SF-1 (NR5A1) expression is stimulated by the PKA pathway and is essential for the PKA-induced activation of LIPE expression in Y-1 cells

K. Kulcenty1 • M. Holysz2 • W. H. Trzeciak2

Abstract In the adrenal cortex, corticotropin induces the expression of several genes encoding proteins involved in the synthesis and intracellular transport of steroid hormones via the protein kinase A (PKA) signalling pathway, and this process is mediated by steroidogenic factor-1 (SF-1). This study was designed to elucidate the influence of the PKA and PKC pathways on the expression of the SF-1 gene in mouse adrenocortical cells, line Y-1. It has also been attempted to answer the question whether or not SF-1 plays a role in the PKA-induced expression of LIPE gene encoding hormone-sensitive lipase/cholesteryl esterase, which supplies cholesterol for steroid hormone synthesis. In this study, we found that stimulation of the PKA pathway caused a significant increase in SF-1 expression, and that this effect was abolished by the PKA inhibitor, H89. Decreased SF-1 gene transcript levels were seen with the simultaneous activation of PKA and PKC, suggesting a possible interaction between the PKA and PKC pathways. It was also observed that SF-1 increased the transcriptional activity of the LIPE gene by interacting with the SF-1 response element located in promoter A. Moreover, transient silencing of SF-1 expression with specific siRNAs abolished PKA-stimulated transcription of the LIPE gene, indicating that SF-1 is an important regulator of LIPE expression in Y-1 cells and thus could play a role in the regulation of the cholesterol supply for adrenal steroidogenesis.

Keywords SF-1 • PKA • LIPE • HSL • Y-1 cells

Introduction

The synthesis and secretion of steroid hormones in the adrenal cortex is regulated by corticotropin (ACTH), secreted by the anterior pituitary. Upon binding to a specific receptor (melanocortin type 2 receptor) via the Gs protein, ACTH activates the membrane-bound adenylyl cyclase, causing an increase in the intracellular concentration of cAMP, an activator of the PKA. Increased concentration of cAMP, and thereby increased activity of the PKA, can be achieved in vitro by treatment of the cells with forskolin, which directly activates adenylyl cyclase.

In the adrenal cortex, ACTH acts via the PKA pathway to induce the expression of genes encoding proteins involved in the synthesis and intracellular transport of steroid hormones [1–3] as well as the supply of substrate, cholesterol, stored in lipid droplets. These actions are mediated by steroidogenic factor-1 (SF-1), which induces the expression of genes encoding members of the cytochrome P450 (CYP) superfamily, as well as the genes encoding ACTH receptor, and transporting proteins including steroidogenic acute regulator (StAR) [4–6].

In the adrenal cortex, hormone-sensitive lipase/cholesteryl esterase (HSL) catalyses the hydrolysis of fatty acyl esters of cholesterol and acts as a supplier of cholesterol for steroid hormone synthesis. Numerous investigations have shown that HSL is activated by the covalent phosphorylation of Ser563 and Ser660 residues in its regulatory domain. These reactions are catalysed by a cAMP-
dependent PKA whose activity is increased by ACTH at a posttranslational level [7]. HSL is encoded by the LIPE gene (a member of the LIP gene family) and is located on chromosome 19q13.3. This gene is composed of nine exons plus additional six, which are transcribed in a tissue-dependent fashion by tissue-specific promoters. In the adrenal cortex, the transcription is regulated by promoter A [8, 9] and the principal regulator of LIPE expression is ACTH [10].

Based on our understanding of the mechanisms that regulate the synthesis of steroidogenic enzymes, it can be assumed that HSL is controlled not only by switching on and off the catalytic activity of the enzyme, which constitutes a short-term regulation, but also by the activation of LIPE gene expression, encoding HSL, which represents a long-term effect. Moreover, by drawing an analogy to proteins encoded by the other genes associated with steroidogenesis, it is possible that transcription factor SF-1 affects the transcriptional activity of the LIPE gene in response to stimulation by ACTH.

It has been reported that SF-1 expression is essential for survival and that SF-1(−/−) mice normally die at E8 due to the lack of corticosteroids, unless they are rescued by the administration of synthetic hormones [11]. SF-1 regulates the expression of genes involved in differentiation of gonads, sex determination [12] and steroidogenesis. The role of SF-1 in activating of steroidogenic enzyme promoters has been defined for CYP11A1, CYP11B1, CYP11B2, CYP17, CYP19, CYP21 and DAX-1 [4, 13–15]. SF-1 activates the basic expression of these genes and additionally controls the activity of the LIPE gene by controlling the expression of ACTH, LDL and HDL receptors, intracellular cholesterol transporters (sterol carriers protein 2, and SCP-2) [16, 17] and the StAR protein (steroidogenic acute regulatory protein), which transports cholesterol from the outer to the inner mitochondrial membrane [18]. In addition, SF-1 also participates in the regulation of the expression of genes encoding enzymes involved in the de novo synthesis of cholesterol in steroidogenic tissues [19]. It is known that ACTH regulates the expression of steroidogenic genes via the PKA signalling pathway. However, it has not been established whether ACTH regulates the expression of SF-1. Our studies in the human adrenocortical cell line H295R provided evidence that the activators of the PKA pathway induce the expression of LIPE via SF-1 [20]. Activators of the PKC signalling pathway, such as phorbol esters and angiotensin II, cause an increase in the expression of HDL receptor (SR-B1) and slightly increase the transcriptional activity of the gene encoding the LDL receptor [21]. It is also possible that the activators of PKC affect the expression of SF-1 and the genes encoding enzymes of the steroidogenic pathway, including HSL. Although the mechanism of interaction of PKA with PKC has not been elucidated, it is known that TPA is capable of reducing the activity of the PKA pathway through activation of PKC [21].

The aim of this study was to examine whether or not SF-1 expression is regulated by PKA and to clarify the putative role of SF-1 in the PKA-induced expression of LIPE.

Experimental procedure

Cell culture

Mouse adrenocortical cells (line Y-1), obtained from the American Type Culture Collection (Manassas, VA, USA), were cultured in Ham’s F-12/DMEM 1:1 (v/v) containing 2.5 mM glutamine and supplemented with 10 % foetal bovine serum (FBS), and antibiotic/antimycotic (ABAM) containing 100 U/ml penicillin, 1 mg/ml streptomycin and 100 U/ml nystatin, all from Sigma-Aldrich (USA).

Incubation of Y-1 cells with test substances

After confluence was reached, the cells were given fresh medium (as above) without FBS. After 24-h incubation, the following substances were added: 25 μM forskolin (activator of adenylyl cyclase), 20 μM H-89 (inhibitor of protein kinase A) and 10 μM tetradecanoyl phorbol acetate (TPA; activator of protein kinase C), and the incubation was conducted for 24 h. After incubation, the cells were washed with PBS and subjected to further analyses.

Isolation of RNA, reverse transcription and amplification of cDNA

RNA was isolated according to the phenol–chloroform method [22] using TRIzol reagent (Applichem, Germany). One μg of RNA was then reverse transcribed with the use of MMLV transcriptase and random hexamers (Novazym, Poznan, Poland), and the concentrations of the SF1 and the LIPE transcripts were estimated by RT-qPCR with the use of the LightCycler 1.0 System (Roche Diagnostics, Germany) and the designed primers (Table 1). The results of RT-qPCR analysis were normalized to MRPL19 transcript (from the mitochondrial ribosomal protein L19).

Estimation of LIPE promoter activity using dual luciferase system

Using FuGene HD reagent (Roche Diagnostics, Germany), cells were transfected with the expression vector pCMV-SF1 containing the SF-1 gene and co-transfected with two
other constructs: the reporter vector pGL3 harbouring Firefly luciferase gene under the control of −343, or −2150 bp fragment of LIPE promoter A, and the pRL-TK vector, containing Renilla luciferase gene and used to correct for transfection efficiency. After transfection, the cells were incubated for 24 h, harvested and lysed, and the luciferase activity was determined using the Dual Luciferase System (Promega, USA) and a 20/20n Luminometer (Turner Biosystems, USA).

Preparation of the nuclear extract and electrophoretic mobility shift assay (EMSA)

Nuclear extract was prepared by lysing Y-1 cells in low-salt buffer [100 mM HEPES pH 7.9, 15 mM MgCl₂, 100 mM KCl, 0.1 M dithiothreitol (DTT)] and the protease inhibitor (PMSF). After separation of the cytosol by centrifugation, the nuclear fraction was extracted with high-salt buffer (20 mM HEPES pH 7.9, 1.5 mM MgCl₂, 0.42 M NaCl, 0.2 mM EDTA, 20 % glycerol, 0.1 M DTT) and PMSF, mixed and centrifuged at 13,000 × g for 5 min and the supernatant was used for the assay.

The double-stranded oligonucleotide:

5'-GCCGCAGGTCTCAGGCGAAGTCAGGGAC-3', covering the SF-1 binding sites (underlined) within the LIPE promoter A, was labelled with Cy5. The binding reaction contained 10 μg of protein in 5 × binding buffer (60 mM HEPES, 20 mM Tris–HCl pH 8.0, 300 mM KCl, 5 mM EDTA, 5 mM EGTA, 60 % glycerol, 1 μg poly(dC); 1 % BSA and 25 mM DTT). The reaction mixture was incubated for 20 min at 4 °C and, after adding the labelled probe (1 pmol/μl), for another 30 min under the same conditions. To verify the specificity of oligonucleotide binding to SF-1, the control reactions contained a 1:1 v/v mixture of labelled and unlabelled probes. Protein–DNA complexes were subjected to electrophoresis on non-denaturing 4 % polyacrylamide gel for 2.5 h at 75 V, and the labelled bands were visualized in a laser scanner FLA-5100 (FUJIFILM, Japan). Immediately after electrophoresis the gel was subjected to Western blot analysis using antibody directed against SF-1, followed by a HRP-conjugated secondary antibody (Santa Cruz Biotechnology, USA) and determination of peroxidase activity.

SF-1 silencing and determination of LIPE expression

Silencing of SF-1 expression was achieved by 24-h incubation of the cells transfected with a mixture of three siRNAs (Santa Cruz Biotechnology, USA) complementary to the SF-1 transcript. The effectiveness of silencing on the LIPE transcript level was determined by RT-qPCR, while on the SF-1 protein level the determination was made via Western blotting employing anti-SF-1 antibody and horse radish peroxidase-conjugated anti-γ-globulin (Santa Cruz Biotechnology, USA) for detection.

Statistical analysis

The results were analysed with the aid of GraphPad InStat v.3.05 (La Jolla, CA, USA) and Microsoft Excel 2007. The results are the mean ± SEM of three independent experiments. To estimate the influence of test substances on the level of transcripts, one-way ANOVA or two-way ANOVA tests were applied. Significance of the differences between individual samples was tested at the level of *P < 0.05, **P < 0.01 or ***P < 0.001.

Results and discussion

The PKA but not the PKC pathway regulates transcription of SF-1

To investigate the effect of the PKA signalling pathway on the expression of SF-1, ACTH was replaced by forskolin, an activator of adenylate cyclase, whose effect on Y-1 cells was earlier established [23, 24]. Y-1 cells were incubated with forskolin, and after 24-h incubation, a three-fold

Primer name	Primer sequence	Amplicon length (bp)
mSF-1 F	5’-TACTGGACAGGAGGTGGA-3’	142
mSF-1 R	5’-GAACTTGAGACAGACGAAC-3’	
mLIPE F	5’-TCCAAGCAGGCAAGAAG-3’	109
mLIPE R	5’-GTGTCAATCGTGCAAATCC-3’	
mMRPL19 F	5’-AAGACGAGAAGGTTCTCG-3’	170
mMRPL19 R	5’-TAGGGTCGGCTGTGGTG-3’	

Primers were designed using Oligo v.6.71 software, and DNA sequences were obtained from GenBank (http://www.ncbi.nlm.nih.gov/nuccore/)

F forward, R reverse
increase in the level of \(SF-1\) transcript was observed. This was accompanied by a substantial increase in the protein product of the gene (not shown). This effect was abolished when the cells were incubated with a selective inhibitor of the PKA, H-89 (Fig. 1). Although the regulation of \(SF-1\) transcription by ACTH or cAMP in adrenocortical cells was previously investigated [25–28], the results from different studies were contradictory. In the mid-1990s, it was shown that in response to stimulation by forskolin or overexpression of the PKA catalytic subunit in Y-1 cells, the level of \(SF-1\) protein increases, while the \(SF-1\) transcript level remains the same [25]. However, \(SF-1\) transcript levels were elevated in bovine adrenal cortex cells under identical conditions [26, 27]. The findings reported here are similar to those obtained in mouse and in bovine adrenocortical cells [28], but they are contradictory to the results reported by other laboratories investigating Y-1 cells, e.g. [29]. Such discrepancies may be due to high heterogeneity of Y-1 cell lines, especially their response to stimulation of the PKA signalling pathway [30].

It was previously established that the protein kinase C (PKC) pathway regulates the expression of some genes involved in steroidogenesis. Activators of the PKC pathway, such as phorbol esters and angiotensin II, enhance the expression of SR-B1 and slightly increase the transcriptional activity of the gene encoding LDL receptor [21]. We therefore propose that, as in the case of other genes involved in steroidogenesis, PKC might affect \(SF-1\) expression. Moreover, we hypothesize that there is an interaction between the PKA and the PKC pathways. In order to answer these questions, Y-1 cells were incubated with forskolin, TPA and with the activators of both kinases. Activation of PKC did not change the level of \(SF-1\) transcript (Fig. 1) indicating that the PKC pathway had no effect on the transcriptional activity of \(SF-1\). Interestingly, simultaneous activation of PKA and PKC resulted in a lower level of \(SF-1\) transcript, suggesting an interaction between both pathways. It is known that PKC induces the expression of the gene encoding phosphodiesterase, which hydrolyses cAMP [21]. Therefore, PKA-stimulated \(SF-1\) transcription is probably inhibited through decreasing cAMP level.

SF-1 stimulates transcriptional activity of \(LIPE\) promoter A via the PKA pathway

Since \(SF-1\) is a principal transcription factor involved in the regulation of expression of numerous steroidogenic genes [2], we presumed that it may also regulate the expression of \(LIPE\). In order to investigate \(SF-1\)-dependent regulation of \(LIPE\) transcriptional activity, the cells were transfected with the vector containing Firefly luciferase gene under the control of the \(-343\) or \(-2150\) fragments of \(LIPE\) promoter A and co-transfected with the vector expressing \(SF-1\). After 24-h incubation, the luciferase activity was determined and normalized to the transfection efficiency measured by the Renilla luciferase activity. \(SF-1\) overexpression resulted in an almost three-fold increase in the transcriptional activity of the \(-2150\) fragment of \(LIPE\) promoter A, while there was no significant effect of \(SF-1\) on the transcriptional activity of the \(-343\) fragment (Fig. 2a). These results strengthen our observation, obtained from the computer analysis of the DNA sequence of \(LIPE\) promoter A, that within the region ranging from the \(-343\) to \(-2150\) bp, there are two \(SF-1\)-binding sites located within the \(-1400\) to \(-1420\) bp region which significantly affect \(LIPE\) activity.

Based on these results, we utilized EMSA to examine whether \(SF-1\) binds directly to the \(LIPE\) promoter. For this purpose, we used the Cy5-labelled oligonucleotide corresponding to the \(SF-1\) binding sites within the promoter fragment. The 5’-end-labelled oligonucleotide was incubated with 10 µg of the nuclear extract from the Y-1 cells either alone or with the mixture of 1:1 labelled and unlabelled oligonucleotide. As a negative control, the probe was also incubated without the nuclear extract. Formation of DNA–protein complexes was then monitored by electrophoresis on non-denaturing polyacrylamide gels. The formation of DNA–protein complexes was greatly reduced by the addition of unlabelled...
oligonucleotide of the same sequence (Fig. 2b). In order to confirm the presence of SF-1 in the DNA-protein complexes, Western blot analysis using antibody directed against SF-1 was conducted (Fig. 2c) and confirmed the direct binding of SF-1 to the response element within the LIPE promoter A.

The results of our experiments clearly indicate that SF-1 is involved in the regulation of LIPE expression. However, the significance of SF-1 in PKA-dependent regulation has not been established. In order to demonstrate the significance of SF-1 in PKA-dependent LIPE expression, Y-1 cells were transfected with siRNA complementary to the SF-1 transcript resulting in a significant decrease in the SF-1 protein 24 h after the transfection. In order to evaluate whether or not the deficiency of SF-1 affects the PKA-dependent expression of LIPE, control cells and the SF-1-silenced Y-1 cells were incubated for 6 h with forskolin resulting in a two-fold increase in LIPE expression in the control cells (Fig. 3). The silencing of SF-1 caused a significant inhibition of PKA-dependent LIPE expression in our experiments, suggesting that SF-1 contributes to the regulation of LIPE expression via the PKA pathway. We have shown that the activation of PKA is a crucial step in the stimulation of LIPE expression by SF-1 and that it is a major determinant in regulating cholesterol esterase/lipase expression in adrenocortical cells. However, the nature of the PKA and PKC interactions in regulating SF-1 expression in Y-1 cells still remains unknown and requires further investigation.
moter A harbouring Firefly Renilla luciferase gene. J Biol Chem 267:17913–17919

Relative expression of LIPE

![Graph showing effect of SF-1 silencing on the level of LIPE transcript. Y-1 cells were transfected with SF-1 silencer followed by 12-h incubation: c without any additions, F with forskolin, siRNA with SF-1 silencer. The incubation was followed by RNA extraction and estimation of the LIPE transcript concentration by RT-qPCR. The results are the mean ± SEM of three independent experiments. The effect of SF-1 silencing on SF-1 protein level, estimated by Western blotting, is shown in the inset.](image)

Fig. 3 The effect of SF-1 silencing on the level of LIPE transcript. Y-1 cells were transfected with SF-1 silencer followed by 12-h incubation: c without any additions, F with forskolin, siRNA with SF-1 silencer. The incubation was followed by RNA extraction and estimation of the LIPE transcript concentration by RT-qPCR. The results are the mean ± SEM of three independent experiments. The effect of SF-1 silencing on SF-1 protein level, estimated by Western blotting, is shown in the inset.

Acknowledgments This study was supported by Grant N401 195 32/4131 from the State Committee for Scientific Research. The authors are grateful to Dr. K. Parker (Dallas, USA) for generous donation of the expression vector pCMV-SF1 containing the SF-1 gene, to Dr. C. Holm (Lund, Sweden) for a fragment of LIPE promoter A harbouring Firefly luciferase gene and to Dr. J. Li (Lyon, France) for the pRL-TK vector containing Renilla luciferase gene. Critical reading and editorial correction of the manuscript by Dr. Gary Schoenhals are gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest There is no conflict of interest between the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Morohashi K, Honda S, Inomata Y, Handa H, Omura T (1992) A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol Chem 267:17913–17919
2. Val P, Lefrancois-Martinez AM, Veyssiere G, Martinez A (2003) SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept 1:8
3. Rice DA, Mow AR, Bogerd AM, Parker KL (1991) A shared promoter element regulates the expression of three steroidogenic enzymes. Mol Endocrinol 5:1552–1561
4. Liu Z, Simpson ER (1999) Molecular mechanism for cooperation between Sp1 and steroidogenic factor-1 (SF-1) to regulate bovine CYP11A gene expression. Mol Cell Endocrinol 153:183–196
5. Marchal R, Naville D, Durand P, Begeot M, Penhoat A (1998) A steroidogenic factor-1 binding element is essential for basal human ACTH receptor gene transcription. Biochem Biophys Res Commun 247:28–32
6. Caron KM, Ikeda Y, Soo SC, Stocco DM, Parker KL, Clark BJ (1997) Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein. Mol Endocrinol 11:138–147
7. Yeaman SJ (1990) Hormone-sensitive lipase—a multipurpose enzyme in lipid metabolism. Biochim Biophys Acta 1052: 128–132
8. Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393
9. Grober J, Laurell H, Blaise R, Fabry B, Schaak S, Holm C, Langin D (1997) Characterization of the promoter of human adipocyte hormone-sensitive lipase. Biochem J 328(Pt 2): 453–461
10. Smith F, Rouet P, Lucas S, Mairal A, Sengenes C, Lafontan M, Vaulont S, Casado M, Langin D (2002) Transcriptional regulation of adipocyte hormone-sensitive lipase by glucose. Diabetes 51:293–300
11. Luo X, Ikeda Y, Schlosser DA, Parker KL (1995) Steroidogenic factor 1 is the essential transcript of the mouse Ftz-F1 gene. Mol Endocrinol 9:1233–1239
12. de Barbara Santa P, Mejean C, Moniot B, Malcles MH, Berta P, Boizet-Bonhoure B (2001) Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol Reprod 64:775–783
13. Morohashi K, Zanger UM, Honda S, Hara M, Waterman MR, Omura T (1993) Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol Endocrinol 7:1196–1204
14. Lala DS, Rice DA, Parker KL (1992) Steroidogenic factor 1, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 6:1249–1258
15. Jacob AL, Lund J (1998) Mutations in the activation function-2 core domain of steroidogenic factor-1 dominantly suppresses PKA-dependent transactivation of the bovine CYP17 gene. J Biol Chem 273:13391–13394
16. Pfeifer SM, Furth EE, Obha T, Chang YJ, Rennert H, Sakuragi N, Billheimer JT, Strauss JF 3rd (1993) Sterol carrier protein 2: a role in steroid hormone synthesis? J Steroid Biochem Mol Biol 47:167–172
17. Trzcinski WH, Simpson ER, Scallen TJ, Vahouny GV, Waterman MR (1987) Studies on the synthesis of sterol carrier protein-2 in rat adrenocortical cells in monolayer culture. Regulation by ACTH and dibutyryl cyclic 3’,5’-AMP. J Biol Chem 262:3713–3717
18. Stocco DM (2000) Intramitochondrial cholesterol transfer. Biochim Biophys Acta 1485:184–197
19. Mascaro C, Nadal A, Hegardt FG, Marrero PF, Haro D (2000) Contribution of steroidogenic factor 1 to the regulation of cholesterol synthesis. Biochem J 350(Pt 3):785–790
20. Hołysz M, Derebecka-Hołysz N, Trzcinski WH (2011) Transcription of LIPE gene encoding hormone-sensitive lipase/c-cholesterol esterase is regulated by SF-1 in human adrenocortical
cells: involvement of protein kinase A signal transduction pathway. J Mol Endocrinol 46:29–36
21. Garrel G, McArdle CA, Hemmings BA, Counis R (1997) Gonadotropin-releasing hormone and pituitary adenylate cyclase-activating polypeptide affect levels of cyclic adenosine 3',5'-monophosphate-dependent protein kinase A (PKA) subunits in the clonal gonadotrope alphaT3-1 cells: evidence for cross-talk between PKA and protein kinase C pathways. Endocrinology 138:2259–2266
22. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159
23. Inoue H, Higashi Y, Morohashi K, Fuji-Kuriyama Y (1988) The 5'-flanking region of the human P-450 (SCC) gene shows responsiveness to cAMP-dependent regulation in a transient gene-expression system of Y-1 adrenal tumor cells. Eur J Biochem 171:435–440
24. Qiu R, Tsao J, Kwan WK, Schimmer BP (1996) Mutations to forskolin resistance result in loss of adrenocorticotropic receptors and consequent reductions in levels of G protein alpha-subunits. Mol Endocrinol 10:1708–1718
25. Zhang P, Mellon SH (1997) Multiple orphan nuclear receptors converge to regulate rat P450c17 gene transcription: novel mechanisms for orphan nuclear receptor action. Mol Endocrinol 11:891–904
26. Enyeart JJ, Boyd RT, Enyeart JA (1996) ACTH and AII differentially stimulate steroid hormone orphan receptor mRNAs in adrenal cortical cells. Mol Cell Endocrinol 124:97–110
27. Osman H, Murigande C, Nadakal A, Capponi AM (2002) Repression of DAX-1 and induction of SF-1 expression. Two mechanisms contributing to the activation of aldosterone biosynthesis in adrenal glomerulosa cells. J Biol Chem 277:41259–41267
28. Lehmann TP, Biernacka-Lukanty JM, Saraco N, Langlois D, Li JY, Trzeciak WH (2005) Temporal pattern of the induction of SF-1 gene expression by the signal transduction pathway involving 3',5'-cyclic adenosine monophosphate. Acta Biochim Pol 52:485–491
29. Nomura M, Kawabe K, Matsushita S, Oka S, Hatano O, Harada N, Nawata H, Morohashi K (1998) Adrenocortical and gonadal expression of the mammalian Ftz-F1 gene encoding Ad4BP/SF-1 is independent of pituitary control. J Biochem 124:217–224
30. Schimmer BP, Cordova M, Tsao J, Frigeri C (2002) SF1 polymorphisms in the mouse and steroidogenic potential. Endocr Res 28:519–525