Localization of space-inhomogeneous three-state quantum walks

Chusei Kiumi

Mathematical Sciences Unit, Graduate School of Engineering Science, Yokohama National University, Hodogaya, Yokohama, 240-8501, Japan

E-mail: kiumi-chusei-bf@ynu.jp

Received 21 January 2022, revised 13 April 2022
Accepted for publication 22 April 2022
Published 13 May 2022

Abstract
Mathematical analysis on the existence of eigenvalues is essential because it is deeply related to localization, which is an exceptionally crucial property of quantum walks (QWs). We construct the method for the eigenvalue problem via the transfer matrix for space-inhomogeneous three-state QWs in one dimension with a self-loop, which is an extension of the technique in a previous study (Kiumi and Saito 2021 Quantum Inf. Process. 20 171). This method reveals the necessary and sufficient condition for the eigenvalue problem of a two-phase three-state QW with one defect whose time evolution varies in the negative part, positive part, and at the origin.

Keywords: eigenvalues, quantum walks, localization, three-state quantum walks

1. Introduction

The research on quantum walks (QWs) began in the early 2000s [1, 2], and QWs play important roles in various fields, and a variety of QW models have been analyzed theoretically and numerically. This paper focuses on the mathematical analysis of discrete-time three-state QWs on the integer lattice, studied intensively by [3–9]. Three-state QWs have an interesting property called localization, where the probability of finding the particle around the initial position remains positive in the long-time limit. Localization on multi-state (three or more states) QWs is actively researched by previous studies [10–16]. In the research of multi-state QWs, the Grover walk, whose time evolution is defined by the Grover matrix as a coin matrix, often plays an essential role. The name comes from Grover’s search algorithm [17]. Two-phase two-state QWs with one defect whose time evolution varies in the negative part, positive part, and at the origin are also investigated intensively [18–28]. This model contains one-defect QWs where the walker at the origin behaves differently and two-phase QWs where the walker behaves differently in each negative and non-negative part. Localization on one-defect Grover
walk is applied for quantum search algorithms [29–31], which are expected to generalize Grover’s algorithm and speed up the search algorithms on general graphs. Also, localization on two-phase QW is related to the research of topological insulators [23, 32].

The QW model exhibits localization if and only if there exists an eigenvalue of the time evolution operator, and the amount of localization is deeply related to its corresponding eigenvector and the initial state of the model [33]. Solving the eigenvalue problem via the transfer matrix was constructed for two-phase two-state QWs with one defect in [28] and for more general space-inhomogeneous QWs in [34]. It shows that the transfer matrices can be applied to models that cannot be handled by the Fourier transform method [10, 35], which is a typical method for analyzing QWs. The transfer matrix is also used in [36–38]. In this paper, we extend the transfer matrix method to three-state QWs with a self-loop. Furthermore, we apply the techniques to two-phase three-state QWs with one defect defined by the generalized Grover matrix.

The rest of this paper is organized as follows. In section 2, we define our three-state QWs with a self-loop on the integer lattice. Then, we give the transfer matrix in a general way and construct methods for the eigenvalue problem. Theorem 2.3 is the main theorem, which gives a necessary and sufficient condition for the eigenvalue problem. Section 3 focuses on the concrete calculation of eigenvalues on one-defect and two-phase three-state QWs with generalized Grover coin matrices. We also show some figures indicating eigenvalues of the time evolution operators and their corresponding probability distributions in this section.

2. Definitions and method

2.1. Three-state QWs on the integer lattice

Firstly, we introduce three-state QWs with a self-loop on the integer lattice \(\mathbb{Z} \). Let \(\mathcal{H} \) be a Hilbert space defined by

\[
\mathcal{H} = \ell^2(\mathbb{Z}; \mathbb{C}^3) = \left\{ \Psi : \mathbb{Z} \to \mathbb{C}^3 \mid \sum_{x \in \mathbb{Z}} \|\Psi(x)\|_2^2 < \infty \right\}.
\]

Here, \(\mathbb{C} \) denotes the set of complex numbers. We write three-state quantum state \(\Psi : \mathbb{Z} \to \mathbb{C}^3 \) as below:

\[
\Psi(x) = \begin{bmatrix} \Psi_1(x) \\ \Psi_2(x) \\ \Psi_3(x) \end{bmatrix}.
\]

Let \(\{C_x\}_{x \in \mathbb{Z}} \) be a sequence of \(3 \times 3 \) unitary matrices, which is written as below:

\[
C_x = e^{i\Delta_x} \begin{bmatrix} a_{1}^{(1,1)} & a_{1}^{(1,2)} & a_{1}^{(1,3)} \\ a_{2}^{(2,1)} & a_{2}^{(2,2)} & a_{2}^{(2,3)} \\ a_{3}^{(3,1)} & a_{3}^{(3,2)} & a_{3}^{(3,3)} \end{bmatrix},
\]

where \(\Delta_x \in [0, 2\pi) \), \(a_{i}^{(j,k)} \in \mathbb{C}, (1 \leq j, k \leq 3) \) and \(|a_{i}^{(2,2)}| \neq 1 \). Here we define \(C_x \) with additional phases \(\Delta_x \) for the simplification of the discussion in subsection 2.2. Then the coin operator \(C \) on \(\mathcal{H} \) is given as

\[
(C\Psi) = C_x \Psi(x).
\]

2
The shift operator S is also an operator on \mathcal{H}, which shifts $\Psi_1(x)$ and $\Psi_3(x)$ to $\Psi_1(x - 1)$ and $\Psi_3(x + 1)$, respectively, and does not move $\Psi_2(x)$.

\[
(S\Psi)(x) = \begin{bmatrix}
\Psi_1(x + 1) \\
\Psi_2(x) \\
\Psi_3(x - 1)
\end{bmatrix}.
\]

Then the time evolution operator is given as

\[
U = SC.
\]

We treat the model whose coin matrices satisfy

\[
C_x = \begin{cases}
C_{\infty}, & x \in [x_+, \infty), \\
C_{-\infty}, & x \in (-\infty, x_-],
\end{cases}
\]

where $x_+ > 0, x_- < 0$. For the initial state $\Psi_0 \in \mathcal{H}$ ($\|\Psi_0\|_H^2 = 1$), the finding probability of a walker in position x at time $t \in \mathbb{Z}_{\geq 0}$ is defined by

\[
\mu_t(\Psi_0)(x) = \| (U^t\Psi_0)(x) \|_C^2,
\]

where $\mathbb{Z}_{\geq 0}$ is the set of non-negative integers. The major difference between the three- and two-state QWs is the self-loop of the shift operator. Thus, when the walker starts at the origin, unlike in the two-state case, the probability at the origin does not necessarily become zero at odd times. We say that the QW exhibits localization if and only if there exists a position $x_0 \in \mathbb{Z}$ and an initial state $\Psi_0 \in \mathcal{H}$ satisfying $\limsup_{t \to \infty} \mu_t(\Psi_0)(x_0) > 0$. It is known that the QW exhibits localization if and only if there exists an eigenvalue of U [33], that is, there exists $\lambda \in [0, 2\pi)$ and $\Psi \in \mathcal{H} \setminus \{0\}$ such that

\[
U\Psi = e^{i\lambda}\Psi.
\]

Let $\sigma_p(U)$ denotes the set of eigenvalues of U, henceforward.

2.2. Eigenvalue problem and transfer matrix

The method to solve the eigenvalue problem of space-inhomogeneous two-state QWs with the transfer matrix was introduced in [28, 34]. This subsection shows that the transfer matrix method can also be applied to three-state QWs with a self-loop. Firstly, $U\Psi = e^{i\lambda}\Psi$ is equivalent that $\Psi \in \mathcal{H}$ satisfies followings for all $x \in \mathbb{Z}$:

\[
e^{i(\lambda - \Delta_x)}\Psi_1(x - 1) = \sum_{i=1}^{3} a_x^{(1, i)} \Psi_i(x), \quad e^{i(\lambda - \Delta_x)}\Psi_3(x + 1) = \sum_{i=1}^{3} a_x^{(3, i)} \Psi_i(x),
\]

and

\[
e^{i(\lambda - \Delta_x)}\Psi_2(x) = \sum_{i=1}^{3} a_x^{(2, i)} \Psi_i(x) \iff \Psi_2(x) = \frac{a_x^{(2, 1)} \Psi_1(x) + a_x^{(2, 3)} \Psi_3(x)}{e^{i(\lambda - \Delta_x)} - a_x^{(2, 2)}}.
\]

where \iff denotes ‘if and only if’. We can eliminate $\Psi_2(x)$ from the above system of equations and convert it to the following equivalent system of equations:
\[e^{i(\lambda - \Delta_x)} \Psi_1(x - 1) = A_x(\lambda) \Psi_1(x) + B_x(\lambda) \Psi_3(x), \]
(1)

\[e^{i(\lambda - \Delta_x)} \Psi_3(x + 1) = C_x(\lambda) \Psi_1(x) + D_x(\lambda) \Psi_3(x), \]
(2)

\[\Psi_2(x) = E_x(\lambda) \Psi_1(x) + F_x(\lambda) \Psi_3(x). \]
(3)

Here,

\[A_x(\lambda) = a_x^{(1,1)} + \frac{a_x^{(1,2)} a_x^{(2,1)}}{e^{i(\lambda - \Delta_x)} - a_x^{(2,2)}}, \]

\[B_x(\lambda) = a_x^{(1,3)} + \frac{a_x^{(1,2)} a_x^{(2,3)}}{e^{i(\lambda - \Delta_x)} - a_x^{(2,2)}}, \]

\[C_x(\lambda) = a_x^{(3,1)} + \frac{a_x^{(3,2)} a_x^{(2,1)}}{e^{i(\lambda - \Delta_x)} - a_x^{(2,2)}}, \]

\[D_x(\lambda) = a_x^{(3,3)} + \frac{a_x^{(3,2)} a_x^{(2,3)}}{e^{i(\lambda - \Delta_x)} - a_x^{(2,2)}}, \]

\[E_x(\lambda) = \frac{a_x^{(2,1)}}{e^{i(\lambda - \Delta_x)} - a_x^{(2,2)}}, \]

\[F_x(\lambda) = \frac{a_x^{(2,3)}}{e^{i(\lambda - \Delta_x)} - a_x^{(2,2)}}. \]

Note that \(\Psi : \mathbb{Z} \to \mathbb{C}^3 \), where \(\Psi \) does not necessarily satisfy \(\| \sum_{x \in \mathbb{Z}} \Psi(x) \|^2 < \infty \) but satisfies (1), (2) and (3) is a generalized eigenvector of \(U \), which is the stationary measure of QWs studied in \([5, 7, 36, 37]\). Also, localization was investigated in \([25, 26]\) for two-state models by directly solving recurrence equations (1) and (2). Here, we define transfer matrices \(T_x(\lambda) \) by

\[T_x(\lambda) = \frac{1}{A_x(\lambda)} \begin{bmatrix} e^{i(\lambda - \Delta_x)} & -B_x(\lambda) \\ C_x(\lambda) & -e^{-i(\lambda - \Delta_x)}(B_x(\lambda)C_x(\lambda) - A_x(\lambda)D_x(\lambda)) \end{bmatrix}, \]

then equations (1) and (2) can be written as

\[\begin{bmatrix} \Psi_1(x) \\ \Psi_3(x + 1) \end{bmatrix} = T_x(\lambda) \begin{bmatrix} \Psi_1(x - 1) \\ \Psi_3(x) \end{bmatrix}. \]

Note that, when \(A_x(\lambda) = 0 \), we cannot construct a transfer matrix. Therefore, we have to treat the case \(A_x(\lambda) = 0 \) separately. For simplification, we write \(T_x(\lambda) \) as \(T_x \) henceforward. Let \(\lambda \in [0, 2\pi] \) satisfying \(A_x(\lambda) \neq 0 \) for all \(x \in \mathbb{Z} \) and \(\varphi \in \mathbb{C}^2 \), we define \(\tilde{\Psi} : \mathbb{Z} \to \mathbb{C}^2 \) as follows:

\[\tilde{\Psi}(x) = \begin{cases}
T_{x-1} T_{x-2} \ldots T_0 \varphi, & x > 0, \\
\varphi, & x = 0, \\
T_x^{-1} T_{x-1}^{-1} \ldots T_{-2}^{-1} T_{-1}^{-1} \varphi, & x < 0.
\end{cases} \]

\[\tilde{\Psi}(x) = \begin{cases}
T_x^{x+} T_+ \varphi, & x_+ \leqslant x, \\
T_x \ldots T_0 \varphi, & 0 < x < x_+, \\
\varphi, & x = 0, \\
T_x^{-1} \ldots T_{-1}^{-1} \varphi, & x_- < x < 0, \\
T_x^{-x-} T_- \varphi, & x \leqslant x_-.
\end{cases} \]
(4)
where $T_+ = T_{x+1} \cdots T_0$, $T_- = T_{x-1}^{-1} \cdots T_{-1}^{-1}$ and $T_{\pm\infty} = T_{x\pm}$. Let V_λ be a set of generalized eigenvectors and W_λ be a set of reduced vectors $\hat{\Psi}$ defined by (4):

\[V_\lambda = \{ \Psi : \mathbb{Z} \to \mathbb{C}^3 \mid \Psi \text{ satisfies (1), (2), (3)} \}, \]

\[W_\lambda = \{ \hat{\Psi} : \mathbb{Z} \to \mathbb{C}^2 \mid \hat{\Psi}(x) \text{ is given by (4), } \varphi \in \mathbb{C}^2 \}, \]

for $\lambda \in [0, 2\pi)$ satisfying $A_\lambda(x) \neq 0$ for all $x \in \mathbb{Z}$. We define bijective map $\iota : V_\lambda \to W_\lambda$ by

\[(\iota \Psi)(x) = \begin{bmatrix} \Psi_1(x - 1) \\ \Psi_3(x) \end{bmatrix}. \]

Here, the inverse of ι is given as

\[(\iota^{-1} \hat{\Psi})(x) = \begin{bmatrix} \hat{\Psi}_1(x + 1) \\ E_\lambda(\hat{\Psi}_1(x + 1) + F_\lambda \hat{\Psi}_2(x) \end{bmatrix}, \]

for $\hat{\Psi} = \begin{bmatrix} \hat{\Psi}_1(x) \\ \hat{\Psi}_2(x) \end{bmatrix} \in W_\lambda$. Thus, $\Psi \in V_\lambda$ if and only if there exists $\hat{\Psi} \in W_\lambda$ such that $\Psi = \iota^{-1} \hat{\Psi}$. From the definition of ι, we can also say that $\iota^{-1} \hat{\Psi} \in H \setminus \{0\}$ if and only if $\hat{\Psi} \in \ell^2(\mathbb{Z}; \mathbb{C}^2) \setminus \{0\}$. Therefore, we get the following corollary.

Corollary 2.1. Let $\lambda \in [0, 2\pi)$ satisfying $A_\lambda(x) \neq 0$ for all x, $e^{i\lambda}$ is the eigenvalue of U, i.e., $e^{i\lambda} \in \sigma_p(U)$, if and only if there exists $\hat{\Psi} \in W_\lambda \setminus \{0\}$ such that $\hat{\Psi} \in \ell^2(\mathbb{Z}; \mathbb{C}^2)$, and associated eigenvector of $e^{i\lambda}$ becomes $\iota^{-1} \hat{\Psi}$.

In this paper, since we focus on the eigenvalue problem for generalized three-state Grover walks defined by coin matrices (6), we consider the following assumptions:

Assumption 2.2. $\lambda \in [0, 2\pi)$ satisfies following conditions:

1. $A_\lambda(x) \neq 0$, for all $x \in \mathbb{Z}$,

2. $\det(T_{\pm\infty}) = \frac{D_{\pm\infty}(\lambda)}{A_{\pm\infty}(\lambda)} = 1$,

3. $\text{tr}(T_{\pm\infty}) \in \mathbb{R}$.

We define sign function for real numbers r as follows:

\[\text{sgn}(r) = \begin{cases}
1, & r > 0, \\
0, & r = 0, \\
-1, & r < 0.
\end{cases} \]

The pair of eigenvalues of $T_{\pm\infty}$ can be written as ζ^{\pm}_∞, ζ^{\pm}_∞ defined by

\[\zeta^{\pm}_\infty = \frac{\text{tr}(T_{\pm\infty}) \pm \text{sgn}(\text{tr}(T_{\pm\infty})) \sqrt{(\text{tr}(T_{\pm\infty}))^2 - 4}}{2}, \]

where $|\zeta^{\pm}_\infty| \geq 1$ and $|\zeta^{\pm}_\infty| \leq 1$ since $|\zeta^{\pm}_\infty||\zeta^{\mp}_\infty| = |\det(T_{\pm\infty})| = 1$ holds. Hence, we have the main theorem.
Theorem 2.3. Under the assumption 2.2, \(e^{i\lambda} \) is the eigenvalue of \(U \), i.e., \(e^{i\lambda} \in \sigma_p(U) \), if and only if following two conditions hold:

1. \((\text{tr}(T_{\pm\infty}))^2 - 4 > 0 \),
2. \(\ker \left((T_{\infty} - \zeta_{\infty}^+)^{-1} T_{\infty} \right) \cap \ker \left((T_{\infty} - \zeta_{\infty}^-)^{-1} T_{\infty} \right) \neq \{0\} \).

Proof. From corollary 2.1, \(e^{i\lambda} \in \sigma_p(U) \) if and only if there exists \(\tilde{\Psi} \in W_{\lambda}\backslash\{0\} \) such that \(\sum_{x\in\mathbb{Z}} \|\tilde{\Psi}(x)\|^2 < \infty \). Firstly, when \((\text{tr}(T_{\pm\infty}))^2 - 4 \leq 0 \), by direct calculations, we can easily check that both \(\|\tilde{\Psi}\|_{\infty} \) and \(\|\tilde{\Psi}\|_{\infty}^2 \) become 1. Since \(\tilde{\Psi}(x) \) is given as (4), \(\sum_{x\in\mathbb{Z}} \|\tilde{\Psi}(x)\|_{C^2}^2 = \infty \) for all \(\tilde{\Psi} \in W_{\lambda}\backslash\{0\} \). Therefore, \((\text{tr}(T_{\pm\infty}))^2 - 4 > 0 \) is a necessary condition for \(e^{i\lambda} \in \sigma_p(U) \). Secondly, if \((\text{tr}(T_{\pm\infty}))^2 - 4 > 0 \), then \(\zeta_{\infty}^+ > 1 \) and \(\zeta_{\infty}^- < 1 \) hold. Since \(\tilde{\Psi} \in W_{\lambda}\backslash\{0\} \) is expressed by \(\varphi \in C^2\backslash\{0\} \) and transfer matrices, there exists \(\tilde{\Psi} \in W_{\lambda}\backslash\{0\} \) such that \(\sum_{x\in\mathbb{Z}} \|\tilde{\Psi}(x)\|_{C^2} < \infty \) if and only if there exists \(\varphi \in C^2\backslash\{0\} \) such that \(T_{\pm\infty} \varphi \in \ker \left((T_{\infty} - \zeta_{\infty}^+) \right) \), \(T_{\pm\infty} \varphi \in \ker \left((T_{\infty} - \zeta_{\infty}^-) \right) \), that is, \(\varphi \in \ker \left((T_{\infty} - \zeta_{\infty}^+) T_{\infty} \right) \cap \ker \left((T_{\infty} - \zeta_{\infty}^-) T_{\infty} \right) \). From these discussions, we have proved the statement. \(\square \)

From theorem 2.3, when \(e^{i\lambda} \in \sigma_p(U) \), \(\Psi \in \ker(\Psi(U) - e^{i\lambda})\backslash\{0\} \) is given as \(\Psi = e^{-i\lambda} \tilde{\Psi} \) where \(\tilde{\Psi} \in W_{\lambda}\backslash\{0\} \) is expressed as

\[
\tilde{\Psi}(x) = \begin{cases}
(\zeta_{\infty}^+)^{x-x_+} T_{+} \varphi, & x_+ \leq x, \\
T_{x+1} \ldots T_0 \varphi, & 0 < x < x_+, \\
\varphi, & x = 0, \\
T_{x-1} \ldots T_{-1} \varphi, & x_+ < x < 0, \\
(\zeta_{\infty}^-)^{-x-x_-} T_{-} \varphi, & x \leq x_-,
\end{cases}
\]

with \(\varphi \in \ker \left((T_{\infty} - \zeta_{\infty}^+) T_{\infty} \right) \cap \ker \left((T_{\infty} - \zeta_{\infty}^-) T_{\infty} \right) \). From [28, 34], we can also say that \(\dim \ker(U - e^{i\lambda}) = 1 \) under the assumption 2.2.

3. Eigenvalues of three-state Grover walks

In this section, we focus on the following generalized Grover matrices as the coin matrix, which is the coin matrix studied in [14] with an additional phase \(\Delta_i \).

\[
C_x = e^{i\Delta_i} \begin{bmatrix}
1 + c_x & s_x & \frac{1 - c_x}{2} \\
\frac{s_x}{\sqrt{2}} & c_x & \frac{s_x}{\sqrt{2}} \\
\frac{1 - c_x}{2} & \frac{s_x}{\sqrt{2}} & 1 + c_x
\end{bmatrix},
\]

(6)

where \(c_x = \cos \theta_x \), \(s_x = \sin \theta_x \) with \(\theta_x \in [0, 2\pi) \) and \(\theta_x \neq 0, \pi \). Then,

\[
A_x(\lambda) = D_x(\lambda) = \frac{(1 + c_x)}{2} \left(1 - e^{i(\lambda - \Delta_i)} \right),
\]

\[
B_x(\lambda) = C_x(\lambda) = \frac{(1 - c_x)}{2} \left(1 + e^{i(\lambda - \Delta_i)} \right).
\]
Transfer matrices become
\[
T_x = \frac{1}{(1 + c_x)} \left(1 - e^{i(\lambda - \Delta x)} \right) \\
\times \begin{bmatrix} 2e^{i(\lambda - \Delta x)} & - (1 - c_x) \left(1 + e^{i(\lambda - \Delta x)} \right) \\ (1 - c_x) \left(1 + e^{i(\lambda - \Delta x)} \right) & - 2e^{-i(\lambda - \Delta x)} \left(1 - c_x e^{i(\lambda - \Delta x)} \right) \end{bmatrix},
\]
where
\[
\det(T_x) = \frac{D_x(\lambda)}{A_x(\lambda)} = 1,
\]
\[
\text{tr}(T_x) = - \frac{2(2 \cos(\lambda - \Delta x) + 1 - cx)}{1 + cx} \in \mathbb{R}.
\]
Thus, we can say that \(\lambda \in (0, 2\pi] \) where \(\lambda \neq \Delta x \) for all \(x \in \mathbb{Z} \) satisfies assumption 2.2.

Lemma 3.1. \(e^{i\Delta_\pm \infty} \in \sigma_p(U) \).

Proof. When \(e^{i\lambda} = e^{i\Delta_\pm \infty} \), \(\lambda \) does not satisfies assumption 2.2, thus we consider these cases separately. From the discussion in section 2, \(e^{i\lambda} \in \sigma_p(U) \) is equivalent that there exists \(\Psi \in \mathcal{H} \setminus \{0\} \) satisfying (1), (2) and (3). Considering the case \(A_\infty(\lambda) = 0 \), i.e., \(e^{i\lambda} = e^{i\Delta_\pm} \), \(\Psi : \mathbb{Z} \to \mathbb{C}^3 \) satisfies (1) and (2) if and only if \(\Psi \) satisfies
\[
\begin{align*}
\Psi_1(x - 1) &= \Psi_3(x), & \Psi_1(x) &= \Psi_3(x + 1) \quad \text{if} \; \Delta_x = \Delta_\infty, \\
\begin{bmatrix} \Psi_1(x) \\ \Psi_3(x + 1) \end{bmatrix} &= T_x(\lambda) \begin{bmatrix} \Psi_1(x - 1) \\ \Psi_3(x) \end{bmatrix} \quad \text{if} \; \Delta_x \neq \Delta_\infty.
\end{align*}
\]

Let \(k \in \mathbb{C} \setminus \{0\} \) and \(x_\infty \in (x_+ , \infty) \). We consider \(\Psi : \mathbb{Z} \to \mathbb{C}^3 \) defined by
\[
\Psi(x) = \begin{cases}
\begin{bmatrix} k \\ E_{2x}(\lambda)k \\ 0 \end{bmatrix}^t, & x = x_\infty, \\
\begin{bmatrix} 0 \\ F_{2x}(\lambda)k \\ k \end{bmatrix}^t, & x = x_\infty + 1, \\
0, & \text{otherwise},
\end{cases}
\]
where \(t \) is a transpose operator. Then, \(\Psi \in \mathcal{H} \setminus \{0\} \) holds, and \(\Psi \) satisfies condition (7), (8) and (3). Therefore, \(e^{i\Delta_\infty} \in \sigma_p(U) \). Considering the case of \(A_{-\infty}(\lambda) = 0 \) in the same way, we have \(e^{i\Delta_\pm \infty} \in \sigma_p(U) \).

3.1. Two-phase QWs with one defect

Henceforward, we consider two-phase QWs with one defect \((x_+ = 1, x_- = -1) \).

\[
C_x = \begin{cases}
C_m, & x < 0, \\
C_o, & x = 0, \\
C_p, & x > 0.
\end{cases}
\]

We write \(T_x = T_j \), \(\zeta_x^j = \zeta_x^j \), \(\zeta_x^j = \zeta_x^j \), \(A_x(\lambda) = A_j(\lambda) \), where \(j = p \; (x > 0), = o \; (x = 0), = m \; (x < 0) \). In this case, \(T_+ \) and \(T_- \) equal \(T_o \) and \(T_m^{-1} \), respectively. We now apply
Figure 1. Example of proposition 3.2 with parameters $\Delta_o = \Delta = 0$, $\theta_o = \frac{k}{19}$, $\theta = -\frac{13}{19} \pi$. (a) Illustrates the eigenvalue. (b), (c) and (d) Show the probability distributions at time 100, where the walks start from the origin, i.e., $\Psi_0(x) = 0$ for $x \neq 0$. The initial states are given as (b) $\Psi_0(0) = [0 1 0]^t$, (c) $\Psi_0(0) = \left[\frac{i}{\sqrt{2}} 0 \frac{1}{\sqrt{2}} \right]^t$ and (d) $\Psi_0(0) = \left[\frac{1}{\sqrt{3}} \frac{i}{\sqrt{3}} \frac{1}{\sqrt{3}} \right]^t$. In this case, the probability around the origin is lower for (b).
Figure 2. Example of proposition 3.2 with parameters $\Delta_\theta = \Delta = 0$, $\theta_\alpha = \frac{\pi}{4}$, $\theta = -\frac{\pi}{4}$. (a) Illustrates the eigenvalues. (b), (c) and (d) Show the probability distributions at time 100, where the walks start from the origin, i.e., $\Psi_0(x) = 0$ for $x \neq 0$. The initial states are given as (b) $\Psi_0(0) = [0 \ 1 \ 0]^T$, (c) $\Psi_0(0) = [\frac{1}{\sqrt{2}} \ 0 \ \frac{1}{\sqrt{2}}]^T$ and (d) $\Psi_0(0) = [\frac{1}{\sqrt{3}} \ \frac{1}{\sqrt{3}} \ \frac{1}{\sqrt{3}}]^T$. A slight change in θ from the case of figure 1 results in the appearance of eigenvalue $e^{i\lambda}$ and a higher probability around the origin for all cases (b), (c), and (d).

where $t_1 = 1 - \cos(\lambda - \Delta_j), t_2 = \cos(\lambda - \Delta_j) - c_j (j = m, p)$. Also, $\Psi \in \ker(U - e^{i\lambda}) \setminus \{0\}$ becomes $\tilde{\Psi} = \xi^{-1}\Psi$ where

$$
\tilde{\Psi}(x) = \begin{cases}
T_p^{x-1}T_\theta\varphi, & x > 0, \\
T_m^{x}\varphi, & x \leq 0.
\end{cases}
$$

3.2. One-defect model

Here, we consider the one-defect model, where $\Delta_m = \Delta_p = \Delta$, $c_m = c_p = c$, $\zeta_m = \zeta_p = \zeta$. $T_m = T_p = T$. First, we consider λ which does not satisfy assumption 2.2, i.e., $e^{i\lambda} = e^{i\Delta_m}, e^{i\Delta_p}$. From lemma 3.1, we know that $e^{i\Delta} \in \sigma_p(U)$. Although, in the case
Here, we consider the two-phase model, where

3.3. Two-phase model

Proposition 3.2. When

\[\psi_i \]

satisfy assumption 2.2, i.e., \(\psi_i \)

where \(k_1, k_2 \in \mathbb{C} \). By the similar discussion as theorem 2.3, \(e^{j \Delta_o} \in \sigma_p(U) \) if and only if followings hold:

1. \(\cos(\Delta_o - \Delta) - c > 0 \),

However, from (9) and (10), we know \([1 \ 1]^t \notin \ker(T - \zeta^-) \), \([1 \ 1]^t \notin \ker(T - \zeta^+) \) if \(\cos(\Delta_o - \Delta) - c > 0 \), thus \(\Psi \notin \mathcal{H} \setminus \{0\} \) for all \(k_1, k_2 \in \mathbb{C} \) and \(e^{j \Delta_o} \notin \sigma_p(U) \). Under the assumption 2.2, i.e., \(e^{j \lambda} \neq e^{j \Delta_o}, e^{j \Delta_o}, e^{j \Delta_o} \), theorem 2.3 shows that \(e^{j \lambda} \in \sigma_p(U) \) if and only if \(\cos(\lambda - \Delta) - c > 0 \) and one of the followings hold:

1. \(\sin^2(\lambda - \Delta_o)(\cos(\lambda - \Delta) - c) = (1 - \cos(\lambda - \Delta))(\cos(\lambda - \Delta_o) - c_o)^2 \)
 and \(\sin(\lambda - \Delta_o)(\cos(\lambda - \Delta_o) - c_o) < 0 \).

2. \((1 - \cos(\lambda - \Delta_o))(\cos(\lambda - \Delta) - c) = (1 - \cos(\lambda - \Delta))(1 + \cos(\lambda - \Delta_o)), \)
 and \(\sin(\lambda - \Delta_o)(\cos(\lambda - \Delta_o) + 1 - c_o) < 0 \).

From these discussions, we have the following proposition:

Proposition 3.2. When \(\Delta_o = \Delta \)

\[\sigma_p(U) = \begin{cases} \{ e^{j \Delta}, e^{j \lambda_+}, e^{j \lambda_-} \}, & c < c_o, \\ \{ e^{j \Delta} \}, & c \geq c_o, \end{cases} \]

where

\[e^{j \lambda_o} = \frac{c + c_o^2 \pm i(1 + c_o)\sqrt{1 - c + 2c_o - (c + c_o^2)}}{1 - c + 2c_o} e^{j \Delta}. \]

The examples of proposition 3.2 are shown in figures 1 and 2.

3.3. Two-phase model

Here, we consider the two-phase model, where \(C_\omega = C_p \). In the case which \(\lambda \) does not satisfy assumption 2.2, i.e., \(e^{j \lambda} = e^{j \Delta_o}, e^{j \Delta_o}, e^{j \Delta_o} \), lemma 3.1 shows \(e^{j \Delta_o}, e^{j \Delta_o} \in \sigma_p(U) \). Next, under the assumption 2.2, i.e., \(e^{j \lambda} \neq e^{j \Delta_o}, e^{j \Delta_o} \), theorem 2.3 shows that \(e^{j \lambda} \in \sigma_p(U) \) if and only if followings hold:

1. \(e^{j \lambda} = \frac{(c_p - c_m) \pm i\sqrt{2(1 - c_p)(1 - c_p)(1 - \cos(\Delta_{\alpha} - \Delta_p))}}{(1 - c_m) e^{-j \Delta_{\alpha}} - (1 - c_p) e^{-j \Delta_{\alpha}}} \)

2. \(\sin(\lambda - \Delta_p) \sin(\lambda - \Delta_m) < 0 \)
Figure 3. Example of proposition 3.4 with parameters $\Delta_m = \frac{3}{12}\pi$, $\Delta_p = -\frac{3}{12}\pi$, $\theta = \frac{9}{12}\pi$. (a) Illustrates the eigenvalues. (b), (c) and (d) Show the probability distributions at time 100, where the walks start from the origin, i.e., $\Psi_0(x) = \mathbf{0}$ for $x \neq 0$. The initial states are given as (b) $\Psi_0(0) = [0 1 0]^T$, (c) $\Psi_0(l) = \left[\frac{1}{\sqrt{2}} 0 \frac{1}{\sqrt{2}}\right]^T$ and (d) $\Psi_0(0) = \left[\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}\right]^T$. In this case, the probability around the origin is lower for (b).

3. $\cos(\lambda - \Delta_m) > c_m$.

Note that $\cos(\lambda - \Delta_m) > c_m$ is equivalent to $\cos(\lambda - \Delta_p) > c_p$ in this model.

Proposition 3.3. When $\Delta_m = \Delta_p = \Delta$

$$\sigma_p(U) = \{e^{i\Delta}\}.$$

Proposition 3.4. When $c_m = c_p = c$ and $\Delta_m \neq \Delta_p$, let

- **condition 1:** $\frac{\sin(\Delta_m - \Delta_p)}{\sqrt{2(1 - \cos(\Delta_m - \Delta_p))}} > c$,
- **condition 2:** $\frac{\sin(\Delta_m - \Delta_p)}{\sqrt{2(1 - \cos(\Delta_m - \Delta_p))}} < -c$.

Page 11
Figure 4. Example of proposition 3.4 with parameters $\Delta_m = \frac{1}{12}\pi$, $\Delta_p = -\frac{1}{12}\pi$, $\theta = \frac{1}{12}\pi$. (a) Illustrates the eigenvalues. (b), (c) and (d) Show the probability distributions at time 100, where the walks start from the origin, i.e., $\Psi_0(x) = 0$ for $x \neq 0$. The initial states are given as (b) $\Psi_0(0) = [0 \ 1 \ 0]^T$, (c) $\Psi_0(0) = [\frac{\sqrt{2}}{2} \ 0 \ \frac{\sqrt{2}}{2}]^T$ and (d) $\Psi_0(0) = [\frac{1}{\sqrt{3}} \ \frac{i}{\sqrt{3}} \ \frac{1}{\sqrt{3}}]^T$. A slight change in θ from the case of figure 3 results in the appearance of eigenvalue $-e^{i\lambda}$ and a higher probability around the origin for all cases (b), (c), and (d).

Then

$$\sigma_p(U) = \begin{cases}
\{e^{i\Delta_m}, e^{i\Delta_p}\}, & \text{if neither condition 1 nor 2 holds,} \\
\{e^{i\Delta_m}, e^{i\Delta_p}, e^{i\lambda}\}, & \text{if only condition 1 holds,} \\
\{e^{i\Delta_m}, e^{i\Delta_p}, -e^{i\lambda}\}, & \text{if only condition 2 holds,} \\
\{e^{i\Delta_m}, e^{i\Delta_p}, e^{i\lambda}, -e^{i\lambda}\}, & \text{if both conditions 1 and 2 hold,}
\end{cases}$$

where

$$e^{i\lambda} = \frac{i \left(e^{i\Delta_p} - e^{i\Delta_m}\right)}{\sqrt{2(1 - \cos(\Delta_m - \Delta_p))}}$$

The examples of proposition 3.4 are shown in figures 3 and 4.
4. Summary

In this paper, we analyzed eigenvalues of two-phase three-state generalized Grover walks with one defect in one dimension. In section 2, we successfully derived theorem 2.3 via transfer matrices, which is the necessary and sufficient condition for the eigenvalue problem for space-inhomogeneous three-state QWs with a self-loop under the assumption 2.2. Next, we focused on the eigenvalue problem for three-state generalized Grover walks in section 3. Lemma 3.1 revealed that $e^{\lambda \pm i \pi}$ are eigenvalues of U, which also indicates that these models always exhibit localization. Subsequently, by applying theorem 2.3, we got the necessary and sufficient condition for the eigenvalue problem and successfully calculated concrete eigenvalues for one-defect model in proposition 3.2, and two-phase models in propositions 3.3 and 3.4.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Chusei Kiumi © https://orcid.org/0000-0003-3283-394X

References

[1] Ambainis A, Bach E, Nayak A, Vishwanath A and Watrous J 2001 One-dimensional quantum walks Proc. 33rd Annual ACM Symp. Theory of Computing STOC ’01 (New York, NY, USA: Association for Computing Machinery) pp 37–49
[2] Konno N 2002 Quantum Inf. Process 1 345–54
[3] Inui N, Konno N and Segawa E 2005 Phys. Rev. E 72 056112
[4] Wang C, Wang W and Lu d X 2015 J. Comput. Theor. Nanosci. 12 5164–70
[5] Endo T, Komatsu T, Konno N and Terada T 2019 Quantum Inf. Comput. 19 901–12
[6] Rajendran J and Benjamin C 2018 Europhys. Lett. 122 40004
[7] Wang C, Lu X and Wang W 2015 Quantum Inf. Process. 14 867–80
[8] Falcão P R N, Buarque A R C, Dias W S, Almeida G M A and Lyra M L 2021 arXiv:2108.10275
[9] Saha A, Mandal S B, Saha D and Chakraborti A 2021 IEEE Trans. Quantum Eng. 2 1–12
[10] Inui N and Konno N 2005 Physica A 353 133–44
[11] Stefaňák M, Bezdeková I and Jex I 2014 Phys. Rev. A 90 012342
[12] Falkner S and Boettcher S 2014 Phys. Rev. A 90 012307
[13] Li D, Gettrick M, Zhang W-W and Zhang K-J 2016 Phys. Rev. A 90 012342
[14] Machida T 2015 Quantum Inf. Comput. 15 406–18
[15] Xu Y-Z, Guo G-D and Lin S 2016 Int. J. Theor. Phys. 55 4060–74
[16] Kiumi C 2021 Quantum Inf. Comput. 21 541–56
[17] Grover L K 1996 A fast quantum mechanical algorithm for database search Proc. 28th Annual ACM Symp. Theory of Computing STOC ’96 (New York, NY, USA: Association for Computing Machinery) pp 212–9
[18] Konno N 2010 Quantum Inf. Process. 9 405–18
[19] Wójcik A, Łuczak T, Kurzyńskiego P, Grudka A, Gdala T and Bednarska-Bzdęga M 2012 Phys. Rev. A 85 012329
[20] Cantero M J, Grünbaum F A, Moral L and Velázquez L 2012 Quantum Inf. Process. 11 1149–92
[21] Xue P, Qin H and Tang B 2014 Sci. Rep. 4 4825
[22] Endo T, Konno N, Segawa E and Takei M 2014 Yokohama Math. J. 60 49–90
[23] Endo T, Konno N and Obuse H 2020 Yokohama Math. J. 66 1–59
[24] Endo S, Endo T, Konno N, Takei M and Segawa E 2015 Quantum Inf. Comput. 15 1373–96
[25] Chen T and Zhang X 2016 Sci. Rep. 6 24017
[26] Zhang R, Liu Y F and Chen T 2020 Phys. Rev. A 102 022218
[27] Endo S, Endo T, Komatsu T and Konno N 2020 Entropy 22 127
[28] Kiumi C and Saito K 2021 Quantum Inf. Process. 20 171
[29] Ambainis A, Kempe J and Rivosh A 2005 Coins make quantum walks faster Proc. 16th Annual ACM-SIAM Symp. Discrete Algorithms SODA ’05 (USA: Society for Industrial and Applied Mathematics) pp 1099–108
[30] Childs A M and Goldstone J 2004 Phys. Rev. A 70 022314
[31] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[32] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
[33] Segawa E and Suzuki A 2016 Quantum Stud.: Math. Found. 3 11–30
[34] Kiumi C and Saito K 2021 arXiv:2105.10962
[35] Xue P and Sanders B C 2012 Phys. Rev. A 85 022307
[36] Kawai H, Komatsu T and Konno N 2017 Yokohama Math. J. 63 59–74
[37] Kawai H, Komatsu T and Konno N 2018 Yokohama Math. J. 64 111–30
[38] Danaci B, Karpat G, Yalçınkaya I and Subaşı A L 2019 J. Phys. A: Math. Theor. 52 225302