Comparison with Residual-Sum-of-Squares-Based Model Selection Criteria for Selecting Growth Functions

Keisuke Fukui1, Mariko Yamamura1, Hirokazu Yanagihara1*

Abstract: A growth curve model used for analyzing growth is characterized by a mathematical function with respect to time, called a growth function. As the results of analysis from a growth curve model strongly depend on the growth function used for the analysis, the selection of growth functions is important. A choice of growth function based on the minimization of a model selection criterion is one of the major selection methods. In this paper, we compare the performances of growth-function selection methods using these criteria (e.g., Mallows' \textit{Cp} criterion) through Monte Carlo simulations. As a result, we recommend the use of a method employing the Bayesian information criterion for the selection of growth functions.

Keywords: growth curve model, growth-function-selection, model selection criterion, residual sum of squares

1. Introduction

A growth curve model used for analyzing growth is specified by a mathematical function, called the growth function. A number of growth functions may be used for analysis; therefore, growth-function-selection (GF-selection) is important because the results of analysis from a growth curve model vary according to the growth function used. Naturally, a growth function with high prediction performance is regarded as a better growth function. Hence, during GF-selection, the best model should be chosen to improve prediction accuracy.

Choosing growth functions based on the minimization of a model selection criterion (MSC) is one of the major selection methods. An MSC consists of two terms; a goodness-of-fit term and a penalty term based on the complexity of the model. Particularly, an MSC whose goodness-of-fit term is the residual sum of squares (RSS) is called an RSS-based MSC in this paper. An RSS-based MSC is often used to select the best model in many fields. Because several RSS-based MSC approaches can be used to estimate the risk function assessing the standardized mean square error (MSE) of the prediction, we can expect that the accuracy of a growth prediction will be improved in the sense of making the MSE small by minimizing an RSS-based MSC. However, numerous RSS-based MSC approaches, e.g., Mallows' \textit{Cp} criterion (Mallows, 1973), are available, and the chosen growth function will depend upon the MSC employed for GF-selection. Hence, the purpose of this study is to compare the performances of GF-selection methods using RSS-based MSC through Monte Carlo simulations.

The remainder of this paper is organized as follows. In Section 2, we introduce the growth curve model and the growth functions used. In Section 3, we describe the RSS-based MSC approaches considered for GF-selection. In Section 4, we compare the GF-selection methods considered through numerical experiments and discuss the results.

2. Growth Curve Model

2.1 True and Candidate Models

Let \(y(t_i) \) be the extent of growth at a time \(t_i \) (\(i = 1, \ldots, n \)), where \(n \) is the sample size. Suppose that \(y(t_i) \) is generated from the following true model:

\[
\begin{align*}
 y(t_i) &= \mu_*(t_i) + \varepsilon_*(t_i),
\end{align*}
\]

where \(\mu_*(t_i) \) is the true expected value of \(y(t_i) \), and \(\varepsilon_*(t_1), \ldots, \varepsilon_*(t_n) \) are mutually independent true error variables derived from the same distribution with a mean 0 and variance \(\sigma^2_\varepsilon \). As \(\mu_*(t) \)
expresses the average value of the true growth, \(\mu(t) \) is denoted by the growth function. However, the true model is unknown. Hence, the following candidate model is assumed for \(y(t_i) \):

\[
y(t_i) = \mu(t_i) + \epsilon(t_i),
\]

where \(\mu(t_i) \) is the expected value of \(y(t_i) \) under the candidate model, and \(\epsilon(t_1), \ldots, \epsilon(t_n) \) are mutually independent error variables derived from the same distribution with a mean 0 and variance \(\sigma^2 \). Here, \(\mu(t_i) \) is denoted as the candidate growth function. In practice, we must prepare a specific function with respect to \(t \), whose shape is determined by unknown parameters, as the candidate growth function.

Let \(\mu(t; \theta_{\mu}) \) denote the candidate growth function, where \(\theta_{\mu} \) represents a \(q(\mu) \)-dimensional vector. Note that \(q(\mu) \) denotes the number of unknown parameters of a candidate growth function \(\mu \). To use the growth curve model, \(\theta_{\mu} \) must be estimated from growth data. In this paper, \(\theta_{\mu} \) is obtained by least squares (LS) estimation. Let the RSS be denoted by

\[
\text{RSS}(\theta_{\mu}; \mu) = \sum_{i=1}^{n} (y(t_i) - \mu(t_i; \theta_{\mu}))^2.
\]

Then, the LS estimator of \(\theta_{\mu} \) is derived by minimizing \(\text{RSS}(\theta_{\mu}; \mu) \) as

\[
\hat{\theta}_{\mu} = \arg \min_{\theta_{\mu}} \text{RSS}(\theta_{\mu}; \mu).
\]

Using \(\hat{\theta}_{\mu} \), a growth curve can be estimated by \(\mu(t; \hat{\theta}_{\mu}) \).

2.2 Selection of Growth Functions

Numerous growth functions have been proposed in the literature. In this paper, we consider the following twelve candidate growth functions that were described in Zeide (1993).

1. Bertalanffy: \(\mu_1(t; \theta) = \alpha(1 - e^{-\beta t})^3 \) \((\theta = (\alpha, \beta, \gamma)^t) \).
2. Chapman-Richards: \(\mu_2(t; \theta) = \alpha(1 - e^{-\beta t})^\gamma \) \((\theta = (\alpha, \beta, \gamma)^t) \).
3. Gompertz: \(\mu_3(t; \theta) = \alpha \exp(-\beta e^{-\gamma t}) \) \((\theta = (\alpha, \beta, \gamma)^t) \).
4. Hossfeld-4: \(\mu_4(t; \theta) = \alpha(1 + \beta t^{-\gamma})^{-1} \) \((\theta = (\alpha, \beta, \gamma)^t) \).
5. Korf: \(\mu_5(t; \theta) = \alpha \exp(-\beta t^{-\gamma}) \) \((\theta = (\alpha, \beta, \gamma)^t) \).
6. Levakov-3: \(\mu_6(t; \theta) = \alpha(1 + \beta t^{-2})^{-\gamma} \) \((\theta = (\alpha, \beta, \gamma)^t) \).
7. Logistic: \(\mu_7(t; \theta) = \alpha(1 + \beta e^{-\gamma t})^{-1} \) \((\theta = (\alpha, \beta, \gamma)^t) \).
8. Monomolecular: \(\mu_8(t; \theta) = \alpha(1 - \beta e^{-\gamma t}) \) \((\theta = (\alpha, \beta, \gamma)^t) \).
9. Weibull: \(\mu_9(t; \theta) = \alpha(1 - e^{-\beta t^\gamma}) \) \((\theta = (\alpha, \beta, \gamma)^t) \).
10. Levakov-1: \(\mu_{10}(t; \theta) = \alpha(1 + \beta t^{-\gamma})^{-\delta} \) \((\theta = (\alpha, \beta, \gamma, \delta)^t) \).
11. Sloboda: \(\mu_{11}(t; \theta) = \alpha \exp(-\beta e^{-\gamma t^\delta}) \) \((\theta = (\alpha, \beta, \gamma, \delta)^t) \).
12. Yoshida-1: \(\mu_{12}(t; \theta) = \alpha(1 + \beta t^{-\gamma})^{-1} + \delta \) \((\theta = (\alpha, \beta, \gamma, \delta)^t) \).

In the above list, \(t \) denotes the time, and all parameters are restricted to positive values. The candidate growth functions have been listed in the order of increasing number of unknown parameters, i.e., the function \(\mu_1 \) includes two parameters, the functions \(\mu_2 \) to \(\mu_9 \) include three and the functions \(\mu_{10} \) to \(\mu_{12} \) include four.

Although an estimate of a growth curve can be obtained by the LS estimation, the choice of growth function most suited to the obtain growth data is important. In this paper, we select the best growth function by the RSS-based MSC minimization method. Let \(\text{MSC}_{\text{RSS}}(\mu) \) denote a general form of a RSS-based MSC. The best growth function is then determined according to

\[
\hat{\mu} = \arg \min_{\mu \in \{\mu_1, \ldots, \mu_{12}\}} \text{MSC}_{\text{RSS}}(\mu).
\]
2.3. Underspecified and Overspecified Models

An evaluation of the growth function equations given above indicate that several growth functions are equivalent under certain conditions (e.g., Chapman-Richards with $\gamma = 3$ corresponds perfectly to Bertalanffy). In model selection, these relationships sometimes play key roles because several MSC approaches are derived under the assumption that a candidate model includes the true model. We define the following two specific candidate models.

- An overspecified model: a growth function of a candidate model includes that of the true model, i.e., the true growth function can be expressed as a special case of the growth function of the overspecified model. In general, the true model is the overspecified model. However, in this paper, we rule out the true model from the definition of an overspecified model.

- An underspecified model: the model is neither the overspecified model nor the true model.

In practice, there is no overspecified model in most cases. An overspecified model does not exist except under the following three cases:

(i) When the true growth function is Bertalanffy, the candidate model whose growth function is Chapman-Richards is the overspecified model.

(ii) When the true growth function is Gompertz, the candidate model whose growth function is Sloboda is the overspecified model.

(iii) When the true growth function are Hossfeld-4 or Levakovic-3, the candidate model whose growth function is Levakovic-1 is the overspecified model.

3. RSS-based Model Selection Criteria

In this section, we describe explicit forms of the RSS-based MSC approaches used in this work for GF-selection.

When the penalty for the complexity of a model is imposed additively, an estimator of σ^2 is required for the use an RSS-based MSC. In the general regression model, an estimator of σ^2 in the full model is typically employed. A full model is the model that includes all candidate models. For example, if we consider growth functions (1)-(12) as candidate models, the full model includes all growth functions (1)-(12). However, constructing the full model in the growth curve model is difficult because there is no candidate model that includes all candidate models. Hence, we use the following estimator of σ^2 derived from a local linear fitting, which was proposed by Gasser, Sroka and Jennen-Steinmetz (1986),

$$\hat{\sigma}^2_L = \frac{1}{n-2} \sum_{i=2}^{n-1} \frac{(a_i y_{i-1} + b_i y_{i+1} - y_i)^2}{a_i^2 + b_i^2 - 1},$$

where coefficients a_i and b_i are given by

$$a_i = \frac{t_{i+1} - t_i}{t_{i+1} - t_{i-1}}, \quad b_i = \frac{t_i - t_{i-1}}{t_{i+1} - t_{i-1}}.$$

The representation $\hat{\sigma}^2_L$ has a desirable property as an estimator of σ^2, e.g., $\hat{\sigma}^2_L$ converges to σ^2 as $n \to \infty$ in probability if $\mu_i(t)$ is twice continuously differentiable, $\lim sup_{n \to \infty} \max_{i=2,...,n-1} |t_i - t_{i-1}| < 1$ and $E[\hat{\sigma}_L^2(t_i)^4] < \infty$.

3.1. Mallows’ C_p Criterion

Using $2q(\mu)$ as the penalty term, Mallows’ C_p criterion is defined as

$$C_p(\mu) = \frac{\text{RSS}(\hat{\theta}_i; \mu)}{\hat{\sigma}^2_L} + 2q(\mu).$$
The $2q(\mu)$ was derived as the bias of $\text{RSS}(\hat{\theta}_\mu; \mu)/\hat{\sigma}_L^2$ to the risk function assessing the standardized MSE of prediction under the assumption that the candidate model considered is not an underspecified model. Hence, there is a possibility that the C_p may not correctly evaluate the complexity of an underspecified model.

3.2. Modified C_p Criterion

The weakness of the C_p criterion may be overcome using the generalized degree of freedom (GDF), proposed by Ye (1998) instead of $q(\mu)$. The GDF of the growth curve model was calculated by Kamo and Yoshimoto (2013) as

$$ df(\mu) = q(\mu) + \operatorname{tr}\left\{ \left(I_\mu(\hat{\theta}_\mu) - J_\mu(\hat{\theta}_\mu) \right)^{-1} J_\mu(\hat{\theta}_\mu) \right\}, $$

where $I_\mu(\hat{\theta}_\mu)$ and $J_\mu(\hat{\theta}_\mu)$ are matrices given by

$$ I_\mu(\hat{\theta}_\mu) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \mu(t_i; \theta_\mu)}{\partial \theta_\mu} \frac{\partial \mu(t_i; \theta_\mu)}{\partial \theta_\mu} \bigg|_{\theta_\mu = \hat{\theta}_\mu}, $$

$$ J_\mu(\hat{\theta}_\mu) = \frac{1}{n} \sum_{i=1}^{n} \left\{ g(t_i) - \mu(t_i; \theta_\mu) \right\} \frac{\partial^2 \mu(t_i; \theta_\mu)}{\partial \theta_\mu \partial \theta_\mu'} \bigg|_{\theta_\mu = \hat{\theta}_\mu}. $$

In this paper, “a'” denotes the transpose of a vector a. Kamo and Yoshimoto (2013) proposed the following modified C_p criterion (MC_{C_p}) expressed by replacing $q(\mu)$ with $df(\mu)$ in [8] as

$$ MC_{C_p}(\mu) = \frac{\text{RSS}(\hat{\theta}_\mu; \mu)}{\hat{\sigma}_L^2} + 2df(\mu). $$

The description of the expression as “modified” indicates that the bias of $\text{RSS}(\hat{\theta}_\mu; \mu)/\hat{\sigma}_L^2$ to the risk function is corrected even under an underspecified model. A modified C_p criterion was originally proposed by Fujikoshi and Satoh (1997) in the multivariate linear regression model. As the MC_{C_p} was derived under the assumption that the candidate model may be an underspecified model, the MC_{C_p} may correctly evaluate the complexity of an underspecified model. If the candidate model considered is an overspecified model, then $df(\mu)$ converges to $q(\mu)$ as $n \to \infty$ in probability.

3.3. Bayesian Information Criterion (BIC)-type C_p Criterion

The Bayesian information criterion (BIC) proposed by Schwarz (1978) is very well known MSC. In the BIC, the penalty term is given as “(the number of parameters) $\times \log n$”. Using $q(\mu) \log n$ instead of $2q(\mu)$ in [8], the BIC-type C_p (BC_{C_p}) can be proposed as

$$ BC_{C_p}(\mu) = \frac{\text{RSS}(\hat{\theta}_\mu; \mu)}{\hat{\sigma}_L^2} + q(\mu) \log n. $$

Recall that the purpose of GF-selection employed here is to choose a growth function that improves the growth-prediction of the selected model. However, a consistency property wherein the selection probability of the true model by the MSC approaches 1 asymptotically is also an important property of the model selection. Because BIC has a consistency property, we can expect that BC_{C_p} has one too.

3.4. Generalized Cross-Validation Criterion

The generalized cross-validation (GCV) criterion proposed by Craven and Wahba (1979) is one of the RSS-based MSC approaches. In the GCV criterion, the penalty attributed to the complexity of a model is imposed not additively but multiplicatively. The GCV based the GDF was proposed by Ye (1998). The GCV for GF-selection is defined by

$$ \text{GCV}(\mu) = \frac{\text{RSS}(\hat{\theta}_\mu; \mu)}{\left\{1 - df(\mu)/n\right\}^2}. $$
Comparison with RSS-based Model Selection Criteria

If $\hat{\sigma}_0^2$ does not work well, there are possibilities that C_p, MC_p and BC_p will possibly become unstable. However, even if $\hat{\sigma}_0^2$ does not work well, the GCV does not become unstable because the GCV in [14] is defined without an estimator of σ^2.

4. Numerical Study

4.1. Setting

In this section, we compare the performance of each criterion by conducting numerical experiments with several sample sizes, variances and true growth functions. At first, we prepared the twelve true growth functions listed as cases 1-12 below.

Case 1: $\mu_*(t)$ is Bertalanffy as $\mu_*(t) = 100(1 - e^{-0.5t})^3$.
Case 2: $\mu_*(t)$ is Chapman-Richards as $\mu_*(t) = 100(1 - e^{-0.4t})^{3.8}$.
Case 3: $\mu_*(t)$ is Gompertz as $\mu_*(t) = 100 \exp(-3e^{-0.3t})$.
Case 4: $\mu_*(t)$ is Hossfeld-4 as $\mu_*(t) = 100(1 + 5t^{-1.5})^{-1}$.
Case 5: $\mu_*(t)$ is Korf as $\mu_*(t) = 100 \exp(-3t^{-1})$.
Case 6: $\mu_*(t)$ is Levakovic-3 as $\mu_*(t) = 100(1 + 5t^{-2})^{-1.5}$.
Case 7: $\mu_*(t)$ is Logistic as $\mu_*(t) = 100(1 + 1.35e^{-0.25t})$.
Case 8: $\mu_*(t)$ is Monomolecular as $\mu_*(t) = 100(1 - e^{-0.6e^{0.7}})$.
Case 9: $\mu_*(t)$ is Weibull as $\mu_*(t) = 100(1 + 5e^{-0.4t})^{-1}$.
Case 10: $\mu_*(t)$ is Levakovic-1 as $\mu_*(t) = 100(1 + 3t^{-2.3})^{-2}$.
Case 11: $\mu_*(t)$ is Sloboda as $\mu_*(t) = 100 \exp(-4e^{-0.5e^{0.8}})$.
Case 12: $\mu_*(t)$ is Yoshida-1 as $\mu_*(t) = 80(1 + 5t^{-1.4t})^{-1} + 20$.

We used $t_i = 2 + 18i/(n-1)$ ($i = 1, \ldots, n$) as the time series with $n = 30, 50, 100, 300$ and 500, and generated error variables of the true model from $N(0, \sigma^2)$ with $\sigma^2 = 1$ and 2. The shapes of the true growth curves are shown in Figures 1 and 2. In this paper, we assessed the performances of the GF-selection methods according to the following two properties derived from 1,000 repetitions.

- The prediction error (PE) of the best growth function chosen by minimizing the MSC.
- The selection probability (SP) of the true growth function chosen by minimizing the MSC.

Here, the PE is defined by

$$PE = \frac{1}{n} \sum_{j=n+1}^{n+3n/10} \left\{ \mu_*(t_j) - \hat{\mu}(t_j; \hat{\theta}_p) \right\}^2,$$

where $t_j = 2 + 18j/(n-1)$. Note that the PE is a more important property because the aim of our study is to select a growth function that improves the growth prediction of the selection model.
Figure 1. The shapes of the true growth curves (case 1 to case 6).
Comparison with RSS-based Model Selection Criteria

Figure 2. The shapes of the true growth curves (case 7 to case 12).
4.2. Results

Tables 1 and 2 list the PEs of the best growth functions when $\sigma^2 = 1$ and 2, respectively. Additionally Tables 3 and 4 list the SPs of the true growth functions when $\sigma^2 = 1$ and 2, respectively. The number in the first column labeled “case” indicates that growth function used as the true growth function. For example, a number 1 in the first column indicates that simulation data were generated from the true growth function of case 1, i.e., Bertalanffy. Furthermore, the addition of an asterisk * denotes that the case is the overspecified model. In the tables, bold fonts indicate the smallest PEs of the best growth functions, and the highest SPs of the true growth functions (although the PEs are rounded at the second decimal place, the smallest value is based on the original values).

From the tables, we obtained the following results:

- When the number of parameters of the true growth function was not large, i.e., cases 1 to 9, BC_p was the high-performance MSC in most cases. Particularly, when the sample size was not small, the SPs of the true growth function by BC_p were always the highest among all MSC approaches. The differences between the SPs were large in cases where an overspecified model existed, i.e., cases 1, 3, 4 and 6. This is because BC_p has a consistency property and C_p, MC_p and GCV do not, i.e., the SPs of BC_p asymptotically converge to 1 although those of C_p, MC_p and GCV do not for cases 1, 3, 4 and 6.

- When the number of parameters of the true growth function was large, i.e., cases 10 to 12, BC_p was not the high-performance MSC. This is because the penalty term of BC_p was too large in cases 10 to 12. In general, BC_p tends to choose a model having a smaller number of known parameters than the true model. Conversely, C_p, MC_p and GCV tend to choose a model having a larger number of known parameters than the true model. In cases 10 to 12, none of the models had a larger number of known parameters than the true model. Hence, the SPs of C_p, MC_p and GCV tended to be higher than those of BC_p. Although the PEs of the best models chosen by C_p, MC_p and GCV tended to be smaller than those chosen by BC_p, the differences were not large.

Based upon the simulation results, using a selection method employing BC_p is recommended for selecting growth functions.
Table 1. The prediction error under each case when $\sigma^2 = 1$.

case	n	C_p	MC_p	BC_p	GCV	case	n	C_p	MC_p	BC_p	GCV
1*	30	1.13	1.14	1.11	1.14	7	30	1.32	1.34	1.26	1.33
	50	1.09	1.09	1.06	1.09		50	1.21	1.21	1.15	1.21
	100	1.04	1.04	1.02	1.04		100	1.10	1.10	1.06	1.10
	300	1.01	1.01	1.01	1.01		300	1.02	1.02	1.02	1.02
	500	1.01	1.01	1.00	1.01		500	1.01	1.01	1.01	1.02
2	30	1.42	1.43	1.42	1.43	8	30	1.53	1.56	1.52	1.55
	50	1.23	1.23	1.23	1.23		50	1.34	1.34	1.30	1.33
	100	1.09	1.09	1.08	1.09		100	1.15	1.15	1.12	1.15
	300	1.02	1.02	1.02	1.02		300	1.04	1.04	1.03	1.04
	500	1.01	1.03	1.01	1.02		500	1.02	1.03	1.01	1.02
3*	30	1.53	1.53	1.41	1.54	9	30	1.40	1.45	1.40	1.45
	50	1.33	1.33	1.22	1.34		50	1.29	1.31	1.29	1.31
	100	1.18	1.18	1.11	1.17		100	1.15	1.17	1.15	1.16
	300	1.06	1.06	1.03	1.05		300	1.05	1.05	1.05	1.05
	500	1.02	1.02	1.01	1.03		500	1.03	1.03	1.02	1.03
4*	30	1.49	1.49	1.49	1.48	10	30	1.22	1.25	1.23	1.25
	50	1.29	1.27	1.29	1.28		50	1.15	1.17	1.16	1.17
	100	1.13	1.13	1.13	1.12		100	1.07	1.08	1.09	1.08
	300	1.03	1.03	1.02	1.03		300	1.02	1.02	1.03	1.02
	500	1.02	1.02	1.01	1.02		500	1.14	1.14	1.16	1.13
5	30	1.36	1.36	1.36	1.36	11	30	1.94	2.01	1.94	2.03
	50	1.21	1.21	1.22	1.21		50	1.68	1.71	1.70	1.71
	100	1.09	1.09	1.09	1.10		100	1.42	1.45	1.52	1.45
	300	1.03	1.03	1.02	1.03		300	1.26	1.30	1.35	1.30
	500	1.01	1.02	1.01	1.02		500	1.04	1.04	1.05	1.05
6*	30	1.31	1.31	1.31	1.31	12	30	1.60	1.58	1.60	1.58
	50	1.17	1.16	1.16	1.16		50	1.43	1.43	1.44	1.43
	100	1.06	1.06	1.06	1.06		100	1.27	1.26	1.30	1.26
	300	1.02	1.02	1.02	1.02		300	1.12	1.12	1.24	1.12
	500	1.01	1.01	1.01	1.01		500	1.02	1.02	1.02	1.02
Table 2. The prediction error under each case when $\sigma^2 = 2$.

case	n	C_p	MC_p	BC_p	GCV	case	n	C_p	MC_p	BC_p	GCV
1*	30	2.53	2.57	2.43	2.57	7	30	3.20	3.24	3.09	3.25
	50	2.39	2.40	2.27	2.40		50	2.85	2.87	2.67	2.87
	100	2.16	2.17	2.11	2.17		100	2.48	2.49	2.31	2.49
	300	2.06	2.06	2.03	2.06		300	2.13	2.13	2.08	2.13
	500	2.03	2.06	2.02	2.06		500	2.06	2.06	2.04	2.07
2	30	3.47	3.55	3.51	3.57	8	30	4.12	4.26	4.03	4.30
	50	2.91	2.95	2.95	2.95		50	3.49	3.61	3.49	3.59
	100	2.50	2.52	2.50	2.52		100	2.81	2.83	2.76	2.84
	300	2.14	2.14	2.12	2.14		300	2.22	2.22	2.16	2.21
	500	2.06	2.12	2.04	2.11		500	2.11	2.12	2.08	2.12
3*	30	3.83	3.92	3.79	3.95	9	30	3.18	3.22	3.18	3.24
	50	3.00	3.10	2.88	3.09		50	2.80	2.84	2.84	2.84
	100	2.52	2.53	2.34	2.54		100	2.43	2.48	2.43	2.48
	300	2.23	2.23	2.12	2.23		300	2.18	2.21	2.18	2.21
	500	2.11	2.14	2.06	2.15		500	2.12	2.14	2.13	2.14
4*	30	3.53	3.49	3.55	3.50	10	30	2.76	2.78	2.92	2.79
	50	2.99	2.96	2.98	2.96		50	2.46	2.47	2.51	2.47
	100	2.56	2.55	2.55	2.55		100	2.25	2.27	2.26	2.27
	300	2.18	2.18	2.18	2.18		300	2.09	2.11	2.11	2.11
	500	2.10	2.10	2.11	2.10		500	2.38	2.38	2.72	2.36
5	30	3.58	3.52	3.59	3.53	11	30	4.36	4.56	4.44	4.60
	50	2.95	2.92	2.95	2.92		50	3.57	3.69	3.62	3.71
	100	2.51	2.51	2.51	2.51		100	2.95	3.03	3.02	3.03
	300	2.13	2.13	2.13	2.13		300	2.53	2.56	2.57	2.56
	500	2.08	2.08	2.07	2.08		500	2.10	2.13	2.10	2.12
6*	30	3.12	3.05	3.14	3.04	12	30	3.59	3.51	3.59	3.53
	50	2.69	2.68	2.70	2.67		50	3.06	3.04	3.07	3.04
	100	2.34	2.34	2.33	2.34		100	2.66	2.65	2.67	2.66
	300	2.10	2.10	2.11	2.10		300	2.33	2.31	2.34	2.31
	500	2.05	2.05	2.05	2.05		500	2.08	2.08	2.09	2.08
Comparison with RSS-based Model Selection Criteria

Table 3. The selection probability under each case when $\sigma^2_n = 1$.

case	n	C_p	MC_p	BC_p	GCV	case	n	C_p	MC_p	BC_p	GCV
1*	30	71.9	71.8	85.5	71.1	7	30	80.8	79.7	89.0	79.4
	50	72.7	72.1	90.9	73.3		50	85.5	85.0	93.8	85.2
	100	74.8	74.7	93.8	74.9		100	89.6	89.3	97.6	89.5
	300	81.0	80.7	97.9	80.6		300	93.1	93.0	99.5	92.7
	500	82.8	83.0	98.9	64.7		500	89.3	89.2	99.3	77.6
2	30	74.1	74.1	78.8	74.2	8	30	76.1	75.3	77.9	75.7
	50	79.2	79.3	85.3	80.3		50	80.8	80.3	83.6	80.7
	100	88.7	89.3	95.1	89.2		100	88.2	88.2	90.1	88.2
	300	93.8	94.0	98.8	93.8		300	97.1	96.8	97.9	96.8
	500	97.2	96.5	98.9	95.1		500	98.8	98.3	99.3	98.2
3*	30	63.1	63.2	74.2	63.8	9	30	25.9	18.0	26.0	17.9
	50	67.0	67.0	80.9	66.8		50	28.2	21.3	28.5	21.1
	100	73.8	73.6	89.6	73.6		100	38.2	32.0	38.8	32.0
	300	77.0	77.0	96.1	77.5		300	52.8	50.2	58.6	49.9
	500	88.6	88.3	98.5	81.2		500	60.8	60.3	67.0	55.9
4*	30	57.3	55.2	57.7	55.5	10	30	2.3	4.0	0.2	5.6
	50	70.3	67.3	70.9	67.7		50	12.7	12.1	1.6	11.7
	100	80.0	75.7	83.6	76.0		100	38.6	36.2	7.2	36.4
	300	81.2	75.6	98.6	75.5		300	77.5	77.3	55.7	77.1
	500	87.2	77.2	98.9	68.4		500	49.3	50.1	46.7	50.4
5	30	85.3	55.7	87.5	56.1	11	30	1.2	1.2	0.5	1.2
	50	87.9	56.9	90.5	57.2		50	4.6	4.8	1.0	4.5
	100	89.1	55.4	95.7	54.9		100	12.9	13.2	2.9	13.4
	300	87.4	52.8	98.4	52.4		300	24.9	25.3	15.2	25.6
	500	95.8	79.4	99.6	77.1		500	61.1	61.6	38.0	64.4
6*	30	54.8	54.1	55.4	54.5	12	30	1.5	4.9	0.0	3.3
	50	63.7	63.1	65.6	63.0		50	3.6	6.5	0.1	5.3
	100	71.4	70.3	77.4	70.8		100	12.8	17.5	0.3	17.1
	300	83.5	81.9	90.4	82.1		300	53.8	52.3	11.8	52.0
	500	88.3	88.1	95.2	82.3		500	8.7	10.8	2.8	16.7

37
Table 4. The selection probability under each case when $\sigma^2 = 2$.

case	n	C_p	MC_p	BC_p	GCV	case	n	C_p	MC_p	BC_p	GCV
1*	30	62.9	61.6	79.1	62.1	7	30	65.8	64.2	75.0	64.7
	50	65.2	64.0	85.5	65.1		50	72.4	71.1	83.0	70.5
	100	69.1	68.1	91.1	68.2		100	76.2	75.3	91.6	76.4
	300	75.7	75.1	95.8	75.3		300	87.6	87.0	98.0	87.3
	500	79.2	78.6	98.4	73.2		500	86.5	86.4	98.8	82.3
2	30	46.2	45.5	44.9	46.2	8	30	48.5	46.0	48.7	45.7
	50	56.7	56.1	56.9	56.2		50	54.3	52.9	54.6	53.0
	100	69.9	69.5	73.6	69.9		100	66.0	64.8	67.1	65.3
	300	84.6	84.6	93.8	84.9		300	83.3	83.3	86.6	83.4
	500	90.6	88.3	98.5	86.8		500	89.7	89.1	93.5	88.4
3*	30	50.9	50.7	57.8	51.1	9	30	10.9	7.6	10.9	7.6
	50	54.2	53.7	66.1	53.5		50	14.6	8.2	14.8	8.0
	100	61.2	61.2	76.4	61.3		100	19.9	12.9	20.0	12.9
	300	72.2	72.3	90.0	72.1		300	35.2	28.8	35.5	28.8
	500	84.4	83.0	95.2	79.1		500	42.5	39.9	42.8	39.5
4*	30	29.8	27.7	30.4	27.9	10	30	1.0	7.7	0.5	7.4
	50	37.5	35.0	38.1	35.0		50	1.8	7.3	0.6	7.4
	100	47.5	45.1	48.4	45.1		100	5.2	10.1	0.9	10.0
	300	74.2	71.0	75.0	71.5		300	22.5	20.0	1.1	19.6
	500	83.6	72.7	86.3	70.0		500	35.0	37.0	13.0	38.1
5	30	69.6	40.3	71.1	40.2	11	30	0.1	0.2	0.1	0.3
	50	71.7	45.6	73.2	45.6		50	0.0	0.1	0.0	0.1
	100	78.2	47.9	80.9	47.9		100	0.1	0.3	0.0	0.3
	300	86.6	54.1	93.7	54.3		300	5.8	5.8	0.3	5.6
	500	91.5	75.1	97.7	74.5		500	17.9	18.3	0.6	24.1
6*	30	28.3	28.4	28.4	28.5	12	30	0.5	2.3	0.0	2.1
	50	37.5	37.3	37.6	37.6		50	0.7	3.1	0.0	3.0
	100	47.0	45.9	47.1	45.7		100	1.1	4.3	0.0	4.0
	300	65.9	64.3	68.7	64.4		300	5.8	10.3	0.0	9.4
	500	74.1	73.3	78.7	70.8		500	2.6	6.7	0.3	7.7
References

Craven, P. and Wahba, G. (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math. 31: 377–403.

Fujikoshi, Y. and Satoh, K. (1997) Modified AIC and C_p in multivariate linear regression, Biometrika 84: 707–716.

Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986) Residual variance and residual pattern in nonlinear regression model, Biometrika 73: 625–633.

Kamo, K. and Yoshimoto, A. (2013) Comparative analysis of GFs based on Mallows’ C_p type criterion, FORMATH 12: 133–147.

Mallows, C. L. (1973) Some Comments on C_p, Technometrics 15: 611–675.

Schwarz, G. (1978) Estimating the dimension of a model, Ann. Statist. 6: 461–464.

Ye, J. (1998) On measuring and correcting the effects of data mining and model selection, J. Amer. Statist. Assoc. 93: 120–131.

Zeide, B. (1993) Analysis of growth equations, Forest Sci. 39: 594–616.