REPETITIVE TRANSCRANIAL MAGNETIC STIMULATION FOR MANAGEMENT OF POST-STROKE IMPAIRMENTS: AN OVERVIEW OF SYSTEMATIC REVIEWS

Woo-Jin KIM, MD, PhD1,*, Charlotte ROSSELIN, MD2,*, Bhasker AMATYA, MD, MPH, DMedSci3,4,5, Pouya HAFEZI, MD3,5 and Fary KHAN, MBBS, MD, FAPRM (RACP)1,4,6
From the 1Department of Physical Medicine and Rehabilitation, Haeundae Paik Hospital, University of Inje College of Medicine, Busan, Korea, 2Department of Physical Medicine and Rehabilitation, Lille University Medical Centre, Lille, France, 3Department of Rehabilitation Medicine, Royal Melbourne Hospital, 4Department of Medicine (Royal Melbourne Hospital), University of Melbourne, 5Australian Rehabilitation Research Centre, Royal Melbourne Hospital, Parkville and 6School of Public Health and Preventive Medicine, Monash University, Victoria, Australia. *These authors contributed equally to this publication

Objective: To evaluate evidence from published systematic reviews of clinical trials to determine the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in stroke population.

Methods: The Cochrane Library, MEDLINE, CINAHL, EMBASE, and PubMed were searched for systematic reviews up to 15 January 2019. Three authors independently screened the reviews and assessed the methodological quality, using Assessment of Multiple Systematic Reviews (AMSTAR) appraisal tool. Quality of evidence for outcomes evaluated within the reviews was appraised with Grade of Recommendation, Assessment, Development and Evaluation (GRADE) tool.

Results: Twelve reviews (n=9,117 participants) evaluated the effectiveness of rTMS on motor and non-motor (aphasia, depression, dysphagia and cognition) functions. The rTMS protocols applied and outcomes measured were diverse amongst the selected reviews. The findings suggest beneficial effect of rTMS with: “moderate quality” evidence for dysphagia and hemineglect, “low to moderate quality” evidence for motor function (upper limb function, daily activities), and “low quality” evidence for aphasia and post-stroke depression.

Conclusion: Despite widespread use of rTMS, high-quality evidence for its routine use for the treatment of stroke survivors is lacking. Further studies are required to establish differential roles of various protocols and long-term effects of rTMS in the stroke population.

Key words: stroke; transcranial magnetic stimulation; rehabilitation; systematic review.

Accepted Dec 6, 2019; Epub ahead of print Dec 18, 2019

J Rehabil Med 2020; 52: jrm00015

Correspondence address: Bhasker Amatya, Department of Rehabilitation Medicine, Royal Melbourne Hospital, 34–54 Poplar Road, Parkville, Victoria, Australia. E-mail: bhasker.amatya@mh.org.au

S

troke is a leading cause of long-term neurological disability in adults worldwide, with an estimated 15 million strokes reported annually (1, 2). It frequently causes impairments resulting in long-term debilitating effects (3). Current advances in the medical management of stroke have improved survival rates significantly, and highlight the need for optimal, comprehensive acute and longer-term management of motor and non-motor impairments, which contribute to disability.

Despite spontaneous motor recovery after stroke, at 3 months approximately 70% of stroke survivors continue to have restrictions in functional tasks and activities of daily living (ADLs) due to motor/sensory deficits, incoordination and spasticity (4, 5). During recovery after stroke, abnormal neuronal activity causes disruption in regular interhemispheric communication (6, 7), commonly in the motor system (8). Cognitive impairments (such as post-stroke depression; PSD) are common (reported in almost 30% of patients) (9). Significantly higher rates of PSD and anxiety are reported in chronic stages of stroke recovery, compared with the general population (10). Further, hemispatial neglect (range 13–82%) (11) leads to poor functional motor recovery (12), increased falls risk and caregiver burden (13). Swallowing problems (50–80%) (14), increased length of hospital stay, additional health service utilization, complications and worse outcomes (15). Furthermore, mortality rate significantly increases by 2.6-fold in patients with post-stroke dysphagia compared with their counterparts without dysphagia (16). These impairments contribute to longer-term

LAY ABSTRACT

Stroke causes significant disability and morbidity. Currently, a range of rehabilitation interventions to manipulate or induce brain plasticity, including repetitive transcranial magnetic stimulation (rTMS) are used for stroke care. There is a growing body of research in this area, with several systematic reviews evaluating efficacy and safety of rTMS for various clinical outcomes. This review systematically evaluates evidence from published systematic reviews of clinical trials to determine the effectiveness of rTMS in people with stroke to guide treating clinicians. The included reviews used varied rTMS protocols and outcome measures. The findings suggest limited high-quality evidence for improved motor and non-motor functions following stroke; hence, routine clinical use of rTMS is yet to be established.
morbidity and mortality, restrictions in ADLs, and decreased quality of life (QoL) (17).

Currently, a range of rehabilitation interventions are trialled in the management of stroke. Many alternative and adjunct therapeutic techniques to manipulate or induce brain plasticity, including repetitive transcranial magnetic stimulation (rTMS), are used to enhance conventional rehabilitation therapies (18). rTMS is a non-invasive neuro-modulatory therapeutic intervention used to promote/enhance efficacy of rehabilitation after stroke (19) by restoring the disrupted equilibrium and inter-hemispheric communication to rebalance interhemispheric competition (20). It delivers electrical current to modulate cortical neuronal excitability (5) at the stimulation site (21). Delivering a series of magnetic stimuli to targeted brain areas induces inhibitory effects on motor cortical excitability with low-frequency (LF) (≤1 Hz) or promotes cortical excitability with high-frequency (HF) (≥3 Hz). After stroke, it is postulated that suppression of the undamaged contra-lesional motor cortex by rTMS or increasing the excitability of the damaged hemisphere cortex promotes functional recovery (22). Due to these unique features, the use of rTMS has increased rapidly as a potential rehabilitation tool for stroke patients to enhance functional and psychological recovery (23). However, evidence supporting its routine use for post-stroke impairments is limited (18, 24).

Various systematic reviews have evaluated the effectiveness and safety of rTMS for various functional and psychological outcomes in persons following stroke (9, 18, 21, 25–27). However, published reviews vary in scope, methodology and quality, with different and, at times, diverse findings and conclusions about the effectiveness of rTMS. Further, some review findings overlap with each other. Therapeutic values, including benefit and harm, associated with rTMS, including efficacious approaches, timing, and intensity need to be established. An overview of systematic reviews is a new approach to synthesize high-quality evidence across the same or very similar interventions, to summarize treatment effect in a much broader concept (28). The aim of this review, therefore, is to systematically evaluate evidence from published systematic reviews of clinical trials to determine the effectiveness of rTMS in people with stroke, in order to guide treating clinicians.

METHODS

The Cochrane Library database (including Database of Abstracts and Reviews of Effectiveness), MEDLINE, CINAHL, EMBASE, and PubMed were comprehensively searched for systematic reviews evaluating the efficacy of rTMS interventions for various post-stroke impairments until 15 January 2019. The combination of multiple searches for 2 themes of stroke and transcranial magnetic stimulation (non-invasive stimulation) was used for the search strategy. The keywords used to search for studies are listed in Appendix SI1.

A comprehensive multi-pronged methodology was employed. All systematic reviews, meta-analyses registered in these databases that reported a systematic electronic search of literature for a defined period, were included. Bibliographies of pertinent articles and relevant journals were manually searched for additional references. Authors and known experts in this area were contacted as required. Grey literature search was performed using various internet search engines and websites including: System for Information on Grey Literature in Europe, New York Academy of Medicine Grey Literature Collection, National Quality Measures Clearinghouse, and Google Scholar. Systematic reviews on rTMS involving other medical conditions, where data were specifically provided for stroke, were also included. Furthermore, reviews comparing other non-invasive stimulation, such as transcranial direct current stimulation (tDCS), with rTMS, where separate subgroup analysis on the rTMS was included. The exclusion criteria included: reviews conducted in paediatric population (<18 years old); those evaluating the efficacy of interventional rTMS combined with other measures of rehabilitation, pharmacological, surgical intervention; reviews using TMS to assess functional aspects and structure of the brain; non-interventional TMS protocols; non-English reviews; narrative reviews; theses; and reviews listed only in conference proceedings.

Study selection and data extraction

Three authors (WK, CR, PH) independently screened all potential abstracts and titles of reviews for inclusion and appropriateness, based on the selection criteria. Each study was evaluated independently, and the full-text article was obtained for assessment to determine whether the review met the inclusion/exclusion criteria. Any disagreement regarding the possible inclusion/exclusion of any individual review was resolved by discussion with other reviewers (BA, FK) and by a final group consensus. Data extraction was conducted by 3 authors (WK, CR, PH) independently, using a standard pro forma. The information obtained from all reviews included: publication and search date, objectives, characteristics of included studies and comparators, findings/patient outcomes in the review, and limitations. Any discrepancies were resolved by final group consensus re-evaluating the review.

Assessment of the methodological quality of included studies

Three reviewers (WK, CR, PH) independently assessed the methodological quality of each included review, using the Assessment of Multiple Systematic Reviews (AMSTAR) appraisal tool (Appendix SII1) (29). This critical appraisal tool, with 11 assessment items, has acceptable inter-rater agreement, construct validity and feasibility (29, 30). The Grade of Recommendation, Assessment, Development and Evaluation (GRADE) tool was used to assess quality of evidence for each outcome evaluated within the included reviews on a 4-point scale (high, moderate, 1http://www.medicaljournals.se/jrm/content/?doi=10.2340/16501977-2637

www.medicaljournals.se/jrm
low and very low quality) (31). First, an a priori ranking of
“high” for randomized controlled trials (RCTs), and “low” for
non-randomized controlled trials was assigned. Then, initial
grading was either downgraded because of the risk of bias, the
inconsistency, the indirectness of evidence or the imprecision
of the publication bias; or upgraded the initial grading because
of a large effect size and consistency in the findings. Finally, the
grade was assigned “very low” if assessment was that the true
effect was likely to be substantially different from the estimated
effect. Any discrepancies were resolved by a final consensus
amongst all reviewers.

RESULTS

Study selection
The electronic search strategy identified a total of
136 systematic reviews evaluating brain stimulation
interventions in persons with stroke. After removing
duplicates, 87 reviews met the abstract inclusion
criteria. The main reasons for exclusion of reviews included: non-systematic reviews, valuation of other
non-invasive brain stimulation (such as tDCS), and no
specific sub-group data of patients with stroke. Full
texts of these articles were retrieved, and all reviewers
performed the final selection. Further, one review was
identified from a manual search of bibliographies of
relevant articles. Overall, 12 systematic reviews with
a total of 9,117 subjects evaluating the effect of rTMS
on motor and functional outcomes; 3 reviews evaluated
(n = 1,916) (9, 24, 26) post-stroke depression outcomes,
and 2 reviews each evaluated aphasia (n = 157) (24, 33),
cognitive impairment (n = 301) (24, 34) and dysphagia
(n = 255) (25, 35).

Primary study design. Most primary studies included
were RCTs (192 of 235 studies), conducted between
January 1980 and December 2016. There was marked
variability amongst the studies with regard to the rTMS
protocols used. Nine of the 12 included systematic
reviews (21, 24–27, 32–35) performed meta-analyses,
and the other 3 provided only qualitative description
of findings due to heterogeneous data (9, 18, 23). Hao
et al. (24) conducted 4 sub-group meta-analyses: on
ADLs (2 RCTs, n = 183), motor function (4 RCTs,
n = 73), post-stroke depression (2 RCTs, n = 92) and
cognition (2 RCTs, n = 75). Similarly, Zhang et al.
(27) performed 6 sub-group meta-analyses on: effect
duration (38 RCTs, n = 979), stroke duration (16 RCTs,
n = 399), rTMS frequency (31 RCTs, n = 866), theta
burst stimulation (TBS) mode (9 RCTs, n = 125), lesion
location (27 RCTs, n = 750) and number of sessions (25
RCTs, n = not provided).

rTMS protocols in the included studies. The rTMS pro-
tocol applied to motor cortex varied amongst the studies:
with excitatory stimulation performed on the affected
hemisphere (with lesion) to increase the efficacy of re-
Author, year	Domain	Number of studies and participants	Search date	Interventions	Outcome measures	Main findings
Graef et al. (21) 2016	Motor	N = 11 RCTs, 199 participants	Search date: Up to Nov 2015	rTMS: 20 min for 10 days, 1-50 Hz, AH and UH	UL motor function: FMA, WMFT, ARAT, BBT, JTHF, NHPT, MAL - motor improvement in hand function	No effect on any UL functions: SMD: 0.03, 95% CI: −0.03, 0.22, p = 0.08
Mclntyre et al. (9) 2016	PSD	N = 1 RCT, 1 pre-post study, 40 participants	Search date: Jan 1980 to June 2016	rTMS: 1–10 Hz; 1,000–10,000 HDRS pulses; 10 sessions; 10–20 trains/session with 5–10 s trains; 100–110% RMT	Sham rTMS or none	Positive results in depression VERY LOW symptom reduction (% decrease in HDRS score range: 38–41.4%)
Ludemann- Podubecka et al. (23) 2015	Motor	N = 7 RCTs, 871 participants	Search date: Up to June 2014	rTMS over the UH: 1 Hz; 90–120% of effectiveness: RMT, 150–1,800 pulses ± motor difference between therapy exercises rTMS over the AH: 1–20 Hz; 80–130% RMT; 600–1,000 pulses; 1–20 days ± motor therapy exercises bilateral rTMS: 1 Hz rTMS over the UH ± iTBS over the AH; 90% RMT; 1,000 pulses	Sham rTMS or none	Positive effect for motor recovery of LOW affected hand Reasonable evidence for 10 Hz/10 sessions; largest positive effect by 20 Hz/10 sessions. Positive effect on hand function Inhibition showed better efficiencies after application of a single session rTMS. Facilitation showed better efficiencies after application of repeated rTMS sessions.
Kang et al. (32) 2016	Motor	N = 12 RCTs, 343 participants	Search date: June 2015 to February 2016	rTMS: 1–10 Hz: 90–130% Pinch force, Grip force, RMT; 200–1,800 pulses; 1–20 sessions	Elbow flexion torque, Knee extension torque	rTMS facilitated force production HIGH capabilities: ES: 0.66, 95% CI: 0.45, 0.86, p < 0.0001
Salazar et al. (34) 2018	Cognition	N = 10 RCTs, 266 participants	Search date: Up to Dec 2016	HF-rTMS or LF-rTMS or iTBS or cTBS - Hemispatial neglect: 1 type of neuropsychological exercise + 1 type of clinical and cognitive assessment: MODERATE Vs. LOW 0.5–50 Hz, 80–90% RMT, 10–28 sessions lasting 10–20 min each, once or twice a day, during 2–5 weeks	Sham or none	Positive effects on hemispatial MODERATE neglect: SMD: −2.16, 95% CI: −3.00, −1.33, p < 0.0001
Dionisio et al. (18) 2018	Motor	N = 70 studies, 32 RCTs and 38 non-RCTs, 3,744 participants	Search date: 2005 to Aug 2016	HF-rTMS or LF-rTMS or iTBS or cTBS - Multiple clinical and cognitive outcomes: ES: 0.44, 95% CI: 0.30, 0.56, p < 0.001 rTMS facilitated force production HIGH capabilities: ES: 0.66, 95% CI: 0.45, 0.86, p < 0.0001	Sham or exercise	Significant improvements in VERY LOW Analytic outcomes: MRC, MAS, NIHSS, hand grip, Functional outcomes: FMA, WMFT, ARAT, BBT, JTHF, NHPT, 10MWT, PPT ADL: BI, MAL no significant increase: SMD: 15.92, LOW 95% CI: –2.11, 33.35, p = 0.084 no significant effect: SMD: 0.51, 95% CI: −0.99, 2.01, p = 0.51 no significant decrease: SMD: −0.12, 95% CI: –13.84, 13.59, p = 0.99 no significant effect: SMD: 1.87, 95% CI: –5.93, 9.68, p = 0.64 significant improvement: SMD: 19.8, p = 0.002
Tao et al. (24) 2013	Function	N = 19 RCTs, 588 participants	Search date: Up to April 2012	LF vs HF-rTMS ± baseline treatment: ADL: BI = 5.0 to 50 Hz; 5 days to 4 weeks	Modified BI	rTMS facilitated force production HIGH capabilities: ES: 0.66, 95% CI: 0.45, 0.86, p < 0.0001
Zhang et al. (27) 2017	Motor	N = 34 RCT, 904 participants	Search date: up to Oct 2016	Different protocol durations of rTMS from 1 to 24 days	grip force - key board tapping - movement accuracy - pinch and lift force - complex hand movement	Significant improvements in VERY LOW - both long (SMD: 0.49, 95% CI: 0.29, 0.68, p < 0.001) and short (SMD: 0.43, 95% CI: 0.30, 0.56, p < 0.001) term effects - acute stroke (SMD: 0.69, 95% CI: 0.41, 0.97, p < 0.001) rather than subacute (p < 0.002) or chronic (p = 0.048) - iTBS (SMD: 0.60, 95% CI: 0.10, 1.10, p = 0.018) rather than rTBS (p = 0.138) - subcortical lesions (SMD: 0.66, 95% CI: 0.36, 0.95, p < 0.001) rather than non-specified (p < 0.001) - 5 sessions of rTMS (SMD: 0.67, 95% CI: 0.41, 0.92, p < 0.001) rather than single (p < 0.001) or 10 sessions (p = 0.73) - Improvement in Picture naming LOW - Overall improvement in language assessments: SMD: 0.448, 95% CI: 0.23–0.66, p < 0.001
Shah-Basak et al. (33) 2016	Aphasia	N = 4 RCT, 4 non-RCTs, 143 participants	Search date: up to October 2014	rTMS: 1–6 Hz; 10–11 days; different number of naming sessions	Secondary: multiple language assessment	All studies (p = 0.33)
Repetitive transcranial magnetic stimulation in stroke

Table I. cont.

Author, year	Domain	Number of studies and participants	Search date	Interventions	Outcome measures	Main findings	GRADE*
Liao et al. (25) 2017	Dysphagia	N = 6 RCT, 163 participants	Search date: up to March 2016 - Meta-analysis performed	rTMS over the AH, UH or bilateral - 1 to 5 Hz; 300–1,200 pulses per day; 1–2 weeks	- Dysphagia Grade - PAS - Standardized swallowing assessment	- Effective on unaffected and bilateral MODERATE hemispheres stimulation - Better result with HF-rTMS than LF-rTMS - Overall effect: SMD: 1.24, 95% CI: 0.67, 1.81, p<0.0001	
Shen et al. (26) 2017	PSD	N = 22 RCTs, 1764 participants	Search date: Up to November 2016 - meta-analysis performed	rTMS: 0.2 to 15 Hz; 60–110% RMT, 20–30 trains; 1–10 s trains; 1,000–1,960 pulses/session; 7–28 sessions	- HDRS - Stroke severity, response rate, remission rate, MARDS	- rTMS improves HDRS, spindles, and ADL. - No effect on remission rate - Overall effect of rTMS on post-stroke depression: SMD: – 6.09, 95% CI: –7.74, –4.45, p<0.0001	
Pisegna et al. (35) 2015	Dysphagia	N = 4 RCTs, 92 participants	Search date: up to July 2014 - meta-analysis performed	rTMS over the AH or UH, 1–50 Hz; RMT 90–120%; 1–20 blocks; 30–1,200 pulses; 1–10 days	- PAS - DOSS - FDS	Improvement in dysphagia: SMD: LOW 0.56, 95% CI: 0.04, 1.09, p = 0.03	

*45-min conventional PT or OT, task-related exercises, CIMT, voluntary muscle contraction of the UL, fingers motor training. 31Hz rTMS on the UH vs 3, 5 and 10 Hz rTMS on the AH; 80–130% RMT; 150–1,800 pulses (5 RCTs) /cTBS on the UH vs iTBS on the AH; 80–90% RMT; 300–600 pulses (4 RCTs). Conventional rehabilitation treatment, visuospatial training, feedback training, visual scanning + motor training. Repetitive transcranial magnetic stimulation: 1 Hz rTMS over the UH or bilateral (36). Frequency of stimulations used by the studies ranged from 0.5 to 50 Hz at 60–130% resting motor threshold (RMT). Stimulating pulses also varied from 40 to 10,000. The total number of rTMS session ranged from 1 to 28, with duration ranging from 10 to 20 min. The control interventions varied, comparing sham rTMS alone or with some additional therapies (e.g. physiotherapy, occupational therapy, acupuncture, medications, etc.).

Outcomes evaluated. The outcomes evaluated across the included reviews focused on 5 main domains: motor, aphasia, depression, dysphagia and cognition. The outcome measures to objectively determine the possible effect of rTMS on both functional and non-functional outcomes differed amongst studies, including motor function (muscle strength/force, symptom management (spasticity, pain, etc.), ADLs; psychological outcomes, etc. The majority of primary studies within the included reviews evaluated clinical and functional motor outcomes, mainly upper limb function. Other primary outcomes assessed were mixed and depended on the impairment domain evaluated. (Table I). The study assessment points also varied: the majority tested the possible effect of rTMS during the intervention and immediately post-intervention; and few assessed the longer term impact.

Quality assessment of the included reviews

Two reviewers (CR, PH) rated the quality of each included review using the AMSTAR tool. The kappa level of agreement between both authors for AMSTAR assessment was 0.91. The overall mean AMSTAR methodological quality score for included systematic reviews was 7.3 and ranged from 2 to 10 out of 11. Two reviews were rated as “low-” quality (AMSTAR scores =0–4), 5 were rated “moderate-” quality (AMSTAR scores =5–8), and 5 “high-” quality (AMSTAR scores =9–11) (Table II).

All reviews, except 1 (25), had published an a priori protocol. All reviews, except 2 (18, 23), performed a comprehensive literature search of medical science databases. Two reviews (9, 22) did not include a grey literature search. All reviews, except 2 (18, 23), assessed the scientific quality of the primary studies using validated tools: 4 used PEDro, 3 used the Cochrane risk of bias tool, 1 review each used GRADE, Downs and Black tool, and the Revised CONSORT Statement. Only 2 reviews (24, 33) explicitly listed the excluded studies. None of the reviews stated the sources of funding for each of the included primary studies (Table II).
Effects of intervention

As mentioned above, the scope and measured outcomes amongst the included reviews varied. Overall quality of evidence for the use of rTMS was assessed using the GRADE assessment tool (Table III) and summary of impact of the rTMS on specific outcome domain categories are shown in Table IV. The existing best-evidence synthesis for rTMS for the management of post-stroke impairments based on outcomes is summarized below and in Table I.

Motor function

Six reviews ($n=138$ RCTs, 38 non-RCTs; 6,317 participants) evaluated various motor outcomes (18, 21, 23, 24, 27, 32). The overall findings suggest that there is “low-” to “moderate-” quality evidence for the beneficial effect of rTMS on any motor function evaluated. Graef et al. (21) investigated rTMS (inhibition over the unaffected hemisphere (UH) and facilitation over the affected hemisphere (AH)) combined with upper-limb training. The authors did not find any positive effect on hand motor recovery after inhibitory rTMS over the UH and bilateral rTMS, but were unable to recommend its routine use. Kang et al. (32) found that rTMS alone, or in combination with motor training, facilitated force

Table II. Quality assessment of included reviews

Author, year	AMSTAR* Items
	1 2 3 4 5 6 7 8 9 10 11 Total score/11
Graef et al. (21) 2016	Yes Yes Yes Yes No Yes Yes Yes Yes No 9
McIntyre et al. (9) 2016	Yes NA Yes N No Yes Yes Yes Yes No 6
Ludemann-Podubecka et al. (23) 2015	Yes NA No No No Yes No No NA No 2
Kang et al. (32) 2016	Yes NA Yes Yes No Yes Yes Yes Yes No 8
Salazar et al. (34) 2018	Yes Yes Yes Yes No Yes Yes Yes Yes NA 8
Dionisio et al. (18) 2018	Yes NA No Yes No Yes No No CA No 3
Hao et al. (24) 2013	Yes Yes Yes Yes Yes Yes Yes Yes Yes No 10
Zhang et al. (27) 2017	Yes No Yes Yes No N Yes Yes Yes Yes 7
Shah-Basak et al. (33) 2016	Yes NA Yes Yes Yes Yes Yes Yes Yes No 9
Liao et al. (25) 2017	Yes Yes Yes Yes No Yes Yes Yes Yes NA 7
Shen et al. (26) 2017	Yes Yes Yes Yes No Yes Yes Yes Yes No 9
Pisegna et al. (35) 2015	Yes Yes Yes Yes NA Yes Yes Yes Yes No 9

AMSTAR: Assessment of Multiple Systematic Reviews; CA: can’t answer; NA: not applicable.

Table III. GRADE* assessment of included studies

GRADE	Inconsistency	Interval overlaps	Direction of effect	Imprecision	Sample size	Included studies
GRADE						
Graef et al. (21), 2016	Yes	Substantial overlap	No	Low	Intermediate	Moderate
McIntyre et al. (9), 2016	No meta-analysis performed as heterogeneous study					
Ludemann-Podubecka et al. (23), 2015	No meta-analysis performed as heterogeneous study					
Kang et al. (32), 2016	No	Substantial overlap	Yes	Low	Intermediate	Moderate
Salazar et al. (34), 2018	Yes	Substantial overlap	Yes	High	Intermediate	Moderate
Dionisio et al. (18), 2018	No meta-analysis performed as heterogeneous study					
Hao et al. (24), 2013	Yes	Some overlap	No	High	Intermediate	Moderate
Zhang et al. (27), 2017	Yes	Some overlap	Yes	Low	Intermediate	Moderate
Shah-Basak et al. (33), 2016	Yes	Substantial overlap	Yes	Moderate	Low	Small
Liao et al. (25), 2017	Yes	Substantial overlap	Yes	High	Moderate	Small
Shen et al. (36), 2017	Yes	Some overlap	Yes	High	Moderate	Small
Pisegna et al. (35), 2015	Yes	Substantial overlap	No	Low	Low	Small

*GRADE: Grade of Recommendations; Assessment; Development, and Evaluation Working Group grades of evidence.
production capabilities (effect size (ES) = 0.66, 95% CI = 0.45–0.86, p < 0.0001). Dionisio et al. (18) also reported significant improvements in functional and clinical capabilities after rTMS (inhibition over the UH and facilitation over the AH). Similarly, Zhang et al. (27) found significant improvements in upper limb function after rTMS, both for short-term effect (SMD = 0.43, 95% CI = 0.30–0.56, p < 0.001) and long-term effect (SMD = 0.49, 95% CI = –0.29 to 0.68, p < 0.001). In contrast, Hao et al. (24) did not find any significant improvement in functional scores after rTMS (inhibition over the UH and facilitation over the AH) on functional outcomes (Barthel Index (BI), SMD = 15.92, 95% CI = –2.11 to 3.95, p = 0.084) or on other motor function (SMD = 0.51, 95% CI = –0.99 to 2.01, p = 0.51).

Aphasia. Two reviews (n = 5 RCTs, 4 non-RCTs; 157 participants) evaluated the efficacy of rTMS on various aphasia outcomes (24, 33). The overall findings suggest some beneficial effect of rTMS on patients with post-stroke aphasia. Hao et al. (24) (n = 1 RCT, 14 participants) reported a significant improvement on the Aachen Aphasia Test total score (SMD = 19.8, p = 0.002) after inhibitory rTMS over the UH. Similarly, Shah-Basak et al. (33) in another review found overall improvement in language assessment (SMD = 0.448, 95% CI = 0.23 to 0.66, p < 0.001) after rTMS applied over non-lesion hemisphere or bilateral.

Post-stroke depression. Three reviews (n = 26 RCTs, one non-RCTs; 1,916 participants) evaluated the effectiveness of rTMS on depression outcomes, using the Hamilton Depression Rating Scale (HDRS) (9, 24, 26). Overall findings indicate, “low-” quality evidence for beneficial effect of rTMS on post-stroke depression outcomes. McIntyre et al. (9) (n = 1 RCT, 40 participants) found limited benefit on depression in the short-term after rTMS (inhibition over the UH and facilitation over the AH); whereas Hao et al. (24) (n = 2 RCTs, 92 participants) did not find any decrease in the HDRS score (bilateral low frequency rTMS) (SMD = –0.12, 95% CI = –13.84 to 13.59, p = 0.99). Shen et al. (26) found improvement in the PSD (HDRS, mean difference (MD) = –6.09, p < 0.001); response rates (odds ratio (OR) = 3.46, p < 0.001); remission rates (OR 0.99, p < 0.001); National Institutes of Health Stroke Scale, MD = –2.74, p < 0.001).

Dysphagia. Two reviews (25, 35) (n = 10 RCTs, 255 participants) evaluated efficacy of rTMS on various dysphagia outcomes in persons following stroke. The overall findings suggest that there is “moderate-” quality evidence for the beneficial effect of rTMS on patients with post-stroke dysphagia. Liao et al. (25) reported a positive effect of rTMS (over the UH and bilateral) on post-stroke dysphagia symptoms (SMD = 1.24, 95% CI = 0.67–1.81, p < 0.0001). Similar findings of a beneficial effect of rTMS on dysphagia outcomes in the shorter term were reported in another review (SMD 0.56, 95% CI = –0.04–1.09, p = 0.03) (35).

Cognition. Two reviews (n = 12 RCTs, 301 participants) evaluated the effects of rTMS on cognitive outcomes in person with stroke (24, 34). The overall findings indicate a “moderate-” quality evidence for beneficial effect of rTMS on cognitive function (such as hemispatial neglect, mental state, etc.). Salazar et al. (34) found positive effects of rTMS combined with other cognitive rehabilitation interventions in the line bisection test and the modified BI (SMD = –2.16, 95% CI = –3.00 to –1.33, p < 0.0001). Hao et al. (24) (n = 2 RCTs, 75 participants) showed that low-frequency rTMS did not have any significant effect on MMSE scores (SMD = 1.87, 95% CI = –5.93 to 9.68, p = 0.64).

This review systematically analysed evidence from published systematic reviews to date, for the effectiveness of rTMS on motor and non-motor functions in persons following stroke. The findings indicate that, although rTMS is widely trialled in this population, there is still lack of high-quality evidence for its routine use in clinical practice. The overall findings of this review of the use of rTMS in persons with stroke suggest:

• “Moderate-” quality of evidence for improved post-stroke dysphagia and to reduce hemineglect.
• “Low-” to “moderate-” quality of evidence for enhanced motor function (upper limb function, ADLs).
• “Low-” quality of evidence for reduction in post-stroke depression and aphasia.

There was heterogeneity amongst the included reviews, even in those evaluating similar outcomes. The methodological quality of the included systematic reviews varied, with only 5 out of 12 rated as of “high” methodological quality (AMSTAR score) (30). Likewise, evidence for the use of rTMS targeting different stroke-related outcomes in the included reviews was diverse. This is mainly due to variation in operational procedures of rTMS (duration, intensity, etc.), outcome measurement tools, control intervention protocols and length of follow-up. Therefore, pooling data for quantitative analyses was not possible, and a best-evidence synthesis was described using qualitative analyses. For some outcomes evaluated, there were few primary studies within the included reviews, most with significant methodological limitations. Overall evidence for some of the studies was downgraded from actual evidence reported by authors, due to imprecision and inconsistency of findings, use of different outcome measures.
and inclusion of non-RCTs with poor methodology quality, precluding meta-analysis.

To our knowledge, this is first review to systematically appraise published systematic reviews to evaluate the effectiveness of rTMS for various stroke-related impairments in motor and non-motor domains. This approach of synthesizing findings of systematic reviews enables the comparison of results from multiple reviews, thereby providing a comprehensive evidence-based summary on evident outcomes. Recently, Leon Ruiz et al. published a narrative review of current evidence of rTMS in stroke neurorehabilitation, based on clinical practice guidelines and published recommendations (37). In comparison to our findings, the authors of this review reported beneficial effect of rTMS in treating stroke complications, including motor disorders, aphasia, dysarthria, oropharyngeal dysphagia, depression, and perceptual-cognitive deficits. However, consistent with our findings, these authors suggested further well-designed clinical trials with larger sample size with a higher level of evidence for proper implementation of rTMS use in stroke (37). Other published clinical practice guidelines on rTMS do not report recommendations specific to post-stroke population (38, 39).

The mechanisms underlying the effects of rTMS applied over the motor cortex are described in the literature (40). Non-invasive brain stimulation, such as rTMS over the motor cortex, induces changes, not only in the target motor area, but also in many cortico-subcortical and spinal structures, resulting in excessive interhemispheric inhibition from the non-lesional hemisphere after stroke (38, 39). This has led to exploration of possible therapeutic effects of rTMS with diverse protocols (facilitation, inhibition or combined), reflecting the range and number of studies identified in this review. Despite established guidelines (38, 39), standardized protocols are yet to be employed, with individual studies using varying range of protocols (rTMS frequency stimulations range 0.5–50 Hz, stimulating pulses 40–10,000, rTMS sessions 1–28, with duration ranging from 10 to 20 min) and characteristics of stimulation protocol (number of sessions, duration, intensity). Further, the outcome measures used and assessment time-points also differed. The measures used were specific to upper-limb function and ADLs. Objective methods, such as functional magnetic resonance imaging (fMRI), neurophysiology, etc. were rarely used, despite their higher accuracy than clinical measures regarding subtle changes. The characteristics of participants were heterogeneous amongst the studies regarding the characteristics of stroke (type, lesion location and area, time since stroke, other comorbidities, age, etc.), which may have resulted in variability in findings. Further research is required into the confounding effects of adjunct therapies, including routine rehabilitation program, coupled with rTMS intervention.

Study limitations

Some limitations in methodology and the completeness of retrieved literature must be considered. Despite the comprehensive search employed, this review encompassed published literature written in English in specific health science databases, and only the bibliography of relevant articles was scrutinized. This may have introduced a selection and reference bias. However, extensive comprehensive searching, using broad search terms in most prominent databases, was used, and experts and prominent stroke-related organizations’ websites and the websites of experts and of prominent stroke-related organizations were explored to identify relevant studies. Widely used validated tools to assess methodology (AMSTAR) and quality of evidence (GRADE) of included studies were used. The accuracy of assessor’s assessments cannot be guaranteed; however, the selection of studies and quality assessments were independently performed by 3 authors, and further group consensus was achieved. Despite significant heterogeneity among the included reviews, with high variability in rTMS protocols and number of participants, we were able to categorize the effect of intervention on only 5 domains (motor function, aphasia, dysphagia, depression, cognition). These issues limit the generalizability of our findings. It was not possible to evaluate safety related to rTMS, as report of adverse events in the included reviews was incomplete or missing. The associated costs and/or economic benefit of rTMS were not reported in any review. Many included reviews had search dates up to 3 years prior to our systematic review, so we may have missed some recent studies which were not included in these review. Hence, the findings of this review should be interpreted with caution.

Conclusion

The management of persons following stroke is complex and challenging. Non-invasive brain stimulation techniques, including rTMS, are widely used, despite a lack of high-quality evidence for improved motor and non-motor functions in stroke survivors. Some positive effect of rTMS were noted for outcomes (dysphagia, hemineglect, aphasia and depression), but its routine use cannot yet be recommended. Further studies in larger cohorts with robust methodology are required for differential roles of various rTMS protocols and longer-term after-effects of rTMS in stroke. Future studies should take into account patient characteristics,
rTMS stimulation parameters, stroke type and duration since stroke, due to the significance of the critical period after stroke for neuropsychological recovery.

ACKNOWLEDGEMENTS

This review was supported from internal resources of the Rehabilitation Department, Royal Melbourne Hospital, Royal Park Campus, Melbourne, Australia.

The authors have no conflicts of interest to declare.

REFERENCES

1. Lavados PM, Hennis AJ, Fernandes JG, Medina MT, Legetic B, Hoppe A, et al. Stroke epidemiology, prevention, and management strategies at a regional level: Latin America and the Caribbean. Lancet Neurol 2007; 6: 362–372.

2. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundorfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 2001; 32: 2735–2740.

3. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG. Safety, ethical considerations, and application guidelines for use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120: 2008–2039.

4. Nudo RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci 2013; 7: 887.

5. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 2006; 5: 708–712.

6. Nowak DA, Greffkes C, Ameli M, Fink GR. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair 2009; 23: 641–656.

7. Tamburrin S, Manganotti P, Zanette G, Fiaschi A. Cutaneous-motor integration in human hand motor areas: somatotopic effect and interaction of afferents. Exp Brain Res 2001; 141: 232–241.

8. Hankey GJ, Jamrozik K, Broadhurst RJ, Forbes S, Anderson CS. Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989–1990. Stroke 2002; 33: 1034–1040.

9. McIntyre A, Thompson S, Burhan A, Mehta S, Teasell R. Repetitive transcranial magnetic stimulation for depression due to cerebrovascular disease: a systematic review. J Stroke Cerebrovasc Dis 2016; 25: 2792–2800.

10. Dam H, Harhoff M, Andersen PK, Kessing LV. Increased risk of treatment with antidepressants in stroke compared with other chronic illness. Int Clin Psychopharmacol 2007; 22: 13–19.

11. Karnath HO, Rennig J, Johannsen L, Rarden C. The anatomy underlying acute versus chronic spatial neglect: a longitudinal study. Brain 2011; 134: 903–912.

12. Nijboer TC, Kolien BJ, Kwakkel G. The impact of recovery of visuo-spatial neglect on motor recovery of the upper parietic limb after stroke. PLoS One 2014; 9: e100584.

13. Campbell GB, Matthews JT. An integrative review of factors associated with falls during post-stroke rehabilitation. J Nurs Scholarsh 2010; 42: 395–404.

14. Wang NH, Wang TC, Lien IN. Dysphagia in patients with brainstem stroke: incidence and outcome. Am J Phys Med Rehabil 2000; 79: 170–175.

15. Bonilha HS, Simpson AN, Ellis C, Mauldin P, Martin-Harris B, Simpson K. The one-year attributable cost of post-stroke dysphagia. Dysphagia 2014; 29: 545–552.

16. Sharma JC, Fletcher S, Vassallo M, Ross I. What influences outcome of stroke-pyrexia or dysphagia? Int J Clin Pract 2001; 55: 17–20.

17. Bays CL. Quality of life of stroke survivors: a research synthesis. J Neurosci Nurs 2001; 33: 310–316.

18. Dionisio A, Duarte IC, Patricio M, Castelo-Branco M. The use of repetitive transcranial magnetic stimulation for stroke rehabilitation: a systematic review. J Stroke Cerebrovasc Dis 2018; 27: 1–31.

19. Smith MC, Stinear CM. Transcranial magnetic stimulation (TMS) in stroke: ready for clinical practice? J Clin Neurosci 2016; 31: 10–14.

20. Cao Y, D’Oliberenciagues L, Vikingstad EM, Levine SR, Welch KM. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 1998; 29: 112–122.

21. Graef P, Dadalt MLR, Rodrigues D, Stein C, Pagnussat AS. Transcranial magnetic stimulation combined with upper-limb training for improving function after stroke: a systematic review and meta-analysis. J Neurol Sci 2016; 369: 149–158.

22. Sebastianelli L, Versace V, Martignago S, Brigo F, Trinka E, Saltuari L, et al. Low-frequency rTMS of the unaffected hemisphere in stroke patients: a systematic review. Acta Neurol Scand 2017; 136: 585–605.

23. Ludemann-Podulbecka J, Boulahia M, Nowak DA. Repetitive transcranial magnetic stimulation for motor recovery of the upper limb after stroke. Prog Brain Res 2015; 218: 281–311.

24. Hao Z, Wang D, Zeng Y, Liu M. Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev 2013; 5: CD008862.

25. Liao X, Xing G, Guo Z, Jin Y, Tang Q, He B, et al. Repetitive transcranial magnetic stimulation as an alternative therapy for dysphagia after stroke: a systematic review and meta-analysis. J Rehabil 2017; 31: 289–298.

26. Shen X, Liu M, Cheng Y, Jia C, Pan X, Guo Q, et al. Repetitive transcranial magnetic stimulation for the treatment of post-stroke depression: a systematic review and meta-analysis of randomized controlled clinical trials. J Affect Disord 2017; 211: 65–74.

27. Zhang L, Xing G, Pan Y, Guo Z, Chen H, Mu Q. Short- and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and meta-analysis. Clin Rehabil 2017; 31: 1137–1153.

28. Smith V, Devane D, Begley CM, Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. BMC Med Res Methodol 2011; 11: 1.

29. Shea BJ, Grimsshaw JM, Wells GA, Boers M, Andersson N, Hamel C, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 2007; 7: 10.

30. Shea BJ, Hamel C, Wells GA, Bouter LM, Kristjansson E, Hamel C, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 2007; 7: 10.

31. Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011; 64: 401–406.

32. Kang N, Summers J, Cauraugh JH. Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016; 87: 345–355.

33. Shah-Basak PP, Wurzman R, Purcell JB, Gervits F, Hamilton R. Fields or flows? A comparative metaanalysis of transcranial magnetic and direct current stimulation to treat post-stroke aphasia. Restor Neurol Neurosci 2016; 34: 537–558.

34. Salazar APS, Vaz PG, Marchese RR, Stein C, Pinto C, Pagnussat AS. Noninvasive brain stimulation improves hemispatial neglect after stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil 2018; 99: 355–366 e1.
35. Pisegna JM, Kaneoka A, Pearson WG, Jr, Kumar S, Langmore SE. Effects of non-invasive brain stimulation on post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. Clin Neurophysiol 2016; 127: 956–968.

36. Klomjai W, Lackmy-Vallee A, Roche N, Pradat-Diehl P, Marchand-Pauvert V, Katz R. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation in motor rehabilitation after stroke: an update. Ann Phys Rehabil Med 2015; 58: 220–224.

37. Leon Ruiz M, Rodriguez Sarasa ML, Sanjuan Rodriguez L, Benito-Leon J, Garcia-Albea Ristol E, Arce Arce S. Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: opening new doors to the treatment of cerebrovascular disease. Neurologia 2018; 33: 459–472.

38. Fitzgerald PB, Daskalakis ZJ. A practical guide to the use of repetitive transcranial magnetic stimulation in the treatment of depression. Brain Stimul 2012; 5: 287–296.

39. McClintock SM, Reti IM, Carpenter LL, McDonald WM, Dubin M, Taylor SF, et al. Consensus recommendations for the clinical application of repetitive Transcranial Magnetic Stimulation (rTMS) in the treatment of depression. J Clin Psychiatry 2018; 79: 16cs10905.

40. Ziemann U. Improving disability in stroke with RTMS. Lancet Neurol 2005; 4: 454–455.