Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Rieth, Adam J. et al. "Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture." Nature Reviews Materials 4, 11 (September 2019): 708–725 © 2019 Springer Nature Limited
As Published	http://dx.doi.org/10.1038/s41578-019-0140-1
Publisher	Springer Science and Business Media LLC
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/128201
Terms of Use	Creative Commons Attribution-Noncommercial-Share Alike
Detailed Terms	http://creativecommons.org/licenses/by-nc-sa/4.0/
Kinetic Stability of Metal-Organic Frameworks: Consequences for Corrosive and Coordinating Gas Capture

Adam J. Rieth¹, Ashley M. Wright¹, and Mircea Dincă¹*

¹ Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, Massachusetts, 02139, United States.

* Correspondence to: mdinca@mit.edu

Abstract

Metal-organic frameworks (MOFs) have demonstrated their utility for a variety of applications involving the storage, separation, and sensing of weakly interacting gases of high purity. Exposure to more realistic, impure gas streams and interactions with corrosive and coordinating gases raises the question of chemical robustness, which remains a paramount concern for practical applications of MOFs. However, factors that determine the stability of MOFs remain incompletely understood. Although past researchers attempted to categorize framework materials as either thermodynamically stable or kinetically stable, recent work has elucidated an energetic penalty for porosity for all materials in this class with respect to a dense material. The metastability of porous phases has important implications for the design of materials for gas storage, heterogeneous catalysts, and electronic materials. Here, we focus on two main strategies for stabilization of the porous phase, either by using inert metal ions, or by increasing the heterolytic metal-ligand bond strength, both of which increase the activation barrier for framework collapse. These two strategies have led to exceptionally robust materials for the capture of coordinating and corrosive gases such as water vapor, ammonia, H₂S, SO₂, NOₓ, and even elemental halogens, and we review the progress in designing stable materials for these gases. Looking forward, we envision that the continued pursuit of strategies for kinetic stabilization in the synthesis of new MOFs will provide increasing numbers of robust frameworks suited to harsh conditions, and that short-term stability towards these challenging gases will be predictive of long-term stability for applications in less demanding environments.

Introduction

Porosity is a useful and versatile material property for a range of current and future applications, including gas storage,¹⁻⁴ chemical separations,⁵⁻⁷ catalysis,⁸⁻¹⁰ and electronic devices.¹¹,¹² Yet, much like a cavern’s susceptibility toward cave-in, the empty voids of porous materials also imply the possibility of collapse. Therefore, in order to be applicable, the stability of porous materials is of eminent importance. Metal-organic frameworks (MOFs) are materials consisting of regular arrays of metal ions or clusters linked by organic ligands, and they can exhibit record internal surface areas.¹³ Research into MOFs, and concomitantly the number of possible applications for these materials, has increased exponentially over the past several years. However, they are not yet widely applied in industry, and in many cases the deployment of MOFs is held back by a lack of long-term stability under environmental or application-specific conditions. Here, we focus on framework chemical stability toward coordinating and corrosive gases and vapors, such as water vapor, NH₃, H₂S, Cl₂, Br₂, NOₓ and SOₓ, which may be present in the atmosphere, or as components in applications for which MOFs find utility.
The Energetic Penalty for Porosity

Horror Vacui, a phrase attributed to Aristotle roughly translated as *nature abhors a vacuum*, was, until recently, thought to apply to the crystallization of permanently porous solids. Porous solids were believed to be unstable due to the relative lack of bonding or dispersive interactions within or between the voids. Of course, materials such as zeolites and MOFs are now commonly synthesized, normally by including solvent, surfactant, or structure-directing agents within the voids during crystallization, although the degree of kinetic or thermodynamic control responsible for their formation is still under debate. After the porous material is synthesized, the components within the pores are commonly removed by evacuation or annealing, leaving behind accessible voids. However, an increasing body of work suggests that crystalline porous materials with empty pores are metastable with respect to their dense phases (Figure 1). The dense phase is a hypothetical assemblage of the same constituent atoms, ions, or ligands, but carries negligible porosity. For an all-silica zeolite, the dense phase is easily envisaged as nonporous amorphous silica, which can be accessed via simple heating. For a MOF, the dense phase can be more difficult to conceptualize due to the directionality of the ligands, but denser, amorphous phases of some MOFs, achieved thermally, are known, and other structures transition to denser amorphous phases with the application of pressure.

Figure 1: *Metastability of Porous Materials*. A) Enthalpic penalty relative to a dense phase versus molar unit cell volume per Zn or Si for porous materials including zeolites, mesoporous silicas, ZIFs, and MOF-5. B) Conceptualization of the energy penalty for porosity in a reaction coordinate diagram.

The metastability of solvent-free porous materials has been experimentally demonstrated for many zeolites, zeolitic imidazolate frameworks (ZIFs), as well as the prototypical MOFs Zn₄O(BDC)₃ (MOF-5, BDC = 1,4-benzenedicarboxylate) and Cu₃(BTC)₂ (HKUST-1, BTC = 1,3,5-benzenetricarboxylate). Inclusion of solvent in the thermodynamic equations can result in a thermodynamically stable porous phase (with respect to the dense phase) in the case of HKUST-1, whereas inclusion of solvent for MOF-5, though highly exothermic, is insufficient to result in net stabilization. Regardless of the thermodynamics of the solvent-inclusive phase, for the majority of applications the evacuated phase is desired. It has been argued that the increased vibrational entropy of porous phases of MOFs could represent enough energetic
stabilization to account for a net negative free energy with respect to dense phases at slightly elevated temperatures. However, the available calorimetric data indicate a trend of increasing energy penalty for increasingly porous structures, and a dense, amorphous phase should be entropically favored over a crystalline porous phase given that the driving force for crystallization is commonly enthalpic.

Kinetically Stabilizing the Porous MOF Phase

Conceptualizing MOFs with empty pores as metastable, kinetically-trapped phases has important implications for the development of design principles for chemically stable frameworks. Stabilization of the porous phase can only be kinetic and must increase the energy barrier for transitioning to the dense phase by 1) increasing the transition state energy or 2) decreasing the energy of the porous phase with respect to the transition state (Figure 2).

1) **Metal Ion Substitution Kinetics: increasing the transition state energy**

Transitioning from a porous MOF phase to a dense phase must require ligand exchange or geometric reorganization around the metal ion. A major component in the energy barrier for reorganization towards a dense phase is contained in the inherent kinetics of ligand exchange of the metal ion. As a consequence of electronic configuration and of ionic radius, transition metal ions can exhibit vastly disparate ligand exchange kinetics, which are most often quantified by the homoleptic aquo complex self-exchange rate. The rate of ligand exchange in octahedral aquo complexes spans nearly twenty orders of magnitude from the labile Cu$^{2+}$ and Cr$^{2+}$ at 5.9×10^9 s$^{-1}$ to the highly inert Ir$^{3+}$ at 1.1$ \times 10^{-10}$ s$^{-1}$. MOFs formed with kinetically inert metals can be exceptionally robust. For instance, the most widely employed metal ion in MOF synthesis with a metal-aquo self-exchange rate slower than 1 s$^{-1}$ is Cr$^{3+}$, which forms carboxylate frameworks stable to water, steam, and even high pressures of H$_2$S. Cation inertness can be a better predictor of stability than metal-ligand bond strength, as was demonstrated in the MIL-53 and -47 family of isostructural frameworks where chemical stability decreases in the order Cr$^{3+} >$ Al$^{3+} >$ V$^{4+}$, as expected based on the water substitution rates of the metal-aquo complexes, but not in line with the thermodynamic metal-oxygen bond strength. An additional example of the effects of inert metal ion substitution can be found in the M$_2$DOBDC (MOF-74 or CPO-27, DOBDC = dioxidobenzenedicarboxylate) family of frameworks, where partial replacement of Mg$^{2+}$ with more inert Ni$^{2+}$ can enhance the stability toward water. Replacement of the native Zn$^{2+}$ with Ni$^{2+}$ in MOF-5 also grants increased water stability for the resulting Ni-MOF-5. Further, in a family of MOFs formed from linear bistriazolate linkers, M$_2$Cl$_2$BBTA (BBTA = bibenzotriazolate) and M$_2$Cl$_2$BTDD (BTDD = bistriazolodibenzodioxin), stability towards water and ammonia decreases in the order Ni$^{2+} >$ Co$^{2+} >$ Mn$^{2+} >$ Cu$^{2+}$, in agreement with the trend in metal-aquo substitution rates. Based on these examples, the metal ion ligand substitution rate is a systematic descriptor of MOF stability that nevertheless is less recognized in the literature.

The trend in stability for MOFs based on ligand exchange rate is distinct from the stability trends for divalent metal complexes observed by Irving and Williams, with the most notable divergence being many Cu$^{2+}$ materials. Due to the d9 electronic configuration of Cu$^{2+}$, resulting in a Jahn-Teller distortion, its complexes exhibit relatively short, strong bonds to four equatorial ligands, accounting for the high measured stability constants for ligand complexes, but also exhibit extremely rapid ligand exchange at axial positions, resulting in lower observed stability for many Cu$^{2+}$ MOFs than what would be expected from the Irving-Williams series.
2) Bond Strength: stabilizing the porous phase relative to the transition state

The weakest link in a MOF is commonly the metal-ligand bond. Substantial previous literature has demonstrated that stability towards polar analytes can be augmented by increasing the heterolytic metal-ligand bond strength, a result of lowering the energy of the porous framework relative to the heterolytic bond-breaking transition state. For example, MOFs formed using pyrazolate or imidazolate ligands in combination with late transition metals often exhibit superlative chemical stability, which can be attributed to the stronger donating ability of these ligands versus carboxylates, and can be quantified by the ligand basicity. Metal-binding groups that are more donating will increase the heterolytic metal-ligand bond strength, particularly for late transition metals, and enhance MOF stability, up to a point. Ligands with greater donating ability than pyrazolates have not been widely explored in MOF chemistry, due largely to synthetic difficulties in either accessing the ligand or crystallizing the framework. Yet increasing the donating ability significantly more may not result in increased stability towards water because of the concomitant increase in driving force for metal-ligand bond hydrolysis.

An additional strategy for increasing the metal-ligand bond strength for carboxylate frameworks is to increase the valency of the metal ion. Although augmenting the ligand donation strength is successful for late transition metals because it results in a stronger, more covalent bonds, increasing the ionic bond strength is also possible when employing carboxylate ligands by simply increasing the charge density on the metal ion. Higher-valent metals paired with carboxylates, such as Ti⁴⁺, Zr⁴⁺, Cr⁵⁺, and Al³⁺ will form stronger metal-ligand bonds than those constructed with divalent metal ions.

Although increasing the metal-ligand bond strength is often thought of as a route towards the thermodynamic stabilization of the porous phase, there may be no net change in the driving force towards the dense phase because the dense phase with the same metal-ligand bond is equally stabilized. For instance, moving from carboxylate (pKₐ(DMSO) = 11.1) to imidazolate (pKₐ(DMSO) = 18.6) in Zn²⁺ frameworks results in nearly identical energy penalties for the porous MOFs, MOF-5 and Zn-methylimidazolate (ZIF-8), with respect to the corresponding dense phases. Nonetheless, the increased metal-ligand bond strength of ZIF-8 does result in greater kinetic stability relative to MOF-5, especially towards coordinating species, due to an increased energy barrier for heterolytic metal-ligand bond breaking.
Figure 2: Routes towards kinetic stabilization of MOFs. Methods towards stabilization of the porous phase with respect to the dense phase must involve increasing the activation energy barrier. A) Metal-aquo self-exchange rate constant for various metal ions. B) Metal ion inertness increases the activation energy barrier for rearrangement to the dense phase. C) The use of more strongly donating azolate ligands, as measured by pKₐ, in combination with late transition metals, results in stronger metal-ligand bonds. D) Increasing the heterolytic metal-ligand bond strength results in a greater activation energy barrier for a bond-breaking transition state, while not affecting the net driving force towards the dense phase.

Linker and node connectivity

The transition state energy can additionally be boosted by increasing the connectivity of framework components, improving stability in a manner similar to the chelate effect. The stabilization comes as a result of increasing the number of metal-ligand bonds which must dissociate or rearrange simultaneously in order for a phase transition to occur or a pore to collapse. For instance, the barrier to linker removal or reorganization will be greater for a tetratopic carboxylate, such as the linker of NU-1000 ([Zr₆O₄(OH)₄(HCOO)₄(TBAPy)₂, TBAPy = pyrene tetra-p-benzoic acid]), than a ditopic carboxylate, such as the biphenyl dicarboxylate (BPDC) linker of UiO-67 ([Zr₆O₄(OH)₄(BPDC)_6]). Similarly, frameworks made up of secondary building units (SBUs) with greater connectivity exhibit enhanced stability, exemplified by MOFs constructed from Zr⁴⁺ oxo-hydroxo nodes which may be linked by 6, 8, 10, or 12 carboxylate groups, whose stability generally covaries with node connectivity.⁵⁸–⁶⁰
Sterics and Hydrophobicity:
Steric shielding of metal-ligand bonds can impede the access of water and other coordinating vapors to delicate metal-ligand linkages. However, this strategy also may decrease overall porosity as well as inhibit the access of desirable sorbates to the framework sites, which often exhibit the strongest guest binding interactions.

Effects of Gases and Vapors on Framework Stability

Coordinating Gases and Vapors: H₂O, NH₃, H₂S
Perturbations in the bonding and connectivity of a MOF frequently result in decreases in the useful surface area and porosity. Framework exposure to coordinating gases and vapors are one cause of such perturbations. The ability of a MOF to withstand exposure is directly related to the energy barrier towards ligand rearrangement or substitution. Several reaction pathways can be operative, including ligand substitution, metal-ligand bond hydrolysis, coordination-induced ligand rearrangement, or pore collapse due to capillary forces. Common to all mechanisms is a requirement for ligand rearrangement around the SBU, as well as some degree of heterolytic metal-ligand bond breaking. These factors directly relate the stability of a MOF towards coordinating gases and vapors to the kinetics of ligand exchange at the metal center, as well as the heterolytic metal-ligand bond strength. For example, theoretical calculations for
metal-ligand hydrolysis and water substitution reactions reveal that hydrolysis to form the metal hydroxide and the protonated ligand is universally downhill for diverse frameworks including Zn-MOF-5, Cu-HKUST-1, Cr-MIL-101, and Zn-ZIF-8, but the activation energy barrier for ligand substitution is much larger for Cr-MIL-101 and Zn-ZIF-8, in line with the experimentally observed high steam stability for these two frameworks versus Zn-MOF-5 and Cu-HKUST-1.50

The stability trends of MOFs towards polar gases is largely dependent on the gas’ acidity as well as its nucleophilicity. The stability of MOFs towards NH3 and H2S trend with the stability for water. However, the greater nucleophilicity of NH3 makes ligand substitution potentially more favorable. In combination with water, ammonia forms NH4OH, which is highly corrosive and may result in metal ligand bond hydrolysis.75 Moving to the more acidic H2S, with a pKa of 7.0 in water, seven orders of magnitude more acidic than H2O, protonation of the ligand occurs more readily, resulting in a metal sulhydryl or sulfide.32 Further, H2S is strongly nucleophilic and coordinating to metal ions, therefore it can readily substitute for a framework ligand.

Acidic and Oxidizing Gases and Vapors: SOx, NOx, elemental halogen X2

Designing materials that are stable to acidic and oxidizing gases such as sulfur dioxide (SO2), nitrogen oxides (NOx), and halogens (X2) present unique challenges. In particular, oxidation of the metal center by an oxidizing gas can drastically alter the kinetics of ligand substitution as well as the preferred ligand geometry around a metal center. Further, many materials are stable to corrosive gases in single component studies, but in the presence of humid air a variety of new challenges arise from potential side reactions that form strong acids.76 For instance, in combination with water vapor, SO2 forms sulfurous acid (H2SO3), and over time in the presence of oxygen it can form SO3 and sulfuric acid (H2SO4).77 Consequently, SO2 adsorption in humid air, most relevant for industrial applications, is challenging, and linker protonation resulting in the formation of metal sulfites or sulfates can be extremely destructive.78

The capture of NOx presents additional challenges. Much the same as SO2, both NO and NO2 under humid conditions can form the strong acids HNO2 and HNO3, which may protonate linkers to cause framework degradation. NO and NO2 can also undergo a variety of redox reactions, such as NO disproportionation (3 NO → NO2 + N2O), NO oxidation (2 NO + O2 → 2 NO2), or NO2 dimerization/disproportionation (2 NO2 → N2O4 → NO+ + NO3−).79 Formation of NO+ can be very destructive as it may react with aromatics, amino groups, or transition metals to cause irreversible framework damage. Therefore, in order to design frameworks for NOx capture, it is important to either employ methods to mitigate the reactive chemistry of NOx or to design materials that accommodate the daughter products.80

Framework Design for Strongly Interacting Gas Capture

The modularity of MOFs allows for three main strategies towards increasing the interaction strength between the framework and polar gases. The first approach relies on MOFs containing metal ions with open coordination sites, typified by frameworks such as HKUST-1, MOF-74, and M2Cl2BBTA. These frameworks can exhibit strong affinities for Lewis basic gases as well as oxidizing gases. However, direct coordination by an analyte gas to a framework node can lead to ligand rearrangement or hydrolysis of the metal-ligand bond. Therefore, the deployment of this method requires robust stability. The second strategy focuses on the installation of functional groups, such as -NH2, -OH, or -SO3H moieties, on the organic ligands. This approach can effectively modulate framework polarity and hydrophilicity. However, the
functional groups occupy pore volume and reduce the surface area of the resulting frameworks. Thirdly, auxiliary ligands integral to the SBU can be leveraged as strongly interacting sites for polar gases. For instance, the μ-OH moieties in Zr$_6$O$_4$(OH)$_4$$_{12}^{12+}$ SBUs can serve as primary sorption sites for water as well as SO$_2$. It should be noted that augmenting the surface area, although it may increase the overall capacity for gas uptake at high relative pressure, does not result in improved affinity for polar gases at low relative pressure. While the number of purely dispersive interaction sites increases with higher surface area, these weak binding sites are insufficient for selective polar gas capture.

H$_2$O

Occurrence, Applications:

The stability of MOFs towards water has been extensively investigated because it is the most common coordinating and corrosive gas present in the atmosphere as well as in many applications like postcombustion gas streams, gas sensing, or in fuel cells requiring proton conducting materials. Additionally, the capture of water vapor has several desirable applications including dehumidification, heat transfer, and atmospheric water capture. These applications all rely on cycles in which water alternatively fills the pores, and then is desorbed, creating a requirement for extensive cycling stability. Water is unique among the gases and vapors considered herein because it is a liquid at STP and will thus completely fill the entire pore interior of a porous material above a suitable humidity. Strategies for the design of water sorbents have focused on optimizing the relative humidity (RH) of pore filling, such that it is favorable under the temperature and vapor pressure conditions of a given application. The partial pressure of pore filling is highly dependent on the pore size as well as the pore hydrophilicity. Smaller pores fill at lower RH and larger pores fill closer to 100% RH. Additionally, framework hydrophilicity may be modulated by appending polar groups to the organic ligands. As above, this strategy results in a reduction of total pore volume and it leads to broadening of the water uptake step, both of which equate to a lower usable capacity. Anion and cation exchange strategies at the node can control the partial pressure of pore filling without modifying pore size and shape, but may require careful consideration of the changes to framework stability inherent to SBU alterations.

MOF Sorbents for H$_2$O:

Water sorbents with extended cycling stability generally fall into two categories: 1) High-valent inert early transition metal-carboxylate frameworks, and 2) Late transition metal-azolate frameworks. The stability of MOFs towards water has been reviewed several times previously and a comprehensive review of all MOFs investigated for water sorption is available. Here we focus on the trends in stability for MOF building blocks and the superlative sorbents constructed from the more stable building blocks.

1) Inert, high-valent metal carboxylates

Zr$^{4+}$ MOFs featuring Zr$_6$O$_4$(OH)$_4$(RCOO)$_{12}$ nodes, typified by the terephthalate-linked UiO-66 have been widely explored as stable water sorbents. Varying the ditopic carboxylate linker from the smallest (fumarate, MOF-801) to the largest (4,4′-[(2,5-Dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyi)]dibenzoiacid, PIZOF-2) results in the controlled modification of the pore size from 6 Å to 20 Å, enabling the tuning of the water uptake step from 9% RH to 75% RH. Although Zr$^{4+}$ carboxylate frameworks are generally thought of as stable to water, this is not the case for all members of the family. MOF-805, -806 and -808 were found
to degrade significantly with water sorption, whereas MOF-801, MOF-802, MOF-841, and UiO-66 were found to be stable to at least five cycles of water uptake and release.® Differences in the stability of hexanuclear zirconium frameworks are often attributed to the connectivity of the node, as well as the rich defect chemistry of zirconium MOFs, with more defective frameworks collapsing faster due to their lower connectivity. Recently, MIP-200 (Zr₆O₄(OH)₄(HCOO)₄(methylene diisophthalate)₂) was reported to have a water capacity of nearly 40 percent by weight (wt%) achieved below 25% RH and further, the framework exhibits exceptional chemical and water cycling stability over 50 cycles, attributed to residual extra-framework anions bound to the nodes. MIP-200 withstands NH₄OH vapor, 6M H₃PO₄, aqua regia, HNO₃, and HCl at reflux. ¹⁰⁷

Nodes consisting of inert Al³⁺ ions linked by carboxylates, commonly forming oxo-centered trinuclear SBUs found in Al₂O(OH)(BTC)₂ (Al-MIL-100), or infinite chains of Al³⁺ bridged by hydroxo groups, an SBU found in Al(OH)(BDC) (Al-MIL-53), make up another family of exceptionally stable carboxylate MOFs. One of the most mass-produced MOFs, Al(OH)(fumarate), isostructural to MIL-53, has been tested on a full-scale heat exchanger for heat transfer processes. This MOF coating exhibited a 95% capacity retention for water after 360 cycles.® Aluminum MOFs formed with bent dicarboxylate linkers, typified by CAU-10 (Al(OH)(isophthalate))₆, exhibit exceptional water sorption characteristics for heat transfer processes. CAU-10 is extremely scalable and has a water isotherm step well positioned to be of use in adsorptive heat transfer processes. Extensive water cycling of a heat exchanger coated with a sample of CAU-10 in a binder resulted in a negligible loss in capacity after 10,000 cycles. Moving to the lighter-weight 2,5-furandicarboxylate linker produces the isostructural MIL-160 framework, which has an increased water affinity as well as augmented gravimetric water capacity. Further, the recently reported Al-MOF-303 employs 2,5-pyrazole dicarboxylate as the linker, and retains its water capacity of 33 wt% after 150 cycles.⁹⁴

The most kinetically inert of the first-row transition metals, Cr³⁺ forms exceptionally robust frameworks with multiotopic carboxylates. Cr³⁺ frequently forms SBUs similar to those formed by Al³⁺. For instance, Cr₂O(OH)(BTC)₂ (Cr-MIL-100) and Cr-MIL-101 are made up of trinuclear oxo-centered clusters, and Cr(OH)(BDC) (Cr-MIL-53) consists of infinite chains of metal ions bridged by hydroxo groups. Cr-MIL-101 has been widely explored for water sorption due to its exceptional overall water uptake of 1.6 g g⁻¹ as well as its superlative cycling stability.⁹⁷,¹¹⁶–¹¹⁸ As a consequence of its exceptional inertness, the synthesis of Cr³⁺ frameworks present substantial challenges due to the irreversibility of bond-forming on a reasonable timescale. In order to obtain water sorbents with both high capacity and exceptional stability, one strategy to overcome the difficulties of direct Cr³⁺ MOF synthesis is to first crystallize an Fe³⁺ carboxylate framework, and subsequently use cation exchange of Cr²⁺ for Fe³⁺ in order to incorporate chromium into the framework. The labile Cr²⁺ is able to rapidly enter the SBU, and once inserted, it is oxidized by Fe³⁺ to Cr³⁺, which is thereby kinetically trapped. This strategy was pursued to synthesize the record-setting Cr-soc-MOF, which can uptake nearly 2 g g⁻¹ water, as well as the Cr-acs-MOF termed NU-1500. Testament to the fundamental analysis presented earlier, the Fe³⁺ analogs, as well as the Al³⁺ analog for the mesoporous soc-MOF, collapse due to capillary forces during pore filling or when activated from water, whereas the Cr³⁺-exchanged frameworks withstand repeated water cycling.⁷³,¹²⁰

Carboxylate frameworks incorporating other metal ions including Ti⁴⁺ and Fe³⁺ have also been investigated for water sorption applications. Ti₈O₈(OH)₄⁺⁺ nodes are among the more stable building blocks for MOFs. Ti₈O₈(OH)₄⁺⁺(H₂N-BDC)₆ (Ti-MIL-125-NH₂) absorbs more than...
50 wt% water below 25% RH, with minimal loss of capacity over 10 cycles. Additionally, Fe₃O(OH)(BTC)₂ (Fe-MIL-100) was investigated for latent cooling load reduction dehumidifying climate control air streams, and a MOF coating on a heat exchanger could be cycled 2000 times, while losing only 4.5% of the original capacity. Carboxylate MOFs employing transition metals later or lower-valent than Fe³⁺ are not candidates for water sorption applications due to stability concerns.

Figure 4: Water Capacities of Porous Solids. A) Gravimetric uptake capacity versus α, the RH value at which half the total capacity is reached. Materials with larger pores can achieve higher gravimetric capacities with concomitant reduction in hydrophilicity. B) Plotting the capacity in volumetric units highlights the significantly reduced variation in total capacity as a function of hydrophilicity. Values and references listed in Table 1.

2) Late transition metal azolate frameworks

Moving from the hard, weakly donating carboxylate ligands to the comparatively soft, strongly donating azolate ligands such as triazolate, pyrazolate and imidazolate engenders heterolytically stronger metal-ligand bonds with late transition metals. This strategy has been effective in creating robust Zn²⁺ MOFs with imidazolates and pyrazolates, even though Zn²⁺ is quite labile. The ZIFs have been widely explored as water sorbents and exhibit exceptional stability, yet their general hydrophobicity as well as their limited total pore volume, which governs the total deliverable capacity, restricts the utility of ZIFs in applications such as heat transfer and water harvesting. Pyrazolate frameworks have been explored as water sorbents for heat transfer, however, the topologies heretofore synthesized with these linkers lack open coordination sites and the frameworks are typically hydrophobic. Linear bispyrazolate and square tetrapyrazolate linkers paired with Ni₈(OH)₄(H₂O)₂ SBU's can result in exceptionally stable MOFs that are also highly hydrophobic, absorbing water only above 80% RH in one case. The hydrophilicity of pyrazolate frameworks can be modulated via organic linker modification, though these modifications can reduce the overall water capacity, as they occupy space in the pore, and can also result in broadening of the water uptake step (see also above). MOFs constructed from linear bistriazolate frameworks contain a high density of open coordination sites, making them very hydrophilic. M₂Cl₂BTDD has a topology similar to that of MOF-74, including hexagonal pores lined with infinite one-dimensional (1D) chains of metal ions exhibiting open coordination sites, and the Co²⁺ and Ni²⁺ analogs are stable to repeated
Although the size of its mesopores exceed the critical diameter for water capillary condensation, Co2Cl2BTDD reversibly sorbs water without hysteresis due to water coordination at the open metal sites prior to the pore filling step. The smaller pore analog M2Cl2BBTA also has been explored for water uptake, and by virtue of its smaller pore size, it is significantly more hydrophilic, capturing water near 0% RH. Among the metal ions tested, Ni2Cl2BBTA was found to be most stable, and the stability trend is in line with the metal-aquo substitution rates. Although they form hexagonal structures with the majority of late transition metals, linear bistriazolate linkers form a cubic structure when treated with Zn2+. The resulting framework, Zn5Cl4(BTDD)3 (MFU-4l), has a very large water uptake capacity greater than 1 g g⁻¹. Cation exchange of the native Zn2⁺ material for Co2⁺ enables the modulation of the RH of water uptake over a range of nearly 30%, without decreasing the overall capacity, due to the greater propensity for a tetrahedral Co2⁺ to accept a fifth ligand. However, the cubic BTDD-based frameworks exhibit significantly decreased stability relative to the hexagonal frameworks, with the fully exchanged Co2⁺ material collapsing in the presence of water vapor.

Table 1: Water Capacities for Selected Porous Materials

Crystal	Uptake (g g⁻¹)	Crystal ρ (g cm⁻³)	Uptake (cm³ cm⁻³)
Co2Cl2BTDD	0.97	0.65	0.6305
Cr-soc-MOF	1.95	0.381	0.74295
Cr-MIL-101	1.6	0.48	0.768
Cr-MOF-84	0.51	1.05	0.5355
Ni2Cl2BBTA	0.28	1.59	0.4452
CAU-10	1.09	0.539	0.58751
MIL-160	0.38	1.15	0.437
Zn-MF4	0.48	1.159	0.55632
Ti-MIL-125-NH2	0.68	0.757	0.51476
Al fumarate	0.45	1.24	0.558
MIP-200	0.45	1.16	0.522
Zn-MF4	0.43	1.24	0.5332
Ni(L3)	0.99	0.69	0.6831
Ni(L5)	1.12	0.64	0.7168
Zn2Co3-MF4	1.04	0.58	0.6032
Zn2Co3-MF4	1.11	0.58	0.6438
NU-1000	1	0.486	0.486
ALPO-78	0.32	1.7	0.544
AQSOA Z02	0.3	1.43	0.429
AQSOA Z01	0.18	1.75	0.315
AQSOA Z05	0.18	1.75	0.315

α is the %RH at which half of the total uptake is reached.
NH₃

Occurrence, Applications:

Ammonia is an industrial gas produced on a massive scale, whose toxicity has prompted significant research focused on its detection and sensing as well as personal protection and mitigation. To reduce the ammonia concentration below the NIOSH immediate danger threshold (300 ppm) or below the odor threshold of 5 ppm, sorbents must have a high affinity for ammonia at low relative pressure. Research in materials for personal protection has not focused substantially on framework stability because single-use sorbents that could collapse on contact with ammonia are acceptable under certain conditions. However, stability remains somewhat important as pore collapse during use can substantially impact the performance of a protective sorbent. Other applications may require extensive NH₃ cycling stability. For instance, ammonia is a common impurity in feed gas streams which may poison catalysts and membranes, necessitating the use of sorbents to capture NH₃ prior to the desired chemical process. Finally, on a thermodynamic basis NH₃ is an excellent working fluid for heat transfer in adsorption heat pumps, which require many thousands of adsorption cycles and materials with extreme stability to this corrosive gas.

MOF sorbents for NH₃:

In order to capture NH₃ at low relative pressure, one commonly employed strategy is the use of MOFs exhibiting Lewis acidic open metal sites, including HKUST-1, MOF-74, and M₂Cl₂BBTA frameworks. For example, HKUST-1 exhibits a high capacity for ammonia of 12.1 mmol g⁻¹ at 1 bar but loses crystallinity upon ammonia exposure in under two hours. According to NMR data, the reaction of HKUST-1 with anhydrous ammonia produces a diamine copper complex with a pendant anionic trimesate ligand. In the presence of water, the product is Cu(OH)₂ and (NH₄)₃BTC. A polyvinylidene difluoride (PVDF) coating was found to protect HKUST-1 from ammonia; the composite maintained crystallinity as well as a constant NH₃ capacity over 28 days. Analogs of MOF-74 have high capacities for ammonia based on breakthrough measurements, with the champion Mg²⁺ material able to capture 7.6 mmol g⁻¹ NH₃ before breakthrough, although the presence of water substantially decreased the uptake. In a separate study, Cu-MOF-74 was found to take up more ammonia with water vapor present, though the material was unstable to ammonia.

Employing more donating triazolate linkers, M₂Cl₂BTDD materials were the first examples of MOFs exhibiting a high density of open metal sites stable to repeated sorption and desorption of ammonia. The Ni²⁺ analog is stable to complete pore filling with ammonia, which occurs in a stepwise fashion near 0.8 bar of pure NH₃ at 263 K. Due to their greater density of open coordination sites, the smaller-pore M₂Cl₂BBTA materials capture significantly more ammonia, particularly at low pressures. The Cu²⁺ analog has the greatest static capacity at 1 bar and 298 K of any MOF, but it is unstable to even low concentrations of NH₃, which compromises its dynamic breakthrough performance. The cobalt material, though it loses crystallinity at 1 bar of ammonia, is stable to 1 mbar NH₃, the conditions of a typical breakthrough test. This enables M₂Cl₂BBTA to capture the greatest quantity of ammonia of any material under dry breakthrough conditions. The nickel material is significantly more stable, and the stability trend based on the NH₃ pressure required to effect loss of crystallinity and porosity in this family of triazolate MOFs is once again in line with that expected based on the substitution kinetics of the metal ion hexaqua complexes.
MOFs without open coordination sites have also been investigated for ammonia capture. In order to enhance the affinity for NH$_3$, ligand functionalization with polar or acidic groups is commonly employed. For instance, amino-functionalized MOF-5 has a high capacity for ammonia, sorbing 6.2 mmol g$^{-1}$ in breakthrough testing in a stream 1% NH$_3$, exceeding the capacity of Zn-MOF-74.141 Composites of graphene oxide with MOF-5 can also enhance ammonia uptake, though the framework collapses rapidly in the presence of NH$_3$.142 Zn$^{2+}$ frameworks isoreticular to MOF-5 featuring ligands with free -OH groups can capture up to 16.4 mmol g$^{-1}$ NH$_3$ in static measurements at STP, though with loss of surface area and crystallinity.143

The Zr$^{4+}$ carboxylate framework UiO-66 has been extensively investigated for ammonia capture, and a diverse array of organic functional groups have been explored to enhance the affinity for NH$_3$.84 Amino-functionalized UiO-66 outperforms derivatives with more acidic but bulkier functional groups such as -COOH and -SO$_3$H in breakthrough measurements, presumably due to pore clogging effects with larger moieties.144 Similarly, the addition of copper sites to pendant free carboxylates can enhance equilibrium NH$_3$ uptake at the expense of diffusion.145 Further investigation of UiO-66-NH$_2$ revealed that a portion of the amino groups may be protonated -NH$_3$Cl groups under typical acidic synthesis conditions, and that further functionalization to the hemiaminal or aziridine can enhance NH$_3$ capacity.146 Although stable to short exposure times,137 repeated cycling of ammonia uptake in UiO-66-NH$_2$ revealed a loss of capacity, surface area and crystallinity.40

Trivalent Cr$^{3+}$, Al$^{3+}$, and Fe$^{3+}$ carboxylate frameworks can exhibit increased stability toward ammonia,137 though they have not been widely explored as sorbents. A framework comprised of Al$^{3+}$ and a biphenyl tetracarboxylate linker, termed Al-MFM-300, was stable for 50 cycles of ammonia uptake with a high static capacity of 13.9 mmol g$^{-1}$ at 1 bar.147 Additionally, a highly stable Al$^{3+}$ porphyrin MOF can be loaded with HCl or formic acid to achieve up to 7.9 wt% breakthrough capacity.148 Further, Fe$^{3+}$-MIL-101 functionalized with sulfonic acid groups captures 17.4 mmol g$^{-1}$ NH$_3$ at STP, and has a high affinity for ammonia at low pressure.149

Figure 5: **Ammonia Capacities of Porous Solids.** Left: NH$_3$ capacity at 1 bar, 298 K based on equilibrium isotherm data. ‡Tested at 293 K. Right: NH$_3$ capacity under dynamic breakthrough conditions at 1000 ppm, 298 K in both dry and humid conditions. Tested at *1440, #2880 ppm. Values and references listed in Tables 2 and 3.
Other families of porous materials have recently been investigated for ammonia capture. All-inorganic Prussian blue analogs, by virtue of their exceptional density of Lewis acidic metal sites, have particularly high static capacities for NH₃ of over 20 mmol g⁻¹ and can be regenerated. Further, more recent covalent organic frameworks (COFs) with more robust linkages may find utility in ammonia sorption. Thus, although boronate ester-linked COF-10 can capture 15 mmol g⁻¹ NH₃ at STP, slow degradation was observed with cycling as the linkages remain susceptible to nucleophilic attack. On the other hand, porous polymers with all-carbon backbones such as diamondoid structures densely functionalized with acidic groups can exhibit superlative capacity and stability for NH₃, with uptake of 18.7 mmol g⁻¹ NH₃ at STP for the phosphonic acid functionalized material, although diffusion is compromised due to their interpenetrated nature.

Table 2: Equilibrium Ammonia Capacities at 1 bar, 298 K for Selected Porous Materials

Material	NH₃ Capacity (mmol g⁻¹)
Zeolite 13X	9
Amberlyst 15	11
MCM-41	7.9
UiO-66-NH₂	10.6
HKUST-1	12.1
DUT-6	12
DUT-6-(OH)₂	16.4
Fe-MIL-101-SO₃H	17.8
Al-MFM-300	13.9
P1-PO₃H₂	18.7
P2-CO₂H	16.1
Mn₂Cl₂(BTDD)	15.47
Co₂Cl₂(BTDD)	12
Ni₂Cl₂(BTDD)	12.02
Cu₂Cl₂(BTDD)	16.74
Co₂Cl₂(BBTA)	17.95
Ni₂Cl₂(BBTA)	14.68
Cu₂Cl₂(BBTA)	19.79
Al-MFM-300	13.9
Prussian blue	12.5
CoHCC	21.9
CuHCC	20.2
MgCl₂	54.8

Table 3: Breakthrough NH₃ Capacities for Selected Porous Materials

Material	ppm NH₃	Dry (mmol g⁻¹)	Humid (80% RH) (mmol g⁻¹)
UiO-66-OH	2880	5.69	2.77
Zeolite 13X	1440	2.86	0.62
H₂S

Occurrence, Applications:

Hydrogen sulfide is a major contaminant in flue gas streams as well as in many sources of natural gas, termed sour gas. When present in process streams it can poison catalysts, corrode components, and if not removed, combust into SOₓ, a major air pollutant. Additionally, H₂S is highly toxic and heavier than air, making personal protection and mitigation vital to reduce the concentration below the OSHA exposure limit of 10 ppm, or the odor threshold of 1.5 ppm. The detection and removal of H₂S is therefore of great interest, and limited research in the MOF community has focused on these applications.

MOF sorbents for H₂S:

MOFs with open metal sites have been explored to capture H₂S, including HKUST-1, which exhibits a high capacity, though as with NH₃, the framework is unstable to H₂S. Partial protonation of the trimesate ligand by H₂S is proposed to result in framework collapse, although formation of CuS may also drive decomposition in this case. Similar to their performance with NH₃, HKUST composites with graphene oxide capture more H₂S than the parent materials, but suffer from similar stability issues. The use of non-structural metal ions with open coordination sites can provide strong binding sites for H₂S while also maintaining framework stability. Employing UiO-67-bipyridine grafted with Cu²⁺ gives a high capacity for H₂S of up to 7.8 wt%, on par with the 8 wt% in the comparatively unstable HKUST-1.

High-valent metal terephthalates including Zr-UiO-66, Cr-MIL-101 and Ti-MIL-125 as well as their amino-functionalized derivatives were investigated for H₂S capture from natural gas. Of the materials tested, amino-functionalized derivatives performed better, and Ti-MIL-125-NH₂ was the top performer. H₂S was preferentially absorbed over CO₂, though the addition of CO₂ did decrease capacities for H₂S. Cr-MIL-101 performed best with CO₂ present. Additionally, V-MIL-47 and Cr-MIL-53 were investigated for H₂S capture at high pressures. Both V and Cr materials appear to be stable up to 15 bar H₂S, whereas Fe-MIL-53 decomposes under similar conditions to what is likely iron sulfide and H₂BDC.

Select pyridinic MOFs with relatively inert divalent metal ions can withstand H₂S exposure. For example, Mg₃(OH)₂(2,4-pyridine dicarboxylate)₂ (Mg-CUK-1), captures more than 3 mmol H₂S g⁻¹ when exposed to 15% H₂S in nitrogen, and the material remained stable over five cycles. Additionally, Ni²⁺-pyrazine (py) frameworks employing anionic inorganic pillars can absorb both CO₂ and H₂S from natural gas streams, and were investigated for H₂S separations using mixed-matrix membranes. The Ni²⁺-based NbOF₅²⁻ and AlF₅²⁻-pillared materials significantly increase both the selectivity and the permeability of the host polymer membrane for H₂S, and both materials remain stable by PXRD after exposure to 14 bar H₂S.
The Ni^{2+} materials are more stable to H_{2}S, as well as to water, than analogous Cu^{2+} frameworks employing SiF_{6}^{2-} as the pillar, with Ni(py)(AlF_{5}) stable to 15 cycles of water uptake.167,168 MOFs employing more strongly donating azolate ligands have not been widely explored for H_{2}S capture. Notwithstanding, Zn(tetrazolate) (kag-MOF-1), which is stable to water and low concentrations of H_{2}S, selectively absorbs H_{2}S over higher hydrocarbons due to its small pore diameter.169

SO_{2}

Occurrence, Applications

Sulfur dioxide is a major air pollutant generated by combustion of sulfur-containing materials including coal, sour natural gas, or metal sulfide ores. SO_{2} is a significant contributor to the formation of acid rain and fine particulate matter (PM_{2.5}), making the capture of SO_{2} from exhaust gases vital. In North America, SO_{2} emissions have decreased by 90\% over the past 20 years170 because of the implementation of SO_{2} removal technologies, including dry limestone scrubbing and the wet sulfuric acid process,171 yet these processes are not 100\% efficient. As a result, coal-fired power plants continue to emit 1.2 million tons yr^{-1} of SO_{2} in the USA alone.172 In addition to the environmental benefits of reducing SO_{2} emissions, the complete removal of SO_{2} is often critical prior to contact with downstream catalysts or adsorbent materials intended for other gases.173,174 Consequently, new adsorbent materials that remove SO_{2} at low partial pressure are attractive targets in post-combustion exhaust capture, an application which would require extensive cycling stability under humid conditions. Here, we cover standout examples of MOF stability towards SO_{2}, as recent reviews provide detailed coverage.175

MOFs for SO_{2} Adsorption

Metal-carboxylate MOFs

Tetravalent metal carboxylate frameworks can exhibit high uptake capacities for SO_{2}. For instance, the eight-connected Zr^{4+} material MFM-601, \([\text{Zr}_{6}(\mu^{3}-\text{O})_{4}(\mu^{3}-\text{OH})_{4}(\text{OH})_{4}(\text{H}_{2}\text{O})_{4}(\text{L})_{2}]\) (L = 4,4′,4″,4′″-(1,4-Phenylenebis(pyridine-4,2,6-triyl))tetrabenzoate), adsorbs 12.3 mmol g^{-1} SO_{2} at STP. In-situ powder X-ray diffraction revealed six binding sites, the strongest of which is adjacent to a terminal hydroxyl group at the node. Adsorption properties under humid conditions have not been reported. Moving to Ti^{4+} frameworks, Ti-MIL-125 has a high uptake capacity under anhydrous conditions of 10.9 mmol g^{-1} at 2.6 bar, but decomposes under humid SO_{2}.176 By contrast, the addition of an -NH_{2} group to the linker stabilizes the framework under humid conditions, and Ti-MIL-125-NH_{2} retains a comparable SO_{2} adsorption capacity of 10.3 mmol g^{-1} at 2.6 bar. Decomposition in Ti-MIL-125 was proposed to result from hydrolysis of the metal ligand bond, followed by reaction with SO_{2} to form bisulfite (HSO_{3}^{-}) and a dangling linker. Calculations reveal that in Ti-MIL-125-NH_{2}, the activation energy barrier for hydrolysis of the Ti-O bond is augmented by \sim 5 kcal mol^{-1} which engenders enough additional stabilization to sufficiently slow the decomposition pathway.176

Initial results show that trivalent Al^{3+} and In^{3+} carboxylate frameworks reversibly bind dry SO_{2} in static adsorption experiments.177–179 The Al^{3+} carboxylate MOFs, MFM-305-CH_{3}, MFM-305, and MFM-300 (née NOTT-300) all reversibly adsorb SO_{2} with high capacities above 5 mmol g^{-1}.178,179 In situ powder X-ray diffraction analysis on MFM-300 revealed that SO_{2} strongly interacts with the bridging hydroxyl groups of the SBU.178 Moving to the more labile In^{3+}, NOTT-202a [\text{In(O}_{2}\text{CR})_{3}] (O_{2}CR = biphenyl-3,3,5,5-tetra-(phenyl-4-carboxylate)) reversibly binds SO_{2} with an adsorption capacity of 10 mmol g^{-1} at 1 bar and temperatures between 293–
However, low temperature (268–283 K) SO$_2$ adsorption isotherms feature hysteretic adsorption of an additional 2-6 mmol SO$_2$ g$^{-1}$ as a consequence of an irreversible phase change to form a denser crystalline polymorph. Despite the phase change, SO$_2$ is completely removed from NOTT-202b at zero pressure, suggesting that SO$_2$ does not react directly with the framework. It was suggested that the phase change in NOTT-202a occurs due to ordering of SO$_2$ within the pore at adsorption capacities greater than 7 mmol g$^{-1}$ SO$_2$, similar to a pore condensation phenomenon, and the internal pressure thus created provides enough energy to overcome the activation barrier to transform to the denser NOTT-202b, which is 20 kJ mol$^{-1}$ downhill in energy due to increased ligand pi-stacking.

Late transition metal-carboxylate frameworks exhibit poorer stability towards SO$_2$. Dynamic breakthrough measurements of MOF-5, IRMOF-3, Zn-MOF-74, MOF-177, and MOF-199, all Zn$^{2+}$-based, revealed uptake capacities of less than 0.5 mmol g$^{-1}$ for all materials except MOF-74, which adsorbs 3.0 mmol g$^{-1}$ presumably due to its open metal sites. Increased stability towards dry SO$_2$ in pillared Zn$^{2+}$ carboxylate MOFs can be achieved by either increasing the steric bulk on the linker, or by replacing Zn$^{2+}$ with the more inert Ni$^{2+}$.76,181

Pyridinic coordination networks SIFSIX-1-Cu and SIFSIX-2-Cu-i can exhibit high and stable uptakes to dry SO$_2$. Consisting of square grids of Cu$^{2+}$ and 4,4’-bipyridine or 4,4’-dipyridylacetylene pillared by SiF$_6^{2-}$ anions, these frameworks exhibit dry SO$_2$ adsorption capacities of 11.01 and 6.90 mmol g$^{-1}$, respectively. Replacing Cu$^{2+}$ with Zn$^{2+}$ or Ni$^{2+}$ results in lower capacities of 2.10 and 2.74 mmol g$^{-1}$, respectively. The materials were stable to dry breakthrough testing over 4-6 cycles with mild reactivation parameters of 313 K and He flow, though humid stability above 1000 ppm H$_2$O was not evaluated. Additionally, the pyridinic frameworks Ni(py)$_2$(NbOF$_5$) and Ni(py)$_2$(AlF$_5$) both exhibit dry uptakes of 2.2 mmol g$^{-1}$ when exposed to 7% SO$_2$ in N$_2$.183 Moreover, these materials exhibit stability towards SO$_2$ under humid environments.

Metal-Azolate MOFs

To date, few metal azolate frameworks have been explored for SO$_2$ sorption. One exception is a series of nickel pyrazolate MOFs based on (Ni$_8$(OH)$_4$(H$_2$O)$_2$(BDP)$_6$), which show good stability towards SO$_2$. Dynamic adsorption experiments revealed that the unfunctionalized framework has an SO$_2$ adsorption capacity of 2.0 mmol g$^{-1}$ under 2.5% SO$_2$ in N$_2$. The addition of amino or hydroxyl functional groups to the BDP ligand, as well as treatment with Bronsted bases to augment the defect concentration, both result in enhanced SO$_2$ capacity (Table 4). Within this family of Ni$^{2+}$ pyrazolate MOFs, SO$_2$ binding was not completely reversible: cycling experiments revealed a decrease of 26-37% capacity after the first cycle. However, the decay appeared to stop after the first cycle, and the remaining SO$_2$ capacity in the second cycle appeared to be reversible. The initial decrease in capacity was attributed to the irreversible formation of bisulfite (M-SO$_3$H) or sulfite (M-SO$_3$(H$_2$O)) at the node.

Although no sorption was reported, the stability of several ZIFs under dry and humid SO$_2$ conditions has been explored. A negligible ~4% decrease in the surface area of ZIF-8 was observed after exposure to dry SO$_2$, however, the surface area decreases by ~70% after exposure to 20 ppm SO$_2$ at 85% RH over 10 days. Similar loss of porosity was observed for other ZIFs, except for ZIF-71 (Zn(4,5-dichloroimidazolate)$_2$), which retained its full pore volume, though curiously, it transitions to a dense polymorph in liquid water. Analysis by X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy revealed formation of bisulfite and bisulfate, presumably resulting from metal-ligand bond hydrolysis, within the ZIFs which lost porosity.
Table 4: Static SO₂ Capacities at 1 bar, 298 K for select MOFs.

MOF	SO₂ Capacity (mmol g⁻¹)
MFM-601	186
MFM-600	12.3
MFM-202a	10
Ni(bdc)(ted)₉.₅	9.97
Zn(bdc)(ted)₉.₅	4.41
MOF-74(Mg)	8.60
MFM-300(Al)²⁷⁸⁻	8.1
(NOTT-300)	
MFM-300(In)¹⁸⁷	8.3
Zn-DMOF-TM	~4.5 (dry)
Zn-DMOF-DM	degrades
Zn-DMOF-NDC	~4 (dry)
Zn-DMOF-ADC	~5.5 (dry)
Cu-DMOF-TM	~2.8 (dry)
Ni-DMOF-TM	~3.8 (dry)
Co-DMOF-TM	~3.8 (dry)
FMOF-2	1.8
MFM-305-CH₃	5.16
MFM-305	6.99
SIFSIX-1-Cu	11.01
SIFSIX-2-Cu-i	6.9
MIL-125	~9.5
MIL-125-NH₂	~9.5

aTM – tetramethylterephthalic acid, bDM – 2,5-dimethyl terephthalic acid, cNDC – 1,4-naphthalenedicarboxylic acid, dADC – 9,10-anthracenedicarboxylic acid. ²50 ppm with days long exposure to SO₂. ³Measured at 273 K

Table 5: Dynamic SO₂ Capacities for select MOFs.

MOF	ppm SO₂	SO₂ Capacity (mmol g⁻¹)	
MOF-5	pure	<0.02	
Material	Form	NOx (dry)	NOx (humid)
-------------------	--------	-----------	-------------
IRMOF-3	pure	0.94	
Zn-MOF-74	pure	3.03	
MOF-177	pure	<0.02	
MOF-199	pure	0.50	
IRMOF-62	pure	<0.02	
Co-MOF-74	382	0.63	0.03
Mg-MOF-74	382	1.60	0.72
Ni-MOF-74	382	0.04	0.02
Zn-MOF-74	382	0.26	0.04

[Ni₈(OH)₄(H₂O)₂(BPD_H)₆] | 25000 | 2.02 |

[Ni₈(OH)₄(H₂O)₂(BPD_OH)₆] | 25000 | 2.11 |

[Ni₈(OH)₄(H₂O)₂(BPD_NH₂)₆] | 25000 | 3.35 |

K[Ni₈(OH)₃(EO)₃(BDP_H)₅.₅] | 25000 | 3.26 |

K₃[Ni₈(OH)₃(EO)(BDP_O)₅] | 25000 | 2.54 |

K[Ni₈(OH)₃(EO)(BDP_NH₂)₅.₅] | 25000 | 4.38 |

Ba₀.₅[Ni₈(OH)₃(EO)(BDP_H)₅.₅] | 25000 | 4.0 |

Ba₁.₅[Ni₈(OH)₃(EO)(BDP_O)₅] | 25000 | 3.65 |

Ba₀.₅[Ni₈(OH)₃(EO)(BDP_NH₂)₅.₅] | 25000 | 5.61 |

Ni^{II}_₂[Ni^{II}_₄(Cu^{II}_₂-(Me₃mpba))₂] | 25000 | 2.0 |

Ba^{II}_₂(H₂O)₆[Ni^{II}_₄(Cu^{II}_₂-(Me₃mpba))₂] | 25000 | 2.5 |

NOₓ Occurrence, Applications

The major components of nitrogen oxides (NOₓ) are nitrogen monoxide (NO) and nitrogen dioxide (NO₂). These highly toxic species are damaging to respiratory health and contribute to environmental pollution in the troposphere (photochemical smog) and stratosphere (ozone depletion). Anthropogenic NOₓ sources are approximately split between agriculture and combustion processes in power plants and automobiles. Given their detrimental effects to health and the environment, NOₓ emissions are highly regulated, and recently, more stringent regulations are further incentivizing capture or mitigation of NOₓ prior to release. Current exhaust systems use catalytic converters to reduce NOₓ to N₂ and H₂O, and some MOFs have been investigated for this application, but to achieve further reductions, for instance, during cold engine starting, the exhaust systems of combustion engines require added technologies that can adsorb NO or convert NOₓ into environmentally benign species. The composition of NOₓ...
from an exhaust engine varies depending on the fuel source, yet the majority of NO\textsubscript{x} is initially composed of NO\textsubscript{196}.

Somewhat counterintuitively given its toxicity, NO plays a signaling role in many critical physiological processes, such as vasodilation, immune defense, and neuronal signal transduction197. The therapeutic properties of NO have motivated efforts to design materials which release NO under specific biologically-relevant conditions198,199.

MOFs for NO Adsorption

Adsorption of NO predominantly occurs in MOFs exhibiting open metal sites. For instance, HKUST-1 adsorbs 9 mmol NO g-1 MOF at 1 bar and 196 K200. NO interacts directly with the metal, as evidenced by the \nu(NO) band at 1887 cm-1, comparable to IR bands of Cu2+-NO in molecular complexes201 and zeolites202. Exposure of NO-loaded HKUST-1 to a flow of humid air resulted in minor release of NO (2 μmol g-1), and the material lost crystallinity after NO release. The incorporation of amino-functionalized trimesic acid linkers into HKUST-1 improved the quantity of NO released, but the stability remained poor203.

Fe\textsubscript{3}O(OH)(BDC)\textsubscript{3} (Fe-MIL-88) and a series of functionalized derivatives adsorb between 1 and 2.5 mmol NO g-1 MOF with no loss of crystallinity204. For therapeutic applications, only 5-14\% of NO was released upon exposure to humid conditions, and it was noted that most of the NO was likely released prior to the measurement run, suggesting that these materials do not bind NO tightly enough to be stable for long term storage204.

The high density of open metal sites in the MOF-74 series make them attractive for NO sorption studies. The Co2+ and Ni2+ derivatives each adsorb ~7 mmol NO g-1, and can be stored with NO bound for several months under inert conditions, making them attractive for medical therapies. Flowing humid air through the MOFs results in complete recovery of the starting material205,206. The biocompatible Mg2+ and Zn2+ MOF-74 analogs have also been investigated for NO adsorption/desorption. Mg-MOF-74 binds NO too strongly and does not release NO under 11\% RH conditions, whereas Zn-MOF-74 loses NO too readily under preparatory conditions. However, by doping Mg-MOF-74 with up to 40\% Ni2+, the quantity and rate of deliverable NO can be tuned207. Moving to NO-loaded Fe-MOF-74, gradual release of NO occurs under a flow of 11\% RH208. Additionally, the Fe material adsorbs 6.21 mmol NO g-1 MOF at 7 mbar, corresponding to 95\% occupation of the Fe2+ open metals sites by NO208.

MOFs for NO\textsubscript{2} Adsorption

There are only limited reports of NO\textsubscript{2} adsorption in MOFs. The Zr4+ carboxylate frameworks UiO-66 and UiO-67 capture 7.3 wt\% and 7.9 wt\% NO\textsubscript{2}, respectively, under 1000 ppm dry NO\textsubscript{2}, and the capacity of UiO-67 was further augmented to 11.8 wt\% under 71\% RH, presumably due to NO\textsubscript{2} dissolution into pore-confined water. Further, amino-functionalization of the linker of UiO-66 resulted in a nearly fivefold improvement in the static NO\textsubscript{2} capacity209,210. However, IR and NMR spectroscopy revealed evidence of amine diazotization as well as nitrosation of the phenyl C–H bonds, revealing the complex reaction pathways possible upon NO\textsubscript{2} adsorption210. Indeed, NO\textsubscript{2} adsorption is not reversible in UiO-66-type frameworks, and it was proposed that NO\textsubscript{2} reacts at the Zr–O–Zr bridges resulting in partial framework collapse209.

Reversible NO\textsubscript{2} capture was achieved in the Al3+ carboxylate MOF, MFM-300, which adsorbs 14.1 mmol NO\textsubscript{2} g-1 MOF over five cycles with no loss in capacity or crystallinity. Analysis of an NO\textsubscript{2} loaded sample using synchrotron powder x-ray diffraction revealed a 1D helical chain of NO\textsubscript{2} and N\textsubscript{2}O\textsubscript{4} units within the pores. Each NO\textsubscript{2} forms five distinct weak
interactions with the framework, a consequence of the precisely tailored pore size providing stabilization for the helical chain. Additionally, the material exhibits preferential binding of NO₂ over CO₂ and SO₂. Notably, under wet conditions (0.5% NO₂ in N₂) the NO₂ breakthrough time decreases by ~10% compared to dry conditions, a decline postulated to result from competitive binding between H₂O and NO₂. Analysis of the material post-breakthrough experiment was not detailed.\(^{211}\)

Leveraging the chemistries of the daughter products of NO₂ reactivity, the addition of NO₂ to a Zr⁴⁺ carboxylate MOF featuring a calixarene linker results in partial formation of N₂O₄, leading to the disproportionation products NO⁺ and NO₃⁻. The resulting NO⁺ transfers to the calixarene linker, generating a strongly adsorbed donor-acceptor complex detected using calorimetry. Interestingly, the process appears to be reversible and the material retained crystallinity after repeated NO₂ exposure.\(^{212}\)

Halogen

Occurrence, Applications

Most research on the adsorption of halogens by metal-organic frameworks has focused on I₂, which is motivated by the capture of volatile radioisotopes of I₂ from nuclear waste streams.\(^ {213-220}\) Here, we focus on the more volatile lighter halogens Cl₂ and Br₂, which are much less commonly explored even though the capture and reversible storage of the highly toxic halogen elemental gases is of great interest to improve personal protective equipment, as well as to more safely handle, store, and transport X₂.

MOFs for X₂ Adsorption

Unfunctionalized carboxylate frameworks, including MOF-5, UiO-66, and Al-MIL-53, exhibit negligible Cl₂ uptake under dynamic conditions. Addition of an -NH₂ group to the terephthalate linker greatly enhances the irreversible Cl₂ uptake, to 35.5 wt% in the case of MOF-5-NH₂.\(^ {180}\) Similarly, both UiO-66-NH₂ (154 wt%) and Al-MIL-53-NH₂ (56 wt%) have orders of magnitude larger Cl₂ uptakes than their parent materials UiO-66 (3 wt%) and MIL-53 (1 wt%).\(^ {221}\) By contrast, functionalization with a hydroxy group in the case of UiO-66-OH (5 wt%), does not significantly improve chlorine uptake. Mechanistically, these enhancements are due to the amino groups, which promote electrophilic aromatic substitutions in positions ortho to themselves, resulting in a chlorinated ring and -NH₃Cl. Clearly, this is an irreversible process that cannot be utilized cyclically.

Reversible storage of the lighter halogens was demonstrated using Co₂Cl₂(BTDD).\(^ {222}\) The cobalt metal centers are redox-active and feature an accessible Co(II/III) redox couple suitable for reactions with Cl₂ and Br₂. Exposure of Co₂Cl₂(BTDD) to either of the two elemental halogens results in the oxidation of five-coordinate Co²⁺ to octahedral Co³⁺, forming Co₂Cl₂X₂(BTDD) (X = Cl or Br), while maintaining crystallinity and porosity (Figure 7). Heating the Co³⁺ material to 275 °C (X = Cl) or 195 °C (X = Br), results in the reductive release of X₂ gas, and reformation of the parent Co₂Cl₂(BTDD). The capture and release of Br₂ was repeated over three cycles with reproducible yields of 75–80% on the initial cycle and 100% yield on subsequent ones.\(^ {222}\) The exceptional stability of Co₂Cl₂(BTDD) towards X₂ is attributed to strong M‒L bonds, open metal sites with an accessible Co(II/III) redox couple, and particularly strong aromatic C‒H bonds that are not susceptible to radical X• attack. Indeed, after oxidation, the framework stability may increase due to the eight orders of magnitude slower rate of ligand exchange for Co³⁺ as compared to Co²⁺.
Figure 6: **Oxidative Capture of X₂.** Co₂Cl₂BTDD captures Cl₂ (or Br₂) via reversible oxidation to Co₂Cl₄BTDD (or Co₂Cl₂Br₂BTDD). H atoms omitted for clarity.

Conclusions and Outlook

It is frequently cost-prohibitive to remove all H₂O, NH₃, H₂S, or SOₓ/NOₓ from the atmosphere or from feed gas streams. Therefore, the use of MOFs in applications such as CO₂ removal from flue gas requires long-term stability to coordinating and corrosive species. Additionally, although we have divided this review into separate sections containing each analyte gas, these species are often present together, which may present other challenges, such as the formation of H₂SO₄ from SOₓ, water, and oxygen. Multicomponent stability testing has largely been overlooked thus far, but it is vital. The design of frameworks for the capture of these challenging gases pushes the boundaries of sorbent robustness and advances our understanding of the fundamental kinetics and thermodynamics of MOF stability.

MOFs are most often synthesized from weakly donating ligands, such as carboxylates, in combination with labile metal ions such as Zn²⁺ and Cu²⁺. Together, these favor reversible ligand binding to promote ideal crystal growth. The crystallization of MOFs using inert metal ions, such as Cr³⁺, or more strongly donating ligands, such as pyrazolates, is more difficult because the reversible sampling of configurations towards the local minimum energy state is not as efficient. Therefore, harsh synthetic conditions such as high temperature, high pressure, and the use of mineralizers such as HF are often required. Consequently, it becomes more difficult to obtain large crystals, which may complicate structure determination. Indeed, the structures in original reports of Cr-MIL-53 and Cr-MIL-101 were solved using powder refinement rather than by more
straightforward single-crystal methods which require larger crystals 30,31 Although the synthesis of MOFs containing inert metals, or ligands that are more strongly donating, can be challenging, 223,224 it may lead to structures capable of withstanding demanding conditions relevant for many applications, such as gas storage and separations involving impure gas streams containing water vapor, ammonia, or acid gases. Ultimately, nothing good comes easy. By and large, MOFs that crystallize very easily and grow as large single crystals tend to be less stable to water or other corrosive and coordinating gases.

Porous materials are kinetically stable. Currently, the default vocabulary for describing the stability of MOFs is a binary scale: stable versus unstable. Moving forward, our view is that MOFs will be ranked on a continuum of kinetic stability. Quantitative benchmarking of all MOFs using a broadly applicable stability rating, such as those already employed using water vapor or steam temperature 50,225 could significantly advance the field. Recent research has followed two main paths to stabilize the porous phase, either by engineering heterolytically stronger metal ligand bonds, or by using more inert metals. This has led to exceptionally robust frameworks, and portends the use of MOFs for applications requiring extensive stability toward harsh gases and vapors, as well as in areas requiring long-term lower level stability. Future progress in this direction will enable MOFs to fulfill their promise as designer multifunctional materials for diverse applications.

Acknowledgements
Studies of small molecule interactions with metal nodes in MOFs are supported through a CAREER grant from the National Science Foundation to M.D. (DMR-1452612). A.J.R. is supported by the Martin Family Fellowship for Sustainability. We thank the Abdul Latif Jameel World Water and Food Security Lab for seed funding for water capture.

Competing Interests Statement
The authors declare no competing interests

References
1. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 341, 1230444–1230444 (2013).
2. Mason, J. A., Veenstra, M. & Long, J. R. Evaluating metal-organic frameworks for natural gas storage. Chemical Science 5, 32–51 (2014).
3. Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).
4. DeSantis, D. et al. Techno-economic Analysis of Metal–Organic Frameworks for Hydrogen and Natural Gas Storage. Energy & Fuels 31, 2024–2032 (2017).
5. Yoon, J. W. et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 16, 526–531 (2017).
6. Kizzie, A. C., Wong-Foy, A. G. & Matzger, A. J. Effect of Humidity on the Performance of Microporous Coordination Polymers as Adsorbents for CO 2 Capture. Langmuir 27, 6368–6373 (2011).
7. Adil, K. et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017).
8. Dusselier, M. & Davis, M. E. Small-Pore Zeolites: Synthesis and Catalysis. Chem. Rev. 118, 5265–5329 (2018).
9. Yang, D. & Gates, B. C. Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. *ACS Catal.* 1779–1798 (2019). doi:10.1021/acscatal.8b04515

10. Lee, J. *et al.* Metal–organic framework materials as catalysts. *Chem. Soc. Rev.* 38, 1450–1459 (2009).

11. Sun, L., Campbell, M. G. & Dinca, M. Electrically Conductive Porous Metal – Organic Frameworks Angewandte. *Angew. Chem. Int. Ed.* 55, 3566–3579 (2016).

12. Hendon, C. H., Rieth, A. J., Korzyński, M. D. & Dinca, M. Grand Challenges and Future Opportunities for Metal-Organic Frameworks. *ACS Cent. Sci.* 3, 554–563 (2017).

13. Furukawa, H. *et al.* Ultrahigh Porosity in Metal-Organic Frameworks. *Science* 329, 424–428 (2010).

14. Kitagawa, S. Porous Materials and the Age of Gas. *Angew. Chemie - Int. Ed.* 54, 10686–10687 (2015).

15. Cheetham, A. K., Kieslich, G. & Yeung, H. H. M. Thermodynamic and Kinetic Effects in the Crystallization of Metal-Organic Frameworks. *Acc. Chem. Res.* 51, 659–667 (2018).

16. Hughes, J. T. & Navrotsky, A. MOF-5: Enthalpy of Formation and Energy Landscape of Porous Materials. *J. Am. Chem. Soc.* 133, 9184–9187 (2011).

17. Hughes, J. T., Bennett, T. D., Cheetham, A. K. & Navrotsky, A. Thermochemistry of zeolitic imidazolate frameworks of varying porosity. *J. Am. Chem. Soc.* 135, 598–601 (2013).

18. Bhunia, M. K., Hughes, J. T., Fettinger, J. C. & Navrotsky, A. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. *Langmuir* 29, 8140–8145 (2013).

19. Wu, L., Hughes, J., Moliner, M., Navrotsky, A. & Corma, A. Experimental energetics of large and extra-large pore zeolites: Pure silica beta polymorph C (BEC) and Ge-containing ITQ-33. *Microporous Mesoporous Mater.* 187, 77–81 (2014).

20. Akimbekov, Z. & Navrotsky, A. Little Thermodynamic Penalty for the Synthesis of Ultraporous Metal Organic Frameworks. *ChemPhysChem* 17, 468–470 (2016).

21. Akimbekov, Z., Wu, D., Brozek, C. K., Dinca, M. & Navrotsky, A. Thermodynamics of solvent interaction with the metal-organic framework MOF-5. *Phys. Chem. Chem. Phys.* 18, 1158–1162 (2015).

22. Bennett, T. D. & Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. *Nat. Rev. Mater.* 3, 431–440 (2018).

23. Zhou, C. *et al.* Thermodynamic features and enthalpy relaxation in a metal–organic framework glass. *Phys. Chem. Chem. Phys.* 20, 18291–18296 (2018).

24. Keen, D. A. & Bennett, T. D. Structural investigations of amorphous metal–organic frameworks formed via different routes. *Phys. Chem. Chem. Phys.* 20, 7857–7861 (2018).

25. Longley, L. *et al.* Flux melting of metal–organic frameworks. *Chem. Sci.* (2019). doi:10.1039/C8SC04044C

26. Hu, Y. H. & Zhang, L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. *Phys. Rev. B* 81, 174103 (2010).

27. Erkartal, M. & Durandurdu, M. Pressure-Induced Amorphization of MOF-5: A First Principles Study. *ChemistrySelect* 3, 8056–8063 (2018).

28. Bennett, T. D. *et al.* Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). *Chem. Commun.* 47, 7983–7985 (2011).

29. Eigen, M. Fast Elementary Steps in Chemical Reaction Mechanisms. *Pure Appl. Chem.* 6, 97–115 (1963).
30. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. *Science* **309**, 2040–2 (2005).

31. Millange, F., Serre, C. & Férey, G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: The first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)·(O2C-C6H4-CO2)·(HO2C-C6H4-CO2H)x. *Chem. Commun.* **2**, 822–823 (2002).

32. Hamon, L. et al. Molecular Insight into the Adsorption of H2S in the Flexible MIL-53 (Cr) and Rigid MIL-47 (V) MOFs: Infrared Spectroscopy Combined to Molecular Simulations. *J. Phys. Chem. C* **115**, 2047–2056 (2011).

33. Kang, I. J., Khan, N. A., Haque, E. & Jhung, S. H. Chemical and Thermal Stability of Isotypic Metal-Organic Frameworks: Effect of Metal Ions. *Chem. - A Eur. J.* **17**, 6437–6442 (2011).

34. Rosi, N. L. et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. *J. Am. Chem. Soc.* **127**, 1504–1518 (2005).

35. Dietzel, P. D. C., Panella, B., Hirscher, M., Blom, R. & Fjellvåg, H. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. *Chem. Commun. (Camb).* **1**, 959–961 (2006).

36. Jiao, Y. et al. Tuning the Kinetic Water Stability and Adsorption Interactions of Mg-MOF-74 by Partial Substitution with Co or Ni. *Ind. Eng. Chem. Res.* **54**, 12408–12414 (2015).

37. Li, H. et al. Enhanced hydrostability in Ni-doped MOF-5. *Inorg. Chem.* **51**, 9200–9207 (2012).

38. Liao, P.-Q. et al. Drastic enhancement of catalytic activity via post-oxidation of a porous MnII triazolate framework. *Chem. - A Eur. J.* **20**, 11303–7 (2014).

39. Liao, P.-Q. et al. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. *Energy Environ. Sci.* **8**, 1011–1016 (2015).

40. Rieth, A. J., Tulchinsky, Y. & Dincă, M. High and Reversible Ammonia Uptake in Mesoporous Azolate Metal-Organic Frameworks with Open Mn, Co, and Ni Sites. *J. Am. Chem. Soc.* **138**, 9401–9404 (2016).

41. Rieth, A. J., Yang, S., Wang, E. N. & Dincă, M. Record Atmospheric Fresh Water Capture and Heat Transfer with a Material Operating at the Water Uptake Reversibility Limit. *ACS Cent. Sci.* **3**, 668–672 (2017).

42. Rieth, A. J. & Dincă, M. Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption. *J. Am. Chem. Soc.* **140**, 3461–3466 (2018).

43. Rieth, A. J. et al. Tunable Metal–Organic Frameworks Enable High-Efficiency Cascaded Adsorption Heat Pumps. *J. Am. Chem. Soc.* **140**, 17591–17596 (2018).

44. Irving, H. & Williams, R. J. P. Order of Stability of Metal Complexes. *Nature* **162**, 746–747 (1948).

45. Irving, H. & Williams, R. J. P. The stability of transition-metal complexes. *J. Chem. Soc.* 3192 (1953). doi:10.1039/jr9530003192

46. Choi, H. J., Dincă, M. & Long, J. R. Broadly Hysteretic H2 Adsorption in the Microporous Metal–Organic Framework Co(1,4-benzenedipryrazolate). *J. Am. Chem. Soc.* **130**, 7848–7850 (2008).

47. Choi, H. J., Dincă, M., Dailly, A. & Long, J. R. Hydrogen storage in water-stable metal–organic frameworks incorporating 1,3- and 1,4-benzenedipryrazolate. *Energy Environ. Sci.* **3**, 117–123 (2010).
48. Wade, C. R., Corrales-Sanchez, T., Narayan, T. C. & Dincă, M. Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties. Energy Environ. Sci. 6, 2172 (2013).
49. Colombo, V. et al. High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chem. Sci. 2, 1311 (2011).
50. Low, J. J. et al. Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration. J. Am. Chem. Soc. 131, 15834–15842 (2009).
51. Olmstead, W. N., Margolin, Z. & Bordwell, F. G. Acidities of water and simple alcohols in dimethyl sulfoxide solution. J. Org. Chem. 45, 3295–3299 (1980).
52. Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 21, 456–463 (1988).
53. Richens, D. T. Ligand Substitution Reactions at Inorganic Centers †. Chem. Rev. 105, 1961–2002 (2005).
54. Helm, L. & Merbach, A. E. Inorganic and Bioinorganic Solvent Exchange Mechanisms. Chem. Rev. 105, 1923–1960 (2005).
55. Evans, D. A. Evans pKa. (2005). Available at: http://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf.
56. Mondloch, J. E. et al. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework. J. Am. Chem. Soc. 135, 10294–10297 (2013).
57. Lillerud, K. P. et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).
58. Furukawa, H. et al. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–81 (2014).
59. Li, H., Cosio, M., Wang, K., Burtnor, W. & Zhou, H.-C. Design and construction of chemically stable metal-organic frameworks. Elaboration and Applications of Metal-organic Frameworks (2018). doi:10.1142/9789813226739_0001
60. Burtch, N. C., Jasuja, H. & Walton, K. S. Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev. 114, 10575–10612 (2014).
61. Nguyen, J. G. & Cohen, S. M. Moisture-Resistant and Superhydrophobic Metal–Organic Frameworks Obtained via Postsynthetic Modification. J. Am. Chem. Soc. 132, 4560–4561 (2010).
62. Li, T. et al. Systematic modulation and enhancement of CO2 : N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues. Chem. Sci. 4, 1746–1755 (2013).
63. Makal, T. A., Wang, X. & Zhou, H.-C. Tuning the Moisture and Thermal Stability of Metal–Organic Frameworks through Incorporation of Pendant Hydrophobic Groups. Cryst. Growth Des. 13, 4760–4768 (2013).
64. Jasuja, H., Huang, Y. & Walton, K. S. Adjusting the stability of metal-organic frameworks under humid conditions by ligand functionalization. Langmuir 28, 16874–80 (2012).
65. Reinsch, H. et al. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem. Mater. 25, 17–26 (2013).
66. Huang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chemie - Int. Ed. 45, 1557–1559 (2006).
67. Masciocchi, N. et al. Cubic octanuclear Ni(II) clusters in highly porous poly(pyrazolyl-
based materials. *J. Am. Chem. Soc.* **132**, 7902–4 (2010).

68. Tan, K. *et al.* Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal Ions: MOF-74. *Chem. Mater.* **26**, 6886–6895 (2014).

69. Al-Janabi, N., Alfutimie, A., Siperstein, F. R. & Fan, X. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. *Front. Chem. Sci. Eng.* **10**, 103–107 (2016).

70. Gul-E-Noor, F. *et al.* Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. *Phys. Chem. Chem. Phys.* **13**, 7783–8 (2011).

71. McHugh, L. N. *et al.* Hydrolytic stability in hemilabile metal–organic frameworks. *Nat. Chem.* **10**, (2018).

72. Tian, Y. *et al.* Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer. *Dalt. Trans.* **43**, 1519–1523 (2014).

73. Towsif Abtab, S. M. *et al.* Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water. *Chem* **4**, 94–105 (2018).

74. Howarth, A. J. *et al.* Chemical, thermal and mechanical stabilities of metal–organic frameworks. *Nat. Rev. Mater.* **1**, 15018 (2016).

75. Peterson, G. W. *et al.* Ammonia vapor removal by Cu 3(BTC) 2 and its characterization by MAS NMR. *J. Phys. Chem. C* **113**, 13906–13917 (2009).

76. Hungerford, J. *et al.* DMOF-1 as a Representative MOF for SO2 Adsorption in Both Humid and Dry Conditions. *J. Phys. Chem. C* **122**, 23493–23500 (2018).

77. Ruhl, A. S. & Krahnmann, A. Investigation of corrosive effects of sulphur dioxide , oxygen and water vapour on pipeline steels. *Int. J. Greenh. Gas Control* **13**, 9–16 (2013).

78. Elder, A. C., Bhattacharyya, S., Nair, S. & Orlando, T. M. Reactive Adsorption of Humid SO2 on Metal–Organic Framework Nanosheets. *J. Phys. Chem. C* **122**, 10413–10422 (2018).

79. Brozek, C. K., Miller, J. T., Stoian, S. A. & Dincă, M. NO Disproportionation at a Mononuclear Site-Isolated Fe 2+ Center in Fe 2+ -MOF-5. *J. Am. Chem. Soc.* **137**, 7495–7501 (2015).

80. McGrath, D. T. D. *et al.* Selective Decontamination of the Reactive Air Pollutant Nitrous Acid via Node-Linker Cooperativity in a Metal-Organic Framework. *Chem. Sci.* (2019). doi:10.1039/C9SC01357A

81. Carter, J. H. *et al.* Exceptional Adsorption and Binding of Sulfur Dioxide in a Robust Zirconium-Based Metal-Organic Framework. *J. Am. Chem. Soc.* **4**, 8–11 (2018).

82. Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. *Chem. Soc. Rev.* **43**, 5594–5617 (2014).

83. Liu, J. *et al.* Stability Effects on CO2 Adsorption for the DOBDC Series of Metal–Organic Frameworks. *Langmuir* **27**, 11451–11456 (2011).

84. Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. Cu3 (hexaiminotriphenylene) 2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. *Angew. Chemie Int. Ed.* **54**, 4349–4352 (2015).

85. Park, S. S., Rieth, A. J., Hendon, C. H. & Dinca, M. Selective Vapor Pressure Dependent Proton Transport in a Metal – Organic Framework with Two Distinct Hydrophilic Pores. *J. Am. Chem. Soc.* **140**, 2016–2019 (2018).

86. Cui, S. *et al.* Metal-Organic Frameworks as advanced moisture sorbents for energy-efficient high temperature cooling. *Sci. Rep.* **8**, 15284 (2018).
87. Abdulhalim, R. G. et al. A Fine-Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control. *J. Am. Chem. Soc.* **139**, 10715–10722 (2017).
88. Critoph, R. E. Evaluation of alternative refrigerant-adsorbent pairs for refrigeration cycles. *Appl. Therm. Eng.* **16**, 891–900 (1996).
89. De Lange, M. F., Verouden, K. J. F. M., Vlugt, T. J. H., Gascon, J. & Kapteijn, F. Adsorption-Driven Heat Pumps: The Potential of Metal-Organic Frameworks. *Chem. Rev.* **115**, 12205–12250 (2015).
90. Kalmutzki, M. J., Diercks, C. S. & Yaghi, O. M. Metal-Organic Frameworks for Water Harvesting from Air. *Adv. Mater.* **30**, 1704304 (2018).
91. Trapani, F., Polyzoidis, A., Loebbecke, S. & Piscopo, C. G. On the general water harvesting capability of metal-organic frameworks under well-defined climatic conditions. *Microporous Mesoporous Mater.* **230**, 20–24 (2016).
92. Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. *Nat. Commun.* **9**, 1191 (2018).
93. Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. *Science* **356**, 430–434 (2017).
94. Fathieh, F. et al. Practical water production from desert air. *Sci. Adv.* **4**, 1–10 (2018).
95. Canivet, J. et al. Structure–property relationships of water adsorption in metal–organic frameworks. *New J. Chem.* **38**, 3102 (2014).
96. Jeremias, F., Lozan, V., Henninger, S. K. & Janiak, C. Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. *Dalton Trans.* **42**, 15967–73 (2013).
97. Akiyama, G. et al. Effect of functional groups in MIL-101 on water sorption behavior. *Microporous Mesoporous Mater.* **157**, 89–93 (2012).
98. Khutia, A., Rammelberg, H. U., Schmidt, T., Henninger, S. & Janiak, C. Water Sorption Cycle Measurements on Functionalized MIL-101Cr for Heat Transformation Application. *Chem. Mater.* **25**, 790–798 (2013).
99. Wright, A. M., Rieth, A. J., Yang, S., Wang, E. & Dinca, M. Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal-organic frameworks. *Chem. Sci.* **9**, 3856 (2018).
100. Jasuja, H., Zang, J., Sholl, D. S. & Walton, K. S. Rational tuning of water vapor and CO₂ adsorption in highly stable Zr-based MOFs. *J. Phys. Chem. C* **116**, 23526–23532 (2012).
101. Wißmann, G. et al. Modulated synthesis of Zr-fumarate MOF. *Microporous Mesoporous Mater.* **152**, 64–70 (2012).
102. Schaate, A. et al. Porous Interpenetrated Zirconium-Organic Frameworks (PIZOFs): A Chemically Versatile Family of Metal-Organic Frameworks. *Chem. - A Eur. J.* **17**, 9320–9325 (2011).
103. DeCoste, J. B., Demasky, T. J., Katz, M. J., Farha, O. K. & Hupp, J. T. A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. *New J. Chem.* **39**, 2396–2399 (2015).
104. Wu, H. et al. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. *J. Am. Chem. Soc.* **135**, 10525–10532 (2013).
105. Vermoortele, F. et al. Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). *J. Am. Chem. Soc.* **135**, 11465–11468 (2013).
106. Shearer, G. C. et al. Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chem. Mater. 28, 3749–3761 (2016).
107. Wang, S. et al. A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat. Energy 3, 985–993 (2018).
108. Volkering, C. et al. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100. Chem. Mater. 21, 5695–5697 (2009).
109. Jeremias, F., Khutia, A., Henninger, S. K. & Janiak, C. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application. J. Mater. Chem. 22, 10148 (2012).
110. Loiseau, T. et al. A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. - A Eur. J. 10, 1373–1382 (2004).
111. Kummer, H. et al. A Functional Full-Scale Heat Exchanger Coated with Aluminum Fumarate Metal–Organic Framework for Adsorption Heat Transformation. Ind. Eng. Chem. Res. 56, 8393–8398 (2017).
112. Fröhlich, D. et al. Water adsorption behaviour of CAU-10-H: A thorough investigation of its structure-property relationships. J. Mater. Chem. A 4, 11859–11869 (2016).
113. Fröhlich, D., Henninger, S. K. & Janiak, C. Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H. Dalt. Trans. 43, 15300–15304 (2014).
114. Lenzen, D. et al. Scalable Green Synthesis and Full-Scale Test of the Metal-Organic Framework CAU-10-H for Use in Adsorption-Driven Chillers. Adv. Mater. 30, 1705869 (2018).
115. Cadiau, A. et al. Design of Hydrophilic Metal Organic Framework Water Adsorbents for Heat Reallocation. Adv. Mater. 27, 4775–4780 (2015).
116. Küsgens, P. et al. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 120, 325–330 (2009).
117. Ehrenmann, J., Henninger, S. K. & Janiak, C. Water Adsorption Characteristics of MIL-101 for Heat-Transformation Applications of MOFs. Eur. J. Inorg. Chem. 2011, 471–474 (2011).
118. Seo, Y.-K. et al. Energy-efficient dehumidification over hierarchically porous metal-organic frameworks as advanced water adsorbents. Adv. Mater. 24, 806–10 (2012).
119. Alezi, D. et al. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).
120. Chen, Z. et al. Reticular Access to Highly Porous acs-MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. J. Am. Chem. Soc. jacs.8b13710 (2019). doi:10.1021/jacs.8b13710
121. Sohail, M. et al. Synthesis of Highly Crystalline NH2-MIL-125 (Ti) with S-Shaped Water Isotherms for Adsorption Heat Transformation. Cryst. Growth Des. 17, 1208–1213 (2017).
122. Wang, K. et al. Pyrazolate-Based Porphyrinic Metal–Organic Framework with Extraordinary Base-Resistance. J. Am. Chem. Soc. 138, 914–919 (2016).
123. Padial, N. M. et al. Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds. Angew. Chem. Int. Ed. Engl. 52,
124. Denysenko, D. et al. Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. *Chem. - A Eur. J.* **17**, 1837–1848 (2011).

125. Denysenko, D., Grzywa, M., Jelic, J., Reuter, K. & Volkmer, D. Scorpionate-type coordination in MFU-4l-metal-organic frameworks: Small-molecule binding and activation upon the thermally activated formation of open metal sites. *Angew. Chemie - Int. Ed.* **53**, 5832–5836 (2014).

126. Yuhas, B. D., Mowat, J. P. S., Miller, M. A. & Sinkler, W. AlPO-78: A 24-Layer ABC-6 Aluminophosphate Synthesized Using a Simple Structure-Directing Agent. *Chem. Mater.* **30**, 582–586 (2018).

127. Shustova, N. B., Cozzolino, A. F., Reineke, S., Baldo, M. & Dincă, M. Selective Turn-On Ammonia Sensing Enabled by High-Temperature Fluorescence in Metal–Organic Frameworks with Open Metal Sites. *J. Am. Chem. Soc.* **135**, 13326–13329 (2013).

128. Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. Cu$_3$(hexaiminotriphenylene)$_2$: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing. *Angew. Chemie Int. Ed.* **54**, 4349–4352 (2015).

129. Smith, M. K., Jensen, K. E., Pivak, P. A. & Mirica, K. A. Direct Self-Assembly of Conductive Nanorods of Metal–Organic Frameworks into Chemiresistive Devices on Shrinkable Polymer Films. *Chem. Mater.* **28**, 5264–5268 (2016).

130. Bobbitt, N. S. et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. *Chem. Soc. Rev.* **46**, 3357–3385 (2017).

131. Chen, Y., Li, L., Li, J., Ouyang, K. & Yang, J. Ammonia capture and flexible transformation of M-2(INA) (M=Cu, Co, Ni, Cd) series materials. *J. Hazard. Mater.* **306**, 340–347 (2016).

132. Barea, E., Montoro, C. & Navarro, J. A. R. Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. *Chem. Soc. Rev.* **43**, 5419–5430 (2014).

133. Decoste, J. B. & Peterson, G. W. Metal-organic frameworks for air purification of toxic chemicals. *Chem. Rev.* **114**, 5695–5727 (2014).

134. NIOSH. Immediately Dangerous to Life or Health Concentrations: Ammonia. (1994).

135. Woellner, M. et al. Adsorption and Detection of Hazardous Trace Gases by Metal–Organic Frameworks. *Adv. Mater.* **30**, 1–27 (2018).

136. Petit, C. et al. Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites. *Langmuir* **27**, 13043–51 (2011).

137. Kajiwara, T. et al. A Systematic Study on the Stability of Porous Coordination Polymers against Ammonia. *Chem. - A Eur. J.* **20**, 15611–15617 (2014).

138. DeCoste, J. B., Denny, Jr., M. S., Peterson, G. W., Mahle, J. J. & Cohen, S. M. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. *Chem. Sci.* **7**, 2711–2716 (2016).

139. Grant Glover, T., Peterson, G., Schindler, B. J., Britt, D. & Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. *Chem. Éng. Sci.* **66**, 163–170 (2011).

140. Katz, M. J. et al. High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. *Dalton Trans.* **45**, 4150–4153 (2016).

141. Britt, D., Tranchemontagne, D. & Yaghi, O. M. Metal-organic frameworks with high
capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. U. S. A. 105, 11623–11627 (2008).

142. Petit, C. & Bandosz, T. J. Enhanced Adsorption of Ammonia on Metal-Organic Framework/Graphite Oxide Composites: Analysis of Surface Interactions. Adv. Funct. Mater. 20, 111–118 (2010).

143. Spanopoulos, I., Xydias, P., Malliakas, C. D. & Trikalitis, P. N. A Straight Forward Route for the Development of Metal–Organic Frameworks Functionalized with Aromatic –OH Groups: Synthesis, Characterization, and Gas (N 2 , Ar, H 2 , CO 2 , CH 4 , NH 3) Sorption Properties. Inorg. Chem. 52, 855–862 (2013).

144. Jasuja, H., Peterson, G. W., Decoste, J. B., Browe, M. A. & Walton, K. S. Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air. Chem. Eng. Sci. 124, 118–124 (2015).

145. Joshi, J. N., Garcia-Gutierrez, E. Y., Moran, C. M., Deneff, J. I. & Walton, K. S. Engineering Copper Carboxylate Functionalities on Water Stable Metal-Organic Frameworks for Enhancement of Ammonia Removal Capacities. J. Phys. Chem. C 121, 3310–3319 (2017).

146. Morris, W., Doonan, C. J. & Yaghi, O. M. Postsynthetic modification of a metal-organic framework for stabilization of a hemiaminal and ammonia uptake. Inorg. Chem. 50, 6853–6855 (2011).

147. Godfrey, H. G. W. et al. Ammonia Storage by Reversible Host-Guest Site Exchange in a Robust Metal-Organic Framework. Angew. Chemie Int. Ed. 57, 14778–14781 (2018).

148. Wilcox, O. T. et al. Acid loaded porphyrin-based metal-organic framework for ammonia uptake. Chem. Commun. 51, 14989–14991 (2015).

149. Van Humbeck, J. F. et al. Ammonia capture in porous organic polymers densely functionalized with Brønsted acid groups. J. Am. Chem. Soc. 136, 2432–40 (2014).

150. Takahashi, A. et al. Historical Pigment Exhibiting Ammonia Gas Capture beyond Standard Adsorbents with Adsorption Sites of Two Kinds. J. Am. Chem. Soc. 138, 6376–6379 (2016).

151. Doonan, C. J., Tranchemontagne, D. J., Glover, T. G., Hunt, J. R. & Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2, 235–8 (2010).

152. Barin, G. et al. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations. Chem. Sci. 8, 4399–4409 (2017).

153. Huberty, M. S., Wagner, A. L., McCormick, A. & Cussler, E. Ammonia absorption at haber process conditions. AIChE J. 58, 3526–3532 (2012).

154. Petit, C., Mendoza, B. & Bandosz, T. J. Reactive adsorption of ammonia on Cu-based MOF/graphene composites. Langmuir 26, 15302–15309 (2010).

155. OSHA. Safety and Health Topics: Hydrogen Sulfide.

156. Vikrant, K., Kumar, V., Ok, Y. S., Kim, K.-H. & Deep, A. Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. TrAC Trends Anal. Chem. 105, 263–281 (2018).

157. Yassine, O. et al. H 2 S Sensors: Fumarate-Based fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode. Angew. Chemie Int. Ed. 55, 15879–15883 (2016).

158. Wan, X., Wu, L., Zhang, L., Song, H. & Lv, Y. Sensors and Actuators B : Chemical Novel metal-organic frameworks-based hydrogen sulfide cataluminescence sensors. 220, 614–
159. Petit, C., Levasseur, B., Mendoza, B. & Bandosz, T. J. Reactive adsorption of acidic gases on MOF/graphite oxide composites. *Microporous Mesoporous Mater.* **154**, 107–112 (2012).

160. Petit, C., Mendoza, B. & Bandosz, T. J. Hydrogen Sulfide Adsorption on MOFs and MOF/Graphite Oxide Composites. *ChemPhysChem* **11**, 3678–3684 (2010).

161. Nickerl, G. *et al.* Integration of accessible secondary metal sites into MOFs for H2S removal. *Inorg. Chem. Front.* **1**, 325–330 (2014).

162. Joshi, J. N. *et al.* Probing Metal-Organic Framework Design for Adsorptive Natural Gas Purification. *Langmuir* **34**, 8443–8450 (2018).

163. Sánchez-González, E. *et al.* Highly reversible sorption of H2S and CO2 by an environmentally friendly Mg-based MOF. *J. Mater. Chem. A* **6**, 16900–16909 (2018).

164. Belmabkhout, Y. *et al.* Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. *Nat. Energy* **3**, 1059–1066 (2018).

165. Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal-organic framework-based splitter for separating propylene from propane. *Science* **353**, 137–140 (2016).

166. Liu, G. *et al.* Enabling Fluorinated MOF-Based Membranes for Simultaneous Removal of H2S and CO2 from Natural Gas. *Angew. Chemie Int. Ed.* **57**, 14811–14816 (2018).

167. Subramanian, S. & Zaworotko, M. J. Porous Solids by Design: [Zn(4,4′-bpy)2(SiF6)]n·xDMF, a Single Framework Octahedral Coordination Polymer with Large Square Channels. *Angew. Chemie Int. Ed. English* **34**, 2127–2129 (1995).

168. Cadiau, A. *et al.* Molecular sorption: Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. *Science* **356**, 731–735 (2017).

169. Mohideen, M. I. H. *et al.* A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. *Chem* **3**, 822–833 (2017).

170. EPA. National Trends in Sulfur Dioxide Emissions. Available at: https://www.epa.gov/air-trends/sulfur-dioxide-trends.

171. Córdoba, P. Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. *Fuel* **144**, 274–286 (2015).

172. EPA. Coal Fired Power Plant Data. Available at: https://www.epa.gov/airmarkets/coal-fired-power-plant-data.

173. Ding, L. & Yazaydin, A. O. The effect of SO2 on CO2 capture in zeolitic imidazolate frameworks. *Phys. Chem. Chem. Phys.* **15**, 11856 (2013).

174. Pacciani, R. *et al.* Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent. *Environ. Sci. Tech.* **45**, 7083–7088 (2011).

175. Han, X., Yang, S. & Schröder, M. Porous metal–organic frameworks as emerging sorbents for clean air. *Nat. Rev. Chem.* **3**, 108–118 (2019).

176. Mounfield, W. P. *et al.* Synergistic Effects of Water and SO2 on Degradation of MIL-125 in the Presence of Acid Gases. *J. Phys. Chem. C* **120**, 27230–27240 (2016).

177. Yang, S. *et al.* Irreversible Network Transformation in a Dynamic Porous Host Catalyzed by Sulfur Dioxide. *J. Am. Chem. Soc.* **135**, 4954–4957 (2013).

178. Yang, S. *et al.* Selectivity and direct visualization of carbon dioxide and sulfur dioxide in
a decorated porous host. *Nat. Chem.* **4**, 887–894 (2012).

179. Li, L. *et al.* Post-synthetic modulation of the charge distribution in a metal–organic framework for optimal binding of carbon dioxide and sulfur dioxide. *Chem. Sci.* **10**, 1472–1482 (2019).

180. Britt, D., Tranchemontagne, D. & Yaghi, O. M. Metal-organic frameworks with high capacity and selectivity for harmful gases. *Proc. Nat. Acad. Sci.* **105**, 11623–11627 (2008).

181. Tan, K. *et al.* Mechanism of Preferential Adsorption of SO 2 into Two Microporous Paddle Wheel Frameworks M(bdc)(ted) 0.5. *Chem. Mater.* **25**, 4653–4662 (2013).

182. Cui, X. *et al.* Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials. *Adv. Mater.* **29**, 1–9 (2017).

183. Tchalala, M. R. *et al.* Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. *Nat. Commun.* **10**, 1328 (2019).

184. Rodriguez-Albelo, L. M. *et al.* Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series. *Nat. Commun.* **8**, (2017).

185. Bhattacharyya, S. *et al.* Interactions of SO2 -Containing Acid Gases with ZIF-8: Structural Changes and Mechanistic Investigations. *J. Phys. Chem. C* **120**, 27221–27229 (2016).

186. Carter, J. H. *et al.* Exceptional Adsorption and Binding of Sulfur Dioxide in a Robust Zirconium-Based Metal–Organic Framework. *J. Am. Chem. Soc.* **140**, 15564–15567 (2018).

187. Savage, M. *et al.* Selective Adsorption of Sulfur Dioxide in a Robust Metal-Organic Framework Material. *Adv. Mater.* **28**, 8705–8711 (2016).

188. Fernandez, C. A. *et al.* Gas-Induced Expansion and Contraction of a Fluorinated Metal–Organic Framework. *Cryst. Growth Des.* **10**, 1037–1039 (2010).

189. Mon, M. *et al.* A post-synthetic approach triggers selective and reversible sulphur dioxide adsorption on a metal-organic framework. *Chem. Commun.* **54**, 9063–9066 (2018).

190. Wang, C. *et al.* Agriculture is a major source of NOx pollution in California. *Sci. Adv.* **4**, 3477 (2018).

191. Crutzen, P. J. The role of NO and NO2 in the chemistry of the troposphere and stratosphere. *Ann. Rev. Earth Planet. Sci.* **7**, 443–472 (1979).

192. Wang, P. *et al.* Porous metal–organic framework MIL-100(Fe) as an efficient catalyst for the selective catalytic reduction of NO x with NH 3. *RSC Adv.* **4**, 48912–48919 (2014).

193. Jiang, H. *et al.* Effect of Cosolvent and Temperature on the Structures and Properties of Cu-MOF-74 in Low-temperature NH 3 -SCR. *Ind. Eng. Chem. Res.* **56**, 3542–3550 (2017).

194. Zhang, M., Wang, W. & Chen, Y. Theoretical investigation of selective catalytic reduction of NO on MIL-100-Fe. *Phys. Chem. Chem. Phys.* **20**, 2211–2219 (2018).

195. Granger, P. & Parvulescu, V. I. Catalytic NOxabatement systems for mobile sources: From three-way to lean burn after-treatment technologies. *Chem. Rev.* **111**, 3155–3207 (2011).

196. Bartok, W. & Sarofim, A. F. *Fossil Fuel Combustion. A Source Book.* (Wiley-Interscience, 1991).

197. *Radicals for Life. The Various Forms of Nitric Oxide.* (Elsevier, 2007).

198. Keefer, L. K. Thwarting thrombus. *Nat. Mater.* **2**, 357–358 (2003).

199. Baudron, S. A. Dipyrrin based homo- and hetero-metallic infinite architectures.
200. Xiao, B. et al. High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metal–Organic Framework. *J. Am. Chem. Soc.* **129**, 1203–1209 (2007).

201. Wright, A. M., Wu, G. & Hayton, T. W. Structural Characterization of a Copper Nitrosyl Complex with a {CuNO} 10 Configuration. *J. Am. Chem. Soc.* **132**, 14336–14337 (2010).

202. Bordiga, S. et al. Interaction of N2, CO and NO with Cu-exchanged ETS-10: a compared FTIR study with other Cu-zeolites and with dispersed Cu2O. *Catal. Today* **70**, 91–105 (2001).

203. Peikert, K. et al. Tuning the nitric oxide release behavior of amino functionalized HKUST-1. *Microporous Mesoporous Mater.* **216**, 118–126 (2015).

204. McKinlay, A. C. et al. Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks. *Chem. Mater.* **25**, 1592–1599 (2013).

205. Bonino, F. et al. Local Structure of CPO-27-Ni Metalorganic Framework upon Dehydration and Coordination of NO. *Chem. Mater.* **20**, 4957–4968 (2008).

206. C. McKinlay, A. et al. Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. *J. Am. Chem. Soc.* **130**, 10440–10444 (2008).

207. Cattaneo, D. et al. Tuning the nitric oxide release from CPO-27 MOFs. *RSC Adv.* **6**, 14059–14067 (2016).

208. Bloch, E. D. et al. Gradual Release of Strongly Bound Nitric Oxide from Fe2(NO)2(dobdc). *J. Am. Chem. Soc.* **137**, 3466–3469 (2015).

209. Ebrahim, A. M., Levasseur, B. & Bandosz, T. J. Interactions of NO2 with Zr-Based MOF: Effects of the Size of Organic Linkers on NO2 Adsorption at Ambient Conditions. *Langmuir* **29**, 168–174 (2013).

210. Peterson, G. W., Mahle, J. J., Decoste, J. B., Gordon, W. O. & Rossin, J. A. Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2. *Angew. Chem. Int. Ed.* **55**, 6235–6238 (2016).

211. Han, X. et al. Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. *Nat. Mater.* **17**, 691–696 (2018).

212. Schulz, M. et al. A Calixarene-Based Metal–Organic Framework for Highly Selective NO2 Detection. *Angew. Chem. Int. Ed.* **57**, 12961–12965 (2018).

213. Sava, D. F. et al. Capture of Volatile Iodine, a Gaseous Fission Product, by Zeolitic Imidazolate Framework-8. *J. Am. Chem. Soc.* **133**, 12398–12401 (2011).

214. Sava, D. F. et al. Competitive I2 Sorption by Cu-BTC from Humid Gas Streams. *Chem. Mater.* **25**, 2591–2596 (2013).

215. Falaise, C. et al. Capture of iodine in highly stable metal–organic frameworks: a systematic study. *Chem. Commun.* **49**, 10320 (2013).

216. Yao, R.-X., Cui, X., Jia, X.-X., Zhang, F.-Q. & Zhang, X.-M. A Luminescent Zinc(II) Metal–Organic Framework (MOF) with Conjugated π-Electron Ligand for High Iodine Capture and Nitro-Explosive Detection. *Inorg. Chem.* **55**, 9270–9275 (2016).

217. Li, B. et al. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. *Nat. Commun.* **8**, 485 (2017).

218. Zhang, X. et al. Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks. *J. Am. Chem. Soc.* **139**, 16289–16296 (2017).

219. Lobanov, S. S. et al. Iodine in Metal–Organic Frameworks at High Pressure. *J. Phys. Chem. A* **122**, 6109–6117 (2018).
220. Banerjee, D. *et al.* Iodine Adsorption in Metal Organic Frameworks in the Presence of Humidity. *ACS App. Mater. Inter.* **10**, 10622–10626 (2018).

221. DeCoste, J. B., Browe, M. A., Wagner, G. W., Rossin, J. A. & Peterson, G. W. Removal of chlorine gas by an amine functionalized metal–organic framework via electrophilic aromatic substitution. *Chem. Commun.* **51**, 12474–12477 (2015).

222. Tulchinsky, Y. *et al.* Reversible Capture and Release of Cl2 and Br2 with a Redox-Active Metal–Organic Framework. *J. Am. Chem. Soc.* **139**, 5992–5997 (2017).

223. Brozek, C. K. & Dinca, M. Lattice-imposed geometry in metal–organic frameworks: lacunary Zn4O clusters in MOF-5 serve as tripodal chelating ligands for Ni2+. *Chem. Sci.* **3**, 2110 (2012).

224. Brozek, C. K. & Dinca, M. Cation exchange at the secondary building units of metal-organic frameworks. *Chem Soc Rev* **43**, 5456–5467 (2014).

225. Leus, K. *et al.* Systematic study of the chemical and hydrothermal stability of selected ‘stable’ Metal Organic Frameworks. *Microporous Mesoporous Mater.* **226**, 110–116 (2016).