Some possible q-generalizations of harmonic numbers

István Mező

Department of Applied Mathematics and Probability Theory, Faculty of Informatics, University of Debrecen, Hungary

Abstract

We study three different q-analogue of the harmonic numbers. As applications, we present some generating functions involving numerical theoretical functions and give the q-generalization of Gospers’s exponential generating function of harmonic numbers. We involve also the q-gamma and q-digamma function.

Key words: q-harmonic number, harmonic number, divisor function, Gosper identity, Hockey Stick Theorem, q-gamma function, q-digamma function, q-Euler-Mascheroni constant

1991 MSC: 05A30

1 Introduction

The harmonic numbers are defined as

$$H_n = \sum_{k=1}^{n} \frac{1}{k}, \quad H_0 := 0.$$ \hspace{1cm} (1)

Our aim is to find some q-analogue of these numbers. We start from some basic identities satisfied by the harmonic numbers. For example,
\[H_n = 1/n! s(n + 1, 2), \]
\[H_n = \sum_{k=1}^{n} \binom{n}{k} (-1)^{k+1}, \]

(2)
(3)

where \(s(n + 1, 2) \) is a Stirling number of the first kind \[6\].

Next we introduce the most basic notions of \(q \)-calculus. Let

\[[n]_q = \frac{1 - q^n}{1 - q}, \]

and

\[[n]_q! = [n]_q[n - 1]_q \cdots [1]_q. \]

Define also \((x; q)_n = (1 - x)(1 - qx) \cdots (1 - q^{n-1}x)\) and \((x; q)_\infty = \lim_{n \to \infty} (x; q)_n\).

Then the \(q \)-binomial coefficient with parameter \(n \) and \(k \) is

\[\binom{n}{k}_q = \frac{[n]_q!}{[k]_q! [n - k]_q!} = \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}} \quad (n \geq k \geq 0). \]

According to (1)-(3) we define three class of \(q \)-harmonic numbers as

\[H^1_{n,q} = \sum_{k=1}^{n} \frac{1}{[k]_q}, \]
\[H^2_{n,q} = \frac{1}{[n]_q!} s_q(n + 1, 2), \]
\[H^3_{n,q} = \sum_{k=1}^{n} \binom{n}{k}_q q^{\binom{k}{2}} (-1)^{k+1} \]
\[H^4_{n,q} = \ln(q) \sum_{k=1}^{n} \frac{q^k}{q^k - 1}. \]

(4)
(5)
(6)
(7)

(Let \(H^i_{0,q} := 0 \) for \(i = 1, 2, 3, 4 \).) Here \(s_q(n + 1, 2) \) is a \(q \)-Stirling number of the first kind \[1\].

The first definition appears in \[4,11\], for example. We point out that the first and second definitions are the same but the third and the fourth are different from each other — although all of them tend to \(H_n \) as \(q \to 1 \). That \(H^4_{n,q} \) differs from the others is obvious because of the presence of \(\ln(q) \).

In what follows we deduce some identities and give applications involving these numbers.
2 Identities involving $H_{n,q}^1$ and $H_{n,q}^2$

2.1 Number theoretical results

In this section we point out that the $H_{n,q}^1 q$-harmonic numbers are connected to the divisor function. Moreover, the products of the Riemann zeta function and polylogarithms are Dirichlet generating functions of some interesting number theoretical “polynomials”.

By definitions,

$$H_{n,q}^1 = (1 - q) \sum_{k=1}^{n} \frac{1}{1 - q^k}.$$

Cauchy’s product gives that

$$\sum_{n \geq 1} H_{n,q}^1 x^n = \frac{1 - q}{1 - x} \sum_{n \geq 1} x^n \frac{1}{1 - q^n}. \quad (8)$$

We need the notion of Lambert series \[7, p. 257\]. In general, a Lambert series has the form

$$F(q) = \sum_{n \geq 1} a_n \frac{q^n}{1 - q^n},$$

where a_n is any suitable sequence. This connection implies some interesting results. We cite a useful theorem of \[7, Theorem 307\]: if

$$f(s) = \sum_{n \geq 1} \frac{a_n}{n^s}, \quad \text{and} \quad g(s) = \sum_{n \geq 1} \frac{b_n}{n^s},$$

then

$$F(q) = \sum_{n \geq 1} a_n \frac{q^n}{1 - q^n} = \sum_{n \geq 1} b_n q^n$$

holds if and only if

$$\zeta(s)f(s) = g(s),$$

where

$$\zeta(s) = \sum_{n \geq 1} \frac{1}{n^s}$$

is the Riemann zeta function.

Let us apply this and (8):

$$\sum_{n \geq 1} H_{n,q}(qx)^n = \frac{1 - q}{1 - qx} \sum_{n \geq 1} x^n \frac{q^n}{1 - q^n} = \frac{1 - q}{1 - qx} F(q) \quad (9)$$
with \(a_n = x^n \). A simple transformation shows that

\[
F(q) = \sum_{n \geq 1} q^n \left(\sum_{d|n} x^d \right).
\]

(10)

Let us introduce the notation

\[
A(x, n) = \sum_{d|n} x^d.
\]

In special,

\[
A(1, n) = d(n) = \sigma_0(n),
\]

where \(d(n) \) is the divisor function and

\[
\sigma_x(n) = \sum_{d|n} d^x.
\]

It is worth to realize the symmetry between the power and the base in \(A(x, n) \) and \(\sigma_x(n) \).

Substituting \(x = 1 \) in (9) we have

Proposition 1

\[
\sum_{n \geq 1} H_{n,q} q^n = \sum_{n \geq 1} q^n d(n).
\]

So the generating function of the divisor function involves the \(q \)-harmonic numbers. More generally, with the help of (9) and (10) and the definition of \(A(x, n) \) one can write

\[
\sum_{n \geq 1} H_{n,q}(qx)^n = \frac{1-q}{1-qx} \sum_{n \geq 1} q^n A(x, n).
\]

Again, by (9)

\[
\sum_{n \geq 1} x^n \frac{q^n}{1-q^n} = \sum_{n \geq 1} q^n A(x, n).
\]

Hence we choose \(a_n = x^n \) and \(b_n = A(x, n) \) and apply the theorem cited above:

\[
\text{Li}_s(x) = \sum_{n \geq 1} \frac{x^n}{n^s}, \quad \text{and} \quad g(s) = \sum_{n \geq 1} \frac{A(x, n)}{n^s},
\]

then

Proposition 2

\[
\zeta(s) \text{Li}_s(x) = \sum_{n \geq 1} \frac{A(x, n)}{n^s}.
\]
Here \(\text{Li}_s(x) \) is the well-known polylogarithm function. In special \(\text{Li}_s(1) = \zeta(s) \), so we get the known sum

\[
\zeta^2(s) = \sum_{n \geq 1} \frac{d(n)}{n^s}.
\]

2.2 A recursion for \(H_{n,q}^1 \)

Since

\[
H_n = \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{k+1}}{k},
\]

we may think that

\[
H_{n,q}^1 = \sum_{k=1}^{n} \binom{n}{k} a_k
\]

holds for some sequence \(a_k \). This is really true but, sadly, \(a_k \) does not have a simple form. See the table below.

We shall need the notion of the \(q \)-Seidel matrix [2]. Given a sequence \(a_n \), the \(q \)-Seidel matrix is associated to the double sequence \(a^n_k \) given by the recurrence

\[
a^n_0 = a_n \quad (n \geq 0),
\]

\[
a^n_k = q^n a^{k-1}_n + a^{k-1}_{n+1} \quad (n \geq 0, k \geq 1).
\]

In addition, \(a^n_0 \) is called the initial sequence and \(a^n_0 \) the final sequence of the \(q \)-Seidel matrix. Then the identity

\[
a^n_0 = \sum_{k=0}^{n} \binom{n}{k} q^k a^n_0.
\]

connects the initial and the final sequence.

Define the generating functions of \(a^n_0 \) and \(a^n_0 \):

\[
a(x) = \sum_{n \geq 0} a^n_0 x^n, \quad \overline{a}(x) = \sum_{n \geq 0} a^n_0 x^n,
\]

and

\[
A(x) = \sum_{n \geq 0} a^n_0 \frac{x^n}{[n]_q!}, \quad \overline{A}(x) = \sum_{n \geq 0} a^n_0 \frac{x^n}{[n]_q!}.
\]

A proposition given in [2] states that these functions are related by the following equations:
\[\overline{x}(x) = \sum_{n \geq 0} a_n^0 \overline{x}^n, \quad (13) \]
\[\overline{A}(x) = e_q(x) A(x), \quad (14) \]

where

\[e_q(x) = \sum_{n \geq 0} \frac{x^n}{[n]_q!} \]

is the \(q \)-analogue of the exponential function \([5]\). We introduce the notation \(\text{Egf}(a_n) \) and \(\text{Gf}(a_n) \) for the exponential and ordinary generating function of \(a_n \), respectively.

To reach our aim posed in (11), our approach is as follows. Let the final sequence \(b_n = H^1_{n,q} \). We determine the initial sequence \(a_0^0 = a_n \). Then \(\text{Egf}(b_n) = \text{Egf}(H^1_{n,q}) = e_q \text{Egf}(a_n) \). And, to get \(\text{Egf}(a_n) \) we determine \(a_n \) by using (8) and (13):

\[\text{Gf}(b_n) \equiv \text{Gf}(H^1_{n,q}) = \sum_{n \geq 1} \frac{x^n}{(x; q)_n} \]

(15)

From this equation \(a_n \) can be determined. (Note that \(a_0 = 0 \).)

Proposition 3 We have

\[H^1_{n,q} = \sum_{k=1}^{n} \binom{n}{k}_q a_k, \]

where the sequence \(a_k \) is determined recursively by

\[\sum_{k=1}^{n} a_k q^{n-k} \binom{n-1}{k-1}_q = \frac{1}{[n]_q} = \frac{1-q}{1-q^n} \quad (a_0 := 0). \]

Proof. The denominator of the right hand side of (13) is

\[\frac{1}{(x; q)_n+1} = \frac{1}{1-x} \frac{1}{(q^n x; q)_n} = \frac{1}{1-x} (q^n q x; q)_{\infty}. \quad (16) \]

The \(q \)-binomial theorem \([5]\), Section 1.3] states that

\[\frac{(az; q)_{\infty}}{(z; q)_{\infty}} = \sum_{k \geq 0} \frac{(a; q)_k}{(q; q)_k} z^k. \]

Applying this to (16),

\[\frac{1}{1-x} (q^n q x; q)_{\infty} = \frac{1}{1-x} \sum_{k \geq 0} \frac{(q^n; q)_k}{(q; q)_k} (q x)^k. \]
Thus (15) becomes

\[(1 - q) \sum_{n \geq 1} \frac{x^n}{1 - q^n} = \sum_{n \geq 0} a_n x^n \left(\sum_{k \geq 0} \frac{(q^n; q)_k (q x)^k}{(q; q)_k} \right).\]

Let

\[B_{k,n} = \frac{(q^n; q)_k}{(q; q)_k} q^k,\]

for short. Then

\[B_{k,n} = q^k \binom{n + k - 1}{k},\]

for all \(n\) and \(k\). Moreover,

\[(1 - q) \sum_{n \geq 1} \frac{x^n}{1 - q^n} = \sum_{n \geq 0} a_n x^n \left(\sum_{k \geq 0} B_{k,n} x^k \right). \tag{17}\]

If we write the sums term by term, we get

\[a_0(B_{0,0} + B_{1,0}x + B_{2,0}x^2 + \cdots) + a_1 x(B_{0,1} + B_{1,1}x + B_{2,1}x^2 + \cdots) + \cdots =\]

\[a_0B_{0,0} + x(a_0B_{1,0} + a_1 B_{1,1}) + x^2(a_0B_{2,0} + a_1 B_{1,1} + a_2 B_{0,2}) + \cdots\]

Comparing the coefficients here and the left hand side of (17), we have

\[\sum_{k=0}^{n} a_k B_{n-k,k} = \frac{1 - q}{1 - q^n}.\]

Note that – because of (15) – \(a_0\) must be zero. Remember also that \(a_k\) is the initial sequence of our \(q\)-Seidel matrix, so (12) gives

\[H_{n,q}^1 = \sum_{k=1}^{n} \binom{n}{k} q^k. \tag{18}\]

This is our proposition.

Remark. It is worth to present the first terms of the sequence \(a_n\):

\[a_0 = 0,\]
\[a_1 = 1,\]
\[a_2 = -\frac{q^2 + q - 1}{q + 1},\]
\[a_3 = \frac{q^5 + q^4 - q^2 - q + 1}{q^2 + q + 1},\]
\[a_4 = -\frac{q^9 + q^8 - 2q^5 + q^2 + q - 1}{q^3 + q^2 + q + 1},\]
\[a_5 = \frac{q^{14} + q^{13} - q^{10} - q^9 - q^8 + q^7 + q^6 + q^5 - q^2 - q + 1}{q^4 + q^3 + q^2 + q + 1},\]
\[a_6 = \frac{-q^{20} + q^{19} - q^{16} - 2q^{14} + q^{12} + q^{11} + q^{10} + q^9 - 2q^7 - q^5 + q^2 + q - 1}{q^6 + q^4 + q^3 + q^2 + q + 1}. \]

It seemed to be interesting to give a simple formula for the nominator. However, one can easily see that

\[a_k \to \frac{(-1)^{k+1}}{k} \quad \text{as} \quad q \to 1 \quad (k = 1, 2, 3, 4, 5, 6). \]

According to (3), this is plausible for all \(a_k \).

As a consequence of (14) and (18), we have the next connection:

\[\text{Egf}(H_{n,q}^1) = e_q \text{Egf}(a_n). \]

This is a curious version of Gosper’s identity (21) involving the exponential generating function of the harmonics.

\[\text{(19)} \]

2.3 The case \(H_{n,q}^2 \)

To close the case of \(H_{n,q}^1 \), we remark also that

\[H_{n,q}^1 = H_{n,q}^2 \]

(see (5) for the definitions). The \(q \)-Stirling numbers of the first kind are defined recursively by [1, p. 155]

\[s_q(n + 1, k) = s_q(n, k - 1) + [n]_q s_q(n, k), \quad (20) \]

and \(s_q(0, 0) = 1, \ s_q(n, 0) = 0 \) when \(n > 0 \).

These relations imply

\[H_{n,q}^1 = \frac{1}{[n]_q} s_q(n + 1, 2) = \frac{1}{[n]_q} s_q(n, 1) + \frac{1}{[n - 1]_q} s_q(n, 2), \]

hence

\[H_{n,q}^1 = H_{n-1,q}^1 + \frac{1}{[n]_q!} s_q(n, 1) = H_{n-1,q}^1 + \frac{[n - 1]_q!}{[n]_q!}. \]

Then (20) gives (19).
3 Identities involving $H_{n,q}^3$

3.1 A q-analogue of Gosper’s result

The exponential generating function of the harmonic numbers is deduced by Gosper [3,9]:

$$\sum_{n \geq 1} H_n \frac{x^n}{n!} = x e^{x} \sum_{n \geq 0} \binom{a_1}{n} \binom{a_2}{n} \cdots \binom{a_r}{n} x^n$$

(21)

Here

$$\sum_{n \geq 0} \binom{a_1}{n} \binom{a_2}{n} \cdots \binom{a_r}{n} x^n (a_1 q^n \cdots (a_r q^n x^n)$$

is the hypergeometric function with parameters a_i and b_j, and

$$(a)_k = a(a + 1)(a + 2) \cdots (a + k - 1)$$

under the agreement $(a)_0 = 1$.

The q-version of the hypergeometric function is called basic hypergeometric function and defined as [5]

$$\sum_{n \geq 0} \binom{a_1}{n} \binom{a_2}{n} \cdots \binom{a_r}{n} x^n$$

(22)

One may see from (22) that

$$\frac{(k + 1)\text{th term}}{k\text{th term}} = \frac{x(-q^k)^{1+s-r}}{1 - q^{k+1}} (1 - a_1 q^k) \cdots (1 - a_r q^k)$$

$$\cdots (1 - b_1 q^k) \cdots (1 - b_s q^k).$$

Now we derive the q-analogue of Gosper’s result (21) with respect to $H_{n,q}^3$.

Equations (6) and (14) give that

$$\sum_{k \geq 1} q^{(k)} \binom{a}{[k]} x^k \frac{(-1)^{k+1}}{[k]_q}.$$

Hence it is enough to determine the sum

$$\sum_{k \geq 1} q^{(k)} \binom{a}{[k]} x^k \frac{(-1)^{k+1}}{[k]_q}.$$
We would like to express this function as a basic hypergeometric series. Thus \(k \) should run from 0, so we write
\[
x \sum_{k \geq 0} q^{(k+1)}\frac{(-1)^{k+2}}{[k+1]_q [k+1]_q!} x^k
\]
whence
\[
\frac{(k+1)\text{th term}}{k\text{th term}} = (1 - q)(-xq)^k \frac{(1 - q^2)^k}{1 - q^{k+1} (1 - q^2q^k)^2}.
\]
Since \(s = r = 2 \) in our case, the place of \((-1)^n\) is indifferent. Finally we can state the following

Proposition 4 We have
\[
\sum_{n \geq 1} H^3_{n,q} x^n \frac{x^n}{[n]_q!} = (1 - q)x e_q(x) _2\phi_2 \left(\begin{array}{c} q, q \\ q^2, q^2 \end{array} \right| q; -qx \right).
\]

3.2 The Hockey Stick Theorem – a \(q \)-analogue

It is natural to ask, what is the recursion satisfied by \(H^3_{n,q} \)? If \(H^3_{n,q} = H^3_{n-1,q} + \frac{1}{[n]_q} \) would be true, we knew that \(H^3_{n,q} = H^1_{n,q} \). But this relation does not hold. In fact, the next recursion is valid.

Proposition 5 For \(H^3_{n,q} \)
\[
H^3_{n,q} = H^3_{n-1,q} + q - \frac{[n-1]_q}{[n]_q}.
\]

We see that the limit of \(q - \frac{[n-1]_q}{[n]_q} \) is \(1 - \frac{n-1}{n} = \frac{1}{n} \). So the standard recursion for harmonic numbers holds just asymptotically. To prove the proposition, we need the following statement. The standard (not \(q \)) version can be found at the webpage http://binomial.csueastbay.edu/IdentitiesNamed.html, Catalog #: 3400001.

Proposition 6 (Hockey Stick Theorem)
\[
\sum_{k=1}^{n-j} (-1)^{k+1} \binom{n}{j+k} = \binom{n-1}{j}.
\]

The name comes from the fact that the summands and the sum has a shape in the Pascal triangle like a hockey stick.
We prove the q-analogue version.

Proposition 7 (Hockey Stick Theorem – a q-analogue)

$$
\sum_{k=1}^{n-j} (-1)^{k+1} q^{(j+k)} \binom{n}{j+k}_q = \binom{n-1}{j}_q.
$$

Proof. Write the sum term by term:

$$
q^{(j+1)} \binom{n}{j+1}_q - q^{(j+2)} \binom{n}{j+2}_q + q^{(j+3)} \binom{n}{j+3}_q - \cdots +

(-1)^{n-j} q^{(n-1)} \binom{n}{n-1}_q + (-1)^{n-j+1} q^{(n)} \binom{n}{n}_q.
$$

The binomial coefficients are rewritten with the recursion [5]

$$
\binom{n}{k}_q = q^k \binom{n-1}{k}_q + \binom{n-1}{k-1}_q:
$$

$$
q^{(j+1)} \left[q^{j+1} \binom{n-1}{j+1}_q + \binom{n-1}{j}_q \right] - q^{(j+2)} \left[q^{j+2} \binom{n-1}{j+2}_q + \binom{n-1}{j+1}_q \right] +

q^{(j+3)} \left[q^{j+3} \binom{n-1}{j+3}_q + \binom{n-1}{j+2}_q \right] - \cdots +

(-1)^{n-j} q^{(n-1)} \left[q^{n-1} \binom{n-1}{n-1}_q + \binom{n-1}{n-2}_q \right] + (-1)^{n-j+1} q^{(n)} \left[0 + \binom{n-1}{n-1}_q \right].
$$

Realize that the first members in the square brackets with the q-power coefficients are cancelled by the second member in the next square bracket:

$$
q^{(j+k)} q^{j+k} \binom{n-1}{j+k}_q - q^{(j+k+1)} \binom{n-1}{j+k}_q = 0.
$$

This is true for all $k = 1, 2, \ldots, n-j-1$.

Now we are ready to prove Proposition 5. A consequence of (6):

$$
H^3_{n,q} - H^3_{n-1,q} = \left(\binom{n}{1}_q - \binom{n-1}{1}_q \right) q^{(3)}[1]_q + \left(\binom{n}{2}_q - \binom{n-1}{2}_q \right) q^{(3)}[2]_q +

\left(\binom{n}{3}_q - \binom{n-1}{3}_q \right) q^{(3)}[3]_q + \cdots =

\left(\binom{n-1}{0}_q - (1-q) \binom{n-1}{1}_q \right) q^{(3)}[1]_q + \left(\binom{n-1}{1}_q - (1-q^2) \binom{n-1}{2}_q \right) q^{(3)}[2]_q +
$$
\[
\left(\binom{n-1}{2}_q - (1-q^3)\binom{n-1}{3}_q\right) \frac{q^{(3)}}{[3]_q} + \cdots =
1-(1-q)\binom{n-1}{1}_q + \sum_{k=1}^{n-1} \binom{n-1}{k}_q \frac{(-1)^k}{[k+1]_q} q^{(k+1)}_q + \sum_{k=2}^{n-1} \binom{n-1}{k}_q \frac{(-1)^k(1-q^k)}{[k]_q} q^{(k)}_q =
1 + \sum_{k=1}^{n-1} \binom{n-1}{k}_q \frac{(-1)^k}{[k+1]_q} q^{(k+1)}_q + \sum_{k=1}^{n-1} \binom{n-1}{k}_q \frac{(-1)^k(1-q)^k}{[k]_q} q^{(k)}_q =
1 + \frac{1}{[n]_q} \sum_{k=1}^{n-1} \binom{n}{k+1}_q (-1)^k q^{(k+1)}_q + (1-q) \sum_{k=1}^{n-1} \binom{n-1}{k}_q (-1)^k q^{(k)}_q.
\]

The first sum is exactly the left hand side of the \(q\)-Hockey Stick Theorem with \(j = 1\), up to a minus sign. The second sum equals \(-1\) \([1, \text{p. 153}]\). Thus

\[
H^3_{n,q} - H^3_{n-1,q} = 1 - \frac{1}{[n]_q} \binom{n-1}{1}_q + q - 1.
\]

So we have the desired result.

4 Identity involving \(H^4_{n,q}\)

The digamma function is defined as

\[
\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)},
\]

where \(\Gamma(x)\) is the Euler gamma function. Latter satisfies the functional equation

\[
\Gamma(x + 1) = x\Gamma(x).
\]

(23)

The harmonic numbers are connected to the digamma function (as one immediately sees by the logarithmic derivative of (23)):

\[
H_n = \psi(n + 1) + \gamma.
\]

Here \(\gamma = -\psi(1)\) is the Euler-Mascheroni constant. Our goal is to find the \(q\)-analogue of this formula.

Let us start from the definition of the \(q\)-gamma function (see [5]):

\[
\Gamma_q(x) = \frac{(q^x; q)_\infty}{(q^x q^{1-x}; q)_\infty} (1 - q)^{1-x}.
\]

12
The q-digamma function is simply the logarithmic derivative of $\Gamma_q(x)$ as in the ordinary case \([5,8,10] \):

$$
\psi_q(x) = -\ln(1 - q) + \ln(q) \sum_{n \geq 0} \frac{q^{n+x}}{1 - q^n}.
$$

It is known that $\Gamma_q(x)$ satisfies the next q-version of \([28] \):

$$
\Gamma_q(x + 1) = [x]_q \Gamma_q(x).
$$

Then taking logarithm and then the derivative, we get

$$
\psi_q(x + 1) = \frac{d}{dx} \ln([x]_q) + \psi_q(x).
$$

Since

$$
\frac{d}{dx} \ln([x]_q) = \frac{\ln(q)q^x}{q^x - 1},
$$

the previous equation is rewritten recursively as

$$
\psi_q(x + 1) = \frac{\ln(q)q^x}{q^x - 1} + \frac{\ln(q)q^{x-1}}{q^{x-1} - 1} + \cdots + \frac{\ln(q)q}{q - 1} + \psi_q(1).
$$

So definition \([7] \) seems to be correct.

On the other hand, we may define the q-analogue of the Euler-Mascheroni constant as

$$
\gamma_q = -\psi_q(1) = \ln(1 - q) - \ln(q) \sum_{n \geq 1} \frac{q^n}{1 - q^n},
$$

or more simply,

$$
\gamma_q = \ln(1 - q) + \frac{\ln(q)}{q - 1} \sum_{n \geq 1} \frac{q^n}{[n]_q}.
$$

With these we have

$$
H_{n,q}^4 = \psi_q(n + 1) + \gamma_q.
$$

References

[1] Ch. Charalambides, Combinatorial Methods in Discrete Distributions, Wiley–Interscience, 2005.

[2] R. J. Clarke, G.-N. Han and J. Zeng, A combinatorial interpretation of the Seidel generation of q-derangement numbers, Annals of Comb. 4 (1997), 313-327.
D. Cvijović, The Dattoli-Srivastava conjectures concerning generating functions involving the harmonic numbers, Appl. Math. Comput. 215(11) (2010), 4040-4043.

K. Dilcher, Determinant expressions for q-harmonic congruences and degenerate Bernoulli numbers, The Electronic Journal of Combinatorics 15 (2008), #R63.

G. Gasper and M. Rahman, Basic Hypergeometric Series (second edition), Cambridge University Press, 2004.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley, 1993.

G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 1979.

F. H. Jackson, A generalization of the functions $\Gamma(n)$ and x^n, Proc. Roy. Soc. London, 74 (1904), 64-72.

I. Mező and A. Dil, Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math. 7(2) (2009), 310-321.

J. Thomae, Beiträge zur Theorie der durch die Heinesche Reihe..., J. Reine und Angew. Math. 70 (1869), 258-281.

C. Wei, Q. Gu, q-generalizations of a family of harmonic number identities, Adv. Appl. Math. 45(1) (2010), 24-27.