On approximating tree spanners that are breadth first search trees

Ioannis Papoutsakis
Kastelli Pediados, Heraklion, Crete, Greece, 700 06

December 29, 2015

Abstract

A tree \(t \)-spanner \(T \) of a graph \(G \) is a spanning tree of \(G \) such that the distance in \(T \) between every pair of vertices is at most \(t \) times the distance in \(G \) between them. There are efficient algorithms that find a tree \(t \cdot O(\log n) \)-spanner of a graph \(G \), when \(G \) admits a tree \(t \)-spanner. In this paper, the search space is narrowed to \(v \)-concentrated spanning trees, a simple family that includes all the breadth first search trees starting from vertex \(v \). In this case, it is not easy to find approximate tree spanners within factor almost \(o(\log n) \). Specifically, let \(m \) and \(t \) be integers, such that \(m > 0 \) and \(t \geq 7 \). If there is an efficient algorithm that receives as input a graph \(G \) and a vertex \(v \) and returns a \(v \)-concentrated tree \(t \cdot o((\log n)^{m/(m+1)}) \)-spanner of \(G \), when \(G \) admits a \(v \)-concentrated tree \(t \)-spanner, then there is an algorithm that decides 3-SAT in quasi-polynomial time.

Keywords. tree spanner, low stretch, hardness of approximation, spanning tree, distance

1 Introduction

A tree \(t \)-spanner \(T \) of a graph \(G \) is a spanning tree of \(G \) such that the distance between every pair of vertices in \(T \) is at most \(t \) times the distance between them in \(G \). There are applications of spanners in a variety of areas, such as distributed computing \([2,19]\), communication networks \([17,18]\), motion planning and robotics \([1,7]\), phylogenetic analysis \([3]\), and in embedding finite metric spaces in graphs approximately \([21]\). In \([20]\) it is mentioned that spanners have applications in approximation algorithms for geometric spaces \([13]\), various approximation algorithms \([10]\) and solving diagonally dominant linear systems \([22]\).

On one hand, in \([4,6]\) an efficient algorithm to decide tree 2-spanner admissible graphs is presented. On the other hand, in \([6]\) it is proved that for each \(t \geq 4 \) the problem to decide graphs that admit a tree \(t \)-spanner is an NP-complete problem. The complexity status of the tree 3-spanner problem is unresolved.
There are NP-completeness results for the tree t-spanner problem for families of graphs. In [11], it is shown that it is NP-hard to determine the minimum t for which a planar graph admits a tree t-spanner. For any $t \geq 4$, the tree t-spanner problem is NP-complete on chordal graphs of diameter at most $t + 1$, when t is even, and of diameter at most $t + 2$, when t is odd [5]; note that this refers to the diameter of the graph not to the diameter of the spanner. In [15] (which is based on a chapter of [14]) it is shown that the problem to determine whether a graph admits a tree t-spanner of diameter at most $t + 1$ is tractable, when $t \leq 3$, while it is an NP-complete problem, when $t \geq 4$. The reduction in this last NP-completeness proof is used as a building block for the reduction in this article (see subsection 3.1).

In [11], for every t, an efficient algorithm to determine whether a planar graph with bounded face length admits a tree t-spanner is presented. Using a theorem of Logic, the existence of an efficient algorithm to decide bounded degree graphs that admit a tree t-spanner appears in [12]. Also, for every t, an efficient dynamic programming algorithm to decide tree t-spanner admissibility of bounded degree graphs appears in [16].

The first non trivial approximation algorithm appears in [9]. There, an efficient algorithm that finds a tree $t \cdot O(\log n)$-spanner, when the input graph admits a tree t-spanner, is presented. In [8] a different efficient algorithm achieving similar approximation ratio is presented, using chordal graphs; it is also given a necessary condition for a graph to admit a tree t-spanner.

An alternative definition of the problem of deciding tree t-spanner admissible graphs is the following. Let T be a spanning tree of a graph G. The stretch of a pair of vertices $u, v \in G$ is the ratio of the distance between them in T to the distance between them in G. The maximum stretch of T is the maximum stretch over all pairs of vertices of G. The Minimum Max-stretch spanning Tree problem (MMST) is finding a spanning tree of minimum maximum stretch; i.e. finding a tree t-spanner of a given unweighted graph G, such that G does not admit a tree $(t - 1)$-spanner. In [18] it is proved that approximating the MMST problem within a factor better than $1 + \sqrt{2}$ is NP-hard; note that this holds for big values of minimum maximum stretch. In [9], it is also shown that, for sufficiently big t, it is hard to find a tree $(t + o(n))$-spanner of a given graph G, when G admits a tree t-spanner; note that in this case the minimum maximum stretch is approximated additively.

An approximation algorithm has to find a good enough spanning tree of the input graph. In this article, the search space is restricted to v-concentrated spanning trees of the input graph G, where $v \in G$ (see definition 2). The family of v-concentrated spanning trees of a graph G is simple, easy to decide, and contains all the breadth first search spanning trees of G with single source vertex v. In this case it is not easy to find approximate tree spanners within factor almost $o(\log n)$. Specifically, let m and t be integers, such that $m > 0$ and $t \geq 7$. Unless there is a quasi-polynomial time algorithm for 3-SAT, there is no efficient algorithm that receives as input a graph G and a vertex v and returns a v-concentrated tree $t \cdot o((\log n)^{m/(m+1)})$-spanner of G, when G admits
a v-concentrated tree t-spanner (theorem 1).

Definitions and lemmas

In general, terminology of [23] is used. If G is a graph, then $V(G)$ is its vertex set and $E(G)$ its edge set. An edge between vertices $u, v \in G$ is denoted as uv. If H is a subgraph of G, then $G[H]$ is the subgraph of G induced by the vertices of H, i.e. $G[H]$ contains exactly all the vertices of H and all the edges of G between vertices of H.

Let v be a vertex of G, then $N_G(v)$ is the set of G-neighbors of v, while $N_G[v]$ is $N_G(v) \cup \{v\}$; in this paper we consider graphs without loop edges.

The G distance between two vertices u, v of a connected graph G, denoted as $d_G(u, v)$, is the length of a u,v shortest path in G. The G distance between a subgraph X of G and a vertex v of G is $\min_{x \in X} d_G(x, v)$ and it is denoted as $d_G(X, v)$. Finally, the ith neighborhood of a vertex v of a graph G is defined as $N^i_G[v] = \{x \in V(G) : d_G(v, x) \leq i\}$. The definition of a tree t-spanner follows.

Definition 1 A graph T is a tree t-spanner of a graph G if and only if T is a subgraph of G that is a tree and, for every pair u and v of vertices of G, if u and v are at distance d from each other in G, then u and v are at distance at most $t \cdot d$ from each other in T.

Note that in order to check whether a spanning tree of a graph G is a tree t-spanner of G, it suffices to examine pairs of adjacent in G vertices.

To apply the technique introduced in this article, the search space of spanning trees (towards finding a tree t-spanner) must be narrowed. It seems that the broadest family of spanning trees this technique can capture is the following.

Definition 2 Let G be a graph and v one of its vertices. A spanning tree T of G is v-concentrated if and only if for every i, $T[N^i_G[v]]$ is a connected graph.

Clearly, a breadth first search spanning tree of a graph starting from a vertex v is v-concentrated. Also, there can be many v-concentrated spanning trees that are not breadth first search spanning trees starting from v. Moreover, note that one can prove the following:

Proposition 1 Let G be a graph that admits a tree t-spanner T, where $t \geq 1$. For every vertex $v \in G$ and for every $d \geq 0$, the vertices in $N^d_G[v]$ are in the same component of $T[N^d_G[v]]$, where $d' = d + \lceil \frac{t-1}{2} \rceil$.

This proposition hints that every tree t-spanner is loosely “concentrated” around each vertex v.

1 For example clique K_n has only one breadth first search tree starting from a vertex v of K_n but it has super-polynomially on n many v-concentrated spanning trees.

2 A T path joining the endpoints of an edge of G between a vertex at distance d ($d > 0$) from v and a vertex at distance $d - 1$ from v can stretch up to G distance d' away from v before returning back.
An instance of 3-SAT is a set of clauses, where each clause is the disjunction of exactly 3 distinct literals; a literal is a boolean variable or its negation. The 3-SAT problem is to decide whether there is a truth assignment to the variables of a given instance, such that all its clauses are satisfied. Note that if a clause contains less than 3 variables, then both a variable and its negation appear in the clause; so, the clause is satisfied by every truth assignment. Therefore, it suffices to examine instances for which each clause contains exactly 3 variables. In this article, it is assumed that each clause of an instance of 3-SAT contains exactly 3 distinct variables.

Let f and g be functions from the set of graphs to the set of non negative integers. Then, f is $O(g)$ if and only if there exist graph G_0 and integer C, such that $f(G) \leq Cg(G)$, for every graph G with $|V(G)| > |V(G_0)|$. Also, f is $o(g)$ if and only if for every $\epsilon > 0$ there is a graph G_ϵ such that $f(G) < \epsilon g(G)$ for every graph G with $|V(G)| > |V(G_\epsilon)|$.

To define the running time of an algorithm, assume that the algorithm is implemented by a deterministic Turing machine. For this, objects, such as instances of problems or outputs of algorithms, are encoded as 0-1 strings. For example, instances of 3-SAT can be encoded as 0-1 strings; then, the size of an instance of 3-SAT is the length of its encoding. An algorithm runs in time $f(n)$ if there is a deterministic Turing machine M that implements the algorithm and the time required by M on each input of length n is at most $f(n)$. If an algorithm runs in polynomial time, then the algorithm is called efficient.

3 Description of the reduction

Algorithm reduction is presented in figure 3; it takes as input an instance ϕ of 3-SAT and an integer $h > 1$, while it returns a graph G. Here, h is a parameter set in the proof of theorem[4] and depends on the number of variables of ϕ; its choice is crucial for relating the finding of a not too bad approximate tree spanner of G to a low enough running time for deciding satisfiability of ϕ upon such a tree spanner. Given ϕ, graphs are constructed by calling function get_bb in figure[4] which become the building blocks of the final graph G. These building blocks are put together in a tree like structure of height h.

3.1 Relation to a known NP-complete problem

In [15] it is proved that it is an NP-complete problem to decide whether a graph admits a tree t-spanner of diameter at most $t + 1$, for $t \geq 4$. The reduction there is from 3-SAT. It turns out that for $t = 7$, graphs being built for the sake of this NP-completeness reduction can be stacked one on top of the other like building blocks. Then, a final graph G is constructed by stacking building blocks, starting with a path having a central vertex v. This way, the difficulty of finding a tree 7-spanner locally propagates, creating a chasm; in any easily[3]

\[\text{Meaning a tree spanner that does not solve the difficult tree 7-spanner problem locally.}\]
found tree spanner of G that is also concentrated around v, some two vertices high in a stack are adjacent in G but far apart in the tree spanner.

Note that in [15] it is essential to prove the fact that if a graph G admits a tree t-spanner of diameter at most $t + 1$, then G admits a tree t-spanner that is a breadth first search tree. For bigger diameters, this fact does not hold; so, the search space for tree spanners must somehow be narrowed to spanning trees that are concentrated around a central vertex.

3.2 Formation of building block

Function `get_bb` in figure 1 receives as input an instance ϕ of 3-SAT and two integers i, j and constructs a graph. Integers i, j become labels of vertices of the output graph in order to distinguish them among copies of this graph; also, the output graph is denoted as $G_{i,j}$ by the main function that calls `get_bb`. A part of graph $G_{i,j}$ is shown in figure 2.

Function `get_bb(\phi, i, j)`

Input. A nonempty instance ϕ of 3SAT and two integers i, j.

$$V_{i,j} = \{v_{i,j}^{\oplus}, v_{i,j}^{\ominus}\}$$

for (variable x of ϕ) $V_{i,j} = V_{i,j} \cup \{x_{i,j}\}$

for (clause c in ϕ) {
 for (variable x of c) $V_{i,j} = V_{i,j} \cup \{x_{c,j}\}$
 for ($r = 1$ to 8) $V_{i,j} = V_{i,j} \cup \{q_{i,j}^{r,c}\}$
}

$$E_{i,j} = \emptyset$$

for (variable x of ϕ) $E_{i,j} = E_{i,j} \cup \{x_{i,j}v_{i,j}^{\oplus}, x_{i,j}v_{i,j}^{\ominus}\}$

for (clause c in ϕ) {
 Let $y, z,$ and w be the variables of c
 $g = [y_{i,j}, y_{i,j}^{\oplus}, z_{i,j}, z_{i,j}^{\ominus}, w_{i,j}, w_{i,j}^{\ominus}]$
 for ($k = 1$ to 6) for ($l = 1$ to 8)
 if ($M[k,l] = 1$) $E_{i,j} = E_{i,j} \cup \{g[k]q_{i,j}^{l,c}\}$ /*(1)
 for (x in $\{y, z, w\}$)
 if (x appears positive in c) $E_{i,j} = E_{i,j} \cup \{x_{c,j}v_{i,j}^{\ominus}\}$
 else $E_{i,j} = E_{i,j} \cup \{x_{c,j}v_{i,j}^{\oplus}\}$
}

return ($V_{i,j}, E_{i,j}$)

Figure 1: Function `get_bb(\phi, i, j)` that forms a graph given an instance ϕ of 3-SAT, which becomes a building block of the final graph. Parameters i, j are used to label each building block. Matrix M used in line (1) is defined outside of the function and is presented in section 3.2 (equation 1). Elements in array g and matrix M are numbered starting from 1, not 0. Note that it is essential, as pointed out in section 2, that each clause in ϕ contains exactly 3 variables.
The vertex set of $G_{i,j}$ is generated. First, two distinct vertices $v_{i,j}^{\oplus}$ and $v_{i,j}^{\ominus}$ are placed into the vertex set of $G_{i,j}$; these vertices will be used by the reduction algorithm to glue the new building block to the existing construction. Also, $v_{i,j}^{\oplus}$ will “attract” the positive standings of variables in clauses (similarly, $v_{i,j}^{\ominus}$ the negative). Second, each Boolean variable of ϕ gives rise to a vertex of $G_{i,j}$; for each variable x of ϕ vertex $x_{i,j}$ of $G_{i,j}$ is generated.

Third, for each clause c in ϕ, 11 new vertices of $G_{i,j}$ are generated. Specifically, 3 vertices are for the presence of each of the 3 variables in c and are distinct from the vertices generated for the variables of ϕ; these vertices carry the subscript c. For example, if c contains variables y, z, and w, then $G_{i,j}$ contains vertices $y_{i,j}^{c}$, $z_{i,j}^{c}$, and $w_{i,j}^{c}$. Additionally, the remaining 8 vertices take letter q, are numbered from 1 to 8, and carry the subscript c as well; i.e. $G_{i,j}$ contains vertices $q_{1}^{c}, q_{2}^{c}, \ldots, q_{8}^{c}$.

Then, the edges of $G_{i,j}$ are formed. First the vertex that corresponds to each variable of ϕ becomes adjacent to both of the distinct vertices $v_{i,j}^{\oplus}$ and $v_{i,j}^{\ominus}$. Second, for each clause c in ϕ, edges between the 14 vertices related to c are placed; 11 vertices have been generated for clause c and 3 vertices correspond to variables of ϕ that participate in c. These 14 vertices are partitioned in two groups; the one group contains all 8 vertices denoted with letter q and the other group the remaining 6 vertices. Each vertex in the group of 8 (the q vertices) took a number when it was created; thusly, the vertices of this group are numbered from 1 to 8. The vertices in the group of 6 are placed in an array g and in this way are numbered from 1 to 6 (figure 1); for example, if c contains variables y, z, and w, then $g = [y_{i,j}^{c}, y_{i,j}^{c}, z_{i,j}^{c}, z_{i,j}^{c}, w_{i,j}^{c}, w_{i,j}^{c}]$. Having numbered the vertices within each group, the adjacencies between the two groups are determined by the following matrix:

$$M = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{bmatrix} \quad (1)$$

Matrix M has two main properties. It consists of three pairs of complementary to each other rows (for example, the first row is the complement of the second). Also, if a sub-matrix of M consisting of whole rows of M contains at least one 1 in each column, then the sub-matrix must contain at least one pair of complementary to each other rows.

Third, there are a few more edges incident to vertices related to c. To indicate the standing (negation or not) of each variable x of c, vertex $x_{i,j}^{c}$ is made adjacent to either $v_{i,j}^{\oplus}$ or $v_{i,j}^{\ominus}$. Note that vertex $x_{i,j}^{c}$ is related only to clause c; in contrast, vertex $x_{i,j}$ may be related to many clauses.
Figure 2: Part of graph $G_{i,j}$, being the output of function get_bb. Let c be clause $(y \lor z \lor \neg w)$. Vertices related to clause c plus the distinct vertices v^i_{\oplus} and v^i_{\ominus} are shown. Vertices in the rectangle are the vertices in array g. The dashed edges are these determined by matrix M. All the edges of $G_{i,j}$ incident to the white vertices are shown in the figure.

Algorithm reduction(ϕ, h)

Input. A nonempty instance ϕ of 3-SAT and an integer $h > 1$.

Let G be the path q_1, p_1, v, p_2, q_2

$G^{1,1} = \text{get_bb}(\phi, 1, 1)$

$G = G \cup G^{1,1}$

identify q_1 with $v^{1,1}_{\oplus}$; identify q_2 with $v^{1,1}_{\ominus}$

$b[1] = 1; j = 0$

for $(i = 2 \text{ to } h)$

for $(s = 1 \text{ to } b[i - 1])$

for (clause c in ϕ)

for $(r = 1 \text{ to } 7)$

\[j = j + 1 \]

$G^{i,j} = \text{get_bb}(\phi, i, j)$

$G = G \cup G^{i,j}$

identify $q^{i-1,s}_{r,c}$ with v^i_{\ominus}; identify $q^{i-1,s}_{r+1,c}$ with v^i_{\oplus}

$b[i] = j; j = 0; \]

return G

Figure 3: Algorithm reduction(ϕ, h) that forms a graph given an instance ϕ of 3-SAT; building blocks formed by function get_bb in figure [1] are put together in a tree like structure of height h. Variable $b[i]$ stores the number of building blocks in layer i, while variable s iterates over the building blocks of layer $i - 1$. Finally, variable r is used to iterate over consecutive pairs of q vertices related to clause c in building block $G^{i-1,s}$.
3.3 Putting building blocks together

The construction of the final graph G starts with a path of length 4, having v as its central vertex. Function get_bb on input (ϕ, i, j) provides building block $G^{i,j}$, where i and j are the indexes of the block. Then, building blocks with various indexes are added in layers to the existing structure. The first index of a building block indicates the layer that the block is placed in; i.e. layer i of G contains exactly all graphs produced by calling get_bb on input (ϕ, i, j) for various j, while executing algorithm reduction on input (ϕ, h).

The first building block, graph $G^{1,1}$, is attached to the endpoints of the primary path by identifying the one endpoint of the path with vertex $v^{1,1}_G$ and the other endpoint with vertex $v^{1,1}_G$. Layer 1 contains only one graph, namely $G^{1,1}$. After this first layer (command for $(i = 2$ to $h)$ in figure 3), at each step of the construction, a new building block is attached to a pair of consecutive q vertices of the previous layer. Specifically, building block $G^{i,j}$ is attached to building block $G^{i-1,s}$ by identifying $q_{r,c}$ with $v^{i,j}_G$ and $q_{s+1,c}$ with $v^{i,j}_G$.

In Figure 4: Part of output graph G of algorithm reduction in figure 3 for $h = 2$. Only three clauses are involved here, namely c, d, and e, where c is examined first in the for loops, d second, and e last. The table on the right hand side shows the vertices of G that correspond to the numbered vertices in the figure; for example number 2 corresponds to 3 vertices of 3 different building blocks, which all have been identified to one vertex of G. Note that there is no building block attached to pair 5, 6 of q vertices of $G^{1,1}$, since these are related to different clauses. The number of building blocks in layer 2 is $b[2]$.
4 Hardness of approximation

Lemma 1 For every satisfiable instance of 3-SAT ϕ and for every $h > 1$, graph G returned by algorithm reduction in figure 3 on input (ϕ, h) admits a v-concentrated tree 7-spanner.

Proof. Let a be a truth assignment that satisfies ϕ. Let T be the graph returned by algorithm tree 7-spanner in figure 5 on input (G, ϕ, a). Part of a building block $G^{i,j}$ of G where edges of T are shown appears in figure 6.

Algorithm tree_7-spanner(G, ϕ, a)
Input. A graph G, an instance ϕ of 3-SAT, and a truth assignment a.

1. $V = V(G)$; $E = \{q_1p_1, p_1v, vp_2, p_2q_2\}$
2. for (building block $G^{i,j}$ of G)
 for (variable x of ϕ)
 if ($a(x) = 1$) $E = E \cup \{x^{i,j}v^{i,j}_{\oplus}\}$
 else $E = E \cup \{x^{i,j}v^{i,j}_{\ominus}\}$
3. for (clause c in ϕ)
 for (variable x of c)
 $E = E \cup E(G[\{q^{i,j}_{\oplus}, q^{i,j}_{\ominus}, x^{i,j}_{\oplus}\}])$ /*(1)
4. Let z be a variable of c that makes c true through a
5. $Q = \bigcup_{r=1}^{8}\{q^{i,j}_{r,c}\}$
6. $E = E \cup E(G[Q \cup \{z^{i,j}_{\oplus}, z^{i,j}_{\ominus}\}])$ /*(2)
7. return (V, E)

Figure 5: Algorithm tree_7-spanner(G, ϕ, a) that constructs a tree 7-spanner of G, when G is the output of algorithm reduction(ϕ, h) in figure 3 where ϕ is a satisfiable instance of 3-SAT; also, a is a truth assignment that satisfies ϕ. It is assumed that the building blocks of G are known to this algorithm, as part of the input graph G. As described in the proof of lemma 1 the command in line (1) results in adding one edge to E, while the command in line (2) results in adding 8 edges to E.

An essential fact hinting that the tree 7-spanner problem is solved locally is proved first. Let $G^{i,j}$ be a building block of G and c a clause in ϕ. Also, let $Q^{i,j}_{c} = \bigcup_{r=1}^{8}\{q^{i,j}_{r,c}\}$. There is one variable z of c which is used to form T edges incident to vertices in $Q^{i,j}_{c}$ within $G^{i,j}$ (see line (2) in figure 5). Here, $z^{i,j}_{c}$ and $z^{i,j}_{c}$ correspond to complementary to each other rows of matrix M; so, each vertex in $Q^{i,j}_{c}$ is adjacent to one of $z^{i,j}_{c}$ or $z^{i,j}_{c}$. But z is a variable that makes c true through a; so, both of $z^{i,j}_{c}$ and $z^{i,j}_{c}$ are adjacent in T to the same vertex $v^{i,j}_{\oplus}$ or $v^{i,j}_{\ominus}$ (see figure 6). Therefore,
Fact 1 For every building block $G^{i,j}$ of G and for every clause c in ϕ, the T distance between any two vertices in $Q^{c,i,j}$ is at most 4.

Clearly, T spans $V(G)$. Let P be path q_1, p_1, v, p_2, q_2. Let $b(i')$ be the number of building blocks in layer i' of G. For every i, $0 \leq i \leq h$, let $V^i = V(P) \cup \bigcup_{j'=1}^{b(i')} V(G^{i',j})$; then, let $G^i = G[V^i]$. To picture G^i, it is the subgraph of G induced by the first i layers of G plus path P. Clearly, $G^0 = P$ and $G^h = G$. It is proved by induction on i that $T[G^i]$ is a v-concentrated tree 7-spanner of G^i. For the base case, $i = 0$, both of $T[G^0]$ and G^0 are equal to path P, which has v as its central vertex.

Consider a building block $G^{i,j}$ in layer i, where $1 \leq i \leq h$. Let X be the set of variables of ϕ; also, let $X^{i,j} = \bigcup_{x \in X} \{x^{i,j}\}$. Then, for every $x \in X$, vertex $x^{i,j}$ is adjacent in T to either $v^{i,j}_x$ or $v^{i,j}_z$ depending on the value given by a for x. Therefore, $T[X^{i,j} \cup \{v^{i,j}_x, v^{i,j}_z\}]$ consists of exactly two trees, one containing $v^{i,j}_x$ and the other $v^{i,j}_z$. Note that both of edges $x^{i,j}v^{i,j}_x$ and $x^{i,j}v^{i,j}_z$ are edges of G; so, $T[X^{i,j} \cup \{v^{i,j}_x, v^{i,j}_z\}]$ is a subgraph of G. Towards proving that T is v-concentrated, observe that each vertex u in $X^{i,j}$ is adjacent in T to a vertex (namely $v^{i,j}_x$ or $v^{i,j}_z$), which is closer than u to v in G.

Figure 6: Part of graph $G^{i,j}$, being a building block of graph G returned by algorithm reduction in figure 5 on input (ϕ, h), where ϕ is a satisfiable instance of 3-SAT and $h > 1$. Let c be clause $(y \lor z \lor -w)$ of ϕ. Vertices related to clause c plus the distinct vertices $v^{i,j}_x$ and $v^{i,j}_z$ are shown. Here, $a(y) = 0$, $a(z) = 1$, and $a(w) = 1$, where a is a truth assignment that satisfies ϕ. Solid edges belong to T, which is the tree returned by algorithm tree,7-spanner in figure 5 on input (G, ϕ, a); note that z is the only variable that makes c true through a. Observe that the T distance between a pair of white vertices (the q vertices) is at most 4.

Let C be the set of clauses of ϕ. Also, for every clause $c \in C$, let X_c be the set containing the three variables of c. Let $X^{i,j}_c = \bigcup_{x \in X_c} \{x^{i,j}\}$. Then (see line (1) in figure 5), every vertex in $X^{i,j}_c$ is adjacent in T to either $v^{i,j}_c$ or $v^{i,j}_e$ with the one and only edge of G between these 3 vertices. Therefore, $T[X^{i,j} \cup \ldots]$

4Let x be a variable that appears in c. Then, vertex $x^{i,j}$ is adjacent in G to either $v^{i,j}_c$ or $v^{i,j}_e$, depending on the standing (negation or not) of x in c (see figure 5). Also, $v^{i,j}_c$ is not adjacent to $v^{i,j}_e$ in G. Therefore, $E(G[\{v^{i,j}_c, v^{i,j}_e, x^{i,j}\}])$ contains only one edge.
efficient algorithm that receives as input a graph \(v\) so, each vertex in \(Q\) form vertex (namely \(v\)) But \(G\) and in such cases these 2 trees have only exceptions when 2 trees are attached to the same vertex of \(T\) formed upon tree \(T\) \(v\) or \(M\) determined by matrix \(d\). Therefore, the \(T[Q]\) consists of exactly two subtrees of \(G\), one containing \(v\) and the other \(v\). Again, each vertex \(u\) in \(Q\) is adjacent in \(T\) to a vertex (namely \(v\) or \(v\)), which is closer than \(v\) to \(v\) in \(G\).

Let \(Q_{e} = \bigcup_{r=1}^{m} \{q_{r,c}\}. \) There is only one variable \(z\) in \(c\) which is used to form \(T\) edges incident to vertices in \(Q_{e}\) within \(G^{i,j}\) (see line (2) in figure 3). But \(z^{i,j}\) and \(z^{i,j}\) correspond to complementary to each other rows of matrix \(M\); so, each vertex in \(Q_{e}\) is adjacent to exactly one of \(c^{i,j}\) or \(c^{i,j}\). Also, note that \(G[Q]\) doesn’t have any edges and \(z^{i,j}\) is not adjacent to \(z^{i,j}\) in \(G\). Therefore, \(T[Q]\) consists of exactly two subtrees of \(G\), one containing \(v^{i,j}\) and the other \(v^{i,j}\), since \(V(G^{i,j}) = X^{i,j} \cup \{v^{i,j}, v^{i,j}\} \cup \bigcup_{c \in C}(X^{i,j} \cup Q^{i,j})\). Finally, each vertex \(u\) in \(Q_{e}\) is adjacent in \(T\) to a vertex (namely \(z^{i,j}\) or \(z^{i,j}\)), which is closer than \(u\) to \(v\) in \(G\).

By induction hypothesis, \(T[G^{-1}]\) is a subtree of \(G\). So, graph \(T[G]\) is formed upon tree \(T[G^{-1}]\) by attaching 0, 1, or 2 subtrees of \(G\) to each vertex of \(T[G^{-1}]\). These attached trees are vertex disjoint to each other, with only exceptions when 2 trees are attached to the same vertex \(u\) and in such cases these 2 trees have only \(u\) as a common vertex. Hence, \(T[G]\) is a subtree of \(G\).

Also, \(T[G]^{-1}\) is not only \(v\)-concentrated but a breadth first search tree of \(G^{i}\) starting from \(v\) as well; by construction of \(T[G]^{-1}\), every vertex \(u\) of \(G^{i}\) (where \(u \neq v\)) is adjacent in \(T[G]^{-1}\) to a vertex closer than \(u\) to \(v\) in \(G\).

If \(i = 1\), then \(G^{i}\) has only one layer and only one building block; in this case \(d_{T}(\{v^{i,j}, v^{i,j}\}) = 4\), because of path \(P\). If \(i > 1\), then \(G^{i, j}\) is attached to some building block \(G^{i-1,s}\), by identifying pair \(v^{i,j}, v^{i,j}\) with a pair of vertices in \(Q^{i-1,s}\), where \(c^{j}\) is a clause in \(\phi\) (similarly to set \(Q^{i, e}\) above, \(Q^{i-1,s} = \bigcup_{r=1}^{8} \{q^{i-1,s}_{r,c}\}\)). Conclusively, by fact [1] \(d_{T}(\{v^{i,j}, v^{i,j}\}) \leq 4\).

By induction hypothesis \(T[G^{-1}]\) is a 7-spanner of \(G^{-1}\). In order to prove that \(T[G]^{-1}\) is a 7-spanner of \(G^{i}\) it suffices to examine \(T\) distances between endpoints of non \(T\) edges of \(G^{i, j}\). Each vertex in \(X^{i, j}\) is at \(T\) distance 1 from \(v^{i,j}\) or \(v^{i,j}\), so the \(T\) distance between endpoints of non \(T\) edges of \(G^{i, j} [X^{i, j} \cup \{v^{i,j}, v^{i,j}\}]\) is at most 5, because \(d_{T}(v^{i,j}, v^{i,j}) \leq 4\). It remains to examine non \(T\) edges determined by matrix \(M\). Each vertex in \(\bigcup_{c \in C} Q^{i, j}\) is at \(T\) distance 2 from \(v^{i,j}\) or \(v^{i,j}\). Also, each vertex in \(X^{i, j} \cup X^{i, j}\) is at \(T\) distance 1 from \(v^{i,j}\) or \(v^{i,j}\). Therefore, the \(T\) distance between a vertex in \(\bigcup_{c \in C} Q^{i, j}\) and a vertex in \(X^{i, j} \cup X^{i, j}\) is at most 7, again because \(d_{T}(v^{i,j}, v^{i,j}) \leq 4\).

Theorem 1 Let \(m\) and \(t\) be integers, such that \(m > 0\) and \(t \geq 7\). Also, let \(n'\) and \(f\) be functions from the set of graphs to the non negative integers, such that \(n'(G) = |V(G)|\), for every graph \(G\), and \(f\) is \(o((\log n')^{\frac{1}{m+t}})\). If there is an efficient algorithm that receives as input a graph \(G\) and a vertex \(v\) and returns a \(v\)-concentrated tree \(t \cdot f(G)\)-spanner of \(G\), when \(G\) admits a \(v\)-concentrated tree \(t\)-spanner, then there is an algorithm that decides 3-SAT in \(2^{O((\log n')^{m+1})}\) time.

Proof. Since \(f\) is \(o((\log n')^{\frac{1}{m+t}})\), for every \(\epsilon > 0\) there is an \(H_{\epsilon}\) such that
$f(H) < \epsilon(\log n'(H))^{\frac{m+1}{m}}$ for every H with $|V(H)| > |V(H_\epsilon)|$. Let H' be the graph H_ϵ that corresponds to $\epsilon = \frac{1}{\log n'}$. Let get_spanner be the approximation algorithm assumed by this theorem. Let ϕ be a nonempty instance of 3-SAT. It is proved that algorithm 3-SAT in figure 7 on input ϕ returns \text{YES} if and only if ϕ is satisfiable.

\begin{algorithm}
\caption{3-SAT(ϕ)}
\textbf{Input.} A nonempty instance ϕ of 3-SAT.
\begin{algorithmic}
\State Let n be the number of variables of ϕ
\State G = reduction(ϕ, $\lceil(\log n)^m\rceil$)
\If{$(|V(G)| \leq |V(H')|)$}
\State solve ϕ exhaustively and return appropriately
\EndIf
\State T = get_spanner(G,v)
\For{(building block $G_{i,j}$ of G)}
\For{(variable x of ϕ)}
\If{$(x^{i,j}v_{i,j}^\lor \in E(T))$} $a(x) = 1$
\Else{} $a(x) = 0$
\EndIf
\EndFor
\If{(truth assignment a satisfies ϕ)}
\State return \text{YES}
\EndIf
\EndFor
\State return \text{NO}
\end{algorithmic}
\end{algorithm}

Figure 7: Algorithm 3-SAT(ϕ) receives as input a nonempty instance ϕ of 3-SAT and decides whether it is satisfiable. Constant m and graph H' are defined outside of the algorithm; m is a positive integer introduced in theorem 1 while H' is given in the first paragraph of its proof. Algorithm reduction is presented in figure 3. Algorithm get_spanner is not given explicitly but its existence is assumed by the same theorem. It is assumed that the decomposition of G into building blocks is given too, when G is returned by algorithm reduction.

For the necessity, algorithm 3-SAT returns \text{YES} on input ϕ, only when it finds a truth assignment that satisfies ϕ.

For the sufficiency, assume that ϕ is satisfiable. Let n be the number of variables\footnote{As pointed out in section 2, each clause of an instance of 3-SAT contains exactly 3 variables.} of ϕ. So, ϕ has at most $8n^3$ clauses. Set $h = \lceil(\log n)^m\rceil$. Let G be the output of algorithm reduction in figure 3 on input (ϕ,h). Note that $n \geq 3$, because ϕ is nonempty and each of its clauses contains 3 distinct variables; so, $h = \lceil(\log n)^m\rceil > 1$. Each building block $G_{i,j}$ of G has at most $n + 88n^3$ vertices, without counting $v_{i,j}^{\lor}$ and $v_{i,j}^{\lor}$, because each variable contributes one vertex and each clause 11 vertices. To each building block in layer i, $1 \leq i \leq h - 1$, at most

\footnote{There is a way to encode instances of 3-SAT as 0-1 strings, such that the size of an encoding of an instance ϕ is polynomially bounded by the number of the variables in ϕ. So, because of the log in the description of the running time and the O notation that follows, the size of an instance of 3-SAT can be considered as the number of variables it contains.}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Variable & Value & Symbol \hline
\end{tabular}
\caption{Table of variables and values.}
\end{table}
56n^3 building blocks are attached, because each clause contributes 7 building blocks. Let b(i) be the number of building blocks of G in layer i. Then, b(1) = 1 and b(i) ≤ 56n^3(i−1), where 2 ≤ i ≤ h. Therefore, since G has h layers, G has at most \((56n^3)^{h-1}\) building blocks. Hence, G has at most \((n + 88n^3)^{h-1} + 5\) vertices, because each block contributes at most \(n + 88n^3\) vertices; plus the 5 vertices of the starting layer. Increasing this quantity in order to make it simpler and substituting \(h\) with \([\log n]^m\), it turns out that G has at most \(2^{12(\log n)^m+1}\) vertices.

By lemma \[\] G admits a \(v\)-concentrated tree 7-spanner; so, G admits a \(v\)-concentrated tree \(t\)-spanner as well. Therefore, algorithm get_spanner on input \((G, v)\) returns a \(v\)-concentrated tree \(tf(G)\)-spanner T of G. Assume, towards a contradiction, that algorithm 3-SAT on input \(\phi\) does not return \text{YES}. Then, first, \(|V(G)| > |V(H')|\), because otherwise the exhaustive search would have found a truth assignment that satisfies \(\phi\). Second, for every building block of G truth assignment \(a\) defined upon this building block and T does not satisfy \(\phi\).

Here, \(H'\) corresponds to \(\epsilon = \frac{4}{12(h+1)}\). So, \(f(G) < \frac{4}{12(h+1)} (\log n'(G))^\frac{m}{m+1}\), because \(|V(G)| > |V(H')|\). But \(n'(G) < 2^{12(\log n)^m+1}\); therefore, \(tf(G) < 4(\log n)^m\). Hence, T is a 4h-spanner of G.

For every \(i, 1 \leq i \leq h\), there is a building block \(G_i^j\) of G in layer i, such that \(d_T(v_i^j, v_i^j) = 4i\). This is proved by induction on i. For \(i = 1\) there is only one layer in layer 1 and \(d_T(v_1^1, v_1^1) = 4\), because of path P: \(v_1^1, q_1, p_1, v, p_2, q_2 = v_1^1\). Note that T is \(v\)-concentrated; so, P is a sub-path of T.

For \(i > 1\), consider layer \(i - 1\). Then, by induction hypothesis, there is a building block \(G_i^{i-1,s}\), such that \(d_T(v_i^{i-1,s}, v_i^{i-1,s}) = 4(i-1)\). Let \(a\) be the truth assignment defined by algorithm 3-SAT upon \(G_i^{i-1,s}\) and T. Since \(a\) does not satisfy \(\phi\) there is a clause c in \(\phi\) which is not true through a.

Let \(X_c\) be the set of the 3 variables that appear in clause c. Let \(X = \bigcup_{x \in X_c} \{x_i^{i-1,s}, x_i^{i-1,s}\}\). Since T is a \(v\)-concentrated spanning tree of G, each vertex in X must be adjacent to exactly one of \(v_i^{i-1,s}\) or \(v_i^{i-1,s}\) in T. This holds because, first, \(v_i^{i-1,s}\) and \(v_i^{i-1,s}\) are the only G neighbors of vertices in X that are at G distance at most \(Td_G(X, v)\) from v (there is no edge of G between vertices in X and all vertices in X are at the same distance from v). Second, vertices within G distance \(d_G(X, v) - 1\) from v (here, \(v_i^{i-1,s}\) and \(v_i^{i-1,s}\) are at G distance \(d_G(X, v) - 1\) from v) induce a connected sub graph of T; so, a vertex in X cannot be adjacent in T to two vertices at G distance \(d_G(X, v) - 1\) from v.

Let \(Q = \bigcup_{r=1}^{\log n} Q_r\). Again, vertices in X are the only G neighbors of vertices in Q that are at G distance at most \(d_G(Q, v)\) from v (graph G[Q] has no edges and all vertices in Q are at the same distance from v). Also, vertices within G distance \(d_G(Q, v) - 1\) from v induce a connected sub graph of T. So, since T is a \(v\)-concentrated spanning tree of G, each vertex in Q is adjacent in T to exactly one vertex in X.

\[\]In a \(v\)-concentrated spanning tree T of a graph G, any vertex at G distance d (d > 0) from v must be adjacent in T to a vertex at G distance at most d from v.
The G edges between X and Q are these determined by matrix M. But every sub-matrix of M consisting of whole rows of M must contain two complementary to each other rows of M in order the sub-matrix to have a 1 in each column. Therefore, there is a variable y in X, such that there is a vertex in Q adjacent to $y^{i-1,s}$ in T and another vertex in Q adjacent to $y^{i-1,s}$ in T. Here, truth assignment a does not make c true; so, if $y^{i-1,s}$ is adjacent in T to one of $v^{i-1,s}$ or $v^{i-1,s}$, then $y^{i-1,s}$ must be adjacent in T to the other. Therefore, there is a vertex in Q which is at T distance 2 from $v^{i-1,s}$ and another vertex in Q which is at T distance 2 from $v^{i-1,s}$. But each vertex in Q is at T distance 2 from $v^{i-1,s}$ or $v^{i-1,s}$; so, there are two consecutive vertices in Q, $q^{i-1,s}$ and $q^{i-1,s}$ say (where r_0 is some integer from 1 to 7), such that $q^{i-1,s}$ is at T distance 2 from one of $v^{i-1,s}$ or $v^{i-1,s}$ and $q^{i-1,s}$ is at T distance 2 from the other.

But $d_T(v^{i-1,s}, v^{i-1,s}) = 4(i - 1)$; so, $d_T(q^{i-1,s}, q^{i-1,s}) = 4i$. To pair $q^{i-1,s}$ and $q^{i-1,s}$ is attached a building block of layer i, say building block $G^{i,j}$. So, $d_T(v^{i,j}, v^{i,j}) = 4i$ and the induction step holds.

Then, let $G^{h,j}$ be a building block of layer h such that $d_T(v^{h,j}, v^{h,j}) = 4h$. Let x be a variable of ϕ. Then, $x^{h,j}$ is adjacent in G to both of $v^{h,j}$ and $v^{h,j}$. But $x^{h,j}$ is adjacent in T to only one of $v^{h,j}$ or $v^{h,j}$, because T is a v-concentrated spanning tree of G. Therefore, $x^{h,j}$ is at T distance $4h + 1$ from one of its G neighbors $v^{h,j}$ or $v^{h,j}$, which is a contradiction, because T is a $4h$-spanner of G.

It remains to check the time complexity of algorithm 3-SAT based on the number of variables of input. Construction of graph G takes $2^{O((\log n)^{m+1})}$ time, because there are at most $2^{2(\log n)^{m+1}}$ vertices in G (and even fewer building blocks in G) and each building block of G is constructed efficiently. The exhaustive search takes place only for small values of n. Algorithm get_spanner is assumed to be efficient but, because of its big input, its call takes $2^{O((\log n)^{m+1})}$ time. Finally, each building block of G is examined once and each such examination is done efficiently. Therefore, the for loop over building blocks of G takes $2^{O((\log n)^{m+1})}$ time. □

5 Notes

The tree 7-spanner returned by algorithm tree_7-spanner in figure 5 is not only v-concentrated but also a breadth first search tree of G starting from v, as pointed out in the proof of lemma 1. Moreover, restricting algorithm get_spanner to return a breadth first search tree of G starting from v, does not affect the proof of theorem 1. Therefore, the hardness of approximation described by theorem 1 also holds for breadth first search trees starting from v, which is an even smaller than v-concentrated family of spanning trees.

Note that just one vertex of $G^{h,j}$ (other than $v^{h,j}$ or $v^{h,j}$) is needed. So, in algorithm reduction (figure 5), the last layer (layer h) of G can be filled instead with graphs much smaller than building blocks (a path of length 2 suffices) but this does not decrease the number of vertices of G dramatically.

14
A few, unrelated to each other, notes follow. First, this approach does not lead to hardness of approximating tree spanners via general spanning trees; good tree spanners are not usually breadth first search trees. Second, the result of this article holds for stretch factor t greater or equal to 7; its an open problem to find low factor approximate tree t-spanners for $3 \leq t \leq 6$. Third, function $f = (\log n)^{\log \log \log n + \frac{1}{t+1}}$ is $o(\log n)$ but there is no m, such that f is $o((\log n)^{\frac{m}{t+1}})$.

References

[1] Srinivasa Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel Smid, and Christos D. Zaroliagis. Planar spanners and approximate shortest path queries among obstacles in the plane. In *Algorithms—ESA ’96 (Barcelona)*, pages 514–528. Springer, Berlin, 1996.

[2] Baruch Awerbuch. Complexity of network synchronization. *Journal of the ACM*, 32(4):804–823, October 1985.

[3] Hans-Jürgen Bandelt and Andreas Dress. Reconstructing the shape of a tree from observed dissimilarity data. *Adv. in Appl. Math.*, 7(3):309–343, 1986.

[4] J. A. Bondy. Trigraphs. *Discrete Mathematics*, 75:69–79, 1989.

[5] Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Lê, and Van Bang Le. Tree spanners on chordal graphs: complexity and algorithms. *Theor. Comput. Sci.*, 310(1-3):329–354, 2004.

[6] Leizhen Cai and Derek G. Corneil. Tree spanners. *SIAM J. of Discrete Mathematics*, 8(3):359–378, 1995.

[7] L. Paul Chew. There are planar graphs almost as good as the complete graph. *J. Comput. System Sci.*, 39(2):205–219, 1989. Computational geometry.

[8] Feodor F. Dragan and Ekkehard Köhler. An approximation algorithm for the tree t-spanner problem on unweighted graphs via generalized chordal graphs. *Algorithmica*, 69(4):884–905, 2014.

[9] Yuval Emek and David Peleg. Approximating minimum max-stretch spanning trees on unweighted graphs. *SIAM J. Comput.*, 38(5):1761–1781, 2008.

[10] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by tree metrics. *Journal of Computer and System Sciences*, 69(3):485 – 497, 2004. Special Issue on {STOC} 2003.

[11] Sándor P. Fekete and Jana Kremer. Tree spanners in planar graphs. *Discrete Appl. Math.*, 108(1-2):85–103, 2001. International Workshop on Graph-Theoretic Concepts in Computer Science (Smolenice Castle, 1998).
[12] Fedor V. Fomin, Petr A. Golovach, and Erik Jan van Leeuwen. Spanners of bounded degree graphs. *Inf. Process. Lett.*, 111(3):142–144, 2011.

[13] Giri Narasimhan and Michiel Smid. *Geometric Spanner Networks*. Cambridge University Press, New York, NY, USA, 2007.

[14] Ioannis Papoutsakis. *Tree Spanners of simple graphs*. PhD thesis, Department of Computer Science, University of Toronto, 2013. (Available at university T-space).

[15] Ioannis Papoutsakis. Tree spanners of small diameter. *CoRR*, abs/1503.06063, 2014.

[16] Ioannis Papoutsakis. Tree spanners of bounded degree graphs. *CoRR*, abs/1503.06822, 2015.

[17] D. Peleg and E. Upfal. A tradeoff between space and efficiency for routing tables. In *STOC: ACM Symposium on Theory of Computing (STOC)*, 1988.

[18] David Peleg and Eilon Reshef. Low complexity variants of the arrow distributed directory. *Journal of Computer and System Sciences*, 63(3):474–485, 2001.

[19] David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. *SIAM J. Comput.*, 18(4):740–747, 1989.

[20] S. Pettie. Low distortion spanners. *ACM Transactions on Algorithms*, 6(1), 2009.

[21] Y. Rabinovich and R. Raz. Lower bounds on the distortion of embedding finite metric spaces in graphs. *Discrete Comput. Geom.*, 19(1):79–94, 1998.

[22] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In *Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing*, STOC ’04, pages 81–90, New York, NY, USA, 2004. ACM.

[23] D. B. West. *Introduction to Graph Theory*. Prentice Hall, Inc., 1996.