Research Article

Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

Yongchang Yao, 1,2 Zhichen Zhai, 1,2 and Yingjun Wang 1,2

1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
2 National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China

Correspondence should be addressed to Yingjun Wang; imwangyj@163.com

Received 26 December 2013; Revised 4 March 2014; Accepted 8 March 2014; Published 10 April 2014

Academic Editor: Zhi-Yong Zhang

Copyright © 2014 Yongchang Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured in IM, CM, and GM for a certain time. Then the proliferation and the chondrogenesis progress of cells in these groups were analyzed. Results. Compared with CM and GM, IM promoted the proliferation of cells significantly. CM was effective for enhancement of cartilage specific markers, while IM induced the cells to express endochondral ossification related genes. Although GAG deposition per cell in CM group was significantly higher than that in IM and GM groups, the total GAG contents in IM group were the most. Conclusion. This study demonstrated that CM focused on induction of chondrogenic differentiation while IM was in favor of promoting proliferation and expression of endochondral ossification related genes. Combinational use of these two media would be more beneficial to bone/cartilage repair.

1. Introduction

Cartilage is a very complex and avascular tissue, which would lead to the limited capacity for self-repair once cartilage is damaged. Tissue engineering and regenerative medicine provide an excellent way for cartilage repair. Although, in principle, autologous chondrocytes are the best cells for cartilage tissue engineering applications, it is difficult to acquire sufficient chondrocytes for tissue repair because of the damage to the donor, poor proliferation in vitro, and so on [1, 2]. In this context, stem cells including embryonic and mesenchymal cells appear as a promising alternative and are widely studied for cartilage regeneration [3].

The issue of how to induce the differentiation of stem cells efficiently and keep the long-lasting function is still not addressed. Differentiation capability of stem cells will be varied with different conditions, such as cell source and passage [4], causing different even conflicting results. For instance, TGF-β3, which is referred to as a chondrogenesis-inducing factor in most circumstances, may not promote chondrogenesis or even inhibit it in some cases [5, 6]. Therefore, researchers endeavored to look for another stable model cell line with such properties as indefinite and rapid proliferation as well as homogenous stability. Recently, lots of cell lines, such as C3H10T1/2 [7], ATDC5 [8], RCJ3.1C5 [9], CFK2 [10], C2Cl2 [11], MG63 [12], and MC3T3-E1 [13], have been widely used for the study of chondrogenesis and osteogenesis. ATDC5 was derived from AT805 teratocarcinoma cell line in 1990 by Atsumi et al. [8]. Since then, more and more studies have demonstrated that ATDC5 cell line had nearly the same characteristic of chondrogenesis as mesenchymal stem cell. As the ATDC5 cell line was superior in chondrocytic differentiation to C3H10T1/2 and RJC3.1 chondrogenic cell lines [8], it was well acknowledged as an in vitro chondrogenic model.

Insulin medium (IM) was used in most studies with ATDC5 cells for chondrocyte differentiation [7, 8, 14].
In this study, ATDC5 cells were cultured in IM, CM, and growth medium (GM) to evaluate the effect of IM and CM on chondrogenesis of ATDC5 cells. Quantitative RT-PCR (qRT-PCR) and histological staining were performed to confirm chondrogenic differentiation of ATDC5.

2. Materials and Methods

2.1. Cell Culture. ATDC5 cells were cultured in GM containing 1:1 mixture of Dulbecco’s modified Eagle's medium and Ham's F-12 medium supplemented with 5% fetal bovine serum (Invitrogen) in culture flasks at 37°C under 5% CO₂. The culture medium was changed every 3 days.

2.2. Differentiation of ATDC5 Cells Induced by Different Medium. ATDC5 cells were cultured in 24-well plates with GM, IM, and CM for 21 days. The ingredients of the above-mentioned medium were as follows: CM consisted of high-glucose Dulbecco's modified Eagle medium (HDMEM) (Gibco) supplemented with 10 ng/mL recombinant human transforming growth factor-β3 (TGF-β3) (Peprotech), 100 nM dexamethasone (Sigma), 50 μM ascorbic acid 2-phosphate (Sigma), 1 mM sodium pyruvate (Amresco), 40 μg/mL proline (Biosharp), and ITS+ precip (BD); final concentrations: 6.25 μg/mL bovine insulin, 6.25 μg/mL transferrin, 6.25 μg/mL selenious acid, 5.33 μg/mL linoleic acid, and 1.25 mg/mL bovine serum albumin); IM was GM supplementing with 10 μg/mL bovine insulin (Sigma). The density of cells in each well was 5 × 10⁴ cells.

For the experiment to select optimal TGF-β3 concentration for chondrogenesis of ATDC5 cells, the following concentrations of TGF-β3, 0, 2, 5, 10, 20, and 50 ng/mL, were used in CM, respectively. Cells with the same original density were cultured in 24-well plates for 14 days.

In all groups, medium was changed every 3 days.

2.3. Cell Proliferation Analysis. Cells in three groups were analyzed at various time points as indicated in the text and figure captions by CCK-8 and double-strand DNA (dsDNA) for cell quantification.

CCK-8 detection was performed according to the manufacturer's instruction. Briefly, at each time point, cells were seeded at 96-well plate with 1000 cells per well followed by aspiration of the old medium and replacement with 110 μL of fresh medium containing CCK-8 regent (Dojindo, premix 10 μL of CCK-8 every 100 μL of medium). After 2 hours of incubation at 37°C under 5% CO₂, the absorbance for each sample was determined using a microplate reader set to 450 nm.

PicoGreen (Invitrogen) was used for dsDNA quantification. Cells at each time point were reacted with lysis liquid, which contained 50 mM Na₂PO₄, 20 mM N-acetyl cysteine, and 28 μg/mL papain, for 16 h at 60°C. The lysate was centrifuged at 10000 g for 10 min at 4°C and the dsDNA concentration of the supernatant was measured by PicoGreen according to the manufacturer's protocol.

2.4. Quantitative Analysis of Glycosaminoglycan (GAG) Synthesis. The GAG content was measured using the 1,9-dimethylmethane blue method [16]. After being cultured under different medium for 21 days, cells were lysed by lysing liquid as described in dsDNA quantification. The 1,9-dimethylmethane blue (Sigma) colorimetric assay was performed with chondroitin-6-sulfate (Sigma) as a standard. The results of GAGs were normalized to dsDNA content.

2.5. Real-Time PCR (qRT-PCR) Analysis. Total RNA was isolated at various time points as indicated in the text and figure captions using TRIzol Reagent (Invitrogen) according to the manufacturer's protocol. The RNA concentration was determined using a NanoDrop2000 spectrophotometer (Thermo Scientific) and reverse transcription reactions were performed from 500 ng of total RNA using a first cDNA synthesis kit (Fermentas). Real-time PCR reactions were conducted using SYBR green reagent (Invitrogen).

Primer sequences were listed in Table 1. Real-time PCR reactions were performed using the Chromo4 real-time PCR system (Bio-Rad). Samples were held at 95°C for 10 min, followed by 40 amplification cycles consisting of a denaturation

Primer ID	Forward Sequence	Reverse Sequence	Amplicon Length	Access Number
Hprt	CGCGTTGAAGGACCTCTCGAA	CTGAAGTCTCATTATAGTCAAGGCAT	110	NM_013556.2
Ppia	CGCGTTGAAGGACCTCTCGAA	CTGAAGTCTCATTATAGTCAAGGCAT	150	NM_0089071
Col2	AGGGGCAACGAGGTTTCCCATAC	TGGGACACCAAAATTCTCTGCTTCA	171	NM_031163.3
Agn	AGGGGCAACGAGGTTTCCCATAC	TGGGACACCAAAATTCTCTGCTTCA	105	NM_007541.2
Col1	TGGGACACCAAAATTCTCTGCTTCA	TGGGACACCAAAATTCTCTGCTTCA	115	NM_009254.5
ColX	TGGGACACCAAAATTCTCTGCTTCA	TGGGACACCAAAATTCTCTGCTTCA	144	NM_009820.4
ALP	TGGGACACCAAAATTCTCTGCTTCA	TGGGACACCAAAATTCTCTGCTTCA	164	NM_007431.2
OC	TGGGACACCAAAATTCTCTGCTTCA	TGGGACACCAAAATTCTCTGCTTCA	178	NM_007541.2
Runx2	TGGGACACCAAAATTCTCTGCTTCA	TGGGACACCAAAATTCTCTGCTTCA	144	NM_009820.4
Dlx5	TGGGACACCAAAATTCTCTGCTTCA	TGGGACACCAAAATTCTCTGCTTCA	108	NM_001056.2
Osx	TGGGACACCAAAATTCTCTGCTTCA	TGGGACACCAAAATTCTCTGCTTCA	196	NM_130458.3
VEGF	TGGGACACCAAAATTCTCTGCTTCA	TGGGACACCAAAATTCTCTGCTTCA	93	NM_009505.4

Tare et al. [15] reported that chondrogenic medium (CM), commonly used for chondrogenesis of MSCs and other stem cells, was effective for chondrocyte differentiation of ATDC5. In this study, ATDC5 cells were cultured in IM, CM, and growth medium (GM) to evaluate the effect of IM and CM on chondrogenesis of ATDC5 cells. Quantitative RT-PCR (qRT-PCR) and histological staining were performed to confirm chondrogenic differentiation of ATDC5.

Table 1: Primers used in this study.
step at 95°C for 15 s and an annealing and extension step at 60°C for 1 min. The threshold cycle values of the gene were normalized against Hprt and Ppia. Then the relative fold change was obtained by normalizing the data of each group against control group.

2.6. Alcian Blue Staining. After 21 days of culture, cells were fixed in 10% neutral buffered formalin and washed twice with PBS. Alcian Blue (Biosharp) staining was performed to detect proteoglycan. Samples were stained with 1% Alcian Blue 8GS (Fluka) in 0.1 M HCl for 5 min at room temperature.

2.7. Statistical Analysis. Repetitive ANOVA and Tukey’s multiple comparison tests were used to determine statistical significance ($P < 0.05$) between groups. Experiments were repeated with $n = 3$ biological replicates and the results were represented as the mean ± standard deviation.

3. Results

3.1. Cell Proliferation in GM, IM, and CM. ATDC5 cells were cultured in GM, IM, and CM for 14 days. At various time points, the amount of cells in different groups was determined using CCK-8 kit and PicoGreen dsDNA kit. As shown in Figure 1, at the beginning of cell culture, cells in all the three groups showed almost the same proliferation rate. With time, cells in IM group grew rapidly and exhibited the highest proliferation rate among the three groups. The amount of cells in IM group was maintained after day 10. Cells in GM groups also kept proliferating at a moderate speed until day 7 while the cells in CM group grew at the lowest rate and ceased proliferation after day 5. The data of dsDNA quantification shown in Figure 2 indicated a similar result. The quantity of dsDNA content in IM group was the highest among all the groups at day 3, day 5, and day 14, suggesting that IM promoted the proliferation of cells significantly. These data were consistent with the morphology of cells observed under the light microscope (Figure 3). At day 5, cells in IM and GM appeared about 90% confluence while those in CM gathered in to several rounded clumps.

3.2. Gene Expression Analysis in GM, IM, and CM. Collagen type II (Col2) and aggrecan (Agn), cartilage specific markers, were putatively used to evaluate the degree of chondrocyte differentiation. As shown in Figure 4, ATDC5 cells cultured in CM exhibited much higher expression level of Col2 and Agn from day 1 to day 7 compared with those cultured in IM and GM. Cells in IM group expressed Col2 and Agn in a similar level to those in GM from day 1 to day 5. At day 7, there appeared more Col2 and Agn expression in IM group than that in GM group.

Additionally, the expression level of hypertrophic marker genes including collagen type X (Col10), alkaline phosphatase (ALP), collagen type I (ColI), vascular endothelial growth factor (VEGF), and osteogenic target transcription factors Dlx5, Runx2, osterix (Osx), and osteocalcin (OC) were determined using qRT-PCR and compared between IM and CM groups (Figure 5). The data demonstrated that IM promoted
Figure 3: Morphology of ATDC5 cells cultured in (a) GM, (b) IM, and (c) CM at day 5. The pictures were taken under light microscope with 10x magnification.

Figure 4: Expression level of chondrocyte specific genes of ATDC5 cells. Cells were cultured in CM and IM for 7 days. At the indicated time point, total RNA in all the three groups was isolated using TRIzol followed by PCR assay to evaluate the expression level of (a) Col2 and (b) Agn. The results were presented as the means ± standard deviation (n = 3). *Significant difference (P < 0.05) versus GM group.

3.3. Analysis of GAG Deposition. GAG is a typical component of cartilaginous ECM. Our results showed that the level of GAG deposition per cell in CM group was significantly higher than that in GM and IM (Figure 6(a)). Interestingly, the total GAG contents of cells cultured in IM were the most among all the three groups, as evidenced by the most intensive staining shown in Figure 6(b).

3.4. Selection for TGF-β3 Concentration. It was shown in Figure 7 that cells appeared agglomerate with escalating concentration of TGF-β3 at day 3. The data of qPCR (Figure 8) indicated that the expression level of Col2 and Agn in 10 ng/mL of TGF-β3 was superior to that in other concentrations of TGF-β3. On the other hand, 2 ng/mL TGF-β3 was sufficient to inhibit the expression of Col10 and ALP, while the inhibition effects showed no significant difference with the increasing TGF-β3 concentration. Taken together with all these data, 10 ng/mL was regarded as an optimal concentration to induce the chondrogenesis and prohibit the formation of hypertrophic chondrocyte.

4. Discussion

At present, people pin their hopes on stem cells with tissue engineering technology to cure osteochondral defect. However, numerous issues are still interfering with researchers. A lot of factors such as cell source [17–19], culture conditions [20–22], and stress [23–25], have various effects on osteochondral differentiation. Therefore, it is necessary to
Figure 5: Expression level of endochondral ossification related genes of ATDC5 cells induced in IM and CM at day 14. The results were presented as the means ± standard deviation ($n=3$). Expression fold change of all genes had significant difference ($P<0.05$) between IM and CM.

Figure 6: Analysis of GAG deposition of ATDC5 cells cultured in GM, IM, and CM for 21d. (a) Quantitative analysis of GAGs synthesis using the 1,9-dimethylmethylene blue method. (b) Alcian Blue staining. The results were presented as the means ± standard deviation ($n=6$). There was significant difference ($P<0.05$) versus GM group.
Figure 7: Cell morphology of ATDC5 cells cultured in CM with different TGF-β3 concentration at day 3. Bar = 500 μm.

Figure 8: Gene expression level of ATDC5 cells cultured in CM with different TGF-β3 concentration at day 14. The results were presented as the means ± standard deviation (n = 3).
combined to induce the chondrogenesis for better outcome. IM would be used first to accelerate the cell growth and then would be replaced by CM for chondrocyte differentiation and suppression of endochondral ossification. More work would be needed to find out the suitable parameters.

Lots of studies have used ATDC 5 cells to explore the influence of other factors on chondrogenesis, including laser irradiation [30], oxygen [31, 32], and mechanical interaction [33, 34]. Besides chondrogenesis, ATDC 5 cells would be also used as model cells for endochondral ossification [35]. With the use of stable model system, some parameters such as suitable seeding densities and selection of biological molecules would be optimized and the underlying mechanisms involved in the process of endochondral ossification would be elucidated. Thus, with gradual understanding of influence of various factors on endochondral ossification, favorable microenvironment could be established for bone/cartilage repair.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors’ Contribution

Yongchang Yao and Zhichen Zhai contributed equally to this work.

Acknowledgments

This work was financially supported by the National Basic Research Program of China (Grant nos. 2012CB619100 and 2011CB606204), the National Natural Science Foundation of China (Grant nos. 51303058 and 51232002), the 111 project (B13039), and SRF for ROCS, SEM.

References

[1] P. B. Saadeh, B. Brent, B. J. Mehrara et al., “Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development,” *Annals of Plastic Surgery*, vol. 42, no. 5, pp. 509–513, 1999.

[2] D. Nesic, R. Whiteside, M. Brittberg, D. Wendt, I. Martin, and P. Mainil-Varlet, “Cartilage tissue engineering for degenerative joint disease,” *Advanced Drug Delivery Reviews*, vol. 58, no. 2, pp. 300–322, 2006.

[3] H. Koga, L. Engebretsen, J. E. Brinchmann, T. Muneta, and I. Sekiya, “Mesenchymal stem cell-based therapy for cartilage repair: a review,” *Knee Surgery, Sports Traumatology, Arthroscopy*, vol. 17, no. 11, pp. 1289–1297, 2009.

[4] J. Ankrum and J. M. Karp, “Mesenchymal stem cell therapy: two steps forward, one step back,” *Trends in Molecular Medicine*, vol. 16, no. 5, pp. 203–209, 2010.

[5] D. Bosnakovski, M. Mizuno, G. Kim et al., “Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system,” *Experimental Hematology*, vol. 32, no. 5, pp. 502–509, 2004.

[6] E.-J. Jin, K. S. Park, D. Kim et al., “TGF-beta3 inhibits chondrogenesis by suppressing precartilage condensation through stimulation of N-cadherin shedding and reduction of cRREB-1 expression,” *Molecules and Cells*, vol. 29, no. 4, pp. 425–432, 2010.

[7] E. A. Lin, L. Kong, X.-H. Bai, Y. Luan, and C.-J. Liu, “MiR-199a”, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1,” *The Journal of Biological Chemistry*, vol. 284, no. 17, pp. 11326–11335, 2009.

[8] T. Atsumi, Y. Miwa, K. Kimata, and Y. Ikawa, “A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells,” *Cell Differentiation and Development*, vol. 30, no. 2, pp. 109–116, 1990.

[9] A. Spagnoli, V. Hwa, W. A. Horton et al., “Antiproliferative effects of insulin-like growth factor-binding protein-3 in mesenchymal chondrogenic cell line RCJ3.1C5.18. Relationship to differentiation stage,” *The Journal of Biological Chemistry*, vol. 276, no. 8, pp. 5533–5540, 2001.

[10] D. Panda, D. Goltzman, H. Jüppner, and A. C. Karaplis, “TIP39/parathyroid hormone type 2 receptor signaling is a potent inhibitor of chondrocyte proliferation and differentiation,” *American Journal of Physiology—Endocrinology and Metabolism*, vol. 297, no. 5, pp. E1125–E1136, 2009.

[11] M. Fujii, K. Takeda, T. Imamura et al., “Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation,” *Molecular Biology of the Cell*, vol. 10, no. 11, pp. 3801–3813, 1999.

[12] S.-W. Tsai, H.-M. Liou, C.-J. Lin et al., “MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix,” *PLoS ONE*, vol. 7, no. 2, Article ID e31200, 2012.

[13] J. Jadlowiec, H. Koch, X. Zhang, P. G. Campbell, M. Seyedain, and C. Steir, “Phosphophoryn regulates the gene expression and differentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK signaling pathway,” *The Journal of Biological Chemistry*, vol. 279, no. 51, pp. 53323–53330, 2004.

[14] C. Shukunami, K. Ishizeki, T. Atsumi, Y. Ohta, F. Suzuki, and Y. Hiraki, “Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line RCJ3C5 in vitro,” *Journal of Bone and Mineral Research*, vol. 12, no. 8, pp. 1174–1188, 1997.

[15] R. S. Tare, D. Howard, J. C. Pound, H. I. Roach, and R. O. C. Orrefo, “ATDC5: an ideal cell line for development of tissue engineering strategies aimed at cartilage generation,” *European Cells and Materials*, vol. 10, supplement 2, p. 22, 2005.

[16] R. W. Farndale, D. J. Buttle, and A. J. Barrett, “Improved quantitation and discrimination of sulphate glycosaminoglycans by use of dimethylmethylene blue,” *Biochimica et Biophysica Acta—General Subjects*, vol. 883, no. 2, pp. 173–177, 1986.

[17] S. Choi, T. J. Cho, S. K. Kwon, G. Lee, and J. Cho, “Chondrogenesis of periodontal ligament stem cells by transforming growth factor-beta3 and bone morphogenetic protein-6 in a normal healthy impacted third molar,” *International Journal of Oral Science*, vol. 5, pp. 7–13, 2013.

[18] T. Vinardell, E. J. Sheehy, C. T. Buckley, and D. J. Kelly, “A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources,” *Tissue Engineering A*, vol. 18, pp. 1161–1170, 2012.

[19] A. M. Fernandes, S. R. Herlofsen, T. A. Karlsen, A. M. Kuchler, Y. Floisand, and J. E. Brinchmann, “Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem
cells from healthy donors for tissue engineering of articular cartilage," PLoS One, vol. 8, no. 5, Article ID e62994, 2013.

[20] M. Pei, Y. Zhang, J. Li, and D. Chen, “Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis,” Stem Cells and Development, vol. 22, pp. 889–900, 2013.

[21] Z. Yin, X. Chen, J. L. Chen et al., “The regulation of tendon stem cell differentiation by the alignment of nanofibers,” Biomaterials, vol. 31, no. 8, pp. 2163–2175, 2010.

[22] Y. Yao, F. Zhang, R. Zhou, K. Su, J. Fan, and D.-A. Wang, “Effects of combinational adenoviral vector-mediated TGFβ3 transgene and shRNA silencing type I collagen on articular chondrogenesis of synovium-derived mesenchymal stem cells,” Biotechnology and Bioengineering, vol. 106, no. 5, pp. 818–828, 2010.

[23] A. J. Steward, S. D. Thorpe, T. Vinardell, C. T. Buckley, D. R. Wagner, and D. J. Kelly, “Cell-matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure,” Acta Biomaterialia, vol. 8, no. 6, pp. 2153–2159, 2012.

[24] S. D. Waldman, C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel, “Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage,” Tissue Engineering, vol. 10, no. 9-10, pp. 1323–1331, 2004.

[25] J. Wang, J. Wang, Y. Zou et al., “The influence of delayed compressive stress on TGF-beta1-induced chondrogenic differentiation of rat BMSCs through Smad-dependent and Smad-independent pathways,” Biomaterials, vol. 33, pp. 8395–8405, 2012.

[26] Y. Yao and Y. Wang, “ATDC5: an excellent in vitro model cell line for skeletal development,” Journal of Cellular Biochemistry, vol. 114, pp. 1223–1229, 2013.

[27] B. Keller, T. Yang, Y. Chen et al., “Interaction of TGFβ and bmp signaling pathways during chondrogenesis,” PLoS ONE, vol. 6, no. 1, Article ID e16421, 2011.

[28] A. N. Buxton, C. S. Bahney, J. U. Yoo, and B. Johnstone, “Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels,” Tissue Engineering A, vol. 17, no. 3–4, pp. 371–380, 2011.

[29] X. Yang, L. Chen, X. Xu, C. Li, C. Huang, and C.-X. Deng, “TGFβ/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage,” Journal of Cell Biology, vol. 153, no. 1, pp. 35–46, 2001.

[30] T. Kushibiki, T. Tajiri, Y. Ninomiya, and K. Awazu, “Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation,” Journal of Photochemistry and Photobiology B: Biology, vol. 98, no. 3, pp. 211–215, 2010.

[31] L. Chen, T. Fink, P. Ebbesen, and V. Zachar, “Optimized chondrogenesis of ATCD5 cells through sequential regulation of oxygen conditions,” Tissue Engineering, vol. 12, no. 3, pp. 559–567, 2006.

[32] R. Zaka, A. S. Dion, A. Kusnierz et al., “Oxygen tension regulates the expression of ANK (progressive ankylosis) in an HIF-1-dependent manner in growth plate chondrocytes,” Journal of Bone and Mineral Research, vol. 24, no. 11, pp. 1869–1878, 2009.

[33] Y. Xing, Y. Gu, R. R. Gomes Jr., and J. You, “P2Y2 receptors and GRK2 are involved in oscillatory fluid flow induced ERK1/2 responses in chondrocytes,” Journal of Orthopaedic Research, vol. 29, no. 6, pp. 828–833, 2011.

[34] Y. Kambe, N. Hayashi, and N. Tomita, “Adhesive force behavior of single ATDC5 cells in chondrogenic culture,” Biochemical and Biophysical Research Communications, vol. 420, no. 2, pp. 241–246, 2012.

[35] J. Guicheux, G. Palmer, C. Shukunami, Y. Hiraki, J. P. Bonjour, and J. Caverzasio, “A novel in vitro culture system for analysis of functional role of phosphate transport in endochondral ossification,” Bone, vol. 27, no. 1, pp. 69–74, 2000.