COMPUTATIONS OF THE MERTENS FUNCTION AND IMPROVED BOUNDS ON THE MERTENS CONJECTURE

GREG HURST *

Abstract. The Mertens function is defined as \(M(x) = \sum_{n \leq x} \mu(n) \), where \(\mu(n) \) is the Möbius function. The Mertens conjecture states \(|M(x)/\sqrt{x}| < 1\) for \(x > 1 \), which was proven false in 1985 by showing \(\lim \inf M(x)/\sqrt{x} < -1.009 \) and \(\lim \sup M(x)/\sqrt{x} > 1.06 \). The same techniques used were revisited here with present day hardware and algorithms, giving improved lower and upper bounds of \(-1.837625\) and \(1.826054\). In addition, \(M(x) \) was computed for all \(x \leq 10^{16} \), recording all extrema, all zeros, and \(10^8 \) values sampled at a regular interval. Lastly, an algorithm to compute \(M(x) \) in \(O(x^{2/3+\varepsilon}) \) time was used on all powers of two up to \(2^{73} \).

1. Introduction

The Möbius function \(\mu(n) \) is an arithmetic function defined by

\[
\mu(n) = \begin{cases}
(-1)^{\omega(n)} & \text{if } n \text{ is a square-free integer} \\
0 & \text{otherwise}
\end{cases}
\]

where \(\omega(n) \) is the number of prime factors of \(n \). The Mertens function is the summatory function of the Möbius function, i.e.

\[
M(x) = \sum_{n \leq x} \mu(n).
\]

This is a well known function in number theory, appearing in many identities. Its Mellin transform gives

\[
\frac{1}{\zeta(s)} = s \int_1^{\infty} M(x)x^{-s-1}dx \text{ for } \Re(s) > 1,
\]

where \(\zeta(s) \) is the Riemann zeta function. If \(M(x) = O(x^{1/2+\varepsilon}) \), the integral would converge for \(\Re(s) > 1/2 \), implying that \(1/\zeta(s) \) has no poles in this region and that the Riemann hypothesis is true. Conversely, if \(M(x) = \Omega(x^\alpha) \) for some \(\alpha > 1/2 \), then the Riemann hypothesis is false.

Defining \(q(x) = M(x)/\sqrt{x} \), a long standing conjecture of Mertens stated \(|q(x)| < 1\) for \(x > 1 \). In 1985 this was shown to be false by Odlyzko and te Riele who showed \(\lim \inf q(x) < -1.009 \) and \(\lim \sup q(x) > 1.06 \) \[5\]. However no explicit counterexample was found. Since then Best and Trudgian have improved these bounds to \(\lim \inf q(x) < -1.6383 \) and \(\lim \sup q(x) > 1.6383 \) \[4\]. This paper describes techniques similar to those of Odlyzko and te Riele and establishes \(\lim \inf q(x) < -1.837625 \) and \(\lim \sup q(x) > 1.826054 \).

*Wolfram Research Inc., 100 Trade Center Drive, Champaign, IL 61820, U.S.A.
E-mail address: ghurst@wolfram.com

arXiv:1610.08551v2 [math.NT] 1 Sep 2017
To better understand $M(x)$ and $q(x)$, some have computed $M(x)$ at every integer up to a given bound. The most recent and extensive results are due to Kotnik and van de Lune, who computed $M(x)$ for all $x \leq 10^{14}$ [3]. In this paper, these results are extended by computing $M(x)$ for all $x \leq 10^{16}$. For x in this range

- all extrema
- all zeros of $M(x)$ (366,567,325 in total)
- all values of $M(x)$ for x a multiple of 10^8

are reported.

Finally, an algorithm is discussed that was used to compute $M(2^n)$ for all positive integers $n \leq 73$, including $M(2^{73}) = -6524408924$.

Section 2 describes the sieve used to compute $M(n)$ for all $n \leq 10^{16}$ and used in the main algorithm in the subsequent section. Section 3 derives a formula and incorporates it into an algorithm used to calculate $M(x)$ at an isolated value. Section 4 discusses the machinery used to derive bounds on $|q(x)|$. This entails analytic formulas relating to $M(x)$ and a lattice basis reduction scheme. Section 5 discusses all implementation details, which include low level tricks to speed up common calculations and the choice of hardware specific parameters. Section 6 presents and discusses the results of the computations. These include extrema of $M(x)$, properties of the zeros of $M(x)$, the values of $M(x)$ at isolated values, and various bounds on $q(x)$. Finally, section 7 summarizes all results and considers possible extensions.

2. Sieving Algorithm

The functions $\mu(n)$ and $M(n)$ can be computed naively for all $n \leq x$ as follows [2]:

Compute and store all primes $p \leq \sqrt{x}$

Initialize an array m of 1’s of length $\lfloor x \rfloor$

for each prime $p \leq \sqrt{x}$ do
- For all $1 \leq n \leq x$ divisible by p, set $m[n] \leftarrow -p \cdot m[n]$
- For all $1 \leq n \leq x$ divisible by p^2, set $m[n] \leftarrow 0$

for $1 \leq n \leq x$ do
- If $m[n] = 0$, do nothing
- If $|m[n]| = n$, set $m[n] \leftarrow \text{sign}(m[n])$
- Otherwise, set $m[n] \leftarrow -\text{sign}(m[n])$

The array m now stores $\mu(n)$ at position n

Cumulatively add the values in m into another array. This array stores $M(n)$ at position n

The runtime complexity of this sieve is determined by the first loop and is

$$O\left(\sum_{p \leq \sqrt{x}} \left(\frac{x}{p} + \frac{x}{p^2}\right)\right) = O(x \log \log x).$$

There are two problems that render this algorithm impractical for large x. The first is that it requires $O(x \log \log x)$ multiplications, which can be costly. The second is that the array m must contain integers rather than bytes, which is less cache friendly. The problem of cache misses is discussed in further detail in section 5. To address these issues a variation of this algorithm, similar to the one described
in [1], is used. Define \(\theta(x) \) as the unit step function and \(\text{lsb}(x) \) as the least significant bit of \(x \), and sieve as follows:

Create byte-arrays \(l \) of length \(\lceil \sqrt{n} \rceil \) and \(m \) of length \(\lfloor x \rfloor \)

\[
\text{for } 1 \leq j \leq \sqrt{x} \\text{ do} \\
\quad l[j] \leftarrow \lfloor \log_2 p_j \rfloor | 1, \text{ where } p_j \text{ is the } j\text{th prime and } | \text{ is bitwise OR} \\
\text{for } 1 \leq n \leq x \\text{ do} \\
\quad m[n] \leftarrow 0x80 (\text{set the most significant bit to 1 and the rest to 0}) \\
\text{for } 1 \leq j \leq \sqrt{x} \\text{ do} \\
\quad \text{For all } 1 \leq n \leq x \text{ divisible by } p_j, \text{ set } m[n] \leftarrow l[j] + m[n] \\
\quad \text{For all } 1 \leq n \leq x \text{ divisible by } p^2_j, \text{ set } m[n] \leftarrow 0 \\
\text{for } 1 \leq n \leq x \\text{ do} \\
\quad \text{If the leading bit in } m[n] \text{ is 0, set } m[n] \leftarrow 0 \\
\quad \text{If } m[n] < \lfloor \log_2 n \rfloor - 5 - 2\theta(n - 2^{20}), \text{ set } m[n] \leftarrow 2\text{lsb}(m[n]) - 1 \\
\quad \text{Otherwise, set } m[n] \leftarrow 1 - 2\text{lsb}(m[n])
\]

The idea of this algorithm is the same as the first one, except it works in log-space. This allows multiplication to be replaced with addition and data to be stored in byte-arrays. Though the time complexity remains the same, these changes reduce implementation overhead.

After the third loop, the leading bit of each element \(m[n] \) indicates whether \(n \) is divisible by a square. This leaves 7 bits in \(m[n] \) to add logarithms. Fortunately for all \(n < 10^{16} \), the maximum possible amount of logarithms that can be added will not overflow to the eighth bit. In fact overflow will not occur until about \(n = 10^{30} \). The least significant bit of each element \(m[n] \) counts the parity of the number of prime factors encountered. If it is 0 there were an even amount and if it is 1 there were an odd amount. This is achieved by setting the least significant bit in each element of \(l \) to 1.

Finally, logarithms are summed to determine if \(n \) has a prime factor larger than \(\sqrt{n} \) that was not accounted for in the sieve. For \(n \leq 2^{20} \), all primes will be accounted for if and only if \(\sum_j \lfloor \log_2 p_j \rfloor | 1 < \lfloor \log_2 n \rfloor - 5 \), where all cases can be verified exhaustively. The validity for larger \(n \) is shown by the following theorem.

Theorem 2.1. If \(2^{20} < n \leq 10^{16} \), and \(n = p_1 \cdots p_k \) is square-free, then

\[
\sum_{j=1}^{k} \lfloor \log_2 p_j \rfloor | 1 \geq \lfloor \log_2 n \rfloor - 7 \quad (1)
\]

and

\[
\sum_{j=1}^{k-1} \lfloor \log_2 p_j \rfloor | 1 < \lfloor \log_2 n \rfloor - 7 \quad \text{when } p_k > \sqrt{n}. \quad (2)
\]

Proof. To show (1) is true, a value of \(n \) is sought that gives a sum which deviates below \(\log_2 n \) as far as possible. This will happen when there are many prime factors (allowing for more error), all \(\lfloor \log_2 p_j \rfloor \) are odd (so the bitwise OR won’t increment the sum), and each \(p_j \) is just less than a power of 2 (making the fractional part as large as possible). Under these constraints there are a manageable number of cases to test manually. The largest deviation from \(\lfloor \log_2 n \rfloor \) is \(-7\) and first occurs at

\[
n = 3 \cdot 11 \cdot 13 \cdot 53 \cdot 59 \cdot 61 \cdot 229 \cdot 241 \cdot 251 \approx 1.13 \cdot 10^{15}.
\]
Additionally, the first occurrence of -8 is at
$$n = 3 \cdot 13 \cdot 47 \cdot 53 \cdot 59 \cdot 61 \cdot 229 \cdot 239 \cdot 241 \cdot 251 \approx 1.16 \cdot 10^{18},$$
which means this algorithm will need to be slightly modified to reach that value.

To show (2) is true, observe
$$k - 1 \sum_{j=1}^{k-1} \left\lfloor \log_2 p_j \right\rfloor | 1 \leq \sum_{j=1}^{k-1} \left\lfloor \log_2 p_j \right\rfloor + k - 1 \leq \log_2 n + k - 1 - \log_2 p_k \leq \lfloor \log_2 n \rfloor - 7 + (k + 6 - \log_2 \sqrt{n}).$$

Now
$$\log_2 \sqrt{n} = \sum_{j=1}^{k} \log_2 \sqrt{p_j},$$
and $\log_2 \sqrt{p_j} > 2$ for $j \geq 7$. This leaves only a finite number of cases where $k + 6 < \log_2 \sqrt{n}$ might be false. Checking (2) manually on each of these cases confirms its validity.

Finally this sieving algorithm can be segmented into blocks small enough for a computer to store all generated data in RAM. Using a block size B that is a divisor of x, compute $\mu(n)$ and $M(n)$ for all $(j - 1)x/B + 1 \leq n \leq jx/B$ and let j span from 1 to B. For each block, only the primes up to $\sqrt{jx/B}$ need to be considered.

3. Combinatorial Algorithm

To compute $M(x)$ at an isolated value, just as in [1] and [2], start with the identity
$$\sum_{n \leq x} M(\lfloor x/n \rfloor) = 1.$$

Observing $\lfloor x/n \rfloor$ takes on roughly $2\sqrt{x}$ distinct values, let $\nu_x = [\sqrt{x}]$, $\kappa_x = [x/(\nu_x + 1)]$ and rewrite the identity as
$$\sum_{n \leq \kappa_x} M(x/n) = 1 - \sum_{n \leq \nu_x} \left(\left\lfloor \frac{x}{n} \right\rfloor - \left\lfloor \frac{x}{n + 1} \right\rfloor \right) M(n) = 1 + \kappa_x M(\nu_x) - \sum_{n \leq \nu_x} \left\lfloor \frac{x}{n} \right\rfloor \mu(n).$$

From an implementation standpoint, the second line is more cache friendly since the values of μ can be stored in an array of bytes. Moreover when $\mu(n) = 0$, the quotient it is multiplied by does not need to be computed.

For any $\nu_x < u < x$ define
$$S(y, u) = 1 - \sum_{y/u < n \leq \kappa_y} M(y/n) + \kappa_y M(\nu_y) - \sum_{n \leq \nu_y} \left\lfloor \frac{y}{n} \right\rfloor \mu(n),$$

which gives
$$\sum_{n \leq x/u} M(x/n) = S(x, u).$$

Applying generalized Möbius inversion yields the following result.
Theorem 3.1.

\[M(x) = \sum_{n \leq x/u} \mu(n)S(x/n, u). \]

Now notice when computing this summand for all \(n \leq x/u \), only the square-free \(n \) need to be considered, as \(\mu(n) = 0 \) otherwise. This means that about \(1 - 6/\pi^2 \approx 39\% \) of summands need not be computed.

To find each sum within each \(S \), a segmented sieve can be applied to compute all required values of \(\mu \) and \(M \). The time complexity of this algorithm is thus the time spent sieving plus the time computing each \(S(x/n, u) \). This gives a total time complexity of

\[O\left(u^{1+\varepsilon} + \sum_{n \leq x/u} \nu x/n\right) = O(u^{1+\varepsilon} + x/\sqrt{u}). \]

The choice of \(u = O(x^{2/3+\varepsilon}) \) minimizes this runtime complexity at \(O(x^{2/3+\varepsilon}) \).

4. Analytic Algorithm

The bounds on \(\lim \inf q(x) \) and \(\lim \sup q(x) \) can be extended using the approach of Odlyzko and te Riele in [4], which begins with the following observation.

Theorem 4.1 (Titchmarsh [6]). Assuming the Riemann hypothesis and all zeros of the zeta function are simple, then for \(x > 0 \),

\[M(x) = \sum_{i=1}^{\infty} \left(\frac{x^{\rho_i}}{\rho_i \zeta'(\rho_i)} + \frac{x^{\pi \rho_i}}{\rho_i \zeta'(\rho_i)} \right) + R(x) + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(2\pi/x)^{2n}}{(2n)!n\zeta(2n+1)}. \]

Here \(R(x) = -2 \) for \(x \notin \mathbb{Z} \), \(R(x) = -2 + \mu(x)/2 \) for \(x \in \mathbb{Z} \), and \(\rho_i \) is the \(i \)th non trivial zero of \(\zeta \) with positive imaginary part.

Grouping terms in this formula gives

\[q(x) = 2 \sum_{i=1}^{\infty} a_i \cos(\gamma_i \log x + \psi_i) + O(x^{-1/2}), \]

where \(a_i = 1/|\rho_i \zeta'(\rho_i)| \), \(\gamma_i = \text{Im}(\rho_i) \), and \(\psi_i = \text{arg}(\rho_i \zeta'(\rho_i)) \). Now defining \(f(t) = (1 - t) \cos(\pi t) + \sin(\pi t)/\pi \) and

\[h(y, N) = 2 \sum_{i=1}^{N} a_i f(\gamma_i/\gamma_N) \cos(\gamma_i y + \psi_i), \]

the following holds.

Theorem 4.2 (Ingham [7]). For any real \(y \) and any positive integer \(N \),

\[\lim \inf q(x) \leq h(y, N) \leq \lim \sup q(x). \]

One should note that unlike Theorem 4.1, this theorem does not assume the Riemann hypothesis. Additionally this is the main result the analytic algorithm depends on. Roughly speaking, a trick to bound \(q(x) \) is hence finding a \(y \) and \(N \) such that \(|h(y, N)| \) is large. Moreover since \(\sum \) diverged and \(f(t) > 0 \) for \(0 < t < 1 \), if all \(\gamma_i y + \psi_i \) were close to multiples of \(2\pi \) then \(h(y, N) \) could be an arbitrarily large positive number. Similarly if all \(\gamma_i y + \psi_i + \pi \) were close to multiples of \(2\pi \), then \(h(y, N) \) could be an arbitrarily large negative number.
More explicitly, for any sequence of integers m_i where $\cos(\gamma_i y + \psi_i - 2\pi m_i)$ is sufficiently small, $h(y, N)$ can be approximated with

$$h(y, N) \approx 2 \sum_{i=1}^{N} a_i \cos(\gamma_i y + \psi_i - 2\pi m_i)$$

$$= 2 \sum_{i=1}^{N} a_i \cos(\gamma_i y + \psi_i)$$

$$\approx 2 \sum_{i=1}^{N} a_i - \sum_{i=1}^{N} \left(\sqrt{a_i}(\gamma_i y + \psi_i - 2\pi m_i)\right)^2.$$

This means if m_i were found such that each $\sqrt{a_i}(\gamma_i y + \psi_i - 2\pi m_i)$ is small, $h(y, N)$ should be large. This can be achieved via lattice reduction. Lattice reduction takes in a basis of integer vectors and returns a new integer basis spanning the same space, where each vector has a small Euclidean norm. Fixing N, the initial basis is

$$\begin{bmatrix} -\lfloor\sqrt{a_1}\psi_12^\nu\rfloor \\ -\lfloor\sqrt{a_2}\psi_22^\nu\rfloor \\ \vdots \\ -\lfloor\sqrt{a_N}\psi_N2^\nu\rfloor \\ 2^\nu N^4 \\ 0 \end{bmatrix}, \begin{bmatrix} \lfloor\sqrt{a_1}\gamma_12^{\nu-10}\rfloor \\ \lfloor\sqrt{a_2}\gamma_22^{\nu-10}\rfloor \\ \vdots \\ \lfloor\sqrt{a_N}\gamma_N2^{\nu-10}\rfloor \\ 0 \end{bmatrix}, \begin{bmatrix} 2\pi\sqrt{a_1}2^\nu \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

where ν is any integer satisfying $2N \leq \nu \leq 4N$.

Since $2^\nu N^4$ is much larger than every other element and no other vector has a nonzero $(N+1)$st component, there should be exactly one reduced vector with a nonzero $(N+1)$st term and it will equal $\pm 2^\nu N^4$. Call this vector $v = (v_1, v_2, \ldots, v_{N+2})^T$ and without loss of generality assume $v_{N+1} = 2^\nu N^4$.

For each $1 \leq i \leq N$, this vector has components

$$v_i = z[\sqrt{a_i}\gamma_i2^{\nu-10}] - [\sqrt{a_i}\psi_i2^\nu] - m_i[2\pi\sqrt{a_i}2^\nu]$$

for some integers z, m_1, m_2, \ldots, m_N. Now because v_{N+1} is so large these terms should be small, which means

$$\sqrt{a_i}(\gamma_iz/2^{10} - \psi_i - 2\pi m_i)$$

will also be small. Hence setting $y = z/2^{10}$ should give a value where $h(y, N)$ is large and positive, where the value z is known, as $z = v_{N+2}$.

To find a y that makes $h(y, N)$ large and negative, simply replace ψ_i with $\psi_i + \pi$ in the call to the lattice reduction algorithm.
Finally to improve results, the zeros ρ_i can be sorted by a_i, rather than sorted by γ_i as was done above. This will ensure the largest a_i’s will have their corresponding cosines near ±1, making the sum even larger.

5. Implementation Details

5.1. Sieve. When performing the sieve in section 2, the bottleneck is accounting for multiples of small prime powers, i.e. 2, 3, 2², etc. To circumvent this, these values can be pre-sieved. This implementation pre-sieved with multiples of 2, 3, 2², 5, 7, 3², and 11. To do this the sieve was applied, only using these numbers, on an array of length $2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 = 13860$. When the main sieve was called, the array m was assembled by joining many copies of this precomputed array.

Because computing all 10^{16} values of M at once would have required storing an array too large for RAM, the segmented version of the sieve was used. Computations were done in blocks of length 8728473600, and used roughly 46 GB of RAM. During the main loop of the sieve, each block was further divided into smaller blocks to allow m to fit in the L3 cache. However, once the size of the primes became substantially larger than the length of m, too much time was spent iterating over primes that were never used. To address this, the length of m was increased and no longer fit in the L3 cache. After each block was computed, each value of $M(n)$ was recorded if it was an extremum, zero, or if n was a multiple of 10^8.

Finally, when identifying elements that correspond to a multiple of p or p^2 in the sieve, integer division is required and is very costly. A way around this is to use methods described in [8], which turns integer division into one 128 bit multiplication, one addition, and two bit shifts. This requires precomputing two constants for each denominator used in the scheme.

5.2. Combinatorial. To compute $M(x)$, the value $u = \lceil 0.5x^{2/3} \rceil$ was chosen since it gave the fastest results. This means that when computing $M(2^{14})$, each $M(n)$ for all $n \leq 3.5 \cdot 10^{14}$ were computed through a segmented sieve. During this sieving process a block size of roughly $96\sqrt{2u}$ was chosen, giving a total of about $0.0073\sqrt{u}$ blocks to sieve through. Once a block of μ and M values were computed, they were accounted for in each $S(x/n, u)$. Therefore all $S(x/n, u)$ were computed once the sieve finished.

Computing all S as stated in section 3 requires $O(x^{2/3})$ integer divisions, and this is extremely costly. Fortunately when computing a value of S, both sequences of quotients that appear have the same numerator and each denominator successively increments by 1. This means all successive quotients y/n with $\sqrt[3]{2y} \leq n \leq \sqrt{y}$ can be computed using a Bresenham style method. This scheme computes a quotient based off the value of the previous quotient, and is described in detail in [9]. For all denominators $n < \sqrt[3]{2y}$, the same technique used in the sieve to turn a quotient into a multiplication, addition, and bit shifts can be employed [8]. The precomputing of constants for this method requires exactly one quotient to be computed per denominator. This reduces the number of integer divisions from $O(x^{2/3})$ to $O(x/u) = O(x^{1/3})$.

5.3. Analytic. Computing bounds on $q(x)$ requires many digits of ρ_i and $\zeta'(\rho_i)$ and a fast lattice reduction routine. Mathematica was used to compute ρ_i to 10000 digits of precision for all $i \leq 14400$ and subsequently compute each $\zeta'(\rho_i)$ to roughly 8151 digits of precision. The results were verified using PARI/GP.
The lattice reduction library chosen was fplll \cite{fplll}. Its implementation has a runtime complexity of $O(N^{4+\varepsilon}(N + \nu))$, which is faster than the original algorithm’s runtime complexity of $O(N^{6+\varepsilon}\nu^3)$ \cite{fplll}. For each call to fplll, the optional parameter values $(\delta, \eta) = (0.9999, 0.99985)$ were used. The choices of these parameters were intended to speed up the runtime, with the trade off of a less optimal solution.

5.4. Hardware. The computations of ρ_i and $\zeta'(\rho_i)$ were performed on a 360 core cluster on the Wrangler system at the Texas Advanced Computing Center. All other computations were run on a 2.7 GHz 12-core Intel Xeon E5 processor with a 32 MB L3 cache and 64 GB of RAM. The code was compiled with g++ and where possible, routines were parallelized using OpenMP.

6. Results

6.1. Sieve. Computing $M(n)$ for all $n \leq 10^{16}$ took roughly 7.5 months and was heavily influenced by cache misses. The frequency of these misses increased with n. For comparison, the first 10^{14} values took 1 day to compute, the next 10^{14} values took 1.35 days, and this gradually increased until the final 10^{14} values took 2.8 days. Results were periodically verified throughout the computation using the algorithm described in \cite{berndt} to compute $M(n)$ and compare values. No discrepancies were found.

The largest absolute values $M(n)$ attains for $n \leq 10^{16}$ are $-35,629,003$ and $40,371,499$, and the largest absolute values $q(n)$ attains in this interval are -0.525 and 0.571. Below is a select list of extrema corresponding to prominent peaks of M:

n	$M(n)$	$q(n)$	n	$M(n)$	$q(n)$
661245058	-31206	-0.383	519715985733	-68968	-0.303
7766842813	50286	0.571	1023605505745	1451233	0.454
15578669387	-51116	-0.410	23431878209318	1903157	0.393
19890188718	60442	0.429	3806335279	-81220	-0.416
2286794771	-62880	-0.416	30501639884098	-1930205	-0.349
48638777062	70946	0.349	3016176934239	2728752	0.454
56808201767	-87995	-0.369	36213976311781	2783777	0.463
10124615617	-129332	-0.406	71578936427177	-4440015	-0.525
108924543546	170358	0.516	146734769124494	3733097	0.308
148491117087	-131461	-0.341	175688234263439	-5684793	-0.429
21039243735	-150936	-0.410	21212478919869	5491769	0.377
297193839495	207478	0.381	212137538048059	5505045	0.375
33050866218	-294816	-0.513	304648719069787	-5757490	-0.330
40202714433	271498	0.428	351246529829131	9699950	0.518
661066375037	331302	0.407	1050365368551491	-13728339	-0.424
144035502306	-368527	-0.307	121187620620741	16390637	0.471
165345193541	546666	0.425	245871990828794	-20362905	-0.411
2087416063490	-625681	-0.433	3295553617962269	18781262	0.372
2343412610499	594442	0.388	3666310621219561	-23089949	-0.381
3270926424607	-635558	-0.351	489221417703689	24133331	0.345
4098484181477	789392	0.386	6287915599821430	-35629003	-0.449
5191164528277	-668864	-0.294	7332940231978758	40371499	0.471

All zeros of $M(n)$ for $n \leq 10^{16}$ were recorded. A natural question to ask is for any x, how many zeros are less than x? Defining $V(x)$ to be the number of zeros
less than \(x \), a theorem of Landau states \(V(x) = \Omega(\log x) \) [12]. This however is expected to be a weak lower bound.

Treating \(M(n) \) as a random walk with probability of staying stationary \(1 - \frac{6}{\pi^2} \) and with both probabilities of moving up and down \(\frac{3}{\pi^2} \), it would follow that \(V(x) = \sqrt{\frac{\pi x}{3}} + o(\sqrt{x}) \). In practice however \(M \) cannot be modeled as a random walk because there is regularity, e.g. \(M(4n + 3) = M(4n + 4) \), etc. Nonetheless, the data suggest \(V(x) = \Theta(x^{1/2 + \varepsilon}) \). In fact \(3.5\sqrt{x} \) or even \(\sqrt{x} \log \log x \) seem like good approximations.

\(n \)	\(V(10^n) \)	\(n \)	\(V(10^n) \)
1	1	9	141121
2	6	10	431822
3	92	11	1628048
4	406	12	4657633
5	1549	13	12917328
6	5361	14	40604969
7	12546	15	109205859
8	41908	16	366567325

A property these zeros can help investigate is whether \(M \) tends to have a bias towards being positive or negative. Define \(M_+(x) \) to be the percentage of \(M(n) \) that are positive for \(n \leq x \), that is

\[
M_+(x) = \frac{1}{x} \sum_{n \leq x, M(n) > 0} 1.
\]

A direct consequence of work by Ng [13] is that under certain conjectures the average value of \(M_+(x) \) should be \(1/2 \), i.e. no bias should exist. Computing \(\mu \) at each zero of \(M \), the sign of \(M \) can be determined between consecutive zeros which can be used to compute \(M_+ \). For \(x \leq 10^5 \) there is a clear negative bias, but for \(10^5 \leq x \leq 10^{16} \) there is no longer any apparent bias. For \(10^5 \leq x \leq 10^{16} \) the extreme values are \(M_+(53961131760658) \approx 0.385 \) and \(M_+(238469701201412) \approx 0.601 \).

Another characteristic of the zeros worth consideration is the gap between two consecutive zeros. To examine these gaps, let \(G_m(g) \) be the number of gaps of length \(g \) that occur for the first \(m \) zeros. For a fixed value of \(m \), this function can be plotted to show how the number of gaps of certain lengths vary. Letting \(\omega = V(10^{10}) = 366567325 \), gives the following plot:
As seen above, there are distinct bands present and each looks to roughly follow a power law, all with the same exponent. Zooming in, it appears each band is represented by all \(g \) congruent to 1 modulo a product of distinct primes squared.

Defining \(b_m(g) \) to be the baseline band (which can be approximated by a power law) and \(P_g \) to be the set of all primes \(p \) where \(g \equiv 1 \mod p^2 \), it seems these bands are expressed with the multiplier

\[
G_m(g) = \left(\sum_{S \in P(P_g)} \prod_{p \in S} \frac{1}{p^2 - 2} \right) b_m(g).
\]

For example if \(g_0 \equiv 1 \mod 4 \) and \(g_0 \not\equiv 1 \mod p^2 \) for \(p \neq 4 \), then \(P_{g_0} = \{2\} \) and \(G_m(g_0) \) should be above \(b_m(g_0) \) by a multiplicative factor of \(3/2 \).

6.2. Combinatorial. Calculating \(M(x) \) at powers of two scaled roughly as \(O(x^{2/3}) \), i.e. \(M(2^{x+1}) \) was about \(2^{2/3} \approx 1.59 \) times slower to compute than \(M(2^x) \). However, as in the sieve above, cache misses became more frequent for larger \(x \) resulting in scale factors around 1.63. The results are as follows:
The correctness of the implementation was verified in 3 ways:

- Tests on many already known values were run.
- When computing $M(x)$, $M(x/128)$ was simultaneously computed.
- Formula (3) was used to estimate the first couple digits of $M(x)$ and its order of magnitude.

All values were found to agree.

6.3. Analytic. The results of deriving bounds on $q(x)$ can be summarized with the following theorem.

Theorem 6.1. The function $q(x) = M(x)/\sqrt{x}$ has bounds

$$\liminf q(x) < -1.837625$$

and

$$\limsup q(x) > 1.826054.$$

Proof. To derive these bounds, the lattice reduction algorithm covered in section 4 was run with inputs $\nu = 17\,000$ and $N = 800$. Both calls took roughly 35 days to finish, giving y values

$$y_\ast \approx 1.50546 \cdot 10^{5096} \quad \text{and} \quad y_- \approx -2.58842 \cdot 10^{5097},$$

where their exact values can be found in the appendix below. Evaluating $h(y_\pm, 14400)$ gives the extreme values

$$h(y_\ast, 14400) \approx -1.837625 \quad \text{and} \quad h(y_-, 14400) \approx 1.826054.$$

In addition, the lattice reduction algorithm was run on various choices of smaller ν and N. These establish some weaker bounds:

ν	N	y	$h(y, 14400)$	time (d)
5000	400	$-2.78367 \cdot 10^{493}$	1.61230	0.53
12000	600	$-5.19605 \cdot 10^{504}$	-1.76011	7.32
12000	600	$9.31709 \cdot 10^{504}$	1.76382	7.33
15000	700	$2.74696 \cdot 10^{495}$	-1.81111	19.00
15000	700	$9.69908 \cdot 10^{495}$	1.81252	18.99
17000	800	$1.50546 \cdot 10^{5096}$	-1.83762	35.07
17000	800	$-2.58842 \cdot 10^{5097}$	1.82605	35.09
Finally, an approximate formula can be used to visualize what \(q(x) \) might look like in the neighborhood of \(y_\pm \). Defining

\[
\tilde{q}(x) = 2 \sum_{i=1}^{14400} a_i \cos(\gamma_i x + \psi_i)
\]

and assuming \(\tilde{q}(x) \approx q(e^x) \) gives plots about these extreme values:

The observation made in [14] that the width of the peaks of \(q(x) \) remain constant with respect to \(\log x \) seems to hold this far out. Moreover as seen in the above figures, these peaks appear to be anomalies, as most peaks in the vicinity of \(y_\pm \) do not exceed 0.5 in absolute value.

7. Extensions and Concluding Remarks

7.1. Sieve. Computing \(M(n) \) for all \(n \leq 10^{16} \) took about 7.5 months and the time was dominated by cache misses. To systematically compute \(M(n) \) for say \(n \leq 2 \cdot 10^{16} \), the cache misses beyond \(10^{16} \) would grow substantially more frequent, causing a drastic slow down. To reduce the number of these misses, additional measures can be taken.

First, rather than storing each value \(\mu(n) \) in 1 byte, 4 values of \(\mu(n) \) can be encoded together since \(\mu(n) \) only takes on 3 possible values, allowing it to be expressed with 2 bits. A similar approach can be taken for \(M(n) \) too, but not for \(n > 10^{16} \). For computations on shorter intervals though, space can still be saved. For example, \(M(n) \) can be stored as a signed 16 bit integer as long as \(|M(n)| < 2^{15} \). The first time this inequality is violated is at \(n = 7613644886 \). Similarly, \(M(n) \) can be stored as a signed 24 bit integer for all \(n < 348330855359510 \).
A more robust solution to prevent cache misses is to employ an additional data structure. Recall that during the sieve the array built to store values of \(\mu \) is segmented into blocks small enough to fit into the L3 cache. However once the primes being iterated over become too large, much time is wasted iterating over primes that aren’t used. Currently, this is mitigated by using larger blocks, but these larger blocks no longer fit in the L3 cache. Instead, this problem could be resolved in the following way:

Create a hashmap \(h \) that maps an integer to a vector of integers

\[
\text{for each prime } p \leq \sqrt{x} \text{ do}
\]

\[
\quad \text{Find the first block } i \text{ with an index corresponding to a multiple of } p
\]

\[
\quad \text{If } h(i) \text{ is uninitialized, set } h(i) \leftarrow \{p\}
\]

\[
\quad \text{Otherwise append } p \text{ to the vector } h(i)
\]

\[
\text{for each block } i \text{ do}
\]

\[
\quad \text{for each } p \text{ in } h(i) \text{ do}
\]

\[
\quad \quad \text{Sieve block } i \text{ with } p \text{ as normal}
\]

\[
\quad \quad \text{Determine the next block } j \text{ in which } p \text{ will be used}
\]

\[
\quad \quad \text{If } h(j) \text{ is uninitialized, set } h(j) \leftarrow \{p\}
\]

\[
\quad \quad \text{Otherwise append } p \text{ to the vector } h(j)
\]

\[
\quad \text{Clear } h(i)
\]

Under this approach, the block size can be set to always fit in the L3 cache without having the overhead of iterating over primes that will never be used. Notice here that each prime \(p \) will only be present in \(h \) at most once. Hence the size of \(h \) is only dependent on the number primes used, not the number of blocks being iterated over. For an L3 cache similar in size to the one used, this method could help make it feasible to compute beyond \(10^{16} \).

7.2. **Combinatorial.** Isolated values of \(M(x) \) were computed at powers of 2 up to \(M(2^{73}) = -6524408924 \), which took roughly 6 days to calculate. At the time this paper was written, to the author’s knowledge, there are no known combinatorial identities that lead to a runtime complexity less than \(O(x^{2/3+\varepsilon}) \). However a speedup could still potentially be obtained with a combinatorial approach.

Recall the identity used in the algorithm and stated in Theorem 3.1 is

\[
M(x) = \sum_{n \leq x/u} \mu(n)S(x/n,u).
\]

Since \(\mu(n) \) will asymptotically be zero \(1 - 6/\pi^2 \approx 39\% \) of the time, one approach could be to look for a sum whose summand is zero more often than this. The closest identity the author found in literature is due to Benito and Varona [15] and is

\[
M(x) = \frac{1}{2} \sum_{n \leq x/u} f^{-1}(n)G(x/n,u),
\]
where
\[
G(y, u) = -3 + \sum_{y/u < n \leq \kappa y} (h(n) - h(n - 1))M(y/n) + h(\nu_y)M(\kappa y)
\]
\[+ \sum_{n \leq \nu y} \left(3 \left\lfloor \frac{n}{3k} \right\rfloor - 2 \left\lfloor \frac{n - k}{2k} \right\rfloor \right) \mu(n),
\]
and \(f^{-1}(n)\) is the Dirichlet inverse of \(f(n) = h(n - 1) - h(n)\), and

\[
h(n) = \begin{cases}
2 & \text{if } n \equiv 0 \mod 6 \\
0 & \text{if } n \equiv 1 \text{ or } 2 \mod 6 \\
1 & \text{if } n \equiv 3 \text{ or } 4 \mod 6 \\
-1 & \text{if } n \equiv 5 \mod 6.
\end{cases}
\]

It turns out \(f^{-1}(n)\) is zero just as often as \(\mu(n)\) with the added advantage that \(f^{-1}(2) = f^{-1}(4) = 0\), meaning 2 of the 4 most computationally expensive summands need not be computed. The drawback is that no efficient way of computing \(f^{-1}(n)\) was found.

Lastly, an analytic approach could be considered. In 1987 Lagarias and Odlyzko described a way to compute \(\pi(x)\), the number of primes \(\leq x\), in \(O(x^{1/2+\varepsilon})\) time \([16]\).

The algorithm uses a completely different approach, expressing \(\pi(x)\) in terms of a contour integral in the complex plane. Moreover, the discussion section in \([16]\) states that the same ideas can be applied to compute \(M(x)\) in the same time complexity.

In 2010, Platt computed \(\pi(x)\) using this algorithm and stated the combinatorial algorithm for \(\pi(x)\) would probably be faster until roughly \(x \approx 4 \cdot 10^{31}\). This is due to overhead, some of which is from the need of multiple precision complex arithmetic \([17]\). It seems likely the analytic algorithm for \(M(x)\) would follow suit.

7.3. Analytic. It has been shown \(\lim \inf q(x) < -1.837625\) and \(\lim \sup q(x) > 1.826054\). Extending these bounds further, with the same approach, would take a considerable amount of time. To see why, first notice all values found with fplll, using \((\delta, \eta) = (0.9999, 0.99985)\), resulted in bounds about 95.5% of the optimum for a given \(N\), i.e.

\[
h \approx 1.91 \sum_{i=1}^{N} a_i.
\]

Additionally, the runtime of fplll’s algorithm scales as \(O(N^{4+\varepsilon}[\nu(N + \nu)])\) \([10]\). Thus given the timings of previous calls and assuming \(\nu\) scales linearly with \(N\), these observations can help estimate what is needed to reach a given bound:

bound	estimated \(N\)	estimated time
1.90	865	2 months
1.95	985	5 months
2.00	1125	10 months

It therefore appears attaining bounds of \(\pm 2\) is within reach with existing hardware and algorithms. Attaining bounds larger than 2 will most likely need \(\rho_i\) and \(\zeta'(\rho_i)\) computed to higher precision than what was achieved here, or different \((\delta, \eta)\) values. At present, a different approach is likely needed to substantially improve these bounds past 2.

8. Appendix

Access all computed data in a Mathematica notebook at https://wolfr.am/mertens
The author wishes to thank the Texas Advanced Computing Center for providing the computing power to compute \(\rho_i \) and \(\zeta'(\rho_i) \) to such high precision and Michael Trott for referring me to the TACC. Additionally, a thanks goes out to Matthew Gelber and Eric Rowland for offering suggestions and edits throughout the writing process of this paper. Lastly, the author wishes to acknowledge Daniel Fortunato for his collaborations during the inception of this project.

References

[1] Eugene Kuznetsov, Computing the Mertens function on a GPU (arXiv:1108.0135v1 [math.NT], 31 Jul 2011)
[2] M. Deléglise and J. Rivat, Computing the summation of the Möbius function Exp. Math. 5 (1996) 291 – 295.
[3] T. Kotnik and J. van de Lune, Further systematic computations on the summatory function of the Möbius function Report MAS-R0313, CWI Amsterdam (November 2003)
[4] D. G. Best and T. S. Trudgian, Linear relations of zeroes of the zeta-function Math. Comp. Volume 84, 294 (July 2015) 2047 – 2058
[5] A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens conjecture J. reine angew. Math. 357 (1985) 138 – 160.
[6] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press (1951).
[7] A. E. Ingham, On two conjectures in the theory of numbers, Amer. J. Math. 64 (1942) 313 – 319.
[8] T. Granlund and P. Montgomery, Division by Invariant Integers using Multiplication Proceedings of SIGPLAN ‘94 Conference on Programming Language Design and Implementation
[9] Richard Sladkey, A Successive Approximation Algorithm for Computing the Divisor Summatory Function (arXiv:1206.3369 [math.NT], Jun 2012) 13 – 16
[10] The FPLLL development team, fplll, a lattice reduction library (available at https://github.com/fplll/fplll) (January 2016)
[11] I. Moeil, D. Stehle, and G. Villard H-LLL: using Householder inside LLL ISSAC (2009) 271 – 278
[12] Emil Grosswald Oscillation Theorems of Arithmetical Functions Transactions of the American Mathematical Society 126 (1967)
[13] Nathan Ng The Distribution of the Summatory Function of the Möbius Function Proc. London Math. Soc. (2004) 89 361 – 389
[14] T. Kotnik and J. van de Lune, On the order of the Mertens function Experimental Mathematics 13 473 – 481 (December 2003)
[15] M. Banito and J. L. Varona Recursive Formulas Related to the Summation of the Möbius Function The Open Mathematics Journal 1 (2008) 25 – 34
[16] J. C. Lagarias and A. M. Odlyzko Computing \(\pi(x) \): An Analytic Method J. Algorithms 8 (1987) 173 – 191.
[17] David Platt Computing \(\pi(x) \) Analytically Math. Comp. 84 (2015) 1521 – 1535

WOLFRAM RESEARCH INC., 100 TRADE CENTER DRIVE, CHAMPAIGN, IL 61820, U.S.A.
E-mail address: ghurst@wolfram.com