About division quaternion algebras
and division symbol algebras

Diana SAVIN

Abstract. In this paper, we find a class of division quaternion algebras over the field $\mathbb{Q}(i)$ and a class of division symbol algebras over a cyclotomic field.

Key Words: quaternion algebras; symbol algebras; cyclotomic fields; Kummer fields; p–adic fields.

2010 AMS Subject Classification: 11R18, 11R37, 11A41, 11R04, 11R52, 11S15, 11F85

1. Preliminaries

Let K be a field with $\text{char } K \neq 2$. Let A be a simple K-algebra and $Z(A)$ be the center of A. We recall that the K-algebra A is called central simple if $Z(A) = K$.

Let n be an arbitrary positive integer, $n \geq 3$ and let ξ be a primitive n-th root of unity. If $\text{char}(K)$ does not divide n and $\xi \in K$, let $K^\ast = K \setminus \{0\}$, $a, b \in K^\ast$ and let A be the algebra over K generated by elements x and y where

$$x^n = a, y^n = b, yx = \xi xy.$$

This algebra is called a symbol algebra (also known as a power norm residue algebra) and it is denoted by $\left(\frac{a, b}{K, \omega}\right)$. J. Milnor, in [Mi; 71], calls it the symbol algebra. For $n = 2$, we obtain the quaternion algebra. Quaternion algebras and symbol algebras are central simple algebras. Quaternion algebras and symbol algebras have many applications in number theory (class field theory). Conditions of some algebras to be split or with division were intensively studied in various papers, as for example in the papers [Fl, Sa;
15], [Sa, Fl, Ci; 09] and [Sa; 14]; [Fl, Sa; 14] in which the authors found some interesting examples of quaternion division algebras, respectively quaternion algebras and symbol algebras which split. In this paper, using some of these results and some properties of cyclotomic fields and $p-$adic fields, we find a class of division quaternion algebras over the field $\mathbb{Q}(i)$ (see Theorem 3.1) and a class of division symbol algebras over a cyclotomic field (see Theorem 3.2).

2. Introduction

In the following, we assume that K is a commutative field and A is a finite dimensional algebra over K. If A is a central simple $K-$ algebra, then the dimension n of A over K is a square. The positive integer $d = \sqrt{n}$ is called the degree of the algebra.

We recall some definitions and properties of the theory of associative algebras, cyclotomic fields and $p-$adic fields, which will be used in our paper.

Definition 2.1. Let $A \neq 0$ be an algebra over the field K. If the equations $ax = b, ya = b, \forall a, b \in A, a \neq 0$, have unique solutions, then the algebra A is called a division algebra. If A is a finite-dimensional algebra, then A is a division algebra if and only if A is without zero divisors ($x \neq 0, y \neq 0 \Rightarrow xy \neq 0$).

Definition 2.2. Let $K \subset L$ be a fields extension and let A be a central simple algebra over the field K. We recall that:

i) A is called split by K if A is isomorphic with a matrix algebra over K.

ii) A is called split by L and L is called a splitting field for A if $A \otimes_K L$ is a matrix algebra over L.

We will denote by $\mathbb{H}_K(\alpha, \beta)$ the generalized quaternion algebra over the field K, the algebra of the elements of the form $a = a_1 \cdot 1 + a_2 e_2 + a_3 e_3 + a_4 e_4$, where $a_i \in K, i \in \{1, 2, 3, 4\}$, and the elements of the basis $\{1, e_2, e_3, e_4\}$ satisfy the following multiplication table:

\cdot	1	e_2	e_3	e_4
1	1	e_2	e_3	e_4
e_2	e_2	e_3	e_4	$-\alpha e_3$
e_3	e_3	$-e_4$	e_2	$-\beta e_2$
e_4	e_4	αe_3	$-\beta e_2$	$-\alpha \beta$
We denote by $n(a)$ the norm of a generalized quaternion a. This norm has the following expression $n(a) = a_1^2 + \alpha a_2^2 + \beta a_3^2 + \alpha \beta a_4^2$. This algebra is a division algebra if and only if for $x \in \mathbb{H}_K(\alpha, \beta)$ we have $n(x) = 0$ if and only if $x = 0$. Otherwise, the algebra $\mathbb{H}_K(\alpha, \beta)$ is called a split algebra.

In the books [Lam; 04], [Pi; 82], [Gi, Sz; 06] appear the following criterions to decide if a quaternion algebra or a symbol algebra is split.

Proposition 2.1. ([Lam; 04], [Pi; 82]) The quaternion algebra $\mathbb{H}_K(\alpha, \beta)$ is split algebra if and only if β is a norm from the extension $K \subseteq K(\sqrt[\alpha]{\alpha})$.

Proposition 2.2. ([Gi, Sz; 06]) The quaternion algebra $\mathbb{H}_K(\alpha, \beta)$ is split if and only if the conic $C(\alpha, \beta): \alpha x^2 + \beta y^2 = z^2$ has a rational point over K (i.e. if there are $x_0, y_0, z_0 \in K$ such that $\alpha x_0^2 + \beta y_0^2 = z_0^2$).

Theorem 2.1. ([Gi, Sz; 06]) Let K be a field such that $\zeta \in K$, $\zeta^n = 1$, ζ is a primitive root, and let $\alpha, \beta \in K^*$. Then the following statements are equivalent:

i) The cyclic algebra $A = \left(\frac{\alpha, \beta}{K} \right)$ is split.

ii) The element β is a norm from the extension $K \subseteq K(\sqrt[\alpha]{\alpha})$.

Theorem 2.2. (The Wedderburn norm criterion) ([Led; 05]). Let n be a positive integer, $n \geq 3$ and let L/K be a cyclic fields extension of order n. Let σ be a generator of the Galois group $\text{Gal}(L/K)$. Then (M, σ, a) is a division algebra if a^d is not a norm in L/K for $d|n, d < n$.

Theorem 2.3 (Weddeburn) ([Mil; 08], [Mi; 71]) Let A be a central simple algebra over the field K. Therefore there are $n \in \mathbb{N}^*$ and a division algebra $D, K \subseteq D$, such that $A \simeq \mathcal{M}_n(D)$. The division algebra D is unique up to an isomorphism.

Theorem 2.4 ([Lan; 02]) Let K be a field, n be an arbitrary positive integer such that $\gcd(n, \text{char}K) = 1$ and K contains a primitive root of order n of unity.

i) Let L be a cyclic extension of degree n. Then, there is $\alpha \in K$ such that $L = K(\alpha)$ and α satisfies the equation $x^n - a = 0$ for some $a \in K$.

ii) Conversely, let $a \in K$ and α be a root of the equation $x^n - a$. Then $K(\alpha)$ is cyclic over K, of degree d, $d|n$ and $\alpha^d \in K$.

In [Br, Pa; 74] E. Brown and J. Parry determined all imaginary bicyclic biquadratic fields $K = \mathbb{Q}(\sqrt{l}, \sqrt{d})$ with class number 1. From these fields, we
use in the section 3 the imaginary biquadratic number fields $K = \mathbb{Q}(\sqrt{l}, \sqrt{d})$ with $l = -1$.

Theorem 2.5 ([Br, Pa; 74]) Let $d < -1$ be a square free integer and the biquadratic field $K = \mathbb{Q}(i, \sqrt{d})$. Then, only values of d for which K has class number 1 are: $d \in \{-163, -67, -43, -37, -19, -11, -7, -5, -3, -2\}$.

3. Division quaternion algebras and symbol algebras, over a quadratic field or over a cyclotomic field

It is known that a quaternion algebra or a symbol algebra of degree p is either split or a division algebra (see [Lam; 04], [Led; 05]).

In the papers [Fl, Sa; 15], [Sa, Fl, Ci; 09], we found some examples of split quaternion and symbol algebras over a quadratic field or over a cyclotomic field. We obtained the following results:

Proposition 3.1 ([Sa, Fl, Ci; 09]) Let p be a prime positive integer, $p \equiv 1 \pmod{3}$ and let $K = \mathbb{Q}(\sqrt{3})$. Then the quaternion algebra $\mathbb{H}_K(-1,p)$ is a split algebra.

Proposition 3.2. ([Sa, Fl, Ci; 09]) Let ϵ be a primitive root of order 3 of the unity. Then the algebras $A = \left(\frac{\alpha \beta}{\mathbb{Q}(\epsilon)}, \epsilon\right)$, for $\alpha, \beta \in \{-1,1\}$ are split algebras.

Let ϵ be a primitive root of order 3 of the unity and $\mathbb{Q}(\epsilon)$ be the cyclotomic field. In the paper [Fl, Sa; 15] using the computer algebra system MAGMA, we obtained that the symbol algebras $\left(\frac{7,11^3}{\mathbb{Q}(\epsilon)}, \epsilon\right)$, $\left(\frac{7,(11+\epsilon)^3}{\mathbb{Q}(\epsilon)}, \epsilon\right)$, $\left(\frac{7,5^3}{\mathbb{Q}(\epsilon)}, \epsilon\right)$ are split algebras and the class number of the Kummer field $\mathbb{Q}(\epsilon, \sqrt[3]{7})$ is 3. Moreover, in the paper [Fl, Sa; 15], we found a class of split symbol algebras, over a cyclotomic field.

Proposition 3.3. ([Fl, Sa; 15]) Let q be an odd prime positive integer and ξ be a primitive root of order q of unity and let $K = \mathbb{Q}(\xi)$ be the cyclotomic field. Let $\alpha \in K^*$, p be a prime rational integer, $p \neq 3$ and let $L = K(\sqrt[3]{\alpha})$ be the Kummer field such that α is a q power residue modulo p. Let h_L be the class number of L. Then, the symbol algebras $A = \left(\frac{\alpha p^{h_L}}{K^*}, \xi\right)$ are split.
In this paper we find a class of quaternion division algebras or division symbol algebras over a p-adic field, over a quadratic field or over a cyclotomic field.

We consider the quadratic field $\mathbb{Q}(i)$ ($i^2 = -1$) and the cyclotomic field $\mathbb{Q}(\xi)$, where ξ is a primitive root of order 3 of the unity. Using the computer algebra system MAGMA, we obtain:

\begin{verbatim}
A := QuaternionAlgebra<RationalField() | 10, 29>; a^2; b^2; a * b;
Q := Rationals(); Z := RingOfIntegers(Q); Z;
E := QuadraticField(-1); a := RootOfUnity(2); a;
Et := PolynomialRing(E); E;
f := t^2 - 10;
K := NumberField(f); K; b^2; NormEquation(K, 29);
\end{verbatim}

Quadratic Field with defining polynomial $t^2 + 1$ over the Rational Field
Number Field with defining polynomial $t^2 - 10$ over E

Therefore, 10 is not a quadratic residue modulo 29, $29 \equiv 1 \pmod{4}$ and 29 is not a norm from the extension $\mathbb{Q}(i) \subseteq \mathbb{Q}(\sqrt{10})$. Using similar calculations in Magma we obtain that 15 is not a quadratic residue modulo 29, 29 is not a norm from the extension $\mathbb{Q}(i) \subseteq \mathbb{Q}(\sqrt{15})$ and 5 is a quadratic residue modulo 29, 29 is a norm from the extension $\mathbb{Q}(i) \subseteq \mathbb{Q}(i, \sqrt{15})$. So, applying Proposition 2.1 it results that the quaternion algebras $\mathbb{H}_{\mathbb{Q}(i)}(10, 29)$ and $\mathbb{H}_{\mathbb{Q}(i)}(15, 29)$ are division algebras and the quaternion algebra $\mathbb{H}_{\mathbb{Q}(i)}(5, 29)$ is a split algebra.

From the second example shown in Magma, it results that 29 is a norm.
from the extension $\mathbb{Q}(\epsilon) \subseteq \mathbb{Q}(\epsilon, \sqrt[3]{7})$, but $43; 13; 19$ are not norms from the extension $\mathbb{Q}(\epsilon) \subseteq \mathbb{Q}(\epsilon, \sqrt[3]{7})$. So, applying Theorem 2.1 or Theorem 2.2, it results that the symbol algebra $\left(\frac{7,29}{\mathbb{Q}(\epsilon)}\epsilon\right)$ is a split algebra, but $\left(\frac{7,43}{\mathbb{Q}(\epsilon)}\epsilon\right)$, $\left(\frac{7,13}{\mathbb{Q}(\epsilon)}\epsilon\right)$, $\left(\frac{7,19}{\mathbb{Q}(\epsilon)}\epsilon\right)$ are division algebras. We remark that $29 \equiv 2 \pmod{3}$, but $43; 13; 19 \equiv 1 \pmod{3}$.

Let ω be a primitive root of order 5 of the unity and let the cyclotomic field $\mathbb{Q}(\omega)$. Similarly with previous examples, using the computer algebra system MAGMA, we obtain that the symbol algebra $\left(\frac{19,37}{\mathbb{Q}(\omega)}\omega\right)$ is a split symbol algebra, but $\left(\frac{19,11}{\mathbb{Q}(\omega)}\omega\right)$, $\left(\frac{19,31}{\mathbb{Q}(\omega)}\omega\right)$ are division symbol algebras. We remark that $37 \equiv 2 \pmod{5}$, but $11; 31 \equiv 1 \pmod{5}$.

Considering these things, we obtain the following results. In these results we use the notations: $(\cdot, \cdot)_p$ for the Hilbert symbol in the p−adic field \mathbb{Q}_p, $\epsilon(\frac{\omega}{K})_v$ for the Hasse invariant at a place v of a field K, $\left[\epsilon \right]$ for the Legendre symbol in \mathbb{Z}, respective $\left[\frac{\omega}{p}\right]$ for the Legendre symbol in $\mathbb{Z}[i]$.

Theorem 3.1. Let p be a prime positive integer such that $p \equiv 1 \pmod{4}$ and let the quadratic field $\mathbb{Q}(i) (i^2 = -1)$. Let α be an integer which is not a quadratic residue modulo p. Then the quaternion algebra $\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p)$ is a division algebra.

Proof. Since α is not a quadratic residue modulo p, it results that $\overline{\alpha} \notin (F^*_p)^2$. Therefore, $F_p(\sqrt{\alpha})/\mathbb{F}_p$ is a cyclic extension of degree 2. From Hensel ’s lemma ([1]), we know that the p−adic field \mathbb{Q}_p contains the roots of order $p − 1$ of the unity. Since $p \equiv 1 \pmod{4}$, we have that $i \in \mathbb{Q}_p$, therefore $\mathbb{Q}(i) \subseteq \mathbb{Q}_p$. We consider the quaternion algebra $\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p) \otimes_{\mathbb{Q}(i)} \mathbb{Q}_p = \mathbb{H}_{\mathbb{Q}_p}(\alpha, p)$.

We consider the equation $\alpha x^2 + py^2 = z^2$. We calculate the Hilbert symbol in $\mathbb{Q}_p : (\alpha, p)_p$. Since α is not a quadratic residue modulo p, it results that p does not divide α. Therefore $(\alpha, p)_p = \left(\frac{\alpha}{p}\right) = -1$. This implies that the equation $\alpha x^2 + py^2 = z^2$ does not have solutions in p−adic field \mathbb{Q}_p. Applying Proposition 2.2, it results that $\mathbb{H}_{\mathbb{Q}_p}(\alpha, p)$ is not split, therefore $\mathbb{H}_{\mathbb{Q}_p}(\alpha, p)$ is a division algebra. This implies that $\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p)$ is a division algebra.

A question which appears in the following is: what happens with the quaternion algebra $\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p)$ when α is a quadratic residue modulo p. Using
Theorem 2.5, the decomposition of a prime integer in the ring of integers of a biquadratic field (see [Mar; 95]) and a reasoning similar to that which we used in the proof of Proposition 3.3 (see [Fl, Sa; 15]) we obtain:

Proposition 3.4. Let \(\alpha \in \{ \pm 2, \pm 3, \pm 5, \pm 7, \pm 11, \pm 13, \pm 19, \pm 37, \pm 43, \pm 67, \pm 163 \} \) and let \(p \) be an odd prime positive integer such that \(\alpha \) is a quadratic residue modulo \(p \) and let the quadratic field \(\mathbb{Q}(i) \) \((i^2 = -1)\). Then the quaternion algebra \(\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p) \) is a split algebra.

Proof. Our first remark is the fact that for every \(\alpha \) from the set \(\{ \pm 2, \pm 3, \pm 5, \pm 7, \pm 11, \pm 13, \pm 19, \pm 37, \pm 43, \pm 67, \pm 163 \} \) there exists an odd prime positive integer \(\alpha \) such that \(\alpha \) is quadratic residue modulo \(p \). Let \(\mathcal{O}_K \) the ring of integers of the biquadratic field \(K = \mathbb{Q}(i, \sqrt{\alpha}) = \mathbb{Q}(i, \sqrt{-\alpha}) \). From the hypothesis follows immediately that \(\mathcal{O}_K \) is a principal ring. We know that, if \(p \equiv 1 \) (mod 4), then \(p \) splits in the ring \(\mathbb{Z}[i] \) in a product of two primes from \(\mathbb{Z}[i] \), respective, if \(p \equiv 3 \) (mod 4), then \(p \) is inert in the ring \(\mathbb{Z}[i] \).

Case 1: if \(p \equiv 1 \) (mod 4). We know that \(\mathbb{Z}[i] \) is a principal ring. So, we have:

\[
p\mathbb{Z}[i] = p_1 \mathbb{Z}[i] p_2 \mathbb{Z}[i],
\]

where \(p_1, p_2 \) are prime elements from \(\mathbb{Z}[i] \). Since \(\alpha \) is quadratic residue modulo \(p \), it results that \(\alpha \) is quadratic residue modulo \(p_1, p_2 \). So, we obtain the following decomposition of the ideal \(p\mathcal{O}_K \):

\[
p\mathcal{O}_K = P_{11} P_{12} P_{21} P_{21},
\]

where \(P_{11} \) and \(P_{12} \) are prime, principal conjugate ideals from the ring \(\mathcal{O}_K \). It results that \(p = N_{\mathbb{K}/\mathbb{Q}(i)}(P_{11}) \). But \(P_{11} \) is a principal ideal, therefore, there exists \(a \in K \) such that \(p = N_{\mathbb{K}/\mathbb{Q}(i)}(a) \). Applying Proposition 2.1 it results that the quaternion algebra \(\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p) \) is a split algebra.

Case 2: if \(p \equiv 3 \) (mod 4), we know that \(p \) is inert in the ring \(\mathbb{Z}[i] \) and having in view that \(\alpha \) is quadratic residue modulo \(p \), we obtain that \(p\mathcal{O}_K = P_1 P_2 \), where \(P_1 \) and \(P_2 \) are prime, principal conjugate ideals from the ring \(\mathcal{O}_K \). Similarly with the case 1, we obtain that the quaternion algebra \(\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p) \) is a split algebra.

In the case when \(p' \) is a prime positive integer, \(p' \equiv 1 \) (mod 4) and \(\alpha \) is an integer which is a quadratic residue modulo \(p' \) we obtain the following result:
Proposition 3.5. Let \(p' \) be a prime positive integer such that \(p' \equiv 1 \) (mod 4) and let the quadratic field \(\mathbb{Q}(i) \) \((i^2 = -1)\). Let \(\alpha \) be an integer such that \(\alpha \) is a quadratic residue modulo \(p' \). Then the quaternion algebra \(\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p') \) is a split algebra.

Proof. We prove that the equation \(\alpha x^2 + p'y^2 = z^2 \) has solutions over \(\mathbb{Q}(i) \). For this we determine the ramified primes in the quaternion algebra \(\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p') \). It is known that a such prime \(p \) divides \(2\alpha p' \) ([Ko], [Ko; 00]). Since \(p' \equiv 1 \) (mod 4) it results that \(p'Z[i] = p'_1Z[i] \cdot p'_2Z[i] \), where \(p'_1Z[i], p'_2Z[i] \in \text{Spec}(Z[i]) \).

We calculate the Hasse invariant: \(\epsilon \left(\frac{\mathbb{Q}(i)}{\mathbb{Q}(i)} \right)_{p'} = \prod_{k=1, k \neq j}^{r} \epsilon \left(\frac{q_k \cdot p'}{\mathbb{Q}(i)} \right)_{p} \cdot \epsilon \left(\frac{p'^j \cdot p'}{\mathbb{Q}(i)} \right)_{p} = \left(\epsilon \left(\frac{p \cdot p'}{\mathbb{Q}(i)} \right)_{p} \right)^{\beta_j} = \left[\frac{p'}{p} \right]^{\beta_j} \). (3.1)

Since \(p' \equiv 1 \) (mod 4), it results that \(p'Z[i] = p'_1Z[i] \cdot p'_2Z[i] \), where \(p'_1Z[i], p'_2Z[i] \) are prime ideals in \(Z[i] \) and \(p'_2 = p_1 \).

Taking into account (3.1) we obtain:

\[\epsilon \left(\frac{\alpha, p'}{\mathbb{Q}(i)} \right)_{p} = \left[\frac{p'_1}{p} \right]^{\beta_j} \cdot \left[\frac{p}{p_1} \right]^{\beta_j} = 1. \]

So, each divisor \(p \equiv 3 \) (mod 4) of \(\alpha \) does not ramify in \(\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p') \).

If \(p \equiv 1 \) (mod 4), it results that \(pZ[i] = p'_1Z[i] \cdot p'_2Z[i] \), where \(p'_1Z[i], p'_2Z[i] \in \text{Spec}(Z[i]) \). Analogously to the previous considerations, we obtain the Hasse invariant \(\epsilon \left(\frac{\alpha, p'}{\mathbb{Q}(i)} \right)_{p_1} = \epsilon \left(\frac{\alpha, p'}{\mathbb{Q}(i)} \right)_{p_2} = 1. \) So, \(p_1, p_2 \) do not ramify in \(\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p') \).
Case 2: if $2|\alpha$.

We know $2 = -i(1+i)^2$, $1+i$ is a prime element in $\mathbb{Z}[i]$, $i \in \mathbb{U}(\mathbb{Z}[i])$.

Considering the results obtained in case 1 and that $\prod_p \epsilon(p_{\mathbb{Q}(i)}) = 1$, is results that $\epsilon(p_{\mathbb{Q}(i)}) = 1$. So, $1+i$ does not ramify in $\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p')$.

From the previously proved, applying Minkovski-Hasse theorem we get that the equation $ax^2 + b'y^2 = z^2$ has solutions over $\mathbb{Q}(i)$, so applying Proposition 2.2 it results that the $\mathbb{H}_{\mathbb{Q}(i)}(\alpha, p')$ is a split algebra.

We asked ourselves if the quaternion algebras from the statement of Proposition 3.5 split over \mathbb{Q}. When a F-quaternion algebra splits over a quadratic field $F(\sqrt{w})$, in the paper [Ri, Lam; 74] are given sufficient conditions for that the F-quaternion algebra splits over F. But this conditions are given only when w is totally positive; this is not our situation (when $F(\sqrt{w}) = \mathbb{Q}(i)$).

When α is also prime, in [Al, Ba; 04] is realized a classification of quaternion algebras $\mathbb{H}_\mathbb{Q}(\alpha, p')$ (in split algebras, respectively division algebras) after congruences satisfied by into α and p'.

Making some computation in Magma we obtain that the answer at our question is negative. For example, if $\alpha = 33$, $p = 29$, we have that $29 \equiv 1 \pmod{4}$ and 33 is a quadratic residue modulo 29. Using Magma we obtain that the discriminant (in fact the generator of this discriminant) of the quaternion algebra $\mathbb{H}_{\mathbb{Q}(i)}(33, 29)$ is 1, so the algebra $\mathbb{H}_{\mathbb{Q}(i)}(33, 29)$ splits, but the discriminant of the quaternion algebra $\mathbb{H}_\mathbb{Q}(33, 29)$ is 33, so the $\mathbb{H}_\mathbb{Q}(33, 29)$ is a division algebra. All ramified primes in the algebra $\mathbb{H}_{\mathbb{Q}(i)}(33, 29)$ are 3 and 11 and we remark that 3 and 11 are not quadratic residues modulo 29. In another example: if $\alpha = 35$, $p = 29$ we obtain that the quaternion algebra $\mathbb{H}_{\mathbb{Q}(i)}(35, 29)$ splits, also the quaternion algebra $\mathbb{H}_\mathbb{Q}(35, 29)$ splits; 35 is a quadratic residue modulo 29 and 5; 7 are also quadratic residues modulo 29. Considering these things, we get the following result.

Proposition 3.6. Let p' be a prime positive integer such that $p' \equiv 1 \pmod{4}$. Let α be an integer such that each divisor of α is a quadratic residue modulo p'. Then the quaternion algebra $\mathbb{H}_\mathbb{Q}(\alpha, p')$ is a split algebra.

Proof. The proof is similar to the proof of Proposition 3.5. . The only difference is when instead of the relation (3.1) from the proof of Proposition 3.5 appears the following situation (using the properties of the Hilbert
symbol):

\[(\alpha, p')_p = \prod_{k=1, k \neq j}^r \left(q_k^{\beta_k} \cdot p'\right)_p \cdot \left(p^{\beta_j} \cdot p'\right)_p = \left(\left(p, p'\right)_p\right)^{\beta_j} = \left(\frac{p'}{p}\right)^{\beta_j}.
\]

Since \(p' \equiv 1 \pmod{4}\), applying quadratic reciprocity law, it results \(\left(\frac{p'}{p}\right) = 1\). Since each divisor of \(\alpha\) is a quadratic residue modulo \(p'\), it results that \(\left(\frac{p}{p'}\right) = 1\). We obtain that \((\alpha, p')_p = 1\) so, each divisor \(p \equiv 3 \pmod{4}\) of \(\alpha\) does not ramify in \(\mathbb{H}_q(\alpha, p')\).

Now, we generalize the Theorem 3.1 for the symbol algebras.

Theorem 3.2. Let \(p\) and \(q\) be prime positive integers such that \(p \equiv 1 \pmod{q}\), \(\xi\) be a primitive root of order \(q\) of unity and let \(K = \mathbb{Q}(\xi)\) be the cyclotomic field. Then there exists an integer \(\alpha\) not divisible by \(p\) whose residue class mod \(p\) does not belongs to \((\mathbb{F}_p^*)^q\) and for every such an \(\alpha\), we have:

i) the algebra \(A \otimes_K \mathbb{Q}_p\) is a division algebra over \(\mathbb{Q}_p\), where \(A\) is the symbol algebra \(A = \left(\frac{\alpha, p}{K, \xi}\right)\);

ii) the symbol algebra \(A\) is a division algebra over \(K\).

Proof. Let be the homomorphism \(f : \mathbb{F}_p^* \to \mathbb{F}_p^*, f(x) = x^q\). Since \(q\) divides \(p - 1\), it results \(\text{Ker}(f) = \{x \in \mathbb{F}_p^* | x^q \equiv 1 \pmod{p}\}\) is non-trivial, so \(f\) is not injective. So, \(f\) is not surjective. It results that there exists \(\overline{\alpha}\) (in \(\mathbb{F}_p^*\)) which does not belongs to \((\mathbb{F}_p^*)^q\). So, \(\mathbb{F}_p \subset \mathbb{F}_p^*\left(\sqrt[q]{\alpha}\right)\).

The extension of fields \(\mathbb{F}_p^*\left(\sqrt[q]{\alpha}\right)/\mathbb{F}_p\) is a cyclic extension of degree \(q\). Applying Hensel’s lemma and the fact that \(p \equiv 1 \pmod{q}\), it results that \(\mathbb{Q}_p\) contains the \(q\)-th roots of the unity, therefore \(\mathbb{Q}(\xi) \subset \mathbb{Q}_p\). We consider the symbol algebra \(A \otimes_K \mathbb{Q}_p = \left(\frac{\alpha, p}{\mathbb{Q}_p, \xi}\right)\). Applying Theorem 2.4, it results that the extension \(\mathbb{Q}_p(\sqrt[q]{\alpha})/\mathbb{Q}_p\) is a cyclic unramified extension of degree \(q\), therefore a norm of an element from this extension can be a positive power of \(p\), but can not be \(p\). Applying Theorem 2.1, we get that \(\left(\frac{\alpha, p}{\mathbb{Q}_p, \xi}\right)\) is not a split algebra, therefore it is a division algebra. This implies that \(A\) is a symbol division algebra.

Conclusions. In this paper we found a class of quaternion division...
algebras or division symbol algebras over a p-adic field, over a quadratic field or over a cyclotomic field.

Using the computer algebra system MAGMA over the quadratic field $\mathbb{Q}(i)$ ($i^2 = -1$) and the cyclotomic field $\mathbb{Q}(\epsilon)$, where ϵ is a primitive root of order 3 of the unity, we obtain very good examples which allowed us to find conditions in the Theorem 3.1, Proposition 3.4, Proposition 3.5 and Theorem 3.2.

Acknowledgements. The author is very grateful to Professor Victor Alexandru for many helpful discussions about this paper which helped the author to improve this paper. The author thanks Professor David Kohel for the discussions about the ramified primes in a quaternion algebra and Professor Ali Mouhib for the discussions about biquadratic fields. Also, the author thanks Professors Ezra Brown and Kenneth S. Williams for the fact that they provided to the author the paper [Br, Pa; 74] and Professor Montse Vela for the fact that she provided to the author the paper [Ri, Lam; 74].

References

[Al, Go; 99] V. Alexandru, N.M Gosoniu, *Elements of Number Theory* (in Romanian), Ed. Bucharest University, 1999.

[Al, Ba; 04] M. Alsina, P. Bayer, *Quaternion Orders, Quadratic Forms and Shimura Curves*, CRM Monograph Series, vol. 22, American Mathematical Society, 2004.

[Br, Pa; 74] E. Brown, C. J. Parry, *The imaginary bicyclic biquadratic fields with class - number 1*, J. Reine Angew Math. 226, 1974, p. 118-126.

[Ri, Lam; 74] R. Elman, T.Y. Lam, *Classification Theorems for Quadratic Forms over Fields*, Commentarii Mathematici Helvetici, 49, 1974, p. 373-381.

[Fl, Sa; 14] C. Flaut, D. Savin, *Some properties of the symbol algebras of degree 3*, Math. Reports, vol. 16(66), no. 3, 2014, p.443-463.

[Fl, Sa; 15] C. Flaut, D. Savin, *Some examples of division symbol algebras of degree 3 and 5*, accepted in Carpathian J Math.

[Gi, Sz; 06] P. Gille, T. Szamuely, *Central Simple Algebras and Galois Cohomology*, Cambridge University Press, 2006.

[Ko] D. Kohel, *Quaternion algebras*, echidna.maths.usyd.edu.au/kohel/alg/doc/
AlgQuat.pdf

[Ko; 00] D. Kohel, *Hecke module structure of quaternions*, Proceedings of Class Field Theory - Centenary and Prospect (Tokyo, 1998), K. Miyake, ed., Advanced Studies in Pure Mathematics, 30, 177-196, 2000.

[Ko, La, Pe, Ti; 14] D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol, *On the quaternion l-isogeny path problem*, LMS Journal of Computational Mathematics, 17, 418-432, 2014.

[Lam; 04] T. Y. Lam, *Introduction to Quadratic Forms over Fields*, American Mathematical Society, 2004.

[Lan; 02] S. Lang, *Algebra*, Springer-Verlag, 2002.

[Led; 05] A. Ledet, *Brauer Type Embedding Problems*, American Mathematical Society, 2005.

[Lem;00] F. Lemmermeyer, *Reciprocity laws, from Euler to Eisenstein*, Springer-Verlag, Heidelberg, 2000.

[Mar; 95] D. Marcus, *Number fields*, Universitext, 1995.

[Mil; 08] J.S. Milne, *Class Field Theory*, http://www.math.lsa.umich.edu/~jmilne.

[Mi; 71] J. Milnor, *Introduction to Algebraic K-Theory*, Annals of Mathematics Studies, Princeton Univ. Press, 1971.

[Pi; 82] Pierce, R.S., *Associative Algebras*, Springer Verlag, 1982.

[Sa, Fl, Ci; 09] D. Savin, C.Flaut, C.Ciobanu, *Some properties of the symbol algebras*, Carpathian Journal of Mathematics, 25(2)(2009), p. 239-245.

[Sa; 14] D. Savin, *About some split central simple algebras*, An. Stiin. Univ. "Ovidius" Constanța, Ser. Mat, 22 (1) (2014), p. 263-272.

Diana SAVIN,
Faculty of Mathematics and Computer Science,
Ovidius University of Constanța,
Constanta 900527, Bd. Mamaia no.124, România
Email: savin.diana@univ-ovidius.ro