagers (13–18 years), and 106 caregivers (parents or guardians) | 8–18 | 18 | five-point Likert | parent/self | no | 1,2,4,6,7,8,9,10 |

setting: oncology inpatient and outpatient pediatric clinics

| PIISI (94) | Byars | 2017 | Cincinnati, OH, USA | 462 | 4–10 | 6 | six-point Likert | parent | yes | 1,2,4,6,7,8,9,10 |

setting: behavioral sleep medicine evaluation clinic

| PNSS (95) | Whiteside-Mansell | 2017 | Little Rock, Arkansas, USA | 72 | 1 week to 28 weeks | 14 | four-point scale | professional | no | 1,2,8 |

setting: a naturalistic study of participants enrolled in two home visitation support programs

| PosaST (96) | Pires | 2018 | Porto Alegre, Brazil | 60 | 3–9 | 6 | five-point rating | self | yes | 1,2,4,5,8,9 |

setting: children undergoing polysomnography

| PPPS (97) | Finimundi | 2012 | Porto Alegre, Brasil | 144 | 10–17 | mixed | five-point rating | self | no | 1,2,9 |

setting: adolescent students attending elementary school in two public schools in the state of Rio Grande do Sul (municipalities of Esteio and Farroupilha – great Porto Alegre, and Serra Gaúcha)

| P-RLS-SS (98) | Arbuckle | 2010 | Cheshire, United Kingdom | | 6–17 | | cognitive debriefing interviews with 21 of the same children/adolescents and 15 of their parents | | no | 1,2,4,5,6 |

setting: four pediatric sleep disorders specialists

| PROMIS (99) | van Kooten | 2016 | Amsterdam, Netherlands | 6 experts, 24 adolescents and 7 parents | 12–18 | 27 (PROMIS-SD), 16 (PROMIS-SR) | through Computerized AdapTive Testing | self/parent/expert | no | 1,2,9 |

setting: distributed to the adolescents in the classroom

| PROMIS (100) | van Kooten | 2018 | Amsterdam, Netherlands | 1,046 | 11–19 | 27 (PROMIS-Sleep) | Self | no | 1,2,6,7,9,10 |

(Continued)
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
PROMIS (101)	Forrest	2018	Philadelphia, PA, USA	1,104 children (8–17 years old) and 1,477 parents of children 5–17 years old	5–17	43; the final item banks included 15 items for Sleep Disturbance and 13 for Sleep-Related Impairment	frequency-based (1: never, 2: almost never, 3: sometimes, 4: almost always, 5: always)	self/parent	7-day	yes	1,2,6,7,8,9,10
PROMIS (102)	Bevans	2019	Philadelphia, PA, USA	8 expert sleep clinician-researchers, 64 children ages 8–17 years, and 54 parents of children ages 5–17 years	children ages 8–17 and parents of children ages 5–17	The final item pool contains 43 child-report items and 49 parent-report items	five-point Likert	Self/Parent	In the past 7 days	yes	1,2,3,4,5,6,9
PSIS (103)	Smith	2014	Texas, USA	155	3–5	12	five-point Likert	parent	no		1,2,6,8,9
PSQ (104)	Ishman	2016	Ohio, USA	45	16.7	22	yes/no/don’t know	parent	no		1,2,6,8
PSQ (105)	Yüksel	2011	Manisa, Turkey	111	2–18	22	yes/no and I don’t know	parent	no		1,2,4,5,6,8,9
PSQ (106)	Bertran	2015	Santiago, Chile	83	0–15	22	yes/no/don’t know	parent	no		1,2,6,7
PSQ (107)	Hasniah	2012	Kuala Lumpur, Malaysia	192:554	6–10	22	*yes=1,* *No=0,* and "Don’t know=Missing"	parent	no		1,2,4,5,6,8,9
PSQ (108)	Chan	2012	Hong Kong, China	102	2–18	22	yes/no/don’t know	parent	no		1,2,9,11

Continued
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
PSQ (109)	Ehsan	2017	Cincinatti, USA	160	2–18	22	yes/no/don't know	parent	no	1,2,6,9	
setting: underwent overnight sleep polysomnography studies for suspected OSA in the sleep laboratory											
PSQ (110)	Li	2018	Beijing, China	9,198	3.0–14.4	22	yes/no/don't know	parent	no	1,2,6,7,8,9	
setting: using an existing clinical database encompassing all children referred to the Cincinnati Children's Hospital Sleep Center for polysomnography											
PSQ (111)	Longlalerng	2018	Chiang Mai, Thailand	62	7–18	22	yes/no/don't know	parent	no	1,2,4,5,8,9	
setting: 11 kindergartens, 7 primary schools and 8 middle schools from 7 districts of Beijing, China											
PSQ (112)	Raman	2016	Ohio, USA	636	4–25.5	36	parent	yes	1,2,4		
setting: patients scheduled for a sleep study											
PSQ (113)	Certal	2015	Porto, Portugal	180	4–12	22	yes/no	self	yes	1,2,4,5,6,8,9	
setting: via schools north Portugal											
PSQ (114)	Jordan	2019	Paris, France	201	2–17	22	*yes,* "no" or *don't know,"	parent	yes	1,2,4,5,6,7,8,9,10	
setting: clinic based retrieval classified as overweight or obese according to the International Obesity Task Force and diagnosed with obstructive sleep apnea											
PSQ (115)	Passos	2017	Pernambuco, Brazil	309	10–19	19	0–3 rating	self	no	1,2,4,5,6,7,8,9,10	
setting: subjects who engaged in amateur sports practice											
PSQ (116)	Raniti	2018	Melbourne, Australia	889	12.08–18.92	18	four-point Likert scale	self	1 month	no	1,7,8,9,10
setting: 14 Australian secondary schools											
RLS (117)	Schomöller	2019	Potsdam, Germany	33 (11 RLS)	6–12 and 13–18	12	mixed	self/parent	yes	1,2,3,4,6,8,9	
setting: with the support of medical somnologists, who recruited pediatric patients from their practice or sleep laboratories, newsletter announcements in the Restless Legs Association journal, and via local selfhelp groups.											
SDIS (118)	Graef	2019	Cincinnati, Ohio	392	2.5–18.99	SDIS-C, 41 items, 2.5–10 years; SDIS-A, 46 items, 11–18 years	seven-point Likert scale	parent	no	1,9	
setting: Youth with insomnia, of whom 392 underwent clinically indicated diagnostic PSG within ± 6 months of SDIS screening											
SDPC (119)	Daniel	2016	Philadelphia, USA	20;6	3–12	41	0–4 rating	parent	Interview modelling	no	1,2,4,6,9
setting: parents of children with acute lymphoblastic leukemia and medical providers											
SDSC (120)	Huang	2014	Guangzhou, China	3,525	5–16	26	five-point scale	parent	six months	1,2,4,5,6,7,8,9,10,11	
setting: selected from five primary schools in Shenyang											
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
--------------	----------------	------	-----------------------	-------------	-------------	---------------------	------------------------	-------------	-----------------	----------------------------	-----------------
SDSC* (125)	Moo-Estrella	2018	Yucatan, Mexico	838	8–13	25	number of days: 0 = 0 days, 1 = 1–2 days, 2 = 3–4 days, 3 = 5–6 days, and 4 = 7 days.	self	during the last week	no	1,2,3,4,5,6,7,8,9,10
setting: between the third and sixth grades of elementary school, recruited by convenience sampling											
SHI (126)	Ozdemir	2015	Konya, Turkey	106	16–60	13	Always, Frequently, Sometimes, Rarely, Never	self	no	1,2,6,7,8,9,10	
setting: university based retrieval											
SHIP (127)	Rabner	2017	Boston, USA	1,078	7–17	15	three-point Likert	parent/self	no	1,2,6,8,9	
setting: parents and children each completed questionnaires individually within 1 week prior to the child’s multidisciplinary headache clinic evaluation											
Sleep Bruxism (128)	Restrepo	2017	Medellin, Colombia	37	8–12	1	yes/no	parent	5-day diary	yes (English)	1,2,4
setting: recruited from the clinics at Universidad CES											
SNAKE (129)	Blankenburg	2013	Datteln, Germany	224	<10	54	1–4 rating (mixed)	parent	yes (English)	all steps	
setting: children with severe psychomotor impairment; questionnaire-based, multicenter, cross-sectional survey											
SQI (5)	Chung	2011	Hong Kong, China	12–19	8	three-point Likert	self	in past 3 months	no	1,2,4,5,6,7,8,9,10	
setting: three schools with different levels of academic achievement											
SQ–SP (130)	Maas	2011	Maastricht, Netherlands	345	1–66	45	seven-point Likert	parent	last three months	yes	1,2,6,7,8,9,10

(Continued)
Tool acronym	First author	Year	Place of origin	Sample size	Age (years)	Number of questions	Scale	Respondent	Timeframe	Reference has questionnaire	Steps fulfilled
SQS-SVQ (131)	Önder	2016	Sakarya, Turkey	1,198	11–15	15*	self	yes	1,2,4,7,8,9,10		
SRSQ (132)	van Maanen	2014	Amsterdam, Netherlands	951;166;236;144;66	14.7 (mean)	9	three-point ordinal	self	previous 2 weeks	no	1,2,6,8,9
SSR (133)	Orgiles	2013	Alicante, Spain	1,228	8–12	26	three-point	self	yes	1,2,4,6,7,8,9,10	
SSR (43)	Loureiro	2013	Lisbon, Portugal	306	7–12	26	three-point	self	no	1,2,4,5,6,8,9	
SSSQ (134)	Yamakita	2014	Koshu, Japan	58	9–12		self log	no	1,2,8,9		
STBUR (135)	Tait	2013	Michigan, USA	337	2–14	5	yes/no, and don’t know	parent	yes	1,2,3,4,6,7	
STQ (136)	Tremaine	2010	Adelaide, Australia	65	11–16	18	time	self	no	1,2,9	
The Children’s Sleep Comic (137)	Schwerdtle	2012	Landau, Germany	201	5–10	37	tick in applicable square	self	no (examples)	1,2,4,9	
The Children’s Sleep Comic (138)	Schwerdtle	2015	Würzburg, Germany	176;393	5–11	20	tick in applicable square	parent/self	no (examples)	1,2,3,4,6,8,9,11	
TuCASA (139)	Leite	2015	São Paolo, Brazil	62	4–11	13	parent	yes	1,2,4,8,9		
YSIS (140)	Liu	2019	Shandong Province, China	11,626	15.0 ±1.5	8	five-point Likert	self	past month	yes	1,2,4,5,6,7,8,9,10,11

Steps: 1: purpose; 2: research question; 3: response format; 4: generate items; 5: pilot; 6: item-analysis, nonresponse; 7: structure; 8: reliability; 9: validity; 10: confirmatory analyses; 11: standardize and develop norms
TABLE 2 | Overview of psychometric analyses performed.

Tool acronym	NPTA	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population
AIS (5)	P	quality	structure	test-retest;	convergent/	yes; a total score ≥7			original AIS developed per ICD-10	DSM-IV-TR diagnosis of insomnia by interview
ASHS (6)	P	yes	regularity, hygiene, ecology	structure	internal	confirmatory				insomnia per DSM-IV-TR
ASHS (7)	P	yes	regularity, hygiene, ecology	test-retest;	internal	confirmatory				
ASHS (8)	PT (Farsi)	yes	regularity, hygiene, ecology	test-retest;	internal	confirmatory				
ASHS (9)	PT (Persian)	yes	regularity, hygiene, ecology	test-retest;	internal	confirmatory				
ASQ (10)	N	quality, sleepiness	face						ICSD	
ASWS (11)	P	yes	quantity, hygiene	structure	internal	confirmatory				
ASWS (12)	P	yes	quantity, hygiene	structure	internal	confirmatory				
BEARS (13)	P	yes	quantity, quality, sleepiness	test-retest;	internal	criterion			ICD-10 diagnoses assigned to these children, prior to the commencement of the parent group intervention were: F90, F98.2, F93.3, F80.1, F93.0, Z62 Down syndrome	
BEDS (14)	A	yes	quantity, quality, hygiene, ecology	test-retest;	internal	construct				
BISQ (15)	T (Spanish)	yes	quantity, hygiene	test-retest;	interrater/observer	construct				
BRIAN-K (16)	N	regularity, hygiene, ecology	structure	internal	content					
CAS-15 (17)	P	yes	quality	structure	test-retest;	construct	yes; a score ≤32			
CBCL (18)	P	yes	quantity, quality, sleepiness	test-retest;	internal	construct			patients were diagnosed with sleep disorders according to ICSD-2	
CCTQ (19)	T (Turkish)	yes	quantity, regularity	internal	content					

(Continued)
Tool acronym	NPTA in Spruyt et al	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population	
CCTQ (20) P	quantity, regularity	test-retest; internal criterion									
CCTQ (21) PT (Chinese)	quantity, regularity	test-retest; internal	content; construct								
CRSP (22) P	quantity, quality, sleepiness, hygiene	test-retest; internal	construct; criterion; convergent/ discriminant								
CRSP (23) N	quantity, quality, sleepiness, hygiene	internal	construct; criterion; convergent/ discriminant								
CRSP (24) P	quantity, quality, sleepiness, hygiene	test-retest; internal	construct; criterion; convergent/ discriminant								
CRSP (25) PT	quantity, quality, sleepiness, hygiene	internal	convergent/ discriminant construct; criterion; convergent/ discriminant								
CRSP-S (26) P		test-retest; internal	convergent/ discriminant construct; criterion; convergent/ discriminant								
CSAQ (27) N	quantity, quality, sleepiness	test-retest; internal; interrater/ observer	content; construct; criterion; convergent/ discriminant								
CSHQ (29) P	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest	construct; criterion								
CSHQ (29) AT (Portuguese)	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest	convergent/ discriminant								
CSHQ (30) P	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest	convergent/ discriminant								
CSHQ (31) P	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest; internal	content; construct								
CSHQ (32) P	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest	content; construct								
CSHQ (33) P	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest	construct								
CSHQ (31) P	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest; internal	content; construct								
CSHQ (32) P	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest	content; construct								

(Continued)
Tool acronym	NPTA in Spruyt et al.	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population
CSHQ (33)	T (Dutch)	quantity, quality, regularity, sleepiness, hygiene, ecology	structure	test-retest; internal; interrater/observer internal	confirmatory				original was designed to identify sleep problems based on ICSD-1	
CSHQ (34)	T (Dutch)	quantity, quality, regularity, sleepiness, hygiene, ecology	structure	test-retest; internal; interrater/observer internal	confirmatory			a mean total CSHQ score of 41.9±5.6	original was designed to identify sleep problems based on ICSD-1	
CSHQ (35)	A	quantity, quality, regularity, sleepiness, hygiene, ecology	internal	convergent/discriminant					original was designed to identify sleep problems based on ICSD-1	
CSHQ (36)	A	quantity, quality, regularity, sleepiness, hygiene, ecology	structure	internal					original was designed to identify sleep problems based on ICSD-1	
CSHQ (37)	P	quantity, quality, regularity, sleepiness, hygiene, ecology	structure	internal	criterion				original was designed to identify sleep problems based on ICSD-1	
CSHQ (short) (38)	A	quantity, quality, regularity, sleepiness, hygiene, ecology	internal	convergent/discriminant	confirmatory	yes; a total CSHQ score of ≥ 24			original was designed to identify sleep problems based on ICSD-1	
CSHQ (39)	PT (German)	quantity, quality, regularity, sleepiness, hygiene, ecology	structure	test-retest; content internal		yes; per subscale provided			original was designed to identify sleep problems based on ICSD-1	
CSHQ (40)	T (Portuguese)	quantity, quality, regularity, sleepiness, hygiene, ecology	structure	test-retest; face internal					original was designed to identify sleep problems based on ICSD-1	
CSHQ (41)	PT (Spanish)	quantity, quality, regularity, sleepiness, hygiene, ecology	structure	test-retest; face; content; construct					original was designed to identify sleep problems based on ICSD-1	

(Continued)
Tool acronym	NPTA in Spruyt et al	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population
CSHQ (42)	T (Persian)	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest; internal	face; content; construct; convergent/ discriminant	yes; a cutoff total score of 44	original was designed to identify sleep problems based on ICSD-1	Down syndrome			
CSHQ (43)	T (Portuguese)	quantity, quality, regularity, sleepiness, hygiene, ecology	test-retest; internal	content	yes; a cutoff total score of 30	original was designed to identify sleep problems based on ICSD-1				
CSHQ (short)	A	quantity, quality, regularity, sleepiness, hygiene, ecology	convergent/ discriminant		yes; a cutoff total score of 30	original was designed to identify sleep problems based on ICSD-1				
CSHQ (14)	P	quantity, quality, regularity, sleepiness, hygiene, ecology	construct; convergent/ discriminant			original was designed to identify sleep problems based on ICSD-1				
CSM (45)	T (Polish)	regularity, sleepiness	content; construct	accumulated percentile distribution		original was designed to identify sleep problems based on ICSD-1				
CSRQ (46)	T (English)	yes quantity, regularity, sleepiness	structure internal	confirmatory		original was designed to identify sleep problems based on ICSD-1				
CSRQ (47)	P	quantity, regularity, sleepiness	criterion	yes; ≥35; optimal sensitivity: 27.5; optimal specificity: 50.5		children with Sleep- Onset Association Problems per ICSD				
CSWS (48)	P	yes quantity, regularity, sleepiness	test-retest; internal	content; construct	confirmatory					
DBAS (49)	T (German)	quantity, quality, regularity, sleepiness	internal	content	confirmatory					
DBAS (50)	P	quantity, quality, regularity, sleepiness	test-retest; internal	content	confirmatory					
ESS (51)	PT (Tamil)	yes quantity, regularity, sleepiness	structure internal	face; content; construct	confirmatory	>11 = excessive daytime sleepiness; 11-14 = moderate and >15 = high				
ESS (52)	P	sleepiness	internal	convergent/ discriminant	yes, cutoff score of 6					
ESS-CHAD (53)	P	sleepiness	structure internal	construct; criterion	confirmatory					
FoSI (54)	PA	quality	structure internal	convergent/ discriminant	confirmatory					
Tool acronym	NPTA in Spruyt et al	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population
--------------	----------------------	------------------	----------------	---------------------	------------------	----------------------	-----	--------------------------	-----------------------	---------------------
I SLEEPY (55)	N	quality, sleepiness	criterion					yes; those endorsing three or more symptoms or complaints on the questionnaires	DSM-IV-TR diagnosis of insomnia by interview	
IF SLEEPY (55)	N	quality, sleepiness	criterion					yes; those endorsing three or more symptoms or complaints on the questionnaires	chronic pain	
I'M SLEEPY (55)	N	quality, sleepiness	criterion					yes; those endorsing three or more symptoms or complaints on the questionnaires	partially diagnostic criteria of insomnia in DSM-IV	
ISI (56)	P	quality, structure	test-retest; internal criterion; convergent/ discriminant					yes; a total score ≥9	partially diagnostic criteria of insomnia in DSM-IV	
ISI (56) T (Swedish)	quality	structure	internal criterion						DSM-IV-TR diagnosis of insomnia by interview	
ISI (57) T (German)	quality	structure	internal convergent/ discriminant confirmatory						chronic pain	
JSQ (58)	P	quantity, quality, regularity, sleepiness, hygiene	structure internal content confirmatory					yes; 80 for total score	partially diagnostic criteria of insomnia in DSM-IV	
JSQ (preschool) (59)	P	quantity, quality, regularity, sleepiness, hygiene	structure internal face; criterion					yes; cutoff 84	partially diagnostic criteria of insomnia in DSM-IV	
LSTCHQ (60)	N	quantity, regularity, sleepiness, hygiene, ecology	test-retest face; content; construct							
MCTQ (61)	N	no, therefore added here	regularity							

(Continued)
Tool acronym	NPTA	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population		
MEQ (62)	T (Italian)	regularity, sleepiness	structure	internal	content						
MEQ (63)	P	regularity, sleepiness	structure	internal	convergent/ discriminant						
aMEQ (64)	PT (European Portuguese)	regularity, sleepiness	internal								
aMEQ-R (65)	PA	regularity, sleepiness	internal		content; criterion; convergent/ discriminant				mean ± 1SD; percentiles 10 and 90, and the less restrictive percentiles 20/80; cut-points for the males and females aMEQ (≤45 and ≥60); aMEQ-R (≤23 and ≥33)		
MESC (66)	P	yes	regularity, sleepiness	structure	internal	convergent/ discriminant	confirmatory				
MESSI (67)	PT (Turkish)	regularity, sleepiness	structure	internal	face; content						
MESSI (68)	P		regularity, sleepiness	internal		convergent/ discriminant	confirmatory				
My Sleep and I (69)	P	quantity, hygiene, ecology	structure	internal	convergent/ discriminant	confirmatory					
My children's sleep (69)	P	quantity, hygiene, ecology	structure	internal	convergent/ discriminant	confirmatory					
NARQoL-21 (70)	NT (English)	quality, sleepiness	structure	test-retest; internal	content; construct; convergent/ discriminant	confirmatory	yes; a NARQoL-21 score below 42		diagnostic criteria for narcolepsy according to ICSD-3		
NSD (71)	NA	quality						Asthma per Global Initiative for Asthma classification			
NSS (72)	AT (Chinese)	sleepiness	structure	internal	face; content			ICSD-3 criteria			
OSA Screening Questionnaire (73)	N	quality		face; content				Down syndrome			
OSA-18 Questionnaire (74)	T (Chinese)	quality	structure	test-retest; internal	construct; convergent/ discriminant	confirmatory	yes; cutoff scores ranging from 55 to 66	OSA per ICSD 2			
Tool acronym	NPTA	in Spruyt et al	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population
--------------	------	----------------	------------------	----------------	---------------------	------------------	---------------------	-----	-----------------------------	------------------------	-------------------
OSA-18	T (Chinese)	quality	test-retest; construct;								craniostenosis
Questionnaire (75)											
OSA-18	T (Dutch)	quality	test-retest; internal criterion								
Questionnaire (76)											
OSA-18	T (Greek)	quality	test-retest; internal criterion								
Questionnaire (77)											
OSA-18	T (Portuguese)	quality	test-retest; internal criterion								
Questionnaire (78)											
OSA-18	T (Spanish)	quality	test-retest; internal criterion								
Questionnaire (79)											
OSA-5	A	quality	test-retest; internal criterion								
Questionnaire (short) (80)											
OSD-6 QoL	T (Greek) yes	quality	test-retest; internal criterion								
Questionnaire (81)											
oSDB and AT	N	quality, treatment	internal face; content; construct; criterion								
(82)											
OSPQ (83)	N	quality, regularity, sleepiness	test-retest; internal face								
PADSS (84)	N	quality	test-retest; internal face; construct yes; cutoff for the overall scale was located at 13/14								sleepwalking or sleep terror per ICSD
PDSS (85)	T (Brazilian Portuguese)	quantity, regularity, sleepiness	test-retest; internal content								
PDSS (86)	T (Japanese)	quantity, regularity, sleepiness	test-retest; internal content								
PDSS (87)	T (Turkish)	quantity, regularity, sleepiness	test-retest; internal content								
PDSS (88)	P	quantity, regularity, sleepiness	test-retest; internal content								
PDSS (89)	PAT (Russian)	quantity, regularity, sleepiness	test-retest; internal face; content								
Pediatric Sleep CGIs (90)	N	quantity, hygiene, ecology	convergent/discriminant								
Autism Spectrum Disorders (91)											
Tool acronym	NPTA in Spruyt et al	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population	
--------------	-----------------------	------------------	-----------------	---------------------	------------------	----------------------	-----	--------------------------	-----------------------	--------------------	
PedsQL (fatigue scale) (91)	AT (Arabic)	sleepiness	internal	content; construct; convergent/discriminant					cancer		
PedsQL (fatigue scale) (92)	AT (Chinese)	sleepiness	structure	internal	content; construct; criterion	confirmatory			acute leukemia		
PedsQL (fatigue scale) (93)	PT (Brazilian Portuguese)	sleepiness	structure	internal	content; construct; convergent/discriminant	confirmatory			cancer		
PISI (94)	P	quality	structure	test-retest; internal	content; construct; convergent/discriminant	confirmatory					
PNSSS (95)	P	ecology									
PossaST (96)	T (Brazilian Portuguese)	quality	internal	criterion	yes; using the cumulative score ≥2.72 of the original scale						
PPPS (97)	P	quantity; regularity, sleepiness, hygiene	internal								
P-RLS-SS (98)	N	quality	face; content								
PROMIS (99)	P	quality, regularity, sleepiness	internal	face; content							
PROMIS (100)	P	quality, regularity, sleepiness	structure	content	confirmatory						
PROMIS (101)	P	quality, regularity, sleepiness	structure	internal	content; construct	confirmatory					
PROMIS (102)	PA	quality, regularity, sleepiness			content						
PSIS (103)	P	quality, regularity	internal	content; construct							
PSQ (104)	P	quality	internal								
PSQ (105)	T (Turkish)	quality	internal	content; construct							
PSQ (106)	T (Spanish)	quality	structure		yes; cutoff score >0.33						

(Continued)
Tool acronym	NPTA in Spruyt et al	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population
PSQ (107)	T (Malay)	quality	test-retest;	face;				yes; original AHI>1.5	insomnia per ICD 9	
PSQ (108)	P	quality	test-retest;	face;				yes; cutoff of 0.72–0.76.		
PSQ (109)	P	quality	test-retest;	face;				yes; a cutoff of >0.33		
PSQ (110)	PT (Chinese)	quality	test-retest;	face;				yes; a cutoff of >0.33.		
PSQ (111)	T (Thai)	quality	test-retest;	face;				yes; a cutoff of >0.33.		
PSQ (112)	P	quality	test-retest;	face;				yes; a cutoff of >0.33.		
PSQ (113)	PT (Portuguese)	quality	test-retest;	face;				yes; a cutoff of >0.33.		
PSQ (114)	PT	quantity, quality, regularity	test-retest; internal	face; content	confirmatory					
PSQI (115)	T (Brazilian Portuguese)	quantity, quality, regularity	test-retest; internal	face; content	confirmatory					
PSQI (116)	P	quantity, quality, regularity	test-retest; internal	face; content	confirmatory					
RLS (117)	NP	quality	test-retest;	face;				calculated RLS index (difference in score between 14 day time points); one control subject had a higher index value (14) than two RLS-diagnosed (10 and 13)		
SDIS (118)	P	quantity, quality, sleepiness	convergent/ discriminant	content						
SDPC (119)	P	quantity, quality, sleepiness	convergent/ discriminant	content						
SDSC (120)	T (Chinese)	quantity, quality, sleepiness	structure	internal	confirmatory					
SDSC (121)	T (French)	quantity, quality, sleepiness	structure	internal	confirmatory					

(Continued)
Tool acronym	NPTA in Spruyt et al	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population	
SDSC (122)	T (Persian)	yes	quantity, quality, sleepiness	internal	construct; convergent/ discriminant	original SDSC fits ASDC					
SDSC (14)	P	yes	quantity, quality, sleepiness	internal	construct; convergent/ discriminant	original SDSC fits ASDC					
SDSC (123)	P	yes	quantity, quality, sleepiness	internal	construct; convergent/ discriminant	Down syndrome					
SDSC (124)	P	yes	quantity, quality, sleepiness	internal	confirmatory	original SDSC fits ASDC					
SDSC* (125)	N	yes	quantity, quality, sleepiness	structure	content	neurocritical care acquired brain injury					
SHI (126)	T (Turkish)	quantity, quality, sleepiness	structure	test-retest; internal	construct; convergent/ discriminant	ADHD					
SHIP (127)	N	quantity, regularity, sleepiness	internal	content; construct; criterion; convergent/ discriminant	chronic headache per International Headache Classification						
Sleep Bruxism (128)	N	quantity, quality, sleepiness	structure	test-retest; internal	construct; convergent/ discriminant	per ICSD-2 severe psychomotor impairment					
SNAKE (129)	N	quantity, quality, regularity, sleepiness, hygiene, ecology	structure	test-retest; internal	confirmatory	T-score and percentage rank for raw score per factor					
SQI (5)	P	quality	structure	internal	convergent/ discriminant	DSM-IV-TR diagnosis of insomnia by interview individuals with intellectual disability					
SQ–SP (130)	P	yes	quantity, quality, sleepiness,	structure	test-retest; internal	confirmatory	sleep quality items comparable to DSM IV insomnia criteria				
SQS-SVQ (131)	AT (Turkish)	quantity, regularity, ecology	structure	test-retest; internal	construct; convergent/ discriminant	severe psychomotor impairment					
SRSQ (132)	N	quantity, quality, regularity, sleepiness	test-retest; internal	content	yes; a cutoff of 17.3	original items per ICSD					
SSR (133)	T (Spanish)	quality, regularity, sleepiness	structure	internal	construct; convergent/ discriminant	original items per ICSD					
Tool acronym	NPTA	in Spruyt et al	Sleep categories	Factor analysis	Reliability analyses	Validity analyses	Confirmatory analysis	ROC	Normative values or cutoffs	Clinical classification	Specific population
--------------	------	----------------	-----------------	----------------	---------------------	------------------	----------------------	-----	---------------------------	----------------------	-------------------
SSR (43)	T	Spruyt et al	quality, regularity, sleepiness	internal content	test-retest criterion	yes; 10.40 (1.37–218.3) for 5 items			original items per ICSD		
SSSQ (134)	N	Spruyt et al	quantity, regularity quality structure								
STBUR (135)	N	Spruyt et al	quality structure			yes; a total intensity of sleep problem score of 9			ICSD-2		
STQ (136)	P	Spruyt et al	quantity, regularity			yes; a total intensity of sleep problem score of 9			ICSD-2		
The Children's Sleep Comic (137)	N		quantity, quality, regularity, sleepiness, hygiene	content; construct		yes; a total intensity of sleep problem score of 9			ICSD-2		
The Children's Sleep Comic (138)	P		quantity, quality, regularity, sleepiness, hygiene	internal content; convergent/ discriminant		yes; a total intensity of sleep problem score of 9			ICSD-2		
TuCASA (139)	AT	Spruyt et al	yes quality	internal content; convergent/ discriminant			yes; a total intensity of sleep problem score of 9			ICSD-2	
YSIS (140)	NT (English)		quality structure test-retest; internal face; content; construct; convergent/ discriminant			yes; Normal :< 22 (< 70th percentile); Mild insomnia : 22 (70th percentile)–25; Moderate insomnia/ clinical insomnia : 26 (85th percentile)–29; Severe insomnia/ clinical insomnia : ≥ 30 (95th percentile)			based on ICSD-3 [12] and DSM-V [13] diagnostic criteria		
lesser frequent combinations of age ranges for which tools were assessed in these studies, ranged from 0.7–7.6% per combination.

As for the sample size, this ranged between 20 and 11,626 children inclusive of adult (6–13) participants across all publications, where 15.6% of all studies used a sample size >1,000 participants large (Table 2). Of these study samples, approximately 46.5% of respondents were parents, 41% were self-report, and 11.1% either a combination of experts, children, mothers, and parents. For two, the respondent is primarily a professional (17, 95).

Sleep Categories
As exemplified in Table 2, the overall focus of these studies was overwhelmingly directed at tools measuring the quality of sleep or identification of sleep pathologies in all pediatric age classifications (68.1%), followed by the levels of sleepiness (55.6%) and duration of sleep (48.6%). Various secondary coobjectives of these studies were to investigate tools measuring the sleep regularity (46.5%) and sleep hygiene practices (29.2%). Rarely but in existence, was the singular assessment of sleep ecology and treatment around sleep pathologies at a frequency of 21.5% and 0.7%, respectively. About 19 studies (13.2%) queried the sleep regularity (77.8%), followed by the levels of sleepiness (77.1%), quantity (48.6%), and sleepiness (48.6%).

The 11 Steps
Regarding the psychometric evaluation step-by-step guide proposed by Spruyt (2, 3), less than half the required 11 steps (chiefly 1, 2, 6, 8, and 9 were done) were fulfilled across all studies. Steps 3 and 10 were often not reported (i.e., 84.7% and 63.2%, respectively). Three studies reported all steps (2.1%), three only lack step 11 (2.1%), and four (2.8%) only lack steps 10 and 11. The most common combination of steps (7.7%) reported are 1, 2 and 4 joined with 5, 6, 8, 9 or 6, 7, 8, 9, 10. After a decade, only 18 papers (12.5%) reported some form of norms. An in-depth description of the steps fulfilled is described in the categorically-divided (per purpose, see Methods) results below.

Tools Newly Developed
According to our search criteria, a total of 27 novel pediatric sleep tools were developed between 2010 and 2020 (refer to Table 2 and shaded). Of these, approximately eight were published in Europe (29.6%), eight in North America (29.6%), four in Asia (14.8%), three in South America (11.1%), two in Australia and Oceania (7.4%), and two in the United Kingdom (7.4%). The majority were developed for child-adolescent age ranges (66.7%), while one for preschool children (2–5 years) and one for all three aforementioned ages (2–18 years). All newly developed tools possessed a multipurpose objective, most of which assessed sleep quality (77.8%), followed by the assessment of sleepiness (51.9%) and sleep regularity (41.7%) and sleep quantity (41.7%), while more rarely assessing hygiene (25%), ecology (12.5%), and treatment (4.2%).

In addition, three tools being newly created are an English translation of the NARQoL-21 (70) and YSIS (140), and also an adaptation, the nighttime sleep diary (NSD) (71). The latter being a diary adapted to monitor nighttime fluctuations in young children with asthma.

Only two tools were developed according to the 11 aforementioned steps required for psychometric validation of a tool; the NARQoL-21 (70) and SNAKE (129) (refer to Table 2). One other tool, OSPQ (83) also developed normative scores for widespread usage while fulfilling most steps but steps 3 and 9. Whereas the CSAQ (27) fulfilled all steps except step 11, and the BRIAN-K (16), PADSS (84), and SDSC* (125) except steps 10 and 11. The outstanding tools were mostly absent of steps 5, 7, 8, 9, and 10. For the newly developed diary, NSD (71) steps 1–6 were fulfilled.

Almost half of the tools queried general sleep problems (41.7%). Twenty-five percent aimed at surveying sleep disordered breathing. While others such as sleep bruxism (128), PADSS (84), P-RLS-SS (98), RLS (117), NARQoL-21 (70), YSIS (140), and NSD (71) focused on a specific sleep problem (16.7%). Tools aimed at investigating sleep complaints in children with (developmental) disabilities are besides NSD (71), the OSA Screening Questionnaire (73), Pediatric Sleep CGIs (90), SHIP (127), and SNAKE (129).

Tools Translated
In total, 35 out of the total 144 studies primarily aimed to translate an existing tool alone (refer to Table 2). Namely, 17 tools have been translated: BISQ (15), CCTQ (19), CSHQ (29, 33, 34, 40–43), CSM (45), CSQ5 (46), DBAS (49), ISI (56, 57), MEQ (62), OSA-18 (74–79), OSD-6 (81), PDSS (85–87), PosaST (96), PSQ (105–107, 110, 111, 113), PSQI (115), SDSC (120–122), SHI (126), and SSR (43, 133). The most frequently translated tools were: OSA-18 (17.1%), CSHQ (14.3%), and PSQ (11.4%). The most common translation was to Portuguese (n=4), Spanish (n=4), and Turkish (n=4), followed by Brazilian Portuguese (n=3), Chinese (n=3), and Dutch (n=3). Less often, tools were translated to German, Persian, and Greek as well as English, Italian, Polish, Swedish, Japanese, French, Malay, and Thai. Again, primarily tools for child/adolescent age ranges as parental reports have been translated. Of these, the main categorical foci, and often overlapping, were sleep quality (77.1%), quantity (48.6%), and sleepiness (48.6%).

When ranked from most to least prevalent step, apart from steps 1 and 2, we found: step 8 (97.1%), step 4 (91.4%), step 9 (88.6%), step 6 (85.7%), step 5 (57.1%), step 7 (51.4%), and step 10 (34.3%) being performed across the studies. The CSHQ (34) and SDSC (120, 121) included norm development (step 11). Step 3 is missing in all translations. Only the translation of the SDSC fulfilled nearly all steps with (121) missing step 3 and (120) missing steps 3 and 9. Receiver Operator Curve (ROC) analyses were performed in five : OSA-15 (74), PosaST (96), PSQ (106, 111), and CSHQ (43).

Tools Adapted
Moreover, six studies (see Table 2) specifically aimed to adapt a tool from a preexisting one, most notably the Children’s Sleep Habits Questionnaire (CSHQ) (66.7%), among these a shortened version and infant adaptation, along with the BEDS (14) (16.7%) adapted toward children with Down syndrome, and the OSA-18 Questionnaire (16.7%), which was also shortened toward OSA-5 (80) to suit the sample of interest. Although the number of items
may have changed, no substantial changes to the answer categories could be noted. Only 33.3% reported steps 3, 4, 5, 7, 10 yet steps 6, 8, 9 were analyzed in 83.3%. None developed norms. In two studies (38, 44) ROC analyses were pursued for the CSHQ.

Tools Adapted and Translated
Six studies adapted and also translated existing tools (see Table 2): CSHQ (29), PedsQL (91, 92), SQS-SVQ (131), TuCASA (139), and NSS (72). The CSHQ and TuCASA were adapted and translated to Portuguese, the PedsQL to Arabic and Chinese, while SQS-SVQ to Turkish and NSS to Chinese. The adaptations involved an infant version of CSHQ and child-sample for NSS, the PedsQL to children with cancer and acute leukemia, and the TuCasa was adapted toward children of low socioeconomic status. Regarding the SQS-SVQ it was modified based on personal communication with the authors of the original version. That is, four items were added.

For these tools Steps 3 and 11 were not performed, while Steps 8 and 9 were performed in all. About half (50%) did steps 5, 6, and more than half did step 7 (66.7%) and less than half did step 10. Some aspects of step 4 were inconsistently applied across 83.3% of the studies (e.g., expert perspective).

Tools Psychometrically Evaluated
Approximately 53 studies were published that focused solely on psychometric evaluation of questionnaires between 2010 and 2020 (refer to Table 2). Of these, commonly investigated were CSHQ (11.3%), CRSP, and PSQ (each 7.5%), followed by SDSC and PROMIS (each 5.7%). The greatest number were printed in 2014 (15.1%), as well as 2018 and 2019 (each 13.2%) and 2015, 2016, 2017 (each 11.3%), and a lesser number of instruments were evaluated in the other years. In terms of location, the majority were published in North America (43.4%) followed by Europe (22.6%) and Asia (18.9%), Australia and Oceania (11.3%), and the South America (3.8%). Especially tools for adolescent age range (34%) were psychometrically evaluated, followed by child-adolescent age range (22.6%). 9.4% involved tools for preschoolers (2–5 years) and 15.1% are for child (6–12 years) alone. The remainder are combinations: preschooler child (3.8%), preschool to adolescent (9.4%), and all (0–18 years; 3.8%).

Ranked on sleep category, the tools examined: 64.2% sleep quality; 58.5% sleep quantity; 47.2% sleep regularity; 58.5% sleepiness; 35.8% sleep hygiene, 20.8% sleep ecology but none for treatment. Among all 53-instrument validations, none adhered to all eleven recommended steps of tool evaluation. Besides steps 1 and 2, especially steps 9 (90.6%) and 8 (75.5%), 6 (64.2%) have been reported upon psychometrically evaluating tools, and less common have been steps 7 (54.7%), 10 (41.5%), and 4 (34%). Least common in psychometric screening were steps 5 (13.2%), 3 (13.2%), and again 11 (15.1%). ROC analyses were performed in 11 studies (20.8%): ESS (52), AIS and SQI (5), JSQ (58, 59), PSQ (108, 109, 112), CAS-15 (17), CSRQ (47), and Comics (138). Almost fulfilling all steps were: CAS-15 (Goldstein et al., 2012) and Comics (137, 138).

Tools Psychometrically Evaluated and Adaptations
Three tools underwent evaluation but were simultaneously modified: FoSI was adapted for adolescents (54), and a reduced itemset was suggested for aMEQ-R (65) and PROMIS (102).

Tools Psychometrically Evaluated and Translated
In addition to the 53 instruments validated, there were 13 studies flagged that additionally translated their respective tools (refer to Table 2); the ASHS to Persian, the BEARS to Spanish, CCTQ to Chinese, the CSHQ to German and Spanish, the ESS to Tamil, the MEQ to European Portuguese, the MESSI to Turkish, the PSQ to Chinese, Portuguese and French, and the PedsQL to Brazilian Portuguese. Step 9 was performed in all studies, closely followed by steps 4, 6, and 8 (93.3% each). Step 7 (69.2%) and 5 (53.8%) and 10 (46.2% each) were not as frequently pursued. Again, steps 3 and 11 (15.4%) were nearly absent in the psychometric evaluation. Of these, the ESS (51) underwent all steps.

Tools Psychometrically Evaluated, Translated With Adaptations
The Russian version of the PDSS (89) did not report step 3, but executed to a certain extent all the steps to psychometrically evaluate a translated tool to its population. Based on the advice of the area specialist and the focus group of children questions #3 (Trouble getting out of bed in the morning), 4 (Fall asleep/drowsy during class), 7 (Fall back to sleep after being awakened), and 8 (Usually alert during the day (reverse coded)) were modified for better understanding.

Some Extra Remarks
Translations of Tools
Although the studies reported here are English papers, popular translations are Chinese, Portuguese, Spanish, and Turkish. The CSHQ, PSQ, and OSA-18 were the most frequently translated tools.

Tools With Norm Scores
Psychometric studies of particular interest are those that developed normative values or clinical/community cutoff scores for widespread usage, of which there were overall 18. Norms have been developed for CAS-15 (17), ESS (51, 52), JSQ (58, 59), SDSC (120, 121), CSHQ and CRSP (25, 34), CSRQ (47), MEQ (64, 65), NARQoL-21 (70), OSPQ (83), PSQ (108), SNAKE (129), Comic (138), and SYSIS (140) (refer to Table 2).

The CAS-15, PSQ, CSRQ, and ESS studies provided “normative” ROC cutoff scores, with the Krishnamoorthy et al. (51) providing cutoffs for moderate and high excessive sleepiness.

Population-based norms were developed for preschoolers and school-aged children of JSQ. Average T-scores for all as well as for boys/girls in age bands of 2–3, 4–5 years separately are available for each subscale: restless legs syndrome, sensory; obstructive sleep apnea syndrome; morning symptoms; parasomnias; insomnia or circadian rhythm disorders; daytime excessive sleepiness; daytime behaviors; sleep habit; insufficient
sleep; and restless legs syndrome, motor. For school-aged median T-scores are available for 1st–2nd, 3rd–4th, 5th–6th grade per the following subscales: restless legs syndrome, sleep disordered breathing, morning symptoms, nighttime awakenings, insomnia, excessive daytime sleepiness, daytime behavior, sleep habit, and irregular/delayed sleep phase.

Regarding the SDSC, French (France and French speaking Switzerland) as well as Chinese T-scores are available. The Chinese study reports average T-scores per the subscales sleep-wake transition disorders; disorders of initiating and maintaining sleep; disorders of excessive somnolence; disorders of arousal; sleep hyperhidrosis; and sleep breathing disorders. Whereas the French study copied the approach of the original report, i.e., tabulated the full T-score range from 31 to 100 including marks for clinical ranges.

The CSHQ study aimed to validate the Dutch version of the tool for toddlers while developing norms due to the current inaccessibility of the CSHQ in this age group. Norm values were decidedly the mean total score in the sample population and while the factor-structure was unsupported, the normative score developed was still representative of the presence and severity of sleep problems in 25% of toddlers. Authors report the mean total score for lower/higher socioeconomic status, 2 and 3 year olds, girls and boys, yes/no problem sleepers. The authors similarly provided means and standard deviations for the 23 items of the CRSP.

The MEQ studies are comparable providing means and standard deviations as well as percentiles. Also percentiles are reported in the YSIS study. For the NARQoL-21 a comparison was made with a validated health-related quality of life tool, and a cutoff of <42 was deemed as sensitive and specific, supplementary available are cutoff scores for differentiating between optimal and suboptimal quality of life.

T-scores for subscales by gender and age (5–7 and 8–10 years old) are provided for OSPQ: sleep routine, bedtime anxiety, morning tiredness, night arousals, sleep disordered breathing and restless sleep.

For SNAKE a t-distribution was generated for Disturbances going to sleep, Disturbances remaining asleep, Arousal disorders, Daytime sleepiness, and Conduct disorders for children in ages between 1 and 25 years old. For the Children’s Sleep Comic (ages 5 to 11) stanines were generated for the raw intensity of sleep problem score.

Tools With ROC Analyses
Twenty-eight (19.4%) studies reported ROC findings. This was primarily done for (refer to Table 2) CSHQ (n=4) and PSQ (n=5). That is, in 20% the ROC was calculated given clinical versus control/community samples, while in 48% of the papers a PSG parameter was used (e.g., apnea-hypopnea index, obstructive index). Another criterion was used in 32% of the cases (e.g., validated questionnaire, parental report, or optimal cutoff from original paper).

Papers With Questionnaires Available
In Table 1, the studies (32.6%) that printed or made available their questionnaire in supplementary files or appendix are shown.

Use of Classification Systems
Primarily the ICSD classification system was used to generate/mimic items for the following new tools: the Pediatric Sleep CGIs (90), RLS (117), SDSC* (125), SNAKE (129), the Children’s Sleep Comic (137), and YSIS (140). When tools were psychometrically evaluated and/or translated/modified such as the CSHQ or the SDSC the classification system upon which their original items were generated remains.

Tools Used in Specific Populations
The SNAKE has been specifically developed for children with psychomotor disabilities, and hence serves as a good example of tool development. Whereas the vast majority of studies involved tools that are modifications or compilations, as well as a psychometric evaluation of the tool utility in an “atypical” population.

DISCUSSION
Since the 2011 Spruyt (2, 3) review, it has been encouraged that further psychometric validation is pursued for all questionnaires to develop a broader and more reliable range of tools. While “tools do not need to be perfect or even psychometrically exceptional, they need to counterpart clinical decision-making and reduce errors of judgment when screening for poor sleep,” suggested Spruyt (personal communication). This is done through the descriptive, iterative process of a tool protocol and often requires all steps of psychometric evaluation. Without this we have observed that tools rely on minor aspects of their psychometric validity for (clinical) application when this is often fallacious and nonspecific to the study population. Following the systematic review however, a dramatic increase in tool translations and adaptations has been observed which is to be irrefutably applauded. Nonetheless, it is important to develop standardized tests that are culture-free and fair in order to identify sleep issues across the board based on an unbiased testing process.

Twenty-seven new tools have been developed, while most of the papers published reported translations/adaptations or a psychometric evaluation of an existing tool. More than half of the tools queried general sleep problems. Irrespective of the infrequency of tools developed in categories like sleep ecology and treatment, there is an emerging need for further research into these areas given the environmental impact of technology on pediatric sleep in the 21st century (141, 142).

The two new tools that underwent all 11 steps aimed at investigating sleep problems either in terms of a quality of life tool for narcoleptics (NARQoL-21) (70) or as a sleep disorder tool for children with severe psychomotor impairment (SNAKE) (129). Several other tools accomplished nearly all steps (see Tables: OSPQ, CSAQ, BRIAN-K, PADSS, SDSC*, NSD, and YSIS).

Since the 2011 review, tools for specific populations (e.g., in terms of ages, developmental disabilities, sleep pathologies) are still needed. Epidemiological tools assessing sleep in adolescents specifically have received some focus, where they were second in
publication frequency. This dramatic influx of relevant research can be a result of the rising sleep-reduction epidemic in teenage populations influenced by biological, psychological and sociocultural factors. In addition, the investigation into the effects of sleep hygiene and ecology (143), which are heavily influenced by sociocultural phenomena, have slowly presented themselves across children and adolescents (6–18 years). With the introduction of technology at the forefront of childhood influence (144, 145), pediatric sleep habits and consequently quality is slowly gaining traction where studies flagged here are acknowledging the underlying weight of sleep hygiene on sleep quality and sleep quantity. Although at present, these tools are still demanding attention for further psychometric validation.

An urgent call for tools with adequate psychometric properties is concluded in several recent reviews (146–148). Especially assessing the factor structure of tools toward construct validation has been pursued, while other steps continue to be overlooked. Similarly, general tools to screen for sleep pathologies remain preponderant since the 2011 review. Alternatively, a file-drawer problem can be expected. Combined with the difficulty of finding a suitable journal to publish a tool validation study, this may lead to a skewed scientific literature toward commonly published and used tools. This is potentially echoed in atypical populations as seen by the influx of psychometric evaluations of existing tools. Undoubtedly, more studies are needed in an era where sleep is rapidly gaining public interest, and the need for a scientifically sound answer on the consequences of a “poor sleep” endemic is pressing.

Several tools pop out for diverse reasons. The first tool of note is the JSQ (58, 59) validated for Japanese children investigating sleep in a large population-based sample flagged by our search and developing normative values for this tool at a 99% confidence interval. This tool is notable in that given its statistical validity and reliability in a large population sample, the plausibility of this being mirrored in other cultures is possible. Important to note however, is that sleeping habits in Japanese children may vary greatly to those in western countries. Therefore, the changes in sociocultural sleep habits when adapting for other populations should be considered. Secondly, SNAKE the sleep questionnaire for children with severe psychomotor impairment underwent all 11 steps and was uniquely developed (hence not modified) for a specific population. More alike are needed (149). Thirdly, PADSS, and BRIAN-K both newly developed tools drew our attention because they examine arousal level and biological rhythm. Although the PADSS may need some further validation studies toward diagnosing, monitoring, and assessing the effects of treatment in arousal disorders in childhood particularly, it addresses the need for more specialized tools. Whereas the BRAIN-K being a modification of an adult version may benefit from additional psychometric evaluations beyond the current age range. Also, the FoSI, measuring fear, being based on the adult version assessing fear in a rural trauma-exposed sample (150) warrants further psychometric scrutiny. In contrast to others, the RLS (117) proposes a difference in scores between two time points 14 days apart to identify RLS-related symptoms. Lastly, addressing the need for tools allowing the child to express themselves regarding sleep is the Children’s Sleep Comic, being an adapted version of the unpublished German questionnaire “Freiburger Kinderschlafcomic” and providing pictures for items and responses. Hence, pinpointing to the “un”published tools in the field and a welcomed child’s perspective regarding inquiring about sleep in an alternative way.

Adhering to the words of Spruyt, that instruments should be enhancing clinical decision-making and significantly reducing errors of judgment, the study by Soh et al. identified, developed, and abbreviated the OSA-5 questionnaire after recognising preexisting faults in the original 18-item version. It was identified that the OSA-18 was initially designed as a disease-specific quality of life tool that does not predict obstructive sleep apnea (OSA) symptoms consistent with the gold-standard PSG. Recently Patel et al. (151) scrutinized the accuracy of such clinical scoring tools. Additionally, the study by Soh et al. (80) acknowledged that there exists a lack of parental understanding of some items and their wording in the original instrument. As a result, the OSA-18 was abbreviated to 11-items and then to 5- so that ultimately it would “perform better as a screening tool for use in triage and referral planning.”

Our review also revealed other tools addressing this sleep problem: I’m sleepy (55). While OSA is increasingly relevant in pediatric epidemiology due to the rise in obesity, parental knowledge of the condition and consequent treatment options is imperative. A recent 2017 study regarding the development of a questionnaire informing parents of this treatment was designed by Links et al. (82). The tool aims to alleviate parental conflict around the choice for or against this treatment in children and is a first in its approach as a questionnaire focusing on medical treatment decision making. Like the objectives of OSA-5, this tool is notable in that it aims to “improve the quality and impact of patient and family decisions about OSA diagnosis and treatment” (82). As part of the personalized/precision medicine era, the CAS-15 (17) and PROMIS-papers pop out. The CAS-15 is one of the few tools where the respondent is the professional. The PROMIS, although presented as a potential screening/diagnostic tool, recently underwent several psychometric evaluations. It involves an item bank of Patient Reported Outcomes Measurement, or better it is intended to measure the subject’s “view” of their health status (e.g. sleep). Although these patients reported outcome measures (PROM) adhere to the same psychometric characteristics as diagnostic/screening tools, the scope of a PROM is very different. Namely, PROMs allow the efficacy of a clinical “intervention” to be measured from the patients’ perspective. Unfortunately, these specific instruments have not undergone all steps, accordingly, they would benefit from further validation and possible cultural/linguistic adaptation to achieve a more widespread use in the future.

As for the majority of tools that lack the detailed mention above, there is need for comment on the gradually increasing recognition for disease-specific instruments or instruments for specific populations. Alternatively, measuring the severity of sleep conditions over the frequency is still much needed. It was observed by Spruyt that nearly all questionnaires up until the 2010 search, focused on the frequency of sleep problems,
however since then, several tools have aimed to increase the specificity and sensitivity of sleep tools to the severity of common pediatric illnesses and specific age groups associated with them e.g. Down syndrome, Narcolepsy (148), infancy, etc. This specificity of condition severity and age may help to refine treatment measures and streamline clinical interventions.

Additionally, in contrast to our review in 2011, the studies reported here are English papers, although popular translations are Chinese, Portuguese, Spanish, and Turkish. That is, between 2010 and 2020 especially the CSHQ, PSQ, and OSA-18 were translated. This is likely an approximation due to the exclusion of non-English papers and of dissertations etc. In 2011, we observed that the development or modification of tools may not always evolve into a scientific paper.

Vis-à-vis fulfillment of psychometric criteria, preliminary and confirmative factor analysis methods have been included in the scope of, and completed in either partially or completely, most the studies which was lacking prior. Primarily construct and content validity via factor structure or item correlation, and Cronbach alpha statistics are noticed. Standardized scoring and item generation however, is still ill-managed as a requirement and is an important step in developing a diagnostic tool or adapting/translate an existing one. Nonetheless, generally, it can be said that much of the studies into tool-psychometrics deserve recognition for endeavoring to adhere to steps 1 through 11. But the overarching suggestion thus far, is to more thoroughly fulfill the facets of validation; i.e. content, convergence, discriminative, and criterion-related validity (steps 8 and 9), pilot questionnaires in the event of an adaptive change made (step 5), examine the underlying factors to ensure (uni) dimensional structure of a said tool (steps 7 and 10) and develop norms alongside cutoff scores (step 11). Furthermore, although several tools mimic classification systems a more thorough psychometric scrutiny thereof is still needed. As a consequence, to date, the vast majority of tools reflect an appraisal of the frequency of a sleep complaint.

Several limitations should be noted. We post hoc limited our flagged studies to only English language given that they reach the broader scientific community. Furthermore, several of the tools included are not 100% sleep tools (e.g. health related). In addition, our way of presenting being “New Development (N),” “Psychometric Analysis (P),” and “Translation (T)/Adaptation (A),” or a combination thereof, involved overlaps in descriptive analyses. Contrary to the original paper by Spruyt, this one did not apply searches in Dissertations and Theses, Google Scholar (Web crawling), ebooks and conference Sleep abstract books, and as a consequence might not be an exhaustive list of tools. Alternatively, studies involving app’s did “hit” our search terms yet were not retained during further screening toward our aims. Lastly, given that this is a systematic review we didn’t pursue a quality assessment of study designs investigating sleep tools. Nevertheless, in Spruyt et al. (2) each of the necessary steps are stipulated.

Recommendations

It is recommended that future tools further the investigation into sleep hygiene, ecology (see [143]) and schedules of pediatric populations as this is becoming a highly relevant field of research upon the introduction of technology into sleeping habits and routines. The increasing prevalence of sleep deprivation in children (152–155) requires in depth discovery as to what damage or lack thereof is being done as a result of a 21st century society.

In addition to this, it is suggested that pediatric tools should be further introduced and adapted or validated for reporting by children older than 8 years of age. Since there is evidence to suggest that children as young as eight years can report information critical to their own health, it is recommended that a large proportion of questionnaires be designed for children in this age category as well as parents (1). Conjunctional use of these however, is advised to develop any diagnosis.

Although several tools listed mimic classification systems, or were psychometrically evaluated in samples that underwent clinical diagnoses upon a classification system, there is still room for improvement. Combined with primarily convenience samples such as clinical referrals and lack of details on (at risk of being poor) sampling techniques, the internal and external validity of studies might be seriously jeopardized.

Sensitivity and specificity are key in differencing screening versus diagnostic tools. Yet also, the sample on which this difference is determined plays a key role, where the diagnostic tools chiefly aims at subjects believed to have the problem. Thus, screening tests are chosen toward high sensitivity while diagnostic tests are chosen toward high specificity (true negatives).

Lastly, caution is warranted upon a general positive score regarding reliability and validity assessment, and readers are advised to remain critical concerning the statistical techniques applied in the individual studies. Several recommendations for future tool development or evaluation have been listed in Box 1.

BOX 1 | Research agenda: a need for

- Tools assessing sleep ecology, sleep routines/hygiene, regularity, treatment
- Psychometric evaluation of apps
- Tools for daytime sleep
- Tools per sleep pathology
- Tools for specific populations
- Tools sensitive and specific regards classification systems
- Tools adept to developmental changes
- Tools differentiating between school days and nonschool days
- Tools as a PROM, Patient-Reported Outcome Measures
- A venue to publish psychometric evaluations of tools
- Methodological scrutiny regarding sampling (patient/population), statistical techniques, the aim(s), and type of study
- Availability of the tools published, especially translations
- Equal attention to all 11 steps; e.g. step 3 such as answer but also time format
- Replication studies
- Self-reporting tools for school-aged children
- Question and/or Response formats beyond frequency
- Sleep duration not being a categorical answer
- Caution regarding “child”-modifications of adult tools or applications beyond the intended age range
- Culture-free or fair tools
- Reviews and meta-analyses on criterion validity of subjective tools
Tool development and evaluation, as mentioned in the past is time and labor-intensive (2). In short, scientific copycats (i.e. replication studies) are needed!

AUTHOR CONTRIBUTIONS

TS performed first search, extracted data, and wrote the first draft during her internship. Her work was updated, verified and finalized by KS.

REFERENCES

1. Eaden J, Mayberry MK, Mayberry JF. Questionnaires: the use and abuse of social survey methods in medical research. *Postgraduate Med J* (1999) 75 (885):397–400. doi: 10.1136/pgmj.75.885.397
2. Spruyt K, Gozal D. Development of pediatric sleep questionnaires as diagnostic or epidemiological tools: a brief review of dos and don’nts. *Sleep Med Rev* (2011) 15(1):7–17. doi: 10.1016/j.smrv.2010.06.003
3. Spruyt K, Gozal D. Pediatric sleep questionnaires as diagnostic or epidemiological tools: a review of currently available instruments. *Sleep Med Rev* (2011) 15(1):19–32. doi: 10.1016/j.smrv.2010.07.005
4. Spruyt K, Braam W, Carsf LM. Sleep in Angelman syndrome: A review of evidence. *Sleep Med Rev* (2018) 37:69–84. doi: 10.1016/j.smrv.2017.01.002
5. Chung K-F. Assessing Insomnia in Adolescents: Comparison of Insomnia Severity Index, Athens Insomnia Scale and Sleep Quality Index. *Sleep Med* (2012) 13(6):707–70. doi: 10.1111/j.1262-8758.2010.01205
6. Storfer-Isser A, Lebourgeois MK, Harsh J, Tompsett CJ, Redline S. Psychometric properties of the Adolescent Sleep Hygiene Scale. *J Sleep Res* (2013) 22(6):707–16. doi: 10.1111/jrsl.12059
7. de Bruin EJ, van Kampen RKA, van Kooten T, Meijer AM. Psychometric properties and clinical relevance of the Adolescent Sleep Hygiene Scale in Dutch adolescents. *Sleep Med* (2014) 15(7):789–97. doi: 10.1016/j.sleep.2014.03.015
8. Chebri A, Khazaie H, Eskandari S, Khazaie S, Holboer-Trachsel E, Brand S, et al. Validation of the Farsi version of the revised Adolescent Sleep Hygiene Scale (ASHSr): a cross-sectional study. *BMC Psychiatry* (2017) 17(1):408. doi: 10.1186/s12888-017-1578-6
9. Lin CY, Strong C, Ho SY, Ho FYY, Chung KF, Lee BLT, et al. Validation of the Chinese Version of the Children’s ChronoType Questionnaire (CCTQ) in preschool children. *Chronobiol Int* (2015) 31(9):947–53. doi: 10.3109/07420528.2014.933841
10. Yeung WF, Yu BYM, Ho YS, Ho FYY, Chung KF, Lee BLT, et al. Validation of the Chinese Version of the Children’s ChronoType Questionnaire (CCTQ) in school-aged children. *Chronobiol Int* (2019) 36(12):1681–90. doi: 10.1080/07420528.2019.1673769
12. Meltzer LJ, Avis KT, Biggs S, Reynolds AC, Crabtree VM, Bevans KB. The Children’s Sleep Assessment Questionnaire (CSAQ): a self-report measure of sleep for school-aged children. *J Clin Sleep Med* (2013) 9(3):235–45. doi: 10.5664/jcsm.2486
13. Meltzer LJ, Brimeyer C, Russell K, Avis KT, Biggs S, Reynolds AC, et al. The Children’s Report of Sleep Patterns: validity and reliability of the Sleep Hygiene Index and Sleep Disturbance Scale in adolescents. *Sleep Med* (2014) 15(12):1500–7. doi: 10.1016/j.sleep.2014.08.010
14. Steur LMH, Grootenhuis MA, Terwee CB, Pillen S, Wolters NGJ, Kaspers JG, et al. Psychometric properties and norm scores of the sleep self report form in Dutch children. *Health Qual Life Outcomes* (2019) 17(1):15. doi: 10.1186/s12955-018-1073-x
15. Meltzer LJ, Biggs S, Reynolds A, Avis KT, Crabtree VM, Bevans KB. The Children’s Report of Sleep Patterns – Sleepiness Scale: A self-report measure for school-aged children. *Sleep Med* (2012) 13(4):385–9. doi: 10.1016/j.sleep.2011.12.004
16. Goldstein NA, Stefanov DG, Graw-Panzer KD, Fahmy SA, Fishkin S, Jackson A, et al. Validation of a clinical assessment score for pediatric sleep-disordered breathing. *Laryngoscope* (2012) 122(9):2096–104. doi: 10.1002/ary.23453
17. Becker SP, Ramsey RR, Byars KC. Convergent validity of the Child Behavior Checklist sleep items with validated sleep measures and sleep disorder diagnoses in children and adolescents referred to a sleep disorders center. *Sleep Med* (2015) 16(1):79–86. doi: 10.1016/j.sleep.2014.09.008
18. Berny T, Jansen K, Tompsett CJ, Braam W, Carsf LM. Sleep in Angelman syndrome: A review of evidence. *Sleep Med Rev* (2018) 37:69–84. doi: 10.1016/j.smrv.2017.01.002
19. Acknowledgments

We would like to thank and acknowledge listservers PedSleep2.0 and IPSA for distributing the request for relevant additional literature and the following authors to whom expressed interest, to our review: Candice A. Alfano, Annie Bernier, Kelly Byars, Daniel A. Combs, and Jodi Mindell. Additionally, we would like to thank the following people for providing information and/or complete access to a pdf copy of their study: Annie Links, Beth Malow, Serge Brand, Robert Bozidis, Rocio De la Vega, and Valerie Crabtree.

ACKNOWLEDGMENTS

We would like to thank and acknowledge listservers PedSleep2.0 and IPSA for distributing the request for relevant additional literature and the following authors to whom expressed interest, to our review: Candice A. Alfano, Annie Bernier, Kelly Byars, Daniel A. Combs, and Jodi Mindell. Additionally, we would like to thank the following people for providing information and/or complete access to a pdf copy of their study: Annie Links, Beth Malow, Serge Brand, Robert Bozidis, Rocio De la Vega, and Valerie Crabtree.
36. Johnson CR, DeMand A, Lecavalier L, Smith T, Aman M, Foldes E, et al. Validation of the Children’s Sleep Habits Questionnaire in a sample of Greek children with allergic rhinitis. *Allergologia Immunopathol* (2018) 4(4):389–93. doi: 10.1016/j.aller.2017.09.016

37. Sneddon P, Peacock GG, Crowley SL. Assessment of Sleep Problems in Children With Cerebral Palsy. *Sleep Health* (2018) 4(4):283–96. doi: 10.1016/j.sleh.2017.05.020

38. Masakazu O, Shingo K, Yoshitaka I, Hisateru T, Yuichi K, Shigekazu H, et al. The Sleep Apnea Questionnaire. *J Sleep Res* (2012) 21(5):584–94. doi: 10.1111/j.1365-2869.2012.00999.x

39. Dewald-Kaufmann JF, Bruin EJ, Smits M, Zijlstra BJH, Oort FJ, Meijer AM. Chronic sleep reduction in adolescents—clinical cut-off scores for the Chronic Sleep Reduction Questionnaire (CSRQ). *J Sleep Res* (2018) 27(3): e12653. doi: 10.1111/jsr.12653

40. LeBourgeois MK, Harsh JR. Development and psychometric evaluation of the Children’s Sleep-Wake Scale. *Sleep Health* (2016) 2:198–204. doi: 10.1016/j.sleh.2016.04.001

41. Lucas-de la Cruz L, Martinez-Vizcaino V, Alvarez-Bueno C, Arias-Palencia N, Sanchez-Lopez M, Notario-Pacheco B. Reliability and validity of the Children’s Sleep Habits Questionnaire in a sample of Spanish children with allergic rhinitis. *Sleep Biol Rhythms* (2014) 15(3):451–6. doi: 10.1016/j.sbr.2014.07.025

42. Shinji S, Kato A, Shigakazu H, Takahiro Y, et al. The Sleep Apnea Questionnaire—An evaluation of the Modified Children’s Sleep Habits Questionnaire in a sample of Japanese children. *J Oral Health (Chonbuk)* (2018) 27(3):156–63. doi: 10.4103/jnrp.jnrp_168_18

43. Crabtree VM, Klages KL, Sykes A, Wise MS, Lu ZH, Indelicato D, et al. Psychometric properties and Specificity of the Modified Epworth Sleepiness Scale in Children With Craniofacial Dysmorphology. *J Clin Sleep Med* (2019) 15(10):1487–93. doi: 10.5664/jcsm.7982

44. Bonuck KA, Goodlin-Jones BL, Schechter C, Owens J. Modi fi city of the Modi fi cation of the Children’s Sleep Habits Questionnaire. *Sleep Health* (2013) 3(4):464–71. doi: 10.1016/j.sleh.2013.11.584

45. Steur LMH, Visser EH, Grootenhuis MA, Terwee CB, Kaspers GJL, van Litsenburg RRL. Psychometric properties and Dutch norm values of the Children’s Sleep Habits Questionnaire. *Sleep Health* (2017) 5(6):841–5. doi: 10.1016/j.sleap.2015.12.005

46. Silva FG, Cláudia Rocha S, Lígia Barbosa B, Ana Serrão N. Portuguese Children’s Sleep Habits Questionnaire—validation and cross-cultural adaptation. *Jornal Pediatria* (2014) 90(11):78–84.78. doi: 10.1016/j.jjped.2013.06.009

47. Dewald-Kaufmann JF, Bruin EJ, Smits M, Zijlstra BJH, Oort FJ, Meijer AM. Correlation and Psychometric Validity of the Children’s Sleep Habits Questionnaire (CSRQ): a cross-cultural comparison and validation. *Eur Psychiatry* (2015) 30(1):166–71. doi: 10.1016/j.eurpsy.2014.01.004

48. Rodrigues PFS, Pandeirada JNS, Marinho PI, Ribeiro L, et al. Assessing circadian preferences in Portuguese adolescents: Adaptation and psychometric validity of the H&O questionnaire. *Braz J Med Biol Res* (2018) 51(10):1487–93. doi: 10.1590/1414-431x20171104

49. Lang C, Brand S, Holboer-Trachsl Terwee CB, Van den Berg G, Xinos I, Cimino D, et al. Psychometric properties of the Children’s Sleep Habits Questionnaire in Chinese kindergartners. *Sleep Health* (2018) 4(4):283–96. doi: 10.1016/j.sleh.2017.10.008

50. Steur LMH, Visser EH, Grootenhuis MA, Terwee CB, Kaspers GJL, van Litsenburg RRL. Psychometric properties and Dutch norm values of the Children’s Sleep Habits Questionnaire in children with autism spectrum disorder. *Sleep Health* (2016) 20:5–11. doi: 10.1016/j.sleap.2015.12.005

51. Sneddon P, Peacock GG, Crowley SL. Assessment of Sleep Problems in Preschool Aged Children: An Adaptation of the Children’s Sleep Habits Questionnaire. *Behave Sleep Med* (2013) 11(4):283–96. doi: 10.1080/15402002.2012.707158

52. Crabtree VM, Klages KL, Sykes A, Wise MS, Lu ZH, Indelicato D, et al. Reliability and Validity of a Brief Sleep Questionnaire for Children in Japan. *Sleep Biol Rhythms* (2018) 16:174. doi: 10.1016/s1096-8676-8

53. Johnson CR, DeMand A, Lecavalier L, Smith T, Aman M, Endees E, et al. Psychometric properties of the children’s sleep habits questionnaire in children with autism spectrum disorder. *Sleep Health* (2016) 20:5–11. doi: 10.1016/j.sleap.2015.12.005

54. Silva FG, Cláudia Rocha S, Lígia Barbosa B, Ana Serrão N. Portuguese Children’s Sleep Habits Questionnaire—validation and cross-cultural adaptation. *Jornal Pediatria* (2014) 90(11):78–84.78. doi: 10.1016/j.jjped.2013.06.009

55. Lucas-da cruz L, Martinez-Vizcaino V, Alvarez-Bueno C, Arias-Palencia N, Sanchez-Lopez M, Notario-Pacifico B. Reliability and validity of the Spanish version of the Children’s Sleep Habits Questionnaire (CSRQ-SP) in school-age children. *Child: care Health Dev* (2016) 42(5):675–82. doi: 10.1111/cch.12357

56. Fallahzadeh H, Etesam F, Asgarian FS. Validity and reliability related to the Persian version of the Children’s Sleep Habits Questionnaire. *Sleep Biol Rhythms* (2015) 13(3):271–8. doi: 10.1016/j.sbr.12114

57. Loureiro HC. Validation of the Children Sleep Habits Questionnaire and the Sleep Self Report for portuguese children. *Sleep Sci* (2013) 6(4):151–8.

58. Bonuck KA, Goodlin-Jones BL, Schecter C, Owens J. Modified Children’s sleep habits questionnaire for behavioral sleep problems: A validation study. *Sleep Health* (2017) 3:136–41. doi: 10.1016/j.sleh.2017.03.009

59. Jankowski KS. Composite Scale of Morningness: psychometric properties, validity with Munich ChronoType Questionnaire and age/sex differences in Poland. *Eur Psychiatry* (2015) 30(1):166–71. doi: 10.1016/j.eurpsy.2014.01.004

60. Dewald JF, Short MA, Gradias M, Oort FJ, Meijer AM. The Chronic Sleep Reduction Questionnaire (CSRQ): a cross-cultural comparison and validation. *J Sleep Res* (2012) 21(5):584–94. doi: 10.1111/j.1365-2869.2012.00999.x
development and preliminary validation of a reduced Morningness-Eveningness Questionnaire. *Biol Rhythm Res* (2019) 50(6):916–26. doi: 10.1080/09297008.2018.1512291

66. Diaz-Morales JF. Morningness–Eveningness Scale for Children (MESC): Spanish normative data and factorial invariance according to sex and age. *Pers Individ Dif* (2015) 87:116–20. doi: 10.1016/j.paid.2015.07.027

67. Demirhan E, Önder I, Horzum MB, Masal E, Besoluk S. Adaptation of the Morningness–Eveningness Stability Scale improved (MESSI) into Turkish. *Chronobiol Int* (2019) 36(3):427–38. doi: 10.1080/07420528.2018.1563037

68. Weidenauer C, Tauber L, Huber S, Rimkus K, Randler C. Measuring circadian preference in adolescence with the Morningness–Eveningness Stability Scale improved (MESSI). *Biol Rhythm Res* (2019) 0:1–3. doi: 10.1080/09297008.2019.1660268

69. Pinto TR, Pinto JC, Pinto HR, Paiva T. Validation of a three-dimensional model about sleep habits, personal factors and environmental factors. *Sleep Sci* (2014) 7(4):197–202. doi: 10.1512/jslc.2014.7.12002

70. Chaplin JE, Szakacs A, Hallbook T, Darin N. The development of a health-related quality-of-life instrument for young people with narcolepsy: NARQol-21. *Health Qual Life Outcomes* (2017) 15(1):135. doi: 10.1186/s12955-017-0077-8

71. Yoshihara S, Kanno N, Fukuda H, Yamada Y, Fukuda N, Tsuchiya T, et al. Development and validation of a nighttime sleep diary in asthmatic children. *Braz J Otorhinolaryngol* (2014) 80:1342–4. doi: 10.1016/j.bjorl.2014.09.013

72. Huang YS, Hwang FM, Lin CH, Lee LA, Huang PY, Chiu ST. Clinical manifestations of pediatric obstructive sleep apnea syndrome: Clinical utility of the Chinese-version Obstructive Sleep Apnea Questionnaire-18. *Psychiatry Clin Neurosci* (2015) 69(12):752–62. doi: 10.1111/pcn.12331

73. Ouyang H, Han F, Zheng Q, Zhang J. Chinese version of narcolepsy severity scale: a validation study. *BMC Neurol* (2019) 19(1):334. doi: 10.1186/s12883-019-1570-5

74. Sanders E, Hill CM, Evans HJ, Tuffrey C. The development of a screening questionnaire for obstructive sleep apnea in children with Down syndrome. *Front Psychiatry* (2015) 6:147. doi: 10.3389/fpsyt.2015.00147

75. Huang YS, Hwang FM, Lin CH, Lee LA, Huang PY, Chiu ST. Clinical manifestations of pediatric obstructive sleep apnea syndrome: Clinical utility of the Chinese-version Obstructive Sleep Apnea Questionnaire-18. *Psychiatry Clin Neurosci* (2015) 69(12):752–62. doi: 10.1111/pcn.12331

76. Yilmaz A, Ozturk K, Köse S, Arica O. Reliability and validity of the Turkish version of the PedsQL Multidimensional Fatigue Scale in children and adolescents: a study using the Turkish version of the Pediatric Sleepiness Scale (PDSS-I). *Chronobiol Int* (2013) 30(10):1311–9. doi: 10.1080/07420528.2012.1213739

77. Randler C, Kolomeitchuk SN, Morozov AV, Petrasheva DA, Pozharskaya VV, Martynova AA, et al. Psychometric properties of the Russian version of the Pediatric Daytime Sleepiness Scale (PDSS). *Heliyon* (2019) 5(7):e02134. doi: 10.1016/j.heliyon.2019.e02134

78. Malow BA, Connolly HV, Weiss SK, Halbower A, Goldman S, Hyman SL, et al. The Pediatric Sleep Clinical Global Impressions Scale-A New Tool to Measure Pediatric Insomnia in Autism Spectrum Disorders. *J Dev Behav Pediatr*: JDBP (2016) 37(5):370–6. doi: 10.1097/DBP.0000000000000303

79. Al-Gamal E, Long T. The Psychometric Properties of an Arabic version of the PedsQML Multidimensional Fatigue Scale Tested for Children with Cancer. *Compr Child Adolesc Nurs* (2017) 40(3):188. doi: 10.1080/24694193.2017.1367691

80. Qinmei Y, Ke L, Jun W, Xiuqing B, Lili Z. Reliability and validity of the Chinese version of the PedsQML Multidimensional Fatigue Scale in children with acute leukemia. *IJNSS* (2016) 3(2):146–52. doi: 10.1016/j.ijnns.2016.04.001

81. Nascimento LC, Nunes MD, Rocha EL, Bomfim EO, Flavia-Santos M, Dos Santos CB, et al. High validity and reliability of the PedsQML Multidimensional Fatigue Scale for Brazilian children with cancer. *J Pediatr Oncol Nurs* (2015) 32(1):57–64. doi: 10.1177/1043454214554556

82. Byars KC, Simon SL, Peugh J, Beebe DW. Validation of a Brief Insomnia Screening Questionnaire: A Practical Screening Tool for Pediatric Sleep Disturbance and Sleep Related Impairment. *Int J Pediatr* (2016) 53:96. doi: 10.1016/j.jspeds.2016.12.014

83. Finimundi M, Barin I, Bandeira D, Souza DO. Validity of a circadian rhythm questionnaire for adolescents with sleep/wake cycle for adolescents. *Rev Paul Pediatr* (2012) 30(3):409–14. doi: 10.1590/S0103-05822012000300016

84. Arburke B, Abetz L, Durrmen J, Ivenko A, Owens JA, Croelen J, et al. Development of the Pediatric Restless Legs Syndrome Severity Scale (P-RLS-SS): a patient-reported outcome measure of pediatric RLS symptoms and impact. *Sleep Med* (2010) 11(9):897–906. doi: 10.1016/j.sleep.2010.03.016

85. van Kooten JA, Terwee CB, Kaspers GL, van Litsenburg RR. Content validity of the Patient-Reported Outcomes Measurement Information System Sleep Disturbance and Sleep Related Impairment item banks in adolescents. *Health Qual Life Outcomes* (2016) 14:92. doi: 10.1186/s12955-016-0496-5

86. van Kooten JAMC, van Litsenburg RRL, Yoder WR, Kaspers GL, Terwee CB. Validation of the PROMIS Sleep Disturbance and Sleep-Related

Frontiers in Psychiatry | www.frontiersin.org 34 April 2020 | Volume 11 | Article 3171

Sen and Spruyt A Review of Pediatric Sleep Tools
children at risk for sleep-disordered breathing. Pediatr Anesth (2013) 23 (6):S10–6. doi: 10.1111/pa.12155
136. Tremaine RB, Dorrian J, Blunden S. Measuring sleep habits using the Sleep Timing Questionnaire: A validation study for school-age children. Sleep Biol Rhythms (2010) 8(3):194. doi: 10.1111/j.1479-8425.2010.00446.x
137. Schwerdtle. Children’s Sleep Comic: development of a new diagnostic tool for children with sleep disorders. Nat Sci Sleep (2012) 4:97–102. doi: 10.2147/ NSS.S33127
138. Schwerdtle B, Kanis J, Kübler A, Schlarb A, Kübler A, Schlarb AA. The Children’s Sleep Comic: Psychometrics of a Self-rating Instrument for Childhood Insomnia. Child Psychiatry Hum Dev (2016) 47(1):53–63. doi: 10.1007/s10578-015-0542-2
139. Leite JM, Ferreira VR, do Prado LF, do Prado GF, de Morais JF, de Carvalho LB. TuCASA questionnaire for assessment of children with obstructive sleep apnea: validation. Sleep Med (2015) 16(2):265–9. doi: 10.1016/j.sleep.2014.09.013
140. Liu XC, Yang YY, Liu ZZ, Luo YC, Fan F, Jia CX. Psychometric properties of Youth Self-Rating Insomnia Scale (YSIS) in Chinese adolescents. Sleep Biol Rhythms (2019) 17(3):339–48. doi: 10.1007/s41105-019-00222-3
141. LeBourgeois MK, Hale L, Chang AM, Akacem LD, Montgomery-Downs HE, Buxton OM. Digital Media and Sleep in Childhood and Adolescence. Pediatrics (2017) 140(Suppl 2):S592–s6. doi: 10.1542/peds.2016-1758
142. Woods HC, Scott H. Sleepyteens: Social media use in adolescence is associated with poor sleep quality, anxiety, depression and low self-esteem. J Adolesc (2016) 51:41–9. doi: 10.1016/j.adolescence.2016.05.008
143. Spruyt K, Anguh I, Nwabarou OU. Sleep behavior of underrepresented youth. J Public Health (2014) 22(2):111–20. doi: 10.1007/s10389-013-0602-7
144. Bozzola E, Spina G, Ruggiero M, Memo L, Agostiniani R, Bozzola M, et al. Media devices in pre-school children: the recommendations of the Italian pediatric society. Ital J Pediatr (2018) 44(1):69. doi: 10.1186/s13052-018-0908-7
145. Anderson DR, Subrahmanyam K. Digital Screen Media and Cognitive Development. Pediatrics (2017) 140(Suppl 2):S57–s61. doi: 10.1542/ peds.2016-1758C
146. Ji X, Liu J. Subjective sleep measures for adolescents: a systematic review. Child:care Health Dev (2016) 42(6):825–39. doi: 10.1111/cch.12376
147. Nascimento-Ferreira MV, Collese TS, de Moraes ACF, Rendo-Urteaga T, Moreno LA, Carvalho HB. Validity and reliability of sleep time questionnaires in children and adolescents: A systematic review and meta-analysis. Sleep Med Rev (2016) 30:85–96. doi: 10.1016/j.smrv.2015.11.006
148. Benmedjahed K, Wang YG, Lambert J, Evans C, Hwang S, Black J, et al. Assessing sleepiness and cataplexy in children and adolescents with narcolepsy: a review of current patient-reported measures. Sleep Med (2017) 32:143–9. doi: 10.1016/j.sleep.2016.12.020
149. Bautista M, Whittingham K, Edwards P, Boyd RN. Psychometric properties of parent and child reported sleep assessment tools in children with cerebral palsy: a systematic review. Dev Med Child Neurol (2018) 60(2):162–72. doi: 10.1111/dmcn.13609
150. Pruiksma KE, Taylor DJ, Ruggiero C, Boals A, Davis JL, Cranston C, et al. A psychometric study of the Fear of Sleep Inventory-Short Form (FoSI-SF). J Clin Sleep Med (2014) 10(5):551–8. doi: 10.5664/jcsm.3710
151. Patel AP, Meghji S, Phillips JS. Accuracy of clinical scoring tools for the diagnosis of pediatric obstructive sleep apnea. Laryngoscope (2020) 130(4):1034–43. doi: 10.1002/lary.28146
152. Matricciani LA, Olds TS, Blunden S, Rigney G, Williams MT. Never enough sleep: a brief history of sleep recommendations for children. Pediatrics (2012) 129(3):548–56. doi: 10.1542/peds.2011-2039
153. Matricciani L, Olds T, Williams M. A review of evidence for the claim that children are sleeping less than in the past. Sleep (2011) 34(5):651–9. doi: 10.1093/sleep/34.5.651
154. Matricciani L, Olds T, Petkov J. In search of lost sleep: secular trends in the sleep time of school-aged children and adolescents. Sleep Med Rev (2012) 16(3):203–11. doi: 10.1016/j.smrv.2011.03.005
155. Matricciani L, Blunden S, Rigney G, Williams MT, Olds TS. Children’s sleep needs: is there sufficient evidence to recommend optimal sleep for children? Sleep (2013) 36(4):527–34. doi: 10.5665/sleep.2538

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Sen and Spruyt. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
APPENDIX

Tool acronym	Tool
AIS	Athens Insomnia Scale
ASHS	Adolescent Sleep Hygiene Scale
ASQ	Auckland Sleep Questionnaire
ASWS	adolescent sleep wake scale
BEARS	Bedtime problems (B) Excessive daytime sleepiness (E), Awakenings During the night (A) Regularity of sleep (R) and Snoring (S)
BEDS	Behavioral Evaluation of Disorders of Sleep
BISQ	Brief Infant Sleep Questionnaire
BRIAN-K	Biological Rhythm Interview of Assessment in Neuropsychiatry – Kids
CAS-15	Clinical Assessment Score-15
CBCL	Child Behavior Checklist sleep items
CCTQ	Children’s ChronoType Questionnaire
CRSP	Children’s Report of Sleep Patterns
CRSP-S	Children’s Report of Sleep Patterns – Sleepiness Scale
CSAQ	Children’s Sleep Assessment Questionnaire
CHHQ	Children’s Sleep Habits Questionnaire
CSM	Composite Scale of Morningness
CSRO	Chronic Sleep Reduction Questionnaire
CSWS	Children’s Sleep-Wake Scale
DBAS	dysfunctional beliefs and attitudes about sleep scale
ESS-GHAD	Epworth Sleepiness Scale for Children and Adolescents
FoSI	Fear of Sleep Inventory
I SLEEPY	I SLEEPY, short pediatric sleep apnea questionnaire
IF SLEEPY	IF SLEEPY, short pediatric sleep apnea questionnaire
I'M SLEEPY	I’M SLEEPY, short pediatric sleep apnea questionnaire
ISI	Insomnia Severity Index
JSQ	Japanese Sleep Questionnaire
LSTCHQ	Sleep Length and Television and Computer Habits of Swedish School-Age Children
MCTQ	Munich ChronoType Questionnaire
MEQ	Morningness-Eveningness Questionnaire
aMEQ-R	reduced Morningness-Eveningness Questionnaire
MESC	Morningness–Eveningness Scale for Children
MESSi	Morningness–Eveningness Stability Scale improved
My Sleep and I	My children’s sleep
NARQol-21	Narcolepsy-specific HiQol self-report questionnaire
NSD	nighttime sleep diary
NSS	Narcolepsy Severity Scale (Chinese)
OSA Screening Questionnaire	Obstructive Sleep Apnea Screening Questionnaire
OSA-18 Questionnaire	Obstructive Sleep Apnea Questionnaire
OSD-6	obstructive-sleep-disorders-6-survey
QoLQuestionnaire	Obstructive Sleep-Disordered Breathing and Adenonsillectomy Knowledge Scale for Parents
OSPP	omnibus sleep problems questionnaire
PADSS	Paris Arousal Disorders Severity Scale
PDSS	Pediatric Daytime Sleepiness Scale
Pediatric Sleep CGI's	Pediatric Sleep Clinical Global Impressions Scale
PedsQL	Pediatric Quality of Life (PedsQL) Multidimensional Fatigue Scale
PISI	Pediatric Insomnia Severity Index
PNSSS	Parent Newborn Sleep Safety Survey
PsotaST	pediatric obstructive sleep apnea screening tool
PPPS	Puberty and Phase Preference Scale (also cited as Morningness Eveningsness Scale)

(Continued)