A Generalization of the Banach Contraction Principle
Voorneveld, M.

Publication date:
2000

Link to publication

Citation for published version (APA):
Voorneveld, M. (2000). A Generalization of the Banach Contraction Principle. (FEW Research Memorandum; Vol. 795). Tilburg: Microeconomics.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 16. feb. 2019
A Generalization of the Banach Contraction Principle

Mark Voorneveld
Department of Econometrics and CentER
Tilburg University
P.O.Box 90153
5000 LE Tilburg
The Netherlands
M.Voorneveld@kub.nl

Abstract: In a complete metric space \((X, d)\), we define contraction factor functions \(\alpha : X \times X \rightarrow [0, \infty)\) and \(\omega\)-distance functions \(\rho : X \times X \rightarrow [0, \infty)\), of which the distance function \(d\) is a special case, such that if

\[
\rho(Ax, Ay) \leq \alpha(x, y)\rho(x, y)
\]

for all \(x, y \in X\), then \(A : X \rightarrow X\) has a (unique) fixed point.

Keywords: Banach Contraction Principle, \(\omega\)-distance, fixed point.
1 Introduction

The Banach Contraction Principle states that if $A : X \to X$ is a mapping of a complete metric space (X, d) into itself, and there exists a number $0 \leq \alpha < 1$ such that for every two points $x, y \in X$:

$$d(Ax, Ay) \leq \alpha d(x, y),$$

then A has a unique fixed point, i.e., there exists a unique $x \in X$ satisfying $Ax = x$. A function $A : X \to X$ satisfying (1) is a contraction; the number $\alpha \in [0, 1)$ is the contraction factor.

Rakotch (1962) considers the problem of defining contraction factor functions $\alpha : X \times X \to [0, \infty)$ such that the Banach Contraction Principle remains valid when the constant α in (1) is replaced by a function $\alpha(x, y)$. This note considers also other functions than the distance function d in (1) under which the existence of a (unique) fixed point is guaranteed. More precisely, we define contraction factor functions $\alpha : X \times X \to [0, \infty)$, similar to those in Rakotch (1962), and functions $\rho : X \times X \to [0, \infty)$, of which the distance function d is a special case, in such a way that if

$$\rho(Ax, Ay) \leq \alpha(x, y)\rho(x, y)$$

for all $x, y \in X$, then $A : X \to X$ has a (unique) fixed point. The functions ρ are so-called ω-distances, introduced and studied in a recent sequence of papers by Kada, Suzuki, and Takahashi (1996), Suzuki and Takahashi (1996), and Suzuki (1997).

The set-up of the note is as follows. Section 2 recalls the definition of ω-distances and contains preliminary results. Section 3 presents the generalization of the Banach Contraction Principle. Section 4 contains concluding remarks.

2 Preliminaries

\mathbb{N} denotes the set of positive integers. Let X be a metric space with metric d. Following Kada et al. (1996, p. 381), we define an ω-distance on X to be a function $\rho : X \times X \to [0, \infty)$ such that:

- ρ satisfies the triangle inequality, i.e., $\forall x, y, z \in X : \rho(x, z) \leq \rho(x, y) + \rho(y, z)$;
* \(\rho(x, \cdot) : M \to [0, \infty) \) is lower semicontinuous for every \(x \in X \), i.e., if \(y_m \to y \), then
\[\rho(x, y) \leq \lim \inf_{m \to \infty} \rho(x, y_m); \]

* for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that for each \(x, y, z \in X \): if \(\rho(z, x) \leq \delta \) and
\[\rho(z, y) \leq \delta, \] then \(d(x, y) \leq \varepsilon. \)

The metric \(d \) is an \(\omega \)-distance. Examples of many other \(\omega \)-distances are found in Kada et al. (1996) and Suzuki and Takahashi (1996, Lemma 1). Kada et al. (1996, Lemma 1) prove:

Lemma 2.1 Let \((X, d) \) be a metric space and \(\rho \) an \(\omega \)-distance on \(X \). Consider points \(x, y, z \in X \), a sequence \((x_n) \) in \(X \) such that \(x_n \to x \), sequences \((\alpha_n) \) and \((\beta_n) \) in \([0, \infty)\) converging to zero. The following claims hold:

(a) If \(\rho(x_n, x_m) \leq \alpha_n \) for all \(n, m \in \mathbb{N} \) with \(m > n \), then \((x_n) \) is a Cauchy sequence in \((X, d) \).

(b) If \(\rho(x_n, y) \leq \alpha_n \) and \(\rho(x_n, z) \leq \beta_n \) for all \(n \in \mathbb{N} \), then \(y = z \). In particular, if \(\rho(x, y) = \rho(x, z) = 0 \), then \(y = z \).

Following Rakotch (1962), we define a family of functions that will take over the role of the contraction factors in the original statement of Banach’s Contraction Principle.

Definition 2.2 Let \((X, d) \) be a metric space and \(\rho \) an \(\omega \)-distance on \(X \). Denote by \(F(\rho) \) the family of functions \(\alpha \) on \(X \times X \) satisfying the following conditions:

(a) for each \((x, y) \in X \times X \), \(\alpha(x, y) \) depends only on the \(\omega \)-distance \(\rho(x, y) \); with a slight abuse of notation, this allows us to write \(\alpha(\rho(x, y)) \) instead of \(\alpha(x, y) \);

(b) \(0 \leq \alpha(d) < 1 \) for every \(d > 0 \);

(c) \(\alpha(d) \) is a decreasing function of \(d \): if \(d_1 \leq d_2 \), then \(\alpha(d_1) \geq \alpha(d_2) \).

3 A Contraction Principle

This section contains the statement and proof of our generalization of the Banach Contraction Principle.
Theorem 3.1 Let \((X, d)\) be a complete metric space, \(\rho\) an \(\omega\)-distance on \(X\), and \(A : X \to X\) a function. If there exists an \(\alpha \in F(\rho)\) such that

\[
\forall x, y \in X : \quad \rho(Ax, Ay) \leq \alpha(x, y)\rho(x, y),
\]

then \(A\) has a unique fixed point \(x\). This fixed point satisfies \(\rho(x, x) = 0\).

Proof. Let \(x_0 \in X\) and define for each \(n \in \mathbb{N}\): \(x_n = A^n x_0\). A simple inductive argument based on (2) and property (b) in Definition 2.2 yields that

\[
\forall n \in \mathbb{N} : \quad \rho(x_{n+1}, x_n) \leq \rho(x_1, x_0),
\]

and

\[
\forall k, \ell, m \in \mathbb{N} : \quad \text{if } k > m, \text{ then } \rho(x_k, x_{k+\ell}) \leq \rho(x_m, x_{m+\ell}).
\]

Let \(\varepsilon > 0\). Define \(R := \max\{\varepsilon, \rho(x_0, x_1) + \frac{\rho(x_1, x_0)}{1 - \alpha(\varepsilon)}\}\). By property (b) in Definition 2.2, \(\alpha(\varepsilon) < 1\), so \(R\) is well-defined. We claim that

\[
\forall n \in \mathbb{N} : \quad \rho(x_0, x_n) \leq R.
\]

Let \(n \in \mathbb{N}\). Inequality (5) trivially holds if \(\rho(x_0, x_n) \leq \varepsilon\), so assume that \(\rho(x_0, x_n) > \varepsilon\). Consecutively using

- the triangle inequality for \(\rho\),
- inequalities (2) and (3),
- the fact that \(0 \leq \alpha(x_0, x_n) \leq \alpha(\varepsilon) < 1\), which follows from the assumption that \(\rho(x_0, x_n) > \varepsilon\) and properties (b) and (c) in Definition 2.2,

the following chain of inequalities holds:

\[
\rho(x_0, x_n) \leq \rho(x_0, x_1) + \rho(x_1, x_{n+1}) + \rho(x_{n+1}, x_n) \\
\leq \rho(x_0, x_1) + \alpha(x_0, x_n)\rho(x_0, x_n) + \rho(x_1, x_0) \\
\leq \rho(x_0, x_1) + \alpha(\varepsilon)\rho(x_0, x_n) + \rho(x_1, x_0).
\]
Hence $\rho(x_0, x_n) \leq \frac{\rho(x_0, x_1) + \rho(x_1, x_0)}{1 - \alpha(\varepsilon)} \leq R$, finishing the proof of (5). We proceed to prove that

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ such that } \forall p \in \mathbb{N} : \rho(x_N, x_{N+p}) < \varepsilon. \quad (6)$$

Let $\varepsilon > 0$ and take $N \in \mathbb{N}$ such that $R(\alpha(\varepsilon))^N < \varepsilon$. \quad (7)

This is possible, since $0 \leq \alpha(\varepsilon) < 1$ by property (b) of Definition 2.2. Let $p \in \mathbb{N}$. For each $k = 0, \ldots, N - 1$, inequality (2) implies

$$\rho(x_{k+1}, x_{k+p+1}) \leq \alpha(x_k, x_{k+p})\rho(x_k, x_{k+p}).$$

Taking the product from $k = 0$ to $k = N - 1$ and dividing both sides by the common term $\prod_{k=0}^{N-2} \rho(x_{k+1}, x_{k+p+1})$ yields

$$\rho(x_N, x_{N+p}) \leq \rho(x_0, x_p) \prod_{k=0}^{N-1} \alpha(x_k, x_{k+p}). \quad (8)$$

Division by the common term $\prod_{k=0}^{N-2} \rho(x_{k+1}, x_{k+p+1})$ is correct by definition if $\rho(x_{k+1}, x_{k+p+1}) > 0$ for every $k \in \{0, \ldots, N - 2\}$, but also if $\rho(x_{k+1}, x_{k+p+1}) = 0$ for a specific $k \in \{0, \ldots, N - 2\}$, inequality (8) remains valid. In this case, namely, inequality (4) yields that $0 \leq \rho(x_N, x_{N+p}) \leq \rho(x_{k+1}, x_{k+p+1}) = 0$, i.e., the left-hand side of (8) equals zero, whereas its right-hand side is always nonnegative. Combining (5) and (8):

$$\rho(x_N, x_{N+p}) \leq R \prod_{k=0}^{N-1} \alpha(x_k, x_{k+p}). \quad (9)$$

Discern two cases:

Case 1: If $\rho(x_k, x_{k+p}) < \varepsilon$ for some $k \in \{0, \ldots, N - 1\}$, then (4) yields that $\rho(x_N, x_{N+p}) \leq \rho(x_k, x_{k+p}) < \varepsilon$.

Case 2: If $\rho(x_k, x_{k+p}) \geq \varepsilon$ for every $k \in \{0, \ldots, N - 1\}$, then property (c) in Definition 2.2 implies that $\alpha(x_k, x_{k+p}) \leq \alpha(\varepsilon)$ for every $k \in \{0, \ldots, N - 1\}$. Using (7) and (9) yields

$$\rho(x_N, x_{N+p}) \leq R \prod_{k=0}^{N-1} \alpha(x_k, x_{k+p}) \leq R(\alpha(\varepsilon))^N < \varepsilon.$$
This proves (6). Statements (4) and (6) immediately imply
\[
\forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, \forall p \in \mathbb{N} : \quad \rho(x_n, x_{n+p}) < \varepsilon. \tag{10}
\]
By (10), there exists a sequence \((\alpha_n)\) in \([0, \infty)\) converging to zero, such that
\[
\forall n, p \in \mathbb{N} : \quad \rho(x_n, x_{n+p}) \leq \alpha_n. \tag{11}
\]
But then \((x_n)\) is a Cauchy sequence by part (a) of Lemma 2.1. Since \((X, d)\) is complete, \((x_n)\) has a limit \(x \in X\). We show that \(Ax = x\). Since \(\rho(x_n, \cdot)\) is lower semicontinuous and \(x_m \to x\), it follows from (11) that
\[
\forall n \in \mathbb{N} : \quad \rho(x_n, x) \leq \liminf_{m \to \infty} \rho(x_n, x_m) \leq \alpha_n, \tag{12}
\]
and, using (2) and (12), that
\[
\forall n \in \mathbb{N} : \quad \rho(x_n, Ax) = \rho(Ax_{n-1}, Ax) \leq \rho(x_{n-1}, x) \leq \alpha_{n-1}. \tag{13}
\]
From (12), (13), and part (b) of Lemma 2.1, it follows that \(Ax = x\), i.e., that \(x\) is a fixed point of \(A\). To see that \(\rho(x, x) = 0\), suppose — to the contrary — that \(\rho(x, x) > 0\). Then \(0 \leq \alpha(x, x) < 1\) by property (b) of Definition 2.2; by (2) and the fact that \(x\) is a fixed point, it follows that:
\[
\rho(x, x) = \rho(Ax, Ax) \leq \alpha(x, x)\rho(x, x) < \rho(x, x),
\]
a contradiction. Finally, to prove that \(x\) in the unique fixed point of \(A\), suppose that \(y \in X\) satisfies \(Ay = y\). Analogous to the proof that \(\rho(x, x) = 0\), it follows that \(\rho(x, y) = 0\), so part (b) of Lemma 2.1 implies that \(x = y\).

\[\square\]

4 Concluding Remarks

Some remarks concerning the generalizations embodied in Theorem 3.1:

- If we take \(\alpha\) to be a constant function in \([0, 1]\), we obtain Theorem 2 of Suzuki and Takahashi (1996);
• If we take $\rho = d$, we obtain the contraction theorem of Rakotch (1962, p. 463);

• If we take $\rho = d$ and take α to be a constant function in $[0,1)$, we obtain the original Banach Contraction Principle.

If A itself does not satisfy (2), but some power $A^n (n \in \mathbb{N})$ of A does, the conclusion of Theorem 3.1 still holds: according to Theorem 3.1, A^n has a unique fixed point x, but

$$Ax = A(A^n x) = A^n(Ax)$$

indicates that Ax is also a fixed point of A^n. Hence $Ax = x$, i.e., x is a fixed point of A. The fact that x is the unique fixed point of A and $\rho(x,x) = 0$ follows in the same way as before.

References

1. Kada, O., Suzuki, T., and Takahashi, W., Non-Convex minimization Theorems and Fixed Point Theorems in Complete Metric Spaces, Mathematica Japonica, Vol. 44, pp. 381-391, 1996.

2. Rakotch, E., A Note on Contractive Mappings, Proceedings of the American Mathematical Society, Vol. 13, pp. 459-465, 1962.

3. Suzuki, T., and Takahashi, W., Fixed Point Theorems and Characterizations of Metric Completeness, Topological Methods in Nonlinear Analysis, Vol. 8, pp. 371-382, 1996.

4. Suzuki, T., Several Fixed Point Theorems in Complete Metric Spaces, Yokohama Mathematical Journal, Vol. 44, pp. 61-72, 1997.