KOLMOGOROV COMPLEXITY
AS A HIDDEN FACTOR OF SCIENTIFIC DISCOURSE:
FROM NEWTON'S LAW TO DATA MINING

Yuri I. Manin

Max–Planck–Institut für Mathematik, Bonn, Germany,

Summary

The word ”complexity” is most often used as a meta–linguistic expression referring to certain intuitive characteristics of a natural system and/or its scientific description. These characteristics may include: sheer amount of data that must be taken into account; visible “chaotic” character of these data and/or space distribution/time evolution of a system etc.

This talk is centered around the precise mathematical notion of ”Kolmogorov complexity”, originated in the early theoretical computer science and measuring the degree to which an available information can be compressed.

In the first part, I will argue that a characteristic feature of basic scientific theories, from Ptolemy’s epicycles to the Standard Model of elementary particles, is their splitting into two very distinct parts: the part of relatively small Kolmogorov complexity (“laws”, ”basic equations”, ”periodic table”, ”natural selection, genotypes, mutations”) and another part, of indefinitely large Kolmogorov complexity (“initial and boundary conditions”, ”phenotypes”, “populations”). The data constituting this latter part are obtained by planned observations, focussed experiments, and afterwards collected in growing databases (formerly known as ”books”, ”tables”, ”encyclopaedias” etc). In this discussion Kolomogorov complexity plays a role of the central metaphor.

The second part and Appendix 1 are dedicated to more precise definitions and examples of complexity.

Finally, the last part briefly touches upon attempts to deal directly with Kolmogorov complex massifs of data and the “End of Science” prophecies.

1Talk at the Plenary Session of the Pontifical Academy of Sciences on “Complexity and Analogy in Science: Theoretical, Methodological and Epistemological Aspects”, Casina Pio IV, November 5–7, 2012.
1. Bi–partite structure of scientific theories

In this section, I will understand the notion of “compression of information” intuitively and illustrate its pervasive character with several examples from the history of science.

Planetary movements. Firstly, I will briefly remind the structure of several models of planetary motions in the chronological order of their development.

After the discovery that among the stars observable by naked eye on a night sky there exist several exceptional ”moving stars” (planets), there were proposed several successful models of their movement that allowed predict the future positions of the moving stars.

The simplest of them placed all fixed stars on one celestial sphere that rotated around the earth in a way reflecting nightly and annual visible motions. The planets, according to Apollonius of Perga (3rd century B. C.), Hipparchus of Rhodes, and Ptolemy of Alexandria (2nd century A. D.), were moving in a more complicated way: along circular “epicycles” whose centers moved along another system of circles, “eccentrics” around Earth. Data about radii of eccentrics and epicycles and the speed of movements were extracted from observations of the visible movements, and the whole model was then used in order to predict the future positions at any given moment of observation.

As D. Park remarks ([Pa], p. 72), “... in the midst of all this empiricism sat the ghost of Plato, legislating that the curves drawn must be circles and nothing else, and that the planets and the various connectiong points must move along them uniformly and in no other way.”

Since in reality observable movements of planets involved accelerations, backward movements, etc., two circles in place of one for each planet at least temporarily saved face of philosophy. Paradoxically, however, much later and much more developed mathematics of modernity returned to the image of “epicycles”, that could since then form an arbitrarily high hierarchy: the idea of Fourier series and, later, Fourier integral transformation does exactly that!

It is well known, at least in general outline, how Copernicus replaced these geocentric models by a heliocentric one, and how with the advent of Newton’s

\[
\text{gravity law } F = G \frac{m_1 m_2}{r^2}, \quad \text{dynamic law } F = ma,
\]
and the resulting solution of the “two–body problem”, planets “started moving” along ellipsoidal orbits (with Sun as one focus rather than center). It is less well known to the general public that this approximation as well is valid only insofar as we can consider negligible the gravitational forces with which the planets interact among themselves.

If we intend to obtain a more precise picture, we have to consider the system of differential equations defining the set of curves parametrized by time t in the $6n$–dimensional phase space where n is the number of planets (including Sun) taken in consideration:

$$\frac{d^2q_i}{dt^2} = \sum_{i=1}^{n} \frac{m_i m_j ((q_i - q_j)}{|q_i - q_j|^3$$

Both Newton laws are encoded in this system.

The choice of one curve, corresponding to the evolution of our Solar system, is made when we input initial conditions $q_i(0), \frac{dq_i}{dt}(0)$ at certain moment of time $t = 0$; they are supplied, with a certain precision, by observations.

At this level, a new complication emerges. Generic solutions of this system of equations, in the case of three and more bodies, cannot be expressed by any simple formulas (unlike the equations themselves). Moreover, even qualitative behavior of solutions depends in extremely sensitive way on the initial conditions: very close initial positions/velocities may produce widely divergent trajectories. Thus, the question whether our Solar system will persist for the next, say, 10^8 years (even without disastrous external interventions) cannot be solved unless we know its current parameters (masses of planets, positions of their centers of mass, and speeds) with unachievable precision. This holds even without appealing to much more precise Einstein’s description of gravity, or without taking in account comets, asteroid belts and Moons of the Solar system (the secondary planets turning around planets themselves).

It goes without saying that a similarly detailed description of, say, our Galaxy, taking in account movements of all individual celestial bodies, constituting it, is unachievable from the start, because of sheer amount of these bodies. Hence, to understand its general space–time structure, we must first construct models involving averaging on a very large scale. And of course, the model of space–time itself, now involving Einstein’s equations, will describe an “averaged” space–time.
Information compression: first summary. In this brief summary of consecutive scientific models, one can already see the following persisting pattern: the subdivision into a highly compressed part (“laws”) and potentially indefinitely complex part. The first part in our brief survey was represented by formulas that literally became cultural symbols of Western civilization: Newton’s laws, that were followed by Einstein’s $E = mc^2$ and Heisenberg’s $pq - qp = \frac{h}{2\pi i}$. The second part is kinematically represented by “initial” or “boundary” conditions, and dynamically by a potentially unstable character of dependence of the data we are interested in from these initial/boundary conditions.

More precisely, a mathematical description of the “scene” upon which develops kinematics and dynamics in these models is also represented by highly compressed mathematical images, only this time of geometric nature. Thus, the postulate that kinematics of a single massive point is represented by its position in an ideal Euclidean space represents one of the ”laws” as well. To describe kinematics, one should amplify this “configuration space” and replace it by the “phase space” parametrizing positions and velocities, or, better, momenta. For one massive point it is a space of dimension six: this is the answer of mathematics to Zeno’s “Achilles and the Turtle” paradox. For a planet system consisting of n planets (including Sun) the phase space has dimension $6n$.

For Einstein’s equations of gravitation, the relevant picture is much more complicated: it involves configuration and phase spaces that have infinite dimension, and require quite a fair amount of mathematics for their exact description. Nevertheless, this part of our models is still clearly separated from the one that we refer to as the part of infinite Kolmogorov complexity, because mathematics developed a concise language for description of geometry.

One more lesson of our analysis is this: “laws” can be discovered and efficiently used only if and when we restrict our attention to definite domains, space–time scales, and kinds of matter and interactions. For example, there was no place for chemistry in the pictures above.

From macroworld to microworld: the Standard Model of elementary particles and interactions. From astronomy, we pass now to the deepest known level of microworld: theory of elementary particles and their interactions.

I will say a few words about the so called Standard Model of the elementary particles and their interactions, that took its initial form in the 1970’s as a theo-
retical construction in the framework of the Quantum Field Theory. The Standard Model got its first important experimental correlates with the discovery of quarks (components of nuclear “elementary” particles) and W and Z bosons, quanta of interactions. For a very rich and complex history of this stage of theoretical physics, stressing the role of experiments and experimenters, see the fascinating account [Zi] by Antonio Zichichi. The Standard Model recently reappeared on the first pages of the world press thanks to the renewed hopes that the last critically missing component of the Model, the Higgs boson, has finally been observed.

Somewhat paradoxically, one can say that mathematics of the Standard Model is firmly based on the same ancient archetypes of the human thought as that of Hipparchus and Ptolemy: symmetry and uniform movement along circles.

More precisely, the basic idea of symmetry of modern classical (as opposed to quantum) non–relativistic physics involves the symmetry group of rigid movements of the three–dimensional Euclidean space, that is combinations of parallel shifts and rotations around a point. The group of rotations is denoted $SO(3)$, and celestial spheres are the unique objects invariant with respect to rotations. Passing from Hipparchus and Ptolemy to modernity includes two decisive steps: adding shifts (Earth, and then Sun, cease being centers of the Universe), and, crucially, understanding the new meta–law of physics: symmetry must govern laws of physics themselves rather than objects/processes etc that these laws are supposed to govern (such as Solar System).

When we pass now to the quantum mechanics, and further to the Quantum Field Theory (not involving gravitation), the group of $SO(3)$ (together with shifts) should be extended, in particular, by several copies of such groups as $SU(2)$ and $SU(3)$ describing rotations in the internal degrees of freedom of elementary particles, such as spin, colour etc. The basic ”law” that should be invariant with respect to this big group, is encoded in the Lagrangian density: it is a “mathematical formula” that is considerably longer than everything we get exposed to in our high school and even college courses: cf. Appendix 2.

Finally, the Ptolemy celestial movements, superpositions of rotations of rigid spheres, now transcends our space–time and happens in the infinite–dimensional Hilbert space of wave–functions: this is the image describing, say, a hydrogen atom in the paradigm of the first decades of the XXth century.

Information compression: second summary. I will use the examples above in order to justify the following viewpoint.
Scientific laws (at least those that are expressed by mathematical constructions) can be considered as programs for computation, whereas observations produce inputs to these programs.

Outputs of these computations serve first to check/establish a domain of applicability of our theories. We compare the predicted behavior of a system with observed one, we are happy when our predictions agree quantitatively and/or qualitatively with observable behaviour, we fix the border signs signalling that at this point we went too far.

Afterwards, the outputs are used for practical/theoretical purposes, e. g. in engineering, weather predictions etc, but also to formulate the new challenges arising before the scientific thinking.

This comparison of scientific laws with programs is, of course, only a metaphor, but it will allow us to construct also a precise model of the kind of complexity, inherently associated with this metaphor of science: Kolmogorov complexity.

The next section is dedicated to the sketch of this notion in the framework of mathematics, again in its historical perspective.

2. Integers and their Kolmogorov complexity

Positional notations as programs. In this section, I will explain that the well known to the general public decimal notations of natural numbers are themselves programs.

What are they supposed to calculate?

Well, the actual numbers that are encoded by this notation, and are more adequately represented by, say, rows of strokes:

7 : ||||, 13 : ||||||, ..., 1984 : ||||...|||

Of course, in the last example it is unrealistic even to expect that if I type here 1984 strokes, an unsophisticated reader will be able to check that I am not mistaken. There will be simply too much strokes to count, whereas the notation-program “1984” contains only four signs chosen from the alphabet of ten signs. One can save on the size of alphabet, passing to the binary notation, then “1984” will be replaced by a longer program “11111000000”. However, comparing the length of the program with the “size” of the number, i. e. the respective number of strokes, we see that decimal/binary notation gives an immense economy: the program length
is approximately the logarithm of the number of strokes (in the base 10 or 2 respectively).

More generally, we can speak about “size”, or “volume” of any finite text based upon a fixed finite alphabet.

The discovery of this logarithmic upper bound of the Kolmogorov complexity of numbers was a leap in the development of humanity on the scale of civilizations.

However, if one makes some slight additional conventions in the system of notation, it will turn out that some integers admit a much shorter notation. For example, let us allow ourselves to use the vertical dimension and write, e.g. $10^{10^{10}}$.

The logarithm of the last number is about 10^{10}, much larger than the length of the notation for which we used only 6 signs! And if we are unhappy about non-linear notation, we may add to the basic alphabet two brackets (,) and postulate that $a(b)$ means a^b. Then $10^{10^{10}}$ will be linearly written as 10(10(10)) using only 10 signs, still much less than $10^{10} + 1$ decimal digits (of course, 10^{10} of them will be just zeroes).

Then, perhaps, all integers can be produced by notation/programs that are much shorter than logarithm of their size?

No! It turns out that absolute majority of numbers (or texts) cannot be significantly compressed, although an infinity of integers can be written in a much shorter way than it can be done in any chosen system of positional notation.

If we leave the domain of integers and leap, to, say, such a number as $\pi = 3,1415926..., it looks as if it had infinite complexity. However, this is not so. There exists a program that can take as input the (variable) place of a decimal digit (an integer) and give as output the respective digit. Such a program is itself a text in a chosen algorithmic language, and as such, it also has a complexity: its own Kolmogorov complexity. One agrees that this is the complexity of π.

A reader should be aware that I have left many subtle points of the definition of Kolmogorov complexity in shadow, in particular, the fact that its dependence of the chosen system of encoding and computation model can change it only by a bounded quantity etc. A reader who would like to see some more mathematics about this matter is referred to the brief Appendix 1 and the relevant references.

Here I will mention two other remarkable facts related to the Kolmogorov complexity of numbers: one regarding its unexpected relation to the idea of randomness,
and another one showing that some psychological data make explicit the role of this complexity in the cognitive activity of our mind.

Complexity and randomness. Consider arbitrarily long finite sequences of zeroes and ones, say, starting with one so that each such sequence could be interpreted as a binary notation of an integer.

There is an intuitive notion of “randomness” of such a sequence. In the contemporary technology “random” sequences of digits and similar random objects are used for encoding information, in order to make it inaccessible for third parties. In fact, a small distributed industry producing such random sequences (and, say, random big primes) has been created. A standard way to produce random objects is to leave mathematics and to recur to physics: from throwing a piece to registering white noise.

One remarkable property of Kolmogorov complexity is this: *those sequences of digits whose Kolmogorov complexity is approximately the same as their length, are random in any meaningful sense of the word.* In particular, they cannot be generated by a program essentially shorter than the sequence itself.

Complexity and human mind. In the history of humanity, discovery of laws of classical and quantum physics that represent incredible compression of complex information, stresses the role of Kolmogorov complexity, at least as a relevant metaphor for understanding the laws of cognition.

In his very informative book [De], Stanislas Dehaene considers certain experimental results about the statistics of appearance numerals and other names of numbers. cf. especially pp. 110 – 115, subsection “Why are some numerals more frequent than others?”.

As mathematicians, let us consider the following abstract question: can one say anything non-obvious about possible probabilities distributions on the set of all natural numbers? More precisely, one such distribution is a sequence of non-negative real numbers $p_n, n = 1, 2, \ldots$ such that $\sum_n p_n = 1$. Of course, from the last formula it follows that p_n must tend to zero, when n tends to infinity; moreover p_n cannot tend to zero too slowly: for example, $p_n = n^{-1}$ will not do. But two different distributions can be widely incomparable.

Remarkably, it turns out that if we restrict our class of distributions only to *computable from below* ones, that is, those in which p_n can be computed as a function of n (in a certain precise sense), then it turns out that there is a distinguished and
small subclass C of such distributions, that are in a sense maximal ones. Any member (p_n) of this class has the following unexpected property (see [Lev]):

the probability p_n of the number n, up to a bounded (from above and below) factor, equals the inverse of the exponentiated Kolmogorov complexity of n.

This statement needs additional qualifications: the most important one is that we need here not the original Kolmogorov complexity but the so called prefix-free version of it. We omit technical details, because they are not essential here. But the following properties of any distribution $(p_n) \in C$ are worth stressing in our context:

(i) Most of the numbers n, those that are Kolmogorov ”maximally complex”, appear with probability comparable with $n^{-1} (\log n)^{-1-\varepsilon}$, with a small ε: “most large numbers appear with frequency inverse to their size” (in fact, somewhat smaller one).

(ii) However, frequencies of those numbers that are Kolmogorov very simple, such as 10^3 (thousand), 10^6 (million), 10^9 (billion), produce sharp local peaks in the graph of (p_n).

The reader may compare these properties of the discussed class of distributions, which can be called a priori distributions, with the observed frequencies of numerals (number words) in printed and oral texts in various languages: cf. Dehaene, loc. cit., p. 111, Figure 4.4. To me, their qualitative agreement looks very convincing: brains and their societies do reproduce a priori probabilities.

Notice that those parts of the Dehaene and Mehler graphs in loc. cit. that refer to large numbers, are somewhat misleading: they might create an impression that frequencies of the numerals, say, between 10^6 and 10^9 smoothly interpolate between those of 10^6 and 10^9 themselves, whereas in fact they abruptly drop down.

Finally, I want to stress that the class of a priori probability distributions that we are considering here is qualitatively distinct from those that form now a common stock of sociological and sometimes scientific analysis: cf. a beautiful synopsis by Terence Tao in [Ta]. The appeal to the uncomputable degree of maximal compression is exactly what can make such a distribution an eye-opener. As I have written at the end of [Ma2]:

“One can argue that all cognitive activity of our civilization, based upon symbolic (in particular, mathematical) representations of reality, deals actually with the initial Kolmogorov segments of potentially infinite linguistic constructions, always replacing vast volumes of data by their compressed descriptions. This is especially visible in the outputs of the modern genome projects.
In this sense, such linguistic cognitive activity can be metaphorically compared to a gigantic precomputation process, shellsorting infinite worlds of expressions in their Kolmogorov order.”

3. New cognitive toolkits: WWW and databases

“The End of Theory”. In summer 2008, an issue of the “Wired Magazine” appeared. It’s cover story ran: “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete”.

The message of this essay, written by the Editor–in–Chief Chris Anderson, was summarized in the following words:

“The new availability of huge amounts of data, along with statistical tools to crunch these numbers, offers a whole new way of understanding the world. Correlation supersedes causation, and science can advance even without coherent models, unified theories, or really any mechanical explanation at all. There’s no reason to cling to our old ways. It’s time to ask: What can science learn from Google?”

I will return to this rhetoric question at the end of this talk. Right now I want only to stress that, as well as in the scientific models of the “bygone days”, basic theory is unavoidable in this brave new Petabyte World: encoding and decoding data, search algorithms, and of course, computers themselves are just engineering embodiment of some very basic and very abstract notions of mathematics. The mathematical idea underlying the structure of modern computers is the Turing machine (or one of several other equivalent formulations of the concepts of computability). We know that the universal Turing machine has a very small Kolmogorov complexity, and therefore, using the basic metaphor of this talk, we can say that the bipartite structure of the classical scientific theories is reproduced at this historical stage.

Moreover, what Chris Anderson calls “the new availability of huge amounts of data” by itself is not very new: after spreading of printing, astronomic observatories, scientific laboratories, and statistical studies, the amount of data available to any visitor of a big public library was always huge, and studies of correlations proliferated for at least the last two centuries.

Charles Darwin himself collected the database of his observations, and the result of his pondering over it was the theory of evolution.
A representative recent example is the book [FlFoHaSCH], sensibly reviewed in [Gr].

Even if the sheer volume of data has by now grown by several orders of magnitude, this is not the gist of Anderson’s rhetoric.

What Anderson actually wants to say is that human beings are now – happily! – free from thinking over these data. Allegedly, computers will take this burden upon themselves, and will provide us with correlations – replacing the old-fashioned “causations” (that I prefer to call scientific laws) – and expert guidance.

Leaving aside such questions as how “correlations” might possibly help us understand the structure of Universe or predict the Higgs boson, I would like to quote the precautionary tale from [Gr]:

“[...] in 2000 Peter C. Austin, a medical statistician at the University of Toronto, and his colleagues conducted a study of all 10,674,945 residents of Ontario aged between eighteen and one hundred. Residents were randomly assigned to different groups, in which they were classified according to their astrological signs. The research team then searched through more than two hundred of the most common diagnoses of hospitalization until they identified two where patients under one astrological sign had a significantly higher probability of hospitalization compared to those born under the remaining signs combined: Leos had a higher probability of gastrointestinal hemorrhage while Sagittarians had a higher probability of fracture of the upper arm compared to all other signs combined.

It is thus relatively easy to generate statistically significant but spurious correlations when examining a very large data set and a similarly large number of potential variables. Of course, there is no biological mechanism whereby Leos might be predisposed to intestinal bleeding or Sagittarians to bone fracture, but Austin notes, ‘It is tempting to construct biologically plausible reasons for observed subgroup effects after having observed them.’ Such an exercise is termed ‘data mining’, and Austin warns, ‘Our study therefore serves as a cautionary note regarding the interpretation of findings generated by data mining’ [...]”

Coda

What can science learn from Google:

“Think! Otherwise no Google will help you.”
References

[An] Ch. Anderson. The End of Theory. in: Wired, 17.06, 2008.

[ChCoMa] A. H. Chamseddine, A. Connes, M. Marcolli. Gravity and the standard model with neutrino mixing. Adv.Theor.Math.Phys. 11 (2007), 991-1089. arXiv:hep-th/0610241

[De] S. Dehaene. The Number Sense. How the Mind creates Mathematics. Oxford UP, 1997.

[FlFoHaSCH] R. Floud, R. W. Fogel, B. Harris, Sok Chul Hong. The Changing Body: Health, Nutrition and Human Development in the Western World Since 1700. Cambridge UP, 431 pp.

[Gr] J. Groopman. The Body and the Human Progress. In: NYRB, Oct. 27, 2011

[Lev] L. A. Levin, Various measures of complexity for finite objects (axiomatic description), Soviet Math. Dokl. Vol.17 (1976) N. 2, 522–526.

[Ma1] Yu. Manin. A Course of Mathematical Logic for Mathematicians. 2nd Edition, with new Chapters written by Yu. Manin and B. Zilber. Springer, 2010.

[Ma2] Yu. Manin. Renormalization and Computation II: Time Cut-off and the Halting Problem. In: Math. Struct. in Comp. Science, pp. 1–23, 2012, Cambridge UP. Preprint math.QA/0908.3430

[Pa] D. Park. The How and the Why. An Essay on the Origins and Development of Physical Theory. Princeton UP, 1988.

[Ta] T. Tao. E pluribus unum: From Complexity, Universality. Daedalus, Journ. of the AAAS, Summer 2012, 23–34.

[Zi] A. Zichichi. Subnuclear Physics. The first 50 years: Highlights from Erice to ELN. World Scientific, 1999.
APPENDIX 1. A brief guide to computability

This appendix contains a sketch of the mathematical computability theory, or theory of algorithmic computations, as it was born in the first half of the XXth century in the work of such thinkers as Alonso Church, Alan Turing and Andrei Kolmogorov. We are not concerned here with its applied aspects studied under the general heading of “Computer Science”.

This theory taught us two striking lessons.

First, that there is a unique universal notion of computability in the sense that all seemingly very different versions of it turned out to be equivalent. We will sketch here the form that is called the theory of (partial) recursive functions.

Second, that this theory sets its own limits and unavoidably leads to confrontation with uncomputable problems.

Both discoveries led to very interesting research aiming to the extension of this territory of classical computability such as basics of theory of quantum computing etc. But we are not concerned with this development here.

Three descriptions of partial recursive functions. The subject of the theory of recursive functions is a set of functions whose domain and values are vectors of natural numbers of arbitrary fixed lengths: \(f : \mathbb{Z}_+^m \rightarrow \mathbb{Z}_+^n \).

An important qualification: a “function”, say, \(f : X \rightarrow Y \), below always means a pair \((f, D(f)) \), where \(D(f) \subset X \) and \(f \) is a map of sets \(D(f) \rightarrow Y \). The definition of the domain \(D(f) \) is not always mentioned explicitly. If \(D(f) = X \), the function might be called “total”, generally it may be called “partial” one.

(i) Intuitive description. A function \(f : \mathbb{Z}_+^m \rightarrow \mathbb{Z}_+^n \) is called (partial) recursive if it is “semi–computable” in the following sense:

there exists an algorithm \(F \) accepting as inputs vectors \(x = (x_1, \ldots, x_m) \in \mathbb{Z}_+^m \)

with the following properties:

– if \(x \in D(f) \), \(F \) produces as output \(f(x) \).
– if \(x \notin D(f) \), \(F \) either produces answer “NO”, or works indefinitely long without producing any output.

(ii) Formal description (sketch). It starts with two lists:

– An explicit list of “obviously” semi–computable basic functions such as constant functions, projections onto \(i \)-th coordinate etc.
– An explicit list of elementary operations, such as an inductive definition, that can be applied to several semi–computable functions and “obviously” produces from them a new semi–computable function.

The key elementary operation involves finding the least root of equation \(f(x) = y \) (if it exists) where \(f \) is already defined function. It is this operation that involves search and makes introduction of partial functions inevitable.

– After that, the set of partial recursive functions is defined as the minimal set of functions containing all basic functions and closed wrt all elementary operations.

(iii) Diophantine description (A DIFFICULT THEOREM). A function \(f : \mathbb{Z}_+^m \to \mathbb{Z}_+^n \) is partial recursive iff there is a polynomial

\[
P(x_1, \ldots, x_m; y_1, \ldots, y_n; t_1, \ldots, t_q) \in \mathbb{Z}[x, y, t]
\]

such that the graph

\[
\Gamma_f := \{(x, f(x))\} \subset \mathbb{Z}_+^m \times \mathbb{Z}_+^n
\]

is the projection of the subset \(P = 0 \) in \(\mathbb{Z}_+^m \times \mathbb{Z}_+^n \times \mathbb{Z}_+^q \).

Constructive worlds. An (infinite) constructive world is a countable set \(X \) (usually of some finite Bourbaki structures) given together with a class of structural numberings: intuitively computable bijections \(\nu : \mathbb{Z}_+ \to X \) which form a principal homogeneous space over the group of recursive permutations of \(\mathbb{Z}_+ \). An element \(x \in X \) is called a constructive object.

Example: \(X = \) all finite words in a fixed finite alphabet \(A \).

Church’s thesis: Let \(X, Y \) be two constructive worlds, \(\nu_X : \mathbb{Z}_+ \to X \), \(\nu_Y : \mathbb{Z}_+ \to Y \) their structural numberings, and \(F \) an (intuitive) algorithm that takes as input an object \(x \in X \) and produces an object \(F(x) \in Y \) whenever \(x \) lies in the domain of definition of \(F \).

Then \(f := \nu_Y^{-1} \circ F \circ \nu_X : \mathbb{Z}_+ \to \mathbb{Z}_+ \) is a partial recursive function.

The status of Church’s thesis in mathematics is very unusual. It is not a theorem, since it involves an undefined notion of “intuitive computability”. It expresses the fact that several developed mathematical constructions whose explicit goal was to formalize this notion, led to provably equivalent results. But moreover, it expresses the belief that any new such attempt will inevitably produce again an equivalent notion. Briefly, Church’s thesis is “an experimental fact in the mental world”.

Exponential Kolmogorov complexity of constructive objects. Let X be a constructive world. For any (semi)–computable function $u : \mathbb{Z}_+ \to X$, the (exponential) complexity of an object $x \in X$ relative to u is

$$K_u(x) := \min \{ m \in \mathbb{Z}_+ \mid u(m) = x \}.$$

If such m does not exist, we put $K_u(x) = \infty$.

Claim: there exists such u (“an optimal Kolmogorov numbering”, or “decompressor”) that for each other v, some constant $c_{u,v} > 0$, and all $x \in X$, \[K_u(x) \leq c_{u,v} K_v(x). \]

This $K_u(x)$ is called exponential Kolmogorov complexity of x.

A Kolmogorov order on a constructive world X is a bijection $K = K_u : X \to \mathbb{Z}_+$ arranging elements of X in the increasing order of their complexities K_u.

The reader must keep in mind two warnings related to these notions:

– Any optimal numbering is only partial function, and its definition domain is not decidable.

– Kolmogorov complexity K_u itself is *not computable*. It is the lower bound of a sequence of computable functions. Kolmogorov order is not computable as well.

– Kolmogorov order of \mathbb{Z}_+ *cardinally differs from the natural order* in the following sense: it puts in the initial segments very large numbers that are at the same time Kolmogorov simple.

Example: let $a_n := n^n \ldots n$ (n times).

Then $K_u(a_n) \leq cn$ for some $c > 0$ and all $n > 0$.

Kolmogorov complexity of recursive functions. When we spoke about “complexity of π”, we had in mind a program that, given an input $n \in \mathbb{Z}_+$, calculates the n–th decimal digit of π. Such a program calculates therefore a recursive function. However, the set of all recursive functions $f : \mathbb{Z}_+^n \to \mathbb{Z}_+^n$ do not form a constructive world, if $m > 0$!

Nevertheless, one can speak about a Kolmogorov optimal enumeration of programs, computing functions of this set, and thus about Kolmogorov complexity
of such functions themselves. This is critically important for applicability of our “complexity metaphor” in the domain of scientific knowledge. In fact, both "laws" and descriptions of “phase spaces” that make the scene for these laws belong rather to domains of intuitively computable functions than to the domain of constructive objects.

Mathematical details of constructions, underlying brief explanations collected in this Appendix can be found in [Ma1], Chapter II.
APPENDIX 2. Lagrangian of the Standard Model

Source: [ChCoMa]

In flat space and in Lorentzian signature the Lagrangian of the standard model with neutrino mixing and Majorana mass terms, written using the Feynman gauge fixing, is of the form

$$ \mathcal{L}_{SM} = $$

$$ -\frac{1}{2} \partial_\nu g_\mu^a \partial_\nu g_\mu^a - g_s f^{abc} \partial_\mu g_\nu^a g_\mu^b g_\nu^c - \frac{1}{4} g_s^2 f^{abc} f^{ade} g_\mu^b g_\mu^d g_\nu^e - \partial_\nu W^+ \partial_\nu W^- - M^2 W^+ W^- $$

$$ + \frac{1}{2} \partial_\nu Z^0_\mu \partial_\nu Z^0_\mu - \frac{1}{2c_w^2} M^2 Z^0_\mu Z^0_\mu - \frac{1}{2} \partial_\mu A_\nu \partial_\mu A_\nu - ig_c (\partial_\nu Z^0_\mu (W^+ W^- - W^+_\nu W^-_\nu) - Z^0_\mu (W^+ \partial_\nu W^-) - W^-_\mu \partial_\nu W^+ + Z^0_\mu (W^+ \partial_\nu W^- - W^-_\nu W^+\nu)) - ig_s (\partial_\nu A_\mu (W^+ W^-_\nu W^-_\nu) - A_\nu (W^+ \partial_\nu W^-) $$

$$ + g^2 c_w^2 (Z^0_\mu W^+_\nu Z^0_\nu W^-_\nu - Z^0_\mu Z^0_\nu W^+_\nu W^-_\nu + g^2 s_w^2 (A_\mu W^+_\nu A_\nu W^-_\nu - A_\nu A_\mu W^+_\nu W^-_\nu + g^2 s_w c_w (A_\mu Z^0_\nu (W^+ W^-_\nu) - A_\mu Z^0_\nu W^+_\nu W^-_\nu) - A_\mu Z^0_\nu W^+_\nu W^-_\nu) $$

$$ - 2 A_\mu Z^0_\nu (W^+ W^-_\nu) - \frac{1}{2} \partial_\mu H \partial_\mu H - 2 M^2 \alpha_h H^2 - \partial_\mu \phi^+ \partial_\mu \phi^- - \frac{1}{2} \partial_\mu \phi^0 \partial_\mu \phi^0 $$

$$ \beta_h \left(\frac{2M^2}{g^2} + \frac{2M}{g} H + \frac{1}{2}(H^2 + \phi^0 \phi^0 + 2 \phi^+ \phi^-) \right) + \frac{2M^4}{g^2} \alpha_h - g \phi^0 M (H^3 + H^0 \phi^0 + 2 H \phi^+ \phi^-) $$

$$ + \frac{1}{8} g^2 \alpha_h (H^4 + (\phi^0)^4 + 4 (\phi^+ \phi^-)^2 + (4 \phi^0)^2 \phi^+ \phi^- + 4 H^2 \phi^+ \phi^- + 2 (\phi^0)^2 H^2) - g M W^+ W^- H $$

$$ + \frac{1}{2} g c_w^2 Z^0_\mu Z^0_\mu H - \frac{1}{2} ig (W^+_\mu (\phi^0 \partial_\mu \phi^- - \phi^- \partial_\mu \phi^0) - W^-_\mu (\phi^0 \partial_\mu \phi^+ - \phi^+ \partial_\mu \phi^0)) + $$

$$ \frac{1}{2} g (W^+_\mu (H \partial_\mu \phi^- - \phi^- \partial_\mu H) + W^-_\mu (H \partial_\mu \phi^+ - \phi^+ \partial_\mu H)) + \frac{1}{2} g c_w^2 (Z^0_\mu (H \partial_\mu \phi^- - \phi^- \partial_\mu H) + $$

$$ M (\frac{1}{c_w^2} Z^0_\mu \partial_\mu \phi^0 + W^+_\mu \partial_\mu \phi^- + W^-_\mu \partial_\mu \phi^+) - ig s_w^2 M Z^0_\mu (W^+ \phi^- - W^- \phi^+) + ig s_w M A_\mu (W^+ \phi^- - W^- \phi^+) $$

$$ - ig \frac{1 - 2 c_w^2}{2 c_w^2} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W^+ W^- (H^2 + (\phi^0)^2 + 2 \phi^+ \phi^-)$$
Here the notation is as follows:

- **Gauge bosons**: $A_\mu, W^\pm_\mu, Z_{\mu}^0, g_\mu^n$
- Quarks: u_j^e, d_j^e, collective: q_j^e
- Leptons: $e_j^\lambda, \nu_j^\lambda$
- Higgs fields: $H, \phi^0, \phi^+, \phi^-$
- Ghosts: G^a, X^0, X^+, X^-, Y
- Masses: $m_d^\lambda, m_u^\lambda, m_e^\lambda, m_h, M$ (the latter is the mass of the W)
- Coupling constants $g = \sqrt{4\pi\alpha}$ (fine structure), $g_s = \text{strong}, \alpha_h = \frac{m_h^2}{4M^2}$
- Tadpole Constant β_h
- Cosine and sine of the weak mixing angle c_w, s_w
- Cabibbo–Kobayashi–Maskawa mixing matrix: $C_{\lambda\kappa}$
- Cabibbo-Kobayashi-Maskawa matrix
- Structure constants of $SU(3)$: f^{abc}
- The Gauge is the Feynman gauge."