Clinical and laboratory-induced colistin-resistance mechanisms in *Acinetobacter baumannii*

Christine J. Boinett,1,2,3 Amy K. Cain,1,4 Jane Hawkey,5,6,7 Nhu Tran Do Hoang,2 Nhu Nguyen Thi Khanh,8 Duy Pham Thanh,2 Janina Dordel,1,9 James I. Campbell,2,3 Nguyen Phu Huong Lan,2,10 Matthew Mayho,1 Gemma C. Langridge,1,11 James Hadfield,1 Nguyen Van Vinh Chau,10 Guy E. Thwaites,2,3 Julian Parkhill,1 Nicholas R. Thomson,1,12 Kathryn E. Holt5,6 and Stephen Baker2,3,13,*

Abstract

The increasing incidence and emergence of multi-drug resistant (MDR) *Acinetobacter baumannii* has become a major global health concern. Colistin is a historic antimicrobial that has become commonly used as a treatment for MDR *A. baumannii* infections. The increase in colistin usage has been mirrored by an increase in colistin resistance. We aimed to identify the mechanisms associated with colistin resistance in *A. baumannii* using multiple high-throughput-sequencing technologies, including transposon-directed insertion site sequencing (TraDIS), RNA sequencing (RNAseq) and whole-genome sequencing (WGS) to investigate the genotypic changes of colistin resistance in *A. baumannii*. Using TraDIS, we found that genes involved in drug efflux (*ade*UK), and phospholipid (m*laC*, m*laF* and m*laD*) and lipo polysaccharide synthesis (lpc*c* and lpc*O*) were required for survival in sub-inhibitory concentrations of colistin. Transcriptomic (RNAseq) analysis revealed that expression of genes encoding efflux proteins (*ade*, *adeC*, *emrB*, *mexB* and *macAB*) was enhanced in *in vitro* generated colistin-resistant strains. WGS of these organisms identified disruptions in genes involved in lipid A (lpc*c*) and phospholipid synthesis (m*laA*), and in the *baeS/R* two-component system (TCS). We additionally found that mutations in the *pmrB* TCS genes were the primary colistin-resistance-associated mechanisms in three Vietnamese clinical colistin-resistant *A. baumannii* strains. Our results outline the entire range of mechanisms employed in *A. baumannii* for resistance against colistin, including drug extrusion and the loss of lipid A moieties by gene disruption or modification.

DATA SUMMARY

1. The PacBio (Pacific Biosciences) sequence data and assembly for BAL062 can be found at the European Nucleotide Archive (ENA) under accession numbers: ERR581111 and ERR581112, ERR585112 (www.ebi.ac.uk/ena).
2. Genome BAL062 has been deposited in GenBank under accession numbers LT594095 (chromosome) and LT594096 (plasmid) (url: www.ebi.ac.uk/ena/data/view/LT594095 and www.ebi.ac.uk/ena/data/view/LT594096).
3. RNA sequencing, transposon-directed insertion site sequencing and whole-genome sequencing data is available at the ENA (www.ebi.ac.uk/ena) under the study accession numbers detailed in Table S1 (available with the online version of this article).

Received 16 August 2018; Accepted 29 November 2018; Published 5 February 2019

Author affiliations: 1Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK; 2Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; 3Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK; 4Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; 5Centre for Systems Genomics, University of Melbourne, Melbourne, Victoria, Australia; 6Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia; 7Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia; 8School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia; 9Department of Biology, Drexel University, Philadelphia 19104, PA, USA; 10Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; 11Norwich Medical School, University of East Anglia, Norwich, UK; 12Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; 13Medicine, The University of Cambridge, Cambridge, UK.

*Correspondence: Stephen Baker, sbaker@oucru.org

Keywords: *Acinetobacter baumannii*; colistin resistance; multi-drug resistance; RNAseq; TraDIS; whole-genome sequencing.

Abbreviations: BAL, bronchoalveolar lavage; ENA, European Nucleotide Archive; GC2, global clone 2; IS, insertion sequence; log, FC, log2 fold-change; LOS, lipopolysaccharide; MDR, multi-drug resistant; MIC, minimum inhibitory concentration; OM, outer membrane; PacBio, Pacific Biosciences; RNA-seq, RNA sequencing; SNP, single-nucleotide polymorphism; TCS, two-component system; TraDIS, transposon-directed insertion site sequencing; VAP, ventilator-associated pneumonia; WGS, whole-genome sequencing.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Eight supplementary tables and one supplementary figure are available with the online version of this article.
INTRODUCTION
The incidence of healthcare-acquired infections caused by multi-drug resistant (MDR) and pan-drug resistant Acinetobacter baumannii has increased dramatically in recent years [1]. With limited alternative treatment strategies available, there has been an increasing use of the polymyxin antimicrobial, colistin, an older generation last-line antimicrobial that is frequently used alone or in combination with tigecycline, carbapenems or rifampicin [2–4]. Despite the use of combination therapy, the incidence of heteroresistance and complete resistance to colistin (colR) alone has been frequently reported in clinical isolates of A. baumannii, and can result in treatment failure [5, 6].

In vivo and in vitro studies of A. baumannii have identified two main genetic mechanisms for the induction of colR: (i) lipooligosaccharide (LOS) modification through the acquisition of single-nucleotide polymorphisms (SNPs) in pmrAB; or (ii) the complete loss of the LOS owing to SNPs in genes encoding lipid A biosynthesis genes lpxA, lpxC and lpxD [7]. Alteration or loss of the LOS results in the reduction of the net negative charge of the LOS; thus, decreasing the affinity between colistin and the cell membrane [8–11]. Insertion sequence (IS) elements, such as ISAba1 and ISAba11, have also been associated with the development of colR via the disruption of genes in the lpx gene cluster [12, 13].

Here, we aimed to gain insight into the genetic mechanisms associated with colR in A. baumannii isolates from Vietnam. This type of study is essential for cataloguing the various mechanisms associated with the development of antimicrobial resistance in A. baumannii in clinical and in vitro generated colR mechanisms. This is particularly relevant given the different forms of colistin used clinically, such as colistin methanosulphate for therapy and colistin sulphate for selective decontamination of the gastrointestinal tract [14]. Previous studies have utilized genomic and transcriptomic analysis of in vivo and in vitro induced colR mutants to determine mechanisms associated with resistance; however, genome-wide high-throughput mutagenesis has not been conducted. In this study, we used a colistin susceptible (colS) A. baumannii strain (BAL062) to generate a mutant library to assay for genes required for survival in sub-inhibitory concentrations of colistin. Additionally, we used a controlled directed-evolution approach to generate a colR variant from a colistin-susceptible MDR A. baumannii isolated from a patient with ventilator-associated pneumonia (VAP) on an adult intensive care unit in a Vietnamese hospital to investigate the genetic and transcriptional changes in the colR cultures [15]. We additionally performed whole-genome sequencing (WGS) on three clinical VAP colR A. baumannii isolated between 2012 and 2013 from the same ward to assess the mechanisms and relation, if any, to in vitro-derived colR A. baumannii.

METHODS
All four MDR organisms used in this study were collected as part of a larger study investigating the aetiology of VAP at the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam, in 2009 [16]. These organisms, BAL062, BAL505, BAL546 and BAL719, were isolates from bronchoalveolar lavage (BAL). BAL062 (colS) [17] was used to generate the transposon library and also to generate a colR variant for the RNA sequencing (RNAseq) experiments. BAL505, BAL546 and BAL719 were all determined to be clinically colR by disc diffusion [16] and were selected for WGS.

Susceptibility testing
Minimum inhibitory concentrations (MICs) were determined by the broth dilution method according to methods described elsewhere [18]. MICs were interpreted according to Clinical and Laboratory Standards Institute guidelines [19].

Inducing colistin resistance
Duplicate cultures (C1 and C2) were subjected to serial daily passage on Mueller–Hinton (MH) agar (Oxoid) plates with increasing concentrations (double dilutions) of colistin (1–128 mg l⁻¹; Sigma-Aldrich) until the cultures were able to grow in 128 mg colistin l⁻¹ (MIC >128 mg l⁻¹), i.e. ‘end-point’. The endpoints for C1 and C2 were day 6 and day 5, respectively. Briefly, approximately 10⁶ c.f.u. were resuspended in 100 µl PBS (0.9 %) and 3 µl was spotted onto agar plates with increasing concentrations of colistin sulphate ranging from 1 to 128 mg l⁻¹ (serial dilutions) and incubated overnight at 37 °C. Colonies (>20 colonies) were taken from the plate with the highest concentration of colistin sulphate from each culture (C1/C2) and resuspended in 100 µl
0.9 % PBS, which was used to inoculate a fresh batch of plates containing colistin. This procedure was repeated for the duration of the experiment (5/6 days) until the defined endpoint. At key time points, day 0 (WT), at 32 mg colistin \(\text{L}^{-1} \), midpoint (64 mg colistin \(\text{L}^{-1} \)) and endpoint (128 mg colistin \(\text{L}^{-1} \)), 10 \(\mu \text{L} \) cell suspension was used to inoculate 10 ml fresh MH broth (Oxoid) and cultures were incubated at 37 °C with agitation. RNA and DNA were extracted at mid-log phase and after overnight incubation for RNAseq and WGS, respectively. No 32 mg colistin \(\text{L}^{-1} \) time point was collected for C2, as it achieved midpoint col\(^R \) after one serial passage.

PacBio (Pacific Biosciences) sequencing of BAL062

Genomic DNA was sequenced using the PacBio RSII sequencer (PacBio), as previously described [20]. This yielded >65 094 individual reads with an \(N_{50} \) of 8.8 kb (post-filtering), generating at least 100× coverage. \textit{De novo} assembly of the resulting reads was performed using HGAP.3 (PacBio). The genomes were annotated with Prokka [21] and set to start at \(\text{dnaA} \). The sequence data and assembly can be found in the European Nucleotide Archive (ENA) under accession numbers ERR581111 and ERR581112, and (chromosome) LT594095 and (plasmid) LT594096.

WGS

DNA was sequenced on an Illumina MiSeq or HiSeq2000 (Illumina) using a method described elsewhere [22]. These data have been deposited in the ENA (Table S1). The clinical isolates were mapped onto the \textit{A. baumannii} GC2 (global clone 2) 1652–2 reference genome (GenBank accession no. CP001921.1), as with previous VAP and carriage isolates [15], to identify SNPs using a previously described method [23]. Accession numbers for the VAP and carriage isolates are shown in Table S2. SNPs in the \(\text{pmlr} \) locus were confirmed by Sanger sequencing (Table 3) using the primers detailed in Table S3. Reads from the \textit{in vitro} col\(^R \) generated organism were mapped to a complete genome sequence of BAL062. SNPs were determined as previously described using the RedDog mapping pipeline (https://github.com/katholt/RedDog) [15]. To identify regions disrupted by IS elements, the BAL062 reference genome was annotated using ISSaga (www.is.biotoul.fr/) to identify ISs for screening with ISMapper [24].

Transcriptomics and differential expression analysis

RNA was extracted from the initial, midpoint and endpoint C1 and C2 cultures at OD\(_{600} \) 0.5+/−0.05 using a modified phenol/chloroform extraction protocol [25]. Ribosomal RNA was depleted using a Ribo-Zero Magnetic kit (Epigenome Biotechnologies). The libraries were prepared using the TruSeq Illumina protocol and sequenced on an Illumina HiSeq2000 platform. Reads were mapped onto the BAL062 reference using SMALT v0.7.4 and the resulting mapped reads were used for differential expression analysis, which was performed using DESeq (v. 1.8.2) [26]. Read counts from the col\(^R \) cultures, grown in the presence (64 or 128 mg\(\text{L}^{-1} \)) or absence of colistin, were compared to the colistin-naïve initial culture to determine the genes with altered expression during col\(^R \). In addition, the initial colistin-naïve culture was compared to the BAL062 reference to remove genes with differential expression in response to ageing on solid media. Genes with a \(\log_2 \) fold-change (\(\log_2 \text{FC} \)) of >1.5 (increased expression) or a \(\log_2 \text{FC} \leq 1.5 \) (decreased expression) and a \(q \) value <0.05 were considered in this analysis.

Transposon mutant library generation and sequencing

The transposon mutant library in WT BAL062 was generated using an EZ\(\text{TN} \)5 transposon containing a kanamycin-resistance cassette (Epigenome Biotechnologies), as described previously [27]. The colony number was estimated and cells batch pooled as described in [28] to yield a total of 600 000 cells in the library. For the experiment, approximately \(1 \times 10^9 \) cells were inoculated into 10 ml MH broth containing 0.05 mg colistin sulphate \(\text{L}^{-1} \) (1/10th MIC; Sigma-Aldrich) and incubated overnight in a shaking incubator at 37 °C. The control did not contain colistin and experimental conditions were assessed in duplicate. The culture was serially passaged, taking 100 \(\mu \text{L} \) and inoculating 10 ml fresh broth with the same amount of colistin or none for the control. After an overnight incubation, DNA was extracted from 2 ml culture using the Wizard genomic DNA purification protocol (Promega) and sequenced as previously described [29].

Analysis of transposon-directed insertion site sequencing (TraDIS) data

TraDIS sequence analysis was performed as previously described [29, 30]. Significant differences in mutant frequencies between the colistin-exposed library and the control were determined by using the edgeR package [31]. Only genes with a fold-change (\(\log_2 \text{FC} \)) of >2 were considered and a corrected \(P \) value (\(q \) value, Benjamini Hochberg, of <0.05). Table S4 shows the insertion frequency results of the base library used in all challenge experiments.

Recombination testing

We reconstructed a phylogenetic tree (midpoint rooted) of the col\(^R \) organisms and a subset of isolates from VAP (\(n=50 \)) and asymptomatic carriage (\(n=16 \)) from a previously reported study [16] using RAxML v7.8.6 with the GTRGAMMA model [32] and putative recombination blocks were predicted using gubbins, as previously described [33]. Results were viewed using Phandango (http://james-hadfield.github.io/Phandango/)[34].

RESULTS AND DISCUSSION

Intrinsic mediators of colistin resistance in \textit{A. baumannii}

We used a TraDIS screen to investigate the intrinsic mediators of col\(^R \) by exposing a col\(^S \) \textit{A. baumannii} transposon library to a sub-inhibitory concentration of colistin. High-throughput transposon mutagenesis
methods, such as TraDIS, have been commonly used to assay for essential genes and genes required for survival in a given experimental condition (reviewed in [35]). We constructed a Tn5 library in a GC2 isolate, BAL062, from a patient with VAP. The library consisted of >115,000 unique mutants (roughly 1 insertion every 35 bp). We sequenced the base library and identified >115,000 unique mutants (roughly 1 insertion every 445 bp). We sequenced the base library and identified 445 essential genes (Table S4) that had an insertion index \(\leq 0.0047 \), accounting for \(\sim 12\% \) of the genome. This base library was used in all subsequent TraDIS experiments in the presence or absence (control) of colistin sulphate (0.5 mg L\(^{-1}\)). Candidate genes required for colistin tolerance (where mutants are lost under the experimental conditions) or those whose loss is beneficial in the presence of colistin (where mutants expand under the experimental conditions) were determined as previously described [28, 29]. We identified 22 candidate genetic loci that were required for colistin tolerance (Table 1). The identified loci included genes that were directly involved in LOS synthesis (\(\text{lpxO and lpsC} \)) and peptidoglycan synthesis (\(\text{mlaC} \)).

Table 1. \textit{A. baumannii} genes involved in colistin tolerance identified by TraDIS

Locus tag	Gene name	Predicted function	\(\text{log}_2 FC \)	\(q \) value
BAL062_00718	Hypothetical protein			
BAL062_00584	Glycosyltransferase, uncharacterized protein conserved in bacteria			
BAL062_00901	sigX	RNA polymerase factor sigma-70		
BAL062_00589	Glycosyltransferase involved in LOS biosynthesis			
BAL062_03855	tuaD,1	Udg/UDP-glucose 6-dehydrogenase		
BAL062_03869	tuaD,2	UDP-glucose/GDP-mannose dehydrogenase		
BAL062_03850	manB	Phosphomannomutase		
BAL062_00588	Hypothetical protein			
BAL062_00587	UDP-\(\beta \)-galactose: (glucosyl)lip polysaccharide-1,6-\(\beta \)-galactosyltransferase, glycosyl transferases group 1			
BAL062_00586	lpsC	Lipopolysaccharide core biosynthesis glycosyl transferase, glycosyl transferase family 2		
BAL062_00584	pgi	Glucose-6-phosphate isomerase		
BAL062_00585	galU	UTP-glucose-1-phosphate uridylyltransferase		
BAL062_03481	mfpsA	Lipopolysaccharide 1.2-N-acetylglucosaminetransferase, glycosyl transferases group 1		
BAL062_01632	rseP	Putative membrane-associated Zn-dependent proteases 1		
BAL062_03605	lpxO	\(\beta \)-Hydroxylase, aspartyl/asparginyl \(\beta \)-hydroxylase		
BAL062_03853	galE,2	UDP-glucose 4-epimerase		
BAL062_00384	mlaC	Toluene tolerance protein (Tig2D)/mlaC		
BAL062_01261	mrcB	Murine polymerase, penicillin-binding protein 1B		
BAL062_00383	ttc2C	Toluene tolerance efflux transporter (ABC superfamily)/mlaD		
BAL062_00588	icaB	Putative polysaccharide deacetylase, poly-\(\beta \)-1,6-N-acetyl-\(\beta \)-glucosamine \(N \)-deacetylase precursor,		
BAL062_00581	tto2A	Toluene tolerance efflux transporter (ABC superfamily)/mlaF		
BAL062_03783	guaA,3	GMP synthase, GMP synthase [glutamine-hydrolysing]		
BAL062_03861	lst	Putative polysaccharide biosynthesis protein, glycosyltransferase family 52		
BAL062_02787	Hypothetical protein			
BAL062_03154	ligA	DNA ligase		
BAL062_03033	Hypothetical protein			
BAL062_01328	TetR family transcriptional regulator, transcriptional regulator Betl, transcriptional repressor			
BAL062_01331	Protein CsuB, uncharacterized secreted protein, spore coat protein U domain			
BAL062_01669	Glycolate/propanediol utilization protein, hypothetical protein, domain of unknown function (DUF336)			
BAL062_01330	Protein CsuA, uncharacterized secreted protein			
BAL062_00718	Protein CsuA/B, uncharacterized secreted protein, spore coat protein U domain			
BAL062_01333	caf1A	Protein CsuD, F1 capsule-anchoring protein precursor, fimbrial outer-membrane usher protein PeCf, fimbrial usher protein		
BAL062_01332	P pilus assembly protein, chaperone PapD, putative chaperone protein EcpD, Gram-negative pili assembly chaperone, N-terminal domain			
identified in transposon mutagenesis studies as being important for LOS synthesis [36]. Notably, sigX in *Bacillus subtilis* has been shown to be involved in modifying the cell envelope and conferring resistance to cationic antimicrobial peptides [37]. Additionally, a recent study using TraDIS to investigate candidate genes involved in colistin resistance identified multiple genes involved in membrane biogenesis and cellular integrity as important for colistin tolerance [38].

Candidate genes involved in maintaining cell-surface lipid symmetry [39] were also amongst those that we identified to be required for tolerance to colistin, including *ttg2D/mlaC, ttg2A/mlaF* and *ttg2C/mlaD* (Table 1). Other genes within the *mla* locus were just below the stringent log_{FC} ≤ 2 (*q* value < 0.05) cut-off for genes required for tolerance (Table S5). Previous studies have found that the *mlaBCD* genes are upregulated in col^R^ *A. baumannii* strains lacking LOS [40] and deletion of any component of the Mla pathway results in outer-membrane (OM) instability [39]. These data highlight the critical role of maintaining the lipid component and stability of the OM in colistin-susceptible organisms in *A. baumannii*.

Candidate genes that were thought to contribute to colistin susceptibility (i.e. the disruption of genes beneficial for survival in the presence of colistin) included putative pilus assembly genes (BAL062_01329, *caf1A* and BAL062_01332) and a gene encoding a TetR family protein (BAL062_01328) with 99% DNA sequence similarity to *adeN*. Previous studies have reported a decrease in the expression of OM structures, such as pili, in response to disruption or damage of the OM that may act to limit membrane spanning surface structures to maintain cellular integrity [40]. AdeN is member of the TetR transcriptional repressor family and has been shown to regulate the expression of *adeIJK* efflux proteins [41], suggesting the involvement of efflux for survival in the presence of sub-inhibitory concentrations of colistin.

ISAbA1-mediated *mlaA, lpx* and *baeSR* gene disruption confers resistance to colistin

To determine the genetic changes in *in vitro* generated col^R^ organisms, two independent biological replicate cultures (C1 and C2) of *A. baumannii* BAL062 that achieved an MIC of > 64 mg l^−1^ (midpoint)/≥ 128 mg l^−1^ (endpoint) were subjected to WGS (Table 2). We detected multiple ISAbA1-mediated disruptions in the *lpxC* gene in the induced col^R^ organisms (C1 and C2) grown in media supplemented with 64 and 128 mg colistin l^−1^ (Table 2). The *lpxC* gene is almost ubiquitous across Gram-negative bacteria and is an essential component of the lipid-A biosynthesis pathway. Mutations in the *lpx* genes have previously been shown to confer resistance to colistin in *A. baumannii* [11–13]. We identified only two mutations in yet uncharacterized genes, −404 upstream of a putative OMP gene, BAL062_00181 and BAL062_01694 (Q212*); however, the effect of these mutations in col^R^ or as compensatory mutations requires further investigation.

We additionally observed the disruption of *mlaA* (a transmembrane protein) by ISAbA1 in both the C1 and C2 col^R^ (≥ 128 mg l^−1^) cultures (Table 2). MlaA is an OM lipoprotein of unknown function that has been previously implicated in col^R^ [39]. The disruption of *mlaA* by ISAbA1 suggests this protein contributes toward colistin tolerance. Mutations in this gene have also been observed previously in col^R^ *A. baumannii* [17]. However, this finding contradicts the results observed using TraDIS, where *mlaA* inactivation resulted in increased susceptibility. We hypothesize that maintaining cellular integrity is crucial for survival at low sub-inhibitory concentrations (as in the TraDIS experiments) and may be present in a mixed population (Fig. S1); however, once resistance is achieved (directed evolution experiments), the disruption of LOS synthesis, mediated by mutations in *lpx*, becomes the primary mechanism of resistance and *mlaA* becomes less critical as colistin can no longer bind to the negatively charged LOS polymer due to charge interactions. We hypothesize that this dynamic shift in resistance mechanisms at the different concentrations of colistin could be a novel col^R^ mechanism employed by *A. baumannii* associated with tolerance to colistin until full resistance is achieved.

The C1 and C2 midpoint cultures grown in the presence of 64 mg colistin sulphate l^−1^ additionally had ISAbA1 disruptions in *baeS* (C2) or *baeR* (C1). These loci constitute part

Table 2. ISAbA1-mediated disruptions in colistin-resistant BAL062-derived

Culture	Passage day	Colistin concn (mg l^−1^)	Further growth with colistin†	Further growth without colistin†
C1				
1	0	-	None	
2	32		None	
5	64	*lpxC* (572), *mlaA* (894)	*lpxC* (572), *lpxD* (828), *baeR* (159)	
6	128	*lpxC* (572), *mlaA* (894)	*lpxC* (572), *mlaA* (894), −404 upstream of OMP	
C2				
2	64	*lpxC* (572), *baeS* (1033), BAL062_01694 (Q212*)	None	
5	128	*lpxC* (523, 270), *mlaA* (561), BAL062_01694 (Q212*)	*lpxC* (523, 270), BAL062_01694 (Q212*)	

†Gene names indicate ISAbA1-disrupted genes and the amino acid positions are given in brackets. Q212* is the nonsense mutation at position 212 in BAL062_01694.
of a two-component system (TCS) involved in bacterial stress response and increased expression of multidrug efflux proteins [42–44]. We subjected the C1 culture (baeR disrupted) to RNAseq to investigate any changes in efflux. Surprisingly, we found a ~3- and ~5-fold increase in expression in macAB and adeABC efflux systems, respectively, in the presence of 64 mg colistin l⁻¹ (Fig. 1, Table S6). This is an unusual observation, and we can only hypothesize that other TCSs not yet characterized may be responsible for this observation. Another unexplained observation was the lack of genotypic changes that could account for the C1 culture able to grow in 32 mg colistin l⁻¹ (Table 2). This lack of fixation of a mutant population has previously been reported in a heteroresistant Klebsiella pneumoniae [45]. In a recent study, Band and colleagues [46] described a loss of col⁺ in one of the passage cultures (C2) when grown in 64 and 128 mg colistin l⁻¹. This loss of col⁺ was upstream of the active site (E270), and likely rendered this enzyme inactive. Zinc metalloproteases have been linked in antimicrobial peptide resistance in colistin resistant A. baumannii. Differentially expressed genes common to all colistin-resistant cultures (C1 and C2) grown in the presence of colistin (64 or 128 mg l⁻¹) or without selection compared to the day 0 BAL062 culture (WT). The heat map, obtained using values from DESeq2 analysis, excludes genes that were differentially expressed in the passaged BAL062 culture that was not exposed to any colistin. Blue colours indicate genes with higher expression relative to the comparator, red colours indicate lower expression.

Fig. 1. Transcriptional changes in *in vitro* generated colistin-resistant *A. baumannii*. Differentially expressed genes common to all colistin-resistant cultures (C1 and C2) grown in the presence of colistin (64 or 128 mg l⁻¹) or without selection compared to the day 0 BAL062 culture (WT). The heat map, obtained using values from DESeq2 analysis, excludes genes that were differentially expressed in the passaged BAL062 culture that was not exposed to any colistin. Blue colours indicate genes with higher expression relative to the comparator, red colours indicate lower expression.

Mutation in a zinc peptidase may provide an alternative colistin-resistance mechanism

We further observed a nonsense mutation (Q212) in a zinc peptidase (BAL062_01694) in one of the passage cultures (C2) when grown in 64 and 128 mg colistin l⁻¹. Zinc peptidases catalyse the cleavage of peptide bonds in a metal-dependent manner [47]. The nonsense mutation in col⁺ organisms occurred upstream of the active site (E270), and likely rendered this enzyme inactive. Zinc metalloproteases have been linked in antimicrobial peptide resistance in colistin resistance in *A. baumannii*.
Burkholderia spp. [48]. This mutation has previously been identified in a colR BAL062 strain and is thought to be involved in OM processing [17].

Mutations in the pmr locus confer colistin resistance in clinical isolates of A. baumannii

We investigated mechanisms of colR in three clinical A. baumannii strains. These organisms were isolated in late 2012 and early 2013 from patients treated with empirical low dose colistin (2.3 mg kg\(^{-1}\) per day). After repeated treatment failure, clinical specimens were taken and the isolates were subjected to WGS after they were found to be resistant to both colistin and meropenem. These three clinical isolates, BAL505, BAL543 and BAL719, had MIC values of 24, 16 and 64 mg colistin l\(^{-1}\), respectively. WGS indicated that all three isolates belonged to GC2, but harboured a large number of non-synonymous SNPs in pmrB relative to the colS GC2 1652–2 reference genome.

On further investigation, we observed that the genomes of two of the colR isolates (BAL505 and BAL543) exhibited evidence of substantial recombination with other co-circulating A. baumannii of approximately 700 kb in length with a total of 14,296 SNPs (Fig. 2) (Table S7). Recombination events are frequently reported in the capsule and outer core regions in MDR A. baumannii, and are thought to be an important source of diversification [49–51]. The putative recombinogenic region harboured the pmr locus, which explained the high number of SNPs. We conducted a BLASTN and BLASTP search to identify mutations that may confer a colR phenotype. We found BAL505 harboured a H266Y mutation in the histidine kinase domain of pmrB, whilst BAL543 and BAL719 harboured mutations at positions L94W and P170L (Table 3). The P170L mutation has previously been reported in a polymyxin-resistant A. baumannii clinical isolate [8], the other two mutations have not been observed previously in colR. Mutations in the pmrAB locus have previously been shown to confer colR in A. baumannii [7, 14, 52, 53].

Transcriptional analysis of in vitro generated colR strains

We compared genes that were differentially expressed between the two independent colR organisms in the presence and absence of colistin, midpoint and endpoint for C1 and endpoint for C2 (Tables S1 and S8). To rule out changes in expression as a result of passaging, we compared aged colonies to an independent culture maintained over the same period without antimicrobial selection.

Genes with decreased expression

ColR cultures (C1 and C2) grown in either the presence (64 and 128 mg l\(^{-1}\)) or absence of colistin exhibited a decreased expression of genes involved in metabolic processes such as histidine utilization, i.e. hutUHI, fatty acid catabolism and the CoA thioster intermediates (e.g. paa, echA8 and mgh) (Table S6). The hut genes are involved in the formation of formiminoglutamate and is an essential amino acid in protein synthesis [54, 55], whereas fatty acid catabolism is involved in the breakdown of LOS, the primary target for...
observed in genes encoding the efflux proteins colistin) and not in aged colonies (control) were considered. These genes reduced the destructive impact of colistin exposure reinforcing the cell membrane and maintaining cellular integrity.

Genes with increased expression

Differentially expressed genes between the different col^R^ cultures (C1 and C2) grown in the presence of colistin, at 64 or 128 mg l^-1^, or in the absence of colistin were also compared. Genes common to all four conditions (col^R^ +/- colistin) and not in aged colonies (control) were considered. A 2–11-fold (log_2 FC 1.5–5.8) increase in expression was observed in genes encoding the efflux proteins adeI, adeC, emrB, mexB/adeF and macAB relative to the parent strain when not exposed or grown in colistin (Fig. 1, Table S6). Previous studies have also seen an increase in expression of efflux proteins adeIJK and macAB-tolC in a lpxC-deficient A. baumannii strain in the presence of colistin [40]. In our study, adeK (BAL062_00757) and tolC (BAL062_03655) did not meet the minimum threshold (Table S8).

Notably, a transcriptional regulator nemR, which is upstream of macAB and part of the TetR family, exhibited a 3–6-fold decrease in expression in the col^R^ cultures, indicating that this efflux system may be under the control of nemR, a common feature of the TetR repressors [56]. Efflux is a collective mechanism employed by bacteria to confer resistance to multiple drugs including colistin in A. baumannii [57–59]. We hypothesize that along with the involvement of mla in subinhibitory concentrations in the TraDIS experiment, initial response to colistin is primarily by efflux until lipid-A synthesis is disrupted due to the ISAba1-mediated disruption of lpxC, where both resistance mechanisms may function together. Further experiments will be needed to confirm this.

Other genes with increased expression included those encoding putative signal peptides BAL062_00353, BAL062_00598 and BAL062_03891, an acid shock protein (BAL062_00604), two 17 kDa surface antigens (BAL062_01389 and BAL062_01390), and a lipoprotein (BAL062_03623). These genes had a 4–17-fold increase in expression. Future work is required to elucidate the function of these genes and their role in colistin resistance/tolerance.

Conclusion

Our analysis showed that multiple mechanisms are associated with intrinsic and acquired mechanisms of col^R^ in A. baumannii. Genes involved in the maintenance of cellular integrity appear to be crucial in permitting bacteria to survive in sub-inhibitory concentrations of colistin, in addition to genes involved in peptidoglycan and LOS synthesis. The col^R^ mechanisms outlined above were mainly associated with ISAba1 or mutational changes in genes critical for cell wall synthesis or genes controlling their expression. This included the disruption of baeR, a TCS, resulting in the increased expression of efflux pumps, such as MacAB and AdelJK. Drug efflux is an important resistance mechanism in bacteria, and has recently been identified in mediating col^R^ in A. baumannii [60]. A recent study using an efflux pump inhibitor found that carbonyl cyanide m-chlorophenyl hydrazine (CCCP) reversed and/or suppressed col^R^ in A. baumannii [61]. Although this chemical compound is not suitable for clinical use, our work highlights the crucial role of MDR efflux pumps in acquired col^R^, which could be useful targets for future therapies to be used in combination with colistin to maintain the efficacy of this crucial last-line therapy. Our results have described the complex yet linked nature of colistin tolerance and col^R^, highlighting the interaction of a multitude of effectors and stress-related genes required to generate this phenotype.

Table 3. Summary of amino acid changes identified in colistin-resistant clinical A. baumannii isolates

Organism	Amino acid changes in PmrB	MIC (mg l^-1^)
BAL505	H266Y	24
BAL543	I94W	16
BAL719	P170L	64

References

1. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN et al. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2007;51:3471–3484.
2. Chen Z, Chen Y, Fang Y, Wang X, Chen Y et al. Meta-analysis of colistin for the treatment of Acinetobacter baumannii infection. Sci Rep 2015;5:17091.
3. Garnacho-Montero J, Ortiz-Leyba C, Jiménez-Jiménez FJ, Barrero-Almodóvar AE, García-Garmendia JL et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis 2009;36:1111–1118.
4. Petroisillo N, Chimello P, Proietti MF, Cecchini L, Masala M et al. Combined colistin and rifampicin therapy for carbapenem-resistant Acinetobacter baumannii infections: clinical outcome and adverse events. Clin Microbiol Infect 2005;11:682–683.

Funding information

This work was supported by the Wellcome Trust grant number WT098051. A. K. C. and C. J. B. were supported by the Medical Research Council (grant number G1100100/1). K. E. H. is supported by the National Health and Medical Research Council (NHMRC)of Australia (fellowship number 1061409). S. B. is a Sir Henry Dale Fellow, jointly funded by the Wellcome Trust and the Royal Society (100087/Z/12/2). D. P. T. is supported by an OAK foundation fellowship.

Acknowledgements

The authors thank David Harris and the Wellcome Trust Sanger Institute sequencing teams for coordination of sample sequencing.

Conflicts of interest

The author(s) declare that there are no conflicts of interest.

Data Bibliography

1. Sequence data (WGS and RNAseq) from this study were deposited in the European Nucleotide Archive and the accession numbers may be found in Table S2.
2. The complete genome sequence for baumanniiGC2 1652-2 was obtained from Park JY, Kim S, Kim S-M, Cha SH, Lim S-K, et al. Complete genome sequence of multidrug resistant Acinetobacter baumannii strain 1656-2, which forms sturdy biofilm. J Bacteriol 2011; 193:6393–4.
5. Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 2012;67:1607–1615.

6. Li J, Nation RL, Owen RJ, Wong S, Spelman D et al. Antibiotics of multidrug-resistant clinical Acinetobacter baumannii: promising therapeutic options for treatment of infection with colistin-resistant strains. Clin Infect Dis 2007;45:594–598.

7. Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 2009;53:3628–3634.

8. Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS et al. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother 2011;55:3743–3751.

9. Lee H, Hsu FF, Turk J, Groisman EA. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 2004;186:4124–4133.

10. Vaara M, Vaara T, Sarvas M. Decreased binding of polymyxin by polymyxin-resistant mutants of Salmonella typhimurium. J Bacteriol 1979;139:664–667.

11. Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 2010;54:4971–4977.

12. Lim TP, Ong RT, Hon PY, Hawkey J, Holt KE et al. Multiple genetic mutations associated with polymyxin resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2015;59:7899–7902.

13. Moffatt JH, Harper M, Adler B, Nation RL, Li J et al. Insertion sequence ISAba1 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother 2011;55:3022–3024.

14. Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for therapeutic options for treatment of infection with colistin-resistant Acinetobacter baumannii. Clin Infect Dis 2005;40:1333–1341.

15. Schultz MB, Pham Thanh D, Tran do Hoan N, Wick RR, Ingle DJ et al. Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward. Microb Genom 2016;2:mgn.0.000050.

16. Nhu NTK, Lan NPH, Campbell JI, Parry CM, Thompson C et al. Emergence of carbapenem-resistant Acinetobacter baumannii as the major cause of ventilator-associated pneumonia in intensive care unit patients at an infectious disease hospital in southern Vietnam. J Med Microbiol 2014;63:1386–1394.

17. Thi Khanh Nhu N, Riordan DW, do Hoang Nhu T, Thanh DP, Thwaites G et al. The induction and identification of novel colistin resistance mutations in Acinetobacter baumannii and their implications. Sci Rep 2016;6:28291.

18. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001;48:5–16.

19. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.

20. Boinett CJ, Harris SR, Langridge GC, Trainor EA, Merkel TJ et al. Complete genome sequence of Bordetella pertussis D420. Genome Announc 2015;3:e00657–15.

21. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:21068–21069.

22. Quail MA, Otto TD, Gu Y, Harris SR, Skelly TF et al. Optimal enzymes for amplifying sequencing libraries. Nat Meth 2011;9:10–11.

23. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010;327:469–474.

24. Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H et al. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics 2015;16:667.

25. Vergara-irigaray M, Fookes MC, Thomson NR, Tang CM. RNA-seq analysis of the influence of anaerobiosis and FNR on Shigella flexneri. BMC Genomics 2014;15:438.

26. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11:R106.

27. Hassan KA, Cain AK, Huang T, Liu Q, Elbourne LD et al. Fluorescence-based flow sorting in parallel with transposon insertion site sequencing identifies multidrug efflux systems in Acinetobacter baumannii. mBio 2016;7:e01200–16.

28. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 2009;19:2308–2316.

29. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ et al. The TraDiS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 2016;32:1109–1111.

30. Dembek M, Barquist L, Boinett CJ, Cain AK, Mayho M et al. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. mBio 2015;6:e00238.

31. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–140.

32. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690.

33. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombiant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015;43:e15–e15.

34. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2017;34:292–293.

35. Barquist L, Boinett CJ, Cain AK. Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol 2013;10:1161–1169.

36. Hood MI, Becker KW, Roux CM, Dunnam PM, Skaar EP. Genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect Immun 2013;81:542–551.

37. Cao M, Helmann JD. The Bacillus subtilis extracytoplasmic-function sigma factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol 2004;186:1136–1144.

38. Jana B, Cain AK, Doerrler WT, Boinett CJ, Fookes MC et al. The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Sci Rep 2017;7:42483.

39. Malinverni JC, Silhavy TJ. An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. Proc Natl Acad Sci USA 2009;106:8009–8014.

40. Henry R, Vithanage N, Harrison P, Seemann T, Coutts S et al. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylgalactosamine. Antimicrob Agents Chemother 2012;56:59–69.

41. Rosenfeld N, Boucher C, Courvalin P, Périchon B. Expression of the resistance-nodulation-division-cell division pump AdeJ/k in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator. Antimicrob Agents Chemother 2012;56:2504–2510.

42. Raffa RG, Raivo TL. A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol 2002;45:1599–1611.

43. Lin MF, Lin YY, Lan CY. The role of the two-component system BaeSR in disposing chemicals through regulating transporter systems in Acinetobacter baumannii. PLoS One 2015;10:e0132843–15.

Downloaded from www.microbiologyresearch.org by IP: 194.80.229.244
On: Mon, 11 Feb 2019 14:18:37
Smitkin ES, Zelazny AM, Gupta J, Palmore TN, Murray PR, NISC

52.

Smitkin ES, Zelazny AM, Montero CI, Stock F, Mijares L, NISC

51.

50.

Kenyon JJ, Hall RM.

49.

Makarova KS, Grishin NV.

48.

Bender RA.

47.

The Zn-peptidase superfamly: functional convergence after evolutionary divergence. J Mol Biol 1999; 292:11–17.

46.

Cain AK, Boinett CJ, Barquist L, Dordel J, Fookes M et al. Morphological, genomic and transcriptomic responses of Klebsiella pneumoniae to the last-line antibiotic colistin. Sci Rep 2018; 8:9868.

45.

Band VI, Crispell EK, Napier BA, Herrera CM, Tharp GK

44.

Cain AK, Boinett CJ, Barquist L, Dordel J, Fookes M et al. Morphological, genomic and transcriptomic responses of Klebsiella pneumoniae to the last-line antibiotic colistin. Sci Rep 2018; 8:9868.

43.

Geisinger E, Isberg RR.

42.

Acinetobacter baumannii synthesis loci of Variatin in the complex carbohydrate bio-
saccharide and virulence in

41.

Kenyon JJ, Hall RM. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS One 2013; 8:e62160.

40.

Smitkin ES, Zelazny AM, Gupta J, Palmore TN, Murray PR, NISC Comparative Sequencing Program et al. Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proc Natl Acad Sci USA 2011; 108:13758–13763.

39.

Smitkin ES, Zelazny AM, Gupta J, Palmore TN, Murray PR, NISC Comparative Sequencing Program et al. Genomic insights into the fate of colistin resistance and Acinetobacter baumannii during patient treatment. Genome Res 2013; 23:1155–1162.

38.

Beceiro A, Moreno A, Fernández N, Vallejo JA, Aranda J et al. Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob Agents Chemother 2014; 58:518–526.

37.

Bender RA. Regulation of the histidine utilization (hut) system in bacteria. Microbiol Mol Biol Rev 2012; 76:565–584.

36.

Ramos JL, Martinez-Bueno M, Antonio J, Terán W, Watanabe K et al. The TetR family of transcriptional regulators the TetR family of transcripational represors. Microbiol Mol Biol Rev 2005; 69:326–356.

35.

Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19:382–402.

34.

Cheah SE, Johnson MD, Zhu Y, Tsuji BT, Forrest A et al. Polymyxin resistance in Acinetobacter baumannii: genetic mutations and transcriptomic changes in response to clinically relevant dosage regimens. Sci Rep 2016; 6:26233.

33.

Henry R, Crane B, Powell D, Deveson Lucas D, Li Z et al. The transcriptional response of Acinetobacter baumannii to colistin and doripenem alone and in combination in an in vitro pharmacokinet-
es/pharmacodynamics model. J Antimicrob Chemother 2015; 70:1303–1313.

32.

Lin MF, Lin YY, Lan CY. Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii. J Microbiol 2017; 55:130–136.

31.

Ni W, Li Y, Guan J, Zhao J, Cui J et al. Effects of efflux pump inhibitors on colistin resistance in multidrug-resistant gram-negative bacteria. Antimicrob Agents Chemother 2016; 60:3215–3218.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.