動脈硬化度（スティフネス）
菅原 順, 樽味 孝

Arterial Stiffness
Jun Sugawara and Takashi Tarumi

Keywords: aging, pulse wave velocity, pulse wave analysis, cardiovascular disease risk

はじめに
近年、「骨年齢」, 「体力年齢」など、様々な「○○年齢」という言葉を耳にする。これらの言葉は、健康に関連する生理指標の加齢変化、すなわち歴年齢（実年齢）との関係性から、それらの機能を直感的に理解しやすい「年齢」という身近な指標に置き換え、健康維持増進を啓発するためのツールととらえることができる。近年、血管年齢（血管の加齢）も一つである。著者の知る限り、「血管年齢」の学術的概念・定義ならびにその評価方法についての統一見解はないが、多くの場合、動脈硬化の関連指標を扱っていると思われる。一般的に、「動脈硬 化」と聞くと、心筋梗塞や脳梗塞の原因としての「アテ ローム性硬化（atherosclerosis）」をイメージしがちである。しかし、動脈硬化には、文字通りの「動脈壁の硬化」（arteriosclerosisもしくはarterial stiffening）というもう一つの側面がある。本稿では、動脈壁の動脈スティフネスと標記し、その生理学的意義、臨床医学的意義を概説するとともに、動脈スティフネスおよびその関連指標を測ることの意義や留意点について、予防医学および体力医学の側面から論ずる。

動脈スティフネスの臨床医学的意義
通常、大動脈や頭動脈などの中心動脈は、心収縮期に動脈壁が受動的に伸展し、心機能の低下を防ぐ。心拡張期には伸展した動脈壁が低張力を与えることで、末梢血流を維持する機能を担っている。しかし、動脈スティフネスが増大すると、心収縮期の血圧を低く抑え、左室後負荷を軽減する効果が低下する。心拡張期の血圧を高く保つことで、冠動脈の血流量を増加させ、血液を肺へと送る。このような機制により、動脈スティフネスの増大は、心機能の低下、心疾患のリスクを高める可能性がある。
動脈スティフネス指標について

動脈スティフネスおよびその関連指標は複数ある。ここでは、「血管機能の非侵襲的評価法に関するガイドライン」に掲載されている代表的な動脈スティフネスおよびその関連指標について、それらの特徴から、1）脈波伝播速度法（Pulse wave velocity: PWV）法による指標、2）脈波形解析により得られる指標、3）超音波エコー法による画像解析を用いた指標に分けて説明する。

脈波伝播速度（Pulse wave velocity: PWV）
心臓からの血液駆出により生じる脈波が伝わる速度から動脈スティフネスを評価する（速度が速いほどスティフネスは高い）。動脈系の離れた2点間における脈波伝播の遅れ時間と、その間の距離（動脈長）から速度を算出する。1本の動脈上の上流と下流で脈波を記録する方法や（Fig. 1-A）、枝分かれした支流の動脈の脈波を本流の上流における脈波として代用する方法（Fig. 1-B）がある。

欧米において中心動脈スティフネス評価のゴールドスタンダードとして認知されているのが、頸動脈-大腿動脈間脈波伝播速度（carotid-femoral pulse wave velocity: cfPWV）である。心血管疾患の発症や死亡と密接に関連することが報告されている。一方、本邦ではcfPWVに替わる簡易指標として開発された上腕-足首間脈波伝播速度（brachial-ankle pulse wave velocity: baPWV）が普及している。cfPWVと高い互換性を有し、さらにメタ解析により心血管系疾患および死亡の独立した予後予測指標であることが示されている。心臓足首血管指数（Cardio-ankle vascular index: CAVI）もbaPWV同様、上腕と足首で脈波を記録する方法であるが、心音を同時に記録し、大動脈起始部から足首までの脈波伝播速度を算出する。算出過程で血圧の影響を除外している点もCAVIの特長である。Fig. 2-AおよびFig. 2-BにbaPWVとCAVIの加齢変化特性を示す。

![Fig. 1](image1.png) Concept of pulse wave velocity measurement: (A) measurement on the single artery; (B) measurement at the different arterial pathways. [produced by authors]

![Fig. 2](image2.png) Effect of age and sex on brachial-ankle pulse wave velocity (baPWV) (A) [From Tomiyama et al.13] and cardio-ankle vascular index (CAVI) (B). [From Shirai et al.12]
脈波波形解析 心臓から血圧が駆出されることによって生じた脈波（駆出波）は動脈系全体に伝わる。その際、動脈の分岐部やインピーダンスが変化する部位で反射し、心臓方向へと戻る（反射波）①。身体各部位で観察される動脈波形は、これら駆出波と反射波の複合波である。心臓から末梢へと形状を変えてながら伝播していくが、基本的には大動脈起始部の波を反映したものと考えられ、頭動脈、上腕、手首、指尖など様々な部位で計測される動脈波形を評価することで、大動脈起始部の動脈波形を推定したり、動脈壁の特性を評価している①。

脈波増大指数（Augmentation index: AIx）は、大動脈や頭動脈の収縮期の血圧上昇中に見られる変曲点と、その後の収縮期後期ピークとの血圧差（Augmented pressure）を脈圧で標準化した指数である（Fig. 3-A）①。増大圧は、反射波の大きさと戻ってくるタイミングに依存する。それゆえ、末梢血管抵抗や心拍数など動脈スティフネス以外の因子の影響も多分に受ける。AIxは左室後負荷を反映し、心血管疾患発症リスクや生命予後予測マーカーとしての有用性が確認されている②。加齢の影響に関しては、AIxは60歳頃まで増大し、その後、頭打ちになる（Fig. 3-B）①。AIxは左室後負荷を反映し、心血管疾患発症リスクや生命予後予測マーカーとしての有用性が確認されている②。

二次微分光電式指尖脈波（Second derivative of photoplethysmogram: SDPTG）は、指尖細動脈の容積変動を記録した指尖容積脈波を二次微分して、収縮期初期陽性波（a波）、収縮初期陰性波（b波）、収縮後期再上昇波（c波）、収縮後期再下降波（d波）、拡張期初期陽性波（e波）の特徴点を得る（Fig. 4-A）。a波と他の波の波高比が加齢とともに変化することから、これらの関係性を統合した指標として、加速度脈波加齢指数（SDPTG aging index=[b+c+d+e]/a）が提案されている⑥。Fig. 4-Bに年齢とSDPTG aging indexとの関係性を示す。

画像解析 心拍動に伴う1心拍毎の動脈内径の変化およ
び。その同時期の血圧変化から、単位動脈圧変化あたりの動脈容積の変化を評価する（Fig. 5）。内径変化の計測には超音波エコー法やMRIが用いられる。単位脈圧変化あたりの絶対容積変化を示す動脈コンプライアンス（Compliance coefficient）、および単位脈圧変化あたりの相対容積変化を示す動脈伸展性（Distensibility coefficient）は動脈の拍動緩衝機能の指標であり、動脈スティフネスの逆の指標として扱われている。これらの指標を扱う際には、血圧の影響を考慮する必要がある。例えば、同じ動脈であっても血圧が高い状態では、血管壁が初めから引き延ばされた状態であるため、伸びしろが少なく伸展性は低くなる。このような血圧の影響を最小限にした指標が、βスティフネス指数（β-Stiffness index）である。加齢とともに、動脈コンプライアンスおよび伸展性は加齢とともに低下し、βスティフネス指数は増大するが、これらの加齢変化は習慣的に有酸素性運動を行うことで、抑制・改善できる。脳卒中の発症予測に関しては、cfPWVよりも頸動脈のβスティフネス指数の方が有用性が高いという報告がある。画像解析による評価は、高い計測技術が求められるとともに、解析にかかる時間が長いため、PWVや脈波波形解析に比べると汎用性は低い。

おわりに

動脈スティフネスおよびその関連指標は心血管疾患の発症リスクや死亡原因との関連性が強いことから、

Fig. 5 Concept of carotid arterial property evaluation by combination of arterial imaging (via B-mode echo, A and B) and pressure recording (via applanation tonometry, C) [produced by authors]. White arrow in the panel A indicates carotid arterial lumen diameter. Filled triangles and open triangles in the panel B indicate the carotid lumen diameters at the maximal systolic expansion (Ds) and minimal diastolic relaxation (Dd), respectively. Filled triangles and open triangles in the panel C indicate carotid arterial systolic (cSBP) and diastolic (cDBP) pressure, respectively. Averaged values of each blood pressure are used for following calculations.

Compliance coefficient = (CSAs – CSAd) / (cSBP – cDBP)
Distensibility coefficient = [(CSAs – CSAd) / CSAd] / (cSBP – cDBP)
β-Stiffness index = ln (cSBP/cDBP) / [(Ds-Dd) / Dd]
CSAs and CSAd are the cross-sectional areas at the maximal systolic expansion and minimal diastolic relaxation of the carotid artery, respectively.
それらを評価することの臨床医学的意義、予防医学的意義は高い。その点では、「血管年齢」と称される動脈スティフネスおよびその関連指標は、心血管系疾患の発症予防の意識を高めるのに有効なツールになるかもしれない。ただし、それらの測定には、血圧、食事、緊張、運動、疲労など、急性に影響を与える因子が多いことから、①十分に安静をとった後に計測する、②測定前3時間は、食事、カフェイン、たばこは控える、③日内変動があるので、反復測定する際は、時刻を同じにする、といった点に留意する必要がある。

利益相反自己申告：申告すべきものはなし

引用文献
1) Nichols WW, McDonald DA. McDonald's blood flow in arteries theoretical, experimental and clinical principles. London: Hodder Arnold, 2011.
2) Vlachopoulos C, Aznaouridis K, O'Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. *Eur Heart J* 31: 1865-1871, 2010.
3) Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. *J Am Coll Cardiol* 55: 1318-1327, 2010.
4) Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O'Rourke MF. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. *Circulation* 68: 50-58, 1983.
5) Kingwell BA, Berry KL, Cameron JD, Jennings GL, Dart AM. Arterial compliance increases after moderate-intensity cycling. *Am J Physiol* 273: H2186-2191, 1997.
6) Tanaka H, DeSouza CA, Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. *Arterioscler Thromb Vasc Biol* 18: 127-132, 1998.
7) Seals DR, Walker AE, Pierce GL, Lesniewski LA. Habitual exercise and vascular ageing. *J Physiol* 587: 5541-5549, 2009.
8) 山科 章, 苅尾七臣, 小原克彦, 佐田政隆, 菅原 順, 鈴木洋通, 高沢謙二, 冨山博史, 野出孝一, 橋本潤一郎, 東 幸仁, 藤代健太郎, 松尾 汎, 宮田哲郎, 宗像正徳, 綿田裕孝. 循環器病の診断と治療に関するガイドライン(2011-2012年度合同研究班報告)血管機能の非侵襲的評価法に関するガイドライン (JCS2013). 日本循環器学会, 2013.
9) Sugawara J, Hayashi K, Tanaka H. Arterial path length estimation on brachial-ankle pulse wave velocity: validity of height-based formulas. *J Hypertens* 32: 881-889, 2014.
10) Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, Inoguchi T, Maeda Y, Kohara K, Tabara Y, Nakamura M, Ohkubo T, Watada H, Munakata M, Ohishi M, Ito N, Nakamura M, Shoji T, Vlachopoulos C, Yamashina A. Brachial-ankle Pulse Wave Velocity: Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis. *Hypertension* 69: 1045-1052, 2017.
11) Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, Ioakeimidis N, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. *Hypertension* 60: 556-562, 2012.
12) Shirai K, Hiruta N, Song M, Kurosu T, Suzuki J, Tomaru T, Miyashita Y, Saiki A, Takahashi M, Suzuki K, Takata M. Cardio-ankle vascular index (CAVI) as a novel indicator of arterial stiffness: theory, evidence and perspectives. *J Atheroscler Thromb* 18: 924-938, 2011.
13) Tomiyama H, Yamashina A, Arai T, Hirose K, Koji Y, Chikamori T, Hori S, Yamamoto Y, Doha N, HinoHara S. Influences of age and gender on results of noninvasive brachial-ankle pulse wave velocity measurement--a survey of 12517 subjects. *Atherosclerosis* 166: 303-309, 2003.
14) Kelly R, Hayward C, Avolio A, O'Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. *Circulation* 80: 1652-1659, 1989.
15) Hayward CS, Kelly RP. Gender-related differences in the central arterial pressure waveform. *J Am Coll Cardiol* 30: 1863-1871, 1997.
16) Takazawa K, Tanaka N, Fujita M, Matsusoka O, Saiki T, Aikawa M, Tamura S, Ikuikiyama C. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. *Hypertension* 32: 365-370, 1998.
17) Moreau KL, Donato AJ, Seals DR, DeSouza CA, Tanaka H. Regular exercise, hormone replacement therapy and the age-related decline in carotid arterial compliance in healthy women. *Cardiovasc Res* 57: 861-868, 2003.
18) Hirai T, Sasayama S, Kawasaki T, Yagi S. Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. *Circulation* 80: 78-86, 1989.
19) Seals DR. Habitual exercise and the age-associated decline in large artery compliance. *Exerc Sport Sci Rev* 31: 68-72, 2003.
20) van Sloten TT, Sedaghat S, Laurent S, London GM, Pannier B, Ikram MA, Kavousi M, Mattace-Raso F, Franco OH, Boutouyrie P, Stenhoezer CDA. Carotid stiffness is associated with incident stroke: a systematic review and individual participant data meta-analysis. *J Am Coll Cardiol* 66: 2116-2125, 2015.