Effects of Patellar and Mixed Hip and Patellar Taping on Muscle Activation during the Squat Exercise

Ji-won Kim1* and Byeong-Ho Jeong2

1Department of Physical Therapy, Nambu University, 23 Cheomdan Jungang-ro, Gwangsan-gu, Gwangju, Republic of Korea, 62271; rehab@nambu.ac.kr
2Department of Biomedical Engineering, Nambu University, 23 Cheomdan Jungang-ro, Gwangsan-gu, Gwangju, Republic of Korea, 62271; energy@nambu.ac.kr

Abstract

Objectives: The purpose of present study was to the effects of the use of mixed taping methods on muscle activation during the squat exercise.

Methods/Statistical Analysis: Twenty females were recruited for this study. Subjects were required to squat under three conditions: no taping, patellar taping, and mixed hip and patellar taping. The VM: VL activity ratio and GMax activity were calculated using surface electromyography during the squat exercise. One-way repeated-measures analysis of variance was used for statistical analysis.

Findings: The combination of patellar and hip taping increased VM: VL and GMax activity compared to the other conditions during the squat exercise.

Improvements/Applications: We suggest that mixed taping is a useful method for enhancing VM: VL and GMax strength during the squat exercise.

Keywords: Electromyography, Mixed Taping, Patellofemoral Pain, Patella Taping, Squat

1. Introduction

Uncontrolled movement and muscle dysfunction lead to knee pathologies for instance PatelloFemoral Pain (PFP). The occurrence of PFP is 2-3 times more frequently female compared male. Although the etiology of PFP is unknown, some possible risk factors linked to malalignment of the lower extremity, including lower Vastus Medial is (VM)/ Vastus Lateral is (VL) ratio, stiff iliotibial band, and patella tilting. Therefore, the selective exercise for VM, iliotibial band stretching, and activity modification was based on physical therapy intervention for treating patients with PFP. PFP patients performing weight-bearing exercises such as the squat exercise tend to excessive hip internal rotation, which leads to knee adduction movement. To correct this movement, many clinicians have recommended the use of corrective taping during the squat exercise such as patella taping and hip taping. Patellar taping is generally practiced among physiotherapists to correct medial knee displacement. Several studies have shown that patella taping helps to activity modification and decrease pain in patients with PFP. In found that apply to patellar taping increased VM activity and decreased VL activity in PFP patients. Thus, authors emphasized that patella taping was useful for treating PFP patients. A recently study has shown that hip taping can change patellofemoral kinematics and reduce pain. In showed that femoral rotation taping changed patella movement and decreased pain compared with no taping and sham taping in patients with PFP. Although both patellar taping and hip taping have been reported, no study has yet investigated the effects of...
Effects of Patellar and Mixed Hip and Patellar Taping on Muscle Activation during the Squat Exercise

Indian Journal of Science and Technology
Vol 9 (35) | September 2016 | www.indjst.org

mixed hip and patellar corrective taping on hip extensor and knee extensor muscle activity. Therefore, the purpose of present study was to the effects of the use of mixed taping methods on ElectroMyoGraphy (EMG) activities of the Gluteus Maximums (GMax) muscles and on the VM: VL ratio during the squat exercise. We hypothesized that mixed taping methods would increase VM: VL ratio and increase GMax EMG activity during the squat exercise.

2. Subjects and Methods

2.1 Subjects

Twenty female with no present or previous of knee pain were participated from Nambu University, Korea Table 1. In this study, female were recruited through the Craig test (with >20° medial hip rotation). Exclusion criteria were a history of neuromuscular disorder, absence of normal range of motion, and leg-length discrepancy.

Table 1. Descriptive data for participants

Parameters	Mean ± SD
Age (years)	20.3±1.3
Body mass (Kg)	166.3±4.3
Height (cm)	53.6±7.9

2.2 Instrumentation

Raw EMG data were collected via surface EMG using a Laxtha EMG System (WEMG-8, LXM53008, Laxtha, Korea) Figure 1. The detected bio-signals data were stores with digitally at 2,000 sample s/s, through the 20~450 [Hz] band-pass analog filters and signal amplifier, and then RMS value was converted.
and instructed the squat exercise strategy to all subjects. Subjects set up for squat exercise in a standing position while lower extremity fully extended. When squatting, subjects’ arms were folded across the chest, and the trunk was held upright to avoid flexion. The EMG data collected during 3 s while the knees were in 70° flexion.

2.4 Statistical Analysis

One-way repeated-measures Analysis Of Variance (ANOVA) and the post hoc Bonferroni test were conducted on muscle activation to compare the three conditions (no tape, patellar tape, and mixed tape). Statistical analyses were performed using SPSS version 18.0 for Windows (SPSS, Inc., Chicago, IL, USA), and significance level was set at point ≤ 0.05.

3. Results

Significant differences in VM: VL and GMax muscle activity were observed with mixed taping compared to patellar taping and no taping Tables 2 and 3.

Table 2. The EMG activity ratio of VM: VL

Type of taping	Mean ± SD
No	0.97 ± 0.58a,c
Patella	1.04 ± 0.62b
Mixed	1.10 ± 0.75

Table 3. The EMG activity of GMax

Type of taping	Mean ± SD
No	10.3 ± 0.95a,c
Patella	11.23 ± 1.0b
Mixed	14.63 ± 1.71

4. Discussion

The squat exercise is often used to train the lower extremity for spots and rehabilitation in individuals with knee injuries such as PFP with the aim of improving the function of lower-extremity muscles\(^{15-17}\). Compared to controls, PFP patients were more likely to show decreased strength of the hip external rotator and altered knee extensor muscles\(^{18,19}\). Weakness or altered these muscles related to knee valgus movement during weight-bearing exercise\(^{20,21}\). To enhance the strength of these muscles, corrective taping methods are often performed in patients with PFP. Although patellar taping and femoral rotation taping have been reported, no study has yet researched the effects of mixed hip and patellar corrective taping on muscle activities of the hip and knee extensors. The purpose of this experiment the effect of mixed taping on the activity of the VM: VL and GMax in female during squat exercise. In this study, we observed increased GMax muscle activity under mixed taping compared to patellar taping and no taping during the squat exercise. One mechanism may explain the increase in GMax under mixed taping compared to that under patellar taping and no taping. Altered gluteal muscular pattern is correlated with hip internal rotation and hip adduction movement. The present results showed that mixed taping increased the EMG activity of GMax, thereby decreasing hip internal rotation and adduction movement during squat exercise. Thus, the increase in GMax muscle activity via application of femoral rotational taping may have improved optimal knee alignment. In Present experiment, the VM: VL activity ratio was increased under mixed taping compared to patellar taping and no taping. Compare to VL, weakness of the VM results in lateral displacement of the patella; thus, facilitation of the VM muscle activity has been recommended\(^{22,23}\). An increased VM: VL ratio indicate that there is an increase in medial full on patella\(^{24}\). In the present study, the increased muscle activity of the VM under mixed taping may have resulted from the decrease in abnormal lateral displacement of the patella. These findings are consistent with those of in who found increased VM and decreased VL activity under patellar taping. Mixed taping applied to the mid patella tendon during the performance of the squat requires a reduction in hip medial rotation, which may increase the VM: VL.
activity ratio. The Present study had some limitations. First, we take into explanations that apply of asymptom-
atic female, and further study should need hip and knee extensor muscle activity in PFP syndrome. Second, we
did not assess kinematic factors such as knee valgus angle, hip internal rotation, and patella tracking; further studies
are needed to examine the kinematic data.

5. Conclusions

We found a significant increase in VM: VL and GMax activity under mixed taping. A mixed taping procedure
can improve both patellar alignment and femoral align-
ment in patients with PFP. The results may also indicate a potential benefit of the application of mixed taping to aid
squat exercise in patients with PFP.

6. References

1. Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. The Journal of Orthopaedic and Sports Physical Therapy. 2003 Nov; 33(11):677–85.

2. Amis AA. Current concepts on anatomy and biomechanics of patellar stability. Sports Medicine and Arthroscopy. 2007 Jun; 15(2):48–56.

3. Lichota DK. Anterior knee pain: symptom or syndrome? Current Womens Health Reports. 2003 Feb; 3(1):81–8.

4. Bell DR, Padua DA, Clark MA. Muscle strength and flex-
ibility characteristics of people displaying excessive medial
knee displacement. Archives of Physical and Medical Rehabilitation. 2008 Jul; 89(7):1323–8.

5. Yoon JY, Kang MH, Oh JS. Effects of visual biofeedback using a laser beam on the emg ratio of the medial and lateral vasti muscles and kinematics of hip and knee joints during a squat exercise. Journal of Physiotherapy Science. 2011 Sep; 23(4):559–63.

6. Earl JE, Hoch AZ. A proximal strengthening program improves pain, function, and biomechanics in women with patellar emoral pain syndrome. American Journal of Sports Medical. 2011 Jan; 39(1):154–63.

7. Lee SE, Cho SH. The effect of McConnell taping on vastus medialis and lateralis activity during squatting in adults with patellofemoral pain syndrome. Journal of Exercise Rehabilitation. 2013 Apr; 9(2):326–30.

8. Herrington L. The effect of corrective taping of the patella on patella position as defined by MRI. Research Sports Medical. 2006 Jul–Sep; 14(3):215–23.

9. Christou EA. Patellar taping increases vast us medial is oblique activity in the presence of patellofemoral pain. Journal of Electromyography Kinesiol. 2004 Aug; 14(4):495–504.

10. Song CY, Huang HY, Chen SC, Lin JJ, Chang AH. Effects of femoral rotational taping on pain, lower extremity kinematics, and muscle activation in female patients with patellofemoral pain. Journal of Science and Medical Sport. 2015 Jul; 18(4):388–93.

11. Nyland J, Kuzemchek S, Parks M, Caborn DN. Femoral ante version influences vast us medial is and gluteus medius EMG amplitude: composite hip abductor EMG amplitude ratios during isometric combined hip abstraction-external rotation. Journal of Electromyography Kinesiol. 2004; 14(2):255–61.

12. Criswell E. Introduction to surface electromyography. 2nd edition, Jones and Bartlett Publishers: Sudbury; 2011.

13. Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani WA. Muscles: Testing and function with posture and pain, includes a bonus primal anatomy CD-ROM, 5th edition, Lippincott Williams and Wilkins: Baltimore; 2005 Feb.

14. McConnell J. The management of chondromalacia patellae: a long term solution. Australia Journal of Physiotherapy. 1986 Dec; 32(4):215–23.

15. Escamilla RF. Knee biomechanics of the dynamic squat exercise. Medicine Science in Sports Exercise. 2001 Jan; 33(1):127–41.

16. Lee SJ, Jin DY, No HJ, Kwon SJ, Yoon MH, Jung YJ, Bae WS, Lee KC, Lee DY. The effects of squat exercises on the space between the knees of persons with genu-varum. Indian Journal of Science and Technology. 2016 Jul; 9(25):1–5.

17. Son YN, Yoon WY, Kim CK. A study on the phased training program development for performance ability improvement of taekwondo demonstration. Indian Journal of Science and Technology. 2015 Oct; 8(25):1–8.

18. Carry PM, Kanai S, Miller NH, Polousky JD. Adolescent patell of emoral pain: A review of evidence for the role of lower extremity biomechanics and core instability. Orthopedics. 2010 Jul; 33(7):498–507.

19. Prins MR, van der Wurff F. Females with patellofemoral pain syndrome have weak hip muscles: a systematic review. Australian Journal of Physiotherapy. 2009 Feb; 55(1):9–15.

20. Levinger P, Gilleard W, Coleman C. Femoral deviation angle during a one leg squat test in individuals with patel-
21. Willson JD, Davis IS. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clinical Biomechanics (Bristol, Avon). 2008 Feb; 23(2):203–11.
22. Willson JD, Kernozek TW, Arndt RL, Reznichek DA, Straker JS. Gluteal muscle activation during running in females with an without patellofemoral pain syndrome. Clinical Biomechanics. 2011 Aug; 26(7):735–40.

23. O'Reilly S, Jones A, Doherty M. Muscle weakness in osteoarthritis. Current Opinion Rheumatology. 1997 May; 9(3):259–62.
24. Ng GY, Zhang AQ, Li CK. Biofeedback exercise improved the EMG activity ratio of the medial and lateral vasti muscles in subjects with patellofemoral pain syndrome. Journal of Electromyography Kinesiol. 2008 Feb; 18(1):128–33.