Surface water overlay groundwater at the groundwater/surface water interface (GSI). Water and chemicals are continually exchanged via GSI. Surface water recharges the underlying aquifer and undergo significant changes in chemical composition before it discharges back into the stream or at the surface. Thus, a sustainable management of water resource needs an insight into the water chemistry and seasonal variations. The hydrochemical dataset representing a total of 37 groundwater samples and 13 surface water samples has been collected from Kattumannarkoil taluk, India to identify the factors governing water chemistry of the region. Hence, the samples were collected during two different seasons, summer (April 2015) and monsoon (September 2015), to broadly cover seasonal variation. The collected samples were analyzed for physical and chemical parameters. The physical parameters measured in the field are pH, electrical conductivity (EC), total dissolved solids (TDS). The chemical parameters analyzed in the laboratory are calcium (Ca$^{2+}$), magnesium (Mg$^{2+}$), sodium (Na$^+$), potassium (K$^+$), chloride (Cl$^-$), bicarbonate (HCO$_3^-$), nitrate (NO$_3^-$), phosphate (PO$_4^{3-}$), sulfate (SO$_4^{2-}$) and silica (H$_4$SiO$_4$). Furthermore, the results were processed using AquaChem software, Geographical information system (GIS), multivariate statistical techniques and a computer program WATCLAST written in C++. This hydrochemical dataset ascertain the utility purpose of water. The dataset can serve as a guide for hydrogeochemistry.
of other predominantly agricultural area that share similar geological characteristics. The raw data of this research work is hosted in the mendeley repository [1]
© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject	Hydrogeology
Specific subject area	Hydrogeochemistry
Type of data	Tables, Figures
How data were acquired	The latitude and longitude of sampling locations were located by Global Positioning System (GPS, GARMAN 76CSx). Titration methods, flame photometry and Ultra-violet visible spectrometry were used to identify the major ions; Na⁺, Ca²⁺, Mg²⁺, Cl⁻, K⁺, SO₄²⁻, PO₄, Si(OH)₄ and NO₃⁻. Statistical analyses such as correlation coefficient, factor analysis and factor scores were applied for understanding the dataset attained in the study area. The results were further processed through geographic information system (GIS), Statistical Package of Social Studies (SPSS) version 15.0 and AquaChem software’s. To find out hydrochemical facies by the use of, e.g., the Piper plot or Gibbs diagram to unravel the leading process overriding the groundwater chemistry AquaChem 4.0 software were applied. The physico-chemical results were further processed via WATCLAST.
Data format	Raw Analyzed
Parameters for data collection	All samples were picked up and stored in clean polyethylene bottles as per sampling procedures. Samples were filtered with 0.45μm filter paper and kept at 4°C in plastic bottles (1000 ml) and conserved for later chemical analyses.
Description of data collection	The digital apparatuses were utilized to record pH, total dissolved solids and conductivity immediately after sampling onsite. The concentrations of ions such as Ca²⁺, Mg²⁺, Na⁺ and K⁺ were determined by Titrimetry and Flame photometry respectively. Concentrations of major anions (Cl⁻, HCO₃⁻, SO₄²⁻, PO₄ and H₂SiO₄⁻) were determined by Titrimetry and UV/visible spectrophotometer respectively. Sodium absorption ratio (SAR), sodium percentage (Na%), residual sodium carbonate (RSC) were used to evaluate the suitability of water for irrigation purposes.
Data source location	Annamalai University Annamalainagar,Chidambaram, Tamilnadu India
Latitude and longitude (and GPS coordinates) for collected samples/data:	The study area is located within southeast of India between 11°30’ to 11°10’ North latitude and 79°20’ to 79°40’ East longitude(Table 1)
Data accessibility	The data is attached with this submission and can also be downloaded via https://data.mendeley.com/datasets/td9z466xjv/1
Related research article	Remy Rumuri & Manivannan R. (2020): Identifying major factors controlling groundwater chemistry in predominantly agricultural area of Kattumannarkoil taluk, India, using the hydrochemical processes and GIS, Geology, Ecology, and Landscapes.https://doi.org/10.1080/24749508.2020.1726560

Value of the data

• The dataset are useful in conducting hydrogeochemical studies of groundwater and surface water. In this case, we have investigated major factors controlling groundwater chemistry in largely agricultural area.
• The dataset could be used for the detection and estimation of trends in water quality.
• The dataset would used by agro-industrial practitioner as guideline to define suitable management practice and to sustain existing soil productivity in irrigated land with high crop yield.

1. Data description

The dataset make up: (a) water chemistry, (b) water classification, (c) geochemical plots and (d) factor analysis data. The datasets (a) and (b) are used to assess water suitability for drinking and irrigation purpose, whereas datasets (c) and (d) are used to determine potential factors controlling groundwater chemistry [2].

Fig. 1 shows the sampling location area, which is located in the eastern part of the Southern Region, India between north latitudes 11°30’ and 11°10’ and east longitudes 79°20’ and 79°40’. The study covers a geographical area of 449.61 km². Fig. 2 illustrates the evolution of groundwater and surface water chemistry.

The stations and their location are listed in Table 1. The full details of the data can be accessed through [1]. The maximum, minimum and average values of physic-chemical compositions of groundwater and surface water for summer and monsoon season are given in Table 2. Table 3 presents the order of dominance of anions and cations during different seasons. The summary of the geochemical classification by WATCLAST computer program for summer and monsoon season are presented in Table 4. Lastly, the factor representations and total variability for groundwater and surface water during summer and monsoon presented Table 5.

2. Experimental design, materials, and methods

Hydrogeochemical investigations require appropriate analysis method and some techniques to establish the chemistry of water. Sampling sites were located taking several factors into considerations like lithology, structure, geomorphology, river influence, industry, urban, agricultural
S. No	Location Name	Longitude	Latitude	Water Type	S.No	Name	Longitude	Latitude	Water Type
1	Paripooranatham	79°32'15.2"N	11°24.293"E	Ground water	26	Venaiyur	79°37'18.1"N	11°17.476"E	Ground water
2	Kumarakudi	79°31'43.9"N	11°25.145"E	Ground water	27	Keezhaparuthikudi	79°38'60.7"N	11°18.183"E	Ground water
3	Kavalakudi	79°29'45.8"N	11°25.029"E	Ground water	28	Kumaratchi	79°37'85.8"N	11°18.656"E	Ground water
4	Kanoor	79°28'05.5"N	11°23.924"E	Ground water	29	Nanthimangalam	79°39'08.0"N	11°20.168"E	Ground water
5	Venkatapuram	79°26'19.5"N	11°24.163"E	Ground water	30	Athhipattu	79°40'09.2"N	11°19.22.2"E	Ground water
6	Mathakalimanikkan	79°28'09.5"N	11°21'44.6"E	Surface water	31	Vattathur	79°31'05.9"N	11°23.611"E	Ground water
7	Gunamankalamar lake	79°28'30.5"N	11°22'7.6"E	Surface water	32	Solatharam	79°30'36.4"N	11°22.084"E	Ground water
8	Kattumanarkudi South	79°33'24.9"N	11°16.251"E	Surface water	33	Pudaiyur	79°31'12.6"N	11°21.603"E	Ground water
9	Arantanki	79°30'73.7"N	11°18.588"E	Surface water	34	Mamangalam	79°28'90.4"N	11°19.889"E	Ground water
10	Eyyalore	79°31'03.1"N	11°11.238"E	Surface water	35	Arantanki West	79°30'10.8"N	11°18.828"E	Ground water
11	Ramapuram	79°26'29.8"N	11°20.780"E	Ground water	36	Arantanki East	79°30'10.8"N	11°18.828"E	Ground water
12	Karunakaranallure	79°30'67.7"N	11°17.633"E	Ground water	37	Thirunaraiyur	79°36'15.0"N	11°17.672"E	Ground water
13	Themmur	79°37'04.5"N	11°20.301"E	Ground water	38	Mathakalimanikann	79°28'09.5"N	11°21.44.6"E	Surface water
14	VadamurEast	79°35'66.8"N	11°20.388"E	Ground water	39	Gunamankalamar lake	79°28'30.5"N	11°22.78"E	Surface water
15	Vadamur	79°35'04.3"N	11°18.083"E	Ground water	40	Kattumanarkudi South	79°33'24.9"N	11°16.251"E	Surface water
16	Elleri	79°33'42.2"N	11°20.078"E	Ground water	41	Arantanki	79°30'73.7"N	11°18.588"E	Ground water
17	Rayanallure	79°32'69.9"N	11°21.056"E	Ground water	42	Eyyalore	79°31'03.1"N	11°11.238"E	Surface water
18	Lalpetai	79°33'49.8"N	11°17.772"E	Ground water	43	Mutam	79°34'69.3"N	11°13.102"E	Surface water
19	Nattarmangalam	79°31'98.9"N	11°16.534"E	Ground water	44	Omampuliyur	79°33'39.6"N	11°12.25.2"E	Surface water
20	Kandamangalam	79°31'64.2"N	11°15.167"E	Ground water	45	Sethaiyehope	79°32'2.4"N	11°25.48"E	Surface water
21	Kattumanarkudi	79°33'24.9"N	11°16.251"E	Ground water	46	Kudalaiyattur	79°29'34.0"N	11°21.36.7"E	Surface water
22	Eyyalur	79°31'18.9"N	11°11.747"E	Ground water	47	Muttukrishnapuram	79°20'16.8"N	11°27.36"E	Surface water
23	Omanpuliyur	79°33'23.7"N	11°12.708"E	Ground water	48	Kundakumar	79°32'69.9"N	11°21.056"E	Surface water
24	Moovur	79°33'44.1"N	11°13.676"E	Ground water	49	PalayamKottai	79°28'28.4"N	11°21.33.9"E	Surface water
25	Puliyankudi	79°36.485°N	11°16.120°E	Ground water	50	Mathakalimanikann	79°28'35.5°N	11°40.53.2°E	Surface water
Table 2
Maximum, Minimum and average values in mg/l\(^{-1}\) for summer and monsoon season except pH, EC (\(^*\)=Groundwater,\(^b\)=Surface water).

Physico-chemical parameters	Summer		Average	BIS 2012	WHO 2011	Monsoon		Average	BIS 2012	WHO 2011
pH	7.0\(^b\)	8.4	7.72	6.5–8.5	6.5–8.5	7.8	8.75	8.22	6.5–8.5	6.5–8.5
EC	366.0\(^a\)	4240	1271.89	–	1500	352	4300	1200.85	–	1500
TDS	175\(^b\)	1204	580.46	–	274	474.33				
Ca	32\(^a\)	248	79.22	75	14	32	160	66.03	75	14
Mg	2.4\(^b\)	93	35.81	30	9.6	0	91	28.96	30	9.6
Na	10.3\(^b\)	189	72.81	200	11	32	556	167.33	200	11
K	0.6\(^b\)	74	17.94	–	0.2	3	78	25.46	–	0.2
Cl	53.2\(^a\)	1058.5	293.36	200	250	88.63	1276.2	292.21	200	250
HCO3	73.2\(^b\)	301.3	171.8			70.9	248.15	147.71		
NO3	34.0\(^b\)	125.2	85.9	45	45	40.91	113.95	61.46	45	45
PO4	0.03\(^b\)	0.7	0.13	–	–	–0.17	1.84	0.02	–	–
SO4	0.12\(^b\)	3.9	0.81	200	250	0.19	9.03	1.3	200	250
H4SiO4	6.0\(^b\)	158	100.38	–	–	40	250	140.95	–	–
	18.0\(^b\)	80	40.46			20	40	26.67		

BIS, Bureau of Indian Standard; WHO, World Health Organization.

Table 3
The order of dominance of anions and cations in different seasons.

Seasons	Water types	Groundwater	Surface water	
	Summer	Monsoon	Summer	Monsoon
Anions	Cl\(^-\) > HCO3\(^-\) > H2SiO4\(^-\) > NO3\(^-\)	HCO3\(^-\) > Cl\(^-\) > HCO3\(^-\) > H2SiO4\(^-\)	NO3\(^-\) > Cl\(^-\) > HCO3\(^-\) > Cl\(^-\) > H2SiO4\(^-\)	HCO3\(^-\) > NO3\(^-\) > Cl\(^-\) > H2SiO4\(^-\)
Cations	Ca\(^2+\) > Na\(^+\) > Mg\(^2+\) > K\(^+\)	Na\(^+\) > Ca\(^2+\) > Mg\(^2+\) > K\(^+\)	Na\(^+\) > Ca\(^2+\) > Mg\(^2+\) > K\(^+\)	Na\(^+\) > Ca\(^2+\) > Mg\(^2+\) > K\(^+\)

Fig. 2. Piper plot exhibiting the chemical facies of groundwater and surface water samples for summer and monsoon.
Table 4
Summary of geochemical classification by WATCLAST program for summer and monsoon season.

Category	Grade	SUMMER GW	SUMMER SW	MONSOON GW	MONSOON SW	Category	Grade	SUMMER GW	SUMMER SW	MONSOON GW	MONSOON SW	Category	Grade	SUMMER GW	SUMMER SW	MONSOON GW	MONSOON SW
Na% Wilcox (1955)	Excellent 0-20 7 2 1 0 USGS Hardness Soft <75 0 0 0 3	TDS Classification (USSL, 1954) <200 2 0 0 3															
	Good 20-40 17 4 0 3 Slightly Hard 75-150 3 2 1 9	200–500 26 6 9 9															
	Permissible 40-60 13 5 24 1 Moderately Hard 150–300 15 9 24 1	500–1500 9 7 25 1															
	Doubtful 60-80 0 2 11 9 Very Hard >300 19 2 12 0	1500–3000 0 0 3 0															
	Unsuitable >80 0 0 1 0 IBE Schoeller (1965)																
	Na% Eaton (1950) Safe <60 37 11 25 4 (Na+K)rock>Ca/Mg g.w.																
	Unsuitable >60 0 2 12 9 Schoeller Classification (1967)																
	S.A.R. Richards (1954) Excellent 0-10 37 13 35 13 Type I 37 13 37 13	Na Facies 0 0 0 0															
	Good 10-18 0 0 2 0 Type II 0 0 0 0	Anion Facies															
	Fair 18-26 0 0 0 0 Type III 0 0 0 0	HCO3 Facies 0 0 0 0															
	Poor >26 0 0 0 0 Type IV 0 0 0 0	HCO3-CI-SO4 0 0 0 0															
	R.S.C. Richards(1954) Good <1.25 37 13 13 13 Safe <1 35 13 15 8	Cl- Facies 8 4 1 33															
	Medium 1.25–2.5 0 0 2 0 Chloride Classification (Stuyfzand, 1989)	Permanent Hardness (NCH)															
	Bad >2.5 0 0 3 0 Extremely fresh																
	EC Wilcox (1955) Excellent >250 0 1 0 3 Very fresh 0 0 0 0	A2 30 10 3 1															
	Good 250–750 8 11 11 10 Fresh 7 3 11 7	A3 5 3 11 3															
	Permissible 750–2250 25 1 23 0 Fresh Brackish 19 9 17 3	Temporary Hardness (CH)															
	Doubtful 2250–5000 4 0 3 0 Brackish-salt 1 0 1 0																
	Unsuitable >5000 0 0 0 0 Salt 0 0 0 0	B3 0 0 7 5															
activity and availability of wells. The hydrogeochemical characteristics of groundwater and surface water have been studied in predominantly agricultural area of Kattumannarkoil taluk, India. Sampling of groundwater and surface water has been collected during two different seasons summer (April 2015) and monsoon (September 2015) to broadly cover seasonal variation.

The data collection process involved the use of Global Positioning System (GPS, GARMAN 76CSx) to get the latitude and longitude of sampling locations. This location data along with geological survey of India topographical maps Nos.58 M/7, M/8, 11 and M/12 were further subjected to ArcGIS® 10.1 software for generating the sampling location map. The water samples were collected from 50 different locations from bore wells (37) and surface water (13) during summer and monsoon season. Each sample was collected in 500 ml acid-washed high density linear polyethylene bottle and clearly labeled. Before collecting groundwater samples, pumping water for adequate time was assured to get rid of water in bore wells storage. To remove particulate matter from samples, filtering was performed using a vacuum filtration kit and a 0.45 μm cellulose acetate filter membrane. Lastly, the water samples were sealed and sent to the university laboratory for analysis.

The major cations and anions were analyzed using standard procedures [3]. The titration methods, flame photometry and Ultra-violet visible spectrometry were used to define the major ions; Na⁺, Ca²⁺, Mg²⁺, Cl⁻, K⁺, SO₄²⁻, PO₄, Si(OH)₄ and NO₃⁻. The range of flame photometry is 1–100 ppm with an accuracy of 1 digit. And the range is 340–1000 nm with an accuracy of 2.5 nm. The physico-chemical parameters of the analytical results of groundwater and surface water were compared with standard guideline values recommended by the WHO(World Health Organization) [4] and BIS(Bureau of Indian Standard) [5]. The reliability of the results was determined by the ionic balance of groundwater and surface water samples and acceptable range of 5–10% of percentage error was observed [6].

The hydrogeochemical data were analyzed using multivariate statistical technique including principal component analysis (PCA) and factor analysis (FA). These are effective multivariate techniques of manipulating, interpreting data and identifying geochemical processes that control groundwater chemistry. Principal component analysis was used as a numerical method of discovering variables that are more important than others for representing parameter variation and identifying hydrogeochemical processes. The entire dataset was first standardized and arranged in correlation matrix with normal distribution in all variables. The eigen values calculated quan-

Groundwater	SUMMER	MONSOON		
Factors	Loadings	TDV(%)	Loadings	TDV(%)
Factor I	Ca, Mg, Na, K, Cl, PO₄, SO₄, EC and TDS	41.96	Na, Cl, SO₄, EC and TDS	37.99
Factor II	Na, HCO₃, NO₃, SO₄	17.54	Ca and Mg, pH	14.08
Factor III	pH	10.44	HCO₃, and pH	12.62
Factor IV	H₂SiO₄	10.41	K and PO₄	10.32
Factor V	NO₃	8.3		

Surface water	SUMMER	MONSOON		
Factors	Loadings	TDV(%)	Loadings	TDV(%)
Factor I	Na⁺, K⁺, Cl⁻, HCO₃⁻, pH, EC and TDS	36.2	Ca²⁺, Mg²⁺, Na⁺, Cl⁻, HCO₃⁻, SO₄²⁻, H₂SiO₄, pH and TDS	40.71
Factor II	Ca²⁺⁺ Mg²⁺⁺, SO₄²⁻ and pH	23.41	Mg²⁺, Na⁺, NO₃⁻, K⁺ and H₂SiO₄	34.62
Factor III	K⁺, NO₃⁻, PO₄³⁻ and H₂SiO₄	22.56	PO₄³⁻	13.51

Table 5: Factor Representations and total data variability for Groundwater and Surface water during summer and monsoon.
tify the factor contribution to the total variance. When eigen value >1 the factor contribution is significant. The factor loadings were calculated by a varimax rotation technique in such a way that they are closer to +1, 0,−1, representing positive contribution, no contribution and negative contribution [7]. The voluminous raw hydrogeochemical data analyzed is often processed manually for interpretation. To simplify the interpretation of the data, a computer program ‘WATCLAST’ written in C++ [8] was used for calculation and graphical representations. Additionally, AQUACHEM software was used to plot Trilinear diagram (Piper) [9] for identification of major factor controlling the groundwater chemistry.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

This work would not have been possible without the support from the Professor and Director i/c centre for International Relations, Dr. T. Ramkumar. The authors extend their appreciation to Dr. S. Chidambaram, Research Scientist, Water Research Center, Kuwait Institute for Scientific Research and Professor (Lien Service) in the Department of Earth Sciences, Annamalai University, India. Rumuri is deeply indebted to his research supervisor, Dr. R. Manivannan for his tremendous support and assistance throughout this research process. Rumuri would like also to express his endless thanks to his beloved family who financially supported the whole research work.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106058.

References

[1] R. RUMURI, R. Manivannan, Hydrogeochemistry of groundwater and surface water in predominantly agricultural area, Kattumannarkoil taluk, India, Mendeley 1 (2020) Mar; doi:10.17632/9D9Z466XJv.1.
[2] R. RUMURI, R. Manivannan, Identifying major factors controlling groundwater chemistry in predominantly agricultural area of Kattumannarkoil taluk, India, using the hydrochemical processes and GIS, Geol. Ecol. Landsc. (2020), doi:10.1080/24749508.2020.1726560.
[3] APHA, Standard methods for the examination of water and wastewater, 19th ed. WASHINGTON DC, 1998.
[4] H.G. Gorchev, G. Ozolins, WHO guidelines for drinking-water quality, WHO Chron. 38 (3) (2011) 104–108, doi:10.1016/S1462-0758(00)00006-6.
[5] BIS, Indian Standards Drinking Water Specifications IS 10500:2012, Bur. Indian Stand. Indian Stand. Drink. Water Specif. 2 (2012) 11 May.
[6] R. Freeze, Allan Cherry, A.C.N.G.F. John, Groundwater, Prentice-Hall, Englewood Cliffs, N.J, 1979.
[7] F. Liu, et al., The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China, Sci. Total Environ. 538 (Dec. 2015) 327–340, doi:10.1016/j.scitotenv.2015.08.057.
[8] S. Chidambaram, A.L. Ramanathan, K. Srinivasamoorthy, and P. Anandhan, “WATCLAST—A computer program for hydrogeochemical studies. recent trends in Hydrogeochemistry (case studies from surface and subsurface waters of selected countries).” 02-Oct-2003.
[9] A.M. Piper, A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), pp.914–928., Eos, Trans. Am. Geophys. Union 25 (6) (1944) 914–928, doi:10.1029/TR025i006p00914.