Article

q-Generalized Linear Operator on Bounded Functions of Complex Order

Rizwan Salim Badar * and Khalida Inayat Noor

Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan; khalidainayat@comsats.edu.pk
* Correspondence: rizwansbadar@gmail.com

Received: 16 June 2020; Accepted: 9 July 2020; Published: 14 July 2020

Abstract: This article presents a q-generalized linear operator in Geometric Function Theory (GFT) and investigates its application to classes of analytic bounded functions of complex order $S_q(c; M)$ and $C_q(c; M)$ where $0 < q < 1$, $0 \neq c \in \mathbb{C}$, and $M > \frac{1}{2}$. Integral inclusion of the classes related to the q-Bernardi operator is also proven.

Keywords: q-difference operator; subordinating factor sequence; bounded analytic functions of complex order; q-generalized linear operator

MSC: Primary 30C45; Secondary 30C50; 30H05

1. Introduction

Quantum calculus or q-calculus is attributed to the great mathematicians L. Euler and C. Jacobi, but it became popular when Albert Einstein used it in quantum mechanics in his paper [1] published in 1905. F.H. Jackson [2,3] introduced and studied the q-derivative and q-integral in a proper way. Later, quantum groups gave the geometrical aspects to q-calculus. It is pertinent to mention that q-calculus can be considered an extension of classical calculus discovered by I. Newton and G.W. Leibniz. In fact, the operators defined as:

$$d_h f(z) = \frac{f(z + h) - f(z)}{h}$$

and:

$$d_q f(z) = \frac{f(z) - f(qz)}{(1 - q)z}, \quad 0 < q < 1,$$

where $z \in \mathbb{C}$ and $h > 0$ are the h-derivative and q-derivative, respectively, where h is Planck’s constant, are related as: $q = e^{i \hbar} = e^{2\pi i \tilde{\hbar}}$ where $\tilde{\hbar} = h/2\pi$. Srivastava [4] applied the concepts of q-calculus by using the basic (or q-) hypergeometric functions in Geometric Function Theory (GFT). Ismail [5] and Agarwal [6] introduced the class of q-starlike functions by using the q-derivative. The q-close-to-convex functions were defined in [7], and Sahoo and Sharma [8] obtained several interesting results for q-close-to-convex functions. Several convolution and fractional calculus q-operators were defined by the researchers, which were repositioned by Srivastava in [9]. Darus [10] defined a new differential operator called the q-generalized operator by using q-hypergeometric functions. Let A be the class of functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad (1)$$

Mathematics 2020, 8, 1149; doi:10.3390/math8071149 www.mdpi.com/journal/mathematics
analytic in the open unit disc $E = \{ z : |z| < 1 \}$.

Let $f(z)$ be given by (1) and $g(z)$ defined as:

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k.$$

The Hadamard product (or convolution) of f and g is defined by:

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

Let f, h be analytic functions. Then, f is subordinate to h, written as $f \prec h$ or $f(z) \prec h(z)$, $z \in E$, if there exists a Schwartz function $\omega(z)$ analytic in E with $\omega(0) = 0$ and $|\omega(z)| < 1$ for $z \in E$, such that $f(z) = h(\omega(z))$. If h is univalent in E, then $f \prec h$, if and only if $f(0) = h(0)$ and $f(E) \subset h(E)$.

A sequence $\{b_k\}_{k=1}^{\infty}$ of complex numbers is a subordinating factor if, whenever $f(z) = \sum_{k=1}^{\infty} a_k z^k$, $a_1 = 1$ is regular, univalent, and convex in E, we have $\sum_{n=1}^{\infty} b_n a_n z^n \prec f(z)$, $z \in E$.

We recall some basic concepts from q-calculus that are used in our discussion and refer to [2,3,12] for more details.

A subset $B \subset \mathbb{C}$ is called q-geometric if $q z \in B$ whenever $z \in B$, and it contains all the geometric sequences $\{z^q\}_{0}^{\infty}$. In GFT, the q-derivative of $f(z)$ is defined as:

$$d_q f(z) = \frac{f(z) - f(qz)}{(1 - q)z}, \quad q \in (0,1), \quad (z \in B \setminus \{0\}),$$

and $d_q f(0) = f'(0)$. For a function $g(z) = z^k$, the q-derivative is:

$$d_q g(z) = [k] z^{k-1},$$

where $[k] = \frac{1 - q^k}{1 - q} = 1 + q + q^2 + \ldots + q^{k-1}$.

We note that as $q \to 1^-$, $d_q f(z) \to f'(z)$, which is the ordinary derivative. From (1), we deduce that:

$$d_q f(z) = 1 + \sum_{k=2}^{\infty} [k] a_k z^k.$$

Let $f(z)$ and $g(z)$ be defined on a q-geometric set B. Then, for complex numbers a, b, we have:

$$d_q(a f(z) \pm b g(z)) = a d_q f(z) \pm b d_q g(z).$$

$$d_q(f(z)g(z)) = f(qz)d_q g(z) + g(z)d_q f(z).$$

$$d_q \left(\frac{f(z)}{g(z)} \right) = \frac{g(z) d_q f(z) - f(z) d_q g(z)}{g(z)g(qz)}, \quad g(z)g(qz) \neq 0.$$

$$d_q (\log f(z)) = \frac{\ln q^{-1} d_q f(z)}{1 - q} f(z).$$

Jackson [2] introduced the q-integral of a function f, given by:

$$\int_{0}^{z} f(t)d_q t = z(1 - q) \sum_{k=0}^{\infty} q^k f(q^k z),$$

provided that the series converges.

For any non-negative integer n, the q-number shift factorial is defined as:

$$[n]! = \begin{cases} 1, & \text{if } n = 0, \\ [1][2] \ldots [n], & \text{if } n \neq 0. \end{cases}$$
Let $\lambda \in \mathbb{R}$ and $n \in \mathbb{N}$; the q-generalized Pochhammer symbol is defined as:

$$[\lambda]_n = [\lambda] [\lambda + 1] [\lambda + 2] \ldots [\lambda + n - 1].$$

The q-Gamma function is defined for $\lambda > 0$ as:

$$\Gamma_q(\lambda + 1) = [\lambda] \Gamma_q(\lambda) \quad \text{and} \quad \Gamma_q(1) = 1.$$

For complex parameters a_i ($1 \leq i \leq l$), $b_j \neq 0$, $-1, -2, \ldots (1 \leq j \leq m)$ with $l \leq m + 1$, the basic q-hypergeometric function is defined as:

$$f_m(a_1, \ldots a_l; b_1, \ldots, b_m, z) = \sum_{k=0}^{\infty} \frac{(a_1)_k \ldots (a_l)_k}{(q)_k (b_1)_k \ldots (b_m)_k} \left((-1)^k q^{\binom{k}{2}} \right)^{1+m-l} z^k.$$ \hspace{1cm} (2)

with $\binom{n}{2} = \frac{n(n-1)}{2}$ and $l, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Here, the q-shifted factorial is defined for $a \in \mathbb{C}$ as:

$$(a)_k = \begin{cases} (1 - a) (1 - aq) \ldots (1 - aq^{k-1}) & \text{if } k \in \mathbb{N}, \\ 1 & \text{if } k = 0. \end{cases}$$

Let $l = m + 1$, $a_1 = q^{l+1} (-1)$, $a_i = q \forall 2 \leq i \leq l$, and $b_j = q \forall 1 \leq j \leq m$, and by using the property $(q^a)_k = \Gamma_q(a + k) (1 - q)^k / \Gamma_q(a)$, from (2), we get the function,

$$F_{q,\lambda+1}(z) = z + \sum_{k=2}^{\infty} \frac{\Gamma_q(\lambda + k)}{\Gamma_q(\lambda + 1)} \frac{[\lambda + 1]_k}{[k-1]!} z^k = z + \sum_{k=2}^{\infty} \frac{[\lambda + 1]_k}{[k-1]!} z^k, \ z \in E.$$

In [13], the q-Srivastava–Attiya convolution operator is defined as:

$$G_{q,a}^s(z) = z + \sum_{k=2}^{\infty} \left(\frac{[1 + a]}{[k + a]} \right)^s \frac{[\lambda + 1]_{k-1}}{[k-1]!} a_k z^k, \ z \in E,$$

$$(a \in \mathbb{C} \setminus \mathbb{Z}^-; s \in \mathbb{C} \text{ when } |z| < 1; \text{ Re}(s) > 1 \text{ when } |z| = 1).$$

Using convolution, the operator $D_{q,a,\lambda}^s$ for $\lambda > -1$ is defined as:

$$D_{q,a,\lambda}^s f(z) = f_{q,a,\lambda}^s(z) \ast f(z) = z + \sum_{k=2}^{\infty} \left(\frac{[k + a]}{[1 + a]} \right)^s \frac{[\lambda + 1]_{k-1}}{[k-1]!} a_k z^k, \ z \in E,$$

where:

$$f_{q,a,\lambda}^s(z) = \left(G_{q,a}^s(z) \right)^{-1} \ast F_{q,\lambda+1}(z) = z + \sum_{k=2}^{\infty} \left(\frac{[k + a]}{[1 + a]} \right)^s \frac{[\lambda + 1]_{k-1}}{[k-1]!} z^k.$$

It is a convergent series with a radius of convergence of one. We observe that $D_{q,a,0,0}^0 f(z) = f(z)$ and $D_{q,a,0,0}^1 f(z) = zd_q f(z)$. The operator $D_{q,a,\lambda}^s$ reduces to known linear operators for different values of parameters a, s, and λ as:

(i) If $q \to 1^-$, it reduces to the operator $D_{a,\lambda}^s$ discussed by Noor et al. in [14].
(ii) For $s = 0$, it is a q-Ruscheweyh differential operator [15].
(iii) If $s = -1$, $\lambda = 0$, and $q \to 1^-$, it is an Owa–Srivastava integral operator [16].
(iv) If $s \in \mathbb{N}_0$, $a = 1$, $\lambda = 0$, and $q \to 1^-$, it reduces to the generalized Srivastava–Attiya integral operator [17].
(v) If $s \in \mathbb{N}_0$, $a = 0$, $\lambda = 0$, it is a q-Salagean differential operator [18].
(vi) For $s, \lambda \in \mathbb{N}_0$, and $a = 0$, it is the operator defined in [19].
The following identities hold for the operator $D^{s}_{q,a,\lambda}f(z)$,

$$zd_q\left(D^{s}_{q,a,\lambda}f(z)\right) = \left(\frac{1+a}{q^a}\right)D^{s+1}_{q,a,\lambda}f(z) - \frac{a}{q^a}D^{s}_{q,a,\lambda}f(z)$$

$$zd_q(D^{s}_{q,a,\lambda}f(z)) = \left(\frac{1+\lambda}{q^\lambda}\right)D^{s}_{q,a,\lambda+1}f(z) - \frac{[\lambda]}{q^\lambda}D^{s}_{q,a,\lambda}f(z).$$

Let $P(q)$ be the class of functions of the form $p(z) = 1 + c_1z + c_2z^2 + ..., \text{ analytic in } E$, and satisfying:

$$|p(z) - \frac{1}{1-q}| \leq \frac{1}{1-q}, \quad (z \in E, q \in (0,1)).$$

It is known from [20] that $p \in P(q)$ implies $p(z) < \frac{1+z}{1-q}$. It follows immediately that $\text{Re} \, p(z) > 0$, $z \in E$.

The classes of bounded q-starlike functions $S_q(c,M)$ and bounded q-convex functions $C_q(c,M)$ of complex order c were defined in [21], respectively, as:

$$S_q(c,M) = \left\{ f \in A : \left| \frac{c - 1 + zd_qf(z)}{zd_qf(z)} - M \right| < M \right\},$$

$$S_q(c,M) = \left\{ f \in A : \frac{zd_qf(z)}{f(z)} < \frac{1 + \{c(1+m) - m\}z}{1-mz} \right\},$$

$$\left(c \in \mathbb{C}^*; M > \frac{1}{2}, z \in E \right),$$

or equivalently,

$$S_q(c,M) = \left\{ f \in A : \frac{zd_qf(z)}{f(z)} < \frac{1 + \{c(1+m) - m\}z}{1-mz} \right\},$$

$$\left(c \in \mathbb{C}^*; m = 1 - \frac{1}{M}; M > \frac{1}{2} \right).$$

The class of bounded q-convex functions $C_q(c,M)$ of complex order c is defined as:

$$C_q(c,M) = \left\{ f \in A : \left| \frac{c - 1 + \frac{d_q(zd_qf(z))}{d_qf(z)} - M \right| < M \right\},$$

$$\left(c \in \mathbb{C}^*; M > \frac{1}{2}, z \in E \right),$$

or equivalently,

$$C_q(c,M) = \left\{ f \in A : \frac{d_q(zd_qf(z))}{d_qf(z)} < \frac{1 + \{c(1+m) - m\}z}{1-mz} \right\},$$

$$\left(c \in \mathbb{C}^*; m = 1 - \frac{1}{M}; M > \frac{1}{2} \right).$$

Using the operator $D^{s}_{q,a,\lambda}f(z)$, we now define the following new classes $S_{q,a,s,\lambda}(c,M)$ and $C_{q,a,s,\lambda}(c,M)$ as:
Let \(A \) be complex numbers with \(\Re(A) \geq 0 \) and \(\Im(A) \geq 0 \). Let \(B \) be regular in \(D(0,1) \) and \(\beta \) be complex numbers with \(|\beta| < \frac{1}{4} \). We start the section with the necessary and sufficient condition for a function to be in the class \(A \). Let \(f \) be complex numbers with \(\Re(f(z)) > 0 \) and \(\Im(f(z)) > 0 \) in \(D(0,1) \). Let \(\eta, A, B \) with \(\eta = 0 \) discussed in [19].

A function \(f \in A \) is in the class \(S_{q,a,s,\lambda}(c, M) \) if and only if:

\[
A = \frac{zd_q(D_q^{s,a,\lambda}(f(z)))}{D_q^{s,a,\lambda}(f(z))} - 1 \quad \text{and} \quad B = -m.
\]

The class \(C_{q,a,s,\lambda}(c, M) \) is defined as:

\[
C_{q,a,s,\lambda}(c, M) = \left\{ f \in A : \frac{d_q(zd_q(D_q^{s,a,\lambda}(f(z))))}{d_q(D_q^{s,a,\lambda}(f(z)))} < \frac{1 + \{c(1 + m) - m\}z}{1 - mz}, z \in E \right\},
\]

\[
\left(0 < q < 1, c \in \mathbb{C}^*; m = 1 - \frac{1}{M}; M > \frac{1}{2} \right).
\]

It is easy to see that \(f \in C_{q,a,s,\lambda}(c, M) \Leftrightarrow zd_q f \in S_{q,a,s,\lambda}(c, M) \). In order to develop results for the classes \(S_{q,a,s,\lambda}(c, M) \) and \(C_{q,a,s,\lambda}(c, M) \), we need the following:

Lemma 1 ([27]). Let \(\beta \) and \(\gamma \) be complex numbers with \(\beta \neq 0 \), and let \(h(z) \) be regular in \(E \) with \(h(0) = 1 \) and \(\Re(\beta h(z) + \gamma) > 0 \). If \(p(z) = 1 + p_1 z + p_2 z^2 + \ldots \) is analytic in \(E \), then \(p(z) + \frac{zd_q p(z)}{d_q p(z) + \gamma} < h(z) \Rightarrow p(z) < h(z) \).

Lemma 2 ([11]). The sequence \(\{b_n\}_{n=1}^{\infty} \) is a subordinating factor sequence if and only if:

\[
\Re\left\{ 1 + 2 \sum_{k=1}^{\infty} b_k z^k \right\} > 0, \quad z \in E.
\]

2. Properties of Classes \(S_{q,a,s,\lambda}(c, M) \) and \(C_{q,a,s,\lambda}(c, M) \)

We start the section with the necessary and sufficient condition for a function to be in the class \(S_{q,a,s,\lambda}(c, M) \).
Theorem 1. Let \(f \in A \). Then, \(f \in S_{q,a,s,\lambda}(c,M) \) if and only if:

\[
\sum_{k=2}^{\infty} \left\{ [k] - 1 + |c(1+m) + m([k] - 1)| \right\} \left| \frac{[k+1]}{[k-1]} \right| \left| \frac{[k]}{[k+1]} \right| \left| a_k \right| < |c(1+m)|, \tag{6}
\]

where \(m = 1 - \frac{1}{M}, \) \((M > \frac{1}{2}). \)

Proof. Let us assume first that Inequality (6) holds. To show \(f \in S_{q,a,s,\lambda}(c,M) \), we need to prove Inequality (5).

\[
\left| \frac{z(d(D_{q,a,s,\lambda}^z f(z)) - 1)}{A - B} \right| = \left| \frac{\sum_{k=2}^{\infty} \left(\frac{[k]}{[k+1]} \right)^{s} \frac{[k+1]}{[k-1]} (k - 1) a_k z^k}{A - B} \right| \leq \left| \frac{\sum_{k=2}^{\infty} \left(\frac{[k]}{[k+1]} \right)^{s} \frac{[k+1]}{[k-1]} (k - 1) a_k}{A - B} \right| \leq \left| \frac{\sum_{k=2}^{\infty} \left(\frac{[k+1]}{[k-1]} \right)^{s} \frac{[k+1]}{[k]} (k - 1) a_k}{A - B} \right| < 1.
\]

Hence, \(f \in S_{q,a,s,\lambda}(c,M) \) by using Inequality (6). Conversely, let \(f \in S_{q,a,s,\lambda}(c,M) \) be of the form (1), then:

\[
\left| \frac{z(d(D_{q,a,s,\lambda}^z f(z)) - 1)}{A - B} \right| = \left| \frac{\sum_{k=2}^{\infty} \left(\frac{[k]}{[k+1]} \right)^{s} \frac{[k+1]}{[k-1]} (k - 1) a_k z^k}{A - B} \right| \leq \left| \frac{\sum_{k=2}^{\infty} \left(\frac{[k+1]}{[k-1]} \right)^{s} \frac{[k+1]}{[k]} (k - 1) a_k}{A - B} \right| < 1.
\]

Since \(|\text{Re}| \leq |z| \), we have:

\[
\text{Re} \left[\frac{\sum_{k=2}^{\infty} \left(\frac{[k]}{[k+1]} \right)^{s} \frac{[k+1]}{[k-1]} (k - 1) a_k z^k}{(A - B)z + \sum_{k=2}^{\infty} (A - B[k]) \left(\frac{[k]}{[k+1]} \right)^{s} \frac{[k+1]}{[k-1]} a_k z^k} \right] < 1.
\]

Now, we choose values of \(z \) on the real axis such that \(zd(D_{q,a,s,\lambda}^z f(z)) / D_{q,a,s,\lambda}^z f(z) \) is real. Letting \(z \to 1^{-} \) through real values, after some calculations, we obtain Inequality (6). \(\square \)

Remark 1. (i) If \(q \to 1^{-}, s \in \mathbb{N}_0, a = 0, \) and \(\lambda = 0, \) the above result reduces to the sufficient condition for \(f(z) \) to be in class \(H_q(c,M) \) \((c \in \mathbb{C}^{*}, M > \frac{1}{2}) \) discussed in [26]. (ii) If \(c = 1 - \alpha (\alpha \in [0,1]), m = 0, \lambda = 0, \) and \(q \to 1^{-}, \) the above result reduces to the sufficient condition for \(f(z) \) to be in class \(S_{q,a}^\alpha \) discussed in [28].

Theorem 2. Let \(f_i \in S_{q,a,s,\lambda}(c,M) \) having the form:

\[
f_i(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad \text{for } i = 1, 2, 3, \ldots, l.
\]

Then, \(F \in S_{q,a,s,\lambda}(c,M) \), where \(F(z) = \sum_{i=1}^{l} c_i f_i(z) \) with \(\sum_{i=1}^{l} c_i = 1. \)

Proof. From Theorem 1, we can write:
where however due to (7), we have:

\[\sum_{k=2}^{\infty} \left\{ \frac{\{k-1+|b(1+m)+m([k]-1)|\}}{|b(1+m)|} \frac{|k+a|}{[k-1]!} \right\} \sum_{i=1}^{\lambda+1 \frac{1}{[k-1]!}} \left(\frac{|k+a|}{[k-1]!} \right)^s a_{k,i} < 1. \] \hspace{1cm} (7)

Therefore:

\[F(z) = \sum_{i=1}^{l} c_i \left(z + \sum_{k=2}^{\infty} a_{k,i} z^k \right) = z + \sum_{k=2}^{\infty} \left(\sum_{i=1}^{l} c_i a_{k,i} \right) z^k; \]

where however due to (7), we have:

\[\sum_{k=2}^{\infty} \left\{ \frac{\{k-1+|b(1+m)+m([k]-1)|\}}{|b(1+m)|} \frac{|k+a|}{[k-1]!} \right\} \sum_{i=1}^{\lambda+1 \frac{1}{[k-1]!}} \left(\frac{|k+a|}{[k-1]!} \right)^s c_i \leq 1; \]

Therefore, \(F \in S_{\nu,\alpha,\lambda}(c, M). \) \(\square \)

Theorem 3. Let \(f_i \) with \(i = 1, 2, ..., v \) belong to the class \(S_{\nu,\alpha,\lambda}(c, M) \). The arithmetic mean \(h \) of \(f_i \) is given by:

\[h(z) = \frac{1}{v} \sum_{i=1}^{v} f_i(z) \] \hspace{1cm} (8)

belonging to class \(S_{\nu,\alpha,\lambda}(c, M) \).

Proof. From (8), we can write:

\[h(z) = \frac{1}{v} \sum_{i=1}^{v} \left(z + \sum_{k=2}^{\infty} a_{k,i} z^k \right) = z + \sum_{k=2}^{\infty} \left(\frac{1}{v} \sum_{i=1}^{v} a_{k,i} \right) z^k. \] \hspace{1cm} (9)

Since \(f_i \in S_{\nu,\alpha,\lambda}(c, M) \) for every \(i = 1, 2, ..., v \), using (6) and (9), we have:

\[\sum_{k=2}^{\infty} \left\{ [k-1+|b(1+m)+m([k]-1)|] \right\} \frac{|k+a|}{[k-1]!} \left(\frac{|k+a|}{[k-1]!} \right)^s \left(\frac{1}{v} \sum_{i=1}^{v} a_{k,i} \right) \]

\[= \frac{1}{v} \sum_{i=1}^{v} \left(\sum_{k=2}^{\infty} \left\{ [k-1+|b(1+m)+m([k]-1)|] \right\} \frac{|k+a|}{[k-1]!} \left(\frac{|k+a|}{[k-1]!} \right)^s a_{k,i} \right) \]

\[\leq \frac{1}{v} \sum_{i=1}^{v} \left\{ [b(1+m)] \right\} \leq [b(1+m)], \]

and this completes the proof. \(\square \)

Now, we give the subordination relation for the functions in class \(S_{\nu,\alpha,\lambda}(c, M) \) by using the subordination theorem.

Theorem 4. Let \(m = 1 - \frac{1}{M} \) \((M > \frac{1}{2}) \). Furthermore, \(c \neq 0 \) with \(Re(c) > \frac{-m}{2(1+m)} \) when \(m > 0 \) and \(Re(c) < \frac{-m}{2(1+m)} \) when \(m < 0 \) and \(\lambda \geq 0 \). If \(f \in S_{\nu,\alpha,\lambda}(c, M) \), then:
The inequality (11) follows by taking $g(z) = \sum_{k=1}^{\infty} a_k z^k$ in (10).

where $g(z)$ is a convex function in E, $C_{\lambda,k} = \frac{\lambda + 1}{k-1} B_{s,a}(k) = \left| \left(\frac{k+1}{k-1} \right) \right|^s$, and:

\[
\text{Re } f(z) > 1 - \frac{\{q + c(1 + m) + mq\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + c(1 + m) + mq\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} (1 + m) |c| \tag{11}
\]

The constant \(\frac{\{q + c(1 + m) + mq\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + c(1 + m) + mq\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\} \) is the best estimate.

Proof. Let $f(z) \in S_{q,a,\lambda}(c, M)$ and $g(z) = z + \sum_{k=2}^{\infty} a_k z^k$. Then:

\[
\begin{align*}
\frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} (f * g)(z) \\
= \frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} \left(z + \sum_{k=2}^{\infty} a_k c_k z^k \right).
\end{align*}
\]

Thus, (10) holds true if:

\[
\begin{align*}
\left\{ \frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} a_k \left| z \right|^k \right\}_{k=1}^{\infty}
\end{align*}
\]

is a subordinating factor sequence with $a_1 = 1$. From Lemma 2, it suffices to show:

\[
\text{Re } \left\{ 1 + \sum_{k=1}^{\infty} \frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} a_k \left| z \right|^k \right\} > 0. \tag{14}
\]

Now, as \([k - 1 + |c(1 + m) + m(|k - 1|)]\) $C_{\lambda,k} B_{s,a}(k)$ is an increasing function of k ($k \geq 2$), we have:

\[
\begin{align*}
\text{Re } \left\{ 1 + \sum_{k=1}^{\infty} \frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} a_k \left| z \right|^k \right\} &= \text{Re } \left\{ 1 + \sum_{k=2}^{\infty} \frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} a_k \left| z \right|^k \right\} \\
& \geq 1 - \frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} r^k \\
\sum_{k=2}^{\infty} \frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2)}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} a_k \left| z \right|^k \\
& \geq 1 - \frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} r^k \\
& \geq 1 - \frac{\{q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|}{2\{(q + |c(1 + m) + mq|\} C_{\lambda,k} B_{s,a}(2) + |c(1 + m)|\}} r^k \\
& > 0. \quad (|z| = r < 1)
\end{align*}
\]

Hence, (14) holds true in E, and the subordination result (10) is affirmed by Theorem 4. The inequality (11) follows by taking $g(z) = \sum_{k=1}^{\infty} a_k z^k$ in (10).
Let us consider the function:

$$\phi(z) = z - \frac{|c(1 + m)|}{\{q + |c(1 + m) + mq|\} C_{q,a,s}(z) + |c(1 + m)|} z^2 \quad (z \in E)$$

which is a member of \(S_{q,a,s}(c, M)\). Then, by using (10), we have:

$$\frac{\{q + |c(1 + m) + mq|\} C_{q,a,s}(2)}{2 \{q + |c(1 + m) + mq|\} C_{q,a,s}(2) + |c(1 + m)|} \phi(z) \prec \frac{z}{1 - z}.$$

It is easily verified that:

$$\min \Re\left\{\frac{\{q + |c(1 + m) + mq|\} C_{q,a,s}(2)}{2 \{q + |c(1 + m) + mq|\} C_{q,a,s}(2) + |c(1 + m)|} \phi(z)\right\} = -\frac{1}{2} \quad (z \in E),$$

then the constant \(\frac{\{q + |c(1 + m) + mq|\} C_{q,a,s}(2)}{2 \{q + |c(1 + m) + mq|\} C_{q,a,s}(2) + |c(1 + m)|}\) cannot be replaced by a larger one.

Remark 2. If \(s \in \mathbb{N}_0, a = 0, \lambda = 0, \) and \(q \to 1^-\), Theorem 4 reduces to the subordination result proven in [29].

Now, we discuss the inclusion results pertaining to classes \(S_{q,a,s}(c, M)\) and \(C_{q,a,s}(c, M)\) in reference to parameters \(s\) and \(\lambda\).

Theorem 5. For any complex number \(s\), \(S_{q,a,s+1}(c, M) \subset S_{q,a,s}(c, M)\) if \(\Re \left(\frac{1 + |c(1 + m) - m|}{1 - mz}\right) > \frac{1}{q^1(1-q)} \{1 - \cos(a_2 \ln q)\}\) where \(a = a_1 + ia_2\).

Proof. Let \(f \in S_{q,a,s+1}(c, M)\), then:

$$\frac{zd_q \left(D_{q,a,s}^{s+1} f(z)\right)}{D_{q,a,s}^{s+1} f(z)} \prec \frac{1 + \{c(1 + m) - m\}z}{1 - mz}, \quad (15)$$

Let:

$$h(z) = \frac{1 + \{c(1 + m) - m\}z}{1 - mz}$$

and:

$$r(z) = \frac{zd_q \left(D_{q,a,s}^{s} f(z)\right)}{D_{q,a,s}^{s} f(z)}.$$

We will show:

$$r(z) \prec h(z),$$

which would prove \(S_{q,a,s}(c, M) \subset S_{q,a,s+1}(c, M)\). From the identity relation (3), after a few calculations, we have:

$$\frac{zd_q \left(D_{q,a,s}^{s} f(z)\right)}{D_{q,a,s}^{s} f(z)} = \frac{[1 + a]}{q^a} D_{q,a,s}^{s+1} f(z) - \frac{[a]}{q^a}. \quad (16)$$

After some calculations, we have:
\[
\frac{D^{s+1}_{q,a,\lambda} f(z)}{D^s_{q,a,\lambda} f(z)} = \frac{1}{[1 + a]} \left\{ q^{\alpha} zq (D^s_{q,a,\lambda} f(z)) + [a] \right\} \\
= \frac{1}{[1 + a]} (q^{\alpha} r(z) + [a]).
\]

Applying logarithmic \(q \)-differentiation, we have:

\[
\frac{zd_q(D^{s+1}_{q,a,\lambda} f(z))}{D^{s+1}_{q,a,\lambda} f(z)} = r(z) + \frac{zd_q r(z)}{r(z) + q^{-a} [a]}.
\] \hspace{1cm} (16)

From (15) and (16), we have:

\[
r(z) + \frac{z[d_q r(z)]}{r(z) + q^{-a} [a]} < \frac{1 + \{c(1 + m) - m\} z}{1 - mz}.
\]

If \(\text{Re}(h(z)) > \frac{1}{q^{1(1-q)}} \{1 - \cos(a_2 \text{ln} q)\} \), then from Lemma 1, it implies:

\[
r(z) < h(z),
\]

which implies \(f(z) \in S_{q,a,s,\lambda}(c, M) \). Therefore, \(S_{q,a,s,\lambda}(c, M) \subset S_{q,a,s+1,\lambda}(c, M) \). \(\square \)

Theorem 6. For any complex number \(s \), \(C_{q,a,s+1,\lambda}(c, M) \subset C_{q,a,s,\lambda}(c, M) \) if \(\text{Re}(\frac{1 + [c(1 + m) - m] z}{1 - mz}) > \frac{1 - q^{-1}}{1 - q} \) where \(a = a_1 + ia_2 \).

Proof. It is obvious from the fact \(f \in C_{q,a,s,\lambda}(c, M) \leftrightarrow zd_q f \in S_{q,a,s,\lambda}(c, M) \). \(\square \)

Theorem 7. For any complex number \(s \), \(S_{q,a,s,\lambda+1}(c, M) \subset S_{q,a,s,\lambda}(c, M) \) if \(\text{Re}(\frac{1 + [c(1 + m) - m] z}{1 - mz}) > \frac{1 - q^{-1}}{1 - q} \), \(\lambda > -1 \).

Proof. Let \(f \in S_{q,a,s,\lambda+1}(c, M) \), then:

\[
\frac{zd_q(D^s_{q,a,\lambda+1} f(z))}{D^s_{q,a,\lambda} f(z)} < \frac{1 + \{c(1 + m) - m\} z}{1 - mz}.
\] \hspace{1cm} (17)

Consider:

\[
h(z) = \frac{1 + \{c(1 + m) - m\} z}{1 - mz}
\]

and:

\[
q(z) = \frac{zd_q(D^s_{q,a,\lambda} f(z))}{D^s_{q,a,\lambda} f(z)}.
\]

We will show:

\[
q(z) < h(z),
\]

which would conveniently prove \(S_{q,a,s,\lambda+1}(c, M) \subset S_{q,a,s,\lambda}(c, M) \). From the identity relation (4), after a few calculations, we have:

\[
\frac{zd_q(D^s_{q,a,\lambda} f(z))}{D^s_{q,a,\lambda} f(z)} = \frac{[1 + \lambda]}{q^{\lambda}} \frac{D^s_{q,a,\lambda+1} f(z)}{D^s_{q,a,\lambda} f(z)} - \frac{[\lambda]}{q^{\lambda}}.
\]
After some calculations, we have:

\[
\frac{D^s_{q,a,\lambda+1}f(z)}{D^s_{q,a,\lambda}f(z)} = \frac{1}{1+\lambda} \left\{ q^s z d_q (D^s_{q,a,\lambda}f(z)) + [\lambda] \right\} = \frac{1}{1+\lambda} \left\{ q^s q(z) + [\lambda] \right\}.
\]

Applying logarithmic \(q\)-differentiation, we have:

\[
\frac{zd_q(D^s_{q,a,\lambda+1}f(z))}{D^s_{q,a,\lambda+1}f(z)} = q(z) + \frac{zd_q q(z)}{q(z) + q^{-\lambda} [\lambda]}.
\]

From (17) and (18), we have:

\[
q(z) + \frac{z[d_q q(z)]}{q(z) + q^{-\lambda} [\lambda]} < \frac{1 + \{c(1+m) - m\}z}{1 - mz}.
\]

If \(\text{Re}(h(z)) > \frac{1 - q^{-\lambda}}{1-q}\) for any value of \(\lambda > -1\), so by Lemma 1, we have \(q(z) < h(z)\), which implies \(f(z) \in S_{q,a,\lambda,1}(c, M)\). Therefore, \(S_{q,a,\lambda,1}(c, M) \subset S_{q,a,\lambda}(c, M)\).

Remark 3. If we consider \(q \to 1^-\) with \(\text{Re} a \geq 0\), \(c = 1\), \(m = 1\) in Theorem 5 and \(\lambda \geq 0\), \(c = 1\), \(m = 1\) in Theorem 7, we obtain the special cases of the inclusion results, Theorems 2.4 and 2.5 in [19].

In [30], the \(q\)-Bernardi integral operator \(L_b f(z)\) is defined as:

\[
L_b f(z) = \frac{[1+b]}{z^b} \int_0^z t^{b-1} f(t) d_q t = z + \sum_{k=2}^{\infty} \left(\frac{[1+b]}{k+b} \right) a_k z^k, \quad b = 1, 2, 3, \ldots.
\]

Now, we apply the generalized operator \(D^s_{q,a,\lambda}\) on \(L_b f(z)\) as:

\[
D^s_{q,a,\lambda}(L_b f(z)) = z + \sum_{k=2}^{\infty} \left(\frac{[k+a]}{[1+a]} \right)^s \frac{[\lambda+1][k-1]}{[k-1]!} \left(\frac{[1+b]}{k+b} \right) a_k z^k.
\]

The identity relation of \(D^s_{q,a,\lambda}(L_b f(z))\) is given as:

\[
zd_q \left[D^s_{q,a,\lambda} \{ L_b f(z) \} \right] = \left(\frac{[1+b]}{q^b} \right) D^s_{q,a,\lambda} f(z) - \frac{[b]}{q^b} D^s_{q,a,\lambda} \{ L_b f(z) \}.
\]

The following theorems are the integral inclusions of the classes \(S_{q,a,s,\lambda}(c, M)\) and \(C_{q,a,s,\lambda}(c, M)\) with respect to the \(q\)-Bernardi integral operator.

Theorem 8. If \(f(z) \in S_{q,a,s,\lambda}(c, M)\) then \(L_b f(z) \in S_{q,a,s,\lambda}(c, M)\) if \(\text{Re} \left(\frac{1 + [c(1+m) - m]z}{1 - mz} \right) > \frac{1 - q^{-\lambda}}{1-q}\) for any complex number \(s\).

Proof. Let \(g(z) \in S_{q,a,s,\lambda}(c, M)\), then:

\[
zd_q \left(D^s_{q,a,\lambda} g(z) \right) < \frac{1 + \{c(1+m) - m\}z}{1 - mz}.
\]

Consider:
\[h(z) = \frac{1 + \{c(1 + m) - m\}z}{1 - mz} \]

and:

\[u(z) = \frac{zd_{q}(D_{q,a,\lambda}^{s}L_{b}g(z))}{D_{q,a,\lambda}^{s}L_{b}g(z)}. \]

We will show:

\[u(z) \prec h(z), \]

which would prove \(L_{b}g(z) \in S_{q,a,s,\lambda}(c, M). \) From the identity relation (19), after some calculations, we have:

\[\frac{zd_{q}(D_{q,a,\lambda}^{s}L_{b}g(z))}{D_{q,a,\lambda}^{s}L_{b}g(z)} = \left(\frac{[1 + b]}{q^{b}} \right) \frac{D_{q,a,\lambda}^{s}g(z)}{(D_{q,a,\lambda}^{s}L_{b}g(z))} - \frac{[b]}{q^{b}}. \]

After some calculations, we have:

\[\frac{D_{q,a,\lambda}^{s}g(z)}{D_{q,a,\lambda}^{s}L_{b}g(z)} = \frac{1}{[1 + b]} \left[q^{b}zd_{q}(D_{q,a,\lambda}^{s}L_{b}g(z)) \right] + [b] \]

Applying logarithmic \(q \)-differentiation, we have:

\[\frac{zd_{q}(D_{q,a,\lambda}^{s}g(z))}{D_{q,a,\lambda}^{s}g(z)} = u(z) + \frac{z[d_{q}u(z)]}{u(z) + q^{-b}[b]} \quad (21) \]

From (20) and (21), we have:

\[u(z) + \frac{z[d_{q}u(z)]}{u(z) + q^{-b}[b]} < \frac{1 + \{c(1 + m) - m\}z}{1 - mz} \]

If \(\text{Re}(h(z)) > \frac{1-q^{-b}}{1-q} \), so by Lemma 1, we have \(u(z) \prec h(z) \), which implies \(L_{b}g(z) \in S_{q,a,s,\lambda}(c, M). \) \(\square \)

Theorem 9. If \(f(z) \in C_{q,a,s,\lambda}(c, M) \), then \(L_{b}f(z) \in C_{q,a,s,\lambda}(c, M) \) for any complex number \(s \).

Proof. It is an immediate consequence of the fact \(C_{q,a,s,\lambda}(c, M) \Leftrightarrow zd_{q}f \in S_{q,a,s,\lambda}(c, M). \) \(\square \)

Author Contributions: Conceptualization: K.I.N.; formal analysis: R.S.B. and K.I.N.; investigation: R.S.B. and K.I.N.; methodology: R.S.B. and K.I.N.; supervision: K.I.N.; validation: R.S.B.; writing, original draft: R.S.B. All authors read and agreed to the published version of the manuscript.

Funding: The authors received no funding for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Einstein, A. Concerning on heuristic point of view toward the emission and transformation of light. *Ann. Phys.* 1905, 17, 132–148.
2. Jackson, F.H. On \(q \)-definite integrals. *Q. J. Pure Appl. Math.* 1910, 41, 193–203.
3. Jackson, F.H. \(q \)-difference equations. *Am. J. Math.* 1910, 32, 305–314.
4. Srivastava, H.M. Univalent functions, fractional calculus and associated generalized hypergeometric functions. In *Univalent Functions, Fractional Calculus and Their Applications;* Srivastava, H.M., Owa, S., Eds.; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354.

5. Ismail, M.E.H.; Markes, E.; Styer, D. A generalization of starlike functions. *Complex Var. 1990,* 14, 77–84.

6. Agrawal, S.; Sahoo SK. A generalization of starlike functions of order alpha. *Hokkaido Math. J.* 2017, 46, 15–27.

7. Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operator. *Math. Scand.* 2007, 109, 55–70.

8. Sahoo, S.K.; Sharma, N.L. On a generalization of close-to-convex functions. *Ann. Polon. Math.* 2015, 113, 93–108.

9. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory. *Iran. J. Sci. Technol. Trans. Sci.* 2020, 44, 327–344.

10. Mohammad, A.; Darus, M. A generalized operator involving the q-hypergeometric function. *Mat. Vesnik* 2013, 65, 454–465.

11. Wilf, H.S. Subordinating factor sequence for convex maps of the unit circle. *Proc. Am. Math. Soc.* 1962, 12, 689–693.

12. Ernst, T. *A Comprehensive Treatment of q-Calculus;* Springer: Basel, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2012.

13. Ali, S.; Noor, K.I. Study on the q-analogue of a certain family of linear operators. *Turkish J. Math.* 2019, 43, 2707–2714.

14. Noor, K.I.; Bukhari, S.Z.H. Some subclasses of analytic and spiral-like functions of complex order involving the Srivastava-Attiya integral operator. *Integral Transforms Spec. Funct.* 2010, 21, 907–916.

15. Kanas, S.; Răducanu, D. Some classes of analytical functions related to conic domains. *Math. Slovaca* 2014, 64, 1183–1196.

16. Owa, S.; Srivastava, H.M. Some applications of generalized Libera integral operator. *Proc. Japan Acad. Ser. A. Math. Sci.* 1986, 62, 125–128.

17. Wang, Z.G.; Li, Q.G.; Jiang, Y.P. Certain subclasses of multivalent analytic functions involving generalized Srivastava-Attiya operator. *Integral Transforms Spec. Funct.* 2010, 21, 221–234.

18. Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. *Anal. Math.* 2017, 43, 475–487.

19. Al-Shaqsi, K.; Darus, M. A multiplier transformation defined by convolution involving nth order polylogarithm functions. *Int. Math. Forum* 2009, 4, 1823–1837.

20. Çetinkaya, A.; Polatğlu, Y. q-Harmonic mappings for which analytic part is q-convex functions of complex order. *Hacet. J. Math. Stat.* 2018, 47, 813–820.

21. Aouf, M.K.; Seoudy,T.M. Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative. *RACSAM* 2019, 113, 1279–1288.

22. Bukhari, S.Z.H.; Noor, K.I.; Malik, B. Some applications of generalized Srivastava-Attiya integral operator. *Iran. J. Sci. Technol Trans. A Sci.* 2018, 42, 2251–2257.

23. Noor, K.I.; Riaz, S. Generalized q-starlike functions. *Studia Sci. Math. Hungar.* 2017, 54, 509–522.

24. Noor, K.I. Some classes analytic functions associated with q-Ruscheweyh differential operator. *Facta Univ. Ser. Math. Inform.* 2018, 33, 531–538.

25. Polatğlu, Y.; Şen, A. Some results on subclasses of Janowski -spiral like functions of complex order. *Gen. Math.* 2007, 15, 88–97.

26. Aouf, M.K.; Darwish, H.E.; Attiya, AA. On a class of certain analytic functions of complex order. *Indian J. Pure Appl. Math.* 2001, 32, 1443–1452.

27. Shamsan, H.; Latha, S. On generalized bounded Mocanu variation related to q-derivative and conic regions. *Ann. Pure Appl. Math.* 2018, 17, 67–83.

28. Răducanu, D.; Srivastava, H.M. A new class of analytic functions defined by means of a convolution operator involving the Hurwitiz-Lerch Zeta function. *Integtral Transforms Spec. Funct.* 2007, 18, 933–943.
29. Güney, H.O.; Attiya, A.A. A subordination result with Salagean-type certain analytic functions of complex order. *Bull. Belg. Math. Soc.* **2011**, *18*, 253-258.

30. Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi linear operator. *TMWS J. Pure Appl. Math.* **2017**, *8*, 3–11.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).