Intermediate Jacobians and the slice filtration

Doosung Park

Abstract

Let X be an n-dimensional connected scheme smooth and projective over \mathbb{C}. We decompose the motive $\text{Hom}(\mathbb{L}^{n-2}, M(X))$ using intermediate Jacobians. We also construct a morphism $M_{2n-2}(X) \to M(X)$ induced by a conjectural Chow-Künneth decomposition of $M(X)$.

1. Introduction

1.1. Throughout this paper, for brevity, put

$$\text{DM}^{eff} = \text{DM}^{eff}(\text{Spec } k, \mathbb{Z}), \quad \text{DM}_Q^{eff} = \text{DM}^{eff}(\text{Spec } k, \mathbb{Q}),$$

whose definitions are in [2, 11.1.1]. Here, k is an algebraically closed field, and for most part (from \[1.3\]) of this paper, we assume that $k = \mathbb{C}$. Let

(i) 1 denote the object $\text{M}(\text{Spec } k)$ of DM^{eff} or DM_Q^{eff},

(ii) L denote the object $1(1)[2]$ of DM^{eff} or DM_Q^{eff},

(iii) Hom denote the internal hom of DM^{eff} or DM_Q^{eff}.

Note that in [2, 11.1.4], we have the change of coefficients functor

$$\text{DM}^{eff} \to \text{DM}_Q^{eff}.$$

1.2. Let X be an n-dimensional connected scheme smooth and projective over an algebraically closed field k. The Picard group of X admits the exact sequence

$$0 \to \text{Pic}^0(X) \to \text{Pic}(X) \to \text{NS}(X) \to 0$$

of abelian groups. The exact sequence is related to a decomposition

$$\text{Hom}(\mathbb{L}^{n-1}, M(X)) = \text{NS}_Q(X) \oplus \text{Pic}_Q^0(X) \oplus L$$

(1.2.1)

in $\text{DM}^{eff}(\text{Spec } k, \mathbb{Q})$, where the subscript \mathbb{Q} means the corresponding ones with \mathbb{Q}-coefficient. This should come from a conjectural Chow-Künneth decomposition [6, Definition 6.1.1] $M(X) = M_0(X) \oplus \cdots \oplus M_{2n}(X)$ like

$$\text{Hom}(\mathbb{L}^{n-1}, M_{2n-2}(X)) = \text{NS}_Q(X),$$

$$\text{Hom}(\mathbb{L}^{n-1}, M_{2n-1}(X)) = \text{Pic}_Q^0(X),$$

$$\text{Hom}(\mathbb{L}^{n-1}, M_{2n}(X)) = L.$$
What is the generalization of (1.2.1) for higher codimensions? The answer will give also a decomposition of each motive in the slice filtration [5]

\[L^n = \text{Hom}(L^n, M(X)) \otimes L^n \to \text{Hom}(L^{n-1}, M(X)) \otimes L^{n-1} \to \cdots \to \text{Hom}(1, M(X)) = M(X) \]
of \(M(X) \).

When \(k = \mathbb{C} \), we use intermediate Jacobians to study the question as follows.

Theorem 1.3. Let \(X \) be an \(n \)-dimensional connected scheme smooth and projective over \(\mathbb{C} \), and let \(d \in [1, n] \) be an integer. Then

1. \(\text{NS}_{\text{hom}, \mathbb{Q}}^d(X) \oplus \text{Griff}_{\mathbb{Q}}^d(X) \) is a direct summand of \(\text{Hom}(L^{n-d}, M(X)) \) in \(\text{DM}^{\text{eff}}_\mathbb{Q} \),

2. \(J_{a, \mathbb{Q}}^d(X) \) is a direct summand of \(\text{Hom}(L^{n-d}, M(X)) \) in \(\text{DM}^{\text{eff}}_\mathbb{Q} \).

See (2.1) and (3.2) for the definitions of \(\text{NS}_{\text{hom}, \mathbb{Q}}^d(X) \), \(\text{Griff}_{\mathbb{Q}}^d(X) \), and \(J_{a, \mathbb{Q}}^d(X) \).

1.4. In particular, using this, we obtain the generalization of (1.2.1) for dimension 2 as follows.

Theorem 1.5. Let \(X \) be an \(n \)-dimensional connected scheme smooth and projective over \(\mathbb{C} \) with \(n \geq 2 \). Then for some motive \(M_2(X)^* \) in \(\text{DM}^{\text{eff}}_\mathbb{Q} \), there is a decomposition

\[\text{Hom}(L^{n-2}, M(X)) = \text{NS}_{\text{hom}, \mathbb{Q}}^2(X) \oplus \text{Griff}_{\mathbb{Q}}^2(X) \oplus J_{a, \mathbb{Q}}^2(X) \oplus M_2(X)^* \oplus (\text{Pic}^0(X) \otimes L) \oplus L^2. \]

1.6. Let \(X \) be an \(n \)-dimensional connected scheme smooth and projective over \(\mathbb{C} \), and let

\[i_{2n-2} : M_2(X)^* \otimes L^{n-2} \to M(X) \]
denote the morphism induced by the morphism \(M_2(X)^* \to \text{Hom}(L^{n-2}, M(X)) \) obtained by the above decomposition. If \(M(X) \) has a Chow-K"unneth decomposition

\[M(X) = M_0(X) \oplus M_1(X) \oplus \cdots \oplus M_{2n}(X), \]

then the morphism \(i_{2n-2} \) is the candidate for a morphism \(M_{2n-2}(X) \to M(X) \) induced by a decomposition. Thus we have the following conjecture.

Conjecture 1.7. Let \(X \) be an \(n \)-dimensional connected scheme smooth and projective over \(\mathbb{C} \). Then there is a morphism \(p_{2n-2 : M(X) \to M_2(X)^* \otimes L^{n-2}} \) in \(\text{DM}^{\text{eff}}_\mathbb{Q} \) such that

1. \(p_{2n-2} i_{2n-2} = \text{id} \),
2. \(i_{2n-2} p_{2n-2} : M(X) \to M(X) \) induces the Künneth projector

\[H^*(X, \mathbb{Q}) \to H^{2n-2}(X, \mathbb{Q}) \to H^*(X, \mathbb{Q}), \]

3. the dual projector \((i_{2n-2} p_{2n-2})^t \) induces the Künneth projector

\[H^*(X, \mathbb{Q}) \to H^2(X, \mathbb{Q}) \to H^*(X, \mathbb{Q}). \]

1.8. A successful construction of \(p_{2n-2} \) with the above properties gives the construction of projectors of \(M(X) \) defining \(M_2(X) \) and \(M_{2n-2}(X) \). In particular, since projectors of \(M(X) \) defining \(M_0(X), M_1(X), M_{2n-1}(X), \) and \(M_{2n}(X) \) are already constructed, the conjecture together with some vanishing conjectures in \([3, 5.8] \) will prove the Künneth type standard conjecture when the dimension of \(X \) is 3.
1.9. Organization of the paper. In Section 2, we prove (1.3(1)) by constructing a morphism
\[\text{Hom}(L^{n-d}, M(X)) \to \text{NS}^{d}_{\text{alg}, Q}(X) \] and its section. In Section 3, we prove (1.3(2)) by constructing a morphism
\[\text{Hom}(L^{n-d}, M(X)) \to J^{d}_{\text{alg}, Q}(X) \] and its section. In Section 4, we prove (1.5) by constructing the other pieces and using [F 7.3.10]. In Section 5, we discuss some conjectures other than (1.7).

1.10. Conventions and notations. Alongside (1.1), we have the following.

(1) Let \(T \) be a complex analytic variety or a scheme over an algebraically closed field \(k \). We denote by \(\text{cl}(T) \) the set of closed points of \(T \).

(2) \(Sm/C \) denotes the category of smooth \(C \)-schemes.

(3) For any \(\mathbb{Q} \)-vector space \(V \), consider the constant Nisnevich sheaf with transfer on \(Sm/C \) associated to \(V \). We denote by \(V \) (by abuse of notation) its associated object in \(\text{DM}^{\text{eff}}_{\mathbb{Q}} \).

2. Proof of (1.3(1))

Definition 2.1. Let \(X \) be a scheme smooth over \(C \), and let \(d \) be a nonnegative integer. We put

\[
CH^{d}_{\text{alg}}(X) = \{ Z \in CH^{d}(X) : Z \sim_{\text{alg}} 0 \},
\]
\[
CH^{d}_{\text{hom}}(X) = \{ Z \in CH^{d}(X) : Z \sim_{\text{hom}} 0 \}
\]
\[
\text{NS}^{d}_{\text{alg}}(X) = CH^{d}(X)/CH^{d}_{\text{alg}}(X),
\]
\[
\text{NS}^{d}_{\text{hom}}(X) = CH^{d}(X)/CH^{d}_{\text{hom}}(X),
\]
\[
\text{Griff}^{d}(X) = CH^{d}_{\text{hom}}(X)/CH^{d}_{\text{alg}}(X)
\]
where \(\sim_{\text{alg}} \) (resp. \(\sim_{\text{hom}} \)) denotes the algebraic equivalence relation (resp. homological equivalence relation for the singular cohomology. We also denote by

\[
CH^{d}_{\text{alg}, Q}(X), \ CH^{d}_{\text{hom}, Q}(X), \ NS^{d}_{\text{alg}, Q}(X), \ NS^{d}_{\text{hom}, Q}(X), \ \text{Griff}^{d}_{Q}(X)
\]
the corresponding ones defined for \(\mathbb{Q} \)-coefficient.

Definition 2.2. Let \(X \) and \(Y \) be schemes smooth over \(C \), and let \(d \) be a nonnegative integer. We put

\[
CH^{d}_{X}(Y) = CH^{d}(Y \times X).
\]
When \(Y \) is connected, we put

\[
CH^{d}_{\text{alg}, X}(Y) = \{ Z \in CH^{d}(Y \times X) : i_{y}^{*}Z \sim_{\text{alg}} 0 \},
\]
\[
CH^{d}_{\text{hom}, X}(Y) = \{ Z \in CH^{d}(Y \times X) : i_{y}^{*}Z \sim_{\text{hom}} 0 \}
\]
\[
\text{NS}^{d}_{\text{alg}, X}(Y) = CH^{d}_{X}(Y)/CH^{d}_{\text{alg}, X}(Y),
\]
\[
\text{NS}^{d}_{\text{hom}, X}(Y) = CH^{d}_{X}(Y)/CH^{d}_{\text{hom}, X}(Y)
\]
where \(y \) is a closed point of \(Y \) and \(i_{y} \) denotes the closed immersion \(y \times X \to Y \times X \). Note that the above definitions are independent of \(y \) since \(i_{y}^{*}Z \) and \(i_{y'}^{*}Z \) are algebraically equivalent for two closed points \(y \) and \(y' \) of \(Y \).
When Y is not necessarily connected and has the connected components $\{Y_i\}_{i \in I}$, we put

\[
CH^d_{\text{alg},X}(Y) = \bigoplus_{i \in I} CH^d_{\text{alg},X}(Y_i),
\]

\[
CH^d_{\text{hom},X}(Y) = \bigoplus_{i \in I} CH^d_{\text{hom},X}(Y_i),
\]

\[
NS^d_{\text{alg},X}(Y) = \bigoplus_{i \in I} NS^d_{\text{alg},X}(Y_i),
\]

\[
NS^d_{\text{hom},X}(Y) = \bigoplus_{i \in I} NS^d_{\text{hom},X}(Y_i).
\]

We consider $CH^d_X, CH^d_{\text{alg},X}, CH^d_{\text{hom},X}, NS^d_{\text{alg},X},$ and $NS^d_{\text{hom},X}$ as presheaves with transfer on Sm/\mathbb{C}.

We also denote by

\[
CH^d_X, \mathbb{Q}, CH^d_{\text{alg},X}, \mathbb{Q}, CH^d_{\text{hom},X}, \mathbb{Q}, NS^d_{\text{alg},X}, \mathbb{Q}, NS^d_{\text{hom},X}, \mathbb{Q}
\]

the corresponding ones defined for \mathbb{Q}-coefficient.

Proposition 2.3. Under the notations and hypotheses of (2.2), the homomorphisms

\[
NS^d_{\text{alg},X}(Y) \to NS^d_{\text{alg},X}(\text{Spec } \mathbb{C}),
\]

\[
NS^d_{\text{hom},X}(Y) \to NS^d_{\text{hom},X}(\text{Spec } \mathbb{C})
\]

induced by i_*^y are isomorphisms.

Proof. The homomorphisms are surjective since $i_*^y : CH^d(Y \times X) \to CH^d(X)$ is surjective. The homomorphisms are injective since the kernels of the homomorphisms

\[
CH^d(Y \times X) \to NS^d_{\text{alg}}(X),
\]

\[
CH^d(Y \times X) \to NS^d_{\text{hom}}(X)
\]

are

\[
\{Z \in CH^d(Y \times X) : i_*^y Z \in CH^d(X)_{\text{alg}}\},
\]

\[
\{Z \in CH^d(Y \times X) : i_*^y Z \in CH^d(X)_{\text{hom}}\}
\]

respectively. \hfill \qed

Corollary 2.4. The presheaves $NS^d_{\text{alg},X}$ and $NS^d_{\text{hom},X}$ on Sm/X are constant Nisnevich sheaves with transfer associated to $NS^d_{\text{alg}}(X)$ and $NS^d_{\text{hom}}(X)$ respectively.

Proof. Let Y be a connected scheme smooth over \mathbb{C}, and let $p : Y \to \text{Spec } \mathbb{C}$ denote the structural morphism. Then let $y \in Y$ be a closed point, and let $c_y : y \to Y$ denote the closed immersion for the point y. Consider the homomorphisms

\[
NS^d_{\text{alg},X}(\text{Spec } \mathbb{C}) \to NS^d_{\text{alg},X}(Y) \to NS^d_{\text{alg},X}(\text{Spec } \mathbb{C})
\]
induced by p and c_y respectively. The composition is an isomorphism since $c_y p = \text{id}$, and the second arrow is an isomorphism by (2.3). Thus the first arrow is an isomorphism. This shows that $\text{NS}^d_{\text{alg},X}$ is a constant Zariski sheaf associated with $\text{NS}^d_{\text{alg},X}(\text{Spec } C) = \text{NS}^d_{\text{alg}}(X)$. Thus it is a constant Nisnevich sheaf with transfer.

The proof for $\text{NS}^d_{\text{hom},X}$ is the same as above.

2.5. Note that (2.4) also holds for \mathbb{Q}-coefficient. Thus from now, we can use the notations $\text{NS}^d_{\text{alg},\mathbb{Q}}(X)$, $\text{NS}^d_{\text{hom},\mathbb{Q}}(X)$ instead of $\text{NS}^d_{\text{alg},X,\mathbb{Q}}$ and $\text{NS}^d_{\text{hom},X,\mathbb{Q}}$ respectively following the convention in (1.10).

Definition 2.6. For $i \in \mathbb{Z}$, we denote by $h_i : \text{DM}^{\text{eff}} \to \text{Sh}^{tr}(\text{Sm}/C)$ the homology functor obtained by the homotopy t-structure defined in [1, Definition 3.1]. Here, $\text{Sh}^{tr}(\text{Sm}/C)$ denote the category of sheaves with transfer on Sm/C with coefficient \mathbb{Q}.

2.7. Let X be an n-dimensional connected scheme smooth and projective over C. As in [3, Section A.3] we have that

$$h_i(\text{Hom}(L^{n-d}, M(X))) = 0,$$

$$h_0(\text{Hom}(L^{n-d}, M(X))) \cong CH^d_X$$

in DM^{eff} for $i < 0$. Then we have the morphisms

$$\text{Hom}(L^{n-d}, M(X)) \to h_0(\text{Hom}(L^{n-d}, M(X))) \cong CH^d_X$$

in DM^{eff}. We also have the morphism

$$CH^d_X \to \text{NS}^d_{\text{alg},X} = \text{NS}^d_{\text{alg}}(X)$$

in DM^{eff} taking the quotient of $CH^d(Y \times X)$ for $Y \in \text{Sm}/C$. In conclusion, we have the morphism

$$\text{Hom}(L^{n-d}, M(X)) \to \text{NS}^d_{\text{alg}}(X)$$

(2.7.1)

in DM^{eff}. Thus we get the morphism

$$\text{Hom}(L^{n-d}, M(X)) \to \text{NS}^d_{\text{alg},\mathbb{Q}}(X)$$

(2.7.2)

in DM^{eff}.

Proposition 2.8. Under the notations and hypotheses of (2.7), the above morphism has a section in $\text{DM}^{\text{eff}}_{\mathbb{Q}}$.

Proof. Since $\text{NS}^d_{\text{alg},\mathbb{Q}}(X)$ is a \mathbb{Q}-vector space, it has a basis $\{a_i\}_{i \in I}$ for some set I. Then $\text{NS}^d_{\text{alg},\mathbb{Q}}(X)$ is isomorphic to $\bigoplus_{i \in I} \mathbb{Q}$. In $\text{DM}^{\text{eff}}_{\mathbb{Q}}$, we have an isomorphism

$$\text{NS}^d_{\text{alg},\mathbb{Q}}(X) \cong \bigoplus_{i \in I} \mathbb{1}.$$
Now we have bijections
\[
\begin{align*}
\Hom_{\text{DM}_Q}^\text{eff}(\text{NS}_{d\text{alg},Q}(X), \text{Hom}(L^{n-d}, M(X))) & \cong \Hom_{\text{DM}_Q}^\text{eff}(\text{NS}_{d\text{alg},Q}(X) \otimes L^{n-d}, M(X)) \\
& \cong I \times \Hom_{\text{DM}_Q}^\text{eff}(L^{n-d}, M(X)) \cong I \times \text{CH}^d_Q(X) \cong \text{Hom}_{\text{Set}}(I, \text{CH}^d_Q(X))
\end{align*}
\]
where Set denotes the category of sets. Choose \(\{b_i \in \text{CH}^d_Q(X)\}_{i \in I} \) such that the image of \(b_i \) in \(\text{NS}_{d\text{alg},Q}(X) \) is \(a_i \). Then via (2.8.1), the function \(I \to \text{CH}^d(X) \) given by \(i \mapsto b_i \) corresponds to a section of (2.7.2).

2.9. The quotient homomorphism \(\text{NS}_{d\text{alg},Q}(X) \to \text{NS}_{d\text{hom},Q}(X) \) has a section since they are \(\mathbb{Q} \)-vector spaces. Thus we have a decomposition
\[
\text{NS}_{d\text{alg},Q}(X) \cong \text{NS}_{d\text{hom},Q}(X) \oplus \text{Griff}^d_Q(X),
\]
and then (2.8) completes the proof of (1.3(1)).

3. Proof of (1.3(2))

Lemma 3.1. Let \(X \) and \(Y \) be schemes of finite type over an algebraically closed field \(k \). Assume that \(X \) is integral and that each connected component of \(Y \) is integral. If \(X \) is quasi-projective over \(k \), then for any function \(f : \text{cl}(Y) \to \text{cl}(X) \), there are at most one morphism \(Y \to X \) of schemes inducing \(f \).

Proof. The question is Zariski local on \(Y \), so we reduce to the case when \(Y \) is integral and affine. Then the statement follows from the classical fact that the category of varieties quasi-projective over \(k \) is a full subcategory of the category of schemes over \(k \).

3.2. We review here several facts about intermediate Jacobians and Abel-Jacobi maps. Let \(X \) be an \(n \)-dimensional connected scheme smooth and projective over \(\mathbb{C} \), and let \(d \in [1, n] \) be an integer.

1. For \(x \in \text{cl}(X) \), we have the Albanese map
\[
\text{Alb}_{X,x} : X \to \text{Alb}(X)
\]
mapping \(x \) to 0.

2. We have the intermediate Jacobian \(J^d(X) \), which is a complex torus. See [13, Definition 12.2] for the definition.

3. We have the Abel-Jacobi map
\[
AJ^d_X : \text{CH}^d_{\text{hom}}(X) \to \text{cl}(J^d(X)).
\]
See [13, p. 294] for the definition.
(4) We have $J^d_a(X)$, which is an abelian subvariety of $J^d(X)$. See [12, 2.3.2] for the definition. We have the commutative diagram

\[
\begin{array}{ccc}
CH^d_{alg}(X) & \xrightarrow{AJ^d_X} & \text{cl}(J^d_a(X)) \\
\downarrow & & \downarrow \\
CH^d_{hom}(X) & \xrightarrow{AJ^d_X} & \text{cl}(J^d(X))
\end{array}
\]

of abelian groups where the vertical arrows are the obvious inclusions, and the upper horizontal arrow is surjective. When $d = n$, we have that $J^n_a(X) = J^n_a(X) = \text{Alb}(X)$.

(5) We denote by $\text{Alb}(X)$ (resp. $J^d_a(X)$) (by abuse of notation) the element in DM^{eff} associated to the abelian variety $\text{Alb}(X)$ (resp. $J^d_a(X)$). See [11] for the definition. We also denote by $\text{Alb}_Q(X)$ (resp. J^d_a, Q) the corresponding object in DM_Q^{eff}.

(6) Let Y be a scheme smooth over \mathbb{C}. By [10, §4], there is a homomorphism $AJ^d_{X,Y} : CH^d_{alg,X}(Y) \to \text{Hom}_{\text{Sch}_C}(Y, J^d_a(X))$ of abelian groups such that for $y \in \text{cl}(Y)$ and $Z \in CH^d_{alg,X}(Y)$, $AJ^d_{X,Y}(Z)$ is the morphism $Y \to J^d_a(X)$ mapping y to $AJ^d_X(i^*_y Z)$. Here, Sch_C denotes the category of \mathbb{C}-schemes, and $i_y : y \times X \to Y \times X$ denotes the closed immersion. Note that by (3.1), $AJ^d_{X,Y}$ is uniquely determined by the above information.

(7) Let Y be an m-dimensional connected scheme smooth and projective over \mathbb{C}, and let $Z \in CH^d_X(Y)$ be an element. Consider the homomorphism $\psi_Z : \text{Alb}(Y) \to J^d_a(X)$ of abelian varieties induced by the morphism of the Hodge structures

\[H^{2m-1}(Y, Z) \to H^{2d-1}(X, Z)\]

induced by Z (see [13, Theorem 12.17] for detail). Then by [10, §3, §4], for $y \in \text{cl}(Y)$ and $Z \in CH^d_X(Y)$, we have the commutative diagram

\[
\begin{array}{ccc}
Y & \xrightarrow{AJ^d_{X,Y}} & J^d_a(X) \\
\text{Alb}(Y) & \xrightarrow{\psi_Z} & \text{Alb}(Y)
\end{array}
\]

of schemes where $Z' = Z - C \times i_y^* Z$. Here, $i_y : y \times X \to Y \times X$ denote the closed immersion.

Proposition 3.3. Let X be an n-dimensional connected scheme smooth and projective over \mathbb{C}, and let $d \in [1, n]$ be an integer. Then $AJ^d_X : CH^d_{alg,X} \to J^d_a(X)$ is a morphism of presheaves with transfer on Sm/\mathbb{C}.

Proof. Let Y and Y' be schemes smooth over \mathbb{C}, and let V be a finite correspondence from Y' to Y. The statement is that the diagram

\[
\begin{array}{ccc}
CH^d_{alg,X}(Y) & \xrightarrow{AJ^d_{X,Y}} & \text{Hom}_{\text{Sch}_C}(Y, J^d_a(X)) \\
\downarrow & & \downarrow \\
CH^d_{alg,X}(Y') & \xrightarrow{AJ^d_{X,Y'}} & \text{Hom}_{\text{Sch}_C}(Y', J^d_a(X))
\end{array}
\]

commutes.
of abelian groups commutes where Sch\textsubscript{C} denotes the category of C-schemes, and α and β denote the homomorphisms induced by V. To show this, we may assume that Y and Y' are connected and V is an elementary correspondence.

Here, we will review the definition of β given in \[11\ 3.1.2\]. Let \(f : Y' \to J'^d_a(X) \) be a morphism of schemes. If \(V \) has degree \(r \), then we have the morphism \(Y' \to Y'(r) \) induced by \(V \), and we have the morphisms

\[
Y' \to Y'(r) \xrightarrow{f(r)} (J'^d_a(X))^{(r)} \xrightarrow{\sum} J'^d_a(X)
\]

of schemes. Here, \(Y'(r) \), \(J'^d_a(X) \), and \(f(r) \) denote the symmetric powers. The composition is \(\beta(f) \).

Let \(Z \in CH\textsubscript{alg,X}(Y)^d \) be an element, and let \(y' \in cl(Y) \) be a closed point. Then via \(V \), \(y' \) corresponds to \(a_1y_1 + \cdots + a_sy_s \) for some \(a_1, \ldots, a_s \in \mathbb{N}^+ \) and \(y_1, \ldots, y_s \in cl(Y) \). By definition, \(AJ^d_X(Y,Z) \) maps \(y \in cl(Y) \) to \(AJ^d_X(i^*_y Z) \) where \(i_y : y \times X \to Y \times X \) denotes the closed immersion. Using the above description of β, we see that \(\beta(AJ^d_X(Y,Z)) \) maps \(y' \) to

\[
a_1AJ^d_X(i^*_y Z) + \cdots + a_sAJ^d_X(i^*_y Z).
\]

Since \(i^*_y(\alpha(Z)) = a_1i^*_y Z + \cdots + a_si^*_y Z \), we see that \(AJ^d_X(Y,Y,\alpha(Z)) \) maps \(y' \) to

\[
AJ^d_X(a_1i^*_y Z + \cdots + a_si^*_y Z) = a_1AJ^d_X(i^*_y Z) + \cdots + a_sAJ^d_X(i^*_y Z).
\]

Thus \(\beta(AJ^d_X(Y,Z)) \) and \(AJ^d_X(Y,Y,\alpha(Z)) \) maps \(y' \) to the same closed point of \(J'^d_a(X) \). Then by (3.1), (3.3.1) commutes.

3.4. By (3.3), we can consider

\[
AJ^d_{X,-} : CH^d_{alg,X} \to J'^d_a(X)
\]

as a morphism in DMeff. In (2.7.1), we have the morphism

\[
\text{Hom}(\mathbb{L}^{n-d}, M(X)) \to NS_{alg}(X)^d
\]

in DMeff. Let \(K \) denote its cocone. By (2.7), we have that \(h_0(K) \cong CH^d_{alg,X} \) and \(h_i(K) = 0 \) for \(i < 0 \). Thus we have the morphisms

\[
K \to h_0(K) \cong CH^d_{alg,X} \xrightarrow{AJ^d_{X,Y}} J'^d_a(X)
\]

in DMeff. Consider the induced morphism

\[
\gamma : K_Q \to J'^d_{a,Q}(X)
\]

in DM\textsubscript{Q} where \(K_Q \) denotes the image of \(K \) in DM\textsubscript{Q}. Our next goal is to construct its section in DM\textsubscript{Q}.

In \[12\ 2.3.3\], it is shown that there is a curve \(C \) smooth and projective over \(C \) (not necessarily connected) and an element \(Z \in CH^d(C \times X) \) such that the induced homomorphism \(\psi_Z : \text{Alb}(C) \to J'^d_{a}(X) \) of abelian varieties is surjective. From (3.2.1), we have the commutative diagram

\[
\begin{array}{ccc}
M(C) & \longrightarrow & K_Q \\
\downarrow & & \downarrow \gamma \\
\text{Alb}_Q(C) & \xrightarrow{\psi_Z} & J'^d_{a,Q}(X)
\end{array}
\]
in $\text{DM}_{\mathbb{Q}}^{\text{eff}}$ where the left vertical arrow is induced by the Albanese map and the upper horizontal arrow is induced by $Z' = Z - C \times i'_y Z$. Here, $i'_y : y \times X \to Y \times X$ denotes the closed immersion.

The category whose objects are abelian varieties and the set of morphism from A to B are $\text{Hom}(A, B) \otimes \mathbb{Q}$ is semi-simple, so $\psi_{Z, \mathbb{Q}}$ has a section since ψ_{Z} is surjective. Since $\text{Alb}_{\mathbb{Q}}(C)$ is a direct summand of $M(C)$ in $\text{DM}_{\mathbb{Q}}^{\text{eff}}$, the composition $M(C) \to J_{a, \mathbb{Q}}^d(X)$ has a section. Thus γ has a section. This completes the proof of (1.3(2)) since $K_{\mathbb{Q}}$ is a direct summand of $\text{Hom}(L, M(X))$ by (1.3(1)).

4. Proof of (1.5)

Lemma 4.1. Let M be an object of $\text{DM}_{\mathbb{Q}}^{\text{eff}}$, and let $\alpha, \beta : M \to M$ be projectors. We put

$$F = \text{im} \alpha, \quad G = \text{im} \beta.$$

Assume that $\text{Hom}_{\text{DM}_{\mathbb{Q}}^{\text{eff}}}(G, F) = 0$. Then $F \oplus G$ is a direct summand of M.

Proof. The assumption implies that $\alpha \beta = 0$. Using this, we have that

$$\alpha(\beta - \beta \alpha) = \alpha \beta - \alpha \beta \alpha = 0,$$

$$(\beta - \beta \alpha) \alpha = \beta \alpha - \alpha \beta = 0,$$

$$(\beta - \beta \alpha)^2 = \beta^2 - \beta \alpha \beta + \beta \alpha \beta \alpha = \beta - \beta \alpha.$$

Thus $\beta - \beta \alpha$ is a projector orthogonal to α. Since

$$\beta(\beta - \beta \alpha) \beta = \beta^3 - \beta \alpha \beta = \beta,$$

$$\beta(\beta - \beta \alpha)(\beta - \beta \alpha) = \beta^3 - \beta \alpha \beta^2 - \beta^3 \alpha + \beta \alpha \beta^2 \alpha = \beta - \beta \alpha,$$

we have that $\text{im} \beta \cong \text{im}(\beta - \beta \alpha)$. Thus $\alpha + \beta - \beta \alpha$ is a projector whose image is isomorphic to $F \oplus G$. \hfill \square

4.2. Let X be an n-dimensional connected scheme smooth and projective over \mathbb{C} with $n \geq 2$, and let x be a closed point of X. Note that $\mathbf{1}$ and $\text{Alb}_{\mathbb{Q}}(X)$ are direct summands of $M(X)$. Then

$$L^n \cong \text{Hom}(1, L^n), \quad L^{n-1} \otimes \text{Pic}^0_{\mathbb{Q}}(X) \cong \text{Hom}(\text{Alb}_{\mathbb{Q}}(X), L^n)$$

are direct summands of $\text{Hom}(M(X), L^n)$, which is isomorphic to $M(X)$ by [11, 16.24]. Thus using [7, 16.25], we see that L^2 and $L \otimes \text{Pic}^0_{\mathbb{Q}}(X)$ are direct summands of $\text{Hom}(L^{n-2}, M(X))$. We also have that

$$\text{NS}^2_{\text{hom}, \mathbb{Q}}(X) \oplus \text{Griff}^2_{\mathbb{Q}}(X) \cong \text{NS}^2_{\text{alg}, \mathbb{Q}}(X)$$

in $\text{DM}_{\mathbb{Q}}^{\text{eff}}$ by (2.9). Thus to prove (1.4), by (4.1), it suffices to show that

$$\text{Hom}_{\text{DM}_{\mathbb{Q}}^{\text{eff}}}(L^2, \text{Pic}^0_{\mathbb{Q}}(X) \otimes L) = 0, \quad \text{Hom}_{\text{DM}_{\mathbb{Q}}^{\text{eff}}}(L^2, J_{a, \mathbb{Q}}^2(X)) = 0,$$

$$\text{Hom}_{\text{DM}_{\mathbb{Q}}^{\text{eff}}}(L^2, \text{NS}^2_{\text{alg}, \mathbb{Q}}(X)) = 0, \quad \text{Hom}_{\text{DM}_{\mathbb{Q}}^{\text{eff}}}(\text{Pic}^0_{\mathbb{Q}}(X) \otimes L, J_{a, \mathbb{Q}}^2(X)) = 0,$$

$$\text{Hom}_{\text{DM}_{\mathbb{Q}}^{\text{eff}}}(\text{Pic}^0_{\mathbb{Q}}(X) \otimes L, \text{NS}^2_{\text{alg}, \mathbb{Q}}(X)) = 0, \quad \text{Hom}_{\text{DM}_{\mathbb{Q}}^{\text{eff}}}(J_{a, \mathbb{Q}}^2(X), \text{NS}^2_{\text{alg}}(X)) = 0.$$

These follow from [9, 7.3.10] because of the following reasons.
(i) The motive L^2 is isomorphic to $M_4(S_0)$ for some S_0.

(ii) The motive $Pr^0_{Q}(X) \otimes L$ is isomorphic to $M_5(S_1)$ for some S_1.

(iii) The motive $J^2_{eff}(X)$ is isomorphic to $M_1(S_2)$ for some S_2.

(iv) The motive $NS^2_{alg, Q}(X)$ is isomorphic to $M_0(S_3)$ for some S_3.

Here, S_0, S_1, S_2, and S_3 are (not necessarily connected) surfaces smooth and projective over C. This completes the proof of (1.3).

5. Conjectures

Definition 5.1. Let X be an n-dimensional connected scheme smooth and projective over C, and let $d \in [1, n]$ be an integer. Consider the homomorphism

$$AJ^d_{X, Q} : CH^d_{hom, Q}(X) \to \text{cl}(J^d_a(X)) \otimes Z Q$$

of Q-vector spaces induced by AJ^d_{X}. We put

$$CH^2_{Jac, Q}(X) = \ker AJ^d_{X, Q}.$$

5.2. Here, we give two conjectures other than (1.7).

Conjecture 5.3. Let X an n-dimensional connected scheme smooth and projective over C with $n \geq 2$. Then

$$CH^2_{Jac, Q}(X) \subset CH^2_{alg, Q}(X).$$

5.4. Let us conjecturally prove (5.3). The statement is that any element in the kernel of

$$AJ^2_{X, Q} : CH^2_{hom, Q}(X) \to \text{cl}(J^2_a(X)) \otimes Z Q$$

is algebraically equivalent to 0. Assume that $M(X)$ has a Chow-K"unneth decomposition $M_0(X) \oplus \cdots \oplus M_{2n}(X)$ in DM^eff. The conjectural Bloch-Beilinson filtration on $CH^2(X)$ expects that

$$\ker AJ^2_{X, Q} \cong \text{Hom}_{DM^eff}(L^{n-2}, M_{2n-2}(X)), \quad 0 = \text{Hom}_{DM^eff}(L^{n-2}, M_r(X))$$

(5.4.1)

for $r < 2n - 4$ and $r > 2n - 1$.

If some nonzero element in the kernel of $AJ^2_{X, Q}$ is not algebraically equivalent to 0, then it gives a direct summand 1 of $NS^2_{alg, Q}(X)$, which is also a direct summand of $\text{Hom}(L^{n-2}, M(X))$ in DM^eff by (1.3). The induced morphism

$$1 \to \text{Hom}(L^{n-2}, M_0(X) \oplus M_1(X) \oplus \cdots \oplus M_{2n-3}(X) \oplus M_{2n-1}(X) \oplus M_{2n}(X))$$

in DM^eff is 0 by (5.4.1) and the assumption that the element is in the kernel of $AJ^2_{X, Q}$. Thus we see that 1 is a direct summand of $\text{Hom}(L^{n-2}, M_{2n-2}(X))$. Conjecturally, we have that $M_{2n-2}(X) \cong L^{n-2} \otimes M_2(X)$ in DM^eff. Then by the cancellation law [7 16.25], we see that 1 is a direct summand of

$$\text{Hom}(L^{n-2}, M_{2n-2}(X)) \cong \text{Hom}(L^{n-2}, L^{n-2} \otimes M_2(X)) \cong \text{Hom}(1, M_2(X)) \cong M_2(X).$$

In particular, we have a nonzero morphism $M_2(X) \to 1$ in DM^eff. This contradicts to the conjecture [8 5.8].
Conjecture 5.5. Let X be an n-dimensional connected scheme smooth and projective over \mathbb{C}, and let
$$M(X) = M_0(X) \oplus \cdots \oplus M_{2n}(X)$$
be a conjectural Chow-Künneth decomposition. Then
$$\text{Hom}(L^{n-d}, M_{2n-2d}(X)) = \text{NS}^d_{\text{hom}, \mathbb{Q}}(X),$$
$$\text{Hom}(L^{n-d}, M_{2n-2d+1}(X)) = \text{CH}^d_{\text{hom}, \mathbb{Q}}(X)/(\text{CH}^d_{\text{Jac}, \mathbb{Q}}(X) + \text{CH}^d_{\text{alg}, \mathbb{Q}}(X))) \oplus J^d_{\alpha, \mathbb{Q}}(X)$$
for any integer $d \in [1, d]$.

5.6. The meaning of the second equation is that the motive $\text{Hom}(L^{n-d}, M_{2n-2d+1}(X))$ is the direct sum of $J^d_{\alpha, \mathbb{Q}}(X)$ and the image of the homomorphism
$$\text{CH}^d_{\text{hom}, \mathbb{Q}}(X)/\text{CH}^d_{\text{alg}, \mathbb{Q}}(X) \to \text{cl}(J^d(X))/\text{cl}(J^d_{\alpha}(X))$$
of abelian groups. In particular, this implies that to study the motive, we do not need the whole complex torus $J^d(X)$.

References

[1] J. Ayoub The n-motivic t-structure for $n = 0$, 1 and 2, Advances in Mathematics 226 (2011), 111-138.

[2] D.-C. Cisinski and F. Déglise, Triangulated categories of mixed motives, preprint, arXiv:0912.2110v3, 2012.

[3] U. Janssen, Motivic Sheaves and Filtration on Chow groups, Proceedings of Symposia in Pure Mathematics 55 (I) (1994), 245–302.

[4] A. Huber, Slice filtration on motives and the Hodge conjecture (with an appendix by J. Ayoub), Math. Nachr. 281 (2008), 1764-1776.

[5] Huber and B. Kahn, The Slice filtration and mixed Tate motives, Compos. Math. 142, No. 4 (2006), 907-936.

[6] J. Murre, J. Nagel and C. Peters, Lectures on the Theory of Pure Motives, University Lecture Series 61, American Mathematical Society (2012).

[7] C. Mazza, V. Voevodsky and C. Weibel, Lecture Notes on Motivic Cohomology, Clay Monographs in Math. 2, AMS (2006)

[8] J. Murre, On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990), 190–204.

[9] B. Kahn, J. Murre and C. Pedrini, On the transcendental part of the motive of a surface, Algebraic cycles and motives. Vol. 2, 143202, Lond. Math. Soc. Lect. Notes Series, Cambridge University Press 307 (2007)

[10] D. Lieberman, Intermediate Jacobians, Algebraic Geometry Oslo 1970, Wolters-Noordhoff, Groningen (1972), 125-139

[11] F. Orgogozo, Isomotifs de dimension inférieure ou égale à 1, Manuscript a Math. 115 (2004), 339-360.

[12] C. Vial, Projectors on the intermediate algebraic Jacobians, New York J. Math. 19 (2013), 793-822.

[13] C. Voisin, Hodge Theory and Complex Algebraic Geometry I, Cambridge Studies in Advanced Mathematics 76, Cambridge University Press (2002)