Long and short QT syndromes (LQTS and SQTS) are primary electrical disorders of the heart that predispose the affected individuals to sudden cardiac death via the development of malignant ventricular arrhythmias. Both syndromes can arise congenitally from ion channel mutations, or can have acquired causes. In this article, the molecular determinants of the AP duration and the mechanisms by which their alterations lead to repolarization abnormalities must be considered.

1. Introduction

Long and short QT syndromes (LQTS and SQTS) are primary electrical disorders of the heart that predispose the affected individuals to sudden cardiac death via the development of malignant ventricular arrhythmias. Both syndromes can arise congenitally from ion channel mutations, or can have acquired causes. In this article, the molecular determinants of the AP duration and the mechanisms by which their alterations lead to repolarization abnormalities must be considered.

1.1. The QT interval

The QT interval on the human electrocardiogram is normally in the order of 450 ms, and reflects the summated durations of action potential (AP) depolarization and repolarization of ventricular myocytes. Both prolongation and shortening in the QT interval have been associated with ventricular tachy-arrhythmias, which predispose affected individuals to sudden cardiac death. In this article, the molecular determinants of the AP duration and the causes of long and short QT syndromes (LQTS and SQTS) are explored. This is followed by a review of the recent advances on their arrhythmogenic mechanisms involving reentry and/or triggered activity based on experiments conducted in mouse models. Established and novel clinical risk markers based on the QT interval for the prediction of arrhythmic risk and cardiovascular mortality are presented here. It is concluded by a discussion on strategies for the future rational design of anti-arrhythmic agents.

1.2. Inward and outward currents determine the duration of the ventricular APs

Generation of the ventricular APs is dependent upon voltage-gated conductances, and AP durations are determined by the balance between inward and outward currents. An AP has five phases: fast upstroke (phase 0) followed by a spike (phase 1) and plateau (phase 2) morphology, and further repolarization (phase 3), where the transmembrane voltage returns to the resting membrane potential (phase 4) (Fig. 1). Phase 0 is mediated by voltage-gated Na⁺ channels with rapid activation and inactivation kinetics. Phase 1 involves rapid repolarization mediated by the fast and slow transient outward K⁺ currents, \(I_{\text{to}} \) and \(I_{\text{to}} \), respectively. Phase 3 is maintained by competing inward currents mediated by the voltage-gated L-type Ca²⁺ channel (\(I_{\text{Ca,L}} \)) and Na⁺–Ca²⁺ exchanger (\(I_{\text{NaCxC}} \)), and outward currents mediated by the voltage-gated delayed rectifier K⁺ channels (\(I_{\text{k}} \)) [10]. Phase 3 can be explained by a high driving force for K⁺ efflux due to a large potential difference between the membrane potential and the K⁺ equilibrium potential.
Phase 4 is the resting membrane potential at −80 and −64 mV [11-13], which is set by the inward rectifier current, I_{K1} with contribution from the weak inward rectifying ATP-dependent K^+ channels ($I_{K,ATP}$) [14]. The QT interval includes the durations of both ventricular depolarization and repolarization. Importantly, the end of repolarization (action potential duration, APD) usually coincides with the resumption of tissue excitability (effective refractory period, ERP).

1.3. Long QT syndromes (LQTS)

Long QT syndromes (LQTS) is characterized by an abnormally long QT interval of ≥450 ms on the ECG. The first hereditary long QT syndrome was discovered by Jervell and Lange-Nielsen (JLN) in 1957 [15]. In this family, the parents had normal QT intervals and hearing, producing six children. Four suffered from both long QT interval and congenital sensorineural deafness and the remaining two were normal. Three of these four children suffered from sudden death. JLN syndrome was later shown to have an autosomal recessive inheritance. In the 1960s, Romano and Ward separately reported families suffering from QT prolongation but normal hearing, and the syndrome, after whom is named, has an autosomal dominant inheritance [16].

LQTS is caused by a decrease in repolarizing currents or an increase in depolarizing currents, with either congenital or acquired causes. Today, thirteen genetic LQTS subtypes have been identified as thus far. Loss-of-function mutations in the different types of K^+ channels are responsible for LQTS types 1 (KCNQ1), 2 (KCNH2), 5 (KCNNE1), 6 (KCNNE2), 7 (KCNJ2) and 13 (KCNJ5). By contrast, gain-of-function mutations in Na$^+$ channel subunits lead to LQTS types 3 (SCN5A) and 7 (KCNJ2) and 13 (KCNJ5). Mutations in supporting proteins are responsible for LQTS types 4 (ANKB), 9 (CAV3), 11 (AKAP9) and 12 (SNTA1) phenotypes. Recent studies have implicated calmodulin mutations in patients suffering from a LQTS with previously unidentified genetic causes [17-19]. Moreover, a long QT phenotype has been implicated in sudden unexpected death in epilepsy (SUDEP), caused by increased late Na$^+$ current ($I_{Na,L}$) mediated by neuronal Na$^+$ channel isoforms [20,21].

By contrast, acquired causes of LQTS are much more common than genetic causes. These are commonly due to electrolyte abnormalities, most frequently hypokalaemia. A hypokalaemia mouse model has been used to study the arrhythmic mechanisms of LQTS, demonstrating several consequences of APD prolongation (Table 2). Firstly, it increases the Ca$^{2+}$ current available Na$^+$ channel reactivation during the repolarizing phase, leading to the development of early afterdepolarizations and subsequent triggered activity (Fig. 2) [22]. Secondly, AP prolongation preferentially occurs at the epicardium compared to the endocardium, resulting in an increase in the transmural dispersion of repolarization (TDR) [22]. Reduced ERP of the ventricular myocardium [23] and unaltered conduction velocity (CV) were observed, leading to a decrease in excitation wavelength (λ) given by CV x ERP. λ is the path length that is occupied by the action potential wave. Theoretically, a smaller λ can more easily support a re-entrant circuit, thereby increasing the likelihood of reentrant arrhythmias (Fig. 3). In congenital long QT syndromes, the ERP is not typically altered. Similarly, CV is not reduced unless the specific mutation produces loss-of-function mutations in Na$^+$ channels, which may give rise to overlapping phenotype of LQTS with Brugada syndrome and conduction defect [24-27]. Moreover, the emergence of APD alternans, attributed to increased steepness of APD restitution together with the abnormal repolarization gradient can lead to unidirectional conduction block and thereby reentry [28,29].

1.4. Short QT syndromes (SQTS)

Short QT syndrome (SQTS) is characterized by an abnormally short QT interval of <350 ms on the ECG. It predisposes affected individuals to an increased risk of atrial and ventricular arrhythmias, in particular ventricular fibrillation, and is therefore an important cause of sudden cardiac death [30]. Shortening of QT interval reflects accelerated repolarization, which can result from increased activity of repolarizing currents, or decreased activity of depolarizing currents. SQTS, like LQTS, can have congenital or acquired causes. Six genetic subtypes of SQTS have been identified thus far. Gain-of-function mutations in the K$^+$ channel genes, KCNH2, KCNQ1 [31,32] and KCNJ2 [33] are responsible for SQT types 1, 2 and 3, respectively. By contrast, loss-of-function mutations in L-type Ca$^{2+}$ channel subunits, CACNA1C, CACNB2 and CACNA2D1, are found in SQT types 4, 5 and 6, respectively [34]. Interestingly, some patients diagnosed with Brugada syndrome have demonstrated shortened QT intervals [34]. This is perhaps not surprising upon consideration of the molecular mechanisms involved, because loss-of-function mutations in the inward currents, which tips the net current in the outward direction, are observed in both SQTS and Brugada syndrome. Acquired causes are more common, including electrolyte abnormalities of hyperkalaemia or hypokalaemia, myocardial ischaemia, acidosis or carnitine deficiency [35,36]. Hyperthermia can also cause a shortened QT interval, as can drugs such as digitalis, acetylcholine, catecholamines or K$^+$ channel activators. Short QT intervals have also been associated with epilepsy, particularly during the ictal and post-ictal states [8].

The mechanism of arrhythmogenesis in SQTS is less well-understood than that of LQTS. Recent work in mice demonstrated shortening in ERP in concert with APD [37], leading to decreased λ and a higher risk of circus-type reentry. Abnormal APD restitution leading to APD alternans is unlikely to play a role in SQTS because only long diastolic intervals are engaged where the restitution curve is flat, unlike the case of LQTS where it was possible to engage the steep portion of the restitution curve at low diastolic intervals [28]. CV may be increased due to ERP shortening, but this would not be expected to be pro-arrhythmic since this would increase rather than decrease λ [38]. The similarities and differences of the electrophysiological consequences of LQTS and SQTS are detailed in Table 1.
1.5. Arrhythmic risk prediction: markers based on repolarization and QT interval

Pre-clinical models have been useful for the studying the mechanisms of cardiac arrhythmogenesis and provide a platform for testing the arrhythmogenic potential of drugs [29, 37, 39–47]. Experiments in these systems have demonstrated different arrhythmic risk markers, such as increased TDR given by the maximum APD difference across the myocardial wall [48], increased critical interval for re-excitation given by the APD-ERP difference [23, 49–51], shortened λ and reduced λ-TRIAD (which is based on λ and repolarization properties of triangulation, reverse use dependence, instability and dispersion: TRIAD) [52]. The clinical marker traditionally used for predicting arrhythmic risk has been QTc [53]. However, its lack of accuracy led to the development of other markers [52], such as QT dispersion (QTd) [54, 55], interval from the peak to the end of the T wave [56] (Tpeak – Tend), reflecting increased TDR [57], and (Tpeak – Tend)/QT ratio [58].

However, none of the above repolarization markers takes into account action potential conduction, yet λ, which incorporates both processes, is an important determinant of arrhythmic risk [59–61]. Three novel markers based on conduction–repolarization have been proposed thus far. The first is the index of Cardiac Electrophysiological Balance (iCEB: QT/QRS) proposed by Lu and colleagues, which is a surrogate marker of λ [62]. Indeed, this has demonstrated utility in predicting arrhythmic risk in drug-induced settings. LQTS and Brugada syndrome [63]. The other two markers, (Tpeak – Tend)/QRS and (Tpeak – Tend)/(QT × QRS), have recently been put forward by Tse, but these remain to be validated clinically. Tse’s indices are based on the observations that both conduction and repolarization abnormalities are important in arrhythmogenesis and Tpeak – Tend was a significant predictor of SCD even after adjusting for, in other alia, QTc and QRS durations [64]. They may therefore provide superior predictive values for arrhythmic risk than the repolarization markers discussed above and even iCEB [65, 66]. Tse’s indices were subsequently modified by Tse and Yan to incorporate λ-TDR (which is based on λ and repolarization properties of triangulation, reverse use dependence, instability and dispersion: TRIAD) [52].

1.6. Therapeutic strategies

For LQTS, beta blockers are only effective in preventing ventricular tachycardia in approximately 70% of the patients. The remaining 30% are susceptible to arrhythmias. For SQTS, quinidine or disopyramide are recommended. In both syndromes, definitive treatment is implantable cardioverter-defibrillator (ICD) insertion. There is therefore a need to develop more effective agents for anti-arrhythmic therapy. A better understanding of the mechanisms of arrhythmogenesis would allow rational drug design that aims to reverse the electrophysiological abnormalities in question. Application of pre-clinical results to clinical medicine could result in effective translation for the benefit of patients, which is illustrated by the following two examples that demonstrate important proofs-of-concept. Firstly, hypokalaemia modelling LQTS produces AP prolongation, reduced ERP, reduced λ, increased TDR, increased APD restitution slopes and increased amplitude of APD alternans. Gap junction inhibition using heptanol normalized ERP and therefore λ without correcting for the remaining repolarization abnormalities [29]. Secondly, hyperkalaemia modelling SQTS resulted in shortened APD and ERP, reduced λ and increased TDR. Anti-arrhythmic effects of hyperkalaemia were associated with reversal of ERP changes and normalization of λ, again without correcting for the repolarization abnormalities [37]. Together, the above studies demonstrate that prolonging myocardial refractoriness with an aim of increasing λ is a viable strategy. Other approaches that have demonstrated some success in pre-clinical models are increasing ERP or CV, decreasing heterogeneities in CV, APD, ERP or Ca2+2 transients, or suppressing afterdepolarization phenomena (Fig. 4: modified from Tse et al. with permission [28]). Novel agents using such strategies are gap junction inhibitors [77–80] and openers [81,82], stretch-activated channel block, late sodium channel blockers [83], ryanodine receptor stabilizers [84] and anti-fibrotic agents [85]. It is likely that a systems physiology approach will play a large role in studying the complex spatial and temporal properties of cardiac dynamics. Its application will no doubt transform arrhythmia management by identifying agents that have lower toxicity and toxic side effects of currently available drugs.

Conflict of interest

None declared.
Acknowledgements

GT received a BBSRC Doctoral Training Award at the University of Cambridge and thanks the Croucher Foundation of Hong Kong for supporting his clinical assistant professorship. YC is supported by the ESRC for her PhD studies.

References

[1] S. Weidmann, Effect of current flow on the membrane potential of cardiac muscle, J. Physiol. 115 (2) (1951) 227–236.
[2] H.C. Bazett, An analysis of the time-relations of electrocardiograms, Ann. Noninvasive Electrocardiol. 2 (2) (1997) 177–194.
[3] S.G. Priori, C. Blomström-Lundqvist, A. Mazzanti, N. Blom, M. Borggrefe, J. Camm, P.M. Elliott, D. Fitzsimons, R. Hatala, G. Hindricks, P. Kirchhof, K. Kjeldsen, K.-H.

Fig. 3. Arrhythmogenic mechanisms in long and short QT syndromes. Prolongation in action potential duration (APD) can predispose to the development of early afterdepolarizations, in turn producing triggered activity that can serve to initiate arrhythmias. Reentrant substrates may involve alterations in conduction velocity (CV), prolongation or shortening of APD or shortening of effective refractory period (ERP). These abnormalities can in turn lead to increased transmural dispersion of repolarization (TDR), which can promote unidirectional conduction block and an obstacle around which the action potential can circulate. Together with reduced wavelength ($\lambda = CV \times ERP$), these can increase the susceptibility of tachycardia by circus-type or spiral wave reentry.

Fig. 4. Future drug classes for anti-arrhythmic therapy based on rational drug design: gap junction inhibitors, gap junction openers, stretch-activated channel inhibitors, late sodium channel blockers, ryanodine receptor stabilizers and anti-fibrotic agents. Adapted from Tse et al. (2016) with permission [28].
C. Bezzina, M.W. Veldkamp, R.F. Hoffman, M. Marks, S. Czerney, C. Deans, D. Dobrev, C. Ero, M. Golderis, B. Gorensek, T. Kriebel, P. Lambiase, P. Lancellotti, D.A. Lane, I. Lang, A.J. Manolis, J. Morano, M.F. Pfeioper, F.H. Ruten, B. Sredniawska, J.L. Zamorano, F. Zannad, 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death, Eur. Heart J. 36 (41) (2015) 2793–2867.

4. D.B. Diegery, G.M. Shumaik, R.A. Harrigan, W.J. Brady, T.C. Chan, Electrocadioanalytical manifestations: electroyte abnormalities, Am. J. Emerg. Med. 27 (2) (2009) 153–160.

5. D.M. Redon, K.A. Thompson, B.F. C ener, S. Czerney, M. Czerney, C. Deans, G. Thomas, I.S. Gurung, C.A. Goddard, J.A. Fraser, M.P. Mahaut-Smith, C. Romano, G. Gemme, R. Pongiglione, Rare cardiac arrhythmias of the pediatric age.

6. N. Makita, N. Yagihara, L. Crotti, C.N. Johnson, B.-M. Beckmann, M.S. Roh, D. R. Surges, P. Taggart, J.W. Sander, M.C. Walker, Too long or too short? New insights into abnormal cardiac repolarization in people with chronic epilepsy and its potential to arrhythmic substrate in hypokalaemic Langendorff-perfused murine heart, Biomed. Rep. 4 (2016) 673–680.

7. R. Brugada, K. Hong, R. Dumeine, J. Cordeiro, F. Gaita, M. Borggreve, T.M. Menendez, J. Budts, G.D. Pollavieck, C. Wolpert, E. Burzahnikov, R. Matsu, Y.S. Wu, A. Guercihioc, F. Bianchi, C. Giustetto, R. Schimpf, P. Brugada, C. Antzelevitch, Sudden death associated with short-QT syndrome linked to mutations in HERG, Circulation 109 (1) (2004) 30–35.

8. C. Romano, C.A. van Ginneken, C.R. Bezzina, M. Alders, D. Escande, M.M. Mannens, I. Baro, A. Wilde, Mutation in the KCNQ1 gene leading to the short-QT interval syndrome, Circulation 109 (20) (2004) 2394–2397.

9. R. Schimpf, C. Wolpert, F. Giasta, C. Giustetto, M. Borggreve, Short QT syndrome, Cardiovasc. Res. 67 (3) (2005) 357–366.

10. S.G. Priori, S.V. Pandit, I. Rivolta, O. Berenfeld, E. Ronchetti, A. Dhamoon, C. Napolitano, J. Anumonwo, M.R. di Barletta, S. Gudapakkam, G. Bosi, M. Stramba-Badili, J. Jaffé, A novel form of short QT syndrome (SQTS) is caused by a mutation in the KCNQ1 gene, Circ. Res. 96 (7) (2005) 800–807.

11. G. Tse, E.T. Lai, V. Tse, J.M. Yeo, Ventricular anti-arrhythmic effects of hyperpolarisation treatment in hypokalaemic, Langendorff-perfused mouse hearts. Biomed. Rep. 5 (3) (2016) 301–310.

12. G. Tse, E.T. Lai, V. Tse, J.M. Yeo, Determination of action potential recordings: which is the recording electrode? J. Basic Clin. Physiol. Pharmacol. 27 (5) (2016) 457–462.

13. G. Tse, S.T. Wong, V. Tse, J.M. Yeo, Monophasic action potential recordings: which is the recording electrode? J. Basic Clin. Physiol. Pharmacol. 27 (5) (2016) 457–462.

14. G. Tse, T.H. Lai, J.M. Yeo, V.H. Sun, S.T. Wong, V. Tse, J.M. Yeo, Determination of action potential wavelength recording: which is the recording electrode? J. Basic Clin. Physiol. Pharmacol. 27 (5) (2016) 457–462.
algorithm for discrimination between ventricular arrhythmias originating from the right ventricular outflow tract and those originating from the aortic sinus cusp: a pilot study, Heart Rhythm. 11 (9) (2014) 1605–1612.

Y. Sato, K. Yoshida, K. Ogata, T. Inaba, H. Tada, Y. Sekiguchi, Y. Ito, T. Ishii, Y. Seo, I. Yamaguchi, A. Kandori, K. Aonuma, An increase in right atrial magnetic strength is a novel predictor of recurrence of atrial fibrillation after radiofrequency catheter ablation, J. Cardiovasc. Electrophysiol. 31 (6) (2019) 1601–1608.

R. Veeraraghavan, J. Lin, G.S. Hoeker, J.P. Keener, R.G. Gourdie, S. Poelzing, Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study, Pflugers Arch. 467 (10) (2009) 2093–2105.

S.A. George, J.K. Scιtio, J. Lin, M.E. Salama, J.P. Keener, R.G. Gourdie, S. Poelzing, Extracellular sodium and potassium levels modulate cardiac conduction in mice heterozygous null for the Connexin43 gene, Pflugers Arch. 467 (11) (2009) 2287–2297.

R. Veeraraghavan, R.G. Gourdie, S. Poelzing, Mechanisms of cardiac conduc− tion: a history of revisions, Am. J. Physiol. Heart Circ. Physiol. 306 (5) (2014) H610–H627.

R. Veeraraghavan, S. Poelzing, R.G. Gourdie, Old cogs, new tricks: a scaffolding role for connexin43 and a junctional role for sodium channels? FEMS Lett. 588 (8) (2014) 1244–1248.

Y.C. Hsieh, J.C. Lin, C.Y. Hung, C.H. Li, S.F. Lin, H.I. Yeh, J.L. Huang, C.P. Lo, K. Haugan, B.D. Larsen, T.J. Wu, Gap junction modifier rotigaptide decreases the susceptibility to ventricular arrhythmia by enhancing conduction velocity and suppressing different− al alternans during therapeutic hypothermia in isolated rabbit hearts, Heart Rhythm. 13 (1) (2015) 251–261.

L. Ruan, X. Qian, L. Li, R. Bai, M. Ni, R. Xu, C. Zhang, Increasing gap junction coupling suppresses ibutilide-induced torsades de points, Exp. Ther. Med. 7 (5) (2014) 1279–1284.

A.S. Alves Bento, D. Bacic, J. Saran Carneiro, R.D. Nearing, H. Fuller, F.A. Justo, S. Rajamani, L. Belardini, R.L. Verrier, Selective late INA inhibition by GS-45867 exerts parallel suppression of catecholamine-induced hemodynamically significant ventricular tachycardia and T-wave alternans in an intact porcine model, Heart Rhythm. 12 (12) (2015) 2508–2514.

S.E. Lehnart, C. Terrenoire, S. Reiken, X.H.T. Wehrens, L.S. Song, E.J. Tillman, S. Poelzing, Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias, Proc. Natl. Acad. Sci. U. S. A. 103 (20) (2006) 7906–7910.

R.A. Bathgate, E.D. Legkabge, J.T. McGuane, Y. Su, T. Pham, T. Ferrari, L. Layfeld, R.D. Hannan, W.G. Thomas, C.S. Samuel, X.J. Du, Adenosine-mediated delivery of relaxin reverses cardiac fibrosis, Mol. Cell. Endocrinol. 280 (1–2) (2008) 30–38.

C.T. January, J.M. Riddle, Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current, Circ. Res. 66 (4) (1990) 897–970.

T. Ikeda, Ambulatory ECG-based T-wave alternans monitoring for risk discrimination of patients at increased arrhythmic risk, Ann. Noninvasive Electrocardiol. 21 (3) (2016) 294–301.

R.L. Verrier, T. Ikeda, Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current, Circ. Res. 66 (4) (1990) 897–970.

P.M. Okin, R.B. Devereux, B.V. Howard, R.R. Fabritz, E.T. Lee, T.K. Welty, Assessment of QT interval and QT dispersion for prediction of all-cause and cardiovascular mortality: a meta-analysis of 129,160 American Indians: the strong heart study, Circulation 101 (1) (2000) 61–66.

R.L. Verrier, J. Sroubek, Quantitative T-wave alternans analysis for sudden cardiac death risk assessment and guiding therapy: answered and unanswered questions: for: proceedings of IICE2015 Comandatuba, Brazil, sudden death symposium, J. Electrocardiol. 49 (3) (2016) 429–438.

R.L. Verrier, T. Ikeda, Ambulatory ECG-based T-wave alternans monitoring for risk assessment and guiding medical therapy: mechanisms and clinical applications, Prog. Cardiovasc. Dis. 56 (2) (2013) 172–185.

S. Mironov, J. Jaffe, E.G. Tolkacheva, Role of conduction velocity restitution and short-term memory in the development of action potential duration alternans in isolated rabbit hearts, Circulation 118 (1) (2008) 17–25.

J. Banville, R.A. Gray, Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias, J. Cardiovasc. Electrophysiol. 13 (11) (2002) 1141–1149.

W.B. Nicolson, G.P. McCann, P.D. Brown, A.J. Sandilands, P.J. Stafford, F.S. Schindlwein, N.J. Samani, G.A. Ng, A novel surface electrocardiogram-based marker of ventricular arrhythmia risk in patients with ischemic cardiomyopathy, J. Am. Heart Assoc. 1 (4) (2012), e001552.

W.B. Nicolson, G.P. McCann, M.I. Smith, A.J. Sandilands, P.J. Stafford, F.S. Schindlwein, N.J. Samani, G.A. Ng, Prospective evaluation of two novel ECG-based biomarkers for prediction of sudden cardiac death risk in ischemic cardiomyopathy, Heart 100 (23) (2014) 1878–1885.

J.M. Cao, Z. Qu, Y.H. Kim, T.J. Wu, A. Garfinkle, J.N. Hannan, W.G. Thomas, C.S. Samuel, X.J. Du, Adenosine-mediated delivery of relaxin reverses cardiac fibrosis, Mol. Cell. Endocrinol. 280 (1–2) (2008) 30–38.