Bounce in GR and higher-order derivative operators

Gen Ye1* and Yun-Song Piao1,2†

1 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China and
2 Institute of Theoretical Physics, Chinese Academy of Sciences,
P.O. Box 2735, Beijing 100190, China

Abstract

Recent progress seems to suggest that one must modify General Relativity (GR) to stably violate the null energy condition and avoid the cosmological singularity. However, with the higher-order derivative operators of scalar field (a subclass of the degenerate higher-order scalar-tensor theory), we show that at energies well below the Planck scale, fully stable nonsingular cosmologies can actually be implemented within GR.

PACS numbers:

* yegen14@mails.ucas.ac.cn
† yspiao@ucas.ac.cn
I. INTRODUCTION

It is well-known that General Relativity (GR) suffers the singularity problem, which indicates that our understanding about the gravity and the origin of the universe is incomplete [1, 2]. It is still a difficult and intangible task to look for a ultraviolet (UV)-complete theory to describe what happens at the “singularity”. However, implementing a fully stable nonsingular universe with the effective field theory (EFT), which captures low energy behaviors of the complete theory, might be a significant step to this task.

In the spatially flat nonsingular cosmologies, the Null Energy Condition (NEC) must be violated for a period. However, it is often accompanied by the (ghost, gradient) instabilities [3, 4], or else the singularities in the equations of background or perturbations, see also Refs.[5–7]. Recently, it has been found that the solutions of fully stable nonsingular cosmologies do exist in the EFT beyond Horndeski [8–13]. Degenerate higher-order scalar-tensor (DHOST) theory [14] actually is a rich pool for such EFTs [15]. However, it is noteworthy that in the nonsingular models built, the gravity has been no longer GR-like.

Recently, the LIGO Scientific and Virgo Collaborations have detected the gravitational wave (GW) signals of binary black hole (BH) [16] and binary neutron star mergers [17], which opened a new window to probe the gravity physics. The results of all tests performed in Refs.[18, 19] showed perfect agreement with GR, particularly in the strong-field regime. Currently, GR is still a well-established effective theory in the low energy regime of the UV-complete theory, though it must break down around the Planck energy.

How to implement the nonsingular bounce with GR? It is well-known that the $P(\phi, X)$ theory can hardly bring a stable NEC violation. To stably regulate such a violation, one may include the higher-order derivative operators $(\Box\phi)^2$, $(\phi^{\mu\nu})^2$· · · in the $P(\phi, X)$ theory, and set the EFT as, e.g.[20],

$$L \sim \frac{M_P^2}{2} (4) R + P(\phi, X) + \mathcal{O} ((\Box\phi)^2, (\phi^{\mu\nu})^2 \cdots),$$ \hspace{1cm} (1)

Generally, integrating out the massive particles beyond the cutoff scale, one will have the higher-order correction $\mathcal{O} ((\Box\phi)^2, (\phi^{\mu\nu})^2 \cdots)$ [21, 22]. One frequently-used possibility is $\mathcal{O} \sim (\Box\phi)^2$, see e.g.[23–25]. However, the corresponding EFT must beg unknown physics in the sufficiently far past, or else the higher-order derivative operator will show itself the Ostrogradski ghost. It is noticed that such higher-order derivative operators can be actually
allowed in the DHOST theory [26, 27], see also [28], as the specific conditions are fulfilled so that the Ostrogradski ghost is avoided [29, 30].

Nevertheless, which operator in $\mathcal{O}((\square \phi)^2, (\phi^\mu)^2 \cdots)$ is indispensable for achieving a pathology-free bounce in GR is still not clear so far. In this paper, we will propose a consistent (1)-like EFT for the spatially-flat fully stable nonsingular cosmologies. We, with it, will discuss how to evade the No-go Theorem [3, 4] plaguing the cosmologists, and show a concrete example for the cosmological bounce.

II. DHOST THEORY WITH $c_T = 1$

A. Reducing to GR

We begin with the DHOST theory with $c_T = 1$ (c_T is the speed of GWs) [31]

$$
L_{c_T=1}^{DHOST} = P + Q \Box \phi + A^{(4)} R + \frac{1}{A} \left(6A_X^2 - (A - X A_X) B - \frac{X^2 B^2}{8} \right) \phi^\mu \phi_{\mu\nu} \phi_{\lambda\nu} + B \phi^\mu \phi_{\mu\nu} \Box \phi + \frac{B}{A} \left(2A_X + \frac{XB}{2} \right) (\phi_{\mu\nu\rho} \phi_{\rho})^2,
$$

(2)

where $\Box \phi \equiv \phi_{\mu\nu} \equiv \Box \nu \nabla_{\mu} \phi$ and $X \equiv \phi_{\mu} \phi^\mu$. The coefficients A, Q and B only depend on ϕ and X. Generally, B is independent of A. However, if $B = -\frac{4}{X} A_X$, $L_{c_T=1}^{DHOST}$ will reduce to the $c_T = 1$ beyond Horndeski theory $L_{c_T=1}^{bH}$ [32].

It is significant to notice that if setting $A = \text{const.}$ and $Q = 0$, in $L_{c_T=1}^{bH}$, we will get $B = -\frac{4}{X} A_X = 0$, and so (2) will reduce to GR, while in $L_{c_T=1}^{DHOST}$, we will have GR with extra DHOST operators (higher-order derivative operators), which is not in the beyond Horndeski theory but belongs to a subclass of the $c_T = 1$ DHOST theory. Degenerate conditions required by the DHOST theory suggest that such a combination of higher-order derivative operators is free of the Ostrogradsky ghost. Thus a (1)-like EFT will be Ostrogradsky ghost-free, only if it is a subclass of the DHOST theory.

B. Perturbation in DHOST theories with $c_T = 1$

We adopt the ADM metric,

$$
d s^2 = -N^2 d t^2 + h_{ij} (d x^i + N^i d t)(d x^j + N^j d t),
$$

(3)
where N is the lapse, N_i is the shift and h_{ij} is the spatial metric. We set $\eta = \phi$ as the time coordinate. Dynamics of ϕ is absorbed into $N(\eta)$, as $\dot{\phi} \equiv d\phi/d\eta = 1$.

Defining
\[B = -\frac{4}{X} A_X + A\tilde{B}, \]
we have
\[L_{\text{DHOST}}^{bH} = L_{\text{cT} = 1}^{bH} + \Delta L, \]
where
\[\Delta L = A\tilde{B}\phi^\mu \phi^\nu \phi_{\mu\nu} \Box \phi + \left(-A\tilde{B} + 2X A_X \tilde{B} - \frac{X^2 A\tilde{B}^2}{8}\right) \phi^\mu \phi_{\mu\mu} \phi^\lambda \phi_{\lambda\lambda} \]
\[+ \frac{X \tilde{B}}{2} \left(-\frac{4}{X} A_X + A\tilde{B}\right) (\phi_{\mu} \phi^{\mu\mu} \phi_{\nu})^2. \]

In the unitary gauge, one could rewrite $L_{\text{cT} = 1}^{bH} = \tilde{P} + \tilde{Q} K + A(\mathcal{R} - \mathcal{K}_2)$ [28], where $\mathcal{R} \equiv h^{ij} \mathcal{R}_{ij}$ is the Ricci scalar on the spacelike hypersurface, $K \equiv h^{ij} K_{ij}$ is the extrinsic curvature and $\mathcal{K}_2 \equiv K^2 - K_{ij} K^{ij}$. The DHOST operators follow
\[\phi^\mu \phi^\nu \phi_{\mu\nu} = \frac{-1}{N^5} \left(\ddot{N} - N_i \partial_i N\right) \equiv \frac{-1}{N^5} N', \]
\[\Box \phi = \frac{1}{N^3} \left(\ddot{N} - N_i \partial_i N\right) - \frac{1}{N^3} K \equiv \frac{1}{N^3} N' - \frac{1}{N} K, \]
\[\phi^\mu \phi_{\mu\mu} \phi^\lambda \phi_{\lambda\lambda} = \frac{-1}{N^8} \left(\ddot{N} - N_i \partial_i N\right)^2 + \frac{1}{N^6} (\partial N)^2 \equiv \frac{-1}{N^8} N'^2 + \frac{1}{N^6} (\partial N)^2. \]

Thus we have
\[\Delta L = -\frac{3A\tilde{B}^2}{8N^{12}} N'^2 + \frac{A\tilde{B}}{N^6} N' K - \frac{\tilde{B}}{N^5} \left(\frac{A}{N} + NA_N + \frac{A\tilde{B}}{8N^5}\right) (\partial N)^2 \]
where the equality $X = -1/N^2$ is used. Replacing $-\tilde{B}/(2N^5)$ with \tilde{B}, we get the ADM form of $L_{\text{cT} = 1}^{\text{DHOST}}$ (2)
\[L_{\text{cT} = 1}^{\text{DHOST}} = \tilde{P} + \tilde{Q} K + A(\mathcal{R} - \mathcal{K}_2) - \frac{3A\tilde{B}^2}{2N^2} N'^2 - \frac{2A\tilde{B}}{N} N' K \]
\[+ \tilde{B} \left(\frac{2A}{N} + 2A_N - \frac{A\tilde{B}}{2}\right) (\partial N)^2. \]

We will work with (6). To study the stability of perturbations, we will expand $L_{\text{cT} = 1}^{\text{DHOST}}$ in (6) to second order. Defining the metric perturbation
\[N^i = \delta^i j \partial_j \psi, \quad h_{ij} = a^2(\eta) e^{2\kappa} \delta_{ij}, \]
we have $L^{(2)} = 3a^3N\zeta\delta L + a^3\delta N\delta L + a^3N\delta_2 L$ at quadratic order, where $\delta_2 L$ refers to the expansion of L at second order. To proceed, we first expand K_i^j and R,

$$K_i^j = \frac{1}{N} \left[\left(\mathcal{H} + \dot{\zeta} - \mathcal{H} \frac{\delta N}{N} \right) \delta_i^j - \frac{\delta^j_k}{a^2} \partial_i \partial_k \psi \right] + \mathcal{O}(\delta N^2),$$ \tag{7}

$$R = -\frac{2}{a^2} \left[2\partial^2 \zeta + (\partial \zeta)^2 - 4\zeta \partial^2 \zeta \right] + \mathcal{O}(\zeta^3),$$ \tag{8}

where $\mathcal{H} \equiv \frac{d\alpha}{d\eta} = NH$, and H is the Hubble parameter. The quadratic term with the time derivative in $L_{{\text{DHOST}}=1}^{(2)}$ (6) is contributed by $-AK_2 - \frac{3\tilde{A}B^2}{2N^2}N'^2 - \frac{2\tilde{A}B}{N}N'K$. Considering (7) and (8), one finds that

$$L^{(2)}_{\text{kinetic}} = a^3A_N \left[U\dot{\tilde{\zeta}}^2 - V(\partial \tilde{\zeta})^2 \right] = -\frac{6a^3A_N}{N} \left(\dot{\tilde{\zeta}} + \frac{\tilde{B}}{2} \frac{\delta N}{2} \right)^2$$

is diagonal for $\tilde{\zeta} = \zeta + \tilde{B}\delta N/2$. One of the degenerate conditions ($\beta_2 = -6\beta_1$, see e.g. Ref. [27]) in the DHOST theory actually suggests that the coefficients of the DHOST operators N'^2 and $N'K$ should satisfy a relation. As a result, $L^{(2)}_{\text{kinetic}}$ is necessarily diagonal. Confronting $\tilde{\zeta}$ with the constraint $\delta L/\delta (\partial^2 \psi) = 0$, we get

$$L^{(2)} = a^3NA \left[U\ddot{\zeta}^2 - V(\partial \zeta)^2 \right]$$

with

$$U = \frac{\Sigma}{\gamma^2} + \frac{6}{N^2},$$ \tag{10}

$$V = \frac{2}{aA} \frac{d}{d\eta} (a\mathcal{M}) - 2,$$ \tag{11}

where

$$\gamma \equiv \left(\frac{1}{N} + N\alpha_B \right) \mathcal{H} + \frac{\tilde{B}}{2},$$ \tag{12}

$$\Sigma \equiv \mathcal{H}^2 \left[\alpha_K + 6 \left(\alpha_B^2 - \frac{\gamma^2}{\mathcal{H}^2N^2} \right) + \frac{9\alpha_B\tilde{B}}{N} + \frac{3d(\alpha_B \mathcal{H} \tilde{A})/d\eta}{\mathcal{H}^2NA} \right],$$ \tag{13}

$$\mathcal{M} \equiv \frac{1}{\gamma} \left[\left(\frac{A}{N} + A_N \right) - \frac{\tilde{A}\tilde{B}}{2} \right].$$ \tag{14}

Usually, one sets α_B and α_K as the coefficients of the operators $\delta K \delta N$ and δN^2, respectively,

$$\alpha_B = \frac{1}{4NA\mathcal{H}} \left(NL_{NK} + 2\mathcal{H}L_{NS} \right), \quad \alpha_K = \frac{1}{NA\mathcal{H}^2} \left(L_N + \frac{N}{2}L_{NN} \right),$$ \tag{15}

where $S \equiv K_{ij}R^{ij}$.

III. BOUNCE IN GR

A. Expelling No-go with higher-order derivative operators

In the Horndeski theory, the fully stable nonsingular cosmological model is prohibited, the so-called No-go Theorem [3, 4], see also [33–36] for the relevant studies. One way out is going beyond Horndeski, as pointed out in Refs.[8, 9]. In particular, in a beyond-Horndeski subclass of the DHOST theory, the solutions of fully stable nonsingular cosmologies have been found [11–13, 15].

Setting $A = M^2_P/2 = \text{const.}$ in (6), we have

$$L_{c_T=1, A=M^2_P/2}^\text{DHOST} = \tilde{P} + \tilde{Q}K + \frac{M^2_P}{2}(\mathcal{R} - \mathcal{K}_2) - \frac{3M^2_P\tilde{B}^2}{4N^2}N'^2 - \frac{M^2_P\tilde{B}}{N}N'K$$

$$+ \tilde{B}\left(\frac{M^2_P}{N} - \frac{M^2_P\tilde{B}}{4}\right)(\partial N)^2, \quad (16)$$

which also belongs to a subclass of the DHOST theory. Recall the redefinitions (4) and $-\tilde{B}/(2N^5) \rightarrow \tilde{B}$ in Sect.II, thus the theory (2) with $A = M^2_P/2 = \text{const.}$ may be related to (16) by $B = -M^2_PN^5\tilde{B}$. It is also noticed that if $A = \text{const.}$, setting $\tilde{Q} = 0$, we will have $Q = 0$ and $P = \tilde{P}$ for $L_{c_T=1}^\text{DHOST}$ in (2). Thus if $\tilde{Q} = 0$, (16) is actually a (1)-like EFT.

The essence of the No-go proof is rewriting $V > 0$ ($c_S^2 > 0$) in (11) as the integral inequality, see [37] for a review,

$$a\mathcal{M}|_f - a\mathcal{M}|_i > \int_i^f a\mathcal{A}d\eta. \quad (17)$$

In the nonsingular models, the integral $\int_i^f a\mathcal{A}d\eta$ will diverge, thus \mathcal{M} must cross 0 at a certain time. According to (14), we have

$$\mathcal{M} = \frac{M^2_P}{2\gamma}\left(\frac{1}{N} - \tilde{B}/2\right) \quad (18)$$

for (16). Thus we might get $\mathcal{M} = 0$ by adjusting $\tilde{B}(N, \eta)$, or equivalently $B(X, \phi)$ for $L_{c_T=1}^\text{DHOST}$ in (2). This suggests that it is possible to achieve the fully stable nonsingular cosmological solutions with (16) (equivalently, (1)-like EFT).

B. An example

To show that the observation made in Sect.III A is correct, we will present a concrete model for the nonsingular bounce, which might have significant applications in early universe
scenarios, e.g.\cite{38-41}.

We adopt

$$H = H/N = \frac{\eta}{3(1 + \eta^2)},$$

(also $N(\eta) = 1$ (equivalently $\phi = \eta$) as the background solution. When $\eta < 0$, the universe contracted with $H \sim 1/\eta < 0$. Cosmological bounce happened at $\eta = 0$. We might set $\tilde{P}(N, \eta)$ and $\tilde{B}(N, \eta)$ in $L_{c_T=1, A=\text{const.}}^{DHOST}$ (16) as

$$\tilde{P}(N, \eta) = \frac{g_1(\eta)}{2N^2} + \frac{g_2(\eta)}{N^4} + g_3(\eta),$$

(20)

and $\tilde{B}(N, \eta) = g_4(\eta)$, respectively. Here, since $\tilde{Q} = 0$, $\tilde{P}(N, \eta)$ is actually equivalent to $P(X, \phi) = g_1(\phi)X/2 + g_2(\phi)X^2 + g_3(\phi)$ in $L_{c_T=1}^{DHOST}$ (2).

One simple possibility for (13) is, see also \cite{15},

$$\Sigma = c_1(\eta)\gamma^2.$$

(21)

According to Eq.(10), we will have $U > 0$ for a suitable $c_1(\eta)$. Combining Eq.(21) with the background equations (A1) and (A2) in Appendix A, we get the algebraical solutions of $g_1(\eta)$, $g_2(\eta)$ and $g_3(\eta)$, see Appendix B.

Inserting $\tilde{B}(N, \eta) = g_4(\eta)$ into Eq.(12), we have $\gamma = H + \dot{g}_4/2$. Thus

$$\mathcal{M} = \frac{M_P^2(1 - g_4/2)}{\dot{g}_4 + 2H}.$$

(22)

Requiring that around $\eta = 0$, $1 - g_4/2 = 0$ (so $\mathcal{M} = 0$) and $\dot{g}_4 \sim H$, we consider such a g_4,

$$g_4(\eta) = \int_\eta^{+\infty} 2\mu H(s)e^{-s^2/\lambda^2} ds,$$

with λ set by $g_4(0) = \mu e^{1/\lambda^2} \Gamma(0, 1/\lambda^2)/3 = 2$. Fig.1 plots the evolutions of \dot{g}_4 for $\mu = 0.9$ and H. When $|\eta| \gg \lambda$, $g_4 = 0$, we will have a $P(X, \phi)$ EFT with GR. Inserting (22) into (11), we have $V(\eta = 0) = \frac{2(2\mu - 1)}{-\mu + 1}$, so $c_S^2(\eta = 0) = V/U > 0$ suggests $0.5 < \mu < 1$.

As a concrete example, we plot Figs.2 and 3 with $c_1(\eta) = 150e^{-\eta^2/500}$. We see that the model is fully stable.

IV. DISCUSSION

Currently, GR is the well-tested effective theory of gravity. Based on the higher-order derivative operators, which might capture the physics of a UV-complete theory, we propose
a consistent EFT

\[
L = \frac{M_p^2}{2} (4) R + P(\phi, X) - \left(B + \frac{X^2 B^2}{4M_p^2} \right) \phi^{\mu} \phi_{\mu\nu} \phi^{\lambda\nu} + B \phi^{\mu} \phi^{\nu} \phi_{\mu\nu} \Box \phi \\
+ \frac{X B^2}{M_p^2} (\phi_{\mu} \phi^{\mu\nu} \phi_{\nu})^2, \tag{24}
\]

for the spatially-flat fully stable nonsingular cosmologies. It corresponds to a subclass \((A = M_p^2/2, Q = 0)\) of the DHOST theory \((2)\). It has been speculated that the higher-order derivative operators \(O((\Box \phi)^2, (\phi^{\mu\nu})^2 \cdots)\) in the EFT \((1)\) might play crucial roles in nonsingular cosmologies. Here, we clearly showed what kind of \(O((\Box \phi)^2, (\phi^{\mu\nu})^2 \cdots)\) is required for the full stability of nonsingular cosmologies.

We discussed how to evade the No-go Theorem with the EFT \((24)\) (its ADM Langrangian \((16)\)). In Refs.\([8, 9, 11, 12]\), the operator \(\mathcal{R} \delta g^{00}\) is added to GR to expel the No-go. However, besides the higher-order derivative operators, the corresponding covariant EFT also includes the derivative coupling of \(\phi\) to the gravity \(\sim X^{(4)} R\). Here, we found that expelling the No-go can be implemented only by the higher-order derivative operators \(O((\Box \phi)^2, (\phi^{\mu\nu})^2 \cdots)\) (the DHOST operators) in \((24)\) without modifying GR. A concrete model of the cosmological bounce have been presented in Sect.III B. It might be also interesting to apply the EFT \((24)\) to regulate the singularity of BH, e.g.\([42–44]\).

Recently, the well-posedness issue on the initial value has been promoted in the non-perturbative cosmologies \([45]\). An issue worthy of exploring is whether the initial value problem for \((24)\) is well-posed.

Acknowledgments

We thank Yong Cai for helpful discussions. This work is supported by NSFC, Nos.11575188, 11690021.
FIG. 1: \dot{g}_4 is given by (23). We require $\dot{g}_4 \sim H$ for simplicity. We have set $\mu = 0.9$ and $M_P = 10$ in the plot.

FIG. 2: Coefficients g_1, g_2 and g_3 in $\tilde{P}(N, \eta)$ (20).

Appendix A: The background equations

Varying (6) with respect to N and \mathcal{H}, respectively, we get

$$3B \left(\frac{AB\dot{N}}{N} + \frac{2A\dot{\mathcal{H}}}{N} \right) = \dot{\mathcal{N}}^2 \left(\frac{3AB^2}{2N^2} - \frac{3ABB_N}{N} - \frac{3A_{NN}B^2}{2N} \right) + \mathcal{H}^2 \left(-\frac{18AB}{N} - \frac{6A}{N^2} + \frac{6A_B}{N} \right) + \dot{\mathcal{N}} \left(-\frac{9AB^2\mathcal{H}}{N} - \frac{6ABB_\eta}{N} - \frac{3A_\eta B^2}{N} \right) + \mathcal{H} \left(-\frac{6AB_\eta}{N} - \frac{6A_\eta B}{N} - 3Q_N \right) - P_N N - P,$$

(A1)
FIG. 3: Throughout the whole evolution, $c_S^2 > 0$, while $c_S^2 \to 1$ as $|\eta| \to \infty$.

$$6 \left(\frac{AB \dot{N}}{N} + \frac{2A \dot{H}}{N} \right) = \dot{N} \left(\frac{12AH}{N^2} - \frac{12ANH}{N} - \frac{6AB\eta}{N} - \frac{6A_BB}{N} + 3Q_N \right)$$

$$+ \dot{N}^2 \left(\frac{9AB^2}{2N^2} + \frac{6AB}{N^2} - \frac{6AB_N}{N} - \frac{6A_NB}{N} \right)$$

$$- \frac{18AH^2}{N} - \frac{12ANH}{N} - 3PN + 3Q_N.$$ \hspace{1cm} (A2)

Appendix B: Solutions of g_1, g_2 and g_3

$$g_1 = -\frac{1}{8N} \left(4c_1HM_p^2N^4\dot{g}_4 + 2c_1M_p^2g_4N^4\dot{g}_4\dot{N} + c_1M_p^2N^5\dot{g}_3^2 + 4c_1HM_p^2g_4N^3\dot{N} + c_1M_p^2g_4^2N^3\ddot{N}^2 \right.$$

$$+ 4c_1H^2M_p^2N^3 - 12HM_p^2N^2\dot{g}_4 - 36M_p^2g_4N^2\dot{g}_4\dot{N} + 12M_p^2N\dot{g}_4\dot{N} + 6M_p^2N^3\dot{g}_4^2$$

$$- 108H^2M_p^2g_4N^2 - 36M_p^2g_4H^2N^2 - 72HM_p^2g_4^2N^2\dot{N} + 24HM_p^2g_4N\dot{N}$$

$$- 24M_p^2g_4\dot{N}\ddot{N} + 12M_p^2\dot{g}_4N\ddot{N} + 18M_p^2g_4^2N\dot{N}^2 - 12M_p^2g_4\dot{N}^2 + 24H^2M_p^2N$$

$$+ 24M_p^2\dot{H}N - 24HM_p^2\dot{N} \right).$$ \hspace{1cm} (B1)
\[g_2 = \frac{1}{32} \left(4c_1 \mathcal{H} M_p^2 N^5 \dot{g}_4 + 2c_1 M_{p}^2 g_4 N^5 \dot{g}_4 \dot{N} + c_1 M_{p}^2 N^6 \dot{g}_4^2 + 4c_1 \mathcal{H} M_p^2 g_4 N^4 \dot{N} + c_1 M_{p}^2 g_4 N^4 \dot{N}^2 + 4c_1 \mathcal{H}^2 M_p^2 N^4 + 12 \mathcal{H} M_p^2 N^3 \dot{g}_4 - 12 \dot{M}_p^2 g_4 N^3 \dot{g}_4 \dot{N} + 4 \dot{M}_p^2 N^2 \dot{g}_4 \dot{N} + 6 \dot{M}_p^2 N^4 \dot{g}_4^2 - 36 \mathcal{H}^2 M_p^2 g_4 N^3 - 12 \mathcal{H} M_p^2 g_4 \dot{N}^3 - 36 \mathcal{H} M_p^2 g_4 N^3 \dot{N} + 24 \mathcal{H} M_p^2 g_4 N^2 \dot{N} - 12 \dot{M}_p^2 g_4 N^3 \dot{N} + 4 \dot{M}_p^2 g_4 N^2 \dot{N} + 18 \dot{M}_p^4 g_4 N^2 \dot{N}^2 - 4 \dot{M}_p^2 g_4 N \dot{N}^2 + 24 \mathcal{H}^2 M_p^2 N^2 + 8 \mathcal{H} M_p^2 N \dot{N} \right), \quad (B2) \]

\[g_3 = -\frac{1}{32 N^3} \left(-4c_1 \mathcal{H} M_p^2 N^4 \dot{g}_4 - 2c_1 M_{p}^2 g_4 N^4 \dot{g}_4 \dot{N} - c_1 M_{p}^2 N^5 \dot{g}_4^2 - 4c_1 \mathcal{H} M_p^2 g_4 N^3 \dot{N} - c_1 M_{p}^2 g_4 N^3 \dot{N}^2 - 4c_1 \mathcal{H}^2 M_p^2 N^3 \dot{g}_4 + 60 \dot{M}_p^2 g_4 N^2 \dot{g}_4 \dot{N} + 12 \dot{M}_p^2 N^2 \dot{g}_4 \dot{N} - 6 \dot{M}_p^2 N^3 \dot{g}_4^2 + 180 \mathcal{H}^2 M_p^2 g_4 N^2 + 60 \dot{M}_p^2 g_4 \dot{N} \dot{N}^2 + 108 \mathcal{H} M_p^2 g_4 N^2 \dot{N} - 24 \dot{M}_p^2 g_4 N^2 \dot{N} + 36 \dot{M}_p^2 g_4 N^2 \dot{N} + 12 \dot{M}_p^2 g_4 N \dot{N} - 42 \dot{M}_p^2 g_4 N \dot{N}^2 - 12 \dot{M}_p^2 g_4 N^2 \dot{N}^2 + 72 \mathcal{H}^2 M_p^2 N + 24 \mathcal{H} M_p^2 N \dot{N} - 24 \mathcal{H} M_p^2 \dot{N} \right), \quad (B3) \]

In Sect.III B, since \(N = 1 \), (B1), (B2) and (B3) will be simplified.
[11] Y. Cai and Y. S. Piao, JHEP **1709**, 027 (2017) [arXiv:1705.03401 [gr-qc]].

[12] R. Kolevatov, S. Mironov, N. Sukhov and V. Volkova, JCAP **1708**, no. 08, 038 (2017) [arXiv:1705.06626 [hep-th]].

[13] S. Mironov, V. Rubakov and V. Volkova, JCAP **1810**, no. 10, 050 (2018) [arXiv:1807.08361 [hep-th]].

[14] D. Langlois, arXiv:1811.06271 [gr-qc].

[15] G. Ye and Y. S. Piao, arXiv:1901.02202 [gr-qc].

[16] B. P. Abbott *et al.* [LIGO Scientific and Virgo Collaborations], Phys. Rev. Lett. **116**, 6, 061102 (2016) [arXiv:1602.03837 [gr-qc]].

[17] B. P. Abbott *et al.* [LIGO Scientific and Virgo Collaborations], Phys. Rev. Lett. **119**, no. 16, 161101 (2017) [arXiv:1710.05832 [gr-qc]].

[18] B. P. Abbott *et al.* [LIGO Scientific and Virgo Collaborations], Phys. Rev. Lett. **116**, no. 22, 221101 (2016) Erratum: [Phys. Rev. Lett. **121**, no. 12, 129902 (2018)] [arXiv:1602.03841 [gr-qc]].

[19] B. P. Abbott *et al.* [LIGO Scientific and Virgo Collaborations], arXiv:1811.00364 [gr-qc].

[20] N. Arkani-Hamed, H. C. Cheng, M. A. Luty and S. Mukohyama, JHEP **0405**, 074 (2004) [hep-th/0312099].

[21] C. de Rham and S. Melville, Phys. Rev. D **95**, no. 12, 123523 (2017) [arXiv:1703.00025 [hep-th]].

[22] C. de Rham and S. Melville, Phys. Rev. Lett. **121**, no. 22, 221101 (2018) [arXiv:1806.09417 [hep-th]].

[23] P. Creminelli, M. A. Luty, A. Nicolis and L. Senatore, JHEP **0612**, 080 (2006) [hep-th/0606090].

[24] M. z. Li, B. Feng and X. m. Zhang, JCAP **0512**, 002 (2005) [hep-ph/0503268].

[25] E. I. Buchbinder, J. Khoury and B. A. Ovrut, Phys. Rev. D **76**, 123503 (2007) [hep-th/0702154].

[26] D. Langlois and K. Noui, JCAP **1602**, no. 02, 034 (2016) [arXiv:1510.06930 [gr-qc]].

[27] D. Langlois, M. Mancarella, K. Noui and F. Vernizzi, JCAP **1705**, no. 05, 033 (2017) [arXiv:1703.03797 [hep-th]].

[28] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Phys. Rev. Lett. **114**, no. 21, 211101 (2015) [arXiv:1404.6495 [hep-th]].
[29] H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi and D. Langlois, JCAP 1607, no. 07, 033 (2016) [arXiv:1603.09355 [hep-th]].

[30] H. Motohashi and T. Suyama, Phys. Rev. D 91, no. 8, 085009 (2015) [arXiv:1411.3721 [physics.class-ph]].

[31] D. Langlois, R. Saito, D. Yamauchi and K. Noui, Phys. Rev. D 97, no. 6, 061501 (2018) [arXiv:1711.07403 [gr-qc]].

[32] Paolo Creminelli, Filippo Vernizzi, Phys. Rev. Lett. 119, 251302 (2017), [arXiv:1710.05877 [astro-ph.CO]].

[33] R. Kolevatov and S. Mironov, Phys. Rev. D 94, no. 12, 123516 (2016) [arXiv:1607.04099 [hep-th]].

[34] S. Akama and T. Kobayashi, Phys. Rev. D 95, no. 6, 064011 (2017) [arXiv:1701.02926 [hep-th]], S. Akama and T. Kobayashi, arXiv:1810.01863 [gr-qc].

[35] A. Ijjas, JCAP 1802 (2018) no.02, 007, [arXiv:1710.05990 [gr-qc]].

[36] S. Banerjee, Y. F. Cai and E. N. Saridakis, arXiv:1808.01170 [gr-qc].

[37] T. Kobayashi, arXiv:1901.07183 [gr-qc].

[38] J. Khoury, B. A. Ovrut, P. J. Steinhardt and N. Turok, Phys. Rev. D 64, 123522 (2001) [hep-th/0103239], J. L. Lehners, P. McFadden, N. Turok and P. J. Steinhardt, Phys. Rev. D 76, 103501 (2007) [hep-th/0702153 [HEP-TH]].

[39] Y. S. Piao, B. Feng and X. m. Zhang, Phys. Rev. D 69, 103520 (2004) [hep-th/0310206], Y. S. Piao, Phys. Rev. D 71, 087301 (2005) [astro-ph/0502343], Z. G. Liu, Z. K. Guo and Y. S. Piao, Phys. Rev. D 88, 063539 (2013) [arXiv:1304.6527 [astro-ph.CO]].

[40] Y. S. Piao, Phys. Rev. D 70, 101302 (2004) [hep-th/0407258].

[41] T. Qiu, J. Evslin, Y. F. Cai, M. Li and X. Zhang, JCAP 1110, 036 (2011) [arXiv:1108.0593 [hep-th]], T. Qiu and Y. T. Wang, JHEP 1504 (2015) 130 [arXiv:1501.03568 [astro-ph.CO]].

[42] S. Mironov, V. Rubakov and V. Volkova, EPJ Web Conf. 191, 07014 (2018) [arXiv:1811.05832 [hep-th]].

[43] G. Franciolini, L. Hui, R. Penco, L. Santoni and E. Trincherini, arXiv:1811.05481 [hep-th].

[44] S. Mironov, V. Rubakov and V. Volkova, arXiv:1812.07022 [hep-th].

[45] A. Ijjas, F. Pretorius and P. J. Steinhardt, JCAP 1901, 015 (2019) [arXiv:1809.07010 [gr-qc]].