Rupture of De Novo Anterior Communicating Artery Aneurysm 8 Days after the Clipping of Ruptured Middle Cerebral Artery Aneurysm

Sung-Kon Ha, M.D., Ph.D., Dong-Jun Lim, M.D., Ph.D., Sang-Dae Kim, M.D., Ph.D., Se-Hoon Kim, M.D., Ph.D.
Department of Neurosurgery, Korea University Medical Center, Ansan Hospital, Ansan, Korea

Rapidly developed de novo aneurysm is very rare. We present a rapidly developed and ruptured de novo anterior communicating aneurysm 8 days after the rupture of another aneurysm. This de novo aneurysm was not apparent in the initial 3-dimensional computed tomography and digital subtraction angiography. We reviewed the literature and discussed possible mechanisms for the development of this de novo aneurysm.

Key Words: De novo aneurysm · Subarachnoid hemorrhage · Aneurysm formation · Computed tomography angiography · Digital subtraction angiography.

INTRODUCTION

Since 'de novo' aneurysm was first reported by Graf and Hamby in 1964, well-documented case reports of de novo aneurysm within a short time interval are rare. In general, the incidence of de novo aneurysms is uncertain and the time course of their development remains unclear. Especially, within several days' follow-up interval image studies, it is difficult to discern whether a de novo aneurysm is really new or was already present but unrecognized at the time of the first angiographic study. We present a case of subarachnoid hemorrhage (SAH) caused by rupture of a middle cerebral artery M1 in 47-year-old man. Eight days later, he had an intraparenchymal hematoma caused by rupture of a de novo anterior communicating artery aneurysm. The anterior communicating artery aneurysm was not apparent in the initial 3-dimensional computed tomography (3D-CT) and conventional angiogram.

CASE REPORT

A 47-year-old man with subarachnoid hemorrhage in Hunt & Hess grade III was admitted via emergency room. The initial brain CT revealed a thick subarachnoid blood clot around basal cistern and left sylvian fissure (Fig. 1A). A 64-detector 3D-CT angiography showed a saccular aneurysm on the left M1 portion of middle cerebral artery and no additional aneurysms (Fig. 1B). Considering the distribution of the hemorrhage on CT scans and 3D-CT angiography, we concluded that the cause of the hemorrhage was rupture of the left M1 aneurysm. Immediately, we underwent pterional approach and aneurysmal clipping. On the microsurgical view, M1 aneurysm was surrounded with clots and we confirmed the obliteration of the aneurysm. The patient's mentality was improved to Hunt & Hess grade II.

On the next day, right side hemiparesis was developed and the diffusion weighted magnetic resonance images showed ischemic change on the left posterior limb of the internal capsule (Fig. 1C). We performed digital subtraction angiography (DSA) which revealed mild vasospasm and performed intra-arterial nimodipine injections. There was no abnormal finding in the anterior communicating artery (Fig. 1D).

At eight days after the clipping, sudden deterioration of mentality appeared and the follow-up brain CT showed an intraparenchymal hematoma on the right frontal lobe (Fig. 2A). We performed the DSA again, which revealed severe vasospasm on the left M1 and A1 portion and the left anterior communicating artery aneurysm that was not found in the previous 3D CT an-
Rupture of De Novo A-Com Aneurysm | SK Ha, et al.

Intra-aneurysmal thrombosis. However, considering the aneurysm size (4.9×4.9 mm), there was a small amount of SAH around the anterior communicating artery on the initial CT. We concluded that the newly detected aneurysm was too large to be concealed by the small amount of SAH or intra-aneurysmal thrombosis. There was no definite abnormal finding in initial CTA. Furthermore, the day after, DSA showed no abnormal finding except mild vasospasm. Recently, the effectiveness of CTA in detecting aneurysms has been evaluated by several reports. Agid et al.² reported that sixty-four-detector CTA of the brain has been shown to be 98% sensitive and 100% specific for the detection of aneurysms in the setting of SAH. In their report, a small (1.7×2.0 mm) anterior communicating artery aneurysm was missed on CTA, which was identified on a retrospective review of the CTA after detection on DSA. Therefore, CTA could show all aneurysms even small ones. Another recent study¹⁷ reported that CTA resulted in a 0% false negative rate (sensitivity 100%, predictive value 100%) comparing with DSA in detecting aneurysms. Consequently, we conclude that this case was a de novo aneurysm or at least a rapidly growing aneurysm in a short time (8 days) frame for two reasons; 1) small amount of SAH around the anterior communicating artery and relatively large of aneurysm, 2) the accuracy of CTA & DSA for the diagnosis of aneurysm in recent studies.

In general, the pathophysiology and etiology of rapid develop-

DISCUSSION

Fast-growing de novo aneurysm, reported within several days, with no evidence of another aneurysm is very rare. Most of de novo aneurysms were reported several years after the initial angiography¹⁸,²¹,²². However, Abe et al.¹ reported an unruptured de novo MCA aneurysm after 10 days, Schebesch et al.²⁹ reported a ruptured de novo basilar tip aneurysm after 44 days and Yasuhara et al.²⁰ reported a ruptured ophthalmic segment aneurysm after 47 days. We detected a de novo aneurysm within 8 days from the first CTA and one day after DSA. At first, we considered that we might have missed an anterior communicating artery aneurysm that was concealed from thick SAH or intra-aneurysmal thrombosis. However, considering the aneurysm size (4.9×4.9 mm), there was small amount of SAH around the anterior communicating artery on the initial CT. We concluded that the newly detected aneurysm was too large to be concealed by the small amount of SAH or intra-aneurysmal thrombosis. There was no definite abnormal finding in initial CTA. Furthermore, the day after, DSA showed no abnormal finding except mild vasospasm. Recently, the effectiveness of CTA in detecting aneurysms has been evaluated by several reports. Agid et al.² reported that sixty-four-detector CTA of the brain has been shown to be 98% sensitive and 100% specific for the detection of aneurysms in the setting of SAH. In their report, a small (1.7×2.0 mm) anterior communicating artery aneurysm was missed on CTA, which was identified on a retrospective review of the CTA after detection on DSA. Therefore, CTA could show all aneurysms even small ones. Another recent study¹⁷ reported that CTA resulted in a 0% false negative rate (sensitivity 100%, predictive value 100%) comparing with DSA in detecting aneurysms. Consequently, we conclude that this case was a de novo aneurysm or at least a rapidly growing aneurysm in a short time (8 days) frame for two reasons; 1) small amount of SAH around the anterior communicating artery and relatively large of aneurysm, 2) the accuracy of CTA & DSA for the diagnosis of aneurysm in recent studies.

In general, the pathophysiology and etiology of rapid develop-

Fig. 1. A: Initial brain computed tomography (CT) showing subarachnoid hemorrhage in basal cistern and left Sylvian fissure. B: A 64-detector 3-dimensional CT angiogram showing a saccular aneurysm on the left M1 portion of middle cerebral artery. There is no abnormal finding in anterior communicating artery. C: 1 day after clipping, diffusion weighted magnetic resonance image showing ischemic change of left posterior limb of internal capsule. D: 1 day after clipping, the trans-femoral catheter angiography showing no abnormality in anterior communicating artery except mild vasospasm in peripheral arteries (not shown).

Fig. 2. A: Eight day after clipping, follow-up brain CT showing intraparenchymal hematoma in the frontal lobe. B: Eight days after clipping, follow-up trans-femoral catheter angiography (TFCA) showing the anterior communicating artery aneurysm (4.9×4.9 mm) that was not existed in previous images with a massive general vasospasm. C: Simultaneously with TFCA, anterior communicating artery aneurysm was obscured by coil embolization and intra-arterial nimodipine injection was performed. D: Four weeks after the coil embolization, follow-up CT showing new developed cerebral infarction in the middle cerebral artery territory due to vasospasm and hemorraghic transformation.
ing de novo aneurysms is poorly understood. However, similar to patients with aneurysms in general, risk factors for the de novo aneurysms include hypertension, middle age, female, smoking and genetic predisposing factors-Maran syndrome, fibromuscular dysplasia and Moyamoya disease\(^6\). A change in the hemodynamic environment caused by major vessel ligation\(^3\), after stent placement\(^2\), and after removal of arteriovenous malformation\(^4,\(^5\) may induce the de novo aneurysm by overloading some vascular territories. Moreover, severe vasospasm could have induced massive hemodynamic changes that finally resulted in the development of a new aneurysm\(^9\). The relation between the hemodynamic change and aneurysmal formation with growth is well established. Meng et al.\(^1\) demonstrated that high wall shear stress initiate aneurysm formation. Also, Bossel et al.\(^9\) showed that aneurysm growth occurs at the region of low wall shear stress. Either high or low wall shear stress may induce formation and growth of aneurysms. Recently, Doenitz et al.\(^9\) reported a case study of a patient with a de novo basilar tip aneurysm that developed over 44 days and ruptured\(^9\). Their patient had severe vasospasm without other genetic predisposing factors. They analyzed flow parameters of the basilar artery before and after formation of the aneurysm with computational fluid dynamics. They found that low wall shear stress of the vessel corresponded to the site of aneurysm formation and growth, furthermore, impingement point and wall pressure had no clear relation. Based on this finding, they proposed a mechanism of genesis of fast-growing aneurysms. In our case, as with Doenitz’s patient, the patient had severe vasospasm without any genetic predisposing factors. Therefore, we believe that the mechanism suggested by Doenitz et al. explains our patient’s rapidly developing de novo aneurysm and rupture.

CONCLUSION

We present a rapidly developed and ruptured de novo anterior communicating aneurysm 8 days after the rupture of another aneurysm. That de novo aneurysm was not apparent in the initial 3D-CT and conventional angiogram.

References

1. Abe T, Saito N, Kunishio K. [De novo aneurysm after ten days from the onset of SAH]. No Shinkei Geka 36 : 1109-1113, 2008
2. Agid R, Lee SK, Willinsky RA, Farb RI, terBrugge KG : Acute subarachnoid hemorrhage : using 64-slice multidetector CT angiography to “triage” patients’ treatment. Neuroradiology 48 : 787-794, 2006
3. Arambepola PK, McEvoy SD, Bulsara KR : De novo aneurysm formation after carotid artery occlusion for cerebral aneurysms. Skull Base 20 : 405-408, 2010
4. Boussei L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, et al. : Aneurysm growth occurs at region of low wall shear stress : patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39 : 2997-3002, 2008
5. Brock S, Gionibini S, Ciceni E : Development and rupture of a de novo basilar artery aneurysm after surgical removal of a cerebellar arteriovenous malformation. Acta Neurochir (Wien) 145 : 1117-1120, 2003
6. Bruneau M, Rynkowski M, Smida-Rynkowska K, Brotchi J, De Witte O, Lubicz B : Long-term follow-up survey reveals a high yield, up to 30% of patients presenting newly detected aneurysms more than 10 years after ruptured intracranial aneurysms clipping. Neurosurg Rev 34 : 485-496, 2011
7. Dalyai RT, Styliaras JC, Gonzalez LF, Tjoumakaris SI, Dumont AS, Rosenvasser RH, et al. : De novo basilar artery aneurysm formation after placement of a Wingspan stent. Acta Neurochir (Wien) 153 : 2147-2150, 2011
8. Doenitz C, Schebesch KM, Zoepfuhl R, Brawanski A : A mechanism for the rapid development of intracranial aneurysms : a case study. Neurosurgery 67 : 1213-1221; discussion 1221, 2010
9. Fujimoto K, Kimura R, Iida J, Kawaguchi S, Sakaki T, Nakagawa H, et al. : De novo basilar top aneurysm in an elderly patient treated with Guglielmi detachable coils. AJNR Am J Neuroradiol 26 : 915-916, 2005
10. Graf CJ, Hamby WB. Report of a case of cerebral aneurysm in an adult developing apparently de novo. J Neurol Neurosurg Psychiatry 27 : 153-156, 1964
11. Juvela S, Porras M, Poussa K : Natural history of unruptured intracranial aneurysms : probability of and risk factors for aneurysm rupture. J Neurosurg 93 : 379-387, 2000
12. Juvela S, Poussa K, Porras M : Factors affecting formation and growth of intracranial aneurysms : a long-term follow-up study. Stroke 32 : 485-491, 2001
13. Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, et al. : Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38 : 1924-1931, 2007
14. Nakamura M, Rosahl SK, Vorkapic P, Förster C, Sanii M : De novo formation of an aneurysm in a case of unusual intracranial fibromuscular dysplasia. Clin Neurol Neurosurg 102 : 259-264, 2000
15. Nekrysh SY : Association between heritable connective tissue disorders and intracranial aneurysms. Surg Neurol 54 : 77-78, 2000
16. Nishimoto T, Yuki K, Sasaki T, Murakami T, Kodama Y, Kurisu K : A ruptured middle cerebral artery aneurysm originating from the site of anastomosis 20 years after extracranial-intracranial bypass for moyamoya disease : case report. Surg Neurol 64 : 261-265; discussion 265, 2005
17. Prestigiacomo CJ, Sahtab A, He W, Jethwa P, Gandhi C, Russian J : Three dimensional CT angiography versus digital subtraction angiography in the detection of intracranial aneurysms in subarachnoid hemorrhage. J Neurointerv Surg 2 : 385-389, 2010
18. Rahamah NN, Hontiuchi T, Kimura R, Ohno S, Tachibana T, Hongo K : De novo aneurysm : case reports and literature review. Neurosurgery 69 : E761-E766; discussion E766-E767, 2011
19. Schebesch KM, Doenitz C, Zoepfuhl R, Finkenzeller T, Brawanski AT : Recurrent subarachnoid hemorrhage caused by a de novo basilar tip aneurysm developing within 8 weeks after clipping of a ruptured anterior communicating artery aneurysm : case report. Neurosurgery 62 : E259-E260; discussion E260, 2008
20. Stiefel MF, Al-Okaibi R, Weigle JB, Hurst RW : De novo aneurysm formation and regression after brain arteriovenous malformation embolization : case report. Surg Neurol 67 : 99-101; discussion 101, 2007
21. van der Schaaf IC, Veltuis BS, Wermers MR, Majoue C, Wiltkamp T, de Kort G, et al. : New detected aneurysms on follow-up screening in patients with previously clipped intracranial aneurysms : comparison with DSA or CTA at the time of SAH. Stroke 36 : 1753-1758, 2005
22. Wermers MR, van der Schaaf IC, Veltuis BS, Algra A, Buskens E, Rinkel GJ, et al. : Follow-up screening after subarachnoid haemorrhage : frequency and determinants of new aneurysms and enlargement of existing aneurysms. Brain 128 (Pt 10) : 2421-2429, 2005
23. Yasuhara T, Tamiya T, Sugiu K, Inoue S, Ohmura T : De novo formation and rupture of an aneurysm. Case report. J Neurosurg 97 : 697-700, 2002