A dipole sequence has been observed and investigated in the 143Sm nucleus populated through the heavy-ion induced fusion-evaporation reaction and studied using the Indian National Gamma Array (INGA) as the detection system. The sequence has been established as a Magnetic Rotation (MR) band primarily from lifetime measurements of the band members using the Doppler Shift Attenuation Method (DSAM). A configuration based on nine quasiparticles, with highly asymmetric angular momentum blades, has been assigned to the shears band in the light of the theoretical calculations within the framework of Shears mechanism with the Principal Axis Cranking (SPAC) model. This is hitherto the maximum number of quasiparticles along with the highest asymmetricity associated with a MR band. Further, as it has followed from the SPAC calculations, the contribution of the core rotation to the angular momentum of this shears band is substantial and greater than in any other similar sequence, at least in the neighbouring nuclei. This band can thus be perceived as a unique phenomenon of shears mechanism in operation at the limits of quasiparticle excitations, as manifested in MR band-like phenomena, evolving into collectivity.

PACS numbers: 21.10.Re, 21.10.Tg, 21.60.Ev, 23.20.Lv, 27.60.+j

Recent experimental and theoretical studies on the weakly deformed nuclei, with a very few particles and holes outside the core, unambiguously establish [1–4] the “shears mechanism” as a general phenomenon of generating angular momentum in them. The shears mechanism in these nuclei, manifested in form of the magnetic rotational (MR) bands, has been observed in their level structures. These bands are characterized by strong intraband M1 transitions and weak/unobserved cross-over E2 transitions, the letter being commensurate with the small deformations of these nuclei. The band-head corresponds to the perpendicular alignment of the angular momentum vectors generated by the particle and the holes constituting the band configuration. The repulsive interaction between the particle and holes favours the perpendicular coupling, for minimum energy at the band-head. Excited states with higher angular momenta along the MR band are generated by the gradual alignment of the angular momentum vectors that may eventually completely align to produce the maximum spin accompanied by the termination of the MR band [5].

The mid-shell nuclei, on the other hand, have considerable number of valence nucleons outside the core that is consequently deformed owing to the polarizing effect of the former. The deformation breaks the rotational symmetry and leads to the observation of the so-called rotational bands in the level structure of the corresponding nuclei. This may be perceived as a transition in the characteristic excitation pattern of the nuclei with increasing number of valence nucleons outside the core. The weakly deformed systems with a few valence particles exhibiting MR-bands, or similar single particle features, evolves into well deformed nuclei with increased valence population and exhibit collectivity in the form of rotational sequences. In such a transitional picture, observation of shears sequences based on large number of quasiparticles may actually represent an interesting step in the aforementioned structural progression, before the onset of collective rotational excitations. The systematic investigation of such an evolutionary scenario is warranted.

MR bands have been observed in several mass regions, $A \sim 80, 100, 140, 190, 218$, across the nuclear chart. The highest number of quasiparticles in the shears configuration has been established for sequences observed in 108Cd [6], 198Pb [7], and 198Bi [8] of which that in the 198Bi is the most asymmetric one; the asymmetry being quantified by the difference in angular momenta of the two shears blades, j_p and j_n. There have been numerous observation of asymmetric shears configurations in the literature albeit the limits of such asymmetry that would (still) favor the shears mechanism for generation of angular momentum remains to be explored. Such an objective is an impetus to the present endeavor that consists of a quest for asymmetric shears configurations in 143Sm ($Z = 62, N = 81$). The nucleus is characterized by
enhanced probability of particle excitations in the proton sector while a hindered one in case of the neutrons, owing to the $N = 82$ closure, that may actually result in the sought asymmetry.

In the light of the aforementioned prospects, the ^{143}Sm ($Z = 62, N = 81$) nucleus has been investigated in the present work. Recently, two dipole bands, DB I and DB II, have been reported in the level structure of the nucleus above an excitation energy of $E_x = 8614$-keV \cite{9, 11}. The current effort reports a third dipole band (DB III) in the nucleus which has been generated from the extremely asymmetric shear structure on the “phase boundary” of the two phases representing the quasiparticle excitation and deformed core rotation. The proposition has been validated through level lifetime measurements of the band members and extracting $B(M1)$, and $B(E2)$ values and their evolution, along the band, therewithfrom. The experimental findings have been well reproduced within the framework of a modified shears mechanism with principal axis cranking (SPAC) model to further establish/uphold the interpretation.

The dipole structures above 8614-keV 43/2– state in ^{143}Sm were populated using heavy-ion fusion evaporation reaction ^{124}Sn ($^{24}\text{Mg}, 5\text{n}$) at the beam ($^{24}\text{Mg}$) energy of 107-MeV provided by the 15UD peltoron facility at Inter University Accelerator Center (IUAC), New Delhi. Target was 0.8 mg/cm2 thick ^{124}Sn [99.9\% enriched] evaporated on a 13 mg/cm2 gold backing. The recoils were produced with $\beta \sim 1.6\%$. The deexciting γ-ray transitions were detected using the Indian National Gamma Array (INGA) \cite{12} which consisted of eighteen Compton suppressed clover detectors arranged in six different angles [90°(6), 123°(4), 148°(4) and 57°(4)] with respect to the beam axis (the number in the parenthesis is the detector numbers at the respective angles). About 8×10^8 two and higher fold $\gamma-\gamma$ coincidence events were collected in the list mode format. The data was sorted into different symmetric and angle dependent $E_\gamma - E_\gamma$ matrices with the help of the INGASORT and analyzed using the INGASORT and the RADWARE packages \cite{13, 14}.

The multipolarities and the electromagnetic characters of the observed γ-ray transitions, for assigning the spin-parity of the levels, were determined from the measurement of the of ratio for Directional Correlation from Oriented state (R_{DCO}) \cite{15, 17}, linear polarization asymmetry (Δ) \cite{18, 21} and the mixing ratio (δ) \cite{22, 24}. The experimental details and data analysis procedures have been described in Ref. \cite{25, 27}.

The level scheme of ^{143}Sm nucleus, relevant to the present study and as determined here-from, is illustrated in Fig. 1. The newly observed dipole band DB III, starting at $E_x = 10081$-keV, 49/2– was extended to an excitation energy of ~ 12 MeV and spin 59/2(–). The cascade (DB III) was observed to feed the previously reported bands DB I and DB II as depicted in level scheme. The intensities of the first observed γ-ray transition of DB III were extracted from the projection of $E_\gamma(90°)$ vs. $E_\gamma(90°)$ matrix and normalized to that of 239.5-keV transition. The γ-ray transitions associated with DB III along with their multipolarities, and R_{DCO}, Δ and δ values were summarized in Table I. The intraband transitions of DB III, 188.9, 352.7, 449.4, 515.0 and 462.1-keV, have been identified to be of mixed $M1/E2$ character from the respective R_{DCO} and Δ values. The cross-over transitions 542.0, 802.0, 965.0 and 977.0-keV, have been confirmed to be of $E2$ nature from the R_{DCO} and Δ measurements. The cascade DB III was observed to feed the previously reported \cite{11} band DB I principally through the 457.0-keV transition. The mixing ratio assignments of DB I, has facilitated the conclusion on spin-parities of the (feeding) states in DB III.

The γ-ray transitions of the DB III band were observed to exhibit Doppler shapes in the experimental spectra, that facilitated the determination of level lifetimes and transition probabilities therein. The exercise was based on Doppler shift attenuation method (DSAM) and was carried out using the developments reported in ref. \cite{28} and the LINESHAPE package \cite{29, 30}. The basic procedure is to calculate the Doppler shape of the transitions of interest from stopping simulations, detector geometry and level scheme information, and then least square fit the calculated shape to the experimental spectrum so as to extract the level lifetime. The DSAM anal-

\hspace{1cm}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{(Color online.) The proposed level structure of the negative parity states above the 8614-keV 49/2– state in ^{143}Sm. The newly observed γ-ray transitions are marked by an asterisk. The insets show the aligned angular momentum (I_x) of the bands. Harris parameters used in the calculation of γ_1 are $J_0 = 12h^2\text{MeV}^{-1}$ and $J_1 = 25h^4\text{MeV}^{-3}$ \cite{28}. The band-head spin (K) is determined from the fitting of excited energy ($E(I)$) against spin (I).}
\end{figure}
The dipole band structure DB III, consisting of the dipole transitions of regular energy spacing, has close similarity to the observed MR bands in the neighbouring weakly deformed nuclei 139,141,142Sm, 141,143Eu, and 142Gd [26, 27, 31, 34]. The magnitude of the $B(M1)$ transition strength at the 51/2$^−$ level of DB III is about three times shorter than the $B(M1)$ value at the 45/2$^−$ state of DB I which has been identified as MR band in 143Sm [10, 11]. Also, the $B(M1)$ values are changing slowly from the $1.11^{+0.33}_{−0.26}$ μ_N^2 at 51/2$^−$ to the $0.58^{+0.09}_{−0.09}$ μ_N^2 at 57/2$^−$ in contrast to the sharp falling trend for the MR bands observed in this mass region (Table I and Fig. 3 (a)). These characteristics of the $B(M1)$ transition strength are indicative of the deformed rotational character of the band DB III. In contrary, measured $B(E2)$ transitions strengths, in the present case, are compara-

\begin{table}[h]
\centering
\caption{The DCO ratio (R_{DCO}), polarization asymmetry (Δ), mixing ratio (δ), level lifetimes (τ) and side feeding lifetimes (τ_{sf}) of the states and the corresponding $B(M1)$ and $B(E2)$ transitions rates for the γ transitions of the dipole band DB III in 143Sm. The uncertainties are rounded off to the nearest value up to two decimal places.}
\begin{tabular}{cccccccccc}
\hline
J_i^- & J_f^+ & E_{γ} & Assign. & I_{γ}^a & R_{DCO}^b & Δ & δ & τ & τ_{sf} & $B(M1)$ & $B(E2)$ \\
\hline
47/2 & 47/2 & 595.6 & $\Delta = 0$, M1 & 6.7(12) & 1.68(19) & $+0.10(9)$ & & & & & \\
49/2$^-$ & 47/2$^+$ & 888.2 & M1/E2 & 9.5(7) & 1.04(8) & $-0.20(5)$ & $-0.03(5)$ & & & & \\
49/2$^-$ & 47/2$^+$ & 291.5 & M1/E2 & 6.4(8) & 1.18(13) & $-0.19(9)$ & & & & & \\
51/2$^-$ & 49/2$^+$ & 188.9 & M1/E2 & 6.5(4) & 0.93(10) & $-0.10(7)$ & $0.17^{+0.33}_{−0.26}$ & 0.16(4) & 1.11$^{+0.31}_{−0.26}$ & & \\
51/2$^-$ & 49/2$^+$ & 632.4 & M1/E2 & 21.6(10) & 1.07(7) & $-0.19(8)$ & $+0.01(4)$ & & & & & \\
49/2$^-$ & 47/2$^+$ & 1076.0 & E2 & 2.5(4) & 1.72(18) & & & & & & & \\
53/2$^-$ & 51/2$^+$ & 352.7 & M1/E2 & 13.5(7) & 1.10(10) & $-0.22(12)$ & $+0.02(3)$ & $0.86^{+0.13}_{−0.12}$ & 0.15(3) & 0.77$^{+0.12}_{−0.11}$ & & \\
49/2$^-$ & 47/2$^+$ & 542.0 & E2 & 1.7(2) & 1.68(18) & & & & & & & \\
51/2$^-$ & 49/2$^+$ & 457.2 & M1/E2 & 11.8(8) & 0.74(6) & $-0.33(15)$ & $-0.28(7)$ & & & & & \\
55/2$^-$ & 53/2$^+$ & 449.4 & M1/E2 & 9.8(5) & 0.74(7) & $-0.18(9)$ & $-0.28(8)$ & $0.55^{+0.08}_{−0.08}$ & 0.13(3) & 0.80$^{+0.12}_{−0.12}$ & & \\
51/2$^-$ & 49/2$^+$ & 802.0 & E2 & 3.1(3) & 1.79(18) & & & & & & & \\
57/2$^-$ & 55/2$^+$ & 515.0 & M1/E2 & 7.7(4) & 0.67(7) & $-0.18(9)$ & $-0.37(12)$ & $0.43^{+0.07}_{−0.07}$ & 0.11(2) & 0.58$^{+0.09}_{−0.09}$ & & \\
53/2$^-$ & 53/2$^+$ & 965.0 & E2 & 3.6(2) & 1.65(16) & & & & & & & \\
59/2$^{-}(\text{top})$ & 57/2$^{-}$ & 462.1 & M1/E2 & 5.8(3) & 0.90(8) & $-0.13(7)$ & $0.62_{−0.09}$ & 0.09(2) & 0.63$^+\dagger$ & & \\
55/2$^{-}$ & 53/2$^{-}$ & 977.0 & E2 & 2.6(4) & 1.59(16) & & & & & & & \\
\hline
\end{tabular}
\end{table}

aIntensities are normalized with the intensity of the 239.5-keV (45/2$^−$ $→$ 43/2$^−$) γ-transition as 100.

b R_{DCO} [$I_{\gamma}(148^\circ)/I_{\gamma}(90^\circ)$] values are obtained form the 239.5 [$\delta = -0.06(3)$] and 339.6 [$\delta = -0.11(3)$] keV dipole gates.

In the present analysis, spectra at 90°, 123° and 148° have been fitted simultaneously for extracting the level lifetimes. Representative fits of the calculated Doppler shape to the experimental ones are illustrated in Fig. 2. The procedure started with the topmost level, assumed to be 100% side (top) feed and was continued to the states below, as per the standard methodology. For states feed by both $M1 + E2$ transition from the state above and the cross-over $E2$ transition, the intensity weight averaged of the lifetimes of the respective feeding states was incorporated in the analysis. For instance, the feeding history of the 55/2$^−$ state was represented by intensity weight averaged average of the lifetimes of the 57/2$^−$ and 59/2$^{+}(\text{top})$ levels. Likewise, the procedures was adopted for the other levels. The extracted level lifetimes and corresponding sidefeeding lifetimes are depicted in Table I. The $B(M1)$ and $B(E2)$ values derived from the lifetime results are recorded in Table I and plotted in Fig. 3. The values of these transition probabilities and their evolution along the band facilitate an insight into the associated physics, as elaborated hereafter. The uncertainties on lifetime values were derived from the behaviour of χ^2 in the vicinity of the minimum. Systematic uncertainty from stopping powers, that is expected to be of $\sim 5\%$ has not been included in the quoted uncertainties (Table I).

The analysis has been detailed in Ref. 11 [31]. In the present analysis, the γ transitions of the dipole band DB III is about 3 times shorter than the γ transition of DB I which has been identified as MR band in 143Sm [10, 11]. Also, the $B(M1)$ values are changing slowly from the $1.11^{+0.33}_{−0.26}$ μ_N^2 at 51/2$^−$ to the $0.58^{+0.09}_{−0.09}$ μ_N^2 at 57/2$^−$ in contrast to the sharp falling trend for the MR bands observed in this mass region (Table I and Fig. 3 (a)). These characteristics of the $B(M1)$ transition strength are indicative of the deformed rotational character of the band DB III. In contrary, measured $B(E2)$ transitions strengths, in the present case, are compara-
The small values of \(\chi \) formed nature of the band DB III (Table I and Fig. 3) indicates the weakly deformed nature of the core rotation in the shears band and \(\alpha = j_2/j_1 \) is the asymmetry factor of the angular momentum vectors \(j_1 \) and \(j_2 \), determines the asymmetry of the shears blades. \(\theta_1 \) represents the angle between the angular momentum vectors \(j_1 \) and \(j_2 \) where the direction of \(j_2 \) is set along the rotational axis \(\hat{R} \).

Minimizing \(\tilde{E}(\hat{\omega}) \) with respect to the angle \(\theta_1 \), the rotational frequency \(\hat{\omega} \) for the state with reduced spin \(I \) has been obtained as,

\[
\hat{\omega} = 2\hat{I}(1 - \chi + \sqrt{\frac{4\hat{I}^2 - \sin^2\theta_1 - \alpha}{\cos\theta_1}}).
\]

The details of this model is outlined in Ref. [35].

The experimental quasiparticle alignment gain \(i_\chi \sim 2\hbar \) of the for the band DB III against the dipole bands DB I and DB II (inset of Fig. 1) is in agreement with the promotion of two protons to the \(h_{11/2} \) orbital from the \((g_{7/2}/d_{5/2}) \) orbital with respect to the seven quasi-particles (\(\pi h_{11/2}^4 \pi (g_{7/2}/d_{5/2})^{-2} \otimes \nu h_{11/2}^{-1} \) bands) DB I and DB II. Due to the Pauli blocking (for DB I and DB II, four aligned protons are in the 11/2, 9/2, 7/2 and 5/2 projections of the \(h_{11/2} \) orbital) the available projected states for the promoted pair of \(h_{11/2} \) protons are 3/2 and 1/2 which is corroborated by the experimental alignment. These arguments unambiguously imply the negative parity band DB III has been originated from the configuration \(\pi h_{11/2}^6 \pi (g_{7/2}/d_{5/2})^2 \otimes \nu h_{11/2}^{-1} \). Within this configuration the bandhead spin, \(49/2^- \), has been reproduced well considering the perpendicular coupling of the hole and particle angular momentum vectors therein. The maximum spin that can be generated from the configuration is \(59/2^+ \) which is also in good agreement with the observed states of this structure. Furthermore, the experimental values of \(B(M1) \), \(B(E2) \), and rotational frequency \(\hat{\omega} \) are well reproduced in theoretical calculations assuming prolate deformation and the unstretched condition of the angular momenta with \(j_1 = 4.5\hbar, g_1 = -0.21, g_2 = +1.21 \) and \(a = 4 \) (Fig. 3). The close comparison of the experimental results (\(B(M1) \), \(B(E2) \), and \(\hat{\omega} \)) within the modified SPAC model calculations exhibit that low spin behaviour is well explained by \(\chi = 1.0 \) whereas the high spin states are in agreement with \(\chi = 1.4 \).
1.4 (Fig. 3) up to the spin 57/2−. This calculation under predicts the experimental B(M1), B(E2), and ω for the 59/2− state, that might be indicative of a new configuration therein. However, as the parameter χ is a representative of the core contribution to the total angular momentum the calculation exhibits that the core angular momentum smoothly increases from ~ 50% to the ~ 60% up to the spin 57/2− of the DB III. The diminishing contribution of the shears angular momentum along the band is correspondingly established. Thus, it may be inferred that the band DB III in 143Sm may be a maiden example a shears band giving in to the core rotation and exhibiting an interplay of these different mechanisms for generation of angular momentum in the nucleus.

As far as the DB III band is concerned, length of the angular momentum blades of the shears generated within the nine quasiparticle configuration \(\pi \hbar^{1/2}_{11/2} \gamma_{g7/2}d_{3/2}^2 \) and \(\nu \hbar_{1/2}^{-1} \) are 24ℏ and 5.5ℏ for particle and hole sectors, respectively, reflects the asymmetric nature of the shears. The inset of Fig. 3(b) depicts the variation of shears and core angular momentum with asymmetry of the shears blades of the MR bands in 144Eu (DB I), 143Sm (DB I and DB III) and 142Sm [3]. This is indicative of the increased contribution of the core angular momentum with increasing asymmetry of the angular momentum blades associated with the shears band. Thus, present situation, in case of the dipole band DB III, represents extreme limit of the asymmetric nature of the shears blades above which no shears mechanism would be expected in accordance to the Clark and Macchiavelli [4]. This is because the angular momentum generated up to the spin 57/2− of the band DB III due to the rotation of core is ~ 50% of the total angular momentum or more.

In summary, the intrinsic nature of a newly observed dipole band (DB III) in 143Sm has been investigated. A nine quasiparticle configuration has been assigned to the sequence. Such an observation of this band with, to the best of our knowledge, hitherto highest number of quasiparticles and asimmetry (among similar structures observed in this and other mass regions) is unique and significant. Also significant is the major contribution of the core angular momentum in the band. It represents an observation of the shears mechanism operational at the boundary wherein the few quasiparticle excitations, such as manifested in the MR phenomenon, evolve into collectivity. This limiting character of the present observation is brought out in experimental results such as the slow falling trend of B(M1), contrary to the more emphatic one typically exhibited by MR sequences, and upholds our contention of this being an example of MR mechanism at the emanation of collectivity. Moreover, such observations across the nuclear chart would facilitate an understanding of this evolution and its dependence on the structural characteristics of the respective mass regions.

ACKNOWLEDGMENTS

We would like to acknowledge the help from all INGA collaborators. We are thankful to the Pelletron staff for giving us steady and uninterrupted 24Mg beam. S. R. would like to acknowledge the financial assistance from the University Grants Commission - Minor Research Project (No. PSW-249/15-16 (ERO)). G. G acknowledges the support provided by the University Grants Commission - departmental research support (UGC-DRS) program. H. P. is grateful for the support of the Ramanujan Fellowship research grant under SERB-DST (SB/S2/RJN-031/2016).

[1] A. J. Simons et al., Phys. Rev. Lett. 91, 162501 (2003).
[2] H. Hübel, Prog. Part. Nucl. Phys. 54, 1 (2005).
[3] R. M. Clark and A. O. Macchiavelli, Annu. Rev. Nucl. Part. Sci. 50 1 (2000).
[4] Amita, A. K. Jain, and B. Singh, At. Data Nucl. Data Tables 74, 283 (2000).
[5] S. Fraenkeldorf, Rev. Mod. Phy. 73, 463 (2001).
[6] N. S. Kelsall, et al., Phys. Rev. C 61, 013101(R) (1999).
[7] A. Görgen et al., Nucl. Phys. A 683, 108 (2005).
[8] H. Pai et al., Phys. Rev. C 90, 064314 (2014).
[9] R. Raut et al., Phys. Rev. C 73, 044305 (2006).
[10] S. Rajbanshi et al., arXiv:1710.10019 [nucl-ex].
[11] S. Rajbanshi et al., Phys. Lett. B 782, 143 (2018).
[12] S. Muralithar et al., Nucl. Instrum. Methods Phys. Res. A 622 (2010) 281.
[13] R. K. Bhowmik, Ingasort Manual, private communication.
[14] D. C. Radford, Nucl. Instrum. Methods, Phys. Res., Sect A 361 (1995) 297.
[15] D. C. Radford, Nucl. Instrum. Methods, Phys. Res., Sect A 361 (1995) 306.
[16] A. K.A. K. R. M. Krümer-flecken, T. Morek, R. M. Lieder, W. Gast, G. Hebbinghaus, H.M. Jäger and W. Urban, Nucl. Instrum. Methods, phys. res. A 275, 333-339 (1989).
[17] M.K. Kabadiyski, K.P. Lieb, D. Rudolph, Nucl. Phys. A 563, 301-325 (1993).
[18] K. Starosta et al., Nucl. Instrum. Methods, Phys. Res. A 423 (1999) 16 - 26.
[19] Ch. Droste et al., Nucl. Instrum. Methods Phys. Res. A 378 (1996) 518-525.
[20] J. K. Deng et al., Nucl. Instrum. Methods Phys. Res. A 317, 242 (1992).
[21] P. M. Jones et al., Nucl. Instrum. Methods Phys. Res. A 362, 556 (1995).
[22] T. Yamazaki, Nucl. Data section A 3, 1 (1967).
[23] E.D. Mateosion and A.W. Sunyar, Atomic Data. Nucl. Data Tables 13, 392 (1974).
[24] E. S. Macias, W. D. Ruhter, D.C. Camp and R.G. Lanier, Computer Physics Communications 11, 7593 (1976).
[25] D.M. Cullen et al., Phys. Rev. C 66 (2002) 034308.
[26] S. Rajbanshi et al., Phys. Rev. C 89, 044315 (2014).
[27] S. Rajbanshi et al., Phys. Rev. C 94, 044318 (2016).
[28] S. Das et al., Nucl. Instrum. Methods Phys. Res. A 841 (2017) 17.
[29] J.C. Wells, N.R. Johnson, LINESHAPE: A Computer Program for Doppler Broadened Lineshape Analysis, Report No. ORNL-6689 (1991) 44.
[30] N.R. Johnson et al., Phys. Rev. C 55 (1997) 652.
[31] S. Rajbanshi et al., Phys. Rev. C 90, 024318 (2014).
[32] A. A. Pasternak, et al., Eur. Phys. J. A 37, 279 - 286 (2008).
[33] E. O. Podsvirova et al., Eur. Phys. J. A 21, 1 - 6 (2004).
[34] A. A. Pasternak et al., Eur. Phys. J. A 23, 191 - 196 (2005).
[35] S. Rajbanshi, arXiv:1712.00353v1 [nucl-th].