Sepsis therapies: learning from 30 years of failure of translational research to propose new leads

Jean-Marc Cavaillon1,* Mervyn Singer2 & Tomasz Skirecki3

Abstract

Sepsis has been identified by the World Health Organization (WHO) as a global health priority. There has been a tremendous effort to decipher underlying mechanisms responsible for organ failure and death, and to develop new treatments. Despite saving thousands of animals over the last three decades in multiple preclinical studies, no new effective drug has emerged that has clearly improved patient outcomes. In the present review, we analyze the reasons for this failure, focusing on the inclusion of inappropriate patients and the use of irrelevant animal models. We advocate against repeating the same mistakes and propose changes to the research paradigm. We discuss the long-term consequences of surviving sepsis and, finally, list some putative approaches—both old and new—that could help save lives and improve survivorship.

Keywords animal models; cytokine storm; personalized medicine; reprogramming; sepsis

In 2017, the WHO passed a resolution, recognizing sepsis as a global health priority (Reinhart et al., 2017). A recent investigation estimated that in 2017, sepsis occurred in 48.9 million people worldwide, ending to the death of 11 million patients (Rudd et al., 2020). These estimates are more than double previous global figures (Fleischmann et al., 2016). This increase is probably attributable to inclusion of more data from low-income and middle-income countries, locations where sepsis incidence and mortality are considerably higher and for which data were previously under-represented. It is also unclear how many people die “of” or “with” sepsis as the majority of deaths, at least in developed countries, occur in patients who are elderly, frail, and/or have significant underlying comorbidities. National Health Service data from England suggest that 77.5% of deaths occur in those aged ≥75 years (Singer et al., 2019). The incidence of sepsis is also reported to be rising at an alarming rate though such data should be treated cautiously. While in part due to an aging population and increasing invasive medical interventions, increased awareness of the condition and significant financial incentivizations to use administrative sepsis codes play an important part in the reported incidence increase. Indeed, Rhee et al. (2017) indicated that sepsis incidence based on Sepsis-3 clinical criteria was stable over a 5-year period in 409 US hospitals (0.6% relative increase per year), yet had risen by 10.3% per year according to insurance claims data. By 2014, the incidence of sepsis was twice as high, affecting 12% of the total hospital cohort, using claims-based data. This large rise in denominator also generated a spurious reduction in the rate of death or discharge to hospice, namely 4.5% per year using claims data compared to 1.3% using clinical data.

These conflicting data on incidence and outcomes reflect considerable inconsistencies within the literature, particularly as most of the data are extracted from hospital administrative databases or insurance claims data that are prone to the confounders described above. Nonetheless, it is fair to say that sepsis continues to be a significant healthcare issue with high mortality (approximately 25% for sepsis and 40–50% for septic shock (Shankar-Hari et al., 2017) and morbidity, and with a major impact on resource utilization. This continues after discharge from hospital, as survivors often suffer post-sepsis symptoms such as fatigue, neuromuscular weakness, chronic pain, post-traumatic stress disorder, cognitive impairments, and depression.

Sepsis was previously considered an infectious systemic inflammatory response syndrome (SIRS; Bone et al., 1992; Levy et al., 2003). However, recognizing that this host response is usually part and parcel of an individual’s appropriate defense against infection, sepsis was re-defined in 2016 (“Sepsis-3”) as “a life-threatening organ dysfunction caused by a dysregulated host response to infection” (Fig 1) (Singer et al., 2016). For clinical operationalization, organ dysfunction is identified by an increase from baseline of ≥2 points in the Sequential Organ Failure Assessment (SOFA) score. Patients are identified as having septic shock when vasopressors are required to maintain a mean arterial pressure ≥65 mmHg and when serum lactate levels remain >2 mmol/l (>18 mg/dl) despite adequate volume replacement.

1 Experimental Neuropathology Unit, Institut Pasteur, Paris, France
2 Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
3 Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
*Corresponding author: Tel: +33 79 89 09 14; E-mail: jean-marc.cavaillon@pasteur.fr

See the Glossary for abbreviations used in this article.

EMBO Mol Med (2020) 12: e10128

© 2020 The Authors. Published under the terms of the CC BY 4.0 license
Furthermore, sepsis has a high price to insurance systems (Areian et al., 2017).

Notwithstanding coding anomalies, mortality from sepsis does appear to be improving. This is mainly the consequence of improved health care with earlier recognition and treatment, and less iatrogenic harm. Multiple studies in intensive care patients have demonstrated an injurious impact from over-exuberant use of mechanical ventilation, fluid therapy, sedation, nutrition, and inotropes, to name but some interventions. Unfortunately, these outcome improvements cannot be attributed to introduction of new therapies, nor to a better understanding of the pathophysiology. This is not for the lack of clinical trials undertaken over the last 30 years, started after successful outcomes in animal models that are often reported in high impact journals. The failure of this translational research should raise questions within the medical and scientific communities, and inspire them to avoid perpetuating well-established processes and new concepts

Molecular players

New findings are constantly enlightening our understanding of the pathophysiological processes involved in sepsis. Most of the players involved have likely been identified (Fig 2). The host response is initiated by both pathogen-associated molecular patterns (PAMPs), such as endotoxin and lipoteichoic acid, and damage-associated molecular patterns (DAMPs), such as heat shock proteins, high mobility group box 1, nucleotides, and mitochondria released from injured host cells.

Activation of the complement system has long been recognized as a potentiator of the inflammatory response during sepsis, in particular the role played by anaphylatoxin C5a (Riedemann et al, 2002). An inhibitor of C5 cleavage showed reduced organ damage and better outcome in a baboon model of Escherichia coli sepsis (Keshari et al., 2017). Similarly, modifying the coagulation cascade has been advanced with numerous successful approaches in animal sepsis models targeting pro-coagulant factors (Levi & van der Poll, 2017).

Various other molecular players have been identified as performing a beneficial role in murine cecal ligation and puncture (CLP) models of sepsis. These include IL-33 and IL-38 (Li et al, 2016; Xu et al,
2018), pro-resolving mediators such as resolvin D2 (Spite et al., 2009), and the cell surface nucleotide-metabolizing enzyme CD39 (Csóka et al., 2015). Acetylcholine produced by neurons and by a specific subset of T-lymphocytes in response to norepinephrine is considered a significant component in the neuronal control of inflammation (Rosas-Ballina et al., 2011), though the role of the vagus nerve in neuro-immune cross-talk is controversial (Martelli et al., 2014; Pavlov et al., 2018). In a case report of successful use of experimental electroacupuncture to protect against sepsis, dopamine was shown to be the primary beneficial mediator (Torres-Rosas et al., 2014).

Circulating cells
Sepsis is associated with the reprogramming of circulating leukocytes (Cavaillon et al., 2005). The term “immunosuppression” is widely used to qualify this phenomenon, which is inappropriate and misleading (Cavaillon & Giamarellos-Bourboulis, 2019). The ex vivo behavior of leukocytes is greatly influenced by the compartment they are derived from (Rasid & Cavaillon, 2018; Fig 3). Blood leukocytes display reduced capacities to proliferate and to produce cytokines and antibodies. Monocytes show reduced expression of HLA-DR mRNA, while neutrophils show an increased expression of CD64 mRNA. Notably, recruited monocytes within the lungs express 3.5-fold more membrane HLA-DR compared to circulating monocytes (Skirecki et al., 2016). Lymphocytes exhibit enhanced spontaneous apoptosis while neutrophils’ anti-CD24-induced apoptosis is reduced (Parlato et al., 2014). These alterations occur rapidly and in proportion to the intensity of the insult, be it sepsis or other critical illnesses such as trauma, hemorrhagic shock, major surgery, resuscitation after cardiac arrest, and pancreatitis (Kim et al., 2010; Timmermans et al., 2016). As expected, the altered capacity of circulating monocytes is associated with an enhanced expression of inhibitory signaling molecules (Escoll et al., 2003; Adib-Conquy et al., 2006), histone modifications (Bomszytk et al., 2015), and specific miRNAs (Zhou et al., 2015; Reithmair et al., 2017). Some miRNAs can attenuate sepsis-associated alterations in myeloid cells, endothelial cells, and in the myocardium (Zhou et al., 2017; Sisti et al., 2018). Circulating extracellular vesicles containing miRNAs may be a novel mechanism of intercellular communication during sepsis (Real et al., 2018). Whether these
extracellular vesicles have an inhibitory role via delivery of miRNAs or display a pro-inflammatory potential via their capacity to activate monocytes (Danesh et al., 2018) remains to be elucidated.

In addition to their role in blood clotting, platelets play an important role in multiple biological functions. This diversity relates to their capacity to sense and respond to infectious agents and to release significant amounts of inflammatory mediators (Garraud et al., 2013). Platelets can bind to numerous circulating leukocytes, particularly neutrophils (Gawaz et al., 1995), favoring the formation of neutrophil extracellular traps (Clark & Coopersmith, 2007), neutrophil recruitment LPS-induced lung injury (Grommes et al., 2012), and neutrophil rolling onto the endothelium and margination outside venules (Sreeramkumar et al., 2014). Thrombocytopenia is a hallmark of sepsis and may relate to decreased production and/or increased destruction. In a recent study, 38% of sepsis patients had low or very low platelet counts; such patients had a higher clinical illness severity score and an increased mortality (Claushuis et al., 2016). Of note, levels of circulating RANTES (CCL5), a chemokine mainly derived from platelets, were lower in the most severely ill patients with poor outcomes (Cavaillon et al., 2003).

It should be stressed that for most molecular and cellular players, conflicting contributions have been revealed. While platelets contribute to inflammation, they have also been shown to decrease organ damage in LPS-treated mice (Xiang et al., 2013) through a C-type-lectin-like-2 (CLEC-2)-dependent process (Rayes et al., 2017).

Endothelium

The pivotal role of endothelial cells in the pathogenesis of sepsis is well recognized. Most endothelium physiological functions are disturbed, leading to increased vascular permeability, activation of coagulation, and participation in the inflammatory response (Opal & van der Poll, 2015). Some recently reported aspects of endothelial injury in sepsis may also contribute significantly to mortality (Johansen et al., 2015). The role in sepsis of the angiotensin-1,-2/Tie2 pathway, an important regulatory axis of the endothelium, was recently reviewed (Leligdowicz et al., 2018). High levels of angiopoietin-2 in pneumonia patients contributed to endothelial permeability and were related to poor outcomes, while angiopoietin-1 was shown to ameliorate vascular leak (Gutbier et al., 2018). Mechanistically, a reduction of the histone deacetylase, sirtuin 3, leads to the increase in angiopoietin-2 and fall in
angiotensin-1. These changes also contribute to the loss of pericytes (Zeng et al., 2016). Furthermore, the Tie-2 receptor is downregulated in sepsis at both transcriptional and protein levels (Thamm et al., 2018). Another mediator in sepsis-induced endothelial dysfunction is microRNA-155, which promotes bioenergetic deterioration, contractile dysfunction, pro-inflammatory activation, and downregulation of the angiotensin type 1 receptor (Vasques-Novoa et al., 2018). A novel insight into the mechanism of endothelial cell death in sepsis described an intracellular endotoxin-sensing machinery in the induction of endothelial cell pyroptosis (Cheng et al., 2017).

Epithelium

Maintenance of the gut barrier can be severely impaired in sepsis by enterocyte loss from apoptosis and pyroptosis (Mandal et al., 2018), and a rapid decline of tight junctions following reduced expression of claudins and occludin (Yoseph et al., 2016). The observations of enterocyte injury and increased gut wall permeability led to the concept of the “leaky gut” as the motor of multi-organ dysfunction in critical illness, acting as a source of bacteria and bacterial toxins (Carroli et al., 1986). Although this hypothesis has not gained sufficient traction in clinical studies, and patients do not seem to die from bacteremia (Savage et al., 2016), updated and modified insights offer attractive new pathophysiological concepts, in particular the protective role of the microbiome (Alverdy & Krezalek, 2017; Meng et al., 2017) and its modulation by probiotics (Angurana et al., 2000). However, dissemination of intestinal bacteria does not seem to be an essential event as gut-derived DAMPs can travel through the lymph and cause distant organ injury (Reino et al., 2011).

Endocrinopathy

The central nervous system is stimulated during sepsis by efferent impulsion, inflammatory cytokines, and PAMPs that can enter the blood-brain barrier at specific locations (Annane, 2016). These signals modify the central endocrine axes that orchestrate metabolic and immune responses, and these change over time. For a detailed description of endocrine alterations in sepsis, we recommend a recent review by Ingels et al. (2018). Briefly, early endocrine responses to a critical insult are generally protective. However, the degree of activation of the hypothalamic–pituitary–adrenal (HPA) axis represents a significant stress response that correlates with poor outcomes (Vassiliadi et al., 2014). Release of adrenocorticotropic hormone is increased, while the high serum concentration of cortisol is also due to impaired clearance (Annane, 2016). The potentially advantageous effects of early high cortisol production are counteracted by peripheral glucocorticoid resistance mediated by pro-inflammatory cytokines. However, a subgroup of patients could not mount an efficient cortisol response due to inhibition of the HPA axis and would potentially benefit from glucocorticoid supplementation (Annane, 2016).

Plasma catecholamine levels are also elevated, more so in eventual non-survivors (Boldt et al., 1995), with multiple negative consequences including impaired myocardial function, inhibition of both innate and adaptive immunity yet enhanced pathogen virulence and growth, pro-coagulopathic effects, altered gut motility, lipolysis, and insulin resistance (Andreis & Singer, 2016).

Sepsis also affects thyroid function by an early increase in thyrotropin (TSH) production but a reduction in both thyroxine and the more active triiodothyronine (Peeters et al., 2006). This condition, often called the sick euthyroid syndrome or the low T3 syndrome, also correlates with a poor outcome (Angelousi et al., 2011). A trial of thyroxine treatment in critically ill patients however resulted in higher mortality (Acker et al., 2000).

Another pituitary hormone, growth hormone (GH), is initially upregulated in septic patients and correlates with disease severity (Schuetz et al., 2009). However, its downstream effectors are decreased in the serum (Baxter et al., 1998). High levels of GH stimulate lipolysis and antagonize insulin. Yet, two multi-centre studies of growth hormone treatment in critically ill patients showed a doubling in mortality rates (Takala et al., 1999).

Apart from disturbances in the central hormonal axes, there is a growing interest in the role of intestine-released hormones and fat-derived adipokines in the pathogenesis of sepsis. However, it remains unclear whether altered levels of these hormones and adipokines contribute to pathology, or are simply epiphenomenal and reflective of dysregulated homeostasis. Examples include insulin, the incretins (GLP-1 and GIP), ghrelin, and leptin. High and persisting levels of glucagon-like peptide-1 in septic patients are associated with an increase in mortality and functional disability (Brakenridge et al., 2019). Ghrelin, involved in appetite stimulation, increases in the plasma of septic patients (Nikitopoulou et al., 2019), and active ghrelin levels are inversely correlated with a poor outcome (Angelousi et al., 2011). A trial of ghrelin infusion in a long-term rodent fecal peritonitis model had no impact on outcomes (Hill et al., 2017). Plasma insulin levels are variably
reported as raised or depressed in sepsis, but insulin resistance is common regardless, with subsequent hyperglycemia-inducing toxicity. The optimal degree of glycemic control nonetheless remains controversial (Gunst et al, 2019). Peripheral resistance indicates abnormalities at, or distal to, the insulin receptor (Van Bogaert et al, 2011). Similar issues are likely to exist for other hormonal pathways, such as glucocorticoids and growth hormone.

Metabolism
The importance of alterations in metabolism during sepsis is well recognized and is part of the current definition of septic shock (Singer et al, 2016). With peripheral insulin resistance and increased lipolysis and proteolysis, there is a general shift toward fat and protein utilization. This in turn impacts upon immune functionality (Balmer & Hess, 2017) and metabolic efficiency. However, many questions remain unanswered (Van Wyngene et al, 2018). Many clinical and preclinical data indicate sepsis-induced mitochondrial dysfunction in multiple tissues (Brealey et al, 2002; Singer, 2014) with a shift toward anaerobic (glycolytic) metabolism. While anaerobic metabolism can boost the antimicrobial capacities of immune cells, it may also contribute to their loss of function (Balmer & Hess, 2017). In the course of sepsis, monocytes develop broad defects in both glycolysis and oxidative phosphorylation that are related to the phenomenon of endotoxin tolerance and which can be restored by interferon-gamma (IFNγ) treatment (Cheng et al, 2016). A recent genome-wide array study (Davenport et al, 2016) proposed two signatures of gene expression patterns, with one related to higher mortality and features of immunosuppression. This subgroup showed upregulated expression of hypoxia-inducible factor 1 alpha (HIF1α), HIF2α, and lactate dehydrogenase A, but downregulation of the mechanistic target of rapamycin (mTOR).

As failed organs show minimal to no evidence of cell death, a global metabolic shutdown is postulated as the primary mechanism of organ dysfunction in sepsis (Singer, 2014). This state, akin to hibernation, may even represent an adaptive mechanism, allowing restoration of organ function once the inflammatory process resolves (Singer et al, 2004; Stanzani et al, 2020). Notably, sepsis non-survivors are characterized by subnormal levels of muscle ATP (Brealey et al, 2002), while maintenance of hepatic gluconeogenesis was shown to be crucial in establishing disease tolerance (Weis et al, 2017). These data suggest that adaptive pathways can spill over into maladaptation if sufficiently dysregulated.

Impaired bioenergetics under septic conditions have also been shown to affect energy-consuming functions in multiple types of epithelial cells. For example, pneumocytes downregulate the Na+, K+-ATPase pump, which is responsible for fluid clearance in alveoli (Vadasz et al, 2008), while renal tubular epithelial cells decrease sodium channel expression (Gomez et al, 2015). Controlled autophagy may be an important process required for epithelial cell survival under septic conditions (Oami et al, 2018).

Microbiome/Pathobiome
A growing body of evidence demonstrates that gut microbiota interacts with the gut epithelium and the host’s immune system. The microbiome and its metabolites are essential regulators of health under steady-state conditions. A severe insult such as infection or trauma rapidly induces profound changes in the intestinal ecosystem (dysbiosis), leading to loss of diversity of the physiological, mostly anaerobic flora (Ojima et al, 2016), and the microbiome composition at different sites (Rogers et al, 2016), and the microbiome is compromised further by concurrent use of broad-spectrum antibiotics, even with only a few doses (Iapichino et al, 2008; Ferrer et al, 2017).

The gut is not the only site harboring microbiota. For example, the skin and lung are also colonized with their respective microbiome, but their biology is less well understood (Gilbert et al, 2018). Recently, both intestine and upper airways microbiota were shown to regulate lung immunity (Brown et al, 2017). While the role of the microbiome in other tissues such as the kidney remains to be specified in the pathophysiology of sepsis, the skin microbiome has recently been shown to favor the pathogenicity of certain bacteria such as Staphylococcus aureus (Boldock et al, 2018).

Notwithstanding iatrogenic administration of antibiotics and gastric acid suppressants, the host’s overall changes during critical illness promote the emergence of the pathobiome (disease-related flora; Zaborin et al, 2014; Gilbert et al, 2016). This includes supranormal levels of catecholamines that induce pathogen growth, virulence, and biofilm formation, as well as directly impacting on the microbiome (Dickson et al, 2015; Sarkodie et al, 2019).

Numerous studies suggest that the relationship between the host and microbiome/pathobiome is bidirectional (Kelly et al, 2015; Sarkodie et al, 2019). Of note, gut-specific bacteria can dominate the lung microbiome in septic patients, and this change correlates with alveolar TNF expression (Dickson et al, 2016). Preserving the physiological gut microbiome could protect the host from pneumonia (Schuijt et al, 2016), sepsis (Wilmore et al, 2018), or melioidosis (Lankelma et al, 2017) by maintaining the gut barrier (Fox et al, 2012), enhancing immunity, and protecting the brain (Li et al, 2018). Clinical data have indirectly shown the impact of the disturbed microbiome on susceptibility to sepsis (Prescott et al, 2015a; Baggs et al, 2018). Colonization with Enterococcus at ICU admission was related to a higher risk of subsequent infection and mortality (Freedberg et al, 2018). The abovementioned findings shine a new light on the gut and the microbiome/pathobiome as significant players in the pathophysiology of sepsis. The development and decreasing cost of metagenomics and metabolomics will likely move this field rapidly. Recent murine trials showed the potential of modulating the microbiome with a high fiber diet (Morowitz et al, 2017), while the first successful fecal microbiota transplantation used as a salvage therapy in critically ill ICU patients has also been reported (Wei et al, 2016).

Short- and long-term consequences of surviving sepsis
Surviving sepsis creates a plethora of new healthcare challenges. Up to 40% of patients who survive the early phase of sepsis develop chronic critical illness, a state defined as a prolonged (> 14 days) ICU stay with sustained organ dysfunction (Storz et al, 2018). Many of these patients do not leave hospital alive or are not fit enough to return to their own homes. In the longer term, there is a higher mortality risk, poorer health status, and an increased
requirement for more medical interventions and rehospitalizations (DeMerle et al., 2017). This so-called post-intensive care syndrome reflects new onset (or worsening of preexisting) neurocognitive deterioration, psychiatric complications, and/or physical impairments (Needham et al., 2012).

Neuropathy

Acute brain dysfunction is a frequent and severe early sign of sepsis present in about 50% of cases admitted to the ICU (Sonneville et al., 2017). It can manifest as confusion, delirium, drowsiness, coma, seizures, or with focal neurological signs. Sepsis-associated encephalopathy (SAE) includes not only early brain dysfunction but also the longer-term impairments seen in sepsis survivors. Brain lesions can be found in approximately a third of patients with clinically diagnosed SAE (Orhun et al., 2018). Two distinct patterns of neuroaxonal injury—ischemic and diffuse—were identified using magnetic resonance imaging and immunohistopathologic analysis of post-mortem brains (Ehler et al., 2017). The pathophysiology of SAE is incompletely understood, but is driven by systemic inflammation, which leads to disruption of the blood–brain barrier and ingress of bacterial toxins, pro-inflammatory monocytes, and neutrophils into the brain tissue (Kuperberg & Wadgaonkar, 2017; Tauber et al., 2017). Early infiltration of NK cells enhances monocyte recruitment (He et al., 2016). Pro-inflammatory cytokines and toxins activate microglia and astrocytes (Hasegawa-Ishii et al., 2016), and fueling local inflammation (Zrzavy et al., 2018). Together with afferent impulsion, the inflamed microenvironment induces neuronal changes. At the functional level, SAE is related to decreased brain oxygenation (Wood et al., 2016), metabolic shifts (Hara et al., 2015), and excitotoxicity (Mazeraud et al., 2016). The aforementioned mechanisms may be sustained in sepsis survivors with long-term consequences such as cognitive and functional impairment (Annan & Sharshar, 2015), depression (Davydow et al., 2013), stress disorders (Wintermann et al., 2015), and neurological complications (Reznik et al., 2019). Recent animal studies support the causative link between sepsis and long-term psychological dysfunction (Barichello et al., 2019). Other improvements of cognitive impairment after sepsis have been achieved with some of the treatments known to protect mice against sepsis-induced death, such as anti-HMGB-1 antibodies (Chavan et al., 2012; Gentile & Moldawer, 2014; Stevens et al., 2017) or electroacupuncture (Han et al., 2018). Peripheral nerves can also be affected by sepsis inducing a critical illness polyneuropathy. Loss of axonal fibers affecting motor and/or sensory nerves can be observed in skin biopsies, with impairment of signal conduction (Hermans & Van den Berghe, 2015; Axer et al., 2016).

Myopathy

Similar mechanisms to neuropathy can also induce sepsis-related myopathy. Either one and/or both conditions (collectively known as ICU-acquired weakness) can worsen the patient’s outcome, lead to prolonged mechanical ventilation (Sharshar et al., 2009), and carry long-term consequences (Hermans & Van den Berghe, 2015). Sepsis-related myopathy is characterized by the loss of muscle mass, a fall in force-generating capacity, and altered bioenergetics (Hermans & Van den Berghe, 2015). Critically ill patients face multiple risk factors causing myopathies such as immobilization, local inflammation-induced by systemic mediators, and nutritional defects (Friedrich et al., 2015). Mechanisms responsible for septic myopathy include sodium channel dysfunction with upregulation of non-selective channels (Balboa et al., 2018), ubiquitin–proteasome pathway protein proteolysis, proteasome activation and increased autophagy (Wollersheim et al., 2014; Preau et al., 2019), changes in intracellular calcium levels leading to excitation-contraction uncoupling (Batt et al., 2013), and mitochondrial derangements with an increase in free radical generation (Zolfaghari et al., 2015). Although autophagy is among the mechanisms of protein loss, its balanced activation can protect muscles from the accumulation of toxic proteins (Morel et al., 2017). Through activation of the TNF and mTORCI pathways, sepsis impairs the physiological anabolic response of muscles to contraction, thereby slowing down recovery from atrophy (Steiner & Lang, 2015). Recovery from sepsis is related to increased muscle protein synthesis and decreased autophagy, but in juxtaposition, proteasome activity is upregulated, possibly hindering myosin restoration (Crowell et al., 2017). Interestingly, the satellite cells, which serve as muscle progenitor cells, are severely impaired by sepsis and are not able to regenerate injured muscle (Rochetaeu et al., 2015) due to upregulated oxidative phosphorylation and loss of mitochondrial mass. In consequence, these alterations lead to the loss of satellite cells.

The incidence of ICU-acquired weakness negatively affects the quality of life of survivors (Hermans & Van den Berghe, 2015), and recovery from ICU-acquired weakness can take up to one year after discharge, or even be permanent, especially with neuropathy.

Altered immunity

Sepsis survivors are at higher risk of recurrent infection, and this is a major reason for re-hospitalization (Prescott et al., 2015b). Whether recurrent infections contribute substantially to long-term mortality is unclear, but they worsen quality of life and constitute an additional risk to survivors (Shankar-Hari et al., 2016). Susceptibility to infection suggests sustained immune impairments in sepsis survivors, which are only now being identified. Currently recognized mechanisms of long-term immune impairment include expansion of myeloid-derived suppressor cells (Mathias et al., 2017), a high proportion of regulatory T cells (Cavassani et al., 2010), disturbed T-cell recovery (Condotta et al., 2013), and multiple epigenetic modifications within various cell types (Hassan et al., 2018). A recent study also revealed persistently increased inflammatory mediators such as HMGB1, TNF, IL-7, and resolins, even at 1 year after hospital discharge (Riche et al., 2018).

These alterations in immune status do not necessarily reflect a global defect (Rubio et al., 2019). For example, sepsis could improve tumor-specific CD8 + T-cell responses (Danahy et al., 2019). TCR-dependent T-cell function is somewhat augmented, pointing against a paradigm of generalized immunosuppression in sepsis survivors (Borken et al., 2017). However, there is an incomplete recovery of the TCR reservoir after sepsis, and this process is in part dependent on the gut microbiome (Cabrera-Perez et al., 2016). Importantly, these changes are accompanied by a smoldering low-grade inflammation that induces a catabolic shift and may perpetuate disturbed myelopoiesis (Horiguchi et al., 2018). This phenotype has been coined “persistent inflammation, immunosuppression, and catabolism syndrome” (PICS) and can be viewed as a mechanism underlying chronic critical illness (Gentile et al., 2012; Horiguchi et al., 2018; Fig 4).
What went wrong? Explaining 30 years of failure of translational research

Inappropriate animal models

For the last thirty years, using genetically engineered mice or animals treated with antibodies or drugs that target a given molecule, investigators have successfully demonstrated a deleterious contribution from a large number of molecular players and pathways during sepsis, and beneficial consequences following their neutralization. However, none have resulted in positive clinical trials. This may relate to the limited predictive value of preclinical models of disease (Plenge et al., 2013).

It is indeed essential to acknowledge significant differences that exist between mice and humans (Fig 5, Table 1), not only in terms of physiology but also with regard to the response to a septic insult. For instance, as opposed to humans, mice develop bradycardia rather than tachycardia, and bradyhypnea rather than tachypnea (Iskander et al., 2013; Hoover et al., 2015). When maintained at room temperature, septic mice are under cold temperature stress (Karp, 2012) and usually display hypothermia in line with illness severity (Zolfaghari et al., 2013). If their temperature is kept close to thermoneutrality, mice can generate a fever, and their ability to manage sepsis significantly improves (Jiang et al., 2000). The different circadian rhythm between mice and humans also impacts upon the immune response and the timing of expression of key regulators such as HIF1α (Zhao et al., 2017). While the gut is postulated to be the “motor” of multiple organ failure (MOF), allowing systemic ingress of gut bacteria and their cellular constituents (Klingensmith & Coopersmith, 2016), the surface pathophysiology involving the intestine may be different between species. Indeed, the surface ratio of the small intestine to the colon is 22-fold lower in mice than humans (Nguyen et al., 2015). The immune system also differs in many ways (Mestas & Hughes, 2004), and the main acute phase proteins produced in sepsis vary between species. Human and murine neutrophils also display numerous differences (Table 1); most striking is the different effect of sepsis on NETosis, which is reduced in humans (Hashiba et al., 2015) but enhanced in mice (Meng et al., 2012). With respect to platelets, not only do number and size differ between humans and mice, but also their mRNA content (Schmitt et al., 2001; Rowley et al., 2012).

A well-recognized difference between rodents and humans is the very high resistance of rodents to endotoxin and their greater resilience to infection (Warren et al., 2010) or sterile insults (Gentile et al., 2013). Genes encoding proteins that sense PAMPs and DAMPs, and coding for cytokines and chemokines are not strictly identical (Table 1). The transcriptomic expression of cells within human and murine blood following different severe inflammatory insults poorly correlates (Seok et al., 2013), even if an independent re-analysis of the same dataset yields completely different results (Takao & Miyakawa, 2015).

Another thorny aspect of animal experimentation is that the experimental model of infection strongly influences the host response. Thus, findings from one model may not necessarily be generalizable. For example, the metabolic signature differed in rats undergoing cecal ligation and puncture (CLP) compared to those receiving an intra-peritoneal injection of S. aureus (Lin et al., 2016). Similarly, in two models of intra-abdominal sepsis (CLP versus administration of a cecal slurry) with similar mortality, addition of tissue ischemia/infarction (cecal ligation) to an infectious process significantly modified the host transcriptomic response (Gentile et al., 2014).

Finally in most animal models, the treatment is administered before, concurrent, or soon after the initiation of the infectious insult. By contrast, patients usually develop sepsis over days; often by the time of presentation, organ dysfunction is already well established.

Inappropriate selection of patients

Agglomerating different types of severe infection under the “sepsis” umbrella has resulted in enrollment of a heterogeneous population of patients into clinical trials. In addition to intrinsic individual heterogeneity reflecting genetic and epigenetic diversity (Fig 2), specific patient characteristics such as underlying comorbidities, obesity, medications, reactivation of asymptomatic viral infections, age, and sex can all modify the overall host response to pathogens, and thus patient outcomes. Individual heterogeneity is impossible to avoid, though selecting patients according to the type of infection would be more feasible. Mechanisms underlying the host response are greatly influenced by the location of the infectious insult. This reflects the fact that immune cells reside within varied molecular and cellular microenvironments in different tissues and, as a consequence, display specific behavior. For example, murine intestinal macrophages are unresponsive to
conventional stimuli (Smythies et al., 2005); peritoneal macrophages, alveolar macrophages, and blood monocytes are stimulated differently by *Staphylococcus aureus* (Kapetanovic et al., 2011); spleen, lung, peritoneal macrophages, and microglial cells express different patterns of transcriptomic and cell surface expression (Gautier et al., 2012); and alveolar macrophages fail to develop endotoxin tolerance (Philippart et al., 2012). This late phenomenon has also been observed with human alveolar macrophages (Smith et al., 1994). Studies in septic patients confirm how different sites of infection affect the systemic response (Gogos et al., 2010; Hoser et al., 2012). Thus, not surprisingly, specific pathophysiological mechanisms differ between compartments, and therapeutic intervention should be adapted accordingly with patient cohorts more homogenous in terms of the infection site.

Figure 5. Some keys differences in murine and human physiology that affect the response to sepsis (CRP—C-reactive protein, MAC—membrane attack complex, SAP—serum amyloid protein).
Another cause of heterogeneity is the nature of the infectious agent. The PAMPs and toxins released by Gram-positive and Gram-negative bacteria are not identical. Most superantigens are derived from Gram-positive bacteria and induce an unique cytokine profile, including lymphotxin-α derived from T-lymphocytes (Muller-Alouf et al., 1994). This can be observed particularly in patients with *Streptococcal* toxic-shock syndrome (Srikanadan et al., 1996). Endotoxins from Gram-negative bacteria are highly potent PAMPs inducing the greatest number of gene activations (Schmitz et al., 2004). Notably, endotoxin can also be present in patients with Gram-positive infection due to gut translocation (Opal et al., 1999). A strong synergy has been regularly reported between Gram-positive superantigens and endotoxin or other Toll-like receptor agonists (Cavaillon, 2018). CD137, a member of the TNF receptor superfamily, is expressed on neutrophils and shown to be protective during Gram-positive and deleterious during Gram-negative infections (Nguyen et al., 2013).

Improving the chances of therapeutic success

Faster and more reliable diagnosis

Significant delays in initiating treatment will impact upon patient outcomes. Highly specific, sensitive, and rapid tests are urgently needed to avoid unnecessary, inappropriate, or ineffective use of antibiotics. Although many host biomarkers have been reported (Parlato & Cavaillon, 2015), none of them (alone or in combination) displays sufficiently high levels of specificity and sensitivity (Parlato et al., 2018). However, various novel approaches show promise in distinguishing sepsis from sterile inflammation using transcriptomics (Sweeney et al., 2018a), metabolomics (Mickiewicz et al., 2015), or microfluidics (Hassan et al., 2017; Ellett et al., 2018). Combined analysis of leukocyte biomarkers has also been investigated. Finally, proteomics and transcriptomics have also been proposed to allow discrimination between bacterial and viral infection (Oved et al., 2015; Miller et al., 2018).

As therapeutic approaches could differ depending on illness severity, signatures stratifying patients according to their risk of death could be of interest. Transcriptomic (Sweeney et al., 2018a, 2018b) and cell surface marker (Conway Morris et al., 2018) signatures have already been described. More desirably, patients could be identified based on the likelihood of response to a particular treatment. For example, very high serum levels of ferritin could be used as a marker of hemophagocytic lymphohistiocytosis, for which specific treatments such as an IL-1 receptor antagonist (anakinra) may be suited (Lachmann et al., 2018).

Rapid identification of the infectious agent and of its antibiotic sensitivity is also of primary importance. While PCR assays offer good sensitivity and specificity (Salimnia et al., 2016), they require time-consuming blood cultures, and direct identification of bacterial DNA within freshly isolated blood samples is still associated with too many false-positive and false-negative results (Fitting et al., 2012; Dark et al., 2015). A test combining culture-independent PCR/electrospray ionization-mass spectrometry technology was launched commercially but, alas, withdrawn as the cost was too prohibitive. However, it displayed 81% sensitivity, 69% specificity, and 97% negative predictive value at 6 hours from sample acquisition (Vincent et al., 2015). *Post hoc* analysis of this cohort revealed a higher mortality in patients with molecular test-positive, culture-negative samples (O’Dwyer et al., 2017).

Improving translational research

Refinement, reduction, and replacement of animal models should be strongly encouraged. *In vitro* or *ex vivo* studies can be performed directly on human cells and tissues, and these may be complemented by more sophisticated and robust human organoid and organ-on-chip models. Experiments using rodent models remain useful and informative; however, their limitations should be humbly recognized. Improvements have been proposed (Osuchowski et al., 2018), such as the use of antibiotics, fluids, and clinical isolates instead of laboratory bacterial strains, which may fail to mimic real-life pathogenesis due to their reduced capacity to make biofilms (Fux et al., 2005). The role of wild-type microbial flora in influencing outcome has only recently been appreciated (Velazquez et al., 2019). The wild-type microbiome acquired by co-housing specific pathogen-free mice with their pet-shop mates allowed the mice to develop a mature immunity capable of generating responses more similar to those of humans (Beura et al., 2016). Colonizing experimental mice with a human patient-derived pathobiome that emerges in critical illness would further allow to better mimic pivotal host–pathobiome interactions (Alverdy & Krezailek, 2017). An appropriate choice of infection model (pneumonia, CLP, or soft tissue infection)
with a relevant infection route and pathogen load would also better reflect a given human sepsis type.

Stratification of septic animals according to their predicted probability of survival may help discriminate the effectiveness of novel treatments (Osuchowski et al, 2009). Telemetry techniques reveal a variable physiological response of mice subjected to a similar septic insult (Lewis et al, 2016); this could be utilized to select only significantly affected individuals for enrollment into a treatment study, to increase homogeneity and improve assessment of the treatment effects. More “real-life” conditions could be achieved, for instance by the use of aged animals or animals with comorbidities. Two-hit models, where an initial trauma or infectious episode is followed by induction of a secondary infection, resemble a frequent clinical scenario, and may recapitulate the human host responses better than single hit models (Muenzer et al, 2006). Finally, specific aspects of the human immune response could be examined within humanized mice models with added genetic variability from transplantation of stem cells originating from different donors (Skirecki et al, 2015; Prince et al, 2017).

Non-rodent models such as rabbits and pigs have some advantages, for example, greater sensitivity to bacterial infection and responses resembling better those observed in humans (Fairbairn et al, 2013; Salgado-Pabon et al, 2013; Waterhouse et al, 2018). While rhesus monkeys and baboons are highly resistant to endotoxin and have a separate pattern of host response (Barreiro et al, 2010), squirrel monkeys have a relatively high sensitivity (Lipton & Fossler, 1974). Studying naturally sick animals (Werners, 2017) or non-laboratory-bred animals could also be informative as their immunity and host response will differ.

Should the main goal be to save life or to improve quality of life after sepsis?

With such a provocative question, we want to address whether trials should aim at improving mortality benefit and/or improving patient selection. With a current hospital mortality rate of 25%, achieving a 20% improvement in mortality with a P value below 0.05 requires inclusion of 1,191 patients. Arguments are however made to increase the default P value threshold to 0.005 for claims of discovery (Benjamin et al, 2018), thus requiring many more patients, or reducing the sample size by a Bayesian approach (Goligher et al, 2018). Others argue for adaptive trial designs with simultaneous inclusion of several treatment arms and modifications justified by findings emerging during the trial (Talisa et al, 2018). However, adequate group sizes in such a heterogenous critical care population may prove to be problematic.

Another challenge lies in accurate selection of therapeutic targets that have a realistic probability of improving survival from sepsis. Possible ways to improve translational research are discussed below. Furthermore, selection of targets based upon observational clinical trials can also be misleading. There is a confounding effect of illness severity that may not be adequately adjusted for in post hoc analyses. For example, a positive fluid balance is linked to worse outcomes, yet sicker patients generally need more fluid replacement and are more likely to have concurrent renal dysfunction. Thus a positive fluid balance may be epiphenomenal rather than necessarily causative of a higher mortality. Furthermore, changes in a blood mediator level linked to a poor outcome can be part of the host response to injury, or even a protective element related to disease tolerance (Medzhitov et al, 2012; Bauer et al, 2018).

Enhancing survivorship is gaining increasing attention as many of the 70% of septic patients discharged from hospital will suffer from post-sepsis physical, psychological, and/or cognitive impairments, with consequences for the patients, their family and the healthcare system (Prescott & Angus, 2018). Contributing factors to poor survivorship comprise underlying frailty and comorbidities, degree and duration of illness severity, lack of early rehabilitation, and drugs, such as corticosteroids, sedatives and paralyzing agents. While frailty and underlying comorbidities are not usually correctable, identification of interventions for reversible conditions will hopefully lead to enhanced recovery (Schweickert et al, 2009; Wade et al, 2019).

As described at the beginning of this article, we pointed out that many people die “with” rather than “from” sepsis because of their significant underlying comorbidities, which both compromise their initial host response and/or the subsequent recovery pathway. A treatment may be effective in reversing the acute septic illness, yet the patient still dies in the hospital because of frailty and/or preexisting organ dysfunction. Length of stay and duration of mechanical support will also be longer in such patients, confounding any beneficial effect on time to recovery and ICU or hospital discharge in less sick survivors. In view of the many available prognosticators—physiological, biochemical, and molecular—that can identify likely survival at an early stage in the patient’s hospital admission, the possibility of better trial stratification is intriguing. Predicted survivors can be separated from predicted non-survivors. In the former, the focus could be on time to recovery and quality of survivorship with unanticipated death used as a safety signal. On the other hand, a mortality signal can be primarily sought in predicted non-survivors, with a greater treatment effect being perhaps more likely in this sicker cohort.

A personalized medicine approach

Increasing emphasis is being placed on personalized medicine (Fig 6), and an important aspect to consider is aging. Indeed, the links between immunosenescence and sepsis have been poorly investigated (Martín et al, 2017), although immunosenescence is associated with increased sensitivity of aged people to infection (Fulop et al, 2018; Mannick et al, 2018). However, most experimental sepsis models are performed on murine teenagers. Mortality is far greater in aged mice following CLP (Saito et al, 2003) or with polytrauma with pneumonia (Nacionales et al, 2015). The elderly animals show enhanced coagulopathy, decreased generation of activated protein C (Starr et al, 2015), and a more pronounced cytokine storm.

Blocking or activating specific pathways may be potentially beneficial when a pathway is over- or under-expressed in patients who fare badly, albeit with the caveat that this may represent an adaptive rather than detrimental response. This may apply to the use of IL-1 receptor antagonism (Shakoorry et al, 2016), anti-TNF therapies (Panacek et al, 2004), or corticosteroids (König et al, 2018), where post hoc analyses suggest benefit in those with raised ferritin, raised IL-6 levels and low IFN-γ/IL10, respectively (Table 2). On the other hand, a post hoc analysis of a clinical trial showed that a transcriptional signature suggestive of a more immunocompetent profile fared significantly worse with steroid therapy (Antcliffe et al, 2019).
Analysis of clinical data from more than 20,000 patients identified four distinct clinical phenotypes with different host-response patterns (Seymour et al., 2019). Computer simulations suggested that the distribution of particular phenotypes could affect the trial outcome. Others have suggested identifying patients with a major immunosuppressive profile (Hotchkiss et al., 2013; Bermejo-Martin et al., 2016).

Table 2. Examples of clinical trials that showed benefits in subgroups of septic patients.

Drug/intervention	Subgroups	Benefit	Mode of analysis	References
Afelimomab (anti-tumor necrosis factor F(ab')2 monoclonal antibody fragment)	IL-6 > 1,000 pg/ml	28-day mortality 43.6% vs. 47.6% placebo	Prospective	Panacek et al. (2004)
GM-CSF	Monocytic HLA-DR < 8,000 antibodies per cell	Time of mechanical ventilation 148 ± 103 vs. 207 ± 58 h (placebo), P = 0.04	Prospective	Meisel et al. (2009)
Anakinra (IL-1 receptor antagonist)	Features of hemophagocytic lymphohistiocytosis (disseminated intravascular coagulation (DIC), thrombocytopenia and hepatobiliary dysfunction)	28-day mortality 34.6% vs. 64.7% placebo	Re-analysis of de-identified data from the phase III randomized interleukin-1 receptor antagonist trial in severe sepsis	Shakoory et al. (2016)
Trimodulin (polyclonal immunoglobulin preparation)	CRP ≥ 70 mg/l and IgM ≤ 0.8 g/l	28-day mortality 11.8% vs. 36.6% placebo (P = 0.006)	Exploratory post hoc	Welte et al. (2018)

Analysis of clinical data from more than 20,000 patients identified four distinct clinical phenotypes with different host-response patterns (Seymour et al., 2019). Computer simulations suggested that the distribution of particular phenotypes could affect the trial outcome. Others have suggested identifying patients with a major immunosuppressive profile (Hotchkiss et al., 2013; Bermejo-Martin et al., 2016).

Figure 6. Strategies to enrich treatment-sensitive subpopulations of patients.

At the admission, patient is subjected to supportive therapies and samples are taken for laboratory analyses. The flowchart on the left side shows current approach to stratify the patients using relatively simple methods such as clinical scales, mediator concentrations, or activation of immune cells. Then basing on the thresholds patients are qualified or not to a given specific therapy. This approach is already used in some clinical trials and for some biomarkers feasible at the bedside. On the right, a procedure of future individual medicine is presented. It involves a more complicated approach which applies potent analytical platforms to assess the genome, transcriptome, proteome, and metabolome of the patient. Together with metagenome of the pathogen, the decision is made on the drug to prescribe as well as its dose and timing.

Table 2. Examples of clinical trials that showed benefits in subgroups of septic patients.

Drug/intervention	Subgroups	Benefit	Mode of analysis	References
Afelimomab (anti-tumor necrosis factor F(ab')2 monoclonal antibody fragment)	IL-6 > 1,000 pg/ml	28-day mortality 43.6% vs. 47.6% placebo	Prospective	Panacek et al. (2004)
GM-CSF	Monocytic HLA-DR < 8,000 antibodies per cell	Time of mechanical ventilation 148 ± 103 vs. 207 ± 58 h (placebo), P = 0.04	Prospective	Meisel et al. (2009)
Anakinra (IL-1 receptor antagonist)	Features of hemophagocytic lymphohistiocytosis (disseminated intravascular coagulation (DIC), thrombocytopenia and hepatobiliary dysfunction)	28-day mortality 34.6% vs. 64.7% placebo	Re-analysis of de-identified data from the phase III randomized interleukin-1 receptor antagonist trial in severe sepsis	Shakoory et al. (2016)
Trimodulin (polyclonal immunoglobulin preparation)	CRP ≥ 70 mg/l and IgM ≤ 0.8 g/l	28-day mortality 11.8% vs. 36.6% placebo (P = 0.006)	Exploratory post hoc	Welte et al. (2018)
though this may be less promising than anticipated (Cavaillon et al., 2014). A recent study on 700 transcriptomic profiles suggested that patients with bacterial sepsis could be divided into “inflammopathic”, “adaptive”, and “coagulopathic” clusters (Sweeney et al., 2018a), with each state potentially corresponding to different therapeutic approaches. A summary of transcriptomic studies exploring subgroup responses can be found in Table 3. While intriguing, such approaches have yet to be tested prospectively, let alone validated.

Table 3. Described endotypes of sepsis. Heterogeneity of the host response to sepsis is a major cause of difficulties in the development of effective targeted therapies. By the use of genome-wide expression assays, different patterns of transcriptomic response (of blood leukocytes) in sepsis are distinguished. Unraveling these patterns creates opportunities to find new pathways that can be targeted in a given subgroup. The term endotype is used to distinguish the transcriptome-based diversity from the classical phenotypic description.

Endotypes	Methodology	Studied group	Implications	References
Subclass A: repression of adaptive immunity and zinc-related biology	Genome-wide expression profiling, unsupervised hierarchical clustering of genes which expression was ≥ 2-fold changed (comparing to controls) in 25-50% of patients	Children with septic shock (n = 98)	Identification of high-risk subpopulation by subclass A	Wong et al (2009)
Subclass B	Multiplex mRNA quantification platform to analyze the expression of the 100 subclass-defining genes	Children with septic shock (n = 168)	Development of a method for endotyping pediatric septic shock patients	Wong et al (2015)
Mars1: immunosuppression, increase in heme biosynthesis pathway, components	Genome-wide expression	Sepsis (n = 306), validation cohort (n = 216), second validation cohort (CAP sepsis n = 265)	Mars1 type response is related to poor early- and long-term outcome	Scicluna et al (2017)
SRS1 (Sepsis Response Signature 1): immunosuppression, T-cell exhaustion, endotoxin tolerance	Genome-wide microchip array, variation in global gene expression by unsupervised hierarchical clustering	Sepsis due to CAP (n = 265 and validation cohort n = 106)	SRS1 is a predictor of high early mortality	Davenport et al (2016)
Endotype A	Retrospective analysis of transcriptomic data using pattern of 100 genes expression	Sepsis (n = 549)	Highest mortality in patients < 40 y.o. co-allocated into endotype A/SRS1	Wong et al (2017a)
Endotype B	Retrospective classification and regression tree analysis of retrospective data to find the smallest discriminatory set of genes	Septic children (n = 300), validation group (n = 43)	Development of four-gene based protocol for endotyping of septic children. Potential to identify glucocorticoid responses	Wong et al (2017b)
SRS1	Genome-wide microarray, allocation based on the generalized linear model based on 7 genes (from Davenport et al, 2016)	Sepsis (n = 177)	Hydrocortisone treatment increases mortality in SRS2	Antcliffe et al (2019)
SRS2				
Inflammopathic: pro-inflammatory, complement pathways	Genome-wide expression	Retrospective analysis of septic patients (n = 700) from 14 trials	Identification of major deregulated pathways in endotypes that can direct selective treatment	Sweeney et al (2018a)

CAP, community acquired pneumonia; SRS, sepsis response signature.

© 2020 The Authors
Clearly, this branch of diagnostics is still in its relative infancy. Advances in platform technology such as next-generation sequencing with interrogation of the whole genome will open up important new insights, as will the rapidly advancing areas of metagenomics, metabolomics, and proteomics. The time to access data will be dramatically reduced, enabling results within minutes to hours, a timeline that is crucial for intervention in a critically ill patient. PCR and multiplex protein point-of-care technologies already exist and yield results within this timeline; such devices will continue to become more refined and sophisticated. Crucially, standardization, or at least cross-validation, of the different platforms and computer analytic techniques will be needed to ensure consistency. A further point to consider is the current reliance on blood sampling and extrapolation of results from either predominantly white cells, or circulating humoral mediators (e.g., cytokines, hormones, metabolites), to changes at the organ level. An excellent but sadly overlooked rat CLP study showed markedly different transcriptomic changes between lung, liver, kidney, thymus, spleen, and brain, both spatially and temporally (Chinnaiyan et al., 2001). Pathophysiological assumptions made from circulating blood cells may not hold true in the overall scheme.

Revisiting old strategies or new approaches?

As mentioned earlier, many approaches that were successful in preclinical models and Phase II clinical trials have failed at the larger multi-centre trial stage. The increasing appreciation of different phenotypes/endotypes within the syndrome of sepsis and post hoc analyses of trial data suggesting outcome benefit (e.g., Calfee et al., 2018 and statins), or detriment (Antcliffe et al., 2019, and steroids) in specific subsets, does suggest that these old agents could be gainfully revisited, especially with the advent of diagnostics enabling rapid subset identification. IL-1Ra therapy could be considered for patients with a hemophagocytosis profile (Shakoory et al., 2016), recombinant soluble thrombomodulin in those with a coagulopathic profile (Kato & Matsushita, 2018), or intravenous immunoglobulin (IVIg) in those with a hyperinflammatory profile (Welte et al., 2018). Immunosuppressor drugs such as interferon-gamma and GM-CSF are also being re-explored, using lymphopenia as a surrogate for immunosuppression. Non-drug approaches, such as hemofiltration and blood purification techniques, may also show benefit when targeting specific subsets rather than general populations (e.g., Payen et al., 2009; Gaudry et al., 2016; Dellinger et al., 2018; Hawchar et al., 2019).

The same argument should be applied to novel investigational drugs. Many are in a clinical testing phase, but it is imperative that they be tested in optimal population subsets. For example, a dose-finding Phase II trial (Adrenosss-2) has just been completed for adrecizumab in patients with septic shock and elevated concentrations of circulating bio-adrenomedullin (Geven et al., 2019). Other approaches are also being studied, including electroacupuncture, which showed benefit in endotoxic mice (Torres-Rosas et al., 2014) and more recently, anti-inflammatory bowel-protective effects on intestinal functions in patients with sepsis-induced intestinal dysfunction (Meng et al., 2018).

There are multiple other agents being studied at present in preclinical models targeting a wide range of inflammatory, immune, metabolic, bioenergetic, and hormonal pathways (Dalli et al., 2014; Tancevski et al., 2014; Winkler et al., 2017; Rathkey et al., 2018; Sham et al., 2018). Transfer of mesenchymal stem cells appeared promising in preclinical studies, and phase 1 and 2 clinical trials are ongoing (Keane et al., 2017). Preparations of exosomes from mesenchymal stem cells (Chang et al., 2018) or endothelial progenitor cells (Zhou et al., 2018) also show early promise. How many of these approaches will proceed to clinical trials and then clinical use remains open to question. There may be no magic target to cure sepsis, and a combined approach could be more beneficial than targeting a single molecule, as shown for IL-1 and IL-18 in murine sepsis (Vanden Bergh et al., 2014). IL-1 and TNF in a rat model (Russel et al 1995), or CD14 and factor Xla in rabbits (Nakamura et al., 2017).

Improving survivorship

While the therapeutic emphasis has long been focused on survival, increasing effort is now being placed on enhancing survivors’ quality of life. Below are a few approaches being examined to improve functionality in different organs.

Protecting the brain

Minimization or avoidance of iatrogenic factors related to treatment (e.g., prolonged use of benzodiazepine sedation, and adequate pain treatment) and non-pharmacological modalities (e.g., physiological light cycle, cognitive stimulation, and early mobilization) may prove useful (Souza-Dantas et al., 2016). Existing drugs such as metformin (Tang et al., 2017) and minocycline (Adembri et al., 2014) show brain protective effects in experimental sepsis. The natural antioxidant berberine improved survival in a rat CLP model but also motor and cognitive functions (Shi et al., 2018).

Improving muscle function

An adequate diet with high protein intake may be pivotal in dealing with critical illness-induced sarcopenia (Wischmeyer & San-Millan, 2015), perhaps in conjunction with an individualized physical rehabilitation regimen. Early rehabilitation appears to improve short-term ICU-acquired weakness, but not long-term weakness nor mental status (Fuke et al., 2018). Despite contradictory clinical data, neuromuscular electrostimulation reduced muscle atrophy in endotoxemia models (Poulson et al., 2011; Rodriguez et al., 2012; Tanaka et al., 2016). Use of beta-blockers to inhibit catabolism was proved to be efficient in burn patients (Herndon et al., 2001). Anabolic hormones such as testosterone or growth hormone are also of interest, despite their potential side effects (Rosenthal & Moore, 2015). However, growth hormone increased mortality in critically ill patients (Takala et al., 1999).

Preserving immune functionality

Different strategies are proposed, ranging from boosting reagents (Hotchkiss et al., 2013) to agents limiting the inflammatory reaction, such as myeloid suppressor cells (McPeak et al., 2017) or regulatory T cells (Heuer et al., 2005). Preventing T-cell exhaustion by anti-PD-1/PD-L1, anti-CTLA-4 treatments, or IL-7 therapy, has also been suggested (Hotchkiss et al, 2019a,b; Francois et al., 2018). Another approach is to boost immune function by vaccination; a multi-centre trial using a polyvalent conjugate pneumococcal vaccine is ongoing in the UK (https://clinicaltrials.gov/ct2/show/NCT03565159).
Pending issues

(i) Identification of critical pathophysiological events in development of sepsis and distinction between causative, adaptive or bystander phenomena.
(ii) Better understanding of the local tissue-specific responses during sepsis.
(iii) Improvement of the preclinical models for both basic and translational research: animal models more relevant than rodents (e.g., rabbits, squirrel monkeys, pigs), site of infection frequently found in human sepsis (e.g., lungs, . . .), clinical isolates.
(iv) Development of integrated personalized approach that combines clinical phenotypes, biomarkers, and endotypes unraveled by -omics technologies, microfluidic approaches, and artificial intelligence technologies.
(v) Better design of clinical trials to stratify or identify patient populations that may benefit from treatment (prognostic or predictive enrichment) and thus decrease heterogeneity; use of more relevant endpoint (such as quality-of-life after sepsis).

Acknowledgements

T. Skirecki was supported by the Polish National Science Centre (Grant no. 2013/11/N/ZN6/02581 and UMO-2016/23/D/ZN6/02554).

Author contributions

J-MC, MS, and TS contributed to the conception, the writing, and the editing of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

For more information

(i) https://www.sccm.org/SurvivingSepsisCampaign/Home
(ii) https://www.worldsepsisday.org/
(iii) http://internationalsepsisforum.com
(iv) http://www.egis-online.eu/

References

Acker CG, Singh AR, Flick RP, Bernardini J, Greenberg A, Johnson JP (2000) A trial of thyroxine in acute renal failure. Kidney Int 57: 293 – 298
Adembri C, Selmi V, Vitali L, Tani A, Margheri M, Loriga B, Carlucci M, Nosi D, Formigl L, De Gaudio AR (2014) Minocycline but not tigecycline is neuroprotective and reduces the neuroinflammatory response induced by the superimposition of sepsis upon traumatic brain injury. Crit Care Med 42: e570 – e582
Adib-Conquy M, Adrie C, Fitting C, Gattoliat O, Beyaert R, Cavaillon JM (2006) Up-regulation of MyDD8s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit Care Med 34: 2377 – 2385
Alverdy JC, Krezalek MA (2017) Collapse of the microbiome, emergence of the pathobiome, and the Immunopathology of Sepsis. Crit Care Med 45: 337 – 347
Andreis DT, Singer M (2016) Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med 42: 1387 – 1397
Angelouso AG, Karageorgopoulos DE, Kapaskelis AM, Falagas ME (2011) Association between thyroid function tests at baseline and the outcome of patients with sepsis or septic shock: a systematic review. Eur J Endocrinol 164: 147 – 155
Angurana SK, Bansal A, Singh S, Aggarwal R, Jayashree M, Safaria M, Mangat NK (2018) Evaluation of effect of probiotics on cytokine levels in critically ill children with severe sepsis: a double-blind, placebo-controlled trial. Crit Care Med 46: 1656 – 1664
Annane D, Sharshar T (2015) Cognitive decline after sepsis. Lancet Respir Med 3: 61 – 69
Annane D (2016) The role of ACTH and corticosteroids for sepsis and septic shock: an update. Front Endocrinol (Lausanne) 7: 70
Antcliff DB, Burnham KL, Al-Beidh F, Santhakumaran S, Brett SJ, Hinds CJ, Ashby D, Knight JC, Gordon AC (2019) Transcriptomic signatures in sepsis and a differential response to steroids. From the VANISH randomized trial. Am J Respir Crit Care Med 199: 980 – 986
Arefian H, Heublein S, Scherag A, Brunkhorst FM, Younis MZ, Moerer O, Fischer D, Hartmann M (2017) Hospital-related cost of sepsis: a systematic review. J Infection 74: 107 – 117
Aker H, Grimm A, Pausch C, Teschner U, Zinke J, Eisenach S, Beck S, Guntinas-Lichius O, Brunkhorst FM, Witte OW (2016) The impairment of small nerve fibers in severe sepsis and septic shock. Crit Care 20: 64
Baggs J, Jernigan JA, Halpin AL, Epstein L, Hatfield KM, McDonald LC (2018) Risk of subsequent sepsis within 90 days after a hospital stay by type of antibiotic exposure. Clin Infect Dis 66: 1004 – 1012
Balboa E, Saavedra-Leiva F, Cea LA, Vargas AA, Ramirez V, Escamilla R, Saez JC, Regueira T (2018) Sepsis-induced channelopathy in skeletal muscles is associated with expression of non-selective channels. Shock 49: 221 – 228
Balmer ML, Hess C (2017) Starving for survival: how catabolic metabolism fuels immune function. Curr Opin Immunol 46: 8 – 13
Barichello T, Sayana P, Grindharan VV, Arumanayagam AS, Narendran B, Della Giustina A, Petroniho F, Quevedo J, Dal-Pizzol F (2019) Long-term cognitive outcomes after sepsis: a translational systematic review. Mol Neurobiol 56: 186 – 251

Barreiro LB, Marioni JC, Blekhman R, Stephens M, Gilad Y (2010) Functional comparison of innate immune signaling pathways in primates. PLoS Genet 6: e1001249

Batt J, dos Santos CC, Cameron JI, Herridge MS (2013) Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am j Respir Crit Care Med 187: 238 – 246

Bauer M, Coldewey SM, Leitner M, Löffler B, Weis S, Wetzker R (2018) Deterioration of organ function as a hallmark in sepsis: the cellular perspective. Front Immunol 9: 1460

Baxter RC, Hawker FH, To C, Stewart PM, Holman SR (1998) Thirty-day monitoring of insulin-like growth factors and their binding proteins in intensive care unit patients. Growth Horm IGF Res 8: 455 – 463

Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers E-J, Berk R, Bollen KA, Brembs B, Brown L, Camerer C et al (2018) Redefine statistical significance. Nat Hum Behav 2: 6 – 10

Bermejo-Martín JF, Andaluz-Ojeda D, Almansa R, Gandía F, Gómez-Herrerás JL, Gomez-Sanchez E, Heredia-Rodríguez M, Eiros JM, Kelvin DJ, Tamayo E (2016) Defining immunological dysfunction in sepsis: a requisite tool for precision medicine. j infection 72: 525 – 536

Beura LK, Hamilton SE, Blk K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A et al (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532: S12 – S16

Boldock E, Sureauaud BGJ, Samarina D, Na M, Fei Y, Ali A, Williams A, Pollitt EGJ, Szkuta P, Morris P et al (2018) Human skin commensals augment Staphylococcus aureus pathogenesis. Nat Microbiol 3: 881 – 890

Boldt J, Menges T, Kuhn D, Dinids C, Hempelmann G (1995) Alterations in circulating vasoactive substances in the critically ill—a comparison between survivors and non-survivors. Intensive Care Med 21: 218 – 225

Bomszyk K, Mar D, An D, Sharrifan R, Mikula M, Gharib SA, Altemeier WA, Liles WC, Denisenko O (2015) Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. Crit Care 19: 225

Bone RC, Bink RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101: 1644 – 1655

Borken F, Markwart R, Querardt RP, Schubert K, Spacek M, Verner M, Rückriem S, Scherag A, Dehmichen F, Brunekhorst FM et al (2017) Chronic critical illness from sepsis is associated with an enhanced TCR response. J Immunol 198: 4781 – 4791

Brakenridge SC, Moore FA, Mercier NR, Cox M, Wu Q, Moldawer LL, Mohr AM, Efron PA, Smith RS (2019) Persistently elevated glucagon-like peptide-1 levels among critically ill surgical patients after sepsis and development of chronic critical illness and dismal long-term outcomes. J Am Coll Surg 229: 58 – 67

Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219 – 223

Brown RL, Sequeira RP, Clarke TB (2017) The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun 8: 1512

Burnham KL, Davenport EE, Radhakrishnan J, Humburg P, Gordon AC, Hutton P, Sreenan-Bajalbera E, Garrand C, Hill AVS, Hinds CJ et al (2017) Shared and distinct aspects of the sepsis transcriptomic response to focal peritonitis and pneumonia. Am j Respir Crit Care Med 196: 328 – 339

Cabrera-Perez J, Babcock JC, DiIeean P, Murphy KA, Kucaba TA, Badovinac VP, Griffith TS (2016) Gut microbiobial membership modules CD4 T cell reconstitution and function after sepsis. J immunol 197: 1692 – 1698

Cafée CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, McDowell C, Laffey JG, O’Kane CM, McAuley DF et al (2018) Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 6: 691 – 698

Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV (1986) Multiple-organ failure syndrome. Arch Surg 121: 196 – 208

Cavaillon JM, Adib-Conquy M, Fitting C, Adrie C, Payen D (2003) Cytokine cascade in sepsis. Scand j Infect Dis 35: 535 – 544

Cavaillon JM, Adrie C, Fitting C, Adib-Conquy M (2005) Reprogramming of circulating cells in sepsis and SIRS. J Endotoxin Res 11: 311 – 320

Cavaillon J-M, Eisen D, Annane D (2014) Is boosting the immune system in sepsis appropriate? Crit Care 18: 216

Cavaillon J-M (2018) Exotoxins and endotoxins: inducers of inflammatory cytokines. Toxicon 149: 45 – 53

Cavaillon J-M, Giamarellos-Bourboulis EJ (2019) “Immunosuppression” is inappropriately qualifying the immune status of septic and SIRS patients. Shock 52: 307 – 317

Cavassani KA, Caron WF IV, Moreira AP, Wenn H, Schaller MA, Ishii M, Lindell DM, Dou Y, Lukacs NW, Keshamouni VG et al (2010) The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood 115: 4403 – 4411

Chang CL, Sung PH, Chen KH, Shao PL, Yang CC, Cheng BC, Lin KC, Chen CH, Htai HT, Chang HW et al (2017) Adipocyte-derived mesenchymal stem-cell derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome. Am j Transl Res 10: 1053 – 1070

Chavan SS, Huerta PT, Robbisti S, Valdes-Ferrer SI, Ochani M, Dancho M, Frankfort M, Volpe BT, Tracey KJ, Diamond B (2012) HMGB1 mediates cognitive impairment in sepsis survivors. Mol Med 18: 930 – 937

Cheng SC, Siciluna BP, Arts RJ, Cresgnt MS, Lachmandas E, Giamarellos-Bourboulis EJ, Kox M, Manjeri GR, Wageneraa JS, Cremer OL et al (2016) Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 17: 406 – 413

Cheng KT, Xiong S, Ye Z, Hong Z, Di A, Tsang KM, Gao X, An S, Mittel M, Vogel SM et al (2017) Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest 127: 4124 – 4135

Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C, Barrette TR, Shankar-Sinha S, Sarma VJ, Padgaonkar VA, Ward PA (2003) Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am j Pathol 159: 1199 – 1209

Clark JA, CooperSmith CM (2007) Intestinal crosstalk: a new paradigm for understanding the gut as the ‘motor’ of critical illness. Shock 28: 384 – 393

Clauschuis TAM, van Vught LA, Siciluna BP, Wiewel MA, Klein Klouwenberg PML, Hoogendijk AJ, Ong DSY, Cremer OL, Horn J, Franitza M et al (2016) Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients. Blood 127: 3062 – 3072

Condotta SA, Rai D, James BR, Griffith TS, Badovinac VP (2013) Sustained and incomplete recovery of naive CD8+ T cell precursors after sepsis
contributes to impaired CD8 \(^+\) T cell responses to infection. J Immunol 190: 1991 – 2000
Conway Morris A, Datta D, Shankar-Hari M, Stephen J, Weir CJ, Rennie J, Antonelli J, Bateman A, Warner N, Judge K et al (2018) Cell-surface signatures of immune dysfunction risk-stratify critically ill patients: INFECT study. Intensive Care Med 44: 627 – 635
Crowell KT, Soybel DJ, Lang CH (2017) Restorative mechanisms regulating protein balance in skeletal muscle during recovery from sepsis. Shock 47: 463 – 473
Csóka B, Németh ZH, Tóró G, Koscsó B, Kókai E, Robson SC, Enjyoji K, Rolandelli RH, Erdélyi K, Pacher P et al (2015) CD39 improves survival in microbial sepsis by attenuating systemic inflammation. FASEB J 29: 25 – 36
Dalli J, Norling LV, Montero-Melendez T, Canova DF, Lashin H, Pavlov AM, Sukhorukov GB, Hinds CJ, Perretti M (2014) Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med 6: 27 – 42
Danahy DB, Jensen JI, Griffith BS, Badovinac VP (2016) Dalli J, Norling LV, Montero-Melendez T, Canova DF, Lashin H, Pavlov AM, Sukhorukov GB, Hinds CJ, Perretti M (2014) Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med 6: 27 – 42
Davies CL, Bryant AL, Elpek KG, Gordonov S et al (2012) Gene-expression profiles and DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients. PLoS One 7: e38916
Fleischmann C, Thomas-Rueedel DO, Hartmann M, Hartog CS, Welte T, Heublein S, Dennler U, Reinhart K (2016) Hospital incidence and mortality rates of sepsis. Dtsch Arztebl Int 113: 159 – 166
Fox AC, McConnell KW, Joseph BP, Breed E, Liang Z, Clark AT, O’Donnell D, Zee-Cheng B, Jung E, Dominguez JA et al (2012) The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia. Shock 38: 508 – 514
François B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J, Monneret G, Rimmele T, Blood T, Morre M et al (2018) Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight 3: 98960
Freedberg DE, Zhou MJ, Cohen ME, Annevajhala MK, Khan S, Moscoso DI, Brooks C, Whittier S, Chong DH, Uhlemann AC et al (2018) Pathogen colonization of the gastrointestinal microbiome at intensive care unit admission and risk for subsequent death or infection. Intensive Care Med 44: 1203 – 1211
Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L (2015) The sick and the weak: neuropathies/myopathies in critically ill patients. Physiol Rev 95: 1025 – 1109
Fuks R, Hifumi T, Kondo Y, Hatakeyama J, Takei T, Yamakawa K, Inoue S, Nishida O (2018) Early rehabilitation to prevent postintensive care syndrome in patients with critical illness: a systematic review and meta-analysis. BMJ Open 8: e019998
Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2018) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8: 1960
Fux CA, Shirtliff M, Stoolpman P, Costerton JW (2005) Can laboratory reference strains mirror ‘real-world’ pathogenesis? Trends Microbiol 13: 58 – 63
Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon J-M, Cognasse F (2015) The future of murine sepsis and trauma research models. Nat Biomed Eng 2: 207 – 214
Escoll P, del Fresco C, Garcia L, Valles G, Lendinez MJ, Arnalich F, Lopez-Collazo E (2003) Rapid up-regulation of IRAK-M expression following a second endotoxin challenge in human monocytes and in monocyes isolated from septic patients. Biochem Biophys Res Commun 311: 465 – 472
Faim F, Passaglia P, Batalhao M, Lucchin R, Stabile AM, Carnio EC (2019) Role of ghrelin on growth hormone/insulin-like growth factor-1 axis during endotoxemia. Growth Horm IGF Res 48: 36 – 44
Fairbairn L, Kapetanovic R, Beraldi D, Sester DP, Tuggle CK, Archibald AL, Hume DA (2013) Comparative analysis of monocyte subsets in the pig. J Immunol 190: 6389 – 6396
Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A (2017) Antibiotic use and microbiome function. Biochem Pharmacol 134: 114 – 126
Fitting C, Parfloato M, Adib-Conquy M, Memain N, Philippart F, Misset B, Monchi M, Cavaillon JM, Adice C (2012) DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients. PLoS One 7: e38916
Fleischmann C, Thomas-Rueddel DO, Hartmann M, Hartog CS, Welte T, Heublein S, Dennler U, Reinhart K (2016) Hospital incidence and mortality rates of sepsis. Dtsch Arztebl Int 113: 159 – 166
Fox AC, McConnell KW, Joseph BP, Breed E, Liang Z, Clark AT, O’Donnell D, Zee-Cheng B, Jung E, Dominguez JA et al (2012) The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia. Shock 38: 508 – 514
François B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J, Monneret G, Rimmele T, Blood T, Morre M et al (2018) Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight 3: 98960
Freedberg DE, Zhou MJ, Cohen ME, Annevajhala MK, Khan S, Moscoso DI, Brooks C, Whittier S, Chong DH, Uhlemann AC et al (2018) Pathogen colonization of the gastrointestinal microbiome at intensive care unit admission and risk for subsequent death or infection. Intensive Care Med 44: 1203 – 1211
Friedrich O, Reid MB, Van den Berge G, Vanhorebeek I, Hermans G, Rich MM, Larsson L (2015) The sick and the weak: neuropathies/myopathies in critically ill patients. Physiol Rev 95: 1025 – 1109
Fuks R, Hifumi T, Kondo Y, Hatakeyama J, Takei T, Yamakawa K, Inoue S, Nishida O (2018) Early rehabilitation to prevent postintensive care syndrome in patients with critical illness: a systematic review and meta-analysis. BMJ Open 8: e019998
Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2018) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8: 1960
Fux CA, Shirtliff M, Stoolpman P, Costerton JW (2005) Can laboratory reference strains mirror ‘real-world’ pathogenesis? Trends Microbiol 13: 58 – 63
Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon J-M, Cognasse F (2013) Bench-to-bedside review: platelets and active immune functions - new clues for immunopathology? Crit Care 17: 236
Gaudry S, Hajage D, Schortgen F, Martin-Lefèvre L, Pons B, Boulet E, Boyer A, Chevetel G, Lelotte N, Carpentier D et al (2016) Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 375: 122 – 133
Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Hefft J, Chow A, Elpek KG, Gordonov S et al (2012) Gene-expression profiles and
transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. *Nat Immunol* 13: 1118–1128

Gawaz M, Fateh-Moghadam S, Pilz G, Guldan HJ, Werdan K (1995): Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. *Eur J Clin Invest* 25: 843–851

Gentile LF, Cuenca AG, Armbuster M, Ungaro RF, Abouhamze AS, Lopez C, Baker HV, Moore FA, Ang DN et al (2013): Identification and description of a novel murine model for polytrauma and shock. *Crit Care Med* 41: 1075–1085

Gentile LF, Molendawer LL (2014): HMGB1 as a therapeutic target for sepsis: it’s all in the timing! *Expert Opin Ther Targets* 18: 243–245

Gentile LF, Nacionales DC, Cuenca AG, Armbruster M, Ungaro RF, Abouhamze AS, Lopez C, Baker HV, Moore FA, Ang DN et al (2013): Identification and description of a novel murine model for polytrauma and shock. *Crit Care Med* 41: 1075–1085

Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Geven C, van Lier D, Blet A, Peelen R, Ten Elzen B, Mebazaa A, Kox M, Gentile LF, Moldawer LL (2015): Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. *J Trauma Acute Care Surg* 72: 1491–1501

Gawaz M, Fateh-Moghadam S, Pilz G, Gurland HJ, Werdan K (2014): Increased heterocellular CXC chemokine production and chemokine receptor expression in murine models of sepsis. *J Immunol* 192: 770–781

Gomez H, Jin K, Uchino H (2015): Metabolomic analyses of peripheral blood cells in sepsis-induced multiple organ failure. *Sci Rep* 5: 13385

Hara N, Chiuiwa M, Yara M, Ishida Y, Ogawa Y, Inazu M, Kuroda M, Karlsson M, Sjovall F, Elmér E, Uchino H (2015): Metabolomic analyses of brain tissue in sepsis induced by cecal ligation reveal specific redox alterations-protective effects of the oxygen radical scavenger edaravone. *Shock* 44: 578–584

Hashem-Aslani S, Inaba M, Umegaki H, Unno K, Wakabayashi K, Shimada A (2016): Endotoxemia-induced cytokine-mediated responses of hippocampal astrocytes transmitted by cells of the brain-immune interface. *Sci Rep* 6: 25457

Hashiba M, Huq A, Tomino A, Hirakawa A, Hattori T, Miyabe H, Tsuda M, Takeyama N (2015): Neutrophil extracellular traps in patients with sepsis. *J Surg Res* 194: 248–254

Hassan U, Chang T, Reddy B, Patel M, Rappleye M, Taneja I, Tanna A, Healey R, Manusuy N, Price Z et al (2017): A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. *Nat Commun* 8: 15949

Hassan FI, Didari T, Khan F, Mojtahedzadeh M, Abdollahi M (2018): The role of epigenetic alterations involved in sepsis: an overview. *Curr Pharm Des* 24: 2862–2869

Hawchar F, László I, Óveges N, Trády Z, Ondrlik Z, Molnár Z (2019): Extracorporeal cytokine adsorption in septic shock: a proof of concept randomized, controlled pilot study. *J Crit Care* 49: 172–178

He H, Meng T, Chen P, Wang M, Hu J, Kang L, Song W, Tang H (2016): NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation. *Sci Rep* 6: 27711

Hermans G, Van den Berge G (2015): Clinical review: intensive care unit acquired weakness. *Crit Care* 19: 274

Hendron DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR (2001): Reversal of catabolism by beta-blockade after severe burns. *N Engl J Med* 345: 1223–1229

Heuer JG, Zhang T, Zhao J, Ding C, Cramer M, Justen KL, Vonderfecht SL, Na S (2015): Adaptive transfer of in vitro-stimulated CD4+CD25+ regulatory T cells increases bacterial clearance and improves survival in polymicrobial sepsis. *J Immunol* 184: 7141–7146

Hill NE, Murphy KG, Saeed S, Phadke R, Chambers D, Wilson DR, Brett SJ, Singer M (2017): Impact of ghrelin on body composition and muscle function in a long-term rodent model of critical illness. *PLoS One* 12: e0182659

Hoeve DB, Ozment TR, Wondergem R, Li C, Williams DL (2015): Impaired heart rate regulation and depression of cardiac chronotropic and dromotropic function in polymicrobial sepsis. *Shock* 43: 185–191

Honiguchi H, Loftus TJ, Hawkins RB et al (2018): Innate immunity in the persistent inflammation, immunosuppression, and catabolism syndrome and its implications for therapy. *Front Immunol* 9: 595

Hoser GA, Skirecki T, Zlotorowicz M, Zielinska-Borkowska U, Kawiak J (2012): Absolute counts of peripheral blood leukocyte subpopulations in intraabdominal sepsis and pneumonia-derived sepsis: a pilot study. *Folia Histochem Cytobal* 50: 420–426

Hotchkiss RS, Monneret G, Payen D (2013): Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. *Lancet Infect Dis* 13: 260–268

Hotchkiss RS, Colston E, Yende S, Angus DC, Moldawer LL, Crouser ED, Martin GS, CooperSmith CM, Brakenridge S, Mayr FB et al (2019a): Immune checkpoint inhibition in sepsis: a phase 1b randomized,
placebo-controlled, single ascending dose study of antiprogrammed cell death-ligand 1 antibody. *Crit Care Med* 47: 632–642

Hotchkiss RS, Colston E, Yende S, Crouser ED, Martin GS, Albertson T, Bartz RR, Brakenridge SC, Delano MJ, Park PK et al (2019b) Immune checkpoint inhibition in sepsis: A Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. *Intensive Care Med* 45: 1360–1371

Iapichino G, Callegari ML, Marzorati S, Cigada M, Corbellia D, Ferrari S, Morelli L (2008) Impact of antibiotics on the gut microbiota of critically ill patients. *J Med Microbiol* 57: 1007 – 1014

Ingels C, Kunst J, Van den Bergh G (2018) Endocrine and metabolic alterations in sepsis and implications for treatment. *Crit Care Clin* 34: 81 – 96

Iskander KN, Craciun FL, Stepien DM, Duffy ER, Kim J, Moitra R, Vaickus LJ, Osuchowski MF, Remick DG (2013) Cecal ligation and puncture-induced murine sepsis does not cause lung injury. *Crit Care Med* 41: 159 – 170

Jiang Q, Cross AS, Singh IS, Chen TT, Viscardi RM, Hasday JD (2017) Endothelial activation: the Ang/Tie axis in sepsis. *Front Immunol* 9: 838

Jeljelic A, Richard-Greenblatt M, Wright J, Crowley VM, Kain KC (2018) Endothelial activation: the Ang/Tie axis in sepsis. *Front Immunol* 9: 838

Lelubre C, Vincent JL (2018) Mechanisms and treatment of organ failure in sepsis. *Nat Rev Nephrol* 14: 417 – 427

Levi M, van der Poll T (2017) Coagulation and sepsis. *Thromb Res* 149: 38 – 44

Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent J-L, Ramsay G, International Sepsis Definitions Conference (2001) 2001. SCCM/ESICM/ACCP/ATS/SIS International sepsis definitions conference. *Intensive Care Med* 29: 530 – 538

Lewis AJ, Yuan D, Zhang X, Angus DC, Rosengart MR, Seymour CW (2016) Use of biotemetry to define physiology-based deterioration thresholds in a murine cecal ligation and puncture model of sepsis. *Crit Care Med* 44: e420 – e431

Li S, Zhu F-X, Zhao X-J, An Y-Z (2016) The immunoprotective activity of interleukin-33 in mouse model of cecal ligation and puncture-induced sepsis. *Immunol Lett* 169: 1 – 7

Li S, Lv J, Li J, Zhao Z, Guo H, Zhang Y, Cheng S, Sun J, Pan H, Fan S, Li Z (2018) Intestinal microbiota impact sepsis associated encephalopathy via the vagus nerve. *Neurosci Lett* 662: 98 – 104

Lin Z, Liu X, Sun L, Li J, Hu Z, Xie H, Zu X, Deng X, Zhang W (2016) Comparison of sepsis rats induced by caecal ligation puncture or *Staphylococcus aureus* using a LC-QTOF-MS metabolomics approach. *Infect Gen Evol* 43: 86 – 93

Lipton J, Fossler D (1974) Fever produced in the squirrel monkey by intravenous and intracerebral endotoxin. *Am J Physiol* 226: 1022 – 1027

Mandal P, Feng Y, Lyons JD, Berger SB, Otani S, Delaney A, Tharp GC, Maner-Smith K, Burd EM, Schaeffer M et al (2018) Caspase-8 collaborates with caspase-11 to drive tissue damage and execution of endotocic shock. *Immunity* 49: 42 – 55.e46

Mannick JB, Morris M, Hockey H-UP, Roma G, Beibel M, Kumatyciki K, Watkins M, Shavlakadze T, Zhou W, Quinn D et al (2018) TORC1 inhibition enhances immune function and reduces infections in the elderly. *Sci Transl Med* 10: eaaq1564

Martelli D, Yao ST, McKinley MJ, Mcallen RM (2014) Reflex control of inflammation by sympathetic nerves, not the vagus. *J Physiol* 592: 1677 – 1686

Martín S, Pérez A, Aldeca C (2017) Sepsis and immunosenescence in the elderly patient: a review. *Front Med* 4: 20

Mathias B, Delmas AL, Ozrazgat-Basli T, Vanzant EL, Szpila BE, Mohr AM, Moore FA, Brakenridge SC, Brumback BA, Moldawer LL et al (2017) Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. *Ann Surg* 265: 827 – 834

Mazeraud A, Pascal Q, Verdonk F, Heming N, Chretien F, Sharshar T (2016) Neuroanatomy and physiology of brain dysfunction in sepsis. *Clin Chest Med* 37: 333 – 345

McPeak MB, Yousef D, Williams DA, Pritchett CL, Yao ZQ, McCall CE, El Gazzar M (2017) Myeloid cell-specific deletion of Cebpb decreases sepsis-induced immunosuppression in mice. *J Leukoc Biol* 102: 191 – 200

Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. *Science* 335: 936 – 941

Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, Weber-Carstens S, Hasper D, Keh D, Zuckermann H et al (2009) Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized,
placebo-controlled multicenter trial. *Am J Respir Crit Care Med* 180: 640–648

Weng M, Paunel-Görgülü A, Flohé S, Hoffmann A, Witte I, Mackenzie C, Baldus SE, Windolf J, Logters TT (2012) Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice. *Crit Care* 16: R137

Meng M, Klingensmith NJ, Coopersmith CM (2017) New insights into the gut as the driver of critical illness and organ failure. *Curr Opin Crit Care* 23: 143–148

Meng J, Jiao Y, Zhang G, Xu X, Ji C, Hu M, Lai Z, Zhang M (2018) Electroacupuncture improves intestinal dysfunction in septic patients: a randomised controlled trial. *Biomed Res Int* 2018: 1–9

Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. *J Immunol* 172: 2731–2738

Mickiewicz B, Tam P, Jene CN, Leger C, Wong J, Winston BW, Doig C, Kubes P, Vogel H, Alberta Sepsis Network (2015) Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice. *Crit Care Med* 43: 198: 903–913

Morel J, Paoloc J, Castells J, Desgeorges M, Busso T, Moliex S, Jahnke V, Del Carmine P, Gondin J, Arnold D et al (2017) Pneumonia after cecal ligation and puncture: a clinically relevant two hit model of sepsis. *Shock* 46: 567–570

Müller-Alouf H, Alouf JE, Gerlach D, Oegowski JH, Fitting C, Cavaillon JM (1994) Comparative study of cytokine release by human peripheral blood mononuclear cells stimulated with Streptococcus pyogenes superantigen erythrogenic toxins, heat-killed streptococci and lipopolysaccharide. *Infect Immun* 62: 4915–4921

Nacionales DC, Szpila B, Ungaro R, Lopez MC, Zhang J, Gentile LF, Cuenca AL, Vanzant E, Mathias B, jyot J et al (2015) A detailed characterization of the dysfunctional immunity and abnormal myelopoiesis induced by severe shock and trauma in the aged. *J Immunol* 195: 2396–2407

Nakamura M, Takeuchi T, Kawahara T, Hirose J, Nakayama K, Hosaka Y, Furusako S (2017) Simultaneous targeting of CD14 and factor Xa by a fusion protein consisting of an anti-CD14 antibody and the modified second domain of bikunin improves survival in rabbit sepsis models. *Eur J Pharmacol* 802: 60–68

Needham DM, Davidson J, Cohen H, Hopkins RO, Weinert C, Wunsch H, Zawistowski C, Remick DG, Cavaillon JM (2015) Simultaneous targeting of CD14 and factor Xa by a fusion protein consisting of an anti-CD14 antibody and the modified second domain of bikunin improves survival in rabbit sepsis models. *Eur J Pharmacol* 802: 60–68

Nguyen QT, Nguyen TH, Ju SA, Lee YS, Han SH, Lee SC, Kwon BS, Yu R, Kim GY, Lee BJ et al (2013) CD137 expressed on neutrophils plays dual roles in antibacterial responses against Gram-positive and Gram-negative bacterial infections. *Infect Immun* 81: 2168–2177

Nguyen TLA, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? *Dis Model Mech* 8: 1–16

Niktopoulos I, Kampisouli E, Jahlaj E, Vassiliou AG, Dimopoulou I, Mastora Z, Tassiris K, Perreas K, Zanella M, Routsi et al (2019) Chretin alterations during experimental and human sepsis. *Cytokine* 127: 154937

Oami T, Watanabe E, Hatano M, Teratake Y, Fujimura L, Sakamoto A, Ito C, Toshimori K, Swanson PE, Oda S (2018) Blocking liver autophagy accelerates apoptosis and mitochondrial injury in hepatocytes and reduces time to mortality in a murine sepsis model. *Shock* 50: 427–434

O'Dwyer MJ, Starczewska MH, Schrenzel J, Zacharowski K, Ecker DJ, Sampath R, Brealey D, Singer M, Libert N, Wilks M et al (2017) The detection of microbial DNA but not cultured bacteria is associated with increased mortality in patients with suspected sepsis—a prospective multi-centre European observational study. *Clin Microbiol Infect* 23: 208.e1–208.e6

Ofmima M, Mottaoka D, Shimizu K, Gotot K, Shintani A, Yoshia K, Nakamura S, Ogura H, Ida T, Shimazu T (2016) Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. *Dig Dis Sci* 61: 1628–1634

Opal SM, Scannlon PJ, Vincent JL, White M, Carroll SF, Palardy JE, Parejo NA, Pribble JP, Lemke H (1999) Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. *J Infect Dis* 180: 1584–1598

Opal SM, van der Poll T (2015) Endothelial barrier dysfunction in septic shock. *J Intern Med* 277: 277–293

Orhun G, Esen F, Özcan PE, Sencer S, Bilgiç B, Ulusoy C, Noyan H, Kıcıkurden M, Ali A, Barbaruğlu M et al (2018) Neuroimaging findings in sepsis-induced brain Dysfunction: Association with Clinical and Laboratory Findings. *Neurocrit Care* 30: 106–117

Orsowcowski MF, Connett J, Belch J, Cooper J, Granger J, Remick DG (2009) Stratification is the key: inflammatory biomarkers accurately direct immunomodulatory therapy in experimental sepsis. *Crit Care Med* 37: 1567–1573

Orsowcowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon J-M, Chaudry IH, Coopersmith CM, Deutschman C, Drechsler S et al (2018) Minimum quality threshold in pre-clinical sepsis studies (MQTIPSS): an international expert consensus initiative for improvement of animal modeling in sepsis. *Shock* 50: 377–380

Oved K, Cohen A, Boico O, Navon R, Friedman T, Eststein L, Kriger O, Bamberger E, Fonar Y, Yakobov R et al (2015) A novel host-proteome signature for distinguishing between acute bacterial and viral infections. *PLoS One* 10: e0120012

Panacek EA, Marshall JC, Albertson TE, Johnson DH, Johnson S, MacArthur RD, Miller M, Barchuk WT, Fischkoff S, Kaul M et al (2004) Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab')2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. *Crit Care Med* 32: 2173–2182

Parlatò M, Souza-Fonseca-Guimaraes F, Philippart F, Misset B, Adib-Conquy M, Cavaillon JM (2014) CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis. *J Immunol* 192: 2449–2459

Parlatò M, Cavaillon JM (2015) Host response biomarkers in the diagnosis of sepsis: a general overview. *Methods Mol Biol* 1237: 249–211

Parlatò M, Philippart F, Rouquetté A, Mouchard V, Puchois V, Blein S, Bedos J-P, Diehl J-L, Hamzaoui O, Annane D et al (2018) Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU
patients: the CAPTAIN prospective multicenter cohort study. Intensive Care Med 44: 1061–1070

Pavlov VA, Chavan SS, Tracey KJ (2018) Molecular and functional neuroscience in immunity. Annu Rev Immunol 36: 783–812

Payen D, Mateo J, Cavaillon JM, Fraisse F, Floriot C, Vicaut E (2009) Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med 37: 803–810

Peeters RP, Debaeye E, Fliers E, Visser TJ (2006) Changes within the thyroid axis during critical illness. Crit Care Clin 22: 41–55

Philippart F, Fitting C, Cavaillon JM (2012) Lung microenvironment contributes to the resistance of alveolar macrophages to develop tolerance to endotoxin*. Crit Care Med 40: 2987–2996

Plenge RM, Scolnick EM, Althuuler D (2013) Validating therapeutic targets through human genetics. Nat Rev Drug Discovery 12: 581–594

Poulsen JB, Moller K, Jensen CV, Weisdorf S, Kehlet H, Perren A (2011) Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock. Crit Care Med 39: 456–461

Preau S, Ambler M, Sigurta A, Kleyman A, Dyson A, Hill NE, Boulanger E, Singer M (2019) Protein recycling and limb muscle recovery after critical illness in slow- and fast-twitch limb muscle. Am J Physiol Regul Integr Comp Physiol 316: RS84–RS93

Prescott HC, Dickson RP, Rogers MA, Langa KM, Iwashyna TJ (2015a) Hospitalization type and subsequent severe sepsis. Am J Respir Crit Care Med 192: 581–588

Prescott HC, Langa KM, Iwashyna TJ (2015b) Readmission diagnoses after hospitalization for severe sepsis and other acute medical conditions. JAMA 313: 1055–1057

Prescott HC, Angus DC (2018) Enhancing recovery from sepsis: a review. JAMA 319: 62–75

Prince A, Wang H, Kitur K, Parker D (2016) Humanized mice exhibit increased susceptibility to staphylococcus aureus pneumonia. J Infect Dis 215: 1386–1395

Rasid O, Cavaillon J-M (2018) Compartment diversity in innate immune reprogramming. Microbes Infect 20: 156–165

Rathekey JK, Zhao J, Liu Z, Chen Y, Yang J, Kondolf HC, Benson BL, Chirieleison SW, Skordilis K, Watson SP (2019) Persistent inflammatory, immunosuppressed, catabolic syndrome (PICS): a new phenotype of multiple organ failure. J Nutr Hum Metab 1: e784

Rowley JW, Schwertz H, Weyrich AS (2012) Platelet mRNA: the meaning behind the message. Curr Opin Hematol 19: 385–391

Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS, Lachmann C, La Rosée P, Monneret G, Venet F, Bauer M et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334: 98–101

Rutensal MD, Moore FA (2015) Persistent inflammatory, immunosuppressed, catabolic syndrome (PICS): a new phenotype of multiple organ failure. J Nutr Hum Metab 1: e784

Rudek KE, Johnson SC, Aages KA, Shackelford KA, Tsai D, Kivelan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395: 200–211

Russell DA, Tucker KK, Chinokoswong N, Thompson RC, Kohno T (1995) Combined inhibition of interleukin-1 and tumor necrosis factor in rodent endotoxemia: improved survival and organ function. J Infect Dis 171: 1528–1538

Saito H, Sherwood ER, Varma TK, Evers BM (2003) Effects of aging on mortality, hypothermia, and cytokine induction in mice with endotoxemia or sepsis. Mech Ageing Dev 124: 1047–1058

Salgado-Pabon W, Breshears L, Spaulding AR, Merriman JA, Stach CS, Horswill AR, Peterson ML, Schlievert PM (2013) Superantigens are critical for Staphylococcus aureus infective endocarditis, sepsis, and acute kidney injury. mBio 4: e00494-13

© 2020 The Authors

EMBO Molecular Medicine 12: e10128 | 2020 21 of 24
Evaluation of the filmarray blood culture identification panel: results of a multicenter controlled trial. *J Clin Microbiol* 54: 687–698

Sarkodie EK, Zhou S, Bailey SA, Chu W (2019) Influences of stress hormones on microbial infections. *Microb Pathog* 131: 270 – 276

Savage RD, Fowler RA, Rishu AH, Bagshaw SM, Cook D, Dodek P, Hall R, Kumar A, Lamontagne F, Lauzier F et al (2016) The effect of inadequate early empiric antimicrobial treatment on mortality in critically ill patients with bloodstream infections: a multi-centre retrospective cohort study. *PloS One* 11: e0154944

Schmitt A, Guichard J, Massé JM, Debili N, Cramer EM (2001) Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets. *Exp Hematol* 29: 1295 – 1302

Schmitz F, Mages J, Heit A, Lang R, Wagner H (2004) Transcriptional activation induced in macrophages by Toll-like receptor (TLR) ligands: from expression profiling to a model of TLR signaling. *Eur J Immunol* 34: 2863–2873

Schuetz P, Müller B, Nüsbaum C, Wieland M, Christ-Crain M (2009) Circulating levels of GH predict mortality and complement conceal predictions in critically ill medical patients. *Eur J Endocrinol* 160: 157 – 163

Schuit TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ, de Boer GD, Schmitz F, Mages J, Heit A, Lang R, Wagner H (2009) Nuclear PTEN enhances the maturation of a microRNA regulon to limit MyD88-dependent susceptibility to sepsis. *Sci Signal* 21: eaai0985

Sirekri T, Kawiak J, Machaj E, Poida Z, Wasilew ska D, Czubak J, Hoser G (2015) Early severe impairment of hematopoietic stem and progenitor cells from the bone marrow caused by CLP sepsis and endotoxaemia in a humanized mice model. *Stem Cell Res Ther* 6: 142

Sirekri T, Mikaszewska-Sokolowsicz M, Hoser G, Zielinska-Borkowska U (2016) The early expression of HLA-DR and CD64 myeloid markers is specifically compartmentalised in the blood and lungs of patients with septic shock. *Mediators Inflamm* 2016: 1 – 8

Smith PD, Suffredini AF, Allen JB, Wahl LM, Parrillo JE, Wahl SM (2004) Endotoxin administration to humans primes alveolar macrophages for increased production of inflammatory mediators. *J Immunol* 172: 141–148

Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. *J Clin Invest* 115: 66 – 75

Souvine R, de Montmollin E, Poupade J, Garroutte-Orgeas M, Souweine B, Darmon M, Mariette E, Argaud L, Barbier F, Goldgran-Toledano D et al (2017) Potentially modifyable factors contributing to sepsis-associated encephalopathy. *Intensive Care Med* 43: 1075 – 1084

Souza-Dantas VC, Piova P, Bozza F, Soares M, Salluh J (2016) Preventive strategies and potential therapeutic interventions for delirium in sepsis. *Hosp Pract* (2015): 44: 190 – 202

Spite M, Norling LV, Summers L, Yang R, Cooper D, Petasis NA, Flower RJ, Perretti M, Serhan CN (2009) Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. *Nature* 461: 1287 – 1291

Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, Nåcher M, Pitaval C, Radovanovic I, Fukui Y et al (2014) Neutrophils can be activated by haptenic ligands to initiate inflammation. *Science* 346: 1234 – 1238

Srisandan S, Myoes D, Cohen J (1996) Detection of circulating bacterial superantigen and lymphotxin-alpha in patients with streptococcal toxic-shock syndrome. *Lancet* 348: 1315 – 1316

Stanzani G, Tidwell R, Singer M (2020) Do critical care patients hibernate? Theoretical support for less is more. *Intensive Care Med* 46: 495 – 497
Starr ME, Saito M, Evers BM, Saito H (2015) Age-associated increase in cytokine production during systemic inflammation—ii: the role of IL-1β in age-dependent il-6 upregulation in adipose tissue. J Gerontol A Biol Sci Med Sci 70: 1508–1515.

Steiner JL, Lang CH (2015) Sepsis attenuates the anabolic response to skeletal muscle contraction. Shock 43: 344 – 351.

Stevens NE, Chapman MJ, Fraser CK, Kuchel TR, Hayball JD (2017) Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep 7: 5850.

Storz JA, Murphy TJ, Raymond SL, Mira JC, Ungaro R, Dirain ML, Nacionales DC, Loftus TJ, Wang Z, Ozrazgat-Baslanti T et al (2018) Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis. Shock 49: 249 – 258.

Sweeney TE, Azad TD, Donato M, Haynes WA, Perumal TM, Henao R, Bermejo-Martin JF, Almansa R, Tamayo E, Howrylak JA et al (2018a) Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med 46: 915 – 925.

Sweeney TE, Perumal TM, Henao R, Nichols M, Howrylak JA, Choi AM, Bermejo-Martin JF, Almansa R, Tamayo E, Davenport EE et al (2018b) A community approach to mortality prediction in sepsis via gene expression analysis. Nat Commun 9: 694.

Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx C, Hinds Cj (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341: 785 – 792.

Takao K, Miyakawa T (2015) Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci USA 112: 1167 – 1172.

Talisa VB, Yende S, Seymour CW, Angus DC (2018) Arguing for adaptive clinical trials in sepsis. Front Immunol 9: 1502.

Tanaka M, Tanaka K, Tategaki J, Fujino H (2016) Preventive effects of kilohertz frequency electrical stimulation on sepsis-induced muscle atrophy. J Musculoskelet Neuronal Interact 16: 152 – 160.

Tanevski I, Nairz M, Duwensee K, Auer K, Schroll A, Heim C, Feistritzer C, Tauber SC, Eiffert H, Bruck W, Nau R (2018) Septic encephalopathy and septic shock: a review of clinical and experimental data. Crit Care Med 46: 1595 – 1606.

Thamm K, Kox M, Vaneker M, van den Berg M, John A, van Laarhoven A, van der Hoeven H, Scheffer GJ, Pickkers P (2016) Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Med 42: 551 – 561.

Tinetti ME, Naik AD, Dodson JA (2016) Moving from disease-centered to patient goals-directed care for patients with multiple chronic conditions: patient value-based care. JAMA Cardiol 1: 9 – 10.

Torres-Rosas R, Yehia G, Peña G, Mishra P, del Rocío Thompson-Bonilla M, Moreno-Eutimio MA, Arraiga-Pizano LA, Isibasi A, Ulloa L (2014) Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 20: 291 – 295.

Vadász I, Dada LA, Briva A, Trejo HE, Welch LC, Chen J, Tóth PT, Lecuona E, Witters LA, Schumacker PT et al (2008) AMP-activated protein kinase regulates CO2–induced alveolar epithelial dysfunction in rats and human cells by promoting Na, K-ATPase endocytosis. J Clin Invest 118: 752 – 762.

Van Bogaert T, Vandevyver S, Dejager L, Van Hauwermeiren F, Pinheiro I, Petta I, Engblom D, Kleyman A, Schütz G, Tuckerman J et al (2011) Tumor necrosis factor inhibits glucocorticoid receptor function in mice: a strong signal toward lethal shock. J Biol Chem 286: 26555 – 26567.

Van Wyngen L, Vandewalle J, Libert C (2018) Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol Med 10: e8712.

Vanden Berge T, Demon D, Bogaert P, Vandendriesche B, Goethals A, Depuydt B, Vuylsteke M, Roelandt R, Van Wonerghem E, Vandenbergroecke J et al (2014) Simultaneous targeting of IL-1 and IL-8 is required for protection against inflammatory and septic shock. Am J Respir Crit Care Med 189: 282 – 291.

Vasques-NÓvoa F, Laundos TL, Cerqueira RJ, Quina-Rodrigues C, Soares-Dos-Reis R, Baganha F, Ribeiro S, Mendonça L, Gonçalves F, Reguenga C et al (2018) MicroRNA-155 amplifies nitric oxide/cGMP signaling and impairs vascular angiotsensin ii reactivity in septic shock. Crit Care Med 46: e945 – e954.

Vassiliadi DA, Dimopoulou I, Tzanela M, Douka E, Livaditi O, Orfanos SE, Kotanidou A, Tsagarakis S (2014) Longitudinal assessment of adrenal function in the early and prolonged phases of critical illness in septic patients: relations to cytokine levels and outcome. J Clin Endocrinol Metab 99: 4471 – 4480.

Velazquez EM, Nguyen H, Heasley KT, Saechao CH, Gil LM, Rogers AWL, Miller BM, Rolston MR, Lopez CA, Litvak Y et al (2019) Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat Microbiol 4: 1057 – 1106.

Vincent JL, Brealey D, Libert N, Abidi NE, Ofner M, Fiald-Schwarz K, Schrenzel J, Simon F, Volks M et al (2015) Rapid diagnosis of infection in the critically ill, a multicenter study of molecular detection in bloodstream infections, pneumonia, and sterile site infections. Crit Care Med 43: 2283 – 2291.

Wade DM, Mouncey PR, Richards-Belle A, Wulff J, Harrison DA, Sadique MZ, Grieve RD, Emerson LM4, Mason AJ, Aronovitch D et al (2019) Effect of a nurse-led preventive psychological intervention on symptoms of posttraumatic stress disorder among critically ill patients: a randomized clinical trial. JAMA 323: 665 – 675.

Warren HS, Fitting C, Hoff E, Adib-Conquy M, Beasley-Topliffe L, Tesini B, Liang X, Valentine C, Hellman J, Hayden D et al (2010) Resilience to bacterial infection: difference between species could be due to proteins in serum. J Infect Dis 201: 223 – 232.

Waterhouse A, Leslie DC, Bolgen DE, Lighbown K, Dwyer M, Zacharowski K, Mikaszewska-Sokolewicz M, Schrenzel J, Simon F, Wilks M et al (2015) Rapid diagnosis of infection in the critically ill, a multicenter study of molecular detection in bloodstream infections, pneumonia, and sterile site infections. Crit Care Med 43: 2283 – 2291.

Wolters LA, Delgado RA, Marcia MM, Singh S, Blankenhans B, Cardoso S, Larsen R, Rebelo S, Schäuble S, Del Barrio L et al (2017) Metabolic adaptation establishes disease tolerance to sepsis. Cell 169: 1263 – 1276e1214.

Wolfe B, Dellinger P, Ebele H, Lerner P, Opar SM, Singer M, Vincent JL, Werdam K, Martin-Loeches I, Almirall J et al (2018) Efficacy and safety of trimodulin, a novel polyclonal antibody preparation, in patients with...
severe community-acquired pneumonia: a randomized, placebo-controlled, double-blind, multicenter, phase II trial (CIGMA study). *Intensive Care Med* 44: 438 – 448

Werners AH (2017) Treatment of endotoxaemia and septicemia in the equine patient. *J Vet Pharmacol Ther* 40: 1 – 15

Wilmore JR, Gaudette BT, Gomez Atria D, Hashemi T, Jones DD, Gardner CA, Cole SD, Misic AM, Beiting DP, Allman D (2018) Commensal microbes induce serum IgA responses that protect against polymicrobial sepsis. *Cell Host Microbe* 23: 302 – 311.e303

Winkler MS, Nierhaus A, Poppe A, Greiwe G, Gräler MH, Daum G (2017) Sphingosine-1-phosphate: a potential biomarker and therapeutic target for endothelial dysfunction and sepsis? *Shock* 47: 666 – 672

Wintermann GB, Brunkhorst FM, Petrowski K, Strauss B, Oehmichen F, Pohl M, Rosendahl J (2016) Stress disorders following prolonged critical illness in survivors of severe sepsis. *Crit Care Med* 43: 1213 – 1222

Wischmeyer PE, San-Millan I (2015) Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. *Crit Care* 19(Suppl 3): S6

Wollersheim T, Woehlecke J, Krebs M, Hamati j, Lodka D, Luther-Schroeder A, Langhans C, Haas K, Radtke T, Kleber C et al (2014) Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness. *Intensive Care Med* 40: 528 – 538

Wong HR, Cvijanovic N, Lin R, Allen GL, Thomas NJ, Willson DF, Freishtat RJ, Anas N, Meyer K, Checchia PA et al (2009) Identification of pediatric septic shock subclasses based on genome-wide expression profiling. *BMC Med* 7: 34

Wong HR, Cvijanovic NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, Weiss SL, Fitzgerald J, Checchia PA, Meyer K et al (2015) Developing a clinically feasible personalized medicine approach to pediatric septic shock. *Am J Respir Crit Care Med* 191(3): 309 – 315

Wong HR, Sweeney TE, Hart KW, Khatri P, Lindsell CJ (2015) Stress disorders following prolonged critical illness in survivors of severe sepsis. *Crit Care Med* 43: 1213 – 1222

Wong HR, Cvijanovic N, Lin R, Allen GL, Thomas NJ, Willson DF, Freishtat RJ, Anas N, Meyer K, Checchia PA et al (2009) Identification of pediatric septic shock subclasses based on genome-wide expression profiling. *BMC Med* 7: 34

Wong HR, Cvijanovic NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, Weiss SL, Fitzgerald J, Checchia PA, Meyer K et al (2015) Developing a clinically feasible personalized medicine approach to pediatric septic shock. *Am J Respir Crit Care Med* 191(3): 309 – 315

Wood M, Song A, Maslove DL, Ferri C, Howes D, Muscedere J, Boyd JG (2016) Brain tissue oxygenation in patients with septic shock: a feasibility study. *Can J Neurol Sci* 43: 65 – 73

Xiang B, Zhang G, Guo L, Li X-A, Morris AJ, Daugherty A, Whiteheart SW, Smyth SS, Li Z (2013) Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. *Nat Commun* 4: 2657

Xu F, Lin S, Yan X, Wang C, Tu H, Yin Y, Cao J (2018) Interleukin-38 is a protective cytokine for lethal sepsis. *J Infect Dis* 218: 1175 – 1184

Yoseph BP, Klingen smith NJ, Liang Z, Breed ER, Burd EM, Mittal R, Dominguez JA, Petrie B, Ford ML, Coopersmith CM (2016) Mechanisms of intestinal barrier dysfunction in sepsis. *Shock* 46: 52 – 59

Zaborin A, Smith D, Garfield K, Quesnels J, Shaksheer B, Kade M, Tirrell M, Tiedje J, Gilbert JA, Zaborina O, Alverdy JC (2014) Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. *MBio* 5: e01361-01314

Zeng H, He X, Tao QH, Liao DF, Zhang GQ, Chen JX (2016) LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/ Tie-2 and HIF-2alpha/Notch3 pathways. *Sci Rep* 6: 20931

Zhao Y, Liu M, Chan XY, Tan SY, Subramanium S, Fan Y, Loh E, Tou En Chang K, Tan TC, Chen Q (2017) Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice. *Blood* 130: 1995 – 2005

Zhou J, Chaudhry H, Zhong Y, Ali MM, Perkins LA, Owens WB, Morales JE, McGuire FR, Zumbrun EE, Zhang J et al (2015) Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. *Cytobio* 71: 89 – 100

Zhou Y, Song Y, Shaikh Z, Li H, Zhang H, Caudle Y, Zheng S, Yan H, Hu D, Stuart C et al (2017) MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and J-arrestin 2. *Oncotarget* 8: 47317 – 47329

Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Fan H (2018) Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. *Sci Ther* 26: 1375 – 1384

Zolfaghari PS, Pinto BB, Dyson A, Singer M (2013) The metabolic phenotype of rodent sepsis: cause for concern? *Intensive Care Med Exp* 1: 25

Zolfaghari PS, Carre JE, Parker N, Curtin NA, Duchen MR, Singer M (2015) Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis. *Am J Physiol Endocrinol Metab* 308: E713 – E725

Zravy T, Hofberger R, Berger T, Rauschka H, Butovsky O, Weiner H, Lassmann H (2018) Pro-inflammatory activation of microglia in the brain of patients with sepsis. *Neuropathol Appl Neurobiol* 45: 278 – 290

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.