Is there a role for postoperative radiotherapy following open partial laryngectomy when prognostic factors on the pathological specimen are unfavourable? A survey of head and neck surgical/radiation oncologists.

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/140713 since 2016-11-29T16:55:21Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Is there a role for postoperative radiotherapy following open partial laryngectomy when prognostic factors on the pathological specimen are unfavourable? A survey of head and neck surgical/radiation oncologists

Acta Otorhinolaryngol Ital 2013;33:311-319

E.G. Russi, **G. Sangunietti**, **F. Chiessa**, **P. Franco**, **G. Succo**, **A. Merlotti**, **M. Ansarin**, **A. Melano**, **D. Alterio**, **S. Pergolizzi**, **M. Buglione**, **A. Reali**, **U. Ricardi**, **R. Corvo**

1 Radiation Oncology Department, AO “S. Croce e Carle”, Cuneo, Italy; 2 Department of Radiation Oncology, Ospedale “Sacro Cuore-Don Calabria”, Negrar, VR; 3 Head and Neck Surgery, European Institute of Oncology, Milan, Italy; 4 Radiation Oncology Department, Tomotherapy Unit, Ospedale Regionale “U. Parini”, AUSL Valle d’Aosta, Aosta, Italy; 5 ENT Department, “S. Luigi Gonzaga”, Martini Hospital, University of Torino, Italy; 6 Radiation Oncology Department, AO Saronno-Busto Arizzio, Italy; 7 European Institute of Oncology, Milan, Italy; 8 Division of Radiation Oncology, European Institute of Oncology, Milan, Italy; 9 Department of Radiation Oncology, University of Messina, Italy; 10 Radiation Oncology Department, Unit of University of Brescia, Italy; 11 Unit of University of Torino, Ospedale “S. Luigi Gonzaga”, Orbassano, Italy; 12 Radiation Oncology Unit, Department of Medical and Surgical Sciences, University of Torino, “S. Giovanni Battista” Hospital, Torino, Italy; 13 Department of Radiation Oncology, University of Genova and IRCCS “San Martino-National Cancer Research Institute”, Genova, Italy

SUMMARY

Our aim was to survey the opinions of Italian radiation and ENT oncologists regarding the role of postoperative radiotherapy (PRT) and the appropriate dose to be given to patients with remnant larynx (RL) after open partial laryngectomy (OPL). The radio-oncologists (ROs) of the Italian Radiation-Oncologist Association (AIRO) and the ENts of the Head-Neck Oncology Society (AIOT-IHNS) were contacted through a SurveyMonkey online interface questionnaire. There were 148 usable responses. The majority of ROs recommended PRT in the case of positive/close margins (R⁺/R⁺close) or in the case of initial involvement of thyroid cartilage (pT³tci). In the same cases, ENtS prefer a “watch and wait” policy (w&w). Both disciplines recommended w&w in the case of negative margins (R⁻). Finally, the majority of ROs recommended irradiating RL with 62-66 Gy in R⁺, with 56-66 Gy (61.4%) in R⁺close and with 56-60 Gy (34%) in pT³tci. In Conclusion, OPL raises new considerations about PRT.

KEY WORDS: Larynx • Postoperative radiotherapy • Conservative laryngectomy • Partial laryngectomy • Head and neck cancer

RIASSUNTO

L’introduzione nella pratica clinica della chirurgia conservativa nei carcinomi laringei e della radioterapia ad intensità modulata (IMRT) conformabile ai volumi e ai margini positivi del laringe e provincia una radicale evoluzione. Il principale scopo di questa “Survey” è di raccogliere le opinioni di ORL e radiooncologi italiani relativamente al ruolo della chirurgia conservativa aperta (OPL) e del radioterapia postoperatoria (PRT) e l’entità di dose da assumer al residuo laringeo (RL) dopo chirurgia conservativa aperta (OPL). Un questionario online è stato inviato ai radiooncologi della Associazione Italiana di Radiooncologia (AIRO) e agli ORL della Associazione Italiana di Oncologia cervicofallica (AIOT-IHNS). Le risposte utilizzabili sono state 148. La maggioranza dei Radiooncologi ha raccomandato la PRT in caso di margini positivi o close (R⁺/R⁺close) o nel caso di coinvolgimento iniziale della cartilagine tiroide (pT³tci). Negli stessi casi gli ORL preferivano un atteggiamento di vigilanza attesa (“watch and wait”). In conclusione, OPL eleva nuove considerazioni relative al ruolo della radioterapia postoperatoria per quanto riguarda le indicazioni, le dosi da utilizzare sul residuo laringeo (se giudicato a rischi di recidiva) ed i volumi da radiotrasformare.

PAROLE CHIAVE: Laringe • Radioterapia postoperatoria • Laringectomia conservativa • Laringectomia parziale • Tumori testa-collo

Acta Otorhinolaryngol Ital 2013;33:311-319
Introduction

The optimal treatment strategy for squamous cell carcinoma (SCC) of the larynx is still a matter of debate. Radiotherapy (RT), with or without chemotherapy (CT), open partial laryngectomy (OPL) and endoscopic resection are established options for functional preservation treatment. Various factors influence the choice of the treatment strategy: primary tumour site, stage and expected results, as well as the expertise of the multidisciplinary team, availability of the service and rehabilitation facilities, along with the patient’s decision. The early clinical stages of supraglottic and glottic cancer that do not require total laryngectomy (most T1-2 N0 cases) are usually considered for either conservative surgery (endoscopic resection, OPL with/without neck dissection) or RT. Single-modality treatment with surgery or RT is generally recommended for early-stage disease (stage I or stage II) in order to preserve the other choice in case of recurrence. Resectable, advanced-stage glottic and supraglottic primaries are usually managed with a combined modality approach. If treated with primary surgery, total laryngectomy is typically required. However, some authors recommend an OPL approach even in selected advanced cancers with or without postoperative radiotherapy (PRT). These selected cases often need to resort to PRT, which could add additional risk of late laryngeal toxicity, jeopardizing the expected functional outcome.

Furthermore, early-stage laryngeal cancers (T1-2 N0) can be clinically under-staged and postoperative adverse pathologic findings might place these cases into a pathologically advanced stage (i.e. early invasion into the thyroid cartilage, metastatic adenopathies (pN+) with or without extra-capsular extension (ECE) or positive residual margins (R+)).

In these situations, the optimal treatment option, whether to transform a conservative approach into immediate total laryngectomy (ITL), or to preserve the organ function by adopting PRT – CT or a close “watch and wait” policy (w&w), is unclear. At present, the most common Head and Neck Cancer (HNC) guideline leaves wide freedom of choice among possible therapeutic options (re-excision, RT, RT-CT), and the recommendations regarding the choice of clinical volumes to be targeted and the respective radiation dose to be released are vague. The aim of this study was to evaluate the opinion of Italian Radiation Oncologists (ROs) and ENTs on PRT ± CT when clinical early-intermediate stage (cT1-T2 or limited T3 conservatively operable with cN0) glottic and supraglottic cancer are pathologically upgraded in consequence of their unfavourable histopathologic prognostic factors (e.g. pT3 or R+).

Analytical overview

Dataset analysis was clusterized into ENTs and ROs for direct comparison.

Statistical analysis

Descriptive statistics, Fisher’s exact tests (Fisher’s P (two-tailed)) or chi-square tests (P (chi-square)) were performed using Winpbi software, where appropriate. When a significant chi-square association was found, adjusted residuals were calculated to indentify those cells that contributed most
Table I. Respondents’ clinical setting and experience.

1. How many years have you been working with Head and Neck Cancer Patients (HNCPs)?

Answer	RO N (%)	ENT N (%)	Ratio RO%/ENT%	p* 0.001
a) Less than 5 years	16 (16.5%)	1 (2.5%)	6.44	0.025*
b) 6-10 years	35 (32.1%)	7 (17.0%)	1.78	0.091
c) 11-20 years	36 (33.0%)	12 (30.8%)	1.073	0.796
d) More than 20 years	20 (18.3%)	19 (48.7%)	0.37	0.000*

2. How many HNCPs are taken care of per year in your institution?

Answer	RO N (%)	ENT N (%)	Ratio RO%/ENT%	p* 0.03
a) Less than 50	39 (35.8%)	5 (13.6%)	2.7	0.009*
b) From 51-100	37 (33.9%)	17 (44.7%)	0.76	0.235†
c) From 101-150	19 (17.4%)	7 (18.4%)	0.95	0.890†
d) More than 150	14 (12.8%)	9 (23.7%)	0.54	0.113†

3. How many HNCPs submitted to conservative laryngectomy do you see per year?

Answer	RO N (%)	ENT N (%)	Ratio RO%/ENT%	p* 0.22
a) Less than 5	25 (22.9%)	4 (10.2%)	2.236	
b) 5-10	39 (35.8%)	13 (33.3%)	1.073	
c) 11-20	26 (23.8%)	11 (28.2%)	0.846	
d) More than 20	19 (17.4%)	11 (28.1%)	0.618	

4. Do you have a head and neck cancer board (HNCB) in your institution?

Answer	RO N (%)	ENT N (%)	Ratio RO%/ENT%	p* 0.20
a) Yes	93 (85.3%)	36 (92.3%)		
b) No	16 (14.7%)	3 (7.7%)		

5. Does your HNCB evaluate:

Answer	RO N (%)	ENT N (%)	Ratio RO%/ENT%	p* 0.33
a) Selected patients (inoperable patients selected by ENT)?	27 (29.03%)	6 (16.67%)	1.742	
b) All patients before any specific treatment?	58 (62.37%)	26 (72.22%)	0.864	
c) Other? (please specify)	8 (8.6%)	4 (11.11%)	0.774	

*Chi-square tests; † Adjusted residuals (cell-by-cell analyses).

Results

A total of 154 of 262 questionnaires sent (161 to ROs and 101 to ENTs) were filled in (58.8% response rate). Of the 154 respondents, 6 were excluded because they answered only the first three questions, which were concerned only with institutional demographics. Consequently, 148 usable responses (56.4%) were included in the final analysis: 109/161 ROs (respondent RO (%) = 67.7%) and 39/101 ENTs (respondent ENT (%) = 38.6%).

Respondents’ clinical setting and experience (Table I)

Respondents represented a variety of working settings: primarily exploiting activity in non-academic hospitals (58%), academic hospitals (25%), and private institutions (17%). Most respondents (87.2%) had a HNC-board (HNCB) in their institution. Particularly, 65.1% of respondents evaluated all patients before any specific treatment within their HNCB, while 34.9% evaluated only selected patients (inoperable patients selected by ENTs or patients who did not meet institutional guidelines). Among those who answered the questionnaire, 31/39 ENTs (79.5%) vs. 56/109 ROs (51.4%) had more than 10 years’ experience working with HNC patients (Fisher’s P (two tailed) = 0.002) (see details in Table I, Question 1). Conversely, more ROs than ENTs worked in institutions with less than 50 HNCPs per year (see details in Table I; Ques-
Finally, considering the numbers of HNCPs submitted to OPL per year seen for each specialist (Table I, Question 3) there was no statistically difference (F_{\text{Chi-square}} = 0.22) between the two specialist groups.

When does the remnant larynx need further treatment? (Figs. 1-4)

The clinical scenario of T-site prognostic factors (with no consideration of lymph-nodal prognostic factors) is shown in Figs. 1-4. In the case of R(+) after OPL (Fig. 1, Question 6), the majority of specialists recommended RT, with no significant statistically difference between the two specialist groups (p = 0.60). However, ROs more frequently would add CT to RT (RO(%) / ENT(%) = 3.27). In the case of R close (Fig. 2, Question 7), the opinions between the two specialist groups were statistically different (p = 0.000047) since more ROs recommended RT ± CT, while a higher ENT(%) recommended a w&w policy (p = 0.000029). In the case of R(-) disease (Fig. 3, Question 8), the majority of both specialist groups would recommend a w&w policy. Finally, in the case of pT3tci (Fig. 4, Question 9) a higher RO(%) advised RT ± CT (p = 1.3 E-7), while a higher ENT(%) advised a w&w approach (p = 0.000028).

When do neck volumes need to be targeted? (Fig. 5)

Two scenarios in which the RL needed to be irradiated (considering T-site unfavourable prognostic factors) were provided for: first in which the neck was not dissected with clinical negative metastatic lymph-nodes (cNo) and second in which elective neck dissections did not reveal metastatic lymph nodes (pNo). In the former scenario, 64.7% of ROs recommended irradiating both cNo and RL, while in the latter the majority of RO recommended irradiating only the RL. The attitude of ENTs was not statistically different for the two scenarios (p = 0.132) (Fig. 5).
Which doses are more frequently recommended on remnant larynx? (Fig. 6, Table II)

Fig. 6 shows the dosage recommended by 103/109 RO respondents.

Discussion

This study attempted to compare the points of view of ROs and ENTs concerning a relatively new question on the postoperative approach to OPL. To our knowledge, this is the first nationwide survey on this topic. Data from literature are only retrospective and thus come from mono- or bi-institutional studies. The most reported late toxicities are severe oedema condritis (7%), radionecrosis (5.5%), aspiration and pneumonia (29.4%) and toxic death (4%) (Table III). Indeed, the modern approach of OPL has reached prominence in the clinical field only in recent years, and different conservative laryngectomy procedures have been adopted for different extensions of tumour. Recently, a systematic review of retrospective mono-institutional studies in the English language literature has given more credence to the oncologic efficacy and reliable function preservation of these procedures considering the high local control (90%) reported in over 5000 patients and the high larynx preservation rate (91%) in over 3000 patients. However,

Table II. Which radiation dose do you recommend to the laryngeal remnant when radiotherapy is advisable or when the patient refuses immediate total laryngectomy? (Question 12) (see also Fig. 6).

Answer Options	Not recommended	< 56 Gy	56-60 Gy	62-66 Gy	> 66 Gy	Response Count
• R+ (margins < 1 mm)	4	1	15	54	29	103
• R-close (margins 1-5 mm)	17	11	30	32	11	101
• Ro (margins > 5 mm)	70	6	19	5	1	101
• Ro (in patients with cartilage invasion - p T3)	27	15	34	20	4	100
answered question						103
skipped question						6
Table III. Tissue tolerance in the case of open neck conservative laryngectomy plus postoperative radiotherapy.

Author	Pts	Surgery	RT technique	Remnant larynx average dose	Neck dose	Late toxicity
Robbins 1988	25	Horizontal supraglottic laryngectomy	2D-RT	Not reported	Not reported	8/25 (32%)
Spaulding CA	23	Standard supraglottic laryngectomy Extended supraglottic laryngectomy	2D-RT	50-61 Gy	50-61 Gy	
Lee 1990	50 (+10 not irradiated)	Horizontal supraglottic laryngectomy	2D-RT	55 Gy	63 Gy	NA (mixed to non irradiated patients)
Steiniger 1997	17 (vs. 12 without postoperative radiotherapy)	Horizontal supraglottic laryngectomy 1 extended to the tongue base HSGL	2D-RT 4-6 MV LINAC 60Co beam	59.30 Gy (50.4-66 Gy)	45.10 Gy (40-50 Gy)	
Laccourreye 2000	90	Standard supraglottic laryngectomy Supraacricoid partial laryngectomy	2D RT 60Co beam	51.2 Gy (25-71)	50.6 Gy (22-70)	15/90 (16.6%)
Spriano 2000	56	Standard supraglottic laryngectomy Extended supraglottic laryngectomy	2D RT-60Co beam 2D RT-6MV LINAC	50 Gy	46 Gy	30/56 (54%)
Oksuz 2008	79	Horizontal supraglottic laryngectomy Extended supraglottic laryngectomy	2D RT-60Cobalt beam	50 Gy	50 Gy	22/79 (27.8%)
Garibaldi 2009	36	Horizontal supraglottic laryngectomy Extended supraglottic laryngectomy Fronto-lateral laryngectomy Other	2D RT- 6MV LINAC 3DCRT	59.5 Gy (45-70.2)	50.4 Gy (39.6-55.8)	21/32 (65.6%)

Thomas reported that approximately 22% of the patients (1151 of 5196) did not have a T-stage available. Thus, blurred stage selections, surgical technique and postoperative care represent challenges that nowadays limit OPL to specific expertise to ensure reproducible results. Specifically, this new scenario generated some concerns among ROs because of the limited amount of data on this subject (Table III), and in particular concerning the radiation tolerance of RL after OPL. Nevertheless, information concerning the risk of toxicity is lacking in tissues (e.g. resected larynx) from high radiation dosages. This opportunity is raising interest for PRT.

At the same time, the possibility to reserve a rescue total (or sometimes partial) laryngectomy without survival detriment can drive physicians’ opinion towards a w&w policy when unpredicted, unfavourable prognostic factors are found in the pathological specimen. Indeed, in our survey a higher ENT(%) advised a w&w policy in case of R_{close} or pT3_{ki} (Figs. 2, 4).

In addition, the recent introduction in radiation oncology practice of modern intensity modulated radiotherapy (IMRT), allowing for conformal RT adaptation to irregular neck shape helps to spare organ function and critical tissues (e.g. resected larynx) from high radiation dosages. This opportunity is raising interest for PRT.

This expectation could explain the higher percentage of ROs’ responses (67.8%) vs. ENTs (38.6%) (RO(%) / ENT(%) = 1.76), tending to testify a higher concern among ROs.

With regards to the Italian-HNC specialists’ attitude towards the T-site prognostic factors, the results describe substantial agreement both in not using PRT in R(-) patients and in using it in R(+). Their opinions diverge in the case of R_{close} and pT3_{ki} (Figs. 2, 4). Indeed, in these cases ROs advise RT more frequently. In contrast, ENTs more frequently suggest a w&w policy in R_{close} and pT3_{ki} cases. However, in the case of R_{close}, the majority of ROs recommended adding CT to RT, while the majority of ENTs did not recommend it (Fig. 1, Question 6). The discussion of
Postoperative radiotherapy following open partial laryngectomy: a survey

Interrupted PRT	Severe complications	Permanent sequel	Toxic death	Dose evaluated as at risk of complication
Prolonged feeding tube (2/25; 8%) Aspiration with pneumonia (4/25; 16%)	Tracheostomy (2/25; 8%)	Pneumonia (1/25; 4%)	NR	
Lymphoedema neck	Laryngectomy (1/23)	None	NR	
Prolonged feeding gastrostomies (7/50; -14%) Pneumonia 3%	Laryngectomy (3/50) (6%) Tracheostomy 2%	3 death	NR	
The average time of decannulation 14.3 w (vs. 6.8 w no RT; p = 0.18) To develop adequate oral intake 34.8 w (vs. 7.5 w of no RT)				
Acute upper air respiratory in 5 (29.4%) pts (vs. = 0; p < 0.05) Pneumonia in 7 patients (29.4%) vs. 1/12 no RT (8.3%) (P = 0.18)				
(5 = 5.5%) (40 Gy) Laryngeal radionecrosis 5/90 (5.5%) Laryngeal stenosis 4/90 (4.4%) Aspiration pneumonia 3/90 (3.3%) Skin necrosis (3.3%) Oesophageal inlet stenosis 2/90 (2.2%)	Gastrostomy 3/90 (3%) Tracheostomy (1/90) (1.1%)	3 (3.3%)	60 Gy (univariate p = 0.014)	
Severe oedema/chondritis (7%) Laryngeal necrosis (1%) Persistent aspiration (9%) Fistula (2%)	Tracheostomy (1/56) (2%)	None	> 50 Gy (HR = 2.2)	
Laryngeal oedema (17/79; 21.5%) Aspiration/dysphagia (6/79; 7.5%)	Definitive laryngectomy (1/79-1.3%) Definitive tracheostomy (3/79 - 3.7%)	None	NA	
Temporary feeding tube (3.1%) Temporary tracheostomy (3.1%) Severe neck induration (3.1%) Whispered speech (1%)	Tracheostomy (1/32) (3.2%)	None	54.9 Gy (estimated) (50.4-55.8)	

this item brought about an interesting question among the Authors of the present study: does the positive margin of an early-stage tumour in a conservative scenario have the same negative prognostic significance of the positive margin in an advanced-stage tumour in a non-conservative scenario? It is possible that the majority of ENTs did not add CT to RT because they attributed a less negative prognostic meaning to early-stage positive margins. Regarding radiation volumes (Questions 10 and 11), comments were gathered from both specialist groups’ questionnaires (ROs = 9; ENTs = 7) concerning the fact that the questions did not specify the T-stage and/or the T-site (glottis or supra-glottis) contexts. With these limits in mind, the evaluation of responses to two questions permit us to conclude that in the case of cNo both specialist groups would recommend RT both on the undissected neck and the RL whenever the latter needed to be irradiated. This trend is reversed in the case of pNo where only RL irradiation is more often recommended (Fig. 5, Questions 10-11).

Finally, the questionnaire asked ROs to specify the advised radiation dose on the RL. As shown in Fig. 1, a 62-66 Gy dosage was more frequently recommended in R+(+) patients, and 56-60 Gy in the case of pT3ct. The recommendations were substantially equally split between 56-60 Gy (29.7%) and 62-66 Gy (31.7%) in the case of R(−) patients, and 56-60 Gy in the case of pT3ct. The recommendations were substantially equally split between 56-60 Gy (29.7%) and 62-66 Gy (31.7%) in the case of R(−) patients, and 56-60 Gy in the case of pT3ct. However, the trend was to advise doses higher than those usually recommended 23 24. Actually, authors from MDACC, Texas 23 and Ann-Arbor Hospital, Michigan 24 suggest limiting tolerance doses to RL after a horizontal supraglottic laryngectomy up to 55.8 Gy to conserve larynx function. Garden 23 recommend treating the larynx to 60 Gy in the rare cases in which positive margins are encountered, and Laccourreye 12 does not recommend radiation on RL with negative margins as he reported chondroradionecrosis and/or laryngeal stenosis in 6 negative-margin-T3 patients in his retrospective study. Thus, the pros and cons of PRT need to be studied further. To our knowledge, only 3 studies 3 9 12 have provided a relationship between delivered dose to RL and the risk of
radiation-induced complications (Table II); their estimation ranges from 50 Gy to 60 Gy. However, the substantial pitfalls of these studies are that they are retrospective, mono/double-institutional and heterogeneous in evaluation methodology.

Our study has some limitations since it is an opinion-based survey with mainly motivated respondents, and thus it might not reflect actual clinical practice in Italy. In addition, the need to keep the questionnaire short in order to encourage respondents to fill it in limited the clarity of some questions. As mentioned above, it would have been useful to specify: the primary site (glottic or supraglottic), to define margins to be considered disease-free based on the relative anatomical site (either glottis or supraglottic), and to better define the clinical stage in each scenario. Furthermore, the survey was limited to OPL and did not consider trans-oral approaches. Nevertheless, to our knowledge, this study is the first to gather the opinions of ROs and ENTs from two national scientific societies (AIRO and AIOCC-IHNS) concerning RT indications after OPL. Taking into account the modern concepts of function-sparing laryngectomy and latest radiation technology, this topic will probably be increasingly important in institutional HNCB multidisciplinary debates.

Conclusions

This Italian survey of 109 ROs and 39 ENTs shows that:

• both specialist groups would recommend PRT in the case of R0 disease, but most ROs would add chemotherapy. Most ROs (52.4%) recommend 62-66 Gy;

• in the case of R1(+) or pT3(+)c, while ENTs prefer a w&w policy, the majority of ROs prefer RT with a dose of 56-60 Gy (29.7%) – 62-66 Gy (31.7%) in the case of R1 or 56-60 Gy (34%) in the case of pT3c;

• neither specialist groups would recommend PRT in the case of R0 disease, but both would recommend RT for undissected cN0 neck when RT is indicated for the RL.

The issues dealt with in this survey call for renewed attention and prospective studies, considering the introduction of the unique combination of function-sparing laryngectomy concepts in clinical practice and the latest IMRT-techniques allowing for selective target volume irradiation.

Acknowledgements

Laurence Preston revised the English text of the manuscript. The authors thank the 161 oncologists who answered the questionnaire. This study was partly supported by “Lega italiana per la cura contro i tumori - Sezione di Cuneo”.

References

1 Pfister DG, Ang K-K, Brizel D, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Head and Neck Cancers Version 1.2012 [Internet]. 2012 [cited 2012 Nov 12]. Available from: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp
2 Bon FD, Piazza C, Mangili S, et al. Transoral laser surgery for recurrent glottic cancer after radiotherapy: oncologic and functional outcomes. Acta Otorhinolaryngol Ital 2012;32:229.
3 Garibaldi E, Bresciani S, Airaldi C, et al. Radiotherapy after partial laryngectomy: an analysis of 36 cases and a proposal to optimize radiotherapy. Tumori 2009;95:198-206.
4 Pfister DG, Laurie SA, Weinstein GS, et al.; American Society of Clinical Oncology Clinical Practice. Guideline for the use of larynx-preservation strategies in the treatment of laryngeal cancer. J Clin Oncol 2006;24:3693-704.
5 Pignon J-P, le Maître A, Maillard E, et al.; MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009;92:4-14.
6 Ang KK. Larynx Preservation Clinical Trial Design: Summary of Key Recommendations of a Consensus Panel. Oncologist 2010;15(Suppl 3):25-9.
7 Cho KI, Sun DI, Joo YH, et al. Analysis of clinicopathological stage in supracricoid partial laryngectomy patients: Need for adjuvant therapy in clinically understaged cases. Auris Nasus Larynx 2011;38:255-60.
8 Lee K, Goepfert H, Wendt CD. Supraglottic laryngectomy for intermediate – stage cancer: U.T. M.D. Anderson cancer center experience with combined therapy. Laryngoscope 1990;100:831-6.
9 Spriano G, Antognoni P, Sanguineti G, et al. Supraglottic laryngectomy and radiotherapy for supraglottic carcinoma: a conservative approach. Ann Otol Rhinol Laryngol 2000;21:14-21.
10 Spaulding CA, Constable WC, Levine PA, et al. Partial laryngectomy and radiotherapy for supraglottic cancer: a conservative approach. Ann Otol Rhinol Laryngol 1989;98:125-9.
11 Steiniger JR, Parnes SM, Gardner GM. Morbidity of combined therapy for the treatment of supraglottic carcinoma: supraglottic laryngectomy and radiotherapy. Ann Otol Rhinol Laryngol 1997;106:151-8.
12 Laccourreye O, Hans S, Borzog-Grayeli A, et al. Complications of postoperative radiation therapy after partial laryngectomy in supraglottic cancer: A long-term evaluation. Otolaryngol Head Neck Surg 2000;122:752-7.
13 Bron LP, Soldati D, Monod M-L, et al. Horizontal partial laryngectomy for supraglottic squamous cell carcinoma. Eur Arch Otorhinolaryngol 2005;262:302-6.
14 Spriano G, Piantanida R, Pellini R, et al. Elective treatment of the neck in squamous cell carcinoma of the larynx: Clinical experience. Head Neck 2003;25:97-102.
15 Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005;27:843-50.
Postoperative radiotherapy following open partial laryngectomy: a survey

16 Abramson JH. WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol Perspect Innov 2011;8:1.
17 Robbins KT, Davidson W, Peters LJ, et al. Conservation surgery for T2 and T3 carcinomas of the supraglottic larynx. Arch Otolaryngol Head Neck Surg 1988;114:421-6.
18 Oksüz DC, Uzel O, Yildirim A, et al. Significance of laryngeal edema after partial laryngectomy and radiotherapy in supraglottic cancer. J Otolaryngol Head Neck Surg 2008;37:681-8.
19 Rizzotto G, Crosetti E, Lucioni M, et al. Subtotal laryngectomy: outcomes of 469 patients and proposal of a comprehensive and simplified classification of surgical procedures. Eur Arch Otorhinolaryngol 2012;269:1635-46.
20 Thomas L, Drinnan M, Natesh B, et al. Open conservation partial laryngectomy for laryngeal cancer: A systematic review of English language literature. Cancer Treat Rev 2012;38:203-11.
21 Forastiere AA, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med 2003;349:2091-8.
22 Chen AM, Farwell DG, Luu Q, et al. Marginal misses after postoperative intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2011;80:1423-9.
23 Garden AS. The larynx and hypopharynx. In: Cox JD, Ang KK, editors. Radiation oncology: rationale, technique, results [Internet]. 9th ed. Philadelphia: Mosby Elsevier; 2010. p. 282-308.
24 Moyer JS, Wolf GT. Advanced stage cancer of the Larynx. Part A - General Principles and Management. Head and Neck Cancer: A Multidisciplinary Approach. 3rd ed. [Internet]. Philadelphia: Lippincott Williams & Wilkins; 2009 p. 367-84.
25 Ansarin M, Santoro L, Cattaneo A, et al. Laser surgery for early glottic cancer: impact of margin status on local control and organ preservation. Arch Otolaryngol Head Neck Surg 2009;135:385-90.
26 Hinni ML, Ferlito A, Brandwein-Gensler MS, et al. Surgical margins in head and neck cancer: a contemporary review. Head Neck 2013;35:1362-70.

Address for correspondence: Elvio G. Russi, Radiation Oncology Department, AO S. Croce e Carle, via Coppino 26, 12100 Cuneo, Italy. E-mail: elviorussi@gmail.com

Received: November 26, 2012 - Accepted: March, 7, 2013