ON THE REGULARITY OF THE SOLUTIONS FOR CAUCHY PROBLEM
OF INCOMPRESSIBLE 3D NAVIER-STOKES EQUATION

Qun Lin *

September 8, 2012

Abstract. In this paper we will prove that the vorticity belongs to $L^\infty(0, T; L^2(\mathbb{R}^3))$ for the Cauchy problem of 3D incompressible Navier-Stokes equation, then the existence of a global smooth solution is obtained. Our approach is to construct a set of auxiliary problems to approximate the original one of vorticity equation.

Keywords. Navier-Stokes equation; Regularity; Vorticity.

AMS subject classifications. 35Q30 76N10

1. Introduction

Let $\mathcal{D}(\mathbb{R}^3)$ be the space of C^∞ functions with compact support contained in \mathbb{R}^3. Some basic spaces will be used in this paper:

$\mathcal{V} = \{ u \in \mathcal{D}(\mathbb{R}^3), \, \text{div} u = 0 \}$

$V = \text{the closure of } \mathcal{V} \text{ in } H^1(\mathbb{R}^3)$

$H = \text{the closure of } \mathcal{V} \text{ in } L^2(\mathbb{R}^3)$

The velocity-pressure form for Navier-Stokes equation is

\[
\begin{align*}
\partial_t u_1 + u_1 \partial_{x_1} u_1 + u_2 \partial_{x_2} u_1 + u_3 \partial_{x_3} u_1 + \partial_{x_1} p &= \Delta u_1 \\
\partial_t u_2 + u_1 \partial_{x_1} u_2 + u_2 \partial_{x_2} u_2 + u_3 \partial_{x_3} u_2 + \partial_{x_2} p &= \Delta u_2 \\
\partial_t u_3 + u_1 \partial_{x_1} u_3 + u_2 \partial_{x_2} u_3 + u_3 \partial_{x_3} u_3 + \partial_{x_3} p &= \Delta u_3
\end{align*}
\]

(1)

with the initial conditions $(u_1, u_2, u_3)_{|t=0} = (u_{10}, u_{20}, u_{30})(x)$, henceforth we always ignore the assumption of sufficient smoothness of the initial conditions. Moreover, the incompressible condition is

\[\partial_{x_1} u_1 + \partial_{x_2} u_2 + \partial_{x_3} u_3 = 0\]

where $x = (x_1, x_2, x_3)$ is a point of \mathbb{R}^3, $u = (u_1, u_2, u_3)$ is velocity, p is pressure, and $\nu > 0$ is viscosity.

The vorticity-velocity form for Navier-Stokes equation is

\[
\begin{align*}
\partial_t \omega_1 + u_1 \partial_{x_1} \omega_1 + u_2 \partial_{x_2} \omega_1 + u_3 \partial_{x_3} \omega_1 - \omega_1 \partial_{x_1} u_1 - \omega_2 \partial_{x_2} u_1 - \omega_3 \partial_{x_3} u_1 &= \Delta \omega_1 \\
\partial_t \omega_2 + u_1 \partial_{x_1} \omega_2 + u_2 \partial_{x_2} \omega_2 + u_3 \partial_{x_3} \omega_2 - \omega_1 \partial_{x_1} u_2 - \omega_2 \partial_{x_2} u_2 - \omega_3 \partial_{x_3} u_2 &= \Delta \omega_2 \\
\partial_t \omega_3 + u_1 \partial_{x_1} \omega_3 + u_2 \partial_{x_2} \omega_3 + u_3 \partial_{x_3} \omega_3 - \omega_1 \partial_{x_1} u_3 - \omega_2 \partial_{x_2} u_3 - \omega_3 \partial_{x_3} u_3 &= \Delta \omega_3
\end{align*}
\]

(2)

*School of Mathematical Sciences, Xiamen University, P. R. China (e-mail: linqun@xmu.edu.cn)
with the initial conditions \((\omega_1, \omega_2, \omega_3)|_{t=0} = (\omega_{10}, \omega_{20}, \omega_{30}) = (\text{curl}u_{10}, \text{curl}u_{20}, \text{curl}u_{30})\), and the incompressible condition:

\[
\begin{align*}
\partial_x u_1 + \partial_x u_2 + \partial_x u_3 &= 0 \\
\partial_x \omega_1 + \partial_x \omega_2 + \partial_x \omega_3 &= 0
\end{align*}
\]

We here recall the global \(L^2\)-estimate from [4] for the Navier-Stokes equation of velocity-pressure form.

In the sequel, it is assumed that the initial value \(u_0\) satisfies the following conditions:

\[
\left| \partial_x^i u_{i0}(x) \right| \leq C_\mu (1 + |x|)^{-\sigma}, \quad i, j = 1, 2, 3
\]

where \(\mu = 0, 1\) and \(\sigma > 0\) is integer.

For the handling the initial value problem, a weighted function is introduced:

\[
\theta_r = \begin{cases}
 e^{-\frac{|x|^2}{r^2}} & |x| < r \\
 0 & |x| \geq r
\end{cases} \quad (r > 0)
\]

which is of the properties:

\[
\theta_r \to 1, \quad \partial_r \theta_r \to 0, \quad \partial_i \partial_j \theta_r \to 0
\]

as \(r \to +\infty\) for each relatively fixed \(x \in \mathbb{R}^3\).

Moreover, let \(v = \theta_r u\), we still have

\[
\begin{align*}
\partial_t v &= u \partial_t \theta_r + \theta_r \partial_t u \\
\partial_t^2 v &= u \partial_t^2 \theta_r + 2 \partial_r \theta_r \partial_t u + \theta_r \partial_t^2 u \\
\partial_t \partial_j v &= u \partial_t \partial_j \theta_r + \partial_j \theta_r \partial_t u + \partial_t \theta_r \partial_j u + \theta_r \partial_j \partial_j u
\end{align*}
\]

Since

\[
\int_{\mathbb{R}^3} \theta_r u_i (u_1 \partial_x u_i + u_2 \partial_x u_i + u_3 \partial_x u_i) = \frac{1}{2} \int_{\mathbb{R}^3} \theta_r (u_1 \partial_x u_i^2 + u_2 \partial_x u_i^2 + u_3 \partial_x u_i^2)
\]

\[
= -\frac{1}{2} \int_{\mathbb{R}^3} u_i^2 (\partial_x u_i \theta_r + \partial_x u_i \theta_r + \partial_x u_i \theta_r)
\]

\[
= -\frac{1}{2} \int_{\mathbb{R}^3} u_i^2 \left(\partial_x u_i + \partial_x u_i + \partial_x u_i \right) = \frac{1}{2} \int_{\mathbb{R}^3} u_i^2 (u_1 \partial_x u_i \theta_r + u_2 \partial_x u_i \theta_r + u_3 \partial_x u_i \theta_r)
\]

Taking \(r \to +\infty\) we get

\[
\int_{\mathbb{R}^3} u_i (u_1 \partial_x u_i + u_2 \partial_x u_i + u_3 \partial_x u_i) = 0, \quad i = 1, 2, 3
\]
in the same way,
\[\int_{\mathbb{R}^3} (u_1 \partial_{x_1} p + u_2 \partial_{x_2} p + u_3 \partial_{x_3} p) = 0 \]
and
\[\int_{\mathbb{R}^3} u_i \Delta u_i = \int_{\mathbb{R}^3} u_i (\partial_{x_1}^2 u_i + \partial_{x_2}^2 u_i + \partial_{x_3}^2 u_i) = - \int_{\mathbb{R}^3} ((\partial_{x_1} u_i)^2 + (\partial_{x_2} u_i)^2 + (\partial_{x_3} u_i)^2) \]
then,
\[\int_{\mathbb{R}^3} u_1 \partial_t u_1 + \int_{\mathbb{R}^3} u_1 (u_1 \partial_{x_1} u_1 + u_2 \partial_{x_2} u_1 + u_3 \partial_{x_3} u_1) + \int_{\mathbb{R}^3} u_1 \partial_{x_1} p = \int_{\mathbb{R}^3} u_1 \Delta u_1 \]
\[\int_{\mathbb{R}^3} u_2 \partial_t u_2 + \int_{\mathbb{R}^3} u_2 (u_1 \partial_{x_1} u_2 + u_2 \partial_{x_2} u_2 + u_3 \partial_{x_3} u_2) + \int_{\mathbb{R}^3} u_2 \partial_{x_2} p = \int_{\mathbb{R}^3} u_2 \Delta u_2 \]
\[\int_{\mathbb{R}^3} u_3 \partial_t u_3 + \int_{\mathbb{R}^3} u_3 (u_1 \partial_{x_1} u_3 + u_2 \partial_{x_2} u_3 + u_3 \partial_{x_3} u_3) + \int_{\mathbb{R}^3} u_3 \partial_{x_3} p = \int_{\mathbb{R}^3} u_3 \Delta u_3 \]
so that
\[\frac{1}{2} \partial_t \int_{\mathbb{R}^3} (u_1^2 + u_2^2 + u_3^2) + \int_{\mathbb{R}^3} ((\partial_{x_1} u_1)^2 + (\partial_{x_2} u_1)^2 + (\partial_{x_3} u_1)^2 +
(\partial_{x_1} u_2)^2 + (\partial_{x_2} u_2)^2 + (\partial_{x_3} u_2)^2 + (\partial_{x_1} u_3)^2 + (\partial_{x_2} u_3)^2 + (\partial_{x_3} u_3)^2) = 0 \]
it follows that
\[\int_{\mathbb{R}^3} (u_1^2 + u_2^2 + u_3^2) + 2 \int_0^T (\|\nabla u_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_3\|_{L^2(\mathbb{R}^3)}^2) = \int_{\mathbb{R}^3} (u_{10}^2 + u_{20}^2 + u_{30}^2) \]
Hence from (3) we have
\[\sup_{t \in (0, T)} \int_{\mathbb{R}^3} (u_1^2 + u_2^2 + u_3^2) < +\infty \quad (6) \]
\[\int_0^T (\|\nabla u_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_3\|_{L^2(\mathbb{R}^3)}^2) < +\infty \]
Above u can be interpreted as the Galerkin approximation of the solution, but (6) are also true for the solution of problem (1).

The rest of sections are arranged as follows : In section 2 and 3, we introduce a set of auxiliary problems and prove the uniform boundedness and the existence of their solutions in \(L^\infty (0, T; L^2(\mathbb{R}^3)) \). Then it is shown that the solutions of the auxiliary problems converge to that of Naiver-Stokes equation with vorticity-velocity form, which also belongs to \(L^\infty (0, T; L^2(\mathbb{R}^3)) \). Final section will present the solution of Navier-Stokes equation with velocity-pressure form belongs to \(L^\infty (0, T; H^2(\mathbb{R}^3)) \).
2. Auxiliary Problems

For the 3D regularity, we only need to prove that the vorticity in (2) belongs to $L^\infty(0, T; L^2(\mathbb{R}^3))$.

Given a partition with respect to t as follows:

$$0 = t_0 < t_1 < t_2 < \cdots < t_{k-1} < t_k < \cdots < t_N = T$$

On each $t \in (t_{k-1}, t_k)$, we introduce an auxiliary problem:

\[
\begin{align*}
\partial_t \tilde{\omega}_1 + \frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} \partial_t \tilde{\omega}_i(x, t)dt = &
\frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} u_i(x, t)dt \\
\tilde{\omega}_i(x, t) = & \tilde{\omega}_i^{k-1}(x), \quad \tilde{\omega}_i(x, 0) = \omega_{i0}(x), \quad i = 1, 2, 3
\end{align*}
\]

and

\[
\frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} \tilde{\omega}_i(x, t)dt = \tilde{\omega}_i^{k}(x), \quad i = 1, 2, 3
\]

In addition, let $\varepsilon > 0$, we construct a mollifier $J_\varepsilon \in C_0^\infty(\mathbb{R}^3)$ such that

i) $J_\varepsilon(x) \geq 0$, $x \in \mathbb{R}^3$,

ii) $J_\varepsilon(x) = 0$ if $|x| \geq \varepsilon$, and

iii) $\int_{\mathbb{R}^3} J_\varepsilon(x) dx = 1$.

then a convolution is defined as

\[
\tilde{\omega}_i^k(x) = J_\varepsilon \ast \tilde{\omega}_i^k(x) = \int_{\mathbb{R}^3} J_\varepsilon(x-y) \tilde{\omega}_i^k(y) dy
\]

Similarly we can set the incompressible condition:

$$\begin{align*}
\partial_x u_1 + \partial_x u_2 + \partial_x u_3 &= 0 \\
\partial_t \omega_1 + \partial_x \omega_2 + \partial_x \omega_3 &= 0
\end{align*}$$

It is easy to check that

$$\begin{align*}
\partial_x u_1 + \partial_x u_2 + \partial_x u_3 &= 0 \quad \Rightarrow \quad \partial_x \omega_1^k + \partial_x \omega_2^k + \partial_x \omega_3^k = 0 \\
\partial_x \omega_1 + \partial_x \omega_2 + \partial_x \omega_3 &= 0 \quad \Rightarrow \quad \partial_x \omega_1^k + \partial_x \omega_2^k + \partial_x \omega_3^k = 0
\end{align*}$$
In the section 3, by means of the Galerkin method and the compactness imbedding theorem, we can prove the local existences of the weak solutions of these systems for each \((t_{k-1}, t_k)\) being small enough. Below we also interpret \(\hat{\omega}\) as the Galerkin approximation of the solution of the problems (7), and first prove that \(\hat{\omega}, t \in (0, T)\) belong to \(L^\infty(0, T; L^2(\mathbb{R}^3))\). In section 4, an approach of approximation is used to assert that the solution of (2) also belongs to \(L^\infty(0, T; L^2(\mathbb{R}^3))\).

Since

\[
\int_{\mathbb{R}^3} \theta_r \left[\frac{\partial}{\partial t} \left(\begin{array}{c}
\omega_1 (u_1^k x_1) + u_2^k x_1 + u_3^k x_1 \\
\omega_2 (u_1^k x_2) + u_2^k x_2 + u_3^k x_2 \\
\omega_3 (u_1^k x_3) + u_2^k x_3 + u_3^k x_3
\end{array} \right) \right] \\
+ \omega_2 (u_1^k x_2) + u_2^k x_2 + u_3^k x_2 \\
+ \omega_3 (u_1^k x_3) + u_2^k x_3 + u_3^k x_3 \right] \\
= - \int_{\mathbb{R}^3} \left[\frac{\partial}{\partial t} \left(\begin{array}{c}
\omega_1 (x_1) + \omega_2 (x_2) + \omega_3 (x_3) \end{array} \right) \right] \\
+ \omega_1 (x_1) + \omega_2 (x_2) + \omega_3 (x_3) \right] \\
= - \int_{\mathbb{R}^3} \left[\theta_r (x_1) \right] \\
+ \left(\begin{array}{c}
\omega_1 (x_1) + \omega_2 (x_2) + \omega_3 (x_3)
\end{array} \right] \right] \\
= - \int_{\mathbb{R}^3} \left[\theta_r (x_1) \right] \\
+ \left(\begin{array}{c}
\omega_1 (x_1) + \omega_2 (x_2) + \omega_3 (x_3)
\end{array} \right] \right].
\]
Let $r \to +\infty$ we get

\[
\int_{\mathbb{R}^3} \left[\hat{\omega}_1 (\bar{w}_1^1 \partial_x \bar{w}_1^k + \bar{w}_2^1 \partial_x \bar{w}_2^k + \bar{w}_3^1 \partial_x \bar{w}_3^k) \\
+ \hat{\omega}_2 (\bar{w}_1^2 \partial_x \bar{w}_1^k + \bar{w}_2^2 \partial_x \bar{w}_2^k + \bar{w}_3^2 \partial_x \bar{w}_3^k) \\
+ \hat{\omega}_3 (\bar{w}_1^3 \partial_x \bar{w}_1^k + \bar{w}_2^3 \partial_x \bar{w}_2^k + \bar{w}_3^3 \partial_x \bar{w}_3^k) \right] \\
= - \int_{\mathbb{R}^3} \left[(\bar{w}_1^k \partial_x \bar{w}_1^1 + \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1) \\
+ \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1 \\
+ \bar{w}_3^k \partial_x \bar{w}_3^1 \right] \\
+ \int_{\mathbb{R}^3} (\bar{w}_1^k \partial_x \bar{w}_1^1 + \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1) \\
+ \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1 \\
+ \bar{w}_3^k \partial_x \bar{w}_3^1 \\
\right] \\
+ \int_{\mathbb{R}^3} (\bar{w}_1^k \partial_x \bar{w}_1^1 + \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1) \\
+ \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1 \\
+ \bar{w}_3^k \partial_x \bar{w}_3^1 \\
= 0
\]

Similarly,

\[
\int_{\mathbb{R}^3} \left[\hat{\omega}_1 (\bar{w}_1^1 \partial_x \bar{w}_1^k + \bar{w}_2^1 \partial_x \bar{w}_2^k + \bar{w}_3^1 \partial_x \bar{w}_3^k) \\
+ \hat{\omega}_2 (\bar{w}_1^2 \partial_x \bar{w}_1^k + \bar{w}_2^2 \partial_x \bar{w}_2^k + \bar{w}_3^2 \partial_x \bar{w}_3^k) \\
+ \hat{\omega}_3 (\bar{w}_1^3 \partial_x \bar{w}_1^k + \bar{w}_2^3 \partial_x \bar{w}_2^k + \bar{w}_3^3 \partial_x \bar{w}_3^k) \right] \\
= - \int_{\mathbb{R}^3} \left[(\bar{w}_1^k \partial_x \bar{w}_1^1 + \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1) \\
+ \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1 \\
+ \bar{w}_3^k \partial_x \bar{w}_3^1 \right] \\
+ \int_{\mathbb{R}^3} (\bar{w}_1^k \partial_x \bar{w}_1^1 + \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1) \\
+ \bar{w}_2^k \partial_x \bar{w}_2^1 + \bar{w}_3^k \partial_x \bar{w}_3^1 \\
+ \bar{w}_3^k \partial_x \bar{w}_3^1 \\
= 0
\]

and

\[
\int_{\mathbb{R}^3} (\hat{\omega}_1 \partial_x q + \hat{\omega}_2 \partial_x q + \hat{\omega}_3 \partial_x q) = 0
\]

furthermore,

\[
\int_{\mathbb{R}^3} \hat{\omega}_1 \Delta \hat{\omega}_1 = \int_{\mathbb{R}^3} (\partial_{x_1} \hat{\omega}_1 + \partial_{x_2} \hat{\omega}_1 + \partial_{x_3} \hat{\omega}_1) = - \int_{\mathbb{R}^3} \left((\partial_{x_1} \hat{\omega}_1)^2 + (\partial_{x_2} \hat{\omega}_1)^2 + (\partial_{x_3} \hat{\omega}_1)^2 \right)
\]

Thus from (7) we have

\[
\int_{\mathbb{R}^3} \hat{\omega}_1 \partial_t \hat{\omega}_1 + \int_{\mathbb{R}^3} \hat{\omega}_2 (\bar{w}_1^1 \partial_x \bar{w}_1^k + \bar{w}_2^1 \partial_x \bar{w}_2^k + \bar{w}_3^1 \partial_x \bar{w}_3^k) \\
- \int_{\mathbb{R}^3} \hat{\omega}_2 (\bar{w}_1^2 \partial_x \bar{w}_1^k + \bar{w}_2^2 \partial_x \bar{w}_2^k + \bar{w}_3^2 \partial_x \bar{w}_3^k) \\
+ \int_{\mathbb{R}^3} \hat{\omega}_3 (\bar{w}_1^3 \partial_x \bar{w}_1^k + \bar{w}_2^3 \partial_x \bar{w}_2^k + \bar{w}_3^3 \partial_x \bar{w}_3^k) \\
- \int_{\mathbb{R}^3} \hat{\omega}_3 (\bar{w}_1^3 \partial_x \bar{w}_1^k + \bar{w}_2^3 \partial_x \bar{w}_2^k + \bar{w}_3^3 \partial_x \bar{w}_3^k) \\
= \int_{\mathbb{R}^3} \hat{\omega}_1 \Delta \hat{\omega}_1 \\
\int_{\mathbb{R}^3} \hat{\omega}_2 \partial_t \hat{\omega}_2 + \int_{\mathbb{R}^3} \hat{\omega}_2 (\bar{w}_1^2 \partial_x \bar{w}_1^k + \bar{w}_2^2 \partial_x \bar{w}_2^k + \bar{w}_3^2 \partial_x \bar{w}_3^k) \\
- \int_{\mathbb{R}^3} \hat{\omega}_2 (\bar{w}_1^2 \partial_x \bar{w}_1^k + \bar{w}_2^2 \partial_x \bar{w}_2^k + \bar{w}_3^2 \partial_x \bar{w}_3^k) \\
+ \int_{\mathbb{R}^3} \hat{\omega}_2 \partial_x q = \int_{\mathbb{R}^3} \hat{\omega}_2 \Delta \hat{\omega}_2
\]
\[
\int_{\mathbb{R}^3} \tilde{\omega}_3 \partial_t \tilde{\omega}_3 + \int_{\mathbb{R}^3} \tilde{\omega}_3 (\overrightarrow{\nabla}^1 \partial_x \tilde{\omega}^1 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}^2 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}^3) \\
- \int_{\mathbb{R}^3} \tilde{\omega}_3 (\overrightarrow{\nabla}^1 \partial_x \tilde{\omega}^1 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}^2 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}^3) + \int_{\mathbb{R}^3} \tilde{\omega}_3 \partial_x \tilde{\omega}_3 q = \int_{\mathbb{R}^3} \tilde{\omega}_3 \Delta \tilde{\omega}_3
\]
so that
\[
\frac{1}{2} \partial_t \int_{\mathbb{R}^3} (\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2) + \int_{\mathbb{R}^3} \left[(\partial_x \tilde{\omega}_1)^2 + (\partial_x \tilde{\omega}_1)^2 + (\partial_x \tilde{\omega}_1)^2 \\
+ (\partial_x \tilde{\omega}_2)^2 + (\partial_x \tilde{\omega}_2)^2 + (\partial_x \tilde{\omega}_2)^2 \\
+ (\partial_x \tilde{\omega}_3)^2 + (\partial_x \tilde{\omega}_3)^2 + (\partial_x \tilde{\omega}_3)^2 \right] \\
- \int_{\mathbb{R}^3} (\overrightarrow{\nabla}^1 \partial_x \tilde{\omega}_1 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_1 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_1 \\
+ \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 \\
+ \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3) \\
+ \int_{\mathbb{R}^3} \left(\overrightarrow{\nabla}^1 \partial_x \tilde{\omega}_1 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3 \right) = 0
\]

By using Young inequality: \(uv \leq \frac{1}{4} u^2 + v^2 \), it follows that
\[
\partial_t \int_{\mathbb{R}^3} (\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2) + 2 \int_{\mathbb{R}^3} \left[(\partial_x \tilde{\omega}_1)^2 + (\partial_x \tilde{\omega}_1)^2 + (\partial_x \tilde{\omega}_1)^2 \\
+ (\partial_x \tilde{\omega}_2)^2 + (\partial_x \tilde{\omega}_2)^2 + (\partial_x \tilde{\omega}_2)^2 \\
+ (\partial_x \tilde{\omega}_3)^2 + (\partial_x \tilde{\omega}_3)^2 + (\partial_x \tilde{\omega}_3)^2 \right] \\
\leq 2 \int_{\mathbb{R}^3} \left(\overrightarrow{\nabla}^1 \partial_x \tilde{\omega}_1 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_1 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_1 \\
+ \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 \\
+ \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3 \right) \\
+ 2 \int_{\mathbb{R}^3} \left(\overrightarrow{\nabla}^1 \partial_x \tilde{\omega}_1 + \overrightarrow{\nabla}^1 \partial_x \tilde{\omega}_1 + \overrightarrow{\nabla}^1 \partial_x \tilde{\omega}_1 \\
+ \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 + \overrightarrow{\nabla}^2 \partial_x \tilde{\omega}_2 \\
+ \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3 + \overrightarrow{\nabla}^3 \partial_x \tilde{\omega}_3 \right) \\
+ \int_{\mathbb{R}^3} \left[(\partial_x \tilde{\omega}_1)^2 + (\partial_x \tilde{\omega}_1)^2 + (\partial_x \tilde{\omega}_1)^2 \\
+ (\partial_x \tilde{\omega}_2)^2 + (\partial_x \tilde{\omega}_2)^2 + (\partial_x \tilde{\omega}_2)^2 \\
+ (\partial_x \tilde{\omega}_3)^2 + (\partial_x \tilde{\omega}_3)^2 + (\partial_x \tilde{\omega}_3)^2 \right]
\]
Thus,
\[
\frac{\partial}{\partial t} \int_{\mathbb{R}^3} \left(\dot{\omega}_1^2 + \dot{\omega}_2^2 + \dot{\omega}_3^2 \right) + \int_{\mathbb{R}^3} \left[(\partial_x \omega_1)^2 + (\partial_x \omega_1)^2 + (\partial_x \omega_1)^2 \right. \\
+ (\partial_x \omega_2)^2 + (\partial_x \omega_2)^2 + (\partial_x \omega_2)^2 \\
+ (\partial_x \omega_3)^2 + (\partial_x \omega_3)^2 + (\partial_x \omega_3)^2 \bigg] \\
\leq 4 \left\{ \left\| \mathcal{F}_i^k \right\|^2_{L^2(\mathbb{R}^3)} \left(\left\| \mathcal{F}_1^k \right\|^2_{L^\infty(\mathbb{R}^3)} + \left\| \mathcal{F}_2^k \right\|^2_{L^\infty(\mathbb{R}^3)} + \left\| \mathcal{F}_3^k \right\|^2_{L^\infty(\mathbb{R}^3)} \right) \\
+ \left\| \mathcal{F}_1^k \right\|^2_{L^2(\mathbb{R}^3)} \left(\left\| \mathcal{F}_2^k \right\|^2_{L^\infty(\mathbb{R}^3)} + \left\| \mathcal{F}_3^k \right\|^2_{L^\infty(\mathbb{R}^3)} + \left\| \mathcal{F}_1^k \right\|^2_{L^\infty(\mathbb{R}^3)} \right) \\
+ \left\| \mathcal{F}_2^k \right\|^2_{L^2(\mathbb{R}^3)} \left(\left\| \mathcal{F}_1^k \right\|^2_{L^\infty(\mathbb{R}^3)} + \left\| \mathcal{F}_3^k \right\|^2_{L^\infty(\mathbb{R}^3)} + \left\| \mathcal{F}_2^k \right\|^2_{L^\infty(\mathbb{R}^3)} \right) \right\} \\
= 4 \left(\left\| \mathcal{F}_1^k \right\|^2_{L^2(\mathbb{R}^3)} + \left\| \mathcal{F}_2^k \right\|^2_{L^2(\mathbb{R}^3)} + \left\| \mathcal{F}_3^k \right\|^2_{L^2(\mathbb{R}^3)} \right) \left(\left\| \mathcal{F}_1^k \right\|^2_{L^\infty(\mathbb{R}^3)} + \left\| \mathcal{F}_2^k \right\|^2_{L^\infty(\mathbb{R}^3)} + \left\| \mathcal{F}_3^k \right\|^2_{L^\infty(\mathbb{R}^3)} \right)
\]

Note that
\[
\left\| \mathcal{F}_i^k \right\|^2_{L^2(\mathbb{R}^3)} = \int_{\mathbb{R}^3} \left(\frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} u_i(x, t) dt \right)^2 \leq \frac{1}{\Delta t_k^2} \int_{\mathbb{R}^3} \Delta t_k \int_{t_{k-1}}^{t_k} u_i^2(x, t) dt \\
= \frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} \left\| u_i \right\|^2_{L^2(\mathbb{R}^3)} \leq \sup_{(t_{k-1}, t_k)} \left\| u_i \right\|^2_{L^2(\mathbb{R}^3)}
\]

and similarly
\[
\left\| \mathcal{F}_i^k \right\|^2_{L^2(\mathbb{R}^3)} \leq \frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} \left\| \dot{\omega}_i \right\|^2_{L^2(\mathbb{R}^3)}, \quad i = 1, 2, 3
\]

In addition, a convolution inequality in [1] is applied to get
\[
\left\| \mathcal{F}_i^k \right\|^2_{L^\infty(\mathbb{R}^3)} = \left\| J_\varepsilon \ast \mathcal{F}_i^k(x) \right\|^2_{L^\infty(\mathbb{R}^3)} \\
\leq \left\| J_\varepsilon \right\|^2_{L^2(\mathbb{R}^3)} \left\| \mathcal{F}_i^k \right\|^2_{L^2(\mathbb{R}^3)} \leq \frac{1}{\mu_\varepsilon} \sup_{(t_{k-1}, t_k)} \left\| \dot{\omega}_i \right\|^2_{L^2(\mathbb{R}^3)}
\]

where the quantity \(\mu_\varepsilon \to 0 \) as \(\varepsilon \to 0 \). We need further assuming that \(\varepsilon \to 0 \) and
\[
\frac{\Delta t_k}{\mu_\varepsilon} \to 0 \quad \text{as} \quad k \to \infty \quad \text{or} \quad \Delta t_k \to 0
\]

From (8) we have
\[
\int_{\mathbb{R}^3} \left(\dot{\omega}_1^2 + \dot{\omega}_2^2 + \dot{\omega}_3^2 \right) + \int_{t_{k-1}}^{t_k} \left(\left\| \nabla \dot{\omega}_1 \right\|^2_{L^2(\mathbb{R}^3)} + \left\| \nabla \dot{\omega}_2 \right\|^2_{L^2(\mathbb{R}^3)} + \left\| \nabla \dot{\omega}_3 \right\|^2_{L^2(\mathbb{R}^3)} \right) \\
\leq \int_{\mathbb{R}^3} \left(\dot{\omega}_1^{k-1} + \dot{\omega}_2^{k-1} + \dot{\omega}_3^{k-1} \right) + \\
+ \frac{4\Delta t_k}{\mu_\varepsilon} \sup_{(t_{k-1}, t_k)} \left\{ \left\| u_1 \right\|^2_{L^2(\mathbb{R}^3)} + \left\| u_2 \right\|^2_{L^2(\mathbb{R}^3)} + \left\| u_3 \right\|^2_{L^2(\mathbb{R}^3)} \right\} \cdot \sup_{(t_{k-1}, t)} \int_{\mathbb{R}^3} \left(\dot{\omega}_1^2 + \dot{\omega}_2^2 + \dot{\omega}_3^2 \right)
\]
By (6) we have
\[
\sup_{(t_{k-1}, t_k)} \left\{ \|u_1\|_{L^2_2(\mathbb{R}^3)}^2 + \|u_2\|_{L^2_2(\mathbb{R}^3)}^2 + \|u_3\|_{L^2_2(\mathbb{R}^3)}^2 \right\}
\leq K_0 = \sup_{t \in (0, T)} \int_{\mathbb{R}^3} \left(u_1^2 + u_2^2 + u_3^2 \right) + \int_0^T \left(\|\nabla u_1\|_{L^2_2(\mathbb{R}^3)}^2 + \|\nabla u_2\|_{L^2_2(\mathbb{R}^3)}^2 + \|\nabla u_3\|_{L^2_2(\mathbb{R}^3)}^2 \right) < +\infty
\]

Thus,
\[
\left(1 - 4K_0 \frac{\Delta t_k}{\mu \varepsilon} \right) \sup_{t \in (t_{k-1}, t_k)} \int_{\mathbb{R}^3} \left(\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2 \right) + \int_{t_{k-1}}^{t_k} \left(\|\nabla \tilde{\omega}_1\|_{L^2_2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_2\|_{L^2_2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_3\|_{L^2_2(\mathbb{R}^3)}^2 \right) \leq \int_{\mathbb{R}^3} \left(\tilde{\omega}_{1}^{k-1} + \tilde{\omega}_2^{k-1} + \tilde{\omega}_3^{k-1} \right)
\]

Now we set
\[
M_0 = \int_{\mathbb{R}^3} (\omega_{10}^2 + \omega_{20}^2 + \omega_{30}^2)
\]
\[
M_k = \sup_{t \in (t_{k-1}, t_k)} \int_{\mathbb{R}^3} (\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2)
\]
\[
\delta_k = \int_{t_{k-1}}^{t_k} \left(\|\nabla \tilde{\omega}_1\|_{L^2_2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_2\|_{L^2_2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_3\|_{L^2_2(\mathbb{R}^3)}^2 \right)
\]

then we have
\[
\left(1 - 4K_0 \frac{\Delta t_k}{\mu \varepsilon} \right) M_k + \delta_k \leq M_{k-1}
\]

The partition is assumed to be fine enough. Because of the local existence of Galerkin solution in section 3 and the absolute continuity of integration with respect to \(t \), it is valid that \(\delta_k \to 0 \) as \(\Delta t_k \to 0 \).

We may first consider the case that
\[
M_{k-1} \frac{\Delta t_k}{\delta_k} \to 0, \quad \text{as} \quad \Delta t_k \to 0
\]

which may be a subsequence \(k' \), still denoted \(k \). At this time, we can choose \(\varepsilon_k \) on each \((t_{k-1}, t_k) \) such that
\[
\mu \varepsilon_k = 4K_0 M_{k-1} \frac{\Delta t_k}{\delta_k} \quad \text{and} \quad 1 - 4K_0 \frac{\Delta t_k}{\mu \varepsilon_k} \geq \frac{1}{2}
\]

\[\varepsilon = \max_k \{ \varepsilon_k \} . \]

Then we obtain
\[
\left(1 - 4K_0 \frac{\Delta t_k}{\mu \varepsilon_k} \right) M_k + \delta_k = \left(1 - \frac{\delta_k}{M_{k-1}} \right) M_k + \delta_k \leq M_{k-1}
\]
it follows that $M_k \leq M_{k-1}$.

Otherwise, $\delta_k \leq O(\Delta t_k) M_{k-1}$. In this case, a convolution inequality in [1] is applied to get

$$\left\| \nabla \omega_i^* \right\|^2_{L^2(\mathbb{R}^3)} \leq \left\| J \ast \omega_i \right\|^2_{L^2(\mathbb{R}^3)} \leq \left\| J \right\|^2_{L^1(\mathbb{R}^3)} \left\| \nabla \omega_i^* \right\|^2_{L^2(\mathbb{R}^3)}$$

where $J = \omega_i \ast 1$ is the convolution of ω_i with the indicator function 1. This leads to that

$$\left\| \nabla \omega_i^* \right\|^2_{L^2(\mathbb{R}^3)} \leq \sup_{(t_{k-1}, t_k)} \left\| \omega_i \right\|^2_{L^2(\mathbb{R}^3)}$$

This leads to that

$$\{ \left\| \nabla \omega_1^* \right\|^2_{L^2(\mathbb{R}^3)} + \left\| \nabla \omega_2^* \right\|^2_{L^2(\mathbb{R}^3)} + \left\| \nabla \omega_3^* \right\|^2_{L^2(\mathbb{R}^3)} \} \leq \frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} \left(\left\| \nabla \omega_1 \right\|^2_{L^2(\mathbb{R}^3)} + \left\| \nabla \omega_2 \right\|^2_{L^2(\mathbb{R}^3)} + \left\| \nabla \omega_3 \right\|^2_{L^2(\mathbb{R}^3)} \right) \leq O(1) M_{k-1}$$

Since these (t_{k-1}, t_k) are of finite length, the number of them is finite. According to Cauchy-Schwartz inequality, similar to (8), we have

$$\partial_t \int_{\mathbb{R}^3} (\omega_1^2 + \omega_2^2 + \omega_3^2) + \int_{\mathbb{R}^3} \left[(\partial_x \omega_1)^2 + (\partial_x \omega_2)^2 + (\partial_x \omega_3)^2 \right]$$

$$\leq 4 \left\{ \left(\int_{\mathbb{R}^3} \nabla \omega_1^4 \right) \frac{1}{4} \left(\int_{\mathbb{R}^3} \nabla \omega_1^4 \right) \frac{1}{4} \left(\int_{\mathbb{R}^3} \nabla \omega_2^4 \right) \frac{1}{4} + \left(\int_{\mathbb{R}^3} \nabla \omega_1^4 \right) \frac{1}{4} \left(\int_{\mathbb{R}^3} \nabla \omega_3^4 \right) \frac{1}{4} \left(\int_{\mathbb{R}^3} \nabla \omega_1^4 \right) \frac{1}{4} \left(\int_{\mathbb{R}^3} \nabla \omega_3^4 \right) \frac{1}{4} \right\}$$

$$= 4 \left\{ \left\| \nabla \omega_1 \right\|^2_{L^4(\mathbb{R}^3)} \left\| \nabla \omega_2 \right\|^2_{L^4(\mathbb{R}^3)} + \left\| \nabla \omega_3 \right\|^2_{L^4(\mathbb{R}^3)} \left\| \nabla \omega_1 \right\|^2_{L^4(\mathbb{R}^3)} + \left\| \nabla \omega_3 \right\|^2_{L^4(\mathbb{R}^3)} \left\| \nabla \omega_1 \right\|^2_{L^4(\mathbb{R}^3)} \right\}$$

From Sobolev imbedding theorem in [1], there exists a constant $C_1 > 0$ independent of ω such that

$$\left\| \nabla \omega_i \right\|^2_{L^4(\mathbb{R}^3)} \leq C_1 \left\{ \left\| \nabla \omega_i \right\|^2_{L^2(\mathbb{R}^3)} + \left\| \nabla \omega_i^* \right\|^2_{L^2(\mathbb{R}^3)} \right\}, \quad i = 1, 2, 3$$
Therefore,
\[
\int_{\mathbb{R}^3} (\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2) + \int_{t_{k-1}}^t \left(\|\nabla \tilde{\omega}_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_3\|_{L^2(\mathbb{R}^3)}^2 \right)
\leq \int_{\mathbb{R}^3} (\tilde{\omega}_1^{k-1})^2 + \tilde{\omega}_2^{k-1} + \tilde{\omega}_3^{k-1}^2 + C_2 \left(\|\tilde{\omega}_1^1\|_{L^2(\mathbb{R}^3)}^2 + \|\tilde{\omega}_2^1\|_{L^2(\mathbb{R}^3)}^2 + \|\tilde{\omega}_3^1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_3\|_{L^2(\mathbb{R}^3)}^2 \right)
\times \int_{t_{k-1}}^t \int_{\mathbb{R}^3} (\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2) +
\int_{t_{k-1}}^t \left(\|\nabla \tilde{\omega}_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_3\|_{L^2(\mathbb{R}^3)}^2 \right)
\times \left(\|\nabla \tilde{\omega}_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_3\|_{L^2(\mathbb{R}^3)}^2 \right)
\]

Thus we have
\[
\int_{\mathbb{R}^3} (\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2) + \int_{t_{k-1}}^t \left(\|\nabla \tilde{\omega}_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla \tilde{\omega}_3\|_{L^2(\mathbb{R}^3)}^2 \right)
\leq \int_{\mathbb{R}^3} (\tilde{\omega}_1^{k-1})^2 + \tilde{\omega}_2^{k-1} + \tilde{\omega}_3^{k-1}^2 + C_2 \left(\sup_{(t_{k-1}, t_k)} \{ \|u_1\|_{L^2(\mathbb{R}^3)}^2 + \|u_2\|_{L^2(\mathbb{R}^3)}^2 + \|u_3\|_{L^2(\mathbb{R}^3)}^2 \} \right)
\times \int_{t_{k-1}}^t \int_{\mathbb{R}^3} (\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2) +
+ \int_{t_{k-1}}^t \left(\|\nabla u_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_3\|_{L^2(\mathbb{R}^3)}^2 \right)
\times \left(\|\nabla u_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_3\|_{L^2(\mathbb{R}^3)}^2 \right)
\times \left(\|\nabla u_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_3\|_{L^2(\mathbb{R}^3)}^2 \right)
\]

where $C_2, C_3 > 0$ are constants independent of k. Set
\[
K^*_k = \Delta t_k \sup_{(t_{k-1}, t_k)} \{ \|u_1\|_{L^2(\mathbb{R}^3)}^2 + \|u_2\|_{L^2(\mathbb{R}^3)}^2 + \|u_3\|_{L^2(\mathbb{R}^3)}^2 \} +
+ \int_{t_{k-1}}^t \left(\|\nabla u_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_3\|_{L^2(\mathbb{R}^3)}^2 \right)
\]

and
\[
f_k(t) = \sup_{(t_{k-1}, t)} \int_{\mathbb{R}^3} (\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2)
\]
Then we arrive at
\[f_k(t) \leq M_{k-1} + C_2 \frac{1}{\Delta t_k} K_k^* \int_{t_{k-1}}^t f_k(t) + C_3 K_k^* M_{k-1} \]

By using Gronwall inequality it follows that
\[M_k \leq (1 + C_3 K_k^*) \exp(C_2 K_k^*) M_{k-1} \]

Note that
\[
\sum_{k=1}^N K_k^* \leq T \sup_{t \in (0,T)} \int_{\mathbb{R}^3} (u_1^2 + u_2^2 + u_3^2) + \int_0^T (\|\nabla u_1\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_2\|_{L^2(\mathbb{R}^3)}^2 + \|\nabla u_3\|_{L^2(\mathbb{R}^3)}^2) \\
\leq (T + 1) K_0 < +\infty
\]

Hence, combining above two cases, we obtain
\[M_1 \leq (1 + C_3 K_1^*) \exp(C_2 K_1^*) M_0 \]
\[M_2 \leq (1 + C_3 K_1^*) (1 + C_3 K_2^*) \exp\left(C_2 \sum_{k=1}^2 K_k^*\right) M_0 \]
\[\vdots \]
\[M_N \leq \prod_{k=1}^N (1 + C_3 K_k^*) \exp\left(C_2 \sum_{k=1}^N K_k^*\right) M_0 \]

Note that
\[
\prod_{k=1}^N (1 + C_3 K_k^*) = \exp\left(\ln \prod_{k=1}^N (1 + C_3 K_k^*)\right) \\
= \exp\left(\sum_{k=1}^N \ln(1 + C_3 K_k^*)\right) \leq \exp\left(C_3 \sum_{k=1}^N K_k^*\right) = \exp(C_3(T + 1)K_0)
\]

These mean that
\[M_k \leq M_0 \exp((C_2 + C_3)(T + 1)K_0) \quad k = 1, \cdots, N \]

Finally we get
\[
\sup_{t \in (0,T)} \int_{\mathbb{R}^3} (\tilde{\omega}_1^2 + \tilde{\omega}_2^2 + \tilde{\omega}_3^2) \leq \max_k \{M_k\} \\
\leq M_0 \exp((C_2 + C_3)(T + 1)K_0)
\]
From condition (3) it is found that M_0 is bounded, namely,
\[
\int_{\mathbb{R}^3} \left(\omega_{10}^2(x) + \omega_{20}^2(x) + \omega_{30}^2(x) \right) \leq \int_{|x| \leq R} \left(\omega_{10}^2(x) + \omega_{20}^2(x) + \omega_{30}^2(x) \right) + 12 C^2_\mu \int_{|x| > R} \frac{1}{(1 + |x|)^{2\sigma}} < +\infty
\]
and R is a large constant.

This conclusion is also true for the weak solution of problem (7), by means of the result of section 3 and the lower limit of Galerkin sequence according to the page 196 of [4].

3. Existence

In this section we have to consider the existence of solutions of the auxiliary problems. We just need considering the following system on $(0, \delta)$:
\[
\begin{align*}
\partial_t \tilde{\omega}_1 + \nabla_x \cdot \mathbb{P}_1 &= \nabla_x \cdot \tilde{\mathbb{P}}_1 + \nabla_x \cdot \tilde{\mathbb{P}}_2 + \nabla_x \cdot \tilde{\mathbb{P}}_3 - \nabla_x \cdot \omega_{10} - \nabla_x \cdot \omega_{20} - \nabla_x \cdot \omega_{30} + \partial_x q = \Delta \tilde{\omega}_1 \\
\partial_t \tilde{\omega}_2 + \nabla_x \cdot \mathbb{P}_2 &= \nabla_x \cdot \tilde{\mathbb{P}}_2 + \nabla_x \cdot \tilde{\mathbb{P}}_3 - \nabla_x \cdot \omega_{10} - \nabla_x \cdot \omega_{20} - \nabla_x \cdot \omega_{30} + \partial_x q = \Delta \tilde{\omega}_2 \\
\partial_t \tilde{\omega}_3 + \nabla_x \cdot \mathbb{P}_3 &= \nabla_x \cdot \tilde{\mathbb{P}}_3 - \nabla_x \cdot \omega_{10} - \nabla_x \cdot \omega_{20} - \nabla_x \cdot \omega_{30} + \partial_x q = \Delta \tilde{\omega}_3
\end{align*}
\]

with the initial value $\tilde{\omega}_i(x,0) = \omega_{i0}$ $(i = 1, 2, 3)$ and
\[
\mathbb{P}(x) = \frac{1}{\delta} \int_0^{\delta} u_i(x,t)dt
\]
and
\[
\mathbb{I}(x) = \frac{1}{\delta} \int_0^{\delta} \tilde{\omega}_i(x,t)dt,
\]
as well as the incompressible conditions:
\[
\begin{align*}
\partial_x u_1 + \partial_x u_2 + \partial_x u_3 &= 0 \quad \Rightarrow \quad \partial_x \mathbb{P}_1 + \partial_x \mathbb{P}_2 + \partial_x \mathbb{P}_3 = 0 \\
\partial_x \tilde{\omega}_1 + \partial_x \tilde{\omega}_2 + \partial_x \tilde{\omega}_3 &= 0 \quad \Rightarrow \quad \partial_x \tilde{\mathbb{P}}_1 + \partial_x \tilde{\mathbb{P}}_2 + \partial_x \tilde{\mathbb{P}}_3 = 0
\end{align*}
\]

(i) The Galerkin procedure is applied. For each m and $i = 1, 2, 3$ we define an approximate solution $(\tilde{\omega}_{1m}, \tilde{\omega}_{2m}, \tilde{\omega}_{3m})$ as follows:
\[
\tilde{\omega}_{im} = \sum_{j=1}^{m} g_{ij}(t)w_{ij}
\]
where $\{w_{11}, \ldots, w_{im}, \ldots\}$ is the basis of W, and $W = \text{the closure of } \mathcal{V}$ in the Sobolev space $W^{2,q}(\mathbb{R}^3)$, which is separable and is dense in V. Thus by means
of weighted function θ_r introduced in Section 1,

\[
(\theta_r \partial_t \tilde{\omega}_{im}, w_{il}) + (\theta_r \nabla \tilde{\omega}_{im}, \nabla w_{il}) + (\nabla \tilde{\omega}_{im}, w_{il} \nabla \theta_r) +
(\theta_r \langle \nabla \tilde{\omega}_{im}, \nabla \tilde{\omega}_{im} \rangle, w_{il}) = 0
\]

(10)

let $r \to +\infty$ we get

\[
(\partial_t \tilde{\omega}_{im}, w_{il}) + (\nabla \tilde{\omega}_{im}, \nabla w_{il}) + (\langle \nabla \tilde{\omega}_{im}, \nabla \tilde{\omega}_{im} \rangle, w_{il}) = 0
\]

(11)

\[t \in (0, \delta), \quad \tilde{\omega}_{im}(0) = \omega_{im}^0, \quad l = 1, \cdots, m \]

where ω_{im}^0 is the orthogonal projection in H of ω_{i0} onto the space spanned by w_{i1}, \cdots, w_{im}. Therefore,

\[
\sum_{j=1}^{m} (w_{ij}, w_{il}) g_{ij}^0(t) + \sum_{j=1}^{m} (\nabla w_{ij}, \nabla w_{il}) g_{ij}(t) +
\sum_{j=1}^{m} \{ (\langle \nabla \omega \rangle w_{ij}^*, w_{il}) - (\langle \nabla \omega \rangle w_{il}, \omega_i(t)) \} \bar{g}_{ij}(t) = 0
\]

where $w_{ij}^* = J_{x} * w_{ij}$, $w_{ij}^* = J_{x} * w_{ij}$, $\bar{g}_{ij}(t) = \frac{1}{\delta} \int_{0}^{\delta} g_{ij}(t) dt$ and $u_i \in L^\infty(0, T; H)$ from Section 1 which are determined by equations (1). Inverting the nonsingular matrix with elements (w_{ij}, w_{il}), $1 \leq j, l \leq m$, we can write above system in the following form

\[
g_{ij}(t) + \sum_{l=1}^{m} \alpha_{ijl} g_{il}(t) + \sum_{l=1}^{m} \beta_{ijl} \bar{g}_{il}(t) = 0
\]

(12)

where α_{ijl}, β_{ijl} are constants.

The initial conditions are equivalent to

\[
g_{ij}(0) = \tilde{g}_{ij}^0 = \text{the } j^{th} \text{ component of } \omega_{i0}^m
\]

We construct a sequence $\{g_{ij}^k\}$ by using a successive approximation:

\[
g_{ij}^1 = - \sum_{l=1}^{m} \alpha_{ijl} g_{il}^0 - \sum_{l=1}^{m} \beta_{ijl} \bar{g}_{il}^0 \Rightarrow \quad g_{ij}^1 = g_{ij}^0 - \int_{0}^{t} \left(\sum_{l=1}^{m} \alpha_{ijl} g_{il}^0 + \sum_{l=1}^{m} \beta_{ijl} \bar{g}_{il}^0 \right)
\]

\[
g_{ij}^2 = - \sum_{l=1}^{m} \alpha_{ijl} g_{il}^0 - \sum_{l=1}^{m} \beta_{ijl} \bar{g}_{il}^0 \Rightarrow \quad g_{ij}^2 = g_{ij}^0 - \int_{0}^{t} \left(\sum_{l=1}^{m} \alpha_{ijl} g_{il}^1 + \sum_{l=1}^{m} \beta_{ijl} \bar{g}_{il}^0 \right)
\]

\[
\cdots \cdots
\]

\[
g_{ij}^k = - \sum_{l=1}^{m} \alpha_{ijl} g_{il}^{k-1} - \sum_{l=1}^{m} \beta_{ijl} \bar{g}_{il}^{k-1} \Rightarrow \quad g_{ij}^k = g_{ij}^0 - \int_{0}^{t} \left(\sum_{l=1}^{m} \alpha_{ijl} g_{il}^{k-1} + \sum_{l=1}^{m} \beta_{ijl} \bar{g}_{il}^{k-1} \right)
\]

so that

\[
|g_{ij}^k(t) - g_{ij}^{k-1}(t)| \leq \int_{0}^{t} \left(\sum_{l=1}^{m} |\alpha_{ijl}| \left| g_{il}^{k-1}(t) - g_{il}^{k-2}(t) \right| + \sum_{l=1}^{m} |\beta_{ijl}| \left| \bar{g}_{il}^{k-1}(t) - \bar{g}_{il}^{k-2}(t) \right| \right)
\]

14
It follows that
\[
\max_{i,j} \sup_t |g_{ij}^k(t) - g_{ij}^{k-1}(t)| \leq \max_{i,j} \sum_{l=1}^m (|\alpha_{ijl}| + |\beta_{ijl}|) \cdot t \cdot \max_{i,j} |g_{ij}^{k-1}(t) - g_{ij}^{k-2}(t)|
\]
Taking \(\delta := \frac{1}{\max_{i,j} \sum_{l=1}^m (|\alpha_{ijl}| + 2|\beta_{ijl}|)}\), as \(t \to 0\), then choosing \(\delta^*\):
\[
0 < \delta^* = \frac{\max_{i,j} \sum_{l=1}^m (|\alpha_{ijl}| + |\beta_{ijl}|)}{\max_{i,j} \sum_{l=1}^m (|\alpha_{ijl}| + 2|\beta_{ijl}|)} < 1
\]
we have
\[
\max_{i,j} \|g_{ij}^k - g_{ij}^{k-1}\|_{\infty} \leq \delta^* \max_{i,j} \|g_{ij}^{k-1} - g_{ij}^{k-2}\|_{\infty} \leq \cdots \leq (\delta^*)^{k-1} \max_{i,j} \|g_{ij}^1 - g_{ij}^0\|_{\infty}
\]
For any \(n, k\) (we can set \(n > k\) without loss of generality), we get
\[
\max_{i,j} \|g_{ij}^n - g_{ij}^k\|_{\infty} \leq \max_{i,j} \|g_{ij}^n - g_{ij}^{n-1}\|_{\infty} + \cdots + \max_{i,j} \|g_{ij}^{k+1} - g_{ij}^k\|_{\infty}
\]
\[
\leq ((\delta^*)^{n-1} + \cdots + (\delta^*)^k) \max_{i,j} \|g_{ij}^n - g_{ij}^0\|_{\infty} = (\delta^*)^k \frac{1 - (\delta^*)^{n-k}}{1 - \delta^*} \max_{i,j} \|g_{ij}^1 - g_{ij}^0\|_{\infty}
\]
\[
\to 0 \quad (k \to \infty)
\]
Thus, for every \(i = 1, 2, 3; \ j = 1, \cdots, m\), \(\{g_{ij}^n\}\) is a Cauchy sequence in \(L^\infty(0, \delta)\). Since \(L^\infty(0, \delta)\) is complete, then there exists a function \(g_{ij}^* \in L^\infty(0, \delta)\) such that
\[
\|g_{ij}^k - g_{ij}^*\|_{\infty} \to 0 \quad \text{as} \quad k \to \infty.
\]
From
\[
g_{ij}^k(t) = g_{ij}^0 - \int_0^t \left(\sum_{l=1}^m \alpha_{ijl} g_{il}^{k-1}(t) + \sum_{l=1}^m \beta_{ijl} \bar{g}_{il}^{k-1}(t) \right)
\]
let \(k \to \infty\), it follows that
\[
g_{ij}^*(t) = g_{ij}^0 - \int_0^t \left(\sum_{l=1}^m \alpha_{ijl} g_{il}^*(t) + \sum_{l=1}^m \beta_{ijl} \bar{g}_{il}(t) \right)
\]
i.e., \(g_{ij}^*\) is a solution of the system (12) on \((0, \delta)\) for which \(g_{ij}^*(0) = g_{ij}^0\), \(i = 1, 2, 3; \ j = 1, \cdots, m\).

(ii) By means of the weighted function \(\theta_r\):
\[
\sum_{i=1}^3 (\theta_r \partial_h \bar{\omega}_{im}, \bar{\omega}_{im}) + \sum_{i=1}^3 (\theta_r \nabla \bar{\omega}_{im}, \nabla \bar{\omega}_{im}) + \sum_{i=1}^3 (\nabla \bar{\omega}_{im}, \bar{\omega}_{im} \nabla \theta_r) + \sum_{i=1}^3 (\theta_r (\bar{\rho} \cdot \nabla) \bar{\omega}_{im}, \bar{\omega}_{im}) - \sum_{i=1}^3 (\theta_r (\bar{\rho} \cdot \nabla) \bar{\omega}_{im}, \bar{\omega}_{im}) = 0
\]
Let \(r \to +\infty \) we get
\[
3 \sum_{i=1}^{3} (\partial_t \tilde{\omega}_{im}, \tilde{\omega}_{im}) + \sum_{i=1}^{3} (\nabla \tilde{\omega}_{im}, \nabla \tilde{\omega}_{im}) + \sum_{i=1}^{3} ((\vec{\pi} \cdot \nabla)\vec{\pi}_{im}, \tilde{\omega}_{im}) - \sum_{i=1}^{3} ((\vec{\pi} \cdot \nabla)\pi_{i}, \tilde{\omega}_{im}) = 0
\]
Then we write
\[
\frac{1}{2} \frac{d}{dt} \left(\sum_{i=1}^{3} \|\tilde{\omega}_{im}\|_{L^2(\mathbb{R}^3)}^2 \right) + \sum_{i=1}^{3} \|\nabla \tilde{\omega}_{im}\|_{L^2(\mathbb{R}^3)}^2 - \sum_{i=1}^{3} ((\vec{\pi} \cdot \nabla)\tilde{\omega}_{im}, \vec{\pi}_{im}) + \sum_{i=1}^{3} ((\vec{\pi} \cdot \nabla)\tilde{\omega}_{im}, \pi_{i}) = 0
\]
Similar to those in the section 2, and \(\eta \) is chosen to be small enough, we have
\[
3 \sum_{i=1}^{3} \|\tilde{\omega}_{im}\|_{L^2(\mathbb{R}^3)}^2 + \int_{0}^{\eta} \left(\sum_{i=1}^{3} \|\nabla \tilde{\omega}_{im}\|_{L^2(\mathbb{R}^3)}^2 \right) \leq 2 \left(\sum_{i=1}^{3} \|\omega_{i0}\|_{L^2(\mathbb{R}^3)}^2 \right)
\]
as \(1 - 4K_0 \eta/\mu_z \geq 1/2 \). Hence,
\[
\sup_{t \in (0, \eta)} \left(\sum_{i=1}^{3} \|\tilde{\omega}_{im}\|_{L^2(\mathbb{R}^3)}^2 \right) \leq 2 \left(\sum_{i=1}^{3} \|\omega_{i0}\|_{L^2(\mathbb{R}^3)}^2 \right)
\]
and
\[
3 \sum_{i=1}^{3} \|\tilde{\omega}_{im}(\eta)\|_{L^2(\mathbb{R}^3)}^2 + \int_{0}^{\eta} \left(\sum_{i=1}^{3} \|\nabla \tilde{\omega}_{im}\|_{L^2(\mathbb{R}^3)}^2 \right) \leq 2 \left(\sum_{i=1}^{3} \|\omega_{i0}\|_{L^2(\mathbb{R}^3)}^2 \right)
\]
The inequalities (13) and (14) are valid for any fixed \(\delta \leq \eta \).

(iii) Let \(\tilde{\omega}_m \) denote the function from \(\mathbb{R} \) into \(V \), which is equal to \(\tilde{\omega}_m \) on \((0, \delta)\) and to 0 on the complement of this interval. The Fourier transform of \(\tilde{\omega}_m \) is denoted by \(\hat{\omega}_m \). We want to show that
\[
\int_{-\infty}^{+\infty} |\tau|^{2\gamma} \left(\sum_{i=1}^{3} \|\hat{\omega}_{im}\|_{L^2(\Omega)}^2 \right) d\tau < +\infty, \quad \forall \Omega \subset \mathbb{R}^3
\]
For some \(\gamma > 0 \). Along with (14) this will imply that
\[
\tilde{\omega}_m \text{ belongs to a bounded set of } H^\gamma(\mathbb{R}, H^1(\Omega), L^2(\Omega)), \quad \forall \Omega
\]
and will enable us to apply the result of compactness.

We observe that (10) can be written as
\[
\frac{d}{dt} \left(\sum_{i=1}^{3} (\theta_r \tilde{\omega}_{im}, w_{ij}) \right) = \sum_{i=1}^{3} (\theta_r \tilde{f}_{im}, w_{ij}) + \sum_{i=1}^{3} (\theta_r \omega_{i0}^m, w_{ij}) \eta_0 - \sum_{i=1}^{3} (\theta_r \tilde{\omega}_{im}(\delta), w_{ij}) \eta_\delta
\]
}\]
where \(\eta_0, \eta_\delta \) are Dirac distributions at 0 and \(\delta \), and

\[
f_{im} = -\Delta \hat{\omega}_{im} + (\bar{\omega} \cdot \nabla) \bar{\bar{\omega}}_{im} - (\bar{\omega}_m \cdot \nabla) \bar{u}_i
\]

\(\hat{f}_{im} = f_{im} \) on \((0, \delta)\), 0 outside this interval.

By the Fourier transform,

\[
2i\pi \tau \sum_{i=1}^{3} (\theta_r \hat{\omega}_{im}, w_{ij}) = \sum_{i=1}^{3} (\theta_r \hat{f}_{im}, w_{ij}) + \sum_{i=1}^{3} (\theta_r \omega_{m0}^i, w_{ij}) - \sum_{i=1}^{3} (\theta_r \hat{\omega}_{im}(\delta), w_{ij}) \exp(-2i\pi \delta)
\]

where \(\hat{\omega}_{im} \) and \(\hat{f}_{im} \) denote the Fourier transforms of \(\omega_{im} \) and \(f_{im} \) respectively.

We multiply above equalities by \(\hat{g}_{ij}(\tau) = \text{Fourier transform of} \ g_{ij} \) and add the resulting equations for \(j = 1, \cdots, m \), we get

\[
2i\pi \tau \sum_{i=1}^{3} \left\| \theta_r^{1/2} \hat{\omega}_{im}(\tau) \right\|_{L^2(\mathbb{R}^3)}^2 = \sum_{i=1}^{3} (\theta_r \hat{f}_{im}(\tau), \hat{\omega}_{im}(\tau)) + \sum_{i=1}^{3} (\theta_r \omega_{m0}^i, \hat{\omega}_{im}(\tau)) - \sum_{i=1}^{3} (\theta_r \hat{\omega}_{im}(\delta), \hat{\omega}_{im}(\tau)) \exp(-2i\pi \delta)
\]

For some \(\varphi_i \in V \),

\[
\int_0^{\delta} \sum_{i=1}^{3} (\theta_r f_{im}, \varphi_i) = \int_0^{\delta} \sum_{i=1}^{3} (-\theta_r \Delta \hat{\omega}_{im}, \varphi_i) + \int_0^{\delta} \sum_{i=1}^{3} (\theta_r (\bar{\omega} \cdot \nabla) \bar{\bar{\omega}}_{im}, \varphi_i) - \int_0^{\delta} \sum_{i=1}^{3} (\theta_r (\bar{\omega}_m \cdot \nabla) \bar{u}_i, \varphi_i)
\]

\[
= \int_0^{\delta} \sum_{i=1}^{3} (\theta_r \nabla \hat{\omega}_{im}, \nabla \varphi_i) + \int_0^{\delta} \sum_{i=1}^{3} (\nabla \hat{\omega}_{im}, \varphi_i \nabla \theta_r) - \int_0^{\delta} \sum_{i=1}^{3} (\varphi_i (\bar{\omega} \cdot \nabla) \theta_r, \bar{\omega}_m) + \int_0^{\delta} \sum_{i=1}^{3} (\varphi_i (\bar{\omega}_m \cdot \nabla) \theta_r, \bar{u}_i)
\]

Let \(r \rightarrow +\infty \) we get

\[
\int_0^{\delta} \sum_{i=1}^{3} (f_{im}, \varphi_i) = \int_0^{\delta} \sum_{i=1}^{3} (\nabla \hat{\omega}_{im}, \nabla \varphi_i) - \int_0^{\delta} \sum_{i=1}^{3} ((\bar{\omega} \cdot \nabla) \varphi_i, \bar{\omega}_m) + \int_0^{\delta} \sum_{i=1}^{3} ((\bar{\omega}_m \cdot \nabla) \varphi_i, \bar{u}_i)
\]

\[
\leq \int_0^{\delta} \sum_{i=1}^{3} \left\| \nabla \hat{\omega}_{im} \right\|_{L^2(\mathbb{R}^3)} \left\| \nabla \varphi_i \right\|_{L^2(\mathbb{R}^3)} +
\]
\[+ 2 \int_0^\delta \left(\sum_{i=1}^3 \| \nabla^i \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} \left(\sum_{i=1}^3 \| \nabla \varphi \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} \left(\sum_{i=1}^3 \| \nabla \varphi \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} \]

\[\leq \int_0^\delta \left(\sum_{i=1}^3 \| \nabla \omega \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} \left(\sum_{i=1}^3 \| \nabla \varphi \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} \left(\sum_{i=1}^3 \| \nabla \varphi \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} +
\]

\[+ 2C \delta \left(\sum_{i=1}^3 \| \nabla \omega \|_{L^2(\mathbb{R}^3)}^2 + \| \nabla \varphi \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} \]

\[\times \left(\sum_{i=1}^3 \| \nabla \omega \|_{L^2(\mathbb{R}^3)}^2 + \| \nabla \varphi \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} \prod_{i=1}^3 \| \nabla \varphi \|_{L^2(\mathbb{R}^3)} \]

this remains bounded according to (6) and (13), (14). Therefore,

\[\int_0^\delta \| \hat{f}_{im}(t) \|_V \, dt = \int_0^\delta \max_{\| \varphi \| \leq 1} \sum_{i=1}^3 \langle f_{im}, \varphi_i \rangle < +\infty \]

it follows that

\[\sup_{\tau \in \mathbb{R}} \| \hat{f}_{im}(\tau) \|_V < +\infty, \quad \forall m \]

Due to (13) we have

\[\| \omega_{im}(0) \|_{L^2(\mathbb{R}^3)} < +\infty, \quad \| \omega_{im}(\delta) \|_{L^2(\mathbb{R}^3)} < +\infty \]

then by Poincare inequality,

\[\sum_{i=1}^3 \left(\int \| \theta^{1/2} \omega_{im}(\tau) \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} \leq c_1 \sum_{i=1}^3 \| \hat{f}_{im}(\tau) \|_V \| \theta \omega_{im}(\tau) \|_V \]

\[+ c_2 \sum_{i=1}^3 \| \theta \omega_{im}(\tau) \|_{L^2(\mathbb{R}^3)} \]

\[\leq c_3 \sum_{i=1}^3 \| \nabla (\theta \omega_{im}(\tau)) \|_{L^2(\mathbb{R}^3)} \]

\[\leq c_4 \sum_{i=1}^3 \left(\| \omega_{im} \nabla \theta \|_{L^2(\mathbb{R}^3)} + \| \theta \omega_{im} \|_{L^2(\mathbb{R}^3)} \right) \]

Using $x^2 e^{-\kappa x} \leq C_1$ ($\kappa > 0$) and assuming that r is sufficiently large, we get
\[
|\tau| \sum_{i=1}^{3} \left\| \theta_r^{1/2} \hat{\omega}_{im}(\tau) \right\|_{L^2(\mathbb{R}^3)}^2 \leq c_5 \sum_{i=1}^{3} \left\| \theta_r^{1/2} \hat{\omega}_{im} \right\|_{L^2(\mathbb{R}^3)} + c_6 \sum_{i=1}^{3} \left\| \theta_r \nabla \hat{\omega}_{im} \right\|_{L^2(\mathbb{R}^3)}
\]
(15)

For γ fixed, $\gamma < 1/4$, we observe that
\[
|\tau|^{2\gamma} \leq c_7(\gamma) \frac{1 + |\tau|}{1 + |\tau|^{1-2\gamma}}, \quad \forall \tau \in \mathbb{R}
\]
Thus by (15),
\[
\int_{-\infty}^{+\infty} |\tau|^{2\gamma} \left(\sum_{i=1}^{3} \left\| \theta_r^{1/2} \hat{\omega}_{im}(\tau) \right\|_{L^2(\mathbb{R}^3)}^2 \right) d\tau \leq c_8 \int_{-\infty}^{+\infty} \frac{1 + |\tau|}{1 + |\tau|^{1-2\gamma}} \left(\sum_{i=1}^{3} \left\| \theta_r^{1/2} \hat{\omega}_{im}(\tau) \right\|_{L^2(\mathbb{R}^3)}^2 \right) d\tau + c_9 \int_{-\infty}^{+\infty} \sum_{i=1}^{3} \left\| \theta_r \nabla \hat{\omega}_{im}(\tau) \right\|_{L^2(\mathbb{R}^3)} d\tau + c_{10} \int_{-\infty}^{+\infty} \sum_{i=1}^{3} \left\| \theta_r^{1/2} \hat{\omega}_{im}(\tau) \right\|_{L^2(\mathbb{R}^3)}^2 d\tau
\]
Because of the Parseval equality,
\[
\int_{-\infty}^{+\infty} \sum_{i=1}^{3} \left\| \theta_r \omega_{im}(\tau) \right\|_{L^2(\mathbb{R}^3)} d\tau = \int_{0}^{\delta} \sum_{i=1}^{3} \left\| \theta_r \hat{\omega}_{im}(t) \right\|_{L^2(\mathbb{R}^3)} dt
\]
\[
\leq C_3 \delta \sup_{(0,\delta)} \sum_{i=1}^{3} \left\| \hat{\omega}_{im} \right\|_{L^2(\mathbb{R}^3)} < +\infty
\]
\[
\int_{-\infty}^{+\infty} \sum_{i=1}^{3} \left\| \theta_r \nabla \hat{\omega}_{im}(\tau) \right\|_{L^2(\mathbb{R}^3)} d\tau = \int_{0}^{\delta} \sum_{i=1}^{3} \left\| \theta_r \nabla \hat{\omega}_{im}(t) \right\|_{L^2(\mathbb{R}^3)} dt
\]
\[
\leq C_4 \int_{0}^{\delta} \sum_{i=1}^{3} \left\| \nabla \hat{\omega}_{im} \right\|_{L^2(\mathbb{R}^3)}^2 < +\infty
\]
as $m \to \infty$. By Cauchy-Schwarz inequality and the Parseval equality,
\[
\int_{-\infty}^{+\infty} \frac{1}{1 + |\tau|^{1-2\gamma}} \sum_{i=1}^{3} \left\| \theta_r^{1/2} \hat{\omega}_{im}(\tau) \right\|_{L^2(\mathbb{R}^3)} d\tau
\]
\[
\leq \sqrt{3} \left(\int_{-\infty}^{+\infty} \frac{1}{(1 + |\tau|^{1-2\gamma})^2} d\tau \right)^{1/2} \left(\int_{0}^{\delta} \sum_{i=1}^{3} \left\| \theta_r^{1/2} \hat{\omega}_{im}(t) \right\|_{L^2(\mathbb{R}^3)}^2 dt \right)^{1/2} < +\infty
\]
\[
\int_{-\infty}^{+\infty} \frac{1}{1 + |\tau|^{1-2\gamma}} \sum_{i=1}^{3} \| \theta_i \nabla \tilde{\omega}_{im}(\tau) \|_{L^2(\mathbb{R}^3)} d\tau \\
\leq \sqrt{3} \left(\int_{-\infty}^{+\infty} \frac{1}{(1 + |\tau|^{1-2\gamma})^2} d\tau \right)^{1/2} \left(\int_{0}^{\delta} \sum_{i=1}^{3} \| \theta_i \nabla \tilde{\omega}_{im}(t) \|_{L^2(\mathbb{R}^3)}^2 dt \right)^{1/2} < +\infty
\]
as \(m \to \infty\) by \(\gamma < 1/4\) and (14).

(iv) The estimates (13) and (14) enable us to assert the existence of an element \(\tilde{\omega}^* \in L^2(0, \delta; H^1(\Omega)) \cap L^\infty(0, \delta; L^2(\Omega)), \quad \forall \Omega \subset \mathbb{R}^3\), and a subsequence \(\tilde{\omega}_{m'}\) such that

\[\tilde{\omega}_{m'} \to \tilde{\omega}^* \text{ in } L^2(0, \delta; H^1(\Omega)) \text{ weakly, and in } L^\infty(0, \delta; L^2(\Omega)) \text{ weak-star,}
\]
as \(m' \to \infty\), for any \(\Omega \subset \mathbb{R}^3\)

Due to (iii) we also have

\[\tilde{\omega}_{m'} \to \tilde{\omega}^* \text{ in } L^2(0, \delta; L^2(\Omega)) \text{ strongly as } m' \to \infty, \text{ for any } \Omega \subset \mathbb{R}^3\]

which means

\[\tilde{\omega}_{m'} \to \tilde{\omega}^* \text{ in } L^2(0, \delta; L^2_{\text{loc}}(\Omega)) \text{ strongly}\]

In particular, for a fixed \(j\)

\[\tilde{\omega}_{m'}|_{\Omega'} \to \tilde{\omega}^*|_{\Omega'} \text{ in } L^2(0, \delta; L^2(\Omega')) \text{ strongly}\]

where \(\Omega'\) denotes the support of \(w_{ij}\). This convergence result enable us to pass to the limit.

Let \(\psi_i\) be a continuously differentiable function on \((0, \delta)\) with \(\psi_i(\delta) = 0\). We multiply (11) by \(\psi_i(t)\) then integrate by parts. This leads to the equation

\[- \int_{0}^{\delta} \sum_{i=1}^{3} (\tilde{\omega}_{im}(t), \partial_t \psi_i(t) w_{ij}) dt + \int_{0}^{\delta} \sum_{i=1}^{3} (\nabla \tilde{\omega}_{im}, \psi_i(t) \nabla w_{ij}) dt \\
+ \int_{0}^{\delta} \sum_{i=1}^{3} ((\nabla \cdot \nabla) \tilde{\omega}_{im}, w_{ij} \psi_i(t)) - \int_{0}^{\delta} \sum_{i=1}^{3} ((\nabla \cdot \nabla) \tilde{\omega}_{im}, w_{ij} \psi_i(t)) = \sum_{i=1}^{3} (\tilde{\omega}^*_w, w_{ij}) \psi_i(0)\]

Since \(\tilde{\omega}_{im'}\) converges to \(\tilde{\omega}^*_w\) in \(L^2(0, \delta; L^2(\Omega))\) strongly as \(m' \to \infty\), then \(\tilde{\omega}_{im'}\) also converges strongly to \(\tilde{\omega}_{im'}\), and

\[\int_{0}^{\delta} \sum_{i=1}^{3} (\tilde{\omega}_{im'}, \partial_t \psi_i(t) w_{ij}) dt \to \int_{0}^{\delta} \sum_{i=1}^{3} (\tilde{\omega}^*_w, \partial_t \psi_i(t) w_{ij}) dt \\
\int_{0}^{\delta} \sum_{i=1}^{3} (\nabla \tilde{\omega}_{im'}, \psi_i(t) \nabla w_{ij}) dt = - \int_{0}^{\delta} \sum_{i=1}^{3} (\tilde{\omega}_{im'}, \psi_i(t) \Delta w_{ij}) dt\]

20
\[-\int_0^\delta \sum_{i=1}^3 (\tilde{\omega}_i^\ast, \psi_i(t)\Delta w_{ij}) = \int_0^\delta \sum_{i=1}^3 (\nabla \tilde{\omega}_i^\ast, \psi_i(t)\nabla w_{ij}) \, dt \]

\[\int_0^\delta \sum_{i=1}^3 ((\overline{u} \cdot \nabla)\overline{\omega}_{im'}, w_{ij}\psi_i(t)) = -\int_0^\delta \sum_{i=1}^3 ((\overline{u} \cdot \nabla)w_{ij}\psi_i(t), \overline{\omega}_{im'}) \]

\[\rightarrow \int_0^\delta \sum_{i=1}^3 ((\overline{u} \cdot \nabla)w_{ij}\psi_i(t), \overline{\omega}_i^\ast) = \int_0^\delta \sum_{i=1}^3 ((\overline{u} \cdot \nabla)\overline{\omega}_i^\ast, w_{ij}\psi_i(t)) \]

\[\int_0^\delta \sum_{i=1}^3 ((\overline{\omega}_{im'} \cdot \nabla)\overline{u}_i, w_{ij}\psi_i(t)) \rightarrow \int_0^\delta \sum_{i=1}^3 ((\overline{\omega} \cdot \nabla)\overline{u}_i, w_{ij}\psi_i(t)) \]

\[\sum_{i=1}^3 (\omega_{i0}^m, w_{ij})\psi_i(0) \rightarrow \sum_{i=1}^3 (\omega_{i0}, w_{ij})\psi_i(0) \]

Thus, in the limit we find

\[-\int_0^\delta \sum_{i=1}^3 (\tilde{\omega}_i^\ast, \partial_t\psi_i(t)v_i) \, dt + \int_0^\delta \sum_{i=1}^3 (\nabla \tilde{\omega}_i^\ast, \psi_i(t)\nabla v_i) \, dt \]

\[+ \int_0^\delta \sum_{i=1}^3 ((\overline{u} \cdot \nabla)\overline{\omega}_i^\ast, v_i\psi_i(t)) \rightarrow -\int_0^\delta \sum_{i=1}^3 ((\overline{\omega} \cdot \nabla)\overline{u}_i, v_i\psi_i(t)) = \sum_{i=1}^3 (\omega_{i0}, v_i)\psi_i(0) \]

holds for \(v_i = w_{i1}, w_{i2}, \ldots \); by this equation holds for \(v_i = \) any finite linear combination of the \(w_{ij} \), and by a continuity argument above equation is still true for any \(v_i \in V \). Hence we find that \(\tilde{\omega}_i^\ast (i = 1, 2, 3) \) is a Leray-Hopf weak solution of the system (9).

Finally it remains to prove that \(\tilde{\omega}_i^\ast \) satisfy the initial conditions. For this we multiply (9) by \(v_i\psi_i(t) \), after integrating some terms by parts, we get in the same way,

\[-\int_0^\delta \sum_{i=1}^3 (\tilde{\omega}_i^\ast, \partial_t\psi_i(t)v_i) \, dt + \int_0^\delta \sum_{i=1}^3 (\nabla \tilde{\omega}_i^\ast, \psi_i(t)\nabla v_i) \, dt \]

\[+ \int_0^\delta \sum_{i=1}^3 ((\overline{u} \cdot \nabla)\overline{\omega}_i^\ast, v_i\psi_i(t)) \rightarrow -\int_0^\delta \sum_{i=1}^3 ((\overline{\omega} \cdot \nabla)\overline{u}_i, v_i\psi_i(t)) = \sum_{i=1}^3 (\omega_{i0}^*, v_i)\psi_i(0) \]

By comparison with (16),

\[\sum_{i=1}^3 (\tilde{\omega}_i^\ast(0) - \omega_{i0}, v_i)\psi_i(0) = 0 \]

Therefore we can choose \(\psi_i \) particularly such that

\((\tilde{\omega}_i^\ast(0) - \omega_{i0}, v_i) = 0, \quad \forall \ v_i \in V \)
4. Convergence

Now the partition is refined infinitely and \(\varepsilon \) becomes sufficiently small, we will prove that there exists some subsequence of the solutions of auxiliary problems which converges to a weak solution of (2).

Since

\[
\sup_{t \in (0, T)} \int_{\mathbb{R}^3} (\tilde{\omega}^2_1 + \tilde{\omega}^2_2 + \tilde{\omega}^2_3) < +\infty
\]

the family \((\tilde{\omega}_1, \tilde{\omega}_2, \tilde{\omega}_3)\) is uniformly bounded in \(L^2(0, T; H) \cap L^\infty(0, T; H)\), then we can choose \(k' \to \infty\) or \(\Delta t'_k \to 0\) (in this case \(\varepsilon' \to 0\) and \(m'\) has to tend to \(\infty\)), such that there exists a subsequence \((\tilde{\omega}'_1, \tilde{\omega}'_2, \tilde{\omega}'_3)\) converging weakly in \(L^2(0, T; H)\) and weak-star in \(L^\infty(0, T; H)\) to some element \((\omega'^*_1, \omega'^*_2, \omega'^*_3)\). On the other hand, because \(\tilde{\omega}_i (i = 1, 2, 3)\) belong to \(L^2(0, T; H)\), we can verify that

\[
\bar{u}_i(x, t) = \left\{ \frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} \tilde{\omega}_i(x, t) dt, \ t \in (t_{k-1}, t_k) \subset (0, T) \right\}
\]

also belongs to \(L^2(0, T; H)\). In fact,

\[
\int_0^T \int_{\mathbb{R}^3} \bar{u}_i^2(x, t) = \sum_k \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \left(\frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} \tilde{\omega}_i(x, t) \right)^2 dt \leq \sum_k \frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \tilde{\omega}_i^2(x, t) dt \leq \sum_k \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \tilde{\omega}_i^2(x, t) dt = \int_0^T \int_{\mathbb{R}^3} \tilde{\omega}_i^2(x, t) dt < +\infty
\]

In the same way, we know from (6) that the function

\[
\bar{u}_i(x, t) = \left\{ \frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} u_i(x, t) dt, \ t \in (t_{k-1}, t_k) \subset (0, T) \right\}
\]

belongs to \(L^2(0, T; H)\).

Finally we will prove that \((\omega'^*_1, \omega'^*_2, \omega'^*_3)\) is a solution of the vorticity-velocity form of Navier-Stokes equation (2).

Taking \(\varphi_i \in C^\infty((0, T) \times \mathbb{R}^3) \ (i = 1, 2, 3)\), and

\[
\partial_{x_1} \varphi_1 + \partial_{x_2} \varphi_2 + \partial_{x_3} \varphi_3 = 0
\]

we have

\[
\sum_{k=1}^N \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \theta_r \varphi_1 (\partial_i \tilde{\omega}_1 + \bar{u}^k_1 \partial_{x_1} \bar{u}^k_1 + \bar{u}^k_2 \partial_{x_2} \bar{u}^k_1 + \bar{u}^k_3 \partial_{x_3} \bar{u}^k_1) -
\]

22
\[-\bar{\omega}_1^t \partial_{x_1} \bar{u}_1^t - \bar{\omega}_2^t \partial_{x_2} \bar{u}_1^t - \bar{\omega}_3^t \partial_{x_3} \bar{u}_1^t + \partial_{x_1} q - \Delta \bar{\omega}_1) = 0 \]

\[\sum_{k=1}^N \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \theta_r \varphi_2 (\partial_t \bar{\omega}_2 + \bar{\omega}_1^k \partial_{x_1} \bar{\omega}_3^k + \bar{\omega}_2^k \partial_{x_2} \bar{\omega}_3^k + \bar{\omega}_3^k \partial_{x_3} \bar{\omega}_3^k) - \]

\[-\bar{\omega}_1^t \partial_{x_1} \bar{u}_1^t - \bar{\omega}_2^t \partial_{x_2} \bar{u}_1^t - \bar{\omega}_3^t \partial_{x_3} \bar{u}_1^t + \partial_{x_2} q - \Delta \bar{\omega}_2) = 0 \]

\[\sum_{k=1}^N \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \theta_r \varphi_3 (\partial_t \bar{\omega}_3 + \bar{\omega}_1^k \partial_{x_1} \bar{\omega}_3^k + \bar{\omega}_2^k \partial_{x_2} \bar{\omega}_3^k + \bar{\omega}_3^k \partial_{x_3} \bar{\omega}_3^k) - \]

\[-\bar{\omega}_1^t \partial_{x_1} \bar{u}_1^t - \bar{\omega}_2^t \partial_{x_2} \bar{u}_1^t - \bar{\omega}_3^t \partial_{x_3} \bar{u}_1^t + \partial_{x_3} q - \Delta \bar{\omega}_3) = 0 \]

Here $\bar{\omega}_i$ ($i = 1, 2, 3$) denote the collection of those solutions of problem (7) defined on every (t_{k-1}, t_k). Integrating by parts we get

\[\sum_{k=1}^N \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \theta_r (\partial_t \bar{\omega}_1^t \partial_{x_1} \varphi_1 + \bar{\omega}_1^k ((\bar{\omega}_1^k \partial_{x_1} \varphi_1 + \varphi_1 \partial_{x_1} \bar{\omega}_1^k) + (\bar{\omega}_2^k \partial_{x_2} \varphi_1 + \varphi_1 \partial_{x_2} \bar{\omega}_2^k) +
\]

\[+ (\bar{\omega}_3^k \partial_{x_3} \varphi_1 + \varphi_1 \partial_{x_3} \bar{\omega}_3^k)) - \bar{\omega}_1^k ((\bar{\omega}_1^k \partial_{x_1} \varphi_1 + \varphi_1 \partial_{x_1} \bar{\omega}_1^k) + (\bar{\omega}_2^k \partial_{x_2} \varphi_1 + \varphi_1 \partial_{x_2} \bar{\omega}_2^k) +
\]

\[+ (\bar{\omega}_3^k \partial_{x_3} \varphi_1 + \varphi_1 \partial_{x_3} \bar{\omega}_3^k)) - \bar{\omega}_1^k ((\bar{\omega}_1^k \partial_{x_1} \varphi_1 + \varphi_1 \partial_{x_1} \bar{\omega}_1^k) + (\bar{\omega}_2^k \partial_{x_2} \varphi_1 + \varphi_1 \partial_{x_2} \bar{\omega}_2^k) +
\]

\[+ (\bar{\omega}_3^k \partial_{x_3} \varphi_1 + \varphi_1 \partial_{x_3} \bar{\omega}_3^k)) - \bar{\omega}_1^k \partial_{x_1} \varphi_1 + \bar{\omega}_1^k \partial_{x_1} \varphi_1 + \bar{\omega}_2^k \partial_{x_2} \varphi_1 + \bar{\omega}_3^k \partial_{x_3} \varphi_1) +
\]

\[+ \theta_r (\varphi_1 (x, t_k) \bar{\omega}_1 (x, t_k) - \varphi_1 (x, t_{k-1}) \bar{\omega}_1 (x, t_{k-1}))) +
\]

\[\sum_{k=1}^N \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \theta_r (\partial_t \bar{\omega}_2^k \partial_{x_2} \varphi_2 + \bar{\omega}_2^k ((\bar{\omega}_1^k \partial_{x_1} \varphi_2 + \varphi_2 \partial_{x_1} \bar{\omega}_1^k) + (\bar{\omega}_2^k \partial_{x_2} \varphi_2 + \varphi_2 \partial_{x_2} \bar{\omega}_2^k) +
\]

\[+ (\bar{\omega}_3^k \partial_{x_3} \varphi_2 + \varphi_2 \partial_{x_3} \bar{\omega}_3^k)) - \bar{\omega}_2^k ((\bar{\omega}_1^k \partial_{x_1} \varphi_2 + \varphi_2 \partial_{x_1} \bar{\omega}_1^k) + (\bar{\omega}_2^k \partial_{x_2} \varphi_2 + \varphi_2 \partial_{x_2} \bar{\omega}_2^k) +
\]

\[+ (\bar{\omega}_3^k \partial_{x_3} \varphi_2 + \varphi_2 \partial_{x_3} \bar{\omega}_3^k)) - \bar{\omega}_2^k \partial_{x_2} \varphi_2 + \bar{\omega}_2^k \partial_{x_2} \varphi_2 + \bar{\omega}_3^k \partial_{x_3} \varphi_2 + \bar{\omega}_3^k \partial_{x_3} \varphi_2) +
\]

\[+ \theta_r (\varphi_2 (x, t_k) \bar{\omega}_2 (x, t_k) - \varphi_2 (x, t_{k-1}) \bar{\omega}_2 (x, t_{k-1}))) +
\]

\[\sum_{k=1}^N \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \theta_r (\partial_t \bar{\omega}_3^k \partial_{x_3} \varphi_3 + \bar{\omega}_3^k ((\bar{\omega}_1^k \partial_{x_1} \varphi_3 + \varphi_3 \partial_{x_1} \bar{\omega}_1^k) + (\bar{\omega}_2^k \partial_{x_2} \varphi_3 + \varphi_3 \partial_{x_2} \bar{\omega}_2^k) +
\]

\[+ (\bar{\omega}_3^k \partial_{x_3} \varphi_3 + \varphi_3 \partial_{x_3} \bar{\omega}_3^k)) - \bar{\omega}_3^k ((\bar{\omega}_1^k \partial_{x_1} \varphi_3 + \varphi_3 \partial_{x_1} \bar{\omega}_1^k) + (\bar{\omega}_2^k \partial_{x_2} \varphi_3 + \varphi_3 \partial_{x_2} \bar{\omega}_2^k) +
\]

\[\]
\[\sum_{k=1}^{N} \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \left(\bar{\omega}_3^k (\varphi_3 \tilde{\omega}_1 \partial_x \varphi_3 + \varphi_3 \tilde{\omega}_2 \partial_x \varphi_3 + \varphi_3 \tilde{\omega}_3 \partial_x \varphi_3) \right) + \tilde{\omega}_3 (\varphi_3 \tilde{\omega}_1 \partial_x \varphi_3 + \varphi_3 \tilde{\omega}_2 \partial_x \varphi_3 + \varphi_3 \tilde{\omega}_3 \partial_x \varphi_3) \]

\[+ \sum_{k=1}^{N} \sum_{l=1}^{t_k} \int_{\mathbb{R}^3} \left(\bar{\omega}_3^k (\varphi_3 \tilde{\omega}_1 \partial_x \varphi_3 + \varphi_3 \tilde{\omega}_2 \partial_x \varphi_3 + \varphi_3 \tilde{\omega}_3 \partial_x \varphi_3) \right) - \]

\[- \bar{\omega}_3^k (\varphi_3 \tilde{\omega}_1 \partial_x \varphi_3 + \varphi_3 \tilde{\omega}_2 \partial_x \varphi_3 + \varphi_3 \tilde{\omega}_3 \partial_x \varphi_3) + q \varphi_3 \partial_x \varphi_3 + \tilde{\omega}_3 \varphi_3 \Delta \varphi_3 + 2 \tilde{\omega}_3 (\partial_x \varphi_3 + \Delta \varphi_3) \]

\[= \sum_{k=1}^{N} \int_{\mathbb{R}^3} \varphi_3 (x, t_k) \tilde{\omega}_3 (x, t_k) - \varphi_3 (x, t_{k-1}) \tilde{\omega}_3 (x, t_{k-1}) \]

Let \(r \to +\infty \),

\[\sum_{k=1}^{N} \int_{t_{k-1}}^{t_k} \int_{\mathbb{R}^3} \left(\tilde{\omega}_1 \partial_x \varphi_1 + \tilde{\omega}_1 (\varphi_3 \tilde{\omega}_1 + \varphi_1 \tilde{\omega}_1) \right) + \left(\tilde{\omega}_2 \partial_x \varphi_2 + \tilde{\omega}_2 (\varphi_3 \tilde{\omega}_2 + \varphi_2 \tilde{\omega}_2) \right) + \]

\[+ \left(\tilde{\omega}_3 \partial_x \varphi_3 + \tilde{\omega}_3 (\varphi_3 \tilde{\omega}_3 + \varphi_3 \tilde{\omega}_3) \right) + q \partial_x \varphi_3 + \tilde{\omega}_3 \Delta \varphi_3 \]

\[= \sum_{k=1}^{N} \int_{\mathbb{R}^3} \varphi_3 (x, t_k) \tilde{\omega}_3 (x, t_k) - \varphi_3 (x, t_{k-1}) \tilde{\omega}_3 (x, t_{k-1}) \]

For a certain solution \(u \) of (1), we can prove due to (6) that

\[\bar{\omega}_i \to u_i \text{ in } L^2(0, T; H) \text{ strongly} \]

as \(k \to \infty \), or \(\Delta t_k \to 0 \).
In fact, set \(Q = (0, T) \times \mathbb{R}^3, \Delta t = \max_k \{ \Delta t_k \}, \forall \varepsilon > 0, \) and \(u_i \in L^2(0, T; L^2(\mathbb{R}^3)) \), there exists a \(v_i \in C^\infty(0, T; L^2(\mathbb{R}^3)) \) such that
\[
\| u_i - v_i \|_{L^2(Q)} < \varepsilon
\]
By means of the same partition as that for \(u_i \) to construct \(v_i \), since there exists a constant \(C > 0 \) such that \(\| \partial_t u_i \|_{L^2(\mathbb{R}^3)} \leq C \), and \(\max_t \| u_i - v_i \|_{L^2(\mathbb{R}^3)} \leq C \Delta t \), it follows that
\[
\| v_i - v_i \|_{L^2(Q)} = \left(\int_0^T \| v_i - v_i \|^2_{L^2(\mathbb{R}^3)} \right)^{1/2} \leq C T^{1/2} \Delta t
\]
Thus
\[
v_i \to v_i \quad (L^\infty(0, T; L^2(\mathbb{R}^3))) \text{, as } \Delta t \to 0.
\]
Take \(\Delta t \) such that \(\| v_i - v_i \|_{L^2(Q)} < \varepsilon \). Moreover,
\[
\int_0^T \| \bar{u}_i - v_i \|^2_{L^2(\mathbb{R}^3)} = \sum_{k=1}^N \left\| \frac{1}{\Delta t_k} \int_{t_{k-1}}^{t_k} (u_i - v_i) \right\|^2_{L^2(\mathbb{R}^3)} \Delta t_k
\]
so that \(\| \bar{u}_i - v_i \|_{L^2(Q)} \leq \| u_i - v_i \|_{L^2(Q)} < \varepsilon \). Therefore,
\[
\| \bar{u}_i - u_i \|_{L^2(Q)} \leq \| u_i - v_i \|_{L^2(Q)} + \| v_i - \bar{u}_i \|_{L^2(Q)} + \| \bar{u}_i - v_i \|_{L^2(Q)} < 3\varepsilon
\]
Hence as \(\Delta t \to 0 \), we have \(\| \bar{u}_i - u_i \|_{L^2(Q)} \to 0 \).

On the other hand, from section 2 we have the following conclusions:
\(\tilde{\omega}_i \to \omega_* \) in \(L^2(0, T; H) \) weakly, and in \(L^\infty(0, T; H) \) weak-star
for a subsequence as \(k' \to \infty \), or \(\Delta t_k \to 0 \).

For a \(\omega_i \in L^2(0, T; H) \), similar to above we know that
\(\bar{\omega}_i \to \omega \) in \(L^2(0, T; H) \) strongly
as \(k \to \infty \) or \(\Delta t_k \to 0 \).

Moreover, set \(B_\varepsilon = \{ x : |x| < \varepsilon \} \), then
\[
\| \bar{\omega}_i - \omega_i \|_{L^2(\mathbb{R}^3)} = \left\| \int_{|y| \leq \varepsilon} J_\varepsilon(y) \left[\bar{\omega}_i(x - y) - \omega_i(x) \right] dy \right\|_{L^2(\mathbb{R}^3)}
\]
as \(\varepsilon \to 0 \), and

\[
\| \overline{\omega}_i - \omega_i \|_{L^2(Q)} \leq \left(\int_0^T \| \overline{\omega}_i - \omega_i \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} + \| \overline{\omega}_i - \omega_i \|_{L^2(Q)} \to 0
\]
as \(k \to \infty \) or \(\Delta t_k \to 0 \).

Thus we finally we obtain

\[
\overline{\omega}_i^k \to \omega_i^s \quad \text{in} \quad L^2(0, T, H) \quad \text{weakly}
\]
as \(k' \to \infty \), or \(\Delta t_k' \to 0 \).

These convergence results enable us to pass the limit. That is,

\[
\sum_{k'} \int_{t_{k'-1}}^{t_{k'}} \int_{\mathbb{R}^3} \left(\tilde{\omega}_1 \partial_t \varphi_1 + \overline{\omega}_1^k \partial_{x_1} \varphi_1 + \overline{\omega}_2^k \partial_{x_2} \varphi_1 + \overline{\omega}_3^k \partial_{x_3} \varphi_1 \right) -
- \overline{\omega}_1^k \partial_{x_1} \varphi_1 \partial_{x_2} \varphi_1 \partial_{x_3} \varphi_1 \partial_{x_3} \varphi_1 + q \partial_t \varphi_1 + \tilde{\omega}_1 \Delta \varphi_1 \right) = \int_{\mathbb{R}^3} \left(\varphi_1(x, T) \tilde{\omega}_1(x, T) - \varphi_1(x, 0) \tilde{\omega}_1(x, 0) \right)
\]

\[
\sum_{k'} \int_{t_{k'-1}}^{t_{k'}} \int_{\mathbb{R}^3} \left(\tilde{\omega}_2 \partial_t \varphi_2 + \overline{\omega}_1^k \partial_{x_1} \varphi_2 + \overline{\omega}_2^k \partial_{x_2} \varphi_2 + \overline{\omega}_3^k \partial_{x_3} \varphi_2 \right) -
- \overline{\omega}_2^k \partial_{x_1} \varphi_2 \partial_{x_2} \varphi_2 \partial_{x_3} \varphi_2 + q \partial_t \varphi_2 + \tilde{\omega}_2 \Delta \varphi_2 \right) = \int_{\mathbb{R}^3} \left(\varphi_2(x, T) \tilde{\omega}_2(x, T) - \varphi_2(x, 0) \tilde{\omega}_2(x, 0) \right)
\]

\[
\sum_{k'} \int_{t_{k'-1}}^{t_{k'}} \int_{\mathbb{R}^3} \left(\tilde{\omega}_3 \partial_t \varphi_3 + \overline{\omega}_1^k \partial_{x_1} \varphi_3 + \overline{\omega}_2^k \partial_{x_2} \varphi_3 + \overline{\omega}_3^k \partial_{x_3} \varphi_3 \right) -
- \overline{\omega}_3^k \partial_{x_1} \varphi_3 \partial_{x_2} \varphi_3 \partial_{x_3} \varphi_3 + q \partial_t \varphi_3 + \tilde{\omega}_3 \Delta \varphi_3 \right) = \int_{\mathbb{R}^3} \left(\varphi_3(x, T) \tilde{\omega}_3(x, T) - \varphi_3(x, 0) \tilde{\omega}_3(x, 0) \right)
\]

This is equivalent to

\[
\int_0^T \int_{\mathbb{R}^3} \left\{ (\omega_1 \partial_t \varphi_1 + \omega_2 \partial_t \varphi_2 + \omega_3 \partial_t \varphi_3) + \right. \]

\[
\left. (\omega_1 \Delta \varphi_1 + \omega_2 \Delta \varphi_2 + \omega_3 \Delta \varphi_3) \right. \]
\[+ \omega^i_1(u_1 \partial_{x_1} \varphi_1 + u_2 \partial_{x_2} \varphi_1 + u_3 \partial_{x_3} \varphi_1) + \omega^i_2(u_1 \partial_{x_1} \varphi_2 + u_2 \partial_{x_2} \varphi_2 + u_3 \partial_{x_3} \varphi_2) + \\
+ \omega^i_3(u_1 \partial_{x_1} \varphi_3 + u_2 \partial_{x_2} \varphi_3 + u_3 \partial_{x_3} \varphi_3) - u_1(\omega^i_1 \partial_{x_1} \varphi_1 + \omega^i_2 \partial_{x_2} \varphi_1 + \omega^i_3 \partial_{x_3} \varphi_1) - u_2(\omega^i_1 \partial_{x_1} \varphi_2 + \omega^i_2 \partial_{x_2} \varphi_2 + \omega^i_3 \partial_{x_3} \varphi_2) - \\
- u_3(\omega^i_1 \partial_{x_1} \varphi_3 + \omega^i_2 \partial_{x_2} \varphi_3 + \omega^i_3 \partial_{x_3} \varphi_3) \]

\[= \int_{\mathbb{R}^3} \{ (\varphi_1(x,T)\omega^i_1(x,T) + \varphi_2(x,T)\omega^i_2(x,T) + \varphi_3(x,T)\omega^i_3(x,T)) - \\
- (\varphi_{10}(x)\omega_{10}(x) + \varphi_{20}(x)\omega_{20}(x) + \varphi_{30}(x)\omega_{30}(x)) \} \]

Here we also have
\[\omega^i_1(x,0) = \omega_{i0}(x), \quad \varphi_i(x,0) = \varphi_{i0}(x), \quad i = 1, 2, 3 \]

Hence we know that there exists some \(\omega^*_i \) which belongs to \(L^\infty(0,T;L^2(\mathbb{R}^3)) \) and is a Leray-Hopf weak solution of (2).

Note that a weak formulation of the following equations:
\[\omega = \text{curl} u \]
\[\int_0^T \int_{\mathbb{R}^3} \varphi \cdot [\partial_t \omega + (u \cdot \nabla)\omega - (\omega \cdot \nabla)u - \nu \Delta \omega] = 0 \]

is equivalent to
\[\int_0^T \int_{\mathbb{R}^3} \tilde{\varphi} \cdot [\partial_t u + (u \cdot \nabla)u + \nabla p - \nu \Delta u] = 0 \]

for any \(\varphi \in C^\infty((0,T) \times \mathbb{R}^3) \) with \(\varphi_i \in C^\infty_0(\Omega) \) and zero extension outside \(\Omega, \forall \Omega \subset \mathbb{R}^3 \), and \(\tilde{\varphi} = \text{curl} \varphi \), in some distribution sense.

5. Regularity

We can still use Galerkin procedure as in Section 2 and 3. Since \(V \) is separable there exists a sequence of linearly independent elements \(w_{11}, \cdots, w_{im}, \cdots \) which is total in \(V \). For each \(m \) we define an approximate solution \(u_{im} \) of (1) as follows:
\[u_{im} = \sum_{j=1}^{m} g_{ij}(t) w_{ij} \]

and by means of weighted function \(\theta_r \)
\[\int_{\mathbb{R}^3} \theta_r w_{1j} \partial_t u_{1m} + \int_{\mathbb{R}^3} \theta_r (u_{1m} \partial_{x_1} u_{1m} + u_{2m} \partial_{x_2} u_{1m} + u_{3m} \partial_{x_3} u_{1m})w_{1j} + \\
+ \int_{\mathbb{R}^3} \theta_r w_{1j} \partial_{x_1} p = \int_{\mathbb{R}^3} \theta_r w_{1j} \Delta u_{1m} \]
\[\int_{\mathbb{R}^3} \theta_r w_{2j} \partial_t u_{2m} + \int_{\mathbb{R}^3} \theta_r (u_{1m} \partial_t u_{2m} + u_{2m} \partial_t u_{2m} + u_{3m} \partial_t u_{2m}) w_{2j} + \]
\[+ \int_{\mathbb{R}^3} \theta_r w_{2j} \partial_{x2} p = \int_{\mathbb{R}^3} \theta_r w_{2j} \Delta u_{2m} \]
\[\int_{\mathbb{R}^3} \theta_r w_{3j} \partial_t u_{3m} + \int_{\mathbb{R}^3} \theta_r (u_{1m} \partial_t u_{3m} + u_{2m} \partial_t u_{3m} + u_{3m} \partial_t u_{3m}) w_{3j} + \]
\[+ \int_{\mathbb{R}^3} \theta_r w_{3j} \partial_{x3} p = \int_{\mathbb{R}^3} \theta_r w_{3j} \Delta u_{3m} \]
\[u_{im}(0) = u_{im}^0, \quad j = 1, \ldots, m \]

where \(u_{im}^0\) is the orthogonal projection in \(H\) of \(u_{i0}\) on the space spanned by \(w_1, \ldots, w_m\).

We now are allowed to differentiate (17) in the \(t\), we get
\[\int_{\mathbb{R}^3} \theta_r w_{1j} \partial_t^2 u_{1m} + \int_{\mathbb{R}^3} \theta_r (\partial_t u_{1m} \partial_t u_{1m} + \partial_t u_{2m} \partial_t u_{2m} + \partial_t u_{3m} \partial_t u_{3m}) w_{1j} + \]
\[+ \int_{\mathbb{R}^3} \theta_r (u_{1m} \partial_t u_{1m} + u_{2m} \partial_t u_{2m} + u_{3m} \partial_t u_{3m}) w_{1j} + \]
\[+ \int_{\mathbb{R}^3} \theta_r w_{1j} \partial_{x1} \partial_t u_{1m} = \int_{\mathbb{R}^3} \theta_r w_{1j} \Delta \partial_t u_{1m} \]
\[\int_{\mathbb{R}^3} \theta_r w_{2j} \partial_t^2 u_{2m} + \int_{\mathbb{R}^3} \theta_r (\partial_t u_{2m} \partial_t u_{2m} + \partial_t u_{2m} \partial_t u_{2m} + \partial_t u_{3m} \partial_t u_{3m}) w_{2j} + \]
\[+ \int_{\mathbb{R}^3} \theta_r (u_{2m} \partial_t u_{2m} + u_{3m} \partial_t u_{2m}) w_{2j} + \]
\[+ \int_{\mathbb{R}^3} \theta_r w_{2j} \partial_{x2} \partial_t u_{2m} = \int_{\mathbb{R}^3} \theta_r w_{2j} \Delta \partial_t u_{2m} \]
\[\int_{\mathbb{R}^3} \theta_r w_{3j} \partial_t^2 u_{3m} + \int_{\mathbb{R}^3} \theta_r (\partial_t u_{3m} \partial_t u_{3m} + \partial_t u_{3m} \partial_t u_{3m} + \partial_t u_{3m} \partial_t u_{3m}) w_{3j} + \]
\[+ \int_{\mathbb{R}^3} \theta_r (u_{3m} \partial_t u_{3m}) w_{3j} + \]
\[+ \int_{\mathbb{R}^3} \theta_r w_{3j} \partial_{x3} \partial_t u_{3m} = \int_{\mathbb{R}^3} \theta_r w_{3j} \Delta \partial_t u_{3m} \]
\[j = 1, \ldots, m \]

We multiply (18) by \(g_{ij}(t)\) and add the resulting equations for \(j = 1, \ldots, m\), we find
\[\frac{1}{2} \partial_t \int_{\mathbb{R}^3} \theta_r (\partial_t u_{1m})^2 + \int_{\mathbb{R}^3} \theta_r \partial_t u_{1m} (\partial_t u_{1m} \partial_{x1} u_{1m} + \partial_t u_{2m} \partial_{x2} u_{1m} + \partial_t u_{3m} \partial_{x3} u_{1m}) + \]
\[+ \int_{\mathbb{R}^3} \theta_r \partial_t u_{1m} (u_{1m} \partial_{x1} \partial_t u_{1m} + u_{2m} \partial_{x2} \partial_t u_{1m} + u_{3m} \partial_{x3} \partial_t u_{1m}) + \]
\[+ \int_{\mathbb{R}^3} \theta_r \partial_t u_{1m} \partial_{x1} \partial_t p = \int_{\mathbb{R}^3} \theta_r \partial_t u_{1m} \Delta \partial_t u_{1m} \]

28
\[
\frac{1}{2} \frac{\partial}{\partial t} \int_{\mathbb{R}^3} \theta_r \left(\partial_t u_{2m} \right)^2 + \int_{\mathbb{R}^3} \theta_r \partial_t u_{2m} \left(\partial_t u_{1m} \partial_{x_1} u_{2m} + \partial_t u_{2m} \partial_{x_2} u_{2m} + \partial_t u_{3m} \partial_{x_3} u_{2m} \right) + \\
+ \int_{\mathbb{R}^3} \theta_r \partial_t u_{2m} \left(u_{1m} \partial_{x_1} u_{2m} + u_{2m} \partial_{x_2} u_{2m} + u_{3m} \partial_{x_3} u_{2m} \right) + \\
+ \int_{\mathbb{R}^3} \theta_r \partial_t u_{2m} \partial_{x_2} \partial_{x_2} p = \int_{\mathbb{R}^3} \theta_r \partial_t u_{2m} \Delta \partial_t u_{2m}
\]

\[
\frac{1}{2} \frac{\partial}{\partial t} \int_{\mathbb{R}^3} \theta_r \left(\partial_t u_{3m} \right)^2 + \int_{\mathbb{R}^3} \theta_r \partial_t u_{3m} \left(\partial_t u_{1m} \partial_{x_1} u_{3m} + \partial_t u_{2m} \partial_{x_2} u_{3m} + \partial_t u_{3m} \partial_{x_3} u_{3m} \right) + \\
+ \int_{\mathbb{R}^3} \theta_r \partial_t u_{3m} \left(u_{1m} \partial_{x_1} u_{3m} + u_{2m} \partial_{x_2} u_{3m} + u_{3m} \partial_{x_3} u_{3m} \right) + \\
+ \int_{\mathbb{R}^3} \theta_r \partial_t u_{3m} \partial_{x_2} \partial_{x_2} p = \int_{\mathbb{R}^3} \theta_r \partial_t u_{3m} \Delta \partial_t u_{3m}
\]

Let \(r \rightarrow +\infty \).

\[
\frac{1}{2} \frac{\partial}{\partial t} \int_{\mathbb{R}^3} \left(\partial_t u_{1m} \right)^2 + \int_{\mathbb{R}^3} \partial_t u_{1m} \left(\partial_t u_{1m} \partial_{x_1} u_{1m} + \partial_t u_{2m} \partial_{x_2} u_{1m} + \partial_t u_{3m} \partial_{x_3} u_{1m} \right) + \\
+ \int_{\mathbb{R}^3} \partial_t u_{1m} \left(u_{1m} \partial_{x_1} u_{1m} + u_{2m} \partial_{x_2} u_{1m} + u_{3m} \partial_{x_3} u_{1m} \right) + \\
+ \int_{\mathbb{R}^3} \partial_t u_{1m} \partial_{x_1} \partial_{x_1} p = \int_{\mathbb{R}^3} \partial_t u_{1m} \Delta \partial_t u_{1m}
\]

\[
\frac{1}{2} \frac{\partial}{\partial t} \int_{\mathbb{R}^3} \left(\partial_t u_{2m} \right)^2 + \int_{\mathbb{R}^3} \partial_t u_{2m} \left(\partial_t u_{1m} \partial_{x_1} u_{2m} + \partial_t u_{2m} \partial_{x_2} u_{2m} + \partial_t u_{3m} \partial_{x_3} u_{2m} \right) + \\
+ \int_{\mathbb{R}^3} \partial_t u_{2m} \left(u_{1m} \partial_{x_1} u_{2m} + u_{2m} \partial_{x_2} u_{2m} + u_{3m} \partial_{x_3} u_{2m} \right) + \\
+ \int_{\mathbb{R}^3} \partial_t u_{2m} \partial_{x_2} \partial_{x_2} p = \int_{\mathbb{R}^3} \partial_t u_{2m} \Delta \partial_t u_{2m}
\]

\[
\frac{1}{2} \frac{\partial}{\partial t} \int_{\mathbb{R}^3} \left(\partial_t u_{3m} \right)^2 + \int_{\mathbb{R}^3} \partial_t u_{3m} \left(\partial_t u_{1m} \partial_{x_1} u_{3m} + \partial_t u_{2m} \partial_{x_2} u_{3m} + \partial_t u_{3m} \partial_{x_3} u_{3m} \right) + \\
+ \int_{\mathbb{R}^3} \partial_t u_{3m} \left(u_{1m} \partial_{x_1} u_{3m} + u_{2m} \partial_{x_2} u_{3m} + u_{3m} \partial_{x_3} u_{3m} \right) + \\
+ \int_{\mathbb{R}^3} \partial_t u_{3m} \partial_{x_2} \partial_{x_2} p = \int_{\mathbb{R}^3} \partial_t u_{3m} \Delta \partial_t u_{3m}
\]

Moreover,

\[
\int_{\mathbb{R}^3} \theta_r \left(\partial_t u_{1m} \partial_{x_1} \partial_{x_1} p + \partial_t u_{2m} \partial_{x_2} \partial_{x_2} p + \partial_t u_{3m} \partial_{x_3} \partial_{x_3} p \right) \\
= -\int_{\mathbb{R}^3} \theta_r \partial_t p \ \partial_t \left(\partial_{x_1} u_{1m} + \partial_{x_2} u_{2m} + \partial_{x_3} u_{3m} \right) \\
- \int_{\mathbb{R}^3} \partial_t p \left(\partial_t u_{1m} \partial_{x_1} \theta_r + \partial_t u_{2m} \partial_{x_2} \theta_r + \partial_t u_{3m} \partial_{x_3} \theta_r \right)
\]
let \(r \to +\infty \) we get

\[
\int_{\mathbb{R}^3} (\partial_t u_{1m} \partial_{x_1} \partial_t p + \partial_t u_{2m} \partial_{x_2} \partial_t p + \partial_t u_{3m} \partial_{x_3} \partial_t p) = 0
\]

and

\[
\int_{\mathbb{R}^3} \theta_r \partial_t u_{im}(u_{1m} \partial_{x_1} \partial_t u_{im} + u_{2m} \partial_{x_2} \partial_t u_{im} + u_{3m} \partial_{x_3} \partial_t u_{im})
\]

\[
= \frac{1}{2} \int_{\mathbb{R}^3} \theta_r (u_{1m} \partial_{x_1} (\partial_t u_{im})^2 + u_{2m} \partial_{x_2} (\partial_t u_{im})^2 + u_{3m} (\partial_t u_{im})^2)
\]

\[
= \frac{1}{2} \int_{\mathbb{R}^3} \theta_r (\partial_t u_{im})^2 (\partial_{x_1} u_{1m} + \partial_{x_2} u_{2m} + \partial_{x_3} u_{3m})
\]

\[
- \frac{1}{2} \int_{\mathbb{R}^3} (\partial_t u_{im})^2 (u_{1m} \partial_{x_1} \theta_r + u_{2m} \partial_{x_2} \theta_r + u_{3m} \partial_{x_3} \theta_r)
\]

let \(r \to +\infty \) we get

\[
\int_{\mathbb{R}^3} \partial_t u_{im}(u_{1m} \partial_{x_1} \partial_t u_{im} + u_{2m} \partial_{x_2} \partial_t u_{im} + u_{3m} \partial_{x_3} \partial_t u_{im}) = 0, \quad i = 1, 2, 3
\]

as well as

\[
\int_{\mathbb{R}^3} \theta_r \partial_t u_{im} \Delta \partial_t u_{im} = \int_{\mathbb{R}^3} \theta_r \partial_t u_{im} (\partial^2_{x_1} \partial_t u_{im} + \partial^2_{x_2} \partial_t u_{im} + \partial^2_{x_3} \partial_t u_{im})
\]

\[
= - \int_{\mathbb{R}^3} \theta_r ((\partial_{x_1} \partial_t u_{im})^2 + (\partial_{x_2} \partial_t u_{im})^2 + (\partial_{x_3} \partial_t u_{im})^2)
\]

\[
- \int_{\mathbb{R}^3} \partial_t u_{im}(\partial_{x_1} \theta_r \partial_{x_1} \partial_t u_{im} + \partial_{x_2} \theta_r \partial_{x_2} \partial_t u_{im} + \partial_{x_3} \theta_r \partial_{x_3} \partial_t u_{im})
\]

let \(r \to +\infty \) we get

\[
\int_{\mathbb{R}^3} \partial_t u_{im} \Delta \partial_t u_{im} = - \int_{\mathbb{R}^3} ((\partial_{x_1} \partial_t u_{im})^2 + (\partial_{x_2} \partial_t u_{im})^2 + (\partial_{x_3} \partial_t u_{im})^2), \quad i = 1, 2, 3
\]

it follows from (19) and above conclusions that

\[
\frac{1}{2} \partial_t \int_{\mathbb{R}^3} ((\partial_t u_{1m})^2 + (\partial_t u_{2m})^2 + (\partial_t u_{3m})^2) +
\]

\[+ \left\| \nabla \partial_t u_{1m} \right\|_{L^2(\mathbb{R}^3)} + \left\| \nabla \partial_t u_{2m} \right\|_{L^2(\mathbb{R}^3)} + \left\| \nabla \partial_t u_{3m} \right\|_{L^2(\mathbb{R}^3)}
\]

\[
\leq \left\| \partial_t u_{1m} \right\|_{L^4(\mathbb{R}^3)} \left\| \partial_{x_1} u_{1m} \right\|_{L^2(\mathbb{R}^3)} + \left\| \partial_t u_{2m} \right\|_{L^4(\mathbb{R}^3)} \left\| \partial_{x_2} u_{1m} \right\|_{L^2(\mathbb{R}^3)} + \left\| \partial_t u_{3m} \right\|_{L^4(\mathbb{R}^3)} \left\| \partial_{x_3} u_{1m} \right\|_{L^2(\mathbb{R}^3)}
\]

\[
+ \left\| \partial_t u_{2m} \right\|_{L^4(\mathbb{R}^3)} \left\| \partial_{x_1} u_{2m} \right\|_{L^2(\mathbb{R}^3)} + \left\| \partial_t u_{2m} \right\|_{L^4(\mathbb{R}^3)} \left\| \partial_{x_2} u_{2m} \right\|_{L^2(\mathbb{R}^3)} + \left\| \partial_t u_{3m} \right\|_{L^4(\mathbb{R}^3)} \left\| \partial_{x_3} u_{2m} \right\|_{L^2(\mathbb{R}^3)}
\]
\[
+ \| \partial_t u_{3m} \|_{L^4(\mathbb{R}^3)} \left(\| \partial_t u_{1m} \|_{L^4(\mathbb{R}^3)} \| \partial_{x_1} u_{3m} \|_{L^2(\mathbb{R}^3)} + \| \partial_t u_{2m} \|_{L^4(\mathbb{R}^3)} \| \partial_{x_2} u_{3m} \|_{L^2(\mathbb{R}^3)} + \\
+ \| \partial_t u_{3m} \|_{L^4(\mathbb{R}^3)} \| \partial_{x_3} u_{3m} \|_{L^2(\mathbb{R}^3)} \right) \\
\leq \left(\sum_{i=1}^3 \| \partial_t u_{im} \|_{L^4(\mathbb{R}^3)} \right)^{1/2} \left(\sum_{j=1}^3 \| \partial_t u_{jm} \|_{L^4(\mathbb{R}^3)} \right)^{1/2} \left(\sum_{i,j=1}^3 \| \partial_{x_i} u_{jm} \|_{L^2(\mathbb{R}^3)} \right)^{1/2}
\]

Since
\[
\sum_{i=1}^3 \| \partial_t u_{im} \|_{L^4(\mathbb{R}^3)}^2 \leq 2 \sum_{i=1}^3 \left(\| \partial_t u_{im} \|_{L^2(\mathbb{R}^3)}^{1/2} \| \nabla \partial_t u_{im} \|_{L^2(\mathbb{R}^3)}^{3/2} \right) \\
\leq 2 \left(\sum_{i=1}^3 \| \partial_t u_{im} \|_{L^2(\mathbb{R}^3)} \right) \left(\sum_{i=1}^3 \| \nabla \partial_t u_{im} \|_{L^2(\mathbb{R}^3)} \right)^{3/4}
\]
then
\[
\partial_t \left(\sum_{i=1}^3 \| \partial_t u_{im} \|_{L^2(\mathbb{R}^3)}^2 \right) + 2 \left(\sum_{i=1}^3 \| \nabla \partial_t u_{im} \|_{L^2(\mathbb{R}^3)}^2 \right) \\
\leq 2^2 \left(\sum_{i=1}^3 \| \partial_t u_{im} \|_{L^2(\mathbb{R}^3)} \right)^{1/4} \left(\sum_{i=1}^3 \| \nabla \partial_t u_{im} \|_{L^2(\mathbb{R}^3)} \right)^{3/4} \left(\sum_{i=1}^3 \| \nabla u_{im} \|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} \\
\leq 3^3 \left(\sum_{i=1}^3 \| \partial_t u_{im} \|_{L^2(\mathbb{R}^3)} \right) \left(\sum_{i=1}^3 \| \nabla u_{im} \|_{L^2(\mathbb{R}^3)} \right)^2 + \left(\sum_{i=1}^3 \| \nabla \partial_t u_{im} \|_{L^2(\mathbb{R}^3)} \right)
\]
it follows that
\[
\partial_t \left(\sum_{i=1}^3 \| \partial_t u_{im} \|_{L^2(\mathbb{R}^3)}^2 \right) + \left(\sum_{i=1}^3 \| \nabla \partial_t u_{im} \|_{L^2(\mathbb{R}^3)}^2 \right) \leq \phi_m(t) \left(\sum_{i=1}^3 \| \partial_t u_{im} \|_{L^2(\mathbb{R}^3)}^2 \right)
\]
where
\[
\phi_m(t) = 1 + 3^3 \left(\sum_{i=1}^3 \| \nabla u_{im} \|_{L^2(\mathbb{R}^3)} \right)^2
\]

Introducing a stream function: \(\psi = (\psi_2, \psi_2, \psi_3) \),
\[
\text{curl} \psi = (\partial_{x_2} \psi_3 - \partial_{x_3} \psi_2, \ \partial_{x_3} \psi_1 - \partial_{x_1} \psi_3, \ \partial_{x_1} \psi_2 - \partial_{x_2} \psi_1)
\]
According to \(\omega = \text{curl} u, \ u = \text{curl} \psi \) and \(\text{div} \psi = 0 \), we have
\[
\text{curl} \text{curl} \psi = -\Delta \psi = \omega, \ \ -\Delta \text{curl} \psi = \text{curl} \omega
\]
Hence, \(-\Delta u = \text{curl} \omega\). Then \((-\Delta u, u) = (\text{curl} \omega, u)\), where

\[
(-\Delta u, \theta_r u) = \sum_{i=1}^{3} (-\Delta u_i, \theta_r u_i) = \sum_{i=1}^{3} (\nabla u_i, \theta_r \nabla u_i) + \sum_{i=1}^{3} (\nabla u_i, u_i \nabla \theta_r)
\]

let \(r \to +\infty\) we get

\[
(-\Delta u, u) = \sum_{i=1}^{3} (\nabla u_i, \nabla u_i) = \sum_{i=1}^{3} \|\nabla u_i\|_{L^2(\mathbb{R}^3)}^2
\]

In addition,

\[
(\text{curl} \omega, \theta_r u) = (\partial_{x_3} \omega_3 - \partial_{x_2} \omega_2, \theta_r u_1) + (\partial_{x_3} \omega_1 - \partial_{x_1} \omega_3, \theta_r u_2) + (\partial_{x_1} \omega_2 - \partial_{x_2} \omega_1, \theta_r u_3)
\]

\[
= -(\omega_3, \theta_r \partial_{x_2} u_1) + (\omega_2, \theta_r \partial_{x_3} u_1) - (\omega_1, \theta_r \partial_{x_3} u_2) + (\omega_3, \theta_r \partial_{x_1} u_3) - (\omega_2, \theta_r \partial_{x_2} u_3) - (\omega_1, \theta_r \partial_{x_2} u_2) + (\omega_3, \theta_r \partial_{x_1} u_2) - (\omega_2, \theta_r \partial_{x_1} u_3) + (\omega_1, \theta_r \partial_{x_1} u_3)
\]

let \(r \to +\infty\) we get

\[
(\text{curl} \omega, u) = -(\omega_3, \partial_{x_2} u_1) + (\omega_2, \partial_{x_3} u_1) - (\omega_1, \partial_{x_3} u_2) + (\omega_3, \partial_{x_1} u_2)
\]

\[
= (\omega_1, \partial_{x_2} u_3 - \partial_{x_3} u_2) + (\omega_2, \partial_{x_2} u_1 - \partial_{x_1} u_3) + (\omega_3, \partial_{x_1} u_2 - \partial_{x_2} u_1)
\]

\[
= (\omega, \text{curl} u) = (\omega, \omega) = \sum_{i=1}^{3} \|\omega_i\|_{L^2(\mathbb{R}^3)}^2
\]

Hence

\[
\left(\sum_{i=1}^{3} \|\nabla u_i\|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2} = \left(\sum_{i=1}^{3} \|\omega_i\|_{L^2(\mathbb{R}^3)}^2 \right)^{1/2}
\]

it follows that

\[
\phi_m(t) = 1 + 3^3 \left(\sum_{i=1}^{3} \|\omega_{im}\|_{L^2(\mathbb{R}^3)}^2 \right)^2 < +\infty
\]

By the Gronwall inequality,

\[
\frac{d}{dt} \left(\sum_{i=1}^{3} \|\partial_t u_{im}\|_{L^2(\mathbb{R}^3)}^2 \right) \exp \left(- \int_0^t \phi_m(s) ds \right) \leq 0
\]

32
whence
\[
\sup_{t \in (0, T)} \left(\sum_{i=1}^{3} \| \partial_t u_{im}(t) \|^2_{L^2(\mathbb{R}^3)} \right) \leq \exp \left(\int_0^T \phi_m(s) \, ds \right) \left(\sum_{i=1}^{3} \| \partial_t u_{im}(0) \|^2_{L^2(\mathbb{R}^3)} \right)
\]

Therefore
\[
\partial_t u_{im} \in L^\infty(0, T; H) \cap L^\infty(0, T; V), \quad i = 1, 2, 3
\]

Finally we write (1) in the form
\[
\sum_{i=1}^{3} (-\Delta (\theta_r u_i), v_i) = \sum_{i=1}^{3} (-\theta_r \partial_t u_i - \theta_r (u \cdot \nabla) u_i + g_i, v_i), \quad v_i \in V
\]

where
\[
g_i = -u_i \Delta \theta_r - 2 (\nabla \theta_r, \nabla u_i) + p \partial_{x_i} \theta_r
\]

That is,
\[
\sum_{i=1}^{3} (\nabla (\theta_r u_i), \nabla v_i) = \sum_{i=1}^{3} (-\theta_r \partial_t u_i - \theta_r (u \cdot \nabla) u_i + g_i, v_i)
\]

Since
\[
\partial_t u_i \in L^\infty(0, T; H), \quad (u \cdot \nabla) u_i \in L^\infty(0, T; H)
\]

Similar to the Theorem 3.8 in Chapter 3 of [4], and let \(r \to +\infty \), we obtain
\[
u_i \in L^\infty(0, T; H^2(\mathbb{R}^3)), \quad i = 1, 2, 3
\]

Remark 1. Noting that \((-\Delta u, v) = (-\partial_t u - (u \cdot \nabla) u, v)\). Since \(\partial_t u \) and \((u \cdot \nabla) u\) are of some degree of continuity, then \(u \) can reach a higher degree of continuity, based upon the smoothing effect of inverse elliptic operator \(\Delta^{-1} \).

By repeated application of this process one can prove that the solution \(u \) is in \(C^\infty((0, T) \times \mathbb{R}^3) \).

Remark 2. Based on problems separated and potential theory of fluid flow, we may keep the same result for the general initial-boundary value problems of 3D Navier-Stokes equation under the assumptions of regularity on the boundary and data.
References

[1] R. A. Adams, and J. J. F. Fournier, *Sobolev Spaces*, Second ed., Pure and Applied Mathematics, Elsevier, Oxford, (2003);

[2] O.A.Ladyženskaya, V.A.Solonnikov, and N.N.Ural’ceva, *Linear and Quasi-linear Equations of Parabolic Type*, American Mathematical Society, (1988);

[3] Qun Lin, and Lung-an Ying, *Interval Vortex Methods*, Numerical Methods for PDEs, 30: pp.1368-1396, (2014);

[4] R. Temam, *Navier-Stokes equations Theory and numerical analysis*, Reprint of the 1984, AMS Chelsea Publishing, Providence, R.I., (2001).