A phase I, first-in-human study of GSK2849330, an anti-HER3 monoclonal antibody, in HER3-expressing solid tumors

H. K. Gan, a,b,c M. Millward, d M. Jalving, e I. Garrido-Laguna, f J. D. Lickliter, g J. H. M. Schellens, h M. P. Lokema, i C. van Herpen, j B. Hug, k L. Tang, l R. O’Connor-Semmes, m B. Gagnon, n C. Ellis, k G. Gana, k C. Matheny, n A. Drilon o

a Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; b School of Medicine, La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia; c Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; d Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; e Department of Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands; i Department of Internal Medicine, Oncology Division, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA; f Netherlands Cancer Institute, Amsterdam, The Netherlands; g Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; h Department of Pharmacology, University of Western Australia, Perth, Western Australia, Australia; i Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; j Nucleus Network, Melbourne, Victoria, Australia; k Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; l Radboud University Medical Center, Nijmegen, The Netherlands; m GSK, Collegeville, PA, USA; n Independent Consultant, NC, USA; o Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; p Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; q Radboud University Medical Center, Nijmegen, The Netherlands; r GSK, Collegeville, PA, USA; s Independent Consultant, NC, USA; t Candel Therapeutics, Needham, MA, USA; and u Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA

Funding: This work was supported by GlaxoSmithKline (Study 117158).

Key Words. HER3 • Neuregulin-1 • GSK2849330 • NRG1 fusion • Pharmacokinetics • Biomarkers

ABSTRACT

Background. GSK2849330, an anti-HER3 monoclonal antibody that blocks HER3/NRG1 signaling in cancer cells, is engineered for enhanced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. This phase I, first-in-human, open-label study assessed the safety, pharmacokinetics (PK), pharmacodynamics, and preliminary activity of GSK2849330 in patients with HER3-expressing advanced solid tumors.

Patients and Methods. Patients with various tumor types were prospectively selected for HER3 expression by immunohistochemistry; a subset was also screened for NRG1 mRNA expression. In the dose-escalation phase, patients received GSK2849330 1.4–30 mg/kg every 2 weeks, or 3 mg/kg or 30 mg/kg weekly, intravenously (IV). In the dose-expansion phase, patients received 30 mg/kg GSK2849330 IV weekly.

Results. Twenty-nine patients with HER3-expressing cancers, of whom two expressed NRG1, received GSK2849330 (dose escalation: n=18, dose expansion: n=11). GSK2849330 was well tolerated. No dose-limiting toxicities were observed. The highest dose, of 30 mg/kg weekly, expected to provide full target engagement, was selected for dose expansion. Treatment-emergent adverse events (AEs) were mostly grade 1 or 2. The most common AEs were diarrhea (66%), fatigue (62%), and decreased appetite (31%). Dose-proportional plasma exposures were achieved, with evidence of HER3 inhibition in paired tissue biopsies. Of 29 patients, only 1 confirmed partial response, lasting 19 months, was noted in a patient with CD74-NRG1-rearranged non-small cell lung cancer.

Conclusion. GSK2849330 demonstrated a favorable safety profile, dose-proportional PK, and evidence of target engagement, but limited anti-tumor activity in HER3-expressing cancers. The exceptional response seen in a patient with CD74-NRG1-rearranged NSCLC suggests further exploration in NRG1-fusion-positive cancers. The Oncologist 2021;9999:

Implications for Practice: This first-in-human study confirms that GSK2849330 is well tolerated. Importantly, across a variety of HER3-expressing advanced tumors, prospective selection by HER3/NRG1 expression alone was insufficient to identify patients who could benefit from treatment with this ADCc- and CDC-enhanced anti-HER3 antibody. The only confirmed durable response achieved was in a patient with CD74-NRG1-rearranged lung cancer. This highlights the potential utility of screening for NRG1 fusions prospectively across tumor types to enrich for potential responders to anti-HER3 agents in ongoing trials.

Corresponding author: Hui K. Gan Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia Email: hui.gan@onjcri.org.au Ph: + 61 3 9496 9925 Fax: + 61 3 9457 6698 Received November 13, 2020; accepted for publication May 14, 2021. http://dx.doi.org/10.1002/onc.13860

No part of this article may be reproduced, stored, or transmitted in any form or for any means without the prior permission in writing from the copyright holder. For information on purchasing reprints contact commercialreprints@wiley.com. For permission information contact permissions@wiley.com.
INTRODUCTION

HER3 (ERBB3) is a member of the human epidermal growth factor receptor (HER or ERBB) family of receptor tyrosine kinases (RTKs). While HER3 lacks intrinsic kinase activity, binding of HER3 ligands, such as heregulin (NRG1), and heterodimerization with other RTKs, including EGFR, HER2/ERBB2 or HER4 proteins [1-3], triggers activation of several signaling networks crucial for a variety of cellular processes, such as proliferation, differentiation and survival [4, 5].

HER3 and/or its ligand, NRG1, are overexpressed to varying degrees in several cancers, including head and neck squamous cell carcinomas (HNSCC), non-small cell lung cancer (NSCLC), gastric cancer, and other solid tumors [6-9]. HER3 protein expression has been associated with poor survival in various tumor types including breast, melanoma and ovarian tumors [10-14] and therefore, HER3 has been postulated as a potential therapeutic target [9, 15]. Furthermore, elevated expression of NRG1 has been shown to induce HER3 activation and promotion of tumor growth in head and neck- and ovarian cancer cells [16, 17]. Similarly, NRG1 gene fusions can result in increased HER3 activity, activating downstream signaling and driving tumor growth and survival [18, 19].

GSK2849330 is a novel humanized IgG1/IgG3 monoclonal antibody (mAb) that binds with high affinity and specificity to the extracellular domain III of HER3 and prevents NRG1 ligand binding to HER3, thereby inhibiting receptor dimerization and downstream signaling. GSK2849330 is distinct from other HER3-directed mAbs in development because it is also glycoengineered for enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) via high-affinity binding to human FcγRIIIA and further modified to enhance complement-dependent cytotoxicity (CDC) via high-affinity binding to human complement protein C1q, thereby maximizing potential mechanisms of anti-tumor activity. In HER3 expressing cancer cell lines, GSK2849330 demonstrated increased ADCC and CDC activity relative to the parental antibody; the ADCC and CDC activity also correlated with the level of HER3 expression on the cell surface [20]. Based on these findings, we carried out the first-in-human trial of GSK2849330 in patients with HER3-positive advanced solid tumor malignancies.

MATERIALS AND METHODS

Study design

This was a phase I, first-in-human, open-label, dose-escalation study of the anti-HER3 mAb, GSK2849330, in patients with advanced solid tumors expressing HER3 (NCT01966445). The dose-escalation phase included patients with various tumor histologies. In the dose-expansion phase, patients with one of four histologies (melanoma, gastric/gastroesophageal cancer, HNSCC and NSCLC) were enrolled.

This study was conducted at 8 centers in the United States, Australia and The Netherlands. The first patient was enrolled on November 26, 2013 and the last patient completed the last visit on September 18, 2017. The study protocol, amendments and informed consent were reviewed and approved by a national, regional, or institutional center ethics committee or institutional review board (detailed in Supplemental Table 1). All participants provided informed consent before taking part in the study.

Patient population

Eligible patients were aged ≥18 years, with Eastern Cooperative Oncology Group (ECOG) performance status score 0 or 1. Patients were required to have archival tumor specimens or fresh biopsy for screening assessment of tumor HER3 expression; heregulin (NRG1) mRNA expression was also determined during screening for patients with NSCLC and HNSCC in the dose-expansion phase. For dose escalation, eligible patients had HER3-positive (IHC 2+/3+ membrane staining) solid tumors by immunohistochemistry (IHC), for which no standard therapeutic alternatives were available. For dose expansion, eligible patients were required to have measurable disease defined by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 and previously treated (<4 lines of systemic therapy), unresectable Stage III/IV cancer of the following types: melanoma or gastric/gastroesophageal cancer with high HER3 protein expression [IHC 3+], or HNSCC or NSCLC expressing HER3 protein [IHC ≥1+] and high NRG1 mRNA expression [by reverse transcriptase polymerase chain reaction (RT-PCR)], to test the hypothesis that high HER3 and/or NRG1 expression may increase the likelihood of response to GSK2849330. See Supplemental materials and methods for full inclusion/exclusion criteria.

Interventions

GSK2849330 was administered by intravenous (IV) infusion over 1 hour. The starting dose in dose escalation was 1.4 mg/kg, administered once weekly in a single patient. Dose escalation progressed to 3, 10 and 30 mg/kg administered every 2 weeks, followed by 3 mg/kg and 30 mg/kg once-weekly cohorts, with a target of three patients enrolled per cohort.

The occurrence of any dose-limiting toxicities (DLTs) was evaluated using a Neuenschwander-Continual Reassessment Method (N-CRM) [21] to provide a model-based recommendation for dose-escalation decisions. Such dose-escalation decisions were based on review of safety data, available pharmacokinetics (PK) and pharmacodynamics (PD) data, and the N-CRM output.

Up to three additional patients who consented to provide pre- and on-treatment tumor biopsies could be enrolled into the PK/PD cohorts at any dose level previously determined to be tolerable.

Study objectives

The primary study objective was to determine the safety and tolerability of GSK2849330. Secondary objectives were to characterize PK, evaluate preliminary evidence of target engagement and PD, immunogenicity, determine the
recommended dose regimen(s) for further exploration, and to evaluate preliminary clinical benefit of GSK2849330 in the dose-expansion phase.

**Safety assessments**
Physical examination, vital signs, 12-lead electrocardiograms (ECG), echocardiography, and clinical laboratory tests, ECOG performance status, and monitoring for adverse events (AEs) and serious AEs (SAE) were performed at pre-specified timepoints. Further details are provided in the Supplemental materials and methods.

**PK and immunogenicity assessments**
Blood samples were collected for measurement of GSK2849330 concentrations and anti-drug antibodies as described in the Supplemental materials and methods.

**Clinical activity**
Disease progression and tumor response were assessed every 8 weeks according to RECIST 1.1 [22].

**PD assessments**
Pre-treatment and on-treatment (Day 15) biopsy tissues (tumor and normal skin) were analyzed for HER3 target engagement and immune markers using IHC. Whole blood was collected for peripheral immune cell profiling by flow cytometry. Core or punch biopsies were obtained in patients who consented to these procedures at screening and on Day 15. HER3 immunoreactivity on the cell surface of invasive tumor cells was assessed for staining intensity (weak [1+], moderate [2+], or strong [3+]) and quantified using the H-score method. CD16a, CD68 and Granzyme B were also measured. Further details of the IHC and flow cytometry assays are provided in the Supplemental materials and methods.

**Statistical methods**
Standard summary statistics were generated as appropriate for the data. An N-CRM model supported dose-escalation decisions; the minimum number of patients anticipated to complete dose escalation was 13 if no DLTs were observed. As per this approach, the recommended dose was the dose level with the highest probability of having a DLT rate in the acceptable toxicity range (16%, 33%), provided no dose was skipped during dose escalation. Once the recommended dose(s) and schedule(s) were confirmed, 12–30 patients per group were planned to be enrolled in the dose-expansion phase.

The All-Treated Population comprised all patients who received ≥1 dose of GSK2849330; this population was used for safety assessment. The PK Concentration Population consisted of patients for whom ≥1 post-dose PK sample was obtained and analyzed. The PK Parameter Population consisted of all patients from the PK Concentration Population for whom valid PK parameters were derived. The PD Population consisted of patients from the All-Treated Population for whom evaluable paired pre-treatment and on-treatment PD samples were obtained and analyzed.

**RESULTS**

**Patient population**
Patient demographics and baseline characteristics are shown in Table 1. Twenty-nine patients were enrolled and treated with GSK2849330 (Supplemental Figure 1). In the dose-escalation phase, 18 patients in 6 cohorts received GSK2849330 (1.4 mg/kg, 3 mg/kg, and 30 mg/kg weekly, and 3 mg/kg, 10 mg/kg, and 30 mg/kg every 2 weeks). In the dose-expansion phase, 11 patients were enrolled and administered a dose of 30 mg/kg weekly.

All cancers were HER3-positive (IHC2+ or 3+) by IHC, with the most common histologies being gastrointestinal (28%), colorectal (24%), and ovarian carcinomas (14%). Per study inclusion criteria, 2 NSCLC patients in the dose-expansion cohort were also NRG1-positive by RT-PCR, but only 1 patient harbored a CD74-NRG1 fusion (Table 1).

**Safety and tolerability**
The observed overall safety and tolerability profile of GSK2849330 was favorable and manageable. No DLTs were observed, no dose reductions were required, and a maximum tolerated dose (MTD) was not identified. As no DLTs or MTD was identified in the dose-escalation phase, the highest dose tested (30 mg/kg weekly) was chosen for the dose-expansion phase to ensure full target engagement and increase the likelihood of efficacy signals.

The median time on study treatment for all patients was 6.1 weeks (range: 2 to 82 weeks). Twenty-five (86%) patients completed the study; 3 (10%) discontinued treatment for reasons outlined in Supplemental Table 2.

All 29 patients experienced treatment-emergent AEs (TEAEs), which were mostly grade 1 or 2 (Table 2). The most frequently reported TEAEs were gastrointestinal events (including diarrhea, which was the most commonly reported AE overall), fatigue, decreased appetite, abdominal pain, and nausea (Table 2; Supplemental Table 3). There were no Grade 4 events. Most patients (27/29, 93%, Supplemental Table 4) experienced a treatment related adverse event (TRAE). Seven of 13 patients experienced grade 3 TRAEs. A total of 8 TRAEs were reported in seven patients: diarrhea (n=3), gamma-glutamyltransferase increased (n=2), and abdominal pain, fatigue, and anemia (n=1 each).

There were six SAEs during the study, each experienced by a single patient. Only one (Grade 2 decreased ejection fraction) was considered by the investigator as possibly related to study treatment. This patient had an ejection fraction on Day 30 that showed a 15% decrease from baseline; no overt cardiac symptoms were observed and treatment was interrupted with unknown outcome as the patient progressed and was unable to attend the follow-up visit or undergo a follow-up echocardiogram. Five patients died, four from disease progression and one from *Escherichia coli* sepsis unrelated to study drug. With the exception of this *E. coli* fatality, no other patients experienced clinically meaningful changes in laboratory parameters.
Among patients with AEs of special interest, 3 experienced infusion reactions and 10 experienced events potentially associated with allergic reactions (6 with dyspnea; 4 with rash). All were Grade 1–2 and none resulted in discontinuation of study treatment. No anti-drug antibodies were detected in any evaluable patients receiving drug. There was no obvious correlation observed between GSK2849330 dose and occurrence of AEs; however, a relationship cannot be definitively ruled out because patient numbers were low in some dose groups (Supplemental Table 4).

Pharmacokinetics
Mean plasma GSK2849330 concentrations following the first dose are shown in Figure 1. Plasma concentrations increased with increasing doses for both dose regimens and profiles were consistent with a typical IgG monoclonal antibody. Pharmacokinetic (PK) parameters are summarized in Supplemental Table 5. Briefly, median T\textsubscript{max} occurred around 2 hours after dosing across dose regimens except one patient in the 3 mg/kg weekly group whose T\textsubscript{max} was at 6 hours; geometric mean C\textsubscript{max} was 779 μg/mL (coefficient of variation 14.5 between patients) at the highest dose of 30 mg/kg weekly, with an AUC\textsubscript{0–168 h} of 54,388 h·μg/mL.

HER3 inhibition in skin tissue
Downregulation of HER3 membrane expression measured by IHC in skin biopsies was used to evaluate target engagement by GSK2849330, based on preclinical data (Supplemental Figure 2), ease of tissues access and previously reported results using skin biopsies by the first-in-human study of lumretuzumab, an anti-HER3 mAb [23]. During the dose-escalation phase of the study, evaluable paired skin biopsies for 15 patients were analyzed for changes in HER3 expression at Day 15 following first dose of GSK2849330 compared to pre-treatment baseline levels. On average, 66% downregulation (range: −3.8 to 100%; p<0.001 by Wilcoxon signed rank test) of HER3 membrane expression was observed, with a decrease in signal observed in 14/15 patients and >90% inhibition observed in 6/15 patients (Figure 2). There was no apparent association in the degree of inhibition with dose level, tumor type or clinical response.

Efficacy
Of the 29 enrolled patients with HER3-expressing cancers treated at various doses, 1 (3%) patient had a partial response, 7 (24%) had stable disease, 1 had non-complete response (CR)/non-progressive disease, 16 (55%) had progressive disease and 4 (14%) were not evaluable per RECIST 1.1 criteria (Figure 3; Supplemental Table 6). The single responder was an 86-year-old man with NSCLC, harboring a CD74-NRG1 fusion (Figure 3; Supplemental Table 6). This patient was treated with GSK2849330 at the recommended phase 2 dose of 30 mg/kg weekly followed by an optional change to every 2 weeks after 24 weeks of treatment. This confirmed partial response lasted for 1 year and 7 months. Details of this case report have been published previously [24].

The seven patients with stable disease had various HER3-expressing cancers, received a range of GSK2849330 doses, and were on treatment for an average of 11.8 weeks (range: 9.1–24.1 weeks, Figure 3). Of these seven patients, 3 were on treatment for >22 weeks (gastric tumor: 24.1 weeks, pancreatic tumor: 23.3 weeks, ovarian tumor: 22.4 weeks). Given the small numbers of patients, no discernible relationship could be determined between the response, dose and tumor type. Furthermore, we did not observe any correlation between response and level of HER3 expression, assessed by HER3 IHC H-score at baseline (Supplemental Figure 3).

Tumor microenvironment effects
To explore potential treatment-related changes in the tumor microenvironment, IHC data for tumor-associated immune cells and markers of activation (CD16, CD68, granzyme B) were available for paired tumor biopsies corresponding to 8 patients in the study. Consistent with the drug’s efficacy, of the 8 paired samples, the majority did not show any evidence of increased immune cell infiltration or activation at Day 15 following the first dose of GSK2849330 relative to pre-dose samples. However, in the patient with NRG1 fusion-positive NSCLC who achieved durable PR, there was a significant increase in CD16\textsuperscript{+} natural killer cell and CD68\textsuperscript{+} macrophage tumor infiltration, as well as granzyme B-positive immune cell tumor infiltrates (Figure 4).

Furthermore, immunophenotyping by flow cytometry analysis did not reveal any notable significant or sustained changes to peripheral immune cell populations in pre-treatment and on-treatment samples collected at various timepoints (Supplemental Table 7).

DISCUSSION
Herein we report the results of the first-in-human study of GSK2849330, an ADCC- and CDC-enhanced anti-HER3 mAb in patients with advanced solid tumor malignancies that were prospectively selected for HER3 or HER3 and NRG1 positivity. The rationale for this study design was based on maximizing clinical efficacy with multiple modes of action tested in HER3 positive preclinical models (signaling blockade, ADCC, and CDC, see summary of preclinical results in Supplemental Data and Supplemental Figure 2). Overall, GSK2849330 was associated with a favorable safety and tolerability profile. No MTD was determined and no DLTs were observed. There was no apparent relationship between GSK2849330 dose (or PK exposure) and observed AEs, recognizing that therapeutic mAbs pose challenges in discerning dose–toxicity relationships in first-in-human trials owing to their unique pharmacological properties. These include target selectivity with limited off-target activity, longer half-lives, and rare/delayed toxicities, which preclude determination of DLTs and MTD [25, 26].

The highest dose tested (30 mg/kg once-weekly, with the option to switch to every-other-week dosing after 24 weeks of treatment) was carried forward into the dose-expansion phase. The most common AE, diarrhea, is consistent with the AE profile reported for other HER2/HER3 agents [27, 28]. HER3 is expressed in normal epithelial tissues including the intestinal tract [29], and loose stools...
were observed in preclinical toxicity studies (unpublished data), suggesting an on-target effect.

To understand whether the clinical hypothesis was appropriately tested, it is important to consider whether adequate target engagement was achieved by GSK2849330. For all dose levels studied, maximum and trough plasma concentrations (Cmax ~30–779 μg/mL, Ctrough ~5–69 μg/mL) ranged from ~450 to ~70,000 times greater than the half-maximal inhibitory concentration (IC50) for blockade of HER3 signaling in vitro (0.011 μg/mL [76 pM], Supplemental Figures 2D–E). For the 30 mg/kg IV weekly dose regimen selected for expansion, the Ctrough was 188 μg/mL (Figure 1) after the first dose, indicating target coverage >9-fold above concentrations associated with anti-tumor activity in mouse xenograft models (Ctrough ~20 μg/mL). Unfortunately, there was limited evaluable data from paired tumor biopsies in this study and no conclusions could be drawn regarding target engagement in tumor tissue. However, HER3 membrane expression by IHC was available for paired skin biopsies, which served as surrogate tissue to assess target engagement. Greater than 65% average reduction of HER3 membrane expression was noted, regardless of dose tested, suggesting significant target engagement at all dose levels studied. These results were consistent with the findings reported by the first-in-human study of lumretuzumab [23].

Furthermore, in a previously published immuno-positron emission tomography (PET) imaging study [30], 89Zr-labelled GSK2849330 was administered to patients with HER3-positive advanced solid tumors, wherein modeling suggested 90% target inhibition in tumor at a dose of ~18 mg/kg. Taken together, these findings suggest that the 30 mg/kg weekly dosing that was taken forward into dose expansion cohorts in the study achieved full target engagement in tumor tissue.

Patients with HER3 positive tumors were enrolled in this study with the intent of maximizing potential response to GSK2849330 as higher HER3 expression was related to higher ADCC and CDC activity of GSK2849330 in preclinical studies [20]. However, limited anti-tumor activity was observed in this study, comprising 1 partial response and 7 stable disease responses. There was no apparent relationship between tumor lesion changes and pre-treatment HER3 expression (Supplemental Figure 3). Furthermore, for most of the patients, no sustained or significant increases in relevant immune cell populations or effector function were observed in available tumor biopsy (Figure 2) and peripheral flow cytometry data (Supplemental Table 7). Collectively, these data suggest that HER3 expression alone was insufficient to confer tumor sensitivity to GSK2849330 in most patients.

These results are consistent with studies of other anti-HER3 mAbs, which have been assessed in clinical trials across a range of tumor types and been found to be tolerable, but with limited monotherapy efficacy. They generally do not elicit dramatic objective responses, but have been associated with stable disease or disease control, as demonstrated by seribantumab (MM-121) [31], patritumab (U3-1287) [32], lumretuzumab [23], KTN3379 [33], LJM716 [34, 35], and AV-203 [36], in patients with advanced solid tumors.

Notably, the only partial response in the present study was also in a patient with NSCLC of the invasive mucinous adenocarcinoma (IMA) subtype, harboring a CD74-NRG1 fusion, with a prolonged response lasting 19 months (described in detail in [24]). Even though clinical responses to GSK2849330 were limited to this one patient, it is noteworthy that we have observed profound anti-tumor activity by way of durable tumor regressions and substantial PD effects in multiple patient-derived models, harboring other NRG1 fusions and constitutive activation/dependence on the pathway [37, 38]. Furthermore, this patient expressed HER3 levels comparable to or even lower than non-responders, and was the only case where GSK2849330 elicited a robust immune response in paired tumor biopsy data, particularly increased CD16 tumor infiltrating cells, suggesting ADCC activity. Whether NRG1 fusions lead to HER3 receptor clustering and thereby invoke ADCC by GSK2849330 or trigger immunogenic cell death mediated by cytotoxicity of GSK2849330 in this context is unclear and could be explored in future investigations.

NRG1 fusions have been observed in 27–31% of patients with IMA [24] and at a low frequency in multiple tumor types, especially lung and pancreatic cancers [24, 39-41]. These rearrangements drive pathway activation and dependence on HER3 signaling, thus conferring sensitivity to HER3 inhibition. This is supported by emerging data from trials with MCLA-128, a HER2/HER3 bispecific mAb, where 3 patients with NRG1 fusion-positive cancers exhibited tumor shrinkage [42, 43]. Notably, NRG1 overexpression alone does not appear to confer sensitivity to anti-HER3 mAbs, such as the failure of MM-121/seribantumab to improve progression-free survival in a randomized phase II study in herregulin-positive NSCLC patients [44]. This is consistent with the lack of response observed in the other NRG1-positive patient in our study, who did not carry the fusion and progressed rapidly. Collectively, these data suggest that the genetic alterations of NRG1 fusions are a driver of disease and may be associated with greater likelihood to respond to anti-HER3 agents as monotherapy. This hypothesis is currently being tested in several basket trials (NCT04383210, NCT04100694, NCT02912949, NCT03805841) in NRG1-rearranged cancers.

This study had limitations in fully evaluating the activity of GSK2849330. First, relatively few patients (n=9) were enrolled in the dose-expansion cohort at the 30 mg/kg weekly IV dose and a majority of them (6/9) were patients with aggressive gastric/gastroesophageal junction tumors. Therefore, the potential clinical benefit of this agent in other settings was not fully explored. However, the totality of evidence from other trials has suggested limited anti-tumor activity of anti-HER3 mAbs as monotherapy in unselected populations studied to date, implying that patient-selection and/or combination strategies may be required for clinical benefit. Second, there was limited testing of alternative dosing regimens, such as every-other-week dosing, which may have offered greater convenience and flexibility while still achieving high target coverage; data generated in this study and from a prior immunoPET study [30] of GSK2849330 suggests a dose of 30 mg/kg every 2 weeks is likely to provide adequate target coverage.
However, there were no results available to inform dose selection for the expansion phase of the current trial due to contemporaneous conduct of the immunoPET study. Third, only two patients with NRG1-positive NSCLC were enrolled, of whom only one harbored an NRG1 fusion and turned out to have a durable partial response, while the other patient whose cancer did not harbor an NRG1 fusion progressed rapidly. While this response has been intriguing, additional data would be required to fully characterize the activity of GSK2849330 in NRG1-fusion positive tumors. Lastly, the limited response and lack of sufficient evaluable samples precluded the assessment of PD, HER3 pathway markers, immune effects on the tumor microenvironment, and other potential predictive biomarkers of response to GSK2849330 monotherapy or combination therapy.

CONCLUSION
GSK2849330 was well tolerated up to a dose of 30 mg/kg once-weekly with evidence of adequate exposure and target engagement. Limited efficacy was observed as monotherapy in patients with HER3-positive solid tumors; however, a durable response noted in a patient with CD74-NRG1 fusion-positive NSCLC suggests screening of NRG1 fusions as a patient selection strategy to enhance anti-tumor activity by GSK2849330. As these genomic alterations are reported at a low frequency across multiple tumor types, including NSCLC and pancreatic adenocarcinoma [24, 39-41], several basket trials investigating the clinical utility of anti-HER3 agents in NRG1-rearranged cancers are currently underway (NCT04383210, NCT04100694, NCT02912949, NCT03805841).

REFERENCES
1. Sierke SL, Cheng K, Kim HH, et al. Biochemical characterization of the protein tyrosine kinase homology domain of the erb3 (her3) receptor protein. Biochem J 1997;322:757-763.
2. van Lengerich B, Agnew C, Puchner EM, et al. Egif and nrg induce phosphorylation of her3/erb3 by egfr using distinct oligomeric mechanisms. Proceedings of the National Academy of Sciences of the United States of America 2017;114:E2836-e2845.
3. Wallasch C, Weiss FU, Niederfellner G, et al. Hergulins-dependent regulation of her2/neu oncogenic signaling by heterodimerization with her3. EMBO J 1995;14:4267-4275.
4. Wieduwilt MJ and Moasser MM. The epidermal growth factor receptor family: Biology driven targeted therapeutics. Cell Mol Life Sci 2008;mal growth factor receptor family: Biology driving her3. EMBO J 1995;14:4267-4275.
5. Olayioye MA, Neve RM, Lane HA, et al. The potential of anti-HER3 mAb therapy in HER3+ solid tumors6
6. Yun S, Koh J, Nam SK, et al. Clinical significance of overexpression of nrg1 and its receptors, her3 and her4, in gastric cancer patients. Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association 2018;21:225-236.
7. O'Conner-Jones PhD of Fishawack Indicia Ltd, UK, and was funded by GSK.

ACKNOWLEDGEMENTS
We would like to thank all our patients, their families and site staff for their participation and contributions to this study. We also acknowledge BioWa, Inc. (US subsidiary of Kyowa Hakko Kirin Co., Ltd.) for their POTELLIGENT Technology and COMPLEGENT Technology in developing GSK2849330, an ADCC- and CDC-enhanced anti-ERBB3 mAb. Medical writing support was provided by Leigh O'Connor-Jones PhD of Fishawack Indicia Ltd, UK, and was funded by GSK.

AUTHOR CONTRIBUTIONS
Conception or design: GG, CE, CM, BH
Providing study material or patients: HG, MM, MJ, IGL, JL, JS, ML, AD
Collection and/or assembling data: HG, MM, MJ, IGL, JL, JS, ML, CVH, BH, LT, ROC-S, BG, GG, CE, CM, AD
All authors contributed to the writing of the manuscript. All authors approved the final version of the manuscript prior to submission.

DATA SHARING STATEMENT
Anonymized individual participant data and study documents can be requested for further research from www.clinicalstudydatarequest.com.

© 2021 AlphaMed Press
22. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumors: Revised recist guideline (version 1.1). European journal of cancer (Oxford, England : 1990) 2009;45:228-247.
23. Meulendijks D, Jacob W, Martinez-Garcia M, et al. First-in-human phase i study of lumetuzumab, a glycoengineered humanized anti-her3 monoclonal antibody, in patients with metastatic or advanced her3-positive solid tumors. Clinical cancer research: an official journal of the American Association for Cancer Research 2016;22:877-885.
24. Drilon A, Somwar R, Mangatt BP, et al. Response to erb3-directed targeted therapy in nrg1-rearranged cancers. Cancer Discov 2018;8:686-695.
25. Tang Y, Li X, Cao Y. Quantitatively modeling factors that influence the therapeutic doses of antibodies. bioRxiv 2020: 2020.2005.2008.084095.
26. Tosi D, Laghzali Y, Vinches M, et al. Clinical development strategies and outcomes in first-in-human trials of monoclonal antibodies. J Clin Oncol 2015;33:2158-2165.
27. Moisan A, Michelin F, Jacob W, et al. Mechanistic investigations of diarrhoea toxicity induced by anti-her2/3 combination therapy. Mol Cancer Ther 2018;17:1464-1474.
28. Swain SM, Schneeweiss A, Gianni L, et al. Incidence and management of diarrhoea in patients with her2-positive breast cancer treated with pertuzumab. Ann Oncol 2017;28:761-768.
29. Prigent SA, Lemoine NR, Hughes CM, et al. Expression of the c-erbB-3 protein in normal human adult and fetal tissues. Oncogene 1992;7:1273-1278.
30. Menke-van der Houven van Oordt CW, McGeach A, Bergstrom M, et al. Immuno-pet imaging to assess target engagement: Experience from [89]zntr-anti-her3 mab (gsk2849330) in patients with solid tumors. J Nucl Med 2019;60:902-909.
31. Lugovsky A, Curley M, Lahdenranta J, et al.: Her3. In: Marshall JL ed Cancer therapeutic strategies for Cancer Research 2016;2019:1-19.
32. Lo Russo P, Janne PA, Oliveira M, et al. Phase i study of u3-1287, a fully human anti-her3 monoclonal antibody, in patients with advanced solid tumors. Clinical cancer research: an official journal of the American Association for Cancer Research 2013;19:3078-3087.
33. Bauer TM, Infante JR, Eder JP, et al. A phase 1, open-label study to evaluate the safety and pharmacokinetics of the antierbb3 antibody, ktn3379, alone or in combination with targeted therapies in patients with advanced tumors. J Clin Oncol 2015;33(15 Suppl):2598.
34. Reynolds KL, Bedard PL, Lee SH, et al. A phase i open-label dose-escalation study of the anti-her3 monoclonal antibody lj716 in patients with advanced squamous cell carcinoma of the esophagus or head and neck and her2-overexpressing breast or gastric cancer. BMC Cancer 2017;17:646.
35. Cortés J, Fumoleau P, Bianchi GV, et al. Pertuzumab monotherapy after trastuzumab-based treatment and subsequent reintroduction of trastuzumab: Activity and tolerability in patients with advanced human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 2012;30:1504-1600.
36. Sarantopoulos J, Gordon MS, Harvey RD, et al. First-in-human phase 1 dose-escalation study of av-203, a monoclonal antibody against erb3b, in patients with metastatic or advanced solid tumors. J Clin Oncol 2014;32:11113.

See http://www.TheOncologist.com for supplemental material available online.
Table 1. Summary of patient demographics and baseline characteristics (All-Treated Population)

| Parameter | Total Population (N=29) |
|-----------|-------------------------|
| Sex, n (%) |                         |
| Female    | 13 (45)                 |
| Male      | 16 (55)                 |
| Age, years, median (range) | 63 (31–86) |
| Race, n (%) |                         |
| Asian     | 1 (3)                   |
| White     | 28 (97)                 |
| ECOG performance status, n (%) |         |
| 0         | 14 (48)                 |
| 1         | 15 (52)                 |
| Primary tumor type, n (%) |         |
| Gastric/gastroesophageal junction adenocarcinoma | 8 (28) |
| Colorectal carcinoma | 7 (24) |
| Ovarian carcinoma | 4 (14) |
| Melanoma   | 3 (10)                  |
| Non-small-cell lung cancer | 3 (10) |
| Bladder carcinoma | 1 (3) |
| Breast carcinoma | 1 (3) |
| Head and neck squamous-cell carcinoma | 1 (3) |
| Pancreatic carcinoma |         |
| HER3 status by IHC, n (%) | 29 (100) |
| Positive* |                         |
| NRG1 status, n (%) | 2 (7) |
| Positive† | 27 (93)                 |
| Not assessed |                     |
| Number of lines of previous anti-cancer therapy, n (%) |         |
| 1         | 9 (31)                  |
| 2         | 15 (52)                 |
| 3         | 3 (10)                  |
| 4         | 2 (7)                   |

*IHC 2+ or 3+ (dose-escalation cohort); IHC3+ for gastric cancer and melanoma, and IHC ≥1+ for head and neck squamous-cell carcinoma and non-small-cell lung cancer (dose-expansion cohort).
†Assessed by RT-PCR in only a subset of patients in dose expansion per study inclusion criteria. One patient harbored a CD74-NRG1 fusion based on MSK-IMPACT assay performed at Memorial Sloan Kettering Cancer Center [24].
ECOG, Eastern Cooperative Oncology Group; IHC, immunohistochemistry; NRG1, neuregulin 1; RT-PCR, reverse transcriptase polymerase chain reaction.
Table 2. Treatment-emergent Grade 1–3 adverse events reported in ≥15% of patients (All-Treated Population)

| Preferred term, n (%) | Grade 1 | Grade 2 | Grade 3 | Total(N=29) |
|-----------------------|---------|---------|---------|-------------|
| Patients with any event |         |         |         | 29 (100)   |
| Diarrhea              | 16 (55) | 0       | 3 (10)  | 19 (66)     |
| Fatigue               | 5 (17)  | 12 (41) | 1 (3)   | 18 (62)     |
| Decreased appetite    | 3 (10)  | 6 (21)  | 0       | 9 (31)      |
| Abdominal pain        | 2 (7)   | 3 (10)  | 2 (7)   | 7 (24)      |
| Nausea                | 4 (14)  | 2 (7)   | 1 (3)   | 7 (24)      |
| Dyspnea               | 4 (14)  | 2 (7)   | 0       | 6 (21)      |
| Headache              | 5 (17)  | 1 (3)   | 0       | 6 (21)      |
| Vomiting              | 6 (21)  | 0       | 0       | 6 (21)      |
| Back pain             | 1 (3)   | 4 (14)  | 0       | 5 (17)      |
| GGT increased         | 0       | 1 (3)   | 4 (14)  | 5 (17)      |
| Myalgia               | 3 (10)  | 2 (7)   | 0       | 5 (17)      |

Adverse events were MedDRA-coded preferred terms and graded according to CTCAE, Version 4.0.
Note: There were no Grade 4 events and one Grade 5 event (E. coli sepsis resulting in death; not considered drug-related) reported.
CTCAE, Common Terminology Criteria for Adverse Events; GGT, gamma-glutamyl transferase; MedDRA, Medical Dictionary for Regulatory Activities.
Figure 1. Pharmacokinetic profiles following the first dose of GSK2849330. Plasma concentration-time graphs for (A) weekly dosing regimen over Days 1–8 following the first dose, and (B) every 2-week dosing regimen over Days 1–15 following the first dose are shown. Preclinical mouse xenograft efficacy studies showed that anti-tumor efficacy may be achieved with systemic plasma trough concentrations ≥20 μg/mL (dashed line).
Figure 2. PD effects of GSK2849330 in skin biopsies by IHC. Figure shows percentage change in HER3 expression levels in paired skin biopsies at Day 15 following first dose of treatment relative to baseline in the dose-escalation phase of the study (n=15). Skin biopsies were not taken for the patient with NRG1 fusion-positive NSCLC who achieved durable PR. Each bar represents 1 patient. IHC, immunohistochemistry; NSCLC, non-small cell lung cancer; PD, pharmacodynamics; PR, partial response.
Figure 3. Overall anti-tumor activity of GSK2849330 based on objective response (per RECIST v1.1) and duration of treatment. (A) Waterfall plot showing maximum percentage change from baseline in the sum of the longest diameters of target lesions. (B) Swimmer plot showing the length of treatment duration of patients grouped by tumor type across all doses of GSK2849330. The best confirmed responses (per RECIST) are annotated for each patient in these plots. The red outlined bars indicate NRG1-positive patients (n = 2) who were assessed by RT-PCR and enrolled per study inclusion criteria. CR, complete response; GE, gastro-esophageal; NRG1, neuregulin 1; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; RT-PCR, reverse transcriptase polymerase chain reaction; SD, stable disease.
Figure 4. Tumor micorenvironment effects of GSK2849330 in tumor tissues by IHC. Figure shows percentage change in CD16, CD68, and granzyme B in all evaluable paired tumor biopsies at Day 15 following first dose of treatment relative to baseline (n=8). Each bar represents 1 patient. IHC, immunohistochemistry.