Almost Riemann Solitons and Gradient Almost Riemann Solitons on \(LP \)-Sasakian Manifolds

Krishnendu De

Abstract. The upcoming article aims to investigate almost Riemann solitons and gradient almost Riemann solitons in a \(LP \)-Sasakian manifold \(M^3 \). At first, it is proved that if \((\gamma, Z, \lambda)\) be an almost Riemann soliton on a \(LP \)-Sasakian manifold \(M^3 \), then it reduces to a Riemann soliton, provided the soliton vector \(Z \) has constant divergence. Also, we show that if \(Z \) is pointwise collinear with the characteristic vector field \(\xi \), then \(Z \) is a constant multiple of \(\xi \), and the ARS reduces to a Riemann soliton. Furthermore, it is proved that if a \(LP \)-Sasakian manifold \(M^3 \) admits gradient almost Riemann soliton, then the manifold is a space form. Also, we consider a non-trivial example and validate a result of our paper.

1. Introduction

The idea of Ricci flow was introduced by Hamilton [5] and defined by \(\frac{\partial}{\partial t} g(t) = -2S(t) \), where \(S \) denotes the Ricci tensor.

As a natural generalization, the concept of Riemann flow ([14],[15]) is defined by \(\frac{\partial}{\partial t} G(t) = -2Rg(t) \), \(G = \frac{1}{2} g \otimes g \), where \(R \) is the Riemann curvature tensor and \(\otimes \) is Kulkarni-Nomizu product (executed as (see Besse [2], p. 47),

\[
(P \otimes Q)(X, Y, Z, W) = P(X, W)Q(Y, U) + P(Y, U)Q(X, W)
- P(X, U)Q(Y, W) - P(Y, W)Q(X, U).
\]

Similar to Ricci soliton, the interesting idea of Riemann soliton was introduced by Hirica and Udriste [6]. Analogous to Hirica and Udriste [6], a Lorentzian metric \(g \) on a Lorentzian manifold \(M \) is called a Riemann solitons if there exists a \(C^\infty \) vector field \(Z \) and a real scalar \(\lambda \) such that

\[
2R + \alpha g \otimes g + g \otimes \mathcal{L}_Z g = 0. \tag{1}
\]

On this occasion, we should mention that the space of constant sectional curvature is generalized by the Riemann soliton. If the vector field \(Z \) is the gradient of the potential function \(\gamma \), then the manifold is called gradient Riemann soliton. Then the foregoing equation can be written as

\[
2R + \alpha g \otimes g + g \otimes \nabla^2 \gamma = 0, \tag{2}
\]

\[\text{\textbf{2020 Mathematics Subject Classification.}} \text{Primary 53C21; Secondary 53C25.} \]

\[\text{Keywords.} \ 3\text{-dimensional \(LP \)-Sasakian manifold, Almost Riemann soliton, Gradient almost Riemann soliton.} \]

\[\text{Received: 16 August 2020; Accepted: 17 August 2021} \]

\[\text{Communicated by Ljubica Velimirović} \]

\[\text{Email address: krishnendu.de@outlook.in (Krishnendu De)} \]
where $\nabla^2 f$ denotes the Hessian of γ. If we modified the equation (1) and (2) by fixing the condition on the parameter λ to be a variable function, then it reduces to ARS and gradient ARS respectively. Here the terminology “almost Riemann solitons” is written as ARS which will be applied throughout the article.

A general idea of Lorentzian para-Sasakian (briefly LP-Sasakian) manifold has been introduced by K. Matsumoto [7], in 1989 and several geometers in different context ([1], [8], [9], [10]) have studied LP-Sasakian manifolds. Riemann solitons and gradient Riemann solitons on Sasakian manifolds have been discussed in detail by Hirica and Udriste (see, [6]). Moreover, Riemann’s soliton concerning infinitesimal harmonic transformation was investigated in [13]. Here it is appropriate to notice that Sharma in [11] investigated almost Ricci soliton in K-contact geometry and in [12], with divergence-free soliton vector field. Very recently in [4], the authors studied Riemann soliton within the framework of a contact manifold and proved various fascinating results.

The above studies motivate us to investigate an ARS and the gradient ARS in a 3-dimensional LP-Sasakian manifold.

The upcoming article is structured as follows: In section 2, we recall some fundamental facts and formulas of LP-Sasakian manifolds, which will be needed in later sections. Beginning from Section 3, after providing the proof, we will write our prime theorems. This article terminates with a concise bibliography which has been used during the formulation of the upcoming article.

2. LP-Sasakian manifolds

Let η, ξ, ϕ are tensor fields on a smooth manifold M^n of types $(0,1), (1,0)$ and $(1,1)$ respectively, such that

$$\eta(\xi) = -1, \quad \phi^2 E = E + \eta(E)\xi. \quad (3)$$

The foregoing equations imply that

$$\phi \xi = 0, \quad \eta \circ \phi = 0. \quad (4)$$

Then M^n admits a Lorentzian metric g of type $(0,2)$ such that

$$g(E, \xi) = \eta(E), \quad \eta(\phi E, \phi F) = g(E, F) + \eta(E)\eta(F) \quad (5)$$

for any vector fields E, F. Then the structure (η, ξ, ϕ, g) is called Lorentzian almost para-contact structure. The manifold M^n equipped with a Lorentzian almost para-contact structure (η, ξ, ϕ, g) is called a Lorentzian almost para-contact manifold (briefly LAP-manifold).

If we denote $\Phi(E, F) = g(E, \phi F)$, then we obtain [7]

$$\Phi(E, F) = g(E, \phi F) = g(\phi E, F) = \Phi(F, E), \quad (6)$$

where E, F are any vector fields.

An LAP-manifold M^n equipped with the structure (η, ξ, ϕ, g) is said to be a Lorentzian para-contact manifold (briefly LP-manifold) if

$$\Phi(E, F) = \frac{1}{2} (\nabla_E \eta) F + (\nabla_F \eta) E, \quad (7)$$

where Φ is defined by (6) and ∇ indicates the covariant differentiation operator with respect to the Lorentzian metric g. A Lorentzian almost para-contact manifold M^n is said to be a LP-Sasakian manifold if it satisfies

$$(\nabla_E \phi) F = \eta(F) E + g(E, F) \xi + 2\eta(E)\eta(F)\xi. \quad (8)$$

Also since the vector field, η is closed in an LP-Sasakian manifold we have

$$(\nabla_E \eta) F = \Phi(E, F) = g(E, \phi F), \quad \Phi(E, \xi) = 0, \quad \nabla E \xi = \phi E. \quad (9)$$

Furthermore, we find that the eigen values of ϕ are -1, 0 and 1. Here the multiplicity of 0 is one. Let us assume that the multiplicities of -1 and 1 are k and l respectively. Then we get, $\text{trace}(\phi) = l - k$. Hence, if
(trace(\(\phi\)))^2 = (n - 1)$, then either \(l = 0\) or \(k = 0\). Then the structure is called a trivial \(LP\)-Sasakian structure. Throughout this article we presume that \(\text{trace}(\phi) \neq 0\), i.e., \(\xi\) is not harmonic.

Let us presume that \(\{e_i\}\) be an orthonormal basis such that \(e_1 = \xi\). Then the well-known Ricci tensor \(S\) and the scalar curvature \(r\) are defined by

\[
S(E, F) = \sum_{i=1}^{n} e_i g(R(e_i, E), e_i)
\]

and

\[
r = \sum_{i=1}^{n} e_i S(e_i, e_i),
\]

where we put \(e_i = g(e_i, \xi)\), that is, \(e_1 = -1, e_2 = \cdots = e_n = 1\).

Also in an \(LP\)-Sasakian manifold \(M^n\), the subsequent relations hold ([1], [7], [10]):

\[
\eta(R(E, F)Z) = g(F, Z)\eta(E) - g(E, Z)\eta(F),
\]

\[
R(E, F)\xi = \eta(F)E - \eta(E)F,
\]

\[
R(\xi, E)F = g(E, F)\xi - \eta(F)E,
\]

\[
S(E, \xi) = (n - 1)\eta(E),
\]

\[
\nabla_\xi \eta = 0,
\]

for any vector fields \(E, F, Z\) where \(R\) is the Riemannian curvature tensor, \(S\) is the Ricci tensor and \(\nabla\) is the Levi-Civita connection associated to the metric \(g\).

It is well-known that a 3-dimensional Riemannian manifold \(M\) assumes the following curvature form

\[
R(E, F)Z = g(F, Z)QE - g(E, Z)QF + S(F, Z)E - S(E, Z)F - \frac{r}{2} [g(F, Z)E - g(E, Z)F],
\]

for any vector fields \(E, F, Z\) where \(Q\) is the Ricci operator, i.e., \(g(QE, F) = S(E, F)\) and \(r\) is the scalar curvature of the manifold. Replacing \(F = Z = \xi\) in the previous equation and utilizing (11) and (13) we get (see [10])

\[
QE = \frac{1}{2} [(r - 2)E + (r - 6)\eta(E)\xi].
\]

In view of (16) the Ricci tensor is written as

\[
S(E, F) = \frac{1}{2} [(r - 2)g(E, F) + (r - 6)\eta(E)\eta(F)].
\]

Using (17) and (16) in (15), we deduce

\[
R(E, F)Z = \frac{(r - 4)}{2} [g(F, Z)E - g(E, Z)F] + \frac{(r - 6)}{2} [g(F, Z)\eta(E)\xi - g(E, Z)\eta(F)\xi + \eta(F)\eta(Z)E - \eta(E)\eta(Z)F].
\]

We first prove the following Lemma:
Lemma 2.1. Let \(M^3 \) be a LP-Sasakian manifold. Then we have
\[
\xi r = -2(r - 6)\text{trace}(\phi).
\]

Proof. The equation (16) can be rewritten as:
\[
QF = \frac{1}{2}[r - 2F + (r - 6)\eta(F)\xi].
\]
Taking covariant derivative along \(E \) and recalling (9) we write
\[
(V_Q E)F = \frac{(Er)F}{2} + \frac{(Er)}{2} \eta(F)\xi + \frac{(r - 6)}{2} g(E, \phi F)\xi
+ \frac{(r - 6)}{2} \eta(F)\phi E.
\]
Taking inner product operation with respect to \(Z \) in the foregoing equation, we obtain
\[
g((V_Q E)F, Z) = \frac{(Er)F}{2} g(F, Z) + \frac{(Er)F}{2} \eta(F)\eta(Z) + \frac{(r - 6)}{2} g(E, \phi F)\eta(Z)
+ \frac{(r - 6)}{2} \eta(F)g(\phi E, Z).
\]
Putting \(E = Z = e_i \) (where \(\{e_i\} \) is an orthonormal basis for the tangent space of \(M^3 \) and taking \(\sum_i i, 1 \leq i \leq 3 \)) in the above equation and utilizing the formula of Riemannian manifolds \(\text{div} Q = \frac{1}{2}\text{grad} r \), we obtain
\[
(\xi r)\eta(F) = -2(r - 6)\eta(F)\text{trace}(\phi).
\]
Substituting \(F = \xi \) in the above equation we get the desired result. This finishes the proof. \(\square \)

If an LP-Sasakian manifold \(M^3 \) is a space of constant curvature, then the manifold is said to be a space form.

Lemma 2.2. (Lemma 1.1 of [10]) A 3-dimensional LP-Sasakian manifold is a space form if and only if the scalar curvature \(r \) is 6.

Lemma 2.3. (Lemma 3.8 of [4]) For any vector fields \(E, F \) on \(M^3 \), for a gradient ARS \((M, g, \gamma, m, \lambda) \), we have
\[
R(E, F)D\gamma = (V_Q E)E - (V_Q E)F
+ \{F(2\lambda + \Delta)E - E(2\lambda + \Delta)E\},
\]

where \(\Delta \gamma = \text{div} D\gamma \), \(\Delta \) is the Laplacian operator.

3. ARS on 3-dimensional LP-Sasakian manifolds

We consider a 3-dimensional para-Sasakian manifold \(M \) admitting an ARS defined by (1). Using Kulkarni-Nomizu product in (1) we write
\[
2R(E, F, W, X) + 2\lambda(g(E, X)g(F, W) - g(E, W)g(F, X))
+ \{g(E, X)(E_M g)(F, W) + g(F, W)(E_M g)(E, X)
- g(E, W)(E_M g)(F, X) - g(F, X)(E_M g)(E, W)\} = 0.
\]
Contracting (25) over \(E \) and \(X \), we get
\[
(E_M g)(F, W) + 2S(F, W) + (4\lambda + 2\text{div}Z)g(F, W) = 0.
\]
Utilizing (17) in the above equation we obtain
\[
(E_M g)(F, W) = -(r - 2 + 4\lambda + 2\text{div}Z)g(F, W)
- (r - 6)\eta(F)\eta(W) = 0.
\]
Applying Z has constant divergence and executing covariant derivative along E, we lead

\[
(V_EZg)(F, W) = -[(Er) + 4(E\lambda)]g(F, W) - (Er)\eta(F)\eta(W) - (r - 6)[g(\phi E, F)\eta(W) + g(\phi E, W)\eta(F)] = 0. \tag{28}
\]

Now we recall the formula by Yano (see, [16]):

\[
(E_ZV g - V_EZg - V(Z,E)g)(F, W) = -g((E_ZV)(E, F), W) - g((E_ZV)(E, W), F).
\]

Hence by a straightforward calculation, we infer

\[
(V_EZg)(F, W) = g((E_ZV)(E, F), W) + g((E_ZV)(E, W), F). \tag{29}
\]

Using symmetric property of $E_i\nabla$, it reveals from (29) that

\[
g((E_ZV)(E, F), W) = \frac{1}{2}(V_EZg)(F, W) + \frac{1}{2}(V_EZg)(E, W) - \frac{1}{2}(V_WZg)(E, F). \tag{30}
\]

Utilizing (28) in (30) we obtain

\[
2g((E_ZV)(E, F), W) = -[(Er) + 4(E\lambda)]g(F, W) - (Er)\eta(F)\eta(W) - (r - 6)[g(\phi E, F)\eta(W) + g(\phi E, W)\eta(F)] - [(Fr) + 4(F\lambda)]g(E, W) - (Fr)\eta(E)\eta(W) - (r - 6)[g(\phi F, E)\eta(W) + g(\phi F, W)\eta(E)] + [(Wr) + 4(W\lambda)]g(E, F) + (W\eta)(E)\eta(F) - (r - 6)[g(\phi W, E)\eta(F) + g(\phi W, F)\eta(E)]. \tag{31}
\]

After substituting $E = F = e_i$ in the foregoing equation and removing Z from both sides, where $\{e_i\}$ is an orthonormal basis of the tangent space at each point of the manifold and taking $\sum_i 1 \leq i \leq 3$, we have

\[
(E_ZV)(e_i, e_i) = 2D\lambda - (\xi r)\xi - 2(r - 6)\text{trace}(\phi)\xi, \tag{32}
\]

where $E\xi = g(D\xi, E)$, D denotes the gradient operator with respect to g. Now differentiating (1) and utilizing it in (29) we can easily determine

\[
g((E_ZV)(E, F), W) = (V_WS)(E, F) - (V_ES)(F, W) - (V_FS)(E, W). \tag{33}
\]

Taking $E = F = e_i$ (where $\{e_i\}$ is an orthonormal frame) in (33) and summing over i we obtain

\[
(E_ZV)(e_i, e_i) = 0, \tag{34}
\]

for all vector fields Z. Combining (32) and (34) gives

\[
-2D\lambda + (\xi r)\xi + 2(r - 6)\text{trace}(\phi)\xi = 0. \tag{35}
\]

Utilizing (19) in the previous equation, we get

\[
D\lambda = 0. \tag{36}
\]

This implies that λ is constant. This leads to the following theorem:

Theorem 3.1. If the soliton vector Z has constant divergence in a LP-Sasakian manifold M^3, then an ARS reduces to a Riemann soliton.
Now let the potential vector field Z be point-wise collinear with the characteristic vector field ξ (i.e., $Z = b \xi$, where b is a function on M^3) and has constant divergence. Therefore from (26) we lead

\[g(\nabla_{\xi} b \xi, F) + g(\nabla_{b} \xi, E) + 2S(E, F) + 4\lambda g(E, F) = 0. \] (37)

Using (9) in (37), we get

\[(Eb)\eta(F) + (Fb)\eta(E) + 2S(E, F) + (4\lambda + 2\text{div}Z)g(E, F) = 0. \] (38)

Putting $F = \xi$ in (38) yields

\[-(Eb)\eta(E) + 4\eta(E) + (4\lambda + 2\text{div}Z)\eta(E) = 0. \] (39)

Putting $E = \xi$ in (39) we have

\[(\xi b) = (2\lambda + \text{div}Z - 2). \] (40)

Putting the value of ξb in (39) gives

\[db = -(6\lambda + 3\text{div}Z + 2)\eta. \] (41)

Operating (41) by d and utilizing Poincare lemma $d^2 \equiv 0$, we infer

\[0 = d^2 b = -(6\lambda + 3\text{div}Z + 2)d\eta - 6d\lambda\eta. \] (42)

Executing wedge product of (42) with η, we have

\[-(6\lambda + 3\text{div}Z + 2)\eta \land d\eta = 0. \] (43)

Since $\eta \land d\eta \neq 0$ in a LP-Sasakian manifold M^3, therefore

\[\lambda = -(\frac{1}{2}\text{div}Z + \frac{1}{3}). \] (44)

Using (44) in (41) gives $db = 0$ i.e., $b =$constant. Also from (32) we obtain

\[\lambda = -(\frac{1}{2}\text{div}Z + \frac{1}{3}) = \text{constant}. \] (45)

Hence we write the following:

Theorem 3.2. If the metric of a LP-Sasakian manifold M^3 is ARS and Z is pointwise collinear with ξ and has constant divergence, then Z is a constant multiple of ξ and the ARS reduces to a Riemann soliton.

Corollary 3.3. If a LP-Sasakian manifold M^3 admits an ARS of type (g, ξ), then the ARS reduces to a Riemann soliton.

4. Gradient Almost Riemann soliton

This section is devoted to investigate a LP-Sasakian manifold M^3 admitting gradient ARS. Now before producing the detailed proof of our main theorems, we first write the following results without proof (Since the result can be obtained directly from (21)):

Lemma 4.1. For a LP-Sasakian manifold M^3, we have

\[(\nabla_{E}Q)\xi = -(\frac{r}{2} - 3)\phi E, (\nabla_{E}Q)E = -2(r - 6)\text{trace}\phi[E + \eta(E)\xi]. \] (46)
Replacing F by ξ in (24) and utilizing the foregoing Lemma, we obtain
\[
R(E, \xi)D\gamma = \left(\frac{r}{2} - 3\right)\phi E - 2(r - 6)\text{trace}\phi[E + \eta(E)\xi] + \xi[(2\lambda + \Delta\gamma)E - E(2\lambda + \Delta\gamma)\xi].
\]

Then using (8), we infer
\[
g(E, D\gamma + D(2\lambda + \Delta\gamma))\xi = \left(\frac{r}{2} - 3\right)\phi E - 2(r - 6)\text{trace}\phi[E + \eta(E)\xi] + \xi[(\xi\gamma) + \xi(2\lambda + \Delta\gamma)]E.
\]

Executing the inner product of the previous equation with ξ gives
\[
E(\gamma + (2\lambda + \Delta\gamma)) = [(\xi\gamma) + \xi(2\lambda + \Delta\gamma)]\eta(E),
\]
from which easily we obtain
\[
d(\gamma + (2\lambda + \Delta\gamma)) = [(\xi\gamma) + \xi(2\lambda + \Delta\gamma)]\eta,
\]
where d indicates the exterior derivative. From the previous equation we see that $\gamma + (2\lambda + \Delta\gamma)$ is invariant along the distribution \mathcal{D}. In other terms, $E(\gamma + (2\lambda + \Delta\gamma)) = 0$ for any $E \in \mathcal{D}$. Using (49) in (48), we lead
\[
[(\xi\gamma) + \xi(2\lambda + \Delta\gamma)][\eta(E)\xi - E] = \left(\frac{r}{2} - 3\right)\phi E - 2(r - 6)\text{trace}\phi[E + \eta(E)\xi].
\]

Contracting the above equation yields
\[
[(\xi\gamma) + \xi(2\lambda + \Delta\gamma)] = 0.
\]
Utilizing (52) in (51), we get
\[
(r - 6)(\phi E - 4\text{trace}\phi[E + \eta(E)\xi)] = 0.
\]
If $[\phi E - 4\text{trace}\phi[E + \eta(E)\xi]] = 0$, operating ϕ we can easily obtain $\phi^2 E = 4\text{trace}\phi(\phi E)$, which is obviously a contradiction. Thus we have $r = 6$. Hence by Lemma 2.2, the manifold is a space form.

Hence we write the following:

Theorem 4.2. If a LP-Sasakian manifold M^3 admits a gradient ARS, then the manifold is a space form.

5. Example

Here we consider a known example of our paper [3]. In this article, we considers a 3-dimensional manifold $\mathcal{M} = \{(u, v, w) \in \mathbb{R}^3, w \neq 0\}$ and The vector fields
\[
e_1 = e^v \frac{\partial}{\partial v}, \quad e_2 = e^v(\frac{\partial}{\partial u} + \frac{\partial}{\partial v}), \quad e_3 = \frac{\partial}{\partial w}
\]
are linearly independent at each point of \mathcal{M} and shows that the manifold is a LP-Sasakian manifold. Further, the well-known Koszul’s formula gives
\[
\nabla_{\delta_1} \delta_1 = -\delta_3, \quad \nabla_{\delta_1} \delta_2 = 0, \quad \nabla_{\delta_1} \delta_3 = -\delta_1,
\]
\[
\nabla_{\delta_2} \delta_1 = 0, \quad \nabla_{\delta_2} \delta_2 = -\delta_3, \quad \nabla_{\delta_2} \delta_3 = -\delta_2,
\]
\[
\nabla_{\delta_3} \delta_1 = 0, \quad \nabla_{\delta_3} \delta_2 = 0, \quad \nabla_{\delta_3} \delta_3 = 0.
\]
Also, we have obtained the expressions of the curvature tensor and the Ricci tensor, respectively, as follows:
Using (54) we get

\[R(\delta_1, \delta_2)\delta_3 = 0, \quad R(\delta_2, \delta_3)\delta_3 = -\delta_2, \quad R(\delta_1, \delta_3)\delta_3 = -\delta_1, \]
\[R(\delta_1, \delta_2)\delta_2 = \delta_1, \quad R(\delta_2, \delta_3)\delta_2 = -\delta_3, \quad R(\delta_1, \delta_3)\delta_2 = 0, \]
\[R(\delta_1, \delta_2)\delta_1 = -\delta_2, \quad R(\delta_2, \delta_3)\delta_1 = 0, \quad R(\delta_1, \delta_3)\delta_1 = -\delta_3, \]

and

\[
S(\delta_1, \delta_1) = g(R(\delta_1, \delta_2)\delta_2, \delta_1) - g(R(\delta_1, \delta_3)\delta_3, \delta_1) = 2.
\]

Similarly we have

\[S(\delta_2, \delta_2) = 2, \quad S(\delta_3, \delta_3) = -2 \]

and

\[S(\delta_i, \delta_j) = 0 (i \neq j). \]

Therefore,

\[r = S(\delta_1, \delta_1) + S(\delta_2, \delta_2) - S(\delta_3, \delta_3) = 6. \]

From the expressions of the Ricci tensor, we find that \(M \) is an Einstein manifold.

Suppose \(f: M^3 \to \mathbb{R} \) be a smooth function such that \(f = w \). Then we can obtain

\[Df = \frac{\partial}{\partial w} = \delta_3. \]

Using (54) we get

\[\text{Hess} f(\delta_1, \delta_1) = 0. \]

Thus from (2) we can easily see that \(g \) is a gradient Riemann soliton with \(f = w \) and \(\lambda = -1 \). Hence the Theorem 4.2. is verified.

References

[1] Aqeeq, A. A., De, U. C., Ghosh, G. C., On Lorentzian para-Sasakian manifolds, Kuwait J. Sci. Eng., 31(2)(2004), 1-13.
[2] Besse, A., Einstein Manifolds, Springer, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8.
[3] De, K., D-Homothetic deformation of LP-Sasakian manifolds, novi sad J.Math, 45 (2015), 113-123.
[4] Devaraja, M.N., Kumara, H.A. and Venkatesha, V., Riemann soliton within the framework of contact geometry, Quaestiones Mathematicae, (2020) DOI:10.2989/16073606.2020.1732395
[5] Hamilton, R. S., The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237-261.
[6] Hirica, I.E. and Udriste, C., Ricci and Riemann solitons, Balkan J. Geom. Applications. 21(2) (2016), 35-44.
[7] Matsumoto, K., On Lorentzian paracontact manifolds, Bull. of Yamagata Univ., Nat. Sci., 12(1989), 151-156.
[8] Matsumoto, K., Mihai, I., On a certain transformation in a Lorentzian Para-Sasakian Manifold, Tensor N. S., 47(1988), 189-197.
[9] Mihai, I., Rosca, R., On Lorentzian P-Sasakian Manifolds, Classical Analysis, World Scientific Publ., Singapore, 1992, 155-169.
[10] Shaikh, A. A., De, U. C., On 3-dimensional LP-Sasakian Manifolds, Soochow J. of Math., 26(4)(2000), 359-368.
[11] Sharma, R., Almost Ricci solitons and K-contact geometry, Monatsh Math. 175 (2014), 621–628.
[12] Sharma, R., Some results on almost Ricci solitons and geodesic vector fields, Beitr. Algebra Geom. 59 (2018), 289–294.
[13] Stepanov, S.E. and Tsyganok, I.I., The theory of infinitesimal harmonic transformations and its applications to the global geometry of Riemann solitons, Balk. J.Geom. Appl. 24 (2019), 113-121.
[14] Udriste, C., Riemann flow and Riemann wave, Ann. Univ. Vest, Timisoara. Ser.Mat.-Inf. 48 (2010), 265-274.
[15] Udriste, C., Riemann flow and Riemann wave via bialternate product Riemannian metric, preprint, arXiv.org/math.DG/1112.4279v4 (2012).
[16] Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.