Project X ACD and its Upgrades for Neutrino Factory or Muon Collider

Valeri Lebedev
Fermilab

NuFact 09
IIT, Chicago
July 20-26, 2009
Project X Steps

- Some definitions (project management for a large DoE project)
 - ICD (Initial Configuration Document) is required by DoE for CD0 (mission need statement)
 - ACD (Alternative Configuration Document) is also required by DoE at CD0
 - Other steps: CD1 ⇒ CD4 (critical decisions) lead to the project design, construction and commissioning

- Fermilab is working on the Project X ICD
 - Project X was initiated in the summer of 2007 and has been considered as a next step in the Fermilab program.
 - Tevatron operations will be terminated in 2-3 years.
 - “First” ACD proposal (November 2008) - tried to address problems of Muon collider but did not bring any good for physics program and did not get support
 - Next ACD proposal appeared in April 2009
 - Subject for this presentation
 - Looks as something what we would like to build
 - New committee was created to strengthen the physics program
 - Strong support at PAC (end of June 2009, Aspen, Colorado)
 ⇒ ACD was renamed to ICD-II
What is Project X?

- New proton injector or a replacement for 40 years old Booster
- 8 GeV SC linac +
 - Modifications in Recycler and MI
Project X Objectives

Major Project X objectives (ILC time, stands for now as well)

- Support of the neutrino program in MI with 2 MW beam power in the energy range of 60 to 120 GeV
- Development of SCRF technology capabilities at Fermilab for future applications (ILC, neutrino factory, muon collider)

Is it enough?

- Present neutrino program (~200-300 people) ⇒ Future neutrino program
- CDF & D0 (1500) ⇒ CMS (external) + ??? (internal)

To succeed we need a strong physics program

- Transition from the energy frontier to the intensity frontier implies experiments at very high repetition rates from ~30 MHz (kaons) to ~60 Hz (g-2).

What else we have in plans for intensity frontier

- Experiments with muons
 - μ-to-e (muon to electron conversion in field of nucleus with lepton number violation) is a front runner
 - g-2 (muon g-2 measurements, inherited from Brookhaven)
- Rare Kaon decays ($K_L \rightarrow \pi^0 \nu \nu$, $K^+ \rightarrow \pi^+ \nu \nu$, $K_L \rightarrow \pi^0 e^+ e^-$)
Problems with ICD-I

- μ-to-e is considered as the most important experiment
 - It will be using all existing infrastructure (Recycler, Accumulator and Debuncher) leaving no place for other experiments for many years
 - g-2 has time conflict because competes for the same infrastructure (Recycler and Debuncher) and cannot be ran at the same time
 - Lengthening Tevatron Run II worsens the problem
 - Kaon experiments require different time structure of the beam and cannot be ran simultaneously
 - There is another possibility - a usage of Tevatron as a stretcher. We are looking into this as well
- From the High Energy Physics point of view:
 - CDF & D0 \rightarrow μ-to-e + decommissioning of the Antiproton source
- There is also problem with μ-to-e upgrade because of limited power for the beam slow extracted from Debuncher
What is the ICD-II

Pulsed 2 mA H⁻ source, 5% duty factor

MEBT consists of rebuncher cavities, beam chopper, focussing and transverse trims, and necessary instrumentation

Combination done at ~5 MeV and needs to keep p+ and H⁻ 180° out of phase

RFQ in each section to ~5 MeV

10 mA DC p+ source

Main Injector

1.6e¹⁴ at 1 Hz

2-8 GeV section

An SC Linac?

A Rapid Cycling Synchrotron?

RF Splitter

Kaons

μ±e

RF Splitter uses transverse RF cavity for beam splitting

Project X ACD and its upgrades for neutrino factory or muon collider, Valeri Lebedev, Fermilab; NuFact 09, IIT, Chicago; July 20-26, 2009
Split 8 GeV linac into 2 parts

- **0-2 GeV, 2-MW (1 mA) CW linac**
 - peak current up to 10 mA to have ability to create a desired beam structure for different beam physics experiment without sacrificing average beam power

- **2-8 GeV acceleration**
 - 10 Hz synchrotron looks as a preferred choice for now
 - Operates below transition energy
 - 2-8 GeV, 0.22-MW pulsed linac
 \[\beta = 1 \text{ (ILC-like)}: \]

 - 40 ms @ 1Hz or variations for 2.2 MW at 60 GeV (300 kW at 8 GeV)

At least 1 mA of CW linac is required

- For synchrotron by inj. time (10 Hz, 4 ms of 100 ms cycle, \(\Delta p/p = 8 \cdot 10^{-3} \))
- For pulsed linac it is set by total duration of pulses (5 Hz, 8 ms)
 - Present ICD 5 ms @ 1Hz (5 Hz, 1 ms)

Higher current would make pulsed linac easier

CW linac beam can be split to several experiments by RF separators

- 3 experiments with independent beam time structures
 - \(f = f_{RF} / 3 \) (~100 MHz, ~1-3 ps rms bunch length)
ICD II effect on the Physics Program

- Machine Parameters are set by Experiments
- \(\mu \)-to-\(e \) (1 GeV would be enough)
 - much better than the present scheme,
 - some loss in pion yield is compensated by power
 - Smaller background (less neutrons, antiprotons, high energy pions)
 - Negligible intensity variation (serious problem for slow extraction)
 - Easy to control time structure of the beam (~10% duty factor)
 - Extinction
 \(\Rightarrow \) Proton linac does not accelerate electrons or protons with other momentum. The chopper is the only system determining beam extinction
 - addresses strong competition from JPARC and future upgrade
- Kaons require at least 2 GeV energy
 - Flexible time structure and short bunches are extremely useful
 - Time of flight experiments
- \(g-2 \) can be ran with “fast” extraction from Recycler
- Program with antiprotons is discussed
- Additional program is possible
 - Transmutation, medical isotopes production and nuclear physics
CW Linac

Design criteria

- Linac structure is similar to the ICD-I linac
- Major differences are
 - Reduced accelerating gradient to optimize the cryogenic system (cost optimization results in a wide minimum 15 – 18 MV/m)
 - 25 MV/m ⇒ 16 MV/m
 - Reduced peak current
 - 32 mA ⇒ 10 mA
 - Less problems with beam space charge
 - SC structures start at 2.5 MeV instead of 10 MeV
 - Reduction of RF power

* Disclaimer: all parameters of the ICD-II are not final. The ICD-2 document is expected to be finished by Sep. 1, 2009
Front end

- Dual beam
 - H- for injection to RCS
 - Proton for 2 GeV experimental program
- Bunch-by-bunch chopping
- 2.5 MeV, normal conducting RFQ

Diagram:

- Dual beam
 - H- for injection to RCS
 - Proton for 2 GeV experimental program
- Bunch-by-bunch chopping
- 2.5 MeV, normal conducting RFQ
SC linac

Section	Energy range MeV	β	Number of cavities/lenses/CM	Type of cavities and focusing element	Power/cavity, kW (I_{av}=1 mA)
Bunching SSR0 (β_{G}=0.11)	2.5	0.073	2/3/2	Single spoke cavity, Solenoid	0.5
SSR0 (β_{G}=0.11)	2.5-10	0.073-0.146	16/16/2	Single spoke cavity, Solenoid	0.5
SSR1 (β_{G}=0.22)	10-32	0.146-0.261	18/18/2	Single spoke cavity, Solenoid	1.3
SSR2 (β_{G}=0.4)	32-117	0.261-0.5	33/17/3	Single spoke cavity, Solenoid	4.1
TSR (β_{G}=0.6)	117-400	0.5-0.713	42/42/7	Triple spoke cavity, quads	8.5

β_{G} is cavity geometrical phase velocity.
SC linac (Elliptic cavities, ILC type)

Parameters of 1.3 GHz cavities

Section	Energy range MeV	β	Number of cavities/quads/CMs	Type	Max Power/cavity (on crest), kW ($I_{av}=1$ mA)
S-ILC ($\beta_G=0.81$)	400-1200	0.71-0.9	84 / 42 / 14	Squeezed elliptical	15
ILC ($\beta_G=1$)	1200-2000	0.9-0.95	75 / 15 / 10	9-cell ILC	16
Synchrotron

Design criteria

- Repetition rate of 10 Hz is set by 2 MW to MI operating at 60 GeV (6 injections during 0.8 s cycle)
 - Recycler is used for intermediate beam storage
- No transition crossing
- Transverse acceptance (40 mm mrad (norm) + 6 mm orbit distortions) - the same as for MI
- High periodicity FODO structure
 ⇒ Small diameter vacuum chamber
 ⇒ Small and inexpensive magnets
- Stainless steel vacuum chamber
 - It shields laminations of magnets resulting in small impedances
 - The impedance value is rather limited by the eddy currents excited by the bending field than by the wall resistivity
 - Ceramic vacuum chamber would be more expensive and would require larger size magnets with limited gain in impedance
- Dual harmonic RF to reduce the beam space charge at injection
 - RF frequency the same as in MI
RCS parameters

Parameter	Value
Energy, min/max, GeV	2/8
Repetition rate, Hz	10
Circumference, m (MI/6)	553.2
Tunes	18.44
Transition energy, GeV	13.36
Number of particles	2.67E13
Beam current at injection, A	2.2
Harmonic number	98
RF frequency, MHz	50.33 – 52.81
Maximum RF voltage, MV	1.6
95% n. emittance, mm mrad	25
Space charge tune shift, inj.	0.06†
Norm. acceptance, mm mrad	40
Injection time for 1 mA, ms	4.3
Linac energy cor. at inject.	1.2%
RF bucket size, eV s	0.4
Number of RF cavities	16
Cavity shunt impedance, kΩ	100

†For the KV-like distribution presented below and bunching factor - 2.2.

- Racetrack
- Dispersion is zeroed by missed dipole
- One type of quadrupoles
- All quads and dipoles are on the same bus
- Corrector pack includes dipoles quads and sextupoles

Beam envelopes for quarter of the ring:

\[\varepsilon_n = 40 \text{ mm mrad} \left(E_k = 2 \text{ GeV} \right), \Delta p/p = 5 \cdot 10^{-3} \]
Magnets

Dipoles

Parameter	Unit	Value
Field at 8 GeV (672 A)	T	0.874
Magnet gap	mm	44
Effective length	m	2.13
Number of turns/pole		24

Quadrupoles

Parameter	Unit	Value
Gradient at 8 GeV (672 A)	T/cm	0.1743
Pole tip radius	mm	25
Effective length	m	0.659
Number of turns/pole		7

100 Rectangular dipoles and 134 quads (6 of them with increased aperture for inj. & extr.)
Vacuum chamber

- **Round**
 - External diameter - 44 mm
 - Stainless steel - 0.7 mm

- **Bend in dipoles, R=34 m**
 - Sagitta - 1.67 cm

- **Eddy currents (dipoles)**
 - $\Delta B/B = i \cdot 1.4 \cdot 10^{-3}$
 - Power loss ($B_m=8$ GeV) - 11 W/m

- **Growth rate of the transverse instability due to wall resistivity at lowest betatron sideband**
 - 0.006 turn$^{-1}$

Dipole resonance circuit

- **Resonance circuit is similar to the Booster one**
 - One choke and one capacitor per cell (2 dipoles and 2 quads)

\[\begin{align*}
L_d &= 25 \text{ mH}, \quad R_d = 33 \text{ m}\Omega \\
L_{choke} &= 32 \text{ mH}, \quad R_{choke} = 12 \text{ m}\Omega \\
C_0 &= 13 \text{ mF} \\
V_c &= 725 \text{ V} \\
\text{Total power} &= 900 \text{ kW} \\
\text{Total DC} &= 1.2 \text{ kV} \\
\text{Total AC (ampl)} &= 1.1 \text{ kV}
\end{align*}\]
Beam acceleration

Accelerating voltage, MV

1. First harmonic amplitude
2. Second harmonic amplitude
3. Accelerating voltage

Accel. phase and bunch length, deg

1. Bucket length
2. 95% bunch length
3. Accelerating phase, ϕ_0

Bucket height and $\Delta P/P$

1. Bucket height
2. $\Delta p/p$ [95%]
3. σ_p

Bucket area, eV s

1. σ_L^{95}
Transverse painting at Injection (rms norm. linac emit. – 0.5 mm mrad)

- Optimization of injection beta-functions: $\beta_L \approx \beta_R / 2$
- KV-like distribution with 25 mm mrad KV boundary
 - 99% in 35 mm mrad
 - x-y anti-correlated painting
 - angles correlated with positions to minimize betatron amplitudes

- Secondary foil passages make a major contribution to the foil heating
 - 55 hits per particle or $1.2 \cdot 10^5$ passages per particle per mm2
Longitudinal painting at injection (rms. long. linac emit. - $5 \cdot 10^{-5}$ eV s)

- Linac energy is changing $\pm 0.5\%$ to match the RCS energy during 4.2 ms injection
 - Constant offset of 0.07\% between linac and RSC momenta
 - 73\% duty factor
- High synchrotron frequency helps to make uniform distribution
- Debunching and phase rotation of the linac beam is required
- Resulting bunching factor -2.2
Possible upgrade paths

RCS without any upgrades

- Low longitudinal density is the major limitation of the beam power. To mitigate it:
 - Beam is accelerated in two trains of 24 buckets (50% duty factor)
 - Bucket size is reduced from 0.4 to 0.13 eV s to fit required ε_L
 - Space charge time shift - 0.12
 - Two turn injection in the compressor ring with consecutive adiabatic bunching and bunch rotation

- It results in $P=340$ kW at 10 Hz (single bunch)
 - $\sigma_s = 60$ cm, $\sigma_p = 0.1\%$, $\varepsilon_{95} = 6\pi \sigma_s \sigma_p p / (\beta c) \sim 3.3$ eV·s

- The only additional requirement (upgrade) is doubling the current of H- source (2 mA \rightarrow 4 mA)
 - And, of course, the 8 GeV compressor ring with circumference half of the RCS
Possible Upgrade Paths (2)

New 20 GeV 20 Hz RCS

- Peak power of the SC linac has to be increased by at least 12 times to 12 mA
 - 1.5 times larger energy (3 GeV, pulsed)
 - 2 times shorter injection to RCS (20 Hz)
 - 2 times larger beam current in RCS (larger injection energy)
 - 2 times larger circumference (20 GeV)

- Synchrotron can be built using the same technology as 8 GeV synchrotron
 - 3 trains of bunches, 3 turn injection to the compressor ring

- It results in $P=1.7$ MW at 20 Hz (single bunch)

- Upgrades
 - RF of SC linac
 - it can be converted to the pulsed (preferred and chipper) operation or operation with two RF sources for concurrent pulsed and CW operations
 - 24 MW CW RF is not excluded as well
 - And, 20 GeV compressor ring with circumference one third of the RCS
Possible Upgrade Paths (3)

Linac extension to 8 GeV

- Follows scenario presented in Berkeley (Jan. 2009, NFMCC meeting)
- 1 MW at 15 Hz single bunch
 - Power will grow proportionally to the repetition frequency and number of bunches
 - i.e. four bunches 4 MW at 15 Hz
Conclusions

- ICD-II proposal retains the 2-MW MI program but moves 8-GeV slow extraction program to 2 GeV
- It does not exclude experiments which use fast extraction from the Recycler

Benefits

- Diverse physics program at low energy
 - expected to bring the price below ICD-I
 - ⇒ Pricing should be finished by the end of August
- Potential improvements of μ-to-e sensitivity can be more than an order of magnitude - it makes it really competitive

Drawbacks

- More expensive upgrade to MW scale beam power required for neutrino factory or muon collider
- Both Synchrotron and Pulsed linac can coexist with CW linac
 - Final choice will be compromise between Cost - Political implications - Long term plans
Backup viewgraphs
Structure of periodicity element

Name	S[cm]	L[cm]	B[kG]	G[kG/cm]	S[kG/cm/cm]
qF	65.9	65.9	0	2.141	0
o2	85.9	20			
sF	105.9	20	0	0	0.22*
o1	135.9	30			
bD	349.116	213.216	10.7123	0	0
o	419.116	70			
qD	485.016	65.9	0	-2.134	0
o2	505.016	20			
sD	525.016	20	0	0	-0.38*
o1	555.016	30			
bD	768.232	213.216	10.7123	0	0
o	838.232	70			

*Sextupole strengths nullify natural chromaticities: \(\nu_x = -25 \) and \(\nu_y = -25 \)

Strength of the magnets are shown for 10 GeV beam kinetic energy

![Graph showing beta and dispersion](image-url)
Injection

- Strip H^- injection: in a straight line, horizontally (radially outside)
- 3 quads in the injection region have increased aperture
 - 12 turns per pole (instead of 6)
 - $a = 33.2$ mm (instead of 23.48 mm)
- 3 injection dipoles in one straight section
 - B1 - DC septum, B2 and B3 - permanent magnets or powered by DC
- 3 fast correctors for x-y painting in each plane

Injection cell structure

Name	L[cm]	B[kG]	G[kG/cm]
qD	65.9	0	-1.74
oInj	40		
B1	21	-6.9	
oInj1	52.608		
B2	126	2.3	
oInj2	26.304		
iFOIL	0		
oInj2	26.304		
B3	21	-6.9	
oInj	40		
qF	65.9	0	1.74

Local orbit bump for painting;
Maximum corrector strength - 15 kG cm
Swiping time - 4 ms
Injection (continue)

- Total power of injected beam
 - 75 kW for 60 GeV MI operation
 - 37 kW for 120 GeV MI operation

- H^- field stripping limits B2 field
 - Stripping probability is 4×10^{-5}

- B3 strips H^- which missed foil
 - Survival probability $\sim 10^{-17}$
 - Average deflection before stripping - 3 mrad
Injection (continue)

- Single and multiple scattering in the foil (thickness - 450 μg/cm²)
 - Emittance increase due to multiple scattering is not a problem
 - Emittance increase per foil crossing:
 \[\Delta \varepsilon_{xn95\%} = 8.5 \times 10^{-3} \text{ mm mrad}; \quad \Delta \varepsilon_{yn95\%} = 3.3 \times 10^{-3} \text{ mm mrad} \]
 \[\Rightarrow \text{ for expected 50 crossings per particle } \Delta \varepsilon_{n95\%} < 0.5 \text{ mm mrad} \]
 - Particle loss due to single scattering
 - For 40 mm mrad acceptance the loss has approximately equal contributions from nuclear and electromagnetic scatterings
 \((\sigma_{em} \approx 200 \text{ mbarn}, \sigma_n \approx 340 \text{ mbarn}) \)
 \[\Rightarrow \text{ beam loss } - 1.4 \times 10^{-5} \text{ per foil crossing} \]
 - With expected 50 crossings per particle
 \[\Rightarrow \text{ Total loss } \sim 0.07\% \text{ or } 200 \text{ W for 300 kW operation} \]

- Injection beam dump is located after QF. It will intercept particles scattered in the foil and \(H^0 \).
 - It has to be rated to 3 kW

- Stripped electrons are reflected from field of B3 dipole and intercepted by electron beam dump (located radially inside)
 - Total power - 300 W for 300 kW operation
Extraction

Extraction structure

Name	L [cm]	B [kG]	G [kG/cm]
qF	65.9	0	1.746
ky1e	1e-06	-4.89e+7	
oS	353.216		
ky2e	1e-06	-2.25e+7	
qD	65.9	0	-1.740
oEKICK	26.608	0.448	0
kEKICK	300		
oEKICK	26.608		
qF	65.9	0	1.746
oQL	346.4	0	-1.457
qL	79.39	0	
oSep	30.73	7.75	
kESEP	285		
oSep	30.7336		
qF	65.9	0	1.74
ky3e	1e-06	-9.90e+7	

- QL has increased aperture and length and decreased gradient (a = 40 mm)
- QDMs are the same as injection quads with increased aperture (a = 33.2 mm)
- Vertical kick
- Vertical orbit bump of 16 mm at septum location with normal machine correctors
- Septum kicks in horizontal plane (width - 10 mm)
Transverse Instabilities and their damping

- Eddy currents in vacuum chamber excite magnetic field correction
 - Eddy current reflection in the steel of dipoles increases the correction and makes it non-linear even for the round vacuum chamber
 \[
 \frac{\Delta B_y}{B_0} = i \left(1 + \frac{\pi^2}{12} + \frac{\pi^4}{240} \frac{y^2}{a^2} + \ldots \right) \frac{ad}{\delta_r^2}, \quad \delta_r = \frac{c}{\sqrt{2\pi\sigma\omega_{ramp}}}
 \]
 - That requires minimum σd for the wall

- Transverse impedance for the lowest mode is also determined by σd
 \[
 \text{Re}(Z_\perp) = Z_0 \frac{c^2}{4\pi^2 \sigma R \omega a^3 d}, \quad \sqrt{ad} \geq \delta \geq d
 \]

- Instability will be stabilized by \perp dampers (low frequencies) and by chromaticity (high frequencies)