Introduction

Acinetobacter baumannii has been well recognized as a problematic human pathogen and several reports has shown the incidence of multidrug and pandrug-resistant A. baumannii strains in infirmary infections. A. baumannii grows only on an air-liquid interface and does not form a contiguous biofilm. Extracellular matrices (ECM) and slanted glass coverslips are (SGC) used as biofilm substrates and biofilms have been investigated by SEM, confocal and crystal violet staining. ECM has shown enhanced biofilm formation under dynamic conditions rather than static conditions. SGC biofilm yield assay has shown higher levels of continuous layers and packed thicker biofilm formation with glass coverslip inserts, up to 1.7 to 3 times higher biofilm formation, than when compared with no glass coverslip inserts. A media immersed ECM study revealed that biofilm grown on extracellular matrixes formed thread-like pili structures, and that these structures had contact with the ECM and also showed excellent cell-to-cell interaction. In summary, A. baumannii showed higher biofilm formation capacities with ECM, while the prominent results were directly related with the biofilm formation capacity of A. baumannii. For the initial step of biofilm formation, adherence is an important factor and, consequently, strains with a comparatively high capability to adhere to extracellular matrices and slanted glass coverslips provide a new method for enhanced biofilm growth for in vitro assays. ECM can be used as a substrate for immersed biofilm formation studies and the SGC method for air-liquid interface exposed biofilm formation studies, and these substrates can provide better biofilm growth and easy handling for in vitro adherence and biofilm assays.

Key Words: Acinetobacter baumannii; biofilm growth; biofilm substrates; extracellular matrix
Cultures with OD 0.3–0.4 at 490 nm (10^7 CFU/ml) were used for bacterial culture. Nutrient broth and agar 19003 were isolated from blood, urine, and the cerebrospinal fluid of patients, respectively. Strains 17961, 19606 and 19003 were procured from ATCC (ATCC, Manassas, VA). BAA-1605 is a multidrug resistant strain isolated from the bloodstream of a patient with sepsis. Bacterial strains and growth conditions. The purpose of this work was to examine different extracellular matrices and slanted glass coverslips as biofilm substrates to provide enhanced growth conditions to avoid stress in exposed cultures.

Materials and Methods

Bacterial strains and growth conditions. Acinetobacter baumannii strains (ATCC BAA-1605, 17961, 19606, 19003) were grown in nutrient broth and allowed to sit for 5 min for adherence. Following this, the coverslip (20 mm x 11 mm) extended above the level of the medium to about 1/3 of its length and allowed the formation of a biofilm to begin at the level of the upper surface of the medium. Thereafter, a contiguous biofilm grew both (into the medium) and above this level, covering the entire coverslip. To evaluate the biofilm yield, overnight bacterial cultures containing 10^7 CFU/ml of Acinetobacter baumannii strains (ATCC BAA-1605, 17961, 19606, and 19003) were added to 2 ml of media in 24-well microtiter plates with, or without, inserted slanted glass coverslips. Every 12 h, the medium containing suspended bacterial cells was removed and an equal volume of fresh medium was added. After incubation, the glass coverslips, and the well plate with attached bacteria, were fixed with 2.5 ml of methanol per well for 15 min. The well plate with, and without, glass coverslips were then emptied and air dried. Each well was then stained for 2.5 min with 5 ml of 0.1% (w/v) crystal violet. Excess stain was rinsed off by placing the plate under running tap water. The well plate with, and without, glass coverslips was air-dried and the dye bound to adherent cells removed with 2.5 ml of 33% (v/v) glacial acetic acid per well. The optical density of the negative control was subtracted from the readings of all other samples.

Quantification of biofilm yield using the slanted coverslip method. For the slanted glass coverslip (SGC) method, the coverslip (20 mm x 11 mm) extended above the level of the medium to about 1/3 of its length and allowed the formation of a biofilm to begin at the level of the upper surface of the medium. Thereafter, a contiguous biofilm grew both (into the medium) and above this level, covering the entire coverslip. To evaluate the biofilm yield, overnight bacterial cultures containing 10^7 CFU/ml of Acinetobacter baumannii strains (ATCC BAA-1605, 17961, 19606, and 19003) were added to 2 ml of media in 24-well microtiter plates with, or without, inserted slanted glass coverslips. Every 12 h, the medium containing suspended bacterial cells was removed and an equal volume of fresh medium was added. After incubation, the glass coverslips, and the well plate with attached bacteria, were fixed with 2.5 ml of methanol per well for 15 min. The well plate with, and without, glass coverslips were then emptied and air dried. Each well was then stained for 2.5 min with 5 ml of 0.1% (w/v) crystal violet. Excess stain was rinsed off by placing the plate under running tap water. The well plate with, and without, glass coverslips was air-dried and the dye bound to adherent cells removed with 2.5 ml of 33% (v/v) glacial acetic acid per well. The optical density of the resulting solutions was measured at 595 nm. Three independent experiments were carried out for each experimental condition. In each case, the mean optical density of the negative control was subtracted from the readings of all other samples.

Live and dead biofilm assay for the slanted glass coverslips method. For the biofilm live and dead assay, biofilms were formed as described in the above biofilm yield assay. The glass coverslips with grown biofilm were stained using an L 7012 LIVE/DEAD BacLight Bacterial Viability Kit from Molecular Probes Inc. (Eugene, OR) as described by Neu and Lawrence (1997). The samples were immediately examined via confocal microscopy (Nikon ECLIPSE - TE200 with EZ-C1 software, Nikon Instruments, Inc. Melville, New York) at excitation wavelengths of 488 and 543 nm. For image analysis, a maximal projection of each image stack was built using the program Nikon imaging software NIS-Elements AR3.00, SP-4, Hotfix6 (Build, 505) and red and green projections were selected separately to measure their intensity. The resulting red and green intensities were analyzed for their statistical significance. Three independent experiments were carried out for each experimental condition. In each case, the mean optical density of the negative control was subtracted from the readings of all other samples.

Scanning electron microscopy (SEM) observation for the slanted glass coverslip method. For SEM observation biofilms were formed as described in the above biofilm yield assay. Glass slides were gently washed twice with sterilized distilled water. Biofilms on glass coverslips were gently washed twice with sterilized distilled water. Fixation of biofilms on glass slides was performed by the method of Araujo et al. (2003), and fixed biofilms were dehydrated for 10 min in a graded series of cold ethanol/water mixtures (50, 70, 80, 90, 95 and 100% of ethanol). The last dehydration (100% ethanol) was repeated for better sample preparation. With gentle rocking, biofilms on glass slides were treated with 50% ethanol with 50% HMDS (hexamethyldisilazane) for 5 min, and, finally, a 100 min exposure of samples with 100% HMDS. After dehydration, biofilms were air-dried under the hood. After drying, gold-palladium (50%/50%) coatings were applied to the fixed bacterial samples using a 6.2 Hummer Sputter Coater (Anatech USA, Union City, CA). After sputter coating, samples were imaged in five random spots with a SIGMA VP40 Scanning Electron Microscope (2 kV with high vacuum mode).

Extracellular matrix proteins as a substrate for biofilm assay. For ECM studies, six types of coverslips (5 glass coverslips, each with a different extracellular matrix, and 1 plain glass coverslip) were placed on the bottom of 6 well plates. Collagen I, fibronectin, poly-d-lysine/laminin, poly-l-lysine, poly-d-lysine coated coverslips (BD Bioscience, NJ) and plain glass coverslips were used. 200 μl of A. baumannii inoculum was placed on the coverslips and allowed to sit for 5 min for adherence. Following this, 4 ml of nutrient broth was supplied to all wells and plates and incubated under aerobic conditions for 72 h at 37°C. Every 12 h during incubation, the medium containing suspended grown bacterial cells was removed and replaced with the same volume of fresh medium. One group was maintained in a dynamic (100 RPM) condition and another in a static condition. After 72 h, biofilms from both the dynamic and static conditions were used for SEM imaging and crystal violet biofilm quantification assay (method as described in the above biofilm yield assay). Prior to SEM imaging, all samples were smoothly rinsed two times using aseptic distilled water. Fixation of biofilms on immersed ECM for crystal violet quantification studies and SEM imaging was performed as per the above de-
scribed slanted coverslip method for both the dynamic and static conditions.

Statistical analysis. The means and standard deviations were calculated. One-way (biofilm yield assay) and two-way ANOVA (live/dead staining assays) were used to determine the levels of significance ($p < 0.05$).

Results and Discussions

A knowledge of the factors enhancing *in vitro* *A. baumannii* biofilm growth is lacking. We were initially hindered in antimicrobial testing against *A. baumannii* because of its biofilm growth pattern *in vitro*. This bacterium is a strictly aerobic bacterium that does not form a contiguous cell layer even after extended incubation (Tomaras et al., 2003) and grows only at the air-liquid interface. The strains had weak adhesion patterns to various materials during experimental conditions with the exception of glass tube surfaces (Costa et al., 2006; Egwari and Taiwo, 2004). We used slanted coverslip inserts and six different extracellular matrixes for the enhancement of biofilm growth and better experimental handling for adherence assay, confocal, and scanning electron microscopy studies.

Biofilm yield assay with, and without, SGC revealed higher levels of biofilm formation for *A. baumannii* strains when grown with SGC inserts. SGC biofilm yield assay showed higher levels and continuous layers of biofilm formation up to 1.7 to 3-fold higher than when carried out without SGC inserts (Figs. 1 and 2). SGC grown *A. baumannii* biofilm stained with a LIVE/DEAD® BacLight™ Bacterial Viability Kit is shown in Figs. 3 and 4. In 72-h confocal micrographs of *A. baumannii* biofilm, fluorescence indicates a thicker biofilm formation. The intensity of the biofilm varied from 17 to 25 million arbitrary units (AU) and the highest biofilm formation was observed with S1 (ATTC BAA-1605).

SEM examination was carried out to check for a possible morphological arrangement in *A. baumannii* during biofilm formation. Cell surfaces were remarkably integrated and regular boundaries were observed and the mar-
gins of cell walls were very clear. Bacterial cells appeared to have very good adherence and cohesiveness behavior, apparently indicating that slanted coverslips provide a healthy environment for biofilm formation. The enlarged insert images of *A. baumannii* biofilms show a clear view of the integration of the biofilm (Fig. 4). Biofilm yield assay results indicate that the use of SGC is a successful methodology for trouble-free handling of enhanced biofilm growth in an air-liquid interface under a static condition. *A. baumannii* has the ability to form a biofilm on a variety of abiotic surfaces such as glass and polystyrene (Jawad et al., 1998; Wendt et al., 1997). Jawad et al. (1998) observed that 39 hospital strains exposed to desiccation on glass coverslips survived up to 27 days; hence, desiccation adaptability occurring more in gram-negative bacterial groups than in gram-positive groups also favors adaptability in *A. baumannii*. Because of this adaptability, biofilms formed on abiotic surfaces are able to extend quorum sensing pathways and pil formation (Chow et al., 2014; Luo et al., 2015; Solano et al., 2014).

Multiple layers within biofilm communities produce strong adhesion and cohesive behavior and are sheathed with extracellular matrix substances of protein, polysaccharides, and other macromolecules (Costerton et al., 1999). Tomaras et al. (2003) reported that *A. baumannii* has a greater attraction to hydrophilic glass surfaces and exhibits dense adherence and cohesive behaviors located at the air-liquid interface. *A. baumannii*, strictly aerobic, does not form dense adherence, cohesive behaviors, and...
biofilm formation when immersed in plates or tubes even after prolonged incubation, and is able to grow only at the air-liquid interface. Above all, these findings strongly support the slanted coverslips methodology. Biofilm assays (immersed in media without air-liquid interface) with an extracellular matrix achieved thick compact biofilms with tightly grouped cells of uniform size and morphology which were observed in biofilms grown under dynamic conditions (Figs. 5B, D, F, H, J and L). Collagen I, fibronectin, poly-β-lysine/laminin and poly-δ-lysine showed greater biofilm formation than did poly-L-lysine and plain cover-slips. Biofilms grown under static condic-
ECM and slanted coverslip to enhance *Acinetobacter baumannii* biofilm formation

69

Ence of *A. baumannii* to human cells and proposed that biofilm formation progression was arbitrated by exopolysaccharides and pili. Pili, flagella, adhesions, membrane proteins, and quorum sensing molecules play important roles in biofilm formation (Starkey et al., 2004). *Acinetobacter* has the capacity to adhere, colonize, and form biofilm on patients’ skin and mucosal surfaces (Berlau et al., 1999). A study showed that *Acinetobacter* species could bind to buccal epithelial cells of humans (Vaneechoutte et al., 1999). Lee et al. (2006) portrayed the existence of thin, hairy pili on the surfaces of an *A. baumannii* strain that anchored the bacterium to the membrane surface of human bronchial epithelial cells, and also that the blaPER1 adherence gene expression differed with the adhering surface (Rao et al., 2008). These observations support choosing ECM as a good option for biofilm formation. The absence of pili-like structures on immersed plain coverslips raises the question as to whether the presence of a particular surface triggers the production of pili by *A. baumannii*. Plain glass substrates also showed less biofilm formation compared with ECM substrate and glass adherence (Tomaras et al., 2003; Vidal et al., 1996).

The crystal violet assay described by Djordjevic et al. (2002) for the quantification of biofilm formation can be used to detect biofilm formation on many types of substrata. Crystal violet biofilm quantification results indicated that higher values were observed in biofilms grown under dynamic conditions than under static conditions except in the case of poly-D-lysine coating. These observations support choosing ECM as a good option for biofilm formation. The absence of pili-like structures on immersed plain coverslips raises the question as to whether the presence of a particular surface triggers the production of pili by *A. baumannii*. Plain glass substrates also showed less biofilm formation compared with ECM substrate and glass adherence (Tomaras et al., 2003; Vidal et al., 1996).

The present study revealed that biofilm grown on extracellular matrixes showed thread-like pili structures, and that these structures had contact with the ECM and were also involved in cell-to-cell interaction. In addition, multilayer bacterial cells formed a thick biofilm sheltered by a film-like structure representing the exopolysaccharide produced by *A. baumannii*. Bacterial exopolysaccharide plays an important role in adhesion to sister cells and to ECM and forms a suitable environment for biofilm formation. Gospodarek et al. (1998) showed that different thicknesses of hairy-like pili were present in the adherence of *A. baumannii* to human cells and proposed that biofilm formation progression was arbitrated by exopolysaccharides and pili. Pili, flagella, adhesions, membrane proteins, and quorum sensing molecules play important roles in biofilm formation (Starkey et al., 2004). *Acinetobacter* has the capacity to adhere, colonize, and form biofilm on patients’ skin and mucosal surfaces (Berlau et al., 1999). A study showed that *Acinetobacter* species could bind to buccal epithelial cells of humans (Vaneechoutte et al., 1999). Lee et al. (2006) also portrayed the existence of thin, hairy pili on the surfaces of an *A. baumannii* strain that anchored the bacterium to the membrane surface of human bronchial epithelial cells, and also that the blaPER1 adherence gene expression differed with the adhering surface (Rao et al., 2008). These observations support choosing ECM as a good option for biofilm formation. The absence of pili-like structures on immersed plain coverslips raises the question as to whether the presence of a particular surface triggers the production of pili by *A. baumannii*. Plain glass substrates also showed less biofilm formation compared with ECM substrate and glass adherence (Tomaras et al., 2003; Vidal et al., 1996).

The crystal violet assay described by Djordjevic et al. (2002) for the quantification of biofilm formation can be used to detect biofilm formation on many types of substrata. Crystal violet biofilm quantification results indicated that higher values were observed in biofilms grown under dynamic conditions than under static conditions except in the case of poly-D-lysine coating. Uncoated plain coverslips had lower values compared with ECM-coated coverslips under both dynamic and static conditions. Differences in biofilm quantification were statistically significant (*P* < 0.0001; **P** < 0.00001; ***P*** < 0.0000001).

Fig. 6

Biofilm formation abilities of extracellular matrix and plain glass cover slips by *A. baumannii* (ATCC BAA-1605).

(CL-1 - Collagen I coated; FB - Fibronectin coated; PD-LL - Poly-β-Lysine/Laminin coated P-LL - Poly-γ-Lysine coated P-DL - Poly-γ-Lysine coated and PG - Plain glass as control) Statistical significance made comparison with plain glass coverslips bacterial biofilm density (*P* < 0.0001; **P** < 0.00001; ***P*** < 0.0000001).
Enhanced biofilm formation was observed in air-liquid conditions, with a comparatively high capability of adherence to extracellular matrixes. Enhanced biofilm formation compared with static conditions, except for poly-D-lysine coating. Poly-D-lysine may be enhancing the detachment by inhibiting the adherence factor. Uncoated plain coverslips had lower values compared with ECM-coated coverslips under both dynamic and static biofilm-forming conditions.

Current findings support the proposal that fluid movements in the mouth cavity result in biofilm-forming capacity as a function of oxygen availability. Several studies have confirmed that dynamic conditions favor strong biofilm formation compared with static conditions (Biswas and Chaffin, 2005; Hawser et al., 1998). For instance, Hawser et al. (1998) have described the quantitative amplification of bacterial biofilm formation on catheter surfaces as correlated with liquid flow, in contrast with a static environment with no liquid flow. The above finding indicates that environmental nutrients and oxygen enormously support the formation of biofilm layers, particularly the biofilm inner core. The failure of A. baumannii to form a biofilm under static environmental conditions may be a result of the mechanical detachment of adhered bacteria from the surface or the collapse of sessile cell metabolism due to a toxic environment resulting from the static conditions. During A. baumannii biofilm formation, shear activity likely causes anti-adherence activity in flow chambers, whereas in the static condition only weak shear movements occur. As a result, mechanical anti-adherence activity of sessile cells is probably not the reason why a sessile biofilm does not accumulate. Moreover, in the absence of shear forces (static conditions) sessile A. baumannii also does not seem to grow. Tomaras et al. (2003) observed that A. baumannii is a strict aerobe which grows only at the air-liquid interface due to oxygen and nutrient requirements. In summary, A. baumannii shows higher biofilm formation capacities with different cell matrices, while the prominent measurements of results were directly related to the biofilm formation capacity of A. baumannii. For the initial step of biofilm formation, adherence is important and, consequently, strains with a comparatively high capability to adhere to extracellular matrices are a new method of enhanced biofilm growth for in vitro assays.

Conclusions

In conclusion, A. baumannii shows higher adhesion, cohesive, and biofilm formation capacities with ECM, and a comparatively high capability of adherence to extracellular matrices (ECM) and slanted glass coverslips (SGC). This new approach utilized a variety of ECM and SGC. Enhanced biofilm formation was observed in air-liquid interfaces (SGC) and in immersed culture conditions (ECM). These substrates can provide stress-free culture conditions for enhanced biofilm growth for in vitro adherence and biofilm assays. Hence, ECM can be used as a substrate for immersed biofilm formation studies with dynamic conditions and the SGC method can be used for exposed biofilm formation studies under static conditions. This study indicates the possibility to use ECM in biofilm reactors for stress-free culture conditions to enhance biofilm growth.

Acknowledgements

Sincere appreciation is extended to the authorities of the Naval Medical Research Unit San Antonio (NAMRU-SA), San Antonio, TX, and Professor H. Ralph Rawls for valuable facilities, support and guidance. This work was supported by the DST Science and Engineering Research Board (SERB) [Grant number - SERB/LS-267/2014] and Extra Mural Research Funding of AYUSH (Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homoeopathy, [Grant number - Z. 28015/209/2015-HPC] for providing fellowship and funds to perform this research.

References

Araujo, J. C., Teran, F. C., Oliveira, R. A., Nour, E. A., Montenegro, M. A. et al. (2003) Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge. J. Electron. Microsc., 52, 429–433.

Berlat, J., Aucken, H., Malnick, H., and Pitt, T. (1999) Distribution of Acinetobacter species on akin of healthy humans. Eur. J. Clin. Microbiol. Infect. Dis., 18, 179–183.

Biswas, S. K. and Chaffin, W. L. (2005) Anaerobic growth of Candida albicans does not support biofilm formation under similar conditions used for aerobic biofilm. Curr. Microbiol., 51, 100–104.

Chow, J. Y., Yang, Y., Tay, S. B., Chua, K. L., and Yew, W. S. (2014) Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases. Antimicrob. Agents Chemother., 58, 1802–1805.

Costa, G. F., Tognim, M. C., Cardoso, C. L., Carrara-Marrone, F. E., and Garcia, L. B. (2006) Preliminary evaluation of adherence on abiotic and cellular surfaces of Acinetobacter baumannii strains isolated from catheter tips. Braz. J. Infect. Dis., 10, 346–351.

Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1999) Bacterial biofilms: a common cause of persistent infections. Science, 284, 1318–1322.

Dijkshoorn, L., Nemez, A., and Seifert, H. (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol., 5, 939–951.

Djordjevic, D., Wiedmann, M., and McLandsborough, L. A. (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol., 68, 2950–2958.

Egware, L. O. and Taiwo, M. A. (2004) Survival and surface ability of bacterial pathogens in oral liquid pharmaceuticals and their containers. West Indian Med. J., 53, 164–169.

Gospodarek, E., Grzanka, A., Dudziak, Z., and Domaniewski, J. (1998) Electron microscopic observation of adherence of Acinetobacter baumannii to red blood cells. Acta Microbiol. Pol., 47, 213–217.

Harder, W. and Dijkhuizen, L. (1983) Physiological responses to nutrient limitation. Ann. Rev. Microbiol., 37, 1–23.

Hawser, S. P., Bailie, G. S., and Douglas, L. J. (1998) Production of extracellular matrix by Candida albicans biofilms. J. Med. Microbiol., 47, 253–256.

Jawad, A., Seifert, H., Smelling, A. M., Heritage, J., and Hawkey, P. M. (1998) Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J. Clin. Microbiol., 36, 1938–1941.

Jeong, S. H., Bae, I. K., Park, K. O., An, Y. J., Sohn, S. G. et al. (2006) Outbreaks of imipenem-resistant Acinetobacter baumannii producing carbapenemases in Korea. J. Microbiol., 44, 423–431.

Lee, J. C., Koerten, H., van den Broek, P., Beekhuizen, H., Wolterbeek, R. et al. (2006) Adherence of Acinetobacter baumannii strains to human bronchial epithelial cells. Res. Microbiol., 157, 360–366.

Luo, L., Wu, L., Xiao, Y., Zhao, D., and Chen, Z. et al. (2015) Enhancing pit assembly and biofilm formation in Acinetobacter baumannii ATCC-19606 using non-native acyl-homoserine lactones. BMC Microbiology, 15, 62.
ECM and slanted coverslip to enhance *Acinetobacter baumannii* biofilm formation

Michael, P., Spector, A., and Kenyon, J. W. (2012) Resistance and survival strategies of *Salmonella enterica* to environmental stresses. *Food Res. Int.*, **45**, 455–481.

Mihaljevic, R. R., Sikicb, M., Klancnikb, A., Bruminic, G., Mozinab, S. S. et al. (2007) Environmental stress factors affecting survival and virulence of *Campylobacter jejuni*. *Microbial. Pathogenesis*, **43**, 120–125.

Neu, T. R. and Lawrence, J. R. (1997) Development and structure of microbial stream biofilms as studied by confocal laser scanning microscopy. *FEMS Microb. Ecol.*, **24**, 11–25.

Rao, R. S., Karthika, R. U., Singh, S. P., Shashikala, P., and Kanungo, R. (2008) Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of *Acinetobacter baumannii*. *Indian J. Med. Microbiol.*, **26**, 333–337.

Solano, C., Echeverz, M., and Lasa, I. (2014) Biofilm dispersion and quorum sensing. *Curr. Opin. Microbiol.*, **18C**, 96–104.

Spector, M. P. (1998) The starvation-stress response (SSR) of *Salmonella*. *Adv. Microb. Phys.*, **40**, 233–279.

Starkey, M., Gray, K. A., Chang, S. I., and Parsek, M. R. (2004) A sticky business: the extracellular polymeric substance matrix of bacterial biofilms. In *Microbial Biofilms*, ed. by Ghannoum, M. and O’Toole, G. A., ASM Press, Washington, D.C., pp. 174–191.

Stuart, T. L., Mulvey, M., Simor, A. E., Tien, H. C., Battad, A. et al. (2007) *Acinetobacter baumannii* in casualties returning from Afghanistan. *Can. J. Infect. Control.*, **22**, 152–154.

Tomaras, A., Dorsey, C., Edelmann, R., and Actis, L. (2003) Attachment to and biofilm formation on abiotic surfaces by *Acinetobacter baumannii*: involvement of a novel chaperone-usher pili assembly system. *Microbiology*, **149**, 3473–3484.

Vaneechoutte, M., Tjernberg, I., Baldi, F., Pepi, M., and Fani, R. (1999) Oil-degrading *Acinetobacter* strain RAG-1 and strains described as *Acinetobacter venetianus* sp. nov. belong to the same genomic species. *Res. Microbiol.*, **150**, 69–73.

Vidal, R., Dominguez, M., Urrutia, H., Bello, H., Gonzalez, G. et al. (1996) Biofilm formation by *Acinetobacter baumannii*. *Microbiol.*, **86**, 49–58.

Wendt, C., Dietze, B., Dietz, E., and Ruden, H. (1997) Survival of *Acinetobacter baumannii* on dry surfaces. *J. Clin. Microbiol.*, **35**, 1394–1397.