Seroprevalence occurrence of viral hepatitis and HIV among hemodialysis patients

Inass Mahmood Kamal¹, Batool Mutar Mahdi²

¹AlKindy Teaching Hospital ²Consultant ImmunologistDirector of HLA research Unit AlKindy College of MedicineUniversity of Baghdad

Abstract. Patients with chronic renal failure (CRF) were on maintenance invasive haemodialysis (HD) procedure. This procedure by itself affects immunity of the patients and became more susceptible to viral infections to investigate the occurrence of HBV HCV and HIV infections in patients with hemodialysis. A retrospective study of 430 end stage renal failure patients referred to hemodialysis department at Al-Kindy Teaching Hospital Baghdad Iraq from January 2015 to January 2017. Patients were investigated for HBsAg using enzymelabeled antigen test (ForesightEIA USA) HCV Abs (IgG) specific immunoglobulin using a HCV enzymelabeled antigen test (ForesightEIA USA) and anti HIV Abs (IgG) using enzymelabeled antigen test (ForesightEIA USA). The frequency of HBV infection in the first year was not significant between males (111%) and females (000%) (P= 0.295). About HCV also there are no significant differences between males (1263%) and females (931%) (P=0.347). After one year of follow up the frequencies of HBV and HCV were not significant between two sexes. Additionally no any one of the patients had HIV infection. This study brings a light on that HBV and HCV were having the same frequencies in both genders and lower occurrence with time. Furthermore HIV was not detected in those patients.

Key words virus, haemodialysis, infection.

1 Introduction

One of the treatments of chronic renal failure (CRF) is maintenance invasive hemodialysis (HD) procedure. This procedure by itself affects innate immunity like changes in chemotactic factor for leukocytes phagocytic function of neutrophils and monocytes and natural killer cell (1, 2 and 3). Moreover adaptive immunity is affected for example defect in proliferation of T lymphocytes and down regulation of phosphorylation pathways of lymphocytes (4, 5 and 6). Therefore HD patients are more susceptible to blood born viral infection like hepatitis B virus (HBV) hepatitis C virus (HCV) and Human immunodeficiency virus (HIV) due to disturbance in immune system (7).

Infection with these viruses is the main reason of morbidity in HD patients. However precautions’ must be taken to prevent disseminations of viruses in the unit like available treatments and vaccines (8). In USA after acquiring viruses like HBV in HD patients 60% of them become chronic carriers while in the general population was 5% of them became chronic carrier (9). A study showed that chronic HBV infection had a relation with mortality (10). Additionally there are 170 million hepatitis C virus carriers.
worldwide and one of the risk group is HD patients and the risk of death was 157 times more than others in association with liver cirrhosis and hepatocellular carcinoma (1112).

Subsequently infection of liver with viruses was fatal for patients on HD and constitutes 19% of all deaths (13) Additional virus that is important in HD patients is HIV The prognosis of this virus was changed significantly due to administration of Highly Active AntiRetroviral Therapy (HAART) stage of HIV disease at time of dialysis start and T helper (CD4+) lymphocyte count (14, 15 and 16).

The goal of the present study is to investigate the occurrence of viral infection like HBV HCV and HIV in patients with the end stage renal failure on hemodialysis.

2 Patients and methods

A retrospective study of 430 end stage renal failure patients referred to hemodialysis unit of Al-Kindy Teaching Hospital Baghdad Iraq from January 2015 to January 2017 All patients were subject to the process of hemodialysis

Hemodialysis patients were a case for the study if their serum tested positive for HBV HCV and HIV in contrast the patients receiving hemodialysis were considered as a control if their serum tested negative for those three viruses for every case one age and gendermatched control receiving haemodialysis was selected.

The Broad of Medical Ethics has been approved for these patients and accepted their review of Al-Kindy College of Medicine and Al-Kindy Teaching Hospital The knowledgeable permission was obtained from patients Data collected from both groups including demographic information age sex marital status occupation residential status onset of renal failure and hemodialysis history.

Serological testing A 430 patients were investigated for HBsAg using enzymelabeled antigen test (ForesightEIAUSA) HCV Abs (IgG) specific immunoglobulin using a HCV enzymelabeled antigen test (ForesightEIAUSA) and anti HIV Abs (IgG) using enzymelabeled antigen test (ForesightEIA USA) The principle for detection antibodies in the serum are illustrated as follows using leaflet kit.

The microwells are coated with Ags then the serum will be added that contains Abs lead to formation a complex After incubation washing was done and enzyme conjugated with Abs was added After incubation and washing were done substrate A and B were added The color was formed and the reaction was stopped by sulfuric acid The results were interpreted after reading with micro plate reader at 450nm within 30 minutes Samples with optical density below the cutoff were recorded as negative those with optical densities (< 10% > 10%) of the cutoff were equivocal and all others were positive The sample was retested when the absorbance was within 10% of the cutoff level.

Statistical analysis

- Data were analyzed statistically using
- Descriptive statistics frequencies mean and standard deviation
- Inferential statistics Chisquare tests and fisher exact test

All of these were done using Mini Tab statistical software program 1320 A P value ≤ 005 was considered to be significant

3 Results

A total of 430 patients with chronic kidney disease (renal failure) were on hemodialysis during the study period The proportion of males 269 (6255%) was more than that of female 161(3744%). Their ages ranged from 16 to 76 years (median=35) (312 ±080). The frequency of HBV infection in the first year was not significant between males (111%) and females (900%) (P= 295) as shown in Table 1. About HCV also there is no a significant difference between males (1263%) and females (931%)(P=0347). After one year of follow up the frequency of HBV and HCV was also not significant between two sexes as was reported in (Table 2) HIV was not affecting any of HD patients There was a
significant reduce in the frequency of infection with HCV while occurrence of HBV was not changed (Table3).

Table 1 Frequency of viral infection in patients in the first year of hemodialysis

Viral markers	HD Patients positive for the viruses males	HD Patients negative for the viruses males	HD Patients positive for the viruses females	HD Patients negative for the viruses females	P value				
	No	%	No	%	No	%	No	%	
HBsAg	3	111	266	9888	0	0	161	100	0295*
Anti HCV Abs	34	1263	235	8736	15	931	146	9068	0347*
Anti HIV Abs	0	0	0	0	0	0	0	0	Not significant

Table 2 Frequency of viral infection in patients in the second year of haemodialysis

Viral markers	HD Patients positive for the viruses males	HD Patients negative for the viruses males	HD Patients positive for the viruses females	HD Patients negative for the viruses females	P value				
	No	%	No	%	No	%	No	%	
HBsAg	0	0	269	100	0	0	161	100	100*
Anti HCV Abs	15	557	254	9442	9	559	152	944	100*
Anti HIV Abs	0	0	0	0	0	0	0	0	Not significant

Table 3 Comparison of viral infection in hemodialysis patients in two years of follow up

Viral markers	HD Patients positive for the viruses 2015	HD Patients positive for the viruses 2016	P value		
	No	%	No	%	
HBsAg	3	0697	0	0	0248*
Anti HCV Abs	49	1139	24	558	0002
Anti HIV Abs	0	0	0	0	Not significant
4 Discussion

Chronic renal failure patients receiving hemodialysis are often acquiring blood borne viral infection over their long treatment period like HBV, HCV and HIV. In our study HD patients had HBV and HCV infection and after follow them the percentage of HBV decreased. Additionally HCV still in the same percentage. There was no significant difference regarding gender in the frequency of these viruses. There was a significant reduce in the frequency of infection with HCV table3 with time. A study done in Canada demonstrated that two patients (08%) were positive for HBsAg and 9 (38%) had viral HB DNA by PCR (17). This is in agreement with our study (11%) in 2015 and then (00%) in 2016, therefore, the molecular investigation that detects HBVDNA using nested PCR is helpful for patients with anti HB core Ab positive negative for HBsAg and antiHBs Abs (18). It is recommended to analyze HBVDNA annually and biopsy from liver (19). Additional study done in Madhav Nagar city reported that the frequency of HBV and HCV infections in HD patients was 152% and 111% respectively (20, 21). In India the occurrences of HBV were 34% to 42% which is higher than found in our study (22, 23). The lower occurrence of HBV in this study may be caused by sample size method used for detection the virus less blood transfusion and blood products for the patients and screening of blood for bloodborne viral infections before transfusion. The availability of erythropoietin leads to lowering blood transfusion times to the patients. The only three patients with HBsAg positive were treated and recover from the disease. Consequently HBV did not detect after one year of follow Management patients with HBV vaccine separation of infected patient on separate machine and habitual surveillance for HBV infected patients in the hospitals leads to lower rates of infection with HBV. Regarding the frequency of HCV infection was higher than HBV in our study while other studies reported less prevalence of HCV infection in HD patients like Spain (24) and Brazil (25). This may be due to sample size method of detection and screening blood for antibodies against HCV with control measures in hospitals Double infection with two viruses (HBV and HCV) in same patient were not detected in our study while in other studies were 44% (26, 27). The lower number of the patients who were positive for anti HCV after one year of follow-up was due to their deaths.

About HIV infection there were no cases of this virus in HD patients in our study due to control measures of this disease. The prevalence of this virus varies in different countries depending on district of the countries (28, 29). Within USA about 1% of HD patients had HIV due to HIV associated nephropathy (30). HD patients should be investigated by ELISA Western blot and serum HIVRNA for positive cases. The prognosis of HIV infected HD patients has considerably better by using Highly Active AntiRetroviral Therapy (HAART)(31) stage of HIV disease at initiation of dialysis (32) and The CD4+T helper count (33). Infections with these viruses are important cause of death following cardiovascular diseases in HD patients. Thus many safety measures must do to limit the dissemination of these viruses (34). There is a need for treatment of HCV endstage renal disease patients and sustained systematic immunization campaigns for HBV infection (35). Investigating hemodialysis patients for antiHBc is important to show latent HBV infection (36). Thus early vaccination and better nutritional conditions improves antiHBV response (37).

5 Conclusions

This study brings a light on that HBV and HCV infections were in the same in both genders though less common with time HIV was not detected in HD patients.

References

[1] Lewis SL, Van Epps DE, Chenoweth DE, 1988, “Alterations in chemotactic factorinduced responses of neutrophils and monocytes from chronic dialysis patients” Clin Nephrol, 30, 63 72

[2] Muniz Junqueira MI, Braga Lopes C, Magalhaes CA, Schleicher CC, Veiga JP, 2005, “Acute and chronic influence of hemodialysis according to the membrane used on phagocytic function
of neutrophils and monocytes and proinflammatory cytokines production in chronic renal failure patients. Life Sci., 77, 3141 3155

[3] Eleftheriadis T, Kartsios C, Yiannaki E, Kazila P, Antoniadi G, Liakopoulos V, et al, 2008, Chronic inflammation and CD16 natural killer cell zetachain downregulation in hemodialysis patients Blood Purif, 26, 317 321

[4] Eleftheriadis T, Papazisis K, Kortsaris A, Vayonas G, Voyatzis SVargemesis V, 2004, Impaired T cell proliferation and zeta chain phosphorylation after stimulation with staphylococcal enterotoxinB in hemodialysis patients Nephron Clin Pract, 96, 15 20

[5] Eleftheriadis T, Antoniadi G, Liakopoulos V, Kartsios C, Stefanidis I, 2007, Disturbances of acquired immunity in hemodialysis patients, Semin Dial, 20, 440 451

[6] Eleftheriadis T, Kartsios C, Yiannaki E, Kazila P, Antoniadi G, Liakopoulos V, et al, 2008, Chronic inflammation and T cell zetachain downregulation in hemodialysis patients, Am J Nephrol, 28, 152 157

[7] Abumwais JQ, Idris OF, 2010, Prevalence of hepatitis C hepatitis B and HIV infection among haemodialysis patients in Jenin District (Palestine), Iranian Journal of Virology, 4, 38 44

[8] Kausz A, Pahari D, 2004, The value of vaccination in chronic kidney disease, Semin Dial, 17 911

[9] Szmuness W, Prince AM, Grady GF, Mann MK, Levine RW, Friedman EA et al 1974 Hepatitis B infection A pointprevalence study in 15 US hemodialysis centers JAMA, 227, 901-906

[10] Fabrizi F, Martin P, Dixit V, Kanwal F, Dulai G, 2005, HBsAg seropositive status and survival after renal transplantation metaanalysis of observational studies, Am J Transplant, 5, 2913 2921

[11] Yen T, Keeffe EB, Ahmed A, 2003, The epidemiology of hepatitis C virus infection, J Clin Gastroenterol, 36, 47 53

[12] Fabrizi F, Martin P, Dixit V, Bunnapradist S, Dulai G, 2004, MetaanalysisEffect of hepatitis C virus infection on mortality in dialysis Aliment. Pharmacol Ther, 20, 1271 1277

[13] Aghakhani A, Banifazl M, Eslamiifar A, Ahmadi F, and Ramezani A, 2012, Viral hepatitis and HIV infection in hemodialysis patients Hepatitis Monthly, 12, 463 464

[14] Ahuja TS, Borucki M, Grady J, 2000, Highly active antiretroviral therapy improves survival of HIVinfected hemodialysis patients, Am J Kidney Dis, 36, 574 580

[15] Ortiz C, Meneses R, Jaffe D, Fernandez JA, Perez G, Bourgoignie JJ, 1988, Outcome of patients with human immunodeficiency virus on maintenance hemodialysis Kidney, Int, 34, 248253

[16] Perinbasekar S, BrodMiller C, Pal S, Mattana J, 1996, Predictors of survival in HIVinfected patients on hemodialysis, Am J Nephrol, 16, 280 286

[17] Minuk GY, Sun DF, Greenberg R, Zhang M, Hawkins K, Uhanova J, et al, 2004, Occult hepatitis B virus infection in a North American adult hemodialysis patient population Hepatology, 40, 1072 1077

[18] Hui CK, Sun J, Au WY, Lie AK, Yueng YH, Zhang HY, et al, 2005, Occult hepatitis B virus infection in hematopoietic stem cell donors in a hepatitis B virus endemic, area J Hepatol, 42, 813 819

[19] Ozdogan M, Ozgur O, Gur G Boyacioglu S, Ozderin Y, Demirhan B, et al, 1997, Histopathological impacts of hepatitis virus infection in hemodialysis patients should liver biopsy be performed before renal transplantation Artif Organs, 21, 355 358

[20] Otedo AEO, McLigeyo SO, Okoth FA, and Kayima JK, 2003, Seroprevalence of hepatitis B and C in maintenance dialysis in a public hospital in a developing country, South African Medical Journal, 93, 380 384

[21] Busek SU, Bab’a EH, Tavares Filho HA, et al, 2002, Hepatitis C and hepatitis B virus infection in different hemodialysis units in Belo Horizonte Minas Gerais Brazil Memorias do Instituto Oswaldo Cruz, 97, 775 778

[22] Agarwal SK, Dash SC, and Irshad M, 1999, Hepatitis C virus infection during haemodialysis in, India Journal of Association of Physicians of India, 47, 1139 1143
[23] Saha D, and Agarwal SK, 2001, Hepatitis and HIV infection during haemodialysis, Journal of the Indian Medical Association, 99, 194 199
[24] Espinosa M, Mart’n Malo A, Ojeda R, et al, 2004, Marked reduction in the prevalence of hepatitis C virus infection in hemodialysis patients causes and consequences, American Journal of Kidney Diseases, 43, 685 689
[25] Carneiro MAS, Teles SA, Dias MA, et al, 2005, Decline of hepatitis C infection in hemodialysis patients in Central Brazil a ten years of surveillanceMemorias do Instituto Oswaldo Cruz, 100, 345 349
[26] Kosaraju K, Faujdar SS, Singh A, and Prabhu R, 2013, Hepatitis Viruses in Heamodialysis Patients an Added Insult to Injury Hepatitis Research and Treatment, 14.
[27] Reddy GA, Dakshinamurthy KV, Neelaprasad P, Gangadhar T, and Lakshmi V, 2005, Prevalence of HBV and HCV dual infection in patients on haemodialysis, Indian Journal of Medical Microbiology, 23, 41 43
[28] Perez G, OrtizInterian C, Lee H, de Medina M, Cerney M, Allain JP, et al, 1989, Human immunodeficiency virus and human Tcell leukemia virus type I in patients undergoing maintenance hemodialysis in Miami, Am J Kidney Dis, 14, 39 43
[29] Vigneau C, GuiardSchmid JB, Tourret J, Flahault A, Rozenbaum W, Pialoux G, et al, 2005, The clinical characteristics of HIV infected patients receiving dialysis in France between 1997 and 2002, Kidney Int, 67, 1509 1514
[30] Eggers PW, Kimmel PL, 2004, Is there an epidemic of HIV Infection in the US ESRD program? J. Am Soc Nephrol, 15, 2477 2485
[31] Ahuja TS, Borucki M, Grady J, 2000, Highly active antiretroviral therapy improves survival of HIVinfected hemodialysis patients, Am J. Kidney Dis., 36, 574 580
[32] Ortiz C, Meneses R, Jaffe D, Fernandez JA, Perez G, Bourgoignie JJ, 1988, Outcome of patients with human immunodeficiency virus on maintenance hemodialysis, Kidney Int, 34, 248 253
[33] Perinbasekar S, BrodMiller C, Pal S, Mattana J, 1996, Predictors of survival in HIVinfected patients on hemodialysis, Am J Nephrol, 16, 280 286
[34] Eleftheriadis T, Liakopoulos V, Leivaditis K, Antoniadi G, Stefanidis I, 2011, Infections in hemodialysis a concise review Part II blood transmitted viral infections Hippokratia, 15, 120 126
[35] Isnard Bagnis C, Couchoud C, Bowens M, Sarraj A, Deray G, Tourret J, Cacoub P, Tezenas, 2017, du Montceau S Epidemiology update for hepatitis C virus and hepatitis B virus in endstage renal disease in France Liver, Int., 37, 820 826
[36] Ayatollahi J, Jahanabadi S, Sharif Yazdi M, Hemayati R, Vakili M, Shahcheraghi SH, 2016, The Prevalence of Occult Hepatitis B Virus in the Hemodialysis Patients in Yazd Iran, Acta Med Iran, 54, 784 787
[37] Cordova E, Miglia I, Festuccia F, Sarlo MG, Scornavacca G, Punzo G, Mené P, Fofi C, Hepatitis B 2017 vaccination in haemodialysis patients an underestimated problem Factors influencing immune responses in ten years of observation in an Italian haemodialysis centre and literature review, Ann Ig, 292 737