The $\alpha_2\delta$ Calcium Channel Subunit Accessorily and Independently Affects the Biological Function of *Ditylenchus destructor*

Xueling Chen, Mingwei An, Shan Ye, Zhuhong Yang * and Zhong Ding *

Abstract: The $\alpha_2\delta$ subunit is a high-voltage activated (HVA) calcium channel (α_1V_2 and $\alpha_2\delta$) auxiliary subunit that increases the density and function of HVA calcium channels in the plasma membrane of mammals. However, its function in plant parasitic nematodes remains unknown. In this study, we cloned the full-length cDNA sequence of the voltage-gated calcium channel (VGCC) $\alpha_2\delta$ subunit (named *DdCa*$_{\alpha_2\delta}$) in *Ditylenchus destructor*. We found that *DdCa*$_{\alpha_2\delta}$ tends to be expressed in the egg stage, followed by the J3 stage. RNA-DIG in situ hybridization experiments showed that the *DdCa*$_{\alpha_2\delta}$ subunit was expressed in the body wall, esophageal gland, uterus, post uterine, and spicules of *D. destructor*. The in vitro application of RNA interference (RNAi) affected the motility, reproduction, chemotaxis, stylet thrusting, and protein secretion of *D. destructor*. These findings reveal the independent function of the VGCC $\alpha_2\delta$ subunit in *D. destructor* as well as give a theoretical foundation for future research on plant parasitic nematode VGCC.

Keywords: *Ditylenchus destructor*; voltage-gated calcium channel; *DdCa*$_{\alpha_2\delta}$; in situ hybridization; RNA interference

1. Introduction

Intracellular Ca$^{2+}$ influx is primarily mediated by voltage-gated calcium channels (VGCC), which are widely distributed in biological cell membranes. Based on electrophysiological and pharmacological characteristics, VGCCs are classified as L-type, non-L-type, or T-type calcium channels [1]. Based on their activation properties, they are divided into high-voltage activated (HVA) calcium channels and low-voltage activated (LVA) calcium channels, with the HVA calcium channel being divided into L-type (α_1V_1) and non-L-type (α_1V_2) channels, whereas the LVA calcium channel only has T-type channels (α_1V_3) [2]. In mammals, calcium channels are found in a variety of cells, including neurons, neurosecretory cells, and muscle cells, and they play an important role in muscle contraction, hormone secretion, and neurotransmitter release. α_1V_1 and α_1V_2 channels are typically made up of a pore-forming α_1 subunit and β, $\alpha_2\delta$, and γ auxiliary subunits, whereas only an α_1 subunit has been identified in α_1V_3 channels [3–5].

Although the major biophysical and pharmacological features of these channels are determined by the α_1 subunit, their expression is also influenced by auxiliary subunits β and $\alpha_2\delta$. The β subunit is one of the major auxiliary subunits of HVA calcium channels, and four of its genes (β_1–β_4) have been cloned. The GK domain of the β subunit binds to the α-interacting domain (AID), thereby exerting its role in regulating the surface expression and gating properties of high-voltage activated calcium channels [6–8]. $\alpha_2\delta$ is another...
major auxiliary subunit of the HVA calcium channel, which increases the density of these channels in the plasma membrane, thereby enhancing their function [9,10]. Four αδ subunit genes in vertebrates have been cloned: CACNA2D1, CACNA2D2, CACNA2D3, and CACNA2D4 [9,11–13].

αδ consists of two subunits, α and δ, and both subunits are encoded by a single gene and covalently linked by disulfide bonds. Two cysteine (Cys) residues, Cys404 (located in the Von Willebrand Factor A domain (VWA domain) of δ) and Cys1047 (located within the extracellular domain of δ) in αδ-1, are involved in the formation of intermolecular disulfide bonds [14]. α is completely extracellular, but there is controversy about the transmembrane mode of δ. It was initially suggested that δ belongs to the type I transmembrane proteins, while an increasing number of findings suggest that δ may be a glycosylphosphatidylinositol (GPI)-anchored protein. Davies et al. [15] proposed that αδ-1 is a GPI-anchored protein and suggested that GPI anchoring of the αδ subunit is required for its enhanced calcium current. Similarly, both the αδ-3 and αδ-4 genes were shown to be GPI-anchored proteins in mice, with the predicted GPI-anchoring motifs being CGG or GAS [16,17]. There is no doubt that all αδ contain the VWA and Cache domains. The VWA domain contains ~200 amino acids and represents a dinucleotide binding fold with a metal ion-dependent adhesion site (MIDAS) motif, which participates in divalent cation-dependent interactions, and VWA structural domains are involved in protein–protein interactions through the MIDAS motif [18].

The MIDAS motif of αδ-1 and αδ-2 is “perfect”, and its key component is a five-residue motif with three ligand residues (D × S × S) near the N terminus of the VWA domain [19], which is also present in αδ-3 and αδ-4 [20]. Downstream of the VWA structural domain, the αδ subunit also has a bacterial chemosensory structural domain called the Cache domain [21]. The Cache domain of the αδ subunit may be involved in the transport function of the αδ subunit. αδ-1 and αδ-2 are target sites for gabapentin-like drugs [22], and it has been hypothesized that the Cache domain is associated with the binding of gabapentin drugs and with the binding of the putative endogenous ligand [23,24]. UNC-36 and TAG-180 are the αδ subunits of VGCC from Caenorhabditis elegans [25]. UNC-36 has been shown to affect the voltage dependence, kinetics, and conductance of voltage-dependent calcium currents and to play a key role in striated muscle, whereas TAG-180 does not [26]. UNC-36 also plays a central role in the excitability and the functional activity of C. elegans mechanosensory neurons [27].

The sweet potato rot nematode, Ditylenchus destructor, is a migratory endoparasitic nematode from clade 12 based on a small subunit ribosomal DNA (SSU rDNA) sequence tree [28]. Moreover, D. destructor is a polyphagous worm with a wide host range that can live on fungi and plants. It can harm a range of plants, including peanuts, carrots, and Codonopsis pilosula, in addition to its two primary hosts of sweet potato and potato [29–31]. Furthermore, D. destructor may eat a variety of fungi [32]. Ditylenchus destructor became a quarantine focus in various nations due to the massive agricultural losses it has caused.

VGCC have been well studied in mammals, but few studies have been conducted in plant parasitic nematodes. We previously identified the L-type (DdCa1D), non-L-type (DdCa1A), and T-type (DdCa1G) VGCC α1 subunit genes in D. destructor and showed that DdCa1D is expressed in the body wall muscles of D. destructor and affects its motility, whereas DdCa1A is expressed in the esophageal glands, vulva, and vas deferens of D. destructor and affects its reproduction [33]. Here, we successfully cloned the gene for the VGCC αδ subunit from D. destructor (DdCaαδ), determined its position using in situ hybridization, and characterized its biological properties and functions using RNA interference techniques. We demonstrated that silencing the DdCa1D gene affects the motility, chemotaxis, and stylet thrusting of D. destructor, and silencing the DdCa1A gene affects D. destructor’s protein secretion and reproduction. Moreover, we showed that the auxiliary subunit DdCaαδ gene contributes to these biological functions of the VGCC α1 subunit.

Consequently, the silencing of the DdCaαδ subunit gene alone also affected the motility, chemotaxis, and reproduction coefficient of D. destructor.
2. Results

2.1. Cloning and Characterization of DdCa\(_{\alpha2}\gamma\delta\)

RT-PCR was conducted using specific primers (Table 1), and PCR products were sequenced to confirm the amplification of the full-length cDNA sequence from *D. destructor*. *DdCa\(_{\alpha2}\gamma\delta\)* included a 3825 bp open reading frame (ORF), identified with the NCBI ORF finder, that encoded 1275 amino acids (GenBank accession number MW267435) with a molecular mass of 147 kDa and a pI of 6.67. *DdCa\(_{\alpha2}\gamma\delta\)* began with an ATG initiation codon following the 312-bp upstream 5' untranslated region (UTR) and ended with a TGA stop codon upstream of the 635-bp 3' UTR (Figure 1). SL1 is a guide and a widely conserved sequence present at the 5' end of the mRNA of most nematodes [34], and the presence of 5' trans-spliced leader sequences in the nematode phylum allows the use of an SL1-PCR strategy to clone full-length cDNAs from very small amounts of RNA [35]. In our study, the sequence obtained by SL1-PCR and 3' RACE has a start codon (ATG) upstream of the coding framework, a stop code (TGA) downstream, and a polyA tail at its 3' end. Therefore, we indicated that this is the complete cDNA sequence.

Table 1. Primers used in the study.

Primer	Sequence (5' to 3')	Use
SL1	GGTTTAATTACCAAGTTTGAG	Primers used for DdCa\(_{\alpha2}\gamma\delta\) cloning
5'-R1	ATGACAAATCTTTTAGGCGTTC	
5'-R2	GTGGGAATACCATAGAAGTTGAC	
D-F	AATGCCAAAAAATCGGACCTTC	
D-R	ATAGCAGGGAGATTAGAAGTG	
3' RACE outer primer	TACCGTGCGTTCACCTAGTGTATTT	
3' RACE inner primer	CGCGGATCCCTCCTACTAGTGTTCATTTAGG	
3'-F1	CCGTCCCTCTTCTCAACAAGATAG	
3'-F2	TCCCATCGTTCTAATCTCCTCTGCTA	
18S-F	CTGATAGCGATTCCTACGGA	Primers for real-time PCR analysis
18S-R	AGAAGCAGTCCACCTTTAGA	
qa2δ-F	GCCCTGAGGATGCAAAGATGAGCT	
qa2δ-R	AGCGTGGAGGTAGGCAAGCAGAA	
qL-F	GACCCTTATTGGTGAGCCA	
qL-R	AGCTGCCCTGACAGATGAGA	
qNL-F	TAGAAAAACAGCGAGACTTCC	
qNL-R	CTCTACGCTTGTCGTAGTACTC	
HindIII	CCAAGCTTGTGCGATCCCGATGATG	
EcoRI	GGAATTCCTCCATATCCGTCACCAC	
dsa2δ-F	TAATACGACTCACTATAGGGCAAGGCTTTATATCCTGGTAG	Primers for ISH analysis
dsa2δ-R	TAATACGACTCACTATAGGGCAAGGCTTTATATCCTGGTAG	
dS-L	TAATACGACTCACTATAGGGCAAGGCTTTATATCCTGGTAG	
dS-R	TAATACGACTCACTATAGGGCAAGGCTTTATATCCTGGTAG	
dS-NL-F	TAATACGACTCACTATAGGGCAAGGCTTTATATCCTGGTAG	
dS-NL-R	TAATACGACTCACTATAGGGCAAGGCTTTATATCCTGGTAG	
dsGFP-F	TAATACGACTCACTATAGGGCAAGGCTTTATATCCTGGTAG	
dsGFP-R	TAATACGACTCACTATAGGGCAAGGCTTTATATCCTGGTAG	

The underlined line indicates the restriction enzyme sites and the T7 promoter sequences.
Figure 1. Sequence of DdCa,α2δ cDNA and its deduced amino acid sequence. The start codon (ATG) and the stop codon (TGA) are indicated by boxes. The nucleic acid sequence fragment before the ATG
is the 5′UTR, and the nucleic acid sequence fragment after the TGA is the 3′UTR. The underlined region indicates the SL1 at the front of the 5′UTR and the polyA tail at the end of the 3′UTR. The asterisk (*) shows the stop codon (TGA). Orange shows the N-terminal of the VWA domain; blue and green show the VWA domain and Cache domain, respectively; the MIDAS motif is marked with a “•” symbol.

There are 22 cysteine (Cys) residues in the \textit{DdCa}_v\alpha_2\delta amino acid sequence and nine predicted N-glycosylation sites (Figure 2). These cysteine residues may be associated with the formation of disulfide bonds. The amino acid sequence of \textit{DdCa}_v\alpha_2\delta was compared with the unc-36 sequence from \textit{C. elegans} and four \alpha_2\delta sequences from humans. BLAST Protein analysis with the encoded amino acid sequences showed that \textit{DdCa}_v\alpha_2\delta has features in common with other VGCC \alpha_2\delta subunits, including two typical regions: the VWA domain and the Cache domain (Figure 3). Moreover, according to Qin et al., we also predicted the breaking point between \alpha_2 and \delta subunits in the \textit{DdCa}_v\alpha_2\delta sequence (Figure 3) [12]. VWA domains are usually about 200 residues long, and there is a MIDAS motif in each VWA domain. We found that the VWA domains here all contained a “perfect” MIDAS motif, in which all five discontinuous and co-coordinating amino acids were present (DxSxS, A/T, D) [18]. The amino acid position of the VWA domain of the \textit{DdCa}_v\alpha_2\delta sequence was present at 270–487 amino acids (Figure 1), and this domain was highly conserved when compared with the unc-36 domain, with a similarity of 81.3%. The Cache domains of \textit{DdCa}_v\alpha_2\delta, unc-36, and tag-180 were all downstream of the VWA domains. The amino acid positions of the Cache domains in the \textit{DdCav}_v\alpha_2\delta sequence was 519–602 amino acids. The MIDAS motif in the \textit{DdCa}_v\alpha_2\delta sequence was highly conserved in comparison to the unc-36 sequence. These sequences all contained five co-coordinating amino acids, including D, S, A, and D.

Figure 2. Amino acid sequence of the \textit{DdCa}_v\alpha_2\delta subunit. Blue indicates cysteine residues, red indicates N-glycosylation sites, and underlining indicates suspected GPI anchor sites.
ATG is the 5'UTR, and the nucleic acid sequence fragment after the TGA is the 3'UTR. The underlined region indicates the SL1 at the front of the 5'UTR and the polyA tail at the end of the 3'UTR. The asterisk (*) shows the stop codon (TGA). Orange shows the N-terminal of the VWA domain; blue and green show the VWA domain and Cache domain, respectively; the MIDAS motif is marked with a “•” symbol.

Figure 2. Amino acid sequence of the DdCaα2δ subunit. Blue indicates cysteine residues, red indicates N-glycosylation sites, and underlining indicates suspected GPI anchor sites.

Figure 3. Multiple alignment analysis of DdCaα2δ with other species’ Caα2δ. Blue indicates the VWA domain; green indicates the Cache domain; black indicates the α2; yellow indicates the δ; the red arrow indicates the breaking point between α2 and δ subunits. Other species’ Cavα2δ amino acid sequences from NCBI database (https://blast.ncbi.nlm.nih.gov, accessed on 15 October 2022), with the following accession numbers: human-α2δ-1 (NM_000722), human-α2δ-2 (AF042793), human-α2δ-3 (AF516696), human-α2δ-4 (AF516695), unc-36 (NM_001047386.6).

2.2. Phylogenetic Analysis of DdCaα2δ

The phylogenetic analysis was based on the deduced amino acid sequences of the α2δ subunits of D. destructor and the corresponding subunits of C. elegans and other species. The amino acid sequences were obtained from the NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 15 October 2022) and WormBase (https://parasite.wormbase.org/index.html, accessed on 15 October 2022) databases (Table 2). The phylogenetic tree shows the branches composed of vertebrate and invertebrate subunits. Particularly, the α2δ of D. destructor and the corresponding subunits of C. elegans were clustered in invertebrates, forming a different branch from vertebrates, and they were closely related to the evolutionary position of C. elegans (Figure 4). This implies that DdCaα2δ may have the same evolutionary relationship and a similar physiological function as the unc-36 gene of C. elegans.
Table 2. DdCa_{α2δ} information used for sequence alignment and phylogenetic analysis.

Species	Molecular Name/Accession Number	Identity (%)
Caenorhabditis brenneri	tag-180/EGT44808.1	22.0
Caenorhabditis elegans	unc-36/CCD66125.1	40.0
Homo sapiens	alpha-2/delta-1/NP_001353796.1	24.6
	alpha-2/delta-2/NP_001167522.1	24.3
	alpha-2/delta-3/NP_0060868.2	27.0
	alpha-2/delta-4/NP_011519343.1	26.2
Mus musculus	alpha-2/delta-1/NP_001104316.1	24.4
	alpha-2/delta-2/NP_001167518.1	24.3
	alpha-2/delta-3/NP_033915.1	25.7
	alpha-2/delta-4/NP_001028554.3	25.5
Oryctolagus cuniculus	alpha-2/delta-1/NP_001075745.1	24.9
Pristionchus pacificus	tag-180/PDM71166.1	21.9
Rattus norvegicus	alpha-2/delta-1/NP_037051.2	24.5
	alpha-2/delta-2/NP_783182.1	23.3
	alpha-2/delta-3/NP_783185.1	27.3
Sus scrofa	alpha-2/delta-1/NP_999348.1	24.5
Trichinella nativa	unc-36/KRZ54583.1	31.3
Trichinella papuae	unc-36/KRZ69354.1	34.7
Trichinella pseudospiralis	unc-36/KRZ37420.1	31.3

2.3. Developmental Expression Analysis of DdCa_{α2δ}

The expression level of DdCa_{α2δ} was assessed by RT-qPCR at different developmental stages (including egg, J2, J3, and J4). DdCa_{α2δ} was widely expressed at all developmental stages (Figure 5). Results indicated that DdCa_{α2δ} plays an important role in all stages of *D. destructor* development. In particular, the expression of DdCa_{α2δ} was significantly higher in the egg stage than in other developmental stages. In addition, the mRNA expression level of DdCa_{α2δ} in the J3 and J4 were 3.4 and 2.7 times higher than in the J2 stage, respectively.

2.4. Tissue Localization of DdCa_{α2δ}

In situ hybridization was used to detect the site of DdCa_{α2δ} gene expression in the adult stages of *D. destructor* at the mRNA level (Figure 6). The antisense-probe treated nematodes showed positive staining in the esophageal glands (Figure 6E), body wall (Figure 6F), uterus and post uterine area of females (Figure 6G), and the spicules of males (Figure 6H), whereas the sense-probe treated nematodes showed no hybridization signal (Figure 6A–D).
Figure 3. Multiple alignment analysis of DdCavα2δ with α2δ genes from other species. The phylogenetic tree was constructed from the amino acid sequences of 20 VWA structural domain-containing α2δ genes. The tree was constructed using MEGA 6.0 based on the neighbor-joining method according to the amino acid sequences. The phylogenetic tree and sequences of other species were in the NCBI database; accession numbers are shown in Table 2.

Figure 4. Phylogenetic analysis of DdCaα2δ with α2δ genes from other species. The phylogenetic tree was constructed from the amino acid sequences of 20 VWA structural domain-containing α2δ genes. The tree was constructed using MEGA 6.0 based on the neighbor-joining method according to the amino acid sequences. The phylogenetic tree and sequences of other species were in the NCBI database; accession numbers are shown in Table 2.

Figure 5. Relative transcript abundance of the DdCaα2δ gene at each developmental stage. Using the transcript levels in J2 as a reference, DdCaα2δ was significantly upregulated in other stages (J2, J3, and J4). Quantitative RT-PCR values are the mean ± standard error. Letters indicate significant differences according to Duncan’s one-way ANOVA of SPSS 21.0 Software (p < 0.05). Tissue localization analysis of DdCaα2δ was conducted. The experiments were performed three times with similar results.
whereas the transcript level of DdC were unchanged (Figure 7B). When dsDdC was significantly reduced to 67.8%, but the transcript levels of $DdCa$ significantly reduced to 67.8%, but the transcript levels of $DdCav$.

2.5. Silencing Efficiency of dsRNA Soaking

Following 24 h of dsRNA treatment, FITC was taken up by $D. destructor$. The expression levels of $DdCa1D$, $DdCa1A$, and $DdCaα2δ$ mRNA in $D. destructor$ were measured by qPCR. When $dsCaα2δ$ was fed, the transcript level of $DdCaα2δ$ was significantly reduced to 31.4%, whereas the transcript levels of $DdCa1D$ and $DdCa1A$ were unchanged relative to the control (Figure 7A). When $dsCa1D$ was fed, the transcript level of $DdCa1D$ was significantly reduced to 67.8%, but the transcript levels of $DdCa1A$ and $DdCaα2δ$ were unchanged (Figure 7B). When $dsCaα2δ$ and $dsCa1D$ were fed simultaneously, the transcript levels of $DdCaα2δ$ and $DdCa1D$ decreased to 45.7% and 67.4%, respectively, whereas the transcript level of $DdCa1A$ was unchanged (Figure 7D). When $dsCa1A$ was fed, the transcript level of $DdCa1A$ decreased to 44.7%, whereas there was no change in the transcript levels of $DdCa1D$ and $DdCaα2δ$ (Figure 7C). When $dsCaα2δ$ and $dsCa1A$ were fed simultaneously, the transcript levels of $DdCaα2δ$ and $DdCa1A$ were decreased to 41.2% and 33.3%, respectively, and the transcript level $DdCa1D$ was unchanged (Figure 7E).

The above results showed that, when the dsRNA for each gene was fed, this led to a significant specific partial knock down of the target gene, indicating that our RNAi approach works. Furthermore, silencing of the $DdCaα2δ$ subunit gene did not lead to the downregulation of the transcript levels of the $DdCa1D$ and $DdCa1A$ subunit genes. Silencing of the $DdCa1D$ or $DdCa1A$ subunits also did not lead to the downregulation of the $DdCaα2δ$ subunit gene at the transcript level, indicating that the expression of $DdCaα2δ$ does not affect the transcription of the $DdCa1D$ and $DdCa1A$ subunits. Thus, it
is presumed that the $\alpha_2\delta$ and HVA α_1 subunits do not appear to influence each other’s mRNA expression levels.

Figure 7. Effect of different dsRNA soaking solutions on the expression level of $DdCa1D$, $DdCa1A$, and $DdCa_{\alpha2\delta}$ genes. Control nematodes were soaked in the solution containing non-target GFP dsRNA. (A) Nematodes treated with $DdCa_{\alpha2\delta}$ dsRNA. (B) Nematodes treated with $DdCa1D$ dsRNA. (C) Nematodes treated with $DdCa1A$ dsRNA. (D) Nematodes treated with $DdCa_{\alpha2\delta}$ and $DdCa1D$ dsRNA. (E) Nematodes treated with $DdCa_{\alpha2\delta}$ and $DdCa1A$ dsRNA. After 24 h of dsRNA soaking, mRNA was extracted from $D. destructor$ samples and then subjected to qRT-PCR analysis. Asterisks indicate significant differences based on Student’s t test, ** $p < 0.01$, ns indicates no significant difference. The experiments were performed three times with similar results.
2.6. Phenotypic Analysis of DdCa1D, DdCa1A, and DdCa2δα2δ Genes after Knockout

2.6.1. Motility Assay

Results of the motility assay are shown in Figure 8. After washing dsRNA for 6 h, when dsGFP was fed, its passage rate was 33.7%. The sand column passage rates of other target dsRNA genes were significantly downregulated compared with dsGFP treatment. When dsCa2δα2δ was fed, its passage rate was 25.3%. When dsCa1D was fed, its passage rate was 23.7%. When dsCa2δα2δ and dsCa1D were fed simultaneously, the passage rate was 19.7%. When dsCa1A was fed, its passage rate (28.3%) was higher than that of dsCa1D. When dsCa2δα2δ and dsCa1A were fed simultaneously, the passage rate (25.7%) was higher than that of dsCa2δα2δ + dsCa1D. After washing dsRNA for 24 h, the sand column passage rate of *D. destructor* in all treatments increased significantly, but there were still significant differences compared to that observed in the dsGFP treatment.

Figure 8. Effect of dsRNA soaking on the motility of *D. destructor*. One hundred J2-J3 worms treated with dsRNA were added to the sand column, and the number of worms passing through the sand column was counted at 6 h and 24 h, respectively, to calculate the migration rating. Each column represents the mean ± standard error of three replicates. Different letters indicate significant differences at *p* < 0.05 by Duncan’s multiple range test. The experiments were performed three times with similar results. The passage rate of dsGFP treatment was 54.3%. When dsCa2δα2δ was fed, the passage rate of *D. destructor* was 44.7%, and the passage rate was 42.0% when dsCa1D was fed. In addition, the nematode passage rate was 41.0% when dsCa2δα2δ and dsCa1D were fed simultaneously. The passage rate was 46.7% for the nematodes fed dsCa1A and 48% for nematodes fed both dsCa2δα2δ and dsCa1A. The above results indicated that the effect of RNA interference diminished the motility of nematodes, and this decrease in motility recovered with time. Additionally, results indicate that both L-type and non-L-type VGCC affect the motility of *D. destructor*, and the Ca2δα2δ subunit affects *D. destructor* locomotion. The Ca2δα2δ subunit might play an auxiliary role in the locomotion of *D. destructor* that is mediated by L-type and non-L-type VGCCs.

2.6.2. Chemotaxis Assay

In order to detect changes in *D. destructor* chemotaxis to sweet potato after silencing the DdCa2δα2δ subunit gene, the number of nematodes attracted to sweet potato blocks placed on 1% agar for 36 h was counted separately. The results are shown in Figure 9A. The attraction rate of the dsGFP treatment was 22.5%. Compared with the dsGFP treatment, the nematode attraction rates of the other target gene dsRNA treatments were decreased.
to various degrees. When dsCa1D was fed, the attraction rate of *D. destructor* was 7.3%. When dsCa α2δ was fed, the attraction rate was 12.0%. When dsCa α2δ and dsCa1D were fed simultaneously, the attraction rate was only 5.7%. The attraction rate was 12.7% when dsCa1A was fed and 9.0% for nematodes fed both dsCa α2δ and dsCa1A. The co-silencing of *DdCa1D* or *DdCa1A* and *DdCa α2δ* subunit genes also affected nematode chemotaxis, with the effect of dsCa α2δ + dsCa1D treatment being greater. This indicates that both L-type and non-L-type VGCC affect the chemotaxis of *D. destructor*, and the Ca α2δ subunit has an important auxiliary role in L-type and non-L-type VGCC-mediated nematode chemotaxis. The Ca α2δ subunit also had an effect on the chemotaxis of *D. destructor*.

Figure 9. Effect of dsRNA soaking on the phenotype of *D. destructor*. (A) Effect of dsRNA soaking on the chemotaxis of *D. destructor*. (B) Effect of dsRNA soaking on the stylet thrusting of *D. destructor*. (C) Effect of dsRNA soaking on secreted proteins of *D. destructor*. (D) Effect of dsRNA soaking on the reproduction of *D. destructor*. The worms treated with clear water were set as the control. Different letters indicate significant differences at *p* < 0.05 by Duncan’s multiple range test. The experiments were performed three times with similar results.

2.6.3. Stylet Thrusting Assay

To assess the effect of HVA α1 and α2δ subunits on nematode stylet thrusting, nematodes were stimulated with serotonin, and the number of stylets thrusting was counted over a one-minute period. It is evident from Figure 9B that the number of stylets thrusting following dsGFP treatment was 51.7 times/min. The number of stylets thrusting in dsCa α2δ, dsCa1A, and dsCa α2δ + dsCa1A treatments were not significantly different from that of dsGFP treatment: dsCa α2δ treatment nematodes had 49.7 stylets thrusting in one minute, dsCa1A treatment nematodes had 42.0 stylets thrusting, and dsCa α2δ + dsCa1A treatment nematodes had 41.0 stylets thrusting. The dsCa1D and dsCa α2δ + dsCa1D treatment nematodes showed significant differences in the number of stylets thrusting compared to that observed in the dsGFP treatment. The number of nematode stylets thrusting was 33.0 times/min in the dsCa1D treatment, and 27.3 times/min in the dsCa α2δ + dsCa1D treatment. These results indicate that the silencing of the *DdCa1D* subunit gene alone affects the stylets thrusting of *D. destructor*, and the co-silencing of the *DdCa1D* and *DdCa α2δ* subunit genes increases the effect of L-type VGCCs on the function of stylets thrusting. However, the difference between dsCa1D and dsCa α2δ + dsCa1D treatments was not
significant. This indicates that L-type VGCCs affect the stylet thrusting function of the potato decay stem nematode, and non-L-type VGCCs have no effect on the stylet thrusting function of the potato decay stem nematode. Consequently, the auxiliary subunit Ca\textsubscript{\(\alpha_2\delta\)} has an important auxiliary effect on L-type VGCC-mediated stylet thrusting in \(D. destructor\), but non-L-type VGCCs have no direct effect on the stylet thrusting function of \(D. destructor\).

2.6.4. Protein Secretion Assay

Secreted proteins from nematodes were detected after 16 h of 0.1% resorcinol treatment. As shown in Figure 9C, the nematode secretory protein content in the dsGFP treatment was 20,222.22 \(\mu g/mL\). When dsCa\textsubscript{\(\alpha_2\delta\)} and dsCa1D were fed, respectively, the protein content of \(D. destructor\) was not significantly different compared to that of the dsGFP treatment, which were 20,042.22 \(\mu g/mL\) and 20,004.44 \(\mu g/mL\), respectively. Similarly, the protein content of \(D. destructor\) was 20.102 mg/mL and was not significantly different compared to that in the dsGFP treatment when dsCa\textsubscript{\(\alpha_2\delta\)} and dsCa1D were fed simultaneously. However, the protein content was significantly downregulated when dsCa1A or dsCa\textsubscript{\(\alpha_2\delta\)} + dsCa1A were fed, resulting in a protein secretion content of 19,740.00 \(\mu g/mL\) and 19,664.44 \(\mu g/mL\), respectively. These results indicate that silencing the DdCa1A subunit gene alone affects protein secretion in potato rot stem nematodes and that co-silencing the DdCa1A and DdCa\textsubscript{\(\alpha_2\delta\)} subunits increases the effect of non-L-type VGCCs on the protein secretion function of \(D. destructor\). This indicates that L-type VGCCs have no effect on protein secretion function, but non-L-type VGCCs affect the protein secretion function of \(D. destructor\). The Ca\textsubscript{\(\alpha_2\delta\)} auxiliary subunit has an important auxiliary effect on nematode protein secretion mediated by non-L-type VGCCs, but it has no effect on the protein secretion function of \(D. destructor\).

2.6.5. Reproduction Assay

The reproduction rate was significantly reduced 25 \(d\) after DdCa1D, DdCa1A, and DdCa\textsubscript{\(\alpha_2\delta\)} were silenced. As shown in Figure 9D, the reproduction coefficient of \(D. destructor\) was 62.3 in the dsGFP treatment. The reproduction coefficients were significantly reduced 25 \(d\) after DdCa1D, DdCa1A, and DdCa\textsubscript{\(\alpha_2\delta\)} were silenced. The reproduction coefficient was 35.2 for the dsCa\textsubscript{\(\alpha_2\delta\)} treatment, 32.4 for the dsCa1D treatment, and 31.5 for the dsCa\textsubscript{\(\alpha_2\delta\)} + dsCa1D treatment. When dsCa1A was fed, the reproduction coefficient was 22.2, and the reproduction coefficient was 17.2 when dsCa\textsubscript{\(\alpha_2\delta\)} and dsCa1A were both fed. The above results indicate that the silencing of DdCa1D, DdCa1A, and DdCa\textsubscript{\(\alpha_2\delta\)} subunit genes, respectively, all affected the reproduction coefficient of potato rot stem nematodes, and the silencing of the DdCa1A subunit gene had the greatest effect on the reproduction coefficient of nematodes. Co-silencing DdCa1D or DdCa1A with DdCa\textsubscript{\(\alpha_2\delta\)} subunit genes further reduced the reproduction coefficient of \(D. destructor\), which was even lower in the dsCa\textsubscript{\(\alpha_2\delta\)} + dsCa1A treatment. These data indicate that both L-type and non-L-type VGCCs affect the reproduction of \(D. destructor\), and the Ca\textsubscript{\(\alpha_2\delta\)} auxiliary subunit has an important auxiliary role in non-L-type VGCC-mediated nematode reproduction. The Ca\textsubscript{\(\alpha_2\delta\)} subunit also has an effect on the reproduction of nematodes. Among the Ca\textsubscript{\(\alpha_2\delta\)} subunits, non-L type VGCCs had the greatest effect on the reproduction of \(D. destructor\).

3. Discussion

In mammals and insects, voltage-gated sodium channels (VGSCs) play an important role in maintaining cellular excitability and normal physiological functions, making them important targets for a variety of neurotoxins [36]. However, VGSCs have not been found in nematodes [37], whose neuronal activity is thought to be related to VGCCs. VGCCs regulate a number of physiological functions, including neuronal excitability, transmitter release, and muscle contraction and are mainly composed of several subunits, such as \(\alpha_1\), \(\beta\), \(\alpha_2\delta\) with \(\gamma\) [38]. In our study, we cloned and characterized a VGCC \(\alpha_2\delta\) subunit from \(D. destructor\), named DdCa\textsubscript{\(\alpha_2\delta\)}. \(\alpha_2\delta\) is a highly glycosylated extracellular protein containing a VWA domain that is normally found in extracellular matrix proteins and
integrin receptors [39]. Therefore, it is highly likely that the interaction between $\alpha_2\delta$ and α_1 occurs extracellularly. The amino acid sequence deduced from the $DdCa_{\alpha_2\delta}$ cDNA sequence has a VWA domain and a MIDAS motif, and the domain and motif are also present in the unc-36 gene of $C. elegans$ [19]. Thus, we tentatively defined $DdCa_{\alpha_2\delta}$ as the VGCC auxiliary subunit of $D. destructor$. The analysis of the protein amino acid sequence also revealed that there was no GPI anchor site, “CGG” or “GAS”, as found in mammals, but a similar “GCS” sequence was found at the 903–905 amino acid position (underlined part of Figure 2). Therefore, further validation of the $DdCa_{\alpha_2\delta}$ structure that spans the membrane remains to be conducted.

Four $\alpha_2\delta$ subunits ($\alpha_2\delta$-1, $\alpha_2\delta$-2, $\alpha_2\delta$-3, and $\alpha_2\delta$-4) have been identified in mammals, and Dolphin et al. showed that they are expressed in skeletal muscle, neurons, the brain, and the testis [9,20]. Two VGCC $\alpha_2\delta$ subunits (UNC-36 and TAG-180) were identified in $C. elegans$ [25]. It was found that UNC-36 was expressed in the body wall, vulva, and pharynx muscles of $C. elegans$ [27]. In a further study, UNC-36 was also shown to be expressed in muscle and motor neurons and co-regulated with EGL-19 (L-type α_1) in $C. elegans$ body muscles [26,27]. Ye et al. cloned three VGCC α_1 subunit genes in $D. destructor$, $DdCa_{1D}$, $DdCa_{1A}$, and $DdCa_{1G}$, and found that they play a role in modulating locomotion, feeding, and reproduction, respectively [33]. Recently, we identified the $DdCa_{\alpha_1\beta}$ subunit of $D. destructor$ and showed that it has a complementary role in the biological functions of the $DdCa_{1D}$ and $DdCa_{1A}$ subunits [40].

In the present study, $DdCa_{\alpha_2\delta}$ was found to be expressed in the esophageal glands, body wall, uterus, and post uterine tissue of $D. destructor$, along with the spicules. This is highly consistent with studies on $\alpha_2\delta$ subunits in mammals and in $C. elegans$. Furthermore, we also showed that silencing the $DdCa_{1D}$, $DdCa_{1A}$, and $DdCa_{\alpha_2\delta}$ subunit genes, respectively, significantly reduced the nematode passage rate in sand columns and the attraction rate of $D. destructor$, with lower passage and attraction rates when the $DdCa_{1D}$ subunit gene was silenced alone. In addition, the passage and attraction rates were lowest when $DdCa_{\alpha_2\delta}$ was co-silenced with the $DdCa_{1D}$ subunit, but the rates were not significantly different from those observed with $DdCa_{1D}$ subunit gene silencing alone. The results showed that silencing of the $DdCa_{1D}$ subunit gene affected the stylet thrusting of $D. destructor$, and the co-silencing of the $DdCa_{1D}$ and $DdCa_{\alpha_2\delta}$ subunit genes increased the effect of L-type VGCCs on the stylet thrusting of nematodes, but the difference was not significant.

By examining the protein content in the supernatant of $D. destructor$, we found that silencing the $DdCa_{1A}$ subunit gene reduced the nematode’s secretory protein content, and co-silencing of $DdCa_{\alpha_2\delta}$ with the $DdCa_{1A}$ subunit gene increased the effect of non-L-type VGCCs on the nematode’s secretory protein function. Interestingly, we found some differences in secretory protein content when $DdCa_{\alpha_2\delta}$ or $DdCa_{1A}$ were co-silenced with the $DdCa_{1A}$ subunit gene [40]. This may be due to the fact that the Ca_{α_1} and $Ca_{\alpha_2\delta}$ auxiliary subunits have different affinities for the HVA Ca_{α_1} subunit, thus causing a difference in the auxiliary effect on the α_1 subunit. The binding of the Ca_{α_1} to Ca_{α_1} subunits occurs at a high affinity action site [41], while the affinities between Ca_{α_1} and $Ca_{\alpha_2\delta}$, however, appear rather weak [42]. We also found that the silencing of $DdCa_{1D}$, $DdCa_{1A}$, and $DdCa_{\alpha_2\delta}$ subunit genes, respectively, all affected the reproduction coefficient of $D. destructor$, and the silencing of the $DdCa_{1A}$ subunit gene had the greatest effect on the reproduction coefficient. Co-silencing of $DdCa_{1D}$ or $DdCa_{1A}$ and $DdCa_{\alpha_2\delta}$ subunit genes further reduced the reproduction coefficient, whereas the reproduction coefficient of $dsCa_{\alpha_2\delta}$ + $dsCa_{1A}$ treated nematodes was even lower.

In this study, we found that $DdCa_{\alpha_2\delta}$ was expressed in the uterus, post uterine tissue, and spicules. $DdCa_{1A}$ was also expressed in the vulva and vas deferens [33]. Therefore, we conclude that $DdCa_{1A}$ plays a key role in the reproduction of $D. destructor$ along with $DdCa_{\alpha_2\delta}$. In the future, additional studies on the phenotypic effects of transgenic fungi on $D. destructor$ should be conducted. This will provide a theoretical basis for control strategies against $D. destructor$.

4. Materials and Methods

4.1. Nematode

Ditylenchus destructor was isolated from infested sweet potatoes in Hebei, China, and was preserved in the storage roots of sweet potatoes. Sweet potatoes were washed with clean water, sterilized with 1% NaClO for 10 min, dried, and treated with UV light for 30 min. Approximately 1000 mixed stage *D. destructor* were inoculated into sweet potatoes by digging holes with a sterile hole punch, after which *D. destructor* were sealed in the sweet potato with paraffin. Inoculated sweet potatoes were incubated at 25°C for 25–30 d in the dark, and nematodes in the mixed stage were collected using the modified Baermann method [43]. Nematode eggs were screened by density-gradient centrifugation with a 1500-mesh sieve [44]. Nematodes at different developmental stages were obtained at 1-week intervals.

4.2. Cloning of the DdCa$_{\alpha_2\delta}$ Subunit

Total RNA was extracted from *D. destructor* using Trizol Reagent (Sangon Biotech Co., Ltd., Shanghai, China). RNA quality and concentration were determined with an ultra-micro spectrophotometer (Thermo, Shanghai, China), and RNA integrity was assessed using 1% gel electrophoresis. The first strand of cDNA was synthesized using the PrimeScript™ III First-Strand Synthesis System (Invitrogen, Carlsbad, USA) for RT-PCR. The DdCa$_{\alpha_2\delta}$ gene putative sequence was obtained from the WormBase database (https://parasite.wormbase.org/index.html, accessed on 15 October 2022) by comparing WormBase database genes with the *C. elegans* unc-36 gene obtained from the National Center for Biotechnology Information (NCBI) database. First, to obtain the full length DdCa$_{\alpha_2\delta}$ subunit coding region sequence, PCR was performed using gene-specific primers (D-F, D-R) (Table 1). PCR was conducted using a standard procedure in a 25-µL volume that included 2.5 µL 10× Ex Taq Buffer (TaKaRa, Japan), 2 µL dNTP Mixture (TaKaRa), 1 µL cDNA template, 1 µL of each primer, 0.5 µL of EX Taq polymerase (TaKaRa), and 17 µL of ddH$_2$O. PCR conditions included an initial denaturation step at 94°C for 5 min, followed by 35 cycles at 94°C for 30 s, 55°C for 30 s, 72°C for 4 min, and a final step for 7 min at 72°C. PCR products were purified using an agarose gel recovery kit (Trans, Beijing, China). The purified fragments were cloned into pMD™ 19-T vectors (TaKaRa,) and transformed into *E. coli* DH5α competent cells (Tiangen, Beijing, China). Three positive clones were randomly selected for bidirectional sequencing through the commercial service of the Sangon Biotech Co., Ltd. To obtain the length of the DdCa$_{\alpha_2\delta}$ subunit with its 5’-noncoding region sequence, PCR was performed using a spliced leader sequence, SL1, and a gene-specific primer (5′-R1, 5′-R2) (Table 1). Finally, the first strand of cDNA with the 3′-noncoding region was synthesized using the 3′ full RACE Core Set with PrimerScript™RTase (TaKaRa) with the primers listed in Table 1.

4.3. Gene Characterization and Phylogenetic Analysis

Three overlapping fragments were spliced using DNAMAN software (DNAMAN 9.1; Lynnon BioSoft, Canada) to generate the full-length cDNA for the DdCa$_{\alpha_2\delta}$ subunit, and the amino acid sequence was deduced. The DdCa$_{\alpha_2\delta}$ conserved structural domains were predicted by the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 15 October 2022) and were mapped using IBS 1.0. A phylogenetic tree of the DdCa$_{\alpha_2\delta}$ subunit was constructed using the mega 6.0 neighbor joining method [45].

4.4. Stage-Specific Expression of DdCa$_{\alpha_2\delta}$

To analyze the expression of the DdCa$_{\alpha_2\delta}$ subunit at each developmental stage in *D. destructor*, mRNA was extracted from approximately 1000 worms using the Dynabeads™ mRNA DIRECT™ Kit (Invitrogen). Additionally, cDNA was synthesized from mRNA using reverse transcription kits, according to the manufacturer’s instructions. Primers were designed (Table 1), and SYBR Green Real-time PCR was performed using the 18S rRNA as an internal reference. The qPCR data were analyzed using the CFX Manager software.
and the Bio-Rad $2^{-\Delta\Delta Ct}$ method to calculate relative gene expression [46]. All experiments were repeated three times, and averages were calculated.

4.5. Tissue Localization of DdCa$_{v}$$\alpha_{2}\delta$

In situ hybridization was performed following a previously published method with modifications [47]. Fragments used as probes were amplified from the full-length cDNA from D. destructor using HindIIIIF and EcoRI R primers (Table 1). DIG-labeled forward and antisense probes were synthesized using the DIG RNA Labeling Kit (Roche, Basel, Germany). Approximately 10,000 mixed-stage D. destructor specimens were fixed in 4% Paraformaldehyde Fix Solution (Sangon Biotech Co., Ltd.) for 18 h at 4 °C, followed by fixation for 4 h at room temperature. Ditylenchus destructor were then cut into 2–5 segments and treated with 0.5 mg/mL proteinase K at room temperature for 1 h. Hybridization was performed at 50 °C for 22 h, and they were treated with an antibody solution at 37 °C for 2 h. Samples were treated with chromogenic solution (Sangon Biotech Co., Ltd.) overnight and then observed and photographed under a microscope (Motic, Xiamen, China).

4.6. dsRNA Synthesis and Soaking of D. destructor

Total RNA was extracted from D. destructor using the Trizol method, first strand cDNA was synthesized, and dsRNA was synthesized using gene-specific primers containing the T7 polymerase promoter sequence (Table 1) and a MEGAscript™ RNAi Kit (Invitrogen). The quality and concentration of dsRNA were assessed using 1% agarose gel electrophoresis and a Thermo ultra-micro spectrophotometer, respectively. Based on the findings of P. E. Urwin, 1 mg/mL FITC solution was used as an indicator of dsRNA entry into D. destructor [48]. About 10,000 J3 worms were collected and immersed in a solution containing dsRNA and 3 mg/mL spermidine (Sigma, Shanghai, China), 50 mM octopamine (Sigma), and 5% gelatin. The worms were incubated in the solution with shaking at 120 rpm for 24 h at 25 °C in the dark. In addition, J3 worms that were incubated in green fluorescent protein (GFP) dsRNA served as the control. After 24 h of soaking in the solution, D. destructor specimens were washed three times with DEPC-water and immediately stored at −80 °C for later detection of gene expression or were collected into 1.5-mL centrifuge tubes for later detection of motility, chemotaxis, stylet thrusting, protein secretion, and reproduction coefficient.

4.7. Gene Expression Analysis after Gene Knockdown

To determine levels of DdCa1D, DdCa1A, and DdCa$_{v}$$\alpha_{2}\delta$ gene transcription following gene knockdown, approximately 1000 nematodes were collected after soaking in dsRNA for 24 h. mRNA was extracted, and cDNA was synthesized as described above. Specific qPCR primers were designed using NCBI, and 18S rRNA was used as the internal control for all qPCR assays (Table 1). The qPCR reaction solution was a 20-µL mixture that included 1 µL cDNA template, 10 µL SYBR Green Premix Pro Taq HS qPCR mix (Accurate Biology, Changsha, China), 1 µL of each primer (0.2 mM), and 7 µL ddH$_2$O. Quantitative analysis was performed using the $2^{-\Delta\Delta Ct}$ method, as described above.

4.8. Phenotypic Analysis after Gene Knockout

Post RNAi phenotype analysis was performed by assessing mobility, chemotaxis, stylet thrusting, protein secretion, and reproduction. Ditylenchus destructor mobility after the knockdown of DdCa1D, DdCa1A, and DdCa$_{v}$$\alpha_{2}\delta$ was assayed according to the procedure used by Kimber et al. [49]. One hundred treated J2s and control J2s were transferred into PVC tubes filled with moist sand, and the bottom of the PVC tubes were wrapped with 150-mesh nylon yarn. PVC tubes were transferred to a petri dish (50 mm) filled with 20 mL of ddH$_2$O to cover the bottom of the sand column. Columns and petri dishes were kept in the dark at 25 °C. The number of worms passing through the sand column into the petri dish was counted at 6 h and 24 h, and the migration rating of the sand column was calculated. Migration rate (Mr) = Pp (passing population of nematodes)/100.
To determine whether chemotaxis was affected, we conducted experiments with 1-cm sweet potato blocks. Briefly, the blocks were placed on 1% agar in 90 mm petri dishes, 3 cm away from 200 J2s. Petri dishes were sealed with cling film and placed at 25 °C for 36 h. After incubation, the number of nematodes within 2 cm of the blocks was counted.

Worms were analyzed for stylet thrusting as previously reported by McClure et al., with slight modifications [50]. The concentrated suspension of aliquots (2 µL), containing approximately 50 J2 D. destructor specimens, was treated with 20 µL of 5 mM serotonin creatinine sulfate (Sigma) for 20 min, and 10 randomly selected J2s were observed for the frequency of stylet thrusting over a 1 min period. The number of twitches for each J2 in 60 s was calculated.

An assay using 0.1% resorcinol was developed to assess protein secretion in nematodes. Two thousand J2 nematodes from each treatment and control group were concentrated to 100 µL, an equal volume of 0.2% resorcinol was added, and specimens were incubated for 16 h at 25 °C. Lastly, the supernatant was aspirated, and the protein content was determined using a Modified BCA Protein Assay Kit (Sangon).

To assess whether the reproduction of nematodes treated with dsRNA was affected, 100 nematodes from each treatment group were inoculated into PDA medium filled with Botrytis cinerea. Then, 25 d after incubation at 25 °C, the total number of nematodes was counted, and the reproduction coefficient was calculated as the ratio of the final number of nematodes to the initial number of nematodes. Each assay experiment had three biological replicates and three technical replicates. Data were analyzed by one-way analysis of variance (ANOVA) in SPSS. Differences between treatments were tested using Duncan’s multiple range test (DMRT) with F test (DMRT) with \(p < 0.05 \) [51]. The significant difference letter marking method first ranked all the means from largest to smallest and then marked the largest mean with a; the average was compared with the following averages. If the difference was not significant \((p > 0.05) \), the letter a was marked, and if the difference was significant \((p < 0.05) \), the letter b was marked. If the mean was significantly \((p < 0.05) \) less than the mean of the group marked by letter b, it was marked by letter c.

5. Conclusions

This study identified the VGCC \(\alpha_2\delta \) subunit in D. destructor and analyzed its transcriptional levels at different developmental stages and its tissue localization. In this study, silencing of the HVA \(\alpha_1 \) and \(\alpha_2\delta \) subunits in D. destructor was achieved simultaneously using multi-targeted dsRNA soaking. The function of DdC\(\alpha_1D \), as well as DdC\(\alpha_1A \), was further validated, and the auxiliary role of DdCa\(\alpha_2\delta \) was demonstrated, enhancing our understanding of VGCCs in plant parasitic nematodes.

Author Contributions: Conception of the work: Z.D. Collection of data: X.C., M.A. and Z.Y. Analysis of data: Z.D., S.Y., X.C. and M.A. Writing of manuscript: X.C., Z.Y. and Z.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 31640063; No. 31872038).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dolphin, A.C. A short history of voltage-gated calcium channels. Br. J. Pharmacol. 2006, 147, 556–562. [CrossRef] [PubMed]
2. Dolphin, A.C. Voltage-gated calcium channels: Their discovery, function and importance as drug targets. Brain Neurosci. Adv. 2018, 2, 1–8. [CrossRef] [PubMed]
3. Mangoni, M.E.; Couette, B.; Bourinet, E.; Platzer, J.; Reimer, D.; Striessnig, J.; Nargeot, J. Functional role of L-type Cav1.3 Ca\(^{2+}\) channels in cardiac pacemaker activity. Proc. Natl. Acad. Sci. USA 2003, 100, 5543–5548. [CrossRef]
4. Guzman, J.N.; Sanchez-Padilla, J.; Chan, C.S.; Surmeier, D.J. Robust pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 2009, 29, 11011–11019. [CrossRef]
5. Stiressnig, J.; Pinnenga, A.; Kaur, G.; Bock, G.; Tuluç, P. L-type Ca²⁺ channels in heart and brain. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2014, 3, 15–38. [CrossRef]

6. Chen, Y.H.; Li, M.H.; Zhang, Y.; He, L.L.; Yamada, Y.; Fitzmaurice, A.; Shen, Y.; Zhang, H.; Tong, L.; Yang, J. Structural basis of the α₁-β subunit interaction of voltage-gated Ca²⁺ channels. Nature 2004, 429, 675–680. [CrossRef] [PubMed]
7. Opatowsky, Y.; Chen, C.C.; Campbell, K.P.; Hirsch, J.A. Structural analysis of the voltage-dependent Calcium Channel β subunit functional core and its complex with the α₁ interaction domain. Neuron 2004, 42, 387–399. [CrossRef]
8. Buraei, Z.; Yang, J. Structure and function of the β subunit of voltage-gated Ca²⁺ channels. Biochim. Biophys. Acta 2013, 1828, 1530–1540. [CrossRef] [PubMed]
9. Barclay, J.; Balaguero, N.; Mione, M.; Ackerman, S.L.; Letts, V.A.; Brodbeck, J.; Canti, C.; Meir, A.; Page, K.M.; Kusumi, K.; et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J. Neurosci. 2001, 21, 6095–6104. [CrossRef]
10. Brodbeck, J.; Davies, A.; Courtney, J.M.; Meir, A.; Balaguero, N.; Canti, C.; Moss, F.J.; Page, K.M.; Pratt, W.S.; Hunt, S.P.; et al. The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated alpha 2 delta-2 protein with abnormal function. J. Biol. Chem. 2002, 277, 7684–7693. [CrossRef] [PubMed]
11. Klugbauer, N.; Lacinová, L.; Marais, E.; Hobom, M.; Hofmann, F. Molecular diversity of the calcium channel alpha2delta subunit. J. Neurosci. 1999, 19, 684–691. [CrossRef] [PubMed]
12. Qin, N.; Yagel, S.; Momplaisir, M.L.; Codd, E.E.; D’Andrea, M.R. Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit. Mol. Pharmacol. 2002, 62, 485–496. [CrossRef] [PubMed]
13. Wycisk, K.A.; Zeitz, C.; Feil, S.; Wittmer, M.; Forster, U.; Neidhardt, J.; Wissinger, B.; Zrenner, E.; Wilke, R.; Kohl, S.; et al. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am. J. Hum. Genet. 2006, 79, 973–977. [CrossRef] [PubMed]
14. Calderón-Rivera, A.; Andrade, A.; Hernández-Hernández, O.; González-Ramírez, R.; Sandoval, A.; Rivera, M.; Gomora, J.C.; Félix, R. Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca²⁺ channel α₂δ-1 auxiliary subunit. Cell Calcium 2012, 51, 22–30. [CrossRef]
15. Davies, A.; Kadurin, I.; Alvarez-Laviada, A.; Douglas, L.; Nieto-Rostro, M.; Bauer, C.S.; Pratt, W.S.; Dolphin, A.C. The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc. Natl. Acad. Sci. USA 2010, 107, 1654–1659. [CrossRef]
16. Pierleoni, A.; Martelli, P.L.; Casadio, R. PredGPI: A GPI-anchor predictor. BMC Bioinform. 2008, 9, 1–11. [CrossRef]
17. Niklaus, F.; Lacinová, L.; Marais, E.; Hobom, M.; Hofmann, F. Molecular diversity of the calcium channel alpha2delta subunit. J. Neurosci. 1999, 19, 684–691. [CrossRef] [PubMed]
18. Anantharaman, V.; Aravind, L. Cache—A signaling domain common to animal Ca⁡ channel subunit genes on calcium influx in cultured C. elegans striated muscle. Proc. Natl. Acad. Sci. USA 1997, 94, 833. [CrossRef]
19. Frøkjær-Jensen, C.; Couchoux, H.; Jospin, M. The α1 Subunit EGL-19, the α2δ Subunit UNC-36, and the δ Subunit CCB-1 underlie voltage-dependent calcium currents in C. elegans striated muscle. J. Biol. Chem. 2011, 286, 36180–36187. [CrossRef]
20. Dusic, Y.; Lee, S.K.; Ko, E.Y.; Lee, H.; Kang, H.; Lee, C.; Kang, J.; Kim, H.; Park, J.; Lee, S.; et al. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of alpha2delta subunits is key to trafficking roles in cell adhesion and elsewhere. Bioinformatics 2009, 25, 1019–1022. [CrossRef]
21. Dolphin, A.C. Calcium channel α₂δ subunits in epilepsy and as targets for antiepileptic drugs. Epilepsy 2011, 51, 82. [CrossRef]
22. Brown, J.P.; Dissanayake, V.U.; Briggs, A.R.; Milic, M.R.; Gee, N.S. Isolation of the [³H]gabapentin-binding protein/α₂δ Ca²⁺ channel subunit from porcine brain: Development of a radioligand binding assay for α₂δ subunits using [³H]leucine. Anal. Biochem. 1998, 255, 236–243. [CrossRef] [PubMed]
23. Buxton, A.; Gold, S.; Minton, J.P.; Woodruff, G.N. Spermation modulation of specific [³H]gabapentin binding to the detergent-solubilized porcine cerebral cortex α₂δ calcium channel subunit. Br. J. Pharmacol. 1997, 120, 833. [CrossRef]
24. Bargmann, C.I. Neurobiology of the Caenorhabditis elegans Genome. Science 1998, 282, 2028–2033. [CrossRef]
25. Lainé, V.; Frøkjær-Jensen, C.; Couchoux, H.; Jospin, M. The α1 Subunit EGL-19, the α2δ Subunit UNC-36, and the β Subunit CCB-1 Underlie Voltage-Dependent Calcium Currents in C. elegans Striated Muscle. J. Biol. Chem. 2011, 286, 36180–36187. [CrossRef]
26. Holovachov, O.; van Megen, H.; Bongers, T.; Bakker, J.; Holder, J.; van den Else, S.; Holterm, M.; Karssen, G.; Mooym, P. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 2009, 11, 927–950. [CrossRef]
27. De Waal, D.G.C.R.; Jones, B.L.; Bolton, C.; van den Berg, E. Ditylenchus destructor in hulls and seeds of peanut. J. Nematol. 1989, 21, 10–15.
30. Venter, C.; Waele, D.D.; Meyer, A.J. Reproductive and Damage Potential of Ditylenchus destructor on Six Peanut Cultivars. J. Nematol. 1993, 25, 59–62.
31. Ni, C.; Zhang, S.; Li, H.; Liu, Y.; Li, W.; Xu, X.; Xu, Z. First report of potato rot nematode, Ditylenchus destructor Thorne, 1945 infecting Codonopsis pilosula in Gansu province, China. J. Nematol. 2020, 52, e2020-e2087. [CrossRef] [PubMed]
32. Faulkner, L.R.; Darling, H.M. Pathological histology, hosts, and culture of the potato rot nematode. Phytopathology 1961, 51, 776–786.
33. Ye, S.; Zeng, R.; Zhou, J.; An, M.; Ding, Z. Deltamethrin affects the expression of voltage-gated calcium channel α1 subunits and analysis of the effect of their knockdown on nematode activity. Biochimie 2020, 171, 91–102. [CrossRef] [PubMed]
34. Blaxter, M.; Liu, L. Nematode spliced leaders—Ubiquity, evolution and utility. Int. J. Parasitol. 1996, 26, 1025–1033.
35. Mitreva, M.; Elling, A.A.; Dante, M.; Kloek, A.P.; Kalyanaraman, A.; Aluru, S.; Clifton, S.W.; Bird, D.M.; Baum, T.J.; McCarter, J.P. A survey of SL1-spliced transcripts from the root-lesion nematode Pratylenchus penetrans. Mol. Genet. Genom. 2004, 272, 138–148. [CrossRef]
36. Catterall, W.A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 2000, 26, 13–25. [CrossRef]
37. Zeng, R.; Yu, X.; Tan, X.; Ye, S.; Ding, Z. Deltamethrin affects the expression of voltage-gated calcium channel α1 subunits and the locomotion, egg-laying, foraging behavior of Caenorhabditis elegans. Pestic. Biochem. Physiol. 2017, 138, 84–90. [CrossRef]
38. Arikkath, J.; Campbell, K.P. Auxiliary subunits: Essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 2003, 13, 298–307. [CrossRef]
39. Geisler, S.; Schöpf, C.L.; Obermair, G.J. Emerging evidence for specific neuronal functions of auxiliary calcium channel α2δ subunits. Gen. Physiol. Biophys. 2014, 34, 105–118. [CrossRef]
40. An, M.; Chen, X.; Yang, Z.; Zhou, J.; Ye, S.; Ding, Z. Co-silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor. Int. J. Mol. Sci. 2022, 23, 784–800. [CrossRef]
41. Pragnell, M.; de Waard, M.; Moi, Y.; Tanabe, T.; Snutch, T.P.; Campbell, K.P. Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature 1994, 368, 67–70. [CrossRef] [PubMed]
42. Voigt, A.; Freund, R.; Heck, J.; Missler, M.; Obermair, G.J.; Thomas, U.; Heine, M. Dynamic association of calcium channel subunits at the cellular membrane. Neurophotonics 2016, 3, 41809. [CrossRef] [PubMed]
43. Whitehead, A.G.; Hemming, J.R. A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann. Appl. Biol. 1965, 55, 25–38. [CrossRef]
44. Schaad, N.W.; Walker, J.T. The Use of Density-Gradient Centrifugation for the Purification of Eggs of Meloidogyne spp. J. Nematol. 1975, 7, 203–204. [PubMed]
45. Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [CrossRef] [PubMed]
46. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2^{-ΔΔCT} Method. Methods 2001, 25, 402–408. [CrossRef]
47. Kud, J.; Solo, N.; Caplan, A.; Dandurand, L.M.; Xiao, F. In situ Hybridization of Plant-parasitic Nematode Globodera pallida Juveniles to Detect Gene Expression. Bio Protec. 2019, 9, e3372. [CrossRef]
48. Urwin, P.E.; Lilley, C.J.; Atkinson, H.J. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol. Plant. Microbe Interact. 2002, 15, 747–752. [CrossRef]
49. Kimber, M.J.; Mckinney, S.; Mcmaster, S.; Day, T.A.; Fleming, C.C.; Maule, A.G. fdp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J. 2007, 21, 1233–1243. [CrossRef]
50. McClure, M.A. Induced Salivation in Plant-Parasitic Nematodes. Phytopathology 1987, 77, 1463–1469. [CrossRef]
51. Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [CrossRef]