Inhibiting 3βHSD1 to eliminate the oncogenic effects of progesterone in prostate cancer

Graphical abstract

Highlights

- High doses of progesterone activate canonical and non-canonical AR signaling
- Progesterone of physiological levels exerts its chronic oncogenic effect via GATA2
- Targeting 3βHSD1 to suppress progesterone synthesis blocks its oncogenic effects
- Serum progesterone might be a predictive biomarker for abiraterone response

Authors
Zemin Hou, Shengsong Huang, Zejie Mei, ..., Huiru Tang, Denglong Wu, Zhenfei Li

Correspondence
zhenfei.li@sibcb.ac.cn (Z.L.), Wudenglong2009@tongji.edu.cn (D.W.), huiru_tang@fudan.edu.cn (H.T.)

In brief
Hou et al. identify that progesterone of different levels exerted oncogenic effects in prostate cancer cells via different mechanisms. Strategies targeting 3βHSD1 inhibit the transient and chronic oncogenic effects of progesterone. Serum progesterone is also found to be a potential predictive biomarker for abiraterone response.
Inhibiting 3βHSD1 to eliminate the oncogenic effects of progesterone in prostate cancer

Zemin Hou,1,9 Shengsong Huang,2,9 Zejie Mei,1,9 Longlong Chen,5,9 Jiacheng Guo,4 Yuanyuan Gao,1 Qian Zhuang,1 Xuebin Zhang,1 Qilong Tan,2,9 Jun Qin,4 Ruobing Ren,56 Huiru Tang,3,* Denglong Wu,2,* and Zhenfei Li1,2,10,*

1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
2Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
3State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200438, China
4CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
5State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
6Department of Urology, First People’s Hospital of Taicang, Taicang, Jiangsu 215400, China
7Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
8Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
9These authors contributed equally
10Lead contact
*Correspondence: zhenfei.li@sibcb.ac.cn (Z.L.), Wudenglong2009@tongji.edu.cn (D.W.), huiru_tang@fudan.edu.cn (H.T.)
https://doi.org/10.1016/j.xcrm.2022.100561

SUMMARY

Prostate cancer continuously progresses following deprivation of circulating androgens originating from the testis and adrenal glands, indicating the existence of oncometabolites beyond androgens. In this study, mass-spectrometry-based screening of clinical specimens and a retrospective analysis on the clinical data of prostate cancer patients indicate the potential oncogenic effects of progesterone in patients. High doses of progesterone activate canonical and non-canonical androgen receptor (AR) target genes. Physiological levels of progesterone facilitate cell proliferation via GATA2. Inhibitors of 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) has been discovered and shown to suppress the generation of progesterone, eliminating its transient and accumulating oncogenic effects. An increase in progesterone is associated with poor clinical outcomes in patients and may be used as a predictive biomarker. Overall, we demonstrate that progesterone acts as an oncogenic hormone in prostate cancer, and strategies to eliminate its oncogenic effects may benefit prostate cancer patients.

INTRODUCTION

The progression of prostate cancer is reliant on androgens.1,2 Testosterone synthesized from the testis is a major oncogenic androgen in prostate cancer.3 Androgen deprivation therapy (ADT) significantly reduces the levels of circulating testosterone to castration levels.4 Consequently, dehydroepiandrosterone (DHEA), the adrenal androgen precursor, is utilized by prostate cancer cells for the synthesis of dihydrotestosterone (DHT).3 Abiraterone inhibits the steroidogenic enzyme cytochrome P450 17A1 (CYP17A1) to suppress the generation of DHEA.3 The combination of ADT and abiraterone leads to an androgen-deficient environment in patients. However, disease progression is inevitable, and prostate cancer cells might utilize alternative oncometabolites to fuel proliferation.

Multiple mechanisms have been proposed to explain this inexorable disease progression, including androgen-independent AR-v7 and neuroendocrine prostate cancer cells.6–9 Accumulating evidence also supports the existence of other oncometabolites in prostate cancer. AR mutations and the glucocorticoid receptor (GR) facilitate the affinity of prostate cancer cells for steroids beyond androgens.10–12 The AR T878A mutant found in LNCaP cells has expanded substrates, and the AR L702H and T878A mutant found in MDA PCa2b cells responds to corticosteroids.11,13 Steroids share the common cyclopentano-phenanthrene four-ring structure with androgens, and might exert an oncogenic effect on prostate cancer, dependent or independent on AR.10,11,14 However, these effects are overshadowed by the potent function of androgens, and patients receiving a combination therapy of ADT and abiraterone could provide a unique model to discover novel oncometabolites. Improvements in mass spectrometry (MS) also increase the possibility of identifying novel oncometabolites, even with limited patient specimens.
Figure 1. The transient oncogenic effects of progesterone via the AR

(A) Alterations of plasma metabolites in prostate cancer patients after abiraterone treatment. Paired plasma samples were collected from 10 patients before and after abiraterone treatment for mass spectrometry (MS) analysis. Circle, metabolites with determined structure; triangle, metabolites with undetermined structure; square, abiraterone metabolites; Prog, progesterone; AD, androstenedione. Each data point represents the mean alteration of one metabolite in these 10 paired samples.

(B) Alterations in endocrine-hormone-related laboratory indices in patients after abiraterone treatment. Details on laboratory indices are shown in Figure S1C.

(C) Plasma progesterone levels in benign patients (n = 135) and prostate cancer patients receiving abiraterone treatment (n = 47). Paired Student’s t test.

(D) CRPC patients with high levels of plasma progesterone had a less potent PSA reduction after abiraterone treatment. Fisher’s exact test.

(E) CRPC patients with high levels of plasma progesterone had a shorter abiraterone treatment duration. Disease progression was determined by PSA according to PCWG2 guidelines. Log rank test. Patients were grouped based on their plasma progesterone concentrations at the endpoint (D and E).

(F) Effects of progesterone on cell proliferation. Different prostate cancer cell lines were used for the cell proliferation assay.

(G) Gene set enrichment analysis (GSEA) on androgen response of MSigDB hallmark set in progesterone-treated VCaP cells. Progesterone (100 nM) was used to treat VCaP cells before RNA sequencing (RNA-seq) assay. Biological replicate, n = 3.

(H) AR abundance in different cell lines. LAPC4-ARWT, LAPC4 cells expressing the doxycycline (Dox, 1 μg/mL) induced wild-type AR.

(I) Effects of progesterone in the LAPC4-ARWT cells on AR target gene expression.

(legend continued on next page)
In this study, we performed an MS-based metabolite screening of plasma samples from patients receiving ADT and abiraterone treatment. Clinical information was evaluated to identify novel oncometabolites. We also investigated the functional mechanisms and potential clinical applications of the identified oncometabolites.

RESULTS

Screening of potential oncometabolites
To identify novel oncometabolites driving disease progression, paired plasma samples were collected from 10 patients, before and after abiraterone treatment, and screened via ultrahigh-performance chromatography (UHPLC)-MS (Table S1). Untargeted metabolomics analysis (5,531 metabolites detected) and targeted simultaneous quantification of lipidomic and sterol metabolites (1,094 metabolites detected) were performed. Among the total 6,625 metabolites, progesterone was one of the most increased metabolites and androstenedione (AD) had the greatest decrease, following abiraterone treatment (Figure 1A). Further analysis of the alterations in sterol levels in patient samples, determined by a UHPLC-tandem MS (MS/MS) system in multiple-reaction monitoring mode with a quantitative sensitivity well above previous reports, revealed that most of the metabolites involved in progesterone metabolism changed significantly after abiraterone treatment (Figures S1A and S1B).15,16

Clinical data from patients (N = 73) receiving ADT and abiraterone treatment between August 2016 and April 2020 at the Shanghai Tongji Hospital, including endocrine-hormone-related laboratory indices and treatment response, were also evaluated to identify potential oncogenic hormones (Table S2). Baseline data were from the beginning of abiraterone treatment and the endpoint of observation was either the date of disease progression or April of 2020. Among the 17 hormone-related laboratory indices, progesterone was the most significantly increased metabolite, following abiraterone treatment (Figures 1B, 1C, and S1C). The increase in plasma progesterone was observed in both castration-resistant prostate cancer (CRPC) patients and hormone-sensitive prostate cancer (HSPC) patients (Figure S1D). Patients with a higher plasma progesterone concentration at the endpoint showed poor clinical outcomes, including a less potent prostate-specific antigen (PSA) reduction and shorter treatment duration (Figures S1E and S1F). To exclude a potential disturbance in ADT, the correlation between plasma progesterone concentration and treatment response was further analyzed in CRPC patients only (Table S3). CRPC patients with higher plasma concentrations of progesterone at the endpoint also exhibited a less potent PSA reduction and earlier disease progression (Figures 1D and 1E). Together, these data corroborate previous findings that progesterone is important for prostate cancer and indicate that progesterone is a potential oncogenic hormone in prostate cancer.17,18

Canonical AR signaling regulated by progesterone
To investigate the oncogenic effects of progesterone, different prostate cancer cell lines were treated with progesterone for the cell proliferation assay. Phenol red-free medium plus 5% charcoal-stripped serum (CSS) was used for cell proliferation assay and progesterone promoted cell growth in AR-positive cell lines (LNCaP and VCaP) but not in AR-negative cell lines (PC3 and DU145) (Figure 1F). In LNCaP and VCaP cells, progesterone activated the expression of AR target genes, which were inhibited by the AR antagonist enzalutamide (Figures S2A and S2B).19,20 Transcriptome analysis of VCaP cells confirmed the activation of AR signaling after progesterone treatment (Figure 1G). Progesterone receptor (PR) was detectable in VCaP cells but not in other prostate cancer cell lines (Figure S2C). Knockdown of PR in VCaP cells resulted in limited effects on cell proliferation in VCaP cells (Figures S2D and S2E). These results demonstrate that the progesterone-induced cell proliferation in LNCaP and VCaP cells is dependent on AR but not PR. Due to the limited abundance of AR in LAPC4 cells, progesterone had no effect on the proliferation of LAPC4 cells (Figure 1F). A stable cell line was established in LAPC4 cells with doxycycline (Dox)-induced AR expression (LAPC4-AR WT) (Figure 1H). The addition of Dox induced AR but not PR expression in LAPC4-AR WT cells (Figure S2F). Progesterone activated AR signaling in LAPC4-AR WT cells only when Dox was added (Figure 1I). Together, these data consistently demonstrate that progesterone exerts its oncogenic effects via the AR.17,18

Progesterone also increased AR abundance and facilitated AR nuclear accumulation (Figures S2G–S2I). These effects were more obvious in LNCaP cells, indicating that the AR genotype is essential for the function of progesterone. Plasmids expressing different AR mutants were used to generate stable cell lines in PC3 cells for competition assays. Progesterone showed a high affinity for AR T878A (with broadened ligands) and AR H875Y (resistant to bicalutamide; sensitive to darolutamide),21 but a low affinity for AR742L (activated by bicalutamide)22 and AR750T (Figure 1J). A PSA-luciferase reporter was then used to evaluate the oncogenic effects of progesterone. Progesterone significantly activated AR T878A and AR H875Y but not AR742L and AR750T in the reporter system (Figures S2J and S2K). Thus, progesterone activated AR signaling and promoted cell proliferation in LAPC4 cell lines stably expressing Dox-induced AR T878A or AR H875Y.
Non-canonical AR target genes regulated by progesterone

Transcriptome analysis of VCaP cells revealed that progesterone and DHT differentially regulated several pathways, according to molecular signatures database (MSigDB) hallmark gene set collection (Figure 2A; Table S4).23 Different gene signatures have been developed to indicate the aggressiveness of prostate cancer, including the 31-gene signature of cell cycle progression (CCP) and 157-gene signature of Gleason grade.24,25 These signatures were both enriched after progesterone treatment, but not DHT treatment, consistent with previous observation (Figure 2B).26 Notably, although AR signaling was enriched after progesterone treatment in VCaP cells, the most significant pathways upregulated by progesterone were E2F, G2M, and MYC-related pathways, which were suppressed by DHT. Enzalutamide suppressed the function of progesterone on these pathways, indicating the involvement of AR (Figures 2C and 2D). Thus, we recognize these progesterone-activated but DHT-repressed genes as non-canonical AR target genes. Gene expression profiling interactive analysis (GEPIA) revealed that patients with active expression of these non-canonical AR target genes had a shorter treatment duration (Figure 2E).27 The regulation of non-canonical AR target genes by progesterone was further confirmed by quantitative PCR (qPCR) in VCaP cells (Figure 2F).27 However, knockdown of PR cannot consistently deregulate the expression of non-canonical AR target genes in VCaP cells (Figure S2L). Knockdown of these non-canonical AR target genes suppressed the proliferation of VCaP cells (Figure 2G). Together, these data demonstrate that progesterone promotes prostate cancer progression via AR through regulation of canonical and non-canonical target genes.

Oncogenic effects of progesterone at the physiological level

The transient oncogenic effects of progesterone were observed at a dose of 10–100 nM. Although the dosage was achievable in patients after abiraterone treatment, most abiraterone-treated patients (38 out of 47; 80.85%) obtained a plasma concentration lower than 10 nM (Figure 1C). The correlation between plasma progesterone concentrations and poor clinical outcomes indicated an oncogenic effect of progesterone at physiological levels. Patients treated with abiraterone experienced long-term stimulation from progesterone, which may result in irreversible alterations in the transcriptome of cancer cells. Thus, LAPC4 cells, with limited response to the transient treatment of progesterone, were treated with 5 nM progesterone or ethanol for 6 months to generate Prog_cells and Ctrl_cells, respectively.

Prog_cells exhibited higher proliferation than Ctrl_cells, even when treated with no additional steroids, including progesterone (Figure 3A). Interestingly, transient treatment with progesterone did not promote the growth of Prog_cells or Ctrl_cells (Figure S3A). Transcriptome analysis revealed an activated estrogen response pathway in Prog_cells, while the expression of AR, estrogen receptor 1 (ESR1), and PR was not changed in the Prog_cells (Figure 3B, 3C, S3B, and S3C). Knockdown of PR showed no effect on cell proliferation in Prog_cells (Figure S3D). These genes, which are involved in the estrogen response pathway, were further analyzed using different databases (Figure 3D).28,29 Frequent amplification of these genes in prostate cancer and increasing expression as the disease progresses were discovered (Figures S3E and S3F). Higher expression of these genes was correlated with worse clinical outcomes in prostate cancer patients (Figure S3G). The active expression of genes involved in the estrogen response pathway was further confirmed by qPCR of Prog_cells (Figure 3E). Knockdown of these genes suppressed cell proliferation (Figure 3F). Together, these data suggest that the physiological levels of progesterone have accumulating oncogenic effects in prostate cancer.

Transcriptional factors that mediate the accumulating oncogenic effects of progesterone were investigated. Eighty-seven leading-edge genes of the estrogen response pathway were selected for potential transcriptional factor prediction using the ChEA3 Website.30 The predicted transcriptional factors were further evaluated based on the gene expression in Prog_cells and survival correlation using GEPIA (Figure 3G). GATA2 was the only qualified transcriptional factor identified after this bioinformatic screening. Frequent gene amplification of GATA2 and a positive correlation with treatment failure were found in prostate cancer (Figures S4A and S4B). A positive correlation between GATA2 and genes involved in the estrogen response pathway in gene expression was also observed (Figures S4C and S4D). The increase of GATA2 in Prog-cells was further confirmed at the mRNA and protein levels (Figures 3H and 3I). The GATA2 inhibitor, K7174, inhibited the expression of genes involved in the estrogen response pathway in Prog_cells (Figure 3J).31 The function of K7174 was more significant in Prog_cells than in Ctrl_cells in regulating gene expression (Figure 3K). K7174 also suppressed cell proliferation more

Figure 2. The non-canonical AR target genes regulated by progesterone

(A) Heatmap of pathway analysis in VCaP cells. Gene set variation analysis (GSVA) was performed according to Hallmark GeneSet.
(B) Enrichment of aggressiveness associated gene signatures in progesterone-treated VCaP cells.
(C) Genes upregulated by progesterone but not DHT on VCaP cells. RNA-seq was performed in VCaP cells. Enz, enzalutamide, 1 μM; DHT, 1 nM; Prog, 100 nM.
(D) GSEA on the progesterone-regulated non-canonical AR target genes.
(E) Correlation between progesterone-regulated non-canonical AR target genes and poor clinical outcomes analyzed via GEPIA.
(F) Regulation of the progesterone-activated non-canonical AR target genes in VCaP cells.
(G) Effects of the progesterone-activated non-canonical AR target genes on cell proliferation in VCaP cells. Technical replicate (n = 2) for qPCR; biological replicate (n = 3) for cell proliferation assay (see also Figure S2L; Table S4).
dramatically in Prog_cells (Figure 3L). GATA2 was also knocked down using different small interfering RNAs (siRNAs) (Figure 3E). The expression of genes involved in the estrogen response pathway was impaired by GATA2 knockdown (Figure 3M). The effect of GATA2 knockdown on gene expression and cell proliferation was more pronounced in Prog_cells (Figures 3N and 3O). Transcriptome analysis also revealed that siRNAs targeting GATA2 suppressed the estrogen response pathway in Prog_cells (Figure 3P; Figures S4F and S4G). Xenografts generated from the Prog_cells grew more rapidly than xenografts generated from the Ctrl_cells. The GATA2 inhibitor K7174 specifically suppressed Prog_cell-generated xenograft growth (Figure 3Q). Together, these data demonstrate that GATA2 mediates the accumulating oncogenic effects of progesterone and is a potential target for prostate cancer treatment.

Targeting progesterone metabolism to halt the oncogenic effects of progesterone

Suppressing the generation of progesterone provides a potential strategy to eliminate the transient and accumulating oncogenic effects of progesterone. Pregnenolone, generated from cholesterol, is converted to progesterone by 3β-hydroxysteroid dehydrogenase 1/2 (3βHSD1/2). Based on our knowledge of steroidal metabolism, we hypothesized that progesterone is converted to 5α-progesterone (5αP), 5β-progesterone (5βP), and the related downstream metabolites in patients (Figure 4A). Pregnenolone, progesterone, and 5αP were used to treat LNCaP cells to confirm the progesterone metabolic pathway (Figure S5A). [3H]-pregnenolone was used to treat fresh patient prostate biopsy samples ex vivo. Pregnenolone was actively converted to progesterone and 5αP in biopsy samples (Figure 4B). The distribution of progesterone-related metabolites was also investigated with plasma samples from seven abiraterone-treated patients to show that pregnenolone, progesterone, and 5αP were the main metabolites found in patients (Figure S5B). The function of these metabolites was further investigated, and we found that most metabolites activated AR signaling in LNCaP and VCaP cells (Figure 4C). Pregnenolone, progesterone, and 5αP activated AR target gene expression in a dose-dependent manner (Figure S5C). The docking model indicated that pregnenolone, progesterone, and 5αP bound to the ligand-binding domain of AR comparably (Figure S5D). However, the 3α-OH-Δ-5 structure of pregnenolone is not an ideal ligand for the AR. Competition assays were performed on LNCaP and VCaP cells using all progesterone-related metabolites, and results showed that progesterone and 5αP had the most potent affinity for the AR (Figure S5E). Pregnenolone exhibited limited binding affinity for wild-type AR and the AR^{T877A} mutant (Figure 4D). Thus, the oncogenic function of pregnenolone might result from its conversion to progesterone. This hypothesis was further validated using mouse tissues. Mouse prostate tissue showed no 3βHSD1/2 activity and converted no DHEA to AD (Figure 4E). Prostate organoids generated from ^{Pb}Cre/+^{+, Pten^{Fox/Fox}} mice could not convert pregnenolone and DHEA to downstream metabolites (Figure 4F). Thus, pregnenolone did not enhance the formation of prostate organoids as progesterone (Figure 4G). Pregnenolone was not capable of activating AR signaling in the mouse prostate organoids (Figure 4H). Together, these data indicate that inhibiting the conversion of pregnenolone to progesterone is a potential strategy for prostate cancer treatment.

The adrenal gland is not the only source for pregnenolone and progesterone. The periprostatic adipose tissue might also contribute steroids to prostate cancer cells through paracrine mechanisms. Fresh periprostatic adipose tissues were collected from seven prostate cancer patients receiving radical prostatectomy and cultured in DMEM for 2 days. The secretion of adipose tissues from three patients activated AR target genes in LNCaP...
cells (Figure 4I). Significantly higher concentrations of pregnenolone were detected in the secretion of these AR-activating adipocyte tissues (Figure 4J). These results indicate that the effects of pregnenolone are not limited to abiraterone-treated patients.

To inhibit the conversion of pregnenolone to progesterone, a steroidogenic enzyme 3|HSD1 is a promising target (Figure 4A). Currently, there is no 3|HSD1 inhibitor available in clinic. To discover novel 3|HSD1 inhibitors, a virtual screening was conducted with a previously reported spliced 3|HSD1 structure model.77,41 Corlysin, a flavonoid reported to have anti-inflammatory and anti-cancer activity at a high dose (>10 μM), was found to be a potential candidate to bind to 3|HSD1 in our virtual screening system.42 Coincidentally, mouse 3|Hsd3/ 3|Hsd5, with high similarity to human 3|HSD1, were pulled down by a photo-crosslinking probe of corlysin in our previous work.33 Thus, the effect of corlysin on human 3|HSD1 was tested. Corlysin inhibited the conversion of DHEA to AD dose dependently (Figure 5A). Corlysin derivatives were further screened, and biochanin A (BCA) was identified as the most potent 3|HSD1 inhibitor (Figures 5B and 5C). To determine the potential interaction between BCA and 3|HSD1, cellular thermal shift assay (CETSA) was performed and BCA increased the thermal stability of 3|HSD1, similar to DHEA (Figure 5D).43 A BCA probe was synthesized and its function in suppressing 3|HSD1 activity was confirmed (Figures 5E and 5F). Purified glutathione S-transferase (GST)-3|HSD1 was pulled down by this BCA probe in vitro. The addition of DHEA or BCA interrupted the binding of the BCA probe to GST-3|HSD1 (Figure 5G). Consistently, the docking model with the spliced 3|HSD1 structure also indicated that BCA competed with DHEA to bind to the substrate recognition pocket of 3|HSD1 (Figure 5H).37 Essential amino acids of 3|HSD1 involved in BCA binding were predicted according to the docking results and mutated for enzyme activity assays. The E126A mutant impaired BCA function completely, indicating the important role of E126 in recognizing 3|HSD1 (Figure 5I). Together, these data demonstrate that BCA directly and potently suppresses the activity of 3|HSD1.

The specificity of BCA as a 3|HSD1 inhibitor in biological functions was also evaluated. BCA specifically inhibited DHEA- but not DHT-induced AR target gene expression (Figure 5J). Transcriptome analysis of VCaP cells revealed that AR target genes were specifically regulated by BCA (Figures S5F–S5H). BCA, alone at a dose of 1 μM, affected limited genes or no pathways in VCaP, PC3, and LNCaP cells (Figures S6A and S6B). Furthermore, BCA at a dose of less than 10 μM, had no effect on the proliferation of AR-negative PC3 cells (Figure S6C). These data together support the specificity of BCA, at a dose of less than 10 μM, as a 3|HSD1 inhibitor.

To determine the function of BCA in regulating progesterone synthesis, a VCaP cell line stably expressing Dox-induced 3|HSD1 was treated with pregnenolone with or without BCA. The conversion from pregnenolone to progesterone was accelerated by 3|HSD1 overexpression but reduced by BCA (Figure 5K). By suppressing the conversion of pregnenolone to progesterone, BCA successfully suppressed pregnenolone-induced gene expression and cell proliferation in VCaP and LNCaP cells, but showed no effect on progesterone (Figures 5L–5N). Pregnenolone and progesterone facilitated the growth of xenografts generated from C4-2 cells in castrated mice. BCA successfully suppressed pregnenolone- but not progesterone-sustained xenograft development (Figure 5O). Together, these data demonstrate that inhibiting the synthesis of progesterone is a feasible strategy to halt the oncogenic effects of progesterone.

Progesterone as a predictive biomarker for abiraterone response

Based on its oncogenic effects, progesterone might be a predictive biomarker for abiraterone response if the increase in plasma progesterone is an early event after abiraterone treatment. The clinical information of abiraterone-treated patients was re-examined (Table S5). A total of 17 CRPC patients had plasma progesterone detected at baseline, 3 months after abiraterone treatment, and at the endpoint. An increase in plasma levels of progesterone was observed in these 17 patients after 3 months of abiraterone treatment (Figure 6A). Patients with higher plasma levels of progesterone at the endpoint had higher plasma levels of progesterone after 3 months of abiraterone treatment (Figure 6B). These data together confirm the early onset of an increase in plasma progesterone levels in abiraterone-treated patients.

Figure 4. Function of progesterone-related metabolites in prostate cancer

(A) Schema of progesterone metabolism in prostate cancer cells. Gray arrows indicate potential progesterone metabolism in the liver.

(B) Pregnenolone in patient biopsy samples. [3H]-pregnenolone was used to treat biopsy samples from prostate cancer patients.

(C) Effects of progesterone and other metabolites on AR target gene in VCaP and LNCaP cells. Cells were treated with 1 μM progesterone or related metabolites before PSA detection.

(D) Affinity of progesterone and other metabolites to the AR. Progesterone and other metabolites at different doses were used to compete with 1 nM [3H]-R1881 in LNCaP cells (expressing AR788A mutant) and LAPC4 cells (expressing wild-type AR).

(E) Lack of 3|HSD activity in mouse prostate tissue. Fresh tissues from mouse prostate and testis were minced and transiently cultured with [3H]-DHEA. AD, androstenedione.

(F) Lack of 3|HSD activity in the prostate organoids. Prostate organoids were generated from 3-month-old PgcCre/+ Ptenflox/flox mice and treated with [3H]-pregnenolone, [3H]-DHEA, or [3H]-AD.

(G) Effects of pregnenolone and progesterone on organoids formation. Pregnenolone, 500 nM; progesterone, 500 nM. Organoids were generated with prostate gland from PbCre/+ Ptenflox/flox mouse.

(H) Effects of pregnenolone and progesterone on AR target gene expression in PgcCre/+ Ptenflox/flox mouse prostate organoids.

(I) Secretions of periprostatic adipocyte tissues activated AR signaling in LNCaP cells. Periprostatic adipocyte tissues from seven patients were collected and incubated in DMEM + 10% FBS for 2 days. This medium was utilized to treat LNCaP cells. DHEA, 40 nM; DHT, 0.1 nM.

(J) Relative fold of progesterone in the secretions of periprostatic adipocyte tissues. Results are represented as means ± SD. Experiments were performed at least three times independently. Technical replicate (n = 2) for qPCR; biological replicate (n = 3) for organoids assay (see also Figures S5A–S5E).
Figure 6. BCA eliminates the oncogenic effects of progesterone as an inhibitor of 3\(\beta\)HSD1

(A) Corylin inhibited DHEA conversion to AD. Cells were treated with \(^{3}\text{H}\)-DHEA and the indicated drugs. The percentage of DHEA and downstream metabolites was calculated. Cory, corylin; AD, androstenedione.

(B) Effect of corylin derivatives on DHEA metabolism.

(C) BCA significantly inhibited DHEA metabolism. LNCaP cells were treated with drugs with the indicated doses and \(^{3}\text{H}\)-DHEA. BCA, biochanin A.

(legend continued on next page)
The predictive role of plasma progesterone levels was further investigated. Patients with plasma concentrations >3 nM after 3 months of abiraterone treatment had a shorter abiraterone treatment duration (Figure 6C). PSA reduction after 3 months of abiraterone treatment is frequently used in clinic to evaluate patient response. In 11 out of 17 CRPC patients, a PSA reduction more than 50% from the baseline was identified (Figure 6D). Patients with a more significant PSA reduction had a lower plasma progesterone concentration after 3 months of abiraterone treatment (Figure 6E). We further expanded the analysis to all abiraterone-treated patients, including both CRPC and HSPC patients. The predictive role of progesterone was also confirmed in these patients (Figure S7). Together, these data indicate the potential of plasma progesterone levels as a predictive biomarker for abiraterone response.

DISCUSSION

Metabolites beyond androgens may drive the progression of prostate cancer. The discovery of these oncometabolites could provide novel insights into disease management. Here, we performed UHPLC-MS screening and retrospective analysis on clinical data to identify progesterone as an oncogenic hormone in prostate cancer. The investigation on the oncogenic effects of progesterone provided potential targets, including AR, GATA2, and 3\(\beta\)HSD1, for further disease management.

The oncogenic effects of other metabolites may be concealed by androgens. ADT and abiraterone together eliminate the major androgen resources from the testis and adrenal glands, providing a relatively clear background to discover novel oncometabolites. Progesterone is considered a female hormone involved in the menstrual cycle. It binds to the PR and regulates fetus implantation and other essential physiological functions. Progesterone and the PR have been reported as preventive factors in breast, colon, and lung cancer. Patients with low progesterone levels had a higher risk of premenopausal breast cancer and overall mortality. However, the enthusiasm for investigating progesterone in prostate cancer is limited due to the trace amount of endogenous progesterone in men. Abiraterone significantly increased the plasma concentration of progesterone, providing a unique scenario for progesterone to exert its oncogenic effect.

The oncogenic effects of progesterone in prostate cancer may be PR independent. PR is expressed mainly in stromal cells but not in epithelial cells in the prostate. PR might regulate stromal cells and indirectly inhibit prostate cancer, independent of progesterone. Progesterone has been reported to inhibit benign prostatic hyperplasia and prostate cancer, possibly due to its effects on SRD5A and pituitary luteinizing hormone (LH) release. However, in patients receiving ADT and abiraterone, the significance of SRD5A and LH release may not be essential. Recently, the progesterone-responsive AR\(^{H875Y}\) mutant was identified in abiraterone-treated patients, indicating a potential progesterone-related resistance mechanism.

A high dose of progesterone bound to the AR directly, and its affinity to AR was dependent on the AR genotype. Thus, patients with AR\(^{W742L}\) and AR\(^{H750T}\) are more suitable for abiraterone treatment than patients expressing AR\(^{H878A}\) and AR\(^{H875Y}\). Progesterone has a relatively mild affinity for wild-type AR, and increasing AR abundance magnifies the oncogenic effect of progesterone, consistent with the clinical observation of AR expression after abiraterone treatment. Progesterone also uniquely regulates the expression of non-canonical AR target genes. These non-canonical genes are involved in the cell cycle and gene transcriptional regulation, which are essential for cell survival. Previous reports also revealed different AR signatures activated by different ligands or drugs, supporting the context-specific function of AR in prostate cancer.

More than 10 nM progesterone is needed to activate AR signaling, and only 9 out of 47 (19.15%) patients achieved this dose after abiraterone treatment in this study. Unlike the cell lines with a transient treatment of progesterone, abiraterone-treated patients encounter persistent progesterone stimulation in their daily lives. Long-term stimulation of progesterone might result in irreversible alterations in the genome or transcriptome of prostate cancer cells. LAPC4 cells were not sensitive to transient progesterone treatment due to their low AR expression. However, a more aggressive LAPC4 cell line was generated after treatment with physiological levels of progesterone for more than 6 months. Genes involved in the activated estrogen response...
pathway, including MUC1, MDK, and HMGCS2, have been reported to promote neuroendocrine prostate cancer (NEPC) progression,57,68,69 maintain the stemness of prostate cancer,43,48,49 and promote disease progression,62 indicating a potential role of progesterone to promote NEPC progression. GATA2 mediated the activation of the estrogen response pathway. GATA2 was reported to be a pioneer transcription factor that facilitates nuclear receptor recruitment.63,64 The positive correlation between progesterone and the estrogen response pathway, including estrogen receptor (ER) target genes (E2F-G2M pathway), was found in clinically advanced prostate cancer (CRPC).65,66 Reliable biomarkers are required for patient stratification and personalized medicine.68 Currently, there are limited criteria to identify patients who are suitable for abiraterone treatment. We found that the plasma level of progesterone is a potential predictive biomarker of abiraterone response. Patients showing a significant increase in progesterone levels might benefit more from enzalutamide than abiraterone, especially for those expressing AR^{T878A} or AR^{V875F} mutants. The increase in plasma progesterone levels might also reflect the potency of 3\beta-HSD1 in patients. Abiraterone inhibits CYP17A, leading to the accumulation of pregnenolone and progesterone. 3\beta-HSD1 catalyzes pregnenolone to generate progesterone. Patients with higher plasma levels of progesterone after abiraterone treatment might have more potent activity of 3\beta-HSD1, which has been reported as a risk factor of treatment failure.69,70 However, the patients enrolled in this real-world analysis were not as rigorously examined as patients enrolled in clinical trials, and the patient number should be increased to confirm the role of progesterone as a predictive biomarker for the response to abiraterone.
In summary, this work identified progesterone as an onco-
genic hormone in prostate cancer patients receiving abiraterone treatment. BCA was discovered as a potent 3\(\beta\)HSD1 inhibitor and prevented the oncogenic effects of progesterone by sup-
pressing the synthesis of progesterone. Higher plasma levels of progesterone are correlated with poor clinical outcomes of abiraterone treatment in patients (Figure 6F).

Limitations of the study
The limitations of our study include limited cell lines used for the
chronic effects of progesterone. The detailed mechanisms for
BCA to inhibit 3\(\beta\)HSD1 need to be further determined. The onco-
genic effect and predictive biomarker role of serum progester-
one should be further validated in a large cohort of patients.

STAR METHODS

Detailed methods are provided in the online version of this paper
and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Patients
 - Cell lines
 - Animal models
- **METHOD DETAILS**
 - Reagents
 - Preparation of standard solutions for calibration curves
 - Preparation of plasma samples
 - Derivatization of sterol metabolites with 2-Picolinic acid
 - UHPLC-MS/MS analysis
 - Untargeted metabonomics analysis with UPLC-
 QTOFMS
 - Detection of plasma progesterone and its metabolites
 - Chemical compounds
 - Steroidogenesis in patient biopsy samples
 - Mouse prostatic organoids
 - HPLC
 - Effects of periprostatic adipose tissue medium
 - Gene expression
 - Cell proliferation assay
 - Immunoblotting
 - Immunofluorescence
 - AR competition assay
 - Luciferase reporter gene assay
 - Mouse xenograft studies
 - BCA probe pull-down assay
 - CETSA
 - Computational biochemistry
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
 - RNA-seq
 - Pathway enrichment and gene set enrichment analysis
 - Statistics

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
xcrm.2022.100561.

ACKNOWLEDGMENTS

We thank our patients and their families. We thank the staff members (Zhuo
Yang et al.) of the chemical biology core facility in Shanghai Institute of
Biochemistry and Cell Biology, staff members (Chao Peng et al.) of mass spect-
rometry at the National Facility for Protein in Shanghai (NFPS)/Shanghai
Advanced Research Institute, and staff members (Pengyu Wang et al.) of
Bio-Med Big Data Center/Shanghai Institute of Nutrition and Health for their
support. This work is supported by the National Key R&D program of China
(2018YFA0508200), the National Natural Science Foundation of China
(92157101, 31771575, 31821002, 81590953, and 81872075), Ministry of Sci-
ence and Technology of China (2018YFE0201603, 2020YFE0201600, and
2017YFC0908800), New Frontier Technology Joint Research Project of
Shanghai Municipal Hospital (SHDC120191112), Natural Science Foundation
of Shanghai (21ZR1458300), Shanghai Municipal Science and Technology
Major Project (2017SHZDZX01), a Prostate Cancer Foundation Young Invest-
igator Award, and the Science, Technology, and Innovation Commission of
Shenzhen Municipality (UCYJ-20210324124611031).

AUTHOR CONTRIBUTIONS

Conceptualization, Z.L.; methodology, L.C., H.T., and Y.G.; investigation, Z.H.,
S.H., Z.M., J.G., Q.Z., X.Z., T.Y., Y.L., Y.C., D.W., T.J., X.S., Y.W., R.R.,
L.Q., X.X., and J.Q.; writing, Z.L., H.T., D.W., Z.H., S.H., and Z.M.; funding
acquisition, Z.L., D.W., H.T., and R.R.; resources, S.H., D.W., T.J., and X.S.;
supervision, Z.L., H.T., and D.W.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: November 7, 2021
Revised: January 17, 2022
Accepted: February 16, 2022
Published: March 15, 2022

REFERENCES

1. Sharifi, N., and Auchus, R.J. (2012). Steroid biosynthesis and prostate
cancer. Steroids 77, 719–726.
2. Hou, Z., Huang, S., and Li, Z. (2021a). Androgens in prostate cancer: a tale
that never ends. Cancer Lett. 516, 1–12.
3. Auchus, R.J., and Sharifi, N. (2020). Sex hormones and prostate cancer.
Annu. Rev. Med. 71, 33–45.
4. Huggins, C. (1946). Prostatic cancer treated by orchietomy: the five year
results. J. Am. Med. Assoc. 131, 576–581.
5. Barrie, S.E., Potter, G.A., Goddard, P.M., Haynes, B.P., Dowsett, M., and
Jarman, M. (1994). Pharmacology of novel steroidal inhibitors of cyto-
chrome P450(17) alpha (17 alpha-hydroxylase/C17-20 lyase). J. Steroid
Biochem. Mol. Biol. 50, 267–273.
6. Watson, P.A., Arora, V.K., and Sawyers, C.L. (2015). Emerging mecha-
nisms of resistance to androgen receptor inhibitors in prostate cancer.
Nat. Rev. Cancer 15, 701–711.
7. Beltran, H., Rickman, D.S., Park, K., Chae, S.S., Sboner, A., MacDonald,
T.Y., Wang, Y., Sheikh, K.L., Terry, S., Tagawa, S.T., et al. (2011). Molecular
characterization of neuroendocrine prostate cancer and identification
of new drug targets. Cancer Discov. 1, 487–495.
8. Aggarwal, R., Zhang, T., Small, E.J., and Armstrong, A.J. (2014). Neuroen-
docrine prostate cancer: subtypes, biology, and clinical outcomes. J. Natl.
Compr. Cancer Netw. 12, 719–726.
9. Antonarakis, E.S., Lu, C., Wang, H., Luber, B., Nakazawa, M., Roesser, J.C., Chen, Y., Mohammad, T.A., Chen, Y., Fedor, H.L., et al. (2014). AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. New Engl. J. Med. 371, 1028–1038.

10. Chen, E.J., Sowalsky, A.G., Gao, S., Cai, C., Voznesensky, O., Schaefer, R., Lodia, M., True, L.D., Ye, H., Troncoso, P., et al. (2015). Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin. Cancer Res. 21, 1273–1280.

11. Zhao, X.Y., Malloy, P.J., Krishnan, A.V., Swami, S., Navone, N.M., Peehl, D.M., and Feldman, D. (2000). Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med. 6, 703–706.

12. Arora, V.K., Schenkein, E., Murali, R., Subudhi, S.K., Wongvipat, J., Balali, M., Veldscholte, J., Ris-Stalpers, C., Kuiper, G.G., Jenster, G., Berrevoets, C., Classen, E., van Rooij, H.C., Tramp, J., Brinkmann, A.O., and Mulder, E. (1990). A mutation in the ligand binding domain of the androgen receptor. Implications for pathogenic gene mutations. J. Biol. Chem. 265, 1309–1322.

13. Kitschke, J., Ris-Stalpers, C., Kuiper, G.G., Jenster, G., Berrevoets, C., Classen, E., van Rooij, H.C., Tramp, J., Brinkmann, A.O., and Mulder, E. (1990). A mutation in the ligand binding domain of the androgen receptor. Implications for pathogenic gene mutations. J. Biol. Chem. 265, 1309–1322.

14. Li, J., Alyamani, M., Zhang, A., Chang, K.H., Berk, M., Li, Z., Zhu, Z., Petro, V., and Palvimo, J.J. (2021). Genome-wide crosstalk between proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 12, 245–255.

15. Penney, K.L., Sinnott, J.A., Fall, K., Pawitan, Y., Hoshida, Y., Kraft, P., Stark, J.R., Fiorentino, M., Perner, S., Finn, S., et al. (2011). mRNA expression signature of Gleason grade predicts lethal prostate cancer. J. Clin. Oncol. 29, 2391–2396.

16. Kumar, A., Coleman, I., Morrissey, C., Zhang, X., True, L.D., Gulati, R., Etzioni, R., Bolouiri, H., Montgomery, B., White, T., et al. (2016). Substantial interindividual and limited intranidividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378.

17. Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102.

18. Taylor, B.S., Schultz, N., Hiernymus, H., Gopalan, A., Xiao, Y., Carver, B.S., Arora, V.K., Kaushik, P., Cerami, E., Reva, B., et al. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22.

19. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The CBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404.

20. Keenan, A.B., Torre, D., Lachmann, A., Leong, A.K., Wojciechowicz, M.L., Uti, V., Jagodnik, K.M., Kroopnicki, E., Wang, Z., and Ma’ayan, A. (2019). ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224.

21. Umetani, M., Nakao, H., Doi, T., Iwasaki, A., Ohtaka, M., Nagoya, T., Mataki, C., Hamakubo, T., and Kodama, T. (2000). A novel cell adhesion inhibitor, K-7174, reduces the endothelial VCAM-1 induction by inflammatory cytokines, acting through the regulation of GATA. Biochem. Biophys. Res. Comm. 272, 370–374.

22. Alyamani, M., Li, Z., Berk, M., Li, J., Tang, J., Upadhyay, S., Auchos, R.J., and Sharifi, N. (2017). Steroidogenic metabolism of galeterone reveals a diversity of biochemical activities. Cell Chem. Biol. 24, 825–832.e6.

23. Li, Z., Alyamani, M., Li, J., Rogacki, K., Abazaied, M., Upadhyay, S.K., Balk, S.P., Taplin, M.E., Achos, R.J., and Sharifi, N. (2016). Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy. Nature 533, 547–551.

24. Han, Y., Zhang, Q., Sun, B., Lv, W., Wang, S., Xiao, Q., Pang, B., Zhou, Y., Wang, F., Chi, P., et al. (2021). Crystal structure of steroid reductase SRD5A5 reveals conserved steroid reduction mechanism. Nat. Commun. 12, 449.

25. Souza, J.C., Chen, Y., Mohammad, T.A., Chen, Y., Fedor, H.L., et al. (2014). AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. New Engl. J. Med. 371, 1028–1038.

26. Borgmann, H., Lallous, N., Ozistanbull, D., Beraldi, E., Paul, N., Dalal, K., Koff, M., Kwiecien, R., and Numazawa, M. (2007b). Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 72, 819–827.

27. Hahajama, P., Sahu, B., and Janne, O.A. (2015). Determinants of receptor- and tissue-specific actions in androgen signaling. Endocr. Rev. 36, 357–384.

28. Paakinaho, V., and Palvimo, J.J. (2021). Genome-wide crosstalk between steroid receptors in breast and prostate cancers. Endocr. Relat. Cancer 28, R231–R250.

29. Scher, H.I., Fizazi, K., Saad, F., Taplin, M.E., Sterberg, C.N., Miller, K., de Witt, R., Mulders, P., Chi, K.N., Shore, N.D., et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. New Engl. J. Med. 367, 1187–1197.

30. Tran, C., Ouk, S., Clegg, N.J., Chen, Y., Watson, P.A., Arora, V., Wongvipat, J., Smith-Jones, P.M., Yoo, D., Kwon, A., et al. (2009). Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790.

31. Hofmann, G., Lallous, N., Ozistanbull, D., Beraldi, E., Paul, N., Dalal, K., Koff, M., Kwiecien, R., and Numazawa, M. (2007b). Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 72, 819–827.

32. Matias, P.D., Das, B., Borchert, S., Das, S., Halder, A., and Wyrick, J.J. (2012). Development of a second-generation antiandrogen for prostate cancer: a highly significant medical progress based upon intracrinology. J. Steroid Biochem. Mol. Biol. 120, 105859.

33. Ho, Z., Yang, T., Mei, Z., Seng, S., Gao, Y., Chen, X., Tan, Q., Zhu, X., Xu, C., and Lian, J., et al. (2021b). Tracing steroidogenesis in prostate biopsy samples to unveil prostate tissue androgen metabolism characteristics and potential clinical application. J. Steroid Biochem. Mol. Biol. 210, 105859.

34. Attanasio, G., Troisi, J., Minini, M., Mosole, S., et al. (2021). Commensal bacteria promote endocrine resistance in prostate cancer through intracrinology. J. Steroid Biochem. Mol. Biol. 210, 105859.

35. Thomas, J.L., Bucholtz, K.M., and Kacsoh, B. (2011b). Selective inhibition of human 3beta-hydroxysteroid dehydrogenase type 1 as a potential treatment for breast cancer. J. Steroid Biochem. Mol. Biol. 125, 57–65.

36. Li, J., Daly, E., Campioli, E., Wabitsch, M., and Papadopoulos, V. (2014). De novo synthesis of steroids and oestrogens in adipocytes. J. Biol. Chem. 289, 747–764.
41. Pham, J.H., Will, C.M., Mack, V.L., Halbert, M., Conner, E.A., Bucholtz, K.M., and Thomas, J.L. (2017). Structure-function relationships for the selective inhibition of human 3beta-hydroxysteroid dehydrogenase type 1 by a novel androgen analog. J. Steroid Biochem. Mol. Biol. 174, 257–264.

42. Chen, C.Y., Chen, C.C., Shieh, T.M., Hsueh, C., Wang, S.H., Lee, Y.L., Lian, J.H., and Wang, T.H. (2018). Corilyn suppresses hepatocellular carcinoma progression via the inhibition of epithelial-mesenchymal transition, mediated by long noncoding RNA GASS. Int. J. Mol. Sci. 19, 380.

43. Zheng, Z.G., Zhang, X., Liu, X.X., Jin, X.X., Dai, L., Cheng, H.M., Jing, D., Thu, P.M., Zhang, M., Li, H., et al. (2019). Inhibition of HSP90beta improves lipid disorders by promoting mature SREBPs degradation via the ubiquitin-proteasome system. Theranostics 9, 5769–5783.

44. Jafari, R., Almqvist, H., Axelsson, H., Ignatushchenko, M., Lundback, T., Clarke, C.L., and Sutherland, R.L. (1990). Progestin regulation of cellular proliferation, mediated by luteinizing hormone-releasing hormone. J. Biol. Chem. 265, 12315–12323.

46. Yu, Y., Liu, L., Xie, N., Xue, H., Fazli, L., Buttyan, R., Wang, Y., Gleave, M., Hata, T., Karou, S.N., Langade, D.K., Yadav, V.K., Sharma, P., Thawani, V.R., and Attard, G., Reid, A.H., Yap, T.A., Raynaud, F., Dowsett, M., Settatree, S., Lallous, N., Volik, S.V., Awrey, S., Leblanc, E., Tse, R., Murillo, J., Singh, K., Azad, A.A., Wyatt, A.W., LeBlan, S., et al. (2016). Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol. 17, 10.

48. Kaore, S.N., Langade, D.K., Mundback, T., Nordlund, P., and Martinez Molina, D. (2014). The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122.

50. Matusbara, N., Chi, K.N., Ozuguroglu, M., Rodriguez-Antolin, A., Feyerabend, S., Fein, L., Alekseev, B.Y., Sulur, G., Protheroe, A., Li, S., et al. (2020). Correlation of prostate-specific antigen kinetics with overall survival and radiological progression-free survival in metastatic castration-sensitive prostate cancer treated with abiraterone acetate plus prednisone or placebos added to androgen deprivation therapy: post hoc analysis of phase 3 LATITUDE study. Eur. Urol. 77, 494–500.

51. Crocker, C.L., and Sutherland, R.L. (1990). Progestin regulation of cellular proliferation. Endocr. Rev. 11, 266–301.

52. Ferretti, G., Felieli, A., and Cognetti, F. (2007). The protective side of progesterone. Breast Cancer Res. 9, 402.

53. Ishibashi, H., Suzuki, T., Suzuki, S., Nikawa, H., Lu, L., Miki, Y., Moriya, T., Hayashi, S., Handa, M., Kondo, T., and Sasano, H. (2005). Progesterone receptor in non-small cell lung cancer—a potent prognostic factor and possible target for endocrine therapy. Cancer Res. 65, 6450–6458.

54. Slattery, M.L., Samowitz, W.S., and Holden, J.A. (2000). Estrogen and progestosterone receptors in colon tumors. Am. J. Clin. Pathol. 173, 364–368.

55. Cowan, L.D., Gordis, L., Tonascia, J.A., and Jones, G.S. (1981). Breast cancer incidence in women with a history of progestosterone deficiency. Am. J. Epidemiol. 114, 209–217.

56. Attard, G., Reid, A.H., Yap, T.A., Raynaud, F., Dowsett, M., Settatree, S., Barrett, M., Parker, C., Martins, V., Folkert, E., et al. (2008). Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571.

57. McKay, R.R., Werner, L., Mostaghiel, E.A., Lis, R., Zovnesensky, O., Zhang, Z., Mark, B.T., Matsumoto, A.M., Domachovsky, L., Zukotynski, K.A., et al. (2017). A phase II trial of abiraterone combined with duxartesterone for men with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 23, 935–945.

58. Lallouis, N., Volik, S.V., Awrey, S., Leblanc, E., Tse, R., Murillo, J., Singh, K., Azad, A.A., Wyatt, A.W., LeBlan, S., et al. (2016). Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients.
castration-resistant prostate cancer in men with the germline homozygous HSD3B1 c.1245C genotype. Ann. Oncol. 37, 1178–1185.

71. Scher, H.I., Halabi, S., Tannock, I., Morris, M., Sternberg, C.N., Carducci, M.A., Eisenberger, M.A., Higano, C., Bubley, G.J., Dreicer, R., et al. (2008). Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26, 1148–1159.

72. L Lee, S.H., Lee, N., Hong, Y., Chung, B.C., and Choi, M.H. (2016). Simultaneous analysis of free and sulfated steroids by liquid chromatography/mass spectrometry with selective mass spectrometric scan modes and polarity switching. Anal. Chem. 88, 11624–11630.

73. Drost, J., Karthaus, W.R., Gao, D., Driehuis, E., Sawyers, C.L., Chen, Y., and Clevers, H. (2016). Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358.

74. Han, Y., Huang, W., Liu, J., Liu, D., Cui, Y., Huang, R., Yan, J., and Lei, M. (2017). Triptolide inhibits the AR signaling pathway to suppress the proliferation of enzalutamide resistant prostate cancer cells. Theranostics 7, 1914–1927.
KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-AR	Santa Cruz Biotechnology	Cat#sc-7305; RRID: AB_626671
Anti-GATA2	R&D Systems	Cat#AF2046; RRID: AB_355123
Anti-ACTB	ABClonal	Cat#AC004; RRID: AB_2737399
Anti-ERα (D8H8)	Cell Signaling Technology	Cat#8644; RRID: AB_2617128
Anti-Mouse IgG (H + L)	Jackson ImmunoResearch Labs	Cat#115-035-003; RRID: AB_10015289
Anti-Rabbit IgG (H+L)	Jackson ImmunoResearch Labs	Cat#111-035-003; RRID: AB_2313567
anti-Goat IgG-HRP	Absin Bioscience	Cat#ab20005; RRID: AB_2832210
Anti-AR (D6F11)	Cell Signaling Technology	Cat#5153; RRID: AB_10691711
anti-Rabbit IgG (H+L) Secondary Antibody	Thermo Fisher Scientific	Cat#A-11035; RRID: AB_2534093
Bacterial and Virus Strains		
DH5α	TIANGEN Biotech	Cat#CB101
Biological Samples		
Patient plasma	Tongji Hospital (Shanghai)	Table S1-S3
Patient biopsies	Tongji Hospital (Shanghai)	Hou et al.35
Chemicals, Peptides, and Recombinant Proteins		
RPMI-1640 Medium, with L-glutamine and sodium bicarbonate	Sigma-Aldrich	Cat#R8758
RPMI-1640 Medium, without L-glutamine and phenol red	Sigma-Aldrich	Cat#R7509
DMEM - high glucose	Sigma-Aldrich	Cat#D7777
DMEM, without glucose, L-glutamine, phenol red, sodium pyruvate and sodium bicarbonate	Sigma-Aldrich	Cat#D5030
IMDM	Sigma-Aldrich	Cat#I3390
IMDM, without Gentamicin Sulfate and phenol red	Sigma-Aldrich	Cat#A10488
Trypsin-EDTA solution	Sigma-Aldrich	Cat#T4049
Fetal Bovine Serum	Lonsera	Cat#S711-001S
Charcoal stripped FBS	Lonsera	Cat#S83811
L-Glutamine solution	Sigma-Aldrich	Cat#G7513
Sodium pyruvate	Sigma-Aldrich	Cat#11360070
Lipofectamine 3000	Invitrogen	Cat#L3000-015
Lipofectamine RNAiMAX	Invitrogen	Cat#13778150
Puromycin	GIBCO	Cat#A113802
G418, Geneticin	GIBCO	Cat#10131035
Pregnenolone	Steraloids Inc.	Cat#Q5500-000
Progesterone	Steraloids Inc.	Cat#Q2600-000
5x-progesterone	Steraloids Inc.	Cas#566-65-4
3α-OH-5x-progesterone	Steraloids Inc.	Cas#516-54-1
3β-OH-5α-progesterone	Steraloids Inc.	Cas#516-55-2
5α-progesterone	Steraloids Inc.	Cas#128-23-4
3α-OH-5β-progesterone	Steraloids Inc.	Cas#128-20-1
3β-OH-5β-progesterone	Steraloids Inc.	Cas#128-21-2
Doxycycline hyclate	Sigma-Aldrich	Cat#10592-13-9
Polyethylenimine	Sigma-Aldrich	Cat#408727

(Continued on next page)
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Biochanin A (BCA)	MedChem Express	Cat#HY-14595
K7174	MedChem Express	Cat#HY-12743A
Dihydrotestosterone (DHT)	MedChem Express	Cas#521-18-6
Dehydroepiandrosterone (DHEA)	Steraloids	Cat#A8500-000; Cas#3-43-0
Enzalutamide (MDV3100)	Foreversyn	Cas#915087-33-1
Protease inhibitor cocktails	MedChem Express	Cat#HY-K0011
Poly-DL-ornithine	Sigma-Aldrich	Cat#P3655-1G
Progesterone pellets	EZBioscience	N/A
Pregnenolone pellets	EZBioscience	N/A
Ethyl alcohol	Thermo Fisher Scientific	Cat#AC 615095000
Corn oil	ABCONE	Cat#C67366
Corning® Matrigel® Basement Membrane Matrix, *LDEV-Free	BD biocoat (Corning)	Cat#354234
[3H]-DHEA	PerkinElmer	NET 814001MC
[3H]-AD	PerkinElmer	NET 926005MC
[3H]-Pregnenolone	PerkinElmer	NET 039001MC
[3H]-R1881	PerkinElmer	NET 590250VC
[3H]-Progesterone	PerkinElmer	NET 381
Methanol	Thermo Fisher Scientific	Cat#A454K4
Ethyl acetate	Sigma-Aldrich	Cat#34858-4L
Iso octane	Thermo Fisher Scientific	Cat#03014
Liquiscint scintillation cocktail	Thermo Fisher Scientific	Cat#5089990170
Tert-butyl methyl ether	Thermo Fisher Scientific	Cat#AC 389050025
TRIzol reagent	Thermo Fisher Scientific	Cat#15596026

Critical Commercial Assays

Assay/Kit	Source	Catalog Number
Cell Counting Kit-8	Beyotime	Cat#C0038
Cell to cDNA Kit	EZBioscience	Cat#B0003
2x SYBR Green qPCR master mix	EZBioscience	Cat#A0001-R2
Pierce BCA Protein Assay Kit	Thermal Fisher Scientific	Cat#23225
Pierce ECL Western Blotting Substrate	Thermal Fisher Scientific	Cat#32209
KOD Hot Start DNA Polymerase	Novagen	Cat#71086-3
Glo Lysis Buffer, 1X	Promega	Cat#E266A
Bright-Glo™ Luciferase Assay System	Promega	Cat#E2160
VAHTSTM mRNA-seq V3 Library Prep Kit for Illumina	Vazyme	Cat#NR611
VAHTSTM RNA Adapters set 3 - set 6 for Illumina	Vazyme	Cat#N809/N810/N811/N812

Deposited Data

Type	Description	Catalog Number
Raw sequencing data	This paper	OEP002363; OEP002519
Plasma metabolites	This paper	OED660544; OED660545; OED660546

Experimental Models: Cell Lines

Cell Line	Source	Catalog Number
LNCaP	ATCC	CRL-1740
VCaP	Dr. Jun Qin (SINH, China)	N/A
C4-2	ATCC	CRL-3314
LAPC4	Dr. Charles Sawyers (MSKCC, USA)	N/A
PC3	ATCC	CRL-1435
DU145	ATCC	HTB-81
HEK293T	ATCC	CRL-3216
HEK293	ATCC	CRL-1573
PC3-ARmut	This paper	N/A
RESOURCE AVAILABILITY

Lead contact
Further information and request for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Zhenfei Li (zhenfei.li@sibcb.ac.cn).
Materials availability
The plasmids, antibodies, stable cell lines and chemical compounds generated in this study have not been deposited to any repositories yet, however, these materials would be available from the Lead Contact without restriction.

Data and code availability
All RNA-seq data generated during this study have been deposited in the National Omics Data Encyclopedia/NODE (https://www.biosino.org/node) under the accession number OEP 002363 (https://www.biosino.org/node/project/detail/OEP002363) and OEP 002519 (https://www.biosino.org/node/project/detail/OEP002519). Metabolites detected in Figure 1A were also deposited in NODE with accession number OED660544 (https://www.biosino.org/download/node/data/OED660544), OED660545 (https://www.biosino.org/download/node/data/OED660545), OED660546 (https://www.biosino.org/download/node/data/OED660546). Published datasets used in this study are available through cBioPortal database (http://www.cbioportal.org). This paper does not report original code. Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients
All investigations in this study were conducted according to the principles of the Declaration of Helsinki. All patient studies were performed according to the relevant ethical standards and were approved by the Ethics Committee of Tongji Hospital, Shanghai, China (ID: 2018009). Written consents from all patients were obtained. Clinical information of the patients receiving abiraterone acetate treatment at the Shanghai Tongji Hospital between August 2016 and April 2020 were analyzed. A total of 103 patients received abiraterone treatment and 90 patients with endocrine hormone related examination and regular follow-up were qualified for further analysis. The castrate-level of testosterone was also confirmed in these patients. Endocrine hormone-related laboratory indices were determined by clinical laboratory and the 16 indexes includes luteinizing hormone (LH), follicle-stimulating hormone (FSH), pituitary prolactin, neuron-specific enolase (NSE), alanine aminotransferase (ALT), aspartate aminotransferase (AST), sex hormone-binding globulin (SHBG), total cholesterol (TC), triglyceride (TG), dehydroepiandrosterone (DHEA), androstenedione (AD), testosterone (T), free testosterone (FT), dihydrotestosterone (DHT), progesterone, and estradiol (E2). Paired Student’s t test and false discovery rate (FDR) were used to compare the differences between the baseline and endpoint of abiraterone treatment. Threshold criteria for all differential-expression analyses are an absolute value (log2 (fold-change)) ≥ 1 and FDR < 0.05. Among these 90 patients, 73 patients had the information of plasma progesterone levels at baseline or after abiraterone treatment. PSA progression was determined according to the PCWG2 guidelines.71

Cell lines
LNCaP, HEK293, HEK293T, PC3, DU145 cells were purchased from the American Type Culture Collection (Manassas, VA, USA) and cultured in RPMI-1640 (LNCaP, PC3, DU145) or DMEM (HEK 293, HEK293T) with 10% or 5% (PC3) FBS (Lonsera, China). LAPC4 cells were grown in iscove’s modified Dulbecco’s medium with 10% FBS and 1% L-glutamine (final c.c 2 mM; Gibco, Life Technologies). VCaP was kindly provided by Dr. Jun Qin (SINH, Shanghai, China), and cultured in DMEM with 10% or 5% (PC3) FBS and 1% Sodium Pyruvate (final c.c 1 mM; Gibco, Life Technologies). Stable PC3 and LAPC4 cell lines with AR and \(\beta\)HSD1 overexpression were established using lentiviral plasmids pLVX-tight-puro and pLVX-tet-on. LAPC4 cells were cultured with ethanol or 5 nM progesterone for 6 months to establish Ctrl_cells and Prog_cells. All experiments with LNCaP, VCaP, and LAPC4 were performed in plates coated with poly-DL-ornithine (Sigma-Aldrich, St. Louis, MO, USA). All cell lines were authenticated by Hybribio (Guangzhou, China).

Animal models
All mice were maintained in a specific-pathogen-free (SPF) facility, and all related protocols were performed in compliance with the Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences. Male NOD-SCID mice (aged 6 to 8 weeks) were obtained from Lingchang Biotech (Shanghai, China).

METHOD DETAILS

Reagents
2-picolinic acid (PA) and 2-methyl-6-nitrobenzonic anhydride (MNBA) were purchased from Aladdin (Shanghai, China), whereas 4-dimethylaminopyridine (DMPA) and anhydrous pyridine were obtained from J&K Scientific (Shanghai, China). All sterol standards examined in this study were purchased from J&K Scientific (Shanghai, China), Sigma-Aldrich (St Louis, MO, USA), Aladdin (Shanghai, China) and TRC (Toronto, Canada) as appropriate. Cholesterol-d7, campesterol-d3, estrone-d2, dehydroepiandrosterone-d2, estradiol-d2, 24-hydroxycholesterol-d7, and \(\beta\)-Sitosterol-d7 were purchased from Sigma-Aldrich (St Louis, MO, USA), CDN ISOTOPES...
(Quebec, Canada) and CIL (Tewksbury, MA, USA) as appropriate. LC-grade acetonitrile and tert-butyl methyl ether were purchased from Sigma-Aldrich (St Louis, MO, USA), and pure water was obtained from a Milli-Q system (Merck Millipore, Germany).

Preparation of standard solutions for calibration curves

Stock solutions of all steroid standards were prepared at a concentration of approximately 1 mg/mL in methanol-dichloromethane (1:2 v/v); A set of standard solutions with concentrations of 0.003-390.6 μM were obtained by mixing the appropriate amounts of the above stock solutions. These working solutions were then stored at −20°C, which were found to remain stable for 6 months, until further analysis.

Preparation of plasma samples

Each plasma sample (50 μL) was added to 50 μL of an internal standard mixture consisting of cholesterol-d7, campstero1-d3, estrone-d2, dehydroepiandrosterone-d2, estradiol-d2, 24-Hydroxycholesterol-d7, and β-Sitosterol-d7. Then, 500 μL of pre-cooled methanol (−20°C) was added, vortexed, and centrifuged at 12000 rpm at 4°C for 10 min to obtain the supernatant. This extraction procedure was repeated once more and the two supernatants from each sample were pooled and dried using nitrogen gas. The residue was re-dissolved in 50 μL of acetonitrile. Five microliters of this solution was used directly to quantify steroids without hydroxyl groups, while the remaining solution was dried with nitrogen gas followed by derivatization to identify the sterols carrying the hydroxyl groups.

Derivatization of sterol metabolites with 2-Picolinic acid

Derivatization of sterol metabolites was conducted as reported previously15,16 with some modifications. In brief, the nitrogen-dried residue of the working solution (10 μL) and biological sample extracts were added to 100 μL pyridine solution of PA, MNBA, and DMPA, respectively. The mixtures were heated at 80°C for 60 min, followed by the addition of pure water (200 μL) and extraction with MTBE (1.5 mL). These MTBE extracts were dried with nitrogen gas and the resultant residues were reconstituted in 100 μL acetonitrile for UHPLC- MS/MS analysis.

UHPLC-MS/MS analysis

Quantification was performed on an LC-30AD UHPLC system (Shimadzu Technologies, Japan) hyphenated with a 6500 plus Qtrap mass spectrometer (AB Sciex Corp., USA) with an electrospray ionization (ESI) source. A Zorbax Eclipse Plus C18 column (100 × 2.1 mm, 1.8 μm; Agilent, USA) was used with water and acetonitrile containing 0.1% formic acid as mobile phases A and B, respectively. The injection volume was 5 μL in all the cases. The ESI source parameters were as follows: ion spray voltage, 5500 V; curtain gas, 40 psi; temperature, 550°C; ion source gas 1.55 psi; ion source gas 2, 60 psi; entrance potential voltage, 10 V; collision cell exit potential, 10 V. Data were acquired and processed using Sciex software Analyst (V1.7) and OS (V2.0). The quantification of these steroids as their PA derivatives was achieved against their corresponding internal standards with known concentrations. The method was validated by assessing the linearity, limits of detection (LOD), and quantification (LOQ) at a signal-to-noise ratio of 10. Such approach offered useful mass spectral fragment ions and achieved excellent quantitation sensitivities with the low limit of quantification (LLOQ at signal-to-noise ratio of 10:1) reaching 10−16 mol on column. This method also simultaneously covered these steroids carrying no hydroxyl groups as they were with LLOQ of about 10−14 mol on column.2 To the best of our knowledge, such quantitative sensitivity is well above what have reported so far.

Untargeted metabonomics analysis with UPLC-QTOFMS

Plasma samples were respectively extracted with cold methanol with final the methanol: water ratio of 5:1 (v/v) by vortex-mixing (45 s) followed with 10 min centrifugation (14,000 g, 4°C). The resultant supernatant was added with precooled water and MTBE with the final water: methanol: MTBE ratio of 5:6:20 (v/v) followed with 60 s mixing and 5 min centrifugation (14,000 g, 4°C). The lower layer was transferred into sample vials for LC-MS analysis. UPLC-QTOFMS analysis was conducted on a system consisting of a Waters ACQUITY UPLC and Xevo G2- XS QTOF mass spectrometry with an electrospray ionization (ESI) source (Waters, Milford, USA) equipped with a Waters ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm). Water and acetonitrile (LC grade, Fisher Scientific, USA) both containing 0.1% formic acid (LC grade, Fisher Scientific, USA) were employed as the mobile phase A and B, respectively. The flow rate was 0.5 mL/min; injection volume was 1 μL and the column temperature was 40°C. Elution was performed with an optimized gradient condition as follows: 0-1 min, 1% B; 1-3 min, 1-15% B; 3-6 min, 15-50% B; 6-9 min, 50-95% B; 9-10 min, 95% B. The mass spectrometry data was acquired in both positive and negative ion modes as MSE Centroid format. The spectrometer parameters were as follows: capillary voltage 2.5 kV; cone voltage 30 V; ion source temperature 120°C; desolvation gas temperature 500°C; cone gas flow 50 L/h; desolvation gas flow 800 L/h; collision voltage range 10−50 V; scan time 0.1 sec; mass range 50−1000 Da; low CE 4 eV; and high CE 10−50 eV. Lockspray was used for real-time acquisition and correction with the internal calibrator as leucine-enkephalin ([M + H]+ = 556.2771, [M − H]− = 554.2615). Acquired data were imported into Progenesis QI software package to generate a list of peaks containing the mass-to-charge ratio (m/z), retention time (RT), and peak intensity. After removal of variables with RSD > 30%, such data were then subjected to QC-based corrections and normalization followed with statistical analysis and metabolite identification with in-house developed and publicly accessible databases (METLIN, HMDB, LipidBlast and Elemental composition). The results of the untargeted metabonomics analysis and targeted sterol quantification
were analyzed together or separately. Paired Student’s t test and false discovery rate (FDR) were used to compare the differences between baseline and endpoint of abiraterone treatment. Threshold criteria for all differential-expression analyses are an absolute value (log2 [fold-change]) ≥ 3 and FDR < 0.25. Common different metabolites found through metabolite screening and hormone screening in clinic were defined as potential cancer-associated metabolites.

Detection of plasma progesterone and its metabolites
For the detection of plasma progesterone and its metabolites, the extract of plasma samples was analyzed using a high-performance liquid chromatography station (Agilent, Santa Clara, CA) equipped with G4204A pumps, a G1367E auto-sampler, a G1316A column oven and a triple quadrupole 6490 (Agilent, Santa Clara, CA). The separation of drug metabolites was achieved using an Eclipse Plus C18 RRHD analytical column (3.0 mm x 50 mm, 1.8 µM; Agilent, Santa Clara, CA, USA) at 40°C with an isocratic mobile phase consisting of 10% buffer A (0.1% formic acid in methanol: water, 60:40) and 90% buffer B (0.1% formic acid in acetonitrile: water, 60:40), at a flow rate of 0.2 ml/min. The injection volume was 10 µL and sample injection was performed using an auto-sampler. All progesterone metabolites were ionized using electrospray ionization in the positive ion mode (ESI). The temperature of the drying gas in the ionization source was maintained at 225°C. The gas flow was 12 l/min, the nebulizer pressure was 35 psi, and the capillary voltage was 4000 V (positive) and 3000 V (negative). The analytes were quantified using multiple reaction monitoring with mass transitions and the parameters for each compound. Methanol and water were of LC-MS grade and all reagents were obtained from Thermo Fisher Scientific.

Chemical compounds
Pregnenolone, progesterone, 5α-progesterone, 3α-OH-5α-progesterone, 3β-OH-5α-progesterone, 5α-progesterone, 3α-OH-5β-progesterone, and 3β-OH-5β-progesterone were purchased from Steraloids Inc. (Newport, RI, USA). R1881 was purchased from Meilunbio Company (Dalian, China). DHT, BCA and K7174 were purchased from MCE (Shanghai Haoyuan Chemexpress, China). Doxycycline hyclate was purchased from Sigma-Aldrich (St. Louis, MO, USA). Triterm labelled androgens (R1881, pregnenolone, progesterone, dehydroepiandrosterone, or androstenedione) were purchased from PerkinElmer (Waltham, MA, USA).

Steroidogenesis in patient biopsy samples
2-3 mg biopsy samples were minced and cultured with DMEM (Invitrogen, Waltham, MA), 10% FBS (ExCell Bio, China), and Penicillin-Streptomycin (100 x; Invitrogen, Waltham, MA, USA) in a 12-well plate at 37°C as previously described. Biopsy samples were treated with [3H]-labeled pregnenolone (100, 000–200,000 cpm; final concentration was 48 nM) (PerkinElmer, Waltham, MA, USA). 250 µl medium was collected at 84 h for HPLC analysis. Then, samples were treated with β-glucuronidase (Novoprotein Scientific Inc., Shanghai, China) at 37°C for 2 h. Steroids were extracted with a mixture of ethyl acetate and isooctane (1:1), concentrated with a vacuum drier (Martin Christ Gefriertrocknungsanlagen, Osterode, Germany), and resuspended with a mixture of methanol and water (1:1). An Acquity Arc System (Waters, Milford, MA, USA) and a β-RAM model 5 in-line radioactivity detector (LabLogic Systems) were used to analyze metabolites in samples. A mixture of [3H]-labelled androgens (AD, DHEA, Prog, Preg PerkinElmer, Waltham, MA, USA) was used as the standard to distinguish metabolites. The percentages of metabolites were calculated based on the area under curve (AUC) for each metabolite. For example, Preg% = (AUC of Preg) / (AUC of Preg + AUC of all metabolites) x 100%.

HPLC
Steroid metabolism and HPLC were performed as described previously. Briefly, cells or organoids were treated with [3H]-labeled steroids (pregnenolone, DHEA, AD; 100,000–200,000 cpm per well; PerkinElmer, Waltham, MA). Aliquots of the medium were treated with β-glucuronidase (Novoprotein Scientific Inc., Shanghai, China) and extracted using a mixture of ethyl acetate and isooctane (1:1). Steroids were analyzed using an Acquity Arc System (Waters, Milford, MA, USA) and a β-RAM model 3 in-line radioactivity detector (LABLOGIC, USA). The percentages of metabolites were calculated based on the area under curve (AUC) for each metabolite. For example, pregnenolone% = (AUC of pregnenolone) / (AUC of pregnenolone + AUC of all metabolites) x 100%.

Effects of periprostatic adipose tissue medium
Periprostatic adipose tissues were collected from prostate cancer patients receiving radical prostatectomy. Fresh adipose tissue of 60 mg was culture in 6 ml DMEM+10% FBS for two days and 100 µl medium was used to treat LNCaP cells for target gene assay. Pregnenolone was detected with LC-MS.
Gene expression

Generally, prostate cancer cells were starved for 48 h with phenol red-free medium and 5% heat-inactivated charcoal stripped FBS (CSS) (ExCell Bio, China) before treated with progesterone or other drugs. The Cell to cDNA Kit (EZBioscience, China) was used to synthesize cDNA directly from the cells according to the manufacturer’s instructions. Real-time quantitative PCR (qPCR) was conducted using the CFX96 system (Bio-Rad, Hercules, CA, USA), using 2x SYBR Green qPCR master mix (EZBioscience, China). Results were presented as the mean and standard deviation (SD) from one representative experiment.

Cell proliferation assay

Prostate cancer cells were starved for 48 h with phenol red-free medium and 5% heat-inactivated charcoal stripped FBS (CSS) (ExCell Bio, China) for cell proliferation assay. Cell proliferation assay was performed using the cell counting kit-8 (#C0038, Beyotime, China) according to the manufacturer’s instructions. 10,000 cells per well were seeded in a 96-well plate and starved with 5% heat-inactivated CSS (ExCell Bio, China) for 48 h. To count the viable cells, the absorbance was measured at 450 nm and 600 nm, using a microplate reader (BioTeK, Winooski, VT, US). Lipofectamine™ RNAiMAX Transfection Reagent (Invitrogen, Waltham, MA, USA) was used for siRNA transfection (GenePharma Co. Ltd, Shanghai, China). Results were presented as the mean and SD values from one representative experiment.

Immunoblotting

Total protein was extracted from cells using RIPA buffer containing Pierce™ protease inhibitors (Thermo Fisher Scientific). Total protein was quantified with Pierce™ BCA Protein Assay (Thermo Fisher Scientific). The primary antibodies used were as follows: anti-AR (#sc-7305, 1:1,000, Santa Cruz), anti-GATA2 (#ab37917, 1:1,000, R&D), anti-β-actin (#AC038, 1:10,000, ABclonal), and anti-ESR1 (#8644, 1:1000, CST). The HRP-conjugated secondary antibodies were goat anti-mouse (#115-035-003, JACKSON), goat anti-rabbit (#111-035-003, JACKSON), rabbit anti-goat (#abs20005, absin).

Immunofluorescence

A total of 100,000 cells were seeded in a glass bottom cell culture dish (#801001, Nest) and starved for 24 h (VCaP) or 48 h (LNCaP). Cells were treated with ethanol, progesterone, and DHT for the indicated times. Cells were fixed and incubated with anti-AR antibody (#5153, 1:1000, Cell Signaling Technology) and goat anti-rabbit secondary antibody (#a11035, 1:500, Invitrogen) before analysis with fluorescence microscopy (Zeiss LSM 880 Fast Airyscan Confocal).

AR competition assay

Approximately 200,000 cells were seeded in 24-well plate and starved with phenol red-free medium and 5% CSS for 48 h. Cells were treated with 1 nM [3H]-R1881 and other steroids at the indicated concentrations for 30 min. Intracellular radioactivity was measured using a Tri-Carb® 5110TR Low Activity Liquid Scintillation Analyzer (PerkinElmer, Waltham, MA, USA) and protein concentration was detected by a microplate reader (BioTeK, Winooski, VT, US) at an absorbance of 562 nm.

Luciferase reporter gene assay

The PSA-luciferase reporter was kindly provided by Dr. Jun Yan (Fudan University, Shanghai, China) and transfected together with a plasmid expressing GFP into HEK 293T cells. Cells were treated with R1881 or progesterone for 24 h. Luciferase activity and GFP intensity in cell lysates were determined as described previously.14

Mouse xenograft studies

All mouse studies were conducted under a protocol approved by the Institutional Animal Care and Use Committee. Male NOD-SCID mice (aged 6 to 8 weeks) were obtained from Lingchang Biotech (Shanghai, China) and kept in a specific pathogen free (SPF) facility. A total of 10,000,000 cells were implanted subcutaneously into the right flank of intact mice with Matrigel (#354234, Corning, BD Bio-coat). For LAPC4-ARH875Y xenograft assay, mice were castrated and randomly assigned into different groups when the xenografts reached approximately 150 mm³ (length × width × width × 0.52). Water containing 5% sucrose and 2 mg/ml doxycycline was replaced every 2 days. The 90-day sustained-released progesterone pellets (15 mg, EZBioscience, China) were implanted subcutaneously for progesterone treatment. Each group consisted of 10 mice. For the GATA2 inhibitor assay, mice were castrated and randomly assigned into different groups when the xenografts reached approximately 250 mm³ (length × width × width × 0.52). Mice were treated with K7174 (25 mg/kg, 2% DMSO + 98% 0.9% NaCl) daily, and xenografts were measured every other day with a caliper. Each group consisted of 10 mice. For the 3βHSD1 inhibitor assay, mice were castrated and randomly assigned into different groups when the xenografts reached approximately 150 mm³ (length × width × width × 0.52). The 90-day sustained-released pregnenolone pellets (15 mg, EZBioscience, China) were implanted subcutaneously for pregnenolone treatment. Mice were treated with BCA (50 mg/kg, 5% DMSO + 95% corn oil) every day. Each group had 8 mice. Xenografts were measured every other day with a caliper. Student’s t test was used for significance calculation. *, P <0.05; **, P <0.01.
BCA probe pull-down assay

Neutravidin resin (Thermo) was pre-incubated with GST at 4 °C for 12 h before incubated with 50 μM biotin or BCA-biotin probe at 4 °C. Purified GST-3βHSD1 protein as pre-incubated with DHEA (500 μM) or BCA (500 μM) before the addition of 25 μL packed BCA-biotin beads. Reactions were incubated for 4 h at 4 °C for affinity capture. The binding beads were washed and eluted with loading buffer for immunoblotting detection.

CETSA

The assay was modified from a previously reported protocol. Cells were incubated with 20 μM DHEA (Steraloids Inc., USA), biochanin-A (MedChemExpress, Shanghai), or ethanol for 1 h in a CO2 incubator. Cell pellets were resuspended with sucrose buffer (880 mM sucrose, 1.5 mM CaCl2 in PBS), and centrifuged at 700 g for 30 min at 4 °C. The supernatant was distributed and heated at different temperature endpoints (50-80 °C) for 3 min in the Veriti 96-well thermal cycler. The supernatant was then centrifuged at 20,000 g for 20 min at 4 °C and the soluble protein fraction in the supernatant was detected by western blot. Experiments were repeated at least three times independently.

Computational biochemistry

A homology model of human 3βHSD1 was built, as described in a previous report, based on the crystal structures of two related enzymes: the ternary complex of E.coli UDP-galactose 4-epimerase (UDPGE) with an NAD+ cofactor and substrate (PDB ID: 1NAH) and residues 154-254 of the ternary complex of human 17β-hydroxysteroid dehydrogenase (17βHSD1) with NADP and androstenedione (PDB ID: 1QYX) by Prime (Schrodinger, NY). Protein minimization was then carried out by Prime. Virtual screening was performed based on this model and small molecule library from chemical biology core facility of SIBCB was used. For docking experiment, compounds were prepared and docked into the model at the SP precision by Induced Fit Docking (IFD) with NAD in the binding site. Compounds with the best docking score and IFD score were identified. The docked ligand-protein complexes in 3D were presented by PyMOL. Atoms of compound and NAD were represented as balls and sticks with carbon atoms in green and yellow, respectively, hydrogen atoms in white, oxygen atoms in red, nitrogen atoms in blue, phosphor atoms in orange. The whole protein is shown as cartoon, while the amino acids of the binding site are presented as lines, and those interacting with compounds are shown as sticks. Dashed lines represent hydrogen-bonds.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq

Total RNA from each sample was extracted using the TRIzol reagent (Invitrogen, Waltham, MA, USA). VAHTSTM mRNA-seq V3 Library Prep Kit for Illumina (NR611) was used for library construction, following the manufacturer’s instructions. Briefly, 1000 ng of total RNA was used for the purification and fragmentation of mRNA. Purified mRNA was subjected to first- and second-strand cDNA synthesis. cDNA was then ligated to sequencing adapters (VAHTSTM RNA Adapters set3 - set6 for Illumina, N809/N810/N811/N812) and amplified by PCR (using 12 cycles). The final libraries were evaluated using a Qubit Fluorometer (Invitrogen, USA) and QIAxcel Advanced System (QIAGEN, Valencia, CA, USA). Next, sequencing was performed on NovaSeq 6000 (PE150; Illumina, San Diego, CA, USA) by BerryGenomics Co., Ltd. (Beijing, China). The quality control of raw sequence data was evaluated by FastQC (v. 0.11.7), and the quality trimming and adapter clipping were performed using Trimmomatic (v.0.36-5). Paired-end reads were aligned to the GRCh38.91 human reference genome using hisat2 (v.2-2.1.0). Gene expression levels were quantified by HTSeq (v.0.11.1). The normalization of counts was performed using DESeq2 (v.1.24.0). Differential expression analyses were performed using DESeq2 based on the gene read count data. Biological triplicates were used in each treatment.

Pathway enrichment and gene set enrichment analysis

For pathway enrichment analysis, the differentially expressed genes were prepared for pathway enrichment with the MSigDB Investigate Gene Set module using hallmark gene sets (h.all.v7.2 symbols.gmt). For the gene set enrichment analysis, normalized counts were prepared for analysis using the GSEA 3.0. The hallmark gene sets (h.all.v7.2 symbols.gmt) were used and the genes were ranked as “Ratio_of_Classes” or “Signal2Noise”. The permutation type selected was “gene_set” and other sets followed the default set of GSEA. The thresholds for inclusion were p < 0.05 and q < 0.25. The GSEA plot, normalized enrichment score, and the false discovery rate (FDR) q values were derived from GSEA output.

Statistics

Student’s t-test, Fisher’s exact test, and Log-rank test were performed to compare the differences between two groups. Pearson’s correlation coefficient was used for the correlation analysis. * and ** denote P < 0.05 and P < 0.01, respectively. All analyses were performed using the GraphPad Prism 8.0 software. Data represent the mean ± standard deviation (SD), unless indicated otherwise.