Study of the Spin-weighted Spheroidal Wave Equation in the Case of $s = 3/2$

Kun Dong, Guihua Tian

School of Sciences, Beijing University of Posts and Telecommunications, Beijing, China, 100876.

Abstract

In this thesis we use the means of super-symmetric quantum mechanics to study of the Spin-weighted Spheroidal Wave in the case of $s=3/2$. We obtain some interesting results: the first-five terms of the super-potential, the general form of the super-potential. The ground eigen-function and eigenvalue of the equation are also given. According these results?we make use of the shape invariance property to compute the exited eigenvalues and eigen-functions. These results help us to understand the Spin-weighted Spheroidal Wave and show that it is integral.

PACS:11.30Pb; 04.25Nx; 04.70-s

1 Introduction

The spin-weighted spheroidal functions first appeared in the study of the stable problem of Kerr black hole. Now, the spin-weighted spheroidal functions has been widely used in many fields, such as gravitational wave detection, quantum field theory in curved space-time, black hole stable problem; nuclear modeling; spheroidal cavity problem, spheroidal electromagnetic diffraction, scattering and similar problems in acoustic science, etc. Their equation is

$$\left[\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) + s + \beta^2 \cos^2 \theta - 2 \beta \cos \theta - \frac{(m + s \cos \theta)^2}{\sin^2 \theta} \right] \Theta(\theta) = 0, \quad (1)$$

The parameter s, the spin-weight of the perturbation fields could be $s = 0, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm 1, \pm 2$, and corresponds to the scalar, neutrino, Rarita-schwinger fields, electromagnetic or gravitational perturbations respectively. When $\beta = 0$ they reduce to the spin-weighted spherical equations, whose solutions are the well-known the spin-weighted spherical harmonics. Furthermore, when $\beta = s = 0$, they become to the spherical ones, whose solutions are the famous associated Legendre’s functions P_l^m. However when $\beta \neq 0$ and $s \neq 0$, the solutions are the spin-weighted spheroidal functions, which are treated recently by a new method in supersymmetry quantum mechanics. Some nice results are obtained in the case of $s = 0$ and $s = \frac{1}{2}$. Now we continue this study in the case of $s = \frac{3}{2}$. Though the method is somehow identical, the computation involved becomes more complex than before. The course of our calculations could provide useful information for studying them in the case of $s = 1$ and $s = 2$.

1 e-mail : woailiuyanbin1@126.com
2 e-mail : hua2007@126.com
2 Calculation of super-potential and ground eigenvalue

The boundary conditions for Eq.(1) requires Θ is finite at $\theta = 0$, π, this is kind of the Sturm-Liouville problem. As done before, Eq.(1) is transformed in the Schrödinger form for the use of the method of supersymmetry quantum mechanics. Changing the eigenfunction Θ by

$$\Theta(\theta) = \frac{\Psi(\theta)}{\sqrt{\sin\theta}}.$$ \hspace{1cm} \hspace{0.5cm} (2)

the differential equations for the new depend functions Ψ become

$$\frac{d^2\Psi}{d\theta^2} + \left[\frac{1}{4} + s + \beta^2 \cos^2\theta - 2s \beta \cos\theta - \frac{(m + s \cos\theta)^2 - \frac{1}{4}}{\sin^2\theta} + E \right] \Psi = 0. \hspace{1cm} \hspace{0.5cm} (3)$$

The corresponding boundary conditions now turn out as $\Psi|_{\theta=0} = \Psi|_{\theta=\pi} = 0$. The potential in Eq.(3) is

$$V(\theta, \beta, s) = - \left[\frac{1}{4} + s + \beta^2 \cos^2\theta - 2s \beta \cos\theta - \frac{(m + s \cos\theta)^2 - \frac{1}{4}}{\sin^2\theta} \right], \hspace{1cm} \hspace{0.5cm} (4)$$

Now we will introduce SUSYQM to our problem. According to the theory of the SUSYQM, the form of ground eigenfunction Ψ_0 is completely known through the super-potential W by the formula

$$\Psi_0 = N \exp \left[- \int W d\theta \right]. \hspace{1cm} \hspace{0.5cm} (5)$$

The problem is transformed into solving the super potential W. The super potential W is a most important notion in SUSYQM, and it is determined by the $V(\theta, \beta, s)$ through the Reccita’s equation

$$W^2 - W' = V(\theta, \beta, s) - E_0. \hspace{1cm} \hspace{0.5cm} (6)$$

SO, the key work is to solve Eq.(6). As done before, by expanding the super-potential W and the ground eigenvalue E_0 into series form of the parameter β:

$$W = \sum_{n=0}^{\infty} \beta^n W_n \hspace{1cm} \hspace{0.5cm} (7)$$

$$E_0 = \sum_{n=0}^{\infty} E_{0,n;m} \beta^n, \hspace{1cm} \hspace{0.5cm} (8)$$

we solve Eq.(6). The results are:

$$W_0' - W_0^2 = E_{0,0;m} + \frac{3}{2} + \frac{1}{4} - \frac{(m + \frac{3}{2} \cos\theta)^2 - \frac{1}{4}}{\sin^2\theta} \equiv f_0(\theta) \hspace{1cm} \hspace{0.5cm} (9)$$

$$W_1' - 2W_0 W_1 = E_{0,1;m} - 3 \cos\theta \equiv f_1(\theta) \hspace{1cm} \hspace{0.5cm} (10)$$

$$W_2' - 2W_0 W_2 = E_{0,2;m} + \cos^2\theta + W_1^2 \equiv f_2(\theta) \hspace{1cm} \hspace{0.5cm} (11)$$

$$W_n' - 2W_0 W_n = E_{0,n;m} + \sum_{k=1}^{n-1} W_k W_{n-k} \equiv f_n(\theta)(n \geq 3) \hspace{1cm} \hspace{0.5cm} (12)$$
The solution of Eq. (9) is easy to find

\[
E_{0,0;m} = m^2 + m - 15/4
\]
\[
W_0 = -\frac{3/2 + (m + \frac{1}{2})\cos \theta}{\sin \theta}
\]

(13)

With \(W_0\) known, it is easy to give \(W_n\) on according to the knowledge of differential equations,

\[
W_n(\theta) = e^{2\int W_0 d\theta} A_n(\theta) = \left[\tan \frac{\theta}{2} \sin^{2m+1} \theta \right]^{-3} A_n(\theta)
\]

(14)

where,

\[
A_n(\theta) = \int f_n(\theta) e^{-2\int W_0 d\theta} d\theta
\]
\[
= \int f_n(\theta) \left[\tan \frac{\theta}{2} \sin^{2m+1} \theta \right]^3 d\theta
\]
\[
= \int f_n(\theta)(1 - \cos \theta)^3 \sin^{2m-2} \theta d\theta.
\]

(15)

Because there appears the cubic power or inverse cubic powers \(\tan \frac{\theta}{2} = \frac{1 - \cos \theta}{\sin \theta} = \frac{\sin \theta}{1 + \cos \theta}\) terms in Eqs. (13), (15), the subsequent calculation becomes more complicated than before (that is, the cases of \(s=0\) and \(s=1/2\)). We put it in appendix A. the obtained results are

\[
E_{0,1;m} = -\frac{9}{2m + 2}
\]
\[
E_{0,2;m} = -\frac{8m^3 + 96m^2 + 168m - 1}{(2m + 2)^3(2m + 3)}
\]
\[
E_{0,3;m} = -\frac{36(2m - 1)^2(2m + 5)^2}{(2m + 2)^3(2m + 3)(2m + 4)}
\]

(16)

\[
E_{0,4;m} = -\frac{4(2m - 1)^2(2m + 5)(16m^5 + 672m^4 + 3320m^3 + 2416m^2 - 6975m - 7942)}{(2m + 2)^7(2m + 4)^2(2m + 3)^3}
\]

\[
W_1(\theta) = a_{1,1} \sin \theta
\]

(18)
\[
W_2(\theta) = b_{2,1} \sin \theta + a_{2,1} \sin^3 \theta \cos \theta
\]

(19)
\[
W_3(\theta) = b_{3,1} \sin \theta + b_{3,2} \sin^3 \theta + a_{3,1} \sin \theta \cos \theta
\]

(20)
\[
W_4(\theta) = b_{4,1} \sin \theta + b_{4,1} \sin^3 \theta + a_{4,1} \sin \theta \cos \theta + a_{4,2} \sin^3 \theta \cos \theta
\]

(21)

Where,

\[
a_{1,1} = -\frac{3}{2m + 2}
\]

(22)
\[b_{2,1} = -\frac{3(2m - 1)(2m + 5)}{(2m + 2)^3(2m + 3)} \]
(23)

\[a_{2,1} = \frac{(2m - 1)(2m + 5)}{(2m + 2)^2(2m + 3)} \]
(24)

\[b_{3,1} = \frac{108(2m - 1)(2m + 5)}{(2m + 2)^5(2m + 3)(2m + 4)} \]
(25)

\[b_{3,2} = \frac{6(2m - 1)(2m + 5)}{(2m + 2)^3(2m + 3)(2m + 4)} \]
(26)

\[a_{3,1} = -\frac{36(2m - 1)(2m + 5)}{(2m + 2)^4(2m + 3)(2m + 4)} \]
(27)

\[b_{4,1} = \frac{36(2m - 1)(16m^5 + 672m^4 + 3320m^3 + 2416m^2 - 6975m - 7942)}{(2m + 2)^6(2m + 4)^2(2m + 3)} \]
(28)

\[b_{4,2} = -\frac{2(2m - 1)(4m^3 + 16m^2 + 25m + 64)}{(2m + 2)^4(2m + 4)^2(2m + 3)} \]
(29)

\[a_{4,1} = \frac{12(2m - 1)(16m^5 + 672m^4 + 3320m^3 + 2416m^2 - 6975m - 7942)}{(2m + 2)^5(2m + 4)^2(2m + 3)} \]
(30)

\[a_{4,2} = -\frac{4(2m - 1)(4m^3 + 16m^2 + 25m + 64)}{(2m + 2)^4(2m + 4)^2(2m + 3)^2} \]
(31)

3 Summarize and prove the general formula of super-potential

From the four terms of \(W_1 - W_4 \), we hypothetically summarize a general formula for \(W_n \) as

\[W_n(\theta) = \sum_{k=1}^{\left[\frac{n}{2}\right]} a_{n,k} \sin^{2k-1} \theta \cos \theta + \sum_{k=1}^{\left[\frac{n}{2}\right]} b_{n,k} \sin^{2k-1} \theta \]
(32)

Here we use mathematical induction to prove that the guess is true.

First it is easy to see the assumption (32) is the same as that of \(W_1 \) when \(N = 1 \). Under the condition that all \(W_N \) meet the requirement of (32) whenever \(N \leq n - 1 \), we will try to solve the differential equation for \(W_n \) to verify that it also can be written as that of (32) and be determined by the terms \(W_k, k < n \). The results are

\[b_{n,l} = \sum_{p=l+1}^{\left[\frac{n}{2}\right]} \frac{3(2m + 2l - 2)j_{n,p}l(2m + 2p - 4,p - l - 1)}{(2m + 2l + 1)(2m + 2l + 3)(2m + 2p - 3)} + \frac{g_{n,l}}{2m + 2l} \delta_{l,1}, \quad l \geq 1 \]
(33)

\[a_{n,l} = -\sum_{p=l+1}^{\left[\frac{n}{2}\right]} \frac{(2m + 2l - 2)(2m + 2l)j_{n,p}l(2m + 2p - 4,p - l - 1)}{(2m + 2l + 1)(2m + 2l + 3)(2m + 2p - 3)} \]
(34)
where

\[j_{n,p} = \frac{[h_{n,p}(2m + 2p) - 3g_{n,p}](2m + 2p + 1)}{(2m + 2p - 2)(2m + 2p)}. \]

(35)

The terms \(h_{n,p}, g_{n,p} \) are determined by the coefficients \(a_{k,j}, b_{k,j}, k < n \) of \(W_k, k < n \):

\[h_{n,p} = \sum_{k=1}^{n-1} \sum_{j=1}^{p-1} \left[b_{k,p-j}b_{n-k,j} + a_{k,p-j}a_{n-k,j} - a_{k,p-1-j}a_{n-k,j} \right] \]

(36)

\[g_{n,p} = \sum_{k=1}^{n-1} \sum_{j=1}^{p-1} \left[b_{k,p-j}a_{n-k,j} + a_{k,p-j}b_{n-k,j} \right] \]

(37)

4 The ground eigenfunction

Finally, according to the shape invariant potential, we obtain the wave functions of the exited state \(\Theta_0 \).

\[W = W_0 + \sum_{n=1}^{\infty} \left[\cos \theta \sum_{k=1}^{[\frac{n}{2}]} a_{n,k} \sin^{2k-1} \theta + \sum_{k=1}^{[\frac{n+1}{2}]} b_{n,k} \sin^{2k-1} \theta \right] \beta^n \]

(38)

The ground eigenfunction becomes

\[\Theta_0 = N \exp \left[-\int W d\theta \right] \]

\[= N \exp \left[-\int W_0 d\theta - \sum_{n=1}^{\infty} \int W_n d\theta \right] \]

\[= N \exp \left[\int \frac{3/2 + (m + \frac{1}{2}) \cos \theta \sin \theta}{\sin \theta} d\theta - \beta^n \sum_{n=1}^{\infty} \int (\cos \theta \sum_{k=1}^{[\frac{n}{2}]} a_{n,k} \sin^{2k-1} \theta + \sum_{k=1}^{[\frac{n+1}{2}]} b_{n,k} \sin^{2k-1} \theta) d\theta \right] \]

\[= N (1 - \cos \theta)^{\frac{1}{2}} \sin^{m-1} \theta \exp \left[-\beta^n \sum_{n=1}^{\infty} \left(\sum_{k=1}^{[\frac{n}{2}]} a_{n,k} \frac{\sin^{2k} \theta}{2k} + \sum_{k=1}^{[\frac{n+1}{2}]} b_{n,k} P(2k - 1, \theta) \right) \right] \]

(39)

The ground eigenvalue is

\[E_{0,n;m} = E_{0,0;m} + \sum_{n=1}^{\infty} \beta^n E_{0,n;m} = m^2 + m - 15/2 + \sum_{n=1}^{\infty} \beta^n E_{0,n;m} \]

(40)

5 The excited eigenfunctions

In the following, we will compute the excited eigenfunctions. As done in Ref. [11], we hope to extend the study of the recurrence relations by the means of super-symmetric quantum mechanics to Eq. (3).
The super-potential W connects the two partner potential V_{\pm} by

$$V^+(\theta) = W^2(\theta) \mp W'(\theta).$$ \hfill (41)

The shape-invariance properties mean that the pair of partner potentials $V^\pm(x)$ are similar in shape and differ only in the parameters, that is

$$V^+(\theta; a_1) = V^-(\theta; a_2) + R(a_1),$$ \hfill (42)

where a_1 is a set of parameters, a_2 is a function of a_1 (say $a_2 = f(a_1)$) and the remainder $R(a_1)$ is independent of θ.

We must introduce the parameters $A_{i,j}$, $B_{i,j}$ into the super-potential W in order to study the shape-invariance properties of the spin-weighted spheroidal equations as:

$$W(A_{n,j}, B_{n,j}, \theta) = -A_{0,0} (m + \frac{1}{2}) \cot \theta - \frac{3}{2} B_{0,0} \csc \theta + \sum_{n=1}^{\infty} \beta^n W_n(A_{n,j}, B_{n,j}, \theta),$$ \hfill (43)

where

$$W_n(A_{n,j}, B_{n,j}, \theta)
\begin{align*}
&= \sum_{j=1}^{[\frac{n+1}{2}]} \bar{b}_{n,j} \sin^{2j-1} \theta + \cos \theta \sum_{j=1}^{[\frac{n}{2}]} \bar{a}_{n,j} \sin^{2j-1} \theta
\end{align*}$$ \hfill (44)

with

$$\bar{a}_{n,j} = A_{n,j} a_{n,j}, \quad \bar{b}_{n,j} = B_{n,j} b_{n,j}$$ \hfill (45)

Then, $V^\pm(A_{n,j}, B_{n,j}, \theta)$ are defined as

$$V^\pm(A_{n,j}, B_{n,j}, \theta) = W^2(A_{n,j}, B_{n,j}, \theta) \pm W'$$

$$= \sum_{n=0}^{\infty} \beta^n V^\pm_n(A_{i,j}, B_{n,j}, \theta).$$ \hfill (46)

The key point is to try to find some quantities $C_{i,j}, D_{i,j}$ to make the relations

$$V^+_n(A_{i,j}, B_{n,j}, \theta) = V^-_n(C_{i,j}, D_{n,j}, \theta) + R_{n,m}(A_{i,j}, B_{n,j})$$ \hfill (47)

retain with $R_{n,m}(A_{i,j}, B_{n,j}) = R_{n,m}$ pure quantities. In the previous, we know the general formula with W_n in the case of $s = 3/2$ is same as $s = 1/2$. So that, we can refer to the results of previous article:

$$D_{n,p} = \frac{D_{0,0} a_{n,p}}{\alpha_p b_{n,p}} C_{n,p} - \frac{U_{n,p}}{\alpha_p b_{n,p}}$$ \hfill (48)

$$C_{n,p-1} = \left(\alpha_p + \frac{D_{0,0}^2}{\alpha_p} \right) a_{n,p} C_{n,p} + \frac{\bar{U}_{n,p}}{\alpha_p} - \frac{D_{0,0} a_{n,p}}{\alpha_p} U_{n,p}$$

$$+ \frac{1}{(\alpha_p - 1) a_{n,p-1}} C_{n,p} + \frac{\bar{U}_{n,p} - D_{0,0} a_{n,p}}{(\alpha_p - 1) a_{n,p-1}},$$ \hfill (49)

$$p = 2, 3, \ldots, \left[\frac{n + 2}{2} \right]$$ \hfill (50)
where,

\[U_{n,p} = -\alpha_p D_{n,p} b_{n,p} - D_{0,0} C_{n,p} a_{n,p} \]
\[\tilde{U}_{n,p} = -\alpha_p C_{n,p} a_{n,p} - D_{0,0} D_{n,p} b_{n,p} + (\alpha_p - 1) C_{n,p-1} a_{n,p-1} \]

\[\alpha_p = \left[(2m + 1)C_{0,0} + (2p - 1) \right] \]

The only difference is the initial value. Now, we will give the initial value for the cases \(n = 0, 1, 2 \):

\[C_{0,0} = A_{0,0} + \frac{2}{2m + 1} \]
\[D_{0,0} = B_{0,0} \]
\[D_{1,1} = \frac{(2m + 1)A_{0,0} - 1}{(2m + 1)A_{0,0} + 3} B_{1,1} \]

and

\[D_{2,1} = \frac{(2m + 1)A_{0,0} - 1}{(2m + 1)A_{0,0} + 3} B_{2,1} \]

\[+ \frac{18B_{0,0}B_{2,1}}{(2m + 1)A_{0,0} + 3} \]

\[+ \frac{24[(2m + 1)A_{0,0} + 1]B_{0,0}B_{2,1}}{[(2m + 1)A_{0,0} + 3][2m + 1]A_{0,0} + 4} \]

\[- \frac{[(2m + 1)A_{0,0} + 3]^3[(2m + 1)A_{0,0} + 4]}{[(2m + 1)A_{0,0} + 3][2m + 1]A_{0,0} + 4} \]

\[C_{2,1} = \frac{8[(2m + 1)A_{0,0} + 1]B_{2,1}^2}{[(2m + 1)A_{0,0} + 3][2m + 1]A_{0,0} + 4} \]

\[+ \frac{(2m + 1)A_{0,0} - 2}{(2m + 1)A_{0,0} + 4} A_{2,1} \]

with

\[R_{0,m}(A_{0,0}) = (2m + 1)A_{0,0} + 1, \]
\[R_{1,m}(A_{0,0}, B_{0,0}, B_{1,1}) = -\frac{12B_{0,0}B_{1,1}}{(2m + 1)A_{0,0} + 3} \]
\[R_{2,m}(A_{0,0}, B_{0,0}, B_{1,1}, B_{2,1}, A_{2,1}) \]

\[= \left[-\frac{4B_{0,0}B_{2,1}}{(2m + 1)A_{0,0} + 3} + AB_{1,1}^2 + BA_{2,1} \right] \]

where

\[A = \frac{72B_{0,0}^2 - 8[(2m + 1)A_{0,0} - 1][2m + 1]A_{0,0} + 3}{[(2m + 1)A_{0,0} + 3]^3[2m + 1]A_{0,0} + 4} \]

\[B = \frac{54B_{0,0}^2 - 2[(2m + 1)A_{0,0} - 1][2m + 1]A_{0,0} + 3}{[(2m + 1)A_{0,0} + 3][2m + 1]A_{0,0} + 4} \]
Then, the excited eigen-values \(E_{l,m} \) and eigenfunctions \(\Psi_l \) is obtained by the recurrence relation:

\[
E_{l,m}^- = E_{0,m} + \sum_{k=1}^{l} R(a_k, b_k),
\]

\[
E_{0,m} = m(m + 1) - \frac{15}{2} + \sum_{n=1}^{\infty} E_{0,n,m} \beta^n
\]

\[
R(a_k, b_k) = R_{0,m} + \sum_{n=1}^{\infty} \beta^n R_{n,m}(a_k, b_k),
\]

\[
a_1 = (A_{i,j}, B_{i,j}), \ a_2 = (C_{i,j}, D_{i,j}), \ldots,
\]

\[
\Psi_0 \propto \exp \left[- \int^\theta_{\theta_0} W(A_{n,j}, B_{n,j}, \theta) d\theta \right],
\]

\[
A^\dagger = -\frac{d}{d\theta} + W(A_{n,j}, B_{n,j}, \theta)
\]

\[
\Psi_n^- = A^\dagger (A_{n,j}, B_{n,j}, \theta) \Psi_{n-1}^- (C_{n,j}, D_{n,j}, \theta), \quad n = 1, 2, 3, \ldots
\]

In conclusion, we have proved the shape-invariance properties for the spin-weighted equations in the case of \(s = \frac{3}{2} \) and obtain the recurrence relations for them. By these results we can get the exited eigenvalue and eigenfunction.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos.10875018,10773002)

6 The details of the calculation of the first several terms of the superpotential

In order to calculate Eqs. (14)-(15), we needs the following integral formulae [13]:

\[
P(2m, \theta) = \int \sin^{2m} \theta d\theta = -\frac{\cot \theta}{2m + 1} \left[\sum_{k=0}^{m-1} \bar{I}(2m, k) \sin^{2m-2k} \theta \right] + \frac{(2m-1)!!}{(2m)!!} \]

where

\[
\bar{I}(2m, k) = \frac{(2m + 1)(2m - 1) \cdots (2m - 2k + 1)}{2m(2m - 2) \cdots (2m - 2k)} \quad (k \geq 0),
\]

the repeating results of the above equation

\[
P(2m, \theta) = \frac{2m - 1}{2m} P(2m - 2, \theta) - \frac{\cos \theta \sin^{2m-1} \theta}{2m},
\]

8
\[P(2m + 2, \theta) = \frac{(2m - 1)(2m + 1)}{2m(2m + 2)} P(2m - 2, \theta) - \frac{\cos \theta \sin^{2m+1}}{2m + 2} - \frac{(2m + 1) \cos \theta \sin^{2m+1}}{2m(2m + 2)} \]

\[P(2m + 4, \theta) = \frac{(2m - 1)(2m + 1)(2m + 3)}{2m(2m + 2)(2m - 4)} P(2m - 2, \theta) - \frac{\cos \theta \sin^{2m+3}}{2m + 4} - \frac{(2m + 3) \cos \theta \sin^{2m+1}}{(2m + 2)(2m + 4)} - \frac{(2m + 1)(2m + 3) \cos \theta \sin^{2m+1}}{2m(2m + 2)(2m - 4)} \]

By the above equation, we can summarize the general formula

\[P(2m + 2n - 2) = -\cos \theta \sum_{l=1}^{n} \frac{\bar{I}(2m + 2n - 2, n - l)}{2m + 2n - 1} \sin^{2m+2l-3} \theta + \frac{2m - 1}{2m + 2n - 1} \bar{I}(2m + 2n - 2, n - 1) P(2m - 2, \theta) \]

This formula can be proved by mathematical induction. By the help of Eqs. (13), (75), \(A_1(\theta) \) is now simplified as

\[A_1(\theta) \]

\[= \int (E_{0,1;m} - 3\cos \theta)(1 - \cos \theta)^3 \sin^{2m-2} \theta \, d\theta \]

\[= \frac{(4E_{0,1;m} + 12) P(2m - 2, \theta) - (3E_{0,1;m} + 15) P(2m, \theta) + 3P(2m + 2, \theta)}{4E_{0,1;m} + 12 \sin^{2m-1} \theta} - \frac{(9 + E_{0,1;m}) \sin^{2m+1} \theta}{2m + 1} \]

\[= \frac{4(E_{0,1;m} + 12) \sin^{2m-1} \theta}{2m + 1} - \frac{(9 + E_{0,1;m}) \sin^{2m+1} \theta}{2m + 1} \]

\[- \frac{3 \cos \theta \sin^{2m+1}}{2m + 2} + \frac{[(2m + 2)(3E_{0,1;m} + 15) - (2m + 1)] \cos \theta \sin^{2m-1} \theta}{2m(2m + 2)} \]

Please note that the coefficient of \(P(2m - 2, \theta) \), according to Eq. (5) and Eq. (71), we can see that \(\Psi(\theta) \) is infinite at the boundaries \(\theta = 0, \pi \). This result does not meet the boundary conditions that \(\Psi(\theta) \) should finite at \(\theta = 0, \pi \). So that the coefficient of the term \(P(2m - 2, \theta) \) should be zero.

\[E_{0,1;m} = -\frac{9}{2m + 2} \]

and it further provides the concise form for \(A_1 \)

\[A_1(\theta) = -\frac{12}{2m + 2} \sin^{2m-1} \theta (\cos \theta - 1) + \frac{3}{2m + 2} \sin^{2m+1} \theta (1 - \cos \theta) + \frac{3}{2m + 2} \sin^{2m+1} \]

(78)
With the help of Eq. (14), it is easy to obtain the first order \(W_1(\theta) \)

\[
W_1(\theta) = A_1(\theta) (1 + \cos \theta)^3 (\sin \theta)^{-2m-4} = -\frac{3}{2m+2} \sin \theta
\] (79)

Now, we can see \(W_1(\theta) \) is convergence at the boundaries \(\theta = 0, \pi \). So that, the result of \(E_{0,1;m} \) is appropriate. By the same steps with more complex calculation than \(W_1(\theta) \), we can also get \(E_{0,2;m}, E_{0,3;m}, W_3 \) and \(E_{0,4;m}, W_4 \).

7 the calculation for the general form of \(W_n \)

Back to Eqs. (12), (14), (15), one needs to simplify the term \(\sum_{k=1}^{n-1} W_k W_{n-k} \) in order to calculate \(W_n \). Whenever \(1 \leq k \leq n-1 \), one has \(1 \leq n-k \leq n-1 \) and \(W_k(\theta) \), \(W_{n-k}(\theta) \) could be written in the form of (32). That is,

\[
W_k(\theta) = \sum_{i=1}^{\lfloor \frac{k}{2} \rfloor} a_{k,i} \sin^{2i-1} \theta \cos \theta + \sum_{i=1}^{\lfloor \frac{k-1}{2} \rfloor} b_{k,i} \sin^{2i-1} \theta \\
W_{n-k}(\theta) = \sum_{j=1}^{\lfloor \frac{n-k}{2} \rfloor} a_{n-k,j} \sin^{2j-1} \theta \cos \theta + \sum_{j=1}^{\lfloor \frac{n-k-1}{2} \rfloor} b_{n-k,j} \sin^{2j-1} \theta
\] (80)

For the sake of later use, the facts are true

\[
a_{i,j} = 0, j < 1 or j > \lfloor \frac{i}{2} \rfloor; \quad b_{i,j} = 0, j < 1 or j > \lfloor \frac{i+1}{2} \rfloor
\] (81)

for \(i < n \). Thus

\[
\sum_{k=1}^{n-1} W_k W_{n-k} \\
= \sum_{k=1}^{n-1} \sum_{i=1}^{\lfloor \frac{k}{2} \rfloor} \sum_{j=1}^{\lfloor \frac{n-k}{2} \rfloor} b_{k,i} b_{n-k,j} \sin^{2i+2j-2} \theta + \sum_{k=1}^{n-1} \sum_{i=1}^{\lfloor \frac{k-1}{2} \rfloor} \sum_{j=1}^{\lfloor \frac{n-k-1}{2} \rfloor} a_{k,i} b_{n-k,j} \sin^{2i+2j-2} \theta \cos^2 \theta \\
+ \cos \theta \sum_{k=1}^{n-1} \sum_{i=1}^{\lfloor \frac{k}{2} \rfloor} \sum_{j=1}^{\lfloor \frac{n-k}{2} \rfloor} a_{k,i} b_{n-k,j} \sin^{2i+2j-2} \theta + \sum_{i=1}^{\lfloor \frac{k-1}{2} \rfloor} \sum_{j=1}^{\lfloor \frac{n-k-1}{2} \rfloor} b_{k,i} a_{n-k,j} \sin^{2i+2j-2} \theta
\] (82)

\[
= \sum_{p=2}^{n-1} \sum_{k=1}^{n-1-p} \sum_{j=1}^{n-1-k} b_{k,p-j} b_{n-k,j} \sin^{2p-2} \theta + \sum_{p=2}^{n-1} \sum_{k=1}^{n-1-p} \sum_{j=1}^{n-1-k} a_{k,p-j} a_{n-k,j} \sin^{2p-2} \theta \cos^2 \theta \\
+ \cos \theta \left[\sum_{p=2}^{n-1} \sum_{k=1}^{n-1-p} \sum_{j=1}^{n-1-k} b_{k,p-j} a_{n-k,j} \sin^{2p+1} \theta + \sum_{p=2}^{n-1-p} \sum_{k=1}^{n-1-p} \sum_{j=1}^{n-1-k} a_{k,p-j} b_{n-k,j} \sin^{2p+1} \theta \right] \\
= \sum_{p=2}^{\lfloor \frac{n}{2} \rfloor} \left[h_{n,p} + g_{n,p} \cos \theta \right] \sin^{2p-2} \theta
\] (83)
where \(g_{n,p} \) and \(h_{n,p} \) are constant coefficients:

\[
h_{n,p} = \sum_{k=1}^{n-1} \sum_{j=1}^{p-1} \left[b_{k,p-j} b_{n-k,j} + a_{k,p-j} a_{n-k,j} - a_{k,p-1-j} a_{n-k,j} \right] \tag{84}
\]

\[
g_{n,p} = \sum_{k=1}^{n-1} \sum_{j=1}^{p-1} \left[b_{k,p-j} a_{n-k,j} + a_{k,p-j} b_{n-k,j} \right] \tag{85}
\]

\[
\bar{c}_1 = \left[\frac{k+1}{2} \right] + \left[\frac{n-k+1}{2} \right], \quad \bar{c}_2 = \left[\frac{k}{2} \right] + \left[\frac{n-k}{2} \right] \tag{86}
\]

\[
\bar{c}_3 = \left[\frac{k+1}{2} \right] + \left[\frac{n-k}{2} \right], \quad \bar{c}_4 = \left[\frac{k}{2} \right] + \left[\frac{n-k+1}{2} \right] \tag{87}
\]

It is easy to see

\[
\bar{c}_1 = \frac{n}{2} + 1, \quad \bar{c}_2 = \bar{c}_3 = \bar{c}_4 = \frac{n}{2}, \text{ when } n \text{ is even} \tag{88}
\]

\[
\bar{c}_2 = \frac{n-1}{2}, \quad \bar{c}_1 = \bar{c}_3 = \bar{c}_4 = \frac{n+1}{2}, \text{ when } n \text{ is odd} \tag{89}
\]

Hence, one has

\[
g_{n,p} = 0, \quad p < 1 \text{ or } p > \frac{n}{2}, \quad h_{n,p} = 0, \quad p < 1 \text{ or } p > \frac{n+1}{2}, \text{ when } n \text{ is even} \tag{90}
\]

\[
g_{n,p} = h_{n,p} = 0, \quad p < 1 \text{ or } p > \frac{n+1}{2}, \text{ when } n \text{ is odd.}
\]

We have used the fact (81) and substituted the quantities \(\bar{c}_1, \bar{c}_2, \bar{c}_3, \bar{c}_4 \) by the maximum \(\left[\frac{n}{2} \right] + 1 \) of them in last line in the above equation. Taking \(f_n(z) = E_{0,n;m} + \sum_{k=1}^{n-1} W_k W_{n-k} \) into Eqs. (15) we can have

\[
A_n(\theta) = \int \left[E_{0,n;m} + \sum_{p=2}^{\left\lceil \frac{n}{2} \right\rceil + 1} \left[h_{n,p} + g_{n,p} \cos \theta \right] \sin^{2p-2} \theta (1 - \cos \theta)^3 \sin^{2m-2} \theta d\theta \right]
\]

\[
= \int 4E_{0,n;m} \sin^{2m-2} \theta d\theta - \int 3E_{0,n;m} \sin^{2m} \theta d\theta
\]

\[
- \frac{4E_{0,n;m}}{2m-1} \sin^{2m-1} \theta + \frac{E_{0,n;m}}{2m+1} \sin^{2m+1} \theta
\]

\[
+ \sum_{p=2}^{\left\lceil \frac{n}{2} \right\rceil + 1} \frac{4g_{n,p} - 4h_{n,p}}{2m+2p-3} \sin^{2m+2p-3} \theta + \sum_{p=2}^{\left\lceil \frac{n}{2} \right\rceil + 1} \frac{h_{n,p} - 3g_{n,p} \sin^{2m+2p-1} \theta}{2m+2p-1}
\]

\[
+ \sum_{p=2}^{\left\lceil \frac{n}{2} \right\rceil + 1} (4h_{n,p} - 4g_{n,p}) \sin^{2m+2p-4} \theta d\theta
\]
\[
\begin{align*}
 &\sum_{p=2}^{[\frac{n}{2}]+1} \int (5g_{n,p} - 3h_{n,p}) \sin^{2m+2p-2} \theta d\theta - \sum_{p=2}^{[\frac{n}{2}]+1} \int g_{n,p} \sin^{2m+2p} \theta d\theta \\
 &= 4E_{0,n;m} P(2m - 2, \theta) - 3E_{0,n;m} P(2m, \theta) - \frac{4E_{0,n;m}}{2m - 1} \sin^{2m-1} \theta + \frac{E_{0,n;m}}{2m + 1} \sin^{2m+1} \theta \\
 &\quad + \sum_{p=2}^{[\frac{n}{2}]+1} 4g_{n,p} - 4h_{n,p} \sin^{2m+2p-3} \theta + \sum_{p=2}^{[\frac{n}{2}]+1} h_{n,p} - 3g_{n,p} \sin^{2m+2p-1} \theta \\
 &\quad + \sum_{p=2}^{[\frac{n}{2}]+1} (4h_{n,p} - 4g_{n,p}) P(2m + 2p - 4, \theta) \\
 &\quad + \sum_{p=2}^{[\frac{n}{2}]+1} (5g_{n,p} - 3h_{n,p}) P(2m + 2p - 2, \theta) - \sum_{p=2}^{[\frac{n}{2}]+1} g_{n,p} P(2m + 2p, \theta) \\
 &= 4E_{0,n;m} P(2m - 2, \theta) - 3E_{0,n;m} P(2m, \theta) - \frac{4E_{0,n;m}}{2m - 1} \sin^{2m-1} \theta + \frac{E_{0,n;m}}{2m + 1} \sin^{2m+1} \theta \\
 &\quad + \sum_{p=2}^{[\frac{n}{2}]+1} 4g_{n,p} - 4h_{n,p} \sin^{2m+2p-3} \theta + \sum_{p=2}^{[\frac{n}{2}]+1} h_{n,p} - 3g_{n,p} \sin^{2m+2p-1} \theta \\
 &\quad - \sum_{p=2}^{[\frac{n}{2}]+1} \left[\frac{5g_{n,p} - 3h_{n,p}}{2m + 2p - 2} + \frac{(2m + 2p - 1)g_{n,p}}{(2m + 2p - 2)(2m + 2p)} \right] \sin^{2m+2p-3} \theta \cos \theta \\
 &\quad + \sum_{p=2}^{[\frac{n}{2}]+1} \frac{g_{n,p}}{2m + 2p} \sin^{2m+2p-1} \theta \cos \theta \\
 &\quad + \sum_{p=2}^{[\frac{n}{2}]+1} j_{n,p} P(2m + 2p - 4, \theta) \\
 &= 4E_{0,n;m} P(2m - 2, \theta) - 3E_{0,n;m} P(2m, \theta) - \frac{4E_{0,n;m}}{2m - 1} \sin^{2m-1} \theta + \frac{E_{0,n;m}}{2m + 1} \sin^{2m+1} \theta \\
 &\quad + \sum_{p=2}^{[\frac{n}{2}]+1} 4g_{n,p} - 4h_{n,p} \sin^{2m+2p-3} \theta + \sum_{p=2}^{[\frac{n}{2}]+1} h_{n,p} - 3g_{n,p} \sin^{2m+2p-1} \theta \\
 &\quad - \sum_{p=2}^{[\frac{n}{2}]+1} i_{n,p} \sin^{2m+2p-3} \theta \cos \theta + \sum_{p=2}^{[\frac{n}{2}]+1} \frac{g_{n,p}}{2m + 2p} \sin^{2m+2p-1} \theta \cos \theta \\
 &\quad + \sum_{p=2}^{[\frac{n}{2}]+1} j_{n,p} P(2m + 2p - 4, \theta) \\
 &\quad + \sum_{p=2}^{[\frac{n}{2}]+1} j_{n,p} P(2m + 2p - 4, \theta)
\end{align*}
\]
For the coefficient of divergent term must be zero, that is

\[
i_{n,p} = \frac{5g_{n,p} - 3h_{n,p}}{2m + 2p - 2} + \frac{(2m + 2p - 1)g_{n,p}}{(2m + 2p - 2)(2m + 2p)}
\]

(92)

\[
j_{n,p} = 4(h_{n,p} - g_{n,p}) + \frac{2m + 2p - 3}{2m + 2p - 2}[5g_{n,p} - 3h_{n,p}]
\]

\[\quad - \frac{(2m + 2p - 3)(2m + 2p - 1)}{(2m + 2p)(2m + 2p - 2)}g_{n,p}
\]

\[\quad = 4(h_{n,p} - g_{n,p}) + (2m + 2p - 3)i_{n,p}
\]

(93)

\[
j_{n,p} = \frac{[h_{n,p}(2m + 2p) - 3g_{n,p}](2m + 2p + 1)}{(2m + 2p - 2)(2m + 2p)}
\]

(94)

According to Eq.(75), one has

\[
P(2m + 2p - 4) = -\cos \theta \sum_{l=1}^{p-1} \frac{I(2m + 2p - 4, p - l - 1)}{2m + 2p - 3} \sin^{2m+2l-3} \theta
\]

\[\quad + \frac{2m - 1}{2m + 2p - 3} I(2m + 2p - 4, p - 2) p(2m - 2, \theta)
\]

(95)

Hence,

\[
A_n(\theta)
\]

\[
= 4E_{0,n,m}P(2m - 2, \theta) + 3E_{0,n,m}\left[\frac{\cos \theta \sin^{2m-1} \theta}{2m} - \frac{2m - 1}{2m} P(2m - 2, \theta)\right]
\]

\[\quad - \frac{4E_{0,n,m}}{2m - 1} \sin^{2m-1} \theta + \frac{E_{0,n,m}}{2m + 1} \sin^{2m+1} \theta
\]

\[\quad + \sum_{p=2}^{\left[\frac{3}{2}\right]+1} \frac{4g_{n,p} - 4h_{n,p}}{2m + 2p - 3} \sin^{2m+2p-3} \theta + \sum_{p=2}^{\left[\frac{3}{2}\right]+1} \frac{h_{n,p} - 3g_{n,p}}{2m + 2p - 1} \sin^{2m+2p-1} \theta
\]

\[\quad - \sum_{p=2}^{\left[\frac{3}{2}\right]+1} i_{n,p} \sin^{2m+2p-3} \theta \cos \theta + \sum_{p=2}^{\left[\frac{3}{2}\right]+1} \frac{g_{n,p}}{2m + 2p} \sin^{2m+2p-1} \theta \cos \theta
\]

\[\quad + \sum_{p=2}^{\left[\frac{3}{2}\right]+1} j_{n,p} \left[\cos \theta \sum_{l=1}^{p-1} \frac{I(2m + 2p - 4, p - l - 1)}{2m + 2p - 3} \sin^{2m+2l-3} \theta
\]

\[\quad + \frac{2m - 1}{2m + 2p - 3} I(2m + 2p - 4, p - 2) P(2m - 2, \theta)\right]
\]

(96)

For the coefficient of divergent term must be zero, that is

\[
b_1 = \frac{(2m + 3)}{2m} E_{0,n,m} + \sum_{p=2}^{\left[\frac{3}{2}\right]+1} j_{n,p} \frac{2m - 1}{2m + 2p - 3} I(2m + 2p - 4, p - 2) = 0
\]

(97)
then

\[
E_{0,n,m} = -\frac{2m}{2m+3} \sum_{p=2}^{\left[\frac{n}{2}\right]+1} j_{n,p} \frac{2m-1}{2m+2p-3} \bar{I}(2m+2p-4, p-2)
\]

\[
= -\sum_{p=2}^{\left[\frac{n}{2}\right]+1} \frac{2m(2m-1)[h_{n,p}(2m+2p)-3g_{n,p}](2m+2p+1)}{(2m+3)(2m+2p-3)(2m+2p-2)(2m+2p)} \bar{I}(2m+2p-4, p-2)
\]

Taking Eq.(98) into Eq.(??), we can get

\[
A_n(\theta) = -\frac{4E_{0,n,m}}{2m-1} \sin^{2m-1} \theta + \frac{E_{0,n,m}}{2m} \sin^{2m+1} \theta + \frac{3E_{0,n,m}}{2m} \sin^{2m+1} \theta \cos \theta
\]

\[
+ \sum_{p=2}^{\left[\frac{n}{2}\right]+1} \frac{4g_{n,p} - 4h_{n,p} \sin^{2m+2p-3} \theta + \left[\frac{n}{2}\right]+1 h_{n,p} - 3g_{n,p}}{2m+2p-1} \sin^{2m+2p-1} \theta \cos \theta
\]

\[
- \sum_{p=2}^{\left[\frac{n}{2}\right]+1} i_{n,p} \sin^{2m+2p-3} \theta \cos \theta + \sum_{p=2}^{\left[\frac{n}{2}\right]+1} j_{n,p} \cos \theta \sum_{l=1}^{p-1} \frac{\bar{I}(2m+2p-4, p-l-1)}{2m+2p-3} \sin^{2m+2l-3} \theta
\]

(99)

It is easy to see the factor \((1 - \cos \theta)^3\) in the integrand in above calculation make the form of \(A_n(\theta)\) very complicated. More calculation are need to treat the problem now. The results are

\[
W_n(\theta) = \cos \theta \sum_{l=1}^{\left[\frac{n}{2}\right]} a_{n,l} \sin^{2l-1} \theta + \sum_{l=1}^{\left[\frac{n-1}{2}\right]} b_{n,l} \sin^{2l-1} \theta
\]

(100)

\[
b_{n,l} = \sum_{p=l+1}^{\left[\frac{n}{2}\right]+1} \frac{3(2m + 2l - 2)j_{n,p} \bar{I}(2m+2p-4, p-l-1)}{(2m+2l-1)(2m+2l+3)(2m+2p-3)} + \frac{g_{n,l}}{2m+2l} \zeta_{l,1}, l \geq 1
\]

(101)

\[
a_{n,l} = -\sum_{p=l+1}^{\left[\frac{n}{2}\right]+1} \frac{(2m + 2l - 2)(2m + 2l)j_{n,p} \bar{I}(2m+2p-4, p-l-1)}{(2m+2l-1)(2m+2l+3)(2m+2p-3)}, l \geq 1
\]

(102)
where \(\xi_{l,1} = 0, l = 1 \) and otherwise \(\xi_{l,1} = 1, l \neq 1 \). We delay the process of proved in the appendix-1. Therefore, we have proved the correctness of our induction about the general formula with \(W_n \). That is to say, any \(n \geq 1, W_n \) satisfy the form of general formula. Interestingly, the general formula with \(W_n \) in the case of \(s = 3/2 \) is same as \(s = 1/2 \).

References

[1] Teukolsky S.A., *Phys.Rev.Lett.* **29**, 1114 (1972).

[2] Teukolsky S.A., *Astrophys.J.* **185**, 635 (1973).

[3] Flammer C 1956 *Spheroidal wave functions*. (Stanford, CA: Stanford University Press)

[4] Stratton J 1956 *Spheroidal Wave Functions*. (New York: Wiley)

[5] Li L W, Kang X K, Leong M S 2002 *Spheroidal wave functions in electromagnetic theory* (New York: John Wiley and Sons Inc.)

[6] Tian G H 2005 *Chin.Phys.Lett.* **22** 3013

[7] Tian Guihua, Shuquan Zhong, Solve spheroidal wave functions by SUSY method, arXiv: 0906.4685v2 [gr-qc] 30 Jun 2009.

[8] Tian Guihua, Shuquan Zhong, New investigation for the spheroidal wave functions, arXiv: 0906.4687v2 [gr-qc] 30 Jun 2009.

[9] Infeld L, Hull T E 1951 *Rev.Mod.Phys.* **21** 23

[10] Cooper F, Khare A, Sukhatme U 1995

[11] Tian Guihua and Zhong Shuquan 2010 Chin. Phys. Lett. **27** 040305.

[12] Emanuele Berti, Vitor Cardoso and Marc Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions, arXiv:gr-qc/0511111v4 1 May 2006.

[13] Gradshteyn I.S., Ryzbik L.M. 2000 *Table of integrals, series, and products*. 6th edition, Elsevier (Singapore)pte. Ltd.