Epstein-Barr Virus Interferes with the Amplification of IFNα Secretion by Activating Suppressor of Cytokine Signaling 3 in Primary Human Monocytes

François Michaud1, François Coulombe1, Eric Gaudreault1, Carine Paquet-Bouchard1, Marek Rola-Pleszczynski2, Jean Gosselin1*

1 Innate Immunology Laboratory, CHUQ Research Center (CHUL) and Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada,
2 Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada

Abstract

Background: Epstein-Barr virus is recognized to cause lymphoproliferative disorders and is also associated with cancer. Evidence suggests that monocytes are likely to be involved in EBV pathogenesis, especially due to a number of cellular functions altered in EBV-infected monocytes, a process that may affect efficient host defense. Because type I interferons (IFNs) are crucial mediators of host defense against viruses, we investigated the effect of EBV infection on the IFNα pathway in primary human monocytes.

Methodology/Principal Findings: Infection of monocytes with EBV induced IFNα secretion but inhibited the positive feedback loop for the amplification of IFNα. We showed that EBV infection induced the expression of suppressor of cytokine signaling 3 (SOCS3) and, to a lesser extent, SOCS1, two proteins known to interfere with the amplification of IFNα secretion mediated by the JAK/STAT signal transduction pathway. EBV infection correlated with a blockage in the activation of JAK/STAT pathway members and affected the level of phosphorylated IFN regulatory factor 7 (IRF7). Depletion of SOCS3, but not SOCS1, by small interfering RNA (siRNA) abrogated the inhibitory effect of EBV on JAK/STAT pathway activation and significantly restored IFNα secretion. Finally, transfection of monocytes with the viral protein Zta caused the upregulation of SOCS3, an event that could not be recapitulated with mutated Zta.

Conclusions/Significance: We propose that EBV protein Zta activates SOCS3 protein as an immune escape mechanism that both suppresses optimal IFNα secretion by human monocytes and favors a state of type I IFN irresponsiveness in these cells. This immunomodulatory effect is important to better understand the aspects of the immune response to EBV.

Introduction

Epstein-Barr virus (EBV), a human gamma-herpes virus, persists latently in over 90% of the adult population and is the cause of infectious mononucleosis in a small proportion of carriers. Viral reactivation is responsible for certain rare types of lymphoproliferative disorders and cancers [1]. Although its main target cells are B lymphocytes, EBV can spread to other cell types [2,3]. Particularly, efficient and sustained replication of EBV in target cells are B lymphocytes, EBV can spread to other cell types [8,9]. Upon viral sensing by host cells, two members of the interferon regulatory factor (IRF) family, IRF3 and IRF7, mainly activate IFN gene transcription and initiate the first wave of IFN secretion [10]. Subsequent binding of IFNs to their cognate receptor leads to the activation of the JAK/STAT pathway. JAK1 and Tyk2 kinases are constitutively associated with the IFN receptor subunits and upon activation, they phosphorylate each other at critical tyrosine residues within the intracellular domain of the receptor. STAT1 and STAT2 factors are then recruited via the phosphorylated tyrosines, bind the activated receptor and are in turn phosphory-
ylated by JAK1 and Tyk2 [11]. Signaling downstream of the IFN receptors through the JAK/STAT pathway creates a positive feedback loop that prolongs activation of IFN-stimulated genes, mediates a second wave of IFN secretion and leads to the production of antiviral proteins such as 2′-5′-oligoadenylate synthetase and dsRNA-dependent protein kinase R (PKR) [12,13].

In order to avoid excessive host tissue injury whilst protecting effectively against infectious agents, the immune system features regulatory mechanisms to control the production and response to cytokines. The SOCS family of proteins comprises eight members (SOCS1-7 and CIS) critically involved in this process [14]. SOCS1 and SOCS3 are the best-characterized family members and have both been described to interfere with the response to IFNα [14,15]. The kinase inhibitory region (KIR) shared by SOCS1 and SOCS3 is sufficient to inhibit JAK tyrosine kinase activity [15]. In addition, SOCS1 has been proposed to target itself and JAK proteins to the microtubule organizing complex (MTOC)-associated 20S proteasome for degradation [16]. Importantly, recent studies have shown that several viruses such as hepatitis C virus (HCV) [17], herpes simplex 1 virus (HSV-1) [18,19], enterovirus [20] and respiratory syncytial virus (RSV) [21] are capable of inducing expression of SOCS proteins and interfere with the IFN signaling pathway.

In the present study, we hypothesized that impairment in IFNα secretion by primary human monocytes infected with EBV involved the activation of SOCS proteins. We tested this hypothesis by examining SOCS1 and SOCS3 expression in parallel with several aspects of the IFNα pathway in infected cells. We showed that depletion of SOCS3 reduced the EBV-mediated suppression of the IFNα pathway and that the EBV protein Zta (also known as ZEBRA) was implicated in activating SOCS3 expression. Interference with the amplification of IFNα secretion caused by EBV infection may constitute an essential strategy that evolved to evade the antiviral response.

Results

EBV interferes with IFNα secretion in human monocytes

Upon recognition of pathogen-associated molecular patterns (PAMPs), several pattern-recognition receptors (PRRs) activate the production and secretion of type I IFN. The synthetic double-stranded RNA analog poly(I:C) is an agonist of both TLR3 and MDA-5 and is a known activator of type I IFN [22]. To study the secretion of IFNα by human monocytes in the absence of potential pathogen-derived inhibitory factor, we stimulated these cells either once or twice with various concentrations of poly(I:C). As shown in Figure 1A, a single stimulation with increasing concentrations of the agonist led to the secretion of IFNα in a dose-dependent fashion. When cells were stimulated a second time with the same concentrations of poly(I:C), IFNα levels did not significantly differ from what was observed after a single stimulation (Figure 1A). We repeated the experiment using live EBV and as observed with poly(I:C), a single monocyte treatment with increasing multiplicity of infection (m.o.i.) also led to increased IFNα secretion (Figure 1B). However, cells stimulated a second time with EBV secreted significantly less cytokine at an m.o.i. of 0.1 (Figure 1B). Given that monocytes did not become refractory to two stimulations with high concentrations of poly(I:C), these results are consistent with active interference on the IFNα secretion pathway caused by EBV infection.

EBV infection induces the expression of SOCS proteins

SOCS1 and SOCS3 are known to be involved in the negative feedback inhibition of IFNα signal transduction [14,15]. Since we measured a decrease in IFNα secretion following a second monocyte infection with EBV, we wanted to investigate whether SOCS protein induction upon primary EBV infection might contribute to this observation. Monocytes were infected with EBV for various times and expression of SOCS1 and SOCS3 was evaluated at both the mRNA and protein levels. Transcription of both SOCS1 and SOCS3 was increased following EBV infection, reaching maximum levels after 30 minutes (Figure 2A). Increased SOCS expression was also confirmed at the protein level since SOCS1 expression was increased at 60 minutes post-infection whilst SOCS3 expression progressively increased from 20 to 60 minutes post-infection (Figure 2B). Thus, EBV infection causes the upregulation of two SOCS proteins involved in the modulation of the IFN pathway.

EBV-mediated SOCS3 activation causes the inhibition of the JAK/STAT pathway

The cellular response to IFNα occurs via the JAK/STAT pathway downstream of the IFNα receptor [11]. To further dissect the response of monocytes to IFNα, we first monitored the phosphorylation of STAT1 and STAT2 in response to single or dual IFNα stimulation in the absence of viral infection. As shown in Figure 3A, a 15-minute stimulation with IFNα caused an increase in phospho-STAT1 and phospho-STAT2 levels. The amounts of phospho-STAT1 and phospho-STAT2 were both reduced following a prolonged 20-hour exposure to IFNα, as
compared to a 15-minute stimulation only. Importantly, a 15-minute treatment with IFNα following a 20-hour exposure to IFNα caused an increase in both phospho-STAT1 and phospho-STAT2 compared to a 20-hour exposure only (Figure 3A). These results demonstrate that uninfected monocytes are still responsive to IFNα stimulation following prolonged exposure to this cytokine and establish a model system that can then be used to study the effect of EBV infection on the IFNα pathway.

SOCS1 and SOCS3 suppress IFNα signaling downstream of the IFNα receptor by blocking signal transduction through the JAK/STAT pathway [14]. To investigate whether EBV infection correlates with an impairment in JAK/STAT signaling downstream of the IFNα receptor, we first monitored the phosphorylation of Tyk2, Jak1, STAT1 and STAT2 in monocytes infected with EBV alone or infected and restimulated with IFNα.

SOCS3 plays a determinant role in the suppressive effect of EBV on IFNα secretion

Our results highlighted a putative role for SOCS3 in the EBV-mediated suppression of IFNα secretion. To confirm its suppressive role, monocytes were transfected with siRNA directed against SOCS1 or SOCS3 and were infected once or twice with EBV. A first stimulation with EBV induced high levels of IFNα secretion, regardless of the siRNA transfected, as compared to poly(I:C) stimulation (Figure 5). When cells were stimulated a second time with EBV, the suppressive effect of the virus was detectable in control siRNA-transfected monocytes. Although SOCS1-targeting siRNA did not impact IFNα secretion after the second

Figure 2. Expression of SOCS proteins following EBV infection of human monocytes. Monocytes (5 x 10⁶) were stimulated or not with EBV for the indicated time. (A) The expression of SOCS1 and SOCS3 proteins was evaluated by RT-PCR using described primers (Table I) or (B) by Western blot analysis using specific anti-SOCS1 antibodies, anti-SOCS3 antibodies and anti-Actin as loading control. Densitometry was performed and represents fold protein induction (relative to 0 min) ± std. dev. of experiments performed in duplicate. Data are representative of three independent experiments.

doi:10.1371/journal.pone.0011908.g002
Figure 3. Effect of EBV infection on the activation of the JAK/STAT pathway. (A) Monocytes were incubated in the presence of IFNγ (1000 U/ml) for 15 minutes and 20 hours. Following incubation (20 hours), cells were restimulated or not with IFNγ for 15 minutes. The expression of phospho(p)STAT1, and phospho(p)STAT2 proteins was evaluated by Western blot analysis. Membranes were also probed with anti-Actin as a loading control. Densitometry was performed and represents fold protein induction (relative to non stimulated cells) ± std. dev. of experiments performed in duplicate. (B) Monocytes (5 x 10⁶) were treated with IFNγ (1000 U/ml) for 15 minutes, with EBV for 20 hours or were pre-incubated for 20 hours in the presence of EBV followed by a stimulation with IFNγ for 15 minutes. The expression of phospho(p)Tyk2, phospho(p)JAK1, phospho(p)STAT1, and phospho(p)STAT2 proteins was evaluated by Western blot analysis. Membranes were also probed with anti-Tyk2, JAK1, STAT1 and STAT2 as a loading control.
stimulation with EBV, inhibition of SOCS3 significantly restored cytokine secretion. These results confirm the direct involvement of SOCS3 in the suppressive effect of EBV on IFNγ secretion in human monocytes.

The viral protein Zta causes the transactivation of SOCS3

The EBV protein Zta is a basic leucine zipper (bZIP) transcription factor with many described functions including the interaction with host proteins and the modulation of cellular gene expression [25]. As shown in Figure 6A, Zta is strongly expressed in EBV-infected monocytes, further supporting the observation that EBV can efficiently infect this cell type [26]. In light of the many reports describing the modulation of immune-related host genes by Zta [25,27], we wanted to investigate whether this viral transactivator could induce the expression of SOCS3. To do so, HEK293 cells were co-transfected with a reporter vector driven by the SOCS3 promoter along with either a vector encoding wild-type Zta (Zta) or a vector encoding a mutated form of Zta (ΔZta) that has lost its normal transactivation activity [28]. In this system, SOCS3 promoter activity was enhanced proportionally to the amount of transfected Zta vector, however, such activation was not observed using the ΔZta vector (Figure 6B). To confirm the ability of Zta to induce SOCS3 expression and modulate the JAK/STAT pathway, we transfected human monocytes with the Zta or the ΔZta vector or with a mock control prior to stimulation with IFNγ and monitored levels of SOCS3 and phospho-STAT2 by immunoblot. The amount of SOCS3 protein was enhanced in cells transfected with the Zta vector as compared to the cells transfected with the ΔZta vector or the mock control (Figure 6C). In addition, increased SOCS3 expression in cells transfected with the Zta vector was accompanied by a marked decrease in phospho-STAT2 levels as compared to the cells transfected with the ΔZta vector (Figure 6C). Finally, we observed a partial restoration of phospho-STAT2 levels in cells transfected with the ΔZta vector. Thus, EBV protein Zta can transactivate SOCS3 expression in order to interfere with the IFNγ response pathway in human monocytes.

Discussion

In the present study, we demonstrated that infection of primary human monocytes with EBV leads to the inhibition of the IFNγ signal transduction pathway and hence, to an impairment in the

Figure 4. Effect of EBV infection on IRF3 and IRF7 activation. 1st EBV stimulation. Monocytes (2×10⁶ cells) were stimulated with 165 nM siRNA targeting SOCS1 or SOCS3 prior to EBV stimulation for 1 hour. Scramble siRNA was used as control. The expression of SOCS1 and SOCS3 was evaluated by Western blot analysis. Densitometry was performed and represents fold protein induction (relative to non-transfected cells) ± std. dev. of experiments performed in duplicate. (D) Monocytes (2×10⁶ cells) were either left untransfected or were transfected with siRNA targeting SOCS1 or SOCS3 and stimulated as in (B). The expression of phospho(p)STAT1 and phospho(p)STAT2 proteins was evaluated by Western blot analysis. Membranes were also probed with anti-STAT1 and STAT2 as a loading control. Data are representative of three independent experiments. NS: non-stimulated; NT: non-transfected; SCR: scrambled siRNA.

doi:10.1371/journal.pone.0011908.g003

doi:10.1371/journal.pone.0011908.g004

doi:10.1371/journal.pone.0011908.g005
amplification of IFNα secretion. Based on our results, we propose a hypothetical model of EBV-mediated negative regulation of IFN response and secretion in monocytes (Figure 7). According to this model, virion entry into the cell activates IRF3 and IRF7 leading to a first wave of type I IFN production. At the same time, EBV modulates SOCS3 expression in order to inhibit IFN receptor-mediated intracellular signaling through the JAK/STAT pathway. The latter results in a marked attenuation of the amplification loop initiated by the binding of type I IFNs to their cognate receptor. As a consequence, interferon-stimulated genes (ISGs) and IRF7 are negatively regulated and the second wave of IFNα secretion is impaired.

The importance of IFNs, originally discovered because of their ability to protect cells from viral infections, is highlighted by the observation that most viruses have evolved anti-IFN strategies [29]. Several studies have investigated mechanisms used by EBV to regulate the expression of IFNα and IFN-inducible genes. On one side, the early lytic EBV nuclear protein SM and the latent membrane protein 1 (LMP1) were reported to induce phosphorylation of STAT1 and the expression of ISGs [30,31]. To counteract this cellular recognition event, EBV was shown to downregulate IFN-induced transcription via the viral protein EBNA-2 [32,33] and to increase IFN receptor degradation via LMP2A and LMP2B [34] whilst EBV encoded EBER RNAs were found to be involved in IFN resistance by binding to PKR but failing to activate it [35,36]. Another interesting mechanism of interference with IFN secretion was demonstrated by Cohen and Lekstrom who showed that EBV BARF1 gene (known to encode a soluble colony-stimulating factor receptor) inhibits IFNα secretion by mononuclear cells [37]. To our knowledge, we are the first to report SOCS protein activation during EBV infection of monocytes.

Viral-mediated induction of SOCS proteins is currently emerging as a key mechanism of immune evasion. Indeed,
HSV-1, another member of the herpes virus family, has been shown to activate SOCS3 in infected epithelial cells leading to the downregulation of the JAK/STAT cascade [19]. The authors of the study concluded that HSV-1-induced SOCS3 was mainly responsible for the suppression of IFN signaling. In the case of EBV, we also observed that SOCS1 was induced in infected monocytes. Whilst the use of siRNAs directed against SOCS3 confirmed its role in EBV-mediated suppression of the JAK/STAT pathway and IFN\(\alpha\) secretion, SOCS1 siRNA had no significant effect. The incomplete restoration of IFN\(\alpha\) secretion with the use of SOCS3 siRNA shown in Figure 5 could either be explained by the difficulty to achieve high transfection efficiency in human monocytes coupled with the incomplete abolishment of SOCS expression by siRNA or by other viral-induced mechanisms targeting IFN signaling. Phosphatases such as protein tyrosine phosphatase 1B (PTP1B) [38] and SHP-2 [39] can interfere with the JAK/STAT pathway and represent candidate proteins potentially modulated by EBV. Other SOCS proteins such as CIS may also play a role. A recent study by Hashimoto et al. [21] investigated the induction of all eight SOCS proteins during RSV infection and found that SOCS1, SOCS3 and CIS were activated. Suppression of the three proteins by siRNA inhibited viral replication and activated type I IFN signaling. Although we do not conclude that SOCS3 activation is sufficient for EBV-mediated interference with IFN\(\alpha\) secretion, it does represent an important mechanism as demonstrated for HCV, HSV-1, enterovirus and RSV [17,18,19,20,21].

The transactivation of SOCS3 by Zta puts forward a new role for this viral effector protein. Zta is composed of a C-terminal transactivation domain, a central basic region that mediates DNA contact and a characteristic bZIP domain extending towards the N-terminus. Expression of Zta on its own is sufficient to disrupt EBV latency and this protein has a major role in EBV-associated cell transformation by modulating cellular gene expression and interacting with host cell-cycle proteins [25]. In our study, Zta was sufficient to induce SOCS3 expression and inhibit STAT2 phosphorylation upon IFN\(\alpha\) stimulation of monocytes. Whilst SOCS3 expression could not be recapitulated with mutated Zta, STAT2 phosphorylation was only partly restored following IFN\(\alpha\) treatment in this context. The \(\Delta Zta\) vector encodes the full-length Zta protein with two amino acid substitutions in the transactivation domain, only affecting part of its transcriptional activity [28]. Thus, \(\Delta Zta\)-mediated activation of other IFN signaling modulatory factors may account for the incomplete restoration of STAT2 phosphorylation. A possible factor is IL-10, which is known to be activated by Zta [40] and to inhibit IFN\(\alpha\)-induced phosphorylation of STAT proteins [41]. Certainly, the pleiotropic action of Zta during EBV infection is only beginning to be fully revealed and its
dual effects (activation/suppression) may be clarified through future investigations.

One example of such suppressive effect is the modulation of IRF7 by Zta. In a study by Hahn and colleagues, IRF7 activation was negatively regulated by Zta [42]. Zta did not affect IRF7 levels but expression of both IRF7 and Zta were found to be directly associated. Since Zta is a nuclear protein and that phosphorylated IRF7 translocates to the nucleus, the authors postulated that interaction between Zta and activated IRF7 might be responsible for downmodulating the transcription of IRF7 target genes. In our study, we monitored the phosphorylation status of endogenous IRF3 and IRF7 in human monocytes. As opposed to phospho-IRF3, which could still be induced upon secondary stimulation with EBV, phospho-IRF7 progressively decreased under this condition. Based on our results, we suggest that the effect of Zta on IRF7 is indirect and implicates the inhibition of the JAK/STAT pathway by SOCS, thereby causing a decrease in ISGF3-driven IRF7 expression. It is interesting to note that whilst our proposed mechanism differs from that stated by Hahn et al., both mechanisms are not mutually exclusive. As pointed out by the authors, IRF7, which was first cloned as a transcriptional regulator of the central EBV latency gene EBNA-I, is intricately associated with EBV infection [42]. Indeed, accumulating evidence highlights the use of different and/or redundant strategies by EBV to modulate IRFs expression and activity and interfere with the antiviral activity of type I IFNs [43,44,45]. Further research is needed to ask whether those strategies differ between cell types or upon primary EBV infection in comparison with reactivation from a latent infection.

Our study was performed using primary human monocytes in which productive EBV infection and viral-mediated alteration of several cellular functions have been demonstrated [3]. Here, we have shown that EBV infection induces SOCS3 activation via Zta and alters the IFN signaling pathway. Using such a strategy, EBV might be able to survive longer within monocytes and optimize its dissemination. Furthermore, because monocytes are recognized as important antigen presenting cells linking the innate and adaptive immunity, suppression of their biological functions by EBV may thus affect the host immune response. Emerging therapeutic approaches aimed at downregulating SOCS gene expression [46] could possibly be beneficial against EBV infection by enhancing the innate antiviral activity of monocytes.

Materials and Methods

Ethics statement

Heparinized blood was obtained from healthy donors after written informed consent from all individuals in accordance with an Internal Review Board-approved protocol at CHUQ Research Center (Centre Hospitalier Université Laval).

Isolation, purification and culture of human monocytes

Peripheral blood mononuclear cells (PBMCs) were isolated by centrifugation of heparinized blood obtained from healthy donors over Lymphocyte Separation Medium (Wisent Inc., St-Bruno, QC, Canada). PBMCs were next allowed to adhere onto autologous serum-treated petri dishes in order to separate monocytes from the lymphocyte population. Monocytes were further enriched by cell sorting (FACS Aria, BD Biosciences, MD, USA) which resulted in at least 99% pure monocyte suspension as determined by flow cytometry analysis using anti-CD14 monoclonal antibodies. Cell viability was more than 99% as tested by trypan blue dye exclusion procedure. Isolated monocytes were resuspended in RPMI-1640 supplemented with 10% fetal bovine serum (FBS).

Viral preparations

EBV strain B95-8 was produced as described previously [26]. Briefly, B95-8 cells were cultured in RPMI 1640 medium supplemented with 10% FBS in the presence of 20 ng/ml phorbol myristate acetate (PMA), a known inducer of viral reactivation. Cell-free supernatants were filtered through a 0.45 μm pore size filter and viral particles were concentrated by ultracentrifugation. Viral particles were resuspended in RPMI 1640 medium, titrated as described [47] and stored at −150°C until use. Cell-free supernatants collected from B95-8-infected cells not exposed to PMA were processed as described above and used as mock controls.

Monocyte stimulation

Enriched monocytes were incubated with infectious EBV particles at the indicated multiplicity of infection (m.o.i.) or were transfected with poly(I:C) (Sigma-Aldrich, Oakville, ON, Canada) at indicated concentrations using lipofectamine reagent (Invitrogen, Burlington, ON, Canada) and cultured for 20 hours (first stimulation). Infected cells were then washed once in HBSS buffer and resuspended in fresh culture medium. Cells were then restimulated a second time with EBV, poly(I:C), or human IFNα (PBL Biomedical Laboratories, Piscataway, NJ) for indicated times (second stimulation). Following first and second stimulations, cell-free supernatants were harvested for IFNα quantitation by ELISA assay (PBL Biomedical Laboratories, Piscataway, NJ) or cells were lysed for Western blot or RT-PCR analyses as described below.

RNA isolation and RT-PCR amplification

Uninfected and EBV-treated monocytes were cultured for various periods of time before RNA extraction. Total RNA from monocytes was isolated using Trizol reagent (Invitrogen, Burlington, ON, Canada) according to the manufacturer’s instructions. One microgram of DNase-treated RNA was reverse transcribed to cDNA with oligo (pdT) primers in a 20 μl reaction containing 20 U of SuperScript II RNase H Reverse Transcriptase and 1 U of RNase inhibitor (Invitrogen, Burlington, ON, Canada). A volume of 5 μl cDNA samples was subjected to 35 cycles of PCR amplification in 50 μl of PCR mixture containing 0.5 U of Taq DNA Polymerase and 1.5 μg of the appropriate primers. Primers used in this study are depicted in Table 1. GAPDH was used as internal control.

Western blot analysis

Monocytes were incubated with appropriate agonists for indicated times, lysed (TAE buffer 1×, 1 mM EDTA, 27 mM sucrose, 1% Triton X-100) and boiled for 5 minutes after addition of sample buffer (150 mM Tris pH 6.8, 1.2% SDS, 0.33%

Table 1. RT-PCR primers used in this study.

Primer names	Sequences	Amplicon sizes
SOCS-1 sense	5’TACGCACTTGCAGACATCC3’	300 bp
SOCS-1 antisense	5’ttgcagcactgcagagcc3’	589 bp
SOCS-3 sense	5’TACCCACACGAAGTTTCCGC3’	598 bp
SOCS-3 antisense	5’TGTAGGCGTTCGCCAGAGATG3’	598 bp
GAPDH sense	5’CCACCCATGGCAAATTTCCAGGC3’	598 bp
GAPDH antisense	5’TTAGGCGCAGAGGTCACC3’	598 bp

doi:10.1371/journal.pone.0011908.t001

Table 1. RT-PCR primers used in this study.
glycerol, 15% β-mercaptoethanol, 1% bromophenol blue). Proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), under reducing conditions followed by transfer onto a nitrocellulose membrane. Membranes were pretreated in blocking solution containing 5% (w/v) dry milk in Tris-buffered saline-Tween 20 for 1 hour at room temperature and then incubated overnight at 4°C with anti-pIRF3, anti-phospho or total JAK1, anti-phospho or total Tyk2, anti-phospho or total STAT1, anti-phospho or total STAT2, (Cell Signaling, Danvers, MA), anti-IRF3, anti-IRF7, anti-SOCS-1, anti-SOCS-3, or anti-β-actin (Santa Cruz Biotechnology, Santa Cruz, CA). Membranes were washed four times with Tris-buffered saline-Tween 20 and incubated either with HRP-conjugated sheep anti-mouse Ig or donkey anti-rabbit IgG antibodies (Jackson ImmunoResearch Laboratories Inc., West Grove, PA) for 1 hour. Immunoreactive proteins were revealed by enhanced chemiluminescence (Perkin Elmer, Woodbridge, ON, Canada). Densitometry analysis was performed using the Image J software and relative protein levels were normalized to relative β-actin levels.

Small interfering RNA assay

Purified primary monocytes (2 × 10⁶ cells) were transfected with 165 nM of small interfering RNA against SOCS-1 (Sense: 5'-GCAUUACUCCGUAGCCUt-3' Antisense: 5'-ACGCGA-UCCAGUUAAAU GCtg-3') or SOCS-3 (Sense: 5'-GAAC-CUGCG CAUCCAGUGUt-3' Antisense: 5'-ACAGUGAU-GCCGAAGGUUUt-3') (Applied Biosystems/Ambion, Austin, TX) using lipofectamine according to the manufacturer’s instruction. Scramble siRNA was used as control. Four hours post-transfection, cells were washed once in HBSS buffer and resuspended in culture medium in order to avoid cellular toxicity due to siRNA transfection. Twenty-four hours post-transfection, cells were stimulated as described and cell-free supernatants were harvested and tested for the presence of IFNα by ELISA or cells were lysed for Western blot analysis.

Luciferase Assay and Plasmid Transfection

Human embryonic kidney (HEK293) cell line (ATCC, Manassas, VA) was cultured in Dulbecco modified Eagle medium (DMEM) supplemented with 10% heat-inactivated FBS. HEK293 cells (5 × 10⁵ cells/ml) were transiently co-transfected with 100, 200 or 300 ng of either pcDLSR-Zta wt or pcDLSR-Zta mutated (ΔZta) (Q34A and D35A) [28] plasmids kindly provided by Dr. Paul M. Lieberman using Escort transfection reagent (Sigma-Aldrich, Oakville, ON, Canada) along with 100 ng pGL3-pSOCS3 luciferase reporter plasmid. Forty-eight hours following transfection, cells were lysed in luciferase buffer (1% Triton, 10% glycerol, 20 mM Tris phosphate, pH 7.5) and luciferase activity was measured by luminometry. Relative light units (RLU) were normalized by protein dosage using BCA protein assay kit (Fierce Biotechnology, Rockford, IL). When indicated, monocytes (6 × 10⁶ cells/ml) were transfected with 300 ng of either pcDLSR-Zta wt, pcDLSR-Zta (ΔZta) or mock control (pcDL-SRz296) plasmids using Lipofectamine 2000 (Invitrogen, Burlington, ON, Canada). Four hours following transfection, monocytes were supplemented with 10% FBS. Forty-eight hours later, monocytes were stimulated with IFNα (1000 U/ml) for 15 minutes and expression of SOCS3 and phospho(p)STAT2 proteins was evaluated by Western blot analysis. Membranes were also probed with anti-Actin as loading control.

Statistical analysis

Data were analyzed by one-tailed analysis of variance (ANOVA) followed by Newman-Keuls post-hoc test using PRISM3 software. Differences were considered significant at p≤0.05.

Acknowledgments

The authors wish to thank Mrs. Pierreotte Côté for her secretarial assistance and Mrs. Sylvie Turcotte for technical assistance.

Author Contributions

Conceived and designed the experiments: JG. Performed the experiments: FM FC JG. Analyzed the data: FM FC EG MRP JG. Contributed reagents/materials/analysis tools: MRP. Wrote the paper: FC JG. PRISM3 software. Differences were considered significant at p≤0.05.

References

1. Straus SE, Cohen JL, Toosmat G, Meier J (1993) NIH conference. Epstein-Barr virus infections: biology, pathogenesis, and management. Ann Intern Med 118: 45–50.
2. Kasahara Y, Yachie A (2002) Cell type specific infection of Epstein-Barr virus (EBV) in EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Crit Rev Oncol Hematol 44: 203–294.
3. Savard M, Gosselin J (2006) Epstein-Barr virus immunosuppression of innate immunity mediated by phagocytes. Virus Res 119: 134–145.
4. Gosselin J, Menezes J, D’Addario M, Hiscott J, Flamand L, et al. (1991) Inhibition of tumor necrosis factor-alpha transcription by Epstein-Barr virus. Eur J Immunol 21: 203–208.
5. Jabs WJ, Wagner Hj, Maurmann S, Hemig H, Kreth B (2002) Inhibition of macrophage inflammatory protein-1α production by Epstein-Barr virus. Blood 99: 422–426.
6. Savard M, Belanger C, Tremblay MJ, Dumas N, Flamand L, et al. (2000) EBV suppresses progestaglandin E2 biosynthesis in human monocytes. J Immunol 164: 6407–6473.
7. Tardif M, Savard M, Flamand L, Gosselin J (2002) Impaired protein kinase C activation/translocation in Epstein-Barr virus-infected monocytes. J Biol Chem 277: 24148–24154.
8. Tugizov S, Herrera F, Veluppilai P, Greenspan J, Greenspan D, et al. (2007) Epstein-Barr virus (EBV)-infected monocytes facilitate dissemination of EBV active EBV infection. Crit Rev Oncol Hematol 44: 283–294.
9. Antisense: 5'-ACAGUGAU-GCCGAAGGUUUt-3' (Applied Biosystems/Ambion, Austin, TX) using lipofectamine according to the manufacturer’s instruction. Scramble siRNA was used as control. Four hours post-transfection, cells were washed once in HBSS buffer and resuspended in culture medium in order to avoid cellular toxicity due to siRNA transfection. Twenty-four hours post-transfection, cells were stimulated as described and cell-free supernatants were harvested and tested for the presence of IFNα by ELISA or cells were lysed for Western blot analysis.

EBV Activates SOCS3

Human embryonic kidney (HEK293) cell line (ATCC, Manassas, VA) was cultured in Dulbecco modified Eagle medium (DMEM) supplemented with 10% heat-inactivated FBS. HEK293 cells (5 × 10⁵ cells/ml) were transiently co-transfected with 100, 200 or 300 ng of either pcDLSR-Zta wt or pcDLSR-Zta mutated (ΔZta) (Q34A and D35A) [28] plasmids kindly provided by Dr. Paul M. Lieberman using Escort transfection reagent (Sigma-Aldrich, Oakville, ON, Canada) along with 100 ng pGL3-pSOCS3 luciferase reporter plasmid. Forty-eight hours following transfection, cells were lysed in luciferase buffer (1% Triton, 10% glycerol, 20 mM Tris phosphate, pH 7.5) and luciferase activity was measured by luminometry. Relative light units (RLU) were normalized by protein dosage using BCA protein assay kit (Fierce Biotechnology, Rockford, IL). When indicated, monocytes (6 × 10⁶ cells/ml) were transfected with 300 ng of either pcDLSR-Zta wt, pcDLSR-Zta (ΔZta) or mock control (pcDL-SRz296) plasmids using Lipofectamine 2000 (Invitrogen, Burlington, ON, Canada). Four hours following transfection, monocytes were supplemented with 10% FBS. Forty-eight hours later, monocytes were stimulated with IFNα (1000 U/ml) for 15 minutes and expression of SOCS3 and phospho(p)STAT2 proteins was evaluated by Western blot analysis. Membranes were also probed with anti-Actin as loading control.

Statistical analysis

Data were analyzed by one-tailed analysis of variance (ANOVA) followed by Newman-Keuls post-hoc test using PRISM3 software. Differences were considered significant at p≤0.05.

Acknowledgments

The authors wish to thank Mrs. Pierreotte Côté for her secretarial assistance and Mrs. Sylvie Turcotte for technical assistance.

Author Contributions

Conceived and designed the experiments: JG. Performed the experiments: FM FC JG. Analyzed the data: FM FC EG MRP JG. Contributed reagents/materials/analysis tools: MRP. Wrote the paper: FC JG.
23. Lu R, Au WC, Yew WS, Hageman N, Pihia PM (2000) Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon and silencing by hypermethylation. J Biol Chem 275: 31805–31812.

24. Matsumoto M, Tanaka N, Harada H, Kimura T, Yokochi T, et al. (1999) Activation of the transcription factor ISGF3 by interferon-gamma. Biochem Biophys Res Commun 260: 699–703.

25. Sinclair AJ (2003) bZIP proteins of human gammaherpesviruses. J Gen Virol 84: 1941–1949.

26. Savard M, Belanger C, Tardif M, Gourde P, Flamand L, et al. (2000) Activation of the transcription factor ISGF3 by interferon-gamma. Biol Chem 380: 699–703.

27. Li D, Qian L, Chen C, Shi M, Yu M, et al. (2009) Down-regulation of MHC class II expression through inhibition of CIITA transcription by lytic transactivator Zta during Epstein-Barr virus reactivation. J Immunol 182: 1799–1809.

28. Lieberman PM, Ozer J, Gursel DB (1997) Requirement for transcription factor II A (TFIIA)-TFIID recruitment by an activator depends on promoter structure and template competition. Mol Cell Biol 17: 6624–6632.

29. Alcami A, Koszinowski UH (2000) Viral mechanisms of immune evasion. Immunol Today 21: 447–455.

30. Nanbo A, Inoue K, Adachi-Takasawa K, Takada K (2002) Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J 21: 954–963.

31. Koike K, Lackey KA, Warumukur S, Sample JT (2000) Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. J Virol 74: 2612–2619.

32. Cohen JL, Lekstrom K (1999) Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol 73: 7627–7632.

33. Xu H, An H, Hou J, Han C, Wang P, et al. (2008) Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages. Mol Immunol 45: 3545–3552.

34. Hahn AM, Huye LE, Ning S, Webster-Cyriaque J, Pagano JS (2005) Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF1. J Virol 79: 10040–10052.

35. Wang JT, Doong SL, Teng SC, Lee CP, Tsai CH, et al. (2009) Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol 83: 1856–1869.

36. Shresta NP, Restifo NF (2009) Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol 30: 592–602.