OPERATOR FORMS OF THE NONHOMOGENEOUS ASSOCIATIVE
CLASSICAL YANG-BAXTER EQUATION

CHENGMING BAI, XING GAO, LI GUO, AND YI ZHANG

ABSTRACT. This paper studies operator forms of the nonhomogeneous associative classical
Yang-Baxter equation (nhacYBe), extending and generalizing such studies for the classical
Yang-Baxter equation and associative Yang-Baxter equation that can be tracked back to
the works of Semonov-Tian-Shansky and Kupershmidt on Rota-Baxter Lie algebras and \mathcal{O}-
operators. Solutions of the nhacYBe are characterized in terms of generalized \mathcal{O}-operators,
and in terms of the classical \mathcal{O}-operators precisely when the solutions satisfy an invariant
condition. When the invariant condition is compatible with a Frobenius algebra, such
solutions have a close relationship with Rota-Baxter operators on the Frobenius algebra.
In general, solutions of the nhacYBe can be produced from Rota-Baxter operators, and
then from \mathcal{O}-operators when the solutions are taken in semi-direct product algebras. In
the other direction, Rota-Baxter operators can be obtained from solutions of the nhacYBe
in unitizations of algebras. Finally a classification is obtained for solutions of the nhacYBe
satisfying the mentioned invariant condition in all unital complex algebras of dimensions
two and three. All these solutions are shown to come from Rota-Baxter operators.

CONTENTS

1. Introduction
 1.1. CYBE, AYBE and their operator forms
 1.2. Nonhomogeneous AYBE and its operator form
 1.3. Outline of the paper
2. Characterizations of nhacYBe by generalized \mathcal{O}-operators
 2.1. \mathcal{O}-operators and Rota-Baxter operators for bimodules
 2.2. Operator forms of solutions of nhacYBe
 2.3. Operator forms of solutions in a Frobenius algebra
 2.4. Operator forms of symmetrized invariant solutions of nhacYBe
3. NhacYBe and Rota-Baxter operators
 3.1. NhacYBe and Rota-Baxter operators on Frobenius algebras
 3.2. From \mathcal{O}-operators and dendriform algebras to nhacYBe on semi-direct product
 algebras
 3.3. From nhacYBe to Rota-Baxter operators on unitization algebras
4. Classification of symmetrized invariant solutions of nhacYBe in low dimensions
 4.1. The classification in dimension two
 4.2. The classification in dimension three
References

Date: July 20, 2021.
2010 Mathematics Subject Classification. 16T25, 17B38, 16W99, 17A30, 57R56.
Key words and phrases. associative Yang-Baxter equation; classical Yang-Baxter equation; \mathcal{O}-operator;
Rota-Baxter operator; dendriform algebra.
1. Introduction

The aim of this paper is to give operator forms of the nonhomogeneous associative classical Yang-Baxter equation in terms of Rota-Baxter operators and the more general \mathcal{O}-operators.

1.1. CYBE, AYBE and their operator forms. The classical Yang-Baxter equation (CYBE) was first given in the following tensor form:

\[[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0, \]

where $r \in \mathfrak{g} \otimes \mathfrak{g}$ and \mathfrak{g} is a Lie algebra (see [16] for details). The CYBE arose from the study of inverse scattering theory in 1980s. Later it was recognized as the “semi-classical limit” of the quantum Yang-Baxter equation which was encountered by C. N. Yang in the computation of the eigenfunctions of a one-dimensional fermion gas with delta function interactions [45] and by R. J. Baxter in the solution of the eight vertex model in statistical mechanics [13]. The study of the CYBE is also related to classical integrable systems and quantum groups (see [16] and the references therein).

An important approach in the study of the CYBE was through the interpretation of its tensor form in various operator forms which proved to be effective in providing solutions of the CYBE, in addition to the well-known work of Belavin and Drinfeld [14]. First Semonov-Tian-Shansky [42] showed that if there exists a nondegenerate symmetric invariant bilinear form on a Lie algebra \mathfrak{g} and if a solution r of the CYBE is skew-symmetric, then r can be equivalently expressed as a linear operator $R : \mathfrak{g} \to \mathfrak{g}$ satisfying the operator identity

\[[R(x), R(y)] = R([R(x), y]) + R([x, R(y)]), \quad \forall x, y \in \mathfrak{g}, \quad (1) \]

which is then regarded as an operator form of the CYBE. Note that Eq. (1) is exactly the Rota-Baxter relation (of weight zero) in Eq. (5) for Lie algebras.

In order for the approach to work more generally, Kupershmidt revisited operator forms of the CYBE in [28] and noted that, when r is skew-symmetric, the tensor form of the CYBE is equivalent to a linear map $r : \mathfrak{g}^* \to \mathfrak{g}$ satisfying

\[[r(x), r(y)] = r(ad^* r(x)(y) - ad^* r(y)(x)), \quad \forall x, y \in \mathfrak{g}^*, \]

where \mathfrak{g}^* is the dual space of \mathfrak{g} and ad* is the dual representation of the adjoint representation (coadjoint representation) of the Lie algebra \mathfrak{g}. He further generalized the above ad* to an arbitrary representation $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ of \mathfrak{g}, that is, a linear map $T : V \to \mathfrak{g}$, satisfying

\[[T(u), T(v)] = T(\rho(T(u))v - \rho(T(v))u), \quad \forall u, v \in V, \]

which was regarded as a natural generalization of the CYBE. Such an operator is called an \mathcal{O}-operator associated to ρ. Note that the operator form (1) of the CYBE given by Semonov-Tian-Shansky is just an \mathcal{O}-operator associated to the adjoint representation of \mathfrak{g}.

Going in the other direction, any \mathcal{O}-operator gives a skew-symmetric solution of the CYBE in a semi-direct product Lie algebra, completing the cycle from the tensor form to the operator form and back to the tensor form of the CYBE. Moreover, there is a closely related algebraic structure called the pre-Lie algebra. Any \mathcal{O}-operator gives a pre-Lie algebra and conversely, any pre-Lie algebra naturally gives an \mathcal{O}-operator of the commutator Lie algebra, and hence naturally gives rise to a solution of the CYBE [16].
An analogue of the CYBE for associative algebras is the **associative Yang-Baxter equation (AYBE)** \[^3\]:

\[
r_{12}r_{13} + r_{13}r_{23} - r_{23}r_{12} = 0,
\]

for \(r \in A \otimes A \) where \(A \) is an associative algebra (see Definition \[^2.6\] for details). Its form with spectral parameters was given in \[^38\] in connection with the CYBE and the quantum Yang-Baxter equation. The AYBE arose from the study of the (antisymmetric) infinitesimal bialgebras, a notion traced back to Joni and Rota in order to provide an algebraic framework for the calculus of divided differences \[^24\], \[^25\] and, in the antisymmetric case, carrying the same structures under the names of “associative D-bialgebra” in \[^49\] and “balanced infinitesimal bialgebra” in the sense of the opposite algebra in \[^1\]. The AYBEs have found applications in various fields in mathematics and mathematical physics such as Poisson geometry, integrable systems, quantum groups, and mirror symmetry \[^1\], \[^4\], \[^7\], \[^8\], \[^9\], \[^11\], \[^12\], \[^13\], \[^14\], \[^15\].

Motivated by the operator approach to the CYBE and the Rota-Baxter operators with weights, \(O \)-operators with weights were introduced to give an operator approach to the AYBE \[^10\], while a method of obtaining Rota-Baxter operators from solutions of the (opposite) AYBE was obtained in \[^1\]. Briefly speaking, under the skew-symmetric condition, a solution of the AYBE is an \(O \)-operator associated to the dual representation of the adjoint representation, while an \(O \)-operator gives a skew-symmetric solution of the AYBE in a semi-direct product associative algebra. Furthermore, the role played by pre-Lie algebras in CYBE is similarly played by dendriform algebras introduced by Loday \[^31\], that is, any \(O \)-operator induces a dendriform algebra structure on the representation space and conversely, a dendriform algebra gives a natural \(O \)-operator and hence there is a construction of (skew-symmetric) solutions of the AYBE from dendriform algebras \[^3\], \[^11\]. Moreover, such relationships are generalized to connect the solutions of the AYBE satisfying certain “invariant” conditions and \(O \)-operators with weights \[^3\], \[^11\].

In turn, these studies of the AYBE by \(O \)-operators with weights led to the introduction of similar \(O \)-operators on Lie algebras. These generalizations have found fruitful applications to the CYBE and further to Lax pairs, Lie bialgebras, and PostLie algebras \[^1\], \[^11\].

1.2. Nonhomogeneous AYBE and its operator form.

The notion of a **non-homogeneous associative classical Yang-Baxter equation (nhacYBe)** \[^36\] is the equation (detailed in Definition \[^2.7\])

\[
r_{12}r_{13} + r_{13}r_{23} - r_{23}r_{12} = \mu r_{13},
\]

where \(\mu \) is a fixed constant. Its opposite form, given in Eq. \(^\[9\]\), was called the **associative classical Yang-Baxter equation of \(\mu \)** in \[^19\]. Taking \(\mu = 0 \) recovers the AYBE.

The nhacYBe arose from the study of the quantum Yang-Baxter equation and Bezout operators. Another motivation for introducing the nhacYBe is the \(\mu \)-**infinitesimal bialgebra**, that is, a triple \((A, \cdot, \Delta)\) consisting of an algebra \((A, \cdot)\) and a coalgebra \((A, \Delta)\) satisfying the compatibility condition

\[
\Delta(x \cdot y) = (L(x) \otimes \text{id})\Delta(y) + \Delta(x)(\text{id} \otimes R(y)) - \mu x \otimes y, \quad \forall x, y \in A,
\]

where \(L(x), R(x) \) are left and right multiplication operators of \((A, \cdot)\) respectively. When \(\mu = 1 \), it was also called a **unital infinitesimal bialgebra** \[^32\] and appeared in several topics such as combinatorics, operads and pre-Lie algebras \[^21\], \[^22\], \[^17\], \[^18\]. A solution of the opposite form of the nhacYBe in a unital algebra gives a \(\mu \)-infinitesimal bialgebra \[^13\], \[^30\].
Note that while the AYBE has its origin from the CYBE for Lie algebras, when $\mu \neq 0$, the nhacYBe does not have a counterpart for Lie algebras since the term r_{13} on the right hand side of Eq. (2) does not make sense for a Lie algebra.

As in the cases of the CYBE and the AYBE, it is important to study the nhacYBe through its operator forms, to give further understanding on the nature of the equation, and to provide constructions of its solutions. To address the challenge from the nonhomogeneity, \mathcal{O}-operators and Rota-Baxter operators are generalized and new approaches are introduced (see Remark 3.14).

1.3. Outline of the paper. We next provide some details of our operator approach of the nhacYBe which also serve as an outline of the paper.

In Section 2, we first generalize the notion of an \mathcal{O}-operator whose weight is a scalar to one whose weight is a binary operation. We then interpret solutions of the nhacYBe equivalently in terms of generalized \mathcal{O}-operators (Theorem 2.8) and, in the presence of a symmetric Frobenius algebra, in terms of generalized Rota-Baxter algebras (Theorem 2.16). On Frobenius algebras, such an interpretation also gives a correspondence between solutions of the AYBE and Rota-Baxter systems introduced in [15], rather than Rota-Baxter operators by themselves (Corollary 2.18). In order to make a connection with the existing notion of \mathcal{O}-operators and Rota-Baxter operators, we explore the additional conditions for solutions of the nhacYBe. As it turns out, a solution r of the nhacYBe can be interpreted in terms of an \mathcal{O}-operator precisely when it satisfies the symmetrized invariant condition that the extended symmetrizer

$$r := r + \sigma(r) - \mu(1 \otimes 1)$$

of r is invariant, where σ is the flip map (Theorem 2.22). Note that the parameter μ appears in both the nhacYBe and the invariant condition, especially as the scalar multiple of $1 \otimes 1$ for the latter. As a special case, the extended symmetrizer of a solution r is zero means that $(r, -\sigma(r))$ is an associative Yang-Baxter pair in the sense of [15] (Corollary 2.28).

In Section 3, we present a close relationship between the nhacYBe and Rota-Baxter operators including but exceeding the known relationships between the skew-symmetric solutions of the AYBE and Rota-Baxter operators of weight zero on Frobenius algebras given in [10]. In unital symmetric Frobenius algebras, when the extended symmetrizer is a multiple of the nondegenerate invariant tensor corresponding to the nondegenerate bilinear form defining the Frobenius algebra structure, that is, the extended symmetrizer is a nondegenerate invariant tensor or zero, there is a characterization of the solutions of the nhacYBe by Rota-Baxter operators (Theorem 3.1). Taking the matrix algebras gives the correspondence in [36] and taking the trivial extended symmetrizer and $\mu = 0$ yields the correspondence in [10]. When the extended symmetrizer is degenerate, in one direction, there is a construction of solutions of the nhacYBe from Rota-Baxter operators satisfying its own invariant conditions (Proposition 3.5). Based on such a construction, we obtain symmetrized invariant solutions of the nhacYBe for $\mu \neq 0$ in semi-direct product algebras from \mathcal{O}-operators of weight zero as well as from dendriform algebras of Loday [31]. Note that these constructions are different from the construction of solutions of the AYBE from \mathcal{O}-operators given in [11] due to the appearance of the new term $\mu(1 \otimes 1)$ in Eq. (3) (Remark 3.14). In the other direction, Rota-Baxter operators can also be obtained from solutions of the nhacYBe in an augmented algebra, that is, the unitization of an associative algebra (Theorem 3.17 and Corollary 3.19).
In Section [1], we give the classification of the symmetrized invariant solutions of the nhacYBe for \(\mu \neq 0 \) in the unital complex algebras in dimensions two and three. These examples indicate that the symmetrized invariant solutions of the nhacYBe only comprise a small part of all solutions of the nhacYBe. Moreover, we also find that all symmetrized invariant solutions of the nhacYBe for \(\mu \neq 0 \) in the unital complex algebras in dimensions two and three are obtained from Rota-Baxter operators.

Notations. Throughout this paper, we fix a base field \(k \). Unless otherwise specified, all the vector spaces and algebras are finite dimensional, although some results and notions remain valid in the infinite-dimensional case. By a \(k \)-algebra, we mean an associative algebra over \(k \) not necessarily having a unit.

2. Characterizations of nhacYBe by generalized \(O \)-operators

We first recall some basic definitions and facts that will be used in this paper. We introduce the notion of generalized \(O \)-operators whose weight is a binary operation, especially when the binary operations are obtained from \(A \)-bimodule \(k \)-algebras, we recover the notion of \(O \)-operators of weight \(\lambda \). Then we give a general interpretation of the nhacYBe in terms of generalized \(O \)-operators, including a correspondence between solutions of the nhacYBe with \(\mu = 0 \), that is, the AYBE, and Rota-Baxter systems [12] on Frobenius algebras. Finally, under the additional invariant condition, this interpretation gives a correspondence between symmetrized invariant solutions of the nhacYBe and \(O \)-operators with weight \(\lambda \).

2.1. \(O \)-operators and Rota-Baxter operators for bimodules. We generalize the notions of \(O \)-operators and Rota-Baxter operators from those with scalar weights to the ones with weights given by binary operations. We first briefly recall some background and refer the reader to [4, 15] for further details.

Let \((A, \cdot)\) be a \(k \)-algebra. An \(A \)-bimodule is a \(k \)-module \(V \), together with linear maps \(\ell, r : A \to \text{End}_k(V) \) satisfying
\[
\ell(x \cdot y)v = \ell(x)(\ell(y)v), \quad vr(x \cdot y) = (vr(x))r(y), \quad (\ell(x)v)r(y) = \ell(x)(vr(y)), \quad \forall \ x, y \in A, v \in V.
\]
If we want to be more precise, we also denote an \(A \)-bimodule \(V \) by the triple \((V, \ell, r)\).

Given a \(k \)-algebra \(A = (A, \cdot) \) and \(x \in A \), define
\[
L(x) : A \to A, \quad L(x)y = xy; \quad R(x) : A \to A, \quad yR(x) = yx, \quad \forall \ y \in A
\]
to be the left and right actions on \(A \). We further define
\[
L = L_A : A \to \text{End}_k(A), \quad x \mapsto L(x); \quad R = R_A : A \to \text{End}_k(A), \quad x \mapsto R(x), \quad \forall \ x \in A.
\]
Clearly, \((A, L, R)\) is an \(A \)-bimodule, called the **adjoint \(A \)-bimodule**.

There is a natural characterization of semi-direct product extensions of a \(k \)-algebra \((A, \cdot)\) by an \(A \)-bimodule. Let \(\ell, r : A \to \text{End}_k(V) \) be linear maps. Define a multiplication on \(A \oplus V \) (still denoted by \(\cdot \)) by
\[
(a + u) \cdot (b + v) := a \cdot b + (\ell(a)v + ur(b)), \quad \forall a, b \in A, u, v \in V.
\]
Then as is well-known, \(A \oplus V \) is a \(k \)-algebra, denoted by \(A \ltimes_{\ell, r} V \) and called the **semi-direct product** of \(A \) by \(V \), if and only if \((V, \ell, r)\) is an \(A \)-bimodule.

For a \(k \)-module \(V \) and its dual module \(V^* := \text{Hom}_k(V, k) \), the usual pairing between them is given by
\[
\langle , \rangle : V^* \times V \to k, \quad \langle u^*, v \rangle = u^*(v), \quad \forall u^* \in V^*, v \in V.
\]
Identifying V with $(V^*)^*$, we also use $\langle v, u^* \rangle = \langle u^*, v \rangle$.

Let A be a k-algebra and let (V, ℓ, r) be an A-bimodule. Define linear maps $\ell^*, r^* : A \to \text{End}_k(V^*)$ by

$$\langle u^* \ell^*(x), v \rangle = \langle u^*, (\ell(x)v) \rangle, \quad \langle r^*(x)u^*, v \rangle = \langle u^*, vr(x) \rangle, \quad \forall x \in A, u^* \in V^*, v \in V,$$

respectively. Then (V^*, r^*, ℓ^*) is also an A-bimodule, called the dual A-bimodule of (V, ℓ, r).

To give an operator interpretation of solutions of the nhacYBe, we generalize the notion of \mathcal{O}-operators with weights introduced in \cite{1} by dropping the condition that the multiplication \circ on R turns (R, \circ, ℓ, r) into an A-bimodule k-algebra.

Definition 2.1. Let (A, \cdot) be a k-algebra. Let (R, ℓ, r) be an A-bimodule and \circ a binary operation on R. A linear map $\alpha : R \to A$ is called an \mathcal{O}-operator of weight \circ associated to (R, ℓ, r) or simply a generalized \mathcal{O}-operator if α satisfies

$$\alpha(u) \cdot \alpha(v) = \alpha(\ell(\alpha(u)v)) + \alpha(\ell(\alpha(v))) + \alpha(\ell(u \circ v)), \quad \forall u, v \in R.$$

In particular, if $(R, \ell, r) = (A, L_A, R_A)$ is the adjoint A-bimodule and \circ is a binary operation on A, then an \mathcal{O}-operator $\alpha : A \to A$ of weight \circ associated to the A-bimodule (A, L_A, R_A) is called a Rota-Baxter operator of weight \circ. In this case α satisfies

$$\alpha(x) \cdot \alpha(y) = \alpha(\alpha(x) \cdot y) + \alpha(x \cdot \alpha(y)) + \alpha(x \circ y), \quad \forall x, y \in A.$$

Example 2.2. In the definition of Rota-Baxter operators with weight \circ, when \circ is given by $x \circ y := \lambda x \cdot y$ for a given $\lambda \in k$, we recover the usual Rota-Baxter operator of weight λ, with its defining operator identity

$$P(x) \cdot P(y) = P(x \cdot y) + P(P(x) \cdot y) + \lambda P(x \cdot y), \quad \forall x, y \in A. \quad (5)$$

Here the notion is named after the mathematicians G.-C. Rota \cite{3} and G. Baxter \cite{4} for their early work motivated by fluctuation theory in probability and combinatorics, which again appeared in the work of Connes and Kreimer on renormalization of quantum field theory \cite{5} as a fundamental algebraic structure. See \cite{5} for further details.

We separately define a special case that will be important to us.

Definition 2.3. Let (A, \cdot) be a k-algebra and (R, ℓ, r) be an A-bimodule. Let $s : R \to A$ be a linear map. A linear map $\alpha : R \to A$ is called an \mathcal{O}-operator right twisted by s associated to (R, ℓ, r) if

$$\alpha(u) \cdot \alpha(v) = \alpha(\ell(\alpha(u)v)) + \alpha(\ell(u \circ v)) + \alpha(\ell(s(v))), \quad \forall u, v \in R.$$

Likewise α is called an \mathcal{O}-operator left twisted by s associated to (R, ℓ, r) when the third term in the above equation is replaced by $\alpha(\ell(s(u)v))$.

When the A-bimodule is taken to be (A, L_A, R_A), the operator is called the Rota-Baxter operator right twisted by s (resp. left twisted by s).

Obviously the operators in Definition \cite{5} are the special cases of the operators in Definition \cite{3} when the binary operation \circ are defined by

$$u \circ v := ur(s(v)) \quad (\text{resp. } u \circ v := \ell(s(u))v), \quad \forall u, v \in R.$$

To recover the notion of \mathcal{O}-operators with scalar weights introduced in \cite{1}, we recall a concept combining A-bimodules with k-algebras \cite{4}.
Definition 2.4. Let \((A, \cdot)\) be a \(k\)-algebra with multiplication \(\cdot\) and let \((R, \circ)\) be a \(k\)-algebra with multiplication \(\circ\). Let \(\ell, r : A \to \text{End}_k(R)\) be linear maps. We call \(R\) (or the quadruple \((R, \circ, \ell, r)\)) an \textbf{\(A\)-bimodule \(k\)-algebra} if \((R, \ell, r)\) is an \(A\)-bimodule that is compatible with the multiplication \(\circ\) on \(R\) in the sense that
\[
\ell(x)(v \circ w) = (\ell(x)v) \circ w, \quad (v \circ w)r(x) = v \circ (wr(x)), \quad (vr(x)) \circ w = v \circ (\ell(x)w),
\]
for all \(x, y \in A, v, w \in R\).

Obviously, \((A, \cdot, L_A, R_A)\) is an \(A\)-bimodule \(k\)-algebra.

In Definition 2.4, when the \(A\)-bimodule \((R, \ell, r)\) with multiplication \(*\) is assumed to be an \(A\)-bimodule \(k\)-algebra and when \(u \circ v = \lambda u \ast v\) for \(\lambda \in k\), we recover the following notion of an \(O\)-operator with weight \(\lambda\) in \(\[1]\):

Definition 2.5. Let \((A, \cdot)\) be a \(k\)-algebra and let \((R, \ast, \ell, r)\) be an \(A\)-bimodule \(k\)-algebra. Let \(\lambda \in k\). A linear map \(\alpha : R \to A\) is called an \textit{\(O\)-operator of weight \(\lambda\)} associated to \((R, \ast, \ell, r)\) if \(\alpha\) satisfies
\[
\alpha(u) \cdot \alpha(v) = \alpha(\ell(\alpha(u))v) + \alpha(\ell(\alpha(v))u) + \lambda \alpha(u \ast v), \quad \forall u, v \in R.
\]
When \(\ast = 0\), then \(O\) is called an \textit{\(O\)-operator} (of weight zero) associate to the \(A\)-bimodule \((R, \ell, r)\).

When \(R\) is the \(A\)-bimodule \(k\)-algebra \((A, L_A, R_A)\) with \(u \circ v := \lambda u \cdot v\) for \(\lambda \in k\) and the default multiplication \(\cdot\) of \(A\), we recover the notion of a Rota-Baxter operator \(P\) of weight \(\lambda\) defined in Eq. \([7]\).

These structures can be summarized in the commutative diagram

2.2. \textbf{Operator forms of solutions of nhacYBe}. We recall the notion of the nhacYBe and give an interpretation of solutions of the nhacYBe in terms of the generalized \(O\)-operators just introduced.

Let \((A, \cdot, 1)\) be a unital \(k\)-algebra of which the multiplication \(\cdot\) is often suppressed. For \(r = \sum_i a_i \otimes b_i \in A \otimes A\), denote
\[
r_{12} := \sum_i a_i \otimes b_i \otimes 1, \quad r_{13} := \sum_i a_i \otimes 1 \otimes b_i, \quad r_{23} := \sum_i 1 \otimes a_i \otimes b_i.
\]
Then \(r_{12}r_{13}, r_{13}r_{23}, r_{23}r_{12}\) are elements in the \(k\)-algebra \(A \otimes A \otimes A\).

Definition 2.6. Let \(A\) be a unital \(k\)-algebra and let \(r \in A \otimes A\).

(a) \(r\) is a solution of the \textbf{associative Yang-Baxter equation (AYBE)}
\[
r_{12}r_{13} + r_{13}r_{23} - r_{23}r_{12} = 0
\]
in \(A\) if the equation holds with the notation in Eq. \([\[1]\]).
(b) Fix a $\mu \in k$. r is a solution of the μ-nonhomogeneous associative Yang-Baxter equation (μ-nhacYBe)

$$r_{12}r_{13} + r_{13}r_{23} - r_{23}r_{12} = \mu r_{13}$$

in A if the equation holds with the notation in Eq. (8).

The opposite form of Eq. (8) is [14]

$$r_{13}r_{12} + r_{23}r_{13} - r_{12}r_{23} = \mu r_{13}.$$ (9)

Definition 2.7. Let A be a unital k-algebra and $\mu \in k$. Let $r \in A \otimes A$. Define the μ-extended symmetrizer of r to be

$$r := r + \sigma(r) - \mu(1 \otimes 1).$$ (10)

The prefix μ in Definitions 2.6 and 2.7 will be suppressed when its meaning is clear from the context.

Let $r \in A \otimes A$. Define linear maps $r^\sharp, r'^\sharp : A^* \to A$ by the canonical bijections

$$(_)^\sharp : A \otimes A \cong \text{Hom}_k(A^*, k) \otimes A \cong \text{Hom}_k(A^*, A),$$

$$(_)^\sharp = (_)^\sharp \sigma : A \otimes A \to \text{Hom}_k(A^*, A).$$

Explicitly, r^\sharp and r'^\sharp are determined by

$$\langle r^\sharp(a^*), b^* \rangle = \langle r, a^* \otimes b^* \rangle, \quad \langle r'^\sharp(a^*), b^* \rangle = \langle r, b^* \otimes a^* \rangle, \quad \forall a^*, b^* \in A^*.$$

With these notations, r is called **nondegenerate** if the linear map r^\sharp or r'^\sharp is a linear isomorphism. Otherwise, r is called **degenerate**. Furthermore, r is symmetric if and only if

$$\langle r, a^* \otimes b^* \rangle = \langle r, b^* \otimes a^* \rangle,$$

that is, $\langle r^\sharp(a^*), b^* \rangle = \langle r'^\sharp(b^*), a^* \rangle$, $\forall a^*, b^* \in A^*$.

We now give an operator form of solutions of the nhacYBe in terms of the generalized \mathcal{O}-operators with weights given by multiplications.

Theorem 2.8. Let $(A, \cdot, 1)$ be a unital k-algebra. For $r \in A \otimes A$, let r be the extended symmetrizer of r and let $r^\sharp : A^* \to A$ be the corresponding linear map. Then the following statements are equivalent.

(a) The tensor r is a solution of the nhacYBe in A.

(b) The following equation holds.

$$r^\sharp(a^*) \cdot r^\sharp(b^*) + r^\sharp(a^* L^*(r'^\sharp(b^*))) - r^\sharp(R^*(r'^\sharp(a^*))b^*) - \mu r^\sharp(\langle 1, b^* \rangle a^*) = 0, \quad \forall a^*, b^* \in A^*.$$ (11)

(c) The linear map r^\sharp from r is an \mathcal{O}-operator right twisted by $-r^\sharp$ associated to (A^*, R^*, L^*).

(d) The following equation holds.

$$r'^\sharp(a^*) \cdot r'^\sharp(b^*) - r'^\sharp(a^* L^*(r'^\sharp(b^*))) + r'^\sharp(R^*(r'^\sharp(a^*))b^*) - \mu r'^\sharp(\langle 1, a^* \rangle b^*) = 0, \forall a^*, b^* \in A^*.$$ (12)

(e) The linear map r'^\sharp from $\sigma(r)$ is an \mathcal{O}-operator left twisted by $-r^\sharp$ associated to (A, R^*, L^*).

Proof. Let $r = \sum a_i \otimes b_i$ and $a^*, b^*, c^* \in A^*$. r is a solution of the nhacYBe in A. $r_{13} = r_{13} \otimes 1$ and $r_{13}^\sharp(1) = \mu(1 \otimes 1)$.

We have

$$\langle r_{12} \cdot r_{13}, a^* \otimes b^* \otimes c^* \rangle = \sum_{i,j} \langle a_i \cdot a_j, a^* \rangle \langle b_i, b^* \rangle \langle b_j, c^* \rangle = \sum_j \langle r'^\sharp(b^*), a_j, a^* \rangle \langle b_j, c^* \rangle = \langle r'^\sharp(a^* L^*(r'^\sharp(b^*))), c^* \rangle,$$
\[\langle r_{13} \cdot r_{23}, a^* \otimes b^* \otimes c^* \rangle = \sum_{i,j} \langle a_i, a^* \rangle \langle a_j, b^* \rangle \langle b_i \cdot b_j, c^* \rangle = \sum_{j} \langle a_j, b^* \rangle \langle r^\sharp(a^*) \cdot b_j, c^* \rangle \]
\[= \langle r^\sharp(a^*) \cdot r^\sharp(b^*), c^* \rangle, \]
\[\langle -r_{23} \cdot r_{12}, a^* \otimes b^* \otimes c^* \rangle = -\sum_{i,j} \langle a_i, a^* \rangle \langle a_j \cdot b_i, b^* \rangle \langle b_j, c^* \rangle = -\sum_{j} \langle a_j \cdot r^\sharp(a^*), b^* \rangle \langle b_j, c^* \rangle \]
\[= \langle -r^\sharp(R^*(r^\sharp(a^*))b^*), c^* \rangle, \]
\[\langle -\mu r_{13}, a^* \otimes b^* \otimes c^* \rangle = -\mu \sum_{i} \langle a_i, a^* \rangle \langle 1, b^* \rangle \langle b_i, c^* \rangle = \langle -\mu r^\sharp(a^*), c^* \rangle \langle 1, b^* \rangle \]
\[= \langle -\mu r^\sharp((1,b^*)a^*), c^* \rangle. \]

Hence \(r \) satisfies Eq. (8) if and only if Eq. (11) holds.

We now show that the opposite nhacYBe in Eq. (1) also affords an operator form.

Lemma 2.9. Let \((A, \cdot)\) be a unital k-algebra. Let \(r \in A \otimes A \). Then \(r \) satisfies Eq. (1) if and only if \(\sigma(r) \) satisfies Eq. (13).

Proof. Let \(r = \sum_i a_i \otimes b_i \in A \otimes A \). Then \(r \) satisfies Eq. (11) if and only if
\[\sum_{i,j} (a_i \cdot a_j \otimes b_i \cdot b_j + a_i \otimes a_j \otimes b_i \cdot b_j - a_j \otimes a_i \cdot b_j \otimes b_i - \mu a_i \otimes 1 \otimes b_i) = 0. \]

On the other hand, \(\sigma(r) = \sum_i b_i \otimes a_i \) satisfies Eq. (11) if and only if
\[\sum_{i,j} (b_i \cdot b_j \otimes a_j \otimes a_i + b_j \otimes b_i \otimes a_i \cdot a_j - b_i \otimes a_i \cdot b_j \otimes a_j - \mu b_i \otimes 1 \otimes a_i) = 0. \]
Let $\sigma_{13} : A \otimes A \otimes A \to A \otimes A \otimes A$ be the linear map defined by $\sigma(x \otimes y \otimes z) = z \otimes y \otimes x$ for any $x, y, z \in A$. It is straightforward to check that the left hand side of Eq. (13) coincides with the σ_{13} applied to the left hand side of Eq. (14). This completes the proof. \hfill \Box

Then we have

Corollary 2.10. Let $(A, \cdot, 1)$ be a unital k-algebra. For $r \in A \otimes A$, let r be the extended symmetrizer of r and let $r^\sharp : A^* \to A$ be the corresponding linear map. Then r satisfies Eq. (9) if and only if the linear map $r^\sharp : A^* \to A$ from r is an \mathcal{O}-operator left twisted by $-r^\sharp$ associated to (A^*, R^*, L^*).

Proof. Since $\sigma(r)^\sharp = r^\sharp$, the conclusion follows from Theorem 2.8 and Lemma 2.9. \hfill \Box

2.3. Operator forms of solutions in a Frobenius algebra. We now consider the solutions of the nhacYBe in a Frobenius algebra.

Definition 2.11. Let (A, \cdot) be a k-algebra. A tensor $s \in A \otimes A$ is called **invariant** if

$$\text{id} \otimes L(x) - R(x) \otimes \text{id})s = 0, \ \forall x \in A.$$

Lemma 2.12. (12) Let (A, \cdot) be a k-algebra. Let $s \in A \otimes A$ be symmetric. Then the following conditions are equivalent.

(a) s is invariant.
(b) s^\sharp satisfies

$$R^*(s^\sharp(a^*))b^* = a^*L^*(s^\sharp(b^*)), \ \forall a^*, b^* \in A^*.$$

c) s^\sharp satisfies

$$s^\sharp(R^*(x)a^*) = x \cdot s^\sharp(a^*), \ s^\sharp(a^*L^*(x)) = s^\sharp(a^*) \cdot x, \ \forall x \in A, a^* \in A^*.$$

Remark 2.13. For a unital k-algebra $(A, 1)$, it is obvious that $1 \otimes 1$ is not invariant when $\text{dim } A \geq 2$.

Definition 2.14. A bilinear form $\mathfrak{B} := \mathfrak{B}(\cdot, \cdot)$ on a k-algebra (A, \cdot) is called **invariant** if

$$\mathfrak{B}(a \cdot b, c) = \mathfrak{B}(a, b \cdot c), \ \forall a, b, c \in A.$$

A Frobenius algebra (A, \mathfrak{B}) is a k-algebra A with a nondegenerate invariant bilinear form $\mathfrak{B}(\cdot, \cdot)$. A Frobenius algebra (A, \mathfrak{B}) is called **symmetric** if $\mathfrak{B}(\cdot, \cdot)$ is symmetric.

Let $\text{Isok}(M, N)$ denote the set of linear bijections between k-vector spaces M and N of the same dimension. Let $\text{NDHom}(A \otimes A, k)$ and $\text{ND}(A \otimes A)$ denote the set of nondegenerate bilinear forms on A and nondegenerate tensors in $A \otimes A$ respectively. Then by definition, the linear bijection $\text{Hom}_k(A \otimes A, k) \cong \text{Hom}_k(A, A^*)$ restricts to a bijection $\text{NDHom}_k(A \otimes A, k) \cong \text{Isok}(A, A^*)$. Similarly, the linear bijection $A \otimes A \cong \text{Hom}_k(A^*, A)$ restricts to a bijection $\text{ND}(A \otimes A) \cong \text{Isok}(A^*, A)$. Then thanks to the bijection $\text{Isok}(A, A^*) \cong \text{Isok}(A^*, A)$ by taking inverse, we obtain a bijection

$$\text{NDHom}_k(A \otimes A, k) \cong \text{Isok}(A, A^*) \cong \text{Isok}(A^*, A) \cong \text{ND}(A \otimes A). \quad (15)$$

Explicitly, let \mathfrak{B} be a nondegenerate bilinear form. Let $\phi^\sharp = \phi^\sharp_{\mathfrak{B}} : A^* \to A$ be the linear isomorphism defined by

$$\langle \phi^\sharp^{-1}(x), y \rangle = \mathfrak{B}(x, y), \forall x, y \in A. \quad (16)$$

The corresponding tensor $\phi \in A \otimes A$ is the one induced from the linear map ϕ^\sharp.

Lemma 2.15. Let \((A, \cdot)\) be a \(k\)-algebra. A nondegenerate bilinear form is symmetric and invariant (and hence gives a symmetric Frobenius algebra \((A, \cdot, \mathcal{B})\)) if and only if the corresponding \(\phi \in A \otimes A\) via Eq. \((13)\) is symmetric and invariant.

Proof. For any \(a^*, b^* \in A^*\), let \(x = \phi^\sharp(a^*)\) and \(y = \phi^\sharp(b^*)\). Then from Eq. \((17)\) we obtain

\[
\mathcal{B}(x, y) = \langle (\phi^\sharp)^{-1}(x), y \rangle = \langle a^*, \phi^\sharp(b^*) \rangle = \langle b^* \otimes a^*, \phi \rangle.
\]

Thus \(\mathcal{B}(x, y) - \mathcal{B}(y, x) = \langle b^* \otimes a^* - a^* \otimes b^*, \phi \rangle\) which shows that \(\mathcal{B}\) is symmetric and if and only if \(\phi\) is symmetric.

Then under the symmetric condition of \(\mathcal{B}\) and hence of \(\phi\), for any \(z \in A\), we have

\[
\mathcal{B}(y \cdot z, x) - \mathcal{B}(y, z \cdot x) = \mathcal{B}(\phi^\sharp(b^*) \cdot z, \phi^\sharp(a^*)) - \mathcal{B}(\phi^\sharp(b^*), z \cdot \phi^\sharp(a^*))
\]

\[
= \langle a^*, \phi^\sharp(b^*) \cdot z \rangle - \langle b^*, z \cdot \phi^\sharp(a^*) \rangle
\]

\[
= \langle a^* L^*(\phi^\sharp(b^*)), z \rangle - \langle R^*(\phi^\sharp(a^*)) b^*, z \rangle
\]

\[
= \langle a^* L^*(\phi^\sharp(b^*)) - R^*(\phi^\sharp(a^*)) b^*, z \rangle.
\]

By Lemma 2.12, this shows that \(\mathcal{B}\) is symmetric and invariant if and only if \(\phi\) is symmetric and invariant.

Theorem 2.16. Let \((A, \cdot, 1, \mathcal{B})\) be a unital symmetric Frobenius algebra. Let \(\phi^\sharp : A^* \to A\) be the linear isomorphism defined by Eq. \((17)\). For \(r \in A \otimes A\), let the linear maps \(P_r, P_r^t : A \to A\) be defined respectively by

\[
P_r(x) := r^\sharp(\phi^\sharp)^{-1}(x), \quad P_r^t(x) := r^{t\sharp}(\phi^\sharp)^{-1}(x), \quad \forall x \in A.
\]

Let \(r^\sharp(a^*) := r^\sharp(a^*) + r^{t\sharp}(a^*) - \mu(1, a^*) 1, a^* \in A^*\) be defined by the extended symmetrizer \(r\) of \(r\). Then the following statements are equivalent.

(a) \(r\) is a solution of the nhacYBe in \(A\).

(b) The following equation holds.

\[
P_r(x) \cdot P_r(y) = P_r(P_r(x) \cdot y) - P_r(x \cdot P_r^t(y)) + \mu \mathcal{B}(1, y) P_r(x), \quad \forall x, y \in A.
\]

(c) The following equation holds.

\[
P_r^t(x) \cdot P_r^t(y) = P_r^t(-P_r(x) \cdot y) + P_r^t(x \cdot P_r^t(y)) + \mu \mathcal{B}(1, x) P_r^t(y), \quad \forall x, y \in A.
\]

(d) The operator \(P_r\) on \(A\) is a Rota-Baxter operator right twisted by \(-r^\sharp(\phi^\sharp)^{-1}\), that is,

\[
P_r(x) \cdot P_r(y) = P_r(P_r(x) \cdot y) + P_r(x \cdot P_r(y)) - P_r(x \cdot r^\sharp(\phi^\sharp)^{-1}(y)), \quad \forall x, y \in A.
\]

(e) The operator \(P_r^t\) on \(A\) is a Rota-Baxter operator left twisted by \(-r^{t\sharp}(\phi^\sharp)^{-1}\), that is,

\[
P_r^t(x) \cdot P_r^t(y) = P_r^t(P_r^t(x) \cdot y) + P_r^t(x \cdot P_r^t(y)) - P_r^t(r^{t\sharp}(\phi^\sharp)^{-1}(x) \cdot y), \quad \forall x, y \in A.
\]

Proof. For any \(x, y \in A\), set \(a^* = \phi^\sharp^{-1}(x), b^* = \phi^\sharp^{-1}(y)\), we have

\[
P_r(x) \cdot P_r(y) = r^\sharp(a^*) \cdot r^\sharp(b^*)
\]

\[
P_r(P_r(x) \cdot y) = r^\sharp(\phi^\sharp^{-1}(r^\sharp(\phi^\sharp^{-1}(x) \cdot (\phi^\sharp(b^*))) = r^\sharp(\phi^\sharp^{-1}(r^\sharp(\phi^\sharp)^{-1}(r^\sharp(a^*)) \cdot \phi^\sharp(b^*)) = r^\sharp((R^*(r^\sharp(a^*)) b^*)
\]

\[
P_r(x \cdot P_r^t(y)) = r^\sharp(\phi^\sharp^{-1}(r^{t\sharp}(\phi^\sharp^{-1}(x) \cdot (\phi^\sharp(b^*))) = r^\sharp(\phi^\sharp^{-1}(r^{t\sharp}(\phi^\sharp)^{-1}(r^{t\sharp}(\phi^\sharp(a^*)) \cdot r^{t\sharp}(b^*)) = r^\sharp((a^* L^*(r^{t\sharp}(b^*))
\]

\[
\mathcal{B}(1, y) P_r(x) = P_r \phi^\sharp(a^*) \mathcal{B}(1, y) = r^\sharp(1, (b^*) a^*)
\]

Note that the invariance of \(\phi\) given by Lemma 2.13 is used in deriving Eqs. \((18)\) and \((19)\). By Theorem 2.8, \(r\) satisfies Eq. \((8)\) if and only if \(P_r\) satisfies Eq. \((18)\). Similarly, we show
that r satisfies Eq. (8) if and only if P^*_r satisfies Eq. (19). Hence statements (1) - (4) are equivalent.

Next for any $x \in A$ and $b^* \in A^*$, we have
\[
\langle P_r(x) + P^*_r(x), b^* \rangle = \langle r^\sharp(\phi^\sharp(x)) + r'^\sharp(\phi'^\sharp(x)), b^* \rangle \\
= \langle r^\sharp\phi^\sharp(x) + \mu(\phi^\sharp(x), 1), b^* \rangle \\
= \langle r^\sharp\phi^\sharp(x) + \mu\mathfrak{B}(x, 1), b^* \rangle.
\]

Hence
\[
P^*_r(x) = -P_r(x) + r^\sharp\phi^\sharp(x) + \mu\mathfrak{B}(x, 1), \quad \forall x \in A.
\]

Then the equivalence of the statement (1) (resp. (2)) to the statement (3) (resp. (4)) follows from applying this equation.

We give an application to Rota-Baxter systems introduced by Brzeziński [13].

Definition 2.17. Let A be a k-algebra. Let $P, S : A \to A$ be two linear maps. The triple (A, P, S) is called a **Rota-Baxter system** if for any $x, y \in A$, the following equations hold
\[
P(x)P(y) = P(P(x)y + xS(y)), \quad S(x)S(y) = S(P(x)y + xS(y)).
\]

Taking $\mu = 0$ in the equivalent statements (1) - (4) in Theorem 2.10 gives

Corollary 2.18. Let $(A, \cdot, 1, \mathfrak{B})$ be a unital symmetric Frobenius algebra. For $r \in A \otimes A$, let P_r and P^*_r be defined as in Eq. (17). Then r is a solution of the AYBE in Eq. (7) if and only if $(A, P_r, -P^*_r)$ is a Rota-Baxter system.

2.4. Operator forms of symmetrized invariant solutions of nhacYBe

We now show that, under an invariant condition, solutions of the nhacYBe can be interpreted in terms of the usual \mathfrak{O}-operators in Definition 2.3.

Definition 2.19. Let (A, \cdot) be a k-algebra. A tensor $r \in A \otimes A$ is called **symmetrized invariant** if its extended symmetrizer r defined in Eq. (11) is invariant.

Lemma 2.20. (a) Let $(A, \cdot, 1)$ be a unital k-algebra. Let $s \in A \otimes A$ be symmetric and invariant. Set
\[
a^* \circ b^* := a^*L^*(s^\sharp(b^*)) = R^*(s^\sharp(a^*))b^*, \quad \forall a^*, b^* \in A^*.
\]

Then (A^*, \circ, R^*, L^*) is an A-bimodule k-algebra.

(b) Let (A^*, \circ, R^*, L^*) be an A-bimodule k-algebra. Define a linear map $s^\sharp : A^* \to A$ or equivalently $s \in A \otimes A$ by
\[
\langle s, a^* \otimes b^* \rangle := \langle s^\sharp(a^*), b^* \rangle := \langle b^* \circ a^*, 1 \rangle, \quad \forall a^*, b^* \in A^*.
\]

Suppose
\[
\langle a^* \circ b^*, 1 \rangle = \langle b^* \circ a^*, 1 \rangle, \quad \forall a^*, b^* \in A^*,
\]

and s^\sharp satisfies
\[
\langle s^\sharp(a^*) \cdot x, b^* \rangle = \langle b^* \circ a^*, x \rangle, \quad \forall x \in A, a^*, b^* \in A^*.
\]

Then s is symmetric and invariant.
Proof. Let \(a^*, b^*, c^* \in A^* \) and \(x, y \in A \). Then we have
\[
(a^* \circ b^*) \circ c^* = a^* L^*(s^2(b^*)) \circ c^* = a^* L^*(s^2(b^*)) L^*(s^2(c^*)),
\]
\[
a^* \circ (b^* \circ c^*) = a^* \circ b^* L^*(s^2(c^*)) = a^* L^*(s^2(b^*) L^*(s^2(c^*))) = a^* L^*(s^2(b^*) \ast s^2(c^*)).
\]
Hence \((A^*, \circ)\) is a \(k\)-algebra. Moreover,
\[
\langle R^*(x)(a^* \circ b^*), y \rangle = \langle a^* L^*(s^2(b^*)), y \cdot x \rangle = \langle a^*, s^2(b^*) \cdot y, x \rangle,
\]
\[
\langle (R^*(x)a^*) \circ b^*, y \rangle = \langle R^*(x)a^*, s^2(b^*) \cdot y \rangle = \langle a^*, s^2(b^*) \cdot y, x \rangle.
\]
Hence \(R^*(x)(a^* \circ b^*) = (R^*(x)a^*) \circ b^* \). Similarly, we have
\[
(a^* \circ b^*) L^*(x) = a^* \circ (b^* L^*(x)), \quad (a^* L^*(x)) \circ b^* = a^* \circ (R^*(x)b^*).
\]
Therefore \((A^*, \circ, R^*, L^*)\) is an \(A\)-bimodule \(k\)-algebra.

Applying Eq. \((22)\) gives
\[
\langle s, a^* \otimes b^* \rangle = \langle s^2(a^*), b^* \rangle = \langle b^* \circ a^*, 1 \rangle = \langle a^* \circ b^*, 1 \rangle
\]
\[
= \langle s^2(b^*), a^* \rangle = \langle s, b^* \otimes a^*, \forall a^*, b^* \in A^* \rangle.
\]
Hence \(s \) is symmetric. Since \((A^*, \circ, R^*, L^*)\) is an \(A\)-bimodule \(k\)-algebra, we have
\[
\langle x \cdot s^2(b^*), a^* \rangle = \langle s^2(b^*), a^* L^*(x) \rangle = \langle (a^* L^*(x)) \circ b^*, 1 \rangle = \langle a^* \circ (R^*(x)b^*), 1 \rangle
\]
\[
= \langle s^2(R^*(x)b^*), a^* \rangle,
\]
\[
\langle s^2(b^*) \cdot x, a^* \rangle = \langle s^2(b^*), R^*(x)a^* \rangle = \langle (R^*(x)a^*) \circ b^*, 1 \rangle = \langle b^* \circ (R^*(x)a^*), 1 \rangle
\]
\[
= \langle (b^* L^*(x)) \circ a^*, 1 \rangle = \langle a^* \circ (b^* L^*(x)), 1 \rangle = \langle s^2(b^* L^*(x)), a^* \rangle,
\]
where \(x \in A, a^*, b^* \in A^* \). Hence \(s \) is invariant.

Remark 2.21. In fact, under the same conditions as for Lemma 2.20, Eqs. \((22)\) and \((23)\) hold if and only if the following equation holds
\[
\langle s^2(a^*), x \rangle = \langle b^* \circ a^*, x \rangle, \quad \forall x \in A, a^*, b^* \in A^* \).
\]

Theorem 2.22. Let \((A, \cdot, 1)\) be a unital \(k\)-algebra. Let \(r \in A \otimes A \) whose extended symmetrizer \(r \) is invariant. Let \(\circ \) be the binary operation defined from \(r \) by Eq. \((20)\). Then the following statements are equivalent.

(a) The tensor \(r \) is a solution of the nhacYBe in Eq. \((1)\).

(b) When \(r = 0 \), the map \(r^2 \) is an \(\mathcal{O}\)-operator of weight zero associated to the \(A\)-bimodule \((A^*, R^*, L^*)\) and when \(r \neq 0 \), the map \(r^2 \) is an \(\mathcal{O}\)-operator of weight \(-1\) associated to the \(A\)-bimodule \(k\)-algebra \((A^*, \circ, R^*, L^*)\).

(c) When \(r = 0 \), the map \(r^{t^2} \) is an \(\mathcal{O}\)-operator of weight zero associated to the \(A\)-bimodule \((A^*, R^*, L^*)\) and when \(r \neq 0 \), the map \(r^{t^2} \) is an \(\mathcal{O}\)-operator of weight \(-1\) associated to the \(A\)-bimodule \(k\)-algebra \((A^*, \circ, R^*, L^*)\).

Proof. \((\text{i}) \iff (\text{ii})\). Since \(a^* \circ b^* := a^* L^*(r^2(b^*)) \) and by Lemma 2.20, \((A^*, \circ, R^*, L^*)\) is an \(A\)-bimodule \(k\)-algebra, the equivalence follows from Theorem 2.18.

The proof of \((\text{iii}) \iff (\text{iv})\) follows from the same argument. \(\square \)

Corollary 2.23. Let \((A, \cdot, 1)\) be a unital \(k\)-algebra. Let \(r \in A \otimes A \) whose extended symmetrizer is invariant. Then \(r \) is a solution of the nhacYBe if and only if \(r \) satisfies Eq. \((1)\).
Proof. By Theorem \[2.22\], the tensor \(r \) is a solution of the nhacYBe if and only if \(\sigma(r) \) is a solution of the nhacYBe, which holds if and only if \(r \) is a solution of Eq. (1) by Lemma \[2.23\]. \(\square \)

Remark 2.24. For a unital \(k \)-algebra \((A, 1)\), it is obvious that \(\mu(1 \otimes 1) \) is a solution of the nhacYBe. However, if \(\mu \neq 0 \) and \(\dim A \geq 2 \), then the extended symmetrizer of \(\mu(1 \otimes 1) \) is not invariant (see also Remark \[2.13\]).

Corollary 2.25. Let \((A, 1)\) be a unital \(k \)-algebra and \((A^*, \circ, R^*, L^*)\) be an \(A \)-bimodule \(k \)-algebra satisfying Eq. \[2.22\]. Let \(s^2 : A^* \to A \) be the linear map from \(\circ \) defined by Eq. \[2.24\] satisfying Eq. \[2.23\]. Let \(P : A^* \to A \) be a linear map satisfying

\[P(a^*) + P^*(a^*) = s^2(a^*) + \mu(a^*, 1)1, \quad \forall a^* \in A^*, \quad (24) \]

where \(P^* : A^* \to A^* \) is the dual map of \(P \). Then the following statements are equivalent.

(a) When \(s^2 = 0 \), \(P \) is an \(\mathcal{O} \)-operator of weight 0 associated to \((A^*, R^*, L^*)\) and when \(s^2 \neq 0 \), \(P \) is an \(\mathcal{O} \)-operator of weight \(-1\) associated to \((A^*, \circ, R^*, L^*)\).

(b) When \(s^2 = 0 \), \(P^* \) is an \(\mathcal{O} \)-operator of weight zero associated to \((A^*, R^*, L^*)\) and when \(s^2 \neq 0 \), \(P^* \) is an \(\mathcal{O} \)-operator of weight \(-1\) associated to \((A^*, \circ, R^*, L^*)\).

(c) The tensor \(r \in A \otimes A \) defined by \(r^2 = P \) is a symmetrized invariant solution of the nhacYBe.

(d) The tensor \(r \in A \otimes A \) defined by \(r^2 = P \) is a symmetrized invariant solution of the nhacYBe.

Proof. By Lemma \[2.21\], the tensor \(s \) from \(s^2 \) is symmetric and invariant. Set \(P = r^2 \). Then for any \(a^*, b^* \in A^* \), we have

\[\langle P(a^*) + P^*(a^*) + s^2(a^*) - \mu(a^*, 1)1, b^* \rangle = \langle r + \sigma(r) + s - \mu(1 \otimes 1), a^* \otimes b^* \rangle. \]

Hence \(P \) satisfies Eq. \[2.23\] if and only if the extended symmetrizer of \(r \) is symmetric and invariant. By Theorem \[2.22\], statement (1) holds if and only if statement (2) holds. Note that in this case, \(P^* = r^2 \). Therefore by Theorem \[2.22\], statement (1) holds if and only if statement (2) or statement (3) holds.

Furthermore, by the symmetry of \(P \) and \(P^* \), if we set \(P = r^2 \), then by the above discussion, we can directly show that statement (2) holds if and only if statement (3) holds. This proves that all the statements are equivalent. \(\square \)

We end this subsection with displaying a relationship between solutions of the nhacYBe with trivial extended symmetrizers and associative Yang-Baxter pairs.

Definition 2.26. \((14)\) Let \(A \) be a \(k \)-algebra. An associative Yang-Baxter pair is a pair of elements \(r, s \in A \otimes A \) satisfying

\[r_{12}r_{13} - r_{23}r_{12} + r_{12}s_{13} - s_{23}s_{12} + s_{13}s_{23} = 0. \]

Proposition 2.27. \((14)\) Let \((A, 1)\) be a unital \(k \)-algebra. Let \(r, s \in A \otimes A \). If \(r - s = 1 \otimes 1 \), then the pair \((r, s)\) is an associative Yang-Baxter pair if and only if \(r \) satisfies the nhacYBe with \(\mu = 1 \).

Corollary 2.28. Let \((A, 1)\) be a unital \(k \)-algebra. Let \(r \in A \otimes A \). If

\[r + \sigma(r) = \mu(1 \otimes 1) \]

with \(\mu \neq 0 \), then \(r \) is a solution of the nhacYBe in Eq. \((8)\) if and only if \((r, -\sigma(r))\) is an associative Yang-Baxter pair.
Proof. Let \(r \in A \otimes A \) be a solution of the \(\text{nhamYBe} \) and \(r + \sigma(r) = \mu(1 \otimes 1) \) with \(\mu \neq 0 \). Then \(r' = \frac{\mu}{\mu} r \) is a solution of the \(\text{nhamYBe} \) with \(\mu = 1 \) and \(r' + \sigma(r') = 1 \otimes 1 \). By Proposition 2.27, \((r', -\sigma(r'))\) is an associative Yang-Baxter pair. Hence \((r, -\sigma(r))\) is an associative Yang-Baxter pair. Similarly, the converse also holds.

3. \text{NhacYBe and Rota-Baxter operators}

In this section, we first give a correspondence between certain Rota-Baxter operators and symmetrized invariant solutions of the \(\text{NhacYBe} \) with a specific extended symmetrizer \(r \) in unital symmetric Frobenius algebras.

When the tensor \(r \) is degenerate, solutions of the \(\text{NhacYBe} \) in semi-direct product algebras can still be derived from Rota-Baxter operators, \(\mathcal{O} \)-operators and dendriform algebras, while Rota-Baxter operators can be derived from solutions of the \(\text{NhacYBe} \) in unitization algebras.

3.1. \text{NhacYBe and Rota-Baxter operators on Frobenius algebras.} Extending the correspondence between solutions of the AYBE and Rota-Baxter systems on Frobenius algebras given in Corollary 2.18 to the \(\text{NhacYBe} \), we obtain

Theorem 3.1. Let \((A, \cdot, 1, \mathfrak{B})\) be a unital symmetric Frobenius algebra. Let \(\phi^\#: A^* \rightarrow A \) be the linear isomorphism from \(\mathfrak{B} \) defined by Eq. (16) and let \(\phi \in A \otimes A \) be the corresponding invariant symmetric tensor. Suppose \(r \in A \otimes A \) has its extended symmetrizer given by

\[
(25) \quad r := r + \sigma(r) - \mu(1 \otimes 1) = -\lambda \phi.
\]

Define linear maps \(P_r, P^*_r : A \rightarrow A \) respectively by

\[
(26) \quad P_r(x) := r^\# \phi x^{-1}(x), \quad P^*_r(x) := r^\# \phi^* x^{-1}(x), \quad \forall x \in A.
\]

Then the following conditions are equivalent.

(a) \(r \) is a solution of the \(\text{NhacYBe} \) in \(A \).
(b) \(P_r \) is a Rota-Baxter operator of weight \(\lambda \), that is, Eq. (5) holds.
(c) \(P^*_r \) is a Rota-Baxter operator of weight \(\lambda \).

Proof. It follows from Theorem 2.16 by taking \(r^\# = -\lambda \phi r \).

A different construction of Rota-Baxter operators from solutions of the opposite form of the \(\text{NhacYBe} \) in Eq. (1) can be found in [14].

Taking \(\lambda = \mu = 0 \) in Theorem 3.1, we obtain the following result. Note that in this case, \(P^*_r = -P_r \).

Corollary 3.2. [10, Corollary 3.17] A skew-symmetric \(r \in A \otimes A \) is a solution of the AYBE in Eq. (1) if and only if the linear map \(P_r \) defined by Eq. (26) is a Rota-Baxter operator of weight zero.

Example 3.3. Let \((A, \cdot) = (\text{End}_k(V), \cdot) = (M_n(k), \cdot)\) be the matrix algebra, where \(n = \text{dim} V \). It is a Frobenius algebra with the invariant bilinear form being the trace form, that is,

\[
(27) \quad \mathfrak{B}(x, y) := \text{Tr}(x \cdot y), \quad \forall x, y \in A.
\]

Take a basis \(\{e_1, \cdots, e_n\} \) of \(A \) such that \(\mathfrak{B}(e_i, e_j) = \delta_{ij} \). Let

\[
\phi = \sum_i e_i \otimes e_i.
\]
Therefore Eq. (10) holds. Moreover, since \(\text{End}_k(V) \otimes \text{End}_k(V) \cong \text{End}_k(V \otimes V) \), it is known that \(\phi \) is the flip map \(\sigma \) on \(V \otimes V \).

Let \(r = \sum_i a_i \otimes b_i \in A \otimes A \). Then
\[
\phi \sigma^{-1}(x) = \sum_i \langle \phi \sigma^{-1}(x), a_i \rangle b_i = \sum_i \mathfrak{B}(x, a_i) b_i = \sum_i \text{Tr}(x \cdot a_i) b_i.
\]

Similarly, \(P_r(x) = \sum_i \text{Tr}(x \cdot b_i) a_i \). Suppose that
\[
r + \sigma(r) = -\lambda \sigma + \mu (1 \otimes 1) = -\lambda \phi + \mu (1 \otimes 1).
\]

If \(r \) satisfies Eq. (8), then both \(P_r \) and \(P_r^t \) are Rota-Baxter operators of weight \(\lambda \). This is exactly the example given in [20].

Example 3.4. We can be more explicit with Example 3.3 when \(n = 2 \). Let \(E_{ij} \in M_2(k) \), \(1 \leq i, j \leq 2 \), be the matrix whose \((i, j)\)-entry is 1 and other entries are zero. Now the matrix algebra \(A = M_2(\mathbb{C}) \) is a Frobenius algebra with the invariant bilinear form \(\mathfrak{B} \) given by Eq. (29). An orthogonal basis with respect to the form is
\[
e_1 = \frac{1}{\sqrt{2}}(E_{11} + E_{22}), e_2 = \frac{1}{\sqrt{2}}(E_{11} - E_{22}), e_3 = \frac{1}{\sqrt{2}}(E_{12} + E_{21}), e_4 = \frac{1}{\sqrt{2}}(E_{12} - E_{21}).
\]

Hence the \(\phi \) in Example 3.3 is
\[
\phi = e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3 + e_4 \otimes e_4 = E_{11} \otimes E_{11} + E_{22} \otimes E_{22} + E_{12} \otimes E_{21} + E_{21} \otimes E_{12}.
\]

Note that the unit \(\mathbf{1} \) in \(M_2(\mathbb{C}) \) is \(E_{11} + E_{22} \). Then
\[
\mathbf{1} \otimes \mathbf{1} = E_{11} \otimes E_{11} + E_{11} \otimes E_{22} + E_{22} \otimes E_{11} + E_{22} \otimes E_{22}.
\]

On the other hand, by a direct calculation, we find that \(r = E_{12} \otimes E_{21} - E_{11} \otimes E_{22} \) is a solution of the nhacYBe with \(\mu = -1 \) in \(M_2(\mathbb{C}) \). Then we have
\[
r + \sigma(r) = E_{12} \otimes E_{21} - E_{11} \otimes E_{22} + E_{21} \otimes E_{12} - E_{22} \otimes E_{11} = \phi - \mathbf{1} \otimes \mathbf{1}.
\]

Hence by Theorem 3.3, we have a Rota-Baxter operator \(P_r \) of weight \(-1\) determined by
\[
P_r(E_{11}) = -E_{22}, P_r(E_{21}) = E_{21}, P_r(E_{12}) = P_r(E_{22}) = 0.
\]

3.2. From \(\mathcal{O} \)-operators and dendriform algebras to nhacYBe on semi-direct product algebras

We now show that \(\mathcal{O} \)-operators of weight zero and dendriform algebras can give rise to solutions of the nhacYBe in some semi-direct product algebras. We first generalize one direction of Theorem 3.1 by relaxing the condition that the extended symmetrizer of \(r \) is a multiple of a nondegenerate invariant tensor giving by a symmetric Frobenius algebra.

Proposition 3.5. Let \((A, \cdot, \mathbf{1})\) be a unital \(k \)-algebra. Let \(s \in A \otimes A \) be symmetric and invariant. Let \(P: A \to A \) be a linear map satisfying
\[
s^* P^*(a^*) + Ps^*(a^*) = -\lambda s^*(a^*) + \mu (a^* \otimes \mathbf{1}), \forall a^* \in A^*;
\]
where \(P^* \) is the linear dual of \(P \). Let \(r_1 \) and \(r_2 \) be defined by \(r_1^s = s^* P^*, r_2^s = Ps^* \). Explicitly, setting \(s = \sum_i a_i \otimes b_i \), then
\[
r_1 := \sum_i P(a_i) \otimes b_i, \ r_2 := \sum_i a_i \otimes P(b_i).
\]
If P is a Rota-Baxter operator of weight λ, then r_1 and r_2 are symmetrized invariant solutions of the nhacYBe in A.

Conversely, suppose that s is nondegenerate. Let $r \in A \otimes A$ satisfy

$$r + \sigma(r) = -\lambda s + \mu(1 \otimes 1).$$

Let $P_r, P_r^s : A \to A$ be the linear maps defined respectively by

$$P_r(x) := r^s s^{-1}(x), \quad P_r^s(x) := r^s s^{-1}(x), \quad \forall x \in A.$$

If r is a solution of the nhacYBe, then P_r and P_r^s are Rota-Baxter operators of weight λ.

Proof. In fact, we have $r_2^s = r_1^s$ since

$$\langle r_1^s(a^*), b^* \rangle = \langle s^2 P^s(b^*), a^* \rangle = \langle s^2(a^*), P^s(b^*) \rangle = \langle Ps^2(a^*), b^* \rangle = \langle r_2^s(a^*), b^* \rangle, \quad \forall a^*, b^* \in A^*.$$

Hence $r_2 = \sigma(r_1)$. For any $a^*, b^* \in A^*$, we have

$$\langle r_1^s(a^*), b^* \rangle + \lambda s - \mu(1 \otimes 1), a^* \otimes b^*$$

$$= \langle s^2 P^s(a^*), b^* \rangle + \lambda s^2(a^*) + r_2^s(b^*) - \mu(1, a^*) \langle 1, b^* \rangle$$

$$= \langle s^2 P^s(a^*) + Ps^2(a^*) + \lambda s^2(a^*) - \mu(a^*, 1), b^* \rangle = 0.$$

Hence $r_1 + \sigma(r_1) + \lambda s - \mu(1 \otimes 1) = 0$. For any $a^*, b^*, c^* \in A^*$, we have

$$\langle r_1^s(a^*) \cdot r_1^s(b^*), c^* \rangle = \langle s^2 P^s(a^*) \cdot s^2 P^s(b^*), c^* \rangle = \langle s^2 P^s(b^*), c^* \rangle (s^2 P^s(a^*))$$

$$= \langle b^*, P(s^2(c^*)) - s^2 P^s(a^*) \rangle$$

$$= \langle b^*, P(s^2(c^*)) \cdot P(s^2(a^*)) \rangle + \langle b^*, P(-\lambda s^2(c^*) \cdot s^2(a^*) + \mu(1, a^*) s^2(c^*)) \rangle,$$

$$\langle r_1^s(a^* L^r(r_1^s(b^*))), c^* \rangle = \langle s^2 P^s(a^* L^r(s^2 P^s(b^*))), c^* \rangle = \langle a^*, s^2 P^s(b^*) \cdot P(s^2(c^*)) \rangle$$

$$= \langle a^*, s^2 P^s(b^*) L^r P(s^2(c^*)) \rangle = \langle b^*, P(P(s^2(c^*))) \cdot s^2(a^*) \rangle,$$

$$\langle r_1^s(R^r(r_1^s(a^*)) b^*), c^* \rangle = \langle s^2 P^s(R^r(s^2 P^s(a^*)) b^*), c^* \rangle = \langle R^r(s^2 P^s(a^*)) b^*, P(s^2(c^*)) \rangle$$

$$= \langle b^*, P(s^2(c^*)) \cdot s^2 P^s(a^*) \rangle$$

$$= \langle b^*, P(P(s^2(c^*))) \cdot P(s^2(a^*)) \rangle + \langle b^*, -\lambda P(s^2(c^*)) \cdot s^2(a^*) + \mu(1, a^*) P(s^2(c^*)) \rangle,$$

$$\langle \lambda r_1^s(a^* L \cdot (s^2(b^*))), c^* \rangle = \langle \lambda s^2 P^s(a^* L^r(s^2(b^*))), c^* \rangle = \langle a^*, \lambda s^2(b^*) \cdot P s^2(c^*) \rangle$$

$$= \langle a^*, \lambda P(s^2(c^*)) \cdot s^2(a^*) \rangle.$$

Hence if P is a Rota-Baxter operator of weight λ, then r_1^s is an \mathcal{O}-operator associated to the A-bimodule \mathcal{O}-algebra (A^*, \circ, R^r, L^r), where \circ is defined from $-\lambda s$. Hence r_1 is a solution of the nhacYBe by Theorem 2.22. By Theorem 2.22 again, r_2 is also a solution of the nhacYBe since $r_2^s = r_1^s = \sigma(r_1)^s$.

If s is nondegenerate, then from the above proof, it is obvious that the converse is true. Alternatively, note that when s is nondegenerate, symmetric and invariant, then it corresponds to a nondegenerate, symmetric and invariant bilinear form \mathcal{B} by Lemma 2.13 through Eq. (10) such that (A, \mathcal{B}) is a Frobenius algebra. Then the conclusion follows from Theorem 3.3. $$\square$$

Remark 3.6. When $\mu = 0$, the tensor r_1 in Eq. (28) recovers a construction in [15].

In the rest of this subsection, we provide symmetrized invariant solutions of the nhacYBe in semi-direct product algebras from \mathcal{O}-operators of weight zero and dendriform algebras by applying Proposition 3.3. We first supply more background.
Let \((A, \cdot)\) be a \(k\)-algebra and \((V, l, r)\) be an \(A\)-bimodule. Let \((V^*, r^*, l^*)\) be the dual \(A\)-bimodule. Denote the semi-direct product algebras
\[\hat{A} := A \ltimes_{l^*, r} V, \quad \mathcal{A} := A \ltimes_{r^*, l^*} V*. \]
Identify a linear map \(\beta : V \to A\) with an element in \(\mathcal{A} \otimes \mathcal{A}\) by the injective map
\[\text{Hom}_k(V, A) \cong A \otimes V^* \to \mathcal{A} \otimes \mathcal{A}. \]

Proposition 3.7. Let \(A\) be a \(k\)-algebra and \((V, l, r)\) be an \(A\)-bimodule. Let \(\alpha : V \to A\) be a linear map. Then \(\hat{\alpha} \in \mathcal{A}\) is a Rota-Baxter operator of weight zero if and only if the linear map
\[\hat{\alpha}(x, u) := (\alpha(u), -\lambda u), \quad \forall x \in A, u \in V, \quad (29) \]
is a Rota-Baxter operator of weight \(\lambda\) on the algebra \(\hat{A}\).

Lemma 3.8. Let \((A, \cdot)\) be a \(k\)-algebra and \((V, l, r)\) be an \(A\)-bimodule. Let \(\beta : V \to A\) be a linear map. Then \(\tilde{\beta} = \beta + \sigma(\beta) \in \hat{A} \otimes \hat{A}\) is invariant if and only if \(\beta\) is a balanced \(A\)-bimodule homomorphism, that is,
\[\beta(l(x)u) = x \cdot \beta(v), \quad \beta(ur(x)) = (\beta(u)) \cdot x, \quad l(\beta(u))v = ur(\beta(v)), \quad \forall x \in A, u, v \in V. \quad (30) \]

Theorem 3.9. Let \((A, 1)\) be a unital \(k\)-algebra and \((V, l, r)\) be an \(A\)-bimodule. Assume that \(\alpha : V \to A\) is an \(A\)-operator of weight zero and \(\beta : V^* \to A\) is a balanced \(A\)-bimodule homomorphism. Let \(\hat{\alpha}\) be given by Eq. (29) and \(\tilde{\beta} := \beta + \sigma(\beta) \in \hat{A} \otimes \hat{A}\). Let \(r_1, r_2 \in \hat{A} \otimes \hat{A}\) be defined by
\[r_1 := \tilde{\beta}^* \hat{\alpha}^*, \quad r_2 := \tilde{\alpha} \tilde{\beta}. \]
If \(\alpha\) and \(\beta\) satisfy
\[\beta \alpha^*(x^*) + \alpha \beta^*(x^*) = \mu(x^*, 1)1, \quad \forall x^* \in A^*, \]
then \(r_1\) and \(r_2\) are symmetrized invariant solutions of the nhacYBe in \(\hat{A}\), with \(s = \tilde{\beta}\).

Proof. By Proposition 3.7, \(\hat{\alpha}\) is a Rota-Baxter operator of weight \(\lambda\) of \(\hat{A}\). By Lemma 3.8, \(\tilde{\beta} \in \hat{A} \otimes \hat{A}\) is invariant. Moreover, we have
\[\hat{\alpha}^*(x^*, u^*) = (0, \alpha^*(x^*) - \lambda u^*), \quad \tilde{\beta}^*(x^*, u^*) = (\beta(u^*), \beta^*(x^*)), \quad \forall x^* \in A^*, u^* \in V^*. \]
Hence for any \(x^* \in A^*, u^* \in V^*\), we have
\[
\begin{align*}
\tilde{\beta}^* \hat{\alpha}^*(x^*, u^*) + \hat{\alpha} \tilde{\beta}^*(x^*, u^*) &+ \lambda \tilde{\beta}^*(x^*, u^*) - \mu((x^*, u^*), (1, 0))(1, 0) \\
&= (\beta \alpha^*(x^*) - \lambda \beta(u^*), 0) + (\alpha \beta^*(x^*), -\lambda \beta^*(x^*)) + \lambda (\beta(u^*), \beta^*(x^*)) - (\mu(x^*, 1)1, 0) \\
&= (\beta \alpha^*(x^*) + \alpha \beta^*(x^*) - \mu(x^*, 1)1, 0) = 0.
\end{align*}
\]
By Proposition 3.7, the desired result follows.

Corollary 3.10. Let \((A, 1)\) be a unital \(k\)-algebra. Let \(s \in A \otimes A\) be symmetric and invariant. Let \(P : A \to A\) be a linear map satisfying
\[s^z P^*(a^*) + Ps^z(a^*) = \mu(a^*, 1)1, \quad \forall a^* \in A^*. \]
Suppose that \(P\) is a Rota-Baxter operator of weight zero.

(a) Let \(r_1, r_2 \in A \otimes A\) be defined by
\[r_1 := s^z P^*, \quad r_2 := Ps^z. \]
Then \(r_1\) and \(r_2\) are symmetrized invariant solutions of the nhacYBe in \(A\) whose extended symmetrizers are zero.
(b) Set \(\widehat{A} := A \ltimes_{L,R} A \). Let \(\widehat{P} \) be given by Eq. (29) with \(\tilde{s}^d = s^d + \sigma(s^d) \in \widehat{A} \otimes \widehat{A} \). Let \(r_3, r_4 \in \widehat{A} \otimes \widehat{A} \) be defined by

\[
r_3 := (\tilde{s}^d)^d P^*, \quad r_4 := \widehat{P}(\tilde{s}^d)^d.
\]

Then \(r_3 \) and \(r_4 \) are symmetrized invariant solutions of the nhacYBe in \(\widehat{A} \) with \(s = \tilde{s}^d \).

Proof. (a) follows from Proposition [35] with \(\lambda = 0 \).

(b) follows from Theorem [3.9] where \((V, l, r) = (A, L, R) \) and \(P = \alpha, \beta = s^d \). Note that in this case, if \(s \) is invariant and symmetric, then \(s^d \) is a balanced \(A \)-module homomorphism, that is, \(s^d \) satisfies Eq. (31). \(\square \)

Corollary 3.11. Let \((A, \cdot, 1) \) be a unital \(k \)-algebra. Set \(\widehat{A} := A \ltimes_{R^*, L^*} A^* \). Assume that \(\beta : A \to A \) is a linear map satisfying

\[
\beta(x \cdot y) = \beta(x) \cdot y = x \cdot \beta(y), \quad \forall x, y \in A.
\]

(31)

Let \(\alpha : A^* \to A \) be an \(\mathcal{O} \)-operator of weight zero associated to \((A^*, R^*, L^*) \). Let \(\widehat{\alpha} \) be given by Eq. (29) and \(\widehat{\beta} = \beta + \sigma(\beta) \in \widehat{A} \otimes \widehat{A} \). Let \(r, r' \in \widehat{A} \otimes \widehat{A} \) be defined by

\[
r^\alpha := \widehat{\beta}^\alpha \widehat{\alpha}^\star, \quad r'^\alpha := \widehat{\alpha}^\beta \widehat{\beta}^\star.
\]

If \(\alpha \) and \(\beta \) satisfy

\[
\beta \alpha^\star(x^\star) + \alpha^\star(\beta(x^\star)) = \mu(x^\star, 1)1, \quad \forall x^\star \in A^*,
\]

then \(r \) and \(r' \) are symmetrized invariant solutions of the nhacYBe in \(\widehat{A} \), when taking \(s = \tilde{s} \).

In particular, suppose that \(\beta = \text{id} \). Then \(\beta \) satisfies Eq. (31). Suppose that

\[
\alpha(x^\star) + \alpha^\star(x^\star) = \mu(x^\star, 1)1, \quad \forall x^\star \in A^*.
\]

(a) Let \(r_1, r_2 \in \widehat{A} \otimes \widehat{A} \) be defined by

\[
r_1 := \widehat{\alpha}^d \widehat{\alpha}^\star, \quad r_2 := \widehat{\alpha} \widehat{\alpha}^d.
\]

Then \(r_1 \) and \(r_2 \) are symmetrized invariant solutions of the nhacYBe in \(\widehat{A} \) with \(s = \widehat{\alpha} \).

(b) Let \(r_3, r_4 \in A \otimes A \) be defined by

\[
r_3 := \alpha, \quad r_4 := \alpha^\star.
\]

Then \(r_3 \) and \(r_4 \) are symmetrized invariant solutions of the nhacYBe in \(A \).

Proof. The first half part follows from Theorem [3.9] by taking \((V, l, r) = (A^*, R^*, L^*) \). Note that in this case, Eq. (31) is exactly Eq. (31).

(a) follows from the above proof in the case when \(\beta = \text{id} \).

(b) follows from Corollary [2.29] in the case that the extended symmetrizer is zero. \(\square \)

We finally provide solutions of the nhacYBe from dendriform algebras.

Definition 3.12. [31] Let \(A \) be a vector space with two bilinear products denoted by \(\prec \) and \(\succ \). Then \((A, \prec, \succ) \) is called a **dendriform algebra** if for all \(a, b, c \in A \),

\[
(a \prec b) \prec c = a \prec (b \prec c + b \succ c), (a \succ b) \prec c = a \succ (b \prec c), (a \prec b + a \succ b) \succ c = a \succ (b \succ c).
\]
Let \((A, \prec, \succ)\) be a dendriform algebra. For any \(a \in A\), let \(L_\prec(a), R_\prec(a)\) and \(L_\succ(a), R_\succ(a)\) denote the left and right multiplication operators on \((A, \prec)\) and \((A, \succ)\), respectively. Furthermore, define linear maps
\[
R_\prec, L_\succ : A \to \text{End}_k(A), \quad a \mapsto R_\prec(a), \quad a \mapsto L_\succ(a), \quad \forall a \in A.
\]
As is well-known, for a dendriform algebra \((A, \prec, \succ)\), the multiplication
\[
a \star b := a \prec b + a \succ b, \quad \forall a, b \in A,
\]
defines a \(k\)-algebra \((A, \star)\), called the associated algebra of the dendriform algebra. Moreover, \((A, L_\prec, R_\prec)\) is a bimodule of the algebra \((A, \prec)\) \([1, 30]\).

A unital dendriform algebra \([1, 30]\) is a \(k\)-module \(A := k1 \oplus A^+\) such that \((A^+, \prec, \succ)\) is a dendriform algebra and the operations \(\prec\) and \(\succ\) are extended (partially) to \(A\) by
\[
x \prec 1 = 1 \succ x = x, \quad x \succ 1 = 1 \prec x = 0, \quad \forall x \in A^+.
\]
Note that \(1 \prec 1\) and \(1 \succ 1\) are not defined. Then \((A, \star, 1)\) is a unital \(k\)-algebra.

Corollary 3.13. Let \((A, \prec, \succ, 1)\) be a unital dendriform algebra with the unit \(1\). Let \((A, \star)\) be the associated unital \(k\)-algebra with the unit \(1\). Suppose that there is a linear map \(\beta : A^* \to A\) satisfying
\[
\beta(R_\prec^*(x)y^*) = x \star \beta(y^*), \quad \beta(y^*L_\prec^*(x)) = \beta(y^*) \star x, \quad R_\prec^*(\beta(y^*))z^* = y^*L_\succ^*(\beta(z^*)),
\]
for any \(x \in A, y^*, z^* \in A^*\). Set \(\hat{A} = A \ltimes_{L_\prec, R_\prec} A\). Let \(\hat{id}\) be given by Eq. \((\hat{24})\), that is,
\[
\hat{id}(x, y) = (y, -\lambda y), \quad \forall x, y \in A,
\]
and \(\hat{\beta} = \beta + \sigma(\beta) \in \hat{A} \otimes \hat{A}\). If in addition, \(\beta\) satisfies
\[
\beta(x^*) + \beta^*(x^*) = \mu(x^*, 1)1, \quad \forall x^* \in A^*,
\]
then \(r_1\) and \(r_2\) defined by
\[
r_1 := \hat{\beta}\hat{id}, \quad n_2 := \hat{id}\hat{\beta}^*
\]
are symmetrized invariant solutions of the nhacYBe in \(\hat{A}\), with \(s = \hat{\beta}\).

Proof. Note that the identity map \(id\) is an \(\mathcal{O}\)-operator of the associated algebra \((A, \star)\) associated to the bimodule \((A, L_\prec, R_\prec)\). Hence the conclusion follows from Theorem \([33]\). \(\Box\)

Remark 3.14. The above constructions of symmetrized invariant solutions of the nhacYBe are different from the construction of solutions of the AYBE from \(\mathcal{O}\)-operators given in \([11]\), where the symmetric invariant tensors appearing in the symmetric parts of solutions in the semi-direct product algebras can be “lifted” from linear maps from the bimodules to the \(k\)-algebras themselves as Lemma \([38]\) illustrates. However, it is not true for the symmetric tensor \(1 \otimes 1\) any more, that is, the approach in \([10]\) does not apply here due to the appearance of the new term \(\mu(1 \otimes 1)\).

3.3. From nhacYBe to Rota-Baxter operators on unitization algebras.

We end the section with constructions of Rota-Baxter operators from solutions of the nhacYBe in unitization algebras, or equivalently, augmented algebras.

The **unitization** of a not necessarily unital \(k\)-algebra \(A'\) is the direct sum \(k\)-algebra \(A := k \oplus A'\). An **augmentation map** on a unital \(k\)-algebra \((A, \cdot, 1)\) is a \(k\)-algebra homomorphism \(\varepsilon : A \to k\). An **augmented unital \(k\)-algebra** is a unital \(k\)-algebra \((A, \cdot, 1)\) with an augmentation map \(\varepsilon\).
As it is well known [17, Theorem 5.1.1], augmented unital k-algebras are precisely the unitizations of (not necessarily unital) algebras given by

$$k \oplus A' \hookrightarrow (A, \varepsilon),$$

where $A := k \oplus A'$, ε is the projection to k, while A' is ker ε.

Remark 3.15. For an augmented unital k-algebra $(A, \cdot, 1, \varepsilon)$ with augmentation map ε, there is a basis $\{e_1, \cdots, e_n\}$ of A such that $e_1 = 1$ and $\{e_2, \cdots, e_n\}$ is a basis of ker $\varepsilon = A'$. Let $\{e_1', \cdots, e_n'\}$ be the dual basis. Then $\varepsilon = e_1'$.

The following conclusion is obvious.

Lemma 3.16. Let $(A, \cdot, 1)$ be a unital k-algebra and ε be an augmentation map. Then

$$(\varepsilon(1)) = 1_k, \text{ and}$$

$$\varepsilon(x \cdot y \cdot z) = \varepsilon(y \cdot z \cdot x) = \varepsilon(z \cdot x \cdot y) = \varepsilon(x)\varepsilon(y)\varepsilon(z), \forall x, y, z \in A. \quad (32)$$

Let $(A, \cdot, 1, \varepsilon)$ be an augmented unital k-algebra. Define linear maps

$$\varepsilon_l : A \otimes A \to k \otimes A, \varepsilon_r : A \otimes A \to A \otimes k$$

respectively by

$$\varepsilon_l := \varepsilon \otimes \text{id}, \quad \varepsilon_r := \text{id} \otimes \varepsilon.$$

Similarly, define linear maps

$$\varepsilon_{12} : A \otimes A \otimes A \to k \otimes k \otimes A, \varepsilon_{23} : A \otimes A \otimes A \to A \otimes k \otimes k, \varepsilon_{13} : A \otimes A \otimes A \to k \otimes A \otimes k$$

respectively by

$$\varepsilon_{12} := \varepsilon \otimes \varepsilon \otimes \text{id}, \quad \varepsilon_{23} := \text{id} \otimes \varepsilon \otimes \varepsilon, \quad \varepsilon_{13} := \varepsilon \otimes \text{id} \otimes \varepsilon.$$

Denote the natural isomorphisms of algebras [28]

$$\beta_l : k \otimes A \to A, 1_k \otimes a \mapsto a; \quad \beta_r : A \otimes k \to A, x \otimes 1_k \mapsto x, \forall x \in A.$$

Similarly, define natural isomorphisms of algebras

$$\beta_{12} : k \otimes k \otimes A \to A, \quad 1_k \otimes 1_k \otimes x \mapsto x,$$

$$\beta_{23} : A \otimes k \otimes k \to A, \quad x \otimes 1_k \otimes 1_k \mapsto x,$$

$$\beta_{13} : k \otimes A \otimes k \to A, \quad 1_k \otimes x \otimes 1_k \mapsto x, \forall x \in A.$$

For any $x \in A$, set

$$x_{(1)} := x \otimes 1 \in A \otimes A, \quad x_{(r)} := 1 \otimes x \in A \otimes A,$$

$$x_{(1)} := x \otimes 1 \otimes 1 \in A \otimes A \otimes A, \quad x_{(2)} := 1 \otimes x \otimes 1 \in A \otimes A \otimes A, \quad x_{(3)} := 1 \otimes 1 \otimes x \in A \otimes A \otimes A.$$

Theorem 3.17. Let $(A, \cdot, 1, \varepsilon)$ be an augmented unital k-algebra. Let $r = \sum_i a_i \otimes b_i \in A \otimes A$ be a solution of the nhacYBe and r be the extended symmetrizer of r. Define linear maps

$$P, P' : A \to A$$

by

$$P(x) := \sum_i \varepsilon(a_i \cdot x)b_i, \quad P'(x) := \sum_i \varepsilon(b_i \cdot x)a_i, \forall x \in A. \quad (33)$$

(a) If r is nonzero and satisfies

$$\beta_l(\varepsilon_l(r \cdot x_{(1)})) = x, \forall x \in A, \quad (34)$$

then P and P' are Rota-Baxter operators of weight -1.

(b) If $r = 0$, then P and P' are Rota-Baxter operators of weight zero.
Proof. Let $x, y \in A$. By definition, we have

\[
P(x) = \beta_1 \varepsilon_1(r \cdot x(0)) = \beta_{12}(\varepsilon_{12}(r_{12} \cdot x_{(1)})) = \beta_{12}(\varepsilon_{12}(r_{23} \cdot x_{(2)})), \tag{35}
\]
\[
P'(x) = \beta_1 \varepsilon_1(r \cdot x(0)) = \beta_1 \varepsilon_1(\sigma(r) \cdot x(0))
= \beta_{23}(\varepsilon_{23}(r_{12} \cdot x_{(2)})) = \beta_{23}(\varepsilon_{23}(r_{13} \cdot x_{(3)})) = \beta_{13}(\varepsilon_{13}(r_{23} \cdot x_{(3)})). \tag{36}
\]

Since r satisfies Eq. (35), we have

\[
r_{12} \cdot r_{13} \cdot x_{(1)} \cdot y_{(2)} + r_{13} \cdot r_{23} \cdot x_{(1)} \cdot y_{(2)} - r_{23} \cdot r_{12} \cdot x_{(1)} \cdot y_{(2)} = \mu r_{13} \cdot x_{(1)} \cdot y_{(2)}.
\]

Applying $\beta_{12}(\varepsilon_{12} : A \otimes A \otimes A \rightarrow A)$ to both sides of the above equation, we get

\[
\beta_{12}(\varepsilon_{12}(r_{12} \cdot x_{(1)} \cdot y_{(2)} + r_{13} \cdot r_{23} \cdot x_{(1)} \cdot y_{(2)} - r_{23} \cdot r_{12} \cdot x_{(1)} \cdot y_{(2)})) = \mu \beta_{12}(\varepsilon_{12}(r_{13} \cdot x_{(1)} \cdot y_{(2)})). \tag{37}
\]

Furthermore, we have

\[
\beta_{12}(\varepsilon_{12}(r_{12} \cdot r_{13} \cdot x_{(1)} \cdot y_{(2)})) = \beta_{12}(\varepsilon_{12}(\sum_{i,j} (a_i \cdot a_j \cdot x) \otimes (b_i \cdot y) \otimes b_j))
= \beta_{12}(\sum_{i,j} \varepsilon(a_i \cdot a_j \cdot x) \otimes \varepsilon(b_i \cdot y) \otimes b_j)
= \sum_{i,j} \varepsilon(a_i \cdot a_j \cdot x) \varepsilon(b_i \cdot y) b_j
= \sum_j \varepsilon(P'(y) \cdot a_j \cdot x) b_j
= \sum_j \varepsilon(a_j \cdot x \cdot P'(y)) b_j
= P(x \cdot P'(y)).
\]

Similarly, we have

\[
\beta_{12}(\varepsilon_{12}(r_{13} \cdot r_{23} \cdot x_{(1)} \cdot y_{(2)})) = P(x) \cdot P(y), \tag{39}
\]
\[
\beta_{12}(\varepsilon_{12}(r_{23} \cdot r_{12} \cdot x_{(1)} \cdot y_{(2)})) = P(P(x) \cdot y), \tag{40}
\]
\[
\beta_{12}(\varepsilon_{12}(r_{13} \cdot x_{(1)} \cdot y_{(2)})) = \varepsilon(y) P(x). \tag{41}
\]

Substituting Eqs. (39)-(41) into Eq. (37) gives

\[
P(x) \cdot P(y) + P(x \cdot P'(y)) - P(P(x) \cdot y) = \mu \varepsilon(y) P(x). \tag{42}
\]

Since the extended symmetrizer r of r is nonzero, we have

\[
\beta_1 \varepsilon_1((r + \sigma(r)) \cdot x_{(0)} - \mu x_{(0)}) = \beta_1 \varepsilon_1(r \cdot x_{(0)}).
\]

By Eqs. (35), (36) and Eq. (34), we obtain

\[
P'(x) = x + \mu \varepsilon(x) 1 - P(x). \tag{43}
\]

Substituting Eq. (43) into Eq. (42) yields

\[
P(x) \cdot P(y) + P\left(x \cdot (y + \mu \varepsilon(y) 1 - P(y)) \right) - P(P(x) \cdot y)
=\mu \varepsilon(y) P(x),
\]

that is,

\[
P(x) \cdot P(y) = P(P(x) \cdot y) + P(x \cdot P(y)) - P(x \cdot y),
\]
as required. Similarly, we prove that P' is also a Rota-Baxter operator of weight -1.

(1). By an argument similar to the proof of Item (3), we also have
\[P(x) \cdot P(y) + P(x \cdot P'(y)) - P(P(x) \cdot y) = \mu x(y)P(x). \tag{44} \]
Since the extended symmetrizer of r is zero, we obtain
\[r + \sigma(r) - \mu(1 \otimes 1) = 0, \]
and so
\[\beta_i \varepsilon_i((r + \sigma(r)) \cdot x_{(l)} - \mu x_{(l)}) = 0. \]
By Eqs. (33)-(37), we have
\[P'(x) = \mu(x)1 - P(x). \tag{45} \]
Substituting Eq. (14) into Eq. (17) shows that P is a Rota-Baxter operator of weight zero.

A similar argument proves that P' is a Rota-Baxter operator of weight zero. \hfill \Box

Corollary 3.18. Let $(A, \cdot, 1, \varepsilon)$ be an augmented unital k-algebra. Let $r \in A \otimes A$ be anti-
ymmetric (i.e. $r + \sigma(r) = 0$). If r satisfies the AYBE, then the operator P defined by
Eq. (33) is a Rota-Baxter operator of weight zero.

Proof. It follows from Theorem 3.17 (3) by taking $\mu = 0$. \hfill \Box

Corollary 3.19. With the conditions in Theorem 3.17, suppose that $r \in A \otimes A$ is nonzero
and invariant, that is, $r \cdot x_{(l)} = x_{(r)} \cdot r$, $\forall x \in A$. As in Remark 3.17, let \(\{e_1 = 1, e_2, \ldots, e_n\} \)
be a basis of A and \(\{e_1^*, e_2^*, \ldots, e_n^*\} \) be the dual basis such that \(\varepsilon = e_1^* \). Moreover, suppose
\[r = 1 \otimes 1 + \sum_{i,j > 1} s_{ij} e_i \otimes e_j. \]
Then linear maps P and P' defined by Eq. (33) are Rota-Baxter operators of weight -1.

Proof. For all $x \in A$, we have
\[\beta_i \varepsilon_i(r \cdot x_{(l)}) = \beta_i \varepsilon_i(x_{(r)} \cdot r) = \beta_i(\varepsilon(1) \otimes x) + \sum_{i,j > 1} \beta_i(s_{ij} \varepsilon(e_i) \otimes (x \cdot e_j)) = x, \]
that is, r satisfies Eq. (14). Hence the conclusion follows from Theorem 3.17. \hfill \Box

Proposition 3.20. Let $(A, \cdot, 1)$ be a unital k-algebra. If $\varepsilon : A \rightarrow k$ is an augmentation
map, then the bilinear form \mathcal{B} on A defined by
\[\mathcal{B}(x, y) := \varepsilon(x)\varepsilon(y), \forall x, y \in A, \tag{46} \]
is symmetric and invariant. Moreover, \mathcal{B} satisfies
\[\mathcal{B}(x \cdot y, z) = \mathcal{B}(y \cdot x, z), \forall x, y, z \in A. \]
In particular, if \mathcal{B} is nondegenerate, then A is commutative. Conversely, if \mathcal{B} is a symmetric
invariant bilinear form satisfying
\[\mathcal{B}(x, y) = \mathcal{B}(x \cdot y, 1) = \mathcal{B}(x, 1)\mathcal{B}(y, 1), \forall x, y \in A, \]
then the linear map $\varepsilon : A \rightarrow k$ defined by
\[\varepsilon(x) := \mathcal{B}(x, 1), \forall x \in A, \]
is an augmentation map.

Proof. All the statements can be verified directly from the definitions. \hfill \Box
Example 3.21. Let \((A, \cdot, 1, \varepsilon)\) be an augmented unital commutative \(k\)-algebra. Let \(\mathcal{B}\) be the bilinear form defined by Eq. (16). Suppose that \(\mathcal{B}\) is nondegenerate. Then \((A, \cdot, \mathcal{B})\) is a symmetric Frobenius algebra. Let \(\phi^r : A^* \to A\) be the linear isomorphism defined by Eq. (16). Let \(\{e_1 = 1, e_2, \ldots, e_n\}\) be a basis of \(A\) satisfying
\[
\mathcal{B}(e_i, e_j) = \delta_{ij}, \quad \forall i, j = 1, \ldots, n.
\]
Then \(\phi \in A \otimes A\) is invariant and
\[
\phi = \sum_{i=1}^{n} e_i \otimes e_i = 1 \otimes 1 + \sum_{i=2}^{n} e_i \otimes e_i.
\]
By Theorem 3.17 and Corollary 3.19, we show that if \(r\) satisfies Eqs. (1) and (25), then the linear maps \(P\) and \(P'\) defined by Eq. (23) are Rota-Baxter operators of weight \(\lambda\). Note that this conclusion also follows form Theorem 3.1 since in this case, \(P = P_r\) and \(P' = P'_r\), where \(P_r\) and \(P'_r\) are defined by Eq. (20).

4. Classification of symmetrized invariant solutions of nhacYBe in low dimensions

In this section, we classify symmetrized invariant solutions of the nhacYBe for \(\mu \neq 0\) in the unital complex algebras in dimensions two and three and find that all of them are obtained from Rota-Baxter operators through Theorem 3.1. It would be interesting to see what happens for algebras in higher dimensions.

4.1. The classification in dimension two. The set of symmetric invariant tensors of a \(k\)-algebra \(A\) is a subspace of \(A \otimes A\) and is denoted by \(\text{Inv}(A)\).

There are two two-dimensional unital \(\mathbb{C}\)-algebras whose nonzero products with respect to a basis \(\{e_1, e_2\}\) are given by (17)
\[
(A1) : e_1e_1 = e_1, e_1e_2 = e_2e_1 = e_2
\]
\[
(A2) : e_1e_1 = e_1, e_2e_2 = e_2
\]
By (20), for the algebra \((A1)\), there is only one nonzero solution \(r = \mu e_1 \otimes e_1\) of the nhacYBe Eq. (8). By Remark 2.2, this solution is not symmetrized invariant.

Consider the solutions of the nhacYBe in the algebra \((A2)\). Eight of the nine nonzero solutions are symmetrized invariant, given by
\[
\begin{align*}
\sigma_1 &= \mu(e_1 \otimes e_1 + e_2 \otimes e_2 + e_1 \otimes e_2), & \sigma_2 &= \mu(e_1 \otimes e_1 + e_2 \otimes e_2 + e_2 \otimes e_1), \\
\sigma_3 &= \mu e_1 \otimes e_2, & \sigma_4 &= \mu e_2 \otimes e_1, \\
\sigma_5 &= \mu(e_1 \otimes e_1 + e_1 \otimes e_2), & \sigma_6 &= \mu(e_1 \otimes e_1 + e_2 \otimes e_1), \\
\sigma_7 &= \mu(e_2 \otimes e_2 + e_1 \otimes e_2), & \sigma_8 &= \mu(e_2 \otimes e_2 + e_2 \otimes e_1).
\end{align*}
\]
Moreover, all of these solutions are obtained from Rota-Baxter operators by Theorem 3.1. To see this, note that
\[
\begin{align*}
\sigma_2 &= \sigma(\tau_1), & \sigma_4 &= \sigma(\tau_3), & \sigma_6 &= \sigma(\tau_5), & \sigma_8 &= \sigma(\tau_7),
\end{align*}
\]
and the unit of the algebra \((A2)\) is \(e_1 + e_2\). It is straightforward to show that \(\text{Inv}(A2) = \text{span}\{e_1 \otimes e_1, e_2 \otimes e_2\}\). Let \(\mathcal{B}_1\) and \(\mathcal{B}_2\) be the bilinear forms on \((A2)\) defined by
\[
\begin{align*}
\mathcal{B}_1(e_1, e_1) &= \mathcal{B}_1(e_2, e_2) = 1, \mathcal{B}_1(e_1, e_2) = \mathcal{B}_1(e_2, e_1) = 0; \\
\mathcal{B}_2(e_1, e_1) &= 1, \mathcal{B}_2(e_2, e_2) = -1, \mathcal{B}_2(e_1, e_2) = \mathcal{B}_2(e_2, e_1) = 0.
\end{align*}
\]
Then both \mathfrak{B}_1 and \mathfrak{B}_2 are symmetric, nondegenerate and invariant. Their corresponding symmetric, invariant tensors from Lemma 2.11 are
\[
\phi_1 = e_1 \otimes e_1 + e_2 \otimes e_2, \quad \phi_2 = e_1 \otimes e_1 - e_2 \otimes e_2,
\]
so that $\mathfrak{B}_i(x, y) = (\phi_i^{-1}(x), y)$ for any $x, y \in (A2)$ and $i = 1, 2$. Now the 8 symmetrized invariant solutions of the nhacYBe satisfy
\[
\begin{align*}
 r_1 + \sigma(r_1) &= r_2 + \sigma(r_2) = r_1 + r_2 = \mu \phi_1 + \mu(e_1 + e_2) \otimes (e_1 + e_2); \\
 r_3 + \sigma(r_3) &= r_4 + \sigma(r_4) = r_3 + r_4 = -\mu \phi_1 + \mu(e_1 + e_2) \otimes (e_1 + e_2); \\
 r_5 + \sigma(r_5) &= r_6 + \sigma(r_6) = r_5 + r_6 = \mu \phi_2 + \mu(e_1 + e_2) \otimes (e_1 + e_2); \\
 r_7 + \sigma(r_7) &= r_8 + \sigma(r_8) = r_7 + r_8 = -\mu \phi_2 + \mu(e_1 + e_2) \otimes (e_1 + e_2).
\end{align*}
\]
By Theorem 3.1, their corresponding linear operators $P_{r_1}, P_{r_2}, P_{r_5}, P_{r_6}$ are Rota-Baxter operators of weight $-\mu$ and $P_{r_3}, P_{r_4}, P_{r_7}, P_{r_8}$ are Rota-Baxter operators of weight μ.

4.2. The classification in dimension three. Any three-dimensional unital \mathbb{C}-algebra is isomorphic to one of the following five \[28, 33\], defined by their nonzero products on a basis \{e_1, e_2, e_3\}
\[
\begin{align*}
(B1) : & \ e_1 e_1 = e_1, e_2 e_2 = e_2, e_3 e_3 = e_3; \\
(B2) : & \ e_1 e_1 = e_1, e_2 e_2 = e_2, e_3 e_2 = e_2 e_3 = e_3; \\
(B3) : & \ e_1 e_1 = e_1, e_1 e_2 = e_2 e_1 = e_2, e_1 e_3 = e_3 e_1 = e_3, e_2 e_2 = e_3; \\
(B4) : & \ e_1 e_1 = e_1, e_1 e_2 = e_2 e_1 = e_2, e_1 e_3 = e_3 e_1 = e_3, e_3 e_2 = e_2 e_3 = e_3; \\
(B5) : & \ e_1 e_1 = e_1, e_1 e_2 = e_2 e_1 = e_2, e_1 e_3 = e_3 e_1 = e_3.
\end{align*}
\]

Solutions of the nhacYBe in these algebras were classified in \[6\]. For the algebras (B3) and (B5), there is exactly one nonzero solution $r = \mu e_1 \otimes e_1$ and it is not symmetrized invariant.

For the algebra (B4), it is straightforward to prove that $\text{Inv}(B4) = 0$. Then by \[30\], none of the nonzero solutions is symmetrized invariant.

For the algebra (B2), $e_1 + e_2$ is the unit. Moreover, the vector subspace S spanned by e_1 and e_2 is a unital subalgebra of (B2). It is in fact (A2) in Section 1.1. As discussed there, there are 8 symmetrized invariant solutions $r_i, 1 \leq i \leq 8$, of the nhacYBe in S, together with the corresponding Rota-Baxter operators $P_{r_i}, 1 \leq i \leq 8$ on (A2). In fact, they are the only nonzero symmetrized invariant solutions of Eq. (3) in (B2). The corresponding Rota-Baxter operators on (B2) are derived from $P_{r_i}, i = 1, \cdots, 8$ by setting $P_{r_i}(e_3) = 0$, as shown in \[4\].

For the algebra (B1), among the total of 73 nonzero solutions of the nhacYBe given in \[29\], there are exactly 48 nonzero solutions that are symmetrized invariant. All of these solutions are obtained from Rota-Baxter operators thanks to Theorem 3.1.

Note that the unit 1 is $e_1 + e_2 + e_3$ and
\[
\text{Inv}(B1) = \text{span}\{e_1 \otimes e_1, e_2 \otimes e_2, e_3 \otimes e_3\}.
\]
Set
\[
\begin{align*}
\phi_1 &:= e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3, \quad \phi_2 := e_1 \otimes e_1 + e_2 \otimes e_2 - e_3 \otimes e_3, \\
\phi_3 &:= e_1 \otimes e_1 - e_2 \otimes e_2 + e_3 \otimes e_3, \quad \phi_4 := -e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3.
\end{align*}
\]
According to their extended symmetrizers
\[r := r + \sigma(r) - \mu(1 \otimes 1), \]
these 48 solutions are grouped together as follows.
\[
\begin{align*}
 r_1 &= \mu(e_2 \otimes e_1 + e_3 \otimes e_1 + e_3 \otimes e_2), &
 r_2 &= \mu(e_1 \otimes e_2 + e_1 \otimes e_3 + e_2 \otimes e_3), \\
 r_3 &= \mu(e_2 \otimes e_1 + e_2 \otimes e_3 + e_3 \otimes e_1), &
 r_4 &= \mu(e_1 \otimes e_2 + e_3 \otimes e_2 + e_1 \otimes e_3), \\
 r_5 &= \mu(e_1 \otimes e_3 + e_2 \otimes e_1 + e_2 \otimes e_3), &
 r_6 &= \mu(e_3 \otimes e_1 + e_1 \otimes e_2 + e_3 \otimes e_2), \\
\end{align*}
\]
for which \(r = -\mu \phi_1 \) and hence their corresponding linear operators in Theorem 3.1 are Rota-Baxter operators of weight \(\mu \). Furthermore,
\[r_i = r_{i-6} + \mu \phi_1, \quad 7 \leq i \leq 12, \]
for which \(r = \mu \phi_1 \) and hence correspond to Rota-Baxter operators of weight \(-\mu \).
\[r_i = r_{i-12} + \mu(e_3 \otimes e_3), \quad 13 \leq i \leq 18, \]
for which \(r = -\mu \phi_2 \) and hence correspond to Rota-Baxter operators of weight \(\mu \).
\[r_i = r_{i-18} + \mu(e_1 \otimes e_1 + e_2 \otimes e_2), \quad 19 \leq i \leq 24, \]
for which \(r = \mu \phi_2 \) and hence correspond to Rota-Baxter operators of weight \(-\mu \).
\[r_i = r_{i-24} + \mu(e_3 \otimes e_2), \quad 25 \leq i \leq 30, \]
for which \(r = -\mu \phi_3 \) and hence correspond to Rota-Baxter operators of weight \(\mu \).
\[r_i = r_{i-30} + \mu(e_1 \otimes e_1 + e_3 \otimes e_3), \quad 31 \leq i \leq 36, \]
for which \(r = \mu \phi_3 \) and hence correspond to Rota-Baxter operators of weight \(-\mu \).
\[r_i = r_{i-36} + \mu(e_1 \otimes e_1), \quad 36 \leq i \leq 42, \]
for which \(r = -\mu \phi_4 \) and hence correspond to Rota-Baxter operators of weight \(\mu \).
\[r_i = r_{i-42} + \mu(e_2 \otimes e_2 + e_3 \otimes e_3), \quad 43 \leq i \leq 48, \]
for which \(r = \mu \phi_4 \) and hence correspond to Rota-Baxter operators of weight \(-\mu \).

Acknowledgements. This work is supported by National Natural Science Foundation of China (Grant Nos. 11931009, 11771190). C. Bai is also supported by the Fundamental Research Funds for the Central Universities and Nankai ZhiDe Foundation. Y. Zhang is supported by China Scholarship Council to visit University of Southern California and he thanks Professor Susan Montgomery for hospitality during his visit.

References

[1] M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys. **54** (2000), 263-277.
[2] M. Aguiar, On the associative analog of Lie bialgebras, J. Algebra **244** (2001), 492-532.
[3] H. An and C. Bai, From Rota-Baxter algebras to pre-Lie algebras, J. Phys. A: Math. Theor. **41** (2008), 015201.
[4] J. Avan, E. Ragoucy and V. Rubtsov, Quantization and Dynamisation of Trace-Poisson Brackets, Comm. Math. Phys. **341** (2016), 263-287.
[5] C. Bai, A unified algebraic approach to the classical Yang-Baxter equation, J. Phys. A: Math. Thero **40** (2007), 11073-11082.
[6] C. Bai, Double constructions of Frobenius algebras, Connes cocycles and their duality, J. Noncommut. Geom. **4** (2010), 475-530.
[7] C. Bai, L. Guo and X. Ni, Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras, Comm. Math. Phys. **297** (2010), 553-596.
[8] C. Bai, L. Guo and X. Ni, O-operators on associative algebras, associative Yang-Baxter equations and dendriform algebras, in “Quantized Algebra and Physics”, Nankai Series in Pure, Applied Mathematics and Theoretical Physics 8, World Scientific, Singapore (2011), 10-51.

[9] C. Bai, L. Guo and X. Ni, Generalizations of the classical Yang-Baxter equation and O-operators, J. Math. Phys. 52 (2011), 063515.

[10] C. Bai, L. Guo and X. Ni, O-operators on associative algebras and associative Yang-Baxter equations, Pacific J. Math. 256 (2012), 257-289.

[11] C. Bai, L. Guo and X. Ni, Relative Rota-Baxter operators and tridendriform algebras, J. Algebra Appl. 12 (2013), 1350027, 18 pp.

[12] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731-742.

[13] R. J. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys. 70 (1972), 193-228.

[14] A. A. Belavin and V. G. Drinfeld, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl. 16 (1982), 159-180.

[15] T. Brzeziński, Rota-Baxter systems, dendriform algebras and covariant bialgebras, J. Algebra 460 (2016), 1-25.

[16] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge (1994).

[17] P. M. Cohn, Basic Algebra: Groups, Rings and Fields, Springer, 2003.

[18] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. Comm. Math. Phys. 210 (2000), 249-273.

[19] K. Ebrahimi-Fard, Rota-Baxter algebras and the Hopf algebra of renormalization, Ph.D. Dissertation, University of Bonn, 2006.

[20] L. Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions, J. Pure Appl. Algebra 209 (2007), 439-459.

[21] L. Foissy, The infinitesimal Hopf algebra and the poset of planar forests, J. Algebr. Comb. 30 (2009), 277-309.

[22] L. Foissy, The infinitesimal Hopf algebra and the operads of planar forests, Int. Math. Res. Not. IMRN 3 (2010), 395-435.

[23] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics 4, International Press, Somerville, MA; Higher Education Press, Beijing, 2012.

[24] P. S. Hirschhorn and L. A. Raphael, Coalgebraic foundations of the method of divided differences, Adv. Math. 91 (1992), 75-135.

[25] S. A. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics, Studies in Appl. Math. 61 (1979), 93-139.

[26] Y. Kobayashi, K. Shirayanagi, S. -E. Takahasi and M. Tsukada, A complete classification of three-dimensional algebras over \mathbb{R} and \mathbb{C}, arXiv:1903.01623.

[27] T. Krasnov and A. Zotov, Trigonometric integrable tops from solutions of associative Yang-Baxter equation, Ann. Henri Poincaré 20 (2019), 2671-2697.

[28] B. A. Kupershmidt, What a classical r-matrix really is, J. Nonlinear Math. Phys. 6 (1999), 448-488.

[29] Y. Lekili and A. Polishchuk, Associative Yang-Baxter equation and Fukaya categories of square-tiled surfaces, Adv. Math. 343 (2019), 273-315.

[30] X. Liu, Solutions to non-homogenous associative classical Yang-Baxter equation in low dimensions, Thesis for Bachelor Degree, Nankai University (2017).

[31] J.-L. Loday, Dialgebras. In “Dialgebras and Related Operads”, Lecture Notes in Math. 1763, Springer, Berlin (2001), 7-66.

[32] J.-L. Loday and M. O. Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math. 592 (2006), 123-155.

[33] A. V. Odesskii, V. Rubtsov and V. Sokolov, Parameter-dependent associative Yang-Baxter equations and Poisson brackets, Inter. J. Geom. Methods Modern Phys. 11 (2014), 1460036.

[34] A. V. Odesskii, V. N. Rubtsov and V. V. Sokolov, Bi-Hamiltonian ordinary differential equations with matrix variables, Theoret. Math. Phys. 171 (2012), 442-447.

[35] A. V. Odesskii and V. V. Sokolov, Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations, Comm. Math. Phys. 278 (2008) 83-99.
[36] O. Ogievetsky and T. Popov, R-matrices in rime, *Adv. Theor. Math. Phys.* **14** (2010), 439-505.

[37] B. Peirce, Linear associative algebra, *Amer. J. Math.* **4** (1881), 97-229.

[38] A. Polishchuk, Classical Yang-Baxter equation and the A_∞-constraint, *Adv. Math.* **168** (2002), 56-95.

[39] G.-C. Rota, Baxter operators, an introduction, In: Gian-Carlo Rota on Combinatorics, Joseph P.S. Kung, Editor, Birkhäuser, Boston, 1995, 504-512.

[40] T. Schedler, Trigonometric solutions of the associative Yang-Baxter equation, *Math. Res. Lett.* **10** (2003), 301-321.

[41] T. Schedler, Poisson algebras and Yang Baxter equations, *Contemp. Math.* **492** (2009), 91106.

[42] M. A. Semenov-Tian-Shansky, What is a classical R-matrix? *Funct. Anal. Appl.* **17** (1983), 259-272.

[43] E. Study, Über systeme complexer zahlen und ihre anwendung in der theorie der transformationsgruppen, *Monatsh. Math. u. Phisik* **1** (1890), 283-354.

[44] M. Van den Bergh, Double Poisson algebras, *Trans. Amer. Math. Soc.* **360** (2008), 5711-5769.

[45] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, *Phys. Rev. Lett.* **19** (1967), 1312-1314.

[46] Y. Zhang, C. Bai and L. Guo, Totally compatible associative and Lie dialgebras, tridendriform algebras and PostLie algebras, *Sci. China Math.* **57** (2014), 259-273.

[47] Y. Zhang, D. Chen, X. Gao and Y. F. Luo, Weighted infinitesimal unitary bialgebras on rooted forests and weighted cocycles, *Pacific J. Math.* **302** (2019), 741-766.

[48] Y. Zhang, X. Gao and Y. F. Luo, Weighted infinitesimal unitary bialgebras on rooted forests, symmetric cocycles and pre-Lie algebras, *J Algebr. Comb.* (2020), Doi: 10.1007/s10801-020-00942-7.

[49] V. N. Zhelyabin, Jordan bialgebras and their connection with Lie bialgebras, *Algebra and Logic* **36** (1997), 1-15.