From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations

Gudio Veit, McGill University
Radu G. Avramescu, McGill University
Annette N. Chiang, University of Pittsburgh
Scott A. Houck, University of North Carolina
Zhiwei Cai, University of Bristol
Kathryn W. Peters, University of Pittsburgh
Jeong S. Hong, University of Alabama, Birmingham
Harvey B. Pollard, Uniformed Services University of the Health Sciences
William B. Guggino, Johns Hopkins University
William E. Balch, Scripps Research Institute

Only first 10 authors above; see publication for full author list.

Journal Title: Molecular Biology of the Cell
Volume: Volume 27, Number 3
Publisher: American Society for Cell Biology | 2016-02-01, Pages 424-433
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1091/mbc.E14-04-0935
Permanent URL: https://pid.emory.edu/ark:/25593/rjw9s

Final published version: http://dx.doi.org/10.1091/mbc.E14-04-0935

Copyright information:
© 2016 Veit et al.

This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations

Gudio Veit, Radu G. Avramescu, Annette N. Chiang, Scott A. Houck, Zhiwei Cai, Kathryn W. Peters, Jeong S. Hong, Harvey B. Pollard, William B. Guggino, William E. Balch, William R. Skach, Garry R. Cutting, Raymond A. Frizzelle, David N. Sheppard, Douglas M. Cyrus, Eric J. Sorscher, Jeffrey L. Brodsky, and Gergely L. Lukacs

ABSTRACT

More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients.
INTRODUCTION

Cystic fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), is characterized by a multiorgan pathology affecting the upper and lower airway, gastrointestinal and reproductive tracts, and endocrine system (Riordan et al., 1989; Collins, 1992; Rowe et al., 2005; Cutting, 2015). CF is one of the most common lethal autosomal-recessive diseases, with a prevalence of one in 3500 in the United States and one in 2500 in the European Union (Farrell, 2008; Pettit and Fellner, 2014). Lack of functional CFTR expression at the apical membrane of secretory epithelia results in defective Cl⁻ and bicarbonate secretion, coupled to enhanced Na⁺ absorption and mucus secretion, which in airway epithelia leads to dehydration and acidification of the airway surface liquid (Tarran et al., 2001; Chen et al., 2010; Derichs et al., 2011; Pezzulo et al., 2012). As a consequence, impaired mucociliary clearance provokes recurrent infection and uncontrolled inflammation culminating in lung damage, which is the primary cause of morbidity and mortality in CF (Ratjen and Doring, 2003; Boucher, 2007; Stoltz et al., 2015). CFTR is member of the ATP-binding cassette (ABC) subfamily C (ABCC7) (Kerr, 2002). It consists of two homologous halves, each containing a hexa-helical membrane-spanning domain (MSD1 and MSD2) and a nucleotide-binding domain (NBD1 and NBD2) that are connected by an unstructured regulatory domain (Riordan, 1993; Riordan et al., 1989).

BIOLOGY OF CFTR MUTATION: TRADITIONAL CLASSIFICATION

CF is caused by ~2000 mutations in the CFTR gene with a wide range of disease severity (www.genet.sickkids.on.ca/home.html; www.cfr2.org; Sosnay et al., 2013), which is further influenced by modifier genes (Collaco and Cutting, 2008; Cutting, 2010) and by the environmental and socioeconomic status of patients (Schechter et al., 2001; Barr et al., 2011; Taylor-Robinson et al., 2014; Kopp et al., 2015). The first classification of CF mutations into four classes according to their primary biological defect was proposed by Welsh and Smith in a landmark paper (Welsh and Smith, 1993). Currently, six major classes are distinguished (Rowe et al., 2005; Zielenki and Tsui, 1995) (Figure 1).

Class I encompasses frameshift, splicing, or nonsense mutations that introduce premature termination codons (PTC), resulting in severely reduced or absent CFTR expression.

Class II mutations lead to misfolding, premature degradation by the endoplasmic reticulum (ER) quality-control system, and impaired protein biogenesis, severely reducing the number of CFTR molecules that reach the cell surface.

Class III mutations impair the regulation of the CFTR channel, resulting in abnormal gating characterized by a reduced open probability.

Class IV mutations alter the channel conductance by impeding the ion conduction pore, leading to a reduced unitary conductance (Sheppard et al., 1993; Hammerle et al., 2001).

Class V mutations do not change the conformation of the protein but alter its abundance by introducing promoter or splicing abnormalities (Highsmith et al., 1994, 1997; Zielenki and Tsui, 1995).

Class VI mutations destabilize the channel in post-ER compartments and/or at the plasma membrane (PM), by reducing its conformational stability (Haardt et al., 1999) and/or generating additional internalization signals (Silvis et al., 2003). This results in accelerated PM turnover and reduced apical PM expression (Haardt et al., 1999; Silvis et al., 2003).

For many of the identified mutations, the disease liability is unknown, but efforts are under way to assess their functional consequence and clinical severity (www.cfr2.org; Sosnay et al., 2013).

FIGURE 1: Traditional classification of CF mutations based on their cellular phenotype. Class I: protein synthesis defect; class II: maturation defect; class III: gating defect; class IV: conductance defect; class V: reduced quantity; and class VI: reduced stability. ER, endoplasmic reticulum; TGN, trans-Golgi network.

MUTATION CLASS–SPECIFIC PHARMACOTHERAPY

Defining the cellular and molecular pathology of CFTR mutations proved to be invaluable for development of small-molecule compounds targeting the underlying defect(s) in CF. The fact that some CFTR variants carrying class III or IV mutations can be expressed at the apical membrane of secretory epithelia at a density similar to that of the wild-type protein, although they are functionally impaired (e.g., G551D), led to the development of gating potentiators that increase the open probability and thereby the PM chloride conductance (Yang et al., 2003). VX-770 (ivacaftor) is the first potentiator drug to be U.S. Food and Drug Administration approved for CF treatment; it directly targets the gating defect of the class III mutation G551D-CFTR (Van Goor et al., 2009). This compound was developed by Vertex Pharmaceuticals in conjunction with Cystic Fibrosis Foundation Therapeutics, Inc. (CFFT), and shows remarkable clinical benefit in patients carrying the mutation in either one or two alleles (Van Goor et al., 2009; Accurso et al., 2010; Ramsey et al., 2011). The approval of VX-770 was extended to eight additional class III mutations (G178R, S549N, S549R, G551S, G1244E, S1251N, S1255P, and G1349D) (Yu et al., 2012; Vertex, 2014a) and recently to the class IV mutation R117H (Vertex, 2014b).

The prototypical class II mutation, ∆F508-CFTR (Phe508del), elicits a complex folding defect that compromises both NBD1 stability and the channel’s cooperative domain assembly (Du and Lukacs, 2009; Du et al., 2005; Mendoza et al., 2012; Rabeh et al., 2012). For many years, large-scale efforts have been under way to isolate correctors that act as pharmacological chaperones by directly binding to and promoting the biogenesis of class II CFTR mutations. The most promising corrector compound at present, VX-809 (lumacaftor), partially reverts the ∆F508-CFTR functional expression.
defect by stabilizing the NBD1-MSD1/2 interface (Farinha et al., 2013; Loo et al., 2013; Okiyoneda et al., 2013; Ren et al., 2013), leading to a marked correction from 3 to 15% of wild-type channel activity in vitro (Van Goor et al., 2011). A clinical trial, however, failed to observe significant clinical benefit in homozygous ΔF508-CFTR patients (Clancy et al., 2012). Acute addition of VX-770 to VX-809-corrected ΔF508-CFTR doubled the PM activity in vitro (Van Goor et al., 2011), and the combination therapy showed modest but significant clinical improvement (Boyle et al., 2014; Wainwright et al., 2015). Based on these results, the combination treatment has been approved for CF patients 12 years and older with two copies of the ΔF508 mutation (Vertex, 2015). Other class II mutations that can be corrected by VX-809 in vitro include E556K, P67L, E92K, R170G, L206W, V232D, F508G, and A561E (Caldwell et al., 2011; Okiyoneda et al., 2013; Ren et al., 2013; Veit et al., 2014; Awatade et al., 2015).

Ribosomal read-through allows synthesis of full-length CFTR carrying class I mutations. To this end, ataluren (PTC124) was developed as a drug that promotes near-cognate aminoacyl-tRNA incorporation at PTCs (Lentini et al., 2014; Welch et al., 2007). Ataluren partially restores G542X-CFTR (class I) expression in a mouse model and modestly corrects CFTR function in nasal epithelia in patients with class I mutations (Du et al., 2008; Sermet-Gaudelus et al., 2010; Wilshanski et al., 2011). In a recent phase 3 clinical trial, however, ataluren treatment failed to produce significant clinical benefit, perhaps due to an adverse drug–drug interaction with tobramycin, which is a commonly administered, inhaled antibiotic used to treat lung infections in CF patients (Kerem et al., 2014).

LIMITATIONS OF CF MUTATION CLASSIFICATION

The efficacy of available monotherapies for some mutant alleles, which have been designated as class I, class II, or class III/IV mutations, is currently limited. This could be partly explained by the pleiotropic molecular defects caused by single mutations. Thus comprehensive mapping of the multiple molecular defects caused by a single or combination of mutant alleles could offer considerable advantage for improving therapeutic interventions and for future development of drug combinations. In the following list, we present a subset of mutations that display combinatorial molecular defects.

- **ΔF508**: The most prevalent class II mutation impairs CFTR conformational maturation and leads to its targeting for premature ER-associated degradation (Cheng et al., 1990; Cyr, 2005; Kim and Skach, 2012; Lukacs et al., 1994). However, ΔF508-CFTR molecules that either constitutively or following rescue procedures escape the ER quality control and accumulate at the PM of airway epithelia exhibit a channel-gating defect, which is a hallmark of class III mutations (Dalemans et al., 1991), as well as accelerated turnover in post ER compartments and at the PM, a class VI mutation characteristic (Lukacs et al., 1993). Unless the folding and conformational dynamics of the rescued ΔF508-CFTR are fully restored to that of the wild-type protein by pharmacological treatment, this mutation remains partially defective and requires correction of its gating and/or peripheral stability defect. Rescue of the gating defect can be achieved with potentiators (e.g., VX-770) (Van Goor et al., 2009). Peripheral stabilization of the ΔF508-CFTR could be attained by 1) the peptide inhibitor iCALT36 (Cushing et al., 2010), 2) preventing post-Golgi ubiquitination (Fu et al., 2015; Okiyoneda et al., 2010), 3) restoring autophagosome formation (Luciani et al., 2012), or 4) modulating cellular protein homeostasis (Hutt et al., 2010). Thus the most common mutant has multiple defects that extend beyond the features of a class II mutation.

- **W1282X**: This PTC represents a class I mutation, though recent studies suggest a more complex phenotype. First, the level of the W1282X transcript is reduced by nonsense-mediated RNA decay (Hamosh et al., 1992; Linde et al., 2007). Second, the PTC deletes part of the NBD2, which likely compromises NBD1-NBD2 dimerization and W1282X-CFTR folding and activity. Moreover, if the primary defect is corrected either with spontaneous or drug-induced read-through, some of the fully translated channel will contain nonconservative amino acid substitutions. These missense mutations may cause structural defects (class II characteristic), as suggested by the phenotype of CF patients with a missense mutation at the W1282 residue (Fauchz et al., 2007; Ivashchenko et al., 1993; Visca et al., 2008), as well as a gating defect (class III characteristic), which can be inferred based on W1282X-CFTR channel activation after exposure to VX-770 (Xue et al., 2014).

- **P67L**: P67L is a mild class II mutation that results in attenuated CFTR biogenesis, as indicated by the reduced ratio between post-ER complex–glycosylated (band C) and ER-resident core-glycosylated protein (band B) (Ren et al., 2013; Sosnay et al., 2013; Van Goor et al., 2014). Treatment with the corrector VX-809 increases the abundance of the complex-glycosylated form and PM density to nearly the level of WT-CFTR (Ren et al., 2013; Veit et al., 2014). However, the mutant channel is also sensitive in vitro to potentiator treatment (a class III characteristic), both in the presence and absence of corrector (Van Goor et al., 2014; Veit et al., 2014). Accordingly, treatment with VX-770 ameliorated the CF lung disease in a heterozygous P67L/ΔF508 patient (Yousef et al., 2015).

- **R117H**: This mutation in conjunction with the 5T variant in the polythymidine tract in intron 8 was originally categorized as a class IV mutation, but it also exhibits a gating defect (class III trait) that, at least in part, can be rectified by VX-770 treatment (Sheppard et al., 1993; Van Goor et al., 2014). The R117H mutation also results in reduced complex-glycosylated CFTR expression, which is a class II characteristic (Fanen et al., 1997; Sheppard et al., 1993). This potentially explains the limited success of VX-770 treatment in patients carrying this mutation (Char et al., 2014; Moss et al., 2015).

AN EXPANDED CLASSIFICATION OF MUTANT CFTR BIOLOGY

We propose a modification of the current classification scheme, which would entail permutations of the traditional class I–VI CF mutations. This expanded classification of the major mechanistic categories (Welsh and Smith, 1993; Zielenksi, 2000; Rowe et al., 2005) accommodates the unusually complex, combinatorial molecular/cellular phenotypes of CF alleles. It consists of 31 possible classes of mutations, including the original classes I, II, III/IV, V, and VI, as well as their 26 combinations, as depicted in the Venn diagram shown in Figure 2. For the sake of simplicity, class III and IV mutations, representing functional (gating and conductance, respectively) defects, are combined. For example, according to the expanded classification, G551D will be designated as a class III mutation as before (Welsh and Smith, 1993), while ΔF508 will be classified as class II–III–VI, W1282X as class I–II–III–VI, P67L as class II–III, and R117H as class II–III/IV, reflecting the composite defects in mutant CFTR biology (Figure 2 and Table 1).
FIGURE 2: Refined classification of CF mutations accounting for complex phenotypes of major CFTR cellular defects. The Venn diagram indicates all combinations of mutation classes with selected examples. Possible combinations without identified mutation are indicated in gray.

TABLE 1: Examples for CF mutations with complex or classical cellular phenotypes.

Refined classification	Mutation	I (X)	II (X)	III/IV (X)	V (X)	VI (X)	Model	Reference
I-II-III-VI	W1282X	X1,2,3	X5	X2,4,5	X5		1HNE	Hamosh et al., 1992
							2HBE	Cyr lab, unpublished
							3CFBE	Frizzell lab, unpublished
							4CFBE	Xue et al., 2014
							5CFBE	Lukacs lab, unpublished
							6FRT	Van Goor et al., 2014
II-III	M1V	X6		X6				
II-III	E56K	X5,6		X6			5CFBE	Lukacs lab, unpublished
							6FRT	Van Goor et al., 2014
II-III	P67L	X5,6,7,8,9,10	X6,7,10			3CFBE	Frizzell lab, unpublished	
							4FRT	Van Goor et al., 2014
							5CFBE	Lukacs lab, unpublished
							6FRT	Van Goor et al., 2014
							7HeLa	Sorscher lab, unpublished
							8FRT	Van Goor et al., 2014
							9FRT	Van Goor et al., 2014
							10FRT	Van Goor et al., 2014
II-III	R74W	X6		X6			3CFBE	Frizzell lab, unpublished
							4CFBE	Lukacs lab, unpublished
							5CFBE	Lukacs lab, unpublished
							6FRT	Van Goor et al., 2014
							7HeLa	Sorscher lab, unpublished
							8FRT	Van Goor et al., 2014
							9FRT	Van Goor et al., 2014
							10FRT	Van Goor et al., 2014
II-III	P99L	X11		X11			11HeLa	Sheppard et al., 1996
							6FRT	Van Goor et al., 2014
							7HeLa	Sorscher lab, unpublished
							8FRT	Van Goor et al., 2014
							9FRT	Van Goor et al., 2014
							10FRT	Van Goor et al., 2014
II-III	D110H	X6		X6			3CFBE	Frizzell lab, unpublished
							4CFBE	Lukacs lab, unpublished
							5CFBE	Lukacs lab, unpublished
							6FRT	Van Goor et al., 2014
							7HeLa	Sorscher lab, unpublished
							8FRT	Van Goor et al., 2014
							9FRT	Van Goor et al., 2014
							10FRT	Van Goor et al., 2014

A recent study by Vertex Pharmaceuticals successfully demonstrated that 24 of 54 tested missense mutations display both a processing (class II) and gating (class III) defect in the Fischer rat thyroid epithelial expression system (Van Goor et al., 2014). Characterization of several rare CF mutations is ongoing in laboratories of the CFTR2 Consortium, the CFTR Folding Consortium, CFIT, Vertex Pharmaceuticals, and many others (Caldwell et al., 2011; Yu et al., 2012; Sosnay et al., 2013; Harness-Brumley et al., 2014; Hong et al., 2014; Van Goor et al., 2014; Wang et al., 2014; Awatade et al., 2015). This work will likely provide further examples of combinatorial mechanistic defects exhibited by CF mutants.

TABLE 1: Examples for CF mutations with complex or classical cellular phenotypes.

THERAPEUTIC SUSCEPTIBILITY OF CF MUTATIONS WITH COMPLEX BIOLOGICAL DEFECTS

In-depth analysis of the biology of CF mutants distinguishes them according to their complex molecular pathology and suggests drug combinations for treatment of different patient populations. This process, called...
Refined classification	Mutation	I	II	III/IV	V	VI	Model	Reference
II–III	R170G	X²,14	X⁷				²CFBE	⁷Veit et al., 2014
II–III	E193K	X⁸	X⁵,⁶				⁵CFBE	⁰Van Goor et al., 2014
II–III	P205S	X¹¹	X¹¹				¹¹HeLa	¹¹Sheppard et al., 1996
II–III	L206W	X⁵,⁶,⁸	X⁵,⁶				⁵CFBE	⁵Lukacs lab, unpublished
II–III	V232D	X¹⁵	X¹⁵				¹⁵HEK293	¹⁵Caldwell et al., 2011
II–III	R334W	X²,3,⁵	X²,⁵,⁶,¹²			²COS-7	²Cyr lab, unpublished	
II–III	I336K	X⁶	X⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	T338I	X⁵,⁶	X⁵,⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	S341P	X⁵,⁶	X⁵,⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	A455E	X²,⁶,¹⁶,¹⁷	X⁶				³CFBE	³Frizzell lab, unpublished
II–III	S549R	X³,⁵,¹⁸	X⁵,¹⁸				³CFBE	³Frizzell lab, unpublished
II–III	D579G	X⁵,⁶	X⁵,⁶				⁵CFBE	⁵Lukacs lab, unpublished
II–III	R668C	X⁶	X⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	L927P	X⁶	X⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	S945L	X⁶	X⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	L997F	X⁶	X⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	H1054D	X⁶	X⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	R1066H	X⁶	X⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	A1067T	X⁶	X⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	R1070Q	X⁶	X⁶				⁶FRT	⁶Lukacs lab, unpublished
II–III	R1070W	X⁶,¹⁴	X⁶				¹⁴BHK	¹⁴Okiyoneda et al., 2013
II–III	F1074L	X⁶	X⁶				⁶FRT	⁶Van Goor et al., 2014
II–III	D1270N	X⁶	X⁶				⁶FRT	⁶Van Goor et al., 2014
II–VI	S492F	X³,⁵,⁶	X⁵				³CFBE	³Frizzell lab, unpublished
II–III–VI	R347P	X³,⁵,⁶	X³,⁶,¹²	X⁵			³CFBE	³Frizzell lab, unpublished
II–III–VI	ΔF508	X¹⁹	X²⁰		X²¹		¹⁹COS	¹⁹Cheng et al., 1990

TABLE 1: Examples for CF mutations with complex or classical cellular phenotypes.

Continues
Refined classification	Mutation	I	II	III/IV	V	VI	Model	Reference	
II–III–VI	A561E	X	6,22,23	X	23	X	23	6FRT^d	22Van Goor et al., 2014
								22HBE^d	22Awatade et al., 2015
								23BHK	23Wang et al., 2014
II–III–VI	L1077P	X	3,6,16,24	X	24	X	24	3CFBE	3Frizzell lab, unpublished
								4FRT	4Van Goor et al., 2014
								16HEK293	16Brodsky lab, unpublished
								24CHO	24Sheppard lab, unpublished
II–III–VI	N1303K	X	2,3,5,6,16,22,24	X	24	X	24	2HBE	2Frizell lab, unpublished
								3CFBE	3Frizzell lab, unpublished
								5CFBE	5Lukacs lab, unpublished
								6FRT	6Van Goor et al., 2014
								16HEK293	16Brodsky lab, unpublished
								22HBE	22Awatade et al., 2015
								24CHO	24Sheppard lab, unpublished
III–VI	Q1411X	X	25	X	26	25BHK	25Cos, BHK	25Gentzsch et al., 2002	
								26FRT	26Haardt et al., 1999
II	A46D	X	6					6Van Goor et al., 2014	
II	G85E	X	3,6,16,24					3CFBE	3Frizzell lab, unpublished
								4FRT	4Van Goor et al., 2014
								16HEK293	16Brodsky lab, unpublished
III	R352Q	X	5,6					5CFBE	5Lukacs lab, unpublished
II	L467P	X	6					6Van Goor et al., 2014	
II	V520F	X	3,6,16					3CFBE	3Frizzell lab, unpublished
								4FRT	4Van Goor et al., 2014
								16HEK293	16Brodsky lab, unpublished
II	A559T	X	6					6Van Goor et al., 2014	
II	R560S	X	6					6Van Goor et al., 2014	
II	R560T	X	3,6,16					3CFBE	3Frizzell lab, unpublished
								4FRT	4Van Goor et al., 2014
								16HEK293	16Brodsky lab, unpublished
II	R560K	X	3					3CFBE	3Frizzell lab, unpublished
II	Y569D	X	6					6Van Goor et al., 2014	
II	D614G	X	3					3CFBE	3Frizzell lab, unpublished
II	L1065P	X	3,6					3CFBE	3Frizzell lab, unpublished
II	R1066C	X	3,6					3CFBE	3Frizzell lab, unpublished
II	R1066M	X	6					6Van Goor et al., 2014	
II	H1085R	X	6					6Van Goor et al., 2014	
II	M1101K	X	6					6Van Goor et al., 2014	
III	D110E	X	6					6Van Goor et al., 2014	
III	G178R	X	18					18FRT	18Yu et al., 2012
III	R347H	X	6,7					6FRT	6Van Goor et al., 2014
III	S549N	X	18					18FRT	18Veit et al., 2014
III	G551D	X	18					18FRT	18Yu et al., 2012
III	G551S	X	18					18FRT	18Yu et al., 2012
III								27CHO	27Bompadre et al., 2007
								28L	28Yang et al., 1993

TABLE 1: Examples for CF mutations with complex or classical cellular phenotypes.

Continues
theratyping (Cutting, 2015), will pave the way to personalized medicine in CF. However, reliable prediction of the responsiveness of a mutant phenotype to pharmacotherapy could be challenging and is dependent on the cellular model system (Pedemonte et al., 2010).

Emerging evidence also suggests that the efficacy of approved and preclinical drugs may vary with different mutations within the same class. For example, while nearly complete processing correction of P67L- and R170G-CFTR (class II) was achieved with VX-809 treatment (Okiyoneda et al., 2013; Ren et al., 2013; Veit et al., 2014), VX-809 only partially reversed the folding defect of some other class II mutants; for example, N1303K and AF508 (Okiyoneda et al., 2013; Awatade et al., 2015). This differential susceptibility to correction is attributed to the nature of the primary folding/structural defect. According to one hypothesis, robust folding correction of AF508-CFTR requires corrector combinations to avert its NBD1-MSD1/2 interface and NBD1 stability defects (Mendoza et al., 2012; Rabeh et al., 2012; He et al., 2013; Okiyoneda et al., 2013). The N1303K mutation in NBD2 was not rescued by VX-809, and only modest processing was observed by targeting both the NBD1/MSDs and NBD2 interfaces with C4 and C18 (a VX-809 analogue) (Okiyoneda et al., 2013; Rapino et al., 2015).

Some of the class III mutations also respond differently to the gating potentiator VX-770. Although R347H- and T338I-CFTR cause severe functional defects with no or modest loss of protein expression, only R347H-CFTR is potentiated by VX-770 to near wild type-like conductance (Van Goor et al., 2014). Likewise, the P5 potentiator activates AF508-CFTR, but it has no effect on G551D-CFTR chloride permeation (Yang et al., 2003). Thus identification of mutation-specific novel potentiators or their combinations may further optimize channel rescue for specific class III/IV mutations. Additive enhancement of G551D-CFTR activity by the combination of the potentiators genistein and curcumin supports the feasibility of combining potentiators (Yu et al., 2011). Likewise, we envision that mutation-specific read-through drugs will ultimately need to be combined with other correctors and potentiators, based on the pleiotropic defects associated with this class of mutations (as illustrated for W1282X above).

CONCLUDING REMARKS

The ultimate goal of theratyping is to achieve optimal correction of a specific mutant defect by selecting the most efficacious CFTR modulator(s), including corrector(s), potentiator(s), and/or read-through drugs, or a combination of these drugs. Based on accumulating observations, however, mechanistic subdivisions of some of the major classes of mutations (classes I, II, and III) may be necessary to further improve the success of drug-selection strategies. This will facilitate the theratyping of CF alleles and their combinations and expedite the identification and approval process for combination therapies. Theratyping has already proven successful in identifying class III mutations that are responsive to VX-770 (Yu et al., 2012), leading to the approval of this drug for eight rare mutations besides G551D (Vertex, 2014a). In fact, the results of large-scale theratyping could be overlaid as a third dimension on the Venn diagram presented in Figure 2.

Thus, during the 22 years following the initial classification of CF mutations (Welsh and Smith, 1993), our understanding of the molecular complexity of CF alleles has evolved remarkably, establishing the need for an advanced mutation classification scheme in conjunction with personalized CF therapy.

ACKNOWLEDGMENTS

We thank the members of the CFTR Folding Consortium, the CFTR Theratype Group, C. M. Penland, and K. Tuggle (Cystic Fibrosis Foundation, Bethesda, MD) for their valuable support. The work described here was supported by the following institutions and grants: National Institutes of Health (NIH) NO1-HL28187 and IAA-A-HL-14-007.001 to H.B.P.; Cystic Fibrosis Foundation (CFF), NIH DK51870, TRDRP23RT-0012, and HL095524 to W.E.B.; NIH R01 DK, CFF CUTT13A1, and CUTFXXO to G.R.C.; CFFT SHEPPA14XX0 and Cystic Fibrosis Trust to D.N.S.; NIH R01-DK068196, P30-DK072506,

Refined classification	Mutation	I	II	III/IV	V	VI	Model	Reference
III	F1052V	X6						Van Goor et al., 2014
III	K1060T	X6						Van Goor et al., 2014
III	D1152H	X6						Van Goor et al., 2014
III	S1235R	X6						Van Goor et al., 2014
III	G1244E	X18						Yu et al., 2012
III	S1251N	X18						Yu et al., 2012
III	S1255P	X18						Yu et al., 2012
III	G1349D	X18,27						Yu et al., 2012

Superscript numbers refer to references in far-right column.

*S.A.H. and D.M.C., unpublished observations
^K.W.P. and R.A.F., unpublished observations.
*R.G.A., H.Xu, and G.L.L., unpublished observations.
³Does not exhibit a gating or conductance defect in this cell model.
⁴J.S.H. and E.J.S., unpublished observations.
¹Does not exhibit a biogenesis defect in this cell model.
²A.N.C. and J.L.B., unpublished observations.
³Z.C. and D.N.S., unpublished observations.
⁴Does not exhibit a peripheral stability defect in this cell model.

TABLE 1: Examples for CF mutations with complex or classical cellular phenotypes. Continued
and CFTR FRIZZE50X to R.A.F.; NIH RO1 GM56981 and CFTR CYR13XXO to D.M.C.; the CFF Research Development Program, CFTR SORSCH05XXO, and SORSCH14XXO to E.J.S.; CFTR BROD-SK13XXO and NIH GM75061 to J.L.B.; CF Canada, CFTR Lukacs-s13XXO, NIH DK075302, and Canadian Institutes of Health Research to G.L.L. R.G.A. was supported by CF Canada Studentship; G.L.L. is a recipient of a Canadian Research Chair.

REFERENCES

Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, Sagel SD, Hornick DB, Konstan MW, Donaldson SH, et al. (2010). Effect of VX-809 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 363, 1991–2003.

Awatade NT, Ulyakina I, Farinha CM, Clarke LA, Mendes K, Sole A, Pastor J, Ramos MM, Amaral MD (2015). Measurements of functional responses in human primary lung cells as a basis for personalized therapy for cystic fibrosis. EBioMedicine 2, 147–153.

Barr HL, Britton J, Smyth AR, Fogarty AW (2011). Association between so-called cystic fibrosis risk loci and pancreatic function in persons with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med 2, 527–536.

Caldwell RA, Grove, C, DM (2011). Increased folding and channel activity of a rare cystic fibrosis mutant with CFTR modulators. Am J Physiol Lung Cell Mol Physiol 301, L346–L352.

Char JE, Wolfe MH, Cho HJ, Park IH, Jeong JH, Frisbee E, Dunn C, Davies Z, Milla C, Moss RB, et al. (2014). A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-ST cystic fibrosis subjects taking vaftaca. PLoS One 9, e88564.

Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector Caldwell RA, WD, Donaldson SH, et al. (2010). Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 363, 1991–2003.

F508 cystic fibrosis mutation. Nature 354, 522–528.

Derichs N, Jin BJ, Song Y, Finkbeiner WE, Verkman AS (1993). Two new mutations detected in the endoplasmic reticulum. Front Pharmacol 3, 201.

Du M, Liu X, Welsh EM, Hirawat S, Peltz SW, Bedwell DM (2008). PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA 105, 2064–2069.

Danen F, Labarthe R, Garnier F, Benharouaga M, Goossens M, Edelman A (1997). Cystic fibrosis phenotype associated with pancreatic insufficiency does not always reflect the F508 independent chloride conductive pathway defect. Analysis of C225R-CFTR and R1066C-CFTR. J Biol Chem 272, 30563–30566.

Fanin P, Labarthe R, Garnier F, Benharouaga M, Goossens M, Edelman A (1997). Cystic fibrosis phenotype associated with pancreatic insufficiency does not always reflect the F508 independent chloride conductive pathway defect. Analysis of C225R-CFTR and R1066C-CFTR. J Biol Chem 272, 30563–30566.

Hornick DB, Konstan MW, Donaldson SH, et al. (2010). Effect of VX-809 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 363, 1991–2003.

Ivaschenko TE, Baranov VS, Dean M (1993). Two new mutations detected in the endoplasmic reticulum. Front Pharmacol 3, 201.
In vivo drug treatment could be a better method because of the following advantages: (1) drug treatment could be more convenient and efficient than gene therapy; (2) drug treatment could be more accessible than gene therapy. The combination of small-molecule correctors and transcomplementation could be a more effective treatment for patients with cystic fibrosis. Corr.&n.therapy could be used for patients with cystic fibrosis aged less than 12 years old and genetic correction could be used for patients over 12 years old. In addition, different treatments could be used for patients with different mutations. For example, small-molecule correctors could be used for patients with the R117H mutation, and lung transplantation could be used for patients with the F508del mutation. In summary, further research and clinical trials are needed to evaluate the effectiveness of different treatments for patients with cystic fibrosis.
Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373, 220–231.
Wang Y, Liu J, Loizidou A, Bugeja LA, Warner R, Hawley BR, Cai Z, Toye AM, Sheppard DN, Li H (2014). CFTR potentiators partially restore channel function to A561E-CFTR, a cystic fibrosis mutant with a similar mechanism of dysfunction as F508del-CFTR. Br J Pharmacol 171, 4490–4503.
Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S, et al. (2007). PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91.
Welsh MJ, Smith AE (1993). Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73, 1251–1254.
Wilschanski M, Miller LL, Shoseyov D, Blau H, Rivlin J, Aviram M, Cohen M, Armoni S, Yaakov Y, Pugatsch T, et al. (2011). Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur Respir J 38, 59–69.
Xue X, Mutyam V, Tang L, Biswas S, Du M, Jackson LA, Dai Y, Belakhov V, Shalev M, Chen F, et al. (2014). Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am J Respir Cell Mol Biol 50, 805–816.
Yang H, Shelat AA, Gopinath VS, Ma T, Du K, Lukacs GL, Taddei A, Folli C, Pedemonte N, et al. (2003). Nanomolar affinity small molecule correctors of defective ΔF508-CFTR chloride channel gating. J Biol Chem 278, 35079–35085.
Yang Y, Devor DC, Engelhardt JF, Ernst SA, Strong TV, Collins FS, Cohn JA, Frizzell RA, Wilson JM (1993). Molecular basis of defective anion transport in L cells expressing recombinant forms of CFTR. Hum Mol Genet 2, 1253–1261.
Yousef S, Solomon GM, Brody A, Rowe SM, Colin AA (2015). Improved clinical and radiographic outcomes after treatment with ivacaftor in a young adult with cystic fibrosis with the P67L CFTR mutation. Chest 147, e79–e82.
Yu H, Burton B, Huang CJ, Worley J, Cao D, Johnson JP Jr., Umuthia A, Joubrian J, Seepersaud S, Sussy K, Hoffman BJ, Van Goor F (2012). Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros 11, 237–245.
Yu YC, Miki H, Nakamura Y, Hanyuda A, Matsuzaki Y, Abe Y, Yasui M, Tanaka K, Hwang TC, Bompadre SG, Sohma Y (2011). Curcumin and genistein additively potentiate G551D-CFTR. J Cyst Fibros 10, 243–252.
Zielenski J (2000). Genotype and phenotype in cystic fibrosis. Respirat 67, 117–133.
Zielenski J, Tsui LC (1995). Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 29, 777–807.