Speed limits on correlations in bipartite quantum systems

Vivek Pandey, Divyansh Shrimali, Brij Mohan, Siddhartha Das, and Arun Kumar Pati

1 Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj 211019, India
2 Department of Physical Sciences, Indian Institute of Science Education and Research (IISER), Mohali-140306, India
3 Centre for Security, Theory and Algorithmic Research (CSTAR), International Institute of Information Technology, Hyderabad, Gachibowli, Telangana 500032, India
4 Centre for Quantum Science and Technology (CQST), International Institute of Information Technology, Hyderabad, Gachibowli, Telangana 500032, India

Quantum speed limit is bound on the minimum time a quantum system requires to evolve from an initial state to final state under a given dynamical process. It sheds light on how fast a desired state transformation can take place which is pertinent for design and control of quantum technologies. In this paper, we derive speed limits on correlations such as entanglement, Bell-CHSH correlation, and quantum mutual information of quantum systems evolving under dynamical processes. Our main result is speed limit on an entanglement monotone called negativity which holds for arbitrary dimensional bipartite quantum systems and processes. Another entanglement monotone which we consider is the concurrence. To illustrate efficacy of our speed limits, we analytically and numerically compute the speed limits on the negativity, concurrence, and Bell-CHSH correlation for various quantum processes of practical interest. We are able to show that for practical examples we have considered, some of the speed limits we derived are actually attainable and hence these bounds can be considered to be tight.

I. INTRODUCTION

The quantum speed limit (QSL) is a fundamental limit imposed by quantum mechanics on the rate at which any quantum system evolves under a given dynamical process [1–5]. It provides bound on the minimal time required to transport a quantum system from its initial state to a final state under a given dynamical process. Determination of quantum speed limits are pertinent for the design and realization of quantum technologies, e.g., quantum computing [6–8], quantum metrology [9], optimal control theory [10, 11], quantum thermodynamics [12–15], etc. As quantum correlations are critical aspects of quantum theory from both fundamental and applied aspects, it is only natural to explore speed limits on quantum correlations. Entanglement lies at the heart of quantum theory as there is no classical counterpart to it [16, 17]. Entanglement has proven to be a resourceful quantum correlation for several information processing tasks, e.g., quantum communication [18], quantum cryptography [19], quantum computation [20, 21], quantum random number generators [22], quantum metrology [23], etc. However, there are fundamental limitations on the entangling abilities of bipartite and many body quantum interactions (cf. [24–29]).

Seminal works in Refs. [1–3] have led to the current advancements of QSL and better understanding of its applications. QSL now is applied to wide range of topics in quantum information theory, e.g., [30–33]. It has been extensively studied for closed system dynamics [1–3, 30, 34–69] and many progresses also have been recently made for open quantum dynamics [70–75]. It has been found that, for certain classes of states, quantum entanglement enhances the speed of evolution of composite quantum systems [76]. There are progresses made in the direction to derive bounds on the maximal rates at which any Hamiltonian interaction can generate entanglement in bipartite and multipartite quantum systems [26, 29, 77]. In Ref. [78], speed limits on quantum resources were derived to study how quickly these resources can be generated or degraded by physical processes. In Refs. [79, 80], QSL on entanglement for unitary dynamics has been derived using a geometric measure of entanglement. Whereas, quantum speed limits for entanglement and quantum discord have been derived by using distance based measure in Ref. [81]. These speed limits on entanglement are often based on entanglement monotones which require optimization over the set of separable states [78, 81].

In this paper, we derive speed limits on some of the widely discussed correlations, namely entanglement, quantum mutual information, and Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) correlations in bipartite quantum systems undergoing arbitrary dynamical processes. To derive speed limits on entanglement, we consider entanglement monotones like the negativity [82, 83] and concurrence [84–86] which are comparatively easier to compute. The speed limit on the negativity we derive is applicable for arbitrary systems and dynamical processes, i.e., for both discrete and continuous variable quantum systems and processes. One of the major interest in calculation of the negativity of a bipartite state is that it is a necessary criterion for the state to be entanglement distillable [87, 88]. Our speed limits are lower bounds on the minimal time required for the changes in the negativity, concurrence, entropy, Bell-CHSH correlation, and quantum mutual information of bipartite quantum systems undergoing time-evolution. Here the time-evolution of a quantum system from its initial state to the final state is depicted by dynamical process describable by a completely positive trace preserving...
(CPTP) map (see e.g., [89, 90]), which is also called quantum channel. However, for an interval in between of initial and final states the process need not be CPTP [91, 92]. Therefore, speed limits that we derive are in general applicable for dynamics with or without memory-effect of environment (or bath) [12, 89, 93]. Some of these speed limits are tight and hence can be attainable for some quantum processes. We illustrate efficacy of our speed limits by applying them to various dynamical processes of practical interests [24, 94–101], e.g., unitary process due to nonlocal Hamiltonian and open quantum dynamics due to pure dephasing process, depolarizing process, and amplitude damping process.

The organization of this paper is as follows. In Section II, we discuss the preliminaries and background required to arrive at the main results of this paper. In Section III A, we obtain speed limits on the negativity for arbitrary dynamics. In Section III B, we obtain speed limits on the concurrence and I-concurrence for unitary dynamics. In Section III C, we obtain speed limits on the negativity for arbitrary dynamics. In Section IV, we have analytically and numerically computed obtained speed limits for quantum systems evolving under some classes of interaction processes of practical interests. We also discuss tightness of these limits by considering some instances where the obtained bounds are attainable and some instances where they are loose. Finally, we provide concluding remarks in the last section.

II. PRELIMINARIES

In this section, we briefly review some of the standard notations and results common in the literature of quantum information theory.

Let \mathcal{H} represents a separable Hilbert space with $\dim(\mathcal{H})$ that can be either finite ($<\infty$) or infinite ($=\infty$). Let $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators acting on \mathcal{H} with $\mathbb{1}_\mathcal{H}$ denoting the identity operator. State of a quantum system is described by a density operator defined on the Hilbert space \mathcal{H} with ρ_i denoting the density operator to density operators. The map $\Phi(\cdot)$ is the state of the system at time t and \mathcal{L}_t is the Liouvillian super-operator [92] which in general can be time independent or time-dependent.

Let us define initial and final states of time evolving quantum system as $\rho_0 := \rho_{t=0}$ and $\rho_T := \rho_{t=T}$, respectively. We can drop the suffix t if \mathcal{L}_t is time independent and in this case the above evolution equation has the following formal solution:

$$\rho_t = e^{\mathcal{L}_t}(\rho_0).$$

(5)

Let Φ denote a linear CPTP map which maps density operator to density operators. The map Φ is called unital if $\Phi(\mathbb{1}_\mathcal{H}) = \mathbb{1}_\mathcal{H}$. The adjoint map $\Phi^\dagger : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ of Φ is a unique linear map that satisfies $\text{tr}(\mathcal{O}\Phi(\rho)) = \text{tr}(\Phi^\dagger(\mathcal{O})\rho)$, $\forall \rho \in \mathcal{D}(\mathcal{H}), \mathcal{O} \in \mathcal{B}(\mathcal{H})$. The adjoint of a trace preserving map is unital.

The von-Neumann entropy of a state ρ_A is always nonnegative and $S(A)_\rho = 0$ if and only if the state ρ_A is pure. The quantum relative entropy between any $\rho \in \mathcal{D}(\mathcal{H})$ and $\sigma \geq 0$ is defined as [102]

$$D(\rho\|\sigma) := \begin{cases} \text{tr}(\rho(\ln \rho - \ln \sigma)) & \text{if supp}(\rho) \subseteq \text{supp}(\sigma), \\ +\infty & \text{otherwise}, \end{cases}$$

(2)

where supp(ρ) and supp(σ) are the supports of ρ and σ, respectively.

The Schatten-p norm of an operator $\mathcal{O} \in \mathcal{B}(\mathcal{H})$ is defined as:

$$\|\mathcal{O}\|_p = (\text{tr}|\mathcal{O}|^p)^{1/p},$$

(3)

where $\|\mathcal{O}\|_p = \sqrt[p]{\text{tr}|\mathcal{O}|^p}$, $p \geq 1$, $p \in \mathbb{R}$. The operator norm, the Hilbert-Schmidt norm, and the trace norm corresponds to $p = \infty, 2, 1$ respectively and satisfy the inequality $\|A\|_\infty \leq \|A\|_2 \leq \|A\|_1$.
In the Heisenberg picture the density operator of the system is fixed and the observable evolves with time [103]. The evolution is given by the adjoint (or dual) map Φ^\dagger which keeps density operator fixed and takes an input observable to an output observable. Note that Φ^\dagger may not be a quantum channel because in the case of observables, trace preserving condition is not necessary. In differential equation form the time evolution of an observable is given by adjoint-master equation:

$$\dot{O}_t := \frac{dO_t}{dt} = L^\dagger_t(\mathcal{O}_t),$$

(6)

where \mathcal{O}_t is the observable of the system at time t and L^\dagger_t is adjoint of the Liouvillian super-operator. We define initial and final observable of time evolving quantum system as $\mathcal{O}_0 := \mathcal{O}_{t=0}$ and $\mathcal{O}_T := \mathcal{O}_{t=T}$, respectively.

B. Correlations in bipartite quantum systems

Quantum entanglement is a type of (non-classical) correlation found in bipartite and multipartite quantum systems. The concurrence [84, 85], the negativity [82, 83] and the entanglement entropy [104] are some of the widely discussed entanglement monotones. In the sequel, we define some other correlation quantifiers that we will be using for our purpose.

Concurrence.— The concurrence quantifies the entanglement present in a two-qubit quantum system. The square of concurrence of a two-qubit pure state $\psi_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$ is given as [84–86]

$$\mathcal{E}^2(\psi_{AB}) := \text{tr}(\mathcal{R}(\psi^*)),
$$

(7)

where, $\mathcal{R}(\psi) := (\sigma_y \otimes \sigma_y)\psi(\sigma_y \otimes \sigma_y)$, σ_y is the Pauli operator and * is the complex conjugation operation. The value of concurrence lies between 0 to 1 (i.e., $0 \leq \mathcal{E}(\psi) \leq 1$). For maximally entangled states (i.e., Bell states) $\mathcal{E}(\psi) = 1$, while for product states $\mathcal{E}(\psi) = 0$.

The square of concurrence for a pure two-qubit state $\psi_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$ is given as [86]

$$\mathcal{E}^2(\psi_{AB}) := 2\nu_{d_A}\nu_{d_B}[1 - \text{tr}(\rho_{AB}^2)],
$$

(8)

where $\dim(\mathcal{H}_A) = d_A$, $\dim(\mathcal{H}_B) = d_B$, and ν_{d_A}, ν_{d_B} are constants. The I-concurrence reduces to concurrence for $\nu_{d_A} = 1$, and $\nu_{d_B} = 1$. The I-concurrence varies from 0 for pure product state to $\sqrt{2(d-1)/d}$, where $d = \min\{\dim(\mathcal{H}_A), \dim(\mathcal{H}_B)\}$, for a maximally entangled state.

Negativity.— The negativity is an entanglement monotone to quantify the amount of entanglement present in an arbitrary bipartite quantum state. It is derived from the positive partial transpose (PPT) criterion for the separability of a bipartite quantum states. For an arbitrary bipartite quantum state ρ_{AB}, its negativity is defined as [83]

$$\mathcal{N}(\rho) := \frac{\|\Gamma_B^{\dagger}\rho_{AB}\|_1 - 1}{2},
$$

(9)

where $\rho_{AB}^{\Gamma_B} = \Gamma_B(\rho_{AB})$, and Γ_B is partial transpose operation (see Appendix A).

Note that, the negativity can be zero even when the state is entangled because the PPT criterion is only necessary but not sufficient for bipartite state to be separable. However, for two-qubit states (and also for bipartite state where one system is qutrit while the other is qubit), the set of PPT states and separable states coincide (are same). The negativity is a convex function i.e., $\mathcal{N}(\sum \rho_i p_i) \leq \sum p_i \mathcal{N}(\rho_i)$, where ρ_i is probability distribution (hence, $\sum p_i = 1$ and $p_i \geq 0$ for all i) and ρ_i’s are density operators. All states that are not PPT are called NPT states. NPT states are entangled. Therefore, the non-zero negativity implies that the given bipartite state is entangled.

Entanglement entropy.— The entanglement entropy is an entanglement monotone and quantifies the amount of entanglement present between subsystems A and B when the joint state of AB is pure, i.e., $S(\rho_{AB}) = 0$. The entanglement entropy of composite system AB in a pure state ψ_{AB} is defined as [104]

$$E_S(\psi_{AB}) := S(\rho_A) = S(\rho_B) = -\text{tr}(\rho_A \ln \rho_A),
$$

(10)

where $\rho_A := \text{tr}_B(\psi_{AB})$.

Bell-CHSH observable.— The non-classical correlation existing in a bipartite quantum state is detected by the violation of Bell-CHSH inequality. These correlations appear to be stronger than anything explained by classical physics. The violation of Bell-CHSH inequality for a given bipartite quantum state ρ_{AB} can be checked by estimating the expectation value of the Bell observable \mathcal{B}. For a two-qubit systems, which may be represented as a pair of spin-1/2 particles, the Bell-CHSH observable has the following general form [105, 106]

$$\mathcal{B} := \hat{a} \cdot \sigma \otimes (\hat{b} + \hat{b}^\dagger) \cdot \sigma + \hat{a}' \cdot \sigma \otimes (\hat{b} - \hat{b}^\dagger) \cdot \sigma,
$$

(11)

where $\hat{a}, \hat{a}', \hat{b}$ and \hat{b}' are unit vectors in a 3-dimensional Euclidean space \mathbb{R}^3 and σ is the Pauli spin vector operator. The state ρ_{AB} violates Bell-CHSH inequality for $\langle \mathcal{B} \rangle_\rho > 2$. The optimal Bell measurement settings for Bell observable for any given bipartite state ρ_{AB} has been derived in Ref. [106]. Any state that violates the Bell-CHSH inequality is said to be non-local as no local-realistic hidden variable models can depict such correlations.

Quantum mutual information.— The correlation present in bipartite quantum system can be quantified by quantum mutual information. The quantum mutual information of a bipartite state ρ_{AB} is defined as

$$I(A; B)_\rho := S(\rho_A) + S(\rho_B) - S(\rho_{AB})_\rho,
$$

(12)

where ρ_A and ρ_B are reduced density matrices of ρ_{AB}. The quantum mutual information can also be stated in terms of the quantum relative entropy as

$$I(A; B)_\rho := \min_{\omega_A \in \mathcal{D}(\mathcal{H}_A), \omega_B \in \mathcal{D}(\mathcal{H}_B)} D(\rho_{AB} || \omega_A \otimes \omega_B).
$$

(13)
The quantum mutual information $I(A;B)$ of any bipartite state ρ_{AB} is a non-negative quantity i.e., $I(A;B) \geq 0$ (where equality holds if and only if the state is factorized i.e., a product state) and upper bounded by $2 \ln(\min\{\dim(\mathcal{H}_A), \dim(\mathcal{H}_B)\})$.

C. Speed limits on observable

The speed limit on observables are defined as a bound on the maximum evolution speed of the expectation value of a given observable of a quantum system undergoing dynamical evolution, which might be unitary or non-unitary. It sets the lower bound on the evolution time of the quantum system needed to evolve between different expectation values of a given observable. The bound on evolution time of expectation value of an observable for an arbitrary dynamics reads as (see Appendix C)

$$T \geq T_{\text{QSL}} = \frac{\norm{\langle O_T \rangle_\rho - \langle O_0 \rangle_\rho}}{\norm{\rho}_1} \max \left\{ \frac{1}{\Lambda_{\alpha}^\infty}, \frac{1}{\Lambda_{\alpha}^T}, \frac{1}{\Lambda_{\alpha}^2} \right\},$$

(14)

where $\Lambda_{\alpha}^\alpha = \frac{1}{\alpha} \int_0^T dt \norm{\mathcal{L}_\alpha^T(O_t)}$ for $\alpha \in \{1, 2, \infty\}$ is the evolution speed of the observable of the given system under the dynamics $\dot{O}_t := \frac{dO_t}{dt} = \mathcal{L}_\alpha^T(O_t)$.

Note that speed limits on observables have been previously derived in Refs. [107, 108] using the Cauchy-Schwarz inequality. Our derivation employs the Hölder’s inequality, and therefore, our bound is more general than the previous ones. In Refs. [107, 109], state-independent speed limits on observables are derived by considering the Hilbert-Schmidt inner product for observables. Furthermore, Ref. [110] formulates the speed limit of super-operators, which are operators in the operator space, and showed some applications in many-body physics.

III. QUANTUM SPEED LIMITS

In general, quantum speed limits represent fundamental constraints imposed by the quantum theory on the evolution speed of quantum systems. Entangling abilities of quantum interactions are of wide interest from both fundamental and applied aspects, see e.g., [29, 111]. Quantum correlations are fundamental in the quantum information theory as they act as resources for several quantum information processing tasks. For instances, entanglement and nonlocal quantum correlations are useful properties (resources) for the tasks of teleportation, quantum key distribution, quantum communication, quantum sensing, etc. [19, 22, 23, 29, 112].

In this section, we discuss limitations on the minimal time taken for changes in some desirable correlation measures of bipartite quantum systems undergoing bipartite dynamical processes. Our main focuses are speed limits on the negativity and concurrence, which are entanglement monotones useful in the resource theories of entanglement, see e.g., [113–115]. We also inspect speed limits on other correlations, namely Bell-CHSH observable B and quantum mutual information $I(A;B)$.

We note that speed limits on entanglement for unitary dynamics has been studied earlier using geometric measure of entanglement [79, 80]. In Refs. [78], speed limits on entanglement has been obtained using divergence based measure for open quantum dynamics. The bounds obtained in Refs. [78–81] are challenging to calculate in general as it requires optimization over all separable sates. Here, we have obtained speed limits on entanglement using the negativity and the concurrence, which is arguably easier to calculate. Moreover, speed limits on entanglement obtained using the negativity is applicable for arbitrary dynamics, i.e., for both closed and open dynamical processes. Speed limits obtained for negativity also provide limitations on the minimal time required for transitions of a PPT state to NPT (non-negative under partial transposition) and NPT state to PPT under any given dynamical processes.

A. Speed limit on the negativity

We now discuss the first main result of this work that provides a lower bound T_{NSL} on the time taken for the change in the value of negativity of a bipartite quantum system evolving under a given dynamical processes.

Theorem 1. Consider any bipartite quantum system AB, where each of $\dim(\mathcal{H}_A)$ and $\dim(\mathcal{H}_B)$ can be either finite or infinite. The minimal time T taken for the bipartite system to bring certain amount of change in its negativity by evolving under an arbitrary given quantum dynamical process with associated Liouvillian \mathcal{L}_t is lower bounded by

$$T \geq T_{\text{NSL}} = \frac{2|\mathcal{N}(\rho_T) - \mathcal{N}(\rho_0)|}{\Lambda_N^T},$$

(15)

where ρ_0 is the initial state (at $t = 0$), ρ_T is the final state (at $t = T$), and $\Lambda_N^T := \frac{1}{T} \int_0^T dt \norm{\mathcal{L}_t(\rho_0^T)}_1$. Λ_N^T can be interpreted as the evolution speed of the negativity of the given system and process.

Proof. Consider the evolution of bipartite state ρ in the time interval interval $\mathcal{I} := [0, T]$. The negativity of time evolved bipartite state ρ_t given by

$$\mathcal{N}(\rho_t) = \frac{\norm{\rho_t^T}_1 - 1}{2}.$$

(16)

Now consider the ϵ neighbourhood of $t \in \mathcal{I}$ (i.e. an interval $(t-\epsilon, t+\epsilon)$ where ϵ is a number arbitrarily close to zero), and the following difference

$$\mathcal{N}(\rho_{t+\epsilon}) - \mathcal{N}(\rho_t) = \frac{1}{2} \left(\text{tr} \left| \rho_{t+\epsilon}^T - \rho_t^T \right| - \text{tr} \left| \rho_{t+\epsilon}^T - \rho_t^T \right| \right).$$

(17)

We assume that evolution of density operator ρ is smooth, i.e., ρ_t is differentiable at each $t \in \mathcal{I}$, which also implies that ρ_t^T and $\text{tr} \left| \rho_{t+\epsilon}^T \right|$ are also well defined at each $t \in \mathcal{I}$. We further
assume that negativity is differentiable in \mathcal{S}, so the left hand derivative and the right hand derivative of negativity must be equal at each point in \mathcal{S} and also equal to the derivative of negativity. Now, multiplying by $\frac{1}{\epsilon}$ on both the sides of above equation and taking limit $\epsilon \to 0$, we obtain

$$\frac{d}{dt} \mathcal{N}(\rho_t) = \frac{1}{2} \lim_{\epsilon \to 0} \frac{\text{tr} \left[\rho_t^{T\epsilon} \right] - \text{tr} \left[\rho_t^{T0} \right]}{\epsilon}.$$ \hfill (18)

Using the Taylor expansion we have:

$$\left| \rho_t^{T\epsilon} \right| = \left| \rho_t^{T0} + \epsilon \hat{\rho}_t^{T0} + o(\epsilon^2) \right|.$$ \hfill (19)

Let us now take the absolute value on both the sides of Eq. (18) and use Eq. (19) to calculate the limit, we then get

$$\left| \frac{d}{dt} \mathcal{N}(\rho_t) \right| = \frac{1}{2} \lim_{\epsilon \to 0} \frac{\text{tr} \left[\rho_t^{T0} + \epsilon \hat{\rho}_t^{T0} + o(\epsilon^2) \right] - \text{tr} \left[\rho_t^{T0} \right]}{\epsilon}.$$ \hfill (20)

Now, we leave the terms of $o(\epsilon^2)$ in the Taylor expansion of $\hat{\rho}_t^{T\epsilon}$ and use the triangular inequality $\text{tr} [A + B] \leq \text{tr} [A] + \text{tr} [B]$ to further simplify above equation. We then obtain

$$\left| \frac{d}{dt} \mathcal{N}(\rho_t) \right| \leq \frac{1}{2} \lim_{\epsilon \to 0} \frac{\text{tr} \left(\rho_t^{T0} + \epsilon \hat{\rho}_t^{T0} + o(\epsilon^2) \right) - \text{tr} \left[\rho_t^{T0} \right]}{\epsilon}.$$

The above inequality (21) is the upper bound on that the rate of change of the negativity of the quantum system evolving under given dynamics. After integrating the above equation with respect to time t, we obtain

$$\int_0^T \frac{d}{dt} \mathcal{N}(\rho_t) \leq \frac{1}{2} \int_0^T \| \hat{\rho}_t^{T0} \|_1$$

$$= \frac{1}{2} \int_0^T \| \mathcal{L}_t (\rho_t^{T0}) \|_1.$$ \hfill (22)

From the above inequality, we get the desired bound:

$$T \geq \frac{2 \left| \mathcal{N}(\rho_T) - \mathcal{N}(\rho_0) \right|}{\Lambda^N_T}.$$ \hfill (23)

We also provide an alternative proof of Theorem 1 (see Appendix E).

The bound (15) holds for both the generation and degradation of entanglement due to quantum dynamical processes. The negativity is monotone under local operation and classical communication (LOCC). Therefore, whenever bipartite dynamical process from initial time to final time can be represented as an LOCC map, we have $\mathcal{N}(\rho_T) \leq \mathcal{N}(\rho_0)$; see also Remark 4.4 of Ref. [111] in this context. It is a trivial observation that $T_{\text{NSL}} = 0$ if and only if there is no difference between the negativity between initial and final states, where we assume that the dynamics is such that Λ^N_T is finite. There are multiple scenarios under which no change in the negativity and hence $T_{\text{NSL}} = 0$ may occur. For instances, (i) if the initial state is a fixed point of the dynamical process, (ii) if the dynamical process is PPT-preserving map, i.e., processes that map PPT states to PPT states, (iii) if we are choosing evolution duration of the state under dynamical process such that negativity at the initial and final time points are same.

B. Speed limit on the concurrence

The concurrence was first introduced for pure two-qubit states in Ref. [84] and later a generalized version of concurrence called I-concurrence for pure two-qubit states was introduced in Ref. [86]. We now discuss lower bounds on the minimal time for the certain amount of change in the concurrence and the I-concurrence for two-qubit and two-qudit systems, respectively, evolving under time-dependent Hamiltonians H_t. For a time-dependent Hamiltonian H_t, subscript t is to denote time-point t.

Theorem 2. Consider a closed two-qubit quantum system AB which is in a pure state. The minimal time T taken for the (closed) system to evolve for a certain amount of change in the square of its concurrence under unitary dynamics generated by a time-dependent Hamiltonian H_t is lower bounded by

$$T \geq T_{\text{CCL}} = \frac{\hbar}{4} \left| \mathcal{C}^2(\psi_T) - \mathcal{C}^2(\psi_0) \right|.$$ \hfill (24)

where $\psi_t = \mathcal{T} \exp \left(\int_0^t \mathcal{L}_t \text{d}t \right) \psi_0$, with ψ_0 denoting the initial state (at $t = 0$), ψ_T denoting the final state (at $t = T$), \mathcal{T} is time ordering operator, and $\mathcal{C}_T^2 = \frac{1}{2} \int_0^T \text{tr} (\psi_t H_T^2) \text{d}t$. \mathcal{C}_T^2 can be interpreted as the evolution speed of the square of the concurrence of the given system and process.

See Appendix G for the detailed proof of the above theorem. An immediate consequence of the above theorem is the following corollary.

Corollary 1. Consider a closed two-qubit quantum system AB which is in a pure state. The minimal time T taken for the (closed) system to evolve for a certain amount of change in the square of its concurrence under unitary dynamics generated by a time-independent Hamiltonian H is lower bounded by

$$T \geq T_{\text{CCL}} = \frac{\hbar}{4} \left| \mathcal{C}^2(\psi_T) - \mathcal{C}^2(\psi_0) \right|$$

where $\psi_t = \exp \left(\frac{iH}{\hbar} \right) \psi_0 \exp \left(-\frac{iH}{\hbar} \right)$, with ψ_0 denoting the initial state (at $t = 0$) and ψ_T denoting the final state (at $t = T$).

We now derive speed limits on the I-concurrence.
Proposition 1. Consider a finite-dimensional bipartite quantum system AB initially in a pure state. The minimal time T taken for the closed system to bring certain amount of change in the square of its I-concurrence under unitary dynamics generated by a time-dependent Hamiltonian H_t is lower bounded by

$$T \geq T_{\text{I CSL}} = \frac{\|\mathcal{C}_I^2(\psi_T) - \mathcal{C}_I^2(\psi_0)\|}{\Lambda_T^I},$$

where ψ_0 is the initial state (at $t = 0$), ψ_T is the final state (at $T = 0$), $\Lambda_T^I := 4\nu_{AB}\nu_{BA}^{-1} \int_0^T \|\rho_A^t\|_2 \|\text{tr}_B(\mathcal{L}_t(\psi_t))\|_2 dt$ for the given unitary dynamics $\mathcal{L}_t(\psi_t) = -\frac{i}{\hbar}[\psi_t, H_t]$, and $\rho_A^t := \text{tr}_B \psi_t$.

Proof. The square of I-concurrence of bipartite state ρ_t is given as

$$\mathcal{C}_I^2(\psi_t) = 2\nu_{AB}\nu_{BA}^{-1}[1 - \text{tr}(\rho_A^t\rho_A^t)],$$

where $\rho_A^t := \text{tr}_B \psi_t$. After differentiating above equation with respect to time t, we then obtain

$$\frac{d}{dt} \mathcal{C}_I^2(\psi_t) = -4\nu_{AB}\nu_{BA}^{-1} \text{tr}(\rho_A^t\rho_A^t) = -4\nu_{AB}\nu_{BA}^{-1} \text{tr}(\rho_A^t \text{tr}_B(\mathcal{L}_t(\psi_t))).$$

Now let us take absolute value of above equation and applying Cauchy–Schwarz inequality, we then obtain

$$\left|\frac{d}{dt} \mathcal{C}_I^2(\psi_t)\right| \leq 4\nu_{AB}\nu_{BA}^{-1} \|\rho_A^t\|_2 \|\text{tr}_B(\mathcal{L}_t(\psi_t))\|_2.$$

The above inequality is the upper bound on that the rate of change of square of the concurrence of the quantum system evolving under given dynamics. After integrating above equation with respect to time t, we obtain

$$\int_0^T \left|\frac{d}{dt} \mathcal{C}_I^2(\psi_t)\right| dt \leq \nu_{AB} \int_0^T \|\rho_A^t\|_2 \|\text{tr}_B(\mathcal{L}_t(\psi_t))\|_2 dt,$$

where $\nu_{AB} := 4\nu_{AB}\nu_{BA}^{-1}$. From the above inequality, we get the bound

$$T \geq \frac{\|\mathcal{C}_I^2(\psi_T) - \mathcal{C}_I^2(\psi_0)\|}{\Lambda_T^I}.$$

C. Speed limits on other correlations

Quantum mechanics allows for correlations between systems that cannot be replicated by any classical systems. It is known that no local-realistic hidden variable theories can predict all the outcomes exhibited by quantum correlations [16, 17, 116] (see also Refs. [117, 118]). Entangled states with no local-realistic hidden variable models are deemed nonlocal states. Bell-CHSH observables are used to test nonlocality of bipartite quantum states [105, 119]. Apart from quantum correlations like entanglement and nonlocality, there is also interest in quantifying total amount of correlations between two systems. A quantifier of total amount of correlations present in arbitrary bipartite quantum system is quantum mutual information. It captures both the classical and truly quantum correlations present in a bipartite quantum system. In this section, we provide speed limits on the Bell-CHSH observable and the quantum mutual information for certain classes of quantum dynamics and speed limits on the von-Neumann entropy for arbitrary dynamics.

Speed limit on Bell-CHSH correlation.— In the Heisenberg picture, it is the operator which changes in time while the density operator remains fixed. For any dynamics of two-qubit quantum system with initial state ρ, the minimum time needed for the Bell-CHSH observable B_t to attain expectation value $\langle B_T \rangle_\rho$, starting with the initial expectation value $\langle B_0 \rangle_\rho$, is lower bounded by (see Appendix C)

$$T \geq T_{\text{B QSL}} = \frac{\|\langle B_T \rangle_\rho - \langle B_0 \rangle_\rho\|}{\|\rho\|_1} \max \left\{ \frac{1}{\Lambda_\infty^T}, \frac{1}{\Lambda_{\omega}^T}, \frac{1}{\Lambda_T^I} \right\},$$

where $\Lambda_\infty^T := \frac{1}{\tau} \int_0^T dt \|\mathcal{L}_t(B_t)\|_\alpha$ for $\alpha \in \{1, 2, \infty\}$ is the evolution speed of Bell-CHSH observable of the given system, $\langle B_0 \rangle_\rho$ and $\langle B_T \rangle_\rho$ are expectation value of Bell-CHSH observable at $t = 0$ and $t = T$, respectively. In Appendix H, we also derive speed limit on Bell-CHSH correlation for bipartite quantum dynamics describable as separable maps.

We note that the sharpest bound is the operator norm-based bound. However, determining the Hilbert-Schmidt norm is comparatively easier to compute for general quantum dynamics.

Speed limit on quantum mutual information.— Consider quantum systems A and B which are of arbitrary dimensions. We assume that the systems are initially uncorrelated before they interact. Starting from a product state $\rho_0^{AB} := \rho_0^A \otimes \rho_0^B$, the minimal time T required to bring a certain amount of change in the quantum mutual information of the system evolving under an arbitrary quantum dynamics with time-dependent Liouvillian \mathcal{L}_t is lower bounded by

$$T \geq T_{\text{M CSL}} = \frac{I(A; B)_{\omega_T}^M}{\Lambda_T^M},$$

where ω_t denotes the state at time t with ω_0 being the initial state (at $t = 0$) and ω_T being the final state (at $t = T$) and $\Lambda_T^M := \frac{1}{\tau} \int_0^T dt \|\mathcal{L}_t(\omega_t)\|_2 \|\ln \omega_t - \ln \omega_0\|_2$ (see Appendix I for proof). Here we are implicitly assuming dynamics for which $\text{supp}(\omega_2) \subseteq \text{supp}(\omega_1)$ for all valid time points.
Here we are only interested in the entanglement dynamics changing the amount of entanglement present in the system. The bound (33) provides the minimal time required to prepare a bipartite correlated state from a uncorrelated state.

Speed limit on the entropy.— Consider a quantum system \(A \), where \(\text{dim}(\mathcal{H}_A) \leq \infty \). The minimal time \(T \) taken for the quantum system to bring certain amount of change in the entropy under an arbitrary given quantum dynamical process with associated Liouvillian \(\mathcal{L}_t \) is lower bounded by

\[
T \geq T_{\text{ESL}} = \frac{|S(\rho_T) - S(\rho_0)|}{\Lambda_T^2}, \tag{34}
\]

where \(\rho_t \) denotes the state at time \(t \) with \(\rho_0 \) being the initial state (at \(t = 0 \) and \(\rho_T \) being the final state (at \(t = T \)) and \(\Lambda_T^2 := \frac{1}{T} \int_0^T dt \| \mathcal{L}_t(\rho(t)) \|_2^2 \ln |\rho(t)|_2 \) (see proof in Appendix J).

Several entanglement measures such as the entanglement of formation [85, 104], the distillable entanglement [104, 120], and the relative entropy of entanglement [121, 122] reduce to the entanglement entropy in the case of a closed bipartite system [123]. Thus, in this case, the above bound (34) also sheds light on speed limits on entanglement for bipartite systems in a pure state (cf. [12, 111]). The above bound (34) is valid for both the entropy generation and degradation processes, and also tighter than that obtained in the Theorem 1 of Ref. [8].

\[\psi_{t} = -\iota[H, \psi_{t}], \tag{37} \]

IV. NUMERICAL RESULTS FOR SOME PRACTICAL EXAMPLES

In this section, we apply our speed limits on the negativity, concurrence, and Bell-CHSH observable for some classes of quantum dynamics of wide practical interest [92, 94]. In particular, we consider an unitary dynamics and some non-unitary processes classified as pure dephasing process, depolarising process, and amplitude damping process.

First, we explore speed limits on the negativity (15) and the concurrence (25) for unitary dynamics generated by non-local Hamiltonian.

Unitary process.— Let us consider two-qubit systems \(AB \) interacting via a non-local Hamiltonian \(H_{AB} \). Any two-qubit general Hamiltonian can always be expressed as

\[
H_{AB} = \sum_{i \in \{x,y,z\}} \alpha_i \sigma_i^A \otimes 1^B + \sum_{j \in \{x,y,z\}} 1^A \otimes \beta_j \sigma_j^B + \sum_{i,j \in \{x,y,z\}} \gamma_{i,j} \sigma_i^A \otimes \sigma_j^B, \tag{35}
\]

where \(\alpha \in \mathbb{R}^3, \beta \in \mathbb{R}^3, \gamma \) is a \(3 \times 3 \) real matrix and \(\sigma_i^A \) and \(\sigma_i^B \) are Pauli operators acting on \(A \) and \(B \), respectively.

We can always perform local unitary operations without changing the amount of entanglement present in the system. Here we are only interested in the entanglement dynamics which allows us to restrict the form of the Hamiltonian to those which can be written in the following form [24]

\[
H_{AB}^\pm = \mu_x \sigma_x^A \otimes \sigma_x^B + \mu_y \sigma_y^A \otimes \sigma_y^B + \mu_z \sigma_z^A \otimes \sigma_z^B, \tag{36}
\]

where \(\mu_x, \mu_y \) and \(\mu_z \) are singular values of matrix \(\gamma \) with ordering \(\mu_x \geq \mu_y \geq \mu_z \geq 0 \). In unitary dynamics Eq. (4) reduces to Liouville-von Neumann equation:

\[
\dot{\psi}_t = -\iota [H, \psi_t].
\]

where \(H \) is the Hamiltonian of the system and we have taken \(h = 1 \). We take \(H_{AB}^\pm \) as system’s Hamiltonian without loss of generality [24] and \(\psi_0 \) as initial state with \(|\psi_0\rangle = \sqrt{p}|00\rangle + \sqrt{1-p}|11\rangle \) for \(p \in [0,1] \). Note that \(\psi_t \) for \(p = 1/2 \) is a fixed point for the Hamiltonian \(H_{AB}^\pm \). The state \(\rho_t \) of the system at point of time \(t \) is given by

\[
\psi_t = \frac{1}{2} \left(1 + (2p-1)(\cos(2\theta t)) |00\rangle \langle 00| + (\sqrt{p(1-p)} + \frac{\theta}{2}(2p-1) \sin(2\theta t)) |01\rangle \langle 10| + (\sqrt{p(1-p)} - \frac{\theta}{2}(1-2p) \sin(2\theta t)) |11\rangle \langle 11| \right), \tag{38}
\]

where \(\theta = \mu_x - \mu_y \). To estimate bounds on the negativity (15) and the concurrence (25), we need the following quantities:

\[
\mathcal{E}^2(\psi_0) = 2 \left(|p(p-1)| - |p(1-p)| \right), \tag{39}
\]

\[
\text{tr}(\psi_0(H_{AB}^\pm)^2) = \theta^2 + \mu_z^2, \tag{40}
\]

\[
\left\| \mathcal{L}_t(\psi_{T_{AB}^\pm}) \right\|_1 = f(\theta, p)(|\sin(2\theta t)| + |\cos(2\theta t)|), \tag{41}
\]

\[
\mathcal{N}(\psi_0) = \sqrt{p(1-p)}, \tag{42}
\]

\[
\mathcal{N}(\psi_t) = \sqrt{-4p^2 - (1-2p)^2 \cos(4\theta t)} + 4p + 1, \tag{43}
\]

\[
\mathcal{E}^2(\psi_t) = \frac{1}{2} \left(4 |p(p-1)| - (1 - 2p)^2 \cos(4\theta t) + 1 \right), \tag{44}
\]

where \(f(\theta, p) := 2|1 - 2p| \).

In Fig. 1, we plot \(T_{\text{NXL}}(15) \) and \(T_{\text{CSL}}(25) \) vs \(T \in [0, 0.7] \) for unitary dynamics generated by two-qubit non-local Hamiltonian \(H_{AB}^\pm \) with \(\theta = \mu_x - \mu_y = 1, \mu_z = 0.1 \), and initial state of the system to be \(\psi_0 \) with \(p = 0 \). In Fig. 1, we observe that under the given unitary process, the concurrence of the given system evolves faster than its negativity. It is clear from Eq. (38) that density operator is function of \(\theta \) (i.e., \(\mu_x - \mu_y \)) and so do the entanglement measures such as the negativity (Eq. (43)) and square of the concurrence (Eq. (44)). The nature of both entanglement monotones is periodic in time and the period depends on \(\theta \) (see Appendix F). We found that the bounds (15) and (25) are relatively tighter for small values of \(\theta \) (i.e., \(\theta \in (0, 1) \)) in comparison to larger values of \(\theta \) (i.e., \(\theta > 1 \)). See Fig. 1 and Appendix F. Here, by relatively tighter we mean the gap between the evolution time and the time obtained from the speed limits.

Open quantum dynamics.— Before we analytically and numerically compute speed limits on the negativity (15) and
FIG. 1: Here we depict T_{CSL} and T_{NSL} vs $T \in [0, 0.7]$ for given unitary process and we have taken $\theta = 1$, $p = 0$ and $\mu_z = 0.1$. If we plot T_{CSL} and T_{NSL} vs T beyond the above mentioned range the speed limit time start decreasing due to decrease in value of negativity and concurrence.

Bell-CHSH observable (32) for bipartite quantum systems evolving under non-unitary quantum dynamics, let us briefly recall some concepts from open quantum systems. In case of open quantum systems we assume that dynamics of extended system (system + environment) is unitary and after tracing out the environment, we get the evolution equation for open quantum system. Under Markovian approximation, Eq. (4) and Eq. (6) reduce to the following [124, 125]:

$$
\hat{\rho}_t = e^{iHt} \hat{\rho}_0 e^{-iHt} + \sum_\alpha (2L_\alpha \rho_0 L^\dagger_\alpha - \{L^\dagger_\alpha L_\alpha, \rho_0\}),
$$

where $\{O_1, O_2\} := O_1 O_2 + O_2 O_1$ denotes anti-commutator bracket, H is the Hamiltonian of the system, and L_α's (represent coupling between system and environment) are called Lindbladian operators or quantum jump operators. The above equations are called Lindblad-Gorini-Kossakowski-Sudarshan (LGKS) master equations.

Here we consider two spin-1/2 particles A and B each coupled with environments E_A and E_B, respectively, where E_A and E_B are not interacting with each other. We assume that the system AB is initialised in a bipartite pure state ρ_0 of the form

$$
\rho_0 = p |00\rangle \langle 00| + \sqrt{(1-p)} p(|11\rangle \langle 11| + |01\rangle \langle 01|),
$$

where $p \in [0, 1]$. We consider Bell-CHSH observable $B_0 = \hat{a} \hat{\sigma} \otimes (\hat{b} + \hat{b'}) \hat{\sigma} + \hat{a}' \hat{\sigma} \otimes (\hat{b} - \hat{b'}) \hat{\sigma}$ with initial settings (at $t = 0$) being $\hat{b} = \cos(\eta) \hat{z} + \sin(\eta) \hat{x}$, $\hat{a} = \hat{z}$, $\hat{a}' = \hat{x}$, $\hat{b'} = \cos(\eta) \hat{z} - \sin(\eta) \hat{x}$ and $\tan(\eta) = 2 \sqrt{p(1-p)}$ [126]. We note that the settings for Bell-CHSH test need not remain optimal as the settings evolve during the dynamical process.

Pure dephasing process.— We first consider pure dephasing channel as an example of quantum correlation degradation process. The Lindbladian operators for pure dephasing process are given as $L^A_1 = \sqrt{\gamma_A^2} \sigma^A_x \otimes 1_B$ and $L^B_1 = \sqrt{\gamma_B^2} 1_A \otimes \sigma^B_x$ for $i, j \in \{1, 2, 3\}$, where σ^A_x and σ^B_x are Pauli operators acting on A and B, respectively, and $\gamma_A, \gamma_B \in \mathbb{R}$ denote the strength of dephasing. The time evolution of bipartite state ρ_t in Schrödinger’s picture and Bell-CHSH observable B_t in Heisenberg picture,

$$
\frac{d}{dt} \rho_t = \gamma^A (\sigma^A_x \otimes 1_B (\rho_t) \sigma^A_x \otimes 1_B - \rho_t) + \gamma^B (1_A \otimes \sigma^B_x (\rho_t) 1_A \otimes \sigma^B_x - \rho_t), \\
\frac{d}{dt} B_t = \gamma^A (\sigma^A_x \otimes 1_B (B_t) \sigma^A_x \otimes 1_B - B_t) + \gamma^B (1_A \otimes \sigma^B_x (B_t) 1_A \otimes \sigma^B_x - B_t).
$$

The respective solutions to Eq. (48) and Eq. (49) are

$$
\rho_t = p |00\rangle \langle 00| + \sqrt{p(1-p)} e^{-4\gamma t} (|00\rangle \langle 11| + |11\rangle \langle 00|) + (1-p) |11\rangle \langle 11|,
$$

$$
B_t = 2 \cos(\eta) |00\rangle \langle 00| - |01\rangle \langle 01| - |10\rangle \langle 10| + |11\rangle \langle 11| + 2 \sin(\eta) e^{-4\gamma t} (|00\rangle \langle 11| + |10\rangle \langle 01| + |01\rangle \langle 10| + |11\rangle \langle 00|),
$$

where we have assumed that dephasing rate of both environments are equal to γ. To estimate bounds on the negativity (15) and Bell-CHSH observable (32), we need the following quantities:

$$
|\mathcal{N}(\rho_T) - \mathcal{N}(\rho_0)| = \sqrt{p - p^2} (1 - e^{-4\gamma t}),
$$

$$
||L_t(T_{\rho_0})|| = 4 \gamma \sqrt{p - p^2} e^{-4\gamma t},
$$

$$
|\langle B_t \rangle_{\rho_0} - \langle B_0 \rangle_{\rho_0}| = 4 \sqrt{p - p^2} \sin(\eta) e^{-4\gamma t}.
$$

We can analytically verify that the speed limit (15) on the negativity is tight (we get $T = T_{\text{NSL}}$) for arbitrary choice of parameter γ and hence it is attainable for pure dephasing process.

In Fig. 2, we plot T_{BQSL} (32) vs $T \in [0, 0.15]$ for pure dephasing process and we have considered $\gamma = 1$ and $p \in \{0.25, 0.50, 0.66\}$. We find that the the Bell-nonlocal correlation degrade faster for $p \in \{0.25, 0.66\}$ (non-maximally entangled state) in comparison to $p = 0.50$ (maximally entangled state). Furthermore, we found that the bound (32) tight and attainable for pure dephasing process when $\gamma = 1$ and $p = 0.50$.

Depolarising process.— We next consider depolarising process as an example of quantum correlation degradation process. For depolarising process, the Lindbladian operators are given as $L^A_1 = \sqrt{\gamma_A^2} \sigma^A_x \otimes 1_B$ and $L^B_1 = \sqrt{\gamma_B^2} 1_A \otimes \sigma^B_x$ for $i, j \in \{1, 2, 3\}$, where σ^A_x and σ^B_x are Pauli operators acting on A and B, respectively, and $\gamma_A, \gamma_B \in \mathbb{R}$ denote the strength of depolarising. The time evolution of bipartite state ρ_t in Schrödinger’s picture and Bell-CHSH observable B_t in
Heisenberg’s picture respectively are governed by LGKS master equation and given as

\[
\frac{\mathrm{d}}{\mathrm{d}t}\rho_t = \frac{\gamma^A}{4} \sum_{i=1}^{3} (\sigma_i^A \otimes \mathbb{1}_B (\rho_t) \sigma_i^A \otimes \mathbb{1}_B - \rho_t) \\
+ \frac{\gamma^B}{4} \sum_{i=1}^{3} (\mathbb{1}_A \otimes \sigma_i^B (\rho_t) \mathbb{1}_A \otimes \sigma_i^B - \rho_t),
\]

(56)

\[
\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}_t = \frac{\gamma^A}{4} \sum_{i=1}^{3} (\sigma_i^A \otimes \mathbb{1}_B (\mathcal{E}_t) \sigma_i^A \otimes \mathbb{1}_B - \mathcal{E}_t) \\
+ \frac{\gamma^B}{4} \sum_{i=1}^{3} (\mathbb{1}_A \otimes \sigma_i^B (\mathcal{E}_t) \mathbb{1}_A \otimes \sigma_i^B - \mathcal{E}_t).
\]

(57)

The respective solutions to Eq. (56) and Eq. (57) are

\[
\rho_t = \frac{1}{2} e^{-\gamma t} (2p + \cosh(\gamma t) - 1) \langle 00 | 00 \rangle \\
+ \sqrt{p(1-p)} e^{-2\gamma t} (|00 \rangle \langle 11| + |11 \rangle \langle 00|) \\
+ \frac{1}{2} e^{-\gamma t} \sinh(\gamma t) (|01 \rangle \langle 01| + |10 \rangle \langle 10|) \\
+ \frac{1}{2} e^{-\gamma t} (1 - 2p + \cosh(\gamma t)) |11 \rangle \langle 11|,
\]

(58)

\[
\mathcal{E}_t = q (|00 \rangle \langle 00| + |11 \rangle \langle 11|) + h (|01 \rangle \langle 01| + |10 \rangle \langle 10|) \\
+ 2 e^{-2\gamma t} (|00 \rangle \langle 11| + |10 \rangle \langle 01| + |01 \rangle \langle 10| \\
+ |11 \rangle \langle 00|),
\]

(59)

where we assumed \(\gamma^A = \gamma^B = \gamma\), \(q = \frac{1}{2} e^{-\gamma t} (4 \cos(\eta) \cosh(\gamma t) - 4 \cos(\eta) \sinh(\gamma t))\), \(\text{and} h = \frac{1}{2} e^{-\gamma t} (4 \cos(\eta) \sinh(\gamma t) - 2 \cos(\eta)(\cosh(\gamma t) - 1) - 2 \cos(\eta) \cosh(\gamma t) + 1)\). To estimate bounds on the negativity (15) and Bell-CHSH observable (32), we need the following quantities:

\[
|\mathcal{N}(\rho_T) - \mathcal{N}(\rho_0)| = \frac{1}{4} \left(1 + 4 \sqrt{(1-p)p} \right) e^{-2\gamma t} (e^{2\gamma t} - 1),
\]

(60)

\[
\left\| \mathcal{L}_t(\rho_T^{\gamma}) \right\|_1 = \frac{e^{-\gamma t}}{2} \left(\frac{e^{\gamma t}}{2} \left(\sqrt{a' - b'} + \sqrt{a' + b'} \right) \\
+ \sqrt{\gamma} \left(\sqrt{a} + \sqrt{b} \right) \right),
\]

(61)

\[
|\langle B_T \rangle_{\rho_0} - \langle B_0 \rangle_{\rho_0}| = 2 (1 - e^{-2\gamma t}) |g(\eta, p)|,
\]

(62)

\[
\min \{ \Lambda_T^\infty, \Lambda_T^1, \Lambda_T^2 \} = 2 \gamma e^{-2\gamma t} \left(\sqrt{2 - 2 \sqrt{\cos^2(2\eta)}} \\
+ \sqrt{1 - \sin(2\eta)} + \sin(2\eta) + 1 \right).
\]

(63)

where \(g(\eta, p) = \cos(\eta) + 2 \sin(\eta) \sqrt{p (1-p)}\), \(a' = \gamma^2 e^{-2\gamma t} (1 - 16p (p - 1))\), \(a = \gamma e^{-3\gamma t} ((1 - 2p) e^{\gamma t} - 1)^2\), \(b' = 8 \gamma \sqrt{\gamma} e^{3\gamma t} p (1-p)\), \(b = 8 \sqrt{\gamma e^{-3\gamma t} (1 + (1 - 2p) e^{\gamma t})^2}\). The above expression for \(\min \{ \Lambda_T^\infty, \Lambda_T^1, \Lambda_T^2 \}\) is only valid in the range of \(p \in [0.05, 0.95]\) and Eq. (60) is only valid in range \(0 \leq \gamma \leq 1\).
In Fig. 3, we plot T_{NSL} (15) vs T and T_{BSCL} (32) vs T for depolarising process and we have considered $\gamma = 1$. For T_{BSCL} we have taken $p \in \{0.25, 0.50, 0.66\}$ and for T_{NSL} we have taken $p \in \{0.50, 0.66\}$. We observe that the Bell-nonlocal correlation degrades faster for $p \in \{0.25, 0.66\}$ (non-maximally entangled state) in comparison to $p = 0.50$ (maximally entangled state). We note that the bound (32) is tight and attainable for the given depolarising process when $\gamma = 1$ and $p = 0.50$. Also, the bound (15) is tight and attainable for the given depolarising process when $\gamma = 1$ and $p = 0.50$. We also have estimated the speed limits on entanglement and Bell-CHSH observable. See Appendix 5 for detailed calculation.

V. CONCLUSION

An important aspect of developing quantum devices is linked to the understanding of the rates at which quantum resources are consumed or generated [7, 29, 111]. The rate at which correlations change for any given quantum process is critical for designing the architecture of quantum processors as well as to control the dynamical evolution of quantum systems for desired information processing or computation tasks [127–129]. In this work, we introduced speed limits on some of the entanglement monotones like negativity and concurrence and also some other correlations like quantum mutual information and Bell-CHSH observable. These speed limits provide lower bound on the minimal time required to bring certain amount of change in these correlations for bipartite quantum systems undergoing time-evolution. We have also discussed a few cases of practical processes for which some of these speed limits are attainable and hence can be considered to be tight. As a byproduct of the scenarios we consider in this paper, we are also able to improve upon the speed limit on the von Neumann entropy derived in Ref. [8]. It is important to note that standard speed limits answer the fundamental question of how fast quantum systems can evolve over time, while our work provides limits on the rates at which we can create or destroy correlations through physical processes or how fast quantum devices can consume these correlations to perform a given task (as correlations can be valuable resources in quantum information and computing tasks. As a future direction, we leave open questions to derive (tight) speed limits on correlational measures beyond those discussed in this paper, for an instance, multipartite nonlocal quantum resources in quantum information and computing tasks.

It is critical for designing the architecture of quantum processors as well as to control the dynamical evolution of quantum systems for desired information processing or computations. As a future direction, we leave open questions to derive (tight) speed limits on correlational measures beyond those discussed in this paper, for an instance, multipartite nonlocal quantum resources in quantum information and computing tasks.

ACKNOWLEDGMENTS

VP, DS, and BM thank Sohail, Chirag Srivastava, Abhay Srivastav, and Ujjwal Sen for useful discussions. BM acknowledges the support of the INFOSYS scholarship. AKP acknowledges support of the J. C. Bose Fellowship from the Department of Science and Technology (DST) India under Grant No. JCB/2018/000038 (2019–2024).

Appendix A: Partial Transpose operation

For an arbitrary operator X_{AB} defined on \mathcal{H}_{AB} and a fixed orthonormal basis $\{|\alpha\rangle\}_A$, the partial transpose Γ^A is defined as the following linear map

$$X^A_{AB} := \Gamma^A(X_{AB}) = \sum_{\alpha,\beta} \langle\beta| \otimes I_B) X_{AB}(|\alpha\rangle \otimes I_B),$$

(A1)

where Γ^A is tensor product of two maps T^A (transpose operator on \mathcal{H}_A) and I_B. Map T^B can also be defined in similar way.

A bipartite quantum state ρ_{AB} is called separable if it can be written in the following form:

$$\rho_{AB} = \sum_i p_i |\psi_i\rangle\langle\psi_i|_A \otimes |\phi_i\rangle\langle\phi_i|_B,$$

(A2)

for some probability distribution $\{p_i\}$, and sets $\{|\psi_i\rangle\}_A$ and $\{|\phi_i\rangle\}_B$ of pure states. Let $SEP(A;B)$ denotes the set of separable states defined on \mathcal{H}_{AB}. Under the action of partial transpose map, set of separable states remains a closed set i.e., $\Gamma^A(\rho_{AB}) \in SEP(A;B), \forall \rho_{AB} \in SEP(A;B)$. If the action of partial transposition map on a state yields operator which is positive semidefinite, then the state is said to be positive partial transposition (PPT) (see). That is, $\rho_{AB} \in \mathcal{D}(\mathcal{H}_{AB})$ is a PPT state if $\Gamma^B(\rho_{AB}) \geq 0$, which also implies that $\Gamma^A(\rho_{AB}) \geq 0$. If a quantum state $\rho_{AB} \in \mathcal{D}(\mathcal{H}_{AB})$ corresponds to a separable bipartite state then $\Gamma^B(\rho_{AB}) \geq 0$ but the converse statement is true if and only if both the quantum systems A and B are either qubit or one is qubit and the other is qutrit [82, 87]. For a $1 \oplus 1$-mode Gaussian state ρ_{AB}, the positive partial transposition is necessary and sufficient criterion for separability [131]. If ρ_{AB} is not separable then it is entangled. There are some special type of entangled states called “maximally entangled” states. If ρ_{AB} is maximally entangled and we perform any local measurement on subsystem A or B, then we gain no information about the preparation of the state; instead we merely generate a random bit.

Appendix B: Operator Functions

Let \mathcal{O} be a normal operator acting on a Hilbert space \mathcal{H}, i.e., $\mathcal{O}^\dagger \mathcal{O} = \mathcal{O} \mathcal{O}^\dagger$. The kernel of \mathcal{O} is the span of the eigenvectors of \mathcal{O} corresponding to its zero eigenvalues. The support $\text{supp}(\mathcal{O})$ of \mathcal{O} is the subspace of \mathcal{H} orthogonal to its kernel. Let $\{\alpha_i\}$ be the set of eigenvalues of \mathcal{O} and $\{|\alpha_i\rangle\}_i$ be the corresponding set of eigenvectors of \mathcal{O}. Then \mathcal{O} can be written as follows:

$$\mathcal{O} = \sum_i \alpha_i |\alpha_i\rangle\langle\alpha_i|,$$

(B1)

which is called a spectral decomposition of \mathcal{O}. The projection onto the support $\text{supp}(\mathcal{O})$ of \mathcal{O} is denoted by

$$\Pi_{\mathcal{O}} = \sum_{i: \alpha_i \neq 0} |\alpha_i\rangle\langle\alpha_i|.$$

(B2)
If f is a real valued function with domain $\text{Dom}(f)$, then $f(O)$ is defined as

$$f(O) = \sum_{i:\alpha_i \in \text{Dom}(f)} f(\alpha_i)|\alpha_i\rangle\langle \alpha_i|.$$ \hfill (B3)

Appendix C: Speed limit for observable

The expectation value of the observable O_t is given as

$$\langle O_t \rangle = \text{tr}(O_0 \Phi_t(\rho)) = \text{tr}(\Phi_t^t(O_0)\rho),$$ \hfill (C1)

where Φ_t is generator of dynamics, $O_t = \Phi_t(O_0)$ and ρ is the given state of bipartite quantum system. The time evolution of the observable O is given by the following equation,

$$\frac{d}{dt} O_t = L^t [O_t].$$ \hfill (C2)

Let us take the average of Eq (C2) in the bipartite state ρ and its absolute value. By applying the H"older’s inequality in equality, we obtain the following inequality

$$\left| \frac{d}{dt} \langle O_t \rangle \right| \leq \|\rho\|_1 \|L^t [O_t]\|_\infty \leq \|\rho\|_1 \|L^t [O_t]\|_2 \leq \|\rho\|_1 \|L^t [O_t]\|_1.$$ \hfill (C3)

The above inequality (C3) is the upper bound on that the rate of change of expectation value of the observable evolving under given dynamics. After integrating the above equation with respect to time t, we then obtain the following unified bound

$$T \geq T_{\text{OQL}} = \frac{\|\langle O_T \rangle - \langle O_0 \rangle\|_1}{\|\rho\|_1} \max \left\{ \frac{1}{\lambda_T^\infty}, \frac{1}{\lambda_T^1}, \frac{1}{\lambda_T^2} \right\},$$ \hfill (C4)

where $\lambda_T^\alpha = \frac{1}{\alpha} \int_0^T dt \|L^t [O_t]\|_\alpha$ for $\alpha \in \{1, 2, \infty\}$ is the evolution speed of the observable of the given system. For the given dynamics, the bound given in (C4) determines how fast the expectation value of the observable changes in time (cf. [107]).

Appendix D: Hermiticity after partial transposition

Consider a bipartite system AB with Hilbert space \mathcal{H}_{AB} and density matrix ρ_{AB}. If $\{ |\alpha_{A}\rangle \}$ and $\{ |\beta_{B}\rangle \}$ are the orthonormal basis of \mathcal{H}_{A} and $\{ |\alpha_{B}\rangle \}$ and $\{ |\beta_{A}\rangle \}$ are the orthonormal basis of \mathcal{H}_{B} then the density matrix of AB takes the general form

$$\rho_{AB} = \sum_{\alpha,\beta} a_{\alpha,\beta}^\alpha \langle \alpha_{A} | \otimes | \beta_{B} \rangle \langle \beta_{B} | \rangle,$$ \hfill (D1)

$$\rho^t_{AB} = \sum_{\alpha,\beta} \left(a_{\alpha,\beta}^\alpha \right)^* \langle \alpha_{A} | \otimes | \beta_{B} \rangle \langle \beta_{B} | \rangle
= \sum_{\alpha,\beta} \left(a_{\beta,\alpha}^{\alpha'} \right)^* | \alpha_{A} \rangle \langle \alpha_{A} | \otimes | \beta_{B} \rangle \langle \beta_{B} | \rangle.$$ \hfill (D2)

The density operator ρ_{AB} is a hermitian i.e. $\rho^t_{AB} = \rho_{AB}$. Now, comparing coefficients of ρ_{AB} and ρ^t_{AB}, we find the following condition on the coefficient $a_{\alpha,\beta}^{\alpha'}$

$$a_{\alpha,\beta}^{\alpha'} = \left(a_{\beta,\alpha}^{\alpha'} \right)^*.$$ \hfill (D3)

The partial transpose ρ_{AB}^t can be written as

$$\rho_{AB}^t = \sum_{\alpha,\beta} a_{\beta,\alpha}^{\alpha'} | \alpha_{A} \rangle \otimes | \beta_{B} \rangle \langle \beta_{B} | \rangle,$$ \hfill (D4)

$$\rho_{AB}^t = \sum_{\alpha,\beta} \left(a_{\beta,\alpha}^{\alpha'} \right)^* | \alpha_{A} \rangle \langle \alpha_{A} | \otimes | \beta_{B} \rangle \langle \beta_{B} | \rangle
= \sum_{\alpha,\beta} \left(a_{\beta,\alpha}^{\alpha'} \right)^* | \alpha_{A} \rangle \langle \alpha_{A} | \otimes | \beta_{B} \rangle \langle \beta_{B} | \rangle.$$ \hfill (D5)

Using (D3) it can be shown that partial transpose of a density operator is hermitian.

Appendix E: Alternative proof of Theorem 1

Proof. The negativity of time evolved bipartite state ρ_t given by

$$\mathcal{N}(\rho_t) = \left| \frac{\rho_{T}^t}{1} - \frac{1}{2} \right|.$$ \hfill (E1)

After differentiating the above equation with respect to time t, we obtain

$$\frac{d}{dt} \mathcal{N}(\rho_t) = \frac{1}{4} \left| \frac{\rho_{T}^t}{1} \right| \left((\rho_{T}^t)^{-1} \left(\rho_{T}^t \right)^{T_n} + (\rho_{T}^t)^{T_n} \rho_{T}^t \right).$$ \hfill (E2)

Let us now consider the absolute value of the above equation and apply the property $| \text{tr}(A) | \leq \text{tr}(A)$. We then obtain the following inequality

$$\left| \frac{d}{dt} \mathcal{N}(\rho_t) \right| \leq \frac{1}{4} \left| \frac{\rho_{T}^t}{1} \right| \left((\rho_{T}^t)^{-1} \left(\rho_{T}^t \right)^{T_n} + (\rho_{T}^t)^{T_n} \rho_{T}^t \right),$$ \hfill (E3)

where $(\rho_{T}^t)^{T_n} = \rho_{T_n}^t$ (see Appendix D). Let us use the triangular inequality for further simplification. We then obtain

$$\left| \frac{d}{dt} \mathcal{N}(\rho_t) \right| \leq \frac{1}{2} \left| \frac{\rho_{T}^t}{1} \right| \left(1 + \frac{1}{2} \left| \frac{\rho_{T}^t}{1} \right| \right).$$ \hfill (E4)

The above inequality (E4) is the upper bound on that the rate of change of the negativity of the quantum system evolving under given dynamics. After integrating the above equation with respect to time t, we obtain

$$\int_0^T dt \left| \frac{d}{dt} \mathcal{N}(\rho_t) \right| \leq \frac{1}{2} \int_0^T dt \left| \rho_{T_n}^t \right|_1 = \frac{1}{2} \int_0^T dt \| L_t (\rho_{T_n}^t) \|_1.$$ \hfill (E5)

From the above inequality, we get the desired bound:

$$T \geq \frac{2 \left(\mathcal{N}(\rho_T) - \mathcal{N}(\rho_0) \right)}{\lambda_T^N}.$$ \hfill (E6)
Appendix F: T_{NSL} and T_{CSL} for nonlocal Hamiltonian

Using Eq. (43) and Eq. (44) we can check that the negativity and concurrence are periodic functions in time for given unitary dynamics with nonlocal Hamiltonian \hat{H}_{AB} and period can be altered by changing the value of $\theta = \mu_x - \mu_y$. It is clear from Fig. 4a and Fig. 4c that the time period of negativity and square of concurrence is higher for small values of θ. From Fig. 4b and Fig. 4d it is observed that our corresponding speed limits are relatively tighter for small values of θ.

Appendix G: Proof of Theorem 2

Proof. The square of the concurrence of time evolved bipartite pure state ψ_t given by

$$\mathcal{C}^2(\psi_t) = \text{tr}(\psi_t R(\psi_t^*)), \quad (G1)$$

After differentiating the above equation with respect to time t, we obtain

$$\frac{d}{dt} \mathcal{C}^2(\psi_t) = \text{tr}(\dot{\psi}_t R(\psi_t^*)) + \text{tr}(\dot{R}(\psi_t)\psi_t^*). \quad (G2)$$

where $R(\cdot) = \sigma_y \otimes \sigma_y(\cdot) \sigma_y \otimes \sigma_y$. Let us now consider the absolute value of the above equation and apply triangular inequality $|A + B| \leq |A| + |B|$. We then obtain the following inequality

$$\left| \frac{d}{dt} \mathcal{C}^2(\psi_t) \right| \leq \left| \text{tr}(\dot{\psi}_t R(\psi_t^*)) \right| + \left| \text{tr}(\dot{R}(\psi_t)\psi_t^*) \right|. \quad (G3)$$

Using Liouville-von Neumann equation $\dot{\psi}_t = \frac{i}{\hbar}[\psi_t, H_t]$ for unitary dynamics, the above inequality can be expressed as

$$\left| \frac{d}{dt} \mathcal{C}^2(\psi_t) \right| \leq \frac{1}{\hbar} \left[|\text{tr}([\psi_t, H_t] R(\psi_t^*))| + |\text{tr}(R(\psi_t)\psi_t^*)^*| \right]. \quad (G4)$$

By applying triangular inequality once more on the above inequality, we then obtain

$$\left| \frac{d}{dt} \mathcal{C}^2(\psi_t) \right| \leq \frac{1}{\hbar} \left[|\text{tr}(\dot{\psi}_t H_t R(\psi_t^*))| + |\text{tr}(H_t \dot{\psi}_t R(\psi_t^*))| \right. + |\text{tr}(\dot{R}(\psi_t)\psi_t^*)| + |\text{tr}(R(\psi_t) H_t \psi_t^*))|]. \quad (G5)$$

Let us apply the Cauchy–Schwarz inequality $|\text{tr}(AB)| \leq \sqrt{\text{tr}(A^2)\text{tr}(B^2)}$. We then obtain the following inequality

$$\left| \frac{d}{dt} \mathcal{C}^2(\psi_t) \right| \leq \frac{2}{\hbar} \sqrt{\text{tr}(R(\psi_t^*)\dot{R}(\psi_t))} \sqrt{\text{tr}(\dot{\psi}_t H_t^2)}$$

$$+ \sqrt{\text{tr}(\dot{R}(\psi_t)\psi_t^*)} \sqrt{\text{tr}(\psi_t H_t^2)^*}. \quad (G6)$$

Since ψ_t is pure state, it implies that $\sqrt{\text{tr}(R(\psi_t^*)\dot{R}(\psi_t))} = 1$, $\sqrt{\text{tr}(\dot{R}(\psi_t)\psi_t^*)} = 1$ and $\text{tr}(\psi_t H_t^2) = \text{tr}(\psi_t H_t^2)$.

FIG. 4: Here we depict square of the concurrence and negativity vs T in Fig. 4a and Fig. 4c. In Fig. 4b and Fig. 4d, we depict T_{NSL} and T_{CSL} vs T with $\theta = \{0.5, 2\}$ and initial state with $p = 0$.

(a) negativity and square of concurrence vs T with $\theta = 0.5$ and $p = 0$.

(b) $T_{\text{NSL}}/T_{\text{CSL}}$ vs T with $\theta = 0.5$ and $p = 0$.

(c) negativity and square of concurrence vs T with $\theta = 2$ and $p = 0$.

(d) $T_{\text{NSL}}/T_{\text{CSL}}$ vs T with $\theta = 2$ and $p = 0$.

}\end{document}
Therefore, we can rewrite the above equation as
\[\left| \frac{d}{dt} \mathcal{G}^2(\psi_t) \right| \leq \frac{4}{\hbar} \sqrt{\text{tr}(\psi_t H_t^2)}. \quad (G7) \]

The above inequality (G7) is the upper bound on that the rate of change of square of the concurrence of the quantum system evolving under unitary dynamics. After integrating the above equation with respect to time \(t \), we obtain
\[\int_0^T \left| \frac{d}{dt} \mathcal{G}^2(\psi_t) \right| \leq \frac{4}{\hbar} \int_0^T \sqrt{\text{tr}(\psi_t H_t^2)} dt. \quad (G8) \]

From the above inequality, we get the desired bound:
\[T \geq \frac{\hbar}{4} \left| \mathcal{G}^2(\psi_T) - \mathcal{G}^2(\psi_0) \right|/\Lambda^c_T. \quad (G9) \]

\[\square \]

Appendix II: Alternative speed limit on Bell-CHSH correlations

In this section, we derive speed limits for Bell-CHSH observable whose dynamics governed by separable map. The separable dynamics degrade the Bell-CHSH correlation. Expectation value of Bell-CHSH observable at time \(t \) is given by
\[\text{tr}(\phi_t(\rho) \mathcal{B}) = \text{tr}(\phi_t(\rho) a_1 \otimes b_1) + \text{tr}(\phi_t(\rho) a_2 \otimes b_2), \quad (H1) \]

where \(a_1 = \hat{a} \hat{\sigma} \), \(a_2 = \hat{a}' \hat{\sigma} \), \(b_1 = (\hat{b} + \hat{\nu}) \), \(\hat{\sigma} \) and \(b_2 = (\hat{b} - \hat{\nu}) \). The above equation can be rewritten as
\[\text{tr}(\rho \phi_t(B)) = \text{tr}(\rho \phi_t(a_1 \otimes b_1)) + \text{tr}(\rho \phi_t(a_2 \otimes b_2)). \quad (H2) \]

Let us differentiate above equation with respect to time \(t \), we then obtain
\[\frac{d}{dt} \text{tr}(\rho \mathcal{B}_t) = \text{tr}(\rho \mathcal{L}_A(a_{1t}) \otimes L_B(b_{1t})) + \text{tr}(\rho \mathcal{L}_A(a_{2t}) \otimes L_B(b_{2t})), \quad (H3) \]

where \(\mathcal{L}_{AB} = \mathcal{L}_A \otimes \text{id}_B + \text{id}_A \otimes \mathcal{L}_B \), \(\mathcal{L}_A \) and \(\mathcal{id}_B \) are the identity super-operators corresponding to system \(A \) and \(B \) respectively. Let us take the absolute value of the above equation and applying the triangular inequality, we get
\[\left| \frac{d}{dt} \text{tr}(\rho \mathcal{B}_t) \right| \leq \left| \text{tr}(\rho \mathcal{L}_A(a_{1t}) \otimes L_B(b_{1t})) \right| + \left| \text{tr}(\rho \mathcal{L}_A(a_{2t}) \otimes L_B(b_{2t})) \right|. \quad (H4) \]

Let us apply the Cauchy–Schwarz inequality, we then obtain the following inequality
\[\left| \frac{d}{dt} \text{tr}(\rho \mathcal{B}_t) \right| \leq \sqrt{\text{tr}(\rho^2)} \left(\| \mathcal{L}_A(a_{1t}) \otimes L_B(b_{1t}) \|_2 + \| \mathcal{L}_A(a_{2t}) \otimes L_B(b_{2t}) \|_2 \right). \quad (H5) \]

After integrating above equation with respect to time \(t \), we then obtain the following bound
\[T \geq T_{BQSL} = \frac{|(B_T)_\rho - \langle B_0 \rangle_\rho|}{\sqrt{\text{tr}(\rho^2) \Lambda^c_T}}, \quad (H6) \]

where \(\Lambda_T^B = \int_0^T dt \| \mathcal{L}_A(a_{1t}) \otimes L_B(b_{1t}) \|_2 + \| \mathcal{L}_A(a_{2t}) \otimes L_B(b_{2t}) \|_2 \).

The above bound describes how fast Bell-CHSH correlation degrades under separable dynamics.

Appendix I: Proof of speed limit on quantum mutual information (33)

Proof. Consider \(\rho_0^A \otimes \rho_0^B \) to be an initial state (at \(t = 0 \)) of the quantum system before interaction or dynamics begin. The relative entropy of the time evolved quantum state \(\omega_t \) with respect to \(\omega_0 \) is given as
\[D(\omega_t || \omega_0) = \text{tr} \{ \omega_t \ln \omega_t - \omega_t \ln \omega_0 \}, \quad (I1) \]

where \(\text{supp}(\omega_t) \subseteq \text{supp}(\omega_0) \) for all \(t \geq 0 \). After differentiating above equation with respect to time \(t \), we then obtain [132] (see also Theorem 1 of Ref.[12])
\[\frac{d}{dt} D(\omega_t || \omega_0) = \text{tr} \{ \mathcal{L}_t (\ln \omega_t) (\Pi_t \ln \omega_t - \Pi_0 \ln \omega_0) \}, \quad (I2) \]

where \(\Pi_t \) denotes the projection onto the support of \(\omega_t \). Taking the absolute value of the terms in the above equation and applying the Cauchy–Schwarz inequality, we get
\[\left| \frac{d}{dt} D(\omega_t || \omega_0) \right| \leq \| \mathcal{L}_t (\ln \omega_t) \|_2 \| \Pi_t \ln \omega_t - \Pi_0 \ln \omega_0 \|_2. \quad (I3) \]

As \(\ln \omega_t \) is defined on the support of \(\omega_t \), we have
\[\left| \frac{d}{dt} D(\omega_t || \omega_0) \right| \leq \| \mathcal{L}_t (\ln \omega_t) \|_2 \| \ln \omega_t - \ln \omega_0 \|_2. \quad (I4) \]

After integrating above equation with respect to time \(t \), we obtain
\[T \geq \frac{D(\omega_T || \omega_0)}{\Lambda_T^A}, \quad (I5) \]

where \(\Lambda_T^A := \frac{1}{T} \int_0^T dt \| \mathcal{L}_t (\ln \omega_t) \|_2 \| \ln \omega_t - \ln \omega_0 \|_2. \) Let use the fact \(D(\omega_T || \omega_0) \geq \min \{ \rho_0^A, \rho_0^B \} D(\omega_T || \omega_0) = I(A; B)_{\omega_T} \), we then obtain
\[T \geq \frac{I(A; B)}{\Lambda_T^A}. \quad (I6) \]

\[\square \]

Appendix J: Proof of speed limit on the entropy (34)

Consider the state of a quantum system \(A \) evolving under quantum dynamics at time \(t \) is given by \(\rho_t \). Then the entropy of the quantum system at time \(t \) is given by
\[S(\rho_t) = -\text{tr}(\rho_t \ln \rho_t). \quad (J1) \]
It is standard convention that $0 \ln 0 = 0$. After differentiating the above equation with respect to time t, we obtain [12, 132]

$$
\frac{d}{dt} S(\rho_t^A) = -\text{tr}\{\rho_t^A \ln \rho_t^A\} = -\text{tr}\{\mathcal{L}_t(\rho_t^A) \ln \rho_t^A\}. \tag{J2}
$$

Let us now consider the absolute value of the above equation and apply the Cauchy–Schwarz inequality. We then obtain the following inequality

$$
\left| \frac{d}{dt} S(\rho_t^A) \right| = \left| \text{tr}\{\mathcal{L}_t(\rho_t^A) \ln \rho_t^A\} \right| \\
\leq ||\mathcal{L}_t(\rho_t^A)||_2 ||\ln \rho_t^A||_2, \tag{J3}
$$

where $\ln \rho_t$ is defined on the support of ρ_t. The above inequality (J3) is the upper bound on that the rate of change of the entropy of the quantum system evolving under given dynamics. After integrating above equation with respect to time t, we obtain

$$
\int_0^T dt \left| \frac{d}{dt} S(\rho_t^A) \right| \leq \int_0^T ||\mathcal{L}_t(\rho_t^A)||_2 ||\ln \rho_t^A||_2 dt. \tag{J4}
$$

From the above inequality, we get the desired bound:

$$
T \geq \frac{\left| S(\rho_T^A) - S(\rho_0^A) \right|}{\Lambda_T}, \tag{J5}
$$

where $\Lambda_T = \frac{1}{T} \int_0^T dt ||\mathcal{L}_t(\rho_t^A)||_2 ||\ln \rho_t^A||_2$ is the evolution speed of entropy.

Note that if we further apply the Cauchy–Schwarz inequality in Eq. (J4) as done in the proof argument of Theorem 1 of Ref. [8], we get comparatively weaker bound, see Eq. (6) of Ref. [8]. This observation of using the Cauchy–Schwarz inequality only once also allows for obtaining tighter bounds for other informational measures discussed in Ref. [8].

Appendix K: Amplitude Damping Process

We now consider dynamical processes describable by amplitude-damping channel. The Lindbladian operators for amplitude damping process are given by $\mathcal{L}_{amp}^A = \sqrt{\gamma/2} \sigma_+ A \otimes 1_B$ and $\mathcal{L}_{amp}^B = \sqrt{\gamma/2} 1_A \otimes \sigma_- B$, where $\sigma_+^A \equiv |1\rangle\langle 0|^A$ and $\sigma_-^B \equiv |1\rangle\langle 0|^B$ are spin lowering operators and $\gamma, \gamma^B \in \mathbb{R}$ denote the strength of amplitude damping. The LGKS master equation governs the time evolution of bipartite state ρ_t in Schrödinger picture and Bell-CHSH observable \mathcal{B}_t in Heisenberg picture:

$$
\frac{d}{dt} \rho_t = \frac{\gamma^A}{2} \left(2 \sigma_-^A \otimes 1_B(\rho_t) \sigma_+^A \otimes 1_B - \{\sigma_+^A \sigma_-^A \otimes 1_B, \rho_t^B\} \right) \\
+ \frac{\gamma^B}{2} \left(2 1_A \otimes \sigma_-^B(\rho_t) 1_A \otimes \sigma_+^B - \{1_A \otimes \sigma_+^B \sigma_-^B, \rho_t^A\} \right), \tag{K1}
$$

$$
\frac{d}{dt} \mathcal{B}_t = \frac{\gamma^A}{2} \left(2 \sigma_-^A \otimes 1_B(\mathcal{B}_t) \sigma_+^A \otimes 1_B - \{\sigma_+^A \sigma_-^A \otimes 1_B, \mathcal{B}_t^B\} \right) \\
+ \frac{\gamma^B}{2} \left(2 1_A \otimes \sigma_-^B(\mathcal{B}_t) 1_A \otimes \sigma_+^B - \{1_A \otimes \sigma_+^B \sigma_-^B, \mathcal{B}_t^A\} \right), \tag{K2}
$$

where $\sigma_+^A \equiv |0\rangle\langle 1|^A$ and $\sigma_-^B \equiv |0\rangle\langle 1|^B$ are spin raising operator corresponding to A and B respectively. The solutions of the above equations for amplitude damping process is given by

$$
\rho_t = p e^{-\gamma t} |00\rangle \langle 00| + \sqrt{(1-p)p} e^{-\gamma t} |01\rangle \langle 11| + |11\rangle \langle 00| \\
+ p e^{-\gamma t} (e^{\gamma t} - 1) (|01\rangle \langle 01| + |10\rangle \langle 10|), \tag{K3}
$$

$$
\mathcal{B}_t = e^{-\gamma t} \left(8 \cos(\eta) - 8 \cos(\eta) e^{\gamma t} + 2 \cos(\eta) e^{2\gamma t} \right) |00\rangle \langle 00| \\
+ e^{-\gamma t} (2 \cos(\eta) e^{\gamma t} - 4 \cos(\eta)) (|01\rangle \langle 01| + |10\rangle \langle 10|) \\
+ 2 \cos(\eta) |11\rangle \langle 11| + 2 \sin(\eta) e^{-\gamma t} (|00\rangle \langle 11| + |10\rangle \langle 01|) \\
+ |01\rangle \langle 10| + |11\rangle \langle 00|, \tag{K4}
$$

where we assumed $\gamma^A = \gamma^B = \gamma$. To estimate bounds on the negativity (15) and Bell-CHSH observable (32), we need the following quantities:

$$
|\mathcal{N}(\rho_t) - \mathcal{N}(\rho_0)| = -e^{-2\gamma t} \left(-\sqrt{(p-p^2)} e^{\gamma t} + p e^{\gamma t} - p \right) \\
\sqrt{p - p^2}, \tag{K5}
$$

$$
||\mathcal{L}_t(\rho_t^B)||_1 = e^{-2\gamma t} \left(e^{\gamma t} \left(\sqrt{c - 2\sqrt{d} + \sqrt{c + 2\sqrt{d}}} \right) \\
+ 2c e^{\gamma t} + 2p \right), \tag{K6}
$$

$$
|\langle \mathcal{B}_t \rangle_{\rho_0} - \langle \mathcal{B}_0 \rangle_{\rho_0}| = e^{\gamma t} \sin(\eta) \sqrt{\frac{1}{1 - p} + 2 \cos(\eta) \sqrt{p}} \\
4 \sqrt{p e^{-2\gamma t}} (e^\gamma t - 1), \tag{K7}
$$

$$
\min \{\Lambda_T^A, \Lambda_T^B, \Lambda_T^C\} = 2 e^{-2\gamma t} \left(\sqrt{1 - d' + \sqrt{d' + 1}} \\
+ \sqrt{2 - 2\sqrt{(1 - d'^2)}} \right), \tag{K8}
$$

where c, d, c', d' are functions of γ, t, p such that $c = \gamma^2 p e^{-4\gamma t} (-4 p e^{\gamma t} + 4 p + e^{2\gamma t}), d = \gamma^4 (e^{-\gamma t}) (1 - p) p^3 (e^{\gamma t} - 2)^2, c' = \gamma^2 p^2 e^{-2\gamma t} (e^{\gamma t} - 1)^2,$ and $d' = \sin(2\eta)$.

Note that Eq. (K8) is only valid in the interval $t \in [0, 0.15]$. In Fig. 5a, we plot $T_{NSL}(15)$ vs T where $T \in [0, 0.50]$ for amplitude damping process when $\gamma = 1$ and $p \in \{0.25, 0.50, 0.66\}$. We find that the negativity degrades faster for $p \in \{0.50, 0.66\}$ in comparison to $p = 0.25$. We note that the speed limit on the negativity (15) is not tight for given amplitude damping process.

In Fig. 5b, we plot $T_{QSL}(32)$ vs T where $T \in [0, 0.50]$ for amplitude damping process when $\gamma = 1$ and $p \in \{0.25, 0.50, 0.66\}$. We find that the Bell-CHSH correlation degrades faster for $p \in \{0.25, 0.66\}$ (non-maximally entangled state) in comparison to $p = 0.50$ (maximally entangled state). We note that the bound (32) is tight and attainable for amplitude damping process when $\gamma = 1$ and $p = 0.50$.

FIG. 5: For amplitude damping process with $\gamma = 1$, we depict T_{NSL} (15) vs T in (a) and T_{BQSL} (32) vs T in (b).

[1] Leonid Mandelstam and IG Tamm, “The uncertainty relation between energy and time in non-relativistic quantum mechanics,” J. Phys. (USSR) 9, 249 (1945).
[2] Norman Margolus and Lev B. Levitin, “The maximum speed of dynamical evolution,” Physica D: Nonlinear Phenomena 120, 188–195 (1998).
[3] J. Anandan and Y. Aharonov, “Geometry of quantum evolution,” Physical Review Letters 65, 1697–1700 (1990).
[4] Manaka Okuyama and Masayuki Ohzeki, “Quantum speed limit is not quantum,” Physical Review Letters 120, 070402 (2018).
[5] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo, “Quantum speed limits across the quantum-to-classical transition,” Physical Review Letters 120, 070401 (2018).
[6] S. Ashhab, P. C. de Groot, and Franco Nori, “Speed limits for quantum gates in multiqubit systems,” Physical Review A 85, 052327 (2012).
[7] Maxwell Aifer and Sebastian Deffner, “From quantum speed limits to energy-efficient quantum gates,” New Journal of Physics 24, 055002 (2022).
[8] Brij Mohan, Siddhartha Das, and Arun Kumar Pati, “Quantum speed limits for information and coherence,” New Journal of Physics 24, 065003 (2022).
[9] Steve Campbell, Marco G Genoni, and Sebastian Deffner, “Precision thermometry and the quantum speed limit,” Quantum Science and Technology 3, 025002 (2018).
[10] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro, “Optimal control at the quantum speed limit,” Physical Review Letters 103, 240501 (2009).
[11] Steve Campbell and Sebastian Deffner, “Trade-off between speed and cost in shortcuts to adiabaticity,” Physical Review Letters 118, 100601 (2017).
[12] Siddhartha Das, Sumeet Khatri, George Siopsis, and Mark M Wilde, “Fundamental limits on quantum dynamics based on entropy change,” Journal of Mathematical Physics 59, 012205 (2018).
[13] Chiranjib Mukhopadhyay, Avijit Misra, Samyadeb Bhattacharya, and Arun Kumar Pati, “Quantum speed limit constraints on a nanoscale autonomous refrigerator,” Physical Review E 97, 062116 (2018).
[14] Francesco Campaioli, Felix A. Pollock, and Sai Vinjanampathy, “Quantum batteries,” in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by Felix Binder, Luis A. Correa, Christian Gogolin, Janet Anders, and Gerardo Adesso (Springer International Publishing, 2018).
A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Physical Review 47, 777–780 (1935).

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics Physique Fizika I, 195–200 (1964).

Charles H. Bennett and Stephen J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Physical Review Letters 69, 2881–2884 (1992).

Artur K. Ekert, “Quantum cryptography based on Bell’s theorem,” Physical Review Letters 67, 661–663 (1991).

Jonathan P. Dowling, “Quantum optical metrology – the low-technology approach,” Quantum Information Processing 12, 1511–1531 (2013).

Karel Van Acoleyen, Michaël Mariën, and Frank Verstraete, “Entanglement and stationarity, and the energy-time uncertainty relation,” Physical Review Letters 111, 042301 (2013).

Siddhartha Das, Stefan Bäuml, and Mark M. Wilde, “Entanglement and the speed of quantum evolution,” Physical Review A 94, 062313 (2016).

Sebastian Defnner and Steve Campbell, “Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control,” Journal of Physics A: Mathematical and Theoretical 50, 453001 (2017).

Keisuke Suzuki and Kazutaka Takahashi, “Performance evaluation of adiabatic quantum computation via quantum speed limits and possible applications to many-body systems,” Physical Review Research 2, 032016 (2020).

Simon Becker, Nilanjan Datta, Ludovico Lami, and Cambyse Rouzé, “Energy-Constrained Discrimination of Unitaries, Quantum Speed Limits, and a Gaussian Solovay-Kitaev Theorem,” Physical Review Letters 116, 190504 (2021).

Adolfo del Campo, “Probing quantum speed limits with ultracold gases,” Physical Review Letters 126, 180603 (2021).

Lev B. Levitin and Tommaso Toffoli, “Fundamental limit on the rate of quantum dynamics: The unified bound is tight,” Physical Review Letters 103, 160502 (2009).

Eric A. Gislason, Nora H. Sabelli, and John W. Wood, “New form of the time-energy uncertainty relation,” Physical Review A 31, 2078–2081 (1985).

Joseph H. Eberly and L. P. S. Singh, “Time operators, partial stationarity, and the energy-time uncertainty relation,” Physical Review D 7, 359–362 (1973).

M Bauer and P.A Mello, “The time-energy uncertainty relation,” Annales of Physics 111, 38–60 (1978).

K Bhattacharyya, “Quantum decay and the Mandelstam-Tamm-energy inequality,” Journal of Physics A: Mathematical and General 16, 2993–2996 (1983).

C. Leubner and C. Kiener, “Improvement of the Eberly-Singh time-energy inequality by combination with the Mandelstam-Tamm approach,” Physical Review A 31, 483–485 (1985).

Lev Vaidman, “Minimum time for the evolution to an orthogonal quantum state,” American journal of physics 60, 182–183 (1992).

Armin Uhlmann, “An energy dispersion estimate,” Physics Letters A 161, 329–331 (1992).

Jozef B Uffink, “The rate of evolution of a quantum state,” American Journal of Physics 61, 935–936 (1993).

Peter Pfeifer and Jürg Fröhlich, “Generalized time-energy uncertainty relations and bounds on lifetimes of resonances,” Reviews Modern Physics 67, 759–779 (1995).

N Horesh and A Mann, “Intelligent states for the Anandan–Aharanov parameter-based uncertainty relation,” Journal of Physics A: Mathematical and General 31, L609–L611 (1998).

Jonas Siderholm, Gunnar Björk, Tedros Tsegaye, and Alexei Trifonov, “States that minimize the evolution time to become an orthogonal state,” Physical Review A 59, 1788–1790 (1999).

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone, “The speed limit of quantum unitary evolution,” Journal of Optics B: Quantum and Semiclassical Optics 6, S807–S810 (2004).

M Andrecut and M K Ali, “The adiabatic analogue of the Margolus–Levitin theorem,” Journal of Physics A: Mathematical and General 37, L157–L160 (2004).

John E Gray and Andrew Vogt, “Mathematical analysis of the Mandelstam–Tamm time-energy uncertainty principle,” Journal of mathematical physics 46, 052108 (2005).

Shunlong Luo and Zhengmin Zhang, “On decaying rate of quantum states,” Letters in Mathematical Physics 71, 1–11 (2005).

J. Batle, M. Casas, A. Plastino, and A. R. Plastino, “Connection between entanglement and the speed of quantum evolution,” Physical Review A 72, 032337 (2005).

A. Borràs, M. Casas, A. R. Plastino, and A. Plastino, “Entanglement and the lower bounds on the speed of quantum evolution,” Physical Review A 74, 022326 (2006).

Bartosz Zielinski and Magdalena Zych, “Generalization of the Margolus-Levitin bound,” Physical Review A 74, 034301 (2006).

C Zander, A R Plastino, A Plastino, and M Casas, “Entanglement and the speed of evolution of multi-partite quantum systems,” Journal of Physics A: Mathematical and Theoretical 40, 2861–2872 (2007).

Mark Andrews, “Bounds to unitary evolution,” Physical Review A 75, 062112 (2007).

Judy Kupferman and Benni Reznik, “Entanglement and the speed of evolution in mixed states,” Physical Review A 78, 042305 (2008).

Ulvi Yurtsever, “Fundamental limits on the speed of evolution of quantum states,” Physica Scripta 82, 035008 (2010).

Fu Shuang-Shuang, Li Nan, and Luo Shun-Long, “A note on fundamental limit of quantum dynamics rate,” Communications in Mathematical Physics 336, 595–618 (2015).
tions in Theoretical Physics 54, 661–662 (2010).
[58] Philip J. Jones and Pieter Kok, “Geometric derivation of the quantum speed limit,” Physical Review A 82, 022107 (2010).
[59] H. F. Chau, “Tight upper bound of the maximum speed of evolution of a quantum state,” Physical Review A 81, 062133 (2010).
[60] Marcin Zwierz, “Comment on “geometric derivation of the quantum speed limit”,” Physical Review A 86, 016101 (2012).
[61] Sebastian Deffner and Eric Lutz, “Energy–time uncertainty relation for driven quantum systems,” Journal of Physics A: Mathematical and Theoretical 46, 335302 (2013).
[62] Chi-Hang Fred Fung and H. F. Chau, “Time-energy measure for quantum processes,” Physical Review A 88, 012307 (2013).
[63] P. M. Poggi, F. C. Lombardo, and D. A. Wisniacki, “Quantum speed limit and optimal evolution time in a two-level system,” Europhysics Letters (EPL) 104, 40005 (2013).
[64] Chi-Hang Fred Fung and HF Chau, “Relation between physical time-energy cost of a quantum process and its information fidelity,” Physical Review A 90, 022333 (2014).
[65] O Andersson and H Heydari, “Quantum speed limits and optimal hamiltonians for driven systems in mixed states,” Journal of Physics A: Mathematical and Theoretical 47, 215301 (2014).
[66] Debasis Mondal, Chandan Datta, and Sk Szam,” Quantum speed limit for mixed states using an experimentally realizable metric,” Physics Letters A 380, 689–695 (2016).
[67] Debasis Mondal and Arun Kumar Pati, “Quantum speed limit for mixed states using an experimentally realizable metric,” Physics Letters A 380, 1395–1400 (2016).
[68] Francesco Campaioni, Felix A. Pollock, Felix C. Binder, and Kavan Modi, “ Tightening quantum speed limits for almost all states,” Physical Review Letters 120, 060409 (2018).
[69] Dimpi Thakuria, Abhay Srivastav, Brij Mohan, Asmita Kumari, and Arun Kumar Pati, “Generalised quantum speed limit for arbitrary evolution,” arXiv preprint arXiv:2207.04124 (2022).
[70] Sebastian Deffner and Eric Lutz, “Quantum speed limit for non-markovian dynamics,” Physical Review Letters 111, 010402 (2013).
[71] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga, “Quantum speed limits in open system dynamics,” Physical Review Letters 110, 050403 (2013).
[72] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, “Quantum speed limit for physical processes,” Physical Review Letters 110, 050402 (2013).
[73] Diego Paiva Pires, Marco Cianciaruso, Lucas C. Céleri, Gerardo Adesso, and Diogo O. Soares-Pinto, “Generalized geometric quantum speed limits,” Physical Review X 6, 021031 (2016).
[74] Jun Jing, Lian-Ao Wu, and Adolfo Del Campo, “Fundamental speed limits to the generation of quantumness,” Scientific Reports 6, 38149 (2016).
[75] Sebastian Deffner, “Quantum speed limits and the maximal rate of information production,” Physical Review Research 2, 013161 (2020).
[76] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone, “The role of entanglement in dynamical evolution,” Europhysics Letters (EPL) 62, 615 (2003).
[77] Anna Vershynina, “Entanglement rates for bipartite open systems,” Phys. Rev. A 92, 022311 (2015).
[78] Francesco Campaioni, Chang shui Yu, Felix A Pollock, and Kavan Modi, “Resource speed limits: maximal rate of resource variation,” New Journal of Physics 24, 065001 (2022).
[79] Manabendra Nath Bera, R Prabhu, Arun Kumar Pati, Aditi Sen De, and Ujjwal Sen, “Limit on time-energy uncertainty with multipartite entanglement,” arXiv preprint arXiv:1303.0706 (2013).
[80] Łukasz Rudnicki, “Quantum speed limit and geometric measure of entanglement,” Physical Review A 104, 032417 (2021).
[81] KG Paulson and Subhashish Banerjee, “Quantum speed limit for the creation and decay of quantum correlations,” arXiv preprint arXiv:2205.11882 (2022).
[82] Asher Peres, “Separability criterion for density matrices,” Physical Review Letters 77, 1413–1415 (1996).
[83] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Physical Review A 65, 032314 (2002).
[84] William K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Physical Review Letters 80, 2245–2248 (1998).
[85] William K Wootters, “Entanglement of formation and concurrence,” Quantum Information and Computation 1, 27–44 (2001).
[86] Pranaw Rungta, V. Bužek, Carlton M. Caves, M. Hillery, and G. J. Milburn, “Universal state inversion and concurrence in arbitrary dimensions,” Physical Review A 64, 042315 (2001).
[87] Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Physics Letters A 223, 1–8 (1996).
[88] Eric M. Rains, “A semidefinite program for distillable entanglement,” IEEE Transactions on Information Theory 47, 2921–2933 (2001).
[89] Filippo Caruso, Vittorio Giovannetti, Cosmo Lupo, and Stefano Mancini, “Quantum channels and memory effects,” Review of Modern Physics 86, 1203–1259 (2014).
[90] Francesco Buscemi, Siddhartha Das, and Mark M. Wilde, “Approximate reversibility in the context of entropy gain, information gain, and complete positivity,” Physical Review A 93, 062314 (2016).
[91] Thomas F. Jordan, Anil Shaji, and E. C. G. Sudarshan, “Dynamics of initially entangled open quantum systems,” Phys. Rev. A 70, 052110 (2004).
[92] Angel Rivas and Susana F Huelga, Open quantum systems, Vol. 10 (Springer, 2012).
[93] Jun-Hong An and Wei-Min Zhang, “Non-markovian entanglement dynamics of noisy continuous-variable quantum channels,” Physical Review A 76, 042127 (2007).
[94] Daniel A Lidar, “Lecture notes on the theory of open quantum systems,” arXiv preprint arXiv:1902.00967 (2019).
[95] M Carrega, A Crescente, D Ferraro, and M Sassetti, “Dissipative dynamics of an open quantum battery,” New Journal of Physics 22, 083085 (2020).
[96] Emily A Weiss, Gil Katz, Randall H Goldsmith, Michael R Wasielewski, Mark A Ratner, Ronnie Kosloff, and Abraham Nitzan, “Electron transfer mechanism and the locality of the system-bath interaction: A comparison of local, semilocal, and pure dephasing models,” The Journal of chemical physics 124, 074501 (2006).
[97] Jun Jing, Lian-Ao Wu, Marcelo S. Sarandy, and J. Gonzalez Muga, “Inverse engineering control in open quantum systems,” Phys. Rev. A 88, 053422 (2013).
[98] P. Schindler, M. M¨uller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Henrich, T. Monz, S. Diehl, P. Zoller, and R. Blatt, “Quantum simulation of dynamical maps with trapped ions,” Nature Physics 9, 361–367 (2013).
[99] Andrew M. Childs, Isaac L. Chuang, and Debbie W. Leung, “Realization of quantum process tomography in NMR,” Phys.
M. Mohseni and D. A. Lidar, “Direct characterization of quantum dynamics,” Phys. Rev. Lett. 97, 170501 (2006).

J. Maziero, T. Werlang, F. F. Fanchini, L. C. Céleri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010).

Hisaharu Umegaki, “Conditional expectation in an operator algebra. IV. Entropy and information,” Kodai Mathematical Seminar Reports 14, 59 – 85 (1962).

E. C. G. Sudarshan, P. M. Mathews, and Jayaseetha Rau, “Stochastic dynamics of quantum-mechanical systems,” Phys. Rev. 121, 920–924 (1961).

Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K. Wootters, “Mixed-state entanglement and quantum error correction,” Physical Review A 54, 3824–3851 (1996).

John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Physical Review Letters 23, 880–884 (1969).

R. Horodecki, P. Horodecki, and M. Horodecki, “Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition,” Physics Letters A 200, 340–344 (1995).

Bijj Mohan and Arun Kumar Pati, “Quantum speed limits for observables,” Phys. Rev. A 106, 042436 (2022).

Luis Pedro García-Pintos, Schuyler B. Nicholson, Jason R. Green, Adolfo del Campo, and Alexey V. Gorshkov, “Unifying quantum and classical speed limits on observables,” Physical Review X 12, 011038 (2022).

Nicoletta Carabba, Niklas Hörnadal, and Adolfo del Campo, “Quantum speed limits on operator flows and correlation functions,” Quantum 6, 884 (2022).

Niklas Hörnadal, Nicoletta Carabba, Apollonas S. Matsoukas-Roubeas, and Adolfo del Campo, “Ultimate speed limits to the growth of operator complexity,” Communications Physics 5, 207 (2022).

Siddhartha Das, Bipartite Quantum Interactions: Entangling and Information Processing Abilities (Louisiana State University and Agricultural & Mechanical College, 2018) arxiv:1901.05895.

Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Physical Review Letters 70, 1895–1899 (1993).

Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki, “Quantum entanglement,” Reviews Modern Physics 81, 865–942 (2009).

Stefan Bäuml, Siddhartha Das, and Mark M. Wilde, “Fundamental limits on the capacities of bipartite quantum interactions,” Physical Review Letters 121, 250504 (2018).

Stefan Bäuml, Siddhartha Das, Xin Wang, and Mark M Wilde, “Resource theory of entanglement for bipartite quantum channels,” arXiv preprint arXiv:1907.04181 (2019).

Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie Wehner, “Bell nonlocality,” Reviews Modern Physics 86, 419–474 (2014).

Jean-Daniel Bancal, Jonathan Barrett, Nicolas Gisin, and Stefano Pironio, “Definitions of multipartite nonlocality,” Physical Review A 88, 014102 (2013).

Dipankar Home, Debashis Saha, and Siddhartha Das, “Multipartite Bell-type inequality by generalizing Wigner’s argument,” Physical Review A 91, 012102 (2015).

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).

Charles H. Bennett, Gilles Brassard, Sandu Popescu, Benjamin Schumacher, John A. Smolin, and William K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Physical Review Letters 76, 722–725 (1996).

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Physical Review Letters 78, 2275–2279 (1997).

V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Physical Review A 57, 1619–1633 (1998).

Tobias J. Osborne and Michael A. Nielsen, “Entanglement in a simple quantum phase transition,” Physical Review A 66, 032110 (2002).

G. Lindblad, “On the generators of quantum dynamical semigroups,” Communications in Mathematical Physics 48, 119–130 (1976).

Vittorio Gorini, Andrej Kossakowski, and Ennackal Chand George Sudarshan, “Completely positive dynamical semigroups of N-level systems,” Journal of Mathematical Physics 17, 821–825 (1976).

Sandu Popescu and Daniel Rohrlich, “Generic quantum non-locality,” Physics Letters A 166, 293–297 (1992).

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).

Jonathan P Dowling and Gerard J Milburn, “Quantum technology: the second quantum revolution,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361, 1655–1674 (2003).

N. C. Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang Kim, Thaddeus D. Ladd, and Yoshihisa Yamamoto, “Layered architecture for quantum computing,” Phys. Rev. X 2, 031007 (2012).

Karol Horodecki, Marek Winczewski, and Siddhartha Das, “Fundamental limitations on the device-independent quantum conference key agreement,” Physical Review A 105, 022604 (2022).

R. Simon, “Peres-Horodecki Separability Criterion for Continuous Variable Systems,” Physical Review Letters 84, 2726–2729 (2000).

Herbert Spohn, “Entropy production for quantum dynamical semigroups,” Journal of Mathematical Physics 19, 1227–1230 (1978).