1. Introduction

The bidirectional scattering distribution function (BSDF) radiometrically characterizes the scatter of optical radiation from a surface as a function of the angular positions of the incident and scattered beams. By definition, it is the ratio of the scattered radiance to the incident irradiance: the unit is inverse steradian. The term bidirectional reflectance distribution function (BRDF) is used when specifically referring to reflected scatter. Likewise, bidirectional transmittance distribution function (BTDF) refers to scatter transmitted through a material.

The bidirectional characterization of elastic scatter from surfaces is a property that is required for the evaluation of elements contained within larger systems that need minimal or controlled scattered light. The need for this information is readily seen in applications such as ring laser gyroscopes and telescopes. This type of information is also requisite for characterization of materials intended for use in temperature control where thermal radiation must be modelled or in imaging applications where stray light must be suppressed. It may also be used to assist the acceptance/rejection process in optical manufacturing settings.

The present state of most of the facilities measuring this quantity needs to be upgraded to support new and more stringent requirements as well as recent strides in the production of high-quality optics.

There is a lack of uniformity throughout the community for physical standards which can ascertain the accuracy of BSDF measurements (paper 91). The NIST Bidirectional Scattering Metrology Project is currently developing an instrument which will later serve to develop standard reference materials as well as a standard measurement technique.

In conjunction with the development of this BSDF instrument, a large number of papers pertaining to the theory and measurement of bidirec-
ational scattering from optical surfaces were collected and categorized. This collection includes papers that deal with various aspects of the BSDF, its measurement, interpretation, use, and implications.

Each paper is classified in one or more subject categories on the basis of its technical content. The subject categories are included just to serve as a key to the most salient characteristics of each paper cited. In the literature, there is a bibliography (paper 117) of papers published prior to 1975 that relate to scattering from surfaces. Building upon that bibliography, this bibliography includes papers related to BSDF published since that time to the present. Neither the category classification list nor the list of papers is complete. There were two selection criteria used to determine whether a paper should be included in this bibliography: the paper was used during certain phases of the NIST project development and/or it was regarded as relevant and important to the field. However, inclusion or omission from the list does not necessarily imply endorsement or reproval, respectively. This systematized bibliography is sufficiently extensive to be of significant help to workers in the field, and particularly to those just beginning to work in it. For further breadth of information, the reader is suggested to review the conference proceedings from the Society of Photo-Optical Instrumentation Engineers (SPIE) that focus on scattering from surfaces: some papers from each of these are cited here.

2. Categories

As an aid to identifying papers related to a certain field, each of the papers is listed under each category in which it has been classified. Due to the wide interdisciplinary nature of optical scattering metrology, some topics had to be grouped together so that the list would not become unmanageable. (In many instances, the title of the articles suggest the information covered.) The subject categories are coded and used as follows:

Abs—Aberrations

The optical design of a system determines the aberrations that will be present—assuming accurate alignment—and their magnitudes. The calculation of these aberrations and their effect on the measurement of BSDF are addressed in the following papers: 3,96,102,159,160.

Aprt—Apparatus

Many different instruments are described in the literature. A sampling of these apparatus overviews is contained in the following papers: 4,12,31,41,51,52,63,65,66,76,77,79,83,84,87,89,90,93,94,95,103,111,112,132,113,118,120,122,128,129,136,137,138,140,145,146,151,159,160,161,166,168,169.

Calb—Calibration

Techniques for calibration and/or error analysis include reference methods and absolute methods. Specific details concerning calibration and the philosophy of calibration are discussed in these papers: 23,33,34,83,89,108,145,158.

Coh—Coherence

The use of laser sources in BSDF instruments is very common. Coherence becomes a critical property of these sources in diffuse BSDF metrology. The following papers address the property as it pertains to radiometry in general and to BSDF metrology in particular: 3,8,37,39,40,49,59,61,63,73,80,97,98,101,125,126.

Desn—Design

Design criteria and plans or layouts of components or subsystems of BSDF instruments are separated out and described in detail. These subsystems include source, sample manipulation, receiver, attenuation, apertures, etc: 3,10,11,21,22,27,28,29,31,35,41,51,52,60,66,68,69,71,76,85,86,87,89,90,93,94,95,108,112,132,118,119,124,128,130,136,141,142,156,157,159,160,162,163,166,168,170.

Diff—Diffraction

Truncation of optical beams by apertures cause diffraction and thereby affect the instrument signature of BSDF instruments. This effect is discussed in the following papers: 3,49,69,70,72,89,96,139,159,160.

Expt—Experimental Data

These articles include experimental results in the form of tabulated data or graphs from a variety of different types of measurements. Some of these include data from actual BSDF scans on particular material samples while others give interpretive results highlighting instrument capabilities. Still
other papers give profilometry data that yield topographic information. The particular type of experimental data given within each paper should be obvious from the title of the paper: 4,5,7, 9,13,15,16,17,18,20,22,24,25,26,28,29,30,32,35,36,38, 40,41,42,44,46,48,52,53,54,57,59,64,67,73,76,78,79, 83,88,91,92,94,99,100,101,103,104,109,110,111,132, 113,114,115,119,120,121,122,123,127,128,129,130, 131,133,134,135,138,140,142,143,145,147,149, 151,152,154,158,161,165,167,168,169,170.

Inst—Instrument Signature

The background measurement of the noise equivalent BSDF, or the instrument signature, limits an instrument to the measurement of samples that have a BSDF larger than the NEBSDF. Specific instrument profiles or signatures are displayed in some of the following papers. The other papers address general concerns in obtaining and improving the signature of an instrument: 4,12, 36,76,77,85,86,90,120,124,130,136,137,139,141,151, 159,160,162,164,166,168,171.

Matl—Materials/Coatings

Particular optical materials and/or coatings are identified and experimental BSDF data are given for each of these in the following papers: 2,7,9, 13,16,17,22,24,25,28,29,32,35,42,48,52,53,64,67,76, 78,83,92,94,99,100,104,109,110,113,114,115,121,122, 123,129,130,131,133,135,138,145,149,158,162,165.

Polarization

Polarization control, theory, and associated problems are examined: 5,6,23,24,25,59,79,95,144, 147,167.

Prof—Profile Analysis Techniques

Various types of mechanical and optical surface profiling techniques are described and/or compared against optical scattering predictions of surface finish (or the inverse: predictions of optical scatter from surface finish): 1,2,17,20,30,39,43,44, 46,54,56,57,59,65,88,91,100,109,111,134,137,140,150, 151.

Stnd—Standard Reference Methods

The following papers describe techniques used for, or problems in, referencing BSDF measurements, thereby assigning a level of confidence to the accuracy of the measurement: 33,53,83,91, 92,108,130,145,158,164.

Stra—Stray Light

Control, or suppression, of geometrically stray light is examined in this group of papers. Included in these are some papers which evaluate baffling materials with BRDF data: 18,22,27,28,29,42, 50,58,60,69,71,78,87,90,113,123,146,149,156,157,163, 170.

Surv—Survey

Below is a list of papers that are outstanding in their fields and provide comprehensive coverage of a well-defined topic within BSDF metrology: 19,24,45,46,65,74,76,77,81,82,89,91,92,105,106,107, 108,117,130,140,148,171.

Thry—Scattering Theory

Among the theoretical questions explored throughout these papers are: basic definition of BSDF, scattering theory of surfaces, mathematical treatment of surfaces, subsurface contributions to scatter, inverse scattering problem, and scaling of BSDF with respect to angle of incidence and wavelength: 1,3,5,6,7,8,12,14,15,16,17,18,20,23,26,37,38, 39,40,43,44,45,46,47,49,55,56,57,58,59,61,62,69,70, 71,72,74,75,77,79,80,81,82,90,94,96,97,98,101,103, 105,106,107,108,109,110,111,116,120,124,125,126, 129,131,134,139,144,146,147,148,150,152,153,154, 155,156,157,161,162,167,170.

Topo—Topography/Surface Finish

Surface roughness and sample isotropy, homogeneity, and cleanliness are all topographic contributions to optical scatter. These topics as well as some subsurface contributions are treated in the following papers: 1,2,4,9,14,15,16,17,18,19,20,30, 38,39,40,43,44,45,46,47,54,55,56,57,62,74,75,88,100, 109,110,111,116,120,121,125,127,134,135,139,142, 144,147,150,152,153,154,155,161,162,167,169.

Tran—Transmitted Scatter

Issues related to the bidirectional transmittance distribution function, BTDF, are considered in these papers: 52,103,122,126.
3. Bibliography

The papers are listed below in alphabetical order according to first author and are numbered. The related topic codes are listed alphabetically in the line immediately following the citation.

1. Al-Jumaily, G. A., Wilson, S. R., and McNally, J. J., Frequency Response Characteristics of an Optical Scatterometer and a Surface Profilometer, SPIE Proceedings, 675 (1986).
2. Al-Jumaily, G. A., Wilson, S. R., McNally, J. J., McNiel, J. R., Bennett, J., and Hurt, H. H., Influence of Metal Films on the Optical Scatter and Related Micro-Structure of Coated Surfaces, Appl. Opt. 25, 20 (1986) p. 3631.
3. Allred, D. B., and Mills, J. P., Effect of Aberrations and Apodization on the Performance of Coherent Optical Systems 3: The Near Field, Appl. Opt. 28, 4 (1989) p. 673.
4. Amra, C., Grezes-Besset, C., Roche, P., and Pelletier, E., Description of a scattering apparatus: application to the problems of characterization of opaque surfaces, Appl. Opt. 28, 14 (1989) p. 2723.
5. Bahar, E., and Fitzwater, M., Like- and Cross-Polarized Scattering Cross Sections for Random Rough Surfaces: Theory and Experiment, J. Opt. Soc. Am. A., 2, 12 (1985) p. 2295.
6. Bahar, E., and Fitzwater, M., Full-Wave Copolarized Non-specular Transmission and Reflection Scattering Matrix Elements for Rough Surface, J. Opt. Soc. Am. A., 5, 11 (1988) p. 1873.
7. Baltes, H., and Wolfe, W., K Correlations and Facet Models in Diffuse Scattering: Experimental Evaluation, Opt. Lett., 5, 12 (1980) p. 549.
8. Baltes, H., Steinele, B., Jakeman, E., and Hoenders, B., Diffuse Reflectance and Coherence, Infrared Phys., 19 (1979) p. 461.
9. Barnes, W., Jr., and McDonough, R., Low Scatter Finishing of Aspheric Optics, Opt. Eng., 18, 2 (1979) p. 143.
10. Bartell, F., Infrared Calibration: Very Low Signals May Have Very Large Errors, SPIE Proceedings, 499 (1984) p. 108.
11. Bartell, F., BRDF Measurement Equipment Intrinsic Design Considerations, SPIE Proceedings, 511 (1984) p. 31.
12. Bartell, F., Dereniak, E., and Wolfe, W., The Theory and Measurement of Bidirectional Reflectance Distribution Function (BRDF) and Bidirectional Transmittance Distribution Function (BTDF), SPIE Proceedings, 257 (1980) p. 154.
13. Bartell, F., Hubbs, J., Nofziger, M., and Wolfe, W., Measurements of Martin Black at ~10 µm, Appl. Opt., 21, 17 (1982) p. 3178.
14. Bennett, H., and Ricks, D. W., Effects of Surface and Bulk Defects in Transmitting Materials on Optical Resolution and Scattered Light, SPIE Proceedings, 683 (1986).
15. Bennett, H., and Porteus, J., Relation Between Surface Roughness and Specular Reflectance at Normal Incidence, J. Opt. Soc. Am., 51, 2 (1961) p. 123.
16. Bennett, H. E., Specular Reflectance of Aluminized Ground Glass and the Height Distribution of Surface Irregularities, J. Opt. Soc. Am., 53, 12 (1963) p. 1389.
17. Bennett, H. E., Scattering Characteristics of Optical Materials, Opt. Eng., 17, 5 (1978) p. 480.
18. Bennett, H. E., Reduction of Stray Light from Optical Components, SPIE Proceedings, 107 (1977) p. 24.
19. Bennett, H., When is a Surface Clean? Optics and Photonics News (June 1990) p. 29.
20. Bennett, J., and Dancy, J., Stylus Profiling Instrument for Measuring Statistical Properties of Smooth Optical Surfaces, Appl. Opt. 20, 10 (1981) p. 1705.
21. Bennett, K., and Byer, R., Computer-Controllable Wedged-Plate Optical Variable Attenuator, Appl. Opt. 19, 14 (1980) p. 2408.
22. Bergener, D., Pompea, S., Shepard, D., and Breault, R., Stray Light Rejection Performance of SIRTF: A Comparison, SPIE Proceedings, 511 (1984) p. 65.
23. Bickel, W. S., and Bailey, W. M., Stokes Vectors, Mueller Matrices, and Polarized Scattered Light, Am. J. Phys., 53, 5 (May 1985) p. 468.
24. Bickel, W. S., Zito, R. R., and Iafelice, V., Polarized Light Scattering From Metal Surfaces, J. Appl. Phys., 61, 12 (June 15, 1987) p. 5392.
25. Blau, H. H., Gray, E. L., and Bourjouis, G. M. B., Reflection and Polarization Properties of Powder Materials, Appl. Opt., 6, 11 (Nov. 1967) p. 1899.
26. Blazy, R., Light Scattering by Laser Mirrors, Appl. Opt. 6, 5 (May 1967) p. 831.
27. Breault, R. P., Current Technology of Stray Light, SPIE Proceedings, 675 (1986).
28. Breault, R. P., Specular Black Vane Cavities, SPIE Proceedings, 384 (1983) p. 90.
29. Bristow, T., and Lindquist, D., Surface Measurements with a Non-Contact Nomarski-Profiling Instrument, SPIE Proceedings, 816 (1987).
30. Brooks, L., and Wolfe, W., Microprocessor-Based Instrumentation for Bidirectional Reflectance Distribution Function (BRDF) Measurements, SPIE Proceedings, 257 (1980) p. 182.
32. Brooks, L., Hubbs, J., Bartell, F., and Wolfe, W., Scattering Characteristics of Martin Black at 118 \mu m, Appl. Opt., 21, 14 (1982) p. 2465.
Expt Matl

33. Cady, F. M., Bjork, D. R., Rifkin, J., and Stover, J. C., Linearity in BSDF Measurements, SPIE Proceedings, 1165 (1989) .
Calb Stnd

34. Cady, F. M., Bjork, D. R., Rifkin, J., and Stover, J. C., BRDF Error Analysis, SPIE Proceedings, 1165 (1989) .
Calb

35. Cady, F. M., Cheever, D. R., Klicker, K. A., and Stover, J. C., Comparison of Scatter Data from Various Beam Dumps, SPIE Proceedings, 818 (1987) .
Desn Expt Matl

36. Cady, F. M., Stover, J. C., Schiff, T. F., Klicker, K A., and Bjork, D. R., Measurement of Very Near Specular Scatter, SPIE Proceedings, 967 (1988) .
Expt Inst

37. Carter, W., and Wolf, E., Coherence Properties of Lambertian and Non-Lambertian Sources, J. Opt. Soc. Am., 65, 9 (1975) p. 1067.
Coh Thry

38. Celli, V., Maradudin, A., Marvin A., and McGurn, A., Some Aspects of Light Scattering from a Randomly Rough Metal Surface, J. Opt. Soc. Am., A., 2, 12 (1985) p. 2225.
Expt Thry Topo

39. Chandley, P. J., Surface Roughness Measurements from Coherent Light Scattering, Opt. Quantum Electron., 8 (1976) p. 323.
Coh Prof Thry Topo

40. Chandley, P. J., Determination of the Autocorrelation Function of Height on a Rough Surface from Coherent Light Scattering, Opt. Quantum Electron., 8 (1976) p. 329.
Coh Expt Thry Topo

41. Cheever, D. R., Cady, F. M., Klicker, K. A., and Stover, J. C., Design Review of a Unique Complete Angle Scatter Instrument (CASI), SPIE Proceedings, 818 (1987) .
Apt Desn Expt

42. Choel, C., and Wade, J., Reducing Optical Noise, SPIE Proceedings, 107 (1977) p. 130.
Expt Matl Stra

43. Church, E., and Zavada, J., Residual Surface Roughness of Diamond-Turned Optics, Appl. Opt., 14, 8 (1975) p. 1788.
Prof Thry Topo

44. Church, E., Jenkinson, H., and Zavada, J., Measurement of the Finish of Diamond-Turned Metal Surfaces by Differential Light Scattering, Opt. Eng., 16, 4 (1977) p. 360.
Expt Prof Thry Topo

45. Church, E., Jenkinson, H., and Zavada, J., Relationship Between Surface Scattering and Microtopographic Features, Opt. Eng., 18, 2 (1979) p. 125.
Surv Thry Topo

46. Church, E., Sanger, G., and Takacs, P., Comparison of Wyko and TIS Measurements of Surface Finish, SPIE Proceedings, 749 (1987) p. 65.
Expt Prof Surv Thry Topo

47. Church, E. L., Statistical Effects in the Measurement and Characterization of Smooth Surfaces, SPIE Proceedings, 511 (1984) .
Thry Topo

48. Compton, J., Martin, J., and Quinn, T., Some Measurements of Outgassing Properties and Far-Infrared Reflectivities of Two Optical Blacks, J. Phys., 7 (1974) p. 2501.
Expt Matl

49. Considine, P. S., Effects of Coherence on Imaging Systems, J. Opt. Soc. Am., 56, 8 (1966) p. 1001.
Coh Diff Thry

50. Crandell, F. F., General Concepts and Approach on Making Stray Light Calculations Without the Use of Large Computers, SPIE Proceedings, 257 (1980) .
Sra

51. Davis, L., and Kepros, J., Improved Facility for BRDF/ BTDF Optical Scatter Measurements, SPIE Proceedings, 675, 1 (1986) p. 24.
Aptr Desn

52. Dereniak, E., Brod, L., and Hubbs, J., Bidirectional Transmittance Distribution Function Measurements on ZnSe, Appl. Opt., 21, 24 (1982) p. 4421.
Apt Desn Expt Matl Tran

53. Dereniak, E., Stuhlinger, T., and Bartell, F., Bidirectional Reflectance Distribution Function of Gold-Plated Sandpaper, SPIE Proceedings, 257 (1980) p. 184.
Expt Matl Stnd

54. Detrio, J., and Minner, S., Standardized Total Integrated Scatter Measurements of Optical Surfaces, Opt. Eng., 24, 3 (1985) p. 419.
Expt Prof Topo

55. Eastman, J., and Baumeister, P., The Microstructure of Polished Optical Surfaces, Opt. Commun., 12, 4 (1974) p. 418.
Thry Topo

56. Elson, J., and Bennett, J., Vector Scattering Theory, Opt. Eng., 18, 2 (1979) .
Prof Thry Topo

57. Elson, J., and Bennett, J., Relation Between the Angular Dependence of Scattering and the Statistical Properties of Optical Surfaces, J. Opt. Soc. Am., 69, 1 (1979) p. 31.
Expt Prof Thry Topo

58. Elson, J. M., and Bennett, H. E., Image Degradation Caused by Direct Scatter from Optical Components into the Image Plane, SPIE Proceedings, 511 (1984) .
Thry Stra

59. Elson, J. M., Rahn, J. P., and Bennett, J. M., Relationship of the TIS from Multilayer-Coated Optics to Angle of Incidence, Polished Correlation Length and Roughness, Appl. Opt., 22, 20 (1983) p. 3207.
Coh Expt Pol Prof Thry

60. Freniere, E. R., First-Order Design of Optical Baffles, SPIE Proceedings, 257 (1980) .
Desn Stra

61. Fribert, A. T., Effects of Coherence in Radiometry, SPIE Proceedings, 194 (1979) p. 55.
Coh Thry

62. Fung, A. K, and Chen, M. F., Numerical Simulation of Scattering from Simple and Composite Random Surfaces, J. Opt. Soc. Am., A., 2, 12 (1985) p. 2274.
Thry Topo

63. Gacusan, L., Kwiatkowski, S., Sullivan, B., and Snyder, J., Coherent Heterodyne Scatterometer, SPIE Proceedings, 967 (1988) .
Aptr Coh

64. Geikas, G. I., Scattering Characteristics of Etched Electroless Nickel, SPIE Proceedings, 257 (1980) .
Expt Matl

65. Gillespie, C. H., Edwards, D. F., and Stover, J. C., The Application of Angular Resolved Scatter to the Documentation of Damage to Smooth Mirrors, SPIE Proceedings, 675 (1986) .
Aptr Prof Surv
66. Gilliam, L. E., and Osiecki, R. A., An In-Vacuum BR/TDF Measurement Apparatus, SPIE Proceedings, 675 (1986) .
Apt Desn
67. Grammer, J. R., Bailin, L. J., Blue, M. D., and Perkowitz, S., Absorbing Coatings for the Far-Infrared, SPIE Proceedings, 257 (1980) .
Expt Matl
68. Grenninger, C. E., Reflective Device for Polarization Rotation, Appl. Opt., 27, 4 (1988) p. 774.
Desn
69. Greynolds, A. W., Simple Formulas for Calculating Near-Field Diffraction Profiles, SPIE Proceedings, 818 (1987) .
Desn Diff Stra Thry
70. Greynolds, A. W., Method for Calculating Diffraction Effects in Opto-Mechanical Systems of Arbitrary Geometry, SPIE Proceedings, 257 (1980) .
Diff Thry
71. Greynolds, A. W., Formulas for Estimating Stray-Radiation Levels in Well-Baffled Optical Systems, SPIE Proceedings, 257 (1980) .
Desn Stra Thry
72. Haas, R. A., Theory of Laser Beam Apodization with a Graded Random Phase Window, Appl. Opt., 27, 13 (1988) p. 2708.
Diff Thry
73. Harris, F. S., Jr., Sherman, G. C., and Morse, F. L., Experimental Comparison of Scattering of Coherent and Incoherent Light, IEEE Trans. Antennas and Propag., AP-15, 1 (1967) p. 141.
Coef Expt
74. Harvey, J. E., Light-Scattering Characteristics of Optical Surfaces, SPIE Proceedings, 107 (1977) p. 41.
Surv Thry Topo
75. Hoenders, B., Jakeman, E., Baltes, H., and Steinle, B., K Correlations and Facet Models in Diffuse Scattering, Opt. Acta, 26, 10 (1979) p. 1307.
Thry Topo
76. Hsia, J., and Richmond, J., A High Resolution Laser Bidirectional Reflectometer with Results on Several Optical Coatings, J. Res. Natl. Bur. Stand. (U.S.), 80A, 2 (1976) p. 189.
Apt Desn Expt Inst Matl Surv
77. Hsia, J. J., and Weidner, V. R., NBS 45°/Normal Reflectometer for Absolute Reflectance Factors, Metrologia, 17 (1982) p. 92.
Apt Inst Surv Thry
78. Hubs, J. E., Brooks, L. D., Noziger, M. J., Bartell, F. O., and Wolfe, W. L., Bidirectional Reflectance Distribution Function of the Infrared Astronomical Satellite Solar-Shield Material, Appl. Opt., 21, 18 (1982) p. 3323.
Expt Matl Stra
79. Iafelice, V. J., and Bickel, W. S., Polarized Light-Scattering Matrix Elements for Select Perfect and Perturbed Optical Surfaces, Appl. Opt., 26, 12 (June 15, 1987) p. 2410.
Apt Expt Pol Thry
80. Jannson, J., Jannson, T., and Wolf, E., Spatial Coherence Discrimination in Scattering, Opt. Lett., 13, 12 (1988) p. 1060.
Coh Thry
81. Janeczko, D. J., Power Spectrum Standard for Surface Roughness: Part I, SPIE Proceedings, 1165 (1989) .
Surv Thry
82. Judd, Deane, Terms, Definitions, and Symbols in Reflectometry, J.Opt. Soc. Am., 57, 4 (1967) p. 445.
Surv Thry
83. Erb, W., Requirements for Reflection Standards and the Measurement of Their Reflection Values, Appl. Opt., 14, 2 (Feb. 1975) p. 493.
Apt Calb Expt Matl Stnd
84. Keppos, J., and Davis, L., Comparison of Two BRDF Measuring Systems, SPIE Proceedings, 675 (1986) p. 34.
Apt
85. Klicker, K. A., Stover, J. C., Cheever, D. R., Cady, F. M., Practical Reduction of Instrument Signature in Near Specular Light, SPIE Proceedings, 749 (1987) .
Desn Inst
86. Klicker, K. A., Stover, J. C., and Wilson, D. C., Near Specular Scatter Measurement Techniques for Curved Samples, SPIE Proceedings, 967 (1988) .
Desn Inst
87. Kung, G. C., Scattering of Baffle Vane Edges, SPIE Proceedings, 511 (1984) .
Apt Desn Stra
88. Lange, R., and Parks, R. E., Characterization of Scattering from Diamond-Turned Surfaces, SPIE Proceedings, 257 (1980) .
Expt Prof Topo
89. Lastovka, J. B., An Optical Apparatus for Very-Small-Angle Light Scattering-Design, Analysis and Performance, Bell Syst. Tech. J., 55, 9 (1976) p. 1225.
Apt Calb Desn Diff Surv
90. Lee, W. W., Scherr, L. M., and Barsh, M. K., Stray Light Analysis and Suppression in Small Angle BRDF/BTDF Measurement, SPIE Proceedings, 675 (1986) .
Apt Desn Inst Stra Thry
91. Leonard, T. A., Introduction to the Relationship Between Surface Roughness and BRDF, (April 1989) (Available from author) .
Expt Prof Std Surv
92. Leonard, T. A., BRDF Round Robin, SPIE Proceedings, 967 (1988) .
Expt Matl Std Surv
93. Leonard, T., The Art of Optical Scatter Measurement, 20th Symposium on Optical Materials for High Power Lasers, Boulder, CO, (1988) .
Apt Desn
94. Locke, B. R., and Donovan, R. P., Particle Sizing Uncertainties in Laser Scanning of Silicon Wafers, J. Electrochem. Soc., (July 1987) p. 1763.
Apt Desn Expt Matl Thry
95. Lovik, M., and Scheeline, A., Active Polarization Compensation and Goniometer for Angularly Resolved Light Scattering Measurements, Appl. Opt., 27, 23 (1988) p. 4931.
Apt Desn Pol
96. Mahahan, V. N., Uniform Versus Gaussian Beams: A Comparison of the Effects of Diffraction, Obstruction, and Aberrations, J. Opt. Soc. Am. 3, 4 (1986) p. 470-485.
Abs Diff Thry
97. Marchand, E., and Wolf, E., Radiometry with Sources of Any State of Coherence, J. Opt. Soc. Am., 64, 9 (1974) p. 1219.
Coh Thry
98. Marron, J., and Schroeder, K, Speckle from Rough Rotating Objects, Appl. Opt., 27, 20 (1988) p. 4279.
Coh Thry
99. McGary, D. E., Stover, J. C., Rifkin, J., Cady, F. M., and Cheever, D. R., Separation and Measurement of Surface Scatter and Volume Scatter from Transparant Optics, SPIE Proceedings, 967 (1988) .
Expt Matl
100. McNeil, J. R., and Al-Jumaili, G. A., Optical Scatter Characteristics and Surface Effects in Coated Metal Surfaces, SPIE Proceedings, 675 (1986).
Expt Matl Prof Topo

101. Metwalli, S., Kamel, A., and Saheb, A., Surface Roughness Effect on Laser Speckle Density, SPIE Proceedings, 645 (1986) p. 120. 
Coh Expt Thy Topo

102. Mielenz, K., Aberrations of Ellipsoidal Reflectors for Unit Magnification, Appl. Opt., 113, 12 (1974) .
Abs

103. Munis, R. H., and Finkel, M. W., Goniometric Measurements of Infrared Transmitting Materials, Appl. Opt., 7, 10 (October 1968) p. 2001. 
Coh Expt Thy Topo

104. Nahm, K., and Wolfe, W., Light Scattering by Polystyrene on a Mirror, SPIE Proceedings, 675 (1986). 
Expt Matl

105. Nicodemus, F., Reflectance Nomenclature and Directional Reflectance and Emissivity, Appl. Opt., 9, 6 (1970) p. 1474. 
Surv Thy

106. Nicodemus, F., Directional Reflectance and Emissivity of an Opaque Surface, Appl. Opt., 4, 7 (1965) p. 767. 
Surv Thy

107. Nicodemus, F., Comment on Current Definitions of Reflectance, J. Opt. Soc. Am., 66, 3 (1976) p. 283. 
Surv Thy

108. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, L. W., and Limperis, T., Geometrical Considerations and Nomenclature for Reflectance, NBS Monograph 160 (October 1977). 
Calb Desn Stnd Surv Thy

109. Noll R., and Glenn, P., Mirror Surface Autocovariance Functions and Their Associated Visible Scattering, Appl. Opt., 21, 10 (1982) p. 1824. 
Expt Matl Prof Thy Topo

110. Noll, R. J., Effect of Mid- and High-Spatial Frequencies on Optical Performance, Opt. Eng., 18, 2 (1979) p. 137. 
Expt Matl Thy Topo

111. O'Donnell, K., and Mendez, E., Experimental Study of Scattering from Characterized Random Surfaces, J. Opt. Soc. Am., A, 4, 7 (1987) p. 1194. 
Expt Expt Prof Thy Topo

112. Orazio, F. Jr., Stowell W., and Silva, R., Instrumentation of a Variable Angle Scatterometer (VAS), SPIE Proceedings, 362 (1986) p. 165. 
Aptr Desn

113. Pompea, S. M., Bergener, D. W., Shepard, D. F., Russak, S., and Wolfe, W. L., Reflectance Measurements on An Improved Optical Black for Stry Light Rejection from 0.3 to 500 μm, Opt. Eng., 23, 2 (1984) p. 149. 
Aptr Expt Matl Stra

114. Pompea, S. M., Shepard, D. F., and Anderson, S., BRDF Measurements at 6328 Angstroms and 10.6 Micrometers of Optical Black Surfaces for Space Telescopes, SPIE Proceedings, 967 (1988). 
Expt Matl

115. Pompea, S. M., Bergener, D. W., Shepard, D. F., and Williams, K., The Effects of Atomic Oxygen on Martin Black and Infrablack, SPIE Proceedings, 511 (1984). 
Expt Matl

116. Porteus, J. D., Relation Between the Height Distribution of a Rough Surface and the Reflectance at Normal Incidence, J. Opt. Soc. Am, 53, 12 (1963) p. 1394. 
Thry Topo

117. Richmond, J., and Hsia, J., Bibliography on Scattering by Reflection from Surfaces, J. Res. Natl. Bur. Stand. (U.S.), 80A, 2 (1976) p. 207. 
Surv

118. Rifkin, J., Klicker, K. A., Bjork, D. R., Cheever, D. R., Schiff, T. F., Stover, J. C., Cady, F. M., Wilson, D. J., Chausse, P. D., and Kirchner, K. A., Design Review of a Complete Angle Scatter Instrument, SPIE Proceedings, 967 (1988). 
Aptr Desn

119. Rifkin, J., Stover, J. C., McGary, D. E., Kirchner, K. H., and Wilson, D. J., Raster Area Scatter Measurements and Sample Uniformity, SPIE Proceedings, 967 (1988). 
Aptr Expt

120. Roche, P., and Pelletier, E., Characterization of Optical Surfaces by Measurement of Scattering Distribution, Appl. Opt., 23, 20 (October 15, 1984) p. 3561. 
Expt Expt Inst Thy Topo

121. Rowe, T. S., Comparison of Scatter from Diamond Turned Optics to Conventionally Formed Optics in the Visible Wavelengths, SPIE Proceedings, 818 (1988). 
Expt Matl Topo

122. Scheels, S. F., Scattering from Infrared Transparent Materials, SPIE Proceedings, 107 (1977) p. 48. 
Aptr Expt Matl Tran

123. Scherr, L. M., Schmidt, J. H., and Sorensen, K., BRDF of Silicon Carbide and Aluminum Foam Compared to Black Paint at 3.39 Microns, SPIE Proceedings, 1165 (1989). 
Expt Matl Stra

124. Schiff, T. F., Stover, J. C., Cheever, D. R., and Bjork, D. R., Maximum and Minimum Limitations Imposed on BSDF Measurements, SPIE Proceedings, 967 (1988). 
Desn Inst Thy

125. Shirley, L., and George, N., Diffuser Radiation Patterns Over a Large Dynamic Range. I. Strong Diffusers, Appl. Opt., 27, 9 (1988) p. 1850. 
Coh Thy Topo

126. Shirley, L., and George, N., Wide-Angle Diffuser Transmission Functions and Far-Zone Speckle, J. Opt. Soc. Am., A, 4, 4 (1987) p. 734. 
Coh Thy Tran

127. Silva, R., Orazio, F., Jr., and Stowell, W., Scatter Evaluation of Supersmooth Surfaces, SPIE Proceedings, 362 (1986) p. 71. 
Expt Topo

128. Silva, R., Orazio, F., and Sledge, R., A New Instrument for Constant (β−β0) Scatter Mapping of Continuous Optical Surfaces of up to 25 Square Inches, SPIE Proceedings, 511 (1984). 
Aptr Desn Expt

129. Smith, S., Far-Infrared (FIR) Optical Black Bidirectional Reflectance Distribution Function (BRDF), SPIE Proceedings, 257 (1980). 
Aptr Desn Matl Thy

130. Smith, S., and Wolfe, W., Comparison of Measurements by Different Instruments of the Far-Infrared Reflectance of Rough, Optically Black Coatings, SPIE Proceedings, 362 (1986) p. 46. 
Desn Expt Inst Matl Stnd Surv

131. Smith, S. M., Far-Infrared Reflectance Spectra of Optical Black Coatings, SPIE Proceedings, 362 (1986) p. 57. 
Expt Matl Thy

132. Spyak, P., and Wolfe, W., Cryogenic Scattering Measurements, SPIE Proceedings, 967 (1988). 
Aptr Desn Expt
133. Stwertz, D. L., Infrared Absorption of Optical Blacks, Opt. Eng., 18, 2 (1979) p. 147.
Expt Matl
134. Stover, J. C., Roughness Characterization of Smooth Machined Surfaces by Light Scattering, Appl. Opt., 14, 8 (1975) p. 1796.
Expt Prof Thy Topo
135. Stover, J. C., Bernt, M. L., McGary, D. E., and Rifkin, J., An Investigation of Anomalous Scatter From Beryllium Mirrors, Report prepared for Manufacturing Operation Development and Integration Laboratory (MODIL) Engineering Technology Division, Oak Ridge National Laboratory (February 1990).
Expt Matl Topo
136. Stover, J. C., Cady, F. M., and Sklar, E., Measurement of Low Angle Scatter, Opt. Eng., 24, 3 (May/June 1985) p. 404.
Apt Desn Inst
137. Stover, J., and Gillespie, C., Design Review of Three Reflectance Scanners, SPIE Proceedings, 362 (1983).
Apt Inst Prof
138. Stover, J., Gillespie, C., Cady, F., Cheever, D., and Klicker, K., Comparison of BRDF Data From Two Scanners, SPIE Proceedings, 818 (1987).
Apt Expt Matl
139. Stover, J. C., and Hourmand, B., Some Deviations Associated with Vector Perturbation Diffraction Theory, SPIE Proceedings, 511 (1984).
Diff Expt Inst Thy Topo
140. Stover, J. C., Hourmand, B., Kahler, J., and Gillespie, C., Comparison of Roughness Measurements by Differential Scatter and TIS, SPIE Proceedings, 362 (1983).
Apt Expt Prof Surv
141. Stover, J. C., Klicker, K. A., Cheever, D. R. and Cady, F. M., Reduction of Instrument Signature in Near Angle Scatter Measurements, SPIE Proceedings, 749 (1987) p. 46.
Desn Inst
142. Stover, J. C., McGary D. E., and Rifkin, F., Inspection of Large Area and Large Volume Optics by Raster Scanning, SPIE Proceedings, 967 (1985).
Desn Expt Topo
143. Stover, J., Rifkin, J., Cheever, D., Kirchner, K., and Schill, T., Comparison of Wavelength Scaling Data to Experiment, SPIE Proceedings, 967 (1985).
Expt
144. Stover, J. C., Serati, S. A., and Gillespie, C. H., Calculation of Surface Statistics From Light Scatter, Opt. Eng., 23, 4 (July/Aug 1984) p. 406.
Pol Topo Thy
145. Stuhlinger, T., Dereniak, E., and Bartell, F., Bidirectional Reflectance Distribution Function of Gold-Plated Sandpaper, Appl. Opt., 20, 15 (1981) p. 2648.
Apt Calb Expt Matl Stnd
146. Thompson, C., and Wolfe, W., An Interferometric Approach to Suppression of Scattered Radiant Energy, SPIE Proceedings, 511 (1984).
Apt Stra Thy
147. Torrance, K., Sparrow, E., and Birkebak, R., Polarization, Directional Distribution, and Off-Specular Peak Phenomena in Light Reflected from Roughened Surfaces, J. Opt. Soc. Am., 56, 7 (1966) p. 916.
Expt Pol Thy Topo
148. Venable, W., Jr., and Johnson, N., Unified Coordinate System for Retroreflectance Measurements, Appl. Opt., 19, 8 (1980) p. 1236.
Surv Thy
149. Viehman, W., and Predmore, R. E., Ultraviolet and Visible BRDF Data on Spacecraft Thermal Control and Optical Baffle Materials, SPIE Proceedings, 675 (1986).
Expt Matl Stra
150. Vorburger, T., and Teague, E., Optical Techniques for On-Line Measurement of Surface Topography, Prec. Eng., (1981) p. 61.
Prof Thy Topo
151. Vorburger, T., Teague, E., Scire, F., McLay, M., and Gilson, D., Surface Roughness Studies with DALLAS-Detector Array for Laser Light Angular Scattering, J. Res. Natl. Bur. Stand. (U.S.), 89, 1 (1984) p. 3.
Apt Expt Inst Prof
152. Wang, H., and Mi, H., Light Scattering Method, Inspection of Diamond Turning Process, Proceedings from International Conference on Optical Science and Engineering in the Netherlands (March 1990).
Expt Thy Topo
153. Wang, Y., Scattering From Mirrors Contaminated By Particulates-II: An Extended Model, SPIE Proceedings, 257 (1980).
Thy Topo
154. Wang, Y., and Wolfe, W., Scattering from Microrough Surfaces: Comparison of Theory and Experiment, J. Opt. Soc. Am., 73 (1983) p. 1596.
Expt Thy Topo
155. Wang, Y., Scattering from Mirrors Contaminated by Particulates: A Model, Appl. Opt., 25, 23 (1986) p. 4222.
Thy Topo
156. Warren, A., Simplified Techniques for Estimating Out-of-Field Radiation, SPIE Proceedings, 257 (1980).
Desn Thy Stra
157. Warren, A. D., Analysis of Out-of-Field Radiation in Reimaging Optical Systems, SPIE Proceedings, 107 (1977) p. 111.
Desn Thy Stra
158. Weidner, V., Hsia, J., and Adams, B., Laboratory Intercomparison Study of Pressed Polytetrafluoroethylene Powder Reflectance Standards, Appl. Opt., 24, 14 (1985) p. 2225.
Calb Expt Matl Stnd
159. Wein, S., and Wolfe, W., Small-Angle Scatterometer, SPIE Proceedings, 967 (1988).
Abs Apt Desn Desn Inst
160. Wein, S. J., and Wolfe, W., Gaussian-Apodized Apertures and Small-Angle Scatter Measurement, Opt. Eng., 28, 3 (1989) p. 273.
Abs Apt Desn Desn Inst
161. Williams V., and Lockie, R., Optical Contamination Assessment by Bidirectional Reflectance-Distribution Function (BRDF) Measurement, Opt. Eng., 18, 2 (1979) p. 152.
Apt Expt Thy Topo
162. Wojcik, G. L., Vaughan, D. K., and Galbraith, L. E., Calculation of Light Scatter From Structures on Silicon Surfaces, SPIE Proceedings, 774 (March 1987).
Desn Inst Matl Thy Topo
163. Wolfe, W. L., Scattered Thoughts on Baffling Problems, SPIE Proceedings, 256 (1980).
Desn Stra
164. Wolfe, W., Bartell, R. O., and Brooks, L. D., Description and Limitations of an Automated Scatterometer, SPIE Proceedings, 362 (1986).

165. Wolfe, W., Hubbs, J., and Bartell, F., Scatter Measurements on LAK9 and SF1 Glasses at 0.915 Micrometers, SPIE Proceedings, 429 (1983).

166. Wolfe, W., Magee, K., and Wolfe, D., A Portable Scatterometer for Optical Shop Use, SPIE Proceedings, 525 (1985) p. 160.

167. Wolfe, W., and Wang, Y., Comparison of Theory and Experiments for Bidirectional Reflectance Distribution Function (BRDF) of Microrough Surfaces, SPIE Proceedings, 362 (1986) p. 40.

168. Wong, W., Small Angle Bidirectional Reflectance Distribution Function (BRDF) at 10μm, SPIE Proceedings, 430 (1983).

169. Young, R. P., Degradation of Low Scatter Mirrors By Particle Contamination, AIAA Paper No.A75-32905 (1975).

170. Young, P. J., Noll, R., Andreozzi, L., and Hope, J., Particle Contamination from Martin Optical Black, SPIE Proceedings, 257 (1980).

171. Young, R. P., Mirror Scatter Measurements Facility Comparison, report no. AEDC-TR-75-68 (1975).

About the Author: Clara Asmail is a physicist in the Radiometric Physics Division, National Institute of Standards and Technology.