Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal carcinoma

Chang-Yu Chen¹², Yung-Song Lin³⁴, Chien-Ho Chen¹* and Yin-Ju Chen⁵⁶⁷⁸*

Abstract

Nasopharyngeal carcinoma (NPC) is a head and neck cancer with poor clinical outcomes and insufficient treatments in Southeast Asian populations. Although concurrent chemoradiotherapy has improved recovery rates of patients, poor overall survival and low efficacy are still critical problems. To improve the therapeutic efficacy, we focused on a tumor-associated protein called Annexin A2 (ANXA2). This review summarizes the mechanisms by which ANXA2 promotes cancer progression (e.g., proliferation, migration, the epithelial-mesenchymal transition, invasion, and cancer stem cell formation) and therapeutic resistance (e.g., radiotherapy, chemotherapy, and immunotherapy). These mechanisms gave us a deeper understanding of the molecular aspects of cancer progression, and further provided us with a great opportunity to overcome therapeutic resistance of NPC and other cancers with high ANXA2 expression by developing this prospective ANXA2-targeted therapy.

Keywords: Annexin A2 (ANXA2), Nasopharyngeal carcinoma (NPC), Cancer progression, Therapeutic resistance

Background

Nasopharyngeal carcinoma (NPC) is a low-frequency disease in western countries; however, it is a high-risk head and neck cancer in Southeast Asia and China [1, 2]. In the clinic, concurrent chemoradiotherapy improved overall survival (OS, 94.5% at 5 years) in stage I/II patients, but the same treatment did not work effectively in stage III/IV patients (OS, 72.3% at 5 years). With monotherapy, stage III/IV patients who received radiotherapy alone had a relatively poor survival rate (an OS of 54.2% at 5 years) [3–6].

To improve the therapeutic efficacy, we tried to understand the mechanism of therapeutic resistance. A meta-analysis of 2321 cancer patients with several cancer types (NPC, ovarian cancer, gliomas, hepatomas, pancreatic cancer, and breast cancer) [8–13]. In addition to cancer progression, ANX family proteins (ANXA1 and ANXA2) suppress the efficacy of both chemotherapy and radiotherapy [8, 14, 15]. In 2015, we further uncovered the interaction of ANXA2 with dendritic cell (DC)-specific intracellular adhesion molecule (ICAM)-3 grabbing non-integrin (DC-SIGN, CD209), which resulted in immunosuppression. This suppression might influence outcomes of anticancer therapies [16].

In recent years, increased attention has focused on ANXA2 and its role in regulating cancer development [17–19]. In this review, cellular and molecular mechanisms of ANXA2-mediated cancer progression and therapeutic resistance are addressed in the first two sections. Then, we further discuss the prospective effect of ANXA2-targeted therapy in the final section.
Cancer progression
A aberrant expression in cancers

Over the period of 2014~2017, researchers pointed out that high expression of ANXA2 in biopsies of epithelial ovarian cancer (56.42%) [20], urothelial carcinoma (53.02%) [21], hepatocellular carcinoma (HCC; 73.81%) [22], NPC (33%) [8], and serous ovarian cancer (57.79%) [23] was associated with poor OS (Table 1). Weihua Qiu and his colleagues performed a meta-analysis of 2321 cancer patients to confirm that high expression of ANXA2 was correlated with both OS (hazard ratio [HR] 1.56; \(p < 0.001 \)) and disease-free survival (HR 1.47; \(p < 0.001 \)) [7]. High ANXA2 expression was also related to a high risk of metastases (\(n = 48 \), NPC) and recurrence (\(n = 93 \), endometrioid endometrial carcinoma) [8, 24]. On the other hand, ANXA2 serves as a diagnostic factor for screening cancers. In peripheral blood, the ANXA2 serum level has been evaluated in patients with HCC (median, 69.6 ng/ml) [25], early-stage HCC (median, 150 ng/ml) [26], gastric cancer (median, 211.0 ng/ml) [27], lung cancer [28], and oral squamous cell carcinoma (median, 27.1 ng/ml) [29] (Table 2). However, serum levels of ANXA2 in NPC patients have not yet been reported.

Additionally, circulating tumor cell (CTC) detection in peripheral blood has become a non-invasive way to predict the risk of developing metastasis in cancer patients. In 2015, Pomila Singh and her colleagues further used cancer stem cell (CSC) markers (e.g., doublecortin-like kinase 1 (DCLK1) and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5)) with epithelial cell markers (CD44 and ANXA2) to detect circulating CSCs in patients with malignant colon adenocarcinomas. CTC detection is an assay for on-going metastasis or relapse, while circulating CSC detection is a novel diagnosis during the initiation of metastasis. Detection of circulating CSCs provides a chance to diagnose metastasis and prevent it at earlier time points [30]. Due to broad approaches of biopsies, and serum and circulating CSC detection, ANXA2 might be a short-term clinical indicator for cancer patients.

Proliferation
There are two types of ANXA2 in cells. The ANXA2 monomer exists in cell cytoplasm and nuclei, while the ANXA2 heterotetramer (consisting of two ANXA2 and two S100A10 molecules) exists on cell membranes. In nuclei, the ANXA2 monomer combines with 3-phosphoglycerate kinase (PGK) to become a complex. This complex performs the same function as primer-recognition proteins to stimulate DNA polymerase alpha, which contributes to the initiation of DNA replication in the early S phase in cervical cancer cells (Fig. 1a) [31]. In addition to promoting DNA replication, nuclear ANXA2 disrupts coilin causing it to abnormally localize to centromeres, thereby precipitating chromosome instability (CIN) which was demonstrated in human colorectal cancer (CRC) cells (Caco-2, HCT116, SW480, DLD-1, and RKO). Chromosome instability was reported to accelerate tumor growth and contribute to cellular resistance to chemotherapy [32–34].

Migration
Phosphorylation of the tyrosine 23 (Tyr23) residue on ANXA2 is a key regulator controlling cell mobility. The migration and invasion enhancer 1 (MIEN1) interacts with ANXA2 to enhance Tyr23 phosphorylation on ANXA2. Phosphorylated ANXA2 binds to actin filaments on cell membranes, and modulates cell scattering and cytoskeletal changes via actin remodeling in human breast cancer cells (SK-BR-3 and BT-474). A phosphorylation deficiency of Tyr23 and Tyr50 causes cells to lose the ability to migrate in vitro wound healing assays [35–38]. However, a different report showed that the extracellular matrix metalloproteinase (MMP) inducer (also known as CD147) prohibits Tyr23 phosphorylation on ANXA2, and promotes cell migration via suppressing ANXA2-DOCK3-β-catenin-WAVE2 step-by-step signaling in human hepatoma cells (SMMC-7721, HuH-7, and HepG2) [39]. It seems that either the promotion of Tyr23 phosphorylation by MIEN1 or the inhibition of Tyr23 phosphorylation by CD147 eventually contributes to cell migration (Fig. 1b). The precise role of Tyr23 phosphorylation in ANXA2’s actions requires further investigation.

Endothelial-mesenchymal transition (EMT)
The EMT is a normal morphogenic process during embryonic development and tissue restructuring; however, the EMT is also the initial step in metastasis [7]. Twist and Snail are two critical transcription factors that promote the EMT in cancers. In EMT initiation, Twist and Snail

| Table 1: High expression of Annexin-A2 (ANXA2) in biopsies as an indicator of the survival rate |
|--------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
Tumor type	N	High ANXA2 expression (%)	\(p \) value	Results	Reference
Epithelial ovarian cancer	119	65/119 (54.62%)	< 0.001	Poor survival rate	[20]
Nasopharyngeal carcinoma	48	32/48 (66.67%)	0.025	Poor survival rate	[8]
Urothelial carcinoma	232	123/232 (53.02%)	0.012	Poor survival rate	[21]
Hepatocellular carcinoma	84	62/84 (73.81%)	0.005	Poor survival rate	[22]
Serous ovarian cancer	109	63/109 (57.79%)	0.044	Poor survival rate	[23]

Method: immunohistochemistry; \(N \), total number of patients
decrease epithelial proteins (i.e., E-cadherin) and increase mesenchymal proteins (i.e., N-cadherin, fibronectin, β-catenin, and vimentin). Cancer cells without adherent junctions (i.e., E-cadherin) can gain an advantage to metastasize from one organ to a different indirectly connected one [40]. Phosphorylation of the Tyr23 residue on ANXA2 was reported to be an initiator of the EMT (mediated by Rho or induced by transforming growth factor (TGF)-β) [12, 37, 41]. In ANXA2-knockdown NPC cells, expression levels of Twist and Snail decreased. ANXA2-knockdown NPC cells retained the endothelial-like phenotype rather than changing to a mesenchymal-like one. This result indicated that ANXA2 is a critical factor in initiation of the EMT via the Twist/Snail signal pathway (Fig. 1c) [8].

Table 2: High levels of Annexin-A2 (ANXA2) in serum as a potential biomarker for cancers

Tumor type	N	p value	Results	Reference
Hepatocellular carcinoma	70	< 0.001	Patients (n = 50, median, 69.6 ng/ml) Healthy individuals (n = 20, median, 9.5 ng/ml)	[25]
Hepatocellular carcinoma (early stage)	70	< 0.01	Patients (n = 50, median, 130 ng/ml) Healthy individuals (n = 20, median, 17 ng/ml)	[26]
Gastric cancer	93	< 0.001	Patients (n = 63, median, 211.0 ng/ml) Healthy individuals (n = 30, median, 120.5 ng/ml)	[27]
Lung cancer	85	< 0.01	Patients (n = 42) Healthy individuals (n = 43)	[28]
Oral squamous cell carcinoma	284	< 0.01	Patients (n = 126, median, 27.1 ng/ml) Healthy individuals (n = 158, median, 15 ng/ml)	[29]

Method: enzyme-linked immunosorbent assay; N, total number of patients

Fig. 1 Annexin A2 (ANXA2) in cancer progression. **a** The ANXA2-3-phosphoglycerate kinase (ANXA2-PGK) complex serves as a primer recognition protein to initiate DNA replication with the support from DNA polymerase alpha, which contributes to cell proliferation. **b** MIEN1 phosphorylates ANXA2 and supports ANXA2's binding to actin filaments to modulate cytoskeletal change, thus resulting in cell migration. **c** ANXA2 initiates the endothelial-mesenchymal transition (EMT) via the Twist/Snail pathway. After initiation of the EMT, cells changed to a mesenchymal-like morphology, and cell junctions dissolved. **d** The ANXA2 heterotetramer complex links to the plasminogen and tissue plasminogen activator (tPA). After plasminogen is cleaved into plasmin, plasmin activates pro-matrix metalloproteases (MMPs) to become MMPs. MMPs digest the extracellular matrix and fibronectin, thus resulting acceleration of invasion. **e** ANXA2 increases stemness-related transcription factors (Oct4, Sox2, and Nanog) through the Akt signaling pathway, which activates cancer stem cell formation.
Invasion and metastasis
ANXA2 promotes the invasion and metastasis of different cancers (ovarian cancer, HCC, gliomas, pancreatic cancer, renal cell carcinoma, lung cancer, breast cancer, and NPC) [8–12, 42–44]. The mechanism of the association of the ANXA2/S100A10 heterotetramer with extracellular matrix (ECM) digestion was described in previous studies [45–47]. Here, we update recent advances and more precisely summarize the mechanism. First, cytoplasmic phospholipase A2 (cPLA2) binds to the ANXA2/S100A10 heterotetramer in the cytoplasm to assist ANXA2 in translocating to cell membranes. On cell membranes, S100A10 links to the plasminogen and tissue plasminogen activator (tPA). S100A10 is required for the plasminogen-dependent oxidation of the ANXA2/S100A10 heterotetramer. Oxidation facilitates the catalytic cleavage of plasminogen to plasmin between arginine (Arg)561 and valine (Val)562 by the active tPA [48]. Plasmin cleaves the tissue inhibitor of metalloproteinases on pro-matrix metalloproteinases (MMPs), and then the pro-MMPs become the active forms of MMPs. MMPs (e.g., MMP-2 and MMP-9) degrade fibronectin and the ECM, thus resulting in acceleration of invasion and metastasis (Fig. 1d) [49–52].

CSCs formation
CSCs are cancer cells with stem-like properties to initiate self-renewal and differentiation. CSCs promote invasion, metastasis, suppress chemotoxicity and radiotoxicity [53–55]. In the previous section on aberrant expression in cancers, we described how ANXA2 can be a novel marker to detect circulating CSCs in the clinic; however, the role of ANXA2 in CSCs is not yet clearly understood. As we know, the Akt protein upregulates stemness-related transcription factors (Oct4, Sox2, and Nanog) [56–58] and is involved in CSC maintenance in different cancer types (gliomas, esophageal carcinoma, and non-small cell lung cancer) [59–61]. To further determine the mechanism between Akt and ANXA2, we established ANXA2-knockdown NPC cells. After ANXA2 silencing, the amount of active Akt decreased, thus indirectly suppressing protein levels of stemness-related transcription factors (Oct4, Sox2, and Nanog). Without sufficient stemness-related transcription factors, ANXA2-knockdown NPC cells are likely to lose their CSC properties (Fig. 1e) [8].

Therapeutic resistance
Correlations between the ANX family and therapeutic resistance
Radiotherapy and concurrent chemoradiotherapy are general strategies for NPC; however, we found resistance to both radiotoxicity and chemotoxicity in NPC cells with high ANXA2 expression. In addition to ANXA2, high expressions of other Annexin proteins were also reported to be associated with therapeutic resistance in different cancers, such as ANXA1 against chemo−/radiotherapy in the CNE2 NPC cell line [14, 15], ANXA2 against multiple drugs in NPC, gastric cancer, breast cancer, and pancreatic cancer [8, 62–64], ANXA3 against chemotoxicity in HCC patients (n = 34) [65], and ANXA4 against chemotherapeutic drugs in human ovarian (OVTKO and OVISE), lung (H460) and colorectal (HCT15) cancer cells [66, 67]. Conversely, low ANXA11 expression is related to ovarian cancer with cisplatin resistance [68]. A correlation between therapeutic resistance and the Annexin protein family was found; nevertheless, the mechanism is still unclear. To improve ANXA2’s therapeutic efficacy against NPC, it is necessary to understand the mechanism of how it enables tumor cells to suppress radiotoxicity or chemotoxicity.

Resistance to chemotherapy
Human NPC cells with high ANXA2 expression can potentially resist different chemotherapeutic drugs (cisplatin, 5-fluorouracil, docetaxel, and vincristine). ANXA2-coated enlargeosomes widely exist in various cell types to regulate Ca2+-dependent cell exocytosis. Knockdown of ANXA2 in tumor cells might decrease the number of and limit the function of enlargeosomes. Dysfunctional enlargeosomes allow chemotherapeutic drugs to condense in the cytoplasm, thus resulting in tumor death (Fig. 2a) [8, 69–71]. Furthermore, intracellular ANXA2 binds the p50 subunit of nuclear factor (NF)-κB to become the ANXA2-p50 complex when pancreatic cancer cells (MIA-PaCa-2) are exposed to genotoxic agents (such as gemcitabine). This complex can be translocated to nuclei to activate the NF-κB signaling pathway. Activated NF-κB has multiple roles in cancer progression through modulating cell apoptosis and drug resistance. On the other hand, Qing-Yong Ma and his colleagues discovered that the phosphatidylinositol-3-kinase (PI3K)/Akt/NF-κB signaling pathway is activated by the interaction of ANXA2 and tenascin-C on the surface of pancreatic cancer cells (AsPC-1, PANC-1, and MIA-PaCa-2), which suppresses gemcitabine-induced cytotoxicity [72–74].

Resistance to radiotherapy
In 2012, David M. Waisman and his colleagues indicated that the ANXA2 protein was imported into nuclei to protect against DNA damage caused by irradiation in human breast and lung cancer cells. ANXA2 is mainly localized in the cytoplasm and plasma membranes, and only a small amount of it is imported into nuclei. ANXA2 contains a leucine-rich nuclear export signal (NES) in its N-terminal domain. In the NES motif, lysine (Lys)10 and Lys12 are two critical residues which prevent ANXA2 from accumulating in nuclei. However, inducers such as gamma-radiation, ultraviolet radiation,
etoposide, chromium VI, hydrogen peroxide (H₂O₂), and reactive oxygen species (ROS) may induce ANXA2 phosphorylation, which allows it to be translocated into nuclei [75, 76]. Phosphorylation regulates ANXA2’s export from and import into nuclei. Phosphorylation of the serine (Ser)11 and Ser25 residues allows ANXA2 to be exported from nuclei; however, phosphorylation at the Tyr23 residue contrastingly allows it to be imported into nuclei (Fig. 2b) [77, 78]. Different phosphorylation sites on ANXA2 can cause totally opposite results. In 2015, we investigated the downstream signaling pathway of ANXA2 in NPC cells. ANXA2 is involved in the Akt pathway and indirectly increases the number of Akt proteins [8]. When exposed to irradiation, the Akt protein binds to heat shock protein 27 (HSP27) to become the Akt-HSP27 complex, which ameliorates radiotoxicity-induced DNA damage and apoptosis. ANXA2-coated enlargeosomes widely exist in various cell types to regulate Ca²⁺-dependent cell exocytosis. Enlargeosomes exocytose chemotherapeutic drugs to prevent their chemotoxic accumulation inside tumor cells, thus resulting in chemotherapeutic resistance. The phosphorylated ANXA2 protein is imported into nuclei to protect against DNA damage by irradiation. ANXA2 also mediates the Akt protein to form the Akt-heat shock protein 27 (Akt-HSP27) complex, which ameliorates radiotoxicity-induced DNA damage and apoptosis. When tumor-infiltrating dendritic cells (DCs) are attached to nasopharyngeal carcinoma (NPC) cells, the interaction between DC-SIGN and ANXA2 causes DCs to lose mature major histocompatibility complex (MHC), and release high levels of the immunosuppressive cytokine interleukin (IL)-10. IL-10 causes consecutive immunosuppressive responses including DC immaturity, inhibition of IL-12 synthetic, CD8⁺ T cell dysfunction, and regulatory T cell expansion.

Resistance to immunotherapy

A range of novel immunotherapies for cancers are under evaluation. Strategies for NPC were reported and are divided into two streams. First, Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) have become an effective adoptive cell therapy (ACT). The EBV latent membrane protein 1 (LMP1) is expressed on EBV-infected carcinoma cells. In 2014, Dennis J Moss and his colleagues transferred autologous CTLs that specifically targeted LMP1-expressing carcinoma cells into patients with recurrent NPC. After an injection, most of the pulmonary lesions disappeared, but the primary tumor did not regress [80]. To improve the disadvantage of targeting LMP1 alone, a new adenoviral vector was designed. This new adenoviral vector inserted EBV LMPs and EBV nuclear antigen-1 (EBNA1), which expanded specific CTLs against LMP- and/or EBNA1-expressing NPCs [80–83]. Second, DC-based immunotherapy is another option. DCs present tumor antigens to naïve CD8⁺ T cells in draining lymph nodes, and then naïve CD8⁺ T cells turn into tumor-specific CTLs [84–88]. However, NPC cells could give rise to suppressive responses after cell-cell interactions with DCs, thus resulting in immune escape [16, 89–91]. DCs can sense tumor-derived factors through...
receptors in both extracellular and intracellular milieu. Receptors include intracellular helicases, surface/intracellular toll-like receptors (TLRs), and surface C-type lectin receptors (CLRs). CLRs capture pathogen-associated molecular patterns (PAMPs) and endogenous ligands. DC-SIGN, a kind of C-type lectin, is composed of a carbohydrate recognition domain (CRD), a neck region with seven repeats, and a transmembrane region with a cytoplasmic tail [92–96]. DC-SIGN recognizes N-acetylglucosamine, mannose, fucose, and non-sialylated Lewis structures by CRD [95]. Mannosylated lipoarabinomannan (ManLAM) induces DC-SIGN downstream transcription factors (such as Ras, Raf-1, and NF-κB) to increase interleukin (IL)-10 promoter activity [97, 98]. After DC-SIGN is ligated by mannos- or fucose-containing oligosaccharides, it indirectly increases IL-10 production via the Th2 pathway in DCs. Normally, IL-10 suppresses prolonged and exaggerated immune responses [99, 100]. However, when DCs attach to NPC cells with high ANXA2 expression, the strong interaction between DC-SIGN and ANXA2 causes DCs to release extremely high levels of IL-10 (Fig. 2c). Once IL-10 spreads into the tumor environment, it causes consecutive immunosuppressive responses including DC immaturity (losing the major histocompatibility complex and the co-stimulatory molecules), the IL-12 synthetic inhibition, CD8+ T cell dysfunction, and regulatory T cell expansion [101–107].

Prospective ANXA2-targeted therapy

From 2013, different research teams began to develop ANXA2-targeted therapy. C Ricciardelli’s team used an anti-ANXA2 antibody to reduce both tumor growth and metastasis in an ovarian cancer mice model (SK-OV3) [9]. One year later, Mandip Singh and his colleagues inserted short hairpin (sh)RNA targeting ANXA2 (shANXA2) into a cationic ligand-guide (CLG, a liposomal carrier) to construct a CLG-ANXA2 compound. The CLG-ANXA2 was designed to recognize cancer cells and CSCs in a lung cancer mouse model (H1650). After CLG-ANXA2 was taken up by tumor cells, shANXA2 prohibited ANXA2 messenger (m)RNA expression and decreased its protein level. The CLG-shANXA2 group showed inhibited tumor growth (reduced 72%–75% relative to the control, \(p < 0.001 \)) [108]. To verify the above results, we established ANXA2-knockdown NPC cell lines by shRNA. Proliferation, migration, adhesion, and CSC formation were indeed reduced in ANXA2-knockdown NPC cells. Moreover, ANXA2-knockdown NPC cells lost the ability to suppress chemotoxicity, radiotoxicity, and immune responses [8, 16]. Targeting ANXA2 raises the possibility of being able to overcome the low therapeutic efficacy of cancers with high ANXA2 expression.

In addition to ANXA2, high expression of the epidermal growth factor receptor (EGFR) was previously discovered in NPC cells [109, 110]. In 2005, combined therapy with cetuximab (as the first chimeric anti-EGFR antibody) and carboplatin was used against NPC in 60 patients. After treatment, only 11.7% of patients had a response, and 48.3% had a stable disease rate [111]. It seems that treatment with cetuximab and carboplatin needs more consideration due to its low efficacy. In 2017, Liming Huang and his colleagues reported promising results that silencing ANXA2 expression would reverse the EGF-induced EMT and inhibit cell migration in epidermoid cervical carcinoma cells (Ca-Ski, HeLa, and SiHa) [112]. ANXA2 helps the tyrosine-protein kinase transforming protein, Src (v-Src), mediate actin-cytoskeletal rearrangement which enhances proliferation, migration, and viability through the EFRG pathway [113]. The above findings gave us a new selection to combine anti-ANXA2 and anti-EGFR antibodies to fight against double-positive NPC (EGFR+/ANXA2+).

Nevertheless, ANXA2-deficient (ANXA2−/−) mice showed an increased risk of thrombosis and a decreased ability of neoangiogenesis [47]. Although ANXA2-targeted therapy suppresses cancers, it may produce side effects in patients. Thus, it is necessary to consider the expression titer of ANXA2, the dose level of ANXA2-targeted antibodies (or carrier with shANXA2), and the patient’s health condition before using ANXA2-targeted therapy.

Conclusions

This review reveals the cancerous and suppressive mechanisms of ANXA2. First, we stepwise described the mechanisms of how ANXA2 promotes proliferation, migration, the EMT, metastasis, invasion, and CSC formation. On cell membranes, the ANXA2-S100A10 heterotetramer promotes activation of MMPs to increase the invasive ability. In cytoplasm, ANXA2, after being phosphorylated at Tyr23, binds to actin filaments to enhance migration. Inside cell nuclei, ANXA2 promotes both EMT- and CSC-related transcriptional factors (Snail, Twist, Oct4, Sox2, and Nanog). Second, we illustrated different therapeutic resistances by ANXA2. After phosphorylation, ANXA2 is translocated into nuclei and prevents DNA damage due to radiotoxicity. ANXA2-coated enlargesomes exocytose chemotherapeutic drugs to decrease the level of chemotoxicity in cancer cells. Moreover, the molecular interaction of ANXA2 and DC-SIGN triggers immunosuppression, which results in tumor immune escape. The above findings gave us a deeper understanding of the molecular aspects of cancer progression, and provided a great opportunity to improve the therapeutic efficacy against NPC and other cancers with high ANXA2 expression. Although the ANXA2-targeted therapy has not been examined in
clinical trials yet, it is expected to produce promising treatment outcomes.

Abbreviations
ANXA2: Annexin A2; Arg: Arginine; CLG: Cationic ligand-guided; CLR: C-type lectin receptor; CPCR: Cytoplasmic phospholipase A2; CR: Colorectal cancer; CRD: Carbohydrate recognition domain; CSC: Cancer stem cell; CTC: Circulating tumor cell; DC: Dendritic cell; DC-SIGN: Dendritic cell-specific EBV-Epstein-Barr virus; DFS: Disease-free survival; DLCK1: Doublecortin-like kinase 1; EBNA1: EBV nuclear antigen-1; ECM: Extracellular matrix; EGFRI: Epidermal growth factor receptor; EMT: Endothelial-mesenchymal transition; H2O2: Hydrogen peroxide; HCC: Hepatocellular carcinoma; HR: Hazard ratio; HSP27: Heat shock protein 27; ICAM: Intracellular adhesion molecule; ICAM-3: Grabbing non-integrin; IL-10: Interleukin-10; LGR5: Leucine-rich repeat-containing G-protein coupled receptor 5; LS: Lysine; MEI1: Migration and invasion enhancer 1; MDC: Metallolipoprotease; NES: Nuclear export signal; NPC: Nasopharyngeal carcinoma; PAMP: Pathogen-associated molecular pattern; PGK: Phosphoglycerate kinase; PI3K: Phosphatidylinositol-3-kinase; RSRSL: R-spondin-like; TGF: Transforming growth factor; TPA: Tissue plasminogen activator; Tyt: Tyrosine; Val: Valine

Acknowledgements
None.

Funding
This work was supported by a research project of the Ministry of Science and Technology (MOST104-2314-B-038-060).

Availability of data and materials
Not applicable.

Authors’ contributions
CJC, YJC, and CHC were involved in the design, wrote the manuscript, and supervised the research. YSL and CHC commented on the study and provided material and/or technical support. All authors read and gave final approval of the submitted and published versions.

Ethics approval and consent to participate
Not applicable.

Consent for publication
None.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan. 2Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. 3Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. 4Department of Otolaryngology, Chi Mei Medical Center, Tainan, Taiwan. 5Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan. 6Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. 7International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. 8School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.

References
1. Sun LW, Epplen M, Li CI, Vaughan TL, Weiss NS. Trends in the incidence rates of nasopharyngeal carcinoma among Chinese Americans living in Los Angeles County and the San Francisco metropolitan area, 1992-2002. Am J Epidemiol. 2005;162(12):1174–8.
2. Cho WC. Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer. 2007;6:11.
3. Ma BB, Chan AT. Recent perspectives in the role of chemotherapeutics in the management of advanced nasopharyngeal carcinoma. Cancer. 2005;103(3):222–31.
4. Zhang L, Chen QY, Liu H, Tang LQ, Mai HQ. Emerging treatment options for nasopharyngeal carcinoma. Drug Des Devel Ther. 2013;7:37–52.
5. Caponigro F, Longo F, Ionna F, Perri F. Treatment approaches to nasopharyngeal carcinoma: a review. Anti-Cancer Drugs. 2010;21(5):471–7.
6. Lee AW, Fie WE Jr, Ng WT, Chan LK. Nasopharyngeal carcinoma: salvage of local recurrence. Oral Oncol. 2012;48(9):768–74.
7. Liu X, Ma D, Jing X, Wang B, Yang W, Qiu W, Qiu W. Overexpression of ANXA2 predicts adverse outcomes of patients with malignant tumors: a systematic review and meta-analysis. Med Oncol. 2015;32(11):392.
8. Chen CY, Lin YS, Chen CL, Chao PZ, Chiu JF, Kuo CC, Lee FP, Lin YF, Sung YH, Lin YT, et al. Targeting annexin A2 reduces tumorigenesis and therapeutic resistance of nasopharyngeal carcinoma. Oncotarget. 2015;6(29):26946–59.
9. Lokman NA, Elder ASF, Woon MP, Pyragius CE, Hoffmann P, Oehler MK, Ricciardelli C. Annexin A2 is regulated by ovarian cancer-peritoneal cell interactions and promotes metastasis. Oncotarget. 2013;4(8):1199–211.
10. Zhai H, Acharya S, Gravanis I, Mehmood S, Seidman RJ, Shroyer KR, Hajar KA, Tsirka SE. Annexin A2 expression in invasive breast cancer and tumor progression. J. Neurosci. Off. J. Soc. Neurosci. 2011;31(40):14346–60.
11. Zhang HJ, Yao DF, Yao M, Huang H, Wang L, Yan MJ, Yan XD, Gu X, Wu W, Lu SL. Annexin A2 silencing inhibits invasion, migration, and tumorigenic potential of hematopoietic cells. World J. Gastroenterol. 2013;19(24):3792–801.
12. Zheng L, Foley K, Huang LQ, Leubner A, Mo GL, Olino K, Edil BH, Mzuma M, Sharma R, Le DT, et al. Tyrosine 23 phosphorylation-dependent cell-surface localization of Annexin A2 is required for invasion and metastasis of pancreatic Cancer. PLoS One. 2011;6(4).
13. Sharma MK, Koltowska L, Owemby RT, Tuszyński GP, Sharma MC. Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol. 2006;81(2):146–56.
14. Zeng GQ, Cheng AL, Tang J, Li GQ, Li MX, Qu JQ, Cao C, Liao L, Xiao ZQ. Annexin A1: a new biomarker for predicting nasopharyngeal carcinoma response to radiotherapy. Med Hypotheses. 2008;71(1):68–70.
15. Chow BHY, Chua DTT, Sham JST, Zhang MY, Chow LWC, Bi J, Ma NF, Xie D, Loo WTY, Fung JMM, et al. Increased expression of annexin I is associated with drug-resistance in nasopharyngeal carcinoma and other solid tumors. Proteom Clin Appl. 2009;3(6):654–62.
16. Chao PZ, Hsieh MS, Cheng CW, Hsu TJ, Lin YT, Lai CH, Liao CC, Chen WY, Leung TK, Lee FP, et al. Dendritic cells respond to nasopharyngeal carcinoma cells through annexin A2-recognizing DC-SIGN. Oncotarget. 2015;6(11):15970–9.
17. Wang CY, Lin CF. Annexin A2: its molecular regulation and cellular expression in cancer development. Dis Markers. 2014;2013:308976.
18. Xu XH, Pan W, Kang LH, Feng H, Song YQ. Association of annexin A2 with cancer development (review). Oncol Rep. 2015;33(5):2121–8.
19. Grindheim AK, Saraste J, Vedeler A. Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta. 2017;1865(11 Pt A):2515–20.
20. Deng Y, Chen C, Hua M, Xi Q, Liu R, Yang S, Liu J, Zhong J, Tang M, Lu S, et al. Annexin A2 plays a critical role in epithelial ovarian cancer. Arch Gynecol Obstet. 2015;292(1):175–82.
21. Zhang Q, Zhao ZS, Ma YY, Wang HJ, Ma J, He XJ, Zhang DH. Combined expression of S100A4 and Annexin A2 predicts disease progression and overall survival in patients with uterine carcinosarcoma. Urol Oncol-Semin Orig. 2014;32(6):798–805.
22. Zhang H, Yao M, Wu W, Qiu L, Sai W, Yang J, Zheng W, Huang J, Yao O. Up-regulation of annexin A2 expression predicates advanced clinicopathological features and poor prognosis in hepatocellular carcinoma. Tumour Biol.: J Int. Soc. Oncodev. Biol. Med. 2015;36(12):9373–83.
23. Lokman NA, Pyragius CE, Rudskiejewicz A, Oehler MK, Ricciardelli C. Annexin A2 and S100A10 are independent predictors of serous ovarian cancer outcome. Transl Res. 2016;171(3):85–95. e81-2

24. Alonso-Alconada S, Santacana M, Garcia-San P, Muñuelo-Romay L, Còles E, Mirantes C, Monge M, Cuesta J, Oliva E, Sosnov RA, et al. Annexin-A2 as predictor biomarker of recurrent disease in endometrial cancer. Int J Cancer. 2015;136(8):1863–73.

25. El-Abd N, Fawzy A, Elzawal T, Hamdy S. Evaluation of annexin A2 and as potential biomarkers for hepatocellular carcinoma. Tumor Biol. 2016;37(11):111–16.

26. Shaker MK, Fattah HIA, Sabbour GS, Montasser IF, Abdelhakam SM, El Hadidy E, Yousry R, El Dorry AK. Annexin A2 as a biomarker for hepatocellular carcinoma in Egyptian patients. World J Hepatol. 2017;9(9):469–76.

27. Tas F, Tilgen Yasasever C, Karabulut S, Tastekin D, Duranyildiz D. Circulating annexin A2 as a biomarker in gastric cancer patients: correlation with clinical variables. Biomed Pharmacother. 2015;69:237–41.

28. Yang J, Yang S, Nie JQ, Zou XH, Tian HQ, Qin YE, Liu CQ. Evaluation of Annexin II as a novel diagnostic serum biomarker for lung cancer. Cancer Biomark. 2015;15(2):205–11.

29. Zhang W, Gao C, Zhang S, Fang G. Serum Annexin A2 level is associated with diagnosis and prognosis in patients with oral squamous cell carcinoma. J Oral Maxillofac Surg. 2017;75(5):1081–7.

30. Kantara C, O’Connell MR, Luthra G, Gajjar A, Sarkar S, Ullirich RL, Singh P. Methods for detecting circulating cancer stem cells (CSCcs) as a novel approach for diagnosis of colon cancer relapse/metastasis. Lab Investig. 2015;95(1):100–12.

31. Vishwanatha JK, Jindal HK, Davis RG. The role of primer recognition proteins in DNA replication: association with nuclear matrix in HeLa cells. J Cell Sci. 1992;101(Pt 1):25–34.

32. Kazumi T, Nie H, Satoh M, Kuga T, Matsushita K, Kawasaki N, Tonomata T, Nomura F. Nuclear accumulation of annexin II contributes to chromosomal instability by collin-mediated centromere damage. Oncogene. 2015(34)(32):4177–89.

33. Bakhoum SF, Compton DA. Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest. 2012;122(4):1138–43.

34. Wang TL, Diaz LA Jr, Romans K, Bardelli A, Saha S, Galizia G, Chott M, Donehower R, Pignataro G, Shi h le M, et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci U S A. 2004;101(9):3089–94.

35. Hubashly I, Jones PG, Bjorge J, Bellagamba C, Fitzpatrick S, Fujita DJ, Waisman DM. Modulation of annexin II tetramer by tyrosine phosphorylation. Biochemistry. 1995;34(44):14527–34.

36. Gerke V, Creutz CE, Moss SE. Annexin: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005;6(6):449–61.

37. de Grauw M, Tijdens I, Smeets MB, Hensbergen PJ, Deelder AM, van de Water B. Annexin A2 phosphorylation mediates cell scattering and branching morphogenesis via cofilin activation. Mol Cell Biol. 2008;28(3):1029–40.

38. Kpetemer T, Dasgupta S, Rajendiran S, Das S, Gibbs LD, Shetty P, Gryczynski Z, Vishwanatha JK. MiRNA, a novel interactors of Annexin II, promotes tumor cell migration by enhancing Anxa2 cell surface expression. Mol Cancer. 2015;14:156.

39. Cui HY, Wang SQ, Ma XJ, Fu ZG, Feng F, Wu J, Yang XM, Chen ZN, Jiang JL. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOC53-beta-catenin-WAVE2 signaling. Oncotarget. 2016;7(5):5613–29.

40. Thiey JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–84.

41. Rescher U, Ludwig C, Konietzko V, Khartonovenok A, Gerke V. Tyrosine phosphorylation of Annexin A2 regulates apoptotic actin reorganization and cell adhesion. J Cell Sci. 2008;121(Pt 13):2177–85.

42. Yang SF, Hsu HL, Chao TK, Hsiao CJ, Lin YF, Cheng CW. Annexin A2 in renal cell carcinoma: expression, function, and prognostic significance. Urol Oncol. 2015;33(2):e11–21.

43. Wang YQ, Zhang F, Tian R, Ji W, Zhou Y, Sun XM, Liu Y, Wang ZY, Niu RF. Tyrosine 23 phosphorylation of Annexin A2 promotes proliferation, invasion, and Stat3 phosphorylation in the nucleus of human breast cancer SK-BR-3 cells. Cancer Biol Med. 2012;9(4):248–53.

44. Wang CY, Chen CL, Tseng YJ, Fang YT, Lin YS, Su WC, Chen CC, Chang KC, Wang YC, Lin CF. Annexin A2 silencing induces G2 arrest of non-small cell lung cancer cells through p53-dependent and -independent mechanisms. J Biol Chem. 2012;287(39):32512–24.

45. Kassam G, Choi KS, Ghumman J, Kang HM, Fitzpatrick SL, Zackson T, Zackson S, Toba M, Shimoyama A, Waisman DM. The role of annexin II tetramer in the activation of plasminogen. J Biol Chem. 1998;273(8):4790–9.

46. Bharadwaj A, Bydoun M, Holloway R, Waisman DM. Annexin II heterotrimer: structure and function. Int J Mol Sci. 2013;14(6):2592–305.

47. Green T, Wason SJ, Enrich C, Rentero C. Annexins - insights from knockout evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):555–68.

48. Colak S, Medema JP. Cancer stem cells: important players in tumor therapy resistance. FEBS J. 2014;282(1):479–91.

49. Cocioc M, Mabert K, Munders MH, Dubrovski A. R. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol. 2015;31:16–27.

50. Mirraek U, Batta SK. Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies. Mol Asp Med. 2014;35:33–92.

51. Qin J, Ji J, Deng R, Tang J, Yang F, Feng GK, Chen WD, Wu XQ, Qian XJ, Ding K, et al. DC120, a novel AKT inhibitor, preferentially suppresses nasopharyngeal carcinoma stem-like cells by downregulating Sox2. Oncotarget. 2015;6(9):9494–50.

52. Zhao JW, Zhou W, Li WX, Kang B, Zhang XQ, Yang Y, Cheng J, Yin SY, Tong Y, He IQ, et al. Akt-mediated phosphorylation of Oct4 is associated with the proliferation of stemlike cancer cells. Oncol Rep. 2015;33(4):1621–9.

53. Bleau AM, Hambardzumyan D, Ozaawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4(3):226–35.

54. Li H, Gao G, Guo L, Lu SH. The PTEN/PI3K/Akt pathway regulates stem-like cells in primary esophageal carcinoma cells. Cancer Biol Ther. 2011;11(11):950–8.

55. Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E, Attieke S, Chellappan SP, EGFR/Src/Akt signaling mediates Sox2 expression and self-renewal of stem-like-side-population cells in non-small cell lung cancer. Mol Cancer. 2012;11:73.

56. Zhang ZD, Li Y, Fan LQ, Zhao Q, Tan BB, Zhao XF. Annexin A2 is implicated in multi-drug-resistance in gastric cancer through p38MAPK and AKT pathway. Neoplasma. 2014;61(6):2437–37.

57. Zhang F, Zhang H, Wang Z, Yu M, Tian R, Ji W, Yang Y, Niu P. R-glycoprotein associates with Anxa2 and promotes invasion in multidrug resistant breast cancer cells. Biochem Pharmacol. 2014;87(2):292–302.

58. Takano S, Togawa A, Yoshitomi H, Shida T, Modugno F, Shimizu H, Yoshidome H, Ohtsuka M, Katou A, Tomonaga T, et al. Annexin II overexpression predicts rapid recurrence after surgery in pancreatic cancer patients undergoing gemcitabine-adjuvant chemotherapy. Ann Surg Oncol. 2008;15(11):3157–68.

59. Pan QZ, Pan K, Weng DS, Zhao J, Zhang XF, Wang DD, Lu L, Jiang SS, Zheng ZX, Xia JC. Annexin A3 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma. Mol Carcinog. 2015;54(8):598–607.

60. Han S, Tahir SK, Cherian SP, Collins CW, Holland EC. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4(3):226–35.

61. Zhang ZD, Li Y, Fan LQ, Zhao Q, Tan BB, Zhao XF. Annexin A2 is implicated in multi-drug-resistance in gastric cancer through p38MAPK and AKT pathway. Neoplasma. 2014;61(6):2437–37.
89. Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, Banchereau J, Steinman RM. Dendritic cells and the control of immunity.

85. Zong YS, Zhang CQ, Zhang F, Ruan JB, Chen MY, Feng KT, Yu ZF. Infiltrating lymphocytes and accessory cells in nasopharyngeal carcinoma. Jpn. J. Clin. Oncol. 1991;25(10):359–66.

86. Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B, Li J, Chen QY, Mo H, Zhang YL, Huang ZF, Zeng YX. Immunophenotyping of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Pathol Res Pract. 1991;187(4):496–502.

69. Lorusso A, Covino C, Priori G, Bachi A, Meldolesi J, Chieregatti E. Annexin2 interaction between alternatively spliced segment of tenasin-C and Annexin A2 in pancreatic Cancer cells. Biol Pharm Bull. 2010;33(3):1261–7.

77. Eberhard DA, Karns LR, VandenBerg SR, Creutz CE. Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Biol. 2001;154(7):1314–28.

56. Cocucci E, Racchetti G, Podini P, Meldolesi J. Enlargeosome traffic: exocytosis triggered by various signals is followed by endocytosis, membrane shedding or both. Traffic. 2007;8(6):742–57.

20. Song J, Shih Ie M, Salani R, Chan DW, Zhang Z, Annexin XI. Is associated with cisplatin resistance and related to tumor recurrence in ovarian cancer patients. Clin. Cancer Res. 2007;13(22 Pt 1):6842–9.
112. Cui L, Song J, Wu L, Cheng L, Chen A, Wang Y, Huang Y, Huang L. Role of Annexin A2 in the EGF-induced epithelial-mesenchymal transition in human CaSkI cells. Oncol Lett. 2017;13(1):377–83.

113. Shetty PK, Thamake SI, Biswas S, Johansson SL, Vishwanatha JK. Reciprocal regulation of annexin A2 and EGFR with Her-2 in Her-2 negative and herceptin-resistant breast cancer. PLoS One. 2012;7(9):e44299.