High-dose zolpidem dependence - Psychostimulant effects? A case report and literature review

Zolpidem, an imidazoline nonbenzodiazepine sedative drug, is used widely. Initial reports showed minimal abuse potential. However, multiple reports have appeared of dose escalation and abuse. Subjective effects of high-dose zolpidem are not known. In light of accumulating evidence of abuse potential, we hereby report a case of high-dose dependence and a review of relevant literature. A 33-year-old male presented with 5 years of daily use of 600–1700 mg of zolpidem tartrate. He reported subjective effects of euphoria, intense craving, and inability to stop use. Loss of receptor specificity, pharmacokinetic factors, and different receptor distributions can explain paradoxical stimulatory effects of high-dose zolpidem. Further studies are required to characterize subjective effects of high-dose zolpidem.

Keywords: Craving, dependence, high dose, zolpidem

It is in this light that we present a case of zolpidem dependence in a male with no prior substance use, psychiatric problems, or physical problems. This case is interesting in terms of rapid escalation of drug use for its pleasurable high instead of anxiolysis/sedation and high amount of craving.

CASE REPORT

Mr. Y, a 33-year-old married male, who is a businessman by occupation presented to the deaddiction outpatient services with a history of 5 years of zolpidem dependence and 4 years of nicotine dependence.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
The patient started consuming zolpidem 5 years prior for the sake of experimentation.

Initial consumption was 10 mg/day, which escalated within months to 700 mg/day with a maximum use of 1700 mg/day. When the patient presented to us, he was on 300 mg/day for 2 weeks along with tablet quetiapine 200 mg, which was started by a psychiatrist for last 1 week. The patient reported using tablet quetiapine only at night as prescribed and had significant sedation with it. Zolpidem use was associated with loss of control, salience, tolerance, and continued use despite harm. No withdrawal symptoms were reported apart from minor headaches.

The patient reports that consumption of zolpidem gives him a "high", euphoria and he is perceived by others as sociable and talkative. This was the major maintaining factor for continued substance use. The patient also reported a significant increase in hunger, especially at night with significant weight gain. He performed complex actions (e.g., driving) of which he had no recollection. The patient had remained abstinent for a month earlier. Relapses were due to high craving and minor domestic issues which prompted the patient to restart zolpidem consumption.

The patient procured zolpidem by scouting different pharmacies and ordering piecemeal requirements of his average dose from each.

The patient had no psychiatric or medical comorbidities except dyslipidemia. He has never used any other substances except nicotine. There was no family history of substance use disorder.

On examination, mild tremors of hands and conjunctiva injection were noted.

Body mass index = 32.97. At the time of admission, the Clinical Institute Withdrawal Assessment-Benzodiazepines score was 9.

DISCUSSION

We presented this case for the following reasons: (discussed further)

- There are no vulnerabilities and such a patient is not considered high risk for prescription drug abuse
- Subjective effects of such high doses are not reported earlier.

The patient is male, had no family history or prior history of substance use, and in fact developed nicotine dependence much after onset of zolpidem use. There were no psychiatric or physical comorbidities, and the patient had a stable working and interpersonal environment. Therefore, this was a case which is usually considered at low risk of substance abuse.

Another unique feature is that zolpidem was taken for “high” and not for anxiolysis or sedation. A recent study on subjective effects of zolpidem sheds light on this issue where 10 mg was rated to be unpleasant while 20 mg was rated as “likable” and giving a “high.” Similar to this case, activation instead of somnolence is reported when zolpidem is used at high doses such as 40 mg/day for blepharospasm. There can be multiple pharmacokinetic and pharmacodynamic explanations of these unexpected effects and side effects. A plausible pharmacokinetic explanation is that short half-life agents have higher abuse potential. It is possible that at higher doses, zolpidem loses its selectivity for α1 subtype of GABA-A receptors. There is also a possibility that there can be multiple subtypes of receptors with different brain localizations. Further, it has been noted that zolpidem does not decrease cerebral glucose metabolism as is noted with most sedatives and natural sleep.

Current understanding of zolpidem’s pharmacodynamics is selectivity for α1 GABA-A receptors. However, there are a number of effects and side effects which cannot be explained. These include its efficacy in movement disorders, coma, catatonia, and aphasia. Zolpidem also has some unique neuropsychiatric side effects which are unexpected for a sedative-hypnotic. These include sleepwalking with and without sleep-related eating disorder, compulsive behaviors, seizures, psychostimulant effects, and psychotic experiences.

CONCLUSION

Despite being available for more than two decades, there are multiple questions that remain unanswered regarding zolpidem. Its abuse liability has been well reported. There is a need to elucidate subjective effects at high doses. Health professionals should be aware of zolpidem’s abuse liability. Larger studies should be undertaken to examine the prevalence of zolpidem abuse.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Swainston Harrison T, Keating GM. Zolpidem: A review of its use in the management of insomnia. CNS Drugs 2005;19:65-89.
2. Hajak G, Müller WE, Wittchen HU, Pittrow D, Kirch W. Abuse and dependence potential for the non-benzodiazepine hypnotics zolpidem and zopiclone: A review of case reports and epidemiological data. Addiction 2003;98:1371-8.
3. Rush CR, Baker RW, Wright K. Acute behavioral effects and abuse potential of trazodone, zolpidem and triazolam in humans. Psychopharmacology (Berl) 1999;144:220-33.
4. Caldwell JA, Caldwell JL. Fatigue in military aviation: An overview of US military-approved pharmacological countermeasures. Aviat Space Environ Med 2005;76 7 Suppl: C39-51.
5. Licata SC, Mashhoon Y, Maclean RR, Lukas SE. Modest abuse-related subjective effects of zolpidem in drug-naive volunteers. Behav Pharmacol 2011;22:160-6.
6. Garretto NS, Bueri JA, Rey RD, Arakaki T, Nano GV, Mancuso M. Improvement of blepharospasm with Zolpidem. Mov Disord 2004;19:967-8.
7. Liappas IA, Malitas PN, Dimopoulos NP, Gitsa OE, Liappas AI, Nikolaou C, et al. Zolpidem dependence case series: Possible neurobiological mechanisms and clinical management. J Psychopharmacol 2003;17:131-5.
8. Pirker S, Schwarzer C, Wieselsdaler A, Sieghart W, Sperk G. GABA (A) receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 2000;101:815-50.
9. Hoque R, Chesson AL Jr. Zolpidem-induced sleepwalking, sleep related eating disorder, and sleep-driving: Fluorine-18-flourodeoxyglucose positron emission tomography analysis, and a literature review of other unexpected clinical effects of zolpidem. J Clin Sleep Med 2009;5:471-6.