Developing a Repeating Model Using the Structured Spreadsheet Modelling and Implementation Methodology

EuSpRIG 16th Annual Conference, 2015—London, UK

Paul Mireault
Founder, SSMI International
Honorary Professor, HEC Montréal
Paul.Mireault@SSMI.International
Presentation Plan

- Genesis
- SSMI
- Repeating Sub-model
- Structured Implementation
- Characteristics of the SSMI Methodology
- Q&A
Genesis

- Teaching Decision Support Systems courses (1980’s and 1990’s)
 - Undergraduates
 - MBAs
- Reference book: Modern Decision Making, Samuel Bodily, 1985
 - Implement models using IFPS
- Gradually adapted to Lotus 1-2-3 and Excel
Instead of teaching Excel, I teach how to use Excel.
Typical Process
Spreadsheet Analysis, Design and Implementation

User

Logical and mechanical errors

Excel manipulations

Computer

Disk

Time

Physical Model
Typical Process

Spreadsheet Analysis, Design and Implementation

![Spreadsheet Image]

Source: Hermans, Felienne (2014): Enron Spreadsheets and Emails. figshare. http://dx.doi.org/10.6084/m9.figshare.1221767
Model or Model?
Model or Model?

It can be an accounting system;

Used for simulation and forecasting;

Or presented as a dashboard.
Model or Model?

A spreadsheet is a model of the real world.

The Formula Diagram and the Formula List are the Conceptual Model of the spreadsheet.
Model or Model?

In Information Systems, we use a **Conceptual Model**.

- Describes what the user **needs**, without references to the technology used to implement it.
Structured Spreadsheet Modelling and Implementation

- Developer
 - Domain knowledge
 - Spreadsheet knowledge
 - Logical errors

- Same or another developer
 - Mechanical errors

- Computer
 - Spreadsheet file
 - Excel manipulations
 - Disk

- Conceptual and Logical Models
 - Formula Diagram and Formula List

- Physical Model
 - Time
Structured Modelling

Two categories of variables, with sub-categories:

	Behind-the-Scene	Interface
Constants		
Calculated		

- Constants
 - Parameter
 - Input

- Calculated Variable
 - Output
Example

- Marco sells widgets in three regions:
 - {East, South and North}
- Past demand = {48%, 23%, 29%}
- Delivery Cost = {50$, 80$, 60$}
- Unit manufacturing cost = 120$
- Demand = 367000 × 1.009^{−\text{Price}}
South Region

Variable	Description	Type	Definition
Price	Average price of widgets	Input	
Profit South	Profit of the South region	Output	= Revenue South - Total Cost South
DemParA	First Demand function parameter	Parameter	367,000
DemParB	Second Demand function parameter	Parameter	1.0009
Fixed Cost	Fixed cost of manufacturing the widgets	Parameter	2,500,000$
Mfg Cost	Cost of manufacturing one widget	Parameter	120$
Dist South	Proportion of the Demand sold in the South region	Parameter	49%
Delivery Cost South	Cost of delivery of widgets in the South region	Parameter	50$
Demand	Demand of widgets, formula given by the market research specialist	Calculated	= DemParA * DemParB * Price
Demand South	Portion of the Demand sold in the South region	Calculated	= Demand * Dist South
Total Cost South	Total Cost of selling widgets in the South region	Calculated	= Fixed Cost South + Variable Cost South
Fixed Cost South	Portion of the Fixed cost allocated to the South region	Calculated	= Fixed Cost * Dist South
Variable Cost South	Variable Cost of the widgets sold in the South region	Calculated	= Demand South * Unit Cost South
Unit Cost South	Unit cost of one widget in the South region	Calculated	= Mfg Cost + Delivery Cost South
Revenue South	Revenue of the South region	Calculated	= Demand South * Price
Other Regions
Other Regions

What if…

‣ 10 provinces?
‣ 50 states?
‣ 100 departments?

How big?
Structured Implementation

- Three-tier architecture: single-purpose worksheets
 - Parameters
 - Model
 - Interface
- Emulate SE Modules with precise block structure
- Extensive use of names
Worksheet for
Single-Value Parameters

Every **cell** is named
Worksheet for Multiple-Value Parameters

Every **row** is named
Worksheet for
Single-Value Calculated Variables

The definition block:

Simple reference formulas to named variables

Definition formula referencing the cells directly above

Every cell containing a definition formula is named
Worksheet for
Multiple-Value Calculated Variables

The definition block:

Every row containing a definition formula is named

Simple reference formulas to named variables

Definition formula referencing the cells directly above
Worksheet for
Multiple-Value Calculated Variables
Worksheet for Multiple-Value Calculated Variables

A	B	C	D	E
Repeated sub-mode	South			
Region	Total Demand	Distribution	Regional Demand	Price
	13,062	48%	6,270	375 $
	Revenue	2,351,110 $		
	Mfg Cost	120 $		
	Delivery Cost	50 $		
	Unit Cost	170 $		
	Regional Demand	6,270		
	Unit Cost	170 $		
	Variable Cost	1,065,837 $		
	Total Fixed Cost	2,500,000 $		
	Distribution	48%		
	Regional Fixed Cost	1,200,000 $		
	Variable Cost	1,065,837 $		
	Total Cost	2,265,837 $		
	Revenue	2,351,110 $		
	Total Cost	-2,265,837 $		
Profit	85,274 $			

A	B	C	D	E
Repeated sub-mode	South	East	North	
Region	Total Demand	Distribution	Regional Demand	Price
	13,062	48%	6,270	375 $
	Revenue	2,351,110 $	1,126,574 $	1,420,462 $
	Mfg Cost	120 $	120 $	120 $
	Delivery Cost	50 $	80 $	60 $
	Unit Cost	170 $	200 $	180 $
	Regional Demand	6,270	3,004	3,788
	Unit Cost	170 $	200	180 $
	Variable Cost	1,065,837 $	600,839 $	681,822 $
	Total Fixed Cost	2,500,000 $	2,500,000 $	2,500,000 $
	Distribution	48%	23%	29%
	Regional Fixed Cost	1,200,000 $	575,000 $	725,000 $
	Variable Cost	1,065,837 $	600,839 $	681,822 $
	Total Cost	2,265,837 $	1,175,839 $	1,406,822 $
	Revenue	2,351,110 $	1,126,574 $	1,420,462 $
	Total Cost	-2,265,837 $	-1,175,839 $	-1,406,822 $
Profit	85,274 $	-49,266 $	13,640 $	
Calculating a Single-Value Variable from a Multiple-Value Variable
Calculating a Single-Value Variable from a Multiple-Value Variable

	B	C	D	
1	Model			
2				
3	DemParA	376000		
4	DemParB	1.009		
5	Price	375 $		
6	Total Demand	13061.7		
7				
8	Region	South	East	North
9	Profit	85,274 $	-49,266 $	13,640 $
10	Total Profit			
11				

Excel formula: `=SUM(9:9)`

Total Profit: 49,649 $
Interface Flexibility

Original Version	SSMI Version
![Excel Sheet](image1.png)	![Excel Sheet](image2.png)

DCF Model

Working Capital Schedule

Year	Current Assets	Non-Cash Current Assets
2012	$3,833	$11,079
2013	$3,582	$9,403
2014	$4,427	$11,718

EBITDA Calculation

Year	EBITDA	EBITDA Calculation
2015	$14,638	$14,638 - $12,291
2016	$15,347	$15,347 - $15,347
2017	$16,990	$16,990 - $16,990

Capex

Year	Capex	Capex Calculation
2015	$11,027	$10,523
2016	$10,957	$10,957
2017	$11,408	$11,408
2018	$11,733	$11,733

SSMI International
Interface Flexibility

SSMI Version

Behind-the-Scenes
Characteristics of the SSMI Methodology

- **Spreadsheet documentation**: Formula Diagram and Formula List
 - Overview of relationships
 - Facilitates peer review
 - Facilitates hand-off of the model
Characteristics of the SSMI Methodology

‣ Rule 1: only **one mathematical operator or function per formula**

‣ References in the definition block are made by name
 • Easier to **understand** their meaning

‣ The definition formula uses the cells directly above, making it easier to verify.
 • There is **never** any need to use absolute or mixed cell references
Characteristics of the SSMI Methodology

‣ No daisy-chains

‣ Instead of copying many formulas one by one, we copy all the formulas once

‣ Verifying an implementation can be done by re-copying column B and seeing where changes happen
In Development

- Repeating sub-model with time periods.
- Modelling techniques for special cases.
Q&A
Thank you!