Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Aad, G.; ATLAS Collaboration

DOI
10.1103/PhysRevD.100.052013

Publication date
2019

Document Version
Final published version

Published in
Physical Review D. Particles and Fields

License
CC BY

Citation for published version (APA):
Aad, G., & ATLAS Collaboration (2019). Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. Physical Review D. Particles and Fields, 100(5), Article 052013. https://doi.org/10.1103/PhysRevD.100.052013

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

G. Aad et al.*
(ATLAS Collaboration)

A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015–2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \rightarrow W' \rightarrow \ell \nu$ are extracted ($\ell' = e$ or μ). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model W boson. Cross-section limits are also provided for resonances with several fixed Γ/m values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.

DOI: 10.1103/PhysRevD.100.052013

I. INTRODUCTION

One of the main goals of the Large Hadron Collider (LHC) remains the search for physics beyond the Standard Model (SM). Much progress has been made in this search thanks to a broad program that encompasses many different final states. Leptonic final states provide a low-background and efficient experimental signature that brings excellent sensitivity to new phenomena at the LHC. In this article, the results of a search for resonances decaying into a charged lepton and a neutrino are presented, based on 139 fb$^{-1}$ of proton-proton (pp) collisions at a center-of-mass energy of 13 TeV. The data were collected with the ATLAS detector during the 2015–2018 running period of the LHC, referred to as Run 2.

The search results are interpreted in terms of the production of a heavy spin-1 W' boson with subsequent decay into the $\ell \nu$ final state ($\ell' = e$ or μ). Such production is predicted in many models of physics beyond the SM as in grand unified theory models, left-right symmetry models[1,2], little Higgs models[3], or models with extra dimensions[4,5], most of which aim to solve the hierarchy problem. The interpretation in this article uses a simplified model referred to as the sequential Standard Model (SSM)[6], in which the W' boson couples to fermions with the same strength as the W boson in the SM but with suppressed coupling to SM bosons. Alternative interpretations in terms of generic resonances with different fixed widths (Γ/m between 1% and 15%) are also provided for possible reinterpretation in the context of other models. Finally, results are also presented in terms of model-independent upper limits on the number of signal events and on the visible cross section.

Previous searches for W' bosons have been carried out at the LHC in leptonic, semileptonic, and hadronic final states by the ATLAS and CMS Collaborations. The most sensitive searches for W' bosons are those in the $e\nu$ and $\mu\nu$ channels[7,8], with the most stringent limits to date being set by ATLAS and CMS in the analysis of about 36 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV. A lower limit of 5.2 TeV is set on the W' boson mass in the electron channel[7] and 4.9 TeV in the muon channel[8], at the 95% confidence level (C.L.) in the SSM.

The search relies on events collected using single-electron or single-muon triggers with high transverse momentum thresholds. The dominant background source originates from Drell-Yan (DY) production of W bosons. Discrimination between signal and background events relies on the transverse mass (m_{T}) computed from the
charged-lepton transverse momentum \((p_T) \) and the missing transverse momentum (whose magnitude is denoted \(E_T^{\text{miss}} \)) in the event:

\[
m_T = \sqrt{2p_TE_T^{\text{miss}}(1 - \cos \phi_{E_T})},
\]

where \(\phi_{E_T} \) is the angle between the charged lepton and missing transverse momentum directions in the transverse plane. Final interpreted results are based on a statistical analysis in which the shape of the signal and both the shape and normalization of the background expectations are derived from Monte Carlo (MC) simulation, except for the background contribution arising from jets misidentified as leptons or from hadron decays. The results presented in this article compared with those from Ref. [7] benefit from an increase in the integrated luminosity by a factor of 4; several upgrades in reconstruction software, including a new algorithm for electron reconstruction [9] and an improved treatment of the relative alignment between the inner tracker and the muon spectrometer; and several interpretations with reduced or no model dependence.

II. ATLAS DETECTOR

The ATLAS experiment [10] at the LHC is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4\(\pi \) coverage in solid angle. It consists of an inner detector for tracking surrounded by a thin superconducting solenoid providing a 2T axial magnetic field, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer. The inner detector covers the pseudorapidity range \(|\eta| < 2.5 \). It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. An additional innermost pixel layer [11,12] inserted at a radius of 3.3 cm has been used since 2015. Liquid-argon (LAr) sampling calorimeters provide EM energy measurements with high granularity. A hadronic scintillator-tile calorimeter covers the central pseudorapidity range \(|\eta| < 1.7 \). The end cap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to \(|\eta| = 4.9 \). The muon spectrometer surrounds the calorimeters and features three large air-core toroidal superconducting magnet systems with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level trigger system [13] is used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector information to reduce the accepted rate to at most 100 kHz. This is followed by a software-based trigger level that reduces the accepted event rate to 1 kHz on average.

III. DATA AND MONTE CARLO SIMULATION SAMPLES

The data for the analysis were collected during Run 2 at the LHC at \(\sqrt{s} = 13 \) TeV and correspond to an integrated luminosity of 139 fb\(^{-1}\) after the requirement that beams were stable, all detector systems were functional, and the data satisfied a set of quality criteria. Single-electron triggers required that electron candidates satisfy either medium identification criteria [9] and have a transverse energy \(E_T > 60 \) GeV or loose identification criteria and have \(E_T > 140 \) GeV. For the 3.2 fb\(^{-1}\) collected in 2015, the \(E_T \) thresholds were 24 and 120 GeV, respectively. Single-muon triggers required the presence of at least one muon reconstructed in both the inner detector and the muon spectrometer with \(p_T > 50 \) GeV. The trigger efficiency for DY \(W \) boson events (relative to the full event selection described in Sec. IV) is estimated to be 99% in the electron channel and 85% in the muon channel, with little dependence on the \(m_T \) value.

Signal MC events with \(W' \rightarrow e\nu \) and \(W' \rightarrow \mu\nu \) decays in the SSM were produced at leading order (LO) with the PYTHIA v8.183 event generator [14] and the NNPDF23LO parton distribution function (PDF) set [15]. The A14 set of tuned parameters (i.e., the A14 tune) [16] was used for the parton showering and hadronization process. In the SSM, the couplings of the \(W' \) boson to SM fermions are chosen to be identical to those of the SM \(W \) boson, whereas the couplings to SM bosons are set to zero. The corresponding branching fraction for \(W' \) boson decays into leptons of one generation is 10.8% for \(m(W') = 150 \) GeV and decreases above the \(tb \) threshold to a nearly constant value of 8.2% for \(m(W') \) above 1 TeV. Similarly, the ratio of the \(W' \) boson width to its mass varies from 2.7% for \(m(W') = 150 \) GeV to 3.5% above the \(tb \) threshold. Decays into the \(\tau\nu \) final state with subsequent leptonic decay of the \(\tau \) lepton are not included as they were found to add negligible signal acceptance in previous studies [17]. Interference between \(W' \) and \(W \) boson production is not included in this analysis.

The dominant background due to DY production of \(W \) bosons decaying into \(e\nu, \mu\nu \), and \(\tau\nu \) final states was simulated at next-to-leading order (NLO) with the POWHEG-BOX v2 event generator [18–21] using the CT10 PDF set [22]. Background events from DY production of \(Z/\gamma^* \) bosons decaying into \(ee, \mu\mu \), and \(\tau\tau \) final states were also simulated with the same event generator and PDF set. In both cases, PYTHIA v8.186 was used for the parton showering and hadronization process with the AZNLO tune [23]. The DY processes were generated separately in
different \(\ell \nu \) or \(\ell \ell \) mass ranges to guarantee that sufficiently large numbers of events remain after event selection in the full mass range relevant to the analysis. Cross sections calculated by POWHEG-BOX for both DY processes were corrected via mass-dependent \(K \) factors to account for QCD effects at next-to-next-to-leading order (NNLO) and electroweak (EW) effects at NLO. The QCD corrections were computed with VRAP v0.9 [24] and the CT14 NNLO PDF set [25]. These corrections increased the cross section by about 5% for \(m_{\ell \nu} = 1 \text{ TeV} \) and 15% for \(m_{\ell \ell} = 6 \text{ TeV} \). The EW corrections were computed with MCSANC v26 [26] in the case of the additive approach (see Sec. VI) because of a lack of calculations of mixed QCD and EW terms. As a result, the cross section decreased by about 10% for \(m_{\ell \nu} = 1 \text{ TeV} \) and 20% for \(m_{\ell \ell} = 6 \text{ TeV} \). The effects due to QED final-state radiation were already included in the event generation using PHOTOS++ [27]. The QCD corrections based on VRAP and the CT14 NNLO PDF set were also applied to the signal samples. No electroweak corrections, beyond those already accounted for with PHOTOS++, were applied to the signal samples as those are model dependent.

Additional background sources from diboson (WW, WZ, and ZZ) production were simulated via the SHERPA v2.2.1 event generator [28] and the NNPDF30 NNLO PDF set [29]. These processes were computed at NLO for up to one additional parton and at LO for up to three partons. The production of top-quark pairs and single top quarks (in the single- and final-state radiation, Sudakov logarithm single-loop corrections. These corrections were added to the NNLO QCD cross-section prediction in the so-called additive approach (see Sec. VI) by about 5% for \(m_{\ell \ell} = 1 \text{ TeV} \) and 15% for \(m_{\ell \ell} = 6 \text{ TeV} \). The QCD corrections based on VRAP and the CT14 NNLO PDF set were added to the hard-scattering interaction in the event generator (see Sec. VI) because of a lack of calculations of mixed QCD and EW effects due to QED effects due to initial-state radiation. The QCD corrections based on VRAP and the CT14 NNLO PDF set were also applied to the signal samples. No electroweak corrections, beyond those already accounted for with PHOTOS++, were applied to the signal samples as those are model dependent.

For all MC samples, except those produced with SHERPA, \(b \)-hadron and \(c \)-hadron decays were handled by EvtGen v1.2.0 [44]. Inelastic \(pp \) events generated using PYTHIA v8.186 with the A3 tune [45] and the NNPDF23LO PDF set were added to the hard-scattering interaction in such a way as to reproduce the effects of additional \(pp \) interactions in each bunch crossing during data collection (pileup). The detector response was simulated with GEANT 4 [46,47], and the events were processed with the same reconstruction software as for the data. Energy/momentum scale and efficiency corrections are applied to the results of the simulation to account for small differences between the simulation and the performance measured directly from the data [9,48].

IV. EVENT RECONSTRUCTION AND SELECTION

The analysis relies on the reconstruction and identification of electrons and muons, as well as the missing transverse momentum in each event. Collision vertices are reconstructed with inner detector tracks that satisfy \(p_T > 0.5 \text{ GeV} \), and the primary vertex is chosen as the vertex with the largest \(\Sigma p_T^2 \) for the tracks associated with the vertex.

Electron candidates are reconstructed by matching inner detector tracks to clusters of energy deposited in the EM calorimeter. Electrons must lie within \(|\eta| < 2.47 \), excluding the barrel–end cap transition region defined by \(1.37 < |\eta| < 1.52 \), and satisfy calorimeter energy cluster quality criteria. The cluster must have \(E_T > 65 \text{ GeV} \), and the associated track must have a transverse impact parameter significance relative to the beam axis \(|d_0|/\sigma_{d_0} < 5 \). Successful candidates are identified with a likelihood method and need to satisfy the tight identification criteria [9]. The likelihood relies on the shape of the EM shower measured in the calorimeter, the quality of the track reconstruction, and the quality of the match between the track and the cluster. To suppress electron candidates originating from photon conversions, hadron decays, or jets misidentified as electrons (hereafter referred to as fake electrons), electron candidates are required to satisfy the gradient isolation criteria [9] based on both tracking and calorimeter measurements. The reconstruction and identification efficiency rises from approximately 80% at \(p_T = 60 \text{ GeV} \) to 90% above 500 GeV, and the isolation efficiency is slightly higher than 99% for \(p_T \) values above 200 GeV. The electron energy resolution for \(E_T > 1 \text{ TeV} \) can be characterized by \(\sigma(E)/E = c_e \), with \(c_e \) varying between 0.007 and 0.012 [9] in the range \(|\eta| < 1.2 \) which dominates the high-mass part of the search. The corresponding \(m_T \) resolution ranges from approximately 1.3% at \(m_T \) values near 2 TeV to 1.0% near 6 TeV.

Muon candidates are reconstructed by matching inner detector tracks with muon spectrometer tracks and by reconstructing a final track combining the measurements from both detector systems while taking the energy loss in the calorimeter into account. The candidates must satisfy quality selection criteria optimized for high-\(p_T \) performance [48] by requiring the candidate tracks to have associated measurements in the three different chamber layers of the muon spectrometer. The tracks must also have consistent charge-to-momentum ratio measurements in the inner detector and muon spectrometer, have sufficiently
small relative uncertainty in the charge-to-momentum ratios for the combined tracks, and be located in detector regions with high-quality chamber alignment. Candidates must have $|\eta| < 2.5, p_T > 55$ GeV, $|d_0|/\sigma_d < 3$, and $|z_0| \sin \theta < 0.5$ mm, where z_0 is the longitudinal impact parameter relative to the primary vertex. The reconstruction and identification efficiency is 69% for $p_T = 1$ TeV and decreases to 57% for $p_T = 2.5$ TeV. Muon candidates from hadron decays are suppressed by imposing a track-based isolation [48] that achieves an efficiency higher than 99% for the full p_T range of interest. The muon p_T resolution at $p_T > 1$ TeV can be described as $\sigma(p_T)/p_T = c_\mu p_T$, with c_μ varying between 0.08 and 0.20 TeV$^{-1}$ depending on the detector region [48]. This resolution dominates the m_T resolution in the muon channel.

Jets are reconstructed from topological clusters of energy deposits in calorimeter cells [49] with the anti-k_t clustering algorithm [50] implemented in FASTJET [51]. A radius parameter R equal to 0.4 is used, and the clusters are calibrated at the EM scale [52]. Jets are required to have $p_T > 20$ (30) GeV for $|\eta|$ smaller (greater) than 2.4. To remove jets originating from pileup, jet-vertex tagging is applied [53].

The event’s missing transverse momentum is computed as the vectorial sum of the transverse momenta of leptons, photons, and jets. The overlap between these is resolved according to Ref. [54]. Electrons and muons must pass the selection requirements described above. In addition to the above particles and jets, the E_T^{miss} calculation includes a soft term [54] accounting for the contribution from tracks associated with the primary vertex but not associated with leptons, converted photons, or jets already included in the E_T^{miss} calculation.

Events are required to have a primary vertex. They are rejected if any of the jets fail to pass a cleaning procedure designed to suppress noncollision background and calorimeter noise [55].

In the electron channel, events must have exactly one electron passing the selection described above. Events are vetoed if they contain any additional electron candidate satisfying the medium selection criteria and having $p_T > 20$ GeV. Events are also vetoed if they contain any muon candidate satisfying the medium selection criteria and having $p_T > 20$ GeV. The missing transverse momentum must satisfy $E_T^{miss} > 65$ GeV, and the transverse mass must satisfy $m_T > 130$ GeV. In the muon channel, events must have exactly one selected muon as detailed above, and the same veto on additional electron and muon candidates is applied, except that electron candidates close to the muon ($\Delta R < 0.1$) are assumed to arise from photon radiation from the muon and are thus not considered as additional electron candidates. Events are required to satisfy $E_T^{miss} > 55$ GeV and $m_T > 110$ GeV in the muon channel. The event selection described above defines the signal regions in the electron and muon channels.

The event’s missing transverse momentum is computed as the vectorial sum of the transverse momenta of leptons, photons, and jets. The overlap between these is resolved according to Ref. [54]. Electrons and muons must pass the selection requirements described above. In addition to the above particles and jets, the E_T^{miss} calculation includes a soft term [54] accounting for the contribution from tracks associated with the primary vertex but not associated with leptons, converted photons, or jets already included in the E_T^{miss} calculation.

Events are required to have a primary vertex. They are rejected if any of the jets fail to pass a cleaning procedure designed to suppress noncollision background and calorimeter noise [55].

In the electron channel, events must have exactly one electron passing the selection described above. Events are vetoed if they contain any additional electron candidate satisfying the medium selection criteria and having $p_T > 20$ GeV. Events are also vetoed if they contain any muon candidate satisfying the medium selection criteria and having $p_T > 20$ GeV. The missing transverse momentum must satisfy $E_T^{miss} > 65$ GeV, and the transverse mass must satisfy $m_T > 130$ GeV. In the muon channel, events must have exactly one selected muon as detailed above, and the same veto on additional electron and muon candidates is applied, except that electron candidates close to the muon ($\Delta R < 0.1$) are assumed to arise from photon radiation from the muon and are thus not considered as additional electron candidates. Events are required to satisfy $E_T^{miss} > 55$ GeV and $m_T > 110$ GeV in the muon channel. The event selection described above defines the signal regions in the electron and muon channels.

The ATLAS collaboration [56] has reported a search for a new heavy boson, W', with mass between 3 and 6 TeV, using data from the LHC at a center-of-mass energy of 13 TeV. The signal is sought in the W' decay mode $W' \rightarrow e\nu$, with the electron in the electron channel and the muon in the muon channel. The results are compared to the expected background, which includes W and Z bosons, top quarks, dibosons, multijets, and photons. The data are shown in the top panel of the figure, while the expected background is shown in the bottom panel. The ratio of data to background is shown in the middle panel, with the hatched bands representing the statistical uncertainties. The signal region is defined by requiring $p_T > 20$ GeV and $E_T^{miss} > 65$ GeV, with the transverse mass $m_T > 130$ GeV in the electron channel and $p_T > 20$ GeV and $E_T^{miss} > 55$ GeV, with $m_T > 110$ GeV in the muon channel.

The signal is not observed, and the lower limits on the W' mass are set at 5.4 TeV in the electron channel and 4.2 TeV in the muon channel. The results are consistent with the Standard Model expectations, and the search continues to push the limits of the LHC.
channels. In these regions, the acceptance times efficiency for W' signal events decreases from 79% (52%) to 64% (44%) as the W' boson mass increases from 2 to 7 TeV in the electron (muon) channel. The decrease at high $m(W')$ is generally due to the combined effect of a growing low-mass tail at larger $m(W')$ and the kinematic selection thresholds. In the case of the muon channel, it also originates from a decrease in the identification efficiency at higher p_T values due to the requirements on the charged-to-momentum measurement.

V. BACKGROUND ESTIMATION AND EVENT YIELDS

The background from DY production of W and Z/γ^* bosons as well as from top-quark pair, single top quark, and diboson production is modeled with the MC samples described in Sec. III. To compensate for the limited number of events at high m_T, the smoothly falling m_T distributions for top-quark (corresponding to both pair and single production) and diboson samples are fitted and extrapolated to high m_T with the following functions commonly used in dijet searches (e.g., Refs. [56,57]):

$$f^{\text{bg1}}(m_T) = e^{-\alpha m_T^b} m_T^{c \log(m_T)}$$

and

$$f^{\text{bg2}}(m_T) = \frac{a}{(m_T + b)^c}.$$ \hspace{1cm} (1)

Function f^{bg1} is the nominal extrapolation function for the top-quark background in both the electron and muon channels as well as for the diboson background in the electron channel. Function f^{bg2} is the nominal function for the diboson background in the muon channel. In all cases, checks are performed to guarantee that the function reproduces the event yields at lower m_T values and that its cumulative distribution (starting from the highest m_T values) is consistent with the small integrated event yields available in the MC samples.

The background contribution from events with fake electrons or muons mostly originates from multijet production and is extracted from the data using the same matrix method as used in previous analyses and described in Ref. [58]. This method relies on data samples in which the electron or muon selection is loosened (referred to as the loose selection). The efficiency for those lepton candidates to pass the nominal lepton selection (tight) is measured to derive an estimate of the background from fake leptons. The loose selection is close to that applied by the trigger requirements. The fraction f of fake leptons passing the loose selection that also pass the nominal lepton selection is estimated from the data in background-enriched control regions that are orthogonal to the signal regions. These control regions are built by requiring that there are no $Z\rightarrow \ell\ell$ candidates formed by combining the selected lepton with a loose lepton in the event and that the E_T^{miss} value is less than 60 (55) GeV in the electron (muon) channel. Additional requirements are placed on the minimum impact parameter, the presence of at least one jet, and the proximity of the missing transverse momentum vector to the lepton in the muon channel to reduce the contribution.

Electron channel
m_T [GeV]
130–400
400–600
600–1000
1000–2000
2000–3000
3000–10 000
Data
3 538 403
34 800 ± 1500
574 ± 22
68.4 ± 1.9
19.6 ± 0.5
7.85 ± 0.19
3.76 ± 0.09
3 568
34 800 ± 1500
720 ± 40
58.6 ± 2.6
13.2 ± 0.5
4.99 ± 0.18
2.35 ± 0.08
7358
720 ± 40
127 ± 7
22.1 ± 1.1
7.26 ± 0.35
3.28 ± 0.16
818
12200 ± 600
44.3 ± 2.2
9.9 ± 0.5
3.82 ± 0.18
17
1130 ± 290
49.2 ± 2.3
5.82 ± 0.28
1.41 ± 0.07
0
3.20 ± 0.25
87 ± 23
13.6 ± 0.7
2.01 ± 0.10

Muon channel
m_T [GeV]
110–400
400–600
600–1000
1000–2000
2000–3000
3000–10 000
Data
8 751 095
26 225
5393
622
22
2
Background
7 800 000 ± 700 000
25 800 ± 1400
5300 ± 400
570 ± 50
18 ± 4
2.3 ± 0.9
3 490 ± 14
594 ± 26
1680 ± 90
6700 ± 500
1520 ± 210
70 ± 50
58.1 ± 1.4
45.5 ± 1.9
102 ± 6
322 ± 31
380 ± 50
160 ± 40
16.3 ± 0.4
9.64 ± 0.34
15.9 ± 0.8
32.2 ± 3.4
34 ± 5
44 ± 13
6.50 ± 0.15
3.55 ± 0.12
4.98 ± 0.22
6.7 ± 0.6
3.9 ± 0.6
7.2 ± 2.3
3.11 ± 0.07
1.67 ± 0.06
2.22 ± 0.10
2.45 ± 0.17
0.88 ± 0.12
1.09 ± 0.35
from prompt muons. The remaining contributions from prompt electrons and muons in these control regions are subtracted using MC simulation. The number of jets misidentified as leptons \(N_{T}^{\text{multijet}} \) in the signal regions is computed as

\[
N_{T}^{\text{multijet}} = fN_{F} = \frac{f}{r - f}[r(N_{L} + N_{T}) - N_{T}],
\]

where \(N_{F} \) is the number of fake leptons that pass the loose lepton selection, \(N_{L} \) is the number of lepton candidates that pass the loose lepton selection but fail the nominal lepton selection, and \(N_{T} \) is the number of lepton candidates that pass the nominal lepton selection. The numbers \(N_{L} \) and \(N_{T} \) are extracted from the signal regions. In addition, the quantity \(r \), corresponding to the fraction of real leptons satisfying the nominal selection in the sample of loose candidates, is computed from the DY W boson MC samples. Like for the top-quark and diboson background sources, the \(m_{T} \) distribution is extrapolated to high values by using a function with the same form as in Eq. (1) in the electron channel and the function \(f^{\text{multijet}}(m_{T}) = am_{T}^{-b} \) in the muon channel. The same set of checks concerning the quality of the extrapolation are performed as for the top-quark and diboson backgrounds.

The \(m_{T} \) distributions in data and simulation are shown in Fig. 1, and the numbers of events in several \(m_{T} \) ranges are presented in Table I. No event is observed beyond \(m_{T} \) values of 10 TeV in either channel. The features observed in these distributions are discussed in Sec. VII. The DY W boson contribution dominates the total background with a fraction varying between approximately 69% (72%) and 95% (88%) in the electron (muon) channel. Other background contributions arise mostly from DY \(Z/\gamma^{*} \) boson, top-quark, and diboson production. The contribution from multijet events in the electron channel decreases from approximately 10% at the lowest \(m_{T} \) values to less than 5% at high \(m_{T} \), and in the muon channel it is less than 3.2% (1.7%) for \(m_{T} \) values below (above) 600 GeV.

VI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties arise from experimental sources affecting the lepton reconstruction and identification as well as the missing transverse momentum, from the data-driven multijet background estimate, from theoretical sources affecting the shape and normalization of background processes, and from the extrapolation of background estimates to high \(m_{T} \) values.

Experimental uncertainties in the electron trigger, reconstruction, identification, and isolation efficiencies are extracted individually from studies of \(Z \to ee \) and \(J/\psi \to ee \) decays in the data using a tag-and-probe method [9]. These studies also yield uncertainties in the electron energy scale and resolution [9]. Uncertainties in the muon trigger, reconstruction, identification, and isolation efficiencies are derived from studies of \(Z \to \mu \mu \) and \(J/\psi \to \mu \mu \) decays in the data [48]. The muon momentum scale and resolution uncertainties are extracted from those studies as well as from special chamber-alignment datasets with the toroidal magnetic field turned off [48]. Extrapolation uncertainties toward higher \(p_{T} \) are based on the above studies as well as on the simulation. The impact of those uncertainties is generally small due to the limited \(p_{T} \) dependence of the efficiencies, except for the high-\(p_{T} \) muon reconstruction and identification efficiency. The latter is estimated from differences between data and simulation in the fraction of muons passing the requirement on the maximum allowed relative error in the charge-to-momentum ratio measurement. This uncertainty grows with the muon \(p_{T} \) up to 35% (55%) for \(|\eta| < 1.05 (> 1.05)\) at the highest \(m_{T} \) values probed in this analysis; it becomes a dominant source of uncertainty at the highest \(m_{T} \) values. Uncertainties in the reconstruction and calibration of jets are taken into account since those are input to the \(E_{T}^{\text{miss}} \) calculation. Finally, all uncertainties affecting electrons, muons, jets, and the soft term are propagated to the \(E_{T}^{\text{miss}} \) calculation. The jet energy resolution and soft term contributions have the largest impact at low \(m_{T} \), and their uncertainties are treated as fully correlated between the electron and muon channels. Uncertainties in the simulation of pileup contributions have little impact on the \(m_{T} \) distribution and are thus neglected.

The uncertainty in the multijet background estimate includes the effect of varying the criteria used in the background-enriched sample selection, and changes in the fractions \(f \) are propagated. As this background estimate is extrapolated with a functional fit at high \(m_{T} \) values, the uncertainty includes the additional impact of variations in the fit range. In the electron channel, the uncertainty also includes a contribution from the variation of the functional form due to the larger multijet contribution at high \(m_{T} \) in this channel. This extrapolation uncertainty dominates the overall background uncertainty at \(m_{T} \) values above 3 TeV in the electron channel.

No theory uncertainty is applied to the signal. Uncertainties in the theory inputs used for the background estimation are evaluated as follows. One of the largest uncertainties affecting the dominant DY background comes from the use of 90% C.L. eigenvector variations for the CT14 NNLO PDF set. This uncertainty range encompasses the predictions based on the ABM12 [59], CT10 [22], MMHT14 [60], and JR14 [61] PDF sets. It also allows for a sufficiently robust range of predictions in the very high mass region (i.e., at high Bjorken-\(x \)). In addition, a reduced set of CT14 NNLO PDF eigenvectors that preserves the potential mass-dependent shape changes is used in the limit-setting procedure. The PDF uncertainty is enlarged in specific \(\ell \nu \) mass regions to encompass the DY prediction based on the alternative NNPDF30 PDF set if this prediction lies outside the range from the CT14 NNLO
eigenvector variations. A smaller PDF choice uncertainty is obtained in the muon channel at high m_T values than in the electron channel because the significantly worse muon p_T resolution causes migration of events from low m_T values (where the PDF uncertainty is small) to high m_T values. The uncertainty in the mass-dependent K factors used to correct the mass distributions to predictions at NNLO accuracy in α_s is evaluated by simultaneously varying the renormalization and factorization scales up and down by factors of 2. The largest change (up or down) at each mass value is then applied as a symmetric scale uncertainty. The EW correction uncertainty is taken to be the difference between the predictions obtained with either the multiplicative scheme $[(1 + \delta_{\text{EW}}) \times (1 + \delta_{\text{QCD}})]$ or the additive scheme $(1 + \delta_{\text{EW}} + \delta_{\text{QCD}})$ for the combination of higher-order EW (δ_{EW}) and QCD (δ_{QCD}) effects. The DY cross-section prediction accounts for varying the strong coupling constant according to $\delta_{\text{EW}}(m_Z) = 0.118 \pm 0.002$, a variation that corresponds to a 90% C.L. uncertainty range [25] that nevertheless has a small impact on the analysis. Although the $t\bar{t}$ cross-section uncertainty is only about 6% [62] and the corresponding impact on the total background is small, it is accounted for in the statistical analysis due to the characteristic m_T distribution shape for this background source. An m_T-dependent uncertainty in the $t\bar{t}$ shape is also included. It corresponds to the remaining level of disagreement between the data and the simulation after the correction described in Sec. III. This uncertainty is evaluated in a control region consisting of events with both an electron and a muon candidate, which is a region dominated by $t\bar{t}$ events. The diboson cross-section uncertainty is neglected due to its small impact on the analysis. However, the extrapolation uncertainty for the diboson background is included in the statistical analysis as it grows to become significant at higher m_T values. This uncertainty is estimated by varying the range of m_T values over which the fit is performed and by changing the functional form. The extrapolation uncertainty for the top-quark background is neglected due to its small impact.

The uncertainty in the integrated luminosity is 1.7% [63]. Table II summarizes the systematic uncertainties for the total background and signal in the electron and muon channels at m_T values near 2 and 6 TeV. The values in Table II correspond to the uncertainties that are incorporated as input to the statistical analysis described in Sec. VII. Large uncertainties in the background yields near m_T values of 6 TeV are obtained but those have little impact on the statistical analysis due to the small background expectation at such high m_T values (e.g., the number of background events for $m_T > 5.1$ TeV is 0.02 in the electron channel and 0.11 in the muon channel).

VII. RESULTS

The m_T distributions in the electron and muon channels (Fig. 1) provide the input data to the statistical analysis. This analysis proceeds as a multibin counting experiment with a likelihood accounting for the Poisson probability to observe a number of events in data given the expected number of background and signal events in each bin.

TABLE II. Systematic uncertainties in the expected number of events for the total background and for a W boson with a mass of 2 (6) TeV. The uncertainties are estimated with the binning shown in Fig. 1 at $m_T = 2 (6)$ TeV for the background and in a three-bin window around $m_T = 2 (6)$ TeV for the signal. Uncertainties that are not applicable are denoted “N/A,” and “negl.” means that the uncertainty is not included in the statistical analysis because its impact on the result is negligible at any m_T value. Small uncertainties that appear in the table (e.g., those listed as <0.5%) are not negligible at m_T values lower than 2 TeV and are thus listed. Sources of uncertainty not included in the table are neglected in the statistical analysis.

Source	Electron channel	Muon channel		
	Background	Signal	Background	Signal
	$m_T = 2 (6)$ TeV			
Trigger	negl. (negl.)	negl. (negl.)	1.1% (1.0%)	1.2% (1.2%)
Lepton reconstruction and identification	4.1% (1.4%)	4.3% (4.3%)	8.9% (37%)	6.6% (38%)
Lepton momentum scale and resolution	3.9% (2.7%)	2.7% (4.5%)	12% (47%)	13% (20%)
$E^{\text{miss}}_{\text{T}}$ resolution and scale	$<0.5% (<0.5%)$	$<0.5% (<0.5%)$	$<0.5% (<0.5%)$	$<0.5% (<0.5%)$
Jet energy resolution	$<0.5% (<0.5%)$	$<0.5% (<0.5%)$	$0.5% (0.6%)$	$0.5% (0.5%)$
Multijet background	4.4% (420%)	N/A (N/A)	0.8% (1.5%)	N/A (N/A)
Top-quark background	0.8% (1.9%)	N/A (N/A)	0.7% (<0.5%)	N/A (N/A)
Diboson extrapolation	1.5% (47%)	N/A (N/A)	1.3% (9.7%)	N/A (N/A)
PDF choice for DY	1.0% (10%)	N/A (N/A)	<0.5% (1.0%)	N/A (N/A)
PDF variation for DY	8.1% (13%)	N/A (N/A)	7.4% (14%)	N/A (N/A)
EW corrections for DY	4.2% (4.5%)	N/A (N/A)	3.7% (7.0%)	N/A (N/A)
Luminosity	1.6% (1.1%)	1.7% (1.7%)	1.7% (1.7%)	1.7% (1.7%)
Total	12% (430%)	5.4% (6.4%)	17% (62%)	15% (43%)
The uncertainties are taken into account via nuisance parameters implemented as log-normal constraints on the expected event yields. The parameter of interest is the cross section \(\sigma(pp \to W' \to \ell \nu) \). The combined fits to the electron and muon channels are performed taking correlations between the two channels into account.

The compatibility of the observed data with the background-only model is tested by computing a frequentist \(p \) value based on the profile likelihood ratio as the test statistic \([64]\). The \(p \) value corresponds to the probability for the background to yield an excess equal to or larger than that observed in data. In the electron channel, the lowest \(p \) value is obtained for \(m(W') = 625 \) GeV with a local significance of 2.8 standard deviations, corresponding to a global significance of 1.3 standard deviations when taking the look-elsewhere effect into account. In the muon channel, the lowest \(p \) value is obtained for \(m(W') = 200 \) GeV with local and global significances of 2.1 and 0.4 standard deviations, respectively. For the combination of the two channels, the lowest \(p \) value occurs for \(m(W') = 625 \) GeV with local significance of 1.8 standard deviations, and the corresponding global significance is \(-0.5\) standard deviations (i.e., the fluctuation in the data is smaller than the median of the distribution obtained with background-only pseudoexperiments). In all cases, the interpretation is performed in the context of the SSM.

Given that no significant deviation from the background expectation is observed, upper limits are set on \(\sigma(pp \to W' \to \ell \nu) \) following a Bayesian approach with a uniform and positive prior for the cross section. This choice of prior is the same as that used in previous searches \([7,8]\). The marginalization of the posterior probability is performed using Markov chain sampling with the Bayesian Analysis Toolkit \([65]\). Upper limits set at the 95\% C.L. in the context of the SSM are presented in Fig. 2 for the electron and muon channels individually as well as for their combination, assuming universal \(W' \) boson couplings to leptons. The combined results are provided in terms of \(W' \) boson decays into leptons of a single generation. The corresponding lower limits on the \(W' \) boson mass are summarized in Table III. Weaker limits are obtained in the muon channel due to the lower signal acceptance times efficiency and the worse momentum resolution at high \(p_T \).

The lower panels of Fig. 1 show the ratio of the data to the background prediction before (middle panel) and after (lower panel) marginalization of the nuisance parameters, with the latter resulting from the combined fit to the electron and muon channels. A difference in event yields is observed at low \(m_{W'} \) values for both the electron and muon channels, although it remains within the range of uncertainty before marginalization. This difference decreases after marginalization, with the largest deviations from nominal values occurring for the jet energy resolution and \(E_T^{\text{miss}} \) track soft term nuisance parameters. The latter

FIG. 2. Observed and expected upper limits at the 95\% C.L. on the \(pp \to W' \to \ell \nu \) cross section in the electron (top), muon (middle), and combined (bottom) channels as a function of \(W' \) mass in the sequential Standard Model. The dashed lines surrounding the SSM cross-section curve (solid line) correspond to the combination of PDF, \(\alpha_s \), renormalization, and factorization scale uncertainties (for illustration only).
includes a significant model dependence found by comparing the predictions from the POWHEG-BOX, MADGRAPH5_ aMC@NLO [66], and SHERPA event generators, with the first two interfaced with PYTHIA 8 for parton showering and hadronization.

The results displayed in Fig. 2 are obtained with the full signal line shape from the SSM with no interference between the W' signal and the SM DY background. If the signal line shape is restricted to the W' peak region by the requirement $m_{ℓν} > 0.85 \times m(W')$, the interference effects in the low-mass tail of the distributions are largely suppressed and the observed (expected) mass limits become weaker by 270 (100) GeV in the electron channel and 30 (90) GeV in the muon channel, relative to the mass limits shown in Table III. The $m_{ℓν} > 0.85 \times m(W')$ requirement is applied at the event generator level, considering charged leptons before final-state radiation.

Limits are provided for the production of a generic resonance with a fixed $Γ/m$ value. For these results, fiducial cross-section limits are obtained with a requirement that removes the low-mass tail: $m_{ℓν} > 0.3 \times m(W')$. The region below $0.3 \times m(W')$ coincides with the lower-$m_τ$ region where the background is large and the sensitivity to signal contributions is reduced. The observed 95% C.L. upper limits on the fiducial cross section for $pp \to W' \to ℓν$ with different choices of $Γ/m$ from 1% to 15% are shown in Fig. 3. Less stringent limits are obtained for larger resonance widths since a larger fraction of the signal occurs in the low-$m_τ$ tail where the background is higher. The cross-section upper limits obtained in the fiducial region are lower than the ones obtained in the full phase space, in particular at high $m(W')$ where the total cross section has a large contribution from outside the fiducial region due to the low-$m_τ$ tail. The lower values of the cross-section limits do not indicate that the fiducial limits exclude a broader set of models, as corresponding theoretical predictions are also lower in the fiducial than in the total phase space.

To facilitate further interpretations of the results, model-independent upper limits are also provided for the number of signal events N_{sig} in single-bin signal regions obtained by varying the minimum $m_τ$ value $m_τ^{min}$ in the range between 130 (110) GeV and 5127 (5127) GeV in the electron (muon) channel. These limits are translated into limits on the visible cross section $σ_{vis}$ computed as N_{sig}/L, where L is the integrated luminosity. The visible cross section corresponds to the product of cross section times acceptance times efficiency and the observed 95% C.L. upper limits vary from 4.6 (15) pb at $m_τ^{min} = 130$ (110) GeV to 22 (22) ab at

Decay	$m(W')$ lower limit [TeV]	Observed	Expected
$W' \to ev$	6.0	5.7	
$W' \to μν$	5.1	5.1	
$W' \to ℓν$	6.0	5.8	

FIG. 3. Observed upper limits at the 95% C.L. on the fiducial cross section for $pp \to W' \to ℓν$ in the electron (top), muon (middle), and combined (bottom) channels as a function of W' mass for a number of different choices of $Γ(W')/m(W')$ ranging between 1% and 15%.
used to estimate the normalization and shape of the distributions for signal and background events, except for the multijet background, which is derived from the data.

The observed m_T distributions are found to be consistent with the background expectations, and upper limits are set on the cross section for $pp \rightarrow W' \rightarrow \ell \nu$, where the charged lepton is either an electron or a muon. Limits are also provided for the combination of the electron and muon channels. Lower limits of 6.0 and 5.1 TeV on the W' boson mass are set at 95% C.L. in the electron and muon channels, respectively, in the context of the sequential Standard Model. Fiducial cross-section limits are set on the production of resonances with different Γ/m values ranging from 1% to 15%. To allow for further interpretations of the results, a set of model-independent upper limits are presented for the number of signal events and for the visible cross section above a given transverse mass threshold. These vary from 4.6 (15) pb at $m_{T \min} = 130$ (110) GeV to 22 (22) ab at high $m_{T \min}$ in the electron (muon) channel.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC, and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain),
ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [67].

APPENDIX

Model-independent upper limits are derived by applying the full event selection in a set of single-bin signal regions defined by the minimum \(m_T \) value \(m_T^{\text{min}} \) in the range between 130 (110) GeV and 5127 (5127) GeV, in the electron (muon) channel. These minimum values correspond to the bin boundaries of the \(m_T \) distributions shown in Fig. 1. The single-bin signal regions are defined in Tables IV and V. These tables also show the numbers of events observed in data and the expected numbers of background events.

\(m_T^{\text{min}} \) [GeV]	\(N_{\text{obs}} \)	\(b \)	\(\Delta_b \)	\(N_{\text{sig}}^{\text{obs}} \)	\(N_{\text{sig}}^{\text{exp}} \)	\(\sigma_{\text{vis}}^{\text{obs}} \) [pb]	\(\sigma_{\text{vis}}^{\text{exp}} \) [pb]
130	3582164	3360000	2500000	\(6.4 \times 10^5 \)	\(4.6 \times 10^5 \)	4.6	3.3
139	3018934	2850000	2000000	\(5.1 \times 10^5 \)	\(3.8 \times 10^5 \)	3.7	2.7
149	2345269	2240000	1500000	\(3.6 \times 10^5 \)	\(2.8 \times 10^5 \)	2.6	2.0
159	1784938	1720000	1100000	\(2.5 \times 10^5 \)	\(2.0 \times 10^5 \)	1.8	1.4
170	1352988	1310000	800000	\(1.7 \times 10^5 \)	\(1.4 \times 10^5 \)	1.3	1.0
182	1028353	1000000	600000	\(1.2 \times 10^5 \)	\(1.1 \times 10^5 \)	0.90	0.76
194	784509	770000	400000	\(9.1 \times 10^4 \)	\(7.7 \times 10^4 \)	0.66	0.55
208	599999	588000	310000	\(6.7 \times 10^4 \)	\(5.8 \times 10^4 \)	0.48	0.42
222	459843	451000	230000	\(5.0 \times 10^4 \)	\(4.4 \times 10^4 \)	0.36	0.31
237	352825	347000	180000	\(3.8 \times 10^4 \)	\(3.4 \times 10^4 \)	0.27	0.24
254	270299	267000	140000	\(2.9 \times 10^4 \)	\(2.6 \times 10^4 \)	0.21	0.19
271	207728	204000	110000	\(2.3 \times 10^4 \)	\(2.0 \times 10^4 \)	0.16	0.15
290	159319	157000	80000	\(1.7 \times 10^4 \)	\(1.6 \times 10^4 \)	0.13	0.11
310	122150	120000	60000	\(1.4 \times 10^4 \)	\(1.2 \times 10^4 \)	0.10	0.088
331	93335	92000	5000	\(1.1 \times 10^4 \)	\(9.5 \times 10^3 \)	0.078	0.069
354	71416	70000	4000	\(8.6 \times 10^3 \)	\(7.4 \times 10^3 \)	0.062	0.053
379	54642	53500	3100	\(6.6 \times 10^3 \)	\(5.8 \times 10^3 \)	0.048	0.042
405	41745	40800	2400	\(5.3 \times 10^3 \)	\(4.5 \times 10^3 \)	0.038	0.033
433	31792	31100	1900	\(4.1 \times 10^3 \)	\(3.6 \times 10^3 \)	0.030	0.026
463	24257	23600	1500	\(3.3 \times 10^3 \)	\(2.8 \times 10^3 \)	0.023	0.020
495	18484	18000	1200	\(2.6 \times 10^3 \)	\(2.2 \times 10^3 \)	0.019	0.016
529	13937	13600	900	\(1.9 \times 10^3 \)	\(1.7 \times 10^3 \)	0.014	0.012
565	10548	10300	700	\(1.5 \times 10^3 \)	\(1.3 \times 10^3 \)	0.011	0.0096
604	7938	7800	500	\(1.1 \times 10^3 \)	\(1.0 \times 10^3 \)	0.0080	0.0074
646	5926	5900	400	\(7.8 \times 10^2 \)	\(8.0 \times 10^2 \)	0.0056	0.0057
691	4469	4470	330	\(6.2 \times 10^2 \)	\(6.2 \times 10^2 \)	0.0044	0.0044
739	3342	3360	250	\(4.6 \times 10^2 \)	\(4.8 \times 10^2 \)	0.0033	0.0034
790	2499	2510	190	\(3.6 \times 10^2 \)	\(3.7 \times 10^2 \)	0.0026	0.0026
844	1876	1850	140	\(3.0 \times 10^2 \)	\(2.8 \times 10^2 \)	0.0022	0.0020
902	1358	1370	110	\(2.1 \times 10^2 \)	\(2.2 \times 10^2 \)	0.0015	0.0016
965	1021	1010	80	\(1.8 \times 10^2 \)	\(1.7 \times 10^2 \)	0.0013	0.0012
1031	727	740	60	\(1.2 \times 10^2 \)	\(1.3 \times 10^2 \)	0.00088	0.00093
1103	495	540	50	74	\(1.0 \times 10^2 \)	0.00053	0.00072
1179	354	390	40	56	78	0.00040	0.00056
1260	260	278	27	48	60	0.00035	0.00043
1347	175	198	20	33	47	0.00024	0.00034
1441	113	140	15	21	37	0.00015	0.00027

(Table continued)
TABLE IV. (Continued)

m_T^{min} [GeV]	N_{obs}	b	Δ_b	$N_{\text{obs}}^{\text{sig}}$	$N_{\text{exp}}^{\text{sig}}$	$\sigma_{\text{vis}}^{\text{obs}}$ [pb]	$\sigma_{\text{vis}}^{\text{exp}}$ [pb]
1540	74	98	11	16	29	0.00011	0.00021
1647	55	68	8	15	24	0.00011	0.00017
1760	39	46	6	14	19	9.9 × 10^{-5}	9.0 × 10^{-5}
1882	23	31	5	9.6	15	6.9 × 10^{-5}	6.0 × 10^{-5}
2012	17	20.9	3.4	9.4	12	6.8 × 10^{-5}	8.9 × 10^{-5}
2151	8	13.7	2.5	6.0	10	4.3 × 10^{-5}	7.4 × 10^{-5}
2300	1	8.9	1.8	3.4	8.4	2.4 × 10^{-5}	6.1 × 10^{-5}
2458	0	5.7	1.4	3.0	7.3	2.2 × 10^{-5}	5.2 × 10^{-5}
2628	0	3.6	1.0	3.0	5.3	2.2 × 10^{-5}	3.8 × 10^{-5}
2810	0	2.2	0.8	3.0	4.9	2.2 × 10^{-5}	3.5 × 10^{-5}
3004	0	1.3	0.6	3.0	4.1	2.2 × 10^{-5}	2.9 × 10^{-5}
3212	0	0.8	0.5	3.0	4.2	2.2 × 10^{-5}	3.1 × 10^{-5}
3434	0	0.5	0.4	3.0	3.0	2.2 × 10^{-5}	2.2 × 10^{-5}
3671	0	0.28	0.28	3.0	3.0	2.2 × 10^{-5}	2.2 × 10^{-5}
3924	0	0.16	0.22	3.0	3.0	2.2 × 10^{-5}	2.2 × 10^{-5}
4196	0	0.09	0.17	3.0	3.0	2.2 × 10^{-5}	2.2 × 10^{-5}
4485	0	0.05	0.13	3.0	3.0	2.2 × 10^{-5}	2.2 × 10^{-5}
4795	0	0.03	0.10	3.0	3.0	2.2 × 10^{-5}	2.2 × 10^{-5}
5127	0	0.02	0.08	3.0	3.0	2.2 × 10^{-5}	2.2 × 10^{-5}

TABLE V. Observed and expected muon-channel model-independent limits at 95% C.L. on the number of signal events N_{sig} and corresponding visible cross section σ_{vis} after full event selection for different m_T thresholds m_T^{min}. Also shown are the ingredients to the limit calculation, namely the number of observed events, the expected number of background events b, and the corresponding uncertainty Δb.

m_T^{min} [GeV]	N_{obs}	b	Δ_b	$N_{\text{obs}}^{\text{sig}}$	$N_{\text{exp}}^{\text{sig}}$	$\sigma_{\text{vis}}^{\text{obs}}$ [pb]	$\sigma_{\text{vis}}^{\text{exp}}$ [pb]
110	8783359	78000000	7000000	2.1 × 10^6	1.3 × 10^6	15	9.1
120	6589361	59000000	5000000	1.5 × 10^6	9.8 × 10^5	11	7.0
130	4353441	39000000	4000000	9.9 × 10^5	6.5 × 10^5	7.1	4.7
141	2820607	25900000	2200000	5.9 × 10^5	4.1 × 10^5	4.3	2.9
154	1840357	17200000	1400000	3.5 × 10^5	2.5 × 10^5	2.5	1.8
167	1227452	11600000	800000	2.0 × 10^5	1.5 × 10^5	1.5	1.1
182	837724	8000000	500000	1.2 × 10^5	9.3 × 10^4	0.88	0.67
197	581304	5620000	320000	7.5 × 10^4	6.0 × 10^4	0.54	0.43
215	409019	3980000	210000	4.8 × 10^4	4.0 × 10^4	0.35	0.29
233	289557	2840000	150000	3.2 × 10^4	2.8 × 10^4	0.23	0.20
254	206096	2020000	100000	2.3 × 10^4	2.0 × 10^4	0.16	0.14
276	146653	1440000	70000	1.6 × 10^4	1.4 × 10^4	0.12	0.10
300	104516	1030000	50000	1.1 × 10^4	1.0 × 10^4	0.083	0.073
326	74371	730000	40000	8.3 × 10^3	7.4 × 10^3	0.059	0.053
354	52871	521000	29000	6.1 × 10^3	5.5 × 10^3	0.044	0.039
385	37630	371000	22000	4.5 × 10^3	4.1 × 10^3	0.032	0.030
419	26878	263000	16000	3.5 × 10^3	3.1 × 10^3	0.025	0.022
455	19035	187000	12000	2.6 × 10^3	2.3 × 10^3	0.018	0.017
495	13578	132000	9000	2.0 × 10^3	1.7 × 10^3	0.014	0.012

(Table continued)
TABLE V. (Continued)

m_T^{min} [GeV]	N_{obs}	b	Δ_b	N_{obs}	N_{exp}	σ_{vis} [pb]	σ_{vis} [pb]
538	9565	9400	700	1.4×10^3	1.3×10^3	0.010	0.0093
585	6804	6600	500	1.1×10^3	9.6 $\times 10^2$	0.0080	0.0069
635	4754	4600	400	8.0×10^2	7.1 $\times 10^2$	0.0058	0.0051
691	3353	3250	280	6.1×10^2	5.3 $\times 10^2$	0.0044	0.0038
751	2297	2240	210	4.3×10^2	3.9 $\times 10^2$	0.0031	0.0028
816	1624	1520	150	3.6×10^2	2.8 $\times 10^2$	0.0026	0.0020
887	1093	1020	110	2.6×10^2	2.0 $\times 10^2$	0.0018	0.0014
965	754	700	80	1.9×10^2	1.5 $\times 10^2$	0.0014	0.0011
1049	517	470	60	1.4×10^2	1.1 $\times 10^2$	0.0010	0.00078
1140	367	320	40	1.2×10^2	80	0.00086	0.00057
1239	262	215	29	1.0×10^2	60	0.00073	0.00043
1347	166	143	21	64	44	0.00046	0.00032
1465	113	95	15	49	33	0.00035	0.00024
1592	77	63	11	38	26	0.00027	0.00018
1731	48	41	8	25	19	0.00018	0.00014
1882	30	27	6	18	15	0.00013	0.00011
2046	21	18	4	15	13	0.00011	9.0 $\times 10^{-5}$
2224	16	11.4	3.1	14	9.5	0.00010	6.8 $\times 10^{-5}$
2418	8	7.4	2.2	8.6	7.7	6.2 $\times 10^{-5}$	5.5 $\times 10^{-5}$
2628	5	4.7	1.6	6.9	6.9	5.0 $\times 10^{-5}$	5.0 $\times 10^{-5}$
2857	3	3.0	1.1	5.6	5.6	4.1 $\times 10^{-5}$	4.1 $\times 10^{-5}$
3106	2	1.9	0.8	5.0	5.0	3.6 $\times 10^{-5}$	3.6 $\times 10^{-5}$
3377	2	1.2	0.5	5.3	4.1	3.8 $\times 10^{-5}$	2.9 $\times 10^{-5}$
3671	1	0.8	0.4	4.2	4.2	3.1 $\times 10^{-5}$	3.1 $\times 10^{-5}$
3990	1	0.47	0.25	4.4	3.0	3.2 $\times 10^{-5}$	2.2 $\times 10^{-5}$
4338	1	0.29	0.16	4.5	3.0	3.2 $\times 10^{-5}$	2.2 $\times 10^{-5}$
4716	1	0.18	0.11	4.6	3.0	3.3 $\times 10^{-5}$	2.2 $\times 10^{-5}$
5127	0	0.11	0.07	3.0	3.0	2.2 $\times 10^{-5}$	2.2 $\times 10^{-5}$

[1] R. N. Mohapatra and J. C. Pati, Left-right gauge symmetry and an “isoconjugate” model of CP violation, *Phys. Rev. D* **11**, 566 (1975).

[2] G. Senjanovic and R. N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, *Phys. Rev. D* **12**, 1502 (1975).

[3] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, The littlest Higgs, *J. High Energy Phys.* 07 (2002) 034.

[4] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, Bounds on universal extra dimensions, *Phys. Rev. D* **64**, 035002 (2001).

[5] K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang, and A. Soni, LHC signals for warped electroweak charged gauge bosons, *Phys. Rev. D* **80**, 075007 (2009).

[6] G. Altarelli, B. Mele, and M. Ruiz-Altaba, Searching for new heavy vector bosons in $p\bar{p}$ colliders, *Z. Phys. C* **45**, 109 (1989); Erratum, **47**, 676(E) (1990).

[7] ATLAS Collaboration, Search for a new heavy gauge-boson resonance decaying into a lepton and missing transverse momentum in 36 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment, *Eur. Phys. J. C* **78**, 401 (2018).

[8] CMS Collaboration, Search for high-mass resonances in final states with a lepton and missing transverse momentum at $\sqrt{s} = 13$ TeV, *J. High Energy Phys.* 06 (2018) 128.

[9] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton-proton collision data, arXiv:1908.00005.

[10] ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider, *J. Instrum. 3*, S08003 (2008).

[11] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, CERN Report No. ATLAS-TDR-19, 2010, https://cds.cern.ch/record/1291633; Addendum, CERN Report No. ATLAS-TDR-19-ADD-1, 2012, https://cds.cern.ch/record/1451888.
[12] B. Abbott et al., Production and integration of the ATLAS Insertable B-Layer, J. Instrum. 13, T05008 (2018).
[13] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77, 317 (2017).
[14] T. Sjöstrand, S. Mrenna, and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008).
[15] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B867, 244 (2013).
[16] ATLAS Collaboration, ATLASTHETA 8 tunes to 7 TeV data, CERN Report No. ATL-PHYS-PUB-2014-021, 2014, https://cds.cern.ch/record/1966419.
[17] ATLAS Collaboration, ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C 72, 2241 (2012).
[18] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 11 (2004) 040.
[19] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with parton shower simulations: The POWHEG method, J. High Energy Phys. 11 (2007) 070.
[20] S. Alioli, P. Nason, C. Oleari, and E. Re, NLO vector-boson production matched with shower in POWHEG, J. High Energy Phys. 07 (2008) 060.
[21] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX, J. High Energy Phys. 06 (2010) 043.
[22] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, and C.-P. Yuan, New parton distributions for collider physics, Phys. Rev. D 82, 074024 (2010).
[23] ATLAS Collaboration, Measurement of the Z/γ^* boson transverse momentum distribution in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, J. High Energy Phys. 09 (2014) 145.
[24] C. Anastasiou, L. Dixon, K. Melnikov, and F. Petriello, High-precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at next-to-next-to-leading order, Phys. Rev. D 69, 094008 (2004).
[25] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and C.-P. Yuan, New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93, 033006 (2016).
[26] A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, U. Klein, V. Kolesnikov, L. Rumyantsev, R. Sadykov, and A. Sapronov, Update of the MCSANC Monte Carlo integrator, v. 1.20, JETP Lett. 103, 131 (2016).
[27] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision Monte Carlo integrator, v. 1.20, JETP Lett. 103, 131 (2016).
[28] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision Monte Carlo integrator, v. 1.20, JETP Lett. 103, 131 (2016).
[29] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter, Event generation with SHERPA 1.1, J. High Energy Phys. 02 (2009) 007.
[30] R. D. Ball et al., Parton distributions for the LHC Run II, J. High Energy Phys. 04 (2015) 040.
[31] S. Frixione, P. Nason, and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, J. High Energy Phys. 09 (2007) 126.
[32] S. Alioli, P. Nason, C. Oleari, and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, J. High Energy Phys. 09 (2009) 111.
[33] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71, 1547 (2011).
[34] M. Cacciari, M. Czakon, M. Mangano, A. Mitov, and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710, 612 (2012).
[35] M. Beneke, P. Falgari, S. Klein, and C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation, Nucl. Phys. B855, 695 (2012).
[36] M. Czakon, P. Fiedler, and A. Mitov, Percent-Level-Precision Physics at the Tevatron: Next-to-Next-to-Leading Order QCD Corrections to $q\bar{q} \to t\bar{t} + X$, Phys. Rev. Lett. 109, 132001 (2012).
[37] M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: The all-fermionic scattering channels, J. High Energy Phys. 12 (2012) 054.
[38] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: The quark-gluon reaction, J. High Energy Phys. 01 (2013) 080.
[39] M. Czakon, P. Fiedler, and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through $O(\alpha_s^4)$, Phys. Rev. Lett. 110, 252004 (2013).
[40] M. Czakon and A. Mitov, top++: A program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185, 2930 (2014).
[41] M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos, and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, J. High Energy Phys. 10 (2017) 186.
[42] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83, 091503 (2011).
[43] N. Kidonakis, Next-to-next-to-leading logarithm resummation for s-channel single top quark production, Phys. Rev. D 81, 054028 (2010).
[44] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W^- or H^-, Phys. Rev. D 82, 054018 (2010).
[45] D. J. Lange, The EVTGEN particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[46] ATLAS Collaboration, The PYTHIA 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Dornach-Landshoff diffractive model, CERN Report No. ATL-PHYS-PUB-2016-017, 2016, https://cds.cern.ch/record/2206965.
[47] S. Agostinelli et al., GEANT4—A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[48] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70, 823 (2010).
[49] ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 76, 292 (2016).
[50] ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77, 490 (2017).
SEARCH FOR A HEAVY CHARGED BOSON IN EVENTS …

PHYS. REV. D 100, 052013 (2019)
SEARCH FOR A HEAVY CHARGED BOSON IN EVENTS ...

PHYS. REV. D 100, 052013 (2019)

L. Paolozzi, 54 C. Papadatos, 109 K. Papageorgiou, 9, s P. Parajuli, 43 A. Paramonov, 6 D. Paredes Hernandez, 63b S. R. Paredes Saenz, 135 B. Parida, 166 T. H. Park, 167 A. J. Parker, 89 M. A. Parker, 32 F. Parodi, 55b, 55a E. W. P. Parrish, 121 J. A. Parsons, 39 U. Parzefall, 52 L. Pascual Dominguez, 136 V. R. Pascuzzi, 167 J. M. P. Pasner, 146 E. Pasqualucci, 72a S. Passaggio, 55b F. Pastore, 93 P. Pasuwan, 15a, 15b S. Pataraia, 99 J. R. Pater, 100 A. Pathak, 181 T. Pauli, 115 B. Pearson, M. Pedersen, 13 L. Pedraza Diaz, 119 R. Pedro, 140a T. Peiffer, 53 S. V. Pellegranich, 22b, 122a O. Penc, 141 H. Peng, 100a B. S. Peralva, 80a M. M. Perego, 132 A. P. Pereira Peixoto, 140a D. V. Perrepetals, 29 F. Peri, 19 L. Perini, 58a, 66b H. Perneges, 36 S. Perrella, 69a, 69b K. Peters, 46 R. F. Y. Peters, 100 B. A. Petersen, 36 T. C. Petersen, 40 E. Petit, 101 A. Petridis, 1 C. Petridou, 162 P. Petroff, 132 M. Petrov, 135 F. Petrucci, 74a, 74b M. Pettee, 183 N. E. Pettersson, 102 K. Petukhova, 143 A. Peyaud, 145 R. Pezoa, 147b L. Pezzotti, 70a, 70b T. Pham, 104 F. Phillips, 106 P. W. Phillips, 144 M. W. Phipps, 173 G. Piacquadio, 155 E. Pianori, 18 A. Picazio, 102 R. H. Pickles, 100 R. Piegaia, 50 D. Pietreanu, 73a, 73b J. E. Pilcher, 37 A. D. Pilkington, 100 M. Pinamonti, 147b J. L. Pinfold, 3, M. Pitt, 180 L. Pizzimento, 73a, 73b M.-A. Pleier, 19 V. Pleskot, 143 E. Plotnikova, 79 P. Podberesky, 122b, 122a R. Poettgen, 96 R. Poggi, 54 L. Poggioli, 132 A. Pogrebnyak, 119 D. Polak, 21 I. Pokharev, 53 G. Polesello, 70a A. Polev, 18 A. Policicchio, 72a, 72b R. Polik, 143 A. Polini, 23b C. S. Pollard, 46 V. Polychnakos, 29 D. Ponomarenko, 121 L. Pontecorvo, 63 M. Popa, 27a G. A. Popeneciu, 27d D. M. Portillo Quintero, 58 S. Pospisil, 142 K. Potamianos, 46 I. N. Potrap, 79 C. J. Potter, 32 H. Potti, 11 T. Poulsen, 96 J. Poveda, 36 T. D. Powell, 149 G. Pownall, 46 M. E. Pozo Astigarraga, 36 Pralavorio, 101 S. Prell, 78 A. Rembser, 36 M. Renda, 72a M. Rescigno, 72a S. Resconi, 66a, 66b E. D. Resseguie, 137 S. Rettie, 175 E. Reynolds, 21 O. L. Rezanova, 122b, 122a P. Reznicek, 143 E. Ricci, 55a, 75b R. Richter, 115 S. Richter, 86 E. Richter-Was, 63b O. Ricken, 24 M. Ridel, 136 P. Rieck, 115 C. J. Riegel, 182 O. Rifi, 56 M. Rijkenbeek, 155 A. Rimoldi, 70a, 70b M. Rimoldi, 96 L. Rinaldi, 23b C. Roda, 71a, 71b S. Rodriguez Bosca, 174 A. Rodriguez Perez, 14 D. Rodriguez Rodriguez, 168b A. M. Rodriguez Vera, 123b J. L. Pinfold, 3 M. Pitt, 148 A. Polian, 23b C. S. Pollard, 46 V. Polychronakos, 29 D. Ponomarenko, 121 L. Pontecorvo, 63 M. Popa, 27a G. A. Popeneciu, 27d D. M. Portillo Quintero, 58 S. Pospisil, 142 K. Potamianos, 46 I. N. Potrap, 79 C. J. Potter, 32 H. Potti, 11 T. Poulsen, 96 J. Poveda, 36 T. D. Powell, 149 G. Pownall, 46 M. E. Pozo Astigarraga, 36 Pralavorio, 101 S. Prell, 78 A. Rembser, 36 M. Renda, 72a M. Rescigno, 72a S. Resconi, 66a, 66b E. D. Resseguie, 137 S. Rettie, 175 E. Reynolds, 21 O. L. Rezanova, 122b, 122a P. Reznicek, 143 E. Ricci, 55a, 75b R. Richter, 115 S. Richter, 86 E. Richter-Was, 63b O. Ricken, 24 M. Ridel, 136 P. Rieck, 115 C. J. Riegel, 182 O. Rifi, 56 M. Rijkenbeek, 155 A. Rimoldi, 70a, 70b M. Rimoldi, 96 L. Rinaldi, 23b C. Roda, 71a, 71b S. Rodriguez Bosca, 174 A. Rodriguez Perez, 14 D. Rodriguez Rodriguez, 168b A. M. Rodriguez Vera, 123b J. L. Pinfold, 3 M. Pitt, 148 A. Polian, 23b C. S. Pollard, 46 V. Polychronakos, 29 D. Ponomarenko, 121 L. Pontecorvo, 63 M. Popa, 27a G. A. Popeneciu, 27d D. M. Portillo Quintero, 58 S. Pospisil, 142 K. Potamianos, 46 I. N. Potrap, 79 C. J. Potter, 32 H. Potti, 11 T. Poulsen, 96 J. Poveda, 36 T. D. Powell, 149 G. Pownall, 46 M. E. Pozo Astigarraga, 36 Pralavorio, 101 S. Prell, 78 A. Rembser, 36 M. Renda, 72a M. Rescigno, 72a S. Resconi, 66a, 66b E. D. Resseguie, 137 S. Rettie, 175 E. Reynolds, 21 O. L. Rezanova, 122b, 122a P. Reznicek, 143 E. Ricci, 55a, 75b R. Richter, 115 S. Richter, 86 E. Richter-Was, 63b O. Ricken, 24
PHYS. REV. D 100, 052013 (2019)

G. AAD et al.

12c Department of Physics, Bogazici University, Istanbul, Turkey
12d Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
13 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14 Institut de Fisica d’Altes Energies (IAFE), Barcelona Institute of Science and Technology, Barcelona, Spain
15a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
15b Physics Department, Tsinghua University, Beijing, China
15c Department of Physics, Nanjing University, Nanjing, China
15d University of Chinese Academy of Science (UCAS), Beijing, China
16 Institute of Physics, University of Belgrade, Belgrade, Serbia
17 Department for Physics and Technology, University of Bergen, Bergen, Norway
18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
19 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
21 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
22 Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
23a INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica, Italy
23b INFN Sezione di Bologna, Italy
24 Physikalisches Institut, Universität Bonn, Bonn, Germany
25 Department of Physics, Boston University, Boston, Massachusetts, USA
26 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27a Transilvania University of Brasov, Brasov, Romania
27b Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
27c Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
27d National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
27e University Politehnica Bucharest, Bucharest, Romania
27f West University in Timisoara, Timisoara, Romania
28a Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
28b Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31 California State University, California, USA
32 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
33a Department of Physics, University of Cape Town, Cape Town, South Africa
33b Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
33c School of Physics, University of the Witwatersrand, Johannesburg, South Africa
34 Department of Physics, Carleton University, Ottawa, Ontario, Canada
35a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco
35b Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco
35c Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
35d Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
35e Faculté des sciences, Université Mohammed V, Rabat, Morocco
36 CERN, Geneva, Switzerland
37 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
38a LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
38b Nevis Laboratory, Columbia University, Irvington, New York, USA
40 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
41 Dipartimento di Fisica, Università della Calabria, Rende, Italy
41b INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
42 Physics Department, Southern Methodist University, Dallas, Texas, USA
43 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
44 National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
45a Department of Physics, Stockholm University, Sweden
45b Oskar Klein Centre, Stockholm, Sweden
aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Istanbul University, Department of Physics, Istanbul, Turkey.
dAlso at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid, Spain.
eAlso at TRIUMF, Vancouver, British Columbia, Canada.
fAlso at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
gAlso at Physics Department, An-Najah National University, Nablus, Palestine.
hAlso at Department of Physics, California State University, Fresno, USA.
iAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland.
jAlso at Physics Dept, University of South Africa, Pretoria, South Africa.
kAlso at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain.
lAlso at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
mAlso at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
nAlso at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
oAlso at Universita di Napoli Parthenope, Napoli, Italy.
pAlso at Institute of Particle Physics (IPP), Canada.
qAlso at Department of Physics, University of Adelaide, Adelaide, Australia.
rAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
sAlso at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
tAlso at Department of Physics, California State University, East Bay, USA.
uAlso at Institut Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
vAlso at Department of Physics, University of Michigan, Ann Arbor, Michigan, USA.
wAlso at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
xAlso at Graduate School of Science, Osaka University, Osaka, Japan.
yAlso at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
zAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
aAlso at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
b Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
cAlso at CERN, Geneva, Switzerland.
dAlso at Department of Physics, Stanford University, Stanford, California, USA.
eAlso at Manhattan College, New York, New York, USA.
fAlso at Joint Institute for Nuclear Research, Dubna, Russia.
gAlso at Hellenic Open University, Patras, Greece.
hAlso at The City College of New York, New York, New York, USA.
iAlso at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
jAlso at Department of Physics, California State University, Sacramento, USA.
kAlso at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
lAlso at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
mAlso at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
nAlso at Louisiana Tech University, Ruston, Louisiana, USA.
oAlso at School of Physics, Sun Yat-sen University, Guangzhou, China.pAlso at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
qAlso at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
rAlso at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates.
sAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
tAlso at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
uAlso at National Research Nuclear University MEPhI, Moscow, Russia.
vAlso at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Giresun, Turkey.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France.
Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.