Higher order cohomology of arithmetic groups

Anton Deitmar

Abstract: Higher order cohomology of arithmetic groups is expressed in terms of (g,K)-cohomology. Generalizing results of Borel, it is shown that the latter can be computed using functions of (uniform) moderate growth. A higher order versions of Borel’s conjecture is stated, asserting that the cohomology can be computed using automorphic forms.

Contents

1 General groups 2

2 Higher order cohomology of sheaves 4

3 Arithmetic groups 6

4 The higher order Borel conjecture 17
Introduction

In [2] we have defined higher order group cohomology in the following general context: Let Γ be a group and Σ a normal subgroup. For a ring R we define a sequence of functors H^0_q from the category of $R[\Gamma]$-modules to the category of R-modules. First, for an $R[\Gamma]$-module V, one defines $H^0_0(\Gamma, \Sigma, V) = H^0(\Gamma, V) = V^\Gamma$ as the fixed point module. Inductively, $H^0_{q+1}(\Gamma, \Sigma, V)$ is the module of all $v \in V$ such that $\sigma v = v$ for every $\sigma \in \Sigma$ and $\gamma v - v$ is in $H^1_q(\Gamma, \Sigma, V)$ for every $\gamma \in \Gamma$. For every $q \geq 1$ the functor $H^0_q(\Gamma, \Sigma, \cdot)$ is left-exact and we define the higher order group cohomology as the right derived functor $H^p_q = R^p H^0_q$.

In the case of a Fuchsian group the choice $\Sigma = \Gamma_{\text{par}} = \text{the subgroup generated by all parabolic elements}$, turned out to be the adequate choice for an Eichler-Shimura isomorphy result to hold, see [2]. For general arithmetic groups $\Gamma \subset G$, where G is a reductive linear group over \mathbb{Q}, a replacement for the Eichler-Shimura isomorphism is the isomorphism to (\mathfrak{g}, K)-cohomology,

$$H^p(\Gamma, E) \cong H^p_{\mathfrak{g}, K}(C^\infty(\Gamma \backslash G) \otimes E),$$

where E is a finite dimensional representation of G. In this paper we present a higher order analogue of this result, i.e., we will show isomorphy of higher order cohomology to (\mathfrak{g}, K)-cohomology,

$$H^p_q(\Gamma, \Sigma, E) \cong H^p_{\mathfrak{g}, K}(H^0_q(\Gamma, \Sigma, C^\infty(G)) \otimes E).$$

We will prove higher order versions of results of Borel by which one can compute the cohomology using spaces of functions with growth restrictions. We also state a higher order version of the Borel conjecture, proved by Franke [3], that the cohomology can be computed using automorphic forms.

Note that if $\text{Hom}(\Gamma, \mathbb{C}) = 0$, then $H^p_q = H^p_1 = H^p$ for every $q \geq 1$. Consequently, in the case of arithmetic groups, higher order cohomology is of interested only for rank-one groups.

1 General groups

Let R be a commutative ring with unit. Let Γ be a group and $\Sigma \subset \Gamma$ a normal subgroup. Let I denote the augmentation ideal in the group algebra
$A = R[\Gamma]$. Let I_Σ denote the augmentation ideal of $R[\Sigma]$. As Σ is normal in Γ, the set $A I_\Sigma$ is a 2-sided ideal in A. For $q \geq 1$ consider the ideal

$$J_q \overset{def}{=} I^q + R[\Gamma]I_\Sigma.$$

So in particular, for $\Sigma = \{1\}$ one has $J_q = I^q$. On the other end, for $\Sigma = \Gamma$ one gets $J_q = I$ for every $q \geq 1$. For an A-module V define

$$H^p_q(\Gamma, \Sigma, V) = \text{Ext}^p_A(A/J_q, V).$$

This is the higher order cohomology of the module V, see [2]. Note that in the case $q = 1$, we get back the ordinary group cohomology, so

$$H^p_1(\Gamma, \Sigma, V) = H^p(\Gamma, V).$$

For convenience, we will sometimes suppress the Σ in the notation, so we simply write $H^p_q(\Gamma, V)$ or even $H^p_q(V)$ for $H^p_q(\Gamma, \Sigma, V)$.

For an R-module M and a set S we write M^S for the R-module of all maps from S to M. Then M^\emptyset is the trivial module 0. Up to isomorphy, the module M^S depends only on the cardinality of S. It therefore makes sense to define M^c for any cardinal number c in this way. Note that J_q/J_{q+1} is a free R-module. Define

$$N_{\Gamma, \Sigma}(q) \overset{def}{=} \dim_R J_q/J_{q+1}.$$

Then $N_{\Gamma, \Sigma}(q)$ is a possibly infinite cardinal number.

Lemma 1.1 (a) For every $q \geq 1$ there is a natural exact sequence

$$0 \to H^0_q(\Gamma, V) \to H^0_{q+1}(\Gamma, V) \to H^0(\Gamma, V)^{N_{\Gamma, \Sigma}(q)} \to$$

$$\to H^1_q(\Gamma, V) \to H^1_{q+1}(\Gamma, V) \to H^1(\Gamma, V)^{N_{\Gamma, \Sigma}(q)} \to \ldots$$

$$\ldots \to H^p_q(\Gamma, V) \to H^p_{q+1}(\Gamma, V) \to H^p(\Gamma, V)^{N_{\Gamma, \Sigma}(q)} \to \ldots$$

(b) Suppose that for a given $p \geq 0$ one has $H^p(\Gamma, V) = 0$. Then it follows $H^p_q(\Gamma, V) = 0$ for every $q \geq 1$. In particular, if V is acyclic as Γ-module, then $H^p_q(\Gamma, V) = 0$ for all $p, q \geq 1$.
Proof: Consider the exact sequence
\[0 \to J_q/J_{q+1} \to A/J_{q+1} \to A/J_q \to 0. \]
As an \(A \)-module, \(J_q/J_{q+1} \) is isomorphic to a direct sum \(\bigoplus R_\alpha \) of copies of \(R = A/I \). So we conclude that for every \(p \geq 0 \),
\[\Ext^p_A(J_q/J_{q+1}, V) \cong \prod_{\alpha} \Ext^p_A(R, V) \cong H^p(\Gamma, V)^{N_{\Gamma, \Sigma}(q)}. \]
The long exact Ext-sequence induced by the above short sequence is
\[0 \to \Hom_A(A/J_q, V) \to \Hom_A(A/J_{q+1}, V) \to \Hom_A(J_q/J_{q+1}, V) \to \]
\[\to \Ext^1_A(A/J_q, V) \to \Ext^1_A(A/J_{q+1}, V) \to \Ext^1_A(J_q/J_{q+1}, V) \to \]
\[\to \Ext^2_A(A/J_q, V) \to \Ext^2_A(A/J_{q+1}, V) \to \Ext^2_A(J_q/J_{q+1}, V) \to \ldots \]
This is the claim (a). For (b) we proceed by induction on \(q \). For \(q = 1 \) the claim follows from \(H^1_p(\Gamma, V) = H^p(\Gamma, V) \). Assume the claim proven for \(q \) and \(H^p(\Gamma, V) = 0 \). As part of the above exact sequence, we have the exactness of
\[H^p_q(\Gamma, V) \to H^p_{q+1}(\Gamma, V) \to H^p(\Gamma, V)^{N_{\Gamma, \Sigma}(q)}. \]
By assumption, we have \(H^p(\Gamma, V)^{N_{\Gamma, \Sigma}(q)} = 0 \) and by induction hypothesis the module \(H^p_q(\Gamma, V) \) vanishes. This implies \(H^p_{q+1}(\Gamma, V) = 0 \) as well. \(\square \)

Lemma 1.2 (Cocycle representation) The module \(H^1_q(\Gamma, V) \) is naturally isomorphic to
\[\Hom_A(J_q, V)/\alpha(V), \]
where \(\alpha : V \to \Hom_A(J_q, V) \) is given by \(\alpha(v)(m) = mv \).

Proof: This is Lemma 1.3 of [2]. \(\square \)

2 Higher order cohomology of sheaves

Let \(Y \) be a topological space which is path-connected and locally simply connected. Let \(C \to Y \) be a normal covering of \(Y \). Let \(\Gamma \) be the fundamental
group of Y and let $X \xrightarrow{\pi} Y$ be the universal covering. The fundamental group Σ of C is a normal subgroup of Γ.

For a sheaf \mathcal{F} on Y define

$$H^0_q(Y, C, \mathcal{F}) \overset{\text{def}}{=} H^0_q(\Gamma, \Sigma, H^0(X, \pi^* \mathcal{F})).$$

Let $\text{Mod}(R)$ be the category of R-modules, let $\text{Mod}_R(Y)$ be the category of sheaves of R-modules on Y, and let $\text{Mod}_R(X)_\Gamma$ be the category of sheaves over X with an equivariant Γ-action. Then $H^0_q(Y, C, \cdot)$ is a left exact functor from $\text{Mod}_R(Y)$ to $\text{Mod}(R)$. We denote its right derived functors by $H^p_q(Y, C, \cdot)$ for $p \geq 0$.

Lemma 2.1 Assume that the universal cover X is contractible.

(a) For each $p \geq 0$ one has a natural isomorphism $H^p_1(Y, C, \mathcal{F}) \cong H^p(Y, \mathcal{F})$.

(b) If a sheaf \mathcal{F} is $H^0(Y, \cdot)$-acyclic, then it is $H^0_q(Y, C, \cdot)$-acyclic.

Note that part (b) allows one to use flabby or fine resolutions to compute higher order cohomology.

Proof: We decompose the functor $H^0(Y, C, \cdot)$ into the functors

$$\text{Mod}_R(Y) \xrightarrow{\pi^*} \text{Mod}_R(X)_\Gamma \xrightarrow{H^0(X, \cdot)} \text{Mod}(R[\Gamma]) \xrightarrow{H^0(\Gamma, \Sigma, \cdot)} \text{Mod}(R).$$

The functor π^* is exact and maps injectives to injectives. We claim that $H^0(X, \cdot)$ has the same properties. For the exactness, consider the commutative diagram

$$\begin{array}{ccc}
\text{Mod}_R(X)_\Gamma & \xrightarrow{H^0} & \text{Mod}(R[\Gamma]) \\
\downarrow f & & \downarrow f \\
\text{Mod}_R(X) & \xrightarrow{H^0} & \text{Mod}(R),
\end{array}$$

where the vertical arrows are the forgetful functors. As X is contractible, the functor H^0 below is exact. The forgetful functors have the property, that a sequence upstairs is exact if and only if its image downstairs is exact. This implies that the above H^0 is exact. It remains to show that H^0 maps
injective objects to injective objects. Let $\mathcal{J} \in \text{Mod}_R(X)_{\Gamma}$ be injective and consider a diagram with exact row in $\text{Mod}(R[\Gamma])$,

$$
0 \longrightarrow M \longrightarrow N \longrightarrow H^0(X, \mathcal{J}).
$$

The morphism φ gives rise to a morphism $\phi : M \times X \to \mathcal{J}$, where $M \times X$ stands for the constant sheaf with stalk M. Note that $H^0(X, \phi) = \varphi$. As \mathcal{J} is injective, there exists a morphism $\psi : N \times X \to \mathcal{J}$ making the diagram commutative. This diagram induces a corresponding diagram on the global sections, which implies that $H^0(X, \mathcal{J})$ is indeed injective.

For a sheaf \mathcal{F} on Y it follows that

$$
H^p(Y, \mathcal{F}) = R^p(H^0(Y, \mathcal{F})) = R^p H^0(\Gamma, \Sigma, \mathcal{F}) \circ H^0_\Gamma \circ \pi^* = H^p_\Gamma(Y, C, \mathcal{F}).
$$

Now let \mathcal{F} be acyclic. Then we conclude $H^p_\Gamma(\mathcal{F}) = 0$ for every $p \geq 1$, so the Γ-module $V = H^0(X, \pi^* \mathcal{F})$ is Γ-acyclic. The claim follows from Lemma 1.1.

3 Arithmetic groups

Let G be a semisimple Lie group with compact center and let $X = G/K$ be its symmetric space. Let $\Gamma \subset G$ be an arithmetic subgroup which is torsion-free, and let $\Sigma \subset \Gamma$ be a normal subgroup. Let $Y = \Gamma \backslash X$, then Γ is the fundamental group of the manifold Y, and the universal covering X of Y is contractible. This means that we can apply the results of the last section.
Theorem 3.1 Let \((\sigma, E)\) be a finite dimensional representation of \(G\). There is a natural isomorphism

\[H^p_q(\Gamma, \Sigma, E) \cong H^p_{q,K}(H^0_q(\Gamma, \Sigma, C^\infty(G)) \otimes E), \]

where the right hand side is the \((\mathfrak{g}, K)\)-cohomology.

Proof: Let \(\mathcal{F}_E\) be the locally constant sheaf on \(Y\) corresponding to \(E\). Let \(\Omega^p_Y\) be the sheaf of complex valued \(p\)-differential forms on \(Y\). Then \(\Omega^p_Y \otimes \mathcal{F}_E\) is the sheaf of \(\mathcal{F}_E\)-valued differential forms. These form a fine resolution of \(\mathcal{F}_E\):

\[0 \rightarrow \mathcal{F}_E \rightarrow \mathbb{C}^\infty \otimes \mathcal{F}_E \xrightarrow{d \otimes 1} \Omega^1_Y \otimes \mathcal{F}_E \rightarrow \ldots \]

Since \(\pi^*\Omega^\bullet_Y = \Omega^\bullet_X\), we conclude that \(H^p_q(\Gamma, \Sigma, E)\) is the cohomology of the complex \(H^0_q(\Gamma, \Sigma, H^0(X, \Omega^\bullet_X \otimes E))\). Let \(\mathfrak{g}\) and \(\mathfrak{k}\) be the Lie algebras of \(G\) and \(K\) respectively, and let \(\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}\) be the Cartan decomposition. Then \(H^0(X, \Omega^p \otimes \mathcal{F}_E) = (C^\infty(G) \otimes \Lambda^p \mathfrak{p})^K \otimes E\). Mapping a form \(\omega\) in this space to \((1 \otimes x^{-1})\omega(x)\) one gets an isomorphism to \((C^\infty(G) \otimes \Lambda^p \mathfrak{p} \otimes E)^K\), where \(K\) acts diagonally on all factors and \(\Gamma\) now acts on \(C^\infty(G)\) alone. The claim follows. \(\square\)

Let \(U(\mathfrak{g})\) act on \(C^\infty\) as algebra of left invariant differential operators. Let \(\|\cdot\|\) be a norm on \(G\), see [4], Section 2.A.2. Recall that a function \(f \in C^\infty(G)\) is said to be of moderate growth, if for every \(D \in U(\mathfrak{g})\) one has \(Df(x) = O(||x||^a)\) for some \(a > 0\). The function \(f\) is said to be of uniform moderate growth, if the exponent \(a\) above can be chosen independent of \(D\). Let \(C^\infty_{mg}(G)\) and \(C^\infty_{umg}(G)\) denote the spaces of functions of moderate growth and uniform moderate growth respectively.

Let \(\mathfrak{z}\) be the center of the algebra \(U(\mathfrak{g})\). Let \(\mathcal{A}(G)\) denote the space of functions \(f \in C^\infty(G)\) such that

- \(f\) is of moderate growth,
- \(f\) is right \(K\)-finite, and
- \(f\) is \(\mathfrak{z}\)-finite.
Proposition 3.2 (a) For $\Omega = C^\infty_{unr}(G), C^\infty_{mg}(G), C^\infty(G)$ one has

$$H^1_q(\Gamma, \Sigma, \Omega) = 0$$

for every $q \geq 1$.

(b) If $\text{Hom}(\Gamma, \mathbb{C}) \neq 0$, then one has

$$H^1(\Gamma, \mathcal{A}(G)) \neq 0.$$

Proof: In order to prove (a), it suffices by Lemma 1.1 (b), to consider the case $q = 1$. A 1-cocycle is a map $\alpha : \Gamma \to \Omega$ such that $\alpha(\gamma\tau) = \gamma\alpha(\tau) \alpha(\gamma)$ holds for all $\gamma, \tau \in \Gamma$. We have to show that for any given such map α there exists $f \in \Omega$ such that $\alpha(\tau) = \tau f - f$. To this end consider the symmetric space $X = G/K$ of G. Let $d(xK,yK)$ for $x,y \in G$ denote the distance in X induced by the G-invariant Riemannian metric. For $x \in G$ we also write $d(x) = d(xK,eK)$. Then the functions $\log \|x\|$ and $d(x)$ are equivalent in the sense that there exists a constant $C > 1$ such that

$$\frac{1}{C} d(x) \leq \log \|x\| \leq C d(x)$$

or

$$\|x\| \leq e^{Cd(x)} \leq \|x\|^C$$

holds for every $x \in G$. We define

$$\mathcal{F} = \{ y \in G : d(y) < d(\gamma y) \ \forall \gamma \in \Gamma \setminus \{e\} \}.$$

As Γ is torsion-free, this is a fundamental domain for the Γ left translation action on G. In other words, \mathcal{F} is open, its boundary is of measure zero, and there exists a set of representatives $R \subset G$ for the Γ-action such that $\mathcal{F} \subset R \subset \overline{\mathcal{F}}$. Next let $\varphi \in C^\infty_c(G)$ with $\varphi \geq 0$ and $\int_G \varphi(x) \, dx = 1$. Then set $u = 1_x * \varphi$, where 1_A is the characteristic function of the set A and $*$ is the convolution product $f * g(x) = \int_G f(y)g(y^{-1}x) \, dy$. Let C be the support of φ, then the support of u is a subset of $\mathcal{F}C$ and the sum $\sum_{\tau \in \Gamma} u(\tau^{-1}x)$ is locally finite in x. More sharply, for a given compact unit-neighborhood V there exists $N \in \mathbb{N}$ such that for every $x \in G$ one has

$$\# \{ \tau \in \Gamma : u(\tau^{-1}xV) \subset \{0\} \} \leq N.$$
This is to say, the sum is uniformly locally finite. For a function \(h \) on \(G \) and \(x, y \in G \) we write \(L_y h(x) = h(y^{-1} x) \). Then for a convolution product one has \(L_y (f * g) = (L_y f) * g \), and so

\[
\sum_{\tau \in \Gamma} u(\tau^{-1} x) = \left(\sum_{\tau \in \Gamma} L_{\tau} 1_F \right) * \varphi.
\]

The sum in parenthesis is equal to one on the complement of a nullset. Therefore,

\[
\sum_{\tau \in \Gamma} u(\tau^{-1} x) \equiv 1.
\]

Set

\[
f(x) = -\sum_{\tau \in \Gamma} \alpha(\tau)(x) u(\tau^{-1} x).
\]

Lemma 3.3 The function \(f \) lies in the space \(\Omega \).

Proof: Since the sum is uniformly locally finite, it suffices to show that for each \(\tau \in \Gamma \) we have \(\alpha(\tau)(x) u(\tau^{-1} x) \in \Omega \) where the \(O(\| \cdot \|_d) \) estimate is uniform in \(\tau \). By the Leibniz-rule it suffices to show this separately for the two factors \(\alpha(\tau) \) and \(L_{\tau} u \). For \(D \in U(g) \) we have

\[
D(L_{\tau} u) = (L_{\tau} 1_F) * (D \varphi).
\]

This function is bounded uniformly in \(\tau \), hence \(L_{\tau} u \in C_{\text{umg}}^\infty(G) \). Now \(\alpha(\tau) \in \Omega \) by definition, but we need uniformity of growth in \(\tau \). We will treat the case \(\Omega = C_{\text{umg}}^\infty(G) \) here, the case \(C_{\text{mg}}^\infty \) is similar and the case \(C^\infty(G) \) is trivial, as no growth bounds are required.

So let \(\Omega = C_{\text{umg}}^\infty(G) \) and set

\[
S = \{ \gamma \in \Gamma \setminus \{ e \} : \gamma F \cap \mathcal{F} \neq \emptyset \}.
\]

Then \(S \) is a finite symmetric generating set for \(\Gamma \). For \(\gamma \in \Gamma \), let \(\mathcal{F}_\gamma \) be the set of all \(x \in G \) with \(d(x) < d(\gamma x) \). Then

\[
\mathcal{F} = \bigcap_{\gamma \in \Gamma \setminus \{ e \}} \mathcal{F}_\gamma.
\]
Let $\tilde{F} = \bigcap_{s \in S} F_s$. We claim that $F = \tilde{F}$. As the intersection runs over fewer elements, one has $F \subset \tilde{F}$. For the converse note that for every $s \in S$ the set $s \tilde{F}/K$ lies in $X \setminus \tilde{F}/K$, therefore F/K is a connected component of \tilde{F}/K. By the invariance of the metric, we conclude that $x \in F_\gamma$ if and only if $d(xK, eK) < d(xK, \gamma^{-1}K)$. This implies that F_γ/K is a convex subset of X. Any intersection of convex sets remains convex, therefore \tilde{F}/K is convex and hence connected, and so $\tilde{F}/K = F/K$, which means $\tilde{F} = F$.

Likewise we get $\mathcal{F} = \bigcap_{s \in S} F_s$. The latter implies that for each $x \in G \setminus \mathcal{F}$ there exists $s \in S$ such that $d(s^{-1}x) < d(x)$. Iterating this and using the fact that the set of all $d(\gamma x)$ for $\gamma \in \Gamma$ is discrete, we find for each $x \in G \setminus \mathcal{F}$ a chain of elements $s_1, \ldots, s_n \in S$ such that $d(x) > d(s_1^{-1}x) > \cdots > d(s_n^{-1} \cdots s_1^{-1}x)$ and $s_n^{-1} \cdots s_1^{-1}x \in \mathcal{F}$. The latter can be written as $x \in s_1 \ldots s_n \mathcal{F}$. Now let $\tau \in \Gamma$ and suppose $u(\tau^{-1}x) \neq 0$. Then $x \in \mathcal{F}C$, so, choosing C small enough, we can assume $x \in s_\tau \mathcal{F}$ for some $s \in S \cap \{e\}$. As the other case is similar, we can assume $s = e$. It suffices to assume $x \in \tau \mathcal{F}$, as we only need the estimates on the dense open set $\Gamma \mathcal{F}$. So then it follows $\tau = s_1 \ldots s_n$.

Let $D \in U(g)$. As α maps to $\Omega = C^\infty_{\text{umg}}(G)$, for every $\gamma \in \Gamma$ there exist $C(D, \gamma), a(\gamma) > 0$ such that

$$|D\alpha(\gamma)(x)| \leq C(D, \gamma) \|x\|^{a(\gamma)}.$$

The cocycle relation of α implies

$$\alpha(\tau)(x) = \sum_{j=1}^n \alpha(\gamma_j)(s_j^{-1} \cdots s_1^{-1}x).$$
We get

\[|D\alpha(\tau)(x)| \leq \sum_{j=1}^{n} C(D, s_j) ||s_{j-1}^{s-1} \ldots s_1^{s-1} x||^{a(s_j)} \]

\[\leq \sum_{j=1}^{n} C(D, s_j) e^{Cd(s_{j-1}^{s-1} \ldots s_1^{s-1} x)a(s_j)} \]

\[\leq \sum_{j=1}^{n} C(D, s_j) e^{Cd(x)a(s_j)} \]

\[\leq \sum_{j=1}^{n} C(D, s_j) ||x||^{C^2a(s_j)} \]

\[\leq nC_0(D)||x||^{a_0}, \]

where \(C(D) = \max_j C(D, s_j) \) and \(a_0 = C^2 \max_j d(s_j) \). It remains to show that \(n \) only grows like a power of \(||x|| \). To this end let for \(r > 0 \) denote \(N(r) \) the number of \(\gamma \in \Gamma \) with \(d(\gamma) \leq r \). Then a simple geometric argument shows that

\[N(r) = \frac{1}{\text{vol} \mathcal{F}} \text{vol} \left(\bigcup_{\gamma:d(\gamma) \leq r} \gamma \mathcal{F}/K \right) \leq C_1 \text{vol}(B_{2r}), \]

where \(B_{2r} \) is the ball of radius \(2r \) around \(eK \). Note that for the homogeneous space \(X \) there exists a constant \(C_2 > 0 \) such that \(\text{vol} B_{2r} \leq e^{C_2r} \). Now \(n \leq N(d(x)) \) and therefore

\[n \leq C_1 \text{vol} B_{2d(x)} \leq C_1 e^{C_2d(x)} \leq C_1 ||x||^{C_3} \]

for some \(C_3 > 0 \). Together it follows that there exists \(C(D) > 0 \) and \(a > 0 \) such that

\[|D\alpha(\tau)(x)| \leq C(D) ||x||^a. \]

This is the desired estimate which shows that \(f \in \Omega \). The lemma is proven. \(\square \)
To finish the proof of part (a) of the proposition, we now compute for $\gamma \in \Gamma$,
\[
\gamma f(x) - f(x) = f(\gamma^{-1}x) - f(x)
\]
\[
= \sum_{\tau \in \Gamma} \alpha(\tau x)u(\tau^{-1}x) - \alpha(\gamma^{-1}x)u(\tau^{-1}\gamma^{-1}x)
\]
\[
= \sum_{\tau \in \Gamma} \alpha(\tau)(x)u(\tau^{-1}x) + \alpha(\gamma)(x)\sum_{\tau \in \Gamma} u((\gamma\tau)^{-1}x)
\]
\[
- \sum_{\tau \in \Gamma} \alpha(\gamma\tau)(x)u((\gamma\tau)^{-1}x)
\]

The first and the last sum cancel and the middle sum is $\alpha(\gamma)(x)$. Therefore, part (a) of the proposition is proven.

We now prove part (b). Let $Q = C^\infty(G)/A(G)$. We have an exact sequence of Γ-modules
\[
0 \to A(G) \to C^\infty(G) \to Q \to 0.
\]
This results in the exact sequence
\[
0 \to A(G)^\Gamma \to C^\infty(\Gamma\backslash G) \xrightarrow{\phi} Q^\Gamma \to H^1(\Gamma, A(G)) \to 0.
\]
The last zero comes by part (a) of the proposition. We have to show that the map ϕ is not surjective. So let $\chi : \Gamma \to \mathbb{C}$ be a non-zero group homomorphism and let $u \in C^\infty(G)$ as above with $\sum_{\tau \in \Gamma} u(\tau^{-1}x) = 1$, and u is supported in FC for a small unit-neighborhood C. Set
\[
h(x) = -\sum_{\tau \in \Gamma} \chi(\tau)u(\tau^{-1}x).
\]
Then for every $\gamma \in \Gamma$ the function
\[
h(\gamma^{-1}x) - h(x) = \chi(\gamma)
\]
is constant and hence lies in $A(G)^\Gamma$. This means that the class $[h]$ of h in Q lies in the Γ-invariants Q^Γ. As $\chi \neq 0$, the function f is not in $C^\infty(\Gamma\backslash G)$, and therefore ϕ is indeed not surjective.

\begin{proposition}
For every $q \geq 1$ there is an exact sequence of continuous G-homomorphisms,
\[
0 \to H^0_q(\Gamma, \Sigma, C^\infty_*(G)) \xrightarrow{\phi} H^0_{q+1}(\Gamma, \Sigma, C^\infty_*(G)) \xrightarrow{\psi} C^\infty_*(\Gamma\backslash G)^{N_\Gamma, \Sigma(q)} \to 0,
\]
where ϕ is the inclusion map and $*$ can be \emptyset, umg, or mg.
\end{proposition}
Proof: This follows from Lemma 1.1 together with Proposition 3.2 (a).

The space $C^\infty(G)$ carries a natural topology which makes it a nuclear topological vector space. For every $q \geq 1$, the space $H^0_q(\Gamma, \Sigma, C^\infty(G))$ is a closed subspace. If Γ is cocompact, then one has the isotypical decomposition

$$H^0_1(\Gamma, \Sigma, C^\infty(G)) = C^\infty(\Gamma \setminus G) = \bigoplus_{\pi \in \hat{G}} C^\infty(\Gamma \setminus G)(\pi),$$

and $C^\infty(\Gamma \setminus G)(\pi) \cong m_{\Gamma}(\pi)\pi^\infty$, where the sum runs over the unitary dual \hat{G} of G, and for $\pi \in \hat{G}$ we write π^∞ for the space of smooth vectors in π. The multiplicity $m_{\Gamma}(\pi) \in \mathbb{N}_0$ is the multiplicity of π as a subrepresentation of $L^2(\Gamma \setminus G)$, i.e.,

$$m_{\Gamma}(\pi) = \dim \text{Hom}_G(\pi, L^2(\Gamma \setminus G)).$$

Finally, the direct sum \bigoplus means the closure of the algebraic direct sum in $C^\infty(G)$. We write \hat{G}_Γ for the set of all $\pi \in \hat{G}$ with $m_{\Gamma}(\pi) \neq 0$.

Let $\pi \in \hat{G}$. A smooth representation (β, V_β) of G is said to be of type π, if it is of finite length and every irreducible subquotient is isomorphic to π^∞. For a smooth representation (η, V_η) we define the π-isotype as

$$V_\eta(\pi) \overset{\text{def}}{=} \bigoplus_{\beta \in V_\eta \text{ of type } \pi} V_\beta,$$

where the sum runs over all subrepresentations V_β of type π.

Theorem 3.5 Suppose Γ is cocompact and let $\ast \in \{\emptyset, mg, umg\}$. We write $V_q = V$. For every $q \geq 1$ there is an isotypical decomposition

$$V_q = \bigoplus_{\pi \in \hat{G}_\Gamma} V_q(\pi),$$

and each $V_q(\pi)$ is of type π itself. The exact sequence of Proposition 3.4 induces an exact sequence

$$0 \to V_q(\pi) \to V_{q+1}(\pi) \to (\pi^\infty)^{m_{\Gamma}(\pi)\mathcal{N}_\Gamma, \Sigma(q)} \to 0$$

for every $\pi \in \hat{G}_\Gamma$.

Proof: We will prove the theorem by reducing to a finite dimensional situation by means of considering infinitesimal characters and \(K\)-types. For this let \(\hat{\mathfrak{z}} = \text{Hom}(\mathfrak{z}, \mathbb{C})\) be the set of all algebra homomorphisms from \(\mathfrak{z}\) to \(\mathbb{C}\). For a \(\mathfrak{z}\)-module \(V\) and \(\chi \in \hat{\mathfrak{z}}\) let

\[V(\chi) \overset{\text{def}}{=} \{ v \in V : \forall z \in \mathfrak{z} \exists n \in \mathbb{N} (z - \chi(z))^n v = 0 \} \]

be the generalized \(\chi\)-eigenspace. Since \(\mathfrak{z}\) is finitely generated, one has

\[V(\chi) = \{ v \in V : \exists n \in \mathbb{N} \forall z \in \mathfrak{z} (z - \chi(z))^n v = 0 \} \]

For \(\chi \neq \chi'\) in \(\hat{\mathfrak{z}}\) one has \(V(\chi) \cap V(\chi') = 0\). Recall that the algebra \(\mathfrak{z}\) is free in \(r\) generators, where \(r\) is the absolute rank of \(G\). Fix a set of generators \(z_1, \ldots, z_r\). The map \(\chi \mapsto (\chi(z_1), \ldots, \chi(z_r))\) is a bijection \(\hat{\mathfrak{z}} \to \mathbb{C}^r\). We equip \(\hat{\mathfrak{z}}\) with the topology of \(\mathbb{C}^r\). This topology does not depend on the choice of the generators \(z_1, \ldots, z_r\).

Let \(\Gamma \subset G\) be a discrete cocompact subgroup. Let \(\hat{\mathfrak{z}}_\Gamma\) be the set of all \(\chi \in \hat{\mathfrak{z}}\) such that the generalized eigenspace \(C^\infty(\Gamma \backslash G)(\chi)\) is non-zero. The \(\hat{\mathfrak{z}}_\Gamma\) is discrete in \(\hat{\mathfrak{z}}\), more sharply there exists \(\varepsilon_\Gamma > 0\) such that for any two \(\chi \neq \chi'\) in \(\hat{\mathfrak{z}}_\Gamma\) there is \(j \in \{1, \ldots, r\}\) such that \(|\chi(z_j) - \chi'(z_j)| > \varepsilon_\Gamma\).

Proposition 3.6 Let \(* \in \{\emptyset, mg, umg\}\). For every \(q \geq 1\) and every \(\chi \in \hat{\mathfrak{z}}\) the space \(V_q(\chi) = H^0_q(\Gamma, \Sigma, C^\infty_*(G))(\chi)\) coincides with

\[\bigcap_{z \in \mathfrak{z}} \ker(z - \chi(z))^{2q-1}, \]

and is therefore a closed subspace of \(V_q\). The representation of \(G\) on \(V_q(\chi)\) is of finite length.

The space \(V_q(\chi)\) is non-zero only if \(\chi \in \hat{\mathfrak{z}}_\Gamma\). One has a decomposition

\[H^0_q(\Gamma, \Sigma, C^\infty_*(G)) = \bigoplus_{\chi \in \hat{\mathfrak{z}}_\Gamma} H^0_q(\Gamma, \Sigma, C^\infty_*(G))(\chi). \]

The exact sequence of Proposition 3.4 induces an exact sequence

\[0 \to V_q(\chi) \to V_{q+1}(\chi) \to \bigoplus_{\pi \in G_\chi} m_\pi N_{\Gamma, \Sigma}(q) \pi \to 0. \]
Proof: All assertions, except for the exactness of the sequence, are clear for \(q = 1 \). We proceed by induction. Fix \(\chi \in \hat{\mathfrak{z}}_\Gamma \). Since \(V_q(\chi) = V_q \cap V_{q+1}(\chi) \) one gets an exact sequence

\[
0 \to V_q(\chi) \to V_{q+1}(\chi) \xrightarrow{\psi_\chi} V_1(\chi)^{N_\Gamma \Sigma(q)}.
\]

Let \(v \in V_1(\chi)^{N_\Gamma \Sigma(q)} \). As \(\psi \) is surjective, one finds \(u \in V_{q+1} \) with \(\psi(u) = v \). We have to show that one can choose \(u \) to lie in \(V_q(\chi) \). Inductively we assume the decomposition to holds for \(V_q \), so we can write

\[
(z_j - \chi(z_j))u = \sum_{\chi' \in \hat{\mathfrak{z}}_\Gamma} u_{j,\chi'},
\]

for \(1 \leq j \leq r \) and \(u_{j,\chi'} \in \ker(z - \chi(z))^{2q-1} \) for every \(z \in \mathfrak{z} \). For every \(\chi' \in \hat{\mathfrak{z}}_\Gamma \setminus \{ \chi \} \) we fix some index \(1 \leq j(\chi') \leq r \) with \(|\chi(z_j(\chi')) - \chi'(z_j(\chi'))| > \varepsilon_\Gamma \). On the space

\[
\bigoplus_{\chi' : j(\chi') = j} V_q(\chi')
\]

the operator \(z_j - \chi(z_j) \) is invertible and the inverse \((z_j - \chi(z_j))^{-1} \) is continuous. We can replace \(u \) with

\[
u - \sum_{\chi' \in \hat{\mathfrak{z}}_\Gamma \setminus \{ \chi \}} (z_j(\chi') - \chi(z_j(\chi')))^{-1} u_{j,\chi'},\]

We end up with \(u \) satisfying \(\psi(u) = v \) and

\[
(z_1 - \chi(z_1)) \cdots (z_r - \chi(z_r))u \in V_q(\chi) = \bigcap_{z \in \mathfrak{z}} \ker(z - \chi(z))^{2q-1}.
\]

So for every \(z \in \mathfrak{z} \) one has

\[
0 = (z_1 - \chi(z_1)) \cdots (z_r - \chi(z_r))(z - \chi(z))^{2q-1} u,
\]

which implies

\[
(z - \chi(z))^{2q-1} u \in \ker ((z_1 - \chi(z_1)) \cdots (z_r - \chi(z_r))).
\]

As the set \(\hat{\mathfrak{z}}_\Gamma \) is countable, one can, depending on \(\chi \), choose the generators \(z_1, \ldots, z_r \) in a way that \(\chi(z_j) \neq \chi'(z_j) \) holds for every \(j \) and every \(\chi' \in \hat{\mathfrak{z}}_\Gamma \).
\[\hat{\mathfrak{g}} \setminus \{ \chi \}. \]

Therefore the operator \((z_1 - \chi(z_1)) \cdots (z_r - \chi(z_r))\) is invertible on \(V_q(\chi')\) for every \(\chi' \in \hat{\mathfrak{g}} \setminus \{ \chi \}\) and so it follows \((z - \chi(z))^{2r-1} u \in V_q(\chi) \subset \ker((z - \chi(z))^{2r-1})\). Since this holds for every \(z\) it follows \(u \in \ker((z - \chi(z))^{2r})\). Since this holds for every \(z\) it follows \(u \in V_{q+1}(\chi)\) and so \(\psi_\chi\) is indeed surjective. One has an exact sequence

\[
0 \rightarrow V_q(\chi) \rightarrow V_{q+1}(\chi) \rightarrow V_1(\chi)^{N_r, \Sigma(q)} \rightarrow 0.
\]

Taking the sum over all \(\chi \in \hat{\mathfrak{g}}\) we arrive at an exact sequence

\[
0 \rightarrow V_q \rightarrow \bigoplus_{\chi \in \hat{\mathfrak{g}}} V_{q+1}(\chi) \rightarrow V_1^{N_r, \Sigma(q)} \rightarrow 0.
\]

Hence we get a commutative diagram with exact rows

\[
\begin{array}{cccccc}
0 & \rightarrow & V_q & \rightarrow & \bigoplus_{\chi \in \hat{\mathfrak{g}}} V_{q+1}(\chi) & \rightarrow & V_1^{N_r, \Sigma(q)} & \rightarrow & 0 \\
& & \downarrow \cong & & \downarrow i & & \downarrow \cong & & \\
0 & \rightarrow & V_q & \rightarrow & V_{q+1} & \rightarrow & V_1^{N_r, \Sigma(q)} & \rightarrow & 0,
\end{array}
\]

where \(i\) is the inclusion. By the 5-Lemma, \(i\) must be a bijection. The proposition follows. \[\square\]

We now finish the proof of the theorem. We keep the notation \(V_q\) for the space \(\mathbb{H}_q^0(\Gamma, \Sigma, C_\infty^\infty(G))\). For a given \(\chi \in \hat{\mathfrak{g}}\) the \(G\)-representation \(V_q(\chi)\) is of finite length, so the \(K\)-isotypical decomposition

\[
V_q(\chi) = \bigoplus_{\tau \in K} V_q(\chi)(\tau)
\]

has finite dimensional isotypes, i.e., \(\dim V_q(\chi)(\tau) < \infty\). Let \(U(\mathfrak{g})^K\) be the algebra of all \(D \in U(\mathfrak{g})\) such that \(\text{Ad}(k)D = D\) for every \(k \in K\). Then the action of \(D \in U(\mathfrak{g})\) commutes with the action of each \(k \in K\), and so \(K \times U(\mathfrak{g})^K\) acts on every smooth \(G\)-module. For \(\pi \in \hat{G}\) the \(K \times U(\mathfrak{g})^K\)-module \(V_\pi(\tau)\) is irreducible and \(V_\pi(\tau) \cong V_{\pi^r}(\tau^r)\) as a \(K \times U(\mathfrak{g})^K\)-module implies \(\pi = \pi^r\) and \(\tau = \tau^r\), see [4], Proposition 3.5.4. As \(V_q(\chi)(\tau)\) is finite dimensional, one gets

\[
V_q(\chi)(\tau) = \bigoplus_{\pi \in \hat{G}} V_q(\chi)(\tau)(\pi)
\]

\[\pi \circ \chi = \chi\]
where $V_q(\chi)(\tau)(\pi)$ is the largest $K \times U(\mathfrak{g})^K$-submodule of $V_q(\chi)(\tau)$ with the property that every irreducible subquotient is isomorphic to $V_\pi(\tau)$. Let

$$V_q(\pi) = \bigoplus_{\tau \in K} V_q(\chi_\pi)(\tau)(\pi).$$

The claims of the theorem follow from the proposition. \hfill \Box

4 The higher order Borel conjecture

Let (σ, E) be a finite dimensional representation of G. In [1], A. Borel has shown that the inclusions $C_{\text{umg}}(G) \hookrightarrow C_{\text{mg}}^\infty(G) \hookrightarrow C^\infty(G)$ induce isomorphisms in cohomology:

$$H^p_{\mathfrak{g},K}(H^0(\Gamma, C_{\text{umg}}^\infty(G)) \otimes E) \xrightarrow{\cong} H^p_{\mathfrak{g},K}(H^0(\Gamma, C_{\text{mg}}^\infty(G)) \otimes E) \xrightarrow{\cong} H^p_{\mathfrak{g},K}(H^0(\Gamma, C^\infty(G)) \otimes E).$$

In [3], J. Franke proved a conjecture of Borel stating that the inclusion $\mathcal{A}(G) \hookrightarrow C^\infty(G)$ induces an isomorphism

$$H^p_{\mathfrak{g},K}(H^0(\Gamma, \mathcal{A}(G)) \otimes E) \xrightarrow{\cong} H^p_{\mathfrak{g},K}(H^0(\Gamma, C^\infty(G)) \otimes E).$$

Conjecture 4.1 (Higher order Borel conjecture) For every $q \geq 1$, the inclusion $\mathcal{A}(G) \hookrightarrow C^\infty(G)$ induces an isomorphism

$$H^p_{\mathfrak{g},K}(H^0_q(\Gamma, \Sigma, \mathcal{A}(G)) \otimes E) \xrightarrow{\cong} H^p_{\mathfrak{g},K}(H^0_q(\Gamma, \Sigma, C^\infty(G)) \otimes E).$$

We can prove the higher order version of Borel’s result.

Theorem 4.2 For each $q \geq 1$, the inclusions $C_{\text{umg}}^\infty(G) \hookrightarrow C_{\text{mg}}^\infty(G) \hookrightarrow C^\infty(G)$ induce isomorphisms in cohomology:

$$H^p_{\mathfrak{g},K}(H^0_q(\Gamma, \Sigma, C_{\text{umg}}^\infty(G)) \otimes E) \xrightarrow{\cong} H^p_{\mathfrak{g},K}(H^0_q(\Gamma, \Sigma, C_{\text{mg}}^\infty(G)) \otimes E) \xrightarrow{\cong} H^p_{\mathfrak{g},K}(H^0_q(\Gamma, \Sigma, C^\infty(G)) \otimes E).$$
Proof: Let Ω be one of the spaces $C^\infty_{\text{umg}}(G)$ or $C^\infty_{\text{mg}}(G)$.

We will now leave Σ out of the notation. By Proposition 3.4 we get an exact sequence

$$0 \to H^0_q(\Gamma, \Omega) \to H^0_{q+1}(\Gamma, \Omega) \to H^0(\Gamma, \Omega)^{N_r, \Sigma(q)} \to 0,$$

and the corresponding long exact sequences in (g, K)-cohomology. For each $p \geq 0$ we get a commutative diagram with exact rows

$$
\begin{array}{ccc}
H^p_{\mathfrak{g}, K}(H^0_q(\Gamma, \Omega) \otimes E) & \to & H^p_{\mathfrak{g}, K}(H^0_{q+1}(\Gamma, \Omega) \otimes E) \\
\alpha \downarrow & & \beta \downarrow \\
H^p_{\mathfrak{g}, K}(H^0_q(\Gamma, C^\infty(G)) \otimes E) & \to & H^p_{\mathfrak{g}, K}(H^0_{q+1}(\Gamma, C^\infty(G)) \otimes E) \\
\gamma \downarrow & & \\
& & H^p_{\mathfrak{g}, K}(H^0(\Gamma, C^\infty(G)) \otimes E)^{N_r, \Sigma(q)}.
\end{array}
$$

Borel has shown that γ is an isomorphism and that α is an isomorphism for $q = 1$. We prove that β is an isomorphism by induction on q. For the induction step we can assume that α is an isomorphism. Since the diagram continues to the left and right with copies of itself where p is replaced by $p - 1$ or $p + 1$, we can deduce that β is an isomorphism by the 5-Lemma.

By Proposition 3.2 (b) this proof cannot be applied to $\mathcal{A}(G)$.

References

[1] Borel, A.: Regularization theorems in Lie algebra cohomology. Applications. Duke Math. J. 50 (1983), no. 3, 605–623.

[2] Deimar, A.: Higher order group cohomology and the Eichler-Shimura map. to appear in: J. reine u. angew. Math.

[3] Franke, J.: Harmonic analysis in weighted L_2-spaces. Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 2, 181–279.

[4] Wallach, N.: Real Reductive Groups I. Academic Press 1988.
