Abstract

A pair of clauses in a CNF formula constitutes a conflict if there is a variable that occurs positively in one clause and negatively in the other. A CNF formula without any conflicts is satisfiable. The Lovász Local Lemma implies that a k-CNF formula is satisfiable if each clause conflicts with at most $\frac{2^k}{e} - 1$ clauses. It does not, however, give any good bound on how many conflicts an unsatisfiable formula has globally. We show here that every unsatisfiable k-CNF formula requires $\Omega(2^{0.69k})$ conflicts and there exist unsatisfiable k-CNF formulas with $O(3.51^k)$ conflicts.

1 Introduction

A boolean formula in conjunctive normal form, a CNF formula for short, is a conjunction (AND) of clauses, which are disjunctions (OR) of literals. A literal is either a boolean variable x or its negation \bar{x}. We assume that a clause does neither contain the same literal twice nor a variable and its negation. A CNF formula where each clause contains exactly k literals is called a k-CNF formula. Satisfiability, the problem of deciding whether a CNF formula is satisfiable, plays a major role in computer science. How can a k-CNF formula be unsatisfiable? If k is large, each clause is extremely easy to satisfy individually. However, it can be that there are conflicts between the clauses, making it impossible to satisfy all of them simultaneously. If a k-CNF formula is unsatisfiable, then we expect that there are many conflicts.

To give a formal setup, we say two clauses conflict if there is at least one variable that appears positively in one clause and negatively in the other. For example, the two clauses $(x \lor y)$ and $(\bar{x} \lor u)$ conflict, as well as $(x \lor y)$ and $(\bar{x} \lor \bar{y})$ do. Any CNF formula without the empty clause and without any conflicts is satisfiable. For a formula F we define the conflict graph $CG(F)$, whose vertices are the clauses of F, and two clauses are connected by an edge if they conflict. $\Delta(F)$ denotes the maximum degree of $CG(F)$, and $e(F)$ the number of conflicts in F, i.e., the number of edges in $CG(F)$. In fact, any k-CNF formula is satisfiable unless $\Delta(F)$ and $e(F)$ are large. A quantitative result follows from the lopsided Lovász Local Lemma [4, 1, 8]: A k-CNF formula F is satisfiable unless some clause conflicts with $\frac{2^k}{e}$ or more clauses, i.e., unless $\Delta(F) \geq \frac{2^k}{e}$. Up to a constant factor, this is tight: Consider the formula containing all 2^k clauses over the variables x_1, \ldots, x_k, the complete k-CNF formula which we denote by K_k. It is unsatisfiable, and $\Delta(K_k) = 2^k - 1$.

*Research is supported by the SNF Grant 200021-118001/1
As its name suggests, the lopsided Lovász Local Lemma implies a local result. Our goal is to obtain a global result: \(F \) is satisfiable unless the total number of conflicts is very large. We define two functions

\[
le(k) := \max\{d \in \mathbb{N}_0 \mid \text{every } k\text{-CNF formula } F \text{ with } \Delta(F) \leq d \text{ is satisfiable}\}, \\
gc(k) := \max\{e \in \mathbb{N}_0 \mid \text{every } k\text{-CNF formula } F \text{ with } e(F) \leq e \text{ is satisfiable}\}.
\]

The abbreviations \(lc \) and \(gc \) stand for local conflicts and global conflicts, respectively. From the above discussion, \(\frac{2^k}{e} - 1 \leq le(k) \leq 2^k - 2 \), hence we know \(le(k) \) up to a constant factor. In contrast, it does not seem to be easy to prove nontrivial upper and lower bounds on \(gc(k) \). Certainly, \(gc(k) \geq le(k) \geq \frac{2^k}{e} - 1 \) and \(gc(k) \leq e(\mathcal{K}_k) - 1 = \left(\frac{2^k}{2}\right) - 1 \). Ignoring constant factors, \(gc(k) \) lies somewhere between \(2^k \) and \(4^k \). This leaves much space for improvement. In [10], we proved that \(gc(k) \in \Omega(2.27^k) \) and \(gc(k) \leq \frac{4^k}{\log^2 k} \). In this paper, we improve upon these bounds. Surprisingly, \(gc(k) \) is exponentially smaller than \(4^k \).

Theorem 1. Any unsatisfiable \(k\text{-CNF} \) formula contains \(\Omega(2.69^k) \) conflicts. There are unsatisfiable \(k\text{-CNF} \) formulas with \(O(3.51^k) \) conflicts.

We obtain the lower bound by a more sophisticated application of the idea we used in [10]. The upper bound follows from a construction that is partially probabilistic, and inspired in parts by Erdős’ construction in [3] of sparse \(k \)-uniform hypergraphs that are not 2-colorable. To simplify notation, we view formulas as sets of clauses, and clauses as sets of literals. Hence, \(|F|\) denotes the number of clauses in \(F \). Still, we will sometimes find it convenient to use the more traditional logic notation.

Related Work

Let \(F \) be a CNF formula and \(u \) be a literal. We define \(\text{occ}_F(u) := |\{C \in F \mid u \in C\}| \). For a variable \(x \), we write \(d_F(x) = \text{occ}_F(x) + \text{occ}_F(\bar{x}) \) and call it the degree of \(x \). We write \(d(F) = \max_x d_F(x) \). It is easy to see that for a \(k\text{-CNF} \) formula, \(\Delta(F) \leq k(d(F) - 1) \). Define

\[
f(k) := \max\{d \in \mathbb{N}_0 \mid \text{every } k\text{-CNF formula } F \text{ with } d(F) \leq d \text{ is satisfiable}\}.
\]

By an application of Hall’s Theorem, Tovey [11] showed that every \(k\text{-CNF} \) formula \(F \) with \(d(F) \leq k \) is satisfiable, hence \(f(k) \geq k \). Later, Kratochvíl, Savický and Tuza [7] showed that \(f(k) \geq \frac{2^k}{3k} \) and \(f(k) \leq 2^{k-1} - 2^{k-4} - 1 \). The upper bound was improved by Savický and Sgall [9] to \(f(k) \in O(k^{-0.26}2^k) \), by Hoory and Szeider [6] to \(f(k) \in O\left(\frac{\log(k)2^k}{k}\right) \), and recently by Gebauer [5] to \(f(k) \leq \frac{2^{k+2}}{k} - 1 \), closing the gap between lower and upper bound on \(f(k) \) up to a constant factor. Actually, we used the formulas constructed in [6] to prove the upper bound \(gc(k) \leq \frac{4^k}{\log^2 k} \) in [10].

2 A First Attempt

We sketch a first attempt on proving a nontrivial lower bound on \(gc(k) \). Though this attempt does not succeed, it leads us to other interesting questions, results, and finally proof methods which can be used to prove a lower bound on \(gc(k) \). Let \(F \) be a \(k\text{-CNF} \)
formula and x a variable. Every clause containing x conflicts with every clause containing \overline{x}, thus $e(F) \geq \text{occ}_F(x) \cdot \text{occ}_F(\overline{x})$. Furthermore,

$$e(F) \geq \frac{1}{k} \sum_x \text{occ}_F(x) \cdot \text{occ}_F(\overline{x}),$$

(1)

where the $\frac{1}{k}$ comes from the fact that each conflict might be counted up to k times, if two clauses contain several complementary literals. Every unsatisfiable k-CNF formula F contains a variable x with $d_F(x) \geq \frac{2^k}{k}$. If this variable is balanced, i.e., $\text{occ}_F(x)$ and $\text{occ}_F(\overline{x})$ differ only in a polynomial factor in k, then $e(F) \geq \frac{4^k}{\text{poly}(k)}$. Indeed, in the formulas constructed in [5], all variables are balanced. The same holds for the complete k-CNF formula K_k. It follows that when trying to obtain an upper bound on $gc(k)$ that is exponentially smaller than 4^k, we should construct a very unbalanced formula. We ask the following question:

Question: Is there a number $a > 1$ such that for every unsatisfiable k-CNF formula F there is a variable with $\text{occ}_F(x) \geq a^k$ and $\text{occ}_F(\overline{x}) \geq a^k$?

The answer is a very strong no: In [10] we gave a simple inductive construction of a k-CNF formula F with $\text{occ}_F(\overline{x}) \leq 1$ for every variable x. However, in this formula one has $\text{occ}_F(x) \approx k!$. Allowing $\text{occ}_F(\overline{x})$ to be a small exponential in k, we have the following result:

Theorem 2. (i) For every $a > 1$, $b \geq \frac{a}{a-1}$ there is a constant c such that for all sufficiently large k, there is an unsatisfiable k-CNF formula F with $\text{occ}_F(\overline{x}) \leq \frac{ck^2a^k}{\sqrt{k}}$ and $\text{occ}_F(x) \leq \frac{ck^2b^k}{\sqrt{k}}$, for all x.

(ii) Let $1 < a < \sqrt{2}$ and $b = \sqrt{\frac{a^2}{a-1}}$. Then every k-CNF formula F with $\text{occ}_F(x) \leq \frac{b^k}{\sqrt{k}}$ and $\text{occ}_F(\overline{x}) \leq \frac{a^k}{\sqrt{k}}$ is satisfiable.

Of course, we can interchange the roles of x and \overline{x}, but it is convenient to assume that $\text{occ}_F(\overline{x}) \leq \text{occ}_F(x)$ for every x. In the spirit of these results, we might suspect that if F is unsatisfiable, then for some variable x, the product $\text{occ}_F(x) \cdot \text{occ}_F(\overline{x})$ is large.

Question: Is there a number $a > 2$ such that every unsatisfiable k-CNF formula contains a variable x with $\text{occ}_F(x) \cdot \text{occ}_F(\overline{x}) \geq a^k$?

Clearly, $gc(k) \geq a^k$ for any such number a. The complete k-CNF formula witnesses that a cannot be greater than 4, and it is not at all easy to come up with an unsatisfiable k-CNF formula where $\text{occ}_F(x) \cdot \text{occ}_F(\overline{x})$ is exponentially smaller than 4^k for every x. We cannot answer the above question, but we suspect that the answer is yes. We prove an upper bound on the possible value of a:

Theorem 3. There are unsatisfiable k-CNF formulas with $\text{occ}_F(x) \cdot \text{occ}_F(\overline{x}) \in O(3.01^k)$ for all variables x.

3 Proofs

For a truth assignment α and a clause C, we will write $\alpha \models C$ if α satisfies C, and $\alpha \not\models C$ if it does not. Similarly, if α satisfies a formula F, we write $\alpha \models F$. We begin by stating a version of the Lopsided Lovász Local Lemma formulated in terms of satisfiability. See [10] for a derivation of this version.
Lemma 4 (SAT version of the Lopsided Lovász Local Lemma). Let F be a CNF formula not containing the empty clause. Sample a truth assignment α by independently setting each variable x to true with some probability $p(x) \in [0,1]$. If for any clause $C \in F$, it holds that
\[
\sum_{D \in F : C \text{ and } D \text{ conflict}} \Pr[\alpha \upharpoonright D = D] \leq \frac{1}{4},
\]
then F is satisfiable.

It is not possible to apply Lemma 4 directly to a formula F which we want to prove being satisfiable. Instead, we apply it to a formula F' we obtain from F in the following way:

Definition 5. Let F be a CNF formula. A truncation of F is a CNF formula F' that is obtained from F by deleting some literals from some clauses.

For example, $(x \lor y) \land (\bar{y} \lor z)$ is a truncation of $(x \lor y \lor \bar{z}) \land (\bar{x} \lor \bar{y} \lor z)$. A truncation of a k-CNF formula is not necessarily a k-CNF formula anymore. Any truth assignment satisfying a truncation F' of F also satisfies F. In our proofs, we will often find it easier to apply Lemma 4 to a special truncation of F than to F itself. We need a technical lemma on the binomial coefficient.

Lemma 6. Let $a, b \in \mathbb{N}$ with $b/a \leq 0.75$. Then
\[
\frac{a^b}{b!} \geq \binom{a}{b} > \frac{a^b}{b!} e^{-b^2/a}.
\]

Proof. The upper bound is trivial and true for all a, b. The lower bound follows like this.
\[
\binom{a}{b} = \frac{a(a-1) \cdots 1}{b!} = \frac{a^b}{b!} \prod_{j=0}^{b-1} \frac{a-j}{a} > \frac{a^b}{b!} e^{-2/a} \sum_{j=0}^{b-1} \frac{j}{a} \geq \frac{a^b}{b!} e^{-b^2/a},
\]
where we used the fact that $1 - x > e^{-2x}$ for $0 \leq x \leq 0.75$. \hfill \square

3.1 Proof of Theorem 2 and 3

As we have argued in Section 2, in order to improve significantly upon the upper bound $gc(k) \leq 4^k$, we must construct a formula that is very unbalanced, i.e. $\text{occ}_F(x)$ is exponentially larger than $\text{occ}_F(\bar{x})$. First, we will construct an unsatisfiable CNF formula with k-clauses and some smaller clauses. In a second step, we expand all clauses to size k.

Definition 7. Let F be a CNF formula with clauses of size at most k. For each k'-clause C with $k' < k$, construct a complete $(k-k')$-CNF formula $K_{k-k'}$ over $k-k'$ new variables $y_1^C, \ldots, y_{k-k'}^C$. We replace C by $C \lor K_{k-k'}$. Using distributivity, we expand it into a k-CNF formula G called a k-CNFification of F.

For example, a 3-CNFFication of $(x \lor y) \land (\bar{x} \lor y \lor z)$ is $(x \lor y \lor y_1) \land (x \lor y \lor \bar{y}_1) \land (\bar{x} \lor y \lor z)$. A truth assignment satisfies F if and only if it satisfies its k-CNFification G.

Definition 8. Let $\ell, k \in \mathbb{N}_0$. An (ℓ,k)-CNF formula is a formula consisting of ℓ-clauses containing only positive literals, and k-clauses containing only negative literals.
If F is an (ℓ, k)-CNF formula, we write $F = F^+ \land F^-$, where F^+ consists of the positive ℓ-clauses and F^- of the negative k-clauses.

Proposition 9. Let $\ell \leq k$ and let $F = F^+ \land F^-$ be an (ℓ, k)-CNF formula. Let G be the k-CNFication of F. Then

(i) $e(G) \leq 4^{k-\ell}|F^+| + 2^{k-\ell}|F^+| \cdot |F^-|,$

(ii) $\text{occ}_G(x) \cdot \text{occ}_G(\bar{x}) \leq \max\{4^{k-\ell}, 2^{k-\ell}|F^+| \cdot |F^-|\}.$

Proof. To prove (i), note that every edge in $CG(F)$ runs between a positive ℓ-clause C and a negative k-clause D. Thus, $e(F) \leq |F^+| \cdot |F^-|$. In G, this edge is replaced by $2^{k-\ell}$ edges, since C is replaced by $2^{k-\ell}$ copies. This explains the term $2^{k-\ell}|F^+| \cdot |F^-|$. Replacing C by $2^{k-\ell}$ many k-clauses introduces at most $4^{k-\ell}$ new conflicts. This explains the term $4^{k-\ell}|F^+|$, and proves (i). To prove (ii), there are two cases. First, if x appears in F, then $\text{occ}_G(x) = \text{occ}_F(x)$ and $\text{occ}_G(\bar{x}) = \text{occ}_F(\bar{x})2^{k-\ell}$, thus $\text{occ}_G(x)\text{occ}_G(\bar{x}) \leq 2^{k-\ell}|F^+| \cdot |F^-|$. Second, if x appears in G, but not in F, then $\text{occ}_G(x) = \text{occ}_G(\bar{x}) = 2^{k-\ell}-1$, and $\text{occ}_G(x) \cdot \text{occ}_G(\bar{x}) \leq 4^{k-\ell}$.

We should explore for which values of $|F^+|$ and $|F^-|$ there are unsatisfiable (ℓ, k)-CNF formulas. We can then use Proposition 9 to derive upper bounds.

Lemma 10. For any $\rho \in (0, 1)$, there is a constant c such that for all $k \in \mathbb{N}_0$ and $\ell \leq k$, there exists an unsatisfiable (ℓ, k)-CNF formula $F = F^+ \land F^-$ with $|F^-| \leq ck^\ell(1 - \rho)^{-\ell}$ and $|F^+| \leq ck^2(1 - \rho)^{-\ell}$.

Proof. We choose a set variables $V = \{x_1, \ldots, x_n\}$ of $n = k^2$ variables. There are $\binom{n}{k}$ k-clauses over V containing only negative literals. We form F^- by sampling $ck^2\rho^{-k}$ of them, uniformly with replacement, and similarly, we form F^+ by sampling $ck^2(1 - \rho)^{-\ell}$ purely positive ℓ-clauses, where c is some suitable constant determined later. Set $F = F^- \land F^+$. We claim that with high probability, F is unsatisfiable. Let α be any truth assignment. There are two cases.

- **Case 1.** α sets at least ρn variables to true. For a random negative clause C,

 $$\Pr[\alpha \not\models C] \geq \frac{\binom{\rho n}{k}}{\binom{n}{k}} \geq c' \rho^k,$$

 The last inequality follows from Lemma 6. Since we select the clauses of F^- independently of each other, we obtain

 $$\Pr[\alpha \models F^-] \leq (1 - c' \rho^k)ck^2\rho^{-k} < e^{-cc'k^2} = e^{-k^2},$$

 provided we chose c large enough, i.e., $c \geq \frac{1}{\alpha}$.

- **Case 2.** α sets at most $\frac{n}{\alpha}$ variables to true. Now a similar calculation shows that α satisfies F^+ with probability at most e^{-k^2}.

 In any case, $\Pr[\alpha \models F] \leq e^{-k^2}$. The expected number of satisfying assignments of F is at most $2^{k^2}e^{-k^2} \ll 1$ and with high probability F is unsatisfiable.

The bound in Lemma 10 is tight up to a polynomial factor in k:

Lemma 11. Let $F = F^+ \land F^-$ be an (ℓ, k)-CNF formula. If there is a $\rho \in (0, 1)$ such that $|F^+| \leq \frac{1}{2}(1 - \rho)^{-\ell}$ and $|F^-| \leq \frac{1}{2}\rho^{-k}$, then F is satisfiable.
Proof. Sample a truth assignment α by setting each variable independently to true with probability p. For a negative k-clause C, it holds that $Pr[\alpha \models \lnot C] = p^k$. Similarly, for a positive ℓ-clause D, $Pr[\alpha \models \lnot D] = (1 - p)^\ell$. Hence the expected number of clauses in F that are unsatisfied by α is $p^k|F^-| + (1 - p)^\ell|F^+| < \frac{1}{2} + \frac{1}{2} = 1$. Therefore, with positive probability α satisfies F. \hfill \square

Proof of Theorem 2. (i) Apply Lemma 10 with $\ell = k$ and $p = \frac{1}{a^2}$.

(ii) We fix some probability $p := \frac{1}{a^2} \geq \frac{1}{2}$, and set every variable of F to true with probability p, independent of each other. This gives a random truth assignment α. We define a truncation F' of F as follows: For each clause $C \in F$, if at least half the literals of C are negative, we remove all positive literals from C and insert the truncated clause into F', otherwise we insert C into F' without truncating it. We write $F' = F_k \land F''$, where F'' consists of purely negative clauses of size at least $\frac{k}{2}$, and F_k consists of k-clauses, each containing at least $\frac{k}{2}$ positive literals. A clause in F'' is unsatisfied with probability at most $p^\frac{k}{2}$, and a clause in F_k with probability at most $p^\frac{k}{2}(1 - p)\frac{k}{2}$. This is because in the worst case, half of all literals are negative: Since $p \geq \frac{1}{2}$, negative literals are more likely to be unsatisfied than positive ones. Let $C \in F'$ be any clause. A positive literal $x \in C$ causes conflicts between C and the $occ_{F'}(\bar{x}) \leq \frac{k}{2\ell}$ clauses of F' containing \bar{x}. Similarly, a negative literal $\bar{y} \in C$ causes conflicts with the at most $\frac{k}{2\ell}$ clauses of F_k containing y. Therefore

$$\sum_{D \in F', C and D conflict} Pr[\alpha \not\models D] \leq \frac{a^k}{8}p^\frac{k}{2} + \frac{b^k}{8}p^\frac{k}{2}(1 - p)\frac{k}{2} = \frac{1}{4},$$

since $p = \frac{1}{a^2}$ and $b = \sqrt{\frac{a^k}{a^2 - 1}}$. By Lemma 4, F' is satisfiable. \hfill \square

Part (ii) of Theorem 2 can easily be improved by defining a more careful truncation procedure: We remove all positive literals from a clause C if C contains less than λk of them, for some $\lambda \in [0,1]$. Choosing λ and p optimally, we obtain a better result, but the calculations become messy, and it offers no additional insight. The crucial part of the proof is that by removing positive literals from a clause, we can use the fact that $occ_{F}(\bar{x})$ is small to bound the number of clauses D that conflict with C and have a large probability of being unsatisfied. This is also the main idea in our proof of the lower bound of Theorem 1. It should be pointed out that for $k = \ell$, an (ℓ, k)-CNF formula is just a monotone k-CNF formula. The size of a smallest unsatisfiable monotone k-CNF formula is the same—up to a factor of at most 2—as the minimum number of hyperedges in a k-uniform hypergraph that is not 2-colorable. In 1963, Erdős [2] raised the question what this number is, and proved lower bound of 2^{k-1} (this is easy, simple choose a random 2-coloring). One year later, he [3] gave a probabilistic construction of a non-2-colorable k-uniform hypergraph using ck^22^k hyperedges. For $k = \ell$ and $p = \frac{1}{2}$, the statement and proof of Lemma 10 are basically the same in [3].

Proof of Theorem 3. Combining Lemma 10 and Proposition 9, we conclude that for any $\rho \in (0,1)$ and $0 \leq \ell \leq k$, there is an unsatisfiable k-CNF formula F with

$$occ_F(x) \cdot occ_F(\bar{x}) \leq \max\{4^{k-\ell}, 2^{k-\ell}c^2k^4\rho^{-k}(1 - \rho)^{-\ell}\},$$

for every variable x. The constant c depends on ρ, but not on k or ℓ. For fixed $k, \ell > 1$, the term $\rho^{-k}(1 - \rho)^{-\ell}$ is minimized for $\rho = \frac{k}{k+\ell}$. Choosing $\ell = [0.2055k]$, we get $\rho \approx 0.83$ and $occ_F(x) \cdot occ_F(\bar{x}) \in O(3.01^k)$. \hfill \square
3.2 Proof of the Main Theorem

Proof of the upper bound of Theorem 1. As in the previous proof, Proposition 9 together with Lemma 10 yield an unsatisfiable k-CNF formula F with
\[e(F) \leq 4^{k-\ell}c^2(1-\rho)^{-\ell} + 2^{k-\ell}c^2k^4\rho^{-k}(1-\rho)^{-\ell}. \]
For $\rho \approx 0.6298$ and $\ell = [0.333k]$, we obtain $e(F) \in O(3.51^k)$. \qed

Proof of the lower bound in Theorem 1. Let F be an unsatisfiable k-CNF and let $e(F)$ be the number of conflicts in F. We will show that $e(F) \in \Omega(2.69^k)$. In the proof, x denotes a variable and u a positive or negative literal. We assume $\text{occ}_{F}(\bar{x}) \leq \text{occ}_{F}(x)$ for all variables x. We can do so since otherwise we just replace x by \bar{x} and vice versa. This changes neither $e(F)$, nor satisfiability of F. Also we can assume that $\text{occ}_{F}(x)$ and $\text{occ}_{F}(\bar{x})$ are both at least 1, if x occurs in F at all. For x, we define
\[p(x) := \max \left\{ \frac{1}{2}, \sqrt{k}\frac{\text{occ}_{F}(x)}{16e(F)} \right\}, \]
and set x to true with probability $p(x)$ independently of all other variables yielding a random assignment α. Since $\text{occ}_{F}(\bar{x}) \leq e(F)$, we have $p(x) \leq 1$. We set $p(\bar{x}) = 1 - p(x)$. By definition, $p(x) \geq p(\bar{x})$. Let us list some properties of this distribution. First, if $p(u) < \frac{1}{2}$ for some literal u, then u is a negative literal \bar{x}, and $p(x) = \frac{\sqrt{k}\text{occ}_{F}(\bar{x})}{16e(F)} > \frac{1}{2}$.

Second, if $p(u) = \frac{1}{2}$, then both $\frac{\sqrt{k}\text{occ}_{F}(\bar{x})}{16e(F)} \leq \frac{1}{2}$ and $\frac{\sqrt{k}\text{occ}_{F}(\bar{x})}{16e(F)} \leq \frac{1}{2}$ hold. We distinguish two types of clauses: Bad clauses, which contain at least one literal u with $p(u) < \frac{1}{2}$, and good clauses, which contain only literals u with $p(u) \geq \frac{1}{2}$. Let $B \subseteq F$ denote the set of bad clauses and $\mathcal{G} \subseteq F$ the set of good clauses.

Lemma 12. $\sum_{C \in B} \Pr[\alpha \not\models C] \leq \frac{1}{8}$.

Proof. For each clause $C \in B$, let u_C be the literal in C minimizing $p(u)$, breaking ties arbitrarily. This means $\Pr[\alpha \not\models C] \leq p(u_C)^k$. Since C is a bad clause, $p(u_C) < \frac{1}{2}$, u_C is a negative literal \bar{x}_C, and $p(x_C) = \frac{\text{occ}_{F}(\bar{x}_C)}{16e(F)}$. Thus
\[\sum_{C \in B} \Pr[\alpha \not\models C] \leq \sum_{C \in B} p(x_C)^k = \sum_{C \in B} \frac{\text{occ}_{F}(x_C)}{16e(F)}. \tag{3} \]

Since clause C contains \bar{x}_C, it conflicts with all $\text{occ}_{F}(x_C)$ clauses containing x_C, thus $\sum_{C \in B} \text{occ}_{F}(x_C) \leq 2e(F)$. The factor 2 arises since we count each conflict possibly twice, once from each side. Combining this with (3) proves the lemma. \qed

We cannot directly apply Lemma 4 to F. Therefore we apply the below sparsification process to F.

Lemma 13. Let F' be the result of the sparsification process. If F' does not contain the empty clause, then F is satisfiable.

Proof. We will show that (2) applies to F'. Fix a clause $C \in F'$. After the sparsification process, every literal u fulfills $\sum_{D \in \mathcal{G} \setminus u \in D} \Pr[\alpha \not\models D] \leq \frac{1}{8k}$. Therefore, the terms $\Pr[\alpha \not\models D]$, for all good clauses D conflicting with C, sum up to at most $\frac{1}{8}$. By Lemma 12, the terms $\Pr[\alpha \models D]$ for all bad clauses D also sum up to at most $\frac{1}{8}$. Hence (2) holds, and by Lemma 4, F' is satisfiable, and clearly F as well. \qed
We will show that stay satisfied. In the end we get a sequence \(q_k \) of Proposition 15, among \(q \) whenever \(q \) focation of \(q \) whenever \(q \) than \(1 \). Let \(G' = \{D \in F \mid p(u) \geq \frac{1}{2}, \forall u \in D\} \) be the set of good clauses in \(F \).

Algorithm: Sparsification Process

Let \(G' = \{D \in F \mid p(u) \geq \frac{1}{2}, \forall u \in D\} \) be the set of good clauses in \(F \).

while \(\exists \) a literal \(u : \sum_{D \in G': u \in D} \Pr[\alpha \not\in D] > \frac{1}{8k} \) do

Let \(C \) be some clause maximizing \(\Pr[\alpha \not\in D] \) among all clauses \(D \in G' : u \in D \).

\(C' := C \setminus \{u\} \)

\(G' := (G' \setminus \{C\}) \cup \{C'\} \)

end

return \(F' := G' \cup B \)

Contrary, if \(F \) is unsatisfiable, the sparsification process produces the empty clause. We will show that \(e(F) \) is large. There is some \(C \in G \) all whose literals are being deleted during the sparsification process. Write \(C = \{u_1, u_2, \ldots, u_k\} \), and order the \(u_i \) such that \(\text{occ}_F(u_1) \leq \text{occ}_F(u_2) \leq \cdots \leq \text{occ}_F(u_k) \). One checks that this implies that \(p(u_1) \leq p(u_2) \leq \cdots \leq p(u_k) \). Fix any \(\ell \in \{1, \ldots, k\} \) and let \(u_j \) be the first literal among \(u_1, \ldots, u_k \) that is deleted from \(C \). Let \(C' \) denote what is left of \(C \) just before that deletion, and consider the set \(G' \) at this point of time. Then \(\{u_1, \ldots, u_k\} \subseteq C' \in G' \). By the definition of the process,

\[
\frac{1}{8k} < \sum_{D \in G': u_j \in D} \Pr[\alpha \not\in D] \leq \sum_{D \in G': u_j \in D} \Pr[\alpha \not\in C'] \leq \text{occ}_F(u_j) \Pr[\alpha \not\in C'] \leq \text{occ}_F(u_j) \prod_{i=1}^{\ell} (1 - p(u_i)) .
\]

Since \(p(u) \geq \sqrt[k]{\text{occ}_F(u) / \text{occ}_F(F)} \) for all literals \(u \) in a good clause, it follows that \(\frac{1}{128ke(F)} \leq p(u)^k \prod_{i=1}^{\ell} (1 - p(u_i)) \), for every \(1 \leq \ell \leq k \).

Let \((q_1, \ldots, q_k) \in [\frac{1}{2}, 1]^k \) be any sequence satisfying the \(k \) inequalities \(\frac{1}{128ke(F)} \leq q^k_\ell \prod_{i=1}^\ell (1 - q_i) \) for all \(1 \leq \ell \leq k \), for example, the \(p(u_i) \) are such a sequence. We want to make the \(q_\ell \) as small as possible: If (i) \(q_\ell > \frac{1}{2} \) and (ii) \(\frac{1}{128ke(F)} < q^k_\ell \prod_{i=1}^\ell (1 - q_i) \), we can decrease \(q_\ell \) until one of (i) and (ii) becomes an equality. The other \(k - 1 \) inequalities stay satisfied. In the end we get a sequence \(q_1, \ldots, q_k \) satisfying \(\frac{1}{128ke(F)} = q^k_\ell \prod_{i=1}^\ell (1 - q_i) \) whenever \(q_\ell > \frac{1}{2} \). This sequence is non-decreasing: If \(q_\ell > q_{\ell+1} \), then \(q_\ell > \frac{1}{2} \), and \(\frac{1}{128ke(F)} \leq q^k_{\ell+1} \prod_{i=1}^{\ell+1} (1 - q_i) < q^k_\ell \prod_{i=1}^\ell (1 - q_i) = \frac{1}{128ke(F)} \), a contradiction.

If all \(q_i \) are \(\frac{1}{2} \), then the \(k \)th inequality yields \(128ke(F) \geq 4^k \), and we are done. Otherwise, there is some \(\ell^* = \min\{\ell \mid q_\ell > \frac{1}{2}\} \). For \(\ell^* \leq j < k \) both \(q_j \) and \(q_{j+1} \) are greater than \(\frac{1}{2} \), thus \(q^k_{j+1} \prod_{i=1}^{j+1} (1 - q_i) = q^k_{j} \prod_{i=1}^j (1 - q_i) \), and \(q_j = q_{j+1} \sqrt{1 - q_j} \). We define

\[
f_k(t) := t \sqrt{1 - t} ,
\]

thus \(q_j = f_k(q_{j+1}) \). By \(f^j_k(t) \) we denote \(f_k(f_k(\ldots(f_k(t))\ldots)) \), the \(j \)-fold iterated application of \(f_k(t) \), with \(f^0_k(t) = t \). We obtain \(q_j = f^j_k(q_k) \geq \frac{1}{2} \) for \(\ell^* \leq j \leq k \). By Part (v) of Proposition 15, \(f^j_{k-1}(q_k) \leq \frac{1}{2} \), thus \(\ell^* \geq 2 \). Therefore \(q_1 = \cdots = q_{\ell^*-1} = \frac{1}{2} \), and
We obtain
\[
e(F) = \sum_{i=1}^{\ell - 1} (1 - q_i) = 2^{-k} \leq \frac{1}{128k}.
\]

We want to give some hindsight why a sparsification procedure is necessary in both lower bound proofs in this paper. The probability distribution we define is not a uniform one, but biased towards setting \(\ell^* \) towards \(\ell^* \leq S_k - 1 \), thus \(e(F) \geq \frac{2^{2k-S_k}}{128k} \).

Lemma 14. The sequence \(\frac{S_k}{k} \) converges to \(\lim_{k \to \infty} \frac{S_k}{k} = - \int_0^1 \frac{1}{x \ln(1-x)} dx < 0.572 \).

The proof of this lemma is technical and not related to satisfiability. We prove it in the appendix. We conclude that \(e(F) \geq \frac{2^{2k-S_k}}{128k} \in \Omega \left(\frac{1}{2.69^k} \right) \).

4 Conclusion

We want to give some hindsight why a sparsification procedure is necessary in both lower bound proofs in this paper. The probability distribution we define is not a uniform one, but biased towards setting \(x \) to \(\text{true} \) if \(\text{occ}_F(x) \gg \text{occ}_F(\bar{x}) \). Let \(C \) be a clause containing \(\bar{x} \). It conflicts with all clauses containing \(\bar{x} \). It could happen that in all those clauses, \(x \) is the only literal with \(p(x) > \frac{1}{2} \). In this case, each such clause is unsatisfied with probability not much smaller than \(2^{-k} \), and the sum (2) is greater than \(\frac{1}{4} \). By removing \(x \) from these clauses, we reduce the number of clauses conflicting with \(C \), making the sum (2) much smaller. However, for other clauses \(C' \), this sum might increase by removing \(x \). We think that one will not be able to prove a tight lower bound using just a smarter sparsification process. We state some open problems and questions.

Question: Does \(\lim_{k \to \infty} \sqrt{\text{gc}(k)} \) exist?

If it does, it lies between 2.69 and 3.51. One way to prove existence would be to define “product” taking a \(k \)-CNF formula \(F \) and an \(\ell \)-CNF formula \(G \) to a \((k + \ell) \)-CNF formula \(F \circ G \) that is unsatisfiable if \(F \) and \(G \) are, and \(e(F \circ G) = e(F) e(G) \). With 2 and 4 ruled out, there seems to be no obvious guess for the value of the limit. What about \(\sqrt{8} \approx 2.828 \), the geometric mean of 2 and 4?

Question: Is there an \(a > 2 \) such that every unsatisfiable \(k \)-CNF formula contains a variable \(x \) with \(\text{occ}_F(x) \cdot \text{occ}_F(\bar{x}) \geq a^k \)?

Where do our methods fail to prove this? The part in the proof of the lower bound of Theorem 1 that fails is Lemma 12. On the other hand, Lemma 12 proves more than we need for Theorem 1: It proves that \(\Pr[\alpha \models D] \), summed up over all bad clauses gives at most \(\frac{1}{8} \). We only need that the bad clauses conflicting with a specific clause sum up to at most \(\frac{1}{8} \). Still, we do not see how to apply or extend our methods to prove that such an \(a > 2 \) exists.

We discussed lower and upper bounds on the minimum of several parameters of unsatisfiable \(k \)-CNF formulas. The following table lists them where bounds labeled with an asterisk are from this paper and unlabeled bounds are not attributed to any specific paper.
parameter	notation	lower bound	upper bound
occurrences of a literal	$occ(x)$	1	1
occurrences of a variable	$f(k)$	$\frac{2^k}{ek}$ [7]	$\frac{2^{k+3}}{k}$ [5]
local conflict number	$lc(k)$	$\frac{2^k}{ek}$ [7]	$2^k - 1$
conflicts caused by a variable	$occ(x)occ(\bar{x})$	$\frac{2^k}{ek}$ [7]	$O(3.01^k)^*$
global conflict number	$gc(k)$	$\Omega(2.69^k)^*$	$O(3.51^k)^*$

References

[1] N. Alon and J. Spencer. *The probabilistic method*. Interscience Series in Discrete Mathematics and Optimization. John Wiley, second edition, 2000.

[2] P. Erdős. On a combinatorial problem. *Nordisk Mat. Tidskr.*, 11:5–10, 40, 1963.

[3] P. Erdős. On a combinatorial problem. II. *Acta Math. Acad. Sci. Hungar*, 15:445–447, 1964.

[4] P. Erdős and J. Spencer. Lopsided Lovász Local Lemma and Latin transversals. *Discrete Appl. Math.*, 30(2-3):151–154, 1991. ARIDAM III (New Brunswick, NJ, 1988).

[5] H. Gebauer. Disproof of the neighborhood conjecture and its implications to SAT, 2009. submitted.

[6] S. Hoory and S. Szeider. A note on unsatisfiable k-CNF formulas with few occurrences per variable. *SIAM Journal on Discrete Mathematics*, 20(2):523–528, 2006.

[7] J. Kratochvíl, P. Savický, and Z. Tuza. One more occurrence of variables makes satisfiability jump from trivial to NP-complete. *SIAM Journal of Computing*, 22(1):203–210, 1993.

[8] L. Lu and L. Székely. Using Lovász Local Lemma in the space of random injections. *Electron. J. Combin.*, 14(1):Research Paper 63, 13 pp. (electronic), 2007.

[9] P. Savický and J. Sgall. DNF tautologies with a limited number of occurrences of every variable. *Theoret. Comput. Sci.*, 238(1–2):495–498, 2000.

[10] D. Scheder and P. Zumstein. How many conflicts does it need to be unsatisfiable? In *Eleventh International Conference on Theory and Applications of Satisfiability Testing (SAT)*, Lecture Notes in Computer Science, Vol. 4996, pages 246–256, 2008.

[11] C. A. Tovey. A simplified NP-complete satisfiability problem. *Discrete Appl. Math.*, 8(1):85–89, 1984.
A Proof of Lemma 14

Proposition 15. Let $k \in \mathbb{N}$ and $f_k : [0, 1] \to [0, 1]$ with $f_k(t) = t \sqrt[k]{1-t}$. For $t \in [0, 1]$, the following statements hold.

(i) $f_k(t)$ attains its unique maximum at $t = t_k^* := \frac{k}{k+1}$.
(ii) $f_k(t) \leq t$, and $f_k(t) = t$ if and only if $t = 0$.
(iii) For $\ell \geq 1$, $f_k^{(\ell)}(t) \leq f_k^{(\ell)}(\frac{k}{k+1})$.
(iv) For $\ell \geq 0$ and $t \in [0, 1]$, $(1-t)^{\ell/k} t \leq f_k^{(\ell)}(t) \leq (1 - f_k^{(\ell)}(t))^{\ell/k} t$.
(v) For $k \geq 2$ and any $t \in [0, 1]$, $f_k^{(k-1)}(t) \leq \frac{1}{2}$.

Proof. (i) follows from elementary calculus. (ii) holds since $\sqrt[k]{1-t}$ is less than 1 for all $t > 0$. For $\ell = 1$, (iii) follows from (i), and for greater ℓ, it follows from (ii) and induction on ℓ. (iv) holds because each of the ℓ applications of f_k multiplies its argument with a factor that is at least $\sqrt[k]{1-t}$ and at most $\sqrt[k]{1-f_k^{(\ell)}(t)}$. Suppose (v) does not hold. Then by (iii) we get $f_k^{(k-1)}(\frac{k}{k+1}) \geq f_k^{(k-1)}(t) > \frac{1}{2}$, and by (iv), we have

$$\frac{1}{2} < f_k^{(k-1)}(\frac{k}{k+1}) \leq (\frac{1}{2})^{\frac{k-1}{k}} \frac{k}{k+1}.$$

An elementary calculation shows that this does not hold for any $k \geq 1$. \hfill \Box

To prove Lemma 14, we compute $\lim_{k \to \infty} \frac{S_k}{k}$ (and show that the limit exists). Recall the definition

$$S_k = \min\{\ell \in \mathbb{N}_0 \mid f_k^{(\ell)}(t) \leq \frac{1}{2} \forall t \in [0, 1]\},$$

where $f_k(t) = t \sqrt[k]{1-t}$. By Part (iii) of Proposition 15, $S_k = \min\{\ell \mid f_k^{(\ell)}(t_k^*) \leq \frac{1}{2}\}$, for $t_k^* := \frac{k}{k+1}$. We generalize the definition of S_k by defining for $t \in (0, 1]$,

$$S_k(t) := \min\{\ell \mid f_k^{(\ell)}(t_k^*) \leq t\}.$$

Further, we set $s_k(t) := \frac{S_k(t)}{k}$. Let $0 < t_2 < t_1 < t_k^*$. We want to estimate $s_k(t_2) - s_k(t_1)$. This should be small if $|t_1 - t_2|$ is small. For brevity, we write $a := S_k(t_1)$, $b := S_k(t_2)$. Clearly $a \leq b$. We calculate

$$t_2 \geq f_k^{(b)}(t_k^*) = f_k^{(b-a+1)}(f_k^{(a-1)}(t_k^*)) \geq f_k^{(b-a+1)}(t_1) \geq (1 - t_1)^{(b-a+1)/k} t_1,$$

$$t_2 < f_k^{(b-1)}(t_k^*) = f_k^{(b-a-1)}(f_k^{(a)}(t_k^*)) \leq f_k^{(b-a-1)}(t_1) \leq (1 - t_2)^{(b-a-1)/k} t_1.$$

Where we used part (iv) of Proposition 15. In fact, these inequalities also hold if $t_1 \geq t_k^*$, when $a = 0$:

$$t_2 \geq f_k^{(b)}(t_k^*) \geq (1 - t_k^*)^{b/k} t_1 \geq (1 - t_1)^{(b+1)/k} t_1,$$

$$t_2 < f_k^{(b-1)}(t_k^*) = (1 - t_2)^{(b-1)/k} t_1.$$
One checks that the inequalities even hold if \(t^* \leq t_2 < t_1 \leq 1 \). Note that \(\frac{b-a}{k} = s_k(t_2) - s_k(t_1) \). Solving for \(\frac{b-a}{k} \), the above inequalities yield

\[
\frac{\log t_2 - \log t_1}{\log(1 - t_1)} - \frac{1}{k} \leq s_k(t_2) - s_k(t_1) \leq \frac{\log t_2 - \log t_1}{\log(1 - t_2)} + \frac{1}{k},
\]

for all \(0 < t_2 < t_1 < 1 \). The right inequality also holds for \(0 < t_2 < t_1 \leq 1 \). Multiplying with \(-1\), we see that it also holds if \(t_2 > t_1 \). If \(t_2 = t_1 \), it is trivially true. Hence this inequality is true for all \(t_1, t_2 \in (0, 1) \).

Suppose \(s(t) = \lim_{k \to \infty} s_k(t) \) exists, for every fixed \(t \). Inequality (4) also holds in the limit. Writing \(t_1 = t \) and \(t_2 = t + h \) and dividing (4) by \(h \) gives

\[
\frac{\log(t + h) - \log t}{h \log(1 - t)} \leq \frac{s(t + h) - s(t)}{h} \leq \frac{\log(t + h) - \log t}{h \log(1 - t - h)},
\]

Letting \(h \) go to 0, we obtain \(s'(t) = \frac{1}{\log(1 - t)} \), thus \(s(t) = s(1) - \int_t^1 \frac{1}{x \log(1 - x)} dx \). Observing that \(\frac{1}{k} = s_k(\frac{1}{k}) \) and \(s_k(1) = 0 \) for all \(k \) proves the Lemma.

The above argument shows that if \(s_k(t) \) converges pointwise, then it converges to a continuous function \(s(t) \) on \((0, 1)\). We have to show that \(\lim_{k \to \infty} s_k(t) \) does in fact exist. First plug in \(t_1 = 1 \) into the right inequality of (4) to observe that for each fixed \(t_2 \), the sequence \((s_k(t_2))_{k \in \mathbb{N}} \) is bounded from above. Clearly it is bounded from below by 0. Hence there exist \(\overline{s}(t) := \limsup s_k(t) \) and similarly \(\underline{s}(t) := \liminf s_k(t) \). We write shorthand \(L(t_1, t_2) := \frac{\log t_2 - \log t_1}{\log(1 - t_1)} \) and similarly \(U(t_1, t_2) := \frac{\log t_2 - \log t_1}{\log(1 - t_2)} \). Now (4) reads as

\[
L(t_1, t_2) - \frac{1}{k} \leq s_k(t_2) - s_k(t_1) \leq U(t_1, t_2) + \frac{1}{k}. \tag{5}
\]

We claim that

\[
L(t_1, t_2) \leq \overline{s}(t_2) - \overline{s}(t_1) \leq U(t_1, t_2), \tag{6}
\]

For sequences \((a_k)_{k \in \mathbb{N}}, (b_k)_{k \in \mathbb{N}} \), \(\limsup a_k - \limsup b_k = \limsup(a_k - b_k) \) does not hold in general, hence the claim is now completely trivial. We will prove that \(\overline{s}(t_2) - \overline{s}(t_1) \leq U(t_1, t_2) \). This will prove one claimed inequality. The other three inequalities can be proven similarly. Fix some small \(\varepsilon > 0 \). For all sufficiently large \(k \), \(\frac{1}{k} \leq \varepsilon \). We have \(s_k(t_2) \geq \overline{s}(t_2) - \varepsilon \) for infinitely many \(k \), thus \(s_k(t_1) \geq s_k(t_2) - U(t_1, t_2) - \frac{1}{k} \geq \overline{s}(t_2) - U(t_1, t_2) - 2\varepsilon \) for infinitely many \(k \). Therefore \(\overline{s}(t_1) \geq s(t_2) - U(t_1, t_2) - 2\varepsilon \). By making \(\varepsilon \) arbitrarily small, the claimed inequality follows.

We can now apply our non-rigorous argument from above, this time rigorously. Write \(t = t_1, t_2 = t + h \), and divide (5) and (6) by \(h \), send \(h \) to 0, and we obtain \(\overline{s}'(t) = \underline{s}'(t) = \frac{1}{t \log(1 - t)} \). Since \(\overline{s}(1) = \underline{s}(1) = 0 \), we obtain

\[
\overline{s}(t) = \underline{s}(t) = \int_t^1 \frac{1}{x \log(1 - x)} dx.
\]