ERRATUM TO “SOME GEOMETRIC PROPERTIES OF HYPERSURFACES WITH CONSTANT \(r \)-MEAN CURVATURE IN EUCLIDEAN SPACE”

DEBORA IMPERA, LUCIANO MARI, AND MARCO RIGOLI

(Communicated by Lei Ni)

Abstract. An erratum to the paper [D. Impera, L. Mari, and M. Rigoli, Some geometric properties of hypersurfaces with constant \(r \)-mean curvature in Euclidean space, Proc. Amer. Math. Soc. 139 (2011), no. 6, 2207-2215] is presented.

In computation (13) of our previous paper [3] there are some inaccuracies concerning the constants. The computation should read as follows:

\[
S_1S_{j+1} - (j + 2)S_{j+2} = m\left(\frac{m}{j + 1}\right)H_1H_{j+1} - (j + 2)\left(\frac{m}{j + 2}\right)H_{j+2}
\]

\[
= \left(\frac{m}{j + 1}\right)(mH_1H_{j+1} - (m - j - 1)H_{j+2})
\]

\[
\geq \left(\frac{m}{j + 1}\right)(j + 1)H_1H_{j+1} \geq 0,
\]

where the inequality is a consequence of (12). Hence,

\[
A(r)v_j(r) \geq (j + 1)\left(\frac{m}{j + 1}\right)H_{j+1} \int_{\partial B_r} H_1 = \frac{(m-2)}{m - j - 1}v_1(r).
\]

Condition (2) of Theorem 1.1 should then read as follows:

\((ii) \quad v_j(r)^{-1} \in L^1(\infty) \) and

\[
\lim_{r \to +\infty} \int_{\partial B_r} \sqrt{v_1(r)v_j(r)} \int_r^{+\infty} \frac{ds}{v_j(s)} > \frac{1}{2} \left[\frac{(m-2)}{m - j - 1}\right]^{-1/2}.
\]

Moreover, Remark 1.5 should be restated in this way:

As we will see later, condition \(S_{j+1} \equiv 0 \) together with \(\text{rank}(A) > j \) at every point of \(M \) implies the ellipticity of the operator \(L_j \). Moreover, if we assume the additional hypothesis that there exists \(p \in M \) such that \(H_i(p) > 0 \) for every \(1 \leq i \leq j \), it can be proved that each \(P_i \) is positive definite for every \(1 \leq i \leq j \).

Received by the editors October 6, 2011.

2010 Mathematics Subject Classification. Primary 53C21, 53C42; Secondary 58J50, 53A10.

©2013 American Mathematical Society
Reverts to public domain 28 years from publication
Similarly, Proposition 2.2(ii) has to be replaced by:

(ii) \(S_{j+1} \equiv 0 \), rank\((A) > j \) at every point of \(M \), and there exists \(p \in M \) such that \(H_i(p) > 0 \) for every \(1 \leq i \leq j \).

The next remark should be added after Proposition 2.2.

Remark. We stress that, by [10], when \(S_{j+1} \equiv 0 \), the sole condition rank\((A) > j \) is equivalent to the requirement that \(L_j \) be elliptic.

Taking into account the previous observations, Theorem 1.4 has to be replaced by the following:

Theorem 1.4. Let \(f : M \to \mathbb{R}^{m+1} \) be a complete, connected orientable hypersurface with \(H_{j+1} \equiv 0 \), for some \(j \in \{0, \ldots, m-2\} \). If \(j \geq 1 \), assume that rank\((A) > j \) at every point. Furthermore, if \(j \) is even, suppose that there exists \(p \in M \) such that \(H_j(p) > 0 \). Set

\[
 v_j(r) = (m - j) \int_{\partial B_j} |S_j|, \quad v_{j+2}(r) = \int_{\partial B_j} |S_{j+2}|.
\]

If either

(i) \(|v_j(r)|^{-1} \not\in L^1(+\infty) \) and \(H_{j+2} \not\in L^1(M) \) or

(ii) \(|v_j(r)|^{-1} \in L^1(+\infty) \) and

\[
 \liminf_{r \to +\infty} \sqrt{s_{j+2}(r)v_j(r)} \int_r^{+\infty} \frac{ds}{|v_j(s)|} > \frac{1}{2} \sqrt{\frac{1}{j+2}},
\]

then for every compact set \(K \subset M \) we have

\[
 \bigcup_{p \in M \setminus K} T_p M = \mathbb{R}^{m+1};
\]

that is, the tangent envelope of \(M \setminus K \) coincides with \(\mathbb{R}^{m+1} \).

Proof. We start by observing that we can assume that \(v_j \) is positive on \(\mathbb{R}^+ \). Indeed, in our assumptions, by the remark after Proposition 2.2 the operator \(L_j \) is elliptic; that is, \(P_j \) is either positive definite or negative definite everywhere. Thus, (3) of Lemma 2.1 implies that either \(H_j > 0 \) or \(H_j < 0 \) on \(M \). If \(j \) is odd, we can change the orientation of \(M \) in such a way that \(H_j \) is positive, whence \(v_j > 0 \) on \(\mathbb{R}^+ \). On the other hand, if \(j \) is even, this trick cannot be used and we have to rely on the existence of \(p \in M \) with \(H_j(p) > 0 \) to deduce that \(v_j > 0 \) on \(\mathbb{R}^+ \). Applying (5) of Lemma 2.1 we obtain

\[
 0 < \text{Tr}(A^2 P_j) = -(j + 2)S_{j+2};
\]

hence \(S_{j+2} < 0 \) on \(M \), and then \(v_{j+2} < 0 \) on \(\mathbb{R}^+ \). Now, suppose by contradiction that for some \(K \) the tangent envelope of \(M \setminus K \) does not coincide with \(\mathbb{R}^{m+1} \).

By choosing Cartesian coordinates appropriately, we can assume that the origin 0 satisfies

\[
 0 \not\in \bigcup_{p \in M \setminus K} T_p M.
\]
Then, the function $u = \langle f, \nu \rangle$ is nowhere vanishing and smooth on $M \setminus K$. Up to changing the sign of u on each connected component, we can assume that $u > 0$ on $M \setminus K$. By Proposition 2.4, $T_j u = 0$ and hence $\lambda_1^{-T_j} (M \setminus K) \geq 0$. Note that here $H_{j+1} \equiv 0$ is essential. Defining
\[0 < A(r) = \frac{1}{v_j(r)} \int_{\partial B_r} \text{Tr}(A^2 P_j) = -(j + 2) \frac{1}{v_j(r)} \int_{\partial B_r} S_{j+2} = (j + 2) \frac{s_{j+2}(r)}{v_j(r)}, \]
under assumptions (i) or (ii) the ODE $(v_j z')' + Av_j z = 0$ is oscillatory. To show this fact, we rest upon the same oscillation criteria used in the proof of Theorem 1.1. The rest of the proof is identical to that of Theorem 1.1.

\[\square \]

Further References

We would like to add the paper [2] (for (ii) of Proposition 2.2) and two foundational works which have been of inspiration for the research on higher-order mean curvature hypersurfaces. The first one is the classic [1], which contains the original proof of Gårding’s inequality, and the second one, [4], characterizes hypersurfaces with H_j constant in space forms from the variational point of view.

Acknowledgement

The authors are deeply grateful to Prof. Maria Luiza Leite for a careful reading of our paper and for having suggested most of the corrections and improvements, together with the new references.

References

1. L. Gårding, *An inequality for hyperbolic polynomials.*, J. Math. Mech. **8** (1959), 957–965. MR0113978 (22:4809)
2. J. Hounie and M.L. Leite, *Two-ended hypersurfaces with zero scalar curvature*, Indiana Univ. Math. J. **48** (1999), no. 3, 867–882. MR1736975 (2001b:53077)
3. D. Impera, L. Mari, and M. Rigoli, *Some geometric properties of hypersurfaces with constant r-mean curvature in Euclidean space*, Proc. Amer. Math. Soc. **139** (2011), no. 6, 2207–2215. MR2775398 (2012c:53092)
4. R.C. Reilly, *Variational properties of functions of the mean curvatures for hypersurfaces in space forms*, J. Diff. Geom. **8** (1973), no. 3, 465–477. MR0341351 (49:6102)

Dipartimento di Matematica e Applicazioni, Università degli studi di Milano-Bicocca, Via Cozzi 53, I-20125 Milano, Italy
E-mail address: debora.impera@unimib.it

Departamento de Matemática, Universidade Federal do Ceará, 60455-760 Fortaleza-CE, Brazil.
E-mail address: lucio.mari@libero.it

Dipartimento di Matematica, Università degli studi di Milano, Via Saldini 50, I-20133 Milano, Italy
E-mail address: marco.rigoli55@gmail.com