Chapter from the book *Insecticides - Advances in Integrated Pest Management*
Downloaded from: http://www.intechopen.com/books/insecticides-advances-in-integrated-pest-management

Interested in publishing with InTechOpen?
Contact us at book.department@intechopen.com
Review on Current Analytical Methods with Chromatographic and Nonchromatographic Techniques for New Generation Insecticide Neonicotinoids

Eiki Watanabe
National Institute for Agro-Environmental Sciences
Tsukuba, Japan

1. Introduction

Neonicotinoid insecticides are a major group and the newest group among insecticides. They permeate the entire body of a plant and show excellent effects for the control of diseases and harmful insects. The history of neonicotinoid insecticides from development to their market release dates back to the late 1800s. Nicotine (Fig. 1), an alkaloid in tobacco leaves, is an early neonicotinoid insecticide that has been used as a natural insecticide, but it is extremely toxic to mammals (LD$_{50}$ = 50–60 mg/kg; Tomizawa & Casida, 2005). Therefore, studies using nicotine as a model compound have been conducted actively to develop new pesticides with highly selective toxicity. In the 1970s, Shell developed nithiazine (Fig. 1), which showed strong insecticide activity (Soloway et al., 1978, 1979), although the compound was unstable in its application and remained commercially unavailable. Subsequently, the development of nithiazine derivatives was continued based on the relation between the chemical structure of nicotine compounds and insecticide activity. Eventually, Nihon Tokushu Noyaku Seizo (currently Bayer Crop Science) developed imidacloprid (Fig. 1) (Shiokawa et al., 1994). Subsequent to imidacloprid, acetamiprid (Nippon Soda Co. Ltd.), nitenpyram (Takeda Chemical Industries, currently Sumitomo Chemical Takeda Agro Co.), thiamethoxam (Ciba, currently Syngenta), thiacloprid (Bayer Crop Science), dinotefuran (Mitsui Chemicals Inc.) and clothianidin (Takeda Chemical Industries, currently Sumitomo Chemical Takeda Agro Co.) have been released on the market (Tomlin, 2003) with the subsequent new and recent development of imidaclothiz in China (Nantong Jiangshan Agrochemical and Chemical Co. Ltd.) (Fig. 1).

Neonicotinoid insecticides express insecticide activity by acting on the nicotinic acetylcholine receptor, nAChR, which is present on the postsynaptic membrane of the insect nerve. Excellent insecticide effects are expressed on hemipteran pest species including aphids, whitefly, and planthoppers by this mechanism of action. Although nAChR is present in both insects and mammals, neonicotinoid insecticides that act on them are highly selectively toxic to insects because the recognition site of insect nAChR is lipid-soluble, whereas mammalian nAChR must be ionized to a high degree. It is considered that the
selectivity results from the fact that neonicotinoid insecticides are not, unlike nicotine, fully ionic compounds. Therefore, they are transferred easily in lipophilic insect body fluids to reach nAChR to express the action, although affinity to nAChR is low in mammals (Kagabu, 1996; Shiokawa et al., 1994; Tomizawa, 1994; Tomizawa & Casida, 2003, 2005).

Neonicotinoid insecticides have come into worldwide use because, as described above, they have highly selective toxicity. Their toxicity to mammals, fish, and birds is low. They show a superior effect to control diseases and harmful insects that are resistant to insecticides including organophosphorus insecticides, carbamate insecticides, and synthetic pyrethroid insecticides. Recently however, it has been suggested that neonicotinoid insecticides are a possible cause of colony collapse disorder (CCD), i.e., sudden disappearance of bees that are pollinators of vegetables and fruits in modern agriculture (Decourtye & Devillers, 2010; El Hassani et al., 2008; Girolami et al., 2009; Iwasa et al., 2004; Mommaerts et al., 2010; Nauen et al., 2001). Studies have been undertaken to elucidate the relation between CCD and neonicotinoid insecticides, but the cause of CCD remains unclear.

As described above, neonicotinoid insecticides have come into use as insecticides of the next generation to replace classical insecticides such as organophosphorus insecticides for the stable supply of various crops. However, the influence on the ecosystem related to useful insects such as bees has been noted. Further studies must be undertaken from various viewpoints such as food safety including crops, environment and ecological influence, i.e., for risk management and risk assessment.

In this chapter, the author reports analytical methods that constitute the underlying technology that is indispensable for studies of risk management and risk assessment of neonicotinoid insecticides in the form of review to systemize cases reported to date, as well as to organize the trend, current situation, and future directions observed in the overview of respective analytical methods.

![Chemical structures of nicotine and neonicotinoid insecticides](https://www.intechopen.com)

Fig. 1. Chemical structures of nicotine and neonicotinoid insecticides having nitromethylene moiety (C=CHNO₂), nitroguanidine moiety (C=NNO₂) and cyanoamidine moiety (C=NCN).
2. Analytical methods based on chromatographic techniques

Chromatography is a powerful tool for the determination of pesticides that might remain in widely various matrices such as food including crops, living bodies, and the environment. It also is used as an important method for the analysis of neonicotinoid insecticides, which were introduced into the environment about twenty years ago as the successor of organophosphorus, carbamate, and synthetic pyrethroid insecticides. This section refers to sample pre-treatments including extraction and clean-up needed before chromatographic determination and gives an exhaustive summary of the trend related to the development of residue analysis of neonicotinoid insecticides by chromatography.

2.1 Sample pre-treatment procedures prior to chromatographic determination

To analyze minute amounts of residual pesticides in complex matrices accurately, sample pre-treatment procedures must be conducted before chromatographic determination. It is no exaggeration to say that the results of the procedures have a decisive influence on the reliability of the data measured. This also applies to the analysis of neonicotinoid insecticides. In pesticide residue analyses conducted in the mid-1990s, when imidacloprid became available on the market, gas chromatograph (GC) equipped with so-called element-selective detectors, for example, electron capture ionization detector (ECD) for detection of pesticides with halogen atoms such as organochlorine insecticides and synthetic pyrethroid insecticides or flame photometric detector (FPD) for detection of pesticides with phosphorus atoms or sulfur atoms such as organophosphorus insecticides was mainly used. On the other hand, high-performance liquid chromatograph (HPLC) equipped with UV detectors or diode array detectors (DAD) were used for detection of pesticides that were unstable to heat. It is important in all measurement methods to conduct sample pre-treatment procedures to obtain accurate measurement data.

Table 1 shows that sample pre-treatment procedures roughly consist of (1) extraction of the target pesticide from the sample and (2) separation of the target pesticide from the extract and clean-up.

For (1) extraction of neonicotinoid insecticides, shaking extraction with organic solvents such as acetone, acetonitrile, or methanol (Baskaran et al., 1997; de Erenchun et al., 1997; Mohan et al., 2010; Tokieda et al., 1997b, 1998; Watanabe et al., 2007), blending extraction with a homogenizer (Agüera et al., 2004; Blasco et al., 2002a, 2002b; Di Muccio et al., 2006; Fernandez-Alba et al., 1996, 2000; Ferrer et al., 2005; Hengel & Miller, 2008; Hernández et al., 2006; Ishii et al., 1994; Jansson et al., 2004; Kamel et al., 2010; Mateu-Sánchez et al., 2003; Obana et al., 2002, 2003; Sannino et al., 2004; Ting et al., 2004; Tokieda et al., 1997a, 1997b; Venkateswarlu et al., 2007), and ultrasonic extraction (Bourgin et al., 2009; García et al., 2007; Ishii et al., 1994; Liu et al., 2005, 2010; Mayer-Helm, 2009; Rancan et al., 2006a, 2006b; Zhang et al., 2010) are commonly used. In addition to these, Bourgin et al. (2009) extracted five insecticides including imidacloprid from seeds coated with acetonitrile and Xiao et al. (2011) extracted seven neonicotinoid insecticides from bovine tissues with water by accelerated solvent extraction (ASE) to give quantitative extraction efficiency. For extraction from liquid samples such as water, milk and wine, solid-phase extraction (SPE) packed with e.g. C18 or diatomaceous earth (Baskaran et al., 1997; Economou et al., 2009; Ferrer & Thurman, 2007; Pirard et al., 2007; Seccia et al., 2005, 2008; Zhou et al., 2006) and liquid–liquid extraction (Galera et al., 1998; Vilchez et al., 1996, 2001) are used. Moreover, matrix solid-phase dispersion (MSPD) was first reported in 1989. A small amount of solid or semisolid sample...
was blended with adsorbents such as C_{18} to be packed in a disposable plastic column. It was then extracted with a suitable organic solvent (Barker et al., 1989). The method has been applied to the extraction of pesticides, pharmaceuticals, and antibiotics since then (Barker, 2000a, 2000b). MSPD is also applied to the extraction of neonicotinoid insecticides from crop, honey, and fruit juice samples (Blasco et al., 2002a; Pous et al., 2001; Radišić et al., 2009; Totti et al., 2006).

In any event, the first obstacle in the development of analytical methods for pesticide residues is to secure extraction efficiency from measurement samples. It is probably important to select extraction conditions that are suitable for the physicochemical features of the target pesticide and for the characteristics of the measurement sample. In the process of (2) clean-up, classical liquid-liquid partitioning and column chromatography have been used. However, because of concern over the health impact of the use of organic solvents in large quantities on analytical staff as well as the environmental load, the strong need exists for the reduction of organic solvents used in sample pretreatment procedures (Wan & Wong, 1996). SPE packed with widely various adsorbents such as silica gel, Florisil, C_{18}, polymeric materials, graphitized carbon black (GCB), and ion exchange resin has come into common use these days, making a great contribution to reduction of the use of organic solvents (Fritz & Macka, 2000).

In the 2000s, marked technical innovation in analytical instruments has taken place: LC-MS and LC-MS/MS have been brought into use for the determination of neonicotinoid insecticides. These methods have higher measurement sensitivity than classical HPLC-UV and HPLC-DAD. Moreover, in many cases, sample pre-treatment procedures have reportedly included only the extraction and dilution of the extract, with subsequent measurement, without even the need for additional clean-up (Table 1). The most common extraction procedure is the following: a measurement sample is homogenized; then it is dehydrated and extracted with ethyl acetate and anhydrous sodium sulfate with subsequent solvent evaporation and then LC-MS determination (Blasco et al., 2002a, 2002b; Fernández-Alba et al., 2000) or LC-MS/MS determination (Agüera et al., 2004; Jansson et al., 2004; Venkateswarlu et al., 2007).

In 2003, Anastassiades et al. (2003) reported fast, simple and easy sample pre-treatment procedures by extraction with acetonitrile and dispersive SPE. The method that was presented is known as a quick, easy, cheap, effective, robust, and safe (QuEChERS) method, which is a breakthrough in which the sample pre-treatment is completed via acetonitrile extraction, dehydration, and salting-out with anhydrous magnesium sulfate and sodium chloride. Thereafter, dehydration and clean-up of the extract are done using dispersive SPE with anhydrous magnesium sulfate and primary secondary amine (PSA), which is a weak anion exchange adsorbent. Reportedly dispersive SPE using PSA is extremely effective for the removal of organic acids, polar dye components, and saccharides (Anastassiades et al., 2003). QuEChERS is very different from general sample pre-treatment procedures by organic solvent extraction, re-extraction with the organic solvent phase, and clean-up with SPE in that no process of concentration (evaporation of solvents) is needed. The concentration process, a procedure that must be conducted after processes such as extraction and clean-up, unexpectedly accounts for a large percentage of the sample pre-treatment time. Therefore, QuEChERS is a technology that contributes much to speeding up and simplification of sample pre-treatment procedures. In addition, the amounts of organic solvents used are extremely as small: about 10 mL of acetonitrile per sample. For those reasons, it can be concluded that the technology has met all of the requirements described above (Wan & Wong, 1996).
Review on Current Analytical Methods with Chromatographic and Nonchromatographic Techniques for New Generation Insecticide Neonicotinoids

Analyte(s)	Sample(s)	Extraction	Clean-up	Additional procedure prior to GC analysis	Determination	Ref.
Imidacloprid	Water	Mechanical shaking with chloroform	None	Hydrolysis in basic medium by application of heat	GC-MS	Vilchez et al., 1996
	Soil	Ultrasonic extraction with water and mechanical shaking with chloroform	None			
Imidacloprid	Tomato, cucumber, pepper and green bean	Ultrasonic extraction with water and mechanical shaking with chloroform	None	Hydrolysis in basic medium by application of heat	GC-MS	Navalón et al., 1997
Acetamiprid and 4 metabolites	Cabbage, green pepper, eggplant, potato, apple, orange, grape, strawberry, cucumber and radish (root, leaf)	Homogenization with methanol	Liquid-liquid partition and silica gel column chromatography	Hydrolysis in basic medium by application of heat, oxidation with KMnO₄ by application of heat and esterification with CH₂N₂	GC-ECD	Tokieda et al., 1997a
Acetamiprid	Cabbage, potato, radish (leaf, root), grape, apple, strawberry, green pepper and eggplant	Homogenization and mechanical shaking with methanol	Liquid-liquid partition, Florisil column chromatography and C₁₈ SPE (optional)	None	GC-ECD	Tokieda et al., 1997b
	Green tea (powder)	Mechanical shaking with methanol	None			
	Green tea (leachate)	Liquid-liquid extraction with methanol after soak in boiling water	None			
3 pesticides including imidacloprid	White pine	Maceration with methanol/0.04% H₂SO₄ (70:30, v/v)	C₁₈ SPE and self-prepared Florisil minicolumn	Heptafluorobutyryl derivative	GC-MS	MacDonald & Meyer, 1998
Acetamiprid	Vegetables	Homogenization with ethyl acetate	None		GC-MS/MS	Mateu-Sánchez et
Analyte(s)	Sample(s)	Extraction	Clean-up	Determination	Ref.	
---------------------	----------------------------------	---	---------------------------------	------------------------------------	-----------------------	
Imidacloprid	Japanese pear, apple, peach (pulp, peel), grape, radish (root, leaf), cucumber, eggplant, rice grain, rice green, rice straw and potato	Homogenization with acetonitrile/water (80:20, v/v)	Liquid-liquid partition and silica gel column chromatography	HPLC-UV	Ishii et al., 1994	
	Soil	Ultrasonic extraction with acetonitrile/water (80:20, v/v)				
Imidacloprid	Pepper, tomato and cucumber	Homogenization with acetone	Liquid-liquid partition and C18 SPE	HPLC-DAD	Fernandez-Alba et al., 1996	
Imidacloprid	Water	Extraction with methanol from C18 SPE	None		Baskaran et al., 1997	
	Soil	Mechanical shaking with acetonitrile/water (80:20, v/v)	None	HPLC-UV		
Imidacloprid and 6-chloronicotinic acid	Soil	Mechanical shaking with acetonitrile/methanol/water (3:2:2, v/v)	None	HPLC-pulsed amperometric detector	de Erenchun et al., 1997	
Imidacloprid and 6-chloronicotinic acid	Groundwater	Liquid-liquid extraction with dichloromethane	None	HPLC-DAD	Galera et al., 1998	
Acetamiprid, imidacloprid and 6-chloronicotinic acid	Soil	Mechanical shaking with methanol/0.1 M NH4Cl (8:2, v/v)	Liquid-liquid partition and Extrelut SPE packed with diatomaceous earth material	HPLC-UV	Tokieda et al., 1998	
6-chloronicotinic acid	Soil	Mechanical shaking with methanol/0.1 M NH4Cl (8:2, v/v) and methanol/0.5 M NaOH (8:2, v/v)	C18 SPE and liquid-liquid partition			
Imidacloprid and 6-chloronicotinic acid	Greenhouse air	Trap with Amberlite XAD-2 and desorption with acetonitrile and phosphate buffer	None	HPLC-DAD	Frenich et al., 2000	
Acetamiprid, imidacloprid and nitenpyram	Cucumber, tomato, tomato, eggplant, Japanese radish and grape	Homogenization with acetonitrile	PSA SPE and silica gel SPE	HPLC-DAD	Obana et al., 2002	
3 pesticides including imidacloprid and thiamethoxam	Cabbage, tomato, chili, pepper and potato	Microwave-assisted extraction with acetone	Liquid-liquid partition	HPLC-UV	Singh et al., 2004	
Analyte(s)	Sample(s)	Extraction	Clean-up	Determination	Ref.	
-----------	-----------	------------	----------	--------------	-----	
5 pesticides including imidacloprid	Pear and tomato	Homogenization with ethyl acetate and anhydrous Na$_2$SO$_4$	None	LC-MS	Fernández-Alba et al., 2000	
5 pesticides including imidacloprid	Strawberry, orange, potato, and melon	Extraction with dichloromethane from MSPD with Cs	None	LC-MS	Pous et al., 2001	
10 pesticides	Orange	Extraction with	None	LC-MS	Blasco et al., 2001	
Pesticides	Extraction/Preparation Method	Detection Method	Authors/Year			
------------	-------------------------------	-----------------	--------------			
Including imidacloprid	Dichloromethane from MSPD with C₈ stir bar sorptive extraction after homogenization with methanol and water	Homogenization with ethyl acetate and anhydrous Na₂SO₄	2002a			
4 pesticides including imidacloprid	Homogenization with ethyl acetate and anhydrous Na₂SO₄	None	LC-MS	Blasco et al., 2002b		
Acetamiprid, imidacloprid, nitenpyram, thiacloprid and thiamethoxam	Homogenization with methanol	GCB SPE	LC-MS	Obana et al., 2003		
Imidacloprid	Mixing with methanol/0.05% NH₄OH (3:1, v/v)	None	LC-MS	Bonmatin et al., 2003		
Maize, rape, wheat and sunflower	Grinding with methanol/0.05% H₂SO₄ (4:1, v/v)	C₁₈ SPE	None			
Pollen	Mixing with ethanol/water (7:25, v/v)	None	LC-MS			
57 pesticides including imidacloprid and acetamiprid	Homogenization with ethyl acetate and anhydrous Na₂SO₄	None	LC-MS/MS	Jansson et al., 2004		
Fruits and vegetables						
24 pesticides including imidacloprid	Homogenization with acetone and ethyl acetate/cyclohexane (50:50, v/v)	None	LC-MS/MS	Sannino et al., 2004		
Apple puree, concentrated lemon juice and tomato puree						
17 pesticides including acetamiprid, imidacloprid and thiacloprid	Homogenization with ethyl acetate and anhydrous Na₂SO₄ under alkaline	None	LC-MS/MS	Ágüera et al., 2004		
Pepper, lettuce and eggplant						
Acetamiprid, imidacloprid, thiacloprid and thiamethoxam	Extraction with dichloromethane from Extrelut SPE packed with diatomaceous earth material	None	LC-MS	Fidente et al., 2005		
Honey						
Acetamiprid, imidacloprid, thiacloprid and thiamethoxam	Extraction with ethyl acetate/methanol (50:50, v/v) from poly(styrene-divinylbenzene) SPE	None	LC-MS	Seccia et al., 2005		
Drinking water						
Acetamiprid, imidacloprid and thiacloprid	Homogenization with ethyl acetate	None	LC-TOF-MS	Ferrer et al., 2005		
Cucumber, tomato, lettuce and pepper						
Lettuce and orange	QuEChERS method	Shaking by hand with acetonitrile	LC-MS/MS	Lehotay et al., 2005		
146 pesticides including acetamiprid,		Dispersive PSA SPE				
Pesticides and metabolites	Extraction method	Analytical technique	Reference			
----------------------------	-------------------	----------------------	-----------			
Acetamiprid, imidacloprid, thiacloprid and thiamethoxam	Homogenization with acetone and extraction with dichloromethane from Extrelut SPE packed with diatomaceous earth material	LC-MS	Di Muccio et al., 2006			
52 pesticides including acetamiprid, imidacloprid and thiacloprid	Homogenization with methanol/water (80:20, v/v) containing 0.1% formic acid	LC-MS/MS	Hernández et al., 2006			
6 pesticides and metabolites including imidacloprid	Extraction with dichloromethane/methanol (85:15, v/v) from MSPD with C18	UPLC-MS/MS	Leandro et al., 2007			
19 pesticides and metabolites including imidacloprid	Extraction with ethyl acetate from Chem Elut SPE packed with diatomaceous earth material	LC-MS/MS	Pirard et al., 2007			
101 pesticides including acetamiprid, imidacloprid, nitenpyram and thiacloprid	Extraction with ethyl acetate from C18 SPE	LC-TOF-MS	Ferrer & Thurman, 2007			
42 pesticides including acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam	Shaking by hand with acetonitrile	LC-MS/MS	Payà et al., 2007			
10 pesticides including imidacloprid and thiamethoxam	Homogenization with ethyl acetate and anhydrous Na2SO4	None	Venkateswarlu et al., 2007			
160 pesticides including acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam	Shaking by hand with acetonitrile	None	Kmellár et al., 2008			
11 pesticides	Homogenization with Polymeric styrene-LC-MS/MS	Hengel &				
Pesticide Types	Sample Types	Extraction Method	cleanup	Sample Types	LC-MS/MS	Reference
----------------	--------------	-------------------	---------	--------------	---------	-----------
Acetamiprid, imidacloprid, clothianidin, dinotefuran, nitenpyram, thiacloprid and thiamethoxam	Rice and tea	Ultrasonic extraction with acetonitrile	None	HLB SPE	UPLC-MS/MS	Liu et al., 2010
Acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam	Apple, cabbage, potato, chicken, pork, milk and egg	Vortex shaking with acetonitrile	None	HLB SPE	UPLC-MS/MS	Liu et al., 2010
clothianidin, dinotefuran, imidacloprid, thiacloprid and thiamethoxam and 8 metabolites	Bee, bee pollen and bee honey	Homogenization with water and acetonitrile containing 2% triethylamine	C18 SPE	LC-MS/MS	Kamel, 2010	
36 pesticides including acetamiprid and imidacloprid	Tea	Ultrasonic extraction with acetonitrile containing 1% acetic acid	Dispersive SPE with PSA and GCB	UPLC-MS/MS	Zhang et al., 2010	
22 pesticides	Milk, orange	Homogenization with Salting out	UPLC-MS/MS	Kamel et al., 2010		
Table 1. Overview of chromatographic techniques for determination of neonicotinoid insecticides.

With the presentation of QuEChERS as a turning point, many reports have described multiresidue analysis of various pesticides including neonicotinoid insecticides (Ferrer & Thurman, 2007; Frenich et al., 2008; Kamel, 2010; Kmellár et al., 2008, 2011; Leandro et al., 2007; Lehotay et al., 2005; Payá et al., 2007; Romero-González et al., 2011). Additionally,
reagents and adsorbents for QuEChERS are marketed as kits, implying that the method is extremely practical as multiresidue analysis for pesticide residues.

2.2 Determination of neonicotinoid insecticides based on chromatographic methods

Chromatographic determination of neonicotinoid insecticides are classifiable into two groups that use HPLC or GC (Table 1). However, because neonicotinoid insecticides are generally degraded by heat, additional processes such as derivatization are necessary for GC determination, making sample pre-treatment procedures more complicated than HPLC determination. Vilchez et al. (1996) and Navalón et al. (1997) used a hydrolyzed compound of imidacloprid [1–(6-chloro-3-pyridylmethyl)imidazolidin-2-one] formed by heat treatment of a measurement sample under alkaline conditions for GC–MS determination of imidacloprid in soil, water, and crops. MacDonald and Meyer (1998) extracted imidacloprid from white pine with water-containing methanol under acidic conditions with diluted sulfuric acid, cleaned up with C18 SPE and a self-prepared Florisil minicolumn, heptafluorobutyryl-derivatized, and then subjected to GC–MS determination.

As presented above, it is presumed that utilization of HPLC rather than GC is more advantageous for the determination of neonicotinoid insecticides from the viewpoints of speedup and simplification of sample pre-treatment procedures. It also is readily apparent that most cases reported to date used HPLC for determination (Table 1). In determination by HPLC, both HPLC-UV and HPLC-DAD contributed greatly to analyses of neonicotinoid insecticides until the 2000s, when MS and MS/MS began to become popularly used. Since the report by Ishii et al. (1994), HPLC-UV and HPLC-DAD have been applied to the determination of neonicotinoid insecticides in various matrices (Table 1). In addition to UV and DAD, methods were developed in which imidacloprid and thiamethoxam were separated using a column and then converted into electrochemically active compounds by ultraviolet irradiation to be detected by an electrochemical detector (ECD) (Rancan et al., 2006a, 2006b), or converted into fluorescent substances to be detected using a fluorescence detector (FLD) (García et al., 2007). ECD and FLD are generally more sensitive than UV or DAD. They are applied to residue analysis in the bodies of bees, where determination at low concentrations must be done.

In fact, HPLC-UV and DAD have less measurement sensitivity and selectivity than either LC-MS or MS/MS, which are the most widely used methods today. Therefore, thorough clean-up is indispensable for the pre-treatment procedures of samples consisting of complicated matrices such as crops. Liquid–liquid partition has been used since the initial phase of the market release of imidacloprid (Fernandez-Alba et al., 1996; García et al., 2007; Ishii et al., 1994; Liu et al., 2005; Singh et al., 2004). However, that technique presents problems: e.g. a large amount of organic solvent is used; and an emulsion is formed at the liquid–liquid interface depending on the extraction sample that is used. For that reason, it has been increasingly replaced by clean-up mainly by SPE (Mohan et al., 2010; Obana et al., 2002; Ting et al., 2004; Watanabe et al., 2007). Watanabe et al. (2007) used re-extraction with diatomaceous earth SPE and clean-up with GCB/NH2 SPE in the development of simultaneous analysis by HPLC-DAD of seven neonicotinoid insecticides released on the market. However, the recovery of nitenpyram was not satisfactory (not more than 40%). According to their discussion, matrix components in the sample affected nitenpyram in some way, leading to the factor of reduced recovery.
In the 2000s, a dramatic increase occurred in the number of cases reported on the residue pesticide analysis by HPLC equipped with quadrupole MS, ion-trap MS, tandem MS (MS/MS), and time-of-flight MS (TOF-MS). Utilization of MS enabled not only the detection of trace pesticide residues in various matrices with high accuracy but also the elucidation of their respective chemical structures.

Obana et al. (2003) reported a method of extracting five neonicotinoid insecticides from 12 crop samples using methanol, clean-up with GCB SPE, and determination by LC-MS. They suggested that the analytical method that was developed was effective as a regular monitoring method. In determination methods including neonicotinoid insecticides by LC-MS/MS, good recovery is obtained in most reported cases. In one important case, quantification was achieved by direct injection of the filtered water sample in the LC-MS/MS determination of 70 pesticides including imidacloprid, thiacloprid, and thiamethoxam in paddy water samples (Pareja et al., 2011). It is exactly the benefit of LC-MS/MS, with which highly sensitive determination is possible.

Ultra-performance liquid chromatography (UPLC) was developed only a few years ago in which the mobile phase can be flown at a high pressure (about 15,000 psi) using a short column of about 50 mm packed with C_{18} of particle size of not more than 2 μm. Its application to pesticide residue analysis has been examined because the utilization of UPLC enables not only the achievement of highly sensitive determination, but also improved high throughput attributable to reduced measurement time as well as substantially smaller amounts of organic solvents (mobile phase) used than in conventional HPLC (Frenich et al., 2008; Kamel et al., 2010; Leandro et al., 2007; Liu et al., 2010; Romero-González et al., 2011; Zhang et al., 2010). Liu et al. (2010) used UPLC-MS/MS to construct simultaneous analyses of seven neonicotinoid insecticides in crops and livestock products, obtaining good recovery except for the lower recovery of nitenpyram (not more than 70%) in some of samples including potatoes and cabbages. Romero-González et al. (2011) constructed highly sensitive ultra-rapid analysis of more than 90 pesticides including acetamiprid, imidacloprid, thiacloprid, and thiamethoxam as well as mycotoxins by the combination of sample pre-treatment by QuEChERS and UPLC-MS/MS.

As described above, the trend in the development of residue analysis of various pesticides including neonicotinoid insecticides by LC-MS and LC-MS/MS can be summarized via the overview of several cases. LC-MS and LC-MS/MS are suitable for highly sensitive determination of only slightly volatile and heat-unstable pesticides. They enable quantification only with extremely simple and rapid sample pre-treatment compared to those of HPLC-UV, HPLC-DAD, and GC with an element-selective detector, which requires complicated sample pre-treatment procedures. Particularly MS/MS can be characterized as an effective method for the structural analysis of the target pesticide and its confirmation because much chemical information can be acquired by obtaining product ions from the precursor ion. Moreover, little interference occurs by matrix components because ions can be selected at will, thereby enabling highly sensitive determination. Recently, newly marketed insecticides tend to be included in the subjects for HPLC determination. Therefore, increasing need is expected for LC-MS and LC-MS/MS in the future. Although many advantages of LC-MS and LC-MS/MS are described above, the matrix effect must also be noted, which is a problem in the chromatographic determination of pesticide residues that might be present in various samples.
It has been pointed out that, as in GC-ECD and GC-FPD determination, quantitative determination is not possible because of the matrix effect when the sample clean-up is insufficient. Lee and Wylie (1991) have reported interesting observations by which the susceptibility (to the matrix effect) of several GC detectors is examined for individual crop samples. The matrix effect is a phenomenon that is also observed in LC-MS and LC-MS/MS determination; it was shown earlier that when the target pesticide is eluted together with matrix components in the sample, ion suppression or ion enhancement occurs during the ionization process, engendering error in the determination result (Niessen et al., 2006). The matrix effect can be avoided using a matrix-matched standard method or using isotope dilution with isotopically labeled internal standards (Niessen et al., 2006), in addition to thorough sample clean-up. In the matrix-matched standard method, the matrix effect is evaluated through the comparison of the responses of the standard solution and the target pesticide prepared in the measurement sample solution free of the target pesticide; this method is commonly used as a means to correct the matrix effect (Di Muccio et al., 2006; Economou et al., 2009; Ferrer et al., 2005; Ferrer & Thurman, 2007; Fidente et al., 2005; Frenich et al., 2008; Hernández et al., 2006; Kamel, 2010; Kamel et al., 2010; Kanrar et al., 2010; Kmellár et al., 2008; Leanro et al., 2007; Mayer-Helm, 2009; Payá et al., 2007; Pirard et al., 2007; Radišić et al., 2009; Romero-González et al., 2011; Totti et al., 2006; Venkateswarlu et al., 2007; Xiao et al., 2011; Xie et al., 2011).

Xie et al. (2011) reported observation of ion enhancement in dinotefuran, imidacloprid, and thiacloprid, as well as ion suppression in acetamiprid, clothianidin, and thiamethoxam by the matrix effect, and that acetamiprid and thiamethoxam among these were significantly affected. However, because the recovery was improved by correction using the matrix-matched standard method, they emphasized the effectiveness of the method in the avoidance of the matrix effect.

In any event, the matrix effect should be regarded as a common problem of pesticide residue analysis by HPLC and GC; it goes without saying that it is most important to evaluate the matrix effect that might be derived from the subject sample when the development of a new analytical method is attempted or when an established, existing analytical method is applied.

3. Analytical methods based on nonchromatographic techniques

Section 2 summarized the trends up to now in the development of the determination of neonicotinoid insecticides by chromatography. This section refers to analytical methods based on nonchromatographic techniques. The list in Table 2 shows that major nonchromatographic methods include flow injection analysis (FIA), direct MS analysis, and enzyme-linked immunosorbent assay (ELISA), which is an immunochemical determination using an antigen-antibody reaction with high specificity or selectivity. This section summarizes the trend and the current situation of the development of analytical methods for neonicotinoid insecticides using these.

3.1 FIA or MS analysis for direct determination of neonicotinoid insecticides

FIA is a method by which a predetermined amount of a sample solution is injected into carrier solution that flows continuously in a tube, and the target substance is detected or quantified using a detector, as might be done after a chemical reaction. Instruments used in
FIA are generally inexpensive. Furthermore, the method is known to be capable of rapid, easy, and highly sensitive detection of trace substances (Lara et al., 2010; Llorent-Martínez et al., 2011).

Reports on the determination of neonicotinoid insecticides by FIA have targeted imidacloprid to date. In all such studies, methods are constructed by which a measurement sample is irradiated with ultraviolet light for conversion into a fluorescent substance \(1\-(6\text{-chloro-3-pyridylmethyl})\-(2\text{-hydroxyimino})\-3,4\text{-didehydroimidazolidine}\) which is detected using a spectrofluorometer (Flores et al., 2007; Vilchez et al., 2001). Alternatively, nitrite is detached from imidacloprid to be reduced into nitric oxide by iodide, which is detected by chemiluminescence detection with ozone (Lagalante & Greenbacker, 2007). All FIA methods show measurement sensitivity that is equal to or better than the detection limit of HPLC or GC. For the determination of liquid samples such as water, direct injection is possible with filtration only (Flores et al., 2007; Lagalante & Greenbacker, 2007). Actually, FIA is regarded as making a great contribution to fast, simple, and easy determination of pesticide residues, especially in liquid samples.

García-Reyes et al. (2009) reported rapid in situ qualitative and quantitative analysis of 16 pesticides including nitenpyram and thiacloprid by desorption electrospray ionization MS (DESI-MS) and MS/MS (DESI-MS/MS). In their determination, crop samples were pretreated according to QuEChERS and the resulting sample solution was applied on the PTFE surface, while the skin of fruit and vegetable samples were fixed on glass slides, and electrospay was applied directly to the sample to ionize target pesticides in the sample. The measurement sensitivity was extremely high: on the order of \(\mu\text{g/kg}\), and the measurement accuracy was comparable to LC-MS. Although such an analytical method remains under development at present, it can be anticipated as a new, highly sensitive, and rapid screening method.

Analyte(s)	Sample(s)	Extraction	Clean-up	Determination	Ref.
Imidacloprid	Water	Liquid–liquid extraction with dichloromethane	None	FIA with photochemically induced fluorescence detection	Vilchez et al., 2001
Imidacloprid	Water, hemlock xylem fluid and grape	Only filtration	None	FIA with chemiluminescence detection	Lagalante & Greenbacker, 2007
Imidacloprid	Honey	Only dilution	None	FIA with photochemically induced fluorescence detection	Flores et al., 2007
16 pesticides and metabolite including nitenpyram and thiacloprid	Orange, lemon, apple, green pepper, persimmon, grapefruit, tomato, pear and grape	QuEChERS method	None	Desorption ESI-MS and MS/MS	García-Reyes et al., 2009
	Fruit and vegetable skin (peel)	Shaking with acetonitrile	None	Dispersive PSA SPE	

Table 2. Overview of nonchromatographic techniques with FIA and MS for determination of neonicotinoid insecticides.
3.2 ELISA analysis for neonicotinoid insecticides as a rapid and simple preliminary screening method

Since Yalow and Berson applied radioimmunoassay (RIA) to the determination of insulin in the 1950s (Yalow & Berson, 1959, 1960), RIA has been widely used mainly in the field of clinical laboratory tests. Although immunoassay for pesticide determination was not reported in two decades. Subsequently, antibodies selective to DDT and malathion were developed (Centeno et al., 1970). In addition, RIA for parathion determination was developed (Ercegovich et al., 1981). After Engvall and Perlmann (1972) proposed enzyme immunoassay (EIA, ELISA) using enzyme-labeled antigens instead of radioisotope-labeled antigens, a marked increase existed in the development of ELISA for various pesticides including organophosphorus and synthetic pyrethroid insecticides (Hennion et al., 1998; Meulenberg et al., 1995; Nunes et al., 1998; Shan et al., 2002).

The immunogenicity of small molecules such as pesticides themselves is extremely low. Therefore, it is necessary for the development of antigens to these compounds to design and synthesize hapten molecules that imitate the chemical structure of the target substances. It is known that the measurement sensitivity and selectivity of the resulting antibody is strongly dependent on the chemical structure of the designed hapten molecule (Shan et al., 2002; Szurdoki et al., 1995). However, the importance of hapten design is not explained in this chapter.

ELISA, based on an antigen–antibody reaction, is a method used to detect residual pesticides, etc., in various samples consisting of complex matrices such as food samples including crops. Therefore, fast analysis can be achieved because significant laborsaving is possible in complicated sample pre-treatment procedures before chromatographic determination. Moreover, ELISA is regarded as an economical, straightforward, and easy analytical method because only small amounts of organic solvents are used, instruments requiring expertise are not needed, and multisample treatment is possible using 96-well microplates (Ellis, 1996). In contrast, ELISA is disadvantageous compared to chromatographic determination in that it is limited to the determination of a single pesticide, it is incapable of identification, and it might produce a false positive result when it cross-reacts to a compound with similar chemical structure because it is a selective analytical method.

As shown in Table 3, ELISA for the determination of neonicotinoid insecticides was first developed in 2000 using polyclonal antibody (PoAb) specific to imidacloprid (Li & Li, 2000). It was followed by a report by Lee et al. (2001) in which the measurement sensitivity was improved to be approximately twice that obtained using another hapten. Watanabe et al. (2001) and Kim et al. (2004) developed monoclonal antibody (MoAb) specific to imidacloprid, and constructed ELISA that is 5-fold to 20-fold more sensitive than that obtained using PoAb. In addition to imidacloprid, ELISA using MoAb specific to acetamiprid (Watanabe et al., 2001) and thiamethoxam (Kim et al., 2003, 2006) were also developed.

As described above, ELISA uses highly specific antigen–antibody reaction. Theoretically, it responds sensitively only to the trace pesticide in matrices. In fact, however, ELISA is susceptible to the matrix effect described in Section 2.2, and it is important to evaluate the matrix effect for individual measurement samples (Jourdan et al., 1996; Nunes et al., 1998; Skerritt & Rani, 1996). While the matrix effect can be avoided or reduced by SPE, etc., such measures would eliminate advantages of ELISA shown above. Table 3 shows that the easiest method to avoid the matrix effect is dilution of the sample extract (mainly methanol extract)
with water or phosphate buffer. The recovery from various measurement samples were generally good in all reports (Byrne et al., 2005; Eisenback et al., 2009; Kim et al., 2006; Ma et al., 2009; Watanabe et al., 2001; Watanabe et al., 2004a, 2004b, 2006, 2007, 2011; Xu et al., 2010). The measurement sensitivity of ELISA is apt to be affected by the concentration of extraction solvent (mainly methanol) coexisting in the sample solution during measurement (Nunes et al., 1998). The sample extraction is diluted not only to avoid the matrix effect effectively but also to reduce the influence of the organic solvent.

Recently, kit-based ELISA for neonicotinoid insecticides was developed and marketed by Horiba Ltd. (Kyoto, Japan) and Envirologix Inc. (Portland, ME). Kit-based ELISA package reagents needed for determination (96-well microplate pre-coated with antibody, washing solution, substrate solution, and stopping solution, etc.) can be used easily for monitoring tests of a specific neonicotinoid insecticide. However, it is important in the use of kit-based ELISA to remember that the matrix effect should be evaluated in advance (Byrne et al., 2005; Watanabe et al., 2004a, 2004b, 2006, 2007, 2011).

In any event, when ELISA is applied to a sample, it might be affected by the matrix effect. Therefore, it is important to examine in advance if the matrix effect is present, and to examine methods to avoid it. At least, ELISA can be applied sufficiently to routine analysis, especially as a screening method, by solving this problem.

Analyte(s)	Sample(s)	Extraction	Following sample preparation	Antibody	Assay format	IC₅₀	Ref.
Imidacloprid	Coffee cherry and coffee bean	Homogenization with methanol/1% sulfuric acid (3:1, v/v)	Evaporation, extraction with ethyl acetate and reconstitution with buffer	PoAb	Indirect competitive ELISA	35 ppb	Li & Li, 2000
Imidacloprid	Apple	Homogenization with methanol	Evaporation and reconstitution with buffer	PoAb	Indirect competitive ELISA	17.3 ng/mL	Lee et al., 2001
Acetamiprid	Cucumber, green pepper, tomato and apple	Shaking with methanol	Centrifugation and dilution with methanol/buffer (9:1, v/v)	MoAb	Direct competitive ELISA	1.0 ng/mL	Watanabe et al., 2001
Thiamethoxam	Water	None	Diluted with buffer	PoAb	Direct competitive ELISA	9.0 ng/mL	Kim et al., 2003
Imidacloprid	Apple	Shaking by hand with methanol	Filtration and dilution with water	MoAb	Direct competitive ELISA kit	8 ng/g	Watanabe et al., 2004a
Imidacloprid	Cucumber, eggplant, lettuce, green pepper and spinach	Shaking by hand with methanol	Filtration and dilution with water	MoAb	Direct competitive ELISA kit	-	Watanabe et al., 2004b

www.intechopen.com
Insecticide	Water	None	Dilution with buffer	Centrifugation, filtration and dilution with buffer	MoAb	Indirect competitive ELISA	Preparation Method	Concentration	Reference
Imidacloprid	Cucumber	Extraction with methanol							Kim et al., 2004
Imidacloprid	Avocado leaf	Homogenization with water							Byrne et al., 2005
Imidacloprid	Wiliwili leaf	Ultrasound extraction with methanol/0.04% sulfuric acid (4:1, v/v)			MoAb	Indirect competitive ELISA	Filtration, evaporation, centrifugation, liquid-liquid partition, reconstitution and dilution with water	6.82 ppb	Xu et al., 2006
Thiamethoxam	Water				MoAb	Flow fluorescent immunoassay	Filtration and dilution with buffer	30 pg/mL	Kim et al., 2006
Acetamiprid	Peach, apple, strawberry, cucumber, eggplant and tomato	Vortex mixing with methanol			MoAb	Direct competitive ELISA kit	Filtration and dilution with buffer	0.6 ng/g	Watanabe et al., 2006
Imidacloprid	Apple juice, grape juice and orange juice				MoAb	Direct competitive ELISA kit			Watanabe et al., 2007
Imidacloprid	Hemlock wood and needle tissues	Shaking by hand with water			MoAb	Direct competitive ELISA kit	Centrifugation and dilution with water		Eisenback et al., 2009
Thiamethoxam	Honey				MoAb	Indirect competitive ELISA	Dilution with buffer	6.5 ng/mL	Ma et al., 2009
Thiamethoxam	Apple juice, grape juice, orange juice and peach juice				MoAb	Indirect competitive ELISA	Dilution with buffer	6.2 ng/mL	Xu et al., 2010
Imidacloprid	Honeybee	Liquid-liquid extraction with dichloromethane after homogenization with acetone and coagulation			PoAb	Indirect competitive chemiluminescent ELISA	Dilution with water	14.8 ng/mL	Girotti et al., 2010
Imidacloprid	Water				MoAb	Indirect competitive ELISA	Dilution with methanol/buffer (2:8, v/v)		Fang et al., 2011

www.intechopen.com
Table 3. Overview of nonchromatographic techniques with immunochemical determinations for determination of neonicotinoid insecticides.

Method	Diluent	Reagents/Instrument
Dinofuran Rice	Mechanical shaking	MoAb Direct competitive ELISA kit
	with methanol	5.4 ng/mL
	Centrifugation	Watanabe et al., 2011
	and dilution with water	
	(if necessary, dilution with methanol/water (1:9, v/v))	
	dichloromethane reconstitution with methanol/buffer (1:9, v/v)	

4. Overview of analytical methods for pesticide residues including neonicotinoid insecticides

Sections 2 and 3 summarize trends in the determination methods for neonicotinoid insecticides and the problems discovered during the development of analytical methods such as the matrix effect. At present, highly accurate and sensitive multiresidue analysis by GC or HPLC equipped with MS or MS/MS as a detector is the major trend in the determination not only of neonicotinoid insecticides but also of pesticides in general. It goes without saying that pesticide residue analysis is an indispensable basic technology that is useful to secure the safety of food, including crops, as well as in various research fields such as environment and ecological impact evaluation. However, it is questionable because it is entirely dependent only on GC–MS, LC-MS, and LC-MS/MS for pesticide residue analysis. Particularly when pesticide residues are analyzed to secure food safety, two situations are assumed: (1) testing of foods on the market, and (2) testing of crops before shipment. In the former situation, the history of pesticides that have been used is often unknown. Therefore multiresidue analysis using MS or MS/MS is suitable, in which as many pesticides as possible can be tested and unknown ingredients can be identified. On the other hand, in the latter situation, the subject pesticide can be selected based on the history of use. Therefore there might be cases in which it is more sensible to choose a rapid, simple, and easy method such as ELISA described in Section 3 over multiresidue analysis which has better than necessary performance.

In any event, among the numerous analytical methods, it is necessary to make a wise choice for a suitable method via accurate comprehension of the analytical objectives.

5. References

Agüera, A.; López, S.; Fernández-Alba, A.R.; Contreras, M.; Crespo, J. & Piedra, L. (2004). One-year routine application of a new method based on liquid chromatography – tandem mass spectrometry to the analysis of 16 multiclass pesticides in vegetable samples. *Journal of Chromatography A*, Vol. 1045, No. 1-2, (August 2004), pp. 125-135, ISSN 0021-9673

Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D. & Schenck, F.J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "Dispersive solid-phase extraction" for the determination of pesticide residues in produce. *Journal of AOAC International*, Vol. 86, No. 2, (March 2003), pp. 412-431, ISSN 1060-3271
Barker, S.A.; Long, A.R. & Short, C.R. (1989). Isolation of drug residues from tissues by solid phase dispersion. *Journal of Chromatography A*, Vol. 475, No. 2, (1989), pp. 353-361, ISSN 0021-9673

Barker, S.A. (2000a). Applications of matrix solid-phase dispersion in food analysis. *Journal of Chromatography A*, Vol. 880, No. 1-2, (June 2000), pp. 63-68, ISSN 0021-9673

Barker, S.A. (2000b). Matrix solid-phase dispersion. *Journal of Chromatography A*, Vol. 885, No. 1-2, (July 2000), pp. 115-127, ISSN 0021-9673

Baskaran, S.; Kookana, R.S. & Naidu, R. (1997). Determination of the insecticide imidacloprid in water and soil using high-performance liquid chromatography. *Journal of Chromatography A*, Vol. 787, No. 1-2, (November 1997), pp. 271-275, ISSN 0021-9673

Blasco, C.; Font, G. & Picó, Y. (2002a). Comparison of microextraction procedures to determine pesticides in oranges by liquid chromatography – mass spectrometry. *Journal of Chromatography A*, Vol. 970, No. 1-2, (September 2002), pp. 201-212, ISSN 0021-9673

Blasco, C.; Fernández, M.; Picó, Y.; Font, G. & Mañes, J. (2002b). Simultaneous determination of imidacloprid, carbendazim, methiocarb and hexythiazox in peaches and nectarines by liquid chromatography – mass spectrometry. *Analytica Chimica Acta*, Vol. 461, No. 1, (June 2002), pp. 109-116, ISSN 0003-2670

Bonmatin, J.M.; Moineau, I.; Charvet, R.; Fleche, C.; Colin, M.E. & Bengsch, E.R. (2003). A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. *Analytical Chemistry*, Vol. 75, No. 9, (May 2003), pp. 2027-2033, ISSN 0003-2700

Bourgin, M.; Bize, M.; Durand, S.; Albet, J. & Violleau, F. (2009). Development of a rapid determination of pesticides in coated seeds using a high-performance liquid chromatography – UV detection system. *Journal of Agricultural and Food Chemistry*, Vol. 57, No. 21, (November 2009), pp. 10032-10037, ISSN 0021-8561

Byrne, F.J.; Toscano, N.C.; Urena, A.A. & Morse, J.G. (2005). Quantification of imidacloprid toxicity to avocado thrips, *Scirtothrips perseae* Nakahara (Thysanoptera: Thripidae), using a combined bioassay and ELISA approach. *Pest Management Science*, Vol. 61, No. 8, (August 2005), pp. 754-758, ISSN 1526-498X

Carretero, A.S.; Cruces-Blanco, C.; Durán, S.P. & Gutiérrez, A.F. (2003). Determination of imidacloprid and its metabolite 6-chloronicotinic acid in greenhouse air by application of micellar electrokinetic capillary chromatography with solid-phase extraction. *Journal of Chromatography A*, Vol. 1003, No. 1-2, (June 2003), pp. 189-195, ISSN 0021-9673

Centeno, E.R.; Johnson, W.J. & Sehon, A.H. (1970). Antibodies to two common pesticides, DDT and malathion, *International Archives of Allergy and Applied Immunology*, Vol. 37, No. 1, (1970), pp. 1-13, ISSN 1018-2438

Chin-Chen, M-L.; Esteve-Romero, J. & Carda-Broch, S. (2009). Determination of the insecticide imidacloprid in fruit juices using micellar high-performance liquid chromatography. *Journal of AOAC International*, Vol. 92, No. 5, (October 2009), pp. 1551-1556, ISSN 1060-3271

Decourt, A. & Devillers, J. (2010). Ecotoxicity of neonicotinoid insecticides to bees, In: *Insect Nicotinic Acetylcholine Receptors, Advances in Experimental Medicine and Biology*, Vol. 683, S.H. Thany, pp. 85-95, Springer, ISBN 978-1441964441, New York
de Erenchun, N.R.; de Balugera, Z.G.; Goicolea, M.A. & Barrio, R.J. (1997). Determination of imidacloprid and its major metabolite in soils by liquid chromatography with pulsed reductive amperometric detection. *Analytica Chimica Acta*, Vol. 349, No. 1-3, (August 1997), pp. 199-206, ISSN 0003-2670

Di Muccio, A.; Fidente, P.; Barbini, D.A.; Dommarco, R.; Seccia, S. & Morrica, P. (2006). Application of solid-phase extraction and liquid chromatography - mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. *Journal of Chromatography A*, Vol. 1108, No. 1, (March 2006), pp. 1-6, ISSN 0021-9673

Economou, A.; Botitsi, H.; Antoniou, S. & Tsipi, D. (2009). Determination of multi-class pesticides in wines by solid-phase extraction and liquid chromatography - tandem mass spectrometry. *Journal of Chromatography A*, Vol. 1216, No. 31, (July 2009), pp. 5856-5867, ISSN 0021-9673

Eisenback, B.M.; Mullins, D.E.; Salom, S.M. & Kok, L.T. (2008). Evaluation of ELISA for imidacloprid detection in eastern hemlock (*Tsuga Canadensis*) wood and needle tissues. *Pest Management Science*, Vol. 65, No. 2, (February 2009), pp. 122-128, ISSN 1526-498X

El Hassani, A.K.; Dacher, M.; Gary, V.; Lambin, M.; Gauthier, M. & Armengaud, C. (2008). Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (*Apis mellifera*). *Archives of Environmental Contamination and Toxicology*, Vol. 54, No. 4, (May 2008), pp. 653-661, ISSN 0090-4341

Ellis, R.L. (1996). Rapid test methods for regulatory programs, In: *Immunoassays for Residue Analysis, Food Safety*, R.C. Beier & L.H. Stanker (ACS Symposium Series 621), pp. 44-58, American Chemical Society, ISBN 0-8412-3379-9, Washington, DC

Engvall, E. & Perlmann, P. (1972). Enzyme-linked immunosorbent assay, Elisa: III. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. *Journal of Immunology*, Vol. 109, No. 1, (July 1972), pp. 129-135, ISSN 0022-1767

Ercegovich, C.D.; Vallejo, R.P.; Gettig, R.R.; Woods, L.; Bogus, E.R. & Mumma, R.O. (1981). Development of a radioimmunoassay for parathion, *Journal of Agricultural and Food Chemistry*, Vol. 29, No. 3, (May 1981), pp. 559-563, ISSN 0021-8561

Fang, S.; Zhang, B.; Ren, K.; Cao, M.; Shi, H. & Wang, M. (2011). Development of a sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on the monoclonal antibody for the detection of the imidaclothiz residue. *Journal of Agricultural and Food Chemistry*, Vol. 59, No. 5, (February 2011), pp. 1594-1597, ISSN 0021-8561

Fernández-Alba, A.R.; Valverde, A.; Agüera, A.; Contreras, M. & Chiron, S. (1996). Determination of imidacloprid in vegetables by high-performance liquid chromatography with diode-array detection. *Journal of Chromatography A*, Vol. 721, No. 1, (January 1996), pp. 97-105, ISSN 0021-9673

Fernández-Alba, A.R.; Tejedor, A.; Agüera, A.; Contreras, M. & Garrido, J. (2000). Determination of imidacloprid and benzimidazole residues in fruits and vegetables by liquid chromatography - mass spectrometry after ethyl acetate multiresidue extraction. *Journal of AOAC International*, Vol. 83, No. 3, (May 2000), pp. 748-755, ISSN 1060-3271
Ferrer, I.; Thurman, E.M. & Fernández-Alba, A.R. (2005). Quantitation and accurate mass analysis of pesticides in vegetables by LC/TOF-MS. *Analytical Chemistry*, Vol. 77, No. 9, (May 2005), pp. 2818-2825, ISSN 0003-2700

Ferrer, I. & Thurman, E.M. (2007). Multi-residue method for the analysis of 101 pesticides and their degradates in food and water samples by liquid chromatography/time-of-flight mass spectrometry. *Journal of Chromatography A*, Vol. 1175, No. 1, (December 2007), pp. 24-37, ISSN 0021-9673

Fidente, P.; Seccia, S.; Vanni, F. & Morrica, P. (2005). Analysis of nicotinoid insecticides residues in honey by solid matrix partition clean-up and liquid chromatography – electrospray mass spectrometry. *Journal of Chromatography A*, Vol. 1094, No. 1-2, (November 2005), pp. 175-178, ISSN 0021-9673

Flores, J.L.; Díaz, A.M. & de Córdove, M.L.F. (2007). Development of a photochemically induced fluorescence-based optosensor for the determination of imidacloprid in peppers and environmental waters. *Talanta*, Vol. 72, No. 3, (May 2007), pp. 991-991, ISSN 0039-9140

Frenich, A.G.; González, F.J.E.; Vidal, J.L.M.; Vázquez, P.P. & Sánchez, M.M. (2000). Determination of imidacloprid and its metabolite 6-chloronicotinic acid in greenhouse air by high-performance liquid chromatography with diode-array detection. *Journal of Chromatography A*, Vol. 869, No. 1-2, (February 2000), pp. 497-504, ISSN 0021-9673

Frenich, A.G.; Vidal, J.L.M.; Pastor-Montoro, E. & Romero-González, R. (2008). High-throughput determination of pesticide residues in food commodities utilizing ultra-performance liquid chromatography – tandem mass spectrometry. *Analytical and Bioanalytical Chemistry*, Vol. 390, No. 3, (February 2008), pp. 947-959, ISSN 1618-2642

Fritz, J.S. & Macka, M. (2000). Solid-phase trapping of solutes for further chromatographic or electrophoretic analysis. *Journal of Chromatography A*, Vol. 902, No. 1, (November 2000), pp. 137-166, ISSN 0021-9673

Galera, M.M.; Frenich, A.G.; Vidal, J.L.M. & Vázquez, P.P. (1998). Resolution of imidacloprid pesticide and its metabolite 6-chloronicotinic acid using cross-sections of spectrochromatograms obtained by high-performance liquid chromatography with diode-array detection. *Journal of Chromatography A*, Vol. 799, No. 1-2, (March 1998), pp. 149-154, ISSN 0021-9673

García, M.D.G.; Galera, M.M.; Valverde, R.S.; Galanti, A. & Girotti, S. (2007). Column switching liquid chromatography and post-column photochemically fluorescence detection to determine imidacloprid and 6-chloronicotinic acid in honeybees. *Journal of Chromatography A*, Vol. 1147, No. 1, (April 2007), pp. 17-23, ISSN 0021-9673

García-Chao, M.; Agruña, M.J.; Calvete, G.F.; Sakkas, V.; Llompart, M. & Dagnac, T. (2010). Validation of an off line solid phase extraction liquid chromatography – tandem mass spectrometry method for the determination of systemic insecticide residues in honey and pollen samples collected in apiaries from NW Spain. *Analytica Chimica Acta*, Vol. 672, No. 1-2, (July 2010), pp. 107-113, ISSN 0003-2670

García-Reyes, J.F.; Jackson, A.U.; Molina-Diaz, A. & Cooks, R.G. (2009). Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in Food. *Analytical Chemistry*, Vol. 81, No. 2, (January 2009), pp. 820-829, ISSN 0003-2700
Girolami, V.; Mazzon, L.; Squartini, A.; Mori, N.; Marzaro, M.; Di Bernardo, A.; Greatti, M.; Giorio, C. & Tapparo, A. (2009). Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: A novel mode of intoxication for bees. *Journal of Economic Entomology*, Vol. 102, No. 5, (October 2009), pp. 1808-1815, ISSN 0022-0493

Girotti, S.; Maiolini, E.; Ghini, S.; Eremin, S. & Mañes, J. (2010). Quantification of imidacloprid in honeybees: Development of a chemiluminescent ELISA. *Analytical Letters*, Vol. 43, No. 3, (2010), pp. 466-475, ISSN 0003-2719

Hengel, M.J. & Miller, M. (2008). Analysis of pesticides in dried hops by liquid chromatography - tandem mass spectrometry. *Journal of Agricultural and Food Chemistry*, Vol. 56, No. 16, (August 2008), pp. 6851-6856, ISSN 0021-8561

Hennion, M-C. & Barcelo, D. (1998). Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: A review. *Analytica Chimica Acta*, Vol. 362, No. 1, (April 1998), pp.3-34, ISSN 0003-2670

Hernández, F.; Pozo, O.J.; Sancho, J.V.; Bijlsma, L.; Barreda, M. & Pitarch, E. (2006). Multiresidue liquid chromatography tandem mass spectrometry determination of 52 non gas chromatography-amenable pesticides and metabolites in different food commodities. *Journal of Chromatography A*, Vol. 1109, No. 2, (March 2006), pp. 242-252, ISSN 0021-9673

Ishii, Y.; Kobori, I.; Araki, Y.; Kurogochi, S.; Iwaya, K. & Kagabu, S. (1994). HPLC determination of the new insecticide imidacloprid and its behavior in rice and cucumber. *Journal of Agricultural and Food Chemistry*, Vol. 42, No. 12, (December 1994), pp. 2917-2921, ISSN 0021-8561

Iwasa, T.; Motoyama, N.; Ambrose, J.T. & Roe, R.M. (2004). Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, *Apis mellifera*. *Crop Protection*, Vol. 23, No. 5, (May 2004), pp.371-378, ISSN 0261-2194

Jansson, C.; Pihlström, T.; Österdahl, B-G. & Markides, K.E. (2004). A new multi-residue method for analysis of pesticide residues in fruit and vegetables using liquid chromatography with tandem mass spectrometric detection. *Journal of Chromatography A*, Vol. 1023, No. 1, (January 2004), pp. 93-104, ISSN 0021-9673

Jourdan, S.W.; Scutellaro, A.M.; Hayes, M.C. & Herzog, D.P. (1996). Adapting immunoassays to the analysis of food samples, In: *Immunoassays for Residue Analysis, Food Safety*, R.C. Beier & L.H. Stanker (ACS Symposium Series 621), pp. 17-28, American Chemical Society, ISBN 0-8412-3379-9, Washington, DC

Kagabu, S. (1996). Studies on the synthesis and insecticidal activity of neonicotinoid compounds. *Journal of Pesticide Science*, Vol. 21, No. 2, (May 1996), pp. 231-239, ISSN 1348-589X

Kamel, A. (2010). Refined methodology for the determination of neonicotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography – tandem mass spectrometry (LC-MS/MS). *Journal of Agricultural and Food Chemistry*, Vol. 58, No. 10, (May 2010), pp. 5926-5931, ISSN 0021-8561

Kamel, A.; Qian, Y.; Kolbe, E. & Stafford, C. (2010). Development and validation of a multiresidue method for the determination of neonicotinoid and macrocyclic lactone pesticide residues in milk, fruits, and vegetables by ultra-performance liquid chromatography/MS/MS. *Journal of AOAC International*, Vol. 93, No. 2, (April 2009), pp. 389-399, ISSN 1060-3271
Kanrar, B.; Mandal, S. & Bhattacharyya, A. (2010). Validation and uncertainty analysis of a multiresidue method for 42 pesticides in made tea, tea infusion and spent leaves using ethyl acetate extraction and liquid chromatography - tandem mass spectrometry. *Journal of Chromatography A*, Vol. 1217, No. 12, (March 2010), pp. 1926-1933, ISSN 0021-9673

Kim, H.-J.; Liu, S.; Keum, Y.-S. & Li, Q.X. (2003). Development of an enzyme-linked immunosorbent assay for the insecticide thiamethoxam. *Journal of Agricultural and Food Chemistry*, Vol. 51, No. 7, (March 2003), pp. 1823-1830, ISSN 0021-8561

Kim, H.-J.; Shelver, W.L. & Li, Q.X. (2004). Monoclonal antibody-based enzyme-linked immunosorbent assay for the insecticide imidacloprid. *Analytica Chimica Acta*, Vol. 509, No. 1, (April 2004), pp. 111-118, ISSN 0003-2670

Kim, H.-J.; Shelver, W.L.; Hwang, E.-C.; Xu, T. & Li, Q.X. (2006). Automated flow fluorescent immunoassay for part per trillion detection of the neonicotinoid insecticide thiamethoxam. *Analytica Chimica Acta*, Vol. 571, No. 1, (June 2006), pp. 66-73, ISSN 0003-2670

Kmellár, B.; Fodor, P.; Pareja, L.; Ferrer, C.; Martínez-Uroz, M.A.; Valverde, A. & Fernandez-Alba, A.R. (2008). Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography - tandem mass spectrometry. *Journal of Chromatography A*, Vol. 1215, No. 1-2, (December 2008), pp. 37-50, ISSN 0021-9673

Kmellár, B.; Pareja, L.; Ferrer, C.; Fodor, P. & Fernandez-Alba, A.R. (2011). Study of the effects of operational parameters on multiresidue pesticide analysis by LC-MS/MS. *Talanta*, Vol. 84, No. 2, (April 2011), pp. 262-273, ISSN 0039-9140

Lagalante, A.F. & Greenbacker, P.W. (2007). Flow injection analysis of imidacloprid in natural waters and agricultural matrixes by photochemical dissociation, chemical reduction, and nitric oxide chemiluminescence detection. *Analytica Chimica Acta*, Vol. 590, No. 2, (May 2007), pp. 151-158, ISSN 0003-2670

Lara, F.J.; García-Campaña, A.M. & Aaron, J-J. (2010). Analytical applications of photoinduced chemiluminescence in flow systems - A review. *Analytica Chimica Acta*, Vol. 679, No. 1-2, (October 2010), pp. 17-30, ISSN 0003-2670

Leandro, C.C.; Hancock, P.; Fussell, R.J. & Keely, B.J. (2007). Ultra-performance liquid chromatography for the determination of pesticide residues in foods by tandem quadrupole mass spectrometry with polarity switching. *Journal of Chromatography A*, Vol. 1144, No. 2, (March 2007), pp. 161-169, ISSN 0021-9673

Lee, J.K.; Ahn, K.C.; Park, O.S.; Kang, S.Y. & Hammock, B.D. (2001). Development of an ELISA for detection of the residues of the insecticide imidacloprid in agricultural and environmental samples. *Journal of Agricultural and Food Chemistry*, Vol. 49, No. 5, (May 2001), pp. 2159-2167, ISSN 0021-8561

Lee, S.M. & Wylie, P.L. (1991). Comparison of the atomic emission detector to other element-selective detectors for the gas chromatographic analysis of pesticide residues. *Journal of Agricultural and Food Chemistry*, Vol. 39, No. 12, (December 1991), pp. 2192-2199, ISSN 0021-8561

Lehotay, S.J.; de Kok, A.; Hiemstra, M. & van Bodegraven, P. (2005). Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection.
Li, K. & Li, Q.X. (2000). Development of an enzyme-linked immunosorbent assay for the insecticide imidacloprid. *Journal of Agricultural and Food Chemistry*, Vol. 48, No. 8, (August 2000), pp. 3378-3382, ISSN 0021-8561

Liu, H.; Song, J.; Zhang, S.; Qu, L.; Zhao, Y.; Wu, Y. & Liu, H. (2005). Analysis of residues of imidacloprid in tobacco by high-performance liquid chromatography with liquid-liquid partition cleanup. *Pest Management Science*, Vol. 61, No. 5, (May 2005), pp. 511-514, ISSN 1526-498X

Liu, S.; Zheng, Z.; Wei, F.; Ren, Y.; Gui, W.; Wu, H. & Zhu, G. (2010). Simultaneous determination of seven neonicotinoid pesticide residues in food by ultraperformance liquid chromatography tandem mass spectrometry. *Journal of Agricultural and Food Chemistry*, Vol. 58, No. 6, (March 2010), pp. 3271-3278, ISSN 0021-8561

Llorent-Martínez, E.J.; Ortega-Barrales, P.; Fernández-de Córdova, M.L. & Ruiz-Medina, A. (2011). Trends in flow-based analytical methods applied to pesticide detection: A review. *Analytica Chimica Acta*, Vol. 684, No. 1-2, (January 2011), pp. 30-39, ISSN 0003-2670

Ma, H.; Xu, Y.; Li, Q.X.; Xu, T.; Wang, X. & Li, J. (2009). Application of enzyme-linked immunosorbent assay for quantification of the insecticides imidacloprid and thiamethoxam in honey samples. *Food Additives and Contaminants*, Vol. 26, No. 5, (May 2009), pp. 713-718, ISSN 1944-0049

MacDonald, L.M. & Meyer, T.R. (1998). Determination of imidacloprid and triadimefon in white pine by gas chromatography/mass spectrometry. *Journal of Agricultural and Food Chemistry*, Vol. 46, No. 8, (August 1998), pp. 3133-3138, ISSN 0021-8561

Mateu-Sánchez, M.; Moreno M.; Arrebola, F.J. & Vidal, J.L.M. (2003). Analysis of acetamiprid in vegetables using gas chromatography – tandem mass spectrometry. *Analytical Sciences*, Vol. 19, No. 5, (May 2003), pp. 701-704, ISSN 0910-6340

Mayer-Helm, B. (2009). Method development for the determination of 52 pesticides in tobacco by liquid chromatography – tandem mass spectrometry. *Journal of Chromatography A*, Vol. 1216, No. 51, (December 2009), pp. 8953-8959, ISSN 0021-9673

Meulenberg, E.P.; Mulder, W.H. & Stoks, P.G. (1995). Immunoassays for pesticides. *Environmental Science and Technology*, Vol. 29, No. 3, (March 1995), pp. 553-561, ISSN 0013-936X

Mohan, C.; Kumar, Y.; Madan, J. & Saxena, N. (2010). Multiresidue analysis of neonicotinoids by solid-phase extraction technique using high-performance liquid chromatography. *Environmental Monitoring and Assessment*, Vol. 165, No. 1-4, (June 2010), pp. 573-576, ISSN 0167-6369

Mommaerts, V.; Reyners, S.; Boulet, J.; Besard, L.; Sterk, G. & Smagghe, G. (2010). Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. *Ecotoxicology*, Vol. 19, No. 1, (January 2010), pp. 207-215, ISSN 0963-9292

Nauen, R.; Ebbinghaus-Kintscher, U. & Schmuck, R. (2001). Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in *Apis*
insecticides (Hymenoptera: Apidae). Pest Management Science, Vol. 57, No. 7, (July 2001), pp. 577-586, ISSN 1526-498X

Navalón, A.; González-Casado, A.; El-Khattabi, R.; Vilchez, J.L. & Fernández-Alba, A.R. (1997). Determination of imidacloprid in vegetable samples by gas chromatography – mass spectrometry. Analyst, Vol. 122, No. 6, (June 1997), pp. 579-581, ISSN 0003-2654

Niessen, W.M.A.; Manini, P. & Andreoli, R. (2006). Matrix effects in quantitative pesticide analysis using liquid chromatography – mass spectrometry. Mass Spectrometry Reviews, Vol. 25, No. 6, (June 2006), pp. 881-899, ISSN 1098-2787

Nunes, G.S.; Toscano, I.A. & Barceló, D. (1998). Analysis of pesticides in food and environmental samples by enzyme-linked immunosorbent assays. Trends in Analytical Chemistry, Vol. 17, No. 2, (February 1998), pp. 79-87, ISSN 0165-9936

Obana, H.; Okihashi, M.; Akutsu, K.; Kitagawa, Y. & Hori, S. (2002). Determination of acetamiprid, imidacloprid, and nitenpyram residues in vegetables and fruits by high-performance liquid chromatography with diode-array detection. Journal of Agricultural and Food Chemistry, Vol. 50, No. 16, (July 2002), pp. 4464-4467, ISSN 0021-8561

Obana, H.; Okihashi, M.; Akutsu, K.; Kitagawa, Y. & Hori, S. (2003). Determination of neonicotinoid pesticide residues in vegetables and fruits with solid phase extraction and liquid chromatography mass spectrometry. Journal of Agricultural and Food Chemistry, Vol. 51, No. 9, (April 2003), pp. 2501-2505, ISSN 0021-8561

Pareja, L.; Martínez-Bueno, M.J.; Cesio, V.; Heinzen, H. & Fernández-Alba, A.R. (2011). Trace analysis of pesticides in paddy field water by direct injection using liquid chromatography-quadrupole-linear ion trap-mass spectrometry. Journal of Chromatography A, Vol. 1218, No. 30, (July 2011), pp. 4790-4798, ISSN 0021-9673

Payá, P.; Anastassiades, M.; Mack, D.; Sigalova, I.; Tasdelen, B.; Oliva, J. & Barba, A. (2007). Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Analytical and Bioanalytical Chemistry, Vol. 389, No. 6, (November 2007), pp. 1697-1714, ISSN 1618-2642

Pirard, C.; Widart, J.; Nguyen, B.K.; Deleuze, C.; Heudt, L.; Haubruche, E.; De Pauw, E. & Focant, J.-F. (2007). Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid-liquid extraction and liquid chromatography – tandem mass spectrometry. Journal of Chromatography A, Vol. 1152, No. 1-2, (June 2007), pp. 116-123, ISSN 0021-9673

Pous, X.; Ruiz, M.J.; Picó, Y. & Font, G. (2001). Determination of imidacloprid, metalaxyl, myclobutanil, propanam, and thiabendazole in fruits and vegetables by liquid chromatography – atmospheric pressure chemical ionization-mass spectrometry. Fresenius' Journal of Analytical Chemistry, Vol. 371, No. 2, (September 2001), pp. 182-189, ISSN 0937-0633

Radišić, M.; Gruijić, S.; Vasiljević, T.; Laušević, M. (2009). Determination of selected pesticides in fruit juices by matrix solid-phase dispersion and liquid chromatography – tandem mass spectrometry. Food Chemistry, Vol. 113, No. 2, (March 2009), pp. 712-719, ISSN 0308-8146
Rancan, M.; Rossi, S. & Sabatini, A.G. (2006a). Determination of thiamethoxam residues in honeybees by high performance liquid chromatography with an electrochemical detector and post-column photochemical reactor. *Journal of Chromatography A*, Vol. 1123, No. 1, (August 2006), pp. 60-65, ISSN 0021-9673

Rancan, M.; Sabatini, A.G.; Achilli, G. & Galletti, G.C. (2006b). Determination of imidacloprid and metabolites by liquid chromatography with an electrochemical detector and post column photochemical reactor. *Analytica Chimica Acta*, Vol. 555, No. 1, (January 2006), pp. 20-24, ISSN 0003-2670

Romero-González, R.; Frenich, A.G.; Vidal, J.L.M.; Prestes, O.D. & Grio, S.L. (2011). Simultaneous determination of pesticides, biopesticides and mycotoxins in organic products applying a quick, easy, cheap, effective, rugged and safe extraction procedure and ultra-high performance liquid chromatography – tandem mass spectrometry. *Journal of Chromatography A*, Vol. 1218, No. 11, (March 2011), pp. 1477-1485, ISSN 0021-9673

Sannino, A.; Bolzoni, L. & Bandini, M. (2004). Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables. *Journal of Chromatography A*, Vol. 1036, No. 2, (May 2004), pp. 161-169, ISSN 0021-9673

Seccia, S.; Fidente, P.; Barbini, D.A. & Morrica, P. (2005). Multiresidue determination of nicotinoid residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. *Analytica Chimica Acta*, Vol. 553, No. 1-2, (November 2005), pp. 21-26, ISSN 0003-2670

Seccia, S.; Fidente, P.; Montesano, D. & Morrica, P. (2008). Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection. *Journal of Chromatography A*, Vol. 1214, No. 1-2, (December 2008), pp. 115-120, ISSN 0021-9673

Shan, G.; Lipton, C.; Gee, S.J. & Hammock, B.D. (2002). Immunoassay, biosensors and other nonchromatographic methods, In: *Handbook of Residue Analytical Methods for Agrochemicals*, P.W. Lee, pp. 623-679, John Wiley & Sons, Ltd., ISBN 0471-49194-2, Chichester

Shiokawa, K.; Tsuboi, S.; Iwaya, K. & Moriya, K. (1994). Development of a chloronicotinyl insecticide, imidacloprid. *Journal of Pesticide Science*, Vol. 19, No. 4, (November 1994), pp. S209-S217, ISSN 1348-589X

Singh, S.B.; Foster, G.D. & Khan, S.U. (2004). Microwave-assisted extraction for the simultaneous determination of thiamethoxam, imidacloprid, and carbendazim residues in fresh and cooked vegetable samples. *Journal of Agricultural and Food Chemistry*, Vol. 52, No. 1, (January 2004), pp. 105-109, ISSN 0021-8561

Skerritt, J.H. & Rani, B.E.A. (1996). Detection and removal of sample matrix effects in agrochemical immunoassays, In: *Immunoassays for Residue Analysis, Food Safety*, R.C. Beier & L.H. Stanker (ACS Symposium Series 621), pp. 29-43, American Chemical Society, ISBN 0-8412-3379-9, Washington, DC

Soloway, S.B.; Henry, A.C.; Kollmeyer, W.D.; Padgett, W.M.; Powell, J.E.; Roman, S.A.; Tieman, C.H.; Corey, R.A. & Horne, C.A. (1978). Nitromethylene heterocycles as insecticides, In: *Pesticide and Venom Neurotoxicity*, D.L. Shankland, R.M. Hollingworth, T. Smith Jr., pp. 153-158, Plenum, ISBN 978-0306311239, New York
Soloway, S.B.; Henry, A.C.; Kollmeyer, W.D.; Padgett, W.M.; Powell, J.E.; Roman, S.A.; Tieman, C.H.; Corey, R.A. & Horne, C.A. (1979). Nitromethylene insecticides, In: Advances in Pesticide Science, H. Geissbüehler, pp. 206-217, Pergamon, ISBN 978-0080239309, Oxford.

Szurdoki, F.; Bekheit, H.K.M.; Marco, M-P.; Goodrow, M.H. & Hammock, B.D. (1995). Important factors in hapten design and enzyme-linked immunosorbent assay development, In: New Frontiers in Agrochemical Immunoassay, D.A. Kurtz, J.H. Skerritt & L. Stanker, pp. 39-63, AOAC International, ISBN 0-935584-58-7, Arlington, VA.

Ting, K.-C.; Zhou, E.G. & Saini, N. (2004). Determination of imidacloprid in fruits and vegetables by liquid chromatography with diode array and nitrogen-specific chemiluminescent detection. Journal of AOAC International, Vol. 87, No. 4, (July 2004), pp. 997-1002, ISSN 1060-3271.

Tokieda, M.; Ozawa, M.; Kobayashi, S. & Gomyo, T. (1997a). Method to determination of total residues of the insecticide acetamiprid and its metabolites in crops by gas chromatography. Journal of Pesticide Sciences, Vol. 22, No. 2, (May 1997), pp. 77-83, ISSN 1348-589X.

Tokieda, M.; Iiyoshi, K.; Sugiooka, K. & Gomyo, T. (1997b). Residue determination method for the insecticide acetamiprid in crops by gas chromatography. Journal of Pesticide Sciences, Vol. 22, No. 2, (May 1997), pp. 129-132, ISSN 1348-589X.

Tokieda, M.; Tanaka, T.; Ozawa, M. & Gomyo, T. (1998). High performance liquid chromatographic determination of acetamiprid and its degradation products in soil. Journal of Pesticide Sciences, Vol. 23, No. 3, (August 1998), pp. 296-299, ISSN 1348-589X.

Tomizawa, M. (1994). Structure–activity relationships of nicotinoids and the related compounds. Journal of Pesticide Science, Vol. 19, No. 4, (November 1994), pp. S229-S240, ISSN 1348-589X.

Tomizawa, M. & Casida, J.E. (2003). Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology, Vol. 48, (2003), pp.339-364, ISSN 0066-4170.

Tomizawa, M. & Casida, J.E. (2005). Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annual Review of Pharmacology and Toxicology, Vol. 45, (2005), pp. 247-268, ISSN 0362-1642.

Tomlin, C.D.S. (2003). A World Compendium The Pesticide Manual (Thirteenth Edition), British Crop Protection Council, ISBN 1-901396-13-4, Hampshire, UK.

Totti, S.; Fernández, M.; Ghini, S.; Picó, Y.; Fini, F.; Mañes, J. & Girotti, S. (2006). Application of matrix solid phase dispersion to the determination of imidacloprid, carbaryl, aldicarb, and their main metabolites in honeybees by liquid chromatography – mass spectrometry detection. Talanta, Vol. 69, No. 3, (May 2006), pp. 724-729, ISSN 0039-9140.

Venkateswarlu, P.; Mohan, K.R.; Kumar, C.R. & Seshiaiah, K. (2007). Monitoring of multi-class pesticide residues in fresh grape samples using liquid chromatography with electrospray tandem mass spectrometry. Food Chemistry, Vol. 105, No. 4, (2007), pp. 1760-1766, ISSN 0308-8146.

Vilchez, J.L.; El-Khattabi, R.; Fernández, J.; González-Casado, A. & Navalón, A. (1996). Determination of imidacloprid in water and soil samples by gas chromatography –
mass spectrometry. *Journal of Chromatography A*, Vol. 746, No. 2, (October 1996), pp. 289-294, ISSN 0021-9673

Vilchez, J.L.; Valencia, M.C.; Navalón, A.; Molinero-Morales, B. & Capitán-Vallvey, L.F. (2001). Flow injection analysis of the insecticide imidacloprid in water samples with photochemically induced fluorescence detection. *Analytica Chimica Acta*, Vol. 439, No. 2, (July 2001), pp. 299-305, ISSN 0003-2670

Wan, H.B. & Wong, M.K. (1996). Minimization of solvent consumption in pesticide residue analysis. *Journal of Chromatography A*, Vol. 754, No. 1-2, (November 1996), pp. 43-47, ISSN 0021-9673

Watanabe, E.; Eun, H.; Baba, K.; Arao, T.; Ishii, Y.; Endo, S. & Ueji, M. (2004a). Evaluation and validation of a commercially available enzyme-linked immunosorbent assay for the neonicotinoid insecticide imidacloprid in agricultural samples. *Journal of Agricultural and Food Chemistry*, Vol. 52, No. 10, (May 2004), pp. 2756-2762, ISSN 0021-8561

Watanabe, E.; Eun, H.; Baba, K.; Arao, T.; Ishii, Y.; Endo, S. & Ueji, M. (2004b). Rapid and simple screening analysis for residual imidacloprid in agricultural products with commercially available ELISA. *Analytica Chimica Acta*, Vol. 521, No. 1, (September 2004), pp. 45-51, ISSN 0003-2670

Watanabe, E.; Miyake, S.; Baba, K.; Eun, H. & Endo, S. (2006). Immunoassay for acetamiprid detection: application to residue analysis and comparison with liquid chromatography. *Analytical and Bioanalytical Chemistry*, Vol. 386, No. 5, (November 2006), pp. 1441-1448, ISSN 1618-2642

Watanabe, E.; Baba, K. & Eun, H. (2007). Simultaneous determination of neonicotinoid insecticides in agricultural samples by solid-phase extraction cleanup and liquid chromatography equipped with diode-array detection. *Journal of Agricultural and Food Chemistry*, Vol. 55, No. 10, (May 2007), pp. 3798-3804, ISSN 0021-8561

Watanabe, E.; Baba, K.; Eun, H. & Miyake, S. (2007). Application of a commercial immunoassay to the direct determination of insecticide imidacloprid in fruit juices. *Food Chemistry*, Vol. 102, No. 3, (2007), pp. 745-750, ISSN 0308-8146

Watanabe, E.; Baba, K. & Miyake, S. (2011). Analytical evaluation of enzyme-linked immunosorbent assay for neonicotinoid dinotefuran for potential application to quick and simple screening method in rice samples. *Talanta*, Vol. 84, No. 4, (May 2011), pp. 1107-1111, ISSN 0039-9140

Watanabe, S.; Ito, S.; Kamata, Y.; Omoda, N.; Yamazaki, T.; Munakata, H.; Kaneko, T. & Yuasa, Y. (2001). Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. *Analytica Chimica Acta*, Vol. 427, No. 2, (January 2001), pp. 211-219, ISSN 0003-2670

Xiao, Z.; Li, X.; Wang, X.; Shen, J. & Ding, S. (2011). Determination of neonicotinoid insecticides residues in bovine tissues by pressurized solvent extraction and liquid chromatography – tandem mass spectrometry. *Journal of Chromatography B*, Vol. 879, No. 1, (January 2011), pp. 117-122, ISSN 1570-0232

Xie, W.; Han, C.; Qian, Y.; Ding, H.; Chen, X. & Xi, J. (2011). Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography – tandem mass spectrometry. *Journal of Chromatography A*, Vol. 1218, No. 28, (July 2011), pp. 4426-4433, ISSN 0021-9673

www.intechopen.com
Xu, T.; Jacobsen, C.M.; Cho, I.K.; Hara, A.H. & Li, Q.X. (2006). Application of an enzyme-linked immunosorbent assay for the analysis of imidacloprid in wiliwili tree, *Erythrina sandwicensis* O. Deg, for control the wasp *Quadrastichus erythrinae*. *Journal of Agricultural and Food Chemistry*, Vol. 54, No. 22, (November 2006), pp. 8444-8449, ISSN 0021-8561

Xu, T.; Wei, K.-Y.; Wang, J.; Ma, H.-X.; Li, J.; Xu, Y.-J. & Li, Q.X. (2010). Quantitative analysis of the neonicotinoid insecticides imidacloprid and thiamethoxam in fruit juices by enzyme-linked immunosorbent assays. *Journal of AOAC International*, Vol. 93, No. 1, (January 2010), pp. 12-18, ISSN 1060-3271

Yalow, R.S. & Berson, S.A. (1959). Assay of plasma insulin in human subjects by immunological methods. *Nature*, Vol. 184, No. 4699, (November 1959), pp. 1648-1649, ISSN 0028-0836

Yalow, R.S. & Berson, S.A. (1960). Immunoassay of endogenous plasma insulin in man. *The Journal of Clinical Investigation*, Vol. 39, No. 7, (July 1960), pp. 1157-1175, ISSN 0021-9738

Zhang, X.; Mobley, N.; Zhang, J.; Zheng, X.; Lu, L.; Ragin, O. & Smith, C.J. (2010). Analysis of agricultural residues on tea using d-SPE sample preparation with GC-NCI-MS and UHPLC-MS/MS. *Journal of Agricultural and Food Chemistry*, Vol. 58, No. 22, (November 2010), pp. 11553-11560, ISSN 0021-8561

Zhou, Q.; Ding, Y. & Xiao, J. (2006). Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography. *Analytical and Bioanalytical Chemistry*, Vol. 385, No. 8, (August 2006), pp. 1520-1525, ISSN 1618-2642
This book contains 30 Chapters divided into 5 Sections. Section A covers integrated pest management, alternative insect control strategies, ecological impact of insecticides as well as pesticides and drugs of forensic interest. Section B is dedicated to chemical control and health risks, applications for insecticides, metabolism of pesticides by human cytochrome p450, etc. Section C provides biochemical analyses of action of chlorfluanid and pest control effects on seed yield, chemical ecology, quality control, development of ideal insecticide, insecticide resistance, etc. Section D reviews current analytical methods, electroanalysis of insecticides, insecticide activity and secondary metabolites. Section E provides data contributing to better understanding of biological control through Bacillus sphaericus and B. thuringiensis, entomopathogenic nematodes insecticides, vector-borne disease, etc. The subject matter in this book should attract the reader's concern to support rational decisions regarding the use of pesticides.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eiki Watanabe (2012). Review on Current Analytical Methods with Chromatographic and Nonchromatographic Techniques for New Generation Insecticide Neonicotinoids, Insecticides - Advances in Integrated Pest Management, Dr. Farzana Perveen (Ed.), ISBN: 978-953-307-780-2, InTech, Available from: http://www.intechopen.com/books/insecticides-advances-in-integrated-pest-management/review-on-current-analytical-methods-with-chromatographic-and-nonchromatographic-techniques-for-new-