Wolfram syndrome: MAMs’ connection?

Benjamin Delprat1,2, Tanguï Maurice1,2 and Cécile Delettre2,3

Abstract

Wolfram syndrome (WS) is a rare neurodegenerative disease, the main pathological hallmarks of which associate with diabetes, optic atrophy, and deafness. Other symptoms may be identified in some but not all patients. Prognosis is poor, with death occurring around 35 years of age. To date, no treatment is available. WS was first described as amitochondriopathy. However, the localization of the protein on the endoplasmic reticulum (ER) membrane challenged this hypothesis. ER contacts mitochondria to ensure effective Ca2+ transfer, lipids transfer, and apoptosis within stabilized and functionalized microdomains, termed “mitochondria-associated ER membranes” (MAMs). Two types of WS are characterized so far and Wolfram syndrome type 2 is due to mutation in CISD2, a protein mostly expressed in MAMs. The aim of the present review is to collect evidences showing that WS is indeed a mitochondriopathy, with established MAM dysfunction, and thus share commonalities with several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, as well as metabolic diseases, such as diabetes.

Facts

● Wolfram syndrome is a rare neurodegenerative disease.
● Wolfram syndrome symptoms looks like mitochondriopathy.
● MAMs are key players in neurodegenerative diseases.
● Two types of Wolfram syndrome are described.
● WFS1, responsible for Wolfram syndrome type 1, is a transmembrane protein that regulates Ca2+ homeostasis.
● CISD2, responsible for Wolfram syndrome type 2, is involved in Ca2+ homeostasis through MAMs.

Open questions

● How an ER protein (WFS1) may have an essential role in mitochondrial physiology?
● What are the interacting partners of CISD2 and WFS1 in MAMs?
● Do WFS1 and CISD2 share a common signaling pathway?
● Does MAM dysregulation share common pathways in neurodegenerative diseases?

Physiopathology of the Wolfram syndrome (WS): W1, W2, and WS-like syndrome

The WS is a rare multi-systemic genetic disease characterized by devastating clinical symptoms (Table 1). WS generally associates with diabetes insipidus, diabetes mellitus, optic atrophy, and deafness—the disease being accordingly known as DIDMOAD1. It can also provoke ataxia and other neurological symptoms2, renal and vesical dysfunctions3, and psychiatric outcomes4. The prognosis of the syndrome is poor as most patients die prematurely with severe neurological disabilities, including bulbar dysfunction and organic brain syndrome5. The natural history of WS shows diabetes mellitus during the first decade of life together with progressive optic atrophy. Deafness, neuropathic bladder, and diabetes insipidus appear during the second decade. The median age of death for patients is around 35 years and death occurs usually from respiratory failure, as a result of brain stem atrophy, or from complications of urinary tract atony3.

Clinically, patients with WS have benefited, up to now, essentially from symptomatic or substitutive therapies targeting the diabetes mellitus or diabetes insipidus.
However, identification of pathological molecular mechanisms has stimulated new approaches, and two clinical trials are currently initiated. They both target discrete endpoints of WFS1 deficiency, directly associated with cell death. First, Valproate is tested and expected to oppose the downregulation of p21cip (T. Barrett, personal communication). Indeed, Gharanei et al. analyzed WFS1 role in secretory granules from human neuroblastoma cells and showed that cell cycle assays showed reduced p21cip protein levels in WFS1-depleted cells. Moreover, an inverse association was measured between p21 cip expression and apoptosis. Second, the ryanodine receptor antagonist Dantrolene (ClinicalTrials.gov Identifier: NCT02829268; F. Urano, personal communication) is expected to counteract calcium leakage from the endoplasmic reticulum (ER).

WS is an autosomal-recessive genetic disease and the causative gene is WFS1, encoding for the Wolframin (WFS1) protein. WFS1 is involved in the regulation of ER calcium homeostasis. ER serves as a cellular calcium store and quality control system for identifying abnormally conformed proteins and targeting them to degradation. In case of pathological accumulation of aberrant proteins, the ER initiates a stress response, termed unfolded protein response (UPR). Pancreatic β-cell death and neuronal cell dysfunction in WS are indeed considered to be due to high levels of ER stress in affected cells. WFS1 is therefore a component of UPR and its deficiency, due to chronic ER stress, leads to apoptosis in neuronal and pancreatic β-cells.

Other genetic disorders can be related to wolframin mutations. Mutations in WFS1 are not only found in WS with its autosomal-recessive inheritance but also in a variety of autosomal-dominant conditions. DFNA6/14/38 (OMIM #600965) is characterized by non-syndromic low-frequency hearing loss. The Wolfram-like syndrome (OMIM #614296) is characterized by progressive hearing loss, optic atrophy, and/or impaired glucose regulation. An example of Wolfram-like syndrome is a condition driven by the E864K missense mutation in exon-8 (c.2590G→A). First reported in 2006, Wolfram-like syndrome provokes a low-frequency sensorineural hearing loss, optic atrophy, and diabetes. Deafness presents a juvenile onset, but optic atrophy can appear at later ages. Some of these patients develop psychiatric complications as well. Furthermore, WFS1 mutations are also responsible for rare cases of non-syndromic autosomal-dominant diabetes, autosomal-dominant diabetes, and congenital hearing loss, or autosomal-dominant congenital cataract. Finally, as reported by.

Table 1 Symptoms of Wolfram syndrome

Typical symptoms	Details	Onset
Diabetes insipidus	Partial central (51–87%)	14 years (3 months–40 years)
Diabetes mellitus	β-Cell loss; lower daily insulin requirement than T1D	6 years (3 weeks–16 years)
Optic atrophy	Bilateral. Diminished VA, color vision, visual fields; OD pallor, large OD, RNFL thinning, RGC loss, afferent pupillary defects, strabismus, nystagmus, cataracts (29.6–66.6%), pigmentary retinopathy (30%), diabetic retinopathy (7.6–34.6%)	11 years (6 weeks–19 years), cataracts sometimes earlier, legal blindness within 8 years after the initial diagnosis
Deafness	Sensorineural high frequency hearing loss, slowly progressing (62%)	65% of patients, onset from infancy to adolescence
Ataxia	Most common neurological symptom: problems of balance and coordination	60% of patients, onset in early adulthood
Urinary tract complications	Neurogenic bladder, bladder incontinence, urinary tract infections	60–90% of patients

Common symptoms

Details
General
Neurological
Psychiatric
Autonomic dysfunction
Endocrine

Modified from Urano 2016 with bibliography cited in the text.
imbalance of Ca2+ related to mitochondrial malfunction, are caused by factor36,40. This latter promotes the expression of ER- and subsequent translation of an active transcription factor
36. IRE1 acts as an endoribonuclease and its activation facilitates the unconventional splicing of XBP-1 mRNA. The active cleaved form of ATF6 then translocates into the nucleus and binds to the promoter of UPR
inducible genes, resulting in an upregulation of proteins, including protein disulfide isomerase, lectin, and oxidoferreductase—that prevent accumulation of stress-induced unfolded proteins and restore ER homeostasis.

Both WS1 and WS2 syndromes, even being not directly related to mitochondrial malfunction, are caused by imbalance of Ca2+ homeostasis originating from the ER and therefore incorporate a secondary mitochondrial aspect.

ER stress in physiological and pathological conditions

When the ER is stressed, it triggers the UPR adaptive response. UPR will lead to overexpression of specific ER proteins—including protein disulfide isomerase, lectin, and oxidoferreductase—that prevent accumulation of stress—induced unfolded proteins and restore ER homeostasis.

Three ER-resident transmembrane proteins function as stress sensors: RNA-activated protein kinase-like endoplasmic reticular kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring kinase 1 (IRE1). Their activations transduce the unfolded protein stress signal across ER membrane and lead to UPR activation36.

Activation of the PERK pathway leads to attenuation of general protein translation by phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α)37. Phosphorylated eIF2α can selectively enhance the translation of mRNAs containing inhibitory upstream open reading frames in their 5’ untranslated region, such as ATF438. In addition, under ER stress, ATF6 acts as an active transcription factor by translocating to the Golgi complex, where it is cleaved by site-1 and site-2 proteases39. The active cleaved form of ATF6 then translocates into the nucleus and binds to the promoter of UPR-inducible genes, resulting in an upregulation of proteins, the role of which is to adjust ER protein folding, including ER chaperones and X-box-binding protein-1 (XBP-1)36. IRE1 acts as an endoribonuclease and its activation facilitates the unconventional splicing of XBP-1 mRNA and subsequent translation of an active transcription factor36. This latter promotes the expression of ER-resident chaperones, which facilitate protein folding in the ER36,40. If these adaptive coordinated responses can not eliminate inappropriately folded proteins during prolonged and severe ER stress, the UPR elicits a pro-apoptotic pathway triggering apoptotic cell death41.

ER stress is implicated in numerous pathologies. It is involved, for instance, in cancer42; in diabetes43, in cardiomyopathy43, and in neurological disorders44,45. In this review, we will focus on neurological disorders. In Alzheimer’s diseases (AD), the expression level of BiP is increased in the hippocampus and temporal cortex of patients46,47. Moreover, phosphorylation of IRE1 in AD brain tissues48 and PERK and its main target eIF2α have been detected in hippocampal structure where they colocalized with abnormal hyperphosphorylated Tau, a hallmark of AD49. In Parkinson’s disease (PD), an increased expression level of BiP was also shown in post-mortem nigral dopaminergic neurons50. Moreover, α-synuclein aggregation activated the UPR-related activating transcription factor 4/cAMP-responsive element-2. These findings suggest that activation of the UPR pathway in the PD brain is associated with α-synuclein accumulation. In amyotrophic lateral sclerosis (ALS), the expression level of the three major components of the UPR, PERK, IRE1, and ATF6 is increased in the spinal cord of patients51–54. Finally, in Huntington’s disease (HD), mutant huntingtin affects the normal function of ER-associated degradation (ERAD) system in PC12 cells55. Impaired ERAD leads to accumulation of misfolded proteins in the ER56. In WS, WFS1 inhibits the UPR by targeting ATF6 for degradation by the proteasome in vitro57. In the retina, WFS1 deficiency leads to an increased in the protein expression level of BiP, PDI, and IRE111. ER stress-mediated cell death may be triggered by ER membrane permeabilization. In brain tissues from WFS1 knockout (KO) mice, more ER proteins were found in the cytosol, suggesting an ER permeabilization13. Finally, dominant mutation of WFS1 induced the expression of ER stress response12. Taken together, these data highlighted the essential role of the ER stress and UPR in most of the neurodegenerative disorders and suggested that these debilitating pathologies may share common physiopathological signaling pathways.

Interestingly, a substantial number of proteins involved in UPR are localized in mitochondria-associated ER membranes (MAMs)57. Mitofusin 2 (MFN2), a dynamin-like GTPase localized in the outer mitochondrial and ER membranes, modulates ER homeostasis since its deficiency leads to ER stress in vitro and in vivo38–40. Some ER chaperones involved in UPR are enriched in MAMs. The sigma-1 protein (S1R), for instance, binds BiP and inositol 1,4,5-trisphosphate receptor channel (IP3R)61. Upon ER Ca2+ depletion or via ligand stimulation, S1R dissociates from IP3R, leading to a prolonged Ca2+ signaling in to mitochondria via IP3R62,63. At the integrated
level, S1T has been shown to be implicated in neuro-protection and neuroplasticity. In addition, Calnexin, a type 1 integral membrane protein that helps in folding newly synthesized proteins is essential in mitigating ER stress. Finally, two major proteins involved in UPR, PERK, and IRE1 are enriched in MAMs. A more detailed description of the role of these proteins in MAM physiology is presented below.

MAMs: structure and function

Mitochondria are the powerhouse of cells in the organism. They play essential function in generating energetic metabolism, Ca\(^{2+}\) homeostasis, lipid synthesis, and apoptosis. To achieve these functions properly, mitochondria need to be spatially and temporally controlled. Mitochondria could make contact with different organelles in the cell, including peroxisomes, lysosomes, or the ER. Mitochondria interact with peroxisomes to assure \(\beta\)-oxidation, to eliminate reactive oxygen species, to insure peroxisome membrane dynamics, and to cooperate in viral combat. Close contacts between mitochondria and lysosomes are necessary for autophagy. Finally, mitochondria interaction with the ER is involved in lipid homeostasis, UPR, and Ca\(^{2+}\) transfer between the two organelles.

Interaction domains between mitochondria and ER, called MAMs, are dynamic structures sequestering more than a thousand different proteins that are necessary for structurally stabilizing MAMs and for the functional dialog between ER and mitochondria. Table 2 summarizes the most important proteins involved in MAM biology.

Proteins that play a role in MAMs' structure

In MAMs, the distance between ER and mitochondria should be maintained between 10 nm and 30 nm, in order to allow efficient protein interactions and focused Ca\(^{2+}\) exchange. Some proteins are involved in the tethering—by increasing contact site formation—or spacing—by increasing the distance between ER and mitochondria—of ER and mitochondrial membranes. One of the most characterized protein involved in MAMs' formation is MFN2. MFN2 homo-dimerizes or hetero-dimerizes with MFN1, another dynamin-like GTPase of the outer mitochondrial membrane, bridging ER and mitochondria (Fig. 1). The exact function of MFN2 as both a tether and spacer is still a matter of debate since both roles have been demonstrated in different experiments. For instance, downregulation or ablation of MFN2 provoked a decrease or an increase in ER–mitochondria contact sites. The mitochondrial ubiquitin protein ligase (MITOL) also regulates mitochondrial dynamics. Interestingly, MITOL binds to and regulates MFN2 in the mitochondria but not in the ER. Ubiquitination leads to oligomerization of MFN2 and to the tethering of MAMs.

MAMs' structural stability is also permitted by direct association of vesicle-associated membrane protein-associated protein B (VAPB), on the ER membrane, and protein tyrosine phosphatase interacting protein 51 (PTPIP51), on the outer mitochondrial membrane (Fig. 1). VAPB–PTPIP51 interaction fosters ER–mitochondria contact sites to regulate Ca\(^{2+}\) homeostasis and autophagy. This interaction has been shown to be specifically disrupted in ALS and PD, outlining the essential role of MAMs in neurodegenerative diseases (NDs). A last complex of proteins potentially involved in MAMs' tethering is the bridge between integral ER membrane protein (Bap31) and mitochondrial fission protein 1 (Fis1) in the outer mitochondrial membrane (Fig. 1). Fis1 triggers an apoptotic signal from mitochondria to the ER by interacting with Bap31 and provoking its cleavage into the pro-apoptotic p20Bap31 fragment. Moreover, another signaling protein, phosphofurin acidic cluster sorting protein 2 (PACS2), known to regulate ER–mitochondria communication, ER homeostasis, and apoptosis, may control the apposition of mitochondria along the ER (Fig. 1). PACS2 downregulation increased the distance between ER and mitochondria and triggered BAP31-dependent mitochondrial fragmentation and uncoupling from the ER. In contrast, PACS2 overexpression has been suggested to be responsible for increased contacts between ER and mitochondria in hippocampal neurons from a mouse model of AD.

Chami et al. described the particular role of a truncated form of sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase type 1 (SERCA1), called S1T, in mitochondrial dynamics (Fig. 1). Normal SERCA1 protein contains 10 transmembrane domains, whereas S1T contains only transmembrane domains 1–4 and is not able to pump Ca\(^{2+}\). S1T favored ER Ca\(^{2+}\) depletion due to increased Ca\(^{2+}\) leak, increased the number of ER-mitochondria contact sites, decreased the distance between ER and mitochondria, and inhibited mitochondrial dynamics. Taken together, the data suggested that S1T is a MAM protein that controls tethering of ER to mitochondria in a Ca\(^{2+}\)-dependent manner. The exact mechanism by which S1T modulates the tethering of ER to mitochondria is not fully understood, but it is tempting to speculate that S1T interacts with a not yet identified outer mitochondrial membrane protein that would efficiently impact the distance between ER and mitochondria. Therefore, S1T might be considered as a novel MAM structural protein. In opposition to S1T, overexpression of fetal and adult testis-expressed transcript protein homolog increased the distance between ER and mitochondria, by interacting with Mitofilin, on the mitochondrial side, and Emerin, on the ER side (Fig. 1). Increased MAM thickness...
reduced mitochondrial Ca\(^{2+}\) uptake and induced apoptosis\(^{97}\).

In yeast, contact between ER and mitochondria is controlled by a macrocomplex named ERMES\(^{98}\) and no functional ortholog of any ERMES proteins have been identified in mammals. Very recently, Hirabayashi et al.\(^ {99}\) identified PDZD8 as a novel ER-resident protein expressed at the ER–mitochondria interface (Fig. 1). PDZD8 contains an SMP domain functionally orthologous to the SMP domain of yeast Mmm1, a component of ERMES. They generated PDZD8-KO cells and determined that the number and the size of the contact were highly reduced in PDZD8-KO cells. This decrease is associated with a reduced Ca\(^{2+}\) transfer from the ER to mitochondria.

Cerqua et al.\(^ {100}\) showed that trichoplein/mitostatin (TpM) is expressed in MAMs and that is essential for the ER–mitochondria tethering. TpM is a keratin-binding protein that colocalizes with mitochondria\(^ {101}\) (Fig. 1). The protein is downregulated in various cancer-derived cells and in solid tumors. Indeed, when TpM is downregulated by short hairpin RNA (shRNA), the tethering is increased, whereas when TpM is overexpressed, the tethering is

Name	Localization	Function	Main interactors in MAMs	References
IP3R	ER	Ca\(^{2+}\) transport	GRP75, S1R	155
GRP75	Cytosol	Ca\(^{2+}\) transport	VDAC, IP3R	109
VDAC	Mitochondria	Ca\(^{2+}\) transport	GRP75	109
S1R	ER	Ca\(^{2+}\) transport, ER stress	IP3R, BiP	61
CISD2	ER/mitochondria	Ca\(^{2+}\) transport	CISD2, GRIMAPS	128
GRIMAPS	Cytosol	Ca\(^{2+}\) transport	CISD2	144
WFS1	ER	Ca\(^{2+}\) transport, ER stress	SERCA	9, 10, 156
SERCA2B	ER	Ca\(^{2+}\) transport	WFS1	149
VAPB	ER	ER/mitochondria tethering	PTPIP51	89
PTPIP51	Mitochondria	ER/mitochondria tethering	VAPB	89
FIS1	Mitochondria	ER/mitochondria tethering	BAP31	93
BAP31	ER	ER/mitochondria tethering	FIS1, Calnexin	93
PACS2	Cytosol	ER/mitochondria tethering	BAP31	157
MITOL	Cytosol	ER/mitochondria tethering	Mfn2	88
Mfn2	ER/mitochondria	ER/mitochondria tethering, mitochondrial morphology	Mfn1/Mfn2	83-87
Mfn1	Mitochondria	ER/mitochondria tethering, mitochondrial morphology	Mfn2	83-87
S1T	ER	ER/mitochondria tethering	?	96
PDZD8	ER	ER/mitochondria tethering	?	99
TpM	ER	ER/mitochondria tethering	?	100
TFE1	Mitochondria	ER/mitochondria tethering	Mitofin, Emerin	97
Mitofilin	Mitochondria	ER/mitochondria tethering	FATE1	97
Emerin	ER	ER/mitochondria tethering	FATE1	97
PML	Cytosol	Apoptosis	?	158
PERK	ER	ER stress, ER/mitochondria tethering	?	66, 159
Calnexin	ER	ER stress	SERCA2b	130, 160
BiP	ER	ER stress	IP3R, S1R	61
α-synuclein	ER	ER stress	?	121, 161
HTT	ER	ER stress	?	162, 163
PS1-2	ER	APP processing	APP	116
APOE4	ER	Lipid synthesis	?	120

Summary of the most important structural and functional roles of important MAM-resident proteins mentioned in this review along with the corresponding references.
decreased. Moreover, mitochondrial morphology is dependent on the expression level of TpM, with a higher proportion of elongated mitochondria when TpM is downregulated. Finally, PERK, a key player in the UPR, is also localized to the MAMs (Fig. 1). Verfaillie et al. demonstrated that PERK−/− mouse embryonic fibroblasts (MEFs) showed altered ER morphology and Ca²⁺ signaling as well as decreased ER–mitochondria contact sites. Indeed, in PERK−/− MEFs, the fraction of mitochondria overlapping ER is decreased. Interestingly, overexpression of a PERK dead mutant restored the contact sites, whereas overexpression of a truncated C-ter cytoplasmic PERK did not. These data showed that cytoplasmic domain of PERK is essential for the ER–mitochondria tethering but not its kinase activity.

Proteins that play a role in MAMs' function

One of the most important roles of MAMs is therefore to allow direct Ca²⁺ transfer between ER and mitochondria and this is mainly allowed by the ER transmembrane IP3R (Fig. 1). The ER is the major Ca²⁺ storage organelle within the cell with a steady-state Ca²⁺ concentration in the ER, [Ca²⁺]ER, of approximately 1 mM. At resting state, Ca²⁺ concentration in the cytosol, [Ca²⁺]c, is maintained at 100 nM. Ca²⁺ efflux from the ER contributes rapidly and efficiently to a rising in [Ca²⁺]c. The juxtaposition, in close contacts, of ER and mitochondria allows focused Ca²⁺ entry into the mitochondria. A dynamic transfer should be tightly regulated in order to avoid Ca²⁺ overload and consequent adverse effect triggering apoptosis. Under physiological conditions, Ca²⁺ originating from the ER accumulates into the mitochondrial matrix and modulates Ca²⁺-sensitive dehydrogenases of the tricarboxylic acid cycle and metabolite carriers, stimulating oxidative metabolism. After being released by the ER, Ca²⁺ is taken up by the mitochondria through the outer mitochondrial transmembrane voltage-dependent anion channel (VDAC). Among the three isoforms, VDAC1 is physically linked to IP3R through the Hsp70 family chaperone GRP75, optimizing Ca²⁺ transfer from IP3R to mitochondria (Fig. 1). Indeed, downregulation of GRP75 impaired IP3R-mediated Ca²⁺ transfer into mitochondria. The complex is, however, is regulated by several partner proteins. The promyelocytic leukemia (PML) tumor suppressor is a modulator of apoptosis. PML is primarily localized in the nucleus but Giorgi et al. detected a fraction of the protein in MAMs (Fig. 1). Since MAM is the site of Ca²⁺ transfer between ER and mitochondria, they measured Ca²⁺ concentration in ER, cytoplasm, and mitochondria and they showed a decrease in all compartments. To determine whether these anomalies were due to the fraction of PML expressed in the MAMs, they overexpressed a chimeric PML targeted to the outer surface of the ER. Using this approach, they elegantly demonstrated...
that the ER-expressed PML is necessary for a normal Ca\(^{2+}\) transfer between ER and mitochondria\(^{111}\).

MAM dysfunction is a common trait in neurodegenerative pathologies

Recently, numerous evidences accumulated suggesting that MAM dysfunction contributes to the neurodegenerative processes in AD, PD, ALS, or HD\(^{112-114}\). In AD, both presenilin-1 and presenilin-2—the two major components of the γ-secretase complex that processes amyloid precursor protein (APP) to release amyloid-β proteins (Aβ) and that can be mutated in familial forms of AD—are present in MAMs\(^{115}\) (Fig. 1). MAMs are a site of production of Aβ and this is consistent with the localization of presenilins in these regions\(^{116-118}\). Moreover, mutations of presenilins are a cause of familial forms of AD with early onset and mutant presenilins are catalytic loss-of-function mutants\(^{119}\). Both loss of presenilins and expression of mutant presenilins have been shown to affect ER–mitochondria associations and related functions\(^{116}\). Moreover, MAM are particularly sensitive to the neurodegenerative process since treatment of neurons with Aβ affects ER–mitochondria contacts; alterations of ER–mitochondria association and function are seen in APP transgenic mouse models; and small interfering RNA knockdown of MAM proteins (S1R, phosphofurin acidic cluster sorting protein-2) results in neurodegeneration while MAM proteins are upregulated in AD mouse models\(^{95}\). Finally, the ε4 allele of apolipoprotein E—ApoE4, the main genetic risk factor for AD—upregulates MAM activity\(^{120}\).

In PD, the neurodegenerative process affecting dopaminergic neurons from the nigro-striatal pathway is characterized by accumulation of pathological α-synuclein protein. A subpopulation of α-synuclein resides at the MAM\(^{121}\) (Fig. 1) and mutations in α-synuclein cause an alteration in the regulation of MAM function\(^{121}\).

In ALS, an hyper-phosphorylated, ubiquitinated, and cleaved form of transactive response DNA-binding protein 43 kDa (TDP-43) is the major pathological protein in frontotemporal dementia and ALS\(^{122}\). Pathological TDP-43 induces activation of glycogen synthase kinase-3β and perturbs ER–mitochondria association and function are seen in APP transgenic mouse models; and small interfering RNA knockdown of MAM proteins (S1R, phosphofurin acidic cluster sorting protein-2) results in neurodegeneration while MAM proteins are upregulated in AD mouse models\(^{95}\). Finally, the ε4 allele of apolipoprotein E—ApoE4, the main genetic risk factor for AD—upregulates MAM activity\(^{120}\).

Alterations of ER–mitochondria associations may also occur in HD, but further research is required to provide stronger evidence. For instance, upregulation of striatal S1R was reported in YAC HD mice and HD patients (Ryskamp et al., Neurobiol Dis 2017), but it is unclear whether these alterations are causal mechanisms or compensatory regulations.

However, evidences are clearly accumulating showing that pathological proteins, responsible for the toxicity observed in neurodegenerative pathologies, particularly accumulate within MAM and that the concomitant/subsequent MAM alterations observed participate in the resulting toxicity.

Could WS2 also be a MAM-related pathology?

CDGSH iron-sulfur domain-containing protein 2 (CISD2, also known as Miner1, NAF-1, ERIS) was initially described as the cause of WS2 in 2007\(^{128}\). CISD2 is localized in the ER membrane and colocalizes with calnexin, a well-known ER chaperone\(^{128}\) (Fig. 2). Remarkably, ER chaperones have emerged as important proteins for MAM functions. ER chaperones are important for the folding of newly imported polypeptides\(^{129}\), and during the past decade, it has been shown that some of them are enriched in the MAMs. For example, S1R\(^{61}\), BiP\(^{61}\), and Calnexin\(^{130}\) are associated with MAM Ca\(^{2+}\) handling proteins to adjust Ca\(^{2+}\) import to or exit from the ER in order to control apoptosis and mitochondrial metabolism (see ref. 131 for a review). Surprisingly, CISD2 did not
interact with WFS1. Resting [Ca$^{2+}$]$_{i}$ were not different between a cell line derived from an affected patient and a cell line derived from a control. In contrast, when stimulated by thapsigargin, a SERCA inhibitor, Ca$^{2+}$ release was more significantly increased in the affected cell line than in the unaffected cell line. This inhibition induces a depletion of the ER Ca$^{2+}$ store thus giving an indirect measure of the ER Ca$^{2+}$ content. The ER Ca$^{2+}$ content in lymphoblastoid WS2 patient therefore appeared higher than that in control. This elevated [Ca$^{2+}$]$_{i}$ might be responsible for the degeneration of β-cells and neurons since ER Ca$^{2+}$ overload increases the cell susceptibility to apoptosis. Similar results were obtained in fibroblasts from WS2 patients. In addition, the number of ER–mitochondrial contacts was increased in patient fibroblasts compared to controls, as visualized using transmission electron microscopy (TEM). This observation was confirmed in living cell by analyzing the colocalization between ER, using the GFP Sec61b marker, and mitochondria, using MitoTracker. Finally, even if no ultrastructural abnormalities could be observed in mitochondria preparations from patients, both the average length and volume of mitochondrial fragments were increased in fibroblasts from patients. The more fused and elongated mitochondrial network was associated, in a respiratory chain defect in complexes I and II of the mitochondrial respiratory chain.

In 2009, the group of Tsai generated a mutant mice in which the expression of Cisd2 was abolished to study the role of Cisd2 in development and physiopathology. The mice showed a shortened lifespan probably due to a premature aging phenotype. Using TEM, they observed that the phenotype was linked to mitochondrial degeneration and autophagy. Interestingly, in contrast to the data from Amr et al., the expression of Cisd2 was measured in the outer mitochondrial membrane and not in the ER. Remarkably, lack of Cisd2 in mice led to respiratory chain dysfunction, suggesting that WS2 is finally a mitochondria-related disorder. On the contrary, mice overexpressing Cisd2 showed delayed aging and restored mitochondrial complex functionality. Taken together, these studies demonstrated an essential role of Cisd2 in mitochondrial normal function.

Cisd2 was identified as a B-cell lymphoma 2 (Bcl-2) interacting protein to regulate autophagy, confirming the observation by Tsai’s group in their mutant mice. Bcl-2 is a well-known antiapoptotic protein that regulates the outer membrane permeabilization. In addition to its mitochondrial localization, Bcl-2 also localized to the ER membrane (Fig. 2). This ER localization seems necessary for the inhibition of autophagy. Indeed, autophagy, which is a major intracellular process for the degradation and recycling of proteins and cytoplasmic damaged organelles, is inhibited when Bcl-2 binds to Beclin 1. Cisd2 binds Bcl-2 at the ER and is required for Bcl-2 to inhibit Beclin 1-mediated autophagy. In addition, Cisd2 interacts with IP3R. This interaction seems to intervene in the depressed levels of ER Ca$^{2+}$ stores following elevated Bcl-2 (Bcl-2b5) at the ER. To extend these findings, Ca$^{2+}$-sensitive ER-targeted aequorins were used to directly measure changes in luminal [Ca$^{2+}$]$_{i}$. The results confirmed that Bcl-2b5 required Cisd2 in order to reduce ER Ca$^{2+}$ stores. Notably, Bcl-2 interacts also with IP3R to inhibit Ca$^{2+}$ release. Taken together, all these data suggest that Cisd2, IP3R, and Bcl-2 form a macrocomplex to regulate Ca$^{2+}$ signaling and MAMs' physiology.

The conflicting localization of Cisd2, either in ER or outer mitochondrial membrane, was resolved by Murphy’s group in 2013. After a subcellular fractionation of ER, mitochondria, and MAM fractions from the rat liver, they observed that Cisd2 was most abundant in ER-enriched fraction and not detectable in purified mitochondria. The protein was also abundant in MAM fraction. To address the impact of Cisd2 loss on Ca$^{2+}$ homeostasis and mitochondrial activity, they used Cisd2 KO mouse embryonic cells (MEFs). Interestingly, after treatment with histamine, ER Ca$^{2+}$ release was higher in Cisd2 KO than in wild-type MEFs. Consequently, mitochondrial Ca$^{2+}$ uptake was greater in Cisd2 KO than in wild-type MEFs. They concluded that Cisd2 is a key determinant in regulating not only ER but also mitochondrial Ca$^{2+}$ homeostasis. The increase of mitochondrial Ca$^{2+}$ loading in Cisd2 KO cells was followed by a higher oxygen consumption rate for both maximally stimulated and basal measure conditions.

Loss of function of Cisd2 leads to neurons and β-cells death, but the exact mechanism is not fully understood. It has recently been shown that downregulation of Cisd2 in mouse neuronal NSC34 cells as well as in induced pluripotent stem cells from WS patients triggers cell death by overactivation of the calcium-dependent proapoptotic protease calpain-2. This activation seems to be due to the increase of the [Ca$^{2+}$]$_{l}$ in cytosol, failed to block cell death provoked by Cisd2 knockdown. These observations therefore suggested that Cisd2 does not directly affect ER Ca$^{2+}$ homeostasis.

Cisd2 has been shown to regulate the differentiation and functioning of adipocytes. Indeed, Cisd2 deficiency increase cytosolic Ca$^{2+}$ and impairs the Ca$^{2+}$ buffering capability of mitochondria. This increase is supposed to impair the in vitro differentiation of primary MEFs into adipocytes. This defect would be due to the lack interaction of Cisd2 with GTPase of the immune-associated nucleotide binding protein 5 (Gimap5) in MAMs (Fig. 2).
Indeed, together, these proteins regulate mitochondrial Ca2+ influx and the maintenance of intracellular Ca2+ homeostasis. Moreover, Cisd2 deficiency activates calcineurin, which then acts as a negative regulatory effect of white adipogenesis144. Loss of function of Cisd2 is not only responsible for adipocyte differentiation but also for osteogenic differentiation145. This alteration of the osteogenic differentiation is also due to an increase in the cytosolic Ca2+ concentration.

Is MAMs’ dysfunction playing a role in WS1 pathology?

The first evidence of a potential functional role of WFS1 in MAMs came from the observations that WFS1 is present in MAM fraction from human fibroblasts146, mouse brain samples81, and huh7 cells80 (Fig. 3). Moreover, reconstitution of wolframin from oocyte membranes into planar lipid bilayers was able to induce a large IP3-dependent cation-selective ion channel, blocked by Mg2+ or Ca2+147. IP3 was able to activate channels in the fused bilayers similarly as channel components induced by wolframin expression. These observations were strengthened by a recent work by Cagalinec et al.148. Using Wfs1 downregulation or KO models, the authors described that Wfs1 deficiency in neurons led to dramatic changes in mitochondrial dynamics, with inhibited mitochondrial fusion, altered mitochondrial trafficking, and increased autophagy. Moreover, lack of Wfs1 induced ER stress, IP3R dysfunction, and disturbed [Ca2+]c homeostasis148.

Finally, WFS1 appears to be a negative regulator of SERCA2b expression in the ER (Fig. 3). Zatyka et al.149 observed that SERCA2b expression was elevated in several Wfs1-depleted cells models and primary islets. They demonstrated a novel interaction between Wfs1 and SERCA2b by co-immunoprecipitation in COS7 cells and with endogenous proteins in human neuroblastoma cells149. Using MG-132 proteasome inhibitor, they concluded that WFS1 targets SERCA2b to the proteasome for degradation. Since SERCA2b is expressed in MAMs and is a well-known effector of ER Ca2+ uptake150, Wfs1 may be a novel MAM physiological effector essential for Ca2+ homeostasis. In contrast, Morikawa et al.151 described a reduced mRNA level of SERCA2b in HEK-293 cells transfected with mutant WFS1 cDNA compared to HEK-293 cells transfected with wild-type WFS1 cDNA. This elevation of [Ca2+]c is associated with an increase of the mRNA level of CCAAT-enhancer-binding protein homologous protein, leading to ER stress-induced cell apoptosis152. In another study, Hara et al.153 demonstrated that downregulation of WFS1 via shRNA induced an increase in [Ca2+]c in β-cell. They proposed that such an increase may activate calpain-2 that will lead to β-cell death. Since no information on the protein expression level of SERCA2b was provided, more experiments are needed in order to clarify the real impact of the absence of WFS1 on SERCA2b expression and activity.

Conclusions

The aim of this review was to integrate WS as a novel neurodegenerative MAMpathy together with AD, PD, HD, and ALS112–114. Indeed, CISD2 has been shown to play a role in ER–mitochondria Ca2+ signaling and regulation of autophagy and CISD2 deficient leads to ER stress and apoptosis. In addition, WFS1 regulate ER Ca2+ homeostasis by controlling the expression level of SERCA2b and WFS1 deficiency leads to ER stress and cell death. Since the majority of the case of NDs is sporadic and since WS is a rare genetic disorder, WS may be useful for the understanding of MAMs in a broader context. Finally, either in classical ND or in WS, there is a defect in MAMs and the presence of ER stress. It should be interesting to determine whether these two phenomena are tightly linked or are two independent mechanisms responsible for the pathology.

Acknowledgements

This work was supported by external resources from "Institut National de la Sante et de la Recherche Medicales" (INSERM), Universite de Montpellier, and Association Syndrome de Wolfram (Grand-Champ, France) and grants from the Agence Nationale pour la Recherche (ANR-12-JSV1-0008-01), Fondation pour la Recherche Medicale, and Fondation de France.
Received: 30 June 2017 Revised: 13 February 2018 Accepted: 13 February 2018

References

1. Banett, T. G., Bundey, S. E. & Macleod, A. F. Neurodegeneration and diabetes UK: nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 346, 1458–1463 (1995).

2. Grosse Aldenhovel, H. B., Gallenkamp, U. & Sulemana, C. A. Juvenile onset diabetes mellitus, central diabetes insipidus and optic atrophy (Wolfram syndrome)--neurological findings and prognostic implications. Neuropediatrics 22, 103–106 (1991).

3. Tekgül, S., Oge, O., Simsek, E., Yordam, N. & Kendi, S. Urological manifestations of the Wolfram syndrome: observations in 14 patients. J. Urol. 161, 616–617 (1999).

4. Swift, R. G., Perkins, D. O., Chase, C. L., Sadler, D. B. & Swift, M. Psychiatric disorders in 36 families with Wolfram syndrome. Am. J. Psychiatry 148, 775–779 (1991).

5. Kinsey, B. T., Swift, M., Dumont, R. H. & Swift, R. G. Morbidity and mortality in the Wolfram syndrome. Diabetes Care 18, 1566–1570 (1995).

6. Chareni, S. et al. Vacular-type H+-ATPase V1A subunit is a molecular partner of Wolfram syndrome 1 (WFS1) protein, which regulates its expression and stability. Hum. Mol. Genet. 22, 203–217 (2013).

7. Inoue, H. et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat. Genet. 20, 143–148 (1998).

8. Strom, T. M. et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum. Mol. Genet. 7, 2021–2028 (1998).

9. Fonseca, S. G. et al. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J. Biol. Chem. 280, 39609–39615 (2005).

10. Fonseca, S. G. et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Invest. 120, 744–755 (2010).

11. Bonnet Wesinger, D. et al. Impairment of visual function and retinal ER stress activation in Wfs1−/− deficient mice. Proc. Natl Acad. Sci. 111, 12922–12927 (2014).

12. De Franco, E. et al. Dominant ER stress-inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts. Diabetes. 66, 2044–2053 (2017).

13. Kanehara, K. et al.IRE1 prevents endoplasmic reticulum membrane permeabilization and cell death under pathological conditions. Sci. Signal. 8, ra61 (2015).

14. Bai, X. et al. Identification of a novel missense mutation in the WFS1 gene as a cause of autosomal dominant nonsyndromic sensorineural hearing loss in all frequencies. Am. J. Med. Genet. A 164A, 3052–3060 (2014).

15. Bramhall, N. F., Kallman, J. C., Verrall, A. M. & Street, V. A. A novel WFS1 mutation in a family with dominant low frequency sensorineural hearing loss with normal VEMP and EECoch findings. BMC Med. Genet. 9, 68 (2008).

16. Chaussenet, A. et al. Mutation update and uncommon phenotypes in a French cohort of 96 patients with WFS1-related disorders. Clin. Genet. 87, 430–439 (2015).

17. Gonçalves, A. C. et al. WFS1 and non-syndromic low-frequency sensorineural hearing loss: a novel mutation in a Portuguese case. Gene 538, 288–291 (2014).

18. Kunz, J. et al. Identification of a novel mutation in WFS1 in a family affected by low-frequency hearing impairment. Mutat. Res. 525, 121–124 (2003).

19. Lepere, M. M., Hall, J. W. 3rd, San Agustin, T. B. & Leal, S. M. Mutations in the Wolfram syndrome type 1 gene (WFS1) define a clinical entity of dominant low-frequency sensorineural hearing loss. Arch. Otolaryngol. Head Neck Surg. 129, 411–420 (2003).

20. Noguchi, Y. et al. A mutation in Wolfram syndrome type 1 gene in a Japanese family with autosomal dominant low-frequency sensorineural hearing loss. Acta Otolaryngol. 125, 1189–1194 (2005).

21. Sun, Y. et al. Identification of two novel missense WFS1 mutations, H696Y and R293H, in patients with non-syndromic low-frequency sensorineural hearing loss. J. Genet. Genom. 38, 71–76 (2011).

22. Young, T. L. et al. Non-syndromic progressive hearing loss DFNA38 is caused by heterozygous missense mutation in the Wolfram syndrome gene WFS1. Hum. Mol. Genet. 10, 2509–2514 (2001).

23. Elberg, H. et al. Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene. J. Med. Genet. 43, 435–440 (2006).

24. Fujiwara, T., Noguchi, Y., Ito, T., Takahashi, M. & Kitamura, K. Additional heterozygous 2507A>C mutation of WFS1 in progressive hearing loss at lower frequencies. Laryngoscope 120, 166–171 (2010).

25. Gurtis, N. et al. Two families with nonsyndromic low-frequency hearing loss harbor novel mutations in Wolfram syndrome gene 1. J. Mol. Med. (Berl) 83, 553–560 (2005).

26. Hogewind, B. F. et al. Autosomal dominant optic neuropathy and sensorineural hearing loss associated with a novel mutation of WFS1. Mol. Vis. 16, 26–35 (2010).

27. Renderdorff, N. D. et al. Identification of p.A684V missense mutation in the WFS1 gene as a frequent cause of autosomal dominant optic atrophy and hearing impairment. Am. J. Med. Genet. A 155A, 1298–1313 (2011).

28. Fukuoka, H., Kanda, Y., Ohga, S. & Usami, S. Mutations in the WFS1 gene are a frequent cause of autosomal dominant nonsyndromic low-frequency hearing loss in Japanese. J. Hum. Genet. 52, 510–515 (2007).

29. Rigoli, L. & Di Bella, C. Wolfram syndrome 1 and Wolfram syndrome 2. Curr. Opin. Pediatr. 24, 512–517 (2012).

30. Valero, R., Bannwarth, S., Roman, P., Paquis-Flucklinger, V. & Valette, B. Autosomal dominant transmission of diabetes and congenital hearing impairment secondary to a missense mutation in the WFS1 gene. Diabet. Med. 25, 657–661 (2008).

31. Bonnycastle, L. E. et al. Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation. Diabetes 62, 3943–3950 (2013).

32. Zalloua, P. A. et al. WFS1 mutations are frequent monogenic causes of juvenile-onset diabetes mellitus in Lebanese. Hum. Mol. Genet. 17, 4012–4021 (2008).

33. Berry, V. et al. Wolfram gene (WFS1) mutation causes autosomal dominant congenital nasal atresia in humans. Eur. J. Hum. Genet. 21, 1356–1360 (2013).

34. Grenier, J. et al. WFS1 in optic neuropathies: mutation findings in non-syndromic optic atrophy and assessment of clinical severity. Ophthalmology 123, 1899–1998 (2016).

35. Wiley, S. E. et al. Wolfram Syndrome protein, Mni1, regulates sulpharyl redox status, the unfolded protein response, and Ca2+-Homeostasis. EMBO Mol. Med. 5, 904–918 (2013).

36. Schroder, M. & Kaufman, R. J. Divergent roles of IRE1alpha and PERK in the redox status, the unfolded protein response, and Ca2+Ca2+ homeostasis. J. Cell Biol. 107, 881–891 (2001).

37. Schroder, M. & Kaufman, R. J. Divergent roles of IRE1 and PERK in the unfolded protein response. Curr. Mol. Med. 6, 5–36 (2006).

38. Lu, P. D., Harding, H. P. & Ron, D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 167, 27–33 (2004).

39. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

40. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

41. Ura, H., Dufey, E., Lisboa, F., Rojas-Rivera, D. & Hetz, C. When ER stress reaches a dead end. Biochem. Bophys. Acta 1833, 3507–3517 (2013).

42. Cnop, M., Toivonen, S., Igglo-Estève, M. & Salpea, P. Endoplasmic reticulum stress and eIF2 alpha phosphorylation: the Achilles heel of pancreatic beta cells. Mol. Metab. 6, 1024–1039 (2017).
66. Verfaillie, T. et al. PERK is required at the ER-mitochondrial contact sites to activate eIF2α signaling and to protect
against ER stress in pancreatic cancer cell lines. J. Cell Sci. 127, 4560–4570 (2014).

59. Ngo, G. A., Papaioniaou, K. N. & Walsh, K. Loss of mitofusin2 promotes leptin resistance and energy imbalance.
Cell Metab. 14, 688–691 (2010).

60. Schneeberger, M. et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance.
Cell 141, 688–691 (2010).

57. Ploegh, H. L. & Zhong, G. The unfolded protein response: a molecular circuit with multiple feedbacks.
Trends Biochem. Sci. 32, 257–264 (2007).

67. Schrader, M. & Yoon, Y. Mitochondria and peroxisomes are the 'big brother' and the 'little sister' closer than assumed?
Biochim. Biophys. Acta 1834, 1105–1114 (2007).

54. Moro, T., Hayashi, T., Hayashi, E. & Su, T. P. Sigma-1 receptor chaperone at the ER-mitochondron interface integrates
Ca2+ signaling and cell survival. Cell 131, 596–610 (2007).

68. Hunt, M. C., Tillander, V. & Alexson, S. E. Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes. Biochimie 98, 45–55 (2014).

70. Fransen, M., Nordgren, M., Wang, B.,apanasetis, O. & Van Veldhoven, P. A. Aging, age-related diseases and peroxisomes. Subcell. Biochem. 69, 45–65 (2013).

72. Schrader, M. & Yoon, Y. Mitochondria and peroxisomes are the 'big brother' and the 'little sister' closer than assumed? Biochim. Biophys. Acta 1834, 1105–1114 (2007).

603
97. Doghman-Bougnera, M. et al. FATE1 antagonizes calcium- and drug-induced apoptosis by uncoupling ER and mitochondria. EMBO Rep. 17, 1264–1280 (2016).
98. Herrera-Cruz, M. S. & Simmen, T. Of yeast, mice and men: MAMs come in two flavors. Biol. Direct 12, 3 (2017).
99. Hirabayashi, Y. et al. ER-mitochondria tethering by P O D 2 regulates Ca2(+)-dynamics in mammalian neurons. Science 358, 625–630 (2017).
100. Cerqua, C. et al. Trehoplenin/mitostatin regulates endoplasmic reticulum-mitochondria juxtaposition. EMBO Rep. 11, 854–860 (2010).
101. Vecchione, A. et al. MISTOSTATIN, a putative tumor suppressor on chromosome 12p21.1, is downregulated in human bladder and breast cancer. Oncogene 28, 257–269 (2009).
102. Hetz, C. & Papa, F. R. The unfolded protein response and cell fate control. Mol. Cell 69, 169–181 (2018).
103. Somlyo, A. P. Cell physiology: cellular site of calcium regulation. Nature 309, 516–517 (1984).
104. Pintor, F. et al. The Ca2+–concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690–2701 (2001).
105. Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135–139 (2003).
106. Williams, G. S., Boyman, L. & Lederer, W. J. Mitochondrial calcium and the regulation of metabolism in the heart. J. Mol. Cell. Cardiol. 78, 35–45 (2015).
107. McCormack, J. G., Haley, J. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990).
108. Messina, A., Reina, S., Guarino, F. & Delprat, V. D. A Cisoform in mammal s. EMBO Rep. 17, 1278–1279 (2016).
109. Saabadi, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+–channels. J. Cell Biol. 175, 901–911 (2006).
110. Salomoni, P. & Pandol, R. M. The role of PML in tumor suppression. Cell 108, 165–170 (2002).
111. Giorgi, C. et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247–1251 (2010).
112. Joshi, A. U., Kornfeld, O. S. & Mochly-Rosen, D. The entangled ER–mitochondria dynamics in mammalian neurons. EMBO J. 30, 369–374 (2011).
113. Paillusson, S. et al. Palmitoylation is the switch that assigns calnexin to quality control. J. Biol. Chem. 282, 2576–2587 (2007).
114. Paillusson, S. et al. There is no need for Wolfram syndrome. EMBO J. 31, 358–369 (2012).
115. Lynes, E. M. et al. Palmitoylated TMX and calnexin target to the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium 70, 64–78 (2018).
116. Marchi, S. et al. Endoplasmic reticulum–mitochondria communication through Ca2+–signaling: the importance of mitochondria-associated membranes (MAMs). Adv. Exp. Med. Biol. 997, 49–67 (2017).
117. Rouzier, C. et al. A novel OSDD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+–homeostasis and ER–mitochondria interactions. Hum. Mol. Genet. 26, 1786 (2017).
118. Chen, Y. F. et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 23, 1183–1194 (2009).
119. Wu, C. Y. et al. Persistent level of Cisd2 extends healthy lifespan and delays aging in mice. Hum. Mol. Genet. 21, 3956–3968 (2012).
120. Chang, N. C., Nguyen, M., Germain, M. & Shore, G. C. Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J. 29, 606–618 (2010).
121. Kale, J., Osterlund, E. J. & Andrews, D. W. BCL-2 family proteins: changes partners in the dance towards death. Cell Death Differ. 25, 65–80 (2018).
122. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).
123. Chang, N. C. et al. Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. Hum. Mol. Genet. 21, 2277–2287 (2012).
124. Chen, R. et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J. Cell Biol. 166, 193–203 (2004).
125. Vervliet, T., PAYS, B. J. & BULYNDYK, G. Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 35, 5079–5092 (2016).
126. Vervliet, T. et al. Modulation of Ca2+–signaling by anti-apoptotic B-cell lymphoma 2 proteins at the endoplasmic reticulum–mitochondrial interface. Front. Oncol. 7, 75 (2017).
127. Lu, S. et al. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc. Natl. Acad. Sci. USA 111, E5292–E5301 (2014).
128. Wang, C. H. et al. Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+–homeostasis. Hum. Mol. Genet. 23, 4770–4785 (2014).
129. Tsai, P. H. et al. Dysregulation of mitochondrial functions and osteogenic differentiation in Cisd2-deficient murine induced pluripotent stem cells. Stem Cells Dev. 24, 2561–2576 (2015).
130. Zhang, A. et al. Quantitative proteomic analysis of human cytomegalovirus-induced restructuring of endoplasmic reticulum–mitochondrial contacts at late times of infection. Mol. Cell. Protein. 10, M111 009936 (2011).
131. Osman, A. A. et al. Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J. Biol. Chem. 278, 52755–52762 (2003).
132. Cagalinic, M. et al. Role of mitochondrial dynamics in neuronal development: mechanism for Wolfram syndrome. PLoS Biol. 14, e1002511 (2016).
133. Zatyka, M. et al. Sarco(endoplasmic reticulum) ATPase is a molecular partner of Wolframin1 protein, which negatively regulates its expression. Hum. Mol. Genet. 23, 4770–4785 (2014).
134. Delprat et al.
135. Motorikawa, S., Tajima, T., Nakamura, A., Ishizu, K. & Ariga, T. A novel heterozygous mutation of the WFS1 gene leading to constitutive endoplasmic reticulum stress is the cause of Wolfram syndrome. Pediatr. Diabetes 18, 934–941 (2017).
136. Noshtoh, H. CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem. 151, 217–219 (2012).
137. Hara, T. et al. Calcium efflux from the endoplasmic reticulum leads to beta-cell death. Endocrinology 155, 758–768 (2014).
154. Urano, F. Wolfram syndrome: diagnosis, management, and treatment. Curr. Diab Rep. 16, 6 (2016).
155. Varnai, P., Balla, A., Hunyady, L. & Balla, T. Targeted expression of the inositol 1,4,5-triphosphate receptor (IP3R) ligand-binding domain releases Ca2+ via endogenous IP3R channels. Proc Natl Acad Sci USA 102, 7859–7864 (2005).
156. Takei, D. et al. WFS1 protein modulates the free Ca(2+) concentration in the endoplasmic reticulum. FEBS Lett. 580, 5635–5640 (2006).
157. Myhill, N. et al. The subcellular distribution of calnexin is mediated by PACS-2. Mol. Biol. Cell 19, 2777–2788 (2008).
158. Pinton, P., Giorgi, C. & Pandolfini, P. P. The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ. 18, 1450–1456 (2011).
159. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-ribosome kinase. Nature 397, 271–274 (1999).
160. Bergeron, J. J., Brenner, M. B., Thomas, D. Y. & Williams, D. B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19, 124–128 (1994).
161. Cali, T., Ottolini, D., Negro, A. & Brini, M. alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287, 17914–17929 (2012).
162. Atwal, R. S. et al. Huntingtonin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 16, 2600–2615 (2007).
163. Reijonen, S., Putkonen, N., Norremo, A., Lindholm, D. & Korhonen, L. Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp. Cell Res. 314, 950–960 (2008).