Bathymetric Extent of Recent Trawl Damage to the Seabed Captured by an ROV Transect in the Alboran Sea

By Michael L. Brennan, Miquel Canals, Dwight F. Coleman, James A. Austin Jr., and David Amblas

Bottom trawl fishing is among the most destructive anthropogenic pressures acting on benthic ecosystems, but the full extent of the damage is undocumented because of the limited number of deep-sea observations of impacted regions (e.g., Brennan et al., 2012, 2016). As part of its continuing ocean exploration mission, in 2011, E/V Nautilus conducted a remotely operated vehicle (ROV) survey along a transect in a submarine canyon in the Mediterranean’s Alboran Sea off southern Spain at depths ranging from 1,200 m to <300 m (Coleman et al., 2012). This exploration along the South Alboran Ridge offered the opportunity to directly observe with video the bathymetric extent and intensity of recent trawling damage to the seafloor in this area. This dive revealed large furrows running in multiple directions caused by trawl doors scraping across the seabed. Little biological activity was evident in the depth ranges where these scars were observed. The destructive nature of bottom trawl fishing should be viewed with the same public affront as subaerial clear-cutting of forests and strip-mining. The only difference is that the ocean hides trawl damage from the public eye. The more we explore the deep sea, repeatedly map the seafloor with sonar, and observe the seabed and its ecosystems with video captured by ROVs, the greater we can understand the full impacts of trawling.

The deleterious and nonselective damage that trawling operations cause to the seabed has been a subject of concern and debate among ecologists and fisheries managers for decades (e.g., Caddy, 1973; Jones, 1992; DeAlteris et al., 1999; Demestre et al., 2015). Bottom trawls have a long-lasting impact beyond their removal of large quantities of fish from the ecosystem, including bycatch. Trawling destroys benthic habitats and hard ground for invertebrates, smooths over seabed morphology, and resuspends sediments (e.g., Watling and Norse, 1998; Ivanović et al., 2011; De Juan and Demestre, 2012; Lucchetti and Sala, 2012; Norse et al., 2012; Martín et al., 2014a). In the Mediterranean, the trawl fleet works along both the continental shelf and the continental slope. Trawls catch many species, although only some of them are targeted, including blue whiting (Micromesistius poutassou), hake (Merluccius merluccius), red mullet (Mullus spp.), octopus (Octopus vulgaris and
Eledone cirrhosa), Norway lobster (Nephrops norvegicus), and red shrimp (Aristeus antennatus). Hake and blue whiting dominate depths of 150–350 m, while the fishing grounds >350 m are primarily targeting decapods such as lobster and red shrimp (García-Rodríguez, 2003; Commission of the European Communities, 2004).

The ROV dive began at 1,200 m depth in an area of flat, muddy seabed with burrows and other abundant benthic features that continued to ~850 m depth (Figure 1), where the seascape changed dramatically—deep trawl furrows began to dominate the seafloor morphology. While surveying, Nautilus encountered an active trawler and had to wait for it to pass before continuing the transect (Figure 2). It is likely that the scars we observed on the seabed were at least in part the result of this fishing vessel’s operation. The region of heavy scarring continued as the ROV progressed upslope another 100 m (Figures 3 and 4). Between 750 and 550 m depth we observed little trawling damage—rock outcrops and macrofauna, including small sharks and eels, dominated the seabed (Figures 5–8). Perhaps fishermen know to avoid such rocky areas as they can damage their gear. Trawl scars returned between 550 m and 400 m depth, but these marks appeared older and were partially filled with sediment (Figures 9 and 10). Shallower than 400 m...
along the transect, older scars continued to be observed, and signs of gradual recovery included animal tracks crossing the partially infilled scars (Figure 11). Given the smaller size and shallower depth of these furrows, they were likely the result of the activities of smaller vessels (Brennan et al., 2012) targeting hake and blue whiting (Commission of the European Communities, 2004).

Recent work off Spain shows the wide-reaching impact of sediment flows generated by trawls, which smooth over bathymetric features and accelerate the infill of submarine canyons, a seascape change that drastically affects how the benthic ecosystem functions (Puig et al., 2012; Martin et al., 2014b; Palanques et al., 2014). From a macrofauna and fish stand point, the full reach of trawling damage is also beyond the depths trawled, as many species caught are ontogenetic migrants, and the nonselective catch of their juveniles at trawling depths increases the decline of the deeper-dwelling adults (Schrope, 2008). In addition, as shallower fish populations have declined, trawling has moved to greater depths, further impacting even deeper seafloor and benthic ecosystems.

This upstroke ROV transect in the Alboran Sea during the Nautilus expedition provided important observations of the damage to the seabed from bottom trawl operations in this area, but it does not document the full extent of the damage caused by trawling. In our limited survey through a submarine canyon, we crossed two different trawling depth regimes where different vessels and gear target different species. We observed areas where trawling activity is not evident, in part due to the rugged geology, and we noted that the areas containing trawl scars exhibited strikingly different biology than those left untouched. All signs of benthic activity were gone from areas of heavily trawled sediment (Figures 2 and 4). Shallower areas where the scars were older did show some minor repopulation of benthic fauna (Figure 11). ROV documentation at these previously unexplored depths is imperative to understanding the extent and nature of trawl damage to the seabed and the effects of trawl size and frequency of trawling fishing activities by depth regime.12

REFERENCES

Brennan, M.L., R.D. Ballard, C. Roman, K.L.C. Bell, B. Buxton, D.F. Coleman, G. Inglis, O. Koyasagioglou, and T. Turunni. 2012. Evaluation of the modern submarine landscape off southwestern Turkey through the documentation of ancient shipwreck sites. Continental Shelf Research 32:55–70, http://dx.doi.org/10.1016/j.csr.2012.04.017.

Brennan, M.L., D. Davis, R.D. Ballard, A.C. Trembanis, J.J. Vaughn, J.S. Krumholz, J.P. Delgado, C.N. Roman, C. Smart, K.L.C. Bell, and others. 2016. Quantification of bottom trawl damage to ancient shipwreck sites. Marine Geology 371:82–88, http://dx.doi.org/10.1016/j.margeo.2015.11.001.

Brennan, M.L., D. Davis, C. Roman, I. Buynevich, A. Catsambis, M. Kofahl, D. Urkenez, J.J. Vaughn, M. Merrigan, and D. Domin. 2016. Ocean dynamics and anthropogenic impacts along the southern Black Sea shelf examined by the preservation of pre-modern shipwrecks. Continental Shelf Research 53:89–101, http://dx.doi.org/10.1016/j.csr.2012.02.010.

Caddy, J.F. 1973. Underwater observations on tracks of dredges and trawls and some effects of dredging on scallop ground. Journal of the Fisheries Research Board of Canada 30:173–180, http://dx.doi.org/10.1139/f73-032.

Coleman, D.F., J.A. Austin Jr., M. Canals, D. Amblas, J.B. Company, and M.L. Brennan. 2012. Nautilus explores the western Mediterranean Sea. Pp. 36–37 in New Frontiers in Ocean Exploration: The E/V Nautilus and NOAA Ship Ocean Explorer 2011 Field Season. K.L.C. Bell, K. Elliott, C. Martinez, and S.A. Fuller, eds, Oceanography 25(4), supplement, http://dx.doi.org/10.5670/oceanog.2011.017.

Commission of the European Communities. 2004. European Union Mediterranean Fisheries and exploited resources. Report of the sub-group on the Mediterranean Sea and of the scientific, technical and economic committee for fisheries. https://stef.jrc.ec.europa.eu/documents/43085/104879/2004-06 EU-Med+fisheries+and+exploited+resources_SEC(2004)772.pdf.

DeAlteris, J., L. Skrobe, and C. Lipsky. 1999. The significance of seabed disturbance by mobile fishing gear relative to natural processes: A case study in Narragansett Bay, Rhode Island. American Fisheries Society Symposium 22:224–237.

De Juan, S., and M. Demestre. 2012. A trawl disturbance indicator to quantify large scale fishing impact on benthic ecosystems. Ecological Indicators 18:183–190, http://dx.doi.org/10.1016/j.ecolind.2011.10.020.

Demestre, M., A. Muntadas, S. de Juan, C. Mitillineou, P. Sartor, J. Mas, S. Kavadas, and J. Martin. 2015. The need for fine-scale assessment of trawl fishing effort to inform an ecosystem approach to fisheries: Exploring three data sources in Mediterranean trawling grounds. Marine Policy 62:134–143, http://dx.doi.org/10.1016/j.marpol.2015.09.012.

García-Rodríguez, M. 2003. Characterization and standardization of a red shrimp, Aristeus antennatus (Risso, 1816), fishery off the Alicante gulf (SE Spain). Scientia Marina 67:63–74.

Ivanović, A., R.D. Nelson, and F.G. O’Neill. 2011. Modelling the physical impact of trawl components on the sediment and community with sea trials. Ocean Engineering 38:925–933, http://dx.doi.org/10.1016/j.oceaneng.2010.09.011.

Jones, J.B. 1992. Environmental impact of trawling on the seabed: A review. New Zealand Journal of Marine and Freshwater Research 26:59–67, http://dx.doi.org/10.1080/00283330.1992.9516500.

Lucchetti, A., and A. Sals. 2012. Impact and performance of Mediterranean fishing gear by side-scan sonar technology. Canadian Journal of Fisheries and Aquatic Science 69:1,806–1,816, http://dx.doi.org/10.1139/f12-0107.

Martin, J., P. Puig, A. Palanques, and A. Giampontone. 2014a. Commercial bottom trawling as a driver of sediment dynamics and deep seabase evolution in the Anthropocene. Anthropocene 7:1–15, http://dx.doi.org/10.1016/j.ancene.2015.01.002.

Martin, J., P. Puig, A. Palanques, and M. Ribb. 2014b. Trawling-induced daily sediment resuspension in the flank of a Mediterranean submarine canyon. Deep Sea Research Part II 104:174–183, http://dx.doi.org/10.1016/j.dsr2.2013.05.036.

Norse, E.A., S. Brooke, W.W.L. Cheung, M.R. Clark, I. Ekeland, R. Froese, K.M. Gjerde, R.L. Haedrich, S.S. Heppell, T. Morato, and others. 2012. Sustainability of deep-sea fisheries. Marine Policy 36:307–320, http://dx.doi.org/10.1016/j.marpol.2011.06.008.

Palanques, A., P. Puig, J. Guillén, M. Demestre, and J. Martin. 2014. Effects of bottom trawling on the Ebro continental shelf sedimentary system (NW Mediterranean). Continental Shelf Research 72:83–98, http://dx.doi.org/10.1016/j.csr.2013.10.008.

Puig, P., M. Canals, J.B. Company, J. Martin, D. Amblas, G. Lastras, A. Palanques, and A.M. Calafat. 2012. Ploughing the deep sea floor. Nature 489:286–289, http://dx.doi.org/10.1038/nature11410.

Schrope, M. 2008. Fishing trawlers have double the reach. Nature News, http://dx.doi.org/10.1038/news.2008.658.

Welling, L. and E.A. Norse. 1998. Disturbance of the seabed by mobile fishing gear: A comparison to forest clearing. Conservation Biology 12:180–197, http://dx.doi.org/10.1046/j.1523-1739.1998.00206100.x.

ACKNOWLEDGMENTS

We thank Robert Ballard, Katy Croff Bell, Joan-Baptista Company, Brooke Flammang, Sarah Fuller, Roderick MacLeod, Aaron Micallef, Sergi Quesada, the Ocean Exploration Trust, and the crew of E/V Nautilus.

AUTHORS

Michael L. Brennan (mike@oceanexplorationtrust.org) is Director, Marine Archaeology and Maritime History, Ocean Exploration Trust, Narragansett, RI, USA. Miquel Canals is Professor, Department d’Estratigrafia, Paleontologia i Geociències Marines, Universitat de Barcelona, Barcelona, Spain. Dwight F. Coleman is Director, Inner Space Center, University of Rhode Island Graduate School of Oceanography, Narragansett, RI, USA. James A. Austin Jr. is Senior Research Scientist, Institute for Geophysics, University of Texas at Austin, Austin, TX, USA. David Amblas is Associate Professor, Department d’Estratigrafia, Paleontologia i Geociències Marines, Universitat de Barcelona, Barcelona, Spain.

ARTICLE CITATION

Brennan, M.L., M. Canals, D.F. Coleman, J.A. Austin Jr., and D. Amblas. 2015. Bathymetric extent of recent trawl damage to the seabed captured by an ROV transect in the Alboran Sea. Oceanography 28(4):8–10, http://dx.doi.org/10.5670/oceanog.2015.87.