Scientometric Analysis of Research Performance of African Countries in selected subjects within the field of Science and Technology

Yusuff, U. A [0000-0002-9962-9313]

National Centre for Technology Management (NACETEM), Abuja, Nigeria
yusuffshola@yahoo.com

Abstract.
This paper assessed the performance of African countries in selected field of Science and Technology (S&T) over the last twenty years. The purpose was to determine the readiness of these countries in aligning to the strategic direction set by African Union (AU 2063) Agenda. The AU 2063 aims to emplace a paradigm shift from the current structure where its members’ dependents on natural resources to drive their economies to one that is knowledge-based. It thus set pillars for archiving this feat and they include; building and/or upgrading research infrastructures; enhancing professional and technical competencies; promoting entrepreneurship and innovation; and providing an enabling environment for STI development in the African continent. Data used for the study were retrieved from the SCImago database which comprises a total of Seven (7) subject areas cutting across one hundred and twenty-six (126) subject categories. In SCImago database, information was also searched on S&T performances with respect to publications in the World and Africa, over the last 20 years period starting from 1996-2015. Microsoft Excel was used to analyse the data collected. Results were presented in tables and figures on the top 10 most productive African countries in the field of S&T in all the seven selected subject areas. The paper suggested an intra-African collaborative effort between low and high performing countries in Africa as an option for developing the needed knowledge capacities for realising its regional developmental Agenda (AU 2063).

Keywords: Scientometrics, Performance, Science and Technology.

1 Introduction
African leaders have seen the need to emplace the continent on a pedestal aimed towards self-reliance capable of promoting economies of its member states that is more sustainable and in tune with what is obtainable in the developing world. In 2014, to re-affirm its vision of “an integrated, prosperous and peaceful Africa, an Africa driven and managed by its own citizens and representing a dynamic force in the international arena”, the African Union under its AU Agenda 2063 recognized Science, Technology and Innovation (STI) as multi-functional tools and enablers for achieving continen-
tal development goals, hence, initiated the Science, Technology and Innovation Strategy for Africa 2024 (STISA-2024). The STISA-2024 is the first of the ten-year incremental phasing strategies to respond to the demand for science, technology and innovation to impact across critical sectors such as agriculture, energy, environment, health, infrastructure development, mining, security and water among others. The strategy is firmly anchored on six distinct priority areas that contribute to the achievement of the AU Vision. These priority areas are: Eradication of Hunger and Achieving Food Security; Prevention and Control of Diseases; Communication (Physical and Intellectual Mobility); Protection of our Space; Live Together- Build the Society; Wealth Creation. The strategy further defines four mutually reinforcing pillars which are considered as prerequisite conditions for its success. These pillars include: building and/or upgrading research infrastructures; enhancing professional and technical competencies; promoting entrepreneurship and innovation; and providing an enabling environment for STI development in the African continent. It anticipates that continental, regional and national programmes will be designed, implemented and synchronized to ensure that their strategic orientations and pillars are mutually reinforcing, and achieve the envisaged developmental impact as effectively as possible.

Every positive-oriented society today needs skilled and talented individuals to generate new ideas, products, processes and commercial enterprises. Therefore, existing studies have shown that accessing performance on the basis of STI, African countries performance is rated poorly if measured on indicators as tertiary education institutions, intellectual property and innovativeness and productivity and competitiveness [1]. This position was also supported and explained by the United Nations Economic Commission for Africa (UNECA) in its African Science, Technology and Innovation Review 2013 report document. The review was done to assess STI status and performance in the African context with a view to describing the innovation ecosystem in Africa. It looks at the innovation value chain from the perspective of training and research and development; technology development, acquisition, use and application.

In the last decade, Africa has recorded an annual growth rate of about 15 percent in terms of enrolment rate in tertiary institutions while in 2008, the figure for Sub-Saharan African countries on this same indicator was only 6 per cent which is lower when compared with statistics on other continents Asia (26%), Latin America and the Caribbean (38%). Furthermore, in terms of researchers involved in R&D, Africa performance is still relatively poor. For instance, in a survey conducted in 13 countries by African Science, Technology and Innovation Indicator Initiative (ASTII), the result shows that more than half of these countries have fewer than 1000 R&D researchers in total. However, only Gabon, Senegal and South Africa have more than 20 per cent of their total R&D personnel with PhD qualifications while Mozambique and Kenya reported less than 2 percent for this indicator [2].

To ascertain this claims, different tool for assessing performance and productivity of a system like Scientometrics can be employed. Though there are other tools for assessing scientific production, however, scientometric is very useful for this purpose.
In the field of Science and Technology Studies (STS), Scientometrics is a useful tool for measuring the scientific and technological performance of a knowledge system. Scientometrics is done as a measurement of scientific publications using a method referred to as Bibliometrics [3]. Scientometrics is restricted to the measurement of science communications, whereas Bibliometrics is designed to deal with more general information processes [4]. Scientometrics is for science what econometrics is for economics [5]. The advent of journal Scientometrics in 1978 from a research unit in the Hungarian Academy of Science and Scientific conferences, led to the development of Scientometrics as a discipline [6]. They stated that it was developed around one core notion (citations) though the discipline can study (to some extent) many aspects of the dynamics of science and technology. The citation is not only important in Scientometrics but provide a quantitative metrics for measuring research impact. Mingers and Leydesdorff further buttress this position and stated that “The act of citing another person’s research provides the necessary linkages between people, ideas, journals and institutions to constitute an empirical field or network that can be analyzed quantitatively”.

This paper seeks to use Scientometrics to analyze research performance of African countries in selected subjects within the field of S&T.

2 Methodology

The research was designed based on the need to find the best approach that could lead to a logical route to addressing the objectives of the research. The focal objective of this study was specifically to study how African countries perform in S&T over the last twenty years (1996-2015). To this end, the research design approach upon which this study was built, rests on the previous research works of [7] and [8] where in both cases, Scientometrics analysis of publication output on S&T in India between 1989-2014 and 1996-2011 respectively were carried out by these scholars. Therefore, in this study, the sample population from the SCImago database used in this study comprises a total of Seven (7) subject areas having a total of One Hundred and Twenty-six (126) subject categories. They include; Agricultural and Biological Sciences (14), Biochemistry, Genetics and Molecular Biology (17), Chemical Engineering (9), Computer Science (13), Engineering (17), Material Science (9), Medicine (47). On SCImago database at http://www.scimagojr.com, information was also searched on S&T performances with respect to publications in the World, Africa, Asia and Nigeria over the last 20 years period starting from 1996-2015. But for the purpose of this paper, only data on Africa was used for analysis. On the SCImago database, the search query used was (Search = “World”) AND (Year = 1996-2015); (Search = “Africa”) AND (Year = 1996-2015); (Search = “Asia”) AND (Year = 1996-2015); (Search = “Nigeria”) AND (Year = 1996-2015), each done separately. The Data was retrieved between the fourth Week of May and Second week of June 2017. To analyse the data retrieved, Microsoft Excel was used. Results obtained were presented in ta-
bles on the top 10 most productive African countries in the field of S&T in all the seven selected subject areas.

3 Data Analysis and Discussion

The ten most productive countries in Africa in the field of Science are shown in Table 1. Their corresponding ranking in the world is also shown to reflect their position beyond the continent. South Africa is ranked first in Africa and 34th position in the world having produced 188104 documents out of which 91.66% of it is citable. Ranked second in Africa is Nigeria with a world ranking of 52nd position, a wide margin from that of South Africa. Nigeria produced 59372 documents between the years under review out of which 95.38% of them is citable. Nigeria, including South Africa and Tunisia, records a high percentage of self-citation in the region having over 21%. Egypt supposed to stand at the second position in Africa considering its position of 42nd in the world, however, following the ranking list as obtained from the SCImago, the country was not included on the list. In terms of H-index, South Africa has the highest ranking followed by Kenya and Nigeria. Interestingly, in terms of citation per paper, Kenya recorded the highest score in this category despite its 6th position in Africa. This shows that despite the low volume of documents produced during the period under review, it was able to attract attention within the academic community. Overall, the Northern African countries prove to be very strong in the production of scientific knowledge in Africa having displayed more countries from the region according to the ranking. The performance of these North African countries may be as a result of their collaboration with their fellow countries in the Arab region like Saudi Arabia and the Emirates where they also receive grants to promote their research activities. The overall performance of Africa as ranked in the world calls for improvement and the need to address those challenges that researchers in this part of the world face which directly impact on the number and quality of publications from the region.

Rank (Africa)	Rank (World)	Country	Docs	Citable docs	% citable docs	Citations	Self-citations	% self-citations	Citations per document	H index
1	34	South Africa	188104	172424	91.66	2125927	454537	21.38	11.3	320
2	52	Nigeria	59372	56630	95.38	334059	72718	21.77	5.63	131
3	53	Tunisia	58769	55904	95.12	342429	73636	21.50	5.83	123
4	55	Algeria	42456	41544	97.85	215922	43297	20.05	5.09	106
5	56	Morocco	40737	38371	94.19	279731	51031	18.24	6.87	129
6	67	Kenya	24458	22347	91.37	379560	57594	15.17	15.52	179
7	78	Ethiopia	13363	12625	94.48	118656	24840	20.93	8.88	101
8	84	Tanzania	11964	11140	93.11	170144	25866	15.20	14.22	122
9	86	Ghana	11543	10578	91.64	111205	13874	12.48	9.63	105
10	87	Uganda	11528	10599	91.94	171367	26995	15.75	14.87	128

*Egypt ranked 42 in the World but it was not included the ranking list in Africa as obtained from source.
In the field of Agricultural & Biological Science South Africa and Nigeria still maintained the top two positions in Africa. Nigeria has the highest percentage of citable document (99.51%) as shown in Table 2 and is closely followed by Ethiopia which records 99.10%. South Africa has the highest case of self-citation (28.75%) followed by Ethiopia (25.37%) and Nigeria (24.34%). In terms of citation per document, Kenya tops this section having recorded 13.9% citations per document produced. Kenya has also performed well as indicated by the H-index having 103 behind South Africa which is ranked the first position in the field of Agricultural & Biological Science.

Rank	Country	Documents	Citable documents	% citable documents	Citations	Self-citations	% Self citations	Citations per document	H-index
1	South Africa	34375	33575	97.67	444511	127778	28.75	12.93	165
2	Nigeria	14339	14269	99.51	82412	20055	24.34	5.75	69
3	Kenya	8053	7894	98.03	111942	20305	18.14	13.9	103
4	Tunisia	6427	6341	98.66	58160	13936	23.96	9.05	76
5	Ethiopia	4223	4185	99.10	34820	8834	25.37	8.25	58
6	Morocco	3392	3347	98.67	40130	5532	13.79	11.83	67
7	Tanzania	3029	2965	97.89	34235	5377	15.71	11.3	65
8	Algeria	2955	2914	98.61	17994	3433	19.08	6.09	46
9	Cameroon	2845	2818	99.05	27540	5451	19.79	9.68	55
10	Uganda	2646	2598	98.19	28944	5335	18.43	10.94	59

Source: SCImago, Author analysis, 2017
Table 3. Top 10 most Productive countries in Africa in Biochemistry, Genetics and Molecular Biology

Rank	Country	Docs	Citable documents	% Citable documents	Citations	Self-citations	% Self-citations	Citations per document	H-index
1	South Africa	18946	18297	96.57	327073	59190	18.10	17.26	162
2	Nigeria	6344	6264	98.74	48489	9728	20.06	7.64	68
3	Tunisia	6243	6113	97.92	70516	12936	18.34	11.3	84
4	Morocco	3104	3047	98.16	42632	4955	11.62	13.73	78
5	Kenya	2823	2764	97.91	47119	5915	12.55	16.69	81
6	Algeria	2168	2133	98.39	22552	2805	12.44	10.4	57
7	Cameroon	1477	1451	98.24	17555	3257	18.55	11.89	49
8	Ethiopia	1386	1371	98.92	14208	4956	17.27	11.14	60
9	Sudan	1105	1091	98.73	15126	1723	11.39	13.69	54
10	Ghana	115	112	98.40	15938	2537	15.92	13.39	53

Source: SCImago, Author analysis, 2017

Research in the field of Chemical Engineering shows that South Africa tops the ranking list in the publication figure in Africa (Table 4). Unlike in the other subject categories considered earlier, there is a departure from the usual in the percentage of citable documents produced where Sudan has 100% of its documents citable. Cameroon recorded the highest percentage of self-citation of 19.65% followed by South Africa. In terms of citations per documents, Morocco recorded the highest figure in the region. Chemical Engineering is an important field that plays a significant role in the production of chemicals for industries alike, Africa’s research in this direction is commendable.

Table 4. Top 10 most Productive countries in Africa in Chemical Engineering

Rank	Country	Documents	Citable documents	% citable documents	Citations	Self-citations	% Self-citations	Citations per Document	H-index
1	South Africa	4993	4928	98.70	69063	12622	18.28	13.83	90
2	Algeria	2649	2624	99.06	24591	3777	15.36	9.28	58
3	Tunisia	2576	2542	98.68	28698	4956	17.27	11.14	60
4	Nigeria	1635	1624	99.33	14886	2706	18.18	9.1	57
5	Morocco	1463	1453	99.32	25609	4210	16.44	17.5	68
6	Libya	288	286	99.31	1338	85	6.35	4.65	17
7	Cameroon	223	222	99.55	1588	312	19.65	7.12	20
8	Kenya	146	142	97.26	2789	95	3.41	19.1	22
9	Sudan	142	142	100.00	882	72	8.16	6.21	17
10	Ghana	131	125	95.42	951	66	6.94	7.26	14

Source: SCImago, Author analysis, 2017
Table 5. Top 10 most Productive countries in Africa in Computer Science

Rank	Country	Documents	Citable documents	% citable documents	Citations	Self-citations	% self-citations	Citations per document	H-index
1	South Africa	10644	10456	98.23	50791	15.46	4.77	77	
2	Tunisia	9787	9666	98.76	23571	26.14	2.41	49	
3	Algeria	8168	8091	99.06	21501	21.56	2.63	50	
4	Morocco	4664	4618	99.01	10690	22.93	2.29	36	
5	Nigeria	2597	2574	99.11	4528	25.62	1.74	24	
6	Libya	492	487	98.98	1283	4.44	2.61	20	
7	Ghana	375	370	98.67	747	12.58	1.99	15	
8	Kenya	357	354	99.16	1280	12.97	3.59	19	
9	Mauritius	335	330	98.51	635	11.97	1.9	12	
10	Sudan	321	321	100.00	870	5.52	2.71	13	

Source: SCImago, Author analysis, 2017

Computer Science as a field of Science is very important in the world today. Virtually all human activities are dependent on one form of technology or the other. Over the years, Asian countries have built capacities and enforce their superiority in the field of Information and Communication Technology (ICT) over other developing countries. A look at figures in Table 5 shows that Africa’s productivity in this subject area is still dominated by South Africa with a total of 10644 documents produced. The North African countries appear to be more formidable in this subject field having displaced Nigeria to the 5th position in the ranking. In terms of citations per paper, Kenya standing at the 8th position is closely ranked with South Africa having received 3.59 citations per document. Considering the total figure of documents produced, Africa researchers need to improve on their publication activity within this subject field since the relevance of Technology cross-cut all sectors of human endeavour today.

In today’s world, Engineering concepts and applications have continued to react to the dynamics of the society. Either in Construction, Design, Machine fabrication or Industrial input, Engineering is an important field that is as old as humanity itself. South Africa is still the dominant country in this field has produced a total of 19163 documents so far (Table 6). The North African countries (Tunisia and Algeria) are closely ranked after South Africa in terms of documents produced, citations per document and even in H-index received. Worthy of note here is that Tunisia and Algeria have more cases of self-citation in the region, an indication that is not favourable to the quality of publications.
Table 6. Top 10 most Productive countries in Africa in Engineering

Rank	Country	Documents	Citable	% citable document	Citations	Self-citations	% self-citations	Citations per document	\(H\) index
1	South Africa	19163	18819	98.20%	107903	19301	17.89%	5.63	93
2	Algeria	13678	13566	99.18%	58389	13228	22.65%	4.27	69
3	Tunisia	12038	11924	99.05%	52116	12671	24.31%	4.33	63
4	Nigeria	5586	5544	99.25%	16924	3737	22.08%	4.33	48
5	Morocco	5536	5465	98.72%	30741	6337	20.61%	5.55	57
6	Libya	956	950	99.37%	3362	153	4.55	3.52	29
7	Ghana	789	774	98.10%	2973	445	14.97%	3.77	26
8	Cameroon	680	677	99.56%	3233	771	23.85%	4.75	25
9	Sudan	642	638	99.38%	1502	151	10.05%	2.34	21
10	Kenya	574	566	98.61%	3249	239	7.36	5.66	29

Source: SCImago, Author analysis, 2017

Research in the field of Material Science is also important to a nation’s technological development. It connects with the industries in terms of quality of material resources needed for production. Besides, the engineering field also relates with this field as a form of support for the production of technology-oriented outputs needed as inputs in other sectors of the economy. Table 7 shows South Africa still topping the chart in Africa having produced a total of 10956 documents. Algeria, Tunisia and Morocco are next ranked to South Africa. Notably in this field is the introduction of Cote d’Ivoire and Senegal to the table for the first time even though they occupy the bottom position in the ranks. West African countries are more engaged in research in this field of science. In terms of self-citation, the North African countries recorded the higher percentage in this.

Table 7. Top 10 most Productive countries in Africa in Material Science

Rank	Country	Documents	Citable	% citable document	Citations	Self-citations	% self-citations	Citations per document	\(H\) index
1	South Africa	10956	10816	98.72%	107086	18712	17.47%	9.77	84
2	Algeria	8254	8194	99.27%	57403	13266	23.11%	6.95	69
3	Tunisia	6944	6839	98.49%	48937	13668	27.93%	7.05	59
4	Morocco	5717	5675	99.27%	48726	10354	21.25%	8.52	77
5	Nigeria	2485	2462	99.07%	16032	3608	22.50%	6.45	56
6	Cameroon	466	463	99.36%	2819	613	21.75%	6.05	24
7	Libya	396	392	98.99%	2524	160	7.36	6.37	27
In Africa, Medicine is a field that still needs improvement in terms of research and human capacity development. Africans are the most travelled for medical attention in the world presently, according to the statistics on Medical tourism. Mostly, the destination is to Asian countries especially India, and some other countries like Saudi Arabia, Germany, Israel etc. It can be deduced that in the field of medicine, as shown in Table 8, aside South Africa, research into this field is relatively low in West Africa countries. Considering the quality of publication among authors from these countries in the region, South Africa, Kenya, Nigeria and Uganda received higher H-index over all other countries.

4. Conclusion

The purpose of this paper which is to assess research performance of African countries in selected fields of S&T with respect to seven subject areas has been undertaken and with revealing inferences. Relating this outcome to realizing the AU 2063 Agenda by member countries, there is a ray of hope in its attainment. Although more commitment in the area of research and funding is needed. A particular case is that of the Medicine field where most of the citizens of countries like Nigeria and others still embark on medical tourism to Asia and other European countries. Although the case of South Africa is different from that of other Africa countries in this regard. The country has capacities and physical infrastructure to attend to medical issues of his citizens, hence record low figure in medical tourism. South Africa tops the chart of the most productive countries in Africa in all the S&T field and occupy a position of 34th in the world. A closer look on the country next to South Africa, which is Nigeria,

Rank	Country	Documents	Citable documents	% citable documents	Citations	Self-citations	% self citations	Citations per document	H-index
1	South Africa	46656	40847	87.55	744980	136527	18.33	15.97	239
2	Nigeria	19456	18421	94.68	134820	28891	21.43	6.93	104
3	Tunisia	15890	14211	89.43	101060	14291	14.14	6.36	90
4	Morocco	11773	10179	86.46	55312	6723	12.15	4.7	79
5	Kenya	9828	9225	93.86	191588	31385	16.38	19.49	143
6	Uganda	6522	6100	93.53	124757	20499	16.43	19.13	119
7	Tanzania	5899	5638	95.58	104297	17546	16.82	17.68	106
8	Ethiopia	4763	4582	96.20	47508	9552	20.11	9.97	71
9	Ghana	4248	4016	94.54	65276	7966	12.20	15.37	90
10	Cameroon	3850	3631	94.31	46576	7607	16.33	12.1	75

Source: SCImago, Author analysis, 2017
occupy 52nd position in the world. It can be deduced from the outcome that countries like South Africa, including some North African countries like Morocco, Tunisia, Algeria, etc., enjoy adequate funding and maintain a clear strategic direction towards aligning their national developmental priorities to their research orientation. Besides, they have been able to structure and functionalize their National Innovation Systems (NIS) such that industrial needs informs their research priorities and knowledge acquisition.

In conclusion, the overall performance of African countries as it concerns this paper is promising and could be said to align towards realizing the regional goal. However, there is need for more coordinated and collaborative effort across the regions where it seems to be more productive. To this end, intra-African collaboration that is geared towards promoting knowledge development between researchers from low and high performing countries in Africa should be encouraged.

References

1. United Nations Economic Commission for Africa, (UNECA), “Africa’s Science, Technology and Innovation Policies-National, Regional and Continental”. Assessing Regional Integration in Africa (ARIA VII): Innovation, Competitiveness and Regional Integration, Chapter 5, 83-104 (2016)
2. United Nations Economic Commission for Africa, (UNECA), African Science, Technology and Innovation Review 2013, Economic Commission for Africa, Ethiopia. (2014)
3. Chaman, S. M., Dharani, K. P & Biradar, B. S, Mapping of Chemical Science Research in India during 2005-2014, International Journal of Information Dissemination and Technology, 7(1), 71-73 (2017).
4. Glanzel, W., Bibliometrics as a Research Field: A course on theory and application of bibliometric indicators, Course Handout, (2003) http://nsdl.niscair.res.in/jspui/handle/123456789/968, last accessed 2017/05/18
5. Pouris, A., Is Scientometrics in a crisis? Scientometrics, 30, 397-399 (1994).
6. Mingers, J. and Leydersdorff, L., A review of theory and practice in Scientometrics, European Journal of Operational Research, 246. 1-19 (2015)
7. Hiremath, R., Gourikeremath, G., Hadagali, G., and Kumbar, B D., "India’s Science and Technology output, 1989-2014: A Scientometric Analysis" (2016). Library Philosophy and Practice (e-journal). Paper 1367 (2016).
8. Gupta, B M., Bala, A. and Kshitig, A., "S&T Publications Output of India: A Scientometric Analyses of Publications Output, 1996-2011", Library Philosophy and Practice (e-journal). Paper 921 (2013).