BMJ Open 10-year trends in statin utilization in Taiwan: a retrospective study using Taiwan’s National Health Insurance Research Database

Hsing-Chun Hsieh, Jason C Hsu, Christine Y Lu

ABSTRACT

Objective Statins have been commonly used to treat patients with hypercholesterolaemia and to prevent cardiovascular disease (CVD) worldwide. This study examined trends in use of statins in Taiwan from 2002 to 2011.

Design This is a retrospective observational study focusing on the utilisation of statins.

Setting The monthly claims data for statins between 2002 and 2011 were retrieved from Taiwan’s National Health Insurance Research Database.

Main outcome measures We calculated the yearly prescription rate per new user for each statin. Products were classified as high-intensity/moderate-intensity/low-intensity statins by type of statin and dosage. Users were also classified based on disease histories.

Results The number of statin users increased from 10,299 (~1.4% of adults) in 2002 to 50,687 (~6.3% of adults) in 2011. Atorvastatin was the most commonly used agent (28.4%–36.7%) during the study period. After 2007, simvastatin ranked second with 21.7% market share, followed by rosuvastatin, a newer agent that exhibited a substantial growth in prescription rates (3.4% in 2005 and 19.5% in 2011). In 2011, 94.0% of new statin users used statin monotherapies, and 6.0% used combination therapies. Use of moderate-intensity statins increased from 49.0% in 2002 to 71.0% in 2011, while high-intensity statins remained low. Patients with history of coronary events or cerebrovascular events were more likely to be prescribed higher intensity statins compared with those without, this difference was not found comparing those with and without diabetes.

Conclusion Atorvastatin was the most commonly used statin in Taiwan during 2002–2011. While patients with history of CVD were more likely to be prescribed higher intensity statins compared with those without during 2007–2011, this difference was not found comparing those with and without diabetes.

INTRODUCTION

Coronary heart disease accounts for approximately one-third of global deaths in recent years. Similarly, cardiovascular diseases (CVD) are leading causes of death in Taiwan. Low-density lipoprotein cholesterol (LDL-C) has been identified as one of the major modifiable risk factors of CVD. Fundamental lifestyle changes and several medications have been recommended to control blood cholesterol. Among all medicines, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, or statins, are a major drug class given their efficacy in reducing LDL-C. On average, administration of statins helps to lower LDL-C by 20% to 60%. In addition to lowering cholesterol, statins are shown to decrease risk of coronary events by 18%, myocardial infarction by 24% and heart failure by 35%.

Statins are recommended by major clinical guidelines as the drug of choice for reduction of blood lipids to prevent CVD globally. In the USA, the 2013 'American College of Cardiology/American Heart Association (ACC/AHA)' Guideline recommends that patients with CVD history or with CVD risk factors, such as high LDL-C and diabetes, receive moderate-to-high-intensity statins. The European Society of Cardiology (ESC) and
UK's National Institute for Health and Care Excellence guidelines suggest prescribing statins with the highest recommended dose in order to reach target cholesterol level.13, 14 In Taiwan, prescribing of statins generally follows drug coverage requirements under the National Health Insurance (NHI), which recommends the use of statins in patients with CVD risk factors or with high cholesterol level.14 It is reasonable for patients to be prescribed with a statin plus another lipid-lowering agent if triglyceride level is also high.

Statins have been the most commonly prescribed drugs in the world in recent decades; their global market sales reached around $28.5 billion in 2014.15, 16 Previous studies from the USA and Europe showed substantial increases in statin users, prescription rates and prescribed daily doses of statins over time.17–19 Likewise in Taiwan statin users grew from 190,000 in 2000 to nearly 600,000 in 2004, and drug expenditures and prescription doses escalated over 200\% and 400\%, respectively.20, 21 Based on the updated clinical guidelines and related evidence, use of the more intense statin therapy for secondary prevention and initiation of statins for primary prevention among patients who are at a higher risk of CVD has increased.22, 23

While statins have been the mainstay of cholesterol control and heart attack and stroke prevention for the past 20 years, the treatment paradigm may change with the availability of new drugs that target an enzyme called PCSK9 (PCSK9 inhibitors) in 2015.24 However, little is known about recent statin use in Taiwan.25 The aims of this study were to examine the prescribing patterns of statins over the last decade and to investigate the association between patients’ medical history and drug selection of statin. Our study results can be used to improve rational use of statins in light of clinical recommendations. At present, PCSK9 inhibitors are not yet reimbursed by Taiwan’s National Health Insurance (NHI). Our findings also provide baseline trends that can be used to examine how new PCSK9 inhibitors, once become available under the NHI, impact the market of cholesterol medications.

New statin users in each year during 2002–2011 were included and formed the study population of each year. New statin users were defined as those who had not taken any statin in the previous years prior to the index date. The index date of every patient in each study year was defined as the date of the first statin prescription in the year. For patients in every study year, only the first prescription that contained any statins was examined in this study. We used the Anatomical Therapeutic Chemical (ATC) codes27 to identify patients who were prescribed any statins, including atorvastatin, fluvastatin, lovastatin, pravastatin, rosuvastatin and simvastatin. Monotherapy was defined as only one statin prescription on the index date, while combination therapy was defined by prescriptions for a statin plus other lipid-lowering drugs (such as fibrates) on the index date.

The main measure was yearly prescription rate of each statin among new statin users. Yearly prescription rate of a specific statin agent was calculated by the number of patients prescribed with the specific statin agent divided by the total number of new statin users in the year. We also calculated the yearly prescription rates of monotherapy/combined statin therapy and of different levels of intensity.

Statins were grouped into three levels of intensity according to their ability to lower LDL-C based on the 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol17 and Rosenson et al25: (1) high-intensity statins: atorvastatin \geq 10 mg/day, rosuvastatin \geq 20 mg/day and simvastatin \geq 80 mg/day; (2) moderate-intensity statins: 10 mg/day \leq atorvastatin < 40 mg/day, 5 mg/day \leq rosu- vastatin < 20 mg/day, 20 mg/day \leq simvastatin < 80 mg/day, pravastatin \geq 40 mg/day, lovastatin \geq 40 mg/day and fluvastatin \geq 80 mg/day; and (3) low-intensity statins: atorvastatin < 10 mg/day, rosuvastatin < 5 mg/day, simvastatin < 20 mg/day, pravastatin < 40 mg/day, lovastatin < 40 mg/day and fluvastatin < 80 mg/day. Daily dose can be calculated from the information of what statin has been prescribed, its dosage form, frequency and number of pills within a certain period.

All new statin users were also classified based on whether they have disease histories of interest (including coronary events, cerebrovascular events, myopathy, liver injury and diabetes) or not. Disease histories were identified by the International Classification of Diseases, 9th edition diagnosis codes for major coronary artery disease (410, 411), major cerebrovascular (430, 431, 433–436), diabetes (250),26 myopathy (792.1, 359.4, 359.8, 359.9) and liver injury (155.0, 155.1, 155.2, 197.7, 230.8, 570, 571.1, 572.2, 572.4, 572.8, 573.3, 573.8, 573.9, 574.0, 574.1, 574.9, 646.7).30 The first three diagnoses relate to use of statin: diabetes (250), myopathy (792.1, 359.4, 359.8, 359.9) and liver injury (155.0, 155.1, 155.2, 197.7, 230.8, 570, 571.1, 572.2, 572.4, 572.8, 573.3, 573.8, 573.9, 574.0, 574.1, 574.9, 646.7).30 The first three diagnoses relate to use of statin for CVD prevention and the latter two diagnoses related to the potential adverse effects of statins. We anticipate a higher percentage use of higher intensity statins among patients with CVD or diabetes. Myopathy31 and liver toxicity32, 33 (increasing the enzymes aspartate transaminase and alanine transaminase) are two of the main dose-dependent side effects associated with statin use.34, 35

METHODS

This study used claims data from the 2010 Longitudinal Health Insurance Database (LHID2010) derived from Taiwan’s National Health Insurance Research Database (NHIRD), which compiles data of over 99\% of people (around 23 million residents) in Taiwan.25 LHID2010 contains all the original claims data of 1 million beneficiaries randomly sampled in year 2010 from the NHIRD. LHID2010 data are overall representative of all beneficiaries as no significant differences were found in the distributions of age, gender and average premium rate between individuals in the LHID2010 and the original NHIRD data sets.26 The data set provides information on demographic characteristics, diseases diagnosis, treatment and related medical expenditures, and orders of ambulatory and inpatient care.
Therefore, it was anticipated that a higher percentage of patients with a history of these diseases would use low-intensity statins. Individuals were defined as having a history of the following diseases if they have a diagnosis within certain years prior to the given year: coronary event (3 years), cerebrovascular event (5 years), diabetes (1 year), myopathy (3 years) and liver injury (3 years). 30-36-38

This study applied descriptive statistics to report the prescription rates of each statin and used χ² test to investigate the associations between patients’ disease history and statin drug selection. All analyses were carried out with SAS V.9.3 software and Excel 2013.

RESULTS

In 2002, 10,299 (~1.4% of adults aged 18 and over) statin users were identified among the 1 million cohort from LHID2010 dataset (Table 1). Among statin users, more than half (n=5956; 57.8%) were new users. Statins users grew from 10,299 (~1.4% of adults) in 2002 to 50,687 (~6.3% of adults) in 2011, while the proportion of new statin users declined from 57.8% to 35.0%. More women used statins than men (52.3% vs 47.7% in 2011). The average age of new statin users remained steady (58–60 years old) during the study period. Three quarters of new statin users were diagnosed with dyslipidemia. Hypertension accounted for the highest proportion of comorbidities (60.9% in 2011), followed by diabetes (35.3% in 2011); their rates remained steady during the study period. On the contrary, the proportions of other comorbidities, including ischaemic heart disease and chronic liver diseases, slightly declined over time.

Table 2 presents the statin choices among new statin users. Atorvastatin was the most commonly prescribed statin among new statin users throughout the study (33.8% in 2002 and 35.8% in 2011). Lovastatin had the second highest prescription rates from 24.7% in 2002 to 24.2% in 2006, but it declined after 2007 to 5.8% in 2011. On the other hand, simvastatin became the second commonly used statin since 2007 (21.7%), and its prescription rate peaked in 2009 (27.1%). Rosuvastatin entered the market in 2005, and its prescription rate rapidly increased to 19.5% in 2011. Prescription rates of other statins remained relatively low. Figure 1 shows the prescribing trends of statins over time.

During the study period, almost all patients were prescribed with a single statin when they first started (98.6% in 2002 and 94.0% in 2011). Only 1.4% of patients were prescribed with combination therapy in 2002, with fibrates accounting for 83.3% of the combination therapies. Use of combination therapy increased to 6.0% in 2011, with ezetimibe accounting for 66.2% of combined lipid-lowering drugs.

In 2002, prescription rates of low-intensity and moderate-intensity statins were similar (51.0% and 49.0%). However, prescription rates of moderate-intensity statins gradually increased to 71.0% in 2011, while prescription rates of low-intensity statins gradually decreased to 27.3% in 2011. In comparison, use of high-intensity statins remained low (under 2.1%) during the study period (Figure 2).

Table 3 and figure 3 show the prescription rates of statins among new statin users with/without history of specific diseases. Compared with those without CVD, higher percentages of people with history of coronary events or cerebrovascular events were prescribed atorvastatin (51.4% vs 35.6% and 42.7% vs 35.4%, respectively, in 2011) or rosuvastatin (32.5% vs 19.3% and 27.5% vs 19.1%, respectively, in 2011). In patients with myopathy or liver injury history, prescription rates of different statins did not vary greatly through the study period compared with those without history of the diseases. Similarly, prescription rates of different statins did not vary greatly between people with and without diabetes.

Table 4 indicates the findings of the associations between certain disease history and prescription of high- or moderate-intensity statins. Patients with CVD history were more likely to be prescribed moderate-intensity or high-intensity statins (OR ranged from 1.32 to 2.83 during the study period, p<0.05). Similar results were found in patients with cerebrovascular events history compared with those without (OR ranged from 1.17 to 1.88 during 2006–2011, p<0.05). However, patients with diabetes history were less likely to be prescribed moderate-intensity or high-intensity statins compared with patients without diabetes history (OR ranged from 0.83 to 0.90 during 2007–2011, p<0.05). No substantial differences in prescribing patterns of statins were observed throughout the study period in groups with versus without history of myopathy or liver injury (table 4).

DISCUSSION

This longitudinal study of a national cohort found that more than half statin users were initiated on a single statin, with atorvastatin being the most commonly prescribed statin over the last decade in Taiwan. Use of moderate-intensity statins increased by 22.0% between 2002 and 2011, while use of high-intensity statins remained low. Lastly, patients with history of coronary events or cerebrovascular events were more likely to be prescribed higher intensity statins than those without. Prescribing of higher intensity statins was not greater among people with diabetes compared with those without during 2007–2011. This difference was also not seen in people with versus without history of myopathy or liver injury.

From 2002 to 2011, initiation of statins increased over time, similar to studies from other countries. 18 39–41 Initiation of statins in Taiwan has grown from 0.6% in 2002 to 1.8% in 2011. Our findings are similar to studies from other countries that found similar utilisation rates and increasing trend over time. For instance, a study used data of Italian local pharmacies and demonstrated incidence of statin exposure growing from 0.36% in 1994 to 0.74% in 2003. 42 Another study, which was also conducted in Italy, exhibited yearly incidence of statin
Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Number of new statin users	5956	57.8%	9056	57.6%	10242	52.4%	10253	45.9%	12178	47.0%
All statin users	10299	100.0%	15724	100.0%	20848	100.0%	22317	100.0%	25924	100.0%

Sex:

	F	M
2002	3232	2724
2003	4925	4131
2004	5913	5011
2005	5523	4730
2006	6391	5787
2007	7180	6355
2008	8043	7190
2009	8519	7980
2010	9185	8324

Age:

	Mean (SD)
2002	58.41 (11.84)
2003	58.22 (12.19)
2004	57.98 (12.40)
2005	58.44 (12.45)
2006	59.01 (12.51)
2007	59.13 (12.45)
2008	59.35 (12.59)
2009	59.77 (12.73)
2010	59.76 (12.70)

Indication and comorbidities:

- **Dyslipidemia (indication):**
 | 2002 | 74.8% | 2003 | 75.3% | 2004 | 76.5% | 2005 | 76.5% | 2006 | 76.8% | 2007 | 76.0% | 2008 | 76.1% | 2009 | 76.4% | 2010 | 76.7% |
- **Hypertension:**
 | 2002 | 59.8% | 2003 | 57.6% | 2004 | 56.7% | 2005 | 58.6% | 2006 | 59.9% | 2007 | 59.3% | 2008 | 59.9% | 2009 | 59.8% | 2010 | 61.3% |
- **Diabetes:**
 | 2002 | 35.1% | 2003 | 35.0% | 2004 | 33.2% | 2005 | 35.5% | 2006 | 35.6% | 2007 | 36.2% | 2008 | 35.3% | 2009 | 35.6% | 2010 | 36.4% |
- **IHD:**
 | 2002 | 26.2% | 2003 | 25.0% | 2004 | 23.2% | 2005 | 23.7% | 2006 | 23.4% | 2007 | 22.7% | 2008 | 22.5% | 2009 | 21.3% | 2010 | 21.0% |
- **Heart failure:**
 | 2002 | 3.6% | 2003 | 3.6% | 2004 | 3.6% | 2005 | 3.7% | 2006 | 3.8% | 2007 | 3.6% | 2008 | 3.7% | 2009 | 3.7% | 2010 | 3.6% |
- **Atrial fibrillation (AFib):**
 | 2002 | 0.6% | 2003 | 0.8% | 2004 | 0.7% | 2005 | 0.9% | 2006 | 1.0% | 2007 | 1.0% | 2008 | 1.1% | 2009 | 1.3% | 2010 | 1.1% |
- **Cerebrovascular diseases (CeVD):**
 | 2002 | 12.6% | 2003 | 12.4% | 2004 | 11.4% | 2005 | 11.9% | 2006 | 12.1% | 2007 | 12.0% | 2008 | 12.0% | 2009 | 11.4% | 2010 | 11.9% |
- **Peripheral vascular diseases (PVD):**
 | 2002 | 3.8% | 2003 | 3.8% | 2004 | 3.8% | 2005 | 3.7% | 2006 | 3.8% | 2007 | 3.7% | 2008 | 3.6% | 2009 | 3.8% | 2010 | 3.6% |
- **Chronic kidney diseases (CKD):**
 | 2002 | 6.4% | 2003 | 5.5% | 2004 | 5.4% | 2005 | 4.9% | 2006 | 5.1% | 2007 | 5.0% | 2008 | 5.1% | 2009 | 5.1% | 2010 | 5.0% |
- **Chronic liver diseases (CLD):**
 | 2002 | 21.8% | 2003 | 20.6% | 2004 | 20.3% | 2005 | 19.3% | 2006 | 19.4% | 2007 | 17.6% | 2008 | 16.9% | 2009 | 15.8% | 2010 | 15.8% |
- **Chronic obstructive pulmonary disease (COPD):**
 | 2002 | 9.7% | 2003 | 9.0% | 2004 | 8.9% | 2005 | 8.5% | 2006 | 7.5% | 2007 | 7.4% | 2008 | 6.7% | 2009 | 6.7% | 2010 | 6.5% |
- **Ischaemic heart disease (IHD):**
 | 2002 | 2.8% | 2003 | 2.8% | 2004 | 3.0% | 2005 | 3.0% | 2006 | 3.0% | 2007 | 3.3% | 2008 | 3.5% | 2009 | 3.6% | 2010 | 4.0% |

Unit: Number of patient.

Atrial fibrillation; CeVD, cerebrovascular diseases; CKD, chronic kidney diseases; CLD, chronic liver diseases; COPD, chronic obstructive pulmonary disease; IHD, ischaemic heart disease; PVD, peripheral vascular diseases.
Table 2 Prescription rates of statins among new statin users

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011										
Yearly cohort size	5956	9056	10,924	10,253	12,178	13,535	15,233	16,499	17,509	17,755										
Overall																				
Atorvastatin	2014	33.8%	3320	36.7%	3926	35.9%	3610	35.2%	3883	31.9%	4101	30.3%	4322	28.4%	4912	29.8%	5841	33.4%	6357	35.8%
Fluvastatin	710	11.9%	855	9.4%	1063	9.7%	1159	11.3%	1109	9.1%	1214	9.0%	1284	8.4%	1193	7.2%	1186	6.8%	1063	6.0%
Lovastatin	1473	24.7%	2829	31.2%	3595	32.9%	3112	30.4%	2951	24.2%	2298	17.0%	1965	12.9%	1724	10.4%	1242	7.1%	1025	5.8%
Pravastatin	654	11.0%	791	8.7%	813	7.4%	687	6.7%	766	6.3%	776	5.7%	1005	6.6%	1122	6.8%	1438	8.2%	1676	9.4%
Rosuvastatin	NA	NA	NA	NA	348	3.4%	1690	13.9%	2216	16.4%	2739	18.0%	3082	18.7%	3396	19.4%	3464	19.5%		
Simvastatin	1106	18.6%	1262	13.9%	1529	14.0%	1339	13.1%	1786	12.9%	1724	10.4%	1242	7.1%	1025	5.8%	1676	9.4%		
Monotherapy	5872	98.6%	8908	98.4%	10,765	98.5%	10,137	98.9%	12,011	98.6%	13,055	96.5%	14,590	95.8%	15,594	94.5%	16,540	94.0%		
Atorvastatin	1984	33.8%	3276	36.8%	3861	35.9%	3572	35.2%	3861	31.9%	4266	29.2%	4826	30.9%	5727	34.6%	6224	37.3%		
Fluvastatin	701	11.9%	840	9.4%	1045	9.7%	1145	11.3%	1109	9.1%	1197	9.2%	1268	8.7%	1163	7.5%	1168	7.1%		
Lovastatin	1457	24.8%	2777	31.2%	3556	33.0%	3089	30.5%	2915	24.3%	2264	17.3%	1948	13.4%	1691	10.8%	1224	7.4%		
Pravastatin	637	10.8%	772	8.7%	799	7.4%	671	6.6%	758	5.8%	992	6.8%	1108	7.5%	1400	8.5%	1628	9.8%		
Rosuvastatin	NA	NA	NA	NA	NA	NA	343	3.4%	1665	13.9%	2164	16.6%	2680	18.4%	3016	19.3%	3316	20.0%		
Simvastatin	1093	18.6%	1243	14.0%	1504	14.0%	1317	13.0%	1764	14.7%	2630	20.1%	3436	23.6%	3790	24.3%	3417	20.5%		
Combination	84	1.4%	148	1.6%	159	1.5%	116	1.1%	167	1.4%	480	3.5%	643	4.2%	905	5.5%	969	5.5%		
Statin + fibrate	70	83.3%	94	63.5%	132	83.0%	95	81.9%	124	74.3%	160	53.3%	161	25.0%	210	23.2%	226	23.3%		
Statin + ezetimibe	0	0.0%	0	0.0%	0	0.0%	7	4.2%	280	58.3%	454	70.6%	638	70.5%	652	67.3%	702	66.2%		
Statin + others	14	16.7%	58	39.2%	28	17.6%	22	19.0%	36	21.6%	47	9.8%	30	4.7%	60	6.6%	95	9.8%		

Different intensity of statin therapy

Low	3039	51.0%	4490	49.6%	5112	46.8%	4518	44.1%	4477	36.8%	4100	30.3%	4065	26.7%	4602	27.9%	4954	28.3%
Moderate	2918	49.0%	4564	50.4%	5785	53.0%	5688	55.5%	7591	62.3%	9261	68.4%	10 903	71.6%	11 634	70.5%	12 599	67.7%
High	1	0.0%	6	0.1%	32	0.3%	49	0.5%	118	1.0%	187	1.4%	272	1.8%	279	1.7%	365	2.1%

Statin combinations were grouped into three levels of intensity according to its ability of lowering LDL-C based on the 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol and Rosenson et al:\(^1\) (1) high-intensity statins: atorvastatin ≥ 40 mg/day, rosvastatin ≥ 20 mg/day and simvastatin ≥ 80 mg/day; (2) moderate-intensity statins: 10 mg/day ≤ atorvastatin < 40 mg/day, 5 mg/day ≤ rosuvastatin < 20 mg/day, 20 mg/day ≤ simvastatin < 80 mg/day, lovastatin ≥ 40 mg/day and fluvastatin ≥ 80 mg/day; and (3) low-intensity statins: atorvastatin < 10 mg/day, rosuvastatin < 5 mg/day, simvastatin < 20 mg/day, pravastatin < 40 mg/day, lovastatin < 40 mg/day and fluvastatin < 80 mg/day. Combinations, statin + other lipid-modifying agents.

ACC/AHA, American College of Cardiology/American Heart Association; LDL-C, low-density lipoprotein cholesterol; NA, not applicable.
use increasing from 13.3/1000 inhabitants in 2005 to 19.5/1000 inhabitants in 2010 among people aged 15 and over. A study by Svensson et al aligned with the previous results showing annual rates of new statin use ranging from 14 to 20/1000 person-years.

Our study found that atorvastatin had the highest prescription rate in Taiwan throughout the entire study. It was first introduced into Taiwan’s market in 2000 and its market share surged to surpass other agents of the same drug class since the first study year. In other countries, atorvastatin has also been one of the most commonly used statins. The popularity of atorvastatin might be attributed to favourable research results suggesting its clinical benefits in preventing major coronary events as well as marketing strategies of the pharmaceutical company. When examining trends of different statins, it was noted that trends of atorvastatin and simvastatin exhibited opposite directions (figure 1). Since both statins were moderate-to-high potency agents, their similar potency may be a reason for the substitution observed.

!Figure 1 Prescribing rates of statins among new statin users from 2002 to 2011. All values were calculated in patient number. Yearly prescription rate = number of patients prescribed with the specific statin agent / total number of new statin users in the year.

!Figure 2 Prescribing rates of statins by intensity. All values were calculated in patient number. Yearly prescription rate = number of patients prescribed with the specific statin agent / total number of new statin users in the year. Statins were grouped into three levels of intensity according to their ability to lower LDL-C based on the 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol and Rosenson et al: (1) high-intensity statins: atorvastatin \geq 40 mg/day, rosuvastatin \geq 20 mg/day and simvastatin \geq 80 mg/day; (2) moderate-intensity statins: 10 mg/day \leq atorvastatin <40 mg/day, 5 mg/day \leq rosuvastatin <20 mg/day, 20 mg/day \leq simvastatin <80 mg/day, pravastatin \geq 40 mg/day, lovastatin \geq 40 mg/day and fluvastatin \geq 80 mg/day; and (3) low-intensity statins: atorvastatin <10 mg/day, rosuvastatin <5 mg/day, simvastatin <20 mg/day, pravastatin <40 mg/day, lovastatin <40 mg/day and fluvastatin <80 mg/day. ACC/AHA, American College of Cardiology/American Heart Association; LDL-C, low-density lipoprotein cholesterol.
Table 3	Prescription rates of statins among new statin users with/without disease history																			
	Year 2002	2003	2004	2005	2006	2007	2008	2009	2010	2011										
Yearly number of new statin users	5956	9056	10924	12178	13535	15233	16499	17509	17755											
Yearly number of new statin users	5956	9056	10924	12178	13535	15233	16499	17509	17755											
With coronary events history	NA																			
Atorvastatin	NA																			
Fluvastatin	NA																			
Lovastatin	NA																			
Pravastatin	NA																			
Rosuvastatin	NA																			
Simvastatin	NA																			
Without coronary events history	10723	98.2%	10074	98.3%	11946	98.1%	13316	98.4%	14979	98.3%	16198	98.2%	17200	98.2%	17469	98.4%				
Atorvastatin	NA																			
Fluvastatin	NA																			
Lovastatin	NA																			
Pravastatin	NA																			
Rosuvastatin	NA																			
Simvastatin	NA																			
With cerebrovascular events history	NA																			
Atorvastatin	NA																			
Fluvastatin	NA																			
Lovastatin	NA																			
Pravastatin	NA																			
Rosuvastatin	NA																			
Simvastatin	NA																			
Without cerebrovascular events history	NA																			
Atorvastatin	NA																			
Fluvastatin	NA																			
Lovastatin	NA																			
Pravastatin	NA																			
Rosuvastatin	NA																			
Simvastatin	NA																			
With diabetes history	1947	32.7%	2884	31.8%	3212	31.9%	3888	31.9%	4362	32.2%	4785	31.4%	5366	32.5%	5737	32.8%	5540	31.2%		
Atorvastatin	705	36.2%	1177	40.8%	1287	40.1%	1207	36.9%	1256	32.3%	1360	31.2%	1302	27.2%	1602	29.9%	1870	32.6%	1987	35.9%
Fluvastatin	227	11.7%	273	9.5%	293	9.1%	398	12.2%	392	10.1%	366	8.4%	445	9.3%	422	7.9%	437	7.6%	343	6.2%
Lovastatin	428	22.0%	747	25.9%	919	28.6%	857	26.2%	842	21.7%	702	16.1%	572	12.0%	541	10.1%	389	6.8%	325	5.9%
Table 3 Continued

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011										
Pravastatin	237	12.2%	287	10.0%	232	7.2%	233	7.1%	259	5.9%	332	6.9%	365	6.8%	496	8.7%	531	9.6%		
Rosuvastatin	NA	NA	NA	NA	NA	140	4.3%	595	15.3%	754	17.3%	941	19.7%	1024	19.1%	1126	19.6%	1042	18.8%	
Simvastatin	359	18.0%	400	13.9%	481	15.0%	437	13.4%	528	13.6%	923	21.2%	1194	25.0%	1414	26.4%	1421	24.8%	1317	23.8%
Without diabetes history	4009	67.3%	6172	68.2%	7712	70.0%	6981	68.1%	9173	67.8%	10448	68.6%	11133	67.9%	11772	67.2%	12215	68.8%		
Atorvastatin	1300	32.7%	2143	34.7%	2639	34.2%	2420	31.7%	2627	31.7%	923	21.2%	1194	25.0%	1414	26.4%	1421	24.8%	1317	23.8%
Fluvastatin	NA	140	4.3%	595	15.3%	754	17.3%	941	19.7%	1024	19.1%									
Lovastatin	1045	26.1%	2082	33.7%	2676	34.7%	2255	25.4%	1596	17.4%	1393	13.3%	1183	10.6%	853	7.3%	700	5.7%	1145	9.4%
Pravastatin	350	18.0%	400	13.9%	481	15.0%	437	13.4%	528	13.6%	923	21.2%	1194	25.0%	1414	26.4%	1421	24.8%	1317	23.8%
Simvastatin	756	18.9%	862	14.0%	1048	13.6%	902	12.9%	1258	15.2%	2018	15.9%	1798	17.2%	2058	18.5%	2270	19.3%	2422	19.8%
Without myopathy history	NA	8000	73.2%	7447	72.6%	8836	72.6%	9719	71.8%	11031	72.4%									
Atorvastatin	NA	2890	36.1%	2806	27.4%	3342	27.4%	3816	28.2%	4202	27.6%									
Fluvastatin	NA																			
Lovastatin	NA																			
Pravastatin	NA																			
Simvastatin	NA																			
With liver injury history	NA																			
Atorvastatin	NA																			
Fluvastatin	NA																			
Lovastatin	NA																			
Pravastatin	NA																			
Simvastatin	NA																			
Without liver injury history	NA																			

Table 3 Continued on September 18, 2023 by guest. Protected by copyright.
Another high-potency statin—rosuvastatin—manifested an increase in prescription rates since its market entry at 2005. The growth in use of atorvastatin, simvastatin (+/- ezetimibe) and rosuvastatin suggests treatment trending towards use of high-potency or moderate-to-high-intensity statin therapy, which is aligned with major clinical guidelines.7–9 The majority of statin regimen stayed within the moderate-intensity range rather than high-intensity therapy, which remained less than 5% during the study period. In a study from USA, relatively lower percentage (approximately 20% of total statin use) of high-intensity statin therapy was reported among adults ≥40 years old during 2002–2013.47 In comparison, our study reveals substantially low use of high-intensity statin, suggesting that there is room for improving rational use of statins in Taiwan.

Few statin users initiated with combination therapy overall. Use of combined lipid-lowering agents shifted from fibrates (83.3% in 2002) to ezetimibe (66.2% in 2011). Ezetimibe entered Taiwan’s market under the National Insurance coverage in 2006 as a combination drug with simvastatin (tradename Vytorin). High uptake of ezetimibe products might be associated with the evidence that ezetimibe plus simvastatin is more effective in lowering LDL-C than simvastatin alone.48 49

Our findings demonstrated an association between having a history of CVD and high-intensity or moderate-intensity statin use. Similarly other studies have reported that patients with CVD histories were prescribed statins with higher intensity or doses.19 50 Use of statins among these individuals might have been appropriately influenced by clinical guidelines and related evidence suggesting more intensive statin therapy reduces cardiovascular events in patients with prior CVD.22 While diabetes has been viewed as a coronary risk equivalent,51 we did not find greater use of higher intensity statins among those with diabetes. A possible explanation might include the accumulating evidence suggesting the association between statin use and increasing risk of diabetes52 53 and the deterioration of glucose control in patients receiving higher intensity statin regimens.54 Appropriateness of statin use among diabetes needs further investigation. Interestingly, we did not find different patterns of statin use between those with and without history of myopathy or liver diseases. This finding suggests that these side effects might not be of a primary concern when prescribing statin therapy in Taiwan.

This study contributes to the literature by examining the prescribing patterns of statins during 2002–2011 in Taiwan, including statin choices among patients with certain medical histories. Despite these strengths, it does have limitations. First, our analysis was based on claims data, which do not contain patients’ biochemical test data (such as level of LDL-C), so we could not assess prescription patterns by disease severity. Second, this study only examined statin use among new users; we did not assess switches between statins. Further research is needed to

Table 3

Year	Year 2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Lovastatin	NA	NA	NA	NA	33.2%	33.2%	28.9%	24.3%	24.3%	10.7%
Pravastatin	NA	NA	NA	NA	7.0%	6.5%	6.8%	6.2%	6.2%	5.7%
Rosuvastatin	NA	NA	NA	NA	76%	76%	701	711	711	711
Simvastatin	NA	NA	NA	NA	317	317	1599	1599	1599	1599

Individuals were defined as having a history of the following diseases if they have a diagnosis within certain years prior to the given year: coronary event (3 years), cerebrovascular event (5 years), diabetes (1 year), myopathy (3 years) and liver injury (3 years). NA, not available.
address these gaps. As new PCSK9 inhibitors become available on Taiwan’s NHI, our findings provide baseline trends that can be used in a future study to examine how new PCSK9 inhibitors impact the market of cholesterol medications.

Figure 3 Prescribing rates of statins among new statin users with/without history of specific diseases.
Table 4 Associations between disease history and prescription of moderate-intensity or high-intensity statins

Year	2004	2005	2006	2007	2008	2009	2010	2011
OR (95% CI)								
History of coronary events	2.04* (1.51 to 2.76)	2.55* (1.80 to 3.59)	2.83* (2.01 to 3.99)	1.69* (1.22 to 2.35)	2.39* (1.66 to 3.44)	1.80* (1.34 to 2.42)	2.06* (1.52 to 2.80)	1.52* (1.13 to 2.03)
History of cerebrovascular events	– –	1.88* (1.56 to 2.25)	1.61* (1.34 to 1.93)	1.17* (0.99 to 1.38)	1.40* (1.18 to 1.65)	1.66* (1.40 to 1.96)	1.61* (1.36 to 1.91)	
History of diabetes	1.17* (1.08 to 1.27)	1.08* (0.99 to 1.18)	1.01 (0.93 to 1.09)	0.88 (0.81 to 0.95)	0.90* (0.83 to 0.97)	0.83* (0.77 to 0.89)	0.85* (0.79 to 0.91)	0.83* (0.77 to 0.89)
History of myopathy	0.97 (0.89 to 1.05)	0.95 (0.87 to 1.04)	0.93 (0.86 to 1.01)	0.93 (0.91 to 1.07)	0.97 (0.90 to 1.05)	1.00 (0.73 to 1.08)	0.94 (0.87 to 1.01)	0.96 (0.89 to 1.03)
History of liver injury	1.29* (1.12 to 1.49)	1.19 (1.02 to 1.37)	0.96 (0.84 to 1.11)	1.04 (0.91 to 1.20)	1.10 (0.95 to 1.27)	1.15* (1.00 to 1.31)	0.95 (0.84 to 1.07)	1.04 (0.92 to 1.17)

*Indicates significant difference in prescription rate between patient with certain medical history and those without; p value <0.05.

†OR was calculated as the odds of being prescribed high-intensity or moderate-intensity statins for those with certain disease history compared with those without.

Statins were grouped into three levels of intensity according to its ability of lowering LDL-C based on 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol\(^7\) and Rosenson et al.:\(^28\) (1) high-intensity statins: atorvastatin 40 mg/day, rosuvastatin 20 mg/day and simvastatin 80 mg/day; (2) moderate-intensity statins: 10 mg/day atorvastatin < 40 mg/day, 5 mg/day rosuvastatin < 20 mg/day, 20 mg/day simvastatin < 80 mg/day, pravastatin 40 mg/day, lovastatin 40 mg/day and fluvastatin 80 mg/day; and (3) low-intensity statins: atorvastatin <10 mg/day, rosuvastatin <5 mg/day, simvastatin <20 mg/day, pravastatin <40 mg/day, lovastatin <40 mg/day and fluvastatin <80 mg/day. Individuals were defined as having a history of the following diseases if they have a diagnosis within certain years prior to the given year: coronary event (3 years), cerebrovascular event (5 years), diabetes (1 year), myopathy (3 years) and liver injury (3 years).

ACC/AHA, American College of Cardiology/American Heart Association; LDL-C, low-density lipoprotein cholesterol.
CONCLUSION

Our study with national cohorts of new statin users in each year during 2002–2011 in Taiwan found that the majority of new users initiated on statin monotherapy, and atorvastatin was the most commonly prescribed statin. While patients with history of CVD were more likely to be prescribed higher intensity statins compared with those without, which is consistent with clinical guidelines, such difference was not found comparing those with and without diabetes. Appropriateness of statin use among diabetes needs further investigation.

Contributors

JCH and HCH conceptualised and designed the study. HCH collected data, performed analysis and drafted the manuscript. JCH and CYL reviewed all data and revised the manuscript critically for intellectual content. All authors approved the final version for submission.

Competing interests

None declared.

Ethics approval

National Cheng Kung University Hospital.

Provenance and peer review

Open Access

This study has been published with open access. Data underlying the results of this article are available in the NHIRD, a national longitudinal database.

Data sharing statement

Open Access

We confirm that there is no additional data available.

Insurance Research Database (NHIRD). NHIRD does not permit external sharing of any of the data elements. No additional data available.

REFERENCES

1. WHO. Cardiovascular diseases (CVDs), 2015. http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed 3 Apr, 2015).
2. Statistics of causes of death. Taiwan: Ministry of Health and Welfare, 2015.
3. Castelli WP, Garrison RJ, Wilson PW, et al. Incidence of coronary heart disease and lipoprotein cholesterol levels. the framingham study.

JAMA 1986;256:2835–8.
4. Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories.

Circulation 1998;97:1837–47.
5. Sharrett AR, Ballantyne CM, Coady SA, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the atherosclerosis risk in communities (ARIC) Study.

Circulation 2001;104:1108–13.
6. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines.

Circulation 2004;110:227–39.
7. Stone NJ, Robinson JG, Lichtenstein AH, et al. ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American college of cardiology/American heart association task force on practice guidelines.

Circulation 2013;2013:S1–45.
8. NICE Clinical Guideline 181. Lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease. 2014. London: National Clinical Guideline Centre, 2014.
9. Reiner Z, Catapano AL, De Backer G, et al. ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the european society of cardiology (ESC) and the european atherosclerosis society (EAS),

Eur Heart J 2011;32:1769–818.
10. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins.

Lancet 2005;366:1267–78.
11. Fulcher J, O’Connel R, Voysey M, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials.

Lancet 2015;385:1397–405.
12. Woon DJ, Fazio S, Linton MF. Current perspectives on statins.

Circulation 2000;101:207–13.
13. Ford I, Murray H, McCowan C, et al. Long-Term safety and efficacy of lowering Low-Density lipoprotein cholesterol with statin therapy: 20-year Follow-Up of west of Scotland coronary prevention study.

Circulation 2016;133:1073–80.
14. Pharmaceutical Benefit and Reimbursement Scheme. . National Health Insurance Administration, Ministry of Health and Welfare, Taiwan, 2016.
15. IMS Institute for Healthcare Informatics. Top 20 global therapy areas 2014. England and Wales: IMS Health MIDAS, 2014.
16. IMS institute for healthcare informatics. The global use of medicines: outlook through 2016. USA: IMS Institute for Healthcare Informatics, 2012.
17. Taylor FC, Huffman M, Ebrahim S. Statin therapy for primary prevention of cardiovascular disease.

JAMA 2013;310:2451–2.
18. Walley T, Folino-Gallo P, Stephens P, et al. Trends in prescribing and utilization of statins and other lipid lowering drugs across Europe 1997–2003.

Br J Clin Pharmacol 2005;60:543–51.
19. DeWilde S, Carey A, Brenner SA, et al. Evolution of statin prescribing 1994–2001: a case of agism but not of sexism? Heart 2003;89:417–21.
20. Lin M–J. The dyslipidemia drugs use in Taiwan. Taiwan: Kaohsiung Medical University, 2005.
21. Wung D-C. Drug utilization evaluation and therapeutic equivalence of statins. Taiwan: National Cheng Kung University, 2007.
22. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials.

Lancet 2010;376:1670–81.
23. Lepori NE, Kerelakes DJ. The PCSK9 inhibitors: a novel therapeutic target enters clinical practice. Am Health Drug Benefits 2015;8:483–9.
24. Li YC, Huang WL. Effects of adherence to statin therapy on health care outcomes and utilizations in Taiwan: a Population-Based study.

Biomed Res Int 2015;2015:149573.
25. National health insurance annual report 2014–2015. 2014http://nhird. nhri.org.tw/en/index.htm (accessed 6 Sep, 2015).
26. National health insurance research database.

http://nhird.nhri.org.tw/en/Data_Subsets.html (accessed 6 Sep, 2015).
27. ATC 2011. http://www.whocc.no/atc/structure_and_principles/ (accessed 13 Sep, 2015).
28. Rosenson RS, Kent ST, Brown TM, et al. Underutilization of high-intensity statin therapy after hospitalization for coronary heart disease. J Am Coll Cardiol 2014;63:1495–73.
29. International classification of diseases ninth revision, clinical modification (ICD-9-CM), (accessed 6 Sep, 2015).
30. Lo Re V, Haynes K, Goldberg D, et al. Validity of diagnostic codes to identify cases of severe acute liver injury in the US Food and Drug Administration's Mini-Sentinel Distributed Database.

Pharmacoepidemiol Drug Saf 2013;22:861–72.
31. Kuncova K, Sedlackova M, Vencovsky J, et al. Inflammatory myopathy associated with statins: report of three cases.

Mod Rheumatol 2014;24:368–71.
32. Finegold JA, Manisty CH, Goldacre B, et al. What proportion of symptomatic side effects in patients taking statins are genuinely caused by the drug? systematic review of randomized placebo-controlled trials to aid individual patient choice. Eur J Prev Cardiol 2014;21:464–74.
33. Alberton M, Wu P, Druyts E, et al. Adverse events associated with individual statin treatments for cardiovascular disease: an indirect comparison meta-analysis. QJM 2012;105:145–57.
34. Bhardwaj SS, Chalsani N. Lipid-Lowering agents that cause Drug-induced hepatotoxicity.

Clin Liver Dis 2007;11:597–613.
35. Gillett RC, Norrell A. Considerations for safe use of statins: liver enzyme abnormalities and muscle toxicity.

Am Fam Physician 2011;83:711–6.
36. Cheng CL. Pharmacoepidemiologic Research for Ischemic Stroke in Elderly Patients Who Taking Cyclo-oxygenase-2 inhibitors or Conventional Non-steroidal Anti-inflammatory Drugs (PhD Dissertation). Taiwan: National Cheng Kung University, 2010.
37. J-W W, Lin C, Kao Y, et al. Evolution of statin usage within national health insurance research database: a 20-year prospective study.

Biomed Res Int 2015;2015:149573.
38. Fulcher J, O’Connel R, Voysey M, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials.

Lancet 2015;385:1397–405.
39. Ferrajolo C, Arcoraci V, Sullo MG, et al. Pattern of statin use in southern Italian primary care: can prescription databases be used for monitoring long-term adherence to the treatment? *PLoS One* 2014;9:e102146.

40. Svensson E, Nielsen RB, Hasvold P, et al. Statin prescription patterns, adherence, and attainment of cholesterol treatment goals in routine clinical care: a danish population-based study. *Clin Epidemiol* 2015;7:213–23.

41. O’Keeffe AG, Nazareth I, Petersen I. Time trends in the prescription of statins for the primary prevention of cardiovascular disease in the United Kingdom: a cohort study using the health improvement network primary care data. *Clin Epidemiol* 2016;8:123–32.

42. Deambrosis P, Saramin C, Terrazzani G, et al. Evaluation of the prescription and utilization patterns of statins in an Italian local health unit during the period 1994-2003. *Eur J Clin Pharmacol* 2007;63:197–203.

43. Geleedst-De Vooght M, Maitland-van der Zee AH, Schalekamp T, et al. Statin prescribing in the elderly in the Netherlands: a pharmacy database time trend study. *Drugs Aging* 2010;27:589–96.

44. Naci H, Brugts JJ, Fleurence R, et al. Comparative benefits of statins in the primary and secondary prevention of major coronary events and all-cause mortality: a network meta-analysis of placebo-controlled and active-comparator trials. *Eur J Prev Cardiol* 2013;20:641–57.

45. Purvis L. Rx price watch case study: efforts to reduce the impact of generic competition for lipitor: grey literature report. 2013.

46. Smith MEB, Lee MEB, Haney MEB, et al. Drug Class Review: HMG-CoA Reductase Inhibitors (Statins) and Fixed-dose Combination Products Containing a Statin: Final Report Update 5. Portland (OR: Oregon Health & Science University, 2009. https://www.ncbi.nlm.nih.gov/books/NBK47273/21089253.

47. Salami JA, Warraich H, Valero-Elizondo J, et al. National trends in statin use and expenditures in the US adult population from 2002 to 2013: insights from the medical expenditure panel survey. *JAMA Cardiol* 2017;2:56–65.

48. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. *New Engl J Med* 2015;372:2387–97.

49. Kastelein JJ, Akdim F, Stroes ES, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. *New Engl J Med* 2008;358:1431–43.

50. Chin-Feng Hsuan T-L, Chang H-L, Tseng W-K, et al. A retrospective study of statin use and its effectiveness in Taiwanese. *Acta Cardiologica Sinica* 2009;25:18–25.

51. Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult treatment panel III) final report. *Circulation* 2002;106:3143–421.

52. Macedo AF, Douglas I, Smeeth L, et al. Statins and the risk of type 2 diabetes mellitus: cohort study using the UK clinical practice research datalink. *BMC Cardiovasc Disord* 2014;14:85.

53. Yoon D, Sheen SS, Lee S, et al. Statins and risk for new-onset diabetes mellitus: a real-world cohort study using a clinical research database. *Medicine* 2016;95:e5429.

54. Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. *JAMA* 2011;305:2556–64.