Effect of liver growth factor on both testicular regeneration and recovery of spermatogenesis in busulfan-treated mice

Miriam Pérez-Crespo1†, Eva Pericuesta1†, Serafín Pérez-Cerezales1, Maria I Arenas2, Maria VT Lobo2, Juan J Díaz-Gil3, Alfonso Gutierrez-Adan1*

Abstract

Background: Some adult stem cells persist in adult tissue; however, we do not know how to stimulate stem cells in adults to heal injuries. Liver growth factor (LGF) is a biliprotein with hepatic mitogen activity. Its concentration increases markedly in the presence of any type of liver injury, and it shows in vivo therapeutic biological activity at extrahepatic sites.

Methods: We have analyzed the effect of LGF on the replenishment of germinal cells in the testes of mice injected with busulfan, a common cancer drug that also specifically affects germ line stem cells and spermatogonia. We determined the testicular and epididymal weight, spermatozoal concentration in the epididymis and sperm motility, and performed a histological analysis.

Results: Intraperitoneal administration of LGF was able to partially restore spermatogenesis, as well as sperm production and motility, in mice sterilized with busulfan. LGF treatment in busulfan-treated animals that have suffered a disruption of spermatogenesis can accelerate the reactivation of this process in most of the tubules, as shown in the histological analysis.

Conclusions: Our results suggest a potential use of LGF in the mobilization of testicular stem cells and in the restoration of spermatogenesis after busulfan-induced damage to the testicular germinal epithelium.

Background

Liver growth factor (LGF) is an albumin-bilirubin complex purified from both rat serum and from patients with hepatobiliary disorders [1]. It has been demonstrated that LGF stimulates cell proliferation with no signs of toxicity or tissue degeneration [2]. LGF is used in some experimental models of hypertensive, fibrotic lung disease and Parkinson’s disease, showing its potential as an antifibrotic, antihypertensive and neuroregenerative agent [3-5]. It has been proposed to be a novel factor useful for neural replacement in neurodegenerative diseases [3]. Few experiments have been carried out to study the role of LGF in testicular regeneration [6]. That study, performed in the rat model, concluded that LGF seems to stimulate testicular regeneration after ethane dimethanesulfonate (EDS)-induced Leydig cell depletion. It prevents the germ cell sloughing and Sertoli cell damage and promotes germinal cell growth. Moreover, LGF stimulates the synthesis of vascular endothelial growth factor (VEGF) and its receptors in testis [7]. In the testis, it may be related to spermatogenesis and Leydig cell physiology, since there is no active angiogenesis in the adult male.

In order to carry out the functional assessment of the role of LGF in the renewal activity of male germ line stem cells, cytotoxic testicular damage was induced in mice by intraperitoneal administration of busulfan. Busulfan is an alkylating agent that adversely affects spermatogenesis in mammals, and it is the drug of choice in the treatment of chronic myelogenous or granulocytic leukemia [8] because its cytotoxic activity results in primary destruction of hematopoietic cells. Nevertheless, some secondary malignancies, such as...
azoospermia, have been reported in treated patients [9],
infertility being the major long-term effect of che-

therapy in males. Many authors have used busulfan to
deplete stem cells [10-12]. Unlike other chemicals
that destroy differentiated spermatogonia, busulfan is a
potent agent that preferentially kills spermatogonial

stem cells of several species [13]. It has no effect on
DNA synthesis; however, it inhibits the next mitosis
when it intoxicates the cells in the G1 phase [12]. High-
dose administration of busulfan (40 mg/kg) eliminates
germ cells, sterilizes males and causes long-term mor-
phological damage to sperm produced by surviving stem
spermatogonia [10,14]. However, other authors have
shown that after the administration of a single dose of
busulfan, partial recovery of spermatogenesis can take
place after two spermatogenic cycles [15].

In this work, we have studied the effects of the admin-
istration of LGF on testicular regeneration in mice pre-
viously treated with busulfan.

Methods

Experimental groups and treatments

Mature male CD1 mice (3-4 months of age) were divided
into the following groups: untreated controls (n = 10);
busulfan, administered intraperitoneally (i.p.) (40 mg/kg
body weight per dose, two doses at a one-week interval;
n = 10); LGF alone, at 1.7 μg/mouse, i.p. (animals were
injected twice a week for 2 weeks; n = 15); and busulfan
+LGF (same doses as previous groups; n = 18). Mice
were kept on a 14L:10 D light cycle. All animal exper-
iments were performed in accordance with the Internal

Institutional Animal Care and Use Committee of the

Instituto Nacional de Investigación y Tecnología Agraria
y Alimentaria (Madrid, Spain). Busulfan (Sigma, St.
Louis, MO) was first dissolved in dimethyl sulfoxide
(Sigma), after which, an equal volume of sterile distilled
water was added to provide the final concentration of
40 mg/kg. The four groups of male animals were ana-
alyzed in two independent experiments.

LGF purification

LGF preparations were lyophilized and stored at 4°C until
used, at which time, aliquots were dissolved in saline for
i.p. injection. Before using LGF in these experiments, we
checked its activity in vivo at several doses, injecting it
into normal rats to establish the dose that produced the
greatest stimulation of liver DNA synthesis, as determined
by incorporation of 3H-thymidine (New England Nuclear,
Dreieich, Germany) into DNA [16]. LGF was quantified by
high-performance liquid chromatography [17,18].

LGF administration

Two doses of 1.7 μg/LGF/mouse were injected i.p. each
week for two consecutive weeks; the LGF injections
were administered 1 week after the first busulfan injec-
tion. Animals were sacrificed by cervical dislocation
63 days after the administration of busulfan. Body
weight and testicular and epididymal weight were mea-
ured for each male, and sperm concentration and moti-

ty were evaluated.

Histological study

Left testes were prepared by making an incision from the
proximal to the distal pole, and fragments of parenchyma
were fixed in formalin for 24 h. The immersion-fixed
testes were sliced transversely into approximately 3-mm

thick strips and processed for paraffin embedding. Sec-
tions (5-μm thick) across the seminiferous tubules were
deparaffinised, hydrated and stained with hematoxylin
and eosin for histological examination. The diameters of
30 randomly selected transverse sections of the round-
shaped seminiferous tubules were measured for each
animal across the minor axis of their cross-sectioned
profiles [19].

Sperm characteristics

Sperm counts were performed using a Burker haemocyt-
ometer. Motility was determined by loading a sperm
sample onto a prewarmed (37°C) slide and placing it on
the heated (37°C) microscope stage [20]. Percentages of
motile spermatozoa were assessed by the Integrated
Semen Analysis System (ISAS) (Projectes i Serveis R+D
S.L., Valencia, Spain).

Sperm viability

Percentages of live and dead sperm cells were deter-
mined using a live-cell nucleic acid stain, SYBR-14, in
combination with the conventional dead-cell nucleic
acid stain, propidium iodide [21], according to the stain-
ning protocol of the live/dead sperm viability kit (Mole-
cular Probes, Eugene, OR). Briefly, 0.8 μl of 20 mM
SYBR-14 working solution and 1.2 μl of 2.4 mM propi-
dium iodide working solution were added to 50 μl of
the sperm suspension (2-3 × 10⁶ sperm cells/ml) and
incubated at 37°C for 15 min. Then, 20 μl of the sperm
suspension were loaded on a glass slide, covered with a
cover slip, and immediately observed under a fluores-
cent microscope equipped with appropriate filters.
SYBR-14 stains the nucleus of live sperm green, while
dead or membrane-damaged spermatozoa are stained
red by the propidium iodide. At least 500 cells were
counted per treatment.

Statistical analysis

Statistical analyses were performed using SigmaStat ver-
sion 3.1.1 software (Jandel Scientific, San Rafael, CA).
Data are given as the mean ± SEM. Comparison of the
differences between the means for each treatment was
done using ANOVA, followed by the Holm-Sidak method.

Results
Testis and epididymis weight and sperm quality parameters
It has been reported elsewhere that a single dose of busulfan can permanently sterilize mice at nonlethal doses [10]. We have previously demonstrated that CD-1 mice treated with two doses of 40 mg/kg of busulfan remain sterile 70 days after the administration of the drug.

No significant differences were observed between the LGF and control groups in terms of either testis and epididymis weight (Figure 1) or sperm motility and concentration (Figure 2), indicating that LGF treatment did not induce either an increase in testis and epididymis weight or an improvement in sperm quality in a normal testis. As observed by other authors [10], mice analyzed 70-63 days after the administration of the first-second doses of 40 mg/kg busulfan showed both a decrease in testis and epididymis weight and a decrease in sperm concentration and motility when compared with the control and the LGF group (Figures 1 and 2).

When animals treated with busulfan were injected with LGF, there was a decrease in the parameters analyzed compared to the control and LGF groups. However, testis and epididymis weight and sperm concentration were significantly higher than the values observed in animals treated with busulfan alone. Sperm motility in the animals treated with busulfan and LGF was different from the value observed in mice treated with busulfan alone; this value was also lower than that observed in the control and in the LGF groups (Figure 2).

Histological study
Histological analysis of testes from animals of the control group is represented in Figure 3A. Histological analysis of testes 63 days after busulfan treatment showed a reduction in the diameter of the seminiferous tubules and several morphological abnormalities such as germ
cell sloughing, tubule plugging, vacuolization and Sertoli cell-only tubules (Figure 3 and 4). In the interstitium, areas with nodules of hyperplastic Leydig cells were also observed (Figure 3B). In the group treated with busulfan and LGF, a recovery of germ cells was detected in most of the tubules, although some of them showed disruption of the germinal epithelium (Figure 3C). The hyperplasia of Leydig cells was still observed, but it was not as evident as that observed in the group treated with busulfan alone.

Discussion

In this study, we show that LGF treatment in control mice has no effect on either testicular and epididymal weight or on sperm quality. However, LGF treatment applied to animals that have been subjected to testicular damage involving the germinal epithelium seems to induce a regeneration of the testis that is reflected in an increase in the weight of testis and epididymis. It also seems that LGF treatment in busulfan-treated animals that have suffered a disruption of spermatogenesis can accelerate the reactivation of this process in most of the tubules, as shown in the histological analysis. This reactivation is also demonstrated by the increase in the sperm concentration value compared to that observed in the animals treated with busulfan alone.

Spermatogenesis is dependent on a population of cells called spermatogonial stem cells. Their number in the testis is very small, and is estimated to be about 2-3 × 10^4 in mice [14]. After busulfan treatment, stem cell expansion starts immediately and the doubling time for stem cells is 1-5 weeks [14]. The doses of busulfan used in this work (40 mg/kg) were previously shown to achieve complete depletion of germ cells, but only partial depletion of testicular stem cells to allow spontaneous recovery to occur [15]. We observed the expected responses from the busulfan-treated group. Moreover, LGF affects spermatogenic recovery after injury induced experimentally by busulfan. The remaining spermatogonial stem cells are capable of inducing spermatogenic recovery, and we propose that LGF activates these stem cells to induce a faster recovery of spermatogenesis. As previous authors have reported [22], the histological study showed that busulfan treatment apparently did not affect Sertoli or spermatogonial stem cells, but some morphological abnormalities of the seminiferous tubules were noted. The recovery of the normal histological structure after LGF administration to animals treated previously with busulfan showed not only a reactivation of the spermatogenic process, but also the regeneration of the microenvironment necessary for successful spermatogenesis. It could be also speculated that LGF may have a role in normal development of spermatogenesis, as previously has been reported for the hepatocyte.
growth factor effects in the modulation of in vitro survival and proliferation of germ cells during postnatal testis development [23].

Conclusions

It has been demonstrated that LGF promotes germinal cell growth in male rat after ethane dimethanesulfonate (EDS)-induced testicular damage [6]. Here we have observed that intraperitoneal administration of LGF was able to restore spermatogenesis in mice sterilized with busulfan, suggesting that LGF can collaborate in the mobilization of testicular stem cells to restore spermatogenesis after germinal epithelium damage. As busulfan is an anticancer drug that affects fertility, the administration of LGF could be employed as a single treatment to induce the recovery of patients from busulfan treatment.

Acknowledgements

This work was funded by Grant AGL2009-11358 from the Spanish Ministry of Science and Innovation.

Author details

1. Dpto de Reproducción Animal y Conservación de Recursos Zootecníticos, INIA, Ctra de la Coruña Km 5.9, Madrid 28040, Spain. 2. Dpto de Biología Celular y Genética, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain. 3. Servicio de Bioquímica Experimental, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.

Authors’ contributions

MPC and EP performed most of the experimental animals and wrote the manuscripts; SPC, MIS, and MVTL performed the experimental analysis of the sperm and tests, JDG and AGA supervised all the work and assisted in writing the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 29 November 2010 Accepted: 4 February 2011 Published: 4 February 2011

References

1. Diaz-Gil JJ, Davilanes JG, Sanchez G, Garcia-Canero R, Garcia-Segura JM, Santamaria L, Trilla C, Escartin P: Identification of a liver growth factor as an albumin-bilirubin complex. Biochem J 1987, 243(2):443-448.
2. Diaz-Gil JJ, Munoz J, Albillos A, Rua C, Machin C, Garcia-Canero R, Cereceda RM, Guajardo MC, Trilla C, Escartin P: Improvement in liver fibrosis, functionality and hemodynamics in CCI4-cirrhotic rats after injection of the Liver Growth Factor. J Histochem Cytochem 2006, 54(4):457-465.
3. Gonzalo-Garcia J, Reimers D, Herranz AS, Diaz-Gil JJ, Osuna C, Asensio MJ, Baena S, Rodriguez-Serrano M, Bazan E: Mobilization of neural stem cells and generation of new neurons in 6-OHDA-lesioned rats by intracerebroventricular infusion of liver growth factor. J Histochem Cytochem 2009, 57B(5):491-502.
4. Reimers D, Herranz AS, Diaz-Gil JJ, Lobo MV, Paine CL, Alonso P, Asensio MJ, Gonzalo-Garcia R, Bazan E: Intracerebroventricular injection of liver growth factor stimulates dopamine terminal sprouting and partially restores motor function in 6-hydroxydopamine-lesioned rats. J Histochem Cytochem 2006, 54(4):457-465.
5. Somoza B, Abderahim F, Gonzalez JM, Conde MV, Arbilla SM, Starcher B, Regadera J, Fernandez-Alfonso MS, Diaz-Gil JJ, Gonzalez MC: Short-term treatment of spontaneously hypertensive rats with liver growth factor reduces carotid artery fibrosis, improves vascular function, and lowers blood pressure. Cardiovasc Res 2006, 69(3):764-771.
6. Martin-Hidalgo A, Lobo MVT, Sacristan S, Huerta L, Gomez-Pinillos A, Diaz-Gil JJ, Arenas M: Rat testicular regeneration after EDS administration is stimulated by the Liver growth factor (LGF). FEBS J 2007, 274(1-2):296.
7. Martin-Hidalgo A, Arenas M, Sacristan S, Huerta L, Diaz-Gil JJ, Camillo E, Gomez-Pinillos A, Lobo MVT: Rat testis localization of VEGFs and VEGF Receptors in control and testicular regeneration stimulated by the Liver growth factor (LGF). FEBS J 2007, 274(1-2):296.
8. von Bubnoff N, Duyster J: Chronic myelogenous leukemia: treatment and monitoring. Dtsch Arztebl Int 2010, 107(7):114-121.
9. Meistrich ML: Male gonadal toxicity. Pediatr blood & cancer 2009, 53(2):261-266.
10. Bucci LR, Meistrich ML: Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat Res 1987, 176(2):259-268.
11. de Rooy DG, Kramer MF: The effect of three alkylating agents on the seminiferous epithelium of rodents. I. Deleterious effect. Virchows Arch A Cell Pathol 1970, 4(4):267-275.
12. Kramer MF, de Rooy DG: The effect of three alkylating agents on the seminiferous epithelium of rodents. II. Cytotoxic effect. Virchows Arch A Cell Pathol 1970, 4(4):276-282.
13. de Rooy DG, Vergouwen RP: The estimation of damage to testicular cell lineages. Prog Clin Biol Res 1991, 372:476-480.
14. Kanatsu-Shinohara M, Toyokuni S, Morni M, Matsui S, Hino T, Shinohara T: Functional assessment of self-renewal activity of male germline stem cells following cytotoxic damage and serial transplantation. Biochim Biophys Acta 2003, 1687(1):1801-1807.
15. Ehmke J, Joshi B, Henggenrother SD, Schlatt S: Aging does not affect spermatogenic recovery after experimentally induced injury in mice. Reprod 2007, 133(1):75-83.
16. Diaz-Gil JJ, Rua C, Machin C, Cereceda RM, Garcia-Canero R, de Foronda M, Perez de Diego J, Trilla C, Escartin P: Hepatic growth induced by injection of the liver growth factor into normal rats. Growth Regul 1994, 4(3):113-122.
17. Singh J, Bowers LD: Quantitative fractionation of serum bilirubin species by reversed-phase high-performance liquid chromatography. J Chroma 1986, 380(2):321-330.
18. Diaz-Gil JJ, Garcia-Moncon C, Rua C, Martín-Sanz P, Cereceda RM, Miquelena-Colina ME, Machin C, Fernandez-Martinez A, Garcia-Canero R: The anti-fibrotic effect of liver growth factor is associated with decreased intrahepatic levels of matrix metalloproteinases 2 and 9 and transforming growth factor beta 1 in bile duct-ligated rats. Histol Histopathol 2005, 20(5):583-591.
19. Hourcade JD, Perez-Crespo M, Fernandez-Gonzalez R, Pintado B, Gutierrez-Adan A: Selection against spermatozoa with fragmented DNA after postovulatory mating depends on the type of damage. Reprod Biol Endocrinol 2010, 8:9.
20. Perez-Crespo M, Moreira P, Pintado B, Gutierrez-Adan A: Factors from damaged sperm affect its DNA integrity and its ability to promote embryo implantation in mice. J Androl 2008, 29(1):47-54.
21. Perez-Crespo M, Pintado B, Gutierrez-Adan A: Scrotal heat stress effects on in vivo sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev 2008, 75(1):40-47.
22. Zschauer A, Hodel C: Drug-induced histological changes in rat seminiferous tubular epithelium. Arch Toxicol Suppl 1985, 4:466-470.
23. Catizone A, Ricci G, Del Bravo J, Gardini M: Hepatocyte growth factor modulates in vitro survival and proliferation of germ cells during postnatal testis development. J Endocrinol 2006, 199(1):137-146.