Quarkonium dissociation in perturbative QCD

Juhee Hong and Su Houng Lee

Department of Physics and Institute of Physics and Applied Physics,
Yonsei University, Seoul 03722, Korea

(Dated: November 20, 2018)

Abstract

For weakly bound quarkonia, we rederive the next-to-leading order cross sections of quarkonium dissociation by partons that include the hard thermal loop (HTL) resummation. Our results calculated with an effective vertex from the Bethe-Salpeter amplitude reduce to those obtained by potential nonrelativistic QCD (pNRQCD) in the relevant kinematical limit, and they can be used in a wide temperature range applicable to heavy quark systems in heavy ion collisions. Based on the lattice computation of the temperature-dependent binding energy, our numerical analysis on \(\Upsilon(1S) \) indicates that at high temperature the dominant mechanism for quarkonium dissociation is inelastic parton scattering as expected in the quasifree approximation, while it is the gluo-dissociation at low temperature. By comparing with the momentum diffusion coefficient of a heavy quark, we discuss possible \(O(g) \) corrections to the next-to-leading order thermal width.
I. INTRODUCTION

Quarkonia are an important probe of high temperature and density matter produced in relativistic heavy ion collisions. The suppression of quarkonia and their sequential melting provide information about the formation of quark-gluon plasma, the thermal properties of the matter, and the heavy quark potential at finite temperature. Originally, color screening in deconfined quark-gluon plasma has been thought to prevent heavy quarks to form a bound state [1]. Now quarkonia are believed to dissolve at high temperature not because the binding energy vanishes but because the thermal width becomes as large as the reduced binding energy.

Quarkonium suppression has been investigated for a long time, but their yields still need to be understood quantitatively. For recent reviews, see Refs. [2, 3]. In addition to color-screening, quarkonia yields are affected by other mechanisms including Landau damping, feed-down, initial state conditions, cold nuclear matter effects, and possible regenerations near the threshold. In this work, we focus on the dissociation mechanisms of quarkonia. Especially, we are interested in the ground state of bottomonium Υ(1S), since it survives at high temperature up to \(\sim 600 \) MeV [3]. Recently, bottomonium suppression has been observed in Pb+Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV by the CMS collaboration [4] and in U+U collisions at \(\sqrt{s_{NN}} = 193 \) GeV by the STAR collaboration [5].

From a partonic picture, there are two main mechanisms of quarkonium dissociation. The first is gluo-dissociation, \(g + Υ \rightarrow Q + \bar{Q} \), where \(Υ \) is quarkonium and \(Q(\bar{Q}) \) a heavy (anti)quark. Gluo-dissociation, also known as the thermal breakup of the heavy quark-antiquark color singlet state in effective field theory, breaks the bound state by absorbing a gluon from thermal medium. The dipole interaction of color charge with a gluon [6, 7] has been used to study dissolution of quarkonia. The second mechanism is inelastic parton scattering, \(p + Υ \rightarrow p + Q + \bar{Q} \) with \(p = g, q, \bar{q} \). This is related to the Landau damping phenomenon which results from scattering of hard particles in thermal bath exchanging spacelike gluons. Quarkonium dissociation by inelastic parton scattering has been investigated at the quasifree approximation, where the reaction is taken care of by the sum of \(p + Q \rightarrow p + Q \) and \(p + \bar{Q} \rightarrow p + \bar{Q} \) [8]. For a tightly bound state near the phase transition, gluo-dissociation is an efficient process [6], while inelastic parton scattering is expected to be dominant when loosely bound quarkonia scatter with hard particles [2, 8]. In an effective
field theory framework inelastic parton scattering is also expected to be dominant at high
temperature, but the quasifree approximation might overestimate the dissociation cross sec-
tions [9, 10]. For this reason, we need to calculate inelastic parton scattering exactly and
compare its contribution with that of gluo-dissociation.

Recently, there have been rigorous and formal developments in the calculations on these
issues. The quark-antiquark static potential has been derived in finite temperature QCD,
where it has been found that the potential develops an imaginary part that results in the
thermal width [11]. The real part of the potential is a screened Coulomb potential, and
the imaginary part is induced by the Landau damping. Furthermore, in an effective field
theory framework another part of the imaginary potential has been found out to arise by the
singlet-to-octet thermal transition [12]. In different temperature regimes at weak coupling,
potential nonrelativistic QCD (pNRQCD) has been used to study quarkonium dissociation
[10, 12–14].

While the low-energy effective field theory is an important formal development, the vari-
ous results valid at different energy and temperature scales are problematic when trying to
use them in realistic estimates for the fate of quarkonium, as the hierarchy of scales varies
during the time evolution in relativistic heavy ion collisions. Moreover, since these imagi-
nary parts of the potential are related to the two mechanisms of quarkonium dissociation,
we might be able to obtain the resulting thermal width from the perspective of scattering
processes ($g + \Upsilon \to Q + \bar{Q}$ and $p + \Upsilon \to p + Q + \bar{Q}$). Therefore, our aim is to introduce the
partonic picture for quarkonium dissociation that reduces to the formal limit of the effective
field theory calculations at the relevant kinematical regime, but that can also interpolate be-
tween different temperature scales which are applicable to heavy quark systems in evolving
plasmas.

This work is organized as follows. In Sec. II, we discuss gluo-dissociation up to next-
to-leading order. In Sec. III, we use an effective vertex derived from the leading order
dissociation to calculate inelastic parton scattering which contributes to dissolution at next-
to-leading order. In Sec. IV, we present a numerical analysis for weakly coupled $\Upsilon(1S)$ based
on the lattice data of the temperature-dependent binding energy. In Sec. V, we discuss
possible $O(g)$ corrections to the next-to-leading order quarkonium dissociation. Finally, we
summarize our results in Sec. VI.
II. GLUON-DISSOCIATION

In the heavy quark limit, heavy quark systems can be treated by using perturbative QCD with the interquark potential reducing to the Coulomb type. In Ref. [6], Peskin has calculated the interactions between partons and heavy quark bound states by performing the operator product expansion on gluon insertions in the heavy quark states. As an application, the gluo-dissociation cross section of quarkonium has been obtained at leading order [7], and later the same cross section has been rederived by using the Bethe-Salpeter amplitude [15]. In $1/N_c$ expansion in the large N_c limit, the heavy quark-antiquark pair after dissociation is noninteracting such that the dissolution is induced by the processes shown in Fig. 1 (and another similar to (a) but P_1, P_2 exchanged).

For $q \sim p_1, p_2 \gg k$, the sum of the leading processes gives the following scattering amplitude [15]:

$$\mathcal{M}_{LO}^{\mu\nu} = -g \sqrt{m_\Upsilon \over N_c} \left[k \cdot {\partial \psi(p) \over \partial p} \delta^{\mu 0} + k_0 {\partial \psi(p) \over \partial p^i} \delta^{\mu i} \right] \delta^{\nu j} \bar{u}(P_1) \left(1 + \gamma_0 \gamma^j - \gamma_0 \gamma^i T^a v(P_2) \right),$$

where $\psi(p)$ is the normalized wave function for a bound state with the relative momentum, $p = (p_1 - p_2)/2$. The matrix element squared is

$$|\mathcal{M}|^2_{LO} = {8\over N_c} g^2 m^2 m_\Upsilon k_0^2 |\nabla \psi(p)|^2,$$

where we have used the transverse polarization ($\delta^{ij} - \hat{k}^i \hat{k}^j$) for gluon. Dividing by the quarkonium polarization d_Υ and the gluon degeneracy $d_g = 2(N_c^2 - 1)$, the averaged scattering cross section is given by

$$\sigma_{LO}(k) = {1 \over 4 \sqrt{(Q \cdot K)^2 - m_\Upsilon^2 m_K^2}} \int {d^3p_1 \over (2\pi)^3 2p_{10}} \int {d^3p_2 \over (2\pi)^3 2p_{20}}$$
$$\times (2\pi)^4 \delta^4(Q + K - P_1 - P_2) {1 \over d_\Upsilon d_g} |\mathcal{M}|^2_{LO}.$$
In the heavy quark limit, the heavy quark-antiquark pair is assumed to be weakly bound so that the leading order ground state wave function of quarkonium can be described by the Coulombic bound state \[|\nabla \psi_{1S}(p)| = 2^5 \sqrt{\pi} \frac{a_0^{7/2} p}{[(a_0 p)^2 + 1]^3}, \] where \(a_0 = 16\pi/(N_c mg^2) \) is the Bohr radius. In the rest frame of the plasma where quarkonium is approximately at rest, we obtain \[\sigma_{LO}(k) = \frac{2^7 g^2 a_0^2 E^{7/2}(k - E)^{3/2}}{d_T N_c E/k^5}. \]

Here \(E = 2m - m_\Upsilon > 0 \) is the binding energy of quarkonium, and the relation \(a_0^2 = 1/(mE) \) is satisfied for the Coulombic binding energy.

To obtain the cross section at leading order, we have assumed that the external gluon is massless and \(k \sim k_0 \gg m_D \). On the other hand, at finite temperature gluons acquire the thermal self-energy that leads to thermal mass \(\sim m_D \). To accommodate such self-energy effects, we note that the phase space of the initial gluon involves the following on-shell condition for the dispersion relation at leading order:

\[
1 = \int \frac{dk_0}{2k_0} \delta(k_0 - k) = \int \frac{dk_0}{2k_0} \delta(k_0^2 - k^2). \tag{6}
\]

In the case of \(k \ll T \) and \(k_0^2 - k^2 \sim m_D^2 \), the hard thermal loop (HTL) resummation is needed and the dispersion relation for transverse gluons is then given by

\[
k_0^2 - k^2 = \text{Re} \Pi_T(k_0, k) = 0. \tag{7}
\]

In the Coulomb gauge, the HTL self-energies are \[\Pi_L(k_0, k) = m_D^2 \left[1 - \frac{k_0}{2k} \log \left(\frac{k_0 + k}{k_0 - k} \right) \right], \]

\[\Pi_T(k_0, k) = \frac{m_D^2}{2} \frac{k_0^2}{k^2} - \frac{(k_0^2 - k^2)k_0}{2k^3} \log \left(\frac{k_0 + k}{k_0 - k} \right), \tag{8} \]

which do not have imaginary parts for time-like \((k_0^2 > k^2) \) gluon. Therefore, at next-to-leading order Eq. (6) is extended as follows:

\[
\int \frac{dk_0}{2k_0} \delta \left(k_0^2 - k^2 - \frac{m_D^2}{2} \left[\frac{k_0^2}{k^2} - \frac{(k_0^2 - k^2)k_0}{2k^3} \log \left(\frac{k_0 + k}{k_0 - k} \right) \right] \right)
\approx \left[1 + \frac{m_D^2}{4k^2} \left(\log \left(\frac{8k^2}{m_D^2} \right) - 2 \right) \right]^{-1}, \tag{9}
\]
FIG. 2. The effective vertex derived from the sum of the leading processes shown in Fig. 1.

where we have used \(k_0 \simeq k \) and in the argument of the logarithm \(k_0 - k \simeq \frac{m_q^2}{4k} \).

By involving Eq. (9) in the leading order result, we obtain the next-to-leading order cross section for gluo-dissociation,

\[
\sigma_{NLO}(k) \simeq \left[1 - \frac{m_D^2}{4k^2} \left(\log \left(\frac{8k^2}{m_D^2} \right) - 2 \right) \right] \sigma_{LO}(k),
\]

(10)

where the effect of the relative velocity between quarkonium and gluon is included here through the definition of the thermal width given in Eq. (11). If we neglect the final state rescattering effects of the unbound heavy quark-antiquark pair in the large \(N_c \) limit, Eq. (10) agrees with the pNRQCD results [10, 13] for the \(mv \gg T \gg E \gg m_D \) case (in this regime, gluo-dissociation is the dominant dissociation mechanism in the effective field theory framework).

With a thermal distribution function of an incoming gluon, the thermal width of gluo-dissociation can be calculated as [8]

\[
\Gamma = d_g \int \frac{d^3k}{(2\pi)^3} \sigma(k) n(k).
\]

(11)

To break a bound state, the magnitude of an incoming gluon momentum is required to be larger than the binding energy, \(|k| \geq E \).

III. INELASTIC PARTON SCATTERING

In this section, we introduce an effective vertex which is derived from the leading order scattering processes of Fig. 1. In terms of the vertex, we calculate inelastic parton scatterings which contribute to quarkonium dissociation at next-to-leading order.

From the leading order scattering amplitude of Eq. (1), the following effective vertex can be derived [17]:

\[
V^{\mu\nu}(K) = -g \sqrt{\frac{m_T}{N_c}} \left[k \cdot \frac{\partial \psi(p)}{\partial p} \delta_{\mu0} + \left(\frac{p^2}{m} + E \right) \frac{\partial \psi(p)}{\partial p^i} \delta_{i\nu} \right] \delta^{\nu j} \frac{1 + \gamma^0}{2} \gamma^j \frac{1 - \gamma^0}{2} T^a,
\]

(12)
and denoted by Fig. 2. With the energy conservation, $p^2/m + E \simeq k_0$ (k_0 is the energy transfer), this vertex is similar to the potential nonrelativistic QCD (pNRQCD) vertex. The difference is that our approach involves $1 \pm \gamma^0$ matrices because of the nonrelativistic treatment of heavy quarks, while in pNRQCD the octet propagator is employed to calculate the imaginary part of the potential. As will be shown below, our results agree with those by pNRQCD in a certain regime where inelastic parton scattering becomes dominant. The reason is that the rescattering effects in the octet propagator become subleading and the chromoelectric dipole interaction can be taken into account through the effective vertex of Eq. (12). This vertex reflects the dipole interaction of color charge for the leading gluon-quarkonium interaction considered in Refs. [6, 7].

For quarkonium dissolution by inelastic parton scattering, we consider barely bound quarkonia with near-threshold energy so that partons in heat bath separate a heavy quark-antiquark pair almost collinearly. In the quarkonium rest frame, the energy transfer is small ($k_{10} \simeq k_{20}$) and the only contribution is from the longitudinal gluon part of the effective vertex in Eq. (12). This situation is similar to the momentum diffusion of a heavy quark where the internal gluon attached to the Wilson line is longitudinal [18, 19].

Inelastic parton scattering shown in Fig. 3 can be calculated by using the effective vertex. For $k_1, k_2 \gg k_1 - k_2$, the corresponding scattering amplitudes are given by

$$M^{\mu(q)}_{NLO} = g \bar{u}(K_2) \gamma_\mu T^a u(K_1) \frac{1}{(K_1 - K_2)^2 - \Pi(K_1 - K_2)} \bar{u}(P_1) V^{\nu\mu}(K_1 - K_2) v(P_2),$$

$$M^{\mu\nu\lambda(g)}_{NLO} = -igf^{abc} \bar{u}(P_1) V^{\mu\nu}(K_1 - K_2) v(P_2) \frac{1}{(K_1 - K_2)^2 - \Pi(K_1 - K_2)} \times \left[g^\rho_\nu (2K_1 - K_2)^\lambda - g^\rho_\lambda (K_1 - 2K_2)^\nu - g^{\lambda\nu}(K_1 + K_2) \right].$$ \hspace{1cm} (13)

In the Coulomb gauge, the HTL propagator of longitudinal gluon is $i/[k^2 + \Pi_L(k_0, k)] \simeq$
space integration, we proceed as follows \[20, 21\]. First, and the second, we introduce a dummy variable \(\omega \). By integrating over the phase space and dividing by the initial flux, the dissociation cross section is obtained as

\[
\sigma_{NLO}(k_1) = \frac{1}{4 \sqrt{(Q \cdot K_1)^2 - m_T^2 m_{k_1}^2}} \int \frac{d^3 k_2}{(2\pi)^3 2k_{20}} \int \frac{d^3 p_1}{(2\pi)^3 2p_{10}} \int \frac{d^3 p_2}{(2\pi)^3 2p_{20}} \times (2\pi)^4 \delta^4(Q + K_1 - K_2 - P_1 - P_2) \frac{1}{d_\Sigma d_p} |\mathcal{M}|_{NLO}^2,
\]

where \(d_p \) \((p = g, q)\) is the degeneracy factor of the incoming parton. To perform the phase space integration, we proceed as follows \[20, 21\]. First, \(p_2 \) integration is done by using the three-dimensional delta function, and \(k_2 \) integration is changed to \(k = k_1 - k_2 \). For the (anti)quark-quarkonium scattering, we have

\[
\sigma_{NLO}^{(q,\bar{q})}(k_1) \approx \frac{N_f(N_c^2 - 1)g^4 m_T k_{10}}{2(2\pi)^3 N_c d_\Sigma d_q |Q \cdot K_1|} \int d^3 k \int d^3 p_1 \delta(q_0 + k_{10} - k_{20} - p_{10} - p_{20}) |\nabla \psi(p)|^2 \frac{k^2}{(k^2 + m_D^2)^2} \left(2 - \frac{k^2}{2k_1^2} \right).
\]

Second, we introduce a dummy variable \(\omega \),

\[
\delta(q_0 + k_{10} - k_{20} - p_{10} - p_{20}) = \int d\omega \delta(\omega + q_0 - p_{10} - p_{20}) \delta(\omega - k_{10} + k_{20}),
\]

and the \(k-p_1 \) phase space is integrated over \(k, p_1, \theta_{kk}, \theta_{kp}, \) and \(\phi_{k:k_1p_1} \), where \(\theta_{kk}(\theta_{kp}) \) is the angle between two vectors \(k \) and \(k_1(p_1) \) and \(\phi_{k:k_1p_1} \) is the angle between the \(k-k_1 \) plane and the \(k-p_1 \) plane. For dissolution of weakly bound quarkonia with \(q \sim p_1, p_2 \gg k \), we use the following relations

\[
\delta(\omega + q_0 - p_{10} - p_{20}) \approx \frac{p_{10}}{k_{p_1}} \delta \left(\cos \theta_{kp_1} - \frac{\omega p_{10}}{k_{p_1}} \right),
\]

\[
\delta(\omega - k_{10} + k_{20}) = \frac{k_{20}}{kk_{1}} \delta \left(\cos \theta_{kk} - \frac{\omega - k_{20}}{2kk_{1}} \right),
\]

to perform the integrations over two polar angles. Then the cross section becomes

\[
\sigma_{NLO}^{(q,\bar{q})}(k_1) \approx \frac{N_f(N_c^2 - 1)g^4 m_T k_{10}}{(2\pi)^3 N_c d_\Sigma d_q |Q \cdot K_1|} \int_{0}^{2k_1} dk \int dp_1 p_{10}^2 |\nabla \psi(p)|^2 \frac{k^3}{(k^2 + m_D^2)^2} \left(2 - \frac{k^2}{2k_1^2} \right),
\]

for small energy transfer. The matrix elements squared are then

\[
|\mathcal{M}|_{NLO}^{2(q,\bar{q})} \approx \frac{16 N_f(N_c^2 - 1)}{N_c} g^4 m_T m_\pi |\nabla \psi(p)|^2 \frac{(k_1 - k_2)^2 k_{10}^2}{[(k_1 - k_2)^2 + m_D^2]^2} \left[1 + \frac{k_1 \cdot k_2}{k_1 k_2} \right],
\]

\[
|\mathcal{M}|_{NLO}^{2(g)} \approx 16 (N_c^2 - 1) g^4 m_T m_\pi |\nabla \psi(p)|^2 \frac{(k_1 - k_2)^2 k_{10}^2}{[(k_1 - k_2)^2 + m_D^2]^2} \left[1 + \frac{(k_1 \cdot k_2)^2}{k_1^2 k_2^2} \right],
\]

where in the gluon-induced reaction we have used transverse polarizations for external gluons.
where ω has been integrated over the range $(-\frac{k_{p_1}}{p_{10}}, \frac{k_{p_1}}{p_{10}})$. Finally, in the quarkonium rest frame ($q = 0$) p_1 integration is changed to p^2 integration for a bound state with $|\nabla\psi(p)|^2$ as a function of p^2. After integrating over p^2 and k, we obtain

$$\sigma^{(q,\bar{q})}_{NLO}(k_1) \approx \frac{3N_f(N_c^2 - 1)g^4a_0^2}{4N_c d_T d_q \pi} \left[\log \left(\frac{4k_1^2}{m_D^2} \right) - 2 \right]. \tag{20}$$

Here, we have used the Coulombic bound state Eq. (4), but the relation $a_0^2 = 1/(mE)$ need not be satisfied in general. Similarly, the gluon-quarkonium scattering cross section is determined as

$$\sigma^{(g)}_{NLO}(k_1) \approx \frac{3(N_c^2 - 1)g^4a_0^2}{4d_T d_g \pi} \left[\log \left(\frac{4k_1^2}{m_D^2} \right) - 2 \right]. \tag{21}$$

In comparison with the leading order result in Eq. (5), Eqs. (20) and (21) correspond to the dissociation cross sections at next-to-leading order. After multiplying by d_p, they agree with the pNRQCD results for the $mv \gg T \gg m_D \gg E$ regime where inelastic parton scattering is dominant in the effective field theory framework [10]. In pNRQCD, the NLO results are calculated by the imaginary part of the singlet potential which is from the self-energy diagram (see Fig. 4) of the quarkonium color-singlet. We note that the cut diagram at two-loop order corresponds to the scattering processes of Fig. 3, and the leading contribution to gluo-dissociation of Fig. 2.

By convoluting the momentum distributions of incoming and outgoing partons, the thermal width by inelastic parton scattering is given by [10]

$$\Gamma_{NLO} = \int \frac{d^3k_1}{(2\pi)^3} \left[d_q \sigma^{(q,\bar{q})}_{NLO}(k_1) n_F(k_1)[1 - n_F(k_1)] + d_g \sigma^{(g)}_{NLO}(k_1) n_B(k_1)[1 + n_B(k_1)] \right], \tag{22}$$

where $n_B(k_1)$ and $n_F(k_1)$ are the Bose-Einstein and Fermi-Dirac momentum distributions, respectively. For hard ($\sim T$) momentum the thermal distribution of an initial parton is $n(k_1)$ with $k_{10} \simeq k_1$, and the Bose-enhancement or Pauli-blocking factor of an outgoing parton has been approximated as $1 \pm n(k_2) \simeq 1 \pm n(k_1)$ for small energy transfer.
IV. NUMERICAL RESULTS FOR $\Upsilon(1S)$

In this section, we focus on the weakly bound $\Upsilon(1S)$ and present the numerical results of the dissociation cross sections and thermal widths. Above the phase transition temperature, the ground state of bottomonium is expected to survive up to $T \sim 600$ MeV and melts at higher temperature [3]. The binding energy of a Coulombic state depends on the coupling constant, $E \sim mg^4$ which increases as temperature decreases. To study transitional behaviors at the temperature regime $T \sim 200 - 500$ MeV, we set the effective coupling constant $\alpha_s = 0.3 - 0.4$ and use the temperature-dependent binding energy which has been estimated in lattice QCD [22]. The Debye screening mass given by $m_D^2 = \frac{e^2 T^2}{3} \left(N_c + \frac{N_f}{2} \right)$ is reduced with time as the temperature decreases with the evolution of quark-gluon plasma after heavy ion collisions. Although our analysis is based on a Coulombic bound state, the binding energy estimated from nonperturbative lattice computations might allow potential effects which are compatible with lattice QCD findings at short distances. Employing the temperature-dependent binding energy and screening mass, we simulate the running coupling which results $m_D \ll \pi T$ ($m_D \sim \pi T$) for weak (strong) coupling. With $N_c = N_f = 3$, $m = 4.8$ GeV and $a_0 = 0.14 - 0.18$ fm are used for $\Upsilon(1S)$.

Fig. 5 shows an upper limit of the binding energy of $\Upsilon(1S)$ computed in lattice QCD [22] and its numerical fit. While the Coulombic binding energy is determined as $243 - 432$ MeV for
fixed coupling $\alpha_s = 0.3 - 0.4$, the binding energy estimated from the lattice QCD decreases as temperature increases. The black dashed line represents the temperature ($E = T$) line, and the gray band is for the Debye mass as a function of T.

Gluo-dissociation is the main mechanism for quarkonium dissolution at low temperature near the phase transition where the binding energy is relatively large. When an incoming gluon carries low momentum, gluo-dissociation contributes up to next-to-leading order. In Fig. 6, we present the dissociation cross sections and the thermal widths at leading (Eq. (5)) and next-to-leading (Eq. (10)) orders. The next-to-leading order results are slightly smaller than the leading ones. Since the difference is relatively insignificant compared with that from inelastic parton scattering, we consider only leading order for gluo-dissociation in the following.

Inelastic parton scattering is important at the high temperature regime where the binding energy is smaller than T [2]. At high temperature, the Debye mass is large and the logarithmic formula in Eqs. (20) and (21) are not appropriate to study quarkonium dissociation. The cross sections become negative when an incoming parton has low momentum, which does not make sense (see the red solid line in Fig. 7). They are also independent of the binding energy. These are because many restrictions are required to yield the logarithmic formula in the previous section. To obtain phenomenologically acceptable cross sections that can be used throughout a wide temperature region, we integrate the matrix
elements of Eq. (14) over the phase space numerically. Since the matrix elements squared are functions of k_1, k_2, and the angle $(\theta_{k_1k_2})$ between k_1 and k_2, integrating over the energy transfer ($k_0 = k_1 - k_2$) and $\cos \theta_{k_1k_2}$ yields the cross section as a function of k_1,

$$\sigma_{NLO}(k_1) = \frac{1}{2^5(2\pi)^3} d\gamma dk_0 \int_{E}^{k_1} \left| p |M|_{NLO} \right|_{p^2=m(k_0-E)}. \quad (23)$$

The numerically calculated cross sections are shown in Fig. 7 and compared with the analytical result. The cross sections vary from zero at $k_1 = E$ and smoothly approach the asymptotic formula at high momentum. This method improves the cross sections in the near-threshold region.

In Fig. 8, we present the cross sections of two mechanisms as a function of incoming parton momentum for two different temperatures. Gluo-dissociation is dominant at low momentum, while inelastic parton scattering is important when an incoming parton is energetic. The maximum of the gluo-dissociation cross section depends on the binding energy, and it shifts to lower momentum as temperature increases. In inelastic parton scattering, the cross section is smaller for higher temperature because the Debye screening mass increases with T.

Fig. 9 (a) shows the temperature dependence of the thermal width for each mechanism. As temperature decreases during the time evolution, the cross section of gluo-dissociation peaks at higher momentum. In the meanwhile, the phase space distribution $k^2 n_B(k)$ becomes smaller but peaks at lower momentum close to the maximum of the cross section. As a result, the thermal width by gluo-dissociation increases with time initially but decreases
later at low temperature near the phase transition. This behavior seems to be contrasted with the leading result of Ref. [13] in which the thermal width is proportional to T, but the width in pNRQCD is calculated with the Coulombic binding energy much smaller than the temperature scale which is different from the binding energy of Fig. 5. On the other hand, the thermal width by inelastic parton scattering decreases as a collision system cools down, as expected in Ref. [11]. The reason is that although the cross section at lower temperature is larger, the phase space distribution $k_1^2 n(k_1)[1 \pm n(k_1)]$ becomes much smaller (and peaks at lower momentum for inelastic quark scattering).

Our numerical results indicate that the dominant mechanism of quarkonium dissociation changes from inelastic parton scattering at high temperature (where $E < T$) to gluo-dissociation near the phase transition (where $E > T$). These transitional behaviors depending on temperature are consistent with earlier analyses performed in the quasifree approximation [2, 8]. The black squares in Fig. 9 (a) represent the width (extracted from Ref. [22]) which is estimated nonperturbatively by tunnelling and direct thermal activation to the continuum in the limit of $E \gg T$ [23]. They are almost same as the width by gluo-dissociation near the phase transition and comparable with the sum of those by two mechanisms at higher temperature.

Fig. 9 (b) presents the total thermal width as the sum of the contributions by gluo-dissociation and inelastic parton scattering. Because the temperature dependence of inelastic
parton scattering is stronger than that of gluo-dissociation, the total width increases with T. At high enough temperature where the thermal width exceeds the binding energy ($\Gamma_{\text{tot}} \gtrsim E$), a heavy quark-antiquark pair is more likely to decay than to be bound so dissociation is expected [3, 22]. The weaker the coupling, the larger width we obtain because a smaller screening mass (larger Bohr radius) allows dissociation by inelastic parton scattering (gluo-dissociation) more probable. If we fix the screening mass as $m_D \sim 600$ MeV, the thermal width of inelastic parton scattering increases more rapidly with T. We have checked that variations of parameters do not change significantly the qualitative behaviors of the cross sections and thermal widths. Our results fairly agree with the old calculations in Ref. [24].

V. HIGHER ORDER CORRECTIONS

In Sec. III, we have obtained the next-to-leading order contributions to quarkonium dissociation by using the effective vertex derived from the leading order processes. If we ignore corrections to the effective vertex due to the heavy quark-antiquark interactions, higher order expansions might be possible. In the perspective of hard thermal loop (HTL) perturbation theory, the external partons are hard ($K_1, K_2 \sim T$) and the exchange momentum is soft ($K \sim gT$) in inelastic parton scattering. If all the gluons in Fig. 3 (b) are soft, $O(g)$
corrections arise because of the Bose enhancement effects [25].

Another source of $O(g)$ corrections is the diagram in Fig. 10 (and the same except P_1, P_2 exchanged) with soft gluons. The scattering amplitude is given by [17]

$$M_{O(g)}^{\mu\nu\lambda} = g^2 \frac{\lambda_0}{k_{20}} \bar{u}(P_1) V_{0}^{\nu\mu}(K_1) [T^a, T^b] v(P_2), \tag{24}$$

where $V_{0}^{\nu\mu}(K_1)$ is same as $V^{\nu\mu}(K_1)$ without T^a. As in Sec. III, only the longitudinal gluon part of the effective vertex contributes. By comparing Eqs. (13) and (24), we note that

$$\frac{|M_{O(g)}|^2}{|M_{NLO}^{(g)}|^2} \sim \frac{k^2}{k_1^2}. \tag{25}$$

When K_1, K_2 are hard, the process of Fig. 10 is suppressed, giving $O(g^2)$ corrections to the inelastic parton scattering of Fig. 3. However, if the gluons are soft two matrix elements yield the same order of magnitude. These $O(g)$ corrections have been calculated to obtain the momentum diffusion coefficients of a heavy quark at next-to-leading order [18, 19].

The momentum diffusion coefficient of a heavy quark is defined as the mean-squared momentum transfer per unit time. At leading order, it is given by [21]

$$3\kappa_{LO} = \frac{1}{2m} \int \frac{d^3k_1}{(2\pi)^32k_{10}} \int \frac{d^3k_2}{(2\pi)^32k_{20}} \int \frac{d^3p_2}{(2\pi)^32p_{20}} \times (2\pi)^4 \delta^4(K_1 + P_1 - K_2 - P_2)(p_2 - p_1)^2 |M_{LO}^{(c)}|^2 n(k_1)[1 \pm n(k_1)], \tag{26}$$

where $M_{LO}^{(c)}$ is the matrix element for $K_1 + P_1 \rightarrow K_2 + P_2$. The corresponding scattering processes are similar to those of Fig. 3. Instead of barely bound quarkonium breaking into a heavy quark and antiquark, a nonrelativistic heavy quark scatters with bath particles exchanging soft momentum. The factor $(p_2 - p_1)^2$ in Eq. (26) corresponds to the momentum transfer $(k_1 - k_2)^2$ in Eq. (14) which comes from the longitudinal gluon part of the effective vertex. By noting that the thermal width has one more momentum integration with a bound.
state, we obtain the following correspondence [26]:

\[\Gamma_{NLO} \simeq \langle r^2 \rangle \kappa_{LO}, \]

(27)

where \(\langle r^2 \rangle = \int \frac{d^3 p}{(2\pi)^3} |\nabla \psi(p)|^2 = 3a_0^2 \) for the Coulombic wave function of Eq. (4). In this regard, \(\kappa_{NLO} \) in Ref. [18, 19] might be useful to obtain \(O(g) \) corrections to the thermal width \(\Gamma_{NLO} \) [10]. However, because there might be other corrections such as those induced by the heavy quark-antiquark interactions, we do not proceed further in this work.

VI. SUMMARY

We have introduced a partonic picture for quarkonium dissociation that reduces to the formal limit of effective field theory calculations at the relevant kinematical regime, but that can also be employed in a wide temperature range which is applicable to heavy quark systems in evolving plasma systems. In particular, we have discussed two mechanisms of quarkonium dissociation, gluo-dissociation and inelastic parton scattering, in the limit of small energy transfer which is suitable to study weakly bound quarkonia.

Gluo-dissociation is related to the plasmon pole contribution, and inelastic parton scattering is induced by the Landau damping phenomenon. By using hard thermal loop perturbative theory, we have rederived the dissociation cross sections and calculated the thermal widths. The thermal effects at next-to-leading order are obtained through the gluon dispersion relation and resummed propagator for gluo-dissociation and inelastic parton scattering, respectively. Our results in Eqs. (10), (20), and (21) agree with those obtained by potential nonrelativistic QCD in which the thermal width is calculated from the imaginary part of the singlet potential. This might imply that the imaginary parts of the heavy quark-antiquark potential responsible for quarkonium dissociation basically originate from various scattering processes in thermal medium, at least for weakly bound quarkonia. By comparing with the momentum diffusion coefficient of a heavy quark, we have discussed possible \(O(g) \) corrections to the next-to-leading order quarkonium dissolution.

To study the transitional behaviors with the running coupling effects, we have employed the nonperturbative lattice input of binding energy in the analysis of \(\Upsilon(1S) \) dissolution. As discussed in the quasifree approximation [2, 8], gluo-dissociation is important at low temperature near the phase transition while inelastic parton scattering becomes dominant.
at high temperature when an incoming parton carries high momentum. Our numerical approach might be useful for phenomenological studies of quarkonia transport in relativistic heavy ion collisions.

ACKNOWLEDGMENTS

This work is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1C1B6008119 and No. 2016R1D1A1B03930089).

[1] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).
[2] R. Rapp, D. Blaschke, and P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010).
[3] A. Mocsy, P. Petreczky, and M. Strickland, Int. J. Mod. Phys. A 28, 1340012 (2013).
[4] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 109, 222301 (2012).
[5] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 94, 064904 (2016).
[6] M. E. Peskin, Nucl. Phys. B 156, 365 (1979).
[7] G. Bhanot and M. E. Peskin, Nucl. Phys. B 156, 391 (1979).
[8] L. Grandchamp and R. Rapp, Phys. Lett. B 523, 60 (2001).
[9] T. Song, W. Park and S. H. Lee, Phys. Rev. C 81, 034914 (2010).
[10] N. Brambilla, M. A. Escobedo, J. Ghiglieri and A. Vairo, J. High Energy Phys. 05, 130 (2013).
[11] M. Laine, O. Philipsen, M. Tassler and P. Romatschke, J. High Energy Phys. 03, 054 (2007).
[12] N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Phys. Rev. D 78, 014017 (2008).
[13] N. Brambilla, M. A. Escobedo, J. Ghiglieri and A. Vairo, J. High Energy Phys. 12, 116 (2011).
[14] N. Brambilla, M. A. Escobedo, J. Ghiglieri, J. Soto and A. Vairo, J. High Energy Phys. 09, 038 (2010).
[15] Y. Oh, S. Kim and S. H. Lee, Phys. Rev. C 65, 067901 (2002).
[16] H. A. Weldon, Phys. Rev. D 26, 1394 (1982).
[17] T. Song and S. H. Lee, Phys. Rev. C 72, 034002 (2005).
[18] S. Caron-Huot and G. D. Moore, Phys. Rev. Lett. 100, 052301 (2008).
[19] S. Caron-Huot and G. D. Moore, J. High Energy Phys. 02, 081 (2008).
[20] P. Arnold, G. D. Moore and L. G. Yaffe, J. High Energy Phys. 11, 001 (2000).
[21] G. D. Moore and D. Teaney, Phys. Rev. C 71, 064904 (2005).
[22] A. Mocsy and P. Petreczky, Phys. Rev. Lett. 99, 211602 (2007).
[23] D. Kharzeev, L. D. McLerran, and H. Satz, Phys. Lett. B 356, 349 (1995).
[24] Y. Park, K. I. Kim, T. Song and S. H. Lee, Phys. Rev. C 76, 044907 (2007).
[25] E. Braaten and R. D. Pisarski, Nucl. Phys. B 337, 569 (1990).
[26] N. Brambilla, M. A. Escobedo, J. Soto and A. Vairo, Phys. Rev. D 96, 034201 (2017).