Regulation of Virulence in *Streptococcus suis*

Youjun Feng1,2*, Huimin Zhang3, Min Cao1 and Changjun Wang1*

1Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, PR China
2University of Illinois at Urbana-Champaign (UIUC), Urbana 61801, USA

Abstract

Streptococcus suis (*S. suis*) comprising thirty-five different serotypes, constitute a group of complex bacterial species that not only is swine pathogen, but also cause opportunistic infections in humans. A collection of virulence determinants have been largely elucidated that contribute to better understanding of pathogenesis underlying severe infections by *S. suis*. Here, we concentrated on control of *S. suis* virulence by a rainbow coalition of regulators, and discussed future perspectives in this field. It might provide a glimpse of the complex network of virulence regulation in *S. suis*.

Editorial

Streptococcus suis (*S. suis*) is a major swine pathogen that annually results in great economic loss worldwide [1,2]. Thirty-five serotypes (1-34, 1/2) have been classified, according to the differentiated capsule antigens of these heterogeneous *S. suis* species [3,4]. Of them, *S. suis* serotype 2 (SS2) is a previously-neglected but recently-emerging zoonotic agent that can lead to opportunistic infections in humans with close contact with swine and/or pork products [5-7]. Totally, more than 850 cases of human SS2 infections have been recorded, which are involved in over 30 countries and regions, esp. Southeastern Asia like Vietnam, Thailand, China, etc [1,3]. Given that strong invasiveness and high virulence is manifested by this bug, world-wide extensive studies have been conducted (esp. after a big outbreak of human SS2 endemic in China, in 2005 [7]), which led to discovery of a collection of new bacterial virulence determinants underlying SS2 pathogenicity [1,8]. In terms of recent development in this field, we presented a brief view on the regulation network of SS2 virulence from bellowed three aspects: transcription factor, two-component signal transduction system (TCSTS), plus orphan response regulator.

First, no less than five transcription factors, some of which can sense environmental signals, have been implicated into the complex regulatory network of *S. suis* pathogenicity (Table 1). AdcR is a regulator controlling zinc transport in *S. suis*, was observed to be correlated with bacterial virulence in mouse model [9]. In contrast, we failed to note that Zur, the other zinc uptake regulator from 05ZYH33 strain of *S. suis* [9,10], was observed to be correlated in SS2 virulence (Table 1). AdcR is a regulator controlling zinc transport in *S. suis* [9]. Willenborg et al. [11] had addressed the effect of the sugar metabolism regulator carbohydrate control protein A (CcpA) on *S. suis* pathogenesis. As anticipated, expression level of several virulence factors (such as ArcB, Sao, Enolase, etc.) were altered in the AdcR mutant. Moreover, the deletion of ccpA led to significant reduction of both capsule thickness and resistance to killing with porcine neutrophils. Unfortunately, its pathological role in bacterial virulence has not yet been verified with experiments of animal infections (Table 1). ArgR, a member of ArgR/AhrC arginine repressor family, was recently proved to regulate expression of *arcABC* operon encoding an arginine deiminase system that is recognized as a putative virulence factor [12,13]. Therefore, it is of much interest to test a role of argR in *S. suis* virulence (Table 1). Similar to what has been observed with Rgg regulators of other Gram-positive pathogen, we defined an rgg-like ortholog of *S. suis* 05ZYH33. Multiple roles of this regulator in bacterial metabolism were observed. Particularly, it was confirmed as a virulence determinant in the experimental model of piglets [14]. Very recently, Zhang and coworkers supplemented a Fur-like family of transcription factor, PerR, to the increasing list of virulence factors of *S. suis* [15]. This regulator is controlled by both H2O2 and metal ions, and directly modulates expression of two target genes (one is *dpr* encoding Dps-like peroxide resistance protein and the other is metQIN encoding a methionine transporter) [15].

Among the 15 putative TCSTS of the Chinese virulent SS2 strain (e.g., 05ZYH33) [16,17], four have been found to be involved in control of *S. suis* virulence (Table 1). In 2008, we reported a unique *salK-salR* TCSTS system within the 89K pathogenicity island [18]. The deletion of this two component system resulted in significant down-regulation of 26 genes’ expression level, and increased its susceptibility to polymorphonuclear leukocyte (PMN)-mediated killing. Consequently, the virulence of the *SalK-R* mutant was seriously attenuated [18]. Subsequently, *ciaR-ciaH* was determined as the second TCS system that is essential for pathogenicity of SS2 in the infection models of CD1 mice and piglets both [19]. A homolog of the *Clostridium perfringens* VirR-VirS regulatory system was also observed in 05ZYH33 strain of SS2, and the isogenic knockout mutant (*ΔvirRBS*) was found to exhibit marked attenuation of virulence observed with the infection model of mice [20]. More recently, Han et al. [21] employed bacterial genetics combined with comparative proteomics to unveil that the *ihk-irr* TCSTS is necessary for SS2 pathogenicity via modulating bacterial central metabolism.

Additionally, only two orphan response regulators have been verified to be involved in SS2 pathogenesis thus far (one is RevSC21 [22], and the other is CovR [23], Table 1). In 2009, Wu et al. [22] reported that RevSC21 regulator positively regulates expression levels of virulence factors (such as *mrp, sly, cps*, etc.), and is required for bacterial
virulence. In contrast, we had ever observed another orphan response regulator CovR with an opposite effect on S. suis pathogenicity [23]. The covR-defective (ΔcovR) mutant displayed thicker capsules and increased hemolytic activity. Furthermore, adherence of this mutant to epithelial cells was greatly increased, as well as its resistance to phagocytosis and killing by neutrophils and monocytes. Eventually, the removal of covR gene was found to be correlated with increased lethality of piglets [23].

It still remains elusive whether some connection/linking are present among the complex regulatory networks constituted by above transcription factors and TSCTs in modulating bacterial virulence. It is reasonable that presence of other transcription factors and/or regulatory systems that are associated with control of bacterial virulence in SS2. Unfortunately, nothing is known on post-transcriptional control of virulence by small non-coding RNA (sRNA) in S. suis, although it has been addressed in its closely-related organism, S. pneumoniae [24]. Thus we believed that genome-wide systematic identification and functional assignment of small non-coding RNAs might contribute to better understanding control of SS2 virulence. In similar, it is also of great interest to elucidate the potential relevance and/or linking of machineries for post-translational modifications [25] (such as acetylation [26]) to S. suis pathogenesis.

Acknowledgements

The work from Dr. Wang's research group was in part supported by grants from the General Program of National Natural Science Foundation of China (31171024, 81071317, 30972638, 81172794 & 81171527), and the General Program of National Natural Science Foundation of Jiangsu Province (BK2011097, BK2010025 & BK2010114). Dr. Feng (whose present address is University of Illinois at Urbana-Champaign) is awarded as a young visiting scholar in Research Institute for Medicine of Nanjing Command.

References

1. Feng Y, Zhang H, Ma Y, Gao GF (2010) Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol 18: 124-131.

2. Staats JJ, Feder I, Okwumabua O, Chengappa MM (1997) Streptococcus suis: past and present. Vet Res Commun 21: 381-407.

3. Gottschalk M, Segura M, Xu J, Calzas C, Segura M (2010) Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol 5: 371-391.

4. Feng Y, Shi X, Zhang H, Zhang S, Ma Y, et al. (2009) Recurrence of human Streptococcus suis infections in 2007: three cases of meningitis and implications that heterogeneous S. suis 2 circulates in China. Zoonoses Public Health 56: 506-514.

5. Gottschalk M, Xu J, Calzas C, Segura M (2010) Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol 5: 371-391.

6. Tang J, Wang C, Feng Y, Yang W, Song H, et al. (2006) Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med 3: e151.

7. Fittipaldi N, Segura M, Grenier D, Gottschalk M (2012) Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 7: 259-279.

8. Aranda J, Garrido ME, Fittipaldi N, Cortés P, Liagosteria M, et al. (2010) The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis. Vet Microbiol 144: 246-249.

9. Feng Y, Li M, Zhang H, Zheng B, Han H, et al. (2008) Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J Bacteriol 190: 7567-7576.

10. Willenborg J, Fulde M, de Greeff A, Rohde M, Smith HE, et al. (2011) Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis. Microbiology 157: 1823-1833.

11. Fulde M, Willenborg J, de Greeff A, Benga L, Smith HE, et al. (2011) ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiology 157: 572-582.

12. Gruening P, Fulde M, Valentin-Weigand P, Goethe R (2006) Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 188: 361-369.

13. Zheng F, Ji H, Cao M, Wang C, Feng Y, et al. (2011) Contribution of the Rgg transcription regulator to metabolism and virulence of Streptococcus suis serotype 2. Infect Immun 79: 1319-1328.

14. Zhang T, Ding Y, Li T, Yan Y, Li W, et al. (2012) A fur-like protein PerR regulates two oxidative stress response related operons dpr and mefQIN in streptococcus suis. BMC Microbiol 12: 85.

15. Chen C, Tang J, Dong W, Wang C, Feng Y, et al. (2007) A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One 2: e315.

16. Feng Y, Cao M, Wu Z, Chu F, Ma Y, et al. (2011) Streptococcus suis in Omics-Era: Where do we stand? J Bacteriol & Parasitol 52:001.

17. Wang C, Li M, Feng Y, Zheng F, Dong Y, et al. (2009) The involvement of sor tase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch Microbiol 191: 23-33.

Table 1: Transcription factors and regulatory systems required for S. suis virulence.

Genes	Functional annotation	SS2 Strains	Animal models	Origins
perR	PerR, a Fur-like protein	Strain SC-19 (China)	Balb/c mice	(25)
addR	AdcR, a pleiotropic regulator	Strain P1/7 (Netherlands)	Balb/c mice	(1)
ccpp	Catabolite control protein A	Strain 10 (Netherlands)	No	(23)
argR	An ADS-associated repressor of the ArgR/AlrC arginine family	Strain 10 (Netherlands)	No	(9)
rgg	Rgg transcription factor	05ZMH3 (China)	Piglets	(26)

Two component signal transduction system (4)

InhR-inhR	A homolog of the Streptococcus pyogenes InhR/Inr TCS	Strain 05ZMH3 (China)	CD-1 mice	(13)
virR-virS	A homolog of the VirR-VirS regulatory system of Clostridium perfringens	Strain 05ZMH3 (China)	Balb/c mice	(20)
saik-salR	Two-component system in the 89K PAI	Strain 05ZMH3 (China)	Piglets	(14)
ciaR-ciaH	A two-component system	SC19 (China)	CD-1 mice & piglets	(5)

Orphan response regulator (2)

| coVR | Orphan response regulator (CovR) | Strain 05ZMH3 (China) | Piglets | (16) |
| revSC21 | Orphan response regulator RevSC21 | Strain SC21 (China) | CD-1 mice | (24) |
19. Feng Y, Pan X, Sun W, Wang C, Zhang H, et al. (2009) Streptococcus suis enolase functions as a protective antigen displayed on the bacterial cell surface. J Infect Dis 200: 1583-1592.

20. Wang H, Shen X, Zhao Y, Wang M, Zhong Q, et al. (2012) Identification and proteome analysis of the two-component VirR/VirS system in epidemic Streptococcus suis serotype 2. FEMS Microbiol Lett 333: 160-168.

21. Han H, Liu C, Wang G, Xuan C, Zheng B, et al. (2012) The two-component system Ihk/Irr contributes to the virulence of Streptococcus suis serotype 2 strain 05ZYH33 through alteration of the bacterial cell metabolism. Microbiology 158: 1852-1866.

22. Wu T, Chang H, Tan C, Bei W, Chen H (2009) The orphan response regulator RevSC21 controls the attachment of Streptococcus suis serotype-2 to human laryngeal epithelial cells and the expression of virulence genes. FEMS Microbiol Lett 292: 170-181.

23. Pan X, Ge J, Li M, Wu B, Wang C, et al. (2009) The orphan response regulator CovR: a globally negative modulator of virulence in Streptococcus suis serotype 2. J Bacteriol 191: 2601-2612.

24. Mann B, van Oprijn T, Wang J, Obert C, Wang YD, et al. (2012) Control of Virulence by Small RNAs in Streptococcus pneumoniae. PLoS Pathog 8: e1002788.

25. Ribet D, Cossart P (2010) Pathogen-mediated posttranslational modifications: A re-emerging field. Cell 143: 694-702.

26. Weiman S, Uchiyama S, Lin FY, Chaffin D, Varki A, et al. (2010) O-Acetylation of sialic acid on Group B Streptococcus inhibits neutrophil suppression and virulence. Biochim J 428: 163-168.