The Distribution and Evolution of Quasar Proximity Zone Sizes

Huanqing Chen1 and Nickolay Y. Gnedin1,2,3

1 Department of Astronomy & Astrophysics, The University of Chicago, Chicago, IL 60637, USA; hqchen@uchicago.edu
2 Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
3 Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637, USA

Received 2020 August 11; revised 2020 December 28; accepted 2021 February 17; published 2021 April 15

Abstract

In this paper, we study the sizes of quasar proximity zones with synthetic quasar absorption spectra obtained by postprocessing a Cosmic Reionization On Computers (CROC) simulation. CROC simulations have both relatively large box sizes and high spatial resolution, allowing us to resolve Lyman limit systems (LLSs), which are crucial for modeling the quasar absorption spectra. We find that before reionization, most quasar proximity zone sizes grow steadily for \(\sim 10 \) Myr, while after reionization, they grow rapidly but only for \(\sim 0.1 \) Myr. We also find a slow growth of \(R_{\text{obs}} \) with decreasing turn-on redshift. In addition, we find that \(\sim 1\% - 2\% \) of old quasars (30 Myr old) display extremely small proximity zone sizes (<1 proper Mpc), the vast majority of which are due to the occurrence of a damped Ly\(\alpha \) absorber (DLA) or an LLS along the line of sight. These DLAs and LLSs are contaminated with metal, which offers a way to distinguish them from the normal proximity zones of young quasars.

1. Introduction

Understanding when and how the universe underwent reionization is a frontier in both cosmology and astrophysics. Direct constraints on the process and timing of reionization come from probes of neutral hydrogen in the intergalactic medium (IGM). Because at present the direct emission in the (redshifted) 21 cm line has not yet been detected, the only available direct probe of intergalactic gas is Ly\(\alpha \) absorption in the spectra of distant quasars. The Ly\(\alpha \) line is a resonant line with an extremely large cross section; at lower redshifts (\(z = 2 \) to \(\sim 4 \)), the residual neutral hydrogen in the IGM creates dense absorption features called the Ly\(\alpha \) forest. At higher redshifts, both the neutral hydrogen fraction and the density of the universe increase, and the absorption features blend together to form “dark gaps” between isolated “transmitted spikes,” which eventually disappear in the complete “Gunn–Peterson trough” above \(z \gtrsim 6.5 \) (Becker et al. 2001, 2015; Fan et al. 2006; McGreer et al. 2015; Mazzucchelli et al. 2017; Bosman et al. 2018; Eilers et al. 2018a; Lu et al. 2020; Yang et al. 2020). When that happens and the transmitted flux drops to zero, probing the IGM with Ly\(\alpha \) absorption becomes impractical, except for special environments in the vicinity of bright quasars, the so-called “quasar proximity zones.” Inside these proximity zones, quasar radiation ionizes the surrounding gas much in excess of the cosmic mean and, hence, makes it much more transparent to Ly\(\alpha \) radiation.

In spectra of high-redshift quasars, proximity zones appear as regions blueward of the quasar Ly\(\alpha \) line with transmitted flux in excess of the average transmission at this redshift. Proximity zones have been studied both in observation and theory in the past two decades. However, with limited spectral resolution, most studies have been focused only on measuring or modeling the “sizes” of proximity zones. In observational work, the size of the quasar proximity zone is often defined following the pioneering work of Fan et al. (2006) as the distance from the quasar to the first point along the line of sight where the transmitted flux drops below 10% in a spectrum smoothed by a 20 A boxcar.4 In a mostly neutral universe, the thus-defined proximity zone in the beginning is limited by the position of the quasar ionization front (I-front), which further depends on the quasar age and the neutral fraction of the ambient IGM (Cen & Haiman 2000; Madau & Rees 2000; Haiman & Cen 2001). Therefore, these two important physical quantities can be constrained by measuring the proximity zone size distribution and evolution. For example, Fan et al. (2006) and Carilli et al. (2010) measured the sizes of quasar proximity zones at \(z = 5.7 \) to \(\sim 6.4 \), Eilers et al. (2017) found the gradual growth of proximity zone sizes during the redshift interval. They argued that this reflected the rapid progress of cosmic reionization. On the other hand, using a slightly larger sample of 34 quasars at \(z = 5.77 \) to \(\sim 6.54 \), Eilers et al. (2017) found the slower growth of proximity zone sizes during the same redshift range, with most proximity zone sizes being \(\sim 5 \) physical Mpc (pMpc) with an intrinsic scatter of \(\sim 2 \) pMpc after rescaling all proximity zone sizes to a fixed quasar magnitude of \(M_{1500} = -27 \). In addition, they found several quasars with exceptionally small proximity zones. Such exceptionally small sizes of proximity zones, they argued, are most likely because the quasars are extremely young, with quasar ages \(t_q < 1 \times 10^7 \) yr.

The apparent inconsistency among different studies can come from many factors. For example, to measure the transmitted flux, one needs to determine the unabsorbed, intrinsic quasar spectrum (i.e., the quasar “continuum”). Different models give slightly different continua, which introduce significant uncertainty in the proximity zone size measurement. Also, transmitted spikes and noise make it hard to determine the point \(z_{\text{GP}} \) where the transmitted flux drops

4 Another definition of the last transmitted spike is also discussed by Lidz et al. (2007).
below 10%. The quasar host redshift \(z_Q \) may also have large uncertainties due to the gas motion around the supermassive black hole (Fan et al. 2006). All of these uncertainties can significantly bias the measured proximity zone sizes. Furthermore, the number of quasars at \(z > 6 \) with high-quality data is still small. They have different luminosities and may have large intrinsic scatter from sight line to sight line, weakening further constraints on quantities like quasar age and redshift evolution of neutral hydrogen fraction in the IGM. The good news is that the number of discovered \(z > 6 \) quasars is increasing rapidly, and more and more high-resolution spectra are being obtained to study the proximity zones (Eilers et al. 2020; Ishimoto et al. 2020). Moreover, with 30 m class optical telescopes coming online in the next decade, it is expected that a large increase in high-quality spectra will greatly improve the observational statistics.

In order to better interpret the upcoming data, we need to correspondingly improve our theoretical models. In a simple idealized scenario where the quasar I-front expands into the uniform IGM with a high neutral fraction \(f_{\text{HI}} \), the I-front position \(R_{\text{ion}} \propto (N_{\text{H}2}/\mu_{\text{HI}})^{3/2} \). However, in the real universe, cosmic structures are complex and reionization process is patchy, and the sizes of quasar proximity zones show significant scatter (Lidz et al. 2007). Also, \(R_{\text{ion}} \) is not always directly measurable. This is because inside \(R_{\text{ion}} \), the radiation intensity from the quasar usually drops as \(1/r^2 \). Therefore, observed proximity zone size will eventually reach a maximum value. Assuming that inside the proximity zone the IGM is always optically thin, Bolton & Haehnelt (2007) showed that the maximum size of the proximity zone is then \(R_{\text{ion}}^{\text{max}} \propto N^2 \), which is independent of the quasar lifetime and the neutral fraction of the general IGM. They also showed that for mostly ionized IGM, the proximity zone sizes reach \(R_{\text{ion}}^{\text{max}} \) and do not change significantly after \(\sim 1 \) Myr. This was confirmed in several subsequent works (Keating et al. 2015; Eilers et al. 2017).

However, most previous theoretical studies (with a few exceptions like Keating et al. 2015 and Kakiichi et al. 2018) suffered from the limited spatial resolution of their simulations, with the numerical resolution being insufficient to resolve small cosmic structures like the Lyman limit systems (LLSs). The LLSs may significantly lower the transmitted flux from the quasar, thus biasing predictions for the proximity zone size distribution in simulations that do not resolve them. Also, some studies assume a uniform UV background, which is not realistic, especially when reionization is not complete. If the quasar sight line hits the neutral patch in the IGM, the proximity zone can terminate suddenly. Therefore, modeling the ionized bubble caused by galaxies is important when studying proximity zones during reionization.

In this study, we use simulations from the Cosmic Reionization On Computers (CROC) project (Gnedin 2014) as the background model for cosmic reionization. CROC is a suite of radiative transfer cosmological hydrodynamic simulations with different comoving box sizes of 20 cMpc \(h^{-1} \), 40 cMpc \(h^{-1} \), and 80 cMpc \(h^{-1} \) and the peak spatial resolution of 100 pc in proper units. Therefore, it can model both the global reionization process and the internal properties of galaxies. We draw lines of sight from CROC simulation snapshots and postprocess them with a new 1D radiative transfer (RT) code using adaptive time steps. We study quasar proximity zones during the entire reionization period, from the beginning of reionization, through ionized bubble growing and overlapping, all the way to the end of reionization at \(z \approx 6 \). We use a statistically significant sample to study the distribution of proximity zone sizes and their evolution, and discuss the observational applications.

This paper is organized as follows. In Section 2, we describe how we model the quasar absorption spectra. We describe the CROC simulation we use as the initial condition, as well as the new 1D RT code for postprocessing the lines of sight. In Section 3, we show our results for proximity zone sizes, including individual examples at different stages of reionization and their distribution and evolution with quasar age and redshift. In Section 4, we focus on the extremely small proximity zones and compare our results with previous studies. In Section 5, we discuss some observational applications and note some caveats. A summary is provided in Section 6.

2. Methodology

We study the sizes of the proximity zones using synthetic absorption spectra. In this section, we describe our procedure for postprocessing lines of sight drawn from a CROC simulation.

2.1. Initial Condition

2.1.1. Simulation

We use snapshots from one of the CROC simulations in the 40 Mpc \(h^{-1} \) box as the initial condition. The CROC project uses the Adaptive Refinement Tree (ART) code (Kravtsov 1999; Kravtsov et al. 2002; Rudd et al. 2008) to reach a high spatial resolution using the adaptive mesh refinement approach. The base grid is 40 \(h^{-1} \) cMpc in size, and the peak resolution is \(\sim 100 \) pc (in physical units). CROC simulations include relevant physics such as gas cooling, heating, star formation, and stellar feedback. After each star particle is formed, it becomes an individual radiation source. Quasar radiation, on the other hand, is only treated as the background. The radiative transfer is done using the Optically Thin Variable Eddington Tensor (OTVET) method (Gnedin & Abel 2001), which is fully coupled temporally (i.e., being updated with the same time step) and spatially (modeled at the same spatial resolution) to gas dynamics and other simulated physics. For more details on the CROC project, we refer the readers to Gnedin (2014).

We choose snapshots at six different redshifts \(z = 8.9, 8.0, 7.3, 6.8, 6.4, 6.1 \). In Figure 1, we show the simulated neutral hydrogen map at these six redshifts, slicing through a massive halo at the center of each panel. In this realization, the volume-weighted hydrogen ionized fraction reaches 0.1 at \(z \approx 8.5 \) and 0.9 at \(z \approx 7.2 \) (the neutral fractions of this simulation can be found in Table 1). However, as we can see from Figure 1, this process is highly inhomogeneous. Early at \(z = 9 \), only regions around the most massive halos are ionized, due to the collective ionizing photons from both the most massive galaxies and less massive galaxies around them. The ionized bubbles grow quickly and leave only small patches neutral at \(z \approx 7.3 \). After \(z \approx 7 \), almost all the IGM is ionized in this simulation box. Note that voids reionize later but reach a lower neutral fraction after reionization is complete, because of the lower recombination rate in lower-density regions.
2.1.2. Lines of Sight

We have run the ROCKSTAR halo finder (Behroozi et al. 2013) to identify halos in the simulation. We choose halos with dark matter mass \(M_h > 1.5 \times 10^{11} M_\odot \) at each redshift as potential quasar host halos (except \(z = 8.9 \) in which we choose \(M_h > 8 \times 10^{10} M_\odot \) because massive halos are extremely rare at that high redshift). The numbers of halos at each redshift are listed in Table 2. Then, we use the LightRay.make_light_ray function in the analysis and visualization package yt5 (Turk et al. 2011) to draw lines of sight, centered on these halos and with a random distribution in all directions. We achieve this by generating three random numbers \(x, y, \) and \(z \) from the Gaussian distribution with the mean value 0 and the standard deviation 1, and the direction \((x, y, z) \) can be proven to be uniformly distributed over the sphere. For each halo, we draw hundreds of sight lines (see Table 2), so that at each redshift, we have thousands of lines of sight in total. Each line of sight is 15 pMpc long, larger than any observed quasar proximity zone currently reported. Because CROC simulations use adaptive mesh refinement, the sampled resolution elements are smaller when the gas density is higher. In a typical sight line, most cell sizes are between 1 and 10 pkpc, and about 10% of cells have sizes below 1 pkpc.

In Figure 2, we show six examples of sight lines drawn from snapshots at \(z = 8.9 \)–6.1 from top to bottom. The blue line shows the gas density contrast \(\Delta \rho \equiv \rho / \bar{\rho} \), where \(\bar{\rho} \) is the mean gas density of the universe at each redshift, and the red line shows the neutral fraction of the gas. Again, as we can see at redshifts before \(z = 7.5 \) (the first two panels), reionization starts around high-density peaks. The high-density gas hardly falls below \(x_{HI} < 0.01 \) because of its short recombination time, but diffuse gas around it easily reaches \(x_{HI} < 10^{-3} \). Note that in the second and third panels, there are ionized regions that are not

Table 1

\(z \)	8.92	7.95	7.33	6.78	6.39	6.11
\(\langle x_{HI} \rangle_V \)	0.95	0.60	0.13	6.7 \times 10^{-4}	3.3 \times 10^{-4}	2.1 \times 10^{-4}
\(\langle x_{HI} \rangle_M \)	0.93	0.56	0.15	0.037	0.038	0.039

Table 2

Redshift	\(M_h/M_\odot \)	# Halos	# l.o.s. Each	Total # l.o.s.
8.9	\(>8.0 \times 10^{10} \)	5	210	1150
8.0	\(>1.5 \times 10^{11} \)	6	210	1260
7.3	\(>1.5 \times 10^{11} \)	13	110	1430
6.8	\(>1.5 \times 10^{11} \)	23	110	2530
6.4	\(>1.5 \times 10^{11} \)	40	110	4400
6.1	\(>1.5 \times 10^{11} \)	63	110	6930

5 https://yt-project.org/
adjacent to apparent high-density peaks. This is because the corresponding high-density peaks do not lie exactly along the sight line but close to it. After $z = 7$ (the last three panels), the ionized bubbles overlap, and the whole IGM becomes ionized. In this case, the neutral fraction x_{HI} correlates with the gas density.

Figure 2. Initial condition for some sight lines at six different redshifts. Blue lines with the left y-axes show the gas density contrast $\Delta = \rho / \bar{\rho}$, and red lines with right y-axes show hydrogen neutral fraction x_{HI}. Dotted lines of both colors show the corresponding mean values for both quantities at each redshift. Before $z = 7.3$ when large ionized bubbles are overlapping, regions around high-density peaks are ionized to $x_{HI} \sim 10^{-3}$, while other regions remain neutral. The density peaks with $\Delta > 10$ are usually partially ionized ($x_{HI} > 10\%$) because of high density and, hence, more shielding and recombination. After the ionized bubbles overlap, x_{HI} traces gas density.
One important point we have learned from the simulation is that at any given time, the bulk of the IGM is usually either very neutral \(x_{\text{HI}} \approx 1 \) or very ionized \(x_{\text{HI}} \lesssim 10^{-3} \). In other words, the ionization process is patchy, and every patch of the ionized gas has \(x_{\text{HI}} \lesssim 10^{-3} \). There are no such times where the bulk of the IGM is uniformly ionized to a modest degree of, say, \(x_{\text{HI}} \sim 0.1 \).

2.2. 1D Radiative Transfer Code

To model the quasar proximity zone spectra, we postprocess a statistically significant sample of sight lines with a 1D RT code. We discuss the pros and cons of the postprocessing approach in Section 5.2.2.

Following Bolton & Haehnelt (2007) and Davies et al. (2016), we solve the ordinary differential equation system for each cell with width \(dr \) at a distance \(r \) from the quasar. The equations for the three ionization fractions are

\[
\frac{dx_{\text{HI}}}{dt} = -(\Gamma_{\text{QSO}}^{\text{H}I} + \Gamma_{\text{bkg}}^{\text{H}I} + n_i \Gamma_{i}^{\text{H}I}) x_{\text{HI}} + \alpha_i \Gamma_{i}^{\text{H}I} x_{\text{HI}},
\]

\[
\frac{dx_{\text{He}I}}{dt} = -(\Gamma_{\text{QSO}}^{\text{He}I} + \Gamma_{\text{bkg}}^{\text{He}I} + n_i \Gamma_{i}^{\text{He}I}) x_{\text{He}I} + \alpha_i \Gamma_{i}^{\text{He}I} x_{\text{He}I},
\]

\[
\frac{dx_{\text{He}II}}{dt} = -(\Gamma_{\text{QSO}}^{\text{He}II} + \Gamma_{\text{bkg}}^{\text{He}II} + n_i \Gamma_{i}^{\text{He}II}) x_{\text{He}II} + \alpha_i \Gamma_{i}^{\text{He}II} x_{\text{He}II} + \alpha_{\text{He}I} \Gamma_{\text{H}I} x_{\text{He}II}.
\]

(1)

The quantity \(\Gamma_{i}^{\text{QSO}} \) is the collisional ionization rate and \(\alpha_i \) is the recombination rate of species \(i \) (\(\text{H}I \), \(\text{He}I \), or \(\text{He}II \)), which are both functions of gas temperature \(T \). The term \(\Gamma_{\text{QSO}}^{\text{QSO}} \) is the photoionization rate from the quasar, which can be expressed as

\[
\Gamma_{\text{QSO}} = \frac{1}{n_i \lambda_{\text{ion}}} \int_{\nu_i}^{\infty} N_\nu^{\text{abs}} P_\nu \, d\nu,
\]

where \(V_{\text{shell}} \) is the volume of the spherical shell with width \(dr \) and radius \(r \), \(\nu_i \) is the ionization threshold for species \(i \), and \(N_\nu^{\text{abs}} \) is the incidental photon production rate at a distance \(r \) from the quasar, which is equal to the intrinsic photon production rate attenuated by the absorption between the cell and the quasar:

\[
N_\nu^{\text{abs}} = N_\nu e^{-\tau_\nu},
\]

\(p_i \) is the probability that an ionizing photon is absorbed by species \(i \):

\[
P_{\text{HI}} = p_{\text{i}} q_{\text{He}I} q_{\text{He}II} (1 - e^{-\tau_{\text{H}I}}) / D,
\]

\[
P_{\text{He}I} = q_{\text{Hi}} p_{\text{He}I} q_{\text{He}II} (1 - e^{-\tau_{\text{He}II}}) / D,
\]

\[
P_{\text{He}II} = q_{\text{i}} q_{\text{He}I} p_{\text{He}II} (1 - e^{-\tau_{\text{He}II}}) / D,
\]

(2)

where \(\tau_{\nu} = 1 - e^{-\nu} \) and \(q_{\nu} = e^{-\nu} \) is the total optical depth of the cell and \(D = p_{\text{i}} q_{\text{He}I} q_{\text{He}II} + q_{\text{Hi}} p_{\text{He}I} + q_{\text{i}} q_{\text{He}I} q_{\text{He}II} \) (Bolton & Haehnelt 2007).

The term \(\Gamma_{\text{bkg}}^{\text{i}} \) is the background photoionization rate of species \(i \) (\(\text{H}I \), \(\text{He}I \), or \(\text{He}II \)) of the cell. The full radiation field has not been stored in the CROC output files due to the limited disk space available. Therefore, we calculate \(\Gamma_{\text{bkg}}^{\text{i}} \) by assuming the gas is in ionization equilibrium before the quasar turns on:

\[
\Gamma_{\text{bkg}}^{\text{H}I} = \frac{\alpha_{\text{H}I} q_{\text{He}I} q_{\text{He}II} (T_0)}{x_{\text{H}I}^2} - n_e x_{\text{H}I} - \Gamma_{\text{He}I},
\]

\[
\Gamma_{\text{bkg}}^{\text{He}I} = \frac{\alpha_{\text{He}I} q_{\text{He}II} (T_0)}{x_{\text{He}I}^2} - n_e x_{\text{He}I},
\]

\[
\Gamma_{\text{bkg}}^{\text{He}II} = \frac{\alpha_{\text{He}II} q_{\text{He}I} q_{\text{He}II} (T_0)}{x_{\text{He}II}^2} - n_e x_{\text{He}II}.
\]

(3)

Along with ionization fraction equations, we also solve for the temperature evolution:

\[
\frac{dT}{dt} = \frac{2}{k_B n_{\text{tot}}} (H - \Lambda) - 2HT - T \frac{dn_{\text{tot}}}{dt},
\]

(4)

where \(H \) is the photoheating rate from the quasar, \(\Lambda \) is the cooling rate, \(H \) is the Hubble parameter, and \(n_{\text{tot}} \) is the total density of particles \(n_{\text{H}I} + n_{\text{He}I} + n_e \). The cooling rate here includes recombination cooling, collisional ionization cooling, collisional excitation cooling, Bremsstrahlung cooling, and inverse Compton cooling. We adopt the same rates as those in Bolton & Haehnelt (2007): photoionization cross sections from Osterbrock (1989), recombination rates from Abel et al. (1997), collisional ionization rates from Theuns et al. (1998), collisional excitation and bremsstrahlung rates from Cen (1992), and inverse Compton cooling rates from Peebles (1971). Note that in the current version of the code, secondary ionizations (Shull & van Steenberg 1985; Furlanetto & Stoever 2010) are not included. Secondary ionizations can reduce the gas temperature and increase the ionization rate, which affects the transmitted flux (Davies et al. 2016). However, their effect on the size of the proximity zone is expected to be very small, and hence do not change the main results of this paper.

Our code differs from the previous codes used in Bolton & Haehnelt (2007) and Davies et al. (2016) mainly in how we advance the radiation field in time and space. Figure 3 shows the flowchart of our integration scheme. Previous codes choose many global time steps and evolved all the cells for each global time step. Our code solves the evolution of each cell for the entire time of interest (~30 Myr) using an adaptive prediction-correction scheme. At each adaptive output time, we calculate the transmitted spectra to pass to the next cell. This algorithm is motivated by the very different temporal behavior of cells very close to the quasar and very far away from the quasar, for which the timescales to reach ionization equilibrium can differ by several orders of magnitude. With such a large range of physical timescales in different spatial locations, using a fixed global time step is inefficient. To solve the ordinary differential equations (ODEs) for each cell, we use the 3-QSS scheme (Mott & Oran 2001), which is designed to solve stiff ordinary differential equations of the form

\[
\frac{dy_i}{dt} = q_i - p_i y_i,
\]

where \(q_i \) and \(p_i \) are functions of time. We refer readers to the original paper for details.

The subfigure framed in yellow shows how one step (from \(t_k \) to \(t_{k+1} \)) is calculated in detail. The incidental spectrum at \(t_k \) is calculated to determine the photoionization/heating rates for the ODEs. The 3-QSS scheme is used to solve the ODEs and to output the ionization fractions and temperature at \(t_{k+1} \) as well as at several intermediate times if the time steps chosen by the
α-QSS scheme require that (in this plot we show two, represented by the black arrowheads in the center). Finally, we calculate the transmitted spectra with updated ionization fractions and temperature at all substeps. Note that the transmitted spectrum at t_{k+1} is calculated using the incident spectral at t_k.

We set the integration tolerance to be 1% for all four variables. After solving the ODEs for the cell for all time steps, we calculate the transmitted spectra for that cell and store them to be used as incident spectra for the next cell. Storing the full temporal evolution of the incident spectra on each spatial cell is memory-demanding. For some time steps, the transmitted spectra can be extremely similar—for example, after the gas has reached a new ionization equilibrium, the change in the ionization fraction is mainly due to gas cooling. Therefore, we do not store the spectra that differ by less than 1×10^{-5} from the previous time step. Note that this is a very conservative choice and introduces a negligible error. By trimming the number of transmitted spectra, we save the memory and reduce the number of time steps for the following cell. We show some tests of our code in the Appendix.

In this paper, we use a simple power-law quasar spectrum with the spectral index $\alpha = -1.5$: $L_{\nu} \propto \nu^{-1.5}$. The spectra are evenly divided into 80 bins on the log scale, with the lowest energy of 13.6 eV and the highest energy of 1 keV. This choice mimics the frequency sampling in the RT solver of the ART code, which was optimized after extensive testing. The luminosity for the quasar is also fixed, with the production rate of the ionizing photon being

$$N_\text{tot} = \int_{13.6 \text{ eV}}^{\infty} N_\nu d\nu = 1 \times 10^{57} \text{ s}^{-1}.$$

This translates into the quasar magnitude of $M_{1450} = -26.66$, assuming the same spectral index $\alpha = -1.5$ from 1450 Å to 912 Å with no break. With the double power-law spectrum model of Lusso et al. (2015), this translates into the quasar UV absolute magnitude of -26.2.

After postprocessing, we generate synthetic Lyα absorption spectra from these lines of sight with the analytical Voigt profile formula in Tepper-García (2006). We account for the peculiar velocity of the gas, as well as the quasar host halo.

3. Results

3.1. Example Lines of Sight

In Figure 4, we show two typical sight lines at two different redshifts $z = 8.0$ (left) and $z = 6.1$ (right). For the sight line at $z = 8.0$ (left panels), when the universe is predominantly neutral, the background ionization rate of H I has significant spatial fluctuations, as shown by the black line in the third panel. Inside the H II bubbles created by clustered galaxies, the value is $\Gamma^\text{H I}_{\text{bkg}} \sim 3 \times 10^{-14} \text{ s}^{-1}$. After the quasar turns on, the ionization front (I-front) gradually moves outwards (second row), and so does the region dominated by the quasar radiation (third row). The neutral gas outside the quasar I-front creates the damping wing in the spectrum, and this explains the overall spectral shape at $t_q = 0.3$ Myr and 3 Myr. After ~ 30 Myr, the I-front propagates further away, and the damping wing due to the neutral patch is shown as the faint dotted red line. At this time, the absorption at ~ 1–2 pMpc is mostly due to the large-scale overdense structure around the quasar.

At $z = 6.1$, the IGM in the simulation box is highly ionized. The background radiation $\Gamma^\text{H I}_{\text{bkg}}$ rises to above 10^{-13} s^{-1} before the quasar turns on. Therefore, after the quasar turns on, there is no traditional “I-front” of the quasar, and the timescale for the IGM to reach a new ionization equilibrium is no longer limited by the speed of the quasar I-front as at $z = 8.0$. Instead, the neutral fraction drops on a timescale of $t_{eq} \sim 1/\Gamma^\text{H I}_{\text{bkg}}$. This value is extremely short ($\sim 2 \times 10^7 \text{ yr}$ at 1 pMpc and $\sim 3 \times 10^4 \text{ yr}$ at 4 pMpc); therefore, the gas near the quasar...
re-establishes the ionization equilibrium quickly within \(\sim 0.3 \) Myr, and there is not much difference between the blue, green, and red lines in the right panel. The same explanation applies to the transmitted flux. Notice that there is a small increase in the transmitted flux at \(\sim 2 \) pMpc after \(t_Q = 3 \) Myr and \(\sim 3-5 \) pMpc after \(t_Q = 30 \) Myr due to the additional photoheating by the moving He II I-front (not shown in the figure).

3.2. Definitions of the Proximity Zone Size

Traditionally, the edge of the proximity zone has been defined as the point where the transmitted flux drops below 10% after the transmitted flux has been smoothed by a 20 Å boxcar (Fan et al. 2006). We label this observationally motivated definition as \(R_{\text{obs}} \). In Figure 4, we show the \(R_{\text{obs}} \) at \(t_Q = 30 \) Myr as the red shaded region in the bottom row. This quantity, albeit straightforward to measure, is hard to interpret, as it depends on the arbitrary values of the threshold and spectral smoothing and does not correspond to any physical scale. The precise value of \(R_{\text{obs}} \) is set by the complicated interplay between the damping wing outside of the I-front and the gas density distribution inside the proximity zone. Therefore, here we define another, physically motivated proximity zone size \(R_{\text{phy}} \), and in the next subsection, we will study the distribution and the evolution of both \(R_{\text{obs}} \) and \(R_{\text{phy}} \).

We use the radiation field to define the physical size of the proximity zone \(R_{\text{phy}} \)—a region where the ionization rate of H I due to the quasar is larger than that of the background. In practice, we calculate the \(\Gamma_{\text{H I}}^{\text{QSO}} \) and \(\Gamma_{\text{H I}}^{\text{bg}} \) for each cell and define the physical proximity zone as the region adjacent to the
distribution of the observational proximity zone size R_{obs} from the quasar that the damping wing does not suppress the absorption features from the cosmic large-scale structure that cluster around them, R_{phys} starts at a nonzero value and its evolution with t_Q is very flat in the first 0.1 Myr. At $z = 6.1$ (right panel), the IGM is completely ionized, and the distribution and evolution of both R_{obs} and R_{phys} (right panel in Figure 5) are very different from the $z = 8.0$ case. The physical proximity zone size R_{phys} (the histogram on the right) has a much larger scatter than at $z = 8.0$ simply because the edge of R_{phys} is no longer a sharp I-front. Far away from the quasar, R_{phys} drops very slowly and slight fluctuations in either R_{phys} or R_{obs} can change R_{phys} significantly. The value of R_{phys} is sensitive to the LLSs along the line of sight. When a quasar is very young $t_Q = 0.03$ Myr, there is a large scatter of R_{phys} down to extremely small values. This is because sight lines often hit preexisting LLSs with overdensities $\Delta_c \sim 100$ and $x_{\text{HI}} > 10^{-3}$, which initially attenuate the radiation from the quasar. However, after ≥ 0.1 Myr the gas in these LLSs becomes more ionized and transparent to the quasar radiation. This explains the change of the distribution of R_{phys} from $t_Q = 0.04$ Myr to 1 Myr. After 1 Myr, the ionization equilibrium is reestablished for most of the preexisting LLSs, and thus the distribution of R_{phys} does not evolve any further. At $z = 6.1$, the tail of $R_{\text{phys}} < 6$ pMpc is mostly due to the remaining LLSs/DLAs that are too dense to be overionized by the quasar and block its radiation. Examples of $\Gamma_{\text{H}_1}^{\text{QSO}}$ profiles for such sight lines can be found in Figure 6. The sudden drop in $\Gamma_{\text{H}_1}^{\text{QSO}}$ corresponds to the positions of these LLSs/DLAs. As for R_{obs}, its value is sensitive to any gas with $x_{\text{HI}} \gtrsim 10^{-4}$. When $t_Q = 0.03$ Myr, even the mean density gas at $\gtrsim 4$ pMpc has not reestablished ionization equilibrium and still has $x_{\text{HI}} \sim 10^{-4}$; therefore, at such young quasar age, the majority of $R_{\text{obs}} < 4$ pMpc. After ~ 0.1 Myr, the new ionization equilibrium is established in most places within 8 pMpc (see Figure 4), and R_{obs} does not change significantly afterwards. The slight change in the

Figure 5. Proximity zone size distribution and its dependence on t_Q when the quasar turns on at $z = 8.0$ (left) and $z = 6.1$ (right). The lower-left panel shows the distribution of the observational proximity zone size (R_{obs}) vs. the physical proximity zone size (R_{phys}) at $t_Q = 0.03$ Myr (blue), 1 Myr (orange), and 30 Myr (green). The solid and dashed lines are the 68% and 95% contours. On the upper left and lower right are the marginal distributions of R_{obs} and R_{phys}, respectively. Plotted in the upper-right panel is the evolution of R_{obs} (red) and R_{phys} (blue) as a function of quasar age t_Q.

The threshold of 10^{-15} s$^{-1}$ is included to account for the situation when a sufficiently neutral patch (a super-LLS or a DLA) blocks the sight line, reducing both $\Gamma_{\text{H}_1}^{\text{QSO}}$ and $\Gamma_{\text{bkg}}^{\text{H}_1}$ to almost zero (see the third row in the left column of Figure 4). Note that changing this threshold by several orders of magnitude does not impact R_{phys} because whenever the neutral patch terminates the proximity zone, the drop in $\Gamma_{\text{H}_1}^{\text{QSO}}$ is very sharp. In Figure 4, we show R_{phys} as the light red band in the third row.

3.3. Distribution and Evolution of Proximity Zone Sizes

3.3.1. As a Function of Quasar Age t_Q

In the two four-panel graphs in Figure 5, we show the distribution and evolution of R_{obs} and R_{phys}. At $z = 8.0$ (before the global reionization), R_{obs} and R_{phys} track each other well with moderate scatter for the first 1 Myr, and they approximately follow the $R_{\text{phys}} = R_{\text{obs}} + 0.5$ pMpc relation. This is because, at short quasar ages, the observational proximity zone size is usually limited by the damping wing of the neutral gas just ahead of the I-front, which is within ~ 2 pMpc from the quasar. After $t_Q > 10$ Myr, the I-front moves far enough away from the quasar that the damping wing does not suppress the transmitted flux significantly (see the example sight line in Figure 4). Instead, the truncation of R_{obs} is mostly due to the absorption features from the cosmic large-scale structure that correlates with the quasar host halo. Therefore, after $t_Q > 10$ Myr, R_{phys} keeps growing while R_{obs} is saturated, and R_{obs} does not trace R_{phys} anymore.

The evolution of R_{phys} for $t_Q > 0.1$ Myr can be well fitted by a power law with a slope of 0.27, slightly smaller than the value of 1/3 for the uniform IGM. Also, because by $z = 8$ quasar host halos are already embedded in ionized bubbles created by galaxies that cluster around them, R_{phys} starts at a nonzero value and its evolution with t_Q is very flat in the first 0.1 Myr.

The physical proximity zone size R_{phys} (the histogram on the right) has a much larger scatter than at $z = 8.0$ simply because the edge of R_{phys} is no longer a sharp I-front. Far away from the quasar, R_{phys} drops very slowly and slight fluctuations in either R_{phys} or R_{obs} can change R_{phys} significantly. The value of R_{phys} is sensitive to the LLSs along the line of sight. When a quasar is very young $t_Q = 0.03$ Myr, there is a large scatter of R_{phys} down to extremely small values. This is because sight lines often hit preexisting LLSs with overdensities $\Delta_c \sim 100$ and $x_{\text{HI}} > 10^{-3}$, which initially attenuate the radiation from the quasar.
distribution of the R_{obs} peak (orange and green histograms on the upper panel) is due to the subsequent additional heating from the He II I-front.

3.3.2. As a Function of Redshift z

As is shown above, for a given quasar age t_Q, the proximity zone sizes at higher redshifts, when the IGM is mostly neutral, are smaller than the proximity zone sizes at lower redshifts, when the IGM is mostly ionized. Studying the evolution of proximity zone sizes as a function of redshift thus helps us to understand how the ionization state of the IGM evolves with redshift.

In Figure 7, we show the evolution of the median observed quasar proximity zone size R_{obs} as a function of redshift. The error bars capture the 68% spread of all sight lines at each snapshot. For a fixed quasar age $t_Q = 30$ Myr, we find that the evolution is slow and smooth, because here, the growth of R_{obs} is due to the decrease in the mean density of the universe. For a short quasar age $t_Q \sim 1$ Myr, we notice that the growth of R_{obs} is slightly faster after $z \sim 8$ than before $z \sim 8$. This is because the universe is mostly neutral at high redshift, and for t_Q as short as ~ 1 Myr, neutral patches limit the growth of R_{obs} (see the left panels in Figure 4 or 5). After the universe becomes mostly ionized, only rarely neutral patches stand in the way of quasar sight lines, resulting in the slight upward tilt of the orange line in Figure 7.

Also plotted in Figure 7 in black are the three best fits to observational data from previous studies (Carilli et al. 2010; Venemans et al. 2015; Eilers et al. 2017). In these studies, the fits are normalized to the fixed quasar magnitude of $M_{1450} = -27$, slightly brighter than $M_{1450} = -26.66$ in this study. The black lines in Figure 7 are renormalized using the correcting formula from each of the three observational studies. Note that the numbers of quasars used in these fits are very limited (<40), and these quasars are at redshifts between $z \sim 5.8$ and the end points of the black lines, with the majority at $z \sim 6.1$. Our simulation is most consistent with the shallow slope measured by Eilers et al. (2017).

4. Extremely Small Proximity Zones

Eilers et al. (2017) has analyzed 34 medium-resolution quasar spectra at redshift $5.77 \lesssim z \lesssim 6.54$ and found several quasars with exceptionally small proximity zone sizes. Specifically, for the 11 quasars in the magnitude bin $-27.5 \leq M_{1450} \leq -26.5$, which are similar to the one we simulated in this paper ($\sim M_{1450} = -26.66$), there is one quasar with the observed proximity zone size of 0.78 pMpc. They argue that the most likely explanation for such an extremely small size is that the quasar is extremely young ($t_Q < 0.5$ yr). In a more recent study, Eilers et al. (2020) estimate the fraction of such young quasars at $z \sim 6$ to be between 5% and 10%. If this is true, it makes it hard to explain how a supermassive black hole can form within the one billion year age of the universe (Martini 2004; Smith & Bromm 2019). In this section, we search for such small proximity zones in our sample and analyze their properties as well as the statistics of finding such small proximity zones.

4.1. Probability of Finding an Extremely Small Zone

In Table 3, we show the number of sight lines at each redshift can be found in Table 2.
observe a quasar, its age t_Q can be significantly smaller than its total lifetime. Therefore, the probability is calculated as

$$P(R_{\text{obs}} < R | t_{\text{life}}) = \int_0^{t_{\text{obs}}} \frac{dt_Q}{t_{\text{life}}} P(R_{\text{obs}} < R | t_Q)$$

$$\approx \sum_i \frac{t_Q - t_{Q,i-1}}{t_{\text{life}}} P(R_{\text{obs}} < R | t_{Q,i}).$$

We plot the probability of observing small R_{obs} in Figure 8. Well before the global reionization ($z > 7$), the neutral patches of the IGM limit the growth of R_{obs}, and most sight lines have $R_{\text{obs}} < 1$ Mpc for $t_{\text{life}} \sim 1$ Myr. Therefore, for a short quasar lifetime, the probability of finding $R_{\text{obs}} < 1$ pMpc is very high (>0.5). After the global reionization ($z < 7$), there are few neutral patches, and the IGM reaches new ionization equilibrium very fast. As a result, the probability curves start with a low value and flatten after \sim1 Myr.

At $z = 6.1$, the fraction of small proximity zone saturates for $t_Q = 30$ Myr is 93/6930 $\approx 1.3\%$. This number is larger than the simulation result of Eilers et al. (2017), who found that only 1 in 1100 of their modeled sight lines has $R_{\text{obs}} < 1$ pMpc. One possible reason for this discrepancy is that the spatial resolution of the Eilers et al. (2017) simulations (~5 pkpc at $z = 6$) is not enough to resolve LLSs—a dense enough LLS of sufficiently large size, or, equivalently, column density—along the simulated quasar sight line would stop the quasar ionization front and hence limit the proximity zone size. With adaptive mesh refinement, the CROC simulations are able to reach 100 physical pc peak resolution to resolve the LLSs—this peak resolution is, of course, only reached in the highest-density regions and so may not reflect the effective resolution the CROC simulations actually achieves in LLSs.

4.2. Extremely Small Proximity Zones in Old Quasars

Studying the features and properties of the extremely small proximity zones helps us to constrain the quasar age with more confidence and decide if the “quasar age tension” is real (Eilers et al. 2017, 2018b; Davies et al. 2019; Khrykin et al. 2019). In particular, we want to know what can make the proximity zone extremely small for even an old quasar. To this end, we inspect all 93 proximity zones with $R_{\text{obs}} < 1$ pMpc at $t_Q = 30$ Myr in the $z = 6.1$ snapshot.

We find that 85 out of 93 extremely small proximity zones show visible damping wings which are caused by very dense gas clumps with $\Delta_x > 10^3$ within the 6 pMpc from the quasar. In the histogram of the neutral hydrogen column density (the left panel of Figure 11), these 85 sight lines with visible damping wings correspond to the main peak at $N_{\text{HI}} \gtrsim 10^{20}$ cm$^{-2}$. Such systems are commonly called DLAs or sub-DLAs. If we adopt the $N_{\text{HI}} > 2 \times 10^{19}$ cm$^{-2}$ threshold for DLA as defined in Wolfe et al. (2005), the number of sight lines that encounter DLAs is 70, or 1% of all sight lines. We show two typical examples in Figure 9. Both of them encounter a very dense clump of gas. The clump in the left panel has an overdensity of $\sim 10^3$, lying within 1 pMpc from the quasar. Based on the high density and the peculiar velocity structure, we know that this clump is part of a galaxy. Because this clump is so close to the quasar, this clump is no longer “neutral” ($\chi_{\text{HI}} < 0.5$ after 30 Myr), as is shown in the second row. Still, this structure has a neutral hydrogen column density $N_{\text{HI}} = 3.6 \times 10^{19}$ cm$^{-2}$ and displays a damping wing in the spectra. In the right panel, the sight line hits an even denser clump of gas ~ 3.4 pMpc away from the quasar. Because it is both denser and farther away than the example on the left, this clump is mostly neutral even after the quasar has been shining for 30 Myr. The column density is extremely high, with $N_{\text{HI}} = 3.3 \times 10^{21}$ cm$^{-2}$. Thus, the suppression of the transmitted flux is even more significant, with the damping wing extending redward of the quasar Lyα line.

Not every gas clump with $\Delta_x > 10^3$ produces the damping wing. Some of them are ionized by the quasar and have $N_{\text{HI}} < 10^{19}$ cm$^{-2}$. In the sample, there are four such systems in total, corresponding to the four sight lines in the three bins of $N_{\text{HI}} \sim 10^{18}$ cm$^{-2}$ in the left panel of Figure 11. One example is shown in the left panel of Figure 10. The dense gas clump at 0.8 pMpc from the quasar has $N_{\text{HI}} \approx 10^{20}$ after $t_Q = 30$ Myr, and the column density is $N_{\text{HI}} = 2.4 \times 10^{18}$ cm$^{-2}$. Note that the LLS cuts the proximity zone extremely short, partially because the peculiar velocity difference between the LLS and the quasar host (the blue dot at 0 pMpc in the first row) projects the LLS closer to the quasar in the velocity space than to the pure Hubble flow for that distance (at $z = 6.1$, 200 km s$^{-1}$ corresponds to ≈ 0.28 pMpc).

The last four extremely small proximity zones are not caused by any dense clump of gas with $\Delta_x > 10^3$. Rather, they are

*We only consider that quasars shine for one epoch.
caused by a long extent of moderately overdense gas with $10^2 < \Delta_g < 10^3$. These structures are parts of a cosmic filament that happen to be aligned with the quasar sight line. One example is shown in the right panel of Figure 10. The main feature that terminates R_{obs} is the extended structure at $\sim 1 \text{ pMpc}$. Over a spatial scale of more than 0.5 pMpc, this structure has a density over the cosmic mean and creates an absorption trough of about $\sim 1 \text{ pMpc}$ in length. But because this gas is not dense enough to block the quasar’s radiation, the gas behind it is not shielded. Therefore, there are some transmitted spikes outside R_{obs}. The percentage of such systems in our sample, $4/6930 = 0.06\%$, is consistent with that in Eilers et al.’s (2017) simulation ($1 \text{ in } 1100$).

In Figure 11, we show the properties of all the density peaks with $\Delta_g > 100$ within 6 pMpc from the quasar (the red dots in Figures 9 and 10). We can see from the left panel that most of these density peaks have a gas overdensity above 10^3. These $\Delta_g > 10^3$ peaks correspond to the DLAs and LLSs in the spectra, while the less dense structures ($10^2 \lesssim \Delta_g \lesssim 10^3$) create smaller, localized absorption features.

Sometimes, it is hard to identify LLSs because they do not display wide damping wings. In practice, observers usually inspect the possible position of these LLSs and try to find any metal lines associated with them. If there are metal lines, then it helps to confirm the existence of an LLS. However, at $z \sim 6$, the properties of LLSs are not well studied and we do not know if all LLSs contain metals. Because in our simulation metal enrichment is modeled along with star formation and stellar feedback, we can investigate the metal content of simulated LLSs. In the right panel of Figure 11, we plot the relationship between the gas overdensity and the metallicity for the dense gas peaks. We find that for very dense gas $\Delta_g > 10^5$, the metallicity is above 0.01Z_\odot but for gas with $\Delta_g \sim 10^3$, the metallicity is usually only between 0.001 to $\sim 0.01Z_\odot$. These values are lower than what Bañados et al. (2019) observed for the proximity DLA of a $z = 6.4$ quasar. However, simulated metallicities of intergalactic gas critically depend on the details of the adopted star formation and feedback model. We discuss this topic more in the discussion section below.

One natural question to ask is what halos are associated with the DLAs/LLSs. To answer this question, we search for galaxies around these dense gas structures. In Figure 12 we plot the mass of the most massive galactic halos within 50 pkpc from the density peak for each sight line. We find that most of them are accompanied by massive halos with a halo mass of 10^{10}M$_\odot$. The DLAs themselves may not be bound to the most massive halo but are part of a smaller halo clustering around the massive one. The Pearson’s correlation coefficient between the $\log_{10} N_{\text{H}}$ of the (sub-)DLAs and the $\log_{10} M_h$ of the most massive halo within 50 pkpc is $0.02^{+0.12}_{-0.13}$; therefore, there is no correlation between these two quantities, although changing the threshold of the associating distance from 50 pkpc to 20 pkpc or 10 pkpc slightly increases the Pearson’s coefficient to $0.17^{+0.12}_{-0.13}$ or $0.22^{+0.11}_{-0.12}$. This non- or weak correlation is consistent with what has been found at lower redshift (e.g., Theuns 2020).

5. Discussion

5.1. Differentiating Old and Young Quasars with Small Zones

It is fairly easy for a very young quasar ($t_0 < 1 \times 10^5$ yr) to have a small R_{obs}. However, the reason why young quasars have extremely small proximity zones is primarily because the ionization equilibrium has not yet been established. This is different from the extremely small proximity zones in old quasars, caused by rare overdense regions. In Figure 13, we show a typical quasar with $t_0 = 3 \times 10^5$ yr. In this sight line, there are no dense gas clumps but normal density fluctuations

Figure 9. Two example sight lines with an extremely small observational proximity zone ($R_{\text{obs}} < 1 \text{ pMpc}$) caused by DLAs. There are 85 such DLA-terminated proximity zooms in the entire extremely small proximity zone sample (93) at $z = 6.1$. The black lines in the first row show the gas density in units of the mean density $\bar{\rho}_g \equiv \rho_g/\bar{\rho}_g$, and the red dot marks the local density peak with $\Delta_g > 10^3$. The embedded panel zooms into this region. The blue line in the first row shows the peculiar velocity along the line of sight, with positive velocity pointing away from the observer. Thus, the regions with a sharp positive velocity jump are the regions with strong inflow, usually around a halo. The blue dot at 0 pMpc shows the peculiar velocity of the quasar host halo along the line of sight. The second row shows the neutral hydrogen fraction of the gas at $t_0 = 30$ Myr, and the third row shows the transmitted flux at the corresponding time. The thin blue line is the flux without smoothing, while the thick blue line is smoothed by a 20 Å boxcar. The dotted brown line shows the contribution from the cells with $\Delta_g > 10^3$.

5. Discussion

5.1. Differentiating Old and Young Quasars with Small Zones

It is fairly easy for a very young quasar ($t_0 < 1 \times 10^5$ yr) to have a small R_{obs}. However, the reason why young quasars have extremely small proximity zones is primarily because the ionization equilibrium has not yet been established. This is different from the extremely small proximity zones in old quasars, caused by rare overdense regions. In Figure 13, we show a typical quasar with $t_0 = 3 \times 10^5$ yr. In this sight line, there are no dense gas clumps but normal density fluctuations

The virial radius of the most massive halo in the simulation is ~ 50 pkpc.
around $\Delta_z = 1$. Because the quasar only shines for a short time, the neutral fraction at 1 pMpc is still above 10^{-5}; such a high neutral fraction causes total absorption. Farther away from the quasar, the neutral fraction is even higher, therefore also producing almost complete absorption.

These features in young quasars—a quick drop in the flux with no more transmission spikes outside R_{obs}—are distinguished from most old quasars with small proximity zones. However, it is still very hard to distinguish between a typical young quasar from an old quasar whose proximity zone is terminated by an LLS, because both of them have a sharp drop in flux and almost no transmitted spikes outside R_{obs}. The best way to differentiate them is to search for metal lines, because in most regions, there will be no metals while the LLSs will likely be enriched to $Z > 10^{-2}Z_{\odot}$. Also, LLSs/DLAs are usually associated with galaxies. Therefore, a detection of a galaxy near the LLS position would favor an LLS explanation for the short proximity zone, although it is not clear how practical it is to observe a galaxy so close to a quasar.

5.2. Caveats in Modeling

5.2.1. CROC Simulations

One needs to be aware of the limitations in our modeling. First of all, in this study, we only analyzed one relatively small CROC simulation box. This box fully reionizes at $z \approx 6.8$, while in the other five 40 cMpc h^{-1} boxes, the earliest reionization redshift is 7.1 and the latest is 6.3. Therefore, depending on the actual simulation box chosen, the redshifts quoted in this paper may vary by $\Delta z \approx \pm 0.5$. Also, these boxes are not large enough to catch the rarest density peaks.

Second, although the properties of IGM can be modeled robustly because the physics is relatively simple, the modeling of galaxies is subject to a number of uncertainties. Our simulation peak resolution is 100 pc in proper units; therefore, the detailed structure of the galaxies, such as the vertical structure of the disks, cannot be modeled. In addition to finite spatial resolution, star formation and stellar feedback in galaxies are modeled with subgrid recipes. These subgrid recipes are tested against local observations. Although the physics should operate similarly at all redshifts, these recipes have not been tested against high-z galaxy observations. For example, the stellar masses of massive CROC galaxies are low compared to observations (Zhu et al. 2020). Also, most massive CROC galaxies have metallicities below 0.1Z_{\odot}, while several galaxies with solar metallicity have been observed at $z \sim 6$ (e.g., Jiang et al. 2006; Harikane et al. 2020; Li et al. 2020). This may suggest that the metals in simulated galaxies are also underproduced. It is likely that the stellar feedback model is too strong in our simulation. This may affect the predicted number density of LLSs.

5.2.2. Postprocessing

The approach of using postprocessing rather than the fully self-consistent 3D RT simulations offers a number of advantages but also has limitations. The full 3D simulation can only model at most a few isolated proximity zones at a time, and such a simulation would take on the order of 300,000 CPU hours to run for 100 Myr (Chen 2020) or even higher, as extremely fine temporal sampling would be required to capture the quasar light front. If one wants to study many quasars in different host halos and turning on at different redshifts, hundreds of 3D simulations would be required, which is not practical at present. The postprocessing with the 1D code is much more efficient and allows a wide parameter space to be studied.

The primary limitation of postprocessing is that it does not account for gas dynamics and the evolution of the background radiation field. The effect of gas dynamics obviously depends on the timescale considered, so in this work, we only model reasonably short timescales ($\lesssim 30$ Myr). The rms gas velocity dispersion at $z = 6$ in our simulation is only 56 km s$^{-1}$. At this velocity, the gas moves by less than 2 pkpc in 30 Myr—a negligible distance on cosmological scales, although comparable to existing observational constraints on the sizes of LLSs (Fumagalli et al. 2016; Zahedy et al. 2019). The latter implies that a specific sight line blocked by an LLS may change on the timescale of 30 Myr, but statistically, our estimate for the fraction of sight lines blocked by LLSs should be reliable.
In order to model timescales of several million years, the gas dynamical effects must be accounted for. For example, the time interval from $z = 8$ to $z = 7.3$ is less than 100 Myr, and the ionization fraction changes rather significantly in this time (see Figure 1). Also, the radiative feedback from the quasar can remove gas from small halos after ~ 100 Myr, and this may reduce the number of LLSs (Chen 2020).

5.2.3. Quasar Model

In this study, we only model one epoch of quasar phase with constant luminosity (the “light bulb” model). Also, here we only model structure outside 0.1 pMpc (several virial radii) from the quasar, so any absorption happening inside 0.1 pMpc is considered to occur during the quasar’s “obscure” phase.

If the quasar light curve is flickering, the proximity zone evolution can be more complex (Davies et al. 2020). For a given quasar “on” time, the flickering light curve may increase the probability of observing a very small proximity zone, especially if the sight line goes through $\Delta_g \sim 1000$ regions. These high-density regions have recombination time comparable to ~ 10 Myr. Imagine a quasar that has a total “on” time of 30 Myr but in multiple episodes with gaps ~ 10 Myr. The quasar may take the whole episode to ionize a density peak, but during the next “off” period, the density peak recombines again. Such a scenario repeats for every episode and can keep the proximity zone small every time we observe the quasar. This scenario is particularly interesting, because it could potentially explain the large fraction of small proximity zone quasars that also do not show significant LLS features. By comparing the statistics of proximity zone sizes with observational data, we could constrain not only the quasar lifetime for each episode but also the quasar duty cycle (Davies et al. 2019).

5.3. Observational Definition with Different Thresholds

The most common definition of the observational proximity zone size is the distance from the quasar to the first point where the flux smoothed by a 20 Å boxcar filter drops below $f_{\text{lim}} = 10\%$. This definition is motivated in observations because the high-z quasar spectra are usually noisy and need to be smoothed to achieve a sufficient signal-to-noise ratio. However, in the physical sense, these thresholds are arbitrary. Here we investigate how the R_{obs} may change if we vary the smoothing size and limiting threshold.

In the left panel of Figure 14, we show the histogram of the difference in R_{obs} measured with 10 Å boxcar (blue) and 40 Å (orange) filters, respectively, as compared to the fiducial value of 20 Å. We find that when changing the boxcar size to
10 Å, half of them vary by less than 0.5 pMpc. However, there is another population on the left that shows a significantly reduced R_{obs}. These are the sight lines that encounter absorption features with a width of ~10 Å but smaller than ~20 Å, so the flux drops below 0.1 when smoothed by a 10 Å boxcar but not by a 20 Å boxcar. On the other hand, when applying smoothing with a 40 Å boxcar, absorption features larger than 20 Å but smaller than 40 Å do not terminate R_{obs} like the fiducial one, so R_{obs} defined this way is usually larger. Also, because the 40 Å kernel size is larger, the “bump” of the orange histogram is also farther away from zero than that in the 10 Å kernel case.

The histogram in the right panel shows the difference in R_{obs} when changing the limiting flux only. We can see in this case that the two histograms have no overlap by definition, as dropping the threshold always makes the R_{obs} larger. However, like the histograms in the left panel, they also have wide “wings,” which is related to the strength of small absorption features at the edge of R_{obs}.

6. Summary

In this study, we have postprocessed a CROC simulation and analyzed the proximity zone sizes of quasars with magnitude $M_{1450} = -26.66$. Our simulation models realistic preionized IGM and have a high spatial resolution to model LLSs. Our postprocessing code uses adaptive time steps and high temporal resolution. We find that before the global reionization, the median of the observed proximity zone size increases steadily in the first 30 Myr. After the global reionization, it only grows rapidly in the first ~0.1 Myr, which is consistent with previous studies (Bolton & Haehnelt 2007; Davies et al. 2020). We find a slow growth of R_{obs} with decreasing turn-on redshift, consistent with the measurements in Eilers et al. (2017).

We also analyzed all the extremely small proximity zones at $z = 6.11$ for old quasars ($t\approx 30$ Myr). We find that 93 out of 6930 sight lines (1.3%) display $R_{\text{obs}} < 1$ pMpc. The vast majority of them are caused by DLAs or LLSs along the line of sight. These DLAs and LLSs are dense gas with overdensities above 10^3 and are polluted by metals. The rest of the extremely small proximity zones are caused by absorption from extended regions with overdensity $\gtrsim 100$. There are four such cases, and they all have transmission spikes outside R_{obs}.

If the quasar lifetime is long (>10 Myr), our simulation shows that the possibility of finding a small proximity zone ($R_{\text{obs}} < 1$ pMpc) at $z \approx 6$ is ~1%. This is smaller than the fraction of ~10% reported in observation (e.g., Eilers et al. 2017), although currently, the number of observed spectra is too limited to draw a firm conclusion. We note that the CROC simulation may have too strong stellar feedback (Zhu et al. 2020) that could destroy some LLSs. Also, flickering light curves can increase the probability of observing small proximity zones.

In future work, we will examine more CROC simulations that have slightly different reionization histories. We will also use more complex quasar light curves to study the quasar size distribution with different duty cycles. Also, inside R_{obs}, there are many absorption features. These absorption features may contain much more information about quasar age and quasar environments but have not been exploited yet. The field of quasar proximity zones will open wide once the 30 m class telescopes go online, because we can obtain high-resolution spectra from reionization quasars with a much shorter observation time. Investigating the features inside the proximity zone is an important part of our project.

H.C. and N.G. thank the referee Frederick Davies for very constructive feedback that greatly improved the quality of this paper. The authors also thank James Bolton and Anna-Christina Eilers for their valuable comments. This work was supported by NASA ATP grant NNX17AK65G and NASA FINESST grant NNN19ZDA005K. This project is carried out on the Midway cluster at the University of Chicago Research Computing Center.

Appendix

Code Tests

Here we show three tests of our 1D RT code, including the I-front position, the ionization structure of the uniform medium, and a real line of sight running through an LLS/DLA.

A.1. I-front Position in a Uniform Hydrogen Gas

An ionization front expanding into a uniform neutral hydrogen background can be described by an analytical solution (Iliev et al. 2006; Shapiro et al. 2006):

$$r_I = r_S \left[1 - \exp(-t/t_{\text{rec}})^{1/3} \right],$$

where

$$r_S = \left[\frac{3N_e}{4\pi n^2 \epsilon H(T) n_H^2} \right]^{1/3}.$$

We test the scenario with $N_e = 1 \times 10^{57}$ s$^{-1}$, $n_H = 10^{-3}$ cm$^{-3}$, $T = 10^4$ K, and the spatial resolution of 10 pkpc. The I-front position versus time is shown in Figure 15. The left panel shows the I-front propagation at different times, with the time–color map plotted at the right edge of the figure. In the middle panel, the solid line shows the analytical solution for the I-front position as a function of time. The blue points are the I-front positions obtained from the left panel. They agree very well with the analytical solution. In the right panel, we show a resolution test. The upper panel shows the difference between the simulated I-front position and the analytical solution as a function of resolution, color-coded by quasar age. The lower panel shows the relative differences of the I-front positions, most of which are within 1%. Note that when the resolution is high, the absolute error in the I-front position accumulates as quasar shines longer, but the relative error is still very small. The error can be suppressed if we...
reduce the tolerance in the α-QSS scheme. We choose the tolerance in the α-QSS scheme to be 1% so as to achieve both a reasonably small error and fast code speed.

A.2. Ionization Structure

In this section, we show a scenario of a quasar ($N = 1 \times 10^{57} \text{s}^{-1}, \alpha = 1.5$) turning on in the uniform, static IGM with neutral H and He at the mean cosmic density at $z = 7$. Each cell in this line of sight is 10 pkpc in size. In Figure 16, we show the incident spectra (left column), the ionization fraction and temperature evolution (middle column), and the transmitted spectra (right column) for the first cell at 0.1 pMpc (upper row) and a cell at 4 pMpc (lower row) respectively. The spectra shown are a subset of all spectra stored during the calculation at several times when ionization fractions change the fastest. The quasar intrinsic spectrum (i.e., the incident spectrum on the first cell) does not vary, as is shown in the upper-left panel. After the first cell, however, the transmitted spectra are hardened at early times because the cell is initially neutral. After a thousand years, the cell is fully ionized and the transmitted spectrum becomes identical to the incident one. For the cell at 4 pMpc, the evolution is similar, except that the incident spectra also vary because the optical depth changes between the quasar and the cell and the...
ionization timescale increases from 1000 yr to \(\sim 1\) Myr. In Figure 17, we show the ionization and temperature structure of this line of sight at \(t_Q = 10\) Myr and 100 Myr, respectively. The I-front position and shape of each line are as expected.

ORCID iDs

Huanqing Chen
https://orcid.org/0000-0002-3211-9642

References

Abel, T., Anninos, P., Zhang, Y., & Norman, M. L. 1997, *NewA*, 2, 181

Bañados, E., Rauch, M., Decarli, R., et al. 2019, *ApJ*, 885, 9

Becker, G. D., Bolton, J. S., Madau, P., et al. 2015, *MNRAS*, 447, 3402

Becker, R. H., Fan, X., White, R. L., et al. 2001, *AJ*, 122, 2850

Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, *ApJ*, 762, 109

Bolton, J. S., & Haehnelt, M. G. 2007, *MNRAS*, 374, 493

Bosman, S. E. I., Fan, X., Jiang, L., et al. 2018, *MNRAS*, 479, 1055

Carilli, C. L., Wang, R., Fan, X., et al. 2010, *ApJ*, 714, 834

Cen, R. 1992, *ApJS*, 78, 341

Cen, R., & Haiman, Z. 2000, *ApJL*, 542, L75

Chen, H. 2020, *ApJ*, 893, 165

Davies, F. B., Furlanetto, S. R., & McQuinn, M. 2016, *MNRAS*, 457, 3006

Davies, F. B., Hennawi, J. F., & Eilers, A.-C. 2019, *ApJL*, 884, L19

Davies, F. B., Hennawi, J. F., & Eilers, A.-C. 2020, *MNRAS*, 493, 1330

Eilers, A.-C., Davies, F. B., Hennawi, J. F., et al. 2017, *ApJ*, 840, 24

Eilers, A.-C., Davies, F. B., & Hennawi, J. F. 2018a, *ApJ*, 864, 53

Eilers, A.-C., Hennawi, J. F., & Davies, F. B. 2018b, *ApJ*, 867, 30

Eilers, A.-C., Hennawi, J. F., & Decarli, R., et al. 2020, *ApJ*, 900, 37

Fan, X., Strauss, M. A., Becker, R. H., et al. 2006, *AJ*, 132, 117

Furlanelli, M., O’Meara, J. M., & Prochaska, J. X. 2016, *MNRAS*, 455, 4100

Furlanetto, S. R., & Stoever, S. J. 2010, *MNRAS*, 404, 1869

Gnedin, N. Y. 2014, *ApJ*, 793, 29

Gnedin, N. Y., & Abel, T. 2001, *NewA*, 6, 437

Haiman, Z., & Cen, R. 2001, in ASP Conf. Ser. 222, *The Physics of Galaxy Formation*, ed. M. Umemura & H. Susa (San Francisco, CA: ASP), 101

Harikane, Y., Laporte, N., Ellis, R. S., & Matsuoka, Y. 2020, *ApJ*, 902, 117

Iliev, I. T., Ciardi, B., Alvarez, M. A., et al. 2006, *MNRAS*, 371, 1057

Ishimoto, R., Kashikawa, N., Onoue, M., et al. 2020, *ApJ*, 903, 60

Jiang, L., Fan, X., Hines, D. C., et al. 2006, *AJ*, 132, 2127

Kakihana, Y., Ellis, R. S., Laporte, N., et al. 2018, *MNRAS*, 479, 43

Keating, L. C., Haehnelt, M. G., Cantalupo, S., & Puchwein, E. 2015, *MNRAS*, 454, 681

Khrykin, I. S., Hennawi, J. F., & Worseck, G. 2019, *MNRAS*, 484, 3897

Kravtsov, A. V. 1999, PhD thesis, New Mexico State Univ.

Kravtsov, A. V., Klypin, A., & Hoffman, Y. 2002, *ApJ*, 571, 563

Li, J., Wang, R., Cox, P., et al. 2020, *ApJ*, 900, 131

Lidz, A., McQuinn, M., Zaldarriaga, M., Hernquist, L., & Dutta, S. 2007, *ApJ*, 670, 39

Lu, T.-Y., Goto, T., Tang, J.-J., et al. 2020, *ApJ*, 893, 69

Lusso, E., Worseck, G., Hennawi, J. F., et al. 2015, *MNRAS*, 449, 4204

Madau, P., & Rees, M. J. 2000, *ApJL*, 542, L69

Martini, P. 2004, in Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Cambridge: Cambridge Univ. Press), 169

Mazzucchelli, C., Bañados, E., Venemans, B. P., et al. 2017, *ApJ*, 849, 91

McGreer, I. D., Mesinger, A., & D’Odorico, V. 2015, *MNRAS*, 447, 499

Mott, D. R., & Oran, E. S. 2001, CHEMSEQ: A solver for the stiff ordinary differential equations of chemical kinetics, Tech. Rep. NRL/MR/6400-01-8553 (Washington, DC: Naval Research Laboratory)

Oser, E. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley, CA: Univ. Science Books)

Peebles, P. J. E. 1971, Physical Cosmology (Princeton, NJ: Princeton Univ. Press)

Rudd, D. H., Zentner, A. R., & Kravtsov, A. V. 2008, *ApJ*, 672, 19

Shapiao, P. R., Iley, I. T., Alvarez, M. A., & Scannapieco, E. 2006, *ApJ*, 648, 922

Shull, J. M., & van Steenberg, M. E. 1985, *ApJ*, 298, 268

Smith, A., & Bromm, V. 2019, *ConPh*, 60, 111

Tepper-Garcia, T. 2006, *MNRAS*, 369, 2025

Theuns, T. 2020, *MNRAS*, 500, 2741

Theuns, T., Leonard, A., & Efstathiou, G., Pearce, F. R., & Thomas, P. A. 1998, *MNRAS*, 301, 478

Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, *ApJS*, 192, 9

Venemans, B. P., Bañados, E., Decarli, R., et al. 2015, *ApJL*, 801, L11

Wolfle, A. M., Gawiser, E., & Prochaska, J. X. 2005, *ARA&A*, 43, 861

Yang, J., Wang, F., Fan, X., et al. 2020, *ApJ*, 904, 26

Zahedy, F. S., Chen, H.-W., Johnson, S. D., et al. 2019, *MNRAS*, 484, 2257

Zhu, H., Avestruz, C., & Gnedin, N. Y. 2020, *ApJ*, 899, 137

Figure 17. Ionization structure and temperature structure for the test problem in the Appendix. The left panel shows the result at 10 Myr and the right at 100 Myr.