Biomarker Profiles in Heart Failure Patients With Preserved and Reduced Ejection Fraction

Jasper Tromp, MD,* Mohsin A. F. Khan, PhD,* IJsbrand T. Klip, MD; Sven Meyer, MD; Rudolf A. de Boer, MD, PhD; Tiny Jaarsma, RN, PhD; Hans Hillege, PhD; Dirk J. van Veldhuisen, MD, PhD; Peter van der Meer, MD, PhD; Adriaan A. Voors, MD, PhD

Background—Biomarkers may help us to unravel differences in the underlying pathophysiology between heart failure (HF) patients with a reduced ejection fraction (HFrEF) and a preserved ejection fraction (HFpEF). Therefore, we compared biomarker profiles to characterize pathophysiological differences between patients with HFrEF and HFpEF.

Methods and Results—We retrospectively analyzed 33 biomarkers from different pathophysiological domains (inflammation, oxidative stress, remodeling, cardiac stretch, angiogenesis, arteriosclerosis, and renal function) in 460 HF patients (21% HFpEF, left ventricular ejection fraction ≥45%) measured at discharge after hospitalization for acute HF. The association between these markers and the occurrence of all-cause mortality and/or HF-related rehospitalizations at 18 months was compared between patients with HFrEF and HFpEF. Patients were 70.6±11.4 years old and 37.4% were female. Patients with HFpEF were older, more often female, and had a higher systolic blood pressure. Levels of high-sensitive C-reactive protein were significantly higher in HFpEF, while levels of pro-atrial-type natriuretic peptide and N-terminal pro-brain natriuretic peptide were higher in HFrEF. Linear regression followed by network analyses revealed prominent inflammation and angiogenesis-associated interactions in HFpEF and mainly cardiac stretch–associated interactions in HFrEF. The angiogenesis-specific marker, neuropilin and the remodeling-specific marker, osteopontin were predictive for all-cause mortality and/or HF-related rehospitalizations at 18 months in HFpEF, but not in HFrEF (P for interaction <0.05).

Conclusions—In HFrEF, inflammation and angiogenesis-mediated interactions are predominantly observed, while stretch-mediated interactions are found in HFrEF. The remodeling marker osteopontin and the angiogenesis marker neuropilin predicted outcome in HFpEF, but not in HFrEF. (J Am Heart Assoc. 2017;6:e003989. DOI: 10.1161/JAHA.116.003989.)

Key Words: biomarker • heart failure • multimarker • pathophysiology
correlations, and predictive value of biomarkers in patients with HfPEF and HFrEF.

Methods

Study Design and Population

Measurements of biomarkers were performed in a subcohort of the Coordinating study evaluating Outcomes of Advising and Counseling in Heart failure (COACH) trial of which the rationale, design, and results have been previously described. In short, the COACH trial studied the effects of additional intensive nurse-led support on the prognosis of 1023 chronic HF patients. A hospital admission for HF (NYHA II-IV) inclusion criteria for the COACH trial included and patients had to be at least 18 years of age. Patients were excluded if they underwent an intervention (percutaneous transluminal coronary angioplasty, coronary artery bypass graft, heart transplantation, valve replacement) in the previous 6 months or if they had a planned intervention in the following 3 months. Additionally, patients were excluded if they had an ongoing evaluation for heart transplantation. Left ventricular ejection fraction (LVEF) measurements were available in 832 patients. Biomarkers were measured in blood collected from 460 patients shortly before discharge between 8:00 AM and 4:00 PM, after patients had been clinically stabilized and were considered well enough to go home. Baseline characteristics of the current substudy were comparable to the entire COACH study (Table S1). The study complies with the Declaration of Helsinki, local medical ethics committees approved the study, and all patients provided written informed consent.

Study and Laboratory Measurements

HfPEF was defined as having a LVEF ≥45%, measurements of high-sensitive C-reactive protein (hs-CRP), pentraxin-3, growth differentiation factor, soluble receptor of advanced glycation end-products, interleukin-6, tumor necrosis factor α, tumor necrosis factor–associated receptor 1 α, myeloperoxidase, syndecan-1, periostin, ST-2, osteopontin, pro-atrial-type natriuretic peptide (proANP), vascular endothelial growth factor receptor (VEGFR), angiogenin, end-terminal pro-c-type natriuretic peptide, neuropilin-1, endothelial cell-selective adhesion molecule, neutrophil gelatinase-associated lipocatin, d-dimer, WAP 4-disulfide core domain protein HE4, mesothelin, polymeric immunoglobulin receptor, prosaposin, and TROY were measured by Alere San Diego, Inc, (San Diego, CA). Inter- and intra-assay coefficients of the assays used can be found in Table S2. Erythropoietin, interleukin-6, and cardiac-specific troponin I were measured in frozen plasma samples collected at baseline using highsensitive single molecule counting (SMC®) technology (RUO, Erenna® Immunoassay System; Singulex Inc, Alameda, CA). Estimated glomerular filtration rate was based on the simplified Modification of Diet in Renal Disease.

Study End Points

For studying the relationship between biomarker levels and outcome, the primary end point of the COACH trial was used. This end point is a combined end point consisting of all-cause mortality and/or HF-related rehospitalizations at 18 months. An independent end point committee adjudicated the end point.

Statistical Analysis

Continuous variables are presented as medians with interquartile range or means±SD where appropriate. Categorical variables are presented as numbers with percentages. Baseline characteristics and biomarker concentrations at baseline were stratified according to HFrEF and HfPEF. Intergroup differences were tested using Student t test or Mann–Whitney U test for continuous variables or χ² test for categorical variables. Principal component (PC) analysis was performed to correct for multiple comparisons with HFrEF and HfPEF as categorical variables, using an established statistical method described elsewhere. This method often is used in -omics based studies, where there is a natural correlation between markers because of the fact that these often belong to similar pathophysiological processes. Indeed, also for the 33 biomarkers employed in this study, biomarkers are clearly interrelated, belonging to several similar pathophysiological processes (Figure 1). In this situation the Bonferroni correction can be considered too conservative. Here, the PC-based correction has been suggested to be more effective. Additionally, this method has been previously successfully used in correcting for multiple comparisons in pairwise correlations. A total of 21 PCs, of which the eigenvalues cumulatively explained...
95% of the variation observed in the data set when comparing HFrEF with HFpEF, were found. The corrected significance level for multiple testing was thus set at $P < 0.05/21$, equating to an adjusted P-value cut-off of 0.00238. To correct for multiple comparison for interbiomarker correlations, $0.05/\text{PC} \times (\text{PC}−1)/2$ was used for the adjusted P cut-off value, where PC is the number of principal components found. To study the influence of clinical confounders on biomarker-level differences between HFrEF and HFpEF, logistic regression was performed. Here, HFpEF is coded as 1 and HFrEF as 0. An odds ratio above 1 signifies that higher levels are associated with HFpEF. Associations were corrected for age, sex, estimated glomerular filtration rate, a history of diabetes mellitus, and other clinical covariates that significantly differed between HFrEF and HFpEF, logistic regression was performed. Here, HFpEF is coded as 1 and HFrEF as 0. An odds ratio above 1 signifies that higher levels are associated with HFpEF. Associations were corrected for age, sex, estimated glomerular filtration rate, a history of diabetes mellitus, and other clinical covariates that significantly differed between HFrEF and HFpEF. Next, a Spearman’s rank correlation coefficient was calculated for each possible biomarker pair in the HFrEF cohort of patients and the procedure was repeated for HFpEF. This resulted in 2 sets of R-values with associated P-values for both HFrEF and HFpEF. To adjust for multiple testing, only those correlations passing the adjusted P-value cut-off calculated from the PC analysis were deemed statistically significant and subsequently retained. These significant correlation coefficients for HFrEF and HFpEF were then graphically displayed as heatmaps with associated disease domains for all biomarkers. Network analysis was performed to analyze associations between biomarkers in HFrEF and HFpEF. First, all significant associations found within HFrEF and HFpEF were separately depicted as circular networks. Next, significant associations between biomarkers exclusive to HFrEF and HFpEF were identified. To ascertain whether these associations were significantly different, the Fishers z-transformation test was used to compare R-values between HFrEF and HFpEF. The P-values from these associations were corrected using the PC analysis method described above.

For outcome analysis, a univariable interaction test was performed between the (log2-transformed) biomarker and HF status (HFrEF versus HFpEF). The interaction test was then bootstrapped with 1000 iterations to validate the results. Following this, a multivariable interaction test was performed correcting for the COACH risk engine. The COACH risk engine includes sex, age, pulse pressure, diastolic blood pressure, history of stroke, history of diabetes mellitus, estimated glomerular filtration rate, atrial fibrillation, myocardial infarction, peripheral arterial disease, and levels of NT-proBNP and sodium and is powered for the primary end point used in this study, as published elsewhere. The relationship of the primary end point with biomarkers, showing a significant interaction

Figure 1. Heatmaps depicting correlation between biomarkers in HFrEF (A) and HFpEF (B). Biomarker correlations that did not pass the corrected P-value (0.05/21) are black. Red entails a negative correlation, green entails a positive correlation. BUN indicates blood urea nitrogen; CRP, C-reactive protein; EPO, erythropoietin; ESAM, endothelial cell-selective adhesion molecule; GDF-15, growth differentiation factor 15; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; IL-6, interleukin 6; MPO, myeloperoxidase; NGAL, neutrophil gelatinase-associated lipocalin; NT-proBNP, N-terminal pro-brain-type natriuretic peptide; NT-proCNP, amino terminal pro-C-type natriuretic peptide; PIGR, polymeric immunoglobulin receptor; proANP, pro-atrial-type natriuretic peptide; PSAP, prostate-specific acid phosphatase; RAGE, receptor of advanced glycation end-products; ST-2, suppression of tumorigenicity 2; TGF-β, transforming growth factor β; TNF-α, tumor necrosis factor α; TNF-α-R1a, tumor necrosis factor α receptor 1α; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; WAP4C, WAP 4 disulfide core domain protein.

DOI: 10.1161/JAHA.116.003989
with HF status and outcome, was then graphically depicted using Kaplan–Meier curves. To correct for potential optimism and given the limited sample size, we bootstrapped the estimates with 1000 iterations. The significance of a difference between tertiles of biomarker levels and association with outcome was tested using the Log-rank test. Univariable and multivariable associations of biomarkers with outcome were tested using the Cox regression. Tests performed were 2-tailed and a P-value of <0.05 was considered statistically significant.

All statistical analyses were performed using STATA version 13.0 (StataCorp LP, College Station, TX) and R, version 3.2.3.

Results

Patient Characteristics

The 460 patients in this cohort had a mean age of 70.6 ± 11.1 years and 37.4% were female. Most patients were in NYHA class III (52%) with a mean LVEF of 32.5 ± 14.0% (Table 1). Ninety-six patients had HFrEF (21%). Patients with HFP EF in this cohort were relatively older (74.5 years versus 69.6 years, P < 0.001) and more often female (51.0% versus 33.8%, P = 0.002). Additionally, patients with HFP EF were found to have a higher systolic blood pressure (126.6 mm Hg vs 117.9 mm Hg, P < 0.001).

Table 1. Baseline Characteristics	Total Cohort (n=460)	HFrEF (LVEF <45%) (n=364)	HFP EF (LVEF ≥45%) (n=96)	P Value
LVEF (%)	32.5±14.0	26.7±8.5	54.4±7.5	NA
Demographics and HF characteristics				
Age, y	70.6±11.1	69.6 (11.2)	74.5 (10.0)	<0.001*
Female sex, n (%)	172 (37.4%)	123 (33.8%)	49 (51.0%)	0.002*
NYHA class (at discharge) II/III/IV, %	44/52/4	42/54/4	55/41/4	0.064
Previous HF hospitalization, n (%)	155 (33.7%)	118 (32.4%)	37 (38.5%)	0.260
Clinical signs				
BMI, kg/m²	27.0±5.6	26.8±5.5	28.0±5.7	0.08
Systolic BP, mm Hg	117.9±21.3	115.6±20	126.6±23.1	<0.001*
Diastolic BP, mm Hg	68.9±12.3	68.9±12.4	68.9±12.1	0.980
eGFR, mL/min per 1.73 m²	54.9±20.5	55.1±20.4	53.8±21.1	0.580
Heart rate, bpm	74.2±13.4	74.7±13.8	72.2±11.8	0.110
Medical history, n (%)				
Myocardial infarction	187 (40.7%)	161 (44.2%)	26 (27.1%)	0.002*
Hypertension	191 (41.5%)	143 (39.3%)	48 (50.0%)	0.058
Diabetes mellitus	135 (29.3%)	104 (28.6%)	31 (32.3%)	0.048*
COPD	130 (28.3%)	99 (27.2%)	31 (32.3%)	0.320
Atrial fibrillation/flutter	209 (45.4%)	159 (43.7%)	50 (52.1%)	0.140
Anemia	128 (27.8%)	92 (25.3%)	36 (37.5%)	0.017*
Medication, n (%)				
ACE-inhibitor/ARB	378 (82.2%)	311 (85.4%)	67 (69.8%)	<0.001*
β-Blocker	312 (67.8%)	255 (70.1%)	57 (59.4%)	0.005*
Diuretic	440 (95.7%)	350 (96.2%)	90 (93.8%)	0.300
Statin	183 (39.8%)	153 (42.0%)	30 (31.2%)	0.055
Digoxin	155 (33.7%)	120 (33.0%)	35 (36.5%)	0.052
Laboratory				
Hemoglobin, g/dL	8.5 (7.7, 9.2)	8.6 (7.8, 9.3)	8.1 (7.2, 8.8)	<0.001*
Sodium, mEq/L	138.6±4.3	138.6±4.4	138.6±4.2	0.973
Potassium, mEq/L	4.2 (3.9, 4.6)	4.3 (3.9, 4.6)	4.1 (3.7, 4.6)	0.214

ACE indicates angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; BMI, body mass index; BP, blood pressure; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; HF, heart failure; HFP EF, heart failure with a preserved ejection fraction; HFrEF, heart failure with a reduced ejection fraction; LVEF, left ventricular ejection fraction; NA, not available; NYHA, New York Heart Association. *P-value lower than the significance threshold of 0.05.
Biomarkers Profiles in Heart Failure Tromp et al

versus 115.6 mm Hg, \(P<0.001 \)) compared to patients with HFrEF. Furthermore, patients with HfPEF used fewer angiotensin-converting enzyme inhibitors (55.2% versus 76.9%, \(P<0.001 \)) and \(\beta \)-blockers (59.4% versus 70.1%, \(P<0.001 \)) at discharge.

Biomarker Levels in HF With Reduced and Preserved Ejection Fraction

PC analysis revealed 21 principal components that accounted for a cumulative proportion of variance of 95% between HFrEF and HfPEF, which were subsequently used for adjusting the \(P \)-value significance threshold (\(P<0.05/21 \); Figure S1). Table 2 shows the baseline biomarker concentrations stratified according to HFrEF and HfPEF where \(P \)-values shown are corrected for multiple testing. Levels of hs-CRP were higher in HfPEF (3.6 mg/L versus 2.1 mg/L, \(P=0.001 \)) and levels of pentraxin-3 were higher in HFrEF (3.9 ng/mL versus 3.2 ng/mL, \(P=0.009 \)). Levels of cardiac stretch markers NT-proBNP (2988 pg/mL versus 1948 pg/mL, \(P=0.001 \)) and proANP (21.9 pg/mL versus 17.0 pg/mL) were higher in HFrEF. Additionally, the angiogenesis-specific marker VEGFR (0.8 ng/mL versus 0.7 ng/mL, \(P=0.009 \)) was higher in HFrEF. After adjusting for multiple comparisons, levels of hs-CRP (\(P=0.022 \)) remained significantly higher in HfPEF, while the cardiac stretch markers NT-proBNP (\(P<0.001 \)) and proANP (\(P=0.042 \)) remained significantly higher in HFrEF.

Biomarker associations with HFrEF and HfPEF are shown in Table S3. When correcting for clinical covariates (age, sex, estimated glomerular filtration rate, systolic blood pressure, a history of myocardial infarction; diabetes mellitus; atrial fibrillation and anemia), higher levels of hs-CRP (odds ratio: 1.29; 95% CI 1.09–1.52, \(P=0.003 \)) remained associated with HfPEF, while higher levels of NT-proBNP (odds ratio: 0.68; 95% CI 0.57–0.82, \(P<0.001 \)) and proANP (odds ratio: 0.69; 95% CI 0.53–0.88, \(P=0.003 \)) remained associated with HFrEF. After additionally correcting for \(\beta \)-blocker and angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker use, the statistical associations for these 3 markers remained (Table S3).

Biomarker Associations and Network Analysis

Heatmaps for the association between biomarkers in HFrEF and HfPEF are depicted in Figure 1. Figure 2 shows the graphical depiction of biomarker networks in HFrEF and HfPEF. Results from the correlation analysis and associated heatmaps reveal that correlations between biomarkers in HfPEF are more associated with remodeling and inflammation, while in HFrEF angiogenesis is a more prominent feature (Figure 1). Network analysis further showed myeloperoxidase to be involved in interactions in both HFrEF and HfPEF. Additionally, renal marker neutrophil gelatinase-associated lipocalin and blood urea nitrogen as well as inflammation marker receptor of advanced glycation end-products were involved in biomarker associations in HfPEF.

When examining the exclusive interactions between biomarkers in HFrEF and HfPEF, HfPEF revealed interactions, which were mainly associated with inflammation (interleukin-6; pentraxin-3; Table 3, corrected \(P \)-value for difference <0.05). In contrast, HFrEF showed exclusive interactions that were NT-proBNP mediated (Table 3), indicating that biomarker interactions are more associated with cardiac stretch in HFrEF and inflammation in HfPEF. In sensitivity analysis with a definition of HFrEF at LVEF \(\leq 40\% \) and a definition of HfPEF at LVEF \(\geq 50\% \), exclusive associations in HfPEF remained inflammation mediated, while NT-proBNP mediated associations in HFrEF (Table S4).

Outcome

Of the total cohort, 41% reached the clinical end point of death and/or HF rehospitalization (41% HFrEF versus 44.8% HfPEF, \(P=0.659 \), Figure S2). NT-proBNP was found to be equally predictive in HFrEF and HfPEF (Table S5). A significant interaction in both univariable and multivariable analysis was found for HF status and neuropilin as well as osteopontin (both \(P<0.05 \)). Both biomarkers were found only to be predictive in HfPEF (Figures 3 and 4, Table S5). Interaction between neuropilin (\(P=0.007 \)) and osteopontin (\(P=0.018 \)) and HF status for the primary end point remained following sensitivity analysis for a definition of HfPEF of LVEF \(\geq 50\% \). After bootstrapping with 1000 iterations, the interaction with HF status for the primary end point stayed significant for both osteopontin (\(P=0.002 \)) and neuropilin (\(P=0.011 \)) in univariable analyses. Also in multivariable analyses, the interaction remained significant for osteopontin (\(P=0.016 \)) and neuropilin (\(P=0.015 \)).

When examining the relationship with HF rehospitalizations and all-cause mortality separately in univariable analysis, we see that osteopontin is predictive for both HF rehospitalizations (\(P=0.007 \)) and all-cause mortality (\(P=0.031 \)) separately, but not in HFrEF (Figures S3 and S4). Neutrophil gelatinase was predictive in univariable analysis for all-cause mortality in both HFrEF (\(P=0.003 \)) and HfPEF (\(P=0.023 \)). However, neutrophil gelatinase was only predictive of HF rehospitalizations in HfPEF (\(P=0.026 \)) and not in HF (\(P=0.026 \)) (Figures S5 and S6).

Discussion

In this study, we demonstrate a distinct biomarker profile for HfPEF and HFrEF patients by using a novel approach employing network analysis to identify exclusive interactions within the 2 disease entities. Higher levels of Hs-CRP and
Table 2. Baseline Markers Stratified to HFrEF and HFpEF
Total Cohort (n=460)

Inflammation
hs-CRP, mg/L
Pentraxin-3, ng/mL
GDF-15, ng/mL
RAGE, ng/mL
IL-6, pg/mL
TNF-α, pg/mL
TROY, ng/mL
TNF-α-R1α, ng/mL
Oxidative stress
MPO, ng/mL
Remodeling
Syndecan-1, ng/mL
Periostin, ng/mL
Galectin-3, ng/mL
ST-2, ng/mL
Osteopontin, ng/mL
Cardiomyocyte stretch
NT-proBNP, pg/mL
proANP, ng/mL
cTnI, pg/mL
Angiogenesis
VEGF, pg/mL
VEGFR, ng/mL
Angiogenin, μg/mL
NT-proCNP, ng/mL
Neurokinin-1, ng/mL
Arteriosclerosis
ESAM, ng/mL
Renal function
NGAL, ng/mL
BUN, mmol/L
Hematopoiesis
EPOa, IU/L
Other
D-Dimer, μg/mL
WAP4C, ng/mL
Mesothelin, ng/mL
PIGR, ng/mL
PSAP, ng/mL
ET-1, ng/mL

BUN indicates blood urea nitrogen; cTNI, cardiac troponin-I; EPOa, erythropoietin; ESAM, endothelial cell–selective adhesion molecule; ET-1, endothelin-1; GDF-15, growth differentiation factor 15; HFrEF, heart failure with a preserved ejection fraction; HFpEF, heart failure with a reduced ejection fraction; hs-CRP, high-sensitive C-reactive protein; IL-6, interleukin 6; MPO, myeloperoxidase; NGAL, neutrophil gelatinase-associated lipocalin; NT-proBNP, N-terminal pro-brain-type natriuretic peptide; NT-proCNP, amino terminal pro-C-type natriuretic peptide; PIGR, polymeric immunoglobulin receptor; proANP, pro-atrial-type natriuretic peptide; PSAP, prostate-specific acid phosphatase; RAGE, receptor of advanced glycation end-products; ST-2, suppression of tumorigenicity 2; TGF-β, transforming growth factor β; TNF-α, tumor necrosis factor α; TNF-α-R1α, tumor necrosis factor α receptor 1α; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; WAP4C, WAP 4 disulfide core domain protein.

*Corrected P-value. †P-value lower than the significance treshold of 0.05.

DOI: 10.1161/JAHA.116.003989

Journal of the American Heart Association
Lower levels of cardiac stretch markers NT-proBNP and proANP are found in HFpEF, which confirm previous studies.8,18 Furthermore, exclusive interactions between biomarkers in HFpEF were found to be associated with inflammation and angiogenesis. In contrast, HFrEF showed exclusive interactions associated with NT-proBNP. This is the first study reporting on exclusive interactions between biomarkers in HFrEF and HFpEF. Additionally, this study showed for the first time that angiogenesis marker neuropilin and remodeling marker osteopontin have exclusive predictive value for clinical outcome in HFpEF.

Levels of hs-CRP were found to be higher in HFpEF patients compared to HFrEF patients. Overall, reports with regard to differences in association of CRP between HFrEF and HFpEF have lacked consensus.8,19–21 Yet, patients included in the previous studies were older and had relatively low levels of NT-proBNP.8,19,20,22 Regardless of the difference in levels, predictive value for hs-CRP was found to be limited in both HFrEF and HFpEF after correction for a risk model in both this and an earlier study.21 The cardiac stretch markers proANP and NT-proBNP were found to be lower in HFpEF. This is the first study reporting differential levels of proANP in HFrEF and HFpEF. The difference in levels of NT-proBNP between HFrEF and HFpEF confirms earlier reports.8,18,23

A recent study used a similar network analysis approach.8 However, the number of biomarkers studied was limited and no exclusive correlations were identified. When examining exclusive correlations in HFpEF and HFrEF between biomarkers, we identified correlations that were inflammation and angiogenesis associated in HFpEF, while correlations were associated with NT-proBNP in HFrEF. The relatively strong correlations between markers in both HFrEF and HFpEF provide putative insights into possible differences at the pathophysiological pathway level. For HFpEF, correlations were found to be associated with interleukin-6 and pentraxin-3. This is in line with earlier suggestions, in which a pro-inflammatory state was proposed to underlie the pathophysiology of HFpEF.24–29 In contrast, exclusive interactions in HFrEF were associated with NT-proBNP. As such, the pathophysiology of HFrEF seems to be more associated with cardiac stretch and oxidative stress.24 However, using network analysis for determining underlying pathophysiological differences between disease entities using biomarkers is a relatively novel approach. Future studies should confirm...
these findings as well as combine them with data from experimental studies to examine whether the pathophysiological relationships found in clinical data also translate to pathophysiological differences in an experimental setting. Furthermore, most biomarkers are not cardiac exclusive. This makes it relatively difficult to discern whether biomarker differences found in a clinical study are the cause or consequence of HF. To optimize interpretability of biomarker studies, future studies should be focused on biomarkers that are highly cardiac specific. Secondly, when biomarker differences are found, experimental studies should validate the findings and discern possible underlying pathophysiological processes.

This study also showed differential association with outcome of angiogenesis markers neuropilin and remodeling marker osteopontin, which were both found to be more predictive in HFpEF. Results with regard to differential association with outcome should be interpreted in an explanatory context of the pathophysiology, in which an increase in levels of a certain biomarker can be detrimental in 1 disease entity and not necessarily in the other through biological involvement or reflecting an underlying pathway. Indeed, osteopontin was reported earlier to be involved in prognosis in HF. However, a differential involvement between HFrEF and HFpEF has not been previously reported. Earlier experimental studies found a direct involvement of osteopontin and cardiac remodeling, which in turn was found to cause diastolic dysfunction.

Neuropilin is identified as a coreceptor of vascular endothelial growth factor receptor 2 (VEGFR-2). In a murine model of cardiac pressure overload, animals that were heterozygous for neuropilin showed higher mortality rates. This is the first study reporting the predictive value of neuropilin in HF for the combined end point. Here, we found

Figure 3. Kaplan–Meier curves depicting the relationship with outcome of osteopontin in tertiles, stratified to HFrEF and HFpEF. HFpEF indicates heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction.
that neuropilin was predictive of HF rehospitalizations in HFrEF. Additionally, in multivariable analysis, neuropilin only held predictive power in HFrEF. This suggests that neuropilin is more reflective of HF severity in HFrEF and not in HFrEF. Essentially, neuropilin is associated with angiogenesis. This again emphasizes the importance of angiogenesis markers in HFrEF compared to HFrEF.

In earlier studies a significant association between outcome and HF status was found for end-terminal pro c-type natriuretic peptide and galectin-3 with a definition of HFrEF of LVEF >40%. These findings were confirmed in this study. Additionally, an earlier publication found significant predictive value of syndecan-1 in HFrEF but not in HFrEF. The fact that no significant interaction was found in this study for syndecan-1 and the primary end point can potentially be explained by the limited power of this study for HFrEF patients at a definition of LVEF >45%, and the previous publication for syndecan-1 corrected for a stepwise based model for syndecan-1 instead of the COACH risk model.

The clinical implications of this study are 2-fold. First, this study characterizes the underlying pathophysiology of patients with HFrEF to be associated with inflammation and endothelial function. This confirms earlier studies with regard to HFrEF and endorses the earlier proposed theory by Paulus et al. Secondly, this study propagates a novel method for utilizing network analysis to analyze a wide array of biomarkers in discerning the underlying pathophysiology of disease entities in HF. This methodology provides a possible step forward in dissecting the HF syndrome.

Strengths and Limitations

The strengths of this study are the relatively high levels of NT-proBNP of both the HFrEF and HFrEF patients and the large number of available biomarkers. By having relatively high NT-proBNP levels, the HFrEF patients in this study represent true HF patients and have a relatively low number of false positives. Secondly, the large number of biomarkers from different disease domains available in this study provide for a more unbiased approach towards discerning underlying pathophysiological pathways.

However, the current analysis is a post-hoc analysis, leading to a possible selection bias. Secondly, since patients included are of European descent and relatively old, this limits extrapolation to patients of different age and origin. Also, pharmacological treatment during hospitalization might have influenced biomarker levels and associations between HFrEF and HFrEF. Furthermore, the choice for biomarkers was restricted by limited baseline sample availability, with the result that several interesting markers could not be studied. Therefore, this study is not an exhaustive study of biomarker-level differences in HFrEF and HFrEF and should be considered exploratory and hypothesis generating. Also, some of the biomarkers measured had relatively high coefficients of variation. Therefore, some possible interesting interactions and differences between biomarkers in HFrEF and HFrEF may have been missed. Most importantly, results from this study should be validated in a separate cohort.

The sampling of patients in COACH was performed at discharge after recompensation. Since no data are available on treatment during admission for HF previous to discharge, this might confound some of the reported findings. In this context, patients in the COACH trial cover a gray area between acute decompensated and chronic HF patients. The findings in this study should be regarded as explanatory in the context of the pathophysiology of HFrEF and HFrEF, acting as a stepping-stone for further research.

Conclusions

Biomarker levels differ in HFrEF and HFrEF, mainly in the domains of cardiac stretch and inflammation. Interactions in
HFpEF were found to be associated with inflammation and angiogenesis, while interactions in HFrEF were associated with cardiac stretch. The angiogenesis marker neuropilin and remodeling marker osteopontin were found to only hold predictive value in HFrEF, possibly reflecting underlying pathophysiological processes. Results of this study should be confirmed in prospective biomarker studies.

Sources of Funding

COACH was supported by grant 2000Z003 from the Netherlands Heart Foundation and by additional unrestricted grants from Biosite France SAS, Jouy-en-Josas, France (brain natriuretic peptide), Roche Diagnostics Nederland BV, Venlo, the Netherlands (N-terminal prohormone brain natriuretic peptide), BG Medicine Inc, Waltham, MA (galectin-3 assays) and Novartis PharmaBV, Arnhem, the Netherlands.

Disclosures

Tromp, Khan, Klip, Meyer, de Boer, Jaarsma, Hillege, van Veldhuisen, and van der Meer have nothing to disclose with regard to this manuscript. Voors received research grants from Alere, Singulex, and Sphingotec.

References

1. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–259.
2. van Veldhuisen DJ, Cohen-Solal A, Bax JJ, Taylor W, Wilding JPH. Inflammation and heart failure: towards personalized medicine. Heart Fail Rev. 2013;18:369–381.
3. Jaarsma T, Van Der Wal MH, Hognenius J, Lesman I, Luttik ML, Veeger NJ, Van Veldhuisen DJ. Design and methodology of the COACH study: a multicenter randomised Coordinating study evaluating Outcomes of Advising and Counseling in Heart failure. Eur J Heart Fail. 2004;6:227–233.
4. Auro K, Joensuu A, Fischer K, Kettunen J, Salo P, Mattsson H, Nironen M, Kaprio J, Eriksson JG, Lehtimaki T, Ratakan J, Uila J, Attilen A, Jauhmanen M, Soiminen P, Kangas AJ, Kahonen M, Haavilins A, Alkorpela M, Salomaas M, Metsalu A, Perola M. A metabolic view on menopause and aging. Nat Commun. 2014;5:4708.
5. Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol. 2008;32:361–369.
6. Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, O’Brien SJ. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics. 2010;11:724.
7. van Veldhuisen DJ, Jaarsma T, Luttik ML, Lassus J, Mebazaa A, Nieminen MS, Harjola V-P, Lewis J, Bushkins E, Hillege H. The COACH risk engine: a multistate model for predicting survival and hospitalization in patients with heart failure. Eur J Heart Fail. 2012;14:168–175.
8. Smith GCS, Seaman SR, Wood AM, Royston P, White IR. Correcting for optimistic prediction in small data sets. Am J Epidemiol. 2014;180:318–324.
9. van Veldhuisen DJ, Linsen GCM, Jaarsma T, van Gilst WH, Hoes AW, Tijsen JGJ, van den Wijl, Voors AA, Hillege H. 8x4 brain natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 2013;61:1498–1506.
10. Matsubara J, Sugiyama S, Nozaki T, Sugamura K, Konishi M, Obha K, Matsuza B, Akiyama E, Yamamoto E, Sakamoto K, Nagayoshi Y, Kaikita K, Sumida H, Kim-Mitsuyama S, Ogawa H. Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction. J Am Coll Cardiol. 2011;57:861–869.
11. Wissniacki N, Taylor W, Lye M, Wilding JPH. Insulin resistance and inflammatory activation in older patients with systolic and diastolic heart failure. Heart. 2005;91:32–37.
12. Michowitz Y, Arbel Y, Wexler D, Sheps D, Rogowski O, Shapiro I, Berliner S, Keren G, George J, Roth A. Predictive value of high sensitivity CRP in patients with diastolic heart failure. Int J Cardiol. 2008;125:347–351.
13. Niethammer M, Sieber M, van Haehling S, Anker SD, Munzel T, Horstick G, Genth-Zotz S. Inflammatory pathways in patients with heart failure and preserved ejection fraction. Int J Cardiol. 2008;129:111–117.
14. Maeder MT, Rickenbacher P, Rickli H, Abbuhl H, Gutmann M, Erne P, Vuillemoetet A, Peter M, Pfeiffer M, Brunner-La Rocca H-P. N-terminal pro brain natriuretic peptide-guided management in patients with heart failure and preserved ejection fraction: findings from the Trial of Intensified versus standard medical therapy in elderly patients with congestive heart failure (TIME-CHF). Eur J Heart Fail. 2013;15:1148–1156.
15. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–271.
16. Shah KB, Kop WJ, Christenson RH, Diercks DB, Henderson S, Hanso K, Li SY, deFilippi CR. Prognostic utility of ST2 in patients with acute dyspnea and preserved left ventricular ejection fraction. Circulation. 2011;124:874–882.
29. Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, van Heerebeek L, Hillege HL, Lam CSP, Navis G, Voors AA. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. *Eur J Heart Fail*. 2016;6:588–598.

30. Rosenberg M, Zugck C, Nelles M, Juenger C, Frank D, Remppis A, Giannitsis E, Katus HA, Frey N. Osteopontin, a new prognostic biomarker in patients with chronic heart failure. *Circ Heart Fail*. 2008;1:43–49.

31. López B, González A, Lindner D, Westermann D, Ravassa S, Beaumont J, Gallego I, Zudaire A, Querejeta R, Larman M, Tschöpe C, Diez J. Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? *Cardiovasc Res*. 2013;99:111–120.

32. Chaudhary B, Khaled YS, Ammori BJ, Elkord E. Neuropilin 1: function and therapeutic potential in cancer. *Cancer Immunol Immunother*. 2014;63:81–99.

33. Li F, Zhao H, Liao Y, Takashima S, Asano Y, Shintani Y, Hori M, Kitakaze M. Higher mortality in heterozygous neuropilin-1 mice after cardiac pressure overload. *Biochem Biophys Res Commun*. 2008;370:317–321.

34. Lok DJ, Klip IT, Voors AA, Lok SI, Bruggink-André de la Porte PW, Hillege HL, Jaarsma T, van Veldhuisen DJ, van der Meer P. Prognostic value of N-terminal pro C-type natriuretic peptide in heart failure patients with preserved and reduced ejection fraction. *Eur J Heart Fail*. 2014;16:958–966.

35. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, van Veldhuisen DJ. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. *Ann Med*. 2011;43:60–68.

36. Braunwald E. Another step toward personalized care of patients with heart failure. *Eur J Heart Fail*. 2015;17:988–990.
Supplemental Material
| | Total cohort (n=1023) | Sub cohort (n=460) |
|--------------------------------|-----------------------|-------------------|
| **Treatment allocation** | | |
| Control group | 33 | 32,2 |
| Basic support | 33,3 | 32,4 |
| Intensive support | 33,6 | 35,4 |
| **Demographics and clinical signs** | | |
| Age (years) | 70.8 ± 11 | 70.6 ± 11.1 |
| Female sex (%) | 37,5 | 37,4 |
| BMI (kg/m^2) | 26.9 ± 5.3 | 27.0 ± 5.6 |
| Systolic BP (mmHg) | 118.3 ± 21.0 | 117.9 ± 21.3 |
| Heart rate (bpm) | 74.6 ± 13.4 | 74.2 ± 13.4 |
| LVEF (%) | 33.7 ± 14.4 | 32.5 ± 14.0 |
| Previous HF hospitalization | 32,7 | 33,7 |
| NYHA class, II/III/IV (%) | 50.9/45.7/3.4 | 44/52/4 |
| **Medical history (%)** | | |
| Myocardial infarction | 42,6 | 40,7 |
| Stroke | 16 | 14,8 |
| Hypertension | 42,9 | 41,5 |
| Atrial fibrillation of flutter | 44 | 45,4 |
| Diabetes | 29,3 | 29,3 |
| COPD | 26,2 | 28,3 |
| **Laboratory** | | |
| Hemoglobin (g/dL) | 13.1 ± 2.0 | 13.2 ± 2.1 |
| Sodium (mmol/L) | 139 ± 4 | 138.6 ± 4.3 |
| Creatinine (μmol/L) | 125.0 ± 53 | 125.7 ± 52.8 |
| eGFR (mL/min/1.73m2) | 55.2 ± 21.1 | 54.9 ± 20.5 |
| BUN (mmol/L) | 10.7 (8.1 - 15.2) | 11.0 (8.2 - 15.5) |
| **Treatment at discharge (%)** | | |
| ACE inhibitor or ARB | 82,8 | 82,2 |
| Beta blocker | 66,2 | 67,8 |
| Diuretic | 95,8 | 95,7 |
| MRA | 54,1 | 56,3 |
| Statin | 37,9 | 39,8 |
| Digoxin | 30,2 | 33,7 |

Abbreviations: ACE, angiotensin converting enzyme; ARB, angiotensin II receptor blocker; BMI, body mass index; BP, blood pressure; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; HF, heart failure; HFrEF, heart failure with a reduced ejection fraction; HFpEF, heart failure with a preserved ejection fraction; NYHA, New York heart association.
Table S2. Biomarker assay data.

Biomarker	Intra Assay %CV	Inter Assay %CV	Low Cutoff	High Cutoff	Units
LTBR	13%	13%	0,028	45	ng/mL
Mesothelin	12%	12%	6,1	120	ng/mL
MPO	15%	14%	2	800	ng/mL
Neuropilin 1	14%	15%	1	900	ng/mL
Osteopontin	21%	22%	2,5	2500	ng/mL
Pentraxin 3	10%	11%	0,07	150	ng/mL
Periostin	12%	12%	2,3	1921	ng/mL
PIGR	16%	16%	12	2341	ng/mL
PSAP-B	14%	16%	2	530	ng/mL
ST-2	9%	10%	0,28	380	ng/mL
Syndecan-1	25%	24%	2,4	393	ng/mL
TNFR1A	11%	13%	0,025	68	ng/mL
Troy	15%	14%	0,044	87	ng/mL
RAGE	9%	10%	0,019	85	ng/mL
VEGFR1	13%	12%	0,38	195	ng/mL
NTProCNP	11%	12%	0,003	9	ng/mL
WAP4C	14%	14%	0,16	130	ng/mL
ANP propeptide	29%	28%	1600	110000	pg/mL
D-Dimer	9%	10%	0,028	26	ug/mL
ESAM	9%	9%	0,5	110	ng/mL
GDF-15	9%	10%	0,014	6,4	ng/mL
Angiogenin	18%	18%	170	40000	ng/mL
CRP	17%	16%	0,065	33	ug/mL
NGAL	19%	21%	7,5	1500	ng/mL

Biomarker	Low cut off	high cut off	Inter assay coefficient of variation (%)
IL-6	0.10	0.88	13
cTNI	0.20	1000	10
ET1	0.5	250	7

BG medicine

BG medicine	Total Imprecision	Detection limit				
	Intra-assay variability (%)	Intra-assay variability (%)	LoB	LoD	LoQ	Measuring range
Galectin-3	3,2	5,6	0,86	1,13	1,32	1,4-94,8
Table S3. Logistic regression correcting for clinical confounders

Marker	Odds ratio(95%CI)	P-value
Hs-CRP (doubling)	1.25 (1.08-1.46)	0.003
Model 1	1.29 (1.09-1.52)	0.003
Model 2	1.28 (1.08-1.51)	0.004
Pentraxin-3 (doubling)	0.74 (0.56-0.98)	0.037
Model 1	0.81 (0.60-1.09)	0.165
Model 2	0.83 (0.62-1.12)	0.212
NT-proBNP (doubling)	0.75 (0.65-0.87)	<0.001
Model 1	0.68 (0.57-0.82)	<0.001
Model 2	0.74 (0.62-0.88)	0.001
proANP (doubling)	0.72 (0.58-0.89)	0.002
Model 1	0.66 (0.51-0.85)	0.001
Model 2	0.69 (0.54-0.89)	0.004
VEGF (doubling)	1.09 (0.97-1.23)	0.159
Model 1	1.03 (0.90-1.18)	0.639
Model 2	1.05 (0.92-1.20)	0.442

Model 1: age, sex, eGFR, systolic blood pressure, a history of myocardial infarction; diabetes; atrial fibrillation and anemia

Model 2: Model 1+ ACE-inhibitors/ARB & Beta-blocker usage

Abbreviations: Hs-CRP, high-sensitive C-reactive protein; NT-proBNP, N-terminal pro-brain-type natriuretic peptide; Pro-ANP, pro-atrial-type natriuretic peptide; VEGF, vascular endothelial growth factor
Table S4. Sensitivity analysis exclusive interactions

Biomarker	HFrEF	HFrEF	HFrEF	
	R	p-value*	R	p-value*
HFpEF				
IL6	0.361	0.63	0.158	0.840
Pentraxin-3	-0.388	0.21	-0.157	1.000
Periostin	-0.476	<0.001	-0.102	1.000
NGAL	0.381	0.21	0.147	1.000
HFrEF				
NT-proBNP	IL6	0.204	1.000	<0.001
NT-proBNP	EPO-A	0.315	1.000	<0.001

corrected p-value

Abbreviations: EPO-A, erythropoietin; HFpEF, heart failure with a preserved ejection fraction; HFrEF, heart failure with a reduced ejection fraction; IL-6, Interleukin 6; NGAL, neutrophil gelatinase-associated lipocalin; NT-proBNP, N-terminal pro-brain-type natriuretic peptide; PSAP, prostate-specific acid phosphatase; VEGF, vascular endothelial growth factor.
Table 55. Relationship with outcome of biomarkers.

	HFrEF (n = 364)	HFrEF (n = 96)	p-value \(^1\)	p-value \(^2\)
Inflammation				
hs-CRP, (doubling)	0.98 (0.88-1.08) 0.684	1.00 (0.77-1.30) 0.982	0.615	0.638
Pentraxin-3, (doubling)	0.89 (0.71-1.12) 0.336	1.14 (0.73-1.77) 0.569	0.074	0.277
GDF-15, (doubling)	1.09 (0.81-1.48) 0.563	2.06 (1.16-3.65) **0.014**	0.180	0.064
RAGE, (doubling)	1.05 (0.86-1.28) 0.629	1.34 (0.90-1.98) 0.147	0.174	0.451
Interleukin 6, (doubling)	1.00 (0.87-1.16) 0.943	1.68 (1.14-2.48) **0.008**	0.136	**0.014**
TNF-α, (doubling)	1.01 (0.96-1.06) 0.707	0.97 (0.88-1.07) 0.580	0.282	0.610
TNF-α-R1a, (doubling)	1.31 (0.99-1.73) 0.057	1.47 (0.90-2.39) 0.120	0.666	0.653
Oxidative stress				
MPO, (doubling)	0.89 (0.74-1.08) 0.243	1.12 (0.70-1.79) 0.644	0.505	0.276
Remodelling				
Syndecan-1, (doubling)	1.01 (0.82-1.24) 0.955	1.38 (0.99-1.93) 0.059	0.244	0.163
Periostin, (doubling)	1.03 (0.80-1.33) 0.824	1.17 (0.76-1.79) 0.485	0.798	0.849
Galectin-3, (doubling)	0.86 (0.59-1.25) 0.425	2.57 (1.19-5.53) **0.016**	0.070	**0.026**
ST-2, (doubling)	0.98 (0.86-1.11) 0.694	1.27 (0.96-1.67) 0.092	0.268	0.219
Osteopontin, (doubling)	0.90 (0.72-1.14) 0.398	1.60 (0.98-2.62) 0.062	0.004	0.009
TGF-β, (doubling)	1.01 (0.91-1.13) 0.834	1.07 (0.89-1.28) 0.465	0.702	0.466
Cariomyocyte stretch				
NT-proBNP, (doubling)	1.28 (1.14-1.43) <0.001	1.42 (1.10-1.84) 0.007	0.417	0.605
proANP, (doubling)	1.02 (0.82-1.27) 0.840	1.23 (0.85-1.76) 0.268	0.364	0.437
Tnl, (doubling)	1.16 (1.06-1.28) 0.001	1.07 (0.86-1.33) 0.532	0.347	0.269
Angiogenesis				
VEGF, (doubling)	0.88 (0.81-0.96) 0.004	1.13 (0.88-1.47) 0.326	0.273	0.080
VEGFGR (doubling)	1.19 (0.94-1.51) 0.156	1.37 (0.93-2.01) 0.106	0.918	0.603
Angiogenin, (doubling)	0.89 (0.74-1.06) 0.195	0.67 (0.47-0.95) **0.026**	0.139	0.156
NT-proCNP, (doubling)	0.96 (0.73-1.25) 0.749	1.69 (1.15-2.49) **0.007**	0.232	**0.042**
Neuropilin-1 (doubling)	1.12 (0.85-1.48) 0.425	2.34 (1.40-3.90) **0.001**	0.017	**0.024**
Arteriosclerosis				
ESAM, (doubling)	1.35 (0.79-2.29) 0.268	1.77 (0.85-3.71) 0.127	0.571	0.528
Renal function				
NGAL, (doubling)	0.95 (0.69-1.29) 0.729	0.84 (0.46-1.53) 0.569	0.702	0.884
BUN, (doubling)	0.91 (0.63-1.33) 0.632	1.03 (0.49-2.19) 0.929	0.673	0.816
Haematopoiesis				
EPOa, (doubling)	1.09 (0.96-1.24) 0.197	1.27 (1.00-1.62) 0.049	0.745	0.129
Other				
D-Dimer, (doubling)	1.09 (0.97-1.22) 0.132	1.31 (0.99-1.75) 0.056	0.452	0.331
WAP4C (doubling)	1.18 (0.93-1.50) 0.164	1.61 (1.09-2.37) 0.016	0.413	0.181
Mesothelin, (doubling)	1.19 (0.88-1.61) 0.258	0.93 (0.46-1.89) 0.841	0.569	0.803
PIGR (doubling)	1.03 (0.79-1.34) 0.825	1.79 (1.13-2.83) 0.013	0.207	0.101
PSAP (doubling)	1.24 (0.96-1.59) 0.099	1.26 (0.79-2.01) 0.324	0.786	0.844
ET-1, (doubling)	1.30 (0.93-1.80) 0.120	0.99 (0.46-2.13) 0.972	0.746	0.859
TROY (doubling)	0.98 (0.73-1.31) 0.868	1.63 (1.05-2.54) 0.030	0.351	0.101

1. Univariable interaction p-value
2. Multivariable interaction p-value
Abbreviations: BUN, blood urea nitrogen; cTNI, cardiac troponin-I; EPOa, erythropoietin; ESAM, endothelial cell-selective adhesion molecule; ET-1, endothelin-1; GDF-15, growth differentiation factor 15; HFrEF, heart failure with a reduced ejection fraction; HFpEF, heart failure with a preserved ejection fraction; hs-CRP, high-sensitive C-reactive protein; IL-6, Interleukin 6; MPO, myeloperoxidase; NGAL, neutrophil gelatinase-associated lipocalin; NT-proBNP, N-terminal pro-brain-type natriuretic peptide; NT-proCNP, amino terminal pro-C-type natriuretic peptide; PIGR, polymeric immunoglobulin receptor; Pro-ANP, pro-atrial-type natriuretic peptide; PSAP, prostate-specific acid phosphatase; RAGE, receptor of advanced glycation end-products; TGF-b, transforming growth factor beta; TNF-a, tumor necrosis factor alpha; TNF-aR1a, tumor necrosis factor alpha receptor 1a; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; WAP4C, WAP 4 disulfide core domain protein;
Figure S1. PCA analysis

Principal Component Analysis — PCA plot illustrating the first two principal components, collectively accounting for 43.4% (PC1 accounting for 30.8%, and PC2 for 12.6%) of the overall variance in the combined HFpEF and HFrEF biomarker measurements. The PCA was performed using HFpEF and HFrEF as categorical variables, where biomarker levels are displayed as red and blue for patients with HFpEF and HFrEF respectively.
Figure S2. Survival stratified according to HFrEF and HFpEF

18 months all-cause mortality and HF hospitalizations

Log-rank test: P 0.659

Number at risk

	HFrEF	HFpEF
0-100 days	647	185
100-200	528	160
200-300	480	144
300-400	446	129
400-500	414	114
500+	374	101
Figure S3. Osteopontin in HFrEF and HFpEF for HF related hospitalizations at 18 months.
Figure S4. Osteopontin in HFrEF and HFP EF for all-cause mortality at 18 months.
Figure S5. Neuropilin in HFrEF and HFpEF for HF related hospitalizations at 18 months.
Figure S6. Neuropilin in HFrEF and HFpEF for all-cause mortality at 18 months.