Updates of W_R Effects on CP Angle Determination in B Decays

Hideaki HAYAKAWA,∗) Kaoru HOSOKAWA∗∗) and Takeshi KURIMOTO∗∗∗)

Department of Physics, Toyama University, Toyama 930, Japan

(Received September 18, 2001)

The recently observed CP violation in B decay, and B-\bar{B} mixing data put constraints on the mass of W_R and the parameters of the right-handed current mixing matrix V^R in the $SU(2)_L \times SU(2)_R \times U(1)$ gauge model. It is shown that the allowed region of parameters is severely restricted for light W_R with mass of about 1 TeV or less. There exist sets of parameters that can account for the large CP violation measured by Belle, $\sin 2\phi_1|_{\text{exp}} \simeq 1$, for $M_{W_R} = 1 – 10$ TeV.

The B factories at KEK and SLAC have established the existence of CP violation in B meson systems by measuring the time-dependent CP asymmetry of neutral B meson decays into $(c\bar{c})$ meson+neutral K(*) meson.

\[
A(t) = \frac{\Gamma[B^0(t) \rightarrow f_{CP}] - \Gamma[B^0(t) \rightarrow \bar{f}_{CP}]}{\Gamma[B^0(t) \rightarrow f_{CP}] + \Gamma[B^0(t) \rightarrow \bar{f}_{CP}]} = -\xi_f \sin 2\phi_1 \sin(\Delta M_B t), \tag{1}
\]

where ξ_f is the CP eigenvalue of the final state. The following values have been obtained: 2,3)

\[
\sin 2\phi_1 = \begin{cases} 0.59 \pm 0.14 \pm 0.05, & \text{(BABAR)} \\ 0.99 \pm 0.14 \pm 0.06, & \text{(Belle)} \end{cases} \tag{2}
\]

We wish to check if the above values are consistent with the 3-generation standard model with the Kobayashi-Maskawa mechanism of CP violation. 4) With the notation of the unitarity triangle given in Fig. 1 where $V_{cb}^*V_{cd}$ is a negative real value, the geometrically defined $\sin 2\phi_1$ is given as

\[
\sin 2\phi_1 = \sin \left(2\pi - 2 \arg \left[-\frac{V_{ub}^*V_{ud}}{V_{cb}^*V_{cd}}\right]\right) = \sin \left(2 \arg \left[-1 + \left|\frac{V_{ub}^*V_{ud}}{V_{cb}^*V_{cd}}\right| e^{-i\phi_3}\right]\right). \tag{3}
\]

If no new physics beyond the 3-generation standard model enters into the measured processes of CP violation, the observed $\sin 2\phi_1$ should agree with the above geometrically defined one. Assuming that any new physics does not affect the values of $|V_{ud}|$, $|V_{cd}|$ and $|V_{ub}/V_{cb}|$, which are obtained through tree-level semi-leptonic processes, the

Fig. 1. Unitarity triangle.

E-mail: haya@jodo.sci.toyama-u.ac.jp
E-mail: kaoru@jodo.sci.toyama-u.ac.jp
E-mail: krmt@k2.sci.toyama-u.ac.jp
prediction of $\sin 2\phi_1$ in terms of ϕ_3 using Eq. (3) and $|(V_{ub}^*V_{ud})/(V_{cb}^*V_{cd})|$ is given as Fig. 2. The measured result $\sin 2\phi_1 > 0.4$ is consistent with $\phi_3 = 15^\circ - 145^\circ$. The neutral B meson mass difference ΔM_B in the standard model is also estimated as a function of ϕ_3. Once $|V_{ub}/V_{cb}|$ is given, $V_{tb}V_{td}^*$ can be expressed in terms of ϕ_3 and $|V_{ub}/V_{cb}|$ by using unitarity. If we take the error of $|V_{ub}/V_{cb}|$ into account, we find that the standard model is consistent with ΔM_B for $\phi_3 = 20^\circ - 70^\circ$ as shown in Fig. 3. The measured values of $\sin 2\phi_1$ are consistent with the 3-generation standard model, considering the experimental errors, though the central value given by Belle cannot be realized in the standard model. If the large value found by Belle is confirmed in future experiments, we can conclude that some new physics beyond the standard model is necessary.

In this work we investigate the $SU(2)_L \times SU(2)_R \times U(1)$ model ($L-R$ model)5 as a possible candidate of new physics that can give a larger CP asymmetry in the $\sin 2\phi_1$ determination than in the standard model. We investigate constraints on the model and explore the possibility of obtaining a large value of CP asymmetry, simultaneously satisfying the constraints required by ΔM_B and $K-K$ system. Some groups, including one of the present authors, have investigated the $L-R$ model and showed that the gauge boson coupled to the right-handed charged current (W_R) can significantly affect the values of CP violation angles in B decays.6-9 The essence of this effect is as follows. Though W_R is much heavier than the ordinary W boson, some elements of the right-handed current quark mixing matrix V^R are not necessarily suppressed in comparison with the CKM mixing matrix elements.4-10 Then, W_R can contribute significantly to some processes like $B-\bar{B}$ mixing, where the ordinary W boson contribution is significantly CKM suppressed.

There exists a sizable contribution to $K-K$ mixing in the $L-R$ model from the box diagram with one W and one W_R exchange,6-11-13 which allows only the following forms of V^R to avoid the constraint arising from CP violation in $K-K$

\begin{align*}
\sin 2\phi_1
\end{align*}

Fig. 2. $\sin 2\phi_1$ in the 3-generation standard model. Upper, middle and lower curves correspond to $|V_{ub}/V_{cb}| = 0.11$, 0.09 and 0.07, respectively.

\begin{align*}
\Delta M_B^{SM} / \Delta M_B^{exp}
\end{align*}

Fig. 3. $\Delta M_B^{SM} / \Delta M_B^{exp}$ in the 3-generation standard model. Upper, middle and lower curves correspond to $|V_{ub}/V_{cb}| = 0.07$, 0.09 and 0.11, respectively.
mixing for W_R with a mass of $O(1)$ TeV or less:\(^8\)

$$V^R_I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\omega} \end{pmatrix}, \quad V^R_{II} = \begin{pmatrix} 0 & 1 & 0 \\ \cos \theta_R & 0 & -e^{i\omega} \sin \theta_R \\ \sin \theta_R & 0 & e^{i\omega} \cos \theta_R \end{pmatrix}. \quad (4)$$

(If we allow fine tunings among the parameters of the CKM matrix and of V^R, there are other possibilities, which we do not consider here.) The former, V^R_I, does not give a significant contribution to either B-\bar{B} mixing or b decay, and therefore we concentrate on the latter type of V^R here.

The contribution to B-\bar{B} mixing can be written as

$$M^B_{12} = M^{{SM}}_{12} + M_{LR} + M_{RR}, \quad (5)$$

where $M^{{SM}}_{12}$ is the standard model contribution, M_{LR} is from the box diagram with one W and one W_R exchange, and M_{RR} is from two W_R exchange. M_{RR} is obtained simply by exchanging L and R in the standard model contribution. M_{LR} is calculated from the following effective Hamiltonian: \(^7\), \(^15\), \(^16\)

$$\mathcal{H}_{LR}^{\text{eff}} = \sum_{i,j=\mu}^{\tau} \frac{2G_F^2 M_W^2}{\pi^2} \beta_y V_{id}^L V_{ib}^R V_{jd}^R V_{jb}^L J(x_i, x_j, \beta) \frac{d_R b_L d_L b_R^*}{d_R b_L d_L b_R} + (\text{h.c.}). \quad (6)$$

Here, $\beta = (M^2_W/M^2_{W_R})$, $\beta_y = (g_R/g_L)^2 \beta$ and $x_i = m^2_i/M^2_W$. The loop function is defined as

$$J(x, y, \beta) \equiv \sqrt{xy} \left[\frac{(\eta^{(1)} + \eta^{(2)} xy \beta^2)}{4} J_1(x, y, \beta) - \frac{1}{4} (\eta^{(3)} + \eta^{(4)} \beta) J_2(x, y, \beta) \right], \quad (7)$$

with

$$J_1(x, y, \beta) = \frac{x \ln x}{(1-x)(1-x\beta)(x-y)} + (x \leftrightarrow y) - \frac{\beta \ln \beta}{(1-\beta)(1-x\beta)(1-y\beta)};$$

$$J_2(x, y, \beta) = \frac{x^2 \ln x}{(1-x)(1-x\beta)(x-y)} + (x \leftrightarrow y) - \frac{\ln \beta}{(1-\beta)(1-x\beta)(1-y\beta)};$$

where $\eta^{(1)} - \eta^{(4)}$ are QCD corrections. We use here $\eta^{(1)} = 1.1$, $\eta^{(2)} = 0.26$, $\eta^{(3)} = 1.1$ and $\eta^{(4)} = 1.0$ as the values of the QCD corrections.\(^{14}\)

Now we evaluate M_{12}^B, varying θ_R and ω in V^R with the following inputs: $M(W_R) = 1 - 10$ TeV; ϕ_3 in V_{KM} is 45°, 90°, 135°; $|V_{ub}/V_{cb}| = 0.09$; $f_B \sqrt{B_B} = 230$ MeV. We take $g_L = g_R$ for simplicity. Then, we draw regions allowed by the experimental values of ΔM_B, allowing $\pm30\%$ ambiguity from errors on $f_B \sqrt{B_B}$ and $|V_{ub}/V_{cb}|$, and estimate the CP asymmetry in $B \rightarrow (c\bar{c}) + K^{(*)}$ corresponding to $\sin 2\phi_1$, which we call $\text{Asy}(\Psi K)$. First, we set $M_{W_R} = 1$ TeV and $\phi_3 = 135^\circ$. The allowed region and the predicted $\text{Asy}(\Psi K)$ are shown in Fig. 4. It can be seen that only small portions of the parameter space in θ_R and ω are allowed by ΔM_B. We fix $\theta_R = 100^\circ$ and estimate ΔM_B and $\text{Asy}(\Psi K)$. The result is shown in Fig. 5. With $\theta_R = 100^\circ$, the CP phase ω in V^R is restricted to the range $30^\circ - 90^\circ$. If we further
impose $\text{Asy}(\Psi K) > 0.4$ (from a recent measurement), ω should be less than 60°. It is interesting that the large CP asymmetry found by Belle, $\text{Asy}(\Psi K) \sim 1$, is possible for $\omega = 30^\circ - 45^\circ$. Similar figures for $\phi_3 = 90^\circ$ and 45° are given in Figs. 6 and 7. The allowed region of θ_R and ω is severely restricted. This is because W_R gives a significant contribution to $B^{-}\bar{B}$ mixing even for $M_{W_R} \sim 1$ TeV, as pointed out in Ref. 8). The standard model contribution M_{12}^{SM} is CKM suppressed by a factor of λ^6 ($\lambda \equiv |V_{us}| = 0.22$), while M_{LR} is suppressed by a factor of λ^3. Though another suppression of $(M_W/M_{W_R})^2$ is incorporated in M_{LR}, the enhancement in loop function and λ^{-3} factor cause M_{LR} and M_{12}^{SM} to be of the same order of magnitude.

We have carried out the same calculations for $M_{W_R} = 2, 3, 5$ and 10 TeV. The results are displayed in Figs. 8 – 16 and 18. The area of the allowed region becomes maximal at $M_{W_R} = 3$ TeV for $\phi_3 = 135^\circ$. The standard model contribution M_{12}^{SM} alone cannot give a value of ΔM_B consistent with the experimental data for $\phi_3 = 135^\circ$. With a suitable magnitude of the W_R contribution, we can obtain a value of ΔM_B consistent with the experimental value. A too heavy W_R cannot give a

Fig. 4. Region allowed by ΔM_B (left) and $\text{Asy}(\Psi K)$ (right) for $M_{W_R} = 1$ TeV and $\phi_3 = 135^\circ$. The black regions are consistent with the experimental value of ΔM_B in the left figure.

Fig. 5. $\Delta M_B|_{\text{theory}}/\Delta M_B|_{\text{exp}}$ and $\text{Asy}(\Psi K)$ for $M_{W_R} = 1$ TeV, $\phi_3 = 135^\circ$ and $\theta_R = 100^\circ$.

Fig. 6. Same as Fig. 4 for $\phi_3 = 90^\circ$.

Fig. 7. Same as Fig. 4 for $\phi_3 = 45^\circ$.

Fig. 8. Same as Fig. 4 for $M_{WR} = 2$ TeV and $\phi_3 = 135^\circ$.

sufficient contribution to compensate for M_{12}^{SM}. A similar situation occurs for $\phi_3 = 90^\circ$ at larger M_{WR}. No allowed region remains at $M_{WR} = 10$ TeV for $\phi_3 = 90^\circ$ and 135°.

The allowed region spreads as M_{WR} becomes larger for $\phi_3 = 45^\circ$, since the standard model contribution M_{12}^{SM} alone gives values of ΔM_B and $\text{Asy}(\Psi K)$ consistent
with experimental data for $\phi_3 = 45^\circ$. It is interesting that allowed regions which give large CP asymmetry remains even for heavy W_R. For example, the figure for $M_W = 5$ TeV, $\phi_3 = 45^\circ$ and $\theta_R = 30^\circ$ is shown in Fig. 17, and the figure for $M_W = 10$ TeV, $\phi_3 = 45^\circ$ is shown in Fig. 18.

Let us comment on other CP angles, ϕ_2 and ϕ_3. ϕ_2 is measured in the CP asymmetry of $B \to \pi\pi$ decay. CP violation occurs through the interference among $B-\bar{B}$ mixing, tree decay and penguin decay of $b \to u\bar{d}d$. W_R can contribute significantly to $B-\bar{B}$ mixing, as in the case of ϕ_1. There also exists a contribution to $b \to d$ penguin decay. The ratio to the standard model penguin, up to a log loop function,
is given as

$$\frac{g_L^2}{M_W^2} V_{tb}^* V_{td} : \frac{g_R^2}{M_{WR}^2} V_{tb}^R V_{td}^R = 1 : \beta_g e^{-i\omega} \sin 2\theta_R$$

The magnitude of $|\beta_g/(2V_{tb}^*V_{td})|$ is about 0.3 for $M_{WR} = 1$ TeV. The W_R penguin is less than 10% of the standard model one, taking the allowed region of θ_R into account. Therefore we can neglect the $b \to d \ W_R$ penguin. Then, the effect on ϕ_2 is the same as that of ϕ_1. If ϕ_3 is measured by using $B^\pm \to DK$ decays, CP violation occurs through the interference between tree decays, $\bar{b} \to \bar{c}u\bar{s}$ and $\bar{b} \to \bar{u}c\bar{s}$, with a
common final state. \(W_R \) does not contribute to \(\bar{b} \to \bar{u}c\bar{s} \), as \(V_{ub}^R = 0 \), but it can affect \(\bar{b} \to \bar{c}u\bar{s} \) decay:

\[
\frac{g_L^2}{M_L^2} V_{cb}^* V_{us} : \frac{g_R^2}{M_R^2} V_{cb}^* V_{us}^R = 1 : \beta_g \left(-e^{-i\omega} \sin \theta_R \right) V_{cb}^* V_{us}.
\]

(9)

The deviation of measured \(\phi_3, \Delta \phi_3 \), from the standard model value for \(M_{W_R} = 1 \) TeV and \(\phi_3 = 135^\circ \) in the CKM matrix for \(\theta_R = 100^\circ \) is given in Fig. 19. The deviation can reach \(-45^\circ\) for \(\omega = 40^\circ \). As \(W_R \) becomes heavier, the deviation becomes smaller in proportion to \(1/M_{W_R}^2 \). This deviation cannot be observed in the measurements of \(\phi_3 \) in \(B \to K\pi \), since \(V_{us}^R V_{ub}^* = 0 \). Hence we can expect disagreement between
the two kinds of measurements of ϕ_3.

In conclusion, we have investigated W_R effects on $B\overline{B}$ mixing and CP asymmetry in B decays and found that the W_R effect is sizable even for $M_{W_R} = 1 - 10$ TeV. The experimental values of ΔM_B and CP asymmetry in $B \to (c\bar{c}) + K^{(*)}$, $\text{Asy}(\Psi K)$, severely constrain the parameters of the right-handed quark mixing matrix V^R. With allowed parameter values, the CP asymmetry $\text{Asy}(\Psi K)$ can be as large as 1, which is the central value of Belle. If future experiments confirm this large value of $\text{Asy}(\Psi K)$, fine measurements of ϕ_2 and ϕ_3 in various modes are necessary to distinguish the physics of this kind of model and other new physics.

Acknowledgements

This work is supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (Grant No. 11640265).

References

1) A. B. Carter and A. I. Sanda, Phys. Rev. Lett. 45 (1980), 952; Phys. Rev. D 23 (1981), 1567.
I. I. Bigi and A. I. Sanda, Nucl. Phys. B 193 (1981), 85; B 281 (1987), 41.
2) BABAR Collaboration, Phys. Rev. Lett. 87 (2001), 091801.
3) Belle Collaboration, Phys. Rev. Lett. 87 (2001), 091802.
4) M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973), 652.
5) R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11 (1975), 566, 2558.
G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12 (1975), 1502.
G. Senjanovic, Nucl. Phys. B 153 (1979), 334.
6) D. London and D. Wyler, Phys. Lett. B 232 (1989), 503.
7) H. Nishiura, E. Takasugi and M. Tanaka, Prog. Theor. Phys. 84 (1990), 116, 502; 85 (1991), 343.
8) T. Kurimoto, A. Tomita and S. Wakaizumi, Phys. Lett. B 381 (1996), 470.
9) D. Silverman and H. Yao, hep-ph/9706359 (1997).
10) N. Cabibbo, Phys. Rev. Lett. 10 (1963), 531.
11) F. I. Olness and M. E. Ebel, Phys. Rev. D 30 (1984), 1034.
12) P. Langacker and S. U. Sankar, Phys. Rev. D 40 (1989), 1569.
13) G. Barenboim, J. Bernabeu, J. Prades and M. Raidal, Phys. Rev. D 55 (1997), 4213.
 G. Barenboim, J. Bernabeu and M. Raidal, Nucl. Phys. B 511 (1998), 577.
14) A. Datta, E. A. Paschos, J.-M. Schwartz and M. N. Sinha Roy, Z. Phys. C 46 (1990), 63; hep-ph/9509420 (1995).
15) G. Beall, M. Bander and A. Soni, Phys. Rev. Lett. 48 (1982), 848.
16) G. Ecker and W. Grimus, Nucl. Phys. B 258 (1985), 328.