Insights Into the Pathogenesis of Sweet’s Syndrome

Michael S. Heath* and Alex G. Ortega-Loayza
Oregon Health and Science University, Department of Dermatology, Portland, OR, United States

Sweet’s syndrome, also known as Acute Febrile Neutrophilic Dermatosis, is a rare inflammatory condition. It is considered to be the prototype disease of neutrophilic dermatoses, and presents with acute onset dermal neutrophilic lesions, leukocytosis, and pyrexia. Several variants have been described both clinically and histopathologically. Classifications include classic Sweet’s syndrome, malignancy associated, and drug induced. The cellular and molecular mechanisms involved in Sweet’s syndrome have been difficult to elucidate due to the large variety of conditions leading to a common clinical presentation. The exact pathogenesis of Sweet’s syndrome is unclear; however, new discoveries have shed light on the role of inflammatory signaling, disease induction, and relationship with malignancy. These findings include an improved understanding of inflammasome activation, malignant transformation into dermal infiltrating neutrophils, and genetic contributions. Continued investigations into effective treatments and targeted therapy will benefit patients and improve our molecular understanding of inflammatory diseases, including Sweet’s syndrome.

Keywords: acute febrile neutrophilic dermatosis, neutrophilic dermatoses, malignancy, drug induced, autoinflammation, clonality, hematology

INTRODUCTION

Sweet’s syndrome (SS) was originally described as “acute febrile neutrophilic dermatosis” by Sweet, (1). His original report was based on the clinical-pathologic presentation of 8 women who presented with acute onset fever, leukocytosis and erythematous, tender plaques with dense neutrophilic infiltration in the dermis. These patients had no evidence of infection and had rapid response to systemic corticosteroids. As additional reports of this newly described pathologic entity surfaced, the syndrome was renamed to recognize Dr. Sweet (2). Subsequent to these initial accounts, thousands of cases have been described in literature. This led to a better understanding and recognition of a multitude of clinical variants and SS classifications. Unfortunately, due to the rarity of SS, epidemiologic information including incidence is unknown.

The traditional description of tender erythematous plaques and nodules remains the prototypical presentation. However, clinical variants including localized neutrophilic dermatosis of the dorsal hands, bullous, subcutaneous, cellulitic, and necrotizing lesions have been reported (3–7). Extracutaneous manifestations have also been reported including involvement with the central nervous system, internal organs and musculoskeletal system (8–10). Histopathologic variants include histiocytoid SS and SS with vasculitis which has been hypothesized to be a secondary reaction (11, 12).
SS is one pathologic entity within the broader neutrophilic dermatoses classification. Neutrophilic dermatoses include SS, pyoderma gangrenosum, neutrophilic eccrine hidradenitis, and Behçet's disease among others. Each disease has some overlapping pathophysiology with an autoimmune inflammatory component made up of predominately neutrophilic infiltrate. Each entity is distinguished by disease chronicity, tissue involvement, and clinical appearance. Understanding the pathogenesis of SS is important from a diagnostic and therapeutic perspective. In a time of revolution in immunology and targeted therapy the pathways discovered in SS can have broader implications in additional autoimmune diseases as well as malignancy.

DISEASE CLASSIFICATIONS AND ASSOCIATIONS

SS has been associated with a multitude of diseases, malignancies and medications at varying frequencies (Table 1). Given the unpredictable nature of the disease, it has been difficult to reach conclusions regarding true associations and causations. The temporal relationships and frequency of concurrent processes has led to the recognition of several pathologic relationships. Some authors agree that there are three distinct variants which are important to distinguish, given differential work up and management recommendations. These three subtypes are Classic SS, Malignancy Associated SS, and Drug Induced SS and will be discussed individually and are summarized in Table 1.

Classic Sweet's Syndrome (Idiopathic Sweet's Syndrome)

Classic SS is responsible for most SS cases and has a predilection for women. Initial presentation most frequently occurs between age 30 and 60 years (517), but has been reported in multiple pediatric patients including neonates in the first 10 days of life (518). Although considered idiopathic, it has been reported in association with infections, pregnancy, and inflammatory and autoimmune disorders among others (Table 1) (13, 30, 330, 435).

Diagnostic criteria for classic SS was proposed by Su and Liu and updated by von den Driesch (254, 519). Diagnosis is based on fulfilling both major criteria and two of the four minor criteria which are presented in Table 2.

Drug Induced Sweet's Syndrome

The most commonly reported drug associations are Granulocyte-colony stimulating factor (G-CSF), Azathioprine, and All-trans retinoic acid (ATRA). Most other etiologies are infrequent (Table 1). Diagnostic criteria for drug induced SS was suggested by Walker and Cohen (250). It requires all five criteria summarized in Table 3 be met to establish the diagnosis.

Malignancy-Associated Sweet's Syndrome

It has been suggested that the first reported case of malignancy associated SS was published by Costello 9 years prior to Sweet's disease defining paper (520). Malignancy, both solid tumor and hematologic, have been reported in a large proportion of SS cases (Table 1) (521). Specific SS characteristics may represent an increased risk of malignancy, including subcutaneous and histiocytoid histopathologic variants (522, 523). Diagnostic criteria for malignancy associated SS is the same as classic SS, except for the substitution of “an underlying malignancy” as a minor criterion rather than “an inflammatory disease, pregnancy, vaccination or infection” (254, 519).

PATHOGENESIS

Neutrophil Proliferation and Maturation

Just as the associated condition and etiology of SS varies considerably, the pathogenesis is multifactorial and likely non-uniform between subtypes of the disease. The inciting activator of SS, especially classic SS, has not been determined, although cases of hematologic malignancy and initiation of granulocyte colony stimulating factors (G-CSF), all-trans retinoic acid (ATRA), and fms-like tyrosine kinase-3 (FLT3) inhibitors offer a glimpse into one mechanism. G-CSF acts within the bone marrow, serum and tissue, causing neutrophil differentiation, maturation and activation. As a response to pathogens, G-CSF is a part of the innate immune system signaling which is maladaptively elevated in inflammatory states (524). In cases of classic SS, patients with an underlying infection or autoimmunity, the pathologic increase in colony stimulating factors may be the causative agent (525, 526). Endogenously elevated G-CSF levels have been reported in multiple cases of SS, with elevations in serum concentrations correlating with clinical disease severity (127, 524). In vitro, SS neutrophils have high rates of apoptosis when isolated. Conversely, when cultured with serum from SS patients, the apoptosis rate is significantly decreased and neutrophil survival is significantly greater (524). This serum enhanced survival suggests elevated G-CSF among other circulating factors contribute to the disease. Both solid tumor and hematologic malignancies can produce colony stimulating factors. In malignancy-associated SS, this paraneoplastic phenomenon might represent an inciting factor in disease progression (127, 527–529). The frequency of drug-induced SS from the exogenous use of G-CSF further reinforces the causative role of G-CSF in SS (517, 530–533). After initiation of G-CSF therapy in SS associated with hematologic malignancies, it is theorized that G-CSF induces differentiation and maturation of leukemic cells which then home to the skin (55, 534). Similarly, ATRA induces the differentiation of promyelocytes in acute promyelocytic leukemia (APL). ATRA has been associated with developing SS in APL and the mature dermal neutrophils may be progeny from differentiated malignant cells. This is evidenced by sequential SS lesional biopsies showing gradual maturation of neutrophils in the dermis mirroring neutrophil maturation in the peripheral blood (181).

Malignant Transformation

Investigations have shown neutrophil clonality within SS lesions suggestive of either hematologic malignancy transformation into mature dermal neutrophils or localized non-malignant neutrophil stemming from a common dysfunctional progenitor (535, 536). Analysis with fluorescent in situ hybridization have shown the SS lesional neutrophils exhibit the same genetic abnormalities as the underlying
Autoimmune and autoinflammatory conditions	Infectious etiologies	Malignancy associated SS	Drug induced SS
Ulcerative Colitis	NTM	AML	G-CSF or GM-CSF
Crotz's Disease	HIV	MDS	Azathioprine
Erythema nodosum	TB	CML	ATRA
Sarcoidosis	NTM	Multiple myeloma	Hydralazine
Relapsing	Gastroenteritis	Hairy Cell leukemia	Bortezomib
Polychondritis			
Vasculitis	Varicella Zoster Virus	CML	Tetracyclines
PG	Cytomegalovirus	Hodgkin’s lymphoma	NSAI
MSO	Hepatitis B Virus	Non-Hodgkin’s lymphoma	Azacitidine
Behcet’s disease	Parvovirus B19	CNL	Vaccination
Ankylosing spondylitis	Chlamydial Infection	ALL	
Rheumatoid arthritis	Hepes Simplex Virus	Juvenile MML	Lenalodromide
SOLGE	Bacterial Endocarditis	Juvenile OML	
Subacute thyroiditis	Cellulitis	EATL	
Hashimoto’s thyroiditis	Capnocytophaga	DLBCL	
Autoimmune hepatitis	Biliary sepsis	DHLL	
Bronchidiosis obliterans	Dermatophyte	CTCL	
Cryptogenic pneumonias	Francissella tularensis	B cell lymphoma	
Multiple sclerosis	Glandular Tulariesia		
Sjogren’s syndrome	Helicobacter pylori		
Unknown arthritis	HG anaplasmosis		
Aseptic meningitis	Klebsiella cystitis		
Autoimmune cholangitis	Pasteurella multocida		
Celiac disease	PCP		
Cryptogenic cirrhosis	Coccidioidomycosis		
Dermatomyositis	Salmonella typhimurium		
Dressler’s Syndrome	Sporotrichosis		
FMF			
Granuloma annulare	Pregnancy		
Grave’s Disease	Trauma		
Hypothyroidism	Radiation therapy		
IHCP	Photoinduced		

Solid Tumor Malignancies	Isotestin		
Breast carcinoma	368, 374		
Prostate Cancer	375		
Oral SCC	376		
Cervical cancer	377		
Gastro cancer	378		
Lung cancer	379		
Melanoma	380		
Ovarian carcinoma	381		
Testicular cancer	382		
Bladder Cancer	383		
Thyroid Carcinoma	384		
Adrenal cortex carcinomae	385		

Other			
Abacavir	411		
APAP-codeine	412		
Allopurinol	413		
Darapril/trametinib	414		
Carbamazepine	415		
Dexamethasone	416		
Dibucaine	417		
Diltiazem	418		
Dapril	419		
Dabrafenib/trametinib	420		
Carbamazepine	421		
Carbamazepine	422		
Carbazemipine	423		
Carbazemipine	424		
Carbazemipine	425		
Carbazemipine	426		
Carbazemipine	427		
Carbazemipine	428		
Carbazemipine	429		
Carbazemipine	430		
Carbazemipine	431		
Carbazemipine	432		
Carbazemipine	433		
Carbazemipine	434		
Carbazemipine	435		
Carbazemipine	436		
Carbazemipine	437		
Carbazemipine	438		
Carbazemipine	439		
Carbazemipine	440		
Carbazemipine	441		
Carbazemipine	442		
Carbazemipine	443		
Carbazemipine	444		
Carbazemipine	445		
Carbazemipine	446		
Carbazemipine	447		
Carbazemipine	448		
Carbazemipine	449		
Carbazemipine	450		
Carbazemipine	451		
Carbazemipine	452		
Carbazemipine	453		
Carbazemipine	454		
Carbazemipine	455		
Carbazemipine	456		
Carbazemipine	457		
Carbazemipine	458		
Carbazemipine	459		
Carbazemipine	460		
Carbazemipine	461		
Carbazemipine	462		
Carbazemipine	463		
Carbazemipine	464		
Carbazemipine	465		
Carbazemipine	466		
Carbazemipine	467		

(Continued)
Classic SS	Infectious etiologies	Malignancy associated SS	Drug induced SS				
Autoimmune and autoinflammatory conditions							
Myasthenia gravis	(468)	Chronic Lymphedema	(469–474)	Osteosarcoma	(475)	Infliximab	(476)
Pigmented villonodular synovitis	(477)	Fanconi Anemia	(478–481)	Pheochromocytoma	(482)	Ketoconazole	(483)
Pemphigus vulgaris	(484)	Polycythemia Vera	(485–489)	Tonsil cancer	(490)	Mesalazine	(491)
Still's disease	(492)	Myelofibrosis	(167, 459, 468, 493–497)	Liposarcoma	(498)	Hormonal IUD	(499)
Subacute necrotizing lymphadenitis	(500)	Other Immunodeficiency	(31, 501–503)	Gallbladder adenocarcinoma	(504)	Mitoxantrone	(507)
SAPHO	(505, 506)			Esophageal Adenocarcinoma	(507)	Nitrozincarnitine	(508)
Autoimmune thyroiditis	(509)			Rectal adenocarcinoma	(510)	Norfloxacin	(511)
Connective tissue disorder	(511)					Ofloxacin	(512)

High proportion of reported Sweet's syndrome cases associated with acute promyelocytic leukemia also received ATRA.

ALL, Acute lymphoblastic leukemia; AML, Acute myeloid leukemia; APAP, Acetaminophen; APL, Acute promyelocytic leukemia; ATRA, All-trans retinoic acid; CGD, Chronic granulomatous Disease; CLL, Chronic lymphocytic leukemia; CML, Chronic myelogenous leukemia; CNL, Chronic neutrophilic leukemia; CTCL, Cutaneous T-cell lymphoma; CVID, Common Variable Immunodeficiency; DLBCL, Diffuse large B-cell lymphoma; DHL, Diffuse histiocytic lymphoma; EATL, Enteropathy-associated T cell lymphoma; FMF, Familial Mediterranean Fever; G-CSF, Granulocyte-colony stimulating factor; GM-CSF, Granulocyte macrophage-colony stimulating factor; HIV, Human Immunodeficiency Virus; HG, Human granulocytic; IHCP, idiopathic hypertrophic cranial pachymeningitis; IL-2, Interleukin-2; IUD, Intrauterine device; MDS, Myelodysplastic syndrome; MML, myelomonocytic leukemia; MPOA, Methilin-resistant Staphylococcus aureus; MSO, Multifocal sterile osteomyelitis; NSAIDs, Non-steroidal anti-inflammatory drug; NTM, Non-tuberculous mycobacterium; PCP, Pneumocystis carinii; PG, Pyoderma Gangrenosum; SAPHO, Synovitis, acne, pustulosis, hyperostosis, and osteitis; SCC, Squamous cell carcinoma; SCLE, Subacute cutaneous lupus erythematosus; SLE, Systemic Lupus Erythematosus; TB, Tuberculosis; URI, Upper respiratory infection.
malignant myeloblasts in serum and bone marrow, suggesting a clonal transformation into dysplastic neutrophils in the dermis (49, 55, 534, 537, 538). Recently, examination of the bone marrow and SS lesional tissue in a patient with concurrent acute myeloid leukemia (AML) with single nucleotide polymorphism array and next generation sequencing revealed FLT-3 gene mutations in infiltrating mature neutrophils and neoplastic progenitor cells (539). In one case series, FLT-3 mutations have been detected in 39% of patients with AML and SS and FLT-3 inhibitors are a known SS inducer (49, 540, 541). This gene encodes a receptor tyrosine kinase normally present on hematopoietic stem cells within the bone marrow and regulates myeloid progenitor cell proliferation, survival, and differentiation (542). In AML the FLT-3 mutations result in persistent activation. The identification of this mutation in dermal neutrophils and leukemic cells suggests a common progenitor origin.

Induction and Stimulus

Given the variety of underlying conditions including medications, infections, and malignancy associated with a similar clinicopathologic presentation in SS, one unifying hypothesis is that SS is a hypersensitivity reaction. Immune reaction to drugs, bacterial, viral, or tumor antigens may initiate a cytokine cascade resulting in SS (3). The efficacy of systemic corticosteroids and resolution of SS with treatment of underlying disease with antibiotics or chemotherapy supports this hypothesis, but there is a lack of evidence showing immune-complexes, immunoglobulins or changes in complement consistent with a hypersensitivity reaction (11, 519, 543).

Photoinduction and Koebner phenomenon have also been suggested as possible inciting etiologies in SS and may explain the distribution and localization to the skin (544). Photoinduction of SS has been documented and confirmed in select patients with experimental phototesting re-challenge (464, 545–549). While not fully elucidated, a proposed mechanism is founded on the immunomodulating effects of light. The most notable concept involves the pro-inflammatory potential of ultraviolet B in activating neutrophils and inducing the production of TNF-α and interleukin-8 (548, 550, 551). The formation of SS lesions in response to localized trauma has been demonstrated by lesions developing at sites of radiation therapy, surgery, burns, tattoos, and lymphedema (442–445, 454–457, 472, 474).

Cutaneous Localization

Localization of neutrophils to the dermis in SS is complex and theorized mechanisms are dependent on underlying etiology. Normal neutrophils require TNF-α activated endothelium which leads to neutrophil rolling and attachment via interdependent interactions with selectins, intercellular cell adhesion molecules (ICAM), and integrins (552). These surface linking molecules in concert with inflammatory molecules, including TNF-α and IL-1β, result in normal neutrophil extravasation into tissue. In hematologic malignancy, myeloid blast cells have increased expression of surface adhesion receptors and can induce non-activated endothelial cell adhesion to express receptors leading to accumulation of leukemic cells (553). These cells further promote recruitment, accumulation and tissue invasion by secreting inflammatory cytokines including TNF-α and IL-1β (553). Leukemia cutis, a paraneoplastic tissue invasion of leukemic cells, is well-recognized and has been coexistent in patients with SS and within SS lesions (554–556). Potential mechanisms include dysfunctional malignant cells activating adhesions and creating an inflammatory environment suitable for innocent bystander neutrophils to extravasate, creating SS lesions. Alternatively, cancer therapy, or paraneoplastic stimulatory factors may result in the maturation of leukemia cutis cells into the mature neutrophils within SS lesions. In non-malignant SS associated with other inflammatory conditions, a similar pathologic inflammatory environment could be responsible for localization and infiltration of neutrophils.

Dysfunctional Immune Mediators

The role of a dysfunctional innate immune response in SS is well-established, but evidence is emerging that the adaptive immune system has a significant role. In classic SS, lymphocytes, specifically Type 1 helper T cells (Th1), have been theorized to be responsible for neutrophil activation and localization. This is evidenced by elevated serum levels of Th1 cytokines including IL-1α, IL-1β, IL-2, and IFN-γ (557). Further investigation utilizing immunohistochemical stains has shown a significant presence of these Th1 cytokines and a relative reduction of

TABLE 2 | Diagnostic Criteria for Classic Sweet’s Syndrome.

MAJOR CRITERIA
1. Abrupt onset of painful erythematous plaques or nodules
2. Histopathologic evidence of a dense neutrophilic infiltrate without evidence of leukocytoclastic vasculitis

MINOR CRITERIA
1. Fever >38°C
2. Associated with inflammatory disease or pregnancy or preceded by upper respiratory infection, gastrointestinal infection, or vaccination
3. Excellent response to treatment with systemic glucocorticoids or potassium iodide
4. Abnormal laboratory values at presentation (three of four of the following):
a. Erythrocyte sedimentation rate >20 mm/h
b. Positive C-reactive protein
c. >8,000 leukocytes per microliter
d. >70% neutrophils

TABLE 3 | Diagnostic Criteria for Drug Induced Sweet’s Syndrome.

| 1. Abrupt onset of painful erythematous plaques or nodules |
| 2. Histopathologic evidence of a dense neutrophilic infiltrate without evidence of leukocytoclastic vasculitis |
| 3. Fever >38°C |
| 4. Temporal relationship between drug ingestion and clinical presentation, or temporarily-related recurrence after oral challenge |
| 5. Temporally-related resolution of lesions after drug withdrawal or treatment with systemic corticosteroids |

Type 2 helper T cell (Th2) markers in SS dermal lesions. This suggests hyperexpression of Th1 cells and a comparative suppression of Th2 cells (137, 558, 559). Th1 cells secrete TNF-α and INF-γ, which are potent neutrophil recruiters and activators. Proinflammatory T helper 17 (Th17) cells and related cytokines have also been identified as a pathologic agent in SS (559–562). The role of Th17 cells is most well studied in one of the most prevalent autoinflammatory diseases: psoriasis (563). Th17 produces multiple inflammatory molecules, including interleukin 17 (IL-17). IL-17 works synergistically with TNF α, IL-1β, and IFN-γ to create an inflammatory response and recruits and localizes neutrophils by inducing adhesion molecules, and chemoattractants such as IL-8 (564). Interactions with TNF α and IL-17 induces basement membrane remodeling via pericytes and neutrophils (565). In this SS driven remodeling process, matrix metalloproteinases (MMPs) are significantly upregulated. Upon inhibition of MMP-3, there is a reduction of neutrophil chemotaxis and extracellular matrix degradation (565). The production of G-CSF and GM-CSF are enhanced by IL-17, which leads to activation and proliferation of neutrophils (566, 567). Additional pro-inflammatory markers elevated in SS include: CD40/CD40 ligand, CD56, G-CSF, myeloperoxidase, IL-5, IL-8 IL-12, IL-13, L-selectin, MMP-2, MMP-9, Sialic acid-binding immunoglobulin-type lectin (Siglec) 5, Siglec 9, Transforming growth factor β (TGF-β), TIMP-1, TNF α, and VEGF (127, 524, 558–560, 562, 568, 569). Significant levels of CD56, a Natural killer cell marker, CD40/CD40 ligand, and IFN-γ may indicate the role of antigen presenting cells, as well as a cross-link between the robust innate and adaptive immune response in SS (570). Further evidence of adaptive immunity involvement is suggested by SS remission following treatment with therapies targeting adaptive cell processes including corticosteroids, cyclosporine, IVIG, rituximab, and vedolizumab (121, 132, 571–576). Table 4 summarizes cytokines and inflammatory markers documented in SS. Figure 1 shows the proposed multifactorial mechanism of disease.

Genetic Contributions

There is a growing body of knowledge regarding the genetic contributions in neutrophilic dermatoses including SS. Genetic susceptibility to the SS variant, neutrophilic dermatosis of the dorsal hands, in HLA-B54 positive Japanese individuals has been reported (577). Additional evidence of genetic co-susceptibility and possible mechanisms of SS have been observed in synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome, chronic recurrent multifocal osteomyelitis (CRMO), and Majeed syndrome (289, 506, 578, 579). There have been several links between SS and Familial Mediterranean fever (FMF) (425, 580). FMF is an inherited disease in which mutations in the MEFV gene. The MEFV gene is the causative defect identified in FMF, and it is responsible for the expression of pyrin (581). In a non-pathologic state, pyrin, an intracellular pattern recognition receptor, forms the inflammasome complex in response to infections or changes in cellular homeostasis, leading to splicing and secretion of IL-1β (581, 582). Mutations to MEFV as seen in FMF and neutrophilic dermatoses leads to a pathogenic inflammatory response. FMF and SS have coexisted in the same patients and genetic analysis has revealed heterozygous mutations of MEFV in SS (425, 580).

Mutations in isocitrate dehydrogenase 1 (IDH1) have been identified as a possible connection to SS pathogenesis in malignancy (583). IDH1 catalyzes reactions leading to alterations in histones and DNA, causing differential gene expression (584). In myeloproliferative diseases mutations to IDH1 leads to epigenetic chaos as a result of DNA hypermethylation, which leads to abnormal transcription of numerous genes (583). Protein tyrosine phosphatase non-receptor type 6 (PTPN6) plays an essential role in the proliferation and signaling of cells within the immune system (585). Mutations leading to the disruption of normal function of PTPN6 have been identified in hematoologic malignancies and neutrophilic dermatoses in mice models (586–590). Alteration of PTPN6 has also been identified in SS patients through DNA sequencing analysis (591). The evidence to date suggests that SS is a polygenic process but dysfunctional activation of the inflammasome and IL-1β pathway offers a unifying mechanism.

Model of Pathogenesis

The pathogenesis of SS is complex and multifactorial, the different components discussed do not provide a unifying pathway. The most complete model is within the subset of SS patients with hematoologic malignancies. The pre-existing myeloid dysfunction and disruption
in normal cytokine and stimulating factors provide the environment necessary for aberrant neutrophil activation and inflammation. When patients with hematologic malignancies undergoing treatment develop SS a proposed mechanism is transformation and maturation of dysfunction leukemic cells which continue to exhibit inappropriate activity. In classic SS and drug-induced SS, an inciting stimulus such as an antigen in an individual with a genetic predisposition likely creates a similar pro-inflammatory state resulting in SS. The rarity of SS and the lack of robust experimentation is a major restraint in understanding the disease pathogenesis.

TREATMENT APPROACHES

Management of SS is partially reliant on the underlying association, but given the severe presentation and possibility of non-modifiable etiology, prompt treatment is usually warranted (592). In drug induced SS, identification and removal of the offending agent is beneficial but does not negate the need for treatment. First line treatments for SS include corticosteroids and other agents such as potassium iodide or colchicine. Second line agents for SS include indomethacin, clofazimine, cyclosporin, and dapsone (592, 593). The effectiveness of these medications with differential mechanisms of action highlights the role of both adaptive and innate cells in the pathogenesis of SS (594–596). With advances in our understanding of the pathophysiology of neutrophilic dermatoses, especially the role of TNF-α and IL-1β, the use of targeted therapy with IL-1 and TNF-α inhibitors has been effective (323, 593, 597–603). There have been reports of several novel treatments for SS, including granulocyte and monocyte adsorption apheresis, but due to the rarity of SS and the effectiveness of established treatments there have been limited investigations into these alternative treatments (604).

CONCLUSIONS AND FUTURE DIRECTIONS OF RESEARCH

Over the last half century, SS has retained its defining characteristics while medical advances and scientific discovery have led to a better understanding of disease mechanisms and associations. The clinical similarity of SS with other neutrophilic driven autoinflammatory entities is challenging in clinical grounds as the diagnostic criteria is not applicable in atypical presentations or overlapping autoinflammatory dermatoses. Relations with medications, inflammatory diseases, and malignancy have been established and expanded on. Dermal neutrophil clonality and transformation of malignant myeloid progenitors into infiltrating neutrophils provides evidence for an etiology in myeloproliferative disease and offers insight into future directions of research. Investigations into immunologic signaling pathways have improved our understanding of the interrelationships between inflammation and disease pathogenesis. The involvement of IL-17, IL-1β, and inflammasome activation are of great interest in neutrophilic dermatoses including the utilization of targeted therapies. As this pathway is ubiquitous throughout inflammatory processes, an emphasis on better understanding its mechanism will be paramount to advances in not only SS but throughout medicine. As genetic analysis and gene profiling techniques are revolutionized and optimized, new discoveries on the role of genetic susceptibility, heritability, and more specific markers of neutrophilic dermatoses will be on the horizon.

AUTHOR CONTRIBUTIONS

MH and AO-L conceived the idea for this work and performed the literature review on the subject. MH compiled the data with AO-L oversight. MH and AO-L wrote the manuscript and finalized the published version.
REFERENCES

1. Sweet R. An acute febrile neutrophilic Dermatosts. Br J Dermatol. (1964) 76:349–56. doi:10.1111/j.1365-2133.1964.tb14541.x
2. Howard WC, A. BG, H. CR. Recurrent neutrophilic dermatosis of the face—a variant of Sweet’s Syndrome. Br J Dermatol. (1968) 80:806–10. doi:10.1111/j.1365-2133.1968.tb11950.x
3. Voelter-Mahlknecht S, Bauer J, Metzler G, Fierlbeck G, Rassner G. Bullous variant of Sweet's syndrome. Int J Dermatol. (2005) 44:946–7. doi:10.1111/j.1365-4632.2004.02287.x
4. Cohen PR. Subcutaneous Sweet's syndrome: a variant of acute febrile neutrophilic dermatosis that is included in the histopathologic differential diagnosis of neutrophilic panniculitis. J Am Acad Dermatol. (2005) 52:927–8. doi:10.1016/j.jaad.2005.03.001
5. Surory AM, Pelivani N, Hegi I, Bueitikker U, Beltraminni H, Borradori L. Giant cellulitis-like Sweet Syndrome, a new variant of neutrophilic dermatosis. JAMA Dermatol. (2013) 149:79–83. doi:10.1001/j.amadermatol.548
6. Kroschinsky D, Alloo A, Rothschild B, Cummins J, Tan J, Montecino R, et al. Necrotizing Sweet syndrome: a new variant of neutrophilic dermatosis mimicking necrotizing fasciitis. J Am Acad Dermatol. (2012) 67:945–54. doi:10.1016/j.jaad.2012.02.024
7. Paparone PP, Paparone PA, Senyatsou RY. Neutrophilic dermatosis of the dorsal hand. Wounds. (2013) 25:148–52.
8. Noda K, Okuma Y, Fukae J, Fujishima K, Goto K, Sadamasa H, et al. Sweet's syndrome associated with encephalitis. J Neurol Sci. (2001) 188:95–7. doi:10.1006/jnsk.2001.50541-X
9. Edwards TC, Stapleton FB, Bond MJ, Barrett FF. Sweet's syndrome with multifocal sterile osteomyelitis. Am J Dis Child. (1960) 140:817–8. doi:10.1001/archpedi.1960.02140220099042
10. Fernandez-Bussy S, Labara G, Cabello F, Cabello H, Folch E, Majid A. Sweet’s syndrome with pulmonary involvement: case report and literature review. Respir Med Case Rep. (2012) 6:16–9. doi:10.1016/j.rmrcc.2012.08.004
11. Malone JC, Sone SP, Willis-Frank LA, Fearneyhough PK, Lear SC, Goldsmith LJ, et al. Vascular inflammation (vasculitis) in sweet syndrome: a clinicopathologic study of 28 biopsy specimens from 21 patients. Arch Dermatol. (2002) 138:345–9. doi:10.1001/archderm.138.3.345
12. Malheiros AP, Teixeira MG, Takahashi MD, de Almeida MG, Kiss DR, P. Sweet's syndrome associated with non-tuberculous mycobacterial infection: a case report and review of the literature. BMJ Case Rep. (2013) 25:148–6. doi:10.1111/j.1572-0241.2007.01316.x
13. Malheiros AP, Teixeira MG, Takahashi MD, de Almeida MG, Kiss DR. Necrotizing Sweet syndrome: a new variant of neutrophilic dermatosis. J Am Acad Dermatol. (2013) 69:281–90. doi:10.1016/j.jaad.2012.02.024
14. Chen HH, Hsiao CH, Chiu HC. Successive development of cutaneous infection with Mycobacterium tuberculosis in a patient with myelodysplastic syndrome and Sweet syndrome. J Med Assoc Thailand. (2004) 87:567–72.
15. Agarwal AK, Chughtai M, Jabeen A, Ansari S, Sultana R. Sweet's syndrome associated with disseminated nontuberculous mycobacterial infection leading to the diagnosis of adult-onset immunodeficiency. J Am Acad Dermatol. (2014) 71:e20–2. doi:10.1016/j.jaad.2014.01.855
16. Juan CK, Shen JL, Yang CS, Liu KL, Yen CY. Sweet’s syndrome associated with Mycobacterium kansasii infection in an immunocompetent woman. J der Deutschen Dermatol Gesellschaft. (2015) 13:921–3. doi:10.1111/ddg.12635
Heath and Ortega-Loayza Sweet's Syndrome Pathogenesis

40. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

41. Chetchoisakd P, Kiertiburanakul S, Mootsitakpun P, Assanasen S, Chaiwirth R, Anunnatissiri S. Disseminated nontuberculous mycobacterial infection in patients who are not infected with HIV in Thailand. Clin Infect Dis. (2007) 45:421–7. doi: 10.1086/520300

42. Hibiya K, Miyagi K, Tamayose M, Nabeya D, Kinjo T, Takahama S, et al. Does infections with disseminated Mycobacterium avium complex precede sweet's syndrome? A case report and literature review. Int J Mycology. (2017) 6:336–43. doi: 10.4103/ijmy.ijmy_172_17

43. Cho KH, Han KH, Kim SW, Youn SW, Youn JI, Kim BK. Neutrophilic inflammatory lesions in a patient with acute myelogenous leukemia. J Dermatol. (2006) 33:65–8. doi: 10.1111/j.1346-8138.2005.00608-8

44. Heer-Sonderhoff AH, Arning M, Wehmeier A, Sudhoff T, Zumdick M. Structural chromosomal abnormality of 1q in acute leukemia with Sweet's syndrome. Cancer Genet Cytogenet. (2002) 139:84–5. doi: 10.1016/S0165-4608(02)00608-8

45. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

46. Colovic M, Jankovic G, Suvajdzic N, Nikolic M. Structural chromosomal abnormality of 1q in acute leukemia with Sweet's syndrome. Cancer Genet Cytogenet. (2002) 139:84–5. doi: 10.1016/S0165-4608(02)00608-8

47. Heer-Sonderhoff AH, Arning M, Wehmeier A, Sudhoff T, Zumdick M. Structural chromosomal abnormality of 1q in acute leukemia with Sweet's syndrome. Cancer Genet Cytogenet. (2002) 139:84–5. doi: 10.1016/S0165-4608(02)00608-8

48. Hibiya K, Miyagi K, Tamayose M, Nabeya D, Kinjo T, Takahama S, et al. Does infections with disseminated Mycobacterium avium complex precede sweet's syndrome? A case report and literature review. Int J Mycology. (2017) 6:336–43. doi: 10.4103/ijmy.ijmy_172_17

49. Paydas S, Sahin B, Alpay R. Bilateral ear Sweet's syndrome in a case with relapse acute myeloid leukemia. J Dermatol. (2014) 41:475–9. doi: 10.1111/cid.12305

50. Ortega-Loayza S. Neutrophilic dermatosis in a patient with myelodysplastic syndrome developing during treatment with all-trans retinoic acid in a child with acute myelogenous leukemia. J Pediatr Hematol Oncol. (2001) 23:794–7. doi: 10.1097/00043426-199608000-00009

51. Yang TH, Shin HS. Sweet's syndrome with abscess-like lesions in a child with acute myelogenous leukemia. J Pediatr Hematol Oncol. (2001) 24:83–6. doi: 10.1016/S0145-2126(99)00140-X

52. Magro CM, De Moraes E, Burns F. Sweet's syndrome associated with myeloid malignancy. Clin Exp Dermatol. (1997) 22:269–73. doi: 10.1111/j.1365-2230.1997.tb01993.x

53. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

54. Hibiya K, Miyagi K, Tamayose M, Nabeya D, Kinjo T, Takahama S, et al. Does infections with disseminated Mycobacterium avium complex precede sweet's syndrome? A case report and literature review. Int J Mycology. (2017) 6:336–43. doi: 10.4103/ijmy.ijmy_172_17

55. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

56. Yoon TY, Ahn GB, Yang TH, Shin HS. Sweet's syndrome with abscess-like lesions in a child with acute myelogenous leukemia. J Pediatr Hematol Oncol. (2001) 24:83–6. doi: 10.1016/S0145-2126(99)00140-X

57. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

58. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

59. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

60. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

61. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

62. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

63. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

64. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

65. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

66. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

67. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

68. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

69. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

70. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

71. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

72. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

73. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

74. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

75. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

76. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

77. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

78. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

79. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

80. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.

81. Hsiao GH, Chiu HC. Atypical mycobacterial cervical lymphadenitis associated with Sweet's syndrome. Acta Dermato-Venereol. (1995) 75:237–9.
Sweet's Syndrome Pathogenesis

100. Mustafa NM, Lavizzo M. Sweet's syndrome in a patient with Crohn's disease: a case report. J Med Case Rep. (2008) 2:221. doi: 10.1186/1752-1947-2-221

101. Becuwe C, Delaporte E, Colombel JF, Piette F, Cortot A, Bergend H. Sweet's syndrome associated with Crohn's disease. Acta Dermato Venerologica. (1999) 69:444–5.

102. Kermott D, Gawkrodger DJ, Wilson G, Hunter JA. Sweet's syndrome in Crohn's disease. BMJ. (1998) 297:1513–4. doi: 10.1136/bmj.297.6662.1513-a

103. Hilliquin P, Marre JP, Cormier C, Renoux M, Menkes CJ, Puissant A. Sweet's syndrome and monarthritis in a human immunodeficiency virus-positive patient. Arth Rheum. (1992) 35:484–6. doi: 10.1002/art.1780350423

104. Bevilacqua S, Hermans P, Van Laethem Y, Damaebeug J, Cluneck M. Sweet's syndrome in an HIV-infected patient. AIDS. (1999) 13:728–9. doi: 10.1007/90000030020-999000146000005

105. Brady RC, Morris J, Connelly BL, Boiko S. Sweet's syndrome as an initial manifestation of pediatric human immunodeficiency virus infection. Pediatrics. (1999) 104(S Pt 1):1142–4. doi: 10.1542/peds.104.5.1142

106. Tan AW, Tan HH, Lim PL. Bullous Sweet's syndrome following influenza vaccination in a HIV-infected patient. Int J Dermatol. (2006) 45:1254–5. doi: 10.1111/j.1365-4632.2006.03005.x

107. Inamadar AC, Anitha B. HIV-seropositive patient with Sweet's syndrome and nodular scleritis, showing dramatic response after adding dapsone to systemic corticosteroid therapy. Int J Dermatol. (2008) 47:836–8. doi: 10.1111/j.1346-8138.2008.00648.x

108. Deasy AM, Walker B, Layton AM, Lacey CJ. Sweet's syndrome in a patient with haemophilia, HIV and hepatitis C infection. Int J STD AIDS. (2012) 23:e11–3. doi: 10.1258/ijsa.2009.009314

109. Rajendran A, Zacharia GS, Zacharia SA, George KC. Sweet's syndrome in human immune deficiency virus-infected patient. Indian Journal of sexually transmitted diseases and AIDS. (2014) 35:149–51. doi: 10.4103/0253-7184.142413

110. Li Y, Ai M, Yang WB, Li X. Vital organ involvement in Sweet's syndrome. J Dermatol. (2013) 40:44–5. doi: 10.1111/j.1365-4632.2013.05744.x

111. Rajendran A, Zacharia GS, Zacharia SA, George KC. Sweet's syndrome in human immune deficiency virus-infected patient. Indian Journal of sexually transmitted diseases and AIDS. (2014) 35:149–51. doi: 10.4103/0253-7184.142413

112. Ono S, Otsuka A, Kabashima K, Miyachi Y, Tachibana T. Sweet's syndrome presenting as drastically spreading generalized erythema with subcutaneous pustulosis in myelodysplastic syndrome. J Dermatol. (2013) 40:1072–3. doi: 10.1111/j.1346-8138.2012.01290.x

113. Reina D, Cerda D, Roig D, Figuls R, Villeges ML, Coronhas H. Sweet syndrome associated with myelodysplastic syndrome: a case report and literature review. Int J Dermatol. (2013) 52:170–9. doi: 10.1111/j.1365-4632.2012.06550.x

114. Pinal-Fernandez I, Ferrer Fabrega B, Ramentol Sintas M, Solans Laque R. Histiocyticoid Sweet syndrome and cutaneous polymyelitis nodosa secondary to myelodysplastic syndrome. Int J Rheum Dis. (2013) 16:777–8. doi: 10.1111/j.1756-185X.2013.12103

115. Washio K, Oka M, Ohno K, Shimizu H, Kawano S, Kunisada M, et al. Case of recurrent Sweet's syndrome in a patient with relapsing polychondritis and myelodysplastic syndrome. J Dermatol. (2012) 39:73–8. doi: 10.1111/j.1346-8138.2011.01403.x

116. Lin J, Zhang Q, Chen M. Subcutaneous histiocytoid Sweet's syndrome in a patient associated with myelodysplastic syndrome-refractory anaemia. J Dermatol. (2012) 39:99–101. doi: 10.1111/j.1346-8138.2011.01290.x

117. Calistrut AM, Lisboa C, Azavedo F. Paraneoplastic relapsing polychondritis and Sweet syndrome coexisting in a patient with myelodysplasia. Indian J Dermatol Venereol Leprol. (2011) 77:730. doi: 10.4103/0378-6323.86505

118. Diamantino Fda E, Raimundo PM, Fidalgo AI. Sweet's Syndrome and relapsing polychondritis signal myelodysplastic syndrome. Anais Brasileiros de Dermatologia. (2011) 86(4 Suppl 1):S173–7.

119. Gill HH, Leung AJ, Trendell-Smith NJ, Yeung CK, Liang R. Sweet Syndrome due to Myelodysplastic Syndrome: possible therapeutic role of intravenous immunoglobulin in addition to standard treatment. Adv Hematol. (2010) 2010:328316. doi: 10.1155/2010/328316

120. Xu HH, Xiao T, Gao XH, Chen HD. Ulcerative Sweet syndrome accompanied by intestinal lung disease and myelodysplastic syndrome. Eur J Dermatol. (2009) 19:411–2.
123. Kato T, Kawana S, Takezaki S-I, Kikuchi S, Futagami A. Case of Sweet's syndrome with extensive necrosis and ulcers accompanied by myelodysplastic syndrome. J Nippon Med Sch. (2008) 75:162–5. doi: 10.1272/jnms.75.162

124. Kawakami T, Kawase A, Takeuchi S, Yoshisaka S, Fujimoto N, Tajima S, et al. Sweet syndrome occurring in response to relapsing polychondritis and myelodysplastic syndrome in a Japanese patient. Acta Dermato-Venereol. (2008) 88:517–9. doi: 10.2340/00015555-0488

125. Khatri ML, Taha M. Sweet's syndrome associated with myelodysplasia: a case report. Br J Dermatol. (1992) 127:538–9. doi: 10.1111/j.1365-4632.1992.tb00491.x

126. Garg R, Soud Y, Lal R, Mehta N, Kone BC. Myelodysplastic syndrome manifesting as Sweet's Syndrome and bronchiolitis obliterans organizing pneumonia. Am J Med. (2016) 139:e5–7. doi: 10.1016/j.amjmed.2016.03.032

127. Hattori H, Hoshida S, Yoneda S. Sweet's syndrome associated with recurrent fever in a patient with trisomy 8 myelodysplastic syndrome. J Int Immunol. (2003) 37:383–6. doi: 10.1097/00292862.2003

128. Nishie W, Kimura T, Kanagawa M. Sweet's syndrome evolved from recurrent erythema nodosum in a patient with myelodysplastic syndrome. J Dermatol. (2002) 29:91–5. doi: 10.1111/j.1365-4632.2002.tb00172.x

129. Salvador-Osuna C, Fernandez-Mosterin N, Mayayo P, Delgado P, Giralt M. Choroiditis as systemic manifestation of a Sweet's syndrome associated to Mycobacterium tuberculosis and cervical cancer: a case report. Arch Med Res. (2011) 42:81–4. doi: 10.1016/j.amjmed.2006.03.032

130. Loraas A, Waage A, Lamvik J. Cytokine response pattern in Sweet's syndrome associated with myelodysplasia: a case report. Pediatr Hematol Oncol. (1993) 10:343–6. doi: 10.1179/08880019309029513

131. Bajwa RP, Marwaha RK, Garewal G, Rajagopalan M. Acute febrile neutrophilic dermatosis (Sweet's syndrome) in myelodysplastic syndrome. BMJ Case Rep. (2013) 2013:1–7. doi: 10.1136/bcr.07.2010.3137

132. Sharpe GR, Leggat HM. A case of Sweet's syndrome and myelodysplasia: response to cyclosporin. Br J Dermatol. (1992) 127:538–9. doi: 10.1111/j.1365-4632.1992.tb00491.x

133. Barnadas MA, Sijas D, Brunet S, Poig J, de Moragas JM. Acute febrile neutrophilic dermatosis (Sweet's syndrome) associated with prostate adenocarcinoma and a myelodysplastic syndrome. Br J Dermatol. (1992) 137:647–8. doi: 10.1111/j.1365-4362.1992.tb03987.x

134. Kueh YK, Vijayasingam SM. Severe myelodysplasia with monosomies 5 and 7 presenting with rapidly fatal Sweet's syndrome. Ann Acad Med. (1992) 21:404–7.

135. McNally A, Ibbetson J, Sidhu S. Azathioprine-induced Sweet's syndrome: a case series and review of the literature. J Am Acad Dermatol. (2017) 78:583–7. doi: 10.1016/j.jaad.2017.03.034

136. Biswas SN, Chakraborty PP, Gantait K, Bar C. Azathioprine-induced bullous pemphigoid in a patient with Crohn's disease. Inflamm Bowel Dis. (2016) 22:1519–24. doi: 10.1093/ibd/izv077

137. Imhof L, Meier B, Frei P, Kamarachev J, Rogler G, Kolios A, et al. Sweet's syndrome associated with myelodysplasia. A case report. Ann Acad Med. (2006) 35:102–6. doi: 10.1111/j.1365-4632.2006.03137.x

138. Cohen PR. Sweet's syndrome and erythema nodosum. Southern Med J. (2007) 100:1057–8. doi: 10.1097/SMJ.0b0131815142b1b

139. Ginarte M, Torbio J. Association of Sweet syndrome and erythema nodosum. Arch Dermatol. (2000) 136:673–4. doi: 10.1001/archderm.136.5.673-a

140. Watz KM, Long D, Marks JG Jr., Billingsley EM. Sweet's syndrome and erythema nodosum: the simultaneous occurrence of 2 reactive dermatoses. J Am Acad Dermatol. (1999) 41:62–6. doi: 10.1016/j.jaad.2009.08.034

141. Gillott TJ, Whallatt AJ, Struthers GR, Ilichshyn A. Concurrent Sweet's syndrome (acute febrile neutrophilic dermatosis), erythema nodosum and sarcoidosis. Clin Exp Dermatol. (1993) 18:47–9. doi: 10.1111/j.1365-2230.1993.tb0966x

142. Ben-Noun L. Sweet's syndrome associated with erythema nodosum. Austral. Family Phys. (1995) 24:1867–9.

143. Grattan CE, Kennedy CT, Glover SC, Mann RJ. Sweet's syndrome and erythema nodosum: a companionship or a spectrum?–a case report with review of the literature. J Int Med. (2010) 49:62–6. doi: 10.1111/j.1365-4632.2009.04093.x

144. Harris T, Henderson MC. Concurrent Sweet's syndrome and erythema nodosum. J Gen Int Med. (2011) 26:214–5. doi: 10.1007/s11606-010-1536-1

145. Mokopakais E, Kalikaki A, Stathopoulos E, Vrentzos G, Papadakis JA. Acute febrile neutrophilic dermatosis (Sweet's syndrome) with erythema nodosum and anterior scleritis. A case report. Int J Dermatol. (2005) 44:1051–3. doi: 10.1111/j.1365-4632.2004.02278.x

146. Tabanlioglu D, Boztepe G, Erkin G, Gokoz O, Karaduman A. Sweet's syndrome and erythema nodosum: a companionship or a spectrum?–a case report with review of the literature. Int J Dermatol. (2010) 49:62–6. doi: 10.1111/j.1365-4632.2009.04093.x

147. Ledoltt E, Becquet C, Chanson N, Sobanski V, Remy-Jardin M, Delaporte E, et al. Sweet syndrome and disseminated Mycobacterium tuberculosis infection. Eur J Dermatol. (2016) 26:99–100. doi: 10.1684/ejd.2015.2711

148. Karmakar PS, Shera P, Ray AN, Saha BK, Santra T, Saha S, et al. Sweet's syndrome: a very rare association with pulmonary tuberculosis. J Infect Dev Count. (2013) 7:417–20. doi: 10.3855/jidc.2606

149. Singh RK. Acute febrile neutrophilic dermatosis following tuberculosis infection. J Assoc Phys India. (2002) 50:1322–3.

150. Mrabet D, Saadi F, Zaraa I, Chelly I, Sahli H, Ben Osmene A, et al. Sweet's syndrome in a patient with rheumatoid arthritis, Sjogren's syndrome and lymph node tuberculosis. Clin Exp Dermatol. (2016) 41:417–20. doi: 10.1111/ced.13181

151. Chauhan S. An extremely rare association of Sweet's syndrome with active pulmonary tuberculosis. Ind J Tuberculosis. (2018) 65:87–90. doi: 10.1016/j.ijtb.2017.04.005

152. Wilkinson SM, Heagerty AH, English JS. Acute febrile neutrophilic dermatosis in association with erythema nodosum and sarcoidosis. Clin Exp Dermatol. (1993) 18:47–9. doi: 10.1111/j.1365-2230.1993.tb0966x
187. Brodkin RH, Schwartz RA. Sweet's syndrome with myelofibrosis and leukemia: partial response to interferon. Dermatology. (1995) 190:160–3. doi: 10.1159/000246669
188. Nakashiki K, Kinjo M. Mimicker of necrotising fasciitis with systemic inflammatory response syndrome: recurrent necrotising Sweet's syndrome associated with chronic myelogenous leukemia. BMJ Case Rep. (2016) 31:31. doi: 10.1136/bcr-2016-214461
189. dos Santos VM, Nery NS, Bettarello G, Neiman IM, de Brito FC, Souza CF. Photoclinic. Bullous Sweet syndrome in chronic myeloid leukemia. Arch Iranian Med. (2010) 13:561–2.
190. Liu D, Seiter K, Mathews T, Madahar CJ, Ahmed T. Sweet's syndrome with CML cell infiltration of the skin in a patient with chronic-phase CML while taking Imatinib Mesylate. Leukemia Res. (2004) 28 (Suppl. 1):561–3. doi: 10.1016/S0145-2126(03)00257-1
191. Fernandez-Jimenez MC, Herrera R, Ojeda E, Hernandez-Navarro F. Sweet's syndrome and accelerated phase of chronic myelogenous leukemia. Ann Hematol. (2000) 79:585–7. doi: 10.1007/s002700001919
192. Urano Y, Miyakoa Y, Kosaka M, Kabe K, Uchida N, Arase S. Sweet's syndrome associated with chronic myelogenous leukemia: demonstration of leukemic cells within a skin lesion. J Am Acad Dermatol. (1999) 40 (Pt 1):275–9. doi: 10.1016/S0190-9622(99)70206-9
193. Kannan R, Dutta TK, Goel A, Garg BR, Venkateswaran S, Ratnakar C. Sweet syndrome in chronic myeloid leukemia. Postgrad Med J. (1995) 71:583. doi: 10.1136/pgmj.71.836.83-a
194. Feliu E, Cervantes F, Ferrando J, Puig S, Mascaro JM, Rozman C. Neutrophilic pustulosis associated with chronic myeloid leukemia: a special form of Sweet's syndrome. Report of two cases. Acta Haematol. (1992) 88(2–3):154–7. doi: 10.1159/000204674
195. Gonzalez-Castro U, Julia A, Pedragosa R, Bueno J, Vidal J, Castells A. Sweet syndrome in chronic myelogenous leukemia. Int J Dermatol. (1991) 30:648–50. doi: 10.1111/j.1365-4362.1991.tb0492.x
196. Mijovic A, Mijovic A, Medenica L, Rolovic Z. Sweet's syndrome in chronic phase of chronic myeloid leukaemia. Eur J Cancer. (1991) 27:1336. doi: 10.1016/0277-5379(91)90115-T
197. Pertusi RM, Forman MD, Brown AC. Sweet's syndrome during treatment with all-trans retinoic acid in a patient with acute promyelocytic leukemia. J Am Acad Dermatol. (1996) 35:281–3. doi: 10.1016/S0190-9622(96)00036-1
198. Astudillo L, Loche F, Reynish W, Rigal-Huguet F, Lannat L, Pris J. Sweet's syndrome associated with retinoic acid syndrome in a patient with promyelocytic leukemia. Ann Hematol. (2002) 81:111–4. doi: 10.1007/s00277-001-0416-5
199. Shirono K, Kiyofuji C, Tsuda H. Sweet's syndrome in a patient with acute promyelocytic leukemia during treatment with all-trans retinoic acid. Int J Hematol. (1995) 62:183–7. doi: 10.1007/BF02520143-7
200. Izadogholi J, Campbell R, Long T, Muglia J, Telang G, Robinson-Bostom L. Sweet's syndrome-like neutrophilic lobular panniculitis associated with all-trans-retinoic acid chemotherapy in a patient with acute promyelocytic leukemia. J Am Acad Dermatol. (2007) 56:690–3. doi: 10.1016/j.jaad.2006.08.011
201. Piette WW, Trapp JF, O'Donnell MJ, Argenyi Z, Talbot EA, Burns CP. Sweet's syndrome mimicking an axillary abscess: a case report with review of the literature. Cureus. (2016) 8:e568. doi: 10.7759/cureus.568
202. Christ E, Linka A, Jacky E, Speich R, Marincek B, Schaffner A. Sweet's syndrome with CML cell infiltration of the skin in a patient with chronic-phase CML while taking Imatinib Mesylate. Leukemia Res. (2004) 28 (Suppl. 1):561–3. doi: 10.1016/S0145-2126(03)00257-1
203. Tomás JF, Escudero A, Fernandez-Ranada JM. All-trans retinoic acid treatment and Sweet syndrome. Leukemia. (1999) 13:950–1. doi: 10.1038/sj.lie.2101287-20
204. Ramsev-Goldman R, Franz T, Solano FX, Medsger Jr, J. Sweet syndrome-like eruption with prominent dermal leucocytes. J Cutan Pathol. (2012) 39:421–7. doi: 10.1111/j.1600-0560.2011.02150.x
205. Park CJ, Bae YD, Choi JY, Heo PS, Lee KS, Park YS, et al. Sweet's syndrome followed by retinoic acid syndrome during the treatment of acute promyelocytic leukemia with all-trans retinoic acid. Int J Hematol. (1999) 70:26–9.
206. Park CJ, Bae YD, Choi JY, Heo PS, Lee KS, Park YS, et al. Sweet's syndrome during the treatment of acute promyelocytic leukemia with all-trans retinoic acid. Korean J Int Med. (2001) 16:218–21. doi: 10.3904/kjim.2001.16.3.218
207. Tomas JF, Escudero A, Fernandez-Ranada JM. All-trans retinoic acid treatment and Sweet syndrome. Leukemia. (1994) 8:1590–3. doi: 10.1111/j.1365-2222.1994.tb01310.x
208. moms Quintana E, Gomez RZ de Mendarozqueta M, Gorospe Arrazuria MA, Saracibar Oyon N, Atares Puyeo B, Pena MV, et al. Concurrent Sweet's syndrome and MDS in a patient with CML. J Rheumatol. (1996) 23:1995–8.
209. Manuel V, Abarca S, Aragón A, Urtasun S, Sánchez-Pescador D, Garrido A, et al. Sweet's syndrome and mast cell activation in patients with chronic myeloid leukemia. Am J Hematol. (2003) 73:38–41. doi: 10.1002/ajh.10428
associated with systemic lupus erythematosus. J Dermatol. (2015) 42:442–3. doi: 10.1111/1346-8138.12802

209. Quinn N, MacMahon J, Irvine AD, Lowry C. Sweet syndrome revealing systemic lupus erythematosus. Irish Med J. (2015) 108:59–60.

210. Tewari A, Chandrakumar A, Macdonald D, Staughton R, Bunker CB. Sweet’s syndrome associated with systemic lupus erythematosus: a case report and review of the literature. J Dermatol. (2013) 40:641–8. doi: 10.1111/1346-8138.12184

211. Breier F, Hobisch G, Groz S. [Sweet syndrome. Acute neutrophilic dermatosis]. J Dermatol. (1999) 14:1174–5.

212. Hou TY, Chang DM, Gao HW, Chen CH, Chen HC, Lai JH. Sweet’s syndrome as an initial presentation in systemic lupus erythematosus: a case report and review of the literature. Lupus. (2005) 14:399–402. doi: 10.1191/0961203305la083cr

213. Gollol-Raju N, Bravin M, Crittenden D. Sweet’s syndrome and systemic lupus erythematosus. Lupus. (2013) 22:918–21. doi: 10.1177/0961203313480653

214. Gheorghe L, Cotruta B, Trifu V, Cotruta C, Becheanu G, Gheorghe C. Drug-induced Sweet’s syndrome associated with systemic lupus erythematosus. Lupus. (2010) 19:119–26. doi: 10.1177/0961203310364398

215. Burnham JM, Cron RQ. Sweet syndrome as an initial presentation in systemic lupus erythematosus. Int J Dermatol. (2008) 17:31–4. doi: 10.1111/j.1365-4632.2008.03724.x

216. Healy and Ortega-Loayza. Sweet’s Syndrome Pathogenesis

217. Tewari A, Chandrakumar A, Macdonald D, Staughton R, Bunker CB. Sweet’s syndrome associated with multiple myeloma. Eur J Haematol. (2008) 81:305–6. doi: 10.1111/j.1365-4632.2004.02197.x

218. Arima Y, Namiki T, Ueno M, Kato K, Tokoro S, Takayama K, et al. Histiocytoid Sweet syndrome: a novel association with relapsing polychondritis. Br J Dermatol. (2016) 174:691–4. doi: 10.1111/bjd.14229

219. Vano-Galvan S, Perez-Carmona L, Moreno C, Jaen P. Sweet syndrome after successful management by splenectomy. J Dermatol. (2015) 83:227. doi: 10.1016/j.jbspin.2015.03.011

220. Vano-Galvan S, Perez-Carmona L, Moreno C, Jaen P. Sweet syndrome after gastrointestinal tract infection. Isra1 Med Assoc J. (2010) 12:128.

221. Zobniw CM, Saad SA, Kostoff D, Barthel BG. Bortezomib-induced Sweet’s syndrome confirmed by rechallenge. Pharmacotherapy. (2014) 34:e18–21. doi: 10.1002/phar.1383

222. Vano-Galvan S, Perez-Carmona L, Moreno C, Jaen P. Sweet syndrome after gastrointestinal tract infection. Isra1 Med Assoc J. (2010) 12:128.

223. Zobniw CM, Saad SA, Kostoff D, Barthel BG. Bortezomib-induced Sweet’s syndrome confirmed by rechallenge. Pharmacotherapy. (2014) 34:e18–21. doi: 10.1002/phar.1383

224. Vano-Galvan S, Perez-Carmona L, Moreno C, Jaen P. Sweet syndrome after gastrointestinal tract infection. Isra1 Med Assoc J. (2010) 12:128.

225. Vano-Galvan S, Perez-Carmona L, Moreno C, Jaen P. Sweet syndrome after gastrointestinal tract infection. Isra1 Med Assoc J. (2010) 12:128.

226. Vano-Galvan S, Perez-Carmona L, Moreno C, Jaen P. Sweet syndrome after gastrointestinal tract infection. Isra1 Med Assoc J. (2010) 12:128.

227. Vano-Galvan S, Perez-Carmona L, Moreno C, Jaen P. Sweet syndrome after gastrointestinal tract infection. Isra1 Med Assoc J. (2010) 12:128.

228. Vano-Galvan S, Perez-Carmona L, Moreno C, Jaen P. Sweet syndrome after gastrointestinal tract infection. Isra1 Med Assoc J. (2010) 12:128.
252. Azfar RS, Cohn J, Schaffer A, Kim EJ. Trimethoprim sulfamethoxazole-induced sweet syndrome. Arch Dermatol. (2009) 145:215–6. doi: 10.1001/archderm.145.2.215

253. Khalal A, Kharif M, Fazaa B, Kourda M, Bouaziz A, Kastalli S, et al. A first case of trimethoprim-sulfamethoxazole-induced Sweet's syndrome in a child. Pediatr Dermatol. (2009) 26:44–6. doi: 10.1111/j.1525-1709.2009.00868.x

254. Su WP, Liu HN. Diagnostic criteria for Sweet's syndrome. Cutis. (1986) 37:167–74.

255. de Boysson H, Martin Silva N, de Moreuil C, Neel A, de Menthon M, Meyer O, et al. Neutrophilic dermatoses in antineutrophil cytoplasmic antibody-associated vasculitis: a french multicenter Study of 17 cases and literature review. Medicine. (2016) 95:e2957. doi: 10.1097/MD.0000000000002957

256. Sato M, Kawamura T, Hase S, Katsumata S, Oshika T. A case of bilateral retinal vasculitis associated with Sweet syndrome. Retina. (2005) 25:800–2. doi: 10.1097/00001212-200509000-00024

257. Saussine A, Gueguen A, de Menthon M, Maisonobe T, Battistella M, Serrato T, et al. Sweet syndrome revealing microscopic polyangiitis. Rheumatology. (2012) 51:1916–7. doi: 10.1093/rheumatology/kes060

258. Miralalkari HM, McEarchen J, Prasad B. Sweet's syndrome in a patient with Wegener's granulomatosis and ESRD. BMJ Case Rep. (2012) 27:27. doi: 10.1136/bcr.08.2010.3231

259. Campos LM, Castellanos AL, Afune JY, Kiss MH, Silva CA. Takayasu's arteritis with aortic aneurysm associated with Sweet's syndrome in childhood. Ann Rheum Dis. (2005) 64:168–9. doi: 10.1136/ard.2003.06353

260. Ma EH, Akikusa JD, MacGregor D, Ng J, Su JC. Sweet's syndrome with postinflammatory exfoliation and Takayasu arteritis in a child: a case report and literature review. Pediatr Dermatol. (2012) 29:645–50. doi: 10.1111/j.1525-1471.2010.01597.x

261. Neid GH, Silva C, Afonso N, Carreira A, Campos M. Azathioprine-induced Sweet syndrome in ANCA-associated vasculitis. Clin Kidn J. (2013) 6:657–8. doi: 10.1093/ckj/sft134

262. Delaporte E, Gaveau DJ, Piette FA, Bergoend HA. Acute febrile neutrophilic dermatosis (Sweet's syndrome). Association with rheumatoid vasculitis. Arch Dermatol. (1989) 125:1101–4. doi: 10.1001/archderm.1989.016702000007013

263. Endo Y, Tanioka M, Tanizaki H, Mori M, Kawabata H, Miyachi Y. Bullous Variant of Sweet's Syndrome after Herpes Zoster Virus Infection. Case Rep Dermatol. (2011) 3:259–62. doi: 10.1056/00334833

264. Smith CR, Williams P. Sweet's syndrome in a patient with chronic lymphocytic leukemia. BMJ Case Rep. (2017) doi: 10.1136/bcr-2017-220317. [Epub ahead of print].

265. Cholongitas E, Pipili C, Dasenaki M, Kaklamani L. Piperacillin/tazobactam-induced Sweet syndrome in a patient with chronic lymphocytic leukemia and autoimmune cholangitis. Am J Dermatopathol. (2008) 30:203–4. doi: 10.1097/01.DAD.0b101318165b84a

266. Mineo F, Pezzarossa E, Baroni MC, Alinoni A, Crottì G, Deligniere R. Sweet's syndrome in chronic lymphocytic leukemia. Acta Bio-Medica de L 'Ateneo Parmense. (1984) 55(3–4):197–8.

267. Ilychshyn A, Smith AG, Phasure TA. Sweet's syndrome associated with chronic lymphatic leukaemia. Clin Exp Dermatol. (1987) 12:277–9. doi: 10.1111/j.1365-2230.1987.tb01920.x

268. Visani G, Patrizi A, Colombini R, Balducci A, Cenacchi A, Gamberti B. Sweet's syndrome associated with Hodgkin's disease. Haematologica. (1998) 29:157–8.

269. Miranda CV, Filgueiras Fde M, Obadia DL, Gripp AC, Alves Mde F. Sweet's Syndrome associated with Hodgkin's disease: case report. Anais Brasileiros de Dermatol. (2011) 86:1016–8. doi: 10.1590/S0365-05652011000500025

270. Carvalho R, Fernandes C, Afonso A, Cardoso J. Drug-induced Sweet's syndrome by celecoxib. J Dermatol. (2016) 43:1092–3. doi: 10.1111/j.1365-1148.2013.13337.x

271. Rosmaninho A, Lobo I, Selores M. Sweet's syndrome associated with the intake of a selective cyclooxygenase-2 (COX-2) inhibitor. Cutaneous Ocular Toxicol. (2011) 30:298–301. doi: 10.3109/15569527.2011.579929

272. Gunaldi M, Bozkurt Duman B, Ercolak Ilchyshyn A, Smith AG, Phaure TA. Sweet's syndrome associated with non-Hodgkin's lymphoma: the first report of this association. Acta Dermato-Venereolog. (1985) 65:564–6.

273. Tintle S, Patel V, Ruskin A, Halasz C. Azacitidine: a new medication associated with Sweet syndrome. J Am Acad Dermatol. (2011) 64:779–9. doi: 10.1016/j.jaad.2010.06.032
295. Trickett HB, Cumpston A, Craig M. Azacitidine-associated Sweet's syndrome. Am J Health Syst Pharm. (2012) 69:869–71. doi: 10.2146/ajhp110523

296. Kawano H, Suzuki T, Ishii S, Wakahashi K, Kawano Y, Sada A, et al. Recurrence of abdominal large-vessel vasculitis and development of Sweet's syndrome after a single cycle of 5-azacytidine in a patient with myelodysplastic syndrome. Eur J Haematol. (2014) 92:362–4. doi: 10.1111/ejh.12249

297. Pang A, Tan KB, Aw D, Hsieh WS, Goh BC, Lee SC. A case of Sweet's syndrome due to 5-Azacytidine and vorinostat in a patient with NK/T cell lymphoma. Cutaneous Ocular Toxicol. (2012) 31:64–6. doi: 10.3109/15569527.2011.602304

298. Bonazza S, Dalton B, Hardin J, Metelitsa A. Histiocytoid Variant of Sweet Syndrome Associated with Azacitidine and Recurrence upon Rechallenge. Can J Hospital Pharm. (2015) 68:339–41. doi: 10.4212/cjhp.v68i4.1475

299. Tiwari SM, Caccetta T, Kumarasinghe SP, Harvey N. Azacitidine-induced Sweet syndrome: Two unusual clinical presentations. Aust J Dermatol. (2018) 59:e224–e5. doi: 10.1111/ijd.12727

300. Miura T, Ohtsuka M, Yamamoto T. Sweet's syndrome-like eruption in association with the exacerbation of Behcet's disease after the Great East Japan Earthquake. Actas Dermosifilograf. (2017) 108:70–2. doi: 10.1016/j.ad.2016.07.006

301. Karadogan SK, Baskan EB, Alkan G, Saricaoglu H, Tunali S. Generalized Sweet syndrome lesions associated with Behcet disease: a true association or simply co-morbidity? Am J Clin Dermatol. (2009) 10:331–5. doi: 10.2165/111310790-0000000-0000

302. Hassikou H, Tabache F, Baaj M, Safi S, Hadri L. Sweet's syndrome in Behcet's disease. Joint Bone Spine. (2007) 74:495–6. doi: 10.1016/j.jbspin.2006.11.022

303. Oguz O, Serdaroglu S, Tuzun Y, Erdogan N, Yazici H, Savaskan H. Acute febrile neutrophilic dermatosis (Sweet's syndrome) associated with Behcet's disease. Int J Dermatol. (1992) 31:645–6. doi: 10.1111/j.1365-4632.1992.tb03986.x

304. Lee MS, Barnetson RS. Sweet's syndrome associated with Behcet's disease. Aust J Dermatol. (1996) 37:79–101. doi: 10.1111/j.1440-0960.1996.tb01015.x

305. Wu F, Luo X, Yuan G. Sweet's syndrome representing a flare of Behcet's disease. Clin Exp Rheumatol. (2009) 27(2 Suppl 53):588–90.

306. Fortna RR, Toporcer M, Elder DE, Junkins-Hopkins JM. A case of Sweet's syndrome with spleen and lymph node involvement preceded by parvovirus B19 infection, and a review of the literature on Sweet's syndrome lesions diagnosed as Sweet’s syndrome. Am J Dermatopathol. (2010) 32:621–7. doi: 10.1097/DAD.0b013e3181c9933

307. Gutierrez-Gonzalez E, Alvarez-Perez A, Sanchez-Aguilar D, To ribio J. Acute febrile neutrophilic dermatosis (Sweet’s syndrome) presenting as facial cellulitis in a child with juvenile rheumatoid arthritis. BMJ Case Rep. (2017) 10:20. doi: 10.1136/bcr-2017-220743

308. Saez M, Garcia-Bustinduy M, Noda A, Guimera F, Dorta S, Esco da M, et al. Recurrence of abdominal large-vessel vasculitis and development of Sweet's syndrome after a single cycle of 5-azacytidine in a patient with myelodysplastic syndrome. Eur J Haematol. (2014) 92:362–4. doi: 10.1111/ejh.12249

309. Pedrosa AF, Morais P, Nogueira A, Pardal J, Azevedo F. Sweet's syndrome induced by oral contraceptive. Am J Health Syst Pharm. (2010) 67:e231-e234. doi: 10.1111/j.1440-0960.2009.05684.x

310. Jovanovic M, Poljacki M, Vujanovic L, Duran V. Acute febrile neutrophilic dermatosis (Sweet syndrome) after influenza vaccination. J Am Acad Dermatol. (2008) 59:670–2. doi: 10.1016/j.jaad.2008.11.011

311. Rubegni P, Marano MR, De Aloe G, Pianigiani E, BilENCHI R, Fimiani M. Sweet's syndrome and Chlamydia pneumoniae infection. J Am Acad Dermatol. (2004) 51:886–2. doi: 10.1016/j.jaad.2004.01.044

312. Tefany FJ, Georgouras K. A neutrophilic reaction of Sweet's syndrome type associated with the oral contraceptive. Aust J Dermatol. (1991) 32:55–9. doi: 10.1111/j.1440-0960.1991.tb06844.x

313. Radeff B, Harms M. Acute febrile neutrophilic dermatosis (Sweet's syndrome) presenting as facial cellulitis in a child with juvenile chronic myelogenous leukemia. Pediatr Infect Dis J. (1987) 6:77–9. doi: 10.1097/00006545-198701000-00025
337. PintoA S, Sidhu H, Frielander PA, Holcombe RF. Sweet's syndrome in a patient with metastatic melanoma after ipilimumab therapy. *Mel Res.* (2013) 23:498–501. doi: 10.1097/CMR.0b013e318287fde2

338. Kjellei RL, Parker MK, Rosman I, Musicak AC. Ipilimumab-associated Sweet syndrome in a patient with high-risk melanoma. *J Am Acad Dermatol.* (2014) 70:826–6. doi: 10.1016/j.jaad.2013.11.022

339. Gormley R, Wanat K, Elenitsas R, Giles J, McGettigan S, Schuchter L, et al. Ipilimumab-associated Sweet syndrome in a melanoma patient. *J Am Acad Dermatol.* (2014) 71:e211–3. doi: 10.1016/j.jaad.2014.06.042

340. Adler NR, Murray WK, Brady B, McCormack C, Pan Y. Sweet syndrome associated with ipilimumab in a patient with metastatic melanoma. *Clin Exp Dermatol.* (2018) 43:1399.

341. Kalms Y, Kovatz S, Shilo L, Ganem G, Shenkman L. Sweet's syndrome as initial presentation of chronic dermatophytic infection. *Br J Dermatol.* (2001) 145:870–4. doi: 10.1046/j.1365-2133.2001.04767.x

342. Soon CW, Kirsch IR, Connolly AJ, Kwong BY, Kim J. Eosinophilic acute febrile neutrophilic dermatosis in a patient with enteropathy-associated T-cell lymphoma, Type 1. *J Am J Dermatopathol.* (2016) 38:704–8. doi: 10.1097/DAD.0000000000000549

343. Ayirookuzhi SJ, Ma L, Ramshesh P, Mills G. Imatinib-induced Sweet syndrome in a patient with chronic myeloid leukemia. *Arch Dermatol.* (2005) 141:368–70. doi: 10.1001/archderm.141.3.368

344. Neoh CY, Tan AW, Ng SK. Sweet's syndrome: a spectrum of unusual clinical presentations and associations. *Br J Dermatol.* (2007) 156:480–4. doi: 10.1111/j.1365-2133.2006.07677.x

345. Nakayama H, Shimao S, Hamamoto T, Munemura C, Nakai A. Neutrophilic dermatosis of the face associated with aortitis syndrome and Hashimoto's thyroiditis. *Acta Derm Venerol.* (1993) 73:380–1.

346. Medeiros S, Santos R, Carneiro V, Estrela F. Sweet syndrome associated with Hashimoto thyroiditis. *Dermatol Online J.* (2008) 14:10.

347. Francisco CR, Patal PC, Cubillan EA, Isip-Tan IT. Sweet's syndrome. *BMJ Case Rep.* (2011) 2011:132162.

348. Reid PT, Alderidge J, Carson J, Sinnammon DG. Cryptogenic organizing pneumonia in association with Sweet's syndrome. *Resp Med.* (1996) 90:59–7. doi: 10.1016/S0954-6111(96)90246-2

349. Tzelepis E, Kampolis CF, Vlahadami I, Moschovi M, Alamani M, Kaltas G. Cryptogenic organizing pneumonia in Sweet's syndrome: case report and review of the literature. *Clin Resp J.* (2016) 10:250–4. doi: 10.1111/crj.12206

350. Ruiz AI, Gonzalez A, Miranda A, Torrero V, Gutierrez C, Garcia M. Sweet's syndrome associated with francisella tularensis infection. *Int J Dermatol.* (2016) 54:914–9. doi: 10.1111/ijd.13312

351. Kuner N, Hartschuh W, Jappe U. Unusual manifestation of Sweet's syndrome in B-cell lymphoma. *Acta Derm Venereol.* (2003) 83:308–9. doi: 10.1080/00015550310166670

352. Kim YJ, Lee HY, Lee JY, Yoon TY. Interferon beta-1b-induced Sweet's syndrome in a patient with multiple sclerosis. *Int J Dermatol.* (2015) 54:456–8. doi: 10.1111/1365-4632.2012.05840.x

353. Rodríguez-Lojo R, Castinieiras I, Juarez Y, Lueiro M, Armeto A, Fernandez-Diaz ML. Sweet syndrome associated with interferon. *Dermatol Online J.* (2014) 21:13030/qt2006n4sp

354. Kumpfel T, Gerdes LA, Flaig M, Hohlfeld R, Wollenberg A. Drug-induced Sweet's syndrome after mitoxantrone therapy in a patient with multiple sclerosis. *Multiple Sclerosis.* (2011) 17:495–7. doi: 10.1177/1352458510390069

355. Polat M, Parlah AH, Ors I, Sirmatel F. Erythema nodosum and Sweet's syndrome in patients with glandular tularemia. *Erratum appears in Int J Dermatol.* 2011 Nov;50:1444 Note: Mualla, Polat (corrected to Polat, Mualla); Haydar, Parlah Ali (corrected to Parlah, Ali Haydar); Ismail, Ors (corrected to Ismail, Fatma); Sirmatel (corrected to Sirmatel, Fatma). *Int J Dermatol.* (2011) 50:868–9. doi: 10.1111/j.1365-4632.2010.04647.x

356. Gyory OA, Kovacs T, Szegedi J, Olah E, Kiss C. Sweet syndrome associated with 13-cis-retinoic acid (isotretinoin) therapy. *Med Pediatr Oncol.* (2003) 40:135–6. doi: 10.1002/mpo.10089

357. Mohgimi J, Pahlevan D, Azzizadeh M, Hamidi H, Pourazizi M. Isotretinoin-associated Sweet's syndrome: a case report. *Daru.* (2014) 22:69. doi: 10.1186/s40199-014-0069-2

358. Osaka H, Yamabe H, Seino S, Fukushima K, Miyata M, Inuma H, et al. A case of Sjogren's syndrome associated with Sweet's syndrome. *Clin Rheumatol.* (1997) 16:101–5. doi: 10.1007/BF02238773

359. Nielsen H. Acute febrile neutrophilic dermatosis (Sweet's syndrome) in metastatic breast cancer. *Eur J Cancer.* (1992) 28A(8–9):1590–1. doi: 10.1016/0959-8499(92)90564-1

360. Antony F, Holden CA. Sweet's syndrome in association with generalised granuloma annulare in a patient with previous breast carcinoma. *Clin Exp Dermatol.* (2001) 26:668–70. doi: 10.1046/j.1365-2230.2001.00914.x

361. Cohen PR. Proton pump inhibitor-induced Sweet's syndrome: report of acute febrile neutrophilic dermatosis in a woman with recurrent breast cancer. *Dermatol Pract Concept.* (2015) 5:113–9. doi: 10.5826/dpc.050223

362. Teng JM, Draper BK, Boyd AS. Sweet's panniculitis associated with metastatic breast cancer. *J Am Acad Dermatol.* (2007) 56(2 Suppl):S61–2. doi: 10.1016/j.jaad.2006.05.023
null
Sweet's Syndrome Pathogenesis

424. Morgado-Carrasco D, Moreno-Rivera N, Fustá-Novell X, Garcia-Herrera A, Carrera C, Puig S. Histiocytoid Sweet's syndrome during combined therapy with BRAF and MEK inhibitors for metastatic melanoma. *Melanoma Res.* (2018) 28:236–7. doi: 10.1097/CMR.0000000000000438

425. Oskay T, Anadolu R. Sweet's syndrome in familial Mediterranean fever: possible continuum of the neutrophilic reaction as a new cutaneous feature of FMF. *J Cutan Pathol.* (2009) 36:901–5. doi: 10.1111/j.1600-0560.2008.01158.x

426. Hara I, Miura T, Yamanaka K, Tanaka K, Yamada Y, Fujisawa M. A case of Sweet's syndrome following septic pulmonary emboli after high-dose chemotherapy for advanced testicular cancer. *Int J Urol.* (2006) 13:481–4. doi: 10.1111/j.1442-2042.2006.01332.x

427. Shapiro L, Baraf CS, Richheimer LL. Sweet's syndrome (acute febrile neutrophilic dermatosis). Report of a case. *Arch Dermatol.* (1971) 103:81–4. doi: 10.1001/archderm.1971.04000108083013

428. Sitjás D, Puig L, Castréncas M, De Moragas JM. Acute febrile neutrophilic dermatosis (Sweet's syndrome). *Int J Dermatol.* (1993) 32:261–8. doi: 10.1111/j.1365-4632.1993.tb04265.x

429. Chebbi W, Berriche O. [Sweet syndrome during pregnancy: a rare entity not to ignore]. *Pan Afr Med J.* (2014) 18:185.

430. Cohen PR. Pregnancy-associated Sweet's syndrome: world literature review. *Obst Gynecol Survey.* (1993) 48:584–7. doi: 10.1097/00006254-199308000-00027

431. Giovanna Brunasso AM, Massone C. Clinical images. Sweet's syndrome during pregnancy. *Can Med Assoc J.* (2008) 179:967. doi: 10.1503/cmaj.070925

432. Inoue C, Mochizuki A, Okuda M, Mizoguchi M. [Sweet's syndrome with squamous cell carcinoma of the bladder. *Clin Exp Dermatol.* (2008) 33:285–3. doi: 10.1111/j.1368-8358.2008.02556.x

433. Lopez-Sanchez M, Garcia-Sanchez Y, Marin AP. An unusual evolution of a pregnancy-associated Sweet's Syndrome. *Eur J Obst Gynecol Reprod Biol.* (2008) 140:283–5. doi: 10.1016/j.ejogrb.2008.01.009

434. Matoses MS, Alcala E, Laguarda M. [Subarachnoid anesthesia for the treatment of Sweet's syndrome in a pregnant woman]. *Rev Espanola Anestesiol Reanimacion.* (2004) 51:111–2.

435. Serrano-Falcon C, Serrano-Falcon MM. [Sweet syndrome caused by sensitization to gabapentin. *Plast Reconstr Surg.* (2018) 142:185–9. doi: 10.1097/PRS.0000000000006077

436. Propst DA, Bossons CR, Sutterlin CE. Sweet's syndrome associated with spinal surgical intervention. A case report. *Spine.* (1998) 23:1708–10.

437. O’Brien TJ, Darling JA. Sweet's syndrome and hypothyroidism. *Aust N Z J Dermatol.* (1994) 35:91–2. doi: 10.1111/j.1440-0960.1994.tb00906.x

438. Tang HKC, Lee DYH, Ingram JR, Stone N, Patel GK. Delayed and localized Sweets syndrome after breast cancer radiotherapy. *Breast J.* (2018) 24:212–3. doi: 10.1111/tbj.12877

439. Syed S, Furman J, Nalebsky JG, Zalka A, Cohen PR, Grossman ME. Sweet's syndrome associated with preceding myelofibrosis. *J Cutan Pathol.* (2009) 36:104–10. doi: 10.1111/j.1600-0560.2008.01076.x

440. Syed S, Furman J. [Sweet's syndrome after kidney transplantation.] *Ann Dermatol.* (2009) 21:300–3. doi: 10.5021/ad.2009.21.3.300

441. Wanat KA, Kovarik CL, Quon H, Miller CJ. Sweet syndrome in a patient with Basedow's disease. *Ann Dermatol.* (2009) 21:300–3. doi: 10.5021/ad.2009.21.3.300

442. Adler NR, Lin MJ, Cameron R, Gin D. Fluconazole-induced Sweet's syndrome: a case report. *J Emerg Med.* (2009) 37:397–8. doi: 10.1016/j.jemee.2009.04.005

443. Moore KA, Kallarakkal JT, Damodharan J, Sahib K, Mahajan A, Kannan R. Sweet's syndrome presenting as chronic suppurative otitis media. *Indian J Med Assoc.* (2008) 103:433–5.

444. Adler NR, Lin MJ, Cameron R, Gin D. Fluconazole-induced Sweet's syndrome: a novel association. *Aust J Dermatol.* (2018) 59:e160-e1. doi: 10.1111/ad.13709

445. Cano A, Ribes R, de la Riva A, Rubio FL, Sanchez C, Sancho JL. Idiopathic hypertrophic cranial pachymeningitis associated with Sweet's Syndrome. *J Neurol.* (2004) 251:213–6. doi: 10.1007/s00415-004-0269-8

446. Rojas-Perez-Ezquerra P, Noguerado-Mellado B, Saenz de Sangaman Garcia M, Roa-Medellin D, Hernandez-Aragues I, Zubeldia Ortuno JM. Sweet syndrome caused by sensitization to gabapentin. *J Allergy Clin Immunol Pract.* (2018) 6:885–6. doi: 10.1016/j.jaip.2017.08.019

447. Vermes R, Baswedan B, Pragasam V, Mitra D. Unusual Presentation of Idiopathic Sweet's Syndrome in a Photodistributed Pattern. *Indian J Dermatol.* (2014) 59:186–9. doi: 10.4103/0019-5154.127682

448. Liao A, Danish H, Stoff B, Khan MK. First case of Merkel cell carcinoma in a young patient with Sweet syndrome. *Adv Radi Oncol.* (2016) 1:122–6. doi: 10.1159/000440306

449. Rojas-Perez-Ezquerra P, Noguerado-Mellado B, Saenz de Sangaman Garcia M, Roa-Medellin D, Hernandez-Aragues I, Zubeldia Ortuno JM. Sweet syndrome caused by sensitization to gabapentin. *J Allergy Clin Immunol Pract.* (2018) 6:885–6. doi: 10.1016/j.jaip.2017.08.019
468. Altomare G, Capella GL, Frigerio E. Sweet's syndrome in a patient with idiopathic myelofibrosis and thymoma-masthenia gravis-immunodeficiency complex: efficacy of treatment with etretinate. *Haematologica*. (1996) 81:54–8.

469. Ainechi S, Carlson JA. Neutrophilic dermatosis limited to lipo-lymphoedematous skin in a morbidly obese woman on dastatinib therapy. *Am J Dermatopathol*. (2016) 38:226–6. doi: 10.1097/DAD.0000000000000358

470. Chu CH, Cheng YP, Kao HL, Liang CW, Chan JY, Yu Y. Lymphedema-associated neutrophilic dermatosis: Two cases of localized Sweet syndrome in the lymphedematous lower limbs. *J Dermatol*. (2016) 43:1062–6. doi: 10.1111/1346-8138.13379

471. Demitsu T, Tadaki T. Atypical neutrophilic dermatosis on the upper extremity affected by postmastectomy lymphedema: report of 2 cases. *Dermatologica*. (1991) 193:230–3. doi: 10.1159/000247677

472. García-Bio I, Perez-Gala S, Aragües M, Fernandez-Herrera J, Fraga J, Garcia-Diez A. Sweet's syndrome on the area of postmastectomy lymphoedema. *J Eur Acad Dermatol Venereol*. (2006) 20:401–5. doi: 10.1111/j.1468-3083.2006.01460.x

473. Gutierrez-Paredes E, Gonzalez-Rodriguez A, Molina-Gallardo I, Jordá-Cuevas E. Neutrophilic dermatosis on postmastectomy lymphedema. *Actas Derm Sifiliogr*. (2012) 103:649–51. doi: 10.1111/j.1610-0387.2012.01812.x

474. Lee CH, Lee HC, Lu CF, Hsiao CH, Jee SH, Tjiu JW. Neutrophilic dermatosis on postmastectomy lymphoedema: a localized and less severe variant of Sweet syndrome. *J Eur Dermatol*. (2009) 19:641–2. doi: 10.1684/ejd.2009.0777

475. Sandlund JT, Miser JS, Miser AW. Sweet syndrome in a patient with osteosarcoma. *Am J Clin Oncol*. (1996) 19:349–50. doi: 10.1097/00000421-199608000-00005

476. Matzieszki FG, Manger B, Schmitt-Haendle M, Nagel T, Kraetsch HG, Kalden JR, et al. Severe septicaemia in a patient with polychondritis and Sweet's syndrome after initiation of treatment with infliximab. *Ann Rheum Dis*. (2003) 62:81–2. doi: 10.1136/ard.62.1.81

477. Goshgari G, Hillmann A, Ozaki T, Buerger H, Winkelman W. Sweet's syndrome associated with pigmented villo-nodular synovitis. *Acta Orthopaed Belgica*. (2002) 68:68–71.

478. McDermott MB, Corbally MT, O’Marcaigh AS. Extraceutaneous Sweet syndrome involving the gastrointestinal tract in a patient with Fanconi anemia. *J Pediatr Hematol Oncol*. (2001) 23:59–62. doi: 10.1097/00005426-200101000-00015

479. Chatham-Stephens K, Devere T, Guzman-Cottrill J, Kurre P. Metachronous manifestations of Sweet’s syndrome in a neutropenic patient with Fanconi anemia. *Pediatr Blood Cancer*. (2008) 51:128–30. doi: 10.1002/pbc.22838

480. Guillon L, Guinan EC, Gillio AP, Drachtman RA, Teruya-Feldstein J, Chatterjee B, Rqieh U, Greaves P, Piras D, Firth J, Saja K. Sweet syndrome in association with pheochromocytoma. *J Pediatr*. (2011) 158:175. doi: 10.1016/j.jpeds.2011.01.1334

481. Delgado P, Franco E, Sanchez M. [Sweet’s syndrome and pyoderma gangrenosum in a patient with idiopathic myelofibrosis], *Sangre*. (1993) 38:248–9.

482. Liu Y, Tabarroki A, Billings S, Visconte V, Rogers HJ, Hasrouri E, et al. Successful use of very low dose subcutaneous decitabine to treat high-risk myelofibrosis with Sweet syndrome that was refractory to 5-azacitidine. *Leukemia Lymphoma*. (2014) 55:347–9. doi: 10.3109/10428194.2013.802315

483. Sakoda T, Kamamitsu Y, Mori Y, Sasaki K, Yonemitsu E, Nagaie K, et al. Recurrent Subcutaneous Sweet’s Disease in a myelofibrosis patient treated with ruxolitinib before allogeneic stem cell transplantation. *Int Med*. (2017) 56:2481–5. doi: 10.2169/internalmedicine.8491-16

484. Geelkerken RH, Lagay MB, van Deijk JW, Spaander PJ. Sweet syndrome associated with lipocarcinoma: a case report. *Netherlands J Med*. (1994)45:107–9.

485. Hamill M, Bowling J, Vega-Lopez F. Sweet’s syndrome and a Mirena intrauterine system. *J Family Plan Reprod Health Care*. (2004) 30:115–6. doi: 10.1783/14711890432299519

486. Itoh H, Shimasaki S, Nakashima A, Ohsato K, Tokikuni N, Kitažima C. Sweet’s syndrome associated with subacute necrotizing lymphadenitis. *Int Med*. (1992) 31:686–9. doi: 10.2169/internalmedicine.31.686

487. Seidel D, Huguet P, Lebbe C, Donadieu J, Odievre M, Labruné P. Sweet syndrome as the presenting manifestation of chronic granulomatous disease in an infant. *Pediatr Dermatol*. (1994) 11:237–40. doi: 10.1111/j.1525-1470.1994.tb0593x.x

488. Knipstein JA, Ambruso DR. Sweet syndrome in an infant with chronic granulomatous disease. *J Pediatr Hematol Oncol*. (2012) 34:374–2. doi: 10.1097/MPH.0b013e3182346b61

489. O’Regan GM, Ho WL, Limaye S, Keogan MT, Murphy GM. Sweet’s syndrome in association with common variable immunodeficiency. *Clin Exp Dermatol*. (2009) 34:192–4. doi: 10.1111/j.1365-2230.2008.02814.x

490. Jindal R, Jain A, Mittal A, Shirizai N. Sweet’s syndrome as the presenting manifestation of gall bladder adenocarcinoma. *BMJ Case Rep*. (2012) 12:12. doi: 10.1136/bcr-2012-006869

491. Bachmeyer C, Begon E, Blum L, Cerf I, Petitjean B, Vignon-Pennamen MD, et al. Overlapping neutrophilic dermatosis in a patient with SAPHO syndrome. *Arch Dermatol*. (2007) 143:275–6. doi: 10.1001/archderm.143.2.275

492. Beretta-Piccoli BC, Sauvain MJ, Gal I, Schibler A, Saurerenn M, Tressebuch H, et al. Synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome in childhood: a report of ten cases and review of the literature. *Eur J Pediatr*. (2000) 159:394–401. doi: 10.1007/s004310000500

493. Sobol UA, Sherman KL, Smith J, Nagda SN, Micetich K, Nickoloff BJ, et al. Sweet’s syndrome with neurologic manifestations in a patient with
548. Natkunarajah J, Gordon K, Chow J, Sarkany R, Millington GW, Marsden RA. Photografagrated Sweet's syndrome. Clin Exp Dermatol. (2010) 35:e18–9. doi: 10.1111/j.1365-2230.2009.03329.x

549. Belhadjali H, Marguey MC, Lamant L, Giordano-Labadie F, Baxex J. Photosensitivity in Sweet's syndrome: two cases that were photoinduced and photoaggravated. Brit J Dermatol. (2003) 149:675–7. doi: 10.1046/j.1365-2133.2003.04587.x

550. Yoshizumi M, Nakamura T, Kato M, Ishioka T, Kozawa K, Wakamatsu K, et al. Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biol Int. (2008) 32:1405–11. doi: 10.1016/j.cbi.2008.08.011

551. Strickland I, Rhodes LE, Flanagan BF, Friedmann PS. TNF-alpha and IL-8 are upregulated in the epidermis of normal human skin after UVB exposure: correlation with neutrophil accumulation and E-selectin expression. J Investig Dermatol. (1997) 108:763–8. doi: 10.1111/1523-1747.ep12292156

552. Lyck R, Enzmann G. The physiological roles of ICAM-1 and ICAM-2 in neutrophil migration into tissues. Curr Opin Hematol. (2015) 22:53–9. doi: 10.1097/MOH.0000000000000103

553. Stucki A, Rivier AS, Gikic M, Monai N, Schapira M, Spertini O. Lyck R, Enzmann G. The physiological roles of ICAM-1 and ICAM-2 in neutrophil migration into tissues. Curr Opin Hematol. (2015) 22:53–9. doi: 10.1097/MOH.0000000000000103

554. Natkunarajah J, Gordon K, Chow J, Sarkany R, Millington GW, Marsden RA. Photografagrated Sweet's syndrome. Clin Exp Dermatol. (2010) 35:e18–9. doi: 10.1111/j.1365-2230.2009.03329.x

555. Vignon-Pennamen MD, Aractingi S. Sweet's syndrome and leukemia. Leukemia and Lymphoma. (2015) 57:1961–2. doi: 10.3109/10428194.2015.79265-X

556. del Pozo J, Martinez W, Pazos JM, Yebra-Pimentel MT, Garcia Silva J, Fonseca E. Concurrent Sweet's syndrome and leukemia in patients with myeloid disorders. Int J Dermatol. (2005) 44:677–80. doi: 10.1111/j.1365-4632.2005.02037.x

557. Giasuddin AS, El-Orfi AH, Ziu MM, El-Barnawi NY. Sweet’s syndrome: is the pathogenesis mediated by helper T cell type 1 cytokines? J Am Acad Dermatol. (1998) 39:940–3. doi: 10.1016/S0190-9622(98)01187-x

558. Bourke JF, Berth-Jones J, Graham-Brown RA. Sweet’s syndrome responding to cyclosporin. Brit J Dermatol. (1992) 127:36–8. doi: 10.1111/j.1365-2133.1992.tb14823.x

559. Antiga E, Maglie R, Volpi W, Bianchi B, Berti E, Marzano AV, et al. IL-17 promotes neutrophil-mediated immunity by activating microvascular pericytes and not endothelium. J Immunol. (2016) 197:2400–8. doi: 10.4049/jimmunol.1600138

560. Hashemi SM, Fazeli SA, Vahedi A, Golabchifard R. Rituximab for refractory subcutaneous Sweet's syndrome in chronic lymphocytic leukaemia: a case report. Mol Clin Oncol. (2016) 4:436–40. doi: 10.3892/mco.2015.715

561. Takahama H, Kanbe T. Neutrophil dermatosis of the dorsal hands: a case showing HLA B54, the marker of Sweet's syndrome. Int J Dermatol. (2005) 44:1029–32. doi: 10.1111/j.1365-4632.2005.02927.x

562. Calixto R, Menezes Y, Ostronoff M, Sucupira A, Botelho LF, Florencio R, et al. Favorable outcome of severe, extensive, granulocyte colony-stimulating factor-induced, corticosteroid-resistant Sweet's syndrome treated with high-dose intravenous immunoglobulin. J Clin Oncol. (2014) 32:e1–2. doi: 10.1002/JCO.2014.03.3212

563. Seminario-Vidal L, Guerrero C, Sami N. Refractory Sweet's syndrome successfully treated with rituximab. JAAD Case Rep. (2015) 1:123–5. doi: 10.1016/j.jdcr.2015.03.002

564. Hashemi SM, Fazeli SA, Vahedi A, Golabchifard R. Rituximab for refractory subcutaneous Sweet's syndrome in chronic lymphocytic leukaemia: a case report. Mol Clin Oncol. (2016) 4:436–40. doi: 10.3892/mco.2015.715

565. Takahama H, Kanbe T. Neutrophil dermatosis of the dorsal hands: a case showing HLA B54, the marker of Sweet's syndrome. Int J Dermatol. (2010) 49:1079–80. doi: 10.1111/j.1365-4632.2009.04422.x

566. Costa-Reis P, Sullivan KE. Chronic recurrent multifocal osteomyelitis. J Immunol (2013) 33:1043–56. doi: 10.1111/j.1365-3104-2012-00925-5

567. Heilig R, Broz P. Function and mechanism of the pyrin inflammasome. J Immunol. (2016) 196:1580–7. doi: 10.4049/jimmunol.2015.007578

568. Masters SL, Lagou V, Jeru I, Baker PJ, Van Elyck L, Parry DA, et al. Familial autoinflammation with neutrophil dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. (2016) 8:332ra45. doi: 10.1126/scitranslmed.aaf1471

569. Miyoshi T, Yamashita K, Ohno T, Izumi T, Takao-Kondo A, Asada M, et al. Familial Mediterranean fever gene as a possible modifier of Sweet syndrome with chronic myelogenous leukemia. Acta Haematol. (2003) 120:57–62. doi: 10.1111/j.1365-2133.2002.00220.x

570. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. (2012) 483:474–8. doi: 10.1038/nature10860

571. C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. (2012) 483:474–8. doi: 10.1038/nature10860
Shp-1 and Shp-2 in T cells: two phosphatases functioning at many levels. ImmunoL Rev. (2009) 228:342–59. doi: 10.1111/j.1600-065X.2008.00760.x

Oka T, Ouchida M, Koyama M, Ogama T, Takada S, Nakatani Y, et al. Gene silencing of the tyrosine phosphatase Shp1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res. (2002) 62:6390–4.

Beghini A, Ripamonti CB, Peterlongo P, Roversi G, Cairoli R, Morra E, et al. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet. (2000) 9:2297–304. doi: 10.1093/oxfordjournals.hmg.a018921

Ma XZ, Jin T, Sakac D, Fahim S, Zhang X, Katsman Y, et al. Abnormal splicing of Shp-1 protein tyrosine phosphatase in human T cells. Implications for lymphomagenesis. Experimental Hematol. (2003) 31:131–42. doi: 10.1016/S0301-472X(02)01025-1

Oka T, Yoshino T, Hayashi K, Ohara N, Nakanishi T, Yamai Y, et al. Reduction of hematopoietic cell-specific tyrosine phosphatase Shp-1 gene expression in natural killer cell lymphoma and various types of lymphomas/leukemias: combination analysis with cDNA expression array and tissue microarray. Am J Pathol. (2001) 159:1495–505. doi: 10.1016/S0002-9440(10)62535-7

Nesterovitch AB, Szanto S, Gonda A, Bardos T, Kis-Toth K, Adarichev VA, et al. Spontaneous insertion of a b2 element in the ptpn6 gene drives a systemic autoinflammatory disease in mice resembling neutrophilic dermatosis in humans. Am J Pathol. (2011) 178:1701–14. doi: 10.1016/j.ajpath.2010.12.053

Nesterovitch AB, Gyorfy Z, Hoffman MD, Moore EC, Elbuluk N, Tryniszewska B, et al. Alteration in the gene encoding protein tyrosine phosphatase nonreceptor type 6 (PTPN6/Shp1) may contribute to neutrophilic dermatoses. Am J Pathol. (2011) 178:1434–41. doi: 10.1016/j.ajpath.2010.12.035

Cohen PR, Kurzrock R. Sweet’s syndrome: a review of current treatment options. Am J Clin Dermatol. (2002) 3:117–31. doi: 10.2165/00128071-200203020-00005

Cohen PR. Sweet’s syndrome—a comprehensive review of an acute febrile neutrophilic dermatosis. Orphanet J. Rare Dis. (2007) 2:34. doi: 10.1186/1750-1172-2-34

Honma K, Saga K, Onodera H, Takahashi M. Potassium iodide inhibits neutrophil chemotaxis. Acta Dermato-Venereol. (1990) 70:247–9.

Paschké S, Weidner AF, Paust T, Marti O, Beil M, Ben-Chetrit E. Technical advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. J Leukocyte Biol. (2013) 94:1091–6. doi: 10.1189/jlb.1012510

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.