Asymptotic behaviour of convex and column-convex lattice polygons with fixed area and varying perimeter

Mithun K Mitra1, Gautam I Menon2 and R Rajesh2

1 Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
2 The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
E-mail: mithun@polysci.umass.edu, menon@imsc.res.in and rrajesh@imsc.res.in

Received 15 March 2010
Accepted 8 July 2010
Published 30 July 2010

Abstract. We study the inflated phase of two-dimensional lattice polygons, both convex and column-convex, with fixed area A and variable perimeter, when a weight $\mu^t \exp[-Jb]$ is associated with a polygon with perimeter t and b bends. The mean perimeter is calculated as a function of the fugacity μ and the bending rigidity J. In the limit $\mu \to 0$, the mean perimeter has the asymptotic behaviour $\langle t \rangle/4\sqrt{A} \simeq 1 - K(J)/(\ln \mu)^2 + O(\mu/\ln \mu)$. The constant $K(J)$ is found to be the same for both kinds of polygons, suggesting that self-avoiding polygons may also exhibit the same asymptotic behaviour.

Keywords: loop models and polymers, series expansions, vesicles and membranes
1. Introduction

The enumeration of lattice polygons weighted by area and perimeter arises in many physical systems, including vesicles [1, 2], cell membranes [3], emulsions [4], polymers [5] and percolation clusters [6]. A central quantity of interest is the generating function

\[G(P, \mu, J) = \sum_{A,t,b} C(A, t, b)e^{PA}\mu^t e^{-Jb}, \]

(1)

where \(C(A, t, b) \) is the number of self-avoiding polygons of area \(A \) and perimeter \(t \), and with \(b \) bends. This is weighted by a pressure \(P \) (conjugate to the area), a fugacity \(\mu \) (conjugate to the perimeter) and a bending rigidity \(J \) (conjugate to the number of bends).

Exact solutions exist for \(G(P, \mu, 0) \) when \(C(A, t, b) \) is restricted to convex polygons [7]–[9] or to column-convex polygons [10]. However, a general solution for self-avoiding polygons is unavailable and even the exact solutions for these restricted polygons are sufficiently complex that extracting the asymptotics is non-trivial. The properties of self-avoiding polygons can be studied by enumerating the number of configurations that correspond to a given area and perimeter. Exact enumeration results for self-avoiding polygons exist for values of the area \(A \) up to \(A = 50 \) and for all \(t \) for these values of \(A \) [11, 12]. The scaling function describing the scaling behaviour near the tricritical point \(\lambda = 0 \) and \(\mu = \kappa^{-1} \), where \(\kappa \) is the growth constant for self-avoiding polygons, is also known exactly [13]–[16]. A survey of different kinds of lattice polygons and a review of related results can be found in [17]–[19].

In an earlier paper [20], we determined the mean area of inflated convex and column-convex polygons of fixed perimeter as a function of the pressure and bending rigidity. This case relates to the problem of two-dimensional vesicles, or equivalently, pressurized ring polymers [1], [21]–[24] on a square lattice. We showed that in the limit of large pressure, the expression for the average area was the same for convex and column-convex polygons. We also verified numerically that the same result holds for the case of self-avoiding polygons.

In this paper, we consider the related problem of determining the mean perimeter of a polygon of fixed area. We calculate the mean perimeter for convex (see equation (29)).
Figure 1. (a) Schematic diagram of a convex polygon. Any vertical or horizontal line (thick dashed lines) intersects the convex polygon at either zero or two points. (b) Schematic diagram of a column-convex polygon. Any vertical line (thick dashed lines) intersects the convex polygon at either zero or two points.

and column-convex (see equations (39), (48)) polygons exactly. In the limit $\mu \to 0$, corresponding to inflated polygons, we show that for both convex and column-convex polygons, the perimeter is given by

$$\langle t \rangle = 4\sqrt{A} \left[1 - \frac{1}{2(\ln \mu)^2} \int_{1-\alpha}^{1} dx \frac{\ln(1-x)}{x} \right] + \mathcal{O}(\mu/\ln \mu),$$

where $\alpha = e^{-2J}$. Since this result is the same for both convex and row-convex polygons, we suggest that this result may also extend to the self-avoiding case.

In section 2, we outline the calculation scheme for determining the mean perimeter. The results for convex polygons and column-convex polygons are presented in sections 3.1 and 3.2 respectively. In section 4, we generalize these results to the case of self-avoiding polygons and compare the analytical results with results from exact enumeration studies.

2. Outline of the calculation

Convex polygons are those polygons that have exactly zero or two intersections with any vertical or horizontal line drawn through the mid-points of the edges of the lattice (figure 1(a)). Column-convex polygons are those polygons that have exactly zero or two intersections with any vertical line drawn through the mid-points of the edges of the lattice. There is, however, no such restriction in the horizontal direction (figure 1(b)). Self-avoiding polygons are polygons that have no restrictions on overhangs.

The shapes of convex and row-convex polygons are obtained by minimizing the free energy at fixed area, generalizing the calculation presented in [20]. The equilibrium shape of convex polygons is invariant under rotations by $\pi/2$. Let the shape in the first quadrant be represented by a curve $y_1(x)$ with endpoints at $(a\sqrt{A},0)$ and $(0,a\sqrt{A})$, where A is the area of the polygon (see figure 2(a)). In the case of column-convex polygons, the...
Asymptotic behaviour of lattice polygons with fixed area and varying perimeter

Figure 2. A schematic diagram of the equilibrium shape of (a) a convex polygon: the shapes in the other quadrants are obtained by symmetry; (b) column-convex polygons: the shape in the lower half-plane is obtained by reflection.

The equilibrium shape is invariant under reflection about the x-axis. Let $y_2(x)$ be the shape of the column-convex polygon in the upper half-plane with endpoints at $(-b\sqrt{A}, 0)$ and $(b\sqrt{A}, 0)$ (see figure 2(b)). The free energy functionals for these shapes can be written as

$$L_1 = \int_{0}^{a\sqrt{A}} dx \sigma_1(y_1') \sqrt{1 + y_1'^2} - \frac{\lambda_1}{\sqrt{A}} \int_{0}^{a\sqrt{A}} y_1 \, dx,$$

for convex polygons and

$$L_2 = \int_{-b\sqrt{A}}^{b\sqrt{A}} dx \sigma_2(y_2') \sqrt{1 + y_2'^2} - \frac{\lambda_2}{\sqrt{A}} \int_{-b\sqrt{A}}^{b\sqrt{A}} y_2 \, dx,$$

for column-convex polygons. The subscripts 1 (2) denote convex (column-convex) polygons, σ is the free energy per unit length associated with a slope y' and the λ s are Lagrange multipliers. The Lagrange multipliers have been scaled by \sqrt{A} so that they become intensive quantities.

The angle dependent surface tension σ was computed in [20] using simple combinatorial arguments. For convex polygons σ_1 is given by

$$\sigma_1(y')\sqrt{1 + y'^2} = -f_1(\omega^*) - 2 \ln(\mu),$$

where

$$f_1(\omega) = y' \ln(\omega) + \ln[1 - (1 - \alpha)\omega] - \ln(1 - \omega),$$

and ω^* satisfies

$$\left. \frac{df_1}{d\omega} \right|_{\omega^*} = 0,$$

and $\alpha = e^{-2J}$.

For column-convex polygons, the surface tension σ_2 is of the form [20]

$$\sigma_2(y')\sqrt{1 + y'^2} = iB_0 y' - \ln \mu - \ln f_2(\mu, \alpha, B_0),$$

where

$$f_2(\mu, \alpha, B_0) = \int_{\alpha}^{1} \frac{d\omega}{\sqrt{1 - \omega(1 - \alpha)}}.$$
Asymptotic behaviour of lattice polygons with fixed area and varying perimeter

where

\[f_2(\mu, \alpha, B) = \frac{1 + (1 - 2\alpha)\mu^2 + \mu(\alpha - 1)(e^{iB} + e^{-iB})}{(1 - \mu e^{iB})(1 - \mu e^{-iB})} \] \tag{9}

and \(B_0 \) satisfies the equation

\[\frac{d}{dB_0} \ln f_2(\mu, \alpha, B_0) = iy'. \] \tag{10}

The equilibrium shape is obtained from equations (3) and (4) by solving the Euler–Lagrange equation [25]

\[\frac{d}{dx} \frac{d}{dy} \left[\sigma_{1,2}(y') \sqrt{1 + y'^2} \right] = -\frac{\lambda_{1,2}}{\sqrt{A}} \] \tag{11}

Using the above expressions for the surface tension \(\sigma \), the equilibrium shapes of convex and column-convex polygons were computed exactly by solving the Euler–Lagrange equations. We reproduce the final results, which will be the starting point of the calculations presented in the next section. For convex polygons, the equilibrium shape is given by

\[y_1 = \frac{\sqrt{A}}{\lambda_1} \ln \left[\frac{1 - c_1 \exp(\lambda_1 x/\sqrt{A})}{[1 - c_1(1 - \alpha)\exp(\lambda_1 x/\sqrt{A})] c_1} \right], \] \tag{12}

with the constant \(c_1 \) being given by

\[c_1 = \frac{(1 + e^{\lambda_1 a}) - \sqrt{(1 + e^{\lambda_1 a})^2 - 4e^{\lambda_1 a}(1 - \alpha)}}{2(1 - \alpha)e^{\lambda_1 a}}. \] \tag{13}

The equilibrium shape for column-convex polygons is given by [20]

\[y_2(x) = -\frac{\sqrt{A}}{\lambda_2} \times \ln \left[\frac{(1 - \mu \exp(\lambda_2 x/\sqrt{A}))(1 - \mu \exp(-\lambda_2 x/\sqrt{A}))^{c_2}}{1 + (1 - 2\alpha)\mu^2 + \mu(\alpha - 1)(\exp(\lambda_2 x/\sqrt{A}) + \exp(-\lambda_2 x/\sqrt{A}))} \right], \] \tag{14}

where the constant \(c_2 \) is given by

\[c_2 = \ln \frac{(1 - mg_2)(1 - mg_2^{-1})}{1 + (1 - 2\alpha)\mu^2 + \mu(\alpha - 1)(g_2 + g_2^{-1})}, \] \tag{15}

where \(g_2 = \exp(\lambda_2 b) \). The constants \(a \) and \(b \) (see figure 2) are chosen so that the free energy is minimized.

3. Results

Starting from the equilibrium shapes (equations (12) and (14)) described in section 2, we now calculate the mean perimeter of convex and column-convex polygons of fixed area \(A \).
3.1. Convex polygons

The Lagrange multiplier λ_1 is determined by the constraint that the area under the curve is $A/4$:

$$\int_0^{\sqrt{A}} y_1 \, dx = \frac{A}{4}. \quad (16)$$

Substituting for the form of the equilibrium curve as given by equation (12), we obtain

$$\lambda_1^2 = \int_0^{\ln g_1} dz \ln \left(\frac{1 - c_1 e^z}{c_1 [1 - c_1 (1 - \alpha) e^z]} \right), \quad (17)$$

where $g_1 = \exp(\lambda_1 a)$. The free energy of the equilibrium shape is obtained by substituting the expressions for the equilibrium curve equation (12) and the surface tension equation (5) into equation (3). Simplifying, we obtain

$$L_1 = \frac{\lambda_1 \sqrt{A}}{2} + 2a \ln c_1 - 2 \ln \mu \sqrt{A}. \quad (18)$$

The parameter a is chosen to be that value that minimizes the above expression for the free energy, i.e. a satisfies $\partial L_1 / \partial a = 0$. This gives

$$\frac{1}{2} \frac{d \lambda_1}{da} + 2 \ln c_1 + \frac{2a}{c_1} \frac{dc_1}{da} - 2 \ln \mu = 0. \quad (19)$$

To calculate the first term, we differentiate equation (17) with respect to a to obtain

$$\frac{\lambda_1}{2} \frac{d \lambda_1}{da} = \frac{1}{c_1} \frac{dc_1}{da} \ln \left[\frac{(1 - c_1 g_1)(1 - c_1)^{-1} g_1^{-1}}{[1 - c_1 (1 - \alpha) g_1][1 - c_1 (1 - \alpha) g_1]} \right], \quad (20)$$

where the constant c_1 can be expressed in terms of g_1 as

$$c_1 = \frac{1 + \sqrt{(1 + g_1)^2 - 4(1 - \alpha) g_1}}{2(1 - \alpha) g_1}. \quad (21)$$

Substituting for $d \lambda_1 / da$ from equation (20) and using equation (21) and simplifying, we obtain the solution

$$c_1 = \mu. \quad (22)$$

The expression for g_1 for this value of c_1 is obtained by replacing c_1 with μ in equation (21):

$$g_1 = \frac{1 - \mu}{\mu + \mu^2 (\alpha - 1)}. \quad (23)$$

Knowing g_1, the parameter a can easily be obtained as

$$a = \frac{1}{\lambda_1} \ln g_1 = \frac{1}{\lambda_1} \ln \left[\frac{1}{\mu(1 + \mu(\alpha - 1))} \right]. \quad (24)$$

The value of the mean perimeter is equal to

$$\langle t \rangle = 8a \sqrt{A}, \quad (25)$$

where the factor 8 accounts for all the four quadrants.
Asymptotic behaviour of lattice polygons with fixed area and varying perimeter

When \(\mu \to 0 \), the shape reduces to a square and the perimeter equals \(4\sqrt{A} \). We would like to find the corrections for small values of \(\mu \). For small \(\mu \),

\[
\ln g_1 = -\ln \mu - \mu(\alpha - 1) + O(\mu^2). \tag{26}
\]

Expanding the expression of equation (17) for \(\lambda_1 \) for small \(\mu \), we obtain

\[
\frac{\lambda_1^2}{4} = (\ln \mu)^2 \left[1 + \frac{1}{(\ln \mu)^2} \int_{1-a}^{1} dx \frac{\ln(1-x)}{x} \right] + O \left(\frac{\mu}{\ln \mu} \right). \tag{27}
\]

The parameter \(a \) is then given by

\[
a = \frac{1}{\lambda_1} \ln g_1 = \frac{1}{2} - \frac{1}{4(\ln \mu)^2} \int_{1-a}^{1} dx \frac{\ln(1-x)}{x} + O \left(\frac{\mu}{\ln \mu} \right). \tag{28}
\]

The total perimeter \(t = 8a\sqrt{A} \) is then given by

\[
\frac{\langle t \rangle}{4\sqrt{A}} = 1 - \frac{1}{2(\ln \mu)^2} \int_{1-a}^{1} dx \frac{\ln(1-x)}{x} + O \left(\frac{\mu}{\ln \mu} \right). \tag{29}
\]

The results for the mean perimeter for convex polygons are shown in figure 3.

3.2. Column-convex polygons

In this section, we calculate the mean perimeter of column-convex polygons of area \(A \) for arbitrary \(\mu > 0 \). We start with equations (4), (8), (14) and (15).

The Lagrange multiplier \(\lambda_2 \) is fixed by the constraint

\[
\int_{-b\sqrt{A}}^{b\sqrt{A}} y_2 \, dx = \frac{A}{2}. \tag{30}
\]

On simplifying, this gives

\[
\frac{\lambda_2^2}{4} = \int_{0}^{\ln g_2} dz \ln \left[\frac{(1-\mu e^z)(1-\mu e^{-z})}{1+(1-2\alpha)\mu^2 + \mu(\alpha - 1)(e^z + e^{-z}) - c_2} \right], \tag{31}
\]

where \(\ln g_2 = \lambda_2 b \).

The total free energy of the curve with ends fixed as \((-b\sqrt{A}, 0)\) and \((b\sqrt{A}, 0)\) can be calculated by substituting the equation for the equilibrium curve (equation (14)) into the expression for the Lagrangian (equation (4)) and simplifying, thus yielding

\[
\mathcal{L}_2 = \sqrt{A}[\lambda_2 + 2b(c_2 - \ln \mu)]. \tag{32}
\]

The parameter \(b \) is fixed by the condition that the free energy should be a minimum, i.e. \(d\mathcal{L}_2/db = 0 \):

\[
\frac{d\lambda_2}{db} + 2(c_2 - \ln \mu) + 2b\frac{dc_2}{db} = 0. \tag{33}
\]

The first term is calculated by differentiating equation (32) with respect to \(b \):

\[
\frac{1}{2} \frac{d^2\lambda_2}{db^2} = -\frac{b}{d} \frac{dg}{d} \frac{dc_2}{db}. \tag{34}
\]

doi:10.1088/1742-5468/2010/07/P07029
Asymptotic behaviour of lattice polygons with fixed area and varying perimeter

Substituting equation (34) into equation (33) and simplifying, we obtain

\[c_2 = \ln \mu. \] (35)

This immediately allows the solution of \(g_2 \) by substituting for \(c_2 \) in equation (15):

\[g_2 = \frac{1 - \mu + \mu^2 + \mu^3(2\alpha - 1)}{2\mu[1 + (\alpha - 1)\mu]} + \frac{\sqrt{(1 - \mu^2)(1 - 2\mu + 2(1 - 2\alpha)\mu^3 - (1 - 2\alpha)^2\mu^4)}}{2\mu[1 + (\alpha - 1)\mu]}. \] (36)

The average perimeter is related to the chemical potential \(\mu \) by the relation

\[\langle t \rangle = -2\mu \frac{\partial L}{\partial \mu}, \] (37)

where the factor of 2 accounts for the equilibrium shape in the lower half-plane also. Substituting for the free energy, this implies

\[\langle t \rangle = -\frac{1}{2} \frac{\partial \lambda_2}{\partial \mu}. \] (38)

Now, using equation (31) for \(\lambda_2 \) and simplifying, we obtain

\[\frac{\langle t \rangle}{4\sqrt{A}} = -\frac{1}{\lambda_2} \ln \left[\frac{1 - \mu g_2}{g_2(g_2 - \mu)} \right] - \frac{1 + \mu^2(2\alpha - 1)}{\lambda_2 \sqrt{k_1^2 - k_2^2}} \times \ln \left[\frac{(k_1 + k_2)(g_2 + 1) + \sqrt{k_1^2 - k_2^2}(g_2 - 1)}{(k_1 + k_2)(g_2 + 1) - \sqrt{k_1^2 - k_2^2}(g_2 - 1)} \right], \] (39)

where \(k_1 \) and \(k_2 \) are given by

\[k_1 = 1 + (1 - 2\alpha)\mu^2, \] (40)
\[k_2 = 2\mu(\alpha - 1). \] (41)

We would now like to determine the small \(\mu \) behaviour of the mean perimeter. As in the case of the convex polygon, equation (36) reduces to

\[\ln g_2 = -\ln \mu - \alpha \mu + O(\mu^2). \] (42)

In this limit, we can expand the right-hand side of equation (39) as

\[\frac{t}{4\sqrt{A}} = \frac{1}{\lambda_2} [-2\ln \mu - \alpha \mu + O(\mu^2 \ln \mu)]. \] (43)

Finally, we require the expansion of \(\lambda_2 \) in terms of \(\mu \) and \(\ln \mu \). The equation for the Lagrange multiplier \(\lambda_2 \), equation (31), can be expanded as

\[\frac{\lambda_2^2}{4} = \int_{\mu}^{1-\alpha \mu} dx \frac{\ln(1 - x)}{x} + \int_{\mu^2}^{\mu} dx \frac{\ln(1 - x)}{x} - \ln g_2 \ln \mu \]
\[- \int_0^{\ln g_2} dz \ln \left[1 + (1 - 2\alpha)\mu^2 + \mu(\alpha - 1)(e^z + e^{-z}) \right]. \] (44)

doi:10.1088/1742-5468/2010/07/P07029
Asymptotic behaviour of lattice polygons with fixed area and varying perimeter

Figure 3. The mean perimeters for convex and column-convex polygons are compared with the small μ expansion result and data from exact enumeration of self-avoiding polygons of area A up to $A = 49$. The results are for zero bending rigidity, i.e., $\alpha = 1$.

where we have used the identities

$$\int_0^{\ln g_2} dz \ln (1 - e^z) = \int_\mu^{1-\alpha\mu} dx \frac{\ln(1-x)}{x},$$ \hspace{1cm} (45)

$$\int_0^{\ln g_2} dz \ln (1 - e^{-z}) = \int_\mu^{\mu^2} dx \frac{\ln(1-x)}{x}. $$ \hspace{1cm} (46)

On further simplification, this yields, in the limit $\mu \to 0$,

$$\lambda_2 = 2 \ln \mu \left[1 + \frac{\int_{1-\alpha}^{1} dx \ln(1-x)/x}{2(\ln \mu)^2}\right].$$ \hspace{1cm} (47)

Substituting for λ_2 in equation (43), we obtain the average perimeter for column-convex polygons as

$$\langle t^{\lambda_2} \rangle \simeq 1 - \frac{1}{2(\ln \mu)^2} \int_{1-\alpha}^{1} dx \frac{\ln(1-x)}{x} + O(\mu/\ln \mu).$$ \hspace{1cm} (48)

The column-convex polygon results, both for the general case and in the small μ approximation, are shown in figure 3.

4. Self-avoiding polygons

In section 3, we calculated, as a function of the fugacity μ and bending rigidity J, the mean perimeter of convex and column-convex polygons of fixed area A. For small μ, the
expression for the perimeter takes the form
\[
\langle t \rangle \simeq 1 - \frac{1}{2(\ln \mu)^2} \int_{1-\alpha}^{1} \frac{\ln(1-x)}{x} \, dx + \mathcal{O}(\mu/\ln \mu),
\]
for both convex and column-convex polygons. This is similar to the case for polygons with fixed perimeter, where the asymptotic expressions for area match up to the second term as well [20]. Introducing overhangs in one direction to convert convex polygons to column-convex polygons does not affect the second term in the expansion of equation (49). It is therefore plausible that introducing overhangs in the vertical direction also does not affect the above expression, provided \(\mu \) is small, and hence that the leading two terms of the expression for the mean perimeter of self-avoiding polygons should also be described by equation (49).

In order to test this proposal numerically, we used exact enumeration data for polygons on the square lattice for the case \(J = 0 \). For self-avoiding polygons, exact enumerations are available for areas up to \(A = 49 \) [12]. The resulting plot for the average perimeter is shown in figure 3. Unfortunately, with the data currently available it is not possible to extrapolate to infinite \(N \), preventing an unambiguous test of this possibility. Also, we know of no simple Monte Carlo algorithm that preserves area while varying perimeter, by means of which one could access higher areas.

5. Summary and conclusions

We have studied the variation of the perimeter, as a function of the chemical potential \(\mu \) and bending rigidity \(J \), for fixed area, for both convex and column-convex polygons. In each of these cases, we have calculated the perimeter exactly. The asymptotic behaviours in the limit \(\mu \to 0 \) coincide for the two classes of polygons. We therefore suggest that overhangs are not important in the inflated regime, and hence that self-avoiding polygons should have the same asymptotic behaviour. It is important to obtain a numerical confirmation or rigorous proof of this possibility. It may be possible to extend the methods of [26] to this problem.

References

[1] Leibler S, Singh R P and Fisher M E, 1987 Phys. Rev. Lett. 59 1989
[2] Fisher M E, Guttmann A J and Whittington S G, 1991 J. Phys. A: Math. Gen. 24 3095
[3] Satyanarayana S V M and Baumgaertner A, 2004 J. Chem. Phys. 121 4255
[4] van Faassen E, 1998 Physica A 255 251
[5] Privman V and Syrakic N M, 1989 Directed Models of Polymers, Interfaces, and Clusters: Scaling and Finite-Size Properties (Lecture Notes in Physics 338) (Berlin: Springer)
[6] Rajesh R and Dhar D, 2005 Phys. Rev. E 71 016130
[7] Lin K Y, 1991 J. Phys. A: Math. Gen. 24 2411
[8] Bousquet-Melou M, 1992 J. Phys. A: Math. Gen. 25 1925
[9] Bousquet-Melou M, 1992 J. Phys. A: Math. Gen. 25 1935
[10] Brak R and Guttmann A J, 1990 J. Phys. A: Math. Gen. 23 4581
[11] Jensen I, 2003 J. Phys. A: Math. Gen. 36 5731
[12] Jensen I, Number of sap of given perimeter and any area, available at the website http://www.ms.unimelb.edu.au/~iwan/polygons/series/sqsp_area_perim.ser
[13] Richard C, Guttmann A J and Jensen I, 2001 J. Phys. A: Math. Gen. 34 L495
[14] Cardy J, 2001 J. Phys. A: Math. Gen. 34 L665
[15] Richard C, 2002 J. Stat. Phys. 108 459
Asymptotic behaviour of lattice polygons with fixed area and varying perimeter

[16] Richard C, Jensen I and Guttmann A J, 2004 J. Stat. Mech. P08007
[17] Bousquet-Melou M, 1996 Discrete Math. 154 1
[18] van Rensburg E J J, 2000 The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles (Oxford: Oxford University Press)
[19] Guttmann A J (ed), 2009 Polygons, Polyominoes and Polycubes (Springer Lecture Notes in Physics vol 775) (Berlin: Springer)
[20] Mitra M K, Menon G I and Rajesh R, 2008 J. Stat. Phys. 131 393
[21] Rudnick J and Gaspari G, 1991 Science 252 422
[22] Gaspari G, Rudnick J and Beldjenna A, 1993 J. Phys. A: Math. Gen. 26 1
[23] Haleva E and Diamant H, 2006 Eur. Phys. J. E 19 461
[24] Mitra M K, Menon G I and Rajesh R, 2008 Phys. Rev. E 77 041802
[25] Rottman C and Wortis M, 1984 Phys. Rep. 103 59
[26] Prellberg T and Owczarek A L, 1999 Commun. Math. Phys. 201 493

doi:10.1088/1742-5468/2010/07/P07029