Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters

Kaixi Zhang1,2,18, Yu Du1,2,17,18, Zhangyong Si1,2,18, Yang Liu2,3,18, Michelle E. Turvey4, Cheerlavancha Raju1,2, Damien Keogh1,2, Lin Ruan1,2, Subramanion L. Jothy1,2, Sheethal Reghu1,2, Kalisvar Marimuthu5,6, Partha Pratim De7, Oon Tek Ng5,6,8, José R. Mediavilla9, Barry N. Kreiswirth9, Yonggui Robin Chi10, Jinghua Ren11, Kam C. Tam12, Xue-Wei Liu2,10, Hongwei Duan1,2,18, Yabin Zhu13, Yuguang Mu3, Paula T. Hammond14,15, Guillermo C. Bazan16, Kevin Pethe2,3,8* & Mary B. Chan-Park1,2,8*

The treatment of bacterial infections is hindered by the presence of biofilms and metabolically inactive persisters. Here, we report the synthesis of an enantiomeric block co-beta-peptide, poly(amide-D-glucose)-block-poly(beta-L-lysine), with high yield and purity by one-shot one-pot anionic-ring opening (co)polymerization. The co-beta-peptide is bactericidal against methicillin-resistant Staphylococcus aureus (MRSA), including replicating, biofilm and persister bacterial cells, and also disperses biofilm biomass. It is active towards community-acquired and hospital-associated MRSA strains which are resistant to multiple drugs including vancomycin and daptomycin. Its antibacterial activity is superior to that of vancomycin in MRSA mouse and human ex vivo skin infection models, with no acute in vivo toxicity in repeated dosing in mice at above therapeutic levels. The copolymer displays bacteria-activated surfactant-like properties, resulting from contact with the bacterial envelope. Our results indicate that this class of non-toxic molecule, effective against different bacterial sub-populations, has promising potential for the treatment of S. aureus infections.

1School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore. 2Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore. 3School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore. 4Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology Centre, 1 Create Way, Singapore 138602, Singapore. 5Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore. 6National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore. 7Department of Laboratory Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore. 8Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore. 9Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA. 10Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore. 11Cancer Center, Union Hospital, Huazhong University of Science & Technology, Wuhan 430022 Hubei, China. 12Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada. 13Medical School of Ningbo University, Ningbo, 315211 Zhejiang, China. 14Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 15Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 16Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106-9510, USA. 17Present address: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, 350002 Fuzhou, China. 18These authors contributed equally: Kaixi Zhang, Yu Du, Zhangyong Si, Yang Liu. *email: kevin.pethe@ntu.edu.sg; mbechan@ntu.edu.sg
Antimicrobial resistance in bacteria is a serious and growing clinical problem, eroding the therapeutic armamentarium and leaving limited treatment options for certain infections. Compounding the difficulty of treating antibiotic-resistant strains is the presence of persisters, subpopulations that are antibiotic-tolerant due to metabolic inactivity, and the capacity of bacteria to develop biofilms, both of which lead to chronic and recurrent infections. The World Health Organization (WHO) recently published a priority list of bacteria for which new antibiotics are urgently needed. Methicillin-resistant Staphylococcus aureus (MRSA), a WHO high-priority pathogen, is a leading cause of mortality due to antibiotic-resistant infections. Initially restricted to hospitals and healthcare settings, MRSA is causing an increasing number of infections in the community. MRSA is associated with poor clinical outcomes; it causes frequent skin and soft tissue infections and can disseminate, resulting in life-threatening bloodstream infections, endocarditis, bone and joint infections, as well as pneumonia. S. aureus is prone to form biofilms and also exists in the form of metabolically inactive antibiotic-tolerant persister phenotype. Last-resort antibiotics such as vancomycin are largely ineffective against S. aureus persisters and biofilms. New therapeutics are needed to combat the spread of difficult to treat drug-resistant S. aureus infections. Alternative antibacterial agents should have bactericidal activity against replicating cells, persisters, and established biofilms. Cationic alpha-peptides and membrane-active agents have been investigated as alternative antimicrobials to combat biofilms and persisters, but selective toxicity is a complicating factor.

Amongst the various synthetic polymer families being explored as peptidomimetics, beta-peptides are promising because they can exhibit biological activity comparable to natural peptides, but have better proteolytic stability and are usually amphiphilic and non-mutagenic. Beta-peptides have been considered for use in diverse therapeutic applications such as antimicrobial agents, vaccine drugs, protein–protein interaction inhibitors, and drug delivery. Alpha-peptide antimicrobials are known to form facially amphiphilic (FA) structures that enhance the bactericidal properties but tend to be hemolytic and toxic. Compared to alpha-peptides, beta-peptides have an extra methylene group in the backbone. The hydrophobicity of beta-peptides may be tuned by the structure of the side chains. Further, beta-peptides may be designed to form foldamers exhibiting diverse secondary structures, such as helices and beta-sheets and complex tertiary and quaternary structures.

Munoz-Guerra and colleagues reported the first research on nylon-3 and analogs, which included the synthesis and helical propensity of these beta-peptides. In the development of antimicrobial beta-peptides, previous efforts focus mainly on random co-beta-peptides and optimization of their cationic versus hydrophobic beta-lactam residues to reduce hemolysis whilst maintaining a good bactericidal effect. There is no reported work on glycosylated block co-beta-peptides. Block co-poly(beta-peptides) are interesting as they may show unique combinations of properties displayed by the individual blocks, which are as yet under-exploited for the development of next-generation antibacterials. Also, a strategy for the facile synthesis of block co-beta-peptides has not been previously reported.

In this study, we report a simple one-shot one-pot anionic ring opening (AROP) strategy to synthesize a series of enantiomeric block co-beta-peptides, which cannot be made by sequential copolymerization. Two beta-lactam monomers with contrasting reactivities—a protected beta-glucose (DGup) beta-lactam and a protected cationic beta-l-lysine (BLKp) beta-lactam—can be block copolymerized in one shot. The resulting optimized block co-beta-peptide, PDGu(7)-block-PBLK(13), is non-cytotoxic and non-hemolytic in vitro. Further, the block co-beta-peptide has interesting biological properties. Unlike classical antibiotics, PDGu(7)-b-PBLK(13) retains potency against MRSA persister cells and biofilms. It is active against both the community-acquired (CA-) and hospital-associated (HA-) MRSA strains. The block copolymer also effectively removes biofilm biomass but the homocationic beta-peptide (PBLK(20)) cannot. The block copolymer is bactericidal against MRSA in various murine models of systemic acute and established infections, and also in an ex vivo human skin infection model, while having no in vivo acute toxicity in murine repeated dosing studies. This study opens up possibilities of treatment for recalcitrant MRSA infections.

Results
Synthesis of the (co)polymers via one-shot one-pot AROP. The monomers N-Chz-β-lactam-1-lysine (BLKp) and O-Bn-β-lactam-β-glucose (DGu) were synthesized and verified by nuclear magnetic resonance (NMR) spectroscopy. The copolymer synthetic strategy relies on the observation that the homopolymerization of N-Chz-β-lactam-1-lysine monomer (BLKp) is much slower than the homopolymerization of O-Bn-β-lactam-β-glucose monomer (DGu) (Supplementary Table 1). When DGu and BLKp monomers (10:10, mole/mole) were mixed together in tetrahydrofuran, DGu was totally consumed in 8 min while the BLKp monomer required 8 h for complete reaction (Fig. 1a–c, Supplementary Figs. 4, 5). The molecular weight of the product increased linearly over an 8-h period during which DGu disappeared rapidly in the first few minutes, while BLKp was consumed gradually over the next few hours (Fig. 1d). A plot of molecular weight (Mn) versus BLKp conversion (Fig. 1e) shows a linear relationship and the D values of the products remain small (1.06–1.12). These results are consistent with the growth of a single copolymer chain through rapid consumption of DGu, followed by slower but contiguous incorporation of BLKp and thus provide evidence for a “block-like” structure of the resulting copolymer. A series of poly(Bn-amido-β-glucose)-block-poly(Cbz-beta-l-lysine) (PDGu(x)-b-PBLKp(y)) block copolymers, with varying ratios of x to y but constant target total degree of polymerization of 20, i.e. (x + y) = 20, was synthesized (Fig. 1a, Supplementary Fig. 6). The molecular weights are close to the design values based on gel permeation chromatography (GPC) relative to polystyrene standards, confirming that the AROP process is well-controlled (Fig. 1f, Supplementary Table 2).

After one-step deprotection, the final products PDGu(x)-b-PBLK(y) were obtained with overall yields greater than 65% (Supplementary Fig. 7). NMR spectroscopy measurements of PDGu(x)-b-PBLK(y) show two sets of signals belonging to PDGu and PBLK, respectively, corroborating their block rather than random structures (Supplementary Figs. 8–22). NMR spectra also show that the ratios of DGu to BLK in PDGu(x)-b-PBLK(y) after purification deviate slightly from the stoichiometric ratios of added monomers. For example, the actual composition of DGu and BLK in PDGu(10)-b-PBLK(10) is PDGu(7)-b-PBLK(13); the PBLK block is 66 mol% versus the design value of 50 mol%. This trend is repeatable and can be seen in other compositions (Table 1). The molecular weights (Mn) of the homocationic PBLK(20), homosugar PDGu(20), and copolymer PDGu(7)-b-PBLK(13) were, respectively, 3012 Da, 3159 Da, and 3391 Da, as measured by the Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectroscopy (Supplementary Fig. 23).
When we attempted the synthesis of PDGup(10) - b - PBLKp(10) by the sequential addition of DGup (M1) followed by BLKp (M2) at −30 °C (Supplementary Fig. 24a), the amount of isolated undesired homopolymer PDGup after the reaction could be more than 50% of the yield (based on DGup). This sequential copolymerization of higher reactivity DGup followed by lower reactivity BLKp could be finished rapidly in <1 h, but achieved only low purity block copolymer with substantial PDGup homopolymer. We expected that by reversing the order of addition of monomers, i.e. first BLKp and then DGup (Supplementary Fig. 24b), in which the first block (PBLKp) has a lower reactivity and also a higher transfer rate to DGup, the block copolymerization would successfully occur. However, the first step requires up to 8 h to reach ~90% conversion (based on BLKp). In addition, the final mixture was very viscous and contained a large proportion of pre-mature terminated PBLKp. Regardless of the sequence of monomer addition, sequential copolymerization cannot successfully synthesize cationic glycosylated block copoly(beta-peptide) with good yield and purity. Unexpectedly, with one-shot AROP with simultaneous feed of the

Fig. 1 Facile one-shot one-pot synthesis of PDGup(x) - b - PBLKp(y) block copolymer. a Synthetic scheme of PDGup(x) - b - PBLKp(y). b One-shot addition of both monomers (DGup and BLKp) leads to block copolymerization when the monomers have contrasting reactivities. c–e Kinetic studies and f GPC measurements verify the well-controlled single chain block architecture of PDGup(x) - b - PBLKp(y). c Remaining monomer concentration vs time. d GPC curves of partially polymerized products at selected quenching times. e Molecular weight (Mn) and molecular weight distribution (Đ) as a function of conversion of BLKp. f GPC of protected-(co)polymers.
Activity against USA300 (Table 2), the predominant CA-MRSA11. The copolymer shows good cytotoxicity while maintaining potency against *S. aureus* (Table 2, Supplementary Figs. 25 and 26). The block copolymerization process decreased cytotoxicity while maintaining potency against eukaryotic cells and also hemolytic (Table 2). The homopolymer PDGu(x)-PBLK(y) series was tested against a panel of Gram-positive bacteria. The homopolymer PDGu(x)-PBLK(y) shows the most balanced activity against other MRSA strains from major lineages of global epidemiology48, including (HA-)MRSA strains resistant to multiple conventional antibiotics (including vancomycin, daptomycin) (Table 3). Kill-kinetics experiments revealed that PDGu(7)-b-PBLK(13) killed replicating MRSA faster than vancomycin (Supplementary Fig. 27). The selection of escape mutants to PDGu(7)-b-PBLK(13) at 10× its minimum inhibitory concentration (MIC) was unsuccessful, showing that the propensity for emergence of resistance is extremely low (frequency below 3×10⁻¹⁰, which is much lower than reported values for antibiotics19,30). We then tried to select mutants by the continued pressure of sub-inhibitory concentrations of the block copolymer for up to 14 days (as described previously33). This approach also did not select for copolymer-resistant MRSA colonies. As a result, we could achieve successful synthesis of the block copolymers PDGu(x)-b-PBLK(y).

Further profiling demonstrated that the copolymer is also potent against other MRSA strains from major lineages of global epidemiology48, including (HA-)MRSA strains resistant to multiple conventional antibiotics (including vancomycin, daptomycin) (Table 3). Kill-kinetics experiments revealed that PDGu(7)-b-PBLK(13) killed replicating MRSA faster than vancomycin (Supplementary Fig. 27). The selection of escape mutants to PDGu(7)-b-PBLK(13) at 10× its minimum inhibitory concentration (MIC) was unsuccessful, showing that the propensity for emergence of resistance is extremely low (frequency below 3×10⁻¹⁰, which is much lower than reported values for antibiotics19,30). We then tried to select mutants by the continued pressure of sub-inhibitory concentrations of the block copolymer for up to 14 days (as described previously33). This approach also did not select for copolymer-resistant MRSA colonies. As a result, we could achieve successful synthesis of the block copolymers PDGu(x)-b-PBLK(y).

Table 1 Design and actual ratios of DGu to BLK before and after deprotection

Sample	Design ratio of DGu to BLK	Actual ratioa of DGu to BLK	Actual ratiob of DGu to BLK after deprotection
P1	PDGu(6.7)-b-PBLKp(13.3)	PDGu(6.7)-b-PBLKp(14)	PDGu(5)-b-PBLKp(15)
P2	PDGu(8)-b-PBLKp(12)	PDGu(8)-b-PBLKp(12)	PDGu(6)-b-PBLKp(14)
P3	PDGu(10)-b-PBLKp(10)	PDGu(10)-b-PBLKp(10)	PDGu(7)-b-PBLKp(13)
P4	PDGu(12)-b-PBLKp(8)	PDGu(12)-b-PBLKp(8)	PDGu(9)-b-PBLKp(11)
P5	PDGu(13.3)-b-PBLKp(6.7)	PDGu(14)-b-PBLKp(6)	PDGu(10)-b-PBLKp(10)
P6	PDGu(20)	PDGu(20)	PDGu(20)

a Ratios were calculated based on 1H NMR integrations of (protected) PDGu(x)-b-PBLK(y).

b Ratios were calculated based on 1H NMR integrations of (deprotected) PDGu(x)-b-PBLK(y).

Table 2 Antimicrobial and hemolytic activity and biocompatibility of (co)polymers

Sample	MIC (μg mL⁻¹)	HC50 (μg mL⁻¹)	IC50 (μg mL⁻¹)	3T3b
SA 25923	8 8 8 8 4 4 4 4	5000 18 10 150 430 395 630 1024		
SA 29213	8 8 8 8 4 4 4 4	3300 100 150		
MRSA BAA40	16 16 16 16 16 16 16 16	4800 4		
MRSA USA300	>512 >512 >512 >512 >512 >20,000 >1024	>20,000 >1024		
Bacillus subtilis 6633	>512 >512 >512 >512 >512 >20,000 >1024	>20,000 >1024		

a RBC: red blood cells

b 3T3: mouse fibroblast cells

Table 3 Antimicrobial activity against multi-drug-resistant clinically isolated MRSA

Serial no.	Designation	MIC (μg mL⁻¹)	Multi-drug resistance	Major lineage/clonal complex⁴⁸
1	HIP1714	16	VAN 512	CIP, CLI, ERY, GEN, LVX, MXF, OXA, Rif, TEC 5
2	HIP1983	16	16	CIP, CLI, ERY, GEN, LVX, MXF, OXA, Rif, TEC 5
3	HIP3170	16	128	CIP, CLI, ERY, GEN, LVX, MXF, OXA, Rif, TEC 5
4	HIP53419	16	64	CIP, CLI, ERY, GEN, LVX, MXF, OXA, Rif, TEC 5
5	HIP51400	16	32	CIP, CLI, ERY, GEN, LVX, MXF, OXA, Rif, TEC 5
6	HIP5178	16	>512	CIP, CLI, ERY, GEN, LVX, MXF, OXA, Rif, TEC 5
7	AIS2006032	16	8	CIP, CLI, ERY, GEN, LVX, MXF, OXA, Rif, TEC 5
8	HIP09433	16	DAP 4	CIP, ERY, GEN, LVX, MXF, OXA, PEN, TMP 45 5
9	SAMER-S6	16	16	CIP, ERY, GEN, LVX, MXF, OXA, PEN, TMP 45 5
10	6820	16	8	OXA, Rif, TEI 5
11	T557	16	16	CIP, LIX 22
12	T558	16	8	CIP, ERY, LVX 22
13	T577	16	4	CIP, ERY, LVX, Rif 22
14	T578	16	4	CIP, ERY, LVX, Rif, TOB 5
15	ATCC 700789	16	128	PEN, STR 8
16	ATCC BA38	16	128	CIP, ERY, GEN, IPM, LVX, PEN, TMP, TOB 8
17	ATCC BA44	16	32	CIP, ERY, GEN, LVX, PEN, TOB 8

CIP ciprofloxacin, CLI clindamycin, DAP daptomycin, ERY erythromycin, GEN gentamicin, IPM imipenem, LVX levofloxacin, MXF moxifloxacin, OXA oxacillin, PEN penicillin, Rif rifampicin, STR streptomycin, TEC teicoplanin, TET tetracycline, TMP trimethoprim, TOB tobramycin, VAN vancomycin

Two beta-lactams, we could achieve successful synthesis of the block copolymers PDGu(x)-b-PBLKp(y).

Further profiling demonstrated that the copolymer is also potent against other MRSA strains from major lineages of global epidemiology48, including (HA-)MRSA strains resistant to multiple conventional antibiotics (including vancomycin, daptomycin) (Table 3). Kill-kinetics experiments revealed that PDGu(7)-b-PBLK(13) killed replicating MRSA faster than vancomycin (Supplementary Fig. 27). The selection of escape mutants to PDGu(7)-b-PBLK(13) at 10× its minimum inhibitory concentration (MIC) was unsuccessful, showing that the propensity for emergence of resistance is extremely low (frequency below 3×10⁻¹⁰, which is much lower than reported values for antibiotics19,30). We then tried to select mutants by the continued pressure of sub-inhibitory concentrations of the block copolymer for up to 14 days (as described previously33). This approach also did not select for copolymer-resistant MRSA colonies. As a result, we could achieve successful synthesis of the block copolymers PDGu(x)-b-PBLKp(y).
control, escape mutants resistant to the antibiotic ciprofloxacin were easily selected (Supplementary Fig. 28).

PDGu(7)-b-PBLK(13) targets the bacterial envelope. The structure of the cationic block co-beta-peptide suggests a possible mechanism of action involving membrane interaction. Confocal microscopy of fluorescently labeled bacterial cells showed that the rhodamine-labeled PDGu(7)-b-PBLK(13) accumulated preferentially in the bacteria envelope (i.e. cell wall and cell membrane) (Fig. 2a, Supplementary Fig. 29). Membrane damage was confirmed using propidium iodide (PI) as a marker of plasma membrane integrity (Fig. 2b). Results showed that both the block copolymer and cationic homopolymer are membrane active, but the copolymer induces less PI staining, suggesting that it is less membrane-lytic (Fig. 2b). DiSC35 dye assay, which probes plasma membrane potential changes, corroborated the finding that PDGu(7)-b-PBLK(13) mildly depolarized the bacterial plasma membrane, unlike the homocationic PBLK(20) that had a more pronounced effect (Fig. 2c). Together, the PI staining and DiSC35 assay results indicate that the copolymer disturbs the bacterial membrane without causing severe leakage.

The effect of PDGu(7)-b-PBLK(13) on the morphology of *S. aureus* was also visualized by cryo-transmission electron microscopy (cryo-TEM), which revealed a much larger periplasmic space gap (of about 7-8 nm, Fig. 2d; indicated by red arrows), together with bleb and vacuole formation (Fig. 2d, Supplementary Fig. 30). In contrast, periplasmic gap widening, blebs, and vacuoles were not observed in untreated bacteria (Fig. 2e, Supplementary Fig. 31). Treatment with PBLK(20) led to significant bacterial envelope deformation, cell leakage, and lysis (Fig. 2f, Supplementary Fig. 32). The copolymer with its hydrophilic sugar block aggregates at the membrane interface, leading to the observed larger periplasmic gap.

Circular dichroism (CD) spectropolarimetry showed that in free solution, the block co-beta-peptide likely adopts a helix–coil conformation attributed respectively to the sugar and cationic blocks (Fig. 3a). However, in the presence of model vesicles containing anionic bacterial lipids, CD spectrum shows that the cationic block of the copolymer, like the cationic homopolymer (PBLK(20)), undergoes a transition to likely a left-handed helix structure (Fig. 3d, Supplementary Fig. 33a–f). Computer simulation shows that the binding of PDGu(7)-b-PBLK(13) to bacterial membrane is provided mainly by the PBLK block while the PDGu block protrudes into the water–membrane interface because of its weaker binding to the membrane and its strong hydrophilicity (Fig. 3c, Supplementary Fig. 34). In free solution, electrostatic repulsion between the lysine side chains of the cationic block causes the cationic block to exist as a random coil conformation (Supplementary Fig. 34a–d). At the anionic bacterial lipid surface, the positive charges in the PBLK block of the copolymer are neutralized by anionic bacterial lipids so that the lysine side chain charge–charge repulsion causing the distortion of the helical conformation of the copolymer PBLK block is substantially reduced and the copolymer transitions from a helix–coil structure to a helix–helix structure (Fig. 3d, Supplementary Fig. 34e–g). The resulting helix–helix structure...
of the sugar-cationic block copolymer binds to the anionic bacterial membrane (Supplementary Fig. 34h–k). It is known that beta peptides containing cyclic beta-amino acids adopt different helical structures to those containing non-cyclic amino acids. From the CD data, we see that the (cyclic) PDGu spectrum exhibited a minimum at 213 nm while the (non-cyclic) PBLK spectrum exhibited a minimum at 220 nm (Fig. 3b). Our computer simulation corroborated that the PDGu and PBLK blocks adopt different helical conformations, with 3.5 residues/turn and 3 residues/turn, respectively (Supplementary Fig. 34j, Supplementary Note). (In the presence of zwitterionic lipids (model vesicles representative of mammalian membrane), the copolymer retains its helix–coil conformation (Supplementary Fig. 33c)).

The accumulation of the block co-beta-peptide at the outer leaflet of the cytoplasmic membrane causes the increased periplasmic space visible in the cryo-TEM (Fig. 2d), which led to detachment of the cell wall from the cytoplasmic membrane and a weakened membrane–cell wall interface. The copolymer also aggregates inside the cell wall leading to defects in the cell wall (Fig. 2a, d). The blebs observed with copolymer treatment using cryo-TEM (Supplementary Fig. 30) may be formed by membrane-bound cytoplasm herniating through cell wall defects as intracellular water expands during the freezing process of the cryo-TEM preparation. The vacuoles observed (Supplementary Fig. 30) may be ice pockets formed during the cryo-TEM process as water migrates to the polymer-rich periplasmic space since the cytoplasmic membrane is detached from the cell wall. Taken together, the copolymer disturbs the cell envelope which includes the membrane, the membrane–cell wall interface, and also the cell wall.

PDGu(7)-b-PBLK(13) eradicates persister bacteria and biofilms. Classical antibiotics are usually significantly less potent against persisters/non-replicating bacteria. Since PDGu(7)-b-PBLK(13) kills S. aureus by surface contact-induced membrane/envelope damage, we hypothesized that the block copolymer may retain potency against persisters and S. aureus biofilms. Nutrient-starved persisters were generated by passing S. aureus in PBS medium, a condition under which the bacteria can survive for extended periods of time without replicating. Consistent with published literature, non-replicating S. aureus was phenotypically resistant to antibiotics from various categories (including vancomycin, oxacillin, rifampicin, etc.) up to a dose 100× MIC (Fig. 4a). Conversely, PDGu(7)-b-PBLK(13) was highly potent against non-replicating starved persister S. aureus at a concentration as low as twofold its MIC (Fig. 4b). Furthermore, PDGu(7)-b-PBLK(13) effectively eradicated antibiotic-induced persisters that escaped killing by 10× MIC gentamicin and ciprofloxacin treatment (Fig. 4c, d). PDGu(7)-b-PBLK(13) was also effective at dispersing preformed MRSA biofilms, achieving a reduction of more than 99.9% of the biofilm bacteria, greatly outperforming vancomycin, which had an insignificant effect on biofilm bacteria (Fig. 4e).

In addition to killing bacteria in biofilm, the block copolymer effectively dispersed the biofilm itself (as shown by confocal microscopy and FESEM) and the dispersed bacteria were shown to be dead (Fig. 4f, g, Supplementary Fig. 35a, b). The homocationic PBLK(20) kills biofilm bacteria but does not disperse them (Fig. 4e, h, Supplementary Fig. 35c). Copolymer aggregation at the cell wall accounts for its ability to detach bacteria from biofilm biomass since the sugar block would form a non-fouling coating around the bacteria. (CA-)MRSA USA300.
maintained in a broth medium supplemented with glucose typically forms biofilm involving cell-wall anchored protein (fibronectin-binding proteins)\(^5^7\), whilst many (HA-)MRSA\(^5^8\),\(^5^9\) and \(Staphylococcus\) \(epidermidis\)\(^6^0\),\(^6^1\) strains form biofilms involving the polysaccharide intercellular adhesin encoded by the \(ica\) locus\(^6^2\). To determine if the block copolymer is active against other types of biofilms, biofilms formed by various HA-MRSA and methicillin-resistant \(S.\) \(epidermidis\) (MRSE) strains under conditions promoting the \(ica\) locus expression\(^6^3\) were treated with the copolymer. Our copolymer \(PDGu(7)-b-PBLK(13)\) was more active than vancomycin in eradicating the biofilms of HA-MRSA and MRSE strains (Fig. 5). Hence, our copolymer is effective not only against MRSA biofilms involving fibronectin-binding protein, but also against other major types of biofilm formed by HA-MRSA and MRSE.

Copolymer is efficacious in murine and ex vivo human skin models. Before in vivo efficacy testing, acute toxicity of the block copolymer was evaluated in mice. Intravenous injection of \(PDGu(7)-b-PBLK(13)\) at a cumulative dose of 70 mg kg\(^{-1}\) (10 mg kg\(^{-1}\) per day \(\times 7\) days) was well tolerated in all mice, with no death observed up to 7 days post-injection (Fig. 6a). \(PDGu(7)-b-PBLK(13)\) induced no liver and kidney toxicity, confirming its low in vivo acute toxicity (Fig. 6b, Supplementary Fig. 36, Supplementary Table 3).

The in vivo efficacy of \(PDGu(7)-b-PBLK(13)\) was then evaluated in a mouse model of acute systemic infection. Mice were infected with MRSA USA300 at a lethal dose (100% death within 24 h in untreated controls). At 2 h post infection, a single 5 mg kg\(^{-1}\) dose of intraperitoneally (i.p.) injected copolymer resulted in 100% rescue of the mice (6/6 mice) and significantly reduced bacterial loads in major organs (Fig. 6c, d, Supplementary Fig. 37). In contrast, vancomycin treatment at the same dosage achieved only 67% survival (4/6 mice). We further evaluated the efficacy of the copolymer against persisters/biofilm with a deep-seated thigh infection model in neutropenic mice known to be particularly resistant to antibiotic treatment\(^1^8\),\(^6^4\). In this model, the copolymer achieved a 93.7% (1.2 log\(_10\)) reduction in bacteria load, whereas vancomycin was ineffective (Fig. 6e). We also evaluated the efficacy of the co-beta-peptide against biofilm bacteria in a murine excision wound model. A biofilm was established in the wound with a 72-h infection period, by which time the bacteria have developed stable biofilms\(^6^5\),\(^6^6\). After the 72-h infection, copolymer treatment was given and achieved 99.87% (2.9 log\(_10\)) reduction in bacterial load, which was significantly better than vancomycin (83.8%, i.e. 0.8 log\(_10\) reduction) (Fig. 6f), showing that the block copolymer has high activity even against an established \(S.\) \(aureus\) infection known to be recalcitrant to antibiotic treatment.

In addition to the murine models, we also demonstrated the efficacy of the copolymer with an ex vivo human skin model with severely established (48 h) infection (Fig. 6g). The copolymer treatment achieved 99.998% (4.6 log\(_10\)) reduction of bacterial burden in contrast to the 97.3% (1.6 log\(_10\)) reduction of vancomycin treatment. Copolymer treated ex vivo human wound sites were also clear of pus/debris corroborating its anti-fouling/biofilm dispersal properties (Supplementary Fig. 38).

Discussion

Eradication of persisters and biofilms remains one of the biggest challenges in antibacterial drug discovery. Antibiotic-tolerant bacteria are associated with longer treatment time and relapse of infection. Because most antibiotics target macromolecular machinery only essential for active replication, they are significantly less potent against non-replicating persisters or established biofilms. \(PDGu(7)-b-PBLK(13)\) kills non-replicating, antibiotic-tolerant persisters, and biofilm-associated MRSA, both in vitro and in vivo. We show that it can eradicate the clinically relevant CA-MRSA (USA 300). We also showed that our copolymer is just as effective against HA-MRSA strains with resistance to multiple conventional antibiotics (Table 3, Fig. 5). Multi-drug-resistant (MDR) HA-MRSA bacteria cause the majority of nosocomial bacteremia/septicemia and device-related infections involving biofilm formation. The ability of our co-beta-peptide to kill all the sub-populations (planktonic, persister and biofilm states) of MRSA bacteria is attributable to its mechanism(s) of kill—membrane disruption and interface weakening effects which are not related to metabolism. The reduced tendency of the block copolymer to bind mammalian membranes is linked to their less negatively charged surface\(^6^6\),\(^6^7\). This co-beta-peptide shows eradication of persister and biofilm MRSA and has ultra-low toxicity, both of which were shown using in vivo murine models. Further, it also shows eradication of an established infection with an ex vivo human skin model.

Upon surface-contact with bacterial membrane, the cationic block undergoes transition from a random coil in free solution to a helix. The block copolymer possesses a unique bacteria-triggered surfactant effect that contributes to biofilm dispersal—the cationic block adsorbs onto the negatively charged bacterial envelope while the hydrophilic sugar block has a strong tendency to promote dissolution, resulting in a “surfactant-like” solvation of bacteria from biofilm. The block copolymer forms an anti-fouling \(PDGu\) layer around the bacteria. Conversely, the homocationic \(PBLK(20)\) led to pore formation (Fig. 2b, c, f), like other AMPs\(^3^6\), but without promoting biofilm detachment (Fig. 4b); this is probably linked to the inability of the homocationic polymer to form an anti-fouling layer around the bacteria. The amine group of the cationic block dominates the interactive topology with erythrocytes but its hydrophilicity minimizes hemolysis. Further, the neutral sugar block also increases the hydrophilicity of the block copolymer. Other antimicrobial peptides and biosurfactants (such as surfactin, rhamnolipid, or phenol-soluble modulins) are intrinsically amphiphilic with exposed hydrophobic domains in free solution and are typically hemolytic since their freely exposed hydrophobic moieties would interact with erythrocytes\(^6^8\).

Biofilm eradication using conventional antibiotics is typically challenging\(^6^9\),\(^7^0\). The limited efficacy of vancomycin against biofilms is not an exception; many other antibiotics that are commonly used for MRSA infection have significantly reduced efficacy against biofilm bacteria\(^7^1\). Besides antibiotics, our copolymer outperforms many cationic antimicrobial peptides and conventional antiseptic therapeutics in established wound infections that have been previously reported\(^1^9\),\(^7^2\), not to mention its superior safety profile that makes it suitable for translation into clinics. The copolymer eradicates biofilm MRSA and also disperses the biomass. Since the block copolymer forms an anti-fouling \(PDGu\) coating around the bacterial cell envelope, the adhesion of the bacteria to extracellular polymeric substances (EPSs) and to substrates is reduced, explaining the strong dispersing effect of \(PDGu(7)-b-PBLK(13)\) on biofilms (Fig. 4e). The coated bacteria can effectively detach due to reduced surface hydrophobicity and interaction with biofilm matrix, leading to biofilm dispersal\(^7^3\)\(^–\)\(^7^5\). Moreover, the copolymer biofilm eradication effect is observed in the major types of biofilms formed by different MRSA (and MRSE) strains under various conditions, which include the types involving fibronectin binding protein as well as polysaccharide intercellular adhesin. This is clinically significant since MRSA is a common pathogen that forms biofilms during infection, as well as on medical devices\(^1^5\),\(^7^6\).
Fig. 4 PDGu(7)-b-PBLK(13) is bactericidal toward MRSA USA300 persisters and biofilms in vitro. a Kill-kinetics of various antibiotics at 100× MIC; and b PDGu(7)-b-PBLK(13) against non-replicating MRSA USA300. c, d Kill-kinetics of PDGu(7)-b-PBLK(13) at 4× MIC against persisters generated by 10× MIC gentamicin (c) and ciprofloxacin (d) treatment. e Activity of PDGu(7)-b-PBLK(13) and PBLK(20) on established MRSA biofilms using the MBEC™ Assay. Data are presented as mean ± standard deviation. f FESEM image of MBEC™ microtiter plate pegs: (left) control peg without treatment and (right) peg treated with PDGu(7)-b-PBLK(13). g, h Confocal microscopy images of PDGu(7)-b-PBLK(13) (g) and PBLK(20) (h) treated MRSA biofilm at t = 0 min, 30 min, and 3 h. Biofilms were stained with Live/Dead BacLight™ kit.
The block co-beta-peptide (PDGu(7)-b-PBLK(13)) demonstrates excellent bactericidal efficacy against all MRSA sub-populations, i.e. replicating, biofilm-associated, and antibiotic-induced persister bacteria. It is active against CA-MRSA (USA300) and numerous other MDR HA-MRSA. The cationic block co-beta-peptide undergoes a bacterial-membrane-triggered conformation change from a random coil to likely a helix. Its antibacterial activity in established MRSA murine infection models is superior to that of vancomycin, and it exhibits no acute in vivo toxicity in repeated dosing studies at levels above those required for therapeutic efficacy. Further, the copolymer effectively eradicates established MRSA infections in an ex vivo human skin model. It also kills biofilm bacteria while effectively dispersing the biofilm mass of CA-MRSA; it also shows efficacy against the major types of biofilms formed by HA-MRSA. It acts as a bacteria-triggered surfactant leading to biofilm dispersal. As resistance toward all classes of antibiotics rapidly evolves and spreads, the outstanding efficacy of PDGu(7)-b-PBLK(13) against S. aureus persisters and biofilms, as well as its excellent safety window, makes this block co-beta-peptide a valuable candidate to treat MRSA infections.

Methods
General procedure for the polymerization of \(\beta \)-lactams. In a nitrogen-purged glovebox, a mixture of two \(\beta \)-lactams (BLK and DGu) dissolved in tetrahydrofuran with a defined molar ratio was placed into a Schlenk tube equipped with a magnetic stirrer (Fig. 1a). Then, 4-t-butylbenzoyl chloride (tBuBzCl, 5 mol% with respect to the total amount of \(\beta \)-lactams) was added. The Schlenk tube was sealed, removed from the glove box, and cooled to \(-30^\circ C\) under argon atmosphere. To the stirring reaction solution was then slowly added a premade stock solution of lithium bis(trimethylsilyl)amide (LiHMDS, 12.5 mol% with respect to...
Fig. 6 PDGu(7)-b-PBLK(13) is efficacious in vivo against MRSA USA300 with no toxicity.

a In vivo repetitive toxicity of daily 10 mg kg$^{-1}$ i.v. injection of PDGu(7)-b-PBLK(13) for 7 consecutive days.

- Mice weight (left y-axis) and cumulative dosage (right y-axis) over 14 days.
- ALT and AST biomarker changes at $t=0$ and 7 days. Data are presented as mean ± standard deviation.
- Survival% and bacteria log reduction in liver in a systemic infection model. Vehicle alone (–), PDGu(7)-b-PBLK(13), or vancomycin control at 5 mg kg$^{-1}$ were applied at a single dose, 2-h post infection.
- In vivo antimicrobial activity of PDGu(7)-b-PBLK(13) against MRSA USA300 in a deep-seated neutropenic thigh infection model. First treatment was applied 24-h post infection at 20 mg kg$^{-1}$, with a second dose at 20 mg kg$^{-1}$ applied 3 h later.
- In vivo antimicrobial activity of PDGu(7)-b-PBLK(13) against MRSA USA300 in an established murine excision wound model. Vehicle alone (–), PDGu(7)-b-PBLK(13), or vancomycin control at the same dosing (i.e. 2.5 mg kg$^{-1}$) were applied six times over 2 days, starting 72-h post infection.
- Ex vivo antimicrobial activity of PDGu(7)-b-PBLK(13) against MRSA USA300 in an established wounded human skin model. Vehicle alone (–), PDGu(7)-b-PBLK(13), or vancomycin control at 100 µg were applied three times with 3-h interval between treatments, starting 48 h post infection; **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 by one-way ANOVA followed by Dunnett test.
the total amount of β-lactam). The resulting mixture was stirred at −30 °C for about 8 h until the reaction was finished (monitored by TLC) and was then quenched with methanol. After completion, a white solid was precipitated by adding hexane (40 mL). The mixture was centrifuged and the supernatant solution was decanted. After two more repetitions of the precipitation/centrifugation procedure, the white pellet was dried overnight under a nitrogen stream to yield the protected product PDGup(10)(x)-b-PBLK(y) as a white powder.

General procedure for the debenzylation of PDGup(10)(x)-b-PBLK(y). Polymer PDGup(10)(x)-b-PBLK(y) (145 mg) and 54 mg (0.48 mmol, ~1.2 equiv. to monomers) of potassium tert-butoxide (KOR-Bu) were dissolved in 5.0 mL of tetrahydrofuran. The polymer solution was added dropwise to a rapidly stirred solution of sodium (160 mg, 7.0 mmol) in liquid ammonia (15 mL) at −78 °C under nitrogen. The reaction mixture was warmed to −55 °C and maintained at this temperature for about 2 h, after which a saturated aqueous solution of ammonium chloride (NH4Cl, 10 mL) was added to quench the reaction. The solution was warmed to room temperature in a water bath to evaporate the ammonia. The resulting clear solution was filtered, washed with DI water, and dialyzed with 1000 MWCO tubing for 36 h with ten water changes. After lyophilization, PDGup(7)(x)-b-PBLK(13) was obtained as an amorphous white solid. Copolymers (PDGup(10)(x)-b-PBLK(y)) with other design block lengths (x, y) were synthesized by a similar procedure.

Reaction kinetics studies. High-performance liquid chromatography (HPLC) was employed to determine β-lactam consumption. For these measurements, a series of reactions were performed under identical conditions (temperature: −30 °C, β-lactam concentration: [DGP]0 = 0.05 M, [BLK]0 = 0.05 M, initiator [LiHMDS] = 0.0125 M) but quenched at different times. After purification by flash column chromatography, concentrated reaction mixtures were mixed with a certain amount of paraben (internal standard) and diluted with acetonitrile to the final concentration of 100 mg/mL. The mixture was centrifuged and the supernatant solution was injected into a Shimadzu LC-20AD HPLC workstation equipped with an IB column. Monomer concentration was calculated from the peak area ratio relative to a known amount of internal standard. GPC curves were determined versus poly(ethylene glycol) standards using dimethylformamide (1 mg/mL). Light (L) as the eluent at a flow rate of 1.0 mL min⁻¹ through two Styragel columns (HR5 and HR5E, 7.8 × 300 mm in series) at 40 °C with a refractive index detector.

Bacterial strains. All bacteria strains of Table 2, Strains #1–17 of Table 3, and all bacteria strains of Fig. 5 were purchased from ATCC. Vancomycin-resistant S. aureus (Strains #1–7 of Table 3) were kindly provided by Prof. Barry N. Kreiswirth and Dr. José R. Medavida from the Center for Discovery and Innovation, Hackensack Meridian Health (USA). Daptomycin non-susceptible vancomycin-intermediate MRSA (Strains #8 and 9 of Table 3) were kindly provided by BD Diagnostics. Strain #10 of Table 3 was kindly provided by Dr. Adriana Rosato from the Houston Methodist Research Institute (USA). Strains #11–13 of Table 3 were kindly provided by Tan Tock Seng Hospital (TTSH, Singapore).

Microscopic studies. The morphological characteristics of the three VISA strains from local hospital (Strains #11–13 of Table 3) were conducted. Overnight culture from single colony was washed with 10 mM Tris buffer, resuspended in 800 µL of lysis buffer containing 5 mg mL⁻¹ lysozyme, 10 mM EDTA, and 10 mM Tris. After 1 h incubation at 37 °C with shaking, the suspension was heated to 95 °C for 10 min and subsequently treated with ice. 1 mL of ice-cold phenol/chloroform/isomyl alcohol (25:24:1) was added and mixed thoroughly by inverting the tubes five times, followed by incubation for 5 min on ice. After centrifugation at 20,000 × g for 20 min, the aqueous layer was transferred to a fresh tube and DNA was precipitated by adding 1 mL of ice-cold ethanol, followed by incubation for 15 min on ice. The DNA precipitation was centrifuged, pelleted once with ice-cold 70% ethanol, and resuspended in 50 µL of water. The extracted DNA were amplified by PCR using Novagen KOD Hot Start DNA Polymerase, and the amplified products were sequenced by Sanger sequencing. The obtained sequence was submitted to MLST database (http://www.mlst.net/) to obtain the sequence type (ST).
for 0.5 or 1.5 h, and stained with PI (L13152 Invitrogen). Samples were washed twice and resuspended in PBS to 10⁷ CFU mL⁻¹ and analyzed using flow cytometry (BD Accuri C6 plus). Data are plotted as normalized histogram of fluorescence intensity from FL3 channel. For DsRed5 membrane depolarization assay, log-bacteria were established under high-salt conditions using TSB (200 µL). MBEC pegs were exposed to the polymer for 3.5 h, and subsequently washed twice and resuspended in PBS to 10⁷ CFU mL⁻¹. For confocal imaging, 24-h preformed biofilm was stained with BacLight™ live/dead kit. Polymer in PBS solution (32 µg mL⁻¹ in 5 mM HEPES buffer (pH 7.8) containing 20 mM glucose and 0.1 M KCl DsRed5 solution was added to bacteria suspension to achieve a final concentration of 100 nM and allowed to quench for 60 min. Polymer solution was added to achieve the desired concentration in a black 96-well plate (Costar). Fluorescence readings were recorded 5 min after polymer addition with a Tecan reader at an excitation wavelength of 622 nm and an emission wavelength of 670 nm.

Biofilm assays. A total of 150 µL of MRSA USA300 bacteria in tryptic soy broth (TSB) containing 1% glucose (initial inoculum of 10⁷ CFU per well) was added into each well of an MBEC plate (Innovotech, Canada). After 24 h of incubation at 37 °C under mild shaking, the pegs were washed twice using 200 µL of PBS and transferred to a 96-well plate containing a twofold dilution series of polymer in PBS (200 µL per well). MBEc pegs were exposed to the polymer for 3.5 h, and subsequently washed before sonication-releasing the biofilm bacteria into the recovery plate for CFU counting. For FESEM imaging of pegs, untreated control and copolymer-treated (64 µg mL⁻¹) pegs were removed aseptically, fixed with 4% paraformaldehyde at 4 °C overnight, and dehydrated using a graded ethanol series. For confocal imaging, 24-h preformed biofilm was established in a collagen-coated glass-bottom Petri dish (MatTek). Biofilm was stained with BacLight™ live/dead kit. Polymer in PBS solution (32 µg mL⁻¹) was dropwise added to avoid physical disturbances to biofilm and confocal images were taken immediately after polymer addition and at defined times thereafter. For biofilms formed with poly-saccharide intercellular adhesion, various strains of HA-MRSA and MRSE biofilms were established under high-salt conditions using TSB 4% NaCl.

Secondary structure study. Polymers were dissolved at 0.05 mg mL⁻¹ in different media, i.e. DI water, 10 mM phosphate buffer (pH 2.6–8.7), 20 mM carbonate buffer (pH 10.8) and in the presence of 1 mg mL⁻¹ POPG or POPC liposomes. (For the POPG liposomes, the polyampholyte (PL) molar ratios of PBLK(10), PDOG(7)-PBLK(13), and PDOG(7)-B-PBLK(13) are 1:7.9, 1:8.3, and 1:9, respectively.) CD spectra were measured from 190 to 260 nm with 0.5-nm step size, with each measurement performed twice. The final data are presented as the mean values after background extraction.

Mouse model of MRSA USA300 infection and in vivo toxicity. The animal experiments were reviewed and approved by the Animal Ethics and Welfare Committee (AEWC) of Ningbo University. A single 5-mm-diameter excision wound was created on female Balb/c via tail vein daily for 7 days. Clinical biomarkers were recorded before, during and after treatment. For survival test, mice were monitored up to 14 days post-infection, 10 mg kg⁻¹ of vancomycin, or copolymer were applied three times. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding authors on request. The source data underlying Figs. 4e, 5a–f, 6a and 6d–g, Supplementary Fig. 37a–d and Supplementary Table 3 are provided in the Source Data file.

Received: 3 December 2018; Accepted: 19 September 2019;
Published online: 21 October 2019

References
1. Foster, T. J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 41, 430–449 (2017).
2. Conlon, B. P. et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat. Microbiol. 1, 16051 (2016).
3. Foster, T. J., Geoghegan, J. A., Ganesh, V. K. & Höök, M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12, 49 (2014).
4. Homs, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4288 (2016).
5. Conlon, B. P., Rowe, S. E. & Lewis, K. in Biofilm-Based Healthcare-Associated Infections 1–9 (Springer, 2015).
6. Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persisters cells. Nat. Rev. Microbiol. 15, 453 (2017).
7. Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).
8. Organization, W. H. Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics (World Health Organization, Geneva, 2017).
9. Control, C. f. D. & Prevention. Antibiotic Resistance Threats in the United States, 2013. (Centres for Disease Control and Prevention, US Department of Health and Human Services, 2013).
10. Organization, W. H. Antimicrobial Resistance: Global Report on Surveillance (World Health Organization, 2014).
11. DeLeo, F. R., Otto, M., Kreiswirth, B. N. & Chambers, H. F. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557–1568 (2010).
12. Dantes, R. et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern. Med. 173, 1970–1978 (2013).
13. Van Hal, S. J. et al. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev. 25, 362–386 (2012).
14. Daum, R. S. Skin and soft-tissue infections caused by meticillin-resistant Staphylococcus aureus. New Engl. J. Med. 357, 380–390 (2007).
15. Boucher, H., Miller, L. G. & Rutanen, R. S. Serious infections caused by meticillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 51, S183–S197 (2010).
16. Klein, E. Y. et al. Trends in methicillin-resistant Staphylococcus aureus hospitalizations in the United States, 2010-2014. Clin. Infect. Dis. 65, 2013 (2017).
17. Rose, W. E. & Poppens, P. T. Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus. J. Antimicrob. Chemother. 63, 485–488 (2008).
18. Kim, W. et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556, 103–107 (2018).
19. de Broij, A. et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 10, eaan4044 (2018).
20. Dostert, M., Belanger, C. R. & Hancock, R. E. Design and assessment of anti-biofilm peptides: steps toward clinical application. J. Infect. Med. 11, 1–12 (2018).
21. Avan, I., Hall, C. D. & Katritsky, A. R. Peptidomimetics via modifications of β amino acids and peptide bonds. Chem. Soc. Rev. 43, 3575–3594 (2014).
22. Chongsrirawatna, N. P. et al. Peptides that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc. Natl. Acad. Sci. USA 105, 2794–2799 (2008).
23. Porter, E. A., Wang, X., Lee, H.-S., Weisblum, B. & Gellman, S. H. Antibiotics—non-haemolytic β-amino-acid oligomers. Nature 404, 565 (2000).
24. Wu, H. et al. Design and synthesis of unprecedented cyclic γ-APeptides for antimicrobial development. Chem. Sci. 3, 2570–2575 (2012).
25. Radzishovsky, I. S. et al. Improved antimicrobial peptides based on acyl-lysine oligomers. Nat. Biotechnol. 25, 657 (2007).
26. Seebach, D. et al. Biological and pharmacokinetic studies with β-peptides. CHIMIA International. J. Chem. 52, 734–739 (1998).
27. Hintermann, T. & Seebach, D. The biological stability of β-peptides: no interactions between α- and β-peptide structures? CHIMIA International. J. Chem. 51, 244–247 (1997).
34. Nadithe, V. et al. Screening nylon-3 polymers, a new class of cationic antimicrobial peptides. J. Am. Chem. Soc. 124, 7533–7535 (2002).

35. Sparr, C. et al. Improved efficiency of fosmidomycin against Plasmodium and Mycobacterium tuberculosis species by combination with the cell-penetrating peptide octaarginine. Antimicrob. Agents Chemother. 57, 4689–4698 (2013).

36. Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37 (2011).

37. Cheng, R. P., Gellman, S. H. & DeGrado, W. F. β-Peptides: from structure to function. Chem. Rev. 101, 3219–3222 (2001).

38. Seebach, D. & Gardiner, J. β-Peptidic peptide mimetics. Acc. Chem. Res. 41, 1366–1375 (2008).

39. Appella, D. H. et al. Targeting diverse protein–protein interaction interfaces with αβ- peptides derived from the Z-domain scaffold. Proc. Natl. Acad. Sci. USA 112, 4552–4557 (2015).

40. Lee, J. H. et al. Mimicry of antimicrobial host-defense peptides by cationic α-peptide amphiphiles, for siRNA delivery. Mol. Pharm. 12, 362–374 (2014).

41. Fernandez-Santin, J., Aymamí, J., Rodríguez-Galán, A., Munoz-Guerra, S. & Callejas, J. Construction of αβ3-helical αβ-peptides: CD spectra in aqueous solution. Biochemistry 47, 5116–5123 (2008).

42. Epand, R. F., Raguse, L., Gellman, S. H. & Epand, R. M. Antimicrobial 14-β-helical β-peptides: potent bilayer disrupting agents. Biochemistry 43, 9527–9535 (2004).

43. Webb, A. I. et al. T cell determinants incorporating β-amino acid residues are protease resistant and remain immunogenic in vivo. J. Immunol. 175, 3810–3818 (2005).

44. Mowery, B. P. et al. Mimicry of antimicrobial host-defense peptides by random copolymers. J. Am. Chem. Soc. 129, 15474–15476 (2007).

45. Mowery, B. P., Lindner, A. H., Weisblum, B., Stahl, S. S. & Gellman, S. H. Structure—activity relationships among random αβ3-copolymers that mimic antibacterial host-defense peptides. J. Am. Chem. Soc. 131, 9735–9745 (2009).

46. Liu, R. et al. Structure–activity relationships among antimicrobial αβ3-polymers: identification of materials active against drug-resistant strains of Candida albicans. J. Am. Chem. Soc. 136, 4333–4342 (2014).

47. Liu, R. et al. Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern. J. Am. Chem. Soc. 136, 4410–4418 (2014).

48. Kretz, J. A. et al. Relationship between side chain structure and 14-helix stability of β3-peptides in water. J. Am. Chem. Soc. 127, 167–178 (2005).

49. Brown, L., Wolf, J. M., Prados-Rosas, R. & Casadevall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620 (2015).

50. McGurrin, J., Poggioli, N. & Silverman, I. Daptomycin mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J. Bacteriol. 194, 4494–4504 (2012).

51. O’Halloran, D. P., McCourt, J., Geoghegan, J. A., McCarthy, H. & O’Gara, J. P. Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol. Lett. 353, 157–164 (2014).

52. Vergara-Irigaray, M. et al. Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect. Immun. 77, 3978–3991 (2009).

53. Formosa-Dugue, C. et al. Sticky matrix: adhesion mechanism of the staphylococcal polysaccharide intercellular adselin. ACS Nano 10, 3443–3452 (2016).

54. Rohde, H. et al. Polysaccharide intercellular adhesion or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomater. 28, 1713–1720 (2007).

55. Yu, C. et al. Polysaccharide intercellular adhesion (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 6, 269–275 (2004).

56. Cranston, S. E., Gerke, C., Schnell, N. F., Nichols, W. W. & Götz, F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67, 5427–5433 (1999).

57. Zapotoczna, M., O’Neill, E. & O’Gara, J. P. Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation. PLoS Pathog. 12, e1005871 (2016).

58. Conlon, B. et al. Killing persisters cells and eradicating a biofilm infection by activating the ClpP protease. Nature 503, 365 (2012).

59. Percival, S. L. et al. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 20, 647–657 (2012).

60. Roche, E. D., Renick, P. J., Tetens, S. P. & Carson, D. L. A model for evaluating topical antimicrobial efficacy against methicillin-resistant Staphylococcus aureus biofilms in superficial wound murines. Antimicrob. Agents Chemother. 56, 4508–4510 (2012).

61. Matsuoka, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 1788, 1687–1692 (2009).

62. Manara-gadoo-Catin, M., Ali-Cherif, A., Pougras, J.-L. & Perrin, C. Hemolysis by surfactants—a review. Adv. Colloid Interface Sci. 228, 1–16 (2016).

63. Ko, H., Allan, R. N., Howlin, R. P., Stoddley, P. & Hall-Stoddley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740 (2017).

64. Busscher, H. J. et al. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci. Transl. Med. 4, 153sr10 (2012).

65. Mottola, C. et al. Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections. BMC Microbiol. 16, 119 (2016).

66. Mohamed, M. M. & Seleem, M. N. Efficacy of short novel antimicrobial and anti-inflammatory peptides in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) skin infection. Drug Des. Devel. Ther. 8, 1979 (2014).

67. McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39 (2012).

68. Segev-Zarko, L.-a, Saar-Dover, R., Brumfeld, V., Mangoni, M. L. & Shai, Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 468, 259–270 (2015).

69. Li, J. et al. Block copolymer nanoparticles remove biofilms of drug-resistant gram-positive bacteria by nanoscale bacterial degradation. Nano Lett. 18, 4180–4187 (2018).

70. Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397–409 (2018).

71. Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aa3292 (2016).

Acknowledgements
We thank Dr. Adriana Rosato for generously sharing strain 6820. We thank Prof. Angela Gründling and Dr. Moon Tae for their scientific discussions on the manuscript. We thank the funding support from a Singapore Ministry of Education Tier 3 grant (MOE2013-T3-1-004) and a Singapore Ministry of Health Industry Alignment Fund (NMRC/MOHIAF/CAT2/003/2014).

Author contributions
K.Z., Y.D., K.P., and M.B.C. conceived the project and wrote the manuscript. Y.D., Z.S., and C.R. synthesized the polymers. K.Z., S.R., and I.R. conducted the in vitro biological tests. K.Z., S.J., and D.K. conducted the in vivo tests. K.Z. and M.E.T. conducted the ex vivo human skin test. Y.I. conducted the computer simulation study. K.P. and M.B.C. supervised and guided the overall research. M.B.C. and G.C.B. guided chemical synthesis. J.R. and Y.Z. supervised the in vivo toxicity tests. Y.M. supervised the biological tests. K.Z., S.J., and D.K. conducted the in vivo tests. K.Z. and M.E.T. conducted the ex vivo human skin test. Y.I. conducted the computer simulation study.
the computer simulation study. K.C.T. supervised the physical property study. K.M., P.P.D., and O.N. isolated and provided strains from local hospital TTSH and provided useful suggestions. J.R.M. and B.N.K. isolated relevant vancomycin-resistant MRSA strains and conducted the susceptibility tests. H.D., X.L., Y.R.C., and P.T.H participated in the supervision of the project. All authors discussed the results and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-12702-8.

Correspondence and requests for materials should be addressed to K.P. or M.B.C.-P.

Peer review information Nature Communications thanks Timothy Foster and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019