Factors influencing production of *Salmonella* enterotoxin (Stn)

Arfan Ali, Ratul Sarmah, Habibar Rahman and Girindra Kumar Saikia

DOI: https://doi.org/10.22271/chemi.2020.v8.i2r.8925

Abstract

Salmonella enterotoxin (Stn) is an important food borne agent affecting public health. The study evaluated the influence of different physico-chemical factors on *in-vitro* production of Stn. The Stn production was tested by Staphylococcal Co-agglutination test. The highest secretion of Stn was found in cell free culture supernatant (CFCS) of tryptic soya broth culture followed by brain heart infusion broth and biken broth, while the least production was observed in nutrient broth. Growth with constant shaking (200 rpm) had positive influence on Stn production. Maximum Stn production was also recorded during an incubation temperature of 32 °C to 37 °C than 22 °C and 27 °C while minimum was at 42 °C. Peak production was at 18 to 24 hours incubation which sustained beyond 48 hours. The pH (6-8) influenced Stn production and decreased at pH beyond 9. Bacterial cells sonicates yielded more Stn than CFCS. Results showed that the physico-chemical factors influence the Stn production.

Keywords: *Salmonella*, enterotoxin, Stn, CFCS, cell sonicates

Introduction

Diarrhoeal diseases are the most common illnesses resulting from unsafe food, 550 million people falling ill each year, including 220 million children under the age of 5 years. *Salmonella* is 1 of the 4 key global causes of diarrhoeal diseases. While all serotypes can cause disease in humans, a few are host-specific and can reside in only one or a few animal species (WHO, 2018) [33]. Salmonellosis can be acquired through consumption of infected raw or undercooked eggs (Martelli and Davies, 2012) [20]. Despite significant advances in sanitation, provision of potable water and highly controlled food chain surveillance, transmission of *Salmonella* spp. continues to affect communities, preferentially children, worldwide (Flor et al. 2011) [7]. *Salmonella enterica* subsp. *enterica* remains a main cause of infection and disease in human and animals worldwide. Much of the public health and economic problem originated from diseases or infected Animals carriage (Demirbilek, 2018) [6]. The pathogenicity of Salmonella in induction of diarrhea is a complex phenomenon involving several pathogenic mechanisms including the production of enterotoxin (Ashkenazi et al. 1988; Khurana et al., 1992; Rahman et al., 1994; and Malik et al., 1995) [1, 15, 22, 19].

Various Salmonella serotypes including S. Typhimurium (Koupal and Deibel, 1975 [16], Baloda et al., 1985; Rahman et al., 1991b) [4, 23] and S. Virchow (Rahman et al., 1991c) [25] have been shown to produce enterotoxins. Although most of the Salmonella serovars were shown to produce enterotoxins (Stn), entero-toxicigenicity of *Salmonella* has been found to be difficult to detect by different assays since salmonellae produce a very low level of enterotoxin when cultured by conventional methods (Baloda et al., 1983b) [23]. Moreover, a major portion of Stn is retained as cell bound content, which is not released in the extracellular milieu (Kaura and Sharma, 1980 [12] and 1988) [13]. The *stn* gene is widely distributed among Salmonella irrespective of the serovars and sources of isolation. Since the *stn* gene is found in all the isolates it can be a viable target gene to explore the possibility and to direct detection of *Salmonella* from biological sources. (Murugkar et al., 2003) [21]. The *stn* gene could be amplified in all 102 strains of 87 serovars of *Salmonella* tested and no products were detected in 57 of non-*Salmonella* strains. (Srisawat and Panbangred, 2015) [30] and All of 37 Salmonella from two serovars, namely Enteritidis and Typhimurium produced amplicon for enterotoxin (*stn*) gene (Chaudhary et al. 2015) [5].
There are some *Salmonella* strains, which produce enterotoxins but do not release extracellularly and thus may escape tests and be declared to be non-enterotoxigenic if only extracellular occurrence of Stn is tested Rahman *et al.* (1991b) [23]. The present study was undertaken to study the effect of various factors on production of Stn in-vitro.

Materials and methods

Bacterial strains

Three enterotoxigenic strains of *Salmonella enterica* subsp. *Entericaserovars* S. Typhimurium DT096 (Stn* + *), S. Typhimurium DT 003 (Stn* + *), and S. Virchow PT 33 (Stn* + *) and a non-enterotoxigenic strain of *S. bongori* (Stn* - *) as negative control were used for the study. A strain of *Staphylococcus aureus* Cowan I was used for coagglutination (CoA) test used for the assay of Stn. All the bacterial strains were maintained on nutrient agar slants at 4°C before use.

The cell free culture supernatant (CFCS) of *S. Typhimurium* strain was prepared according to the procedure described by Singh *et al.* (1983) [27]. The CFCS was tested for the presence of Stn by rabbit ligated ileal loop (RLIL) test and CoA test.

The CFCS was subjected to partial purification of Stn by effect of shaking condition and another set in non-shaking condition.

Preparation of co-agglutination reagent

The CoA reagent was prepared following the method described by kronvall (1973) [17] for detection of polysaccharide of pneumococci and as modified by Rahman *et al.* (1991a) [24] for detection of Stn. Briefly, the bacterial strain *Staphylococcus aureus* Cowan type 1 was grown on brain heart infusion broth (BHI) at 37°C for 24 hours, centrifuged at 3000 x g for 20 minutes, washed with PBS (0.05 M phosphate buffer in 0.15 M saline solution, pH 7.2) and suspended in 0.5 per cent formalin (BDH) prepared in polyethylene glycol (PEG) 6000 (Hudson and Hay, 1991) [100]. The estimation of protein was done by Lowry’s method (Lowry *et al.* 1951) [10].

The titre of Stn was highest in CFCS obtained from TSB cultures in all the media, the uninoculated TSB medium and PBS used as control inocula caused no fluid accumulation in the ligated segments in RLIL test.

The titre of Stn was highest in CFCS obtained from TSB (1:128) for both the strains of *S. Typhimurium* and 1:64 for the strains of *S. Virchow*. All of the three enterotoxigenic strains gave a titre of 1:32 in the CFCS of BB, while in NB cultures, the titre of 1:16 was found with DT096 and 1:8 with DT003 and PT33.

The study revealed that some of the growth factors were essential for the production of enterotoxin since a considerably higher amount of Stn could be detected in the CFCS from the cultures grown in enriched media like TSB and BHI followed by BB than than the CFCS from NB cultures which is a simple medium. Rahman *et al.* (1991b) [23] reported similar findings of observing more amount of toxin production in enriched media like BHI, Casamino acid yeast extract (CYE) medium than that in NB. The findings were also in agreement with that of Sedlock *et al.* (1978) [26] and Sobeh and Vadehra (1984) [28].

A two fold increase of Stn production in shaking cultures was observed in CFCS of serovars of *S. Typhimurium* and four fold increase of CFCS of serovar Virchow than that of the cultures incubated at steady condition. These results were in conformity with that of the other workers (Sobeh and Vadehra 1983 [29]; Rahman *et al.* 1991b) [23]. Increased production of Stn under shaking condition might be the result of increased growth of the organism facilitated by maximal utilization of the nutrients from the media due to uniform suspension of the organisms and enhanced release of enterotoxin under such condition.

Effect of incubation temperature

The incubation temperature under which the Stn production was studied were 22°C, 27°C, 32°C, 37°C and 42°C in shaking condition.

Effect of period of incubation

Different sets of cultures of *Salmonella* were incubated for 3, 6, 9, 12, 15, 18, 21, 24, 36 and 48 hours and Stn production was measured by CoA test.

Effect of pH

The effect of different pH levels at 5, 6, 7, 8, 9, 10 and 11, on Stn production were studied. The required pH was adjusted with 1 N HCl or 1 N NaOH, as the case may be (Sobeh and Vadehra 1983) [29].

Detection of cell-bound and cell-free content of enterotoxin

For detection of cell-free enterotoxin, CFCS from 10 ml of the 20 ml culture of each of the *Salmonella* strains were prepared. For detection of cell –bound enterotoxin, another CFCS from 10 ml culture of the *Salmonella* strains were sonicated at 4°C for 30 minutes in a vibrionic sonicator at its maximum output. The sonicated cultures were centrifuged at 15,000 rpm for 1.5 hours at 4°C. Thus, the supernatant obtained was designated as cell sonicates (CS).

Results and discussion

The dilation indices (DI) with CFCS of the TSB cultures were 0.85, 0.82 and 0.75 and BHI were 0.75, 0.73 and 0.71 and for the *Salmonella* strains DT096, DT003 and PT33, respectively. The DI was higher in the CFCS of TSB cultures than that of the BHI cultures. The CFCS of *S. bongori* cultures in all the media, the uninoculated TSB medium and PBS used as control inocula caused no fluid accumulation in the ligated segments in RLIL test.

The titre of Stn was highest in CFCS obtained from TSB (1:128) for both the strains of *S. Typhimurium* and 1:64 for the strains of *S. Virchow*. All of the three enterotoxigenic strains gave a titre of 1:32 in the CFCS of BB, while in NB cultures, the titre of 1:16 was found with DT096 and 1:8 with DT003 and PT33.

To 1 ml of cell suspension, 0.1 ml of antiserum against Stn was added and incubated for 1 hour at room temperature and centrifuged at 2000 x g for 30 minutes at 4°C. Finally, a 5 per cent suspension of the sediment was made in PBS (pH 7.2) and stored at 4°C.

Effect of media

The four different media viz. brain heart infusion broth (BHI), tryptic soya broth (TSB), Biken broth (BB, Honda *et al.* 1981b) [8] and nutrient broth (NB) were used for production of CFCS.

Effect of shaking

All the strains were grown in TSB in two sets; one under shaking condition and another set in non-shaking condition.
The maximum enterotoxin production was observed at a temperature between 32°C and 37°C in all the cultures. However, the titre of Stn could be obtained at 27°C in case of S. Typhimurium strain DT096. Comparatively, a lesser amount of enterotoxin was produced at 22°C and 42°C, when the environment became hostile for the bacterial strains. A titre of only 1:8 was found at 42°C as compared to the maximum titre of 1:128 detected at 32°C and 37°C for all the strains of Salmonella. Similar findings were reported by Rahman et al. (1991b) [23] with S. Typhimurium (P/536 and P/603) strains.

Enterotoxin of S. Typhimurium strains could be detected as early as 3 hours of incubation, while in case of S. Vircrow, it could be detected only after 6 hours of incubation. Although Salmonella enterotoxin could be detected within 3 to 6 hours of incubation, a considerable amount of toxin was produced only after 15 hours of incubation and the optimum production was observed within 18 to 24 hours of incubation, as detected by CoA test. The findings corroborated the findings of Rahman et al. (1991b) [23] who reported that the detection of Salmonella enterotoxin was possible as early as 1.5 to 3 hours of incubation. In the present study, the peak titre of 1:128 was maintained on incubation beyond 24 hours up to 48 hours. Similar findings were earlier reported by Rahman et al. (1991b) [23]. The results showed that toxin production was related to the number of cells in the culture (Sobeh and Vadehra 1983) [29]. There was maximum toxin production during the log phase of growth. During the stationary and decline phases of bacterial growth, no increase in the level of toxin production was observed, as the bacteria ceased to grow and multiply during these phases.

It was observed that Stn production occurred at pH 6 to 8, although a considerable amount of toxin was produced at pH 5 and 9 also. At pH beyond 9, production of enterotoxin dropped abruptly and the least production was recorded at pH 11. Similar results were also reported by Sobeh and Vadehra (1983) [29] from their study with S. Enteritidis. However, they suggested that the optimum pH for production of Salmonella enterotoxin was 7.3. The effect of hydrogen ion concentration on growth and metabolism of the organism and the stability of proteinaceous material is a biological phenomenon, which is species and strain specific. Although no generalization could be made, it appeared that slight alkaline condition induced better production of enterotoxin by most of the organisms (Sobeh and Vadehra 1983) [29].

For studying the cell-free and cell-bound nature of Salmonella enterotoxin, cell sonicates (CS) were prepared by ultrasonic lysis of the bacterial cells. The titre of Stn was found to be increased by 2 to 4 folds in CS compared to CFCS titres as detected by CoA test. The results indicated that besides the extracellular enterotoxin that appeared in the CFCS, cell-bound enterotoxin was also present, which were not released in culture media. The results were in conformity with that of Rahman et al. (1991b) [23] who found an increased titre of enterotoxins in CS than that in CFCS preparations of the same strains. The cell-bound nature of the enterotoxin was also reported by Baloda et al. (1983a) [2], Kaura and Sharma (1983) [14], and Kaura and Sharma (1988) [13].

Acknowledgements
To Professor and Head, Department of Microbiology, Maulana Azad Medical College, New Delhi- 110002 has been duly acknowledged for providing with a strain of Staphylococcus aureus CowanI for CoA test.

References
1. Ashkenazi S, Cleary TG, Murray BE, Wanger A, Pickering K. Quantitative analysis and partial characterization of cytotoxin produced by Salmonella strains. Infection and immunity. 1988; 56:3089-3094.
2. Baloda SB, Faris A, Kronvaacell K, Wadstrom T. Cytotoxic enterotoxins and cytotoxic factors produced by Salmonella enteritidis and Salmonella Typhimurium. Toxicology. 1983a; 21:785-796.
3. Baloda SB, Faris A, Kronvaacell K, Wadstrom T. Rapid detection of a new cell associated Salmonella cytotonic enterotoxin in cell sonicates by Chinese hamster ovary cells. FEMS Microbiology Letters. 1983b; 20:201-206.
4. Baloda SB, Popoff MY, Wadstrom T. Enterotoxigenicity among Salmonella Typhimurium strains isolated in France. European Journal of clinical Microbiology. 1985; 4:129-131.
5. Chaudhary JH, Nayak JB, Brahmbhatt MN, Makwana PP. Virulence genes detection of Salmonella serovars isolated from pork and slaughterhouse environment in Ahmedabad, Gujarat. Veterinary World. 2015; 8(1):121-124.
6. Demirbilek SK. Salmonellosis in Animals. https://www.intechopen.com/books/salmonella-a-re-emerging-pathogen/salmonellosis-in-animals. 2017. DOI: 10.5772/intechopen.72192
7. Flor M, Sanchez-Vargas, Maisam A, Abu EH, Oscar G. Gomez-Duarte. Salmonella infections: An update on epidemiology, management and prevention, 2011. http://dx.doi.org/10.1016/j.tmaid.2011.11.001
8. Honda T, Glass RI, Kibriya AKMG. A simple assay to detect Escherichia coli producing heat-labile enterotoxin; results of a field study of the Biken test in Bangladesh. Lancet. Ii, 1981b, 609-610.
9. Honda T, Taga S, Takeda Y, Miwatani T. A modified Elek test for detection of a heat-labile enterotoxin of enterotoxigenic Escherichia coli. Journal of Clinical Microbiology. 1981a; 13:1-5.
10. Hudson Hay FC. Practical Immunology.3rd ed. Oxford Blackwell Scientific Publication, London, 1991, 465.
11. Jiwa SFH. Probing for enterotoxigenicity among the salmonellas: an evaluation of biological assays. Journal of Clinical Microbiology. 1981; 14:463-472.
12. Kaura YK, Sharma VK. A study of Salmonella enterotoxin. Indian Journal of Microbiology. 1980; 20:185-188.
13. Kaura YK, Sharma VK. Immunogenic and antigenic characteristics of Salmonella heat-labile enterotoxin. Zbl. Bakt. Hyg. 1988; A 268:386-404.
14. Kaura YK, Sharma VK. Production, partial purification and characterization of Salmonella heat-labile enterotoxin. Zbl. Bakt. Hyg. 1983; A256:87-102.
15. Khurana S, Ganguly NK, Panigrahi D, Khullar M, Walia BNS. S. Typhimurium enterotoxin mediated fluid secretion. Indian Journal of Medical Research. 1992; 95:17-20.
16. Koupal LR, Deibel RH. Assay, characterization and localization of an enterotoxin produced by Salmonella. Infection and Immunity. 1975; 11:14-22.
17. Kronvall G. A rapid slide agglutination method for typing pneumococci by means of specific antibody absorbed to protein A containing staphylococci. Journal of Medical Microbiology. 1973; 6:187-190.
18. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry. 1951; 193:265-275.
19. Malik P, Sharma VD, Chandra R. Cytotoxicogenicity in Salmonella serovars. Indian Journal of Experimental Biology. 1995; 33:177-181.
20. Martelli F, Davies RH. Salmonella serovars isolated from table eggs: an overview. Food research International. 2012; 45: 745-754.
http://doi.org/10.1016/j. foodres.2011.03.054
21. Murugkar HV, Rahman H, Dutta PK. Distribution of virulence genes in Salmonella serovars isolated from man and animals. Indian Journal of Medical Research. 2003; 117: 66-70.
22. Rahman H, Sharma VB, Sharma VD. Purification and characterization of enterotoxic moiety in cell free culture supernatant of Salmonella Typhimurium. Veterinary Microbiology. 1994; 39:245-254.
23. Rahman H, Singh VB, Sharma VD. Factors influencing production of cell bound and cell free Salmonella Typhimurium enterotoxin. Indian Journal of Microbiology. 1991b; 31:61-66.
24. Rahman H, Singh VB, Sharma VD, Harne SD. Coagglutination test for rapid detection of Salmonella enterotoxin. Zbl. Bakt. 1991a; 275:303-311.
25. Rahman H, Singh VB, Sharma VD, Harne SD. Comparative evaluation of some bioassay models and serological tests for the detection of Salmonella enterotoxin. Indian Journal of Medical Research. 1991c; 93:217-221.
26. Sedlock DM, Koupal LR, Deibel RH. Production and partial purification of Salmonella enterotoxin. Infection and Immunity. 1978; 20:375-380.
27. Singh IP, Sharma VD. Enterotoxigenic Salmonellae an Escherichia coli in cow calves. Indian Journal of Animal Science. 1983; 53:611-613.
28. Sobeh FY, Vadehra DV. Comparision of enterotoxin production Salmonella enteritidis in laboratory media, milk and meat. Indian Journal of Medical Research. 1984; 79:28-34.
29. Sobeh FY, Vadehra DV. Enterotoxin production by Salmonella enteritidis at various environmental conditions. Indian Journal of Medical Research. 1983; 78:170-176.
30. Sirsawat M, Panbangred W. Efficient and specific detection of Salmonella in food samples using a sm–based Loop mediated isothermal amplification method. Biomedical Research International. 2015, 1-7. http://dx.doi.org/10.1155/2015/356401
31. WHO. Salmonella (non-typhoidal), 2018. https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)