Palladium-Catalyzed Synthesis of Glycopeptides through C–H Activation

Results:

\[
\text{PhthN} = \begin{array}{c}
| \text{H} \\ \text{R'} \text{N} \text{H} | \\
| \text{H} \\ \text{TIPSO} | \\
| \text{TIPSO} | \\
\end{array}
\]

\[
\text{PhthN} = \begin{array}{c}
| \text{H} \\ \text{R'} \text{N} \text{H} | \\
| \text{H} \\ \text{TIPSO} \text{N} \text{TIPSO} | \\
| \text{TIPSO} \text{N} \text{TIPSO} | \\
\end{array}
\]

\[
\text{PhthN} = \begin{array}{c}
| \text{H} \\ \text{R'} \text{N} \text{H} | \\
| \text{H} \\ \text{TIPSO} | \\
| \text{TIPSO} | \\
| \text{N} \text{H} | \\
\end{array}
\]

Significance: Glycopeptides are widely studied in biological chemistry due to the improved features of peptides after glycosylation. The authors have developed an efficient Pd-catalyzed C–H functionalization approach to the preparation of glycopeptides.

Comment: With the help of the Pd catalyst and triazole motifs, various glycopeptides were synthesized from peptides through C–H glycosylation. The yields of the reactions were moderate to good, with excellent chemo-, regio-, and diastereoselectivities.