Insights into the role of alternative splicing in plant temperature response

Varvara Dikaya¹, Nabila El Arbi¹, Nelson Rojas-Murcia¹, Sarah Muniz Nardeli¹, Daniela Goretti¹, Markus Schmid¹,²*

¹ Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden.

² Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, People’s Republic of China.

* Indicates equal contribution

Indicates corresponding author: Markus Schmid, Email: markus.schmid@umu.se

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Author ORCID-Id and email

Varvara Dikaya (0000-0002-3262-0859): varvara.dikaya@umu.se

Nabila El Arbi (0000-0001-5494-2229): nabila.elarbi@umu.se

Sarah Muniz Nardeli (0000-0001-8858-807X): sarah.nardeli@umu.se

Nelson Rojas-Murcia (0000-0001-6058-6830): nelson.rojas@umu.se

Daniela Goretti (0000-0003-3996-0204): daniela.goretti@umu.se

Markus Schmid (0000-0002-0068-2967): markus.schmid@umu.se

Highlight:

Temperature-dependent alternative splicing is a fast-expanding field, providing new insights into plant temperature acclimation processes. Here we highlight its complexity and outline the necessity for further research.
Abstract

Alternative splicing occurs in all eukaryotic organisms. Since the first description of multiexon genes and the splicing machinery, the field has expanded rapidly, especially in animals and yeast. However, our knowledge about splicing in plants is still quite fragmented. Though eukaryotes show some similarity in the composition and dynamics of the splicing machinery, observations of unique plant traits are only starting to emerge. For instance, plant alternative splicing is closely linked to their ability to perceive various environmental stimuli. Due to their sessile lifestyle, temperature is a central source of information allowing plants to adjust their development to match current growth conditions. Hence, seasonal temperature fluctuations and day-night cycles can strongly influence plant morphology across developmental stages. Here we discuss the available data about temperature-dependent alternative splicing in plants. Given its fragmented state it is not always possible to fit specific observations into a coherent picture, yet it is sufficient to estimate the complexity of this field and the need of further research. Better understanding of alternative splicing as a part of plant temperature response and adaptation may also prove to be a powerful tool for both, fundamental and applied sciences.

Keywords: alternative splicing, Arabidopsis thaliana, cold acclimation, heat acclimation, splicing factor, temperature adaptation, temperature response
List of Abbreviations

A. thaliana *Arabidopsis thaliana*

ABA Abscisic Acid

AS Alternative Splicing

IR Intron retention

NMD Nonsense mediated decay

P-bodies processing bodies

pre-mRNA precursor mRNA

PTC Premature termination codon

PTM Postranscriptional modification

SF Splicing factor

SMN Survival of Motor Neuron

snRNA Small nuclear RNA

snRNP Small nuclear ribonucleoproteins

SR protein Serine/Arginine rich protein

SS Splice site
Eukaryotic splicing in a nutshell

The central dogma of molecular biology states that information about the cell is encoded in DNA and unidirectionally transferred to proteins via mRNA. It is also well known that the diversity of proteins in eukaryote cells significantly exceeds the number of genes and does not correlate with organism complexity (van Straalen et al., 2013). This imbalance was explained in the end of 1970s with the discovery of the multiexon structure of genes in eukaryotes and the splicing process in which non-coding sections of the newly transcribed pre-mRNA, referred to as introns, are excised, and the coding parts, called exons, are joined together to form the mature mRNA (Chow et al., 1977; Berget, Moore, and Sharp, 1977; Gilbert, 1978). Today, these definitions are more generalized to also account for the exon-intron structure of non-coding RNA transcripts (Lodish et al., 2000; Fu, 2014; Yang, 2015). However, here we only address the splicing of protein coding RNA transcripts. This intricate reaction is carried out by a multimeric protein-RNA complex called the spliceosome (Shi, 2017).

Constitutive splicing always gives rise to a defined mRNA because exons are ligated in a uniform manner. However, constitutive splicing per se does not explain how the diversity of the proteome exceeds the number of genes contained within the genome. This apparent discrepancy can be explained by the alternative splicing (AS) process (Maki et al., 1981; Kelemen et al., 2013), in which the inclusion of exons and introns or even their boundaries in the resulting mRNA can be altered. Thus, AS gives rise to different mRNA transcript variants that originate from the same pre-mRNA.

AS is a process common for eukaryotes. It can be traced back to the last eukaryotic common ancestor and is likely to have evolved from self-catalytic group II introns after the endosymbiotic event (Irimia and Roy, 2014; Vosseberg and Snel, 2017).

There are two spliceosomal complexes found and described in eukaryotes: the major (U2) spliceosome, and the less abundant, or minor (U12) spliceosome (Kreivi and Lamond, 1996; Tarn and
Steitz, 1996; Sharp and Burge, 1997). The main structural difference is in the small nuclear RNAs (snRNAs) incorporated in their core, while the protein machinery is to a large extent identical between the two (Hall and Padgett, 1996; Patel and Steitz, 2003; López et al., 2008). From now on we will refer only to U2-mediated splicing and discuss the function and regulation of the major spliceosome.

The spliceosome is a dynamic ribonucleoprotein machine of high structural complexity (Wahl et al., 2009). It is composed of five core subcomplexes called the U1, U2, U4, U5, and U6 small ribonucleoproteins (snRNPs) as well as a huge number of other, more dynamic proteins associated with them, all of which are referred to as splicing factors (SFs) (Jurica and Moore, 2003; Wahl et al., 2009; Chen and Cheng, 2012). Each U snRNP is built around its corresponding snRNA and a conserved ring-shaped heteroheptamer complex composed of the SM-like family proteins (Lerner and Steitz, 1979; Veretnik et al., 2009). U1, U2, U4 and U5 snRNPs carry SM proteins (B/B’, D1, D2, D3, E, F and G), while the core of the U6 snRNP contains SM-LIKE (LSM2 to LSM8) proteins. These structures are referred to as the SM-ring and the LSM2-8-ring, respectively.

Eukaryotic splicing is defined by the presence of specific splicing signals in the multiexon gene structure. For the U2-type introns these are flanked by the 5’ splice site (SS) and 3’ SS, that are characterized by conserved (but not invariant) GU and AG sequences, respectively. Upstream of the 3’ SS are the polypyrimidine tract and the adenosine branch site (Schwartz et al., 2008; Baralle and Baralle, 2018).
snRNP assembly and splicing reaction

The assembly of the U1, U2, U4 and U5 snRNPs in eukaryotes begins in the cytosol and requires multiple factors (Fig. 1A) (Matera and Wang, 2014). First, snRNAs bind to the Survival of Motor Neuron (SMN) and GEM NUCLEAR ORGANELLE ASSOCIATED PROTEIN (GEMIN) proteins, which together form the SMN complex (Shpargel and Matera, 2005). Assembly of the SM-ring around the snRNA happens stepwise via formation of the smaller oligomers SmD1/D2, SmE/F/G and SmB/D3 which are delivered with the assistance of chaperone proteins to the snRNA where their simultaneous binding to the SM-site of the snRNA is initiated (Raker et al., 1996; Yong et al., 2004; Chari et al., 2008; Grimm et al., 2013). To increase their affinity to the SMN complex and ensure proper ring formation the SmB/B’, SmD1 and SmD3 proteins need to be methylated beforehand by the PROTEIN ARGinine METHYltransferases (PRMTs) complex, also known as the methylosome (Brahms et al., 2001; Friesen et al., 2001; Gonsalvez et al., 2007).

This step is crucial for the assembly process, since the ring stabilizes the snRNA and initiates its 5’ cap hypermethylation by TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1) (Plessel et al., 1994; Mouaikel et al., 2002). The later step is required for the active translocation of the snRNA-SM-ring subcomplex into the nucleus with the assistance of SMN, IMPORTIN β and SNURPORTIN1 (Palacios et al., 1997; Huber et al., 1998; Massenet et al., 2002). The final steps of assembly and maturation happen in the Cajal bodies (Jady et al., 2003). The actual splicing reaction has been shown to take place in the nucleus (Fig. 1B). More specifically, splicing has been suggested to occur in subnuclear regions, including non-membrane compartments called nuclear speckles (Lamond and Spector, 2003). It has been reported that in human cells 80% of splicing occurs co-transcriptionally and that active spliceosomes localize to the periphery or within nuclear speckles (Girard et al., 2012). In line with this observation, nuclear speckles have been reported to be enriched in Ser/Arg-rich (SR) proteins and snRNPs and are thus considered to act as a source of SFs for the splicing process (Lamond and
Spector, 2003; Hasenson and Shav-Tal, 2020). In addition, a recent model in humans proposed that upon maturation the snRNPs are translocated from Cajal bodies to the interface of nuclear speckles (Liao and Regev, 2021). However, it is important to note that splicing does not necessarily have to occur within or in close contact with nuclear speckles but can also occur in other sub-nuclear domains (Han et al., 2011).

In contrast to the assembly of U1, U2, U4 and U5 snRNPs, all steps of U6 snRNP formation happen in the nucleus (Patel and Bellini, 2008). Interestingly, the U6 snRNP is also the only snRNP which reassembles all associated proteins after each round of splicing (Didychuk et al., 2018). Though the biological significance of this feature is not clear, possibly it confers the U6 snRNP with a great amount of functional and regulatory flexibility.

The activation and catalysis of the splicing reaction are largely mediated by the NineTeen complex also called pre-mRNA processing (PRP) 19 in humans and yeast or MOS4-associated complex in Arabidopsis thaliana (A. thaliana) (Johnson et al., 2011; Chanarat and Sträßer, 2013). Binding of the NineTeen complex to the snRNP and pre-mRNA is pivotal since it induces necessary conformational changes during the splicing reaction and ensures correct spliceosome turnover (de Almeida and O’Keefe, 2015).

Additional proteins central in the assembly and function of the final splicing machinery include SRs and heterogeneous nuclear RNPs (hnRNPs). It has been shown that their binding to signal sequences on the pre-mRNA can promote or suppress SS choice (Long and Caceres, 2009; Huelga et al., 2012; Erkelenz et al., 2013; Sahebi et al., 2016). The activity and subcellular localization of SRs and hnRNPs can be strongly influenced by posttranscriptional modifications (PTMs) (Chaudhury et al., 2010; Twyffels et al., 2011; Zhou and Fu, 2013; Xu et al., 2019). For more detailed information on splicing see Box 1.
Even though the players of constitutive and alternative splicing are essentially the same, they take on different roles in the organism. While constitutive splicing ensures the production of one protein that performs its functions in given conditions, AS adjusts the proteome to the current needs of the organism (Reddy et al., 2013; Fiszbein and Kornblihtt, 2017), acting as a relay that redirects primary transcripts into two major pathways: either to protein synthesis in the cytoplasm or, if the spliced mRNA carries a premature termination codon (PTC), towards nonsense-mediated decay (NMD) (Kervestin and Jacobson, 2012). The result of the first AS pathway is proteome expansion and functional diversification by creation of distinct protein isoforms, while the NMD pathway, on the other hand, is considered a way to control gene expression and remove nonsense mRNA transcripts (Lewis et al., 2003). An essential part of the NMD pathway is the LSM1-7 ring which is almost identical in composition to the LSM2-8 ring. However, the minor substitution of LSM8 by LSM1 localizes the LSM1-7 ring to the cytoplasm where it functions in NMD (Montemayor et al., 2020).

The seemingly simple AS-mediated redistribution of the newly transcribed pre-mRNAs in response to various stimuli is complicated by various up- and downstream regulatory pathways. Among them are DNA modifications, epigenetic marks, PTMs of the protein isoforms, and the presence or absence of potential interacting partners, etc. (Buccitelli and Selbach, 2020). In addition, transcription elongation rate is modulated by environmental factors and can affect splice site accessibility and usage when AS occurs co-transcriptionally (Herzel et al., 2017; Godoy Herz and Kornblihtt, 2019; Godoy Herz et al., 2019). Emerging details about the crosstalk between histone modifications and the regulation of transcription kinetics to modulate AS illustrates how well coordinated all these processes are (Luco et al., 2011; Naftelberg et al., 2015).

Additional feedback loops in AS itself add another layer of complexity to this process. For example, it is well-known that SFs undergo AS themselves (Lareau and Brenner, 2015; Preußner et al., 2017) and there are indications that transcripts directed towards NMD may play a role in their own NMD regulation (Feng et al., 2015b).
Plant specific traits of alternative splicing

While the mechanisms underlying AS are largely conserved among eukaryotes, specific adjustments can be found among different phyla (McGuire et al., 2008; Frey and Pucker, 2020). The main model systems for studying splicing are yeast (Saccharomyces cerevisiae) and human cell cultures. Comparisons between their splicing machinery showed an overlap of around 80 proteins (Wahl et al., 2009) and the majority of yeast SFs (~85%) are conserved in humans (Fabrizio et al., 2009). The human spliceosome includes approximately one hundred SFs not detected in yeast, which suggests that metazoan splicing is a more complicated process.

Comparisons of human and A. thaliana genomes revealed that core SFs are conserved in both, which suggests that the basic processes are similar between animals and plants (Reddy et al., 2013). Unfortunately, very few structural studies on plant spliceosomal components and assembly have been reported to date and our current knowledge is to a large extent based on comparative bioinformatic analyses (Reddy et al., 2012b; Szczęśniak et al., 2013; Chaudhary et al., 2019; Ling et al., 2019).

There are several plant specific traits that shaped the evolution and properties of AS. Among them is the tendency towards polyploidization (Wendel, 2015), which drastically expanded the pool of AS-regulated genes and led to the diversification of AS events among plant species. This also at least partially explains the low level of AS conservation found between plant phyla (Severing et al., 2009; Mei et al., 2017). Analyses of the A. thaliana genome suggest that, as a consequence of genome duplication events specific to the green lineage, it has approximately double the amount of spliceosome proteins found in humans (Wang and Brendel, 2004; Reddy et al., 2013). For example, it is assumed that plants possess the highest diversity of SR proteins among all eukaryotes (Morton et al., 2019). Some authors even speculate that several SR proteins evolved as an adaptation to land...
colonization by early plant species (Melo et al., 2020). At the same time, certain central actors of the splicing reaction which are conserved in animals, seem to be missing in plants. For instance, only GEMIN2 and PRMT5, two homologues of individual components of the multimeric SMN and methylosome complexes, respectively, were described in A. thaliana (Pei et al., 2007; Deng et al., 2010; Schlaen et al., 2015). It remains to be elucidated if the remaining components have not yet been identified in plants or are in fact completely missing.

Multiple studies agree that the prevailing type of AS in flowering plants is intron retention (IR) (Marquez et al., 2012; Chamala et al., 2015; Mei et al., 2017; Song et al., 2019) which contrasts with humans where exon skipping is more common (Sammeth et al., 2008). This difference is considered an outcome of divergent evolution of AS in the animal and plant lineages and reflect their differing developmental strategies (Barbosa-Morais et al., 2012; Ling et al., 2019). While exon skipping events result in proteome expansion during the differentiation processes in human organ development (Wang et al., 2008; Merkin et al., 2012), IR often introduces PTCs and directs transcripts towards NMD (Kervestin and Jacobson, 2012). It has been proposed that, by the removal of truncated transcripts, plants avoid unnecessary energy losses in stress conditions (Chaudhary et al., 2019). On the other hand, it has been shown that IR can induce transcript retention in the nucleus, providing a molecular mechanism to escape NMD and delay the splicing of stored transcripts. This specific mechanism of post-transcriptional splicing has been suggested to be involved in the rapid response to environmental stresses (Jia et al., 2020). However, a recent study reevaluates the contribution of IR to the regulation of A. thaliana development and suggest that other types of AS can take a lead role in plant development and stress response (Martin et al., 2021).
Alternative splicing in plant temperature response

Plants are constantly exposed to environmental perturbations and experience diverse biotic and abiotic stresses (Lamers et al., 2020). Interestingly, genes involved in stress responses have been shown to be more likely to undergo AS (Laloum et al., 2018). Hence, it has been suggested that AS in extant plants may be an outcome of their adaptation to their new environment upon land colonization (Mastrangelo et al., 2012).

Since plants exhibit only a limited capacity of thermoregulation, one of the most important environmental stimuli for them is temperature. For the plant model species A. thaliana, temperatures above 27 °C and below 16 °C are often considered sub-optimal as they can induce symptoms of heat shock and cold stress, respectively (Quint et al., 2016; Guo et al., 2018; Hayes et al., 2021). For more detailed information on temperature perception and signaling see Box 2.

Deviations from the temperature optimum have severe effects on plant growth, development, and health (Eremina et al., 2016; Dai Vu et al., 2019; Wang et al., 2020). Therefore, it is not surprising that temperature responses in plants involve systemic changes, including chromatin modifications (Bäurle and Trindade, 2020) and metabolic adjustments (Yang et al., 2018; Fürtauer et al., 2019; Serrano et al., 2019). Such adjustments not only improve plant fitness but also create a stress memory, a process referred to as thermopriming (Serrano et al., 2019; Leuendorf et al., 2020). Interestingly, it has been shown that thermopriming not only changes chromatin marks and metabolic programs but also affects AS (Ling et al., 2018; Sanyal et al., 2018), which can in part be attributed to the modulation of RNA polymerase II activity by temperature (Kindgren et al., 2020). In addition, several transcriptome analyses of plant temperature acclimation and stress tolerance show an enrichment of functional categories linked to RNA processing (Calixto et al., 2018; Kannan et al., 2018; Walden et al., 2019). The specific role of the spliceosomal complexes and their components in
temperature sensing and response modulation, however, is only starting to emerge. Therefore, and due to space limitations, in the following sections we will focus on the core splicing machinery and closely associated splicing factors.

LSM5 is necessary for heat stress tolerance

LSM5, also known as SUPERSENSITIVE TO ABA AND DROUGHT1 (Xiong et al., 2001), is an integral part of the LSM1-7 and LSM2-8 rings and participates in the regulation of RNA degradation and splicing, respectively. Despite the large number of SM and LSM proteins, so far only LSM5 has been shown to modulate AS in elevated temperatures.

The lsm5 mutant displays a dwarfed phenotype with round leaves under control conditions and a higher sensitivity to ABA and NaCl treatments compared to wildtype plants (Xiong et al., 2001). A more recent study has shown that LSM5 is also pivotal for heat stress tolerance in *A. thaliana*, and that after exposure to elevated temperatures it localizes to cytoplasmic processing bodies (P-bodies) (Okamoto et al., 2016), which play a role in mRNA degradation (Maldonado-Bonilla, 2014). lsm5 mutants display increased tissue bleaching in elevated temperatures, presumably due to the mis-splicing of two heat stress components, *HEAT SHOCK TRANSCRIPTION FACTOR3A* (*HSFA3*) and *AT1G72416*, a chaperone DnaJ-domain superfamily protein (Okamoto et al., 2016). Supporting this observation, the expression of *AT1G72416* has been shown to be regulated by the hnRNP-like protein OLGOURIDYLATE-BINDING PROTEIN 1B which is involved in heat shock response (Nguyen et al., 2016).

An in-depth transcriptome analysis has shown that LSM5 plays an essential role in SS selection. Its loss leads to an increase in AS events and a higher abundance of transcripts with IR as compared to wildtype plants, while overexpression of *LSM5* enhances SS choice, hence impeding AS (Cui et al., 2014). Interestingly, under salt stress conditions, mis-spliced genes, such as *CALCIUM EXCHANGER1,*
and RARE-COLD-INDUCIBLE 2A (RCI2A), could be largely associated to the Gene Ontology terms related to ABA signaling, salt stress and response to cold temperature (Cui et al., 2014). In addition CALCIUM EXCHANGER1 and RCI2A have been shown to play an important role in drought stress response and cold acclimation (Nylander et al., 2001; Catalá et al., 2003). Furthermore, LSM5 also regulates the splicing of A. thaliana clock genes, including TIMING OF CAB EXPRESSION1 (Perez-Santángelo et al., 2014), which undergoes AS under low temperatures (James et al., 2012). Taken together, these results suggest that LSM5 plays a central role in plant abiotic stress response, especially in salt and heat tolerance. Future analysis will show if, and to which extent, LSM5 may also contribute to the cold acclimation of plants.

It is worthwhile to note that LSM3A, LSM3B and LSM4, which like LSM5 are components of both the LSM1-7 and the LSM2-8 rings, have been implicated in the regulation of RNA degradation under heat stress conditions (Perea-Resa et al., 2012). However, their role in temperature-dependent AS remains to be established.

SR and hnRNP localization affect splicing

SR proteins and hnRNPs are known regulators of abiotic stress responses and are presumed to modulate the splicing process (Laloum et al., 2018). Interestingly, this regulation depends on the AS of the transcripts themselves (Palusa et al., 2007; James et al., 2018). In A. thaliana it was shown that the amount of differentially expressed and alternatively spliced SR isoforms by far exceeds the actual number of SR genes, which can be largely explained by the effects of temperature (Palusa et al., 2007; Pajoro et al., 2017; Ling et al., 2018; Neumann et al., 2020). Furthermore, it was shown that hnRNP subcellular localization is modulated by temperature (Fig. 2 and Table 1) (Weber et al., 2008; Nguyen et al., 2016).
The most comprehensive data to exemplify the importance and complexity of temperature-dependent regulation of SR proteins is available for SR45. As stated before, the localization of SR proteins to specific regions in the nucleus is strongly linked to their availability for the splicing reaction. Interestingly, there are indications that the transition of SR45 to different nuclear compartments is temperature-dependent. For example, at control conditions, SR45 is evenly distributed in the nucleoplasm and in nuclear speckles. However, high temperatures cause SR45 to predominantly localize to irregularly shaped nuclear speckles, and cold temperatures induce a complete localization to the nucleoplasm (Ali et al., 2003). In general, this translocation is based on the phosphorylation status of the SR proteins. It is currently hypothesized, that nuclear speckles accumulate hypophosphorylated SR proteins, which are inactive and unavailable for the splicing reaction (Reddy et al., 2012a). Thus, it is intriguing to draw a link between the availability of SR45 for splicing reactions and temperature fluctuations. The fact that SR45 RNA binding is enriched in genes associated with cold signaling (Xing et al., 2015) further supports this hypothesis. Moreover, it has been suggested that SR45’s translocation correlates with temperature fluctuations and affects the alternative splicing of the circadian rhythm component CIRCADIAN CLOCK ASSOCIATED1 (Filichkin et al., 2015). In response to temperature stress, the isoform of CIRCADIAN CLOCK ASSOCIATED1 with a retained 4th intron is accumulated in the nucleus, and since SR45 specifically recognizes this intron, it has been argued that such binding could induce pre-mRNA sequestration and splicing delay (Filichkin et al., 2015).

Though the current knowledge on the regulation of SR proteins is based on temperature fluctuations, there is some data about the specific modulation of SR proteins and hnRNP activity by cold stress. SR proteins, such as RSZ22, SCL30 and RS40, are crucial for cold acclimation and acquisition of freezing tolerance, hypothetically due to their interaction with the cold induced LAMMER KINASE AME3, the loss of which, intriguingly, leads to cold sensitivity (Rosembert, 2017).
It remains to be clarified, however, to what extent temperature cues impact the dynamics of individual SR proteins and hnRNPs, as well as their splice isoforms, through protein modifications. Approaching this scientific question, a detailed proteomic study on grape vines under heat stress was conducted and an overall tendency of increased SR protein phosphorylation was identified (Liu et al., 2019). More studies like the aforementioned one will most likely further corroborate the biological significance of the temperature specific modifications of these proteins.

STA1 ensures appropriate and rapid heat shock response

The previous sections have shown that the protein composition of the core spliceosome and other SFs, such as SR proteins are essential to the modulation of plant stress responses. Another layer of complexity is added to this through the binding of different accessory proteins to the snRNPs.

STABILIZED1 (STA1) is the plant homolog of yeast PRP6, which, among other functions, aids in U4/U6.U5 tri-snRNP assembly as well as activation of the spliceosome (Lee et al., 2006; Ben Chaabane et al., 2013; Dou et al., 2013; Bertram et al., 2017). Interestingly, the expression of STA1 is induced by both low and elevated ambient temperatures (Lee et al., 2006; Yu et al., 2016; Kim et al., 2017). In several heat treatments with different setups, sta1-1 mutants showed sensitivity to high temperature stress, depicting a dwarfed phenotype, shoot bleaching and overall increased lethality rates (Kim et al., 2017, 2018). The observed developmental defects could be connected to the mis-splicing of HSFA3 which was, presumably, not the only affected heat shock factor. Based on these results it was suggested that STA1 is an important factor in the establishment of heat stress tolerance in A. thaliana and is necessary for the high temperature induced splicing response (Kim et al., 2017, 2018). Though this indicates that STA1 is a putative component of the heat shock response, it was shown that some HSPs are spliced independently of STA1 (Kim et al., 2018). In the future it should be deciphered which other SFs are necessary for the splicing of heat responsive
genes in the absence of STA1. Furthermore, it is an interesting observation that both heat sensitive splicing mutants, *lsm5* and *sta1-1*, converge in their splicing defects of *HSFA3*, which could indicate a joint regulation of high temperature-dependent AS.

GEMIN2 stabilizes the circadian clock in cold stress

As described in the introduction, the full composition of the plant SMN complex remains yet to be identified. The splicing of GEMIN2, the only known component of the assembly complex in *A. thaliana* (Schlaen *et al.*, 2015), is temperature controlled: In control conditions a truncated isoform is produced, which is directed towards NMD, while the functional transcript is preferentially produced at cold temperatures (Neumann *et al.*, 2020). This is in line with the observation that *GEMIN2* expression is induced by cold ambient temperatures (Schlaen *et al.*, 2015). GEMIN2 has also been implicated with the regulation of the circadian clock: When the effects of temperature on the circadian rhythm in *gemin2* and wildtype plants were compared, it was shown that the reaction of the circadian clock to cold temperature is strongly enhanced in the mutant (Schlaen *et al.*, 2015). In wildtype plants, the circadian clock output is stably maintained despite temperature fluctuations, a process which is termed temperature compensation (Gil and Park, 2019). Thus, the obtained results indicate that GEMIN2 is necessary for cold temperature compensation, likely through the AS of core clock genes, like *TIMING OF CAB EXPRESSION1* or *PSEUDO-RESPONSE REGULATOR9 (PRR9)*. Furthermore, *gemin2* mutants are severely sensitive to cold ambient temperatures with increased lethality rates at 10 °C in comparison to wildtype (Schlaen *et al.*, 2015).

Interestingly, the transcriptome of wildtype plants grown in 10 °C overlaps strongly with the *gemin2-1* transcriptome under control conditions (Schlaen *et al.*, 2015). This raises the question of whether there are further regulatory elements controlling the GEMIN2-mediated cold response which are thus far unknown.
Temperature regulates the methylation of splicing proteins

A second essential component for correct snRNP assembly is the methylosome. So far, the only identified component of the methylosome in plants is PRMT5 (Pei et al., 2007), also referred to as SHK1 BINDING PROTEIN 1 or CALCIUM UNDERACCUMULATION 1.

PRMT5 plays an important role in several cellular processes, including the control of splicing under different environmental conditions (Sanchez et al., 2010; Ueda and Seki, 2020). For instance, it has been shown that PRMT5 regulates the splicing of PRR9 (Sanchez et al., 2010), which might constitute a possible link between GEMIN2 and PRMT5, to jointly regulate the splicing of core clock genes.

There are several indications that PRMT5 may affect processes involved in thermotolerance (Fu et al., 2013, 2018), for example calcium signaling and proline accumulation (Szabados and Savouré, 2010; Szepesi and Szőllősi, 2018; Yuan et al., 2018). For instance it has been shown that PRMT5 regulates the expression of CALCIUM SENSING RECEPTOR, which is important for drought tolerance (Fu et al., 2013) and presumably also cold temperature tolerance in Thellungiella (Wong et al., 2006). PRMT5 also negatively regulates the expression of the A. thaliana transcription factor ANAC055 under drought stress (Fu et al., 2018). ANAC055 is necessary for the induction of P5CS1 (Fu et al., 2018), one of two genes coding for the proline biosynthetic enzyme P5CS, which is strongly induced under cold stress in A. thaliana (Ren et al., 2018). Intriguingly, it has been shown that the AS of P5CS1 is mostly associated with diurnal temperature variations (Kesari et al., 2012), further stressing on the importance of its regulation by temperature-dependent AS.

Furthermore, PRMT5 has been proven to play a significant role in flowering time control: prmt5 mutants are late flowering, due to reduced histone methylation at the FLOWERING LOCUS C (FLC) promoter, resulting in its upregulation (Pei et al., 2007; Wang et al., 2007; Schmitz et al., 2008; Hernando et al., 2015). Even after vernalization, the epigenetic silencing of FLC is not stable in the
prmt5 mutant, further indicating the importance of PRMT5 for temperature-dependent developmental transitions (Schmitz *et al.*, 2008).

Intriguingly, under salt stress PRMT5 dissociates from the *FLC* locus, thus allowing its expression, and instead mediates the methylation of LSM4, constituting a link between transcription control and RNA processing. Curiously, the *lsm4* mutant, much like the *prmt5* mutant, is salt sensitive (Zhang *et al.*, 2011).

Another putative component of the plant methylosome, AtICln, has been reported, based on the findings of a chemical genetics suppressor screen of *chilling sensitive 3* (*chs3*). In this screen, a potent suppressor molecule of the *chs3* phenotype was identified. The cold sensitive phenotype was restored by the loss of *aticln* in the *chs3* background (Huang *et al.*, 2016b). Since AtICln is the homologue of the human pICln, a known component of the methylosome, its interaction with the plant counterparts of this complex was tested. The result of a co-immunoprecipitation assay showed that AtICln forms a complex with PRMT5 and SmD3b, thus providing an indirect indication of its association to the methylosome (Huang *et al.*, 2016b).

Furthermore, a more recent study has shown that AtICln is important for plant tolerance to osmotic stress, in addition to also being central to nitrate ion accumulation (Chu *et al.*, 2021). According to the observations of both studies, AtICln subcellular localization and the molecular function seem to diverge depending on the environmental conditions (Huang *et al.*, 2016b; Chu *et al.*, 2021), however further research and experimental data is required to further clarify the function of *AtICln* with the hopes of confirming its role in the plant methylosome.

As explained in the introduction, snRNP assembly is initiated in the cytosol before the complex is transported to the nucleus where it performs its function (Fig. 1). This import process depends on snRNA 5’ cap hypermethylation by TGS1 and presumably on nuclear import by AtKPNB1, the homologue of the human *IMPORTIN SUBUNIT BETA-1* (Ohtani, 2018). Interestingly, TGS1 and
AtKPBN1 have been reported to play a role in cold tolerance, and response to ABA and drought tolerance, respectively (Luo et al., 2013; Gao et al., 2017). Together these results suggest that the nuclear import of the snRNPs may be affected by temperature, thus indicating a putative additional layer of regulation.

SKIP regulates the splicing of clock genes

As described above, the MOS4-associated complex plays a central role in the splicing reaction. It encompasses a large number of proteins which are also implicated in other biological processes, however, due to the lack of data, it is difficult to differentiate the functions of the complex from those of its separate protein parts.

MAC3A and MAC3B (MOS4-associated complex 3A/B) are functionally redundant plant proteins which have so far mostly been studied for their role in miRNA biogenesis and plant immunity (Monaghan et al., 2009; Li et al., 2018). They co-immunoprecipitate with both, SmB, and the evolutionary conserved SNW/SKI INTERACTING PROTEIN (SKIP) that is associated to the spliceosome through its interaction with SR45 (Wang et al., 2012; Li et al., 2016, 2019; Cao and Ma, 2019).

SKIP appears to have retained its function as a temperature regulator in various organisms. In rice it has been shown that SKIP is induced by cold ambient temperatures, drought, and high salinity (Hou et al., 2009) whereas in yeast, the loss of the SKIP homolog PRP45 causes a high temperature-sensitive phenotype (Gahura et al., 2009). In A. thaliana, SKIP was shown to play a role in the temperature-dependent regulation of the circadian rhythm, as well as tolerance to salt and drought stress (Wang et al., 2012; Feng et al., 2015a). The observed salt and drought sensitivity of SKIP mutants was linked to the mis-splicing of several salt-stress responsive genes, including CALCINEURIN B–like, P5CS1 and RC12A (Feng et al., 2015a), which have been implicated in cold and freezing tolerance (Medina et al., 2001; Cheong et al., 2003; Sivankalyani et al., 2015; Ren et al.,...
Intriguingly, the expression of P5CS1 is also regulated by PRMT5, and RC12A is mis-spliced in the Ism5 mutant, suggesting that these genes are strongly controlled by temperature-dependent AS.

Interestingly, skip, mac3a and mac3b all exhibit a period lengthening phenotype which could potentially be explained by the mis-splicing of the clock genes PRR7 and PRR9 (Li et al., 2019), which are essential for the temperature compensation of the circadian clock (Salomé and McClung, 2005; Calixto et al., 2016). Additionally, the skip-1 allele displays an early flowering phenotype under different photoperiod and temperature conditions (Wang et al., 2012). This is presumably caused by a reduced expression of SERRATED LEAVES AND EARLY FLOWERING, an important component of chromatin remodeling (March-Díaz et al., 2007; Cui et al., 2017), which would result in fewer activating histone marks being deposited at the FLC locus (Cui et al., 2017).

SM-like family proteins assure appropriate cold stress response

As explained in the introduction, SM- and LSM proteins are core components of the spliceosome and are crucial for snRNP assembly and stability. Recently, the SmE1 protein, also referred to as PORCUPINE, has been implicated in cold temperature splicing (Capovilla et al., 2018; Huertas et al., 2019). Upon exposure to cold ambient temperatures, SME1 expression is induced, and the protein localizes to the nucleus (Huertas et al., 2019). The production of a functional SmE1 protein under cold temperatures is required for appropriate U1, U2, U4 and U5 snRNA accumulation (Huertas et al., 2019), and the loss of SME1 causes severe developmental defects at low ambient temperatures (Capovilla et al., 2018; Huertas et al., 2019). Interestingly, it seems that minimal deviations from the optimal growth temperature are sufficient to trigger a SmE1-dependent temperature response: While at 23 °C, the sme1 mutants look essentially like wildtype plants (Capovilla et al., 2018), at 20 °C the mutants develop smaller rosettes, twisted leaves, shorter roots and are early flowering (Huertas et al., 2019). The early flowering phenotype may be associated with the accumulation of
the class I isoform of COOLAIR, a long non-coding antisense RNA involved in FLC transcription (Huertas et al., 2019).

The SME1 homologue in two tomato cultivars is induced by cold temperatures (Chechanovsky et al., 2019). Likewise, the mutation of the yeast SME causes high temperature-sensitivity, and impairs the accumulation of U4 and U5 snRNAs (Camasses et al., 1998), indicating the evolutionary conservation of SmE1 function in temperature response.

Recently it has been shown that the LSM complex, and more specifically LSM8, plays an important role in plant cold acclimation and salt stress tolerance by maintaining splicing accuracy of specific stress responsive genes (Carrasco-López et al., 2017). The expression of LSM8 is induced by exposure to cold ambient temperatures, and its mutation causes a cold sensitive phenotype, with splicing defects enriched in IR (Carrasco-López et al., 2017). Moreover, the GC content and length of LSM8-targeted introns differ greatly between abiotic stress conditions (Carrasco-López et al., 2017; Catalá et al., 2019). A current hypothesis is that GC content and intron length could alter the secondary RNA structure, this way determining splice site accessibility after cold acclimation (Carrasco-López et al., 2017; Catalá et al., 2019).

Recently it was described that the function of LSM8 depends on its interaction with PREFOLDIN4 (PFD4), a putative adaptor between LSM8 and other proteins (Esteve-Bruna et al., 2020). Intriguingly, cold temperatures induce the expression of PFD4 as well as its localization to the nucleus, where it attenuates the accumulation of ELONGATED HYPOCOTYL5 (Perea-Resa et al., 2017), a key regulator of plant cold acclimation (Catalá et al., 2011). Furthermore, it was found that PFD4 is essential for functional splicing in cold temperatures, but not in control conditions, and that the splicing defects in pfd4 overlap with those found in lsm8-1 mutants (Esteve-Bruna et al., 2020).

Curiously, however, the loss of all of the above-mentioned factors induces increased freezing tolerance after cold acclimation (Perea-Resa et al., 2017; Carrasco-López et al., 2017; Huertas et al.,
Taken together this suggests that these proteins negatively regulate the plant cold acclimation response, and that at least PFD4 and LSM8 directly interact (Esteve-Bruna et al., 2020). This cold-induced binding of PFD4 to LSM8 also exemplifies the necessity to identify more interaction partners of the LSM family proteins to fully understand the complexity of temperature-dependent AS.

snRNP associated proteins are modulators of cold stress response

LETHAL UNLESS CBC7 (LUC7) is a U1 snRNP component, that carries a Ser/Arg-rich domain (Fortes et al., 1999). The A. thaliana genome codes for three LUC7 genes and loss of all copies results in salt and cold sensitivity (de Francisco Amorim et al., 2018). It has been shown that there are genes with LUC7-dependent introns, and that the splicing of these introns can be modulated by different abiotic stresses. Curiously, the loss of LUC7-mediated intron processing leads to the accumulation of IR transcripts, which could allow them to theoretically escape NMD through retention in the nucleus (de Francisco Amorim et al., 2018).

Since yeast luc7 mutants exhibit a high temperature-sensitive phenotype (Fortes et al., 1999) and the expression of the tomato homologue is induced in cold temperatures (Chechanovsky et al., 2019), it is reasonable to assume that LUC7 plays a conserved role in temperature response. Therefore, the biological function LUC7-dependent transcripts play in plant stress response in general, and temperature response in particular, should be investigated. Furthermore, a study of what functions the nuclear retained transcripts take on and how their turnover is regulated should also be conducted.

The RNA SPLICING FACTOR1 (SF1) is another protein that regulates the positioning of the spliceosome on the pre-mRNA. It recognizes the branch point and interacts with U2AF proteins, which recruits the U2 snRNP (Zhu et al., 2020). The interaction of SF1 with U2AF65A is noteworthy
(Zhu et al., 2020), since it exhibits temperature-dependent AS (Pajoro et al., 2017; Verhage et al., 2017; Cavallari et al., 2018; James et al., 2018). This mechanism seems to be evolutionarily conserved, as the orthologous gene in cauliflower is also alternatively spliced upon exposure to elevated temperatures (Verhage et al., 2017).

The sf1 mutant is dwarfed and exhibits paling leaves under cold stress (Zhu et al., 2020). Additionally, it was found that the sf1-2 allele exhibits an early flowering phenotype, irrespective of the growth temperature (16 °C, 23 °C or 27°C), which could be linked to the significantly decreased FLOWERING LOCUS M-β (FLM-β) expression observed (Lee et al., 2020). FLM-β, the predominant splice form at low ambient temperatures, has been determined to play a major role in the control of floral transition (Posé et al., 2013; Lee et al., 2013). Intriguingly, an amino acid substitution at position 104 in yeast SF1 also leads to cold temperature-sensitivity (Zhu et al., 2020).

As mentioned before, U4/U6.U5 tri-snRNP assembly is regulated by STA1 at elevated temperatures. Intriguingly, expression of STA1, which is required for the appropriate splicing of COLD REGULATED 15A (COR15A), is induced gradually within 72h under chilling conditions (Yu et al., 2016), and sta1-1 seedlings die after prolonged exposure to chilling stress (Lee et al., 2006). STA1 also interacts with PRP31, an additional factor for U4/U6.U5 tri-snRNP assembly. Recently it was shown that PRP31 plays an important role in the pre-mRNA splicing and gene expression of cold responsive genes, and that the loss of PRP31 leads to severe chilling stress sensitivity (Du et al., 2015).

In summary, these reports indicate that splice site recognition, as well as snRNP complex assembly, are temperature-regulated and needed for correct pre-mRNA processing under stress conditions (Fig. 2). In the future it will be interesting to assess how these SFs contribute to temperature sensing and stress tolerance establishment.
Conclusions and future perspectives

Various studies have shown that alternative splicing is a central mechanism of stress responses in plants, ensuring physiological flexibility and mediating the integration of various environmental stimuli (Fig. 2). We are, however, very far from fully understanding the underlying principles of this network. Though some detailed studies about temperature-dependent regulation of splicing have been discussed in this review, they hardly begin to capture the full complexity of temperature-regulated alternative splicing in plants. In this review we focused on discussing the role of core components and selected associated factors of the splicing machinery in regulating temperature-dependent plant growth and development. However, it is important to note that numerous other proteins have been implicated in temperature-dependent AS. Details regarding the role of these factors in mediating AS in response to temperature are often lacking, and we therefore, and due to space limitations, refrained from discussing them in detail. In summary it can be concluded that, while numerous reports on individual factors demonstrate the importance of temperature-dependent AS, systematic studies of AS and its role in plant acclimation and phenotypic plasticity are lacking. Clearly, a concerted effort is needed to incorporate the existing data into a more complete picture of the temperature-regulated AS process and to fill the gaps in our knowledge.

While the currently available data indicates that alternative splicing overlaps, at least partially, with known regulators of temperature signaling pathways, this information is insufficient to identify the core nodes which draw these two processes together. This leaves the question whether temperature responsiveness is a general characteristic of certain splicing-related protein families or rather of individual splicing factors unanswered. Addressing this question is not a trivial matter, since splicing factors can associate with multiple different protein complexes depending on their localization and environmental stimuli. Thus, it is necessary to uncover the dynamical spliceosome composition by
collecting data about the splicing interactome, for example through stress specific gene and protein interaction networks.

Moreover, it is not possible to understand the alternative splicing process and its role in plant temperature response without taking evolutionary aspects into account. For instance, several studies have already given an indication for a link between alternative splicing in different A. thaliana accessions and their ecological distribution (Kesari et al., 2012; Wang et al., 2018; Hanemian et al., 2020). Hence, temperature-dependent alternative splicing seems to be strongly associated to plant fitness. Future studies will be of great value in improving our understanding of plant temperature response with potential applications in improving crop yields as well as mitigating climate change.
Acknowledgement

We thank Francisco Barboza and Ruben Benstein for critical comments on the manuscript, and John Walden for help with language editing. Figures were created with BioRender.com. Work of the Schmid group on the role of splicing in plant growth and development is funded by the Knut och Alice Wallenbergs Stiftelse (KAW 2018.0202) to MS.

Author contributions

VD, NEA and MS devised the review. VD and NEA wrote the main manuscript with contributions from MS. VD and NEA created the summary Fig. 2. DG, SMN and NRM and provided comments on the manuscript. DG, SMN and NRM devised and created Fig. 1, the boxes and the summary table, with contributions from VD and NEA. VD, NEA and MS reviewed and edited the final version of the manuscript.
References

Ali GS, Golovkin M, Reddy ASN. 2003. Nuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein. Plant Journal 36, 883–893.

de Almeida RA, O’Keefe RT. 2015. The NineTeen Complex (NTC) and NTC-associated proteins as targets for spliceosomal ATPase action during pre-mRNA splicing. RNA Biology 12, 109–114.

Baralle M, Baralle FE. 2018. The splicing code. BioSystems 164, 39–48.

Barbosa-Morais NL, Irimia M, Pan Q, et al. 2012. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593.

Bäurle I, Trindade I. 2020. Chromatin regulation of somatic abiotic stress memory. Journal of Experimental Botany 71, 5269–5279.

Berget SM, Moore C, Sharp PA. 1977. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Proceedings of the National Academy of Sciences of the United States of America 74, 3171–3175.

Bertram K, Agafonov DE, Dybkov O, Haselbach D, Leelaram MN, Will CL, Urlaub H, Kastner B, Lührmann R, Stark H. 2017. Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Cell 170, 701-713.e11.

Brahms H, Meheus L, De Brabandere V, Fischer U, Lührmann R. 2001. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7, 1531–1542.

Buccitelli C, Selbach M. 2020. mRNAs, proteins and the emerging principles of gene expression control. Nature Reviews Genetics 21, 630–644.

Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo HG, Zhang R, Brown JWS. 2018. Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome. Plant Cell 30, 1424–1444.

Calixto CPG, Simpson CG, Waugh R, Brown JWS. 2016. Alternative splicing of barley clock genes in response to low temperature (E Buratti, Ed.). PLoS ONE 11, e0168028.

Camasses A, Bragado-Nilsson E, Martin R, Séraphin B, Bordonné R. 1998. Interactions within the Yeast Sm Core Complex: from Proteins to Amino Acids. Molecular and Cellular Biology 18, 1956–1966.

Cao Y, Ma L. 2019. To Splice or to Transcribe: SKIP-Mediated Environmental Fitness and Development in Plants. Frontiers in Plant Science 10, 1222.

Capovilla G, Delhomme N, Collani S, Shutava I, Bezrukov I, Symeonidi E, de Francisco Amorim M, Laubinger S, Schmid M. 2018. PORCUPINE regulates development in response to temperature through alternative splicing. Nature Plants 4, 534–539.

Capovilla G, Symeonidi E, Wu R, Schmid M. 2017. Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. Journal of Experimental Botany 68, 5117–5127.
Carrasco-López C, Hernández-Verdeja T, Perea-Resa C, Abia D, Catalá R, Salinas J. 2017. Environment-dependent regulation of spliceosome activity by the LSM2-8 complex in Arabidopsis. Nucleic Acids Research 45, 7416–7431.

Casal JJ, Balasubramanian S. 2019. Thermomorphogenesis. Annual Review of Plant Biology 70, 321–346.

Catalá R, Carrasco-López C, Perea-Resa C, Hernández-Verdeja T, Salinas J. 2019. Emerging Roles of LSM Complexes in Posttranscriptional Regulation of Plant Response to Abiotic Stress. Frontiers in Plant Science 10, 167.

Catalá R, Medina J, Salinas J. 2011. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108, 16475–16480.

Catalá R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J. 2003. Mutations in the Ca 2 + /H + Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis. Plant Cell 15, 2940–2951.

Cavallari N, Nibau C, Fuchs A, Dadarou D, Barta A, Doonan JH. 2018. The cyclin-dependent kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A. Plant Journal 94, 1010–1022.

Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH, Kim SY, Yang SW, Lee BH. 2013. STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Research 41, 1984–1997.

Chamala S, Feng G, Chavarro C, Babarzuk WB. 2015. Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants. Frontiers in Bioengineering and Biotechnology 3, 33.

Chanarat S, Sträßer K. 2013. Splicing and beyond: The many faces of the Prp19 complex. Biochimica et Biophysica Acta - Molecular Cell Research 1833, 2126–2134.

Chari A, Golas MM, Klingenhäuser M, Neukenkirchen N, Sander B, Englbrecht C, Sickmann A, Stark H, Fischer U. 2008. An Assembly Chaperone Collaborates with the SMN Complex to Generate Spliceosomal SnRNPs. Cell 135, 497–509.

Chaudhary S, Khokhar W, Jabre I, Reddy ASN, Byrne LJ, Wilson CM, Syed NH. 2019. Alternative splicing and protein diversity: Plants versus animals. Frontiers in Plant Science 10, 708.

Chaudhury A, Chander P, Howe PH. 2010. Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: Focus on hnRNP E1’s multifunctional regulatory roles. RNA 16, 1449–1462.

Chechanovsky N, Hovav R, Frenkel R, Faigenboim A, Eselson Y, Petreikov M, Moy M, Shen S, Schaffer AA. 2019. Low temperature upregulates cwp expression and modifies alternative splicing patterns, increasing the severity of cwp-induced tomato fruit cuticular microfissures. Horticulture Research 6, 122.

Chen HC, Cheng SC. 2012. Functional roles of protein splicing factors. Bioscience Reports 32, 345–359.

Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S. 2003. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15, 1833–1845.
Chow LT, Gelinas RE, Broker TR, Roberts RJ. 1977. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8.

Chu M, Wang Y, Mu B, Ge H, Zhang C, Zhao F, Fu A, Luan S, Li L, Lan W. 2021. An ICln homolog contributes to osmotic and low-nitrate tolerance by enhancing nitrate accumulation in Arabidopsis. Plant Cell and Environment 1, pce.14005.

Cui Z, Tong A, Huo Y, Yan Z, Yang W, Yang X, Wang XX. 2017. SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis. BMC Biology 15, 80.

Cui P, Zhang S, Ding F, Ali S, Xiong L. 2014. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis. Genome Biology 15, R1.

Czolpinska M, Rurek M. 2018. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story. Frontiers in Plant Science 9, 302.

Dai Vu L, Xu X, Gevaert K, de Smet I. 2019. Developmental plasticity at high temperature. Plant Physiology 181, 399–411.

Deng X, Gu L, Liu C, et al. 2010. Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proceedings of the National Academy of Sciences of the United States of America 107, 19114–19119.

Didychuk AL, Butcher SE, Brow DA. 2018. The life of U6 small nuclear RNA, from cradle to grave. RNA 24, 437–460.

Ding Y, Shi Y, Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Plantologist 222, 1690–1704.

Dou K, Huang CF, Ma ZY, Zhang CJ, Zhou JX, Huang HW, Cai T, Tang K, Zhu JK, He XJ. 2013. The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs. Nucleic Acids Research 41, 8489–8502.

Du JL, Zhang SW, Huang HW, Cai T, Li L, Chen S, He XJ. 2015. The Splicing Factor PRP31 Is Involved in Transcriptional Gene Silencing and Stress Response in Arabidopsis. Molecular Plant 8, 1053–1068.

Eremina M, Rozhon W, Poppenberger B. 2016. Hormonal control of cold stress responses in plants. Cellular and Molecular Life Sciences 73, 797–810.

Erkelenz S, Mueller WF, Evans MS, Busch A, Schöneweis K, Hertel KJ, Schaal H. 2013. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA 19, 96–102.

Esteve-Bruna D, Carrasco-López C, Blanco-Touriñán N, et al. 2020. Prefoldins contribute to maintaining the levels of the spliceosome LSM2-8 complex through Hsp90 in Arabidopsis. Nucleic Acids Research 48, 6280–6293.

Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, Urlaub H, Lührmann R. 2009. The Evolutionarily Conserved Core Design of the Catalytic Activation Step of the Yeast Spliceosome. Molecular Cell 36, 593–608.

Feng J, Li J, Gao Z, et al. 2015a. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis. Molecular Plant 8, 1038–1052.
Feng Q, Snider L, Jagannathan S, Tawil R, van der Maarel SM, Tapscott SJ, Bradley RK. 2015b. A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy. eLife 2015, 4996.

Filichkin SA, Cumbie JS, Dharmawardhana P, Jaiswal P, Chang JH, Palusa SG, Reddy ASN, Megraw M, Mockler TC. 2015. Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis. Molecular Plant 8, 207–227.

Fiszbein A, Kornblihtt AR. 2017. Alternative splicing switches: Important players in cell differentiation. BioEssays 39, 1600157.

Fortes P, Bilbao-Cortes D, Fornerod M, Rigaut G, Raymond W, Seraphin B, Mattaj IW. 1999. Luc7p, a novel yeast U1 snRNP protein with a role in 5′ splice site recognition. Genes & Development 13, 2425–2438.

de Francisco Amorim M, Willing EM, Szabo EX, Francisco-Mangilet AG, Droste-Borel J, Maček B, Schneeberger K, Laubinger S. 2018. The U1 snRNP subunit LUC7 modulates plant development and stress responses via regulation of alternative splicing. Plant Cell 30, 2838–2854.

Frey K, Pucker B. 2020. Animal, Fungi, and Plant Genome Sequences Harbor Different Non-Canonical Splice Sites. Cells 9, 458.

Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G. 2001. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Molecular Cell 7, 1111–1117.

Fu XD. 2014. Non-coding RNA: A new frontier in regulatory biology. National Science Review 1, 190–204.

Fu Y, Ma H, Chen S, Gu T, Gong J. 2018. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. Journal of Experimental Botany 69, 579–588.

Fu YL, Zhang G Bin, Lv XF, Guan Y, Yi HY, Gong JM. 2013. Arabidopsis histone methylase CAU1/PRMT5/SKB1 acts as an epigenetic suppressor of the calcium signaling gene cas to mediate stomatal closure in response to extracellular calcium. Plant Cell 25, 2878–2891.

Fürtauer L, Weiszmann J, Weckwerth W, Nägele T. 2019. Dynamics of plant metabolism during cold acclimation. International Journal of Molecular Sciences 20, 5411.

Gahura O, Abrhamová K, Skružňý M, Valentová A, Munzarová V, Folk P, Půta F. 2009. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. Journal of Céllular Biochemistry 106, 139–151.

Gao J, Wallis JG, Jewell JB, Browse J. 2017. Trimethylguanosine synthase1 (TGS1) is essential for chilling tolerance. Plant Physiology 174, 1713–1727.

Gil KE, Park CM. 2019. Thermal adaptation and plasticity of the plant circadian clock. New Phytologist 221, 1215–1229.

Gilbert W. 1978. Why genes in pieces? Nature 271, 501.
Girard C, Will CL, Peng J, Makarov EM, Kastner B, Lemm I, Urlaub H, Hartmuth K, Luhrmann R. 2012. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nature Communications 3, 1–12.

Godoy Herz MA, Kornblihtt AR. 2019. Alternative Splicing and Transcription Elongation in Plants. Frontiers in Plant Science 10, 309.

Godoy Herz MA, Kubaczka MG, Brzyżek G, Servi L, Krzysztton M, Simpson C, Brown J, Swiezewski S, Petrillo E, Kornblihtt AR. 2019. Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation. Molecular Cell 73, 1066-1074.e3.

Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG. 2007. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. Journal of Cell Biology 178, 733–740.

Grimm C, Chari A, Pelz JP, Kuper J, Kisker C, Diederichs K, Stark H, Schindelin H, Fischer U. 2013. Structural Basis of Assembly Chaperone-Mediated snRNP Formation. Molecular Cell 49, 692–703.

Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J. 2013. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25, 342–356.

Guo X, Liu D, Chong K. 2018. Cold signaling in plants: Insights into mechanisms and regulation. Journal of Integrative Plant Biology 60, 745–756.

Hall SL, Padgett RA. 1996. Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science 271, 1716–1718.

Han J, Xiong J, Wang D, Fu XD. 2011. Pre-mRNA splicing: Where and when in the nucleus. Trends in Cell Biology 21, 336–343.

Hanemian M, Vasseur F, Marchadier E, Gilbault E, Bresson J, Gy I, Violle C, Loudet O. 2020. Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana. Nature Communications 11, 4140.

Hasenson SE, Shav-Tal Y. 2020. Speculating on the Roles of Nuclear Speckles: How RNA-Protein Nuclear Assemblies Affect Gene Expression. BioEssays 42, 2000104.

Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA. 2021. Hot topic: Thermosensing in plants. Plant, Cell & Environment, pce.13979.

Hernando CE, Sanchez SE, Mancini E, Yanovsky MJ. 2015. Genome wide comparative analysis of the effects of PRMT5 and PRMT4/CARM1 arginine methyltransferases on the Arabidopsis thaliana transcriptome. BMC Genomics 16, 192.

Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. 2017. Splicing and transcription touch base: Co-transcriptional spliceosome assembly and function. Nature Reviews Molecular Cell Biology 18, 637–650.

Hou X, Xie K, Yao J, Qi Z, Xiong L. 2009. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proceedings of the National Academy of Sciences of the United States of America 106, 6410–6415.
Howles PA, Gebbie LK, Collings DA, Varsani A, Broad RC, Ohms S, Birch RJ, Cork AH, Arioli T, Williamson RE. 2016. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana. Plant Molecular Biology 91, 1–13.

Huang CK, Shen YL, Huang LF, Wu SJ, Yeh CH, Lu CA. 2016a. The DEAD-box RNA helicase AtRH7/PRH75 participates in pre-rRNA processing, plant development and cold tolerance in Arabidopsis. Plant and Cell Physiology 57, 174–191.

Huang S, Balgi A, Pan Y, Li M, Zhang X, Du L, Zhou M, Roberge M, Li X. 2016b. Identification of Methylosome Components as Negative Regulators of Plant Immunity Using Chemical Genetics. Molecular Plant 9, 1620–1633.

Huber J, Cronshagen U, Kadokura M, Marshallsay C, Wada T, Sekine M, Lührmann R. 1998. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO Journal 17, 4114–4126.

Huelga SC, Vu AQ, Arnold JD, et al. 2012. Integrative Genome-wide Analysis Reveals Cooperative Regulation of Alternative Splicing by hnRNP Proteins. Cell Reports 1, 167–178.

Huertas R, Catalá R, Jiménez-Gómez JM, Castellano MM, Crevillén P, Piñeiro M, Jarillo JA, Salinas J. 2019. Arabidopsis SME1 regulates plant development and response to abiotic stress by determining spliceosome activity Specificity. Plant Cell 31, 537–554.

Irimia M, Roy SW. 2014. Origin of spliceosomal introns and alternative splicing. Cold Spring Harbor Perspectives in Biology 6, 16071–16072.

Jády BE, Darzacq X, Tucker KE, Gregory Matera A, Bertrand E, Kiss T. 2003. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO Journal 22, 1878–1888.

James AB, Calixto CPG, Tzioutziou NA, Guo W, Zhang R, Simpson CG, Jiang W, Nimmo GA, Brown JWS, Nimmo HG. 2018. How does temperature affect splicing events? Isoform switching of splicing factors regulates splicing of LATE ELONGATED HYPOCOTYL (LHY). Plant Cell and Environment 41, 1539–1550.

James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, Jenkins GI, Herzyk P, Brown JWS, Nimmo HG. 2012. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24, 961–981.

Jia J, Long Y, Zhang H, et al. 2020. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nature Plants 6, 780–788.

Jin H, Lin J, Zhu Z. 2020. PIF4 and HOOKLESS1 Impinge on Common Transcriptome and Isoform Regulation in Thermomorphogenesis. Plant Communications 1, 100034.

Johnson KCM, Dong OX, Li X. 2011. The evolutionarily conserved MOS4-associated complex. Central European Journal of Biology 6, 776–784.

Jurica MS, Moore MJ. 2003. Pre-mRNA Splicing. Molecular Cell 12, 5–14.

Kannan S, Halter G, Renner T, Waters ER. 2018. Patterns of alternative splicing vary between species during heat stress. AoB PLANTS 10, ply013.
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. 2013. Function of alternative splicing. Gene 514, 1–30.

Kervestin S, Jacobson A. 2012. NMD: A multifaceted response to premature translational termination. Nature Reviews Molecular Cell Biology 13, 700–712.

Kesari R, Lasky JR, Villamor JG, Des Marais DL, Chen YJ, Liu TW, Lin W, Juenger TE, Verslues PE. 2012. Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proceedings of the National Academy of Sciences of the United States of America 109, 9197–9202.

Kim GD, Cho YH, Lee BH, Yoo SD. 2017. STABILIZED1 modulates pre-mRNA splicing for thermotolerance. Plant Physiology 173, 2370–2382.

Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H. 2008. Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant Journal 55, 455–466.

Kim G-D, Yoo S-D, Cho Y-H. 2018. STABILIZED1 as a heat stress-specific splicing factor in Arabidopsis thaliana. Plant Signaling & Behavior 13, e1432955.

Kindgren P, Ivanov M, Marquardt S. 2020. Native elongation transcript sequencing reveals temperature dependent dynamics of nascent RNAPII transcription in Arabidopsis. Nucleic Acids Research 48, 2332–2347.

Kreivi JP, Lamond AI. 1996. RNA splicing: Unexpected spliceosome diversity. Current Biology 6, 802–805.

Laloum T, Martín G, Duque P. 2018. Alternative Splicing Control of Abiotic Stress Responses. Trends in Plant Science 23, 140–150.

Lamers J, Der Meer T Van, Testerink C. 2020. How plants sense and respond to stressful environments. Plant Physiology 182, 1624–1635.

Lamond AI, Spector DL. 2003. Nuclear speckles: A model for nuclear organelles. Nature Reviews Molecular Cell Biology 4, 605–612.

Lareau LF, Brenner SE. 2015. Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible. Molecular Biology and Evolution 32, 1072–1079.

Lee KC, Chung KS, Lee HT, Park J-H, Lee JH, Kim J-K. 2020. Role of Arabidopsis Splicing factor SF1 in Temperature-Responsive Alternative Splicing of FLM pre-mRNA. Frontiers in Plant Science 11, 1917.

Lee B, Kapoor A, Zhu J, Zhu J-K. 2006. STABILIZED1, a Stress-Upregulated Nuclear Protein, Is Required for Pre-mRNA Splicing, mRNA Turnover, and Stress Tolerance in Arabidopsis. Plant Cell 18, 1736–1749.

Lee JH, Ryu HS, Chung KS, Posé D, Kim S, Schmid M, Ahn JH. 2013. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342, 628–632.

Lerner MR, Argetsinger Steitz J. 1979. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America 76, 5495–5499.
Leuendorf JE, Frank M, Schmülling T. 2020. Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Scientific Reports 10, 689.

Lewis BP, Green RE, Brenner SE. 2003. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proceedings of the National Academy of Sciences of the United States of America 100, 189–192.

Li S, Liu K, Zhou B, Li M, Zhang S, Zeng L, Zhang C, Yu B. 2018. MAC3A and MAC3B, two core subunits of the MOS4-associated complex, positively influence miRNA biogenesis. Plant Cell 30, 481–494.

Li Y, Xia C, Feng J, Yang D, Wu F, Cao Y, Li L, Ma L. 2016. The SNW Domain of SKIP Is Required for Its Integration into the Spliceosome and Its Interaction with the Paf1 Complex in Arabidopsis. Molecular Plant 9, 1040–1050.

Li Y, Yang J, Shang X, et al. 2019. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. New Phytologist 224, 321–335.

Liao SE, Regev O. 2021. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Research 49, 636–645.

Ling Z, Brockmöller T, Baldwin IT, Xu S. 2019. Evolution of alternative splicing in eudicots. Frontiers in Plant Science 10, 1–18.

Ling Y, Serrano N, Gao G, et al. 2018. Thermopriming triggers splicing memory in Arabidopsis. Journal of Experimental Botany 69, 2659–2675.

Liu G-T, Jiang J-F, Liu X-N, et al. 2019. New insights into the heat responses of grape leaves via combined phosphoproteomic and acetylproteomic analyses. Horticulture Research 6, 100.

Liu Y, Tabata D, Imai R. 2016. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature (M Uemura, Ed.). PLOS ONE 11, e0154040.

Lodish H, Berk A, Zipursky SL, Baltimore D, Darnell J. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 11.6, Processing of rRNA and tRNA.

Long JC, Caceres JF. 2009. The SR protein family of splicing factors: Master regulators of gene expression. Biochemical Journal 417, 15–27.

López MD, Alm Rosenblad M, Samuelsson T. 2008. Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components. Nucleic Acids Research 36, 3001–3010.

Luco RF, Allo M, Schor IE, Kornblhttt AR, Misteli T. 2011. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26.

Luo Y, Wang Z, Ji H, Fang H, Wang S, Tian L, Li X. 2013. An Arabidopsis homolog of importin β1 is required for ABA response and drought tolerance. Plant Journal 75, 377–389.

Maki R, Roeder W, Traunecker A, Sidman C, Wabl M, Raschke W, Tonegawa S. 1981. The role of DNA rearrangement and alternative RNA processing in the expression of immunoglobulin delta genes. Cell 24, 353–365.

Maldonado-Bonilla LD. 2014. Composition and function of P bodies in Arabidopsis thaliana. Frontiers in Plant Science 5, 201.
March-Díaz R, García-Domínguez M, Florencio FJ, Reyes JC. 2007. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. Plant Physiology 143, 893–901.

Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C. 2014. Functional Consequences of Splicing of the Antisense Transcript COOLAIR on FLC Transcription. Molecular Cell 54, 156–165.

Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M. 2012. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Research 22, 1184–1195.

Marshall CM, Tartaglio V, Duarte M, Harmon FG. 2016. The Arabidopsis sickle mutant exhibits altered circadian clock responses to cool temperatures and temperature-dependent alternative splicing. Plant Cell 28, 2560–2575.

Martín G, Márquez Y, Mantica F, Duque P, Irimia M. 2021. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biology 22, 35.

Massenet S, Pellizzoni L, Paushkin S, Mattaj IW, Dreyfuss G. 2002. The SMN Complex Is Associated with snRNPs throughout Their Cytoplasmic Assembly Pathway. Molecular and Cellular Biology 22, 6533–6541.

Mastrangelo AM, Marone D, Laidò G, De Leonidis AM, De Vita P. 2012. Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity. Plant Science 185–186, 40–49.

Matera AG, Wang Z. 2014. A day in the life of the spliceosome. Nature Reviews Molecular Cell Biology 15, 108–121.

McGuire AM, Pearson MD, Neafsey DE, Galagan JE. 2008. Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biology 9, R50.

Medina J, Catalá R, Salinas J. 2001. Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiology 125, 1655–1666.

Mei W, Boatwright L, Feng G, Schnable JC, Brad Barbazuk W. 2017. Evolutionarily conserved alternative splicing across monocots. Genetics 207, 465–480.

Melo JP, Kalyna M, Duque P. 2020. Current Challenges in Studying Alternative Splicing in Plants: The Case of Physcomitrella patens SR Proteins. Frontiers in Plant Science 11, 286.

Merrick J, Russell C, Chen P, Burge CB. 2012. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599.

Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in Biochemical Sciences 37, 118–125.

Monaghan J, Xu F, Gao M, Zhao Q, Palma K, Long C, Chen S, Zhang Y, Li X. 2009. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity (JL Dangl, Ed.). PLoS Pathogens 5, e1000526.

Montemayor EJ, Virta JM, Hayes SM, Nomura Y, Brow DA, Butcher SE. 2020. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes. RNA 26, 1400–1413.

Morton M, AlTamimi N, But H, Reddy ASN, Mahfouz M. 2019. Serine/Arginine-rich protein family of splicing regulators: New approaches to study splice isoform functions. Plant Science 283, 127–134.
Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonné R. 2002. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Molecular Cell 9, 891–901.

Naftelberg S, Schor IE, Ast G, Kornbluth AR. 2015. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annual Review of Biochemistry 84, 165–198.

Neumann A, Meinke S, Goldammer G, Strauch M, Schubert D, Timmermann B, Heyd F, Preußner M. 2020. Alternative splicing coupled mRNA decay shapes the temperature-dependent transcriptome. EMBO Reports 21, e51369.

Nguyen CC, Nakaminami K, Matsu A, Kobayashi S, Kurihara Y, Toyooka K, Tanaka M, Seki M. 2016. Oligouridylate binding protein 1b plays an integral role in plant heat stress tolerance. Frontiers in Plant Science 7, 1–9.

Nylander M, Heino P, Helenius E, Tapio Palva E, Ronne H, V. Welin B. 2001. The low-temperature- and salt-induced RCI2A gene of Arabidopsis complements the sodium sensitivity caused by a deletion of the homologous yeast gene SNA1. Plant Molecular Biology 45, 341–352.

Ohtani M. 2018. Plant snRNP Biogenesis: A Perspective from the Nucleolus and Cajal Bodies. Frontiers in Plant Science 8, 2184.

Ohtani M, Demura T, Sugiyama M. 2013. Arabidopsis root initiation defective1, a DEAH-box RNA helicase involved in pre-mRNA splicing, is essential for plant development. Plant Cell 25, 2056–2069.

Okamoto M, Matsu A, Tanaka M, Morosawa T, Ishida J, Iida K, Mochizuki Y, Toyoda T, Seki M. 2016. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis. Frontiers in Plant Science 7, 1079.

Pajoro A, Severing E, Angenent GC, Immink RGH. 2017. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biology 18, 102.

Palacios I. 1997. Nuclear import of U snRNPs requires importin beta. The EMBO Journal 16, 6783–6792.

Palusa SG, Ali GS, Reddy ASN. 2007. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: Regulation by hormones and stresses. Plant Journal 49, 1091–1107.

Patel SB, Bellini M. 2008. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Research 36, 6482–6493.

Patel AA, Steitz JA. 2003. Splicing double: Insights from the second spliceosome. Nature Reviews Molecular Cell Biology 4, 960–970.

Pei Y, Niu L, Lu F, Liu C, Zhai J, Kong X, Cao X. 2007. Mutations in the type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis. Plant Physiology 144, 1913–1923.

Perea-Resa C, Hernández-Verdeja T, López-Cobollo R, Castellano M del M, Salinas J. 2012. LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development. Plant Cell 24, 4930–4947.
Perea-Resa C, Rodríguez-Milla MA, Iniesto E, Rubio V, Salinas J. 2017. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Molecular Plant 10, 791–804.

Pere-Santángelo S, Mancini E, Francey LJ, Schlaen RG, Chernomoretz A, Hogenesch JB, Yanovsky MJ. 2014. Role for LSM genes in the regulation of circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America 111, 15166–15171.

Plessel G, Fischer U, Lührmann R. 1994. m3G cap hypermethylation of U1 small nuclear ribonucleoprotein (snRNP) in vitro: evidence that the U1 small nuclear RNA-(guanosine-N2)-methyltransferase is a non-snRNP cytoplasmic protein that requires a binding site on the Sm core domain. Molecular and Cellular Biology 14, 4160–4172.

Posé D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RGH, Schmid M. 2013. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503, 414–417.

Preußner M, Goldammer G, Neumann A, Haltenhof T, Rautenstrauch P, Müller-Menicoll M, Heyd F. 2017. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals. Molecular Cell 67, 433-446.e4.

Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, Van Zanten M. 2016. Molecular and genetic control of plant thermomorphogenesis. Nature Plants 2, 1–9.

Raker VA, Plessel G, Lührmann R. 1996. The snRNP core assembly pathway: Identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO Journal 15, 2256–2269.

Reddy ASN, Day IS, Göhring J, Barta A. 2012a. Localization and Dynamics of Nuclear Speckles in Plants. Plant Physiology 158, 67–77.

Reddy ASN, Marquez Y, Kalyna M, Barta A. 2013. Complexity of the alternative splicing landscape in plants. Plant Cell 25, 3657–3683.

Reddy ASN, Rogers MF, Richardson DN, Hamilton M, Ben-Hur A. 2012b. Deciphering the Plant Splicing Code: Experimental and Computational Approaches for Predicting Alternative Splicing and Splicing Regulatory Elements. Frontiers in Plant Science 3, 18.

Ren Y, Miao M, Meng Y, Cao J, Fan T, Yue J, Xiao F, Liu Y, Cao S. 2018. DFR1-Mediated Inhibition of Proline Degradation Pathway Regulates Drought and Freezing Tolerance in Arabidopsis. Cell Reports 23, 3960–3974.

Rosembert M. 2017. The role of pre-mRNA splicing and splicing related proteins in the cold acclimation induced adjustment of photosynthesis and the acquisition of freezing tolerance in Arabidopsis thaliana. University of Ottawa, Faculty of Science.

Sahebi M, Hanafi MM, van Wijnen AJ, Azizi P, Abiri R, Ashkani S, Taheri S. 2016. Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins. Gene 587, 107–119.

Salomé PA, McClung CR. 2005. Pseudo-response Regulator 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17, 791–803.

Sammeth M, Foissac S, Guigó R. 2008. A General Definition and Nomenclature for Alternative Splicing Events (MR Brent, Ed.). PLoS Computational Biology 4, e1000147.
Sanchez SE, Petrillo E, Beckwith EJ, et al. 2010. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468, 112–116.

Sanyal RP, Misra HS, Saini A. 2018. Heat-stress priming and alternative splicing-linked memory. Journal of Experimental Botany 69, 2431-2434.

Schlaen RG, Mancini E, Sanchez SE, Perez-Santángelo S, Rugnone ML, Simpson CG, Brown JWS, Zhang X, Chernomoretz A, Yanovsky MJ. 2015. The spliceosome assembly factor GEMIN2 attenuates the effects of temperature on alternative splicing and circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America 112, 9382–9387.

Schmitz RJ, Sung S, Amasino RM. 2008. Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 105, 411–416.

Schwartz SH, Silva J, Burstein D, Popko T, Eyras E, Ast G. 2008. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Research 18, 88–103.

Sharp PA, Burstein D, Pupko T, Eyras E, Ast G. 2008. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Research 18, 88–103.

Shi Y. 2017. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nature Reviews Molecular Cell Biology 18, 655–670.

Shpargel KB, Matera AG. 2005. Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proceedings of the National Academy of Sciences of the United States of America 102, 17372–17377.

Sivankalyani V, Geetha M, Subramanyam K, Girija S. 2015. Ectopic expression of Arabidopsis RCIIA gene contributes to cold tolerance in tomato. Transgenic Research 24, 237–251.

Song QA, Catlin NS, Brad Barbazuk W, Li S. 2019. Computational analysis of alternative splicing in plant genomes. Gene 685, 186–195.

van Straalen NM, Roelofs D, van Straalen NM, Roelofs D. 2013. Comparing genomes. An Introduction to Ecological Genomics. Oxford University Press, 38–95.

Sugiyama M. 2003. Isolation and Initial Characterization of Temperature-Sensitive Mutants of Arabidopsis thaliana that are Impaired in Root Redifferentiation. Plant and Cell Physiology 44, 588–596.

Swiezewski S, Liu F, Magusin A, Dean C. 2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462, 799–802.

Szabados L, Savouré A. 2010. Proline: a multifunctional amino acid. Trends in Plant Science 15, 89–97.

Szczęśniak MW, Kabza M, Pokrzywa R, Gudyś A, Makalowska I. 2013. ERISdb: A Database of Plant Splice Sites and Splicing Signals. Plant and Cell Physiology 54, e10–e10.
Szepesi Á, Szőllősi R. 2018. Mechanism of Proline Biosynthesis and Role of Proline Metabolism Enzymes Under Environmental Stress in Plants. Plant Metabolites and Regulation Under Environmental Stress. Elsevier, 337–353.

Tarn WY, Steitz JA. 1996. A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell 84, 801–811.

Twyyfels L, Gueydan C, Kruys V. 2011. Shuttling SR proteins: More than splicing factors. FEBS Journal 278, 3246–3255.

Ueda M, Seki M. 2020. Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiology 182, 15–26.

Veretnik S, Wills C, Youkharibache P, Valas RE, Bourne PE. 2009. Sm/Lsm genes provide a glimpse into the early evolution of the spliceosome (A Rzhetsky, Ed.). PLoS Computational Biology 5, e1000315.

Verhage L, Severing EJ, Bucher J, Lammers M, Busscher-Lange J, Bonnema G, Rodenburg N, Proveniers MCG, Angenent GC, Immink RGH. 2017. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants (MA Blazquez, Ed.). PLoS ONE 12, e0172950.

Vosseberg J, Snel B. 2017. Domestication of self-splicing introns during eukaryogenesis: The rise of the complex spliceosomal machinery. Biology Direct 12, 1–16.

Wahl MC, Will CL, Lührmann R. 2009. The Spliceosome: Design Principles of a Dynamic RNP Machine. Cell 136, 701–718.

Walden N, Lucek K, Willi Y. 2019. Lineage-specific adaptation to climate involves flowering time in North American Arabidopsis lyrata. Molecular Ecology 29, 1436–1451.

Wang BB, Brendel V. 2004. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biology 5, R102.

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476.

Wang L, Ma KB, Lu ZG, Ren SX, Jiang HR, Cui JW, Chen G, Teng NJ, Lam HM, Jin B. 2020. Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. BMC Plant Biology 20, 86.

Wang X, Wu F, Xie Q, et al. 2012. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell 24, 3278–3295.

Wang X, Yang M, Ren D, Terzaghi W, Deng XW, He G. 2018. Cis-regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. Plant Journal 97, 555–570.

Wang X, Zhang Y, Ma Q, Zhang Z, Xue Y, Bao S, Chong K. 2007. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO Journal 26, 1934–1941.

Weber C, Nover L, Fauth M. 2008. Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant Journal 56, 517–530.

Wendel JF. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102, 1753–1756.
Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W. 2008. Integration of metabolomic and proteomic phenotypes. Molecular and Cellular Proteomics 7, 1725–1736.

Wilkinson ME, Charenton C, Nagai K. 2020. RNA Splicing by the Spliceosome. Annual Review of Biochemistry 89, 359–388.

Wong CE, Li Y, Labbe A, et al. 2006. Transcriptional Profiling Implicates Novel Interactions between Abiotic Stress and Hormonal Responses in Thellungiella, a Close Relative of Arabidopsis. Plant Physiology 140, 1437–1450.

Xing D, Wang Y, Hamilton M, Ben-Hur A, Reddy ASN. 2015. Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell 27, 3294–3308.

Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu J-K. 2001. Modulation of Abscisic Acid Signal Transduction and Biosynthesis by an Sm-like Protein in Arabidopsis. Developmental Cell 1, 771–781.

Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. 2019. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biology 9, 180239.

Yadav SK. 2010. Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development 30, 515–527.

Yang L. 2015. Splicing noncoding RNAs from the inside out. Wiley Interdisciplinary Reviews: RNA 6, 651–660.

Yang L, Wen KS, Ruan X, Zhao YY, Wei F, Wang Q. 2018. Response of plant secondary metabolites to environmental factors. Molecules 23, 762.

Yasutani I, Ozawa S, Nishida T, Sugiyama M, Komamine A. 1994. Isolation of Temperature-Sensitive Mutants of Arabidopsis thaliana That Are Defective in the Redifferentiation of Shoots. Plant Physiology 105, 815–822.

Yong J, Wan L, Dreyfuss G. 2004. Why do cells need an assembly machine for RNA-protein complexes? Trends in Cell Biology 14, 226–232.

Yu SJ, Han JH, Chhoeun C, Lee BH. 2016. Genetic screening for Arabidopsis mutants defective in STA1 regulation under thermal stress implicates the existence of regulators of its specific expression, and the genetic interactions in the stress signaling pathways. Frontiers in Plant Science 7, 618.

Yuan P, Yang T, Poovaiah BW. 2018. Calcium Signaling-Mediated Plant Response to Cold Stress. International Journal of Molecular Sciences 19, 3896.

Zhang Z, Zhang S, Zhang Y, et al. 2011. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23, 396–411.

Zhou Z, Fu XD. 2013. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122, 191–207.

Zhu Y, Wu W, Shao W, Chen J, Shi X, Ma X, Xu YZ, Huang W, Huang J. 2020. SPLICING FACTOR1 is important in chloroplast development under cold stress. Plant Physiology 184, 973–987.
Gene Name	Gene Acronym	AGI Code	Low Temperature References	High Temperature References
ARGinine/Serine-rich splicing factor 31	RS31	AT3G 61860	Paluska et al., 2007	Neumann et al., 2020
ARGinine/Serine-rich splicing factor 31a	RS31a	AT2G 46610		
ARGinine/Serine-rich splicing factor 40	RS40	AT4G 25500	Paluska et al., 2007, Rosembert, 2017; Neumann et al., 2020	Paluska et al., 2007, Pajoro et al., 2017
ARGinine/Serine-rich splicing factor 41	RS41	AT5G 52040	Neumann et al., 2020	
Calcium exchanger 1	CAX1	AT2G 38170	Catalá et al., 2003, Cui et al., 2014	
Chaperone DNAJ-domain superfamily protein	AT1G724	AT1G 72416	Filichkin et al., 2015	
Cold regulated 15A	COR15A	AT2G 42540	Lee et al., 2006	
CoolAIR	COOLAIR	AT5G 01675	Swiezewski et al., 2009, Marquardt et al., 2014	
DEAD-box ATP-dependent RNA helicase 3	RH3	AT5G 26742	Gu et al., 2014	
DEAD-box ATP-dependent RNA helicase 7	RH7	AT5G 62190	Huang et al., 2016a, Liu et al., 2016	
Delta1-Pyrroline-5-carboxylate synthase 1	P5CS1	AT2G 39800	Kesari et al., 2012, Ren et al., 2018	
Elongated hypocotyl 5	HY5	AT5G 11260	Perera-Resa et al., 2017	
Enhanced silencing phenotype 3	ESP3	AT1G 32400	Howles et al., 2016	
Flowering locus C	FLC	AT5G 10140	Schmitz et al., 2008	
Flowering locus M	FLM	AT1G 77080	Posé et al., 2013, Lee et al., 2013; Capovilla et al., 2017; Lee et al., 2020	Posé et al., 2013; Capovilla et al., 2017; Lee et al., 2020
Gemin 2	GEMIN2	AT1G 54380	Schlaen et al., 2015, Neumann et al., 2020	
Glucine-rich protein 7	GRP7	AT2G 21660	Kim et al., 2008, Wiernkop et al., 2008, Czolphinska and Rurek, 2018	
Heat shock transcription factor 3A	HSFA3	AT5G 03720	Okamoto et al., 2016, Kim et al., 2017, 2018	
LAMmer kinase A3	AME3	AT4G 32660	Rosembert, 2017	
Lethal unless CBC7 A	LUC7A	AT3G 02340	de Francisco Amorim et al., 2018	
Lethal unless CBC7 B	LUC7B	AT5G 17440	de Francisco Amorim et al., 2018	
Lethal unless CBC7 RL	LUC7RL	AT5G 51410	de Francisco Amorim et al., 2018	
Oligouridylic binding protein 1B	UBP1B	AT1G 17370	Weber et al., 2008, Nguyen et al., 2016	
Phytotriheme interacting factor 4	PIF4	AT2G 43010	Jin et al., 2020	
pre-mRNA-splicing helicase BRR2B	BRR2B	AT2G 42270	Guan et al., 2013	
PolyPyrimidine tract-binding protein 1	PTB1	AT3G 01150	James et al., 2018	
PolyPyrimidine tract-binding protein 2	PTB2	AT5G 53180	James et al., 2018	
PolyPyrimidine tract-binding protein 3	PTB3	AT1G 43190	James et al., 2018	
Porcupine	PCP	AT2G 18740	Capovilla et al., 2018, Huertas et al., 2019	
pre-mRNA-processing factor 31 HOMolog	PRP31	AT1G 60170	Du et al., 2015	
Prefoldin 4	PFD4	AT1G 08780	Perera-Resa et al., 2017, Esteve-Bruna et al., 2020	
Protein Name	Accession	Reference		
--	-----------	-------------------------------------		
Proline-rich protein Sickle	AT4G24500	Marshall et al., 2016		
Putative U2A65 splicing factor A	AT4G36690	Verhaeghe et al., 2017; James et al., 2018; Cavallari et al., 2018; Pajoro et al., 2017; Cavallari et al., 2018		
Rare-cold-inducible 2A	AT3G05880	Nylander et al., 2001; Cui et al., 2014		
Regulator of CBF gene expression 1	AT1G20920	Guan et al., 2013		
Root initiation defective 1	AT1G26370	Ohtani et al., 2013		
RS-containing zinc finger protein 21	AT1G23960	Neumann et al., 2020		
RS-containing zinc finger protein 22	AT4G31580	Rosembert, 2017; Neumann et al., 2020		
RS-containing zinc finger protein 22a	AT2G24590	Neumann et al., 2020		
RS-containing zinc finger protein 32	AT3G53500	Neumann et al., 2020		
RS-containing zinc finger protein 33	AT2G37340	Palusa et al., 2007		
SC35-like splicing factor	AT5G64200	Neumann et al., 2020		
SC35-like splicing factor 28	AT5G18810	Neumann et al., 2020		
SC35-like splicing factor 30	AT3G55460	Neumann et al., 2020		
SC35-like splicing factor 30a	AT3G13570	Neumann et al., 2020		
Serine/arginine rich protein splicing factor 45	AT1G16810	Ali et al., 2003; Xing et al., 2015		
Serine/arginine rich-like protein splicing factor 45a	AT1G07350	Ling et al., 2018		
Serine/arginine-rich-like protein splicing factor 30	AT1G09140	Palusa et al., 2007; Ling et al., 2018; Neumann et al., 2020		
Serine/arginine-rich-like protein splicing factor 33/SC35-like splicing factor 33	AT1G55310	Palusa et al., 2007; Palusa et al., 2007; Palusa et al., 2007; Pajoro et al., 2017; Neumann et al., 2020		
Serine/arginine-rich-like protein splicing factor 34	AT1G02840	Palusa et al., 2007; Neumann et al., 2020		
Serine/arginine-rich-like protein splicing factor 34a	AT1G48430	Neumann et al., 2020		
Serine/arginine-rich-like protein splicing factor 34b	AT1G02430	Palusa et al., 2007; Neumann et al., 2020		
Shoot redifferentiation defective 2	AT1G28560	Yasutani et al., 1994; Sugiyama et al., 2003; Ohtani et al., 2013		
SM-like protein 3A	AT1G21190	Perea-Resa et al., 2012		
SM-like protein 3B	AT1G72960	Perea-Resa et al., 2012		
SM-like protein 4	AT1G27720	Perea-Resa et al., 2012		
SM-like protein 5/SuperSensitive to ABA and drought1	AT5G48870	Okamoto et al., 2016		
SM-like protein 8	AT1G62790	Carrasco-López et al., 2017; Esteve-Bruna et al., 2020		
Splicing factor 1	AT1G51300	Zhu et al., 2020; Lee et al., 2020		
Stabilized 1	AT4G03430	Lee et al., 2006; Yu et al., 2016; Kim et al., 2017, 2018		
Timing of CAB expression 1	AT5G61380	James et al., 2012		
Trimethylguanosine synthase 1	AT1G45231	Gao et al., 2017		
Boxes

Box 1. Splicing at a glance

The spliceosome is a complex protein-RNA machinery which excises introns from the pre-mRNA and joins exons to form the mature mRNA. The general turnover of the spliceosome requires a multitude of structural rearrangements which are mediated by several DExD/H-box RNA helicases in an ATP-dependent manner.

Splicing is initiated with the binding of the U1 snRNP to the 5′-splice site (SS), and the interaction of SPlicing FACTOR 1 with the U2 snRNP auxiliary factors (U2AFs), which together bind the 3′-SS, the polypyrimidine tract and branch point sequence. Together, these proteins form the primary E complex and determine further positioning of the spliceosome. The U2AFs recruit the U2 snRNP to the pre-mRNA, giving rise to the A complex. Subsequently, a trimer complex of tightly bound U4/U6 snRNPs and U5 snRNP, called U4/U6.U5 tri-snRNP, is recruited to the A complex forming the B complex. The transition to the catalytically active B* complex is defined by the multiple inner rearrangements that lead to the release of U1 and U4 snRNPs and approximation of the two SSs. Completion of the first catalytic reaction marks the transition from the B* complex to the C complex, which performs all intron excision and exon ligation steps. Finally, the intron lariat as well as the snRNPs are released and the splicing proteins can be recruited to other pre-mRNAs (Fig. 1B) (Matera and Wang, 2014; Wilkinson et al., 2020).

The composition of the spliceosome can vary which causes its proteins to interact with different SSs. Besides “strong” SSs, which are constitutively spliced, alternative splicing (AS) can lead to inclusion or omission of “weak” SSs. SS choice is influenced by RNA-binding proteins, such as SR proteins or hnRNPs, RNA polymerase-II elongation rate, epigenetic modifications and nucleosome positioning (Luco et al., 2011). The combination of these factors gives rise to a plethora of different AS events, which may carry premature termination codons (PTCs). These transcripts do not encode functional
proteins and thus need to be directed towards degradation via the nonsense-mediated RNA decay (NMD) pathway, a necessary process to protect the cell from energy losses through the production of truncated proteins.

Box 2. Plant responses to temperature stress in a nutshell.

Temperature response in plants is a complex regulatory network that can conceptually be divided into three steps: signal perception, transduction, and cellular output. At the most basal level, temperature affects protein conformation, metabolic rates, molecular interactions, and membrane fluidity, which are considered primary sensors and cause various downstream responses. The most studied cellular response is Ca$^{2+}$ influx to the cell as a result of changes in membrane fluidity. Ca$^{2+}$ triggers phosphorylation and transcription factor cascades that ultimately result in a massive reprogramming of the cellular transcriptome.

Exposure of *A. thaliana* to non-lethal cold temperatures, for example, results in induction of C-REPEAT BINDING FACTORS/DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN1 (CBF/DREB1) transcription factors. The CBFs directly activate expression of COLD RESPONSIVE (COR) genes. However, inactivation of CBFs impairs freezing tolerance only partially, indicating the existence of parallel cold signaling pathways. Continuous exposure to cold leads to reduced and delayed growth, wilting and chlorosis. Major changes on the organism level are tissue dehydration and membrane damage. Ultimately, cold acclimation endows the plant with increased freezing tolerance.

In contrast, during thermomorphogenesis plants respond to warm temperatures through morphological changes including deeper roots, leaf petiole elongation, up-ward growth of leaves to reduce exposure to light, and induction of flowering. Heat-stress response involves crosstalk between transcription factors, heat-stress responsive genes and epigenetic modifications that convey a primed-memory response to subsequent heat stresses. Heat stress transcription factors
(HSFs) play a key role in this process by controlling the expression of proteins with chaperone activity to help cope with heat-induced protein misfolding. One of the central regulators of plant thermomorphogenesis which integrates temperature and light quality cues with phytohormones signalling is PHYTOCHROME INTERACTING FACTOR4 (PIF4).

As highlighted in this review, cold and heat trigger alternative splicing (AS) of cognate stress response genes in plants. However, mechanistic understanding regarding the role of AS in a plant’s response to temperature stress is missing.

For detailed explanation on temperature perception and signaling please refer to the following reviews (Yadav, 2010; Mittler, Finka, and Goloubinoff, 2012; Ding, Shi, and Yang, 2019; Casal and Balasubramanian, 2019; Hayes et al., 2021).
Figure legends

Figure 1: Overview of the splicing machinery assembly and splicing process

A) Stepwise assembly of the SM-ring in the cytoplasm based on the proposed model in human cells. As described in the main text, the assembly of the SM-ring involves the methylosome and SMN complex. So far, the only two identified components of these complexes in plants are PRMT5 and GEMIN2, respectively. Clear evidence about the role of AtICln in the methylosome, as well as the existence of intermediate SM-ring complexes in plants is missing. Once the snRNP (U1, U2, U4 or U5) is assembled, the 5’ cap of the snRNA is methylated by TGS1 and presumably bound by AtKPNB1, the orthologue of the human IMPORTIN SUBUNIT BETA-1. This process gives rise to the import complex, which can be shuttled into the nucleus through nuclear pore channels (NPC).

B) Simplified visualization of the splicing reaction in the nucleus. The boxes list the splicing factors mentioned in the main text and position them accordingly along the splicing process.

Figure 2: Temperature-dependent alternative splicing adjusts the proteome to the plant’s needs.

Temperature regulates the expression and splicing of splicing-related and temperature-response genes. Temperature fluctuations influence the expression and splicing pattern of splicing-related genes, giving rise to a specific set of splicing proteins. Further on, these proteins can be modified, affecting their subcellular localization, activity and/or inclusion into the spliceosome. Together, these processes define a temperature-specific composition of the spliceosome, which modulates the splicing result of temperature-response pre-mRNAs and ultimately the plant’s response to the environment. Box lists splicing-related genes, which are regulated by temperature. Colors indicate the temperature stimulus (blue = cold, red = heat). Numbers indicate the known levels of regulation (1: expression, 2: AS, 3: AS of target genes, 4: PTM, 5: localization, 6: target methylation).
Figure 1: Overview of the splicing machinery assembly and splicing process
A) Stepwise assembly of the SM-ring in the cytoplasm based on the proposed model in human cells. As described in the main text, the assembly of the SM-ring involves the methylosome and SMN complex. So far, the only two identified components of these complexes in plants are PRMT5 and GEMIN2, respectively. Clear evidence about the role of AtICln in the methylosome, as well as the existence of intermediate SM-ring complexes in plants is missing. Once the snRNP (U1, U2, U4 or U5) is assembled, the 5' cap of the snRNA is methylated by TGS1 and presumably bound by AtKPNB1, the orthologue of the human IMPORTIN SUBUNIT BETA-1. This process gives rise to the import complex, which can be shuttled into the nucleus through nuclear pore channels (NPC).

B) Simplified visualization of the splicing reaction in the nucleus. The boxes list the splicing factors mentioned in the main text and position them accordingly along the splicing process.
Figure 2: Temperature-dependent alternative splicing adjusts the proteome to the plant’s needs.

Temperature regulates the expression and splicing of splicing-related and temperature-response genes. Temperature fluctuations influence the expression and splicing pattern of splicing-related genes, giving rise to a specific set of splicing proteins. Further on, these proteins can be modified, affecting their subcellular localization, activity and/or inclusion into the spliceosome. Together, these processes define a temperature-specific composition of the spliceosome, which modulates the splicing result of temperature-response pre-mRNAs and ultimately the plant’s response to the environment. Box lists splicing-related genes, which are regulated by temperature. Colors indicate the temperature stimulus (blue = cold, red = heat). Numbers indicate the known levels of regulation (1: expression, 2: AS, 3: AS of target genes, 4: PTM, 5: localization, 6: target methylation).
Figure Box 1: Possible outcomes of AS

AS events can lead to exon skipping, usage of mutually exclusive exons (possibility to include/exclude functional domains), intron retention, or alternative SS choice. Constitutively spliced exons are in grey. Alternatively spliced exons are colored.