The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens

Kenya E. Fernandes and Dee A. Carter *

School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia

Lactoferrin is a multifunctional iron-binding glycoprotein belonging to the transferrin family. It is found abundantly in milk and is present as a major protein in human exocrine secretions where it plays a role in the innate immune response. Various antifungal functions of lactoferrin have been reported including a wide spectrum of activity across yeasts and molds and synergy with other antifungal drugs in combination therapy, and various modes of action have been proposed. Bioactive peptides derived from lactoferrin can also exhibit strong antifungal activity, with some surpassing the potency of the whole protein. This paper reviews current knowledge of the spectrum of activity, proposed mechanisms of action, and capacity for synergy of lactoferrin and its peptides, including the three most studied derivatives: lactoferricin, lactoferrampin, and Lf(1–11), as well as some lactoferrin-derived variants and modified peptides.

Keywords: lactoferrin, lactoferricin, lactoferrampin, Lf(1–11), antimicrobial peptides, natural products, fungi, synergy

INTRODUCTION

The rising incidence of severe fungal infections, due largely to increased numbers of immunocompromised patients, has made the discovery of new compounds that have effective antifungal activity or that support the activity of currently used antifungal agents more important than ever. Natural products are a significant source of novel antimicrobial compounds, and an increasing number are being identified from mammalian sources including milk proteins. One example is the multifunctional iron-binding glycoprotein, lactoferrin (Lf), and its various derived peptides. This article will focus on the spectrum of antifungal activity shown by Lf when used alone and in combination with other antifungal drugs, and will review currently proposed mechanisms of antifungal action for Lf and its derived peptides.

First identified almost 80 years ago in bovine milk (Sorensen and Sorensen, 1939) and later isolated and purified from humans and cows in 1960 (Groves, 1960), Lf is produced by various mammals including pigs, goats, dogs, mice, and horses (Lönnerdal and Iyer, 1995; Garcia-Montoya et al., 2012). In humans, it is a major protein secreted by the epithelial cells into exocrine fluids such as tears, saliva, vaginal fluids, gastrointestinal fluids, bile, urine, and sweat (Masson et al., 1968; van der Strate et al., 2001; González-Chávez et al., 2009; Park et al., 2011) but is present at the highest concentrations in human colostrum and breast milk (Lönnerdal and Iyer, 1995). Lf is involved in various physiological functions including iron regulation and the innate immune response, and has been demonstrated to have anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer
properties (Conneely, 2001; Kruzel et al., 2006; Actor et al., 2009; Iigo et al., 2009; Burrow et al., 2011; Ogasawara et al., 2014) in addition to antimicrobial activity against a wide range of fungal, bacterial, viral, and parasitic pathogens (Jensen and Hancock, 2009; Leboffe et al., 2009; Berlutti et al., 2011; Giansanti et al., 2013). The ability to bind and sequester iron is an important component of the antimicrobial activity of Lf (Jensen and Hancock, 2009).

In addition to being an active intact protein, Lf is a rich source of antimicrobial peptides that are cleaved from the polypeptide chain by various proteolytic enzymes. As many of these enzymes are present in various body sites in humans, it is expected that a number of the cleaved peptides contribute to the normal functions of Lf in the body (Sinha et al., 2013). An increasing number of Lf-derived peptides are also being generated and modified by chemical synthesis (van der Kraan et al., 2005a). Many Lf peptides exhibit a broad spectrum of antimicrobial activity, have various different structural elements and modes of action, and appear to perform numerous functions including modulation of the inflammatory response, and stimulation of apoptosis (Farnaud et al., 2004; Sánchez-Gómez et al., 2008; van der Does et al., 2012).

STRUCTURE AND ANTIFUNGAL ACTIVITY OF WHOLE LACTOFERRIN

The structure of Lf consists of a single polypeptide chain containing ~700 amino acids folded into two globular lobes. These lobes are highly homologous to each other and are connected by an α-helical residue providing flexibility to the Lf molecule. Each lobe consists of two domains forming a single iron binding site, allowing each Lf molecule to strongly bind two ferric ions (Anderson et al., 1989). The open, iron-free form of Lf is known as apo-Lf while the closed, iron-rich form is holol-Lf, which differs in tertiary structure and is more resistant to proteolysis than apo-Lf (Jameson et al., 1998). In addition to binding Fe$^{3+}$, Lf has also been observed to bind a range of other compounds including lipopolysaccharides, heparin, DNA, and metal ions including Cu$^{2+}$, Zn$^{2+}$, and Mn$^{2+}$ (Baker, 1994).

Lf is most commonly purified from human (hLf) or bovine (bLf) milk but it has also been obtained from the milk and colostrum of several other mammals. Recombinant Lf (rLf) is increasingly being generated from microbial expression systems and through transgenic plants and animals (Lønnerdal and Iyer, 1995). Lf molecules from across species are highly homologous but have varying antifungal activity owing to small differences in structure. Furthermore, the level of activity of Lf with similar purities can vary substantially between different producers, ranging from reasonably active to inactive in the same test organism. bLf in particular has well-documented activity against a range of human and plant fungal pathogens including yeasts and molds (Table 1). Most widely studied is its activity on members of the Candida species, with Candida tropicalis, Candida krusei, and Candida albicans exhibiting the highest level of susceptibility while Candida glabrata has the lowest (Nikawa et al., 1993; Xu et al., 1998).

Early studies with Candida species attributed the antifungal effect of Lf to its ability to sequester iron resulting in a fungistatic effect (Kirkpatrick et al., 1971), and inhibition of growth of Candida and Cryptococcus can be rescued by the addition of iron (Al-Sheikh, 2009; Lai et al., 2016). In Aspergillus fumigatus, the sequestration of Fe$^{3+}$ by apo-Lf was shown to be important for host defense (Zaremba et al., 2007) indicating that iron sequestration can play a role in the antifungal action of Lf in vivo. More recent studies now suggest that the main antifungal mechanism of Lf is iron-independent and occurs through a direct interaction of Lf with the fungal cell surface, leading to cell membrane damage and leakage. Supernatant protein assays and propidium iodide staining have shown that Lf alters cell surface permeability in C. albicans, C. krusei, and Cryptococcus neoformans, leading to cell death (Nikawa et al., 1993; Wakabayashi et al., 1996; Kondori et al., 2011). Alterations to the cell surface itself including protein leakage, the formation of surface blebs, swelling, and cell collapse have been seen in Candida isolates through scanning electron microscopy (Nikawa et al., 1993; Wakabayashi et al., 1996; Xu et al., 1998; van der Kraan et al., 2005b).

The cellular release of potassium ions, cytosolic acidification, changes in membrane potential, intracellular ROS accumulation, and chromatin condensation have all been detected in C. albicans following treatment with Lf indicating the induction of an apoptotic phenotype (Viejo-Díaz et al., 2004; Andres et al., 2008). The details by which Lf induces apoptosis-like processes in fungi remain largely unclear, however, recent studies have examined this mechanism in significant yeast species. In Saccharomyces cerevisiae, it was shown that hLf induces cell death in a mitochondrial and caspase-dependent way that is characterized by caspase activation, ROS accumulation and cytochrome c release (Acosta-Zaldivar et al., 2016). Work by the same group in C. albicans indicated that the proton-translocating ATPase Pma1p, which is a primary contributor to pH regulation in yeasts, was the target of hLf, inducing lethal mitochondrial dysfunction (Andres et al., 2016).

The combined use of Lf with other antifungal drugs has been increasingly studied in recent years. When combined with fluconazole, various sources of Lf have been observed to significantly enhance inhibitory activity and decrease the minimum inhibitory concentration (MIC) for several Candida species, including wild type and clinical strains, and ergosterol biosynthesis andazole-resistant mutants (Wakabayashi et al., 1998; Kuipers et al., 1999; Naidu et al., 2004; Venkatesh and Rong, 2008; Kobayashi et al., 2011). The mechanism of synergy between Lf and fluconazole is not yet well-understood and does not appear to result from an increased intracellular uptake of fluconazole, as the intracellular concentration of radiolabelled fluconazole was not affected by the addition of bLf (Kobayashi et al., 2011).

Several other azole drugs, including itraconazole, clotrimazole, and ketoconazole, as well as 5-fluorocytosine have been demonstrated to function synergistically with Lf in C. albicans (Wakabayashi et al., 1996; Kuipers et al., 1999). The polyene drugs amphotericin B and nystatin exhibited no interactions with bLf when tested in Candida species (Wakabayashi et al., 1996) although amphotericin B and...
Table 1 | Antifungal spectrum of activity of Lf and derived peptides.

Position in Lf	Peptide	Source	Test organism	Inhibitory conc.	References
Whole protein	Lactoferrin	Bovine	Aspergillus niger	IC₅₀ = 578 µg/mL	Nikawa et al., 1993; Wakabayashi et al., 1998; Xu et al., 1998; Kuipers et al., 1999; Lahoz et al., 2008; Lai et al., 2016
			Candida albicans*	IC₅₀ = 200–6400 µg/mL	
			Candida glabrata*	MIC = >6000 µg/mL	
			Candida guilliermondii*	MIC not determined	
			Candida kruse*	MIC = 20 µg/mL	
			Candida parapsilosis*	MIC not determined	
			Candida tropicalis*	MIC not determined	
			Cryptococcus gattii*	MIC = 64 µg/mL	
			Cryptococcus neoformans*	MIC = 64 µg/mL	
			Phoma exigua	IC₅₀ = 821 µg/mL	
			Rhizoctonia solani	IC₅₀ = 121 µg/mL	
			Saccharomyces cerevisiae	MIC = 16 µg/mL	
			Sclerotium rolfsi	IC₅₀ = 231 µg/mL	
			Sclerotinia sclerotiorum	IC₅₀ = 31 µg/mL	
			Trichoderma viride	IC₅₀ = 952 µg/mL	
1–11	Lf(1–11)	Human	Candida albicans	MIC not determined	Lupetti et al., 2000, 2008
			Aspergillus fumigatus	MIC = 4.3 µM	
16–40	HLBD1	Human	Candida albicans	MIC = 6.2 µg/ml	Kondori et al., 2011
17–26	Peptide 2	Bovine	Candida albicans*	MIC = 17.3–17.5 µM	Ueta et al., 2001
17–30	bLf 17–30	Bovine	Candida albicans*	MIC = 5–10 µM	van der Kraan et al., 2004
17–31	Lfcin B 17–31	Bovine	Alternaria sp.	MIC = 16 µM	Muñoz and Marcos, 2006; Enrique et al., 2007
			Aspergillus nidulans	MIC = 4 µM	
			Botrytis cinerea	MIC = 16 µM	
			Dekkera bruxellensis*	MIC = 3.75–20 µM	
			Fusarium oxysporum	MIC = 8 µM	
			Penicillium digitatum	MIC = 4 µM	
			Penicillium expansum	MIC = 8 µM	
			Penicillium italicum	MIC = 4 µM	
			Pichia membranifaciens	MIC = 32 µM	
			Saccharomyces cerevisiae	MIC = 8 µM	
			Zygosaccharomyces bailii	MIC = 12 µM	
			Zygosaccharomyces bisprous	MIC = 12 µM	
17–31	Lfcin H 17–31	Human	Candida albicans	MIC = 10 µg/ml	Håversen et al., 2010
17–41	Lactoferricin	Bovine	Absidia corymbifera*	MIC = 40 µg/ml	Bellamy et al., 1993, 1994; Wakabayashi et al., 1996, 1998, 1999
			Aspergillus versicolor	MIC = 10 µg/ml	
			Candida albicans*	MIC = 0.8–400 µg/ml	
			Candida glabrata*	MIC = 80–120 µg/ml	
			Candida guilliermondii*	MIC = 5–40 µg/ml	
			Candida kefyr*	MIC = 2.5–10 µg/ml	
			Candida kruse*	MIC = 10–20 µg/ml	
			Candida parapsilosis*	MIC = 7.8–80 µg/ml	
			Candida tropicalis*	MIC = 0.31–1.25 µg/ml	
			Cladosporium trichoides*	MIC = 5 µg/ml	
			Cryptococcus albidi	MIC = 24 µg/ml	
			Cryptococcus curvatus	MIC = 9 µg/ml	
			Cryptococcus neoformans*	MIC = 0.63 µg/ml	
			Cryptococcus unguillatus	MIC = 6 µg/ml	
			Epidermophyton floccosum	MIC = 0.31–2.5 µg/ml	
			Exophiala dermatitidis*	MIC = 2 µg/ml	

(Continued)
Position in Lf	Peptide	Source	Test organism	Inhibitory conc.	References
18–31	Lfcin 18–31	Human	Candida albicans	MIC = 10 µg/ml	Håversen et al., 2010
18–37	Lficin B-20	Bovine	Candida albicans	MIC = 8 µg/ml	Chen et al., 2006
18–37	Lficin P-20	Porcine	Candida albicans	MIC = 32 µg/ml	Chen et al., 2006
18–40	Lfpep	Human	Candida albicans	MIC = 18.7 µM	Viejo-Diaz et al., 2005
			Candida glabrata	MIC = 9.3 µM	
			Candida guilliermondii	MIC = 9.3 µM	
			Candida kruusei	MIC = 4.7 µM	
			Candida parapsilosis	MIC = 9.3 µM	
			Candida tropicalis	MIC = 9.3 µM	
18–42	Lfcin B 18–42	Bovine	Candida albicans	MIC = 100 µg/ml	Wakabayashi et al., 1999
			Trichophyton mentagrophytes	MIC = 12 µg/ml	
19–31	Lficin 19–31	Human	Candida albicans	MMC = 200 µg/ml	Håversen et al., 2010
19–38	Lficin H-20	Human	Candida albicans	MMC = 256 µg/ml	Chen et al., 2006
20–25	Lficin B 20–25	Bovine	Saccharomyces cerevisiae	MIC = >48 µM	Muñoz and Marcos, 2006; Enrique et al., 2007
			Dekkera bruxellensis	MIC not determined	
			Pichia membranifaciens	MIC not determined	
			Zygosaccharomyces bailii	MIC not determined	
			Zygosaccharomyces bisporus	MIC not determined	
			Cryptococcus albidos	MIC not determined	
			Penicillium digitatum	MIC = 8 µM	
			Penicillium italicum	MIC = 8 µM	
			Penicillium expansum	MIC = 16 µM	
			Penicillium sp.	MIC = 32 µM	
			Aspergillus nidulans	MIC = 8 µM	
			Botrytis cinerea	MIC = 16 µM	
			Fusarium oxysporum	MIC = 16 µM	
20–28	Lficin B-9	Bovine	Candida albicans	MIC = 25–32 µg/µl	Wakabayashi et al., 1999; Chen et al., 2006
20–28	Lficin P-9	Porcine	Candida albicans	MIC = 512 µg/ml	Chen et al., 2006
20–31	HL10	Human	Candida albicans	MMC = 100–200 µg/ml	Håversen et al., 2010; Kondori et al., 2011
			Candida parapsilosis	MMC = 100–200 µg/ml	
			Candida kefyr	MMC = 100 µg/ml	
bLf have been found to act synergistically in *Cryptococcus neoformans*, *Cryptococcus gattii*, and *S. cerevisiae*. The addition of exogenous iron did not rescue growth of *Cryptococcus* treated with amphotericin B and bLf, indicating that the mechanism of synergy is not solely due to iron chelation (Lai et al., 2016).

STRUCTURE AND ANTIFUNGAL ACTIVITY OF LACTOFERRICIN—THE MAJOR PEPTIDE DERIVED FROM LACTOFERRIN

Lactoferricin (Lfcin) is found in the human gut as a natural breakdown product and was first generated by Bellamy et al. (1992) through pepsin hydrolysis of intact Lf. Bovine lactoferricin (bLfcin), comprising residues 17–41 from the N-terminal region of Lf, is simpler in structure but much more potent than human lactoferricin (hLfcin), which comprises residues 1–47. Both Lfcins possess an 18-residue loop region with a disulphide bridge and many positively charged and hydrophobic residues (Gifford et al., 2005).

The three dimensional structures of hLfcin and bLfcin differ from each other and from the homologous regions of the intact Lf protein, and it is thought these differences determine their different antifungal efficacies. While bLfcin forms a β-sheet confirmation in solution that contains a group of aligned hydrophobic residues well-suited to interactions with biological membranes, hLfcin forms a coiled structure in solution lacking the aligned residues and thus having weaker interactions with the target cell (Farnaud et al., 2004; Hunter et al., 2005; Alexander et al., 2012). Lfcin shows strongly enhanced antimicrobial activity compared to Lf and the antifungal efficacy of bLfcin, in particular, has been observed across a large range of various types of fungi (Table 1).

The primary antifungal mechanism of action of Lfcin appears to be through direct interaction with the fungal surface and disruption of the fungal membrane (Bellamy et al., 1993). Using confocal scanning laser microscopy, it was observed that bLfcin molecules were internalized by *C. albicans* cells within minutes (van der Kraan et al., 2005b) and that treatment with Lfcin resulted in dissipation of the proton gradient across the cell membrane (Gifford et al., 2005). In *C. albicans* and in the dermatophyte *Trichophyton mentagrophytes*, changes in ultrastructural features and an aggregation of cytoplasmic materials observed following treatment with Lfcin

TABLE 1 | Continued

Position in Lf	Peptide	Source	Test organism	Inhibitory conc.‡	References
259–284	Lfampin 259–284	Bovine	Candida albicans	LC₅₀ = 2.3 µM	Bolscher et al., 2006
261–284	Lfampin 261–284	Bovine	Candida albicans	LC₅₀ = 1.8 µM	van der Kraan et al., 2005a
263–284	Lfampin 263–284	Bovine	Candida albicans	LC₅₀ = 0.7 µM	van der Kraan et al., 2005a
264–284	Lfampin 264–284	Bovine	Candida albicans	LC₅₀ = 1.8 µM	van der Kraan et al., 2005a
265–278	Lfampin 265–278	Bovine	Candida albicans	LC₅₀ = >100 µM	van der Kraan et al., 2005a
265–280	Lfampin 265–280	Bovine	Candida albicans	LC₅₀ = 39 µM	van der Kraan et al., 2005a
265–282	Lfampin 265–282	Bovine	Candida albicans	LC₅₀ = 5.2 µM	van der Kraan et al., 2005a
265–284	Lfampin 265–284	Bovine	Candida albicans	LC₅₀ = 0.7 µM	Bolscher et al., 2006
265–296	Lfampin 265–296	Bovine	Candida albicans	LC₅₀ = 0.5 µM	Bolscher et al., 2006
266–284	Lfampin 266–284	Bovine	Candida albicans	LC₅₀ = 1.4 µM	van der Kraan et al., 2005a
266–286	Cap-LFamphinH-K	Human	Candida albicans	MIC not determined	Haney et al., 2009
268–284	Lactoferramphin	Bovine	Candida albicans	MIC = 4.3 µg/ml	van der Kraan et al., 2005a
269–296	LFamphinH-K	Human	Candida albicans	MIC not determined	Haney et al., 2009
270–284	Lfampin 270–284	Bovine	Candida albicans	LC₅₀ = 26 µM	van der Kraan et al., 2005a
Unknown	Hydrolysate	Human	Penicillium sp.	MIC = 60–300 µg/mL	Liceaga-Gesualdo et al., 2001

*Indicates multiple strains were tested within species. ‡IC₅₀, Inhibitory Concentration (50% Inhibition); LC₅₀, Lethal Concentration (50% Mortality); MIC, Minimum Inhibitory Concentration; MMC, Minimum Microbicidal Concentration. As different studies have used varying methods and sources of lactoferrin to determine inhibitory concentrations, these values may not be comparable between studies.
were traced to stimulation of ATP synthesis and extracellular secretion, resulting in pore formation in the plasma membrane (Bellamy et al., 1994; Ueta et al., 2001). Lfcin has also been shown to upregulate host defense via the induction of reactive oxygen species that stimulate the fungicidal activities of polymorphonuclear leukocytes (Kullberg et al., 1999). This ability to mount a combined assault on microbial pathogens is a common feature of natural host-derived products, most likely resulting from evolutionary pressures to maintain efficacy and prevent pathogens from developing resistance (Xu et al., 2009; Carter et al., 2016).

Synergy between bLfcin and azole antifungal drugs has been observed in C. albicans. In azole-resistant strains, the addition of low levels of bLfcin greatly increased inhibition by fluconazole and itraconazole and was seen to inhibit the growth of fungal hyphae (Wakabayashi et al., 1998). bLfcin has also been observed to function synergistically with clotrimazole and ketoconazole and it significantly reduced the formation of biofilms when used in combination with voriconazole and amphotericin B (Wakabayashi et al., 1996). The mechanistic basis of these synergistic actions remains unknown.

ANTIFUNGAL ACTIVITY OF OTHER LACTOFERRIN-DERIVED PEPTIDES

Lactoferrampin

Lactoferrampin (Lfampin), comprising residues 268–284 in the N1 domain of Lf, is located in close proximity to Lfcin in the tertiary structure of Lf. Identified as a molecule of interest due to its net positive charge and possession of a hydrophobic domain, Lfampin is thought to play a role in membrane-mediated activities of Lf (van der Kraan et al., 2004). Lfampin has demonstrated antifungal efficacy against C. albicans and is known to be more potent than Lf but has not yet been tested with a wide range of fungal organisms (Table 1). Similarly, whether Lfampin acts synergistically with antifungal drugs has not yet been determined.

Like Lfcin, the mechanism of action of Lfampin is by binding to and disrupting the cell membrane, and it was similarly observed to be internalized within a few minutes by C. albicans, resulting in membrane permeabilisation and the formation of vesicle-like structures (van der Kraan et al., 2005b). However, Lfampin differs greatly from Lfcin in amino acid composition, structure and orientation. In solution, the first 11 residues of bovine lactoferrampin (bLfampin) form an α-helical structure (Haney et al., 2007). A tryptophan residue in the N-terminal region has been shown to interact with model membranes and is contained in all varieties of Lfampin from different sources involved in membrane insertion indicating that it is responsible for this function (Haney et al., 2007; Sinha et al., 2013).

Lf(1–11)

The Lf(1–11) peptide comprises the first 11 amino acid residues of the N-terminal region of Lf and exhibits antifungal activity against C. albicans and A. fumigatus (Table 1; Lupetti et al., 2000). The mechanism of action of Lf(1–11) also appears to rely on interactions with the fungal membrane, with important structural features including its highly cationic nature and the presence of hydrophobic valine (V6) and tryptophan (W8) residues (Bruni et al., 2016). Lupetti et al. (2000) demonstrated through residue substitution that the first two arginines at the N-terminus (R2, R3) are also necessary for the antifungal action of hLf(1–11) in C. albicans. LfF(1–11) appears to have immunomodulatory properties during C. albicans infection where it directs the differentiation of monocytes into dendritic cells that enhance the polarization of a Th17 response, which is an important component of the host defense against fungi (van der Does et al., 2012).

When combined with fluconazole, a synergistic antifungal effect has been seen across various Candida species including C. glabrata, C. krusei, C. parapsilosis, C. tropicalis, and fluconazole-resistant strains of C. albicans. At sub-inhibitory concentrations, these yeasts were seen to be killed when preincubated with hLf(1–11) before introducing fluconazole but not when fluconazole was introduced first, indicating that hLf(1–11) is responsible for initiating candidacidal activity while fluconazole acts synergistically during a later stage (Lupetti et al., 2003).

Synthetic Peptides Based on Lactoferrin

A wide variety of other derivatives of varying size and location have been generated from the whole Lf protein (Table 1). A number of these peptides were created in an attempt to facilitate the discovery of other antimicrobial sequences composed of short core residues within Lf. As an example of this, Chen et al. (2006) created and tested a range of short synthetic derivatives of human, bovine, and porcine Lfcins in an attempt to discover other antimicrobial sequences comprising core residues within Lf. This enabled them to find the antimicrobial domain in Lfcin of porcine origin, and to compare its potency to Lfcins of human and bovine origin.

Lf derivatives have also been designed to help clarify the relationship between structure and function of particular Lf-derived peptides. In one study, by testing a collection of peptides obtained by extending and/or truncating the C- or N-terminal ends of Lfampin, it was demonstrated that the highest level of antimicrobial activity corresponded with strongest membrane interactions and greatest ability to form an α-helix (Adão et al., 2011). In another study, a significant increase in candidacidal activity was seen in an extended form of Lfampin due to an increased positive charge near the C-terminal end (Haney et al., 2009). These studies demonstrate that there is capacity to optimize the activity of Lf-derived molecules by careful consideration of their sequence and structural properties.

Modified and Lactoferrin-Like Peptides

In recent years, an increasing number of studies have taken the path of modifying the original amino acid sequence of Lf peptides in order to develop more potent antifungal activity than in the parent peptides (Table 2). Various strategies designed to alter properties related to antifungal activity have been employed in the construction of these novel peptides such as modifying the length, net charge, and hydrophobicity of the peptide.
TABLE 2 | Antifungal spectrum of activity of modified Lf-derived or Lf-like peptides.

Peptide	Source	Modification	Amino acid sequence	Test organism	Inhibitory conc.	References
HLR1r	Human	Derived from hLf; Arg-rich motif added to the C-terminal end to facilitate membrane interaction; N- and C-terminals capped.	Ac-FQWQRNMKVRGRRRGR-NH2	Candida albicans	MMC = 3 µg/mL	Björn et al., 2016
LBLP	S. s. mutans	bLf-like peptide from the whole bodies of centipedes; found by BLASTx search (34.4% similarity).	RMKKLGNHXSQERNTKKRPRKAI	Candida albicans	MIC = 10 µM	Choi et al., 2013
L10	Bovine	Derived from bLf; residues 1–8 modified by selective homologous substitution of amino acids on the basis of hydrophobicity.	WFRKQLKW	Candida albicans	* MIC = 12.5–100 µg/mL	Mishra et al., 2013
Lfchimera	Synthetic	Derived from bLf (17–30) and Lfampin; fusion (265–284) peptide generated synthetically.	FKCRWWQWRMKKLG-K-DLMKLLSKAQEKFKNKSR	Candida albicans	MIC not determined	Silva et al., 2013
LFT33	E. coli	Derived from bLf; fusion protein with thanatin; expressed recombinantly in E. coli.	FKCRWWQWRWKKLGVAKVPYNYCNARTGKQRM	Candida albicans	IO_{50} = 64 µg/mL	Feng et al., 2012
HLopt2	Human	Derived from hLf residues 20–31; modified by substitution with charged and hydrophobic amino acids.	CFQWKRAMRKVR	Candida albicans*	MMC = 12–25 µg/mL	Kondori et al., 2011
				Candida glabrata*	MMC = >400 µg/mL	
				Candida parapsilosis*	MMC = 12–25 µg/mL	
				Candida kruzie	MMC = 12 µg/mL	
				Candida kefyr	MMC = 12 µg/mL	
				Cryptococcus neoformans*	MMC = 12 µg/mL	

*Indicates multiple strains were tested within species.

IC_{50}, Inhibitory Concentration (50% Inhibition); MIC, Minimum Inhibitory Concentration; MMC, Minimum Microbicidal Concentration.
By the selective substitution of amino acids based on hydrophobicity in groups of residues derived from the N-terminal end of hLf, Kondori et al. (2011) and Mishra et al. (2013) created HLOpt2 and L10, respectively. Björn et al. (2016) subsequently developed HLR1r from hLfcin by the addition of an Arg-rich motif designed to facilitate membrane interactions, together with capping of the N- and C- terminals to make them neutral. These three peptides demonstrated potent antifungal action against *Candida* species that was substantially greater than that of the corresponding residues from the native Lf peptide. Taking another approach, fusion peptides have been generated synthetically from the combination of multiple bioactive peptides: Lfchimera, a fusion of bLfcin and LFampin, and LFT33, a fusion of bLfcin and the insect-derived antimicrobial peptide thanatin (Feng et al., 2012; Silva et al., 2013).

In addition to modifications of the natural peptide, the sequence of Lf has been used to search for other naturally occurring peptides with high homology in order to facilitate discovery of novel potential antifungals. The utility of this approach was demonstrated by the discovery of LBbP, a peptide with 34.4% similarity to bLfcin and produced from the bodies of centipedes, which was found to have strong antifungal activity against strains of *Candida, Malassezia*, and *Trichosporon* (Choi et al., 2013).

SUMMARY AND CONCLUSIONS

Lf and its major naturally cleaved peptide, Lfcin, have proven broad-spectrum antifungal action, with Lfcin exhibiting greater potency than the intact protein. The less well-characterized peptides including LFampin and Lf(1–11) have also been seen to possess increased antifungal potency in *Candida* species but have not been tested extensively beyond this. Lf and Lfcin function synergistically primarily with azole antifungal drugs, however, knowledge of the spectrum and mechanism of these synergistic interactions is lacking, and synergy is largely unexplored for the other Lf-derived peptides.

Mechanistically, Lf and its peptides have been shown to function primarily through membrane destabilization, with immunomodulation and iron sequestration playing secondary roles. Although many aspects of Lf-derived peptides are quite conserved, differences in amino acid composition and tertiary structure contribute to their different functional properties. Novel alternative peptides that have been generated or modified from the original sequence of Lf provide insight into the relationship between structure and function. Lf and its derived peptides have great potential as leads for future antifungal drug development, however, considerable research is still required to understand the antifungal actions of these molecules as well as their potential to support current antifungals.

AUTHOR CONTRIBUTIONS

This article was written by KF and was reviewed and edited by DC.

FUNDING

Work on Lf in the Carter Lab has been supported by the Australian National Health and Medical Research Council (Grant Number APP1021267). KF is financially supported by an Australian Postgraduate Award.

References

Acosta-Zaldívar, M., Andres, M. T., Rego, A., Pereira, C. S., Fierro, J. F., and Corte-Real, M. (2016). Human lactoferrin triggers a mitochondrial- and caspase-dependent regulated cell death in *Saccharomyces cerevisiae*. *Apoptosis* 21, 163–173. doi: 10.1007/s10495-015-1199-9

Actor, J. K., Hwang, S. A., and Kruzel, M. L. (2009). Lactoferrin as a natural immune modulator. *Curr. Pharm. Des.* 15, 1956–1973. doi: 10.2174/1381620978453202

Adão, R., Nazmi, K., Bolscher, J. G., and Bastos, M. (2011). C- and N-truncated antimicrobial peptides from LFampin 265–284: biophysical versus microbiology results. *J. Pharm. Bioallied Sci.* 3, 60–69. doi: 10.4103/0975-7406.746467

Alexander, D. B., Iigo, M., Yamauchi, K., Suzui, M., and Tsuda, H. (2012). Lactoferrin: a natural immune modulator. *Curr. Pharm. Des.* 18, 230–233. doi: 10.1111/j.1472-765X.1994.tb00854.x

Anders, B. F., Baker, H. M., Norris, G. E., Rice, D. W., and Baker, E. N. (1989). Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A. resolution. *J. Mol. Biol.* 209, 711–734. doi: 10.1016/0022-2836(89)90602-5

Andres, M. T., Acosta-Zaldívar, M., and Fierro, J. F. (2016). Antifungal mechanism of action of lactoferrin: identification of H+ + ATPase (P3A-type) as a new apoptotic-cell membrane receptor. *Antimicrob. Agents Chemother.* 60, 4206–4216. doi: 10.1128/AAC.03130-15

Andres, M. T., Viejo-Diaz, M., and Fierro, J. F. (2008). Human lactoferrin induces apoptosis-like cell death in *Candida albicans*: critical role of K+-channel-mediated K+-efflux. *Antimicrob. Agents Chemother.* 52, 4081–4088. doi: 10.1128/AAC.01597-07

Baker, E. N. (1994). Structure and reactivity of transferrins. *Adv. Inorg. Chem.* 41, 389–463. doi: 10.1016/S0022-2836(08)60176-2

Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K., and Tomita, M. (1992). Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. *J. Appl. Bacteriol.* 73, 472–479. doi: 10.1111/j.1365-2672.1992.tb05007.x

Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., and Tomita, M. (1999). Killing of *Candida albicans* by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. *Med. Microbiol. Immunol.* 182, 97–105. doi: 10.1007/BF00189377

Bellamy, W., Yamauchi, K., Wakabayashi, H., Takase, M., Takakura, N., Shimamura, S., et al. (1994). Antifungal properties of lactoferricin B, a peptide derived from the N-terminal region of bovine lactoferrin. *Lett. Appl. Microbiol.* 18, 230–233. doi: 10.1111/j.1472-765X.1994.tb00854.x

Berluitti, F., Pantanella, F., Natalizi, T., Frioni, A., Paesano, R., Polimeni, A., et al. (2011). Antiviral properties of lactoferrin - a natural immunity molecule. *Molecules* 16, 6992–7018. doi: 10.3390/molecules16086992

Björn, C., Mahlapuu, M., Matthy-Baltzer, L., and Håkansson, J. (2016). Anti-infective efficacy of the lactoferrin-derived antimicrobial peptide HLR1r. *Peptides* 81, 21–28. doi: 10.1016/j.peptides.2016.04.005

Bolscher, J. G., van der Kraan, M. L., Nazmi, K., Kalay, H., Grun, C. H., Van’t Hof, W., et al. (2006). A one-enzyme strategy to release an antimicrobial...
peptide from the LF-aminoglycoside domain of bovine lactoferrin. Peptides 27, 1–9. doi: 10.1016/j.peptides.2005.06.012
Bruni, N., Capucchio, M. T., Biasibetti, E., Pessone, E., Cirrincione, S., Giraudo, L., et al. (2016). Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 21, 752. doi: 10.3390/molecules21030752
Burrow, H., Kanwar, R. K., and Kanwar, J. R. (2011). Antioxidant enzyme activities of iron-saturated bovine lactoferrin (Fe-bil) in human epithelial cells under oxidative stress. Med. Chem. 7, 224–230. doi: 10.2174/157340611759564286
Carter, D. A., Blair, S. E., Cokcetin, N. N., Bouzo, D., Brooks, P., Schothauer, R., et al. (2016). Therapeutic manuka honey: no longer so alternative. Front. Microbiol. 7:569. doi: 10.3389/fmicb.2016.00569
Chen, H. L., Yen, C. C., Lu, C. Y., Yu, C. H., and Chen, C. M. (2006). Synthetic porcine lactoferrin with a 20-residue peptide exhibits antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans. J. Agric. Food Chem. 54, 3277–3282. doi: 10.1021/jf0503013
Choi, H., Hwang, J. S., and Lee, D. G. (2013). Antifungal effect and pore-forming action of lactoferrin B like peptide derived from centipede Scolopendra subspinipes mutilans. Biochim. Biophys. Acta. 1828, 2745–2750. doi: 10.1016/j.bbamem.2013.07.021
Conneely, O. M. (2001). Anti-inflammatory activities of lactoferrin. J. Am. Coll. Nutr. 20, 389s. doi: 10.1080/07315724.2001.10719173
Enrique, M., Marcos, J. F., Yuste, M., Martinez, M., Valles, S., and Manzanoares, P. (2007). Antimicrobial action of synthetic peptides towards wine spoilage yeasts. Int. J. Food Microbiol. 118, 318–325. doi: 10.1016/j.ijfoodmicro.2007.07.049
Feng, X., Liu, C., Guo, J., Song, X., Li, J., Xu, W., et al. (2012). Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LT33. Appl. Microbiol. Biotechnol. 95, 1191–1198. doi: 10.1007/s00218-011-2816-z
Fernandes and Carter Antifungal Activity of Lactoferrin and Its Peptides
García-Montoya, I. A., Cendon, T. S., Arevalo-Gallegos, S., and Rascon-Cruz, Q. (2009). Anticarginogenesis pathways activated by bovine lactoferrin in the murine small intestine. J. Agric. Food Chem. 57, 1125–1129. doi: 10.1021/jf0810969
González-Chávez, S. A., Arevalo-Gallegos, S., and Rascon-Cruz, Q. (2009). Synergistic fungistatic effects of lactoferrin in combination with antimicrobial drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 43, 2635–2641.
Groves, M. L. (1960). The isolation of a red protein from milk. J. Am. Chem. Soc. 82, 3345–3350. doi: 10.1021/ja01498a029
Haney, E. F., Lau, F., and Vogel, H. J. (2007). Solution structures and model membrane interactions of lactoferrammin, an antimicrobial peptide derived from bovine lactoferrin. Biochim. Biophys. Acta. 1768, 2355–2364. doi: 10.1016/j.bbadis.2007.04.018
Haney, E. F., Nazmi, K., Lau, F., Bolscher, J. G., and Vogel, H. J. (2009). Novel lactoferrammin antimicrobial peptides derived from human lactoferrin. Biochimica. 91, 141–154. doi: 10.1016/j.biochi.2008.04.013
Häversen, L., Kondori, N., Baltzer, L., Hansen, L. A., Dolphin, G. T., Duner, K., et al. (2010). Structure-microbial activity relationship of synthetic fragments derived from the antibacterial alpha-helix of human lactoferrin. Antimicrob. Agents Chemother. 54, 418–425. doi: 10.1128/AAC.00908-09
Hunter, H. N., Demcoe, A. R., Jenssen, H., Guttewie, T. J., and Vogel, H. J. (2005). Human lactoferrin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrob. Agents Chemother. 49, 3387–3395. doi: 10.1128/AAC.49.12.3387-3395.2005
Iigo, M., Alexander, D. B., Long, N., Xu, J., Fukamachi, K., Futakuchi, M., et al. (2009). Anticarcinogenesis pathways activated by bovine lactoferrin in the murine small intestine. Biochimica. 91, 86–101. doi: 10.1016/j.biochi.2008.06.012
Jameson, G. B., Anderson, B. F., Norris, G. E., Thomas, D. H., and Baker, E. N. (1998). Structure of human apolactoferrin at 2.0 Å resolution. Refinement and analysis of ligand-induced conformational change. Acta Crystallogr. D Biol. Crystallogr. 54, 1319–1333. doi: 10.1107/S0907444998004417
Jenssen, H., and Hancock, R. E. (2009). Antimicrobial properties of lactoferrin. Biochimie. 91, 19–29. doi: 10.1016/j.bioch.2008.05.015
Kobayashi, T., Kakeya, H., Miyazaki, T., Izumikawa, K., Yanagihara, K., Ohno, H., et al. (2011). Synergistic fungistatic effect of lactoferrin with azole antifungals against Candida albicans and a proposal for a new treatment method for invasive candidiasis. Jpn. J. Infect. Dis. 125, 539–544. doi: 10.1093/jids/124.6.339
Kruszel, M. L., Baci, A., Choudhury, B., Sur, S., and Boldogh, I. (2006). Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology 119, 159–166. doi: 10.1111/j.1365-2567.2006.02417.x
Küppers, M. E. S., de Vries, H. G., Eikelboom, M. C., Meijer, D. K., and Swart, P. J. (1999). Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 43, 2635–2641.
Kuznetsov, A., Piscane, A., Iannaccone, M., Palumbo, D., and Capparelli, R. (2008). Fungistic activity of iron-free bovin lactoferrin against several fungal plant pathogens and antagonists. Nat. Prod. Res. 22, 955–961. doi: 10.1080/17435390701650253
Lai, Y. W., Campbell, L. T., Wilkins, M. R., Pang, C. N., Chen, S., and Carter, D. A. (2016). Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus. Int. J. Antimicrob. Agents. 48, 388–394. doi: 10.1016/j.ijantimicag.2016.06.012
Leboffe, L., Gianfanti, S., and Antonini, G. (2009). Antifungal and antiparasitic activities of lactoferrin. Antimicrob. Agents Med. Chem. 8, 114–127. doi: 10.1017/S175121270997846105
Mishra, B., Leishangthem, G. D., Gill, K., Singh, A. K., Das, S., Singh, K., et al. (2013). A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: design, synthesis, activity against multidrug-resistant bacteria and Candida. Biochim. Biophys. Acta. 1828, 677–686. doi: 10.1016/j.bbamem.2012.09.021
Muñoz, A., and Marcos, J. F. (2006). Activity and mode of action against fungal phytopathogens of bovine lactoferrin-derived peptides. J. Appl. Microbiol. 101, 1199–1207. doi: 10.1111/j.1365-2672.2006.03089.x

Naidu, A. S., Fowler, R. S., Martinez, C., Chen, J., and Tulipski, J. (2004). Activated lactoferrin and fluconazole synergism against Candida albicans and Candida glabrata vaginal isolates. J. Reprod. Med. 49, 800–807.

Van der Kraan, M. I., Van Marle, J., Nazmi, K., Van’t Hof, W., Groenink, J., Veerman, E. C., Bolscher, J. G., Funari, S. S., Uhrikova, D., et al. (2005). Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans. Peptides 26, 2093–2097. doi: 10.1016/j.peptides.2005.03.056

van der Kraan, M. I., Van Marle, J., Nazmi, K., Groenink, J., Van’t Hof, W., Veerman, E. C., et al. (2005b). Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. Peptides 26, 1537–1542. doi: 10.1016/j.peptides.2005.02.011

van der Strate, B. W., Belijars, L., Molema, G., Harmsen, M. C., and Meijer, D. K. (2001). Antiviral activities of lactoferrin. Antiviral Res. 52, 225–239. doi: 10.1016/S0166-3542(01)00195-4

Venkatesh, M. P., and Rong, L. (2008). Human recombinant lactoferrin acts synergistically with antimicrobials commonly used in neonatal practice against coagulase-negative staphylococci and Candida albicans causing neonatal sepsis. J. Med. Microbiol. 57, 1113–1121. doi: 10.1099/jmm.0.2008/001263-0

Viejo-Díaz, M., Andres, M. T., and Fierro, J. F. (2004). Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob. Agents Chemother. 48, 1242–1248. doi: 10.1128/AAC.48.4.1242-1248.2004

Viejo-Díaz, M., Andres, M. T., and Fierro, J. F. (2005). Different anti-Candida activities of two human lactoferrin-derived peptides, Lfpep 265-284 and Kaliocin-1. Antimicrob. Agents Chemother. 49, 2588–2593. doi: 10.1128/AAC.49.7.2583-2588.2005

Wakabayashi, H., Abe, S., Okutomi, T., Tansho, S., Kawase, K., and Yamaguchi, H. (1996). Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents. Microbiol. Immunol. 40, 821–825. doi: 10.1111/j.1348-0421.1996.tb01147.x

Wakabayashi, H., Abe, S., Teraguchi, S., Hayasawa, H., and Yamaguchi, H. (1998). Inhibition of hyphal growth of azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin-related compounds. Antimicrob. Agents Chemother. 42, 1587–1591.

Wakabayashi, H., Matsumoto, H., Hashimoto, K., Teraguchi, S., Takase, M., and Hayasawa, H. (1999). N-acetylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob. Agents Chemother. 43, 1267–1269.

Xu, Y., Wang, Y., Yan, L., Liang, R. M., Dai, B. D., Tang, R. J., et al. (2009). Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistant Candida albicans: endogenous ROS augmentation. J. Proteome Res. 8, 5296–5304. doi: 10.1021/pr9005074

Xu, Y. Y., Samarayake, Y. H., Samarayake, L. P., and Nikawa, H. (1998). In vitro susceptibility of Candida species to lactoferrin. Med. Mycol. 37, 35–41. doi: 10.1080/0267291980000051

Zaremba, K. A., Sugui, J. A., Chang, Y. C., Kwon-Chung, K. J., and Gallin, J. I. (2007). Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J. Immunol. 178, 6367–6373. doi: 10.4049/jimmunol.178.10.6367

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Fernandes and Carter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.