Domain-specific Mutations of a Transforming Growth Factor (TGF)-β1 Latency-associated Peptide Cause Camurati-Engelmann Disease Because of the Formation of a Constitutively Active Form of TGF-β1*

Received for publication, December 5, 2000, and in revised form, February 2, 2001

Takashi Saito†, Akira Kinoshita†, Koh-ichiro Yoshii†, Yoshiro Makita‡, Keiko Waku‖, Koichi Honke§, Norio Niikawa§, and Naoyuki Taniguchi**

From the †Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, the ‡Department of Human Genetics, Nagasaki University School of Medicine, 12-4 Sakamoto, Nagasaki 852-8102, the§Department of Pediatrics and Public Health, Asahikawa Medical College, 2-1-1-Midorigakahigashi, Asahikawa, Hokkaido 080-8510, and the **Department of Medical Genetics and Division of Clinical and Molecular Genetics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan

Transforming growth factor-β1 (TGF-β1) is a multifunctional protein acting on cell growth, differentiation, and morphogenesis of many different-type cells. In skeletal tissue, TGF-β1 serves as a systematic regulator that couples bone formation and resorption by regulating the function of the osteoblasts and osteoclasts (1–5).

The mature form of TGF-β1 is proteolytically cleaved from the N-terminal remnant of the TGF-β1 precursor, designated as TGF-β1 latency-associated peptide (β1-LAP) but remains non-covalently associated with the rest of the complex, which plays a role in latency of TGF-β1 (6, 7). TGF-β1 is ubiquitously distributed, and the activation of the latent form is likely an important step, because it exists as either a large latent form, composed of β1-LAP, TGF-β1, and latent TGF-β1-binding protein (LTBP), or a small latent form, which is devoid of LTBP (7). Under normal conditions, activation of the latent TGF-β1 is strictly controlled as follows. The large latent form is temporarily converted to the small latent form, which is then cleaved by plasmin or the plasmin-like protease to give the mature TGF-β1 (6, 8, 9).

Camurati-Engelmann disease (CED) or progressive diaphyseal dysplasia (DPD1) is an autosomal dominant disorder that is characterized by hyperostosis and sclerosis of the diaphysis of the long bones (10). The onset of CED is often during early childhood with severe pain in the legs, muscle weakness, a waddling gait, and easy fatigability. The patients occasionally suffer from systemic manifestations, such as anemia, leukopenia, or hepatosplenomegaly (11). We, as well as two other groups, previously assigned the locus for CED to chromosome 19q13.1-q13.3 (12–14). By a positional candidate gene approach and haplotype analyses, three different missense mutations (R218H, R218C, and C225R), which are located near the C terminus of β1-LAP, were found in nine CED families (15, 16). In this paper, we report on the biochemical mechanism by which the domain-specific mutations of β1-LAP cause CED.

Experimental Procedures

Pulse-Chase Analysis—R218H CED skin fibroblasts and normal skin fibroblasts were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), incubated in 60-mm dishes, and then grown to near confluency. Metabolic labeling and immunoprecipitation procedures were performed as previously described (7), with slight modifications. Cells were placed in a cysteine- and methionine-free medium containing 10% fetal calf serum and incubated overnight. For pulsing, the cell culture medium was replaced with a medium containing [35S]cysteine (100 μCi/ml) and [35S]methionine (100 μCi/ml), incubated for 15 min, washed with fresh DMEM, and then incubated for various periods. Media were collected, and 10 μl of normal rabbit serum was added, followed by a further incubation for 2 h at 4 °C, and 15 μl of rProtein A-Sepharose (Amersham Pharmacia Biotech) was then added. The resulting mixture was incubated for an additional 45 min at 4 °C with gentle mixing. The beads were then collected by centrifugation, washed three times with 1% Triton X-100 in PBS, twice with 0.2% Triton X-100 in PBS, and then with PBS. The

1 The abbreviations used are: TGF, transforming growth factor; LAP, latency-associated peptide; LTBP, latent TGF-β1-binding protein; CED, Camurati-Engelmann disease; DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum; PBS, phosphate-buffered saline; PAGE, polyacrylamide gel electrophoresis; ELISA, enzyme-linked immunosorbent assay.
proteins bound to the beads were eluted by the addition of 15 μl of SDS sample buffer, and the eluates were heated to boiling for 5 min at 95 °C. Samples were then subjected to SDS-PAGE using 5–20% polyacrylamide gradient gels (Bio-Rad) under non-reducing conditions. The gels were dried and exposed to an imaging plate (Fuji Film).35S radioactivity was detected using a BAS2500 system (Fujix).

To activate the latent TGF-β1 form, conditioned media were inoculated on a 96-well plate (2×10^4 cells/well) as the upper wells. After 36 h, 5 μCi/ml of [3H]thymidine was added, and the cell culture inserts (pore size 3 μm; Falcon) as the bottom wells, and R218H CED and normal fibroblasts were cocultured in DMEM supplemented with 2% FBS at 5×10^3 cells/well using the cell culture inserts (pore size 3 μm; Falcon) as the upper wells. After 36 h, 5 μCi/ml of [3H]thymidine was added and incubated for 6 h. The MG-63 cells were then collected, and [3H]thymidine incorporation was determined with a β-plate counter.

RESULTS AND DISCUSSION

A hydrophathy plot analysis of the domain involved in the mutations (R218H, R218C, and C225R) of β1-LAP suggested a working model in which CED mutations make conformational abnormalities of the C terminus of β1-LAP (data not shown). This domain is closely associated with the formation of intermolecular disulfide bonds between two β1-LAPs (7). Analysis of the samples by SDS-PAGE under non-reducing conditions revealed that 100-kDa TGF-β1/β1-LAP complex (i.e., the small latent form) disappeared within 30 min, and only an 86-kDa β1-LAP homodimer band was detected in the R218H medium. Both bands were present up to 120 min in the normal medium (Fig. 1).

However, neither the intracellular assembly nor its ability to secrete TGF-β1 appeared to be affected in the mutant fibroblasts, as judged from the manner in which the large latent form of TGF-β1 disappeared within 30 min, and only an 86-kDa β1-LAP homodimer band was detected in the R218H medium. Both bands were present up to 120 min in the normal medium (Fig. 1).
form was processed. Moreover, no differences in plasmin or plasmin-like proteolytic activity, in terms of the conversion of the small latent TGF-β_1 into the mature TGF-β_1 (6, 9), were noted in either types of cells (data not shown). These observations suggest that the R218H mutation leads to the vulnerability of the small latent TGF-β_1 and the subsequent release of the mature TGF-β_1.

To assess this hypothesis, the amount of mature TGF-β_1 protein in the conditioned media of R218H and normal fibroblasts was determined by an enzyme-linked immunosorbent assay, which detects only the mature form (R & D Systems Inc.). Although there were no differences in secretion of the large latent form (Fig. 1) or the expression level of TGF-β_1 mRNA (Fig. 2A) between R218H and normal fibroblasts, the medium from the R218H fibroblasts contained higher levels of mature TGF-β_1 after a 48-h incubation than the normal fibroblasts (Fig. 2B). Because the mature TGF-β_1 has a half-life of only about 2 min (17), its concentration was very small. When the latent TGF-β_1 was partially activated to give the immunoreactive form by acid treatment (9), the detectable TGF-β_1 in the R218H medium was more than five times that in the normal one (Fig. 2C). These results strongly suggest that the R218H mutation facilitates the dissociation of the mature TGF-β_1 from β_1-LAP, thus leading to the accumulation of mature TGF-β_1.

To study further the effect of mutations on the formation of the small latent form of TGF-β_1, recombinant latent TGF-β_1 proteins were prepared using a baculovirus expression system. In the conditioned media of Sf21 cells that had been infected with viruses containing the R218H, R218C, and the C225R mutant TGF-β_1, the 100-kDa small latent complex was undetectable, and only the 86-kDa β_1-LAP homodimer was observed (Fig. 3), whereas a recombinant wild-type TGF-β_1 produced the small latent form. These results suggest that conformational changes of β_1-LAP as a result of these domain-specific mutations lead to instability of the small latent form, which is consistent with the results observed in the CED cells (Fig. 1). An alteration in the activation of latent TGF-β_1 in the CED cells is schematically presented in Fig. 5.

Finally, to study the effects of the β_1-LAP mutations on TGF-β_1 activity, the cell growth of the CED and normal fibroblasts and the transfectants that produce mutant β_1-LAPs was...
determined by [3H]thymidine incorporation into DNA (18). The growth of R218H CED fibroblasts was slower than that of the normal cells. Although the mRNA expression levels of the introduced TGF-β1 gene were similar (data not shown), the proliferation rates of R218H-, R218C-, and the C225R-TGF-β1 gene-transfected cells were slower than the empty vector or wild-type-TGF-β1 gene-transfected cells (Fig. 4A). Furthermore, the suppression of growth in the CED cells and the cells to which mutant genes had been introduced were attenuated by a neutralizing antibody against TGF-β1 (Fig. 4A). There are some reports that experiential administration of dexamethasone and other steroids is found to be effective to CED patients (19). In addition, in vivo and in vitro studies have indicated that treatment of dexamethasone brings about decrease of mRNA level of TGF-β1 (20, 21) and that glucocorticoids alter bone cell activity and decrease bone mass by changing the local TGF-β1 actions in skeletal tissues (1, 2). Therefore, we studied the effect of dexamethasone on the mRNA level of TGF-β1 and the proliferation of R218H CED fibroblasts. The mRNA levels of TGF-β1 in R218H CED and normal fibroblasts were reduced (Fig. 4B), and the suppression of growth in the CED fibroblasts was attenuated by the treatment of dexamethasone in a dose-dependent manner (Fig. 4C). On the other hand, the proliferation of human osteoblastic MG-63 cells (22), which were cocultured with R218H CED fibroblasts, was accelerated, and this acceleration was attenuated by treatment of dexamethasone (Fig. 4D). Dexamethasone did not affect the growth of MG-63 cells when they were cultured alone (data not shown). These results suggest that TGF-β1 released from the CED fibroblast stimulated the cell growth of osteoblasts. Overall, these data indicate that the β1-LAP/TGF-β1 mutations observed in CED patients modulate TGF-β1 activity (Fig. 5). It is conceivable that a similar situation exists in bone tissues.

Previous studies have indicated a strict regulation of osteobasts and osteoclasts in bone tissues and that many factors are involved in this process (23–25). TGF-β1 plays an important role in promoting bone matrix synthesis and in reducing matrix degradation and resorption in the diaphysis of long bones by inhibiting both the formation and activity of osteoclasts (1–5). The observations herein point to the importance of factors that regulate the activation of TGF-β1 in the bone matrix.

In conclusion, the domain-specific mutations in β1-LAP/TGF-β1 play a role in Camurati-Engelmann disease by modifying the activation of TGF-β1. The present study may provide a new stimulus for investigating the pathophysiology and treatment of CED, as well as related disorders such as osteoporosis.

Acknowledgments—We thank Drs. K. Miyazono, K. Hashimoto, and H. Yoshikawa for kindly providing the antibodies against β1-LAP, normal skin fibroblast, and MG-63 cells, respectively. We also thank Drs. H. F. Deutsch and K. Suzuki for critically reading the manuscript.

REFERENCES

1. Cooper, M. S., Hewison, M., and Stewart, P. M. (1999) J. Endocrinol. 163, 159–164
2. Centrella, M., McCarthy, T. L., and Canalis, E. (1991) Mol. Cell. Biol. 11, 4490–4496
3. Geiser, A. G., Zeng, Q. Q., Sato, M., Helvering, L. M., Hirano, T., and Turner, C. H. (1998) Bone 23, 87–93
4. Hock, J. M., Canalis, E., and Centrella, M. (1990) Endocrinology 126, 421–426
5. Erlebacher, A., Filavaroff, E. H., Ye, J.-Q., and Derynck, R. (1998) Mol. Biol. Cell 9, 1903–1918
6. Lyons, R. M., Gentry, L. E., Purchio, A. F., and Moses, H. L. (1990) J. Cell Biol. 110, 1361–1367
7. Miyazono, K., Olofsson, A., Colosetti, P., and Heldin, C.-H. (1991) EMBO J. 10, 1091–1010
8. Taipale, J., Miyazono, K., Heldin, C.-H., and Keskö-Oja, J. (1994) J. Cell Biol. 124, 171–181
9. Lyons, R. M., Keski-Oja, J., and Moses, H. L. (1988) J. Cell Biol. 106, 1659–1665
10. Makita, Y., Nishimura, G., Ikegawa, S., Ishii, T., Ito, Y., and Okuno, A. (2000) Am. J. Med. Genet. 91, 153–156
11. Crisp, A. J., and Brenton, D. P. (1982) Ann. Rheum. Dis. 41, 183–188
12. Ghadami, M., Makita, Y., Yoshida, K., Nishimura, G., Fukushima, Y., Wakuji, K., Ikegawa, S., Yamada, K., Kondo, S., Niikawa, N., and Tomita, H. (2000) Am. J. Hum. Genet. 66, 143–147
13. Janssens, K., Gershoni-Baruch, R., Van Hul, E., Brik, R., Guanabens, N., Migone, N., Verbruggen, L. A., Ravet, S. H., Bonduelle, M., Van Maldergem, L., Vanhoenacker, F., and Van Hul, W. (2000) J. Med. Genet. 37, 245–249
14. Vaughan, S. P., Broussard, S., Hall, C. R., Scott, A., Blanton, S. H., Milansky, J. M., and Hecht, J. T. (2000) Genomics 66, 119–121
15. Kinoshita, A., Takashi, S., Tomita, H., Makita, Y., Yoshida, K., Ghadami, M., Yamada, K., Kondo, S., Ikegawa, S., Nishimura, G., Fukushima, Y., Nakagami, T., Saito, H., Sugimoto, T., Kamegaya, M., Hisa, K., Murray, J. C., Taniguchi, N., Niikawa, N., and Yoshiura, K. (2000) Nat. Genet. 26, 19–20
16. Janssens, K., Gershoni-Baruch, R., Guanabens, N., Migone, N., Ravet, S., Bonduelle, M., Lissens, W., Van Maldergem, L., Vanhoenacker, F., Verbruggen, L., and Van Hul, W. (2000) Nat. Genetics. 26, 273–275
17. Wakefeld, L. M., Winokur, T. S., Houlders, R. S., Christopherson, K., Levinson, A. D., and Sporn, M. B. (1990) J. Clin. Invest. 86, 1976–1984
18. Hugl, S. R., White, M. F., and Rhodes, C. (1998) J. Biol. Chem. 273, 17771–17779
19. Bas, F., Darendeliler, F., Petorak, I., Sadikoglu, B., Bilir, A., Bundak, R., Saka, N., and Gunoz, H. (1999) J. Paediatr. Child Health 35, 401–405
20. Frank, S., Madlener, M., and Werner, S. (1996) J. Biol. Chem. 271, 10188–10193
21. Fan, W., Cooper, T. M., and Norris, D. J. (1999) J. Cell Physiol. 156, 88–95
22. Subramaniam, M., Oursler, M. J., Rasmussen, K., Riggs, B. L., and Spelsberg, T. C. (1995) J. Cell Biochem. 57, 52–61
23. Darcy, P., Schinke, T., and Korsey, G. (2000) Science 289, 1501–1504
24. Teitelbaum, S. L. (2000) Science 289, 1504–1508
25. Rodan, G. A., and Martin, T. J. (2000) Science 289, 1508–1514