Research Article

Jonathan Elmer* and Müfit Sezer

Degree bounds for modular covariants

https://doi.org/10.1515/forum-2019-0196
Received July 25, 2019; revised January 30, 2020

Abstract: Let V, W be representations of a cyclic group G of prime order p over a field k of characteristic p. The module of covariants $k[V, W]^G$ is the set of G-equivariant polynomial maps $V \to W$, and is a module over $k[V]^G$. We give a formula for the Noether bound $\beta(k[V, W]^G, k[V]^G)$, i.e. the minimal degree d such that $k[V, W]^G$ is generated over $k[V]^G$ by elements of degree at most d.

Keywords: Invariant theory, modular representation, cyclic group, module of covariants, Noether bound

MSC 2010: 13A50

Communicated by: Frederick R. Cohen

1 Introduction

Let G be a finite group, k a field and V, W a pair of finite-dimensional kG-modules. Let $k[V]$ denote the symmetric algebra on the dual V^* of V and let $k[V, W] = k[V] \otimes_k W$. Elements of $k[V]$ represent polynomial functions $V \to k$ and elements of $k[V, W]$ represent polynomial functions $V \to W$; for $f \otimes w \in k[V, W]$ the corresponding function takes v to $f(v)w$. The group G acts by algebra automorphisms on $k[V]$ and hence diagonally on $k[V, W]$. The fixed points $k[V, W]^G$ of this action are called covariants and represent G-equivariant polynomial functions $V \to W$. The the fixed points $k[V]^G$ are called invariants. For $f \in k[V]^G$ and $\phi \in k[V, W]^G$ we define the product

$$f\phi(v) = f(v)\phi(v).$$

Then $k[V]^G$ is a k-algebra and $k[V, W]^G$ is a finite $k[V]^G$-module. Modules of covariants in the non-modular case ($|G| \neq 0 \in k$) were studied by Chevalley [3], Shephard–Todd [10], Eagon–Hochster [7]. In the modular case far less is known, but recent work of Broer and Chuai [1] has shed some light on the subject. A systematic attempt to construct generating sets for modules of covariants when G is a cyclic group of order p was begun by the first author in [5].

Let $A = \bigoplus_{d \geq 0} A_d$ be any graded k-algebra and $M = \sum_{d \geq 0} M_d$ any graded A-module, where A_d and M_d denote the d-th homogeneous components of A and M, respectively. Then the Noether bound $\beta(A)$ is defined to be the minimum degree $d > 0$ such that A is generated by the set $\{a : a \in A_k, k \leq d \}$. Similarly, $\beta(M, A)$ is defined to be the minimum degree $d > 0$ such that M is generated over A by the set $\{m : m \in M_k, k \leq d \}$, and we write $\beta(M) = \beta(M, A)$ when the context is clear.

Noether famously showed that $\beta(C[V]^G) \leq |G|$ for arbitrary finite G, but computing Noether bounds in the modular case is highly nontivial. When G is cyclic of prime order, the second author along with Fleischmann, Shank and Woodcock [6] determined the Noether bound for any kG-module. The purpose of this article is to find results similar to those in [6] for covariants. Our main result can be stated concisely as follows.

*Corresponding author: Jonathan Elmer, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, United Kingdom, e-mail: j.elmer@mdx.ac.uk. https://orcid.org/0000-0001-5296-1987

Müfit Sezer, Department of Mathematics, Bilkent University, Cankaya, Ankara 06800, Turkey, e-mail: sezer@fen.bilkent.edu.tr
Theorem 1. Let G be a cyclic group of order p, k a field of characteristic p, V a reduced kG-module and W a nontrivial indecomposable kG-module. Then

$$\beta(k[V, W]^G) = \beta(k[V]^G)$$

unless V is indecomposable of dimension 2.

Here by reduced we mean that the direct sum decomposition of V contains no summands on which G acts trivially; see also remarks following Proposition 4.

2 Preliminaries

For the rest of this article, G denotes a cyclic group of order $p > 0$, and we let k be a field of characteristic p. We choose a generator σ for G. Over k, there are p indecomposable representations V_1, \ldots, V_p and each indecomposable representation V_i is afforded by a Jordan block of size i. Note that V_p is isomorphic to the free module $k\sigma$, and this is the unique free indecomposable kG-module.

Let $\Delta = \sigma - 1 \in kG$. We define the transfer map $\text{Tr} : k[V] \to k[V]$ by $\sum_{1 \leq i \leq p} \sigma^i$. Notice that we also have $\text{Tr} = \Delta^{p-1}$. Invariants that are in the image of Tr are called transfers.

Remark 2. Let e_1, \ldots, e_t be an upper triangular basis for the i-dimensional indecomposable representation V_i. Then $\Delta(e_j) = e_{j-1}$ for $2 \leq j \leq i$ and $\Delta(e_1) = 0$. Therefore $\Delta(V_i) = 0$ for all $j \geq 1$. Note that for any indecomposable module V_i we have $\Delta(V_i) = V_{i-1}$ for $2 \leq i \leq p$ and $\Delta(V_1) = 0$. It follows that an invariant f is in the image of the linear map $\Delta' : k[V] \to k[V]$ if and only if it is a linear combination of fixed points in indecomposable modules of dimension at least $j + 1$. In particular, an invariant is in the image of the transfer map ($= \Delta^{p-1}$) if and only if it is a linear combination of fixed points of free kG-modules.

We assume that V and W are kG-modules with W indecomposable and we choose a basis w_1, \ldots, w_n for W so that we have

$$\sigma w_i = \sum_{1 \leq j \leq i} (-1)^{i-j} w_j$$

for $1 \leq i \leq n$. For $f \in k[V]$ we define the weight of f to be the smallest positive integer d with $\Delta^d(f) = 0$. Note that $\Delta^p = (\sigma - 1)^p = 0$, so the weight of a polynomial is at most p.

A useful description of covariants is given in [5]. We include this description here for completeness.

Proposition 3 ([5, Proposition 3]). Let $f \in k[V]$ with weight $d \leq n$. Then

$$\sum_{1 \leq j \leq d} \Delta^{d-1}(f) w_j \in k[V, W]^G.$$

Conversely, if

$$f_1 w_1 + f_2 w_2 + \cdots + f_n w_n \in k[V, W]^G,$$

then there exists $f \in k[V]$ with weight $\leq n$ such that $f_j = \Delta^{d-1}(f)$ for $1 \leq j \leq n$.

For a non-zero covariant $h = f_1 w_1 + f_2 w_2 + \cdots + f_n w_n$, we define the support of h to be the largest integer j such that $f_j \neq 0$. We denote the support of h by $s(h)$. We shall say h is a transfer covariant if there exists a non-negative integer k and $f \in k[V]$ such that $f_1 = \Delta^k(f), f_2 = \Delta^{k+1}(f), \ldots, f_{s(h)} = \Delta^{p-1}(f)$ for some $f \in k[V]$.

We call a homogeneous invariant in $k[V]^G$ indecomposable if it is not in the subalgebra of $k[V]^G$ generated by invariants of strictly smaller degree. Similarly, a homogeneous covariant in $k[V, W]^G$ is indecomposable if it does not lie in the submodule of $k[V, W]^G$ generated by covariants of strictly smaller degree.

3 Upper bounds

We first prove a result on decomposability of a transfer covariant. In the proof below we set $\gamma = \beta(k[V], k[V]^G)$.
Proposition 4. Let \(f \in \mathbb{k}[V] \) be homogeneous and let \(h = \Delta^k(f)w_1 + \Delta^{k+1}(f)w_2 + \cdots + \Delta^{p-1}(f)w_{s(h)} \) be a transfer covariant of degree \(> \gamma \). Then \(h \) is decomposable.

Proof. Let \(g_1, \ldots, g_t \) be a set of homogeneous polynomials of degree at most \(\gamma \) generating \(\mathbb{k}[V] \) as a module over \(\mathbb{k}[V]^G \). So we can write \(f = \sum_{1 \leq i \leq t} q_i g_i \), where each \(q_i \in \mathbb{k}[V]^G \) is a positive degree invariant. Since \(\Delta^j \) is \(\mathbb{k}[V]^G \)-linear, we have \(\Delta^j(f) = \sum_{1 \leq i \leq t} q_i \Delta^j(g_i) \) for \(k \leq j \leq p-1 \). It follows that

\[
 h = \sum_{1 \leq i \leq t} q_i (\Delta^j(g_i)w_1 + \cdots + \Delta^{p-1}(g_i)w_{s(h)}).
\]

Note that \(\Delta^j(g_i)w_1 + \cdots + \Delta^{p-1}(g_i)w_{s(h)} \) is a covariant for each \(1 \leq i \leq t \) by Proposition 3. We also have \(q_i \in \mathbb{k}[V]^G \) so it follows that \(h \) is decomposable.

Write \(V = \bigoplus_{j=1}^m V_n \) as a sum of indecomposable modules. Note that

\[
 \mathbb{k}[\bigoplus_{j=1}^m V_n] = \mathbb{k}[V]^G = (S(V^*) \otimes S(V_1^*)) \otimes W^G = \mathbb{k}[V] \otimes \mathbb{k}[V_1].
\]

Therefore we will assume that \(n_j > 1 \) for all \(j \); such representations are called reduced. Choose a basis \(\{x_{i,j} : 1 \leq i \leq n_j, 1 \leq j \leq m\} \) for \(V^* \), with respect to which we have

\[
 \sigma(x_{i,j}) = \begin{cases} x_{i,j} + x_{i+1,j}, & i < n_j, \\ x_{i,j}, & i = n_j. \end{cases}
\]

This induces a multidegree on \(\mathbb{k}[V] = \bigoplus_{d \in \mathbb{N}^m} \mathbb{k}[V]_d \) which is compatible with the action of \(G \). For \(1 \leq j \leq m \) we define \(N_j = \prod_{i=0}^{n_j-1} \sigma^j x_{1,j} \), and note that the coefficient of \(x_{1,j}^p \) in \(N_j \) is 1. Given any \(f \in \mathbb{k}[V_n] \), we can therefore perform long division, writing

\[
 f = q_j N_j + r,
\]

where \(q_j \in \mathbb{k}[V_n] \) for all \(j \) and \(r \in \mathbb{k}[V_n] \) has degree \(< p \) in the variable \(x_{1,j} \). This induces a vector space decomposition

\[
 \mathbb{k}[V_n] = N_j \mathbb{k}[V_n] \oplus B_j,
\]

where \(B_j \) is the subspace of \(\mathbb{k}[V_n] \) spanned by monomials with \(x_{1,j} \)-degree \(< p \), but the form of the action implies that \(B_j \) and its complement are \(\mathbb{k}G \)-modules, so we obtain a \(\mathbb{k}G \)-module decomposition. Since \(\mathbb{k}[V] = \bigotimes_{j=1}^m \mathbb{k}[V_n] \), it follows that

\[
 \mathbb{k}[V] = N_j \mathbb{k}[V] \oplus (B_j \otimes \mathbb{k}[V^*]),
\]

where \(V^* = V_{n_1} \oplus \cdots \oplus V_{n_{s_2}} \oplus \cdots \oplus V_{n_m} \). From this decomposition it follows that if \(M \) is a \(\mathbb{k}G \) direct summand of \(\mathbb{k}[V]_d \), then \(N_j M \) is a \(\mathbb{k}G \) direct summand of \(\mathbb{k}[V]_{d+p} \) with the same isomorphism type. Further, any \(f \in \mathbb{k}[V]^G \) can be written as

\[
 f = q N_j + r,
\]

with \(q \in \mathbb{k}[V]^G \) and \(r \in (B_j \otimes \mathbb{k}[V^*])^G \). If in addition \(\deg(f) = (d_1, d_2, \ldots, d_m) \) with \(d_j > p - n_j \), then the degree \(d_j \) homogeneous component of \(B_j \) is free by [8, 2.10] and since tensoring a module with a free (projective) module gives a free (projective) module we may further assume, by Remark 2, that \(r \) is in the image of the transfer map.

If \(h = \sum_{i=1}^{s(h)} \Delta^{i-1}(f)w_i \in \mathbb{k}[V, W]^G \), we define the multidegree of \(h \) to be that of \(f \). Since \(G \) preserves the multidegree, this is the same as the multidegree of \(\Delta^{i-1}(f) \) for all \(i \leq s(h) \). Then the analogue of this result for covariants is the following:

Proposition 5. Let \(h \) be a covariant of multidegree \(d_1, d_2, \ldots, d_m \) with \(d_j > p - n_j \) for some \(j \). Then there exist a covariant \(h_1 \) and a transfer covariant \(h_2 \) such that \(h = N_j h_1 + h_2 \).

Proof. We proceed by induction on the support \(s(h) \) of \(h \). If \(s(h) = 1 \), then by Proposition 3, we have that \(h = f w_1 \) with \(f \in \mathbb{k}[V]^G \). Then we can write \(f = q N_j + \Delta^{p-1}(t) \) for some \(q \in \mathbb{k}[V]^G \) and \(t \in \mathbb{k}[V] \). Then both \(q w_1 \) and \(\Delta^{p-1}(t) w_1 \) are covariants by Proposition 3 and therefore \(h = q N_j w_1 + \Delta^{p-1}(t) w_1 \) gives us the desired decomposition.
Lemma 7. Let \(s(h) = k \). Then by Proposition 3 there exists \(f \in \mathbb{k}[V] \) such that
\[
h = f w_1 + \Delta(f) w_2 + \cdots + \Delta^{k-1}(f) w_k,
\]
with \(\Delta^k(f) = 0 \). Since \(\Delta^k(f) \in \mathbb{k}[V]^G \) and \(d_j > p - n_j \), we can write \(\Delta^k(f) = q N_j + \Delta^{p-1}(t) \) for some \(q \in \mathbb{k}[V]^G \) and \(t \in \mathbb{k}[V] \). It follows that \(q N_j \) is in the image of \(\Delta^k \). But since multiplication by \(N_j \) preserves the isomorphism type of a module, it follows that \(q \) is in the image of \(\Delta^k \). Write \(q = \Delta^k(f') \) with \(f' \in \mathbb{k}[V] \). Set
\[
h_1 = f' w_1 + \Delta(f') w_2 + \cdots + \Delta^{k-1}(f') w_k \quad \text{and} \quad h_2 = \Delta^{p-k}(t) w_1 + \cdots + \Delta^{p-1}(t) w_k.
\]
Since \(\Delta^{k-1}(f') \in \mathbb{k}[V]^G \), it follows that \(h_1 \) is a covariant by Proposition 3. Consider the covariant
\[
h' = h - N_j h_1 - h_2.
\]
Since \(\Delta^{k-1}(f) = \Delta^{p-1}(t) + \Delta^{k-1}(f') N_j \), the support of \(h' \) is strictly smaller than the support of \(h \). Moreover, \(h_2 \) is a transfer covariant and so the assertion of the proposition follows by induction.

We obtain the following upper bound for the Noether number of covariants:

Proposition 6. We have \(\beta(\mathbb{k}[V, W]^G) \leq \max(\beta(\mathbb{k}[V]), \mathbb{k}[V]^G), mp - \dim(V) \).

Proof. Let \(h \in \mathbb{k}[V, W]^G \) with degree \(d > \max(\beta(\mathbb{k}[V]), \mathbb{k}[V]^G), mp - \dim(V) \). Let \((d_1, d_2, \ldots, d_m) \) be the multidegree of \(h \). Then we must have \(d_j > p - n_j \) for some \(j \). Consequently, we may apply Proposition 5, writing
\[
h = N_j h_1 + h_2,
\]
where \(h_2 \) is a transfer covariant. Since \(\deg(h_2) > \beta(\mathbb{k}[V], \mathbb{k}[V]^G) \), it follows that \(h_2 \) is decomposable by Proposition 4, and so we have shown that \(h \) is decomposable.

4 Lower bounds

Indecomposable transfers are one method of obtaining lower bounds for \(\beta(\mathbb{k}[V]^G) \). Recall that we have written \(V = \bigoplus_{j=1}^m V_{n_j} \) as a sum of indecomposable modules. The analogous result for covariants is:

Lemma 7. Let \(n \geq 2 \) and let \(\Delta^{p-1}(f) \in \mathbb{k}[V]^G \) be an indecomposable homogeneous transfer. Then the transfer covariant
\[
h = \Delta^{p-n}(f) w_1 + \cdots + \Delta^{p-1}(f) w_n
\]
is indecomposable.

Proof. Assume on the contrary that \(h \) is decomposable. Then there exist homogeneous \(q_i \in \mathbb{k}[V]^G \) and \(h_i \in \mathbb{k}[V, W]^G \) such that \(h = \sum_{1 \leq i \leq t} q_i h_i \). Write \(h_i = h_{i,1} w_1 + \cdots + h_{i,n} w_n \) for \(1 \leq i \leq t \). Then we have
\[
\Delta^{p-1}(f) = \sum_{1 \leq i \leq t} q_i h_{i,n}.
\]
By Proposition 3 we have \(\Delta(h_{i,n-1}) = h_{i,n} \) and so \(h_{i,n} \in \mathbb{k}[V]^G \) because \(n \geq 2 \). It follows that \(\sum_{1 \leq i \leq t} q_i h_{i,n} \) is a decomposition of \(\Delta^{p-1}(f) \) in terms of invariants of strictly smaller degree, contradicting the indecomposability of \(\Delta^{p-1}(f) \).

Corollary 8. Suppose \(n \geq 2 \) and \(\beta(\mathbb{k}[V]^G) > \max(p, mp - \dim(V)) \). Then \(\beta(\mathbb{k}[V]^G) \leq \beta(\mathbb{k}[V, W]^G) \).

Proof. By [8, Lemma 2.12], \(\mathbb{k}[V]^G \) is generated by the norms \(N_1, N_2, \ldots, N_m \), invariants of degree at most \(mp - \dim(V) \), and transfers. Since there exists an indecomposable invariant of degree \(\beta(\mathbb{k}[V]^G) \), if the hypotheses of the corollary above hold, then \(\mathbb{k}[V]^G \) contains an indecomposable transfer with this degree. By Lemma 7, \(\mathbb{k}[V, W]^G \) contains a transfer covariant of degree \(\beta(\mathbb{k}[V]^G) \) which is indecomposable, from which the conclusion follows.
5 Main results

We are now ready to prove Theorem 1. Note that $k[V, V_1]^G$ is generated over $k[V]^G$ by w_1 alone, which has degree zero, and therefore $\beta(k[V, V_1]^G) = 0$. For this reason we assume $n \geq 2$ throughout.

Proof. Suppose first that $n_j > 3$ for some j. Then by [6, Proposition 1.1 (a)], we have
\[\beta(k[V]^G) = m(p - 1) + (p - 2). \]
Since V is reduced, we have dim(V) $\geq 2m$ and hence
\[\beta(k[V]^G) > mp - \dim(V). \]
Also, $\beta(k[V]^G) \geq 2p - 3 > p$ since $n_j \leq p$ for all j. Therefore Corollary 8 implies that $\beta(k[V]^G) \leq \beta(k[V, W]^G)$. On the other hand, [6, Lemma 3.3] shows that the top degree of $k[V]/k[V]^Gk[V]$ is bounded above by $m(p - 1) + (p - 2)$. By the graded Nakayama Lemma it follows that $\beta(k[V], k[V]^G) \leq m(p - 1) + (p - 2)$. We have already shown that this number is at least $mp - \dim(V) + 1$, so by Proposition 6 we get that
\[\beta(k[V, W]^G) \leq m(p - 1) + (p - 2) = \beta(k[V]^G) \]
as required.

Now suppose that $n_i \leq 3$ for all i and $n_j = 3$ for some j. Then by [6, Proposition 1.1 (b)], we have
\[\beta(k[V]^G) = m(p - 1) + 1. \]
Since V is reduced, we have dim(V) $\geq 2m$ and hence
\[\beta(k[V]^G) > mp - \dim(V). \]
Also $\beta(k[V]^G) \geq 2p - 1 > p$ provided $m \geq 2$. In that case Corollary 8 applies. If $m = 1$, then Dickson [4] has shown that $k[V]^G = k[x_1, x_2, x_3]^G$ is minimally generated by the invariants $x_3, x_3^2 - 2x_1x_3 - x_2x_3$, N, $\Delta^p - (x_1^{p-1} - x_2)$. It follows that $\Delta^p - (x_1^{p-1} - x_2)$ is an indecomposable transfer, so by Lemma 7, $k[V, W]^G$ contains an indecomposable transfer covariant of degree $p = \beta(k[V]^G)$. In either case we obtain
\[\beta(k[V, W]^G) \geq \beta(k[V]^G). \]

On the other hand, by [9, Corollary 2.8], $m(p - 1) + 1$ is an upper bound for the top degree of $k[V]/k[V]^G$. By the same argument as before we get $\beta(k[V]^G, k[V]) \leq m(p - 1) + 1$. We have already shown that this number is at least $mp - \dim(V) + 1$, so by Proposition 6 we get that
\[\beta(k[V, W]^G) \leq m(p - 1) + 1 = \beta(k[V]^G) \]
as required.

It remains to deal with the case $n_i = 2$ for all i, i.e. $V = MV$. We assume $m \geq 2$. In this case Campbell and Hughes [2] showed that $\beta(k[V]^G) = (p - 1)m$. As dim(V) $= 2m$, we have $\beta(k[V]^G) > mp - \dim(V)$. If $m \geq 3$ or $m = 2$ and $p > 2$, then we have
\[\beta(k[V]^G) > p \]
and Corollary 8 applies. In case $m = 2 = p$, $k[V]^G = k[x_{1,1}, x_{2,1}, x_{1,2}, x_{2,2}]^G$ is a hypersurface, minimally generated by $(x_{2,2}, N_1, x_{2,2}, N_2, \Delta^{p-1}(x_{1,1}, x_{1,2}))$. In particular, $\Delta^{p-1}(x_{1,1}, x_{1,2})$ is an indecomposable transfer, so by Lemma 7, $k[V, W]^G$ contains an indecomposable transfer covariant of degree 2. In both cases we get
\[\beta(k[V, W]^G) \geq \beta(k[V]^G). \]
On the other hand, by [9, Theorem 2.1], the top degree of $k[V]/k[V]^Gk[V]$ is bounded above by $m(p - 1)$. We have already shown this number is at least $mp - \dim(V) + 1$. Therefore, by Proposition 6, we get
\[\beta(k[V, W]^G) \leq \beta(k[V]^G) \]
as required. \square
Remark 9. The only reduced representation not covered by Theorem 1 is \(V = V_2 \). An explicit minimal set of generators of \(k[V_2, W]^G \) as a module over \(k[V_2]^G \) is given in [5], the result is

\[
\beta(k[V_2, W]) = n - 1.
\]

This is the only situation in which the Noether number is seen to depend on \(W \).

Remark 10. Suppose \(V \) is any reduced \(kG \)-module and \(W = \bigoplus_{i=1}^r W_i \) is a decomposable \(kG \)-module. Then

\[
k[V, W]^G = (S(V^*) \otimes \bigoplus_{i=1}^r W_i)^G = \bigoplus_{i=1}^r (S(V^*) \otimes W_i)^G.
\]

So \(\beta(k[V, W]^G) = \max_i \beta(k[V, W_i]^G) : i = 1, \ldots, r \) unless \(V \) is indecomposable of dimension 2, in which case we have

\[
\beta(k[V_2, W]^G) = \max_i \beta(k[V_2, W_i]^G) : i = 1, \ldots, r = \max_i (\dim(W_i) - 1 : i = 1, \ldots, r).
\]

Thus, the results of this paper can be used to compute \(\beta(k[V, W]^G) \) for arbitrary \(kG \)-modules \(V \) and \(W \).

Funding: The second author is supported by a grant from TÜBİTAK:119F181.

References

[1] A. Broer and J. Chuai, Modules of covariants in modular invariant theory, *Proc. Lond. Math. Soc. (3)* 100 (2010), no. 3, 705–735.
[2] H. E. A. Campbell and I. P. Hughes, Vector invariants of \(U_2(F_p) \): A proof of a conjecture of Richman, *Adv. Math.* 126 (1997), no. 1, 1–20.
[3] C. Chevalley, Invariants of finite groups generated by reflections, *Amer. J. Math.* 77 (1955), 778–782.
[4] L. E. Dickson, *On Invariants and the Theory of Numbers*, Dover Publications, New York, 1966.
[5] J. Elmer, Modular covariants of cyclic groups of order p, preprint (2019), https://arxiv.org/abs/1806.11024.
[6] P. Fleischmann, M. Sezer, R. J. Shank and C. F. Woodcock, The Noether numbers for cyclic groups of prime order, *Adv. Math.* 207 (2006), no. 1, 149–155.
[7] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, *Amer. J. Math.* 93 (1971), 1020–1058.
[8] I. Hughes and G. Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, *Comm. Algebra* 28 (2000), no. 4, 2059–2088.
[9] M. Sezer and R. J. Shank, On the coinvariants of modular representations of cyclic groups of prime order, *J. Pure Appl. Algebra* 205 (2006), no. 1, 210–225.
[10] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, *Canad. J. Math.* 6 (1954), 274–304.