BOUNDENESS OF SOLUTIONS TO FRACTIONAL LAPLACIAN GINZBURG-LANDAU EQUATION

LI MA

Abstract. In this paper, we give the boundeness of solutions to Fractional Laplacian Ginzburg-Landau equation, which extends the Brezis theorem into the nonlinear Fractional Laplacian equation. A related linear fractional Schrodinger equation is also studied.

Mathematics Subject Classification (2000): 35J60, 53C21, 58J05

Keywords: Brezis theorem, Ginzburg-landau equation, fractional Laplacian

1. Introduction

In this paper, we continue our study of nonlocal nonlinear elliptic problem with the fractional Laplacian [7]. We give the boundeness of solutions to Fractional Laplacian Ginzburg-Landau equation, which extends the Brezis theorem [1] [8] [9] [10] into the nonlinear Fractional Laplacian equation. The proof of our result depends on a Liouville type theorem for L^p non-negative solutions to a nonlinear fractional Laplacian inequality.

We begin with the definition of fractional Laplacian on \mathbb{R}^n. Let $0 < \alpha < 2$. Following [2] we define

$$E = C^{1,1}_{loc}(\mathbb{R}^n) \cap L_\alpha,$$

where

$$L_\alpha = \{u \in L^1_{loc}(\mathbb{R}^n); \int_{\mathbb{R}^n} \frac{|u(x)|dx}{1 + |x|^{n+\alpha}} < \infty \}.$$

For $u \in E$, we define the fractional Laplacian operator $(-\Delta)^{\alpha/2}$ by

$$(-\Delta)^{\alpha/2}u(x) = C_{n,\alpha} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+\alpha}}dy,$$

where $C_{n,\alpha}$ is the uniform constant [6]. The fractional Ginzburg-Landau equation is

$$(1) \quad (-\Delta)^{\alpha/2}u = u(1 - |u|^2), \quad \text{in} \quad \mathbb{R}^n.$$
We consider the physical meaningful solutions and our main result is below.

Theorem 1. Let \(u \in E \) is a solution to (1) such that

\[
\int_{\mathbb{R}^n} (1 - |u|^2)^2 dx < \infty.
\]

Then, we have

\[|u(x)| \leq 1, \quad \text{in } \mathbb{R}^n \]

This is an extension of Brezis theorem [10] about the Ginzburg-Landau equation/system. The result is also true for the corresponding vector-valued solution \(u : \mathbb{R}^n \to \mathbb{R}^N \). It is quiet possible to remove the condition \(1 - u^2 \in L^2 \). However, we can give an example of linear fractional Schrodinger equation, which shows that the behavior of solutions to linear equation is also very subtle.

Assume \(k(x) \geq 0 \) is non-negative smooth function on \(\mathbb{R}^n \). Let \(g_\alpha(x,y) = C_{n,-\alpha} \frac{1}{|x-y|^\alpha} \). We also consider non-negative solutions to the following linear fractional Laplacian equation

(2) \[(-\Delta)^{\alpha/2} u + k(x) u = 0, \quad \text{in } \mathbb{R}^n. \]

We have the below

Theorem 2. Assume \(k(x) \geq 0 \) is a nontrivial non-negative smooth function on \(\mathbb{R}^n \). Assume that for each \(x \in \mathbb{R}^n \),

\[
\int_{\mathbb{R}^n} g_\alpha(x,y)k(x)dy < \infty.
\]

Then there is a non-trivial non-negative solution to (2).

One remark is given now. We actually only need to assume (2) is true at some point \(x \).

The plan of this note is below. The proof of Theorem 2 is given in section 2 and Theorem 1 is proven in section 3.

2. Linear Equation

We now prove Theorem 2. Assume (2). We let, for each \(x \in \mathbb{R}^n \),

\[
V(x) = \int_{\mathbb{R}^n} g_\alpha(x,y)k(x)dy < \infty.
\]

Then \(V(x) \) is the minimum non-negative solution to the Poisson equation

\[(-\Delta)^{\alpha/2} u = k(x), \quad \text{in } \mathbb{R}^n. \]
and we have $\inf_{R^n} V(0) = 0$. Let $R^n = \bigcup_{j \geq 1} B_j(0)$ be a ball exhaustion of R^n. We denote by $B_j = B_j(0)$. We solve $u_j(x) \geq 0$ such that

$$(-\Delta)^{\alpha/2} u_j + k(x)u_j = 0, \quad \text{in } B_j$$

with the boundary condition $u_j = 1$ on $B_j^c = R^n - B_j$. By the Maximum principle [3] [4] we have $0 \leq u_j(x) \leq 1$ on R^n. This solution can be obtained by the variation method or the monotone method. By the comparison lemma we know that $(u_j(x))$ is monotone non-increasing sequence and we may let

$$U(x) = \lim_{j \to \infty} u_j(x).$$

Note that $0 \leq U(x) \leq 1$ on R^n. We now show that U is non-trivial. Let $\tilde{u}_j = 1 - u_j$. Then

$$(-\Delta)^{\alpha/2} \tilde{u}_j = k(x)u_j(x) \leq k(x), \quad \text{in } B_j$$

and $\tilde{u}_j(x) = 0$ on B_j^c. By the Maximum principle we have $\tilde{u}_j(x) \leq V(x)$ on R^n. Passing to limit we have

$$1 - U(x) \leq V(x), \quad \text{on } R^n.$$

Since $\inf V(x) = 0$, we know that $U(x)$ is a non-trivial non-negative solution to (2). This completes the proof of Theorem 2.

3. Proof of Theorem 1

Recall that we have Kato’s inequality of the form [5]

$$(-\Delta)^{\alpha/2} |f(x)| \leq \text{sgn}(f)(-\Delta)^{\alpha/2} f(x), \quad \text{a.e. } R^n.$$

By this we have for any $f \in E$, we have

$$(-\Delta)^{\alpha/2} f_+(x) \leq \text{sgn}(f_+)(-\Delta)^{\alpha/2} f(x), \quad \text{a.e. } R^n,$$

where $f_+(x) = \sup(f(x), 0)$.

Let $u \in E$ be a solution to (1) such that

$$\int_{R^n} (1 - |u|^2)^2 \, dx < \infty.$$

Let

$$Q(x) = |u(x)|^2 - 1.$$

Note that

$$(-\Delta)^{\alpha/2} u^2(x) = C_{n,\alpha} \int_{R^n} \frac{u^2(x) - u^2(y)}{|x - y|^{n+\alpha}} \, dy$$

$$= 2u(x)(-\Delta)^{\alpha/2} u(x) - C_{n,\alpha} \int_{R^n} \frac{|u(x) - u(y)|^2}{|x - y|^{n+\alpha}} \, dy.$$

Then

$$(-\Delta)^{\alpha/2} u^2(x) \leq 2u(x)(-\Delta)^{\alpha/2} u(x).$$
By the equation (1) we have
\((-\Delta)^{\alpha/2} u^2(x) \leq -2u^2(x)Q(x) = -2Q^2(x) - 2Q(x)\).
That implies that
\((-\Delta)^{\alpha/2} Q(x) \leq -2Q^2(x) - 2Q(x)\).
Using the Kato inequality above we have
\((-\Delta)^{\alpha/2} Q_+(x) \leq -2Q_+^2(x)\).
Invoking lemma 3 below (with \(q = 2\)) we can conclude that \(Q_+(x) = 0\) on \(\mathbb{R}^n\), which implies Theorem 1.

Lemma 3. Let \(1 \leq r < \infty\). Assume that \(0 \leq f \in L^q(\mathbb{R}^n)\) for some \(1 \leq q < \infty\) such that
\((-\Delta)^{\alpha/2} f + f^r \leq 0, \text{ in } \mathbb{R}^n,\)
in the distributional sense, i.e.,
\(\int_{\mathbb{R}^n} f(-\Delta)^{\alpha/2} v + \int_{\mathbb{R}^n} f^r v \leq 0,\)
for any \(v \in C^\infty_0(\mathbb{R}^n)\) with \(v \geq 0\), then we have \(f = 0\) on \(\mathbb{R}^n\).

Proof. Let \(\xi(x) \in C^{1,1}(B_2(0))\) be the cut-off function such that \(\xi(x) = 1\) on \(B_1(0)\). For any \(R > 1\), let \(\xi_R(x) = \xi(x/R)\). Then (3) implies that
\(\int_{\mathbb{R}^n} f(-\Delta)^{\alpha/2} v + \xi_R(x) \int_{\mathbb{R}^n} f^r v \leq 0,\)
for any \(v \in C^\infty_0(\mathbb{R}^n)\) with \(v \geq 0\).
Define
\[\phi(x) = \int_{\mathbb{R}^n} g_\alpha(x,y)\xi_R(x)dy.\]
Then \(0 \leq \phi(x) \leq C\) for some uniform constant \(C > 0\), \(\phi(x) \leq C|x|^{\alpha-n}\) at infinity and
\((-\Delta)^{\alpha/2} \phi(x) = \xi_R(x), \text{ on } \mathbb{R}^n.\)
Define, for any \(p > 1,\)
\[W^{\alpha,p} = \{f \in L^p, (-\Delta)^{\alpha/2} f \in L^p \cap L^\infty\}.\]
Then \(C^\infty_0(\mathbb{R}^n)\) is dense in \(W^{\alpha,p}\). If \(q = 1\), we choose any \(p > 1\). If \(q > 1\), we let \(p = \frac{q}{q-1}\). By passing to limit, we can take the test function \(v \in W^{\alpha,p}\) for the inequality (3). In particular, we may let \(v = \phi\) and we have
\(\int_{\mathbb{R}^n} f\xi_R(x) + \xi_R(x)f^r \phi(x) \leq 0.\)
Note that each term in the integration is non-negative. Then we have
\(f\xi_R(x) = 0, \text{ a.e. } \mathbb{R}^n.\)
Since $R > 1$ is arbitrary, we have $f(x) = 0$ a.e. in \mathbb{R}^n. □

References

[1] H. Brezis, Comments on Two Notes by L. Ma and X. Xu, C. R. Math. Acad. Sci. Paris 349 (2011), no. 5-6, 269-271
[2] L. Caffarelli, L. Silvestre, regularity Theory for fully non-linear integro-Differential Equations, Comm. Pure Appl. Math. Vol. LXXII 0597-0638 (2009).
[3] W. Chen, Y. Fang, and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Advances in Math. in press, 2014.
[4] W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Disc. Cont. Dynamics Sys. 4 (2009), no. 24, 1167-1184.
[5] RL. Frank, E. Lenzmann, and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, arXiv: 1302.2652v1, 2013.
[6] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag Berlin Heidelberg, New York, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.
[7] Li Ma, On nonlocal nonlinear elliptic problem with the fractional Laplacian, arxiv.org, 2015
[8] Li Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 993-996
[9] Li Ma, Liouville Type Theorems for Lichnerowicz Equations and Ginzburg-Landau Equation: Survey, Advances in Pure Mathematics, 2011, 1, 99-104
[10] Li Ma, Xingwang Xu, uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space, C.R.Mathematique, ser.I,347(2009)805-808

Li Ma: Zhongyuan Institute of mathematics and Department of mathematics, Henan Normal University, Xinxiang, 453007, China
E-mail address: lma@tsinghua.edu.cn