Magnetostructural transitions in V-doped MnCoGe compounds

J. H. Shi, H. G. Zhang, Imam Hidayah, B. T. Song, H. Yao, M. Yue, and Z. Altounian

Cite as: AIP Advances 10, 025325 (2020); https://doi.org/10.1063/1.5130029
Submitted: 23 October 2019 . Accepted: 28 January 2020 . Published Online: 20 February 2020
Magneostructural transitions in V-doped MnCoGe compounds

J. H. Shi, H. G. Zhang, Imam Hidayah, B. T. Song, H. Yao, M. Yue, and Z. Altounian

ABSTRACT
MnCoGe\(_{1-x}V_x\) (\(x = 0.005, 0.01, 0.015, 0.02, 0.03,\) and 0.04) compounds were synthesized and investigated in view of the effect of transition metals on main-group-element sites to the magnetostructural transition. A small amount of V doping results in a decrease of the martensitic transformation temperature, while a further increase of V disturbs the Co-Ge bonds hence destabilizing the MM'X phase. Therefore, the transformation temperature returns to high temperature, and the expected Curie temperature window becomes incomplete. Accordingly, a large magnetic entropy change of about 10 J/kg K and a refrigerant capacity of about 129.5 J/kg is obtained in the series.

INTRODUCTION
So far, most studies on magnetic refrigeration are focused on materials undergoing a first-order magnetic phase transition due to their large magnetocaloric effect.\(^1\)-\(^7\) Amongst many kinds of such materials, the well-known MM'X family is particularly interesting for its unique 'Curie temperature window' (CTW) phenomenon.\(^8\) These compounds show a martensitic transformation from the high-temperature Ni\(_2\)In-type hexagonal structure to the low-temperature TiNiSi-type orthorhombic structure.\(^5\)-\(^10\) However, to the best of our knowledge, the structural transition (\(T_M\)) of the MM'X systems known so far occurs at higher temperatures than the Curie temperature of martensite (\(T_C^M\)), implying that they are not coupled together. Therefore, the priority in studying an MM'X compound is to tune its \(T_M\) into the CTW and hence the structure transition will occur from a paramagnetic hexagonal phase to a ferromagnetic orthorhombic phase and achieving the magnetostructural coupling. In the most intensively studied MM'X compound, i.e. MnCoGe, there are several effective ways to decrease the \(T_M\) from 650 K to room temperature and establish the CTW. Studies on Mn vacancy in MnCoGe systems show that Co atoms could fill in Mn vacancies, resulting in the appearance of Co vacancy and thus the \(T_M\) can be adjusted to lower temperatures.\(^1\) Apart from this method, introducing interstitial atoms\(^6\) or physical hydrostatic pressure\(^10,11\) in MnCoGe system can also effectively tune the structural transition temperature.

Recently, a new family of all-d-metal Heusler compounds with first-order magnetostructural transition has been discovered.\(^12,13\) In this system, the Ti or V atoms with a low number of valence electrons can form p-p hybridization with the other transition elements, playing the role of main group elements as those in conventional Heusler compounds. These works raise a new question about how will the transition elements behave on a main-group-element site. We know that in the MM'X compound, M' and X form a network of hexagons which is the basis of the crystal structure. The decrease of \(T_M\) usually depends on the weakening of these M'-X networks. Therefore, the effect of transition elements like Ti and V on the stability of the hexagonal net is a topic worthy of investigation.

In this study, we synthesized a series of MnCoGe\(_{1-x}V_x\) (\(x = 0.005, 0.01, 0.015, 0.02, 0.03,\) and 0.04) samples and investigated the effect of the transition element V on phase stability, structural transition, and magnetic behavior in the MnCoGe system.
EXPERIMENTAL PROCEDURE

The MnCoGe\(_{1-x}\)V\(_{x}\) (x = 0.005, 0.01, 0.015, 0.02, 0.03, and 0.04) alloys were prepared by melting the appropriate amounts of high purity constituent elements four times under an Ar atmosphere with arc melting. The ingots were then annealed at 1123 K for 5 days and cooled down to room temperature in oven naturally. The phase content and crystal structure of the samples were determined by X-ray diffraction (XRD) measurements at room temperature using Bruker D8 Advance diffractometer. The microstructure and element distribution of the samples were examined using scanning electron microscopy (SEM) and energy dispersive X-ray detector (EDX), respectively. The characteristic of the phase transition of the samples was performed using differential scanning calorimetry (DSC) on DSC-214 Polyma-Netzsch equipment with the heating and cooling rates of 10 K/min. The temperature dependences of the magnetization were carried out in the 100 ∼ 400 K temperature range under an applied field of 0.01 T, using a vibrating sample magnetometer (VersaLab, Quantum Design). The isothermal magnetization curves were measured around \(T_M\), under an applied field of up to 3T. Maxwell relations were used to calculate the magnetic entropy changes from isothermal magnetization curves (M-H). The values of the refrigerant capacity (RC) were calculated by numerical integration of the corresponding temperature dependences of magnetic entropy change, with the temperature at half-maximum values of the peak used as the integration limit.

RESULTS AND DISCUSSION

To identify the crystal structure, we performed XRD measurements at room temperature for all MnCoGe\(_{1-x}\)V\(_{x}\) compounds, as seen in Fig. 1. The patterns can be indexed as TiNiSi-type orthorhombic structure, coexisting with a small amount

![XRD pattern of MnCoGe\(_{1-x}\)V\(_{x}\) compounds](image)

FIG. 1. XRD pattern of MnCoGe\(_{1-x}\)V\(_{x}\) (x=0, 0.01, 0.015, 0.02, 0.03 and 0.04) compounds, in which the diffraction peaks of orthorhombic and hexagonal structures are marked with □ and •, respectively.

![DSC heat flow curves as a function of temperature for MnCoGe\(_{1-x}\)V\(_{x}\) compounds](image)

FIG. 2. DSC heat flow curves as a function of temperature for MnCoGe\(_{1-x}\)V\(_{x}\) (x=0, 0.01, 0.015, 0.02, 0.03 and 0.04) compounds. The dashed arrows denote the heating and cooling curves. \(T_{CM}\), \(T_{DSC}\), \(M_F\) (\(M_F\)) and \(A_S\) (\(A_F\)) are the Curie temperature of martensite, transformation temperature based on DSC curves, starting (finishing) temperature of martensitic transition and the starting (finishing) temperature of reversal martensitic transition, respectively.

Samples	\(T_C^M/T_M\) (K)	\(\Delta T_{HY}\) (K)	Maximum magnetic hysteresis loss (J/kg)	\(\Delta S_M\) (J/kg*K)	RC (J/kg)
MnCoGe	345/418	4	-	5.6	-
MnCoGe\(_{0.99}\)V\(_{0.01}\)	343/343	10	11.1	7.3	117.3
MnCoGe\(_{0.85}\)V\(_{0.015}\)	317	11	16.7	10	129.5
MnCoGe\(_{0.98}\)V\(_{0.02}\)	300	14	11.8	7.1	115.9
MnCoGe\(_{0.97}\)V\(_{0.03}\)	294	12	10.9	6.3	101.1
MnCoGe\(_{0.96}\)V\(_{0.04}\)	301	23	5.8	3.9	122.4

TABLE I. The transformation temperature \((T_M)\) or Curie temperature \((T_C)\), thermal hysteresis \((\Delta T_{HY})\), maximum magnetic hysteresis loss, maximum entropy change \((\Delta S_M)\) and refrigerant capacity \((RC)\) of the MnCoGe\(_{1-x}\)V\(_{x}\) compounds.
FIG. 3. Temperature dependence of magnetization ($M-T$ curves) measured at a field of 100 Oe with a rate of 3 K/min during heating and cooling for MnCoGe$_{1-x}$V$_x$ compounds. The inset shows the SEM image of the sample with $x = 0.04$ and the EDX composition of the second phase.

As the further increase of V, the hexagonal phase becomes dominant gradually, indicating that the martensitic transformation temperatures T_M has been decreased to near room temperature.

To clarify the doping effect of V element on the phase transition of MnCoGe compound, we carried out DSC measurements, as shown in Fig. 2. For the parent phase with $x = 0$, there are two pairs of peaks, the low-temperature pair and the high-temperature pair, on heating and cooling curves. The high-temperature one is relatively strong and shows a large thermal hysteresis during heating and cooling, which could be attributed to the structural transitions between the hexagonal and orthorhombic phases ($T_M \approx 418$ K). The low-temperature pair of peaks have no obvious thermal hysteresis and can be identified as the T_C of the orthorhombic phase ($T_C \approx 340$ K). With the introduction of V, T_M is dramatically decreased from 418 K for $x = 0$ to around 340 K for $x = 0.01$, as seen in Table 1. Further increase of V leads to a gradual decrease of T_M until $x = 0.03$. Starting from this composition, T_M tends to be stable or even increase slightly. It implies that the effect of V doping is suspended or weakened. A more important phenomenon is the obvious of hexagonal phase for samples with $x = 0$, 0.01 and 0.015. As the further increase of V, the hexagonal phase becomes dominant gradually, indicating that the martensitic transformation temperatures T_M has been decreased to near room temperature.

FIG. 4. Magnetization isotherms ($M-H$) curves of MnCoGe$_{1-x}$V$_x$ compounds with (a) $x = 0.01$, (b) $x = 0.015$, (c) $x = 0.02$, (d) $x = 0.03$, (e) $x = 0.04$ in a field change of 3T, and (f) magnetic hysteresis loss for all compounds.
reduction of the DSC peaks for the samples with $x = 0.03$ and 0.04. It confirms that the first-order transition is largely suppressed. These phenomena may be explained by examining the magnetic behavior of these series.

Temperature dependence of the magnetization of MnCoGe$_{1-x}$V$_x$ compounds was measured in both cooling and heating processes, as seen in Fig. 3. The parent phase with $x = 0$ shows a single paramagnetic to ferromagnetic (PM-FM) transition with almost no thermal hysteresis, corresponding to the T_{C}^{M}. When doped with V, an evident thermal hysteresis first appears in the sample of $x = 0.01$ and expands gradually with the increase of V till $x = 0.02$. This suggests that the magnetostructural transition is achieved in the system by V doping. However, when $x = 0.03$ and 0.04, the T_{M} stops decreasing and returns to higher temperatures. In addition, the magnetization difference (ΔM) is notably reduced for these two samples, which is caused by the remaining magnetization in the supposed paramagnetic range at high temperature. These results are consistent with the results of XRD and DSC, suggesting the existence of secondary magnetic phases.

The inset of Fig. 3 shows the SEM image of the $x = 0.04$ sample, in which one can see two distinct contrasts. The bright contrast belongs to the main MnCoGe phase, while the dark one corresponds to the second phase with less Ge than the matrix. Unfortunately, due to the relatively small amount of this second phase, it cannot be detected by XRD and thus difficult to be identified. However, considering the existence of Mn-Co-Ge(V) type of Heusler alloys and their relatively high Curie temperatures, one may infer that the second phase is an energetically favorable Heusler alloy containing Mn, Co, Ge, and V elements. Nevertheless, the existence of a second phase implies that the V element disturbs the network of Co-Ge bonds and causes the instability of the MM’X phase. This is understandable because the Co-Ge (i.e. M’-X) layers with strong and rigid covalent bonds are the framework of the MnCoGe (MM’X) compounds, while the doped V element has a weaker covalent effect than Ge. This will thus weaken the Co-Ge bond system, which in turn causes a decrease of T_{M} and eventually the appearance of the second phase.

The field dependence of the magnetization of MnCoGe$_{1-x}$V$_x$ compounds was studied using isothermal magnetization (M-H) curves around T_{M}, as shown in Fig. 4 (a-e). The metamagnetic transition with hysteresis for all the compounds indicates that the magnetic field induced martensitic phase transition occurs in all the samples. Fig. 4 (f) shows magnetic hysteresis loss of different compositions at different temperatures. One can see that with the enhancement of magnetostructural coupling ($x = 0.0$ - 0.015), the magnetic hysteresis loss increases, while the weakening of it leads to the decrease of the magnetic hysteresis loss ($x = 0.015$ - 0.04).

The temperature dependence of the magnetic entropy change derived from the M-H curves in Fig. 4 using Maxwell relation are shown in Fig. 5(a). The maximum entropy change (ΔS_{M}) is 10 J/kg.K for the sample with $x = 0.015$. The values of the refrigerant capacity (RC) were calculated by numerical integration of the corresponding ΔS_{M}-T curves, with the temperature at half-maximum values of the peak used as the integration limit. The RC values are 117.3, 129.5, 115.9, 101.1 and 122.4 J/kg for $x = 0.01$, 0.015, 0.02, 0.03 and 0.04, respectively. Based on these results, the structural and magnetic phase diagram of MnCoGe$_{1-x}$V$_x$ system is created and shown in Fig. 5(b). Since the Mn sublattice is unaffected by V doping on Ge site, T_{C}^{M} of MnCoGe should be treated as unchanged like in many related systems. Therefore, the expected CTW in the current system should be 68 K, considering that T_{C}^{M} in the present system is 343 K. However, this value is decreased to 50 K eventually due to the existence of the second phase. If the second phase can be suppressed through different preparation methods like rapid solidification, the CTW can still be recovered. Nevertheless, the effect of V doping on Ge site is compared with those of other doping systems as shown in Table II. Therefore, this system has the potential to be a good magnetocaloric material and the doping effect of transition elements on the main group element site in MM’X materials is worthy of further investigation.
CONCLUSION

In summary, the structural and magnetic properties of MnCoGe\(_{1-x}\)\(V_x\) (\(x = 0.005, 0.01, 0.015, 0.02, 0.03,\) and \(0.04\)) compounds were investigated. The transition temperature \(T_M\) reduces with the substitution of \(V\) for \(Ge\) due to the decrease of the valence-electron concentration and weakening of the Co-Ge bond. \(T_M\) decreases from 343 K to 293 K when \(x\) goes from 0.01 to 0.03 and then it increases to 301 K when \(x = 0.04\). The reason is that a further increase of \(V\) disturbs the Co-Ge bonds, which in turn destabilizes the MM’X phase and leads to a second phase. Therefore, the transformation temperature returns to high temperature, and the expected Curie temperature window becomes incomplete. Accordingly, a large magnetic entropy change of about 10 J/kg/K and a refrigerant capacity of about 129.5 J/kg is obtained in the series. This work provides an effective choice for modulating the magnetosstructural transformation systems like MnCoGe in the MM’X family.

ACKNOWLEDGMENTS

This work was supported by the Beijing Natural Science Foundation (No. 2182006, No. 2202006), the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (No. KM201710005006), the National Natural Science Foundation of China [No. 51401002, No. 51771003] and Program of Top Disciplines Construction in Beijing (PXM2019_014204_500031).

REFERENCES

1. T. Kanomata, H. Ishigaki, T. Suzuki, H. Yoshida, S. Abe, and T. Kaneko, “Magneto-volume effect of MnCoGe, Ge(0≤x≤0.2),” Journal of Magnetism and Magnetic Materials 140–144(3), 131–132 (1995).
2. J. T. Wang, D. S. Wang, C. F. Chen, O. Nashima, T. Kanomata, H. Mizuseki, and Y. Kawazoe, “Vacancy induced structural and magnetic transition in MnCoGe,” Applied Physics Letters 89(26), 262504 (2006).
3. S. Lin, O. Tegus, E. Brück, W. Dagulla, T. J. Gortenmulder, and K. H. J. Buschow, “Structural and magnetic properties of MnFe\(_{1-x}\)CoGe compounds,” IEEE Transactions on Magnetics 42(11), 3776–3778 (2006).
4. J. B. A. Hamer, R. Daou, S. Ozcan, N. D. Mathur, D. J. Fray, and K. G. Sandeman, “Phase diagram and magnetocaloric effect of CoMnGe\(_{1-x}\),[Si, Al] alloys,” Journal of Magnetism and Magnetic Materials 321(21), 3535–3540 (2009).
5. K. Koyama, M. Sakai, T. Kanomata, and K. Watanabe, “Field-induced martensitic transformation in new ferromagnetic shape memory compound Mn\(_{1-x}\)CoGe\(_x\),” Japanese Journal of Applied Physics 43(12), 8036–8039 (2004).
6. N. T. Trung, L. Zhang, L. Caron, K. H. J. Buschow, and E. Brück, “Giant magnetocaloric effects by tailoring the phase transitions,” Applied Physics Letters 96(17), 172504 (2010).
7. G. I. Li, E. K. Liu, H. G. Zhang, Y. J. Zhang, J. L. Chen, W. H. Wang, H. W. Zhang, G. H. Wu, and S. Y. Yu, “Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys,” Journal of Magnetism and Magnetic Materials 332, 146–150 (2013).
8. N. T. Trung, V. Biharie, L. Zhang, L. Caron, K. H. J. Buschow, and E. Brück, “From single-to double-first-order magnetic phase transition in magnetocaloric Mn\(_{1-x}\)Cr\(_x\)CoGe compounds,” Applied Physics Letters 96(16), 162507 (2010).
9. S. C. Ma, X. Y. Zheng, H. C. Xuan, L. J. Shen, Q. Q. Cao, D. H. Wang, Z. C. Zhong, and Y. W. Du, “Large room temperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn\(_{1-x}\)Co\(_{x}\)Ge alloys,” Journal of Magnetism and Magnetic Materials 324(2), 135–139 (2012).
10. S. Mixiol, A. Zgiba, R. Zach, M. Baj, and L. Dmowski, “Structural and magnetic phase transitions in CoNi\(_{1-x}\)Ni\(_x\)Ge system under pressure,” Journal of Magnetism and Magnetic Materials 38(2), 205–213 (1983).
11. L. Caron, N. T. Trung, and E. Brück, “Pressure-tuned magnetocaloric effect in Mn\(_{96}\)Cr\(_{0.07}\)Ni\(_{0.07}\)Ge,” Phys. Rev. B 84(2), 945–949 (2011).
12. Z. Y. Wei, E. K. Liu, J. H. Chen, Y. Li, G. D. Liu, H. Z. Luo, X. K. Xi, H. W. Zhang, and G. H. Wu, “Realization of multifunctional shape-memory ferromagnets in all-\(d\)-metal Heusler phases,” Applied Physics Letters 107(2), 022406 (2015).
13. Z. Y. Wei, E. K. Liu, Y. Li, X. L. Han, Z. Wu, H. Z. Luo, G. D. Liu, X. K. Xi, H. W. Zhang, W. H. Wang, and G. H. Wu, “Magnetostuctural martensitic transformations with large volume changes and magneto-strains in all-\(d\)-metal Heusler alloys,” Applied Physics Letters 109(7), 071904 (2016).
14. H. Ido and S. Yasuda, “Magnetic properties of co-Heusler and related mixed alloys,” Journal de Physique Colloques 49(C8), 141–142 (1988).
15. A. Szyula, A. T. Pedzisiatr, Z. Tomkowicz, and W. Batela, “Crystal and magnetic structure of CoMnGe, CoFeGe, FeMnGe and NiFeGe,” Journal of Magnetism and Magnetic Materials 25(2), 176–186 (1981).
16. A. E. Austin and E. Adelson, “X-ray spectroscopic studies of bonding in transition metal germanides,” Journal of Solid State Chemistry 1(2), 229–236 (1970).
17. S. Anzai and K. Ozawa, “Coupled nature of magnetic and structural transition in MnNiGe under pressure,” Physical Review B 18(5), 2173–2178 (1978).
18. L. F. Bao, F. X. Hu, R. R. Wu, J. Wang, L. Chen, J. R. Sun, B. G. Shen, L. Li, B. Zhang, and X. X. Zhang, “Evolution of magnetostuctural transition and magnetocaloric effect with Al doping in MnCoGe\(_{1-x}\)Al\(_x\) compounds,” Journal of Physics D: Applied Physics 47, 055003 (2014).

Compounds	\(T_M\) (K)	\(-\Delta S_M\) (J/kg K)	\(\Delta H\) (T)	CTW (K)	Ref.
MnCoGe\(_{0.95}\)Sn\(_{0.05}\)	280	4.5	0-1	-60K	4
MnCoGe\(_{0.82}\)	287	20	0-2	-70K	6
MnCoGe\(_{0.78}\)Al\(_{0.2}\)	324	22	0-3	-80K	18
MnCoGe\(_{0.81}\)Sn\(_{0.1}\)	350	2.9	0-2	-96K	19
MnCoGe\(_{0.95}\)Ge\(_{0.05}\)	317	20	0-3	-80K	20
MnCoGe\(_{0.97}\)	324	21	0-3	-76K	21
MnCoGe\(_{1.02}\)	305	20	0-3	-70K	22
MnCoGe\(_{0.95}\)V\(_{0.05}\)	317	10	0-3	-50K	This work

TABLE II. The \(T_M\), \(-\Delta S_M\) values corresponding to field change \(\Delta H\), and the Curie temperature window (CTW) of different doping systems.
19] J. W. Lai, Z. G. Zheng, R. Montemayor, X. C. Zhong, Z. W. Liu, and D. C. Zeng, “Magnetic phase transitions and magnetocaloric effect of MnCoGe$_{1-x}$Si$_x$,” Journal of Magnetism and Magnetic Materials 372, 86–90 (2014).

20] D. L. Zhang, Z. H. Nie, Z. L. Wang, L. Huang, and Q. H. Zhang, “Giant magnetocaloric effect in MnCoGe with minimal Ga substitution,” Journal of Magnetism and Magnetic Materials 387, 107–110 (2015).

21] L. F. Bao, W. D. Huang, and Y. J. Ren, “Tuning martensitic phase transition by non-magnetic atom vacancy in MnCoGe alloys and related giant magnetocaloric effect,” Chinese Physics Letters 33, 077502 (2016).

22] N. Hassan, F. H. Chen, M. G. Zhang, I. A. Shah, J. Liu, Y. Y. Gong, G. Z. Xu, and F. Xu, “Realisation of magnetostructural coupling and a large magnetocaloric effect in the MnCoGe$_{1+x}$ system,” Journal of Magnetism and Magnetic Materials 439, 120–125 (2017).