LIPSCHITZ FUNCTIONS OF PERTURBED OPERATORS

FEDOR NAZAROV AND VLADIMIR PELLER

Abstract.
We prove that if f is a Lipschitz function on \(\mathbb{R} \), A and B are self-adjoint operators such that \(\text{rank}(A - B) = 1 \), then \(f(A) - f(B) \) belongs to the weak space \(S_{1,\infty} \), i.e., \(s_j(A - B) \leq \text{const}(1 + j)^{-1} \). We deduce from this result that if \(A - B \) belongs to the trace class \(S_1 \) and \(f \) is Lipschitz, then \(f(A) - f(B) \in S_{1,\infty} \), i.e., \(\sum_{j=0}^{\infty} s_j(f(A) - f(B)) \leq \text{const} \log(2 + n) \). We also obtain more general results about the behavior of double operator integrals of the form \(Q = \iint (f(x) - f(y))(x - y)^{-1}dE_1(x)dE_2(y) \), where \(E_1 \) and \(E_2 \) are spectral measures. We show that if \(T \in S_1 \), then \(Q \in S_{1,\infty} \) and if \(\text{rank} T = 1 \), then \(Q \in S_{1,\infty} \). Finally, if \(T \) belongs to the Matsaev ideal \(S_{\infty} \), then \(Q \) is a compact operator.

Résumé.
Fonctions lipschizziennes d’opérateurs perturbés. Nous démontrons que si \(f \) est une fonction lipschitzienne, \(A \) et \(B \) des opérateurs autoadjoints tels que \(\text{rank}(A - B) = 1 \), alors \(f(A) - f(B) \in S_{1,\infty} \), c’est-à-dire \(s_j(A - B) \leq \text{const}(1 + j)^{-1} \). Si \(A - B \) est dans la classe \(S_1 \) des opérateurs à trace, nous montrons que \(f(A) - f(B) \in S_{1,\infty} \), c’est-à-dire \(\sum_{j=0}^{\infty} s_j(f(A) - f(B)) \leq \text{const} \log(2 + n) \). Plus généralement, pour une fonction lipschitzienne \(f \) et pour des mesures spectrales \(E_1 \) et \(E_2 \), considérons l’intégrale double opéralorire \(Q = \iint (f(x) - f(y))(x - y)^{-1}dE_1(x)dE_2(y) \). Nous montrons que si \(T \in S_1 \), alors \(Q \in S_{1,\infty} \) et si \(\text{rank} T = 1 \), alors \(Q \in S_{1,\infty} \). Finalement, si \(T \) appartient à l’idéal de Matsaev \(S_{\infty} \), alors \(Q \) est un opérateur compact.

Version française abrégée
Dans cette note nous considérons les propriétés de \(f(A) - f(B) \), où \(f \) est une fonction lipschitzienne sur la droite réelle \(\mathbb{R} \), \(A \) et \(B \) sont des opérateurs autoadjoints (pas nécessairement bornés) dont la différence \(A - B \) est “petite”. Il est bien connu que si \(A - B \) appartient à l’espace \(S_1 \) des opérateurs nucléaires, l’opérateur \(f(A) - f(B) \) n’appartient pas nécessairement à \(S_1 \).

Nous démontrons que si \(A - B \in S_1 \) et \(f \) est une fonction lipschitzienne, alors \(f(A) - f(B) \) appartient à l’idéal \(S_{1,\infty} \) défini comme l’ensemble d’opérateurs \(T \) dont les nombres singuliers \(s_j(T) \) satisfont à l’inégalité
\[
\sum_{j=0}^{n} s_j(T) \leq \text{const} \log(2 + n), \quad n \geq 0.
\]

Pour démontrer ce résultat nous utilisons la formule de Birman et Solomyak
\[
f(A) - f(B) = \iint \frac{f(x) - f(y)}{x - y} dE_A(x)(A - B) dE_B(y),
\]
ou \(E_A \) et \(E_B \) sont les mesures spectrales des opérateurs \(A \) et \(B \) (la théorie des intégrales doubles opéralorielles est développée dans les travaux [2], [3] et [4] de Birman et Solomyak). Nous établissons un résultat plus général: si \(f \) est une fonction lipschitzienne, \(E_1 \) et \(E_2 \) des mesures spectrales et \(T \) un opérateur de la classe \(S_1 \), alors
\[
\iint \frac{f(x) - f(y)}{x - y} dE_1(x)T dE_2(y) \in S_{1,\infty}.
\]

Nous pouvons améliorer les résultats ci-dessus dans le cas \(\text{rank} T = 1 \). En réalité, dans ce cas
\[
\iint \frac{f(x) - f(y)}{x - y} dE_1(x)T dE_2(y) \in S_{1,\infty} \overset{\text{def}}{=} \left\{ T: \|T\|_{S_{1,\infty}} \overset{\text{def}}{=} \sup_{j \geq 0} s_j(T)(1 + j) < \infty \right\}.
\]
Ce fait implique que si \(A \) et \(B \) sont des opérateurs autoadjoints tels que \(\text{rank}(A - B) = 1 \), alors \(f(A) - f(B) \in S_{1,\infty} \).
En utilisant des arguments de dualité on peut montrer que si T appartient à l’idéal de Matsaev S_ω, c’est-à-dire

$$\sum_{j \geq 0} s_j(T) \frac{1}{1 + j} < \infty,$$

alors $\int (f(x) - f(y))(x - y)^{-1} dE_1(x)TdE_2(y)$ est un opérateur compact. En particulier, si A et B sont des opérateurs autoadjoints tels que $A - B \in S_\omega$, alors $f(A) - f(B)$ est un opérateur compact.

Pour établir les résultats ci-dessus nous montrons que si μ et ν sont des mesures boréliennes finies sur \mathbb{R}, $\varphi \in L^2(\mu)$, $\psi \in L^2(\nu)$,

$$k(x, y) = \varphi(x) \frac{f(x) - f(y)}{x - y} \psi(y), \quad x, y \in \mathbb{R},$$

et si $\mathcal{I}_k : L^2(\nu) \to L^2(\mu)$ est l’opérateur intégral défini par $(\mathcal{I}_k g)(x) = \int k(x, y)g(y) \, d\nu(y)$, alors

$$\sup_{j \geq 0} (1 + j)s_j(\mathcal{I}_k) \leq \text{const} \|f\|_{\text{Lip}} \|f\|_{L^2(\mu)} \|\psi\|_{L^2(\nu)}.$$

En utilisant des arguments d’interpolation on peut démontrer que si T appartient à la classe de Schatten–von Neumann S_p, $1 \leq p < \infty$, et $\varepsilon > 0$, alors

$$\iint (f(x) - f(y))(x - y)^{-1} dE_1(x)TdE_2(y) \in S_{p+\varepsilon}.$$

En particulier, si A et B sont des opérateurs autoadjoints tels que $A - B \in S_p$, alors $f(A) - f(B) \in S_{p+\varepsilon}$.

La question de savoir si la condition $T \in S_1$ implique que

$$\iint (f(x) - f(y))(x - y)^{-1} dE_1(x)TdE_2(y) \in S_{1,\infty}$$

est toujours ouverte. Une réponse positive impliquerait que, dans le cas $1 < p < \infty$, on a $f(A) - f(B) \in S_p$ pour toute paire d’opérateurs autoadjoints A, B dont la différence $A - B$ appartient à S_p.

Finalement nous voudrions signaler qu’on peut obtenir des résultats similaires pour les fonctions d’opérateurs unitaires et pour les fonctions de contractions.

1. Introduction

In this note we study the behavior of Lipschitz functions of perturbed operators. It is well known that if $f \in \text{Lip}$, i.e., f is a Lipschitz function and A and B are self-adjoint operators with difference in the trace class S_1, then $f(A) - f(B)$ does not have to belong to S_1. The first example of such f, A, and B was constructed in [5]. Later in [7] a necessary condition on f was found (f must be locally in the Besov space B^1_1) under which the condition $f(A) - f(B) \in S_1$ implies that $f(A) - f(B) \in S_1$. That necessary condition also implies that the condition $f \in \text{Lip}$ is not sufficient.

On the other hand, Birman and Solomyak showed in [4] that if $A - B$ belongs to the Hilbert–Schmidt class S_2, then $f(A) - f(B) \in S_2$ and $\|f(A) - f(B)\|_{S_2} \leq \|f\|_{\text{Lip}} \|A - B\|_{S_2}$, where $\|f\|_{\text{Lip}} \overset{\text{def}}{=} \sup_{x \neq y} |f(x) - f(y)| \cdot |x - y|^{-1}$. Moreover, it was shown in [4] that in this case $f(A) - f(B)$ can be expressed in terms of the following double operator integral

$$f(A) - f(B) = \iint \frac{f(x) - f(y)}{x - y} \, dE_A(x)(A - B) \, dE_B(y). \quad (1)$$

where E_A and E_B are the spectral measures of A and B. We refer the reader to [2], [3], and [4] for the beautiful theory of double operator integrals. Note that the divided difference $(f(x) - f(y))/(x - y)$ is not defined on the diagonal. Throughout this note we assume that it is zero on the diagonal.
In this note we study properties of the operators \(f(A) - f(B) \) for (not necessarily bounded) self-adjoint operators \(A \) and \(B \) such that \(A - B \) has rank one or \(A - B \in S_1 \). Actually, we consider more general operators of the form

\[
I_{E_1,E_2}(f,T) \overset{\text{def}}{=} \int \int \frac{f(x) - f(y)}{x - y} dE_1(x)T dE_2(y),
\]

(2)

where \(E_1 \) and \(E_2 \) are Borel spectral measures on \(\mathbb{R} \) and \(\text{rank} \ T = 1 \) or \(T \in S_1 \). Duality arguments also allow us to study double operator integrals (2) in the case when \(T \) belongs to the Matsaev ideal \(S_\omega \).

Recall the definitions of the following operator ideals:

\[
S_{1,\infty} \overset{\text{def}}{=} \{ T : \| T \| s_{1,\infty} \overset{\text{def}}{=} \sup_{j\geq 0} s_{j}(T)(1+j) < \infty \},
\]

\[
S_\Omega \overset{\text{def}}{=} \{ T : \| T \| s_\Omega \overset{\text{def}}{=} (\log(2+n))^{-1} \sum_{j=0}^{n} s_{j}(T) < \infty \},
\]

and

\[
S_\omega \overset{\text{def}}{=} \{ T : \| T \| s_\omega \overset{\text{def}}{=} \sum_{j=0}^{\infty} \frac{s_{j}(T)}{1+j} < \infty \}.
\]

It is well known that \(S_{1,\infty} \) is not a Banach space and its Banach hull coincides with \(S_\Omega \). Also recall that the dual space to \(S_\omega \) can be identified in a natural way with \(S_\Omega \).

Note that the recent paper [1] contains results on properties of \(f(A) - f(B) \) for \(f \) in the Hölder class \(\Lambda_{\alpha}, \ 0 < \alpha < 1 \), and self-adjoint operators \(A \) and \(B \) with \(A - B \) in Schatten–von Neuman classes \(S_p \).

2. Main results

Theorem 2.1. Let \(f \in \text{Lip} \) and let \(E_1 \) and \(E_2 \) be Borel spectral measures on \(\mathbb{R} \). If \(\text{rank} \ T = 1 \), then

\[
I_{E_1,E_2}(f,T) \in S_{1,\infty}
\]

and

\[
\| I_{E_1,E_2}(f,T) \| s_{1,\infty} \leq \text{const} \| f \|_{\text{Lip}} \| T \|.
\]

Theorem 2.1 immediately implies the following result.

Theorem 2.2. Let \(f \in \text{Lip} \) and let \(E_1 \) and \(E_2 \) be Borel spectral measures on \(\mathbb{R} \). If \(T \in S_1 \), then

\[
I_{E_1,E_2}(f,T) \in S_\Omega
\]

and

\[
\| I_{E_1,E_2}(f,T) \| s_\Omega \leq \text{const} \| f \|_{\text{Lip}} \| T \| s_1.
\]

By duality, we obtain the following theorem.

Theorem 2.3. Let \(f \in \text{Lip} \), and let \(E_1 \) and \(E_2 \) be Borel spectral measures on \(\mathbb{R} \). Then the transformer

\[
T \mapsto I_{E_1,E_2}(f,T)
\]

defined on \(S_2 \) extends to a bounded linear operator from \(S_\omega \) to the ideal of all compact operator and

\[
\| I_{E_1,E_2}(f,T) \| \leq \text{const} \| f \|_{\text{Lip}} \| T \| s_\omega.
\]

Using interpolation arguments, we can easily obtain from Theorem 2.2 the following fact.

Theorem 2.4. Let \(f \in \text{Lip} \), and let \(E_1 \) and \(E_2 \) be Borel spectral measures on \(\mathbb{R} \). Suppose that

\[
1 \leq p < \infty \quad \text{and} \quad \varepsilon > 0.
\]

If \(T \in S_p \), then

\[
I_{E_1,E_2}(f,T) \in S_{p+\varepsilon}.
\]

Birman–Solomyak formula (1) allows us to deduce straightforwardly from Theorems 2.1, 2.2, and 2.3 the following theorem.

Theorem 2.5. Let \(A \) and \(B \) be self-adjoint operators on Hilbert space and let \(f \in \text{Lip} \). We have

(i) if \(\text{rank}(A - B) = 1 \), then

\[
f(A) - f(B) \in S_{1,\infty}
\]

and

\[
\| f(A) - f(B) \| s_{1,\infty} \leq \text{const} \| f \|_{\text{Lip}} \| A - B \|;
\]

(ii) if \(A - B \in S_1 \), then

\[
f(A) - f(B) \in S_\Omega
\]

and

\[
\| f(A) - f(B) \| s_\Omega \leq \text{const} \| f \|_{\text{Lip}} \| A - B \| s_1;
\]

(iii) if \(A - B \in S_\omega \), then \(f(A) - f(B) \) is compact and

\[
\| f(A) - f(B) \| \leq \text{const} \| f \|_{\text{Lip}} \| A - B \| s_\omega;
\]

(iv) if \(1 \leq p < \infty \), \(\varepsilon > 0 \), and \(A - B \in S_p \), then

\[
f(A) - f(B) \in S_{p+\varepsilon}.
\]
It is still unknown whether the assumption \(T \in S_1 \) implies that \(I_{E_1, E_2}(f, T) \in S_{1, \infty} \). If this is true, then the condition \(A - B \in S_p \) would imply that \(f(A) - f(B) \in S_p \) for \(1 < p < \infty \).

To prove Theorem 2.1, we obtain a weak type estimate for Schur multipliers.

For a kernel function \(k \in L^2(\mu \times \nu) \), we define the integral operator \(I_k : L^2(\nu) \to L^2(\mu) \) by

\[
(I_k g)(x) = \int k(x, y) g(y) \, d\nu(y), \quad g \in L^2(\nu).
\]

As in the case of transformers from \(S_1 \) to \(S_1 \) (see [4]), Theorem 2.1 reduces to the following fact.

Theorem 2.6. Let \(\mu \) and \(\nu \) be finite Borel measures on \(\mathbb{R} \), \(\varphi \in L^2(\mu) \), \(\psi \in L^2(\nu) \). Suppose that \(f \in \text{Lip} \) and the kernel function \(k \) is defined by

\[
k(x, y) = \varphi(x) \frac{f(x) - f(y)}{x - y} \psi(y), \quad x, y \in \mathbb{R}.
\]

Then the integral operator \(I_k : L^2(\nu) \to L^2(\mu) \) with kernel function \(k \) belongs to \(S_{1, \infty} \) and

\[
\|I_k\|_{S_{1, \infty}} \leq \text{const} \|f\|_{\text{Lip}} \|\varphi\|_{L^2(\mu)} \|\psi\|_{L^2(\nu)}.
\]

Proof. Without loss of generality we may assume that \(\|\varphi\|_{L^2(\mu)} = \|\psi\|_{L^2(\nu)} = 1 \) and \(\|f\|_{\text{Lip}} = 1 \).

Let us fix a positive integer \(n \).

Given \(N > 0 \), we denote by \(P_N \) multiplication by the characteristic function of \([-N, N]\) (we use the same notation for multiplication on \(L^2(\mu) \) and on \(L^2(\nu) \)). Then for sufficiently large values of \(N \),

\[
\|I_k - P_N I_k P_N\|_{S_2} < \frac{1}{n^{1/2}}.
\]

Clearly, \(P_N I_k P_N \) is the integral operator with kernel function \(k_N \), \(k_N(x, y) = \chi_N(x) k(x, y) \chi_N(y) \), where \(\chi_N = \chi_{[-N, N]} \) is the characteristic function of \([-N, N]\). We fix \(N > 0 \), for which (3) holds.

Consider now the points \(x_j, 1 \leq j \leq r \), and \(y_j, 1 \leq j \leq s \), at which \(\mu \) and \(\nu \) have point masses and

\[
|\varphi(x_j)|^2 \mu\{x_j\} \geq \frac{1}{n}, \quad 1 \leq j \leq r, \quad \text{and} \quad |\psi(y_j)|^2 \nu\{y_j\} \geq \frac{1}{n}, \quad 1 \leq j \leq s.
\]

Clearly, \(r \leq n \) and \(s \leq n \). We define now the kernel function \(k_t \) by

\[
k_t(x, y) = u(x) k_N(x, y) v(y), \quad x, y \in \mathbb{R},
\]

where

\[
u(x) \overset{\text{def}}{=} 1 - \chi_{\{x_1, \ldots, x_r\}}(x) \quad \text{and} \quad \nu(y) \overset{\text{def}}{=} 1 - \chi_{\{y_1, \ldots, y_s\}}(y).
\]

Obviously, the integral operators \(I_{k_N} \) and \(I_{k_t} \) coincide on a subspace of codimension at most \(r + s \leq 2n \).

We can split now the interval \([-N, N]\) into no more than \(n \) subintervals \(I, I \in \mathcal{I} \), such that

\[
\int_I |\varphi(x)|^2 u(x) \, d\mu(x) + \int_I |\psi(y)|^2 v(y) \, d\nu(y) \leq \frac{4}{n}, \quad I \in \mathcal{I}.
\]

This is certainly possible because of (4).

We have \(I_{k_t} = I^{(1)} + I^{(2)} + I^{(3)} \), where

\[
(I^{(1)} g)(x) = \int \sum_{I \in \mathcal{I}} \chi_I(x) k_t(x, y) \chi_I(y) \, d\nu(y),
\]

\[
(I^{(2)} g)(x) = \int \sum_{I, J \in \mathcal{I}, I \neq J, |I| \geq |J|} \chi_I(x) k_t(x, y) \chi_I(y) \, d\nu(y),
\]

and

\[
(I^{(3)} g)(x) = \int \sum_{I, J \in \mathcal{I}, |I| < |J|} \chi_I(x) k_t(x, y) \chi_I(y) \, d\nu(y)
\]
(we denote by $|I|$ the length of I). It is easy to see that $\|\mathcal{I}^{(1)}\|_{S_2} \leq 4n^{-1/2}$. Let us estimate $\mathcal{I}^{(2)}$. The integral operator $\mathcal{I}^{(3)}$ can be estimated in the same way.

Suppose that $I, J \in \mathcal{I}, I \neq J$, and $|I| \geq |J|$. For $x \in I$ and $y \in J$, we have

$$\frac{1}{x-y} = \frac{1}{x-c(J)} + \frac{y-c(J)}{x-c(J)} \frac{1}{x-y},$$

where $c(J)$ denotes the center of J.

Suppose that $g \perp \psi$ and $g \perp f$. Then $\mathcal{I}g = \mathcal{I}_k g$, where

$$k_b(x, y) = \sum_{I, J \in \mathcal{I}, I \neq J, |I| \geq |J|} u(x) \varphi(x) a_{IJ}(x, y) \psi(y) v(y)$$

and

$$a_{IJ}(x, y) = \chi_I(x) \frac{y-c(J)}{x-c(J)} \frac{f(x) - f(y)}{x-y} \chi_J(y).$$

Thus $\mathcal{I}^{(2)}$ and \mathcal{I}_k coincide on a subspace of codimension at most $2n$.

To estimate the Hilbert–Schmidt norm of \mathcal{I}_k, we observe that

$$|a_{IJ}(x, y)| \leq \frac{|J|}{(|J| + \text{dist}(I, J))}, \quad x \in I, y \in J.$$

Thus

$$\|\mathcal{I}_k\|_{S_2}^2 \leq \sum_{I, J \in \mathcal{I}, I \neq J, |I| \geq |J|} \left(\int_I |\varphi|^2 u \, d\mu \right) \left(\int_J |\psi|^2 v \, d\nu \right) \|a_{IJ}\|_{L_\infty}^2$$

$$\leq \frac{4}{n^2} \sum_{I, J \in \mathcal{I}, I \neq J, |I| \geq |J|} \frac{|J|^2}{(|J| + \text{dist}(I, J))^2}.$$

Let us observe that for a fixed $J \in \mathcal{I}$,

$$\sum_{I \in \mathcal{I}, I \neq J, |I| \geq |J|} \frac{|J|^2}{(|J| + \text{dist}(I, J))^2} \leq \text{const}. \quad (5)$$

Indeed, we can enumerate the intervals $I \in \mathcal{I}$ satisfying $I \neq J$ and $|I| \geq |J|$ so that the resulting intervals I_k satisfy $\text{dist}(I_k, J) \leq \text{dist}(I_{k+1}, J)$. Since the intervals I_k are disjoint, we have

$$\text{dist}(I_k, J) \geq \frac{k-3}{2} |J|.$$

This easily implies (5). It follows that

$$\|\mathcal{I}_k\|_{S_2}^2 \leq C \frac{4}{n^2}, \quad n = \frac{4C}{n}.$$

Similarly, $\mathcal{I}^{(3)}$ coincides on a subspace of codimension at most $2n$ with an operator whose Hilbert–Schmidt norm is at most $2(C/n)^{1/2}$.

If we summarize the above, we see that \mathcal{I}_k coincides on a subspace of codimension at most $6n$ with an operator whose Hilbert–Schmidt norm is at most $K n^{-1/2}$, where K is a constant. Hence, on a subspace of codimension at most $7n$ the operator \mathcal{I}_k coincides with an operator whose norm is at most K/n, i.e.,

$$s_{7n}(\mathcal{I}_k) \leq K n^{-1}, \quad n \geq 1, \quad \blacksquare$$

Note that in the case of operators on the space $L^2(\mathbb{T})$ with respect to Lebesgue measure on the unit circle \mathbb{T}, the following related fact was obtained in [6] (see also [8]): if the derivative of f belongs to the Hardy class H^1, φ and ψ belong to $L^\infty(\mathbb{T})$, and the kernel function k is defined by

$$k(\zeta, \tau) = \varphi(\zeta) \frac{f(\zeta) - f(\tau)}{\zeta - \tau} \psi(\tau), \quad \zeta, \tau \in \mathbb{T},$$
then the integral operator I_k on $L^2(\mathbb{T})$ belongs to $S_{1,2}$, i.e., $\sum_{j\geq 0} (s_j(I_k))^2(1+j) < \infty$.

To conclude the article, we note that similar results can be obtained for functions of unitary operators and for functions of contractions.

Remark. After this article had been written we have been informed by D. Potapov and F. Sukochev that they had proved the following result: if f is a Lipschitz function, $1 < p < \infty$, and A and B are self-adjoint operators such that $A - B \in S_p$, then $f(A) - f(B) \in S_p$.

References

[1] A.B. Aleksandrov and V.V. Peller, *Functions of perturbed operators*, C.R. Acad.Sci. Paris, Ser. I 347 (2009), 483–488.

[2] M.S. Birman and M.Z. Solomyak, *Double Stieltjes operator integrals*, Problems of Math. Phys., Leningrad. Univ. 1 (1966), 33–67 (Russian). English transl.: Topics Math. Physics 1 (1967), 25–54, Consultants Bureau Plenum Publishing Corporation, New York.

[3] M.S. Birman and M.Z. Solomyak, *Double Stieltjes operator integrals. II*, Problems of Math. Phys., Leningrad. Univ. 2 (1967), 26–60 (Russian). English transl.: Topics Math. Physics 2 (1968), 19–46, Consultants Bureau Plenum Publishing Corporation, New York.

[4] M.S. Birman and M.Z. Solomyak, *Double Stieltjes operator integrals. III*, Problems of Math. Phys., Leningrad. Univ. 6 (1973), 27–53 (Russian).

[5] Yu.B. Farforovskaya, *An example of a Lipschitzian function of selfadjoint operators that yields a nonnuclear increase under a nuclear perturbation*. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 146–153 (Russian).

[6] V.V. Peller *Metric properties of the averaging projection onto the set of Hankel matrices*, Dokl. Akad Nauk SSSR, 278 (1984), 271-285. English Transl. in Soviet Math. Dokl., 30 (1984), 362-368.

[7] V.V. Peller, *Hankel operators in the theory of perturbations of unitary and self-adjoint operators*, Funktsional. Anal. i Prilozhen. 19:2 (1985), 37–51 (Russian). English transl.: Funct. Anal. Appl. 19 (1985) , 111–123.

[8] V.V. Peller, *Hankel operators and their applications*, Springer-Verlag, New York, 2003.

F.L. Nazarov Department of Mathematics Department of Mathematics University of Wisconsin Michigan State University Madison, WI 53706 East Lansing, Michigan 48824 USA

V.V. Peller