The formation of ethylene glycol and other complex organic molecules in star-forming regions

V. M. Rivilla1, M. T. Beltrán1, R. Cesaroni1, F. Fontani1, C. Codella1 and Q. Zhang2

1 Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125, Firenze, Italy
e-mail: rivilla@arcetri.astro.it
2 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA

Received; accepted

ABSTRACT

Context. The detection of complex organic molecules related with prebiotic chemistry in star-forming regions allows us to investigate how the basic building blocks of life are formed.

Aims. Ethylene glycol (CH\textsubscript{2}OH\textsubscript{2}) is the simplest sugar alcohol, and the reduced alcohol of the simplest sugar glycolaldehyde (CH\textsubscript{2}OHC=O). We aim to study the molecular abundance and spatial distribution of (CH\textsubscript{2}OH\textsubscript{2}), CH\textsubscript{2}OHC=O and other chemically related complex organic species (CH\textsubscript{2}OCHO, CH\textsubscript{3}OCHO, and CH\textsubscript{3}OH) towards the chemically rich massive star-forming region G31.41+0.31.

Methods. We have analyzed multiple single dish (Green Bank Telescope and IRAM 30m) and interferometric (Submillimeter Array) spectra towards G31.41+0.31, covering a range of frequencies from 45 to 258 GHz. We have fitted the observed spectra with a Local Thermodynamic Equilibrium synthetic spectra, and obtained excitation temperatures and column densities. We have compared our findings in G31.41+0.31 with the results found in other environments, including low- and high-mass star-forming regions, cold clouds and comets.

Results. We have reported for the first time the presence of the aGg' conformer of (CH\textsubscript{2}OH\textsubscript{2}) towards G31.41+0.31, detecting more than 30 unblended lines. We have detected also multiple transitions of other complex organic molecules such as CH\textsubscript{2}OHC=O, CH\textsubscript{3}OCHO, CH\textsubscript{3}OCH\textsubscript{3} and CH\textsubscript{2}H\textsubscript{2}OH. The high angular resolution images show that the (CH\textsubscript{2}OH\textsubscript{2}) emission is very compact, peaking towards the maximum of the 1.3 mm continuum. These observations suggest that low abundance complex organic molecules, like (CH\textsubscript{2}OH\textsubscript{2}) or CH\textsubscript{2}OHC=O, are good probes of the gas located closer to the forming stars. Our analysis confirms that (CH\textsubscript{2}OH\textsubscript{2}) is more abundant than CH\textsubscript{2}OHC=O in G31.41+0.31, as previously observed in other interstellar regions. Comparing different star-forming regions we find evidence of an increase of the (CH\textsubscript{2}OH\textsubscript{2})/CH\textsubscript{2}OHC=O abundance ratio with the luminosity of the source. The CH\textsubscript{2}OCHO/CH\textsubscript{3}OCHO and (CH\textsubscript{2}OH\textsubscript{2})/CH\textsubscript{2}H\textsubscript{2}OH ratios are nearly constant with luminosity. We have also found that the abundance ratios of pairs of isomers (CH\textsubscript{2}OHC=O/CH\textsubscript{3}OCHO and CH\textsubscript{2}H\textsubscript{2}OH/CH\textsubscript{3}OCH\textsubscript{3}) decrease with the luminosity of the sources.

Conclusions. The most likely explanation for the behavior of the (CH\textsubscript{2}OH\textsubscript{2})/CH\textsubscript{2}OHC=O ratio is that these molecules are formed by different chemical formation routes not directly linked; although warm-up timescales effects and different formation and destruction efficiencies in the gas phase cannot be ruled out. The most likely formation route of (CH\textsubscript{2}OH\textsubscript{2}) is by combination of two CH\textsubscript{2}OH radicals on dust grains. We also favor that CH\textsubscript{2}OHC=O is formed via the solid-phase dimerization of the formyl radical HCO\textsubscript{2}. The interpretation of the observations also suggests a chemical link between CH\textsubscript{2}OCHO and CH\textsubscript{3}OCH\textsubscript{3}.

1. Introduction

In the past few years, the improvement of the sensitivity of current radio and (sub)millimeter telescopes has allowed us to detect molecular species with increasing number of atoms in the interstellar medium (ISM). From the astrophysical point of view, molecules with $N\geq6$ atoms containing carbon are considered as complex organic molecules (COMs). These molecules are expected to play an important role in prebiotic chemistry and are considered the basic ingredients to explain the origin of life. Therefore, understanding how these COMs are formed is a first and unavoidable step to ascertain how life could emerge in the Universe. The detection of COMs in the gas environment where low- and high-mass stars are forming (known as hot cores and hot cores, respectively) indicates that they are part of the material of which stars, planets and comets are made. Did the Earth inherit the chemical composition from its parental ISM? Were the organic compounds delivered into the early Earth by a rain of meteorites? The answer to these open questions is only possible by studying the chemical compositions of comets and star-forming regions, and figuring out how they were produced.

The formation of COMs is being intensively debated in astrochemistry. Two possible routes, which can be complementary, have been proposed: gas-phase chemical reactions and reactions on the surface of interstellar dust grains. Only the detection of numerous COMs and the study of their relative abundances and spatial distributions in a large sample of star-forming regions will help us to constrain the chemical pathways leading to the formation of COMs.

Among the COMs, one finds the basic building blocks of biochemistry: aminoacids (precursors of proteins), monosaccharides (the simplest sugars), and lipids. So far,
only the interstellar search for members of the sugar family has been successful. Sugars are a key ingredient in astrobiology because they are associated with both metabolism and genetic information. The simplest sugar, glycolaldehyde (CH₂OHCHO, hereafter GA), and the simplest sugar alcohol, ethylene glycol ((CH₂OH)₂, hereafter EG), are among the largest molecules detected so far in the ISM (8 and 10 atoms, respectively). It has been proposed that GA is involved in the formation of amoniacids and more complex sugars. GA can react with another sugar, propenal, to produce ribose, the central constituent of the backbone of ribonucleic acid RNA (Collins & Ferrier 1995; Weber 1998; Krishnamurthy, Arrhenius & Eschenmoser 1999).

EG is the reduced alcohol of GA, and it was first found in the ISM also towards the Galactic Center (Hollis et al. 2002; Requena-Torres et al. 2003; Beloeche et al. 2012). In the ISM it has been reported towards NGC 1333–IRAS 2A (Maury et al. 2014), NGC 7129 FIRS2 (Fuente et al. 2014) and the Orion, W51e1e2 and G34.3+0.1 hot cores (Bouret et al. 2015; Lykke et al. 2013). Additionally, EG has also been detected in the comets Hale-Bopp (Crovisier et al. 2004), Lemmon and Lovejoy (River et al. 2014, 2015) and 67P/Churyumov-Gerasimenko (Goessmann et al. 2015) and in the meteorites Murchinson and Murray (Cooper et al. 2001).

Theoretical chemical modeling and experimental works have proposed different mechanisms for the formation of EG (and other COMs) in the ISM (Sorrell 2001; Charney & Rodgers 2005; Bennett & Kaiser 2005; Garrod, Weaver & Herbst 2008; Woods et al. 2012, 2013; Fedoseev et al. 2013; Butscher et al. 2015). In order to constrain the most likely chemical pathway, it is essential to confirm the presence of these COMs in more interstellar sources, and to study their spatial distribution and relative abundances. In particular, the massive star-forming regions are a very suitable laboratory to study molecular complexity. The radiation from the forming massive stars warms up the grain mantles of the interstellar dust, triggering the desorption of molecules to the gas phase and enriching the chemical environment.

In this work we present single-dish and interferometric observations towards the G31.41+0.31 massive star-forming region (hereafter G31), G31, located at a distance of 7.9 kpc (Churchwell, Walmsley & Cesaroni 1990), harbors a luminous hot molecular core (∼3×10⁴ L⊙). Beltrán & de Wil (2015) believed to be heated by several massive protostars. Many COMs have already been detected towards G31 (see e.g. Beltrán et al. 2005; Fontani et al. 2007; Isokoski, Bottinelli & van Dishoeck 2013; methanol (CH₃OH), ethanol (CH₃CHOH), ethyl cyanide (C₂H₅CN), methyl formate (CH₃OCHO), dimethyl ether (CH₃OCH₃). This chemical richness, along with the previous detection of GA (Beltrán et al. 2009), makes G31 an excellent target to search for even more complex species, and EG in particular.

We report on the detection of the αGg’ conformer of EG towards G31. We note that this is the first hot core outside the GC where both EG and GA have been detected. In Section 2 we present the different observational campaigns. Section 3 explains the procedures and tools used to identify the lines. The results of the study, including the derivation of physical parameters and spatial distribution of the emission are presented in Section 4. In Section 5 we compare our results in G31 with other interstellar regions and comets.
The spectra were exported from CLASS to MADCUBAIJ, which was used for the reduction and analysis. To increase the signal to noise in the 2 mm spectra, we smoothed the data to a velocity resolution of 1 km s\(^{-1}\).

The line intensity of the IRAM 30m spectra was converted to the main beam temperature \(T_{\text{mb}}\), which were calculated as: \(T_{\text{mb}}=T_{\text{s}} F_{\text{eff}}/B_{\text{eff}}\) where \(T_{\text{s}}\) is the antenna temperature, and \(F_{\text{eff}}\) and \(B_{\text{eff}}\) are the forward and beam efficiencies, respectively. For the 2014 observations we used the ratios \(F_{\text{eff}}/B_{\text{eff}}\) of 1.17 and 1.37 for 3 and 2 mm, respectively. The beams of the observations can be estimated using the expression: \(\theta_{\text{beam}}(\text{arcsec)}=2460/\nu(\text{GHz})\).

2.3. Submillimeter Array (SMA) interferometric observations

The observations were carried out in the 230 GHz band in the compact and very extended configurations on July and May 2007, respectively. The correlator was configured to a spectral resolution of 0.6 km s\(^{-1}\) over both subbands, from 219.3–221.3 GHz (lower sideband, LSB) and 229.3–231.3 GHz (upper sideband, USB). The visibility data were calibrated using MIR and MIRIAD and the imaging was done with MIRIAD. The resulting synthesized beam is approximately 0.90\(''\) \(\times\) 0.75\(''\) (PA=53\(^\circ\)) for the combined very extended and compact data and 1.7\(''\) \(\times\) 3.5\(''\) (PA=59\(^\circ\)) for the compact data. For more details see Cesaroni et al. (2011).

3. Line identification: ethylene glycol and other COMs

A large frequency coverage is needed to robustly identify large COMs, especially in hot molecular cores where the density of lines in the spectra is high. To assure an identification at a 99%/99.8% confidence level, at least 6/8 unblended lines are needed (Hollen et al. 2006). An additional condition is that all the detectable lines predicted by a Local Thermodynamic Equilibrium (LTE) analysis that lie in the observed spectra must be revealed. Moreover, the relative intensities of the different transitions must be consistent with the LTE analysis, given that in the high-density environment of hot molecular cores. Furthermore, high spatial resolution data allow us to reduce the confusion limit of single-dish observations, because different molecules may exhibit different spatial distributions.

Table 1. Summary of observations towards hot molecular core G31 used in this work.

Telescope	Date	RA\(_{\text{J2000}}\) (h m s)	DEC\(_{\text{J2000}}\) (\(\degree\) \(\arcmin\) \(\arcsec\))	Frequency coverage (GHz)	\(\theta_{\text{beam}}\) (\(''\))
IRAM 30m	1996 July	18 47 34.4	-01 12 46.0	86–258\(^*\)	12–22
	2014 Sept.	18 47 34.3	-01 12 45.9	81.2–89.0, 167.93–175.71	28, 14
GBT	2011 May	18 47 34.3	-01 12 45.8	45.14–45.92	16
SMA	2007 May	18 47 34.3	-01 12 45.9	219.45–221.45, 229.35–231.35	1.7\(\times\) 3.5 (comp.)
	& July	18 47 34.3	-01 12 45.9	81.2–22	0.90\(\times\) 0.75 (very ext.+ comp.)

\(^{*}\) This range was not fully covered, only some narrower spectral windows.

The spectra of G31 exhibit a plethora of molecular lines of multiple species. Although a complete identification and analysis of all the detected lines is planned for a forthcoming paper (Rivilla et al., in prep.), we study here the emission of selected COMs, including EG. Our motivation is to compare their physical parameters and spatial distributions. These other complex species are: glycolaldehyde (GA), ethanol (\(\text{C}_2\text{H}_5\text{OH}\), hereafter ET), methyl formate (\(\text{CH}_3\text{OCHO}\), hereafter MF) and dimethyl ether (\(\text{CH}_3\text{OCH}_3\), hereafter DME). We will also compare the spatial distribution of these COMs with that of methyl cyanide (\(\text{CH}_3\text{CN}\)), a typical hot molecular tracer that has been studied in detail in Cesaroni et al. (2011).

We have carried out the line identification of the COMs with MADCUBAIJ, which uses several molecular databases: JPL\(^3\) and CDMS\(^4\). This software provides theoretical synthetic spectra of the different molecules under LTE conditions, taking into account the individual opacity of each line.

3.1. Single-dish data: GBT and IRAM 30m

Our wide spectral coverage has allowed us to clearly identify multiple lines of all the different COMs. In Table 2 we summarize the molecules detected in each dataset. All the COMs have been detected in the different datasets, with the only exception of GA and DME in the GBT data, because there are no bright lines of these species in the frequency range covered by the observations.

We confirm for the first time the detection of the lowest energy conformer (a\(Gg'\) conformer) of EG towards G31 (see details of the spectroscopy of EG in Appendix A). The single-dish data (GBT+IRAM 30m) provide us with more than 30 unblended transitions of EG (see Fig. 1 and Table 2). These transitions cover an energy range of 5–114 K. We note that all the transitions predicted by the synthetic spectrum above 3\(\sigma\) are present in the observed spectra.

For identification purposes, we have overplotted in Fig. 1 the simulated LTE spectra provided by MADCUBAIJ, assuming a source size from the SMA maps (see Section 4.4). The relative intensities of the lines from 7 mm to 1.3 mm are well fitted with an excitation temperature of \(\sim\)50 K. We note however that the LTE fit of multiwavelength transitions of EG underestimates the true temperature. The reason will be explained in detail in Section 4.2.

We have also detected multiple lines of the other COMs. In Appendix B we present tables with the unblended transitions detected for each species. In Figs. B.1 and B.2 we

\(^{3}\) http://spec.jpl.nasa.gov/

\(^{4}\) http://www.astro.uni-koeln.de/cdms

2 The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, and is funded by the Smithsonian Institution and the Academia Sinica (Ho, Moran & Lo 2004).
Fig. 1. Unblended transitions of EG from single-dish observations. The spectroscopic parameters (rest frequencies, quantum numbers, energies of the upper levels, and integrated intensities from the LTE fit) are listed in Table 3. For identification purposes, we have overlaid in red the LTE synthetic spectrum obtained with MADCUBAIJ assuming $T_{\text{ex}}=50$ K (see text).
The EG lines are autoblended, i.e., blended with other transitions of EG.

Table 2. Summary of the detections of the different COMs in the different telescope datasets.

Telescope	(CH$_2$OH)$_2$ (EG)	C$_2$H$_2$OH (ET)	CH$_3$OHCHO (GA)	CH$_2$OCHO (MF)	DME (CH$_3$OCH$_2$)
GBT	✓	✓	✓, n	✓	✓
IRAM 30m	✓	✓	✓, n	✓	✓
SMA	✓	✓	✓, n	✓	✓

nThe not detections are because there are no bright lines of these species in the frequency range covered by the GBT observations.

Table 3. Clean transitions (i.e. non blended with other molecular species) of EG identified in the single dish spectra (GBT and IRAM 30m) towards G31.

Frequency (GHz)	Transition	E_{upp} (K)	$T_{\text{mb}} \times \Delta v$ (K km s$^{-1}$)	Panel	Fig.
45.17972	$5_{2,3}$	9	0.351 a)		
45.54764	$4_{1,4}$	5	0.305 b)		
83.62492	$8_{1,8}$	17	0.251 c)		
83.85949	$9_{2,8}$	24	0.240 d)		
84.43052	$8_{0,8}$	17	0.361 e)		
85.21578	$9_{6,4}$	40	0.172 f)		
85.52157	$9_{4,6}$	30	0.221 g)		
85.60555	$9_{4,5}$	30	0.280 h)		
85.65561	$9_{1,8}$	23	0.393 i)		
86.66012	$9_{3,6}$	27	0.332 j)		
87.56206	$8_{2,7}$	20	0.285 k)		
88.36696	$10_{1,10}$	26	0.443 l)		
88.75334	$10_{0,10}$	26	0.342 m)		
88.81207	$9_{2,7}$	35	0.291 n)		
88.87342	$8_{5,4}$	30	0.171 o)		
88.87421	$8_{5,3}$	30	0.217 p)		
88.98621	$8_{4,5}$	26	0.221 q)		
109.35771	$10_{0,5}$	45	0.334 r)		
109.35786	$10_{0,4}$	45	0.422 s)		
109.48919	$10_{0,5}$	40	0.525 t)		
109.51312	$10_{0,8}$	32	0.536 u)		
109.85770	$10_{1,6}$	35	0.620 v)		
111.44834	$10_{1,7}$	32	0.716 w)		
111.57944	$11_{1,11}$	31	0.844 x)		
112.34368	$12_{2,11}$	40	0.909 y)		
108.37172	$11_{1,12}$	93	1.36 z)		
108.38635	$11_{2,15}$	79	2.35 w)		
108.44321	$17_{6,11}$	93	1.69 x)		
171.41795	$16_{6,11}$	85	1.48 y)		

The EG lines are autoblended, i.e., blended with other transition of EG.

3.2. Interferometric data: SMA

For the identification of lines we have used the SMA datacube obtained with the compact interferometer configuration. Fig. 4 shows the full SMA spectra (containing both LSB and USB sidebands) towards the continuum peak. For identification purposes, we have overlapped the LTE synthetic spectra obtained with MADCUBAIJ of the different COMs, and indicated with colored dots the lines least affected by blending. Several EG unblended lines are clearly identified (Fig. 4 and Table 3). The energy range covered by these transitions is 114–160 K. Additionally, the interferometric data allow us to map the spatial distribution of the EG emission. To study the spatial distribution of the emission we have used the datacubes obtained by combining the data of both compact and very extended configurations, which provide a better spatial resolution (0.90″\times0.75″). Fig. 5 confirms that the spatial distribution of different unblended EG lines is very similar. This spatial coherence supports the identification of EG.

Multiple lines of the other COMs have also been identified in the SMA data. Fig. 4 shows the LTE spectra of the different COMs. The cleanest transitions of each molecule are listed in Appendix [B3, Tables B.2, B.3, B.6 and B.8].
Green, red, and blue squares correspond to the velocity classes (VCs) 1, 2, and 3, respectively, while the data points are color-coded according to their velocity. The red line indicates the VLSR of the source, while the blue line marks the systemic velocity of the galaxy. The white line represents the velocity of the local standard of rest (LSR). The data points are connected by a line to indicate the trend in the velocities as a function of position. The error bars represent the uncertainties in the measured velocities.
cannot be due to different beam-dilutions at different frequencies. Even in the extreme case of extended emission filling the beam at all frequencies, the shift is still present (middle panel of Fig. 5). However, this is not the case, because we know that both EG and MF emissions are not that extended, because our high angular resolution interferometric maps show compact sizes of 0.7″ and 1.7″, respectively.

We suggest that the dust opacity is affecting the observed molecular line intensities. This effect is expected to be particularly important towards the innermost region of
Table 6. Physical parameters obtained from the 3 mm IRAM 30m data for the different molecules.

	EG	ET	GA	MF	DME
$\log N_b$ (cm$^{-2}$)	15.0	15.9	14.7	16.2	15.9
$\log N_s$ (cm$^{-2}$)	18.5	18.5	17.5	18.7	19.0
X_s (10$^{-8}$)	2.6	0.84	0.26	4.2	8.4
v_{LSR} (km s$^{-1}$)	97.6	97.6	96.1	97.6	97.0
Δv (km s$^{-1}$)	5.6	5.4	5.3	4.7	4.4

(a) Assuming $N_{H_2}=1.2\times10^{26}$ cm$^{-2}$ (see Section 4.2).
the core, where EG is detected. To support this interpretation, we have studied if the physical properties of G31 can indeed produce the dust absorption needed to explain the observed line intensities at different frequencies.

We have derived the excitation temperature of MF considering only 3 mm transitions, which are the least affected by dust absorption. We have selected transitions which covers a wide range of energy levels (20–200 K), which allow us to constrain the excitation temperature, and with similar frequencies (in the range 83–88 GHz), so that the effect of dust absorption is nearly the same. We have obtained a value of $T_{\text{ex}}=163$ K, very similar to that derived by Beltrán et al. (2003).

One can derive that the effect of dust opacity (τ_ν) decreases the line intensities in a factor $e^{-\tau_\nu}$. Assuming a dust opacity index ($\tau_\nu \sim \nu^\beta$) typical of massive star forming cores of $\beta=1.5$ (see e.g., Palau et al. 2014), we have then calculated the value of the opacity that would provide $T_{\text{ex}}=163$ K when fitting all the transitions at different frequencies, which is $\tau(220$ GHz$)=2.6$. The lower panel of Fig. 5 shows the rotational diagram of MF after correcting the line intensities for dust opacity.

One can derive the rotational diagram of MF after correcting the line intensities for dust opacity.

\[N_{\text{HI}} = \frac{\tau_\nu}{\mu \, m_{\text{H}} \, \kappa_\nu}, \]

where m_{H} is the hydrogen mass, $\mu=2.33$ is the mean molecular mass per hydrogen atom, and κ_ν is the absorption coefficient per unit density. For $\tau(220$ GHz$)=2.6$, assuming κ_{220} cm$^{-2}$ g$^{-1}$ and a gas-to-dust ratio of 100, the derived hydrogen column density is $\sim1.2 \times 10^{20}$ cm$^{-2}$.

Using the deconvolved angular diameter of the continuum core of $\sim0.76''$ (Cesaroni et al. 2011), this implies a total mass of ~2300 M$_\odot$, which is consistent with the value of 1700 M$_\odot$ obtained from the flux continuum emission by Cesaroni et al. (2011). Adopting the expression:

\[F_\nu = \left(1 - e^{-\tau} \right) \Omega_s \, B_\nu(T_d), \]

where Ω_s is the beam solid angle covered by the source, and $B_\nu(T_d)$ is the Planck function. Using $\Omega_s=\pi l_0^2/4 l_2$, where θ_s is the deconvolved angular diameter of the continuum core ($\sim0.76''$ from Cesaroni et al. 2011) and assuming $\tau(220$ GHz$)=2.6$ and $T_d=163$ K, one obtains a continuum flux of 3.8 mJy, consistent with the observed value (4.6 Jy, Cesaroni et al. 2011). Therefore, this confirms our interpretation that dust absorption is affecting the line intensities in G31. Obviously, the effect of dust absorption is expected to be important only if the level of clumpiness of the dense core is very low, i.e., if the dusty core is not fragmented into smaller condensations. Interestingly, recent high angular resolution ($\sim0.2''$) ALMA observations confirm that there is not hint of fragmentation in the continuum maps of G31 (Cesaroni, private communication).

In summary, a LTE analysis of multi-frequency transitions without considering the dust absorption underestimates the excitation temperatures, explaining the intriguingly low temperature of 50 K derived for EG when fitting multiwavelength transitions. In the next section we explain how to derive reliable values of the excitation temperatures and hence of molecular column densities.

4.3. Molecular column densities

With the effect of dust absorption in mind, to obtain the physical parameters of the different COMs, we have restricted our analysis only to the IRAM 30m 3 mm transitions, the least affected by the dust opacity. We have used MADCUBAIJ to fit the observed 3 mm spectra with the LTE model. MADCUBAIJ considers 5 different parameters to create the simulated LTE spectra: column density of the molecule (N), excitation temperature (T_{ex}), linewidth (Δv), velocity (v) and source size (θ_s). The procedure used to derive the main physical parameters is the following:

i) we have fixed the velocity of the emission and the linewidth to the values obtained from gaussian fits of unblended lines; ii) we have fixed the gas temperature to the value estimated using the 3 mm transition of MF (163 K), which is a good temperature tracer; iii) we have not applied the beam dilution factor to derive the beam-averaged column density N_b; iv) leaving N as free parameter, we have used the AUTOFIT tool of MADCUBAIJ to find the value that better fits the unblended molecular transitions of each COM.

\[\text{The details of the LTE synthetic spectra used to identify the different COMs in the SMA and GBT data (Figs. 2 and 3, respectively) are presented in Appendix C.} \]
The formation of ethylene glycol and other COMs in star-forming regions

Rivilla et al.: The formation of ethylene glycol and other COMs in star-forming regions

Fig. 4. Integrated emission maps of different COMs towards G31. All the maps have been obtained with the combination of the very extended and compact SMA data. The color scale in each panel spans from 30% to 100% of the line intensity peak. The frequencies (and upper energies) of the lines are: 220.747 GHz (69 K), 220.743 GHz (76 K) and 220.730 GHz (97 K), for CH$_3$CN; 230.991 GHz (85 K) for ET; 229.405 GHz (111 K) and 229.420 GHz (111 K) for MF; 230.234 GHz (148 K) for DME; 221.228 GHz (698 K) for CH$_3$CN $v_8=1$; 221.100 GHz (137 K) for EG; and 230.898 GHz (131 K) for GA. The black solid line indicates the isocontour with the 50% of the peak line intensity. The two white contours correspond to the 50% and 80% of the peak value of the 1.3 mm continuum. The white plus sign indicates the positions of the peak of the 1.3 mm continuum. The beam of the interferometer is shown in the lower right corner of the lower right panel.

The results for the different molecular species are summarized in Table 6. To account for the dust absorption discussed before, the values for the column densities have been corrected by a factor $e^{\tau(3 \text{mm})} \sim 2$, where $\tau(3 \text{mm})$ has been derived assuming the derived value of $\tau(220 \text{GHz})=2.6$ and $\beta=1.5$.

The main source of uncertainty in the estimated column densities arises from the assumption of the LTE approximation using a single temperature. However, even in the extreme case that the temperature varies by a factor of 2, the variation in the derived column densities would be less than a factor of 2. We therefore consider that the uncertainty in the estimated column densities is less than a factor of 2.

All the molecules have velocities very close to the source systemic velocity, ~ 97 km s$^{-1}$, and linewidths (FWHM) ~ 5 km s$^{-1}$, typical of low-mass molecular cores. The derived source-averaged molecular abundances with respect to molecular hydrogen are in the range $\sim(0.3-8) \times 10^{-8}$.

5. Comparison with other interstellar sources

5.1. Comparison with other star-forming regions

We have compared the relative molecular abundances obtained in G31 with those already reported in other star-forming regions: the massive star forming region NGC 7129 FIRS2 (Fuente et al. 2014), and the low-mass protostars IRAS 16293-2422 (Jørgensen et al. 2012), NGC 1333 IRAS 2A (Maury et al. 2014; Contens et al. 2015; Taquet et al. 2015), and NGC 133 IRAS 4A (Taquet et al. 2015). The different relative molecular abundances are given in Table 7. The uncertainty of the abundance ratios can be estimated by considering propagation of the uncertainty of the column densities of each molecule.

In Fig. 6 we show the behavior of the different abundance ratios with respect to the luminosity of the sources.

Table 7 shows that EG is always more abundant than GA in all star-forming regions. This fact has also been noted by Requena-Torres et al. (2008) in the Galactic Center, where saturated species, such as EG, are always more abundant than unsaturated species, such as GA (see Table 7); and in star-forming regions (e.g. Ikeda et al. 2001, Hollis et al. 2002, Bisschop et al. 2007). Therefore, there is evidence that chemistry favors saturated versus unsaturated species. Requena-Torres et al. (2008) suggested that the double bond C=O (present in the unsaturated species, e.g. GA) must be easily broken.

In star-forming regions, the [EG/GA] ratio changes with luminosity, spanning from 1 to >15. The lower limits of
the higher luminosity sources (hot cores) suggest that the [EG/GA] ratio increases with luminosity.

The [DME/MF] and [EG/ET] ratios are nearly constant with luminosity, with values of the order of ~1 and ~0.1, respectively. The [GA/MF] and [ET/DME] ratios clearly decrease with increasing luminosity. In Section 6 we will discuss how these results can help us to understand the formation of EG and other COMs.

5.2. Comparison with cold clouds and comets

The formation of stars and planets undergoes different evolutionary stages: i) cold and dense prestellar cores are able to collapse, triggering star formation; ii) the gravitational energy is converted into thermal energy and radiation, and the forming star warms up the dense neighboring envelope; iii) the envelope dissipates and a circumstellar disk remains, where eventually planets and other bodies such as comets are formed. We investigate here if there is any hint of a chemical trend between these different evolutionary stages. Namely, whether the chemical composition of star-forming regions is inherited from its proposed precursors (cold clouds), and also whether it is transferred to the bodies formed during the subsequent protoplanetary phase (e.g. comets).

We have also included in Table 7 the relative abundance ratios towards cold clouds located in the Galactic Center, G-002, G-001, G+0.693 [Requena-Torres et al. 2008], and the comets Hale-Bopp [Crovisier et al. 2004], Lemmon [Biver et al. 2014], Lovejoy [Biver et al. 2015] and 67P/Churyumov-Gerasimenko [Goessmann et al. 2015]. In Fig. 7 we have compared different molecular abundance ratios between these three groups of sources (i.e. comets, star-forming regions and cold clouds).

We have found that for all kind of sources [EG/GA]>[EG/ET]>[GA/MF]. This suggests that the relative abundances of different COMs, despite the observed large dispersions, share a general trend in interstellar sources at different evolutionary stages, from cold clouds to star-forming environments. This might mean that the chemistry at different stages of star formation is not significantly different, and there is a chemical thread across the entire star-formation process. However, the low number of sources with positive detections of these COMs is still low, and prevents a statistically significant conclusion.

6. Discussion: Formation of ethylene glycol and other COMs in star-forming regions

We have detected 31 unblended transitions of EG with single-dish observations and 7 unblended transitions with interferometric observations. We note that the best detection up to know of EG (in SgrB2 N, the prototypical interstellar source for the search of large COMs) relies on the detection of only ~13 unblended lines [Belloche et al. 2013], despite the much wider spectral coverage of these observations. This clearly shows that although the extreme conditions of the Galactic Center create a unique chemically rich environment, paradoxically the presence of so many molecules produces blending problems that makes it difficult to identify molecules with faint emission. Moreover, in SgrB2 N multiple velocity components and strong absorption also complicate a correct identification of the lines. Therefore, sources with relatively simple structure and kinematics but also chemically rich, such as G31, are a good alternative to carry out astrochemical studies. Furthermore, our work proves that single-dish observations are suitable for the detection of large COMs in hot molecu-
lar cores, despite the dilution due to the fact that the beam size is much larger than the source size. Obviously, interferometric observations at high resolution are also needed to measure the size of the emitting regions and hence obtain proper values of the molecular abundances.

The formation of COMs is still an open debate in astrophysics. Theoretical chemical models based only on gas-phase reactions have failed by orders of magnitude in reproducing the observed abundances of COMs (e.g. Geppert et al. 2006). Moreover, in the particular case of EG and GA there are no known gas-phase reactions to form GA or EG (see the chemical databases KIDA and UMIST and also Woods et al. 2012). For this reason, chemistry on the surface of dust grains has been invoked to form COMs (e.g. Garrod, Weaver & Herbst 2008), which would be subsequently desorbed due to heating from the central protostar or from shocks, enriching the molecular environment. However, Balucani, Ceccarelli & Taquet (2015) have recently pointed out that some gas-phase reactions can be feasible, and that also gas-phase chemistry should be considered as an alternative to form COMs.

Based on the derived molecular abundances in G31 and other star-forming regions, we discuss in this section how observations can give us clues about the formation of COMs.

Table 7. Relative abundances of COMs in comets, star-forming regions and Galactic Center cold clouds.

Source	[EG/GA]	[EG/ET]	[GA/MF]	[ET/DME]	[DME/MF]	Luminosity (L⊙)
Hale-Bopp	>6	>2.5	<0.5	-	-	-
Lemmon	>3	>2.2	<0.5	-	-	-
Lovejoy	4	0.6	0.2	-	-	-
67P	0.5	-	-	-	-	-

Low-mass star-forming regions (hot corinos)

Source	[EG/GA]	[EG/ET]	[GA/MF]	[ET/DME]	[DME/MF]	Luminosity (L⊙)
IRAS 16293-2422	1	-	0.08	-	-	2.7
NGC 1333 IRAS 2A	5	0.2	0.05	1.3	0.9	20
NGC 1333 IRAS 4A	-	-	0.17	1.4	0.6	7.7

Intermediate-mass star-forming regions

Source	[EG/GA]	[EG/ET]	[GA/MF]	[ET/DME]	[DME/MF]	Luminosity (L⊙)
G31.41+0.31	10	1.0	0.06	0.3	2.0	1.8×10⁻⁶
W51 e2	>15	0.19	<0.0018	0.13	1.1	4.7×10⁻⁶
G34.3+0.2	>6	0.13	<0.005	0.23	1.1	2.8×10⁻⁶
Orion KL	>13	0.18	<0.0022	-	-	1×10⁻⁶

High-mass star-forming regions (hot cores)

Source	[EG/GA]	[EG/ET]	[GA/MF]	[ET/DME]	[DME/MF]	Luminosity (L⊙)
G-092	1.3	0.33	0.3	-	-	-
G-001	1.6	0.47	0.23	-	-	-
G+0.693	1.2	0.35	0.19	-	-	-

Galactic Center cold clouds

Source	[EG/GA]	[EG/ET]	[GA/MF]	[ET/DME]	[DME/MF]	Luminosity (L⊙)
G1.4-0.02	-	-	-	-	-	-
NGC 7129 FIRS2	2	0.08	0.04	0.75	1.2	5×10⁻⁶

(a) Only upper limit were reported for both species.

(1) Crovisier et al. (2004); (2) Requena-Torres et al. (2008); (3) Beltrán et al. (2009); (4) Favre et al. (2011); (5) Jørgensen et al. (2012); (6) Biver et al. (2014); (7) Maury et al. (2014); (8) Fuente et al. (2014); (9) Contens et al. (2015); (10) Taquet et al. (2015); (11) Brouillet et al. (2013); (12) Lykke et al. (2015); (13) Goesmann et al. (2015); (14) Biver et al. (2015); (15) this work.

6 http://kida.obs.u-bordeaux1.fr/
7 http://ufda.ajmarkwick.net/

6.1. Chemical link

Table 8 shows different chemical routes proposed in the literature to form the COMs studied in this work: EG, GA, MF, DME and ET. These chemical routes rely on theoretical chemical models (Bennett & Kaiser 2007; Garrod, Weaver & Herbst 2008; Woods et al. 2013; Balucani, Ceccarelli & Taquet 2015) and laboratory experiments (Fedoseev et al. 2013; Butscher et al. 2013).

If two molecular species are chemically linked, i.e., they have a common precursor and/or one is formed from the other, their relative abundance ratio should be nearly constant, regardless of the luminosity of the source. This occurs, for instance, in the [DME/MF] and [ET/DME] decrease with luminosity. In the following subsections we propose different mechanisms that could explain these observational trends, and that give us hints about the formation of COMs in star-forming regions: i) different chemical formation routes; ii) different warm-up timescales; iii) different initial gas compositions of the dust grains; iv) different hydrogen densities of the sources; v) different formation/destruction efficiency in the gas phase.
any case, it seems that MF and DME are chemically linked, in agreement with the observed constant abundance ratio.

Likewise, if EG were formed by sequential hydrogenation of GA as suggested by the route 1, a relatively constant [EG/GA] ratio would be expected. Instead, the values of the [EG/GA] ratio differ between sources by more than an order of magnitude, from 1 to >15 (upper panel of Fig. 6). This suggests that EG and GA are not directly linked.

Therefore, it seems more plausible that EG is formed by the combination of two CH$_2$OH radicals (route 2 in Table 5). Although Walsh et al. (2014) raised some doubts about the efficiency of this process due to the low mobility produced by the OH-bonds, the recent experimental work by Butscher et al. (2015) has shown that this mechanism seems to be a very efficient pathway to form EG.

The large variation of the [EG/GA] ratio suggests not only that GA is not the direct precursor of EG, but also that they do not share a common precursor. Since we favor only that GA is not the direct precursor of EG, but also seems to be a very efficient pathway to form EG. By Butscher et al. (2015) has shown that this mechanism produced by the OH-bonds, the recent experimental work about the efficiency of this process due to the low mobility of the radicals (route 2), this would imply that CH$_2$OH is not a precursor of GA, and route 4 could be ruled out. Then, the chemical pathway based on the dimerization of HCO (route 3) proposed by Woods et al. (2013) appears as the most plausible scenario. This route has also been recently supported by the laboratory experiments of Balucani, Ceccarelli & Taquet (2015).

The nearly constant behavior of the [EG/ET] ratio with luminosity (middle panel of Fig. 6) suggests that these two species might be chemically linked. Indeed, this agrees with the chemical model proposed by Garrod, Weaver & Herbst (2008), which produces EG and ET from the common precursor CH$_2$OH (routes 2 and 8, respectively).

In conclusion, the observed abundances ratios can be all justified by the routes 2 (for EG), route 3 (for GA), routes 5 and/or 6 (for MF), route 7 (for DME) and route 8 (for ET), while the routes 1 and 4 are excluded.

6.2. Timescales

The different warm-up timescales associated with objects of different luminosities (hot cores and hot corinos) are expected to affect the chemistry. We discuss here if this effect could explain the behavior of the relative molecular abundances with luminosity observed in Fig. 6. According to Garrod, Weaver & Herbst (2008), the [EG/GA] and [ET/DME] ratios are higher at longer warm-up timescales, while the ratio [GA/MF] decreases with the timescale. Assuming that the warm phase in hot cores is longer than in hot corinos, as indicated by the chemical models by Awad et al. (2014), then the heating timescale would be proportional to the luminosity. Hence, the timescale effect could contribute to explain the observed trends of [ET/DME] and [EG/GA] with luminosity, but not the one of [GA/MF].

6.3. Chemical composition of dust grains

A possible explanation for the different [EG/GA] ratios would be different chemical compositions of the dust grains in different star-forming regions. The experiments of Oberg et al. (2009) indicate that different initial compositions of the ices could produce very different values of the [EG/GA] ratio: pure CH$_3$OH ices produce a ratio >10, while ices with a composition CH$_3$OH:CO 1:10 produce a ratio <0.25. If this would be the explanation for the different [EG/GA] ratios, it would imply that the initial composition of grains is different for low- and high-mass star-forming regions.

6.4. Atomic hydrogen density

The experiments and chemical modeling by Fedoseev et al. (2015) show that different initial atomic H densities provide different [EG/GA] ratios. Contens et al. (2015) argue that the density could explain the difference observed towards IRAS 16293-2422 and NGC 1333 IRAS 2A, with [EG/GA] ratios of 1 and 5, respectively. They suggest that the lower H$_2$ density of IRAS 2A would lead to a higher atomic H density and then to a higher [EG/GA] ratio, as observed. However, this scenario does not apply to G31, which is denser, but exhibits a [EG/GA] ratio very similar to IRAS 2A. Therefore, we believe that atomic hydrogen density cannot explain the observed behavior of the [EG/GA] ratio.

6.5. Formation and destruction on gas phase

So far, we have assumed in our discussion that COMs are mainly formed by surface chemistry on dust grains and subsequently desorbed into the gas phase. However, the situ-
ation can be more complex if we also consider gas phase formation routes. Recently, Balucani, Ceccarelli & Taquet (2015) have suggested that some gas reactions may be important for the formation of MF in cold environments. If this were also the case for GA and EG, for which no efficient gas phase reactions are available to date (see Woods et al. 2012), the interpretation of the observational results should be revisited. More theoretical work is needed to make this hypothesis plausible.

Finally, another possible cause for the variation of the [EG/GA] ratio could be different destruction mechanisms in the gas phase. Hudson, Moore & Cook (2005) show that GA is more sensitive to irradiation than EG, which may explain its lower abundance in luminous sources. Higher levels of irradiation by the higher luminosity sources would produce an increase of the [EG/GA] ratio with the luminosity, as observed. However, the destruction pathways of these COMs are still barely explored by the theoretical models and laboratory works.

7. Summary and Conclusions

We have reported for the first time the detection of the aGG conformity of the 10-atoms organic molecule ethylene glycol, (CH$_2$OH)$_2$, towards the hot molecular core G31.41+0.31. This and previous detections of COMs (e.g. CH$_3$CHO) confirm that G31.41+0.31 is an excellent laboratory for studying the astrochemistry related with the building blocks of primordial life. We have detected multiple unblended transitions of (CH$_2$OH)$_2$ with single-dish and interferometer observations. Our SMA interferometric maps show that the (CH$_2$OH)$_2$ emission is very compact, with a diameter of 0.7″, peaking towards the maximum of the continuum. This morphology is similar to that observed in vibrationally excited CH$_3$CN or CH$_2$OCHO, and differs from that observed in other more abundant COMs such as the ground state of CH$_3$CN or CH$_2$OCHO, which exhibit a dip in the central region. We propose that this difference is likely due to line opacity. Lower abundance molecules such as (CH$_2$OH)$_2$ and CH$_2$OCHO are expected to be more optically thin and allow us to trace the gas closest to the forming protostar(s).

Our detailed LTE analysis of (CH$_2$OH)$_2$ and CH$_2$OCHO towards G31.41+0.31 suggests that dust opacity plays an important role in the line intensities. We have found evidence that high frequency transitions are more efficiently absorbed than low frequency transitions due to higher dust opacity. This effect should be taken into account to derive a correct value of the excitation temperature and column density of molecules in dense hot molecular cores. We have derived the molecular abundances of several COMs towards G31.41+0.31 (CH$_2$OCHO, (CH$_2$OH)$_2$, C$_2$H$_5$OH, and CH$_2$OCH$_3$), finding abundances with respect to molecular hydrogen in a range (0.3–8)×10$^{-8}$.

Observations in different star-forming regions indicate that the ratio (CH$_2$OH)$_2$/CH$_2$OCHO spans from 1 to >15. We have found evidence of an increase of the ratio with the luminosity of the source. We have discussed different possible explanations for this trend, concluding that the most likely scenario is that both species are formed through different chemical routes not directly linked. We cannot exclude however a contribution of different formation and destruction efficiencies in gas phase of both species, but more laboratory works and theoretical chemical models are needed to better constrain this hypothesis.

We have discussed the molecular abundance ratios of COMs in different star-forming regions in the context of the different chemical routes proposed for their formation. We conclude that observations favor the formation of (CH$_3$OH)$_2$ by combination of two CH$_2$OH radicals on dust grains, in agreement with the models of Bennett & Kaiser (2007) and Garrod, Weaver & Herbst (2008), and the laboratory experiments by Butscher et al. (2015). The most likely formation route of CH$_3$OCHO is via solid-phase dimerization of the formyl radical HCO, a mechanism proposed by Woods et al. (2013) and supported by the laboratory experiments of Pédossev et al. (2015). The observational data also suggests that CH$_3$OCHO and CH$_2$OCHO are chemically linked, which may mean that both share a common precursor, CH$_3$O, as proposed by Garrod, Weaver & Herbst (2008), or that the former is directly formed from the latter through viable gas-phase reactions, as suggested by Balucani, Ceccarelli & Taquet (2015).

The behavior of the abundance ratios of (CH$_2$OH)$_2$/CH$_3$OCHO and C$_2$H$_5$OH/CH$_2$OCH$_3$ with luminosity may be explained by the different warm-up timescales in hot cores and hot corinos.

Acknowledgements. This work was partly supported by the Italian Ministero dell’Istruzione, Università e Ricerca through the grant Progetti Premiali 2012 - iALMA.

References

Awad Z., Viti S., Bayet E., Caselli P., 2014, MNRAS, 443, 275
Balucani N., Ceccarelli C., Taquet V., 2015, MNRAS, 449, L16
Belilloche A., Müller H. S. P., Menten K. M., Schilke P., Comito C., 2014, A&A, 559, A47
Beltrán M. T., Cesaroni R., Neri R., Codella C., Furuya R. S., Testi L., Olmi L., 2005, A&A, 435, 901
Beltrán M. T., Codella C., Viti S., Neri R., Cesaroni R., 2009, ApJ, 690, L93
Beltrán M. T., de Wit W. J., 2015, ArXiv e-prints
Bennett C. J., Kaiser R. I., 2007, ApJ, 661, 899
Bischop S. E., Jorgensen J. K., van Dishoeck E. F., de Wachter E. B. M., 2007, A&A, 465, 913
Biver N. et al., 2014, A&A, 566, L5
Biver N., Bockelee-Morvan D., Moreno R., Crovisier J. a., 2015, Science Advances, 5
Brouillet N., Despois D., Lu X.-H., Baudry A., Cernicharo J., Bockelee-Morvan D., Crovisier J., Biver N., 2015, A&A, 576, A129
Butscher T., Duverney F., Theule P., Danger G., Carissain Y., Hagebaum-Reignier D., Chiavassa T., 2015, MNRAS, 453, 1587
Cesaroni R., Beltrán M. T., Zhang Q., Beuther H., Fallscheer C., 2011, A&A, 533, A73
Charnley S. B., Rodgers S. D., 2005, in IAU Symposium, Vol. 231, Astrochemistry: Recent Successes and Current Challenges, Lis D. C., Blake G. A., Herbst E., eds., pp. 237–246
Christen D., Coudert L. H., Larsson J. A., Cremer D., 2001, Journal of Molecular Spectroscopy, 205, 185
Christen D., Coudert L. H., Sueram R., Lova F. J., 1995, Journal of Molecular Spectroscopy, 172, 57
Christen D., Müller H. S. P., 2003, Physical Chemistry Chemical Physics, 5, 3600
Churchwell E., Walmsley C. M., Cesaroni R., 1990, A&AS, 83, 119
Collins P., Ferrier R., 1995, Monosaccharides. Their Chemistry and Their Roles in Natural Products, Vol. 115. p. 420
Cooper G., Kimmich N., Belisle W., Sarinana J., Brabham K., Garrel L., 2001, Nature, 414, 879
Coutens A., Persson M. V., Jorgensen J. K., Wampfler S. F., Lykke J. M., 2015, A&A, 576, A5
Crovisier J., Bockelee-Morvan D., Biver N., Colom P., Despois D., Lis D. C., 2004, A&A, 418, L35
Fig. 6. Relative abundances of pairs of COMs with respect to the luminosity of the star-forming regions. The conservative uncertainty of the relative abundances correspond to a factor of 3 (see text). The triangles in the upper/lower panels are lower/upper limits, respectively. The solid horizontal lines correspond to the relative abundance value found in the comet Lovejoy, from Rivier et al. (2015).
Fig. 7. Comparison of different ratios of molecular abundances of COMs between comets, star-forming regions and cold clouds. The color circles indicate measured ratios, while right/left-oriented triangles denote lower/upper limits.
Appendix A: Spectroscopy of ethylene glycol

Ethylene glycol is a triple rotor molecule. Torsions around its C−C bond and its two C−O bonds lead to 10 different conformers, four forms with an anti (A) arrangement of the OH groups and six with a gauche (G) arrangement (Fig. 1 from Christen et al. 2001). Two of the G conformers are capable of establishing intramolecular hydrogen bonds, known as g’Ga and g’Gg which are expected to be energetically favorable in the gas phase. The aGg’ conformer of EG is the lowest energy state conformer. The torsion of both hydroxyl groups (OH) around the two CO bonds produces a tunneling splitting. This translates into 2 sub-levels, v=0 and v=1, separated by ∼7 GHz. Within each tunneling sublevel, the different rotational energy levels are characterized by three quantum numbers, J, K_a, K_c. To label the different energy levels we use in this paper the following notation J_{K_a,K_c}, v=0 or 1. The transitions occur for changes from a rotational level in the v=1 state to a rotational level in the v=0 state, or viceversa. Figure 2 of Christen et al. (1995) shows a fraction of the energy level diagram of the g’Ga conformer of EG. In our analysis we have used the experimental spectrum of the aGg’ conformer obtained by Christen et al. (1995) and Christen & Müller (2003).

Appendix B: Identified unblended transitions of COMs

We present in this appendix several tables with the unblended transitions of the different COMs found in the single dish and interferometric data: ET (Tables B.1 and B.2), MF (Tables B.3 and B.4), GA (Tables B.5 and B.6) and DME (Tables B.7 and B.8).

In Fig. B.1 we also present some selected IRAM 30m spectra at 3 mm of MF, ET, DME and GA. We have overplotted in red the LTE fit using MADCUBAIJ with the physical parameters shown in Table 6.

In Fig. B.2 we present the unblended transitions of the COMs detected with the GBT telescope.

* The lowercase letters a and g correspond to rotation at the CO bond where clockwise/counterclockwise rotation is indicated by a positive/negative diedral angle and the symbols g/g’. The rotational directions are determined by looking along the C-C and C-O axes from the first to the second atom.
Table B.1. Unblended transitions of ET identified in the single dish spectra (GBT and IRAM 30m) towards G31.

Frequency (GHz)	Transition\(^a\)	\(E_{up}\) (K)
45.34445	4(2,2)−3(1,2), \(v_t=0\) = 1	70
45.45987	13(3,11)−12(4,8)	88
81.68343	8(1,7)−7(2,6)	32
83.56877	5(1,5)−4(1,4), \(v_t=0\) = 0	70
83.66196	5(1,5)−4(1,4), \(v_t=1\) = 1	75
84.59587	4(2,3)−4(1,4)	13
85.26550	6(0,6)−5(1,5)	17
85.74718	5(0,5)−4(0,4), \(v_t=0\) = 0	69
85.76515	8(0,8)−8(1,8), \(v_t=1\) = 1	91
85.76890	5(0,5)−4(0,4), \(v_t=1\) = 1	74
86.31130	5(2,4)−4(2,3), \(v_t=0\) = 0	74
86.51654	5(4,2)−4(4,1), \(v_t=1\) = 1	94
86.51654	5(4,1)−4(4,0), \(v_t=1\) = 1	94
86.55042	5(3,3)−4(3,2), \(v_t=1\) = 1	85
86.55596	5(4,2)−4(4,1), \(v_t=0\) = 0	89
86.55596	5(4,1)−4(4,0), \(v_t=0\) = 0	89
86.56484	5(3,2)−4(3,1), \(v_t=1\) = 1	85
86.62171	5(3,2)−4(3,1), \(v_t=0\) = 0	80
87.02713	5(2,3)−4(2,2), \(v_t=1\) = 1	79
87.03001	5(2,3)−4(2,2), \(v_t=0\) = 0	74
87.71610	5(2,4)−5(1,5)	18
88.69737	8(1,7)−7(0,7), \(v_t=0\) = 1	89
98.58509	15(1,15)−15(0,15), \(v_t=1\) = 0	158
112.12954	12(3,9)−12(2,10)	77
140.50681	8(2,6)−7(2,5), \(v_t=0\) = 0	92
147.42746	8(1,8)−7(0,7)	30
154.93019	9(2,8)−8(2,7), \(v_t=1\) = 1	104
168.12339	10(0,10)−9(0,9), \(v_t=0\) = 0	102
168.24791	10(0,10)−9(0,9), \(v_t=1\) = 1	106
169.70219	18(3,16)−18(2,17)	155
171.96575	10(2,9)−9(2,8), \(v_t=1\) = 1	112
173.07117	10(6,4)−9(6,3), \(v_t=1\) = 1	152
173.07117	10(6,5)−9(6,4), \(v_t=1\) = 1	152
173.24010	10(5,6)−9(5,5), \(v_t=0\) = 0	133
173.24010	10(5,5)−9(5,4), \(v_t=0\) = 0	133
173.39133	5(2,3)−4(1,4)	18
173.39339	10(4,6)−9(4,5), \(v_t=0\) = 0	122
174.23291	6(2,5)−5(1,4)	23
224.44306	12(7,6)−12(6,6), \(v_t=0\) = 1	181
224.44311	12(7,5)−12(6,7), \(v_t=0\) = 1	181
224.59698	16(7,10)−16(6,10), \(v_t=0\) = 1	230
224.59850	16(7,9)−16(6,11), \(v_t=0\) = 1	230
224.66995	3(2,1)−2(1,1), \(v_t=1\) = 0	71
224.73299	11(3,9)−10(2,9), \(v_t=0\) = 1	123
224.82313	13(1,12)−12(1,11), \(v_t=0\) = 0	135
228.02905	13(3,10)−13(3,9), \(v_t=0\) = 0	144

Table B.2. Unblended transitions of ET identified in the interferometric SMA spectra towards G31.

Frequency (GHz)	Transition\(^a\)	\(E_{up}\) (K)
220.15478	24(3,22)−24(2,23)	263
220.99889	13(0,13)−12(0,12), \(v_t=1\) = 1	135.5
229.49113	17(5,12)−17(4,13)	160.1
230.67255	13(2,11)−12(2,10), \(v_t=0\) = 0	138.6
230.79386	6(5,2)−5(4,2), \(v_t=0\) = 1	104.8
230.95378	16(5,11)−16(4,12)	145.8
230.99197	14(0,14)−13(1,13)	85.5

\(^a\) The transitions of the gauche state of ethanol are designated with \(v_t=0\) (gauche +) and \(v_t=1\) (gauche −), while the transitions without \(v\) number correspond to the trans state.
Table B.3. Unblended transitions (i.e. non blended with other molecular species) of MF identified in the single dish spectra (GBT and IRAM 30m) towards G31.

Frequency (GHz)	Transition	E_{up} (K)
45.22148	v=1, 4(1,4)−3(1,3) E	193
45.39579	v=0, 4(1,4)−3(1,3) E	6
45.39738	v=0, 4(1,4)−3(1,3) A	6
45.75404	v=0, 3(1,3)−2(0,2) E	4
45.75870	v=0, 3(1,3)−2(0,2) A	4
45.84739	v=0, 14(3,11)−14(3,12) E	70
45.88793	v=0, 14(3,11)−14(3,12) A	70
81.31421	v=0, 16(3,13)−16(2,14) E	89
81.36235	v=0, 16(3,13)−16(2,14) A	89
81.38058	v=0, 3(2,1)−2(1,2) E	6
82.24298	v=0, 7(1,7)−2(0,6) E	16
82.24447	v=0, 7(1,7)−2(0,6) A	16
82.72349	v=0, 19(4,15)−19(3,16) E	126
82.56197	v=0, 19(4,15)−19(3,16) A	126
83.60516	v=0, 10(3,8)−10(2,9) A	38
83.63843	v=0, 10(3,8)−10(2,9) E	38
84.22466	v=0, 11(4,7)−11(3,8) E	50
84.23334	v=0, 11(4,7)−11(3,8) A	50
84.28311	v=1, 7(2,6)−6(2,5) E	206
84.44917	v=0, 7(2,6)−6(2,5) E	19
84.45475	v=0, 7(2,6)−6(2,5) A	19
85.32703	v=1, 7(4,4)−6(4,3) E	215
85.37173	v=1, 7(3,5)−6(3,4) A	210
85.50622	v=1, 7(4,3)−6(4,2) E	215
85.55338	v=1, 7(5,3)−6(5,2) E	220
85.63833	v=0, 4(2,3)−3(1,2) E	9
85.74398	v=1, 7(4,4)−6(4,3) E	214
85.77340	v=0, 21(5,16)−21(4,17) A	156
85.78067	v=0, 20(5,15)−20(4,16) E	143
85.78534	v=0, 20(5,15)−20(4,16) A	143
85.91921	v=0, 7(6,1)−6(6,0) E	40
86.02112	v=0, 7(5,2)−6(5,1) E	33
86.02772	v=0, 7(5,3)−6(5,2) E	33
86.02944	v=0, 7(5,3)−6(5,2) A	33
86.03019	v=0, 7(5,2)−6(5,1) A	33
86.03401	v=1, 7(3,4)−6(3,3) E	210
86.15508	v=1, 7(3,4)−6(3,3) A	210
86.17271	v=1, 7(3,5)−6(3,4) E	209
86.21006	v=0, 7(4,4)−6(4,3) A	27
86.22365	v=0, 7(4,3)−6(4,2) E	27
86.22416	v=0, 7(4,4)−6(4,3) E	27
86.25055	v=0, 7(4,3)−6(4,2) A	27
86.26580	v=0, 7(3,5)−6(3,4) A	23
86.26874	v=0, 7(3,5)−6(3,4) E	23
87.14328	v=0, 7(3,4)−6(3,3) E	23
87.16129	v=0, 7(3,4)−6(3,3) A	23
87.76638	v=0, 8(0,8)−7(1,7) E	20
87.76904	v=0, 8(0,8)−7(1,7) A	20
88.05597	v=0, 19(5,14)−19(4,15) E	130
88.05446	v=0, 19(5,14)−19(4,15) A	130
88.17551	v=0, 10(4,6)−10(3,7) E	43
88.18042	v=0, 10(4,6)−10(3,7) A	43
88.22075	v=1, 7(1,6)−6(1,5) E	205
88.35849	v=0, 22(5,17)−22(4,18) A	170
88.68689	v=0, 11(3,9)−11(2,10) E	45
88.72327	v=0, 11(3,9)−11(2,10) A	45
88.77087	v=1, 8(1,8)−7(1,7) E	208
88.85161	v=0, 7(1,6)−6(1,5) A	18
88.86241	v=1, 8(1,8)−7(1,7) E	207
98.42421	v=0, 8(5,3)−7(5,2) E	38
98.43180	v=0, 8(5,4)−7(5,3) E	38

\(^{b}\) Integrated intensities derived from the LTE fit.
Table B.3. (Continued).

Frequency (GHz)	Transition	E_{up} (K)
98.43276	$v=0$, $8(5,4) - 7(5,3)$ A	38
98.43580	$v=0$, $8(5,3) - 7(5,2)$ A	38
98.60686	$v=0$, $8(3,6) - 7(3,5)$ E	27
98.61116	$v=0$, $8(3,6) - 7(3,5)$ A	27
98.62452	$v=1$, $8(3,6) - 7(3,5)$ E	214
98.62611	$v=0$, $8(4,5) - 7(4,4)$ A	32
98.72000	$v=0$, $8(4,5) - 7(4,4)$ E	32
98.74791	$v=0$, $8(4,4) - 7(4,3)$ E	32
98.79229	$v=0$, $8(4,4) - 7(4,3)$ E	32
110.6503	$v=1$, $9(6,4) - 8(6,3)$ E	237
110.15366	$v=1$, $10(1,10) - 9(1,9)$ A	218
110.23971	$v=1$, $10(1,10) - 9(1,9)$ E	217
111.40841	$v=0$, $9(4,5) - 8(4,4)$ E	37
111.45330	$v=0$, $9(4,5) - 8(4,4)$ A	37
111.67413	$v=0$, $9(1,8) - 8(1,7)$ E	28
111.68219	$v=0$, $9(1,8) - 8(1,7)$ A	28
111.73400	$v=0$, $10(1,10) - 9(9,9)$ E	30
111.73531	$v=0$, $10(1,10) - 9(9,9)$ A	30
140.16066	$v=1$, $11(2,9) - 10(2,8)$ A	231
147.24796	$v=0$, $18(6,13) - 19(5,14)$ E	125
147.24796	$v=1$, $12(5,7) - 11(5,6)$ E	250
147.25078	$v=0$, $12(11,1) - 11(11,0)$ E	126
147.25568	$v=0$, $12(11,1) - 11(11,0)$ A	126
147.25568	$v=0$, $12(11,2) - 11(11,1)$ A	126
147.26531	$v=0$, $12(11,2) - 11(11,1)$ E	126
147.30479	$v=0$, $19(6,14) - 19(5,15)$ E	137
147.31057	$v=0$, $12(10,2) - 11(10,1)$ E	112
147.31775	$v=0$, $12(10,2) - 11(10,1)$ A	112
147.31775	$v=0$, $12(10,3) - 11(10,2)$ A	112
147.32539	$v=0$, $12(10,3) - 11(10,2)$ E	112
147.33163	$v=0$, $19(6,14) - 19(5,15)$ A	137
147.39707	$v=0$, $12(9,3) - 11(9,2)$ E	100
147.40657	$v=0$, $12(9,3) - 11(9,2)$ A	100
147.40670	$v=0$, $12(9,4) - 11(9,3)$ A	100
147.41182	$v=0$, $12(9,4) - 11(9,3)$ E	100
147.52431	$v=0$, $12(8,4) - 11(8,3)$ E	89
147.52431	$v=0$, $12(8,5) - 11(8,4)$ A	88
147.53554	$v=0$, $12(8,4) - 11(8,3)$ A	88
147.53554	$v=0$, $12(8,5) - 11(8,4)$ E	88
147.53864	$v=0$, $12(8,5) - 11(8,4)$ E	88
147.53917	$v=0$, $17(6,12) - 17(5,13)$ E	115
154.98454	$v=0$, $12(3,9) - 11(3,8)$ E	53
155.90823	$v=0$, $12(3,9) - 11(3,8)$ A	53
161.41614	$v=0$, $13(5,8) - 12(5,7)$ E	71
161.45743	$v=0$, $20(2,18) - 20(1,19)$ A	128
161.45822	$v=0$, $13(5,8) - 12(5,7)$ A	70
168.49507	$v=0$, $13(3,10) - 12(3,9)$ E	61
168.51375	$v=0$, $13(3,10) - 12(3,9)$ A	61
168.91461	$v=0$, $15(2,13) - 14(3,12)$ E	76
168.93457	$v=0$, $15(2,13) - 14(3,12)$ A	76
169.57068	$v=0$, $20(7,13) - 20(6,14)$ A	157
170.23327	$v=0$, $14(3,12) - 13(3,11)$ E	68
170.59290	$v=0$, $6(4,2) - 5(3,3)$ A	23
171.06714	$v=0$, $23(7,17) - 25(6,18)$ A	196
171.79421	$v=0$, $14(13,1) - 13(13,0)$ E	174
171.79451	$v=0$, $14(13,1) - 13(13,0)$ A	174
171.79451	$v=0$, $14(13,2) - 13(13,1)$ A	174
171.84471	$v=0$, $14(12,2) - 13(12,1)$ E	157
171.84664	$v=0$, $19(1,18) - 19(1,19)$ E	109
171.84789	$v=0$, $14(12,3) - 13(12,2)$ A	157
171.84792	$v=0$, $14(12,2) - 13(12,1)$ A	157
171.84992	$v=0$, $19(1,18) - 19(1,19)$ E	109
171.86084	$v=0$, $14(12,3) - 13(12,2)$ E	157
171.88085	$v=0$, $25(5,21) - 25(4,22)$ E	210
171.91579	$v=0$, $14(11,3) - 13(11,2)$ E	142
Fig. B.1. Selected transitions at 3 mm of COMs detected towards the G31.41+0.31 hot molecular core with the IRAM 30m telescope: methyl formate (MF), dimethyl ether (DME), ethanol (ET) and glycolaldehyde (GA). We have overplotted in red the LTE synthetic spectra obtained with *MADCUBAIJ* using the physical parameters given in Table 5.		
Frequency (GHz)	Transition	E_{up} (K)
----------------	------------	--------------
171.92174	$v=0, 14(11,3)-13(11,2)$	142
171.92174	$v=0, 14(11,4)-13(11,3)$	142
171.93258	$v=0, 14(11,4)-13(11,3)$	142
171.93339	$v=0, 19(1,18)-19(1,19)$	109
171.93528	$v=0, 25(5,21)-25(4,22)$	210
171.93658	$v=0, 19(1,18)-19(0,19)$	109
171.93658	$v=0, 19(2,18)-19(0,19)$	109
172.01564	$v=0, 14(10,4)-13(10,3)$	128
172.02428	$v=0, 14(10,4)-13(10,3)$	128
172.02428	$v=0, 14(10,5)-13(10,4)$	128
172.15766	$v=0, 14(9,5)-13(9,4)$	116
172.16873	$v=0, 14(9,6)-13(9,5)$	116
172.16873	$v=0, 14(9,5)-13(9,4)$	116
172.36437	$v=0, 14(8,6)-13(8,5)$	104
172.37775	$v=0, 14(8,7)-13(8,6)$	104
172.37775	$v=0, 14(8,6)-13(8,5)$	104
172.38095	$v=0, 14(8,7)-13(8,6)$	104
172.38578	$v=0, 15(1,14)-14(2,13)$	71
172.38578	$v=0, 15(1,14)-14(2,13)$	71
172.69216	$v=0, 14(7,8)-13(7,7)$	95
172.69337	$v=0, 14(7,8)-13(7,7)$	95
172.69337	$v=0, 14(7,7)-13(7,6)$	95
173.19427	$v=0, 14(6,9)-13(6,8)$	86
173.21868	$v=0, 14(6,8)-13(6,7)$	86
173.51541	$v=0, 15(2,14)-14(2,13)$	71
173.52168	$v=0, 15(2,14)-14(2,13)$	71
173.65011	$v=0, 14(4,11)-13(4,10)$	73
173.81936	$v=0, 14(5,10)-13(5,9)$	79
173.82245	$v=0, 14(5,10)-13(5,9)$	79
174.20980	$v=0, 15(1,14)-14(1,13)$	71
174.21556	$v=0, 15(1,14)-14(1,13)$	71
174.21802	$v=0, 27(6,22)-27(5,23)$	249
174.37741	$v=0, 14(5,9)-13(5,8)$	79
174.40618	$v=0, 14(5,9)-13(5,8)$	79
174.54656	$v=0, 16(0,16)-15(1,15)$	73
174.54801	$v=0, 16(0,16)-15(1,15)$	73
174.56580	$v=0, 16(1,16)-15(1,15)$	73
174.56721	$v=0, 16(1,16)-15(1,15)$	73
174.58112	$v=0, 16(0,16)-15(0,15)$	73
174.58251	$v=0, 16(0,16)-15(0,15)$	73
174.60035	$v=0, 16(1,16)-15(0,15)$	73
174.60170	$v=0, 16(1,16)-15(0,15)$	73
224.31315	$v=0, 18(5,14)-17(5,13)$	118
224.60938	$v=0, 18(6,12)-17(6,11)$	125
237.29691	$v=0, 13(4,10)-12(3,9)$	65
237.29748	$v=0, 20(2,18)-19(2,17)$	128
237.30597	$v=0, 20(2,18)-19(2,17)$	128
237.30954	$v=0, 21(2,20)-20(2,19)$	132
237.31508	$v=0, 21(2,20)-20(2,19)$	132
237.31705	$v=0, 13(4,10)-12(3,9)$	65
237.34487	$v=0, 21(1,20)-20(1,19)$	132
237.35039	$v=0, 21(1,20)-20(1,19)$	132
258.08104	$v=0, 22(4,20)-21(2,19)$	152
258.08949	$v=0, 22(2,20)-21(2,19)$	152
258.30628	$v=0, 11(5,7)-10(4,6)$	56
258.49087	$v=0, 23(2,22)-22(2,21)$	156
258.49624	$v=0, 23(2,22)-22(2,21)$	156
258.49933	$v=0, 21(12,10)-20(12,9)$	232
258.50273	$v=0, 23(1,22)-22(1,21)$	156
258.50818	$v=0, 23(1,22)-22(1,21)$	156
Table B.4. Unblended transitions (i.e. non blended with other molecular species) of MF identified in the interferometric SMA spectra towards G31.

Frequency (GHz)	Transition	E_{up} (K)
219.62269	$v=1, 18(12.6)-17(12.5)$ A	384
219.62269	$v=1, 18(12.7)-17(12.6)$ A	384
219.64240	$v=1, 18(13.6)-17(13.5)$ E	401
219.69583	$v=1, 18(11.8)-17(11.7)$ A	369
219.70513	$v=1, 18(11.7)-17(11.6)$ A	369
219.70513	$v=1, 18(11.7)-17(11.6)$ E	299
220.03034	$v=1, 18(9.9)-17(9.9)$ A	342
220.03034	$v=1, 18(9.9)-17(9.9)$ E	103
220.25866	$v=1, 18(8.10)-17(8.9)$ E	331
220.30738	$v=1, 18(10.9)-17(10.8)$ E	354
220.36833	$v=1, 18(8.11)-17(8.10)$ A	331
220.36988	$v=1, 18(8.10)-17(8.9)$ A	331
220.91395	$v=1, 18(7.12)-17(7.11)$ A	321
220.92617	$v=0, 18(16.2)-17(16.1)$ A	321
220.93518	$v=0, 18(16.2)-17(16.1)$ E	321
220.94742	$v=0, 18(16.3)-17(16.2)$ E	321
220.97782	$v=1, 18(15.4)-17(15.3)$ A	250
220.98367	$v=0, 18(15.3)-17(15.2)$ E	250
220.98533	$v=1, 18(7.11)-17(7.10)$ E	250
221.04766	$v=1, 18(14.5)-17(14.4)$ A	231
221.04766	$v=1, 18(14.4)-17(14.3)$ A	231
221.04999	$v=0, 18(14.4)-17(14.3)$ E	231
221.06693	$v=0, 18(14.5)-17(14.4)$ E	231
221.11967	$v=1, 18(8.11)-17(8.10)$ E	330
221.13972	$v=0, 18(13.5)-17(13.4)$ E	231
221.14113	$v=0, 18(13.5)-17(13.4)$ A	213
221.14113	$v=0, 18(14.4)-17(14.3)$ A	213
221.15854	$v=0, 18(13.6)-17(13.5)$ E	213
229.40502	$v=0, 18(3.15)-17(3.14)$ E	111
229.42034	$v=0, 18(3.15)-17(3.14)$ A	111
230.87881	$v=1, 18(4.14)-17(4.13)$ A	301
231.24542	$v=1, 19(4.16)-18(4.15)$ A	310

Table B.5. Unblended transitions (i.e. non blended with other molecular species) of GA identified in the single IRAM 30m single dish spectra towards G31.

Frequency (GHz)	Transition	E_{up} (K)
82.47062	$8(0.8)-7(1.7)$	19
88.69126	$12(3.10)-12(2.11)$	49

Table B.6. Unblended transition of GA identified in the interferometric SMA spectra towards G31.

Frequency (GHz)	Transition	E_{up} (K)
230.89847	$21(2.19)-20(3.18)$	131
Table B.7. Unblended transitions of DME identified in the IRAM 30m single dish spectra towards G31.

Frequency (GHz)	Transition	E_{up} (K)
82.45696	11(1,10)−11(0,11) AE	63
82.45696	11(1,10)−11(0,11) EA	63
82.45862	11(1,10)−11(0,11) EE	63
82.46038	11(1,10)−11(0,11) AA	63
82.64300	3(1,3)−2(0,2) EA	7
82.64300	3(1,3)−2(0,2) AA	7
82.65018	3(1,3)−2(0,2) EE	7
82.65018	3(1,3)−2(0,2) EA	7
82.68650	4(2,2)−4(1,3) AE	15
82.68650	4(2,2)−4(1,3) EA	15
82.68877	4(2,2)−4(1,3) EE	15
82.68877	4(2,2)−4(1,3) AA	15
83.09738	14(2,12)−14(1,13) EA	103
83.09738	14(2,12)−14(1,13) AE	103
83.09892	14(2,12)−14(1,13) AA	103
84.63202	3(2,1)−3(1,2) AE	11
84.63202	3(2,1)−3(1,2) EA	11
84.63440	3(2,1)−3(1,2) EE	11
84.63440	3(2,1)−3(1,2) AA	11
85.97322	13(2,12)−13(3,9) AA	88
85.97610	13(2,12)−13(3,9) EE	88
85.97894	13(2,12)−13(3,9) EA	88
88.70622	15(2,13)−15(1,14) EA	117
88.70622	15(2,13)−15(1,14) AE	117
88.7064	15(2,13)−15(1,14) EE	117
88.7064	15(2,13)−15(1,14) AA	117
109.57140	8(2,7)−8(1,8) EA	38
109.57140	8(2,7)−8(1,8) AE	38
109.57409	8(2,7)−8(1,8) EE	38
109.57678	8(2,7)−8(1,8) AA	38
111.74135	19(3,16)−19(2,17) AE	187
111.74135	19(3,16)−19(2,17) EA	187
111.74279	19(3,16)−19(2,17) EE	187
111.74279	19(3,16)−19(2,17) AA	187
111.78256	7(0,7)−6(1,6) AA	25
111.78256	7(0,7)−6(1,6) EE	25
111.78256	7(0,7)−6(1,6) AE	25
111.78403	7(0,7)−6(1,6) EA	25
111.81205	18(3,15)−18(2,16) AE	170
111.81205	18(3,15)−18(2,16) EA	170
111.81367	18(3,15)−18(2,16) EE	170
111.81367	18(3,15)−18(2,16) AA	170
147.20209	6(3,4)−6(2,5) EA	32
147.20376	6(3,4)−6(2,5) AE	32
147.20376	6(3,4)−6(2,5) EE	32
147.20376	6(3,4)−6(2,5) AA	32
154.45366	11(1,10)−10(2,9) AA	63
154.45508	11(1,10)−10(2,9) EE	63
154.45650	11(1,10)−10(2,9) AE	63
154.45650	11(1,10)−10(2,9) EA	63
169.74067	16(3,14)−16(2,15) EA	137
169.74067	16(3,14)−16(2,15) AE	137
169.74349	16(3,14)−16(2,15) EE	137
169.74349	16(3,14)−16(2,15) AA	137
169.74631	16(3,14)−16(2,15) AE	137
169.74631	16(3,14)−16(2,15) EA	137
169.74631	16(3,14)−16(2,15) AA	137
169.90032	16(2,15)−16(1,16) EA	128
169.90032	16(2,15)−16(1,16) AE	128
169.90032	16(2,15)−16(1,16) AA	128
169.90309	16(2,15)−16(1,16) EE	128
169.90309	16(2,15)−16(1,16) AA	128
169.90705	16(2,15)−16(1,16) AA	128
Table B.7. (Continued).

Frequency (GHz)	Transition	\(E_{\text{up}} \) (K)
173.29268	10(0,10)−9(1,9) AA	49
173.29297	10(0,10)−9(1,9) EE	49
173.29327	10(0,10)−9(1,9) AE	49
173.29327	10(0,10)−9(1,9) EA	49
174.89053	17(3,15)−17(2,16) EA	152
174.89053	17(3,15)−17(2,16) EE	152
174.89329	17(3,15)−17(2,16) AE	152
174.89605	17(3,15)−17(2,16) AA	152
209.51519	11(1,11)−10(0,10) EA	59
209.51519	11(1,11)−10(0,10) AA	59
209.51561	11(1,11)−10(0,10) EE	59
209.51603	11(1,11)−10(0,10) AE	59
220.84652	24(4,20)−23(5,19) AA	298
220.84764	24(4,20)−23(5,19) EE	298
220.84764	24(4,20)−23(5,19) AE	298
220.84766	24(4,20)−23(5,19) EA	298
220.89182	23(4,20)−23(3,21) EA	274
220.89182	23(4,20)−23(3,21) EE	274
220.89182	23(4,20)−23(3,21) AE	274
220.89311	23(4,20)−23(3,21) AA	274
220.89500	23(4,20)−23(3,21)	274
221.19722	27(5,22)−27(4,23) AA	381
221.19722	27(5,22)−27(4,23) EE	381
221.19842	27(5,22)−27(4,23) AE	381
221.19842	27(5,22)−27(4,23) EA	381
230.14003	25(4,22)−25(3,22) EA	319
230.14003	25(4,22)−25(3,22) AE	319
230.14137	25(4,22)−25(3,22) EE	319
230.14137	25(4,22)−25(3,22) AA	319
230.14271	25(4,22)−25(3,22)	319
230.23215	17(2,15)−16(3,14) AA	148
230.23376	17(2,15)−16(3,14) EE	148
230.23376	17(2,15)−16(3,14) AE	148
230.23536	17(2,15)−16(3,14)	148

Table B.8. Unblended transitions (i.e. non blended with other molecular species) of DME identified in the interferometric SMA spectra towards G31.

Frequency (GHz)	Transition	\(E_{\text{up}} \) (K)
220.84652	24(4,20)−23(5,19) AA	298
220.84764	24(4,20)−23(5,19) EE	298
220.84764	24(4,20)−23(5,19) AE	298
220.84764	24(4,20)−23(5,19) EA	298
220.89182	23(4,20)−23(3,21) EA	274
220.89182	23(4,20)−23(3,21) EE	274
220.89182	23(4,20)−23(3,21) AE	274
220.89500	23(4,20)−23(3,21) AA	274
221.19722	27(5,22)−27(4,23) AA	381
221.19722	27(5,22)−27(4,23) EE	381
221.19842	27(5,22)−27(4,23) AE	381
221.19842	27(5,22)−27(4,23) EA	381
230.14003	25(4,22)−25(3,22) EA	319
230.14003	25(4,22)−25(3,22) AE	319
230.14137	25(4,22)−25(3,22) EE	319
230.14137	25(4,22)−25(3,22) AA	319
230.14271	25(4,22)−25(3,22)	319
230.23215	17(2,15)−16(3,14) AA	148
230.23376	17(2,15)−16(3,14) EE	148
230.23376	17(2,15)−16(3,14) AE	148
230.23536	17(2,15)−16(3,14)	148
Fig. B.2. Unblended transitions of the COMs detected towards the G31.41+0.31 hot molecular core with the GBT telescope: ethylene glycol (EG), ethanol (ET) and methyl formate (MF). We have overplotted in red the LTE synthetic spectra obtained with MADCUBAJ using the physical parameters given in Table C.1.
Appendix C: MADCUBAIJ LTE fits of the GBT and SMA data

In this Appendix we present the physical parameters used to model with MADCUBAIJ the transitions of the different COMs in the GBT and SMA spectra (Figs. B.2 and 2, respectively). The procedure used is: i) we have fixed the velocity of the emission and the linewidth to the values obtained from gaussian fits of unblended lines; ii) to obtain the source-average column density N_s, we have fixed the size of the molecular emission to the value obtained from the integrated maps of unblended lines detected with the SMA, and applied the beam dilution factor accordingly; while we have not applied the beam dilution factor to derive the beam-average column density N_b; iii) leaving N and T_{ex} as free parameters, we have used the AUTOFIT tool of MADCUBAIJ to find the pair of values value that better fits the unblended molecular transitions of each COM.
Rivilla et al.: The formation of ethylene glycol and other COMs in star-forming regions

Table C.1. MADCUBAIJ best fits of the COMs detected in the GBT spectra. The parameters of this table have been used to produce the synthetic spectra of Fig. B.2.

	EG	ET	MF
\(\log N_b (\text{cm}^{-2}) \)	15.1	15.5	16.1
\(\log N_s (\text{cm}^{-2}) \)	17.9	17.7	18.1
\(T_{\text{ex}} (\text{K}) \) \(^a\)	147 / 142	89 / 76	147 / 142
\(v_{\text{LSR}} (\text{km s}^{-1}) \)	97.0	99.0	97.5
\(\Delta v (\text{km s}^{-1}) \)	5.5	5.4	5.3

\(^a\) The first temperature corresponds to the beam-average value, while the second is the source-average value obtained assuming the source diameter of Table 5.

\(^b\) Since the energy range covered by the transitions is very narrow, we have fixed the temperature to the values obtained for MF.

Table C.2. MADCUBAIJ best fits of the SMA compact spectra towards the peak of the continuum for the different molecules. The parameters of this table have been used to produce the synthetic spectra of Fig. 2.

	EG	ET	GA	MF	DME
\(\log N_b (\text{cm}^{-2}) \)	16.3	17.2	16.0	17.5	17.7
\(\log N_s (\text{cm}^{-2}) \)	17.7	17.7	17.4	17.9	18.7
\(T_{\text{ex}} (\text{K}) \) \(^a\)	88 / 75	187 / 184	165 \(^a\)	240 / 243	113 / 105
\(v_{\text{LSR}} (\text{km s}^{-1}) \)	97.2	97.0	97.0	97.0	97.2
\(\Delta v (\text{km s}^{-1}) \)	5.2	5.9	6.0	6.4	7.6

\(^a\) The first temperature corresponds to the beam-average value, while the second is the source-average value obtained assuming the source diameter of Table 5.