Safety of laparoscopic surgery in digestive diseases with special reference to antithrombotic therapy: A systematic review of the literature

Takahisa Fujikawa, Kenji Ando

Takahisa Fujikawa, Department of Surgery, Kokura Memorial Hospital, Kitakyushu 802-8555, Fukuoka, Japan
Kenji Ando, Department of Cardiology, Kokura Memorial Hospital, Kitakyushu 802-8555, Fukuoka, Japan

ORCID number: Takahisa Fujikawa (0000-0002-4543-9282); Kenji Ando (0000-0003-0699-4248).

Author contributions: Fujikawa T designed, performed research and analyzed data; Fujikawa T prepared the manuscript and Ando K reviewed it.

Conflict-of-interest statement: The authors report no relevant conflicts of interest.

PRISMA Checklist: The manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Corresponding author to: Takahisa Fujikawa, MD, PhD, Chief Doctor, Surgeon, Department of Surgery, Kokura Memorial Hospital, 3-2-1 Asano, Kokurakita-ku, Kitakyushu 802-8555, Fukuoka, Japan. fujikawa-t@kokurakinen.or.jp
Telephone: +81-93-5112000
Fax: +81-93-5113240

Accepted: October 17, 2018
Article in press: October 16, 2018
Published online: November 26, 2018

Abstract

AIM
To elucidate the effect of antithrombotic therapy (ATT) on bleeding and thromboembolic complications during or after laparoscopic digestive surgery.

METHODS
Published articles or internationally accepted abstracts between 2000 and 2017 were searched from PubMed, Cochrane Database, and Google Scholar, and studies involving laparoscopic digestive surgery and antiplatelet therapy (APT) and/or anticoagulation therapy (ACT) were included after careful review of each study. Data such as study design, type of surgical procedures, antithrombotic drugs used, and surgical outcome (both bleeding and thromboembolic complications) were extracted from each study.

RESULTS
Thirteen published articles and two internationally accepted abstracts were eligible for inclusion in the systematic review. Only one study concerning elective laparoscopic cholecystectomy in patients with perioperative heparin bridging for ACT showed that the risk of postoperative bleeding was higher compared with those without ACT. The remaining 14 studies reported no significant differences in the incidence of bleeding complications between the ATT group and the group without ATT. The risk of thromboembolic events (TE) associated with laparoscopic digestive surgery in patients receiving ATT was not significantly higher than those with no ATT or interrupted APT.
Laparoscopic digestive surgery in ATT-burdened patients for prevention of bleeding and TE showed satisfactory results. The risk of hemorrhagic complication during or after these procedures in patients with continued APT or heparin bridging was not significantly higher than in patients with no ATT or interrupted APT.

**Key words:** Thromboembolic complication; Bleeding complication; Laparoscopic surgery; Anticoagulation therapy; Digestive surgery; Antithrombotic therapy; Antiplatelet therapy

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In total, 15 published articles and abstracts concerning laparoscopic digestive surgery and antithrombotic therapy were systematically reviewed. These articles demonstrated that the risk of bleeding and thromboembolic complications during or after these procedures in patients with continued antiplatelets or heparin bridging was not significantly higher than in patients with no antithrombotics or interrupted antiplatelets.

Fujikawa T, Ando K. Safety of laparoscopic surgery in digestive diseases with special reference to antithrombotic therapy: A systematic review of the literature. *World J Clin Cases* 2018; 6(14): 767-775 Available from: URL: [http://www.wjgnet.com/2307-8960/full/v6/i14/767.htm](http://www.wjgnet.com/2307-8960/full/v6/i14/767.htm) DOI: [http://dx.doi.org/10.12998/wjcc.v6.i14.767](http://dx.doi.org/10.12998/wjcc.v6.i14.767)

**INTRODUCTION**

Following cancer, heart disease and cerebrovascular disease are the major causes of death worldwide. With the arrival of an aging society in recent years, the number of patients with heart disease and/or cerebrovascular disease who require non-cardiac surgery is increasing. For the purpose of preventing thromboembolic events (TE), most of them receive antithrombotic therapy (ATT), including antiplatelet therapy (APT) and anticoagulation therapy (ACT). Perioperative management of these patients is challenging for surgeons, and they are often at high risk of bleeding and thromboembolic complications.[1-4]

Many digestive operations are currently performed laparoscopically. Several reports have shown advantages of laparoscopic digestive surgery, including early recovery of digestive function, reduction of body wall destruction, reduction of postoperative pain, less postoperative complications, and rapid return to daily life.[5-9] During laparoscopic surgery, minimizing surgical blood loss to maintain a dry operative field is exclusively important. Improvement of several techniques and new surgical devices, such as ultrasonic coagulating shears or saline-linked soft-coagulation system, led us to perform various types of advanced laparoscopic digestive operations including colorectal resection, esophagogastrectomy, and hepato-biliary-pancreas surgery. However, optimal management of patients receiving ATT during laparoscopic digestive surgery is still controversial.

The purpose of the current systematic review study is to elucidate the effect of ATT on bleeding and thromboembolic complications during or after laparoscopic digestive surgery.

**MATERIALS AND METHODS**

Articles written in English and published between 2000 and 2017 were collected from PubMed, Cochrane Database and Google Scholar. We also used PubMed and Google Scholar to search internationally accepted English abstracts. The following key words were used for the search: Clopidogrel, aspirin, antiplatelet, anticoagulant, warfarin, bleeding, hemorrhage, gastrointestinal, gastroenterological, digestive and laparoscopic surgery. Articles or abstracts were included when published in peer reviewed journals or when accepted at internationally renowned medical conferences. Types of eligible studies included randomized clinical trials, prospective or retrospective cohort studies, or case-control studies; guidelines, review articles, or case series/reports were not included.

After removing duplicates, articles were systematically excluded by careful review of each study. The quality of each study was assessed depending on study design, and eligible articles and abstracts were determined. Complete data were extracted from each study, which included study design, year of publication, sample size, type of surgical procedures, type of antithrombotic drugs, and surgical outcome (both bleeding and thromboembolic complications).

**RESULTS**

**Characteristics of included studies**

Research collection and screening was conducted from January 2018 to February 2018. In all, 13 articles and two abstracts were included.[10-24] Among them, there were no randomized clinical trials or prospective cohort studies, and only retrospective cohort studies or case-control studies were seen. Among 15 studies, nine studies examined only APT use, two studies focused on ACT, and four studies investigated both. Concerning APT, patients who had continued preoperative APT were compared with those who did not receive APT. In patients with continued APT, only single antiplatelet agents, such as aspirin, were usually continued. One study focused on clopidogrel alone, and one study investigated aspirin alone. In studies regarding ACT, only warfarin was used, and most patients received heparin bridging perioperatively.
Only one retrospective cohort study used a large number of cases (over 1000 cases), but various types of laparoscopic surgery (mostly laparoscopic cholecystectomy) were included. This is the largest study to date, examining the effects of APT on outcome of abdominal laparoscopic operations. This study demonstrated that there was no significant difference in postoperative bleeding events between patients who continued APT and other patients.

We classified the type of surgery into two categories based on previous reports [10]: Basic laparoscopic surgery (e.g., cholecystectomy, appendectomy, adhesiolysis, hernia repair) and advanced laparoscopic surgery (e.g., colorectal resection, gastrectomy, liver/pancreas resection). The results of basic surgery and advanced surgery are shown in Tables 1 and 2, respectively. Bleeding events included two categories: intraoperative bleeding complications (IBCs; increased surgical blood loss), and postoperative bleeding complications (PBCs; intraabdominal bleeding, gastroenterology bleeding, or abdominal wall hematoma).

Basic laparoscopic surgery
In basic laparoscopic surgeries, only two types of surgery (cholecystectomy and appendectomy) were included. Laparoscopic cholecystectomy was the most commonly reported overall, and a total of eight studies were included [11-15,17,18,24]. Research on laparoscopic appendectomy included two case-control studies [19,20].

For laparoscopic cholecystectomy, warfarin was described in three studies. With only one study, the risk of PBC in ACT patients was significantly higher than those without ACT [11,14,18]. In the remaining two studies, the proportion of IBC or PBC did not increase, even with heparin bridging [14,18]. In terms of APT, seven studies focusing on aspirin and/or thienopyridine were included [22,14,17,18,24,29]. IBC was examined as an outcome in six of them, and PBC was analyzed in four studies. None of the studies demonstrated an increase in IBC or PBC when APT (mostly aspirin monotherapy) was continued preoperatively. In two laparoscopic appendectomy studies [19,20], they were exclusively performed in an emergency setting. Both studies focused on preoperative APT continuation and showed that neither IBC nor PBC increased with continued APT.

These findings suggested that when basic laparoscopic digestive operations were performed, the risk of either IBC or PBC in patients undergoing preoperative continued monotherapy for APT or heparin bridging for ACT was not significantly higher than in those without ATT or interrupted APT.

Advanced laparoscopic surgery
Concerning advanced laparoscopic surgery, only limited numbers of studies were found in three types of surgery; one study on laparoscopic liver resection [20], two studies on laparoscopic colorectal cancer resection [12,21], and two studies regarding laparoscopic gastrectomy [22,23].

Fujikawa et al [16] conducted a retrospective cohort study using liver resection cases (including laparoscopic and open surgery). The authors found that neither IBC nor PBC increased in the case of laparoscopic liver resection, even with aspirin monotherapy for APT and/or heparin bridging for ACT. In two studies of laparoscopic colorectal cancer resection, the effect of APT on IBC or PBC was assessed, and the authors found that APT continuation did not significantly affect hemorrhagic complications [12,21].

Among two papers regarding laparoscopic gastrectomy, Takahashi et al [22] examined the difference in IBC and PBC between the ATT group and the group without ATT. The ATT group included preoperative APT continuation and heparin substitution for ACT, but there was no significant difference in IBC or PBC between the groups. Finally, Gerin et al [23] examined the difference in PBC during laparoscopic sleeve gastrectomy between the warfarin group and the group without warfarin. PBC occurred in 6.7% of patients who received ACT, whereas 3.3% of patients without ACT experienced PBC (P = 0.60).

Perioperative thromboembolic events and mortality
Among 15 included studies, the incidence of perioperative TE and the mortality rate was described in eight and 14 studies, respectively. In basic laparoscopic surgeries, the TE rate was 0%-2.2% in the continued APT group and 0%-0.2% in the control group. Six out of eight studies showed no mortality in the entire cohort. In the remaining two studies, there was no difference in mortality between the groups. In advanced laparoscopic surgery, the incidence of TE was identical between the groups, with only one expired case (1% of the ATT group). Overall, the risk of TE associated with laparoscopic digestive surgery for patients receiving ATT was not significantly higher than those without ATT or interrupted APT.

DISCUSSION
To the best of our knowledge, this is the first systematic review that assesses the effect of ATT on bleeding and thromboembolic complications during and after laparoscopic digestive surgery. The present review summarized results of various types of laparoscopic digestive surgery in patients receiving ATT for the prevention of thromboembolism. The risk of hemorrhagic or thromboembolic complications during or after these procedures in patients with continued APT or heparin bridging was not significantly higher than in patients with no ATT or interrupted APT. There are some promising results for both basic and laparoscopic surgery. However, in terms of advanced laparoscopic surgery, such as colorectal resection or liver resection, there is scarce evidence.

ATT includes two types of medications, classified as antiplatelets and anticoagulants. Antiplatelets
### Table 1: Reported data concerning bleeding complications of "basic" abdominal surgery in patients with antithrombotic therapy (antiplatelet therapy and/or anticoagulation therapy)

| First author of the reports | Year | Surgery type | Drug use and exposure | Bleeding events | TE, mortality |
|-----------------------------|------|--------------|----------------------|----------------|--------------|
| Fujikawa [1]                | 2013 | Abdominal laparoscopic surgery (cholecystectomy mostly), appendectomy, surgery for GI malignancy, liver resection, splenectomy etc) | Patients with continued use of ASA (n = 52) Patients not on APT (control, n = 863) | PBC 0% in continued ASA vs 2.5% in discontinuation vs 0.7% in control (P = 0.987) | TE 0% in continued ASA vs 0.6% in discontinued ASA vs 0.2% in control (P = 0.625) |
| Ercan [2]                   | 2010 | Laparoscopic cholecystectomy (only elective) | Patients with ACT (w/ bridging, n = 44) Patients without ACT (control, n = 1377) | PBC 25% in ACT vs 1.5% in control (P < 0.001) | (not mentioned) |
| Ono [3]                     | 2013 | Laparoscopic cholecystectomy (n = 270) or Laparoscopic colorectal cancer resection (n = 218) | Patients with continued ASA (n = 52) Patients without ASA (control, n = 436) | SBL 27 mL in continued ASA vs 17 mL in control (P = 0.430) | No mortality in both groups |
| Anderson [4]                | 2014 | Laparoscopic cholecystectomy (elective and emergency) | Patients with continued clopidogrel (n = 36) Matched patients without clopidogrel | No difference in SBL (49 g vs 47 g, P = 0.85) | No TE in both groups |
| Noda [5]                    | 2014 | Early laparoscopic cholecystectomy for acute cholecystitis | Patients with continued use of ATT (n = 21) Patients without ATT (n = 162) | No conversion to open surgery No PBC in both groups | No mortality in both groups |
| Joseph [6]                  | 2015 | Emergency laparoscopic cholecystectomy | Patients with continued use of ATT (n = 56), including those with preop Plt transfusion (n = 12) | SBL ≥ 100 mL 14.3% in continued ASA vs 9% in control (P = 0.50) | No difference in the rates of overall postop complications (8.9% vs 7.1%, P = 0.80) |
| Fujikawa [1]                | 2017 | Emergency cholecystectomy including 106 laparoscopic surgery for acute cholecystitis | Patients with continued use of ATT (n = 89) Patients without ATT (control, n = 154) | SBL ≥ 500 mL 12% in continued ATT vs 5% in control (P = 0.240) | TE 1.1% in continued ATT vs 0% in control (P = 0.37) |
| Sakamoto [7]                | 2017 | Laparoscopic cholecystectomy (only elective operation) | Patients with continued use of ATT (n = 49) Patients with discontinuation of ATT (n = 106) | SBL ≥ 200 mL 4.7% in continued ATT vs 4.7% in discontinued ATT vs 1.5% in control (P = 0.064) | TE 0% in continued ATT vs 0.9% in discontinued ATT vs 0.2% in control (P = 0.022) |
| Yun [8]                     | 2017 | Laparoscopic cholecystectomy (elective vs emergency) for acute cholecystitis | Patients not on APT (control, n = 653) Patients with continued use of ATT (almost APT, n = 22) Patients with discontinued ATT (almost APT, control, n = 45) | SBL ≥ 100 mL 13.6% in continued ATT vs 22.2% in control (P = 0.613) | One case of TE (22%) in control Mortality 4.6% in continued ATT vs 2.2% in control (P > 0.099) |
| Chechik [9]                 | 2011 | Appendectomy including laparoscopic appendectomy (n = 78) | Patients with continued use of ATT (n = 39) Patients without ATT (control, n = 140) | No difference in SBL or PBC between the groups | No mortality in both groups |
| Peacock [10]                | 2017 | Laparoscopic appendectomy (urgent only) | Patients with continued use of ATT (n = 267) Matched patients without ATT (control, n = 267) | No difference in SBL (31 g vs 26 g) or blood transfusion rate (1% vs 0%) between the groups | Two cases of TE (MI) in continued APT (0.7%) No difference in the rates of mortality (1% vs 0%, P = 0.12) |

ATT: Antithrombotic therapy; APT: Antiplatelet therapy, ACT: Anticoagulation therapy; TE: Thromboembolism; SBL: Surgical blood loss; PBC: Postoperative bleeding complications; ASA: Aspirin; GE: Gastroenterological; MI: Myocardial infarction.
November 26, 2018 | Volume 6 | Issue 14 | WJCC | www.wjgnet.com

Table 2. Reported data concerning bleeding complications of “advanced” abdominal surgery in patients with antithrombotic therapy (antiplatelet therapy and/or anticoagulation therapy)

| Year | First author of the report | Procedure | Surgery type | Drug use and exposure | Bleeding events | TE, mortality |
|------|-----------------------------|-----------|-------------|-----------------------|----------------|--------------|
| 2015 | Fujikawa et al.             | Laparoscopic liver resection | Patients with ATT (n = 100) | Patients without ATT (control, n = 138) | SRL: ≥ 500 mL, 23% in those with ATT vs 27% in control (P = 0.830) | TE: 1% in ATT, 1.3% in control (P = 0.330) |
| 2016 | Shimokawa et al.            | Laparoscopic colorectal surgery including cholecystectomy | Patients with continued ASA (n = 52) | Patients without ASA (control, n = 459) | SRL: 27 mL in continued use, 64% in those with ATT vs 17 mL in control (P = 0.040) | PBC: 4.7% in those with ATT vs 4.3% in control (P = 0.950) |
| 2017 | Ono et al.                  | Laparoscopic gastrectomy | Patients with APT (n = 148) | Patients without APT (control, n = 343) | SRL: 0.7% in patients with APT vs 0.9% in control (P = 0.975) | TE: 0.7% in APT vs 0% in control (P = 0.301) |
| 2017 | Kitaoka et al.              | Laparoscopic sleeve gastrectomy | Patients with ATT (n = 12) | Patients without ATT (control, n = 15) | SRL: 0.7% in those with ATT vs 3.3% in control (P = 0.60) | No mortality in both groups |
| 2017 | Fujikawa et al.             | Laparoscopic colorectal surgery | Patients with ATT (n = 12) | Patients without ATT (control, n = 15) | SRL: 0.7% in those with ATT vs 3.3% in control (P = 0.60) | No mortality in both groups |

**ATT, APT, and ACT**

ATT: Antithrombotic therapy; APT: Antiplatelet therapy; ACT: Anticoagulation therapy; TE: Thromboembolism; SRL: Surgical blood loss; PBC: Postoperative bleeding complications; ASA: Aspirin; HBP: Hepatobiliary and pancreatic surgery.

**Pharmacological agents**

Drugs used for antithrombotic therapy can be divided into two main groups: antiplatelet and anticoagulant drugs. Antiplatelet drugs decrease platelet aggregation and prevent thrombus formation, and they are generally used for primary and secondary prevention of cardiovascular and cerebrovascular diseases, such as myocardial infarction or cerebral infarction. Antiplatelets include thromboplastin (e.g., clopidogrel, ticlopidine, or prasugrel), platelet aggregation inhibitors (e.g., cilostazol), and acetylsalicylic acid (aspirin), and other non-steroidal anti-inflammatory agents.

Antiplatelets can be divided into two main categories: platelet aggregation inhibitors and platelet aggregation inhibitors. The former group includes non-steroidal anti-inflammatory agents, such as aspirin, which can decrease platelet aggregation and prevent thrombus formation. The latter group includes agents that inhibit platelet aggregation, such as clopidogrel, ticlopidine, or prasugrel.

Anticoagulants interfere with the native clotting cascade and prevent blood clotting, and they are generally used for atrial fibrillation, deep vein thrombosis, cardiac endoprostheses, and acute coronary syndrome. These include vitamin K antagonists (e.g., warfarin), heparin derivatives (e.g., fondaparinux), and anticoagulant drugs (e.g., dabigatran, rivaroxaban, and apixaban).

The two latter types are now increasingly used and are referred to as direct-acting oral anticoagulants (DOACs) or non-vitamin K antagonist oral anticoagulants (NOACs). The types of antithrombotics, specific agents, and duration of action are summarized in Table 3.

**Laparoscopic digestive surgery and antithrombotic therapy**

The optimal management of patients receiving ATT during laparoscopic digestive surgery is shown in Figure 1. The management generally consists of three approaches according to types of ATT: APT, warfarin, and DOACs. In patients with thromboembolic risk, the optimal management of patients receiving ATT during laparoscopic digestive surgery is still controversial, but some postoperative complications, such as continued anticoagulation therapy for APT or heparin bridging for ACT, are considered to be safe and feasible.

Using several recently updated guidelines concerning antithrombotics as references (20-30), the recommended protocol of perioperative management for patients undergoing ATT in the case of elective open or laparoscopic digestive surgery is shown in Figure 1. The management generally consists of three approaches according to types of ATT: APT, warfarin, and DOACs. In cases with DOACs, APT is stopped 3-5 d before surgery; in patients with thromboembolic risk, heparin bridging might be considered. Postoperatively, every antithrombotic agent is reinitiated as soon as possible (POD1-2), if the thromboembolic risk is very high, heparin bridging might be considered.
## Table 3  Types, specific agents, and acting duration of commonly used antithrombotic drugs

| Class of agents | Type | Specific agents | Duration of action |
|-----------------|------|----------------|--------------------|
| Anticoagulants  | Thienopyridines | Clopidogrel (Plavix), Ticlopidine (Panardine), Prasugrel (Effient) | 5-7 d<sup>1</sup> |
|                 | Type III PDE inhibitor | Cilostazol (Pretal) | 2 d |
|                 | Acetylsalicylic acid | Aspirin | 7-10 d |
|                 | Other NSAIDs | Ibuprofen (Brufen, Advil), Lexaprofen (Lexomin), Diclofenac (Voltaren), etc | Varies |
|                 | Vitamin K antagonist | Warfarin (Coumadin) | 5 d |
|                 | Heparin derivatives | Fondaparinux (Arixtra) | 1.5-2 d |
|                 | Direct thrombin inhibitor | DOACs | |
|                 | Factor Xa inhibitors | Dabigatran (Pradaxa) | 1-2 d |
|                 | | Rivaroxaban (Xarelto), Apixaban (Eliquis), Edoxaban (Lixiana) | 1-2 d |

<sup>1</sup>In ticlopidine, duration of action is 10-14 d. PDE: Phosphodiesterase; NSAID: Non-steroidal anti-inflammatory drug; DOAC: Direct-acting oral anticoagulant.

---

### Figure 1  Recommended perioperative management protocol for patients undergoing antithrombotic therapy in the case of elective laparoscopic digestive surgery

The management generally consists of three ways according to the types of antithrombotic therapy (ATT): antithrombotic therapy (APT), warfarin, and Direct-acting oral anticoagulants (DOACs). In patients with thromboembolic risks, aspirin monotherapy is continued in patients with APT, and/or warfarin was substituted by heparin bridging 3-5 d before surgery. In the case of DOACs, ATT is stopped 1-2 d before surgery (with some modification needed if decreased renal function exists); if the thromboembolic risk is very high, heparin bridging might be considered. Postoperatively, every antithrombotic agent is re instituted as soon as possible (POD1-2). ATT: Antithrombotic therapy; APT: Antiplatelet therapy; TE: Thromboembolism; ACT: Anticoagulation therapy; DOAC: Direct-acting oral anticoagulant.

Recent updated guidelines concerning antithrombotic management during non-cardiac surgery showed that the prevention of TE is more important than bleeding complications, as it might cause death or severe sequelae. Concerning implantation of a coronary stent, recent American College of Cardiology/American Heart Association (commonly known as ACC/AHA) and European Society of Cardiology (commonly known as ESC) guideline state that we should continue antiplatelet medications, at least aspirin monotherapy, in the perioperative period for patients with high risk of thromboembolism<sup>[35]</sup>, but most institutions practically choose to discontinue APT in the case of major digestive surgery with bleeding risks. Discontinuing aspirin or clopidogrel may lead to an increased risk of acute myocardial infarction, cerebral infarction, and subsequent death<sup>[34,35]</sup>. Although some studies, including the POISE-2 study, have reported that a modest increase in bleeding risk was observed in continued APT patients during non-cardiac surgery<sup>[36,37]</sup>, most studies have shown that there was no increase in significant bleeding events<sup>[38,39]</sup>. Thus, sufficient consideration and emphasis should be placed on the prevention of thromboembolism caused by cessation of antithrombotic drugs, rather than the risk of perioperative bleeding.

Concerning patients with ACT, heparin bridging is a common management for warfarin<sup>[40]</sup>. Recently, a large-scale randomized controlled trial (BRIDGE study) showed that heparin bridging was not recommended in the case of low bleeding risk surgery due to increased bleeding risks<sup>[25]</sup>. However, this study included relatively small numbers of major digestive surgery, and it could not conclude that heparin bridging is unnecessary in major general or abdominal surgery. In the current review, only one study concerning warfarin use and laparoscopic cholecystectomy showed an elevated risk of postoperative bleeding when heparin bridging was used<sup>[11]</sup>. The remaining studies demonstrated the safety of ACT bridging without an increase in severe bleeding complications. Especially in patients with high thromboembolic risks, heparin bridging might be considered to avoid critical thromboembolic complications.

In the present review, there was no report regarding patients who received DOACs during laparoscopic digestive surgery. Currently, DOACs are increasingly prescribed for the purpose of preventing arterial or venous thromboembolism. In large clinical trials, DOACs have been shown to have lower rates of intracranial hemorrhage compared to warfarin<sup>[41-44]</sup>. Furthermore, in cases of intracranial bleeding, there are reports that hematoma sizes were small in patients receiving DOACs compared to those with warfarin administration<sup>[45,46]</sup>. This difference is mainly due to the difference in mechanism of action in the blood clotting cascade. A sufficient understanding of these pharmacological characteristics, which is remarkably
different from warfarin, is of paramount importance for surgeons. A recently published review and an ongoing prospective study\(^{[47,48]}\) suggests safety and feasibility of perioperative management of DOACs during noncardiac surgical procedures, which is rather simple compared with those of warfarin. Still, the detailed assessment of perioperative management protocol, such as the necessity of bridging anticoagulation, has not yet conducted and should be investigated further. In addition, these reports or reviews did not show results according to the procedure types. Safety of every surgical type, including laparoscopic digestive surgery, should be assessed in the future.

**Summary and recommendations for future studies**

Currently, there are only limited numbers of studies concerning the management of ATT-prescribed patients during laparoscopic digestive surgery. As the population ages and the morbidity of cardiovascular disease increases, this patient population is expanded further. Definite protocols or guidelines should be established using reliable studies with good design. In the future, a well-designed prospective randomized study or multicenter cohort study is mandatory to elucidate the safety and feasibility of laparoscopic digestive surgery.

In conclusion, laparoscopic digestive surgery in ATT-burdened patients for the prevention of bleeding and TE showed satisfactory results. The risk of hemorrhagic complication during or after these procedures in patients with continued APT or heparin bridging was not significantly higher than in patients with no ATT or interrupted APT.

**ARTICLE HIGHLIGHTS**

**Research background**

Recently, many digestive surgical procedures are being performed laparoscopically. However, the effect of antithrombotic therapy (ATT) on perioperative bleeding complications during laparoscopic surgery is still largely unclear.

**Research motivation**

The risk of bleeding complications in ATT is related to the perioperative use of antplatelet therapy (APT) or anticoagulation therapy (ACT). To safely perform laparoscopic digestive surgery in patients with ATT, optimal perioperative management of antithrombotic drugs should be established.

**Research objectives**

The main objective of the present study is to elucidate the effect of ATT on bleeding and thromboembolic complications during or after laparoscopic digestive surgery.

**Research methods**

Published articles or internationally accepted abstracts between 2000 and 2017 were searched, and studies involving laparoscopic digestive surgery and ATT were included after careful review of each study. Data including study design, type of surgical procedures, type of antithrombotic drugs, and surgical outcome were analyzed.

**Research results**

In total, 15 studies were included. Only one study concerning laparoscopic cholecystectomy showed that patients with heparin bridging for ACT had a higher risk of postoperative bleeding. The remaining 14 studies reported continued APT or that heparin bridging for ACT did not affect the incidence of bleeding complication. The risk of thromboembolic events after laparoscopic digestive surgery in patients receiving ATT was not significantly higher than those with no ATT or interrupted APT.

**Research conclusions**

The risk of hemorrhagic complication during or after these procedures in patients with continued APT or heparin bridging was not significantly higher than in patients with no ATT or interrupted APT.

**Research perspectives**

The definite protocol or guidelines should be established using reliable studies with good design. In the future, a well-designed prospective randomized study or multicenter cohort study is mandatory to elucidate the safety and feasibility of laparoscopic digestive surgery.

**REFERENCES**

1. Thachil J, Gatt A, Martlew V. Management of surgical patients receiving anticoagulation and antiplatelet agents. Br J Surg 2008; 95: 1437-1448 [PMID: 18991253 DOI: 10.1002/bjs.6381]
2. Kalluza GL, Joseph J, Lee RJ, Raizner ME, Raizner AE. Catastrophic outcomes of noncardiac surgery soon after coronary stenting. J Am Coll Cardiol 2006; 47: 1281-1294 [PMID: 10758971 DOI: 10.1016/S0735-1074(05)00521-0]
3. Fujikawa T, Tanaka A, Abe T, Yoshimoto Y, Tada S, Maekawa H. Effect of antiplatelet therapy on patients undergoing gastrointestinal surgery: thromboembolic risks versus bleeding risks during its perioperative withdrawal. World J Surg 2015; 39: 139-149 [PMID: 25201460 DOI: 10.1007/s00268-014-2790-3]

4. Mita K, Ito H, Murabayashi R, Sueyoshi K, Asakawa K, Nabetani M, Kamasako A, Koizumi K, Hayashi T. Postoperative bleeding complications after gastric cancer surgery in patients receiving anticoagulation and/or antiplatelet agents. Ann Surg Oncol 2012; 19: 3745-3752 [PMID: 22805868 DOI: 10.1245/s10434-012-2500-6]

5. Kiviluoto T, Sirén J, Luukkonen P, Kivilakso E. Randomised trial of laparoscopic versus open cholecystectomy for acute and gangrenous cholecystitis. Lancet 1998; 351: 321-325 [PMID: 9652612 DOI: 10.1016/S0140-6736(97)08447-X]

6. Guller U, Jain N, Hervey S. Laparoscopic vs Open Colectomy. Outcomes Comparison Based on Large Nationwide Databases. Arch Surg 2003; 138: 1179 [PMID: 14609864 DOI: 10.1001/archsurg.138.11.1179]

7. Kapiszcze M, Caliebe A, Tepel J, Schulz T, Hedderich J. Open versus laparoscopic appendicectomy. Surg Endosc 2006; 20: 1060-1068 [PMID: 16703441 DOI: 10.1007/s00464-005-0016-x]

8. Klarenbeek BR, Veenhof AA, de Lange ES, Bemelman WA, Bergamaschi R, Heres P, Lacy AM, van den Broek WT, van der Peer DL, Cuesta MA. The Sigma-trial protocol: a prospective double-blind multi-centre comparison of laparoscopic versus open elective sigmoid resection in patients with symptomatic diverticularitis. BMC Surg 2007; 7: 16 [PMID: 17683563 DOI: 10.1186/1471-2482-7-16]

9. Nguyen KT, Gamblin TC, Geller DA. World review of laparoscopic liver resection-2,804 patients. Ann Surg 2009; 250: 831-841 [PMID: 19801936 DOI: 10.1097/SLA.0b013e3181b0c4df]

10. Fujikawa T, Tanaka A, Abe T, Yoshimoto Y, Tada S, Maekawa H, Shimoike N. Does antplatelet therapy affect outcomes of patients receiving abdominal laparoscopic surgery? Lessons from more than 1,000 laparoscopic operations in a single tertiary referral hospital. J Am Coll Surg 2013; 217: 1044-1053 [PMID: 24051069 DOI: 10.1016/j.jamcollsurg.2013.08.005]

11. Ercan M, Bostanci EB, Ozer I, Ulas M, Ozogul YB, Teke Z, Akoglu M. Postoperative hemorrhagic complications after elective laparoscopic cholecystectomy in patients receiving long-term anticoagulant therapy. Langenbecks Arch Surg 2010; 395: 247-253
Laparoscopic digestive surgery and antithrombosis therapy

Fujikawa T et al. [PMID: 19294412 DOI: 10.1007/s00423-009-0483-y]

Ono K, Idani H, Hidaka H, Kusudo K, Koyama Y, Taguchi S. Effect of aspirin continuation on blood loss and postoperative morbidity in patients undergoing laparoscopic cholecystectomy or colonoscopic polypectomy resection. Surg Laparosc Endosc Percutan Tech 2013; 23: 97-100 [PMID: 23386161 DOI: 10.1097/SLE.0b013e31827ed8d]

Anderson K, Jupiter DC, Abernathy SW, Frazee RC. Should clodigorel be discontinued before laparoscopic cholecystectomy? Am J Surg 2014; 208: 926-931; discussion 930-931 [PMID: 25435299 DOI: 10.1016/j.amjsurg.2014.08.001]

Noda T, Hatano H, Dono K, Shimizu J, Oshima K, Tanida T, Miyake M, Komori T, Kawashiki K, Morita S, Imanura H, Iwazawa T, Akagi K, Kitada M. Safety of early laparoscopic cholecystectomy for patients with acute cholecystitis undergoing antiplatelet or anticoagulation therapy: a single-institution experience. Hepatogastroenterology 2014; 61: 1501-1506 [PMID: 25436333]

Joseph B, Rawashdeh B, Aziz H, Kulvatunyou N, Pandit V, Rawashdeh B, Aziz H, Kulvatunyou N, Pandit V. Antiplatelet therapy: no association with increased blood loss in patients with antiplatelet therapy: Lessons from more than 800 cases in a single tertiary referral hospital. In: World Congress of Surgery 2017 Abstract Book: International Society of Surgery (ISS) Sic 2017: PE413

Yun JH, Jung HI, Lee HH, Baek MJ, Bae SH. The efficacy of laparoscopic cholecystectomy without discontinuation in patients on antithrombotic therapy. Am J Surg Treat Res 2017; 92: 143-148 [PMID: 28290668 DOI: 10.4174/ast.2017.92.3.143]

Chechik O, Inbar R, Danino B, Lador R, Greenberg R, Avital S. Anti-platelet therapy: no association with increased blood loss in patients undergoing open or laparoscopic appendectomy. Isr Med Assoc J 2011; 13: 342-344 [PMID: 21809730]

Peary C, Almahmoud K, Jackson T, Hartline C, Caihill A, Spence L, Kim D, Olatubosun O, Todd SR, Campion EM, Burlew CC, Regner J, Frazee R, Michaels D, Dissanaik S, Stewart C, Foley N, Nelson B, Aguado V, Fruit MS. Risky business? Investigating outcomes of patients undergoing urgent laparoscopic appendectomy on antithrombotic therapy. Am J Surg 2017; 214: 1012-1015 [PMID: 28982518 DOI: 10.1016/j.amjsurg.2017.08.035]

Shimoike N, Shimoike N, Fujikawa T, Yoshimoto Y, Tanaka A. Does antiplatelet therapy affect short-term and long-term outcomes of patients undergoing surgery for colorectal cancer? - Surgical radicality versus perioperative antiplatelet-related morbidity risks. J Gastroenterol Hepatol Res 2016; 5: 1962-1969 [DOI: 10.17554/j.issn.2224-3992.2016.05.065]

Takahashi K, Ito H, Katsube T, Tsuibo A, Hashimoto M, Ota E, Mita K, Asakawa H, Hayashi T, Fujino K. Associations between antithrombotic therapy and the risk of perioperative complications in patients with ST-elevation myocardial infarction (updating the 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction). Am J Cardiol 2013; 111: e326S-e350S [PMID: 22315266 DOI: 10.1378/chest.11-2298]

Korte W, Cattaneo M, Chassot PS, Eichinger S, von Heymann C, Hofmann N, Rickli H, Spannagl M, Ziegler B, Huber JR, Shaukat A, Shergill AK, Wang A, Cash BD, DoWitt JM. The management of antithrombotic agents for patients undergoing GI endoscopy. Gastrointest Endosc 2016; 83: 3-16 [PMID: 26621548 DOI: 10.1016/j.gie.2015.09.035]

Fujimoto K, Fujishiro M, Kato M, Higuchi K, Iwakiri R, Sakamoto C, Uchiyama S, Kashiwagi A, Ogawa H, Murakami K, Mine T, Yoshino J, Kinoshita Y, Ichinose M, Matsui T; Japan Gastroenterological Endoscopy Society. Guidelines for gastroenterological endoscopy in patients undergoing antithrombotic treatment. Dig Endosc 2014; 26: 1-14 [PMID: 24215155 DOI: 10.1111/den.12183]
College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *Cather Cardiovasc Interv* 2009; 74: E25-68. [PMID: 19924773 DOI: 10.1002/ccd.22351]

32 Polkowski M, Larghi A, Weynand B, Boustière C, Giovannini M, Pujol B, Dumonceau JM, European Society of Gastrointestinal Endoscopy (ESGE). Learning, techniques, and complications of endoscopic ultrasound (EUS)-guided sampling in gastrointestinal: European Society of Gastrointestinal Endoscopy (ESGE) Technical Guideline. *Endoscopy* 2012; 44: 190-206 [PMID: 22180307 DOI: 10.1055/s-0031-1291543]

33 Spyropoulos AC, Douketis JD, Gerotziafas G, Kaatz S, Oertel TL, Schulman S, Subcommittee on Control of Anticoagulation of the SSC of the ISTH. Periprocedural antithrombotic and bridging therapy: recommendations for standardized reporting in patients with arterial indications for chronic oral anticoagulant therapy. *J Thromb Haemost* 2012; 10: 692-694 [PMID: 22934291 DOI: 10.1111/j.1538-7836.2012.04630.x]

34 Ho PM, Peterson ED, Wang L, Magid DJ, Fihn SD, Larsen GC, Jesse RA, Rumsfeld JS. Incidence of death and acute myocardial infarction associated with stopping clopidogrel after acute coronary syndrome. *JAMA* 2008; 299: 532-539 [PMID: 18258833 DOI: 10.1001/jama.299.5.532]

35 Ferrari E, Benhamou M, Cerboni P, Marcel B. Coronary syndromes following aspirin withdrawal: a special risk for late stent thrombosis. *J Am Coll Cardiol* 2005; 45: 456-459 [PMID: 15680728 DOI: 10.1016/j.jacc.2004.11.041]

36 Devereaux PJ, Mkobradza M, Sessler DJ, Leslie K, Alonso-Coello P, Kurz A, Liu L, Niu J, Palacios IS, Parlow JL, Guyatt G, Robinson A, Garg AX, Rodseth RN, Bottor F, Lurati Buse G, Xavier D, Chan MT, Tiboni M, Cook D, Kannar PA, Forget P, Malaga G, Fleischmann E, Amir M, Eikelboom P, Miza R, Torres D, Wang CY, VanHelder T, Paniagua P, Kurz A, Villar JC, Sigamani A, Biccard BM, Meyhoff CS, Devereaux PJ, Hohnloser SH, Horowitz J, Mohan P, Jansky P, Lewis BS, Lopez-Sendon JL, Pais P, Parkhomenko A, Verheugt FW, Ziu J, Wallentin L; ARISTOTLE Committees and Investigators. Apixaban versus warfarin in nonvalvular atrial fibrillation. *N Engl J Med* 2011; 365: 883-891 [PMID: 21830597 DOI: 10.1056/NEJMoa1009638]

37预防 of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. *Lancet* 2000; 355: 1295-1302 [PMID: 10776741 DOI: 10.1016/S0140-6736(00)21103-3]

38 Wolf AM, Pucci MJ, Gabale SD, McIntyre CA, Irazary AM, Kennedy EP, Rosato EL, Lava H, Winter J, Jiro K. Safety of perioperative aspirin therapy in pancreatic operations. *Surgery* 2014; 155: 59-66 [PMID: 23890963 DOI: 10.1016/j.surg.2013.05.031]

39 Fang X, Baillargeon JG, Jupiter DC, Continued Antiplalet Therapy and Risk of Bleeding in Gastrointestinal Procedures: A Systematic Review. *J Am Coll Surg* 2016; 222: 890-905.e11 [PMID: 27016908 DOI: 10.1016/j.jamcollsurg.2016.01.053]

40 Baron TH, Kamath PS, McBane RD. Management of anti-thrombotic therapy in patients undergoing invasive procedures. *N Engl J Med* 2013; 368: 2113-2124 [PMID: 23718166 DOI: 10.1056/NEJMoa1206531]

41 Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Reilly PA, Themeles E, Varrone J, Wang S, Alings M, Xavier D, Zhu J, Diaz R, Lewis BS, Darius H, Diener HC, Joyner CD, Wallentin L; LE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. *N Engl J Med* 2009; 361: 1139-1151 [PMID: 19718444 DOI: 10.1056/NEJMoa0905561]

42 Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G, Halperin JL, Hankey GJ, piccini JP, Becker RC, Nessel CC, Paolini PF, Berkowitz SD, Fox KA, Califf RM; ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. *N Engl J Med* 2011; 365: 1903-1910 [PMID: 21870978 DOI: 10.1056/NEJMoa1107039]

43 Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, Walzl AL, Ezekowitz MD, Weitz JI, Spina J, Ruzyllo W, Mada R, Koresuve Y, Betcher J, Shi M, Sripat, Patel IP, Iyak JY, Mercouri M, Antman EM; ENGAGE AF-TIMI 48 Investigators. Edoxaban versus warfarin in patients with atrial fibrillation. *N Engl J Med* 2013; 369: 2093-2104 [PMID: 24251359 DOI: 10.1056/NEJMoa1310907]

44 Komori M, Yasaka M, Kukuba K, Matsuo H, Fujimoto S, Yoshida M, Kamedo K, Shono T, Nagata S, Ago T, Kitazato T, Okada Y. Intracranial hemorrhage during dabigatran treatment. *Stroke* 2014; 45: 2805-2807 [PMID: 25082810 DOI: 10.1161/STROKEAHA.114.006661]

45 Hagli J, Tomita H, Metoki N, Saito S, Shiroti H, Hitomi H, Kamada T, Seino S, Takahashi K, Baba Y, Sasaki S, Uchizawa T, Iwata M, Matsutomo S, Osanai T, Yasujima M, Okumura K. Characteristics of intracerebral hemorrhage during rivaroxaban treatment: comparison with those during warfarin. *Stroke* 2014; 45: 2805-2807 [PMID: 25082810 DOI: 10.1161/STROKEAHA.114.006661]

46 Verma A, Ha ACT, Rutka JT, Verma S. What Surgeons Should Know About Non-Vitamin K Oral Anticoagulants: A Review. *JAMA Surg* 2018; 153: 577-585 [PMID: 29710221 DOI: 10.1001/jamasurg.2018.0374]

47 Douketis JD, Spyropoulos AC, Anderson JM, Arnold DM, Bates SM, Bliesten M, Carrier MJ, Caprini JA, Clark NP, Coppers M, Dentali F, Duncan J, Gross PL, Kassiri J, Kowalski S, Lee AY, Le Gal G, Le Templier G, Li N, MacKay E, Shah V, Shivakumar S, Solymoss S, Spencer EA, Syed S, Tafur AJ, Vanasse T, Tiele T, Wu C, Yee E, Schulman S. The Perioperative Anticoagulant Use for Surgery Evaluation (PAUSE) Study for Patients on a Direct Oral Anticoagulant Who Need an Elective Surgery or Procedure: Design and Rationale. *Thromb Haemost* 2017; 117: 2415-2424 [PMID: 29212129 DOI: 10.1160/TH17-05-0553]

P-Reviewer: Huang LY  S-Editor: Dou Y  L-Editor: Filipedia  E-Editor: Song H
