ON MONOTONE FOURIER COEFFICIENTS OF A FUNCTION
BELONGING TO NIKOL’SKIĬ–BESOV CLASSES

M. Q. BERISHA AND F. M. BERISHA

Abstract. In this paper, necessary and sufficient conditions on terms of
monotone Fourier coefficients for a function to belong to a Nikol’skii–Besov
type class are given.

1. Let \(f \in L^p[0, 2\pi] \), \(1 < p < \infty \), be a \(2\pi \)-periodic function having a cosine Fourier
series with monotone coefficients, i.e.

\[
f(x) \sim \sum_{n=0}^{\infty} a_n \cos nx, \quad a_n \downarrow 0.
\]

and \(\omega_k(f, t)_p \) the modulus of smoothness of order \(k \) in \(L^p[0, 2\pi] \) metrics of the
function \(f \), i.e.

\[
\omega_k(f, t)_p = \sup_{|h| \leq t} \| \Delta_k^h f \|_p,
\]

where is

\[
\Delta_k^h f(x) = \sum_{\nu=0}^{k} (-1)^{k-\nu} \binom{k}{\nu} f(x + \nu h).
\]

We say that a \(2\pi \)-periodic function \(f \) belongs to the Nikol’skii–Besov class
\(N(p, \theta, r, \lambda, \varphi) \), \(1 < p < \infty \), if the following conditions are satisfied

1. \(f \in L^p[0, 2\pi] \);
2. Numbers \(\theta, r, \lambda \) belong to the interval \((0, \infty) \), and \(k \) is an integer satisfying
 \(k > r + \lambda \);
3. The following inequality holds true
 \[
 \left(\int_{\delta}^{1} t^{-r \theta - 1} \omega_k(f, t)^{\theta} dt + \delta^{\lambda \theta} \int_{\delta}^{1} t^{-(r + \lambda) \theta - 1} \omega_k(f, t)^{\theta} dt \right)^{1/\theta} \leq C \varphi(\delta),
 \]
 while the function \(\varphi \) satisfies the conditions

 (4) \(\varphi \) is a non-negative continuous function on \((0, 1) \) and \(\varphi \neq 0 \);
 (5) For every \(\delta_1, \delta_2 \) such that \(0 \leq \delta_1 \leq \delta_2 \leq 1 \) holds \(\varphi(\delta_1) \leq C_1 \varphi(\delta_2) \);
 (6) For every \(\delta \) such that \(0 \leq \delta \leq \frac{1}{2} \) holds \(\varphi(2\delta) \leq C_2 \varphi(\delta) \),

where constant \(C, C_1 \) and \(C_2 \) do not depend on \(\delta_1, \delta_2 \) and \(\delta \).

A more detailed approach to the classes \(N(p, \theta, r, \lambda, \varphi) \) is given in [8] (see also [5]
p. 298)). In our paper we give the necessary and sufficient condition in terms of
monotone Fourier coefficients for a function \(f \in L^p[0, 2\pi] \) to belong to the class
\(N(p, \theta, r, \lambda, \varphi) \).

1991 Mathematics Subject Classification. Primary 42A16.
Key words and phrases. Monotone Fourier coefficients, modulus of smoothness, Nikol’skii, Besov, periodic functions, best approximations by trigonometric polynomials.

1Without mentioning it explicitly, we will consider all the constants positive.
2. Now we formulate our results.

Theorem 2.1. A function f belongs to the class $N(p, \theta, r, \lambda, \varphi)$ if and only if

$$
\left(\sum_{\nu=n+1}^{\infty} \omega_k \left(\frac{1}{\nu} \right)^{\theta} \nu^{\theta-1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} \omega_k \left(\frac{1}{\nu} \right)^{\theta} \nu^{(r+\lambda)(\theta-1)} \right)^{1/\theta} \leq C \varphi \left(\frac{1}{n} \right),
$$

(2.1)

where constant C does not depend on n.

Theorem 2.2. For a function $f \in L_p[0, 2\pi]$, $1 < p < \infty$, such that

$$
f(x) \sim \sum_{\nu=1}^{\infty} a_{\nu} \cos \nu x, \quad a_{\nu} \downarrow 0,
$$

(2.2)

to belong to the class $N(p, \theta, r, \lambda, \varphi)$ it is necessary and sufficient that its Fourier coefficients satisfy the condition

$$
\left(\sum_{\nu=n+1}^{\infty} a_{\nu}^{\theta} \nu^{\theta+\theta-\theta/p-1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^{\theta} \nu^{\theta+\theta-\theta/p-1} \right)^{1/\theta} \leq C \varphi \left(\frac{1}{n} \right),
$$

where constant C does not depend on n.

Remark 1. Put $\varphi(\delta) = \delta^\alpha$, $0 < \alpha < \lambda$, in the definition of the class $N(p, \theta, r, \lambda, \varphi)$, we obtain the Nikol’skiĭ class $H_p^{r+\alpha}$. Thus Theorems 2.1 and 2.2 give the single coefficient condition

$$
a_{\nu} \leq \frac{C}{\nu^{r+\alpha+1-\frac{1}{p}}},
$$

for $f \in H_p^{r+\alpha}$, given in [7] (see also [3]), where the function f is given by (2.2).

Remark 2. If $\varphi(\delta) \geq C$, then we obtain the Besov class $B_p^{\theta r}$. Thus Theorems 2.1 and 2.2 give the necessary and sufficient condition

$$
\sum_{\nu=1}^{\infty} a_{\nu}^{\theta} \nu^{\theta-\theta/p-1} < \infty
$$

for $f \in B_p^{\theta r}$, given in [8] (see also [4]), where the function f is given by (2.2).

3. In order to establish our results, we use the following lemmas.

Lemma 3.1. Let $0 < \alpha < \beta < \infty$ and $a_{\nu} \geq 0$. The following inequality holds true

$$
\left(\sum_{\nu=1}^{n} a_{\nu}^{\beta} \right)^{1/\beta} \leq \left(\sum_{\nu=1}^{n} a_{\nu}^{\alpha} \right)^{1/\alpha}.
$$

Proof of the lemma is due to Jensen [4, p. 43].

Lemma 3.2. Let $\{a_{\nu}\}_{\nu=1}^{\infty}$ be a sequence of non-negative numbers, $\alpha > 0$, λ a real number, m and n positive integers such that $m < n$. Then

1. for $1 \leq p < \infty$ the following equalities hold

$$
\sum_{\mu=m}^{n} \mu^{\alpha-1} \left(\sum_{\nu=\mu}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \leq C_1 \sum_{\mu=m}^{n} \mu^{\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p},
$$

$$
\sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{\nu=\mu}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \leq C_2 \sum_{\mu=m}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p};
$$

Here and below we assume that the parameters θ, r, λ and k satisfy the condition [2] and the function φ satisfies the conditions [3] of the definition of the class $N(p, \theta, r, \lambda, \varphi).$
(2) for $0 < p \leq 1$ the following equalities hold
\[
\sum_{\mu = m}^{n} \mu^{-\alpha} \left(\sum_{\nu = \mu}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \geq C_{3} \sum_{\mu = m}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p},
\]
\[
\sum_{\mu = m}^{n} \mu^{-\alpha-1} \left(\sum_{\nu = \mu}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \geq C_{4} \sum_{\mu = m}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p},
\]
where constants C_{1}, C_{2}, C_{3} and C_{4} depend only on numbers α, λ and p, and do not depend on m, n as well as on the sequence $\{a_{\nu}\}_{\nu=1}^{\infty}$.

Proof of the lemma is given in [2].

We write $a_{\nu} \downarrow$ if $\{a_{\nu}\}_{\nu=1}^{\infty}$ is a monotone–decreasing sequence of non-negative numbers, i.e. if $a_{\nu} \geq a_{\nu+1} \geq 0$ ($\nu = 1, 2, \ldots$).

Lemma 3.3. Let $a_{\nu} \downarrow$, $\alpha > 0$, λ a real number, m and n positive integers. Then

1. for $1 \leq p < \infty$, $n \geq 16m$ the following equalities hold
\[
\sum_{\mu = m}^{n} \mu^{-\alpha} \left(\sum_{\nu = \mu}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \geq C_{1} \sum_{\mu = m}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p},
\]
\[
\sum_{\mu = m}^{n} \mu^{-\alpha-1} \left(\sum_{\nu = \mu}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \geq C_{2} \sum_{\mu = m}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p},
\]

2. for $0 < p \leq 1$, $n \geq 4m$ the following equalities hold
\[
\sum_{\mu = 4m}^{n} \mu^{-\alpha} \left(\sum_{\nu = \mu}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \leq C_{3} \sum_{\mu = m}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p},
\]
\[
\sum_{\mu = 4m}^{n} \mu^{-\alpha-1} \left(\sum_{\nu = \mu}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \leq C_{4} \sum_{\mu = m}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p},
\]

where constants C_{1}, C_{2}, C_{3} and C_{4} depend only on numbers α, λ and p, and do not depend on m, n as well as on the sequence $\{a_{\nu}\}_{\nu=1}^{\infty}$.

Proof of the lemma is given in [2].

Lemma 3.4. Let $a_{\nu} \downarrow$, $\alpha > 0$, λ a real number, m and n positive integers. For $0 < p < \infty$ the following inequalities hold
\[
C_{1} \sum_{\mu = 1}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p} \leq \sum_{\mu = 1}^{n} \mu^{-\alpha} \left(\sum_{\nu = \mu}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \leq C_{2} \sum_{\mu = 1}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p},
\]
\[
C_{3} \sum_{\mu = 1}^{n} \mu^{-\alpha} (a_{\mu} \mu^{\lambda+1})^{p} \leq \sum_{\mu = 1}^{n} \mu^{-\alpha-1} \left(\sum_{\nu = 1}^{n} a_{\nu} \nu^{\lambda} \right)^{p} \leq C_{4} \sum_{\mu = 1}^{n} \mu^{-\alpha-1} (a_{\mu} \mu^{\lambda+1})^{p},
\]
where constants C_{1}, C_{2}, C_{3} and C_{4} depend only on numbers α, λ and p, and do not depend on m, n as well as on the sequence $\{a_{\nu}\}_{\nu=1}^{\infty}$.

The lemma is also proved in [2].

Lemma 3.5. Let $f \in L_{p}[0, 2\pi]$ for a fixed p from the interval $1 < p < \infty$ and let
\[
f(x) \sim \sum_{\nu = 1}^{\infty} a_{\nu} \cos \nu x, \quad a_{\nu} \downarrow 0.
\]
The following inequalities hold
\[
C_1 \frac{1}{n^2} \left(\sum_{\nu=1}^{n} a_{\nu \nu}^p \nu^{(k+1)p-2} \right)^{1/p} + \left(\sum_{\nu=n+1}^{\infty} a_{\nu \nu}^p \nu^{p-2} \right)^{1/p} \leq \omega_k \left(f, \frac{1}{n} \right)_p
\]
\[
\leq C_2 \frac{1}{n^2} \left(\sum_{\nu=1}^{n} a_{\nu \nu}^p \nu^{(k+1)p-2} \right)^{1/p} + \left(\sum_{\nu=n+1}^{\infty} a_{\nu \nu}^p \nu^{p-2} \right)^{1/p},
\]
where constants C_1 and C_2 do not depend on n and f.

The lemma is proved in [9].

4. Now we prove our results.

Proof of Theorem 2.1 Put
\[
I_1 = \int_{0}^{\pi/\nu} t^{-(r+\theta-1)} \omega_k(f, t)_p^p dt, \quad I_2 = \int_{\pi/\nu}^{1} t^{-(r+\lambda+\theta-1)} \omega_k(f, t)_p^p dt.
\]

We have [9] p. 55]
\[
I_1 = \int_{0}^{\pi/\nu} t^{-(r+\theta-1)} \omega_k(f, t)_p^p dt = \sum_{\nu=1+1}^{\infty} \int_{\pi/\nu}^{1} t^{-(r+\theta-1)} \omega_k(f, t)_p^p dt
\]
\[
\leq \sum_{\nu=1+1}^{\infty} \omega_k \left(f, \frac{1}{\nu+1} \right)_p^p \int_{\pi/\nu}^{1} t^{-(r+\theta-1)} dt \leq C_1 \sum_{\nu=1+1}^{\infty} \omega_k \left(f, \frac{1}{\nu+1} \right)_p^p \nu^{r+\theta-1}
\]
and, taking into account properties of modulus of smoothness [10] p. 116],
\[
I_1 \geq \sum_{\nu=n+1}^{\infty} \omega_k \left(f, \frac{1}{\nu} \right)_p^p \int_{\pi/\nu}^{1} t^{-(r+\theta-1)} dt \geq C_2 \sum_{\nu=n+1}^{\infty} \omega_k \left(f, \frac{1}{\nu} \right)_p^p \nu^{r+\theta-1}.
\]

In an analogous way we estimate
\[
I_2 \leq \sum_{\nu=1}^{n} \omega_k \left(f, \frac{1}{\nu} \right)_p^p \int_{\pi/\nu}^{1} t^{-(r+\lambda+\theta-1)} dt \leq C_3 \sum_{\nu=1}^{n} \omega_k \left(f, \frac{1}{\nu} \right)_p^p \nu^{r+\lambda+\theta-1}
\]
and
\[
I_2 \geq \sum_{\nu=1}^{n} \omega_k \left(f, \frac{1}{\nu} \right)_p^p \int_{\pi/\nu}^{1} t^{-(r+\lambda+\theta-1)} dt \geq C_3 \sum_{\nu=1}^{n} \omega_k \left(f, \frac{1}{\nu} \right)_p^p \nu^{r+\lambda+\theta-1}.
\]

Let $f \in N(p, \theta, r, \lambda, \phi)$. For a positive integer n we put $\delta = \frac{1}{n+1}$. Then we have
\[
l^\theta = I_1 + \delta^\theta I_2.
\]

Hence we obtain
\[
J = \left(\sum_{\nu=n+1}^{\infty} \omega_k \left(f, \frac{1}{\nu} \right)_p^p \nu^{r+\theta-1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} \omega_k \left(f, \frac{1}{\nu} \right)_p^p \nu^{r+\lambda+\theta-1} \right)^{1/\theta}
\]
\[
\leq C_6 I \leq C_7 \varphi(\delta) = C_7 \varphi \left(\frac{1}{n+1} \right) \leq C_8 \varphi \left(\frac{1}{n} \right),
\]
which proves inequality (2.1).
Now we suppose that inequality (2.1) holds. For \(\delta \in (0, 1) \) we choose the positive integer \(n \) satisfying \(\frac{1}{n+1} < \delta \leq \frac{1}{n} \). Then, taking into consideration the estimates from above for \(I_1 \) and \(I_2 \) we have

\[
I^\theta = \int_0^{\frac{1}{n+\varepsilon}} t^{-\theta-1} \omega_k(f, t)^{\theta}_p dt + \int_{\frac{1}{n+\varepsilon}}^{\delta} t^{-\theta-1} \omega_k(f, t)^{\theta}_p dt + \delta^{\lambda \theta} \int_{\delta}^{1} t^{-(r+\lambda)\theta-1} \omega_k(f, t)^{\theta}_p dt \leq I_1 + \delta^{\lambda \theta} I_2 \leq C_9 \left(\sum_{\nu=n+1}^{\infty} \omega_k \left(f, \frac{1}{\nu} \right)^{\theta}_p + \nu^{-\lambda \theta} \sum_{\nu=1}^{n} \omega_k \left(f, \frac{1}{\nu} \right)^{\theta}_p \right) \nu^{(r+\lambda)\theta-1}.
\]

Whence

\[
I \leq C_{10} J \leq C_{11} \phi \left(\frac{1}{n} \right) \leq C_{12} \phi \left(\frac{1}{2n} \right) \leq C_{13} \phi(\delta),
\]

implying \(f \in N(p, \theta, r, \lambda, \varphi) \).

Proof of Theorem 2.2. Theorem 2.1 implies that the condition \(f \in N(p, \theta, r, \lambda, \varphi) \) is equivalent to the condition

\[
\sum_{\nu=n+1}^{\infty} \omega_k \left(f, \frac{1}{\nu} \right)^{\theta}_p + \nu^{-\lambda \theta} \sum_{\nu=1}^{n} \omega_k \left(f, \frac{1}{\nu} \right)^{\theta}_p \leq C_1 \phi \left(\frac{1}{n} \right)^{\theta},
\]

where constant \(C_1 \) does not depend on \(n \). Lemma 3.5 yields that the last estimate is equivalent to the estimate \[p. 31\]

\[
\sum_{\nu=n+1}^{\infty} \nu^{(r-k)\theta-1} \left(\sum_{\mu=1}^{\nu} a^{(k+1)p-2}_\mu \right)^{\theta/p} + \nu^{-\lambda \theta} \sum_{\nu=1}^{n} \nu^{(r-k)\theta-1} \left(\sum_{\mu=1}^{\nu} a^{(k+1)p-2}_\mu \right)^{\theta/p} + \nu^{-\lambda \theta} \sum_{\nu=1}^{n} \nu^{(r-k)\theta-1} \left(\sum_{\mu=1}^{\nu} a^{(k+2)p-2}_\mu \right)^{\theta/p} \leq C_2 \phi \left(\frac{1}{n} \right)^{\theta},
\]

where constant \(C_2 \) does not depend on \(n \). Hence, if we denote the terms on the left-hand side of the inequality by \(J_1, J_2, J_3 \) and \(J_4 \) respectively, then condition \(f \in N(p, \theta, r, \lambda, \varphi) \) is equivalent to the condition

\[
J_1 + J_2 + J_3 + J_4 \leq C_2 \phi \left(\frac{1}{n} \right)^{\theta}. \tag{4.1}
\]

Now we estimate the terms \(J_1, J_2, J_3 \) and \(J_4 \) from below and above by means of expression taking part in the condition of the theorem.

First we estimate \(J_1 \) and \(J_2 \) from below. We have

\[
J_1 = \sum_{\nu=n+1}^{\infty} \nu^{(r-k)\theta-1} \left(\sum_{\mu=1}^{\nu} a^{(k+1)p-2}_\mu \right)^{\theta/p} \geq \sum_{\nu=n+1}^{\infty} \nu^{-(k-r)\theta-1} \left(\sum_{\mu=1}^{\nu} a^{(k+1)p-2}_\mu \right)^{\theta/p}.
\]
For $k - r > 0$, making use of Lemmas 3.2 and 3.3 we obtain
\[J_1 \geq C_3 \sum_{\nu=4(n+1)}^{\infty} \nu^{-(k-r)}(a_p \nu^{(k+1)p-2} \nu)^{\theta/p} = C_3 \sum_{\nu=4(n+1)}^{\infty} a_p \nu^{\theta+k-\theta/p} - 1. \quad (4.2) \]

In an analogous way, for $r \theta > 0$ we get
\[J_2 = \sum_{\nu=n+1}^{\infty} \nu^{\theta-1} \left(\sum_{\mu=\nu}^{\infty} a_p \mu^{(k+1)p-2} \right)^{\theta/p} \geq C_4 \sum_{\nu=8(n+1)}^{\infty} a_p \nu^{\theta+k-\theta/p} - 1. \quad (4.3) \]

We estimate the term J_2 from above:
\[J_2 \leq C_5 \sum_{\nu=\lceil \frac{n}{4} \rceil}^{\infty} \nu^{\theta-1} (a_p \nu)^{\theta+k-\theta/p} = C_5 \sum_{\nu=\lceil \frac{n}{4} \rceil}^{\infty} a_p \nu^{\theta+k-\theta/p} - 1. \quad (4.4) \]

For J_1 we have
\[J_1 \leq C_6 \left(\sum_{\nu=n+1}^{\infty} \nu^{-(k-r)\theta-1} \right) \left(\sum_{\mu=n+1}^{\nu} a_p \mu^{(k+1)p-2} \right)^{\theta/p} + \sum_{\nu=n+1}^{\infty} \nu^{-(k-r)\theta-1} \left(\sum_{\mu=1}^{n} a_p \mu^{(k+1)p-2} \right)^{\theta/p}, \]
and applying once more Lemmas 3.2 and 3.3 we obtain
\[J_1 \leq C_7 \sum_{\nu=\lceil \frac{n}{4} \rceil}^{\infty} a_p \nu^{\theta+k-\theta/p} + n^{-(k-r)\theta} \left(\sum_{\mu=1}^{n} a_p \mu^{(k+1)p-2} \right)^{\theta/p}. \quad (4.5) \]

Put
\[I_1 = n^{-(k-r)\theta} \sum_{\mu=1}^{n} a_p \mu^{(k+1)p-2}. \]

Then for
\[I_2 = I_1 n^{(k-r)\theta}, \]

taking into account that $(k+1)p - 2 \geq 0$ and $a_\nu \downarrow 0$ we get
\[I_2 = \sum_{\mu=1}^{n} a_p \mu^{(k+1)p-2} \leq \sum_{\mu=1}^{\lceil \frac{n}{2} \rceil} a_p \mu^{(k+1)p-2} + a_p \left[\frac{n}{2} \right] + 1 \sum_{\mu=\left[\frac{n}{2} \right] + 1}^{n} \mu^{(k+1)p-2} \leq \sum_{\mu=1}^{\lceil \frac{n}{2} \rceil} a_p \mu^{(k+1)p-2} + C_8 n^{(k+1)p-1} a_p \left[\frac{n}{2} \right] + 1 \leq C_9 \sum_{\mu=1}^{\lceil \frac{n}{2} \rceil} a_p \mu^{(k+1)p-2}. \]
Since $k - r - \lambda > 0$, we have

\[
I_1^{\theta/p} \leq C_{10} n^{-(k-r)\theta} \left(\sum_{\mu=1}^{\left\lfloor \frac{n}{2} \right\rfloor} a_{\mu}^p \mu^{(k+1)p-2} \right)^{\theta/p}
\]

\[
\leq C_{11} n^{-\lambda \theta} \sum_{\nu=1}^{n} \nu^{-(k-r-\lambda)\theta-1} \left(\sum_{\mu=1}^{\nu} a_{\mu}^p \mu^{(k+1)p-2} \right)^{\theta/p}
\]

\[
\leq C_{11} n^{-\lambda \theta} \sum_{\nu=1}^{n} \nu^{-(k-r-\lambda)\theta-1} \left(\sum_{\mu=1}^{\nu} a_{\mu}^p \mu^{(k+1)p-2} \right)^{\theta/p}.
\]

Applying Lemma 3.4 we obtain

\[
I_1^{\theta/p} \leq C_{12} n^{-\lambda \theta} \sum_{\nu=1}^{n} \nu^{-(k-r-\lambda)\theta-1} (a_{\nu}^p \nu^{(k+1)p-2})^{\theta/p}
\]

\[
= C_{12} n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^p \nu^{(r+\lambda)\theta+\theta-\theta/p-1}.
\]

From (4.5) it follows that

\[
J_1 \leq C_{13} \left(\sum_{\nu=1}^{\infty} a_{\nu}^p \nu^{r+\theta-\theta/p-1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^p \nu^{(r+\lambda)\theta+\theta-\theta/p-1} \right).
\]

This way, inequalities (4.2), (4.3), (4.4) and (4.6) yield

\[
C_{14} \sum_{\nu=8(n+1)}^{\infty} a_{\nu}^p \nu^{r+\theta-\theta/p-1} \leq J_1 + J_2
\]

\[
\leq C_{15} \left(\sum_{\nu=1}^{\infty} a_{\nu}^p \nu^{r+\theta-\theta/p-1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^p \nu^{(r+\lambda)\theta+\theta-\theta/p-1} \right).
\]

Now we estimate J_3 and J_4. Put

\[
A_1 = n^{\lambda \theta} J_3 = \sum_{\nu=1}^{n} \nu^{(r+\lambda-k)\theta-1} \left(\sum_{\mu=1}^{\nu} a_{\mu}^p \mu^{(k+1)p-2} \right)^{\theta/p}
\]

and

\[
A_2 = n^{\lambda \theta} J_4 = \sum_{\nu=1}^{n} \nu^{(r+\lambda)\theta-1} \left(\sum_{\mu=\nu}^{\infty} a_{\mu}^p \mu^{p-2} \right)^{\theta/p},
\]

applying Lemma 3.4 for $r + \lambda - k < 0$ we get

\[
A_1 \leq C_{16} \sum_{\nu=1}^{n} a_{\nu}^p \nu^{(r+\lambda)\theta+\theta-\theta/p-1}.
\]

We estimate A_2 in an analogous way:

\[
A_2 \leq C_{17} \left(\sum_{\nu=1}^{n} \nu^{(r+\lambda)\theta-1} \left(\sum_{\mu=\nu}^{n} a_{\mu}^p \mu^{p-2} \right)^{\theta/p} \right)
\]

\[
+ \sum_{\nu=1}^{n} \nu^{(r+\lambda)\theta-1} \left(\sum_{\mu=n+1}^{\infty} a_{\mu}^p \mu^{p-2} \right)^{\theta/p}
\]

\[
\leq C_{18} \left(\sum_{\nu=1}^{n} a_{\nu}^p \nu^{(r+\lambda)\theta+\theta-\theta/p-1} + n^{(r+\lambda)\theta} \left(\sum_{\mu=n+1}^{\infty} a_{\mu}^p \mu^{p-2} \right)^{\theta/p} \right).
\]
We estimate the series
\[B = \left(\sum_{\mu=n+1}^{\infty} a_{\mu}^p \mu^{p-2} \right)^{\theta/p}. \]

First let \(\frac{\theta}{p} > 1 \). Applying Hölder inequality we have
\[
\sum_{\mu=n+1}^{\infty} a_{\mu}^p \mu^{p-2} \leq \left(\sum_{\mu=n+1}^{\infty} \left(a_{\mu}^p \mu^{p-1+rp-p/\theta}\right)^{p/\theta} \right)^{\theta/p} \times \left(\sum_{\mu=n+1}^{\infty} \left(\mu^{-\left(rp-p/\theta+1\right)}\right)^{(\theta-p)/\theta} \right).
\]

Since \((rp - \frac{\theta}{p} + 1) \frac{\theta}{p-\theta} = rp\frac{\theta}{p-\theta} + 1 > 1 \), we get
\[
\sum_{\mu=n+1}^{\infty} a_{\mu}^p \mu^{p-2} \leq C_{19} n^{-rp} \left(\sum_{\mu=n+1}^{\infty} a_{\mu}^p \mu^{\theta-\theta/p+1} \right)^{p/\theta}.
\]

So, for \(\frac{\theta}{p} > 1 \) we have proved that
\[
B \leq C_{20} n^{-r \theta} \sum_{\mu=n+1}^{\infty} a_{\mu}^p \mu^{\theta-\theta/p-1}.
\]

Let \(\frac{\theta}{p} \leq 1 \). For given \(n \) we choose the positive integer \(N \) such that \(2^N \leq n + 1 < 2^{N+1} \). Then we have
\[
B \leq \left(\sum_{\mu=2^N}^{\infty} a_{\mu}^p \mu^{p-2} \right)^{\theta/p} \leq \left(\sum_{\nu=N}^{\infty} a_{\nu}^p \sum_{\mu=2^\nu}^{2^{\nu+1}-1} \mu^{p-2} \right)^{\theta/p} \leq C_{21} \left(\sum_{\nu=N}^{\infty} a_{\nu}^p \nu^{p-1} \right)^{\theta/p}.
\]

Making use of Lemma \ref{lemma} we obtain
\[
B \leq C_{21} \sum_{\nu=N}^{\infty} a_{\nu}^p \nu^{\theta-\theta/p} \leq C_{22} \sum_{\nu=N}^{\infty} \sum_{\mu=2^\nu}^{2^{\nu+1}-1} a_{\mu}^p \mu^{\theta-\theta/p-1} \leq C_{22} \sum_{\nu=\left[\frac{n+1}{4}\right]}^{\infty} a_{\nu}^p \nu^{\theta-\theta/p-1} \leq C_{22} \left[\frac{n+1}{4} \right]^{-r \theta} \sum_{\nu=\left[\frac{n+1}{4}\right]}^{\infty} a_{\nu}^p \nu^{\theta-\theta/p-1}.
\]

Since for \(n \geq 3 \) holds \(\left[\frac{n+1}{4}\right] \geq \frac{n}{7} \), we get
\[
B \leq C_{23} n^{-r \theta} \sum_{\nu=\left[\frac{n+1}{4}\right]}^{\infty} a_{\nu}^p \nu^{\theta-\theta/p-1}.
\]

This way, for \(0 < \frac{\theta}{p} < \infty \) we proved that
\[
B \leq C_{24} n^{-r \theta} \sum_{\nu=\left[\frac{n+1}{4}\right]}^{\infty} a_{\nu}^p \nu^{\theta-\theta/p-1}.
\]
Hence \((4.10)\) yields
\[
A_2 \leq C_{25} \left(\sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1} + n^{\lambda\theta} \sum_{\nu=|\nu|+1}^{\infty} a_{\nu}^\theta \nu^{r\theta+\theta-\theta/p-1} \right).
\]

Now, from \((4.8)\) it follows that
\[
J_3 + J_4 = n^{-\lambda\theta} (A_1 + A_2)
\]
\[
\leq C_{26} \left(n^{-\lambda\theta} \sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1} + \sum_{\nu=n+1}^{\infty} a_{\nu}^\theta \nu^{r\theta+\theta-\theta/p-1} \right).
\tag{4.10}
\]

Further, we estimate the series
\[
A_3 = \sum_{\nu=|\nu|+1}^{\infty} a_{\nu}^\theta \nu^{r\theta+\theta-\theta/p-1} = A_4 + \sum_{\nu=n+1}^{\infty} a_{\nu}^\theta \nu^{r\theta+\theta-\theta/p-1},
\]
where is
\[
A_4 = \sum_{\nu=|\nu|+1}^{n} a_{\nu}^\theta \nu^{r\theta+\theta-\theta/p-1} \leq C_{27} a_{\nu}^\theta \nu^{r\theta+\theta/p}
\]
\[
\leq C_{28} n^{-\lambda\theta} \sum_{\nu=1}^{n+1} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1} \leq C_{28} n^{-\lambda\theta} \sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1}.
\]

Whence
\[
A_3 \leq C_{29} \left(n^{-\lambda\theta} \sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1} + \sum_{\nu=n+1}^{\infty} a_{\nu}^\theta \nu^{r\theta+\theta-\theta/p-1} \right).
\tag{4.11}
\]

Making use of \((4.11)\) and \((4.10)\) we have
\[
J_3 + J_4 \leq C_{30} \left(n^{-\lambda\theta} \sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1} + \sum_{\nu=n+1}^{\infty} a_{\nu}^\theta \nu^{r\theta+\theta-\theta/p-1} \right).
\]

Hence, applying \((4.11)\) in \((4.7)\) we obtain
\[
J_1 + J_2 + J_3 + J_4
\]
\[
\leq C_{31} \left(n^{-\lambda\theta} \sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1} + \sum_{\nu=n+1}^{\infty} a_{\nu}^\theta \nu^{r\theta+\theta-\theta/p-1} \right).
\tag{4.12}
\]

Now we estimate \(A_1\) and \(A_2\) from below. Making use of Lemma 3.3 we get
\[
A_1 \geq C_{32} \sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1},
\]
and in an analogous way
\[
A_2 \geq \sum_{\nu=1}^{n} \nu^{r(p+\lambda)\theta-1} \left(\sum_{\mu=0}^{n} a_{\nu}^\mu \nu^{\mu-\nu-2} \right)^{\theta/p} \geq C_{33} \sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1}.
\]

Hence
\[
A_1 + A_2 \geq C_{34} \sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1}.
\]

This way the following inequality holds
\[
J_3 + J_4 \geq C_{35} n^{-\lambda\theta} \sum_{\nu=1}^{n} a_{\nu}^\theta \nu^{(r+\lambda)\theta-\theta/p-1}.
\]
From (14.7) it follows that
\[J_1 + J_2 + J_3 + J_4 \]
\[\geq C_{36} \left(\sum_{\nu=8(n+1)}^{\infty} a_{\nu}^{\theta} \nu^{\theta - \theta/p - 1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^{\theta} (r + \lambda) \nu^{\theta - \theta/p - 1} \right). \] (4.13)

Since
\[\sum_{\nu=n+1}^{\infty} a_{\nu}^{\theta} \nu^{\theta - \theta/p - 1} \leq C_{37} a_{n}^{\theta} n^{\theta - \theta/p} \]
\[\leq C_{38} n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^{\theta} (r + \lambda) \nu^{\theta - \theta/p - 1} \]
holds, we have
\[\sum_{\nu=n+1}^{\infty} a_{\nu}^{\theta} \nu^{\theta - \theta/p - 1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^{\theta} (r + \lambda) \nu^{\theta - \theta/p - 1} \]
\[\leq C_{39} \left(\sum_{\nu=8(n+1)}^{\infty} a_{\nu}^{\theta} \nu^{\theta - \theta/p - 1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^{\theta} (r + \lambda) \nu^{\theta - \theta/p - 1} \right). \]

Now, estimates (14.13) and (14.12) imply
\[C_{40} \left(\sum_{\nu=n+1}^{\infty} a_{\nu}^{\theta} \nu^{\theta - \theta/p - 1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^{\theta} (r + \lambda) \nu^{\theta - \theta/p - 1} \right) \]
\[\leq J_1 + J_2 + J_3 + J_4 \]
\[\leq C_{41} \left(\sum_{\nu=n+1}^{\infty} a_{\nu}^{\theta} \nu^{\theta - \theta/p - 1} + n^{-\lambda \theta} \sum_{\nu=1}^{n} a_{\nu}^{\theta} (r + \lambda) \nu^{\theta - \theta/p - 1} \right). \]

This way we proved that condition (2.1) is equivalent to the condition of the theorem. Since condition (2.1) is equivalent to the condition \(f \in N(p, \theta, r, \lambda, \varphi) \), proof of Theorem 2.2 is completed. \(\square \)

References

1. N. K. Bari, *Trigonometric series*, Izd. Fiz.-Mat. Lit., Moscow, 1961. MR 23 #A3411
2. F. M. Berisha, *On some weighted \(L_p \) type inequalities about monotone sequences*, (preprint).
3. M. Q. Berisha, *O koefficjentach Fur' e nekotorykh klassov funktsii*, Glas. Mat. Ser. III 16(36) (1981), no. 1, 75–90. MR 83a:42003
4. M. Q. Berisha, *O koefficjentach Fur' e funktsii prinadlezhashchikh klassam Besova typa B(\(p, \theta, \alpha \))*, Serdica 11 (1985), no. 1, 79–85. MR 87a:42010
5. O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, *Integral'nye predstavleniya funktsii i teoremy vlozheniya*, Fizmatlit "Nauka", Moscow, 1996. MR 98b:46037
6. G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, Cambridge University Press, Cambridge, 1988. (Russian translation, Gosudarstv. Izdat. Inostrannoi Literatury, Moscow, 1948). MR 89d:26016
7. A. A. Konyushkov, *O klassakh lpshtsa*, Izv. Akad. Nauk SSSR. Ser. Mat. 21 (1957), no. 3, 423–448.
8. B. Laković, *Ob odnom klasse funktsii*, Mat. Vesnik 30 (1978), no. 4, 405–415. MR 80h:41062
9. M. K. Potapov and M. Q. Berisha, *Moduli gladkosti i koefficjenty Fur' e periodicheskikh funktsii ednogo peremennogo*, Publ. Inst. Math. (Beograd) (N.S.) 26(40) (1979), 215–228. MR 81e:42009
10. A. F. Timan, *Teoriya priblizheniya funktsii deistvitel'’nogo peremennogo*, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1960. MR 22 #8257
Faculty of Mathematics and Sciences, University of Prishtina, Nëna Terezë 5, 10000 Prishtina, Kosovo

E-mail address: faton.berisha@uni-pr.edu