W3 theory: robust computational thermochemistry in the kJ/mol accuracy range

A. Daniel Boese, Mikhal Oren, Onur Atasoylu, Jan M. L. Martin*
Department of Organic Chemistry, Weizmann Institute of Science, IL-76100 Rehovot, Israel

Mihály Kállay and Jürgen Gauss
Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany

(Dated: Received Oct. 31, 2003; Accepted Nov. 12, 2003 (306406JCP))
Abstract

We are proposing a new computational thermochemistry protocol denoted W3 theory, as a successor to W1 and W2 theory proposed earlier [Martin and De Oliveira, J. Chem. Phys. 111, 1843 (1999)]. The new method is both more accurate overall (error statistics for total atomization energies approximately cut in half) and more robust (particularly towards systems exhibiting significant nondynamical correlation) than W2 theory. The cardinal improvement rests in an approximate account for post-CCSD(T) correlation effects. Iterative T_3 (connected triple excitations) effects exhibit a basis set convergence behavior similar to the T_3 contribution overall. They almost universally decrease molecular binding energies. Their inclusion in isolation yields less accurate results than CCSD(T) nearly across the board: it is only when T_4 (connected quadruple excitations) effects are included that superior performance is achieved. T_4 effects systematically increase molecular binding energies. Their basis set convergence is quite rapid, and even CCSDTQ/cc-pVDZ scaled by an empirical factor of 1.2532 will yield a quite passable quadruples contribution. The effect of still higher-order excitations was gauged for a subset of molecules (notably the eight-valence electron systems): T_5 (connected quintuple excitations) contributions reach 0.3 kcal/mol for the pathologically multireference $X\,^1\Sigma_g^+$ state of C_2 but are quite small for other systems. A variety of avenues for achieving accuracy beyond that of W3 theory were explored, to no significant avail. W3 thus appears to represent a good compromise between accuracy and computational cost for those seeking a robust method for computational thermochemistry in the kJ/mol accuracy range on small systems.

*Electronic address: comartin@wicc.weizmann.ac.il URL: http://theochem.weizmann.ac.il
I. INTRODUCTION

Computational thermochemistry has come of age in recent years1. The available techniques represent various trade-offs between accuracy and computational cost.

The “Gaussian-n” (G\textsubscript{n}) family of methods2 first brought ‘black box’ thermochemistry for small molecules in the kcal/mol range: yet errors for individual systems can still exceed the average over their training sets by as much as an order of magnitude. G\textsubscript{n} theory relies on relatively small basis sets, additivity approximations, and empirical corrections.

Similar remarks apply to the CBS (“complete basis set”) family of methods by Petersson and coworkers3, which involve intricate combinations of pair correlation extrapolations and empirical corrections.

Some years ago, one of us proposed two new computational thermochemistry protocols named W1 and W2 theory4, 5 that had the following design goals:

- mean absolute error over various training sets in the kJ/mol range
- worst-case errors in the 1 kcal/mol range, except for truly pathological systems
- completely devoid of empirical parameters
- explicitly including all effects that affect molecular binding energies in at least the kJ/mol range for first-and second-row systems, such as core-valence correlation, scalar relativistic effects, and first-order spin-orbit coupling
- still be efficient enough for application to systems with up to six heavy atoms on a fast commodity computer

An extensive validation study6 revealed these goals to be fundamentally met. Recently, an extension to systems with very small valence-subvalence gaps (such as alkali and alkaline earth metal compounds) has been proposed7. Yet Ref.6, and our general experience, revealed two main Achilles’ heels to the method:

1. As the nonrelativistic parts of W1 and W2 theory both represent extrapolations8, 9 to the CCSD(T) basis set limit, the methods are intrinsically prone to failure for systems suffering from moderate to strong nondynamical correlation effects
2. The scalar relativistic treatment is based on one-electron Darwin and mass-velocity corrections [10]. While this approach is easily implemented and expected to work well for first- and second-row systems, application of W1 and W2 theory to heavier element systems will require a more rigorous relativistic treatment such as the Douglas-Kroll-Hess [11, 12] approximation.

In the present paper, we shall investigate these and some ancillary issues, focusing particularly on CCSD(T) insufficiency. We shall propose a new member of the Wn family called W3 theory, which should be capable of handling cases where W1 and W2 theory fail. Furthermore, we will report on some avenues we explored in seeking further improvements compared to W3 theory.

II. COMPUTATIONAL DETAILS

Electronic structure calculations at the CCSD (coupled cluster with all single and double substitutions [13]) and CCSD(T) (CCSD with quasiperturbative triple excitations [14, 15]) levels were carried out using MOLPRO 2002.6 [16] running on an Intel/Linux cluster in our group. Electronic structure calculations at the CCSDT (coupled cluster with all single, double, and triple substitutions), CCSDTQ (coupled cluster with all single, double, triple and quadruple substitutions), CCSDTQ5 (ditto with added connected quintuple substitutions) and full configuration interaction (FCI) levels were carried out using the generalized CI/CC code developed by one of us [17, 18, 19]. The latter was interfaced to the atomic orbital integrals, self-consistent field (SCF), and integral transformation parts of the Austin/Mainz version of ACES II [20] which was also itself employed for some of the CCSDT calculations. ROHF (restricted open-shell Hartree-Fock) reference determinants were used throughout for open-shell systems: the definition of the ROHF-CCSD(T) energy according to Ref. [15] was employed throughout. All calculations were carried out using the ‘frozen core approximation’, except those using core-valence correlation basis sets.

Most basis sets employed belong to the correlation consistent family of Dunning and coworkers [21]. Unless indicated otherwise, we have combined the regular cc-pVXZ (correlation consistent polarized valence X-tuple zeta [22]) basis set on hydrogen with aug-cc-pVXZ ([diffuse function] augmented cc-pVXZ [23]) on B–Ne and, on Al–Ar, the aug-cc-pV(X+d)Z basis sets (aug-cc-pVXZ with additional high-exponent d function) of Dunning, Peterson,
and Wilson[24]. For convenience, we will denote this combination by the abbreviation AVXZ throughout the present paper. The abbreviation PVXZ will refer to the combination of regular cc-pVXZ basis sets on H and B–Ne with cc-pV(X+d)Z on Al–Ar.

Most core correlation calculations were carried out with the MTsmall (Martin-Taylor small[4]) basis set, which is a completely uncontracted cc-pVTZ basis set with 2d1f high-exponent functions added. Additional core correlation calculations were performed using the cc-pwCVXZ (correlation consistent polarized weighted core-valence X-tuple zeta) basis sets of Peterson and Dunning[25].

In a slight departure from W2 theory, and for consistency with the other basis sets used, reference geometries were obtained at the CCSD(T)/cc-pV(Q+d)Z level. Zero-point vibrational energies (ZPVEs), obtained from experimental or high-level ab initio harmonic frequencies and anharmonic corrections, were taken from Ref.[4] unless indicated otherwise.

Unless indicated otherwise, extrapolations to the infinite basis set limit for correlation energies are carried out using the same simple formula[9] employed in W2 theory[4], $E(L) = E_\infty + a/L^3$, where L is the maximum angular momentum represented in the basis set (2 for AVDZ, 3 for AVTZ, 4 for AVQZ, 5 for AV5Z, and 6 for AV6Z). This formula is based on the leading term in the partial wave expansion of singlet-coupled pair energies[26]. For the SCF energy, the same $E(L) = E_\infty + a/L^5$ as in W2 theory was employed.

III. INITIAL RESULTS AND DISCUSSION

A. Importance of connected quintuple and higher excitations

Ruden et al.[27] noted that connected quintuple excitations, i.e. CCSDTQ5 - CCSDTQ, account for up to 0.3 kJ/mol to the dissociation energy of N$_2$ in a cc-pVDZ basis set. Bartlett and coworkers[28] noted that connected quintuples contribute as much as 1 cm$^{-1}$ to the harmonic frequency of N$_2$. While explicit inclusion of connected quintuples would be computationally prohibitive for all but the very smallest systems, we should at least verify whether and to what extent connected quintuple and higher excitations could become an issue. We considered (a) the atomic electron affinities (EAs); (b) the dissociation energies of the eight-valence electron diatomics C$_2$, BN, BeO and MgO, along with the B$_2$ diatomic.

The largest FCI/AVDZ - CCSDTQ5/AVDZ difference, 0.07 meV, is found for EA(O);
all others are an order of magnitude less, or zero by definition. We can safely state that an error of 70 \(\mu \)eV is of no concern to most thermochemical applications, and hence that connected sextuple and higher excitations can be safely neglected.

For the atomic EAs, the largest CCSDTQ5/AVTZ - CCSDTQ/AVTZ differences are found for oxygen (0.87 meV) and nitrogen (0.55 meV). Turning to the eight-valence electron systems, by far the largest contribution there (0.32 kcal/mol) is for the pathologically multireference \(X^1\Sigma^+_g \) state of the \(\text{C}_2 \) molecule. For the \(a^3\Pi_u \) state this drops to 0.14 kcal/mol; for the closed-shell singlet states of \(\text{BN}, \text{BeO}, \) and \(\text{MgO} \), we obtain +0.16, -0.11, and -0.04 kcal/mol, respectively. Finally, connected quintuples contribute +0.08 kcal/mol to the binding energy of \(\text{B}_2 \) and +0.13 kcal/mol to that of the CN radical.

As the asymptotic CPU time scaling of a CCSDTQ5 calculation is proportional to \(n^5N^7 \) (with \(n \) the number of electrons correlated and \(N \) the number of virtual orbitals), a quintuples correction will be unfeasible in all but the very smallest systems. Given that the resulting error is in the fractional kJ/mol range, we consider its neglect an acceptable price to pay for extending the applicability range of W3.

B. Importance of connected quadruple excitations

The importance of connected quadruple excitations, CCSDTQ - CCSDT, as a function of basis set is displayed in Tables I and II. Ruden et al.\cite{27} previously noted their importance for a much smaller set of systems.

First of all, connected quadruples systematically increase binding energies as well as ionization potentials (IPs) and electron affinities (EAs).

Secondly, contributions in systems with significant nondynamical correlation effects can be quite nontrivial. At the extrapolated basis set limit, we find contributions of 2.31 and 2.05 kcal/mol, respectively, in the closed-shell singlet states of \(\text{C}_2 \) and \(\text{BN} \), and 1.81 kcal/mol for \(\text{MgO} \). With just a PVDZ basis set, we find 1.75 kcal/mol for \(\text{N}_2\text{O} \), 1.71 kcal/mol for \(\text{NO}_2 \), and 3.21 kcal/mol for \(\text{O}_3 \). Clearly, contributions of that magnitude are ignored at one’s peril.

Thirdly, while basis set convergence is quite rapid, it is not uniform. Convergence in systems like \(\text{C}_2 \) is definitely much slower than in, e.g., \(\text{H}_2\text{O} \). The case of \(\text{C}_2 \) is somewhat special as the zero-order wave function is nearly biconfigurational, and connected quadruples...
relative to the HF-SCF determinant are effectively double excitations with respect to the dominant doubly excited determinant.

Considering the asymptotic n^4N^6 CPU time scaling of a CCSDTQ calculation, it would be very desirable if it could be carried out in just a PVDZ basis set, perhaps with the use of a scaling factor determined from the PVDZ/(basis set limit) ratio in a training set of systems. (We chose the set of all systems in Table I for which we were able to do CCSDTQ calculations in at least a PVTZ basis set.) This approach would seem to work at least tolerably well for many systems, but will not be universally applicable. Not only in cases with a low-lying doubly excited state like C$_2$ will there be a problem, but it can readily be seen from Table I that the T_4 contributions for H$_2$O and HF go through a minimum as a function of the basis set. (This is the case for the atomic electron affinities of O and F as well, as well as for the T_4 contributions to the atomic correlation energies. We suspect the issue to be specific to these small and very highly electronegative elements.)

One reason why correlation consistent basis sets have overwhelmingly supplanted atomic natural orbital basis sets is the much shorter integral evaluation times for the former and that they tend to perform comparably for most applications. However, the fractional integral evaluation time of a CCSDTQ calculation is so ridiculously small that it may make sense to use the best possible basis set for a given contracted size. We considered the averaged ANO basis sets of Roos and coworkers, and found that the smallest ANO contraction that yields acceptable results is [4s3p1d] (ANO431 for short). On the one hand, we find the [4s3p1d]/(basis set limit) ratio for the T_4 contribution to be much more consistent, and hence it is much more amenable to scaling. On the other hand, even the four additional basis functions per nonhydrogen atom (relative to PVDZ) already make the O$_3$ molecule nearly intractable on our presently available computational hardware. (The CCSDTQ/ANO431 calculation required 436 million determinants, compared to a ‘mere’ 111 million for CCSDTQ/PVDZ.)

In an attempt to eliminate the very costly CCSDTQ calculations, we considered various continued-fraction and Padé type approximations proposed by Goodson. Like a previous study of Feller and coworkers, we find these approximations to behave too erratically for practical use, and we have abandoned them.
C. Importance of higher-order connected triple substitutions

Higher-order T_3 contributions — as measured by the CCSDT - CCSD(T) difference — are tabulated in Table I for atomic ionization potentials and electron affinities, and in Table III for molecular total atomization energies of our training set.

With a few exceptions (e.g., B_2 and CH) the contributions at the basis set limit systematically reduce molecular binding energies. Thus, as previously suggested by Bak et al. [33], the surprisingly good performance of CCSD(T) (and, indeed, of W2 theory) is largely due to partial error compensation between neglect of T_4 and iterative T_3 effects.

Basis set convergence is considerably slower than for T_4. In particular, contributions generally have a positive sign with the PVDZ basis set and change sign as the basis set is expanded. Considering that the contribution is itself 1–2 orders of magnitude smaller than the (T) contribution to molecular binding energies, we can probably get away with $E_{\infty} + a/L^3$ extrapolation [9] from AVDZ and AVTZ basis sets, thus keeping CPU times for the CCSDT step (asymptotically proportional to n^3N^5) within acceptable boundaries.

D. Improved scalar relativistic correction

In order to achieve greater robustness for heavier element systems, we replaced the scalar relativistic treatment of W1 and W2 theory — first-order Darwin and mass-velocity (DMV) corrections [10] taken as expectation values from an averaged coupled pair functional (ACPF) wave function with the ‘Martin-Taylor small’ (MTsmall) basis set [4] — by a more rigorous one. Specifically, the scalar relativistic contribution is taken as the difference between the second-order Douglas-Kroll-CCSD(T)/aug′-cc-pRVQZ (ARVQZ for short) and nonrelativistic CCSD(T)/aug′-cc-pVQZ energies, where cc-pRVXZ stands for newly developed relativistic correlation consistent X-tuple zeta basis sets [35]. (The prefix ‘aug’ denotes a basis set augmented with diffuse functions on the main group elements but not on hydrogen.) A comparison between this approach and the original DMV-ACPF/MTsmall treatment can be found in Table IV.

The bottom line is that the ACPF Darwin and mass-velocity approach, while generally effective for first-and second-row systems, can actually cause noticeable errors even for SO$_2$, and cannot be blindly relied upon for heavier elements.
Also, as seen from Table IV, the relativistic correction with the VQZ type basis sets is basically indistinguishable from the basis set limit.

E. Improved extrapolation to the infinite-basis valence correlation limit

Klopper[37] proposed separate extrapolations of singlet-coupled (as $E^S_\infty + a_S L^{-3}$) and triplet-coupled (as $E^T_\infty + a_T L^{-5}$) pair correlation energies, corresponding to the leading terms of the partial wave asymptotic expansions for such pairs[26]. The term linear in T_1 in the CCSD energy equation (which is nonzero for open-shell CCSD calculations using semicanonical orbitals, such as done by MOLPRO[38]) is then simply taken as that in the largest available basis set. Some results can be found in Table V.

When extrapolating from AVQZ and AV5Z basis sets, separate extrapolation systematically produces lower basis set limits than joint extrapolation. Differences are by and large in the 0.1 kcal/mol range, but reach 0.16–0.18 kcal/mol for HOCl, N₂O, and Cl₂, 0.2 kcal/mol for CO₂ and OCS, and 0.3 kcal/mol for SO₂. When extrapolating from AV(5+d)Z and AV(6+d)Z basis sets, these discrepancies are greatly reduced: this reflects the triplet-coupled pair energies being largely converged, leaving the singlet-coupled pair energies to dominate convergence behavior. Furthermore, differences between the {AVQZ,AV5Z} and {AV5Z,AV6Z} extrapolated limits are appreciable (e.g., 0.3 kcal/mol for Cl₂) using joint extrapolation, and much smaller using separate extrapolation — clearly suggesting the latter to have more desirable convergence properties. On the other hand, using AVTZ and AVQZ basis sets, the separate extrapolation is clearly performing more poorly than the empirically damped (exponent 3.22) joint extrapolation used in W1 theory[4].

As the (T) contribution is both smaller to begin with than the CCSD correlation energy and converges more rapidly with the basis set[39], standard W2w theory extrapolates it from AVTZ and AVQZ basis sets. (In this manner, the largest basis set calculation in W2w is just a CCSD calculation and can be carried out using integral-direct algorithms where necessary[40].) We considered the effect of extrapolating the (T) contribution from larger AVQZ and AV5Z basis sets (Table V), and found it to be below 0.1 kcal/mol in all cases and below 0.05 kcal/mol in most species.

As to the SCF component, the effect of extrapolating from AV5Z and AV6Z basis sets is negligible at our target accuracy level, with the notable exception of SO₂ where inner
polarization functions are known to be very important[41]. We attempted SCF calculations in even larger basis sets than aug-cc-pV(6+d)Z (particularly aug-cc-pV6Z+2d1f), and find out best Hartree-Fock limit to be 121.93±0.04 kcal/mol, in between the \{AVQZ,AV5Z\} and \{AV5Z,AV6Z\} extrapolated values.

Finally, we considered basis set superposition error (BSSE). Among the different many-body generalizations[42, 43, 44] of the counterpoise correction[45], we have followed the 'site-site function counterpoise' definition of Wells and Wilson[42]. The results are given in Table VI. We note that valence BSSEs are fairly noticeable for the individual basis sets up to even the AV6Z level, but are largely annihilated by the extrapolation.

F. Improved inner-shell correlation contribution

In the original W1/W2 paper, it was established that connected triple excitations are quite important (relatively speaking) in the core-valence contribution to molecular binding energies. As a result, CPU times in especially W1 calculations on second-row molecules and large first-row molecules are dominated by the inner-shell correlation step, and we had a vested interest in keeping the core correlation basis set as small as possible. The smallest basis set that could reliably reproduce them was found to be what we termed the MTsmall basis set[4]. As we are 'tightening the screws' everywhere else, it makes sense to explore the importance of better core correlation basis sets, especially considering the in any case steep computational cost of the CCSDTQ valence calculations.

Core-valence correlation contributions with the core-valence weighted[25] aug′-cc-pwCVTZ and aug′-cc-pwCVQZ basis sets, as well as extrapolations to the infinite-basis limit, can be found in Table VII. In addition, we considered the effect of basis set superposition error on the inner shell contribution, following a suggestion by Bauschlicher and Ricca[46] that it might become quite important for second-row systems.

We found a serious issue with BSSE for SO$_2$ (0.85 kcal/mol with the smaller basis set), but even here simple $a + b/L^3$ extrapolation basically eliminates the problem.
G. Use of Wilson’s second-row basis sets

The original W1 and W2 methods added high-exponent 2d1f sets to second-row basis sets in order to cope with polarization of the (3s,3p) inner loops. These basis sets do guarantee saturation of the HF-SCF energy even in extreme cases like SO$_3$ (where inner polarization contributes 10 kcal/mol to the HF-SCF binding energy even with an aug-cc-pVQZ basis set). Recently, however, Wilson and coworkers published new so-called cc-pV(n+d)Z basis sets that are designed to cope with the phenomenon in a consistent way. As these basis sets only have an extra d function compared to cc-pVnZ, they represent a potential cost savings of 12 basis functions per second-row atom compared to regular W2 theory. We have considered a minor variant on the latter (which we term W2w theory), in which aug'-'cc-pV(n+d)Z basis sets are used throughout instead of aug'-'cc-pVnZ+2d1f. (For the geometry optimizations, cc-pV(T+d)Z and cc-pV(Q+d)Z are employed instead of their counterparts.) A comparison with regular W2 theory can be found in the Supplementary Material: the two methods perform equivalently, and individual discrepancies for second-row molecules are very small.

IV. DEFINITION OF W3 THEORY; ATTEMPTED DEFINITIONS OF W4 THEORY

W3 theory is intended to yield the greatest possible improvement over W2 and W2w theory at the lowest cost possible. Relative to W2w theory, the following changes are introduced:

- the new Douglas-Kroll based scalar relativistic correction was introduced

- the effect of iterative T_3 excitations was estimated from the CCSDT–CCSD(T) difference with cc-pVDZ and cc-pVTZ basis sets, then extrapolated as $a + bL^{-3}$

- the effect of connected quadruple excitations was estimated as the CCSDTQ-CCSDT difference with the cc-pVDZ basis set, scaled by a factor of 1.2532 derived by least-squares fitting to the best available T_4 limits over our training set of molecules

We additionally considered two minor modifications. In the first — denoted W3A theory in this paper — the T_4 contribution is computed at the CCSDTQ/ANO431 level and scaled by
1.275 (scale factor obtained in same manner). In the second — denoted W3K theory in this paper — the CCSD valence correlation extrapolation is carried out separately on ‘singlet’ and ‘triplet’ pair correlation energies, as originally advocated by Klopper \[37\] (hence the acronym).

In addition, we considered two attempts at a W4 method, which we will denote here as W4a and W4b. Relative to W3 theory, the following changes are introduced:

- the higher-order T_3 effect is instead extrapolated from cc-pVTZ and cc-pVQZ basis sets
- in W4a theory, the T_4 contribution is computed in the cc-pVTZ basis set and scaled by 1.13, the scale factor being obtained in the same way as for W3 theory
- in W4b theory, the T_4 contribution is instead extrapolated from the CCSDTQ–CCSDT difference with cc-pVDZ and cc-pVTZ basis sets
- the inner-shell correlation contribution is extrapolated from CCSD(T)/aug’-cc-pwCVTZ and CCSD(T)/aug’-cc-pwCVQZ results
- the SCF and valence CCSD contributions are extrapolated from AV5Z and AV6Z basis set combinations
- the valence (T) contribution from AVQZ and AV5Z basis set combinations

V. PERFORMANCE OF W3 THEORY

We have considered the W2-1 dataset for atomization energies, minus the H$_2$ molecule (for which W2 and W3 are trivially equivalent) and expanded with the ozone, N$_2$O, and NO$_2$ molecules. In addition, we have considered subsets of the G2-1 and G2-2 testsets for ionization potentials and electron affinities. Unless indicated otherwise, experimental data are the same as those in the W2 validation paper \[6\]. That is, ionization potentials and electron affinities were generally taken from the latest edition of the WebBook \[51\], while with one exception, atomization energies \textit{viz.} heats of formation were critically compiled from a variety of sources in Ref. \[6\]. (The exception is the CH diatomic radical, for which a recent exhaustive computational study \[52\] has shown that the accepted dissociation energy is too low by 0.16 kcal/mol.)
It was previously shown \cite{5} that for W2 theory, the use of anharmonic zero-point energies noticeably improves the mean absolute error: this will be true \textit{a fortiori} for W3 theory. All such ZPVEs were taken from Ref.\cite{4} except for two: ozone (vide infra) and ammonia. For this latter molecule, a zero-point energy that properly accounts for the umbrella mode has very recently become available from the work of Halonen and coworkers\cite{53}: the value of 21.165 kcal/mol is slightly smaller than the 21.33 kcal/mol computed from the Martin, Lee, and Taylor\cite{54} quartic force field, used in our previous work.

A. Ionization potentials

Performance of W2 theory for ionization potentials was quite good already, and this property is fairly easy to reproduce computationally in any case. As can be seen in Table \ref{table:VIII}, W3 theory achieves the most significant improvements for CN, CH$_2$ and for N$_2$, reflecting differential static correlation contributions in these systems that W3 is better able to cope with. Results for CO and CS are likewise almost spot-on. Molecules already treated well by W2 are likewise treated well by W3. P$_2$ and NH$_2$ display significant differences from experiment at the W2 as well as W3 levels, suggesting that the experimental values may be considerably less reliable than their stated uncertainty. The WebBook lists a plethora of alternate experimental data for these molecules, spanning a wide range.

Performance for the atomic IPs, which are very precisely known experimentally, is quite satisfying for W3 theory, although performance for second-row elements is clearly inferior to that for the first row. We have considered extrapolations from larger basis sets, post-CCSD(T) valence correlation contributions extrapolated from the largest basis sets available (AVTZ and AVQZ), core-valence correlation contributions using larger basis sets,... and found no significant improvement. One effect we are unable to cover are post-CCSD(T) contributions to the core-valence correlation, which would be much more important for second-row than for first-row atoms as both the core-valence gap is smaller and there are more subvalence electrons.

In all, we can say that W3 theory ought to reliable to 0.01 eV or better.
B. Electron affinities

Electron affinities are notoriously sensitive to the level of theory (e.g. [55]), both in terms of the basis set (as the spatial extent of the wave function differs greatly between the anion and the parent neutral species) and of the electron correlation method (as effectively the number of particles is increased). It is in particular well known that calculating EAs requires the addition of diffuse functions to the basis set [23, 56]. Therefore, unmodified W3 theory would fare rather poorly, and we have instead used (diffuse function) augmented basis sets in the T_4 and higher-order T_3 corrections. (Regular basis sets were still used on hydrogen.) Sticklers for acronyms might prefer to call this approach ”W3+ theory”.

Not surprisingly (Table IX), W3 theory is seen to represent a significant improvement over W2 theory for this property. W3 results are almost across the board within the experimental error bar. In fact, our calculations suggest that W3 theory ought to be competitive with all but the most precise experimental techniques.

C. Molecular total atomization energies

For molecular atomization energies (Table X), the most spectacular improvement is seen for the ozone molecule. (Both an accurate re-measurement of the heat of formation [57] and an accurate set of anharmonic spectroscopic constants [58] have been published very recently. As connected quadruple excitations contribute very significantly to the spectroscopic constants of ozone [59], computing an accurate anharmonic zero-point energy in a large basis set is an arduous task on which we preferred not to embark for this paper.) Ozone was omitted from the original W2-1 dataset because of its intrinsic multireference character: an error of 3 kcal/mol by a method (W2) that essentially estimates the CCSD(T) limit is not surprising for a molecule well outside the ‘safety envelope’ of CCSD(T). W3 theory, in contrast, puts in a quite respectable performance, with an error of only 0.38 kcal/mol.

Very satisfying improvements are likewise seen for two other molecules (N$_2$O and NO$_2$) with moderate and strong nondynamical correlation effects, respectively. The W2 errors of 1.20 and 1.16 kcal/mol are reduced to 0.51 and 0.09 kcal/mol, respectively.

For some diatomic molecules with precisely known experimental atomization energies and significant static correlation, such as F$_2$, O$_2$, NO, and N$_2$, W2 exhibits errors in the 0.5
kcal/mol range, while W3 reproduces their dissociation energies basically spot-on. A similar improvement is seen for the HNO molecule.

In well-behaved systems where W2 performed very well (HF, H₂O), so does W3. It thus satisfies the ‘above all, do no harm’ requirement. The mean absolute errors approach the average uncertainty for the experimental data, 0.15 kcal/mol.

Peculiarly, the most significant errors left now are with sulfur systems, particularly SO₂ and H₂S.

Does W3A represent an improvement? Clearly the errors for systems with highly polar bonds are noticeably reduced, and overall error statistics come down somewhat. Almost as important, the mean signed error is reduced to near zero. However, the somewhat marginal reduction in the overall error statistics does not appear to justify the substantially increased computational cost (factor of about 4–5, dominated by the T₄ step). More fundamentally, the increase in the number of CCSDTQ amplitudes by about the same factor may easily make the difference between a calculation that is just feasible with available hardware and one that is not. For systems with strongly polar bonds, W3A, if practically feasible, may serve as an additional check on a W3 prediction.

The added cost of W3K over W3, by contrast, is nil in open-shell cases and quite modest in closed-shell cases [60]. Table X reveals that W3K represents a marginal overall improvement over standard W3. However, its performance for second-row systems is markedly superior, and in this sense it is arguably a more ‘balanced’ method than standard W3. For first-row systems, reduced deviations for systems dominated by dynamical correlation are offset by increased deviations for systems with multireference character. The choice between W3 and W3K can be argued either way, and we have simply left the choice open to the user.

VI. PERFORMANCE OF W4A AND W4B THEORY. OUTLOOK FOR FURTHER IMPROVEMENTS.

Some of the systems were small enough that we could compute W4a and W4b total atomization energies. A comparison is given in Table XI. First of all, W4a (with its scaling-based T₄ correction) is clearly superior to W4b (with its extrapolation-based T₄ correction). The extrapolation misbehaves in O and F molecules, as the T₄ correction appears to go through a minimum as a function of the basis set for PVTZ. Secondly, despite the formidable added
computational cost, overall performance of W4a only represents a marginal improvement over W3.

This begs the question as to what is still missing in W4a and W4b theory. Three factors suggest themselves:

(a) T_5 effects (vide supra). These will primarily affect systems with strong nondynamical correlation effects, and at least some of the systems where W4a and W4b ‘cannot make the grade’ are essentially devoid of these.

(b) nonadiabatic effects. Literature values for DBOC (diagonal Born-Oppenheimer Corrections) are available for some hydrogen-containing systems \cite{61}: SH 0.2 cm$^{-1}$, i.e. essentially nil for our purposes; CH$_2$(3B_1) +0.05 kcal/mol; CH radical -0.05 kcal/mol; OH radical -0.01 kcal/mol; H$_2$O +0.10 kcal/mol; HF -0.04 kcal/mol. For the all-heavy atom systems we can safely consider the DBOC to be negligible on the scale of interest to us. Taking DBOCs into account may thus somewhat improve results for some hydrides.

(c) post-CCSD(T) effects in the core-valence correlation contribution. Explicit calculation of such effects is an arduous task, but all-electron CCSDT calculations on N$_2$ and B$_2$ suggest contributions on the order of 0.05–0.10 kcal/mol. (For B$_2$, we additionally found a T_4 core-valence contribution to the dissociation energy of 0.04 kcal/mol.) For second-row molecules, with smaller core-valence gaps and more subvalence electrons, this contribution is liable to be more important: this is consistent with our general observation that W3, W4a, and W4b theory all perform significantly better for first-row than for second-row systems.

(d) higher-order relativistic effects. Second-order spin-order coupling was found \cite{32} to contribute 2 kcal/mol to the binding energy of I$_2$ and 0.4 kcal/mol to that of Br$_2$; it cannot be ruled out that the contribution for Cl$_2$ would reach 0.1 kcal/mol. Recently, the Lamb shift was found \cite{62} to contribute +0.04 and +0.07 kcal/mol, respectively, to the binding energy of BF$_3$ and AlF$_3$.

(e) finally, although the total energy depends fairly weakly on geometric displacements near the equilibrium geometry, the small discrepancies between CCSD(T)/cc-pV(Q+d)Z and exact bottom-of-the-well reference geometries may cause small errors. This, however, clearly cannot explain the issues we are having with atomic IPs and EAs.
We have developed and validated a new computational thermochemistry protocol termed W3 theory. Compared to the older W2 theory, the main improvements are an improved treatment of scalar relativistic effects, and particularly an approximate account for post-CCSD(T) correlation effects. The new method is appreciably more costly, but considerably more robust, than W2 theory, and in particular yields reliable results for systems suffering from significant nondynamical correlation effects. It confirms the earlier assertion that the accuracy of W2 theory is basically limited by that of the CCSD(T) method.

Iterative T_3 effects exhibit a basis set convergence behavior similar to the T_3 contribution overall. They almost universally decrease molecular binding energies. Included by themselves, they yield less accurate results than CCSD(T) almost across the board: it is only when T_4 effects are included that superior performance is achieved. T_4 effects systematically increase molecular binding energies. Their basis set convergence is quite rapid, and even CCSDTQ/cc-pVDZ scaled by 1.2532 will yield a quite passable quadruples contribution. The effect of still higher-order excitations was gauged for a subset of molecules (notably the eight-valence electron systems): T_5 contributions reach 0.3 kcal/mol for the pathologically multireference $X \, 1^1\Sigma_g^+$ state of C$_2$ but are quite small for other systems.

Over a sample of 30 molecules — including some with severe nondynamical correlation effects — going from W2 to W3 reduces mean absolute error in total atomization energies from 0.395 to 0.220 kcal/mol, RMS error from 0.696 to 0.280 kcal/mol, and the two largest individual errors from $\{+3.0 \, (O_3), \, +1.2 \, (N_2O, \, NO_2)\}$ kcal/mol to $\{-0.78 \, (SO_2), \, +0.51$ kcal/mol (N$_2$O)$\}$. Various avenues for further enhancing the accuracy of W3 theory were explored, including more extensive basis sets, BSSE corrections, larger-basis set corrections for T_4 and higher-order T_3 effects, and extrapolation of the inner-shell correlation effects to the basis set limit. Only marginal improvements can be achieved by these costly measures: W3 appears to be ‘scratching the bottom out of the barrel’. BSSE on molecular binding energies is still significant even with basis sets as large as the AV6Z combination, but is almost entirely removed by the extrapolation. We speculate that the main obstacle to breaking the 0.1 kcal/mol barrier would be CCSD(T) imperfections in the core-valence correlation energy; their explicit computation is presently impractical for all but the very smallest systems.
Lesser potential error sources include, but are not limited to, post-CCSDTQ valence correlation effects, corrections to the Born-Oppenheimer approximation, higher-order relativistic effects (second-order spin-orbit coupling, Lamb shift,...) and imperfections in the reference geometry.

Acknowledgments

JMLM is a member of the Lise Meitner-Minerva Center for Computational Quantum Chemistry. ADB acknowledges a postdoctoral fellowship from the Feinberg Graduate School (Weizmann Institute). Research at Weizmann was supported by the Minerva Foundation, Munich, Germany, and by the Helen and Martin Kimmel Center for Molecular Design. JG acknowledges support from the Fonds der Chemischen Industrie (Germany).

[1] “Quantum Mechanical Prediction of Thermochemical Data”, ed. J. Cioslowski (Kluwer, Dordrecht, 2001), ISBN 0-7923-7077-5.
[2] K. Raghavachari and L. A. Curtiss, in Ref. [1]
[3] G. A. Petersson, in Ref. [1]
[4] J. M. L. Martin and G. De Oliveira, J. Chem. Phys. 111, 1843 (1999)
[5] S. Parthiban, G. De Oliveira, and J. M. L. Martin, in Ref. [1]
[6] S. Parthiban and J. M. L. Martin, J. Chem. Phys. 114, 6014 (2001)
[7] M. B. Sullivan, M. A. Iron, P. C. Redfern, J. M. L. Martin, L. A. Curtiss, and L. Radom, J. Phys. Chem. A 107, 5617 (2003)
[8] J. M. L. Martin, Chem. Phys. Lett. 259, 669 (1996)
[9] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).
[10] R. D. Cowan and M. Griffin, J. Opt. Soc. Am. 66, 1010 (1976); R. L. Martin, J. Phys. Chem. 87, 750 (1983).
[11] M. Douglas and N. M. Kroll, Ann. Phys. 82, 89 (1974).
[12] B. A. Heß, Phys. Rev. A 33, 3742 (1986).
[13] G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
[14] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. **157**, 479 (1989).

[15] J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. **98**, 8718 (1993)

[16] molpro, a package of *ab initio* programs designed by H.-J. Werner and P. J. Knowles, version 2002.6. With contributions from R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P. J. Knowles, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, P. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and H.-J. Werner.

[17] M. Kállay and P. R. Surján, J. Chem. Phys. **113**, 1359(2000)

[18] M. Kállay and P. R. Surján, J. Chem. Phys. **115**, 2945 (2001)

[19] M. Kállay, P. G. Szalay, and P. R. Surján, J. Chem. Phys. **117**, 980 (2002)

[20] J. F. Stanton, J. Gauss, J. D. Watts, W. Lauderdale, and R. J. Bartlett, ACES II, an *ab initio* program system (U. of Florida, Gainesville, 1996), incorporating the MOLECULE vectorized molecular integral program by J. Almlöf and P. R. Taylor, and a modified version of the ABACUS integral derivative package by T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, and P. R. Taylor. See also: J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, Int. J. Quantum Chem. Symp. **26**, 879 (1992).

[21] T.H. Dunning Jr., K. A. Peterson and D. E. Woon, ”Correlation consistent basis sets for molecular calculations”, in *Encyclopedia of Computational Chemistry* (P. von Ragué Schleyer, Ed.), Wiley & Sons, Chichester, UK, 1998.

[22] T. H. Dunning, J. Chem. Phys. **90**, 1007 (1989); D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. **98**, 1358 (1993).

[23] R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. **96**, 6796 (1992); D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. **99**, 3730 (1993).

[24] T. H. Dunning Jr., K. A. Peterson and A. K. Wilson, J. Chem. Phys. **114**, 9244 (2001).

[25] K. A. Peterson and T. H. Dunning Jr., J. Chem. Phys. **117**, 10548 (2002).

[26] W. Kutzelnigg and J. D. Morgan III, J. Chem. Phys. **96**, 4484 (1992) and references therein; *erratum* **97**, 8821 (1992).

[27] T. A. Ruden, T. U. Helgaker, P. Jørgensen, and J. Olsen, Chem. Phys. Lett. **371**, 62 (2003)

[28] M. Musial, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. **116**, 4382 (2002)
[29] J. M. L. Martin, J. Chem. Phys. 97, 5012 (1992)

[30] P.-O. Widmark, P.-Å. Malmqvist, and B. O. Roos, Theor. Chim. Acta 77, 291 (1990); P.-O. Widmark, B. J. Persson and B. O. Roos, Theor. Chim. Acta 79, 419-432 (1991).

[31] D. Z. Goodson, J. Chem. Phys. 116, 6948 (2002)

[32] D. Feller, K. A. Peterson, W. A. de Jong, and D. A. Dixon, J. Chem. Phys. 118, 3510 (2003)

[33] K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, and J. Gauss, Chem. Phys. Lett. 317, 116 (2000).

[34] R. J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143, 413 (1988).

[35] M. Oren, M.Sc Thesis (Weizmann Institute of Science, Rehovot, 2003); M. Oren and J. M. L. Martin, to be published.

[36] J. E. Del Bene, J. Phys. Chem. 97, 107 (1993)

[37] W. Klopper, Mol. Phys. 99, 481 (2001)

[38] See e.g. eq. (26) in R. J. Bartlett, in Modern Electronic Structure Theory (ed. D. R. Yarkony), World Scientific, Singapore, 1995, vol. 2, p. 1047.

[39] W. Klopper, J. Noga, H. Koch, and T. Helgaker, Theor. Chim. Acta 97, 164 (1997)

[40] e.g., H. Koch, A. Sanchez de Meras, T. Helgaker, O. Christiansen, J. Chem. Phys. 104, 4157 (1996); M. Schütz, R. Lindh, and H.-J. Werner, Mol. Phys. 96, 719 (1999)

[41] J. M. L. Martin, J. Chem. Phys. 108, 2791 (1998)

[42] B. H. Wells and S. Wilson, Chem. Phys. Lett. 101, 429 (1983)

[43] J. M. L. Martin, J. P. Francois, and R. Gijbels, Theor. Chim. Acta 76, 195 (1989).

[44] V. Parasuk, J. Almlöf, and B. DeLeeuw, Chem. Phys. Lett. 176, 1 (1991).

[45] S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970)

[46] C. W. Bauschlicher Jr. and A. Ricca, J. Phys. Chem. A 102, 8044 (1998)

[47] C. W. Bauschlicher Jr. and H. Partridge, Chem. Phys. Lett. 240, 533 (1995)

[48] J. M. L. Martin and O. Uzan, Chem. Phys. Lett. 292, 18 (1998)

[49] J. M. L. Martin, Chem. Phys. Lett. 310, 271 (1999)

[50] See EPAPS Document No. E-JCPSA6-XXX-YYYYYY for Tables S1–S3 comparing performance of W2 and W2w theory for ionization potentials, electron affinities, and heats of formation. A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See
The easiest way to break down the CCSD correlation energy in singlet and triplet pair components using an unmodified copy of MOLPRO, in a closed-shell case, is to forcibly run the CCSD part as open-shell since the closed-shell CCSD code does not generate pair correlation energies. CPU time requirements will approximately double for the affected parts of the calculation. The program will report $E_{\alpha\alpha}$, $E_{\beta\beta}$, and $E_{\alpha\beta}$, from which $E^S = E_{\alpha\beta} - E_{\beta\beta}$ and $E^T = E_{\alpha\alpha} + 2E_{\beta\beta}$ reproduces Klopper's partitioning \[37\].

[51] NIST Chemistry Webbook, NIST Standard Reference Database Number 69 - March, 2003 Release (National Institute for Standards and Technology, Gaithersburg, MD), accessible through http://webbook.nist.gov/chemistry; H.Y. Afeefy, J.F. Liebman, S.E. Stein, "Neutral Thermochemical Data", ibid.; S.G. Lias, "Ionization Energy Data", ibid.; J. E. Bartmess, "Negative Ion Energetics Data", ibid.

[52] A. G. Császár, P. G. Szalay, and M. L. Leininger, Mol. Phys. 100, 3879 (2002).

[53] T. Rajamäki, A. Miani, and L. Halonen, J. Chem. Phys. 118, 6358 (2003)

[54] J. M. L. Martin, T. J. Lee, and P. R. Taylor, J. Chem. Phys. 97, 8361 (1992)

[55] G. de Oliveira, J. M. L. Martin, F. De Proft, and P. Geerlings, Phys. Rev. A 60, 1034 (1999)

[56] L. Radom, in Modern Quantum Chemistry, vol. 4, ed. H. F. Schaefer III (Plenum, New York, 1977).

[57] N. Taniguchi, K. Takahashi, Y. Matsumi, S. M. Dylewski, J. D. Geiser, and P. L. Houston, J. Chem. Phys. 111, 6350 (1999)

[58] A. Barbe, A. Chichery, T. Cours, V. G. Tyuterev, and J. J. Plateaux, J. Mol. Struct. 616, 55 (2002)

[59] S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 110, 8233 (1999)

[60] K. G. Dyall, C. W. Bauschlicher Jr., D. W. Schwenke, and P. Pyykkö, Chem. Phys. Lett. 348, 497 (2001)
[63] J. M. L. Martin and P. R. Taylor, *J. Phys. Chem. A* **103**, 4427 (1999).

[64] J. M. L. Martin, *Chem. Phys. Lett.* **310**, 271 (1999).
Effect on ionization potentials (meV)	CCSDT - CCSD(T)	CCSDTQ - CCSDT						
AVDZ	AVTZ	AVQZ limit\(^a\)	AVDZ	AVTZ	AVQZ limit\(^a\)			
B	11.24	11.97	11.05	10.38	0.00	0.00	0.00	0.00
C	3.86	5.08	4.58	4.21	1.09	1.30	1.41	1.49
N	0.22	1.10	0.85	0.66	0.55	0.70	0.86	0.98
O	4.00	3.53	3.08	2.76	1.30	1.08	1.48	1.77
F	1.71	0.54	-0.11	-0.59	1.71	1.14	1.76	2.21
Ne	-0.03	-3.02	-3.94	-4.61	2.24	0.90	1.72	2.31
Al	11.97	13.69	12.45	11.54	0.00	0.00	0.00	0.00
Si	4.32	9.27	8.08	7.22	1.74	2.34	2.61	2.80
P	-0.23	3.54	3.05	2.70	2.24	2.35	2.97	3.42
S	4.74	2.51	3.03	3.40	1.76	1.66	2.40	2.93
Cl	0.58	-0.58	-0.83	-1.01	1.93	2.32	2.88	3.28
Ar	-2.21	-4.77	-5.81	-6.56	2.48	2.63	3.16	3.56

Effect on electron affinities (meV)	CCSDT - CCSD(T)	CCSDTQ - CCSDT						
AVDZ	AVTZ	AVQZ limit\(^a\)	AVDZ	AVTZ	AVQZ limit\(^a\)			
B	14.87	14.98	14.06	13.39	3.73	4.76	5.01	5.19
C	9.52	9.18	8.26	7.59	4.20	4.82	5.15	5.39
O	10.28	5.11	3.29	1.96	9.97	8.98	10.54	11.67
F	3.32	-5.52	-8.39	-10.48	10.34	6.89	8.68	9.98
Al	9.85	12.01	10.42	9.26	3.07	4.20	4.55	4.81
Si	4.60	6.04	4.08	2.64	3.84	4.79	4.72	4.67
P	12.80	7.30	7.00	6.78	4.07	5.00	6.85	7.55
S	4.92	1.27	0.15	-0.67	4.28	6.38	7.42	8.18
Cl	-1.13	-5.61	-7.30	-8.53	4.41	5.75	6.94	7.82

\(^a\) From AVQZ + (AVQZ – AVTZ)/(4/3)^3 \(−1\)

TABLE I: Basis set convergence of \(T_4\) and higher-order \(T_3\) effects on atomic ionization potentials and electron affinities
TABLE II: Basis set convergence of T_4 effects on molecular total atomization energies (kcal/mol)

	PVDZ	AVDZ	PVTZ	AVTZ	(PVDZ,PVTZ)a	(AVDZ,AVTZ)a	ANO431
H$_2$O	0.24	0.25	0.17	0.14	0.17		
B$_2$	0.99	1.03	1.19	1.21	1.26	1.27	1.02
C$_2$H$_2$	0.54	0.58				0.53	
CH$_3$	0.06	0.06	0.05	0.05	0.05	0.04	
CH$_4$	0.07	0.07				0.05	
CH	0.03	0.03	0.03	0.03	0.03	0.03	0.03
CO$_2$	0.99					0.84	
CO	0.53	0.59	0.56	0.56	0.47	0.47	
F$_2$	0.82	0.98	0.80	0.79	0.73	0.73	
HF	0.17	0.17	0.09	0.10	0.06	0.07	0.11
N$_2$	0.87	0.96	0.94	0.96	0.86	0.86	
NH$_3$	0.17	0.19	0.15		0.15	0.15	
NNO	1.75					1.67	
NO	0.75	0.84	0.78	0.79	0.69	0.69	
O$_2$	1.08	1.19	1.07	1.07	0.99	0.99	
O$_3$	3.21					3.17	
C$_2$	1.59	1.77	2.12	2.31	1.71	1.71	
BN	1.38	1.56	1.87	2.05	1.48	1.48	
MgO	1.55	1.54	1.74	1.69	1.81	1.75	1.37
BeO	0.69	0.68	0.67	0.66	0.51	0.51	
CN	0.84	0.92	0.99	1.05	0.84	0.84	
NO$_2$	1.71					1.61	
Cl$_2$	0.24	0.39	0.45	0.45	0.24	0.24	
CIF	0.39	0.41	0.42	0.42	0.31	0.31	
CS	0.50	0.87	1.00		0.56	0.56	
H$_2$S	0.08	0.13	0.15	0.15	0.07	0.07	
HCl	0.06	0.09	0.10	0.10	0.06	0.06	
HOCl	0.48					0.41	
PH$_3$	0.05	0.09	0.10	0.10	0.04	0.04	
SO	0.73	0.79	0.82	0.82	0.63	0.63	
SO$_2$	1.44					1.44	
OCS	0.98					0.98	
CICN	0.94					0.94	
C$_2$H$_4$	0.33					0.30	
H$_2$CO	0.50					0.42	
HNO	0.65					0.60	

(a) extrapolated from the two basis sets indicated
TABLE III: Basis set convergence of higher-order T_3 effects on molecular total atomization energies (kcal/mol)

	PVDZ	AVDZ	PVTZ	AVTZ	(PVDZ,PVTZ)a	(AVDZ,AVTZ)a	PVQZ	(PVTZ,PVQZ)
H$_2$O	0.04	-0.02	-0.11	-0.18	-0.17	-0.23	-0.16	-0.18
B$_2$	0.58	0.54	0.30	0.24	0.19	0.13	0.17	0.12
C$_2$H$_2$	-0.12	-0.25	-0.51	-0.62	-0.66	-0.75	-0.61	-0.64
C$_2$H$_4$	0.03	-0.08	-0.28	-0.38	-0.40	-0.49	-0.49	-0.49
CH$_3$	0.06	0.05	0.01	0.02	-0.01	-0.05	-0.05	-0.05
CH$_4$	0.06	0.04	-0.03	-0.06	-0.06	-0.10	-0.10	-0.10
CH	0.13	0.14	0.12	0.10	0.12	0.09	0.12	0.12
CO$_2$	-0.14	-0.48	-0.72	-0.93	-0.94	-1.10	-0.88	-0.93
CO	0.05	-0.12	-0.35	-0.46	-0.49	-0.59	-0.44	-0.48
F$_2$	0.08	-0.05	-0.21	-0.27	-0.32	-0.35	-0.26	-0.27
H$_2$CO	0.05	-0.09	-0.32	-0.44	-0.46	-0.57	-0.57	-0.57
HF	0.01	-0.01	-0.09	-0.11	-0.12	-0.15	-0.12	-0.13
HNO	0.43	0.26	0.12	-0.03	0.00	-0.13	-0.13	-0.13
N$_2$	-0.05	-0.23	-0.50	-0.67	-0.66	-0.84	-0.59	-0.63
NH$_3$	0.12	0.07	-0.03	-0.11	-0.08	-0.17	-0.17	-0.17
NNO	-0.41	-0.77	-1.10	-1.37	-1.35	-1.59	-1.59	-1.59
NO	0.13	-0.05	-0.31	-0.45	-0.47	-0.60	-0.40	-0.44
O$_3$	-0.10	-0.77	-0.92	-1.28	-1.23	-1.47	-1.47	-1.47
C$_2$	-1.22	-1.48	-1.87	-2.02	-2.12	-2.22	-2.06	-2.13
BN	-1.95	-2.07	-2.40	-2.51	-2.57	-2.68	-2.50	-2.54
MgO	-0.01	-0.21	-0.64	-0.78	-0.87	-0.99	-0.99	-0.99
BeO	0.58	0.39	0.04	-0.06	-0.16	-0.22	-0.22	-0.22
CN	0.41	-0.08	-0.26	-0.19	-0.19	-0.23	-0.23	-0.23
NO$_2$	0.04	-0.68	-0.95	-0.95	-0.95	-0.95	-0.95	-0.95
Cl$_2$	0.02	-0.25	-0.35	-0.33	-0.33	-0.36	-0.36	-0.36
CIF	0.05	-0.19	-0.28	-0.24	-0.24	-0.26	-0.26	-0.26
CS	0.11	-0.39	-0.57	-0.50	-0.50	-0.55	-0.55	-0.55
H$_2$S	0.09	-0.04	-0.09	-0.07	-0.07	-0.08	-0.08	-0.08
HCl	0.02	-0.07	-0.10	-0.10	-0.10	-0.11	-0.11	-0.11
HOCN	0.03	-0.31	-0.43	0.00	0.00	0.00	0.00	0.00
PH$_3$	0.20	0.04	-0.02	0.05	0.05	0.05	0.05	0.05
SO	-0.06	-0.55	-0.74	-0.66	-0.70	-0.70	-0.70	-0.70
SO$_2$	-0.10	-0.90	-1.19	-1.19	-1.19	-1.19	-1.19	-1.19
OCS	-0.09	-0.76	-1.02	-1.02	-1.02	-1.02	-1.02	-1.02
CNCl	-0.22	-0.83	-1.05	-1.05	-1.05	-1.05	-1.05	-1.05

(a) extrapolated from the two basis sets indicated
TABLE IV: Comparison of scalar relativistic corrections for molecular total atomization energies (kcal/mol)

Molecule	ACPF/MTsmall	CCSD(T)/ARVQZ	{ARVTZ, ARVQZ}	{ARVQZ, ARV5Z}
H₂	0.00	−0.001	−0.001	−0.001
N₂	−0.11	−0.133	−0.146	−0.145
O₂	−0.15	−0.176	−0.184	−0.191
F₂	+0.03	−0.024	−0.033	−0.034
HF	−0.20	−0.194	−0.196	−0.198
CH	−0.03	−0.040	−0.041	−0.039
CO	−0.14	−0.157	−0.166	−0.162
NO	−0.16	−0.185	−0.193	−0.194
CS	−0.15	−0.159	−0.141	−0.140
SO	−0.31	−0.336	−0.344	−0.353
HCl	−0.26	−0.246	−0.249	−0.239
ClF	−0.12	−0.177	−0.205	−0.172
Cl₂	−0.15	−0.208	−0.242	−0.190
HNO	−0.24	−0.266	−0.274	−0.274
CO₂	−0.45	−0.471	−0.486	−0.477
H₂O	−0.26	−0.264	−0.268	−0.269
H₂S	−0.41	−0.393	−0.400	−0.399
HOCls	−0.28	−0.323	−0.340	−0.325
OCS	−0.53	−0.530	−0.547	−0.542
CICN	−0.43	−0.442	−0.451	−0.446
SO₂	−0.71	−0.814	−0.837	−0.857
CH₃	−0.17	−0.172	−0.173	−0.168
NH₃	−0.25	−0.251	−0.245	−0.243
PH₃	−0.46	−0.453	−0.460	−0.455
C₂H₂	−0.27	−0.280	−0.287	−0.270
CH₂O	−0.32	−0.334	−0.340	−0.335
CH₄	−0.19	−0.193	−0.195	−0.187
C₂H₄	−0.33	−0.332	−0.336	−0.324
SiF₄	−1.88	—	−1.895	—
SO₃	−1.71	—	−1.829	−1.878

Mean Absolute Deviation: 0.03 0.03

MAD without SO₂, SO₃: 0.02 0.02

(a) Data taken from [5], except SiF₄ [63] and SO₃ [64].

(b) extrapolated from the two basis sets indicated

26
TABLE V: Comparison of different extrapolation procedures for the SCF and valence correlation energy (kcal/mol)

	SCF							
	CCSD – SCF	Extrap.	Basis sets					
			5	3	3	5	3	3
C\textsubscript{2}H\textsubscript{2}	-0.032	0.292	0.259	-0.104	-0.022	-0.071	-0.025	
CH	-0.003	0.077	0.145	0.000	-0.014	-0.015		
CH\textsubscript{3}	-0.022	0.258	0.341	-0.025	-0.030	-0.042	-0.022	
CH\textsubscript{4}	-0.029	0.259	0.315	-0.048	-0.031	-0.055	-0.030	
CO\textsubscript{2}	0.017	-0.003	-0.236	-0.216	0.003	-0.093		
H\textsubscript{2}O	0.000	0.282	0.244	-0.077	-0.085	-0.120	-0.023	
HF	0.007	0.293	0.215	-0.060	-0.015	-0.043	-0.017	
N\textsubscript{2}O	0.003	0.014	-0.071	-0.169	0.121	0.042		
NO	0.013	-0.148	-0.166	-0.089	0.021	-0.019	0.036	
O\textsubscript{2}	0.014	0.014	-0.079	-0.080	0.059	0.031	0.030	
N\textsubscript{2}	-0.001	-0.287	-0.216	-0.086	-0.079	-0.117	0.039	
CO	-0.002	-0.103	-0.228	-0.127	-0.022	-0.078	0.026	
F\textsubscript{2}	-0.007	0.091	-0.177	-0.128	0.051	-0.009	0.012	
Cl\textsubscript{2}	-0.012	-0.442	-0.729	-0.180	-0.306	-0.381	0.056	
ClF	0.044	-0.124	-0.391	-0.146	-0.100	-0.164	0.021	
CS	0.038	-0.386	-0.467	-0.113	-0.243	-0.285	0.083	
H\textsubscript{2}S	0.028	0.192	0.178	-0.066	-0.122	-0.146	0.019	
HCl	0.003	0.053	-0.005	-0.060	-0.133	-0.158	0.014	
H\textsubscript{3}O\textsubscript{1}	0.020	-0.034	-0.255	-0.162	-0.154	-0.226	0.010	
PH\textsubscript{3}	0.052	0.441	0.587	-0.025	-0.069	-0.076	0.026	
SO\textsubscript{2} (d)	0.176	-0.629	-1.063	-0.320	-0.217	-0.352	0.056	
OCS	0.020	-0.011	-0.243	-0.203	-0.179	-0.263		
NH\textsubscript{3}	-0.011	0.262	0.382	-0.037	-0.105	-0.124	0.026	

(a) All values relative to the standard W2 procedures.
(b) extrapolated from the two basis sets indicated.
(c) "3,5" indicates separate extrapolation of singlet-coupled pairs by \(E(L) = E_\infty + a/L^3 \) and of triplet pairs by \(E(L) = E_\infty + a/L^5 \); "3" a joint extrapolation by \(E(L) = E_\infty + a/L^3 \); and similarly for "5".
(d) SCF/aug-cc-pV6Z+2d1f: 121.94 kcal/mol. 3-point geometric extrapolation: aug-cc-pV(X+d)Z (X=Q,5,6): 121.95 kcal/mol; aug-cc-pVXZ+2d1f: 121.91 kcal/mol. Best estimate: 121.93±0.04 kcal/mol.
TABLE VI: Effect of basis set superposition error on raw and extrapolated valence correlation energies (kcal/mol)

molecule	BSSE \{AVQZ,AV5Z\}	BSSE \{AV5Z,AV6Z\}	CCSD	BSSE	CCSD
CH₄	0.071	0.018	0.217	0.120	
C₂H₂	0.127	0.026	0.330	0.183	
CH₃	0.050	0.012	0.197	0.110	
CH	0.012	0.006	0.073	0.040	
NH₃	0.057	0.026	0.266	0.145	
H₂O	0.015	0.021	0.359	0.200	
HF	0.017	0.007	0.283	0.161	
O₂	0.128	0.066	0.472	0.246	
NO	0.119	0.052	0.403	0.213	
N₂	0.112	0.047	0.295	0.153	
CO	0.103	0.053	0.403	0.212	
F₂	0.115	0.042	0.293	0.151	
Cl₂	-0.160	0.101	0.368	0.165	
CIF	-0.015	0.081	0.392	0.189	
CS	-0.023	0.057	0.376	0.191	
H₂S	-0.069	0.074	0.328	0.181	
HCl	-0.119	0.032	0.307	0.162	
HOCl	-0.023	0.085	0.385	0.184	
PH₃	-0.021	0.032	0.183	0.106	
SO	0.060	0.067	0.461	0.238	
SO₂	0.134	0.122	0.811	0.417	

(a) extrapolated from the two basis sets indicated
TABLE VII: Effect on TAE (kcal/mol) of an improved inner-shell correlation treatment

molecule	aug'-cc-pwCVTZ	aug'-cc-pwCVQZ	extrapolated BSSE (TZ)	BSSE (QZ)	BSSE (extrap.)	
CH₄	1.12	1.21	1.27	0.06	0.02	0.02
NH₃	0.57	0.62	0.65	0.04	0.01	0.01
C₂H₂	2.16	2.35	2.49	0.11	0.02	0.04
CH₃	0.95	1.03	1.09	0.05	0.01	0.01
CH	0.13	0.14	0.14	0.01	0.00	0.00
H₂O	0.34	0.37	0.38	0.02	0.01	0.00
HF	0.20	0.18	0.16	0.01	0.00	0.00
O₂	0.25	0.24	0.23	0.04	0.01	0.02
NO	0.38	0.40	0.41	0.05	0.01	0.02
N₂	0.67	0.74	0.79	0.06	0.01	0.02
CO	0.82	0.90	0.96	0.06	0.01	0.02
F₂	-0.06	-0.08	-0.10	0.02	0.00	0.01
Cl₂	0.24	0.18	0.14	0.10	0.05	0.00
ClF	0.13	0.08	0.04	0.08	0.03	0.00
CS	0.72	0.79	0.84	0.15	0.07	-0.01
H₂S	0.28	0.31	0.33	0.13	0.08	-0.04
HCl	0.17	0.18	0.19	0.06	0.03	-0.02
HOCI	0.33	0.29	0.26	0.09	0.04	0.00
PH₃	0.25	0.31	0.34	0.20	0.12	-0.06
SO	0.47	0.48	0.49	0.15	0.07	-0.01
SO₂	0.92	0.95	0.97	0.85	0.33	0.04
molecule	W2	W3	Expt. uncertainty			
----------	------	------	-------------------			
B	0.007	-0.005	0.00002			
C	0.010	0.004	0.0001			
N	0.000	-0.002	0.001			
O	0.005	0.000	0.001			
F	0.002	0.001	0.001			
Ne	0.000	-0.002	0.001			
Al	0.023	0.009	0.001			
Si	0.018	0.005	0.00003			
P	0.011	0.005	0.00001			
S	0.014	0.012	0.001			
Cl	0.007	0.007	0.001			
Ar	0.009	0.013	0.001			
C₂H₂	-0.004	0.008	0.001			
C₂H₄	-0.001	0.004	0.000			
CH₂	0.023	0.010	0.003			
CH₄	-0.033	-0.030	0.010			
Cl₂	-0.008	0.005	0.003			
ClF	0.005	0.018	0.010			
CN	-0.046	-0.014	0.020			
CO	-0.014	-0.003	0.000			
CS	-0.017	0.001	0.010			
H₂O	0.006	0.006	0.000			
H₂S	-0.008	-0.006	0.001			
HF	-0.016	-0.018	0.003			
N₂	-0.046	0.000	0.008			
NH₂	-0.034	-0.038	0.010			
NH₃	-0.004	-0.004	0.090			
NH	-0.046	-0.052	0.010			
O₂	-0.024	0.002	0.000			
OH	0.001	-0.004	0.000			
P₂	0.047	0.065	0.002			
PH₂	0.003	0.000	0.002			
PH₃	-0.006	-0.012	0.002			
PH	-0.006	-0.011	0.008			
S₂	-0.011	0.012	0.002			
SH	0.007	0.006	0.000			
SiH₄	0.006	0.006	0.020			

mean abs 0.0141 0.0104
RMS 0.0202 0.0161
max(+) P₂ P₂
0.047 0.065
max(-) CN/N₂ NH₂
-0.046 -0.038
TABLE IX: Deviation (experiment–theory) for computed electron affinities (eV)

molecule	W2	W3	Expt. uncertainty
B	0.015	0.005	0.00003
C	0.007	-0.007	0.0003
O	0.012	-0.003	0.000003
F	-0.002	-0.006	0.000004
Al	0.020	0.004	0.00005
Si	0.010	-0.001	0.000006
P	0.015	0.005	0.0003
S	0.008	0.003	0.000001
Cl	0.002	0.004	0.00006
C₂	0.031	0.001	0.008
CH	0.029	0.019	0.008
CH₂	0.002	-0.001	0.006
CH₃	0.034	0.029	0.030
Cl₂	0.004	0.004	0.200
CN	-0.026	-0.001	0.005
NH	0.008	-0.005	0.004
NH₂	0.007	0.006	0.037
NO	-0.001	-0.003	0.005
O₂	-0.003	-0.004	0.007
OF	-0.009	0.004	0.006
OH	-0.001	-0.004	0.000
PH	0.010	0.003	0.010
PH₂	0.013	0.009	0.010
PO	-0.002	0.006	0.010
S₂	-0.018	-0.015	0.040
SH	0.008	0.009	0.002
SiH₂	0.039	0.030	0.022
SiH₃	0.031	0.021	0.009
mean abs.	0.0135	0.0076	
RMS	0.0173	0.0109	
max(+)	SiH₂	SiH₂	0.039 0.030
max(-)	CN	S₂	-0.026 -0.015

Mean absorption: 0.0135, 0.0076
RMS: 0.0173, 0.0109
Max:+ SiH₂, SiH₂ 0.039, 0.030
Max:- CN, S₂ -0.026, -0.015
TABLE X: Performance of W2 and W3 theory for total atomization energies. Deviations given are experiment–theory (kcal/mol)

molecule	Error in W2	Error in W3	Error in W3A	Error in W3K	Expt. uncertainty
C2H2	0.42	0.43	0.43	0.53	0.24
C2H4	-0.19	-0.19	-0.16	-0.08	0.24
CH3	-0.21	-0.27	-0.25	-0.25	0.10
CH4	-0.11	-0.14	-0.11	-0.09	0.14
CH	-0.08	-0.23	-0.23	-0.23	0.23
CO2	0.14	-0.13	+0.04	+0.09	0.12
H2CO	-0.27	-0.41	-0.31	-0.26	0.12
H2O	-0.04	-0.16	-0.08	-0.08	0.12
HF	0.02	-0.10	-0.02	-0.04	0.17
HNO	0.38	-0.11	-0.06	+0.03	0.06
NH3	-0.03	-0.12	-0.09	-0.08	0.13
N2O	1.20	0.51	0.57	0.68	0.10
NO2	1.16	0.05	0.18	0.32	0.10
NO	0.47	0.09	0.15	0.18	0.03
O2	0.64	0.02	0.11	0.10	0.04
O3	3.01	0.38	0.36	0.67	0.03
N2	0.36	0.06	0.06	0.15	0.04
CO	0.12	-0.03	+0.04	0.10	0.12
F2	0.60	-0.09	+0.01	0.04	0.10
Cl2	-0.21	-0.14	-0.15	0.04	0.00
ClF	0.10	-0.10	-0.01	0.05	0.01
CS	0.26	0.21	0.12	0.32	0.23
H2S	-0.39	-0.43	-0.42	-0.36	0.12
HCl	-0.05	-0.06	-0.06	0.00	0.02
HOCl	-0.16	-0.30	-0.23	-0.14	0.12
PH3	0.01	-0.07	-0.25	-0.04	0.41
SO	0.01	-0.14	-0.02	-0.04	0.04
SO2	-0.28	-0.78	—	-0.46	0.08
OCS	-0.21	-0.41	—	-0.21	0.48
ClCN	0.38	0.31	—	0.50	0.48

mean signed error\(^a\) 0.24(0.26) -0.08(-0.04) (-0.01) +0.05(0.07)
mean abs. error 0.40(0.36) 0.22(0.16) (0.16) 0.20(0.18) 0.15
RMS error 0.70(0.72) 0.28(0.23) (0.22) 0.28(0.26)
largest pos. dev. O3 N2O N2O N2O
largest neg. dev. H2S SO2 H2S SO2

(a) Error statistics in parentheses are exclusive of SO2, OCS, and ClCN.
(b) average experimental uncertainty
TABLE XI: Comparison of W3, W4a, and W4b for TAEs (kcal/mol)

molecule	W2	W3	W4a	W4b uncertainty
C\(_2\)H\(_2\)	0.42	0.43	0.29	0.32
CH\(_3\)	-0.21	-0.27	-0.16	-0.15
CH\(_4\)	-0.11	-0.14	-0.09	-0.08
CH	-0.08	-0.23	-0.21	-0.21
H\(_2\)O	-0.04	-0.16	0.09	0.15
HF	0.02	-0.10	0.09	0.16
NH\(_3\)	-0.03	-0.12	0.11	0.11
NO	0.47	0.09	0.08	0.18
O\(_2\)	0.64	0.02	0.09	0.26
N\(_2\)	0.36	0.06	0.16	0.26
CO	0.12	-0.03	-0.17	-0.10
F\(_2\)	0.60	-0.09	-0.02	0.13
Cl\(_2\)	-0.21	-0.14	0.05	0.06
ClF	0.10	-0.10	-0.14	-0.06
CS	0.26	0.21	-0.20	-0.23
H\(_2\)S	-0.39	-0.43	-0.43	-0.42
HCl	-0.05	-0.06	0.01	0.02
PH\(_3\)	0.01	-0.07	0.17	0.16
SO	0.01	-0.14	-0.15	-0.05

mean abs | 0.224| 0.154| 0.142| 0.170
RMS | 0.302| 0.194| 0.172| 0.197
max (+) | C\(_2\)H\(_2\) C\(_2\)H\(_2\) C\(_2\)H\(_2\) C\(_2\)H\(_2\) |
max(-) | H\(_2\)S H\(_2\)S H\(_2\)S H\(_2\)S |

| | -0.42 | 0.43 | 0.29 | 0.32 |
| | -0.39 | -0.43| -0.43| -0.42|