Hepatic injury induced by carbon dioxide pneumoperitoneum in experimental rats

Gui-Sen Xu, He-Nian Liu, Jun Li, Xiao-Ling Wu, Xue-Mei Dai, Ying-Hai Liu

Gui-Sen Xu, He-Nian Liu, Jun Li, Xue-Mei Dai, Ying-Hai Liu, Department of Anesthesia, General Hospital of Chengdu Military Command Area, Chengdu 610083, Sichuan Province, China
Xiao-Ling Wu, Department of Digestion, General Hospital of Chengdu Military Command Area, Chengdu 610083, Sichuan Province, China

Author contributions: Xu GS and Liu HN contributed equally to this work; Xu GS and Liu HN designed the research; Xu GS and Li J performed the research; Wu XL, Dai XM and Liu YH provided the new reagents and analytic tools; Xu GS analyzed the data; Xu GS and Wu XL wrote the paper.

Supported by The Eleventh-Five Medical Science Fund of Chengdu Military Command Area, No. MB07011

Correspondence to: He-Nian Liu, Professor, Department of Anesthesia, General Hospital of Chengdu Military Command Area, Chengdu 610083, Sichuan Province, China. xuguisen2009@163.com
Telephone: +86-28-86570671 Fax: +86-28-86570421
Received: April 2, 2009 Revised: April 29, 2009 Accepted: May 6, 2009 Published online: June 28, 2009

Abstract

AIM: To observe the hepatic injury induced by carbon dioxide pneumoperitoneum in rats and to explore its potential mechanism.

METHODS: Thirty healthy male SD rats were randomly divided into control group (n = 10), 0 h experimental group (n = 10) and 1 h experimental group (n = 10) after sham operation with carbon dioxide pneumoperitoneum. Histological changes in liver tissue were observed with hematoxylin-eosin staining. Liver function was assayed with an automatic biochemical analyzer. Concentration of malonyldialdehyde (MDA) and activity of superoxide dismutase (SOD) were assayed by colorimetry. Activity of adenine nucleotide translocator in liver tissue was detected with the atractyloside-inhibitor stop technique. Expression of hypoxia inducible factor-1 (HIF-1) mRNA in liver tissue was detected with in situ hybridization.

RESULTS: Carbon dioxide pneumoperitoneum for 60 min could induce liver injury in rats. Alanine aminotransferase and aspartate aminotransferase were 95.7 ± 7.8 U/L and 86.8 ± 6.9 U/L in 0 h experimental group, and 101.4 ± 9.3 U/L and 106.6 ± 8.7 U/L in 1 h experimental group. However, no significant difference was found in total bilirubin, albumin, and pre-albumin in the three groups. In 0 h experimental group, the concentration of MDA was 9.83 ± 2.53 μmol/g in liver homogenate and 7.64 ± 2.19 μmol/g in serum respectively, the activity of SOD was 67.58 ± 9.75 nu/mg in liver and 64.47 ± 10.23 nu/mg in serum respectively. In 1 h experimental group, the concentration of MDA was 16.57 ± 3.45 μmol/g in liver tissue and 12.49 ± 4.21 μmol/g in serum respectively, the activity of SOD was 54.29 ± 7.96 nu/mg in liver tissue and 56.31 ± 9.85 nu/mg in serum, respectively. The activity of ANT in liver tissue was 9.52 ± 1.56 in control group, 6.37 ± 1.33 in 0 h experimental group and 7.28 ± 1.45 (10⁻⁹ mol/min per gram protein) in 1 h experimental group, respectively. The expression of HIF-1 mRNA in liver tissue was not detected in control group, and its optical density difference value was 6.14 ± 1.03 in 0 h experimental group and 9.51 ± 1.74 in 1 h experimental group, respectively.

CONCLUSION: Carbon dioxide pneumoperitoneum during the sham operation can induce hepatic injury in rats. The probable mechanisms of liver injury include anoxia, ischemia reperfusion and oxidative stress. Liver injury should be avoided during clinical laparoscopic operation with carbon dioxide pneumoperitoneum.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Carbon dioxide pneumoperitoneum; Hepatic injury; Rat; Anoxia; Laparoscopic operation

INTRODUCTION

Along with the utilization of laparoscope in surgery,
more and more patients can recover with less injuries and complications. However, laparoscopic operation is always limited due to exposure of the organs. Although carbon dioxide pneumoperitoneum is a desirable method to assist in exposing abdominal organs, the high pressure of carbon dioxide in abdominal cavity has some potential side effects, such as impairment of liver, kidney and heart functions. Some researches revealed that the continuous high pressure from carbon dioxide during laparoscopic operation can result in ischemia injury in multiple organs, and the longer the operation lasts, the severer the injury is. One of the important reported mechanisms of liver injury is ischemia reperfusion. This study was to observe whether sham operation with carbon dioxide pneumoperitoneum causes liver injury and to explore its probable mechanism.

MATERIALS AND METHODS

Animals

Thirty healthy male SD rats were randomly divided into control group (n = 10), 0 h experimental group (n = 10), and 1 h experimental group (n = 10) after sham operation with carbon dioxide pneumoperitoneum. All experimental rats received sham operation for 1 h. Rats in the two experimental groups accepted carbon dioxide pneumoperitoneum during operation. The pressure of carbon dioxide was 15 mmHg. Liver tissue and serum were collected for further test.

Reagents

Oligo-nucleotide probe of hypoxia inducible factor 1 (HIF-1) mRNA was produced by Shanghai Shenneng Biotechnology Company (China). \(^3\)H-ADP and atracyloside (ATR) were obtained from Sigma Company (USA).

Methods

All rats were anaesthetized with pentobarbital sodium muscular injection. Rats in the two experimental groups received carbon dioxide pneumoperitoneum for 1 h during sham operation. Rats in the control group only underwent sham operation for 1 h. Blood samples and liver tissues were taken immediately from rats in 0 h experimental group and control group, and from rats in 1 h experimental group after sham operation, respectively. Liver function was detected with an automatic biochemistry analyzer. Histological changes in liver tissue were observed with hematoxylin-eosin (HE) staining under optical microscope. Concentration of malondialdehyde (MDA) in liver homogenate and serum was quantified with an electronic computer and shown as absorbance value.

RESULTS

Liver function

Liver function in the two experimental groups was disturbed obviously compared with the control group (Table 1). After sham operation with carbon dioxide pneumoperitoneum, the level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was 86.8 ± 6.9 U/L and 95.7 ± 7.8 U/L respectively in 0 h experimental group A, which was higher than that in control group (P < 0.05). The level of AST and ALT was 106.6 ± 8.7 U/L and 101.4 ± 9.3 U/L respectively in 1 h experimental group, which was higher than that in control group (P < 0.05). No significant difference was observed in the levels of total bilirubin (TB), albumin (A) and pre-albumin (Pre-A) between the two experimental groups.

MDA concentration and SOD activity in liver homogenate and serum

In control group, the concentration of MDA in liver homogenate and serum was 4.69 ± 1.31 \(\mu\)mol/g and 3.98 ± 1.05 \(\mu\)mol/g, respectively. After sham operation with carbon dioxide pneumoperitoneum, the concentration of MDA in liver homogenate and serum was significantly elevated in the two experimental groups (Table 2), indicating that liver is more susceptible to hypoxia injury. The activity of SOD in control group was 80.56 ± 12.43 nu/min per gram protein. The activity of SOD in liver homogenate and serum was significantly decreased in the two experimental groups (P < 0.05), demonstrating that more oxygen radicals are produced in the two experimental groups and SOD is consumed after elimination of oxygen radicals.

Histological changes in liver tissue

Liver samples were embedded in paraffin, stained with HE and then observed under an optical microscope. The livers of control group showed a normal lobular architecture with central veins and radiating hepatic cords, indicating that sham operation with routine anesthesia does not cause histopathological damage to liver. Mild hepatic fatty degeneration and necrosis were found in livers of the two experimental groups.
Table 1 Changes in liver function (mean ± SD)

Group	TB (μmol/L)	ALT (U/L)	AST (U/L)	A (g/L)	Pre-A (mg/L)
Control	24.5 ± 5.1	48.5 ± 8.2	45.6 ± 7.7	38.5 ± 4.2	203.5 ± 76.4
0 h experimental	23.1 ± 3.7	95.7 ± 7.8	86.8 ± 6.3	37.4 ± 3.1	195.8 ± 41.5
1 h experimental	25.8 ± 3.5	101.4 ± 9.3	106.6 ± 8.7	40.6 ± 3.9	182.9 ± 58.4

*P < 0.05 vs control group.

Table 2 MDA concentration and SOD activity in liver homogenates and serum (mean ± SD)

Group	MDA (liver) (μmol/g)	SOD (liver) (nu/mg)	MDA (serum) (μmol/g)	SOD (serum) (nu/mg)
Control	4.69 ± 1.31	80.56 ± 10.43	3.98 ± 1.05	75.66 ± 9.35
0 h experimental	9.83 ± 2.23a	67.58 ± 9.75b	7.64 ± 2.39ab	64.47 ± 10.25b
1 h experimental	16.87 ± 3.45a	54.29 ± 7.96a	12.49 ± 4.21a	56.31 ± 9.87a

*P < 0.05 vs control group.

Table 3 Activity of ANT in mitochondria of liver (mean ± SD)

Group	ANT (10⁻⁹ mol/min per gram protein)
Control	9.52 ± 1.76
0 h experimental	6.37 ± 1.23a
1 h experimental	7.21 ± 1.05a

*P < 0.05 vs control group.

(Figure 1A). The hepatic injury was more severe in 1 h experimental group B than in 0 h experimental group, suggesting that carbon dioxide pneumoperitoneum can cause hepatic injury (Figure 1B).

Activity of ANT in mitochondria of liver

In control group, the activity of ANT was 9.52 ± 1.56 (10⁻⁹ mol ADP/min per gram protein). In 0 h experimental group A, it was only 6.37 ± 1.33 (*P < 0.05 compared with control group), indicating that energy metabolism in mitochondria of liver is damaged by carbon dioxide pneumoperitoneum. One hour after carbon dioxide pneumoperitoneum, the activity of ANT was slightly increased (7.21 ± 1.05) compared with control group (*P < 0.05). However, it was lower in 1 h experimental group than in control group, indicating that energy metabolism in mitochondria of liver is recuperated to some extent after sham operation with carbon dioxide pneumoperitoneum (Table 3).

Expression of HIF-1 mRNA in liver tissue

No expression of HIF-1 mRNA was found in liver tissue from control group, indicating that sham operation without carbon dioxide pneumoperitoneum does not cause hypoxia stimulation in liver (Figure 2A). The expression of HIF-1 mRNA was significantly increased in the two experimental groups. The A value for HIF-1 mRNA was 6.14 ± 1.03 in 0 h experimental group and 9.51 ± 1.74 in 1 h experimental group (*P < 0.05). Brown positive particles of HIF-1 mRNA, mainly located in cytoplasm of liver cells, were more in stromal cells than in hepatocytes (Figure 2B). Whether the stromal cells are hepatic stellate cells or endotheliocytes remains unknown. The expression of HIF-1 mRNA was increased more significantly in 1 h experimental group compared with 0 h experimental group, indicating that there exists persistent hypoxia stimulation in liver after carbon dioxide pneumoperitoneum (Figure 2C).

DISCUSSION

Laparoscopic operation, performed frequently in recent years, has many advantages over conventional surgery, such as less injuries and complications. Thus patients who accept laparoscopic operation can recover with a shorter healing time and less operative scars. However, exposure of organs is always not enough. Carbon dioxide pneumoperitoneum is a desirable method to assist in exposing abdominal organs. Some researches have shown that it has some potential side effects, such as impairment of liver, kidney, and heart functions[1-4]. It has been reported that the continuous high pressure from carbon dioxide during laparoscopic operation can result in ischemia injury of multiple organs, and the longer the operation lasts, the severer the injury is.[5,6]

In this study, 1 h after sham operation with carbon dioxide pneumoperitoneum, the serum ALT and AST levels were increased while the levels of TB, A and Pre-A were not significantly changed. Since the half life of albumin is 14 d, the reduced albumin level can demonstrate the chronically impaired synthetic function of liver. However, the half life of prealbumin is only 2 d, and accordingly, a low level of prealbumin in serum indicates acute impairment of liver synthetic function. This study showed that liver function injury was not severe enough to cause hypoproteinemina. However, more susceptible markers of the liver function, ALT and AST, demonstrated mild impairment of liver function. It has been shown that necrosis of even a few hepatocytes results in a high level of transaminase.[7-10]. In HE stained liver samples, fatty degeneration was found in some hepatocytes, indicating that ischemia or anoxia occurs during sham operation with carbon dioxide pneumoperitoneum.
The elevated expression level of HIF-1 mRNA in liver homogenate further indicates that anoxia injury is induced by carbon dioxide pneumoperitoneum. MDA is the end product of lipid peroxidation. The concentration of MDA in liver homogenate or serum is a direct marker for the level of oxygen radicals. SOD is one of the important scavenger enzymes of oxygen radicals. The activity of SOD would decrease after oxygen radicals are cleaned. In this study, the concentration of MDA was elevated and the activity of SOD was reduced in liver homogenate and serum, indicating that the number of oxygen radicals is increased after carbon dioxide pneumoperitoneum. Since liver is a mitochondria-abundant organ, it is more susceptible to hypoxia than other organs. In this study, the activity of ANT, a marker of energy metabolism in mitochondria, was reduced after carbon dioxide pneumoperitoneum. The activity of ANT was mildly elevated 1 h after carbon dioxide pneumoperitoneum compared with the control group. It has been shown that blood-supply is obviously decreased in portal vein during carbon dioxide pneumoperitoneum. In addition, hypercapnia is related to ischemia injury of abdominal organs, while high pressure during operation and immediate relief of carbon dioxide after operation can induce ischemia reperfusion injury of multiple organs and apoptosis of hepatocytes after carbon dioxide pneumoperitoneum. In this study, hepatic injury in rats and the possible mechanism of carbon dioxide pneumoperitoneum were elicited. Since pathophysiological changes in rats are not always identical as those in human beings, injury of carbon dioxide pneumoperitoneum should be observed closely in clinical practice. Although impairment of liver function usually does not cause severe complications, it should be alleviated or avoided especially in patients with preceding liver diseases during sustaining laparoscopic operation. It has been shown that liver injury is pressure-dependant. The pressure of carbon dioxide used in pneumoperitoneum is 10-12 mmHg, which is higher than that (7-10 mmHg) in the port system. The higher pressure from carbon dioxide influences the systemic and portal blood flow dynamics, and causes apoptosis of hepatocytes. A shorter time or a lower carbon dioxide pressure in pneumoperitoneum might help to alleviate liver injury. Stepwise increasing carbon dioxide insufflation might also be an ischemic preconditioning method to reduce liver injury. Further study is needed on the precise mechanism of carbon dioxide pneumoperitoneum and more effective methods should be found to avoid liver injury.
Influence of carbon dioxide pneumoperitoneum on liver function following laparoscopic surgery assessed by transesophageal echocardiography. Anesth Analg 2005; 100: 340-347

Xue W, Wu QY, Liu L, Tong VW, Xu LD, Hu BB. Effect of CO2 pneumoperitoneum on hepatic blood flow dynamics. Togni Daxue Xuebao 2008; 29: 58-61

Wang JS, Wang WX, Zhang XC. Effects of CO2 pneumoperitoneum on apoptosis of hepatocellular in rats. Zhongguo Neijing Zazhi 2003; 9: 21-23

Sahin DA, Haliloglu B, Sahin FK, Akbulut G, Fidan H, Koken G, Buyukbas S, Aktepe F, Arikan Y, Dilek ON. Stepwise rising CO2 insufflation as an ischemic preconditioning method. J Laparoendosc Adv Surg Tech A 2007; 17: 419-424

Hao YX, Zhong H, Zhang C, Zeng DZ, Shi Y, Tang B, Yu PW. Effects of simulated carbon dioxide and helium pneumoperitoneum on proliferation and apoptosis of gastric cancer cells. World J Gastroenterol 2008; 14: 2241-2245

S- Editor Li LF L- Editor Wang XL E- Editor Zheng XM

www.wjnet.com