Hydrocele after 2 Different Interventions for Varicocele and its Relation to Outcome

Abdel-Monem A Mohamed*, Emad A Taha¹, Ahmad A³ and AlaaRefat⁴

¹Department of General Surgery, Faculty of Medicine, Al-Azhar University Egypt
²Department of Andrology, Faculty of Medicine Asuute University Egypt
³Department of pathology, Faculty of Medicine, Al-Azhar University, Egypt
⁴Department of Urology, Faculty of Medicine, Al-Azhar University asuute branch, Egypt

ABSTRACT

Background: Hydrocele is one of the common complication after varicocele surgery. Hydrocele following varicocelectomy has a lymphatic origin due to iatrogenic disruption of lymphatics draining the testis during varicocelectomy.

Patient and Method: This study includes 100 patients with clinical varicocele presenting with infertility and abnormal semen parameters. 50 patients underwent loop assisted varicocelectomy and 50 patients underwent laparoscopic varicocelectomy.

Result: Lymphatics injury during operation was documented by histological examination in 10 patients (20%) among laparoscopic varicocelectomy group and in 5 patients (10%) among loop assisted varicocelectomy group.

Conclusion: Loop assisted varicocelectomy has good result than laparoscopic technique about, hydrocele formation, and operative time when microscopic technique not available.

Keywords: ?????????

Introduction

Varicocele is an abnormal dilatation, elongation and tortuosity of the testicular veins within the pampiniform plexus. [1] varicocele constitute about 10–20% of the general male population and about 35–40% of men with primary infertility [1, 2]. Varicocele is one of the most common correctable causes of male infertility [3, 4].

varicocele is common on the left than right because the left testicular vein enters the left renal vein at right angle. Prolonged standing, obstruction by left renal artery, venous congestion due to unrelieved sexual excitement and obstruction by tumors is implicated etiological factors (4).

There is different varicocele related pathogenic mechanisms hazarding spermatogenesis as scrotal hyperthermia, increased sperm DNA damage and semen oxidative stress that was found to be corrected by successful Varicocelectomy (5, 6).

Treatment options include open inguinal ligation of the spermatic veins, subinguinal microscopic technique, and, most recently, laparoscopy varicocelectomy, sclerotherapy and embolization, but the ideal operation for varicocele treatment is still have controversy [6,7,8,]

Loop assisted varicocelectomy can identifies small spermatic veins, the testicular artery and lymphatic better, thus avoid recurrence and decrease the incidence of complications [9].

The ideal procedure for varicocelectomy should be followed by a low rate of recurrence, hydrocele formation, and testicular atrophy in addition to better outcome in terms of semen parameters and pregnancy rate [10].

The lymphatics of the testis form 4-5 trunks move upwards in the spermatic cord to accompany the testicular blood vessels and drain to paraaortic nodes [11].

Hydrocele is an abnormal collection of fluid, the sac of the tunica vaginalis. It represents as one of the common complication after varicocele surgery. Hydrocele following varicocele surgery has a lymphatic origin due to iatrogenic disruption of lymphatics draining the testis during varicocelectomy [12].

Lymphatic vessels are responsible for draining interstitial fluid and returning it to the bloodstream. These vessels typically have thin walls and delicate valves that prevent backflow. Lymphatic vessels nottably lack red blood cells, which help distinguish them from veins. The lymphatic system also plays an important role in generating immune responses. [13]

Until recent years there was a lack of a reliable marker that can distinguish the lymphatic endothelium from the blood.
capillary endothelium. Now there is certain lymphatic endothelial cell specific proteins have been identified, including vascular endothelial growth factor receptor-3, lymphatic endothelial hyaluron receptor-1 (LYVE-1), podoplanin, prox-1, D6 and D2-40. Among these, an antibody to D2-40 has been shown to detect lymphatic endothelium in formalin-fixed paraffin-embedded tissues and does not react with the blood vessel endothelium. This antibody has already been employed to detect lymphatics in various tissues [16’17].

D2-40 antibody reacts with podoplanin, a cell membrane protein, the expression of which has been confirmed on the endothelial cells of lymph vessels in various normal tissues, but also in vascular tumors and in some tumors of non-vascular origin. [18]

Our aim is to compare the laparoscopic technique in comparison to the open Loop assisted subinguinal varicocelectomy, as regards lymphatic injury and its relation to hydrocele formation.

Patients and Methods

This study is done Between January 2014 and June 2017. 100 patients with clinical varicocele presenting with infertility and abnormal semen parameters. 50 patients underwent loop assisted varicocelectomy and 50 patients underwent laparoscopic varicocelectomy at the general surgery and Urology Departments of al-azhar university hospital faculty of medicine asuit branch.

A detailed informed consent was obtained from all patients. 1-year duration of infertility, defined as failure to establish a pregnancy in 12 months with regular sexual relation, to be included in the study group.

All patients underwent complete history taking and complete physical examination. Testicular ultrasonography was performed on all patients. Scrotal color Doppler ultrasound is done to confirm the presence of varicocele and confirm the presence of a subclinical varicocele and to evaluate testicular sizes. Semen analyses were performed in all patients by masturbation after at least 2 days abstinence.

We included patients with palpable unilateral or bilateral clinical varicocele. Those with subclinical varicocele were included only in case of right subclinical varicocele associated with left clinical one.

We excluded patients with history of specific genital diseases other than clinical varicocele as orchitis, and we also excluded patients with already present hydrocele.

According to the type of operation the patients in the study were divided into 2 groups:

Group 1: patient with laparoscopic Varicocelectomy

Group 2: patient loop assisted varicocelectomy

Technique for loop assisted subinguinal varicocelectomy

Varicocelectomy is done using a loop assisted subinguinal approach, we try to spare artery and lymphatic in this technique, through a small transverse skin incision overlying the external inguinal ring, and the spermatic cord was delivered with a Babcock clamp. The spermatic cord was then delivered through the incision.

The cord was examined. Once the internal and external spermatic fascia were opened the arteries then dissected free from the underlying veins and encircled with a 3/0 polyglactin suture for identification. Caution was taken to prevent lymphatic injury to avoid the occurrence of postoperative fluid collection. All veins except the vasal veins were then ligated with 3/0 polygalactan and divided. Then, the operation was ended by closure of subcutaneous tissue and skin using polyglactin subcuticular sutures [19].

Technique of Laparoscopic Varicocelectomy: A 5-mm port is placed subumbilical. This serves as the camera port for a 30-degree lens. A second port is placed lateral to the epigastric vessels on the right side midway between the umbilicus and pubic symphysis, and a third port is placed lateral to the epigastric vessels on the left side at a level 1 to 2 cm inferior to the umbilicus.

Once the ports have been placed, the posterior peritoneum is incised just lateral to the spermatic cord. The initial posterior peritoneal window is extended medially and distally. A large placed vein is identified and gently grasped with a Maryland dissector. Adjacent tissue is swept away, and the vein is clipped. Lymphatics often appear as a net of small white or translucent vessels. The dissection progresses medially and posteriorly to identify other veins and lymphatics. It is possible to visualize the artery [20].

Histological Analysis: All samples (100 specimens) were fixed in 10% formalin. Immediately after excision and processed for paraffin sections. Specimens were histologically assessed using H&E sections.

Immunohistochemistry: The immunohistochemistry was carried out with the streptavidin-biotin-peroxidase complex technique (Anti-polyvalent HRP Diaminobenzidine Detection System, Catalog TPD-15; Spring Bioscience). Briefly, the 4-mm paraffin sections were deparaffinized in xylol and rehydrated in graded alcohol series. Sections were heated up to 98°C for 20 min. in 0.01 M citrate buffer (pH 6.0). Endogenous peroxidases were inactivated with 3% hydrogen peroxide in methanol for 10 min., followed by washing in PBS. Tissue sections were incubated with
monoclonal mouse antihuman, podoplanin (clone D2-40, Dako) diluted 1:100 for 2 h. Sections were then sequentially washed in PBS and incubated with biotinylated goat anti-polyvalent antibody for 10 min., streptavidin peroxidase for 10 min., and developed with 3,3’-diamino-benzidine (DAB Substrate) for 10 min. Appropriated positive and negative controls were included in each run. Negative controls were performed by omission of the primary antibody and angiosarcoma was used as positive control. The slides were counterstained with haematoxylin.

Patients were seen at 1 week for stitches removal and at 2, 4, 6 and 12 months with clinical and sonographic assessment of hydrocele. Clinical and semen evaluation was done at one year follow up to allows for observation of late developing hydrocele in addition to pregnancy outcome.

Results
In this study, 50 patients underwent loop assisted varicocelectomy, compared with another 50 laparoscopic varicocelectomy. The patients age ranging between 20 and 45 years. Most of these patient age 31 and 40 years (60%). A detailed history, taking examination and investigations of hundred men with infertility was done. They were married for between 1 and 12 years. 70 patients had primary infertility and 30 had secondary infertility. All of patients suffered abnormal semen parameters.

No significant differences were found between 2 groups in preoperative semen parameters (table-1).

Operation time ranged from 30 – 60 min. No significant difference between mean operative time for both techniques (40± 11 minutes for loop and 45± 12 minutes for laparoscopic technique).

Lymphatics injury during operation was documented by histological examination in 10 patients (20%) among laparoscopic varicocelectomy group and in 5 patients (10%) among loop assisted varicocelectomy group (p<0.001) (figures…).

Postvaricocelectomy Semen Parameters and Complications: Post-operative semen parameters were obtained in 48 patients in loop assisted and 45 patients in laparoscopic varicocelectomy at 6 months after surgery and were significantly better in loop assisted varicocelectomy group (table-2)

Scrotal and spermatic cord edema occurred in 12 patients of loop assisted group (25%) and 10 patients in laparoscopic group (22%) with no significant difference and spontaneous regression at 3-month follow up in all patients.

Occurrence of persistent hydrocele at 1 tear post-surgery was detected in 9 (20%) of laparoscopic varicocelectomy group and 3(6%) of loop assisted varicocelectomy group (p<0.01) (fig.4).

Comparison between postoperative semen parameters in those with and without hydrocele at the end of 1-year post surgery revealed no significant difference (table 3).

Table 1: Comparison of preoperative semen parameters in 2 group.

Semen Variable	Loop assisted varicocelectomy group (n=50)	Laparoscopic varicocelectomy group, (n=50)	P-value
Semen volume (ml) Mean ± SD	2.61 ± 1.40	2.56 ± 1.67	>0.05
Sperm Count (mil/ejaculate) Median Mean ± SD	25 29.90 ± 27.26	23 27.63 ± 25.00	>0.05
Normal sperm morphology% Mean ± SD	11.44 ± 9.19	13.00 ± 6.99	>0.05
Progressive sperm motility % Mean ± SD	19.04 ± 8.67	15.08 ± 9.41	>0.05

Table 2: Comparison of postoperative semen parameters in 2 group.

Semen Variable	Loop assisted varicocelectomy group (n=48)	Laparoscopic varicocelectomy group, (n=45)	P-value
Semen volume (ml) Mean ± SD	2.71 ± 1.22	2.68 ± 1.27	>0.05
Sperm Count (mil/ejaculate) Median Mean ± SD	67 81.90 ± 87.26	41 40.63 ± 65.00	<0.05
Normal sperm morphology% Mean ± SD	31.44 ± 15.19	19.00 ± 6.99	<0.05
Progressive sperm motility % Mean ± SD	35.04 ± 11.27	22.03 ± 10.41	<0.05
Table 3: Comparison of postoperative semen parameters in those with and without hydrocele at the end of 1-year post surgery.

Semen Variable	Hydrocele group (n=12)	Non-hydrocele group (n=12)	P-value
Semen volume (ml)			
Mean ± SD	2.61 ± 1.52	2.8 ± 1.23	>0.05
Sperm Count (mil/ejaculate)			
Median	57	61	
Mean ± SD	58.90 ± 61.24	62.63 ± 64.24	>0.05
Normal sperm morphology%			
Mean ± SD	29.34 ± 12.19	32.27 ± 8.99	>0.05
Progressive sperm motility %			
Mean ± SD	32.14 ± 10.37	34.13 ± 11.31	>0.05

Fig. 1: showing lymphatics at histopathological examination during laparoscopic varicocelectomy (H&E section x600).

Fig. 2: showing veins contain RBCs without presence of lymphatics of histopathological examination during loop assisted varicocelectomy (H&E section x 200).

Fig. 3: short arrow showing lymphatics at histopathological examination during laparoscopic varicocelectomy (immunohistochemistry).

Fig. 4: short arrow showing lymphatics at histopathological examination during laparoscopic varicocelectomy (immunohistochemistry).

http://www.aamsjournal.com
Discussion

Varicocele is abnormally dilated pampiniform plexus of veins, which is the drainage of the testes. Normally, small valves prevent blood to retain to the testis.

There are many techniques for varicocelectomy. The first varicocelectomy was done by Celsus in the first century [21].

In this era, there are many techniques for varicocele operation include subinguinal, microscopic, loop assisted, microscopic and laparoscopic as an alternative for palomo high ligation however the most successful technique is still had controversy [22].

Hydrocele is a common complication of variable varicocele operations. The occurrence of hydrocele is 0.3% to 40.4% seen by Kocvara [23].

The reason for the development of the hydrocele could be attributed to the iatrogenic disruption of the testicular lymphatics during the varicocele surgery. This led to defective drainage of the fluid normally secreted by the tunica vaginalis into the lymphatics with its subsequent accumulation [24]. In support of this explanation, many factors were present. First, our patient had no history of epididymitis or testicular trauma, which may act as precipitating factors triggering easy accumulation of hydrocele fluid after varicocele surgery [25]. Second, the excised tunica did not show any microscopic changes which might denote an underlying pathology. Third, ultrasound evaluation of our patient revealed the presence of multiple septa in his hydrocele sac. These sonographic features are characteristic of the protein content of the hydrocele [26]. This coincides with previous researchers who showed that PV hydroceles usually have a protein content [27].

Schwentner and colleagues show that hydrocele in 16% varicocelectomy done by microscopic technique. [28] Kocvara and colleagues [29] show that hydrocele occurrence 17.9% with laparoscopic varicocelectomy.

In our study, hydrocele after varicocele operation was in 6% and 8% after 2 years of follow up in laparoscopic group and loop assisted varicocelectomy group respectively.

Tong et al and Huk [30] established that lymphatic-sparing laparoscopic is a suitable alternative of palomo technique and associated with low incidence of complications.

Our study showed that incidence of lymphatic injury during laparoscopic varicocelectomy and loop assisted technique showing little difference with low complication rate.

Conclusion

Loop assisted varicocelectomy ha good result than laparoscopic technique as regards, hydrocele formation, and operative time when microscopic technique not available. Our study showed that early return to work and early ambulation in laparoscopic technique.

References

1. Saypol DC, Lipshultz LI, Howards SS. Varicocele. In: Lipshultz LI, Howards SS, editors. Infertility in the male. New York: Churchill Livingstone; 1983. pp. 299–313. 2. Mustafa Kirca, Nuri Deniza, Hasan Birib: The Effect of Microsurgical Varicocelectomy on Semen Parameters in Men with Non-Obstructive Azoospermia: Curr Urol 2012;6:136–140
2. Dubin L, Amelar RD. Etiologic factors in 1294 consecutive cases of male infertility. Fertil Steril 2007; 22:469-74.
3. Schlesinger MH, Wilets IF, Nagler HM. Treatment outcome after varicocelectomy. A critical analysis. Urol Clin N Am 2004; 21:517-29.
4. Tung MC, Huang WJ and Chen KK. Modified subinguinal varicocelectomy for painful varicocele and varicocele-associated infertility. J Chin Med Assoc 2004; 67: 296-300.
6. Esposito C, Valla JS, Najmaldin A, Shier F, Mattioli G, Savanelli A, Castagnetti M, McKinley G, Stayaert H, Settimi A, Jasoni V, Guys JM: Incidence and management of hydrocele following varicocele surgery in children. J Urol 2004, 171:1271-1273.

7. A. Zini and G. Dohle, “Are varicoceles associated with increased deoxyribonucleic acid fragmentation?” Fertility and Sterility, vol. 96, no. 6, pp. 1283–1287, 2011.

8. Palomo A. Radical cure of varicocele by a new technique: preliminary report. J Urol. 1949;61:604.

9. Tefekli A., Çayan S., Uluocak N., Poyanli A., Alp T., Kadioğlu A. Is selective internal spermatic venography necessary in detecting recurrent varicocele after surgical repair? Eur Urol. 2001;40:404–408.

10. Agarwal A., Deepinder F., Cocuzza M., Agarwal R., Shart RA, Sabanegh E., Marmar JL. Efficacy of varicocelectomy in improving semen parameters: new meta-analytic approach. Urology. 2007;70:532–538.

11. Çayan S, Kadioğlu TC, Tefekli A, et al. Comparison of results and complications of high ligation surgery and microsurgical high inguinal varicocelectomy in the treatment of varicocele. Urology 2000;55:750–4.

12. Masahiro Itoh, Xiu-Qin Li, Akiko Yano, Qiang Xie, and Yoshiki Tak: Patterns of Efferent Lymphatics of the Testis. Journal of Andrology, 1998 Vol. 19, 4.

13. Kato T, Kameoka S, Kimura T, Nishikawa T, Kobayashi M: The combination of angiogenesis and blood vessel invasion as a prognostic indicator in primary breast cancer. Br J Cancer 2003, 88:1900.

14. Akishima Y, Ito K, Zhang L et al. Immunohistochemical detection of human small lymphatic vessels under normal and pathological conditions using the LYVE-1 antibody. Virchows Arch. 2004; 444; 153–157.

15. 2. Kahn HJ, Bailey D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s sarcoma and a subset of angiosarcomas. Mod. Pathol. 2002; 15; 434–440

16. Kahn HJ, Marks A. A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab. Invest. 2002; 82; 1255–1257.

17. Fukunaga M. Expression of D2-40 in lymphatic endothelium of normal tissues and in vascular tumours. Histopathology 2005; 46; 396–402.

18. Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J of Histochem Cytochem 2006; 54: 385-95.

19. Zampieri N, El-Dalati G, Ottolenghi A, Camoglio FS: Percutaneous aspiration for hydroceles after varicocelectomy. Urology 2009, 74:1122–1124.

20. Amaku EO. Scrotum, Testis and Epididymis. In: Principle and Practice of Surgery, Including Pathology in the Tropics. Edited by Badoe EA, Archampong EQ & Jaja MOA; 2nd ed. Ghana Publishing Corporation 1994: 830-41.

21. Tanriverdi O, Miroglu C, Horasanli K, Altay B, Caliskan KC, Gumus E. Testicular blood flow measurements and mean resistive index values after microsurgical and high ligation varicocelectomy. Urology. 2006; 67(6):1262–1265.

22. Çayan S, Shavakhabov S, Kadioğlu A: Treatment of palpable varicocele in infertile men: a meta-analysis to define the best technique. J Androl 2009; 30:33–40.

23. Spink MS, Lewis GL. Albucasis on surgery and instruments. Berkeley: University of California Press, 1973. p 438.

24. Szabo R, Kessler R: Hydrocele following internal spermatic vein ligation: a retrospective study and review of the literature. J Urol 1984, 132:924–925.

25. Amelar RD: Early and late complications of inguinal varicocelectomy. J Urol 2003, 170:366–369.

26. Collings C, Cronan JJ, Grusmark J: Diffuse echoes within a simple hydrocele: an imaging caveat. J Ultrasound Med 1994, 13:439–442.

27. Szabo R, Kessler R: Hydrocele following internal spermatic vein ligation: a retrospective study and review of the literature. J Urol 1984, 132:924–925.

28. Misseri R, Gershbein AB, Horowitz M, Glassberg KI. The adolescent varicocele. II: the incidence of hydrocele and delayed recurrent varicocele after varicocelectomy in a long-term follow-up. BJU Int. 2001; 87:494-8.

29. Schwentner C, Oswald J, Lunacek A, Deibl M, Bartsch G, Radmayr C. Optimizing the outcome of microsurgical subinguinal varicocelectomy using isosulfan blue: a prospective randomized trial. J Urol. 2006; 175:1049-50.

30. Tong Q, Zheng L, Tang S, Du Z, Wu Z, Mei H, Ruan Q: Lymphatic sparing laparoscopic Palomo varicocelectomy for varicoceles in children: intermediate results. J Pediatr Surg; 2009; 44:1509-13.

*Corresponding author: Abdel-Monem A Mohamed, Department of General Surgery, Faculty of Medicine, Al-Azhar University, EGYPT Phone: +20111106805 Email: monem_adam@yahoo.com

Financial or other Competing Interests: None.