Another Disjoint Compression Algorithm for OCT

R. Krithika and N. S. Narayanaswamy

Department of Computer Science and Engineering, Indian Institute of Technology Madras, India.
{krithika | swamy}@cse.iitm.ac.in

Abstract

We describe an elegant $O^*(2^k)$ algorithm for the disjoint compression problem for Odd Cycle Transversal based on a reduction to Above Guarantee Vertex Cover. We believe that this algorithm refines the understanding of the Odd Cycle Transversal algorithm by Reed, Smith and Vetta \[RSV04\].

Keywords: parameterized complexity, odd cycle transversal, disjoint compression, above guarantee vertex cover.

1 Introduction

Given an undirected graph, an odd cycle transversal (OCT) is a subset of vertices whose deletion makes the resulting graph bipartite. The natural optimization problem is to find a minimum cardinality such set and the corresponding decision problem is known to be NP-complete \[GJ79\]. We revisit the parameterized version of this problem that is known to be fixed-parameter tractable (FPT) with respect to the solution size as the parameter \[RSV04\].

Parameterized algorithm analysis is a multi-dimensional analysis of the running time as a function of the input size and parameter(s). A decision problem with input size n and a parameter k is said to be FPT if it admits an algorithm with runtime $f(k)n^{O(1)}$. Such an algorithm is referred to as an FPT algorithm for the problem and the corresponding runtime is called as an FPT runtime. The runtime $f(k)n^{O(1)}$ of an FPT algorithm is generally denoted as $O^*(f(k))$ by suppressing the polynomial terms.

The fixed-parameter tractability of OCT was first shown in \[RSV04\] by an $O^*(3^k)$ algorithm. This was obtained through a technique which is now called ‘iterative compression’, that led to the design of FPT algorithms for many other problems. This technique typically works for minimization problems parameterized by the solution size. The idea is to begin with a solution of size $k+1$ and attempt to compress it (in FPT time) to a solution of size k. This is the compression step. To get the $k+1$ sized solution to start with, an algorithm using iterative compression technique typically starts with a $k+1$ sized solution for an induced subgraph on (any) $k+2$ vertices and tries to compress the solution to one of size k. If it succeeds, it iteratively adds a new vertex both to the graph and to the solution and continues the compression step in the (larger) new graph. This process continues until we reach the original graph or we get a no answer for any intermediate induced subgraph. If a k sized solution exists for G, we are guaranteed to find it within $n-k$ compressions.

Typically, algorithms employing iterative compression (including the one in \[RSV04\]), the interaction of the known $k+1$ sized solution S with a smaller solution (if one exists) is exploited to obtain a k sized solution. So, part of the FPT time incurred in the compression step is generally due to the subset enumeration of S as possible choices for the intersection of S with the k sized solution that we seek for. For each such subset U, the compression subtask is essentially to find a solution of $G - U$ (for which $S \setminus U$ is a solution) that is disjoint from $S \setminus U$. This task is called as the disjoint compression step. The disjoint compression problem for OCT is defined as follows.
OCT-DISJOINT-COMPRESSION

Input: A graph G and an OCT T of G such that $G[T]$ is bipartite
Question: Does G have an OCT T' of size at most $|T| - 1$ such that $T \cap T' = \emptyset$?

OCT-DISJOINT-COMPRESSION is known to be NP-complete \citep{FGMN11}. The OCT algorithm in \citep{RSV04} solves this problem in $O^*(2^k)$ time by showing that the smaller sized disjoint solution (if one exists) can be obtained as a separator in a graph among a set of auxiliary graphs, each of which can be constructed in polynomial time \citep{RSV04}. An alternate $O^*(2^k)$ algorithm for OCT-DISJOINT-COMPRESSION is presented in \citep{Hi10} which led to another $O^*(3^k)$ algorithm for OCT. A third $O^*(3^k)$ algorithm for OCT is described in \citep{LSS09}. This algorithm solves OCT by solving $O^*(3^k)$ instances of a variant of disjoint compression rather than solving instances of OCT-DISJOINT-COMPRESSION. All these known compression based algorithms essentially transform the problem of finding an OCT to a vertex separator question in FPT time. After nearly a decade, the $O^*(3^k)$ bound for OCT was improved to $O^*(2.3146^k)$ \citep{LNR12}. This runtime was achieved by a branching algorithm that employs linear programming techniques and a reduction from OCT to the well-known Above Guarantee Vertex Cover (AGVC) problem.

The algorithm in \citep{LNR12} exploits the structure of the vertex cover polytope and the parameterized equivalence between OCT and AGVC to achieve the improved runtime.

In this work, we combine the iterative compression technique and the reduction from OCT to AGVC to describe a conceptually simpler $O^*(2^k)$ algorithm for OCT-DISJOINT-COMPRESSION. As opposed to the vertex separator subroutine that the known compression algorithms for OCT employ, we transform (in FPT time) the OCT question in the compression step to the vertex cover problem in (multiple) bipartite graphs. As a consequence, we obtain yet another $O^*(3^k)$ algorithm for OCT.

2 OCT via AGVC

We describe an $O^*(2^k)$ algorithm for OCT-DISJOINT-COMPRESSION by transforming the OCT instance in the compression step to an AGVC instance. The transformation is described below.

OCT Reduces to AGVC \citep{LNR+12}: Given a graph G on n vertices, we construct the graph, denoted by G^2, on the vertex set $V_1 \cup V_2$ where $V_i = \{v_i | v \in V(G)\}$ for $i \in \{1, 2\}$. The edge set of G^2 is $\{(u, v) | (u_i, v_i) \in E(G) \} \cup \{(v_1, v_2) | v \in V(G)\}$. For a set S of vertices of G, let S_1 denote the set $\{v_i | v \in S\}$ of vertices in G^2.

Lemma 1. \citep{LNR+12} G has an OCT S of size k if and only if G^2 has a vertex cover X of size $n + k$.

Corollary 2. \citep{LNR+12} For an OCT S of G, if $P \cup Q$ is a bipartition of $G - S$, then $P_1 \cup Q_2$ and $P_2 \cup Q_1$ are independent sets in G^2. That is, $V(G^2) \setminus (P_1 \cup Q_2)$ and $V(G^2) \setminus (P_2 \cup Q_1)$ are vertex covers of G^2. Conversely, if P_1 is an independent set in G^2, then the sets $P = \{v \in V(G) | v_1 \in P_1\}$ and $Q = \{v \in V(G) | v_2 \in P_2\}$ form a bipartition of $G - S$ where $S = \{v \in V(G) | v_1, v_2 \in V(G^2) \setminus I\}$ is an OCT of G.

The Compression Step: Let G be a graph on n vertices and S be an $k+1$ sized OCT of G in the compression step. Let T be a subset of S that induces a bipartite graph. Let H denote the subgraph of G induced on $V(G) \setminus (S \setminus T)$. Let $|V(H)| = h$ and B denote the set $V(H) \setminus T$. Note that $H[B]$ is bipartite since $V(H) \setminus T$ is $V(G) \setminus S$ and hence T is an OCT of H. Now, the task is to determine if H has an OCT of size at most $|T| - 1$ that is disjoint from T. From Lemma 1 we have the following observation.

Observation 3. H has an OCT $T' \subseteq B$ (in other words, T' is disjoint from T) of size τ if and only if H has a vertex cover X of size $h + \tau$ such that for each τ either $v_1 \in X$ or $v_2 \in X$ but not both.

We now describe an algorithm for OCT-DISJOINT-COMPRESSION based on Observation 3.
Algorithm OCT-Disjoint-Compression(H, T) /* Disjoint Compression Step of OCT */

Input: A graph H and an OCT T of H

Output: An OCT T’ of H of size at most |T| − 1 such that T ∩ T’ = ∅ (if one exists)

1. Iterate over each set Y ⊆ (T1 ∪ T2) such that for each v ∈ T, either v1 ∈ Y or v2 ∈ Y but not both.
 /* 2^|T| choices for Y */
 1. If Y is not a vertex cover of H2[T1 ∪ T2], then skip to the next choice of Y.
 2. Define W ⊆ (B1 ∪ B2) as the set of vertices that are adjacent to some vertex in (T1 ∪ T2) \ Y.
 3. Obtain a minimum vertex cover Z of H2[B1 ∪ B2] \ W.
 4. Define X as Y ∪ W ∪ Z. /* X is a min vertex cover of H2 such that X ∩ (T1 ∪ T2) = Y */

Theorem 4. Algorithm OCT-Disjoint-Compression(H, T) determines in O*(2^{|T|}) time whether H has an OCT T’ of size at most |T| − 1 such that T ∩ T’ = ∅.

Proof. Let T’ be an OCT of size t (t ≤ |T| − 1) in H such that T ∩ T’ = ∅. By Observation 3 and Corollary 2, H2 has a vertex cover X’ of size h + t such that for each vertex v in T’, both v1 and v2 are in X’ and for each v ∈ V(H) \ T’, either v1 ∈ X’ or v2 ∈ X’ but not both. As T ∩ T’ = ∅, it follows that T ⊆ V(H) \ T’. Thus, X’ is a vertex cover of H2 such that for each v ∈ T, either v1 ∈ X’ or v2 ∈ X’ but not both. Let Y = X’ \ (T1 ∪ T2). The enumeration of 2^{|T|} sets in step (I) of the algorithm will enumerate Y. Hence, the sets W and Z in step 2 of the algorithm together with Y will lead to the discovery of a vertex cover X of H2 that is not larger than X’. Moreover, X satisfies the property that for each v ∈ T, either v1 ∈ X or v2 ∈ X but not both. Thus, {v ∈ V(H) | v1, v2 ∈ X} is an OCT of H that is disjoint from T and not larger than T’. On the other hand, if H has no OCT of size at most |T| − 1 that is disjoint from T, then by Observation 3 every vertex cover X in H2 satisfying the property that for each v ∈ T, either v1 ∈ X or v2 ∈ X but not both, is of size at least h + |T|. Thus, the algorithm will exit from step (II) reporting the failure of the disjoint compression step.

For a fixed choice of Y, the subsequent steps of the algorithm require only a polynomial-time effort because W is uniquely determined and Z is obtained in polynomial time [Wes03] since the subgraph H2[B1 ∪ B2] is bipartite (as H[B] is bipartite). Therefore, the runtime of the algorithm is bounded by O*(2^{|T|}).

If OCT-Disjoint-Compression(H, T) returns an OCT T’, then T’ ∪ (S \ T) is an k-sized OCT of G. Otherwise, we proceed to the next choice of T. Therefore, by trying all possible subsets of S, we determine if there exists an OCT of size at most k in G. If no subset of S yields the required OCT then we declare that G has no OCT of k vertices. Thus, we obtain an algorithm for OCT with \(\sum_{i=1}^{k+1} \left(\frac{k+1}{i} \right) 2^i = O^*(3^k) \) runtime.

References

[FGMN11] M.R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A complexity dichotomy for finding disjoint solutions of vertex deletion problems. *ACM Transactions on Computation Theory*, 2(2):5:1–5:23, 2011.

[GJ79] M.R. Garey and D.S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W.H.Freeman and Company, 1979.

[Hüf09] F. Hüffner. Algorithm engineering for optimal graph bipartization. *Journal of Graph Algorithms and Applications*, 13(2):77–98, 2009.

[LNR+12] D. Lokshtanov, N.S. Narayanaswamy, V. Raman, M.S. Ramanujan, and S. Saurabh. Faster parameterized algorithms using linear programming. *arXiv:1203.0833v2 [cs.DS]*, 2012.

[LSS09] D. Lokshtanov, S. Saurabh, and S. Sikdar. Simpler parameterized algorithm for OCT. In *Proceedings of International Workshop on Combinatorial Algorithms*, volume 5874 of *Lecture Notes in Computer Science*, pages 380–384, 2009.

[RSV04] B.A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. *Operations Research Letters*, 32:299–301, 2004.

[Wes03] D.B. West. *Introduction to Graph Theory*. Prentice Hall of India, 2003.