Efficacy and safety of tirofiban bridge as an alternative to suspension of dual antiplatelet therapy in patients undergoing surgery: a systematic review

Eficácia e segurança da ponte de tirofiban como alternativa à suspensão da terapia antiplaquetária dupla em pacientes submetidos à cirurgia: uma revisão sistemática

Lorrane Vieira Siqueira Riscado1, João Henrique Sendrete de Pinho1, Armando de Carvalho Lobato2

Abstract
Use of a tirofiban bridge is an alternative to simply withdrawing dual antiplatelet therapy prior to operating on patients at high risk of stent thrombosis and bleeding. We aimed to evaluate the efficacy and safety of this protocol in patients undergoing surgery within 12 months of a percutaneous coronary intervention involving stenting. We performed a systematic review based on searches of the PubMed, Web of Science, Cochrane, Embase, Lilacs, and Scielo databases and of the references of relevant articles on the topic. Five of the 107 studies identified were included after application of eligibility criteria and analysis of methodological quality, totaling 422 patients, 227 in control groups. Notwithstanding the limitations reported, four of the five studies included indicate that the tirofiban bridge technique is effective for reducing adverse cardiac events and is safe in terms of not interfering with the risk of hemorrhagic events or bleeding. However, randomized clinical trials are needed to provide robust evidence.

Keywords: bridge; tirofiban; surgery.

Resumo
A ponte de tirofiban é uma alternativa à suspensão da terapia antiplaquetária dupla no perioperatório de pacientes com alto risco de trombose de stent e de sangramento. Objetivamos avaliar a eficácia e a segurança deste protocolo em pacientes submetidos à cirurgia em até 12 meses após intervenção coronária percutânea com stent. Realizamos uma revisão sistemática por meio de pesquisa nas bases PubMed, Web of Science, Cochrane, EMBASE, LILACS e SciELO e nas referências de artigos relevantes ao tema. Dos 107 trabalhos encontrados, cinco foram incluídos após análise dos critérios de elegibilidade e da qualidade metodológica, totalizando 422 pacientes, sendo 227 do grupo controle. Apesar das limitações reportadas, quatro dos cinco estudos incluídos indicam que a ponte de tirofiban é eficaz em reduzir eventos cardíacos adversos e segura ao não interferir no risco de eventos hemorrágicos ou sangramentos. Todavia, são necessários ensaios clínicos randomizados para evidências robustas.

Palavras-chave: ponte; tirofiban; cirurgia.

How to cite: Riscado LVS, Pinho JHS, Lobato AC. Efficacy and safety of tirofiban bridge as an alternative to suspension of dual antiplatelet therapy in patients undergoing surgery: a systematic review. J Vasc Bras. 2021;20:e20210113. https://doi.org/10.1590/1677-5449.210113

1Universidade Federal de Juiz de Fora – UFJF, Faculdade de Medicina – FAMED, Juiz de Fora, MG, Brasil.
2Instituto de Cirurgia Vascular e Endovascular de São Paulo – ICVE-SP, São Paulo, SP, Brasil.
Financial support: None.
Conflicts of interest: No conflicts of interest declared concerning the publication of this article.
Submitted: July 08, 2021. Accepted: September 08, 2021.

The study was carried out at Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil.
INTRODUCTION

Many patients are put on dual antiplatelet therapy (DAPT) with aspirin and P2Y12 receptor inhibitors with the objective of preventing stent thrombosis (ST) and adverse cardiovascular and cerebrovascular events such as death, myocardial infarction (MI), and stroke.1,2 This therapy is employed because the risk of perioperative ST is higher during the first 4 to 6 weeks after placement of both conventional and drug-eluting stents, so guidelines recommend use of DAPT for a minimum of 12 months after cardiac revascularization.3 Withdrawal of DAPT is a major risk factor for ST, particularly during this period.4,5

It is also reported that approximately 7% of the 3 million people who undergo stenting annually will need non-cardiac surgical interventions during the first year after percutaneous coronary intervention (PCI), which is the period during which it is necessary to keep them on DAPT.6 As a consequence, the increased risk of bleeding because of the antiplatelet drugs combined with the need for surgical procedures constitute a challenge for the cardiologists, anesthesiologists, and surgeons responsible for perioperative management of these patients.7

The strategy habitually employed was to suspend these drugs prior to surgery and reintroduce them after it had been confirmed that the patient was free from bleeding. However, recent evidence demonstrated that suspension is related to higher rates of ischemic cardiac events8,9 and death10 and is thus unacceptable, indicating a need to review this approach. It is also known that patients undergoing surgery are in a prothrombotic, inflammatory, and hypoxic state, especially those undergoing orthopedic, cardiac, and oncological surgery.11,12 Moreover, coronary stents constitute thrombogenic materials in a medium that facilitates hypercoagulation and the process of cracking the atheromatous plaque during angioplasty exposes pro-thrombotic substances, provoking platelet activation and adhesion.13,14 These are possible reasons for the high rates of morbidity and mortality among patients who undergo surgery after stenting.

However, data on management of these patients are varied. This is because there are no large-scale randomized studies and both guidelines and expert opinion recommend that cases should be analyzed individually to determine risk of ischemic cardiac events and of significant bleeding and also the potential consequences of delaying surgery (for example, progression of cancer).15 In this scenario, bridging with intravenous antiplatelet drugs has been proposed as a possible treatment option for patients at high risk of thrombosis and high risk of bleeding in the perioperative period.16-19

The objective of this article is to assess, by means of a systematic review of relevant publications available in the literature, the efficacy and safety of tirofiban bridge in patients with at risk of ST and of bleeding who need to suspend DAPT during the perioperative period.

METHODOLOGY

This study is a systematic literature review conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology.20 Since it employs secondary data, there was no need for submission to or approval by a Research Ethics Committee.

Eligibility criteria

The PICO strategy was used to develop a research question to identify the best evidence and review the existing literature,21 as shown in Table 1. Our inclusion criteria were studies that assessed the efficacy of tirofiban bridge in patients who underwent surgery within 12 months of stent placement and were on DAPT but had to suspend it because of a high risk of bleeding. We excluded review articles, articles expressing expert opinion, duplicate articles, and articles unavailable for download.

Search strategy

Studies were identified by searching electronic databases and analyzing the references of relevant articles. The databases used were PubMed, Cochrane, Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), Web of Science, EMBASE, and Scientific Electronic Library Online (SciELO). Searches were run for studies published up to May 2021 using the keywords "(bridge) AND (tirofiban)"

Table 1. Components of the PICO23 strategy used to construct research questions and search for evidence

Population	Patients who had undergone percutaneous coronary intervention (PCI) with stenting and were scheduled for surgery within 1 year of PCI while on dual antiplatelet therapy (DAPT)
Intervention	Tirofiban bridge with suspension of DAPT
Control	Patients who had DAPT suspended but were not put on a tirofiban bridge protocol
Outcome	Primary outcome: occurrence of adverse ischemic events
	Secondary outcome: occurrence of hemorrhagic events
AND (surgery)), selected from the Descritores em Ciências da Saúde (DeCS) platform. No language restrictions were set.

Methodological quality
The methodological quality of articles was analyzed using an 18-criteria checklist from the modified Delphi technique. Articles were reviewed by two authors individually. The maximum score for each study was 18 points, since each criterion is weighted equally. Studies were considered of acceptable quality if they achieved 9 or more positive answers (≥ 50%).

Data extraction
Studies rated as of acceptable quality were compiled in a table for organization and extraction of data according to the following criteria: name of author, enrollment period, study design, total number of patients and number of patients who underwent tirofiban bridge, time elapsed between PCI and surgery, type of stent, type of surgery, and outcomes. The characteristics of the patients in each study were organized in a table containing number of patients, age, sex, smoking, systemic diseases, such as diabetes and arterial hypertension, use of beta blockers and/or statins, presence of peripheral vascular disease, and ejection fraction.

The specifications of the tirofiban bridge protocol used in each study were compiled in a table covering suspension of the P2Y12 inhibitor and/or aspirin, start of tirofiban infusion, quantity infused, withdrawal of tirofiban, and reintroduction of the P2Y12 inhibitor and/or aspirin.

Analysis of the data
With the objective of evaluating the efficacy of tirofiban bridging, the primary outcome analyzed was occurrence of adverse ischemic events, such as ST, MI, and death. To evaluate the safety of tirofiban bridging, the secondary outcome analyzed was occurrence of hemorrhagic events.

RESULTS

Study selection
A total of 107 articles were identified, 72 of which remained after duplicates were excluded. After screening the articles by applying the inclusion and exclusion criteria, 11 articles remained for assessment of methodological quality. After analysis of methodological quality, five articles were included in the review. The search process and results are illustrated in Figure 1.

Characteristics of the studies
Three of the five studies analyzed were conducted in Italy, one took place in Holland, and one was carried out in China. As can be observed in Table 2, only the article with the largest number of patients had a control group. In that study, 314 patients were enrolled, 87 of whom were put on the tirofiban bridge protocol, while the remaining 227, in whom DAPT was suspended without bridging, formed the control group. Overall, non-cardiac surgery predominated, both among patients who underwent bridging and among those in the control groups. There were 422 patients in the studies reviewed, 67.78% of whom underwent non-cardiac surgery. Death and MI were included in the primary outcome definition in all of the studies; ST was only listed as an outcome in two studies, but was reported in the results in the other three studies; revascularization of the target lesion or target-vessel was reported in two studies; and stroke was only reported in one study. Hemorrhagic events and bleeding were included in the secondary outcomes of four studies, regardless of the specific definition of each of them; two of the four studies used criteria from the Thrombolysis in Myocardial Infarction (TIMI) study to classify them.

Overall, among the 195 patients who were put on a tirofiban bridge protocol, there were two MI, one ST, 13 bleeding events, and no deaths. In the only controlled study, there were 12 MI, three ST, 36 bleeding events, and six deaths in the control group.

As shown in Table 3, age, sex and preexisting diseases were reported in all of the studies selected.
Table 2. Data collected from studies selected for the systematic review.

Reference	Enrollment period	Study design	Number of patients	Patients on tirofiban bridge protocol	Interval from PCI to surgery	Type of stent	Type of surgery	Outcomes
De Servi et al.	2007-2013	Observational, retrospective	314	87	Median of 104 days with interquartile range (IQR) of 5-365 days for patients on the tirofiban bridge protocol and 105 (IQR: 0-360) for the control group	Patients on the tirofiban bridge protocol drug-eluting only (85%); metal only (9.2%); drug-eluting and metal (5.8%) of. In the control group: drug-eluting only (41.4%); metal only (54.2%); drug-eluting and metal (4.4%)	Patients on the tirofiban bridge protocol: cardiac (32.2%) and non-cardiac (67.8%). In the control group patients: cardiac (27.8%) and non-cardiac (62.2%)	NACE^a at 30 days
Marcos et al.	2006-2010	Observational, retrospective	36	36	Mean of 80 days with standard deviation of 66 days	Drug-eluting	Cardiac (42%); non-cardiac (58%)	MACE^b at 30 days; hemorrhagic events^c within 30 days
Polito et al.	2012-2017	Observational, retrospective	21	21	Mean of 7.2 days with standard deviation of 3.2 days	Drug-eluting	Cardiac	Complications after surgery, clinical and echocardiographic status, death, reinfarction and/or cardiovascular and non-cardiovascular events over 21.6±15.6 months of follow-up
Savonitto et al.	-	Observational, prospective	30	30	Median of 4 months with range of 1-12 months	Drug-eluting	Cardiac (30%); non-cardiac (70%)	Cardiovascular death, MI^d, acute occlusion of the target-lesion demonstrated angiographically while in hospital and need for surgical re-exploration because of bleeding; safety of the treatment^e

MI = myocardial infarction; PCI = intervention coronary percutaneous.^aNet Adverse Clinical Events, defined as a combination of major adverse cardiac and cerebrovascular events (MACCE = mortality from all causes, myocardial infarction, definitive stent thrombosis, stroke) and significant bleeding, classified according to the criteria from the Thrombolysis in Myocardial Infarction (TIMI) study.^bMajor adverse cardiac events, defined as any death, repeat myocardial infarction, target-vessel revascularization, target-lesion revascularization, or stent thrombosis; Defined as hematuria, gastrointestinal bleeding, blood transfusion without bleeding, fall in hemoglobin concentration, or postoperative bleeding needing reintervention.^cDefined as clinical signs and symptoms of myocardial ischemia combined with elevation of creatine phosphokinase-MB (CK-MB) levels exceeding 3 times the normal limit; ^dAvoided in terms of number of units of blood products transfused and non-operative bleeding, defined according to the criteria from the Thrombolysis in Myocardial Infarction (TIMI) study; ^eIntracranial bleeding manifesting with fall in Hb of ≥5 g/dL, or fall in hematocrit of ≥15%.
Table 2. Continued...

Reference	Enrollment period	Study design	Number of patients	Patients on tirofiban bridge protocol	Interval from PCI to surgery	Type of stent	Type of surgery	Outcomes
Xia et al.\(^a\)	2011	Observational, prospective	21	21	Median of 6 months and range of 3-8 months	Drug-eluting	Non-cardiac	Cardiovascular death, MI and target-lesion revascularization from first to third month after hospital discharge; acute left ventricular failure, unstable angina pectoris, adverse hemorrhagic events and severe bleeding from first to third month after hospital discharge

MI = myocardial infarction; PCI = intervention coronary percutaneous. \(^a\)Net Adverse Clinical Events, defined as a combination of major adverse cardiac and cerebrovascular events (MACCE = mortality from all causes, myocardial infarction, definitive stent thrombosis, stroke) and significant bleeding, classified according to the criteria from the Thrombolysis in Myocardial Infarction (TIMI) study; \(^b\)Major adverse cardiac events, defined as any death, repeat myocardial infarction, target-vessel revascularization, target-lesion revascularization, or stent thrombosis; \(^c\)Defined as hematuria, gastrointestinal bleeding, blood transfusion without bleeding, fall in hemoglobin concentration, or postoperative bleeding needing reintervention; \(^d\)Defined as clinical signs and symptoms of myocardial ischemia combined with elevation of creatine phosphokinase-MB (CK-MB) levels exceeding 3 times the normal limit; \(^e\)Assessed in terms of number of units of blood products transfused and non-operative bleeding, defined according to the criteria from the Thrombolysis in Myocardial Infarction (TIMI) study; \(^f\) Intracranial bleeding manifesting with fall in Hb of ≥5 g/dL or fall in hematocrit of ≥15%.
the total of 422 patients, 325 (77%) were men and
97 (23%) were women. Comorbidities reported
included 99 (23.46%) out of 422 patients with diabetes
and 270 (63.98%) patients with systemic arterial
hypertension (SAH).

Table 4 lists the specifications of the tirofiban
bridge protocols used in each study. In all studies,
the P2Y12 inhibitor was withdrawn 5 days before the
surgical procedure. However, the studies differed in
terms of suspension of aspirin. In two studies,26,31 aspirin
was only withdrawn in cases involving laparotomy.
In the study by Polito et al.,30 none of the patients
had aspirin suspended, whereas in Xia et al.,34 aspirin
was withdrawn 5 days before surgery.

The start of tirofiban infusion and the quantity
infused varied according to each study protocol.
However, in all of the studies analyzed, infusion was
suspected 4 hours before surgery. Reintroduction of
the P2Y12 inhibitor and aspirin also varied across
the different studies.

Methodological quality

All five of the articles included in the systematic
review scored 50% or more for the 18 criteria from
the modified Delphi technique24 for analysis of the
internal quality of observational studies. The studies
scored, in ascending order, 11, 13, 14, 14, and 17 points, with a mean methodological quality score of 13.8 points (76.7%). The quality criteria and the
detailed scores for each of the 11 full text articles
assessed for eligibility are shown in Table 5.

Primary and secondary outcomes

The results of the studies included are listed in
Table 6. Four of the five studies demonstrated that
tirofiban bridge has efficacy for reducing adverse
ischemic events, to the extent that there were no
ST in three studies.28,31,34 In the fourth,30 just one of
21 patients had an ST. None of these four studies
reported deaths, MI, re-infarction, or revascularization
of the target lesion.

The only controlled study26 did not show a
statistically significant effect of tirofiban bridge for
reduction of major adverse cardiac events, with two
patients presenting MI in the group that underwent
tirofiban bridge. There were 12 MI, three ST, and six
deaths in the control group in this study. No deaths or
ST occurred in the group of patients on the tirofiban
bridge protocol.

Four26,30,31,34 of the five studies assessed demonstrated
the safety of tirofiban bridge, which did not impact
on the occurrence of bleeding or hemorrhagic events.
In two of these studies,30,34 there were no hemorrhagic
or bleeding events. In the study with 30 patients,31 two
patients exhibited bleeding during the postoperative
period.

In the controlled study,26 tirofiban bridge was
associated with a statistically significant reduction
in the number of ST events compared to the control
protocol.
in the occurrence of intrahospital bleeding, reporting five major bleeding events in the group subjected to tirofiban bridge and 36 major bleeding events in the control group. In one of the studies assessed, six bleeding events occurring within 30 days of the surgical intervention were reported.28

DISCUSSION

The data obtained in this systematic review of the literature suggest that the tirofiban bridge technique is feasible in patients with high risk of ST and of bleeding subjected to heart surgery or non-cardiac surgery and enables surgical procedures to be performed with lower rates of adverse ischemic events, without significantly affecting hemorrhagic events. Our results are compatible with a large systematic review of the literature published in 2014 in the journal Internal and Emergency Medicine, which assessed 420 patients who were put on a bridge protocol with glycoprotein IIb/IIIa inhibitors (eptifibatide or tirofiban) or with cangrelor. In the 2014 review, the bridge technique was effective 96.2% of the time (95% confidence interval 94.4 - 98.0%), with a 100% success rate for tirofiban and with 81.0% of 121 patients treated with tirofiban bridge therapy free from bleeding/transfusion events.37

A prospective observational cohort study published in 2012, enrolling 6,816 consecutive patients, demonstrated that withdrawal of clopidogrel during the first 6 months after placement of a drug-eluting stent was significantly related to ST during that period.38 In this context, intravenous administration of tirofiban can be proposed as an option for patients at high risk...
Table 5. Analysis of methodological quality using the modified Delphi technique.

Criteria	Bona et al.	De Servi et al.	D'Urba-no et al.	Marcos et al.	Park et al.	Polito et al.	Savonitto et al.	Vlachou et al.	Walker et al.	Xia et al.	Zhou et al.
Study objective	YES	YES	YES	YES	NO	YES	YES	YES	YES	YES	YES
1. Is the hypothesis/aim/objective of the study clearly stated in the abstract, introduction or methods section?	YES	YES	YES	YES	NO	YES	YES	YES	YES	YES	YES
Study population	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
2. Are the characteristics of the participants included in the study described?	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
3. Were the cases collected in more than one centre?	NO	YES	NO	NO	NO	YES	YES	NO	NO	NO	NO
4. Are the eligibility criteria (inclusion and exclusion criteria) for entry to the study explicit and appropriate?	NO	YES	NO	YES	NO	YES	YES	NO	NO	YES	NO
5. Were participants recruited consecutively?	NO	YES	NO	YES	NO	NO	YES	NO	YES	YES	NO
6. Did participants enter the study at a similar point in the disease?	NO	NO	NO	NO	NO	NO	NO	NO	YES	NO	NO
Intervention and co-intervention	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
7. Was the intervention clearly described in the study?	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
Table 5. Continued...

Criteria	Bona et al.\(^{25}\)	De Servi et al.\(^{20}\)	D’Urba-no et al.\(^{21}\)	Marcos et al.\(^{28}\)	Park et al.\(^{29}\)	Polito et al.\(^{30}\)	Savonitto et al.\(^{31}\)	Vlachou et al.\(^{32}\)	Walker et al.\(^{33}\)	Xia et al.\(^{34}\)	Zhou et al.\(^{35}\)
8. Were additional interventions (co-interventions) clearly reported in the study?	YES	YES	NO	YES	NO	NO	YES	NO	YES	NO	YES
Outcome measures											
9. Are the outcome measures clearly defined in the introduction or methods section?	NO	YES	NO	YES	NO	YES	YES	NO	YES	NO	NO
10. Were relevant outcomes appropriately measured with objective and/or subjective methods?	NO	YES	NO	YES	NO	YES	YES	NO	YES	YES	NO
11. Were outcomes measured before and after intervention?	NO	YES	NO	YES	NO	YES	YES	NO	YES	NO	NO
Statistical analysis											
12. Were the statistical tests used to assess the relevant outcomes appropriate?	NO	YES	NO	NO	NO	NO	YES	NO	NO	YES	NO
Results and conclusions											
13. Was the length of follow-up reported?	YES	YES	YES	YES	YES	NO	YES	NO	YES	NO	NO
14. Was the loss to follow-up reported?	NO	YES	NO	NO	NO	NO	NO	NO	NO	NO	NO
Table 5. Continued...

Criteria	Bona et al.	De Servi et al.	D’Urba-no et al.	Marcos et al.	Park et al.	Polito et al.	Savonitto et al.	Vlachou et al.	Walker et al.	Xia et al.	Zhou et al.
15. Does the study provide estimates of the random variability in the data analysis of relevant outcomes?	NO	YES	NO	YES	NO	YES	YES	NO	YES	YES	NO
16. Are adverse events reported?	YES	YES	YES	YES	NO	YES	YES	YES	YES	YES	YES
17. Are the conclusions of the study supported by results?	YES	YES	NO	YES	NO	YES	YES	YES	YES	YES	NO
Conflicts of interest and financing	YES	YES	NO	NO	NO	NO	NO	NO	YES	NO	NO
18. Are both competing interest and source of support for the study reported?	YES	YES	NO	NO	NO	NO	NO	YES	NO	YES	NO
Total	8	17	5	13	4	11	14	8	8	14	5
of ST, who would have DAPT withdrawn due to high risk of bleeding during the surgical procedure (for example, certain ophthalmologic surgeries, surgery of the middle ear, or neurosurgery).

In the present review, the majority of studies demonstrated clinical benefits of tirofiban bridging. In the controlled study, no deaths were reported among the 195 patients who underwent bridge therapy, whereas six deaths were reported in the group that only suspended DAPT. In all five studies, with a total of 195 patients treated with bridge therapy, only one case of ST and two MI cases were reported.

The reasoning underlying perioperative suspension of DAPT considers the increased likelihood of bleeding while in surgery and during the postoperative period if these medications are maintained. A meta-analysis of 41 studies with a total of 49,590 patients assessed the risk of surgical bleeding in patients on low-dose aspirin, demonstrating that aspirin multiplied the baseline bleeding rate of surgical procedures by a factor of 1.5 (1.0-2.5) without increase in surgical mortality or morbidity. In some of the studies analyzed, it was shown that maintenance of aspirin over the perioperative period in combination with the tirofiban bridge did not influence bleeding rates and in the study that reported six bleeding events, only one of the patients affected was taking aspirin. In the study that reported two bleeding events, only one patient was taking aspirin and suffered a bleeding event classified as minor by the TIMI study criteria, requiring transfusion due to preexisting anemia. The study by De Servi et al. did not mention whether patients who had bleeding were on aspirin or not and the decision on whether to discontinue it was made by the surgeon.

With regard to adverse cardiac events, there was only one case of ST in the 195 patients treated with tirofiban bridge and no deaths. Although De Servi et al. did not demonstrate a statistically significant effect for reduction of major adverse cardiac events, the patients in that study who underwent tirofiban bridge exhibited two MI compared to 12 MI in the control group and there were zero ST in bridge patients compared to three ST in the control group. There were also six deaths in the control group, whereas there were no deaths in the bridge group. Some limitations may have affected the results of this article, considering that there was no randomization of patients and that treatment depended on decisions made by the surgeons at the hospitals at which the patients were treated on whether to adopt treatment with a tirofiban bridge and whether to withdraw clopidogrel only or to withdraw both clopidogrel and aspirin.

Even though the time elapsed between stenting and the subsequent surgical procedure was relatively short, at 2 to 6 months, no major adverse cardiac events were reported in the study by Marcos et al. In turn, Savonitto et al. demonstrated the efficacy of tirofiban bridge therapy, since none of their patients exhibited an ischemic cardiac event during the perioperative period. Xia et al. also positively demonstrated the efficacy of tirofiban bridge therapy, since there were no ischemic cardiac events. Although Polito et al. described one case of ST, they emphasized that the tirofiban bridge prevented a fatal thrombotic event, since angioplasty was performed and there were no deaths, re-infarctions, or any other cardiovascular events during the 21.6±15.6 months of follow-up.

With regard to hemorrhagic or bleeding events, Marcos et al. reported six hemorrhagic events, two of which occurred after reintroduction of clopidogrel and aspirin, and the severity of bleeding was not considered high in the majority of patients. De De Servi et al. reported that the tirofiban bridge protocol reduced inhospital bleeding to a statistically significant extent, considering that the patients were subjected to surgery involving a high risk of bleeding. Indeed, the low rates of death, MI, ST, and stroke were achieved without increasing the risk of bleeding among these patients.

Although Savonitto et al. reported two bleeding events, they did not exceed what is commonly accepted for the types of surgery to which the patients were subjected. The patient who had an event classified as minor bleeding according to the TIMI criteria had

Results	De Servi et al.	Marcos et al.	Polito et al.	Savonitto et al.	Xia et al.
Number of patients	87	227	36	21	30
Stent thrombosis	0	3	0	1	0
Myocardial infarction	2	12	0	0	0
Death	0	6	0	0	0
Bleeding	5	36	6	0	2

Table 6. Results of the studies selected for the systematic review.
undergone endoscopic bladder surgery and had preexisting anemia; while the patient who had an event classified as major bleeding had undergone a hemicolotomy and suffered proctorrhagia on the seventh postoperative day, after reintroduction of clopidogrel.

Xia et al. demonstrated the safety of tirofiban bridge therapy during the perioperative period and over a 3-month follow-up, during which no hemorrhagic or bleeding events were reported. Polito et al. also demonstrated the safety of the technique, since they had no hemorrhagic or bleeding events and just three cases of uncomplicated anemia.

It is worth pointing out that each study had a different follow-up period after surgery and tirofiban infusion. While some studies followed patients for 1 month, others did so for 3 to 21 months or only conducted intrahospital monitoring until patient discharge. As such, the outcome periods assessed were reasonably different between the studies, which could have affected the results.

Furthermore, even though the secondary outcome was positive in the majority of the studies and all the patients included had been classified as at high risk of bleeding, calculating the bleeding risk index is complex and must account not only for the risk intrinsic to the surgery, but also for the patient's individual risk, which was not clearly explained in detail in the studies. Therefore, if the risk was not calculated appropriately, taking a multidisciplinary approach, the non-interference of tirofiban bridging in the risk of hemorrhagic and bleeding events may have been overestimated.

Moreover, it is important to consider these results with caution, since favorable results could have occurred because of other factors, such as use of beta blockers and statins during the perioperative period, and also because the number of patients treated is small. Another possible factor involved in the favorable outcomes is that the tirofiban bridge protocol involves more detailed monitoring of the patient during the perioperative period, since infusion is started 3 to 4 days before surgery and is only discontinued 4 hours before the procedure. Therefore, the longer hospital stay and monitoring may be related to lower rates of bleeding, although the published data suggest that tirofiban infusion really does not interfere in the risk of bleeding during surgery.

It should be pointed out that this review is subject to limitations. One of these is that the majority of data were extracted from retrospective studies. Another limitation is the different definitions of ischemic and hemorrhagic events adopted by the studies. The results could also have been affected by the heterogeneous nature of populations, the different protocols used, and the study designs, since many characteristics related to the patients were not reported in all of the articles analyzed, limiting our analysis.

Moreover, in the controlled study, there were more patients with SAH in the control group, which could have contributed to the higher number of adverse events in that group compared to the group of patients who underwent the tirofiban bridge protocol, considering that this comorbidity is one of the principal risk factors for cardiovascular events. Longitudinal data obtained in the Framingham Heart Study indicated that people with SAH have twice the relative risk of cardiovascular disease compared to normotensive people.

There was also variability in the different periods of time elapsed between PCI and surgery, which is an important predictor of ischemic cardiac events. Other differences observed were the time at which tirofiban infusion was initiated, the quantity infused, and the time at which the P2Y12 inhibitor and aspirin were reintroduced, which may also be related to occurrence or not of hemorrhagic and ischemic cardiac events.

While there are limitations related to the lack of randomized clinical trials, use of glycoprotein IIb/IIIa inhibitors during the perioperative period in patients at high risk of ST and high risk of bleeding is recommended by guidelines and by experts. We therefore believe that this study contributes additional useful information to the current literature. It should be also be pointed out that it is very unlikely that controlled and randomized studies will be conducted testing the safety and efficacy of tirofiban bridge therapy in comparison to discontinuation of the thienopyridine derivative with or without discontinuing aspirin, with no other strategies combined with suspension of treatment, considering the elevated number of adverse events and deaths in the control group in the study analyzed in this review.

CONCLUSIONS

Patients who undergo surgery during the first 12 months after stenting are at increased risk of thrombotic events, indicating a need to reassess the practice of perioperative suspension of antiplatelet drugs. In cases in which patients are at high risk of ST and of hemorrhagic events, a tirofiban bridge appears to be a safe and effective strategy for management of perioperative medication, taking into account the reduction in the likelihood of adverse ischemic without increasing the likelihood of hemorrhagic events. However, more robust evidence is needed. Regardless, it is always recommended that these patients receive multidisciplinary management.
REFERENCES

1. Mauri L, Kereiakes DJ, Yeh RW, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med. 2014;371(23):2155-66. http://dx.doi.org/10.1056/NEJMoa1409312. PMID:25399658.

2. Baigent C, Sudlow C, Collins R, Peto R. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71-86. http://dx.doi.org/10.1136/bmj.324.7329.71. PMID:11766451.

3. De Luca L, Belletti E, Di Maio D, et al. Oral antiplatelet therapy for secondary prevention of non-cardioembolic ischemic cerebrovascular events. J Clin Med. 2021;10(8):1721. http://dx.doi.org/10.3390/jcm10081721. PMID:33923493.

4. Levine GN, Bates ER, Bittl JA, et al. 2016 ACC/AHA guideline on percutaneous coronary intervention. J Am Coll Cardiol. 2016;68(22):2546-571. http://dx.doi.org/10.1016/j.jacc.2016.10.005. PMID:27260020.

5. Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American college of cardiology/American heart association task force on practice guidelines. J Am Coll Cardiol. 2014;64(22):e77-137. http://dx.doi.org/10.1016/j.jacc.2014.07.944. PMID:25091544.

6. Ullrich H, Münzel T, Gori T. Coronary stent thrombosis: predictors and prevention. Desch Arztebl Int. 2020;117(18):320-6. http://dx.doi.org/10.3238/arztebl.2020.0320. PMID:32605709.

7. Alshawabkeh LI, Prasad A, Lenkovsky F, et al. Outcomes of a preoperative "bridging" strategy with glycoprotein IIb/IIa inhibitors to prevent periprocedural stent thrombosis in patients with drug-eluting stents who undergo surgery necessitating interruption of thienopyridine administration. EuroIntervention. 2013;9(2):104-11. http://dx.doi.org/10.4244/EIJV9I2A35. PMID:23454910.

8. Baber U, Dangas G, Chandrasekhar J, et al. Patterns and Impact of Dual Antiplatelet Cessation on Cardiovascular Risk After Percutaneous Coronary Intervention in Patients With Acute Coronary Syndromes. Am J Cardiol. 2019;123(5):709-16. http://dx.doi.org/10.1016/j.amjcard.2018.11.051. PMID:30612724.

9. van Werkum JW, Heestermans AA, Zomer AC, et al. Predictors of coronary stent thrombosis: the Dutch stent thrombosis registry. J Interv Cardiol. 2012;25(3):139-45. http://dx.doi.org/10.1111/j.1540-8183.2012.00746.x. PMID:22738822.

10. Kovacic JC, Lee P, Karajigik R, et al. Safety of temporary and permanent suspension of antiplatelet therapy after drug eluting stent implantation in contemporary “real-world” practice. Int J Interv Cardiol. 2012;22(5):482-92. http://dx.doi.org/10.10111/j.1540-8183.2012.00746.x. PMID:22738822.

11. Kolh P, Wijns W, Danchin N, et al. Guidelines on myocardial revascularization. Eur J Cardiothorac Surg. 2010;38(Suppl. 1):S1-52. http://dx.doi.org/10.1016/j.ejcts.2010.08.019. PMID:20850034.

12. Schoos M, Power D, Baber U, et al. Patterns and Impact of Dual Antiplatelet Cessation on Cardiovascular Risk After Percutaneous Coronary Intervention in Patients With Acute Coronary Syndromes. Am J Cardiol. 2019;123(5):709-16. http://dx.doi.org/10.1016/j.amjcard.2018.11.051. PMID:30612724.

13. Spertus JA, Kettelkamp R, Vance C, et al. Prevalence, predictors, and outcomes of premature discontinuation of thienopyridine therapy after drug-eluting stent placement: Results from the PREMIER registry. Circulation. 2006;113(24):2803-9. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.618086. PMID:16769908.

14. Zheng H, Ma HP, Chen L, Zhan HT, Guo H. Prethrombotic state and cardiac events in patients with coronary heart disease during noncardiac surgery. Clin Appl Thromb Hemost. 2014;20(1):84-90. http://dx.doi.org/10.1177/1076029614070489. PMID:23262969.

15. Bande B, Bande S, Mohite S. The hypercoagulable states in anaesthesia and critical care. Indian J Anaesth. 2014;58(5):665-71. http://dx.doi.org/10.4103/0019-5049.144684. PMID:25535433.

16. Savonitto S, Caracciolo M, Cattaneo M, De Servi S. Management of patients with recently implanted coronary stents on dual antiplatelet therapy who need to undergo major surgery. J Thromb Haemost. 2011;9(11):2133-42. http://dx.doi.org/10.1111/j.1538-7836.2011.04456.x. PMID:21819537.

17. De Servin F. Low-dose aspirin and clopidogrel: how to act in patients scheduled for day surgery. Curr Opin Anaesthesiol. 2007;20(6):531-4. http://dx.doi.org/10.1097/ACO.0b013e3282f15f95. PMID:17989545.

18. Lorga AM Fo, Azmus AD, Soeiro AM, et al. Diretrizes brasileiras de antiagregantes plaquetários e anticoagulantes em cardiologia. Arq Bras Cardiol. 2013;101(3, Supl. 3):1-95. http://dx.doi.org/10.5935/abc.20135009. PMID:24196826.

19. Rossini R, Musumeci G, Visconti LO, et al. Perioperative management of antiplatelet therapy in patients with coronary stents undergoing cardiac and non-cardiac surgery: a consensus document from italian cardiological, surgical and anaesthesiological societies. EuropIntervention. 2014;10(1):38-46. http://dx.doi.org/10.4244/EIJV10I1B. PMID:24832636.

20. Kristensen SD, Knutsen J, New ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management. Eur Heart J. 2014;35(35):2344-5. http://dx.doi.org/10.1093/eurheartj/ehu285. PMID:25104785.

21. Alvarez B, Guiller M, Mases A, Sierra P, Olliva JC, Collilles C. Management of antiplatelet therapy in patients with coronary stents undergoing noncardiac surgery: association with adverse events. Br J Anaesth. 2018;120(1):67-76. http://dx.doi.org/10.1093/bja/aex117. PMID:29397139.

22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. http://dx.doi.org/10.1371/journal.pmed.1000097. PMID:19621072.

23. Santos CMDC, Pimenta CADM, Nobre MRC. A estratégia PIcO para a construção da pergunta de pesquisa e busca de evidências. Rev Lat Am Enfermagem. 2007;15(3):508-11. http://dx.doi.org/10.1590/S0104-11692007000300023. PMID:17653438.

24. Moga C, Guo B, Harstall C. Development of a quality appraisal tool for case series studies using a modified delphi technique. Edmonton: IHE Publications; 2012 [citado 2020 set 18]. http://www.ihe.ca/publications/development-of-a-quality-appraisal-tool-for-case-series-studies-using-a-modified-delphi-technique

25. Bona D, Aiolfi A, Picozzi S, Rubino B, Bonavina L. Operable gastric cancer diagnosed soon after implantation of a coronary drug-eluting stent: How to manage? Eur Surg. 2012;44(5):341-4. http://dx.doi.org/10.1007/s10353-012-0158-8.

26. De Servi S, Morici N, Boschetti E, et al. Bridge therapy or standard treatment for urgent surgery after coronary stent implantation: Analysis of 314 patients. Vascul Pharmacol. 2016;80:85-90. http://dx.doi.org/10.1016/j.vph.2015.11.085. PMID:26657879.

27. D’Urbano M, Barlocco F, Poli A, et al. Unplanned surgery after drug eluting stent implantation: A strategy for safe temporary withdrawal of dual oral antiplatelet therapy. J Cardiovasc Med
37. Morici N, Moja L, Rosato V, et al. Bridge with intravenous tirofiban as alternative therapy for urgent surgery patients with an implanted coronary drug-eluting stent: A phase II study of “bridging” antiplatelet therapy with tirofiban during temporary withdrawal of clopidogrel. Br J Anaesth. 2010;104(3):285-91. http://dx.doi.org/10.1093/bja/aep373. PMID:20047889.

38. Schulz S, Schuster T, Mehilli J, et al. Stent thrombosis after drug-eluting stent implantation: Incidence, timing, and relation to discontinuation of clopidogrel therapy over a 4-year period. Eur Heart J. 2009;30(22):2714-21. http://dx.doi.org/10.1093/eurheartj/ehp275. PMID:19596658.

39. Burger W, Chemnitius JM, Kneissl GD, Rücker G. Low-close aspirin for secondary cardiovascular prevention - Cardiovascular risks after its perioperative withdrawal versus bleeding risks with its continuation: review and meta-analysis. J Intern Med. 2005;257(5):399-414. http://dx.doi.org/10.1111/j.1365-2796.2005.01477.x. PMID:15836656.

40. Li X, Zhang S, Wang Z, et al. Platelet function and risk of bleeding in patients with acute coronary syndrome following tirofiban infusion. Front Pharmacol. 2019;10:1158. http://dx.doi.org/10.3389/fphar.2019.01158. PMID:31649534.

41. Kannel WB. Framingham study insights into hypertensive risk of cardiovascular disease. Hypertens Res. 1995;18(3):181-96. http://dx.doi.org/10.1291/hypres.18.181. PMID:7584927.

42. Cardiac Society of Australia and New Zealand. Guidelines for the management of antiplatelet therapy in patients with coronary stents undergoing non-cardiac surgery. Heart Lung Circ. 2010;19(1):12-20. http://dx.doi.org/10.1016/j.hlc.2009.10.008. PMID:200445378.

43. Chassot PG, Delabays A, Spahn DR. Perioperative antiplatelet therapy: The case for continuing therapy in patients at risk of myocardial infarction. Br J Anaesth. 2007;99(3):316-28. http://dx.doi.org/10.1093/bja/aem209. PMID:17650517.

Correspondence
Lorrane Vieira Siqueira Riscado
Av. Presidente Itamar Franco, 2320 - São Mateus
CEP 36025-290 - Juiz de Fora (MG), Brasil
Tel.: (21) 96655-6256
E-mail: lorrane.vieira1@gmail.com

Author information
LVSR and JHSP - Medical students, Universidade Federal de Juiz de Fora (UFJF).
ACL - Head, Instituto de Cirurgia Vascular & Endovascular de São Paulo (ICVE-SP).

Author contributions
Conception and design: LVSR, JHSP
Analysis and interpretation: LVSR, JHSP
Data collection: LVSR, JHSP
Writing the article: LVSR, JHSP
Critical revision of the article: LVSR, JHSP, ACL
Final approval of the article*: LVSR, JHSP, ACL

*All authors have read and approved of the final version of the article submitted to J Vasc Bras.
Eficácia e segurança da ponte de tirofiban como alternativa à suspensão da terapia antiplaquetária dupla em pacientes submetidos à cirurgia: uma revisão sistemática

Efficacy and safety of tirofiban bridge as an alternative to dual antiplatelet therapy suspension on patients undergoing surgery: a systematic review

Lorrane Vieira Siqueira Riscado¹, João Henrique Sendrete de Pinho¹, Armando de Carvalho Lobato²

Resumo
A ponte de tirofiban é uma alternativa à suspensão da terapia antiplaquetária dupla no perioperatório de pacientes com alto risco de trombose de stent e de sangramento. Objetivamos avaliar a eficácia e a segurança deste protocolo em pacientes submetidos à cirurgia em até 12 meses após intervenção coronária percutânea com stent. Realizamos uma revisão sistemática por meio de pesquisa nas bases PubMed, Web of Science, Cochrane, EMBASE, LILACS e SciELO e nas referências de artigos relevantes ao tema. Dos 107 trabalhos encontrados, cinco foram incluídos após análise dos critérios de elegibilidade e da qualidade metodológica, totalizando 422 pacientes, sendo 227 do grupo controle. Apesar das limitações reportadas, quatro dos cinco estudos incluídos indicam que a ponte de tirofiban é eficaz em reduzir eventos cardíacos adversos e segura ao não interferir no risco de eventos hemorrágicos ou sangramentos. Todavia, são necessários ensaios clínicos randomizados para evidências robustas.

Palavras-chave: ponte; tirofiban; cirurgia.

Abstract
Use of a tirofiban bridge is an alternative to simply withdrawing dual antiplatelet therapy prior to operating on patients at high risk of stent thrombosis and bleeding. We aimed to evaluate the efficacy and safety of this protocol in patients undergoing surgery within 12 months of a percutaneous coronary intervention involving stenting. We performed a systematic review based on searches of the PubMed, Web of Science, Cochrane, Embase, Lilacs, and Scielo databases and of the references of relevant articles on the topic. Five of the 107 studies identified were included after application of eligibility criteria and analysis of methodological quality, totaling 422 patients, 227 in control groups. Notwithstanding the limitations reported, four of the five studies included indicate that the tirofiban bridge technique is effective for reducing adverse cardiac events and is safe in terms of not interfering with the risk of hemorrhagic events or bleeding. However, randomized clinical trials are needed to provide robust evidence.

Keywords: bridge; tirofiban; surgery.

Como citar: Riscado LVS, Pinho JHS, Lobato AC. Eficácia e segurança da ponte de tirofiban como alternativa à suspensão da terapia antiplaquetária dupla em pacientes submetidos à cirurgia: uma revisão sistemática. J Vasc Bras. 2021;20:e20210113. https://doi.org/10.1590/1677-5449.210113
INTRODUÇÃO

Um grande número de pacientes utiliza a terapia antiplaquetária dupla (TAPD) com ácido acetilsalicílico (AAS) e inibidores do receptor P2Y12 com o intuito de prevenir trombose de stents (TS) e eventos adversos cardiovasculares e cerebrovasculares, como morte, infarto do miocárdio (IM) e acidente vascular cerebral (AVC)1-3. Isso ocorre porque o risco de TS no período perioperatório, tanto para stents convencionais quanto para farmacológicos, é maior nas primeiras 4 a 6 semanas após o implante, sendo recomendado por diretrizes e opiniões de especialistas que haja análise individual dos riscos de eventos cardíacos isquêmicos, de sangramentos significativos e de potenciais consequências do adiamento de cirurgias (por exemplo, progressão de câncer)18. Nesse cenário, a terapia de ponte com fármacos antiplaquetários intravenosos tem sido indicada como uma possível opção terapêutica para pacientes com alto risco trombótico e alto risco de sangramentos no período perioperatório18-21.

O objetivo deste artigo é avaliar, por meio de uma revisão sistemática de trabalhos relevantes disponíveis na literatura, a eficácia e a segurança da ponte de tirofiban em pacientes com alto risco de TS e de sangramento que necessitam suspender a TAPD no período perioperatório.

METODOLOGIA

O estudo é uma revisão sistemática da literatura conduzida de acordo com a metodologia Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)22. Por utilizarmos dados secundários, não foi necessária submissão ou aprovação do Comitê de Ética em Pesquisa para o desenvolvimento do trabalho.

Critérios de elegibilidade

Para identificação das melhores evidências e revisão da literatura existente, foi construída uma pergunta de pesquisa apropriada usando a estratégia PICO23, como demonstrado na Tabela 1. Nossos critérios de inclusão foram estudos que avaliaram a eficácia da ponte de tirofiban em pacientes submetidos à cirurgia em até 12 meses após o implante de stent em uso de TAPD que precisasse ser suspensa devido a alto risco de sangramento. Excluímos artigos de revisão, artigos de opinião de especialistas, artigos duplicados e artigos não disponíveis para download.

Estratégia de pesquisa

Os estudos foram identificados por meio de pesquisa eletrônica em bases de dados e análise das referências de artigos relevantes. As bases de dados utilizadas:

Tabela 1. Componentes da estratégia PICO23 para a construção de perguntas de pesquisa e busca de evidências.
População
Pacientes submetidos à intervenção coronária percutânea (ICP) com stent que se apresentam para cirurgia em uso de terapia antiplaquetária dupla (TAPD) em até 1 ano após a ICP
Intervenção
Ponte de tirofiban com suspensão da TAPD
Controle
Pacientes em que houve suspensão da TAPD sem aplicação do protocolo de ponte de tirofiban
Desfecho
Desfecho primário: ocorrência de evento isquêmico adverso
Desfecho secundário: ocorrência de evento hemorrágico
foram PubMed, Cochrane, Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), Web of Science, EMBASE e Scientific Electronic Library Online (SciELO). Foram pesquisados estudos publicados até maio de 2021 com os descritores ((bridge) AND (tirofiban) AND (surgery)) obtidos na plataforma Descritores em Ciências da Saúde (DeCS). Foram buscados artigos em todos os idiomas.

Qualidade metodológica

Para analisar a qualidade metodológica dos artigos, utilizamos uma checklist de 18 critérios da técnica de Delphi modificada. Os artigos foram revisados individualmente por dois autores. A pontuação máxima para cada estudo foi de 18 pontos, já que cada critério recebeu o mesmo peso. Os estudos considerados de qualidade aceitável foram aqueles que atingiram 9 ou mais respostas positivas (≥ 50%).

Extracção de dados

Os estudos considerados de qualidade aceitável foram agrupados em uma tabela para sistematização e extracção dos dados, de acordo com os seguintes critérios: nome do autor, período de inclusão, desenho de estudo, número total de pacientes e número de pacientes submetidos a ponte de tirofiban, tempo entre ICP e cirurgia, tipo de stent, tipo de cirurgia e desfechos. As características dos pacientes de cada estudo foram organizadas em uma tabela contendo quantidade de pacientes, idade, gênero, tabagismo, doenças sistêmicas, como diabetes e hipertensão arterial, uso de betabloqueador e/ou estatinas, presença de doença vascular periférica e valor da fração da ejeção.

As especificações do protocolo ponte de tirofiban de cada estudo foram sistematizadas por meio de uma tabela abrangendo descontinuação do inibidor P2Y12 e/ou do AAS, início da infusão de tirofiban, quantidade infundida, descontinuação do tirofiban e retomada do inibidor P2Y12 e/ou do AAS.

Análise dos dados

Com o objetivo de avaliar a eficácia da ponte de tirofiban, o desfecho primário analisado foi a ocorrência de eventos isquêmicos adversos, como TS, IM e morte. Para avaliar a segurança da ponte de tirofiban, o desfecho secundário analisado foi a ocorrência de eventos hemorrágicos.

RESULTADOS

Seleção dos estudos

Foram identificados 107 artigos, dos quais restaram 72 após a exclusão de duplicatas. Após a triagem com aplicação dos critérios de inclusão e exclusão, 11 artigos tiveram a qualidade metodológica avaliada. Após a análise de qualidade metodológica, cinco artigos foram incluídos na revisão. A representação esquemática do resultado da busca encontra-se na Figura 1.

Características dos estudos

Dos cinco estudos analisados, três foram realizados na Itália, um foi realizado na Holanda e um foi realizado na China. Conforme a Tabela 2, apenas o artigo com maior quantidade de pacientes tinha grupo controle. Nesse estudo, dos 314 pacientes, 87 foram submetidos ao protocolo de ponte de tirofiban, enquanto os 227 restantes, que apenas suspenderam a TAPD, corresponderam ao controle. No total, houve uma predominância de cirurgia não cardíaca tanto no grupo submetido à ponte quanto no grupo controle, sendo que, dos 422 pacientes da revisão, 67,78% foram submetidos a cirurgia não cardíaca. Na definição do desfecho primário, morte e IM foram incluídos em todos os estudos; TS foi relatada como desfecho apenas em dois estudos, sendo reportada no resultado dos outros três estudos; revascularização da lesão alvo ou vaso-alvo foi reportada em dois estudos; e AVC foi relatado em apenas um estudo. Entre os desfechos secundários, eventos hemorrágicos e sangramentos foram incluídos em quatro estudos, e a despeito da definição específica de cada um deles, sendo que dois dos quatro estudos utilizam critérios do ensaio Thrombolysis in Myocardial Infarction (TIMI) para classificação.

No total, entre os 195 pacientes submetidos à ponte de tirofiban, foram relatados dois IM, um
Referência	Período de inclusão	Desenho do estudo	Número de pacientes	Pacientes submetidos à ponte de tirofiban	Tempo entre ICP e cirurgia	Tipo de stent	Tipo de cirurgia	Desfechos
De Servi et al.	2007-2013	Observacional, retrospectivo	314	87	Mediana de 104 dias e intervalo inter-quartil de (5-365) dias para os pacientes submetidos à ponte de tirofiban e 105 (0-360) para o grupo controle	Apenas farmacológico (85%); apenas metálico (9,2%); farmacológico e metálico (5,8%) dos pacientes submetidos à ponte de tirofiban. No grupo controle, apenas farmacológico (41,4%); apenas metálico (54,2%); farmacológico e metálico (4,4%) do grupo controle	Cardíaca (32,2%) e não cardíaca (67,8%) nos pacientes submetidos à ponte de tirofiban. Cardíaca (27,8%) e não cardíaca (62,2%) nos pacientes do grupo controle	MACE^a em 30 dias
Marcos et al.	2006-2010	Observacional, retrospectivo	36	36	Média de 80 dias e desvio padrão de 66 dias	Farmacológico	Cardíaca (42%); não cardíaca (58%)	MACE^b em 30 dias; eventos hemorrágicos^c em 30 dias
Polito et al.	2012-2017	Observacional, retrospectivo	21	21	Média de 7,2 dias e desvio padrão de 3,2 dias	Farmacológico	Cardíaca	Complicações após cirurgia, estado cardíaco e eocardiográfico, morte, reinfarto e/ou eventos cardiovasculares e não cardiovasculares em 21,6±15,6 meses de acompanhamento

^a IM = infarto do miocárdio; IOP = intervenção coronária percutânea. *Eventos clínicos adversos líquidos, definidos como a combinação de eventos cardio cerebrovasculares (MACE = morte por todas as causas, infarto do miocárdio, trombose de stent definitiva, derrame) e sangramientos significativos, classificados de acordo com os critérios do ensaio Thrombolysis in Myocardial Infarction (TIMI)³⁶. *Eventos cardíacos adversos maiores, definidos como qualquer morte, infarto miocárdico repetido, revascularização de vaso-alvo, revascularização de lesão-alvo ou trombose de stent; *Definidos como hipotensão, sangramentos gastrointestinais, transfusão de sangue sem sangramento, diminuição da concentração de hemoglobina ou sangramento pós-operatório que requer nova intervenção; *Definido como sinais clínicos e síntomas de isquemia miocárdica junto com aumento dos níveis de creatinoquinase-MB (CK-MB) maior que 3 vezes o limite normal; *Avaliada em termos de número de unidades de constituintes sanguíneos transfundidos e sangramento não operatório, definido de acordo com os critérios do ensaio Thrombolysis in Myocardial Infarction (TIMI)³⁶. *Sangramento intracraniano manifesto com redução de Hb de ≥5 g/dL ou hematócrito de ≥15%. |
Referência	Período de inclusão	Desenho do estudo	Número de pacientes	Pacientes submetidos à ponte de tirofiban	Tempo entre ICP e cirurgia	Tipo de stent	Tipo de cirurgia	Desfechos
Savonitto et al²³	-	Observacional, prospectivo	30	30	Mediana de 4 meses e intervalo de (1-12) meses	Farmacológico	Cardíaca (30%); não cardíaca (70%)	Morto cardiovascular, IM⁵, demonstração angiográfica de oclusão aguda da lesão-alvo durante a hospitalização e necessidade de reexploração cirúrgica por causa de sangramento; segurança da terapia⁶
Xia et al²⁶	2011	Observacional, prospectivo	21	21	Mediana de 6 meses e intervalo de (3-8) meses	Farmacológico	Não cardíaca	Morto cardiovascular, IM⁵ e revascularização da lesão-alvo entre primeiro e terceiro mês de alta hospitalar; insuficiência ventricular esquerda aguda, angina pectoris instável, eventos adversos hemorrágicos e sangramentos graves entre o primeiro e terceiro mês de alta hospitalar
TS, 13 sangramentos e nenhuma morte. Já no único estudo controlado26, foram reportados 12 IM, três TS, 36 sangramentos e seis mortes no grupo controle.

De acordo com a Tabela 3, idade, sexo e doenças preexistentes foram características relatadas em todos os estudos selecionados26,28,30,31,34, sendo que, dos 422 pacientes, 325 (77%) eram homens e 97 (23%) eram mulheres. Em relação às comorbidades, 99 (23,46%) dos 422 pacientes tinham diabetes. Já quanto à hipertensão arterial sistêmica (HAS), 270 (63,98%) pacientes apresentavam a doença.

As especificações do protocolo de terapia ponte de tirofiban utilizadas em cada estudo estão demonstradas na Tabela 4. Em todos os estudos, a descontinuação do inibidor de P2Y12 ocorreu 5 dias antes do procedimento cirúrgico. Já quanto à descontinuação da aspirina, houve diferenças entre os estudos, sendo que em dois deles26,31 só foi realizada em caso de laparotomia. No estudo de Polito et al.30, nenhum paciente descontinuou a aspirina, enquanto, em Xia et al.34, a descontinuação de aspirina ocorreu 5 dias antes da cirurgia.

O início da infusão de tirofiban e a quantidade infundida variaram de acordo com o protocolo de cada estudo. No entanto, em todos os estudos analisados, a infusão foi interrompida 4 horas antes da cirurgia. A retomada do inibidor de P2Y12 e da aspirina também apresentou variação entre os estudos.

Qualidade metodológica

Os cinco artigos incluídos para revisão sistemática obtiveram 50% ou mais dos 18 critérios da técnica de Delphi modificada24 para análise de qualidade interna em estudos observacionais. As pontuações dos estudos, da menor para a maior, foram as seguintes: 11, 13, 14, 14 e 17, com média de 13,8 pontos (76,7%) em qualidade metodológica. Os critérios e a pontuação detalhada de cada artigo completo acessado para elegibilidade estão organizados na Tabela 5.

Desfechos primário e secundário

Os resultados dos estudos avaliados estão representados na Tabela 6. Quatro dos cinco estudos avaliados demonstraram a eficácia da ponte de tirofiban na redução de eventos isquêmicos adversos, sendo que, em três estudos28,31,34, não houve TS. Em um deles30, apenas um dos 21 pacientes apresentou TS. Nesses quatro estudos, não foram reportados casos de morte, IM, reinfarto ou revascularização de lesão-alvo.

No único estudo controlado26, a ponte de tirofiban não mostrou efeito estatisticamente significativo na redução de eventos cardíacos adversos maiores, com dois pacientes apresentando IM no grupo submetido à ponte de tirofiban. No grupo controle desse estudo, foram reportados 12 IM, três TS e seis mortes. Não foram relatados morte ou TS no grupo submetido à ponte de tirofiban.

Tabela 3. Características dos pacientes de cada estudo selecionado.

Características	De Servi et al.26	Marcos et al.28	Polito et al.30	Savonitto et al.31	Xia et al.34	
Número de pacientes	87	227	36	21	30	21
Idade	Mediana de 67,4 anos e intervalo interquartil de (25-83) anos	Mediana de 69,2 anos e intervalo interquartil de (41-90) anos	66±11 anos (média ± desvio padrão)	62±9 anos (média ± desvio padrão)	65 (25-80) anos (média ± desvio padrão)	Média de 63 anos e Intervalo de (45-74) anos
Masculino	64 (73,6%)	180 (79,3%)	25 (69,4%)	20 (95,3%)	23 (76,7%)	13 (61,9%)
Feminino	23 (26,4%)	47 (20,7%)	11 (30,6%)	1 (0,7%)	7 (23,3%)	8 (38,1%)
Tabagismo	-	-	2 (5,6%)	12 (57,1%)	-	-
Diabetes	21 (24,1%)	55 (24,2%)	4 (11,1%)	6 (28,6%)	5 (16,7%)	8 (38,1%)
Hipertensão arterial sistêmica	53 (60,9%)	168 (74,0%)	8 (22,2%)	13 (61,9%)	14 (46,7%)	14 (66,7%)
Uso de betabloqueador	67 (77,0%)	155 (68,3%)	-	21 (70%)	15 (71,4%)	
Uso de estatinas	71 (81,6%)	168 (74,0%)	-	23 (76,7%)	20 (95,3%)	
Doença vascular periférica	-	-	-	4 (13,3%)	5 (23,8%)	
Fração de ejeção	51,2±9,1% (média ± desvio padrão)	49,9±10,0% (média ± desvio padrão)	-	9 (42,9%): >55%	Mediana de 55% com intervalo de (35-68%)	

Riscado et al. J Vasc Bras. 2021;20:e20210113. https://doi.org/10.1590/1677-5449.210113
Seis sangramentos menores foram relatados em 2,4% dos pacientes, sendo 12 horas após a intervenção cirúrgica, nos quais a ponte de tirofiban não interferiu na ocorrência de sangramentos ou eventos hemorrágicos. Já no estudo controlado com 30 pacientes, nenhum sangramento ou evento hemorrágico foi observado.

Os dados obtidos nesta revisão sistemática da literatura sugerem que a ponte de tirofiban em pacientes com alto risco de TS e de sangramento submetidos a cirurgia cardíaca ou não cardíaca é factível e permite que os procedimentos cirúrgicos sejam realizados com menores taxas de eventos isquêmicos adversos, sem afetar significativamente os eventos hemorrágicos. Nossos resultados são condizentes com uma grande revisão sistemática da literatura publicada em 2014 na revista *Internal and Emergency Medicine*, que avaliou 420 pacientes submetidos a protocolo de ponte com inibidores da glicoproteína IIb/IIIa (epitifibatide ou tirofiban) ou com cangrelor. Na revisão de 2014, a ponte de tirofiban reduziu de forma estatisticamente significativa a ocorrência de sangramentos intra-hospitalares, sendo reportados cinco sangramentos maiores no grupo submetido à ponte de tirofiban e 36 sangramentos maiores no grupo controle. Foram reportados seis sangramentos em até 30 dias após a intervenção cirúrgica em um dos estudos avaliados.

DISCUSSÃO

Dos cinco estudos avaliados, demonstraram a segurança da ponte de tirofiban em não interferir na ocorrência de sangramentos ou eventos hemorrágicos. Em dois desses estudos, não houve nenhum sangramento ou evento hemorragico. Já no estudo com 30 pacientes, dois pacientes apresentaram sangramento no pós-operatório.

No estudo controlado, a ponte de tirofiban reduziu de forma estatisticamente significativa a ocorrência de sangramentos intra-hospitalares, sendo reportados cinco sangramentos maiores no grupo submetido à ponte de tirofiban e 36 sangramentos maiores no grupo controle. Foram reportados seis sangramentos em até 30 dias após a intervenção cirúrgica em um dos estudos avaliados.

Tabela 4. Especificações do protocolo de terapia com ponte de tirofiban de cada estudo selecionado.

Características	De Servi et al.	Marcos et al.	Polito et al.	Savonitto et al.	Xia et al.
Descontinuação do inibidor P2Y₁₂	5 dias antes da cirurgia				
Descontinuação da AAS	Não ocorreu, exceto em caso de laparotomia	Ocorreu em 19,4% dos pacientes, sendo 5 dias antes da cirurgia	Não ocorreu	Não ocorreu, exceto em caso de laparotomia	Não ocorreu, exceto em caso de laparotomia
Início da infusão de tirofiban	3 dias antes da cirurgia	4±1,5 dias antes da cirurgia (média ± desvio padrão)	3 dias antes da cirurgia	4 dias antes da cirurgia	4 dias antes da cirurgia
Quantidade infundida	0,4 mg/kg/min durante 30 minutos, seguido por 0,1 mg/kg/min (a dose era reduzida em 50% se o clearance de creatinina fosse <30 mL/min)	-	0,1 mg/kg/min (a dose era reduzida em 50% se o clearance de creatinina fosse <30 mL/min)	0,4 μg/kg/min durante 30 minutos, seguido de 0,1 μg/kg/min (a dose era reduzida em 50% se o clearance de creatinina fosse <30 mL/min)	0,1 mg/kg/min
Descontinuação do tirofiban	4 horas antes da cirurgia (8 horas no caso de clearance de creatinina <30 mL/min)	4 horas antes da cirurgia	4 horas antes da cirurgia (8 horas no caso de clearance de creatinina <30 mL/min)	4 horas antes da cirurgia (8 horas no caso de clearance de creatinina <30 mL/min)	4 horas antes da cirurgia
Retomada do inibidor P2Y₁₂	Assim que o paciente pudesse retomar a administração oral, sendo uma dose de ataque de 300 mg e posteriormente 75 mg de administração diária	12 a 24 horas após a intervenção	Retomar tão cedo quanto possível	Assim que o paciente pudesse retomar a administração oral, sendo uma dose de ataque de 300 mg, posteriormente 75 mg de administração diária	Após a cirurgia, sendo uma dose de ataque de 300 mg, posteriormente 75 mg uma vez ao dia
Retomada da AAS	12 horas após a intervenção como uma injeção IV de 250 mg de salicilato de lisina acetal uma vez ao dia até que o paciente possa retomar a administração oral, seguindo com 75 a 100 mg uma vez ao dia por via oral	1,6±1,2 dias após a intervenção (média ± desvio padrão)	Retomar tão cedo quanto possível	12 horas após a intervenção como uma injeção IV de 250 mg de salicilato de lisina acetal uma vez ao dia até que o paciente possa retomar a administração oral, seguindo com 75 a 100 mg uma vez ao dia por via oral	Após a cirurgia, sendo uma dose inicial de 300 mg, posteriormente 100 mg uma vez ao dia

AAS = aspirina; IV = intravenosa.
Critérios	Bona et al.	De Servi et al.	D’Urbanino et al.	Marcos et al.	Park et al.	Polito et al.	Savonitto et al.	Vlachou et al.	Walker et al.	Xia et al.	Zhou et al.
Objetivo do estudo											
1. A hipótese/objetivo do estudo está claramente presente no resumo, na introdução ou na metodologia?	SIM	SIM	SIM	SIM	NÃO	SIM	SIM	SIM	SIM	SIM	SIM
População do estudo											
2. As características dos participantes incluídos são descritas no estudo?	SIM	SIM	SIM	SIM	SIM	SIM	SIM	SIM	SIM	SIM	SIM
3. Os casos foram coletados em mais de um centro?	NÃO	SIM	NÃO	NÃO	NÃO	SIM	SIM	NÃO	NÃO	NÃO	NÃO
4. Os critérios de elegibilidade (critérios de inclusão e exclusão) para entrada no estudo estão explícitos e apropriados?	NÃO	SIM	NÃO	SIM	SIM	SIM	NÃO	NÃO	NÃO	SIM	NÃO
5. Os participantes foram recrutados consecutivamente?	NÃO	SIM	NÃO	SIM	NÃO	NÃO	SIM	NÃO	SIM	SIM	NÃO
6. Os participantes entraram no estudo em um ponto similar da doença?	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO
Intervenção e co-intervenção											
7. A intervenção foi claramente descrita no estudo?	SIM	SIM	SIM	SIM	SIM	SIM	SIM	SIM	SIM	SIM	SIM
Tabela 5. Continuação...

Critérios	Bona et al.25	De Servi et al.26	D’Urba-no et al.27	Marcos et al.28	Park et al.29	Polito et al.30	Savonitto et al.31	Vlachou et al.32	Walker et al.33	Xia et al.34	Zhou et al.35
8. Intervenções adicionais (co-intervenções) foram claramente reportadas no estudo?	SIM	SIM	NÃO	SIM	NÃO	NÃO	SIM	NÃO	SIM	NÃO	SIM
Medida do desfecho	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO
9. As formas de medir o desfecho estão claramente definidas na introdução ou na metodologia do estudo?	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO
10. Os desfechos relevantes foram medidos adequadamente com métodos objetivos, e/ou subjetivos?	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO
11. Os desfechos foram medidos antes e depois da intervenção?	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO
Análise estatística	NÃO	SIM	NÃO	NÃO	NÃO	NÃO	SIM	NÃO	NÃO	SIM	NÃO
12. A análise estatística utilizada para avaliar os desfechos relevantes foi adequada?	NÃO	SIM	NÃO	NÃO	NÃO	NÃO	SIM	NÃO	NÃO	SIM	NÃO
Resultados e conclusões	SIM	SIM	SIM	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO
13. O período de acompanhamento foi reportado?	SIM	SIM	SIM	SIM	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO
14. A perda de acompanhamento foi reportada?	NÃO	SIM	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO
Critérios	Bona et al.	De Ser-vi et al.	D’Urba-no et al.	Marcos et al.	Park et al.	Polito et al.	Savoni-to et al.	Vla-chou et al.	Walker et al.	Xia et al.	Zhou et al.
--	-------------	------------------	------------------	---------------	-------------	---------------	------------------	----------------	---------------	-------------	-------------
15. O estudo fornece estimativas da variabilidade aleatória na análise de dados de desfechos relevantes?	NÃO	SIM	NÃO	SIM	NÃO	SIM	NÃO	NÃO	NÃO	NÃO	NÃO
16. Os eventos adversos são reportados?	SIM	SIM	SIM	SIM	NÃO	SIM	SIM	SIM	SIM	SIM	SIM
17. As conclusões do estudo são sustentadas pelos resultados?	SIM	SIM	NÃO	SIM	NÃO	SIM	SIM	SIM	SIM	NÃO	NÃO
Conflitos de interesse e financiamento	SIM	SIM	NÃO	NÃO	NÃO	NÃO	NÃO	SIM	NÃO	SIM	NÃO
18. Os conflitos de interesse e as fontes de financiamento do estudo são reportados?	SIM	SIM	NÃO	NÃO	NÃO	NÃO	NÃO	SIM	NÃO	SIM	NÃO
Total	8	17	5	13	4	11	14	8	8	14	5
técnica ponte foi eficaz 96,2% das vezes (intervalo de confiança de 95% 94,4 - 98,0%), sendo que a taxa de sucesso foi de 100% para o tirofiban, que também apresentou ausência de eventos de sangramento/ transfusão em 81,0% dos 121 pacientes que foram submetidos à ponte com esse medicamento.3

Em um estudo prospectivo observacional de coorte publicado em 2012, que incluiu 6.816 pacientes consecutivos, foi demonstrado que a descontinuação de clopidogrel nos primeiros 6 meses após a implantação de stent farmacológico estava significativamente relacionada à TS nesse período. Nesse contexto, a administração intravenosa de tirofiban pode ser proposta como alternativa para um paciente com alto risco de TS, que descontinuárá a TAPD devido ao alto risco de sangramento no procedimento cirúrgico (por exemplo, determinadas cirurgias oftalmológicas, do ouvido médio ou neurocirurgias).19

Na presente revisão, a maior parte dos estudos demonstrou benefícios clínicos da ponte de tirofiban. Não foi relatada morte nos 195 pacientes submetidos à ponte, enquanto seis mortes foram reportadas no grupo que apenas suspendeu a TAPD do estudo controlado. Em todos os cinco estudos, totalizando 195 pacientes submetidos à ponte, foram relatados apenas um caso de TS e dois de IM.

O raciocínio por trás da suspensão da TAPD no período operatório leva em consideração a maior chance de sangramentos na cirurgia e no pós-operatório caso essas medicações sejam mantidas. Uma metanálise de 41 estudos, totalizando 49.590 pacientes, a qual avaliou o risco de sangramento cirúrgico em usuários de AAS em baixas doses, demonstrou que o AAS multiplicou a taxa de sangramento basal dos procedimentos cirúrgicos por um fator de 1,5 (1,0-2,5) sem que houvesse aumento de mortalidade ou morbidade cirúrgicas. Em alguns dos estudos que analisamos, demonstrou-se que a continuidade da aspirina no período perioperatorio juntamente com a realização da ponte de tirofiban não influenciou nas taxas de sangramentos, sendo que, no estudo que reportou seis sangramentos, apenas um dos pacientes estava em uso de aspirina. No estudo que reportou dois sangramentos, apenas um paciente estava em uso de aspirina e apresentou um sangramento classificado como menor pelo ensaio TIMI devido à anemia preexistente, requerendo transfusão. Já no estudo de De Servi et al., não foi mencionado se os pacientes que apresentaram sangramentos estavam ou não em uso de aspirina, sendo que a decisão de descontinuar o medicamento ficou à critério do cirurgião.

Quanto aos eventos cardíacos adversos, houve apenas um caso de TS nos 195 pacientes submetidos à ponte de tirofiban e nenhuma morte. Apesar de De Servi et al. não terem demonstrado efeito estatisticamente significativo na redução de eventos cardíacos adversos maiores, nesse artigo, os pacientes submetidos à ponte de tirofiban apresentaram dois IM contra 12 IM do grupo controle, bem como zero TS contra três TS do grupo controle. Também houve seis mortes no grupo controle do estudo, enquanto não houve nenhuma morte no grupo submetido à ponte. Algumas limitações podem ter afetado os resultados desse artigo, tendo em vista que não houve randomização dos pacientes e o tratamento dependeu da disposição dos cirurgiões e dos hospitais nos quais os pacientes foram tratados em aceitar ou não a terapia com ponte de tirofiban e suspender apenas o clopidogrel ou clopidogrel e aspirina.

No estudo de Marcos et al., apesar do tempo relativamente curto entre a colocação do stent e o procedimento cirúrgico, cerca de 2 a 6 meses, nenhum evento cardíaco adverso maior foi reportado. Já Savonitto et al. demonstraram a eficácia da ponte de tirofiban, pois nenhum dos pacientes apresentaram evento cardíaco isquêmico no período perioperatorio. Xia et al. também demonstraram de forma positiva a eficácia da ponte de tirofiban, tendo em vista que não houve eventos cardíacos isquêmicos. Apesar de Polito et al. relatarem um caso de TS, destaca-se que a ponte de tirofiban preveniu um evento fatal de trombose, haja vista que foi realizada angioplastia e não houve morte, reinfarto ou quaisquer eventos cardiovasculares no seguimento de 21,6±15,6 meses.

Quanto à ocorrência de eventos hemorrágicos ou sangramentos, Marcos et al. relataram seis eventos...
hemorrágicos, sendo que dois ocorreram após o reinício do clopidogrel e da aspirina e a severidade do sangramento não foi considerada alta na maioria dos pacientes. Já De Servi et al.36 reportaram que a ponte de tirofiban reduziu de forma estatisticamente significativa os sangramentos intra-hospitalares, considerando que os pacientes foram submetidos a cirurgias de alto risco de sangramento. Ademais, as baixas taxas de mortalidade, IM, TS e AVC foram atingidas sem aumento do risco de sangramento nesses pacientes.

A pesar de Savonitto et al.31 reportarem dois eventos de sangramento, estes não excederam o que é comumente aceito para os tipos de cirurgias às quais os pacientes foram submetidos: o paciente que apresentou um evento classificado como sangramento menor pelo ensaio TIMI36 havia sido submetido a uma cirurgia de bexiga endoscópica e possuía anemia préexistente; já o paciente que apresentou um evento classificado como sangramento maior havia sido submetido a uma hemicolecotomia e apresentou proctorragia no sétimo dia do pós-operatório, após retomar o clopidogrel.

Xia et al.38 demonstrou a segurança da terapia com ponte de tirofiban no período perioperatório e no seguimento de 3 meses, nos quais não foi reportado nenhum evento hemorrágico ou sangramento. Em Polito et al.30, também foi demonstrada a segurança da terapia, tendo em vista que não houve nenhum evento hemorrágico ou sangramento, apenas três casos de anemia não complicada.

É válido ressaltar que cada estudo apresentou um tempo diferente de seguimento dos pacientes após a cirurgia e infusão de tirofiban. Enquanto alguns estudos fizeram o acompanhamento por 1 mês, outros fizeram por 3 até 21 meses ou apenas realizaram seguimento intra-hospitalar até a alta do paciente. Desse modo, os períodos dos desfechos avaliados foram razoavelmente diferentes entre os estudos, o que pode ter afetado os resultados.

Além disso, ainda que o desfecho secundário tenha sido positivo na maioria dos estudos e que todos os pacientes incluídos tenham sido classificados como de alto risco de sangramento, o cálculo desse índice é complexo e deve incluir não apenas o risco intrínseco da cirurgia, mas também o risco individual do paciente, o que não foi claramente detalhado nos estudos abordados. Desse modo, caso o cálculo do risco não tenha sido realizado de modo seguro e com abordagem multiprofissional, a não interferência da ponte de tirofiban no risco de sangramentos e eventos hemorrágicos pode ter sido superestimada.

Ademais, é importante considerar esses resultados de forma cautelosa, tendo em vista que os resultados favoráveis podem ter ocorrido por outros fatores, como uso de betabloqueadores e estatinas no perioperatório, além do pequeno número de pacientes tratados. Outro fator possível para os desfechos favoráveis é que o protocolo ponte de tirofiban está relacionado com um acompanhamento mais minucioso do paciente no perioperatório, uma vez que a infusão se inicia entre 3 a 4 dias antes da cirurgia, sendo descontinuada apenas 4 horas antes do procedimento. Desse modo, o maior tempo de hospitalização e monitoramento pode estar relacionado às menores taxas de ocorrência de sangramentos, apesar de dados da literatura sugerirem que a infusão de tirofiban realmente não interfere no risco de sangramento na cirurgia40.

Deve-se destacar que esta revisão apresenta limitações. Uma delas é o fato de que a maioria dos dados foram extraídos de estudos retrospectivos. Outra limitação é representada pelas diferentes definições de eventos isquêmicos e hemorrágicos adotadas por cada estudo. Os resultados também podem ser afetados devido à heterogeneidade de populações, dos diferentes protocolos utilizados e dos desenhos de estudo, sendo que, em relação aos pacientes, diversas características não foram relatadas em todos os artigos avaliados, limitando nossa análise.

Outrossim, no estudo controlado26 houve mais pacientes com HAS no grupo controle, o que pode ter contribuído para o maior número de eventos adversos nesse grupo em comparação aos pacientes submetidos à ponte de tirofiban, tendo em vista que essa comorbidade é um dos principais fatores de risco para eventos cardiovasculares. Dados longitudinalis obtidos do Framingham Heart Study indicaram que portadores de HAS possuem um aumento maior que duas vezes no risco relativo de doença cardiovascular em comparação com normotensos41.

A variabilidade também advém dos diferentes intervalos de tempo entre a ICP e a cirurgia, que é um importante preditor de eventos cardíacos isquêmicos38. Outras diferenças observadas são o momento de início da infusão de tirofiban, a quantidade infundida e o momento de retomada do inibidor de P2Y12 e de AAS, que também podem estar relacionados à ocorrência ou não de eventos cardíacos isquêmicos e hemorrágicos.

Ainda que existam limitações relacionadas à falta de ensaios clínicos randomizados, o uso de inibidores de glicoproteína IIb/IIIa no perioperatório de pacientes com alto risco de TS e alto risco de sangramento é recomendado por diretrizes e por especialistas18-20,42,43. Portanto, acreditamos que este estudo acrescenta informações úteis à literatura atual. Deve-se ressaltar ainda que estudos randomizados e controlados que testem a segurança e eficácia da ponte de tirofiban em oposição à descontinuação do tienopiridínico com ou sem descontinuação de AAS, sem outras
estratégias associadas à interrupção da terapia, são pouco prováveis de serem executados, tendo em vista o elevado número de eventos adversos e mortes no grupo controle do estudo avaliado.

CONCLUSÃO

Pacientes submetidos a cirurgia nos primeiros 12 meses após implante de stent possuem maior risco de eventos trombóticos, indicando a necessidade de rever a conduta perioperatoria de suspensão de medicamentos antiplaquetários. Nos casos dos pacientes com alto risco de TS e de eventos hemorrágicos, a ponte de tirofiban parece ser uma estratégia eficaz e segura para o manejo da medicação no perioratório, tendo em vista a redução na chance de ocorrência de eventos isquêmicos adversos sem aumento da chance de ocorrência de eventos hemorrágicos. No entanto, são necessárias evidências mais robustas. Ademais, a abordagem multiprofissional desses pacientes deve ser sempre preconizada.

REFERÊNCIAS

1. Mauri L, Kereiakes DJ, Yeh RW, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med. 2014;371(23):2155-66. http://dx.doi.org/10.1056/NEJMoai1409312. PMID:25399658.

2. Baigent C, Sudlow C, Collins R, Peto R. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71-86. http://dx.doi.org/10.1136/bmj.324.7329.71. PMID:11786451.

3. De Luca L, Belletini E, Di Maio D, et al. Oral antiplatelet therapy for secondary prevention of non-cardioembolic ischemic cerebrovascular events. J Clin Med. 2021;10(8):1721. http://dx.doi.org/10.3390/jcm10081721. PMid:34181870.

4. Levine GN, Bates ER, Bittl JA, et al. 2016 ACC/AHA guideline on the management of patients with recently implanted coronary stents on dual antiplatelet therapy. J Am Coll Cardiol. 2016;67(22):2344-5.

5. Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2016;134(10):e123-55. http://dx.doi.org/10.1161/CIR.0000000000000404. PMID:27206202.

6. Levine GN, Bates ER, Bittl JA, et al. 2016 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2016;67(22):2344-5.

7. Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American college of cardiology/American heart association task force on practice guidelines. J Am Coll Cardiol. 2014;64(22):e77-137. http://dx.doi.org/10.1016/j.jacc.2014.07.944. PMid:25218802.

8. Baber U, Dangas G, Chandrasekhar J, et al. Time-Dependent Associations between actionable bleeding, coronary thrombotic events, and mortality following percutaneous coronary intervention: results from the PARIS Registry. JACC Cardiovasc Interv. 2016;9(13):1349-57. http://dx.doi.org/10.1016/j.jcin.2016.04.009. PMid:27388822.

9. van Werkum JW, Heestermans AA, Zomer AC, et al. Predictors of coronary stent thrombosis: the Dutch stent thrombosis registry. J Am Coll Cardiol. 2009;53(16):1399-409. http://dx.doi.org/10.1016/j.jacc.2008.12.055. PMid:19371823.

10. Kovacic JC, Lee P, Karajgikar R, et al. Safety of temporary and permanent suspension of antiplatelet therapy after drug eluting stent implantation in contemporary "real-world" practice. J Interv Cardiol. 2012;25(5):482-92. http://dx.doi.org/10.1111/j.1540-8183.2012.00746.x. PMID:22724441.

11. Kolh P, Wijns W, Danchin N, et al. Guidelines on myocardial revascularization. Eur J Cardiothorac Surg. 2010;38(Suppl 1):S1-52. http://dx.doi.org/10.1016/j.ejcts.2010.08.019. PMid:20850034.

12. Schoos M, Power D, Baber U, et al. Patterns and Impact of Dual Antiplatelet Cessation on Cardiovascular Risk After Percutaneous Coronary Intervention in Patients With Acute Coronary Syndromes. Am J Cardiol. 2019;123(5):709-16. http://dx.doi.org/10.1016/j.amjcard.2018.11.051. PMid:30612724.

13. Spretus JA, Kettelkamp R, Vance C, et al. Prevalence, predictors, and outcomes of premature discontinuation of thienopyridine therapy after drug-eluting stent placement: Results from the PREMIER registry. Circulation. 2006;113(24):2803-9. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.618086. PMid:16769908.

14. Zheng H, Ma HP, Chen L, Zhan HT, Guo H. Prethrombotic state and cardiac events in patients with coronary heart disease during nondrugcardiac surgery. Clin Appl Thromb Hemost. 2014;20(1):84-90. http://dx.doi.org/10.1177/1076029613470489. PMID:23262969.

15. Bande B, Bande S, Mohite S. The hypercoagulable states in anaesthesia and critical care. Indian J Anaesth. 2014;58(5):665-71. http://dx.doi.org/10.4103/0019-5049.144684. PMID:25353433.

16. Savonitto S, Caracciolo M, Cattaneo M, De Servi S. Management of patients with recently implanted coronary stents on dual antiplatelet therapy who need to undergo major surgery. J Thromb Haemost. 2011;9(11):2133-42. http://dx.doi.org/10.1111/j.1538-7836.2011.04456.x. PMID:21819537.

17. De Servin F. Low-dose aspirin and clopidogrel: how to act in patients scheduled for day surgery. Curr Opin Anaesthesiol. 2007;20(6):531-4. http://dx.doi.org/10.1097/AOC.0b013e3282f15f95. PMid:17989545.

18. Lorga AM, Fo AZ, Soeiro AM, et al. Diretrizes brasileiras de antiagregantes plaquetários e anticoagulantes em cardiologia. Arq Bras Cardiol. 2013;101(3, Supl. 3):1-95. http://dx.doi.org/10.5935/abc.20135009. PMid:24196826.

19. Rossini R, Musumeci G, Visconti LO, et al. Perioperative management of antiplatelet therapy in patients with coronary stents undergoing cardiac and non-cardiac surgery: a consensus document from italian cardiological, surgical and anaesthesiological societies. EuroIntervention. 2014;10(1):38-46. http://dx.doi.org/10.4244/EIJV10I1A8. PMid:24823636.

20. Kristensen SD, Knuuti J. New ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management. Eur Heart J. 2014;35(35):2344-5. http://dx.doi.org/10.1093/eurheartj/ehu285. PMid:25104785.

21. Rodriguez A, Guilera N, Mases A, Sierra P, Oliva JC, Colilles C. Management of antiplatelet therapy in patients with coronary stents undergoing nondrugcardiac surgery: association with adverse events. Br J Anaesth. 2018;120(1):67-76. http://dx.doi.org/10.1016/j.bja.2017.11.012. PMid:29397139.
22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. http://dx.doi.org/10.1371/journal.pmed.1000097. PMid:19621072.

23. Santos CMDC, Pimenta CADM, Nobre MRC. A estratégia PICO para a construção da pergunta de pesquisa e busca de evidências. Rev Lat Am Enfermagem. 2007;15(3):508-11. http://dx.doi.org/10.1590/S0104-11692007000300023. PMid:17653438.

24. Moga C, Guo B, Harstall C. Development of a quality appraisal tool for case series studies using a modified delphi technique. Edmonton: IHE Publications; 2012 [citado 2020 set 18]. http://www.ihe.ca/publications/development-of-a-quality-appraisal-tool-for-case-series-studies-using-a-modified-delphi-technique.

25. Bona D, Aiolfi A, Piccozzi S, Rubino B, Bonavina L. Operable gastric cancer diagnosed soon after implantation of a coronary drug-eluting stent: How to manage? Eur Surg. - Acta Chir Austriaca. 2012;4(5):341-4. http://dx.doi.org/10.1055/s-0033-1210158-8.

26. De Servi S, Morici N, Boschedti E, et al. Bridge therapy or standard treatment for urgent surgery after coronary stent implantation: Analysis of 314 patients. Vascul Pharmacol. 2016;80:885-90. http://dx.doi.org/10.1016/j.vph.2015.11.085. PMid:26657879.

27. D’Urbano M, Barlocco F, Poli A, et al. Unplanned surgery after drug eluting stent implantation: A strategy for safe temporary withdrawal of dual antiplatelet therapy. J Cardiovasc Med (Hagerstown). 2008;9(7):737-41. http://dx.doi.org/10.1093/1874-2017-010197-y. PMid:21914802.

28. Marcos EG, Fonseca AC, Hofma SH. Bridging therapy for early surgery in patients on dual antiplatelet therapy after drug-eluting stent implantation. Neth Heart J. 2011;19(10):412-7. http://dx.doi.org/10.1002/nhj.206079.

29. Park SJ, Oh IY, Kim KH, et al. Minimal withdrawal of dual antiplatelet agents under the guidance of a point-of-care platelet activity assay early after drug-eluting stent implantation for surgical removal of renal cell carcinoma. Int J Cardiol. 2011;149(2):e85-7. http://dx.doi.org/10.1016/j.ijcard.2011.05.009. PMid:21977540.

30. Polito MV, Asparago S, Galasso G, et al. Early myocardial surgical revascularization after ST-segment elevation myocardial infarction in multivessel coronary disease: bridge therapy is the solution? J Cardiovasc Med (Hagerstown). 2018;19(3):120-5. http://dx.doi.org/10.1045/jcm.0000000000000261. PMid:29389817.

31. Savonitto S, D’Urbano M, Caracchiolo M, et al. Urgent surgery in patients with a recently implanted coronary drug-eluting stent: A phase II study of “bridging” antiplatelet therapy with tirofiban during temporary withdrawal of clopidogrel. Br J Anaesth. 2010;104(3):285-91. http://dx.doi.org/10.1093/bja/aep373. PMid:20047898.

32. Vlachou M, Didagelos M, Kouparianis A, Karvounis H, Zikas A. Bridging with tirofiban during temporary withdrawal of oral antiplatelets for two major surgical procedures in high ischaemic risk patients. Open Cardiovasc Med J. 2019;13(1):1-4. http://dx.doi.org/10.2174/18741924019130100001.

33. Walker EA, Dager WE. Bridging with tirofiban during oral antiplatelet intervention: a single-center case series analysis including patients on hemodialysis. Pharmacotherapy. 2017;37(8):888-92. http://dx.doi.org/10.1002/phar.1956. PMid:28543216.

34. Xia JG, Qu Y, Shen H, Liu XH. Short-term follow-up of tirofiban as alternative therapy for urgent surgery patients with an implanted coronary drug-eluting stent after ST-elevation myocardial infarction. Coron Artery Dis. 2013;24(6):522-6. http://dx.doi.org/10.1097/MCA.0b013e328366c579. PMid:23900046.

35. Zhou L-Q, Chen S-M, Zhang Y-Z, He L-Y, Gao W. Two case of preoperative bridging therapy for patients undergoing non-cardiac surgery after coronary stent implantation. J Geriatr Cardiol. 2017;14(7):488-90. http://dx.doi.org/10.1009/jssc.1671-5411.2017.07.002. PMid:28868079.

36. Rao AK, Pratt C, Berke A, et al. Thrombolysis in myocardial infarction (TIMI) trial-Phase I: Hemorrhagic manifestations and changes in plasma fibrinogen and the fibrinolytic system in patients treated with recombinant tissue plasminogen activator and streptokinase. J Am Coll Cardiol. 1998;11(1):1-11. http://dx.doi.org/10.1016/S0735-1097(88)90158-1. PMid:3121710.

37. Morici N, Moja L, Rosato V, et al. Bridge with intravenous antiplatelet therapy during temporary withdrawal of oral agents for surgical procedures: a systematic review. Intern Emerg Med. 2014;9(2):225-35. http://dx.doi.org/10.1007/s11739-013-1041-8. PMid:24419741.

38. Schulz S, Schuster T, Mehlli J, et al. Stent thrombosis after drug-eluting stent implantation: Incidence, timing, and relation to discontinuation of clopidogrel therapy over a 4-year period. Eur Heart J. 2009;30(22):2714-21. http://dx.doi.org/10.1093/eurheartj/ehp275. PMid:19596658.

39. Burger W, Chemnitz JM, Kneissl GD, Rüger K. Low-close aspirin for secondary cardiovascular prevention - Cardiovascular risks after its perioperative withdrawal versus bleeding risks with its continuation: review and meta-analysis. Intern Med. 2005;257(5):399-414. http://dx.doi.org/10.1111/j.1600-0614.2005.00477.x. PMid:14836656.

40. Li X, Zhang S, Wang Z, et al. Platelet function and risk of bleeding in patients with acute coronary syndrome following tirofiban infusion. Front Pharmacol. 2019;10:1158. http://dx.doi.org/10.3389/fphar.2019.01158. PMid:31649534.

41. Kannel WB. Framingham study insights into hypertensive risk of cardiovascular disease. Hypertens Res. 1995;18(3):181-96. http://dx.doi.org/10.1016/1388-0209(95)80092-L. PMid:7584927.

42. Cardio Society of Australia and New Zealand. Guidelines for the management of antiplatelet therapy in patients with coronary stents undergoing non-cardiac surgery. Heart Lung Circ. 2010;19(1):1-10. http://dx.doi.org/10.1016/j.jhlc.2009.10.008. PMid:20045378.

43. Chassot PG, Delabays A, Spahn DR. Perioperative antiplatelet therapy during temporary withdrawal of oral agents for surgical procedures: a systematic review. Intern Emerg Med. 2020;15(9):1411-20. http://dx.doi.org/10.1007/s11739-020-02242-1. PMid:32954637.

44. Riscado et al. J Vasc Bras. 2021;20:e20210113. https://doi.org/10.1590/1677-5449.210113

Correspondência
Lorrane Vieira Siqueira Riscado
Av. Presidente Itamar Franco, 2320 – São Mateus
CEP 36025-290 - Juiz de Fora (MG), Brasil
Tel.: (21) 96655-6256
E-mail: lorrane.vieira1@gmail.com

Informações sobre os autores
LVSR e JHSP - Acadêmicos de Medicina, Universidade Federal de Juiz de Fora (UFJF).
ACL - Chefe, Instituto de Cirurgia Vascular & Endovascular de São Paulo (ICVE- SP).

Contribuições dos autores
Concepção e desenho do estudo: LVSR, JHSP
Análise e interpretação dos dados: LVSR, JHSP
Cola e dados: LVSR, JHSP
Redação do artigo: LVSR, JHSP
Revisão crítica do texto: LVSR, JHSP, ACL
Aprovação final do artigo: LVSR, JHSP, ACL
Análise estatística: N/A
Responsabilidade geral pelo estudo: ACL

*Todos os autores leram e aprovaram a versão final submetida ao J Vasc Bras.