In this paper, a cell-based smoothed finite element method with discrete shear gap technique for triangular elements is employed to study the linear flutter characteristics of functionally graded material (FGM) flat panels. The influence of thermal environment, the presence of a centrally located circular cutout and the aerodynamic damping on the supersonic flutter characteristics of flat FGM panels is also investigated. The structural formulation is based on the first-order shear deformation theory and the material properties are assumed to be temperature dependent and graded only in the thickness direction according to power law distribution in terms of the volume fraction of its constituent materials. The aerodynamic force is evaluated by considering the first order high mach number approximation to linear potential flow theory. The formulation includes transverse shear deformation and in-plane and rotary inertia effects. The influence of the plate thickness, aspect ratio, boundary conditions, material gradient index, temperature dependent material properties, damping, cutout size, skewness of the plate and boundary conditions on the critical aerodynamic pressure is numerically studied.

Keywords: Cell-based smoothed finite element method, Discrete shear gap technique, Functionally graded material, Material gradient index, Flutter.

1. INTRODUCTION

In recent years, a new class of engineered material, the functionally graded materials (FGMs) has attracted researchers to investigate its structural behaviour. The FGMs are microscopically inhomogeneous and the mechanical and the thermal properties vary smoothly and continuously from one surface to another. FGMs combine the best properties of its constituents. Typically, the FGMs are made from a mixture of ceramic and metal. The ceramic constituent provides thermal stability due to its low thermal conductivity, whilst the metallic constituent provides structural stability. FGMs eliminate the sharp interfaces existing in laminated composites with a gradient interface and are considered to be an alternative in many engineering sectors such as the aerospace industry, biomechanics industry, nuclear industry, tribology, optoelectronics and other high performance applications where the structural member is exposed to high thermal gradient in addition to mechanical load.

The static and the dynamic characteristics have been studied in detail by many researchers using different plate theories, for example, first order shear deformation theory (FSDT) \cite{27, 32, 36}, second and other higher order accurate theory \cite{6, 18, 22} have been used to describe the plate kinematics. Existing approaches in the literature to study plate and shell structures made up of FGMs uses finite element method (FEM) based on Lagrange basis functions \cite{7, 27, 32}, meshfree methods \cite{6, 22} and recently Valizadeh et al., \cite{33} used non-uniform rational B-splines based FEM to study the static and the dynamic characteristics of FGM plates in thermal environment. Akbari et al., \cite{23} studied two-dimensional wave propagation in functionally graded solids using the meshless local Petrov-Galerkin method. Huang et al., \cite{8} proposed solutions for the free vibration of side-cracked FGM thick plates based on Reddy’s third-order shear deformation theory using Ritz technique. Kitipornchai et al., \cite{18} studied nonlinear vibration of edge cracked functionally graded Timoshenko beams using Ritz method. Yang et al., \cite{35} studied the nonlinear dynamic response of a functionally graded plate with a through-width crack based on Reddy’s third-order shear deformation theory using a Galerkin method. Natarajan et al., \cite{16, 17} and Baiz et al., \cite{2} studied the influence of the crack length on the free flexural vibrations and on the critical buckling load of FGM
plates using the XFEM and smoothed XFEM, respectively. Plates with cutouts are extensively used in transport vehicle structures. Cutouts are made to lighten the structure, for ventilation, to provide accessibility to other parts of the structures and for altering the resonant frequency. Therefore, the natural frequencies of plates with cutouts are of considerable interest to designers of such structures. Most of the earlier investigations on plates with cutouts have been confined to isotropic plates \[1, 9, 20\] and laminated composites \[26, 31\]. Recently, Janghorban and Zare \[11\] studied the influence of cutout on the fundamental frequency of FGM plates in thermal environment using FEM. Recently Akbari et al., \[24\] employed the XFEM to study the influence of internal discontinuities, viz., cracks and cutouts on the fundamental frequency of FGM plates in thermal environment. The presence of a cutout can also influence the flutter characteristics. Furthermore, in practice, the use of these materials in aerospace industries has necessitated to understand the dynamic characteristics of functionally graded structures. This has attracted researchers \[10, 19, 21\] to study the flutter characteristics of FGM panels. The above list is no way comprehensive and interested readers are referred to the literature and references therein and a recent review paper by Jha and Kant \[12\] on FGM plates.

Approach In this paper, we study the linear flutter characteristics of FGM flat panels using a 3-noded triangular element. A cell-based smoothing technique combined with discrete shear gap method is employed for this study. The influence of the plate thickness, aspect ratio, boundary conditions, material gradient index, temperature dependent material properties, damping, cutout size, skewness of the plate and boundary conditions on the critical aerodynamic pressure is numerically studied.

Approach The paper is organized as follows, the next section will give an introduction to FGM and a brief overview of Reissner-Mindlin plate theory. Section 3 describes the cell-based smoothing technique combined with discrete shear gap method for 3-noded triangular elements. The efficiency of the present formulation, numerical results and parametric studies are presented in Section 4, followed by concluding remarks in the last section.

2. THEORETICAL FORMULATION

2.1. Functionally graded material

A rectangular plate made of a mixture of ceramic and metal is considered with the coordinates \(x, y\) along the in-plane directions and \(z\) along the thickness direction (see Figure 1). The material on the top surface \((z = h/2)\) of the plate is ceramic rich and is graded to metal at the bottom surface of the plate \((z = -h/2)\) by a power law distribution. The effective properties of the FGM plate can be computed by using the rule of mixtures or by employing the Mori-Tanaka homogenization scheme. Let \(V_i (i = c, m)\) be the volume fraction of the phase material. The subscripts \(c\) and \(m\) refer to ceramic and metal phases, respectively. The volume fraction of ceramic and metal phases are related by \(V_c + V_m = 1\) and \(V_c\) is expressed as:

\[
V_c(z) = \left(\frac{2z + h}{2h}\right)^n
\]

where \(n\) is the volume fraction exponent \((n \geq 0)\), also known as the gradient index. The variation of the composition of ceramic and metal is linear for \(n = 1\), the value of \(n = 0\) represents a fully ceramic plate and any other value of \(n\) yields a composite material with a smooth transition from ceramic to metal.

Mori-Tanaka homogenization method Based on the Mori-Tanaka homogenization method, the effective Young’s modulus and Poisson’s ratio are computed from the effective bulk modulus \(K\) and the effective shear modulus \(G\) as \[32\]

\[
\begin{align*}
\frac{K_{\text{eff}} - K_m}{K_c - K_m} &= \frac{V_c}{1 + V_m \frac{3(K_c - K_m)}{8K_m + 4G_m}} \\
\frac{G_{\text{eff}} - G_m}{G_c - G_m} &= \frac{V_c}{1 + V_m \frac{(G_c - G_m)}{(G_m + f_1)}}
\end{align*}
\]

where

\[
f_1 = \frac{G_m(9K_m + 8G_m)}{6(K_m + 2G_m)}
\]
The effective Young’s modulus E_{eff} and Poisson’s ratio ν_{eff} can be computed from the following relations:

$$E_{\text{eff}} = \frac{9K_{\text{eff}}G_{\text{eff}}}{3K_{\text{eff}} + G_{\text{eff}}}, \quad \nu_{\text{eff}} = \frac{3K_{\text{eff}} - 2G_{\text{eff}}}{2(3K_{\text{eff}} + G_{\text{eff}})} \quad (4)$$

The effective mass density ρ is computed using the rule of mixtures as $\rho = \rho_c V_c + \rho_m V_m$. The effective heat conductivity κ_{eff} and the coefficient of thermal expansion α_{eff} is given by:

$$\frac{\kappa_{\text{eff}} - \kappa_m}{\kappa_c - \kappa_m} = \frac{V_c}{1 + V_m \frac{(\kappa_c - \kappa_m)}{3\kappa_m}}$$

$$\frac{\alpha_{\text{eff}} - \alpha_m}{\alpha_c - \alpha_m} = \frac{1}{\kappa_c} \frac{1}{\kappa_c - \kappa_m} \quad (5)$$

Temperature dependent material property The material properties that are temperature dependent are written as $[32]$:

$$P = P_0 (P_1 T^{-1} + 1 + P_2 T^2 + P_3 T^3) \quad (6)$$

where P_o, P_{-1}, P_1, P_2 and P_3 are the coefficients of temperature T and are unique to each constituent material phase.

Temperature distribution through the thickness The temperature variation is assumed to occur in the thickness direction only and the temperature field is considered to be constant in the xy-plane. In such a case, the temperature distribution along the thickness can be obtained by solving a steady state heat transfer problem:

$$-\frac{d}{dz} \left[\kappa(z) \frac{dT}{dz} \right] = 0, \quad T = T_c \text{ at } z = h/2; \quad T = T_m \text{ at } z = -h/2 \quad (7)$$

The solution of Equation (7) is obtained by means of a polynomial series $[34]$ as

$$T(z) = T_m + (T_c - T_m) \eta(z, h) \quad (8)$$

where,

$$\eta(z, h) = \frac{1}{C} \left[\frac{(2z + h)}{2h} \right]^{n+1} - \frac{\kappa_{cm}}{(n+1)\kappa_m} \left(\frac{(2z + h)}{2h} \right)^{2n+1} - \frac{\kappa_{cm}^3}{(3n+1)\kappa_m^3} \left(\frac{(2z + h)}{2h} \right)^{3n+1}$$

$$+ \frac{\kappa_{cm}^4}{(4n+1)\kappa_m^4} \left(\frac{(2z + h)}{2h} \right)^{4n+1} - \frac{\kappa_{cm}^5}{(5n+1)\kappa_m^5} \left(\frac{(2z + h)}{2h} \right)^{5n+1} \right]; \quad (9)$$

$$C = 1 - \frac{\kappa_{cm}}{(n+1)\kappa_m} + \frac{\kappa_{cm}^2}{(2n+1)\kappa_m^2} - \frac{\kappa_{cm}^3}{(3n+1)\kappa_m^3}$$

$$+ \frac{\kappa_{cm}^4}{(4n+1)\kappa_m^4} - \frac{\kappa_{cm}^5}{(5n+1)\kappa_m^5} \quad (10)$$

2.2. Reissner-Mindlin Plates

The Reissner-Mindlin plate theory, also known as the first order shear deformation theory, takes into account the shear deformation through the thickness, in which the normal to the medium surface remains straight but not necessarily perpendicular to the medium surface. The displacements u, v, w at a point (x, y, z) in the plate (see Figure 1) from the medium surface are expressed as functions of the mid-plane displacements u_o, v_o, w_o and independent rotations θ_x, θ_y of the normal in yz and xz planes, respectively, as:
where \(t \) is the time. The strains in terms of mid-plane deformation can be written as:

\[
\varepsilon = \begin{bmatrix}
\varepsilon_p \\
0 \\
\varepsilon_s
\end{bmatrix} + \begin{bmatrix}
z \varepsilon_b
\end{bmatrix}
\]

(12)

The midplane strains \(\varepsilon_p \), the bending strains \(\varepsilon_b \) and the shear strain \(\varepsilon_s \) in Equation (12) are written as:

\[
\varepsilon_p = \begin{bmatrix}
u_{o,x} \\
v_{o,y} \\
u_{o,y} + v_{o,x}
\end{bmatrix}, \quad \varepsilon_b = \begin{bmatrix}
\theta_{x,x} \\
\theta_{y,y} \\
\theta_{x,y} + \theta_{y,x}
\end{bmatrix}, \quad \varepsilon_s = \begin{bmatrix}
\theta_x + w_{o,x} \\
\theta_y + w_{o,y}
\end{bmatrix}
\]

(13)

where the subscript ‘comma’ represents the partial derivative with respect to the spatial coordinate succeeding it. The membrane stress resultants \(\mathbf{N} \) and the bending stress resultants \(\mathbf{M} \) can be related to the membrane strains, \(\varepsilon_p \) and bending strains \(\varepsilon_b \) through the following constitutive relations:

\[
\mathbf{N} = \begin{bmatrix}
N_{xx} \\
N_{yy} \\
N_{xy}
\end{bmatrix} = \mathbf{A} \varepsilon_p + \mathbf{B} \varepsilon_b
\]

\[
\mathbf{M} = \begin{bmatrix}
M_{xx} \\
M_{yy} \\
M_{xy}
\end{bmatrix} = \mathbf{B} \varepsilon_p + \mathbf{D}_b \varepsilon_b
\]

(14)

where the matrices \(\mathbf{A} = A_{ij}, \mathbf{B} = B_{ij} \) and \(\mathbf{D}_b = D_{ij} \; (i, j = 1, 2, 6) \) are the extensional, the bending-extensional coupling and the bending stiffness coefficients and are defined as:

\[
\{A_{ij}, B_{ij}, D_{ij}\} = \int_{-h/2}^{h/2} Q_{ij} \left\{1, z, z^2\right\} \; dz
\]

(15)
Similarly, the transverse shear force \(Q = \{Q_{xz}, Q_{yz}\} \) is related to the transverse shear strains \(\varepsilon_s \) through the following equation:

\[
Q_{ij} = E_{ij} \varepsilon_s
\]

(16)

where \(E_{ij} = \int_{-h/2}^{h/2} \overline{Q}_{ij} v_i v_j \, dz; \ (i, j = 4, 5) \) is the transverse shear stiffness coefficient, \(v_i, v_j \) are the transverse shear coefficients for non-uniform shear strain distribution through the plate thickness. The stiffness coefficients \(\overline{Q}_{ij} \) are defined as:

\[
\overline{Q}_{11} = \overline{Q}_{22} = \frac{E(z)}{1 - \nu^2}; \quad \overline{Q}_{12} = \frac{\nu E(z)}{1 - \nu^2}; \quad \overline{Q}_{16} = \overline{Q}_{26} = 0 \quad \overline{Q}_{44} = \overline{Q}_{55} = \overline{Q}_{66} = \frac{E(z)}{2(1 + \nu)}
\]

(17)

where the modulus of elasticity \(E(z) \) and Poisson’s ratio \(\nu \) are given by Equation (4). The thermal stress resultant \(N_{th} \) and the moment resultant \(M_{th} \) are:

\[
N_{th} = \left\{ \begin{array}{c} N_{txx}^{th} \\ N_{txy}^{th} \\ N_{tyy}^{th} \end{array} \right\} = \int_{-h/2}^{h/2} \overline{Q}_{ij} \alpha(z, T) \left\{ \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right\} \Delta T(z) \, dz
\]

\[
M_{th} = \left\{ \begin{array}{c} M_{xx}^{th} \\ M_{xy}^{th} \\ M_{yy}^{th} \end{array} \right\} = \int_{-h/2}^{h/2} \overline{Q}_{ij} \alpha(z, T) \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right\} \Delta T(z) \,dz
\]

(18)

where the thermal coefficient of expansion \(\alpha(z, T) \) is given by Equation (5) and \(\Delta T(z) = T(z) - T_o \) is the temperature rise from the reference temperature and \(T_o \) is the temperature at which there are no thermal strains. The strain energy function \(U \) is given by:

\[
U(\delta) = \frac{1}{2} \int_\Omega \left\{ \varepsilon_{pp}^T A \varepsilon_p + \varepsilon_{bb}^T B \varepsilon_b + \varepsilon_{ee}^T B \varepsilon_e + \varepsilon_{ss}^T E \varepsilon_s - \varepsilon_b^T N_{th} - \varepsilon_s^T M_{th} \right\} \, d\Omega
\]

(19)

where \(\delta = \{u, v, w, \theta_x, \theta_y\} \) is the vector of the degree of freedom associated to the displacement field in a finite element discretization. Following the procedure given in [25], the strain energy function \(U \) given in Equation (19) can be rewritten as:

\[
U(\delta) = \frac{1}{2} \delta^T K \delta
\]

(20)

where \(K \) is the linear stiffness matrix. The kinetic energy of the plate is given by:

\[
T(\delta) = \frac{1}{2} \int_\Omega \left\{ p(\dot{u}_a^2 + \dot{v}_a^2 + \dot{w}_a^2) + I(\dot{\theta}_x^2 + \dot{\theta}_y^2) \right\} \, d\Omega
\]

(21)

where \(p = \int_{-h/2}^{h/2} \rho(z) \, dz, \ I = \int_{-h/2}^{h/2} z^2 \rho(z) \, dz \) and \(\rho(z) \) is the mass density that varies through the thickness of the plate. When the plate is subjected to a temperature field, this in turn results in in-plane stress resultants, \(N_{th} \). The external work due to the in-plane stress resultants developed in the plate under a thermal load is given by:

\[
V(\delta) = \int_\Omega \left\{ \frac{1}{2} \left[N_{xx}^{th} w_x^2 + N_{yy}^{th} w_y^2 + 2N_{xy}^{th} w_x w_y \right] + \frac{h^2}{24} \left[N_{xx}^{th} (\theta_{xx}^2 + \theta_{yy}^2) + N_{yy}^{th} ((\theta_{xx} + \theta_{yy})^2) \right] \right\} \, d\Omega
\]

(22)
The work done by the applied non-conservative loads is:

\[W(\delta) = \int_{\Omega} \Delta p w \, d\Omega \quad (23) \]

where \(\Delta p \) is the aerodynamic pressure. The aerodynamic pressure based on first-order, high Mach number approximation to linear potential flow is given by:

\[\Delta p = \frac{\rho_a U_a^2}{\sqrt{M_\infty^2 - 1}} \left[\frac{\partial w}{\partial x} \cos \theta' + \frac{\partial w}{\partial y} \sin \theta' + \left(\frac{1}{U_a} \right) \frac{M_\infty^2 - 2 \frac{\partial w}{\partial t}}{M_\infty^2 - 1} \right] \quad (24) \]

where \(\rho_a, U_a, M_\infty \) and \(\theta' \) are the free stream air density, velocity of air, Mach number and flow angle, respectively. Substituting Equation (20) - (23) in Lagrange’s equations of motion, the following governing equation is obtained:

\[M \ddot{\delta} + g_T D_A \dot{\delta} + (K + K_G + \lambda \overline{A}) \delta = 0 \quad (25) \]

where \(K \) is the stiffness matrix, \(K_G \) is the geometric stiffness matrix essentially a function of the in-plane stress distribution due to the applied temperature distribution over the plate, \(M \) is the consistent mass matrix, \(\lambda = \frac{\rho_a U_a^2}{\sqrt{M_\infty^2 - 1}} \), \(\overline{A} \) is the aerodynamic force matrix and \(g_T = \frac{\lambda (M_\infty^2 - 1)}{U_a (M_\infty^2 - 1)} \) is the aerodynamic damping parameter. The damping matrix \(D_A \) can be considered as the scalar multiple of mass matrix by neglecting the shear and rotary inertia terms of the mass matrix \(M \) and after substituting the characteristic of the time function \(\delta = -\omega^2 \delta \), the following algebraic equation is obtained:

\[\left[(K + K_G + \lambda \overline{A}) - \overline{\sigma} M \right] \delta = 0 \quad (26) \]

where the eigenvalue \(\overline{\sigma} = -\omega^2 - g_T \omega / (\rho h) \) includes the contribution of aerodynamic damping. Equation (26) is solved for eigenvalues for a given value of \(\lambda \). In the absence of aerodynamic damping, when \(\lambda = 0 \), the eigenvalue of \(\omega \) is real and positive, since the stiffness matrix and mass matrix are symmetric and positive definite. However, the aerodynamic matrix \(\overline{A} \) is unsymmetric and hence complex eigenvalues \(\omega \) are expected for \(\lambda > 0 \). As \(\lambda \) increases monotonically from zero, two of these eigenvalues will approach each other and become complex conjugates. In this study, \(\lambda_{cr} \) is considered to be the value of \(\lambda \) at which the first coalescence occurs. In the presence of aerodynamic damping, the eigenvalues \(\overline{\sigma} \), in Equation (26) becomes complex with increase in the value of \(\lambda \). The corresponding frequency can be written as:

\[\overline{\sigma} = -\omega^2 - g_T \omega / (\rho h) = \sigma_R - i\sigma_I \quad (27) \]

where the subscripts \(R \) and \(I \) refer to the real and the imaginary part of the eigenvalue. The flutter boundary is reached \((\lambda = \lambda_{cr}) \) when the frequency \(\omega \) becomes pure imaginary number, i.e., \(\omega = i\sqrt{\sigma_R} \) at \(g_T = \sigma_I / \sqrt{\sigma_R} \). In practice, the value of \(\lambda_{cr} \) is determined from a plot of \(\omega_R \) vs \(\lambda \) corresponding to \(\omega_R = 0 \).

3. SPATIAL DISCRETIZATION

In this study, three-noded triangular element with five degrees of freedom (dofs) \(\delta = \{u, v, w, \theta_x, \theta_y\} \) is employed. The displacement field is approximated by

\[u^h = \sum_I N_I \delta_I \quad (28) \]

where \(\delta_I \) are the nodal dofs and \(N_I \) are the standard finite element shape functions given by

\[N = [1 - \xi - \eta, \eta, \xi] \quad (29) \]

In the proposed approach, cell-based smoothed finite element method (CSFEM) is combined with stabilized discrete shear gap method (DSG) for three-noded triangular element, called as ‘cell-based discrete shear gap method (CS-DSG3).’ The cell-based smoothing technique decreases the computational complexity, whilst DSG suppresses the shear locking phenomenon when the present formulation is applied to thin plates. Interested readers are referred to the literature and references therein for the description of cell-based smoothing technique \([4, 15]\) and DSG method \([3]\). In the CS-DSG3,
FIG. 2: A triangular element is divided into three subtriangles. Δ_1, Δ_2 and Δ_3 arc the subtriangles created by connecting the central point O with three field nodes.

Each triangular element is divided into three subtriangles. The displacement vector at the center node is assumed to be the simple average of the three displacement vectors of the three field nodes. In each subtriangle, the stabilized discrete shear gap (DSG3) (Note: 3 refers to discrete shear gap technique applied to 3-noded triangular element) is used to compute the strains and also to avoid the transverse shear locking. Then the strain smoothing technique on the whole triangular element is used to smooth the strains on the three subtriangles. Consider a typical triangular element Ω_e as shown in Figure 2. This is first divided into three subtriangles Δ_1, Δ_2 and Δ_3 such that $\Omega_e = \bigcup_{i=1}^{3} \Delta_i$. The coordinates of the center point $x_o = (x_o, y_o)$ is given by:

$$ (x_o, y_o) = \frac{1}{3} (x_I, y_I) \tag{30} $$

The displacement vector of the center point is assumed to be a simple average of the nodal displacements as

$$ \delta_{eO} = \frac{1}{3} \delta_{eI} \tag{31} $$

The constant membrane strains, the bending strains and the shear strains for subtriangle Δ_1 is given by:

$$ \varepsilon_p = \begin{bmatrix} p_1^{\Delta_1} & p_2^{\Delta_1} & p_3^{\Delta_1} \end{bmatrix} \begin{bmatrix} \delta_{eO} \\ \delta_{e1} \\ \delta_{e2} \end{bmatrix} $$

$$ \varepsilon_b = \begin{bmatrix} b_1^{\Delta_1} & b_2^{\Delta_1} & b_3^{\Delta_1} \end{bmatrix} \begin{bmatrix} \delta_{eO} \\ \delta_{e1} \\ \delta_{e2} \end{bmatrix} $$

$$ \varepsilon_s = \begin{bmatrix} s_1^{\Delta_1} & s_2^{\Delta_1} & s_3^{\Delta_1} \end{bmatrix} \begin{bmatrix} \delta_{eO} \\ \delta_{e1} \\ \delta_{e2} \end{bmatrix} \tag{32} $$
Upon substituting the expression for \(\delta_e^{(i)} \) in Equation (32), we obtain:

\[
\begin{align*}
\varepsilon_p^{\Delta_i} &= \left[\frac{1}{3} \mathbf{p}_1^{\Delta_i} + \frac{1}{3} \mathbf{p}_2^{\Delta_i} + \frac{1}{3} \mathbf{p}_3^{\Delta_i} \right] \\
\varepsilon_b^{\Delta_i} &= \left[\frac{1}{3} \mathbf{b}_1^{\Delta_i} + \frac{1}{3} \mathbf{b}_2^{\Delta_i} + \frac{1}{3} \mathbf{b}_3^{\Delta_i} \right] \\
\varepsilon_s^{\Delta_i} &= \left[\frac{1}{3} \mathbf{s}_1^{\Delta_i} + \frac{1}{3} \mathbf{s}_2^{\Delta_i} + \frac{1}{3} \mathbf{s}_3^{\Delta_i} \right] \\
\end{align*}
\]

where \(\mathbf{p}_i, (i = 1, 2, 3) \), \(\mathbf{b}_i, (i = 1, 2, 3) \) and \(\mathbf{s}_i, (i = 1, 2, 3) \) are given by:

\[
\begin{align*}
\mathbf{B}_p &= \frac{1}{2A_c} \begin{bmatrix}
 b - c & 0 & 0 & 0 & c & 0 & 0 & 0 & -b & 0 & 0 & 0 & 0 \\
 0 & d - a & 0 & 0 & 0 & 0 & -d & 0 & 0 & a & 0 & 0 & 0 \\
 d - a & b - c & 0 & 0 & -d & c & 0 & 0 & a & -b & 0 & 0 & 0 \\
\end{bmatrix} \\
\mathbf{B}_b &= \frac{1}{2A_c} \begin{bmatrix}
 0 & 0 & 0 & -b & 0 \\
 0 & 0 & 0 & 0 & a \\
 0 & 0 & 0 & -d & 0 & 0 & 0 & 0 & a \\
\end{bmatrix} \\
\mathbf{B}_s &= \frac{1}{2A_c} \begin{bmatrix}
 0 & 0 & 0 & 0 & a & -b \\
 0 & 0 & 0 & 0 & ad/2 & ac/2 \\
 0 & 0 & 0 & -d & -ad/2 & -bc/2 \\
\end{bmatrix}
\end{align*}
\]

where \(a = x_2 - x_1; b = y_2 - y_1; c = y_3 - y_1 \) and \(d = x_3 - x_1 \) (see Figure (3)). \(A_c \) is the area of the triangular element and \(\mathbf{B}_s \) is altered shear strains. The strain-displacement matrix for the other two triangles can be obtained by cyclic permutation. Now applying the cell-based strain smoothing [4, 15], the constant membrane strains, the bending strains and the shear strains are respectively employed to create a smoothed membrane strain \(\varepsilon_m \), smoothed bending strain \(\varepsilon_b \) and smoothed shear strain \(\varepsilon_s \) on the triangular element \(\Omega_e \) as:

\[
\begin{align*}
\varepsilon_m &= \int_{\Omega_e} \varepsilon_m \Phi_e(x) \, d\Omega = \sum_{i=1}^{3} \varepsilon_m^{\Delta_i} \int_{\Delta_i} \Phi_e(x) \, d\Omega \\
\varepsilon_b &= \int_{\Omega_e} \varepsilon_b \Phi_e(x) \, d\Omega = \sum_{i=1}^{3} \varepsilon_b^{\Delta_i} \int_{\Delta_i} \Phi_e(x) \, d\Omega \\
\varepsilon_s &= \int_{\Omega_e} \varepsilon_s \Phi_e(x) \, d\Omega = \sum_{i=1}^{3} \varepsilon_s^{\Delta_i} \int_{\Delta_i} \Phi_e(x) \, d\Omega \\
\end{align*}
\]

where \(\Phi_e(x) \) is a given smoothing function that satisfies. In this study, following constant smoothing function is used:

\[
\Phi(x) = \begin{cases}
 1/A_c & x \in \Omega_e \\
 0 & x \notin \Omega_e
\end{cases}
\]

where \(A_c \) s the area of the triangular element, the smoothed membrane strain, the smoothed bending strain and the smoothed
FIG. 3: Three-noded triangular element and local coordinates in discrete shear gap method.

Shear strain is then given by

$$\{\varepsilon_{p}, \varepsilon_{b}, \varepsilon_{s}\} = \sum_{i=1}^{3} A_{\Delta i} \{\varepsilon_{p}^{\Delta i}, \varepsilon_{b}^{\Delta i}, \varepsilon_{s}^{\Delta i}\}$$

(38)

The smoothed elemental stiffness matrix is given by

$$K = \int_{\Omega} \mathbf{B}_{p} \mathbf{A} \mathbf{B}_{p}^{T} + \mathbf{B}_{b} \mathbf{B}_{b}^{T} + \mathbf{B}_{b} \mathbf{B}_{b}^{T} + \mathbf{B}_{b} \mathbf{D} \mathbf{B}_{b}^{T} + \mathbf{B}_{s} \mathbf{E} \mathbf{B}_{s}^{T} \, d\Omega$$

$$= \left(\begin{array}{cc}
\mathbf{B}_{p} \mathbf{A} \mathbf{B}_{p}^{T} + \mathbf{B}_{b} \mathbf{B}_{b}^{T} + \mathbf{B}_{b} \mathbf{B}_{b}^{T} + \mathbf{B}_{b} \mathbf{D} \mathbf{B}_{b}^{T} + \mathbf{B}_{s} \mathbf{E} \mathbf{B}_{s}^{T} \end{array}\right) A_{e}$$

(39)

where $\mathbf{B}_{p}, \mathbf{B}_{b}$ and \mathbf{B}_{s} are the smoothed strain-displacement matrix. The mass matrix \mathbf{M}, the geometric stiffness matrix \mathbf{K}_{G} and the aerodynamic matrices \mathbf{X} and \mathbf{D}_{A} are computed by following the conventional finite element procedure.

4. NUMERICAL RESULTS

In this section, we present the critical aerodynamic pressure and the critical frequency of functionally graded material plates immersed in a supersonic flow using three-noded triangular element with cell-based smoothed finite element method and discrete shear gap technique. The element has five degrees of freedom $(u_{o}, v_{o}, w_{o}, \theta_{x}, \theta_{y})$. The shear locking phenomenon is suppressed with a combination of the discrete shear gap technique and the strain smoothing method. The FGM plate considered here is made up of silicon nitride (Si$_{3}$N$_{4}$) and stainless steel (SUS304). The material is considered to be temperature dependent and the temperature coefficients corresponding to Si$_{3}$N$_{4}$/SUS304 are listed in Table I [28, 32]. The mass density (ρ) and the thermal conductivity (κ) are $\rho_{c} = 2370$ kg/m3, $\kappa_{c} = 9.19$ W/mK for Si$_{3}$N$_{4}$ and $\rho_{m} = 8166$ kg/m3, $\kappa_{m} = 12.04$ W/mK for SUS304. Poisson’s ratio ν is assumed to be constant and taken as 0.28 for the current study [32]. Here the modified shear correction factor obtained based on energy equivalence principle as outlined in [29] is used. The boundary conditions for simply supported and clamped cases are:

Simply supported boundary condition:

$$u_{o} = w_{o} = \theta_{y} = 0 \text{ on } x = 0, a; \quad v_{o} = w_{o} = \theta_{x} = 0 \text{ on } y = 0, b$$

(40)

Clamped boundary condition:

$$u_{o} = v_{o} = w_{o} = \theta_{x} = \theta_{y} = 0 \text{ on } x = 0, a \quad \& \quad y = 0, b$$

(41)
TABLE I: Temperature dependent coefficient for material Si$_3$N$_4$/SUS304, Ref [28,32].

Material Property	P_0	P_{-1}	P_1	P_2	P_3
E (Pa)	348.43e9	0.0	-3.070e$^{-4}$	2.160e$^{-7}$	-8.946e$^{-11}$
α (1/K)	5.8723e$^{-6}$	0.0	9.095e$^{-4}$	0.0	0.0

Material Property	E (Pa)	P_0	P_{-1}	P_1	P_2	P_3
SUS304	201.04e9	0.0	3.079e$^{-4}$	-6.534e$^{-7}$	0.0	
α (1/K)	12.330e$^{-6}$	0.0	8.086e$^{-4}$	0.0	0.0	

Skew boundary transformation

For skew plates, the edges of the boundary elements may not be parallel to the global axes (x, y, z). In order to specify the boundary conditions on skew edges, it is necessary to use the edge displacements (u'_o, v'_o, w'_o) etc., in a local coordinate system (x', y', z') (see Figure (1)). The element matrices corresponding to the skew edges are transformed from global axes to local axes on which the boundary conditions can be conveniently specified. The relation between the global and the local degrees of freedom of a particular node is obtained by:

$$\delta = L_g \delta'$$ \hspace{1cm} (42)

where δ and δ' are the generalized displacement vector in the global and the local coordinate system, respectively. The nodal transformation matrix for a node I on the skew boundary is given by:

$$L_g = \begin{bmatrix}
\cos \psi & \sin \psi & 0 & 0 & 0 \\
-\sin \psi & \cos \psi & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & \cos \psi & \sin \psi & 0 \\
0 & 0 & 0 & -\sin \psi & \cos \psi
\end{bmatrix}$$ \hspace{1cm} (43)

where ψ defines the skewness of the plate.

Validation

Before proceeding with the detailed study, the formulation developed herein is validated against available results pertaining to the critical aerodynamic pressure and the critical frequency for isotropic plate and functionally graded material plates. The computed aerodynamic pressure and frequency: (a) for an isotropic plate immersed in normal flow is given in Table II and (b) for functionally graded material in thermal environment immersed in a normal flow is given in Table III. Based on a progressive refinement, a 40×40 structured triangular mesh is found to be adequate to model the full plate. The results evaluated for both simply supported and clamped boundary conditions are found to be in very good agreement with the results in the literature [5, 14, 21, 30].

Table II: Mesh convergence study of critical aerodynamic pressure

Mesh	Skew angle ψ	λ_{cr}
	0°	30°
8×8	6.7391	7.2042
16×16	5.4478	6.6268
32×32	5.2954	6.4984
40×40	5.2794	6.4824
Ref. [30]	5.27	6.47
Ref. [14]	5.12	6.31
Ref. [5]	5.25	6.82

Table IV presents the flutter characteristics of square and rectangular plates with $a/h = 100$ made up of Si$_3$N$_4$/SUS304 is investigated, neglecting the influence of thermal load. It is inferred from Table IV that the critical aerodynamic pressure decreases with increase in the material gradient index n. However, the rate of decrease of flutter speed is high for low value of n. This can be attributed to the increase in the metallic volume fraction. Also, it can be observed that, for a given thickness ratio, the critical aerodynamic pressure increases with the increase in the plate aspect ratio a/b.

For the rest of the parametric study, the material properties are evaluated at $T = 300K$ for the uniform temperature case.
TABLE III: Comparison of flutter behaviour of temperature dependent FGM plate (material: Si$_3$N$_4$/SUS304, $a/h = 20$, all edges simply supported.

T_c, T_m	gradient index	ω^2_{cr}	λ_{cr}		
	n	Ref. [21]	Present	Ref. [21]	Present
300,300	0	9661.35	9653.20	775.78	775.98
	1	3515.57	3474.40	625.78	618.95
	5	2348.72	2326.20	571.48	566.60
600,300	0	7475.77	7470.50	647.65	647.85
	1	2528.99	2520.10	499.61	496.29
	5	1554.78	1547.70	433.20	430.66

TABLE IV: Influence of the plate aspect ratio and the material gradient index n on the flutter behaviour of Si$_3$N$_4$/SUS304 with $a/h = 100$. The ceramic property is used for normalization.

a/b	gradient index n						
	0	1	2	3	4	5	
0.5	357.031	285.1563	273.4375	267.9688	264.0625	260.9375	
1.0	476.5625	380.4688	364.0625	357.0313	352.3438	348.4375	
λ_{cr}	2.0	1026.5625	817.1875	782.0313	767.1875	757.0313	749.2188
	3.0	2160.1563	1702.3438	1628.9063	1600.7813	1582.0313	1567.1875
	5.0	7170.3125	5224.2188	4995.3125	4957.0313	4949.2188	4946.0938
0.5	899.5877	323.7708	262.5403	238.7031	225.3648	216.6146	
1.0	1714.4392	617.5253	499.4822	454.2823	429.4400	413.1416	
ω^2_{cr}	2.0	5380.1563	1939.1894	1568.6419	1426.4056	1347.8699	1296.8628
	3.0	16296.3293	5848.9675	4731.1698	4305.1735	4070.6429	3917.9894
	5.0	91276.9666	31458.0844	25439.0947	23246.8634	22084.4147	21346.8356

TABLE V: Flutter behaviour of temperature dependent FGM plate (material: Si$_3$N$_4$/SUS304) with $a/b = 1$ and $a/h = 20$.

T_c, T_m	gradient index n	In-vacuo	Without aerodynamic damping	With aerodynamic damping			
	ω^2_{cr}	λ_{cr}	ω^2_{cr}	λ_{cr}	ω^2_{cr}	λ_{cr}	
300,300	0	2051.9860	12542.3513	9653.0162	776.5625	9746.1925	787.8125
	1	746.2407	4524.0162	3474.4000	619.5313	3529.8134	635.7813
	2	603.7262	3658.6725	2811.2893	592.9688	2870.6620	614.2188
	3	547.9783	3325.1538	2556.8915	581.2500	2612.1697	602.5000
	4	517.0104	3141.2211	2417.0151	573.4375	2470.1407	594.6875
	5	496.7651	3021.2856	2325.6517	567.1875	2377.4376	588.4375
600,300	0	1188.1381	10168.2150	7468.2233	648.4375	7524.4775	654.6875
	1	359.3716	3487.3750	2519.9419	496.8750	2556.8817	508.1250
	2	262.8568	2749.5853	1974.9428	466.4063	2005.8837	477.6553
	3	221.1033	2454.6966	1755.7921	450.7813	1784.3464	462.0313
	4	196.0080	2286.9560	1630.5261	439.8438	1657.7795	451.0938
	5	178.6470	2174.9919	1546.5266	431.2500	1572.9490	442.5000
In all the cases, we present the non-dimensionalized critical frequency defined as:

$$\omega^2_{cr} = \omega^2 a^4 \left(\frac{\rho_{mo} h}{D_{mo}} \right)$$

where $D_{mo} = \frac{E_m h^3}{12(1-\nu^2)}$ and subscript ‘o’ refers to material properties at $T = 300K$. Table VI highlights the influence of small aerodynamic damping on the critical aerodynamic pressure and the critical frequency. This study is conducted through the complex eigenvalue analysis. The dynamic pressure corresponding to a particular value of aerodynamic damping $g_r = \frac{\text{Im}(\Omega)}{\text{Real}(\Omega)}$ is taken as the critical dynamic pressure. It can be seen from Table VI that the aerodynamic damping enhances the value of flutter speed in comparison to the case without aerodynamic damping. The effect of thermal gradient is also given in Table VI by considering appropriate temperature for evaluating the material properties. The temperature is assumed to vary only in the thickness direction and determined by Equation (8). As expected, the critical pressures and coalescence frequencies decreases under the influence of thermal gradient. The influence of the skewness of the plate on the flutter behaviour is shown in Table VI. It can be seen that with increasing skew angle, the flutter speed increases, while increasing the gradient index decreases the flutter speed. This can be attributed to the resistance offered by the geometry and to the stiffness degradation due to the increase in the metallic volume fraction, respectively. Table VII presents the influence of boundary conditions, viz., all edges simply supported and all edges clamped on the flutter characteristics of FGM plate. It can be seen that the critical pressure is more for the clamped plate in comparison with those of simply supported plate as expected. With increasing plate aspect ratio, the critical pressure increases, whilst increasing the material gradient index, the critical pressure decreases. This is true for both the boundary conditions. It can be seen from Tables VI and Table VII that damping and clamped boundary condition can enhance the critical flutter speed. The influence of the plate thickness a/h and the material gradient index n on the flutter characteristics of FGM plates is shown in Table VIII. The critical aerodynamic pressure increases with decreasing plate thickness and decreases with material gradient index. Again, the decrease in the critical pressure with increasing material gradient index can be attributed to the stiffness degradation due to increase in the metallic volume fraction.

TABLE VI: Influence of the skewangle ψ on the flutter behaviour of temperature dependent FGM plate (material: Si$_3$N$_4$/SUS304) with $a/b = 1$, $T_c = 600$, $a/h = 20$.

Skew angle	gradient index, n					
ψ	0	1	2	3	4	5
0	648.4375	496.8750	466.4063	450.7813	439.8438	431.2500
10°	660.9375	507.0313	475.0000	459.3750	448.4375	439.0625
15°	678.9063	520.3125	488.2813	471.8750	460.1563	451.5625
20°	706.2500	542.1875	508.5938	492.1875	480.4688	471.0938
25°	747.6563	573.4375	539.0625	521.0938	509.3750	409.2188
30°	806.2500	618.7500	582.0313	563.2813	550.7813	540.6250

TABLE VII: Effect of boundary condition on the flutter behaviour of temperature dependent FGM plate (material: Si$_3$N$_4$/SUS304) with $a/b = 1$, $T_c = 300$, $a/h = 20$ and $\psi = 0^\circ$.

gradient index	SSSS	CCCC		
n	$a/b = 1$	$a/b = 2$	$a/b = 1$	$a/b = 2$
0	476.5625	1026.5625	1230.4688	2136.7188
1	380.4688	817.1875	985.9375	1713.2813
2	364.0625	782.0313	942.1875	1634.3750
3	357.0313	767.1875	922.6563	1598.4375
4	352.3438	57.0313	908.5938	1574.2188
5	348.4375	749.2188	898.4375	1555.4688
TABLE VIII: Variation of flutter behaviour with plate aspect ratio a/h for a simply supported FGM square plate with $T_c = 300K$.

a/h	Gradient index, n
	0 1 2 3 4 5
5	570.3125 448.4375 427.3438 418.7500 414.0625 410.1563
10	718.7500 571.8750 546.8750 535.9375 528.9063 523.4375
20	776.5625 619.5313 592.9688 581.2500 573.4375 567.1875
50	796.0938 635.1563 607.8125 596.0938 587.5000 581.2500
100	798.4375 637.5000 610.1563 598.4375 598.4375 583.5938

As a last example, we study the influence of a centrally located circular cutout on the flutter characteristics of FGM plates. A simply supported boundary condition is assumed for this study. Figure 4 shows the geometry of the plate with a centrally located circular cutout. Table IX presents the influence of the size of the centrally located circular cutout on the flutter characteristics of FGM square plate with $a/h = 20$ and uniform temperature distribution. It can be inferred that increasing the gradient index decreases the critical flutter speed, whilst, increasing the cutout radius, increases the critical flutter speed. This can be attributed to the stiffness degradation due to increase in the metallic volume fraction and due to the presence of a cutout, respectively. It can be seen from the above numerical study that aerodynamic damping, clamped boundary condition and presence of a centrally located circular cutout enhances the critical flutter speed.

FIG. 4: Plate with a centrally located circular cutout. r is the radius of the circular cutout.

5. CONCLUSION

In this study, a cell based smoothing technique with discrete shear gap method for three-noded triangular element was detailed and used to study the linear flutter characteristics of flat functionally graded material panels. The efficiency and accuracy of the formulation are demonstrated with few numerical examples. From the detailed numerical study, the following can be concluded:

- With increasing gradient index and the plate aspect ratio, the critical aerodynamic pressure decreases.
- Damping and clamped boundary condition enhances the critical flutter speed.
- Increasing the cutout radius, increases the critical aerodynamic pressure when the cutout is centrally located.
TABLE IX: Influence of the radius r/a of a centrally located cutout on the flutter behaviour of temperature dependent simply supported FGM plate (material: Si$_3$N$_4$/SUS304) with $a/b = 1$, $T_c = 300$, $a/h = 20$, $\psi = 0^\circ$.

r/a	0	1	2	3	4	5
0	776.5625	619.5313	592.96875	581.2500	573.4375	567.1875
0.1	920.1563	746.5625	720.3125	707.03125	702.65625	695.6250
0.2	1727.9688	1429.6875	1382.6563	1361.8750	1348.90625	1334.8438
0.3	3179.6875	2588.2813	2464.8438	2421.0938	2360.1563	2338.2813
0.4	8430.4688	6798.9063	6522.5000	6401.2500	6317.1875	6246.8750

- Thermal gradient decreases the critical flutter speed as expected.
- Coalescence of higher modes are possible in determining the critical value. This depends on the aspect ratio, the cutout size and the thermal gradient.

Acknowledgements

S Natarajan would like to acknowledge the financial support of the School of Civil and Environmental Engineering, The University of New South Wales for his research fellowship since September 2012.

References

[1] R Ali and SJ Atwal. Prediction of natural frequencies of vibration of rectangular plates with rectangular cutouts. *Computers and Structures*, 12:819–823, 1980.
[2] Pedro M Baiz, S Natarajan, SPA Bordas, P Kerfriden, and T Rabczuk. Linear buckling analysis of cracked plates by SFEM and XFEM. *Journal of Mechanics of Materials and Structure*, 6:1213–1238, 2011.
[3] KU Bletzinger, M Bischoff, and E Ramm. A unified approach for shear locking free triangular and rectangular shell finite elements. *Computers and Structures*, 75:321–334, 2000.
[4] S Bordas and S Natarajan. On the approximation in the smoothed finite element method (SFEM). *International Journal for Numerical Methods in Engineering*, 81:660–670, 2010.
[5] TVR Chowdary, PK Sinha, and S Parthan. Finite element flutter analysis of composite skew panels. *Computers & Structures*, 58:613–620, 1996.
[6] AJM Ferreira, RC Batra, CMC Roque, LF Qian, and RMN Jorge. Natural frequencies of functionally graded plates by a meshless method. *Composite Structures*, 75:593–600, 2006.
[7] M Ganapathi, T Prakash, and N Sundararajan. Influence of functionally graded material on buckling of skew plates under mechanical loads. *ASCE Journal of Engineering Mechanics*, 132:902–905, 2006.
[8] CS Huang, OG McGee III, and MJ Chang. Vibrations of cracked rectangular FGM thick plates. *Composite Structures*, 93(7):1747–1764, 2011.
[9] M Huang and T Sakiyama. Free vibration analysis of rectangular plates with variously-shaped holes. *Journal of Sound and Vibration*, 226(4):769–786, 1999.
[10] HH Ibrahim, M Tawfiq, and M Al-Ajmi. Thermal buckling and nonlinear flutter behavior of functionally graded material panels. *Journal of Aircraft*, 44:1610–1617, 2007.
[11] Maziar Janghorban and Amin Zare. Thermal effect on free vibration analysis of functionally graded arbitrary straight-sided plates with different cutouts. *Latin American Journal of Solids and Structures*, 8:245–257, 2011.
[12] DK Jha, Tarun Kant, and RK Singh. A critical review of recent research on functionally graded plates. *Composite Structures*, 96:833–849, 2013.
[13] S Kitipornchai, LL Ke, and J Yang and Y Xiang. Nonlinear vibration of edge cracked functionally graded Timoshenko beams. *Journal of Sound and Vibration*, 324:962–982, 2009.
[14] C.-L Lian and YW Sun. Flutter analysis of stiffened laminated composite plates and shells in supersonic flow. *AIAA J*, 31:1897–1905, 1993.

[15] GR Liu, KY Dai, and TT Nguyen. A smoothed finite element for mechanics problems. *Computational Mechanics*, 39:859–877, 2007.

[16] S Natarajan, PM Baiz, SPA Bordas, P Kerfriden, and T Rabczuk. Natural frequencies of cracked functionally graded material plates by the extended finite element method. *Composite Structures*, 93:3082–3092, 2011.

[17] S Natarajan, PM Baiz, M Ganapathi, P Kerfriden, and S Bordas. Linear free flexural vibration of cracked functionally graded plates in thermal environment. *Computers and Structures*, 89:1535–1546, 2011.

[18] S Natarajan and Ganapathi Manickam. Bending and vibration of functionally graded material sandwich plates using an accurate theory. *Finite Elements in Analysis and Design*, 57:32–42, 2012.

[19] HM Navazi and H Haddadpour. Aero-thermoelastic stability of functionally graded plates. *Composite Structures*, 80:580–586, 2007.

[20] P Paramasivam. Free vibration of square plates with square openings. *Journal of Sound and Vibration*, 30:173–178, 1973.

[21] T Prakash and M Ganapathi. Supersonic flutter characteristics of functionally graded flat panels including thermal effects. *Composite Structures*, 72:10–18, 2006.

[22] L. C. Qian, R. C. Batra, and L. M. Chen. Static and dynamic deformations of thick functionally graded elastic plates by using higher order shear and normal deformable plate theory and meshless local Petrov Galerkin method. *Composites Part B: Engineering*, 35:685–697, 2004.

[23] Ahmad Akbari R, Akbar Bagri, Stéphane Bordas, and Timon Rabczuk. Analysis of thermoelastic waves in a two-dimensional functionally graded materials domain by the meshless local Petrov-Galerkin method. *Computer Modelling in Engineering and Science*, 65:27–74, 2010.

[24] AA Rahimabadi, S Natarajan, and S Bordas. Vibration of functionally graded material plates with cutouts and cracks in thermal environment. *Advances in Crack Growth Modeling, Key Engineering Materials*, 560:157–180, 2013.

[25] N Sundararajan, T Prakash, and M Ganapathi. Nonlinear free flexural vibrations of functionally graded cylinders and plates. *Journal of Thermal Stresses*, 21:593–629, 1998.

[26] MK Singh, T Prakash, and M Ganapathi. Finite element analysis of functionally graded plates under transverse load. *Finite Elements in Analysis and Design*, 47:453–460, 2011.

[27] MK Singha and M Ganapathi. A parametric study on supersonic flutter behavior of laminated composite skew panels. *Composite Structures*, 69:55–63, 2005.

[28] N Sundararajan, T Prakash, and M Ganapathi. Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments. *Finite Elements in Analysis and Design*, 42:152–168, 2005.

[29] Navid Valizadeh, Sundararajan Natarajan, Octavio A Gonzalez-Estrada, Timon Rabczuk, Tinh Quoc Bui, and Stéphane PA Bordas. Nurbs-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. *Composite Structures*, 99:309–326, 2013.

[30] J Yang, YX Hao, W Zhang, and S Kitipornchai. Nonlinear dynamic response of a functionally graded plate with a through-width surface crack. *Nonlinear Dynamics*, 59:207–219, 2010.

[31] J Yang and H.-S Shen. Vibration characteristic and transient response of shear-deformable functionally graded plates in thermal environment. *Journal of Sound and Vibration*, 255:579–602, 2002.