Width of the zero-field superconducting resistive transition in the vicinity of the localization threshold

V.F.Gantmakher and M.V.Golubkov
Institute of Solid State Physics RAS, Chernogolovka, 142432 Russia

Resistive superconducting zero-field transition in amorphous In-O films in states from the vicinity of the insulator-superconductor transition is analyzed in terms of two characteristic temperatures: the upper one, \(T_{c0}\), where the finite amplitude of the order parameter is established and the lower one, \(T_c\), where the phase ordering takes place. It follows from the magnetoresistance measurements that the resistance in between, \(T_c < T < T_{c0}\), cannot be ascribed to dissipation by thermally dissociated vortex pairs. So, it is not Kosterlitz-Thouless-Berezinskii transition that happens at \(T_c\)

The resistive superconducting \((s-\)transition in bulk conventional superconductors is very narrow. The reduced width \(t \equiv |T - T_{c0}| /T_{c0}\) of the region with strong fluctuations around transition temperature \(T_{c0}\) is \(t \propto (T_{c0}/\varepsilon_F)^4\) in clean limit and \(t \propto (T_{c0}/\varepsilon_F)(k_F l)^{-3}\) in dirty limit, with the product of Fermi wavevector by mean free path \(k_F l > 1\). It is different in 2D where free magnetic vortices serve as thermal fluctuations. Broad \(s\)-transitions in films were explained by existence of the temperature range where current dissipation is due to these fluctuations. Transition starts at temperature \(T_{c0}\), when Cooper pairs appear in the electronic spectrum. Below \(T_{c0}\) the resistance remains finite because of free vortices. They appear with probability \(\mu(T)\) while inbinding of vortex-antivortex pairs (magnetic loops). When external magnetic field is zero, the system of thermal fluctuations contains equal numbers \(N_+(T) = N_-(T) = N(T)\) of free vortices of opposite signs. Each vortex lives independently until it annihilates after collision with a vortex of opposite sign. Annihilation probability \(\tau^{-1}(T)\) together with probability \(\mu(T)\) determine through dynamic equilibrium the concentration \(N(T)\):

\[
N^2(T) = a(\mu \tau)^{-1}, \quad a = \text{const.} \tag{1}
\]

Assuming that there is no pinning, the resistance \(R\) is proportional to the total concentration \(2N\) of the vortices:

\[
R = 2\pi \xi_c^2 / (2N) R_n, \tag{2}
\]

with \(\xi_c\) being the effective radius of the vortex core and \(R_n\) being the resistance in the normal state. The finite resistance exists until Kosterlitz – Thouless – Berezinskii (KTB) transition inside the vortex system takes place at some temperature \(T_c\). Below \(T_c\), practically all vortices are bound into loops and \(N = 0\). As loops do not dissipate energy, the resistance vanishes at \(T_c\).

This scheme with two characteristic temperatures was very carefully checked several times with different materials. In particular, Hebard et al. in experiments with amorphous InO_x films with \(T_{c0} \approx 2.5\,\text{K}\) and \(T_c \approx 1.8\,\text{K}\) have confirmed the transport characteristics predicted by the theory.

In the frame of the BCS theory applied to 2D, both regions controlled by fluctuations, below and above \(T_{c0}\), are narrow differing only by a numerical factor:

\[
(T_{c0} - T_c)/T_{c0} \approx 3(T - T_{c0})/T_{c0} \approx 3G_1 < 1, \tag{3}
\]

with Ginzburg parameter \(G_1\) being usually small, \(G_1 < 1\). When the disorder is strong so that the mean free path \(l\) reaches its minimum value of \(k_F^{-1}\), the \(G_1\) increases and becomes of the order of unity, and the 2D KTB-transition temperature \(T_c\) is suppressed compared to \(T_{c0}\) so that the region \(T_c < T < T_{c0}\) widens. Vicinity of the superconductor-insulator \((s-i-)\)-transition is just such region. It is tempting to describe the main part of the broad resistive 2D-transition in terms of vortex-induced dissipation in this case too. However, experiments with granular Pb films demonstrated that the scheme was not universal: the width of the zero-field \(s\)-transition for the states from the vicinity of the \(s-i\)-transition was controlled not by thermally activated free vortices.

The width of the fluctuation region \(t\) above \(T_{c0}\) increases along with \(k_F l\) approaching unity: strong disorder makes the fluctuation region wide. This happens not only in 2D but in 3D as well so that specific properties of “short” vortices in 2D are here not of decisive importance. Recent approaches for 3D also distinguish between fluctuations of the amplitude of the order parameter and those which destroy long-range phase coherence. In such interpretation, mean amplitude becomes finite in the vicinity of \(T_{c0}\) and the long-range phase coherence establishes at \(T_c < T_{c0}\). This problem is not yet well understood. Recently Valles et al. concluded from tunneling measurements on ultrathin s-films near \(s-i\)-transition that fluctuations in the amplitude of the superconducting order parameter dominated below \(T_{c0}\).

In the Ref. the vortex-determined-dissipation scheme was questioned for granular material. Here we study the same problem for amorphous films where the disorder is supposed to be on the atomic scale. Our amorphous InO_x films were 20nm thick. They were certainly
The properties of the film are determined by the oxygen concentration \(x \). The starting value of \(x \) can be changed in some extent by thermal treatment. This affects the carrier concentration and the position of the state on the \(s-i - \) phase diagram [11 – 13]. We remain in the region where the carrier density \(n \) judging from Hall effect measurements is in the range \((2-4) \cdot 10^{21} \text{cm}^{-3} \) and the parameter \(k_F l \) is in the range \(0.2 - 0.3 \). Hence, in terms introduced by Emery and Kivelson [9], we deal with a “bad” (non-Drude) metal, where the transport phenomena are not described by Boltzmann theory.

In the experiments, resistive \(s \)-transition \(R(T, B) \) is measured. Below, data for several states of one film are demonstrated. Results for other films are similar. The aspect ratio of the film is close to one: its resistance \(R \) serves within 10\% accuracy as resistance per square. The measurements were done for 6 states of the film labeled as \(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta \) with \(s \)-properties gradually increasing along this row. Fig.1 contains functions \(R(T) \) in zero magnetic field for five of these states. In state \(\alpha \), the \(s \)-transition, if exists at all, starts somewhere below \(T < 0.4 \text{K} \). For all the others, two conditional temperatures, \(T_{c0} \) and \(T_c \), are marked by bars. They may be considered as the onset and the end of the transition. The upper is positioned at the level \(R \approx 0.9R_{\text{max}} \) where \(R_{\text{max}} \) is the value of maximum at the curve \(R(T) \). The lower is at the level

\[
R \approx 10^{-3}R_{\text{max}},
\]

which roughly corresponds to the usual position of the KTB transition [8]. The problem is in factors which control the shape of the \(s \)-transition in between the marks.

Under the standard approach in conventional superconductors, \(T_{c0} \) is determined from experimentally measured \(R(T) \) by the help of the expression for the paraconductivity \(\sigma_{fl} \) due to superconducting fluctuations [4]. In 2D

\[
\sigma = \sigma_n + \sigma_{fl} = \frac{\nu^2}{\hbar} \left[\frac{g + T_{c0}}{16(T - T_{c0})} \right],
\]

\[
\sigma = R^{-1}, \quad \sigma_n = R_n^{-1}.
\]

For films far from the localization threshold, the dimensionless sheet conductance is \(g \gg 1 \) and the correction to \(R \) from \(\sigma_{fl} \) becomes soon negligible when \(T \) is increasing above \(T_{c0} \). For our films \(g \) is of the order of unity. Hence, the contribution \(\sigma_{fl} \) really affects the temperature dependence \(R(T) \) above \(T_{c0} \).

The term \(\sigma_{fl} \) in the relation [8] contains \(T_{c0} \) as the only parameter which we have to choose. Relation [8] is valid only until the correction is small: \(\sigma_{fl} \ll \sigma_n \). Hence, even with right value of parameter \(T_{c0} \) we’ll get from Eq. [8] function \(R_n(T) \) which falsely tends to infinity near \(T_{c0} \). To emphasize this, we’ll mark these functions by star, as \(R_{n}^{*} \).

Fig.1 presents functions \(R_{n}^{*} \) for state \(\beta \), with different values of \(T_{c0} \) as parameter in \(\sigma_{fl} \). The curve \(R_{n}^{*} \) obtained with \(T_{c0} = 1 \text{K} \) has improbable strong temperature dependence below \(1.5 \text{K} \) whereas the curves with \(T_{c0} = 0.6 \text{K} \) and \(0.7 \text{K} \) contain maxima. Hence, \(T_{c0} \) should be in between.

The specific choice of \(0.77 \text{K} \) as \(T_{c0} \) is justified by the plot of \(\sigma_n(T) \) vs \(T^{1/3} \) (Fig.2). The representation

\[
\sigma_n = u + \nu T^{1/3}
\]

is usually used for 3D “bad” metals to distinguish by extrapolation to \(T = 0 \) metals and insulators (see, for instance, [3]). The chosen value of \(T_{c0} \) gives the lowest left-edge value of the temperature interval where data follow Eq. [8]. For state \(\beta \) with this \(T_{c0} \), the extrapolated value of \(u = \sigma_n(0) \) is \(0.15e^2/\hbar \). Note that according to the definition [3], \(\sigma_n \) is 2D conductivity, \(\sigma_n = \sigma_n^{(2D)} \), where as 3D conductivity is \(\sigma_n^{(3D)}(0) = \sigma_n^{(2D)}(0)d = (0.15d)e^2/\hbar \).
According to Fig. 2a, the extrapolated value of region 4 is superconducting. Our next task is to study one, the paraconductivity exists. In region 2, strong superconductivity breaks out into four regions. In the right strong that Eq. (5) fails. As it is shown in Fig. 2b, the temperature axes breaks out into four regions. The procedures from Fig. 1 applied to this clear seen in Fig. 1 as tendency to decline at low temperatures. The procedures from Fig. 1 applied to this clear seen in Fig. 1 as tendency to decline at low temperatures. The procedures from Fig. 1 applied to this clear seen in Fig. 1 as tendency to decline at low temperatures.

FIG. 2. (a) The dash curves from Fig. 1 presented as \(\sigma_n - (R_n)^{-1} \) vs \(T^{1/3} \) (form appropriate for a 3D non-Drude metal in critical region near the metal-insulator transition). Linear extrapolation cuts off the tail from the region of strong fluctuations and transforms \(\sigma_n \) into \(\sigma_n^* \). (b) Functions \(R, R_n, \) and \(R_n^* \) for state \(\beta \). About four temperature regions see text.

For state \(\alpha \), the contribution from \(s \)-fluctuations is clearly seen in Fig. 1 as tendency to decline at low temperatures. The procedures from Fig. 1 applied to this state give \(T_{\alpha 0} = 0.2 \text{ K} \); this is the lowest value of parameter \(T_{\alpha 0} \) which brings the curve \(R_n^* (T) \) without maximum. According to Fig. 2a, the extrapolated value of \(\sigma_n (0) \) for state \(\alpha \) is twice as small as for state \(\beta \). One more such step should bring the system to the localization threshold. We know from 11 that this would result in zero-field \(s \rightarrow i \)-transition.

Returning to state \(\beta \), the kink on the curve \(\sigma_n (T^{1/3}) \) in Fig. 2a reveals the point where fluctuations become so strong that Eq. (3) fails. As it is shown in Fig. 2b, the temperature axes breaks out into four regions. In the right one, the paraconductivity exists. In region 2, strong superconducting fluctuations prevail. At the opposite end, region 4 is superconducting. Our next task is to study region 3 and to check whether it is the vortex dissipation that controls the resistance in this region, i.e. in the lower part of the transition.

Let us turn to isotherms \(R (B) \) on Fig. 3. All the states studied are situated on the \(s \)-side of the phase diagram of the \(s \rightarrow i \)-transition. Certain critical field values of \(B_c \) induce \(s \rightarrow i \)-transition in these states and bring the sample in to the intermediate position between the superconductor and the insulator \(16 \). The resistance at this field, \(R (T, B_c) = R_c \), should not depend on temperature at all \(16 \) or may have only weak temperature dependence \(16 \). Hence the isotherms \(R (B, T = \text{ const}) \) cross in the vicinity of \(B_c \). At low fields, all the isotherms from the vicinity of \(T_c \) approach the origin, possibly ending at one of the axes near the origin. Hence, the bunches in Fig. 3 have specific shape of lenses.

Inside each lens, one can more or less confidently select some mean isotherm which separates those with different signs of the second derivative \(\partial^2 R / \partial B^2 \) inside the interval \(0 \div B_c \). Corresponding temperatures of these separating isotherms are written near the bunches. For the left bunches \(\gamma \) and \(\delta \), the separating isotherms turn to be straight lines in the aforementioned interval with the slope \(\partial R / \partial B \approx R_c / B_c \). For the states \(\varepsilon \) and \(\zeta \) situated deeper in the \(s \)-region, the lenses are slightly deformed and the separating isotherms remain straight only below \(2 \div 3 \text{ T} \).

The temperatures of the separating isotherms practically coincide with the values of \(T_c \) determined by criterion \(13 \). To some extent, this justifies the choice of the coefficient in the criterion \(13 \). On the other hand, we get a more convenient tool to determine the temperature where the \(s \)-transition becomes complete: by finding the isotherm \(R (B, T = \text{ const}) \) which is linear function going through the origin.

FIG. 3. Magnetoresistance isotherms for a sequence of temperature values for several states of the In-O film. The temperatures in each bunch are downward from 0.85 K with step 0.1 K. About the labeled values of \(T_c \) see text. Inset: more dense set of isotherms for state \(\beta \), downward from 0.58 K with step 0.05 K.
The isotherms with $T > T_c$ cross the ordinate at finite $R(0) \neq 0$. It is clear from the specific shape of the low-field part of the lenses that they have nonzero slope at $B = 0$ (detailed demonstration can be found in the inset in Fig.3):

$$\langle \partial R / \partial B \rangle_0 > 0. \quad (7)$$

This linear increase of R exists only with the field perpendicular to the film. The field directed along the film which does not bring the vortices from outside into the film results in zero field derivative $\langle \partial R / \partial B \rangle_0 = 0$, i.e. does not affect dissipation in the linear approximation. This can be seen from the previously published data on In-O films (Fig.2 in [17]) which compare isotherms for two almost similar states of the film but with different directions of the applied magnetic field.

In the model of thermally excited free vortices, the normal applied field increases the density of the vortices of opposite sign. When

$$\Delta R \equiv (R(B) - R(0)) \ll R(0), \quad \text{i.e.} \quad \Delta N_+ \ll N, \quad (8)$$

it follows from the dynamic equilibrium equation [1] that $(N + \Delta N_+)(N + \Delta N_-) = N^2$, i.e. that in the linear approximation the density changes compensate each other: $\Delta N_- = -\Delta N_+$. This qualitative inference illustrates result calculated by Minnhagen [8] far ago: the free vortex density did not change until relation (8) was valid.

Hence, in the frame of free vortex model, one should expect the resistance change under the condition (8) to be $\Delta R = O(B^2)$. Experimental observation that $\Delta R \ll R(0)$ means that the zero-field resistance R at this temperature is determined not by vortices from thermally dissociated pairs.

Summarizing, we described the upper part of the resistive s-transition of a “bad” (non-Drude) metal, amorphous In-O film, by the usual expression [14] for 2D para-

$$\text{thesis and amalgamation of pairs.}$$

We thank V. T. Dolgopolov, A. A. Shashkin, and G. E. Tsydynzhapov for discussions and cooperation in experiments. V. F. G. thanks Weizmann Institute of Science, Israel, for hospitality and A. Finkelstein, Y. Levinson, M. Schechter and Y. Oreg for fruitful discussions during his visit when the final version of this paper was written.

[1] B. I. Galperin and D. R. Nelson, J. Low Temp. Phys. 36, 599 (1979).
[2] V. L. Berezinskii, ZhETF 59, 907 (1970). [Sov. Phys.–JETP 32, 493 (1970)]; J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973).
[3] A. T. Fiory, A. F. Hebard, and W. I. Glaberson, Phys. Rev. B28, 5075 (1983).
[4] A. I. Larkin, Ann. Phys. (Leipzig) 8, 795 (1999).
[5] S. R. Khan, E. M. Pedersen, B. Kain et al., Phys. Rev. B61, 5099 (2000).
[6] A. Ghosal, M. Randeria, and N. Trivedi, Phys. Rev. Lett. 81, 3940 (1998).
[7] G. Kotliar and A. Kapitulnik, Phys. Rev. B33, 3146 (1986).
[8] L. N. Bulavetskii, A. A. Varlamov, and M. V. Sadovskii, Fiz. Tverd. Tela 28, 1799 (1986). [Sov. Phys.–Solid State 28, 997 (1986)].
[9] V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995).
[10] J. M. Valles, Jr., J. A. Chervenak, S.-Y. Hsu, and T. J. Koun, cond-mat/0010114.
[11] D. Shahar and Z. Ovadyahu, Phys. Rev. B46, 10917 (1992).
[12] V. F. Gantmakher, M. V. Golubkov, V. T. Dolgopolov et al., Pis’ma v ZhETF 68, 337 (1998) [JETP Lett. 68, 363 (1998)].
[13] V. F. Gantmakher, M. V. Golubkov, V. T. Dolgopolov et al., Pis’ma v ZhETF 71, 231 (2000) [JETP Lett. 71, 160 (2000)]; Pis’ma v ZhETF 71, 693 (2000) [JETP Lett. 71, 473 (2000)].
[14] G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela 10, 1104 (1968) [Sov. Phys.–Solid State 10, 875 (1968)].
[15] V. F. Gantmakher, V. N. Zverev, V. M. Teplinskii, and O. I. Barkalov, ZhETF 103, 1460 (1993) [JETP 76, 714 (1993)].
[16] M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).
[17] V. F. Gantmakher, M. V. Golubkov, V. T. Dolgopolov et al., Ann. Phys. (Leipzig) 8, SI-73 (1999).
[18] P. Minnhagen, Phys. Rev. B23, 5745 (1981); B27, 2807 (1983).