Rhinocerebral Mucormycosis Secondary to Severe Acute Pancreatitis and Diabetic Ketoacidosis: A Case Report

Jinjing Wang
the affiliated hospital of zunyi medical university

Yao Li
the first affiliated hospital of Zunyi Medical University

Shuai Luo
the first affiliated hospital of zunyi medical university

Hong Zheng (✉ 313571974@qq.com)
Department of Pathology, the First Affiliated Hospital of Zunyi Medical University, Guizhou, P.R. China

Case Report

Keywords: rhinocerebral mucormycosis, severe acute pancreatitis, diagnosis, pathology, case report

DOI: https://doi.org/10.21203/rs.3.rs-141428/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Introduction: Rhinocerebral mucormycosis is a rare and severe form of opportunistic fungal infection that can develop rapidly and cause significant mortality, particularly among diabetic patients suffering from ketoacidosis. Diagnosing rhinocerebral mucormycosis during the early stages of infection is challenging.

Case presentation: We describe a case of rhinocerebral mucormycosis secondary to severe acute pancreatitis in a patient suffering from diabetic ketoacidosis. In this case, the condition was not diagnosed during the optimal treatment window. Therefore, we provide a thorough overview of related clinical findings and histopathological characteristics, and we discuss potential differential diagnoses.

Conclusions: In summary, we described a case of rhinocerebral mucormycosis secondary to severe acute pancreatitis in a patient suffering from diabetic ketoacidosis, with the optimal treatment window for this condition having been missed. This report suggests that a definitive mucormycosis diagnosis can be made based upon tissue biopsy that reveals the presence of characteristic hyphae. Early diagnosis and treatment are essential in order to improve patient prognosis.

Introduction

Rhinocerebral mucormycosis is a rare and severe form of opportunistic fungal infection that can develop rapidly and cause significant mortality, particularly among diabetic patients suffering from ketoacidosis [1, 2]. As the initial clinical symptoms of mucormycosis can be nonspecific and inconsistent, diagnosis is often delayed and rates of misdiagnosis are high such that the condition is not often treated effectively during the optimal treatment window [3]. The development of novel approaches to diagnosing and treating this condition during its early stages is thus essential in order to minimize patient morbidity and mortality [3].

Herein, we describe a case of rhinocerebral mucormycosis secondary to severe acute pancreatitis in a patient suffering from diabetic ketoacidosis. In this case, the condition was not diagnosed during the optimal treatment window. To improve current understanding of this condition and to better improve future diagnostic accuracy, we therefore provide a thorough overview of related clinical findings and histopathological characteristics, and we discuss potential differential diagnoses.

Case Presentation

A 38 years old male patient with uncontrolled diabetes was admitted to our hospital complaining of severe abdominal pain after meals with nausea and vomiting. Laboratory analyses revealed high (+++) urinary ketone body levels, elevated (+) levels of urine glucose, and 24 h blood glucose fluctuations from 16.0–21.6 mmol/L. Abdominal enhanced computed tomography (CT) imaging revealed evidence of acute pancreatitis and peritoneal fluid accumulation. The patient was therefore diagnosed with acute pancreatitis, hyperlipidemia, and diabetic ketoacidosis. However, five days later, dark necrotic tissue was observed in the left nasal cavity of this patient. At this same time point, the tissue on the left side of his
face was visibly swollen, with left orbital proptosis, eyelid drooping, complete ophthalmoplegia, and
dilation of his right pupil with a marked reduction in visual acuity (Fig. 1). CT analyses revealed an
increase in soft tissue density in the patient’s bilateral maxillary sinus, ethmoid sinus, sphenoid sinus, and
right frontal sinusitis. Dilatation of his left medial and inferior recti was observed, and the perforation of
the patient’s nasal septum was observed, affecting his left nasal cavity. Hard palate perforation was also
observed (Fig. 2). Nasoendoscopy revealed large quantities of dark necrotic tissue within the bilateral
nasal cavity. The majority of the soft tissue within the nasal cavity was damaged, with complete
exposure of the bones of the nasal floor and the lower nasal passage, and with complete exposure of the
lower nasal passage. The top of the nasal cavity was also affected. A sample of the observed dark
necrotic soft tissue was excised for pathological examination.

Histopathological examination revealed that the coagulated necrotic tissue contained lymphocytes,
plasma cells, and multinucleated giant cells (Fig. 3A1,2). Many hyphae were visible surrounding and
invading blood vessel walls, resulting in vasculitis and thrombus formation (Fig. 3B1,2). Broad tubular
hyphae that were 20–30 microns wide were observed, with two asymmetric sidewalls that were partially
swollen and distorted without separation, aside from a few disorderly branches occurring at right angles
(Fig. 3B2). Sporangia were characterized by small round brown spores and basophilia chrysanthemum-
cluster-like sporangium, with visible endospores in the sac. Individual spores were roughly 10 µm in
diameter, and were densely arranged in sheets (Fig. 3C1,2). Periodic-acid-Schiff (PAS) staining revealed
pink fungal hyphae (Fig. 3D1-2), and yellow-brown spores (Fig. 3E1,2). Grocott staining highlighted
hyphae (Fig. 3F1,2), sporangia, and spores, which were a noticeable dark brown color (Fig. 3G1,2). Such
fungal morphology was suggestive of a Mucor fungus, and the patient was pathologically diagnosed
with acute invasive mucormycosis. He was treated via surgical debridement combined with intravenous
amphotericin B administration. However, due to his advanced disease progression, the patient died four
weeks following admission.

Discussion And Conclusions

Rhinocerebral mucormycosis is a rare, aggressive, and life-threatening fungal infection [4], occurring most
often in diabetes patients suffering from ketoacidosis [5]. At present, owing to the nonspecific early-stage
symptoms of this disease, it is difficult to diagnose until it is relatively advanced.

Ocular manifestations are often the first presenting symptoms in patients suffering from rhinocerebral
mucormycosis. These symptoms can include prominent eyeballs, swelling and redness around the eyes,
impair ed eye movement, decreased vision, and potentially blindness. Nasal black eschar formation is one
of the most important clinical findings associated with rhinocerebral mucormycosis [4]. CT or magnetic
resonance imaging (MRI) examinations of the skull generally reveal the thickening of the sinus mucosa,
sinusitis, bone destruction, and cavernous sinus thrombosis. These findings may be accompanied by
facial swelling and numbness, local facial skin ulceration, local black necrotic eschar formation, and
black eschar or ulcers on the epiphysis.
There are several approaches that can be used to diagnose rhinocerebral mucormycosis. Fungal culture is highly specific, but the sensitivity of this approach is just 25%, limiting its clinical applicability [6]. Pathological assessment of biopsy samples can achieve a more definitive diagnosis, as affected patients generally exhibit large areas of coagulative necrotic tissue, fungal granuloma, fungal vasculitis, thrombosis, and bone destruction [5, 7]. Typical granulomatous tissues from affected patients generally contain hyphae and neutrophils surrounded by epithelioid cells, multinucleated giant cells, varying numbers of plasma cells, lymphocytes, and eosinophils. Perivascular and blood vessel invasion by fungal hyphae results in arterial thrombosis and subsequent necrosis. Hyphae are generally broad and irregularly shaped, with branches primarily forming at right angles [7]. Hematoxylin and eosin staining of these hyphae largely fails to differentiate them from background tissues, and high magnification is often necessary to clearly resolve these fungal structures. PAS and Gomori methenamine silver (GMS) staining result in the purple-red and brown-black coloration to these hyphae, respectively, making them easier to observe [7, 8]. Molecular biology approaches can also be used to diagnose this condition, although it remains challenging to leverage a broad-spectrum for the diagnosis of mucormycosis in clinical settings [7].

From a differential diagnosis perspective, rhinocerebral mucormycosis may be confused with other forms of fungal sinusitis. Identification is mainly based on the morphological characteristics of fungal hyphae. Mucor mycelia are relatively thick (6–25 µm in diameter) and disorderd, with thick walls, asymmetry, little separation, partial swelling and twisting, and relatively few branches that are primarily at right angles [5, 7]. In contrast, Candida mycelia are thin (2–4 µm in diameter) and can be bead-like [7], while Aspergillus mycelia are of medium thickness (5–10 µm in diameter), uniform in thickness, often exhibit directional growth, are frequently separated, and generally exhibit many branches that are most often formed at acute angles.[3]

Treatment options for rhinocerebral mucormycosis include the active treatment of primary disease, correction of underlying acidosis, and the early administration of agents including amphotericin B liposomes, together with the thorough debridement of local necrotic tissue [6]. Surgical and antifungal treatments generally form the cornerstones of treatment [8], and delays in initiating amphotericin B treatment for more than 6 days is associated with a doubling of mortality at 12 weeks.

In summary, we described a case of rhinocerebral mucormycosis secondary to severe acute pancreatitis in a patient suffering from diabetic ketoacidosis, with the optimal treatment window for this condition having been missed. This report suggests that a definitive mucormycosis diagnosis can be made based upon tissue biopsy that reveals the presence of characteristic hyphae. Early diagnosis and treatment are essential in order to improve patient prognosis.

Abbreviations

CT
Declarations

Ethics approval and consent to participate

This case report was approved by the Ethics Committee of the Affiliated Hospital of Zunyi Medical University. Written informed consent was obtained from the patient for publication of this clinical case report.

Consent for publication

Written informed consent was obtained from the family of the patient for publication of this case report and any accompanying images.

Availability of data and materials

All the data regarding the findings are available within the manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details

Jinjing Wang, PhD: Department of Pathology, the First Affiliated Hospital of Zunyi Medical University, Guizhou, P.R. China.

Yao Li, BS: Department of Pathology, the First Affiliated Hospital of Zunyi Medical University, Guizhou, P.R. China.

Shuai Luo, BS: Department of Pathology, the First Affiliated Hospital of Zunyi Medical University, Guizhou, P.R. China.

Hong Zheng, MD: Department of Pathology, the First Affiliated Hospital of Zunyi Medical University, Guizhou, P.R. China.

Authors’ contributions

Resources: Shuai Luo, Yao Li.

Writing – original draft: Jinjing Wang.

Writing – review & editing: Jinjing Wang, Hong Zheng.
All the authors have read & approved the final manuscript.

Acknowledgements

This Project Supported by Guizhou Science Foundation (No. QKHLH2015-7455 and No. 1Y429,) and a science grant from Zunyi Medical University (No. 2018KY36). The authors would like to thank Editage (editage.com) for English language editing.

Competing interests

The authors declare that they have no conflict of interest.

References

1. Zaher FZ, et al., *Diabetic Ketoacidosis Revealing a Severe Hypertriglyceridemia and Acute Pancreatitis in Type 1 Diabetes Mellitus*. Case Rep Endocrinol, 2019. 2019: 8974619.

2. Suh IW, et al. Hepatic and small bowel mucormycosis after chemotherapy in a patient with acute lymphocytic leukemia. J Korean Med Sci. 2000;15(3):351–4.

3. Sahota R, et al. Rhinocerebral Mucormycosis: Report of a Rare Case. Ethiop J Health Sci. 2017;27(1):85–90.

4. Galletti B, Gazia F, Galletti C, Perani F, Ciodaro F, Freni F, Galletti F. Rhinocerebral mucormycosis with dissemination to pontine area in a diabetic patient: Treatment and management. Clin Case Rep. 2019 Jun 5;7(7):1382–1387. doi: 10.1002/ccr3.2255. PMID: 31360493; PMCID: PMC6637368.

5. Corzo-Leon DE, et al. Diabetes mellitus as the major risk factor for mucormycosis in Mexico: Epidemiology, diagnosis, and outcomes of reported cases. Med Mycol. 2018;56(1):29–43.

6. Bavikar P, Mehta V. Rhino-Orbital-Cerebral Mucormycosis: A Fatal Complication of Uncontrolled Diabetes Mellitus. Cureus. 2017;9(11):e1841.

7. Bavikar P, Mehta V. Rhino-Orbital-Cerebral Mucormycosis: A Fatal Complication of Uncontrolled Diabetes Mellitus. Cureus. 2017 Nov 13;9(11):e1841.

8. Galletti B, et al. Rhinocerebral mucormycosis with dissemination to pontine area in a diabetic patient: Treatment and management. Clin Case Rep. 2019;7(7):1382–7.