An investigation on suspended solids sources in urban stormwater runoff using ^{7}Be and ^{210}Pb as tracers
Chengqing Yin and Liqing Li

ABSTRACT
Radionuclides ^{7}Be and ^{210}Pb were used as tracers to identify suspended solid sources and transport pathways in the storm runoff events from urban catchments. Water samples were collected in runoff of storm events in Wuhan City, China. Suspended solids, COD, TN, TP, and the ^{7}Be and ^{210}Pb activities in the suspended solids were analyzed. Following the pathway of urban runoff pollution, the rain precipitation, urban ground dust, gutter sediments, and sewer deposit samples were analyzed for ^{7}Be and ^{210}Pb activities. The results show that the $^{7}\text{Be}/^{210}\text{Pb}$ ratio decreased through the system from a value of 0.86 \pm 0.44 in ground dust, to 0.63 \pm 0.18 in suspended solids in storm runoff from the sewer outlet, to 0.55 \pm 0.31 in gutter sediments, and to 0.41 \pm 0.13 in combined sewer deposits. The $^{7}\text{Be}/^{210}\text{Pb}$ ratio decrease suggests that 60 \pm 12% of suspended solids at sewer outlet originated from the drainage system sediments, the rest was from the wash-off of urban ground dust during the rainfall events. The ^{7}Be and ^{210}Pb trace approach can give insight into the short-term source and transport of pollutant during storm runoff in urban drainage systems and it can help to develop management strategies.

Key words | beryllium-7, combined sewer, lead-210, suspended solid sources, urban runoff

INTRODUCTION
Identification of sediment transport and source in a watershed is fundamental to developing management strategies for sediments and sediment-bound nutrients and contaminants. A discrimination of sediment sources can be achieved from mass balancing tracers (Wallbrink et al. 1998).

Beryllium-7, cesium-137, and lead-210 are deposited on the earth's surface through wet and dry fallout. However, because of differences in the decay-rate and delivery history, each radionuclide is distributed differently in the soil (Matisoff et al. 2002a). Therefore, sediments derived from a soil will have a unique radionuclide signature corresponding to the land use and the depth of erosion (Whiting et al. 2001). Several studies used the above radionuclides as tracers to identify the fingerprint characteristics in sediment erosion sources from agricultural watersheds (Walling et al. 1999; Matisoff et al. 2005; Whiting et al. 2005).

In urban area, suspended solids are major pollutants in storm runoff, and they are identified as one of the major causes of the deterioration of receiving waters (Novotny & Olem 1994). In the most polluted first flush, it was found that many pollutants are in the particulate forms and are associated with suspended solids. In urban areas with combined sewer system, the storm runoff contains large amounts of suspended solids and adsorbed pollutants, and can have a significant oxygen demand or toxic impact on water ecosystems (Skipworth et al. 2000). There is a fundamental need to identify the main sources of suspended solids and associated pollutants in storm runoff from urban areas and to develop management strategies for receiving waters. The re-suspension of sediments in the combined sewer systems plays an important role in transport of storm runoff pollution (Chebbo et al. 2001, 2003; Gromaire et al. 2001). However, little was known about the transport paths...
and sources of suspended solids in storm runoff from urban areas because of the limitation of study methods.

The objective of this study is trying to use 7Be and 210Pb as tracers to identify the sources and transport pathways of suspended solids in storm runoff from urban catchments with combined sewer systems.

The principle of 7Be and 210Pb as a tracer of sediments in urban area

Beryllium-7 is a naturally occurring radionuclide and it is produced continuously in the upper atmosphere by cosmic ray spallation of nitrogen and oxygen. Beryllium-7 is a short-lived radionuclide with $t_{1/2}$ of 53.3 d. It reaches the earth’s surface mostly through wet fallout, especially from thunderstorms that scrub 7Be from the stratosphere. In the precipitation and runoff process, 7Be is adsorbed to particulates with K_d approximately 10^4 – 10^6 (Hawley et al. 1986; Matisoff et al. 2002a, b).

Lead-210 is a long-lived radionuclide with $t_{1/2}$ of 22.3 years. It is naturally produced as a decay product of 238U ($t_{1/2} = 4.5 \times 10^5$ years). Uranium-238 decays through a series of short-lived nuclides to 226Ra ($t_{1/2} = 1,600$ years), and 226Ra in turn decays to the noble gas 222Rn ($t_{1/2} = 3.83$ days). Some 222Rn escapes to the atmosphere, where it decays through a series of short-lived nuclides to 210Pb. A portion of 222Rn produced from the decay of 238U does not escape to the atmosphere and it results in an in situ produced level of 210Pb, referred to as ‘supported’ 210Pb. The atmospherically derived 210Pb, or ‘excess’ 210Pb (210Pb$_{ex}$), is washed from the atmosphere and delivered to the earth’s surface through both wet and dry fallout and sorbs strongly to particulate matter. Thus the total activity of 210Pb in soils = 210Pb$_{ex}$ + supported 210Pb, where supported 210Pb = 226Ra.

In order to understand the particulate wash-off, sediment transport and sediment sources, it is very helpful if a particle-bound and radioactive tracer with a suitable half-life could be employed. Both 7Be and 210Pb are delivered continuously to the land by atmospheric fallout where they become strongly bound to particulate matter. Thus, the activities of 7Be and 210Pb in suspended sediments are a measure of the time since the surface particles were tagged by sorption of these radioactive tracers. In this study, 7Be and 210Pb were used as tracers to identify and characterize suspended solids transport and sources in storm runoff from urban area.

In urban catchments with combined sewer systems, surface and sewer sediment transport process can be depicted as in Figure 1. On wet weather days, urban ground dusts or particles are washed off by rain-runoff, and transported in the combined sewer networks. In this transport process, the sediments originally deposited in gutter drains and combined sewer systems are resuspended and eroded due to the increased flow velocities during the storm events. Thus, the sediments in the sewer outlet may have different sources, such as urban ground dusts and drainage sewer sediments.

Decreases in the 7Be/210Pb ratio in urban sediment transport processes are suggested by two ways (Matisoff et al. 2005). First, the decrease in the 7Be/210Pb ratio in sediments may reflect an increase in the time since the sediment was tagged with atmospherically derived 7Be with 7Be decaying much faster than 210Pb. Alternatively, a decrease in this ratio can be caused by dilution of 7Be-rich sediment with 7Be-deficient sediment. For the first reason, lower values of 7Be/210Pb ratio can occur when the sediment gets ‘older’, such as in the combined sewer. Consequently, the 7Be/210Pb ratio is able to trace the urban sediment transport and give insight into the relative contribution of urban ground and sewer to suspended solids of stormwater runoff measured at catchment sewer outlet.

MATERIALS AND METHODS

This study was conducted on three urban catchments, i.e. Shilipu, Wulidun and Qilimiao, which drained to Moshuihu Lake in Wuhan City. More detailed research was performed on the Shilipu catchment with 130 ha urban area. It is an old residential area with some small businesses and almost no industrial activities. Around 85% of the land is impervious. The population density is 130 inhabitants per hectare. Sewage and stormwater are combined and discharged into the lake directly. The sewer network includes five circular concrete trunks. Presently, this district is planning to reconstruct the water discharge...
Sanitary sewage is being intercepted to a wastewater treatment plant, and the storm water management is of great concern.

Four types of sediments which are likely to be the potential sources of suspended solids in stormwater runoff were sampled at the catchment. Urban ground dusts were sampled from 9 sites with different land uses by a vacuum cleaner. Sediment samples from 13 gutters were collected using a shovel. Sediment samples were collected from 5 sewage sewer sites and 6 combined sewer sites in concrete trunks. The samples were dried at 60°C, ground to a fine consistency, weighed and stored in plastic boxes for measuring 7Be and 210Pb.

Urban stormwater runoff from the catchments was monitored at the combined drainage outlet during 2003 to 2006. Two storm events of 25.5 mm precipitation on 24 June and 85.0 mm precipitation on 9 July 2006 were studied and water samples were collected for investigating the suspended solid sources. At the beginning of a rainfall, samples were collected at 10 min interval and later the sampling interval was increased to 20 min. The runoff flow rates were continuously measured through a rectangular weir constructed by the outlet of combined sewer and calculated by the velocity and cross section area.

Simultaneously, the total suspended solids samples were taken to measure the 7Be and 137Pb by collecting abundant runoff water. Approximate 25 L of storm runoff water was taken and stored in 30 L polyethylene buckets. The water samples were settled and centrifuged to get the suspended solids. The particulate matter from the centrifuge was dried at 60°C, ground to a fine consistency, weighed and stored in plastic boxes for 7Be and 210Pb activity measurements.

Total suspended solids (TSS) and chemical oxygen demand (COD) were measured according to *Standard Methods for the Examination of Water and Wastewater* (1998). Water samples were filtered with 0.45 μm pore-size glassfiber filters. The filtered and unfiltered water samples were digested with K$_2$S$_2$O$_7$ solution for determination of dissolved and total nitrogen and phosphorus concentrations (*Ebina et al.* 1983).

All the collected sediment samples were placed into plastic boxes (φ7.5 mm, H7.0 mm) for analysis by gamma spectroscopy for 210Pb (465.52 keV), 7Be (477.56 keV) and 214Bi (609.3 keV). An HPGe gamma detector was used for the radionuclide analysis. Samples were first counted for 8–12 hours to measure the 7Be activities. After that samples were sealed for more than four weeks to allow secular equilibrium in growth of gaseous 222Rn ($t_{1/2} = 3.85$ days) from the decay of its 226Ra ($t_{1/2} = 1,600$ years) parent. The activity of this supported 210Pb was determined from the activity of the 214Bi parent. Samples also were counted for
8–12 hours to measure the ^{210}Pb and ^{214}Bi. Standards were prepared using the same geometries as the samples. Counting efficiencies were established using a mixed radionuclide standards and were interpolated for the energy of the ^7Be emission since these standards do not contain ^7Be. All measured counts were corrected for background levels, branching ratios and decay, and were then divided by their respective sample weights and reported as activity per gram.

RESULTS AND DISCUSSION

Activities of ^7Be and ^{210}Pb in different sediment sources from the urban catchments

The specific activities of ^7Be and ^{210}Pb in urban ground dust, gutter sediments, sewage sewer sediments, and combined sewer sediments are given in Table 1. It was found that the highest values of the ^7Be specific activities were in the urban ground dusts, followed by gutter sediments, combined sewer sediments, and that sewage sewer sediments had the lowest ^7Be specific activities. The highest values of the ^{210}Pb and $^{210}\text{Pb}_{\text{ex}}$ specific activities appeared in the gutter sediments, followed by combined sewer sediments, urban ground dusts, and that sewage sewer sediments had the lowest ^{210}Pb and $^{210}\text{Pb}_{\text{ex}}$ specific activities. The $^{210}\text{Pb}_{\text{ex}}$ activities were almost equal to the ^{210}Pb activities for the four types of urban particles or sediments.

The highest ^7Be specific activities in urban ground dusts can be interpreted as their exposure to the ^7Be atmospheric fallout. The lowest ^7Be specific activity in the sewage sediments is because of their biological origin. Compared to the other kinds of sediments, the low ^7Be and ^{210}Pb specific activities in combined sewer sediments are as a result of the dilution of ^7Be and ^{210}Pb in the sewer.

Although there were to some extent differences among the four types of sediments, neither ^7Be nor ^{210}Pb or $^{210}\text{Pb}_{\text{ex}}$ is able to effectively differentiate the four types of sediments except the sewage sewer sediments. The reason is probably because of the preferential movement of the fine particles, which adsorb most of Be and Pb isotopes, during the flowing process. However, the $^7\text{Be}/^{210}\text{Pb}$ ratio was expected to be able to differentiate the four types of sediments (Table 1) and this ratio is less variable than either of the two isotopes individually. It can be noticed that the $^7\text{Be}/^{210}\text{Pb}$ ratio decreased through the system from a value of 0.86 in the urban ground dusts, to 0.55 in gutter sediments, to 0.41 in combined sewer sediments. Each of these groups has $^7\text{Be}/^{210}\text{Pb}$ ratios that are significantly distinct from each other. This trend can be interpreted as the combination of age increase and dilution effect in the transportation process through the system. Consequently, the $^7\text{Be}/^{210}\text{Pb}$ ratio can be employed as an indicator to differentiate the urban ground dust and combined sewer sediments which is one of the major source of suspended solids of stormwater runoff and identify their relative contribution.

The **temporal pattern of the $^7\text{Be}^{210}\text{Pb}$ ratio in suspended solids during the storm events**

The temporal patterns of flow rate, suspended solids concentration, and $^7\text{Be}/^{210}\text{Pb}$ ratio are shown in Figure 2 for the 25.5 mm storm event on 24 June 2006. With the flow rate increase, the suspended solids concentration increased rapidly, and maximum measured suspended solid concentration occurred immediately prior to peak discharge.

Table 1	The specific activities of ^7Be and ^{210}Pb in urban ground dust, gutter sediments, sewage sewer sediments, and combined sewer sediments				
^7Be (Bq/g)	^7Pb (Bq/g)	$^{210}\text{Pb}_{\text{ex}}$ (Bq/g)	$^7\text{Be}^{210}\text{Pb}$ (Bq/g)	$^7\text{Be}^{210}\text{Pb}_{\text{ex}}$ (Bq/g)	
Rainfall $n = 3$	0.37 ± 0.07	0.11 ± 0.05	0.11 ± 0.05	3.75 ± 1.46	3.75 ± 1.16
Urban ground dust $n = 6$	0.19 ± 0.10	0.25 ± 0.19	0.22 ± 0.19	0.86 ± 0.44	1.41 ± 0.85
Gutter sediment $n = 7$	0.17 ± 0.24	0.34 ± 0.34	0.32 ± 0.34	0.55 ± 0.31	0.74 ± 0.53
Sewage sewer sediment $n = 3$	0.007 ± 0.004	0.12 ± 0.16	0.11 ± 0.15	0.10 ± 0.06	0.16 ± 0.11
Combined sewer sediment $n = 4$	0.13 ± 0.08	0.31 ± 0.10	0.28 ± 0.10	0.41 ± 0.13	0.45 ± 0.13
Suspended solids $n = 18$	0.18 ± 0.07	0.29 ± 0.09	0.28 ± 0.09	0.63 ± 0.18	0.66 ± 0.18
Then suspended solid concentration quickly declined on the hydrograph recession limb. The high peak of suspended solids was associated with the initial runoff. The flow and suspended solid concentration relationship is ascribed to first flush effect, in which the limited supplies of readily available solids were entrained early in the storm, leaving little for transport in the later stage.

The pattern of the $^{7}\text{Be}/^{210}\text{Pb}$ ratio in suspended solids was characterized by the low values in the period with high suspended solid transport. The $^{7}\text{Be}/^{210}\text{Pb}$ ratio ranged from 0.43 to 0.81 with average of 0.65. Similar results were observed on another storm event of 7 July 2006 with 85.0 mm (Figure 3). The $^{7}\text{Be}/^{210}\text{Pb}$ ratio ranged from 0.31 to 0.93 with average of 0.61. The decreasing $^{7}\text{Be}/^{210}\text{Pb}$ ratio during solids transport from urban ground to sewer outlet could be interpreted as the addition of the low $^{7}\text{Be}/^{210}\text{Pb}$ ratio sediments. The results indicated that the sources of the suspended solids were variable in time of a storm event. Significant amounts of solids in the transport were likely to originate from the combined sewer deposit typified by low values of the $^{7}\text{Be}/^{210}\text{Pb}$ ratio. It can be mobilized due to the increased flow velocities. Consequently, in addition to urban ground dust, drainage system deposits including gutter sediments and combined sewer sediments play a significant role as a source of pollutants in combined sewer flows during storm events.

Contribution of the different sources of sediments

Calculations were made to evaluate the contribution of urban ground dusts, gutter sediments, and combined sewer sediments to the total suspended solids output during storm events. Because the $^{7}\text{Be}/^{210}\text{Pb}$ ratios of gutter sediments and combined sewer sediments were close, they were merged into one new type, called drainage system sediments. Thus the contribution of urban ground dusts and drainage system sediments were calculated using the following mixing model:

$$C_s = C_1 \times f_1 + C_2 \times f_2$$ \hspace{1cm} (1)

$$f_1 + f_2 = 1$$ \hspace{1cm} (2)

where C_s is the $^{7}\text{Be}/^{210}\text{Pb}$ ratio in suspended solids in watershed output flow during storm events, C_1 the $^{7}\text{Be}/^{210}\text{Pb}$ ratio in urban ground dusts, C_2 the $^{7}\text{Be}/^{210}\text{Pb}$ ratio in drainage system sediments, f_1 the contribution of urban ground dusts, and f_2 the contribution of drainage system sediments.

According to the data of the two storm events, the calculated results indicated that 60 ± 12% of suspended solids at the sewer outlet originated from the drainage system deposits; the rest was from the wash-off of urban ground dust during the rainfall events.

CONCLUSION

Radionuclides ^{7}Be and ^{210}Pb were used as tracers to identify suspended solid sources and transport pathways in the storm runoff events from the experimental urban catchment. The $^{7}\text{Be}/^{210}\text{Pb}$ ratios decreased though the system from a value of 0.86 ± 0.44 in ground dust, to 0.63 ± 0.18 in suspended...
solids in storm runoff from the sewer outlet, to 0.55 ± 0.31 in gutter sediments, and to 0.41 ± 0.13 in combined sewer deposits. The $^{7}\text{Be}/^{210}\text{Pb}$ ratio decrease suggests that 60 ± 12% of suspended solids at the combined sewer outlet originated from the drainage system sediments including combined sewer deposits and gutter sediments, the rest was from the wash-off of urban ground dust during the rainfall events. The ^{7}Be and ^{210}Pb trace approach can give insight into the short-term source and transport of pollutant during storm runoff in urban drainage systems.

ACKNOWLEDGEMENT

This research work is sponsored by the SLEAC fund 2008.

REFERENCES

Chebbo, G., Ashley, R. M. & Gromarie, M.-C. 2003 The nature and pollutant role of solids at the water sediment interface in combined sewer networks. *Water Sci. Technol.* 47(4), 1–9.

Chebbo, G., Gromaire, M.-C., Ahyerre, M. & Garnaud, S. 2001 Production and transport of urban wet weather pollution in combined sewer systems: the “Marais” experimental urban catchment in Paris. *Urban Water* 3(1–2), 3–15.

Ebina, J., Tsutui, T. & Shirai, T. 1985 Simultaneous determination of total nitrogen and phosphorus in water using peroxodisulfate oxidation. *Water Res.* 17, 1721–1726.

Gromaire, M.-C., Garnaud, S., Saad, M. & Chebbo, G. 2001 Contribution of different sources to the pollution of wet weather flows in combined sewers. *Water Res.* 35(2), 521–533.

Hawley, N., Robbins, J. A. & Eadie, B. J. 1986 The partitioning of 7-beryllium in fresh water. *Geochim. Cosmochim. Acta* 50, 1127–1131.

Matisoff, G., Bonniwell, E. C. & Whiting, P. J. 2002a Soil erosion and sediment sources in an Ohio watershed using beryllium-7, cesium-137, and lead-210. *J. Environ. Qual.* 31(1), 54–61.

Matisoff, G., Bonniwell, E. C. & Whiting, P. J. 2002b Radionuclides as indicators of sediment transport in agricultural watersheds that drain to Lake Erie. *J. Environ. Qual.* 31, 62–72.

Matisoff, G., Wilson, C. G. & Whiting, P. J. 2005 The $^{7}\text{Be}/^{210}\text{Pb}_{eq}$ ratio as an indicator of suspended sediment age or fraction of new sediment in suspension. *Earth Surf. Processes Landforms* 30, 1191–1201.

Novotny, V. & Olem, H. 1994 *Water Quality Prevention, Identification, and Management of Diffuse Pollution*. Van Nostrand Reinhold, New York.

Skipworth, P. J., Tait, S. J. & Saul, A. J. 2000 The first foul flush in combined sewers: an investigation of the causes. *Urban Water* 2(4), 317–325.

Standard Methods for the Examination of Water and Wastewater 1998 20th edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.

Wallbrink, P. J., Olley, J. M., Murray, A. S. & Olive, L. J. 1998 Determining sediment sources and transit times of suspended sediment in the Murrumbidgee River, NSW, Australia using fallout ^{137}Cs and ^{210}Pb. *Water Resour. Res.* 34(4), 879–887.

Walling, D. E., Owens, P. N. & Leeks, G. J. L. 1999 Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. *Hydrol. Process* 13, 955–975.

Whiting, P. J., Bonniwell, E. C. & Matisoff, G. 2001 Depth and areal extent of sheetwash and rill erosion from radionuclides in soils and suspended sediment. *Geology* 29, 1131–1134.

Whiting, P. J., Matisoff, G., Fornes, W. F. & Soster, F. M. 2005 Suspended sediment sources and transport distances in the Yellowstone River basin. *Geol. Soc. Am. Bull.* 117, 515–529.