Distoseptispora bambusae sp. nov. (Distoseptisporaceae) on bamboo from China and Thailand

Yaru Sun†,§, Ishani D. Goonasekara§, Kasun M. Thambugala†, Ruvishika S. Jayawardena§, Yong Wang‡, Kevin D. Hyde§‡

† Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
§ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
¶ Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, China

Corresponding author: Yong Wang (yongwangbis@aliyun.com)

Received: 27 Apr 2020 | Accepted: 24 May 2020 | Published: 01 Jun 2020

Citation: Sun Y, Goonasekara ID, Thambugala KM, Jayawardena RS, Wang Y, Hyde KD (2020) Distoseptispora bambusae sp. nov. (Distoseptisporaceae) on bamboo from China and Thailand. Biodiversity Data Journal 8: e53678. https://doi.org/10.3897/BDJ.8.e53678

Abstract

Background

Bamboo is a widespread plant with medicinal value. During our taxonomic study on medicinal plants, three collections of Distoseptispora were made from China and Thailand. Phylogenetic analyses of combined LSU, ITS and RPB2 sequence data showed that two collections represented a new species, phylogenetically distinct from other described species in Distoseptispora.

New information

This new species has macronematous, mononematous conidiophores, polyblastic or monoblastic conidiogenous cells and acrogenous, solitary, straight, obclavate, multi-septate, thick-walled conidia. Distoseptispora bambusae sp. nov. is introduced with...
illustrations and a comprehensive description. The third collection on dead wood from Thailand was identified as *D. tectona* with newly-generated molecular data for this taxon.

**Keywords**

One new taxon, Distoseptisporales, hyphomycete, multi-gene phylogeny, taxonomy

**Introduction**

*Distoseptispora* was introduced by Su et al. (2016) with *Distoseptispora fluminicola* McKenzie, H.Y. Su, Z.L. Luo & K.D. Hyde as the type species. *Distoseptispora* has macronematous, septate, unbranched, straight or flexuous, smooth, olivaceous to brown conidiophores; mono- or polyblastic, holoblastic, determinate, terminal, cylindrical conidiogenous cells and acrogenous, solitary, olivaceous to brown, euseptate or distoseptate conidia (Su et al. 2016, Luo et al. 2018, Yang et al. 2018, Hyde et al. 2019, Luo et al. 2019). The monotypic family *Distoseptisporaceae* was established to accommodate *Distoseptispora* in Sordariomycetes (Su et al. 2016, Hyde et al. 2020). The freshwater genus *Aquapteridospora* J. Yang, K.D. Hyde & Maharachch was introduced by Yang et al. (2015) and was treated as Diaporthomycetidae genera *incertae sedis*, based on LSU sequence data. In a comprehensive study of freshwater Sordariomycetes, Luo et al. (2019) established Distoseptisporales and placed *Distoseptisporaceae* and *Aquapteridospora* within this order. *Aquapteridospora* differs from *Distoseptispora* in having polyblastic conidiogenous cells, bearing tiny, circular scars and protuberant, fusiform conidia. This treatment was followed by Hyde et al. (2020). However, Wijayawardene et al. (2020) only accepted *Distoseptisporaceae* in Distoseptisporales, while *Aquapteridospora* was placed in Diaporthomycetidae genera *incertae sedis*.

Currently, 25 species are accepted in *Distoseptispora*, of which 16 are from freshwater habitats and nine from terrestrial (Luo et al. 2018, Tibpromma et al. 2018, Crous et al. 2019, Hyde et al. 2019, Luo et al. 2019, Phookamsak et al. 2019). *Distoseptispora caricis* is the only reported endophytic species, while the others are saprobes.

During ongoing surveys of microfungi on medicinal plants, two *Distoseptispora* species were collected in China and Thailand. We introduce *Distoseptispora bambusae* as a novel taxon with illustrations and molecular phylogenetic data. We also provide newly-generated molecular data of the second species, *D. tectona* Doilom & K.D. Hyde, which was also reported from Thailand (Hyde et al. 2016).

**Materials and methods**

**Collections and examination of specimens**

Specimens of bamboo culms were collected from Guiyang, Guizhou Province, China (August 2019) and Doi Mae Salong, Chiang Rai, Thailand (July 2015). Another specimen
of dead wood was collected from the Botanical Garden, Mae Fah Luang University, Chiang Rai, Thailand (November 2019). The samples were processed and examined following the method described by Dai et al. (2017). Samples were brought to the laboratory in an envelope after recording the collection details including hosts, places and dates. Morphological observations were made using a stereomicroscope (SteREO Discovery. V12, Carl Zeiss Microscopy GmBH, Germany). Fruiting bodies were transferred with a needle and placed in a drop of distilled water on a glass slide, then covered with the cover slip for microscopic studies and photomicrography. The morphological figures were captured using a Nikon ECLIPSE Ni compound microscope (Nikon, Japan) fitted with a NikonDS-Ri2 digital camera (Nikon, Japan). Measurements were made using the Tarosoft (R) Image Frame Work software. Photo-plates were made with Adobe Photoshop CS6 software (Adobe Systems, USA).

Single-spore isolations were done following the method described in (Chomnunti et al. 2014). Germinated spores were transferred to potato dextrose agar (PDA: 39 g/l sterile distilled water, Difco potato dextrose) plates and incubated at room temperature for 4 weeks. Herbarium materials were deposited in the Funarium of Mae Fah Luang University (MFLU), Chiang Rai, Thailand. Pure cultures were deposited in the Mae Fah Luang University Culture Collection (MFLUCC) and International Collection of Microorganisms from Plants (ICMP). Facesoffungi (FoF) and Index Fungorum numbers were acquired as described in Jayasiri et al. (2015) and Index Fungorum (http://www.indexfungorum.org).

DNA extraction, PCR amplification and sequencing

Fresh fungal mycelia were scraped with sterilised scalpels. Genomic DNA was extracted using Genomic DNA Extraction Kit (GD2416) following the manufacture’s protocol. PCR amplifications were performed in a 20 μl reaction volume, with 10 μl of 10 × PCR Master Mix, 1 μl of each primer, 1 μl template DNA and 7 μl ddH2O. Primers used and PCR thermal cycle programmers are listed in Table 1.

| Locus                          | Primer   | PCR protocol                                      | Reference                      |
|-------------------------------|----------|---------------------------------------------------|--------------------------------|
| Internal Transcribed Spacer (ITS) | ITS5, ITS4 | 1. 94°C – 3 min  
2. 94°C – 30 s  
3. 52°C – 30 s  
4. 72°C – 1 min  
5. Repeat 2–4 for 35 cycles  
6. 72°C – 8 min  
7. 4°C on hold | White et al. (1990) |
| Large Subunit rRNA (LSU, 28S) | LR0R, LR5 | Same protocol as ITS region                        | White et al. (1990), Rehner and Samuels (1995) |
Phylogenetic analyses

Sequences (Table 2) generated during this study were complemented with sequences from previous studies (Hyde et al. 2016, Su et al. 2016, Luo et al. 2018, Crous et al. 2019, Hyde et al. 2019, Luo et al. 2019), which were downloaded from NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/). Alignments for each locus were done in MAFFT v7.212 (Katoh and Standley 2013) and checked visually using AliView (Larsson 2014). The alignments were trimmed using trimAl v 1.2 with gappyout (Capella-Gutiérrez et al. 2009). Three single gene alignments were combined using Sequence Matrix (Vaidya et al. 2011). The final alignment was deposited in TreeBASE (submission ID: http://purl.org/phylo/treebase/phylows/study/TB2:S26081).

Table 2.
GenBank accession numbers of isolates included in this study.

The newly-obtained strains are are indicated with * after collection number. Ex-type strains are in bold.

Abbreviation: CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; DLUCC: Dali University Culture Collection, Yunnan, China; HKUCC: The University of Hong Kong Culture Collection, Hong Kong, China; HKAS: Kunming Institute of Botany Academia Sinica, Yunnan, China, ICMP: International Collection of Microorganisms from Plants, Auckland, New Zealand; MFLU: the herbarium of Mae Fah Luang University, Chiang Rai, Thailand; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand.

Additional sequence of D. bambusae MFLUCC 20–0091: SSU: MT232716, TEF: MT232880
| Species             | Strain         | ITS            | LSU             | RPB2          |
|---------------------|----------------|----------------|-----------------|---------------|
| D. aquatica        | MFLUCC 16–1357 | MK828650       | MK849796        |               |
| D. bambusae        | MFLUCC 20–0091*| MT232713       | MT232718        | MT232881      |
| D. bambusae        | MFLUCC 14–0583*| MT232712       | MT232717        | MT232882      |
| D. cangshanensis   | MFLUCC 16–0970 | MG979754       | MG979761        |               |
| D. caricus         | MFLUCC 16–1357 | MG828650       | MG849796        |               |
| D. dehongensis     | KUMCC 18–0090  | MK085061       | MK079662        |               |
| D. fluminicola     | MFLUCC 15–0417 | NR154041       | KU376270        |               |
| D. fluminicola     | DLUCC 0391     | MG979755       | MG979762        |               |
| D. fluminicola.    | DLUCC 0999     | MG979756       | MG979763        |               |
| D. guttulata       | MFLUCC 16–0183 | MF077543       | MF077554        |               |
| D. guttulata       | DLUCC B43      | MN163011       | MN163016        |               |
| D. leonensisi      | HKUCC 10822    | DQ408566       | DQ435089        |               |
| D. lignicola       | MFLUCC 18–0198 | MK828651       | MG849797        |               |
| D. martini         | CGMCC 3.18651  | KU999975       | KX033566        |               |
| D. multiseptata    | MFLUCC 16–1044 | MF077544       | MF077555        | MF135644      |
| D. multiseptata    | MFLUCC 15–0609 | KX710145       | KX710140        |               |
| D. multiseptata    | MFLUCC 18–0215 | MN163013       | MN174864        |               |
| D. neostrata       | MFLUCC 18–0376 | MN163008       | MN163017        |               |
| D. obclavata       | MFLUCC 18–0329 | MN163012       | MN163010        |               |
| D. obpyriformis    | MFLUCC 17–1694 | MG979764       | MG988415        |               |
| D. obpyriformis    | DLUCC 0867     | MG979757       | MG979765        | MG988416      |
| D. palmarum        | MFLUCC 18–1446 | MK085062       | MK079663        | MK087670      |
| D. phangngaeensis  | MFLUCC 16–0857 | MF077545       | MF077556        |               |
| D. rostrata        | MFLUCC 16–0969 | MG979758       | MG979766        | MG988417      |
| D. rostrata        | DLUCC 0885     | MG979759       | MG979767        |               |
| D. submersa        | MFLUCC 16–0946 | MG979760       | MG979768        | MG988418      |
| D. suoluoensis     | MFLUCC 17–1305 | MF077547       | MF077558        |               |
| D. suoluoensis     | MFLUCC 17–0224 | MF077546       | MF077557        |               |
| Distoseptispora. sp| HLMX–15–1      | KU376269       |                 |               |
| D. rayongensis     | MFLUCC 18–0415 | MH457172       | MH457137        | MH463255      |
| D. rayongensis     | MFLUCC 18–0416 | MH457173       | MH457138        | MH463256      |
| D. tectonae        | MFLUCC 12–0291 | KX751711       | KX751713        | KX751708      |
| D. tectonae        | MFLUCC 20–0090*| MT232714       | MT232719        |               |
| D. tectonigena     | MFLUCC 12–0292 | KX751712       | KX751714        | KX751709      |
| D. thailandica     | MFLUCC 16–0270 | MH275060       | MH260292        |               |
| D. thysanolaenae   | HKAS 102247    | NR164041       | MK064091        |               |
| Species                        | Strain          | ITS      | LSU      | RPB2    |
|-------------------------------|-----------------|----------|----------|---------|
| *D. xishuangbannaensis*       | KUMCC 17–0290   | MH275061 | MH260293 | MH412754 |

The Maximum Likelihood (ML) analysis was performed using IQ-tree (Nguyen et al. 2015, Chernomor et al. 2016). Nucleotide substitution models were selected under the Akaike Information Criterion (AIC) by jModelTest2 (Darriba et al. 2012) on XSEDE in the CIPRES web portal (Miller et al. 2010). For ITS dataset, the GTR+I+G model was selected (-lnL = 3364.5406), for LSU, the TIM2+I+G model (-lnL = 959.3999), and for RPB2, the GTR+I+G (-lnL = 5111.0788). ML was inferred under partitioned models. Non-parametric bootstrap analysis was implemented with 1000 replicates.

Maximum Parsimony (MP) analysis was carried out with the heuristic search in PAUP v. 4.0b10 (Swofford 2002). All characters were unordered and of equal weight, and gaps were treated as missing data. Maxtrees were unlimited, branches of zero length were collapsed and all multiple, equally-parsimonious trees were saved. Clade stability was assessed using a bootstrap (BT) analysis with 1,000 replicates, each with 10 replicates of random stepwise addition of taxa (Hillis and Bull 1993).

Bayesian Inference (BI) analysis was performed by the Markov Chain Monte Carlo sampling (MCMC) coalescent approach implemented in BEAST v1.8.4 (Drummond et al. 2012), with an uncorrelated lognormal relaxed clock. The Birth-Death Incomplete Sampling speciation model (Stadler 2009) was selected as tree prior. The nucleotide substitution models were the same as above. Markov chains were run for 1,000,000 generations and trees were sampled every 1000th generation. The XML file generated by BEAUti (Drummond et al. 2012) was run using BEAST on XSEDE in the CIPRES web portal (Miller et al. 2010). Tracer v1.6 (Rambaut et al. 2014) was used to check the resulting log file. The first 20% of trees, representing the burn-in phase of the analyses, were discarded and a Maximum Clade Credibility tree was inferred using TreeAnnotator 1.8.4.

Trees were visualised with FigTree v1.4.4 (Rambaut 2009) and the layout was edited using Adobe Illustrator CS6 software (Adobe Systems, USA).

**Taxon treatments**

*Distoseptispora bambusae* Y.R. Sun, I.D. Goonasekara, Yong Wang bis & K.D. Hyde, sp. nov.

- IndexFungorum 557452

**Materials**

**Holotype:**

- scientificName: *Distoseptispora bambusae*; class: Sordariomycetes; order: Distoseptisporales; family: Distoseptisporaceae; country: China; stateProvince: Guizhou; locality: Guiyang Medicinal Plants Garden; verbatimElevation: 1100 m; catalogNumber: MFLU 20–0261; recordedBy: Sun Ya-Ru; identifiedBy: Yaru Sun; dateIdentified: 2019
Paratype:
a. scientificName: Distoseptispora bambusae; class: Sordariomycetes; order: Distoseptisporales; family: Distoseptisporaceae; country: Thailand; stateProvince: Chiangrai; locality: Doi Mae Salong; verbatimElevation: 390 m; catalogNumber: MFLU 17–1653; recordedBy: Thambugala Kasun M.; identifiedBy: Yaru Sun; dateIdentified: 2019

Description

Saprobic on culms of bamboo. Sexual morph: Undetermined. Asexual morph: Hyphomycetous (Figs 1, 2). Colonies effuse, brown to dark-brown, hairy. Mycelium mostly immersed, composed of pale to dark brown, septate, branched, smooth, hyaline to subhyaline hyphae. Conidiophores macronematous, mononematous, septate, single or in groups of 2 or 3, erect, cylindrical, straight or slightly flexuous, olivaceous or brown, robust at the base 40–96 × 4–5.5 μm (x̅ = 69 × 5 μm, n = 10). Conidiogenous cells blastic, integrated, terminal, cylindrical, olivaceous or brown 9–19 × 4–5 μm (x = 15 × 4.5 μm, n = 15). Conidia acrogenous, solitary, straight, obclavate, septate, thick-walled, rounded at the apex, truncate at the base, tapering towards apex, olivaceous or brown, 45–74 μm long (x = 60.5 μm, n = 20), 5.5–9.5 μm at the widest (x = 7.5 μm, n = 20).

Figure 1. Distoseptispora bambusae (MFLU 20–0261, holotype, collected from China) a, b. Colonies on natural substrate; c, d. Conidiophore with Conidia; e. Conidiophore; f. Conidiogenous cell; g–j. Conidia; k. Germinating conidium; l, m. Colony on PDA. Scale bars: c–e, k = 20 μm, f–j = 10 μm.
Culture characteristics: Conidia germinated on PDA within 12 hours and germ tubes were produced from both ends. Colony reached 30 mm in 4 weeks at 26°C on PDA media, circular, flat, surface rough, grey from above, brown from below, edge entire.

Notes: The morphological characteristics of *Distoseptispora bambusae* match well with the generic concept of *Distoseptispora* (Su et al. 2016). Multi-gene analyses showed that *D. bambusae* is a phylogenetically-distinct species, most closely related to *D. suoluoensis*, a species isolated from submerged wood in a freshwater habitat (Yang et al. 2018). *Distoseptispora bambusae* has shorter conidiophores (40–96 vs. 80–250 μm) and shorter conidia (45–74 vs. (65–) 80–125(–145) μm) than those of *D. suoluoensis* (Yang et al. 2018). Our two specimens of *D. bambusae* were similar in morphology, but polyblastic conidiogenous cells were observed from the Chinese specimen, while the Thai specimen has only monoblastic conidiogenous cells. These may be due to geographical differences and the different observation period. Although the two strains clustered together with short branches in the phylogenetic tree, comparisons of ITS sequences showed that there are 3 bp (base pair) differences without gaps between two strains and we identified them as the same species following the guidelines for species delineation proposed by Jeewon and Hyde (2016).

Etymology

Bambusae, referring to the host.
**Distoseptispora tectonae** Doilom & K.D. Hyde Fungal Diversity 81: 222 (2016)

- IndexFungorum 552223

**Material**

a. scientificName: *Distoseptispora tectonae*; class: *Sordariomycetes*; order: *Distoseptisporales*; family: *Distoseptisporaceae*; country: Thailand; stateProvince: Chiangrai; locality: Mae Fah Luang University, Botanical Garden; verbatimElevation: 390 m; catalogNumber: MFLU 20–0262

**Description**

_Saprobic_ on stems of dead wood. **Sexual morph:** Unknown. **Asexual morph:** Hyphomycetous (Fig. 3). _Colonies_ effuse, brown to dark brown, hairy. _Mycelium_ mostly immersed, composed of brown, septate, branched hyphae. _Conidiophores_ macronematous, mononematous, septate, single or in groups of two, straight or slightly flexuous, cylindrical, dark brown, 34–95 × 5–8 μm (x̄ = 61.5 × 6 μm, n = 15). _Conidiogenous cells_ integrated, terminal, monoblastic, cylindrical, brown. _Conidia_ acrogenous, solitary, straight or slightly flexuous, rostrate, 11–23-distoseptate, differently constricted at the septa, thick-walled, truncate at the base, tapering towards apex, brown at the base, pale brown at the apex, 89–176 μm long (x̄ = 121 μm, n = 25), 12–19 μm at the widest (x̄ = 15 μm, n = 25).

![Distoseptispora tectonae](http://example.com/dt.png)

Figure 3. *Distoseptispora tectonae* (MFLU 20–0262). a. Colonies on natural substrate; b. Conidiogenous cell; c–e. Conidiophores and conidia; f–i. Conidia; j. Germinating conidium. Scale bars: b = 10 μm, a, c–j = 50 μm.
Culture characteristics: Conidia germinated on PDA within 12 hours and germ tubes were produced from both ends. On PDA, colony circular, reaching 40 mm diam after 4 weeks at 26°C, brown from above, dark brown from below, surface flat and slightly rough, edge entire.

Notes: *Distoseptispora tectonae* was introduced by Hyde et al. (2016), from a terrestrial habitat in Thailand. *Distoseptispora tectonae* has macronematous, cylindrical, septate conidiophores, monoblastic, integrated, terminal, cylindrical conidiogenous cells and obclavate, straight or slightly curved, septate, smooth conidia. Our collection was also from Thailand. The morphological characters of our collection are the same as in the holotype, except that our isolate has longer and wider conidiophores (34–95 × 5–8 μm vs. up to 40 × 4–6 μm) and less septa (11–23 vs. 20–28), compared to those of *D. tectonae* MFLUCC 12–0291. In this study, we also provide new sequences for *D. tectonae*.

Figure 4. Maximum Likelihood (RAxML) tree, based on analysis of a combined dataset of LSU, ITS and RPB2 sequence data. Bootstrap support values for ML and MP greater than 75% and Bayesian posterior probabilities greater than 0.95 are given near nodes, respectively. The tree is rooted with *Aquapteridospora fusiformis* (MFLU 18–1601) and *A. lignicola* (MFLUCC 15–0377). The ex-type strains are indicated in bold and the new isolates are in red.
Analysis

Partial nucleotide sequences of the LSU, ITS and RPB2 were used to determine the phylogenetic position of the taxa isolated. Sequences of 47 strains retrieved from GenBank, representing species of *Distoseptispora* and two outgroups *A. fusiformis* (MFLU 18–1601) and *A. lignicola* (MFLUCC 15–0377), were analysed. Single gene analyses were done to compare the topologies and clade stabilities, respectively. Nucleotide substitution models were selected by jModelTest2 on XEDE (Drummond et al. 2012). For the ITS and RPB2 dataset, the GTR+I+G model was selected, for LSU, the TIM2+I+G. The manually-adjusted LSU, ITS and RPB2 alignment comprised a total of 2,246 characters (768 for LSU; 436 for ITS; 1,042 for RPB2), including coded alignment gaps. Amongst them, 1,471 characters were constant, 195 variable characters were parsimony-uninformative and number of parsimony-informative characters was 580. One thousand equally most parsimonious trees (Tree length = 1799, CI = 0.640, RI = 0.733, RC = 0.469, HI = 0.360) were yielded from the heuristic search. MP, ML and Bayesian analyses of the combined dataset inferred similar topologies, respectively. The "most likelihood" tree is presented (Fig. 4).

In the phylogenetic analyses, generated by ML, MP and BI analysis, the two *Distoseptispora bambusae* isolates clustered with strong support (80%, 92%, 0.97). They formed a sister clade with *D. suluoensis* with high support (95%, 94%, 0.95). Our isolate *D. tectonae* (MFLUCC 20–0090) grouped with *D. tectonae* (MFLUCC 12–0291) with strong ML, MP and BI support (96%, 80%, 0.97), indicating they are the same species.

Discussion

In this study, two collections from China and Thailand, representing a new *Distoseptispora* species, is introduced, based on morphology and phylogenetic analysis. The two samples were both found on bamboo from terrestrial habitats. It is the fourth species found from medicinal plants. The other three are *D. palmarum*, *D. thailandica* and *D. xishuangbannaensis* (Tibpromma et al. 2018, Hyde et al. 2019).

*Distoseptispora* species does not seem to have specific habitat preferences. Most of them are reported from submerged wood in freshwater habitats, while some species have been introduced from terrestrial habitats (Luo et al. 2018, Tibpromma et al. 2018, Hyde et al. 2019, Luo et al. 2019, Phookamsak et al. 2019). So far, *Distoseptispora* were only found in China and Thailand. They may exist in other countries, waiting to be discovered on the basis of their diverse habitats.

The asexual morph of *Distoseptispora* is similar to *Sporidesmium* in producing holoblastic, euseptate or distoseptate conidia and blastic, terminal conidiogenous cells (Shenoy et al. 2006, Luo et al. 2018, Yang et al. 2018). Sexual morphs of *Distoseptispora* have not been reported.
Acrodictys martini was transferred to Distoseptispora as D. martini by Xia et al. (2017), based on their phylogenetic analysis. However, this species morphologically resembles Acrodictys rather than Distoseptispora. Therefore, the molecular data of Distoseptispora martini may need further verification (Luo et al. 2018).

It is interesting to note that, in most species of Distoseptispora, the conidia are longer than their conidiophores, while in some, they are shorter than their conidiophores. However, this characteristic does not reflect their phylogenetic position. For example, D. obpyriformis Z.L. Luo & H.Y. Su, a species that has long conidia and short conidiophores and D. rostrata Z.L. Luo, K.D. Hyde & H.Y. Su that has longer conidiophores, but shorter conidia, form a sister clade in the phylogenetic tree.

Acknowledgements

This research is supported by the following projects: National Natural Science Foundation of China (No. 31972222, 31560489), Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023), Science and Technology basic work of MOST [2014FY120100], Talent project of Guizhou Science and Technology Cooperation Platform ([2017]5788-5 and [2019]5641) and Guizhou Science, Technology Department International Cooperation Basic project ([2018]5806), Construction Program of Biology First-class Discipline in Guizhou (GNYL[2017]009), Guizhou University cultivation project [2017]5788-33, Science and technology major project of Guizhou Province ([2019]3005). We would like to thank Dr. Eric H. C. McKenzie for suggestions on the morphology and Dr. Shaun Pennycook for checking the nomenclature. Kevin D. Hyde would thank the Thailand Research grants entitled “Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion” (grant no: RDG6130001).

References

- Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (15): 1972-1973. https://doi.org/10.1093/bioinformatics/btp348
- Chernomor O, Von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65 (6): 997-1008. https://doi.org/10.1093/sysbio/syw037
- Chomnunti P, Hongesan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu JC, Liu XZ, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66: 1–36. https://doi.org/10.1007/s13225-014-0278-5
- Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, Carnegie AJ, Moreno G, Luangsara-Ard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger JM, Bessette AE, Bessette AR, Delapeña-Lastra S, García D, Gené J, Pham THG, Heykoop M, Malysheva E, Malysheva V, Martín MP, Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tasanathai K, Visagie CM, Adamčík S, Alves A, Andrade JP, Aninat MJ, Araújo RVB, Bordallo JJ, Bouffleur T, Baroncelli R, Barreto
DW, Bolin J, Cabero J, Cabo M, Cafà G, Caffot MLH, Cai L, Carlavilla JR, Chávez R, Decastro RRL, Delgat L, Deschuyteneer D, Dios MM, Domínguez LS, Evans HC, Eyssartier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Durán C, Glienke C, Gonçalves MFM, Gryta H, Guarro J, Himiman W, Hywel-Jones N, Iturrieta-González I, Ivanushkina NE, Jargeat P, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolařík M, Kubátová A, Lodge DJ, Loizides M, Luque D, Manjón JL, Marbach PAS, Massolajir NS, Mata M, Miller AN, Mongkolsamrit S, Moreau PA, Morte A, Mujic A, Navarro-Rödenas A, Németh MZ, Nóbrega TF, Nováková A, Olariaga I, Özerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodríguez A, Requejo Ó, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklenář F, Smith JA, Sousa JO, Souza HG, Desouza JT, Švec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpipattana D, Torres-Garcia D, Vaca I, Vaghefi N, van Iperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC, Zapata M, Jurjević Ž, Groenewald JZ (2019) Fungal Planet description sheets: 951–1041. Persoonia 43: 223–425. https://doi.org/10.3767/persoonia.2019.43.06

- Dai DQ, Phookamsak R, Wijayawardene NN, Li WJ, Bhat DJ, Xu JC, Taylor JE, Hyde KD, Chukeatirote E (2017) Bambusicolous fungi. Fungal Diversity 82 (1): 1-105. https://doi.org/10.1007/s13225-016-0367-8

- Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9 (8): 772-772. https://doi.org/10.1038/nmeth.2109

- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29 (8): 1969-1973. https://doi.org/10.1093/molbev/mss075

- Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42 (2): 182-192. https://doi.org/10.1093/sysbio/42.2.182

- Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti P, Cui BK, Dissanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Góes-Neto A, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li WJ, Lin CG, Liu JK, Lu YZ, Luo ZL, Manawasinghe IS, Manimohran M, Mapook A, Niskanen T, Norphanphoun C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, de A Santiago ALCM, Drechsler-Santos ER, Senanayake IC, Tanaka K (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1-270. https://doi.org/10.1007/s13225-016-0373-x

- Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SSN, Rossi W, Leonardi M, Lee HB, Mun HY, Houbraken J, Nguyen TTT, Jeon SJ, Frisvad JC, Wanasinghe DN, Lücking R, Aptroot A, Cáceres MES, Karunarathna SC, Hongsanan S, Phookamsak R, de Silva NI, Thambugala KM, Jayawardena RS, Senanayake IC, Boonmee S, Chen J, Luo ZL, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AWC, Bart B, Randrianjohany E, Hofstetter V, Gibertoni TB, Soares AMdS, Plautz HL, Sotão HMP, Xavier WKS, Bezerra JDP, de Oliveira TGL, de Souza-Motta CM, Magalhães OMC, Bundhun D, Harishchandra D, Manawasinghe IS, Dong W, Zhang SN, Bao DF, Samarakoon MC, Pem D, Karunarathna A, Lin CG, Yang J, Perera RH, Kumar V, Huang S, Dayaratne MC, Ekanayaka A, Jayasiri SC, Xiao YP, Konta S, Niskanen T,
Liimatainen K, Dai Y, Ji XH, Tian XM, Mešić A, Singh SK, Phutthacharoen K, Cai L, Sorvongxay T, Thiagaraja V, Norphanphoun C, Chiwan N, Lu YZ, Jiang HB, Zhang JF, Abeywickrama PD, Aluthmuhandiram JVS, Brahmanage RS, Zeng M, Chethana T, Wei DP, Rěblová M, Fournier J, Nekvindová J, do Nascimento Barbosa R, dos Santos JEF, de Oliveira NT, Li GJ, Ertz D, Shang QJ, Phillips AJL, Kuo CH, Camporesi E, Bulgakov TS, Lumyong S, Jones EBG, Chomnunti P, Gentekaki E, Bungartz F, Zeng XY, Fryar S, Tkáčec Z, Liang JM, Li GS, Wen TC, Singh PN, Gafforov Y, Promptputha I, Yasanthika E, Goonasekara ID, Zhao RL, Zhao Q, Kirk PM, Liu JK, Yan JY, Mortimer PE, Xu JC, Doilom M (2019) Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96: 1-242. https://doi.org/10.1007/s13225-019-00429-2

• Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chiwan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarthana A, Konta S, Kumar V, Lin CG, Liu JK, Liu NG, Luangs-aard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie EHC, Niego AGT, Niraman J, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM (2020) Refined families of Sordariomycetes . Mycosphere 11 (1): 305-1059. https://doi.org/10.5943/mycosphere/11/1/7

• Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarthana SC, Liu JK, Luangs-aard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo JM, Ghobad-Nejad M, Nilsson H, Pang KL, Pereira OL, Phillips AJL, Raspé O, Rollins AW, Romero AI, Etayo J, Selçuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen TC, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li WJ, Perera RH, Phookamsak R, de Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q, Kang JC, Promptputha I (2015) The faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3-18. https://doi.org/10.1007/s13225-015-0351-8

• Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7 (11): 1669-1677. https://doi.org/10.5943/mycosphere/7/11/4

• Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772-780. https://doi.org/10.1093/molbev/mst010

• Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30 (22): 3276-3278. https://doi.org/10.1093/bioinformatics/btu531

• Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16 (12): 1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

• Luo ZL, Hyde KD, Liu JK, Bhat DJ, Bao DF, Li WL, Su HY (2018) Lignicolous freshwater fungi from China II: Novel Distoseptispora (Distoseptisporaceae) species from
Luo ZL, Hyde KD, Liu JK, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, Liu NG, Lu YZ, Jayawardena RS, Li JF, Su HY (2019) Freshwater Sordariomycetes. Fungal Diversity 99 https://doi.org/10.1007/s13225-019-00438-1

Miller MA, Pfefllwer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In, Proceedings of the 2010 gateway computing environments workshop (GCE), New Orleans, Louisiana. 7 pp. https://doi.org/10.1109/GCE.2010.5676129

Nguyen L, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268-274. https://doi.org/10.1093/molbev/msu300

Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Gareth Jones E, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei DP, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Raj KNA, Latha KPD, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas B, Mada, Jadan M, Martín MP, Samarakocon MC, Dayaratne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NJ, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, SIngh SK, Vedtthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo Z, Daranagama DA, Thambugala KM, Tippomma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu JC (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95: 1-273. https://doi.org/10.1007/s13225-019-00421-w

Rambaut A (2009) FigTree: Tree figure drawing tool, version 1.4.4. Institute of Evolutionary Biology, University of Edinburgh.

Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. URL: http://tree.bio.ed.ac.uk/software/tracer/

Rehner SA, Samuels GJ (1995) Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Canadian Journal of Botany 73 (S1): 816-823. https://doi.org/10.1139/b95-327

Shenoy BD, Jeewon R, Wu WPP, Bhat DJ, Hyde KD (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycological Research 110: 916-928. https://doi.org/10.1016/j.mycres.2006.06.004

Stadler T (2009) On incomplete sampling under birth–death models and connections to the sampling-based coalescent. Journal of Theoretical Biology 261 (1): 58-66. https://doi.org/10.1016/j.jtbi.2009.07.018

Su HY, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA, Luo ZL, Promputtha I, Tian Q, Lin CG, Shang QJ, Zhao YC, Chai HM, Liu XY, Bakhali AH, Bhat JD, McKenzie EHC, Zhou DQ (2016) The families Distoseptisporaceae fam. nov.,
Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province, China. Fungal Diversity 80: 375-409. https://doi.org/10.1007/s13225-016-0362-0

- Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0 b10. MA: Sinauer Associates, Sunderland, UK.
- Tibpromma S, Hyde KD, McKenzie EHC, Bhat DJ, Phillips AJL, Wanasinghe DN, Samarakoon MC, Jayawardena RS, Dissanayake AJ, Tennakoon DS, Doilom M, Phookamsak R, Tang AMC, Xu JC, Mortimer PE, Promputtha I, Maharachchikumbura SSN, Khan S, Karunarathna SC (2018) Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae . Fungal Diversity 93: 1-160. https://doi.org/10.1007/s13225-018-0408-6
- Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171-180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
- White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Academic Press, 18. 315-322 pp. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Xia JW, Ma YR, Li Z, Zhang XG (2017) Acrodictys-like wood decay fungi from southern China, with two new families Acrodictyaceae and Junewangiaceae . Scientific Reports 7 https://doi.org/10.1038/s41598-017-08318-x
- Yang J, Maharachchikumbura SSN, Bhat DJ, McKenzie EHC, Bahkali AH, Jones EBG, Liu ZY (2015) Aquapteridospora ligincola gen. et sp. nov., a new hyphomycetous taxon
(Sordariomycetes) from wood submerged in a freshwater stream. Cryptogamie, Mycologie 36 (4): 469-478. [https://doi.org/10.7872/crym/v36.iss4.2015.469](https://doi.org/10.7872/crym/v36.iss4.2015.469)

- Yang J, Maharachchikumbura SSN, Liu JK, Hyde KD, Jones EBG, Al-Sadi AM, Liu ZY (2018) *Pseudostanjehughesia aquitropica* gen. et sp. nov. and *Sporidesmium sensu lato* species from freshwater habitats. Mycological Progress 17: 591-616. [https://doi.org/10.1007/s11557-017-1339-4](https://doi.org/10.1007/s11557-017-1339-4)