Impact of enhanced recovery after surgery on postoperative neutrophil–lymphocyte ratio in patients with colorectal cancer

Xiao Liu¹,², Yuwei Wang³ and Zhongxue Fu¹

Abstract

Objective: To investigate the impact of enhanced recovery after surgery (ERAS) on the postoperative neutrophil–lymphocyte ratio (NLR) in patients with colorectal cancer.

Methods: A total of 200 patients with colorectal cancer who underwent surgery between January 2015 and November 2018 were enrolled in the study. They were divided into a traditional treatment group (n=100) and an ERAS group (n=100). The traditional treatment group underwent radical laparoscopic colorectal surgery, and the ERAS group underwent traditional treatment plus the ERAS protocol (preoperative improvement of glucose tolerance, unconventional indwelling stomach and urinary tubes, intraoperative body temperature management, fluid management, postoperative pain management, early oral feeding, and early activities). Clinical data were collected for all patients. NLR levels before and after surgery, and complications were compared between the two groups.

Results: Postoperative NLR was significantly lower in the ERAS compared with the traditional treatment group. The incidence of complications, including anastomotic leakage, pulmonary infection, urinary tract infection, and cardiopulmonary dysfunction were also significantly lower in the ERAS group.

Conclusion: Enhanced recovery after surgery can reduce the increase in postoperative NLR and reduce the occurrence of postoperative complications, which results will be of clinical value.

¹Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
²Department of General Surgery, The Fifth People’s Hospital of Chongqing, Chongqing, China
³Cancer Radiotherapy Center of Chongqing Cancer Hospital, Chongqing, China

Corresponding author:
Zhongxue Fu, Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
Email: fzx990521@sina.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Keywords
Enhanced recovery after surgery, neutrophil–lymphocyte ratio, colorectal cancer, complication, inflammation, perioperative management

Date received: 12 December 2019; accepted: 20 April 2020

Introduction
Colorectal cancer (CRC) is the third most common malignant tumor worldwide with the fourth highest mortality rate, and is ranked fifth in terms of incidence and mortality in China. Surgery is currently the most effective treatment option for CRC, combined with other treatments for a comprehensive approach. However, traditional colorectal surgery has a long preoperative preparation time, and is associated with an obvious perioperative stress response, slow recovery of postoperative gastrointestinal function, and numerous complications. Kehlet and Slim first proposed the concept of enhanced recovery after surgery in the late 1990s (fast track surgery), and its subsequent improvement has since led to the development of the enhanced recovery after surgery (ERAS) concept. ERAS has been practiced in the field of CRC for over 10 years. ERAS protocols have evolved from simple postoperative accelerated rehabilitation to treatment measures around the perioperative period, and the relevant diagnosis and treatment approaches can effectively aid patient recovery, reduce treatment time, and reduce medical expenses and hospital resources.

Inflammation has been identified as a carcinogenic factor, with increasing evidence of an important role for inflammation in the development of cancer. Inflammation has also been associated with the occurrence and severity of surgical complications; for example, the neutrophil–lymphocyte ratio (NLR) has been associated with the prognosis of multiple malignancies, with a high NLR indicating a poor prognosis. McSorley et al. showed that NLR was associated with postoperative complications, confirming that inflammation could be used as a predictor of certain postoperative complications. The current study aimed to assess the impact of ERAS on postoperative NLR in patients with CRC, and to establish laboratory indicators of ERAS compared with traditional perioperative management.

Patients and methods
General information
Patients with CRC treated at The Fifth People’s Hospital of Chongqing from January 2015 to November 2018 were eligible for the study. The inclusion criteria were as follows: 1) pathologically confirmed CRC; 2) treated with one-stage radical resection (excluding Miles procedure) by the same group of doctors; 3) good nutritional status; 4) no significant heart, lung, kidney, or other important organ dysfunction; 5) no distant tumor metastasis; 6) no previous abdominal surgery; 7) no radiotherapy or chemotherapy; and 8) anesthesia ASA score < 4 points. The exclusion criteria were: 1) patients with such intestinal as obstruction or perforation requiring immediate surgery; 2) severe malnutrition; 3) poor mobility; 4) anesthesia ASA score > 4 points; and 5) mental illness.
Patients were divided into two groups: a traditional treatment group collected from January 2015 to December 2016, and an ERAS group collected from January 2017, included in chronological order. Clinical data were collected and compared between the two groups, including information on age, sex, ASA grade, basic disease, tumor location, stage, and physiological index. All patients provided signed informed consent for participation in the study, and this study was approved by the Ethics Committee of The Fifth People’s Hospital of Chongqing from January 2015.

Treatment

All patients underwent the usual examinations and preoperative preparations. All patients were treated by the same surgeon. The same laparoscopic instruments were used by the same group of doctors, and all patients underwent radical laparoscopic colorectal surgery according to their condition. The traditional treatment group underwent radical laparoscopic colorectal surgery, and the ERAS group underwent the same surgical procedure combined with ERAS protocol for diagnosis and treatment. The respective treatments are detailed in Table 1.

Observation index

Fasting peripheral blood was collected from all patients within 24 hours before surgery, and the preoperative NLR (expressed by the absolute value of neutrophils divided by the absolute value of lymphocytes) was calculated. To assess the postoperative inflammatory response, fasting peripheral blood was drawn at 9 a.m. on postoperative day 3 to calculate postoperative NLR, just as the computing method of Janez et al. Complications, including anastomotic leakage and pulmonary infection, were observed in both groups during the course of treatment.

Statistical analysis

All collected information was analyzed using SPSS Statistics for Windows, version 22.0 (SPSS Inc., Chicago, IL, USA). Quantitative variables with a normal distribution were expressed as mean ± standard deviation. Differences between the two groups were compared using t-tests, and qualitative data were analyzed using χ² tests. A value of \(P < 0.05 \) indicated statistical significance.

Results

Patient information

A total of 200 patients were enrolled according to the inclusion and exclusion criteria, including 100 patients in the traditional treatment group and 100 in the ERAS group. The patient characteristics are shown in Table 2. There was no significant difference in age, sex, body mass index, anesthesia ASA score, tumor site, or tumor TNM stage between the traditional treatment group and the ERAS group.

Postoperative complications

The postoperative complications in each group are presented in Table 3. Among the postoperative complications, the incidences of anastomotic leakage, pulmonary infection, urinary tract infection, and cardiopulmonary dysfunction were all significantly higher in the traditional compared with the ERAS group \((P < 0.05) \), but there was no significant difference in deep vein thrombosis, wound infection, gastrointestinal bleeding, and postoperative intestinal obstruction. All patients were discharged after symptomatic treatment.
Table 1. Comparison of intervention measures during the perioperative period between the ERAS and control groups.

	Traditional treatment	ERAS
Preoperative preparation	No specific temperature-control measures	Maintain normal body temperature (underarm 36.0–37.0°C) by, e.g., regulating room temperature, infusion heating device
1: Propaganda and education	Fasting for 8–12 hours before operation; drinking forbidden 2 hours before surgery; routine mechanical enema before surgery; routine indwelling gastric tube and urinary catheter	Polyethylene glycol 4000 (Fusong; English name: Macrogol 4000 powder; Bofu-Epson, Tianjin, Pharmaceutical Co., Ltd., Tianjin, China), 200 g dissolved in 2000 mL of warm water administered orally 1 day before surgery (provided by the hospital); 500 mL 10% glucose solution administered orally 2 hours before surgery; gastric and urethral tubes not placed before surgery
2: Gastrointestinal preparation	No specific requirements	Analgesia administered via continuous epidural analgesia, intravenous self-controlled analgesia pump, non-steroidal anti-inflammatory drugs, and multimodal analgesia
Intraoperative operation	No specific requirements	Analgesia
1: Body temperature management	No specific requirements	Esophageal Doppler ultrasound used to monitor effects of fluid intake on cardiac output, and to determine fluid perfusion during the procedure
2: Liquid management	No specific requirements	Analgesia
Postoperative intervention	Intramuscular analgesics given when the patient reported severe pain	Analgesia administered via continuous epidural analgesia, intravenous self-controlled analgesia pump, non-steroidal anti-inflammatory drugs, and multimodal analgesia
1: Analgesia	After surgery, the indwelling catheter was left in place for 4–7 days; gastric tube removed after first anal exhaustion	Catheter left for < 3 days after low-rectal surgery, and colon indwelling catheter left for < 1 day. No nasogastric tube left after surgery
2: Catheter indwelling	Stomach tube withdrawn after venting; soft food, gradually become semi-liquid, followed by normal diet	Eating encouraged 4 hours after surgery if patient’s condition stable, with slow transition to fluid diet based on gastrointestinal tolerance
3: Early enteral nutrition	Postoperative activities taken on a voluntary basis	Patient encouraged to get out of bed within 24 hours after surgery, under the guidance of the nursing staff, if the patient can withstand it
4: Early activities		

ERAS, enhanced recovery after surgery.
Table 2. Comparison of preoperative clinical data between the two groups.

Parameter	ERAS	Traditional treatment	Statistics	P value
Age, years	68.49 ± 11.17	65.95 ± 10.08	t = -1.731	0.087
Sex, male/female	57/43	48/52		
BMI, kg/m²	21.96 ± 2.21	22.29 ± 2.39	t = 1.013	0.313
ASA score, n			$\chi^2 = 0.59$	0.744
	I	33		
	II	38		
	III	29		
Tumor location, n			$\chi^2 = 0.394$	0.821
Rectal cancer	50	48		
Left colon cancer	31	35		
Right colon cancer	19	17		
TNM stage (number of cases)			$\chi^2 = 0.375$	0.829
I	30	34		
II	44	41		
III	26	25		

Data presented as mean ± standard deviation or n. ERAS, enhanced recovery after surgery; BMI, body mass index.

Table 3. Comparison of postoperative complications between the two groups.

	Anastomotic fistula	Lung infection	Deep vein thrombosis	Heart and lung dysfunction	Intestinal obstruction	Incision infection	Urinary tract infection	Gastrointestinal bleeding
ERAS	0	1	0	4	2	1	2	0
Traditional	6	8	3	14	4	2	10	1
treatment								
χ^2	6.186	5.701	3.046	6.105	0.687	0.338	5.674	1.005
P value	0.029	0.035	0.081	0.024	0.407	0.561	0.033	0.316

ERAS, enhanced recovery after surgery.

Postoperative recovery

Details of the postoperative recovery parameters are presented in Table 4. First exhaust time, first defecation time, length of hospital stay, and hospitalization cost were all significantly longer in the traditional compared with the ERAS group ($P < 0.01$). There was also no significant difference in preoperative total protein (TP) or preoperative albumin (ALB) between the groups, but postoperative TP and postoperative ALB were both significantly higher in the traditional compared with the ERAS group ($P < 0.01$).

Perioperative laboratory data

Laboratory data for the two groups are presented in Table 5. There was no significant difference in preoperative NLR between the two groups, but postoperative NLR was significantly higher in the traditional compared with the ERAS group ($P < 0.01$). There was also no significant difference in preoperative total protein (TP) or preoperative albumin (ALB) between the groups, but postoperative TP and postoperative ALB were both significantly higher in the traditional compared with the ERAS group ($P < 0.01$).

Discussion

Previous studies have shown that postoperative pain, surgical stress (e.g., organ dysfunction), postoperative nausea and vomiting, intestinal obstruction, restricted mobility,
drainage tube, and discomfort caused by a stomach tube can all affect the rehabilitation of patients after colorectal surgery.\(^{13}\) It is therefore necessary to develop appropriate intervention methods to address the source of the stress, and to explore the best postoperative management programs.\(^{14,15}\) Accelerated rehabilitation and recovery after surgery can be promoted by reducing postoperative pressure, rational treatment of pain, early recovery diet, and early activities.

Preoperative bowel preparation can cause dehydration and electrolyte imbalance, especially in elderly patients,\(^ {16}\) with a risk of intestinal bacteria-related disorders. Similarly, a previous meta-analysis\(^ {17}\) showed that bowel preparation was not beneficial in patients undergoing colon surgery, and may increase the risk of postoperative anastomotic leakage. However, preoperative bowel preparation is suitable for patients requiring intraoperative colonoscopy or who have severe constipation, and it may also promote postoperative gastrointestinal functional recovery. In the current study, patients in the ERAS group did not undergo preoperative mechanical bowel preparation and had significantly shorter times to first anal exhaust and defecation compared with the conventional treatment group, in accord with the results of numerous previous studies.\(^ {18-20}\) However, both the traditional treatment group and the ERAS group had longer times to first exhaust and defecation compared with other studies.\(^ {21}\) This apparent discrepancy may be due to differences in marking the time to first venting and defecation; although early irregular postoperative intestinal activity can result in exhaust, only exhaust during regular gastrointestinal activity represents overall recovery of intestinal function. Furthermore, the experimental subjects in the current were relatively old, which may also have affected the results.

Surgical treatment may cause not only physiological trauma, but also a stress

Table 4. Comparison of postoperative data between the two groups.

	First exhaust time (days)	First defecation time (days)	Hospital stay (days)	Hospitalization expenses (10,000 ¥)
Traditional treatment	3.83 ± 0.66	5.09 ± 0.53	12.13 ± 2.58	5.08 ± 0.66
ERAS	2.95 ± 0.54	4.13 ± 0.55	8.96 ± 0.59	4.00 ± 0.56
t value	10.893	11.78	12.125	14.073
P value	<0.01	<0.01	<0.01	<0.01

Table 5. Comparisons of neutrophil–lymphocyte ratio, total protein, and albumin during the perioperative period between the two groups.

Parameter	Traditional treatment	ERAS	t value	P value
Preoperative NLR	2.96 ± 0.98	3.03 ± 0.92	-0.559	0.577
Postoperative NLR	3.71 ± 0.68	3.22 ± 0.85	4.666	<0.01
Preoperative TP (g/L)	71.40 ± 5.36	70.09 ± 6.12	1.565	0.121
Preoperative ALB (g/L)	45.78 ± 3.67	44.94 ± 3.80	1.556	0.123
Postoperative TP (g/L)	52.92 ± 1.73	57.82 ± 2.27	-17.145	<0.01
Postoperative ALB (g/L)	32.83 ± 1.69	37.07 ± 1.46	-18.33	<0.01

ERAS, enhanced recovery after surgery; NLR, neutrophil–lymphocyte ratio; TP, total protein; ALB, albumin.
response, in patients with CRC, charac-
terized by increased catabolism. In the cur-
rent study, TP and ALB levels decreased signifi-
cantly after surgery in both groups; how-
ever, levels of ALB and TP on postop-
erative day 4 were significantly higher in the
ERAS group compared with the traditional
treatment group. This may be a direct ben-
efit of early oral feeding, though some stud-
ies have indicated that it may promote
insulin sensitivity by regulating the stress
response, which reduces protein
breakdown.

To reduce complications such as postop-
erative fever, atelectasis, pneumonia, and
gastric retention, stomach tubes should
not be placed routinely in patients under-
going rectal surgery. Placement of a drain-
age tube can cause pain in the wound and
surgical site, with negative effects on the
patient. Furthermore, early out-of-bed
activities and the use of an abdominal
 Victaie tube cannot reduce the occurrence
of complications such as anastomotic leak-
age. Removing the drainage tube as soon
as possible after surgery aids early patient
activity, thus avoiding wound infection,
pneumonia, and bed-rest complications
such as gastric retention. In this study, the
incidence of complications was generally
lower in the ERAS group compared with
the traditional treatment group, with signif-
ically lower incidences of anastomotic leak-
age, pulmonary infection, urinary tract
infection, and cardiopulmonary dysfunc-
tion, as seen in other studies. However,
there was no significant difference in the
incidence of deep vein thrombosis, wound
infection, gastrointestinal bleeding, or post-
operative intestinal obstruction. This may
have been because patients in the tradition-
al treatment group received relevant phys-
iotherapy during the hospitalization period;
however, although this practice can be ben-
eficial during the perioperative period, it
also increases hospitalization costs. A pre-
vious study of the ERAS program in CRC
patients aged > 80 years showed that pro-
longed hospitalization was an independent
risk factor for postoperative complications,
consistent with the current results.

The inflammatory response occurs
throughout the perioperative period in
patients with CRC, resulting in an
imbalance between pro-inflammatory and
anti-inflammatory cytokines. Increased
and prolonged inflammation has been
shown to increase mortality and morbid-
ity. The NLR and platelet-lymphocyte
ratio are simple peripheral blood parame-
ters for assessing the inflammatory response
and physiological stress during the perio-
erative period. The neuroendocrine
system is activated during anesthesia and
surgery, leading to the release of neuroen-
docrine hormones and cytokines, and
 systemic leukocyte changes (including leu-
kocytosis, neutropenia, and lymphopenia)
may occur in response to various hormones
during and after surgery, cytokines and
acute phase reactants, lymphocyte apopto-
sis, or inhibition of neutrophil apoptosis.
The preoperative NLR reflects the relation-
ship between tumor progression and the
body’s immune system, with high values
often indicating greater tumor proliferation
and metastatic ability, and relatively low
immune function. The postoperative NLR
is associated with the postoperative stress
response reflecting the body’s inflamma-
tory response and potential for self-repair.
In the current study, the postoperative
NLR was higher than the preoperative
NLR, suggesting a poor prognosis or exces-
sive inflammatory response. A previous
study evaluating the correlation between
NLR and postoperative complications in
patients undergoing major abdominal sur-
gery found a cut-off NLR for postoperative
 complications of 5.5. NLR is not only
affected by surgical trauma, but also by
anesthesia. ERAS procedures were car-
ried out throughout the perioperative
period, including reasonable preparation
before surgery, strict control during surgery, and a series of early recovery programs that have proven effective in reducing the patient’s stress and inflammatory responses, thereby reducing the occurrence of complications.

This study was limited by its long time span, and the results may therefore have been affected by any increase in surgical skills and experience throughout the course of the study.

The results of the current study showed that ERAS could effectively reduce the stress response, surgical damage due to hypothermia and excess fluid rehydration, the infection rate, and hospitalization costs, as well as shortening hospitalization time. The change in NLR can be used as a testing indicator, and suggests that ERAS is better than traditional perioperative management in terms of patient rehabilitation.

Declaration of conflicting interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

1. Siegel RL, Miller KD and Jemal A. Colorectal cancer mortality rates in adults aged 20 to 54 years in the United States, 1970-2014. *JAMA* 2017; 318: 572–574.

2. Torre LA, Siegel RL, Ward EM, et al. Global cancer incidence and mortality rates and trends—an update. *Cancer Epidemiol Biomarkers Prev* 2016; 25: 16–27.

3. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. *CA Cancer J Clin* 2016; 66: 115–132.

4. Kehlet H and Slim K. The future of fast-track surgery. *Br J Surg* 2012; 99: 1025–1026.

5. Elinav E, Nowarski R, Thaiss CA, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. *Nat Rev Cancer* 2013; 13: 759–771.

6. Mcsorley ST, Watt DG, Horgan PG, et al. Postoperative systemic inflammatory response, complication severity, and survival following surgery for colorectal cancer. *Ann Surg Oncol* 2016; 23: 2832–2840.

7. Lin JK, Yueh TC, Chang SC, et al. The influence of fecal diversion and anastomotic leakage on survival after resection of rectal cancer. *J Gastrointest Surg* 2011; 15: 2251–2261.

8. Shibutani M, Maeda K, Nagahara H, et al. The prognostic significance of a postoperative systemic inflammatory response in patients with colorectal cancer. *World J Surg Oncol* 2015; 13: 194.

9. Tu XP, Qiu QH, Chen LS, et al. Preoperative neutrophil-to-lymphocyte ratio is an independent prognostic marker in patients with laryngeal squamous cell carcinoma. *BMC Cancer* 2015; 15: 743.

10. Maeda K, Shibutani M, Otani H, et al. Inflammation-based factors and prognosis in patients with colorectal cancer. *World J Gastrointest Oncol* 2015; 7: 111–117.

11. Mohri Y, Tanaka K, Toiyama Y, et al. Impact of preoperative neutrophil to lymphocyte ratio and postoperative infectious complications on survival after curative gastrectomy for gastric cancer: a single institutional cohort study. *Medicine (Baltimore)* 2016; 95: e3125.

12. Janez J, Korac T, Kodre AR, et al. Laparoscopically assisted colorectal surgery provides better short-term clinical and inflammatory outcomes compared to open colorectal surgery. *Arch Med Sci* 2015; 11: 1217–1226.

13. Slim K and Vignaud M. Enhanced recovery after surgery: the patient, the team, and the
14. Nelson G, Kiyang LN, Crumley ET, et al. Implementation of enhanced recovery after surgery (ERAS) across a provincial healthcare system: the ERAS Alberta colorectal surgery experience. *World J Surg* 2016; 40: 1092–1103.

15. Zang YF, Li FZ, Ji ZP, et al. Application value of enhanced recovery after surgery for total laparoscopic uncut Roux-en-Y gastrojejunostomy after distal gastrectomy. *World J Gastroenterol* 2018; 24: 504–510.

16. Zhu AC, Agarwala A and Bao X. Perioperative fluid management in the enhanced recovery after surgery (ERAS) pathway. *Clin Colon Rectal Surg* 2019; 32: 114–120.

17. Guenaga KK, Matos D and Wille-Jørgensen P. Mechanical bowel preparation for elective colorectal surgery. *Cochrane Database Syst Rev* 2011; 9: CD001544.

18. Li Q, Du L, Lu L, et al. Clinical application of enhanced recovery after surgery in perioperative period of laparoscopic colorectal cancer surgery. *J Laparoendosc Adv Surg Tech A* 2019; 29: 178–183.

19. Depalma N, Cassini D, Grieco M, et al. Feasibility of a tailored ERAS programme in octogenarian patients undergoing minimally invasive surgery for colorectal cancer. *Aging Clin Exp Res* 2020; 32: 265–273.

20. Ni X, Jia D, Chen Y, et al. Is the enhanced recovery after surgery (ERAS) program effective and safe in laparoscopic colorectal cancer surgery? A meta-analysis of randomized controlled trials. *J Gastrointest Surg* 2019; 23: 1502–1512.

21. Li Q, Du L, Lu L, et al. Clinical application of enhanced recovery after surgery in perioperative period of laparoscopic colorectal cancer surgery. *J Laparoendosc Adv Surg Tech A* 2019; 29: 178–183.

22. Ita K and Ochiai J. [Endoscopic treatment of digestive system diseases. 3. Results of endoscopic treatment of early stomach cancer and possibility for expansion of its application]. *Nihon Naika Gakkai Zasshi* 1996; 85: 1442–1445. [Article in Japanese].

23. Carli F. Physiologic considerations of enhanced recovery after surgery (ERAS) programs: implications of the stress response. *Can J Anaesth* 2015; 62: 110–119.

24. Rao W, Zhang X, Zhang J, et al. The role of nasogastric tube in decompression after elective colon and rectum surgery: a meta-analysis. *Int J Colorectal Dis* 2011; 26: 423–429.

25. Zhu Z, Li Z, He Z, et al. [Endoscopic trans-fistula drainage for gastroesophageal anastomotic fistula with para-fistula abscess after esophagectomy]. *Zhejiang Da Xue Bao Yi Xue Ban* 2017; 46: 637–642. [Article in Chinese].

26. Ni X, Jia D, Chen Y, et al. Is the enhanced recovery after surgery (ERAS) program effective and safe in laparoscopic colorectal cancer surgery? A meta-analysis of randomized controlled trials. *J Gastrointest Surg* 2019; 23: 1502–1512.

27. Savluk OF, Guzelmeric F, Yavuz Y, et al. Neutrophil-lymphocyte ratio as a mortality predictor for Norwood stage I operations. *Gen Thorac Cardiovasc Surg* 2019; 67: 669–676.

28. Ni EA, Burns D, Riedel B, et al. The effect of anaesthetic technique during primary breast cancer surgery on neutrophil-lymphocyte ratio, platelet-lymphocyte ratio and return to intended oncological therapy. *Anaesthesia* 2018; 73: 603–611.

29. Helmy SA, Wahby MA and El-Nawaway M. The effect of anaesthesia and surgery on plasma cytokine production. *Anaesthesia* 1999; 54: 733–738.

30. Reith HB, Kaman S, Mittelkotter O, et al. Cytokine activation in patients undergoing open or laparoscopic cholecystectomy. *Int Surg* 1997; 82: 389–393.

31. Iwase M, Kondo G, Watanabe H, et al. Regulation of Fas-mediated apoptosis in neutrophils after surgery-induced acute inflammation. *J Surg Res* 2006; 134: 114–123.

32. Andersson B, Ansari D, Norden M, et al. Surgical stress response after colorectal resection. *Int Surg* 2013; 98: 292–299.
33. Forget P, Dinant V and De Kock M. Is the Neutrophil-to-Lymphocyte Ratio more correlated than C-reactive protein with postoperative complications after major abdominal surgery? *PeerJ* 2015; 3: e713.

34. Alkan M, Erkent FD, Celik A, et al. Effects of thoracic epidural or intravenous analgesia on the neutrophil-to-lymphocyte ratio in thoracotomy cases. *Niger J Clin Pract* 2018; 21: 1337–1340.