DYT6 in Brazil: Genetic Assessment and Clinical Characteristics of Patients

Carlos Henrique F. Camargo 1,2*, Sarah Teixeira Camargos 3, Salmo Raskin 4, Francisco Eduardo C. Cardoso 3 & Hélio Afonso G. Teive 1

1 Movement Disorders Unit, Neurology Service, Hospital de Clínicas, Federal University of Paranaé, Curitiba, Brazil, 2 Neurology Service, Medicine Department, Hospital Universitário, State University of Ponta Grossa, Ponta Grossa, Brazil, 3 Movement Disorders Unit, Neurology Service, Hospital das Clínicas, Belo Horizonte, Brazil, 4 Genetika Laboratory and Catholic University of Paranaé, Curitiba, Brazil

Abstract

Background: Several genes associated with dystonia have been identified. A mutation in one of these, THAP1 (DYT6), is linked to isolated dystonia. The aim of this study was to assess the prevalence of THAP1 gene mutations and the clinical characteristics of patients with these mutations in a clinical population in Brazil.

Methods: Seventy-four patients presenting with dystonia involving the cervical muscles and without mutations in theTOR1A (DYT1) gene or any other movement disorders were recruited at a movement disorders clinic between June 2008 and June 2009. All the patients underwent clinical examination and were screened for mutations of the THAP1 gene.

Results: Three patients had the novel p.Gln97Ter THAP1 nonsense mutation in heterozygosis. One of them had no family history of dystonia. Symptoms in this patient first appeared in his right arm, and the condition progressed to the generalized form. The other two patients belonged to the same family (cousins). Symptoms in the first patient started in her right arm at the age of 18 years and the condition progressed to the segmental form. The second patient, who carried the p.Arg169Gln missense mutation, developed dystonia in her left arm at the age of 6 years. The condition progressed to generalized dystonia.

Discussion: We conclude that THAP1 mutations are also a cause, albeit uncommon, of segmental and generalized dystonia in the Brazilian population.

Keywords: Dystonia, cervical dystonia, DYT1, DYT6, movement disorders

Citation: Camargo CHF, Teixeira Camargos S, Raskin S, et al. DYT6 in Brazil: Genetic assessment and clinical characteristics of patients. Tremor Other Hyperkinet Mov. 2014; 4. doi: 10.7916/D83776RC

*To whom correspondence should be addressed. E-mail: chcamargo@uol.com.br

Editor: Elan D. Louis, Columbia University, United States of America

Received: January 26, 2014 Accepted: March 11, 2014 Published: April 15, 2014

Copyright: © 2014 Camargo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial-No Derivatives License, which permits the user to copy, distribute, and transmit the work provided that the original author(s) and source are credited; that no commercial use is made of the work; and that the work is not altered or transformed.

Funding: None.

Financial Disclosures: None.

Conflict of Interest: The authors report no conflict of interest.
population of Brazilian patients with dystonia involving the cervical region.

Methods

Subject selection and clinical assessment

Subjects with dystonia who attended the Botulinum Toxin and Movement Disorders Outpatient Unit in the Neurology Service, Hospital de Clínicas, UFPR, from June 2008 to June 2009 were selected for the study. Two movement disorders specialists examined all the patients (C.H.C. and H.A.T.). All the patients underwent brain computed tomography (CT) and a cervical spine CT, and, depending on the results of their clinical assessment, cervical spine magnetic resonance imaging (MRI) and brain MRI as well as laboratory tests. Seventy-four consecutive patients (48 females) presenting with isolated dystonia affecting the cervical region (focal, segmental, multifocal, or generalized) were included in the study. None of the patients had the TOR1A (DYT1) mutation or any other movement disorder.

Mutation scanning of the THAP1 gene

DNA was extracted from peripheral blood leukocytes using the Puregene DNA Isolation Kit (Gentra Systems Inc., Minneapolis, MN). Amplifications were performed using GoTaq® Colorless Master Mix (Promega, Madison, WI) in a final volume of 2.5 μL containing 100 ng of genomic DNA and 10 pmol of each primer. Primers and polymerase chain reaction conditions were as previously described, and amplification was followed by sequencing. The study was approved by the local ethics committee (ref. 1676.093/2008-06).

Results

There were 19 familial cases (25.67%) in 13 families, and 55 cases were sporadic. Focal cervical dystonia was observed in 33 patients (44.59%), and 19 (25.67%) had segmental or multifocal dystonia. Generalized dystonia was observed in 23 patients (31.1%). Mean age at onset of the study population was 30.30 ± 20.97 years (range, 5 months to 72 years).

We found THAP1 mutations in two familial cases (A and B) and one sporadic patient (C). These three patients had arm-onset dystonia, which progressed to the segmental form in one patient and the generalized form in two (Table 1). A novel nonsense mutation c.289A>G (p.Gln97Ter) in exon 3 was found in heterozygosis in all three patients (Figure 1). One familial case (B) with an additional missense mutation (c.506G>A [p.Arg169Gln]) in exon 3 was a compound heterozygote. SIFT (Sorting Intolerant From Tolerant) analysis predicted this mutation to be tolerated and the other, p.GlnX, to be deleterious. Both this patient's parents were asymptomatic. The father was a simple heterozygote for a novel nonsense mutation c.289A>G (p.Gln97Ter). The mother, with no familial history, was a simple heterozygote for the mutation c.506G>A (p.Arg169Gln).

The proband had both mutations, and her parents had different THAP1 mutations.
Discussion

The frequency of \(\text{THAP1} \) mutations in dystonia cases in various series in the literature varies from 0.6% to 4.7%, although it can reach 25% in a more specific population (onset before 22 years and a positive familial history). \(^9\,^{10}\)

Among our patients with \(\text{THAP1} \) mutations, two were from the same family (A and B) and one was sporadic (C). All three had early-onset dystonia, which started in the arms and spread in a cranial–cervical direction, progressing to the generalized form in two of the three cases. In most DYt6 patients, dystonia starts in the arms or
cranial-cervical region and progresses to generalized or segmental dystonia.3,6–10 When the focal form is observed in these patients, late onset is more common.5,9 In the literature, approximately 40\% of cases of dystonia do not have a familial history of the condition.5

We found a novel nonsense mutation (p.Gln97Ter) in a proline-rich region where few mutations have been described.7–10 Despite this difference, the phenotypes of the patients in this study were very similar to those of most patients with mutations in other regions of the THAP1 gene described in the literature.6–9 We also found a missense mutation (p.Arg169Gln) in a familial compound heterozygote with the p.Gln97Ter mutation. Onset was earlier than in the other patient from the same family, and the dystonia progressed to a generalized form.

We speculate that more severe manifestations may be explained by an additive effect of two compound heterozygous mutations. The p.Arg169Gln mutation has been described before in an early-onset familial case.7 A prediction based on \textit{in silico} analysis resulted in a possible deleterious effect (PolyPhen2), although using SIFT the amino acid substitution was predicted to be tolerated. While some homozygous mutations in the THAP1 gene have been described, this is, to our knowledge, the first report of compound heterozygous mutations.7,9–12 The novel nonsense mutation p.Gln97Ter is predicted to be deleterious because the premature termination codon is in a position that allows it to escape the nonsense-mediated mRNA decay pathway. Consequently, an aberrant truncated protein is expected to be generated.13

In the family with DYT6 dystonia (Figure 1), a significant variability in the phenotype can be observed. The grandmother possibly had a history of a late-onset speech disorder, an important feature of the DYT6 phenotype.2,6–8 The parents of both probands were asymptomatic. The age of onset was different for both individuals, and in one of them the condition had not progressed beyond the segmental form at the time of writing, while in the other it progressed to the generalized form. Mutations in the THAP1 domain have been associated with an earlier age of onset of dystonia and with a more extensive anatomical distribution.14 However, several studies indicate that there is little evidence to date of any correlation between phenotype and genotype.15 Low penetrance may explain sporadic cases, including a case in our study (C). This heterogeneity of phenotypes and the asymptomatic patients could be explained by the low penetrance (about 60\%) and variable expression of the THAP1 gene.2,6–8 Hence, additional genetic and environmental factors may affect disease manifestation and the severity of symptoms.

In agreement with previous studies, we suggest that analysis of the DYT6 (THAP1) gene should be performed in patients with dystonia involving the cervical region, regardless of the anatomical distribution of the disease or the familial history. We conclude that THAP1 mutations are also a cause of segmental and generalized dystonia in the Brazilian population.