Strong-coupling description of the high-temperature superconductivity in the molecular hydrogen

R. Szczęśniak, M.W. Jarosik
Institute of Physics, Częstochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland

(Dated: February 17, 2022)

The detailed study of the selected thermodynamic properties of the superconducting phase in the molecular hydrogen under the pressure at 428 GPa has been presented. For the increasing value of the Coulomb pseudopotential, $\mu^* \in (0.08, 0.15)$, the following results have been obtained: (i) the critical temperature decreases from 179 K to 141 K, (ii) the ratio $R_1 \equiv \Delta(0)/k_B T_C$ differs noticeably from the BCS value: $R_1 \in (4.71, 3.60)$; (iii) the electron effective mass is large and grows slightly together with the temperature $([m^*_e/m_e]_{\text{max}} = 2.2$ for $T = T_C$).

PACS numbers: 74.20.Fg, 74.25.Bt, 74.62.Fj

I. INTRODUCTION

At low temperature, hydrogen exhibits the nontrivial structural behavior under the pressure (p) [1, 2]. Below 110 GPa the hexagonal-closed-packed lattice with freely rotating molecules is stable (phase I). At higher pressures, up to 150 GPa, the broken symmetry phase has been observed (phase II). In the pressure range of 150-350 GPa the so called phase III exists. The experimental measurements have proved, that the all listed phases do not demonstrate the metallic properties. In the pressure range from 400 to 500 GPa, the theoretical studies predict the existence of the molecular metallic phase (the Cmca crystal structure) [3, 4, 5]. Above 500 GPa, the molecular metallic phase transforms to the Cs-IV monatomic phase [3, 4, 5, 6]. This phase is stable at least up to 802 GPa [7].

The three-band model.

Probably unstable.

The exact solution of the Eliashberg equations [16].

The McMillan formula [15].

TABLE I: The critical temperature for the selected values of the pressure; μ^* denotes the Coulomb pseudopotential.

p (GPa)	T_C (K)	μ^*	Structure	Ref.
347	107	0.1	Cmca	10
347	(120, 90)	(0.08, 0.15)	Cmca	11
388	130	0.1	Cmca	10
400	130-230	0.1	sh, dsh, 9R	12
414	84	-	Cmca	13
428	162	0.1	Cmca	10
450	242	-	Cmca	13
480	284 (266)	0.1 (0.13)	Cs-IV	7
539	291 (272)	0.1 (0.13)	Cs-IV	7
608	291 (271)	0.1 (0.13)	Cs-IV	7
802	282 (260)	0.1 (0.13)	Cs-IV	7
2000	\sim 600	-	fcc	8
2000	(631, 413)	(0.1, 0.5)	fcc	14

The real axis, since the analysis does not involve any principal-part integrals with singular integrands.

II. THE ELIASHBERG EQUATIONS

The Eliashberg equations in the mixed representation have been written in the following form [16]:

$$\phi(\omega) = \frac{\pi}{\beta} \sum_{m=-M}^{M} \frac{\lambda(\omega - i\omega_m) - \mu^*(\omega_m)}{\sqrt{\omega_m^2 + \phi_m^2}} \phi_m$$

$$+ \int_{0}^{+\infty} d\omega' \alpha^2 F(\omega) \left[N(\omega') + f(\omega' + \omega) \right] K(\omega, \omega') \phi(\omega - \omega')$$

$$+ \int_{0}^{+\infty} d\omega' \alpha^2 F(\omega') \left[N(\omega) + f(\omega' + \omega) \right] K(\omega, \omega') \phi(\omega + \omega'),$$

where $\lambda(\omega)$ is the electron-phonon coupling constant.

*Electronic address: jarosikmw@wip.pcz.pl
and

$$Z(\omega) = 1 + \frac{i \pi}{\omega \beta} \sum_{m=-M}^{M} \frac{\lambda (\omega - i \omega_m) \omega_m Z_m}{\sqrt{\omega_m^2 Z_m^2 + \phi_m^2}} (2)$$

$$+ \frac{i \pi}{\omega} \int_{0}^{\infty} d\omega' \alpha^2 F(\omega') \left[N(\omega) + f(\omega' - \omega) \right]$$

$$\times K(\omega, -\omega') \left(\omega - \omega' \right) Z(\omega - \omega')$$

$$+ \frac{i \pi}{\omega} \int_{0}^{\infty} d\omega' \alpha^2 F(\omega') \left[N(\omega' + \omega) + f(\omega' + \omega) \right]$$

$$\times K(\omega, \omega') \left(\omega + \omega' \right) Z(\omega + \omega'),$$

where:

$$K(\omega, \omega') \equiv \frac{1}{\sqrt{(\omega + \omega')^2 Z^2 (\omega + \omega') - \phi^2 (\omega + \omega')}} \quad (3)$$

The Eliashberg set, Eqs. 1 and 2, gives the following solutions on the real axis: the order parameter function $\phi(\omega)$ and the wave function renormalization factor $Z(\omega)$. The order parameter is defined by the expression: $\Delta(\omega) \equiv \phi(\omega)/Z(\omega)$. On the other hand, the imaginary axis functions ($\phi_m \equiv \phi(i \omega_m)$ and $Z_m \equiv Z(i \omega_m)$) should be calculated by using the equations:

$$\phi_n = \frac{\pi}{\beta} \sum_{m=-M}^{M} \frac{\lambda (i \omega_n - i \omega_m) - \mu^*(\omega_m)}{\sqrt{\omega_m^2 Z_m^2 + \phi_m^2}} \phi_m, \quad (4)$$

and

$$Z_n = 1 + \frac{1}{\omega_n} \frac{\pi}{\beta} \sum_{m=-M}^{M} \frac{\lambda (i \omega_n - i \omega_m)}{\sqrt{\omega_m^2 Z_m^2 + \phi_m^2}} \omega_m Z_m, \quad (5)$$

where the Matsubara energy is given by: $\omega_m = (\pi/\beta)(2m - 1)$ and $\beta \equiv (k_B T)^{-1}$; k_B is the Boltzmann constant.

The pairing kernel for the electron-phonon interaction has the form:

$$\lambda(z) \equiv 2 \int_{0}^{\Omega_{\text{max}}} d\Omega \frac{\Omega}{\Omega^2 - z^2} \alpha^2 F(\Omega). \quad (6)$$

The Eliashberg function for the molecular hydrogen ($\alpha^2 F(\Omega)$) has been calculated by L. Zhang et al. \cite{10}. The maximum phonon energy (Ω_{max}) is equal to 508.1 meV.

The function $\mu^*(\omega_m) \equiv \mu^* \theta(\omega_c - |\omega_m|)$ describes the Coulomb repulsion between electrons; μ^* denotes the Coulomb pseudopotential, θ is the Heaviside unit function and ω_c represents the energy cut-off ($\omega_c = 3\Omega_{\text{max}}$). For the molecular hydrogen we assume: $\mu^* \in (0.08, 0.15)$.

The symbols $N(\omega)$ and $f(\omega)$ denote the Bose and Fermi functions respectively.

The Eliashberg equations have been solved for 1601 Matsubara frequencies ($M = 800$) by using the numerical method presented in the paper \cite{11} and \cite{12}. In the considered case, the functions $\phi(\omega)$ and $Z(\omega)$ are stable for $T \geq 11.6$ K.

III. RESULTS

In Fig. 1 we have presented the dependence of the critical temperature on the value of the Coulomb pseudopotential. The exact numerical solutions of the Eliashberg equations have been represented by the black circles. The dotted and dashed lines represent the calculation of the critical temperature by using the McMillan formula and the more elaborated Allen-Dynes expression \cite{19} respectively. It is easy to see, that McMillan formula lowers much T_C in the whole range of the Couloam pseudopotential’s values, whereas the Allen-Dynes expression predicts correctly the critical temperature only for very low values of μ^*. For this reason we have modified the classical Allen-Dynes expression in order to obtain the analytical formula, which reproduces the Eliashberg results exactly (the solid line in Fig. 1). In particular, we have

![FIG. 1: The critical temperature as a function of the Coulomb pseudopotential.](image1)

![FIG. 2: The real and imaginary part of the order parameter on the real axis for the selected temperatures. The rescaled Eliashberg function is also plotted.](image2)
fitted the selected parameters in the Allen-Dynes expression (\(\Lambda_1\) and \(\Lambda_2\)) with the help of 250 numerical values of \(T_C(\mu^*)\). The final result takes the form:

\[
k_B T_C = f_1 f_2 \frac{\omega_{\text{in}}}{1.2} \exp \left[-\frac{1.04 (1 + \lambda)}{\lambda - \mu^* (1 + 0.62\lambda)} \right],
\]

where:

\[
f_1 = \left[1 + \left(\frac{\lambda}{\Lambda_1} \right)^{\frac{1}{2}} \right], \quad f_2 = 1 + \frac{(\sqrt{\omega_2} - 1)}{\lambda^2 + \frac{\omega_{\text{in}}}{\Lambda_2}}.
\]

Additionally:

\[
\Lambda_1 \equiv 3.64 - 12.92\mu^*, \quad \Lambda_2 \equiv \frac{\sqrt{\omega_2}}{\omega_{\text{in}}} (1.39 - 59.74\mu^*).
\]

The parameters \(\lambda\), \(\sqrt{\omega_2}\) and \(\omega_{\text{in}}\) are equal to 1.2, 207.5 meV and 141.9 meV, respectively.

In Fig. 2 we have shown the order parameter on the real axis for the selected temperatures, and \(\mu^* = 0.1\); the Eliashberg function is also plotted. On the basis of the presented results one can state, that both the real and imaginary part of the function \(\Delta(\omega)\) is plainly correlated with the shape of the electron-phonon interaction. This effect is especially clearly visible for the low values of the temperature. The full form of the order parameter on the complex plane has been presented in Fig. 3 (A). We have stated, that the \(\Delta(\omega)\) values form the distorted spirals which shrink with the growth of the temperature. Basing on Fig. 3 (A) it is also possible to notice, that the effective electron-electron interaction is attractive (\(\text{Re}[\Delta(\omega)] > 0\)) in the range of the frequencies from zero to \(\sim 0.9\Omega_{\text{max}}\).

Taking into consideration the equation: \(\Delta(T) = \text{Re}[\Delta(\omega = \Delta(T))]\) we have calculated the dependence of the order parameter on the temperature (see Fig. 3 (B)). Next, the value of the ratio \(R_1 = \frac{2\Delta(0)}{k_B T_C}\) can be obtained, where \(\Delta(0)\) denotes the value of the order parameter close to the zero temperature and \(\Delta(0) \approx \Delta(T = 11.6K)\). In Fig. 4 we have presented the possible values of \(R_1\) for \(\mu^* \in [0.08, 0.15]\). It is easy to see, that in the whole range of the considered values of the Coulomb pseudopotential, the ratio \(R_1\) differs essentially from the BCS prediction: \(R_1^{\text{BCS}} = 3.53\). Additionally, in the inset in Fig. 4 we have shown the dependence of \(\Delta(0)\) on \(\mu^*\).

The second solution of the Eliashberg equations on the real axis has been plotted in Fig. 3 (\(\mu^* = 0.1\)). The obtained results prove, that the function \(Z(\omega)\) also clearly senses the structure of the electron-phonon interaction.
We notice that at the critical temperature, the electron mass is easy to spot, that in contrast to the order parameter, the function $Z(\omega)$ has been presented in Fig. 6. We see, that in contrast to the order parameter, the function $Z(\omega)$ weakly depends on the temperature.

In the framework of the Eliashberg formalism, on the basis of the wave function renormalization factor, the temperature dependence of the electron effective mass (m^*_e) can be calculated. In particular: $m^*_e/m_e = \text{Re}[Z(0)]$, where the symbol m_e denotes the bare electron mass. The values of the ratio m^*_e/m_e have been presented in the Fig.6 inset. According to the presented data, it is easy to spot, that m^*_e is high in the full range of the considered temperatures and $[m^*_e/m_e]_{\text{max}} = 2.2$ for $T = T_C$. We notice, that at the critical temperature, the electron effective mass is independent of μ^*.

IV. SUMMARY

We have calculated the selected thermodynamic properties of the superconducting state in the molecular hydrogen ($p = 428$ GPa). The numerical analysis has been conducted in the framework of the one-band Eliashberg formalism for the wide range of the Coulomb pseudopotential’s values: $\mu^* \in (0.08, 0.15)$. We have proved, that the critical temperature is high even for large values of μ^* ($[T_C]_{\text{min}} = 141$ K). Next, it has been shown, that the superconducting phase is characterized by high value of the dimensionless ratio R_1, which differs from the BCS result; $R_1 \in (4.71, 3.60)$. Finally, we have observed, that the electron-phonon interaction strongly enhances the effective electron mass for the temperatures from zero to T_C. In particular, the maximum of m^*_e is equal to $2.2 m_e$ for $T = T_C$.

In the future we will analyze the superconducting state in the molecular hydrogen in the framework of the three-gap Eliashberg model. It will be done in order to discuss the effect of the multi-band anisotropy.

Acknowledgments

The authors wish to thank K. Dzieliński for providing excellent working conditions and the financial support; A.P. Durajski and D. Szczęśniak for the productive scientific discussion that improved the quality of the presented work. All numerical calculations were based on the Eliashberg function sent to us by: L. Zhang, Y. Niu, Q. Li, T. Cui, Y. Wang, Y. Ma, Z. He and G. Zou for whom we are also very thankful.

[1] C. Narayana, H. Luo, J. Orloff, A.L. Ruoff, Nature 393, 46 (1998).
[2] P. Loubeyre, F. Occelli, R. LeToullec, Nature 416, 613 (2002).
[3] K. Johnson, N.W. Ashcroft, Nature 403, 632 (2000).
[4] M. Stadler, R.M. Martin, Phys. Rev. Lett. 84, 6070 (2000).
[5] C.J. Pickard, R. Needs, Nat. Phys. 3, 473 (2007).
[6] V. Natoli, R.M. Martin, D.M. Ceperley, Phys. Rev. Lett. 70, 1952 (1993).
[7] Y. Yan, J. Gongb, Y. Liu, Phys. Lett. A 375, 1264 (2011).
[8] E.G. Maksimov, D.Y. Savrasov, Solid State Commun. 119, 569 (2001).
[9] N.W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
[10] L. Zhang, Y. Niu, Q. Li, T. Cui, Y. Wang, Y. Ma, Z. He, G. Zou, Solid State Commun. 141, 610 (2007).
[11] R. Szczęśniak, M.W. Jarosik, Physica B 406, 2235 (2011).
[12] T.W. Barbee, M.L. Cohen, Phys. Rev. B 143, 5269 (1991).
[13] P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. Lett. 100, 257001 (2008).
[14] R. Szczęśniak, M.W. Jarosik, Solid State Commun. 149, 2053 (2009).
[15] W.L. McMillan, Phys. Rev. 167, 331 (1968).
[16] For discussion of the Eliashberg equations [originally formulated by G.M. Eliashberg, Soviet. Phys. JETP 11, 696 (1960)] we refer to: J.P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
[17] F. Marsiglio, M. Schossmann, J.P. Carbotte, Phys. Rev. B 37, 4965 (1988).
[18] (a) R. Szczęśniak, Acta Phys. Pol. A 109, 179 (2006); (b) R. Szczęśniak, Solid State Commun. 138, 347 (2006).
[19] P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975).
[20] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1950).