Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity.

Fulvia Confortola

Dipartimento di Matematica, Politecnico di Milano
piazza Leonardo da Vinci 32, 20133 Milano, Italy
fulvia.confortola@polimi.it

February 1, 2008

Abstract

In this paper we study a class of backward stochastic differential equations (BSDEs) of the form

\[dY_t = -AY_t dt - f_0(t, Y_t) dt - f_1(t, Y_t, Z_t) dt + Z_t dW_t, \quad 0 \leq t \leq T; \quad Y_T = \xi \]

in an infinite dimensional Hilbert space H, where the unbounded operator A is sectorial and dissipative and the nonlinearity $f_0(t, y)$ is dissipative and defined for y only taking values in a subspace of H. A typical example is provided by the so-called polynomial nonlinearities. Applications are given to stochastic partial differential equations and spin systems.

Key words Backward stochastic differential equations, stochastic evolution equations.

MSC classification. Primary: 60H15 Secondary: 35R60

1 Introduction

Let H, K be real separable Hilbert spaces with norms $\| \cdot \|_H$ and $\| \cdot \|_K$. Let W be a cylindrical Wiener process in K defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\{\mathcal{F}_t\}_{t \in [0,T]}$ denote its natural augmented filtration. Let $\mathcal{L}^2(K, H)$ be the Hilbert space of Hilbert-Schmidt operators from K to H.
We are interested in solving the following backward stochastic differential equation

\[dY_t = -AY_t dt - f(t, Y_t, Z_t) dt + Z_t dW_t, \quad 0 \leq t \leq T, \quad Y_T = \xi \]

(1)

where \(\xi \) is a random variable with values in \(H \), \(f(t, Y_t, Z_t) = f_0(t, Y_t) + f_1(t, Y_t, Z_t) \) and \(f_0, f_1 \) are given functions, and the operator \(A \) is an unbounded operator with domain \(D(A) \) contained in \(H \). The unknowns are the processes \(\{Y_t\}_{t \in [0,T]} \) and \(\{Z_t\}_{t \in [0,T]} \), which are required to be adapted with respect to the filtration of the Wiener process and take values in \(H \), \(L^2(K,H) \) respectively.

In finite dimensional framework such type of equations has been solved by Pardoux and Peng [12] in the nonlinear case. They proved an existence and uniqueness result for the solution of the equation (1) when \(A = 0 \), the coefficient \(f(t, y, z) \) is Lipschitz continuous in both variables \(y \) and \(z \), and the data \(\xi \) and the process \(\{f(t, 0, 0)\}_{t \in [0,T]} \) are square integrable. Since this first result, many papers were devoted to existence and uniqueness results under weaker assumptions. In finite dimension, when \(A = 0 \), the Lipschitz condition on the coefficient \(f \) with respect to the variable \(y \) is replaced by a monotonicity assumption; moreover, more general growth conditions in the variable \(y \) are formulated. Let us mention the contribution of Briand and Carmona [1], for a study of polynomial growth in \(L^p \) with \(p > 2 \), and the work of Pardoux [11] for an arbitrary growth. In [13] Pardoux and Rascanu deal with a BSDE involving the subdifferential of a convex function; in particular, one coefficient is not everywhere defined for \(y \in \mathbb{R}^k \).

In other works the existence of the solution is proved when the data, \(\xi \) and the process \(\{f(t, 0, 0)\}_{t \in [0,T]} \), are in \(L^p \) for \(p \in (1, 2) \). El Karoui, Peng and Quenez [4] treat the case when \(f \) is Lipschitz continuous; in [2] this result is generalized to the case of a monotone coefficient \(f \) (both for equations on a fixed and on a random time interval) and is studied even the case \(p = 1 \).

In the infinite-dimensional framework Hu and Peng [6], and Oksendal and Zhang [10] give an existence and uniqueness result for the equation with an operator \(A \), infinitesimal generator of a strongly continuous semigroup and the coefficient \(f \) Lipschitz in \(y \) and \(z \). Pardoux and Rascanu [14] replace the operator \(A \) with the subdifferential of a convex function and assume that \(f \) is dissipative, everywhere defined and continuous with respect to \(y \), Lipschitz with respect to \(z \) and with linear growth in \(y \) and \(z \).

Special results deal with stochastic backward partial differential equations (BSPDEs): we recall in particular the works of Ma and Yong [8] and
Earlier, Peng [16] studied a backward stochastic partial differential equation and regarded the classical Hamilton-Jacobi-Bellman equation of optimal stochastic control as special case of this problem.

Our work extends these results in a special direction. We consider an operator A which is the generator of an analytic contraction semigroup on H and a coefficient $f(t, y, z)$ of the form $f_0(t, y) + f_1(t, y, z)$. The coefficient $f_1(t, y, z)$ is assumed to be bounded and Lipschitz with respect to y and z. The term $f_0(t, y)$ is defined for y only taking values in a suitable subspace H_α of H and it satisfies the following growth condition for some $1 < \gamma < 1/\alpha$, $S \geq 0$, \mathbb{P}-a.s.

$$|f_0(t, y)|_H \leq S(1 + \|y\|_{H_\alpha}^\gamma) \quad \forall t \in [0, T], \quad \forall y \in H_\alpha.$$

Following [6], we understand the equation (1) in the following integral form

$$Y_t - \int_t^T e^{(s-t)A}[f_0(s, Y_s) + f_1(s, Y_s, Z_s)]ds + \int_t^T e^{(s-t)A}Z_s dW_s = e^{(T-t)A}\xi,$$

requiring, in particular, that Y takes values in H_α. This requires generally that the final condition also takes values in the smaller space H_α. We take as H_α a real interpolation space which belongs to the class J_α between H and the domain of an operator A (see Section 2). Moreover $f_0(t, \cdot)$ is assumed to be locally Lipschitz from H_α into H and dissipative in H. We prove (Theorem 5) that if ξ takes its values in the closure of $D(A)$ in H_α and is such that $\|\xi\|_{H_\alpha}$ is essentially bounded, then equation (2) has a unique mild solution, i.e. there exists a unique pair of progressively measurable processes $Y : \Omega \times [0, T] \to H_\alpha$, $Z : \Omega \times [0, T] \to L^2(K; H)$, satisfying \mathbb{P}-a.s. equality (2) for every t in $[0, T]$ and such that $\mathbb{E} \sup_{t \in [0, T]} \|Y_t\|_{H_\alpha}^2 + \mathbb{E} \int_0^T \|Z_t\|_{L^2(K; H)}^2 dt < \infty$.

This result extends former results concerning the deterministic case to the stochastic framework: see [7], where previous works of Fujita - Kato [5], Pazy [15] and others are collected. In these papers similar assumptions are made on the coefficients f_0, f_1 and on the operator A.

The plan of the paper is as follows. In Section 2 some notations and definitions are fixed. In Section 3 existence and uniqueness of the solution of a simplified equation are proved, where f_1 is a bounded progressively measurable process which does not depend on y and z. In Section 4, applying the previous result, a fixed point argument is used in order to prove our main result on existence and uniqueness of a mild solution of (2). Section 5 is devoted to applications.
2 Notations and setting

The letters K and H will always denote two real separable Hilbert spaces. Scalar product is denoted by $\langle \cdot, \cdot \rangle$; $L^2(K; H)$ is the separable Hilbert space of Hilbert-Schmidt operators from K to H endowed with the Hilbert-Schmidt norm. $W = \{W_t\}_{t \in [0, T]}$ is a cylindrical Wiener process with values in K, defined on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$. $\{F_t\}_{t \in [0, T]}$ is the natural filtration of W, augmented with the family of \mathbb{P}-null sets of \mathcal{F}.

Next we define several classes of stochastic processes with values in a Banach space X.

- $L^2(\Omega \times [0, T]; X)$ denotes the space of measurable X-valued processes Y such that $\left[\mathbb{E} \int_0^T |Y_\tau|^2 d\tau \right]^{1/2}$ is finite, identified up to modification.

- $L^2(\Omega; C([0, T]; X))$ denotes the space of continuous X-valued processes Y such that $\left[\mathbb{E} \sup_{\tau \in [0, T]} |Y_\tau|^2 \right]^{1/2}$ is finite, identified up to indistinguishability.

- $C^\alpha([0, T]; X)$ denotes the space of α-Hölderian functions on $[0, T]$ with values in X such that $[f]_\alpha = \sup_{0 \leq x < y \leq T} \frac{|f(x) - f(y)|}{(y - x)^\alpha} < \infty$.

Now we need to recall several preliminaries on semigroup and interpolation spaces. We refer the reader to [7] for the proofs and other related results.

A linear operator A in a Banach space X, with domain $D(A) \subset X$, is called sectorial if there are constants $\omega \in \mathbb{R}$, $\theta \in (\pi/2, \pi)$, $M > 0$ such that

\[
\begin{align*}
(i) & \quad \rho(A) \supseteq S_{\theta, \omega} = \{ \lambda \in \mathbb{C} : \lambda \neq \omega, |\text{arg}(\lambda - \omega)| < \theta \}, \\
(ii) & \quad \|(\lambda I - A)^{-1}\|_{\mathcal{L}(X)} \leq \frac{M}{|\lambda - \omega|} \quad \forall \lambda \in S_{\theta, \omega} \quad (3)
\end{align*}
\]

where $\rho(A)$ is the resolvent set of A. For every $t > 0$, (3) allows us to define a linear bounded operator e^{tA} in X, by means of the Dunford integral

\[
e^{tA} = \frac{1}{2\pi i} \int_{\omega + r \gamma_{r, \eta}} e^{\lambda} (\lambda I - A)^{-1} d\lambda, \quad t > 0,
\]

where, $r > 0, \eta \in (\pi/2, \pi)$ and $\gamma_{r, \eta}$ is the curve $\{ \lambda \in \mathbb{C} : |\text{arg}\lambda| = \eta, |\lambda| \geq r \} \cup \{ \lambda \in \mathbb{C} : |\text{arg}\lambda| \leq \eta, |\lambda| = r \}$, oriented counterclockwise. We also set
$e^{0A}x = x, \forall x \in X$. Since the function $\lambda \mapsto e^{t\lambda}R(\lambda, A)$ is holomorphic in $S_{\theta,\omega}$, the definition of e^{tA} is independent of the choice of r and η. If A is sectorial, the function $[0, +\infty) \rightarrow L(X), t \mapsto e^{tA}$, with e^{tA} defined by (4) is called analytic semigroup generated by A in X. We note that for every $x \in X$ the function $t \mapsto e^{tA}x$ is analytic (and hence continuous) for $t > 0$. e^{tA} is a strongly continuous semigroup if and only if $D(A)$ is dense in X; in particular this holds if X is a reflexive space.

We need to introduce suitable classes of subspaces of X.

Definition 1. Let (α, p) be two numbers such that $0 < \alpha < 1$, $1 \leq p \leq \infty$ or $(\alpha, p) = (1, \infty)$. Then we denote with $D_A(\alpha, p)$ the space

$$D_A(\alpha, p) = \{ x \in X : t \mapsto v(t) = \| t^{1-\alpha-1/p}Ae^{tA}x \| \in L^p(0, 1) \}$$

where $\| x \|_{D_A(\alpha, p)} = \| x \|_X + \| [x]_\alpha = \| x \|_X + \| v \|_{L^p(0,1)}$.

(We set as usual $1/\infty = 0$).

We recall here some estimates for the function $t \mapsto e^{tA}$ when $t \rightarrow 0$, which we will use in the sequel. For convenience, in the next proposition we set $D_A(0, p) = X, p \in [1, \infty]$.

Proposition 1. Let $(\alpha, p), (\beta, p) \in (0, 1) \times [1, +\infty] \cup \{(1, \infty)\}, \alpha \leq \beta$. Then there exists $C = C(p; \alpha, \beta)$ such that

$$\| t^{-\alpha+\beta}e^{tA} \|_{L(D_A(\alpha, p), D_A(\beta, p))} \leq C, \quad 0 < t \leq 1.$$

Definition 2. Let $0 \leq \alpha \leq 1$ and let D, X be Banach spaces, $D \subset X$. A Banach space Y such that $D \subset Y \subset X$ is said to belong to the class J_α between X and D if there is a constant C such that $\| x \|_Y \leq C \| x \|_X^{1-\alpha}\| x \|_D^\alpha, \quad \forall x \in D$. In this case we write $Y \in J_\alpha(X, D)$.

Now we give the definition of solution to the BSDE:

$$Y_t - \int_t^T e^{(s-t)A}[f_0(s, Y_s) + f_1(s, Y_s, Z_s)]ds + \int_t^T e^{(s-t)A}Z_s dW_s = e^{(T-t)A}\xi,$$

(5)

Definition 3. A pair of progressively measurable processes (Y, Z) is called mild solution of (5) if it belongs to the space $L^2(\Omega; C([0, T]; H_\alpha)) \times L^2(\Omega \times [0, T]; L^2(K, H))$ and \mathbb{P}-a.s.solves the integral equation (5) on the interval $[0, T]$.

We finally state a lemma needed in the sequel. It is a generalization of the well known Gronwall’s lemma. Its proof is given in the Appendix.
Lemma 1. Assume a, b, α, β are nonnegative constants, with $\alpha < 1$, $\beta > 0$ and $0 < T < \infty$. For any nonnegative process $U \in L^1(\Omega \times [0, T])$, satisfying \mathbb{P}-a.s. $U_t \leq a(T-t)^{-\alpha} + b \int_t^T (s-t)^{\beta-1} \mathbb{E} F U_s ds$ for almost every $t \in [0, T]$, it holds \mathbb{P}-a.s. $U_t \leq aM(T-t)^{-\alpha}$, for almost every $t \in [0, T]$. M is a constant depending only on b, α, β, T.

3 A simplified equation

As a preparation for the study of (2), in this section we consider the following simplified version of that equation:

$$ Y_t - \int_t^T e^{(s-t)A} [f_0(s, Y_s) ds + f_1(s)] ds + \int_t^T e^{(s-t)A} Z_s dW_s = e^{(T-t)A} \xi, \quad (6) $$

for all $t \in [0, T]$.

We suppose that the following assumptions hold.

Hypothesis 2.

1. $A : D(A) \subset H \to H$ is a sectorial operator. We also assume that A is dissipative, i.e. it satisfies $\langle Ay, y \rangle \leq 0$, $\forall y \in D(A)$;

2. for some $0 < \alpha < 1$ there exists a Banach space H_α continuously embedded in H and such that
 (i) $D_A(\alpha, 1) \subset H_\alpha \subset D_A(\alpha, \infty)$;
 (ii) the part of A in H_α is sectorial in H_α.

3. the final condition ξ is an \mathcal{F}_T-measurable random variable defined on Ω with values in the closure of $D(A)$ with respect to H_α-norm. We denote this set $\overline{D(A)}^{H_\alpha}$. Moreover ξ belongs to $L^\infty(\Omega, \mathcal{F}_T, \mathbb{P}; H_\alpha)$;

4. $f_0 : \Omega \times [0, T] \times H_\alpha \to H$ satisfies:

 i) $\{f_0(t, y)\}_{t \in [0, T]}$ is progressively measurable $\forall y \in H_\alpha$;

 ii) there exist constants $S > 0$, $1 < \gamma < 1/\alpha$ such that \mathbb{P}-a.s.
 \[|f_0(t, y)|_H \leq S(1 + ||y||_{H_\alpha}^\gamma) \quad t \in [0, T], y \in H_\alpha; \]

 iii) for every $R > 0$ there is $L_R > 0$ such that \mathbb{P}-a.s.
 \[|f_0(t, y_1) - f_0(t, y_2)|_H \leq L_R ||y_1 - y_2||_{H_\alpha} \]
 for $t \in [0, T]$ and $y_i \in H_\alpha$ with $||y_i||_{H_\alpha} \leq R$;
iv) there exists a number $\mu \in \mathbb{R}$ such that \mathbb{P}-a.s., $\forall t \in [0, T]$, $y_1, y_2 \in H$,\[
< f_0(t, y_1) - f_0(t, y_2), y_1 - y_2 >_H \leq \mu |y_1 - y_2|_H^2; \quad (7)
\]

5. $f_1 : \Omega \times [0, T] \to H$ is progressively measurable and for some constant $C > 0$ it satisfies \mathbb{P}-a.s. $|f_1(t)|_H \leq C$, for $t \in [0, T]$.

Remark 1. We note that the pair (Y, Z) solves the BSDE (6) with final condition ξ and drift $f = f_0 + f_1$ if and only if the pair $(\bar{Y}, \bar{Z}) := (e^{\lambda T} Y_t, e^{\lambda T} Z_t)$ is a solution of the same equation with final condition $e^{\lambda T} \xi$ and drift $f'(t, y) := f'_0(t, y) + f'_1(t)$ where $f'_0(t, y) = e^{\lambda t}(f_0(t, e^{-\lambda t} y), \lambda y)$, $f'_1(t) = e^{\lambda t} f_1(t)$. If we choose $\mu = \lambda$, then f'_0 satisfies the same assumption as f_0, but with (7) replaced by $< f_0(t, y_1) - f_0(t, y_2), y_1 - y_2 >_H \leq 0$. If this last condition holds, then f_0 is called dissipative. Hence, without loss of generality, we shall assume until the end that f_0 is dissipative, or equivalently that $\mu = 0$ in (7).

3.1 A priori estimates

We prove a basic estimate for the solution in the norm of H.

Proposition 2. Suppose that Hypothesis 2 holds; if (Y, Z) is a mild solution of (6) on the interval $[a, T]$, $0 \leq a \leq T$, then there exists a constant C_1, which depends only on $|\xi|_{L^\infty(\Omega, H)}$ and on the constants S of 4.ii) and C of 5. such that \mathbb{P}-a.s. $\sup_{a \leq t \leq T} ||Y_t||_H \leq C_1$. In particular the constant C_1 is independent of a.

Proof. Let the pair $(Y, Z) \in L^2(\Omega, C([a, T]; H_0) \times L^2(\Omega \times [a, T]; L^2(K; H))$ satisfy (6). Let us introduce the operators $J_n = n(nI - A)^{-1}$, $n > 0$. We note that the operators AJ_n are the Yosida approximations of A and they are bounded. Moreover $|J_n x - x| \to 0$ as $n \to \infty$, for every $x \in H$. We set $Y^n_t = J_n Y_t$, $Z^n_t = J_n Z_t$. It is readily verified that Y^n admits the Itô differential
\[
dY^n_t = -AY^n_t dt - J_n f(t, Y_t) dt - J_n f_1(t) dt + Z^n_t dW_t, \quad Y^n_T = J_n \xi.
\]

Applying the Itô formula to $|Y^n_t|_H^2$, using the dissipativity of A, we obtain
\[
|Y^n_T|_H^2 + \int_T^t |Z^n_s|_{L^2(K; H)}^2 ds \leq |J_n \xi|_H^2 + 2 \int_t^T < J_n f_0(s, Y_s), Y^n_s >_H ds + 2 \int_t^T < J_n f_1(s), Y^n_s >_H ds - \int_t^T < J_n f_0(s, Y_s), Y^n_s >_H ds + 2 \int_t^T < Y^n_s, Z^n_s dW_s >_H.
\]
\[\tag{8}\]
We note that \(\int_t^T < J_n f_0(s, Y_s) + J_n f_1(s), Y^n_s >_H \, ds \to \int_t^T < f_0(s, Y_s) + f_1(s), Y_s >_H \, ds \) by dominated convergence, as \(n \to \infty \). Moreover by the dominated convergence theorem we have \(\int_t^T ||(Z^n_s)^* Y^n_s - Z^*_s Y_s||^2_H \, ds \to 0 \) \(\mathbb{P} \)-a.s. and it follows that \(\int_t^T < Y^n_s, Z^n_s dW_s >_H \to \int_t^T < Y_s, Z_s dW_s >_H \) in probability. If we let \(n \to \infty \) in (8) we obtain

\[
|Y_1|_H^2 + \int_t^T ||Z_s||^2_{L^2(K,H)} \, ds \leq |\xi|_H^2 + 2 \int_t^T < f_0(s, Y_s) + f_1(s), Y_s >_H \, ds \\
- 2 \int_t^T < Y_s, Z_s dW_s >_H .
\]

Recalling (7), that we assume to hold with \(\mu = 0 \), it follows that

\[
|Y_1|_H^2 + \int_t^T ||Z_s||^2_{L^2(K,H)} \leq \\
\leq |\xi|_H^2 + 2 \int_t^T < f_0(s,0), Y_s >_H + 2 \int_t^T < f_1(s), Y_s >_H \, ds + \\
- 2 \int_t^T < Y_s, Z_s dW_s >_H \\
\leq |\xi|_H^2 + \int_t^T |f(s,0)|^2_H \, ds + \int_t^T |f_1(s)|^2_H \, ds + 2 \int_t^T |Y_s|^2_H \, ds + \\
- 2 \int_t^T < Y_s, Z_s dW_s >_H .
\]

Now, since \(\sup_{0 \leq t \leq T} |f(t,0)|^2_H \leq S^2 \) and since the stochastic integral \(\int_a^t < Y_s, Z_s dW_s >_H , t \in [a,T] \) is a martingale, if we take the conditional expectation given \(\mathcal{F}_t \) we have

\[
|Y_t|_H^2 \leq \mathbb{E}^{\mathcal{F}_t} \{ |\xi|_H^2 + 2 \mathbb{E}^{\mathcal{F}_t} \int_t^T |Y_s|^2_H \, ds + \\
+ \mathbb{E}^{\mathcal{F}_t} \int_t^T |f(s,0)|^2_H \, ds + \mathbb{E}^{\mathcal{F}_t} \int_t^T |f_1(s)|^2_H \, ds \} \\
\leq |\xi|_{L^\infty(\Omega,H)}^2 + (S^2 + C^2) T + 2 \mathbb{E}^{\mathcal{F}_t} |Y_s|^2_H \, ds .
\]

Since \(Y \) belongs to \(L^2(\Omega; C([a,T]; H_\alpha)) \) and, consequently, \(||Y||^2_{H_\alpha} \in L^1(\Omega \times [0,T]) \), we can apply Lemma 1 to \(|Y|^2_H \) and conclude that

\[
|Y_t|^2_H \leq (||\xi||_{L^\infty(\Omega,H)}^2 + [S^2 + C^2] T + 2T e^{2T}).
\]

Now we will show that the result of Proposition 2, together with the growth condition satisfied by \(f_0 \), yields an a priori estimate on the solution in the \(H_\alpha \)-norm.
Let $0 < \alpha < 1$ and let $\gamma > 1$ be given by 4.ii). We fix $\theta = \alpha \gamma$ and consider the Banach space $D_A(\theta, \infty)$ introduced in Definition 1. It is easy to check (see [7]) that, if we take $\theta \in (0, 1)$, then H_α contains $D_A(\theta, \infty)$ and belongs to the class $J_{\alpha/\theta}$ between $D_A(\theta, \infty)$ and H, hence the following inequality is satisfied:

$$|x|_{H_\alpha} \leq c|x|_{D_A(\theta, \infty)}^{1-\frac{\theta}{\theta_1}}, \quad x \in D_A(\theta, \infty).$$

(9)

Proposition 3. Suppose that Hypothesis 2 is satisfied. Let (Y, Z) be a mild solution of (6) in $[a, T]$, $a \geq 0$ and assume that there exists two constants $R > 0$ and $K > 0$, possibly depending on a, such that, \mathbb{P}-a.s.,

$$\sup_{t \in [a, T]} \|Y_t\|_{H_\alpha} \leq R, \quad \sup_{t \in [a, T]} |Y_t|_H \leq K.$$ (10)

Then the following inequality holds \mathbb{P}-a.s.:

$$|Y_t|_{L^\infty(\Omega, D_A(\theta, \infty))} \leq C_2 \frac{1}{(T-t)^{\theta_1-\alpha}}, \quad a \leq t < T$$ (11)

with C_2 depending on the operator A, $\|\xi\|_{L^\infty(\Omega, H_\alpha)}$, θ, α, K, C of 5. and S of 4.ii) of Hypothesis 2.

Proof. Taking the conditional expectation given \mathcal{F}_t in equation (6) we find

$$Y_t = \mathbb{E}^{\mathcal{F}_t} \left(e^{(T-t)A} \xi + \int_t^T e^{(s-t)A} [f_0(s, Y_s) + f_1(s)] ds \right), \quad a \leq t \leq T.$$ (12)

Consequently, we have

$$\|Y_t\|_{D_A(\theta, \infty)} \leq \mathbb{E}^{\mathcal{F}_t} \|e^{(T-t)A} \xi\|_{D_A(\theta, \infty)}$$

$$+ \mathbb{E}^{\mathcal{F}_t} \int_t^T \|e^{(s-t)A} [f_0(s, Y_s) + f_1(s)]\|_{D_A(\theta, \infty)} ds, \quad a \leq t \leq T.$$ (13)

Since $H_\alpha \subset D_A(\alpha, \infty)$, we have

$$\mathbb{E}^{\mathcal{F}_t} \|e^{(T-t)A} \xi\|_{D_A(\theta, \infty)} \leq$$

$$\leq \mathbb{E}^{\mathcal{F}_t} \|e^{(T-t)A} \|_{L(D_A(\alpha, \infty), D_A(\theta, \infty))} \|\xi\|_{L^\infty(\Omega, D_A(\alpha, \infty))}$$

$$\leq C_0 \frac{1}{(T-t)^{\theta_1-\alpha}} \|\xi\|_{L^\infty(\Omega, H_\alpha)},$$

with $C_0 = C_0(\alpha, \theta, \infty)$, where in the last inequality we use Proposition 1.
Moreover

\[\mathbb{E}^F_t \int_t^T ||e^{(s-t)A}[f_0(s, Y_s) + f_1(s)]||_{D_A(\theta, \infty)} ds \leq \]
\[\leq \mathbb{E}^F_t \int_t^T ||e^{(s-t)A}||_{L(H,D_A(\theta, \infty))} ||f_0(s, Y_s) + f_1(s)||_H ds \leq \]
\[\leq \mathbb{E}^F_t \left(\int_t^T \frac{C_1}{(s-t)^\theta} ||f_0(s, Y_s)||_H + ||f_1(s)||_H \right) ds \leq \]
\[\leq \mathbb{E}^F_t \int_t^T \frac{C_1}{(s-t)^\theta} \left[S(1 + ||Y_s||_{H_0}) + C \right] ds. \]

In the inequality we used Hypotheses 4.ii) and 5. and Proposition 1. Recalling (9), we conclude that the last term is dominated by

\[\mathbb{E}^F_t \int_t^T \frac{C_1}{(s-t)^\theta} \left[S(1 + c||Y_s\gamma(1-\alpha)/\theta||_{Y_s} ||Y_s||_{D_A(\theta, \infty)}) + C \right] ds = \]
\[= \mathbb{E}^F_t \int_t^T \frac{C_1}{(s-t)^\theta} \left[S(1 + c||Y_s\gamma(1-\alpha)/\theta||_{Y_s} ||Y_s||_{D_A(\theta, \infty)}) + C \right] ds, \]

by choosing \(\theta = \alpha \gamma \). By the second inequality in (10) this can be estimated by

\[\int_t^T \frac{C_1}{(s-t)^\theta} S(1 + cK\gamma(1-\alpha)/\theta \mathbb{E}^F_t ||Y_s||_{D_A(\theta, \infty)}) ds \leq \int_t^T \frac{C_1}{(s-t)^\theta} (C + S) ds + \int_t^T \frac{C_1}{(s-t)^\theta} ScK\gamma(1-\alpha)/\theta \mathbb{E}^F_t ||Y_s||_{D_A(\theta, \infty)} ds. \]

Hence by (13) and (14) it follows

\[||Y_t||_{D_A(\theta, \infty)} \leq \frac{C_0}{(T-t)^{\theta-\alpha}} ||\xi||_{L^\infty(\Omega,H_0)} + \int_t^T \frac{C_1}{(s-t)^\theta} (C + S) ds \]
\[+ \int_t^T \frac{C_1}{(s-t)^\theta} ScK\gamma(1-\alpha)/\theta \mathbb{E}^F_t ||Y_s||_{D_A(\theta, \infty)} ds, \]

and (11) follows from Lemma 1. In order to justify the application of Lemma 1, we need to prove that \(||Y||_{D_A(\theta, \infty)} \) belongs to \(L^1(\Omega \times [a, T]) \). This also follows from (13) and (14) since, for some constant \(K_1 \),

\[||Y_t||_{D_A(\theta, \infty)} \leq \]
\[\leq \frac{K_1}{(T-t)^{\theta-\alpha}} ||\xi||_{L^\infty(\Omega,H_0)} + \mathbb{E}^F_t \left[\sup_{s \in [a,T]} (1 + ||Y_s||_{H_0}) \right] \int_t^T \frac{ds}{(s-t)^\theta} \]
\[\leq \frac{K_1}{(T-t)^{\theta-\alpha}} ||\xi||_{L^\infty(\Omega,H_0)} + (1 + R) \int_t^T \frac{ds}{(s-t)^\theta}. \]
3.2 Local existence and uniqueness

We prove that, under Hypothesis 2, there exists a unique solution of (6) on an interval \([T - \delta, T]\) with \(\delta\) sufficiently small.

To treat the ordinary integral in the left hand side of (6), we need the following result, whose proof can be found in [7], Proposition 4.2.1 and Lemma 7.1.1.

Lemma 3. Let \(\phi \in L^\infty((a, T); H),\) \(0 < a < T\) and set

\[
v(t) = \int_t^T e^{(s-t)A} \phi(s) ds, \quad a \leq t \leq T.\]

If \(0 < \alpha < 1,\) then \(v \in C^{1-\alpha}([a, T]; D_A(\alpha, 1))\) and there is \(G_0 > 0,\) not depending on \(a,\) such that

\[
\|v\|_{C^{1-\alpha}([a, T]; D_A(\alpha, 1))} \leq G_0 \|\phi\|_{L^\infty((a, T); H)}.
\]

Since \(D_A(\alpha, 1) \subset H_\alpha,\) we also have \(v \in C^{1-\alpha}([a, T]; H_\alpha)\) and there is \(G > 0,\) not depending on \(a,\) such that

\[
\|v\|_{C^{1-\alpha}([a, T]; H_\alpha)} \leq G \|\phi\|_{L^\infty((a, T); H)}.
\]

Theorem 4. Let us assume that Hypothesis 2 holds, except possibly 4.iv). Then there exists \(\delta > 0\) such that the equation (6) has a unique local mild solution \((Y, Z) \in L^2(\Omega; C([T - \delta, T]; H_\alpha)) \times L^2(\Omega \times [T - \delta, T]; L^2(K; H)).\)

Remark 2. The dissipativity condition 4.iv) only plays a role in obtaining the a priori estimate in \(H\) (Proposition 2) and consequently global existence, as we will see later.

Proof. Let \(M_\alpha := \sup_{0 \leq t \leq T} \|e^{tA}\|_{L(H_\alpha)}\). We fix a positive number \(R\) such that \(R \geq 2M_\alpha \|\xi\|_{L^\infty(\Omega_\alpha; H_\alpha)}.\) This implies that \(\sup_{0 \leq t \leq T} \|e^{tA} \xi\|_{H_\alpha} \leq R/2\) \(\mathbb{P}\)-a.s. Moreover, let \(L_R\) be such that

\[
|f_0(t, y_1) - f_0(t, y_2)|_H \leq L_R|y_1 - y_2|_{H_\alpha}, \quad 0 \leq t \leq T, \quad \|y_i\|_{H_\alpha} \leq R.
\]

We recall that the space \(L^2(\Omega; C([T - \delta, T]; H_\alpha))\) is a Banach space endowed with the norm \(Y \rightarrow (\mathbb{E} \sup_{t \in [T - \delta, T]} \|Y_t\|_{H_\alpha}^2)^{1/2}.\) We define

\[
\mathbb{K} = \{Y \in L^2(\Omega; C([T - \delta, T], H_\alpha)) : \sup_{t \in [T - \delta, T]} \|Y_t\|_{H_\alpha} \leq R, \quad a.s.\}.
\]
It easy to check that K is a closed subset of $L^2(\Omega; C([T - \delta, T]; H_\alpha))$, hence a complete metric space (with the inherited metrics). We look for a local mild solution (Y, Z) in the space K. We define a nonlinear operator $\Gamma : K \to K$ as follows: given $U \in K$, $Y = \Gamma(U)$ is the first component of the mild solution (Y, Z) of the equation

$$Y_t - \int_t^T e^{(s-t)A}[f_0(s, U_s)ds + f_1(s)]ds + \int_t^T e^{(s-t)A}Z_s dW_s = e^{(T-t)A}\xi$$

(15) for $t \in [T - \delta, T]$. Since $U \in K$ we have \mathbb{P}-a.s.

$$|f_0(t, U_t) + f_1(t)|_H \leq S(1 + ||U_t||_{H_\alpha}) + C \leq S(1 + R^\gamma) + C,$$

(16) for all t in $[T - \delta, T]$. Hence $f_0(\cdot, U_t) + f_1(\cdot)$ belongs to $L^2(\Omega \times [T - \delta, T]; H)$ and, by a result of Hu and Peng [6], there exists a unique pair $(Y, Z) \in L^2(\Omega \times [T - \delta, T]; H) \times L^2(\Omega \times [T - \delta, T]; L^2(K; H))$ satisfying (15). Moreover, by taking the conditional expectation given \mathcal{F}_t, Y has the following representation

$$Y_t = \mathbb{E}^{\mathcal{F}_t}(e^{(T-t)A}\xi + \int_t^T e^{(s-t)A}[f_0(s, U_s) + f_1(s)]ds).$$

We will show that Γ is a contraction for the norm of $L^2(\Omega, C([T - \delta, T]; H_\alpha))$ and maps K into itself, if δ is sufficiently small; clearly, its unique fixed point is the required solution of the BSDE.

We first check the contraction property. Let $U^1, U^2 \in K$. Then

$$\Gamma(U^1)_t - \Gamma(U^2)_t = Y^1_t - Y^2_t = \mathbb{E}^{\mathcal{F}_t}[\int_t^T e^{(s-t)A}(f_0(s, U^1_s) - f_0(s, U^2_s))ds].$$

Let $v(t) = \int_t^T e^{(s-t)A}(f_0(s, U^1_s) - f_0(s, U^2_s))ds$. Then, noting that $v(T) = 0$ and recalling Lemma 3, for $t \in [T - \delta, T]$

$$||Y^1_t - Y^2_t||_{H_\alpha} = ||\mathbb{E}^{\mathcal{F}_t}v(t)||_{H_\alpha} \leq \mathbb{E}^{\mathcal{F}_t}|v(t)||_{H_\alpha} \leq \delta^{1-\alpha}\mathbb{E}^{\mathcal{F}_t}|v||_{C^{(1-\alpha)}([T - \delta, T]; H_\alpha)}$$

$$\leq \frac{G\delta^{(1-\alpha)}L_R}{\alpha} \mathbb{E}^{\mathcal{F}_T}[|f_0(\cdot, U^1_s) - f_0(\cdot, U^2_s)||_{L^\infty([T - \delta, T], H)}]$$

$$\leq G\delta^{(1-\alpha)}L_R \mathbb{E}^{\mathcal{F}_T} \sup_{t \in [T - \delta, T]} ||U^1_t - U^2_t||_{H_\alpha} =: M_t,$$

where $\{M_t, t \in [T - \delta, T]\}$ is a martingale. Hence, by Doob’s inequality

$$\mathbb{E} \sup_{t \in [T - \delta, T]} ||Y^1_t - Y^2_t||_{H_\alpha} \leq \mathbb{E} \sup_{t \in [T - \delta, T]} |M_t|^2 \leq 2\mathbb{E}|M_T|^2 =$$

$$= 2G^2L^2_R\delta^{2(1-\alpha)} \mathbb{E} \sup_{t \in [T - \delta, T]} ||U^1_t - U^2_t||_{H_\alpha}^2.$$
If $\delta \leq \delta_0 = 2GLR^{(1-\alpha)/2}$, then Γ is a contraction with constant $1/2$.

Next we check that Γ maps \mathbb{K} into itself. For each $U \in \mathbb{K}$ and $t \in [T-\delta, T]$ with $\delta \leq \delta_0$ we have

$$
\sup_{t \in [T-\delta, T]} ||\Gamma(U)_t||_{H_\alpha} \leq \sup_{t \in [T-\delta, T]} ||Y_t||_{H_\alpha} \leq \sup_{t \in [T-\delta, T]} \mathbb{E}^F_t ||e^{(T-t)A}\xi||_{H_\alpha} + \sup_{t \in [T-\delta, T]} \mathbb{E}^F_t \left|\int_t^T e^{(s-t)A}[f_0(s, U_s) + f_1(s)]ds\right|_{H_\alpha}
$$

$$
\leq R/2 + \sup_{t \in [T-\delta, T]} \mathbb{E}^F_t \left|\int_t^T e^{(s-t)A}[f_0(s, U_s) + f_1(s)]ds\right|_{H_\alpha}
$$

$$
\leq R/2 + \sup_{t \in [T-\delta, T]} \mathbb{E}^F_t \int_t^T \left|e^{(s-t)A}[f_0(s, U_s) + f_1(s)]\right|_{D_A(\alpha, 1)}ds,
$$

where in the last inequality we have used the fact that $D_A(\alpha, 1) \subset H_\alpha$. Now, by Proposition 1, and from 4.i) and 5., it follows that

$$
||e^{(s-t)A}[f_0(s, U_s) + f_1(s)]||_{D_A(\alpha, 1)} \leq ||e^{(s-t)A}||_{L(H, D_A(\alpha, 1))} |f_0(s, U_s) + f_1(s)|_{H_\alpha} \leq \frac{C_\alpha}{(s-t)^\alpha} [S(1 + ||U_s||_{H_\alpha}) + C].
$$

Then, since $U \in \mathbb{K}$, we arrive at

$$
\sup_{t \in [T-\delta, T]} ||\Gamma(U)_t||_{H_\alpha} \leq
$$

$$
\leq R/2 + \sup_{t \in [T-\delta, T]} \mathbb{E}^F_t \int_t^T \frac{C_\alpha}{(s-t)^\alpha} [S(1 + ||U_s||_{H_\alpha}) + C]ds
$$

$$
\leq R/2 + \sup_{t \in [T-\delta, T]} \mathbb{E}^F_t \int_t^T \frac{C_\alpha}{(s-t)^\alpha} [S(1 + R^\gamma) + C]ds
$$

$$
\leq R/2 + C_\alpha S \left[\frac{(1 + R^\gamma) + C}{1 - \alpha}\right] \delta^{1-\alpha},
$$

where C_α depends on A, α. Hence, if $\delta \leq \delta_0$ is such that $C_\alpha S \left[\frac{(1 + R^\gamma) + C}{1 - \alpha}\right] \delta^{1-\alpha}$ is less or equal to $R/2$, then $\sup_{t \in [T-\delta, T]} ||\Gamma(U)_t||_{H_\alpha} \leq R$. Due to Lemma 3, \mathbb{P}-a.s. the function $t \mapsto Y_t - \mathbb{E}^F_t e^{(T-t)A}\xi$ belongs to $C[T-\delta, T]; H_\alpha)$; moreover, the map $t \mapsto \mathbb{E}^F_t e^{(T-t)A}\xi$ belongs to $C[T-\delta, T]; H_\alpha)$, since ξ is a random variable taking values in $D(A)_{H_\alpha}$. Therefore, \mathbb{P}-a.s. $Y \in C([T-\delta, T]; H_\alpha)$ and Γ maps \mathbb{K} into itself and has a unique fixed point in \mathbb{K}.

Remark 3. By Lemma 3, using properties of analytic semigroups, it can be proved that for every fixed ω the range of the map Γ is contained in $C^{1-\beta}([T-\delta, T-\epsilon]; D_A(\beta, 1))$ for every $\epsilon \in (0, \delta)$, $\beta \in [0, 1]$.

13
3.3 Global existence

Now we are able to prove a global existence theorem for the solution of the equation (6), using all the results presented above.

Theorem 5. If Hypothesis 2 is satisfied, the equation (6) has a unique mild solution \((Y, Z) \in L^2(\Omega; C([0, T], H_\alpha)) \times L^2(\Omega \times [0, T]; L^2(K; H))\).

Proof. By Theorem 4 equation (6) has a unique mild solution \((Y^1, Z^1) \in L^2(\Omega; C([T - \delta_1, T], H_\alpha)) \times L^2(\Omega \times [T - \delta_1, T]; L^2(K; H))\) on the interval \([T - \delta_1, T]\), for some \(\delta_1 > 0\). By Proposition 2 we know that there exists a constant \(C_1\) such that \(\mathbb{P}\text{-a.s.}\)

\[
|Y_{T-\delta_1}|_H \leq C_1. \tag{17}
\]

We recall that the constant \(C_1\) depends only on \(|\xi|_{L^\infty(\Omega,H)}\) and on the constants \(S\) of 4.ii) and \(C\) of 5. and is independent of \(\delta_1\). Moreover, by Proposition 3, there exists a constant \(C_2\) such that \(\mathbb{P}\text{-a.s.}\)

\[
||Y_{T-\delta_1}||_{L^\infty(\Omega,D_A(\theta,\infty))} \leq C_2 \frac{1}{\delta_1^{\theta-\alpha}}, \tag{18}
\]

with \(C_2\) depending on the operator \(A\), \(||\xi||_{L^\infty(\Omega,H_\alpha)}\), \(\theta\), \(\alpha\), \(C_1\). This implies that \(Y_{T-\delta_1}\) belongs to \(L^\infty(\Omega;H_\alpha)\) and it can be taken as final value for the problem

\[
Y_t - \int_t^{T-\delta_1} e^{(s-t)A} [f_0(s,Y_s)ds + f_1(s)]ds + \int_t^{T-\delta_1} e^{(s-t)A} Z_s dW_s = e^{(T-\delta_1-t)A} Y_{T-\delta_1} \tag{19}
\]

on an interval \([T - \delta_1 - \delta_2, T - \delta_1]\), for some \(\delta_2 > 0\). As in the proof of Theorem 4, we fix a positive number \(R_2\) such that

\[R_2 = 2M_\alpha \frac{C_2}{\delta_1^{\theta-\alpha}} \geq 2M_\alpha ||Y_{T-\delta_1}||_{L^\infty(\Omega,D_A(\theta,\infty))}.\]

By Theorem 4 there exists a pair of progressively measurable processes \((Y^2, Z^2)\) in \(L^2(\Omega; C([T - \delta_1 - \delta_2, T - \delta_1]; H_\alpha)) \times L^2(\Omega \times [T - \delta_1 - \delta_2, T - \delta_1]; L^2(K, H))\) which solves (19) on the interval \([T - \delta_1 - \delta_2, T - \delta_1]\) where \(\delta_2\) depends on the operator \(A\), \(\alpha\), \(R_2\). We note that the continuity in \(T - \delta_1\) of \(Y^2\) follows from the fact that \(Y_{T-\delta_1}\) takes values in \(D_A(\alpha,1)\) (see Remark 3), so that \(Y_{T-\delta_1}\) takes values in \(\overline{D(A)}^{H_\alpha}\). Now, the process \(Y_1\) defined by \(Y_1^1\) on the interval \([T - \delta_1, T]\) and by \(Y_1^2\) on \([T - \delta_1 - \delta_2, T - \delta_1]\) belongs
to $L^2(\Omega; C([T - \delta_1 - \delta_2, T]; H))$ and it easy to see that it satisfies (6) in the whole interval $[T - \delta_1 - \delta_2, T]$. Consequently, by Proposition 2, \mathbb{P}-a.s., $|Y_{T-\delta_1-\delta_2}|_H \leq C_1$ with C_1 the constant in (17), and by (18)

$$
\|Y_{T-\delta_1-\delta_2}\|_{L^\infty(\Omega, D_A(\theta, \infty))} \leq \frac{C_2}{(\delta_1 + \delta_2)^{\theta - \alpha}} \leq \frac{C_2}{\delta_1^{\theta - \alpha}},
$$

(20)

where C_2 is the same constant as in (18). Again, $Y_{T-\delta_1-\delta_2}$ can be taken as initial value for problem

$$
Y_t - \int_t^{T-\delta_1-\delta_2} e^{(s-t)A}[f_0(s, Y_s)ds + f_1(s)]ds + \int_t^{T-\delta_1-\delta_2} e^{(s-t)A}Z_s dW_s = e^{(T-\delta_1-\delta_2)A}Y_{T-\delta_1-\delta_2}
$$

(21)

on the interval $[T - \delta_1 - \delta_2 - \delta_3, T - \delta_1 - \delta_2]$, where δ_3 will be fixed later. In this case, by (20), we can choose

$$
R_3 = R_2 = 2M_\alpha \frac{C_2}{\delta_1^{\theta - \alpha}} \geq 2M_\alpha \|Y_{T-\delta_1-\delta_2}\|_{L^\infty(\Omega, D_A(\theta, \infty))}
$$

and prove that there exists a unique mild solution (Y^3, Z^3) of (21) on the interval $[T - \delta_1 - \delta_2 - \delta_3, T - \delta_1 - \delta_2]$, with $\delta_3 = \delta_2$. So we extend the solution to $[T - \delta_1 - 2\delta_2, T]$. Proceeding this way we prove the global existence to (6) on $[0, T]$. \hfill \Box

4 The general case

We can now study the equation:

$$
Y_t - \int_t^T e^{(s-t)A}[f_0(s, Y_s) + f_1(s, Y_s, Z_s)]ds + \int_t^T e^{(s-t)A}Z_s dW_s = e^{(T-t)A} \xi
$$

(22)

We require that the function f_1 satisfy the following assumptions:

Hypothesis 6.

1. there exists $K \geq 0$ such that \mathbb{P}-a.s.

$$
|f_1(t, y, z) - f_1(t, y', z')|_H \leq K|y - y'|_H + K||z - z'||_{L^2(K; H)},
$$

for every $t \in [0, T], y, y' \in H, z, z' \in L^2(K; H),}$
2. there exists $C \geq 0$ such that \mathbb{P}-a.s. $|f_1(t, y, z)|_H \leq C$, for every $t \in [0, T], y \in H, z \in \mathcal{L}^2(K; H)$.

Theorem 7. If Hypotheses 2 and 6 hold, then equation (22) has a unique solution in $L^2(\Omega; C([0, T]; H_a)) \times L^2(\Omega \times [0, T]; \mathcal{L}^2(K; H))$.

Proof. Let \mathcal{M} be the space of progressive processes (Y, Z) in the space $L^2(\Omega \times [0, T]; H) \times L^2(\Omega \times [0, T]; \mathcal{L}^2(K; H))$ endowed with the norm

$$|||(Y, Z)|||^2_F = \mathbb{E} \int_0^T e^{\beta s}(|Y_s|^2_H + |Z_s|^2_{\mathcal{L}^2(K; H)}) ds,$$

where β will be fixed later. We define $\Phi : \mathcal{M} \to \mathcal{M}$ as follows: given $(U, V) \in \mathcal{M}$, $(Y, Z) = \Phi(U, V)$ is the unique solution on the interval $[0, T]$ of the equation

$$Y_t - \int_t^T e^{(s-t)A}[f_0(s, Y_s) ds + f_1(s, U_s, V_s)] ds + \int_t^T e^{(s-t)A} Z_s dW_s = e^{(T-t)A} \xi.$$

By Theorem 5 the above equation has a unique mild solution (Y, Z) which belongs to $L^2(\Omega; C([0, T]; H_a)) \times L^2(\Omega \times [0, T]; \mathcal{L}^2(K; H))$. Therefore $\Phi(\mathcal{M}) \subset \mathcal{M}$. We will show that Φ is a contraction for a suitable choice of β; clearly, its unique fixed point is the required solution of (22). We take another pair $(U', V') \in \mathcal{M}$ and apply Proposition 3.1 in [3] to the difference of two equations. We obtain

$$\mathbb{E} \int_0^T e^{\beta s} [\beta |Y_t^1 - Y_t^2|^2_H + |Z_s^1 - Z_s^2|^2_{\mathcal{L}^2(K; H)}] ds \leq$$

$$\leq 2\mathbb{E} \int_0^T e^{\beta s} \left(f_0(s, Y_s^1) + f_1(s, U_s^1, V_s^1) - f_0(s, Y_s^2) - f_1(s, U_s^2, V_s^2), Y_s^1 - Y_s^2 \right)_H ds$$

$$\leq 2\mathbb{E} \int_0^T e^{\beta s} K(|U_s^1 - U_s^2|_H + |V_s^1 - V_s^2|_{\mathcal{L}^2(K; H)}) |Y_s^1 - Y_s^2|_H ds$$

$$\leq \mathbb{E} \int_0^T e^{\beta s} (|U_s^1 - U_s^2|^2_H + |V_s^1 - V_s^2|^2_{\mathcal{L}^2(K; H)}) / 2 + 4K^2 |Y_s^1 - Y_s^2|^2_H ds,$$

where we have used 4.iv) of Hypothesis 2 and 1. of Hypothesis 6. Choosing $\beta = 4K^2 + 1$, we obtain the required contraction property.

5 Applications

In this section we present some backward stochastic partial differential problems which can be solved with our techniques.
5.1 The reaction-diffusion equation

Let D be an open and bounded subset of \mathbb{R}^n with a smooth boundary ∂D. We choose $K = L^2(D)$. This choice implies that dW_t/dt is the so-called "space-time white noise". Moreover, since Hilbert-Schmidt operators on $L^2(D)$ are represented by square integrable kernels, the space $L^2(L^2(D), L^2(D))$ can be identified with $L^2(D \times D)$. We are given a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t \in [0,T]}$ generated by W and augmented in the usual way. Let us consider a non symmetric bilinear, coercive continuous form $a : H^1_0(D) \times H^1_0(D) \to \mathbb{R}$ defined by

$$a(u, v) := - \int_D \sum_{i,j} a_{ij}(x) D_i u(x) D_j v(x) dx,$$

where the coefficients a_{ij} are Lipschitz continuous and there exists $\alpha > 0$ such that $\sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j \geq \alpha |\xi|^2$ for every $x \in \bar{D}, \xi \in \mathbb{R}^n$. Let A be the operator associated with the bilinear form a such that $< Au, v >_{L^2(D)} = a(u, v), v \in H^1_0(D)$ and $u \in D(A)$. It is known that, in this case, $D(A) = H^2(D) \cap H^1_0(D)$, where $H^2(D)$ and $H^1_0(D)$ are the usual Sobolev spaces.

We consider for $t \in [0,T]$ and $x \in D$ the backward stochastic problem written formally

\[
\begin{cases}
\frac{\partial Y(t,x)}{\partial t} = AY(t,x) + r(Y(t,x)) + g(t,Y(t,x),Z(t,x),x) + Z(t,x) \frac{\partial W(t,x)}{\partial t} & \text{on } \Omega \times [0,T] \times \bar{D} \\
Y(T,x) = \xi(x) & \text{on } \Omega \times D \\
Y(t,x) = 0 & \text{on } \Omega \times [0,T] \times \partial D
\end{cases}
\]

We suppose the following.

Hypothesis 8.

1. $r : \mathbb{R} \to \mathbb{R}$ is a continuous, increasing and locally Lipschitz function;
2. r satisfies the following growth condition: $|r(x)| \leq S(1 + |x|^\gamma)$ $\forall x \in \mathbb{R}$ for some $\gamma > 1$;
3. g is a measurable real function defined on $[0,T] \times \mathbb{R} \times L^2(D \times D) \times D$ and there exists a constant $K > 0$ such that

$$|g(t,y_1,z_1,x) - g(t,y_2,z_2,x)| \leq K(|y_1 - y_2| + ||z_1 - z_2||_{L^2(D \times D)})$$

for all $t \in [0,T], y_1, y_2 \in \mathbb{R}, z_1, z_2 \in L^2(D), x \in D;$
1. there exists a real function h in $L^2(D \times D)$ such that \mathbb{P}-a.s. $|g(t, y, z, x)| \leq K_1 h(x)$ for all $t \in [0, T], y \in \mathbb{R}, z \in L^2(D), x \in D$;

5. ξ belongs to $L^\infty(\Omega; H^2(D) \cap H^1_0(D))$.

We define the operator A by $(Ay)(x) = Ay(x)$ with domain $D(A) = H^2(D) \cap H^1_0(D)$. We set $f_0(t, y)(x) = -r(y(t, x))$ for $t \in [0, T], x \in D$ and y in a suitable subspace of H which will be determined below. For $t \in [0, T], x \in D, y \in L^2(D), z \in L^2(D \times D)$ we define f_1 as the operator $f_1(t, y, z)(x) = -g(t, y(t, x), z(t, x), x)$. Then problem (23) can be written in abstract way as

$$dY_t = -AY_t dt - f_0(t, Y_t) dt - f_1(t, Y_t, Z_t) dt + Z_t dW_t, \quad Y_T = \xi.$$

Under the conditions in Hypothesis 8, the assumptions in Hypotheses 2, 6 are satisfied. The operator A is a closed operator in $L^2(D)$ and it is the infinitesimal generator of an analytic semigroup in $L^2(D)$ satisfying $\|e^{tA}\|_{L(H)} \leq 1$ (see [17], Chapter 3). In particular, by Lumer-Philips theorem, A is dissipative. The non linear function $f_0(t, \cdot) : L^{2\gamma}(D) \to L^2(D)$, $y \mapsto -r(y)$ is locally Lipschitz. We look for a space of class J_α between H and $D(A)$ where f_0 is well defined and locally Lipschitz. It is well known (see [18]) that the fractional order Sobolev space $W^{\beta, 2}(D)$ is of class $J_{\beta/2}$ between $L^2(D)$ and $H^2(D)$ for every $\beta \in (0, 2)$. Hence the space H_α defined by $H_\alpha = W^{\beta, 2}(D)$ if $\beta < 1$, by $W^{\beta, 2}(D) \cap H^1_0(D)$ if $\beta = 1$ is of class $J_{\beta/2}$ between H and $D(A)$. Moreover the restriction of A on H_α is a sectorial operator ([18]). By the Sobolev embedding theorem, $W^{\beta, 2}$ is contained in $L^q(D)$ for all q if $\beta \geq \frac{n}{2}$, and in $L^{2n/(n-2\beta)}(D)$ if $\beta < \frac{n}{2}$. If we choose $\beta \in (0, 2)$ we have $W^{\beta, 2}(D) \subset L^{2\gamma}(D)$ for $n < 4\frac{\gamma}{\gamma - 1}$. It is clear that f_0 is locally Lipschitz with respect to y from H_α into H. It is easy to verify that f_0 satisfies 4.ii) of Hypothesis 2 with $\gamma = 2n + 1$ and that it is dissipative with constant $\mu = 0$. The function f_1 is Lipschitz uniformly with respect to y and z and it is bounded. The final condition ξ takes values in $D(A)^{H_\alpha}$ and belongs to $L^\infty(\Omega; H_\alpha)$. Hence we can apply the global existence theorem and state that the above problem has a unique mild solution $(Y, Z) \in L^2(\Omega; C([0, T]; H_\alpha)) \times L^2(\Omega \times [0, T]; L^2(K, H))$.

5.2 A spin system

Let Z be the one-dimensional lattice of integers. Its elements will be interpreted as atoms. A configuration is a real function y defined on Z. The value $y(n)$ of the configuration at the point n can be viewed as the state of the atom n.

18
We consider an infinite system of equations

\[dY^n_t = -a_n Y^n_t \, dt + \sum_{|n-j| \leq 1} V(Y^n_t - Y^j_t) \, dt + Z^n_t \, dW_t \quad n \in \mathbb{Z}, \quad 0 \leq t \leq T \]

(24)

\[Y^n_T = \xi_n \quad n \in \mathbb{Z}, \]

where \(Y^n \) and \(Z^n \) are real processes, and \(V : \mathbb{R} \rightarrow \mathbb{R} \).

Let \(l^2(\mathbb{Z}) \) be the usual Hilbert space of square summable sequences. To study system (24) we apply results of previous sections. To fit our assumption in Hypotheses 2 and 6, we suppose the following

Hypothesis 9.

1. \(W^n, n \in \mathbb{Z} \) are independent standard real Wiener processes;
2. \(a = \{a_n\}_{n \in \mathbb{Z}} \) is a sequence of nonnegative real numbers;
3. \(\xi = \{\xi_n\}_{n \in \mathbb{Z}} \) is a random variable belonging to \(L^\infty(\Omega, l^2(\mathbb{Z})) \);
4. the function \(V : \mathbb{R} \rightarrow \mathbb{R} \) is defined by \(V(x) = x^{2k+1} \quad k \in \mathbb{N} \).

We will study system (24) regarded as a backward stochastic evolution equation for \(t \in [0, T] \)

\[dY_t = (AY_t + f_0(t, Y_t)) \, dt + Z_t \, dW_t, \quad Y_T = \xi \]

(25)

on a properly chosen Hilbert space \(H \) of functions on \(\mathbb{Z} \).

To reformulate problem (24) in the abstract form (25), we set \(K = H = l^2(\mathbb{Z}) \). We set \(W_t = \{W^n_t\}_{n \in \mathbb{Z}}, t \in [0, T] \). By 1. of Hypothesis 9, \(W \) is a cylindrical Wiener process in \(H \) defined on \((\Omega, \mathcal{F}, P) \). We define the operator \(A \) by

\[A(y) = (a_n y_n)_n, \quad D(A) = \{y \in l^2(\mathbb{Z}) \text{ such that } \sum_{n \in \mathbb{Z}} a_n^2 y_n^2 < \infty \}. \]

It is easy to prove that \(A \) is a self-adjoint operator in \(l^2(\mathbb{Z}) \), hence the infinitesimal generator of a sectorial semigroup. The coefficient \(f_0 \) is given by \((f_0(t, y))_n = (V(y_{n+1} - y_n) + V(y_{n-1} - y_n)), \quad t \in [0, T], y \in D(f_0) \) where \(D(f_0) = \{y \in l^2(\mathbb{Z}) \text{ such that } \sum_{n \in \mathbb{Z}} |x_{n+1} - x_n|^{2(2k+1)} < +\infty \}. \) Under Hypothesis 9, \(A, f_0, \xi \) satisfy Hypotheses 2 and 6. We observe that in this case the domain of \(f_0 \) is the whole space \(H \): if \(y \in l^2(\mathbb{Z}) \) then

\[\left\{ \sum_{n \in \mathbb{Z}} |y_{n+1} - y_n|^{2(2k+1)} \right\}^{1/(2k+1)} \leq \left\{ \sum_{n \in \mathbb{Z}} |y_{n+1} - y_n|^2 \right\}^{1/2} \leq 2||y||l^2(\mathbb{Z}). \]
Consequently, we can take H_α with $\alpha = 0$, i.e. $H_0 = H$. The function f_0 is dissipative. Namely

$$< f_0(t, y) - f_0(t, y'), y - y' >_{l^2(\mathbb{Z})} =$$

$$= \sum_{n \in \mathbb{Z}} \{(y_{n+1} - y_n)(2k+1) + (y_{n-1} - y_n)(2k+1)\} +$$

$$+ \{(y'_{n+1} - y'_n)(2k+1) + (y'_{n-1} - y'_n)(2k+1)\}[y_n - y'] =$$

$$= - \sum_{n \in \mathbb{Z}} \{(y_{n+1} - y_n)(2k+1) - (y_{n-1} - y_n)(2k+1)\}[y_n - y']$$

and the last term is negative. Moreover, f_0 satisfies 4.ii) of Hypothesis 2 with $\gamma = 2k + 1$. The map f_0 is also locally Lipschitz from H in to H.

Then by Theorem 7, problem (25) has a unique mild solution $(Y, Z) \in L^2(\Omega, C([0, T]; H)) \times L^2(\Omega \times [0, T]; L^2(K, H))$.

6 Appendix

This section is devoted to the proof of Lemma 1. Assume first that $\beta = 1$. Using recursively the inequality $U_t \leq a(T - t)^{-\alpha} + b \int_t^T \mathbb{E}^{\mathcal{F}_s} U_s ds$ we can easily prove that

$$U_t \leq a(T - t)^{-\alpha} + \int_t^T a \sum_{k=1}^{n-1} b^k (r-t)^{k-1} \frac{1}{(k-1)!} (T-r)^\alpha dr +$$

$$+ b \mathbb{E}^{\mathcal{F}_T} \int_t^T \frac{(b(r-t))^{n-1}}{(n-1)!} U_r dr.$$

The last term in the above inequality tends to zero as n tends to infinity for each t in the interval $[0, T]$. Thus

$$U_t \leq a(T - t)^{-\alpha} + a \sum_{k=1}^{\infty} \int_t^T \frac{b^k (T-t)^{k-1}}{(k-1)!} (T-r)^\alpha dr \leq$$

$$\leq a(T - t)^{-\alpha} + ab(T-t) \int_t^T \frac{1}{(T-r)^\alpha} dr \leq$$

$$\leq a(T - t)^{-\alpha} + ab(T-t) \frac{1}{1-\alpha} (T-t)^{1-\alpha} \leq a(T - t)^{-\alpha} M$$

where $M = 1 + be^{b(T-t)^{1-\alpha}} T$.

In the case $\beta \neq 1$ a similar proof can be given, based on recursive use of the inequality $U_t \leq a(T - t)^{-\alpha} + b \int_t^T (s-t)^{\beta-1} \mathbb{E}^{\mathcal{F}_s} U_s ds$.

20
Acknowledgments:

I wish to thank Giuseppe Da Prato for hospitality at the Scuola Normale Superiore in Pisa, suggestions and helpful discussions. I would like to express my gratitude to Marco Fuhrman: I am indebted to him for his precious help and encouragement. Special thanks are due to Alessandra Lunardi, who gave me valuable advice and support.

References

[1] Ph. Briand and R. Carmona. BSDEs with polynomial growth generators. *J. Appl. Math. Stochastic Anal.*, 13(3):207–238, 2000.

[2] Ph. Briand and B. Deylon and Y. Hu and E. Pardoux and L. Stoica. L^p solutions of backward stochastic differential equations. *Stochastic Process. Appl.*, 108(1):109–129, 2003.

[3] F. Confortola. Dissipative backward stochastic differential equations in infinite dimensions. *Infinite Dimensional Analysis, Quantum Probability and Related Topics*, 9(1):155–168, 2006.

[4] N. El Karoui and S. G. Peng and M. C. Quenez. Backward Stochastic Differential equations in Finance. *Math. Finance*, 7(1):1–71, 1997.

[5] H. Fujita and T. Kato. On the Navier-Stokes initial value problem I. *Arch. Rational Mech. Anal.* 16:269–315, 1964.

[6] Y. Hu and S. G. Peng. Adapted solution of a backward semilinear stochastic evolution equation. *Stochastic Anal. Appl.*, 9(4):445–459, 1991.

[7] A. Lunardi. *Analytic semigroups and optimal regularity in parabolic problems* volume 16 of *Progress in Nonlinear Differential Equations and their Applications*. Birkhäuser Verlag, Basel 1995.

[8] J. Ma and J. Yong Adapted solution of a degenerate backward SPDE, with applications. *Stochastic Process. Appl.* 70:59–84, 1997.

[9] J. Ma and J. Yong On linear, degenerate backward stochastic partial differential equations. *Probab. theory Related Fields* 113:135–170 1999.

[10] B. Oksendal and T. Zhang. On backward stochastic partial differential equations, 2001. Preprint.
[11] E. Pardoux. BSDEs, weak convergence and homogenization of semilinear PDEs. *Nonlinear analysis, differential equations and control (Montreal, QC, 1998)*, 503–549, NATO Sci. Ser. C Math. Phys. Sci., 528, Kluwer Acad. Publ., Dordrecht, 1999.

[12] É. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. *Systems and Control Lett.* 14:55–61, 1990.

[13] E. Pardoux and A. Răşcanu. Backward stochastic differential equations with subdifferential operator and related variational inequalities. *Stochastic Process. Appl.*, 76(2):191–215, 1998.

[14] E. Pardoux and A. Răşcanu. Backward stochastic variational inequalities. *Stochastics Stochastics Rep.*, 67(3-4):159–167, 1999.

[15] A. Pazy *Semigroups of linear operators and applications to partial differential equations*, Springer-Verlag, (1983).

[16] S. Peng Stochastic Hamilton-Jacobi-Bellman equations. *SIAM J. Control Optim.*, 30:284–304, 1992.

[17] H. Tanabe *Equations of evolution*. Monographs and Studies in Mathematics, 6. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.

[18] H. Triebel. *Interpolation Theory, Function Spaces, Differential Operators vol. 18 of North-Holland Mathematical Library* North-Holland Publishing Co., Amsterdam-New York, 1978