Scale-Free Algorithms for Online Linear Optimization

Francesco Orabona Dávid Pál

Yahoo Labs NYC

October 4, 2015
Online Linear Optimization

For $t = 1, 2, \ldots$

- predict $w_t \in K \subseteq \mathbb{R}^d$
- receive loss vector $\ell_t \in \mathbb{R}^d$
- suffer loss $\langle \ell_t, w_t \rangle$

Competitive analysis w.r.t. static strategy $u \in K$:

$$\text{Regret}_T(u) = \sum_{t=1}^{T} \langle \ell_t, w_t \rangle - \sum_{t=1}^{T} \langle \ell_t, u \rangle$$

Goal: Design algorithms with sublinear Regret_T.
Applications

- Offline and stochastic convex optimization
 - Logistic regression \((K = \mathbb{R}^d)\)
- Online combinatorial problems
 - learning with expert advice \((K = \text{probability simplex})\)
 - shortest path \((K = \text{flow polytope})\)
 - bipartite matching \((K = \text{doubly stochastic matrices})\)
 - spanning tree \((K = \text{spanning tree polytope})\)
 - k-subset, etc.
Theorem (Abernethy et al. ’08; Rakhlin ’09)

For any bounded convex $K \subseteq \mathbb{R}^d$ and any norm $\| \cdot \|$, there exists an algorithm that receives T and $\sum_{t=1}^{T} \| \ell_t \|^2_*$ before the first round and satisfies

$$\forall u \in K \quad \text{Regret}_T(u) \leq C_{K,\| \cdot \|} \sqrt{T \sum_{t=1}^{T} \| \ell_t \|^2_*}.$$

Corollary

If $\| \ell_t \|^* \leq B$ then $\text{Regret}_T(u) \leq C_{K,\| \cdot \|} B \sqrt{T}$.

(Mirror Descent, Follow The Regularized Leader)
Adaptive Regret Bound

Theorem (Orabona & P.)

For any bounded convex $K \subseteq \mathbb{R}^d$ and any norm $\| \cdot \|$, there exists an algorithm that receives T and $\sum_{t=1}^{T} \| \ell_t \|_2^*$ before the first round and satisfies

$$\forall T \quad \forall u \in K \quad \text{Regret}_T(u) \leq C'_{K,\| \cdot \|} \sqrt{\sum_{t=1}^{T} \| \ell_t \|_2^*}.$$

- The value of $C'_{K,\| \cdot \|}$ later in the talk.
- Similar result for unbounded $K.$
Adaptivity

Adaptivity to unknown T is easy:

- Doubling trick. Try $T = 1, 2, 4, 8, 16, 32, \ldots$

Adaptivity to unknown $\|\ell_t\|_*$:

- **AdaHedge** for $K =$ probability simplex

 [de Rooij, van Erven, Grünwald, Koolen ‘14]

- **AdaGrad, FTRL Proximal** for $\| \cdot \|_2$ and $\|\ell_t\|_2 \geq 1$

 [Duchi, Hazan, Singer ‘11; McMahan & Streeter ‘10]

- **AdaFTRL** for any bounded K, any norm

 [this paper]

- **SOLO FTRL** for any K (bounded or unbounded), any norm

 [this paper]
Strong Convexity

A convex function $R : K \rightarrow \mathbb{R}$ is \textit{\lambda}-strongly convex w.r.t. $\| \cdot \|$ iff

$\forall x, y \in K \quad \forall t \in [0, 1]$

$R(tx + (1 - t)y) \leq tR(x) + (1 - t)R(y) - \frac{\lambda}{2} t(1 - t) \|x - y\|^2$

If R is differentiable, this is equivalent to

$\forall x, y \in K \quad R(y) \geq R(x) + \langle \nabla R(x), y - x \rangle + \frac{\lambda}{2} \|x - y\|^2$
Follow The Regularized Leader (FTRL)

- $R : K \rightarrow \mathbb{R}$ non-negative 1-strongly convex w.r.t. $\| \cdot \|$.
- FTRL chooses

$$
\omega_t = \arg\min_{\omega \in K} \left(\frac{1}{\eta_t} R(\omega) + \sum_{i=1}^{t-1} \langle \ell_i, \omega \rangle \right)
$$

where $\eta_t > 0$ is a learning rate.

- Constant learning rate $\eta_1 = \eta_2 = \cdots = \eta_T = \sqrt{\frac{\sup_{v \in K} R(v)}{\sum_{t=1}^T \| \ell_t \|_2^*}}$
gives [Rakhlin ’09; Shalev-Shwartz ’11]

$$
\text{Regret}_T(u) \leq 2 \sqrt{\sup_{v \in K} R(v)} \sqrt{T \sum_{t=1}^T \| \ell_t \|_2^*} C_{K,\| \cdot \|}
$$

- How to choose η_t adaptively?
Scale-Free Property

Multiply loss vectors by \(c > 0 \):

\[
\ell_1, \ell_2, \ell_3, \cdots \rightarrow c\ell_1, c\ell_2, c\ell_3, \cdots
\]

An algorithm is **scale-free** if \(w_1, w_2, w_3, \ldots \) remains the same.

For a scale-free algorithm

\[
\text{Regret}_T(u) \rightarrow c \text{ Regret}_T(u) \quad \sum_{t=1}^{T} \langle \ell_t, w_t \rangle \rightarrow c \sum_{t=1}^{T} \langle \ell_t, w_t \rangle
\]

\[
\sqrt{\sum_{t=1}^{T} \|\ell_t\|_2^*} \rightarrow c \sqrt{\sum_{t=1}^{T} \|\ell_t\|_2^*}
\]
Scale-Free FTRL

For FTRL

\[w_t = \arg\min_{w \in K} \left(\frac{1}{\eta_t} R(w) + \sum_{i=1}^{t-1} \langle \ell_i, w \rangle \right) \]

to be scale-free $1/\eta_t$ needs to be positive 1-homogeneous function of $\ell_1, \ell_2, \ldots, \ell_{t-1}$.

That is, $(\ell_1, \ell_2, \ldots, \ell_{t-1}) \rightarrow (c\ell_1, c\ell_2, \ldots, c\ell_{t-1})$ causes

$1/\eta_t \rightarrow c/\eta_t$

\[w_t = \arg\min_{w \in K} \left(\frac{c}{\eta_t} R(w) + \sum_{i=1}^{t-1} \langle c\ell_i, w \rangle \right) \]
Two Good Scale-Free Choices of η_t

SOLO FTRL:

$$\frac{1}{\eta_t} = \sqrt{\sum_{i=1}^{t-1} \|\ell_i\|_2^*}$$

ADA FTRL:

$$\frac{1}{\eta_t} = \begin{cases}
0 & \text{if } t = 1 \\
\frac{1}{\eta_{t-1}} + \frac{1}{\eta_{t-1}} \text{D}_{R^*} \left(-\eta_{t-1} \sum_{i=1}^{t-1} \ell_i, -\eta_{t-1} \sum_{i=1}^{t-2} \ell_i \right) & \text{if } t \geq 2
\end{cases}$$

$\text{D}_{R^*}(\cdot, \cdot)$ is the Bregman divergence of Fenchel conjugate of R.
Regret of Scale-Free FTRL

Theorem

Let \(R : K \to \mathbb{R} \) be non-negative and \(\lambda \)-strongly convex w.r.t. \(\| \cdot \| \). Suppose \(K \) has diameter \(D \) w.r.t. to \(\| \cdot \| \).

SOLO FTRL satisfies

\[
\text{Regret}_T(u) \leq \left(R(u) + \frac{2.75}{\lambda} \right) \sqrt{\sum_{t=1}^{T} \| \ell_t \|_*^2}
\]

\[+ 3.5 \min \left\{ D, \frac{\sqrt{T - 1}}{\lambda} \right\} \max_{1 \leq t \leq T} \| \ell_t \|_* .
\]

ADAFTRL satisfies

\[
\text{Regret}_T(u) \leq 2 \max \left\{ D, \frac{1}{\sqrt{\lambda}} \right\} (1 + R(u)) \sqrt{\sum_{t=1}^{T} \| \ell_t \|_*^2} .
\]
Optimization of λ for Bounded K

- Choose $R(w) = \lambda \cdot f(w)$ where f is non-negative 1-strongly convex.
- Use $D \leq \sqrt{8 \sup_{v \in K} f(v)}$
- Optimize λ. Optimal choice depends only on $\sup_{v \in K} f(v)$.

With optimal choices of λ,

ADAFTRL: $\text{Regret}_T(u) \leq 5.3 \sqrt{\sup_{v \in K} f(v) \sum_{t=1}^T \|\ell_t\|_*^2}$

SOLO FTRL: $\text{Regret}_T(u) \leq 13.3 \sqrt{\sup_{v \in K} f(v) \sum_{t=1}^T \|\ell_t\|_*^2}$
Our Proof Techniques

Lemma
For non-negative numbers C, a_1, a_2, \ldots, a_T,

$$
\sum_{t=1}^{T} \min \left\{ \frac{a_t^2}{\sqrt{\sum_{s=1}^{t-1} a_s^2}}, Ca_t \right\} \leq 3.5 \sqrt{\sum_{t=1}^{T} a_t^2} + 3.5C \max_{1 \leq t \leq T} a_t
$$

Lemma
For non-negative numbers a_1, a_2, \ldots, a_T the recurrence

$$
0 \leq b_t \leq \min \left\{ a_t, \frac{a_t^2}{\sum_{s=1}^{t-1} b_s} \right\}
$$

implies that

$$
\sum_{t=1}^{T} b_t \leq 2 \sqrt{\sum_{t=1}^{T} a_t^2}
$$
Lower Bound for Bounded K

Theorem
For any a_1, a_2, \ldots, a_T and any algorithm there exists $\ell_1, \ell_2, \ldots, \ell_T$ and $u \in K$ such that

- $\|\ell_1\|_* = a_1, \|\ell_2\|_* = a_2, \ldots, \|\ell_T\|_* = a_T$
- $\text{Regret}_T(u) \geq \frac{D}{\sqrt{8}} \sqrt{\sum_{t=1}^{T} \|\ell_t\|_2^2}$

Proof.

- Choose $\ell \in \mathbb{R}^d$ and $x, y \in K$ such that

 $\|x - y\| = D \quad \|\ell\|_* = 1$

 $\arg\min_{w \in K} \langle \ell, w \rangle = x \quad \arg\max_{w \in K} \langle \ell, w \rangle = y$

- Set $\ell_t = \pm a_t \ell$ where signs are i.i.d. random

□
Open Problem: Bounded K

- Lower vs. upper bound

$$\frac{D}{\sqrt{8}} \sqrt{\sum_{t=1}^{T} \|\ell_t\|_2^*} \quad \text{vs.} \quad 5.3 \sqrt{\sup_{u \in K} f(u) \sum_{t=1}^{T} \|\ell_t\|_2^*}$$

where $f : K \to \mathbb{R}$ is 1-strongly convex w.r.t. $\| \cdot \|$.

- Upper bound is (almost) tight. [Srebro, Sridharan, Tewari '11]

- Open problem: [Kwon & Mertikopoulos '14]

 Given a convex set K and a norm $\| \cdot \|$, construct non-negative 1-strongly convex $f : K \to \mathbb{R}$ that minimizes

 $$\sup_{u \in K} f(u) .$$
Open Problems: Unbounded K

- For λ-strongly convex R, SOLO FTRL:

$$\text{Regret}_T(u) \leq R(u) \sqrt{\sum_{t=1}^{T} \|\ell_t\|_2^2 + 6.25 \frac{\sqrt{T}}{\lambda} \max_{1 \leq t \leq T} \|\ell_t\|_*}$$

- For 2-norm, $K = \mathbb{R}^d$, assuming $\|\ell_t\|_2 \leq 1$,
 PiSTOL: [Orabona ’13, ’14; McMahan & Orabona ’13]

$$\text{Regret}(u) \leq O \left(\|u\|_2 \sqrt{T \log(T \|u\|_2)} \right).$$

- Open problem 1:
 Algorithm for $K = \mathbb{R}^d$ that adapts to $\|\ell_t\|_2$ and has regret
 $$\|u\|_2 \sqrt{T} \max_{1 \leq t \leq T} \|\ell_t\|_2 \cdot \text{poly}(\log T, \log \|u\|_2)$$

- Open problem 2:
 What about other norms and unbounded $K \neq \mathbb{R}^d$?
Questions?