Ground state energy of \(q\)-state Potts model: the minimum modularity

J. S. Lee\(^1\), S. Hwang\(^2\), J. Yeo\(^3\), D. Kim\(^4\), and B. Kahng\(^5\)

\(^1\)School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea
\(^2\)Department of Physics and Astronomy, Seoul National University, Seoul 151-744, Korea
\(^3\)School of Physics, Konkuk University, Seoul 143-701, Korea

(Dated: March 25, 2014)

A wide range of interacting systems can be described by complex networks. A common feature of such networks is that they consist of several communities or modules, the degree of which may be quantified as the modularity. However, even a random uncorrelated network, which has no obvious modular structure, has a finite modularity due to the quenched disorder. For this reason, the modularity of a given network is meaningful only when it is compared with that of a randomized network with the same degree distribution. In this context, it is important to calculate the modularity of a random uncorrelated network with an arbitrary degree distribution. The modularity of a random network has been calculated [Phys. Rev. E 76, 015102 (2007)]; however, this was limited to the case whereby the network was assumed to have only two communities, and it is evident that the modularity should be calculated in general with \(q\) communities. Here, we calculate the modularity for \(q\) communities by evaluating the ground state energy of the \(q\)-state Potts Hamiltonian, based on replica symmetric solutions assuming that the mean degree is large. We found that the modularity is proportional to \(\langle \sqrt{k} \rangle / \langle k \rangle\) regardless of \(q\) and that only the coefficient depends on \(q\). In particular, when the degree distribution follows a power law, the modularity is proportional to \(\langle k \rangle^{-1/2}\). Our analytical results are confirmed by comparison with numerical simulations. Therefore, our results can be used as reference values for real-world networks.

I. INTRODUCTION

A wide range of networks, including, for example, the Internet, the world wide web, social relationships, and biological systems [1][4], may appear unrelated to each other. However, it has recently been shown that there exist several common features in such networks, including the existence of hub and fat-tailed degree distributions [5–7]. In particular, one important common feature is that a network consists of several communities, which are densely connected sub-networks compared with other parts of the network.

Understanding the community structure of a given network is of practical importance. A set of nodes in the same community typically has similar properties or functions. For example, nodes belonging to the same community found in the world wide web [8] and social networks [9] have similar topics and identities, respectively. In addition, nodes in the same community of a metabolic network have been shown to have similar metabolic functions [3][10]. Therefore, identifying the community structure provides information that aids in the understanding of the role of a specific node in a network. Moreover, the analysis of community structures of gene-disease and metabolite-disease networks may provide a method to predict complications associated with diseases [11].

Motivated by such practical importance, many authors have attempted to identify the optimal community structure of a given network, and a number of sophisticated algorithms to detect the possible optimal community structure have been reported [12][23]. Most of these algorithms make use of the property that the link density within a community is much larger than the inter-community link density. Therefore, it is crucial for community-detection algorithms to employ a suitable function to quantify such a property. A widely used function for this purpose is the modularity, introduced by Newman and Girvan [12]. The modularity function takes a community configuration as its argument and returns a value between 0 and 1. The modularity represents how modular a given network is, i.e., a larger modularity corresponds to a network that is more modularized or has a richer community structure.

The absolute value of the modularity, however, is not necessarily helpful in discerning how modular a network is. In other words, a finite modularity does not guarantee a truly modular structure of a network. In Ref. [24], Guimerà et al. showed that even a random uncorrelated network, which presumably does not have a modular structure, has a finite modularity because of the presence of quenched disorder. For example, Fig. 1(a) shows a random uncorrelated network generated using a static model [25]. Despite the lack of any obvious community structure, the modularity of this network is 0.51, which may be considered to be a relatively large value of the modularity in the usual sense. Fig. 1(b) shows another network with the same size and the same degree distribution. In this case, we can see a clear community structure, and the modularity is 0.72, which is larger than that of the first example.

It follows that the modularity is meaningful only when compared with a random uncorrelated network with the same degree distribution. Therefore, calculating the modularity of random uncorrelated networks with an arbitrary degree distribution is important to determine a...
reference modularity. Reichardt et al. [26] found that calculating the ground state energy of an Ising model of a network is equivalent to finding the modularity of the network if the network has two communities. Using this equivalence, they calculated the modularity of a random uncorrelated network with an arbitrary degree distribution assuming that the network had only two communities.

In general, however, it is clear that the modularity should be calculated with an arbitrary number of communities. Here, we denote the number of communities as \(q (\geq 2) \), and we calculate the modularity of networks with \(q \) communities. To achieve this, we map the modularity function for a network with \(q \) communities onto the ground state energy of the \(q \)-state Potts model. We then calculate the energy of the Potts model for a random uncorrelated network with an arbitrary degree distribution in the large mean-degree limit. Our main result is that the ground state energy is given by \(C(q) \langle \sqrt{\langle k \rangle} \rangle / \langle k \rangle \), Eq. (45), where the coefficient \(C(q) = -\sqrt{\frac{2-e^{-q}}{2\pi}} \) and \(\langle k \rangle \) is the mean degree of the network. Note that only the coefficient \(C(q) \) is \(q \)-dependent, and approaches a finite value when \(q \to \infty \). For a scale-free network, \(\langle \sqrt{\langle k \rangle} \rangle / \langle k \rangle \propto (\langle k \rangle)^{-1/2} \).

The remainder of this paper is organized as follows. In Sec. II, we first describe how the problem of finding a community structure can be mapped to that of finding the ground state of the \(q \)-state Potts model. This is achieved by comparing the modularity function with the Hamiltonian of the \(q \)-state Potts model. We then derive the replica-symmetric solutions for the free energy and energy of the Hamiltonian. In Sec. III, we give analytic expressions for the energy, especially the ground-state energy, for several \(q \). We also provide a conjecture for the ground state energy of the Hamiltonian for an arbitrary \(q \). In Sec. IV, we compare the analytical results with numerical simulations.

II. ANALYTIC SOLUTIONS FOR THE \(q \)-STATE POTTS MODEL

II.1. Hamiltonian of the \(q \)-state Potts model

We begin by describing the modularity and discussing how it is related to the \(q \)-state Potts model. Consider a network composed of \(N \) nodes, \(L \) edges, and \(q \) communities. The degree distribution of the network is \(p_k \). Let us arbitrarily assign a unique integer in the range from 1 to \(q \) to each community. Then let \(\sigma_i \) denote the number of communities assigned to a node \(i \). The modularity \(Q_{\text{MOD}} \) is defined as the difference between the proportion of the intra-community edges of a given network and the expected proportion of such edges in a random uncorrelated network with the same degree distribution.

That is, \(Q_{\text{MOD}} \) is given by

\[
Q_{\text{MOD}} = \frac{1}{L} \text{(number of intra-community edges)} - \frac{1}{L} \text{(expected number of such edges)} = \frac{1}{L} \sum_{i<j} (A_{ij} - \frac{k_i k_j}{\langle k \rangle N}) \delta(\sigma_i, \sigma_j),
\]

where the adjacency matrix element \(A_{ij} = 1 \) if there is an edge between two distinct nodes \(i \) and \(j \); otherwise, \(A_{ij} = 0 \). Here, \(k_i \) denotes the degree of node \(i \), i.e., \(k_i = \sum_j A_{ij} \), and \(\langle k \rangle \) is the mean degree of the network. Note that the term \(k_i k_j / (\langle k \rangle N) \equiv f_{ij} \) in the above expression is the connection probability between nodes \(i \) and \(j \) in a random uncorrelated network.

If a specific community structure \(\{\sigma_1, \cdots, \sigma_N\} \) is initially given, the calculation of the modularity is straightforward. However, in most cases, this information is not known a priori; rather, the optimal community structure is determined as the one that maximizes the modularity, which is chosen from all possible configurations of \(\{\sigma_1, \cdots, \sigma_N\} \). This maximum modularity will be denoted by \(Q_{\text{MOD}}^\star \). Therefore, a major task for community detection is finding the community configuration that maximizes the modularity. However, since the number of all possible configurations increases exponentially with \(N (\sim q^N) \), it is not generally feasible to enumerate and test all of them for a network with large \(N \).

To avoid such difficulties, several feasible algorithms [21,28,29] have been proposed. One particularly interesting approach is to use the \(q \)-state Potts model, the Hamiltonian of which is given by [26]

\[
\mathcal{H} = -\frac{1}{\langle k \rangle} \sum_{i<j}(A_{ij} - \eta f_{ij})\delta(\sigma_i, \sigma_j). \quad \left(f_{ij} = \frac{k_i k_j}{\langle k \rangle N} \right)
\]

where \(\sigma_i \) denotes the spin state of node \(i \) of \(q \) possible spin states and \(\eta \) is a control parameter. Note that the connection probability \(f_{ij} \) is typically very small, i.e., \(f_{ij} \ll 1 \). Therefore, when \(A_{ij} = 1 \) (\(A_{ij} = 0 \)), the coupling constant between nodes \(i \) and \(j \) becomes positive (negative); thus,
two spins, σ_i and σ_j, tend to be in the same (different) spin state(s) in order to lower the energy E of the Hamiltonian. The ground-state energy E_g of this model can be obtained from the spin configuration by minimizing the Hamiltonian. When $\eta = 1$, the ground-state energy is proportional to the maximized modularity Q_{MOD}^*, i.e.,

$$Q_{MOD}^* = -2E_g/N. \quad (3)$$

Therefore, finding the community structure of a network now becomes a problem of searching the ground state of the q-state Potts model Hamiltonian.

II.2. Free energy

In this section, we describe the calculation of the free energy of the q-state Potts model Hamiltonian \[2\] for an uncorrelated random network with an arbitrary degree distribution p_k as a reference value for the modularity. We assume that the typical free energy of Eq. (2) is the same as the quenched average of the free energy over the network configurations $\{A_{ij}\}$. Using the replica method, the configuration-averaged free energy is given by

$$[\ln Z]_c = \lim_{n \to 0} \frac{[Z^n]_c - 1}{n}, \quad (4)$$

where Z is the partition function of the Hamiltonian for a one-network configuration and $[\cdots]_c$ denotes the configuration-ensemble average \[30\, [31]. In the context of the replica method, n is assumed to be a non-zero integer, prior to discussing the limit $n = 0$. For any integer n, we can write the above expression as

$$[Z^n]_c = \left[(\text{Tr}_i e^{-\beta H})^n \right]_c$$

$$\approx \int \prod_{i<j} dJ_{ij} P(J_{ij}) \text{Tr}_{i,o} \exp \left[\frac{\beta}{\langle k \rangle} \sum_{i,j} J_{ij} \delta(\sigma_i^\alpha, \sigma_j^\alpha) \right],$$

where β is the inverse temperature, $J_{ij} \equiv (A_{ij} - \eta f_{ij})$, and $\text{Tr}_{i,o}$ denotes the sum of all possible spin states σ_i^α over all nodes in all the replicas. Using $P(J_{ij}) = f_{ij} \delta(J_{ij} - 1 + \eta f_{ij}) + (1 - f_{ij}) \delta(J_{ij} + \eta f_{ij})$, $[Z^n]_c$ becomes

$$Z^n_c = \text{Tr}_{i,o} \exp \left[\frac{k_i k_j}{\langle k \rangle} \right] \frac{1}{N} \delta(\sigma_i^\alpha, \sigma_j^\alpha) + \exp \left(\frac{\beta}{\langle k \rangle} \sum_{\alpha} \delta(\sigma_i^\alpha, \sigma_j^\alpha) - 1 \right). \quad (7)$$

To manipulate the Kronecker delta function, it is convenient to adopt the vector representation for q-state Potts spins \[33\, [34]. As shown in Fig. 2, each q-state Potts spin σ_i can be mapped to a q-dimensional vector \vec{S}_i. The angle between any two vectors is identical. Then, the Kronecker delta function can be written as

$$\delta(\sigma_i, \sigma_j) = \frac{1}{q} (r \vec{S}_i \cdot \vec{S}_j + 1)$$

$$= \frac{1}{q} (r \sum_{\mu} S_{i\mu} S_{j\mu} + 1), \quad (8)$$

where

$$r \equiv q - 1. \quad (9)$$

The vector-component index μ varies from 1 to r.

In this work, we consider the densely connected limit \[35\], i.e., $\beta \ll \langle k \rangle$ for fixed β. Then, by expanding the exponential term $\exp \left(\frac{\beta}{\langle k \rangle} \sum_{\alpha} \delta(\sigma_i^\alpha, \sigma_j^\alpha) \right)$ in Eq. (7) up to the second order in $\frac{\beta}{\langle k \rangle}$ and by using Eq. (8), Eq. (7) can be written as

$$[Z^n]_c = \exp \left(\frac{n \beta (1 - \eta) N}{2q} \right) A \quad (10)$$

with

$$A = \frac{1}{(1 - \eta) N} \left(\frac{k_i k_j}{\langle k \rangle} \right) \frac{1}{N} \delta(\sigma_i^\alpha, \sigma_j^\alpha).$$
FIG. 2. Potts spin vector. q-state Potts spin can be mapped into vertices of a $r (= q - 1)$-dimensional simplex.

\[\Lambda = \text{Tr}_{i,\alpha} \exp \left[\frac{C_1}{2} \sum_{\alpha,\mu} \left(\sum_i k_i (k_i) N S_{i\mu}^\alpha \right)^2 + \frac{C_2}{2} \sum_{\alpha,\mu\nu} \left(\sum_i k_i (k_i) N S_{i\mu}^\alpha S_{i\nu}^\alpha \right)^2 + \frac{C_2}{2} \sum_{\alpha,\mu\nu} \left(\sum_i k_i (k_i) N S_{i\mu}^\alpha S_{i\nu}^\alpha \right)^2 \right], \]

(11)

where

\[C_1 = \beta (1 - \eta) r q, \quad C_2 = \beta^2 r^2 q^2. \]

(12)

Note that the terms which are higher order than n are ignored in the above derivation since they will vanish as $n \to 0$.

Now, performing the Hubbard-Stratonovich transform on each quadratic term in Λ and applying the saddle point method subsequently, Λ becomes

\[\Lambda = \exp \left[-\frac{C_1}{2} \sum_{\alpha,\mu} (M_{\mu}^{\alpha})^2 - \sum_{\alpha,\beta,\mu\nu} \frac{C_2}{2} (Q_{\mu\nu}^{\alpha\beta})^2 - \sum_{\alpha,\mu\nu} \frac{C_2}{2} (T_{\mu\nu}^{\alpha})^2 + N \sum_k p_k \ln \text{Tr}_{\alpha} \exp H^{(k)} \right] \]

(13)

where p_k is the degree distribution of a given network and $H^{(k)}$ is given by,

\[H^{(k)} = \frac{k}{(k)} \left(C_1 \sum_{\alpha,\mu} S_{\mu}^{\alpha} M_{\mu}^{\alpha} + C_2 \sum_{\alpha,\beta,\mu\nu} S_{\mu}^{\alpha} S_{\nu}^{\beta} Q_{\mu\nu}^{\alpha\beta} + C_2 \sum_{\alpha,\mu\nu} S_{\mu}^{\alpha} S_{\nu}^{\alpha} T_{\mu\nu}^{\alpha} \right). \]

(14)

Here, M_{μ}^{α}, $Q_{\mu\nu}^{\alpha\beta}$ and $T_{\mu\nu}^{\alpha}$ are chosen to satisfy the saddle point condition. Their explicit replica-symmetric forms will be shown later in Eqs. (20) to (22). At this stage, we seek a replica symmetric solution so that we assume $M_{\mu}^{\alpha} \to M_{\mu}$, $Q_{\mu\nu}^{\alpha\beta} \to Q_{\mu\nu}$ and $T_{\mu\nu}^{\alpha} \to L_{\mu\nu}$. Then, Λ and $H^{(k)}$ can be simplified as,

\[\Lambda = \exp \left[-\frac{NC_1}{2} \sum_{\mu} (M_{\mu})^2 - \frac{NC_2}{2} \sum_{\mu\nu} (Q_{\mu\nu})^2 \right. \]

\[\left. -\frac{NC_2}{2} \sum_{\mu\nu} (L_{\mu\nu})^2 + N \sum_k p_k \ln \text{Tr}_{\alpha} \exp H^{(k)} \right] \]

(15)

The quadratic nature of the last term in Eq. (16) allows us to perform the modified Hubbard-Stratonovich transform. In Appendix. A it is shown that

\[\ln \text{Tr}_{\alpha} \exp H^{(k)} = n \int \mathcal{D}z \mathcal{D}w \ln \text{Tr} \exp h^{(k)} + O \left(n^2 \right), \]

(17)
where $Dz = \prod_{\mu\nu} \frac{dz_{\mu\nu}}{\sqrt{2\pi}} \exp \left(-\frac{z_{\mu\nu}^2}{2} \right)$ and $Dw = \prod_{\mu\nu} \frac{dw_{\mu\nu}}{\sqrt{2\pi}} \exp \left(-\frac{w_{\mu\nu}^2}{2} \right)$ and $h^{(k)}$ is defined as

$$h^{(k)} = \frac{kC_1}{\langle k \rangle} \sum_{\mu} S_\mu M_\mu$$

$$+ \frac{kC_2}{\langle k \rangle} \sum_{\mu\nu} S_\mu S_\nu (L_{\mu\nu} - Q_{\mu\nu})$$

$$+ \sum_{\mu\nu} \sqrt{2kC_2Q_{\mu\nu}} \{ S_{\mu\nu}^2 + A_{\mu\nu} w_{\mu\nu} \}, \quad (18)$$

with $S_{\mu\nu} = \frac{1}{2}(S_\mu + S_\nu)$ and $A_{\mu\nu} = \frac{1}{2}(S_\mu - S_\nu)$.

From Eqs. (10), (15) and (17), the free energy density f is given by

$$f = -\frac{1}{\beta} \lim_{n \to 0} \frac{\langle Z^n \rangle - 1}{nN}$$

$$= -\frac{(1 - \eta)}{2q} + C_1 \frac{1}{2\beta} \sum_{\mu} M_{\mu}^2 + C_2 \frac{1}{2\beta} \sum_{\mu\nu} \left(L_{\mu\nu}^2 - Q_{\mu\nu}^2 \right)$$

$$- \frac{1}{\beta} \sum_{k} p_k \int Dz Dw \ln \left(Tr \exp h^{(k)} \right). \quad (19)$$

Here, M_μ, $L_{\mu\nu}$, and $Q_{\mu\nu}$ are determined by minimization of the free energy. For M_μ, the condition $\frac{\partial f}{\partial M_\mu} = 0$ gives

$$M_\mu = \sum_{k} p_k \frac{k}{\langle k \rangle} \int Dz Dw \langle S_\mu \rangle_{h^{(k)}} \quad (20)$$

where $\langle \circ \rangle_{h^{(k)}}$ denotes the expectation value with respect to $h^{(k)}$, namely, $\langle \circ \rangle_{h^{(k)}} = \frac{Tr (\circ \exp h^{(k)})}{Tr \exp h^{(k)}}$. Similarly, one can find

$$L_{\mu\nu} = \sum_{k} p_k \frac{k}{\langle k \rangle} \int Dz Dw \left(S_\mu S_\nu \right)_{h^{(k)}} \quad (21)$$

and

$$Q_{\mu\nu} = L_{\mu\nu} - \sum_{k} p_k \sqrt{\frac{k}{2\langle k \rangle} C_2 Q_{\mu\nu}}$$

$$\int Dz Dw \left(S_{\mu\nu}^2 + A_{\mu\nu} w_{\mu\nu} \right)_{h^{(k)}}$$

$$= \sum_{k} p_k \frac{k}{\langle k \rangle} \int Dz Dw \left(S_\mu \right)_{h^{(k)}} \left(S_\nu \right)_{h^{(k)}}, \quad (22)$$

where the last equality in Eq. (22) is obtained by integration by parts. From Eqs. (21) and (22), one can easily check that $L_{\mu\mu} = L_{\mu\nu}$ and $Q_{\mu\mu} = Q_{\mu\nu}$. By a proper rotation of r-dimensional space, any r-dimensional vector (M_1, M_2, \cdots, M_r) can be transformed into one satisfying the following condition,

$$M_\mu = M_1 \delta_{\mu 1}. \quad (23)$$

In this coordinate setting, one can prove some important identities for $Q_{\mu\nu}$ and $L_{\mu\nu}$ such as $Q_{\mu\nu} = L_{\mu\nu} = 0$ for $\mu \neq \nu$, $L_{\mu\mu} = L_{\nu\nu}$, and $Q_{\mu\mu} = Q_{\nu\nu}$ for $\mu > 1$ and $\nu > 1$, and $\sum_{k} L_{\mu\mu} = 1$, which are derived in Appendix. C. Using them, we finally obtain

$$f = -\frac{(1 - \eta)}{2q} + C_1 \frac{1}{2\beta} M_1^2 + C_2 \frac{1}{2\beta} \sum_{\mu} \left(L_{\mu\mu}^2 - Q_{\mu\mu}^2 \right)$$

$$- \frac{1}{\beta} \sum_{k} p_k \int Dz \ln \left(Tr \exp h^{(k)} \right), \quad (24)$$

where $h^{(k)}$ is now simplified as Eq. (C11). Note that in the above equation the integral with respect to $f Dw$ disappears and Dz is reduced to $\prod_{\mu\nu} \frac{dz_{\mu\nu}}{\sqrt{2\pi}} \exp \left(-\frac{z_{\mu\nu}^2}{2} \right)$ (see Appendix. C). From now on, $\int Dz$ means the product of integrals with respect to only the diagonal integral variables $z_{\mu\mu}$ if there is no other comment.

II.3. Energy

From Eq. (24), the energy E is given by
Using Eqs. (20) to (22), the three terms in the average \((\bullet)_{h(k)}\) in Eq. (25) can be reduced to

\[
\sum_k p_k k \int Dz \langle S_1 \rangle_{h(k)} = M_1
\]

(26a)

\[
\sum_k p_k k \int Dz \langle S_\mu^2 \rangle_{h(k)} = L_{\mu\mu}
\]

(26b)

\[
\sum_k p_k \int Dz \frac{\sqrt{k S_\mu z_{\mu\mu}}}{\sqrt{\beta^2 (k)}} \langle h(k) \rangle = \frac{2 C_2 Q_{\mu\mu}}{\beta} (L_{\mu\mu} - Q_{\mu\mu})
\]

(26c)

With these equations, one can simplify Eq. (25) as

\[
E/N = - \frac{(1 - \eta)}{2q} - \frac{C_1}{2 \beta} M_1^2 + \frac{C_2}{\beta} \sum_\mu \left(L_{\mu\mu}^2 - Q_{\mu\mu}^2 \right)
\]

(27)

By plugging the solutions of the self-consistent equations (26) into Eq. (27), we can calculate the energy for any \(\beta\) and \(\eta\).

II.4. Energy for \(\eta = 1\) case

When \(\eta = 1\), the energy is proportional to the modularity \([12, 20]\) as explained in Sec. II.1. In this case, the order parameter \(M_1\) becomes zero, \(L_{\mu\mu} = \frac{1}{r}\) for all \(\mu\) as shown in Eqs. (9a) and (9b), and \(Q_{\mu\mu} = Q_{\nu\nu}\) for any \(\mu\) and \(\nu\) as shown in Eq. (20). Thus, Eq. (27) is simplified as

\[
E/N = - \frac{C_2}{\beta} \sum_\mu \left(L_{\mu\mu}^2 - Q_{\mu\mu}^2 \right) = - \frac{r C_2}{\beta} \left(L_{11}^2 - Q_{11}^2 \right)
\]

(28)

As \(\beta\) becomes large, Eq. (22) implies that \(Q_{\mu\mu} = L_{\mu\mu} + \mathcal{O} (1/\beta)\). The sub-leading order term becomes

\[
\beta (Q_{\mu\mu} - L_{\mu\mu}) = - \sum_k p_k \sqrt{\frac{k q^2}{r}} \int Dz \ z_{\mu\mu} \langle S_\mu \rangle_{h(k)}
\]

(29)

Finally, one can obtain

\[
E/N = r \sqrt{\frac{q}{k}} \sum_k p_k \sqrt{k} \int Dz \ z_{\mu\mu} \langle S_\mu \rangle_{h(k)}
\]

(30)

III. GROUND STATE ENERGY FOR EACH \(q\)

III.1. \(q = 2\)

In this case, Potts spins become one-dimensional vectors, which greatly simplifies the trace with respect to \(h(k)\) as follows,

\[
\text{Tr} \exp h(k) = \exp \left(\frac{\beta^2 k}{8 (k)} (1 - Q_{11}) \right) 2 \cosh (\beta h(z))
\]

(31)

and

\[
\text{Tr} S_1 \exp h(k) = \exp \left(\frac{\beta^2 k}{8 (k)} (1 - Q_{11}) \right) 2 \sinh (\beta h(z))
\]

(32)

where \(z = z_{11}\) and \(\beta h(z) = \frac{\beta (1 - \eta)}{2 (k)} M_1 + \frac{\beta \sqrt{\pi}}{4} \sqrt{Q_{11}} z\). Using Eqs. (31) and (32), the self-consistent equations (20), (21), and (22) become

\[
M_1 = \sum_k p_k \langle k \rangle \int Dz \tan h (\beta h(z))
\]

(33a)

\[
Q_{11} = \sum_k p_k \langle k \rangle \int Dz \tanh (\beta h(z))
\]

(33b)

\[
L_{11} = \sum_k p_k \langle k \rangle \int Dz 1 = 1
\]

(33c)

where \(Dz = \frac{4 \sqrt{2 \pi}}{q} \exp \left(- \frac{z^2}{2} \right)\).

Finally, the free energy, Eq. (24), and the energy, Eq. (27), become

\[
f = - \frac{1 - \eta}{4} (1 - M_1^2) - \frac{\beta}{16 \langle k \rangle} (Q_{11} - 1)^2 - \frac{1}{\beta} \sum_k p_k \int Dz \ln 2 \cosh (\beta h(z))
\]

(34a)

and

\[
E/N = - \frac{1 - \eta}{4} (1 + M_1^2) - \frac{\beta}{8 \langle k \rangle} (1 - Q_{11}^2) - \frac{1 - \eta}{4} (1 + M_1^2) - \frac{\beta (1 + Q_{11})}{8 \langle k \rangle} q - \frac{q}{\beta \sqrt{Q_{11}}}
\]

(34b)

\times \sum_k p_k \sqrt{k} \int Dz \ z \tanh (\beta h(z))
respectively. Eq. (22) is used for deriving the last equality in the above equation. Setting \(\eta = 1 \) and taking the \(\beta \to \infty \) limit [36], the ground state energy is given by

\[
E_g/N = -\frac{1}{2 \langle k \rangle} \sum_k p_k \sqrt{k} \int_{-\infty}^{\infty} \frac{dz}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) |z| = -\frac{1}{\sqrt{2\pi}} \frac{\langle \sqrt{k} \rangle}{\langle k \rangle}.
\]

(35)

Note that this is in agreement with the result presented in [26].

III.2. \(q=3 \)

For the \(q = 3 \) case, \(h^{(k)}_i \) in Eq. [C11] for each Potts spin vector can be written as

\[
h^{(k)}_1 = \frac{\beta(1-\eta)rk}{q \langle k \rangle} M_1 + \frac{\beta^2r^2k}{2 \langle k \rangle^2 q^2} (L_{11} - Q_{11}) + \frac{\beta r}{\langle k \rangle q} \sqrt{kQ_{11}z_{11}},
\]

(36a)

\[
h^{(k)}_2 = -\frac{\beta(1-\eta)rk}{2q \langle k \rangle} M_1 + \frac{\beta^2r^2k}{2 \langle k \rangle^2 q^2} \left[\frac{(L_{11} - Q_{11})}{4} + \frac{3(L_{22} - Q_{22})}{4} \right] + \frac{\beta r}{\langle k \rangle q} \left[-\sqrt{kQ_{11}z_{11}} - \sqrt{3kQ_{22}z_{22}} \right],
\]

(36b)

\[
h^{(k)}_3 = -\frac{\beta(1-\eta)rk}{2q \langle k \rangle} M_1 + \frac{\beta^2r^2k}{2 \langle k \rangle^2 q^2} \left[\frac{(L_{11} - Q_{11})}{4} + \frac{3(L_{22} - Q_{22})}{4} \right] + \frac{\beta r}{\langle k \rangle q} \left[-\sqrt{kQ_{11}z_{11}} + \sqrt{3kQ_{22}z_{22}} \right].
\]

(36c)

Note that \(\langle S_{\mu} \rangle^{(k)} = \sum_{i=1}^q S_{i,\mu} \exp h^{(k)}_i / \sum_{i=1}^q \exp h^{(k)}_i \), where \(S_{i,\mu} \) is the \(\mu \)-th component of \(S_{\mu}^{(q)} \) (see Appendix [B]). As \(\beta \to \infty \), the largest term in the summation dominates among \(\exp h^{(k)}_1 \), \(\exp h^{(k)}_2 \), and \(\exp h^{(k)}_3 \). Now let us define

1. \(\ell_1 = z_{22} - \sqrt{\frac{3Q_{11}}{Q_{22}}} z_{11} - G \),
2. \(\ell_2 = z_{22} + \sqrt{\frac{3Q_{11}}{Q_{22}}} z_{11} + G \),
3. \(\ell_3 = z_{22} \),

where

\[
G = \sqrt{3} \frac{(1-\eta)}{\sqrt{Q_{22}}} \frac{M_1}{3Q_{11}} + \frac{\sqrt{3}kr}{4 \langle k \rangle q \sqrt{Q_{22}}} (\beta(L_{11} - Q_{11}) - \beta(L_{22} - Q_{22})).
\]

(37)

Note that the three lines \(\ell_1 = 0 \), \(\ell_2 = 0 \), and \(\ell_3 = 0 \) meet at one point \(\left(-G\sqrt{\frac{Q_{22}}{3Q_{11}}}, 0\right) \) in a 2-dimensional plane \((z_{11}, z_{22}) \) and divide a whole plane into three regions \(A \), \(B \), and \(C \) as follows:

1. \(A : \ell_1 < 0 \) and \(\ell_2 > 0 \),
2. \(B : \ell_1 > 0 \) and \(\ell_3 > 0 \),
3. \(C : \ell_2 < 0 \) and \(\ell_3 < 0 \).

Other self-consistent equations in Eqs. (26b) and (26c) can also be written in terms of the regions in the similar way. Calculation details are presented in Appendix [D]. Collecting all the new self-consistent equations written in terms of the regions \(A \), \(B \) and \(C \), the ground state energy, Eq. (27), can now be calculated as

\[
E_g/N = -\frac{1-\eta}{2} (1 - 4D + 6D^2)
\]

\[
-\frac{1}{\langle k \rangle} \left(-2 \sqrt{1 - \frac{3}{2} DX + \sqrt{2DY}} \right),
\]

(40)

where

\[
X = \sum_k p_k \sqrt{k} \int_B Dz \ z_{11} \quad \text{and} \quad Y = \sum_k p_k \sqrt{k} \int_B Dz \ z_{22}.
\]
Here, X and Y are the self-consistently determined quantities (see Appendix. D). In the case of $\eta = 1$, D becomes $\frac{1}{3}$ and thus,

$$E_g/N = -\frac{1}{\langle k \rangle} \left(-\sqrt{2}X + \sqrt{\frac{2}{3}}Y \right) = -\sqrt{\frac{3}{2\pi}} \frac{\langle \sqrt{k} \rangle}{\langle k \rangle}.$$

(41)

III.3. $q=4$

For $q = 4$, calculation of the ground state energy is rather complicated and tedious, but proceeds in a similar way as the previous section; in this case, the three-dimensional plane (z_{11}, z_{22}, z_{33}) is divided into four regions and the self-consistent equations are written as the integral over the divided regions. Here, we present only the final result for the ground state energy when $\eta = 1$ as below:

$$E/N = -\frac{3\sqrt{3}}{4\langle k \rangle} \sum_k p_k \sqrt{k} \int \mathcal{D}z \exp \frac{h(k)}{3} \frac{\exp h(k)}{\text{Tr} h(k)}$$

(42)

where $\mathcal{D}z = \prod_{\mu=1}^3 \frac{dz_{\mu\mu}}{\sqrt{2\pi}}$. Then,

$$E_g/N \approx -\frac{3\sqrt{3}}{2} \times 0.243 \sum_k p_k \sqrt{k} \approx -\sqrt{\frac{3}{2\pi}} \frac{\langle \sqrt{k} \rangle}{\langle k \rangle}.$$

(43)

III.4. Conjecture for a general q

By extrapolating the results, Eqs. (35), (41) and (43), we conjecture a formula for the ground state energy for general q with $\eta = 1$ as follows;

$$E_g/N = -\sqrt{\frac{2 - \frac{q^2}{q-1}}{2\pi}} \frac{\langle \sqrt{k} \rangle}{\langle k \rangle}.$$

(44)

The above conjecture will be tested numerically in the next section. Then, from Eq. (3), the modularity of a random uncorrelated network with arbitrary degree distribution based on q communities becomes

$$[Q_{\text{MOD}}]_c = 2\sqrt{\frac{2 - \frac{q^2}{q-1}}{2\pi}} \frac{\langle \sqrt{k} \rangle}{\langle k \rangle}.$$

(45)

IV. NUMERICAL SIMULATIONS

Here, we describe the results of numerical simulations and compare them with the analytical expressions derived in the previous sections. We used the static model introduced by Goh et al. [25] to generate an ensemble of random networks. The term ‘static’ originates from the fact that the number of vertices N of a network is fixed while constructing a network sample. In this model, a normalized weight P_i ($\sum_i P_i = 1$) is assigned to each vertex i. We consider the case whereby P_i follows a power-law form, i.e., $P_i = i^{-\alpha}$ ($\sum_j j^{-\alpha}$). A network is constructed via the following process. In each time step, the two vertices i and j are selected with probabilities P_i and P_j, respectively. If $i = j$ or an edge connecting i and j already exists, we do nothing; otherwise, an edge is added between vertices i and j. We repeat this step NK times. The probability that a given pair of vertices i and j is not connected by an edge following this process is given by $(1 - 2P_iP_j)^{NK} \approx e^{-2NKP_iP_j}$. Thus, the connection probability for nodes i and j is $1 - e^{-2NKP_iP_j}$. Here, we used the condition $P_i \ll 1$. The factor 2 in the exponent comes from the equivalence of (ij) and (ji). The connection probability f_{ij} can thus be approximated as $f_{ij} \approx 2NKP_iP_j \approx \langle k_i \rangle \langle k_j \rangle / (\langle k \rangle N)$ in the thermodynamic limit, where we used the fact $\langle k_i \rangle = 2KNP_i$ in this limit [39]. The resulting network is scale-free and has a degree exponent γ given by

$$\gamma = 1 + \frac{1}{\alpha}.$$

(46)
Note that a network generated by the static model becomes uncorrelated when $\gamma \geq 3$ [39]. Therefore, we performed the simulation on a network with $\gamma \geq 3$. For this scale-free network, the Eq. (45) becomes

$$|Q_{\text{MOD}}|^c = 2 \sqrt{\frac{2 - \frac{1}{q} \sqrt{(\gamma - 1)(\gamma - 2)}}{2\pi}} \langle k \rangle^{-1/2}. \quad (47)$$

The size of the networks N used in this study was 10000, and the exponents of the degree distributions were 3.0, 3.5, 4.0, and 4.5. As $\gamma \to \infty$ limit, we also performed the same numerical simulations for the Erdős-Rényi (ER) network [40] of the same size.

Since finding the ground state of the Potts model Hamiltonian is an NP-hard problem, it is practically impossible to do so for very large networks. Instead, we used the simulated annealing method [41] to obtain an approximate solution. Initially, one of the q possible spins was randomly assigned to each node in the network. The initial temperature was set to be sufficiently high. In the Monte Carlo simulation, we chose one spin at random, and determined whether the spin state was changed according to the Metropolis algorithm. This procedure was repeated until the system reached a stationary state at a fixed temperature. The temperature was then reduced according to a predefined schedule, and the simulation was repeated until it reached a stationary state for this new temperature. The final state, i.e., the stationary state at zero temperature, was assumed to be the ground state of the system.

Fig. 3 shows a plot of $|Q_{\text{MOD}}|^c$ versus η for $q = 3$, $\langle k \rangle = 64$, and $\gamma = 3.5$. The analytical results were in very good agreement with the simulated data. As η approached 0, the interaction between Potts spins became more ferromagnetic and $M_1 \to 1$. We then found that $D \to 0$ from Eq. (D3), which made $|Q_{\text{MOD},\eta}|^c \approx 1 - \eta$, from Eq. (40).

Fig. 4 (a) shows $|Q_{\text{MOD}}|^c$ as a function of $\langle k \rangle$ for various γ with $\eta = 1.0$ and $q = 3$. Note that $|Q_{\text{MOD}}|^c$ was rescaled by $\sqrt[3]{\frac{(\gamma - 1)(\gamma - 2)}{(\gamma - 3)/2}}$ in order to observe the collapsing behavior. As can be expected from the analytical results, all the simulated data collapsed onto the curve given by Eq. (47). Fig. 4 (b) shows $|Q_{\text{MOD}}|^c$ as a function of $\langle k \rangle$ for various q with $\eta = 1.0$ and $\gamma = 3.5$. In this case, $|Q_{\text{MOD}}|^c$ was rescaled by $\sqrt{2 - \frac{1}{q - 1}}$. This collapsing behavior confirms our conjecture (44) for the ground state energy of the Potts model for $q > 4$. The correspondence between our theoretical and simulated data indicates that the replica symmetric (RS) solution is valid for calculating the energy of the Potts model. We also note that the analytical results can be improved by taking into account the replica symmetry breaking (RSB) solutions. For example, as stated in Ref. [25], for $q = 2$, the modularity obtained from the RSB solution is more accurate. The difference in modularity between RS and RSB was approximately 6%. However, this small difference is not significant in the logarithmic scale, as can be seen from Fig. 4.
V. CONCLUSION

We have described a community detection method based on maximizing the modularity function, which is equivalent to finding a ground state energy of the q-state Potts model Hamiltonian, Eq. (2), when $\eta = 1$. Because a random uncorrelated network has a finite modularity due to quenched disorder, the modularity of a given network is meaningful only when it is compared with that of a random network. Therefore, we analytically calculated the modularity of a random uncorrelated network as a reference by finding the ground state energy of the q-state Potts model. We used the replica method to find a replica symmetric solution. We also studied the densely connected regime where $\beta \ll \langle k \rangle$, even if we take the limit $\beta \to \infty$, which is described formally at the later stages of the calculation.

We showed that, for an arbitrary q, the modularity is proportional to $\langle k \rangle^{-0.5}$ when $\eta = 1$ in the large average degree limit. We also performed simulations using the simulated annealing method to find the ground state of the q-state Potts model and showed that our analytical results were in good agreement with the simulated data. Our results provide a theoretical minimum value over which the modularity of a network becomes meaningful.

In addition, our calculation method may be applicable to evaluating the energy of a similar type of q-state Potts model.

ACKNOWLEDGMENTS

This research was supported by the NRF grant Nos. 2011-35B-C00014 (JSL) and 2010-0015066 (BK).

Appendix A: Linearization of quadratic spin product

We begin by introducing the modified Hubbard-Stratonovich transform as follows:

$$
\exp(2\lambda^2 a b) = \iint \frac{dz}{\sqrt{2\pi}} \frac{dw}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} z^2 - \frac{1}{2} w^2 + \lambda(a + b)z + i\lambda(a - b)w \right).
$$

(A1)

Using the above transformation, the last term of the exponent in Eq. (16) becomes,

$$
\exp \left[\frac{k C^2}{\langle k \rangle} \sum_{\mu\nu} Q_{\mu\nu} \left(\sum_{\alpha} S^\alpha_{\mu} \right) \left(\sum_{\beta} S^\beta_{\nu} \right) \right]
$$

where $Dz Dw = \prod_{\mu\nu} \frac{dz_{\mu\nu}}{\sqrt{2\pi}} \frac{dw_{\mu\nu}}{\sqrt{2\pi}} \exp \left(-\frac{z_{\mu\nu}^2}{2} - \frac{w_{\mu\nu}^2}{2} \right)$. Note that the term quadratically coupled by two replica indices is now linearized in the final expression. Then, the trace of $\exp \mathcal{H}^{(k)}$ of Eq. (16) can be evaluated as,

$$
\text{Tr}_{\alpha} \exp \mathcal{H}^{(k)} = \int \int Dz Dw \left(\text{Tr} \exp h^{(k)} \right)^{n},
$$

(A3)

where $h^{(k)}$ is defined in Eq. (18).

Appendix B: Vector representation of q-states Potts model

Consider a r-dimensional simplex with q vertices whose center of mass is located at the origin. If we define θ_q be the angle between any two vectors pointing from the origin to the vertices of the simplex, it satisfies $\cos \theta_q = -\frac{1}{q-1}$. Because Potts spin vectors can be identically mapped to the vectors of the simplex [42], r-dimensional Potts vector can be expressed by θ_q. For $q = 2$, $S^{(2)}_1 = (1)$ and $S^{(2)}_2 = (\cos \theta_2)$. For $q = 3$, $S^{(3)}_1 = (1, 0)$, $S^{(3)}_2 = (\cos \theta_3, \sin \theta_3)$ and $S^{(3)}_3 = (\cos \theta_3, \sin \theta_3 \cos \theta_2)$. Apart from $S^{(3)}_1$, the other two vectors can be written as, $S^{(3)}_2 = \cos \theta_3 || \sin \theta_3 S^{(2)}_1$ and $S^{(3)}_3 = \cos \theta_3 || \sin \theta_3 S^{(2)}_2$, where the concatenation operator $||$ is defined as $a||b||c = (a, b_1, b_2, \cdots, b_k)$. With this operator, the q-states Potts spin vectors can be written as $\tilde{S}^{(q)}_1 = (1, 0, \cdots, 0)$ and $\tilde{S}^{(q)}_\ell = \cos \theta_q || \sin \theta_q \tilde{S}^{(q-1)}_{\ell-1}$ for $\ell = 2, \cdots, q$. By construction, one can prove the several identities stated below. Let $S_{t,\mu}$ be the μ-th element of $\tilde{S}^{(q)}_t$. Then, one can verify

$$
S_{t,\mu} = 0,
$$

(B1)

for $1 \leq t \leq \mu - 1$ and

$$
S_{t,\nu} = S_{\nu+1,\nu},
$$

(B2)
for $\nu < t$. It can also be shown that

\[\sum_{\mu=1}^{q-1} S_{t,\mu} S_{u,\mu} = 1 - (1 - \delta_{tu})(1 - \cos \theta), \quad (B3a) \]

\[\sum_{t=1}^{q} (S_{t,\mu})^2 = \frac{q}{q-1}, \quad (B3b) \]

\[\sum_{t=1}^{q} S_{t,\mu} = 0. \quad (B3c) \]

Appendix C: Properties of $L_{\mu\nu}$ and $Q_{\mu\nu}$

In Eq. (21), the expression $\left< S_{\mu} S_{\nu}^\prime \right>_{h^{(k)}}$ for $\mu > \nu$ can be simplified as,

\[\left< S_{\mu} S_{\nu}^\prime \right>_{h^{(k)}} = \frac{\text{Tr} S_{\mu} S_{\nu} \exp h^{(k)}}{\text{Tr} \exp h^{(k)}} = \sum_{t=1}^{q} S_{t,\mu} S_{t,\nu} \exp h^{(k)} \quad (C1) \]

\[= \sum_{t=1}^{q} S_{t,\mu} S_{t,\nu} \exp h^{(k)} \quad (C2) \]

\[= S_{\mu,\nu} \left< S_{\mu} \right>_{h^{(k)}}, \quad (C3) \]

where $h^{(k)}$ denotes a $h^{(k)}$ calculated at $S_{1}^{(q)}$. Note that Eqs. (B1) and (B2) are used for the third and fourth equalities, respectively, in the above equation. Using the facts that $\sum_{k} p_{k}^{(1)} \int DzDw \left< S_{\mu} \right>_{h^{(k)}} = M_{\mu} = 0$ for $\mu > 1$ and $L_{\mu\nu} = L_{\nu\mu}$, we have

\[L_{\mu\nu} = 0 \quad (C2) \]

for $\mu \neq \nu$.

Next, we will show that $L_{\mu\nu} = L_{\nu\nu}$ for $\mu > 1$ and $\nu > 1$. First, it is useful to consider the sum of $L_{\mu\mu}$.

\[L_{\mu\mu} = \sum_{\mu=1}^{q} \sum_{k} p_{k}^{(1)} \int DzDw \left< S_{\mu}^2 \right>_{h^{(k)}} = \sum_{k} p_{k}^{(1)} \int DzDw \left< \sum_{\mu=1}^{q} S_{\mu}^2 \right>_{h^{(k)}} = 1, \quad (C3) \]

where Eq. (B3a) is used for the last equality. Here, $DzDw = \prod_{\mu\nu} d_{\mu\nu} \sqrt{2\pi} \exp \left(-\frac{z_{\mu}^{2}}{2} - \frac{w_{\mu\nu}^{2}}{2} \right)$. To proceed further, we define a quantity,

\[V_{t} = \sum_{k} p_{k}^{(1)} \int DzDw \exp h^{(k)} \quad (C4) \]

Then, M_{μ} can be written as the sum of V_{t} and $S_{t,\mu}$, i.e.,

\[M_{\mu} = \sum_{t=1}^{q} V_{t} S_{t,\mu}, \quad (C5) \]

for $\mu = 1, \ldots, q-1$. The set of linear equations, Eq. (C5), can be solved and the solution is

\[V_{m} = V_{2} \quad (C6) \]

for $m = 3, \ldots, q$ and $V_{1} = M_{1} + V_{2}$. Thus, one finds that for $\mu > 1$,

\[L_{\mu\mu} = \sum_{k} p_{k}^{(1)} \int DzDw \left< S_{\mu}^2 \right>_{h^{(k)}} = \sum_{t=1}^{q} V_{t} S_{t,\mu}^{2} = \sum_{t=1}^{q} V_{t} S_{t,\mu}^{2} = \frac{q}{q-1}, \quad (C7) \]

where Eqs. (B1), (B3b) and (C6) are used for the third, last and fourth equalities, respectively. Similarly, we obtain

\[L_{11} = V_{1} + \frac{V_{2}}{q-1}. \quad (C8) \]

Plugging Eqs. (C7) and (C8) into Eq. (C3), $L_{\mu\mu}$ is given by,

\[L_{11} = \frac{1 + (q-2)M_{1}}{q-1}, \quad (C9a) \]

and

\[L_{22} = 1 - \frac{M_{1}}{q-1} = L_{\nu\nu} \quad \text{for } \nu > 1. \quad (C9b) \]

Next, let us examine the properties of $Q_{\mu\nu}$. We will show that there exist non-trivial solutions for the self-consistent Eq. (22) satisfying the following conditions

\[Q_{\mu\nu} = 0 \quad (C10a) \]

for $\mu \neq \nu$ and

\[Q_{\mu\nu} = Q_{\nu\nu} \quad (C10b) \]

for $\mu > 1$ and $\nu > 1$. With these conditions, $h^{(k)}_{t}$ in Eq. (18) can be written as

\[h^{(k)}_{t} = \frac{kC_{1}}{\langle k \rangle} S_{t,1} M_{1} + \frac{kC_{2}}{\langle k \rangle} S_{t,1}^{2} (L_{11} - Q_{11}) + \frac{kC_{2}}{\langle k \rangle} (L_{22} - Q_{22}) \sum_{\mu=2}^{r} S_{t,\mu}^{2} \]

\[+ \sqrt{2kC_{2}Q_{11}} S_{t,1} z_{11} + \sqrt{2kC_{2}Q_{22}} \sum_{\mu=2}^{r} S_{t,\mu} z_{\mu\nu}. \quad (C11) \]
If we define $\tilde{Q}_{11} = \sqrt{\frac{2C_2}{\langle k \rangle}} Q_{11}$ and $\tilde{Q}_{22} = \sqrt{\frac{2C_2}{\langle k \rangle}} h_1^{(k)}$ for $t = 1$ and $t = w > 1$ can be written as

$$h_1^{(k)} = B_1 + \tilde{Q}_{11} z_{11}, \quad \text{and}$$

$$h_w^{(k)} = B_2 - \tilde{Q}_{11} \frac{z_{11}}{r} + \tilde{Q}_{22} S^{(q)}_w \cdot \tilde{z}, \quad (C12)$$

respectively, where

$$B_1 = kC_1 \frac{M_1}{\langle k \rangle} + \frac{kC_2}{\langle k \rangle} (L_{11} - Q_{11}),$$

$$B_2 = - \frac{kC_1 M_1}{\langle k \rangle r} + \frac{kC_2}{r^2} (L_{11} - Q_{11}) + \frac{kC_2}{r^2} (\langle k \rangle r^2 - 1),$$

$$S^{(q)}_t = (S_{t,1}, S_{t,2}, \ldots, S_{t,r}),$$

$$\tilde{z} = (0, z_{22}, z_{33}, \ldots, z_{rr}). \quad (C13)$$

Note that B_1 and B_2 have nothing to do with the auxiliary integration variables $z_{\mu \nu}$.

From Eq. (22), $Q_{\mu \nu}$ can be written as

$$Q_{\mu \nu} = \sum_k \sum_{q=1}^{\langle k \rangle} p_k k \int Dz \frac{\left(\sum_{t=1}^{q} S_{t,\mu} \exp h_t^{(k)} \right)^2}{\left(\sum_{t=1}^{q} \exp h_t^{(k)} \right)^2}$$

$$= \sum_u S_{u,\mu} \sum_v S_{v,\nu} \sum_k \frac{p_k k}{\langle k \rangle} \int Dz \exp h_u^{(k)} \exp h_v^{(k)} \left(\frac{\sum_{t=1}^{q} \exp h_t^{(k)}}{\sum_{t=1}^{q} \exp h_t^{(k)}} \right)^2. \quad (C14)$$

Note that in the above equation the integral with respect to $\int Dw$ disappears because $A_{\mu \nu} = 0$ for $\nu = \mu$ and $Q_{\mu \nu} = 0$ for $\nu \neq \mu$. Thus, all the integration variables $w_{\mu \nu}$ in $h_t^{(k)}$ in Eq. (18) vanish. In addition, now $Dz = \frac{p_k k}{\langle k \rangle} \int Dz \exp h_1^{(k)} \exp h_2^{(k)} \left(\frac{\sum_{t=1}^{q} \exp h_t^{(k)}}{\sum_{t=1}^{q} \exp h_t^{(k)}} \right)^2$.

$$Q_{11} = \sum_u S_{u,1} \sum_k \frac{p_k k}{\langle k \rangle} \int Dz \exp h_1^{(k)} \left(\frac{\sum_{t=1}^{q} \exp h_t^{(k)}}{\sum_{t=1}^{q} \exp h_t^{(k)}} \right)^2 + \sum_{u \neq v} S_{u,1} S_{v,1} \sum_k \frac{p_k k}{\langle k \rangle} \int Dz \exp h_u^{(k)} \exp h_v^{(k)} \left(\frac{\sum_{t=1}^{q} \exp h_t^{(k)}}{\sum_{t=1}^{q} \exp h_t^{(k)}} \right)^2.$$

$$= S_{1,1}^2 \sum_k \frac{p_k k}{\langle k \rangle} \int Dz \exp h_1^{(k)} \left(\frac{\sum_{t=1}^{q} \exp h_t^{(k)}}{\sum_{t=1}^{q} \exp h_t^{(k)}} \right)^2 + \sum_u S_{u,1} \sum_k \frac{p_k k}{\langle k \rangle} \int Dz \exp h_u^{(k)} \exp h_1^{(k)} \left(\frac{\sum_{t=1}^{q} \exp h_t^{(k)}}{\sum_{t=1}^{q} \exp h_t^{(k)}} \right)^2$$

$$+ 2 \sum_{v=2}^{q} S_{v,1} \sum_k \frac{p_k k}{\langle k \rangle} \int Dz \exp h_1^{(k)} \exp h_v^{(k)} \left(\frac{\sum_{t=1}^{q} \exp h_t^{(k)}}{\sum_{t=1}^{q} \exp h_t^{(k)}} \right)^2 + \sum_u S_{u,1} \sum_k \frac{p_k k}{\langle k \rangle} \int Dz \exp h_u^{(k)} \exp h_1^{(k)} \exp h_2^{(k)} \left(\frac{\sum_{t=1}^{q} \exp h_t^{(k)}}{\sum_{t=1}^{q} \exp h_t^{(k)}} \right)^2.$$

$$= \sum_k \frac{p_k k}{\langle k \rangle} \int Dz \left[\exp h_1^{(k)} + \frac{1}{r} \exp h_2^{(k)} - 2 \exp h_1^{(k)} \exp h_2^{(k)} - (1 - \frac{1}{r}) \exp h_2^{(k)} \exp h_3^{(k)} \right]. \quad (C17)$$

The derivation for the above equation is straightforward. For example, for $u = 1$ and $v > 1$ (the second case), using Eq. (C12), the integral becomes

$$\int Dz \frac{\exp h_1^{(k)} \exp h_2^{(k)}}{\left(\sum_{t=1}^{q} \exp h_t^{(k)} \right)^2}, \quad (C15)$$

Because $S_t^{(q)}$ for $t > 1$ possesses rotational symmetry in the subspace spanned by $z_{22}, z_{33}, \ldots, z_{rr}$, Eq. (C16) is invariant under the exchange of different $v (> 1)$. Therefore, the integral is the same as the integral for $u = 1$ and $v = 2$. The other cases can be derived in the similar way.

From Eqs. (C14) and (C15), Q_{11} becomes
For the third equality, we used Eqs. (B3b) and (B3c). Using the similar way, we can find $Q_{\mu \nu}$ as

$$Q_{\mu \nu} = \frac{r + 1}{r} \sum_k \frac{p_k}{\langle k \rangle} \int Dz \left(\frac{\exp h_2^{(k)} \exp h_2^{(k)}}{\left(\sum_{l=1}^q \exp h_1^{(k)} \right)^2} - \frac{\exp h_2^{(k)} \exp h_2^{(k)}}{\left(\sum_{l=1}^q \exp h_1^{(k)} \right)^2} \right) = Q_{\nu \nu}, \quad (C18)$$

for all $\mu, \nu > 1$. Finally, we can also check that

$$Q_{\mu \nu} = \sum_k \frac{p_k}{\langle k \rangle} \int Dz \left(\langle S_{\mu} \rangle_{h^{(k)}} \langle S_{\nu} \rangle_{h^{(k)}} = 0 \right), \quad (C19)$$

for all $\mu \neq \nu$ pairs. Eqs. (C18) and (C19) consistently satisfy the initially imposed conditions, Eqs. (C10a) and (C10b). Even though it is not clear whether there exist another solutions for $Q_{\mu \nu}$, from the self-consistent equations which do not satisfy Eq. (C10b), these imposed conditions must be satisfied in the $\beta \to \infty$ limit. From Eq. (22), we can see that $\beta(L_{\mu \nu} - Q_{\mu \nu})$ remains finite as $\beta \to \infty$, which indicates $Q_{\mu \nu}$ must be in the zero temperature limit. Note that $L_{\mu \nu}$ satisfies $L_{\mu \nu} = 0$ for $\mu \neq \nu$ and $L_{\mu \mu} = L_{\nu \nu}$ for $\mu, \nu > 1$ (see Eqs. (C2) and (C9b)). Therefore, it is reasonable to impose the same conditions for $Q_{\mu \nu}$ at least in the large β limit.

Finally, we briefly discuss on the properties of $Q_{\mu \nu}$ when $\eta = 1$. In this case, using the similar method presented above, we can show that there exist non-trivial solutions for the self-consistent equations satisfying

$$M_1 = \sum_k \frac{p_k}{\langle k \rangle} \left(\int_{A} Dz + \int_{B} Dz \left(-\frac{1}{2} \right) + \int_{C} Dz \left(-\frac{1}{2} \right) \right), \quad (D1)$$

where $\int_{R} Dz$ denotes the integral over the domain R and $Dz = \prod_{\mu=1}^2 \frac{dz_{\mu}}{\sqrt{2\pi}} \exp \left(-\frac{z_{\mu}^2}{2} \right)$. Note that $\int_{B} Dz = \int_{C} Dz$ by symmetry and $\int_{A \cup B \cup C} Dz = 1$.

From these identities, one can show that

$$D = \sum_k \frac{p_k}{\langle k \rangle} \int_{B} Dz \left(\frac{1}{2} \right) - \int_{A} Dz \left(-\frac{1}{2} \right), \quad (D2)$$

The magnetization M_1, thus, can be written in terms of D as,

$$M_1 = 1 - 3D. \quad (D3)$$

Similarly, from Eqs. (26b) and (26c), one can find

$$L_{11} = Q_{11} = 1 - \frac{3}{2}D. \quad (D4)$$

Eq. (C10a) for $\mu \neq \nu$ and

$$Q_{\mu \nu} = \frac{r + 1}{r} \sum_k \frac{p_k}{\langle k \rangle} \int Dz \left(\frac{\exp h_1^{(k)} \exp h_1^{(k)}}{\left(\sum_{l=1}^q \exp h_1^{(k)} \right)^2} - \frac{\exp h_1^{(k)} \exp h_2^{(k)}}{\left(\sum_{l=1}^q \exp h_1^{(k)} \right)^2} \right) = Q_{\nu \nu}, \quad (C20)$$

for all μ and ν.

Appendix D: Calculation details for the ground state energy with $q = 3$

Since $\exp h_1^{(k)}$, $\exp h_2^{(k)}$ and $\exp h_3^{(k)}$ dominate in the regions A, B and C (defined in Sec. III.2), respectively, in the $\beta \to \infty$ limit, the self-consistent equation for M_1, Eq. (26a), can be written as

$$M_1 = \sum_k \frac{p_k}{\langle k \rangle} \left(\int_{A} Dz + \int_{B} Dz \left(-\frac{1}{2} \right) + \int_{C} Dz \left(-\frac{1}{2} \right) \right).$$

where $\int_{R} Dz$ denotes the integral over the domain R and $Dz = \prod_{\mu=1}^2 \frac{dz_{\mu}}{\sqrt{2\pi}} \exp \left(-\frac{z_{\mu}^2}{2} \right)$. Note that $\int_{B} Dz = \int_{C} Dz$ by symmetry and $\int_{A \cup B \cup C} Dz = 1$.

From these identities, one can show that

$$D = \sum_k \frac{p_k}{\langle k \rangle} \int_{B} Dz \left(\frac{1}{2} \right) - \int_{A} Dz \left(-\frac{1}{2} \right), \quad (D2)$$

The magnetization M_1, thus, can be written in terms of D as,

$$M_1 = 1 - 3D. \quad (D3)$$

Similarly, from Eqs. (26b) and (26c), one can find

$$L_{11} = Q_{11} = 1 - \frac{3}{2}D. \quad (D4)$$

and

$$L_{22} = Q_{22} = \frac{3}{2}D. \quad (D5)$$

To obtain the ground state energy, we should calculate $\beta (L_{\mu \mu} - Q_{\mu \mu})$ in the $\beta \to \infty$ limit. From the first equality in Eq. (26c), one can obtain

$$\beta (L_{11} - Q_{11}) = \frac{-3q}{r\sqrt{Q_{11}}} X, \quad (D6)$$

where

$$X \equiv \sum_k p_k \sqrt{k} \int_{B} Dz z_{11}. \quad (D7)$$
For the derivation of the above equation, we used the facts, \(\int_\mathbb{A} \int_\mathbb{B} \int_\mathbb{C} Dz \, z_{11} = 0 \) and \(\int_\mathbb{B} Dz \, z_{11} = \int_\mathbb{C} Dz \, z_{11} \). Similarly, one can show that

\[
\beta (L_{22} - Q_{22}) = \frac{\sqrt{3}q}{r\sqrt{Q_{22}}} Y, \quad (D8)
\]

where

\[
Y = \sum_k p_k \sqrt{k} \int_\mathbb{B} Dz \, z_{22} \quad (D9)
\]

using the identity \(\int_\mathbb{B} Dz \, z_{22} = -\int_\mathbb{C} Dz \, z_{22} \).

Note that the following three facts: i) \(D \), \(X \) and \(Y \) are determined by the region \(B \), ii) the region \(B \) depends on \(G \), and iii) \(G \) is evaluated from \(D \), \(X \) and \(Y \). Therefore, the equation \((D7) \) and the set of equations \((D2), (D7) \) and \((D9) \) form self-consistent equations.