Combined measurement of serum tumor markers in patients with hepatocellular carcinoma

CAI Wen-Xiu, ZHENG Hui, SHENG Jian, YE Qing-Lin

Subject headings liver neoplasms/diagnosis; carcinoma, hepatocellular/diagnosis; tumor markers, biological/blood; alpha-fetoproteins/blood; sialic acid/blood; fucosidase/blood; enzyme linked immunosorbent assay; spectrophotometry

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common malignant neoplasms, and its prognosis is very poor if diagnosed late, therefore, early detection is important. As we know not all HCC can secrete AFP, and AFP levels may be normal in as many as 40% of patients with early HCC and 15%-20% of patients with advanced HCC[1]. Therefore, we selected AFP, alpha-L-fucosidase (AFU) and sialic acid (SA) in combination for detecting HCC.

MATERIALS AND METHODS

Subjects were divided into three groups: 1) HCC group consisted of 30 patients (26 males and 4 females) with a mean age of 50.4±12.7 years; 2) liver cirrhosis group consisted of 30 patients (24 males and 6 females) with a mean age of 45.3±8.4 years; and 3) control group consisted of 30 healthy subjects (28 males and 2 females) with a mean age of 33.2±4.8 years whose liver function tests were normal. Diagnosis of HCC was in accordance with the criteria of the National HCC Association of China in 1977[2].

The fasting sera from all subjects were stored at -18°C. AFP was measured by ELISA. The kits were provided by Xiamen Advanced Scientific Institute[3]. AFU was measured according to Troost’ s method and expressed as nkat/L[3]. The kits were provided by Sanming Lanbo Biological Technique Institute. SA was measured by spectrophotometry. The kits were purchased from Dongou Biological Technical Institute. The data were expressed as x±s and analyzed statistically by the Student’s t test.

RESULTS

The serum levels of AFP, AFU and SA in the three groups are shown in Table 1.

The serum levels of AFP, AFU and SA in patients with HCC were significantly higher than those in patients with cirrhosis (P<0.01) and in the control subjects (P<0.01). No significant differences were found between the latter two groups.

The cutoff value was defined as x±2s (AFP ≤ 30 µg/L, AFU ≤ 180 nkat/L and SA ≤ 630 mg/L).

The positive rates and significance of AFP, AFU and SA in the three groups are shown in Tables 2 and 3.

Results of combined measurement with two positives among the three tumor markers are shown in Table 4.

The sensitivity, specificity, positive predictive value, negative predictive value and accuracy rate were 86.7%, 98.3%, 93.7%, 96.3% and 94.4%, respectively.

Table 1 The serum levels of AFP, AFU and SA among patients in the three groups (x±s)

Groups	AFP(µg/L)	AFU(nkat/L)	SA(mg/L)
Control	10.2±9.8	106.0±36.5	513.7±57.8
Cirrhosis	14.4±9.0	126.8±52.1	522.7±70.5
HCC	71.7±38.8	284.5±102.6	636.7±76.6

b*P<0.01, compared with controls, dP<0.01, compared with cirrhosis.

Table 2 Positive rates of AFP, AFU and SA among the three groups

Groups	AFU (%)	AFU (%)	SA (%)
Controls	1 (3.3)	1 (3.3)	2 (6.7)
Cirrhosis	2 (6.7)	4 (13.3)	5 (16.7)
HCC	21 (70.0)	23 (76.7)	21 (70.0)

Table 3 Significance of AFP, AFU and SA (%)

	AFP	AFU	SA
Sensitivity	70.0(21/30)	76.7(23/30)	70.0(21/30)
Specificity	95.0(57/60)	91.7(55/60)	88.3(53/60)
Positive predictive value	87.3(21/24)	82.1(23/28)	75.0(21/28)
Negative predictive value	86.4(57/66)	88.7(55/62)	85.5(53/62)
Accuracy	86.7(78/90)	86.7(78/90)	82.2(74/90)

Department of Biochemistry, Fujian Medical University, Fuzhou 350004, China
CAI Wen-Xiu, associate professor, having 6 papers published.

*Supported by the Educational Commission of Fujian Province, No. JQ93026.

Correspondence to CAI Wen-Xiu, Department of Biochemistry, Fujian Medical University, Fuzhou 350004, China
Tel. +86-591-3357296
Received 1997-10-06
Table 4 Results of combined measurement of serum AFP, AFU and SA in the three groups

Groups	n	%
Controls	0	0.0
Cirrhosis	1	3.3
HCC	26	86.7

Patients with HCC showed both positive AFU and AFP in 16/30 patients and negative results in 2/30 patients. Of the remaining patients, 5 were positive in AFP and negative in AFU; and 7 were negative in AFP and positive in AFU (Table 5). No correlation was found between AFP and AFU ($P<0.05$).

Table 5 Comparison between AFP and AFU in patients with HCC

AFU	Positive	Negative	Total
AFP	16	5	21
Negative	7	2	9
Total	23	7	30

DISCUSSION

So far, AFP still remained the most sensitive and specific marker of HCC. Our results showed that the sensitivity of AFP in patients with HCC was 70%, concordant with the reports by many other authors$^{[4,5]}$. We used combined measurement of serum AFP, AFU and SA of patients with HCC. With this measurement, any two positives among the three tumor markers as the diagnostic criteria, the sensitivity, specificity, positive predictive value, negative predictive value and rate of accuracy in HCC patients were 86.7%, 98.3%, 93.7%, 96.3% and 94.4%, respectively. Six of 9 patients with HCC who had negative AFP had positive results in both AFU and SA. None of 3 patients with liver cirrhosis and controls who had positive AFP had positive results in AFU and/or SA. Therefore, combined measurement of serum AFP, AFU and SA is of practical significance in diagnosis of HCC.

REFERENCES

1. Giardina MG, Matarazzo M, Varriale A, Morante R, Napoli A, Martino R. Serum alpha L fucosidase: a useful marker in the diagnosis of hepatocellular carcinoma. Cancer, 1992;70(5):1044-1048
2. Editorial Board of Practical Oncology. Practical oncology. Beijing: People’s Health Publisher, 1979:112-142
3. Troost J, Van der Heijden M, Staal G. Characterization of alpha-L-fucosidase from two different families with fucosidosis. Clin Chim Acta, 1976;73(2):329-346
4. He M, Shi YR, Zou W. Combined assay of serum AFU and AFP in patients with primary hepatic carcinoma. Chin J Clin Oncol, 1996;23(1):21-23
5. Shen W, Shen DM. Preliminary study of serum α-L-fucosidase assay in diagnosis of hepatocellular carcinoma. Chin J Intern Med, 1989;28(7):397-399
6. Deugnier Y, David V, Brisot P, Malbo P, Delamare D, Messner M et al. Serum α-L-fucosidase: a new marker for diagnosis of primary hepatic carcinoma. Hepatology, 1984;4(5):889-892
7. Zhang SM, Wu MC, Chen H, Tu ZX, Cui ZF, Yu ZX et al. Value of serum glycosidase spectrum in the diagnosis of hepatocellular carcinoma. Chin J Oncol, 1996;19(2):143-145
8. Liu JL, Cai ZD, Liu RT, Zhang QS, Zhang YK, Che LH et al. The significance of serum sialic acid in the diagnosis of primary hepatic carcinoma. J Pract Internal Med, 1999;14(2):143-145
9. Pan J, Geng JM, Zou JX, Wen GY. Improved colorimetry assay of serum sialic acid in the patients with primary hepatic carcinoma. J Clin Lab Sci, 1991;5(3):124-125
10. Tu ZX, Yin ZF, Cui ZF, Wu MC. Prediction of primary liver cancer with alphafetoprotein. Acad J Sec Mil Med Univ, 1991;12(5):417-419