INTERVAL ENFORCEABLE PROPERTIES OF FINITE GROUPS

WILLIAM DEMEO

ABSTRACT. We propose a classification of group properties according to whether they can be deduced from the assumption that a group’s subgroup lattice contains an interval isomorphic to some lattice. We are able to classify a few group properties as being “interval enforceable” in this sense, and we establish that other properties satisfy a weaker notion of “core-free interval enforceable.” We also show that if there exists a group property and its negation that are both core-free interval enforceable, this would settle an important open question in universal algebra.

1. INTRODUCTION

The study of subgroup lattices has a long history that began with Richard Dedekind [7] and Ada Rottlaender [21], and continued with important contributions by Reinhold Baer, Oystein Ore, Michio Suzuki, Roland Schmidt, and many others (see Schmidt [22]). Much of this work focuses on the problem of deducing properties of a group G from assumptions about the structure of its lattice of subgroups, $\text{Sub}(G)$, or, conversely, deducing lattice theoretical properties of $\text{Sub}(G)$ from assumptions about G.

Historically, less attention was paid to the local structure of the subgroup lattice of a finite group, perhaps because it seemed that very little about G could be inferred from knowledge of, say, an upper interval, $[H, G] = \{ K \mid H \leq K \leq G \}$, in the subgroup lattice of G. Recently, however, this topic has attracted more attention (see, e.g., [1, 2, 4, 6, 11, 13, 15, 16]), mostly owing to its connection with one of the most important open problems in universal algebra, the Finite Lattice Representation Problem (FLRP). This is the problem of characterizing the lattices that are (isomorphic to) congruence lattices of finite algebras (see, e.g., [5, 8, 16, 17]). There is a remarkable theorem relating this problem to intervals in subgroup lattices of finite groups.

Theorem 1.1 (Pálfy and Pudlák [18]). The following statements are equivalent:
(A) Every finite lattice is isomorphic to the congruence lattice of a finite algebra.
(B) Every finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.

If these statements are true (resp., false), then we say the FLRP has a positive (resp., negative) answer. Thus, if we can find a finite lattice L for which it can be
proved that there is no finite group \(G \) with \(L \cong [H, G] \) for some \(H < G \), then the FLRP has a negative answer.

In this paper we propose a new classification of group properties according to whether or not they can be deduced from the assumption that \(\text{Sub}(G) \) has an upper interval isomorphic to some finite lattice. We believe that discovering which group properties can (or cannot) be connected to the local structure of a subgroup lattice is itself a worthwhile endeavor, but we will also describe how this classification could provide a solution of the FLRP.

Suppose \(\mathcal{P} \) is a group theoretical property\(^1\) and suppose there exists a finite lattice \(L \) such that if \(G \) is a finite group with \(L \cong [H, G] \) for some \(H \leq G \), then \(G \) has property \(\mathcal{P} \). We call such a property \(\mathcal{P} \) interval enforceable (IE). If the lattice involved is germaine to the discussion, we say that \(\mathcal{P} \) is interval enforceable by \(L \). An interval enforceable class of groups is a class of groups all of which have a common interval enforceable property.

Although it depends on the lattice \(L \), generally speaking it is difficult to deduce very much about a group \(G \) from the assumption that an upper interval in \(\text{Sub}(G) \) is isomorphic to \(L \). It becomes easier if, in addition to the hypothesis \(L \cong [H, G] \), we assume that the subgroup \(H \) is core-free in \(G \); that is, \(H \) contains no nontrivial normal subgroup of \(G \). Properties of \(G \) that can be deduced from these assumptions are what we call core-free interval enforceable (cf-IE).

Extending this idea, we consider finite collections \(\mathcal{L} \) of finite lattices and ask what can be proved about a group \(G \) if one assumes that each \(L_i \in \mathcal{L} \) is isomorphic to an upper interval \([H_i, G] \leq \text{Sub}(G) \), with each \(H_i \) core-free in \(G \). Clearly, if \(\text{Sub}(G) \) has such upper intervals, and if corresponding to each \(L_i \in \mathcal{L} \) there is a property \(\mathcal{P}_i \) that is cf-IE by \(L_i \), then \(G \) must have all of the properties \(\mathcal{P}_i \). A related question is the following: Given a set \(\mathcal{P} \) of cf-IE properties, is the conjunction \(\bigwedge \mathcal{P} \) cf-IE? Corollary 3.8 answers this question affirmatively.

In this paper, we will identify some group properties that are cf-IE, and others that are not. We will see that the cf-IE properties found thus far are negations of common group properties (for example, “not solvable,” “not almost simple,” “not alternating,” “not symmetric”). Moreover, we prove that in these special cases the corresponding group properties (“solvable,” “almost simple,” “alternating,” “symmetric”) that are not cf-IE. This and other considerations suggest that a group property and its negation cannot both be cf-IE. As yet, we are unable to prove this. A related question is whether, for every group property \(\mathcal{P} \), either \(\mathcal{P} \) is cf-IE or \(\neg \mathcal{P} \) is cf-IE.

Our main result (Theorem 3.6) connects the foregoing ideas with the FLRP, as follows:

Statement (B) of Theorem 1.1 is equivalent to the following statement:

\[(C) \text{ Fix } n \geq 2 \text{ and let } \mathcal{L} = \{L_1, \ldots, L_n\} \text{ be any collection of finite lattices at least two of which have more than two elements. For each } i = 1, 2, \ldots, n, \text{ let } \mathfrak{X}_i \text{ denote the class that is core-free interval enforceable by } L_i. \text{ Then there exists a finite group } G \in \bigcap_{i=1}^n \mathfrak{X}_i \text{ such that for each } L_i \in \mathcal{L} \text{ we have } L_i \cong [H_i, G] \text{ for some subgroup } H_i \text{ that is core-free in } G. \]
Remark. By (C), the FLRP would have a negative answer if we could find a collection $\mathcal{X}_1, \ldots, \mathcal{X}_n$ of cf-IE classes such that $\bigcap_{i=1}^n \mathcal{X}_i$ is empty.

Core-free interval enforceable properties are related to permutation representations of groups. If H is a core-free subgroup of G, then G has a faithful permutation representation $\varphi : G \to \text{Sym}(G/H)$. Let $\langle G/H, \varphi(G) \rangle$ denote the algebra comprised of the right cosets G/H acted upon by right multiplication by elements of G; that is, $\varphi(g) : Hx \mapsto Hxg$. It is well known that the congruence lattice of this algebra (i.e., the lattice of systems of imprimitivity) is isomorphic to the interval $[H, G]$ in the subgroup lattice of G.

This puts statement (C) into perspective. If the FLRP has a positive answer, then no matter what we take as our finite collection \mathcal{L}—for example, we might take \mathcal{L} to be all finite lattices with at most N elements for some large $N < \omega$—we can always find a single finite group G such that every lattice in \mathcal{L} is isomorphic to the interval in $\text{Sub}(G)$ above a core-free subgroup. As a result, this group G must have so many faithful representations $G \to \text{Sym}(G/H_i)$ with systems of imprimitivity isomorphic to L_i, one such representation for each distinct $L_i \in \mathcal{L}$. Moreover, the group G having this property can be chosen from the class $\bigcap_{i=1}^n \mathcal{X}_i$, where $\mathcal{X}_1, \ldots, \mathcal{X}_n$ is an arbitrary collection of cf-IE classes of groups.

2. Notation and definitions

In this paper, all groups and lattices are finite. We use \mathcal{G} to denote the class of all finite groups. Given a group G, we denote the set of subgroups of G by $\text{Sub}(G)$. The algebra $(\text{Sub}(G), \land, \lor)$ is a lattice where the \land ("meet") and \lor ("join") operations are defined for all H and K in $\text{Sub}(G)$ by $H \land K = H \cap K$ and $H \lor K = \langle H, K \rangle$ is the smallest subgroup of G containing both H and K. We will refer to the set $\text{Sub}(G)$ as a lattice, without explicitly mentioning the \land and \lor operations.

By $H \leq G$ (resp., $H < G$) we mean H is a subgroup (resp., proper subgroup) of G. For $H \leq G$, the core of H in G, denoted by $\text{core}_G(H)$, is the largest normal subgroup of G contained in H. If $\text{core}_G(H) = 1$, then we say that H is core-free in G. For $H \leq G$, by the interval $[H, G]$ we mean the set $\{K \mid H \leq K \leq G\}$, which is a sublattice of $\text{Sub}(G)$. With this notation, $\text{Sub}(G) = [1, G]$. When viewing $[H, G]$ as a sublattice of $\text{Sub}(G)$, we sometimes refer to it as an upper interval. Given a lattice L and a group G, the expression $L \cong [H, G]$ will mean that there exists a subgroup $H \leq G$ such that L is isomorphic to the interval $\{K \mid H \leq K \leq G\}$ in the subgroup lattice of G.

By a group theoretical class, or class of groups, we mean a collection \mathcal{X} of groups that is closed under isomorphism: if $G_0 \in \mathcal{X}$ and $G_1 \cong G_0$, then $G_1 \in \mathcal{X}$. A group theoretical property, or simply property of groups, is a property \mathcal{P} such that if a group G_0 has property \mathcal{P} and $G_1 \cong G_0$, then G_1 has property \mathcal{P}. Thus if \mathcal{X}_P denotes the collection of all groups having the group property \mathcal{P}, then \mathcal{X}_P is a family of groups.

\footnote{See \cite[Lemma 4.20]{14} or \cite[Theorem 1.5A]{9}.}

\footnote{It seems there is no single standard definition of group theoretical class. While some authors (e.g., \cite{10}, \cite{3}) use the same definition we use here, others (e.g., \cite{19}, \cite{20}) require that every group theoretical class contains the one element group. In the sequel we consider negations of group properties, and we would like these to qualify as group properties. Therefore, we don’t require that every group theoretical class contains the one element group.
class of groups, and belonging to a particular class of groups is a group theoretical
property.
If \mathcal{K} is a class of algebras (e.g., a class of groups), then we say that \mathcal{K} is
closed under homomorphic images and we write $H(\mathcal{K}) = \mathcal{K}$ provided $\varphi(G) \in \mathcal{K}$
whenever $G \in \mathcal{K}$ and φ is a homomorphism of G.
Let \mathcal{L} denote the class of all finite lattices, and \mathcal{G} the class of all finite groups.
Let \mathcal{P} be a group theoretical property and X_P the associated class of all groups
with property P. We call P (and X_P)
• interval enforceable (IE) provided
\[(\exists L \in \mathcal{L}) (\forall G \in \mathcal{G}) (L \cong [H, G] \rightarrow G \in X_P)\]
• core-free interval enforceable (cf-IE) provided
\[(\exists L \in \mathcal{L}) (\forall G \in \mathcal{G}) (L \cong [H, G] \bigwedge \text{core}_G(H) = 1 \rightarrow G \in X_P)\]
• minimal interval enforceable (min-IE) provided there exists $L \in \mathcal{L}$ such
that if $L \cong [H, G]$ for some group $G \in \mathcal{G}$ of minimal order (with respect
to $L \cong [H, G]$), then $G \in X_P$.
In this paper we will have little to say about min-IE properties. Nonetheless, we
include this class in our list of new definitions because properties of this type arise
often (see, e.g., [13]), and a primary aim of this paper is to formalize various notions
of interval enforceability that we believe are useful in applications.

3. Results

Clearly, if \mathcal{P} is an interval enforceable property, then it is also core-free interval
enforceable. There is an easy sufficient condition under which the converse holds.
Suppose \mathcal{P} is a group property, let $X_\mathcal{P}$ denote the class of all groups with property
\mathcal{P}, and let $X_\mathcal{P}^c$ denote the class of all groups that do not have property \mathcal{P}.

Lemma 3.1. Suppose \mathcal{P} is a core-free interval enforceable property. If $H(X_\mathcal{P}^c) = X_\mathcal{P}^c$, then \mathcal{P} is an interval enforceable property.

Proof. Since \mathcal{P} is cf-IE, there is a lattice L such that
\[(\exists L \in \mathcal{L}) (\forall G \in \mathcal{G}) (L \cong [H, G] \bigwedge \text{core}_G(H) = 1 \rightarrow G \in X_\mathcal{P})\]
Under the assumption $H(X_\mathcal{P}^c) = X_\mathcal{P}^c$, we prove
\[(\exists L \in \mathcal{L}) (\forall G \in \mathcal{G}) (L \cong [H, G] \rightarrow G \in X_\mathcal{P}).\]
If (3.2) fails, then there is a group $G \in X_\mathcal{P}^c$ with $L \cong [H, G]$. Let $N = \text{core}_G(H)$.
Then $L \cong [H/N, G/N]$ and H/N is core-free in G/N so, by hypothesis (3.1),
$G/N \in X_\mathcal{P}$. But $G/N \in X_\mathcal{P}^c$, since $X_\mathcal{P}^c$ is closed under homomorphic images. □

In [16], Péter Pálfy gives an example of a lattice that cannot occur as an upper
interval in the subgroup lattice finite solvable group. (We give other examples
in Section 3.3.) In his Ph.D. thesis [4], Alberto Basile proves that if G is an
alternating or symmetric group, then there are certain lattices that cannot occur as
upper intervals in $\text{Sub}(G)$. Another class of lattices with this property is described
by Aschbacher and Shreshian in [1]. Thus, two classes of groups that are known
to be at least cf-IE are the following:
• $X_0 = \mathcal{G}^c =$ nonsolvable finite groups;
• $X_1 = \{G \in \mathcal{G} \mid (\forall n < \omega) (G \neq A_n \land G \neq S_n)\}$,
where A_n and S_n denote, respectively, the alternating and symmetric groups on n letters. Note that both classes X_0 and X_1 satisfy the hypothesis of 3.1. Explicitly, $X_0 = \mathcal{S}$, the class of solvable groups, is closed under homomorphic images, as is the class X_1 of alternating and symmetric groups. Therefore, by Lemma 3.1, X_0 and X_1 are IE classes. By contrast, suppose there exists a finite lattice L such that

$$L \cong [H, G] \land \text{core}_G(H) = 1 \rightarrow G \text{ is subdirectly irreducible}.$$

Lemma 3.1 does not apply in this case since the class of subdirectly reducible groups is obviously not closed under homomorphic images.

4 In Section 3.3 below we describe lattices with which we can prove that the following classes are at least cf-IE:

- X_2 = the subdirectly irreducible groups;
- X_3 = the groups having no nontrivial abelian normal subgroups;
- $X_4 = \{G \in \mathcal{G} \mid C_G(M) = 1 \text{ for all } 1 \neq M \trianglelefteq G\}.$

We noted above that X_2 fails to satisfy the hypothesis of 3.1. The same can be said of X_3 and X_4. That is, $H(X_i) \neq X_i$ for $i = 2, 3, 4$. To verify this take $H \in X_i$, $K \in X_i$, and consider $H \times K$. In each case ($i = 2, 3, 4$) we see that $H \times K$ belongs to X_i, but the homomorphic image $(H \times K)/(1 \times K) \cong H$ does not.

3.1. Negations of interval enforceable properties. If a lattice L is isomorphic to an interval in the subgroup lattice of a finite group, then we call L group representable. Recall, Theorem 1.1 says that the FLRP has a negative answer if we can find a finite lattice that is not group representable.

Suppose there exists a property P such that both P and its negation $\neg P$ are interval enforceable by the lattices L and L_c, respectively. That is $L \cong [H, G]$ implies G has property P, and $L_c \cong [H_c, G_c]$ implies G_c does not have property P. Then clearly the lattice in Figure 1 could not be group representable. As the next result shows, however, if a group property and its negation are interval enforceable by the lattices L and L_c, then already at least one of these lattices is not group representable.

Lemma 3.2. If P is a group property that is interval enforceable by a group representable lattice, then it is not the case that $\neg P$ is interval enforceable by a group representable lattice.

4 Recall, for groups subdirectly irreducible is equivalent to having a unique minimal normal subgroup. Every algebra, in particular every group G, has a subdirect decomposition into subdirectly irreducibles, say, $G \hookrightarrow G/N_1 \times \cdots \times G/N_n$, so there are always subdirectly irreducible homomorphic images.
Proof. Assume \mathcal{P} is interval enforceable by the group representable lattice L, and let $H \leq G$ be groups for which $L \cong \llbracket H, G \rrbracket$. If $\neg \mathcal{P}$ is interval enforceable by the group representable lattice L_c, then there exist $H_c \leq G_c$ satisfying $L_c \cong \llbracket H_c, G_c \rrbracket$. Consider the group $G \times G_c$. This has upper intervals $L \cong \llbracket H \times G_c, G \times G_c \rrbracket$ and $L_c \cong \llbracket G \times H_c, G \times G_c \rrbracket$ and therefore, by the interval enforceability assumptions, the group $G \times G_c$ has the properties \mathcal{P} and $\neg \mathcal{P}$ simultaneously, which is a contradiction. □

To take a concrete example, nonsolvability is IE. However, solvability is obviously not IE. For, if $L \cong \llbracket H, G \rrbracket$ then for any nonsolvable group K we have $L \cong \llbracket H \times K, G \times K \rrbracket$, and of course $G \times K$ is nonsolvable. Note that here (and in the proof of Lemma 3.2) the group $H \times K$ at the bottom of the interval is not core-free. So a more interesting question is whether a property and its negation can both be cf-IE. Again, if such a property were found, a lattice of the form in Figure 1 would give a negative answer to the FLRP, though this requires additional justification to address the core-free aspect (see Section 3.3).

This leads to the following question: If \mathcal{P} is core-free interval enforceable by a group representable lattice, does it follow that $\neg \mathcal{P}$ is not core-free interval enforceable by a group representable lattice? We provide an affirmative answer in some special cases, such as when \mathcal{P} means “not solvable” or “not almost simple.” Indeed, Lemma 3.3 implies that the class of solvable groups, and more generally any class of groups that omits certain wreath products, cannot be core-free interval enforceable by a group representable lattice.

Lemma 3.3. Suppose \mathcal{P} is core-free interval enforceable by a group representable lattice. Then, for any finite nonabelian simple group S, there exists a wreath product group of the form $W = S \wr U$ that has property \mathcal{P}.

Proof. Let L be a group representable lattice such that if $L \cong \llbracket H, G \rrbracket$ and $\text{core}_G(H) = 1$ then $G \in \mathcal{X}_L$. Since L is group representable, there exists a \mathcal{P}-group G with $L \cong \llbracket H, G \rrbracket$. We apply an idea of Hans Kurzweil (see [12]) twice. Fix a finite nonabelian simple group S. Suppose the index of H in G is $|G : H| = n$. Then the action of G on the cosets of H induces an automorphism of the group S^n by permutation of coordinates. Denote this representation by $\varphi : G \to \text{Aut}(S^n)$, and let the image of G be $\varphi(G) = G \leq \text{Aut}(S^n)$. The wreath product under this action is the group

$$U := S \wr_\varphi G = S^n \rtimes_\varphi G = S^n \rtimes \hat{G},$$

with multiplication given by

$$(s_1, \ldots, s_n, x)(t_1, \ldots, t_n, y) = (s_1t_{x(1)}, \ldots, s_nt_{x(n)}, xy),$$

for $s_i, t_i \in S$ and $x, y \in \hat{G}$. (For the remainder of the proof, we suppress the semidirect product symbol and write, for example, $S^n\hat{G}$ instead of $S^n \rtimes \hat{G}$.)

An illustration of the subgroup lattice of such a wreath product appears in Figure 2. Note that the interval $[D, S^n]$, where D denotes the diagonal subgroup of S^n, is isomorphic to $\text{Eq}(n)'$, the dual of the lattice of partitions of an n-element set. The dual lattice L' is an upper interval of $\text{Sub}(U)$, namely, $L' \cong [D\hat{G}, U]$.\footnote{These facts, which were proved by Kurzweil in [12], are discussed in greater detail in [8, Section 2.2].}

It is important to note (and we prove below) that if H is core-free in G – equivalently, if $\ker \varphi = 1$ – then the foregoing construction results in the subgroup $D\hat{G}$ being core-free in U. Therefore, by repeating the foregoing procedure, with
Figure 2. Hasse diagram illustrating some features of the subgroup lattice of the wreath product U.

$H_1 = D\tilde{G}$ denoting the (core-free) subgroup of U such that $L' \cong [H_1, U]$, we find that $L = L'' \cong [D_1 U, S^m \tilde{U}]$, where $m = |U : H_1|$, and D_1 denotes the diagonal subgroup of S^m. Since $D_1 U$ will be core-free in $S^m U$ then, it follows by the original hypothesis that $S^m U = S \wr \tilde{U}$ must have property P.

To complete the proof, we check that starting with a core-free subgroup $H \leq G$ in the Kurzweil construction just described results in a core-free subgroup $D\tilde{G} \leq U$. Let $N = \text{core}_U(D\tilde{G})$. Then, for all $w = (d, \ldots, d, x) \in N$ and for all $u = (t_1, \ldots, t_n, g) \in U$, we have $uwu^{-1} \in N$. Fix $w = (d, \ldots, d, x) \in N$. We will choose $u \in U$ so that the condition $uwu^{-1} \in N$ implies x acts trivially on $\{1, \ldots, n\}$. First note that if $u = (t_1, \ldots, t_n, 1)$, then

$$uwu^{-1} = (t_1, \ldots, t_n, 1)(d, \ldots, d, x)(t_1^{-1}, \ldots, t_n^{-1}, 1) = (t_1 dt_{x(1)}^{-1}, \ldots, t_n dt_{x(n)}^{-1}, 1) \in N,$$

and this implies that $t_1 dt_{x(1)}^{-1} = t_2 dt_{x(2)}^{-1} = \cdots = t_n dt_{x(n)}^{-1}$. Suppose by way of contradiction that $x(1) = j \neq 1$. Then, since x is a permutation (hence, one-to-one), $x(k) \neq j$ for each $k \in \{2, 3, \ldots, n\}$. Pick one such k other than j. (This is possible since $n = |G : H| > 2$; for otherwise $H \unlhd G$ contradicting $\text{core}_G(H) = 1$.)

Since $u \in U$ is arbitrary, we may assume $t_1 = t_k$ and $t_{x(1)} = t_j \neq t_{x(k)}$. But this contradicts $t_1 dt_{x(1)}^{-1} = t_k dt_{x(k)}^{-1}$. Therefore, $x(1) = 1$. The same argument shows that $x(i) = i$ for each $1 \leq i \leq n$, and we see that $w = (d, \ldots, d, x) \in N$ implies $x \in \ker \varphi = 1$. This puts N below D, and the only normal subgroup of U that lies below D is the trivial group. \hfill \Box

By the foregoing result we conclude that a class of groups that does not include wreath products of the form $S \wr G$, where S is an arbitrary finite nonabelian simple
group, is not a core-free interval enforceable class. The class of solvable groups is an example.

3.2. **Dedekind’s rule.** When A and B are subgroups of a group G, by AB we mean the set $\{ab \mid a \in A, b \in B\}$, and we write $A \vee B$ or $\langle A, B \rangle$ to denote the subgroup of G generated by A and B. Clearly $AB \subseteq \langle A, B \rangle$; equality holds if and only if A and B permute, by which we mean $AB = BA$.

We will need the following well known result:

Theorem 3.4 (Dedekind’s rule). Let G be a group and let A, B and C be subgroups of G with $A \leq B$. Then,

\begin{align*}
(3.3) & \quad A(C \cap B) = AC \cap B, \quad \text{and} \\
(3.4) & \quad (C \cap B)A = CA \cap B.
\end{align*}

For $A \in \[[H, G]]$, let $A^{\perp(H,G)}$ denote the set of complements of A in the interval $[[H, G]]$. That is,

\[A^{\perp(H,G)} := \{ B \in [H, G] \mid A \cap B = H, \langle A, B \rangle = G \}. \]

Clearly $H^{\perp(H,G)} = \{G\}$ and $G^{\perp(H,G)} = \{H\}$. Recall that an antichain of a partially ordered set is a subset of pairwise incomparable elements.

Corollary 3.5. Let $A \in [[H, G]]$ and let B be a nonempty subset of the set $A^{\perp(H,G)}$ of complements of A in $[[H, G]]$. If every group in B permutes with A, then B is an antichain.

Proof. If B is a singleton, the result holds trivially. So assume B_1 and B_2 are distinct groups in B. We prove $B_1 \nparallel B_2$. Indeed, if $B_1 \leq B_2$, then Theorem 3.4 implies

\[B_1 = B_1 H = B_1 (A \cap B_2) = B_1 A \cap B_2 = G \cap B_2 = B_2, \]

which is a contradiction. \qed

3.3. **Parachute lattices.** We now prove the equivalence of statements (B) and (C) of Section 1.

Theorem 3.6. The following statements are equivalent:

- **(B)** Every finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.
- **(C)** Suppose $n \geq 2$ and $\mathcal{L} = \{L_1, \ldots, L_n\}$ is a set of finite lattices, at least two of which have more than two elements. For each $i = 1, 2, \ldots, n$, let X_i denote the class that is core-free interval enforceable by L_i. Then there exists a finite group $G \in \bigcap_{i=1}^n X_i$ such that for each $L_i \in \mathcal{L}$ we have $L_i \cong [H_i, G]$ for some subgroup H_i, where every $H_i \leq Y < G$ is core-free in G.

Remark. By (C), the FLRP would have a negative answer if we could find a collection X_1, \ldots, X_n of cf-IE classes such that $\bigcap_{i=1}^n X_i$ is empty.

Proof. Obviously (C) implies (B). Assume (B) holds and assume the hypotheses of (C). Construct a new lattice, denoted $\mathcal{P} = \mathcal{P}(L_1, \ldots, L_n)$, as shown in the Hasse diagram of Figure 3 (a), where the bottoms of the L_i sublattices are atoms.
By (B), there exist groups $H < G$ with $\mathcal{P} \cong [H, G]$. We can assume H is a core-free subgroup of G. (If not, replace G and H with G/N and H/N, where $N = \text{core}_G(H).$) Let K, K_1, \ldots, K_n be the subgroups in which H is maximal and for which $L_i \cong [K_i, G]$, $1 \leq i \leq n$. (Figure 3 (b).) We will prove that, for each $1 \leq i \leq n$ every proper subgroup of G that contains K_i is core-free in G. It then follows that $G \in \mathcal{X}_i$ for all $1 \leq i \leq n$, and so $G \in \bigcap_{i=1}^n \mathcal{X}_i$.

Choose Y such that $K_j \leq Y < G$. We will prove Y is core-free. If $N = \text{core}_G(Y)$ were nontrivial, then since H is core-free, we would have $K_j \leq NH \leq Y$. Now, NH permutes with all $X \in [H, G]$, since for such X we have $XNH = NXH = NHX$. Therefore, if N is nontrivial, then the set $(NH)^\perp_{[H, G]}$, the complements of NH in $[H, G]$, forms an antichain by Corollary 3.5. This contradicts the assumption that at least two of the lattices L_i have more than two elements. □

By a parachute lattice, denoted $\mathcal{P}(L_1, \ldots, L_m)$, we mean a lattice just like the one illustrated in Figure 3. We identify some special group properties that are core-free interval enforceable by a parachute lattice.

Lemma 3.7. Let $\mathcal{P} = \mathcal{P}(L_1, \ldots, L_n)$ with $n \geq 2$ and $|L_i| > 2$ for at least two i, and suppose $\mathcal{P} \cong [H, G]$ with H core-free in G.

(i) If $1 \neq N \leq G$, then $NH = G$ and $C_G(N) = 1$.

(ii) G is subdirectly irreducible and nonsolvable.

Remark. If N is abelian, then $N \leq C_G(N)$, so (i) implies that every nontrivial normal subgroup of G is nonabelian.

Proof. (i) Assume $1 \neq N \leq G$. As above, we let K_i denote the subgroups of G corresponding to the atoms of \mathcal{P}, and by the same argument used to prove Theorem 3.6, we see that every subgroup Y with $H \leq Y < G$ is core-free in G. Therefore, $NY = G$ for all $H \leq Y < G$. In particular, $NH = G$.

6See [20, p. 122], for example.
To prove that $C_G(N) = 1$, let $1 \neq M \leq N$ be a minimal normal subgroup of G contained in N. It suffices to prove $C_G(M) = 1$. Note that $C_G(M) \leq N_G(M) = G$. If $C_G(M)$ were nontrivial, then it would follow by (1) that $C_G(M)H = G$. Consider any $H < K < G$. Then $1 < M \cap K < M$ (strictly, by Dedekind’s rule). Now $M \cap K$ is normalized by H and centralized (hence normalized) by $C_G(M)$. Therefore, $M \cap K \leq C_G(M)H = G$, contradicting the minimality of M.

To prove (ii) we first show that G has a unique minimal normal subgroup. Let M be a minimal normal subgroup of G and let $N \leq G$ be any normal subgroup not containing M. We show that $N = 1$. Since both subgroups are normal, the commutator subgroup $[M, N]$ lies in the intersection $M \cap N$, which is trivial by the minimality of M. Thus, M and N centralize each other. In particular, $N \leq C_G(M) = 1$, by (i). Finally, since G has a unique minimal normal subgroup that is nonabelian, G is nonsolvable.

Given two group theoretical properties P_1 and P_2, we write $P_1 \rightarrow P_2$ to denote that a group G has property P_1 only if it also has property P_2. Thus, we clearly have

$$P_1 \rightarrow P_2 \iff \mathcal{X}_{P_1} \subseteq \mathcal{X}_{P_2},$$

where, as above, \mathcal{X}_{P_i} is the class of groups having property P_i. The conjunction $P_1 \wedge \cdots \wedge P_n$ corresponds to the class

$$\bigcap_{i=1}^n \mathcal{X}_{P_i} = \{ G \in \mathcal{G} \mid G \text{ has property } P_i \text{ for all } 1 \leq i \leq n \},$$

and the following is an immediate corollary of the parachute construction:

Corollary 3.8. If P_1, \ldots, P_n are cf-IE properties, then so is $P_1 \wedge \cdots \wedge P_n$.

By Theorem 3.6, Lemma 3.7, and Corollary 3.8, we see that the FLRP has a positive answer (that is, statement (B) is true) if and only if for every finite lattice L there is a finite group G satisfying all of the following:

(i) $L \cong [H, G]$;
(ii) G is nonsolvable, nonalternating, and nonsymmetric;
(iii) $\operatorname{core}_G(Y) = 1$ for all $H \leq Y < G$;
(iv) G has a unique minimal normal subgroup M, which satisfies $C_G(M) = 1$; in particular, M is nonabelian and satisfies $MY = G$ for all $H \leq Y \leq G$.

References

[1] Michael Aschbacher and John Shareshian. Restrictions on the structure of subgroup lattices of finite alternating and symmetric groups. *J. Algebra*, 322(7):2449–2463, 2009. URL: http://dx.doi.org/10.1016/j.jalgebra.2009.05.042.

[2] Robert Baddeley and Andrea Lucchini. On representing finite lattices as intervals in subgroup lattices of finite groups. *J. Algebra*, 196(1):1–100, 1997. URL: http://dx.doi.org/10.1006/jabr.1997.7069.

[3] Adolfo Ballester-Bolinches and Luis M. Ezquerro. *Classes of finite groups*, volume 584 of *Mathematics and Its Applications (Springer)*. Springer, Dordrecht, 2006.

[4] Alberto Basile. *Second maximal subgroups of the finite alternating and symmetric groups*. PhD thesis, Australian National University, Canberra, April 2001.

[5] Joel Berman. *Congruence lattices of finite universal algebras*. PhD thesis, University of Washington, 1970. URL: http://db.tt/eXVTVzKr.

[6] Ferdinand Börner. A remark on the finite lattice representation problem. In *Contributions to general algebra, 11* (Olomouc/Velké Karlovice, 1998), pages 5–38, Klagenfurt, 1999. Heyn.
[7] Richard Dedekind. Über die Anzahl der Ideal-classen in den verschiedenen Ordnungen eines endlichen Körpers. In Festschrift zur Saecularfeier des Geburtstages von C. F. Gauss, pages 1–55. Vieweg, Braunschweig, 1877. see Ges. Werke, Band I, 1930, 105–157.

[8] William DeMeo. Congruence lattices of finite algebras. PhD thesis, University of Hawai‘i at Mānoa, Honolulu, HI, May 2012. arXiv:1204.4305.

[9] John D. Dixon and Brian Mortimer. Permutation groups, volume 163 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1996.

[10] Klaus Doerk and Trevor Hawkes. Finite soluble groups, volume 4 of de Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 1992.

[11] Peter Köhler. M7 as an interval in a subgroup lattice. Algebra Universalis, 17(3):263–266, 1983. URL: http://dx.doi.org/10.1007/BF01194535.

[12] Hans Kurzweil. Endliche Gruppen mit vielen Untergruppen. J. Reine Angew. Math., 356:140–160, 1985. URL: http://dx.doi.org/10.1515/crll.1985.356.140.

[13] Andrea Lucchini. Intervals in subgroup lattices of finite groups. Comm. Algebra, 22(2):529–549, 1994. doi:10.1080/00927879408824862.

[14] Ralph N. McKenzie, George F. McNulty, and Walter F. Taylor. Algebras, lattices, varieties. Vol. I. Wadsworth & Brooks/Cole, Monterey, CA, 1987.

[15] Péter Pál Pálfy. On Feit’s examples of intervals in subgroup lattices. J. Algebra, 116(2):471–479, 1988. doi:10.1016/0021-8693(88)90230-X.

[16] Péter Pál Pálfy. Intervals in subgroup lattices of finite groups. In Groups ’93 Galway/St. Andrews, Vol. 2, volume 212 of London Math. Soc. Lecture Note Ser., pages 482–494. Cambridge Univ. Press, Cambridge, 1995. doi:10.1017/CBO9780511629297.014.

[17] Péter Pál Pálfy. Groups and lattices. In Groups St. Andrews 2001 in Oxford. Vol. II, volume 305 of London Math. Soc. Lecture Note Ser., pages 428–454. Cambridge, 2003. Cambridge Univ. Press. doi:10.1017/CBO9780511542787.014.

[18] Péter Pál Pálfy and Pavel Pudlák. Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups. Algebra Universalis, 11(1):22–27, 1980. doi:10.1007/BF02483080.

[19] Derek J. S. Robinson. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.

[20] John S. Rose. A course on group theory. Dover Publications Inc., New York, 1994. Reprint of the 1978 original [Cambridge University Press; MR0498810 (58 #16847)].

[21] Ada Rottlaender. Nachweis der Existenz nicht-isomorpher Gruppen von gleicher Situation der Untergruppen. Math. Z., 28(1):641–653, 1928. URL: http://dx.doi.org/10.1007/BF01181188.

[22] Roland Schmidt. Subgroup lattices of groups, volume 14 of de Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 1994.

Department of Mathematics, University of South Carolina, Columbia, SC 29208, United States
E-mail address: williandemeo@gmail.com
URL: http://williandemeo.org