Transient Intermediates in the Thrombin Activation of Fibrinogen

EVIDENCE FOR ONLY THE desAA SPECIES*

(Received for publication, October 20, 1995, and in revised form, March 6, 1996)

Xiao Li†, Dennis Galanakis§, and Don A. Gabriel¶†

From the †Center for Thrombosis and Hemostasis and Division of Hematology/Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and the §Department of Pathology, State University of New York, Stony Brook, New York 11794

The structure of a fibrin gel depends on the nature of the fibrinogen activation products produced by thrombin and the physical condition under which assembly occurs. Two different structures of the intermediate fibrin protofibril have been proposed, the production of which requires different extents of fibrinopeptide A (FpA) cleavage from fibrinogen. The fibrin activation intermediates must be stable since time is required for the intermediates to diffuse to growing protofibrils. The classic Hall-Slayter model requires cleavage of both FpAs to form a desAA intermediate. The Hunziker model requires cleavage of only one FpA to form an AdesA intermediate. Electrophoretic quasi elastic light scattering has been used to show the time-dependent production of the relevant fibrinogen activation intermediates that includes desAA but not AdesA.

Since the first description of fibrin structure by Ferry and Morrison (1), controversy has existed over the exact mechanism of fibrin assembly. The issues include the order of release of the fibrinogen activation peptides, fibrinopeptide A (FpA); fibrinopeptide B (FpB), the importance of the extent of removal of fibrinopeptide A, the manner in which the fibrin monomers are organized into protofibrils, and the manner of bundling of the protofibrils into fibrin fibers. The complexity of the three-step assembly process including fibrinogen activation, protofibril formation, and fiber bundling lends itself to the diversity of fibrin structure originally noted by Ferry (2). The final fibrin structure depends on many factors such as the rate of monomer production, fibrin monomer concentration, the number of polymerization sites present on the fibrin monomer, pH, ionic strength, solution viscosity, the presence of other charged molecules, and volume exclusion effects (1, 3–8). FpA is released before FpB, and the release of FpA is sufficient to initiate fibrin assembly (9–11). Different models for fibrin assembly have been proposed. Support for the classical Hall-Slayter model (12) for fibrin assembly in which fully activated fibrin monomers with both FpAs cleaved (desAA) are added in an overlapping half-staggered manner to growing protofibrils has been derived from assembly kinetics, light scattering studies, and electron micrographs (13–15). A recent challenge to the Hall-Slayter model by Hunziker et al. (16) refutes the overlapping monomer sequence in the protofibril. Protofibril assembly in the Hunziker model requires the existence of a fibrin monomer with only one FpA removed (AdesA) in sufficient concentrations and with a sufficient lifetime to assemble a non-overlapping protofibril. The fundamental difference in these two models arises from differences in the protofibril structure, which depends on the predominance and stability of AdesA compared with desAA fibrin monomers. Report for the existence of the AdesA monomer is based on gel exclusion chromatography and electron microscopy (16–19). Other investigators using similar methods and peptide sequencing experiments do not find the AdesA fibrin monomer in either sufficient quantity or lifetime to be a significant factor in fibrin assembly (20–22).

It is the purpose of this report to apply a methodology that permits direct observation and evaluation in real time of the transient intermediates that form during the activation of fibrinogen. Electrophoretic quasi elastic light scattering (ELS) can resolve structural differences between fibrin monomers because of differences in the charge on the different activation intermediates. Quasi elastic light scattering (QLS) without electrophoresis reports on changes in the diffusion coefficients resulting from differences in the mass of the molecule. Thus, ELS should be better suited to study activation products of fibrinogen activation than QLS, since the fibrinopeptide cleavage changes the charge substantially but does not reduce the mass appreciably.

MATERIALS AND METHODS

Fibrinogen Activation—Highly purified human band I fibrinogen (less than 10% band II) was used in these experiments (23). A working solution of 0.5 mg/ml stock fibrinogen was prepared from a freshly thawed fibrinogen stock solution at 0.3 M NaCl by diluting with 10 mM NaCl, 5 mM Hepes at pH 7.4. Contaminating dust and large fibrinogen aggregates in the working solution were reduced by filtration through a 0.22-μm filter followed by centrifugation at 48,000 × g for 90 min. The final fibrinogen concentration was determined from the solution optical density at 280 nm in a Cary 3E UV/VIS spectrophotometer using an extinction coefficient of 1.6 ml/mg. Further dilution of the working solution to obtain a desired fibrinogen concentration was made with 10 mM NaCl, 5 mM Hepes at pH 7.4. Fibrinogen was activated with 0.005 NIH units/ml human α-thrombin (Sigma). A low concentration of thrombin was used to slow fibrinopeptide cleavage to a rate that could be observed in our experiment. The fibrinogen-thrombin mixture was sampled at various times (2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 60, and 90 min), and thrombin was inhibited by the addition of phenylalanyl prolyl arginine chloromethyl ketone (final concentration of 2.5 μM) at each stage. Fibrinogen quenched at various stages of activation was then examined in the ELS spectrometer for the presence of intermediate activation species.

Experiments to examine the release of only fibrinopeptide A were carried out using Atroxin, an enzyme derived from Bothrops atrox (Sigma). In these experiments, Atroxin was added at a final concentration of 1.25 ng/ml, in place of thrombin, which gave equivalent fibrin gelation times. Fibrinopeptide B removal was examined in a similar
Detection of Fibrinogen Activation Intermediates

RESULTS

Fig. 1 shows the changes in the electrophoretic mobility spectrum for fibrinogen at a concentration of 0.05 mg/ml (peak A) at intermediate times during a 90-min activation by thrombin. At 10 min, a new peak (peak B) with a mobility of −0.6 (μ-cm)/(V-s) is observed. At 25 min, the electrophoretic spectrum shows the appearance of a third peak (peak C) with a mobility of −1.0 (μ-cm)/(V-s). Both peaks B and C continue to increase in intensity with time as shown by the spectra at 40 and 60 min. Other contributions to the mobility spectra are seen at higher mobilities. These experiments show activation intermediates at times of 10, 25, 40, and 60 min. Under conditions of very dilute thrombin concentrations, peak B emerges well ahead of peak C.

In Fig. 2, the effect of thrombin, which removes both FpA and FpB, is compared with Atroxin, which removes only FpA. Thus, by using Atroxin, a homogeneous desAA can be produced. The experimental conditions are identical to those used in Fig. 1. The 25-min mobility spectrum using thrombin from Fig. 1 has been superimposed and is shown as a dashed line so that assignment of peak B can be identified as removal of fibrinopeptide A, yielding desAA. The same fibrinogen mobility (peak A) is observed in both the thrombin and Atroxin experiments. The difference occurs in the absence of peak C. Since Atroxin, the solid curve in Fig. 2, only releases fibrinopeptide A and since the morphology of the single new peak is symmetric, the new mobility shown as peak B must represent the desAA fibrin intermediate. Some investigators have postulated the existence of an AdesA fibrin intermediate. The inset shows a plot of the line width at half height, τ’, for peak B versus the scattering vector, K, and confirms that the line broadening is due to diffusion (τ’ = K^2) and not sample heterogeneity (τ’ = K^2 + η) (24). Thus, contribution to peak B from AdesA is highly unlikely. Furthermore, since the mobility difference between peak A and peak B is approximately 1.6 (μ-cm)/(V-s), it is possible that FpB is released first. A new peak (peak C) should appear as an easily identifiable peak between peak A and peak B. Since no peaks are observed in this region of the mobility spectra, and since we can show the appearance of peak B ahead of peak C (see the spectrum for the 10-min sample time in Fig. 1), we take this as evidence that AdesA does not exist as a significant intermediate. If it exists at all, it must be extremely short lived or at a very low concentration. These observations are consistent with the observation of Janmey et al. (14, 15, 27) that the second FpA is removed 16 times faster than the first FpA, suggesting that the possibility of a stable AdesA intermediate is low.

To identify the species responsible for the mobility represented by peak C produced by the thrombin activation of fibrinogen shown in Fig. 1, the following experiments were performed. The experiments shown in Fig. 3 are identical to those shown in Figs. 1 and 2 except that fibrinogen is activated by an enzyme from the venom of the Southern copperhead, Agkistrodon contortrix, which cleaves FpB at a much faster rate than FpA. Again, the 25-min spectrum from Fig. 1, shown as a dashed line, has been superimposed so that the identification of FpB removal can be established. As expected, no desAA peak (peak B in Fig. 1) is observed because the FpB is removed first. A new peak, peak C', with a slightly lower mobility than the peak C from Fig. 1, is
DISCUSSION

Fibrin assembly is initiated by thrombin cleavage of the N-terminal Aα-chain, fibrinopeptide A, which exposes one of the two polymerization site “A’s” on the E-domain (28–30). Structural information on the chemical nature of “A” polymerization sites is limited, but His16 on the Bβ-chain and contributions from α-chain are necessary for polymerization to occur (31–34). The polymerization “A” site on the E-domain interacts with the constitutively present “a” site on the α-domain of an adjacent monomer. In contrast to the “A” site, the critical amino acid sequence in the “a” site is better defined and located on the C-terminal γ-chain between amino acid residues 356 and 411 (30, 35–37).

Once the fibrin monomer is generated following FpA release, fibrin assembly ensues. The classical mechanism for fibrin assembly as described by the Hall-Slayter model suggests that fibrin monomers polymerize in a half-staggered manner so that the D-domain of one monomer interacts with the centrally located E-domain of the adjacent monomer to form protofibrils 2 monomers thick (12). In this model, polymerization symmetry permits monomer addition to either end of the growing protofibril (bipolar growth), but only if an “A” site faces the “a” site, which implies rotational symmetry about the minor hemi-axis (equivalent ends) but not about the major hemi-axis with respect to polymerization sites (38). An additional critical factor is the structural contribution of the dihedral angle present in fibrinogen that introduces helical structure to the protofibril. However, the exact details of the interaction and packing re-
Detection of Fibrinogen Activation Intermediates

Fig. 4. Fibrinogen activation at physiologic concentrations of fibrinogen. ELS spectra of fibrinogen at the normal physiologic concentration (2 mg/ml) and fibrinogen activation intermediates generated by addition of 0.005 NIH units/ml human α-thrombin sampled at 15, 40, and 60 min are shown. The designations of the peaks are the same as for Fig. 1.

Recently, the Hall-Slayter model for fibrin assembly has been challenged (16). A fundamental feature of the alternative model described by Hunziker is that only one D-domain from each fibrin monomer is involved in the initial polymerization process. The second D-domain is then left free to form branches. For this model to be possible, the second “A” polymerization site on the E-domain must not be activated, i.e., the AdesA species must predominate and be stable long enough to diffuse to the surface of the assembling fibrin protofibril. If the second FpA is cleaved, protofibril assembly will proceed in an overlapping bipolar manner as postulated in the Hall-Slayter model. Assembly requires close proximity of monomers and growing fibrin oligomers and sufficient time for both rotational and lateral diffusion to occur so that the correct spatial orientation occurs. Thus, the monomer must be stable long enough for diffusive processes to bring monomers and oligomers together. If the AdesA species is the important fundamental monomeric species, it must not encounter a second thrombin molecule that would result in the cleavage of its second FpA before its assembly into the growing fibrin protofibril. These critical interactions between monomer and growing oligomer are highly important in the determination of fiber assembly kinetics and structure (39).

Thus, a fundamental issue in the differentiation between the Hall-Slayter and Hunziker models is proof of the existence of the AdesA versus the desAA intermediate as the predominant species during fibrin assembly. The existence of a transient AdesA fibrin monomer is controversial and is dependent on the nature of interaction between thrombin and fibrinogen. For example, the AdesA could be produced through one thrombin bound for each FpA so that removal of each FpA is a temporally independent event. The desAA species could be produced by either two thrombin molecules bound simultaneously to fibrinogen or by the sequential removal of FpAs by one bound thrombin molecule. In favor of the latter model, a 16-fold increased rate of removal for the second fibrinopeptide A has been observed (14, 15).

The existence of an AdesA intermediate in the early stage of fibrin formation was first proposed by Smith (17), and his analysis, based on N-terminal amino acid analysis of gel chromatography isolated fibrinogen activation intermediates, reported that the interior of fibrin oligomers was composed of desAA monomers but that the oligomer was capped by AdesA monomers. It is not clear from this model how desAA monomers can be added to the growing oligomer if each end is capped by an AdesA. Based on his analysis, Smith postulated that AdesA was the early predominant species. A similar finding also using chromatography to isolate fibrin intermediates was reported by Alkjaersig and Fletcher (18). Dietler et al. (19) used light scattering to arrive at a similar conclusion. It should be emphasized that quasi elastic light scattering gives highly accurate diffusion coefficients but only for monodispersed solutions (40). Sample heterogeneity caused by fibrinogen or fibrin monomer aggregates will produce uncertainty in the result as evidenced by a large second moment in the cumulant analysis (40). More recently, Hunziker et al. (16) have used electron microscopy to examine fibrin oligomers that appear to contain AdesA intermediates. Electron microscopy studies offer the possibility of analyzing individual monomers and oligomers, but it is not clear if the drying process alters the monomers so that their original solution appearance is altered. Monomer aggregation artifacts may also occur during the drying process. Important species present in solution may not be represented in the observed species.

Other investigators do not find evidence for the AdesA fibrin monomer. Wilf and Minton (21) used gel permeation chromatography and only found desAA fibrin monomers. Wilf and Minton (21) also examined Smith’s original proposed assembly mechanism and found that Smith’s predictions did not agree with either their analysis or with Shainoff’s sedimentation analysis (41). In addition, only desAA was observed by Janmey et al. (14, 27) in their light scattering studies. Hensohn (22) was not able to detect AdesA intermediates using a more direct analysis of the FpA and amino acid sequencing of the central, dimeric fragments derived from the N-terminal region of all Aα-chains and α-chains present in the thrombin digest.

In this report, we have used light scattering to examine fibrinogen activation intermediates. However, we have avoided the problem of sample heterogeneity by adding electrophoresis to quasi elastic light scattering as described by Ware and Flygare (42). Differences between the molecular weight and hence the diffusion coefficient of fibrinogen and fibrin monomer using standard quasi elastic light scattering may not resolve subtle differences present in fibrinogen activation intermediates. On the other hand, substantial differences may be present in the molecular charge for each activation species, which would be highly sensitive to detection by electrophoresis. We view the results from QLS and ELS as complementary. We have shown that ELS is well suited for the study of fibrinogen activation and protofibril formation. ELS reports the surface charge of a particle and is observed as the electrophoretic mobility. The ELS method can measure the mobilities of a mixture of multiple particles with different structures and charges. In the present case, differences in the mobility of fibrin intermediates depend on small changes in the surface charge in activation intermediates. When the fibrinopeptides are removed and fibrin monomers are produced, only a small change in the molecular weight occurs, but a large difference in the
electrophoretic mobility occurs. In fact, the change is so large that the existence of the AdesA species would be easily observed between peaks A and B, which is not seen (Fig. 1). We have also used limiting concentrations of thrombin to enhance detection of the AdesA intermediate, if it is present. In separate experiments, physiologic concentrations of fibrinogen were examined (Fig. 4). Our data strongly support the hypothesis that desAA fibrin monomer is the significant intermediate in fibrin assembly. If AdesA does exist, its lifetime and concentration are insufficient to exert a significant role in fibrin assembly.

REFERENCES
1. Ferry, J. D., and Morrison, P. R. (1947) J. Am. Chem. Soc. 69, 388–400
2. Ferry, J. D. (1952) Proc. Natl. Acad. Sci. U. S. A. 38, 566–569
3. Endres, G. F., Ehrenpreis, S., and Scheraga, H. A. (1966) Biochemistry 5, 1561–1567
4. Carr, M. E., Jr., Gabriel, D. A., and McDonagh, J. (1986) Biochem. J. 239, 513–516
5. Hantgan, R. R., and Hermans, J. (1979) J. Biol. Chem. 254, 11272–11281
6. Carr, M. E., Jr., Cromartie, R., and Gabriel, D. A. (1989) Biochemistry 28, 1384–1388
7. Blomback, B., Hessel, B., Hogg, D., and Therkildsen, L. (1978) Nature 275, 501–505
8. Bailey, K., Bottelheim, F. R., Lorand, L., and Middlebrook, W. R. (1951) Nature 167, 233–234
9. Laurent, T. C., and Blomback, B. (1958) Acta Chem. Scand. 12, 1875–1877
10. Hall, C. E., and Slayter, H. S. (1959) J. Biol. Chem. 234, 11–18
11. Higgins, D. L., Lewis, S. D., and Shafer, J. S. (1983) J. Biol. Chem. 258, 9276–9282
12. Janmey, P. A., Bale, M. D., and Ferry, J. D. (1983) Biopolymers 22, 4336–4340
13. Hunziker, E. B., Straub, P. W., and Haerler, A. (1990) J. Biol. Chem. 265, 7455–7463
14. Smith, G. F. (1980) Biochem. J. 185, 1–11
15. Alkjaersig, N., and Fletcher, A. P. (1983) Biochem. J. 213, 75–83
16. Dieter, G., Kandzir, W., Haerler, A., and Straub, P. W. (1986) Biopolymers 25, 905–929
17. Janmey, P. A. (1982) Biopolymers 21, 2253–2264
18. Wilf, J., and Minton, A. P. (1986) Biochemistry 25, 3124–3133
19. Hirsch, A. (1990) Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis, (Lin, C. Y., and Chien, S., eds) pp. 49–53, Plenum Press, New York
20. Galanakis, D. K., Lane, B. P., and Simon, S. R. (1987) Biochemistry 26, 2389–2400
21. Johnson, C. S., Jr., and Gabriel, D. A. (1995) Laser Light Scattering, Dover Publication Inc., New York
22. Ware, B. R. (1974) Adv. Colloid Interface Sci. 4, 1–44
23. Galanakis, D. K., Lane, B. P., and Simon, S. R. (1987) Biochemistry 26, 2389–2400
24. Johnson, C. S., Jr., and Gabriel, D. A. (1980) in Spectroscopy in Biochemistry (Bell, J. Ellis, ed) Vol 2, pp. 177–272, CRC Press, Boca Raton, FL
25. Bale, M. D., Janmey, P. A., and Ferry, D. (1982) Biopolymers 21, 2265–2277
26. Doolittle, R. F. (1973) Adv. Protein Chem. 27, 1–109
27. Varadi, A., and Scheraga, H. A. (1986) Biochemistry 25, 519–528
28. Hermans, J. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 1189–1193
29. Weisel, J. W., Veklich, Y., and Gorkun, O. (1993) J. Mol. Biol. 232, 285–297
30. Henschen, A. (1990) Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis, (Lin, C. Y., and Chien, S., eds) pp. 49–53, Plenum Press, New York
31. Galanakis, D. K., Lane, B. P., and Simon, S. R. (1987) Biochemistry 26, 2389–2400
32. Johnson, C. S., Jr., and Gabriel, D. A. (1995) Laser Light Scattering, Dover Publication Inc., New York
33. Bale, M. D., Janmey, P. A., and Ferry, D. (1982) Biopolymers 21, 2265–2277
34. Doolittle, R. F. (1973) Adv. Protein Chem. 27, 1–109
35. Olexa, S. A., and Budzynski, A. Z. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 1374–1378
36. Budzynski, A. Z., Olexa, S. A., and Pandya, B. V. (1983) Ann. N. Y. Acad. Sci. 408, 301–313
37. Pandya, B. V., Cerniewski, C. S., and Budzynski, A. Z. (1985) J. Biol. Chem. 260, 2994–3000
38. Shimizu, A., Saito, Y., and Inada, Y. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 591–593
39. Olexa, S. A., and Budzynski, A. (1981) J. Biol. Chem. 256, 3544–3549
40. Nieuwenhuizen, W., Voskuilen, M., Verdoodt, A., Haverkate, F., and Hermans, J. (1982) Biochim. Biophys. Acta 707, 190–192
41. Shainoff, J. R., Lahiri, B., and Bumpus, F. M. (1970) Thromb. Diath. Haemorrh. 28, 203–217
42. Ware, B. R., and Flygare, W. H. (1971) Chem. Phys. Lett. 12, 81–85