N-Substituted S-Alkyl Carbamothioates in the Synthesis of Nitrogen-containing Functional Derivatives of the Adamantane Series

Yu. N. Klimochkin\(^a\) and E. A. Ivleva\(^a\,*\)

\(^a\) Samara State Technical University, Samara, 443100 Russia
*e-mail: ivleva.ea@samgtu.ru

Received March 23, 2021; revised March 31, 2021; accepted April 02, 2021

Abstract—A series of new asymmetric ureas, urethanes, and other derivatives of the framework structure have been synthesized by the reactions of adamantan-1-yl isocyanate generated in situ by the thermolysis of carbamothioates with nitrogen-containing nucleophiles and alcohols.

Keywords: isocyanates, urethanes, ureas, carbamothioates, thermolysis, biological activity

DOI: 10.1134/S1070428021080078

INTRODUCTION

Isocyanates are strategically important substrates in the synthesis of amides [1–3], polyurethanes [4–6], urethanes [7] and ureas, including those with biological activity [8–11]. Adamantane-containing isocyanates are initial substrates in the synthesis of asymmetric ureas, which act as effective inhibitors of human soluble epoxide hydrolase (human sEH) [12–15], an enzyme playing an important role in the metabolism of epoxidated fatty acids. Urethanes derived from adamantan-1-yl isocyanate act as potential acetyl- and butyrylcholinesterase inhibitors [16] and exhibit antimicrobial activity [17]. Some information is available on the potential antitubercular activity of adamantane-containing urethanes [18] and unsymmetrical ureas [19–22].

The practical value of derivatives of adamantan-1-yl isocyanate consists of their use as starting materials in supramolecular chemistry [23] and as catalysts in enantioselective processes. For example, (S)-6,7-dihydro-5H-pyrrolo[1,2-α]imidazol-7-yl (adamantan-1-yl)carbamate has shown high efficiency in the synthesis of Remdesivir, one of the antiviral drugs used to treat COVID-19 [24].

Isocyanates are commonly prepared by phosgenation of amines or by Curtius rearrangement from acyl azides [25]. Most of the methods for the preparation of adamantan-1-yl isocyanate include the aforementioned treatment of 1-aminoaadamantane hydrochloride with phosgene [26, 27] or triphosgene [28] and the implementation of Curtius rearrangement [29], including with the preliminary preparation of 1-azidoadamantane from adamantan-1-carboxylic acid [13, 30] or its acid chloride [31–35]. Alternative synthetic approaches to adamantan-1-yl isocyanate involve the cleavage of 1,3-dehydroadamantane in sulfuric acid in the presence of sodium cyanate [36], the reaction of 1-bromoadamantane with the silver salt of nitrocyanoamide [37], and thermolysis of 2-(adamantan-1-yl)-5-methyl-1,3-oxothiolane [38].

Even though isocyanates are widely used in organic synthesis, this class of compounds has a few important disadvantages such as high toxicity and hydrolytic instability. To overcome these disadvantages, a lot of syntheses of urethanes, ureas, and other compounds were proposed, which combine in situ generation of isocyanates and their subsequent reactions with nucleophilic agents. The reported precursors of isocyanates include N-alkoxyphenylcarbamates [39], hydroxamic acids [40, 41], amides [42, 43], 1,1'-(1,2-phenylene)bisureas [44], and Cbz amines [45]. We have not found examples of in situ generation of adamantan-1-yl isocyanate in the literature.
RESULTS AND DISCUSSION

In this work, we propose a method for the synthesis of a wide range of unsymmetrical ureas, urethanes, and other derivatives, which involves in situ generation of adamantan-1-yl isocyanate. Since S-alkyl carbamothioates can be considered as adducts of mercaptans to isocyanates [46–48]. N-Adamantylated S-alkyl carbamothioates can act as a synthetic equivalent of adamantan-1-yl isocyanate [49], because S-alkyl (adamantan-1-yl)carbamothioates contain a bulky cage fragment at the nitrogen atom, which decreases the thermal stability of thiourethanes.

As the main starting substrate we chose S-ethyl (adamantan-1-yl)carbamothioate (1), readily available by the reaction of adamantan-1-ol or its nitrate with ethyl thiocyanate in sulfuric acid [50–52]. S-Methyl (adamantan-1-yl)carbamothioate, too, converts into adamantan-1-yl isocyanate, but, unlike carbamothioate 1, it thermolyses under more rigid conditions. As nucleophiles we employed alcohols and aliphatic, aromatic, and heterocyclic nitrogen-containing compounds.

Compound 1 reacted with alcohols to form N-(adamantan-1-yl)urethanes (Scheme 1). The reactions were performed in an excess of the nucleophilic reagent in the absence of a solvent. The reaction involved the intermediate formation of adamantan-1-yl isocyanate (A) and the attendant release of ethanethiol. The formation of adamantan-1-yl isocyanate was also confirmed by the observation of the corresponding peak in the gas chromatogram of the starting carbamothioate 1 analyzed at the injector temperature of 250°C. The yields of products 2–8 were 44–75%. The products of the reactions of compound 1 with aminoalcohols were isolated as hydrochlorides 5–8.

The 1H NMR spectra of N-(adamantan-1-yl)carbamates 2–8 display the NH proton signals as singlets at 4.6–6.9 ppm. The signal of the quaternary carbon atom of the urethane fragment in the 13C NMR spectrum is observed at 156–160 ppm.

The reactions of carbamothioate 1 with amines gave substituted N-(adamantan-1-yl)ureas 9–13 (Schemes 2 and 3). Products 12 and 13 were isolated as hydrochlorides. The reactions were performed in the

\[\text{Scheme 1.} \]

\[\text{Scheme 2.} \]

\[\text{Scheme 3.} \]
N-SUBSTITUTED S-ALKYL CARBAMOTHIOATES IN THE SYNTHESIS

absence of a solvent under heating in an excess of the amine (products 9, 12, and 13) or by fusion (products 10 and 11).

The \(^1\)H NMR spectra of ureas 9–13 contain proton signals of the NH group attached to the adamantanyl radical as singlets at 6.6–7.2 ppm. The signal of the quaternary carbon atom of the C=O group in the \(^{13}\)C NMR spectrum is observed at 159–161 ppm.

Heating of carbamothioate 1 in an excess of hydrazine hydrate resulted in the isolation of 4-(adamantan-1-yl)semicarbazide (14). The acylsemicarbazide, an intermediate product of the reaction with acetylhydrazine, underwent spontaneous cyclization to form 2-(adamantan-1-yl)amino-5-methyl-1,3,4-oxadiazole (15) (Scheme 4).

In the \(^1\)H NMR spectrum of 1,3,4-oxadiazole 15, the methyl protons appear as a singlet at 2.51 ppm. The NH proton gives a singlet at 5.62 ppm. In the \(^{13}\)C NMR spectrum, no quaternary carbon signal was observed in the region of 160 ppm.

The reaction of carbamothioate 1 with primary amides formed N-adamantanyl-N’-acylureas 16 and 17 (Scheme 5). The structure of the synthesized compounds was confirmed by the NMR spectra. The \(^1\)H NMR spectra show NH proton signals as singlets at 7.0–9.0 ppm.

EXPERIMENTAL

The IR spectra were run on a Shimadzu IR Affinity-1 spectrometer in KBr pellets. The \(^1\)H and \(^{13}\)C NMR spectra were obtained on a JEOL NMR-ECX400 spectrometer at 400 and 100 MHz, respectively, in DMSO-\(d_6\), using residual proton and carbon signals of the solvent as internal references. The melting points were measured in capillaries on an SRS OptiMelt MPA 100 apparatus and are uncorrected. The elemental analyses were obtained in a EuroVector 3000 EA analyzer, using L-cystine as reference.

N-(Adamantan-1-yl) S-ethyl carbamothioate (1) was prepared as described in [50].

2-Hydroxyethyl (adamant-1-yl)carbamate (2). A mixture of 2 g (0.0084 mol) of carbamothioate 1 and 5 mL (0.09 mol) of ethylene glycol was heated under reflux for 1 h. The hot reaction mixture was poured into water. The product precipitated as a brown oil which gradually solidified and was separated by decantation and recrystallized. Yield 1.16 g (58%). Colorless crystals, mp 76–78°C (benzene–heptane) [49]. \(C_{13}H_{21}NO_3\).

2-Bromoethyl (adamant-1-yl)carbamate (3). A mixture of 2 g (0.0084 mol) of carbamothioate 1 and 5 mL (0.07 mol) of 2-bromoethanol was heated at 140°C for 1 h. Excess 2-bromoethanol was removed in a vacuum. The residue was purified by vacuum distillation, and the fraction at 155–157°C (9 mmHg) was collected. Yield 1.54 g (61%). Colorless oil. \(nD^{20}_2\) 1.5650 [49]. \(C_{13}H_{21}BrNO_2\).

Benzyl (adamant-1-yl)carbamate (4). A mixture of 2 g (0.0084 mol) of carbamothioate 1 and 3 mL (0.029 mol) of benzyl alcohol was heated at 170°C for
1 h. Excess benzyl alcohol was removed in a vacuum. The residue was distilled at 203–205°C (2 mmHg) and crystallized from pentane. Yield 1.31 g (55%). Colorless crystals, mp 29–31°C. IR spectrum, ν, cm−1: 3340, 1710, 1505, 1285, 1050, 735, 695. 1H NMR spectrum, δ, ppm: 1.65–2.00 m (15H, CHAd), 4.97 s (2H, CH2), 5.89 s (1H, NH), 7.34–7.39 m (5H arom). 13C NMR spectrum, δ, ppm: 26.8 (CH), 38.2 (CH2), 41.6 (CH3), 50.2 (C), 68.6 (CH2), 127.3 (CH), 128.4 (CH), 129.6 (CH), 136.4 (C), 159.3 (C). Found, %: C 75.65; H 8.21; N 4.83. C18H23NO2. Calculated, %: C 75.76; H 8.12; N 4.91.

2-({[(Adamantan-1-yl)carbamoyl]oxy}ethyl)cyclohexylammonium chloride (5). A mixture of 3 g (0.0126 mol) of carbamothioate I and 5 g (0.035 mol) of 2-(cyclohexylamino)ethanol was heated at 200°C for 2 h and poured into water. The product was extracted with benzene (3 × 40 mL), the combined organic extracts were washed with 5% NaOH and water (3 × 100 mL), dried, and saturated with gaseous HCl. The solution was evaporated to 1/3 of the volume and cooled. The precipitate that formed was filtered off. Yield 3.35 g (75%). Colorless crystals, mp 207–209°C (benzene). IR spectrum, ν, cm−1: 3305, 1725, 1520, 1225, 1075. 1H NMR spectrum, δ, ppm: 1.25–2.20 m (25H, CHAd, CH), 3.26–3.28 m (2H, CH2), 3.60–3.68 m (1H, CH), 4.18–4.23 m (2H, CH2), 6.88 s (1H, NH), 9.17 s (2H, NH2). 13C NMR spectrum, δ, ppm: 25.9 (CH2), 26.3 (CH2), 28.5 (CH), 30.4 (CH2), 39.2 (CH2), 39.7 (CH2), 46.5 (CH2), 50.4 (C), 56.2 (CH), 66.4 (CH2), 157.8 (C). Found, %: C 63.85; H 9.43; N 7.74. C18H33ClN2O2. Calculated, %: C 63.94; H 9.32; N 7.85.

2-({[(Adamantan-1-yl)carbamoyl]oxy}ethyl)phenylammonium chloride (6). A mixture of 2.4 g (0.01 mol) of carbamothioate I and 1.4 mL (0.01 mol) of 2-(phenylamino)ethanol was heated at 200°C for 2 h and poured into water. The product was extracted with benzene (3 × 30 mL), the combined organic extracts were washed with 5% NaOH and water (3 × 100 mL), dried, and saturated with gaseous HCl. The solution was evaporated to 1/3 of the volume and cooled. The precipitate that formed was filtered off. Yield 1.96 g (44%). Colorless crystals, mp 291–293°C (decomp.). IR spectrum, ν, cm−1: 3250, 2550, 2440, 1715, 1535, 1035. 1H NMR spectrum, δ, ppm: 1.60–2.07 m (19H, CHAd, CH), 2.23–2.26 m (1H, CH), 3.02–3.06 m (1H, CH), 3.18–3.26 m (4H, CH2), 3.61–3.66 m (1H, CH), 4.79–4.83 m (1H, CH), 6.82 s (1H, NH), 10.46 s (1H, NH+). 13C NMR spectrum, δ, ppm: 24.3 (CH2), 27.7 (CH2), 28.1 (CH), 28.4 (CH), 39.9 (CH2), 42.6 (CH2), 46.1 (CH2), 50.7 (C), 53.6 (CH2), 76.4 (CH), 157.0 (C). Found, %: C 63.34; H 8.67; N 8.13. C18H29ClN2O2. Calculated, %: C 64.32; H 8.58; N 8.22.

4-({[(Adamantan-1-yl)carbamoyl]oxy}methyl)quinuclidinum chloride (7). A mixture of 1.5 g (0.0063 mol) of carbamothioate I and 2 g (0.0157 mol) of quinuclidil-3-ol was heated at 200°C for 2 h and poured into water. The product was extracted with benzene (3 × 30 mL), the combined organic extracts were washed with 5% NaOH and water (3 × 100 mL), dried, and saturated with gaseous HCl. The solvent was evaporated, and the residue was recrystallized from acetonitrile. Yield 0.94 g (44%). Colorless crystals, mp 291–293°C (decomp.). IR spectrum, ν, cm−1: 3340, 2600, 2500, 2410, 1710, 1535, 1035. 1H NMR spectrum, δ, ppm: 1.96–2.19 m (19H, CHAd, CH), 2.23–2.26 m (1H, CH), 3.02–3.06 m (1H, CH), 3.18–3.26 m (4H, CH2), 3.61–3.66 m (1H, CH), 4.79–4.83 m (1H, CH), 6.82 s (1H, NH), 10.46 s (1H, NH+). 13C NMR spectrum, δ, ppm: 24.3 (CH2), 27.7 (CH2), 28.1 (CH), 28.4 (CH), 39.9 (CH2), 42.6 (CH2), 46.1 (CH2), 50.7 (C), 53.6 (CH2), 76.4 (CH), 157.0 (C). Found, %: C 63.34; H 8.67; N 8.13. C18H29ClN2O2. Calculated, %: C 63.34; H 8.58; N 8.22.

1-(Adamantan-1-yl)-3-[2-(diethylamino)ethyl]urea (9). A mixture of 1.5 g (0.0063 mol) carbamothioate I and 2 g (0.014 mol) of 3-(hydroxymethyl)quinuclidine [53] was heated at 200°C for 2 h and then poured into water. The product was extracted with benzene (3 × 30 mL), the combined organic extracts were washed with 5% NaOH and water (3 × 100 mL), dried, and saturated with gaseous HCl. The solvent was evaporated, and the residue was recrystallized from acetonitrile. Yield 1.44 g (65%). Colorless crystals, mp 151–153°C. IR spectrum, ν, cm−1: 3260, 2500, 2410, 1710, 1530, 1225, 1070. 1H NMR spectrum, δ, ppm: 1.52–2.19 m (21H, CHAd, CH), 2.78–3.02 m (6H, CH2), 3.95 d (2H, CH, J 6.9 Hz), 4.60 s (1H, NH), 9.20 s (1H, NH+). 13C NMR spectrum, δ, ppm: 27.7 (CH2), 28.4 (CH), 28.5 (CH2), 30.2 (CH), 36.4 (CH), 38.7 (CH2), 39.9 (CH2), 48.4 (CH2), 49.9 (CH2), 50.6 (C), 65.8 (CH2), 156.8 (C). Found, %: C 64.32; H 8.87; N 7.74. C19H31ClN2O2. Calculated, %: C 64.30; H 8.80; N 7.89.
thioate 1 and 3 mL (0.021 mol) of 2-(diethylamino)ethylamine was heated under reflux for 2 h and poured into water. The product was extracted with chloroform (3 × 50 mL), the combined organic extracts were washed with 5% NaOH and water (3 × 100 mL), dried, and the solvent was evaporated. The residue was recrystallized from benzene. Yield 1.25 g (68%). Colorless crystals, mp105–107°C (decomp.). IR spectrum, ν, cm–1: 3435, 3340, 1655, 1630, 1560. 1H NMR spectrum, δ, ppm: 1.05 t (3H, CH₃), 1.67–2.02 m (15H, CH₄Ad), 2.12–2.25 m (6H, CH₂), 2.71–2.79 m (2H, CH₂), 6.97 s (1H, NH), 8.75 s (1H, NH). 13C NMR spectrum, δ, ppm: 12.2 (CH₃), 29.5 (CH), 36.2 (CH₂), 39.5 (CH₂), 42.9 (CH₂), 47.7 (CH₂), 50.9 (C), 55.3 (CH₂), 159.8 (C). Found, %: C 69.19; H 10.78; N 14.50. C₁₇H₃₁N₃O. Calculated, %: C 69.62; H 10.58; N 14.33.

1-(Adamantan-1-yl)-3-(2-methylquinolin-4-yl)urea (10). A mixture of 1.5 g (0.0063 mol) carbamothioate 1 and 1.5 g (0.0087 mol) of 4-aminomethylquinoline was fused at 130°C for 1 h. After the reaction had been complete, as evidenced by the solidification of the reaction mixture, water was added to the reaction flask, and the mixture was stirred until a precipitate formed. The precipitate was filtered off, washed with water, dried, and recrystallized. Yield 1.45 g (69%). Colorless crystals, mp 155–160°C (toluene). IR spectrum, ν, cm–1: 3340, 1655, 1630, 1560. 1H NMR spectrum, δ, ppm: 1.65–2.12 m (15H, CH₄Ad), 2.54 s (3H, CH₃), 6.63 s (1H, NH), 7.47–8.23 m (5H arom), 8.71 s (1H, NH). 13C NMR spectrum, δ, ppm: 24.2 (CH₃), 29.6 (CH), 36.6 (CH₂), 43.9 (CH₂), 50.4 (C), 112.4 (CH), 119.6 (C), 120.3 (CH), 126.4 (CH), 128.3 (CH), 130.1 (CH), 134.9 (C), 149.3 (C), 160.3 (C). Found, %: C 75.06; H 7.40; N 12.70. C₁₇H₃₁N₃O. Calculated, %: C 75.62; H 7.46; N 12.54.

1-(Adamantan-1-yl)-3-(5-propyl-1,3,4-thiadiazol-2-yl)urea (11). A mixture of 1.5 g (0.0063 mol) of carbamothioate 1 and 0.9 g (0.0063 mol) of 2-amino-5-propyl-1,3,4-thiadiazole was fused at 140°C for 2 h. After the reaction had been complete, as evidenced by the solidification of the reaction mixture, water was added to the reaction flask, and the mixture was stirred until a precipitate formed. The precipitate was filtered off, washed with water, dried, and recrystallized. Yield 2.00 g (74%). Colorless crystals, mp 195–198°C (benzene–hexane). IR spectrum, ν, cm–1: 3490, 3310, 1720, 1690, 1600, 1530. 1H NMR spectrum, δ, ppm: 0.94 t (3H, CH₃, J 7.5 Hz), 1.63–2.21 m (17H, CH₄Ad, CH₂), 2.78 t (2H, CH₂, J 7.2 Hz), 6.95 s (1H, NH), 9.14 s (1H, NH). 13C NMR spectrum, δ, ppm: 13.8 (CH₃), 19.3 (CH₂), 29.6 (CH), 30.8 (CH₃), 36.4 (CH₂), 42.8 (CH₂), 50.9 (C), 148.5 (C), 160.4 (C), 168.7 (C). Found, %: C 60.10; H 7.50; N 17.33. C₁₆H₂₄N₄SO. Calculated, %: C 63.45; H 7.72; N 10.72.
4-(Adamantan-1-yl)semicarbazide (14). A mixture of 1.5 g (0.0063 mol) of carbamothioate and 5 mL of hydrazine hydrate heated under reflux for 1.5 h and poured into water. The precipitate that formed was filtered off, dried, and recrystallized from propan-2-ol. Yield 1.14 g (87%). Colorless crystals, mp 268–270°C [54]. C\textsubscript{11}H\textsubscript{19}N\textsubscript{3}O.

(Adamantan-1-yl)-5-methyl-1,3,4-oxadiazol-2-amine (15). A mixture of 1.5 g (0.0063 mol) carbamothioate and 2 g (0.027 mol) of acetylhydrazine was heated at 140°C for 1.5 h and poured into water. The precipitate that formed was filtered off, dried, and recrystallized from propan-2-ol. Yield 0.61 g (42%). Colorless crystals, mp 275–278°C (propan-2-ol). IR spectrum, ν, cm-1: 3330, 1617, 1540. 1H NMR spectrum, δ, ppm: 1.55–2.03 m (15H, CH\textsubscript{Ad}), 2.51 s (3H, CH\textsubscript{3}), 5.62 s (1H, NH). 13C NMR spectrum, δ, ppm: 11.1 (CH\textsubscript{3}), 29.1 (CH), 35.8 (CH\textsubscript{2}), 40.7 (CH\textsubscript{2}), 52.9 (C), 150.2 (C), 164.9 (C). Found, %: C 67.00; H 8.30; N 17.86. C\textsubscript{13}H\textsubscript{19}N\textsubscript{3}O. Calculated, %: C 66.92; H 8.21; N 18.01.

[(Adamantan-1-yl)carbamoyl]formamide (16). A mixture of 1.5 g (0.0063 mol) carbamothioate and 5 mL (0.126 mol) of formamide was heated at 150°C for 1.5 h and poured into water. The product was extracted with chloroform (3 × 30 mL), the combined organic fractions were washed with 5% NaOH and water (3 × 100 mL), dried, and evaporated. The residue was purified by recrystallization. Yield 1.18 g (85%). Colorless crystals, mp 134–136°C (heptane–benzene). IR spectrum, ν, cm-1: 3180, 1680, 1545, 1310, 790. 1H NMR spectrum, δ, ppm: 1.65–2.17 m (15H, CH\textsubscript{Ad}), 7.34 s (1H, NH), 7.87 s (1H, NH), 8.19 s (1H, COH), 8.22 s (1H, COH). 13C NMR spectrum, δ, ppm: 29.6 (CH), 37.0 (CH\textsubscript{2}), 43.4 (CH\textsubscript{2}), 50.8 (C), 160.3 (C), 167.4 (C). Found, %: C 64.93; H 8.24; N 12.70. C\textsubscript{12}H\textsubscript{18}N\textsubscript{2}O\textsubscript{2}. Calculated, %: C 64.84; H 8.16; N 12.60.

[(Adamantan-1-yl)carbamoyl]acetamide (17). A mixture of 1 g (0.0042 mol) of carbamothioate and 3 g (0.051 mol) of acetamide was fused at 150°C for 2 h and poured into water. The precipitate that formed was filtered off, dried, and recrystallized from benzene. Yield 1.03 g (70%), mp 168–172°C. IR spectrum, ν, cm-1: 3280, 1690, 1625, 1550, 1290. 1H NMR spectrum, δ, ppm: 1.60–2.10 m (15H, CH\textsubscript{Ad}), 1.99 s (3H, CH\textsubscript{3}), 8.33 s (1H, NH), 9.29 s (1H, NH). 13C NMR spectrum, δ, ppm: 24.3 (CH\textsubscript{3}), 29.6 (CH), 35.9 (CH\textsubscript{2}), 43.0 (CH\textsubscript{2}), 51.2 (C), 160.8 (C), 169.8 (C). Found, %: C 66.00; H 8.60; N 11.93. C\textsubscript{13}H\textsubscript{20}N\textsubscript{2}O\textsubscript{2}. Calculated, %: C 66.07; H 8.53; N 11.85.

CONCLUSIONS

A new method for the synthesis of unsymmetrical ureas, urethanes, and other derivatives, which involves initial thermolysis of \(S\)-ethyl (adamantan-1-yl)-carbamothioate to form adamantan-1-yl isocyanate and its in situ reaction with alcohols and nitrogen-containing nucleophiles. The synthesized compounds contain privileged pharmacophoric fragments and can be considered as promising structures in terms of potential biological activity.

AUTHOR INFORMATION

Yu.N. Klimochkin, ORCID: http://orcid.org/0000-0002-7335-4040

E.A. Ivleva, ORCID: http://orcid.org/0000-0001-5778-860X

ACKNOWLEDGMENTS

The work was performed using the equipment of the “Investigation of Physical and Chemical Properties of Substances and Materials” Center for Collective Use, Samara State Technical University.

FUNDING

The work was financially supported by the Russian Science Foundation (project no. 21-73-20103). Spectral studies were funded by the Ministry for Education and Science of the Russian Federation in the framework of the design part of the State order no. 0778-2020-0005.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

1. Schafer, G., Matthey, C., and Bode, J.W., Angew. Chem. Int. Ed., 2012, vol. 51, p. 9173. https://doi.org/10.1002/anie.201204481

2. Williams, J.D., Kerr, W.J., Leach, S.G., and Lindsay, D.M., Angew. Chem. Int. Ed., 2018, vol. 57, p. 12126. https://doi.org/10.1002/anie.201807393

3. Pace, V., de la Vega-Hernández, K., Urban, E., and Langer, T., Org. Lett., 2016, vol. 18, p. 2750. https://doi.org/10.1021/acs.orglett.6b01226

4. Golling, F.E., Pires, R., Hecking, A., Weikard, J., Richter, F., Danielmeier, K., and Dijkstra, D., Polymer Int., 2019, vol. 68, p. 848. https://doi.org/10.1002/pi.5665
N-SUBSTITUTED S-ALKYL CARBAMOTHOATES IN THE SYNTHESIS

5. Jurrat, M., Pointer-Gleadhill, B.J., Ball, L.T., Chapman, A., and Adriaenssens, L., *J. Am. Chem. Soc.*, 2020, vol. 142, p. 8136. https://doi.org/10.1021/jacs.0c03520

6. Jia, M., Hadjichristidis, N., Gnanou, Y., and Feng, X., *Angew. Chem. Int. Ed.*, 2021, vol. 60, p. 1593. https://doi.org/10.1002/anie.202011902

7. Ghosh, A.K. and Brindisi, M., *J. Med. Chem.*, 2015, vol. 58, p. 2895. https://doi.org/10.1021/jm501371s

8. Akgul, O., Singh, S., Andring, J.T., McKenna, R., Sellieri, S., Carta, F., Angeli, A., and Supuran, C.T., *Eur. J. Med. Chem.*, 2021, vol. 212, p. 113035. https://doi.org/10.1016/j.ejmech.2020.113035

9. Fedorova, V.A., Kadyrova, R.A., Slita, A.V., Muryleva, A.A., Petrova, P.R., Kovalskaya, A.V., Lobov, A.N., Zileeva, Z.R., Tsypyshev, D.O., Borisевич, S.S., Tsypysheva, I.P., Vakhitova, J.V., and Zarubaev, V.V., *Nat. Prod. Res.*, 2019, p. 1. https://doi.org/10.1080/14786419.2019.1696791

10. Lukin, A., Kramer, J., Hartmann, M., Weizel, L., Hernandez-Olmos, V., Falahati, K., Burghardt, I., Kalinchenko, V., Bagnyukova, D., Zhirilo, N., Rasskazova, E.V., and Butov, G.M., *Russ. J. Org. Chem.*, 2020, vol. 56, p. 735. https://doi.org/10.1134/S1070428020050024

11. Kodani, S.D., Bhakta, S., Hwang, S.H., Pakhomova, S., Newcomer, M.E., Morisseau, C., and Hammock, B.D., *Bioorg. Med. Chem. Lett.*, 2018, vol. 28, p. 762. https://doi.org/10.1016/j.bmcl.2018.01.003

12. Kim, I.-H., Morisseau, C., Watanabe, T., and Hammock, B.D., *J. Med. Chem.*, 2004, vol. 50, p. 267. https://doi.org/10.1021/jo030514j

13. Burmistrov, V.V., Danilov, D.V., D’yachenko, V.S., Rasskazova, E.V., and Butov, G.M., *Russ. J. Org. Chem.*, 2020, vol. 56, p. 735. https://doi.org/10.1134/S1070428020050024

14. Burmistrov, V., Morisseau, C., D’yachenko, V., Karlov, D., Butov, G.M., and Hammock, B.D., *Bioorg. Med. Chem. Lett.*, 2020, vol. 30, p. 126908. https://doi.org/10.1016/j.bmcl.2019.126908

15. Burmistrov, V., Morisseau, C., Danilov, D., Harris, T.R., Dalinger, I., Vatsadze, I., Shkineva, T., Butov, G.M., and Hammock, B.D., *Bioorg. Med. Chem. Lett.*, 2015, vol. 25, p. 5514. https://doi.org/10.1016/j.bmcl.2015.10.066

16. Krátký, M., Štěpánková, Š., Vorčáková, K., and Vinšová, J., *Bioorg. Chem.*, 2018, vol. 80, p. 668. https://doi.org/10.1016/j.bioorg.2018.07.017

17. Krátký, M. and Vinšová, J., *Bioorg. Med. Chem.*, 2016, vol. 24, p. 1322. https://doi.org/10.1016/j.bmc.2016.02.004

18. Krátký, M., Jandourek, O., Baranayi, Z., Novotna, E., Stolaríkova, J., Bosze, S., and Vinsova, J., *Eur. J. Med. Chem.*, 2019, vol. 181, p. 111578. https://doi.org/10.1016/j.ejmech.2019.111578

19. North, E.J., Scherman, M.S., Bruhn, D.F., Scarborough, J.S., Maddox, M.M., Jone, V., Grzegorzewicz, A., Yang, L., Hess, T., Morisseau, C., Jackson, M., McNeil, M.R., and Lee, R.E., *Bioorg. Med. Chem.*, 2013, vol. 21, p. 2587. https://doi.org/10.1016/j.bmc.2013.02.028

20. Scherman, M.S., North, E.J., Jones, V., Hess, T.N., Grzegorzewicz, A.E., Kasagamic, T., Kim, I.-H., Merzlíkín, O., Laeenaerts, A.J., Lee, R.E., Jackson, M., Morisseau, C., and McNeil, M.R., *Bioorg. Med. Chem.*, 2012, vol. 20, p. 3255. https://doi.org/10.1016/j.bmc.2012.03.058

21. Brown, J.R., North, E.J., Hurdle, J.G., Morisseau, C., Scarborough, J.S., Sun, D., Korduláková, J., Scherman, M.S., Jones, V., Grzegorzewicz, A., Crew, R.M., Jackson, M., McNeil, M.R., and Lee, R.E., *Bioorg. Med. Chem.*, 2013, vol. 21, p. 5514. https://doi.org/10.1016/j.bmc.2013.07.034

22. Alsayed, S.S.R., Lun, S., Payne, A., Bishai, W.R., and Gunsosewoyo, H., *Bioorg. Chem.*, 2021, vol. 106, p. 104486. https://doi.org/10.1016/j.bioorg.2020.104486

23. Isenburgel, K., Ritter, H., Branscheid, R., and Kolb, U., *Macromol. Rapid Commun.*, 2010, vol. 31, p. 2121. https://doi.org/10.1002/marc.201000597

24. Wang, M., Zhang, Lu, Huo, X., Zhang, Z., Yuan, Q., Li, P., Chen, J., Zou, Y., Wu, Z., and Zhang, W., *Angew. Chem. Int. Ed.*, 2020, vol. 59, p. 20814. https://doi.org/10.1002/anie.202011527

25. Ozaki, S., *Chem. Rev.*, 1972, vol. 72, p. 457. https://doi.org/10.1021/cr60279a002

26. Skelly, P.D., Ray, Jr. W.J., and Timberlake, J.W., *J. Org. Chem.*, 1985, vol. 50, p. 267. https://doi.org/10.1021/jo00202a021

27. Sekova, I.V., Proshina, A.N., Ustinova, A.K., Ledneva, B.V., Fontina-Ageeva, E.V., Ashba, A.M., Bezuglov, V.V., and Bachurin, S.O., *Doklady Chem.*, 2018, vol. 478, p. 9. https://doi.org/10.1134/S0012500818010044
28. Palomero, O.E. and Jones, R.A., *Organometallics*, 2019, vol. 38, p. 2689.
 https://doi.org/10.1021/acs.organomet.9b00336
29. Fortman, G.C., Captain, B., and Hoff, C.D., *Organometallics*, 2009, vol. 28, p. 3587.
 https://doi.org/10.1021/om090004k
30. Blazek, V., Bregovic, N., Mlinaric-Majerski, K., and Basaric, N., *Tetrahedron*, 2011, vol. 67, p. 3846.
 https://doi.org/10.1016/j.tet.2011.03.096
31. Farooq, O., Wang, Q., Wu, A.-H., and Olah, G.A., *J. Org. Chem.*, 1990, vol. 55, p. 4282.
 https://doi.org/10.1021/jo00301a014
32. Butov, G.M., Burmistrov, V., and Saad, K.R., *Modern Org. Chem. Res.*, 2017, vol. 2, p. 124.
 https://doi.org/10.2260/mocr.2017.23005
33. Burmistrov, V., Morisseau, C., Harris, T.R., Butov, G., and Hammock, B.D., *Bioorg. Chem.*, 2018, vol. 76, p. 510.
 https://doi.org/10.1016/j.bioorg.2017.12.024
34. Butov, G.M., Burmistrov, V.V., and Pitushkin, D.A., *Russ. J. Org. Chem.*, 2017, vol. 53, p. 673.
 https://doi.org/10.1134/S1070428017050050
35. Davis, M., Dahl, J., and Carlson, R., *Synth. Commun.*, 2008, vol. 38, p. 1153.
 https://doi.org/10.1080/00397910701865926
36. Butov, G.M., Mokhov, V.M., Burmistrov, V.V., Saad, K.R., and Pitushkin, D.A., *Russ. J. Org. Chem.*, 2014, vol. 50, p. 1276.
 https://doi.org/10.1134/S1070428014090073
37. Boyer, J.H., Manimaran, T., and Wolford, L.T., *J. Chem. Soc. Perkin Trans. 1*, 1988, p. 2137.
 https://doi.org/10.1039/P19880002137
38. Shiryaev, A.K. and Kryslav, I.Yu., *Russ. J. Org. Chem.*, 2002, vol. 38, p. 1382.
 https://doi.org/10.1023/A:1021636704131
39. Derasp, J.S., Barbera, E.A., Seguin, N.R., Brzezinski, D.D., and Beauchemin, A.M., *Org. Lett.*, 2020, vol. 22, p. 7403.
 https://doi.org/10.1021/acs.orglett.0c02782
40. Dube, P., Nathel, N.F.F., Vetelino, M., Couturier, M., Abousafy, C.L., Pichette, S., Jorgensen, M.L., and Hardink, M., *Org. Lett.*, 2009, vol. 11, p. 5622.
 https://doi.org/10.1021/ol9023387
41. Yadav, A.K., Srivastava, V.P., and Yadav, L.D.S., *RSC Adv.*, 2014, vol. 4, p. 24498.
 https://doi.org/10.1039/c4ra03805c
42. Yoshimura, A., Luedtke, M.W., and Zhdankin, V.V., *J. Org. Chem.*, 2012, vol. 77, p. 2087.
 https://doi.org/10.1021/jo300007c
43. Bruffaerts, J., von, Wolff, N., Diskin-Posner, Y., Ben-David, Y., and Milstein, D., *J. Am. Chem. Soc.*, 2019, vol. 141, p. 16486.
 https://doi.org/10.1021/jacs.9b08942
44. Saha, D., Tailly, I.M., Naik, S., and Banerjee, P., *Chem. Commun.*, 2021, vol. 57, p. 631.
 https://doi.org/10.1039/D0CC07125K
45. Kimab, H.-K. and Lee, A., *Org. Biomol. Chem.*, 2016, vol. 14, p. 7345.
 https://doi.org/10.1039/C6OB01290F
46. Gilbert, A.K., Zhao, Y., Otteson, C.E., and Pluth, M.D., *J. Org. Chem.*, 2019, vol. 84, p. 14469.
 https://doi.org/10.1021/acs.joc.9b01873
47. Torrico-Vallejos, S., Erben, M.F., Hey-Hawkins, E., and Della Védova, C.O., *Tetrahedron Lett.*, 2011, vol. 52, p. 5352.
 https://doi.org/10.1016/j.tetlet.2011.08.027
48. Abdelazeem, A.H., Alqahtani, A.M., Omar, H.A., Bukhari, S.N.A., and Gouda, A.M., *J. Mol. Struct.*, 2020, vol. 1219, p. 128567.
 https://doi.org/10.1016/j.molstruc.2020.128567
49. Klimochkin, Yu.N., Moiseev, I.K., Vladyko, G.V., Korobchenko, L.V., and Boreko, E.I., *Pharm. Chem. J.*, 1991, vol. 25, p. 485.
 https://doi.org/10.1007/BF00772005
50. Klimochkin, Yu.N. and Moiseev, I.K., *Zh. Org. Khim.*, 1987, vol. 23, p. 2026.
51. Klimochkin, Yu.N., Moiseev, I.K., Abramov, O.V., Vladyko, G.V., Korobchenko, L.V., and Boreko, E.I., *Pharm. Chem. J.*, 1991, vol. 25, p. 489.
 https://doi.org/10.1007/BF00772006
52. Klimochkin, Yu.N., Ivleva, E.A., and Shiryaev, V.A., *Russ. J. Org. Chem.*, 2021, vol. 57, p. 355.
 https://doi.org/10.1134/S10704280210300052
53. Koikov, L.N., Lisitsa, E.A., Alekseeva, N.A., Turchin, K.F., and Filipenko, T.Ya., *Chem. Heterocycl. Compd.*, 1992, vol. 28, p. 1289.
 https://doi.org/10.1007/BF00532080
54. Oliver, J.E. and Stokes, J.B., *J. Med. Chem.*, 1970, vol. 13, p. 779.
 https://doi.org/10.1021/jm00298a060