Can postural OSA be usefully identified from its severity alone?

Aihem Johar, Chris D Turnbull, John R Stradling

ABSTRACT

Introduction When obstructive sleep apnoea (OSA) does not occur throughout sleep, there must be factors influencing its presence or absence. These are most likely to be sleep stage, posture and presleep alcohol, among others. We hypothesised that as OSA severity increases, the likelihood of postural OSA (POSA) would also decrease.

Methods Laboratory sleep studies of 39 patients with OSA were manually reviewed to calculate supine and non-supine oxygen desaturation indices (ODI). The usual definition for POSA was used, a ratio of supine to non-supine ODI of ≥2.

Results The mean age was 53.2 (SD 12.4) years, the body mass index was 35.0 (SD 8.9) kg/m² and 74% were male. The median supine ODI was 54.3 (IQR 25.7–73.5) and non-supine ODI was 18.7 (IQR 8.6–38.4). The overall prevalence of POSA was 56%. The prevalence of POSA for ODI of <40 was 68%, and 35% if ≥40.

Conclusions An ODI ≥40, compared with <40, halved the likelihood of POSA from 68% to 35%. Although there is clearly a relationship between overall ODI and POSA, it is not strong enough to diagnose an individual with POSA. However the relationship provides a useful way to prescreen trial subjects to enrich for POSA.

INTRODUCTION

When severe obstructive sleep apnoea (OSA) is present continuously throughout the night, its presence is unlikely to depend on such variables as sleep stage, posture or presleep alcohol. As the all-night oxygen desaturation index (ODI) falls from 60 to, say, 30, usually this does not mean that apnoeas are now 2 min long, rather than 1 min, but that there are apnoeas (with the usual cycle time of about a minute) for only half the sleep time. Supine position clearly worsens OSA in many, due to increased compliance and collapsibility of the pharynx. This increase in collapsibility is thought to be due to the direct gravitational effects of the mandible on the upper airway, and indirectly to a reduced functional residual capacity when supine, reducing the caudal traction on the pharyngeal walls, and thus reducing the bracing effect from such traction. Postural treatments for OSA have been used for many years, and their popularity has increased recently with the introduction of posture-control devices that are somewhat more sophisticated than the tennis-ball-in-the-back-of-the-pyjamas approach. It is usually argued that a patient should have significant postural dependency to make a trial of such a treatment worthwhile. The exact definition of postural OSA (POSA) varies, but most commonly it is arbitrarily defined as a supine to non-supine ratio in the apnoea/hypopnoea index (AHI) or ODI of ≥2. With a view to potential efficacy of treatments, some have argued that the non-supine AHI should also be <5 to be defined as POSA.

There are very few robust data on postural therapies for OSA, with no placebo-controlled trials reporting longer term symptom-based primary outcomes. Such multicentre trials in ordinary clinical units are needed and will require simple recruitment strategies if they are to be clinically useful. We wondered if the severity of OSA on its own could be usefully used to prescreen patients for entry into such trials of POSA therapy, since earlier studies have suggested a falling off of POSA prevalence as the AHI increases.

METHODS

Fifty clinical sleep studies (VISI-Lab, Stowood Scientific Instruments, Oxford, UK) between May and July 2016 were sequentially selected from patients diagnosed with OSA. Studies were excluded if technically inadequate, or from patients with significant associated central sleep apnoea (CSA) or hypoventilation, an ODI <5, or those with <30 min of either supine or non-supine sleep. The remaining sleep studies were carefully reviewed to calculate the ODI, both supine and non-supine,
having POSA increased as the ODI fell, such that if

The overall prevalence of POSA was 56%, in line

The median all-night ODI was 28.6 (IQR 17.2–51.4),

The effect of body

The role of supine sleep apnea syndrome. Eur Arch Otorhinolaryngol 2006;8:87–94.

Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea. J Clin Sleep Med 2014;10:983–71.

Positional OSA part 1: towards a clinical classification system for position-dependent obstructive sleep apnoea. Sleep Breath 2015;19:473–80.

Prevalence of positional sleep apnea in patients undergoing polysomnography. Chest 2005;128:2130–7.

Positional modification techniques for supine obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med Rev 2017;36:107–15.

The role of sleep position in obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol 2006;263:946–50.

REFERENCES
1. Joosten SA, Edwards BA, Wellman A, et al. The effect of body position on physiological factors that contribute to obstructive sleep apnea. Sleep 2015;38:1489–76.
2. Joosten SA, Sands SA, Edwards BA, et al. Evaluation of the role of lung volume and airway size and shape in supine-predominant obstructive sleep apnoea patients. Respiration 2015;20:819–27.
3. Cartwright RD, Lloyd S, Lille J, et al. Sleep position training as treatment for sleep apnea syndrome: a preliminary study. Sleep 1985;8:87–94.
4. Levendowski DJ, Seagraves S, Popovic D, et al. Assessment of neck-based treatment and monitoring device for positional obstructive sleep apnea. J Clin Sleep Med 2014;10:983–71.
5. Frank MH, Ravesloot MJ, van Maanen JP, et al. Positional OSA part 1: towards a clinical classification system for position-dependent obstructive sleep apnoea. Sleep Breath 2015;19:473–80.
6. Mador MJ, Kufel TJ, Magalang UJ, et al. Prevalence of positional sleep apnea in patients undergoing polysomnography. Chest 2005;128:2130–7.
7. Barnes H, Edwards BA, Joosten SA, et al. Positional modification techniques for supine obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med Rev 2017;36:107–15.
8. Richard W, Kox D, ten Helder C, et al. The role of sleep position in obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol 2006;263:946–50.