G-COLORINGS OF POSETS, COVERING MAPS AND COMPUTATION OF LOW-DIMENSIONAL HOMOTOPY GROUPS

JONATHAN ARIEL BARMAK AND ELIAS GABRIEL MINIAN

Abstract. We introduce the notion of a coloring of a poset, which consists of a labeling of the edges in its Hasse diagram by elements in a given group G. We use G-colorings to study covering maps of posets and, consequently, to describe combinatorially the regular coverings of polyhedra. We obtain in this way concrete presentations of their fundamental group, different and more suitable than the characterization given by edge-paths. We also use G-colorings to handle and compute the homology of regular coverings and the second homotopy group of CW-complexes and posets. As applications, we obtain explicit formulae, based on colorings, for the computation of π_2 of two-dimensional complexes, we prove a generalization of Hurewicz theorem, relating the homotopy and homology of non-necessarily simply-connected complexes, and derive results on asphericity for two-dimensional complexes and group presentations.

1. Introduction

This paper deals with basic concepts of algebraic topology, such as covering maps, fundamental group, homology of coverings, π_2 and asphericity, and it is mainly based on the following simple idea. Instead of working with simplicial coverings of polyhedra, one can regard regular CW-complexes as posets (the posets of their cells), or equivalently, as A-spaces, and work with coverings of posets. The advantage of using poset coverings is that they can be handled combinatorially in a different and more tractable way than their simplicial analogues. This allows us to develop new methods and tools, which are based on the interaction between the topology and the combinatorics of posets, to study and compute classical invariants of CW-complexes, such as the low-dimensional homotopy groups. We prove for instance a generalization of van Kampen’s theorem, which describes the fundamental group of a regular CW-complex K in terms of the fundamental group of each part in a “discrete decomposition” of K (neither of these parts is necessarily an open or closed subspace of K). We also present a generalization of Hurewicz theorem for non-necessarily simply-connected complexes, and obtain new results on asphericity of 2-complexes and group presentations à la Reidemeister.

The classical edge-path group $\mathcal{E}(K,v_0)$ of a simplicial complex K describes combinatorially the fundamental group of K in terms of paths in its 1-skeleton. This concept can be translated into the context of posets resulting in a description of $\pi_1(X,x_0)$ by edge-paths in the Hasse diagram of the poset X. In this article we use such a description just as a starting point. We introduce the notion of a coloring of a poset, which is a labeling $E(X) \to G$ of the edges in the Hasse diagram of X by elements in a given group G, and use G-colorings to study covering maps. As a consequence we obtain a concrete...
presentation of the fundamental group of \(X \), more suitable than the description given by edge-paths. Our classification of coverings in terms of \(G \)-colorings provides a new insight into the theory of coverings of polyhedra and it is the key point in this theory.

There is a well-known and close relationship between the homotopy theory of polyhedra and partially ordered sets. To each simplicial complex \(K \) one can associate the face poset \(\mathcal{X}(K) \) and for each poset \(X \) one can construct the order complex \(\mathcal{K}(X) \). The combinatorics of posets can be used to study topological properties of complexes by means of these two functors. Examples of this interaction are Quillen’s work on the poset of \(p \)-subgroups of a finite group \([20]\) and Chari’s approach to Forman’s discrete Morse theory \([9, 10]\) (see also \([14, 18]\)). In the same direction, the interplay between the combinatorics of posets and the topology of polyhedra has been used in \([4]\) to investigate simple homotopy types of complexes and in \([2]\) to give an alternative proof and applications of Quillen’s Theorem A for posets. Any poset can be seen as a topological space, more precisely as an Alexandroff space (or \(A \)-space for short), without necessity of using the functors \(\mathcal{X} \) and \(\mathcal{K} \): the open sets of \(X \) are its order ideals. McCord proved that the topology of such spaces is closely related to the topology of their associated complexes \(\mathcal{K}(X) \). Concretely, there is weak equivalence \(\mathcal{K}(X) \to X \) and in particular these two spaces have the same homology and homotopy groups \([16]\). In the Appendix we prove that the functors \(\mathcal{X} \) and \(\mathcal{K} \) induce a one-to-one correspondence between equivalence classes of coverings of posets and equivalence classes of coverings of simplicial complexes. A poset can also be regarded as a category with at most one morphism between any two objects (the order complex \(\mathcal{K}(X) \) is just the classifying space of the category \(X \)). This provides an alternative way to understand the connection between topological and combinatorial properties. We study coverings of posets viewed as \(A \)-spaces and as categories, and show that the topological notion of covering coincides with the categorical one. The notion of covering of a category that we use extends the classical notion of a groupoid covering (see \([8, 11, 15]\)) and it is the analogue to the definition of a covering of a \(k \)-category \([7]\). These results are presented in the Appendix as well.

In section \(3 \) we characterize regular coverings of posets in terms of colorings. The class of admissible and connected \(G \)-colorings plays an important role in this theory. These colorings classify the normal subgroups of the fundamental group of the poset whose quotients are isomorphic to \(G \). Concretely, we prove the following result.

Theorem 3.3. Let \(X \) be a connected locally finite poset, \(x_0 \in X \) and \(G \) a group. There exists a correspondence between the set of equivalence classes of admissible connected \(G \)-colorings of \(X \) and the set of normal subgroups \(N \triangleleft \pi_1(X, x_0) \) such that \(\pi_1(X, x_0)/N \) is isomorphic to \(G \).

In particular there is a direct connection between \(G \)-colorings of \(X \) and equivalence classes of regular coverings of \(X \) with deck transformation group isomorphic to \(G \). In Theorem \(3.6 \) we give the explicit construction of the corresponding covering.

In Section \(4 \) we use the characterization of coverings in terms of colorings to find an alternative description of the fundamental group of posets (and of simplicial complexes). We exhibit various examples and applications of this new characterization. For instance, we deduce the generalization of van Kampen’s theorem mentioned above (Theorem \(4.10 \)). We also characterize, in terms of colorings, the posets with abelian fundamental group.

In Section \(5 \) we use colorings to study maps between the fundamental groups. In Section \(6 \) we use our characterization of regular coverings in terms of colorings and the description
of the fundamental group obtained in Section 4 together with a result of [18], to compute the homology of coverings using colorings. As a consequence we obtain a novel description of the second homotopy group \(\pi_2(X) \) of any cellular poset \(X \). The class of cellular posets includes for example all posets whose associated simplicial complexes \(K(X) \) are closed homological manifolds and it also includes the face posets of regular CW-complexes. In particular we obtain an alternative description of \(\pi_2 \) of any complex. We concentrate then on posets of height 2 (corresponding to two-dimensional CW-complexes). For these posets the description of \(\pi_2 \) is easier to handle and we exhibit explicit formulae for its computation. We show various examples to illustrate our methods. To put our results in perspective, one should recall that it is an open problem, originally posted by Whitehead, whether any subcomplex of an aspherical 2-dimensional CW-complex is itself aspherical (a connected 2-complex \(K \) is aspherical if \(\pi_2(K) = 0 \)). We refer the reader to [6, 13, 25] for more details on Whitehead’s asphericity question. Applying these methods, we obtain a formula for the second homotopy group of a wedge and a generalization of the classical Hurewicz theorem for dimension two. Concretely we prove the following

Corollary 6.6. Let \(X \) be a connected cellular poset of height 2 and let \(D \) be the graph consisting of the edges between the points of height 1 and 2 (and the vertices of these edges). If the inclusion of each component of \(D \) in \(X \) induces the trivial map on fundamental groups, then \(\pi_2(X) \) is a free \(\mathbb{Z}[\pi_1(X)] \)-module with the same rank as the free \(\mathbb{Z} \)-module \(H_2(X) \).

When \(X \) is simply-connected, this is the Hurewicz theorem for dimension 2. Since the class of cellular posets includes the face posets of regular CW-complexes, this result can be restated in terms of complexes (see Corollary 6.7) and has a generalization to any dimension:

Corollary 6.8. Let \(K \) be a connected regular CW-complex. If every closed edge-path of the barycentric subdivision \(K' \) containing only vertices which are barycenters of 1, 2 or 3-dimensional simplices, is equivalent to the trivial edge-path, then \(\pi_2(K) = \mathbb{Z}[\pi_1(K)] \otimes H_2(K) \).

We also derive a result which provides sufficient conditions for a two-dimensional CW-complex to be aspherical.

Theorem 6.10. Let \(K \) be a 2-dimensional regular CW-complex and let \(K' \) be its barycentric subdivision. Consider the full (one-dimensional) subcomplex \(L \subseteq K' \) spanned by the barycenters of the 2-cells of \(K \) and the barycenters of the 1-cells which are faces of exactly two 2-cells. Suppose that for every connected component \(M \) of \(L \), \(i_*(\pi_1(M)) \leq \pi_1(K') \) contains an element of infinite order, where \(i_* : \pi_1(M) \to \pi_1(K') \) is the map induced by the inclusion. Then \(K \) is aspherical.

This result generalizes the well-known fact that all compact surfaces different from \(S^2 \) and \(\mathbb{R}P^2 \) are aspherical. As a corollary we obtain a result which provides sufficient conditions for asphericity of group presentations, resembling in some sense the homological description of \(\pi_2 \) in terms of Reidemeister chains.

In the last section of the paper we consider a combinatorial problem related with boards on surfaces.
2. Preliminaries

In this section we recall the basic notions on A-spaces, their relationship with posets and simplicial complexes, and the description of their fundamental group in terms of edge-paths. For more details we refer the reader to [11, 3, 16, 23].

A preorder is a set with a reflexive and transitive relation. Such a set is a poset if the relation is also antisymmetric. An A-space is a topological space in which arbitrary intersections of open sets are open. Finite topological spaces and, more generally, locally finite spaces, are examples of A-spaces. A locally finite space is a topological space in which every point has a finite neighborhood. There is a natural correspondence between A-spaces and preorders. Given an A-space X, for each point x in X let U_x be the intersection of all the open sets containing x. This is the smallest open set which contains x. The preorder associated to the A-space X has the same underlying set and the relation is given by $x \leq y$ if $x \in U_y$. Conversely, given a preorder \leq on a set X, the topology corresponding to this relation is the one generated by the subsets $U_x = \{y \in X \mid y \leq x\}$, for every $x \in X$. A function between A-spaces is continuous if and only if it is order-preserving. Note that if X is an A-space, $\{U_x\}_{x \in X}$ is a basis for the topology. Any A-space is locally contractible since the sets U_x are contractible. It is easy to see that there is a homotopy which is the identity for $t < 1$ and it is the constant x for $t = 1$. In particular, any A-space has a universal cover. Given an A-space X, the closed sets of X form another topology on the underlying set of X, called the opposite topology. The preorder associated to this topology is the opposite order of X. This space is denoted by X^{op}. Note that a map $f : X \rightarrow Y$ between A-spaces is continuous if and only if the induced map $f^{op} : X^{op} \rightarrow Y^{op}$, which coincides with f in the underlying sets, is continuous. If X is an A-space, the closure of a point x in X is denoted by F_x. Note that $F^X_x = \{y \in X, x \leq y\} = (U^{X^{op}}_x)^{op}$. The notations F^X_x and U^{X}_x will be used when we need to emphasize the space X where these subsets are considered. The star of a point x in an A-space X is $C_x = U_x \cup F_x$. We denote respectively \bar{U}_x, \bar{F}_x and \bar{C}_x the reduced sets $U_x \setminus \{x\}$, $F_x \setminus \{x\}$ and $C_x \setminus \{x\}$.

Recall that a topological space X is said to be T_0 if for any two points $x, y \in X$ there is an open set which contains one and only one of them. This is the unique separation axiom that we will work with. Note that if an A-space is T_1 (i.e. if each point is closed), then it is discrete. It is not hard to prove that an A-space is T_0 if and only if the corresponding preorder is a poset.

A finite T_0-space is a finite poset. A locally finite T_0-space is a locally finite poset, i.e. a poset such that for every element x there are only finitely many elements smaller than x. The Hasse diagram of a locally finite T_0-space X is the digraph whose vertices are the points of X and whose edges are the pairs (x, y) such that $x < y$. Here $x < y$ means that x is covered by y, i.e. $x < y$ and there is no $z \in X$ such that $x < z < y$. In the graphical representation of the Hasse diagram, instead of drawing the edge (x, y) with an arrow, we simply put y over x (see for example Figure [1]). Note that a map $f : X \rightarrow Y$ between locally finite T_0-spaces is continuous if and only if $x < x'$ implies $f(x) \leq f(x')$.

In contrast to the case of finite simplicial complexes, it is easy to decide whether two finite spaces are homotopy equivalent or not. The combinatorial description of the homotopy types of finite spaces is due to Stong [23]. Given a finite T_0-space X, a point $x \in X$ is called a beat point if it covers a unique element or if it is covered by a unique element. It follows immediately from Stong’s ideas that a finite T_0-space is contractible if and only if it is possible to remove beat points one by one from X to obtain the space of one point \ast.
Moreover, removing a beat point x from a finite T_0-space X produces a subspace $X \setminus \{x\}$ homotopy equivalent to X. Concretely, one has the following

Proposition 2.1. (Stong [23 Theorem 2]) If x is a beat point of a finite T_0-space X, $X \setminus \{x\}$ is a strong deformation retract of X.

In particular, if X is contractible and we remove beat points x_1, x_2, \ldots, x_n, one by one, the subspace Y obtained in this way is also contractible, so we can continue removing beat points to obtain the singleton. Contractible finite T_0-spaces correspond to dismantlable posets.

The order complex $\mathcal{K}(X)$ of a T_0-A-space X is the simplicial complex whose simplices are the non-empty finite chains of X. The polyhedron $\mathcal{K}(X)$ and the A-space X do not have in general the same homotopy type, however they do have isomorphic homotopy and homology groups. Moreover, McCord proved [16] that there exists a weak homotopy equivalence $\mu_X : \mathcal{K}(X) \to X$ (i.e. a continuous map which induces isomorphisms in all the homotopy groups). A continuous map $f : X \to Y$ between T_0-A-spaces has an associated simplicial map $\mathcal{K}(f) : \mathcal{K}(X) \to \mathcal{K}(Y)$ such that $\mathcal{K}(f)\mu_X = \mu_Y f$. In the other direction, if K is a simplicial complex, or more generally a regular CW-complex, the face poset $\mathcal{X}(K)$ is the T_0-A-space which corresponds to the poset of cells of K ordered by inclusion. In this case there exists a weak homotopy equivalence $K \to \mathcal{X}(K)$.

It is well-known that the fundamental group of a simplicial complex can be described by means of the edge-path group (see [22 Section 3.6] for more details). The fundamental group of a locally finite T_0-space can be described in a similar way. This was developed in [3] for finite T_0-spaces, but it extends straightforwardly to locally finite T_0-spaces. Let X be a locally finite T_0-space. The set of edges of the Hasse diagram of X will be denoted by $E(X)$, an edge-path from x to y in X is a sequence $(x_0, x_1)(x_1, x_2)\ldots(x_{n-1}, x_n)$ of ordered pairs such that $(x_i, x_{i+1}) \in E(X)$ or $(x_{i+1}, x_i) \in E(X)$ for every $0 \leq i < n$ and such that $x_0 = x$, $x_n = y$. Note that since X is locally finite, the following statements are equivalent: (1) X is a connected topological space, (2) X is path-connected and (3) for any two points $x, y \in X$ there exists an edge-path from x to y. Of course, an edge-path ξ from x to y and an edge-path ξ' from y to z can be concatenated to form an edge-path $\xi\xi'$ from x to z. The inverse of an edge-path $\xi = (x_0, x_1)(x_1, x_2)\ldots(x_{n-1}, x_n)$ is defined as $\xi^{-1} = (x_n, x_{n-1})(x_{n-1}, x_{n-2})\ldots(x_1, x_0)$. An edge-path $(x_0, x_1)(x_1, x_2)\ldots(x_{n-1}, x_n)$ is monotonic if $(x_i, x_{i+1}) \in E(X)$ for all i or if $(x_{i+1}, x_i) \in E(X)$ for all i. When the concatenations $\xi = \xi_1\xi_2\xi_3\xi_4$ and $\xi' = \xi_1\xi_4$ are well-defined, ξ and ξ' are said to be elementary equivalent if ξ_2 and ξ_3 are monotonic. This relation generates an equivalence relation of edge-paths from x to y. The class of an edge-path ξ from x to y is denoted by $[\xi]$. Given $x_0 \in X$ we denote by $\mathcal{H}(X, x_0)$ the group whose elements are the classes of closed edge-paths at x_0, i.e. the edge-paths from x_0 to x_0, and the product is defined by $[\xi][\xi'] = [\xi\xi']$. Note that this is well defined and the identity $[\cdot]$ is the class of the empty edge-path. The inverse $[\xi]^{-1}$ of $[\xi]$ is $[\xi^{-1}]$.

Note that if $[\xi]$ and $[\xi']$ are two monotonic edge-paths from x to y, ξ_1 is an edge-path from x_0 to x and ξ_2 is an edge-path from y to x_0 then $[\xi_1\xi_2] = [\xi_1\xi_2']$.

The group $\mathcal{H}(X, x_0)$ and the edge-path group $\mathcal{E}(\mathcal{K}(X), x_0)$ of the simplicial complex $\mathcal{K}(X)$ are isomorphic. The isomorphism $\phi_X : \mathcal{H}(X, x_0) \to \mathcal{E}(\mathcal{K}(X), x_0)$ is defined in [3] (see also [1 pp.24]). An explicit isomorphism $\epsilon_X : \mathcal{E}(\mathcal{K}(X), x_0) \to \pi_1(\mathcal{K}(X), x_0)$ is described in [22 pp.136]. In particular $\mathcal{H}(X, x_0)$ is isomorphic to $\pi_1(X, x_0)$ via the isomorphism $\eta_X = (\mu_X)_*\epsilon_X \phi_X : \mathcal{H}(X, x_0) \to \pi_1(X, x_0)$. Concretely $\pi_1(X, x_0)$ is isomorphic to the set
of closed edge-paths at \(x_0 \) where two closed edge-paths are equivalent if we can obtain one from the other by replacing a monotonic sub-edge-path by another monotonic edge-path with the same origin and end and where the inverse of an edge-path is given by the edge-path in the opposite direction.

The application \(\mathcal{H} \) is functorial. If \(f : X \to Y \) is a continuous map between locally finite \(T_0 \)-spaces and \(\xi = (x_0, x_1)(x_1, x_2) \ldots (x_{n-1}, x_n) \) is a closed edge-path at \(x_0 \) in \(X \), there is a closed edge-path \(\xi' \) at \(f(x_0) \) in \(Y \) which is obtained by concatenation of monotonic edge-paths from \(f(x_i) \) to \(f(x_{i+1}) \) for every \(i \). We define \(\mathcal{H}(f)([\xi]) = f_*(\xi) = [\xi'] \). It is easy to check that \(f_* = \mathcal{H}(f) : \mathcal{H}(X, x_0) \to \mathcal{H}(Y, f(x_0)) \) is a well defined homomorphism. Moreover, the application \(\phi \) above is a natural isomorphism between \(\mathcal{H} \) and \(\mathcal{E} K \). In particular we have the following

Remark 2.2. Let \(f : X \to Y \) be a continuous map between locally finite \(T_0 \)-spaces. Then there is a commutative diagram where the horizontal arrows are isomorphisms

\[
\begin{array}{cccc}
\mathcal{H}(X, x_0) & \overset{\phi_X}{\longrightarrow} & \mathcal{E}(K(X), x_0) & \overset{\epsilon_X}{\longrightarrow} & \pi_1(K(X), x_0) & \overset{(\mu_X)_*}{\longrightarrow} & \pi_1(X, x_0) \\
\downarrow f_* & & \downarrow \kappa(f)_* & & \downarrow \pi_1(K(X), x_0) & & \downarrow f_* \\
\mathcal{H}(Y, f(x_0)) & \overset{\phi_Y}{\longrightarrow} & \mathcal{E}(K(Y), f(x_0)) & \overset{\epsilon_Y}{\longrightarrow} & \pi_1(K(Y), f(x_0)) & \overset{(\mu_Y)_*}{\longrightarrow} & \pi_1(Y, f(x_0)).
\end{array}
\]

If \(B \) is locally finite and \(p : E \to B \) is a covering, then \(E \) is also locally finite. In particular if \(b_0 \in B \) and \(e_0 \in p^{-1}(b_0) \), the fundamental groups of \(E \) and \(B \) can be described with the groups \(\mathcal{H}(E, e_0) \) and \(\mathcal{H}(B, b_0) \). In this case the map \(p_* : \mathcal{H}(E, e_0) \to \mathcal{H}(B, b_0) \) is easy to describe. If \(\xi = (e_1, e_2)(e_2, e_3) \ldots (e_{r-1}, e_r) \) is an edge-path in \(E \), then \(p_*(\xi) = (p(e_1), p(e_2))(p(e_2), p(e_3)) \ldots (p(e_{r-1}), p(e_r)) \) is also an edge-path in \(Y \). The covering \(p \) maps edges to edges since \(p|U_e : U_e \to U_{p(e)} \) (also \(p|F_e : F_e \to F_{p(e)} \)) is a homeomorphism for every \(e \in E \) (see Remark A.10 in the Appendix). The homomorphism \(p_* : \mathcal{H}(E, e_0) \to \mathcal{H}(B, b_0) \) is given by \(p_*([\xi]) = [p_*(\xi)] \). Given an edge-path \(\xi \) in \(B \) starting in \(b_0 \), there exists a unique edge-path \(\tilde{\xi} \) in \(E \) starting in \(e_0 \) such that \(p_*(\tilde{\xi}) = \xi \). If \(\xi \) and \(\xi' \) are two equivalent edge-paths from \(b_0 \) to a point \(b_1 \), then it is clear that both lifts \(\tilde{\xi} \) and \(\tilde{\xi}' \) end in the same point.

The group \(\mathcal{H} \text{Fix}(e_0) = p_*(\mathcal{H}(E, e_0)) \leq \mathcal{H}(B, b_0) \) consists of the classes of closed edge-paths at \(b_0 \) which lift to closed edge-paths at \(e_0 \).

Proposition 2.3. Let \(B \) be a locally finite \(T_0 \)-space, \(b_0 \in B \), \(p : E \to B \) a covering and \(e_0 \in p^{-1}(b_0) \). The isomorphism \(\eta_B = (\mu_B)_* \epsilon_B \phi_B : \mathcal{H}(B, b_0) \to \pi_1(B, b_0) \) restricts to an isomorphism \(\mathcal{H} \text{Fix}(e_0) \to \text{Fix}(e_0) = p_*(\pi_1(E, e_0)) \).

Proof. It follows immediately from the commutativity of the diagram in Remark 2.2. \(\square \)

3. **G-colorings and regular coverings**

We observed that a covering of a locally finite space is also locally finite. Moreover, a covering of an \(A \)-space is an \(A \)-space. In order to study coverings of \(A \)-spaces it suffices to understand coverings of \(T_0 \)-\(A \)-spaces (i.e. posets) and in these cases, the covering spaces are also posets. These results are proved in the Appendix, as well as the correspondence between coverings of posets and simplicial coverings.

In this section we will investigate regular coverings of locally finite posets and, as a consequence, we will obtain an alternative description of their fundamental groups using the notion of **coloring**.
Definition 3.1. Let X be a connected locally finite T_0-space and let G be a group. A \emph{G-coloring} of X is a map $c : E(X) \to G$. If c is a G-coloring of X and $(x, y) \in E(X)$, we define $c(y, x) = c(x, y)^{-1}$. Given a G-coloring c, there is an induced \emph{weight} map w (also denoted by w_c), which associates an element of G to every edge-path of X. This map is defined by

$$w((x_0, x_1)(x_1, x_2) \ldots (x_{n-1}, x_n)) = \prod_{i=0}^{n-1} c(x_i, x_{i+1}) = c(x_0, x_1)c(x_1, x_2) \ldots c(x_{n-1}, x_n).$$

The weight of the empty edge-path is defined as 1, the identity of G.

A G-coloring of X is \emph{admissible} if for any $x \leq y$ in X and any two monotonic edge-paths ξ, ξ' from x to y, the weights $w(\xi)$ and $w(\xi')$ are equal. Let $x_0 \in X$. An admissible G-coloring c of X induces a group homomorphism $W = W_c : \mathcal{H}(X, x_0) \to G$ defined by $W([\xi]) = w(\xi)$.

A G-coloring is said to be \emph{connected} if for every $g \in G$ there exists a closed edge-path at x_0 whose weight is g. When the G-coloring is admissible, this is equivalent to saying that $W : \mathcal{H}(X, x_0) \to G$ is an epimorphism. Note that this definition is independent of the choice of the base point x_0. The motivation of the term “connected” for such a coloring is the space $E(c)$ which appears in Theorem 3.6.

Definition 3.2. Two G-colorings c, c' of X are said to be \emph{equivalent} if there exists an automorphism $\varphi : G \to G$ and an element $g_x \in G$ for each x, such that

$$c'(x, y) = \varphi(g_xc(x, yg_y^{-1})$$

for every $(x, y) \in E(X)$. In this case we write $c \sim c'$.

It is easy to see that this is an equivalence relation in the set of G-colorings of X. If $c \sim c'$ and ξ is an edge path from x to y in X then, with the notation of the last definition, $w_{c'}(\xi) = \varphi(g_xw_c(\xi)g_y^{-1})$. Therefore, if $c \sim c'$ and c is admissible, then so is c'. Also, if c is connected, so is c'.

Theorem 3.3. Let X be a connected locally finite poset, $x_0 \in X$ and G a group. There exists a correspondence between the set of equivalence classes of admissible connected G-colorings of X and the set of normal subgroups $N \triangleleft \pi_1(X, x_0)$ such that $\pi_1(X, x_0)/N$ is isomorphic to G.

Proof. Since the groups $\mathcal{H}(X, x_0)$ and $\pi_1(X, x_0)$ are naturally isomorphic, it suffices to prove the result for $\mathcal{H}(X, x_0)$. An admissible connected G-coloring c of X induces an epimorphism $W : \mathcal{H}(X, x_0) \to G$. Then G is isomorphic to $\mathcal{H}(X, x_0)/N$ where $N = \ker(W)$. Equivalent colorings induce the same subgroup N since the associated weight maps differ in an automorphism of G.

Conversely, if $N \triangleleft \mathcal{H}(X, x_0)$ is such that $\mathcal{H}(X, x_0)/N \simeq G$, then choose an isomorphism $\psi : \mathcal{H}(X, x_0)/N \to G$ and define $\rho = \psi p : \mathcal{H}(X, x_0) \to G$ where $p : \mathcal{H}(X, x_0) \to \mathcal{H}(X, x_0)/N$ is the canonical projection. Since X is connected and locally finite, for each $x \in X$ there exists an edge-path γ_x from x_0 to x. Given $(x, y) \in E(X)$, define $c(x, y) = \rho([\gamma_x(x, y)\gamma_y^{-1}])$. If ξ and ξ' are two monotonic edge-paths in X from a point x to a point $y \geq x$, then $w_c(\xi) = \rho([\gamma_x\xi\gamma_y^{-1}]) = \rho([\gamma_x\xi'\gamma_y^{-1}]) = w_c(\xi')$, since $[\gamma_x\xi\gamma_y^{-1}] = [\gamma_x\xi'\gamma_y^{-1}]$. Therefore the G-coloring c is admissible. The induced morphism $W_c : \mathcal{H}(X, x_0) \to G$ is the composition of ρ with the conjugation by $[\gamma_{x_0}]$. It follows that
W_c is an epimorphism and therefore c is connected. Note that different choices of the isomorphism ρ and the edge-paths γ_x induce equivalent colorings.

It remains to show that these constructions are reciprocal. Let c be an admissible connected G-coloring of X and let $N = \ker(W)$ be the induced normal subgroup of $\mathcal{H}(X,x_0)$. We can choose the isomorphism $\psi : \mathcal{H}(X,x_0)/N \to G$ to be the morphism induced by W in the quotient. In this way, the map $\rho : \mathcal{H}(X,x_0) \to G$ coincides with W. Therefore the new color $c'(x,y)$ of an edge $(x,y) \in E(X)$ is $W([\gamma_x(x,y)\gamma_y^{-1}]) = w_c(\gamma_x)c(x,y)w_c(\gamma_y)^{-1}$. Thus, $c' \sim c$.

Finally, if $N < \mathcal{H}(X,x_0)$ induces a coloring c, then the kernel of W_c is $\ker(\rho) = N$. □

Corollary 3.4. Let X be a connected locally finite poset, $x_0 \in X$ and G a group. Then, there exists an admissible connected G-coloring of X if and only if there exists an epimorphism $\pi_1(X,x_0) \to G$.

Let B be a path-connected, locally path-connected, semilocally simply-connected space, $p : E \to B$ a covering, $b_0 \in B$ and $e_0 \in p^{-1}(b_0)$. We denote by $\text{Deck}(p)$ the group of deck transformations (=covering transformations) of p, and let $\text{Fix}(e_0) = p_*(\pi_1(E,e_0)) \leq \pi_1(B,b_0)$. Recall that two coverings $p : E \to B$, $p' : E' \to B$ are said to be equivalent if there exists a homeomorphism $h : E \to E'$ such that $p'h = p$. The correspondence between conjugacy classes of subgroups of $\pi_1(B,b_0)$ and equivalence classes of coverings of B maps a normal subgroup $N < \pi_1(B,b_0)$ to a regular covering $p : E \to B$ with $\text{Fix}(e_0) = N$ (see [12 Section 1.3]). In this case, $\text{Deck}(p)$ is isomorphic to $\pi_1(B,b_0)/N$. Therefore we deduce the following

Corollary 3.5. Let B be a connected locally finite poset and let G be a group. There exists a correspondence between the set of equivalence classes of regular coverings $p : E \to B$ of B with $\text{Deck}(p)$ isomorphic to G and the set of equivalence classes of admissible connected G-colorings of B.

We state a more precise version of Corollary 3.5 making an explicit construction of the covering associated to a given G-coloring. Given an admissible connected G-coloring c of B, we define the poset $E = E(c) = \{(x,g) \mid x \in B, \ g \in G\}$ with the relations $(x,g) < (y,gc(x,y))$ whenever $x < y$ in B.

Theorem 3.6. Let B be a connected locally finite poset and let G be a group. If c is an admissible connected G-coloring of B, then the projection $p(c) : E(c) \to B$ onto the first coordinate is a regular covering of B with $\text{Deck}(p)$ isomorphic to G. Moreover, if c and c' are equivalent admissible connected G-colorings of B, then $p(c)$ and $p(c')$ are equivalent coverings of B. This application describes a correspondence between the set of equivalence classes of admissible connected G-colorings of B and equivalence classes of regular coverings of B with deck transformation group isomorphic to G.

Proof. The map $p = p(c) : E = E(c) \to B$ is clearly continuous. We claim that if $b \in B$, then

$$p^{-1}(U_b) = \coprod_{g \in G} U_{(b,g)},$$

and that the restrictions to each $U_{(b,g)}$ are homeomorphisms. The inclusion $U_{(b,g)} \subseteq p^{-1}(U_b)$ follows from the continuity of p. Now suppose $(b',g) \in p^{-1}(U_b)$. Then $b' \leq b$ and there exists a chain $b' = b_1 < b_2 < \ldots < b_r = b$. Since $(b_1,h) < (b_{r+1},hc(b_1,b_{r+1}))$, we have that

$$(b',g) \leq (b,gc(b_1,b_2)c(b_2,b_3)\ldots c(b_{r-1},b_r)).$$
Thus \((b', g) \in U(b, h)\) for \(h = gc(b_1, b_2) c(b_2, b_3) \cdots c(b_{r-1}, b_r)\).

Suppose \((b', h) \in U(b, g_1) \cap U(b, g_2)\). Then there exists a chain \(b' = b_1 < b_2 < \ldots < b_r = b\) such that \(g_1 = hc(b_1, b_2)c(b_2, b_3) \cdots c(b_{r-1}, b_r)\) and there is a chain \(b' = b'_1 < b'_2 < \ldots < b'_r = b\) such that \(g_2 = hc(b'_1, b'_2)c(b'_2, b'_3) \cdots c(b'_{r-1}, b'_r)\). By the admissibility of \(c\), \(g_1 = g_2\). This proves that the union is disjoint.

The map \(U_b \to U(b, g)\) which maps \((b', g)\) to \((b', gc(b_r, b_{r-1})^{-1} \cdots c(b_2, b_1)^{-1})\), where \(b' = b_1 < b_2 < \ldots < b_r = b\) is any chain between \(b'\) and \(b\), is a continuous inverse of \(p|_{U(b, g)}\). Therefore \(p\) is a covering.

Note that \(E\) is a connected space since the coloring \(c\) is connected. If \(\xi\) is a closed edge-path at \(b_0\) with weight \(w_c(\xi) = g\), then the lift of \(\xi\) from \((b_0, 1)\) ends in \((b_0, g)\). Therefore the connectedness of \(c\) implies that any two points in the fiber of \(b_0\) lie in the same component of \(E\).

Suppose \(c' \sim c\), that is, there exists \(\varphi \in \text{Aut}(G)\) and \(g_b \in G\) for every \(b \in B\) such that \(c'(b_1, b_2) = \varphi(g_{b_1}c(b_1, b_2)g_{b_2}^{-1})\) for each \((b_1, b_2) \in E(B)\). Consider the map \(h : E(c) \to E(c')\) which maps \((b, g)\) to \((b, \varphi(gg_b^{-1}))\). If \((b_1, g) \succeq (b_2, gc(b_1, b_2))\) then
\[
 h(b_1, g) = (b_1, \varphi(gg_b^{-1})) \prec (b_2, \varphi(gg_b^{-1})c'(b_1, b_2)) =
= (b_2, \varphi(gc(b_1, b_2)g_{b_2}^{-1})) = h(b_2, gc(b_1, b_2)).
\]

Hence, \(h\) is continuous and \(p(c'h) = p(c')\). Moreover \(h' : E(c') \to E(c)\) given by \(h'(b, g) = (b, \varphi^{-1}(g)g_b)\) is the inverse of \(h\). Therefore \(p(c)\) and \(p(c')\) are equivalent coverings.

Let \(b_0 \in B\). Note that a closed edge-path \(\xi\) at \(b_0\) lifts to a closed edge-path at \((b_0, 1) \in E(c)\) if and only if \(w_c(\xi) = 1 \in G\). Therefore, \(\mathcal{H}\text{Fix}(b_0, 1) = \ker(W_c)\). On the other hand, the application which associates a normal subgroup of \(\pi_1(B, b_0)\) to an admissible connected \(G\)-coloring of \(B\), maps \(c\) into \(\eta_\mathcal{B}(\ker(W_c)) \triangleleft \pi_1(B, b_0)\). This subgroup corresponds to a regular covering of \(B\) whose fix subgroup is equal to \(\eta_\mathcal{B}(\ker(W_c))\), or equivalently by Proposition 2.3 to a covering with \(\mathcal{H}\text{Fix}\) equal to \(\ker(W_c)\). Therefore, the composition of the correspondence of Theorem 3.3 with the correspondence between normal subgroups of \(\pi_1(B, b_0)\) and regular coverings of \(B\), is the application described above. In particular, \(p(c) : E(c) \to B\) is a regular covering with \(\text{Deck}(p(c))\) isomorphic to \(G\) and this assignation is a one-to-one correspondence.

\[\Box\]

Example 3.7. The poset \(X\) of Figure 1 is the face poset of a regular CW-complex homeomorphic to the real projective plane \(\mathbb{R}P^2\). Therefore, its fundamental group is the group \(\mathbb{Z}_2\) of order two. We will show in Section 4 an alternative way to compute \(\pi_1(X, x_0)\) (ignoring the fact that this poset is related to the projective plane).

![Figure 1](image_url)

A finite model of the projective plane.
Consider the \mathbb{Z}_2-coloring of X in which every solid edge of Figure 1 is colored with the identity 0 of \mathbb{Z}_2 and where the four dotted edges are colored with the non-trivial element of \mathbb{Z}_2. It is easy to check that this coloring is admissible and connected and corresponds, by Theorem 3.3, to a subgroup $N \triangleleft \pi_1(X,x_0)$ such that $\pi_1(X,x_0)/N$ is isomorphic to \mathbb{Z}_2. Therefore N is the trivial group and the corresponding covering is the universal cover.

Now, it is easy to distinguish the closed edge-paths which are trivial in $\mathcal{H}(X,x_0)$ once we have the coloring corresponding to the universal cover. A closed edge-path ξ at x_0 is trivial if and only if it lifts to a loop in the universal cover. This happens if and only if its weight $w_c(\xi)$ is trivial. Therefore, in this example a closed edge-path represents the identity of $\mathcal{H}(X,x_0)$ if and only if it passes through a dotted edge an even number of times.

Example 3.8 (Detecting $K(G,1)$’s). A topological space having a universal cover is an Eilenberg-MacLane space $K(G,1)$ if and only if its universal cover is homotopically trivial, i.e. weak homotopy equivalent to the singleton. We use Theorem 3.6 to construct a covering from a given coloring, and the fact that, in the context of posets, sometimes it is easy to recognize homotopically trivial spaces via beat points.

Consider the space X of Figure 2 with the following \mathbb{Z}-coloring c. The solid edges are colored with the trivial element $0 \in \mathbb{Z}$ and the dotted edges are colored with the generator $1 \in \mathbb{Z}$. This is an admissible and connected \mathbb{Z}-coloring of X.

The covering E associated to this coloring according to Theorem 3.6 is sketched in Figure 3.

We claim that E is a homotopically trivial space. Indeed, the Hasse diagram of E is a countable union of copies X_n, $n \in \mathbb{Z}$, of the diagram X_0 in Figure 4. The intersection of X_n and X_m has two points if $|n - m| = 1$ and is empty otherwise. The space X_0 is contractible. Moreover, the subspace of two points, x and y, is a deformation retract of X_0. This is really easy to check, removing beat points one by one (see Proposition 2.1).

This shows in fact that $Z_{n,k+1} = X_n \cup X_{n-1} \cup \ldots \cup X_{n-k}$ deformation retracts to $Z_{n,k} = X_n \cup X_{n-1} \cup \ldots \cup X_{n-k}$, and then $Z_{n,k}$ is contractible for any $n \in \mathbb{Z}$, and $k \geq 0$. Now, any compact subspace of E is contained in a subspace $Z_{n,k}$ since any minimal open set U_z of E intersects finitely many copies of X_0 (one or two). Then the image of any
map from a sphere to E is contained in a contractible subspace, which proves that E is homotopically trivial. In particular $\pi_r(X) = 0$ for every $r \geq 2$. This proves that X is a $K(G, 1)$ for some G. In fact, X is a $K(\mathbb{Z}, 1)$. One can easily verify that $\pi_1(X) = \mathbb{Z}$ using for example Theorem 4.4 below.

Note that an admissible G-coloring $c : E(X) \to G$ is equivalent to a functor $X \to G$ where G is viewed as a category with a unique object and one arrow for each element of the group. Since every morphism in the category G is an isomorphism, a functor $X \to G$ is equivalent to a functor $\Sigma^{-1}X \to G$ from the category of fractions of X, which is obtained from X by formally inverting all the arrows (see [11]). This is equivalent to a group homomorphism $\pi_1(X, x_0) \to G$ (cf. [19, pp.89-90]).

To finish this section we exhibit a method for constructing a poset with fundamental group isomorphic to any given group. This idea copies, in some sense, Milnor’s classical construction of universal bundles and classifying spaces of groups [17].

Let G be a group. Let X be the following poset of height 2. The set of minimal elements is $G \times \mathbb{Z}_3$. The set of points of height 1 is $G \times G \times \mathbb{Z}_3$ and the set of maximal points is $G \times G \times G$. The order is given as follows $(g, h, i + 1)$ covers (g, i) and $(h, i + 2)$, and (g, h, k) covers $(g, h, 1)$, $(k, g, 2)$ and $(h, k, 0)$ for each $g, h, k \in G$ and $i \in \mathbb{Z}_3$. The group G acts on X by left multiplication in each coordinate belonging to G. This action is properly discontinuous and therefore the projection $p : X \to X/G$ is a covering with deck transformation group isomorphic to G. The space X is simply-connected. This can be proved for instance by induction in the order of G, using Theorem 3.3 of the next section. Therefore X/G is a poset with fundamental group isomorphic to G.

For $G = \mathbb{Z}_2$ this construction gives a space X/G of 13 points, isomorphic to the model of the projective plane of Example 3.7.

4. Presentations of the fundamental group

Let X be the poset of Figure 5. Let $G = \mathbb{Z} * \mathbb{Z}$ be the free group on two generators g, h. There is an admissible connected G-coloring which is trivial in the solid edges and such that the two dotted edges are colored one with g and the other with h. By Corollary 3.4 there exists an epimorphism $\pi_1(X, x_0) \to G$. Again by Corollary 3.4 there exists an admissible connected $\pi_1(X, x_0)$-coloring c of X. Since the undirected subgraph given by the solid edges is a tree, it is possible to show that there is a coloring c' of X which is equivalent to c and which is trivial in the solid edges. Hence, $\pi_1(X, x_0)$ is generated by two elements, the c'-colors of the dotted edges. This says that there exists an epimorphism $G \to \pi_1(X, x_0)$. One can deduce then that $\pi_1(X, x_0)$ is isomorphic to $\mathbb{Z} * \mathbb{Z}$.

In general it is not true that the existence of epimorphisms $G \to H$ and $H \to G$ implies that G and H are isomorphic (see for instance [5]). Two posets admitting the same set of
groups G for which there is an admissible connected G-coloring, need not have isomorphic fundamental groups. Nevertheless we will see that we can use colorings to compute the fundamental groups of posets.

By a subdiagram of a Hasse diagram D we mean a subgraph of D. If X is a locally finite poset, any subdiagram of the Hasse diagram of X is the Hasse diagram of a locally finite space A. This space need not be a subspace of X. However, the inclusion $A \hookrightarrow X$ is continuous.

Lemma 4.1. Let G be a group with identity 1. Let X be a connected locally finite T_0-space and let D be a subdiagram of the Hasse diagram of X which corresponds to a connected space A. If the map $i_* : \mathcal{H}(A, x_0) \to \mathcal{H}(X, x_0)$ induced by the inclusion is trivial for some $x_0 \in A$, then for each admissible G-coloring c of X there exists a G-coloring c' equivalent to c such that $c'(x, y) = 1$ for every $(x, y) \in E(A)$. In particular, this holds when A is simply-connected.

Proof. Choose an edge-path γ_a in A from x_0 to a for each $a \in A$. Define the G-coloring c' of X by $c'(x_1, x_2) = g_{x_1}c(x_1, x_2)g_{x_2}^{-1}$ where $g_x = w_c(\gamma_x)$ if $x \in A$ and $g_x = 1$ if $x \notin A$. Then c' and c are equivalent G-colorings of X and c' restricted to A is trivial. Given $(a_1, a_2) \in E(A)$, one has $c'(a_1, a_2) = w_c(\gamma_{a_1})c(a_1, a_2)w_c(\gamma_{a_2})^{-1} = w_c(\gamma_{a_1}(a_1, a_2)\gamma_{a_2}^{-1})$ which is 1 since the closed edge-path $\gamma_{a_1}(a_1, a_2)\gamma_{a_2}^{-1}$ is equivalent to the empty path at x_0 by the hypothesis on $i_* : \mathcal{H}(A, x_0) \to \mathcal{H}(X, x_0)$. \square

Remark 4.2. The following generalization of Lemma 4.1 will be needed in Section 5. If $\{D_j\}_{j \in J}$ is a collection of pairwise disjoint connected subdiagrams of X and the inclusions $D_j \hookrightarrow X$ induce the trivial homomorphism on fundamental groups, then for each admissible G-coloring c of X there exists an equivalent coloring which is trivial in all the diagrams D_j simultaneously. To prove this we follow the proof of Lemma 4.1 above choosing the edge-paths γ_a carefully. Let x_0 be any point of X. Choose a point x_j in each diagram D_j and an edge-path γ_j in X from x_0 to x_j. For each point $a \in D_j$ let γ'_a be an edge-path in D_j from x_j to a and let $\gamma_a = \gamma'_a \gamma_j$. Define the coloring c' and the g_x as before considering $A = \bigcup D_j$. If $(a_1, a_2) \in E(D_j)$, $\gamma_{a_1}(a_1, a_2)\gamma_{a_2}^{-1} = \gamma'_j \gamma'_a(a_1, a_2)(\gamma'_a)^{-1} \gamma_j^{-1}$ is equivalent to the empty path at x_0 since, by hypothesis, $\gamma'_a(a_1, a_2)(\gamma'_a)^{-1}$ is equivalent to the empty path at x_j.

Definition 4.3. Let X be a connected locally finite T_0-space and let $x_0 \in X$. Choose for each $x \in X$ with $x \neq x_0$ an edge-path γ_x from x_0 to x and take γ_{x_0} to be the trivial edge-path. The **standard coloring** of X is the $\mathcal{H}(X, x_0)$-coloring given by $c(x, y) = [\gamma_x(x, y)\gamma_y^{-1}]$. Clearly c is admissible and connected since the weight of a closed edge-path ξ at x_0 is $[\xi]$. If we take a different γ_x for $x \neq x_0$, we obtain an equivalent coloring. Therefore, the standard coloring of X is well defined up to equivalence.
The following is the main result of this section. Although at first sight its statement may seem technical, the examples below show that it can be easily applied to compute the fundamental group of posets.

Theorem 4.4. Let X be a connected locally finite T_0-space and let $x_0 \in X$. Let D be a subdiagram of the Hasse diagram of X which corresponds to a simply-connected space A. Let $\{e_\alpha\}_{\alpha \in \Lambda}$ be the subset of $E(X)$ of edges which are not in D. Let G be the group generated by the e_α‘s with the relations given by admissibility. Concretely, for any two chains

$$x = x_1 \prec x_2 \prec \ldots \prec x_n = y,$$

$$x = x'_1 \prec x'_2 \prec \ldots \prec x'_s = y$$

from any point x to any point y, we put a relation

$$\prod_{(x_i, x_{i+1}) \notin D} (x_i, x_{i+1}) = \prod_{(x'_i, x'_{i+1}) \notin D} (x'_i, x'_{i+1}).$$

Suppose there is a subset $\Gamma \subseteq \Lambda$ such that the classes $\{\tau_\alpha\}_{\alpha \in \Gamma}$ generate G and such that for each $\alpha \in \Gamma$ there exists a closed edge-path ω_α in x_0 which contains e_α exactly once and contains no other edge e_β for $\beta \in \Lambda$. Then $\pi_1(X, x_0) \simeq G$.

Proof. We construct first a G-coloring \hat{c} of X. We color all the edges in D with $1 \in G$ and each edge e_α with τ_α. This coloring is admissible by definition of G. Let $W_\hat{c} : \mathcal{H}(X, x_0) \rightarrow G$ be the weight map induced by \hat{c}. Replacing, if necessary, ω_α by ω_α^{-1}, we have for every $\alpha \in \Gamma$,

$$W_\hat{c}([\omega_\alpha]) = w(\omega_\alpha) = \tau_\alpha.$$

Let c be the standard coloring of X. The induced weight $W_c : \mathcal{H}(X, x_0) \rightarrow \mathcal{H}(X, x_0)$ is the identity. By Lemma 4.1, there exists an $\mathcal{H}(X, x_0)$-coloring c' of X equivalent to c which is trivial in A. Since $c' \sim c$, the weight $W_{c'}$ induced by c' is W_c composed with an automorphism of $\mathcal{H}(X, x_0)$. Hence $W_{c'}$ is an automorphism of $\mathcal{H}(X, x_0)$.

Define $\varphi : G \rightarrow \mathcal{H}(X, x_0)$ by $\varphi(\tau_\alpha) = c'(e_\alpha)$ for every $\alpha \in \Lambda$. This homomorphism is well-defined since c' is admissible and $\{\tau_\alpha\}_{\alpha \in \Gamma}$ generates G. Moreover, since c' is connected, $\mathcal{H}(X, x_0)$ is generated by $\{c'(e_\alpha)\}_{\alpha \in \Lambda}$. Therefore, φ is an epimorphism.

Let $\alpha \in \Gamma$. Since ω_α passes through e_α only once and all the other edges in ω_α have weight 1 with respect to the coloring c', then $W_{c'}([\omega_\alpha]) = c'(e_\alpha)$. Thus,

$$W_{\hat{c}}W_{c'}^{-1}\varphi(\omega_\alpha) = W_{\hat{c}}W_{c'}^{-1}(c'(\omega_\alpha)) = W_{\hat{c}}(\omega_\alpha) = \tau_\alpha.$$

Then $W_{\hat{c}}W_{c'}^{-1}\varphi$ is the identity of G and, in particular, φ is injective. Therefore φ is an isomorphism. \[\square\]

Therefore, in order to compute the fundamental group of a connected locally finite poset X, we choose a simply-connected subdiagram D of X. The generators of $\pi_1(X)$ are the edges which are not in D and the relators are given by *digons*. A digon in a poset X is a subdiagram which is the union of two different monotonic edge-paths from a point x to a point y. Moreover, in the presentation of the group it suffices to consider only the relations given by the *simple digons*, i.e. digons in which the two chains have no vertex in common with the exception of x and y.

This result can be applied to compute the fundamental group of any regular CW-complex by means of its face poset. Note that for any regular CW-complex K, $\mathcal{K}(K)$ is locally finite.
Example 4.5. Consider the poset X whose Hasse diagram is shown in Figure 1. Its edges are the solid lines together with the dotted lines. The subdiagram given by the solid lines corresponds to a simply-connected space A. It is easy to check that in fact A is a contractible space (to prove this, we only have to show that it is possible to reduce the space A to a point by removing beat points one by one). The group G of Theorem 4.4 is then generated by the classes of the dotted edges e_1, e_2, e_3, e_4, e_5. There is a digon containing e_2 and e_3 which says that $e_2 = e_3$ is one of the relations in the presentation of G. There is another digon which contains the edges e_4 and e_1 producing the relation $e_4 e_1 = 1$. After checking all possible digons containing at least one dotted edge, we obtain the following admissibility relations: $e_4 e_1 = 1$, $e_2 = e_3$, $e_2 = e_5$, $e_1 = e_5$, $e_3 = e_4$. Therefore, the group G is isomorphic to the group \mathbb{Z}_2, generated by e_3. By Theorem 4.4 the fundamental group of X is isomorphic to \mathbb{Z}_2.

Remark 4.6. Given a connected locally finite poset X, it is always possible to find a subdiagram D of the Hasse diagram of X in such a way that the hypotheses of Theorem 4.4 are fulfilled. Namely, we can take D such that its underlying undirected graph is a maximal tree of the underlying undirected graph of the Hasse diagram of X. It is easy to see that any closed edge-path in D is equivalent to the trivial edge-path. Then A, the locally finite space corresponding to D, is simply-connected. Any edge of X which is not in D is contained in a closed edge-path with all the other edges in D. Therefore, it is possible to apply the theorem using $\Gamma = \Lambda$.

In fact, the locally finite space A is contractible. When A is finite this is clear using Proposition 2.1. When A is locally finite we can use Proposition 2.1 together with the standard idea of the proof of [12, Proposition 1.A.1] and the fact that A has the weak topology with respect to its edges. Moreover, any subdiagram Y of X is contained in a subdiagram \tilde{Y} of X which contains all the points of X and such that the space Y is a strong deformation retract of \tilde{Y}.

Example 4.7. Consider the poset X_1 of Figure 6. The subdiagram D given by the solid edges is a tree. The remaining edges are the generators for the presentation of $\pi_1(X_1)$ in the statement of Theorem 4.4.

![Figure 6. A simply-connected space.](image-url)
edges are in D or were already labeled. Therefore each dotted edge represents the trivial element and then $\pi_1(X_1) = 0$.

One last example X_2 appears in Figure 7. As before, the subdiagram D given by the solid edges is simply-connected and edges 1 to 5 represent the trivial element of $\pi_1(X_2)$. The figure is not included here.

Two dotted edges remain after this process, labeled with the letter a. They are part of the same digon, and this relation says that they represent the same element of $\pi_1(X_2)$. None of these two edges is part of another digon, so $\pi_1(X_2)$ is the infinite cyclic group.

Remark 4.8. There exists an analogue to Theorem 4.4 for simplicial complexes. Let K be a simplicial complex. If L is a simply-connected subcomplex containing all the vertices of K, the fundamental group of K is isomorphic to the group generated by the ordered 1-simplices of K with the relations $e = 1$ if e is in L and $e_0 e_1 e_2 = 1$ if $e_0 + e_1 + e_2$ is the boundary of a 2-simplex of K. However by means of the poset $\mathcal{X}(K)$, our result allows one to manipulate the simplicial complex combinatorially (not only simplicially), resulting in better or more tractable presentations. The advantages of this discrete approach will be more clear later.

Corollary 4.9. Let X be a connected locally finite poset and let B be a subdiagram of the Hasse diagram of X which corresponds to a simply-connected space and such that any maximal chain of X has all its edges in B except perhaps for one. Then the fundamental group of X is free.

Proof. We can assume that B contains all the points of X by Remark 4.6 and then Theorem 4.3 applies. Since any monotonic edge-path in X has at most one edge not in B then the relators of the presentation of $\pi_1(X)$ either identify two generators or identify a generator with the trivial element. Therefore, $\pi_1(X)$ is free. \qed

Theorem 4.10. Let X be a connected locally finite T_0-space. Let A and B be two connected subdiagrams of the Hasse diagram of X such that every edge of X is in A or B. Suppose that the diagram $C = A \cap B$ of common vertices and common edges is connected. Let $x_0 \in C$ and let $i : C \to A$, $j : C \to B$ be the canonical inclusions. Let $N \leq \pi_1(A, x_0) * \pi_1(B, x_0)$ be the normal subgroup generated by the words $i_*(\gamma) j_*(\gamma)^{-1}$, for every $\gamma \in \pi_1(C, x_0)$. Then there exists an epimorphism $(\pi_1(A, x_0) * \pi_1(B, x_0))/N \to \pi_1(X, x_0)$. Moreover, if each simple digon of X is contained in A or in B, then $\pi_1(X, x_0)$ is isomorphic to $(\pi_1(A, x_0) * \pi_1(B, x_0))/N$.\qed
Proof. By Remark 4.6 there exists a subdiagram D_C of C which is simply-connected and contains all the vertices of C. Moreover, there exist subdiagrams D_A and D_B of A and B containing all the vertices of A and of B respectively, which strongly deformation retract into D_C. Therefore $D_A \cup D_B$ is a simply-connected subdiagram of X and we can apply Theorem 4.4 to obtain presentations of $\pi_1(C)$, $\pi_1(A)$, $\pi_1(B)$, and $\pi_1(X)$. The presentation of $\pi_1(C)$ is $\langle G_C|R_C \rangle$, where G_C is the set of edges in C which are not in D_C, and there is a relator for each digon in C. The presentations of $\pi_1(A)$, $\pi_1(B)$, and $\pi_1(X)$ are $\langle G_C \cup G_A|R_C \cup R_A \rangle$, $\langle G_C \cup G_B|R_C \cup R_B \rangle$, and $\langle G_C \cup G_A \cup G_B|R_C \cup R_A \cup R_B \cup R_X \rangle$ respectively. Here G_A is the set of edges of A which are not in $D_A \cup C$, and the relators R_A are given by digons in A which are not in C. G_B and R_B are defined similarly. The relators in R_X are given by digons of X which are neither in A nor in B. Note that the following diagram

\[
\begin{array}{c}
\langle G_C|R_C \rangle \xrightarrow{\alpha} \langle G_C \cup G_A|R_C \cup R_A \rangle \\
\downarrow{\beta} \\
\langle G_C \cup G_B|R_C \cup R_B \rangle \xrightarrow{\gamma} \langle G_C \cup G_A \cup G_B|R_C \cup R_A \cup R_B \cup R_X \rangle
\end{array}
\]

in which every homomorphism maps each generator to itself, is a pushout. Moreover, $\alpha_W = \alpha_{\hat{W}}$ and $\beta_W = \beta_{\hat{W}}$, where \hat{W} denotes the three isomorphisms $H(C, x_0) \rightarrow \langle G_C|R_C \rangle$, $H(A, x_0) \rightarrow \langle G_C \cup G_A|R_C \cup R_A \rangle$, and $H(B, x_0) \rightarrow \langle G_C \cup G_B|R_C \cup R_B \rangle$ constructed in the proof of Theorem 4.1. By Remark 2.2, $\langle G_C \cup G_A \cup G_B|R_C \cup R_A \cup R_B \cup R_X \rangle$ is isomorphic to $(\pi_1(A, x_0) * \pi_1(B, x_0))/N$.

If each simple digon of X is contained in A or B, $(\pi_1(A, x_0) * \pi_1(B, x_0))/N = \langle G_C \cup G_A \cup G_B|R_C \cup R_A \cup R_B \rangle$ if every digon of $\mathcal{X}(K)$ is in one of the subspaces. However, this result allows one to work also with non-simplicial combinatorial decompositions $\{A, B\}$ of $\mathcal{X}(K)$, obtaining information on the fundamental group of K from the fundamental groups of the “discrete parts” A and B.

The last result generalizes van Kampen’s theorem. If $\{A, B\}$ is an open covering of a locally finite T_0-space X, with A, B, and $A \cap B$ connected, then every digon of X is contained in A or B, so the result reduces to the classical van Kampen’s theorem. Also if K is a regular CW-complex covered by two connected subcomplexes L, M with connected intersection, then $\mathcal{X}(L)$ and $\mathcal{X}(M)$ are open subspaces of $\mathcal{X}(K)$ and every digon of $\mathcal{X}(K)$ is in one of the subspaces. However, this result allows one to work also with non-simplicial combinatorial decompositions $\{A, B\}$ of $\mathcal{X}(K)$, obtaining information on the fundamental group of K from the fundamental groups of the “discrete parts” A and B.

We finish this section with a result that characterizes posets with abelian fundamental group in terms of colorings. Given a G-coloring c of X we denote by c^{-1} the G-coloring defined by $c^{-1}(x, y) = c(x, y)^{-1}$ for every edge $(x, y) \in E(X)$.

Theorem 4.11. Let X be a connected locally finite T_0-space and let $x_0 \in X$. The following are equivalent:

(i) $\pi_1(X, x_0)$ is abelian.

(ii) For every group G and every admissible connected G-coloring c of X, c^{-1} is an admissible and connected G-coloring of X.

Proof. If $\pi_1(X, x_0)$ is abelian and c is an admissible connected G-coloring of X, then G is abelian by Corollary 3.3. Then the inverse map $G \to G$ is a homomorphism and therefore c^{-1} is equivalent to c. In particular it is admissible and connected. Conversely, suppose
that (ii) holds. We consider two cases: when \(X \) has at least one digon or when \(X \) has no digon. In the first case, let \(D \) be a simple digon which is the union of the chains \(x = x_0 < x_1 < \ldots < x_k = y \) and \(x = x'_0 < x'_1 < \ldots < x'_l = y \). Let \(g, h \in \pi_1(X, x_0) \). Let \(c \) be an admissible connected \(\pi_1(X, x_0) \)-coloring of \(X \). Since \(D \) is the diagram of a simply-connected space, by Lemma \([4.4]\) there exists a coloring \(c' \) equivalent to \(c \) which is trivial in \(D \). We consider the coloring \(c'' \) obtained from \(c' \) when choosing, following the notations of Definition \([3.2]\) \(g_{x_{k-1}} = g, g_y = hg \), all the other \(g_x = 1 \), and \(\varphi = 1_{\pi_1(X, x_0)} \). This coloring is admissible and connected and then, by hypothesis, \((c'')^{-1}\) is also admissible. The admissibility of \((c'')^{-1}\) in the digon \(D \) says that \(gh = hg \). Thus, \(\pi_1(X, x_0) \) is abelian.

Assume now that \(X \) has no digons. In this case, by Theorem \([4.4]\) \(\pi_1(X, x_0) \) is a free group. Suppose \(\pi_1(X, x_0) \) is not abelian. Then it is a free group on at least two generators. We claim that there exist two closed edge-paths (not necessarily at \(x_0 \) nor at the same base point) \(\xi = e_0 e_1 \ldots e_k \), \(\xi' = e'_0 e'_1 \ldots e'_l \) which are simple (i.e. any vertex is in at most two edges of each path) and such that \(e_0 \) and \(e_1 \) are not edges of \(\xi \), with any orientation, and \(e'_0 \) is not an edge of \(\xi \), with any orientation. Moreover \(e'_0 \) is not adjacent to \(x \), the common vertex of \(e_0 \) and \(e_1 \). Since \(\pi_1(X, x_0) \) is not cyclic, the underlying undirected graph of the Hasse diagram of \(X \) has at least two simple cycles \(\xi, \xi' \). If there exists a vertex \(x \) of \(\xi \) which is not a vertex of \(\xi' \), then we take \(e_0 \) and \(e_1 \) as its adjacent edges in \(\xi \) and \(e'_0 \) as any edge of \(\xi' \) which is not in \(\xi \). In the case that \(\xi \) and \(\xi' \) have exactly the same set of vertices, take any edge \(e \) of \(\xi' \) not in \(\xi \), then in the subgraph of edges \(e, e_0, e_1, \ldots, e_l \) there are three simple cycles and at least two of them have different length. In the longest, there is a vertex which is not in the other and we can reason as above.

Consider now the Dihedral group \(D_3 = < s, r | s^2, r^3, (rs)^2 > \). We will show that there exists an admissible and connected \(D_3 \)-coloring \(c \) of \(X \) such that \(c^{-1} \) is not connected. Let \(x_1 \) be the vertex of \(e_0 \) different from \(x \). If \(x_1 < x \), color \(e_0 \) with color \(r \), if \(x < x_1 \), color it with \(r^2 \). Color all the remaining edges adjacent to \(x \) with color \(sr^2 \). Color \(e'_0 \) with \(s \), and the rest of the edges of \(X \) with the trivial color 1. This coloring \(c \) is admissible since \(X \) has no digons. The weight of \(\xi \) is \(r s r^2 = sr \). Take \(\gamma \) the shortest edge-path from \(x_1 \) to \(x'_1 \), the base vertex of \(\xi' \), and define the closed edge-path at \(x_1 \), \(\xi' = \gamma \xi' \gamma^{-1} \). Then the weight of \(\xi' \) is \(s \) or \(s r^2 s (rsr^2)^{-1} = sr^2 \), depending on if \(e_0 \) is in \(\gamma \) or not. In any case \(\{sr, s\} \) and \(\{sr, s r^2\} \) are generating sets of \(D_3 \), which proves that \(c \) is connected. On the other hand, the coloring \(c^{-1} \) is not connected. It coincides with \(c \) in each edge of \(X \) with exception of \(e_0 \). Taking \(g_x = sr^2 \) and all the other \(g_x \) trivial, we obtain a coloring \(c' \) equivalent to \(c^{-1} \) such that \(c'(e_0) = c'(e'_0) = s \) while all the other edges of \(X \) are colored with 1. Then \(c' \) is not connected, and therefore neither is \(c^{-1} \). \(\square \)

5. Colorings and \(\pi_1 \) on maps

In this section we will characterize, in terms of colorings, the maps of posets which induce sections, epimorphisms or the trivial map between the fundamental groups. In some cases we prove first the result for inclusions and then we achieve the general result by considering a discrete analogue of the mapping cylinder. If \(f : X \to Y \) is a map between posets, then the non-Hausdorff mapping cylinder \(\tilde{B}(f) \) is the poset whose underlying set is the disjoint union of \(X \) and \(Y \) keeping the given ordering within \(X \) and \(Y \), and setting \(y < x \) for \(x \in X \) and \(y \in Y \) if \(y \leq f(x) \). The map \(r : \tilde{B}(f) \to Y \) which maps \(x \) to \(f(x) \) for every \(x \in X \) and \(y \) to \(y \) for each \(y \in Y \) is a homotopy equivalence (if \(j : Y \to \tilde{B}(f) \) is the canonical inclusion, the homotopy which coincides with \(jr \) for \(t < 1 \) and with \(1_{\tilde{B}(f)} \)
for $t = 1$ is continuous). This allows us to replace f_* by the map i_* induced by the inclusion of X in the cylinder. In [1,3] we considered a slightly different version $B(f)$ of the cylinder. In fact, $\tilde{B}(f) = B(f^{op})^{op}$. Note that if $f : X \rightarrow Y$ is a map between locally finite T_0-spaces, $\tilde{B}(f)$ is locally finite.

Lemma 5.1. Let A be a connected space corresponding to a subdiagram D of the Hasse diagram of a connected locally finite T_0-space X and let $x_0 \in A$. Let G be a group and c, c' two admissible G-colorings of A. If c extends to an admissible G-coloring \tilde{c} of X, then c' extends to an admissible G-coloring \tilde{c}' of X which is equivalent to \tilde{c}.

Proof. Since c and c' are equivalent, there exist an automorphism $\varphi : G \rightarrow G$ and a family $\{g_x\}_{x \in A}$ of elements of G such that $c'(x, y) = \varphi(g_xc(x, y)g_y^{-1})$ for every $(x, y) \in E(A)$. Define a G-coloring of X by $\tilde{c}'(x, y) = \varphi(h_x\tilde{c}(x, y)h_y^{-1})$ for every $(x, y) \in E(X)$, where $h_x = g_x$ if $x \in A$ and $h_x = 1$ otherwise. Then $\tilde{c}' \sim \tilde{c}$ and it extends c'.

Given an admissible G-coloring c of a locally finite poset X and any two elements $x, x' \in X$ such that $x \leq x'$, we will denote by $c(x, x')$ the weight of any monotonic edge-path from x to x'. If $x = x'$, then $c(x, x') = 1$, the identity of G.

Theorem 5.2. Let $f : X \rightarrow Y$ be a continuous map between connected locally finite T_0-spaces and let $x_0 \in X$. Then the following are equivalent

(i) The homomorphism $f_* : \pi_1(X, x_0) \rightarrow \pi_1(Y, f(x_0))$ is a section.

(ii) For every group G and every admissible connected G-coloring c of X, there exist an admissible G-coloring \tilde{c} of Y and $g_x \in G$ for each $x \in X$ such that $\tilde{c}(f(x), f(x')) = g_xc(x, x')g_x^{-1}$ for every edge $(x, x') \in E(X)$.

Proof. Suppose first that the Hasse diagram of X is a subdiagram of the Hasse diagram of Y. In this case, if the inclusion $i : X \hookrightarrow Y$ induces a section $i_* : H(X, x_0) \rightarrow H(Y, x_0)$, let $r : H(Y, x_0) \rightarrow H(X, x_0)$ be a homomorphism such that $ri_* = 1_{H(X, x_0)}$. Let c be an admissible connected G-coloring of X and let $W : H(X, x_0) \rightarrow G$ be the weight map induced by c. Choose for each $y \in Y$ an edge path γ_y from x_0 to y in such a way that γ_x is contained in X for every $x \in X$. Define the G-coloring \tilde{c} by $\tilde{c}(y, y') = Wr(\{\gamma_y(y, y')\gamma_y^{-1}\})$ for each $(y, y') \in E(Y)$. Then \tilde{c} is admissible. Moreover, if $(x, x') \in E(X)$, $\tilde{c}(x, x') = Wr(\{\gamma_x(x, x')\gamma_x^{-1}\}) = W(\{\gamma_x(x, x')\gamma_x^{-1}\}) = w(\gamma_x)c(x, x')w(\gamma_x)^{-1}$. Therefore, $\tilde{c}|_X$ is equivalent to c. Since $\tilde{c}|_X$ extends to an admissible G-coloring of Y, by Lemma 5.1 so does c.

Suppose now $f : X \rightarrow Y$ is any continuous map between connected locally finite T_0-spaces such that $f_* : \pi_1(X, x_0) \rightarrow \pi_1(Y, f(x_0))$ is a section. Then the inclusion $i : X \hookrightarrow \tilde{B}(f)$ induces a section $i_* : H(X, x_0) \rightarrow H(\tilde{B}(f), x_0)$. Given an admissible connected G-coloring c of X, by the previous paragraph, this extends to an admissible G-coloring \tilde{c} of $\tilde{B}(f)$. The restriction of this coloring to Y is an admissible coloring. Let $g_x = \tilde{c}(f(x), x)$ for every $x \in X$. The admissibility of \tilde{c} for a digon containing $f(x), f(x')$, x and x' determines the identity $\tilde{c}(f(x), f(x')) = g_xc(x, x')g_x^{-1}$.

Conversely, let c be the standard coloring of X. By hypothesis there exist an admissible $H((X, x_0))$-coloring \tilde{c} of Y and a family $\{g_x\}_{x \in X}$ satisfying the identity above. This gives
an $\mathcal{H}(X, x_0)$-coloring c' of $\tilde{B}(f)$ which coincides with c in X, with \tilde{c} in Y and such that $c'(f(x), x) = g_x$ if $f(x) \prec x$. Note then that $c'(f(x), x) = g_x$ for every $x \in X$. The coloring c' is admissible since for a digon with minimum $y \in Y$, maximum $x \in X$ and containing the edges $(f(x'), x')$ and $(f(x''), x'')$ (see Figure 8 below) one has

$$c'(y, f(x'))c'(f(x'), x')c'(x', x) = \tilde{c}(y, f(x'))g_x c(x', x) = \tilde{c}(y, f(x'))\tilde{c}(f(x'), f(x))g_x =$$

$$= \tilde{c}(y, f(x''))\tilde{c}(f(x''), f(x))g_x = \tilde{c}(y, f(x''))g_x c(x'', x) = c'(y, f(x''))c'(f(x''), x'')c'(x'', x).$$

Figure 8. A digon decomposed in three digons. The lines in the diagram represent monotonic paths.

Since the coloring c extends to an admissible coloring c' of $\tilde{B}(f)$, the weight map $W_{c'} : \mathcal{H}(\tilde{B}(f), x_0) \to \mathcal{H}(X, x_0)$ satisfies $W_{c'}i_* = W_c = 1_{\mathcal{H}(X, x_0)}$, which proves that i_* is a section. Then f_* is also a section.

Remark 5.3. Note that if A is a connected subdigon of the Hasse diagram of a connected locally finite poset X, then the inclusion $A \hookrightarrow X$ induces a section in the fundamental groups if and only if for every group G, each admissible connected G-coloring of A extends to an admissible G-coloring of X. This follows from Theorem 5.2 and its proof.

Theorem 5.4. Let $f : X \to Y$ be a continuous map between connected locally finite T_0-spaces and let $x_0 \in X$. Then the following are equivalent

(i) The homomorphism $f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is an epimorphism.

(ii) For every group G and every admissible connected G-coloring c of Y, the G-coloring of X given by

$$\tilde{c}(x, x') = c(f(x), f(x'))$$

is connected.

Proof. Given an admissible G-coloring c of Y, the coloring of X defined by the identity of (ii) is clearly admissible. Moreover, there is a commutative triangle

$$\begin{array}{ccc}
\mathcal{H}(X, x_0) & \xrightarrow{f_*} & \mathcal{H}(Y, f(x_0)) \\
\downarrow{W_c} & & \downarrow{W_c} \\
G. & & G.
\end{array}$$

If f_* is an epimorphism and c is connected, then W_c is an epimorphism and therefore so is $W_{\tilde{c}}$, which shows that \tilde{c} is connected. Conversely, if (ii) holds, then for the standard coloring c of Y we have that \tilde{c} is connected and then $f_* = W_{\tilde{c}}$ is an epimorphism. □
Remark 5.5. By the last result, if A is a connected subdiagram of the Hasse diagram of a connected locally finite poset X, then the inclusion $A \hookrightarrow X$ induces an epimorphism in the fundamental groups if and only if for every group G, each admissible connected G-coloring of X restricts to a connected G-coloring of A.

Theorem 5.6. Let $f : X \to Y$ be a continuous map between connected locally finite T_0-spaces and let $x_0 \in X$. Then the following are equivalent

(i) The homomorphism $f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is the trivial map $f_* = 0$.
(ii) For every group G and every admissible G-coloring c of Y, there exist $g_x \in G$ for each $x \in X$ and a G-coloring \tilde{c} of Y, equivalent to c such that

$$\tilde{c}(f(x), f(x')) = g_x g_x^{-1}$$

for every $(x, x') \in E(X)$.

Proof. Suppose $f_* = 0$ and let c be an admissible G-coloring of Y. We define a G-coloring of $B(f)$ by $c'(z, z') = c(r(z), r(z'))$ where $r : B(f) \to Y$ is the retraction of the non-Hausdorff mapping cylinder onto Y. Clearly, c' is admissible. Since $i_* : \mathcal{H}(X, x_0) \to \mathcal{H}(B(f), x_0)$ is trivial, by Lemma 4.1 there exists a G-coloring \tilde{c} of $B(f)$ equivalent to c' which is trivial in X.

Since \tilde{c} is admissible, for a digon containing an edge $(x, x') \in E(X)$, $f(x)$ and $f(x')$, we have $\tilde{c}(f(x), x)\tilde{c}(x, x') = \tilde{c}(f(x), f(x'))\tilde{c}(f(x'), x')$. Let $g_x = \tilde{c}(f(x), x)$. Since \tilde{c} is trivial in X, we have $g_x g_x^{-1} = \tilde{c}(f(x), f(x'))$. The restriction of \tilde{c} to Y is equivalent to $c'|_Y = c$ and satisfies the required identity.

Conversely, assume now that condition (ii) holds. Let c be the standard coloring of $B(f)$. Then $c|_Y$ is equivalent to some coloring \tilde{c} such that $\tilde{c}(f(x), f(x')) = g_x g_x^{-1}$ for every $(x, x') \in E(X)$ and some family $\{g_x\}_{x \in X}$. By Lemma 5.1, \tilde{c} extends to an $\mathcal{H}(B(f), x_0)$-coloring \tilde{C} of $B(f)$ equivalent to c. Define for each $x \in X$, $h_x = \tilde{C}(f(x), x)$. Since \tilde{C} is admissible, for every $(x, x') \in E(X)$ we have

$$h_x \tilde{C}(x, x') = \tilde{C}(f(x), f(x'))h_{x'} = g_x g_x^{-1} h_{x'}.$$

Thus, $\tilde{C}(x, x') = h_x^{-1} g_x g_x^{-1} h_{x'}$. Choosing for every $x \in X$, $k_x = g_x^{-1} h_x$, we obtain a coloring c' of $B(f)$, equivalent to \tilde{C}, and such that $c'|_X$ is trivial. Therefore we obtain a coloring of $B(f)$ equivalent to the standard coloring c which is trivial in X. Then $1_{\mathcal{H}(B(f), x_0)} = W_c = \varphi W_{c'}$ for some $\varphi \in \text{Aut}(\mathcal{H}(B(f), x_0))$. Hence, if ξ is a closed edge-path in X, the class $i_*([\xi])$ of ξ in $\mathcal{H}(B(f), x_0)$ is $[\xi] = W_c([\xi]) = \varphi W_{c'}([\xi]) = 1$. This says that $i_* = 0$ and then $f_* = 0$.

Remark 5.7. When A is a connected subdiagram of a connected locally finite poset X, the inclusion $i : A \hookrightarrow X$ induces the trivial homomorphism between the fundamental groups if and only if for every group G, each admissible G-coloring of X is equivalent to a coloring which is trivial in A. This follows directly from Lemma 4.1 and the last theorem.

Recall that a digon is called simple if it consists of two monotonic edge-paths from a point x to a point y which have no common vertex other than x and y.

Proposition 5.8. Let Y be a connected locally finite T_0-space, $y_0 \in Y$ and let $(a, b) \in E(Y)$. Let X be the space corresponding to the subdiagram of Y obtained when removing the edge (a, b). If (a, b) is contained in a simple digon, the map $i_* : \pi_1(X, y_0) \to \pi_1(Y, y_0)$ induced by the inclusion is an epimorphism.
Definition 6.1. Given a cellular poset X, the homology of a p-cellular chain complex (C_*, d) is defined as follows

$$C_p := H_p(X^p, X^{p-1}) = \bigoplus_{\deg(x) = p} H_{p-1}(\hat{U}_x).$$
which is a free abelian group with one generator for each element of X of degree p. The differential $d : C_p \to C_{p-1}$ is the standard map of the triple (X^p, X^{p-1}, X^{p-2}), i.e. it is the composition

$$H_p(X^p, X^{p-1}) \xrightarrow{\partial} H_{p-1}(X^{p-1}) \xrightarrow{j} H_{p-1}(X^{p-1}, X^{p-2}).$$

Here j is the canonical map induced by the inclusion.

In case $X = \mathcal{X}(L)$ for some regular CW-complex L, the cellular chain complex of X coincides with the cellular chain complex of L.

The following result is proved in [13] for finite posets but it holds in the locally finite context as well.

Theorem 6.2. Let X be a cellular poset and let (C_*, d) be its cellular chain complex. Then $H_*(C_*) = H_*(X)$.

If we choose a generator of $H_{p-1}(\hat{U}_x) = \mathbb{Z}$ for every $x \in X$ of degree p, we can identify C_p with the free abelian group with basis $\{x \in X, \deg(x) = p\}$. It is not hard to prove that the differential $d : C_p \to C_{p-1}$ has the form

$$d(x) = \sum_{w \prec x} \epsilon(x, w)w$$

where the incidence number $\epsilon(x, w) \in \mathbb{Z}$ is the degree of the map

$$\tilde{\partial} : \mathbb{Z} = H_{p-1}(\hat{U}_x) \to H_{p-2}(\hat{U}_w) = \mathbb{Z},$$

which coincides with the connecting morphism of the Mayer-Vietoris sequence associated to the open cover $\hat{U}_x = (U_x - \{w\}) \cup U_w$. This means that $\tilde{\partial}(x) = \epsilon(x, w)w$, where x and w represent the chosen generators of $H_{p-1}(\hat{U}_x)$ and $H_{p-2}(\hat{U}_w)$ respectively.

Note that if X is a cellular poset, so is any covering of X, since this is a local property.

Suppose now that $E \to X$ is a regular covering of a cellular poset X with deck transformation group equal to G. By Theorem [3.6] $E = E(c)$ for an appropriate G-coloring c. Recall that $E(c) = \{(x, g) \mid x \in X, g \in G\}$ with the relations $(x, g) \prec (y, gc(x, y))$ whenever $x \prec y$ in X. If we choose the generator of each $H_{p-1}(\hat{U}_{(x,h)})$ by lifting the generator of $H_{p-1}(\hat{U}_x)$, the differential $d : C_p(E) \to C_{p-1}(E)$ of the cellular chain complex of E satisfies

$$d(x, g) = \sum_{w \prec x} \epsilon(x, w)(w, gc(w, x)^{-1}).$$

Note that $C_p(E)$ is a free left $\mathbb{Z}G$-module with basis $\{x \in X, \deg(x) = p\}$, identifying (x, g) with gx. With this identification, the differential $d : C_p(E) \to C_{p-1}(E)$ is the $\mathbb{Z}G$-linear map which in the basis elements is defined by

$$d(x) = \sum_{w \prec x} \epsilon(x, w)c(w, x)^{-1}w.$$

This formula allows us to compute the homology of any regular covering of a cellular poset directly from the corresponding coloring.

Now let X be a connected cellular poset. Choose a simply-connected subdiagram D of X containing all the points of X and consider the group G defined in Theorem [4.4]. Recall that G is a group isomorphic to $\pi_1(X)$ generated by the edges not in D and with relations given by digons. Construct the G-coloring \hat{c} following the proof of Theorem [4.4] The color of an edge e is its class \overline{e} in G. By the proof of [4.4], the weight map $W_\hat{c}$ associated to this
coloring is an isomorphism and then Theorem 3.3 says that this coloring corresponds to the trivial subgroup of \(\pi_1(X) \). Therefore the covering \(E(\hat{c}) \) is the universal covering \(\tilde{X} \) of \(X \). Now we use this coloring to compute the homology of \(\tilde{X} \) as above, and by Hurewicz theorem, this provides a method to compute \(\pi_2(X) = \pi_2(\tilde{X}) = H_2(\tilde{X}) \).

When \(X \) is a connected cellular poset of height 2, \(\pi_2(X) \) is easier to describe. If \((w,x)\) is an edge of \(X \), \(\overline{wx} = \hat{c}(w,x) \) denotes its class in the group \(G \simeq \pi_1(X) \). A chain \(\alpha \in C_2(E) = \mathbb{Z} G \otimes C_2(X) \) is a finite sum of the form

\[
\alpha = \sum_{\deg(x)=2} \sum_{g \in G} n^x_g gx
\]

where \(n^x_g \in \mathbb{Z} \). Then \(\alpha \in \ker(d) = \pi_2(X) \) if and only if

\[
d(\alpha) = \sum_{\deg(x)=2} \sum_{g \in G} \sum_{w \prec x} \epsilon(w,x) n^x_g (\overline{wx})^{-1} w = 0 \in C_1(E) = \mathbb{Z} G \otimes C_1(X).
\]

In other words

\[
\pi_2(X) = \{ \sum_{\deg(x)=2} \sum_{g \in G} n^x_g gx \mid \sum_{x \succ w} \epsilon(w,x) n^w_h \overline{wx} = 0 \ \forall \ w \in X \ \text{with} \ \deg(w) = 1 \ \text{and} \ \forall \ h \in G \}.
\]

Example 6.3. Consider the cellular poset \(X \) of Figure 9. The subdiagram given by the solid edges is simply-connected. The fundamental group \(G \) of \(X \) is generated by the 4 dotted edges of \(X \). The relations of admissibility given by digons imply that 3 of these edges represent the same element \(a \) while the fourth \((v,y)\) represents \(a^{-1} \). Thus \(G = \langle a \rangle \) is the infinite cyclic group.

It is easy to compute the incidence numbers \(\epsilon \) for each edge \((q,p)\) between an element of degree 1 and one of degree 2. One just chooses a generating 1-cycle of \(H_1(\hat{U}_p) \) and considers the direction in which this cycle passes through \(q \). For instance, the generator of \(H_1(\hat{U}_x) \) goes through \(u \) in one direction and through \(t \) in the opposite. It does not touch \(v \). Therefore, for some choice of the generators of \(H_1(\hat{U}_x), H_1(\hat{U}_u) \) and \(H_1(\hat{U}_t) \), we have \(\epsilon(x,u) = 1, \epsilon(x,t) = -1 \) and \(\epsilon(x,v) = 0 \). After computing the 11 values of \(\epsilon \), we obtain the equations describing \(\pi_2(X) \). We have one equation for each element of \(X \) of degree 1 and \(h \in G \):

\[\text{Figure 9. A poset } X \text{ with } \pi_1(X) = \mathbb{Z} \text{ and } \pi_2(X) \text{ equals the free } \mathbb{Z}[\pi_1(X)]\text{-module with 2 generators.}\]
Equations for u: $n_{ha}^x + n_{ha}^y = 0$

Equations for t: $-n_{ha}^x - n_{ha}^y = 0$

Equations for v: $0 = 0$

Equations for s: $n_{ha}^z + n_{ha}^w = 0$

Equations for r: $-n_{ha}^z - n_{ha}^w = 0$

Therefore $\pi_2(X)$ is the $\mathbb{Z}G$-module generated by $ax - y$ and $z - w$, i.e. it is the free $\mathbb{Z}[\pi_1(X)]$-module on two generators. In fact it can be proved that the space X is weak homotopy equivalent to $S^1 \vee S^2 \vee S^2$.

Example 6.4. Consider again the poset of Figure 1 which is a model of the projective plane, and its \mathbb{Z}_2-coloring corresponding to the universal cover. Applying the equations above, one can easily verify that $\pi_2(X) \cong \mathbb{Z}$ (the second homotopy group of the projective plane).

Theorem 6.5. Let X be a connected cellular poset and let $D \subset X$ be the subdiagram of the Hasse diagram of X consisting of all the edges between points of height 1, 2 and 3 (and its vertices). If the inclusion of each connected component of D in X induces the trivial map on fundamental groups, then $\pi_2(X) = \mathbb{Z}[\pi_1(X)] \otimes H_2(X)$.

Proof. Consider the standard coloring of X. By Remark 1.2, there exists an equivalent coloring c such that $c(w, x) = 1$ for all edges (w, x) in D. This coloring c also corresponds to the universal cover $\tilde{X} \to X$. By Hurewicz Theorem, $\pi_2(X) = H_2(\tilde{X})$. Since the edges of D are colored with 1, it follows that

$$d_n = 1 \otimes \delta_n : C_n(\tilde{X}) = \mathbb{Z}G \otimes C_n(X) \to C_{n-1}(\tilde{X}) = \mathbb{Z}G \otimes C_{n-1}(X).$$

For $n = 2, 3$. Here $\delta_n : C_n(X) \to C_{n-1}(X)$ denotes the boundary map of the cellular complex of X. Since $\mathbb{Z}G$ is a free \mathbb{Z}-module, $H_2(\tilde{X}) = \mathbb{Z}G \otimes H_2(X)$ by the K"unneth formula. \qed

Corollary 6.6. Let X be a connected cellular poset of height 2 and let D be the graph consisting of the edges between the points of height 1 and 2 (and the vertices of these edges). If the inclusion of each component of D in X induces the trivial map on fundamental groups, then $\pi_2(X)$ is a free $\mathbb{Z}[\pi_1(X)]$-module with the same rank as the free \mathbb{Z}-module $H_2(X)$.

When X is simply-connected, this is the Hurewicz theorem for dimension 2.

Note that the coloring in Example 6.3 is equivalent to a coloring with trivial colors in all the edges between points of height 1 and 2 (changing the colors of edges adjacent to x and v). Therefore one can easily deduce that $\pi_2(X)$ is a free $\mathbb{Z}[\pi_1(X)]$-module without needing to compute $\pi_2(X)$ completely.

Corollary 6.7. Let K be a connected regular CW-complex of dimension 2 and let K' be its barycentric subdivision. Consider the graph $L \leq K'$ generated by the 1-simplices of K' which do not contain vertices of K. If the inclusion of each component of L in K' induces the trivial morphism between the fundamental groups, then $\pi_2(K) = \mathbb{Z}[\pi_1(K)] \otimes H_2(K)$.

Proof. The weak homotopy equivalence $\mu : K' \to \mathcal{X}(K)$ restricts to a weak equivalence $L \to D$ where D is the subdiagram of $\mathcal{X}(K)$ considered in the statement of Corollary 6.6. Moreover, for each component L_i of L, $\mu|_{L_i}$ is a weak equivalence between L_i and a component D_i of D. If $L_i \hookrightarrow K'$ induces the trivial map in π_1, then so does the inclusion $D_i \hookrightarrow \mathcal{X}(K)$. The result then follows from Theorem 6.5. \qed
Corollary 6.7 can be restated as follows: If every closed edge-path of \(K' \) containing no vertex of \(K \) is equivalent to the trivial edge-path, then \(\pi_2(K) = \mathbb{Z}[\pi_1(K)] \otimes H_2(K) \).

There is an obvious generalization of Corollary 6.7 to connected regular CW-complexes with no restriction on the dimension.

Corollary 6.8. Let \(K \) be a connected regular CW-complex. If every closed edge-path of \(K' \) containing only vertices which are barycenters of 1, 2 or 3-dimensional simplices is equivalent to the trivial edge-path, then \(\pi_2(K) = \mathbb{Z}[\pi_1(K)] \otimes H_2(K) \).

The following is another application of our methods (compare with [24]).

Theorem 6.9. Let \(X \) and \(Y \) be two connected CW-complexes. If \(Y \) is simply-connected, then \(\pi_2(X \lor Y) = \pi_2(X) \oplus (\mathbb{Z}[\pi_1(X)] \otimes \pi_2(Y)) \).

Proof. Since each CW-complex is homotopy equivalent to a simplicial complex, it suffices to prove the result for cellular posets \(X \) and \(Y \). Here, \(X \lor Y \) denotes the space whose Hasse diagram is obtained from the diagrams of \(X \) and of \(Y \) by identifying a minimal element of each. Let \(c \) be the standard coloring of \(X \lor Y \). Then \(c \) is a \(G \)-coloring with \(G \simeq \pi_1(X \lor Y) \simeq \pi_1(X) \). Since \(Y \) is simply-connected, there is an equivalent \(G \)-coloring \(c' \) which is trivial in \(Y \). The restriction of \(c' \) to \(X \) is an admissible connected \(G \)-coloring. Moreover, if a closed edge-path in \(X \) is in \(\ker(W_c|_X) \), then it is in \(\ker(W_c) = 0 \). Thus, it is trivial in \(\mathcal{H}(X \lor Y) \) and then in \(\mathcal{H}(X) \), since the inclusion \(X \hookrightarrow X \lor Y \) induces an isomorphism between the fundamental groups. Therefore, \(c'|_X \) corresponds to the universal cover of \(X \).

Let \(\tilde{X} \lor \tilde{Y} = E(c') \) be the universal cover of \(X \lor Y \). Note that

\[
C_n(\tilde{X} \lor \tilde{Y}) = \mathbb{Z}[G] \otimes C_n(X \lor Y) = (\mathbb{Z}[G] \otimes C_n(X)) \oplus (\mathbb{Z}[G] \otimes C_n(Y))
\]

for \(n = 1, 2 \). Since \(c'|_X \) corresponds to the universal cover of \(X \) and \(c'|_Y \) is trivial, the differential

\[
d : (\mathbb{Z}[G] \otimes C_2(X)) \oplus (\mathbb{Z}[G] \otimes C_2(Y)) \to (\mathbb{Z}[G] \otimes C_1(X)) \oplus (\mathbb{Z}[G] \otimes C_1(Y))
\]

has the form \(d = d_\tilde{X} \oplus (1_{\mathbb{Z}[G]} \otimes d_Y) \), where \(d_\tilde{X} : C_2(\tilde{X}) \to C_1(\tilde{X}) \) is the differential in the cellular chain complex of the universal cover of \(X \) and \(d_Y : C_2(Y) \to C_1(Y) \) is the differential in the cellular chain complex of \(Y \). By the Künneth formula,

\[
\pi_2(X \lor Y) = \ker(d) = H_2(\tilde{X}) \oplus (\mathbb{Z}[G] \otimes H_2(Y)) = \pi_2(X) \oplus (\mathbb{Z}[G] \otimes \pi_2(Y)).
\]

\(\square \)

Results on asphericity. We use the methods developed above to study asphericity of two-dimensional complexes and group presentations.

Theorem 6.10. Let \(K \) be a 2-dimensional regular CW-complex and let \(K' \) be its barycentric subdivision. Consider the full (one-dimensional) subcomplex \(L \subseteq K' \) spanned by the barycenters \(b(\tau) \) of the 2-cells \(\tau \) of \(K \) and the barycenters of the 1-cells which are faces of exactly two 2-cells. Suppose that for every connected component \(M \) of \(L \), \(i_* : \pi_1(M) \to \pi_1(K') \) contains an element of infinite order, where \(i_* : \pi_1(M) \to \pi_1(K') \) is the map induced by the inclusion. Then \(K \) is aspherical.

Proof. Let \(x = \tau \) be a maximal element of \(\mathcal{X}(K) \). Let \(\hat{c} \) be the \(G \)-coloring of \(\mathcal{X}(K) \) constructed in Theorem 4.4 and let \(W = W_{\hat{c}} : \mathcal{H}(\mathcal{X}(K), x) \to G \) be the weight map induced by \(\hat{c} \). By the proof of Theorem 4.4, \(W \) is an isomorphism. Let \(h \in G \). We will show that \(n^h_k = 0 \). From the equations describing \(\pi_2(\mathcal{X}(K)) = \pi_2(K) \), we will deduce that \(K \) is
aspherical. Let Y be the subspace of $X(K)$ consisting of the 2-cells and the 1-cells which are faces of exactly two 2-cells. Note that $K(Y) = L$. Since $i_\ast(\pi_1(L, b(\tau)))$ contains an element of infinite order and W is an isomorphism, there is a closed edge-path ξ at x in Y of weight $w(\xi) \in G$ of infinite order. We may assume that ξ is an edge-path of minimum length satisfying this property. Suppose ξ is the edge-path $x = x_0 \succ w_0 \prec x_1 \succ \ldots \succ w_{k-1} \prec x_k = x$. By the minimality of ξ, $x_{i+1} \neq x_i$ for every $0 \leq i < k$. Since x_i and x_{i+1} are the unique two elements covering w_i, the equation corresponding to w_i and an element $g \in G$ is

$$
\epsilon(w_i, x_i) n^x_i g c(w_i, x_i) + \epsilon(w_i, x_{i+1}) n^{x_{i+1}} g c(w_i, x_{i+1}) = 0
$$

Since K is a regular CW-complex, $\epsilon(w_i, x_i) = \pm 1$ and $\epsilon(w_i, x_{i+1}) = \pm 1$. In particular, given $g \in G$, if $n^x_i g \neq 0$, then $n^{x_{i+1}} g c(w_i, x_i) \neq 0$.

Suppose that $n^x_{h(w(\xi))} \neq 0$. Applying the previous implication $k + 1$ times we obtain that $n^x_{h(w(\xi))} \neq 0$. Repeating this reasoning we deduce that $n^x_{h(w(\xi))} \neq 0$ for every $l \geq 0$. However, $w(\xi) \in G$ has infinite order and this contradicts the fact that only finitely many n^x_g can be non-zero.

Note that from the previous result one deduces the well-known fact that all compact surfaces different from S^2 and $\mathbb{R}P^2$ are aspherical. Any triangulation K of such surfaces satisfies the hypotheses of the theorem since every edge of K is face of exactly two 2-simplices and the links of the vertices are connected.

Example 6.11. The pinched two-handled torus and the wedge of two torii (Figure 10) are aspherical by Theorem 6.10.

![Figure 10. Aspherical two-complexes.](image)

We derive from Theorem 6.10 a result on asphericity of group presentations. This result resembles in some sense the homological description of π_2 using Reidemeister chains [21, Thm 3.8] (See also [6]). Given a group presentation P, let K_P be the usual two-dimensional CW-complex associated to the presentation, which has one 0-cell, one 1-cell for each generator and one 2-cell for each relator. The presentation P is called aspherical if K_P is aspherical. In order to study asphericity of P, we will construct a digraph D_P associated to P together with a G-coloring. First note that the notion of a G-coloring naturally extends to directed graphs. A G-coloring of a digraph D is a labeling of the edges of D by elements in G. We allow loops and parallel edges which could have different colors. The color of the inverse of an edge e is the inverse $c(e)^{-1}$ of the color of e. A G-coloring c
induces a weight map \(w_e \). If \(\alpha = e_0 e_1 \ldots e_n \) is a cycle in the underlying undirected graph of \(D \) (for each \(i, e_i \) is an edge of \(D \) or \(e_i^{-1} \) is an edge of \(D \)), then \(w_e(\alpha) = c(e_0)c(e_1)\ldots c(e_n) \).

Let \(P = \langle a_1, a_2, \ldots, a_k \mid r_1, r_2, \ldots, r_s \rangle \) be a presentation of a group \(G \). The vertices of the directed graph \(D_P \) are the letters \(a_i \) which appear in total exactly twice in the words \(r_1, r_2, \ldots, r_s \). So, \(a_i \) appears either with exponent 2 or -2 in one of the relators and does not appear in any other relator, or it appears twice (in the same relator or in two different relators) with exponent 1 or -1 each time. Each vertex of \(D_P \) will be the source of exactly two oriented edges and the target of two directed edges. Let \(r = r_j = a_i^\varepsilon_0 a_i^{\varepsilon_1} \ldots a_i^{\varepsilon_{l-1}} \) be one of the relators of \(P \), \(\varepsilon_l = \pm 1 \) for every \(l \in \mathbb{Z} \). We consider \(r \) as a cyclic word, so for example \(a_i \) comes after \(a_{i_0} \) and \(a_{i_0} \) comes after \(a_{i_1} \). Suppose \(a_{i_l} \) is a vertex of \(D_P \). We consider the first letter \(a_{i_{l+1}} \) coming after \(a_{i_l} \) which is a vertex of \(D_P \) (i.e. the minimum \(m > 0 \) such that \(a_{i_{l+m}} \in D_P \)). It could be a letter different from \(a_{i_0} \) or the same letter if \(a_{i_l} \) appears twice in \(r \) or if it appears once and no other \(a_{i_0} \) is a vertex of \(D_P \). Then \((a_{i_l}, a_{i_{l+m}}) \) is a directed edge of \(D_P \) and the color corresponding to that edge is the subword \(g a_{i_l} a_{i_{l+2}} \ldots a_{i_{l+m-1}} h \in G \) where \(g = 1 \) if \(\varepsilon_l = 1 \) and \(g = a_i^{\varepsilon_l} \) if \(\varepsilon_l = -1 \), \(h = 1 \) if \(\varepsilon_{l+m} = -1 \) and \(h = a_i^{\varepsilon_{l+m}} \) if \(\varepsilon_{l+m} = 1 \).

The next example illustrates the situation.

Example 6.12. Figure 11 shows the digraph \(D_P \) corresponding to the presentation \(P = \langle a, b, c, d, e \mid b^3 c a^{-1} b^{-1} d b a, c^{-1} d e b c \rangle \). Its vertices are \(a, c, d \) and \(e \).

![Figure 11. The digraph \(D_P \) associated to \(P \).](image)

Theorem 6.13. Let \(P \) be a presentation of a group \(G \). Suppose that every relator in \(P \) contains a letter which is a vertex of \(D_P \). If each component of \(D_P \) contains a cycle whose weight has infinite order in \(G \), then \(P \) is aspherical.

Proof. We subdivide \(K_P \) barycentrically to obtain a regular CW-complex \(K \) as usual. Each 1-cell corresponding to a generator \(a \) in \(P \) is subdivided in two 1-cells \(e_{a_0} \) and \(e_{a_1} \) sharing the unique vertex \(v \) of \(K_P \) and a new vertex \(v_a \). The 2-cell \(f_a \) corresponding to a relator \(r \) of \(P \) is subdivided in 2m 2-cells where \(m \) is the number of letters in \(r \), adding a new 0-cell \(v_r \) in the interior of the original 2-cell. Let \(L \) be the 1-dimensional subcomplex of \(K' \) defined as in the statement of Theorem 6.10. The vertices of \(L \) are the barycenters of the 2-cells of \(K \) and the barycenters of the 1-cells which are faces of exactly two 2-cells.
In the interior of the cell f_r there are exactly $4m$ vertices of L (the barycenters of the $2m$ 2-cells and the barycenters of the $2m$ edges from v_r to v and to each v_a). This 1-dimensional complex of $4m$ vertices is a cycle that we denote C_r. The remaining vertices of L are the barycenters $b(e_{a_0})$ and $b(e_{a_1})$ for each letter a which is a vertex of D_P. We show that the hypotheses of the theorem ensure that the hypotheses of Theorem 6.10 are fulfilled.

Since each relator contains a letter which is a vertex of D_P, the components of D_P are in bijection with the components of L. Suppose a and c are vertices of D_P and that there is an edge $(a, c) \in D_P$ (or (c, a)). Then, there is a relator r of P such that a and c are letters of r. Since $a, c \in D_P$, $b(e_{a_1})$ and $b(e_{c_1})$ are vertices of L and they lie in the 2-cell f_r of K_P corresponding to r. Moreover, there is an edge in L from $b(e_{a_1})$ to the cycle C_r and an edge from $b(e_{c_1})$ to C_r. Therefore there is and edge-path in L from $b(e_{a_1})$ to $b(e_{c_1})$ entirely contained in f_r (see Figure 12). A cycle α in D_P with base point a, has associated then a closed edge-path ξ in L at $b(e_{a_1})$. We will show that the order of ξ in $E(K', b(e_{a_1}))$ is infinite or, equivalently, that the order of $\xi = (v, b(e_{a_1}))\xi(b(e_{a_1}), v) \in E(K', v)$ is infinite. The edge-path ξ' obtained from ξ by inserting the edge-paths $(b(e_{l_1}), v)(v, b(e_{l_1}))$ at each vertex $b(e_{l_1})$ (l a letter in α) is equivalent to ξ. Suppose $a = l^0, l^1, \ldots, l^k = a$ are the vertices of α. The edge-path ξ' is a composition of closed edge-paths γ_i in K' at v, each of them contained in a 2-cell f_{r_i}. The edge-path γ_i, as an element of $\pi_1(K, v)$, is homotopic to a loop contained in the boundary of f_{r_i} which is, as an element of G, the color of the
edge \((l^i, l^{i+1})\) in \(\alpha\). Thus, \(\hat{\xi}' \in \pi_1(K,v) \simeq G\) coincides with the weight of \(\alpha\) and the first one has infinite order provided the second one does.

\[\square\]

In Example 6.12 there is an edge from \(c\) to \(d\) with color \(c^{-1}d\), an edge from \(a\) to \(d\) with color \(a^{-1}b^{-1}d\) and an edge from \(a\) to \(c\) with color \(b^2c\). Therefore, there is a cycle with base point \(c\) whose weight is \(c^{-1}(a^{-1}b^{-1}d)^{-1}b^2c = c^{-1}bab^2c \in G\). It is easy to verify that this element has infinite order, since \(a + 3b\) clearly has infinite order in the abelianization \(G/[G : G]\). Since \(D_P\) has a unique component and both relators of \(P\) have at least one letter in \(D_P\), Theorem 6.13 applies. This shows that \(P\) is aspherical.

7. Boards on surfaces

In the previous sections we used colorings to study problems of topological nature. In this section we exhibit an application in a different direction. Consider the following elementary combinatorial problem. Let \(n\) and \(m\) be positive integers and suppose we have an \(n \times m\) rectangular board. The edges of the squares in the board are colored either with blue or with red, and one such coloring is called valid if for each square of the board exactly 0, 2 or 4 of its edges are colored with blue. A possible move is to pick a vertex of the board and change the colors of all the (two, three or four) edges incident to that vertex, blue by red and red by blue. Prove that if \(c\) and \(c'\) are two valid colorings of the board, then it is possible to obtain \(c'\) from \(c\) by performing a finite sequence of moves.

![Figure 13. On the left, a 4 \times 5 board and a valid coloring. The solid edges represent color blue and the dotted edges red. On the right, the Hasse diagram of the poset \(I_4 \times I_5\) in which the orientation of the edges is indicated with an arrow. The corresponding admissible coloring is represented using solid edges for the identity of \(Z_2\) and dotted edges for the non-trivial element.]

We give a solution using the methods described in this paper. Let \(I_n\) be the poset \(0 < 1 > 2 < 3 > \ldots n\). Then \(I_n\) and \(I_m\) are contractible and therefore, so is the product \(I_n \times I_m\). In particular any two admissible \(Z_2\)-colorings of \(I_n \times I_m\) are equivalent. The Hasse diagram of \(I_n \times I_m\) is an \(n \times m\) board where the edges of the diagram coincide with edges of the squares (see Figure 13). A \(Z_2\)-coloring is a coloring of the edges with colors \(0 = \text{blue}\) and \(1 = \text{red}\). The admissibility of the coloring is equivalent to the validity. Finally, the equivalence of \(Z_2\)-colorings is the same as the existence of moves taking one coloring to the other.
Suppose now that we have a cylindrical board, obtained from the $n \times m$ board by identifying the top edge of each square in the first row with the bottom edge of the square in the last row and the same column. Note that the notions of valid colorings and moves still make sense. In this case there exist two valid colorings such that none of them can be obtained from the other by performing allowed moves. However, given any three valid colorings, there are two of them which are related by a sequence of moves.

To see this consider, when $n \geq 4$ is even, the poset C_n which is obtained from I_n by identifying 0 and n. It is the poset $0 < 1 > 2 < \ldots < n - 1 > 0$ (see Figure 14).

![Figure 14. C_8 and C_9.](image)

The fundamental group of C_n, and also of $C_n \times I_m$ is infinite cyclic. As in the first case, the edges of the Hasse diagram of $C_n \times I_m$ are in correspondence with edges of squares in the board and admissibility equals validity of the coloring. Since \mathbb{Z}_2 is a quotient of \mathbb{Z}, by Theorem 3.3 there exists an admissible and connected \mathbb{Z}_2-coloring c of $C_n \times I_m$. The coloring c is connected and therefore it cannot be equivalent to the trivial coloring. In this way we obtain non-equivalent colorings of the board. In the case that $n \geq 5$ is odd, we define C_n again by identifying 0 and n in I_n. It is the poset $0 < 1 > 2 < \ldots > n - 1 > 0$. Now the height of C_n is two but it still has fundamental group isomorphic to \mathbb{Z}. The vertices and edges in the Hasse diagram of $C_n \times I_m$ are still in correspondence with vertices and edges in the cylindrical board. It is still true that validity of a coloring is equivalent to admissibility although this is a little harder to see. Therefore, also when n is odd, there are two colorings of the board where one cannot be obtained from the other and they correspond to a connected and a non-connected \mathbb{Z}_2-coloring of $C_n \times I_m$. Now, if c is a non-connected admissible \mathbb{Z}_2-coloring of a poset X, it induces the trivial weight $W = W_c : H(X, x_0) \to \mathbb{Z}_2$ and, by the proof of Lemma 4.1, it is equivalent to the trivial coloring. Hence, two non-connected \mathbb{Z}_2-colorings of $C_n \times I_m$ are equivalent. On the other hand, there exists a unique normal subgroup $N \triangleleft \mathbb{Z}$ such that \mathbb{Z}/N is isomorphic to \mathbb{Z}_2. It follows from Theorem 3.3 that any two connected admissible \mathbb{Z}_2-colorings of $C_n \times I_m$ are equivalent. Finally we deduce that in any three valid colorings of the cylindrical board, there are two such that one can be obtained from the other by a sequence of allowed moves.

Of course these results can be applied in other examples. The analysis of the toric board, obtained by identifying left and right edges of the rectangular board as well as the top and the bottom, is similar to the cylindrical one but considering the poset $C_n \times C_m$. In this case it is not longer true that in any three valid colorings there are two equivalent since there are two different subgroups of $\mathbb{Z} \times \mathbb{Z}$ of index 2.

Appendix

Coverings of A-spaces and posets.

Proposition A.1. Let $p : E \to B$ be a (topological) covering map. If B is an A-space, then so is E.

Proof. Let \(\{ U_\alpha \} \) be an arbitrary family of open sets of \(E \) and let \(e \in \bigcap U_\alpha \). Let \(U \) be an open neighborhood of \(e \) and \(V = p(U) \) an open neighborhood of \(p(e) \) such that \(p|_U : U \to V \) is a homeomorphism. Then \(p(U \cap U_\alpha) \) is an open subset of \(B \) for every \(\alpha \) and since \(B \) is an \(A \)-space, \(\bigcap p(U \cap U_\alpha) = p(U \cap \bigcap U_\alpha) \) is open. Thus, \(U \cap \bigcap U_\alpha \) is an open neighborhood of \(e \) contained in \(\bigcap U_\alpha \). This shows that \(\bigcap U_\alpha \) is open. \(\square \)

With the same proof one can see that the last proposition remains valid when \(p \) is just a local homeomorphism. Moreover if \(f : X \to Y \) is a surjective local homeomorphism and \(X \) is an \(A \)-space, then so is \(Y \).

Remark A.2. Let \(p : E \to B \) be a covering. If \(B \) is \(T_0 \), so is \(E \). It is clear that two points of \(E \) in different fibers can be separated since \(B \) is \(T_0 \). If two points are in the same fiber, they can also be separated since \(p \) is a covering.

Remark A.3. Let \(p : E \to B \) be a covering and suppose \(A \) is a connected and locally connected subspace of \(B \). If \(C \) is a connected component of \(p^{-1}(A) \), then \(p|_C : C \to A \) is a covering.

Proposition A.4. Let \(B \) be an \(A \)-space and let \(p : E \to B \) be a covering. Then \(p^{op} : E^{op} \to B^{op} \) is also a covering.

Proof. It follows from the fact that the closure \(F_b^B \) of every \(b \in B \) is simply-connected and the previous remark. See also Theorem A.13. \(\square \)

All the categories that we work with will be assumed to be small. Note that a preorder \((X, \leq)\) can be regarded as a category \(\mathcal{C} \) whose set of objects \(\text{Obj}(\mathcal{C}) \) is \(X \) and with a unique morphism from an object \(x \) to an object \(y \) if \(x \leq y \). Conversely, any category \(\mathcal{C} \) which satisfies that for any two objects \(x, y \) there is at most one morphism \(\alpha \in \text{Mor}(\mathcal{C}) \) whose source \(s(\alpha) \) is \(x \) and whose target \(t(\alpha) \) is \(y \), arises from a preorder in this way. A preorder, viewed as a category, is a poset if it has no isomorphisms other than the identities. Note also that order-preserving maps between two preorders correspond to functors between the categories.

We investigate now the relationship between topological coverings of \(A \)-spaces and coverings of categories. The definition of coverings for categories that we use extends the definition of coverings for groupoids \([8, 11, 15]\) and it is analogous to the definition of coverings for \(k \)-categories given in \([7]\).

Given a category \(\mathcal{C} \) and \(x \in \text{Obj}(\mathcal{C}) \), we define the sets \(\mathcal{U}_x = \{ \alpha \in \text{Mor}(\mathcal{C}) \mid t(\alpha) = x \} \) and \(\mathcal{F}_x = \{ \alpha \in \text{Mor}(\mathcal{C}) \mid s(\alpha) = x \} \). Recall that \(s(\alpha) \) and \(t(\alpha) \) denote respectively the source and the target of \(\alpha \). Note that any functor \(F : \mathcal{C} \to \mathcal{D} \) induces (set theoretic) functions \(F_{\mathcal{U}_x} : \mathcal{U}_x \to \mathcal{U}_{F(x)} \) and \(F_{\mathcal{F}_x} : \mathcal{F}_x \to \mathcal{F}_{F(x)} \).

Definition A.5. A functor \(F : \mathcal{C} \to \mathcal{D} \) is a covering if it is surjective on objects and \(F_{\mathcal{U}_x} \) and \(F_{\mathcal{F}_x} \) are bijections for each \(x \in \text{Obj}(\mathcal{C}) \).

Proposition A.6. Let \(\mathcal{D} \) be a category which is a preorder and let \(F : \mathcal{C} \to \mathcal{D} \) be a covering (in the categorical sense). Then \(\mathcal{C} \) is also a preorder.

Proof. If \(\alpha \) and \(\beta \) are morphisms from an object \(x \) to an object \(y \) in \(\mathcal{C} \), then \(F(\alpha), F(\beta) \in \text{Mor}(F(x), F(y)) \). Since \(\mathcal{D} \) is a preorder, \(F(\alpha) = F(\beta) \) and since \(F_{\mathcal{F}_x} \) is a bijection, \(\alpha = \beta \). \(\square \)

Example A.7. The following functor \(F \), which maps \(x_i \) to \(x \), \(y_i \) to \(y \), \(\alpha_i \) to \(\alpha \) and \(\beta_i \) to \(\beta \), is a covering from a preorder onto a category which is not a preorder.
Remark A.8. When C and D are preorders, an order-preserving map f between C and D is a covering in the categorical sense if and only if it is surjective and for each $x \in \text{Obj}(C)$, both $f|_{U_x} : U_x \to U_{f(x)}$ and $f|_{F_x} : F_x \to F_{f(x)}$ are bijections.

Proposition A.9. Let $f : X \to Y$ be an order-preserving map between preorders. Then, f is a covering of A-spaces in the topological sense if and only if it is a covering in the categorical sense.

Proof. Assume it is a topological covering and let $x \in X$. Then $U_{f(x)}$ is evenly covered, i.e. $f^{-1}(U_{f(x)})$ is a disjoint union $\coprod V_i$ of open subsets of X which are mapped homeomorphically to $U_{f(x)}$ by f. Suppose $x \in V_i$. Then $U_x \subseteq V_i$ and, since $f(U_x)$ is an open set which contains $f(x)$, $f(U_x) = U_{f(x)}$ and $f|_{U_x} : U_x \to U_{f(x)}$ is a homeomorphism. By Proposition A.8, the same argument shows that $f|_{F_x} : F_x \to F_{f(x)}$ is a homeomorphism. ByRemark A.8 f is a covering in the categorical sense.

Conversely, suppose f is a covering in the categorical sense. By Remark A.8, $f|_{U_x} : U_x \to U_{f(x)}$ and $f|_{F_x} : F_x \to F_{f(x)}$ are bijections for every $x \in X$. Let $y \in Y$. We will prove that $f^{-1}(U_y) = \coprod_{x \in f^{-1}(y)} U_x$ and that the restrictions $f|_{U_x} : U_x \to U_y$ are homeomorphisms for every $x \in f^{-1}(y)$. It is clear that $\bigcup_{x \in f^{-1}(y)} U_x \subseteq f^{-1}(U_y)$ because f is order preserving.

Let $x' \in X$ be such that $f(x') \leq y$. Since $f|_{F_{x'}} : F_{x'} \to F_{f(x')}$ is surjective, there exists $x \in F_{x'}$ such that $f(x) = y$. Therefore, $x' \in U_x$ with $x \in f^{-1}(y)$. This proves that $f^{-1}(U_y) \subseteq \bigcup_{x \in f^{-1}(y)} U_x$. We show that the union is disjoint. Suppose $x' \in U_{x_1} \cap U_{x_2}$ for $x_1, x_2 \in f^{-1}(y)$. Since $f|_{F_{x'}}$ is injective, $x_1 = x_2$. In order to show that $f|_{U_x} : U_x \to U_{f(x)}$ is a homeomorphism, it only remains to see that it is open. This is clear since for any $x' \leq x$, $f(U_{x')} = f(U_{x'}) = U_{f(x')}$. \hfill \square

Remark A.10. From the proof of Proposition A.9 we deduce that if $p : E \to B$ is a covering between A-spaces, then for every $b \in B$, U_b is evenly covered by $p^{-1}(U_b) = \coprod_{e \in p^{-1}(b)} U_e$.

Similarly F_b is evenly covered by $p^{-1}(F_b) = \coprod_{e \in p^{-1}(b)} F_e$.

Given an A-space X, there is a quotient X_0 of X, which is also a strong deformation retract of X, and consists of one representative in each equivalence class of the relation defined by $x \sim y$ if $x \leq y$ and $y \leq x$. Thus by definition, X_0 is a T_0-space. There is a correspondence between coverings of X and coverings of X_0 which associates to each covering $p : Y \to X$, the covering $p|_{p^{-1}(X_0)} : p^{-1}(X_0) \to X_0$. In order to obtain the covering of X corresponding to a covering $p : Y \to X_0$ we only need to add for every point
Corollary A.11. Let \(f : X \to Y \) be a continuous map between \(T_0 \)-\(A \)-spaces. Then \(f \) is a covering if and only if it is surjective and the preimage \(f^{-1}(c) \) of every finite chain \(c \) of \(Y \) is a disjoint union of chains of \(X \) (with the subspace topology) which are mapped homeomorphically to \(c \) by \(f \).

Proof. If \(f \) is a covering and \(c \) is a chain of \(Y \) with maximum \(y \), then \(f^{-1}(U_y) = \bigcup_{x \in f^{-1}(y)} U_x \) and \(f^{-1}(c) = \bigcup_{x \in f^{-1}(y)} (f|_{U_x})^{-1}(c) \). Conversely, assume \(f \) is surjective and that the preimage of any finite chain \(c \) is a disjoint union of chains mapped homeomorphically to \(c \). In particular, if \(x \in X \), for every \(y \in U_{f(x)} \) we have that \(f^{-1}(\{y, f(x)\}) \) is a disjoint union of chains, of length 1 if \(y \neq f(x) \) and of length 0 if \(y = f(x) \). Since \(x \) is the maximum of one of these chains, then there is one and only one element of \(U_x \) which is mapped by \(f \) to \(y \). Thus, \(f|_{U_x} : U_x \to U_{f(x)} \) is a bijection. The same is true for \(f|_{F_x} : F_x \to F_{f(x)} \) and therefore, \(f \) is a covering by Proposition A.9. \(\square \)

Relation with simplicial coverings. Let \(K \) be a simplicial complex. Every (topological) covering of \(K \), \(p : E \to K \), is equivalent to a covering \(\varphi : L \to K \) where \(L \) is a simplicial complex and \(\varphi \) is a simplicial map (22). Recall, once again, that two coverings \(p : E \to B \) and \(p' : E' \to B \) of the same base space \(B \) are equivalent if there is a homeomorphism \(h : E \to E' \) such that \(p'h = p \).

It is known that a simplicial map \(\varphi : L \to K \) is a covering if and only if the preimage of every simplex \(\sigma \in K \) is a disjoint union of simplices which are mapped isomorphically to \(\sigma \). Since we could not find a proof of this simple fact in the literature, we include here a sketch of the proof for the sake of completeness.

Given a simplicial map \(\varphi : L \to K \), and a simplex \(\sigma \in K \), we denote by \(\varphi^{-1}(\sigma) \) the subcomplex of \(L \) whose simplices are those simplices \(\tau \in L \) such that \(\varphi(\tau) \subseteq \sigma \). Note that the geometric realization of \(\varphi^{-1}(\sigma) \) is the preimage of the closed simplex \(\overline{\sigma} \) under the geometric realization of \(\varphi \).

Proposition A.12. Let \(\varphi : L \to K \) be a simplicial map. Then \(\varphi \) is a covering if and only if for every simplex \(\sigma \) of \(K \), \(\varphi^{-1}(\sigma) \) is a disjoint union of simplices of \(L \), each of which is mapped isomorphically to \(\sigma \) by \(\varphi \).

Proof. If \(\varphi : L \to K \) is a covering and \(\sigma \in K \), then by Remark A.3, \(\varphi^{-1}(\sigma) \) is a subcomplex of \(L \) which is a disjoint union of subcomplexes \(\tau_i \) mapped homeomorphically to \(\sigma \) by \(\varphi \). Then they are mapped isomorphically, and \(\tau_i \) is a simplex.

Conversely, assume that for each simplex \(\sigma \in K \), \(\varphi^{-1}(\sigma) = \bigsqcup \tau_i \) and that \(\varphi|_{\tau_i} : \tau_i \to \sigma \) are isomorphisms. We will show that there is an open cover of \(K \) by sets which are evenly covered. Concretely, we will see that for each \(v \in K \), the preimage of the open star of a vertex \(v \in K \) is

\[
\varphi^{-1}(\text{st}(v)) = \bigsqcup_{\varphi(w) = v} \text{st}(w)
\]

(1)

and that the restrictions \(\text{st}(w) \to \text{st}(v) \) of \(\varphi \) are homeomorphisms. Recall that the open star of the vertex \(v \) is the union of the open simplices containing \(v \). If \(w, w' \) are in
the fiber of v and their open stars intersect, then ww' is a simplex of $\varphi^{-1}(v)$. Since this is by assumption a union of 0-simplices, $w = w'$. Therefore the union is disjoint. The fact that the equality in (1) holds is a general fact for any simplicial map. Let $w \in \varphi^{-1}(v)$. In order to show that $\text{st}(w) \to \text{st}(v)$ is a homeomorphism, we will prove that the restriction of φ to the closed stars $\text{st}(w) \to \text{st}(v)$ is an isomorphism. Let v' be a vertex in $\text{st}(v)$, that is to say vv' is a simplex of K. If $v \neq v'$, $\varphi^{-1}(vv')$ is a disjoint union of 1-simplices. Therefore, there exists a unique vertex $w' \in \text{st}(w)$ such that $\varphi(w') = v'$. Define $\psi : \text{st}(v) \to \text{st}(w)$ by $\psi(v') = w'$ and $\psi(v) = w$. This map is simplicial since for a k-dimensional simplex $\sigma = \{v_0, v_1, \ldots, v_k\} \in \text{st}(v)$ containing v, $\varphi^{-1}(\sigma)$ is a disjoint union of k-simplices and then there exists a unique k-simplex $\tau \in L$ containing w and which is mapped isomorphically to σ by φ. Thus, $\psi(\sigma) = \tau$. Clearly ψ is the inverse of φ, so $\varphi|_{\text{st}(w)} : \text{st}(w) \to \text{st}(v)$ is an isomorphism. This homeomorphism restricts to a homeomorphism $\text{st}(w) \to \varphi(\text{st}(w)) = \text{st}(v)$.

Theorem A.13. Let B be a T_0-A-space. If $p : E \to B$ is a covering, then $\mathcal{K}(p) : \mathcal{K}(E) \to \mathcal{K}(B)$ is a covering. Moreover, the functor \mathcal{K} establishes a one-to-one correspondence between equivalence classes of coverings of B and equivalence classes of coverings of $\mathcal{K}(B)$.

Proof. Let $p : E \to B$ be a covering. The map $\mathcal{K}(p)$ is clearly surjective. Moreover, by Corollary A.11 the preimage of every simplex $\sigma \in \mathcal{K}(B)$ is a disjoint union of simplices mapped isomorphically to σ. Therefore $\mathcal{K}(p)$ is a covering.

Equivalent coverings of B are mapped to equivalent coverings of $\mathcal{K}(B)$. Suppose now that $p_1 : E_1 \to B$ and $p_2 : E_2 \to B$ are coverings of B such that there is a homeomorphism $h : \mathcal{K}(E_1) \to \mathcal{K}(E_2)$ with $\mathcal{K}(p_2)h = \mathcal{K}(p_1)$. It is easy to see that h is a simplicial map, so it induces a function $f : E_1 \to E_2$. We prove that f is continuous. If $e < e'$ in E_1, $\{e, e'\}$ is a simplex of $\mathcal{K}(E_1)$ and $h(\{e, e'\}) = \{f(e), f(e')\}$ is then a simplex of $\mathcal{K}(E_2)$. If $f(e) \leq f(e')$, then $p_1(e) = p_2f(e) \geq p_2f(e') = p_1(e')$ which is a contradiction since p_1 is a covering. Thus, $f(e) < f(e')$. Symmetrically, the inverse of h induces an order preserving map $g : E_2 \to E_1$ and this is the inverse of f. This shows that the application from classes of coverings of B to classes of coverings of $\mathcal{K}(B)$ is injective. To check surjectivity, consider a covering of $\mathcal{K}(B)$. It is equivalent to a simplicial covering $\varphi : K \to \mathcal{K}(B)$. Define an order in the vertex set E of K by $v \leq v'$ if $\{v, v'\}$ is a simplex of K and $\varphi(v) \leq \varphi(v')$. This relation is transitive since if $v \leq v' \leq v''$, then v, v' and v'' lie in the same simplex of $\varphi^{-1}(\{\varphi(v), \varphi(v'), \varphi(v'')\})$. It is not hard to see that $\mathcal{K}(E) = K$. Moreover the map $p : E \to B$ induced by the map φ in the vertices, is a covering by Corollary A.11 and Proposition A.12.

Note that, the fact that \mathcal{K} preserves coverings is a particular case of a more general result. It is not hard to see that the nerve functor from the category of small categories to the category of simplicial sets and the geometric realization functor from simplicial sets to spaces preserve coverings (see [11] for more details on the geometric realization functor and coverings of simplicial sets).

Theorem A.14. Let K be a simplicial complex. If $\varphi : L \to K$ is a simplicial covering, then $\mathcal{X}(\varphi) : \mathcal{X}(L) \to \mathcal{X}(K)$ is a covering. Moreover, the functor \mathcal{X} establishes a one-to-one correspondence between equivalence classes of coverings of K and equivalence classes of coverings of $\mathcal{X}(K)$.
Proof. Suppose \(\varphi : L \to K \) is a covering. Clearly \(\mathcal{X}(\varphi) \) is surjective. If \(\sigma \) is a simplex of \(K \), \(\varphi^{-1}(\sigma) = \bigsqcup \tau_i \) and \(\varphi|_{\tau_i} : \tau_i \to \sigma \) is an isomorphism. Then \(\mathcal{X}(\varphi)^{-1}(U_{\sigma}) = \bigsqcup U_{\tau_i} \), and \(\mathcal{X}(\varphi)|_{U_{\tau_i}} : U_{\tau_i} \to U_{\sigma} \) is a homeomorphism for every \(i \). Thus \(\mathcal{X}(\varphi) \) is a covering.

Equivalent coverings of \(K \) are mapped to equivalent coverings of \(\mathcal{X}(K) \). If \(h : \mathcal{X}(L_1) \to \mathcal{X}(L_2) \) is a homeomorphism such that \(\mathcal{X}(\varphi_2)h = \mathcal{X}(\varphi_1) \) for some coverings \(\varphi_1 \) and \(\varphi_2 \) of \(K \), we show that the latter two are equivalent. Since \(\mathcal{X}(\varphi_2)h = \mathcal{X}(\varphi_1) \) where \(\mathcal{X}(\varphi_1) \) and \(\mathcal{X}(\varphi_2) \) are coverings, \(h \) maps minimal elements of \(\mathcal{X}(L_1) \) to minimal elements of \(\mathcal{X}(L_2) \). Thus, it induces a vertex map \(\psi : L_1 \to L_2 \). Moreover, since \(h \) is order-preserving, bounded sets of minimal elements are mapped to bounded sets. Therefore, \(\psi \) is simplicial. The inverse of \(h \) induces a simplicial map \(L_2 \to L_1 \) which is the inverse of \(\psi \), so \(\varphi_1 \) and \(\varphi_2 \) are equivalent.

Suppose now that \(p : X \to \mathcal{X}(K) \) is a covering. Define the complex \(L \) whose vertices are the minimal elements of \(X \) and whose simplices are the bounded sets of minimal elements (cf. [1, Section 9.2]). Since \(p \) is a covering, it maps minimal elements to minimal elements, so it determines a vertex map \(\varphi : L \to K \), which is clearly simplicial since an upper bound of \(\{x_0, x_1, \ldots, x_k\} \) is mapped by \(p \) to an upper bound of \(\{p(x_0), p(x_1), \ldots, p(x_k)\} \). We will prove that \(\varphi \) is a covering and that \(\mathcal{X}(\varphi) \) is equivalent to \(p \). Define a map \(f : X \to \mathcal{X}(L) \) which maps an element \(x \in X \) to the set of minimal elements of \(X \) smaller than \(x \). This is an order-preserving map. Moreover, \(\mathcal{X}(\varphi)f = p \). If \(x \in X \), and \(\{x_0, x_1, \ldots, x_k\} \) is the set of minimal elements below \(x \), then \(\mathcal{X}(\varphi)f(x) = \{p(x_0), p(x_1), \ldots, p(x_k)\} \). On the other hand, since \(p|_{U_x} : U_x \to U_{p(x)} \) is a homeomorphism, \(\{p(x_0), p(x_1), \ldots, p(x_k)\} \) is exactly the set of minimal elements of \(\mathcal{X}(K) \) smaller that \(p(x) \), so \(p(x) \) is the simplex \(\{p(x_0), p(x_1), \ldots, p(x_k)\} \). Define now \(g \) by \(\mathcal{X}(L) \to X \), so that \(\mathcal{X}(\varphi)f = p \). Let \(\sigma = \{x_0, x_1, \ldots, x_k\} \) be a simplex of \(L \). Since \(\sigma \) has an upper bound \(x \) in \(X \), \(\tau = \{p(x_0), p(x_1), \ldots, p(x_k)\} \) is a simplex of \(K \). There exists a unique upper bound \(x' \) of \(\{x_0, x_1, \ldots, x_k\} \) in \(X \) such that \(p(x') = \tau \). In fact, the preimage of \(\tau \) through \(p|_{U_x} : U_x \to U_{p(x)} \) satisfies that property, and there is at most one since the minimal open sets \(U_{x'} \) and \(U_{x''} \) of elements in the same fiber must be disjoint. Define \(g(\{x_0, x_1, \ldots, x_k\}) = x' \). It is easy to see that \(g \) is continuous. Furthermore, \(g \) is the inverse of \(f \). This shows that \(\mathcal{X}(\varphi) \) is equivalent to \(p \). Finally, since \(\mathcal{X}(\varphi) \) is a covering, by Theorem 4.13 \(\varphi' = K(\mathcal{X}(\varphi)) \) is a covering. The maps \(\varphi, \varphi' : L = L' \to K = K' \) differ only in a homeomorphism. Then \(\varphi \) is also a covering. \(\square \)

References

[1] J.A. Barmak. Algebraic topology of finite topological spaces and applications. Lecture Notes in Mathematics Vol. 2032. Springer (2011) xviii+170 pp.
[2] J.A. Barmak. On Quillen’s Theorem A for posets. J. Combin. Theory Ser. A 118(2011), 2445-2453.
[3] J.A. Barmak and E.G. Minian. Minimal finite models. J. Homotopy Relat. Struct. 2(2007), No. 1, 127-140.
[4] J.A. Barmak and E.G. Minian. Simple homotopy types and finite spaces. Adv. Math. 218 (2008), Issue 1, 87-104.
[5] G. Baumslag and D. Solitar. Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc. 68 (1962), 199-201.
[6] W. Bogley. J.H.C. Whitehead’s asphericity question, in Two-dimensional homotopy and combinatorial group theory. London Mathematical Society Lecture Note Series 197, Cambridge University Press (1993).
[7] K. Bongartz and P. Gabriel. Covering spaces in representation-theory. Invent. Math. 65 (1981/82), no. 3, 331-378.
[8] R. Brown. Topology and groupoids. Booksurge LLC (2006) xxvi+512 pp.
[9] M. Chari. *On discrete Morse functions and combinatorial decompositions*. Discrete Math. 217 (2000) 101-113.

[10] R. Forman. *Morse theory for cell complexes*. Adv. Math. 134 (1998) 90-145.

[11] P. Gabriel and M. Zisman. *Calculus of fractions and homotopy theory*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35 Springer-Verlag (1967). x+168 pp.

[12] A. Hatcher. *Algebraic Topology*. Cambridge University Press (2002) xii+544 pp.

[13] J. Howie, *Some remarks on a problem of J. H. C. Whitehead*. Topology 22 (1983), 475-485.

[14] D. Kozlov. *Combinatorial algebraic topology*. Algorithms and Computation in Mathematics, Vol. 21. Springer, Berlin (2008).

[15] J. P. May. *A concise course in algebraic topology*. Chicago Lectures in Mathematics. University of Chicago Press. (1999). x+243 pp.

[16] M.C. McCord. *Singular homology groups and homotopy groups of finite topological spaces*. Duke Math. J. 33 (1966), 465-474.

[17] J. Milnor. *Construction of universal Bundles, II*. Ann. of Math. 63 (1956), 430-436.

[18] E.G. Minian. *Some remarks on Morse theory for posets, homological Morse theory and finite manifolds*. Topology Appl. 159 (2012), 2860-2869.

[19] D. Quillen. *Higher algebraic K-theory I*. Lecture Notes in Mathematics Vol. 341, Springer (1973), 85-147.

[20] D. Quillen. *Homotopy properties of the poset of nontrivial p-subgroups of a group*. Adv. Math. 28 (1978) 101-128.

[21] A. Sieradski. *Algebraic topology for two dimensional complexes*, in Two-dimensional homotopy and combinatorial group theory. London Mathematical Society Lecture Note Series 197, Cambridge University Press (1993).

[22] E. Spanier. *Algebraic Topology*. Springer (1966) ix+528 pp.

[23] R.E. Stong. *Finite topological spaces*. Trans. Amer. Math. Soc. 123 (1966), 325-340.

[24] G. Whitehead. *Homotopy groups of joins and unions*. Trans. Amer. Math. Soc. 83 (1956), 55-69.

[25] J. H. C. Whitehead, *On adding relations to homotopy groups*. Ann. of Math. (2), 42 (1941), no. 2. 409-428.

DEPARTAMENTO DE MATEMÁTICA–IMAS, FCEyN, UNIVERSIDAD DE BUENOS AIRES, BUENOS AIRES, ARGENTINA

E-mail address: jbarmak@dm.uba.ar
E-mail address: gminian@dm.uba.ar