Introdução

Com o avanço da idade, diversas alterações corporais são concebidas em nosso organismo, entre elas ocorrem a diminuição da densidade mineral óssea (DMO), diminuição do equilíbrio, lentificação da marcha, diminuição da força muscular, alteração do tecido adiposo, aumento da massa gorda e perda da massa muscular. De forma individual, cada modificação dessa pode gerar grande debilidade, entretanto, essas alterações podem inter-relacionar-se provocando sequelas mais críticas.

A diminuição da marcha, por exemplo, aumenta a possibilidade de quedas, e quando isso está relacionado a diminuição da força e ao acréscimo de massa gorda, especialmente dos membros inferiores, podem ser indicativo de sarcopenia grave. Outra condição relacionada ao acréscimo da massa gorda concomitantemente com a diminuição da DMO é a competência de ocasionar um quadro de osteoporose. Para o idoso que já carrega diversas alterações, essas situações provocam maior prejuízo para sua saúde física, promovendo decréscimo da sua capacidade funcional, qualidade de vida prejudicada, maior possibilidade de fratura e perfil de fragilidade, obtendo como resultado maior chance de mortalidade.
Nesse sentido, fatores fisiológicos, consumo alimentar e inatividade física podem intensificar as alterações na composição corporal e grau de sarcopenia\(^5\), o que torna a prática de exercícios físicos uma alternativa para promover modificações tanto na composição corporal como na sarcopenia\(^6\). Dentre os tipos de exercício físico, a prática do futebol recreativo surge como uma possibilidade de intervenção, pois é caracterizado como uma atividade de menor assimilação de gasto de energia em comparação ao futebol convencional, proporciona motivação intrínseca entre os integrantes e é praticado com uma quantidade de jogadores e dimensão de jogo inferiores do que o oficial\(^7\).

Estudos de revisão recentes apontam que o futebol recreativo proporciona importante impacto positivo na osteogênese de mulheres pré-menopausa\(^8,9\). Outros ensaios clínicos apresentam resultados significativos tanto em adultos de meia idade\(^10\) como na população idosa, demonstrando manutenção da DMO\(^11\), porém com período de quatro meses de intervenção. Em relação a sarcopenia, mesmo estudos apontando que o futebol recreativo promove hipertrofia e melhora da força muscular na população idosa\(^12,13\), fatores que minimizam ou retardam a sarcopenia\(^2\), dados sobre o benefício do futebol diretamente na sarcopenia ainda são desconhecidos. Assim, a proposta do presente estudo é investigar os efeitos da prática do futebol recreativo durante doze semanas na DMO e nos níveis de corte para classificação de sarcopenia em idosos.

Métodos

Participantes e recrutamento

Ensaio clínico randomizado não probabilístico aprovado no comitê de ética do 2.337.267 e inscrito no Registro Brasileiro de Ensaios Clínicos (ReBEC) de número U1111-1198-0770. Pesquisa realizada no Departamento de Educação Física da UFPE entre os meses de julho a dezembro de 2018. Para seleção da amostra foi conduzida publicação em redes sociais, entrega de folhetos e anúncios em centros comunitários. Foram selecionados para o estudo idosos com as seguintes características: insuficiente ativo analisado mediante o questionário GPAQ\(^14\), ter entre 60 a 79 anos de ambos os sexos; letrados; não obter contraindicação absoluta para a prática de exercícios físicos conforme as normas do Colégio Americano de Medicina Esportiva\(^15\); residir na comunidade; ser autodeclarado saudável ou apresentar hipertensão controlada (aferido e certificado os valores de sistólica e diastólica inferiores a 130 mmHg e 90 mmHg, respectivamente) desde que não acarretada por medicamentos do grupo betabloqueador e vasodilatadores diretos tanto de forma individual quanto concomitante. O critério de exclusão foi administrar medicamento para controle da osteoporose.

Vinte e quatro idosos aceitaram em participar da pesquisa, após assinarem o Termo de Consentimento Livre e Esclarecido (TCLE) e acatando as normas da resolução 466/2012, responderam uma anamnese e o questionário PARQ\(^+16\) para estratificação de risco, sendo sucessivamente marcados para avaliação física. Antes dos testes, os idosos foram separados em grupo de intervenção (GI) e grupo controle (GC), divididos por randomização na circunstância 1:1 mediante o endereço www.random.org. Foram incluídos na análise final dos dados os integrantes que compareceram na avaliação pré e pós intervenção e quem alcançou ao menos 75% de assiduidade do GI. A Figura 1. resume o processo de inclusão e acompanhamento do estudo.

Após os integrantes da pesquisa realizarem as avaliações foi demonstrado o emprego da escala de percepção subjetiva de esforço sessão (PSE) como intuito de conhecer a escala.
Intervenção

A intervenção do Futebol recreativo foi realizado por doze semanas, como apresentado por Reddy et al.17. As sessões ocorreram duas vezes (terças e sextas) pela manhã em quadra de cimento poliesportiva cumprindo o intervalo mínimo de 48 horas. As sessões foram dispostas por um aquecimento de dez minutos dos principais grupos musculares (flexão/extensão do tronco, quadril, joelho e tornozelo, braço e antebraço; adução/abdução do ombro e quadril; circundução do quadril e ombro; e corrida alternada com caminhada), quarenta minutos de futebol recreativo em tamanho reduzido (executado em dois períodos de vinte minutos com pausa de cinco minutos), sendo formado por equipes de no mínimo 3x3 e dez minutos de alongamento dos mesmos grupos trabalhados no início da intervenção. Todas as sessões foram realizadas sob monitoramento de um profissional de educação física. A área delimitada para jogo foi definida a partir do número de indivíduos presentes na atividade sendo este um espaço de 80m² por indivíduo, ou seja, 3x3 com espaço de 15,5x31m e 20x40m para 5x5, ou seja, quando houve seis indivíduos foi realizado jogo de 3x3, quando havia dez indivíduos presentes foi praticado futebol entre 5x5, entretanto, quando havia número ímpar, um dos times ficava com um indivíduo a mais em cada período.

Para a realização do futebol, a seleção dos times era feita pela participante mulher presente na sessão, na falta desta, a escolha das equipes era feita por dois indivíduos selecionados pelo profissional de educação física que monitorava a atividade e exercia a função de árbitro. Para a atividade, a área de gol foi delimitada por dois cones de 50 centímetros com distância de 60 centímetros. Todos os participantes usavam roupas apropriadas para a realização do futebol (tênis, short e camisa).
Depois de trinta minutos do fim da atividade, a Percepção Subjetiva de Esforço (PSE) foi coletada como forma de acompanhar a intensidade da intervenção. Para apurar a PSE foi aplicada a PSE sessão18. Para o GC, durante as doze semanas, foram enviados semanalmente mensagens de texto motivadores para evitar o comportamento sedentário.

Procedimento dos testes

Foram avaliados todos os participantes que satisfizaram os critérios de inclusão, em todas as análises foram respeitadas as orientações para utilização dos aparelhos e dos testes realizados. A coleta das medidas foi efetuada uma semana antes da primeira sessão de intervenção e, posteriormente, uma semana após a última sessão. Todas as avaliações aconteceram no mesmo dia após agendamento prévio.

O percentual de gordura corporal, percentual de massa magra, percentual de massa gorda e DMO do corpo inteiro, fêmur total, colo do fêmur e coluna foram avaliados por meio da absorciometria de raios x de dupla energia (DXA)19, Lunar Prodigy – GE.

Para avaliação da capacidade aeróbica foi aplicado o teste de marcha estacionária da bateria de testes Sênior fitness Test20. Este teste solicita que o participante exerça a marcha estacionária durante dois minutos o mais rápido possível. A medida coletada foi feita com a quantidade de vezes que o indivíduo conseguiu realizar a dupla passada.

Para acompanhar a intensidade, em cada sessão, foi empregada a escala de Percepção Subjetiva de Esforço(PSE). Para examinar a PSE foi usada a PSE sessão18. Para verificar a presença de sarcopenia foi utilizado a fórmula de Baumgartner21: índice de massa muscular (IMM) = somatório da massa magra de membros inferiores e superiores (em kg) dividido pela altura ao quadrado da (em metros). Que possui como valores de referência homem= 7,26 Kg/m2 e mulher= 5,45 Kg/m2.

Análise estatística

As análises foram realizadas pelo programa Statistical Package for the Social Sciences (SPSS) versão 25.0. Foi utilizada estatística descritiva para caracterização da amostra sendo os resultados apresentados em média e desvio padrão (DP). Para assumir a normalidade dos dados foi analisado a assimetria de cada grupo separadamente, subsequentemente foi aplicado o teste Anova two way para avaliação das diferenças dentre e entre grupos. Para verificar as diferenças dos grupos, o teste de Bonferroni foi usado como post-hoc. Um valor p≤0,05 foi aceito como significativo.

Resultados

Vinte e quatro idosos (18 homens e 6 mulheres) iniciaram o estudo, porém quatorze idosos (GI: 6 Homens e 1 Mulheres; GC: 4 Homens e 3 Mulheres) com média de idade de 65,9±3,4 anos concluíram a pesquisa satisfazendo os critérios de inclusão. Após as doze semanas, não foram encontradas diferenças significativas nas variáveis antropométricas e na capacidade aeróbica entre ou intra grupos (Tabela 1).
Tabela 1. Características antropométricas e a capacidade aeróbica da amostra antes e após as 12 semanas de intervenção (média±desvio-padrão)

Variável	Grupo Controle	Grupo Intervenção	p-value
Massa corporal (kg)	75,8±14,5	76,6±15,1	0,279
IMC*	28,0±3,3	28,3±3,6	0,232
Estatura (cm)	164±14,0	164±14,0	0,154
Capacidade Aeróbica (rep)	98,8±19,9	95,7±20,7	0,298

Nota: #: Índice de Massa Corporal; H- homem; M- mulher; (Rep): repetições

Fonte: Os autores

Entratanto, houve modificações significativas na DMO na região do fêmur total com efeito na interação tempo*gruppo [F(1,12)=7,252; p=0,020] juntamente com seu respectivo T-score [F(1,12)=6,773; p=0,023], onde o post-hoc de Bonferroni identificou uma aumento de 1,63% na DMO fêmur total (p=0,020) e seu T-score (p=0,035) no GI quando observados os valores iniciais. Para os demais sítios ósseos analisados, coluna ([F(1,12)=1,561;p=0,235], colo do fêmur[F(1,12)=1,103;p=0,314] e corpo inteiro[F(1,12)=1,835;p=0,20] não houveram diferenças significativas.

Na análise da sarcopenia dos participantes[F(1,12)=0,898;p=0,362] não houveram resultados significativos após o período de intervenção (Tabela 2). Quando realizado análise descritiva por sexo entre os níveis de sarcopenia, ambos os sexos do GI obtiveram afastamento da zona limítrofe para rastreio de sarcopenia, homem= 7,26Kg/m² e mulher= 5,45 Kg/m².

Tabela 2. Comparação dos resultados entre os grupos intervenção e controle durante o período de intervenção

Variável	Grupo Controle	Grupo Intervenção	TE
Densidade Mineral Óssea			
Coluna (g/cm²)	1,199±0,22	1,195±0,22	0,01
Colo do Fêmur (g/cm²)	0,926±0,20	0,93±0,20	0,03
Corpo inteiro (g/cm²)	1,183±0,19	1,18±0,19	0,00
Fêmur total (g/cm²)	1,032±0,21	1,025±0,21	0,03
Sarcopenia			
Índice de massa muscular (Kg/m²)	7,95±1,55	7,86±1,60	0,05
IMM			
Masculino	7,33±1,57	7,27±1,81	0,03
Feminino	8,78±1,31	8,66±1,07	0,10

Nota: *: diferença pré e pós; #: diferença entre os grupos; p≤0,05 TE: Tamanho de efeito (d de Cohen); $: Sem resultado por haver 1 mulher no grupo intervenção.

Fonte: Os autores

A média geral da PSE indicada pelos participantes após cada sessão de intervenção foi de 4,26±1,17(classificado entre moderado e pouco difícil), numa escala de 0 a 10.

Discussão

O objetivo deste estudo foi analisar o efeito de um programa de futebol recreativo durante doze semanas na DMO e nos níveis de sarcopenia em idosos vivendo na comunidade.
A respeito aos dados de base da amostra, não houve diferença para a idade, IMC, estatura e massa corporal entre os grupos. Esses dados são semelhantes aos mencionados em outros estudos com idosos brasileiros\(^{22,23}\). Porém, para o sexo, este estudo foi majoritariamente formado por indivíduos do sexo masculino, diferente ao apresentado nos demais estudos, este dado justifica-se pelo fato de que a modalidade esportiva realizada é dominantemente feita homens\(^{24}\).

Em relação ao desempenho físico, não houveram diferenças significativas, tanto entre quanto intra grupos, entre o período pré e pós intervenção. Esses resultados são semelhantes a outro estudo\(^{12}\) com o mesmo protocolo e duração de intervenção. Por outro lado, Milanovic et al.\(^{25}\) apontaram, em seu artigo de revisão, que o futebol recreativo promove alterações no VO\(_{2}\)\(_{\text{max}}\), desde que a frequência cardíaca de reserva seja de pelo menos 75\%, ou seja, de intensidade moderada a alta. Como no presente estudo a intensidade reportada pelo GI foi de moderada a baixa, é possível que não tenha sido suficiente para promover modificações significativas no VO\(_{2}\)\(_{\text{max}}\).

Referente às áreas ósseas, a DMO do colo do fêmur, coluna lombar e corpo inteiro não evidenciaram diferenças significativas após o período de intervenção. Nos estudos que avaliaram a DMO de idosos que praticaram futebol recreativo, apenas no estudo de Sousa et al.\(^{26}\) houve modificação no corpo inteiro em doze semanas, porém além dos idosos a amostra incluiu adultos de meia idade como também um protocolo que incluía prescrição de dieta. Quando a amostra foi composta apenas por idosos, as modificações da DMO apresentaram-se depois de um ano de intervenção no colo do fêmur e sem modificações no corpo inteiro\(^{27}\). Apesar de não terem ocorrido alterações significativas na DMO desses sítios ósseos, é possível destacar que mesmo a manutenção da DMO após intervenção é um aspecto importante, pois há uma diminuição média na massa óssea de 0,4% por ano após a aquisição do seu valor máximo\(^{28}\).

A diminuição da DMO pode impactar no quantitativo de fraturas ósseas, somente nos EUA ocorrem cerca de 2 milhões de fraturas ósseas a cada ano\(^{29}\) acarretando em consequências negativas para a vida do indivíduo, visto que, um a cada três homens experimenta uma nova fratura no quadril e outro morre dentro de um ano após uma fratura\(^{30}\). Assim, a manutenção e/ou melhora da DMO nessa faixa etária torna-se um fator protetivo contra o acometimento fraturas, osteopenia ou osteoporose.

No presente estudo, valores médios da DMO do fêmur total obtiveram aumento significativo de 1,63% (1,120±0,21 para 1,138 ±0,20 g/cm2) em três meses de intervenção. Aparentemente, o futebol recreativo possui uma ação osteogênica primária na DMO do fêmur total, pois Helge et al.\(^{27}\) também encontraram aumentos significativos de 1%±0,5% e de 2,9%±0,7% na DMO do fêmur total após 4 e 12 meses de futebol recreativo, respectivamente. É possível que este resultado possua relação com a cinesiologia do chute, que envolve movimentos com a utilização dos músculos quadríceps femoral, tensor da fáscia lata e ílio-psoas, músculos esses que possuem inserção na área do fêmur\(^{31}\). Outro fator relevante envolve o perfil da prática do futebol recreativo, isso porque como as ações realizadas possuem caráter imprevisível, diferente de uma caminhada onde a atividade possui relativa sistematização, o aparelho ósseo não perde sua mecanossensibilidade por não ocorrer movimentos repetidos, quando existe a ocorrência deste fato, provoca-se no osso a dessensibilização por meio dos estímulos recorrentes\(^{32}\).

No que tange a sarcopenia, não houve modificações significativas entre as medidas no momento pré e pós intervenção. Contudo, houve afastamento do GI da zona de sarcopenia. Para os homens, apesar de ainda estarem enquadrados na zona de sarcopenia, aproximaram do valor limítrofe 7,26 Kg/m\(^2\) (saíram de 7,19 para 7,23 Kg/m\(^2\), um aumento de 0,55\%), já no sexo feminino, aumentou-se a distância do valor limítrofe 5,45 Kg/m\(^2\) (6,96 para 7,18 Kg/m\(^2\), um aumento de 4,04\%). Para esta variável, exercício físico resistido, excluindo quando empregado faixas elásticas\(^{33}\), exerce maior resultado em comparação ao exercício físico aeróbico, porém a
execução deste último também pode ser eficaz para promover a redução do estresse oxidativo e aumentar a energia mitocondrial14. Nos estudos de Yamada et al.35 e Brighwell et al.36 quando utilizado exercício físico aeróbio, foram encontrados resultados significativos após seis meses de intervenção. Além disso, no estudo de Brighwell et al.36 foi utilizada intensidade de 70\% da frequência cardíaca de reserva (FCR). Como o presente estudo teve duração de 3 meses e encontrou um distanciamento das zonas de risco de sarcopenia, é possível que o futebol recreativo de baixa intensidade possa ser efetivo após um maior tempo de prática (6 meses) ou quando utilizada intensidade de 70\% da FCR possa promover alterações em um período de tempo menor. Assim, são necessários novos estudos nesta vertente para verificar a ocorrência destes fatos.

Este estudo possui determinada limitação, a saber, a amostra foi considera pequena, todavia perdas foram admitidas, pois já é documentado que metade dos idosos que envolve-se em um programa de exercícios físicos abandonam no período de seis meses37.

Conclusões

O achado principal deste ensaio clínico com idosos que realizaram o futebol recreativo é que houve alteração significativa na DMO do fêmur após 12 semanas de treinamento. Adicionalmente, para a análise de sarcopenia, observamos distanciamento dos valores limítrofes para sua classificação. Para esta variável, tempo maior de intervenção parece ser necessário para provocar modificações. Estes dados podem adicionar informações relevantes ao corpo atual de conhecimentos.

Referências

1. Freitas EV, Py L, Neri AL, Cançado FAXC, Gorzoni ML, Doll J. Tratado de geriatria e gerontologia. 3.ed. Rio de Janeiro: Guanabara Koogan; 2011.
2. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet 2019;393:2636-46. Doi: https://doi.org/10.1016/S0140-6736(19)31138-9
3. Silva T, Franz R, Maturana MA, Spritzer PM. Associations between body composition and lifestyle factors with bone mineral density according to time since menopause in women from Southern Brazil: a cross-sectional study. BMC Endocr Disord 2015;15(1):71. Doi: https://doi.org/10.1186/s12902-015-0072-8
4. Reinders I, Visser M, Schaap L. Body weight and body composition in old age and their relationship with frailty. Curr Opin Clin Nutr Metab Care 2017;20(1):11-5. Doi: https://doi.org/10.1097/MCO.0000000000000332
5. Simsek H, Meseri R, Sahin S, Kilavuz A, Bicakli DH, Uyar M, et al. Prevalence of sarcopenia and related factors in community-dwelling elderly individuals. Saudi Med J 2019;40(6):568-74. Doi: https://doi.org/10.15537/smj.2019.6.23917
6. Chen HT, Wu HJ, Chen YJ, Ho SY, Chung YC. Effects of 8-week kettlebell training on body composition, muscle strength, pulmonary function, and chronic low-grade inflammation in elderly women with sarcopenia. Exp Gerontol 2018;112(250):112-128. Doi: https://doi.org/10.1016/j.exger.2018.09.015
7. Hammami A, Chamari K, Slimani M, Shepard RJ, Youafi N, Tabka Z, et al. Effects of Recreational soccer on physical fitness and health indices in sedentary healthy and unhealthy subjects. Biol Sport 2016;33(2):127-37. Doi: https://doi.org/10.5604/20831862.1198209
8. Luo H, Newton RU, Ma’Ayah F, Galvão DA, Taaffe DR. Recreational soccer as sport medicine for middle-aged and older adults: A systematic review. BMJ Open Sport Exerc Med 2018;4(1):1-13. Doi: https://doi.org/10.1136/bmjsem-2017-000336
9. Krustrup P, Helge EW, Hansen PR, Aagaard P, Hageman M, Randers MB, et al. Effects of recreational football on women’s fitness and health: adaptations and mechanisms. Eur J Appl Physiol 2018;118(1):11-32. Doi: https://doi.org/10.1007/s00421-017-3733-7
10. Helge EW, Randers MB, Hornstrup T, Nielsen JJ, Blackwell J, Jackman SR, et al. Street football is a feasible health-enhancing activity for homeless men: Biochemical bone marker profile and balance improved. Scand J Med Sci Sport 2014;24(4):465-73. Doi: https://doi.org/10.1111/sm.12244
11. Uth J, Fristrup B, Haahr RD, Brasso K, Helge JW, North Met al. Football training over 5 years is associated with preserved femoral bone mineral density in men with prostate cancer. Scand J Med Sci Sport 2018;28:61-73. Doi: https://doi.org/10.1111/sm.13242
12. Uth J, Hornstrup T, Schmidt JF, Christensen JF, Frandsen C, Christensen KB, et al. Football training improves lean body mass in men with prostate cancer undergoing androgen deprivation therapy. Scand J Med Sci Sports 2014;24:105-12. Doi: https://doi.org/10.1111/j.1502-7042.2012.

13. Uth J, Hornstrup T, Christensen JF, Christensen KB, Jørgensen NR, Schmidt JF, et al. Efficacy of recreational football on bone health, body composition, and physical functioning in men with prostate cancer undergoing androgen deprivation therapy: 32-week follow-up of the FC prostate randomised controlled trial. Osteoporos Int 2016;27(4):1507-18. Doi: https://doi.org/10.1007/s00198-015-3399-0

14. Hoos T, Espinoza N, Marshall S, Arredondo EM. Validity of the Global Physical Activity Questionnaire (GPAQ) in Adult Latinas. J Phys Act Health 2012;9(5):698-705. Doi: https://doi.org/10.1016/j.biotechdev.2011.08.021.Secreted

15. American College of Sports Medicine. ACSM guidelines for exercise testing and prescription. 8th ed. Philadelphia; 2010.

16. Warburton D, Jamnik V, Bredin S, Gledhill N. The Physical Activity Readiness Questionnaire for Everyone (PAR-Q+) and Electronic Physical Activity Readiness Medical Examination (ePARmed-X+). Heal Fit J Canada 2011;4(2):3-17. Doi: https://doi.org/10.14288/hfjc.v4i2.103

17. Reddy P, Dias I, Holland C, Campbell N, Nagar I, Connolly L, et al. Walking football as sustainable exercise for older adults- A pilot investigation. Eur J Sport Sci 2017;17(5):638-645. Doi: https://doi.org/10.1080/17461391.2017.1298671

18. Foster C, Florhaug JA, Franklin J, Gottschal L, Hrovatin LA, Parker S, et al. A new approach to monitoring exercise training. J strength Cond Res 2001;15(1):109-115. PMID: 11708692

19. Glickman SG, Marn CS, Supiano MA, Dengel DR. Validity and reliability of dual-energy X-ray absorptiometry for the assessment of abdominal adiposity. J Appl Physiol 2004;97(2):509-514. Doi: https://doi.org/10.1152/japplphysiol.01234.2003

20. Rikli RE, Jones CJ. Senior Fitness Test Manual. 2. ed. Champaign, IL: Human Kinetic 2012.

21. Biehler A, Choplin A, Morelle M. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1999;147(8):755-63. Doi: https://doi.org/10.1093/oxfordjournals.aje.a009520

22. Pereira HEF, Oliveira JS, Prates RP, Leão LL, Pereira EJ, Farias PKS. Perfil nutricional e dietético de idosos atendidos nas estratégias de saúde da família do norte de minas gerais. Rev APS 2018;21(2):259-66. Doi: https://doi.org/10.34019/1809-8363.2018.v21.16119

23. Closs VE, Rosemberg LS, Ettrich G, Gomes I, Helena C, Schwaneck A. Medidas antropométricas em idosos assistidos na atenção básica e sua associação com gênero, idade e síndrome da fragilidade: dados do EMI-SUS. Sci Med 2015;25(3):1-17. Doi: https://doi.org/10.15448/1980-6108.2015.3.21176

24. Lima DF, Lima LA, Piovanini VGS. Prática de futebol recreativo entre adultos residentes nas capitais brasileiras, 2011-2015. Epidemiol Serv Saúde 2018;27(2):1-10. Doi: https://doi.org/10.5123/S1679-497420180000200013

25. Milanović Z, Pantelić S, Čović N, Sporiš G, Krustup P. Is recreational soccer effective for improving V′O2max? A systematic review and meta-analysis. Sport Med 2015;45(9):1339-53. Doi: https://doi.org/10.1007/s40279-015-0361-4

26. Sousa M V, Fukui R, Krustup P, Pereira RMR, Silva PRS, Rodrigues AC, et al. Positive effects of football on fitness, lipid profile, and insulin resistance in Brazilian patients with type 2 diabetes. Scand J Med Sci Sport 2014;24(Suppl 1):57-65. Doi: https://doi.org/10.1111/sms.12258

27. Helge EW, Andersen TR, Schmidt JF, Jørgensen NR, Hornstrup T, Krustup P, et al. Recreational football improves bone mineral density and bone turnover marker profile in elderly men. Scand J Med Sci Sport 2014;24(Suppl 1):98-104. Doi: https://doi.org/10.1111/sms.12239

28. Lewin S, Gouveia CHDA, Marone MMS, Wehba S, Malvestiti LF, Bianco AC. Densidade mineral óssea vertebral e femoral de 724 mulheres brancas brasileiras: influência da idade e do peso corporal. Rev Ass Med Bras 1997;43(2):127-36. Doi: https://doi.org/10.1590/S0104-42301997000200009

29. Blume SW, Curtis J. Medical costs of osteoporosis in the elderly medicare population. Osteoporos Int 2011;22(6):1835-44. Doi: https://doi.org/10.1007/s00198-010-1419-7

30. Von Friedendorff M, McGuigan FE, Besjakov J, Akesson K. Hip fracture in men-survival and subsequent fractures: A cohort study with 22-year follow-up. J Am Geriatr Soc 2011;59(5):806-813. Doi: https://doi.org/10.1111/j.1532-5415.2011.03399.x

31. Moreira D, Godoy JRP, Braz RG, Machado GFB, Santos HFS. Abordagem cinesiológica do chute no futsal e suas implicações clínicas. R bras Ci e Mov 2014;12(2):81-5.
34. Dionyssiotis Y. Sarcopenia in the Elderly. Eur Endocrinol 2019;15(1):13-4. Doi:https://doi.org/10.17925/EE.2019.15.1.13

35. Yamada M, Nishiguchi S, Fukutani N, Aoyama T, Arai H. Mail-Based Intervention for sarcopenia prevention increased anabolic hormone and skeletal muscle mass in Community-Dwelling Japanese Older Adults: The INE (Intervention by Nutrition and Exercise) Study. J Am Med Dir Assoc 2015;16(8):654-60. Doi: https://doi.org/10.1016/j.jamda.2015.02.017

36. Brightwell CR, Markofski MM, Moro T, Fry CS, Porter C, Volpi E, et al. Moderate-intensity aerobic exercise improves skeletal muscle quality in older adults. Transl Sport Med 2019;2(3):109-19. Doi: https://doi.org/10.1002/tsm2.70

37. Chao D, Foy CG, Farmer D. Exercise Adherence among Older Adults. Control Clin Trials 2000;21(5):S212-S217. Doi: https://doi.org/10.1016/S0197-2456(00)00081-7

Orcid dos autores
Guilherme Henrique de Lima Matias: https://orcid.org/0000-0002-0921-8714
André dos Santos Costa: https://orcid.org/0000-0001-5301-2572
Romulo Maia Carlos Fonseca: https://orcid.org/0000-0002-2097-7498

Recebido em 11/04/20.
Revisado em 05/06/20.
Aceito em 18/08/20.

Endereço para correspondência: Guilherme Henrique de Lima Matias, Logradouro: Via Local IV, 209- Jaboatão/PE. Email: guilhermehenriquelm@yahoo.com.br