Article

Optimum Soft Magnetic Properties of the FeSiBNbCu Alloy Achieved by Heat Treatment and Tailoring B/Si Ratio

Jonghee Han 1, Seoyeon Kwon 1, Sungwoo Sohn 2, Jan Schroers 2 and Haein Choi-Yim 1,*

1 Department of Physics, Sookmyung Women’s University, Seoul 04310, Korea; jonghee6150@sookmyung.ac.kr (J.H); sykwon39@sookmyung.ac.kr (S.K.)
2 Department of Mechanical Engineering and Material Science, Yale University, New Haven, CT 06511, USA; sungwoo.sohn@yale.edu (S.S.); jan.schroers@yale.edu (J.S.)
* Correspondence: haein@sookmyung.ac.kr

Received: 31 August 2020; Accepted: 25 September 2020; Published: 28 September 2020

Abstract: To increase the saturation magnetization (M_s) of commercially available soft magnetic Finemet alloys to the level comparable to that of Si-steel and Fe-based nanocrystalline alloys such as Nanoperm, Nanomet, the B or Si content in combination with annealing heat treatment was tailored. The ribbons of $Fe_{95−x}Si_xB_{11}Nb_3Cu_1$ ($x = 11, 12, 13$) and $Fe_{87−x}Si_xB_{9}Nb_3Cu_1$ ($x = 6, 8, 10$) were prepared by melt-spinning and annealed at different temperatures to develop nanocrystalline microstructure optimizing the soft magnetic properties. The magnetic properties of the as-spun and annealed ribbons were measured using a vibrating sample magnetometer and AC B-H loop tracer to acquire M_s of above 1.4 T in all as-spun ribbons. Among the alloys, $Fe_{84}Si_1B_{11}Nb_3Cu_1$ annealed at 545 °C showed the highest M_s of 2 T, which exceeds that of the conventional Finemet and other Fe-based nanocrystalline alloys.

Keywords: annealing; amorphous; soft magnetic properties; ferromagnet

1. Introduction

Due to their superior soft magnetic properties, magnetic materials such as Si-steel have been widely used to produce actuators, sensors, transformer cores, or electric motors [1,2]. Recently, attention has been paid to low core loss (P_{cv}) due to the increasing demand on energy efficiency [3]. Fe-based soft magnetic or nanocrystalline alloys could be a strong candidate for the emerging engineering technologies thanks to their potential for low P_{cv} and sufficient mechanical properties [4–6]. However, the saturation magnetization (M_s) of these materials is relatively lower than that of Si-steels [4]. Therefore, improving the soft magnetic properties of the alloys to keep P_{cv} low and, at the same time, to increase M_s to the level exceeding that of Si-steel is required for the development of next-generation soft magnetic materials.

Finemet alloys are based on Fe-Si-B-Nb-Cu, which are derived from the conventional Fe-Si-B system with a minor addition of Cu and Nb [7]. High soft magnetic properties in these alloys are originated from the precipitation of nanocrystalline α-Fe dispersed in an amorphous matrix [8–11]. Although the overall magnetic properties of Finemet were considered innovatory when it was first produced by Yoshizawa et.al in 1988 [10], currently, there are some competing nanocrystalline alloys that have remarkable soft magnetic properties including Nanoperm, Hitperm, or Nanomet. These alloys show very high saturation magnetization flux density (B_s) above 1.5 T higher than that of Finemet which is 1.23 T [12–15]. However, the Finemet-based alloys are still attractive as soft magnetic materials because of the potential for further improvement including excellent magnetic permeability.
We modified the atomic concentration of B or Si in the Finemet-based alloy system in exchange with
XRD patterns for the as-spun ribbons with variation of Si and B content. The patterns of ribbons with
various temperatures (T) was determined using XRD where Cu-Kα radiation (D8 Advance, Bruker, Germany). The Ms was measured with
a vibrating sample magnetometer (VSM) at room temperature under the in-plane applied magnetic
field ranging from 0.1 A/m. The values of Ms were measured by di
Magnetic properties although the latter case induced higher Hc [7,17]. Therefore, effect of B and Si
content variation in connection with the Fe content on the soft magnetic properties would be of interest in
the further optimization of the Finemet-based alloy system. In this study, we focused on increasing
the value of saturation magnetization Ms while maintaining low Pcv by varying the B or Si contents.
We modified the atomic concentration of B or Si in the Finemet-based alloy system in exchange with
Fe content. In addition, in order to further optimize soft magnetic properties, annealing treatment at
various temperatures (T_a) was applied.

2. Materials and Methods

Multicomponent ingots with the compositions of Fe_{95-x}Si_{x}B_{5}Nb_{3}Cu_{1} (x = 11, 12, 13) and Fe_{87-x}Si_{x}B_{3}Nb_{3}Cu_{1} (x = 6, 8, 10) were prepared by arc melting under Ti-gettered argon atmosphere and
remelted at least four times for homogeneity. Amorphous ribbons were produced by using melt-spinner in
an argon atmosphere with a wheel speed of 56.3 m/s. The width and thickness of ribbons were
2 mm and 20–30 µm, respectively. As-spun ribbons were annealed in a vertical furnace at various
temperatures for 60 min under an argon atmosphere. The cooling rate that can be achieved in this
method was of order 0.67 °C/s. The structural properties of as-spin ribbons were identified by X-ray
diffraction (XRD) with Cu-Kα radiation (D8 Advance, Bruker, Germany). The Ms was measured with
a helium pycnometer (AccuPyc II, Micromeritics). The Mm and Pcv were measured by using
an AC B-H loop tracer. The values of Mm were measured under the maximum applied filed (Hm) of
800 A/m, and the values of Pcv were measured under a frequency (f) of 100 kHz and the Hm of 0.1 A/m.
For annealing, a temperature above the crystallization temperature (Tc) of the as-spun amorphous
ribbons was chosen for each specimen. Tc was measured by differential scanning calorimetry (DSC) at
a heating rate of 0.34 °C/s.

3. Results and Discussion

The atomic structure of as-spun Fe_{95-x}Si_{x}B_{5}Nb_{3}Cu_{1} (x = 11, 12, 13) and Fe_{87-x}Si_{x}B_{3}Nb_{3}Cu_{1} (x =
6, 8, 10) ribbons was determined using XRD where Cu-Kα radiation was used. Figure 1 shows the
XRD patterns for the as-spun ribbons with variation of Si and B content. The patterns of ribbons with
different B contents (upper 3 patterns in Figure 1) consist of broad halos without any sharp diffraction
peaks corresponding to crystalline phases, indicating that the structure is fully amorphous for the
alloys considered here. However, the as-spun ribbons of Fe_{81}Si_{6}B_{9}Nb_{3}Cu_{1} and Fe_{78}Si_{9}B_{2}Nb_{3}Cu_{1} (4th
and 5th patterns from the top of the Figure 1, respectively) have obvious crystalline peaks in the 2θ
range of 40–50°. This suggests that the ribbons are partially crystallized. The alloys Fe_{95-x}Si_{x}B_{5}Nb_{3}Cu_{1}
(x = 11, 12, 13) and Fe_{79}Si_{10}B_{9}Nb_{3}Cu_{1} (x = 10, y = 9) maintain amorphous phase in as-spun state
suggesting their good glass-forming ability (GFA).

The hysteresis loops for Fe_{95-x}Si_{x}B_{5}Nb_{3}Cu_{1} (x = 11, 12, 13) and Fe_{87-x}Si_{x}B_{3}Nb_{3}Cu_{1} (x = 6, 8, 10)
of the as-spun ribbons are shown in Figure 2. All specimens exhibit high soft magnetic properties with
a high Ms about of 1.4–1.5 T. The measured Ms for all as-spun ribbons are summarized in Table 1.
because of the accompanying increase in Fe content [18].

The XRD patterns of the Fe\(_{95-x}\)Si\(_x\)B\(_x\)Nb\(_3\)Cu\(_1\) (x = 11, 12, 13) and Fe\(_{87-x}\)Si\(_x\)B\(_x\)Nb\(_3\)Cu\(_1\) (x = 6, 8, 10) as-spun ribbons.

Hysteresis loops of the as-spun Fe\(_{95-x}\)Si\(_x\)B\(_x\)Nb\(_3\)Cu\(_1\) (x = 11, 12, 13) and Fe\(_{87-x}\)Si\(_x\)B\(_x\)Nb\(_3\)Cu\(_1\) (x = 6, 8, 10).

Table 1. Summary of density (\(\rho\)), saturation magnetization (\(M_s\)) of the Fe\(_{95-x}\)Si\(_x\)B\(_x\)Nb\(_3\)Cu\(_1\) (x = 11, 12, 13) and Fe\(_{87-x}\)Si\(_x\)B\(_x\)Nb\(_3\)Cu\(_1\) (x = 6, 8, 10) alloys.

Alloy	\(\rho\) (g/cm\(^3\))	\(M_s\) (emu/g)	\(M_s\) (T)
Fe\(_{84}\)Si\(_1\)B\(_{11}\)Nb\(_3\)Cu\(_1\)	7.41	165.4	1.54
Fe\(_{83}\)Si\(_1\)B\(_{12}\)Nb\(_3\)Cu\(_1\)	7.38	163.5	1.52
Fe\(_{82}\)Si\(_1\)B\(_{13}\)Nb\(_3\)Cu\(_1\)	7.34	163.5	1.51
Fe\(_{81}\)Si\(_1\)B\(_{14}\)Nb\(_3\)Cu\(_1\)	7.03	175.3	1.55
Fe\(_{79}\)Si\(_1\)B\(_{15}\)Nb\(_3\)Cu\(_1\)	6.86	172.4	1.49
Fe\(_{77}\)Si\(_1\)B\(_{16}\)Nb\(_3\)Cu\(_1\)	6.69	166.7	1.40

As can be seen in Table 1, with decrease in the Si or B content, the values of \(M_s\) increase mainly because of the accompanying increase in Fe content [18].
For the optimum conditions of formation, the dependence of the onset crystallization on temperature and Cu content is noteworthy [19]. It was determined by DSC. The DSC curves, which indicate the crystallization behavior of the amorphous ribbons with different B or Si content, are shown in Figure 3a,b and compared with Finemet as a reference (placed on top of both Figure 3a,b with composition of Fe73.5Si13.5B5Nb3Cu1). The exothermic peaks are observed for all ribbons, which suggest the crystallization reaction of the as-spun alloys. The T_x values are increased from 394 to 422 °C and from 425 to 475 °C along with an increase in the B content from 11 to 13 at.% and the Si content from 6 to 10 at.%, respectively. For the Fe-based amorphous alloys that are mostly intended for the soft magnetic applications, the first crystalline phase precipitating at the lowest temperature is likely to be α-iron, which dominantly contributes to the high magnetization. Therefore, for commercial nanocrystalline alloys, the suitable T_a is usually in the range between the end of the first crystallization and the start of the second crystallization to effectively control the volume fraction, precipitate size, and distribution of the α-iron [20]. Based on the acquired T_x values, the annealing temperatures (T_a) were determined. For obtaining the nanocrystalline state, each as-spun ribbon was annealed under argon atmosphere at various T_a covering a wide range. Four different annealing temperatures for each alloy were applied: the lowest T_a is near the onset temperature T_x with three more annealing conditions of higher temperature [19]. The values of T_a and T_x are listed in Table 2.

![Figure 3](image1.jpg)

Figure 3. The DSC patterns of (a) the Fe$_{95-x}$Si$_x$B$_3$Nb$_3$Cu$_1$ ($x = 11, 12, 13$) and (b) the Fe$_{97-x}$Si$_x$B$_9$Nb$_3$Cu$_1$ ($x = 6, 8, 10$) as-spun ribbons with Finemet ($x = 13.5, y = 9$).

Table 2. Crystallization temperature (T_x), annealing temperature, and compositions of the Fe$_{95-x}$Si$_x$B$_3$Nb$_3$Cu$_1$ ($x = 11, 12, 13$) and Fe$_{97-x}$Si$_x$B$_9$Nb$_3$Cu$_1$ ($x = 6, 8, 10$).

Composition (at.%) Fe$_{96-x}$Si$_x$B$_y$Nb$_3$Cu$_1$	T_x (°C)	Annealing Temperature (°C), 1 h
$x = 1, y = 11$	394	395 445 495 545 545
$x = 1, y = 12$	406	410 460 510 560
$x = 1, y = 13$	422	420 470 520 570
$x = 6, y = 9$	425	425 475 525 575
$x = 8, y = 9$	452	450 450 550 600
$x = 10, y = 9$	475	480 530 580 630

After cooling down to room temperature, the annealed ribbons were measured again by VSM. Figure 4 depicts the hysteresis loops for the Fe$_{84}$Si$_1$B$_{11}$Nb$_3$Cu$_1$ alloy, for their as-spun state and after annealing treatment at 395, 445, 495 and 545 °C for 60 min. The Fe$_{84}$Si$_1$B$_{11}$Nb$_3$Cu$_1$ alloy has been selected since this alloy shows the highest values of M_s among the annealed alloys with different element atomic ratio. In addition, Figure 5a,b shows the variation of M_s and H_c of the Fe$_{84}$Si$_1$B$_{11}$Nb$_3$Cu$_1$ along with T_a. The graphs show the trend that the tendencies of M_s and H_c are opposite. As can be seen in Figure 5, there is a correlation between M_s and T_a. M_s considerably increased with an increase
of T_a. Furthermore, M_s decreased at $T_a = 445 \, ^\circ C$, then reached the maximum value of 2.06 T at 545 \, ^\circ C$. Based on the DSC patterns in Figure 3, we propose that structural reordering, eventually leading to crystallization, begins at annealing temperatures of around 394 \, ^\circ C. The alloy becomes magnetically harder after annealing in the temperature range between 395 and 445 \, ^\circ C compared with either its relaxed amorphous state or the nanostructured state after crystallization [21].

Due to the precipitation, H_s would act as pinning centers for the domain wall displacements, thereby increasing H_c [22]. Through the annealing treatment, the residual stress was removed, and it resulted in the structural relaxation. Harder after annealing in the temperature range between 395 and 445 \, ^\circ C compared with either its

For Fe$_{84}$Si$_1$B$_{11}$Nb$_3$Cu$_1$, $T_a = 545 \, ^\circ C$, the M_s is 2.06 T, which is the highest value of all the considered alloys. Moreover, the lowest H_s measured at 1 kHz is 114.52 A/m when $T_a = 545 \, ^\circ C$ at which the highest M_s is exhibited. The highest H_c measured at a 1 kHz is 301.88 A/m at $T_a = 445 \, ^\circ C$. This change in magnetic behavior with T_a containing both Cu and Nb can be interpreted based on the report that observed similar cases [21]. The latter magnetic hardening appears to be a consequence of the appearance of Cu-enriched clusters, which form even before the T_x. Simultaneously with Cu precipitation, α-Fe grains start to nucleate. Both the Cu-enriched clusters and the α-FeSi nanocrystals would act as pinning centers for the domain wall displacements, thereby increasing H_s [22]. Through the annealing treatment, the residual stress was removed, and it resulted in the structural relaxation. Therefore, the H_c were considerably reduced due to the reduced free volume and the nucleated clusters [22,23]. As a result, the Fe$_{84}$Si$_1$B$_{11}$Nb$_3$Cu$_1$ represented the excellent soft magnetic properties such as high M_s and low H_c at $T_a = 545 \, ^\circ C$. The detailed magnetic properties such as M_s and H_c of

![Figure 4. Hysteresis loops of the annealed Fe$_{84}$Si$_1$B$_{11}$Nb$_3$Cu$_1$.](image)

![Figure 5. Variation of (a) M_s and (b) H_c values measured at 1, 10, and 20 kHz in the annealed ribbons of Fe$_{84}$Si$_1$B$_{11}$Nb$_3$Cu$_1$ with increasing T_a.](image)
the Fe₈₄Si₁₁Nb₃Cu₁ ribbons are summarized in Table 3. The annealed Fe₈₄Si₁₁Nb₃Cu₁ ribbons exhibit a very high \(M_r > 200 \text{ emu/g} \) (1.8 T) at all \(T_a \). These values are considered very high, which are higher than that of Finemet or Fe-based nanocrystalline alloys of \(\simeq 1.5 \text{ T} \) [7,13–15]. The \(H_c \) values of the annealed Fe₈₄Si₁₁Nb₃Cu₁ significantly decreased from 272.96 to 114.52 at 1 kHz, from 329.01 to 157.18 at 10 kHz, and from 357.94 to 184.83 at 20 kHz along with increasing \(T_a \).

In Figure 6, the annealing temperature dependence of \(\mu_r \) and \(P_{cv} \) of the Fe₈₄Si₁₁Nb₃Cu₁ alloy are shown. The graph shows a trend that the tendencies of \(H_c \) and \(P_{cv} \) are similar. In addition, the values of \(\mu_r \) increase with increasing \(T_a \). The smallest value of \(P_{cv} \) \(\simeq 406 \text{ mW/cm}^3 \) and the highest value of \(\mu_r \) \(\simeq 1340 \) are present in Fe₈₄Si₁₁Nb₃Cu₁ annealed at 545 °C at the f of 1 kHz. These values of \(\mu_r \) and \(P_{cv} \) are superior soft magnetic properties compared to the conventional value of Finemet (\(\mu_r \) \(\simeq 10^3 \), \(P_{cv} \) \(\simeq 300 \text{ kW/m}^3 \) at the f of 1 kHz) [14]. Annealing at a higher temperature leads to an increase in the number density of nanocrystals. However, if the \(T_a \) is as high as the second crystallization temperature, the overall properties such as \(\mu_r \) and \(P_{cv} \) deteriorate due to the formation of other compounds, for instance, iron boride phases such as Fe₃B (tetragonal structure) and Fe₂₃B₆ (fcc structure) [24]. The \(\mu_r \) and \(P_{cv} \) values of all specimens are compared in Table 4. Overall, the alloys show similar tendencies with Fe₈₄Si₁₁Nb₃Cu₁. The annealed Fe₇₉Si₁₀B₉Nb₃Cu₁ exhibits the highest \(\mu_r \), and the annealed Fe₇₀Si₁₀B₉Nb₃Cu₁ exhibits the lowest \(P_{cv} \) \(\simeq 100 \text{ mW/cm}^3 \) at the f of 1 kHz. Although there is no obvious correlation between \(P_{cv} \) and \(T_a \), the \(P_{cv} \) values of the alloys with variation of Si ratio is relatively lower than that of the alloys with variation of B ratio.

![Figure 6](image-url)
Figure 6. Variation of (a) \(\mu_r \) and (b) \(P_{cv} \) values measured at 1, 10 and 20 kHz in the annealed ribbons of Fe₈₄Si₁₁Nb₃Cu₁ with increasing \(T_a \).

Alloy	\(T_a \) (°C)	\(M_r \) (emu/g)	\(M_s \) (T)	\(H_c \) (A/m) 1 kHz	\(H_c \) (A/m) 10 kHz	\(H_c \) (A/m) 20 kHz
as-spun						
Fe₈₄Si₁₁Nb₃Cu₁	395 °C	209.1	1.95	272.96	329.01	357.94
	445 °C	203.0	1.89	301.88	368.93	404.38
	495 °C	214.1	1.99	207.43	278.92	318.82
	545 °C	221.3	2.06	114.52	157.18	184.83
Table 4. μ_r and P_{cv} values of the $Fe_{95-x}Si_1B_xNb_3Cu_1$ ($x = 11, 12, 13$) and $Fe_{87-x}Si_1B_9Nb_3Cu_1$ ($x = 6, 8, 10$) according to T_a.

Alloy	T_a (°C)	μ_r	P_{cv} (mW/cm2)				
	1 (kHz)	10	20	1	10	20	
$Fe_{84}Si_1B_{11}Nb_3Cu_1$	395	650.0	645.99	645.21	519.32	5920.7	12,820
	445	885.5	850.67	851.63	702.14	8527.9	18,890
	495	1025.7	1024.40	1025.2	532.2	7166.7	16,530
	545	1347.2	1340.60	1344.9	406.18	5846.5	13,120
$Fe_{83}Si_1B_{12}Nb_3Cu_1$	410	768.2	752.59	748.36	1012.8	10,900	22,680
	460	917.7	915.59	916.2	631.01	7970.1	17,890
	510	1014.8	1014.20	1017.4	761.18	9636.9	21,780
	560	1302.7	1299.40	1302.4	246.83	7175.9	9273.9
$Fe_{82}Si_1B_{13}Nb_3Cu_1$	420	914.1	907.56	905.83	733.91	8639.4	19,130
	470	741.0	736.20	735.99	707.47	8142.7	17,600
	520	1030.2	1021.40	1017.6	542.97	7193.8	16,280
	570	1347.2	1340.60	1344.9	406.18	5846.5	13,120
$Fe_{81}Si_1B_9Nb_3Cu_1$	425	658.9	655.32	656.33	226.53	3027.5	7110.6
	475	758.1	754.24	756.5	240.97	3523.6	8359
	525	812.6	810.18	812.94	281.05	3864.1	9154.5
	575	887.5	885.09	889.47	200.91	3475.5	8684.9
$Fe_{79}Si_1B_10Nb_3Cu_1$	450	780.0	775.56	777.49	72.164	1819.9	4913.1
	500	882.3	880.42	883.41	125.85	3039.3	8035.8
	550	1068.2	1069.00	1074.8	94.186	2482.6	6899.5
	600	915.5	913.35	917.54	100.42	2176.3	5906.9
$Fe_{77}Si_1B_9Nb_3Cu_1$	480	792.6	791.90	792.9	76.789	1921.8	5130.5
	530	901.2	902.98	907.13	76.215	1872.4	5099.9
	580	1061.4	1058.60	1062.4	141.42	3418.4	8784.9
	630	1091.1	1089.10	1094.7	321.02	4714.4	11,250

4. Conclusions

In this study, soft magnetic properties of $Fe_{95-x}Si_1B_xNb_3Cu_1$ ($x = 11, 12, 13$) and $Fe_{87-x}Si_1B_9Nb_3Cu_1$ ($x = 6, 8, 10$) alloys were investigated by tailoring B or Si content ratio. All alloys were annealed at the various T_a in order to achieve the precipitation of nanocrystalline α-Fe phase and to optimize the soft magnetic properties.

The X-ray diffraction patterns of the as-spun alloys with variation of Si and B content reveal an amorphous structure except for $Fe_{81}Si_1B_9Nb_3Cu_1$ and $Fe_{79}Si_1B_9Nb_3Cu_1$, which are partially crystalline. As-spun $Fe_{95-x}Si_1B_xNb_3Cu_1$ ($x = 11, 12, 13$) alloys can maintain amorphous phase because of the high glass-forming ability of B.

In addition, the values of M_s, H_c, μ_r and P_{cv} were investigated. Annealed $Fe_{84}Si_1B_{11}Nb_3Cu_1$ exhibits excellent M_s values above 1.8 T at the various annealing temperatures, T_a and when the T_a is 545 °C, the M_s value reaches maximum of about 2 T, which is higher than that of Finemet or Fe-based nanocrystalline alloys of about 1.5 T with the low H_c value less than 120 A/m. Moreover, the values of μ_r and P_{cv} are superior soft magnetic properties compared to the conventional value of Finemet.

Author Contributions: Conceptualization and Formal Analysis J.H. and S.K.; Methodology and Resources, S.K.; Validation, J.H., S.K., S.S. and J.S.; Investigation, Data Curation, Writing—Original Draft Preparation and Visualization, J.H.; Writing—Review & Editing, J.H., S.K., S.S., J.S. and H.C.-Y.; Project Administration and Funding Acquisition H.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) (2018006784).

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Suryanarayana, C.; Inoue, A. Iron-based bulk metallic glasses. *Int. Mater. Rev.* **2013**, *58*, 131–166. [CrossRef]
2. Jiles, C.D. Recent advances and future directions in magnetic materials. *Acta Mater.* **2003**, *51*, 5907–5939. [CrossRef]
3. Li, Z.; Yao, K.; Li, D.; Ni, X.; Lu, Z. Core loss analysis of Finemet type nanocrystalline alloy ribbon with different thickness. *Prog. Nat. Sci. Mater. Int.* **2017**, *27*, 588–592. [CrossRef]
4. Chen, H.S. Glassy metals. *Rep. Prog. Phys.* **1980**, *43*, 353–432. [CrossRef]
5. Chen, M. A Brief Overview of Bulk Metallic Glasses. *NPG Asia Mater.* **2011**, *3*, 82–90. [CrossRef]
6. Wang, W.H. Roles of minor additions in formation and properties of bulk metallic glasses. *Prog. Mater Sci.* **2007**, *52*, 540–596. [CrossRef]
7. Manivel Raja, M.; Chattopadhyay, K.; Majumdar, B.; Narayanasamy, A. Structure and soft magnetic properties of Finemet alloys. *J. Alloys Compd.* **2000**, *297*, 199–205. [CrossRef]
8. Yoshizawa, Y.; Yamauchi, K.; Oguma, S. Fe-base soft magnetic alloy and method of producing same. European Patent Application 0 271 657, 22 June 1988.
9. Herzer, G. Grain structure and magnetism of nanocrystalline ferromagnets. *IEEE Trans. Magn.* **1989**, *25*, 3327–3329. [CrossRef]
10. Yoshizawa, Y.; Yamauchi, K. Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure. *Mater. Trans. Jpn. Int. Metals* **1990**, *31*, 307. [CrossRef]
11. Herzer, G.; Warlimont, H. Nanocrystalline soft magnetic materials by partial crystallization of amorphous glasses. *Nanostruct. Mater.* **1992**, *1*, 263–268. [CrossRef]
12. Yoshizawa, Y.; Oguma, S.; Yamauchi, K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. *J. Appl. Phys.* **1988**, *64*, 6044. [CrossRef]
13. Makino, A.; Hatani, T.; Naitoh, Y.; Bito, T.; Inoue, A. Applications of Nanocrystalline Soft Magnetic Fe-M-B (M = Zr, Nb) Alloys “NANOPERM®”. *IEEE Trans. Magn.* **1997**, *33*, 5. [CrossRef]
14. Makino, A.; Men, H.; Kubota, T.; Yubuta, K.; Inoue, A. FeSiBCu Nanocrystalline Soft Magnetic Alloys with High Bs of 1.9 Tesla Produced by Crystallizing Hetero-Amorphous Phase. *Mater. Trans.* **2009**, *50*, 204–209. [CrossRef]
15. Huang, M.; Hsu, Y.; McHenry, E.; Laughlin, D. Soft magnetic properties of nanocrystalline amorphous HITPERM films and multilayers. *IEEE Trans. Magn.* **2001**, *37*, 4. [CrossRef]
16. FINEMET™. 2015. Available online: http://www.hitachi.co.kr/products/material/emc/nano/index.html (accessed on 16 October 2019).
17. Ohta, M.; Yoshizawa, Y. Magnetic properties of nanocrystalline Fe_{82.65}Cu_{13.35}Si_{x}B_{6-x} alloys (x = 0–7). *Appl. Phys. Lett.* **2007**, *91*, 062517. [CrossRef]
18. Yoshizawa, Y. Magnetic Properties and Microstructure of Nanocrystalline Fe-Based Alloys. *Mater. Sci. Forum.* **1999**, *307*, 51. [CrossRef]
19. Herzer, G. Nanocrystalline soft magnetic materials. *J. Magn. Magn. Mater.* **1996**, *158*, 133–136. [CrossRef]
20. Kulik, T. The influence of copper, niobium and tantalum additions on the crystallization of Fe-Si-B-based glasses. *Mater. Sci. Eng. A* **1992**, *159*, 95–101. [CrossRef]
21. Vazquez, M.; Marin, P.; Davies, H.A.; Olofinjana, A.O. Magnetic hardening of FeSiBCuNb ribbons and wires during the first stage of crystallization to a nanophase structure. *Appl. Phys. Lett.* **1994**, *64*, 3185–3186. [CrossRef]
22. Kwon, S.; Kim, S.; Choi-Yim, H.; Kang, K.H.; Yoon, C.S. High saturation magnetic flux density of Novel nanocrystalline core annealed under magnetic field. *J. Alloys Compd.* **2020**, *826*, 154136. [CrossRef]
23. Kwon, S.; Kim, S.; Choi-Yim, H. Improvement of saturation magnetic flux density in Fe-Si-B-Nb-Cu nanocomposite alloys by magnetic field annealing. *Curr. Appl. Phys.* **2020**, *20*, 37–42. [CrossRef]
24. Chen, W.Z.; Ryder, P.L. X-ray and differential scanning calorimetry study of the crystallization of amorphous Fe_{73.5} Cu_{1}Nb_{3} Si_{13} _x B_{y} alloy. *Mater. Sci. Eng.* **1995**, *B34*, 204–209. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).