Appendix to:
EFSA (European Food Safety Authority), 2018. Conclusion on the peer review of the pesticide risk assessment of the active substance cypermethrin. EFSA Journal 2018;16(8):5402, 33 pp. doi:10.2903/j.efsa.2018.5402
© European Food Safety Authority, 2018

Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Cypermethrin
Function (e.g. fungicide)	Insecticide
Rapporteur Member State	Belgium
Co-rapporteur Member State	Germany

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	(RS)-α-cyano-3-phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate or (RS)-α-cyano-3-phenoxybenzyl-(1RS)-cis-trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate
Chemical name (CA)	cyano(3-phenoxyphenyl)methyl 3-(2,2-dichloroethyl)-2,2-dimethylcyclopropanecarboxylate
CIPAC No	332
CAS No	52315-07-8
EC No (EINECS or ELINCS)	257-842-9
FAO Specification (including year of publication)	FAO specification 332/TC/S/F – 1993 : min. 900 g/kg. The cis- isomer content shall be declared and shall be between 40 % minimum and 60 % maximum of the declared cypermethrin content. The permitted tolerance shall be ± 10 % of the declared cis-isomer content.
Minimum purity of the active substance as manufactured (note: EU agreed min. purity: 900 g/kg (Commission Directive 2005/53/EC, 2005 whereas 920 g/kg was proposed). cis:trans : 40/60 to 60/40 Min. 950 g/kg (Arysta) Min. 958 g/kg (SBM) Each with the cis:trans ratio : 40/60 to 60/40	

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Hexane (g/kg) open	Open for others
C_{22}H_{19}Cl_{2}NO_{3}	416.3 g/mol

1R,S describes the configuration at the carboxyl-bearing carbon atom (C-1) of the cyclopropane ring; cis/trans describes the relationship to this carboxyl of the dichlorovinyl group at C-3; αR,S describes the configuration at the ‘alpha’ (α) position, i.e. the carbon atom bearing the nitrile (-CN, cyano) functional group.
Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Property	Value
Melting point (state purity)	Melting endotherm: onset 41.2°C, peak 47.3°C (98.3%, cis/trans: 37.6/62.4) 43.75°C (98.6%, cis/trans: 41.7/56.9) (supplementary information)
Boiling point (state purity)	Not applicable (decomposition)
Temperature of decomposition (state purity)	Decomposition between 220 and 370°C (98.6%, cis/trans: 41.7/56.9)
Appearance (state purity)	Pale yellow viscous liquid (room temperature) (97.9%, cis/trans: 43.0/54.9)
	Yellow viscous transparent liquid (20°C) (95.97%, cis/trans: 43.2/56.8)
Vapour pressure (state temperature, state purity)	6.78 × 10^-6 Pa at 20°C (98.6%, cis/trans: 41.7/56.9)
Henry’s law constant (state temperature)	≥ 0.31 Pa.m^3.mol^-1 (at 20°C)
Solubility in water (state temperature, state purity and pH)	< 9 µg/L at 20°C (pH=6 and pH=4) (98.3%, cis/trans: 37.6/62.4)
	≤ 10.6 µg/L at 20°C (pH=8.6) (98.6%, cis/trans: 41.7/56.9) (supplementary information)
Solubility in organic solvents (state temperature, state purity)	At 20°C (technical a.s., 94.1%, cis/trans: 41.5/58.5)
	n-heptane: 57-67 g/L
	1,2-dichlorethane: > 250 g/L
	p-xylene: > 250 g/L
	methanol: > 250 g/L
	acetone: > 250 g/L
	ethyl acetate: > 250 g/L
Solubility in organic solvents (state temperature, state purity)	At 20°C (technical a.s., 95.97%, cis/trans: 43.2/56.8) – as supplementary information:
	n-hexane: 59.8 g/L
	dichloromethane: > 252 g/L
	toluene: ≥ 250 g/L
	methanol: > 252 g/L
	acetone: > 253 g/L
	ethyl acetate: > 250 g/L
Surface tension (state concentration and temperature, state purity)	Not determined (test not required if solubility < 1 mg/L)
Partition coefficient (state temperature, pH and purity)	log P_{OW} range of discrete isomer pairs: 5.55 to 5.83 at 25°C (pH)
	No influence of pH
Dissociation constant (state purity)	No dissociation of the a.s.
UV/VIS absorption (max.) incl. ε

(state purity, pH)

Wavelength (nm)	ε (L.mol$^{-1}$.cm$^{-1}$)
204	43217
278	2368
204 (acidic)	45294
278 (acidic)	2322
220 (alkaline)	27421
307 (alkaline)	1799
\(\lambda > 290\) nm	
290 (unadjusted pH)	839
295	411
304	332
314	316
290 (acidic)	839
295 (acidic)	386
304 (alkaline)	283
314 (alkaline)	253
290 (alkaline)	1213
295	1446
304	1765
314	1674

Flammability (state purity)

Not flammable (96.5%, cis/trans: 41/59)

Supplementary information:
Not flammable (94.1%, cis/trans: 41.5/58.5 and 95.97%, cis/trans: 43.2/56.8)

Explosive properties (state purity)

Not explosive (statement)

Oxidising properties (state purity)

No oxidising properties (94.1%, cis/trans: 41.5/58.5)
Summary of representative uses evaluated, for which all risk assessments needed to be completed (Cypermethrin) (Regulation (EU) No 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Member State or Country	Product name	FG or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	Remarks						
Winter and spring cereals:	Central and Northern Zone (CEZ and NEZ)	Cypermethrin 500 EC	F	Aphids (BYDV-vector): Rhopalosiphum padi [RHOPPA] Sitobion avenae [MACSAV] Metopolophium dirhodum [METODR]	EC 500 g/L	Overall spray	Season: Autumn (winter sowing) Spring (spring sowing) Growth stage: BBCH 10 -31	1	not relevant	0.004 - 0.017	150-600	0.025	28	for cereal grain production only
				Foliar and ear aphids: Rhopalosiphum padi [RHOPPA] Sitobion avenae [MACSAV] Metopolophium dirhodum [METODR]			Season: Spring/Summer Growth stage: BBCH 31 - 77							
				Cereal leaf beetles: Oulema melanopus [LEMAME] Oulema lichenis [LEMALI]			Season: Spring Growth stage: BBCH 31 - 77							
				Midges: Haplodiplosis marginata [HAPDIMA] Sitodiplosis mosellana [SITDMO]			Season: Spring Growth stage: BBCH 31 - 69							
Crop and/or situation (a)	Member State or Country (b)	Product name	FG or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
--------------------------	-----------------------------	--------------	-------------	--------------------------------------	-------------	-------------	-------------------------------	----------------	---------					
Winter and spring cereals: Wheat, rye, triticale, barley, spelt, oat	Southern Europe (SEZ)	Cypermethrin 500 EC	F	Aphids (BYDV-vector): Rhopalosiphum padi [RHOPPA] Sitobion avenae [MACSAV] Metopolophium dirhodum [METODR] Leafhopper (WDV – vector): Psammothetia striatus [AMST]	EC 500 g/L Overall spray	Season: Autumn (winter sowing) Spring (spring sowing) Growth stage: BBCH 10-31	kg a.s./ha min-max (l) Water L/ha min-max	28	1 application/year; for cereal grain production only					
				Foliar and ear aphids: Rhopalosiphum padi [RHOPPA] Sitobion avenae [MACSAV] Metopolophium dirhodum [METODR]										
				Cereal leaf beetles: Oulema melanopus [LEMAME] Oulema lichenis [LEMALI]										
				Malacos: Haplodiplosis marginata [HAPDMA] Sitodiplosis mosellana [SITDMO] Tortrix moths: Cnephasia punicana [CNEPPU] Agrotis segetum [AGROSE]										
Crop and/or situation (a)	Member State or Country (b)	Product name	F or G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
--------------------------	-----------------------------	--------------	----------------	--	-------------	----------------	--------------------------------	----------------	---------					
Winter oilseed rape	Central and Northern Zone (CEZ and NEZ)	Cypermethrin 500 EC	F	Aphids: Myzus persicae [MYZUPE] Flea beetles: Phyllotreta sp. [PHYESP] Turnip sawfly: Athalia rosae [ATALCO] Winter stem weevil: Ceutorhynchus piciarsis [CEUTPI] Stem weevils: Ceuthorhynchus napi [CEUTNA] Ceuthorhynchus quadridens [CEUTQU]	EC 500 g/L Overall spray Season: Autumn Growth stage: BBCH 09-30	2 90 days 0.004 - 0.017 150-600 0.025 49	1 application in autumn and 1 application in spring/summer							
Crop and/or situation (a)
Spring oilseed rape

Member State or Country	Product name	FG or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks
Central and Northern Zone (CEZ and NEZ)	Cypermethrin 500 EC	F	**Aphids:**					
Myzus persicae [MYZUPE]								
Flea beetles:								
Psylliodes chrysocephala [PSYCH]								
Phyllotreta sp. [PHYESP]								
Turnip sawfly:								
Athalia rosae [ATALCO]								
Winter stem weevil:								
Ceutorhynchus pityaris [CEUTPI]								
Stem weevils:								
Ceutorhynchus napi [CEUTNA]								
Ceutorhynchus quadridens [CEUTQU]								
Pollen/Blossom beetle:								
Meligethes aeneus [MELIAE]								
Aphids:								
Brevicoryne brassicae [BRVCBR]								
Seedpod weevil:								
Ceutorhynchus assimilis [CEUTAS]								
Brassica pod midge :								
Dasineura brassicae [DASYBR]								
Aphids:								
Brevicoryne brassicae [BRVCBR]	EC 500 g/L	Overall spray	Season: Spring					
Growth stage: BBCH 09-30	1	not relevant	0.004 - 0.017	150-600	0.025	49		
Crop and/or situation (a)	Member State or Country	Product name	F or G (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	Remarks
---	---	---	---	---	---	---	---	---
Potato Southern Europe (SEZ)	Cypermethrin 500 EC	F	Colorado potato beetle: *Leptinotarsa decemlineata* [LPTNDE] Aphids: *Myzus persicae* [MYZUPE] Aphis nasturtii [APHINA] Tuber moth and caterpillars: e.g. *Phthorimaea operculella* [PHTOOP]	EC	500 g/L	Overall spray	Whole season (up to PHI)	1

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)

(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)

(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds

(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide

(f) All abbreviations used must be explained

(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench

(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated

(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthialvalicarb-isopropyl).

(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application

(k) Indicate the minimum and maximum number of applications possible under practical conditions of use

(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha

(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

Cypermethrin contained in product Cypermethrin 500 g/L EC has been tested in field development trials which demonstrated efficacious activity in accordance to the GAP of the representative uses. It has been registered in many EU countries based on detailed national assessments of the efficacy package in compliance with Regulation (EC) No 545/2011 and according to the Uniform Principles (Regulation (EC) No 546/2011), with which Member States authorities were satisfied. A more detailed assessment should be performed for products authorization applications.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

There are no adverse effects on treated crops when the product is used as recommended. A more detailed assessment should be performed for products authorization applications.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

Significant toxicity of cypermethrin is observed on aquatic organisms, bees and terrestrial non-target arthropods other than bees. Mitigation measures to limit the exposure are therefore necessary. A more detailed assessment should be performed for products authorization applications.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism

| none | none |

Assessment not triggered since there are no relevant metabolisms in groundwater for cypermethrin.

Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)

Arysta	SBM
Determination of the cypermethrin content : GC-FID	
Determination of the cis :trans isomer ratio: HPLC-UV	
HPLC-UV (CIPAC method 332/EC/(M)/3.2)	

Impurities in technical a.s. (analytical technique)

| HPLC-UV |
| GC-FID |

Plant protection product (analytical technique)

| HPLC-UV (based on the CIPAC method 332/EC/(M)/3.2). |

Method is able to determine the cis:trans ratio

Analytical methods for residues (Regulation (EU) No 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Environment	Residue definition
Food of plant origin	Cypermethrin including other mixtures of constituent isomers (sum of isomers)
Food of animal origin	Cypermethrin including other mixtures of constituent isomers (sum of isomers)
Soil	Cypermethrin
Sediment	Cypermethrin
Water	Cypermethrin
Air	Cypermethrin
Body fluids and tissues	4-OH-PBA sulfate and DCVA glucuronide

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

- GC-MS (3 fragment ions)
- LOQ = 0.01 mg/kg total cypermethrin in high water, high acid, dry [high starch and high protein] and oily matrices
- Independently validated.

Data gap:
- for linearity data for confirmative ions (primary method): a new study is on-going (dates of completion and submission not communicated).
- for extraction efficiency in oily matrices: addressed if access to the referred protected studies from the alpha-cypermethrin BASF dossier could be demonstrated.

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

- GC-MS (3 fragment ions)
- LOQ = 0.05 mg/kg total cypermethrin (meat, liver, kidney, fat)
- LOQ = 0.005 mg/kg total cypermethrin (milk)
- LOQ = 0.01 mg/kg total cypermethrin (egg)

Data gap: for confirmation method/data on milk

Extraction efficiency for milk and fat and eggs: addressed if access to the referred protected studies from the alpha-cypermethrin BASF dossier could be demonstrated.
Soil (analytical technique and LOQ)

GC-MS(NCI) (monitoring of 3 fragment ions)
LOQ = 0.05 mg/kg total cypermethrin

Data gap: for confirmation method/data: a new study is on-going (dates of completion and submission not communicated).

Water (analytical technique and LOQ)

Surface water:
GC-MS(capillary column with a mid-polarity phase) total cypermethrin
LOQ = 0.1 ng/L total cypermethrin
Confirmation by GC-MS (low polarity column with different selectivity)

Drinking water:
GC-ECD
LOQ = 0.01 µg/L total cypermethrin
Confirmation by GC-MS (performed during the ILV) Independently validated

Air (analytical technique and LOQ)
GC-MS(NCI)
LOQ = 0.375 µg/m³

Body fluids and tissues (analytical technique and LOQ)
GC-MS
LOQ = 0.01 mg/L (only for total cypermethrin, not metabolites) in swine whole blood and human urine.
Data gap for 4-OH-PBA sulfate, DCVA glucuronide

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance	Cypermethrin
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:	No classification with regard to physical and chemical properties
Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:	-

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	~50 % (based on urinary excretion and cage washes at single low dose level) This value of ~50 is considered appropriate for the AOEL and AAOEL setting.
Toxicokinetics	\(C_{\text{max}} = 1.8 \text{ mg/kg, for a dose of 2 mg/kg} \) \(T_{\text{max}} = \text{between 8 and 24 h, slightly higher in ♀} \) Rapid excretion (\(T_{1/2} > 5.9 \text{h for blood), except for fat (} T_{1/2} > 24\text{h} \))
Distribution	Rapidly distributed to blood, liver (higher amount in ♀), kidney, ovaries, muscle and skin (mainly from the back). Highest amounts of residues are found in fat
Potential for bioaccumulation	No evidence for accumulation
Rate and extent of excretion	At the lower dose, the excretion through urine and faeces is similar, while at the higher dose, the faecal excretion is predominant suggesting saturation. Excretion in expired air is minimal (0.09%). Biliary excretion is low (1-1.6% of an oral dose). After a single oral dose, the excretion is virtually complete after 72 h
Metabolism in animals	First step of cypermethrin metabolism is the hydrolytic cleavage of the ester bond, between cyclopropanecarboxylic acid and 3-phenoxybenzyl moieties Elimination of the cis/trans cyclopropanecarboxylic acid moiety (cis/trans 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid or “DCCA”) in the free and conjugated form is rapid in rats and in man. Minimal hydroxylation occurs at the methyl groups attached to the cyclopropane ring, giving a complex mixture of metabolites. There is, as yet, no evidence for the metabolism at the 2,2-dichlorovinyl group of cypermethrin. The 3-phenoxybenzyl moiety is mainly converted into 3-phenoxybenzoic acid (3PBA); 3PBA is excreted free but aromatic hydroxylation at the 4’-position (4OH3PBA) may occur before excretion followed by sulphation.

In vitro metabolism

A comparative in vitro metabolism assay reveals that metabolism of cypermethrin is similar between rat and human with no human specific metabolites being observed. The major metabolites identified are isomers of DCCA and 3PBA. No masses or proposed structure has been elucidated for some metabolites.

Toxicologically relevant compounds (animals and plants)

- Parent compound and metabolites
Acute toxicity (Regulation (EU) No° 283/2013, Annex Part A, point 5.2)

Test Type	Endpoint Descriptions	Classification	Code
Rat LD₅₀ oral	287-500 mg/kg bw	ACUTE TOXIC 3	(H302)
Rat LD₅₀ dermal	> 2000 mg/kg bw		
Rat LC₅₀ inhalation	♂♀: 3.56 mg/L	ACUTE TOXIC 4	(H332)
		STOT SE 3	(H335)
Skin irritation	Non-irritant		
Eye irritation	Slightly irritant but not classified		
Skin sensitisation	Not sensitizer		
Phototoxicity	Not phototoxic		

Short-term toxicity (Regulation (EU) No° 283/2013, Annex Part A, point 5.3)

Test Type	Endpoint Descriptions	Classification	Code
Target organ / critical effect	Rat: liver (hypertrophy), kidney (hypertrophy), nervous system Dog: nervous system Critical effect: neurotoxic clinical signs in all species	STOT RE 2	(H373)
Relevant oral NOAEL	35-day dog: 3.75 mg/kg bw per day 2-year, dog: 7.5 mg/kg bw per day 90-day, dog: 12.5 mg/kg bw per day 90-day rat: 24 mg/kg bw per day		
Relevant dermal NOAEL	15-day, rabbit: 20 mg/kg bw per day		
Relevant inhalation NOAEL	No data - not required		

Genotoxicity (Regulation (EU) No° 283/2013, Annex Part A, point 5.4)

Test Type	Endpoint Descriptions	Classification	Code
In vitro studies	Negative		
In vivo studies	Negative		
Photomutagenicity	Not required		
Potential for genotoxicity	Cypermethrin is unlikely to be genotoxic		

Long-term toxicity and carcinogenicity (Regulation (EU) No°283/2013, Annex Part A, point 5.5)

Test Type	Endpoint Descriptions	Classification	Code
Long-term effects (target organ/critical effect)	Rat: kidney (hypertrophy, ↑ urea level, body weight		
Relevant long-term NOAEL	2-year, rat: 0.5 mg/kg bw per day 18-month, mouse: 62 mg/kg bw per day		

Carcinogenicity (target organ, tumour type)

Species	Tumour Type	Notes
Rat	no tumours	
Mouse	no tumours	

Cypermethrin is unlikely to pose a hazard to humans.

Relevant NOAEL for carcinogenicity

- 2-year, rat: 50 mg/kg bw per day
- 2-year, mouse: 240 mg/kg bw per day

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

Reproduction target / critical effect

Species	Effect Area	Details
Rat	Parental toxicity	↓ body weight, ↓ food intake, acute neurotoxicity.
	Reproductive toxicity	↓ litter bodyweight gain at maternal toxic doses.
	Offspring’s toxicity	changes in litter and pup data variably observed

Relevant parental NOAEL

- 10 mg/kg bw per day

Relevant reproductive NOAEL

- 10 mg/kg bw per day

Relevant offspring NOAEL

- 10 mg/kg bw per day

Developmental toxicity

Developmental target / critical effect

Species	Effect Area	Details
Rat	Maternal toxicity	↓ body weight, clinical signs – number of days with occurrences of acute toxicity
	Developmental toxicity	total litter loss, neonatal survival indices (↓ post-implantation live birth index and ↓ viability index), a few changes in FOB
Rabbit	Maternal toxicity	No
	Developmental toxicity	no sign of teratogenicity

Relevant maternal NOAEL

- Rat: < 5 mg/kg bw per day
- Rabbit: 120 mg/kg bw per day

Relevant developmental NOAEL

- Rat: 5 mg/kg bw per day
- Rabbit: 120 mg/kg bw per day

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity

- < 5 mg/kg b.w./d

Repeated neurotoxicity

- 25 mg/kg b.w./d

Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)

- Delayed neurotoxicity: 1000 mg/kg b.w./d
- Developmental neurotoxicity:
Maternal NOAEL: < 15 mg/kg bw per day (clinical signs)

Developmental NOAEL: 15 mg/kg bw per day (FOB changes and testes/epididymis alterations)

Other toxicological studies (Regulation (EU) No 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance

Endocrine disrupting properties

Intact male rat study, 15d

NOAEL = 6 mg/kg b.w./d
LOAEL = 18 mg/kg b.w./d, based upon ↓b.w. gain.

At 50 mg/kg b.w./d (top-dose): ↑neurotoxic clinical signs, ↑sperm cell abnormality, very weak ↓seminal vesicle weight

Studies performed on metabolites or impurities

Group of hydroxylated derivatives of cypermethrin and their conjugates: unlikely to be genotoxic or to be more toxic than the parent.

Group of PBA and derivatives (4-OH-PBA, 4-OH-PBA sulfate, 3-PBA, 3-PBAld): they could be initially considered unlikely to be of higher toxicity than the parent. Data gap for further studies submitted under confirmatory data on lambda-cyhalothrin.

Medical data (Regulation (EU) No 283/2013, Annex Part A, point 5.9)

No detrimental effects on health in manufacturing personnel

Summary³ (Regulation (EU) No 1107/2009, Annex II, point 3.1 and 3.6)

Parameter	Value (mg/kg bw (per day))	Study	Uncertainty factor
Acceptable Daily Intake (ADI)	0.005	24 months combined toxicity/carcinogenicity study in the rat, supported by the DNT study	100
			3000
Acute Reference Dose (ARfD)	0.005	DNT study	3000
Acceptable Operator Exposure Level (AOEL)	0.0025*	DNT study	3000
		supported by the 24 months study	100
Acute Acceptable Operator Exposure Level (AAOEL)	0.0025*	DNT study (Bartlett, 2011)	3000

* Including correction for limited oral absorption/bioavailability (50%).

³ If available include also reference values for metabolites
Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation *(indicate name, type e.g. EC and concentration of active substance)*

| Concentrate: 1 % | Spray dilution: 5 % |

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

OPERATORS	Level of PPE	% AOEL	
German model of operator exposure			
German model (70 kg b.w. default)			
Cereals and oil seed rape; Field crop tractor-mounted	No PPE = long work wear (long sleeved shirt and trousers) but no gloves	36.46	
20 ha/day			
Application rate 0.025 kg/ha			
Potato; Field crop tractor-mounted	No PPE = long work wear (long sleeved shirt and trousers) but no gloves	72.91	
20 ha/day			
Application rate 0.05 kg/ha			
UK POEM model of operator exposure			
UK POEM (60 kg b.w. default)			
Cereals and oil seed rape; Field crop tractor-mounted	No PPE = single layer of work clothing, but no gloves	404.17	
50 ha/day			
● Application rate 0.025 kg/ha (0.05 L/ha)	PPE (gloves during mix/load and application)	59.17	
Potato; Field crop tractor-mounted	No PPE = single layer of work clothing, but no gloves	522.92	
50 ha/day			
Application rate 0.05 kg/ha (0.025 L/ha)	PPE (gloves during mix/load and application)	80.42	
EFSA model of operator exposure			
EFSA model (60 kg b.w. default)			
Cereals and oil seed rape; Field crop tractor-mounted	No PPE = single layer of work clothing (option 'Work wear - arms, body and legs covered'), but no gloves	48.92	
50 ha/day			
● Application rate 0.025 kg/ha			
Potato; Field crop tractor-mounted	No PPE = single layer of work clothing (option	83.99	
50 ha/day			
Activity/Region	Application Rate	PPE Level	% AOEL
-----------------	-----------------	-----------	--------
Scouting/cereals and oilseed rape; Tractor-mounted boom sprayer	0.025 kg/ha, 2 applications	No PPE	12.0
Scouting/potatoes; Tractor-mounted boom sprayer	0.05 kg/ha, 1 application	No PPE	21.4
Cereals and oil seed rape; Field crop tractor-mounted	0.025 kg/ha	No PPE = single layer of work clothing (option ‘Work wear - arms, body and legs covered’, but no gloves)	7.0
Potato; Field crop tractor-mounted	0.05 kg/ha	No PPE = single layer of work clothing (option ‘Work wear - arms, body and legs covered’, but no gloves)	14.0

BYSTANDERS AND RESIDENTS

Activity/Region	Application Rate	Bystander or Resident, adults or children	% AOEL
Cereals and oil seed rape; Field crop tractor-mounted	0.025 kg/ha	Bystander adults	2.31
		Bystander children	1.81
		Resident adults	0.29
		Resident children	0.75
Potato; Field crop tractor-mounted	0.05 kg/ha	Bystander adults	4.63
		Bystander children	3.62
		Resident adults	0.34
		Resident children	0.87
EFSA model for estimation of bystander and resident exposure

(60 kg b.w. default)

Cereals and oil seed rape; Field crop tractor-mounted	Bystander or resident, adults or children	% (A)AOEL
	Bystander	
	adults	4.69
	children	8.44
	Resident	
	adults	14.21
	children	55.39
	Potato; Field crop tractor-mounted	
	50 ha/day	
	Application rate 0.025 kg/ha	
	Bystander	
	adults	9.38
	children	16.88
	Resident	
	adults	18.71
	children	65.47

Classification with regard to toxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance:

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]⁴:

Cypermethrin
H302: Harmful if swallowed
H332: Harmful if inhaled
H335: May cause respiratory irritation

Peer review proposal ⁵ for harmonised classification according to Regulation (EC) No 1272/2008:

| H302: Harmful if swallowed |
| H332: Harmful if inhaled |
| H335: May cause respiratory irritation|
| H373: May cause damage to organs through prolonged or repeated exposure |

⁴ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

⁵ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.
Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered)	Crop groups	Crop(s)	Application(s)	DAT (days)
Fruit crops	Apples*	Applied directly (via syringe) to fruits and leaves (application rate not specified); cis-cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$; trans-cypermethrin $[^{14}\text{C}-\text{Ph}]$	26 (leaves); 22 (apples)	
Fruit crops	Potatoes	Foliar spraying, 2x 50 g a.s./ha (2N); 14 d interval Cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$	3	
Root crops	Sugar beet	Foliar spraying, 3x 0.27/0.22 kg a.s./ha (13-16N); interval 27d / 35d Cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$	21	
Leafy crops	Lettuce*	Applied directly via syringe cis-cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$; trans-cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$	Study I (indoor) 18	
Leafy crops		Foliar spraying, 2 x 0.3 kg a.s./ha Cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$	Study II (field) 19, 21	
Leafy crops		Applied directly via syringe, 1x 0.3 kg a.s./ha Cypermethrin $[^{14}\text{C}-\text{Ph}]$	Study III (indoor) 0,3,7,15,30	
Leafy crops	Cabbage*	Applied directly via syringe cis-cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$; trans-cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$	14, 42	
Cereals/grass crops	Wheat	Foliar spraying, 2x 25 g a.s./ha (2N) at BBCH 51 and BBCH 75; Cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$	8 (hay; BBCH 79)), 28 (straw, grain)	
Cereals/grass crops	Maize/corn	Painting, (a) 2x 0.43 kg a.s./ha (34 N) (b) 3x 0.43 kg a.s./ha (ca. 50 N) Cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$	Study I * (a) 3 (forage, stalk, husk, ears); 15 (silage) (b) 29 (fodder, grain)	
		Foliar spraying, at 0.151 kg a.s./ha (6N) **Zeta-cypermethrin $[^{14}\text{C}-\text{Ph} \;/ \;^{14}\text{C}-\text{Cy}]$	Study II (indoor) 31 (forage) 80 (stover/husk/cobs, grain)	
Pulses/Oilseeds

Crop	Description	Conditions
Oilseed rape	Foliar spraying, 1x 25 g a.s./ha (1N); first appl. at BBCH 30	(a) 21 (seeds); (b) 0 (forage), 49 (seeds)
	Cypermethrin [14C-Ph / 14C-Cy]	

Cotton

Crop	Description	Conditions
	Applied directly (via syringe), cis-cypermethrin [14C-Ph / 14C-Cy]; trans-cypermethrin [14C-Ph]	Study I * (indoor) 42
	Applied directly	
	Cypermethrin [14C-Ph]	
	Foliar spraying, 3x 0.3 kg a.s./ha	Study II * (indoor) 35
	cis-cypermethrin [14C-Ph / 14C-Cy]; trans-cypermethrin [14C-Ph]	
	Cypermethrin [14C-Ph / 14C-Cy]	Study III * (field) > 100
	Foliar spraying, 1x 0.67 kg a.s./ha	Study IV 34 (forage), 74/88 (bolls)
	Cypermethrin [14C-Ph / 14C-Cy]	

Soya bean

Crop	Description	Conditions
	Foliar spraying, 2 x 0.54 kg a.s./ha	> 40
	Cypermethrin [14C-Ph]	

Miscellaneous

Crop	Description	Conditions
	cis-cypermethrin [14C-Ph]; trans-cypermethrin [14C-Cy]; 3-PBAcid [14C-Ph]	--

14C-Ph: 14C-[phenoxybenzyl]; 14C-Cy: 14C-cyclopropyl (labelling always tested separately)

* No stand-alone fully OECD guideline-compliant study (deficiencies noted).

Only the metabolism studies on potatoes, wheat and oilseed rape (and some of the studies on sugar beet, maize and cotton) were conducted under GLP and according to OECD guidelines. Only enantiospecific analysis of cypermethrin in the potato, wheat and OSR study.

Rotational crops (metabolic pattern)

OECD Guideline 502

Crop groups	Crop(s)	PBI (days)	Comments
Root/tuber crops	Sugar beet	29, 60, 120	1 kg a.s./ha (20N – cf. repr. use potato 1x50g/ha)
	14C-benzyl cypermethrin (all crops) and 14C-cyclopropyl cypermethrin (sugar beet only)		
Leafy crops	Lettuce	29, 60, 120	
Cereal (small grain)	Wheat	29, 60, 120	
Other	Cotton (Oilseeds)	29, 60, 120	

Rotational crop and primary crop metabolism similar?

Certain potential for uptake of soil residues, with preference of cypermethrin metabolites specific to the cycloprane moiety, no identification of residues conducted. Further rotational crop metabolism waived for representative uses, due to insignificant total residues expected at 1N.

Processed commodities (standard hydrolysis study)

Conditions	Cypermethrin	M5	M7	Comments
20 min, 90°C, pH 4	99.7%	(-)	(-)	Benzyl-label

OECD Guideline 507

Time	Temp.	%	-	-	Benzyl-label
60 min, 100°C, pH 5	97.6%	(-)	(-)	Benzyllabel	
20 min, 120°C, pH 6	54.7%	(-)	33.7%	Benzyl-label	
	56.1%	30.1%	(-)	Cyclopropyl-label	

Results expressed as mean % of the applied radioactivity; (-) not detected

M5: DCVC acid; M7: 3-PBAld

Residue pattern in processed commodities similar to residue pattern in raw commodities?

Yes (for processed commodities involving pasteurization, boiling, baking and/or brewing);
No (for processed commodities involving sterilisation and other processing operations combining high temperature/pH ≥6)

Cypermethrin is thermally unstable. There are indications that degradation of cypermethrin is significantly influenced by the food matrix: e.g. significant degradation also observed in tomato paste (pH 4.3-4.5) upon cold storage (12 days at 5°C); Significant degradation observed during canning of peeled tomatoes;

Main The same residue definition as for primary crops is applicable to processed commodities upon finalisation of the assessment of the toxicological relevance of metabolites with the 3-phenoxycbenzoyl moiety (3-PBAlddehyde). degradation product: 3-phenoxycbenzaldehyde (3-PBAld)

Plant residue definition for monitoring (RD-Mo)

OECD Guidance, series on pesticides No 31

Cypermethrin including other mixtures of constituent isomers (sum of isomers)

Plant residue definition for risk assessment (RD-RA)

Cypermethrin (sum of isomers) pending finalisation of the assessment of the genotoxic potential of 3-phenoxycbenzoic acid (3-PBA) and review of the preliminary conclusions in toxicology on the whole group of related metabolites bearing the 3-phenoxycbenzoyl moiety (besides 3-PBA also e.g. PBAld, 4-OH-PBA) once the confirmatory data on lambda-cyhalothrin have been peer reviewed (provisional)

Conversion factor (monitoring to risk assessment)

Pending finalisation of residue definition for risk assessment (not necessary if identical residue definitions are confirmed for monitoring and risk assessment)

Metabolism in livestock (Regulation (EU) No 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)

Animals covered

Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment			
Laying hen	0.57	14	Study I			
	0.12 – 0.13	8	Study II			
	0.67 – 0.77	8	Study II			
Cow/Goat	Ca. 0.0036	20 or 21	Cow *			
	0.1 N (sheep) – 0.2 N (bovine)		Cypermethrin [14C-Ph]			
Animal	Time needed to reach a plateau concentration in milk and eggs (days)	Animal residue definition for monitoring (RD-Mo)	Animal residue definition for risk assessment (RD-RA)	Conversion factor (monitoring to risk assessment)	Metabolism in rat and ruminant similar (Yes/No)	Fat soluble residues (Yes/No) (FAO, 2009)
-----------------	---	--	--	---	---	---
Pig					Yes	Yes
Fish					No study submitted (data gap)	
Cow *						
0.09 N (sheep)	Milk: 3-7 days	Cypermethrin including other mixtures of constituent isomers (sum of isomers)				
Cow *						
0.17 N (sheep)						
5.7 N (sheep)						
Pig						
Fish						

Note:

- **Ca.** 0.09
- **Ca.** 0.17
- 0.49 – 0.55

Conversion factor (monitoring to risk assessment)

- **1** occurrence data for all cypermethrin isomers to be considered, but toxicity of alpha-cypermethrin to be considered by application of a relative potency factor of 4 for risk assessment.

- **1** pending clarification on the relative toxicity of individual cypermethrin isomers and finalisation of the assessment of the genotoxic potential of 3-phenoxybenzoic acid (3-PBA) and review of the preliminary conclusions in toxicology on the whole group of related metabolites bearing the 3-phenoxybenzoyl moiety once the confirmatory data on lambda-cyhalothrin have been peer reviewed (provisional).

Metabolism in rat and ruminant similar (Yes/No)

- Yes

Fat soluble residues (Yes/No) (FAO, 2009)

- Yes

(Log Pow for Cypermethrin = 5.6 – 5.8;
Concentration of cypermethrin residues in tissue fat and milk fat observed in animal metabolism and feeding studies)
Residues in succeeding crops (Regulation (EU) No 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study	Confined rotational crop study conducted with wheat, sugar beet, lettuce and cotton planted 29, 60 and 120 days after soil application with 14C-benzyl (and 14C-cyclopropyl)-labelled Cypermethrin at a rate of 1 kg a.s./ha (20N) indicated that residue levels in rotational crops will be well below 0.01 mg/kg when primary crops are treated at a 1N rate.
(Quantitative aspect)	
OECD Guideline 502	

Field rotational crop study	Data provided not acceptable, however currently no further data required
OECD Guideline 504	
Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1)
OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Months)
			Cypermethrin
High water content	Lettuce	< -18	12
	Peas (fresh without pods)	< -18	12
	Sugar beet leaves	< -18	12
	Tomatoes	< -18	18
	Maize whole plant	< -18	10
	Head cabbage	< -18	5
High oil content	Oilseed rape seeds	< -18	12
High protein content		---	---
High starch content	Wheat grain	< -18	12
	Sugar beet root	< -18	12
	Maize grain	< -18	10
High acid content		---	---
Processed products		---	---
Other		---	---

Upon frozen storage, residues of cypermethrin remain stable for at least 12 months in oilseed rape seeds and in all plant products belonging to the category of high water content or high starch content commodities.

Animal	Animal commodity	T (°C)	Stability (Months)
			Cypermethrin
Hen	Muscle	-18	10
	Liver	---	---
	Kidney	---	---
---	Milk	---	---
Hen	Egg	-18	9
Hen	Fat	-18	10
	Fat	-20	<41 days

Storage stability was investigated in livestock feeding studies (samples with incurred residues). Apparent instability in bovine fat was observed in a storage stability test performed with incurred residues within the cow feeding study.
Summary of residues data from the supervised residue trials (Regulation (EU) No 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Wheat (grain)	NEU	< 0.01 (5x), 0.01, 0.02 (2x)	Proportionality concept applied to SEU dataset due to majority of trials being conducted at rate >25% deviating from cGAP rate. MRL proposal derived from merged NEU/SEU datasets. 1 additional GAP-compliant SEU trial is required (data gap). Extrapolation according to SANCO 7525/VI/95 rev.10.2 (EC, 2016)	0.04 (tentative)	0.02	<0.01
	SEU	1x 40 g/ha: < 0.01 (4x), 0.01, 0.04 1x 25 g/ha: <0.01 Scaled down to cGAP rate (1x 25 g/ha): <0.01 (6x), 0.03				
	NEU + SEU	< 0.01 (11x), 0.01, 0.02 (2x), 0.03				
Wheat (straw)	NEU	<0.1, 0.21, 0.25, 0.26, 0.35, 0.43, 0.48, 0.57	Proportionality concept applied to SEU dataset due to majority of trials being conducted at rate >25% deviating from cGAP rate. *highest results from 2 dependent trials (experimental replicates) 4 trials with application rate slightly outside +25% deviation range (32-34 g a.s./ha) Extrapolation according to SANCO 7525/VI/95 rev.10.2 (EC, 2016) At least 2 additional trials on barley compliant with the SEU GAP are required (data gap).	0.3 (tentative)	0.57	0.31
	SEU	1x 40 g/ha: 0.25, 0.44, 0.45, 0.58, 0.60, 1.00 1x 25 g/ha: < 0.1 Scaled down to cGAP rate (1x 25 g/ha): <0.1, 0.16, 0.28, 0.28, 0.36, 0.38, 0.63			0.63	0.28
	NEU + SEU	<0.1 (2x), 0.16, 0.21, 0.22, 0.25, 0.26, 0.28, 0.32, 0.35, 0.38, 0.43, 0.48, 0.57, 0.63			0.63	0.28
Barley (grain)	NEU	0.01, 0.03, 0.04 (2x), 0.05, 0.05, 0.09, 0.10, 0.10, 0.11, 0.12, 0.19	MRL proposal derived from NEU dataset. 3 trials with application rate slightly outside +25% deviation range (32-34 g a.s./ha) Extrapolation according to SANCO 7525/VI/95 rev.10.2 (EC, 2016) At least 2 additional trials on barley compliant with the SEU GAP are required (data gap).	0.19	0.19	0.07
	SEU	< 0.01, 0.02 (2x), 0.03 0.05 (2x)			0.05	0.03

Representative uses
- Risk assessment residue definition: Cypermethrin (sum of isomers) *(provisional)*;
- Monitoring residue definition: Cypermethrin including other mixtures of constituent isomers (sum of isomers)

OECD Guideline 509, *OECD* Guidance, series on pesticides No 66 and *OECD* MRL calculator

- Crop: Representative uses Risk assessment residue definition: Cypermethrin (sum of isomers) *(provisional)*; Monitoring residue definition: Cypermethrin including other mixtures of constituent isomers (sum of isomers)
- Region/Indoor: (a)
- Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)
- Recommendations/comments (OECD calculations)
- MRL proposals (mg/kg)
- HR (mg/kg) (c)
- STMR (mg/kg) (d)
Peer review of the pesticide risk assessment of the active substance cypermethrin

Crop, Region/Indoor (a), Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)

Crop	Region/Indoor (a)	Residue levels (mg/kg)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Barley (straw) (extrapolated to oats)	NEU	< 0.1, 0.2, 0.3 (3x), 0.33 (3x), 0.36, 0.37, 0.40, 0.62	Shorter interval (14 ±1 days) between applications, but <LOQ residue situation confirmed	Not applicable	0.62	0.33
[1 x 25 g/ha; PHI 28 days]	SEU	0.2, 0.3, 0.5, 0.6, 0.9, 1.0			1.0	0.4
Oilseed rape (seeds) [2 x 25 g/ha; min. interval 90 days; PHI 49 days]	NEU	< 0.01 (8)	2 applications instead of 1 (repr. use); ‘zero’ residue situation (predicted from representative potato metabolism study) confirmed	0.01*	< 0.01	< 0.01
Potatoes [1 x 50 g/ha; PHI 3 days]	SEU	< 0.01 (7)		0.01*	< 0.01	< 0.01

Summary of the data on formulation equivalence OECD Guideline 509

Crop	Region	Residue data (mg/kg)	Recommendations/comments			
Potatoes	SEU	< 0.01 (2)	2x 50 g/ha EC formulation (Emulsifiable concentrate)	Not applicable	< 0.01	< 0.01
SEU	< 0.01 (2)	2x 50 g/ha ME formulation (Micro-emulsion)				

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)

Product(s)	Region	Residue data (mg/kg)	Recommendations/comments

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.

(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for Monitoring reported in brackets (HRMo).

(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMRMo).
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment
Risk assessment residue definition: Cypermethrin (sum of isomers) *(provisional)*				
Cereal straw (Barley/Oat)	0.4	STMR	1.0	HR
Cereal straw (Rye/Triticale/Wheat)	0.28	STMR	0.63	HR
Potato culls	-	‘zero’-residue situation (<0.01 mg/kg)	-	‘zero’-residue situation (<0.01 mg/kg)
Cereal grain (Barley, Oat)	0.07	STMR	0.07	STMR
Cereal grain (Rye/Triticale/Wheat)	0.01	STMR	0.01	STMR
Brewer’s grain dried	0.09	0.07 (STMR) x 1.22 (PF₁)	0.09	0.07 (STMR) x 1.22 (PF₁)
Distiller’s grain dried	0.09	0.07 (STMR) x 1.22 (PF₁)	0.09	0.07 (STMR) x 1.22 (PF₁)
Potato process waste	-	‘zero’-residue situation RAC (<0.01 mg/kg)	-	‘zero’-residue situation RAC (<0.01 mg/kg)
Potato dried pulp	-	‘zero’-residue situation RAC (<0.01 mg/kg)	-	‘zero’-residue situation RAC (<0.01 mg/kg)
Rape meal	-	<LOQ residue situation RAC (<0.01 mg/kg)	-	<LOQ residue situation RAC (<0.01 mg/kg)
Wheat gluten meal	0.003	0.01 (STMR) x 0.28 (PF²)	0.003	0.01 (STMR) x 0.28 (PF²)
Wheat, milled by-products	0.02	0.01 (STMR) x 1.62 (PF³)	0.02	0.01 (STMR) x 1.62 (PF³)

0 PF of 1.22 based on “Dried spent grain” derived from the barley processing study
1 PF of 0.28 based on “Gluten feed meal” derived from the wheat processing study
2 PF of 1.62 based on mean of “bran fine” & “bran coarse” derived from the wheat processing study
Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

OECD Guideline 505 and OECD Guidance, series on pesticides No 73

Only applicable to residues of Cypermethrin (sum of isomers)

MRL calculations	Ruminant	Pig/Swine	Poultry	Fish					
Highest expected intake (mg/kg bw/d) (mg/kg DM for fish)	Beef cattle	Ram/Ewe	Breeding	0.002	Broiler	0.005	Carp	0.132	
Dairy cattle	0.015	Lamb	0.030	Finishing	0.002	Layer	0.010	Trout	0.193
Intake >0.004 mg/kg bw	Yes	Yes	No	Yes	Yes				
Feeding study submitted	Study I (0.028/0.085/0.28 mg/kg bw/d); Study II (0.24/0.71/2.4 mg/kg bw/d); Study III (0.0082/0.22/1.9 mg/kg bw/d); Study IV (0.022/0.057/0.21 mg/kg bw/d)	No (see ruminant study)	Study I (0.23/0.70/2.3 mg/kg bw/d – 23N/70N/230N); Study II (0.062/0.28/0.82 mg/kg bw/d – 6N/28N/82N)	No (Note: significant residues ≥0.01 mg/kg not expected in fish matrices based on fish metabolism study with alpha-cypermethrin (owned by other company) to which applicant should obtain legitimate regulatory access)					
Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and **N rates**	Level 0.022	Level 0.022	Level 0.022	Level 12N/9N	Level 0.062	level 6N/28N/82N	Level: n.a.	N rate: Carp/Trot: n.a.	
Estimated HR^(a) at 1N	Meat	Muscle	Fat	Meat^(b)	Liver	Kidney	Milk^(a)	Eggs	
MRL proposals	0.05*	0.05*	0.05*	0.05*	0.05*	0.05*	0.05*	0.05*	
Method of calculation^(c)	Tf	Tf (It for fat; Ln for milk)	Tf	Tf	Not applicable				

^(a): Estimated HR calculated at 1N level (estimated mean level for milk).

^(b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry.

^(c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by extrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
STMR calculations	Ruminant	Pig/Swine	Poultry	Fish						
Median expected intake (mg/kg bw/d) (mg/kg DM for fish)										
Beef cattle	0.005		Breeding	0.002	Broiler	0.005	Carp	0.132		
Dairy cattle	0.007	Lamb	0.013	Finishing	0.002	Layer	0.007	Trout	0.193	
					Turkey	0.004				
Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates										
Level 0.022										
Level 0.022	Beef: 4 N	Level 0.022	Lamb: 1.7N	Level 0.062	B or T: 12N					
Dairy: 3 N	Ewe: 2.2 N		Breed/Finish 11N / 11N	Layer: 9 N						
Mean level in feeding level	Estimated STMR^(b) at 1N	Mean level in feeding level	Estimated STMR^(b) at 1N	Mean level in feeding level	Estimated STMR^(b) at 1N					
Muscle	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	n.a.	n.a.		
Fat	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.027	<0.01	n.a.	n.a.
Meat^(a)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.01	n.a.	n.a.
Liver	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.01		
Kidney	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.01		
Milk	<0.005	<0.005	<0.005	<0.005						
Eggs										
Method of calculation^(c)	Tf	Tf	Tf	Tf	Not applicable					

^(a): STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

^(b): When the mean level is set at the LOQ, the STMR is set at the LOQ.

^(c): The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products: by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Conversion Factors (CF) for monitoring to risk assessment

For animal products, considering the observed shift in isomers, the relatively higher toxicological potency of alpha-cypermethrin compared to cypermethrin is considered in the risk assessment by means of an adjustment factor of 4.

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)
OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Only applicable to residues of Cypermethrin (sum of isomers)

Crop (RAC)/Edible part or Crop (RAC)/Processed product	Number of studies (a)	Processing Factor (PF)	Conversion Factor (CF_P) for RA (b)
	Individual values	Median PF	
Wheat			
Refined Flour (Type 550)	4	0.43, 0.47, 0.49, 0.52	0.48
Wholemeal Flour	4	1.12, 1.17, 1.25, 1.49	1.21
White Bread	4	0.14, 0.16, 0.17, 0.21	0.17
Wholemeal Bread	4	0.48, 0.53, 0.63, 0.65	0.58
Dried Starch	4	0.08 (2), 0.09, 0.13	0.09
Dried Gluten	4	0.44, 0.54, 0.55, 0.63	0.55
Wheat germans	4	0.22, 0.31, 0.37, 0.45	0.34
Gluten feed meal	4	0.25, 0.27, 0.28, 0.31	0.28
Wheat milled by-products:			
Shorts	1	0.34	n.a.
Middlings	1	0.49	n.a.
Bran, fine (flour processing)	4	0.18, 0.29, 0.31, 0.45	0.30
Bran, coarse	4	1.64, 2.02, 2.80, 3.06	2.93, 3.31
		1.62	---
Barley			
Barley flour	4	0.07, 0.14, 0.19, 0.21	0.17
Pot barley	4	0.09, 0.10, 0.12, 0.22	0.11
Pearl barley	4	<0.02 (2), 0.03 (2)	<0.03
Beer	4	0.01 (4)	0.01
Brewer’s grain (Brewing Malt)	4	0.39, 0.46, 0.50, 0.70	0.48
Dried spent grain (= brewer’s grain, dried)	4	0.29, 1.15, 1.29, 1.51	1.22

(a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)
(b): When the residue definition for risk assessment differs from the residue definition for monitoring
Consumer risk assessment (Regulation (EU) No 283/2013, Annex Part A, point 6.9)

Only applicable to risk assessment residue definition: Cypermethrin (sum of isomers) (provisional);

Representative uses

ADI	0.005 mg/kg bw per day
TMDI according to EFSA PRIMo (rev.2)	Highest TMDI: 46 % ADI (DK child)
NTMDI, according to (to be specified)	Not applicable
IEDI (% ADI), according to EFSA PRIMo	Max. 41 % ADI (NL child)
NEDI (% ADI), according to (to be specified)	Not applicable

Factors included in the calculations

For TMDI: MRLs derived to accommodate for repr. uses
For IEDI: STMR (plant commodities), MRLs derived to accommodate for repr. uses (animal commodities)
Adjustment factor of 4 for animal products (to reflect 4x higher toxicological potency of isomers composition in alpha-cypermethrin compared to isomer composition in cypermethrin)

ARfD	0.005 mg/kg bw
IESTI (% ARfD), according to EFSA PRIMo (rev.2)	Highest IESTI: 99.4 % ARfD (cattle milk, UK infant)
NESTI (% ARfD), according to (to be specified)	Not applicable

Factors included in IESTI and NESTI

HR (plant commodities); MRLs derived to accommodate for repr. uses (animal commodities); Adjustment factor of 4 for animal products (to reflect 4x higher toxicological potency of isomers composition in alpha-cypermethrin compared to isomers composition in cypermethrin)

Including all uses (MRL screening)

TMDI (% ADI), according to EFSA PRIMo (rev.2)	Highest TMDI: 1212 % ADI (NL child)
NTMDI (% ADI), according to (to be specified)	Not applicable
IEDI (% ADI), according to EFSA PRIMo (rev.2)	Calculation not performed
NEDI (% ADI), according to (to be specified)	Not applicable

Factors included in the calculations

EU MRLs (Reg. (EU) No 2017/626)

IESTI (% ARfD, according to EFSA PRIMo rev.2)	Highest IESTI: 5305 % ARfD (oranges)
NESTI (% ARfD, according to (to be specified)	Not applicable

Factors included in IESTI and NESTI

EU MRLs (Reg. (EU) No 2017/626)
Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Note: The safety of the derived MRLs can only be concluded once the assessment of the genotoxic potential of 3-phenoxybenzoic acid (3-PBA) and review of the preliminary conclusions on the whole group of related metabolites bearing the 3-phenoxybenzoyl moiety (i.e. 4-OH-PBA, 4-OH-PBA sulfate, 3-PBA, 3-PBALdehyde) is finalised. The proposed MRLs have therefore all to be considered tentative.

Code	Commodity/Group	MRL/Import tolerance (mg/kg) and Comments
0211000	Potatoes	0.01* SEU only
0401060	Oilseed rape seeds	0.01* NEU only
0500010	Barley	0.3 Tentative proposal due to trial in SEU missing
0500050	Oats	0.3 Tentative proposal due to trial in SEU missing Extrapolation from barley
0500070	Rye	0.04 Tentative proposal due to trial in SEU missing; Extrapolation from wheat
0500090	Wheat	0.04 Tentative proposal due to trial in SEU missing; Also applicable to spelt and triticale

Animal commodities

Code	Commodity/Group	MRL/Import tolerance (mg/kg) and Comments
1010000	Terrestrial Animals – tissues from swine, bovine, sheep, goat, equine, poultry and other farmed terrestrial animals except sheep/goat fat tissue	0.05* MRL proposals derived considering representative uses only. Remark: EU MRLs for cypermethrin (sum of isomers) in animal products (ruminant’s muscle/fat/liver/kidney/milk at 0.02 mg/kg; ruminant’s fat at 0.2 mg/kg) are also set under Commission Regulation (EU) No 37/2010 for its use as a veterinary drug.
1013020	Sheep/goat – fat tissue	0.06
1020000	Milk	0.01* Note: For (cattle) milk, there is an acute intake concern for residues above 0.01 mg/kg. However, further method validation may be required to enforce an MRL at this level (see section 1).
1030000	Birds eggs	0.01*
1100000	Products of animal origin – Fish, fish products and any other marine and freshwater food products	0.05* Remark: EU MRLs for cypermethrin (sum of isomers) in Salmonidae fish (in muscle and skin in natural proportions: 0.05 mg/kg) have been established by Commission Regulation (EU) No 37/2010 for its use as a veterinary drug.

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005
(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.

Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) No 283/2013, Annex Part A, point 7.1.1.1)
Mineralisation after 100 days

Compound	% AR after 90 d (range)	(n= 8)	% AR after 120 d (range)	(n= 8)
[14C-cyclopropyl]-cypermethrin	33.0-77.8		20.5	
[14C-phenyl]-cypermethrin	34.6-54.2		23.9	

Non-extractable residues after 100 days

Compound	% AR after 90 d (range)	(n= 4)	% AR after 120 d (range)	(n= 4)
[14C-cyclopropyl]-cypermethrin	14.1-28.4		9.1	
[14C-phenyl]-cypermethrin	20.4-36.4		24.1	

Metabolites requiring further consideration

- DCVA (cis + trans) – 0.2-47.4 % AR at 7 d (n= 8), [14C-cyclopropyl]-cypermethrin
- 3-PBA – 0.2-10.2 % AR at 7 d (n= 4), [14C-phenyl]-cypermethrin

Sterile conditions: no data available

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Compound	% AR after 90 d (range)	(n= 1)	% AR after 120 d (range)	(n= 1)
[14C-cyclopropyl]-cypermethrin	20.5		9.1	
[14C-phenyl]-cypermethrin	23.9		24.1	

Metabolites that may require further consideration

- cis-DCVA
 - flood water- 3.7-16.7 % AR at 182 d (n= 1), flooded soil-3.2-7.6 % AR at 182 d (n=1), total system- 6.9-24.3 % AR at 182 d (n=1), [14C-cyclopropyl]-cypermethrin
 - trans-DCVA
 - flood water- 11.9-21.3 % AR at 120 d (n= 1), flooded soil- 6.9-9.9 % AR at 120 d (n=1), total system- 20.4-31.2 % AR at 120 d (n=1), [14C-cyclopropyl]-cypermethrin
- 3-PBA
 - flood water- 3.7-16.6 % AR at 120 d (n=1), flooded soil-11.2-18.5 % AR at 120 d (n=1), total system- 14.9-35.1 % AR at 120 d (n=1), [14C-phenyl]-cypermethrin

Sterile conditions: no data available

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Compound	% AR after 90 d (range)	(n= 2)	% AR after 120 d (range)	(n= 1)
[14C-cyclopropyl]-cypermethrin	6.7-18.9		0.7	
[14C-phenyl]-cypermethrin	0.7-15.1		18.9	

Sterile conditions: no data available
Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Cypermethrin	Dark aerobic conditions								
	Persistence endpoints	Modelling endpoints							
Soil type									
Sandy loam	X⁷	pH^a	t. °C / % MWHC	DT₅₀/DT₉₀ (d)	St. (χ²)	Method of calculation	DT₅₀ (d) 20 °C pF2/10kPa^b	St. (χ²)	Method of calculation
(Study No. 721-001)	6.6	20/21.65	10.2/82.6	(α 0.157; β 3.038)	2.7	FOMC	5.7 (k1 0.021; k2 0.005; g 0.090)	3.7	DFOP
Sandy loam	4.2	20/12.5	24.2/80.3	10.0	SFO	27.7	10.7	SFO	
(Study No. 721-001)	4.2	20/12.5	24.2/80.3	10.0	SFO	27.7	10.7	SFO	
Clay loam	7.0	20/32.9	5.6/36.6	(k1 0.015; k2 0.007; g 0.050)	1.9	DFOP	4.2 (k1 0.014; k2 0.006; g 0.044)	1.9	DFOP
Silt loam	5.8	20/35.3	6.6/45.3	(α 0.209; β 2.349)	2.9	FOMC	6.1 (k1 0.014; k2 0.007; tb 0.554)	7.7	HS
Sandy loam	7.3	20/20.7	8.4/90.4	(k1 0.1876; k2 0.0164; g 0.5596)	1.0	DFOP	15.9	14.2	SFO
(Study No. 721-003)	7.3	20/20.7	8.4/90.4	(k1 0.1876; k2 0.0164; g 0.5596)	1.0	DFOP	15.9	14.2	SFO
Loamy sand	5.5	20/16.5	20.2/412	(k1 0.1604; k2 0.0040; g 0.4778)	2.0	DFOP	58.3	13.7	SFO
(Study No. 721-003)	5.5	20/16.5	20.2/412	(k1 0.1604; k2 0.0040; g 0.4778)	2.0	DFOP	58.3	13.7	SFO

⁷ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.
Isomer-specific DT₅₀ values relevant for modelling purposes based on SFO or DFOP kinetic model, respectively (based on study 721-003)

Cypermethrin isomer*	Speyer 5M DT₅₀ [d]	Speyer 2.2 DT₅₀ [d]	Brierlow DT₅₀ [d]	South Witham DT₅₀ [d]	Geometric mean DT₅₀ [d]
RRS	15.0 (1)	33.0	56.5 (2)	5.3 (1)	19.6
SSR	9.9 (1)	62.7 (2)	39.3 (2)	1.2	13.1
RRR	28.0	98.4 (2)	34.9	2.4	21.9
SSS	35.6	271	47.5 (2)	2.6	33.0
RSS	32.1	110	77.7 (2)	2.8	29.6
SRR	29.5	114	35.7	3.1	24.7
SRS	3.5	30.8	44.5 (2)	3.8	11.6
Geometric mean	17.5	79.4	40.8	3.1	19.7

* C-atoms configuration was provided in the following order: C1, C3, Cα

1) based on DFOP kinetics, pseudo-SFO DT₅₀
2) based on DFOP kinetics, DT₅₀ related to degradation rate of the slow phase (k2)

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Carboxamide	Dark aerobic conditions	Metabolite dosed	Soil type	X²	pH	t. °C / % MWHC	DT₅₀/ DT₉₀ (d)	f. f. k₉ / k₉	St. (χ²)	Method of calculation	DT₅₀ (d) 20 °C pF2 (pseudo-SFO)
Silt loam (Study No. 721-002)	5.6	20/40.0	1.5/104	-	3.5	FOMC α = 0.399 β = 0.324	31.3				
Clay loam (Study No. 721-002)	7.6	20/35.6	1.7/19	-	7.4	FOMC α = 0.608 β = 0.440	5.7				
Loamy sand (Study No. 721-002)

Soil type	pH	t. °C / % MWHC	DT\(_{50}\)/ DT\(_{90}\) (d)	f. f. k\(_{f}\) / k\(_{dp}\)	St. (\(\chi^2\))	Method of calculation	DT\(_{50}\) (d) 20 °C pF2 (all SFO)
Sandy loam\(^1\)	6.6	20/21.65	2.4/8.1	0.46	16.0	DFOP-SFO	2.2
Sandy loam\(^1\)	4.2	20/12.5	4.1/13.7	0.24	26.4	SFO-SFO	3.9
Clay loam\(^1\)	7.0	20/32.9	2.8/9.3	0.47	4.9	DFOP-SFO	2.6
Silt loam\(^1\)	5.8	20/35.3	1.4/4.5	0.42	13.0	HS-SFO	1.4
Loamy sand\(^2\)	5.8	20/45	0.8/3.0	-	-	Biphasic	7.0 (slow phase)
Loam \(^2\)	7.1	20/45	1.4/7.0	-	-	Biphasic	2.7 (slow phase)
Clay loam\(^2\)	6.8	20/45	5/16	-	-	SFO	4.3 (slow phase)
Loamy sand\(^3\)	5.5	20/50	0.38/1.3	-	4.7	SFO	0.38
Sandy loam\(^3\)	6.6	20/50	0.8/2.8	-	3.9	SFO	0.79
Clay\(^3\)	7.2	20/50	2.1/7	1.8	SFO		1.13

Geometric mean (if not pH dependent) 35.0

DCVA

Soil type	pH	t. °C / % MWHC	DT\(_{50}\)/ DT\(_{90}\) (d)	f. f. k\(_{f}\) / k\(_{dp}\)	St. (\(\chi^2\))	Method of calculation	DT\(_{50}\) (d) 20 °C pF2 (all SFO)
Sandy loam\(^1\)	6.6	20/21.65	5.5/18.4	0.54	13.2	DFOP-SFO	5.1
Sandy loam\(^1\)	4.2	20/12.5	2.5/8.3	0.76	11.2	SFO-SFO	2.4
Clay loam\(^1\)	7.0	20/32.9	4.6/15.4	0.53	7.0	DFOP-SFO	4.4

Geometric mean (if not pH dependent) 2.0

Arithmetic mean 0.40

pH dependence, Yes or No No

\(^{1}\) Brice, and Cooke, 2006 (parent-dosed study, study submitted for renewal of Cypermethrin, Doc. No. 721-001), degradation rates from kinetic re-assessment as provided with the dossier update of January 2017

\(^{2}\) Class and Dorn, 2003 (metabolite-dosed study, accepted in EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta-cypermethrin. EFSA Scientific Report (2008) 196, 1-119; DOI: 10.2903/j.efsa.2009.196r)

\(^{3}\) Shepler, 2011 (metabolite-dosed study, accepted in EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance gamma-cyhalothrin. EFSA Journal (2014) 12,(2):3560, 93 pp; DOI: 10.2903/j.efsa.2014.3560)

\(^{a}\) Measured in calcium chloride solution

\(^{b}\) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
DCVA

Dark aerobic conditions - the precursor from which the f.f was determined was cypermethrin, metabolite-dosed if no f.f. is indicated

Soil type	pH	t. °C / % MWHC	DT$_{50}$/DT$_{90}$ (d)	f. f. k_{f}/ k_{dp}	St. (χ^2)	Method of calculation	DT$_{50}$ (d)	Notes
Silt loam 1)	5.8	20/35.3	2.7/8.9	0.50	4.7	HS-SFO b	2.6	
Sandy loam 2)	7.3	20/20.7	18.1/60.1	0.77	16.7	DFOP-SFO b	18.1	
Sandy loam 2)	5.5	20/16.5	10.7/35.6	0.47	20.3	DFOP-SFO b	10.7	
Sandy silt loam 3)	5.6	20/40	8.1/26.7	0.46	25.0	DFOP-SFO b	8.1	
Clay loam 2)	7.6	20/35.6	9.0/29.7	0.75	35.4	DFOP-SFO b	9.0	
Loamy sand 3)	5.8	20/45	3.4/10	-	-	SFO	3.4	
Loamy sand 4)	5.8	20/45	3.6/10	-	-	SFO	3.6	
Loamy sand 3)(a)	5.8	20/45	-	-	-	-	3.5 (c)	
Loam 3)	7.1	20/45	2.7/10	-	-	SFO	2.4	
Loam 4)	7.1	20/45	3.1/10	-	-	SFO	2.8	
Loam 3)(a)	7.1	20/45	-	-	-	-	2.6 (c)	
Clay loam 3)	6.8	20/45	8.0/27	-	-	SFO	6.9	
Clay loam 4)	6.8	20/45	11.0/35	-	-	SFO	9.5	
Clay loam 3)(a)	6.8	20/45	-	-	-	-	8.1 (c)	

Geometric mean (n = 11 d)

pH dependence, Yes or No	No
Geometric mean (n = 8)	5.5
Arithmetic mean (n = 8)	0.60

1) Brice, and Cooke, 2006 (parent-dosed study, study submitted for renewal of Cypermethrin, Doc. No. 721-001), degradation rates from kinetic re-assessment as provided with the dossier update of January 2017
2) Yeomans, and Kelly, 2015 (parent-dosed study, study submitted for renewal of Cypermethrin, Doc. No. 721-003)
3) cis-DCVA in Class and Dorn, 2003 (metabolite-dosed study, accepted in the EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta-cypermethrin. EFSA Scientific Report (2008) 196, 1-119; DOI: 10.2903/j.efsa.2009.196r)
4) trans-DCVA in Class and Dorn, 2003 (metabolite-dosed study, accepted in the EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta-cypermethrin. EFSA Scientific Report (2008) 196, 1-119; DOI: 10.2903/j.efsa.2009.196r)

a Normalised using a Q10 of 2.58 and a Walker equation coefficient of 0.7

b First model refers to the parent, second to the metabolite

c Geometric mean considering total DCVA, i.e. cis- and trans-DCVA considered as replicates

d Geometric mean based on total DCVA for the separate soils
Rate of degradation field soil dissipation studies (Regulation (EU) No. 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) No. 284/2013, Annex Part A, point 9.1.1.2.1)

Cypermethrin	Aerobic conditions	Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH (a)	Depth (cm)	DT₅₀ (d) actual	DT₉₀(d) actual	St. (χ²)	DT₅₀ (d) Normc)	Method of calculation
Silt loam (Study No. 723-001) Bare soil	Germany	6.11	10	17.1	56.9	15.21	NA(b)	SFO		
Sandy loam (Study No. 723-001) Bare soil	Germany	6.27	10	9.3	30.9	5.36	NA(b)	SFO		
Loam (Study No. 723-001) Bare soil	France	6.89	10	31.2	103.6	19.62	NA(b)	SFO		
Sandy clay loam (Study No. 723-001) Bare soil	Spain	7.31	10	29.8	99.1	14.80	NA(b)	SFO		
Geometric mean (if not pH dependent)								19.6	65.2	
pH dependence, Yes or No								No		

(a) Measured in calcium chloride solution
(b) NA= Not Available
(c) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix

X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.
Combined laboratory and field kinetic endpoints for modelling (when not from different populations)*

Endpoint	Value
Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)	11.4 days
Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)	Carboxamide: 35 days; 3-PBA: 3.1 days; DCVA: 5.5 days
Kinetic formation fraction (f. f. k_i / k_{dp}) of transformation products, arithmetic mean	Carboxamide from cypermethrin: 0.66; 3-PBA from cypermethrin: 0.40; DCVA from cypermethrin: 0.60

* Only relevant after implementation of the published EFSA guidance describing how to amalgamate laboratory and field endpoints.

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration: Not applicable; DT$_{90}$ from field study (worst-case 104 days) is <1 year. No studies on soil accumulation were submitted.

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Cypermethrin	Dark anaerobic conditions						
Soil type	χ^2	pHa	t. °C / % MWHC	DT$_{50}$ / DT$_{90}$ (d)	DT$_{50}$ (d) 20 °Cb	St. (χ^2)	Method of calculation
Sandy loam (Study No. 722-001)	6.6	20/21.65	41.1/188.1 (α 1.053; β 68.202)	3.2	FOMC		
Geometric mean (if not pH dependent)	-						

a Measured in calcium chloride solution
b Normalised using a Q10 of 2.58
c C: cyclopropyl-label; p: phenyl-label

9 X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.
Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Soil type	pH	t. °C / % MWHC	DT_{50}/DT_{90} (d)	f. f. \(k_f/k_{dp}\)	DT_{50} (d) 20°C	St. \((\chi^2)\)	Method of calculation
Sandy loam (Study No. 722-001)	6.6	20/21.65	>1000/>1000	0.59	16.5	SFO	
Sandy loam (Study No. 994-07003)	5.7	20/35.3	42.6/220.0 \((k_1 0.0957; k_2 0.0091; t_b 3.54)\)	2.6	HS		
Sandy loam (Study No. 722-001)	8.6	20/20.7	44/193 \((k_1 5.112; k_2 0.0108; g 0.195)\)	4.0	DFOP		

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Cypermethrin	Soil photolysis					
Soil type	X\(^{10}\)	pH\(^{a}\)	t. °C / % MWHC	DT_{50}/DT_{90} (d) calculated at 30ºN	St. \((\chi^2)\)	Method of calculation
Silt loam (Study No. 994-07003)	5.7	20/35.3	42.6/220.0 \((k_1 0.0957; k_2 0.0091; t_b 3.54)\)	2.6	HS	
Sandy loam (Study No. 722-001)	8.6	20/20.7	44/193 \((k_1 5.112; k_2 0.0108; g 0.195)\)	4.0	DFOP	

\(^{a}\) Measured in water

\(^{10}\) X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.
Soil adsorption active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH\(^a\)	\(K_d\) (mL/g)	\(K_{doc}\) (mL/g)	\(K_F\) (mL/g)	\(K_{Foc}\) (mL/g)	1/n
Sandy loam (sediment)	1.7	5.4	8976	527972	Not determined		
(Study No. 731-002)							
Loam	3.0	6.3	4858	202418			
(Study No. 731-002)							
Loamy sand	0.8	4.2	4595	574360			
(Study No. 731-002)							
Clay loam	4.8	7.5	3871	80653			
(Study No. 731-002)							
Silt loam	3.2	4.7	4876	152388			
(Study No. 731-002)							

Geometric mean (if not pH dependent)*: 194425**
Arithmetic mean (if not pH dependent): 1***

pH dependence, *Yes or No*: No

* Measured in calcium chloride solution
* Only relevant after implementation of the published EFSA guidance.
** Sediment excluded
***Default value
Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

3-PBA

Soil Type	OC %	Soil pH (CaCl₂)	Soil pH (H₂O)	Kᵢ (mL/g)	Kᵢ,oc (mL/g)	1/n
Loamy sand ¹)	0.8	4.2	5.1 b)	16.62	2078	0.88
Silt loam ¹)	2.7	6.1	7.0 b)	4.97	184	0.82
Clay loam ¹)	4.8	7.5	8.0 b)	2.84	59	0.77
Sandy loam ²)	0.98	6.4	6.9 a)	0.88	90.1	0.84
Clay ²)	1.75	7.2	7.7 a)	1.06	60.5	0.88
Silt loam ²)	1.3	-	6.6 b)	0.76	58.8	0.88
Silty clay ³)	2.56	-	6.4 c)	3.11	122	0.66
Sandy loam ³)	0.83	-	6.8 c)	0.98	118	0.65
Sandy loam ³)	1.14	-	5.6 c)	2.44	215	0.67
Loamy sand ⁴)	2.1	5.5	6.1 a)	-	58	0.914
Sandy loam ⁴)	1.0	6.6	7.1 a)	-	71	0.864
Clay ⁴)	1.7	7.2	7.7 a)	-	47	0.865

Geometric mean (n = 11, soil with pH of 4.2 not included)
Arithmetic mean (n = 11, soil with pH of 4.2 not included) 0.801

pH dependence d) No

¹) Wimbush, and Cooke, 2006 (study submitted for the renewal on Cypermethrin, Doc. No. 731-003)
²) Hein, 2009 (accepted in the EFSA conclusion on the peer review of the pesticide risk assessment of the active substance beta-cypermethrin. EFSA Journal 2014;12(6):3717; DOI: 10.2903/j.efsa.2014.3717)
³) Gravelle, 1994 (accepted in the EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta-cypermethrin. EFSA Scientific Report (2008) 196, 1-119; DOI: 10.2903/j.efsa.2009.196r)
⁴) LaMar and Quistad, 2010 (accepted in EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance gamma-cyhalotrin. EFSA Journal (2014) 12,(2):3560, 93 pp; DOI: 10.2903/j.efsa.2014.3560)
a) Recalculated to pH-H₂O using the equation pH-H₂O = 0.953 pH-CaCl₂ + 0.85 as presented in the Final Report of the FOCUS Ground Water Work Group (Sanco/13144/2010, version 3, 10 October 2014
b) pH measured in water
c) pH assumed to be measured in water, although not explicitly stated in the DAR on zeta-cypermethrin (May 2008)
d) pH dependency was tested with the Kendall’s tau test

DCVA

Soil Type	OC %	Soil pH (CaCl₂)	Soil pH (H₂O)	Kᵢ (mL/g)	Kᵢ,oc (mL/g)	1/n
Loamy sand ¹)	0.8	4.2	5.1 b)	5.12	640	1.05
Silt loam ¹)	2.7	6.1	7.0 b)	1.85	69	1.00
Clay loam ¹)	4.8	7.5	8.0 b)	0.61	13	0.92
Loamy sand ²)	0.8	4.2	5.1 b)	5.00	625	1.00
Carboxamide

Soil Type	OC %	Soil pH	K_d (mL/g)	K_{oc} (mL/g)	K_f (mL/g)	K_{foc} (mL/g)	1/n
Silt loam (Study No. 731-001)	2.7	5.6	867	32102			
Sand (Study No. 731-001)	0.8	3.8	459	57376			
Loam (Study No. 731-001)	5.2	7.4	760	14609			

Geometric mean (if not pH dependent) *

| 29966 |

Arithmetic mean (if not pH dependent) *

| 1** |

pH dependence, *Yes or No*

| No |

1) cis-DCVA in Wimbush and Cooke, 2006 (study submitted for the renewal on Cypermethrin, Doc. No. 731-003)
2) trans-DCVA in Wimbush and Cooke, 2006 (study submitted for the renewal on Cypermethrin, Doc. No. 731-003)
3) CPA corresponding to DCVA in Hein, 2009 (accepted in the EFSAs conclusion on the peer review of the pesticide risk assessment of the active substance beta-cypermethrin. EFSA Journal 2014;12(6):3717; DOI: 10.2903/j.efsa.2014.3717)
4) trans-DCVA in Gravelle, 1994 (accepted in the EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta-cypermethrin. EFSA Scientific Report (2008) 196, 1-119; DOI: 10.2903/j.efsa.2009.196r)

a) Recalculated to pH-H$_2$O using the equation pH-H$_2$O = 0.953 pH-CaCl$_2$ + 0.85 as presented in the Final Report of the FOCUS Ground Water Work Group (Sanco/13144/2010, version 3, 10 October 2014
b) pH measured in water
c) pH assumed to be measured in water, although not explicitly stated in the DAR on zeta-cypermethrin (May 2008)
d) pH dependency was tested with the Kendall's tau test

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A)
point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

| Column leaching | Elution (mm): 675 mm
| | Time period (d): 63 days (after 21 days incubation of soil)
| | Leachate: <0.9 % - <1.5 % total residues/radioactivity in leachate (4 soils)
| | >99 % total residues/radioactivity retained in top 5 cm (Study No. 994-07039) |

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

| Column leaching | Elution (ml): 545.8 ml water for the silty clay soil, 373.8 ml for the loamy sand soil
| | Time period (d): until all water movement through the column has stopped
| | Leachate:
| | DCVA: 20 % and <4 % AR in leachates from the silty clay soil and the loamy sand soil, respectively (2 soils)
| | 0.2 % DCVA at the 41-43 cm depth in both soils (estimated, not measured)
| | > 92 % DCVA in the 18-38 cm in the silty clay soil
| | > 95 % DCVA in the 0-30.5 cm in the loamy sand soil
| | > 90 % AR in the pooled segment extracts (TLS analysis, 2 soils) were identified as PBAc (Study No. 994-07038) |

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

| Lysimeter/field leaching studies | Results of the FOCUS groundwater modelling assessment demonstrate that the formulation can be used as proposed in accordance with its supported uses without risk of cypermethrin exceeding the 0.1 μg/L regulatory threshold (vol. 3 CP B8) therefore no field leaching data are provided or are considered necessary. |
Hydrolytic degradation (Regulation (EU) No 283/2013, Annex Part A, point 7.2.1.1)

Hydrolytic degradation of the active substance and metabolites > 10 %

| pH 4: | Cypermethrin stable during 29 days at 50°C
(Study No. 711-001) |
| Cypermethrin stable during 5 days at 50°C
(Study No. 711-002) |

| pH 7: | Cypermethrin stable during 29 days at 25°C
At 50°C: 4.73 d (1st order)
DCVA: maximum 88 % (15 d)
PBAAldehyde: maximum 78 % (15 d)
(Study No. 711-001) |
| At 50°C: DT\textsubscript{50} = 3.5 d and DT\textsubscript{90} = 11.5 d for total cypermethrin
DT\textsubscript{50} = 2.6-5.5 d (1st order, χ2 = 4.4-17.3 %) for the eight isomers, arithmetic mean 3.7 ± 1.0 d
(Study No. 711-002) |

| pH 9: | 1.9 h at 50 °C (1st order), not tested at other temperatures since half-life is < 2.4 h at 50°C
DCVA: maximum 94 % (8 h)
PBAAldehyde: maximum 88 % (8 h)
(Study No. 711-001) |
| At 20°C: DT\textsubscript{50} = 3.8 and DT\textsubscript{90} = 12.7 d for total cypermethrin
DT\textsubscript{50} = 3.0-6.0 d (1st order, χ2 = 6.6-8.3 %) for the eight isomers, arithmetic mean 4.3 ± 1.4 d
(Study No. 711-002) |
Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %

Substance	Artificial sunlight equivalent to natural Florida summer sunlight, natural light, 30°N	Photolysis degradation of active substance and metabolites above 10 %
Phenyl-cypermethrin:	DT$_{50}$ = 8.61 d, DT$_{90}$ = 29.2 d	DT$_{50}$ = 8.61 d, DT$_{90}$ = 29.2 d
Cyclcopropyl-cypermethrin:	DT$_{50}$ = 6.72 d, DT$_{90}$ = 23.2 d	DT$_{50}$ = 6.72 d, DT$_{90}$ = 23.2 d
DCVA:	maximum 18 % AR (7 d)	3-PBA: maximum 15 % AR (7 d)
3-PBA:	maximum 15 % AR (7 d)	(Study No. 994-07007)
Total cypermethrin:	Artificial sunlight, DT$_{50}$ = 7.8 d, DT$_{90}$ = 25.9 d	Artificial sunlight, DT$_{50}$ = 7.8 d, DT$_{90}$ = 25.9 d
Cis-cypermethrin:	equivalent to DT$_{50}$ = 7.5 d, DT$_{90}$ = 24.9 d with natural sunlight, 30 to 50°N	equivalent to DT$_{50}$ = 7.5 d, DT$_{90}$ = 24.9 d with natural
Trans-cypermethrin:	Artificial sunlight, DT$_{50}$ = 5.3 d, DT$_{90}$ = 17.6 d	sunlight, 30 to 50°N
DT$_{50}$ = 5.3 d, DT$_{90}$ = 17.6 d	equivalent to DT$_{50}$ = 5.1 d, DT$_{90}$ = 16.9 d with natural sunlight, 30 to 50°N	
DCVA:	maximum 18.4 % AR (5 d)	3-PBA: maximum 17.6 % AR (7 d)
3-PBA:	maximum 17.6 % AR (7 d)	(Study No. 712-001)
Total cypermethrin:	Artificial sunlight, DT$_{50}$ = 5.96 d, DT$_{90}$ = 19.80 d	Artificial sunlight, DT$_{50}$ = 5.96 d, DT$_{90}$ = 19.80 d
Cis-cypermethrin:	equivalent to DT$_{50}$ = 8.4 d, DT$_{90}$ = 27.8 d with natural sunlight at 30-50°N	equivalent to DT$_{50}$ = 8.4 d, DT$_{90}$ = 27.8 d with natural
DT$_{50}$ = 4.56-6.35 d, DT$_{90}$ = 15.15-21.11 d with natural sunlight at 30-50°N		sunlight at 30-50°N
Trans-cypermethrin:	DT$_{50}$ = 7.79-13.68 d, DT$_{90}$ = 25.86-45.46 d with natural sunlight at 30-50°N	(Study No. 712-002)

Quantum yield of direct phototransformation in water at $\lambda > 290$ nm

| Quantum yield of direct phototransformation in water at $\lambda > 290$ nm | No data available |

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

| Readily biodegradable (yes/no) | No |

www.efsa.europa.eu/efsajournal 47 EFSA Journal 2018;16(8):5402
Aerobic mineralisation in surface water (Regulation (EU) No 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) No 284/2013, Annex Part A, point 9.2.1)

Cypermethrin	pH water phase	pH sed	t. (°C)a)	DT₅₀ /DT₉₀ whole sys. (suspended sediment test)	St. (χ²)	DT₅₀ /DT₉₀ Water (pelagic test)	St. (χ²)	Method of calculation
Fresh water (0.8 µg/L cypermethrin) (Study No. 714-001)	7.61	8.0	20	1.05/22.8 Pseudo-SFO DT₅₀: 17.3 days	5.04	0.95/1 6.7 Pseudo-SFO DT₅₀: 5 days	6.91	DFOP (sediment) FOMC (water)
	H₂O			Normalised to 12°C		Normalised to 12°C		
Fresh water (4 µg/L cypermethrin) (Study No. 714-001)	7.61	8.0	20	1.26/31.8 Pseudo-SFO DT₅₀: 20.1 days	5.95	1.02/3 5.6 Pseudo-SFO DT₅₀: 18.5 days	5.57	DFOP (both)
	H₂O			Normalised to x (°C)c)		Normalised to x (°C)c)		

Metabolite 3-PBA

Max in total system 68 % after 14 days

System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	t. (°C)a)	DT₅₀ /DT₉₀ whole sys. (suspended sediment test)	St. (χ²)	DT₅₀ /DT₉₀ Water (pelagic test)	St. (χ²)	Method of calculation
Fresh water (0.8 µg/L cypermethrin) (Study No. 714-001)	7.61	8.0	20	31.8/105. 5	5.7	27.6/9 1.6	19.1	DFOP (sediment) FOMC (water)
	H₂O			Normalised to x (°C)c)		Normalised to x (°C)c)		
Fresh water (4 µg/L cypermethrin) (Study No. 714-001)	7.61	8.0	20	52.4/174. 0	4.9	26.8/8 9.1	16.9	DFOP (sediment) DFOP* (water)

Notes

a) Measured in water
b) Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C
c) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).
Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C
Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).
DFOP was considered to be a better fit than FOMC from visual inspection of the graph (Chi2 Err % values very close for FOMC and DFOP models).

Metabolite DCVA	Max in total system 88.4 % after 60days							
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH seq a)	t. b)°C	DT50 / DT90 whole sys. (suspended sediment test)	St. (χ²)	DT50 / DT90 Water (pelagic test)	St. (χ²)	Method of calculation
Fresh water (0.8 µg/L cypermethrin) (Study No. 714-001)								
Fresh water (4 µg/L cypermethrin) (Study No. 714-001)								
Mineralisation and non-extractable residues (for parent dosed experiments)

System identifier	pH	pH	Mineralisation \(x\%\) after \(n\) d. (end of the study).	Non-extractable residues. max \(x\%\) after \(n\) d (suspended sediment test)	Non-extractable residues. max \(x\%\) after \(n\) d (suspended sediment test)
Fresh water (Study No. 714-001)	7.61	8.0	Maximum 47\% of 0.8 µg/L \(^{14}\)C-cyclopropyl]Cypermethrin in the suspended sediment (60 days) and 76.6\% of 4 µg/L \(^{14}\)C-cyclopropyl]Cypermethrin in the pelagic system (60 days)	Not available	Not available

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Water/sediment system	pH	pH	T °C	Persistence DT50/DT90 whole system	Method of calculating \(\chi^2\)	Modelling DT50/DT90 whole system St \(\chi^2\) Method of calculating
Calwich Abbey Lake – site A (Study No. 714-002)	8.22	7.4	20	5.7/53.9 Alpha: 0.966; beta: 5.466	4.618 FOMC	8.5/28.4 12.7 20 SFO
Swiss Lake (Study No. 714-002)	5.85	6.1	20	2.8/45.1 Alpha: 0.679; beta: 1.569	4.142 FOMC	2.8/45.1 Alpha: 0.679; beta: 1.569 4.14 2 FOMC

Water/sediment system	pH	pH	T °C	DT50/DT90 whole system	ff	St \(\chi^2\)	Method of calculation
Calwich Abbey Lake – site A* (Study No. 714-002)	8.22	7.4	20	-	-	-	-
Swiss Lake (Study No. 714-002)	5.85	6.1	20	4.6/15.2	0.119 a)	33.356	SFO

| Geometric mean | 4.6 |

a) From parent

* Not acceptable
Metabolite DCVA

Water/sediment system	pH water	pH sed	T °C	DT50/DT90 whole system	ff	St (χ²)	Method of calculation
Calwich Abbey Lake – site A (Study No. 714-002)	8.22 H₂O	7.4 H₂O	20	124.8/414.7	0.916^a	3.258	SFO
Swiss Lake (Study No. 714-002)	5.85 H₂O	6.1 H₂O	20	69.3/230.3	0.924^a	14.317	SFO

Geometric mean

93.0

^a From parent

Metabolite Unk1

Water/sediment system	pH water	pH sed	T °C	DT50/DT90 whole system	ff	St (χ²)	Method of calculation
Calwich Abbey Lake – site A (Study No. 714-002)	8.22 H₂O	7.4 H₂O	20	42.3/140.5	0.492^b	6.994	SFO
Swiss Lake (Study No. 714-002)	5.85 H₂O	6.1 H₂O	20	>1000/>1000	0.213^b	19.912	SFO

Geometric mean

b) From DCVA

DT₅₀ for individual cypermethrin isomers behaviour in the water/sediment systems by the SFO model

Cypermethrin isomer^a	Calwich Abbey system	Swiss Lake system				
	Total system	Surface water	Sediment	Total system	Surface water	Sediment
DT₅₀ [days]						
RRR [1R-(1α (R*),3 α)]	30.3	0.71	35.7	9.5	0.63	12.2
SRR [1R-(1α (S*),3 α)]	31.7	0.77	32.7	8.1	0.70	9.6
RSS [1S-(1α (R*),3 α)]	51.8	0.75	56.2	7.4	0.69	9.1
SSS [1S-(1α (S*),3 α)]	25.4	0.73	30.7	5.8	0.59	7.0
RRS [1R-(1α (R*),3 β)]	6.4	0.59	12.2	2.9	0.55	3.6
SSR [1S-(1α (S*),3 β)]	1.2	0.33	3.3	0.6	0.35	2.1
SRS [1R-(1α (S*),3 β)]	5.4	0.69	6.1	2.2	0.78	2.6
RSR [1S-(1α (R*),3 β)]	3.1	0.43	8.6	1.8	0.49	2.1
DegT50 values for individual isomers were within a range of 0.6 to 51.8 days considering both total systems. Differences among the degradation rates of individual isomers in the total systems were mostly attributable to the degradation behaviour in the sediment. Thus, the DT50 values for the sediments varied between 2.1 and 56.2 days (both sediments), whereas DisT50 values for water phases accounted for 0.33 to 0.78 days. Modelling endpoints for cypermethrin were based on the isomer degradation behaviour. Thus, a total system geometric mean value from the isomer with the highest geometric mean DT50 of 19.6 days was chosen (isomer RSS with the geometric mean obtained from the values 51.8 and 7.4 days in total system).

Mineralization and non-extractable residues (from parent dosed experiment)

Water/sediment system	pH water	pH sed	Mineralisation x % after n d. (end of the study)	Non-extractable residues in sed. max x % after non-extractable residues in sed. max x % after n d (end of the study)

C-atoms configuration was provided in the following order: Cα, C1, C3

DegT50 values for individual isomers were within a range of 0.6 to 51.8 days considering both total systems. Differences among the degradation rates of individual isomers in the total systems were mostly attributable to the degradation behaviour in the sediment. Thus, the DT50 values for the sediments varied between 2.1 and 56.2 days (both sediments), whereas DisT50 values for water phases accounted for 0.33 to 0.78 days. Modelling endpoints for cypermethrin were based on the isomer degradation behaviour. Thus, a total system geometric mean value from the isomer with the highest geometric mean DT50 of 19.6 days was chosen (isomer RSS with the geometric mean obtained from the values 51.8 and 7.4 days in total system).
Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air
Not studied

Photochemical oxidative degradation in air
DT50 of 5.99 hours derived by the Atkinson model (AOPWIN version 4.11). OH (12 h) concentration assumed = 1.5 \times 10^6 \text{ OH/cm}^3

Volatilisation
from plant surfaces (BBA guideline): not submitted, not required
The vapour pressure of 6.78 \times 10^{-6} \text{ Pa} at 20 °C of Cypermethrin is below the trigger for volatilisation of 1 \times 10^{-5} \text{ Pa} for plants

from soil surfaces (BBA guideline): no volatilisation
The vapour pressure of 6.78 \times 10^{-6} \text{ Pa} at 20 °C of Cypermethrin is below the trigger for volatilisation of 1 \times 10^{-4} \text{ Pa} for soil.

Metabolites
Not submitted

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure
Soil: Cypermethrin, DCVA, 3-PBA, Carboxamide
Surface water: Cypermethrin, DCVA, 3-PBA, Carboxamide*, Unk1
Sediment: Cypermethrin, DCVA, 3-PBA, Carboxamide*, Unk1
Ground water: Cypermethrin, DCVA, 3-PBA, Carboxamide*
Air: Cypermethrin (by default)

* Possible occurrence in water and sediment via runoff and drainage

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology
Soil: cypermethrin (by default)
Surface water: cypermethrin (by default)
Sediment: cypermethrin (by default)
Groundwater: cypermethrin (by default)
Air: cypermethrin (by default)
Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5)

Location and Type of Study	Description
Soil (indicate location and type of study)	One monitoring dataset in sediment in the “Comments on the cypermethrin dossier for EQS derivation, prepared by The Netherlands in the context of the prioritization process for the selection of new substances under the WFD (dated September 2010)” : 4th data set: Sediment (http://www.priority.substances.wfd.oieau.fr/) The data set shows that from 2078 samples, none contained measurable concentrations of cypermethrin.
Surface water (indicate location and type of study)	3 monitoring datasets in surface water in the “Comments on the cypermethrin dossier for EQS derivation, prepared by The Netherlands in the context of the prioritization process for the selection of new substances under the WFD (dated September 2010)” : 1st data set: Freshwater (http://www.priority.substances.wfd.oieau.fr/) 7818 measurements, 2993 analyses >LOQ No phase separation 2nd data set: Freshwater (http://www.priority.substances.wfd.oieau.fr/) Contains analytical information from samples, where a phase separation has been conducted before analysis (21665 samples). Of all samples, only 2 showed concentrations >LOQ, cypermethrin was not measurable/detectable in 99.99% of analysed surface water samples. 3rd data set: Freshwater (http://www.bestrijdingsmiddelenatlas.nl/) Data set from The Netherlands, cypermethrin was never present in water samples at analytically measurable levels.
Ground water (indicate location and type of study)	No data available
Air (indicate location and type of study)	No data available

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parameter	Value
Parent	DT$_{50}$ (d): 271 days (worst-case isomer-based)
Method of calculation	Kinetics: SFO Field or Lab: representative worst case from lab study (Yeomans and Kelly, 2015, Vol. 3 CA – B.8)
Application data

Crops: cereals (winter and summer), oil seed rape (winter and summer), potatoes (whole season)
Depth of soil layer: 5 cm
Soil bulk density: 1.5 g/cm³

% plant interception:

Crop	Period of application	Growth stage (BBCH)	Number of applications (Interval)	Application rate per treatment [kg a.s./ha]	Intercept [%]
Cereals winter	See BBCH	10-31 31-69	1	0.025	0 80
Cereals summer	See BBCH	10-31 31-69	1	0.025	0 80
Oil seed rape winter	1) Autumn + spring	0-30 + 31-35	2 (90)	0.025 0.025	0 + 40 0 + 80
	2) Autumn + spring	0-30 + 50-55		0.025	0 + 80
	3) Autumn + summer	0-30 + 70-77		0.025	0 + 80
Oil seed rape summer	See BBCH	0-30 50-55 or 70-77	1	0.025	0 80
Potato whole season	Whole season	0-09 10-19 40-59	1	0.050	0 15 85

Number of applications: 1 for cereals, oil seed rape in summer and potatoes, 2 for oil seed rape in winter

Interval (d): not applicable for cereals, oil seed rape in summer and potatoes, 90 days for oil seed rape in winter

Application rate(s): 0.025 kg a.s./ha for cereals, oil seed rape (2 applications for OSR in winter), 0.050 kg a.s./ha for potatoes

Summary of the initial and plateau PEC_{soil} for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA

Cypermethrin	Carboxamide	DCVA	3-PBA	Interception
Plateau concentration [mg/kg]				

Crop	Cypermethrin	Carboxamide	DCVA	3-PBA	Interception
Cereals winter	0.0346 0.0069	0.0068 0.0014	-	-	0 80
Cereals summer	0.0346 0.0069	0.0068 0.0014	-	-	0 80
Oil seed rape winter	0.0358	0.0069	-	-	0 40
Oil seed rape winter	0.0350	0.0068	-	-	0 80
Oil seed rape summer	0.0346	0.0068	-	-	0 80
Maximal annual total soil concentration/Initial concentration [mg/kg]

	Cereals winter	OIL seed rape winter	OIL seed rape summer	Potato whole season
	Initial conc.	TWA	Initial conc.	TWA
Cereals winter	0.0333	0.0065	0.0111	0.0017
	0.0067	0.0013	0.0022	0.0003
Cereals summer	0.0333	0.0065	0.0111	0.0017
	0.0067	0.0013	0.0022	0.0003
OIL seed rape winter	0.0333	0.0111	0.0017	0.0017
	0.0065	0.0111	0.0017	0.0017
OIL seed rape summer	0.0333	0.0065	0.0111	0.0017
	0.0067	0.0013	0.0022	0.0003
Potato whole season	0.0667	0.0132	0.0221	0.0035
	0.0067	0.0112	0.0188	0.0029
	0.0100	0.0016	0.0033	0.0005

Carboxamide

- **Method of calculation:**
 - Molecular weight relative to the parent: 1.04
 - DT_{50} (d): 2.9 days
 - Maximum occurrence: 18.9% (at day 9, Swales, 2003)
 - Kinetics: FOMC (not normalised worst case, alpha:0.2921 beta 0.3001)
 - Field or Lab: lab study (Cashmore and Lewis, 2014)

- **Application data:**
 - Application rate assumed: 4.9 g/ha for cereals and OSR, 9.9 g/ha for potatoes

Annual and accumulation PEC\textsubscript{soil} values for carboxamide for cereals summer/winter and OSR summer application BBCH 10-31 using worst case DT_{50} (FOMC) (no interception)

PEC\textsubscript{soil}	Cereals summer/winter and OSR summer BBCH 10-31			
	Single	Accumulationa		
	Actual	TWA	Actual	TWA
Initial concentration	0.0065	-	0.0068a	-
1 [d]	0.0043	0.0054	0.0045	0.0056
2 [d]	0.0036	0.0047	0.0038	0.0049
4 [d]	0.0030	0.0040	0.0032	0.0042
7 [d]	0.0026	0.0035	0.0028	0.0037
14[d]	0.0021	0.0029	0.0023	0.0031
21[d]	0.0019	0.0026	0.0021	0.0028
Cereals summer/winter and OSR summer BBCH 10-31

PEC_{soil}	Single	Accumulationa
28 [d]	0.0017	0.0024
42[d]	0.0015	0.0021
50 [d]	0.0015	0.0020
100 [d]	0.0012	0.0017
Final background concentration	-	-

a Cypermethrin plateau PEC_{soil} after 10 years

Cereals summer/winter and OSR summer BBCH 31-69

PEC_{soil}	Single	Accumulationa
Actual TWA		Actual TWA
Initial concentration	0.0013	-
1 [d]	0.0009	0.0011
2 [d]	0.0007	0.0009
4 [d]	0.0006	0.0008
7 [d]	0.0005	0.0007
14[d]	0.0004	0.0006
21[d]	0.0004	0.0005
28 [d]	0.0003	0.0005
42[d]	0.0003	0.0004
50 [d]	0.0003	0.0004
100 [d]	0.0002	0.0003
Final background concentration	-	<0.0001

a Cypermethrin plateau PEC_{soil} after 10 years

OSR winter BBCH 0-30

PEC_{soil}	Single	Accumulationa
Actual TWA		Actual TWA
Initial concentration	0.0065	-
1 [d]	0.0043	0.0054
2 [d]	0.0036	0.0047
4 [d]	0.0030	0.0040
7 [d]	0.0026	0.0035

a Plateau concentration

Annual and accumulation PEC_{soil} values for carboxamide for cereals summer/winter and OSR summer application BBCH 31-69 using worst case DT_{50} (FOMC) (interception 80%)

Annual and accumulation PEC_{soil} values for carboxamide for OSR winter applications BBCH 0-30 using worst case DT_{50} (FOMC) (interception 0%/40%)
OSR winter BBCH 0-30

PEC_{soil}	Single	Accumulationa
14[d]	0.0021	0.0025
21[d]	0.0019	0.0023
28[d]	0.0017	0.0021
42[d]	0.0015	0.0019
50[d]	0.0015	0.0019
100[d]	0.0027	0.0031
Final background concentration	-	0.0004

a Cypermethrin plateau PEC_{soil} after 10 years

Annual and accumulation PEC_{soil} values for carboxamide for OSR winter applications BBCH 50-55 and BBCH 70-77 using worst case DT\textsubscript{50} (FOMC) (interception 0%/80%)

PEC_{soil}	OSR winter BBCH 50-55 and 70-77			
	Single	Accumulationa		
	Actual	TWA	Actual	TWA
Initial concentration	0.0065	-	0.0068b	-
1[d]	0.0043	0.0054	0.0045	0.0057
2[d]	0.0036	0.0047	0.0039	0.0049
4[d]	0.0030	0.0040	0.0033	0.0043
7[d]	0.0026	0.0035	0.0029	0.0037
14[d]	0.0021	0.0029	0.0024	0.0032
21[d]	0.0019	0.0026	0.0022	0.0029
28[d]	0.0017	0.0024	0.0020	0.0027
42[d]	0.0015	0.0021	0.0018	0.0024
50[d]	0.0015	0.0020	0.0017	0.0023
100[d]	0.0017	0.0017	0.0020	0.0020
Final background concentration	-	-	0.0003	-

a Cypermethrin plateau PEC_{soil} after 10 years

b Plateau concentration

Annual and accumulation PEC_{soil} values for carboxamide for Potatoes BBCH 00-09 using worst case DT\textsubscript{50} (FOMC) (no interception)

PEC_{soil}	Potatoes BBCH 00-09			
	Single	Accumulationa		
	Actual	TWA	Actual	TWA
Initial concentration	0.0132	-	0.0137b	-
1[d]	0.0086	0.0109	0.0091	0.0114
2[d]	0.0073	0.0094	0.0078	0.0099
Annual and accumulation PEC\textsubscript{soil} values for carboxamide for Potatoes BBCH 40-59 using worst case DT\textsubscript{50} (FOMC) (interception 85%)

PEC\textsubscript{soil}	Potatoes BBCH 40-59			
	Single	Accumulation\(^{a)}\)		
	Actual	TWA	Actual	TWA
Initial concentration	0.0020	-	0.0021\(^{b)}\)	-
1 [d]	0.0013	0.0016	0.0014	0.0017

\(^{a)}\) Cypermethrin plateau PEC\textsubscript{soil} after 10 years
\(^{b)}\) Plateau concentration
PEC\textsubscript{soil} for Potatoes BBCH 40-59

	Single	Accumulationa
2 [d]	0.0011	0.0014
4 [d]	0.0009	0.0012
7 [d]	0.0008	0.0010
14[d]	0.0006	0.0009
21[d]	0.0006	0.0008
28[d]	0.0005	0.0007
42[d]	0.0005	0.0006
50 [d]	0.0004	0.0005
100 [d]	-	0.0004

a Cypermethrin plateau PEC\textsubscript{soil} after 10 years

DCVA

Method of calculation

- Molecular weight relative to the parent: 0.50
- DT\textsubscript{50} (d): 23.0 days (the correct value is 18.1 d)
- Maximum occurrence: 66.2% (max at day 14, aerobic soil degradation study by Yeomans & Kelly (2015) CA 7.1.2.1.1/05)
- Kinetics: SFO
- Field or Lab: lab study (Not normalised worst case (worst case from consolidated data Cyper RAR, EFSA conclusion Beta-cypermethrin and EFSA conclusion Zeta-cypermethrin n=14))

Application data

Application rate assumed: 8.3 g/ha for cereals and OSR, 16.6 g/ha for potatoes

Annual and accumulation PEC\textsubscript{soil} values for DCVA for cereals summer/winter and OSR summer application BBCH 10-31 using worst case DT\textsubscript{50} (SFO) (no interception)

	Cereals summer/winter and OSR summer BBCH 10-31			
	Single	Accumulationa		
	Actual	TWA	Actual	TWA
Initial concentration	0.0111	-	0.0111b	-
1 [d]	0.0107	0.0109	0.0107	0.0109
2 [d]	0.0103	0.0107	0.0103	0.0107
4 [d]	0.0095	0.0103	0.0095	0.0103
7 [d]	0.0085	0.0097	0.0085	0.0097
14[d]	0.0065	0.0086	0.0065	0.0086
21[d]	0.0050	0.0076	0.0050	0.0076
28[d]	0.0038	0.0068	0.0038	0.0068
42[d]	0.0022	0.0055	0.0022	0.0055
50 [d]	0.0016	0.0049	0.0016	0.0049
PEC_{soil} values for DCVA for cereals summer/winter and OSR summer application BBCH 31-69 using worst case DT_{50} (SFO) (interception 80\%)

PEC_{soil}	Cereals summer/winter and OSR summer BBCH 31-69	Accumulationa
100 [d]	0.0002	0.0028
Final background concentration	-	<0.0001

a Cypermethrin plateau PEC_{soil} after 10 years

PEC_{soil} values for DCVA for cereals summer/winter and OSR summer application BBCH 31-69 using worst case DT_{50} (SFO) (interception 0%/80\%)

PEC_{soil}	Cereals summer/winter and OSR summer BBCH 31-69	Accumulationa
Initial concentration	0.0022	0.0022b
1 [d]	0.0021	0.0021
2 [d]	0.0021	0.0021
4 [d]	0.0019	0.0019
7 [d]	0.0017	0.0017
14 [d]	0.0013	0.0013
21 [d]	0.0010	0.0010
28 [d]	0.0008	0.0008
42 [d]	0.0004	0.0004
50 [d]	0.0003	0.0003
100 [d]	<0.0001	<0.0001
Final background concentration	-	<0.0001

a Cypermethrin plateau PEC_{soil} after 10 years

Annual and accumulation PEC_{soil} values for DCVA for OSR winter applications BBCH 50-55 and BBCH 70-77 using worst case DT_{50} (SFO) (interception 0%/80\%)

PEC_{soil}	OSR winter BBCH 50-55 and 70-77	Accumulationa
Initial concentration	0.0111	0.0111b
1 [d]	0.0107	0.0107
2 [d]	0.0103	0.0103
4 [d]	0.0095	0.0095
7 [d]	0.0085	0.0085
14 [d]	0.0065	0.0065
21 [d]	0.0050	0.0050
28 [d]	0.0038	0.0038
PECsoil

OSR winter BBCH 50-55 and 70-77

	Single	Accumulation\(^a\)
42 [d]	0.0022	0.0055
50 [d]	0.0016	0.0049
100 [d]	0.0018	0.0030
Final background concentration	-	<0.0001

\(^a\) Cypermethrin plateau PECsoil after 10 years

Annual and accumulation PECsoil values for DCVA for Potatoes applications BBCH 00-09 using worst case DT\(_{50}\) (SFO) (no interception)

	PECsoil Potatoes BBCH 00-09					
	Initial concentration	Single	TWA	Accumulation\(^a\)	Single	TWA
	Actual	TWA	Actual	TWA		
1 [d]	0.0221	-	0.0221	-		
2 [d]	0.0213	0.0217	0.0213	0.0217		
4 [d]	0.0205	0.0213	0.0205	0.0213		
7 [d]	0.0190	0.0205	0.0190	0.0205		
14 [d]	0.0169	0.0194	0.0169	0.0194		
21 [d]	0.0129	0.0171	0.0129	0.0171		
28 [d]	0.0099	0.0152	0.0099	0.0152		
42 [d]	0.0076	0.0136	0.0076	0.0136		
50 [d]	0.0044	0.0110	0.0044	0.0110		
100 [d]	0.0033	0.0099	0.0033	0.0099		
Final background concentration	-	-	<0.0001	-		

\(^a\) Cypermethrin plateau PECsoil after 10 years

Annual and accumulation PECsoil values for DCVA for Potatoes BBCH 10-19 using worst case DT\(_{50}\) (SFO) (interception 15%)

	PECsoil Potatoes BBCH 10-19					
	Initial concentration	Single	TWA	Accumulation\(^a\)	Single	TWA
	Actual	TWA	Actual	TWA		
1 [d]	0.0188	-	0.0188	-		
2 [d]	0.0181	0.0185	0.0181	0.0185		
4 [d]	0.0174	0.0181	0.0174	0.0181		
7 [d]	0.0161	0.0174	0.0161	0.0174		
14 [d]	0.0144	0.0165	0.0144	0.0165		
21 [d]	0.0110	0.0146	0.0110	0.0146		
Annual and accumulation PEC\(_{\text{soil}}\) values for DCVA for Potatoes BBCH 40-59 using worst case DT\(_{50}\) (SFO) (interception 85%)

PEC\(_{\text{soil}}\)	Potatoes BBCH 40-59			
	Single	Accumulation\(^a\)		
	TWA	Actual	TWA	
Initial concentration	0.0033	-	0.0033 \(^b\)	-
1 [d]	0.0032	0.0033	0.0032	0.0033
2 [d]	0.0031	0.0032	0.0031	0.0032
4 [d]	0.0028	0.0031	0.0028	0.0031
7 [d]	0.0025	0.0029	0.0025	0.0029
14[d]	0.0019	0.0026	0.0019	0.0026
21[d]	0.0015	0.0023	0.0015	0.0023
28 [d]	0.0011	0.0020	0.0011	0.0020
42[d]	0.0007	0.0017	0.0007	0.0017
50 [d]	0.0005	0.0015	0.0005	0.0015
100 [d]	0.0001	0.0008	0.0001	0.0008
Final background concentration	-	-	<0.0001	-

\(^a\) Cypermethrin plateau PEC\(_{\text{soil}}\) after 10 years
\(^b\) Plateau concentration

3-PBA

Method of calculation

- Molecular weight relative to the parent: 0.51
- DT\(_{50}\) (d): 9.9 days (the correct value is 5.0 d)
- Maximum occurrence: 10.2% (max at day 7, aerobic soil degradation study by Brice & Cooke (2006) CA 7.1.1.1/12)
- Kinetics: SFO
- Field or Lab: Not normalised worst case (worst case form consolidated data Cyper RAR, EFSA concl Beta-cyper and EFSA conclusion Zeta-cyper n=7)

Application data

Application rate assumed: 1.3 g/ha for cereals and OSR,
Annual and accumulation PEC\textsubscript{soil} values for 3-PBA for cereals summer/winter and OSR summer application BBCH 10-31 using worst case DT\textsubscript{50} (7d) (no interception)

PEC\textsubscript{soil}	Cereals summer/winter and OSR summer BBCH 10-31			
	Single	Accumulation\(^a\)		
	Actual	TWA	Actual	TWA
Initial concentration	0.0017	-	0.0017\(^b\)	-
1 [d]	0.0016	0.0017	0.0016	0.0017
2 [d]	0.0014	0.0016	0.0014	0.0016
4 [d]	0.0012	0.0014	0.0012	0.0014
7 [d]	0.0009	0.0013	0.0009	0.0013
14[d]	0.0004	0.0009	0.0004	0.0009
21[d]	0.0002	0.0007	0.0002	0.0007
28[d]	0.0001	0.0006	0.0001	0.0006
42[d]	<0.0001	0.0004	<0.0001	0.0004
50[d]	<0.0001	0.0003	<0.0001	0.0003
100[d]	<0.0001	0.0002	<0.0001	0.0002
Final background concentration	-	-	<0.0001	-

\(^a\) Cypermethrin plateau PEC\textsubscript{soil} after 10 years
\(^b\) Plateau concentration

Annual and accumulation PEC\textsubscript{soil} values for 3-PBA for cereals summer/winter and OSR summer application BBCH 31-69 using worst case DT\textsubscript{50} (7d) (interception 80%)

PEC\textsubscript{soil}	Cereals summer/winter and OSR summer BBCH 31-69			
	Single	Accumulation\(^a\)		
	Actual	TWA	Actual	TWA
Initial concentration	0.0003	-	0.0003\(^b\)	-
1 [d]	0.0003	0.0003	0.0003	0.0003
2 [d]	0.0003	0.0003	0.0003	0.0003
4 [d]	0.0002	0.0003	0.0002	0.0003
7 [d]	0.0002	0.0003	0.0002	0.0003
14[d]	0.0001	0.0002	0.0001	0.0002
21[d]	<0.0001	0.0001	<0.0001	0.0001
28[d]	<0.0001	0.0001	<0.0001	0.0001
42[d]	<0.0001	0.0001	<0.0001	0.0001
50[d]	<0.0001	0.0001	<0.0001	0.0001
100[d]	<0.0001	<0.0001	<0.0001	<0.0001
Final background concentration	-	-	<0.0001	-

\(^a\) Cypermethrin plateau PEC\textsubscript{soil} after 10 years
\(^b\) Plateau concentration

2.6 g/ha for potatoes
Annual and accumulation PEC_{soil} values for 3-PBA for OSR winter applications BBCH 0-30 using worst case DT₅₀ (7d) (interception 0%/40%)

PEC_{soil}	OSR winter BBCH 0-30			
	Actual	**TWA**	**Actual**	**TWA**
Initial concentration	0.0017	-	0.0017^b	-
1 [d]	0.0016	0.0017	0.0016	0.0017
2 [d]	0.0014	0.0016	0.0014	0.0016
4 [d]	0.0012	0.0014	0.0012	0.0014
7 [d]	0.0009	0.0013	0.0009	0.0013
14[d]	0.0004	0.0009	0.0004	0.0009
21[d]	0.0002	0.0007	0.0002	0.0007
28[d]	0.0001	0.0006	0.0001	0.0006
42[d]	<0.0001	0.0004	<0.0001	0.0004
50 [d]	<0.0001	0.0003	<0.0001	0.0003
100 [d]	0.0005	0.0002	0.0005	0.0002
Final background concentration	-	-	<0.0001	-

^a Cypermethrin plateau PEC_{soil} after 10 years
^b Plateau concentration

Annual and accumulation PEC_{soil} values for 3-PBA for OSR winter applications BBCH 50-55 and BBCH 70-77 using worst case DT₅₀ (7d) (interception 0%/80%)

PEC_{soil}	OSR winter BBCH 50-55 and 70-77			
	Actual	**TWA**	**Actual**	**TWA**
Initial concentration	0.0017	-	0.0017^b	-
1 [d]	0.0016	0.0017	0.0016	0.0017
2 [d]	0.0014	0.0016	0.0014	0.0016
4 [d]	0.0012	0.0014	0.0012	0.0014
7 [d]	0.0009	0.0013	0.0009	0.0013
14[d]	0.0004	0.0009	0.0004	0.0009
21[d]	0.0002	0.0007	0.0002	0.0007
28[d]	0.0001	0.0006	0.0001	0.0006
42[d]	<0.0001	0.0004	<0.0001	0.0004
50 [d]	<0.0001	0.0003	<0.0001	0.0003
100 [d]	<0.0001	0.0002	<0.0001	0.0002
Final background concentration	-	-	<0.0001	-

^a Cypermethrin plateau PEC_{soil} after 10 years
^b Plateau concentration
Annual and accumulation PEC_{soil} values for PBA for Potatoes applications BBCH 00-09 using worst case DT₅₀ (7d) (no interception)

PEC_{soil}	Potatoes BBCH 00-09			
	Single	Accumulation^{a)}		
	Actual	TWA	Actual	TWA
Initial concentration	0.0035	-	0.0035^{b)}	-
1 [d]	0.0031	0.0033	0.0031	0.0033
2 [d]	0.0028	0.0031	0.0028	0.0031
4 [d]	0.0023	0.0029	0.0023	0.0029
7 [d]	0.0017	0.0025	0.0017	0.0025
14[d]	0.0009	0.0019	0.0009	0.0019
21[d]	0.0004	0.0015	0.0004	0.0015
28 [d]	0.0002	0.0012	0.0002	0.0012
42[d]	0.0001	0.0008	0.0001	0.0008
50 [d]	<0.0001	0.0007	<0.0001	0.0007
100 [d]	<0.0001	0.0004	<0.0001	0.0004
Final background concentration	-	-	<0.0001	-

^aCypermethrin plateau PEC_{soil} after 10 years
^bPlateau concentration

Annual and accumulation PEC_{soil} values for 3-PBA for Potatoes BBCH 10-19 using worst case DT₅₀ (7d) (interception 15%)

PEC_{soil}	Potatoes BBCH 10-19			
	Single	Accumulation^{a)}		
	Actual	TWA	Actual	TWA
Initial concentration	0.0029	-	0.0029^{b)}	-
1 [d]	0.0027	0.0028	0.0027	0.0028
2 [d]	0.0024	0.0027	0.0024	0.0027
4 [d]	0.0020	0.0024	0.0020	0.0024
7 [d]	0.0015	0.0021	0.0015	0.0021
14[d]	0.0007	0.0016	0.0007	0.0016
21[d]	0.0004	0.0012	0.0004	0.0012
28 [d]	0.0002	0.0010	0.0002	0.0010
42[d]	<0.0001	0.0007	<0.0001	0.0007
50 [d]	<0.0001	0.0006	<0.0001	0.0006
100 [d]	<0.0001	0.0003	<0.0001	0.0003
Final background concentration	-	-	<0.0001	-

^aCypermethrin plateau PEC_{soil} after 10 years
^bPlateau concentration

Annual and accumulation PEC_{soil} values for 3-PBA for Potatoes BBCH 40-59 using worst case DT₅₀ (7d) (interception 85%)

PEC_{soil}	Potatoes BBCH 40-59			
	Single	Accumulation^{a)}		
	Actual	TWA	Actual	TWA
Initial concentration	0.0029	-	0.0029^{b)}	-
1 [d]	0.0027	0.0028	0.0027	0.0028
2 [d]	0.0024	0.0027	0.0024	0.0027
4 [d]	0.0020	0.0024	0.0020	0.0024
7 [d]	0.0015	0.0021	0.0015	0.0021
14[d]	0.0007	0.0016	0.0007	0.0016
21[d]	0.0004	0.0012	0.0004	0.0012
28 [d]	0.0002	0.0010	0.0002	0.0010
42[d]	<0.0001	0.0007	<0.0001	0.0007
50 [d]	<0.0001	0.0006	<0.0001	0.0006
100 [d]	<0.0001	0.0003	<0.0001	0.0003
Final background concentration	-	-	<0.0001	-

^aCypermethrin plateau PEC_{soil} after 10 years
^bPlateau concentration
PEC_{soil}	Potatoes BBCH 40-59			
	Single	Accumulation^a		
	Actual	TWA	Actual	TWA
Initial concentration	0.0005	-	0.0005^b	-
1 [d]	0.0005	0.0005	0.0005	0.0005
2 [d]	0.0004	0.0005	0.0004	0.0005
4 [d]	0.0003	0.0004	0.0003	0.0004
7 [d]	0.0003	0.0004	0.0003	0.0004
14 [d]	0.0001	0.0003	0.0001	0.0003
21 [d]	0.0001	0.0002	0.0001	0.0002
28 [d]	<0.0001	0.0002	<0.0001	0.0002
42 [d]	<0.0001	0.0001	<0.0001	0.0001
50 [d]	<0.0001	0.0001	<0.0001	0.0001
100 [d]	<0.0001	0.0001	<0.0001	0.0001
Final background concentration	-	-	<0.0001	-

^a Cypermethrin plateau PEC_{soil} after 10 years
^b Plateau concentration
PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

For FOCUSgw modelling, values used –
Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.

Model(s) used: FOCUS PELMO 5.5.3, FOCUS PEARL 4.4.4, FOCUS MACRO 5.5.4
Crops: cereals (summer and winter), oil seed rape (summer and winter), potatoes (whole season)
Crop uptake factor: /

Cypermethrin:
Water solubility (mg/L): < 29.2 x 10^{-3} at 20°C
Vapour pressure: 6.78 x 10^{-6} Pa at 20°C
Geometric mean parent DT_{50}: 11.6 and 33.0 days (isomer-specific shortest and longest geomean DT_{50}, Yeomans and Kelly, 2015)

K_{OC}: parent, geometric mean 194,425 mL/g, 1/n = 1 (default value).

Carboxamide:
Water solubility (mg/L): < 29.2 x 10^{-3} at 20°C (value of parent)
Vapour pressure: 6.78 x 10^{-6} Pa at 20°C (value of parent)
Geometric mean DT_{50,lab} 35.0 d (n=3, pseudo-single first order from FOMC, Cashmore and Lewis, 2014).

K_{OC}: geometric mean 29966 (geomean, n = 3), 1/n = 1 (default value).
Precursor: cypermethrin
Formation fraction: 0.66

DCVA:
Water solubility (mg/L): 1000 at 20°C (default)
Vapour pressure: 0 Pa at 20°C (default)
Geometric mean DT_{50,lab} 5.5 d (geometric mean based on total DCVA for 11 soils, consolidated data from EFSA conclusion Zeta cypermethrin included).

K_{OC}: geometric mean 18.75 (geometric mean based on total DCVA for 10 soils, consolidated data from EFSA conclusion Zeta cypermethrin included), 1/n = 0.783 (arithmetic mean, n = 10)
Precursor: cypermethrin
Formation fraction: 0.60

3-PBA:
Water solubility (mg/L): 1000 at 20°C (default)
Vapour pressure: 0 Pa at 20°C (default)
Application rate

Gross application rate: 0.025 g/ha for cereals and OSR (1-2 applications), 0.050 g/ha for potatoes

Time of application (absolute or relative application dates): please refer to table B.8.2.4-2 to B.8.2.4-4 in Vol. 3 CP B.8

* Only relevant after implementation of the published EFSA guidance.

Representative GAP for Cypermethrin 500 EC

Crop	Period of application	Growth stage (BBCH)	Number of applications (Interval)	Application rate per treatment [kg a.s./ha]	Interception [%]	Effective soil exposure rate [kg a.s./ha]
Cereals winter	See BBCH	10-31	31-69	1 0.025	0 80	0.025 0.005
Cereals summer	See BBCH	10-31	31-69	1 0.025	0 80	0.025 0.005
Oil seed rape winter	1) Autumn + spring	1) 0-30 + 31-35 and 50-55 or 70-77	2 (90)	0.025 0.025	0 + 40	0 + 80 1 0.025 + 0.015 2 0.025 + 0.005
Oil seed rape spring		0-30	50-55 or 70-77	1 0.025	0 80	0.025 0.005
Potato whole season	Whole season	0-09	40-59	1 0.050	0 85	0.050 0.008

PECgw at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA, based on a DT50 of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for cereals in summer and winter application with BBCH 10-31

Crop	Scenario	Cypermethrin [µg/L]	Carboxamide [µg/L]	DCVA [µg/L]	3-PBA [µg/L]
Winter cereals	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
PEC$_{gw}$ at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA, based on a DT$_{50}$ of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for cereals in summer and winter application with BBCH 10-31

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Summer cereals					
	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
Winter cereals					
	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001

PEC$_{gw}$ at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT$_{50}$ of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for cereals in summer and winter application with BBCH 10-31

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Summer cereals					
	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
Winter cereals					
	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001
PECgw at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT50 of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for cereals in summer and winter application with BBCH 10-31

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Winter cereals	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001
Summer cereals	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001

PECgw at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT50 of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for cereals in summer and winter application with BBCH 31-69

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Winter cereals	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001
Summer cereals	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001

PECgw at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT50 of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for cereals in summer and winter application with BBCH 31-69

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
Winter	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
PEC\textsubscript{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT\textsubscript{50} of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for cereals in summer and winter application with BBCH 31-69

Crop	Scenario	Cypermethrin [µg/L]	Carboxamide [µg/L]	DCVA [µg/L]	3-PBA [µg/L]
Winter cereals	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001
Summer cereals	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001

PEC\textsubscript{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT\textsubscript{50} of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for cereals in summer and winter application with BBCH 31-69

Crop	Scenario	Cypermethrin [µg/L]	Carboxamide [µg/L]	DCVA [µg/L]	3-PBA [µg/L]
Winter cereals	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001
Summer cereals	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
PEC\textsubscript{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT\textsubscript{50} of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for winter oilseed rape in autumn/spring application at BBCH 00-30 and 31-35 and autumn/summer application at BBCH 00-30 and 70-77, covering 50-55

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Châteaudun (C)	Autumn and spring	<0.001	<0.001	<0.001	<0.001
	application				
Hamburg (H)	<0.001				
Kremsmünster (K)	<0.001			<0.001	<0.001
Okehampton (N)	<0.001			<0.001	<0.001
Piacenza (P)	<0.001			<0.001	<0.001
Porto (O)	<0.001			<0.001	<0.001
	Autumn and summer	<0.001	<0.001	<0.001	<0.001
	application				
		<0.001	<0.001	<0.001	<0.001

PEC\textsubscript{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT\textsubscript{50} of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for winter oilseed rape in autumn/spring application at BBCH 00-30 and 31-35 and autumn/summer application at BBCH 00-30 and 70-77, covering 50-55

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Châteaudun (C)	Autumn and spring	<0.001	<0.001	<0.001	<0.001
	application				
Hamburg (H)	<0.001			<0.001	<0.001
Kremsmünster (K)	<0.001			<0.001	<0.001
Okehampton (N)	<0.001			<0.001	<0.001
Piacenza (P)	<0.001			<0.001	<0.001
Porto (O)	<0.001			<0.001	<0.001
	Autumn and summer	<0.001	<0.001	<0.001	<0.001
	application				
		<0.001	<0.001	<0.001	<0.001

PEC\textsubscript{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT\textsubscript{50} of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for winter oilseed rape in autumn/spring application at BBCH 00-30 and 31-35 and autumn/summer application at BBCH 00-30 and 70-77, covering 50-55

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Châteaudun (C)	Autumn and spring	<0.001	<0.001	<0.001	<0.001
	application				
Hamburg (H)	<0.001			<0.001	<0.001
Kremsmünster (K)	<0.001			<0.001	<0.001
Okehampton (N)	<0.001			<0.001	<0.001
Piacenza (P)	<0.001			<0.001	<0.001
Porto (O)	<0.001			<0.001	<0.001
	Autumn and summer	<0.001	<0.001	<0.001	<0.001
	application				
		<0.001	<0.001	<0.001	<0.001

www.efsa.europa.eu/efsajournal 73 EFSA Journal 2018;16(8):5402
PEC_{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamid, DCVA and 3-PBA based on a DT₅₀ of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for winter oilseed rape in autumn/spring application at BBCH 00-30 and 31-35 and autumn/summer application at BBCH 00-30 and 70-77, covering 50-55

Crop Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
Hamburg (H)	<0.001	<0.001	<0.001	<0.001
Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
Okehampton (N)	<0.001	<0.001	<0.001	<0.001
Piacenza (P)	<0.001	<0.001	<0.001	<0.001
Porto (O)	<0.001	<0.001	<0.001	<0.001

PEC_{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT₅₀ of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for summer oilseed rape, spring application at BBCH 00-30, covering 31-35 and summer application at BBCH 70-77, covering 50-55

Crop Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
Hamburg (H)	<0.001	<0.001	<0.001	<0.001
Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
Okehampton (N)	<0.001	<0.001	<0.001	<0.001
Piacenza (P)	<0.001	<0.001	<0.001	<0.001
Porto (O)	<0.001	<0.001	<0.001	<0.001

PEC_{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT₅₀ of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for summer oilseed rape, spring application at BBCH 00-30, covering 31-35 and summer application at BBCH 70-77, covering 50-55

Crop Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
Okehampton (N)	<0.001	<0.001	<0.001	<0.001
Porto (O)	<0.001	<0.001	<0.001	<0.001

PEC_{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT₅₀ of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for summer oilseed rape, spring application at BBCH 00-30, covering 31-35 and summer application at BBCH 70-77, covering 50-55

Crop Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
Okehampton (N)	<0.001	<0.001	<0.001	<0.001
Porto (O)	<0.001	<0.001	<0.001	<0.001
PECgw at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT50 of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for summer oilseed rape, spring application at BBCH 00-30, covering 31-35 and summer application at BBCH 70-77, covering 50-55

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Spring	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
application	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
Summer	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
application	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001

PECgw at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT50 of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for summer oilseed rape, spring application at BBCH 00-30, covering 31-35 and summer application at BBCH 70-77, covering 50-55

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Spring	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
application	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
Summer	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
application	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001

PECgw at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT50 of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for potatoes at BBCH 00-09 and BBCH 40-59

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
		[µg/L]			
Potatoes	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
BBCH 00-09	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001
Potatoes	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
BBCH	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
PEC_{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT_{50} of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PELMO 5.5.3 for potatoes at BBCH 00-09 and BBCH 40-59

Crop	Scenario	Cypermethrin [µg/L]	Carboxamide	DCVA	3-PBA
Potatoes BBCH 00-09	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001

PEC_{gw} at 1 m soil depth in µg/L (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT_{50} of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for for potatoes at BBCH 00-09 and BBCH 40-59

Crop	Scenario	Cypermethrin [µg/L]	Carboxamide	DCVA	3-PBA
Potatoes BBCH 40-59	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001
PEC\textsubscript{gw} at 1 m soil depth in \(\mu g/L\) (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT\textsubscript{50} of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting, calculated with the leaching simulation model FOCUS PEARL 4.4.4 for potatoes at BBCH 00-09 and BBCH 40-59

Crop	Scenario	Cypermethrin	Carboxamide	DCVA	3-PBA
Potatoes	BBCH 00-09				
	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001
Potatoes	BBCH 40-59				
	Châteaudun (C)	<0.001	<0.001	<0.001	<0.001
	Hamburg (H)	<0.001	<0.001	<0.001	<0.001
	Jokioinen (J)	<0.001	<0.001	<0.001	<0.001
	Kremsmünster (K)	<0.001	<0.001	<0.001	<0.001
	Okehampton (N)	<0.001	<0.001	<0.001	<0.001
	Piacenza (P)	<0.001	<0.001	<0.001	<0.001
	Porto (O)	<0.001	<0.001	<0.001	<0.001
	Sevilla (S)	<0.001	<0.001	<0.001	<0.001
	Thiva (T)	<0.001	<0.001	<0.001	<0.001

PEC\textsubscript{gw} in \(\mu g/L\) (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT\textsubscript{50} of the parent compound of 33.0 days and using the requested Koc and 1/n values discussed in the Expert meeting calculated for scenario Châteaudun (with MACRO 5.5.4)

Scenario	g/ha	BBCH Application day	Cypermethrin	Carboxamide	DCVA	3-PBA
Winter Cereals	25	10-31 299	<0.001	<0.001	<0.001	<0.001
	5	31-69 168	<0.001	<0.001	<0.001	<0.001
Spring Cereals	25	10-31 69	<0.001	<0.001	<0.001	<0.001
	5	31-69 173	<0.001	<0.001	<0.001	<0.001
Winter oil seed rape	25	0-30 + 305	<0.001	<0.001	<0.001	<0.001
	15	31-35 30				
	25	0-30 + 305	<0.001	<0.001	<0.001	<0.001
	5	50-55 or 70-77 142				
Potato	50	0-09 120	<0.001	<0.001	<0.001	<0.001
	8	40-59 241	<0.001	<0.001	<0.001	<0.001

PEC\textsubscript{gw} in \(\mu g/L\) (80th percentile) for cypermethrin and its metabolites carboxamide, DCVA and 3-PBA based on a DT\textsubscript{50} of the parent compound of 11.6 days and using the requested Koc and 1/n values discussed in the Expert meeting calculated for scenario Châteaudun (with MACRO 5.5.4)
Table: Scenario, g/ha, BBCH, Application day, Cypermethrin, Carbofuran, DCVA, 3-PBA

Scenario	g/ha	BBCH	Application day	Cypermethrin	Carbofuran	DCVA	3-PBA
Winter Cereals	25	10-31	299	<0.001	<0.001	<0.001	<0.001
	5	31-69	168	<0.001	<0.001	<0.001	<0.001
Spring Cereals	25	10-31	69	<0.001	<0.001	<0.001	<0.001
	5	31-69	173	<0.001	<0.001	<0.001	<0.001
Winter oil seed rape	25	0-30 +	305	<0.001	<0.001	<0.001	<0.001
	15	31-35	30				
	25	0-30 +	305	<0.001	<0.001	<0.001	<0.001
	5	50-55 or 70-77	142				
Potato	50	0-09	120	<0.001	<0.001	<0.001	<0.001
	8	40-59	241	<0.001	<0.001	<0.001	<0.001

PEC(gw) From lysimeter / field studies

Parent	1st year	2nd year	3rd year
Annual average (µg/L)	No data available		

Metabolite X	1st year	2nd year	3rd year
Annual average (µg/L)	No data available		

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

- **Parent**
 - Parameters used in FOCUSsw step 1 and 2
 - Version control no. of FOCUS calculator: FOCUS 3.2
 - Molecular weight cypermethrin (g/mol): 416.3
 - K_{OC}/K_{OM} (mL/g): 194.425/112.775
 - DT₃₀ soil (d): 33.0 d (Lab study, Doc. No. 721-003 (n=4), mean worst-case isomer-based geometric mean (SFO kinetics: 3 soils, DFOP kinetics, k2: 1 soil))
 - DT₃₀ water/sediment system (d): 19.6 d (worst-case isomer based geomean from sediment water study)
 - DT₃₀ water (d): step 2: 19.6 (worst-case isomer based geomean of whole system)
 - DT₃₀ sediment (d): step 2: 19.6 (worst-case isomer based geomean of whole system)
 - Crop interception (%):
 - summer/winter cereals: 25, 50, 70%
 -summer/winter oil seed rape: 40, 70, 75%
Parameters used in FOCUSsw step 3 (if performed)

| Version control no.’s of FOCUS software: FOCUS SWASH v5.1.0, FOCUS PRZM v1.5.2, FOCUS MACRO, FOCUS TOXSWA v3.3.4, SWAN 4.0.1 |
| Water solubility (mg/L): 29.2 x 10^{-3} at 20°C, < 3.5163 x 10^{-2} at 25°C |
| Vapour pressure: 6.78 x 10^{-6} Pa at 20°C |
| Kom/Koc (mL/g): 194.425/112.775 |
| 1/n: 1 (default value) |
| Q10=2.58, Walker equation coefficient 0.7 |
| Crop uptake factor: 0 (FOCUS recommendation for non-systemic compounds) |

Application rate

| Crop and growth stage: |
| - winter cereals |
| BBCH 10-31, 31-77, 31-75 and 31-69 |
| Number of applications: 1 |
| Interval (d): / |
| Application rate(s): 0.025 kg a.s./ha |

| Application window: |
| Winter cereals, BBCH 10+: |
| 1 x 0.025 kg/ha |
| 25.09 - 25.10. |
| 25.10 - 24.11. |
| 21.11 - 21.12. |
| 22.09 - 22.10. |
| 10.11 - 10.12. |
| 30.11 - 30.12. |
| 12.11 - 12.12. |
| 01.12 - 31.12. |
| 10.11 - 10.12. |

| Winter cereals, BBCH 31+: |
| 1 x 0.025 kg/ha |
| 23.05 - 22.06. |
| 04.05 - 03.06. |
| 12.05 - 11.06. |
| 18.05 - 17.06. |
| 11.04 - 11.05. |
| 12.06 - 12.07. |
| 27.04 - 27.05. |
| 28.03 - 27.04. |
| 11.04 - 11.05. |

| Winter cereals, BBCH 69-77: |
| 1 x 0.025 kg/ha |
| 29.06 - 29.07. |
| 10.06 - 10.07. |
| 18.06 - 18.07. |
| 24.06 - 24.07. |
| 18.05 - 17.06. |
| 19.07 - 18.08. |
| 03.06 - 03.07. |
| 04.05 - 03.06. |
| 18.05 - 17.06. |

| - spring cereals |
| BBCH 10-31, 31-77, 31-75 and 31-69 |
| Number of applications: 1 |
| Interval (d): / |
Application rate(s): 0.025 kg a.s./ha
Application window:

Spring cereals, BBCH 10+:	0.025 kg/ha
1 x 0.025 kg/ha	
BBCH 10+	
05.05. - 04.06.	
01.04. - 01.05.	
26.04. - 26.05.	
15.03. - 14.04.	
15.03. - 14.04.	

Spring cereals, BBCH 31+:	0.025 kg/ha
1 x 0.025 kg/ha	
BBCH 31+	
27.05. - 26.06.	
12.05. - 11.06.	
18.05. - 17.06.	
27.03. - 26.04.	
11.04. - 11.05.	

Spring cereals, BBCH 69-77:	0.025 kg/ha
1 x 0.025 kg/ha	
BBCH 69-77	
08.07. - 07.08.	
23.06. - 23.07.	
29.06. - 29.07.	
08.05. - 07.06.	
23.05. - 22.06.	

- winter oil seed rape

BBCH 09-30 and 31-35, 09-30 and 50-59, 09-30 and 70-77

Number of applications: 2
Interval (d): 90
Application rate(s): 0.025 kg a.s./ha
Application window:

Winter oilseed rape, BBCH 9+:	0.025 kg/ha
2 x 0.025 kg/ha	
(multiple application)	
BBCH 9+	
01.11. – 01.03.	
01.11. – 01.03.	
01.11. – 01.03.	
01.11. – 01.03.	
01.11. – 01.03.	

Winter oilseed rape, BBCH 9+:	0.025 kg/ha
1 x 0.025 kg/ha	
(single application)	
BBCH 9+	
01.11. – 01.12.	
01.11. – 01.12.	
01.11. – 01.12.	
01.11. – 01.12.	
01.11. – 01.12.	

Winter oilseed rape, BBCH 31+:	0.025 kg/ha
2 x 0.025 kg/ha	
(single application was calculated representing worst case scenario)	
BBCH 31+	
06.04. – 06.05.	
11.04. – 11.05.	
01.05. – 31.05.	
27.03. – 26.04.	
01.04. – 01.05.	
25.02. – 27.03.	

Winter oilseed rape, BBCH 50-77:	0.025 kg/ha
2 x 0.025 kg/ha	
(single application was calculated representing worst case scenario)	
BBCH 50-77	
20.04. – 27.05.	
25.04. – 01.06.	
15.04. – 21.06.	
10.04. – 17.05.	
15.04. – 22.05.	
11.03. – 17.04.	

- spring oil seed rape

BBCH 09-30, 31-35, 50-59 and 70-77
Number of applications: 1
Interval (d): /
Application rate(s): 0.025 kg a.s./ha

Application window:

Crop Description	Application Rate	Application Window
Spring oilseed rape,	1 x 0.025 kg/ha	19.05. – 18.06.
BBCH 10+:		10.04. – 10.05.
		01.05. – 31.05.
		15.03. – 14.04.
		10.04. – 10.05.
Spring oilseed rape,	1 x 0.025 kg/ha	31.05. – 30.06.
BBCH 31+:		17.05. – 16.06.
		23.05. – 22.06.
		21.04. – 21.05.
		07.05. – 06.06.
Spring oilseed rape,	1 x 0.025 kg/ha	14.06. – 21.07.
BBCH 50-77		31.05. – 07.07.
		06.06. – 13.07.
		05.05. – 11.06.
		21.05. – 27.06.

- potatoes

Whole season (up to PHI)
Number of applications: 1
Interval (d): /
Application rate(s): 0.050 kg a.s./ha

Application window:

Crop Description	Application Rate	Application Window
Potatoes, early	1 x 0.050 kg/ha	10.05. – 09.06.
		22.05. – 21.06.
		10.04. – 10.05.
		05.08. – 04.09.
		05.05. – 04.06.
		15.03. – 14.04.
		10.04. – 10.05.
Potatoes, late	1 x 0.050 kg/ha	13.08. – 12.09.
		21.08. – 20.09.
		12.06. – 12.07.
		23.10. – 22.11.
		06.08. – 05.09.
		13.05. – 12.06.
		30.07. – 29.08.
Initial PECsw and PECsed values of cypermethrin for Step 1

Crop	Application rate [kg/ha]	PECsw [µg/L]	PECsed [µg/kg]
Cypermethrin			
Winter cereals	1 x 0.025	0.262	62.260
Spring cereals	1 x 0.025	0.262	62.260
Winter rape	2 x 0.025	0.262	62.260
Spring rape	1 x 0.025	0.262	62.260
Potatoes	1 x 0.050	0.524	124.520

Initial PECsw and PECsed values of cypermethrin for Step 2

Crop cover	Season	Northern Europe	Southern Europe						
		single	multiple	single	multiple	single	multiple	single	multiple
		PECsw [µg/L]	PECsed [µg/kg]						
Winter cereals, 1 x 0.025 kg/ha									
minimal	Oct - Feb	0.230	19.292	-	-	0.230	15.677	-	-
average	Mar - May	0.230	7.002	-	-	0.230	12.785	-	-
full	Jun - Sep	0.230	3.387	-	-	0.230	4.471	-	-
Spring cereals, 1 x 0.025 kg/ha									
minimal	Mar - May	0.230	8.448	-	-	0.230	15.677	-	-
average	Mar - May	0.230	7.002	-	-	0.230	12.785	-	-
full	Jun - Sep	0.230	3.387	-	-	0.230	4.471	-	-
Winter oilseed rape, 2 x 0.025 kg/ha									
minimal	Oct - Feb	0.230	12.062	0.203	11.922	0.230	9.893	0.203	9.753
average	Mar - May	0.230	3.387	0.203	3.246	0.230	5.556	0.203	5.415
full	Jun - Sep	0.230	3.025	0.203	2.884	0.230	3.929	0.203	3.788
Spring oilseed rape, 1 x 0.025 kg/ha									
minimal	Mar - May	0.230	5.556	-	-	0.230	9.893	-	-
average	Mar - May	0.230	3.387	-	-	0.230	5.556	-	-
full	Jun - Sep	0.230	3.025	-	-	0.230	3.929	-	-
Potatoes, 1 x 0.050 kg/ha									
no	Mar - May	0.460	16.895	-	-	0.460	31.355	-	-
minimal	Mar - May	0.460	14.726	-	-	0.460	27.017	-	-
average	Mar - May	0.460	9.665	-	-	0.460	16.895	-	-
full	Jun - Sep	0.460	6.773	-	-	0.460	8.942	-	-

Step 2 PECsw and PECsed for cypermethrin application on winter and spring cereals, winter and spring rape and potatoes

Time after max. peak (d)	PECsw (µg/L)	PECsed (µg/kg dry sediment)		
Actual				
TWA				
Time after max. peak (d)	PECsw (μg/L)	PECsed (μg/kg dry sediment)		
--------------------------	--------------	-----------------------------		
	Actual	TWA	Actual	TWA
Winter cereals (1 x 0.025 kg a.s./ha), Northern Europe				
0	0.2299	---	19.2924	---
1	0.0711	0.1505	17.7803	18.5364
2	0.0225	0.0987	16.372	17.8063
4	0.0122	0.0556	13.8813	16.4536
7	0.0078	0.0357	10.8372	14.675
14	0.0044	0.0208	6.0822	11.4559
21	0.0024	0.015	3.4135	9.1782
28	0.0014	0.0117	1.9158	7.5322
42	0.0004	0.0081	0.6034	5.4004
50	0.0002	0.0068	0.3118	4.607
100	<0.0001	0.0034	0.005	2.3407
Spring cereals (1 x 0.025 kg a.s./ha), Southern Europe				
0	0.2299	---	15.6774	---
1	0.0711	0.1505	14.4517	15.0645
2	0.0225	0.0987	13.307	14.4719
4	0.0104	0.0553	11.2825	13.3729
7	0.0063	0.0348	8.8084	11.9275
14	0.0035	0.0198	4.9435	9.3111
21	0.002	0.0141	2.7745	7.4598
28	0.0011	0.011	1.5571	6.1221
42	0.0004	0.0075	0.4905	4.3893
50	0.0002	0.0064	0.2535	3.7445
100	<0.0001	0.0032	0.0041	1.9025
Winter rape (2 x 0.025 kg a.s./ha), Northern Europe				
0	0.2299	---	12.0624	---
1	0.0711	0.1505	11.123	11.5927
2	0.0225	0.0987	10.242	11.1376
4	0.0085	0.0551	8.6838	10.2922
7	0.0049	0.034	6.7796	9.1799
14	0.0027	0.0188	3.8049	7.1663
21	0.0015	0.0133	2.1354	5.7415
28	0.0009	0.0102	1.1985	4.7119
42	0.0003	0.007	0.3775	3.3783
50	0.0001	0.0059	0.1951	2.882
100	<0.0001	0.003	0.0032	1.4643
Spring rape (1 x 0.025 kg a.s./ha), Southern Europe				
0	0.2299	---	9.8934	---
1	0.0711	0.1505	9.1258	9.5096
2	0.0225	0.0987	8.403	9.137
4	0.0074	0.055	7.1246	8.4438
7	0.004	0.0335	5.5622	7.5314
14	0.0022	0.0183	3.1217	5.8795
21	0.0013	0.0127	1.752	4.7105
28	0.0007	0.0098	0.9833	3.8658
42	0.0002	0.0067	0.3097	2.7717
50	0.0001	0.0056	0.1601	2.3645
100	<0.0001	0.0028	0.0026	1.2013
Potatoes (1 x 0.050 kg a.s./ha), Southern Europe				
0	0.4598	---	31.3548	---
Time after max. peak (d)	PECsw (µg/L)	PECsed (µg/kg dry sediment)		
--------------------------	--------------	------------------------------		
	Actual	TWA	Actual	TWA
1	0.1422	0.301	28.9033	30.1291
2	0.045	0.1973	26.6141	28.9439
4	0.0208	0.1107	22.5651	26.7459
7	0.0126	0.0697	17.6168	23.8549
14	0.0071	0.0396	9.8871	18.6222
21	0.004	0.0282	5.5489	14.9197
28	0.0022	0.0219	3.1142	12.2441
42	0.0007	0.0151	0.9809	8.7786
50	0.0004	0.0127	0.5069	7.489
100	<0.0001	0.0064	0.0082	3.805

Step 3 – Cypermethrin

Initial PECsw and PECsed of cypermethrin after single application in winter cereals (Step 3)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
BBCH 10+					
D1 (Lanna)	ditch	0.139	Spray drift	0.902	Drainage
D1 (Lanna)	stream	0.122	Spray drift	0.530	Drainage
D2 (Brimstone)	ditch	0.138	Spray drift	0.784	Drainage
D2 (Brimstone)	stream	0.112	Spray drift	0.166	Drainage
D3 (Vreedepeel)	ditch	0.137	Spray drift	0.524	Drainage
D4 (Skousbo)	pond	0.005	Spray drift	0.073	Drainage
D4 (Skousbo)	stream	0.119	Spray drift	0.347	Drainage
D5 (La Jailliere)	pond	0.005	Spray drift	0.076	Drainage
D5 (La Jailliere)	stream	0.128	Spray drift	0.411	Drainage
D6 (Thiva)	ditch	0.139	Spray drift	0.867	Drainage
R1 (Weiherbach)	pond	0.005	Spray drift	0.086	Runoff
R1 (Weiherbach)	stream	0.090	Spray drift	0.450	Runoff
R3 (Bologna)	stream	0.127	Spray drift	0.348	Runoff
R4 (Roujan)	stream	0.091	Spray drift	0.544	Runoff
BBCH 31+					
D1 (Lanna)	ditch	0.139	Spray drift	0.861	Drainage
D1 (Lanna)	stream	0.122	Spray drift	0.528	Drainage
D2 (Brimstone)	ditch	0.139	Spray drift	0.868	Drainage
D2 (Brimstone)	stream	0.123	Spray drift	0.769	Drainage
D3 (Vreedepeel)	ditch	0.138	Spray drift	0.583	Drainage
D4 (Skousbo)	pond	0.005	Spray drift	0.068	Drainage
D4 (Skousbo)	stream	0.115	Spray drift	0.211	Drainage
D5 (La Jailliere)	pond	0.005	Spray drift	0.074	Drainage
D5 (La Jailliere)	stream	0.116	Spray drift	0.129	Drainage
D6 (Thiva)	ditch	0.139	Spray drift	0.765	Drainage
R1 (Weiherbach)	pond	0.005	Spray drift	0.074	Runoff
R1 (Weiherbach)	stream	0.091	Spray drift	0.366	Runoff
Initial PECsw and PECsed of cypermethrin after single application in spring cereals (Step 3)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
BBCH 10+					
D1 (Lanna)	ditch	0.138	Spray drift	0.710	Drainage
D1 (Lanna)	stream	0.111	Spray drift	0.146	Drainage
D3 (Vreedepeel)	ditch	0.138	Spray drift	0.559	Drainage
D4 (Skousbo)	pond	0.005	Spray drift	0.072	Drainage
D4 (Skousbo)	stream	0.108	Spray drift	0.121	Drainage
D5 (La Jailliere)	pond	0.005	Spray drift	0.074	Drainage
D5 (La Jailliere)	stream	0.109	Spray drift	0.082	Drainage
R4 (Roujan)	stream	0.091	Spray drift	0.803	Runoff
BBCH 31+					
D1 (Lanna)	ditch	0.139	Spray drift	0.861	Drainage
D1 (Lanna)	stream	0.122	Spray drift	0.528	Drainage
D3 (Vreedepeel)	ditch	0.138	Spray drift	0.584	Drainage
D4 (Skousbo)	pond	0.005	Spray drift	0.068	Drainage
D4 (Skousbo)	stream	0.113	Spray drift	0.170	Drainage
D5 (La Jailliere)	pond	0.005	Spray drift	0.074	Drainage
D5 (La Jailliere)	stream	0.109	Spray drift	0.082	Drainage
R4 (Roujan)	stream	0.091	Spray drift	0.825	Runoff
BBCH 69-77					
D1 (Lanna)	ditch	0.139	Spray drift	0.828	Drainage
Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
------------------	----------------	----------------------	--------------------	------------------------	----------------
D1 (Lanna)	stream	0.122	Spray drift	0.525	Drainage
D3 (Vreedepeel)	ditch	0.138	Spray drift	0.617	Drainage
D4 (Skousbo)	pond	0.005	Spray drift	0.065	Drainage
D4 (Skousbo)	stream	0.119	Spray drift	0.330	Drainage
D5 (La Jailliere)	pond	0.005	Spray drift	0.069	Drainage
D5 (La Jailliere)	stream	0.120	Spray drift	0.169	Drainage
R4 (Roujan)	stream	0.091	Spray drift	0.374	Runoff

Initial PECsw and PECsed of cypermethrin after single application in winter oilseed rape (Step 3)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
BBCH 9+					
D2 (Brimstone)	ditch	0.138	Spray drift	0.680	Drainage
D2 (Brimstone)	stream	0.107	Spray drift	0.112	Drainage
D3 (Vreedepeel)	ditch	0.138	Spray drift	0.577	Drainage
D4 (Skousbo)	pond	0.005	Spray drift	0.079	Drainage
D4 (Skousbo)	stream	0.116	Spray drift	0.253	Drainage
D5 (La Jailliere)	pond	0.005	Spray drift	0.076	Drainage
D5 (La Jailliere)	stream	0.128	Spray drift	0.411	Drainage
R1 (Weiherbach)	pond	0.005	Spray drift	0.083	Runoff
R1 (Weiherbach)	stream	0.090	Spray drift	0.378	Runoff
R3 (Bologna)	stream	0.124	Spray drift	1.152	Runoff
BBCH 31+					
D2 (Brimstone)	ditch	0.139	Spray drift	0.796	Drainage
D2 (Brimstone)	stream	0.115	Spray drift	0.215	Drainage
D3 (Vreedepeel)	ditch	0.138	Spray drift	0.574	Drainage
D4 (Skousbo)	pond	0.005	Spray drift	0.068	Drainage
D4 (Skousbo)	stream	0.116	Spray drift	0.241	Drainage
D5 (La Jailliere)	pond	0.005	Spray drift	0.074	Drainage
D5 (La Jailliere)	stream	0.111	Spray drift	0.091	Drainage
R1 (Weiherbach)	pond	0.005	Spray drift	0.072	Runoff
R1 (Weiherbach)	stream	0.090	Spray drift	0.339	Runoff
R3 (Bologna)	stream	0.128	Spray drift	0.404	Runoff
BBCH 50-77					
D2 (Brimstone)	ditch	0.139	Spray drift	0.870	Drainage
D2 (Brimstone)	stream	0.124	Spray drift	0.774	Drainage
D3 (Vreedepeel)	ditch	0.138	Spray drift	0.599	Drainage
D4 (Skousbo)	pond	0.005	Spray drift	0.068	Drainage
D4 (Skousbo)	stream	0.116	Spray drift	0.241	Drainage
D5 (La Jailliere)	pond	0.005	Spray drift	0.074	Drainage
D5 (La Jailliere)	stream	0.117	Spray drift	0.140	Drainage
Initial PECsw and PECsed of cypermethrin after multiple applications in winter oilseed rape (Step 3)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
BBCH 9+					
D2 (Brimstone)	ditch	0.122	Spray drift	0.784	Drainage
D2 (Brimstone)	stream	0.107	Spray drift	0.691	Drainage
D3 (Vreedepeel)	ditch	0.120	Spray drift	0.504	Drainage
D4 (Skousbo)	pond	0.004	Spray drift	0.100	Drainage
D4 (Skousbo)	stream	0.101	Spray drift	0.219	Drainage
D5 (La Jailliere)	pond	0.004	Spray drift	0.095	Drainage
D5 (La Jailliere)	stream	0.111	Spray drift	0.355	Drainage
R1 (Weiherbach)	pond	0.004	Spray drift	0.111	Runoff
R1 (Weiherbach)	stream	0.078	Spray drift	0.445	Spray drift
R3 (Bologna)	stream	0.111	Spray drift	1.150	Runoff
BBCH 31+					
D2 (Brimstone)	ditch	0.121	Spray drift	0.594	Drainage
D2 (Brimstone)	stream	0.096	Spray drift	0.133	Drainage
D3 (Vreedepeel)	ditch	0.120	Spray drift	0.543	Drainage
D4 (Skousbo)	pond	0.004	Spray drift	0.087	Drainage
D4 (Skousbo)	stream	0.101	Spray drift	0.219	Drainage
D5 (La Jailliere)	pond	0.004	Spray drift	0.076	Drainage
D5 (La Jailliere)	stream	0.111	Spray drift	0.355	Drainage
R1 (Weiherbach)	pond	0.004	Spray drift	0.100	Runoff
R1 (Weiherbach)	stream	0.078	Spray drift	0.445	Runoff
R3 (Bologna)	stream	0.111	Spray drift	1.150	Runoff
BBCH 50-77					
D2 (Brimstone)	ditch	0.122	Spray drift	0.772	Drainage
D2 (Brimstone)	stream	0.104	Spray drift	0.403	Drainage
D3 (Vreedepeel)	ditch	0.121	Spray drift	0.554	Drainage
D4 (Skousbo)	pond	0.004	Spray drift	0.082	Drainage
D4 (Skousbo)	stream	0.101	Spray drift	0.219	Drainage
D5 (La Jailliere)	pond	0.004	Spray drift	0.069	Drainage
D5 (La Jailliere)	stream	0.111	Spray drift	0.355	Drainage
R1 (Weiherbach)	pond	0.004	Spray drift	0.081	Runoff
R1 (Weiherbach)	stream	0.078	Spray drift	0.420	Runoff
R3 (Bologna)	stream	0.111	Spray drift	1.150	Runoff
Initial PEC$_{sw}$ and PEC$_{sed}$ of cypermethrin after application in spring oilseed rape (Step 3)

Scenario	Water body type	Initial PEC$_{sw}$	Main route	Initial PEC$_{sed}$	Main route
BBCH 10+					
D1 (Lanna) ditch	0.139	Spray drift	0.861	Drainage	
D1 (Lanna) stream	0.122	Spray drift	0.528	Drainage	
D3 (Vreedepeel) ditch	0.138	Spray drift	0.570	Drainage	
D4 (Skousbo) pond	0.005	Spray drift	0.068	Drainage	
D4 (Skousbo) stream	0.113	Spray drift	0.173	Drainage	
D5 (La Jailliere) pond	0.005	Spray drift	0.074	Drainage	
D5 (La Jailliere) stream	0.109	Spray drift	0.082	Drainage	
R1 (Weiherbach) pond	0.005	Spray drift	0.077	Runoff	
R1 (Weiherbach) stream	0.091	Spray drift	0.470	Runoff	
BBCH 31+					
D1 (Lanna) ditch	0.139	Spray drift	0.861	Drainage	
D1 (Lanna) stream	0.122	Spray drift	0.528	Drainage	
D3 (Vreedepeel) ditch	0.138	Spray drift	0.595	Drainage	
D4 (Skousbo) pond	0.005	Spray drift	0.068	Drainage	
D4 (Skousbo) stream	0.113	Spray drift	0.173	Drainage	
D5 (La Jailliere) pond	0.005	Spray drift	0.071	Drainage	
D5 (La Jailliere) stream	0.120	Spray drift	0.165	Drainage	
R1 (Weiherbach) pond	0.005	Spray drift	0.085	Runoff	
R1 (Weiherbach) stream	0.090	Spray drift	0.550	Runoff	
BBCH 50-77					
D1 (Lanna) ditch	0.139	Spray drift	0.861	Drainage	
D1 (Lanna) stream	0.122	Spray drift	0.528	Drainage	
D3 (Vreedepeel) ditch	0.138	Spray drift	0.632	Drainage	
D4 (Skousbo) pond	0.005	Spray drift	0.065	Drainage	
D4 (Skousbo) stream	0.119	Spray drift	0.346	Drainage	
D5 (La Jailliere) pond	0.005	Spray drift	0.069	Drainage	
D5 (La Jailliere) stream	0.120	Spray drift	0.172	Drainage	
R1 (Weiherbach) pond	0.005	Spray drift	0.076	Runoff	
R1 (Weiherbach) stream	0.091	Spray drift	0.524	Runoff	

Initial PEC$_{sw}$ and PEC$_{sed}$ of cypermethrin after early and late single application in potatoes (Step 3)

Scenario	Water body type	Initial PEC$_{sw}$	Main route	Initial PEC$_{sed}$	Main route
Early application					
D3 (Vreedepeel) ditch	0.228	Spray drift	0.965	Drainage	
D4 (Skousbo) pond	0.009	Spray drift	0.135	Drainage	
D4 (Skousbo) stream	0.191	Spray drift	0.245	Drainage	
D6 (Thiva), 1st crop ditch	0.224	Spray drift	0.675	Drainage	
Scenario 1: Water body type

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D6 (Thiva), 2nd crop	ditch	0.223	Spray drift	0.612	Drainage
R1 (Weiherbach)	pond	0.009	Spray drift	0.173	Runoff
R1 (Weiherbach)	stream	0.155	Spray drift	1.130	Runoff
R2 (Porto)	stream	0.208	Spray drift	1.474	Runoff
R3 (Bologna)	stream	0.222	Spray drift	0.716	Runoff

Late application

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D3 (Vreedepeel)	ditch	0.228	Spray drift	0.989	Drainage
D4 (Skousbo)	pond	0.009	Spray drift	0.130	Drainage
D4 (Skousbo)	stream	0.171	Spray drift	0.121	Drainage
D6 (Thiva), 1st crop	ditch	0.226	Spray drift	0.803	Drainage
D6 (Thiva), 2nd crop	ditch	0.227	Spray drift	0.862	Drainage
R1 (Weiherbach)	pond	0.009	Spray drift	0.190	Runoff
R2 (Porto)	stream	0.212	Spray drift	0.793	Runoff
R3 (Bologna)	stream	0.222	Spray drift	2.973	Runoff

Step 4 – Cypermethrin

Winter cereals – 20 m no spray buffer zone

Initial PECsw and PECsed of cypermethrin after single application on winter cereals (Step 4, 20 m buffer)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D1 (Lanna)	ditch	0.0104	Spray drift	0.0611	Drainage
D1 (Lanna)	stream	0.0122	Spray drift	0.0526	Drainage
D2 (Brimstone)	ditch	0.0104	Spray drift	0.0625	Drainage
D2 (Brimstone)	stream	0.0124	Spray drift	0.0747	Drainage
D3 (Vreedepeel)	ditch	0.0103	Spray drift	0.0449	Drainage
D4 (Skousbo)	pond	0.0020	Spray drift	0.0273	Drainage
D4 (Skousbo)	stream	0.0119	Spray drift	0.0347	Drainage
D5 (La Jailliere)	pond	0.0020	Spray drift	0.0283	Drainage
D5 (La Jailliere)	stream	0.0129	Spray drift	0.0411	Drainage
D6 (Thiva)	ditch	0.0104	Spray drift	0.0564	Drainage
R1 (Weiherbach)	pond	0.0020	Spray drift	0.0645	Runoff
R1 (Weiherbach)	stream	0.0091	Spray drift	1.1510	Runoff
R3 (Bologna)	stream	0.0128	Spray drift	0.0709	Runoff
R4 (Roujan)	stream	0.0091	Spray drift	0.3333	Runoff

Winter cereals – 50 m no spray buffer zone

Initial PECsw and PECsed of cypermethrin after single application on winter cereals (Step 4, 50 m buffer)
## Scenario	Water body type	Initial PECsw \([\mu g/L]\)	Main route	Initial PECsed \([\mu g/kg]\)	Main route
BBCH 69-77
D1 (Lanna) | ditch | 0.0043 | Spray drift | 0.0255 | Drainage
D1 (Lanna) | stream | 0.0051 | Spray drift | 0.0220 | Drainage
D2 (Brimstone) | ditch | 0.0043 | Spray drift | 0.0261 | Drainage
D2 (Brimstone) | stream | 0.0052 | Spray drift | 0.0313 | Drainage
D3 (Vreedepeel) | ditch | 0.0043 | Spray drift | 0.0187 | Drainage
D4 (Skousbo) | pond | 0.0010 | Spray drift | 0.0142 | Drainage
D4 (Skousbo) | stream | 0.0050 | Spray drift | 0.0145 | Drainage
D5 (La Jailliere) | pond | 0.0010 | Spray drift | 0.0148 | Drainage
D5 (La Jailliere) | stream | 0.0054 | Spray drift | 0.0172 | Drainage
D6 (Thiva) | ditch | 0.0043 | Spray drift | 0.0235 | Drainage
R1 (Weiherbach) | pond | 0.0010 | Spray drift | 0.0539 | Runoff
R1 (Weiherbach) | stream | 0.0038 | Spray drift | 1.1510 | Runoff
R3 (Bologna) | stream | 0.0053 | Spray drift | 0.0706 | Runoff
R4 (Roujian) | stream | 0.0038 | Spray drift | 0.3333 | Runoff

Spring cereals

Spring cereals – 20 m no-spray buffer zone

Initial PECsw and PECsed of cypermethrin after single application on spring cereals (Step 4, 20 m buffer)

Scenario	Water body type	Initial PECsw \([\mu g/L]\)	Main route	Initial PECsed \([\mu g/kg]\)	Main route
BBCH 69-77
D1 (Lanna) | ditch | 0.0104 | Spray drift | 0.062 | Drainage
D1 (Lanna) | stream | 0.0122 | Spray drift | 0.053 | Drainage
D3 (Vreedepeel) | ditch | 0.0103 | Spray drift | 0.046 | Drainage
D4 (Skousbo) | pond | 0.0020 | Spray drift | 0.027 | Drainage
D4 (Skousbo) | stream | 0.0119 | Spray drift | 0.033 | Drainage
D5 (La Jailliere) | pond | 0.0020 | Spray drift | 0.029 | Drainage
D5 (La Jailliere) | stream | 0.0120 | Spray drift | 0.017 | Drainage
R4 (Roujian) | stream | 0.0091 | Spray drift | 0.374 | Runoff

Spring cereals – 50 m no-spray buffer zone

Initial PECsw and PECsed of cypermethrin after single application on spring cereals (Step 4, 50 m buffer)

Scenario	Water body type	Initial PECsw \([\mu g/L]\)	Main route	Initial PECsed \([\mu g/kg]\)	Main route
BBCH 69-77
D1 (Lanna) | ditch | 0.0043 | Spray drift | 0.026 | Drainage
D1 (Lanna) | stream | 0.0051 | Spray drift | 0.022 | Drainage
Scenario | Water body type | Initial PECsw [µg/L] | Main route | Initial PECsed [µg/kg] | Main route
--- | --- | --- | --- | --- | ---
D3 (Vreedepeel) | ditch | 0.0043 | Spray drift | 0.019 | Drainage
D4 (Skousbo) | pond | 0.0010 | Spray drift | 0.014 | Drainage
D4 (Skousbo) | stream | 0.0050 | Spray drift | 0.014 | Drainage
D5 (La Jailliere) | pond | 0.0010 | Spray drift | 0.015 | Drainage
D5 (La Jailliere) | stream | 0.0050 | Spray drift | 0.007 | Drainage
R4 (Roujan) | stream | 0.0038 | Spray drift | 0.374 | Runoff

Winter oilseed rape

Winter oilseed rape – 20 m no-spray buffer zone

Initial PECsw and PECsed of cypermethrin after single application on winter rape (Step 4, 20 m buffer)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
BBCH 9+					
D2 (Brimstone)	ditch	0.0103	Spray drift	0.051	Drainage
D2 (Brimstone)	stream	0.0107	Spray drift	0.011	Drainage
D3 (Vreedepeel)	ditch	0.0103	Spray drift	0.043	Drainage
D4 (Skousbo)	pond	0.0020	Spray drift	0.033	Drainage
D4 (Skousbo)	stream	0.0117	Spray drift	0.025	Drainage
D5 (La Jailliere)	pond	0.0020	Spray drift	0.032	Drainage
D5 (La Jailliere)	stream	0.0129	Spray drift	0.041	Drainage
R1 (Weiherbach)	pond	0.0020	Spray drift	0.043	Runoff
R1 (Weiherbach)	stream	0.0091	Spray drift	0.371	Runoff
R3 (Bologna)	stream	0.0124	Spray drift	1.133	Runoff
BBCH 9-31					
D2 (Brimstone)	ditch	0.0104	Spray drift	0.059	Drainage
D2 (Brimstone)	stream	0.0115	Spray drift	0.022	Drainage
D3 (Vreedepeel)	ditch	0.0103	Spray drift	0.043	Drainage
D4 (Skousbo)	pond	0.0020	Spray drift	0.029	Drainage
D4 (Skousbo)	stream	0.0116	Spray drift	0.024	Drainage
D5 (La Jailliere)	pond	0.0020	Spray drift	0.031	Drainage
D5 (La Jailliere)	stream	0.0112	Spray drift	0.009	Drainage
R1 (Weiherbach)	pond	0.0020	Spray drift	0.035	Runoff
R1 (Weiherbach)	stream	0.0091	Spray drift	0.335	Runoff
R3 (Bologna)	stream	0.0129	Spray drift	0.346	Runoff
BBCH 9-77					
D2 (Brimstone)	ditch	0.0104	Spray drift	0.065	Drainage
D2 (Brimstone)	stream	0.0124	Spray drift	0.078	Drainage
D3 (Vreedepeel)	ditch	0.0103	Spray drift	0.045	Drainage
D4 (Skousbo)	pond	0.0020	Spray drift	0.029	Drainage
Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
--------------------	----------------	----------------------	----------------	------------------------	----------------
D4 (Skousbo)	stream	0.0116	Spray drift	0.024	Drainage
D5 (La Jailliere)	pond	0.0020	Spray drift	0.031	Drainage
D5 (La Jailliere)	stream	0.0118	Spray drift	0.014	Drainage
R1 (Weiherbach)	pond	0.0020	Spray drift	0.035	Runoff
R1 (Weiherbach)	stream	0.0091	Spray drift	0.335	Runoff
R3 (Bologna)	stream	0.0127	Spray drift	0.241	Runoff

Initial PECsw and PECsed of cypermethrin after multiple applications on winter rape (Step 4, 20 m buffer)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
BBCH 9+					
D2 (Brimstone)	ditch	0.0084	Spray drift	0.054	Drainage
D2 (Brimstone)	stream	0.0101	Spray drift	0.065	Drainage
D3 (Vreedepeel)	ditch	0.0083	Spray drift	0.035	Drainage
D4 (Skousbo)	pond	0.0017	Spray drift	0.040	Drainage
D4 (Skousbo)	stream	0.0095	Spray drift	0.021	Drainage
D5 (La Jailliere)	pond	0.0017	Spray drift	0.038	Drainage
D5 (La Jailliere)	stream	0.0105	Spray drift	0.034	Drainage
R1 (Weiherbach)	pond	0.0017	Spray drift	0.053	Runoff
R1 (Weiherbach)	stream	0.0074	Spray drift	0.380	Runoff
R3 (Bologna)	stream	0.0105	Spray drift	1.133	Runoff
BBCH 9-31					
D2 (Brimstone)	ditch	0.0083	Spray drift	0.041	Drainage
D2 (Brimstone)	stream	0.0091	Spray drift	0.013	Drainage
D3 (Vreedepeel)	ditch	0.0083	Spray drift	0.037	Drainage
D4 (Skousbo)	pond	0.0016	Spray drift	0.035	Drainage
D4 (Skousbo)	stream	0.0095	Spray drift	0.021	Drainage
D5 (La Jailliere)	pond	0.0016	Spray drift	0.030	Drainage
D5 (La Jailliere)	stream	0.0105	Spray drift	0.034	Drainage
R1 (Weiherbach)	pond	0.0016	Spray drift	0.051	Runoff
R1 (Weiherbach)	stream	0.0074	Spray drift	0.421	Runoff
R3 (Bologna)	stream	0.0104	Spray drift	1.133	Runoff
BBCH 9-77					
D2 (Brimstone)	ditch	0.0084	Spray drift	0.053	Drainage
D2 (Brimstone)	stream	0.0098	Spray drift	0.038	Drainage
D3 (Vreedepeel)	ditch	0.0083	Spray drift	0.038	Drainage
D4 (Skousbo)	pond	0.0016	Spray drift	0.033	Drainage
D4 (Skousbo)	stream	0.0095	Spray drift	0.021	Drainage
D5 (La Jailliere)	pond	0.0016	Spray drift	0.027	Drainage
D5 (La Jailliere)	stream	0.0105	Spray drift	0.034	Drainage
R1 (Weiherbach)	pond	0.0016	Spray drift	0.038	Runoff
Winter oilseed rape – 20 m no-spray buffer zone + 50 % DRN

Initial PEC_{sw} and PEC_{sed} of cypermethrin after single application on winter rape (Step 4, 20 m buffer + 50 % DRN)

Scenario	Water body type	Initial PEC_{sw} [µg/L]	Main route	Initial PEC_{sed} [µg/kg]	Main route
R1 (Weiherbach)	stream	0.0074	Spray drift	0.384	Runoff
R3 (Bologna)	stream	0.0105	Spray drift	1.133	Runoff

Scenario	Water body type	Initial PEC_{sw} [µg/L]	Main route	Initial PEC_{sed} [µg/kg]	Main route
D2 (Brimstone)	ditch	0.0052	Spray drift	0.025	Drainage
D2 (Brimstone)	stream	0.0055	Spray drift	0.006	Drainage
D3 (Vreedepeel)	ditch	0.0051	Spray drift	0.022	Drainage
D4 (Skousbo)	pond	0.0010	Spray drift	0.016	Drainage
D4 (Skousbo)	stream	0.0060	Spray drift	0.013	Drainage
D5 (La Jailliere)	pond	0.0010	Spray drift	0.015	Drainage
D5 (La Jailliere)	stream	0.0066	Spray drift	0.021	Drainage
R1 (Weiherbach)	pond	0.0010	Spray drift	0.028	Runoff
R1 (Weiherbach)	stream	0.0046	Spray drift	0.371	Runoff
R3 (Bologna)	stream	0.0064	Spray drift	1.132	Runoff

Scenario	Water body type	Initial PEC_{sw} [µg/L]	Main route	Initial PEC_{sed} [µg/kg]	Main route
D2 (Brimstone)	ditch	0.0052	Spray drift	0.030	Drainage
D2 (Brimstone)	stream	0.0059	Spray drift	0.011	Drainage
D3 (Vreedepeel)	ditch	0.0051	Spray drift	0.021	Drainage
D4 (Skousbo)	pond	0.0010	Spray drift	0.014	Drainage
D4 (Skousbo)	stream	0.0059	Spray drift	0.012	Drainage
D5 (La Jailliere)	pond	0.0010	Spray drift	0.015	Drainage
D5 (La Jailliere)	stream	0.0057	Spray drift	0.005	Drainage
R1 (Weiherbach)	pond	0.0010	Spray drift	0.022	Runoff
R1 (Weiherbach)	stream	0.0046	Spray drift	0.335	Runoff
R3 (Bologna)	stream	0.0066	Spray drift	0.346	Runoff

Scenario	Water body type	Initial PEC_{sw} [µg/L]	Main route	Initial PEC_{sed} [µg/kg]	Main route
D2 (Brimstone)	ditch	0.0052	Spray drift	0.032	Drainage
D2 (Brimstone)	stream	0.0064	Spray drift	0.040	Drainage
D3 (Vreedepeel)	ditch	0.0051	Spray drift	0.022	Drainage
D4 (Skousbo)	pond	0.0010	Spray drift	0.014	Drainage
D4 (Skousbo)	stream	0.0059	Spray drift	0.012	Drainage
D5 (La Jailliere)	pond	0.0010	Spray drift	0.015	Drainage
D5 (La Jailliere)	stream	0.0060	Spray drift	0.007	Drainage
R1 (Weiherbach)	pond	0.0010	Spray drift	0.022	Runoff
R1 (Weiherbach)	stream	0.0046	Spray drift	0.335	Runoff
R3 (Bologna)	stream	0.0065	Spray drift	0.240	Runoff
Initial PECsw and PECsed of cypermethrin after multiple application on winter rape (Step 4, 20 m buffer + 50 % DRN)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
BBCH 9+					
D2 (Brimstone)	ditch	0.004	Spray drift	0.026	Drainage
D2 (Brimstone)	stream	0.0049	Spray drift	0.032	Drainage
D3 (Vreedepeel)	ditch	0.0040	Spray drift	0.017	Drainage
D4 (Skousbo)	pond	0.0008	Spray drift	0.020	Drainage
D4 (Skousbo)	stream	0.0046	Spray drift	0.010	Drainage
D5 (La Jailliere)	pond	0.0008	Spray drift	0.019	Drainage
D5 (La Jailliere)	stream	0.0051	Spray drift	0.016	Drainage
R1 (Weiherbach)	pond	0.0009	Spray drift	0.034	Runoff
R1 (Weiherbach)	stream	0.0036	Spray drift	0.379	Runoff
R3 (Bologna)	stream	0.0051	Spray drift	1.132	Runoff
BBCH 9-31					
D2 (Brimstone)	ditch	0.0040	Spray drift	0.020	Drainage
D2 (Brimstone)	stream	0.0044	Spray drift	0.006	Drainage
D3 (Vreedepeel)	ditch	0.0040	Spray drift	0.018	Drainage
D4 (Skousbo)	pond	0.0008	Spray drift	0.017	Drainage
D4 (Skousbo)	stream	0.0046	Spray drift	0.010	Drainage
D5 (La Jailliere)	pond	0.0008	Spray drift	0.015	Drainage
D5 (La Jailliere)	stream	0.0051	Spray drift	0.016	Drainage
R1 (Weiherbach)	pond	0.0008	Spray drift	0.034	Runoff
R1 (Weiherbach)	stream	0.0036	Spray drift	0.420	Runoff
R3 (Bologna)	stream	0.0051	Spray drift	1.132	Runoff
BBCH 9-77					
D2 (Brimstone)	ditch	0.0040	Spray drift	0.026	Drainage
D2 (Brimstone)	stream	0.0048	Spray drift	0.018	Drainage
D3 (Vreedepeel)	ditch	0.0040	Spray drift	0.018	Drainage
D4 (Skousbo)	pond	0.0008	Spray drift	0.016	Drainage
D4 (Skousbo)	stream	0.0046	Spray drift	0.010	Drainage
D5 (La Jailliere)	pond	0.0008	Spray drift	0.014	Drainage
D5 (La Jailliere)	stream	0.0051	Spray drift	0.016	Drainage
R1 (Weiherbach)	pond	0.0008	Spray drift	0.026	Runoff
R1 (Weiherbach)	stream	0.0036	Spray drift	0.384	Runoff
R3 (Bologna)	stream	0.0051	Spray drift	1.132	Runoff

Winter oilseed rape – 50 m no-spray buffer zone
Initial PEC\(_{sw}\) and PEC\(_{sed}\) of cypermethrin after single application on winter rape (Step 4, 50 m buffer)

Scenario	Water body type	Initial PEC\(_{sw}\) [µg/L]	Main route	Initial PEC\(_{sed}\) [µg/kg]	Main route
BBCH 9+					
D2 (Brimstone)	ditch	0.0043	Spray drift	0.021	Drainage
D2 (Brimstone)	stream	0.0045	Spray drift	0.005	Drainage
D3 (Vreedepeel)	ditch	0.0043	Spray drift	0.018	Drainage
D4 (Skousbo)	pond	0.0010	Spray drift	0.017	Drainage
D4 (Skousbo)	stream	0.0049	Spray drift	0.011	Drainage
D5 (La Jailliere)	pond	0.0010	Spray drift	0.017	Drainage
D5 (La Jailliere)	stream	0.0054	Spray drift	0.017	Drainage
R1 (Weiherbach)	pond	0.0010	Spray drift	0.030	Runoff
R1 (Weiherbach)	stream	0.0038	Spray drift	0.371	Runoff
R3 (Bologna)	stream	0.0052	Spray drift	1.132	Runoff
BBCH 9-31					
D2 (Brimstone)	ditch	0.0043	Spray drift	0.025	Drainage
D2 (Brimstone)	stream	0.0048	Spray drift	0.009	Drainage
D3 (Vreedepeel)	ditch	0.0043	Spray drift	0.018	Drainage
D4 (Skousbo)	pond	0.0010	Spray drift	0.015	Drainage
D4 (Skousbo)	stream	0.0049	Spray drift	0.010	Drainage
D5 (La Jailliere)	pond	0.0010	Spray drift	0.016	Drainage
D5 (La Jailliere)	stream	0.0047	Spray drift	0.004	Drainage
R1 (Weiherbach)	pond	0.0010	Spray drift	0.023	Runoff
R1 (Weiherbach)	stream	0.0038	Spray drift	0.335	Runoff
R3 (Bologna)	stream	0.0054	Spray drift	0.346	Runoff
BBCH 9-77					
D2 (Brimstone)	ditch	0.0043	Spray drift	0.027	Drainage
D2 (Brimstone)	stream	0.0052	Spray drift	0.032	Drainage
D3 (Vreedepeel)	ditch	0.0043	Spray drift	0.019	Drainage
D4 (Skousbo)	pond	0.0010	Spray drift	0.015	Drainage
D4 (Skousbo)	stream	0.0049	Spray drift	0.010	Drainage
D5 (La Jailliere)	pond	0.0010	Spray drift	0.016	Drainage
D5 (La Jailliere)	stream	0.0049	Spray drift	0.006	Drainage
R1 (Weiherbach)	pond	0.0010	Spray drift	0.023	Runoff
R1 (Weiherbach)	stream	0.0038	Spray drift	0.335	Runoff
R3 (Bologna)	stream	0.0053	Spray drift	0.240	Runoff

Initial PEC\(_{sw}\) and PEC\(_{sed}\) of cypermethrin after multiple applications on winter rape (Step 4, 50 m buffer)

Scenario	Water body type	Initial PEC\(_{sw}\) [µg/L]	Main route	Initial PEC\(_{sed}\) [µg/kg]	Main route
BBCH 9+					
D2 (Brimstone)	ditch	0.0035	Spray drift	0.022	Drainage
D2 (Brimstone)	stream	0.0040	Spray drift	0.026	Drainage
Scenario

Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D3 (Vreedepeel) ditch	0.0034	Spray drift	0.014	Drainage
D4 (Skousbo) pond	0.0008	Spray drift	0.020	Drainage
D4 (Skousbo) stream	0.0038	Spray drift	0.008	Drainage
D5 (La Jailliere) pond	0.0008	Spray drift	0.019	Drainage
D5 (La Jailliere) stream	0.0042	Spray drift	0.013	Drainage
R1 (Weiherbach) pond	0.0009	Spray drift	0.034	Runoff
R1 (Weiherbach) stream	0.0030	Spray drift	0.379	Runoff
R3 (Bologna) stream	0.0042	Spray drift	1.132	Runoff

BBCH 9-31

Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D2 (Brimstone) ditch	0.0034	Spray drift	0.017	Drainage
D2 (Brimstone) stream	0.0036	Spray drift	0.005	Drainage
D3 (Vreedepeel) ditch	0.0034	Spray drift	0.015	Drainage
D4 (Skousbo) pond	0.0008	Spray drift	0.017	Drainage
D4 (Skousbo) stream	0.0038	Spray drift	0.008	Drainage
D5 (La Jailliere) pond	0.0008	Spray drift	0.015	Drainage
D5 (La Jailliere) stream	0.0042	Spray drift	0.013	Drainage
R1 (Weiherbach) pond	0.0008	Spray drift	0.034	Runoff
R1 (Weiherbach) stream	0.0030	Spray drift	0.420	Runoff
R3 (Bologna) stream	0.0042	Spray drift	1.132	Runoff

BBCH 9-77

Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D2 (Brimstone) ditch	0.0035	Spray drift	0.022	Drainage
D2 (Brimstone) stream	0.0039	Spray drift	0.015	Drainage
D3 (Vreedepeel) ditch	0.0034	Spray drift	0.016	Drainage
D4 (Skousbo) pond	0.0008	Spray drift	0.016	Drainage
D4 (Skousbo) stream	0.0038	Spray drift	0.008	Drainage
D5 (La Jailliere) pond	0.0008	Spray drift	0.014	Drainage
D5 (La Jailliere) stream	0.0042	Spray drift	0.013	Drainage
R1 (Weiherbach) pond	0.0008	Spray drift	0.026	Runoff
R1 (Weiherbach) stream	0.0030	Spray drift	0.384	Runoff
R3 (Bologna) stream	0.0042	Spray drift	1.132	Runoff

Spring oilseed rape

Spring oilseed rape – 50 m no-spray buffer zone

Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D1 (Lanna) ditch	0.0043	Spray Drift	0.027	Drainage
D1 (Lanna) stream	0.0051	Spray Drift	0.022	Drainage
D3 (Vreedepeel) ditch	0.0043	Spray Drift	0.020	Drainage
Scenario

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D4 (Skousbo)	pond	0.0010	Spray Drift	0.014	Drainage
D4 (Skousbo)	stream	0.0050	Spray Drift	0.015	Drainage
D5 (La Jailliere)	pond	0.0010	Spray Drift	0.007	Drainage
D5 (La Jailliere)	stream	0.0050	Spray Drift	0.025	Runoff
R1 (Weiherbach)	pond	0.0010	Spray Drift	0.524	Runoff
R1 (Weiherbach)	stream	0.0038	Spray Drift	0.524	Runoff

Spring oilseed rape – 20 m no-spray buffer zone

Initial PECsw and PECsed of cypermethrin after single application on spring rape (Step 4, 20 m buffer)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D1 (Lanna)	ditch	0.0104	Spray Drift	0.064	Drainage
D1 (Lanna)	stream	0.0122	Spray Drift	0.053	Drainage
D3 (Vreedepeel)	ditch	0.0103	Spray Drift	0.047	Drainage
D4 (Skousbo)	pond	0.0020	Spray Drift	0.027	Drainage
D4 (Skousbo)	stream	0.0119	Spray Drift	0.035	Drainage
D5 (La Jailliere)	pond	0.0020	Spray Drift	0.029	Drainage
D5 (La Jailliere)	stream	0.0121	Spray Drift	0.017	Drainage
R1 (Weiherbach)	pond	0.0020	Spray Drift	0.038	Runoff
R1 (Weiherbach)	stream	0.0091	Spray Drift	0.524	Runoff

Potatoes

Potatoes – 20 m no-spray buffer zone

Initial PECsw and PECsed of cypermethrin after early application on potatoes (Step 4, 20 m buffer)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
D3 (Vreedepeel)	ditch	0.0206	Spray Drift	0.087	Drainage
D4 (Skousbo)	pond	0.0206	Spray Drift	0.072	Drainage
D4 (Skousbo)	stream	0.0221	Spray Drift	0.028	Drainage
D6 (Thiva), 1st crop	ditch	0.0203	Spray Drift	0.051	Drainage
D6 (Thiva), 2nd crop	ditch	0.0202	Spray Drift	0.055	Drainage
R1 (Weiherbach)	pond	0.0039	Spray Drift	0.097	Runoff
R1 (Weiherbach)	stream	0.0179	Spray Drift	1.116	Runoff
R2 (Porto)	stream	0.0241	Spray Drift	1.460	Runoff
R3 (Bologna)	stream	0.0257	Spray Drift	0.618	Runoff
Initial PECsw and PECsed of cypermethrin after late application on potatoes (Step 4, 20 m buffer)

Scenario	Water body type	Initial PECsw [µg/L]	Main route	Initial PECsed [µg/kg]	Main route
Late application					
D3 (Vreedepeel)	ditch	0.0206	Spray Drift	0.089	Drainage
D4 (Skousbo)	pond	0.0039	Spray Drift	0.055	Drainage
D4 (Skousbo)	stream	0.0198	Spray Drift	0.014	Drainage
D6 (Thiva), 1st crop	ditch	0.0204	Spray Drift	0.072	Drainage
D6 (Thiva), 2nd crop	ditch	0.0205	Spray Drift	0.078	Drainage
R1 (Weiherbach)	pond	0.0039	Spray Drift	0.170	Runoff
R1 (Weiherbach)	stream	0.0182	Spray Drift	4.064	Runoff
R2 (Porto)	stream	0.0245	Spray Drift	0.778	Runoff
R3 (Bologna)	stream	0.0256	Spray Drift	2.971	Runoff

Metabolite DCVA

Parameters used in FOCUSsw step 1 and 2

- Molecular weight: 209.1 g/L
- Soil or water metabolite: soil and water metabolite
- Water solubility (mg/L): 1000 mg/L at 20°C
- K_{fc} (mL/g): 18.75
- DT_{50} soil (d): 5.5 days
- DT_{50} water/sediment system (d): 93.0 d (geomean, Study No. 714-002, n=2)
- DT_{50} water (d): 93.0 d
- DT_{50} sediment (d): 93.0 d
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: 66.1%
- Soil: 53.7%

Parameters used in FOCUSsw step 3 (if performed)

Not performed

Application rate

- Crop interception (%): - summer/winter cereals: 25, 50, 70% -summer/winter oil seed rape: 40, 70, 75% -potato: 0, 15, 50, 70%
- Crop and growth stage:
 - winter cereals
 - BBCH 10-31, 31-77, 31-75 and 31-69
 - Number of applications: 1
 - Interval (d): /
 - Application rate(s): 0.025 kg a.s./ha
 - Application window: Oct-Feb, Mar-May, Jun-Sep
| Crop Type | Growth Stages | Number of Applications | Interval (d) | Application Rate(s) | Application Window |
|-------------------|--------------------------------|------------------------|--------------|---------------------|-----------------------------|
| Spring cereals | BBCH 10-31, 31-77, 31-75 and 31-69 | 1 | / | 0.025 kg a.s./ha | Mar-May, Jun-Sep |
| Winter oilseed rape | BBCH 09-30 and 31-35, 31-35 and 50-59, 09-30 and 70-77 | 2 | 90 | 0.025 kg a.s./ha | Oct-Feb, Mar-May, Jun-Sep |
| Spring oilseed rape | BBCH 09-30, 31-35, 50-59 and 70-77 | 1 | / | 0.025 kg a.s./ha | Mar-May, Jun-Sep |
| Potatoes | Whole season (up to PHI) | 1 | / | 0.050 kg a.s./ha | Mar-May, Jun-Sep |

Main routes of entry /
Metabolite 3-PBA

Parameters used in FOCUSsw step 1 and 2

Parameter	Value
Molecular weight	214.22 g/L
Soil or water metabolite	soil and water metabolite
Water solubility (mg/L)	1000 mg/L at 20°C
K_{foc} (mL/g)	100.9 (Note: the correct value to be used is 86.7)
DT₅₀ soil (d)	3.1 days (Note: the correct value to be used is 2.0 d)
DT₅₀ water/sediment system (d)	16.9 d (geomean, Study No. 714-002, n=2)
DT₅₀ water (d)	16.9 d (Note: the correct value to be used is 4.6)
DT₅₀ sediment (d)	16.9 d (Note: the correct value to be used is 4.6)
Maximum occurrence observed (% molar basis with respect to the parent)	
Total Water and Sediment:	25.4 %
Soil:	36.6 %

Parameters used in FOCUSsw step 3 (if performed)

Parameter	Value
Application rate	Not performed
Crop interception (%)	
- summer/winter cereals	25, 50, 70%
- summer/winter oil seed rape	40, 70, 75%
- potato	0, 15, 50, 70%
Crop and growth stage:	
- winter cereals	BBCH 10-31, 31-77, 31-75 and 31-69
Number of applications:	1
Interval (d):	/
Application rate(s):	0.025 kg a.s./ha
Application window:	Oct-Feb, Mar-May, Jun-Sep
- spring cereals	BBCH 10-31, 31-77, 31-75 and 31-69
Number of applications:	1
Interval (d):	/
Application rate(s):	0.025 kg a.s./ha
Application window:	Mar-May, Jun-Sep
- winter oil seed rape	BBCH 09-30 and 31-35, 09-30 and 50-59, 09-30 and 70-77
Number of applications:	2
Interval (d):	90
Application rate(s):	0.025 kg a.s./ha
Application window:	Oct-Feb, Mar-May, Jun-Sep
- spring oil seed rape
 BBCH 09-30, 31-35, 50-59 and 70-77
 Number of applications: 1
 Interval (d): /
 Application rate(s): 0.025 kg a.s./ha
 Application window: Mar-May, Jun-Sep

- potatoes
 Whole season (up to PHI)
 Number of applications: 1
 Interval (d): /
 Application rate(s): 0.050 kg a.s./ha
 Application window: Mar-May, Jun-Sep

Main routes of entry

Metabolite carboxamide	Parameters used in FOCUSsw step 1 and 2
Molecular weight: 434.32 g/L	
Soil or water metabolite: soil and water metabolite	
Water solubility (mg/L): 0.029 mg/L at 20°C (value of parent)	
K_{foc} (mL/g): 29966 (geomean, lab study)	
DT₅₀ soil (d): 35.0 days (worst case of parent value)	
DT₅₀ water/sediment system (d): 1000 d (worst case, default value)	
DT₅₀ water (d): 1000 d (worst case, default value)	
DT₅₀ sediment (d): 1000 d (worst case, default value)	
Maximum occurrence observed (% molar basis with respect to the parent)	
Total Water and Sediment: - %	
Soil: 18.9 %	

Parameters used in FOCUSsw step 3 (if performed)
Not performed

Application rate

Crop interception (%)
- summer/winter cereals: 25, 50, 70%
-summer/winter oil seed rape: 40, 70, 75%
-potato: 0, 15, 50, 70%

Crop and growth stage:
- winter cereals
BBCH 10-31, 31-77, 31-75 and 31-69
Number of applications: 1
 Interval (d): /
 Application rate(s): 0.025 kg a.s./ha
 Application window: Oct-Feb, Mar-May, Jun-Sep |
- spring cereals
 BBCH 10-31, 31-77, 31-75 and 31-69
 Number of applications: 1
 Interval (d): /
 Application rate(s): 0.025 kg a.s./ha
 Application window: Mar-May, Jun-Sep

- winter oil seed rape
 BBCH 09-30 and 31-35, 09-30 and 50-59, 09-30 and 70-77
 Number of applications: 2
 Interval (d): 90
 Application rate(s): 0.025 kg a.s./ha
 Application window: Oct-Feb, Mar-May, Jun-Sep

- spring oil seed rape
 BBCH 09-30, 31-35, 50-59 and 70-77
 Number of applications: 1
 Interval (d): /
 Application rate(s): 0.025 kg a.s./ha
 Application window: Mar-May, Jun-Sep

- potatoes
 Whole season (up to PHI)
 Number of applications: 1
 Interval (d): /
 Application rate(s): 0.050 kg a.s./ha
 Application window: Mar-May, Jun-Sep

Main routes of entry

Metabolite Unk1
Parameters used in FOCUSsw step 1 and 2

Data gap

Step 1

Initial PECsw and PECsed values of metabolites DCVA, 3-PBA and carboxamide for Step 1 based on a DT50 of the parent compound of 11.6 days

Crop	Application rate [kg/ha]	PECsw [µg/L]	PECsed [µg/kg]
Carboxamide			
Winter cereals	1 x 0.025	0.040	12.023
Spring cereals	1 x 0.025	0.040	12.023
Winter rape	2 x 0.025	0.080	24.046
Spring rape	1 x 0.025	0.040	12.023
Potatoes	1 x 0.050	0.080	24.046
Initial PECsw and PECsed values of metabolites DCVA, 3-PBA and carboxamide for Step 1 based on a DT$_{50}$ of the parent compound of 33.0 days

Crop	Application rate [kg/ha]	PECsw [µg/L]	PECsed [µg/kg]
DCVA			
Winter cereals	1 x 0.025	4.969	0.917
Spring cereals	1 x 0.025	4.969	0.917
Winter rape	2 x 0.025	9.937	1.835
Spring rape	1 x 0.025	4.969	0.917
Potatoes	1 x 0.050	9.937	1.835
3-PBA			
Winter cereals	1 x 0.025	2.374	2.365
Spring cereals	1 x 0.025	2.374	2.365
Winter rape	2 x 0.025	2.374	2.365
Spring rape	1 x 0.025	2.374	2.365
Potatoes	1 x 0.050	4.747	4.729

Step 2

Initial PECsw and PECsed values of carboxamide for Step 2 based on a DT$_{50}$ of the parent compound of 11.6 days

Crop cover	Season	Northern Europe	Southern Europe
Carboxamide			
Winter cereals	1 x 0.025	0.040	12.023
Spring cereals	1 x 0.025	0.040	12.023
Winter rape	2 x 0.025	0.080	24.046
Spring rape	1 x 0.025	0.040	12.023
Potatoes	1 x 0.050	0.080	24.046
DCVA			
Winter cereals	1 x 0.025	4.969	0.917
Spring cereals	1 x 0.025	4.969	0.917
Winter rape	2 x 0.025	9.937	1.835
Spring rape	1 x 0.025	4.969	0.917
Potatoes	1 x 0.050	9.937	1.835
3-PBA			
Winter cereals	1 x 0.025	2.374	2.365
Spring cereals	1 x 0.025	2.374	2.365
Winter rape	2 x 0.025	2.374	2.365
Spring rape	1 x 0.025	2.374	2.365
Potatoes	1 x 0.050	4.747	4.729
Initial PECsw and PECsed values of carboxamide for Step 2 based on a DT$_{50}$ of the parent compound of 33.0 days

Crop Cover	Season	Northern Europe	Southern Europe						
		single	multiple	single	multiple				
		PECsw	PECsed	PECsw	PECsed	PECsw	PECsed	PECsw	PECsed
Winter cereals, 1 x 0.025 kg/ha									
minimal	Oct - Feb	0.019	5.554	0.015	4.443				
average	Mar - May	0.006	1.777	0.020	3.554				
full	Jun - Sep	0.002	0.666	0.003	0.100				

Spring cereals, 1 x 0.025 kg/ha									
minimal	Mar - May	0.007	2.221	0.015	4.443				
average	Mar - May	0.006	1.777	0.012	3.554				
full	Jun - Sep	0.002	0.666	0.003	0.100				

Winter rape, 2 x 0.025 kg/ha									
minimal	Oct - Feb	0.011	3.332	0.013	3.893	0.009	2.666	0.010	3.114
average	Mar - May	0.002	0.666	0.003	0.779	0.004	1.333	0.005	1.557
full	Jun - Sep	0.002	0.555	0.002	0.649	0.003	0.833	0.003	0.973

Spring rape, 1 x 0.025 kg/ha									
minimal	Mar - May	0.004	1.333	0.009	2.666				
average	Mar - May	0.002	0.666	0.004	1.333				
full	Jun - Sep	0.002	0.555	0.003	0.833				

Potatoes, 1 x 0.050 kg/ha									
no	Mar - May	0.015	4.443	0.030	8.886				
minimal	Mar - May	0.013	3.777	0.025	7.553				
average	Mar - May	0.007	2.221	0.015	4.443				
full	Jun - Sep	0.004	1.333	0.007	1.999				

Crop Cover and Season

Crop Cover	Season	Northern Europe	Southern Europe						
		single	multiple	single	multiple				
		PECsw	PECsed	PECsw	PECsed	PECsw	PECsed	PECsw	PECsed
Winter cereals, 1 x 0.025 kg/ha									
minimal	Oct - Feb	0.019	5.554	0.015	4.443				
average	Mar - May	0.006	1.777	0.012	3.554				
full	Jun - Sep	0.002	0.666	0.003	0.100				

Spring cereals, 1 x 0.025 kg/ha									
minimal	Mar - May	0.007	2.221	0.015	4.443				
average	Mar - May	0.006	1.777	0.012	3.554				
full	Jun - Sep	0.002	0.666	0.003	0.100				

Winter rape, 2 x 0.025 kg/ha									
minimal	Oct - Feb	0.011	3.332	0.013	3.893	0.009	2.666	0.010	3.114
average	Mar - May	0.002	0.666	0.003	0.779	0.004	1.333	0.005	1.557
full	Jun - Sep	0.002	0.555	0.002	0.649	0.003	0.833	0.003	0.973

Spring rape, 1 x 0.025 kg/ha									
no	Mar - May	0.015	4.443	0.030	8.886				
minimal	Mar - May	0.013	3.777	0.025	7.553				
average	Mar - May	0.007	2.221	0.015	4.443				
full	Jun - Sep	0.004	1.333	0.007	1.999				
Initial PECsw and PECsed values of DCVA for Step 2 based on a DT₅₀ of the parent compound of 11.6 days

Crop cover	Season	Northern Europe	Southern Europe							
		single	multiple	single	multiple					
		PECsw [µg/L]	PECsed [µg/kg]							
Winter cereals, 1 x 0.025 kg/ha	minimal	Oct - Feb	1.798	0.335	1.453	0.270	-	-		
	average	Mar - May	0.625	0.116	1.177	0.219	-	-		
	full	Jun - Sep	0.280	0.052	0.383	0.071	-	-		
Spring cereals, 1 x 0.025 kg/ha	minimal	Mar - May	0.763	0.142	1.453	0.270	-	-		
	average	Mar - May	0.625	0.116	1.177	0.219	-	-		
	full	Jun - Sep	0.280	0.052	0.383	0.071	-	-		
Winter rape, 2 x 0.025 kg/ha	minimal	Oct - Feb	1.108	0.206	1.315	0.211	0.901	0.168	0.928	0.173
	average	Mar - May	0.280	0.052	0.305	0.057	0.487	0.091	0.513	0.095
	full	Jun - Sep	0.245	0.046	0.270	0.050	0.332	0.062	0.357	0.066
Spring rape, 1 x 0.025 kg/ha	minimal	Mar - May	0.487	0.091	0.901	0.168	-	-		
	average	Mar - May	0.280	0.052	0.487	0.091	-	-		
	full	Jun - Sep	0.245	0.046	0.332	0.062	-	-		
Potatoes, 1 x 0.050 kg/ha	no	Mar - May	1.526	0.284	2.906	0.541	-	-		
	minimal	Mar - May	1.319	0.245	2.492	0.464	-	-		
	average	Mar - May	0.836	0.155	1.526	0.284	-	-		
	full	Jun - Sep	0.560	0.104	0.767	0.143	-	-		

Initial PECsw and PECsed values of DCVA for Step 2 based on a DT₅₀ of the parent compound of 33.0 days

Crop cover	Season	Northern Europe	Southern Europe					
		single	multiple	single	multiple			
		PECsw [µg/L]	PECsed [µg/kg]					
Winter cereals, 1 x 0.025 kg/ha	Minimal	Oct - Feb	1.798	0.335	1.453	0.270	-	-
	Average	Mar - May	0.625	0.116	1.177	0.219	-	-
	Full	Jun - Sep	0.280	0.052	0.383	0.071	-	-

www.efsa.europa.eu/efsajournal 105 EFSA Journal 2018;16(8):5402
Crop cover	Season	Northern Europe	Southern Europe						
		single	multiple	single	multiple	single	multiple	single	multiple
		PECsw	PECsed	PECsw	PECsed	PECsw	PECsed	PECsw	PECsed
Winter cereals, 1 x 0.025 kg/ha	minimal	Oct - Feb	1.976	0.368	1.595	0.297	-	-	
	average	Mar - May	0.682	0.127	1.291	0.240	-	-	
	full	Jun - Sep	0.301	0.056	0.415	0.077	-	-	
	Spring cereals, 1 x 0.025 kg/ha	minimal	Mar - May	0.834	0.155	1.595	0.297	-	-
	average	Mar - May	0.682	0.127	1.291	0.240	-	-	
	full	Jun - Sep	0.301	0.056	0.415	0.077	-	-	
	Winter rape, 2 x 0.025 kg/ha	minimal	Oct - Feb	1.215	0.226	1.352	0.251	0.986	0.184
	average	Mar - May	0.280	0.052	0.305	0.057	0.530	0.099	0.599
	full	Jun - Sep	0.263	0.049	0.306	0.057	0.358	0.067	0.411
	Spring rape, 1 x 0.025 kg/ha	minimal	Mar - May	0.530	0.099	0.986	0.184	-	-
	average	Mar - May	0.301	0.056	0.530	0.099	-	-	
	full	Jun - Sep	0.263	0.049	0.358	0.067	-	-	
	Potatoes, 1 x 0.050 kg/ha	no	Mar - May	1.668	0.310	3.191	0.594	-	-
	minimal	Mar - May	1.440	0.268	2.734	0.509	-	-	
	average	Mar - May	0.907	0.169	1.668	0.310	-	-	
	full	Jun - Sep	0.603	0.112	0.831	0.154	-	-	

Initial PECsw and PECsed values of 3-PBA for Step 2 based on a DT₅₀ of the parent compound of 11.6 days
Initial PEC_{sw} and PEC_{sed} values of 3-PBA for Step 2 based on a DT₅₀ of the parent compound of 33.0 days

Crop cover	Season	Northern Europe		Southern Europe							
		single	multiple	single	multiple						
		PEC_{sw}	PEC_{sw}	PEC_{sed}	PEC_{sed}	PEC_{sw}	PEC_{sw}	PEC_{sed}	PEC_{sed}		
minimal	Mar - May	0.575	0.565	1.104	1.098	0.496	0.485	0.946	0.938	-	-
average	Mar - May	0.311	0.300	0.575	0.565	0.311	0.300	0.575	0.565	-	-
full	Jun - Sep	0.205	0.197	0.285	0.274	0.205	0.197	0.285	0.274	-	-

Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation	Not applicable

PEC

| Maximum concentration | Not relevant |
Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Pigeon	a.s.	Acute	LD₅₀	> 2000 mg a.s./kg bw
Columba livia				
Japanese quail	a.s.	Acute	LD₅₀	1420 mg a.s./kg bw
Coturnix coturnix japonica				
Bobwhite quail	a.s.	Long-term	NOEL	92.0 mg a.s./kg bw/day
Colinus virginianus				
Bobwhite quail	a.s.	Long-term	NOEL	93.5 mg a.s./kg bw/day
Colinus virginianus				
Bobwhite quail	a.s.	Long-term	NOEL	4.29 mg a.s./kg bw/day¹
Colinus virginianus				
Mallard duck	a.s.	Long-term	NOEL	5.58 mg a.s./kg bw/day¹
Anas platyrhynchos				
Mammals				
Rat	a.s.	Acute	LD₅₀	500 mg a.s./kg bw
Rat	a.s.	Acute	LD₅₀	238 mg a.s./kg bw
Rat	a.s.	Acute	LD₅₀	301 mg a.s./kg bw
Rat	Preparation (Cypermethrin 500 EC)	Acute	LD₅₀	> 2000 mg prep./kg bw (< 1000 mg a.s./kg bw)
Rat	a.s.	Long-term	NOAEL	5 mg a.s./kg bw/day

Endocrine disrupting properties (Annex Part A, points 8.1.5)

Based on reproductive studies with birds and mammals, there are no indications that alpha-cypermethrin has endocrine disruptive potential.

Overall, based on all available data, there is no convincing evidence for a potential of endocrine activity of cypermethrin in vivo up to dose levels not also causing significant systemic toxicity and therefore it can be concluded that cypermethrin has no potential endocrine effects in birds, fish or amphibians.
Additional higher tier studies (Annex Part A, points 10.1.1.2):
No additional higher tier studies have been provided.

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):
A number of public literature studies are available, which investigate the potential effects of cypermethrin on different amphibian species. These data show that toxicity of cypermethrin towards amphibians and fish is comparable. As the risk assessment for fish is based on the conservative endpoints for acute and chronic exposure in Tier 1 and on the geomean endpoints in Tier 2 (acute), RMS concludes that the risk to amphibians is covered by the risk assessment for fish.

No data on reptiles are available.

1 highest concentration tested

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Cereals (winter and spring) at BBCH 10-77, 1 x 25 g a.s./ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute	3.97	424	10
All	Small omnivorous bird	Long-term	0.859	107	5
Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	2.96	90.5	10
All	Small herbivorous mammal	Long-term	0.64	7.81	5

1 a geomean LD50 of 1685 mg a.s./kg bw, calculated from the LD50 for Pigeon (Columba livia) and Japanese quail (Coturnix coturnix japonica), was used in the risk assessment to calculate this TER value.

2 a geomean LD50 value of 268 mg a.s./kg bw, calculated based on the available and relevant acute toxicity studies on male rats (3), was used in the risk assessment to calculate this TER value.

Risk from bioaccumulation and food chain behaviour [indicate when not relevant i.e if Log kow ≤3]

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds (cypermethrin)	Long-term	0.085	1077	5
Earthworm-eating birds (carboxamide)	Long-term	0.0738	125	5
Earthworm-eating mammals (cypermethrin)	Long-term	0.104	48.0	5
Earthworm-eating mammals (carboxamide)	Long-term	0.090	5.56	5
Fish-eating birds (cypermethrin)	Long-term	0.014	6672	5
Fish-eating birds (carboxamide)	Long-term	0.00139	6636	5
Fish-eating mammals (cypermethrin)	Long-term	0.012	406	5
Fish-eating mammals (carboxamide)	Long-term	0.00124	404	5

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Leaf scenario	Birds	Acute	Not relevant		

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed
2) Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed
Growth stage

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Puddle scenario Birds	Long-term	Not needed	Case 2 (<0.27)	5
Puddle scenario Mammals	Long-term	Not needed	Case 2 (< 5)	5

Winter oilseed rape at BBCH 9-77, 2 x 25 g a.s./ha (interval 90 days) / Spring oilseed rape at BBCH 9-77, 1 x 25 g a.s./ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)	All Small omnivorous bird	Acute	3.97	424	10
	All Small omnivorous bird	Long-term	0.859	107	5
Screening Step (Mammals)	All Small herbivorous mammal	Acute	2.96	90.5	10
	All Small herbivorous mammal	Long-term	0.64	7.81	5

1 a geomean LD$_{50}$ of 1685 mg a.s./kg bw, calculated from the LD$_{50}$ for Pigeon (Columba livia) and Japanese quail (Coturnix coturnix japonica), was used in the risk assessment to calculate this TER value.

2 a geomean LD$_{50}$ value of 268 mg a.s./kg bw, calculated based on the available and relevant acute toxicity studies on male rats (3), was used in the risk assessment to calculate this TER value.

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds (cypermethrin)	Long-term	0.118	778	5
Earthworm-eating birds (carboxamide)	Long-term	0.0738	125	5
Earthworm-eating mammals (cypermethrin)	Long-term	0.144	34.7	5
Earthworm-eating mammals (carboxamide)	Long-term	0.090	5.6	5
Fish-eating birds (cypermethrin)	Long-term	0.014	6672	5
Fish-eating birds (carboxamide)	Long-term	0.00139	6636	5
Fish-eating mammals (cypermethrin)	Long-term	0.012	406	5
Fish-eating mammals (carboxamide)	Long-term	0.00124	404	5

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC$_{aq}$xDWR	TER	Trigger
Leaf scenario Birds	Acute	Not relevant	10		

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed

2) Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed
Potato (whole season), 1 x 50 g a.s./ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute	7.94	212\(^1\)	10
All	Small omnivorous bird	Long-term	1.717	54	5
Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	5.92	45.3\(^2\)	10
All	Small herbivorous mammal	Long-term	1.28	3.91	5
Tier 1 (Mammals)					
BBCH 10-19	Small insectivorous mammal “shrew”	Long-term	0.111	44.92	5
BBCH ≥ 20	Small insectivorous mammal “shrew”	Long-term	0.050	99.30	5
BBCH ≥ 40	Small herbivorous mammal “vole”	Long-term	0.575	8.69	5
BBCH 10-40	Large herbivorous mammal “lagomorph”	Long-term	0.379	13.19	5
BBCH ≥ 40	Large herbivorous mammal “lagomorph”	Long-term	0.114	43.87	5
BBCH 10-40	Small omnivorous mammal “mouse”	Long-term	0.207	24.19	5
BBCH ≥ 40	Small omnivorous mammal “mouse”	Long-term	0.061	82.03	5

\(^1\) a geometric mean LD\(_{50}\) of 1685 mg a.s./kg bw, calculated from the LD\(_{50}\) for Pigeon (Columba livia) and Japanese quail (Coturnix coturnix japonica), was used in the risk assessment to calculate this TER value.

\(^2\) a geometric mean LD\(_{50}\) value of 268 mg a.s./kg bw, calculated based on the available and relevant acute toxicity studies on male rats (3), was used in the risk assessment to calculate this TER value.

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds (cypermethrin)	Long-term	0.171	538	5
Earthworm-eating birds (carboxamide)	Long-term	0.0738	125	5
Earthworm-eating mammals (cypermethrin)	Long-term	0.208	24.0	5
Earthworm-eating mammals (carboxamide)	Long-term	0.090	5.56	5
Fish-eating birds (cypermethrin)	Long-term	0.028	3336	5
Fish-eating birds (carboxamide)	Long-term	0.00139	6636	5
Fish-eating mammals (cypermethrin)	Long-term	0.025	203	5
Fish-eating mammals (carboxamide)	Long-term	0.00124	404	5

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC\(_{dw}\)xDWR	TER	Trigger
Leaf scenario	Birds	Acute	Not relevant	5	

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed
2) Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed
Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)*

Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
Laboratory tests				
Fish				
Rainbow trout (Oncorhynchus mykiss)	Cypemethrin technical	Acute 96 hr (semi-static)	Mortality, LC₅₀	2.83 µg a.s./L (mm)
Rainbow trout (Oncorhynchus mykiss)	Cypemethrin 500 EC	Acute 96 hr (semi-static)	Mortality, LC₅₀	5.06 µg prep./L (nom)
Rainbow trout (Oncorhynchus mykiss)	Cypemethrin 500 EC	Acute 96 hr (static) (sediment)	Mortality, LC₅₀	133 µg prep./L (mm)
Sheephead minnow (Cyprinodon variegatus)	Cypemethrin technical	Acute 96 hr (flow-through)	Mortality, LC₅₀	3.45 µg a.s./L (mm)
Fathead minnow (Pimephales promelas)³	Cypemethrin technical	Chronic 34 days (flow-through)	Larval survival, NOEC	N/A
Fathead minnow (Pimephales promelas)⁴	Cypemethrin technical	Chronic 31 days ELS (flow-through)	Larval survival, Growth, NOEC	0.32 µg a.s./L (nom)
Fathead minnow (Pimephales promelas)	Cypemethrin technical	Chronic 34 days ELS (flow-through)	Larval survival, Growth, NOEC	0.463 µg a.s./L (mm)
Fathead minnow (Pimephales promelas)⁴	Cypemethrin technical	Chronic 300 days FFLC (flow-through)	Survival, NOEC	0.077 µg a.s./L (mm)
Rainbow trout (Oncorhynchus mykiss)	Cis-DCVA	Acute 96 hr (static)	Mortality, LC₅₀	> 1 mg/L (nom)
Rainbow trout (Oncorhynchus mykiss)	Trans-DCVA	Acute 96 hr (static)	Mortality, LC₅₀	> 1 mg/L (nom)
Rainbow trout (Oncorhynchus mykiss)	mPBAcid²	Acute 96 hr (static)	Mortality, LC₅₀	> 1 mg/L (nom)
Aquatic invertebrates				
Water flea (Daphnia magna)	Cypemethrin technical	Acute 48 hr (static)	Mortality, EC₅₀	4.71 µg a.s./L (mm)
Group	Test substance	Time-scale (Test type)	End point	Toxicity1
-----------------------------------	----------------	------------------------	----------------------------------	--------------
Water flea (*Daphnia magna*)	Cypermethrin 500 EC	Acute 48 hr (static)	Mortality, EC$_{50}$	9.67 µg a.s./L (mm)
Midge (*Chironomus riparius*)	Cypermethrin technical	Acute 48 hr (static)	Mortality, EC$_{50}$, 1st instar, Mortality, EC$_{50}$, 4th instar	0.0069 µg a.s./L (mm), > 2.9 µg a.s./L (mm)
Hyalella azteca	Cypermethrin technical	Acute 48 hr (static)	Mortality, EC$_{50}$	0.0053 µg a.s./L (mm)
Water flea (*Daphnia magna*)	Cypermethrin technical	Chronic 21 d (semi-static)	Reproduction, development, NOEC	0.05 µg a.s./L (mm)
Water flea (*Daphnia magna*)	Cypermethrin technical	Chronic 21 d (semi-static)	Reproduction, NOEC EC$_{10}$, EC$_{20}$	53.15 ng a.s./L (mm), 87.99 ng a.s./L (im), 148.38 ng a.s./L (im)
Midge (*Chironomus riparius*)	Cypermethrin technical	Chronic 28 d (static)	Emergence, NOEC EC$_{10}$	63.6 ng a.s./L (im)* (162 ng a.s./kg im)*, 76.1 ng a.s./L (im)*
Midge (*Chironomus riparius*)	Cypermethrin technical	Chronic 10 days (static)	NOEC$_{weight}$	4.9 µg a.s./kg dw (mm)
Water flea (*Daphnia magna*)	Cis-DCVA	Acute 48 hr (static)	Mortality, EC$_{50}$	> 1 mg/L (nom)
Water flea (*Daphnia magna*)	Trans-DCVA	Acute 48 hr (static)	Mortality, EC$_{50}$	> 1 mg/L (nom)
Water flea (*Daphnia magna*)	mPBAcid	Acute 48 hr (static)	Mortality, EC$_{50}$	> 1 mg/L (nom)
Water flea (*Daphnia magna*)	PBAldehyde	Acute 48 hr (semi-static)	Mortality, EC$_{50}$	0.162 mg/L (mm)
Water flea (*Daphnia magna*)	Carboxamide	Acute 48 hr (static)	Mortality, EC$_{50}$	> 22.4 µg/L (mm)
Algae				
Green microalgae (*Pseudokichneriella subcapitata*)	Cypermethrin technical	Chronic 96 h (static)	Growth rate: E$_{c}$, NOEC	≥ 66.7 µg a.s./L (mm), 66.7 µg a.s./L (mm)

1 Toxicity values are expressed as concentration that causes 50% effect (EC$_{50}$) or that causes no effect (NOEC).
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
Green microalgae *(Pseudokichneriella subcapitata)*	Cypermethrin technical	Chronic 96 h (static)	Growth rate, Yield: EᵣC₅₀, EᵣC₂₀, EᵣC₁₀	> 33.0 µg a.s./L (mm) > 33.0 µg a.s./L (mm) > 33.0 µg a.s./L (mm)
			NOEC	33.0 µg a.s./L (mm)
Green microalgae *(Pseudokichneriella subcapitata)*	Cypermethrin 500 EC	Chronic 72 h (static)	Growth rate: EᵣC₅₀	> 143 mg a.s./L (mm)
			Biomass: EᵣC₅₀, EᵣC₂₀, EᵣC₁₀	78.0 mg a.s./L (mm) 25.4 mg a.s./L (mm) 14.9 mg a.s./L (mm)
			Yield: EᵣC₅₀, EᵣC₂₀, EᵣC₁₀	51.4 mg a.s./L (mm) 21.4 mg a.s./L (mm) 13.6 mg a.s./L (mm)
			NOEC	14.9 mg a.s./L (mm)
Green microalgae *(Pseudokichneriella subcapitata)*	Cis-DCVA	Chronic 72 h (static)	Growth rate: EᵣC₅₀	> 1 mg/L (nom)
			Biomass: EᵣC₅₀	> 1 mg/L (nom)
Green microalgae *(Pseudokichneriella subcapitata)*	Trans-DCVA	Chronic 72 h (static)	Growth rate: EᵣC₅₀	> 1 mg/L (nom)
			Biomass: EᵣC₅₀	> 1 mg/L (nom)
Green microalgae *(Pseudokichneriella subcapitata)*	mPBAcid	Chronic 72 h (static)	Growth rate: EᵣC₅₀	> 1 mg/L (nom)
			Biomass: EᵣC₅₀	> 1 mg/L (nom)
Further testing on aquatic organisms

Acute endpoint for fish:
LC50 (Onchorhynhus mykiss) = 2.83 µg a.s./L
LC50 (Cyprinodon variegatus) = 3.45 µg a.s./L
Geomean LC50 = 3.12 µg a.s./L

Chronic endpoint for fish:
NOEC (Pimphales promelas, FFLC) = 0.077 µg a.s./L

Mesocosm endpoints for aquatic invertebrates (study by Hommen U., 2015):
NOEC (class 2 effect) = 0.005 µg a.s./L
NOEAEc (class 3A effect) = 0.015 µg a.s./L
ETO: assessment factor of 3 for NOEC endpoint: ETO-RAC = 0.0017 µg a.s./L
ERO: assessment factor of 4 for NOEAEc endpoint: ERO-RAC = 0.0038 µg a.s./L

Group	Test substance	Time-scale (Test type)	End point	Toxicity		
Natural populations of macroinvertebrates, emerging insects, zooplankton, phytoplankton, periphyton, macrophytes and filamental algae	Cyperkill 10 EC	Outdoor mesocosm (2 applications, 14 days interval)	NOEAEc	0.05 µg a.s./L		
Natural populations of macroinvertebrates, emerging insects, zooplankton, phytoplankton, periphyton, macrophytes and filamental algae	Sherpa 10 EC	Outdoor mesocosm (2 applications, 14 days interval)	NOEAEc	0.1 µg a.s./L		
Natural populations of macroinvertebrates, emerging insects, zooplankton, phytoplankton, periphyton, macrophytes and filamental algae	Cypermethrin 500 EC	Outdoor mesocosm (1 application)	NOEC (effect class 2)	0.005 µg a.s./L	NOEAEc (effect class 3A)	0.015 µg a.s./L
Natural populations of zooplankton and phytoplankton	Cypermethrin 500 EC	Indoor microcosm (2 applications)	NOEAEc (effect class 3A)	0.100 µg a.s./L		
Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

Based on an assessment of the available public literature regarding the potential for endocrine disruption of cypermethrin, it was concluded that there is no indication that cypermethrin has potential endocrine effects. Any toxic effects observed are in the range of acute and/or chronic toxicity.

The risk assessment for fish is based on the conservative endpoints for acute and chronic exposure in Tier 1 and on the geomean endpoint in Tier 2. The chronic risk assessment is based on the endpoint from a fish full life cycle test with *Pimephales promelas*, comprising two generations. The chronic endpoint was based on the effects on survival of the parent fish. RMS concludes that the risk for fish and amphibians is acceptable for the intended uses of cypermethrin, provided appropriate risk mitigation measures are applied (see B.9.4.3).

Considering the studies with birds, no effects on reproduction were observed at the highest dose tested. Overall, based on the available data, there is no convincing evidence for a potential of endocrine activity of cypermethrin *in vivo* up to dose levels not also causing significant systemic toxicity and therefore it can be concluded that cypermethrin has no potential endocrine effects in birds, fish or amphibians.

During the Pestides Peer Review Meeting 177 the potential endocrine properties of cypermethrin were discussed.

Some positive evidence for anti-androgenic activity (AR binding and transactivation) was available. Summaries of EPA studies, e.g. AMA test and FSTRA test were considered. In the available summary of the FSTRA study, effects have been observed in the male GSI at 0.12 µg a.s./L and tubercule score at 1.4 µg a.s./L as well as ovary atresia. In the AMA study, no evidence of a potential interaction with the T modality was observed. Since these AMA and FSTRA studies were not submitted in the EU dossier of cypermethrin a data gap was identified.

A FFLC study is available in the EU dossier of cypermethrin, however, not all relevant endocrine parameters were investigated. The NOEC was based on survival of F0 generation (NOEC = 0.077 µg a.s./L). It was considered that this endpoint covers any potential endocrine activity in the aquatic risk assessment.

The majority of experts agreed that pending on the outcome of the data gap in the mammalian toxicology section (male pubertal assay), further considerations may be needed on potential endocrine effects in non-target organisms.

1 (nom) nominal concentration; (m.m) mean measured concentration; (m) initial measured concentrations; prep.: preparation; a.s.: active substance

2 The toxicity studies on metabolites of cypermethrin were retrieved from the dossier of zeta-cypermethrin. The toxicity of the metabolite mPBA to *Oncorhynchus mykiss* is confirmed by the toxicity value retrieved from the dossier of beta-cypermethrin.

3 From the ELS study on *Pimephales promelas* (Stephenson, 1983) no reliable endpoint could be derived.

4 In the ELS study on *Pimephales promelas* (Knight and Murphy, 2005) one of the validity criteria (hatching success) was not met.

5 The mesocosm study by Schnöder and Kroos (2003) was assigned a reliability index of 2.

6 The mesocosm study by Hommen (2015) was assigned a reliability index of 1; consequently the endpoints are used in the aquatic risk assessment.

* A considerable degradation/dissipation was observed in the water phase, therefore the endpoint expressed on the basis of initial measured bears some considerable uncertainties.

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

Active substance	DCVA	3-PBAcid	3-PBAldehyde	Carboxamid e	
logP_{OW}	5.55-5.83	2.55-2.81	2..55	3.5	5.5
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)¹	266 - 331*				
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)					
Regulatory acceptable concentrations used in the Tier 1 risk assessment

Species group	Endpoint	Assessment factor	RAC
Acute effect			
Fish	LC₅₀ = 2.83 µg a.s./L	100	0.0283 µg a.s./L
Daphnia magna	EC₅₀ = 4.71 µg a.s./L	100	0.0471 µg a.s./L
Hyalella azeteca	EC₅₀ = 0.0053 µg a.s./L	100	0.000053 µg a.s./L
Overall acute RAC			0.000053 µg a.s./L
Chronic effect			
Fish	NOEC = 0.077 µg a.s./L	10	0.0077 µg a.s./L
Daphnia magna	NOEC = 0.05 µg a.s./L	10	0.005 µg a.s./L
Chironomus riparius	NOEC = 0.0636 µg a.s./L	10	0.00636 µg a.s./L
NOEC = 0.162 µg a.s./kg		10	0.0162 µg a.s./kg
Algae	E₅₀ > 33 µg a.s./L	10	> 3.3 µg a.s./L
Overall chronic RAC (surface water)			0.005 µg a.s./L
Overall chronic RAC (sediment)			0.0162 µg a.s./kg

Notes: RAC = Regulatory Acceptable Concentration

Metabolite: DCVA

Species group	Endpoint	Assessment factor	RAC
Acute effect assessment			
Fish	LC₅₀ > 1000 µg/L	100	10 µg/L
Aquatic invertebrates	EC₅₀ > 1000 µg/L	100	10 µg/L
Overall acute RAC			10 µg/L
Chronic assessment			
Algae	E₅₀ > 1000 µg a.s./L	10	100 µg/L
Overall chronic RAC			100 µg/L

Metabolite: mPBAcid

1. Fish was exposed via water. Considering the relatively high bioconcentration potential, a test with exposure route via food could have been considered. Nevertheless, since the test concentrations were kept constant (and the total 14C content was followed), the study was considered as sufficient (Pesticides Peer Review Meeting 177).
| | Acute effect assessment | Chronic effect assessment | Metabolite: carboxamide |
|-----------------------|-------------------------|---------------------------|-------------------------|
| Fish | LC$_{50}$ > 1000 µg/L | EC$_{50}$ > 1000 µg/L | |
| Aquatic invertebrates | EC$_{50}$ > 1000 µg/L | | |
| Overall acute RAC | 10 µg/L | | |
| Algae | E$_{r}$C$_{50}$ > 1000 µg/L | 10 µg/L | |
| Overall chronic RAC | 100 µg/L | | |
| | Acute effect assessment | | |
| Aquatic invertebrates | EC$_{50}$ > 22.4 µg/L | 100 µg/L | |
| Overall acute RAC | > 0.224 µg/L | | |

Notes: RAC = Regulatory Acceptable Concentration
Comparison of the RAC and endpoint for the most sensitive aquatic organisms (Regulation (EU) No 284/2013, Annex Part A, point 10.2)

FOCUS\textsubscript{sw} step 1-3 - Comparison of RACs and global maximum PEC\textsubscript{sw} for cypermethrin – Winter cereals at 1 x 25 g a.s./ha

Scenario	Initial PECSW (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Algae
	Oncorhynchus mykiss	Pimephales promelas	Daphnia magna	Hyalella azteca	Daphnia magna	Chironomus riparius	Pseudokirchneriella subcapitata
Level of assessment	LC\textsubscript{50}	NOEC (FFLC)	EC\textsubscript{50}	EC\textsubscript{50}	NOEC	NOEC	E\textsubscript{C50}
	2.83 µg/L	0.077 µg/L	4.71 µg/L	0.0053 µg/L	0.05 µg/L	0.0636 µg/L	> 33 µg/L
RAC	0.0283	0.0077	0.0471	0.000053	0.0050	0.00636	> 3.3
FOCUS Step 1	0.262	0.262	0.262	0.262	0.262	0.262	0.262

FOCUS Step 2

Scenario	Initial PECSW (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Algae
North Europe	0.230	0.230	0.230	0.230	0.230	0.230	0.230
South Europe	0.230	0.230	0.230	0.230	0.230	0.230	0.230

FOCUS Step 3*

D1 (Lanna) ditch	0.139	0.139	0.139	0.139	0.139	0.139	0.139
D1 (Lanna) stream	0.122	0.122	0.122	0.122	0.122	0.122	0.122
D2 (Brimstone) ditch	0.139	0.139	0.139	0.139	0.139	0.139	0.139
D2 (Brimstone) stream	0.124	0.124	0.124	0.124	0.124	0.124	0.124
D3 (Vredepeel) ditch	0.138	0.138	0.138	0.138	0.138	0.138	0.138
D4 (Skousbo) pond	0.005	0.005	0.005	0.005	0.005	0.005	0.005
D4 (Skousbo) stream	0.119	0.119	0.119	0.119	0.119	0.119	0.119
D5 (La Jailleire) pond	0.005	0.005	0.005	0.005	0.005	0.005	0.005
D5 (La Jailleire) stream	0.128	0.128	0.128	0.128	0.128	0.128	0.128
D6 (Thiva) ditch	0.139	0.139	0.139	0.139	0.139	0.139	0.139
R1 (Weiherbach) pond	0.005	0.005	0.005	0.005	0.005	0.005	0.005
R1 (Weiherbach) stream	0.091	0.091	0.091	0.091	0.091	0.091	0.091
R3 (Bologna) stream	0.127	0.127	0.127	0.127	0.127	0.127	0.127
R4 (Roujan) stream	0.091	0.091	0.091	0.091	0.091	0.091	0.091

Notes: PEC values in bold indicate that the PEC\textsubscript{sw,SED}\textsubscript{eq} exceeds the RAC, and thus that further consideration is necessary.

FOCUS Step 3 values are based on BBCH 69-77, covering BBCH 10+ and BBCH 31+.

FOCUS\textsubscript{sw} step 1-3 - Comparison of RACs and global maximum PEC\textsubscript{sw} for cypermethrin – Spring cereals at 1 x 25 g a.s./ha

Scenario	Initial PECSW (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Algae

Notes: PEC values in bold indicate that the PEC\textsubscript{sw,SED}\textsubscript{eq} exceeds the RAC, and thus that further consideration is necessary.

FOCUS Step 3 values are based on BBCH 69-77, covering BBCH 10+ and BBCH 31+.
Peer review of the pesticide risk assessment of the active substance cypermethrin

PEC_{sw} (µg/L)	invertebrates	invertebrates	invertebrates	prolonged
Oncorhynchus mykiss	Pimephales promelas	Daphnia magna	Hyalella azteca	Daphnia magna

Level of assessment
- Tier 1

LC<sub>50	NOEC	EC<sub>50	NOEC	NOEC	E<sub>r C<sub>50
2.83 µg/L | 0.077 µg/L | 4.71 µg/L | 0.0053 µg/L | 0.05 µg/L | 0.0636 µg/L | > 33 µg/L

RAC
- 0.0283
- 0.0077
- 0.0471
- 0.000053
- 0.005
- 0.00636
- > 3.3

FOCUS Step 1
- 0.262
- 0.262
- 0.262
- 0.262
- 0.262
- 0.262
- 0.262

FOCUS Step 2
- North Europe: 0.230
- South Europe: 0.230

FOCUS Step 3
- D1 (Lanna) ditch: 0.139
- D1 (Lana) stream: 0.122
- D3 (Vredepeel) ditch: 0.138
- D4 (Skousbo) pond: 0.005
- D4 (Skousbo) stream: 0.119
- D5 (La Jailliere) pond: 0.005
- D5 (La Jailliere) stream: 0.120
- R4 (Roujan) stream: 0.091

R4 (Skousbo) stream
- 0.119
- 0.120

Notes: PEC values in bold indicate that the PEC_{sw} exceeds the RAC, and thus that further consideration is necessary.

FOCUS Step 3 values are based on BBCH 69-77, covering BBCH 10+ and BBCH 31+

FOCUS_{sw} step 1-3 - Comparison of RACs and global maximum PEC_{sw} for cypermethrin – winter oilseed rape at 1 x 25 g a.s./ha

Scenario	Initial PEC_{sw} (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Algae
Oncorhynchus mykiss	Pimephales promelas	Daphnia magna	Hyalella azteca	Daphnia magna	Chironomus riparius	Pseudokirchneriella subcapitata		

Level of assessment
- Tier 1

LC<sub>50	NOEC	EC<sub>50	NOEC	NOEC	E<sub>r C<sub>50

Peer review of the pesticide risk assessment of the active substance cypermethrin

Table: Comparison of RACs and global maximum PEC_{SW} for cypermethrin – winter oilseed rape at 2 x 25 g a.s./ha

Scenario	Initial PEC_{SW} (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Algae
	Oncorhynchus mykiss	Pimephales promelas	Daphnia magna	Hyalella azteca	Daphnia magna	Chironomus riparius	Pseudokirchneriella subcapitata
Level of assessment	Tier 1						
LC₅₀	2.83 µg/L	0.077 µg/L	4.71 µg/L	0.0053 µg/L	0.05 µg/L	0.0636 µg/L	> 33 µg/L
RAC	0.0283	0.0077	0.0471	0.000053	0.005	0.00636	> 3.3
FOCUS Step 1	0.262	0.262	0.262	0.262	0.262	0.262	0.262

Notes: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary. FOCUS Step 3 values are based on BBCH 50-77, covering BBCH 9+ (except scenario D5 stream: PEC_{sw} = 0.128 µg a.s./L) and BBCH 31+

2.83 µg/L	0.077 µg/L	4.71 µg/L	0.0053 µg/L	0.05 µg/L	0.0636 µg/L	> 33 µg/L	
RAC	0.0283	0.0077	0.0471	0.000053	0.005	0.00636	> 3.3
FOCUS Step 1	0.262	0.262	0.262	0.262	0.262	0.262	0.262
FOCUS Step 2

Region	PEC (µg/L)							
North Europe	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230
South Europe	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230

FOCUS Step 3

Scenario	Initial PEC_{SW} (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Algae	
		Oncorhynchus mykiss	Pimephales promelas	Daphnia magna	Hyalella azteca	Daphnia magna	Chironomus riparius	Pseudokirchneriella subcapitata
Level of assessment	Tier 1	LC₅₀	NOEC (FFLC)	EC₅₀	EC₅₀	NOEC	NOEC	EC₅₀
		2.83 µg/L	0.077 µg/L	4.71 µg/L	0.0053 µg/L	0.05 µg/L	0.0636 µg/L	> 33 µg/L
RAC	0.0283	0.0077	0.0471	0.000053	0.005	0.00636	> 3.3	
FOCUS Step 1	0.262	0.262	0.262	0.262	0.262	0.262	0.262	0.262
FOCUS Step 2								
North Europe	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230
South Europe	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230
FOCUS Step 3								
FOCUS_{sw} step 1-3 - Comparison of RACs and global maximum PEC_{sw} for cypermethrin – potato at 1 x 50 g a.s./ha

Scenario	Initial PEC_{sw} (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Algae
		Oncorhynchus mykiss	Pimephales promelas	Daphnia magna	Hyalella azteca	Daphnia magna	Chironomus riparius	Pseudokirchneriella subcapitata
Level of assessment	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1
	LC₅₀	NOEC (FFLC)	EC₅₀	EC₅₀	NOEC	NOEC	E₅₀	
	2.83 µg/L	0.077 µg/L	4.71 µg/L	0.0053 µg/L	0.05 µg/L	0.0636 µg/L	> 33 µg/L	
RAC	0.0283	0.0077 µL	0.0471 µg/L	0.0000053 µg/L	0.005 µg/L	0.0636 µg/L	> 3.3 µg/L	
FOCUS Step 1	0.524	0.524	0.524	0.524	0.524	0.524	0.524	0.524
FOCUS Step 2								
North Europe	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460
South Europe	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460
FOCUS Step 3								
D3 (Vredepeel) ditch	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228
D4 (Skousbo) pond	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
D4 (Skousbo) stream	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171
D6 (Thiva) ditch	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226
1st crop	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226
D6 (Thiva) ditch	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.227

Notes: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary. FOCUS Step 3 values are based on BBCH 31+, covering BBCH 10+.
Peer review of the pesticide risk assessment of the active substance cypermethrin

Scenario	Initial PEC_{SED} (µg/kg)	Sed. dweller prolonged	Initial PEC_{SED} (µg/kg)	Sed. dweller prolonged	Initial PEC_{SED} (µg/kg)	Sed. dweller prolonged
Winter cereals	Chironomus riparius	Spring cereals	Chironomus riparius	Winter oilseed rape	Chironomus riparius	
Level of assessment	Tier 1	Tier 1	Tier 1	Tier 1		
NOEC	0.162 µg/kg	0.162 µg/kg	0.162 µg/kg			
RAC	0.0162	0.0162	0.0162			
FOCUS Step 1	62.260	62.260	62.260	62.260	62.260	62.260
FOCUS Step 2						
North Europe	19.292	19.292	8.448	8.448	12.062	12.062
South Europe	15.677	15.677	15.677	15.677	9.893	9.893
FOCUS Step 3*						
D1 (Lanna) ditch	0.902	0.902	0.828	0.828	-	-
D1 (Lana) stream	0.530	0.530	0.525	0.525	-	-
D2 (Brimstone) ditch	0.784	0.784	-	-	0.870	0.870
D2 (Brimstone) stream	0.166	0.166	-	-	0.774	0.774
D3 (Vredepeel) ditch	0.524	0.524	0.617	0.617	0.559	0.559
D4 (Skousbo) pond	0.073	0.073	0.065	0.065	0.068	0.068
D4 (Skousbo) stream	0.347	0.347	0.330	0.330	0.241	0.241
D5 (La Jailliere) pond	0.076	0.076	0.069	0.069	0.074	0.074
D5 (La Jailliere) stream	0.411	0.411	0.169	0.169	0.140	0.140
D6 (Thiva) ditch	0.867	0.867	-	-	-	-

Notes: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary.

FOCUS Step 3 values are based on late application, covering early application (except scenario D4 stream: PEC_{sw} = 0.191 µg a.s./L).
FOCUS\textsubscript{sw} step 1-3 - Comparison of RACs and global maximum PEC\textsubscript{SED} for cypermethrin – winter oilseed rape at 2 x 25 g a.s./ha / spring oilseed rape at 1 x 25 g a.s./ha / Potato at 1 x 50 g a.s./ha

Scenario	Initial PEC\textsubscript{SED} (µg/kg)	Sed. dweller prolonged	Initial PEC\textsubscript{SED} (µg/kg)	Sed. dweller prolonged	Initial PEC\textsubscript{SED} (µg/kg)	Sed. dweller prolonged
Winter oilseed rape	Chironomus riparius	Chironomus riparius	Chironomus riparius	Chironomus riparius	Potatoes	Chironomus riparius
Level of assessment	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1
	NOEC	NOEC	NOEC	NOEC	NOEC	NOEC
	0.162 µg/kg	0.162 µg/kg	0.162 µg/kg	0.162 µg/kg	0.162 µg/kg	0.162 µg/kg
RAC	0.0162	0.0162	0.0162	0.0162	0.0162	0.0162
FOCUS Step 1	62.260	62.260	62.260	62.260	124.520	124.520
FOCUS Step 2						
North Europe	11.922	11.922	5.556	5.556	16.895	16.895
South Europe	9.753	9.753	9.893	9.893	31.355	31.355

Notes:
- PEC values in bold indicate that the PEC\textsubscript{SED} exceeds the RAC, and thus that further consideration is necessary.
- Some uncertainties are linked to the used endpoint of 0.162 µg/kg, since this value was derived from the NOEC for the water phase. The NOEC for the water phase was expressed on the basis of initial measured test concentrations however some considerable degradation/dissipation was observed in the water phase of the test.
- FOCUS Step 3 values for winter cereals are based on BBCH 10+, covering BBCH 31+ (except scenario D2 ditch: PEC\textsubscript{SED} = 0.868 µg a.s./kg, D2 stream: PEC\textsubscript{SED} = 0.769 µg a.s./kg, D3 ditch: PEC\textsubscript{SED} = 0.583 µg a.s./kg, D6 ditch: PEC\textsubscript{SED} = 0.765 µg a.s./kg, R3 stream: PEC\textsubscript{SED} = 0.358 µg a.s./kg and R4 stream: PEC\textsubscript{SED} = 0.744 µg a.s./kg), and covering BBCH 69-77 (except scenario D2 ditch: PEC\textsubscript{SED} = 0.837 µg a.s./kg, D2 stream: PEC\textsubscript{SED} = 0.745 µg a.s./kg, D3 ditch: PEC\textsubscript{SED} = 0.601 µg a.s./kg, R1 stream: PEC\textsubscript{SED} = 1.159 µg a.s./kg and R3 stream: PEC\textsubscript{SED} = 0.364 µg a.s./kg).
- FOCUS Step 3 values for spring cereals are based on BBCH 69-77, covering BBCH 10+ (except D4 pond: PEC\textsubscript{SED} = 0.072 µg a.s./kg, D5 pond: PEC\textsubscript{SED} = 0.074 µg a.s./kg and R4 stream: PEC\textsubscript{SED} = 0.803 µg a.s./kg), and covering BBCH 31+ (except D1 ditch: PEC\textsubscript{SED} = 0.861 µg a.s./kg, D1 stream: PEC\textsubscript{SED} = 0.528 µg a.s./kg, D4 pond: PEC\textsubscript{SED} = 0.068 µg a.s./kg, D5 pond: PEC\textsubscript{SED} = 0.074 µg a.s./kg and R1 steam: PEC\textsubscript{SED} = 0.378 µg a.s./kg and R3 stream: PEC\textsubscript{SED} = 1.152 µg a.s./kg), covering BBCH 31+ (except R3 stream: PEC\textsubscript{SED} = 0.40µg a.s./kg).
Peer review of the pesticide risk assessment of the active substance cypermethrin

D1 (Lanna) ditch - - 0.861 0.861 - -
D1 (Lana) stream - - 0.528 0.528 - -
D2 (Brimstone) ditch 0.772 0.772 - - - -
D2 (Brimstone) stream - - 0.543 - - -
D3 (Vredepeel) ditch 0.554 0.554 0.636 0.636 0.989 0.989
D4 (Skousbo) pond 0.082 0.082 0.068 0.068 0.130 0.130
D4 (Skousbo) stream 0.219 0.219 0.343 0.343 0.121 0.121
D5 (La Jailliere) pond 0.069 0.069 0.073 0.073 - -
D5 (La Jailliere) stream 0.355 0.355 0.169 0.169 - -
D6 (Thiva) ditch 1st crop - - - - 0.803 0.803
D6 (Thiva) ditch 2nd crop - - - - 0.862 0.862
R1 (Weiherbach) pond 0.081 0.081 0.084 0.084 0.190 0.190
R1 (Weiherbach) stream 0.420 0.420 0.535 0.535 4.066 4.066
R2 (Porto) stream - - - - - -
R3 (Bologna) stream 1.150 1.150 - - 2.973 2.973
R4 (Roujan) stream - - - - - -

Notes: PEC values in bold indicate that the $\text{PEC}_{\text{SW,SED}}$ exceeds the RAC, and thus that further consideration is necessary.

Some uncertainties are linked to the used endpoint of 0.162 µg/kg, since this value was derived from the NOEC for the water phase. The NOEC for the water phase was expressed on the basis of initial measured test concentrations however some considerable degradation/dissipation was observed in the water phase of the test.

FOCUS Step 3 values for winter oilseed rape are based on BBCH 50-77, covering BBCH 9+ (except D2 stream: $\text{PEC}_{\text{sed}} = 0.691$ µg a.s./kg, D4 pond: $\text{PEC}_{\text{sed}} = 0.100$ µg a.s./kg, D5 pond: $\text{PEC}_{\text{sed}} = 0.095$ µg a.s./kg, R1 pond: $\text{PEC}_{\text{sed}} = 0.111$ µg a.s./kg, R1 stream: $\text{PEC}_{\text{sed}} = 0.445$ µg a.s./kg) and covering BBCH 31+ (except D4 pond: $\text{PEC}_{\text{sed}} = 0.087$ µg a.s./kg, D5 pond: $\text{PEC}_{\text{sed}} = 0.076$ µg a.s./kg, R1 pond: $\text{PEC}_{\text{sed}} = 0.100$ µg a.s./kg and R1 stream: $\text{PEC}_{\text{sed}} = 0.445$ µg a.s./kg).

FOCUS Step 3 values for spring oilseed rape are based on BBCH 10+ (except D4 pond: $\text{PEC}_{\text{sed}} = 0.068$ µg a.s./kg, D5 pond: $\text{PEC}_{\text{sed}} = 0.74$ µg a.s./kg and R1 pond: $\text{PEC}_{\text{sed}} = 0.077$ µg a.s./kg).

FOCUS Step 3 values for potatoes are based on late application covering early application (except D4 pond: $\text{PEC}_{\text{sed}} = 0.135$ µg a.s./kg, D4 stream: $\text{PEC} = 0.245$ µg a.s./kg and R2 stream: $\text{PEC}_{\text{sed}} = 1.474$ µg a.s./kg).

FOCUS$_{\text{sw}}$ step 1-2 - Comparison of RACs and global maximum PEC_{SW} for the metabolite DCVA – winter and spring cereals at 1 x 25 g a.s./ha

Scenario	Initial PEC_{SW} (µg/L)	Fish acute	Aquatic invertebrates	Algae	Initial PEC_{SW} (µg/L)	Fish acute	Aquatic invertebrates	Algae	
Winter cereals	Oncorhynchus mykiss	Daphnia magna	Pseudokirchneriella subcapitata			Oncorhynchus mykiss	Daphnia magna	Pseudokirchneriella subcapitata	
Level of assessment	Tier 1								
	LC$_{50}$	EC$_{50}$	E$_{C_{50}}$		LC$_{50}$	EC$_{50}$	E$_{C_{50}}$		
	> 1000 µg/L	> 1000 µg/L	> 1000 µg/L		> 1000 µg/L	> 1000 µg/L	> 1000 µg/L		

www.efs.europa.eu/efsajournal
FOCUS$_{sw}$ step 1-2 - Comparison of RACs and global maximum PEC$_{SW}$ for the metabolite DCVA – winter oilseed rape at 2 x 25 g a.s./ha / spring oilseed rape at 1 x 25 g a.s./ha

Scenario	Initial PEC$_{SW}$ (µg/L)	Fish acute	Aquatic invertebrates	Algae	Initial PEC$_{SW}$ (µg/L)	Fish acute	Aquatic invertebrates	Algae
Winter oilseed rape		Oncorhynchus mykiss	Daphnia magna	Pseudokirchneriella subcapitata	Spring oilseed rape	Oncorhynchus mykiss	Daphnia magna	Pseudokirchneriella subcapitata
Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1
LC$_{50}$	EC$_{50}$	E$_{C50}$	LC$_{50}$	EC$_{50}$	E$_{C50}$	LC$_{50}$	EC$_{50}$	E$_{C50}$
> 1000 µg/L	> 1000 µg/L	> 1000 µg/L	> 1000 µg/L	> 1000 µg/L	> 1000 µg/L	> 1000 µg/L	> 1000 µg/L	> 1000 µg/L
Level of assessment								
RAC	10	10	100	10	10	10	100	10
FOCUS Step 1	4.969	4.969	4.969	4.969	4.969	4.969	4.969	4.969
FOCUS Step 2	1.976	1.976	1.976	0.834	1.595	1.595	0.834	0.834

Notes: PEC values in bold indicate that the PEC$_{SW/SED}$ exceeds the RAC, and thus that further consideration is necessary.

RAC

FOCUS Step 1	10	10	100	10	10	100	10	10	100

RAC

FOCUS Step 2	100	100	100	100	100	100	100	100	100	100

FOCUS Step 2

www.efsa.europa.eu/efsajournal, 127, EFSA Journal 2018;16(8):5402
Scenario	Initial PEC_{SW} (µg/L)	Fish acute	Aquatic invertebrates	Algae
	Potatoes	Oncorhynchus mykiss	Daphnia magna	Pseudokirchneriella subcapitata
Level of assessment	Tier 1	Tier 1	Tier 1	
RAC	LC₅₀	EC₅₀	EC₅₀	
	> 1000 µg/L	> 1000 µg/L	> 1000 µg/L	
FOCUS Step 1	10	10	100	
Note: PEC values in bold indicate that the PEC_{SW}/SED exceeds the RAC, and thus that further consideration is necessary.				
FOCUS_{sw} step 1-2 - Comparison of RACs and global maximum PEC_{SW} for the metabolite PBAcid – winter and spring cereals at 1 x 25 g a.s./ha

Scenario	Winter cereals	Fish acute	Aquatic invertebrates	Algae	Spring cereals	Fish acute	Aquatic invertebrates	Algae
	Initial PEC_{SW} (µg/L)	Oncorhynchus mykiss	Daphnia magna	Pseudokirchene-neriella subcapitata	Initial PEC_{SW} (µg/L)	Oncorhynchus mykiss	Daphnia magna	Pseudokirchene-neriella subcapitata
Level of assessment		Tier 1	Tier 1	Tier 1		Tier 1	Tier 1	Tier 1
RAC		LC₅₀	EC₅₀	E_RC₅₀		LC₅₀	EC₅₀	E_RC₅₀
> 1000 µg/L	10	10	100	> 1000 µg/L				
FOCUS Step 1	2.374	2.374	2.374	2.374	2.374	2.374	2.374	2.374
FOCUS Step 2								
North Europe	0.748	0.748	0.748	0.748	0.313	0.313	0.313	0.313
South Europe	0.603	0.603	0.603	0.603	0.603	0.603	0.603	0.603
FOCUS\textsubscript{sw} step 1-2 - Comparison of RACs and global maximum PEC\textsubscript{SW} for the metabolite PBAcid – winter oilseed rape at 2 x 25 g a.s./ha / spring oilseed rape at 1 x 25 g a.s./ha

Scenario	Initial PEC\textsubscript{SW} (µg/L)	Fish acute	Aquatic invertebrates	Algae	Initial PEC\textsubscript{SW} (µg/L)	Fish acute	Aquatic invertebrates	Algae
Winter					Spring			
oilseed rape	Winter	Oncorhynchus mykiss	Daphnia magna	Pseudokircheriella subcapitata	Spring	Oncorhynchus mykiss	Daphnia magna	Pseudokircheriella subcapitata
		LC\textsubscript{50}	EC\textsubscript{50}	E\textsubscript{C,50}	oilseed rape	LC\textsubscript{50}	EC\textsubscript{50}	E\textsubscript{C,50}
Level of assessment	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1
RAC	10	> 1000 µg/L						
FOCUS Step 1	2.374	2.374	2.374	2.374	2.374	2.374	2.374	2.374
FOCUS Step 2								
North Europe	0.496	0.496	0.496	0.496	0.197	0.197	0.197	0.197
South Europe	0.401	0.401	0.401	0.401	0.371	0.371	0.371	0.371

Notes: PEC values in bold indicate that the PEC\textsubscript{SW/SED} exceeds the RAC, and thus that further consideration is necessary.

FOCUS Step 2 values for winter oilseed rape are based on multiple application, covering single application.

FOCUS\textsubscript{sw} step 1-2 - Comparison of RACs and global maximum PEC\textsubscript{SW} for the metabolite PBAcid – potato at 1 x 50 g a.s./ha
Scenario

Scenario	Initial PEC_{SW} (µg/L)	Fish acute	Aquatic invertebrates	Algae
Potatoes	Oncorhynchus mykiss	Daphnia magna	Pseudokirchneriella subcapitata	

Level of assessment	Tier 1	Tier 1	Tier 1
LC₅₀	EC₅₀	EC₅₀	
> 1000 µg/L	> 1000 µg/L	> 1000 µg/L	

| RAC | 10 | 10 |
| FOCUS Step 1 | 4.747 | 4.747 | 4.747 | 4.747 |

FOCUS Step 2
North Europe
South Europe

Notes: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary.
Level of assessment

Scenario	Tier 1	Tier 1
EC₅₀	> 22.4 µg/L	> 22.4 µg/L
RAC	0.224	0.224
FOCUS Step 1	0.040	0.040

Notes: PEC values in bold indicate that the PEC_SW/SED exceeds the RAC, and thus that further consideration is necessary

FOCUS_sw step 1-2 - Comparison of RACs and global maximum PEC_SW for the metabolite carboxamide – winter oilseed rape at 2 x 25 g a.s./ha / spring oilseed rape at 1 x 25 g a.s./ha / potato at 1 x 50 g a.s./ha / potato at 1 x 50 g a.s./ha

Scenario	Initial PEC_SW (µg/L)	Aquatic invertebrates	Initial PEC_SW (µg/L)	Aquatic invertebrates	Initial PEC_SW (µg/L)	Aquatic invertebrates
Winter oilseed rape	Daphnia magna		Spring oilseed rape	Daphnia magna	Potatoes	Daphnia magna
Level of assessment	Tier 1	Tier 1	Tier 1			
EC₅₀	> 22.4 µg/L	> 22.4 µg/L	> 22.4 µg/L			
RAC	0.224	0.224	0.224			
FOCUS Step 1	0.080	0.080	0.040	0.040	0.080	0.080
FOCUS Step 2

Region	FOCUS Step 2	FOCUS Step 2	PEC SW/SED	PEC Sed	RAC
North Europe	0.013	0.013	0.004	0.004	0.015
South Europe	0.010	0.010	0.009	0.009	0.030

Notes: PEC values in bold indicate that the PEC SW/SED exceeds the RAC, and thus that further consideration is necessary. FOCUS Step 2 values for winter oilseed rape are based on multiple application, covering single application.
Regulatory acceptable concentrations used in the higher tier risk assessment for fish

Species group	Endpoint	Assessment factor	RAC	
Acute effect assessment	Fish	LC50, geomean = 3.12 µg a.s./L	100	0.0312 µg a.s./L

Overall acute RAC: 0.0312 µg a.s./L

| Chronic assessment | Fish | NOEC = 0.077 µg a.s./L | 10 | 0.0077 µg a.s./L |

Overall chronic RAC: 0.0077 µg a.s./L

Notes: RAC = Regulatory Acceptable Concentration

Regulatory acceptable concentrations used in the higher tier risk assessment for aquatic invertebrates

Species group	Endpoint	Assessment factor	RAC	
Effect assessment based on ETO	Aquatic invertebrates	NOEC = 0.005 µg a.s./L	3	0.0017 µg a.s./L

ETO-RAC: 0.0017 µg a.s./L

| Effect assessment based on ERO | Aquatic invertebrates | NOEAEc = 0.015 µg a.s./L | 4 | 0.0038 µg a.s./L |

ERO-RAC: 0.0038 µg a.s./L

Notes: RAC = Regulatory Acceptable Concentration
FOCUS\textsubscript{sw} step 1-3 - Comparison of RACs and global maximum PEC\textsubscript{sw} for cypermethrin – winter cereals at 1 x 25 g a.s./ha

Scenario	Initial PEC\textsubscript{sw} (µg/L)	Fish acute	Fish chronic	Mesocosm	Mesocosm
		Oncorhynchus mykiss and Cyprinodon variegatus	Pimephales promelas		
Level of assessment	Tier 2	Tier 1	Tier 3	Tier 3	
	Geomean LC\textsubscript{50} (µg/L)	NOEC (FFLC)	NOEC (ETO)	NOEAEC (ERO)	
	3.12 µg/L	0.077 µg/L	0.005 µg/L	0.015 µg/L	
RAC	0.0312	0.0077	0.0017	0.0038	
FOCUS Step 1	0.262	0.262	0.262	0.262	0.262
FOCUS Step 2					
North Europe	0.230	0.230	0.230	0.230	
South Europe	0.230	0.230	0.230	0.230	
FOCUS Step 3*					
D1 (Lanna) ditch	0.139	0.139	0.139	0.139	
D1 (Lana) stream	0.122	0.122	0.122	0.122	
D2 (Brimstone) ditch	0.139	0.139	0.139	0.139	
D2 (Brimstone) stream	0.124	0.124	0.124	0.124	
D3 (Vredepeel) ditch	0.138	0.138	0.138	0.138	
D4 (Skousbo) pond	0.005	0.005	0.005	0.005	
D4 (Skousbo) stream	0.119	0.119	0.119	0.119	
D5 (La Jailliere) pond	0.005	0.005	0.005	0.005	
D5 (La Jailliere) stream	0.128	0.128	0.128	0.128	
D6 (Thiva) ditch	0.139	0.139	0.139	0.139	
R1 (Weiherbach) pond	0.005	0.005	0.005	0.005	
R1 (Weiherbach) stream	0.091	0.091	0.091	0.091	
R3 (Bologna) stream	0.127	0.127	0.127	0.127	
R4 (Roujjan) stream	0.091	0.091	0.091	0.091	

*Notes: PEC values in bold indicate that the PEC\textsubscript{sw,SED} exceeds the RAC, and thus that further consideration is necessary.
FOCUS Step3 values are based on BBCH 69-77, covering BBCH 10+ and BBCH 31+*

FOCUS\textsubscript{sw} step 1-3 - Comparison of RACs and global maximum PEC\textsubscript{sw} for cypermethrin – spring cereals at 1 x 25 g a.s./ha
Peer review of the pesticide risk assessment of the active substance cypermethrin

Scenario

Initial PEC$_{SW}$ (µg/L)	Fish acute	Fish chronic	Mesocosm Pimephales promelas	Mesocosm Oncorhynchus mykiss and Cyprinodon variegatus
Fish acute				
Fish chronic				
Mesocosm				
Mesocosm				

Level of assessment

Geomean LC$_{50}$	NOEC (FFLC)	NOEC (ETO)	NOEAEC (ERO)
3.12 µg/L	0.077 µg/L	0.005 µg/L	0.015 µg/L

RAC

RAC
0.0312

FOCUS Step 1	0.262

FOCUS Step 2

FOCUS Step 2	North Europe	South Europe
0.230	0.230	0.230

FOCUS Step 3

FOCUS Step 3	D1 (Lanna) ditch	D1 (Lana) stream	D3 (Vredepeel) ditch	D4 (Skousbo) pond	D4 (Skousbo) stream	D5 (La Jailliere) pond	D5 (La Jailliere) stream	R4 (Roujan) stream
	0.139	0.122	0.138	0.005	0.119	0.005	0.120	0.091
	0.139	0.122	0.138	0.005	0.119	0.005	0.120	0.091
	0.139	0.122	0.138	0.005	0.119	0.005	0.120	0.091
	0.139	0.122	0.138	0.005	0.119	0.005	0.120	0.091

Notes: PEC values in bold indicate that the PEC$_{SW/SED}$ exceeds the RAC, and thus that further consideration is necessary.

FOCUS Step 3 values are based on BBCH 69-77, covering BBCH 10+ and BBCH 31+

FOCUS$_{sw}$ step 1-3 - Comparison of RACs and global maximum PEC$_{SW}$ for cypermethrin – winter oilseed rape at 1 x 25 g a.s./ha

Initial PEC$_{SW}$ (µg/L)	Fish acute	Fish chronic	Mesocosm Pimephales promelas	Mesocosm Oncorhynchus mykiss and Cyprinodon variegatus

Scenario

Initial PEC$_{SW}$ (µg/L)	Fish acute	Fish chronic	Mesocosm Pimephales promelas	Mesocosm Oncorhynchus mykiss and Cyprinodon variegatus

Notes: PEC values in bold indicate that the PEC$_{SW/SED}$ exceeds the RAC, and thus that further consideration is necessary.

FOCUS Step 3 values are based on BBCH 69-77, covering BBCH 10+ and BBCH 31+
variegatus

Level of assessment	Tier 2	Tier 1	Tier 3	Tier 3
Geomean LC\(_{50}\)	NOEC (FFLC)	NOEC (ETO)	NOEAE (ERO)	
RAC	0.0312	0.0077	0.0017	0.0038
FOCUS Step 1	0.262	0.262	0.262	0.262

FOCUS Step 2

Region	Tier 1	Tier 1	Tier 3	Tier 3	Tier 3
North Europe	0.230	0.230	0.230	0.230	0.230
South Europe	0.230	0.230	0.230	0.230	0.230

FOCUS Step 3

Scenario	Tier 1	Tier 1	Tier 3	Tier 3	Tier 3
D2 (Brimstone) ditch	0.139	0.139	0.139	0.139	0.139
D2 (Brimstone) stream	0.124	0.124	0.124	0.124	0.124
D3 (Vredepeel) ditch	0.138	0.138	0.138	0.138	0.138
D4 (Skousbo) pond	0.005	0.005	0.005	0.005	0.005
D4 (Skousbo) stream	0.116	0.116	0.116	0.116	0.116
D5 (La Jailliere) pond	0.005	0.005	0.005	0.005	0.005
D5 (La Jailliere) stream	0.117	0.117	0.117	0.117	0.117
R1 (Weiherbach) pond	0.005	0.005	0.005	0.005	0.005
R1 (Weiherbach) stream	0.090	0.090	0.090	0.090	0.090
R3 (Bologna) stream	0.127	0.127	0.127	0.127	0.127

Notes: PEC values in bold indicate that the PEC\(_{SW}^{SED}\) exceeds the RAC, and thus that further consideration is necessary.

FOCUS Step3 values are based on BBCH 50-77, covering BBCH 9+ (except scenario D5 stream: PEC\(_{sw} = 0.128 \) µg a.s./L) and BBCH 31+

FOCUS\(_{sw}^{step 1-3}\) - Comparison of RACs and global maximum PEC\(_{sw}\) for cypermethrin – winter oilseed rape at 2 x 25 g a.s./ha

Scenario	Initial PEC\(_{sw}\) (µg/L)	Fish acute	Fish chronic	Mesocosm	Mesocosm
Oncorhynchus mykiss and Cyprinodon variegatus					
Pimephales promelas					

Level of assessment	Tier 2	Tier 1	Tier 3	Tier 3
Tier 2	Tier 1	Tier 3	Tier 3	
Peer review of the pesticide risk assessment of the active substance cypermethrin

Geomean LC$_{50}$	NOEC (FFLC)	NOEC (ETO)	NOEAEC (ERO)
3.12 µg/L	0.077 µg/L	0.005 µg/L	0.015 µg/L

RAC	0.0312	0.0077	0.0017	0.0038

FOCUS Step 1	0.262	0.262	0.262	0.262

FOCUS Step 2	0.230	0.230	0.230	0.230	0.230

FOCUS Step 3	0.230	0.230	0.230	0.230

Scenario	Initial PEC$_{SW}$ (µg/L)	Fish acute	Fish chronic	Mesocosm	Mesocosm
Oncorhynchus mykiss					
Cyprinodon variegatus					
Pimephales promelas					

Notes: PEC values in bold indicate that the PEC$_{SW/SED}$ exceeds the RAC, and thus that further consideration is necessary. FOCUS Step3 values are based on BBCH 50-77, covering BBCH 9+ (except scenario D2 stream: PEC$_{SW}$ = 0.107 µg a.s./L) and BBCH 31+

FOCUS$_{sw}$ step 1-3 - Comparison of RACs and global maximum PEC$_{SW}$ for cypermethrin – spring oilseed rape at 1 x 25 g a.s./ha

Scenario	Initial PEC$_{SW}$ (µg/L)	Fish acute	Fish chronic	Mesocosm	Mesocosm
Oncorhynchus mykiss and Cyprinodon variegatus					
Pimephales promelas					

Level of assessment

Level of assessment	Tier 2	Tier 1	Tier 3	Tier 3
Geomean LC$_{50}$	NOEC (FFLC)	NOEC (ETO)	NOEAEC (ERO)	
FOCUS sw step 1-3 - Comparison of RACs and global maximum PEC_{SW} for cypermethrin – potato at 1 x 50 g a.s./ha

Scenario	Initial PEC_{SW} (µg/L)	Fish acute	Fish chronic	Mesocosm	Mesocosm
Oncorhynchus mykiss and Cyprinodon variegatus					
Pimephales promelas					
Level of assessment	Tier 2	Tier 1	Tier 3	Tier 3	
Geomean LC₅₀	NOEC (FFLC)	NOEC (ETO)	NOEAE	(ERO)	
3.12 µg/L	0.077 µg/L	0.005 µg/L	0.015 µg/L		
RAC	0.0312	0.0077	0.0017	0.0038	
FOCUS Step 1	0.524	0.524	0.524	0.524	
FOCUS Step 2

Region	1st crop	2nd crop														
North Europe	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460
South Europe	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460

FOCUS Step 3

Site/Stream	1st crop	2nd crop														
D3 (Vredepeel) ditch	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228
D4 (Skousbo) pond	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
D4 (Skousbo) stream	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171	0.171
D6 (Thiva) ditch	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226	0.226
R1 (Weiherbach) pond	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
R1 (Weiherbach) stream	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158
R2 (Porto) stream	0.212	0.212	0.212	0.212	0.212	0.212	0.212	0.212	0.212	0.212	0.212	0.212	0.212	0.212	0.212	0.212
R3 (Bologna) stream	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222

Notes: PEC values in bold indicate that the PEC\(_{SW,SED}\) exceeds the RAC, and thus that further consideration is necessary.

FOCUS\(_{sw}\) Step 4 - Comparison of RACs and global maximum PEC\(_{SW}\) for cypermethrin – winter cereals at 1 x 25 g a.s./ha – Fish

Scenario

Fish Species	Level of assessment	Mitigation options
Oncorhynchus mykiss	Tier 2	20 m
Cyprinodon variegatus	Tier 1	20 m
Pimephales promelas	Tier 1	20 m

Level of assessment	Oncorhynchus mykiss	Cyprinodon variegatus	Pimephales promelas
RAC	0.0312	0.0077	

Site/Stream	Fish acute	Fish chronic
D1 (Lanna) ditch	0.0104	0.0104
D1 (Lana) stream	0.0122	0.0122
D2 (Brimstone) ditch	0.0104	0.0104
D2 (Brimstone) stream	0.0124	0.0124
D3 (Vredepeel) ditch	0.0103	0.0103
D4 (Skousbo) pond	0.0020	0.0020
D4 (Skousbo) stream	0.0119	0.0119
D5 (La Jailliere) pond	0.0020	0.0020
D5 (La Jailliere) stream	0.0129	0.0129
D6 (Thiva) ditch	0.0104	0.0104
Peer review of the pesticide risk assessment of the active substance cypermethrin

Scenario	Mesocosm Natural populations in ponds	Mesocosm Natural populations in ponds
Level of assessment	Tier 3 NOEC (ETO)	Tier 3 NOEAE (ERO)
	0.005 µg a.s./L	0.015 µg a.s./L
RAC	0.0017	0.0038
Mitigation options	20 m	20 m

FOCUS step 4 - Comparison of RACs and global maximum PEC\(_{SW}\) for cypermethrin – winter cereals at 1 x 25 g a.s./ha – Aquatic invertebrates

Scenario	Mesocosm Natural populations in ponds	Mesocosm Natural populations in ponds
Level of assessment	Tier 3 NOEC (ETO)	Tier 3 NOEAE (ERO)
	0.005 µg a.s./L	0.015 µg a.s./L
RAC	0.0017	0.0038
Mitigation options	20 m	20 m

Notes: figures with ‘m’ in the ‘Mitigation options’ row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.
FOCUS_{sw} step 4 - Comparison of RACs and global maximum PEC_{sw} for cypermethrin – spring cereals at 1 x 25 g a.s./ha – Fish

Scenario	Fish acute	Fish chronic
	Oncorhynchus mykiss	Pimephales promelas
	Cyprinodon variegatus	
Level of assessment	Tier 2	Tier 1
geomean LC₅₀	3.12 µg a.s./L	0.077 µg a.s./L
RAC	0.0312	0.0077
Mitigation options	20 m	20 m
FOCUS Step 4⁺		
D1 (Lanna) ditch	0.0104	0.0104
D1 (Lana) stream	0.0122	0.0122
D3 (Vredepeel) ditch	0.0103	0.0103
D4 (Skousbo) pond	0.0020	0.0020
D4 (Skousbo) stream	0.0119	0.0119
D5 (La Jailliere) pond	0.0020	0.0020
D5 (La Jailliere) stream	0.0120	0.0120
R4 (Roujan) stream	0.0091	0.0091

Notes: figures with ‘m’ in the ‘Mitigation options’ row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.
FOCUS\textsubscript{sw} step 4 - Comparison of RACs and global maximum PEC\textsubscript{sw} for cypermethrin – spring cereals at 1 x 25 g a.s./ha – Aquatic invertebrates

Scenario	Mesocosm Natural populations in ponds	Mesocosm Natural populations in ponds
Level of assessment	Tier 3	Tier 3
NOEC (ETO)	0.005 µg a.s./L	0.015 µg a.s./L
RAC	0.0017	0.0038
Mitigation options	20 m	20 m
FOCUS Step 4		
D1 (Lanna) ditch	0.0104	0.0104
D1 (Lana) stream	0.0122	0.0122
D3 (Vredepeel) ditch	0.0103	0.0103
D4 (Skousbo) pond	0.0020	0.0020
D4 (Skousbo) stream	0.0119	0.0119
D5 (La Jailliere) pond	0.0020	0.0020
D5 (La Jailliere) stream	0.0120	0.0120
R4 (Roujan) stream	0.0091	0.0091

Notes: figures with 'm' in the 'Mitigation options' row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.
FOCUSsw step 4 - Comparison of RACs and global maximum PEC_{SW} for cypermethrin – winter oilseed rape at 1 x 25 g a.s./ha – Fish

Scenario	Fish acute	Fish chronic
	Oncorhynchus mykiss Cyprinodon variegatus	Pimephales promelas
Level of assessment	Tier 2	Tier 1
geomean LC_{50}	3.12 µg a.s./L	0.077 µg a.s./L
RAC	0.0312	0.0077
Mitigation options	20 m	20 m
FOCUS Step 4		
D2 (Brimstone) ditch	0.0104	0.0104
D2 (Brimstone) stream	0.0124	0.0124
D3 (Vredepeel) ditch	0.0103	0.0103
D4 (Skousbo) pond	0.0020	0.0020
D4 (Skousbo) stream	0.0116	0.0116
D5 (La Jailliere) pond	0.0020	0.0020
D5 (La Jailliere) stream	0.0118	0.0118
R1 (Weiherbach) pond	0.0020	0.0020
R1 (Weiherbach) stream	0.0091	0.0091
R3 (Bologna) stream	0.0127	0.0127

Notes: figures with ‘m’ in the ‘Mitigation options’ row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk

FOCUSsw step 4 - Comparison of RACs and global maximum PEC_{SW} for cypermethrin – winter oilseed rape at 1 x 25 g a.s./ha – Aquatic invertebrates

Scenario	Mesocosm	Mesocosm
	Natural populations in ponds	Natural populations in ponds
Level of assessment	Tier 3	Tier 3
	NOEC (ETO)	NOEAEC (ER0)
----------------------	------------------	-------------------
	0.005 µg a.s./L	0.015 µg a.s./L
RAC	0.0017	0.0038
Mitigation options	20 m	20 m
FOCUS Step 4		
D2 (Brimstone) ditch	0.0104	0.0104
D2 (Brimstone) stream	0.0124	0.0124
D3 (Vredepeel) ditch	0.0103	0.0103
D4 (Skousbo) pond	0.0020	0.0020
D4 (Skousbo) stream	0.0116	0.0116
D5 (La Jailliere) pond	0.0020	0.0020
D5 (La Jailliere) stream	0.0118	0.0118
R1 (Weiherbach) pond	0.0020	0.0020
R1 (Weiherbach) stream	0.0091	0.0091
R3 (Bologna) stream	0.0127	0.0127

Notes: figures with ‘m’ in the ‘Mitigation options’ row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk

FOCUS sw step 4 - Comparison of RACs and global maximum PEC_{SW} for cypermethrin – winter oilseed rape at 2 x 25 g a.s./ha – Fish

Scenario	Fish acute	Fish chronic	
	Oncorhynchus mykiss	*Pimephales promelas*	
	Cyprinodon variegatus		
Level of assessment	Tier 2	Tier 1	
	geomean LC₅₀	NOEC	
	3.12 µg a.s./L	0.077 µg a.s./L	
RAC	0.0312	0.0077	
Mitigation options	20 m	20 m	
FOCUS Step 4*			
Scenario	Mitigation options	NOEC (ETO)	NOEAECD (ERO)
---------------------------	--------------------	------------	---------------
D2 (Brimstone) ditch	20 m	0.0084	0.0084
D2 (Brimstone) stream	20 m	0.0098	0.0098
D3 (Vredepeel) ditch	20 m	0.0083	0.0083
D4 (Skousbo) pond	20 m	0.0016	0.0016
D4 (Skousbo) stream	20 m	0.0095	0.0095
D5 (La Jailliere) pond	20 m	0.0016	0.0016
D5 (La Jailliere) stream	20 m	0.0105	0.0105
R1 (Weiherbach) pond	20 m	0.0016	0.0016
R1 (Weiherbach) stream	20 m	0.0074	0.0074
R3 (Bologna) stream	20 m	0.0105	0.0105

Notes: figures with 'm' in the 'Mitigation options' row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.
FOCUS$_{sw}$ step 4 - Comparison of RACs and global maximum PEC$_{sw}$ for cypermethrin – spring oilseed rape at 1 x 25 g a.s./ha – Fish

Scenario	Fish acute	Fish chronic	
	Oncorhynchus mykiss	Cyprinodon variegatus	*Pimephales promelas*
Level of assessment	Tier 2	NOEC	NOEC
geomean LC$_{50}$	3.12 µg a.s./L	0.077 µg a.s./L	
RAC	0.0312	0.0077	
Mitigation options	20 m	20 m	
FOCUS Step 4			
D1 (Lanna) ditch	0.0104	0.0104	
D1 (Lana) stream	0.0122	0.0122	
D3 (Vredepeel) ditch	0.0103	0.0103	
D4 (Skousbo) pond	0.0020	0.0020	
D4 (Skousbo) stream	0.0119	0.0119	
D5 (La Jailliere) pond	0.0020	0.0020	
D5 (La Jailliere) stream	0.0121	0.0121	
R1 (Weiherbach) pond	0.0020	0.0020	
R1 (Weiherbach) stream	0.0091	0.0091	

Notes: figures with ‘m’ in the ‘Mitigation options’ row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.
FOCUS$_{sw}$ step 4 - Comparison of RACs and global maximum PEC$_{sw}$ for cypermethrin – spring oilseed rape at 1 x 25 g a.s./ha – Aquatic invertebrates

Scenario	Mesocosm	Mesocosm
	Natural populations in ponds	Natural populations in ponds
Level of assessment	Tier 3	Tier 3
	NOEC (ETO)	NOEAE (ERO)
	0.005 µg a.s./L	0.015 µg a.s./L
RAC	0.0017	0.0038
Mitigation options	20 m	20 m

FOCUS Step 4

Scenario	FOCUS Step 4
D1 (Lanna) ditch	0.0104
D1 (Lanna) stream	0.0122
D3 (Vredepeel) ditch	0.0103
D4 (Skousbo) pond	0.0020
D4 (Skousbo) stream	0.0119
D5 (La Jailliere) pond	0.0020
D5 (La Jailliere) stream	0.0121
R1 (Weiherbach) pond	0.0020
R1 (Weiherbach) stream	0.0091

Notes: figures with 'm' in the 'Mitigation options' row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk
FOCUS\textsubscript{sw} step 4 - Comparison of RACs and global maximum PEC\textsubscript{sw} for cypermethrin – potato at 1 x 50 g a.s./ha (early) – Fish

Scenario	Fish acute	Fish chronic	
	Oncorhynchus mykiss	Cyprinodon variegatus	Pimephales promelas
Level of assessment	Tier 2	Tier 1	
geomean LC\textsubscript{50}	3.12 µg a.s./L	0.077 µg a.s./L	
RAC	0.0312	0.0077	
Mitigation options	20 m	20 m	
FOCUS Step 4			

D3 (Vredepeel) ditch	0.0206	0.0206
D4 (Skousbo) pond	0.0039	0.0039
D4 (Skousbo) stream	0.0221	0.0221
D6 (Thiva), 1st crop ditch	0.0203	0.0203
D6 (Thiva), 2nd crop ditch	0.0202	0.0202
R1 (Weiherbach) pond	0.0039	0.0039
R1 (Weiherbach) stream	0.0179	0.0179
R2 (Porto) stream	0.0241	0.0241
R3 (Bologna) stream	0.0257	0.0257

Notes: figures with ‘m’ in the ‘Mitigation options’ row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.
FOCUS_{sw} step 4 - Comparison of RACs and global maximum PEC_{sw} for cypermethrin – potato at 1 x 50 g a.s./ha (early) – Aquatic invertebrates

Scenario	Mesocosm	Mesocosm
	Natural populations in ponds	Natural populations in ponds
Level of assessment	Tier 3	Tier 3
	NOEC (ETO)	NOEAEAC (ERO)
	0.005 µg a.s./L	0.015 µg a.s./L
RAC	0.0017	0.0038
Mitigation options	20 m	20 m
FOCUS Step 4		
D3 (Vredepeel) ditch	0.0206	0.0206
D4 (Skousbo) pond	0.0039	0.0039
D4 (Skousbo) stream	0.0221	0.0221
D6 (Thiva), 1st crop ditch	0.0203	0.0203
D6 (Thiva), 2nd crop ditch	0.0202	0.0202
R1 (Weiherbach) pond	0.0039	0.0039
R1 (Weiherbach) stream	0.0179	0.0179
R2 (Porto) stream	0.0241	0.0241
R3 (Bologna) stream	0.0257	0.0257

Notes: figures with ‘m’ in the ‘Mitigation options’ row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.

FOCUS_{sw} step 4 - Comparison of RACs and global maximum PEC_{sw} for cypermethrin – potato at 1 x 50 g a.s./ha (late) – Fish

Scenario	Fish acute	Fish chronic
	Oncorhynchus mykiss	Pimephales promelas
	Cyprinodon variegatus	

Notes: figures with ‘m’ in the ‘Mitigation options’ row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.
Level of assessment

	Tier 2	Tier 1
geomean LC₅₀		
	3.12 µg a.s./L	0.077 µg a.s./L
RAC	0.0312	0.0077

Mitigation options

	20 m	20 m

FOCUS Step 4

Location	Mitigation options
D3 (Vredepeel) ditch	0.0206 m
D4 (Skousbo) pond	0.0039 m
D4 (Skousbo) stream	0.0198 m
D6 (Thiva), 1st crop ditch	0.0204 m
D6 (Thiva), 2nd crop ditch	0.0205 m
R1 (Weiherbach) pond	0.0039 m
R1 (Weiherbach) stream	0.0182 m
R2 (Porto) stream	0.0245 m
R3 (Bologna) stream	0.0256 m

Notes: Figures with 'm' in the 'Mitigation options' row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.

FOCUSₚₜ step 4 - Comparison of RACs and global maximum PECₚₜ for cypermethrin – potato at 1 x 50 g a.s./ha (late) – Aquatic invertebrates

Scenario	Mesocosm	Mesocosm
	Natural populations in ponds	Natural populations in ponds
Level of assessment	Tier 3	Tier 3
	NOEC (ETO)	NOEAEIC (ERO)
	0.005 µg a.s./L	0.015 µg a.s./L
RAC	0.0017	0.0038
Mitigation options	20 m	20 m
FOCUS Step 4	Mitigation Options	RAC Mitigation Options
--------------	--------------------	------------------------
D3 (Vredepeel) ditch	0.0206	0.0206
D4 (Skousbo) pond	0.0039	0.0039
D4 (Skousbo) stream	0.0198	0.0198
D6 (Thiva), 1st crop ditch	0.0204	0.0204
D6 (Thiva), 2nd crop ditch	0.0205	0.0205
R1 (Weiherbach) pond	0.0039	0.0039
R1 (Weiherbach) stream	0.0182	0.0182
R2 (Porto) stream	0.0245	0.0245
R3 (Bologna) stream	0.0256	0.0256

Notes: figures with ‘m’ in the ‘Mitigation options’ row indicate the necessary widths of no-spray buffer zones (in metres); DRN = Drift mitigation by drift reducing nozzles; vfs: vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk.
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Honeybee (Apis mellifera)	Cypermethrin	Acute, adult toxicity	Oral toxicity (LD₅₀)	0.4592 µg a.s./bee
Honeybee (Apis mellifera)	Cypermethrin	Acute, adult toxicity	Contact toxicity (LD₅₀)	0.0206 µg a.s./bee
Honeybee (Apis mellifera)	Cypermethrin 500 EC	Acute, adult toxicity	Oral toxicity (LD₅₀)	0.1994 µg a.s./bee
Honeybee (Apis mellifera)	Cypermethrin 500 EC	Acute, adult toxicity	Contact toxicity (LD₅₀)	0.0189 µg a.s./bee
Honeybee (Apis mellifera)	Cypermethrin 500 EC	Chronic (10d), adult toxicity	LDD₅₀	> 0.0149 µg a.s./bee/day
Honeybee (Apis mellifera)	Cypermethrin	Chronic (7d), larval toxicity	NOED	0.060 µg a.s./larva
Bumblebee (Bombus terrestris)	Cypermethrin 500 EC	Acute, adult toxicity	Oral toxicity (LD₅₀)	0.263 µg a.s./beee
Bumblebee (Bombus terrestris)	Cypermethrin 500 EC	Acute, adult toxicity	Contact toxicity (LD₅₀)	0.119 µg a.s./bee

Potential for accumulative toxicity: not assessed

Semi-field test (Cage and tunnel test)

In total, six reliable semi-field tests (tunnel tests) are available, in which the representative formulation Cypermethrin 500 EC or the formulations Cypermethrin 50 EC, Cypermethrin 100 EC, Cypermethrin 100 EWor Cypermethrin PPBO 100/300 were applied at a rate of 25 or 50 g a.s./ha, either during or after bee flight. All available studies show consistent results, which are summarized below.

Species	Test substance	Type of test	Results
Honeybee (Apis mellifera)	Cypermethrin 50 EC	Semi-field test (tunnel test) in winter wheat/Northern France	25 and 50 g a.s./ha after bee flight: short-term effect on mortality of 3 days; short-term effect on foraging activity of 2-3 days, no unacceptable effects on brood and colony; 25 g a.s./ha during bee flight: short-term effect on mortality of 3 days, short-term effect on foraging activity of 2-3 days, no unacceptable effects on brood and colony.
Honeybee (Apis mellifera)	Cypermethrin 100 EC	Semi-field test (tunnel test) in *Phacelia* tanacetifolia/Northern France	25 and 50 g a.s./ha after bee flight: short-term effect on mortality of 1 day, short-term effect on foraging activity of 1-2 days (25 g a.s./ha) and of 2 days (50 g a.s./ha), no unacceptable effects on brood and colony; 25 g a.s./ha during bee flight: short-term effect on mortality of 2 days, short-term effect on foraging activity of 2-3 days, no unacceptable effects on brood and colony.
Field tests
In total, three field effect studies are available, in which the representative formulation Cypermethrin 500 EC was applied at a rate of 25 g a.s./ha, either during or after bee flight. All available studies showed consistent results, which are summarized below.

Species	Test substance	Type of test	Results
Honeybee (Apis mellifera)	Cypermethrin	Field test in *Phacelia* tanacetifolia / Southern Germany	25 g a.s./ha after bee flight: 1st trial: no effect on mortality, short-term effect on foraging activity of 1 day, no unacceptable effects on brood and colony 2nd trial: short-term effect on mortality of 1 day, no effect on foraging activity, no unacceptable effects on brood and colony 25 g a.s./ha during bee flight: 1st trial: short-term effect on mortality of 2 days, short-term effect on foraging activity of 2 days, no unacceptable effects on brood and colony
Peer review of the pesticide risk assessment of the active substance cypermethrin

2 days, no unacceptable effects on brood and colony

→ 2nd trial: short-term effect on mortality of 3 days, short-term effect on foraging activity of 2 days, no unacceptable effects on brood and colony

25 g a.s./ha after bee flight:
→ short-term effect on mortality of 1 day, no effect on foraging activity, no unacceptable effects on brood and colony

25 g a.s./ha during bee flight:
→ no effect on mortality, no effect on foraging activity, no unacceptable effects on brood and colony

Honeybee (Apis mellifera) | Cypermethrin 500 EC | Field test in winter oilseed rape/Northern France | 25 g a.s./ha after bee flight:
→ short-term effect on mortality of 1 day, no effect on foraging activity of 1 day, no unacceptable effects on brood and colony

25 g a.s./ha during bee flight:
→ short-term effect on mortality of 2 days, short-term effect on foraging activity of 1 day, no unacceptable effects on brood and colony

Honeybee (Apis mellifera) | Cypermethrin 500 EC | Field test in Phacelia tanacetifolia/Northern France | 25 g a.s./ha after bee flight:
→ short-term effect on mortality of 1 day, short-term effect on foraging activity of 1 day, no unacceptable effects on brood and colony

25 g a.s./ha during bee flight:
→ short-term effect on mortality of 2 days, short-term effect on foraging activity of 1 day, no unacceptable effects on brood and colony

Tier 1 Risk assessment according to SANCO/10329/2002 and EPPO (2010)

Risk assessment for Cereals (winter and spring) at 1 x 25 g a.s./ha, winter oilseed rape at 2 x 25 g a.s./ha (interval 90 days), and spring oilseed rape at 1 x 25 g a.s./ha

Species	Test substance	Risk quotient	HQ	Trigger
Honeybee (Apis mellifera)	Cypermethrin	HQ_{oral}	54	50
Honeybee (Apis mellifera)	Cypermethrin	HQ_{contact}	1214	50
Honeybee (Apis mellifera)	Cypermethrin	TER_{CH,adult}*	0.181	1*
Honeybee (Apis mellifera)	Cypermethrin	TER_{CH,larvae}*	2.06	1*

Note: HQ and TER values in bold exceed, respectively are below, the trigger, indicating that further consideration is required.

Risk assessment for Potato at 1 x 50 g a.s./ha

Species	Test substance	Risk quotient	HQ	Trigger
Honeybee (Apis mellifera)	Cypermethrin	HQ_{oral}	109	50
Honeybee (Apis mellifera)	Cypermethrin	HQ_{contact}	2427	50
Honeybee (Apis mellifera)	Cypermethrin	TER_{CH,adult}*	0.181	1*
Honeybee (Apis mellifera)	Cypermethrin	TER_{CH,larvae}*	2.06	1*

Note: HQ and TER values in bold exceed, respectively are below, the trigger, indicating that further consideration is required.

* this trigger value is quoted in EPPO, 2010; the risk assessment used only for indicative purposes
Tier 1 Risk assessment according to EFSA (2013)
Risk assessment for Cereals (winter and spring) at 1 x 25 g a.s./ha, winter oilseed rape at 2 x 25 g a.s./ha (interval 90 days), spring oilseed rape at 1 x 25 g a.s./ha, and Potato at 1 x 50 g a.s./ha

Acute contact exposure of adult honeybees – screening step

Test substance	Crop	Application rate (g a.s./ha)	LD₅₀ (µg/bee)	HQ	Trigger value
Cypermethrin	Cereals (winter and spring)	25	0.0206	1214	42
	Oilseed rape (winter and spring)	25	0.0206	1214	42
	Potato	50	0.0206	2427	42

HQ values in bold exceed the trigger, indicating a potential risk.

Acute contact exposure of adult honeybees – Tier 1

Crop	Scenario	BBCH	Appl. Rate (g a.s./ha)	Eₚp	LD₅₀ (µg/bee)	HQ	Trigger value
Cereals (winter and spring)	treated crop	all	25	1		1214	
	<30	25	1			1214	
	30-39	25	0.5			607	
	≥ 40	25	0.3			364	
	field margin	all	25	0.028		34	
Oilseed rape (winter and spring)	treated crop	all	25	1		1214	
	<30	25	1			1214	
	30-39	25	0.3			364	
	≥ 40	25	0.25			303	
	field margin	all	25	0.028		34	
Potato	treated crop	all	50	1		2427	
	< 40	50	1			2427	
	≥ 40	50	0.3			728	
	field margin	all	50	0.028		68	

HQ values in bold exceed the trigger, indicating a potential risk.

Acute and chronic oral exposure of adult honeybees and honeybee larvae – screening step

Type of assessment	Test substance	Crop	Application rate (kg a.s./ha)	SV	Endpoint	ETR	Trigger value
Acute oral exposure adult bees	Cypermethrin	Cereals ¹⁾	0.025	7.6	0.4592 µg a.s./bee	0.41	0.2
		Oilseed rape ¹⁾	0.025	7.6	0.41	0.2	
		Potato	0.050	7.6	0.83	0.2	
Chronic oral exposure adult bees	Cypermethrin 500 EC	Cereals ¹⁾	0.025	7.6	0.0149 µg a.s./bee/day	< 12.75	0.03
		Oilseed rape ¹⁾	0.025	7.6	0.0149	< 12.75	0.03
		Potato	0.050	7.6	25.50	< 25.50	0.03
Chronic oral exposure larvae	Cypermethrin	Cereals ¹⁾	0.025	4.4	0.041 µg a.s./larva per developmental period	2.68	0.2
		Oilseed rape ¹⁾	0.025	4.4	2.68	0.2	
		Potato	0.050	4.4	5.37	0.2	

¹⁾ ETR values representative for both the use in winter and spring cereals/oilseed rape; SV: Shortcut value; bold values exceed the trigger, indicating a potential risk.

Acute oral exposure of adult honeybees – Tier 1

Crop	Scenario	BBCH	Appl. rate (kg a.s./ha)	Eₚp	SV	Endpoint (µg a.s./bee)	ETR	Trigger value
Cereals (winter and spring)	Treated crop	10-69	0.025	1	0.92	0.4592	0.05	0.2
	≥ 70		1	0			0	
Weeds		10-29	0.025	1	3.7		0.2	

EFSA Journal 2018;16(8):5402
Chronic oral exposure of adult honeybees – Tier 1.

Crop	Scenario	BBCH	Appl. rate (kg a.s./ha)	EF	SV	Endpoint (µg a.s./bee/day)	ETR	Trigger value
Cereals (winter and spring)	Treated crop	10-69	1	0.92	0.72	> 0.0149		< 1.11
		≥ 70	1	0	0.72	> 0.0149		< 1.11
	Weeds	10-29	1	2.9	0.72	> 0.0149		< 1.11
		30-39	0.5	2.9	0.72	> 0.0149		< 1.11
		40-69	0.3	2.9	0.72	> 0.0149		< 1.11
		≥ 70	0.3	2.9	0.72	> 0.0149		< 1.11
	Field margin	all	0.0092	2.9	0.72	> 0.0149		< 0.032
	Adjacent crop	all	0.0033	5.8	0.72	> 0.0149		< 0.023
	Succeeding crop	all	1	0.54	0.72	> 0.0149		< 0.65
Oilseed rape (winter and spring)	Treated crop	10-69	1	5.8	0.72	> 0.0149		< 7.01
		≥ 70	1	0	0.72	> 0.0149		< 7.01
	Weeds	10-29	1	2.9	0.72	> 0.0149		< 7.01
		30-39	0.3	2.9	0.72	> 0.0149		< 7.01
		40-69	0.25	2.9	0.72	> 0.0149		< 7.01
		≥ 70	0.25	2.9	0.72	> 0.0149		< 7.01
	Field margin	all	0.0092	2.9	0.72	> 0.0149		< 0.032
	Adjacent crop	all	0.0033	5.8	0.72	> 0.0149		< 0.23
	Succeeding crop	all	1	0.54	0.72	> 0.0149		< 0.65
Chronic oral exposure of honeybee larvae – Tier 1.

Crop	Scenario	BBCH	Appl. rate (kg a.s./ha)	E_f	SV	Endpoint (µg a.s./larva)	ETR	Trigger value
Cereals (winter and spring)	Treated crop	10-69	1	0.15	0.85	0.041	0.08	
		≥ 70	1	0			0	1.14
		10-29	1	2.2			0.57	
		30-39	0.5	2.2			0.34	
		40-69	0.3	2.2			0.34	
		≥ 70	0.3	2.2			0.01	
	Field margin	all	0.0092	2.2			0.008	
	Adjacent crop	all	0.0033	4.4			0.008	
	Succeeding crop	all	1	0.4			0.21	
Oilseed rape (winter and spring)	Treated crop	10-69	1	4.4	0.85	0.041	2.28	
		≥ 70	1	4.4			0	
		10-29	1	2.2			1.14	
		30-39	0.3	2.2			0.34	
		40-69	0.25	2.2			0.29	
		≥ 70	0.25	2.2			0.29	
	Field margin	all	0.0092	2.2			0.01	
	Adjacent crop	all	0.0033	4.4			0.008	
	Succeeding crop	all	1	0.4			0.21	
Potato	Treated crop	<10	1	0.002	0.85	0.041	0.002	
		10-69	1	0.15			0.16	
		≥ 70	1	0			0	
	Weeds	<10	1	2.2	0.85	0.041	2.28	
		10-39	1	2.2			2.28	
		40-69	0.3	2.2			0.68	
		≥ 70	0.3	2.2			0.68	
	Field margin	all	0.0092	2.2			0.021	
	Adjacent crop	all	0.0033	4.4			0.015	
	Succeeding crop	all	1	0.4			0.42	

SV: Shortcut value; E_f: exposure factor; bold values exceed the trigger, indicating a potential risk.
Exposure to guttation water contaminated with cypermethrin – Tier 1

Type of assessment	Water consumption (µL)	PEC (µg/µL)	Endpoint	ETR	Trigger
Acute oral exposure adult bees	11.4	0.000009	0.172 µg a.s./bee	0.000597	0.2
Chronic oral exposure adult bees	11.4	0.00000486	> 0.0149 µg a.s./bee/day	< 0.00372	0.03
Chronic oral exposure larvae	111	0.00000648	0.041 µg a.s./larvae per developmental period	0.01754	0.2

1Based on a maximum water solubility of < 9 µg/L for cypermethrin; **bold** values exceed the trigger, indicating a potential risk.

Exposure to surface water contaminated with cypermethrin – Tier 1

Type of assessment	Crop	Water consumption (µL)	PEC (µg/µL)	Endpoint	ETR	Trigger
Acute oral exposure adult bees	All proposed uses	11.4	0.524 x 10^{-6}	0.172 µg a.s./bee	3.473 x 10^{-5}	0.2
Chronic oral exposure adult bees	All proposed uses	11.4	0.524 x 10^{-6}	> 0.0149 µg a.s./bee/day	< 0.00004	0.03
Chronic oral exposure larvae	All proposed uses	111	0.524 x 10^{-6}	0.041 µg a.s./larvae per developmental period	0.00142	0.2

bold values exceed the trigger, indicating a potential risk.

Acute contact exposure of adult bumble bees – Tier 1

Crop	Scenario	BBCH	Appl. Rate (g a.s./ha)	Ef	SV	LDso (µg/bee)	HQ	Trigger
Cereals (winter and spring)	treated crop	all	25	1	0.219	210		
	weeds	<30	25	1	210			
		30-39	25	0.5	105			
		≥ 40	25	0.3	63			
	field margin	all	25	0.028	5.88			
		<30	25	1	210			
		30-39	25	0.3	63			
		≥ 40	25	0.25	53			
	field margin	all	25	0.028	5.88			
		<40	50	1	420			
		≥ 40	50	0.3	126			
Potatoes	treated crop	all	50	1	420			
	weeds	≥ 40	50	0.3	126			

*HQ values in **bold** exceed the trigger, indicating a potential risk.*

Acute oral exposure of adult bumble bees – Tier 1

Crop	Scenario	BBCH	Appl. rate (kg a.s./ha)	Ef	SV	Endpoint (µg a.s./bee)	ETR	Trigger value
Cereals (winter and spring)	Treated crop	10-69	0.025	1	2.3	0.219	0.036	
		≥ 70	1	0	0.618			
	Weeds	10-29	0.025	1	6.5	0.309		
		30-39	0.5	6.5	0.309			
		40-69	0.3	6.5	0.185			
Higher Tier Risk assessment
During the Pesticides Peer Review Meeting 177 the higher tier studies on honeybees and the risk assessment for bees were discussed. In conclusion, high acute risk of cypermethrin on bees was identified and mitigation measures would be needed. However, restriction to application after bee flight is not sufficient as mitigation. Some experts proposed to use risk mitigation measures such as SPE8 (Do not apply when flowering weeds are present). Nevertheless, it was not demonstrated that this mitigation would be protective to bees.

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	Sherpa 100 EC ¹	Mortality, LR₅₀	0.0029 g a.s./ha
		Reproduction, NOER	0.0016 g a.s./ha
Species	Test Substance	End point	Toxicity
---	---	---	---
Aphidius rhopalosiphi	Sherpa 100 EC	Mortality, LR₅₀	0.822 g a.s./ha
		Reproduction, NOER	0.568 g a.s./ha

¹EC formulation containing 100 g a.s./L cypermethrin. Based on their respective composition, it is considered that endpoints for Sherpa 100 EC are representative for Cypermethrin 500 EC.

First tier risk assessment for – Cereals (winter and spring) at 1 x 25 g a.s./ha, winter oilseed rape at 2 x 25 g a.s./ha (interval 90 days), spring oilseed rape at 1 x 25 g a.s./ha, and Potato at 1 x 50 g a.s./ha

Test substance	Species	Effect (LR₅₀ g/ha)	HQ in-field	HQ off-field¹	Trigger
Cypermethrin	*Typhlodromus pyri*	0.0029	17241	478	2
Cypermethrin	*Aphidius rhopalosiphi*	0.822	60.8	1.68	2

¹HQ value calculated for the use in potato, for which a distance of 1 m was assumed to calculate the drift rate. The off-field exposure for this use covers the off-field exposure for the proposed uses in cereals and oilseed rape.

Semi-field tests

No additional semi-field tests have been submitted

Field studies

Three new field studies with the representative formulation Cypermethrin 500 EC I have been submitted, of which one assessed the effects on natural arthropod communities in-field, and two investigated the effects in off-crop areas. In addition, two studies with the formulation Cyperkill 10 EC and two studies with the formulation Sherpa 100 EC have been submitted. For each of these formulations, one study investigated the effects of cypermethrin on *Aphidius rhopalosiphi* mummies, and the second study assessed the effects on natural arthropod communities in-field. Although performed with another formulation, these four in-crop field studies are considered to be representative for the risk assessment for Cypermethrin 500 EC.

Species	Test substance	Crop	Application rates/ effects	
Aphidius rhopalosiphi (mummies)	Cyperkill 10 EC (100 g a.s./L)	Winter wheat (United Kingdom)	1 x 0.25 L product/ha (= 1 x 25 g a.s./ha) and 1 x 0.00595 L product/ha (= 1 x 0.595 g a.s./ha)	The emergence success / mortality of adult wasps from mummies treated with Cyperkill 10 EC was comparable to the control for both treatment rates.
Natural arthropod populations	Cyperkill 10 EC (100 g a.s./L)	Winter wheat (United Kingdom)	2 x 0.25 L product/ha (= 2 x 25 g a.s./ha) and 2 x 0.00595 L product/ha (= 2 x 0.595 g a.s./ha)	short-term effects on a range of non-target arthropods following application at both treatment rates. All affected species groups, including the lyniphiid spiders (which were the most sensitive), recovered 52-64 days after the first application.
Natural arthropod populations	Sherpa 100 EC (100 g a.s./L)	Winter triticale (United Kingdom)		
--------------------------------	-----------------------------	---------------------------------		
	2 × 0.30 L product/ha (= 2 × 30 g a.s./ha) and 2 × 0.00714 L product/ha (= 2 × 0.714 g a.s./ha)	For the highest treatment rate (2 × 30 g a.s./ha), there were no marked effects on ground-active beetles (e.g. Carabidae and Staphylinidae) and only short-term effects on aerial fauna such as parasitic wasps and predatory flies (recovery 21-23 days after the first application). For certain species of lynx spiders, significant effects of treatment were found up to 49-51 days after the first application. Full population recovery could not be demonstrated prior to harvest (final sampling occasion 69-71 days after the first application) due to a natural decline in population levels in all treatments and the control. For the lower treatment rate (2 × 0.714 g a.s./ha), only short-term effects on populations of lynx spiders (with recovery 21-23 days after the first application) and no effects on any other group of non-target arthropods were found.		

Aphidius rhopalosiphi (mummies)	Sherpa 100 EC (100 g a.s./L)	Winter triticale (United Kingdom)
	1 × 0.30 L product/ha (= 1 × 30 g a.s./ha) and 1 × 0.00714 L product/ha (= 1 × 0.714 g a.s./ha)	The emergence success / mortality of adult wasps from mummies treated with Sherpa 100 EC was comparable to the control for both treatment rates.

Natural arthropod populations	Cypermethrin 500 EC (500 g a.s./L)	Alfalfa (Italy)
	2 × 0.10 L product/ha (= 2 × 50 g a.s./ha)	At the population level, pronounced short-term effects on a wide range of non-target arthropods were found, with a recovery within two months after the first application. At the community level, an impact was observed during the first season of 2013. No full recovery was found at the last two samplings of 2013, however, no differences in the community composition were found in 2014.

Off-crop field studies

Natural arthropod populations	Cypermethrin 500 EC (500 g a.s./L)	Grassland (United Kingdom)
	0.4, 0.8, 1.6, 3.2 and 6.4 mL product/ha (equivalent to 0.2, 0.4, 0.8, 1.6 and 3.2 g a.s./ha)	slight effects on a number of taxa at 0.4, 0.8 and 1.6 mL product/ha. Short-term effects on 1 taxon at 3.2 mL product/ha and on 3 taxa at 6.4 mL product/ha. Recovery occurred within three weeks after application

Natural arthropod populations	Cypermethrin 500 EC (500 g a.s./L)	Grassland (South-West France)
	0.40, 1.56, 2.40, 7.60 and 16.60 mL product/ha (equivalent to 0.2, 0.78, 1.2, 3.8 and 8.3 g a.s./ha)	slight effects on a number of taxa at 0.4 and 1.56 mL product/ha. Pronounced effects with no recovery in the study period for 1 taxon at 2.40 mL product/ha. Short-term effects on 3 taxa and pronounced effects with no recovery in the study period for 1 taxon at 7.60 mL product/ha. Short-term effects with recovery by the end of the study period for all taxa affected at 16.60 mL product/ha.

Additional specific test

No additional specific tests have been submitted

Risk assessment based on field studies for – Cereals (winter and spring) at 1 x 25 g a.s./ha, winter oilseed rape at 2 x 25 g a.s./ha (interval 90 days), spring oilseed rape at 1 x 25 g a.s./ha, and Potato at 1 x 50 g a.s./ha
In-field risk assessment:

In the study performed with Sherpa 100 EC, full population recovery could not be demonstrated prior to harvest (final sampling occasion 69-71 days after the first application) for the treatment with 2 x 30 g a.s./ha. This was due to a natural decline in population levels in all treatments and the control, because of which a statistical comparison of the populations levels could not be performed at the final sampling period. Because of this, no conclusion could be drawn from this study in the higher tier assessment.

However, based on the results from the study performed with Cyperkill 10 EC, it can be concluded that an application of up to 2 x 30 g a.s./ha caused no unacceptable effects on the population development of ground and foliar dwelling arthropods under field conditions in winter wheat. This application rate covers the intended application rate of the proposed uses for Northern and Central Europe. Based on the results from the study performed with Cypermethrin 500 EC, no unacceptable effects on arthropod populations were found for an application of up to 2 x 50 g a.s./ha in alfalfa. This application rate covers the intended rate of the proposed uses for Southern Europe. Therefore, the in-field risk to non-target terrestrial arthropods can be considered acceptable for the proposed uses of Cypermethrin 500 EC. However, since the recovery could be impaired when application takes place in autumn (i.e. potentially slower recovery), these studies can only be used in the risk assessment to demonstrate an acceptable risk for applications made in spring/summer.

Off-field risk assessment:

During the Pesticides Peer Review Meeting 177 the off-field risk assessment was discussed. In the available studies (CP 10.3.2.4/09 and CP 10.3.2.4/10), “slight” and transient effects were observed on one occasion (class2) on some taxa in the lowest tested concentration (0.4 mL product/ha). Therefore, a NOER could not be derived from these studies. There was no agreement among experts if class 2 effects could be accepted for the off-field risk assessment. It was mentioned that there is no clear guidance on how to interpret observed effects in the off-field. Risk mitigation measures might be needed for the off-field, but it is not possible to calculate the risk mitigation based on the available data.

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity
Earthworms (Eisenia fetida)	cypermethrin	Mixed with soil after application to quartz sand / 10%	Chronic	reproduction	EC₂₀ = 10.6 mg a.s./kg d.w. soil
EC_{20, CORR} = 5.3 mg a.s./kg d.w. soil					
EC₁₀ = 7.9 mg a.s./kg d.w. soil					
EC_{10, CORR} = 3.95 mg a.s./kg d.w. soil					
NOEC = 5.2 mg a.s./kg d.w. soil					
NOEC_{CORR} = 2.6 mg a.s./kg d.w. soil					
Earthworm (Eisenia fetida)	Cypermethrin 500 EC	Mixed with soil as a solution / 10%	Chronic	reproduction	No reliable endpoint could be derived
Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity
---------------	----------------	---------------------------------	------------	-----------	----------
Earthworm \((Eisenia andrei)\)	Cypermethrin-carboxamide	Mixed with soil after application to quartz sand / 10%	Chronic	reproduction	EC\(_{20}\) > 281 mg a.s./kg d.w. soil
EC\(_{20,\text{CORR}}\) > 140.5 mg a.s./kg d.w. soil
EC\(_{10}\) = 116 mg a.s./kg d.w. soil
EC\(_{10,\text{CORR}}\) = 58 mg a.s./kg d.w. soil
NOEC = 400 mg a.s./kg d.w. soil
NOEC\(_{\text{CORR}}\) = 200 mg a.s./kg d.w.soil |

| Other soil macroorganisms | | | | | |
| Folsomia candida | Cypermethrin 500 EC | Mixed with soil as a solution / 5% | Chronic | Mortality, reproduction | EC\(_{50}\) > 10.4 mg a.s./kg d.w. soil
EC\(_{50,\text{CORR}}\) > 5.2 mg a.s./kg d.w. soil
NOEC = 10.4 mg a.s./kg d.w. soil
NOEC\(_{\text{CORR}}\) = 5.2 mg a.s./kg d.w. soil |

Species	Test substance (conc. of active substance)	Crop	Application rates / Effects
Earthworms and soil invertebrate populations	WL43467 (cypermethrin)	Spring wheat (United Kingdom)	1 × 100 g a.s./ha
→ No significant differences were found between treatments for either mean numbers or mean live wet weights of earthworms.			
A reduction in numbers of total invertebrates to about 40 to 60% of the control was observed during the first few weeks after application. A return to control levels occurred at 5 weeks post-treatment.			
Invertebrate soil meso-and macrofauna	Cyperkill 10 EC (100 g a.s./L)	Fallow agricultural land	2 × 0.25 L product/ha (= 2 × 25 g a.s./ha)
→ no adverse effects of the treatment on the populations of invertebrate fauna (including Collembola, soil mites, Diptera larvae and earthworms) were found			
Organic matter decomposition	Cyperkill 10 EC (100 g a.s./L)	Fallow agricultural land	2 × 0.25 L product/ha (= 2 × 25 g a.s./ha)
→ the rate of straw decomposition in the Cyperkill 10 EC treatment did not differ significantly to the control treatment |
In invertebrate soil mesofauna, Sherpa 100 EC (100 g a.s./L) was applied at a rate of 2 × 0.30 L product/ha (= 2 × 30 g a.s./ha) and 2 × 0.00714 L product/ha (= 2 × 0.714 g a.s./ha) in winter triticale (United Kingdom). No significant reductions in the numbers of invertebrates present in the soil surface layer below the crop (Collembola and soil mites) were recorded for any of the treatment rates.

Nitrogen transformation	Cypermethrin	Maximum tested rate of 93.6 mg a.s./kg d.w. soil	< 25% effect at day 28 at 93.6 mg a.s./kg d.w. soil
Cypermethrin 500 EC	Maximum tested rate of 1.0 mg a.s./kg d.w. soil	< 25% effect at day 56 at 1.0 mg a.s./kg d.w. soil	
3-PBA²	Maximum tested rate of 9.36 mg a.s./kg d.w. soil	< 25% effect at day 28 at 9.36 mg a.s./kg d.w. soil	
DCVA	Maximum tested rate of 9.36 mg a.s./kg d.w. soil	< 25% effect at day 28 at 9.36 mg a.s./kg d.w. soil	
Carboxamide	Maximum tested rate of 9.36 mg a.s./kg d.w. soil	< 25% effect at day 28 at 9.36 mg a.s./kg d.w. soil	

¹ No toxicity data is available for this metabolite. Therefore a 10x higher toxicity compared to the parent cypermethrin is assumed. Due to the dose setting in the study with Cypermethrin 500 EC, where only 0.1 and 1.0 mg a.s./kg soil d.w. were tested, the endpoint for the formulation was lower compared to the active substance. As acceptable effects were found for the active substance up to a dose of 93.6 mg a.s./kg, this higher endpoint was used to derive a surrogate endpoint for the metabolites.

² From the dossier of beta-cypermethrin, the effects of the metabolite PBA towards soil micro-organisms were < 25 % effect at 0.12 mg/kg soil

Toxicity/exposure ratios for soil organisms

Cereals (winter and spring) at BBCH 10-77, 1 x 25 g a.s./ha

Test organism	Test substance	Time scale	Soil PEC ¹	TER	Trigger
Earthworms					
Earthworm (Eisenia fetida)	Cypermethrin	Chronic	0.0346	75	5
	PBAcid	Chronic	0.0017	153²	5
	DCVA	Chronic	0.0111	23²	5
	Carboxamide	Chronic	0.0068	8529	5
Other soil macroorganisms					
Folsomia candida	Cypermethrin 500 EC	Chronic	0.0346	150	5
	PBAcid	Chronic	0.0017	306²	5
	DCVA	Chronic	0.0111	47²	5
	Carboxamide	Chronic	0.0068	76²	5

¹ worst-case PEC\text{SOIL} under consideration of accumulation; ² as no metabolite specific endpoint is available, it was assumed that the metabolite was 10 x more toxic compared to the active substance to calculate the TER
Winter oilseed rape at BBCH 9-77, 2 x 25 g a.s./ha (interval 90 days) / Spring oilseed rape at BBCH 9-77, 1 x 25 g a.s./ha

Test organism	Test substance	Time scale	Soil PEC¹	TER	Trigger
Earthworms					
Earthworm (*Eisenia fetida*)	Cypermethrin	Chronic	0.0358	73	5
	PBAcid	Chronic	0.0017	153²	5
	DCVA	Chronic	0.0111	23²	5
	Carboxamide	Chronic	0.0069	8405	5
Other soil macroorganisms					
Folsomia candida	Cypermethrin 500 EC	Chronic	0.0358	145	5
	PBAcid	Chronic	0.0017	306²	5
	DCVA	Chronic	0.0111	47²	5
	Carboxamide	Chronic	0.0069	77²	5

¹ worst-case PEC_{SOIL} under consideration of accumulation; ² as no metabolite specific endpoint is available, it was assumed that the metabolite was 10 x more toxic compared to the active substance to calculate the TER

Potato (whole season), 1 x 50 g a.s./ha

Test organism	Test substance	Time scale	Soil PEC¹	TER	Trigger
Earthworms					
Earthworm (*Eisenia fetida*)	Cypermethrin	Chronic	0.0693	38	5
	PBAcid	Chronic	0.0035	74²	5
	DCVA	Chronic	0.0221	12²	5
	Carboxamide	Chronic	0.0137	4234	5
Other soil macroorganisms					
Folsomia candida	Cypermethrin 500 EC	Chronic	0.0693	75	5
	PBAcid	Chronic	0.0035	149²	5
	DCVA	Chronic	0.0221	24²	5
	Carboxamide	Chronic	0.0137	38²	5

¹ worst-case PEC_{SOIL} under consideration of accumulation; ² as no metabolite specific endpoint is available, it was assumed that the metabolite was 10 x more toxic compared to the active substance to calculate the TER

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Not submitted

Laboratory dose response tests
Species	Test substance	ER₅₀ (g/ha) vegetative vigour	ER₅₀ (g/ha) emergence	Exposure¹ (g/ha)	TER	Trigger
onion (Allium cepa L.), oats (Avena sativa L.), beet (Beta vulgaris L.), cucumber (Cucumis sativus L.), Soybean (Glycine max Merr.), sunflower (Helianthus annuus L.)	Cypermethrin 500 EC	> 0.3 L product/ha (> 150 g a.s./ha)	-	1) 0.6925 g a.s./ha 2) 1.385 g a.s./ha	1) > 217 2) > 108	5

Extended laboratory studies: None
Semi-field and field test: None

Note: 1) for the use in cereals and oilseed rape; 2) for the use in potato

Exposure has been estimated based on Ganzelmeier drift data with a standard drift distance of 1 m for the use in cereals, oilseed rape and potato

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point		
Activated sludge	≥ 100 mg a.s./L		
Pseudomonas sp	No data available		

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

No data available

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds¹

Compartment	
soil	Parent (cypermethrin)
water	Parent (cypermethrin)
sediment	Parent (cypermethrin)
groundwater	Parent (cypermethrin)

¹ metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent
Classification and labelling with regard to ecotoxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance		
Cypermethrin		
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]		
H400	Category Acute 1	Endpoint: 0.0053 µg a.s./L [48h EC50 *Hyalella azteca*]
H410	Category Chronic 1	Endpoint: 0.03 µg a.s./L [Chronic NOEC *Pimephales promelas*]

Peer review proposal for harmonised classification according to Regulation (EC) No 1272/2008:

11 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

12 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.