Supplementary Information

Efficient Leaching Process of Rare Earth, Alkali and Alkaline Earth Metals from Phosphogypsum based on Methanesulfonic Acid (MSA) as Green & Eco-friendly Lixiviant

Jamal Ait Brahim\textsuperscript{a}, Amal Merroune\textsuperscript{a}, Rachid Boulif\textsuperscript{b}, El Mahdi Mounir\textsuperscript{b}, Redouane Beniazza\textsuperscript{a,*}

\textsuperscript{a}High Throughput Multidisciplinary Research Laboratory(HTMR)/Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco

\textsuperscript{b}OCP Group, Jorf Lasfar, 24025 El Jadida – Morocco.

*Corresponding author email: redouane.beniazza@um6p.ma (R. Beniazza)

Supplementary figures captions

**Fig. S1.** Chemical structures of (a) MSA and (b) PTSA.

**Fig. S2.** Effect of S/L ratio on the leaching efficiency of REEs and metals impurities using (a) MSA, (b) PTSA and (c) HCl (operating conditions: 2 M, 120 min, 25 °C and 500 rpm).

**Fig. S3.** Effect of temperature on the leaching efficiency of REEs and metals impurities in the range 25-80 °C using (a) MSA, (b) PTSA and (c) HCl (operating conditions: 2 M, 1/8, 120 min, 500 rpm).

Supplementary figures
Fig. S1. Chemical structures of (a) MSA and (b) PTSA.
Fig. S2. Effect of S/L ratio on the leaching efficiency of REEs and metals impurities using (a) MSA, (b) PTSA and (c) HCl (operating conditions : 2 M, 120 min, 25 °C and 500 rpm).
**Fig. S3.** Effect of temperature on the leaching efficiency of REEs and metals impurities in the range 25-80 °C using (a) MSA, (b) PTSA and (c) HCl (operating conditions: 2 M, 1/8, 120 min, 500 rpm).