Erythema multiforme in COVID-19 patients and following COVID-19 vaccination: manifestations, associations and outcomes

Dear Editor:

Erythema multiforme (EM) is a delayed-type hypersensitivity reaction linked to infectious agents in 90% of cases and medications or vaccination in less than 10% of cases. A 19-year-old male presented with a 48-h history of an itchy rash. Examination revealed erythematous papules and plaques with central dusky erythema and crusting on the bilateral upper extremities. There was no involvement of the palms, soles or oral mucosa. He had no fever, cough or medications. Prednisone 20 mg and cetirizine 10 mg daily were started. After 3 days, he developed fever, shortness of breath and dry cough; and a SARS-CoV-2 test was positive. He was started on remdesivir and dexamethasone. After 5 days, the rash started to improve, and after 2 weeks, it completely resolved.

EM in patients with COVID-19 has been reported in 23 publications (Fig. 1), including 36 cases with 19 males (53%). Four articles reported EM after COVID-19 vaccination (Fig. 1). The details of these manuscripts are summarized in Table 1. Among patients with EM and COVID-19, 16.7% (6/36) patients were less than 18-year-old, 19.4% (7/36) patients were 18–40 years old and 63.9% (23/36) patients were more than 40 years old. Eleven patients (30.6%) took no medications before EM; however, 25 patients (69.4%) reported exposure to medications before. Drugs to which patients were exposed before EM were HCQ in 20 cases (55.5%), azithromycin in 14 cases (38.9%) with 13 of them receiving HCQ in addition to azithromycin and lopinavir/ritonavir in 12 patients (33.3%), all in combination with HCQ. EM occurred before any classic COVID-19 symptoms in 23/36 (63.9%) patients, only in 5/36 patients (13.9%), four of them under 23 years. Three patients (8.3%) presented with EM and COVID-19 symptoms simultaneously. However, in most of the patients (78%), EM started after COVID-19 symptoms. Four patients (11.1%) had only mucosal involvement, five patients (13.9%) had mucosal and skin involvement, but most of the patients (27 patients,

References

1. Galván Casas C, Catalá A, Carretero Hernández G et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol 2020; 183: 71–77.
2. Sameni F, Hajikhanli B, Yaslianifard S et al. COVID-19 and skin manifestations: an overview of case reports/case series and meta-analysis of prevalence studies. Front Med (Lausanne) 2020; 7: 1–14.
3. Tamai M, Maekawa A, Goto N et al. Three cases of COVID-19 patients presenting with erythema. J Dermatol 2020; 47: 1175–1178.
4. Tan SW, Tam YC, Oh CG. Skin manifestations of COVID-19: a worldwide review. JAMA Dermatol 2021; 2: 119–133.
5. Maiti AK. The African-American population with a low allele frequency of SNP rs1990760 (T allele) in IFIH1 predicts less IFN-beta expression and potential vulnerability to COVID-19 infection. Immunogenetics 2020; 72: 387–391.
6. Gisondi P, Di Leo S, Bellinato F, Cazzaniga S, Piaserico S, Naldi L. Time of onset of selected skin lesions associated with COVID-19: a systematic review. Dermatol Ther (Heidelb) 2021; 11: 695–705.
7. Rocha KO, Zanuncio VV, Freitas BAC, Lima LM. "COVID toes": A meta-analysis of case and observational studies on clinical, histopathological, and laboratory findings. Pediatr Dermatol 2021; 38: 1143–1149.

DOI: 10.1111/jdv.18062
75%) had only skin lesions. Thirty-five of 36 patients survived, and only a 72-year-old woman died. Interestingly, her skin lesions were the first manifestation of infection. Therefore, we believe EM is not associated with worse outcomes. EM following vaccination is rare, with eight reported cases: three after Moderna (37.5%), four after Pfizer (50%) and one after CoronaVac (12.5%) (Table 1). In another study, three of 414 cases of dermatological presentations were EM after the first dose of the Moderna vaccine. This rarity makes it hard to establish a causal link. Infection with SARS-CoV-2 may have a role in the pathogenesis of EM. The underlying mechanism is not clear. EM may result from the interaction with the virus itself, antiviral immune response and medications. EM can rarely be the presenting sign of COVID-19, and EM is not associated with worse outcomes. Further studies are needed to elucidate the exact relationship between infection, medications and erythema multiforme in the setting of COVID-19.

Conflict of Interest
Not declared.

Funding
None.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

References
1. Gargiulo L, Pavia G, Facheris P et al. A fatal case of COVID-19 infection presenting with an erythema multiforme-like eruption and fever. *Dermatol Ther* 2020;33:e13779.
2. McMahon DE, Amerson E, Rosenbach M et al. Cutaneous reactions reported after Moderna and Pfizer COVID-19 vaccination: A registry-based study of 414 cases. *J Am Acad Dermatol* 2021;85:46–55.
3. Rosell-Díaz AM, Mateos-Mayo A, Nieto-Benito LM et al. Exanthema and eosinophilia in COVID-19 patients: has viral infection a role in drug induced exanthemas? *J Am Acad Dermatol* 2021;85:46–55.
4. Rubio-Muniz CA, Puerta-Peñafiel M, Falkenhain-López D et al. The broad spectrum of dermatological manifestations in COVID-19. Clinical and histopathological features learned from a series of 34 cases. *J Eur Acad Dermatol Venereol* 2020;34:e574–e576.
5. Jiménez-Cauhe J, Ortega-Quijano D, Carretero-Boj J et al. Erythema multiforme-like eruption in patients with COVID-19 infection: clinical and histological findings. *Clin Exp Dermatol*. 2020;45:892–895.
6. Torrelo A, Andina D, Santonja C et al. Erythema multiforme-like lesions in children and COVID-19. *Pediatr Dermatol*. 2020;37:442–446.
7. Janah H, Zinebi A, Elbenaye J. Atypical erythema multiforme palmar plaques lesions due to Sars-Cov-2. *J Eur Acad Dermatol Venereol*. 2020;34:e373–e374.
Table 1: Reported cases of EM in patients with COVID-19 and related to vaccination

Sample size for case reports or case series	Age (years) and sex	Medication type for COVID-19	Latency of EM after positive COVID-test (days)	Involved areas	Infectious work-up result other than positive COVID-19 test	Treatment for EM	Reference	
1 of 4	63Y F	Lopinavir/ritonavir, HCQ, azithromycin, ceftriaxone, corticosteroids	16 days after COVID-19 symptoms	In all patients, skin lesions begun as erythematous papules in upper trunk.	Not performed	Systemic corticosteroids	[5]	
2 of 4	77Y F	Lopinavir/ritonavir, HCQ, azithromycin, corticosteroids	16 days after COVID-19 symptoms	Negative for HIV, EBV, CMV, VZV, HSV, M. pneumoniae, syphilis	Systemic corticosteroids			
3 of 4	58Y F	Lopinavir/ritonavir, HCQ, azithromycin, ceftriaxone, corticosteroids	24 days after COVID-19 symptoms	Not performed	Systemic corticosteroids			
4 of 4	58Y F	Lopinavir/ritonavir, HCQ, azithromycin	19 days after COVID-19 symptoms	Negative EVB for HIV, EBV, CMV, VZV, HSV, M. pneumoniae, syphilis. HSV PCR found in vesicle swab	Systemic corticosteroids			
1	11Y F	None	Presented with EM	Elbows, knees, thighs, arms, forearms, legs, ankles, dorsal feet, dorsal hands	MD	None	[6]	
1 of 2	17Y M	Vitamin C	15 days after COVID-19 symptoms	Palms	A negative syphilitic serology	None	[7]	
2 of 2	29Y M	HCQ and azithromycin	12 days after COVID-19 symptoms	Palms	A negative syphilitic serology	None		
1	95Y F	HCQ	COVID-19 infection and EM developed simultaneously	Trunk and extremities	Serological study on parvovirus B19 infection showed negative IgM and positive IgG.	Topical corticosteroids	[8]	
1	22Y F	Metronidazole, ceftriaxone, meropenem, ribavirin and HCQ	COVID-19 infection and EM developed simultaneously	Oral and face	None	Oral valaciclovir	[9]	
1	25Y F	None	EM appeared on the day 2 of the disease course	Both palms	None	None	[10]	
1	37Y F	HCQ, azithromycin and oseltamivir	10 days after COVID-19 symptoms	Ventral/dorsal sides of hands, elbows, lips and oral mucosa	HSV, EBV, CMV, HbsAg, Anti HCV and Mycoplasma antibodies were within normal limits.	Oral methylprednisolone	[11]	
1 of 2	82Y M	HCQ, ceftriaxone and ertapenem	30 days after COVID-19 symptoms	Generalized involvement of trunk and limbs	None	Prednisone	[12]	
2 of 2	48Y M	HCQ, ritonavir, lopinavir, ceftriaxone and azithromycin	3 weeks after COVID-19 symptoms	Generalized involvement of trunk and limbs	None	Prednisone		
Sample size for case reports or case series	Age (years)	Sex	Medication type for COVID-19	Latency of EM after positive COVID-test (days)	Involved areas	Infectious work-up result other than positive COVID-19 test	Treatment for EM	Reference
---	------------	-----	-----------------------------	---	----------------	---	-----------------	----------
1	23 Y M	M	None	Presented with multiple painful mouth ulcers with no respiratory symptoms	Mouth, arms/legs, penis	Both CMV IgM and anti-EBV IgM were negative.	Intravenous fluids and analgesia	[13]
1	55 Y F	F	HCQ	12 days after COVID-19 treatment	trunk and upper limbs, without mucosal involvement	HSV and Mycoplasma pneumoniae were negative.	Treatment with HCQ was discontinued.	[14]
1	6 Y M	M	None	Presented with cheilitis, conjunctivitis and skin lesions. Respiratory function was normal.	Cheilitis, extremities, conjunctivitis.	Mycoplasma pneumoniae and HSV were negative.	None	[15]
1	72 Y F	F	Paracetamol	EM as the first manifestation of the infection, 10 days before the onset of any respiratory symptoms.	Trunk and upper and lower limbs	None	Methylprednisolone i.v.	[16]
1	46 Y M	M	Azithromycin and HCQ and specific IgE was positive for amoxicillin and ampicillin	48 h after finishing the course of HCQ, the patient developed EM	Face and palms, then generalized	IgM for CMV, HSV 1/2 and mycoplasma were all negative.	Prednisone and oral antihistamines	[17]
1	57-day-old F	F	None	Presented with EM and fever, cough and breathlessness.	Face and limbs	Blood culture was sterile.	Intraavenous methyl prednisolone and intravenous immunoglobulin G along with antibiotics.	[18]
1 of 3	63 Y F	F	Lopinavir/ritonavir, HCQ, azithromycin	19 days after COVID-19 symptoms.	Mucoosal involvement on Palate	None	None	[19]
2 of 3	58 Y F	F	Lopinavir/ritonavir, HCQ, azithromycin, tocilizumab, corticosteroids	24 days after COVID-19 symptoms.	None	None	None	
3 of 3	69 Y M	M	Lopinavir/ritonavir, HCQ, azithromycin	19 days after COVID-19 symptoms.	None	None	None	
1	57 Y M	M	None	5 days after COVID-19 symptoms.	Mouth, glans penis and conjunctiva	HIV antibodies were negative, CMV and EBV serologies only found IgG, and mycoplasma pneumoniae was negative.	None	[20]
1	13 Y M	M	Paracetamol	7 days after COVID-19 symptoms.	Left shoulder and conjunctiva	A full sepsis work-up Was negative. Mycoplasma pneumoniae, EBV, HSV 1 and 2, adenovirus and parvovirus B19 were negative.	None	[21]
Table 1 Continued

Sample size for case reports or case series	Age (years) and sex	Medication type for COVID-19	Latency of EM after positive COVID-test (days)	Involved areas	Infectious work-up result other than positive COVID-19 test	Treatment for EM	Reference
1	83Y F	HCQ and azithromycin	While receiving HCQ and azithromycin, an extensive skin rash developed.	Entire trunk with a transition to the shoulders and buttocks	None	Parenteral glucocorticosteroids	[22]
1	20 Y F	None	The rash started 4 days after cervical, axillary and inguinal lymphadenopathy.	Thighs	None	She did not receive any treatment.	[23]
1	1 Y M	Azithromycin	On the second day of illness, the febrile child developed skin rashes.	Soles, trunk and face	None	Ceftriaxone, HCQ, otezirine, intravenous immunoglobulin, zinc gluconate, albumin and vitamin D, and meropenem were administered during the treatment course.	[24]
1 of 4	64 Y F	HCQ, Lopinavir/Ritonavir, IFN-β, ceftriaxone	Time from hospital admission to EM onset was 14 days.	Generalized targetoid lesions, and facial oedema	None	Methylprednisolone	[25]
2 of 4	79 Y M	HCQ, Lopinavir/Ritonavir, IFN-β, ceftriaxone	Time from hospital admission to EM onset was 28 days.	Generalized targetoid lesions	None	Prednisone, oral	
3 of 4	74 Y F	HCQ, Lopinavir/Ritonavir, IFN-β, ceftriaxone	Time from hospital admission to EM onset was 23 days.	Generalized targetoid lesions, and facial oedema	None	Methylprednisolone	
4	Age: 60 (40–78)	All of 4 patients had new drugs interference	Time from hospital admission to EM onset was 24 days.	Generalized targetoid lesions	None	Methylprednisolone	
1	19 Y M	None	>10 days after COVID-19 symptoms.	Targetoid lesions	None	None	[4]
1	19Y M	None	Presented with rash 5 days before COVID-19 symptoms.	Upper extremities	None	Prednisone, oral and otezirine, oral	[26]

EM related to the COVID-19 vaccine

Sample size	Age (years) and sex	Type of vaccine	Latency of EM after COVID-vaccine (days)	Involved areas	Infectious Result or Recent Medication Use	Work-up for EM	Treatment for EM	
1	75 Y M	CoronaVac, developed by Sinovac Life Sciences (Beijing, China)	5 days after the second dose	Knees, face and trunk	He denied systemic symptoms, intake of new medications, and had no signs suggesting any infections.	None	Topical corticosteroids and oral antihistamines	[27]
Table 1 Continued

MEDICATIONAL HISTORY	TREATMENT FOR EM	WORK-UP OR MEDICATION USE	INVOLVED AREAS	INFECTIOUS WORK-UP	SAMPLE SIZE	AGE (YEARS) AND SEX	TYPE OF VACCINE	LATENCY OF EM AFTER COVID-vaccine (days)	RESULT OR RECENT MEDICATION USE
1 58Y F	BNT162b2 (Pfizer/BioNTech)	MD	Palms and soles bilaterally	Within 12 h of receiving the first BNT162b2 vaccine. A similar eruption occurred 24 h after receiving the second BNT162b2 vaccine.	MD				

CMV, Cytomegalovirus; COVID-19, Coronavirus Disease 2019; EBV, Epstein-Barr virus; EM, Erythema multiforme; HCQ, Hydroxychloroquine; HSV, Herpes simplex virus; MD, Missing data.

Supplementary references:
8. Reguero-Del Cura L, Gómez-Fernández C, López Obregón C, López-Sundh AE, González-López MA. Onset of erythema multiforme-like lesions in association with recurrence of symptoms of COVID-19 infection in an elderly woman. Dermatol Ther. 2020;33:e14208.
9. Fathi Y, Hoseini EG, Mottaghi R. Erythema multiforme-like lesions in a patient infected with SARS-CoV-2: a case report. Future Virol. 2021;16:157–160.
10. El-Kalioby M. Nondrug-related erythema multiforme-like eruption in a mild case of COVID-19. J Egypt Womens Dermatol Soc. 2021;10:147.
11. Demirbas A, Elmas ÖF, Atasoy M, Türsen U, Lotti T. A case of erythema multiforme major in a patient with COVID-19: The role of corticosteroid treatment. Dermatol Ther. 2020;33:e13899.
12. Sánchez-Velázquez A, Falkenhain D, Rivera Díaz R. Erythema multiforme in the context of SARS-Coronavirus-2 infection. Med Clin (English Ed). 2020;155:141.
13. Abdégabar A, Elayed M. Case of erythema multiforme/Stevens–Johnson syndrome: an unusual presentation of COVID-19. J R Coll Phys Edinb. 2021;51:160–161.
14. Monte-Serrano J, Cruañes-Monferrer J, García-García M, García-Gil MF. Hydroxychloroquine-induced erythema multiforme in a patient with COVID-19. Med Clin (English ed). 2020;155:231.
15. Labé P, Ly A, Sin C et al. Erythema multiforme and Kawasaki disease associated with COVID-19 infection in children. J Eur Acad Dermatol Venereol. 2020;34:e539–e541.
16. Gargulio L, Pavia G, Facheris P et al. A fatal case of COVID-19 infection presenting with an erythema multiforme-like eruption and fever. Dermatol Ther. 2020;33:e13779.
17. Cazzato G, Bosco A, Addante F, Colagrande A, Resta L et al. Erythema multiforme-like lesions: COVID-19? A case report. J Med Biomed Discov. 2020;4:119.
18. Sindhu CB, Francis B, George S, Reena Mariyath OK, Peathambaran G, Shams S. Erythema multiforme-like rash as a manifestation of multisystem inflammatory syndrome in children. J Skin Sex Transm Dis. 2021;3:181–183.
19. Jimenez-Cauhe J, Ortega-Quijano D, de Perosanz-Lobo D et al. Enanthем in patients with COVID-19 and skin rash. JAMA Dermatol. 2020;156:1134–1136.
20. Binois R, Colin M, Rzepecki V, Prazuck T, Esteve E, Hocqueloux L. A case of erythema multiforme major with multiple mucosal involvements in COVID-19 infection. Int J Dermatol. 2020;59:117–118.
21. Bapst T, Romano F, Müller M, Rohr M. Special dermatological presentation of paediatric multisystem inflammatory syndrome related to COVID-19: erythema multiforme. BMJ Case Rep. 2020;14:e236986.
22. Potekaev NN, Zhukova OV, Protsenko DN et al. Clinical characteristics of dermatological manifestations of COVID-19 infection: case series of 15 patients, review of literature, and proposed aetiological classification. Int J Dermatol. 2020;59:1000.
23. Chaabane I, Loukil M, Amri R et al. Cutaneous manifestations of COVID-19: report of three cases. Arch Dermatol Res. 2020;313:805–808.
24. Navaeifar MR, Ghazaghi MP, Shahbaznejad L et al. Fever with rash is one of the first presentations of COVID-19 in children: a case report. Int Med Case Rep J. 2020;13:335.
25. Rosell-Díaz AM, Mateos-Mayo A, Nieto-Benito LM et al. Exanthema and eosinophilia in COVID-19 patients: has viral infection a role in drug induced exanthemas? J Eur Acad Dermatol Venereol. 2020;34: E561–E563.
26. Etice F, Efekharhian M, Hashemi Z et al. erythema multiforme as a prodromal cutaneous manifestation of SARS-COV-2 infection. J Gen Intern Med. 2021;36:S224–S225.
27. Lopes NT, Pinilla C, Gerbase AC. Erythema multiforme after CoronaVac vaccination. J Eur Acad Dermatol Venereol. 2021;35:1–3.
28. Nawimana S, Lavery MJ, Parslew R, Stewart L. A flare of pre-existing erythema multiforme post BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine. Clin Exp Dermatol. 2021;44:1325–1327.
but to our knowledge, there have been no reports of inflammatory changes occurring on surgical scars or wounds. Very recently, inflammation occurring in Bacille Calmette-Guérin (BCG) scars following mRNA vaccination were observed, both on old scars as well as new ones, as part of a randomized trial evaluating whether BCG protects against Coronavirus disease 2019 (COVID-19).\(^{1,2}\)

We currently report the occurrence of inflammatory painful reactions, limited to the area of previous surgical procedures, in four otherwise healthy Caucasian patients (Table 1), 24–48 h after the first dose of the novel mRNA anti-SARS-CoV-2 Pfizer-BioNTech vaccine (BNT162b2). Two men and a woman had very recent scars, the excision having been performed 2–6 weeks before vaccination, while the other woman had surgery 6 months before vaccine injection. The intensity of the reaction varied from local erythematous swelling to bullous formation and purulent discharge, which were very painful even in the milder reactions (Fig. 1).

All patients had surgery to remove basal cell carcinomas, radically excised. Consulting the medical charts, the procedure required an internal absorbable vicryl suture in three patients, while in one patient, the reaction occurred before removal of the external suture (prolene). The site of vaccine injection was not affected with inflammatory changes, nor did the patients experience other general or bothersome symptoms. The inflammatory reaction on scars was treated with local mixed antibiotic-corticosteroid cream, resolving within 10–14 days, and left no sequelae. No further reactions occurred following the second dose of the vaccine. The cases were reported to the Italian Pharmacovigilance Authority.

Variable cutaneous reaction patterns have been associated with COVID-19 vaccination, including delayed type IV hypersensitivity reactions to dermal filler injections, inflammatory changes on previous radiation sites and old BCG scars re-activation.\(^{1,4}\) In our patients, the wound healing or remodelling phase of the surgical scars or the presence of residual suture materials might have stimulated some immunological mechanisms, similar to forms of hypersensitivity reactions. However, due to the self-healing, benign course of the reaction, no other invasive investigations were performed in our patients to clarify the pathogenesis. The observation is reported to the medical community to raise attention and collect further experiences or studies.

In conclusion, dermatologists are actively committed to supporting the Vaccine Adverse Event Reporting System (VAERS) and enhancing continuous safety monitoring.\(^{5}\) The risk of

Table 1 Patient data and medical history

Patient sex and age	Surgical scar origin	Clinical manifestations	Treatment	Course
Man, 75 years	Basal cell carcinoma excision on the nose 4 weeks before vaccination	24 h after the injection, deep pain and progressive induration of the scars, erythema and crusting formations.	Mixed antibiotic-steroidal cream twice daily	Complete healing in 4 weeks
Man, 65 years	Basal cell carcinoma excision on the scalp 2 weeks before vaccination	48 h after vaccine injection, severe pain and swelling of the wound, while suture was still in place. Removal of stitches was postponed for another week.	Mixed antibiotic-steroidal cream twice daily	Complete healing in 2 weeks
Woman, 52 years	Basal cell carcinoma excision on the upper abdomen 6 weeks before vaccination	24 h after vaccination, erythema, swelling, followed by bullous formation.	Mixed antibiotic-steroidal cream twice daily	Complete healing in 4 weeks
Woman, 40 years	Basal cell carcinoma excision on her right shoulder 6 months before vaccination	24 h after vaccination, sudden painful induration, swelling, followed by purulent discharge on a consolidated scar	Mixed antibiotic-steroidal cream twice daily	Complete healing in 6 weeks