Diversity Begets Stability in an Evolving Network

Ravi Mehrotra,1 Vikram Soni,1 and Sanjay Jain2,3,4,5

1National Physical Laboratory, K. S. Krishnan Rd., New Delhi-110012, India
2Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
3Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560066
4Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Complex evolving systems such as the biosphere, ecosystems and societies exhibit sudden collapses, for reasons that are only partially understood. Here we study this phenomenon using a mathematical model of a system that evolves under Darwinian selection and exhibits the spontaneous growth, stasis and collapse of its structure. We find that the typical lifetime of the system increases sharply with the diversity of its components or species. We also find that the prime reason for crashes is a naturally occurring internal fragility of the system. This fragility is captured in the network organizational character and is related to a reduced multiplicity of pathways between its components. This work suggests new parameters for understanding the robustness of evolving molecular networks, ecosystems, societies, and markets.

Crashes in complex systems include mass extinctions in the biosphere as evidenced in the paleontological record [1] collapses of ecosystems [2], civilizations [3], and crashes of stock-markets [4,5]. The death of a human being due to old age is also an example of collapse of a once-robust complex system turned fragile. While some of these catastrophic events are caused by large external perturbations like meteorite impacts, famines, wars and infections, for the vast majority of them no single dramatic cause can be traced [1,3,4,5]. Here we explore an alternative hypothesis that the prime reason for crashes is a fragility in the internal organization of these systems that naturally develops in the course of their time evolution, making them vulnerable to small perturbations. Unfortunately, empirical data characterizing the ‘internal fragility’ or ‘robustness’ of such systems is scarce. One of the chief problems in collecting data is not knowing what to look for; we do not know what system parameters can characterize its poisedness for a crash. Hence, a key step in identifying possible signatures of fragility is to construct theoretical and mathematical models of systems that exhibit repeated catastrophes in the course of their time evolution, whose analysis can reveal structural and dynamical features that make them vulnerable to such events. An important aspect of a complex system’s organizational structure is the underlying interaction network of its components [6,7,8,9]; hence we need in particular to study examples of evolving networks that exhibit crashes and recoveries.

Our model system [10,11] exhibits these phenomena for an evolving network of interacting populations, with Darwinian selection and dynamic feedback loops playing an important role in system evolution. The system consists of s nodes, whose network of interactions is specified completely by its adjacency matrix $C = (c_{ij})$, $i,j = 1, \ldots, s$. A node may represent a molecular species in a prebiotic pond. The model is motivated by the origin of life problem [12,13,14], but may be more generally valid. The element $c_{ij} = 1$ if species j ‘catalyzes’ the growth of species i, and zero otherwise. Also, $c_{ii} = 0$ for all i, corresponding to the exclusion of self-catalyzing species. Relaxing the above restrictions by allowing links with different weights and negative signs does not change the qualitative behaviour of the model.

Using the adjacency matrix, we write an equation for the population dynamics of the species given by

$$\dot{y}_i = \sum_{j=1}^s c_{ij} y_j - \phi y_i. \quad (1)$$

Here, y_i is the rate of change of the population of species i. The first term on the right takes into account the positive effect of all the species that catalyze species i, each one having an effect proportional to its population. The second term is a constant mortality term.

Cast in terms of the relative populations, $x_i = y_i/\sum_{i=1}^s y_i$, Eq. (1) implies that

$$\dot{x}_i = \sum_{j=1}^s c_{ij} x_j - x_i \sum_{k,j=1}^s c_{kj} x_j. \quad (2)$$

The dynamics described by Eq. (2) flows to a fixed point in which all x_i become time independent constants. Technically, this steady state is just an eigenvector of the matrix C corresponding to its largest eigenvalue. For a generic non-negative matrix C, it is a unique, global attractor (independent of initial conditions), stable against perturbations of the x_i.

Initially, the matrix C is sparse and drawn from the random binomial ensemble with on average m links per node (with $m < 1$). To introduce evolution into the model, we note that the pond can be washed by nearby tides, floods or storms that can flush out some of the contents of the pond. We use the Darwinian dictum ‘Survival of the fittest’ and impose that the species with the lowest relative population in the steady state gets removed from the system [15]; we eliminate the corresponding node along with all its links from the graph.

*Corresponding author: jain@physics.du.ac.in
After a certain time, \(s_1 \) begins to grow and soon reaches its maximum value \(s \). Thereafter, the system exhibits a stasis for a certain time scale, \(\tau \), in which \(s_1 \) fluctuates between \(s \) and \(s - 1 \). In this state, which we call the ‘organized state’, all species except possibly the one being picked for replacement have \(x_i > 0 \). Thereafter, the system experiences a collapse in which \(s_1 \) drops to a fraction of \(s \). This is followed by a recovery and a repetition of the same kind of dynamics. This behaviour is discussed in detail in [10, 13].

In this letter, we focus on crashes whereby, in a single update step, the number of populated species \(s_1 \) goes from \(s \) to a fraction \(h \) of \(s \). We present results for \(h = 0.50 \) and 0.75. While the absolute number of crashes depends upon \(h \), the qualitative results are not very sensitive to its value. As shown in Fig. 1, for fixed \(m \), the frequency of crashes comes markedly down with increasing \(s \). Similarly, if we increase \(m \) for fixed \(s \), the number of crashes again decreases markedly.

For given values of \(m \) and \(s \), there is a typical lifetime before the network collapses. We define this time \(\tau \) as the number of update steps spent in the organized state in a given run (typically 10^6 steps long), divided by the number of crashes observed during that run. Each run is parameterized by \(s \) and \(m \) and crashes are defined with respect to the parameter \(h \). Hence \(\tau \) depends upon \(s, m \), and \(h \). The dependence of \(\tau \) on \(s \) and \(m \) is shown in Fig. 2, for \(h = 0.75 \). For fixed \(m \), \(\tau/s \) grows exponentially with \(s \). This behavior is consistent with the empirical relation

\[
\frac{\tau}{s} = A(m, h)e^{\alpha(m, h)s}. \tag{3}
\]

The coefficient \(\alpha(m, h) \) is an increasing function of \(m \) (and a weak function of \(h \)) whose quantitative behavior is discussed later.

These results show that the system is more stable against crashes as its diversity, \(s \), increases for fixed connectivity, \(m \), and also as its connectivity, \(m \), increases for a fixed diversity. We emphasize that even for low connectivity the system can be stabilized against collapse by increasing its diversity. It turns out that in the organized state, the average connectivity of the species is close to \(\sim 1 + m \); hence, for the values of \(m \) given above the average connectivity is only slightly above one. Even such sparsely connected systems are stabilized in this model by a sufficient amount of diversity.

We now attempt to understand this behaviour in terms of the structure of the graph near and far from a crash. The organized state has the structure of an autocatalytic set (ACS). An ACS is a subgraph, each of whose nodes has at least one incoming link from a node belonging to the same subgraph [13]. In the organized state, all the species except possibly the one being picked for replacement are part of the ACS [10]. The ACS consists of a core and a periphery. The core comprises the set of nodes (along with their mutual links) from which there is a directed path to every other node in the ACS. All

FIG. 1: Number of populated species \(s_1 \) as a function of time. The total number of species \(s = 100, 300, 500 \) for the three traces from top to bottom, while \(m = 0.25 \) for each. The number of crashes decrease markedly with increasing \(s \).

FIG. 2: Organized state lifetime as a function of \(s \) on a semi-log plot for \(h = 0.75 \) and various values of \(m \) denoted by \(\square : m = 0.15 \), \(\odot : m = 0.25 \), \(\vartriangle : m = 0.35 \). The straight lines are least square fits whose slopes gives \(\alpha(m) \).

(If there are more than one such species, we choose one at random.) Furthermore, such a fluctuation can bring in new species into the pond; we assume for simplicity that a single new node gets added to the graph whose links with the existing ones are made randomly with the same average connectivity \(m \). After each such fluctuation, the populations evolve according to Eq. 2 with a structural perturbation that modifies \(C \). The typical dynamics is shown in Fig. 1 where the number, \(s_1 \), of populated species (whose steady state \(x_i > 0 \)) is plotted against time (number of graph updates, \(n \)) for three values of \(s = 100, 300, 500 \) and fixed \(m = 0.25 \). We scale time by \(1/s \) as each species, on average, can be updated in \(s \) steps. Initially, the graph is sparse and the number \(s_1 \) is small.

At each (‘Darwinian’) update, then, the system suffers a structural perturbation that modifies \(C \). The perturbation is small in that only one species is updated, affecting the links of only \(\sim m \sim O(1) \) number of species. Since the update of \(C \) depends on populations, the long time dynamics of the populations is highly nonlinear inspite of the simplicity of Eqs. 1 and 2. The typical dynamics is shown in Fig. 1 where the number, \(s_1 \), of populated species (whose steady state \(x_i > 0 \)) is plotted against time (number of graph updates, \(n \)) for three values of \(s = 100, 300, 500 \) and fixed \(m = 0.25 \). We scale time by \(1/s \) as each species, on average, can be updated in \(s \) steps. Initially, the graph is sparse and the number \(s_1 \) is small.
FIG. 3: Examples of network configurations for \(m = 0.25 \).

(a,c): In the normal organized state (far away from a crash) and (b,d): in the organized state just before a crash. Core nodes are shown in red, periphery in blue. For \(s = 300 \), periphery nodes are not shown to avoid clutter. Note (i) that the core is large and has multiple directed pathways between any pair of its nodes in the normal organized state (a,c). Just before a crash it becomes smaller and does not possess multiplicity of pathways (b,d). (ii) As one increases \(s \) from 100 to 300, the number of multiple pathways in the core in the normal organized state increases dramatically (compare a and c), while in the state poised for a crash it is more or less the same and quite small (compare b and d).

other nodes and links in the ACS constitute the periphery. Examples of the graph (ACS with core and periphery) observed in the organized state are shown in Fig. 3. By definition there is no directed path from a periphery node to any core node. The core, by virtue of closed paths inside it, is a ‘self-sustaining’ structure in the sense that all the core nodes would be populated even if the only links present in the graph are those in the core. In contrast, the periphery nodes would become depopulated if the links from the core to the periphery were to be removed. In this sense, the periphery nodes are ‘parasites’ that are sustained by the core.

While there is always by definition at least one path from every core node to every other core node, the number of such paths is significantly different between a normal organized state and a state poised for a crash. In the typical organized state there are several paths from each core node to another (see Figs. 3(a,c)). In such configurations, no single node addition or deletion can cause a crash. However, the number of paths between core nodes drops to a much lower value just before a crash (see Figs. 3(b,d)). Then, a single node change can disrupt the core and cause most network species to be depopulated.

FIG. 4: Normalized frequency distribution of closed paths in the core across the sample of all time steps in the organized state, with logarithmic (base 2) binning, for \(m = 0.25 \) and \(s = 500 \) (• and solid line). Similar distribution but across the smaller sample of time steps just preceding crashes (○ and dashed line). The curves are least square fits to the data using a normal distribution.

FIG. 5: \(\ln(N_p) \) vs. \(s \) for various values of \(m \) denoted by symbols □ : \(m = 0.15 \), ○ : \(m = 0.25 \), △ : \(m = 0.35 \). The straight lines are least square fits whose slopes give \(\beta(m) \).

In Fig. 4, we plot the frequency distribution of distinct, non-intersecting closed paths of all lengths in the core in the organized state (filled circles). The distribution shows a peak whose position, \(N_p \), is dependent upon \(s \) and \(m \). A plot of \(\ln(N_p) \) against \(s \) for various values of \(m \) is shown in Fig. 5. This is consistent with the empirical formula

\[
N_p = B(m)e^{\beta(m)s}. \tag{4}
\]

We note that loops in other graph ensembles have also been counted [18].

In Fig. 4, the open symbols show the distribution of closed paths in the core just before crashes. Its peak occurs at a much smaller value than \(N_p \) (note that the x-axis scale is logarithmic). This is also evident from Fig. 3 (the cores in (b) and (d) have much fewer closed paths than in (a) and (c)).
We find a strong correlation between the coefficients $\alpha(m)$ and $\beta(m)$. This is shown in Fig. 6 where $\alpha(m, h)$ for two values of h and $\beta(m)$ are plotted against m. It is seen that the dependence of α on h is weak, as mentioned before, and that α and β have a similar dependence upon m. Thus N_p and τ/s have a similar dependence on m and s. This close correspondence between a structural property like the number of loops in the graph in the organized phase and a dynamical property like the lifetime of that phase, is one of the surprising results we have found.

This suggests an explanation of why a higher diversity and density of links enhances stability against crashes in this model. Diversity increases the number of closed paths in the core and thus provides a buffer against crashes by ensuring alternate routes of sustenance in the event of loss of core nodes. Crashes occur typically when the core has thinned out, and such fragile states take longer to be realized when there is a larger number of paths in the core to begin with.

As in real evolutionary systems, the model generates several dynamical time scales. The model has only two parameters: system size or diversity, s, and the average connectivity of a new node, m (the latter being typically $O(1)$). In spite of its extreme simplicity, the time scales that dynamically appear have a wide range of dependence on s, including logarithmic, power law and exponential. The time scale for the appearance of an ACS is independent of s and of its growth is $\sim \ln s$ (at constant m, in scaled units of time as used in Fig. 1. Once a crash sets in it occurs fast -- on a time scale $\sim 1/s$ in the present version of the model. The fast collapse and a relatively slower growth seen in the model is an observed feature in fossil records as well as stock markets. The lifetime of the system between its growth and collapse has turned out to be the timescale that is the most sensitive to its diversity, namely, $\sim e^{\alpha s}$, as shown here. Such a dependence means that there is a threshold scale of diversity set by $1/\alpha$, such that if diversity is well above this scale the system is robust to crashes, but if it is close to or lower it is vulnerable.

The dynamics of growth and collapse in our model is different from other existing models, including various models of extinction studied in the literature (see the review [19] and references therein). The seed for the growth of complexity in this model is a small feedback loop (usually a 2-cycle) that arises in the network by chance. The cooperativity implicit in this autocatalytic structure causes its nodes to have much higher populations than other nodes. Under a selection dynamics that preferentially preserves nodes with higher population, such a structure is stable and grows in complexity until it spans the whole system. Then, the same selection dynamics causes its components, erstwhile cooperators, to become competitors. This leads to internal organizational restructuring, and, on a certain timescale, when the internal feedback loops become sparse, to fragility. Thus, we have here an example of how the very success and domination of a certain organizational structure changes the effective rules of the game leading to the collapse of the structure (for another such example see the model [20]). This is reminiscent of how certain civilizations and organizations collapse in the real world [3]. The role of feedback loops in a network structure that evolves under both selection and stochastic forces is also characteristic of several real evolutionary systems.

Mathematical models of ecosystems suggest that a large number of complex factors determine ecosystem stability under various types of perturbations (see the reviews [21, 22, 23] and references therein). The importance of the multiplicity of sustenance pathways of species, suggested by MacArthur [25], is analogous to the result we have found above. Note that as in the core of our graphs, so in ecosystems at the most basic level there exist several feedback loops between plants and microbial communities that feed on detritus and restore soil nutrients. These self-sustaining parts of the ecosystem are probably more primitive, and their dynamics relatively independent of the more ‘peripheral’ higher trophic levels that they support. Disruption of these feedback pathways would, beyond a certain point, be catastrophic for the ecosystem as a whole. Most ecosystem models concerned with stability typically take into account only the plants and higher trophic levels and exclude microbes that provide essential feedback loops. Our work suggests that newer and perhaps clearer patterns may emerge when models and field data are considered that include microbes along with other trophic levels.

A point of caution is that Eqs. (1) and (2), motivated by catalytic chemical production, would need to be modified to represent other systems, e.g., the population dynamics in ecosystems. Nevertheless, it is worthwhile to note that several qualitative features of the above model, including self-organization and collapse of the network, are preserved when we include negative links (that inhibit species production) and links with varying strengths, and where the network size s is itself a dynamical variable with its upper limit statistically determined by a relative population threshold below which species are eliminated.
The determination of system lifetime before a crash and the core architecture in these computationally more demanding versions of the model is presently under study and will be reported elsewhere. Needless to say, the real causes of fragility would be many and varied for different systems: organisms, ecosystems, societies, etc. It would be interesting to explore more realistic models exhibiting crashes and recoveries to see the extent to which they share the behaviour of our simple idealized model.

As in several real world systems, an impending collapse is not visible in an obvious way beforehand in the model. The fragility of the system is directly visible only if one looks at the organizational structure, or the network, and observes the internal multiplicity of core pathways (see, e.g., Fig. 3). Thus, it may not be enough to quantify populations of species in ecosystems, or stock prices of companies in markets, or the performance of individual organs in an aging human body. One may need more ‘systemic’ information about the network of interaction among the components and the analysis of internal pathways to assess the true health of these systems.

A notion of robustness of a complex system to the removal of nodes has been defined in ref. 28 in terms of the increase of the network diameter. Our approach is different in that we do not define system robustness in terms of a network property, but rather find that its robustness as measured by the time interval between crashes is correlated with a network property – the number of closed paths in its core.

It is important to note that our model is concerned primarily not with stability under perturbations of populations in a random network, as discussed by May 29, 30, but with structural perturbations of node/link removal and introduction that arise in the natural course of evolution in a highly self organized network. It shows how an increase in diversity and link density can contribute to long term system stability against crashes caused by such perturbations by increasing the cooperative routes of sustenance in the network.

Acknowledgments

We thank Sandeep Krishna for collaboration during the initial phase of this work and Areejit Samal for help with graph visualization. S.J. acknowledges support from the Robustness programme of the Santa Fe Institute.

References

[1] Raup, D. (1991) Extinction: Bad Genes or Bad Luck? (W. W. Norton).
[2] Paine, R. T. (1969) Am. Nat. 103, 91–93.
[3] Diamond, J. (2006) Collapse: How Societies Choose to Fail or Survive. (Penguin Books).
[4] Schumpeter, J. A. (1939) Business Cycles: A Theoretical, Historical and Statistical Analysis of the Capitalist Process. (McGrawHill, New York).
[5] Sornette, D. (2004) Why Stock Markets Crash: Critical Events in Complex Financial Systems. (Princeton University Press, Princeton, NJ).
[6] Watts, D. J & Strogatz, S. H. (1998) Nature 393, 440–42.
[7] Albert, R & Barabasi, A. L. (2002) Rev. Mod. Phys. 74, 47–97.
[8] Dorogovtsev, S. N & Mendes, J. F. (2003) Evolution of Networks: from Biological Nets to the Internet and WWW. (Oxford University Press).
[9] Bhalia, U. S & Iyengar, R. (1999) Science 283, 381–387.
[10] Jain, S & Krishna, S. (1998) Phys. Rev. Lett. 81, 5684–5687.
[11] Jain, S & Krishna, S. (2001) Proc. Natl. Acad. Sci. USA 98, 543–547.
[12] Dyson, F. (1985) Origins of Life. (Cambridge University Press, Cambridge).
[13] Kauffman, S. (1993) The Origins of Order. (Oxford University Press, Oxford).
[14] Bagley, R. J, Farmer, J. D, & Fontana, W. (1991) in Artificial Life II, ed. Langton, C. G. (Addison-Wesley), pp. 141–158.
[15] Bak, P & Sneppen, K. (1993) Phys. Rev. Lett. 71, 4083–4086.
[16] Jain, S & Krishna, S. (2002) Proc. Natl. Acad. Sci. USA 99, 2055–2060.
[17] Jain, S & Krishna, S. (2002) Phys. Rev. E. 65, 026203.
[18] Bianconi, G & Marsili, M. (2005) J. Stat. Mech. P06005.
[19] Newman, M. E. J & Palmer, R. G. (1999) Models of Extinction: A Review. (xxx.arxiv.org/abs/adap-org/9908002).
[20] Cohen, M. D, Riolo, R. L, & Axelrod, R. (2001) Rational. Soc. 13, 5–32.
[21] McCann, K. S. (2000) Nature 405, 228–233.
[22] Montoya, M, Pimm, S. L, & Sole, R. V. (2006) Nature 442, 259–264.
[23] McKane, A. J & Drossel, B. (2006) in Ecological Networks: Linking Structure to Dynamics in Food Webs, eds. Pascual, M & Dunne, J. A. (Oxford University Press), pp. 223–243.
[24] Pascual, M, Dunne, J. A & Levin, S. A. (2006) in Ecological Networks: Linking Structure to Dynamics in Food Webs, eds. Pascual, M & Dunne, J. A. (Oxford University Press), pp. 351–371.
[25] MacArthur, R. H. (1955) Ecology 36, 533–536.
[26] Krishna, S & Jain, S. unpublished.
[27] Krishna, S. (2004) Ph.D. Thesis. (xxx.arxiv.org/abs/lin.AO/0403050).
[28] Albert, R, Jeong, H, & Barabasi, A.-L. (2000) Rev. Mod. Phys. 103, 228–233.
[29] Montoya, M, Pimm, S. L, & Sole, R. V. (2006) Nature 442, 259–264.