Turbulence modeling based on non-Newtonian constitutive laws

G. Mompeana, X. Qiub, F. G. Schmittc and R. Thompsond

a Universit\`e Lille 1, Polytech’Lille, LML, CNRS, UMR 8107, F-59655 V. d’Ascq, France
b Department of Mathematics and Physics, Shanghai Institute of Technology, Shanghai 200235, China
c LOG, CNRS, UMR 8187, F-62930 Wimereux, France
d UFF, LMTA, Niteroi RJ24210-240, Brazil

E-mail: gilmar.mompean@polytech-lille.fr

Abstract. This work revisits the analogy between Newtonian turbulence and non-Newtonian laminar flows. Several direct numerical simulations (DNS) data of a plane channel flow, for a large range of Reynolds numbers \(180 \leq Re_\tau \leq 2000\) were explored. The profiles of mean velocity and second moment quantities were used to extract viscometric functions in the non-Newtonian modeling framework. The Reynolds stress tensor is expressed in terms of a set of basis kinematic tensors based on a projection of a nonlinear framework. The coefficients of the model are given as functions of the intensity of the mean strain tensor. The apparent eddy turbulent viscosity, the first and second normal stress differences are presented as function of the shear rate. One of the advantages of the new algebraic nonlinear power law constitutive equation derived in the paper, is that is only dependent on the mean velocity gradient and can be integrated up to the wall.

1. Introduction

The analogy between the turbulent Reynolds stress tensor for Newtonian fluids and the constitutive laws for viscoelastic flows is explored in this paper. Rivlin (1957) was probably the first one to qualitatively investigate the relation between the laminar flows of non-Newtonian fluids and the turbulent flows of Newtonian fluids. Later, such similarities were explored in several other papers Townsend (1966); Crow (1968); Groisman & Steinberg (2000).

The purpose of this work is to propose an approach, alternative to the traditional \(k-\epsilon\) one, to capture the coefficients of the non-linear model expressed by a three-tensor basis that generalizes the Boussinesq hypothesis. Based on the analogy with non-Newtonian fluids, these coefficients are related to the viscosity, first and second normal stress coefficients, which are usual material functions obtained from shear flows of viscoelastic fluids.

We have developed a way to obtain functions from direct numerical simulation (DNS) data to represent the coefficients of non linear eddy viscosity turbulent models. This approach is based on the tensor basis representation of the Reynolds stress. The aim is to go beyond the Boussinesq hypothesis and find, beside the turbulent apparent viscosity, turbulent first and second normal stress functions.
2. Non-linear constitutive equation

Let us denote \(R_{ij} = \frac{2}{3} \rho \delta_{ij} k - \rho u_i u_j \) as the anisotropic traceless stress tensor. \(\rho u_i u_j \) is the Reynolds stress tensor, \(k \) is the turbulent kinetic energy \((k = \frac{1}{2} \rho u_i u_i) \) and \(\delta_{ij} \) the Kronecker delta function. A well-known expression for a non linear eddy viscosity, using traceless basis tensors, was first proposed by Pope (1975). In the 2-D framework, the anisotropic Reynolds stress tensor \(R \) can be written using three tensor bases, Jongen & Gatski (1998), as follows,

\[
\frac{R}{\rho} = 2 \nu_T S - \beta (SW - WS) - \gamma (S^2 - \frac{1}{3} \{S^2\} I)
\]

where \(S \) and \(W \) are respectively the mean rate of strain tensor and the mean vorticity tensor.

The coefficients \(\nu_T, \beta \) and \(\gamma \) may be written as functions of the basic invariants of the flow Schmitt (2007),

\[
\nu_T = \frac{\{RS\}}{\{S^2\}} = -\frac{\bar{uv}}{a},
\]

\[
\beta = \frac{\{RSW\}}{\{S^2\}\{W^2\}} = \frac{\bar{uu} - \bar{vv}}{a^2},
\]

\[
\gamma = -6 \frac{\{RS^2\}}{\{S^2\}^2} = \frac{6}{a^2} \frac{2}{3} (k - \bar{ww}),
\]

where the symbol \(\{\} \) represents the trace operator, \(\bar{uv}, \bar{uu}, \bar{vv} \) and \(\bar{ww} \), the shear and the three normal Reynolds stress components.

The variable \(a \) is the velocity gradient that is only function of the \(y \) direction, as it is assumed here that the flow is dominate by shear, \(\partial U/\partial y = a(y) \). In this case, the mean rate of strain tensor \(S \) and the mean vorticity tensor \(W \) can be written as:

\[
S = \begin{pmatrix} 0 & \frac{1}{2} a & 0 \\ \frac{1}{2} a & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad W = \begin{pmatrix} 0 & -\frac{1}{2} a & 0 \\ \frac{1}{2} a & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

3. Viscometric functions

The mechanical properties of the flow are fully determined when three functions are known, \(\tau(a), \ N_1(a), \ N_2(a) \), shear, first and second normal stress difference, respectively.

It can be shown that the coefficients of equation (1) can be written as Qiu et al. (2010):

\[
\nu_T(a) = -\frac{\bar{uv}}{a} = \frac{\tau(a)}{\rho a} = -\frac{\eta(a)}{\rho},
\]

\[
\beta(a) = \frac{\bar{uu} - \bar{vv}}{a^2} = \frac{N_1(a)}{\rho a^2} = \frac{\Psi_1(a)}{\rho},
\]

\[
\gamma(a) = \frac{6}{a^2} \frac{2}{3} (k - \bar{ww}) = \frac{2}{\rho} [\Psi_1(a) - 2 \Psi_2(a)].
\]

For an unknown viscometric flow, these functions are experimentally estimated and some general properties of the flow are inferred. For Newtonian flows \(\tau(a)/a \) is constant, so if this ratio depends on \(a \), the flow possesses non-Newtonian (shear thinning or shear thickening) characteristics.
Re-writting the equation (1) using the total shear stress given by $R_{\text{total}} = R_v + R$:

$$\frac{R_{\text{total}}}{\rho} = 2(\nu + \nu_T)S - \beta(SW - WS) - \gamma(S^2 - \frac{1}{3}(S^2)I),$$

where the viscous contribution for the total stress is $R_v/\rho = 2\nu S$.

The quadratic constitutive equation for the total stress can be written in terms of the viscometric functions as

$$\frac{R_{\text{total}}}{\rho} = 2(\nu + \nu_T)S - \frac{\Psi_1(a)}{\rho}T_2 - \frac{2}{\rho}\left[\Psi_1(a) - 2\Psi_2(a)\right]T_3,$$

where

$$T_2 = SW - WS, \quad T_3 = S^2 - \frac{1}{3}(S^2)I.$$ (11)

4. Databases and turbulent quantities

We consider here several DNS databases of shear flows, characterized by a range of Reynolds numbers Re_τ from 180 to 2000, Kim et al. (1987); Moser et al. (1999); Iwamoto et al. (2005); Makino et al. (2008); Hoyas & Jimenez (2006, 2008). These databases correspond to plane channel flow, Poiseuille flow and channel flow, see table 1.

Case	Re_τ	Reference	Description
1	180	Kim, Moin and Moser 1987.	Plane channel flow
2	395	Moser, Kim and Mansour 1999.	Plane channel flow
3	590	Moser, Kim and Mansour 1999.	Plane channel flow
4	640	Iwamoto, Suzuki and Kasagi 2005	Plane channel flow
5	950	Hoyas and Jimenez 2008.	Channel flow
6	1020	Makino, Iwamoto and Kawamura 2006	Poiseuille flow
7	2000	Hoyas and Jimenez 2006.	Channel flow

Considering now the power law slopes shown in the previous results, we present below the basis to build the model. Theses results lead us to recall one of the Non-Newtonian constitutive equations, the Carreau model which is expressed by following equation Bird et al. (1987):

$$\frac{\eta - \eta_\infty}{\eta_0 - \eta_\infty} = [1 + (\lambda_\alpha a)^2]^{\frac{n-1}{2}},$$

where η_0 is the zero shear viscosity, η_∞ is the limiting viscosity at high shear rates (supposed to be zero here), n the power law index and λ_α a time constant.

Here we use this power law approach to build the model for the viscometric functions.

In order to use the DNS data base to derive the material functions, the following non-dimensionalisation is introduced:

$$y^+ = \frac{y}{y_0}, \quad U^+ = \frac{U}{u_\tau}, \quad \tau^+ = \frac{\tau}{\rho u_\tau^2}, \quad a^+ = \frac{dU^+}{d(y/\delta)} = a\frac{\delta}{u_\tau}.$$ (13)
where \(u_r = \sqrt{\tau_0/\rho} \) is the characteristic velocity scale, \(y_0 = \nu/u_r \) the characteristic length scale, and \(\delta \) is the half width of the channel.

Using the DNS data presented in Fig. 1 to obtain \(\nu_{\text{apparent}} \), we can write that:

\[
\nu_{\text{apparent}}(a^+) = \nu_0(1 + (\lambda a^+)^2)^{n_0-1},
\]

where

\[
\nu_0 = 0.0655, \quad n_0 = 0.0064, \quad \lambda = 0.0678.
\]

The comparison between the DNS result for the large Reynolds number and the model fit for the apparent viscosity is shown in Fig. 3.

For the first viscometric function \(\Psi_1^+ \), since there are two slopes (see Fig. 2-a), one for the small \(a^+ \) region and one for the large \(a^+ \) region, the following expression to fit \(\Psi_1^+ \) is used:

\[
\Psi_1^+(a^+) = \psi_1 \exp(-\lambda_1 a^+) + \psi_2 \exp(-\lambda_2 a^+),
\]

\[
(14)
\]

For small \(a^+ (a^+ < 4) \), \(\Psi_1^+ \) tends to be \(\psi_1 a^{(m-1)} \), and for larger \(a^+ \), \(\Psi_1^+ \) tends to be \(\psi_2 a^{(n-1)} \). Based on the two slopes (see Fig. 2-a) the coefficients of the model can be obtained as below:

\[
\begin{align*}
\psi_1 & = 0.3501, \quad \psi_2 = 1.0957, \quad \lambda_1 = 0.2, \quad \lambda_2 = 0.11, \\
m_1 = -1.9836, \quad n_1 = -1.6854.
\end{align*}
\]

(17)

The comparison between the DNS results and the model fit for the first normal stress difference is shown in Fig. 4 (a).

For the viscometric function \(\Psi_2^+ \), also using the same previous approach for \(\Psi_1 \), we get:

\[
\Psi_2^+(a^+) = \phi_1 \exp(-\lambda d_1 a^+) + \phi_2 \exp(-\lambda d_2 a^+),
\]

\[
(18)
\]

For small \(a^+ (a^+ < 4) \), \(\Psi_2^+ \) tends to be \(\phi_1 a^{(m-1)} \), and for larger \(a^+ \), \(\Psi_2^+ \) tends to be \(\phi_2 a^{(n-1)} \). Based on the two slopes, we have the following coefficients:

\[
\begin{align*}
\phi_1 & = 0.0117, \quad \phi_2 = 0.2605, \quad \lambda d_1 = 1, \quad \lambda d_2 = 0.05, \\
m_2 = -1.9434, \quad n_2 = -1.6760.
\end{align*}
\]

(19)

The comparison between the DNS results and the model fit for the second normal stress difference is shown in Fig. 4 (b). Figures 3 and 4(a-b) shows that the proposed model is quite close to DNS data for the largest Reynolds number case.

The model in dimensionless form is given by the following explicit algebraic equation:

\[
R_{\text{total}}^+ = 2\nu_{\text{apparent}}^+(a^+)S^+(a^+) - \Psi_1^+(a^+)T_2^+(a^+) - 2\Psi_1^+(a^+)T_2^+(a^+) - 2\Psi_1^+(a^+)T_3^+(a^+),
\]

\[
(20)
\]

where

\[
\begin{align*}
T_2^+ & = S^+ \textbf{W}^+ - \textbf{W}^+ S^+, \quad T_3^+ = S^{2+} - \frac{1}{3} \{S^{2+}\} \textbf{I}.
\end{align*}
\]

(21)

are the basis.

For this model, non-Newtonian material functions were introduced to derive the parameters \(\nu_{\text{apparent}} \), \(\beta \) and \(\gamma \), instead of using the turbulent kinetic energy and dissipation rate scales in classical turbulent models, as \(k - \epsilon \) model.

An important advantage of the resulted formulation is that the coefficients can be used to reproduce nearly viscometric flows, and do not need the solution of evolution equations for \(k \) and for \(\epsilon \) as in the classical approach.
Figure 1. Profiles apparent viscosity ν_{apparent} vs. shear rate a^+.

Figure 2. Viscometric functions (a) $\Psi_1^+(a^+)$ and (b) $\Psi_2^+(a^+)$ vs. shear rate a^+.

Figure 3. Apparent viscosity vs. shear rate ($Re_\tau = 2000$).

References

Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of polymeric liquids, Volume 1: Fluid mechanics. Wiley-Interscience.
Figure 4. Viscometric functions Ψ_1 and Ψ_2 ($Re_\tau = 2000$) vs shear rate.

CROW, S. C. 1968 Viscoelastic properties of fine-grained incompressible turbulence. *J. Fluid Mech.* **33**, 1–20.

GROISMAN, A. & STEINBERG, V. 2000 Elastic turbulence in a polymer solution flow. *Nature* **405**, 53–55.

HOYAS, S. & JIMENEZ, J. 2006 Scaling of velocity fluctuations in turbulent channels up to $Re_\tau = 2000$. *Phys. Fluids* **18**, 011702.

HOYAS, S. & JIMENEZ, J. 2008 Reynolds number effects on the reynolds-stress budgets in turbulent channels. *Phys. Fluids* **20**, 101511.

IWAMOTO, K., FUKAGATA, K., KASAGI, N. & SUZUKI, Y. 2005 Friction drag reduction achievable by near-wall turbulence manipulation at high reynolds numbers. *Phys. Fluids* **17**, 011702.

JONGEN, T. & GATSKI, T. 1998 General explicit algebraic stress relations and best approximation for three-dimensional flows. *International Journal of Engineering Science* **36**, 739–763.

KIM, J., MOIN, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel flow at low reynolds number. *J. Fluid Mech.* **177**, 133–155.

MAKINO, S, IWAMOTO, K. & KAWAMURA, H. 2008 Dns of turbulent heat transfer through two-dimensional slits. *Progress in Computational Fluid Dynamics* **8**, 397–405.

MOSER, R., KIM, J. & MANSOUR, N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_\tau = 590$. *Phys. Fluids* **11** (4), 943–945.

POPE, S.B. 1975 A more general effective-viscosity hypothesis. *J. Fluid Mech.* **72**, 331–340.

QIU, X., MOMPEAN, G., SCHMITT, F. G. & THOMPSON, R. L. 2010 Modeling turbulent bounded flow using non-newtonian viscometric functions. *Journal of Turbulence* **12** (15), 1–18.

RIVLIN, R. S. 1957 The relation between the flow of non-newtonian fluids and turbulent newtonian fluids. *Quart Appl. Math.* **15**, 212–214.

SCHMITT, F. G. 2007 Direct test of a nonlinear constitutive equation for simple turbulent shear flows using dns data. *Comm. Nonlin. Sc. Num. Sim.* **12**, 1251–1264.

TOWNSEND, A. A. 1966 The mechanism of entrainment in free turbulent flows. *J. Fluid Mech.* **26**, 689–715.