The efficiency analysis on assistant-grinding of lignosulfonate and its modified composites

Duan Hui, Mu Xiangfeng and Wang Ying
Zibo high tech Industrial Development Zone Refractory Engineering Research Institute, Zibo China
E-mail: hgdh2005@163.com

Abstract: The method of vibration ball milling is applied in this paper to make research on contents of lignosulfonate and modified composites as cement grinding aids; and studied on the influence of regularity about grinding aids on products fluidity, particle size, specific surface area and powder particle size distribution. The study showed lignosulfonate has had better effect on the cement grinding function; the cement’s particle size and the distribution were improved, the average diameter was decreased, distribution narrowed and ultra-fine grain size increased, of the most importance, the contents of ultra-fine grain size were increased much. Among those, the effect of calcium lignosulfonate was relatively good while its modified composites performed better.

1. Introduction
The grinding efficiency could be largely improved by cement grinding aids, reducing the cost of cement are the important research subjects in the field of Cement Science and Production Enterprise. During the production of cement, the grinding process is the most energy consuming procedure. (According to the report in America 50 billion kilowatt-hours was consumed in this field per year.) The energy usage was low. About 97% of its energy turned to be heat energy and is in vain. Only little proportion (0.6%-1%) is actually used in increasing surface energy of materials. As the development of dry production, the heat consuming is largely decreased, yet the electricity consuming has been increased. Therefore, how to raise the efficiency of grinding and reduce its electricity consuming are the focus attention for the cement workers and the important energy-saving subject. Since 1930s, cement grinding aids had been used in cement industry[1,2]. After that, there are a large number of patents emerging. At present, the study of grinding aids is widespread in America, Germany, France, Japan and Russia. Rules and checking methods about grinding aids have been also established in those countries. While in China, study and application of grinding aids are underdeveloped; the occupation coefficient of grinding aids is under 5%[3]. The application of lignin is in the form of lignosulfonate[4]. Lignosulfonate is a byproduct produced by the waste liquor of paper pulp after processing sulfonation and spray drying. It is widely used as a normal superplasticizer by most people. Lignosulfonate has better water-reducing property. If added in cement, it can improve its grinding effect and function as the superplasticizer.

2. Experiment

2.1 Raw material and regent
Done-material: rotary kiln clinker in a factory, mine components in Table1
Mineral waste residue: copper slag in a certain factory, the quality factor is 1.67.
Gypsum: SO$_3$ 35.48%, crystallized water 17.86%. Sodium lignosulfonate (SLSF), magnesium lignosulphonate (MLSF) and calcium lignosulfonate (CLSF) provided by Tian JinShengfu Jiang Chemical Industry Corp, modified composite lignosulfonate (self-made).

Table 1 The components of mine [%]
KH
0.894

2.2 Experiment devices, testers and methods

2.2.1 Experiment devices and testers
Mastersizer 2000 particle size analyzer made in Malvern Corp.; vibrating ball grinder; NRJ-411A cement glue-sand blender; SHBY-20B cement concrete maintaining standard container; the other devices in Table 2

Table 2 Devices used in experiment.
Name
jaw crusher
roll crusher
shaking table
Electronic balance
slide caliper

2.2.2 Analytical methods
0.08mm square hole sieve used in determination of sieve residue, dry sieve on the basis of GB45-77 Method.
The stop-angle was measured by methods of equal height injection.
Particle size analyzed by MS2000G laser particle size analyzer, results output by computers.
Normal consistency of cement water and setting time measured by GB1346-1999.
Cement glue-sand strength test by GB/T 7671-1999.

2.2.3 Test sample preparation
First crush particle size below 2mm by jaw crusher and roll crusher, then the gypsum and slag are sieved to 2mm sizes. The weight of the ball must be calculated according to the ratio 7:1 to decide the weight of raw material, then refer to the ratio done-material 80%: slag 15%: gypsum 5% to get the components and dilute lignosulfonate by water according to the proportion 0.2% and 0.4%. Add 0.05% modified lignosulfonate grinding aids by burette and grind 1 h by ball grinder. The weight and ratio of the ball should be remaining the same each time. LSF will be the shorten form of lignosulfonate in the following description. The quantity of mixture and test sample code will be found in Table 3.

Table 3 The quantity of mixture and test sample No.
grinding aids
Dosage of grinding aids[%]
Sample No.

2
3. Results and discussion

3.1 Fluidity of cement

The stop-angle is the largest angle formed by free surface layer of powder accumulation in balance with the water surface. It can also be realized in an easy way if there’s no specialized device. Get the average value from tests more than once. See the results in Table4.

The results of test indicated that different types of grinding aids reduced cement’s the stop-angle to 1-6°. After adding lignosulfonate grinding aids, there’s no distinctive change in decreasing the stop-angle as it was added more. Big changes about MLSF can be seen in different lignosulfonate. 0.4 % reduced the cement’s the stop-angle from 43° to 40.3° was reduced. The fluidity of cement became more powerful because of adding modified composites of lignosulfonate grinding aids. The stop-angle was diminished to 6°.

Sample No.	A	B1	B2	C1	C2	D1	D2	E1	E2	E3
the stop-angle[°]	43	42	40	41	40	41	39	37	37	37

3.2 Cement’s dispersion

3.2.1 Sieve residue

See the results of sieve residue of 0.08mm square hole sieve in Table5. The cement fineness was raised after adding grinding aids. The sieve residue of 0.08mm square hole sieve was about 6.5% without any grinding aids, but after adding some grinding aids, the sieve residue reduced by 1-2.5%. As moresingle grinding aids increased with dosage, the sieve residue was reduced afterwards. Among those three single lignosulfonate, CLSF owned the smallest the sieve residue; theseive residue of SLSF is as much as MLSF. Altogether, there’s no big difference among these three. But modified composites of lignosulfonate grinding aids’s the sieve residue is much smaller, only 1% the sieve residue, reduced by 5%. It contributed to its good grinding effect and small diameter of powder particles. The results of experiment indicated that adding grinding aids can diminish the contents of coarse particles.

Sample No.	A	B1	B2	C1	C2	D1	D2	E1	E2	E3
>0.08[mm]	6.5	5.6	4.7	5.1	4.4	4.9	4.1	1.0	0.9	0.8

3.2.2 Specific surface area

Figure1-Figure4 showed specific surface area of different sample after grinding 1h. From that, we can see the cement’s specific surface area was increased after using some grinding aids. Gridding for 1 hour, the specific surface area of cement was 345m²/kg without grinding aids. The differences of specific surface area among those three lignosulfonate single grinding aids were not clear. B1, C1, D1 are about 375m²/kg, raised by 8%; B2, C2, D2 are about 400m²/kg, raised by 16%. Compared with single grinding aids, the specific surface area of three modified composites of lignosulfonate grinding aids was increased obviously, reached 440m²/kg, to 30%.

3.2.3 The average diameter of cement’s powder particles and its distribution

The average diameter of cement’s powder particles and particle distribution were changed various after adding grinding aids. Figure2 to Figure4 are comparison about distribution of different LSF with diverse dosage, modified composites of lignosulfonate and particle size of blank sample. After adding grinding aids, the average diameter of powder particles (D50) was decreased. Without grinding aids, D50 was 22.3 μm, but after adding single lignosulfonate for 0.2%, D50 decreased to about 19μm, and when the dosage increased to 0.4%, D50 reached to 18μm. However, because of using modified composites grinding aids, D50 decrease to 15μm. It can be showed from the distribution of powder particles, after using grinding aids, the percentage in each parts of cement was decreased. For lignosulfonate single grinding aids, cement’s particle of 0.4% dosage got thinner one than that of...
0.2%.

Compared with these three LSF, CLSF had better assistant-grinding performance, while no significant difference between SLSF and MLSF. The contents of powder particles 45µm for three LSF are almost the same. The main difference is about their particle size, that’s 3-45µm, the cement’s particle size was 3-45µm with adding 0.2% MLSF and SLSF. It occupied 67%. The percentage was 69% with 0.2% CLSF and particle size 3-45µm. With 0.4% SLSF and CLSF’s particle size was 3-45µm. The percentage was 68%, and it was the same about dosage to be 70% CLSF. Figure 4 told that modified composites grinding aids had better grinding effect than single grinding aids. Powder particles with more than 60µm particle size was only less than 5%, while there was 9% of powder particles 0.4% CLSF and its particle size was 60µm. Modified composites grinding aids particle size was 3-45µm with about 74% powder particles which was 70% higher than CLSF. Modified composites grinding aids about every particle size’s cumulative distribution was much higher than LSF. It illustrated that modified composites grinding aids’s fine particles were more than LSF during every period of time.

Figure 1 Comparison of specific surface area after grinding 1h.

Figure 2 The comparison of cumulative distribution of 0.2% dosage LSF.

Figure 3 The comparison of cumulative distribution of 0.4% dosage LSF.

Figure 4 The comparison of cumulative distribution of modified composites grinding aids.
4. Conclusion
Lignosulfonatesingle grinding aids and its modified composites grinding aids can show an evident increasing fluidity of cement. The particle size of powder particles was raised to a new height, the cement’s specific surface area was enlarged and especially the proportion of particle size between 3-30µm which played an important role in the strength of cement was enhanced. What’s more, the cement particle size distribution of cement was improved a lot. As the increasing of dosage, lignosulfonate’s grinding effect was more efficient accordingly. The best dosage was 0.3%-0.4%. Among those three lignosulfonate single grinding aids, CLSF got the best grinding effect; the grinding effect of modified composites grinding aids was better than single grinding aids. The modified composites of CLSF got the best grinding effect.

References
[1] Leo Liberthson 1943 Petroleum hydrocarbon emulsions, USA US2,307,744
[2] Bruce A Lange, Hampstead N H 1983 Additive combination for hydraulic cement compositions: USA, US4,375,987
[3] Zang Donglan，Xu Huayi，Zhang Yongtian 2002 Applied effectiveness analysis of several grinding aids. Cement，4 p 23-25
[4] D. Touil, S. Belaadi, C 2006 Frances Energy efficiency of cement finish grinding in a dry batch ball mill, Cement and Concrete Research,36 p 416-421