Short-Baseline Active-Sterile Neutrino Oscillations?

Carlo Giunti
INFN, Sezione di Torino,
and
Dipartimento di Fisica Teorica, Universit`a di Torino,
Via P. Giuria 1, I–10125 Torino, Italy

Marco Laveder
Dipartimento di Fisica “G. Galilei”, Universit`a di Padova,
and
INFN, Sezione di Padova,
Via F. Marzolo 8, I–35131 Padova, Italy

Abstract

We suggest the possibility that the anomalies observed in the LSND experiment and the Gallium radioactive source experiments may be due to neutrino oscillations generated by a large squared-mass difference of about $20 - 30 \text{eV}^2$. We consider the simplest 3+1 four-neutrino scheme that can accommodate also the observed solar and atmospheric neutrino oscillations. We show that, in this framework, the disappearance of $\bar{\nu}_e$ and $\bar{\nu}_\mu$ in short-baseline neutrino oscillation experiments is mainly due to active-sterile transitions. The implications of the first MiniBooNE results, appeared after the completion of this paper, are discussed in an addendum.

Neutrino oscillation experiments have shown that neutrinos are massive and mixed particles (see the reviews in Refs. [1, 2, 3, 4, 5, 6, 7, 8]). The observation of $\nu_e \rightarrow \nu_{\mu,\tau}$ oscillations with a squared-mass difference

$$\Delta m^2_{\text{SOL}} \simeq 8 \times 10^{-5} \text{eV}^2$$ \hspace{1cm} (1)

in solar and reactor neutrino experiments and the observation of $\nu_\mu \rightarrow \nu_\tau$ oscillations with a squared-mass difference

$$\Delta m^2_{\text{ATM}} \simeq 2.5 \times 10^{-3} \text{eV}^2$$ \hspace{1cm} (2)

in atmospheric and accelerator neutrino experiments can be accommodated in the minimal framework of three-neutrino mixing, in which the three active flavor neutrinos ν_e, ν_μ, and ν_τ are superpositions of three massive neutrinos $\nu_1, \nu_2, \text{and } \nu_3$. This three-neutrino mixing framework cannot explain through neutrino oscillations the LSND $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ signal [9, 10, 11, 12], which requires a squared-mass difference

$$\Delta m^2_{\text{LSND}} \gtrsim 10^{-1} \text{eV}^2.$$ \hspace{1cm} (3)
Another anomaly observed in neutrino experiments is the disappearance of ν_e’s in the Gallium radioactive source experiments GALLEX [13, 14] and SAGE [15, 16, 17]. These experiments are tests of solar neutrino detectors in which intense artificial 51Cr and 37Ar neutrino sources were placed near or inside the detectors. Both 51Cr and 37Ar decay through electron capture ($e^- + ^{51}$Cr $\rightarrow ^{51}$V $+ \nu_e$ and $e^- + ^{37}$Ar $\rightarrow ^{37}$Cl $+ \nu_e$). The energies of the emitted neutrinos are, respectively, $E = 752.73 \pm 0.24$ keV and $E = 813.5 \pm 0.3$ keV [18]. The neutrinos emitted by the artificial sources were detected through the same reaction used for the detection of solar neutrinos [19]:

$$\nu_e + ^{71}$Ga $\rightarrow ^{71}$Ge $+ e^-$, \hspace{1cm} (4)$$

which has the low neutrino energy threshold $E_{th} = 0.233$ MeV. The weighted average value of the ratio R of measured and predicted 71Ge production rates is [17]

$$R = 0.88 \pm 0.05. \hspace{1cm} (5)$$

In Ref. [17] it has been suggested that this anomaly may be due to an overestimate of the theoretical cross section of the Gallium detection process in Eq. (4). However, a Gallium cross section rescaled by the factor in Eq. (5) leads to a significant deterioration of the fit of solar neutrino data [20].

In this paper we consider the possibility that the anomaly observed in Gallium radioactive source experiments is due to neutrino oscillations1.

Since the neutrino path in the Gallium radioactive source experiments was of the order of 10 cm, an explanation of the observed disappearance of ν_e’s through neutrino oscillations requires a large squared-mass difference Δm^2_{Ga}. In fact, requiring an oscillation length $L_{osc}^{Ga} = 4\pi E/|\Delta m^2_{Ga}|$ smaller than about 10 cm, we obtain

$$\Delta m^2_{Ga} \gtrsim 20 \text{eV}^2. \hspace{1cm} (6)$$

Assuming CPT invariance, the survival probability of neutrinos and antineutrinos are equal. It follows that the disappearance of electron neutrinos at the level indicated by Gallium radioactive source experiments appears to be in contradiction with the results of reactor neutrino oscillation experiments (see the review in Ref. [22]), which did not observe any disappearance of electron antineutrinos with an average energy of about 4 MeV at distances between about 10 and 100 m from the reactor source. Let us notice, however, that the oscillation length of reactor neutrinos implied by Eq. (6) is much shorter than 10 m:

$$L_{osc}^{reactors} \lesssim 40 \text{cm}. \hspace{1cm} (7)$$

Hence, in reactor neutrino experiments the oscillations due to Δm^2_{Ga} are seen as an energy-independent suppression of the electron antineutrino flux by the factor in Eq. (5). A measurement of such a suppression requires a precise calculation of the absolute electron antineutrino flux produced in a reactor2. Since this calculation is rather difficult, it

1 The results of the first GALLEX artificial 51Cr source experiment [13] has been used in Ref. [21] in order to constrain the neutrino mixing parameters.

2 Information on $\bar{\nu}_e$ disappearance which is independent of the absolute flux calculation can be obtained through the measurement of the energy spectrum (assuming it to be known with small uncertainties) or the comparison between rates measured with different source-detector distances. In these cases, reactor neutrino experiments are not sensitive to oscillations generated by a squared-mass difference $\Delta m^2 \gtrsim 2 \text{eV}^2$, as one can see, for example, from Fig. 13a of Ref. [22].
is possible that its systematic uncertainties have been underestimated. Therefore, a $\bar{\nu}_e$ disappearance in reactor neutrino oscillation experiments at the level indicated by Eq. (5) with the oscillation length in Eq. (7) is not excluded with absolute certainty.

In this paper, we consider the possibility that both the LSND and Gallium anomalies are due to neutrino oscillations, through the same large squared-mass difference

$$\Delta m^2_{\text{LSND+Ga}} \gtrsim 20 \text{eV}^2.$$ \hspace{1cm} (8)

We consider, for simplicity, a four-neutrino mixing scheme, in which the three active flavor neutrinos ν_e, ν_μ, ν_τ, and one sterile neutrino ν_s are superpositions of four massive neutrinos ν_1, ν_2, ν_3, and ν_4. This is the simplest scheme in which there are three independent squared-mass differences which can accommodate the hierarchy

$$\Delta m^2_{\text{SOL}} \ll \Delta m^2_{\text{ATM}} \ll \Delta m^2_{\text{LSND+Ga}}.$$ \hspace{1cm} (9)

Four-neutrino mixing have already been considered in many papers as the explanation of the LSND anomaly (see the reviews in Refs. [3, 4, 6, 8]). Here, we further constrain the allowed values of the large squared-mass difference and the mixing of the electron neutrino by requiring that $\Delta m^2_{\text{LSND+Ga}}$ is responsible of both the LSND and Gallium anomalies.

Since the so-called 2+2 schemes are disfavored by the data [24, 25, 26, 27, 28, 29, 30, 6], we consider a 3+1 scheme, in which there is a group of three neutrino masses which is separated from an isolated neutrino mass by the LSND + Ga mass splitting. In this case, we have

$$\Delta m^2_{\text{SOL}} = \Delta m^2_{31}, \quad \Delta m^2_{\text{ATM}} = |\Delta m^2_{41}| \simeq |\Delta m^2_{32}|,$$

$$\Delta m^2_{\text{LSND+Ga}} = |\Delta m^2_{41}| \simeq |\Delta m^2_{42}| \simeq |\Delta m^2_{43}|,$$ \hspace{1cm} (10, 11)

where $\Delta m^2_{kj} \equiv m_k^2 - m_j^2$. Furthermore, we take into account the upper limit

$$m_\beta < 2.3 \text{eV} \quad (95\% \text{CL}),$$ \hspace{1cm} (12)

obtained in the Mainz [31] and Troitzk [32] tritium β-decay experiments on the effective electron neutrino mass [33, 34, 35]

$$m_\beta^2 = \sum_{k=1}^4 |U_{ek}|^2 m_k^2.$$ \hspace{1cm} (13)

Since the three active flavor neutrinos must have large mixings with ν_1, ν_2, and ν_3 in order to accommodate the observed oscillations due to Δm^2_{SOL} and Δm^2_{ATM}, the only scheme allowed is the one in which ν_1, ν_2, and ν_3 are light, with masses

$$m_1, m_2, m_3 \lesssim 2.3 \text{eV},$$ \hspace{1cm} (14)

and ν_4 is heavy, with mass

$$m_4 \simeq \sqrt{\Delta m^2_{\text{LSND+Ga}}} \gtrsim 4.5 \text{eV}.$$ \hspace{1cm} (15)

In four-neutrino schemes, the average ν_e survival probability in the Gallium experiments is given by

$$\langle P_{\nu_e \rightarrow \nu_e} \rangle = 1 - \frac{1}{2} \sin^2 2\vartheta_{\text{Ga}},$$ \hspace{1cm} (16)
where ϑ_{Ga} is an effective mixing angle. Interpreting R in Eq. (5) as $\langle P_{\nu_e \rightarrow \nu_e} \rangle$, we obtain

$$\sin^2 2\vartheta_{\text{Ga}} = 0.24 \pm 0.10. \quad (17)$$

In the 3+1 mixing schemes (see the review in Ref. [3]), the survival and transition probabilities in short-baseline neutrino oscillation experiments have the two-neutrino mixing forms (for $\alpha, \beta = e, \mu, \tau, s$)

$$P_{\nu_{\alpha} \rightarrow \nu_{\alpha}} = P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha}} = 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m^2_{41} L}{4E} \right), \quad (18)$$

$$P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}} = P_{\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}} = \sin^2 2\vartheta_{\alpha\beta} \sin^2 \left(\frac{\Delta m^2_{41} L}{4E} \right) \quad (\alpha \neq \beta), \quad (19)$$

where L is the source–detector distance and the effective mixing angles are given by

$$\sin^2 2\vartheta_{\alpha\alpha} = 4 |U_{\alpha 4}|^2 \left(1 - |U_{\alpha 4}|^2 \right), \quad (20)$$

$$\sin^2 2\vartheta_{\alpha\beta} = \sin^2 2\vartheta_{\beta\alpha} = 4 |U_{\alpha 4}|^2 |U_{\beta 4}|^2 \quad (\alpha \neq \beta). \quad (21)$$

Therefore, we have

$$\sin^2 2\vartheta_{\text{Ga}} = \sin^2 2\vartheta_{ee} = 4 |U_{e 4}|^2 \left(1 - |U_{e 4}|^2 \right). \quad (22)$$

Taking into account that $|U_{e 4}|^2$ is small, in order to accommodate the observed oscillations due to Δm^2_{SOL} and Δm^2_{ATM}, we obtain, from Eqs. (17) and (22),

$$|U_{e 4}|^2 \simeq \frac{1}{4} \sin^2 2\vartheta_{\text{Ga}} \simeq 0.06 \pm 0.03. \quad (23)$$

In spite of the relatively heavy mass of ν_4 in Eq. (15), the mixing of ν_e with ν_4 is not a problem for the bound in Eq. (12) on the effective electron neutrino mass in β-decay experiments. In fact, the contribution of ν_4 to m_β is

$$m_\beta(\nu_4) = |U_{e 4}| m_4 \simeq 1.1 \pm 0.3 \text{eV} \left(m_4 \frac{4.5 \text{eV}}{4.5 \text{eV}} \right). \quad (24)$$

Therefore, the bound in Eq. (12) implies

$$m_4 \lesssim 10 \text{eV}. \quad (25)$$

Taking into account also Eq. (8), we obtain the allowed range

$$20 \text{eV}^2 \lesssim \Delta m^2_{\text{LSND+Ga}} \lesssim 100 \text{eV}^2. \quad (26)$$

Let us now consider the LSND $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ signal, which has been observed with the probability [12]

$$P_{\bar{\nu}_\mu \rightarrow \bar{\nu}_e} = (2.64 \pm 0.67 \pm 0.45) \times 10^{-3}. \quad (27)$$

Since we are considering large values of $\Delta m^2_{\text{LSND+Ga}}$ in the interval in Eq. (26), the transition probability measured in the LSND experiment is the averaged probability

$$\langle P_{\bar{\nu}_\mu \rightarrow \bar{\nu}_e} \rangle = \frac{1}{2} \sin^2 2\vartheta_{\text{LSND}}, \quad (28)$$
with the effective mixing angle given by (see Eq. (21))

$$\sin^2 2\vartheta_{\text{LSND}} = \sin^2 2\vartheta_{e\mu} = 4 |U_{e4}|^2 |U_{\mu4}|^2.$$ \hspace{1cm} (29)

Thus, from Eq. (27), we obtain

$$\sin^2 2\vartheta_{\text{LSND}} \simeq (5.3 \pm 1.6) \times 10^{-3}. $$ \hspace{1cm} (30)

Short-baseline ($^{-}\nu_{\mu}$) to ($^{-}\nu_{e}$) oscillations generated by a large squared-mass difference have been recently searched, with negative results, in the CCFR [36], KARMEN [37], NuTeV [38], and NOMAD [39] experiments. From Fig. 8 of Ref. [39], one can see that the range of $\sin^2 2\vartheta_{\text{LSND}}$ in Eq. (30) is compatible with the results of the CCFR, KARMEN, and NuTeV experiments if the allowed interval of $\Delta m^2_{\text{LSND+Ga}}$ in Eq. (26) is restricted to

$$20 \text{ eV}^2 \lesssim \Delta m^2_{\text{LSND+Ga}} \lesssim 30 \text{ eV}^2. $$ \hspace{1cm} (31)

In fact, although a combined analysis of all the relevant neutrino oscillations data yields a poor goodness of fit [41, 42, 43, 44, 29, 30, 6], if the fit is accepted, there is an allowed region in the $\sin^2 2\vartheta_{\text{LSND}}$ range in Eq. (30) and the determination of $|U_{e4}|^2$ in Eq. (23) from the Gallium anomaly allow us to determine the allowed range of $|U_{\mu4}|^2$: from Eq. (29),

$$|U_{\mu4}|^2 = \sin^2 2\vartheta_{\text{LSND}} \simeq 0.02 \pm 0.01. $$ \hspace{1cm} (32)

This small value of $|U_{\mu4}|^2$ implies that the effective mixing angle in short-baseline ν_{μ} disappearance experiments is given by

$$\sin^2 2\vartheta_{\mu\mu} \simeq 4 |U_{\mu4}|^2 \simeq 0.08 \pm 0.04. $$ \hspace{1cm} (33)

This value of $\sin^2 2\vartheta_{\mu\mu}$ is compatible with the exclusion curves of the CDHSW [47] and CCFR $\nu_{\mu} \to \nu_{\mu}$ oscillation experiments for $\Delta m^2_{\text{LSND+Ga}}$ in the interval in Eq. (31). It is interesting to notice that the results of the CDHSW ν_{μ} disappearance experiment favor a $\Delta m^2_{\text{LSND+Ga}}$ in the range in Eq. (31), as remarked at the end of the appendix of Ref. [40].

Let us now consider the experimental bounds on $\nu_{\mu} \to \nu_{\tau}$ and $\nu_{e} \to \nu_{\tau}$ transitions obtained in short-baseline experiments (CHORUS [49], NOMAD [39] and CCFR [50, 51]). From Fig. 14 of Ref. [52], one can see that, for $\Delta m^2_{\text{LSND+Ga}}$ in the range in Eq. (31), the effective mixing angles

$$\sin^2 2\vartheta_{e\tau} = 4 |U_{e4}|^2 |U_{\tau4}|^2, \quad \sin^2 2\vartheta_{\mu\tau} = 4 |U_{\mu4}|^2 |U_{\tau4}|^2 $$ \hspace{1cm} (34)

3 The fit can be improved by introducing a second sterile neutrino [40], in a so-called 3+2 mixing scheme. However, it seems to us that it is highly unlikely that the two large squared-mass differences happen to have just the right values in the small regions which are not excluded by the neutrino oscillation data.
are bounded by
\[\sin^2 2\vartheta_{e\tau} \lesssim 1 \times 10^{-1}, \quad \sin^2 2\vartheta_{\mu\tau} \lesssim 2 \times 10^{-3}. \] (35)
Taking into account the allowed ranges of \(|U_{e4}|^2 \) and \(|U_{\mu4}|^2 \) in Eqs. (23) and (32), the limit on \(\sin^2 2\vartheta_{e\tau} \) does not give a significant bound, whereas the limit on \(\sin^2 2\vartheta_{\mu\tau} \) yields
\[|U_{\tau4}|^2 = \frac{\sin^2 2\vartheta_{\mu\tau}}{4 |U_{\mu4}|^2} \simeq \frac{\sin^2 2\vartheta_{\mu\tau} \sin^2 2\vartheta_{Ga}}{4 \sin^2 2\vartheta_{LSND}} \lesssim 0.05. \] (36)
Therefore, also \(|U_{\tau4}|^2 \) is constrained to be small. It follows that
\[|U_{s4}|^2 = 1 - (|U_{e4}|^2 + |U_{\mu4}|^2 + |U_{\tau4}|^2) \gtrsim 0.8, \] (37)
and the \(\nu_e \) disappearance indicated by Gallium radioactive source experiments is mainly due to \(\nu_e \rightarrow \nu_s \) transitions with an effective mixing angle given by
\[\sin^2 2\vartheta_{es} = 4 |U_{s4}|^2 |U_{s4}|^2 \simeq 0.2 \pm 0.1. \] (38)
These transitions are compatible with the CCFR bound on \(\nu_e \rightarrow \nu_s \) transitions (Fig. 4 of Ref. [51]) for the effective squared mass difference \(\Delta m^2_{LSND+Ga} \) confined in the range in Eq. (31).
The \(\nu_e \rightarrow \nu_s \) transitions due to \(\Delta m^2_{LSND+Ga} \) affect also solar neutrino experiments. Since the mixing of \(\nu_s \) with \(\nu_1, \nu_2, \) and \(\nu_3 \) is small, in practice solar neutrino experiments should observe an average probability of disappearance of electron neutrinos into sterile neutrinos of the same value as the ratio \(R \) in Eq. (3) measured the Gallium radioactive source experiments:
\[\langle P_{\nu_e \rightarrow \nu_s} \rangle \simeq \frac{1}{2} \sin^2 2\vartheta_{es} \simeq 0.10 \pm 0.05. \] (39)
It is interesting to notice that a comparison of the SNO Neutral-Current (NC) data with the Standard Solar Model (SSM) prediction is compatible with \(\nu_e \rightarrow \nu_s \) transitions at the level indicated in Eq. (39), although no evidence can be claimed, because of the large theoretical uncertainty of the SSM prediction. In fact, the equivalent flux of \(^8B \) electron neutrinos measured in SNO through the NC reaction \(\nu + d \rightarrow p + n + \nu \), which is equally sensitive to \(\nu_e, \nu_\mu, \) and \(\nu_\tau \), is [53]
\[\Phi^{SNO}_{NC} = (4.94 \pm 0.21^{+0.38}_{-0.34}) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}. \] (40)
This value can be compared with the BS05(GS98) [51] and TC04 [53] SSM values
\[\Phi^{BS05}_S = (5.69 \pm 0.98) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}, \] (41)
\[\Phi^{TC04}_S = (5.31 \pm 0.6) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}, \] (42)
leading to
\[\langle P_{\nu_e \rightarrow \nu_s} \rangle_{SNO+BS05} = 1 - \frac{\Phi^{SNO}_{NC}}{\Phi^{BS05}_S} = 0.13^{+0.15}_{-0.17}, \] (43)
\footnote{The flux in Eq. (40) has been measured in the phase II of the SNO experiment (also called “salt phase”), in which about 2 tons of NaCl have been added to the heavy water in order to improve the efficiency and precision of the NC measurement [53].}
\[
\langle P_{\nu e \rightarrow \nu s}\rangle_{\text{SNO+TC04}} = 1 - \frac{\Phi_{\text{SNO}}^{\text{NC}}}{\Phi_{\text{TC04}}^{\text{B}}} = 0.07 \pm 0.13 .
\] (44)

One can see that, although the uncertainties are large, the tendency of the ratios in Eqs. (43) and (44) is towards an agreement with the average probability of \(\nu_e \rightarrow \nu_s\) transitions in Eq. (39).

The disappearance of \(\nu_e\) due to \(\nu_e \rightarrow \nu_s\) transitions could affect the search for \(\nu_{\mu} \rightarrow \nu_e\) transitions in the MiniBooNE\(^5\) experiment [56, 57, 58], which has been designed to check the LSND anomaly. This is due to the fact that the MiniBooNE \(\nu_{\mu}\) beam has a natural \(\nu_e\) contamination of about \(5 \times 10^{-3}\). Since the MiniBooNE detector is located at a distance of 541 m from the target and the energy spectrum of the \(\nu_{\mu}\) beam ranges from about 0.2 GeV to about 3 GeV, with a peak at about 0.6 GeV, it is convenient to write the oscillation length due to \(\Delta m^{2}_{\text{LSND+Ga}}\) as

\[
L_{\text{osc}} \simeq 120 \text{ m} \left(\frac{E}{\text{GeV}} \right) \left(\frac{\Delta m^{2}_{\text{LSND+Ga}}}{20 \text{ eV}^2} \right)^{-1} .
\] (45)

Hence, a \(\Delta m^{2}_{\text{LSND+Ga}}\) in the range in Eq. (31) implies that the oscillation length is much shorter than the MiniBooNE source-detector distance and the flavor transitions are practically constant over the energy spectrum. The effect on the \(\nu_{e}\) spectrum at the detector is the superposition of two opposite and competitive contributions: a \(\nu_{e}\) disappearance due to \(\nu_{e} \rightarrow \nu_s\) oscillations with a relatively large mixing (see Eq. (38)) and a \(\nu_{e}\) appearance due to \(\nu_{\mu} \rightarrow \nu_e\) with a relative small mixing (see Eq. (30)). Since the natural contamination of \(\nu_{e}\) in the \(\nu_{\mu}\) beam is at the percent level, the two opposite effects on the \(\nu_{e}\) spectrum are competitive.

The hypothesis of \(\nu_{\mu} \rightarrow \nu_e\) transitions driven by \(\Delta m^{2}_{\text{LSND+Ga}}\) may soon be tested at the T2K beam line (starting from 2009) with the near off-axis detector located at a distance of 280 m from the target. The neutrino energy in T2K is about the same as in MiniBooNE. With a systematic error on the electron neutrino flux \(\sigma(\text{syst}) \sim 5\%\) the 90\% C.L. sensitivity to \(\sin^2 2\theta_{\mu e}\) is about \(3 \times 10^{-3}\).

The scenario under consideration implies also short-baseline \(\nu_{\mu} \rightarrow \nu_s\) oscillations generated by \(\Delta m^{2}_{\text{LSND+Ga}}\) with the effective mixing angle

\[
\sin^2 2\theta_{\mu s} = 4 |U_{\mu 4}|^2 |U_{s 4}|^2 \simeq 0.08 \pm 0.04 .
\] (46)

Since this value of \(\sin^2 2\theta_{\mu s}\) practically coincides with the value of \(\sin^2 2\theta_{\mu \mu}\) in Eq. (33) and is much larger than the values of \(\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{\text{SND}}\) in Eq. (30) and \(\sin^2 2\theta_{\mu \tau}\) in Eq. (35), the \(\nu_{\mu} \rightarrow \nu_s\) channel is the dominant cause of short-baseline \((\bar{\nu})_{\mu}\) disappearance.

Optimal future experiments which could observe the large disappearance of \((\nu)_{e}\) and \((\bar{\nu})_{\mu}\) due to active–sterile transitions and the \((\bar{\nu})_{\mu} \rightleftharpoons (\nu)_{e}\) transitions due to \(\Delta m^{2}_{\text{LSND+Ga}}\) are: Beta-Beam experiments [59] with a pure \(\nu_{e}\) beam from nuclear decay (see the reviews in Refs. [60, 61]); Neutrino Factory experiments with a beam composed of \(\nu_e\) and \(\bar{\nu}_{\mu}\), from \(\mu^+\) decay, or \(\bar{\nu}_{\tau}\) and \(\nu_{\mu}\), from \(\mu^-\) decay (see the review in Ref. [62, 60]); experiments with a \(\bar{\nu}_e\) beam produced in recoless nuclear decay and detected in recoless nuclear antineutrino capture [63].

\(^5\) The implications of the first MiniBooNE results, appeared after the completion of this paper, are discussed in the addendum at page 8.
In conclusion, in this paper we have suggested the possibility that the anomalies observed in the Gallium radioactive source experiments and the LSND experiment may be due to neutrino oscillations generated by the same large squared-mass difference $\Delta m^2_{LSND+Ga}$. We have shown that, in the framework of the simplest 3+1 four-neutrino scheme that can accommodate also the $(\nu_e \rightarrow \nu_{\mu,\tau})$ oscillations observed in solar and reactor experiments and the $(\nu_\mu \rightarrow \nu_e)$ oscillations observed in atmospheric and accelerator experiments, the short-baseline disappearances of ν_e and ν_μ are due mainly to $\nu_e \rightarrow \nu_s$ and $\nu_\mu \rightarrow \nu_s$ transitions, respectively. We have noticed that in the MiniBooNE experiment flavor transitions are effectively energy-independent and the disappearance of ν_e due to $\nu_e \rightarrow \nu_s$ transitions could affect the search for $\nu_\mu \rightarrow \nu_e$ transitions, because of the natural ν_e contamination of the beam. Finally, we have remarked that the scenario under consideration could be tested in future experiments with pure ν_e and ν_μ beams, as Beta-Beam and Neutrino Factory experiments.

Addendum: First MiniBooNE Results

After the completion of this paper, the MiniBooNE collaboration released their first results concerning the search for $\nu_\mu \rightarrow \nu_e$ transitions generated by Δm^2_{LSND} \[64\]. Since no significant excess of quasi-elastic charged-current ν_e events was observed above the calculated background for reconstructed neutrino energy $E_{QE} > 475$ MeV, the two-neutrino $\nu_\mu \rightarrow \nu_e$ transitions generated by Δm^2_{LSND} are disfavored by the MiniBooNE data at 98% C.L. \[64\].

In the framework of the 3+1 four-neutrino scheme considered in this paper, the absence of a signal due to $\nu_\mu \rightarrow \nu_e$ appearance may be, at least partially, explained by a suppression of the background due to $\nu_e \rightarrow \nu_s$ and $\nu_\mu \rightarrow \nu_s$ transitions, as remarked after Eq. (45). In fact, the estimated number of ν_e events is

$$N_{\nu_e} = P_{\nu_e \rightarrow \nu_e} N^B_{\nu_e} + P_{\nu_\mu \rightarrow \nu_e} N^B_{\nu_\mu} + P_{\nu_\mu \rightarrow \nu_\mu} N_{\nu_\mu},$$

(47)

where $N^B_{\nu_e}$ and $N^B_{\nu_\mu}$ are, respectively, the estimated numbers of ν_e-induced and ν_μ-induced background events, and N_{ν_μ} is the estimated number of N_{ν_μ} in the case of full $\nu_\mu \rightarrow \nu_e$ transmutation. In short-baseline experiments $P_{\nu_\mu \rightarrow \nu_e} \simeq 1 - P_{\nu_e \rightarrow \nu_s}$, as remarked after Eq. (37), and $P_{\nu_\mu \rightarrow \nu_\mu} \simeq 1 - P_{\nu_e \rightarrow \nu_s}$, as remarked after Eq. (46). Moreover, the oscillation probabilities are practically constant in the MiniBooNE energy spectrum, as explained after Eq. (45).

From Table I of Ref. \[64\], adding the uncertainties in quadrature, we obtain

$$N^B_{\nu_e} = 229 \pm 32.5 \quad \text{and} \quad N^B_{\nu_\mu} = 129 \pm 17.0,$$

(48)

for E_{QE}^ν in the range $475 \text{ MeV} < E_{QE}^\nu < 1250 \text{ GeV}$. From the public information kindly given by the MiniBooNE collaboration on the Web\[6\], we obtain

$$N_{\nu_\mu} = 62851.2 \pm 250.7.$$

(49)

\[6\] http://www-boone.fnal.gov/for_physics/aps107datarelease/
From Eqs. (5), (33) and (27), we have

\[P_{\nu_e \rightarrow \nu_e} = R = 0.88 \pm 0.05, \]
\[P_{\nu_\mu \rightarrow \nu_\mu} = 1 - \frac{1}{2} \sin^2 2\vartheta_{\mu\mu} = 0.96 \pm 0.02, \]
\[P_{\nu_\mu \rightarrow \nu_e} = P_{\nu_\mu \rightarrow \nu_e}^{\text{LSND}} = (2.64 \pm 0.81) \times 10^{-3}. \]

(50)

(51)

(52)

Then, we obtain

\[P_{\nu_e \rightarrow \nu_e} N_{\nu_e}^B = 201.5 \pm 30.8, \quad P_{\nu_\mu \rightarrow \nu_\mu} N_{\nu_\mu}^B = 123.8 \pm 16.5, \quad P_{\nu_\mu \rightarrow \nu_e} N_{\nu_\mu} = 165.9 \pm 50.9. \]

(53)

Comparing with \(N_{\nu_e}^B \) in Eq. (48), one can see that the estimated amount of \(\nu_e \)-induced background is reduced by about 28 events as an effect of \(\nu_e \rightarrow \nu_\mu \) transitions. This reduction can compensate only partially the larger appearance signal due to \(\nu_\mu \rightarrow \nu_e \) transitions.

The estimated and measured numbers of \(\nu_e \) events are, respectively,

\[N_{\nu_e} = 491.3 \pm 61.7 \quad \text{and} \quad N_{\nu_e}^{\text{MiniBooNE}} = 380 \pm 19.5, \]

(54)

Hence, the 3+1 four-neutrino scheme considered in this paper is compatible with the results of the MiniBooNE experiment within 1.7 standard deviations. Although our scheme is clearly not favored by the MiniBooNE data, we think that further measurements are necessary in order to assess its viability.

References

[1] S.M. Bilenky and B. Pontecorvo, Phys. Rep. 41 (1978) 225.

[2] S.M. Bilenky and S.T. Petcov, Rev. Mod. Phys. 59 (1987) 671.

[3] S.M. Bilenky, C. Giunti and W. Grimus, Prog. Part. Nucl. Phys. 43 (1999) 1, hep-ph/9812360

[4] M. Gonzalez-Garcia and Y. Nir, Rev. Mod. Phys. 75 (2003) 345, hep-ph/0202058

[5] C. Giunti and M. Laveder, (2003), hep-ph/0310238 In “Developments in Quantum Physics – 2004”, p. 197-254, edited by F. Columbus and V. Krasnoholovets, Nova Science Publishers, Inc.

[6] M. Maltoni et al., New J. Phys. 6 (2004) 122, hep-ph/0405172

[7] G.L. Fogli et al., Prog. Part. Nucl. Phys. 57 (2006) 742, hep-ph/0506083

[8] A. Strumia and F. Vissani, (2006), hep-ph/0606054

[9] LSND, C. Athanassopoulos et al., Phys. Rev. Lett. 75 (1995) 2650, nucl-ex/9504002

[10] LSND, C. Athanassopoulos et al., Phys. Rev. C54 (1996) 2685, nucl-ex/9605001
[11] LSND, C. Athanassopoulos et al., Phys. Rev. Lett. 77 (1996) 3082, nucl-ex/9605003
[12] LSND, A. Aguilar et al., Phys. Rev. D64 (2001) 112007, hep-ex/0104049
[13] GALLEX, P. Anselmann et al., Phys. Lett. B342 (1995) 440.
[14] GALLEX, W. Hampel et al., Phys. Lett. B420 (1998) 114.
[15] SAGE, J.N. Abdurashitov et al., Phys. Rev. Lett. 77 (1996) 4708.
[16] SAGE, J.N. Abdurashitov et al., Phys. Rev. C59 (1999) 2246, hep-ph/9803418
[17] SAGE, J.N. Abdurashitov et al., Phys. Rev. C73 (2006) 045805, nucl-ex/0512041.
[18] National Nuclear Data Center, NuDat: http://www.nndc.bnl.gov/nudat.
[19] V.A. Kuzmin, Sov. Phys. JETP 22 (1966) 1051.
[20] G. Fogli et al., (2006), hep-ph/0605186, 3rd International Workshop on NO-VE: Neutrino Oscillations in Venice: 50 Years after the Neutrino Experimental Discovery, Venice, Italy, 7–10 Feb 2006.
[21] J.N. Bahcall, P.I. Krastev and E. Lisi, Phys. Lett. B348 (1995) 121, hep-ph/9411414.
[22] C. Bemporad, G. Gratta and P. Vogel, Rev. Mod. Phys. 74 (2002) 297, hep-ph/0107277.
[23] CalTech-SIN-TUM, G. Zacek et al., Phys. Rev. D34 (1986) 2621.
[24] C. Giunti, M.C. Gonzalez-Garcia and C. Pena-Garay, Phys. Rev. D62 (2000) 013005, hep-ph/0001101.
[25] G.L. Fogli, E. Lisi and A. Marrone, Phys. Rev. D63 (2001) 053008, hep-ph/0009299.
[26] O.L.G. Peres and A.Y. Smirnov, Nucl. Phys. B599 (2001) 3, hep-ph/0011054.
[27] M.C. Gonzalez-Garcia and C. Pena-Garay, Phys. Rev. D63 (2001) 073013, hep-ph/0011245.
[28] M.C. Gonzalez-Garcia, M. Maltoni and C. Pena-Garay, Phys. Rev. D64 (2001) 093001, hep-ph/0105269.
[29] M. Maltoni, T. Schwetz and J.W.F. Valle, Phys. Rev. D65 (2002) 093004, hep-ph/0112103.
[30] A. Strumia, Phys. Lett. B539 (2002) 91, hep-ph/0201134.
[31] C. Kraus et al., Eur. Phys. J. 40 (2005) 447, hep-ex/0412056.
[32] V.M. Lobashev et al., Phys. Lett. B460 (1999) 227.
[33] R.E. Shrock, Phys. Lett. B96 (1980) 159.
[34] B.H.J. McKellar, Phys. Lett. B97 (1980) 93.
[35] I.Y. Kobzarev et al., Sov. J. Nucl. Phys. 32 (1980) 823.
[36] CCFR/NuTeV, A. Romosan et al., Phys. Rev. Lett. 78 (1997) 2912, hep-ex/9611013
[37] KARMEN, B. Armbruster et al., Phys. Rev. D65 (2002) 112001, hep-ex/0203021
[38] NuTeV, S. Avvakumov et al., Phys. Rev. Lett. 89 (2002) 011804, hep-ex/0203018
[39] NOMAD, P. Astier et al., Phys. Lett. B570 (2003) 19, hep-ex/0306037
[40] M. Sorel, J. Conrad and M. Shaevitz, Phys. Rev. D70 (2004) 073004, hep-ph/0305255
[41] N. Okada and O. Yasuda, Int. J. Mod. Phys. A12 (1997) 3669, hep-ph/9606411
[42] S.M. Bilenky, C. Giunti and W. Grimus, Eur. Phys. J. C1 (1998) 247, hep-ph/9607372
[43] S.M. Bilenky et al., Phys. Rev. D60 (1999) 073007, hep-ph/9903454
[44] W. Grimus and T. Schwetz, Eur. Phys. J. C20 (2001) 1, hep-ph/0102252
[45] M. Maltoni, T. Schwetz and J.W.F. Valle, Phys. Lett. B518 (2001) 252, hep-ph/0107150
[46] S. Palomares-Ruiz, S. Pascoli and T. Schwetz, JHEP 0509 (2005) 048, hep-ph/0505216
[47] CDHSW, F. Dydak et al., Phys. Lett. B134 (1984) 281.
[48] CCFR, I.E. Stockdale et al., Z. Phys. C27 (1985) 53.
[49] CHORUS, E. Eskut et al., Phys. Lett. B497 (2001) 8.
[50] CCFR/NuTeV, K.S. McFarland et al., Phys. Rev. Lett. 75 (1995) 3993, hep-ex/9506007
[51] CCFR/NuTeV, D. Naples et al., Phys. Rev. D59 (1999) 031101, hep-ex/9809023
[52] NOMAD, P. Astier et al., Nucl. Phys. B611 (2001) 3, hep-ex/0106102.
[53] SNO, B. Aharmim et al., Phys. Rev. C72 (2005) 055502, nucl-ex/0502021
[54] J.N. Bahcall, A.M. Serenelli and S. Basu, Astrophys. J. Supp. Ser. 165 (2006) 400, astro-ph/0511337
[55] S. Turck-Chieze et al., Phys. Rev. Lett. 93 (2004) 211102, astro-ph/0407176
[56] J. Monroe, (2004), hep-ex/0406048 Moriond Electroweak 2004 Conference.
[57] MiniBooNE, M.H. Shaevitz, Nucl. Phys. Proc. Suppl. 137 (2004) 46, hep-ex/0407027, Fujihara Seminar: Neutrino Mass and the Seesaw Mechanism, KEK, Japan, February, 2004.

[58] M. Sorel, (2006), hep-ex/0602018, 9th International Conference on Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Spain, 10–14 Sep 2005.

[59] P. Zucchelli, Phys. Lett. B532 (2002) 166.

[60] Neutrino Factory/Muon Collider, C. Albright et al., (2004), physics/0411123

[61] C. Volpe, (2006), hep-ph/0605033

[62] M. Apollonio et al., (2002), hep-ph/0210192

[63] R.S. Raghavan, (2006), hep-ph/0601079

[64] MiniBooNE, A. Aguilar-Arevalo et al., (2007), 0704.1500.