LEFT ORDERABILITY AND TAUT FOLIATIONS WITH ONE-SIDED BRANCING

BOJUN ZHAO

Abstract. For a closed orientable irreducible 3-manifold M that admits a co-orientable taut foliation with one-sided branching, we show that $\pi_1(M)$ is left orderable.

1. Introduction

The L-space conjecture is proposed by Boyer-Gordon-Watson (cf. [BGW]) and by Juhász (cf. [J]), which states that: for every closed orientable irreducible 3-manifold M, M is a non-L-space if and only if $\pi_1(M)$ is left orderable, and if and only if M admits a co-orientable taut foliation.

In [OS], Ozsváth and Szabó proves that M is a non-L-space if M admits a co-orientable taut foliation (see also [B], [KR]). In [G], Gabai proves that M admits taut foliations if M has positive first Betti number. In [BRW], Boyer, Rolfsen and Wiest proves that $\pi_1(M)$ is left orderable if $b_1(M) > 0$. It’s known that the L-space conjecture holds for every graph manifold, by the works of Boyer-Clay ([BC]), Rasmussen ([R]), and Hanselman-Rasmussen-Rasmussen-Watson ([HRRW]).

The main result in this paper is:

Theorem 1.1. Let M be a connected, closed, orientable, irreducible 3-manifold that admits a co-orientable taut foliation with one-sided branching. Then $\pi_1(M)$ is left orderable. In addition, $\pi_1(M)$ is isomorphic to a subgroup of G_∞.

The group G_∞ (cf. Definition 2.5 for the definition) is shown to be left orderable by Navas ([N]) and is shown to have no nontrivial homomorphism to $\text{Homeo}_+(\mathbb{R})$ by Mann ([Ma]).

Furthermore, we show that

Proposition 1.2. Let L be an oriented, connected, simply connected, non-Hausdorff 1-manifold which has one-sided branching. Without loss of generality, we assume that L has branching in the negative side. Let G be a group acting on L via orientation-preserving homeomorphisms.

(a) Given an embedding $e : \mathbb{R} \to L$ such that $e(-\infty), e(+\infty)$ are ends of L which are negative, positive respectively. Then there is a homomorphism $d : G \to G_\infty$ induced by e.

(b) Fix an embedding $e : \mathbb{R} \to L$ as in (a). Let $h \in G$. Suppose that for arbitrary $n \in \mathbb{R}$, there is $m \in (n, +\infty)$ with $h(e(m)) \neq e(m)$. Then $d(h) \neq 1$.

1.1. Acknowledgements. The author wishes to thank Professor Xingru Zhang for helpful discussions.

2. Preliminary

2.1. 1-manifolds with one-sided branching. Let L be an oriented, connected, simply connected, non-Hausdorff 1-manifold. We call every element of

$$\{\text{path compactification of } L\} - L$$

an end of L. An end t of L is positive (resp. negative) if there is an embedded ray $r : [0, +\infty) \to L$ such that $r(+\infty) = t$ and the increasing orientation on r is consistent with (resp. opposite to) the orientation on L.

1
Definition 2.1. L is said to have one-sided branching if either of the following statements holds:

- L has exactly one positive end and infinitely many negative ends. In this case, L is said to have branching in the negative direction.
- L has exactly one negative end and infinitely many positive ends. In this case, L is said to have branching in the positive direction.

2.2. The three types of foliations. As shown in [C2, Definition 4.41], co-orientable taut foliations in closed 3-manifolds have the following three types:

Definition 2.2. Let F be a co-oriented taut foliation of a closed orientable 3-manifold M. Let $L(F)$ denote the leaf space of the pull-back foliation of F in the universal cover of M (then $L(F)$ is an orientable, connected, simply connected, possibly non-Hausdorff 1-manifold). We assume that $L(F)$ has an orientation induced from the co-orientation on F. Then F has exactly one of the following three types:

(a) F is \mathbb{R}-covered if $L(F)$ is homeomorphic to \mathbb{R}.
(b) F has one-sided branching if $L(F)$ has one-sided branching.
(c) F has two-sided branching if $L(F)$ has infinitely many positive ends and infinitely many negative ends.

For taut foliations, \mathbb{R}-covered is well studied, two-sided branching is the generic case, and one-sided branching has an intermediate role between them.

There are many important examples of taut foliations with one-sided branching. In [Me], Meigniez provides infinitely many taut foliations with one-sided branching in hyperbolic 3-manifolds. See [C1], [F] for more examples and properties of them.

Definition 2.3. Under the assumption of Definition 2.2, the deck transformations of \tilde{M} induces an action of $\pi_1(M)$ on $L(F)$. We call this action the π_1-action on $L(F)$.

2.3. The blowing-up operation on a foliation.

Definition 2.4. Blowing-up a leaf λ of a foliation is to replace λ by a product space $\lambda \times I$ foliated with leaves $\{\lambda \times \{t\} \mid t \in I\}$. And blowing-up a point t in an 1-manifold is to replace it by a closed interval $\{t\} \times I$.

2.4. The group G_∞. We define the group G_∞, which follows from [Ma]:

Definition 2.5. Let $G_\infty = \text{Homeo}_+(\mathbb{R})/\sim$, where \sim is the equivalence relation on $\text{Homeo}_+(\mathbb{R})$ defined by $g \sim f$ if there is $n \in \mathbb{R}$ such that the restrictions of g, f to $[n, +\infty)$ are equal. Henceforth, for every $g \in \text{Homeo}_+(\mathbb{R})$, we will always denote by $[g]$ the image of g under the quotient map $\text{Homeo}_+(\mathbb{R}) \to G_\infty$. We assume that the multiplication on $\text{Homeo}_+(\mathbb{R})$ is given by the left group action, i.e. $fg = f \circ g$. Define $[f] : [g] = [fg] = [f \circ g]$ for all $f, g \in \text{Homeo}_+(\mathbb{R})$. This multiplication is well-defined on G_∞ and makes G_∞ a group.

The following theorem is proved by Navas in [N]:

Theorem 2.6 (Navas). G_∞ is left orderable.

Remark 2.7. In [Ma], Mann proves that the cardinality of G_∞ is equal to the cardinality of $\text{Homeo}_+(\mathbb{R})$, but there exists no nontrivial homomorphism $G_\infty \to \text{Homeo}_+(\mathbb{R})$. See [Ma] for more information about G_∞.

3. The proof of the main theorem

3.1. The group action on an 1-manifold with one-sided branching. Let L be an oriented, connected, simply connected, non-Hausdorff 1-manifold which has one-sided branching, and we
assume that L has branching in the negative direction. Let G be a group acting on L via orientation-preserving homeomorphisms. Let $e : \mathbb{R} \to L$ be an embedding with

$$e(+) = \text{the positive end of } L,$$

$$e(-) \in \{\text{negative ends of } L\}.$$

In this subsection, we prove Proposition 1.2:

Proposition 1.2. (a) There is a homomorphism $d : G \to G_\infty$.

(b) Let $h \in G$. Suppose that for arbitrary $n \in \mathbb{R}$, there is $m \in (n, +\infty)$ with $h(e(m)) \neq e(m)$. Then $d(h) \neq 1$.

Notation. We assume that the action of G on L is a left group action, i.e. for arbitrary $f, g \in G$, we have $fg(x) = f(g(x))$ for every $x \in L$. Henceforth, for arbitrary functions $u : Y \to Z, v : X \to Y$, we will always denote by uv the composition $u \circ v$. For example, given $f, g \in G$, fge will always denote the function $f \circ g \circ e : \mathbb{R} \xrightarrow{e} L \xrightarrow{g} L \xrightarrow{f} L$.

Let $g \in G$. Since $g : L \to L$ is an orientation-preserving homeomorphism, $ge : \mathbb{R} \to L$ is an embedding which also has the properties for e as above. Thus

$$e(+\infty) = ge(+\infty) = \text{the positive end of } L.$$

We can observe that one of the following two possibilities happens:

- $e(\mathbb{R}) = ge(\mathbb{R})$.
- $e(\mathbb{R}) \neq ge(\mathbb{R})$. Then there are $J = (t, +\infty), K = (r, +\infty)$ for some $t, r \in \mathbb{R}$ such that

$$e(J) = ge(K) = e(\mathbb{R}) \cap ge(\mathbb{R}).$$

Thus,

Fact 3.1. Let $H = \{g_1, \ldots, g_n\} \subseteq G$ be a finite subset of G. Let

$$\mu = \bigcap_{1 \leq i \leq n} g_i e(\mathbb{R}).$$

Then $\mu \neq \emptyset$. Moreover, for each $1 \leq i \leq n$, there is $J_i = [t_i, \infty)$ for some $t_i \in \mathbb{R}$ such that $g_i e(J_i) \subseteq \mu$.

Definition 3.2. Let $g \in G$. Let $\mu = e(\mathbb{R}) \cap ge(\mathbb{R})$.

(a) We fix a homeomorphism $g_0 : e(\mathbb{R}) \to ge(\mathbb{R})$ such that the restriction of g_0 to μ is identity.

(b) Let

$$g_* = e^{-1}g_0^{-1}ge : \mathbb{R} \xrightarrow{e} e(\mathbb{R}) \xrightarrow{g} ge(\mathbb{R}) \xrightarrow{g_0^{-1}} e(\mathbb{R}) \xrightarrow{e^{-1}} \mathbb{R}.$$

We define $d(g) = [g_*] \in G_\infty$.

Lemma 3.3. For each $g \in G$, $d(g)$ is independent of the choice of g_0.

Proof. Let $\mu = e(\mathbb{R}) \cap ge(\mathbb{R})$. By Fact 3.1, there is $J = [n, +\infty)$ for some $n \in \mathbb{R}$ such that $e(J), ge(J) \subseteq \mu$. Then the restriction of g_0^{-1} to $ge(J)$ is identity. Thus, $$g_* \lvert J = e^{-1}g_0^{-1}(ge \lvert J) = e^{-1} \cdot (ge \lvert J) = (e^{-1}ge) \lvert J.$$ So $g_* \lvert J$ is independent of the choice of g_0. \hfill \Box

In the following, we prove that $d : G \to G_\infty$ is a homomorphism.

Lemma 3.4. Let $f, g \in G$. Then $d(fg) = d(f)d(g)$.
Proof. We have
\[f \ast g = (e^{-1} f_0^{-1} f e)(e^{-1} g_0^{-1} g e) \]
\[= e^{-1} f_0^{-1} f g_0^{-1} g e, \]
and
\[(f g) \ast = e^{-1} (f g)_0^{-1} f g e. \]

Let \(\mu = e(\mathbb{R}) \cap f e(\mathbb{R}) \cap g e(\mathbb{R}) \cap f g e(\mathbb{R}) \). By Fact 3.1, there is \(J = [t, \infty) \) for some sufficiently large \(t \in \mathbb{R} \) such that
\[e(J), f e(J), g e(J), f g e(J) \subseteq \mu. \]

Notice that the restriction of \(g_0^{-1} \) to \(g e(J) \) is identity, since
\[g e(J) \subseteq \mu \subseteq e(\mathbb{R}) \cap g e(\mathbb{R}). \]

And the restriction of \(f_0^{-1} \) to \(f g e(J) \) is identity, since
\[f g e(J) \subseteq \mu \subseteq e(\mathbb{R}) \cap f e(\mathbb{R}). \]

So
\[(f \ast g) \mid J = e^{-1} f_0^{-1} g_0^{-1} (g e) \mid J \]
\[= e^{-1} f_0^{-1} f - 1 \cdot (g e) \mid J \]
\[= e^{-1} f_0^{-1} (f g e) \mid J \]
\[= e^{-1} \cdot 1 \cdot (f g e) \mid J \]
\[= (e^{-1} f g e) \mid J. \]

Also, the restriction of \((f g)_0^{-1} \) to \(f g e(J) \subseteq \mu \) is identity, since
\[f g e(J) \subseteq \mu \subseteq e(\mathbb{R}) \cap f g e(\mathbb{R}). \]

So
\[(f g) \mid J = e^{-1} (f g)_0^{-1} (f g e) \mid J \]
\[= e^{-1} \cdot 1 \cdot (f g e) \mid J \]
\[= (e^{-1} f g e) \mid J. \]

It follows that
\[(f \ast g) \mid J = (e^{-1} f g e) \mid J = (f g) \mid J. \]

By Definition 2.5, we have
\[d(f g) = [(f g) \ast] = [f \ast] g \ast = d(f) d(g). \]

\(\square \)

It remains to show Proposition 1.2 (b). Let \(h \in G \). Now assume that for arbitrary \(n \in \mathbb{R} \), there is \(m \in (n, +\infty) \) with \(h e(m) \neq e(m) \).

Let \(\mu = e(\mathbb{R}) \cap h e(\mathbb{R}) \). By Fact 3.1, there is \(J = [t, +\infty) \) for some \(t \in \mathbb{R} \) such that \(e(J), h e(J) \subseteq \mu \).

By Definition 3.2, \(d(h) = [e^{-1} h_0^{-1} h e] \). Let \(K = [r, +\infty) \) for some \(r \in (t, +\infty) \). By our assumption, there is \(m \in K \) such that \(h e(m) \neq e(m) \). Since \(m \geq r > t \), \(h e(m) \) is contained in \(\mu \), and thus \(h_0^{-1} h e(m) = h e(m) \). Therefore,
\[e^{-1} h_0^{-1} h e(m) = e^{-1} h e(m) \neq e^{-1}(e(m)) = m. \]

So \(e^{-1} h_0^{-1} h e \sim id \) (where \(\sim \) denotes the equivalence relation defined in Definition 2.5). Therefore, \(d(h) \neq 1 \). This completes the proof of Proposition 1.2.
3.2. The proof of Theorem 1.1. Let M be a connected, orientable, irreducible 3-manifold. Suppose that M admits a co-oriented taut foliation \mathcal{F} which has one-sided branching. As shown in [C1, Theorem 2.2.7], we can assume that every leaf of \mathcal{F} is dense. In this subsection, we prove that

Theorem 1.1. $\pi_1(M)$ is left orderable. Furthermore, $\pi_1(M)$ is isomorphic to a subgroup of \mathcal{G}_∞.

Let $G = \pi_1(M)$. Let $p : \widetilde{M} \to M$ be the universal covering of M. Let $\tilde{\mathcal{F}}$ denote the pull-back foliation of \mathcal{F} in \widetilde{M}, and let $L(\tilde{\mathcal{F}})$ denote the leaf space of $\tilde{\mathcal{F}}$. Then $L(\tilde{\mathcal{F}})$ is a non-Hausdorff 1-manifold with one-sided branching. We assume that $L(\tilde{\mathcal{F}})$ has an orientation induced from the co-orientation on \mathcal{F}, and we assume without loss of generality that $L(\tilde{\mathcal{F}})$ has branching in negative side. In the following, for every $g \in G$ and $t \in L(\tilde{\mathcal{F}})$, $g(t)$ will always denote the image of t under the transformation $g : L(\tilde{\mathcal{F}}) \to L(\tilde{\mathcal{F}})$ given by the π_1-action on $L(\tilde{\mathcal{F}})$. And we will not distinguish the leaves of $\tilde{\mathcal{F}}$ and the points in $L(\tilde{\mathcal{F}}).

We first give a quick sketch of the proof of Theorem 1.1 in this paragraph. We blow-up some leaf λ of \mathcal{F} to obtain a new foliation \mathcal{F}_0 with one-sided branching. Let $L(\mathcal{F}_0)$ denote the leaf space of the pull-back foliation of \mathcal{F}_0 in \widetilde{M}. Then we construct an action $\{\alpha_g : L(\mathcal{F}_0) \to L(\mathcal{F}_0) \mid g \in G\}$ of G on $L(\mathcal{F}_0)$ such that some points in $L(\mathcal{F}_0)$ have trivial stabilizer. Considering the action $\{\alpha_g \mid g \in G\}$ on $L(\mathcal{F}_0)$ and choosing some embedding $e : \mathbb{R} \to L(\mathcal{F}_0)$ as in Subsection 3.1, we can obtain an injective homomorphism $G \to \mathcal{G}_\infty$ by Proposition 1.2.

Now we give the details of the proof. Let λ be a leaf of \mathcal{F}, and let $\tilde{\lambda}$ be a component of $p^{-1}(\lambda)$.

Fact 3.5. Let $\rho : \mathbb{R} \to L$ be an arbitrary embedding such that $\rho(+)\infty)$ is the positive end of $L(\tilde{\mathcal{F}})$ and $\rho(-\infty) \in \{\text{negative ends of } L(\tilde{\mathcal{F}})\}$. Let $J = (n, +\infty)$ for some $n \in \mathbb{R}$. Then there is $g \in G$ such that $g(\tilde{\lambda}) \in \rho(J)$.

Proof. Since λ is dense in M, the closure of $\bigcup_{g \in G} g(\tilde{\lambda})$ is $L(\tilde{\mathcal{F}})$. Notice that $\rho(J)$ is an open set in $L(\tilde{\mathcal{F}})$. So $(\bigcup_{g \in G} g(\tilde{\lambda})) \cap \rho(J) \neq \emptyset$. \square

We blow-up the leaf λ of \mathcal{F} to obtain a new foliation \mathcal{F}_0 of M. Let $\tilde{\mathcal{F}}_0$ be the pull-back foliation of \mathcal{F}_0 in \widetilde{M}, and let $L(\mathcal{F}_0)$ denote the leaf space of $\tilde{\mathcal{F}}_0$. Then $L(\mathcal{F}_0)$ is obtained from blowing-up $\{g(\tilde{\lambda}) \mid g \in G\} \subset L(\tilde{\mathcal{F}})$ in $L(\tilde{\mathcal{F}})$, so $L(\mathcal{F}_0)$ is still a non-Hausdorff 1-manifold with one-sided branching. We assume that $L(\mathcal{F}_0)$ has an orientation induced from the orientation on $L(\tilde{\mathcal{F}})$. Now for every $g \in G$, the point $g(\tilde{\lambda}) \subset L(\tilde{\mathcal{F}})$ is replaced by an interval $\{g(\tilde{\lambda})\} \times I$.

We denote by $K = \{g \in G \mid g(\tilde{\lambda}) = \tilde{\lambda}\}$. Since λ is an orientable surface, K is a countable left orderable group or a trivial group (when λ is a 2-plane). So there is an action $\phi : K \to \text{Homeo}_+(I)$ of K on I such that: $\phi(g)(\frac{1}{2}) \neq \frac{1}{2}$ for every $g \in K - \{1\}$ (cf. [C2, Lemma 2.43, Remark]). Here, we set ϕ to be the trivial homomorphism when K is a trivial group. For each left coset gK ($g \in G$) of K in G, we fix an element $x_{gK} \subset gK$. And we set $x_K = 1 \in K$.

Construction 3.6. For each $h \in G$, we define a map $\alpha_h : L(\mathcal{F}_0) \to L(\mathcal{F}_0)$ as follows:

- Suppose that $q \in L(\mathcal{F}_0) - \bigcup_{g \in G} \{g(\tilde{\lambda})\} \times I$. Then q is a point of $L(\tilde{\mathcal{F}})$. We define $\alpha_h(q) = h(q)$.
- Suppose that $q \in \bigcup_{g \in G} \{g(\tilde{\lambda})\} \times I$. Then there are $g \in G$, $t \in I$ such that $q = \{g(\tilde{\lambda})\} \times \{t\}$. We define

$$\alpha_h(\{g(\tilde{\lambda})\} \times \{t\}) = \{h(g)(\tilde{\lambda})\} \times \{\phi(x^{-1}_{hgK}h(x_{gK}))(t)\}.$$

Since $x^{-1}_{hgK}h(x_{gK}) \in K$, the map α_h is well-defined. Notice that α_h takes $\{g(\tilde{\lambda})\} \times I$ to $\{h(g)(\tilde{\lambda})\} \times I$ for every $g \in G$. So α_h is an orientation-preserving homeomorphism. Furthermore,

Lemma 3.7. $\{\alpha_g : L(\mathcal{F}_0) \to L(\mathcal{F}_0) \mid g \in G\}$ is an action of G on $L(\mathcal{F}_0)$.
Proof. Let $h, r \in G$. It’s clear that $\alpha_{hr}(q) = \alpha_h \alpha_r(q)$ for every $q \in L(\mathcal{F}_0) - \bigcup_{g \in G} \{g(\tilde{\lambda})\} \times I$. Now we choose $q \in \bigcup_{g \in G} \{g(\tilde{\lambda})\} \times I$. Let $g \in G$, $t \in I$ for which $q = \{g(\tilde{\lambda})\} \times \{t\}$. We have

$$\alpha_{hr}(q) = \alpha_{hr}(\{g(\tilde{\lambda})\} \times \{t\}) = \{hr(\tilde{\lambda})\} \times \{\phi(x_{hrghr^1}hhrxgK)(t)\}$$

and

$$\alpha_h \alpha_r(q) = \alpha_h \alpha_r(\{g(\tilde{\lambda})\} \times \{t\}) = \alpha_h(\{rg(\tilde{\lambda})\} \times \{\phi(x_{rg^1}hxrgKx_{rgK^1}hxrgK)(t)\}) = \{hr(\tilde{\lambda})\} \times \{\phi(x_{hrghr^1}hhrxgK)(t)\}.$$

Thus $\alpha_{hr}(q) = \alpha_h \alpha_r(q)$. Also, we have $\alpha_1(q) = q$ for every $q \in L(\mathcal{F}_0)$. Therefore, $\{\alpha_g : L(\mathcal{F}_0) \to L(\mathcal{F}_0) \mid g \in G\}$ is an action of G on $L(\mathcal{F}_0)$.

Lemma 3.8. The point $\{\tilde{\lambda}\} \times \{\frac{1}{2}\}$ has trivial stabilizer under $\{\alpha_g : L(\mathcal{F}_0) \to L(\mathcal{F}_0) \mid g \in G\}$.

Proof. Let $g \in G - \{1\}$. We have

$$\alpha_g(\{\tilde{\lambda}\} \times \{\frac{1}{2}\}) = \{g(\tilde{\lambda})\} \times \{\phi(x_{gK^1}hxrgK)(\frac{1}{2})\} = \{g(\tilde{\lambda})\} \times \{\phi(x_{gK^1}g)(\frac{1}{2})\}.$$

If $g \notin K$, then $g(\tilde{\lambda}) \neq \tilde{\lambda}$. If $g \in K - \{1\}$, then $\phi(x_{gK^1}g)(\frac{1}{2}) = \phi(g)(\frac{1}{2}) \neq \frac{1}{2}$. So $\alpha_g(\{\tilde{\lambda}\} \times \{\frac{1}{2}\}) \neq \{\tilde{\lambda}\} \times \{\frac{1}{2}\}$ for every $g \in G - \{1\}$.

Let $\tilde{\lambda}_0 = \{\tilde{\lambda}\} \times \{\frac{1}{2}\} \in L(\mathcal{F}_0)$.

Definition 3.9. Let $e : \mathbb{R} \to L(\mathcal{F}_0)$ be an arbitrary embedding such that $e(+\infty)$ is the positive end of $L(\mathcal{F}_0)$ and $e(-\infty) \in \{\text{negative ends of } L(\mathcal{F}_0)\}$.

Lemma 3.10. Let $J = (n, +\infty)$ for some $n \in \mathbb{R}$. Then there is $h \in G$ such that $\alpha_h(\tilde{\lambda}_0) \in e(J)$.

Proof. This follows from Fact 3.5 and the fact that $L(\mathcal{F}_0)$ is obtained from blowing-up $\{g(\tilde{\lambda}) \mid g \in G\}$ in $L(\mathcal{F})$ (and every interval $\{g(\tilde{\lambda})\} \times I (g \in G)$ contains some images of $\tilde{\lambda}_0$ under $\{\alpha_h \mid h \in G\}$).

It follows that

Corollary 3.11. Let $J = [n, +\infty)$ for some $n \in \mathbb{R}$. Then there is $m \in (n, +\infty)$ such that $\alpha_{e}e(m) \neq e(m)$ for every $g \in G - \{1\}$.

Now $(L(\mathcal{F}_0), \{\alpha_g \mid g \in G\}, e)$ can be considered as the triple (L, G, e) as given in Subsection 3.1. By Proposition 1.2 (a), there is a homomorphism $d : G \to \mathcal{G}_\infty$. Combining Corollary 3.11 and Proposition 1.2 (b), we have

Corollary 3.12. For every $g \in G - \{1\}$, $d(g) \neq 1$.

So d is injective, and thus G is isomorphic to a subgroup of \mathcal{G}_∞. By Navas’ Theorem (cf. Theorem 2.6), \mathcal{G}_∞ is a left orderable group. This completes the proof of Theorem 1.1.

References

[B] J. Bowden, Approximating C^0-foliations by contact structures. Geom. Funct. Anal. 26 (2016), 1255–1296.
[BG] S. Boyer and A. Clay, Foliations, orders, representations, L-spaces and graph manifolds. Adv. Math. 310 (2017), 159–234.
[BGW] S. Boyer, C. Gordon and L. Watson, On L-spaces and left-orderable fundamental groups. Math. Ann. 356 (2013), 1213–1245.
[BRW] S. Boyer, D. Rolfsen and B. Wiest, Orderable 3-manifold groups. Ann. Inst. Fourier (Grenoble) 55 (2005), 243–288.
[C1] D. Calegari, Foliations with one-sided branching. Geom. Dedicata, 96 (2003), 1–53.
[C2] D. Calegari, Foliations and the Geometry of 3-Manifolds. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2007.
[F] S. Fenley, Geometry of foliations and flows I: Almost transverse pseudo-Anosov flows and asymptotic behavior of foliations. J. Diff. Geom. 81 (2009) 1-89.
[G] D. Gabai, Foliations and the topology of 3-manifolds. J. Diff. Geom. 18 (1983), no. 3, 445–503.
[HRRW] J. Hanselman, J. Rasmussen, S. Rasmussen and L. Watson, L-spaces, taut foliations, and graph manifolds. Comp. Math. 156 (2020), 604–612.
[J] A. Juhász, A survey of Heegaard Floer homology. New ideas in low dimensional topology, Series on Knots and Everything 56 (eds L. H. Kauffman and V. O. Manturov; World Scientific, Hackensack, NJ, 2015) 237–296.
[KR] W. H. Kazez and R. Roberts, C^0 approximations of foliations. Geom. Topol. 21 (2017), 3601–3657.
[Ma] K. Mann, Left-orderable groups that don’t act on the line. Math. Zeit., 280, (2015), 905–918.
[Me] G. Meigniez, Bouts d’un groupe opérant sur la droite: 2. Applications à la topologie des feuilletages. Tôhoku Math. J. 43 (1991), pp. 473–500.
[N] A. Navas, On the dynamics of (left) orderable groups. Ann. Inst. Fourier 60 (2010), 1685–1740.
[OS] P. Ozsváth and Z. Szabó, Holomorphic disks and genus bounds. Geom. Topol. 8 (2004), 311–334.
[R] S. Rasmussen, L-space intervals for graph manifolds and cables. Compos. Math. 153 (2017), 1008–1049.

Department of Mathematics, University at Buffalo, Buffalo, NY 14260, USA

Email address: bojunzha@buffalo.edu