Changing Seasonal Variation in Births by Sociodemographic Factors: A Population-Based Register Study

Johan Dahlberg and Gunnar Andersson
Changing Seasonal Variation in Births by Sociodemographic Factors: A Population-Based Register Study

Johan Dahlberg and Gunnar Andersson

Stockholm University

Abstract: Seasonality of births is in some populations strongly influenced by sociodemographic factors. In this study, we analyse the impact of mothers’ sociodemographic characteristics for the seasonal variation in 7,710,955 live births in Sweden between 1940 and 2012. During 1940-1999, Swedish birth rates showed the typical seasonal variation with high numbers of births during the spring, and low numbers of births during the last quarter of the year. However, during the twenty-first century, the seasonal variation in fertility declined so that only minor variation in birth rates between February and September remains. Still, the pattern of low birth rates at the end of the year remains and has even become more pronounced in recent decades. The roles of maternal education, mother’s birth country, parity, and instances where the mother has re-partnered between subsequent births changed during the second half of the twentieth century. The study underlines that in a society with low fertility and efficient birth control, active choices and behaviours associated with an individual’s sociodemographic characteristics tend to matter more for the seasonal timing of childbearing than environmental factors related to the physiological ability to reproduce and cultural-behavioural factors related to the frequency of intercourse.

Keywords: Fertility, Birth seasonality, Socioeconomic factors
Introduction

Almost all human populations exhibit seasonal variation in births. Most European countries show seasonal variation that usually peak in the spring and are the lowest during the last quarter of the year. In contrast, most American states show patterns with high numbers of births during the summer and autumn and low numbers of births during spring. Some countries, such as Israel, Australia, New Zealand, and South Africa show almost no seasonal variation in birth rates (Lam and Miron, 1994; Bronson, 1995). Research has repeatedly found that a child’s month of birth is associated with later outcomes in life, such as those related to health (Reffelmann et al., 2011) and mortality (Ueda et al., 2013).

Although frequently studied, the causes of the seasonal variation are not fully understood. Explanations for human birth seasonality can be grouped into three categories (Ellison et al., 2005): seasonality due to climatological factors (Lam and Miron, 1996), seasonality due to energetic factors (Ellison and Ellison 2009), and seasonality due to social factors (Bobak and Gjonca, 2001; Buckles and Hungerman, 2013; Azcorra et al., 2017). Among the social factors that may influence the seasonal variation in human birth rates, those associated with the probability of intercourse have received the most attention (Udry and Morris, 1967). In many countries, the highest birth rates can be observed around nine months after major secular and religious holidays (Lam and Miron, 1994). Most European countries that celebrate Christmas exhibit a minor peak of births in September (James, 1990). Also, seasonality in marriage has been shown to explain some of the seasonal variation in births (Stolwijk et al., 1996). However, it is likely that the effect of social patterning in the frequency of conception is relatively low in contemporary society due to effective methods of contraception and more deliberate decisions about family planning (Bobak and Gjonca, 2001).
Another set of social factors that have been studied in relation to seasonal variations in births are those that relate to different sociodemographic factors. Several studies have examined the impact of social class on the seasonal variation in births (Pasamanick et al., 1960; Zelnik, 1969; Erhardt et al., 1971; James, 1971; Chaudhury, 1972; Warren and Tyler, 1979; Bobak and Gjonca, 2001; Buckles and Hungerman, 2013; Azcorra et al., 2017). Most of these studies show that the seasonal variation in childbearing differs by the sociodemographic characteristics of the mother. However, most studies rely on aggregated and sometimes quite outdated sources of data. All previous studies built on bivariate analyses, and thus did not control for the potential role of any confounding factors. Additionally, hardly any previous study reports on changes in the seasonal variation in births over time, the main exceptions being a univariate study on Sweden by Cassel (2002) and a parity-specific study on the Netherlands by Haandrikman and van Wissen (2008). The present study contributes to the previous literature by reporting on clear changes over time regarding the impact of four sociodemographic factors in the seasonal variation in childbearing, i.e., those of maternal education, country of birth, parity, and re-partnering.

Data and Methods

Data were retrieved from the Swedish multigenerational register, with information on all Swedes born from 1932 onwards, who have been registered as residents in Sweden at any time since 1961. The data contain high-accuracy information on vital events such as childbirths. The information used in the present study includes all Swedish births that occurred between 1940 and 2012, for which the biological mother and father were known. Biological parents were identified for 90% of children born in the 1940 cohort, 95% in the 1945 cohort, and more than 99% for children born in 1950 onwards. In total, 7,710,955 live births were included in the analyses. The main independent variables were the mother’s
education, the mother’s country of birth, parity, and if the mother had re-partnered between previous births. Three categories of educational attainment were used: compulsory schooling, upper secondary education, and post-secondary education. Parity was categorised into three groups of birth orders: first birth, second birth, and third or higher order births. The mother’s country of birth included a dichotomous measurement that indicated whether the mother was Nordic-born or came from any other country in the world. The re-partnering variable measured whether the mother had re-partnered between consecutive births. All four sociodemographic factors were measured at the time of the birth. To analyse changes by sociodemographic factors over time, the calendar years that were studied were divided into four groups: 1940-1959, 1960-1979, 1980-1999, and 2000-2012. In all analyses, the mother’s age was also included as a control variable. When analysing the role of re-partnering, only women with at least one prior delivery were included.

Multinomial logistic regressions were used to calculate predicted probabilities of giving birth in each calendar month of a year. The results are reported as the ratio of observed versus expected probabilities of childbirth for each month. Each month's number of days was taken into consideration (February is assumed to have 28.25 days on average). Using multinomial logistic regression rather than simply comparing expected and observed numbers of births, allows for multivariate analyses with the controls for potentially confounding factors.

Results

The differences between the expected and observed probability of childbearing for each month by the four calendar periods are shown in Table I and Figure 1. The same differences for women of different sociodemographic characteristics are shown in Tables II-V and Figures 2a-5d. For most calendar periods and all sociodemographic categories we find some
seasonal variation in childbearing. However, the seasonal variation is most pronounced for women with certain specific characteristics, and has, in most cases, changed its pattern over time.

Between 1940 and 1999, most births took place during the spring and the least between October and December. However, during the most recent period of the twenty-first century, the seasonal variation was visibly reduced, with relatively small variation in outcomes over the months between February and September. Still, the pattern of low birth rates during the end of the year remained and even become more pronounced from the 1980s onwards. During the first four decades under study, a clear increase in the number of births occurred in September. However, this Christmas effect vanished in the 1980s (Table I and Figure 1).

Between 1940 and 1979, there were only minor differences in the seasonal variation in births between mothers with different education attainment. During the 1940s and 1950s, the pattern of higher birth rates in the spring and fewer during the second half of the year was somewhat more pronounced among mothers with post-secondary education (Table II, Figures 2a and 2b). During 1980 to 1999, mothers with upper-secondary education or higher education had a more pronounced seasonal variation than mothers with low education level. During the 2000s, the seasonal variation declined for mothers of all educational levels, although the decline in birth rates during the last quarter of the year became even more pronounced among mothers with upper secondary or higher education (Table II, Figure 2c and 2d).

During the first four decades we study, differences in seasonal variation between Nordic-born and mothers from other countries were relatively small, and both groups showed high birth rates in the spring and lower rates during the second half of the year (except September) (Table III, Figure 3a and 3b). From the 1980s onwards, mothers from other
countries than the Nordic ones had only minor seasonal variation in childbirths. During the same time, the low birth rates in November and December were strongly accentuated among Nordic-born mothers (Table III, Figure 3c and 3d).

During 1940 to 1979, mothers of third and higher order births showed the least seasonal variation, while mothers of first and second order births showed more pronounced patterns of seasonality. From the 1960s onwards, mothers with second births had the most pronounced seasonal variation in childbearing. From the 1940s and throughout the study period, the seasonal variation among first time mothers declined steadily, and from the 2000s, the seasonal variation for this groups of mothers was quite minor (Table IV and Figures 4a-4d).

During the first two decades under study there were no meaningful differences in seasonal variation between mothers with the same or a new co-parent for subsequent births (Table V and Figure 5a). However, during the 1960s and 1970's, mothers who had not re-partnered between subsequent births exhibited much clearer seasonal variation than mothers who had re-partnered between previous births. In the 1980s and 1990s, the difference between re-partnered and other mothers remained intact, although at a somewhat reduced level. Also, in the twenty-first century, the differences between the seasonal variation for mothers who had re-partnered and those who had not done so were smaller than those seen in the 1960s to 1990s. We note that the reduction in the differences between re-partnered and other mothers is primarily driven by the weakened seasonal variability of mothers not re-partnering. The seasonal variation among re-partnered mothers was relatively small during the entire study period.
Table I. Observed/expected probabilities of births by month and years.

Month of birth	1940-1959	1960-1979	1980-1999	2000-2012
January	93	96	98	96
February	100	104	106	102
March	110	113	112	104
April	113	117	114	107
May	110	109	107	105
June	104	102	105	105
July	100	97	102	107
August	95	94	99	104
September	101	99	99	102
October	93	93	90	96
November	90	89	85	88
December	92	87	83	83

Adjusted for each month’s number of days and mother’s age, education, country of birth, and parity.

Figure 1. Seasonal variation in births by years
Table II. Observed/expected probabilities of births by month, years, and mothers education.

Month of birth	1940-1959	1960-1979	1980-1999	2000-2012								
	Obs/Exp	Obs/Exp	Obs/Exp	Obs/Exp								
	Compulsory	Upper	Post-									
January	94 92 90 96 95 98 99 98 98 98 97 94											
February	100 100 99 104 104 106 104 106 109 102 102 102											
Mars	110 112 113 113 113 115 107 112 115 101 104 105											
April	113 114 119 116 118 117 109 115 118 103 107 109											
May	109 111 114 109 110 108 104 107 109 101 105 106											
June	104 104 102 102 102 98 103 105 105 102 106 106											
July	100 98 95 98 97 95 102 103 102 105 107 107											
August	96 94 91 94 94 94 100 99 99 99 102 103											
September	101 100 101 99 99 100 101 99 98 102 101 102											
October	93 94 95 93 94 94 93 89 88 99 96 95											
November	90 90 89 89 88 88 90 84 80 94 89 87											
December	92 92 92 87 87 86 89 83 79 92 83 81											

Adjusted for each month’s number of days and mother’s age, country of birth, and parity.

Figure 2a. Seasonal variation in births by education (1940-1959)

Figure 2b. Seasonal variation in births by education (1960-1979)

Figure 2c. Seasonal variation in births by education (1980-1999)

Figure 2d. Seasonal variation in births by education (2000-2012)
Table III. Observed/expected probabilities of births by month, years, and country of birth.

Month of birth	1940-1959	1960-1979	1980-1999	2000-2012				
	Obs/Exp	Obs/Exp	Obs/Exp	Obs/Exp				
Nordic Country	Other							
January	93	96	96	93	98	96	96	95
February	100	96	104	99	107	101	103	98
Mars	110	107	113	103	113	101	106	98
April	113	109	117	109	115	104	109	102
May	110	105	109	108	107	105	106	103
June	104	104	101	107	105	105	106	105
July	100	97	97	101	102	104	107	105
August	95	96	94	97	99	101	104	103
September	100	103	99	100	99	101	102	102
October	93	95	93	96	89	97	95	100
November	90	97	89	93	84	92	87	95
December	92	96	87	94	82	94	81	94

Adjusted for each month’s number of days and mother’s age, education, and parity.

Figure 3a. Seasonal variation in births by country of birth (1940-1959)

Figure 3b. Seasonal variation in births by country of birth (1960-1979)

Figure 3c. Seasonal variation in births by country of birth (1980-1999)

Figure 3d. Seasonal variation in births by country of birth (2000-2012)
Table IV. Observed/expected probabilities of births by month, years, and parity.

Month of birth	1940-1959	1960-1979	1980-1999	2000-2012		
	Obs/Exp	Obs/Exp	Obs/Exp	Obs/Exp		
January	1st 93	2nd 93	3rd+ 97	1st 95	2nd 96	3rd+ 96
February	1st 100	2nd 100	3rd+ 102	1st 105	2nd 103	3rd+ 109
Mars	1st 112	2nd 110	3rd+ 110	1st 116	2nd 110	3rd+ 115
April	1st 115	2nd 114	3rd+ 113	1st 121	2nd 109	3rd+ 118
May	1st 112	2nd 110	3rd+ 112	1st 112	2nd 103	3rd+ 110
June	1st 105	2nd 104	3rd+ 101	1st 103	2nd 106	3rd+ 105
July	1st 101	2nd 99	3rd+ 99	1st 98	2nd 103	3rd+ 102
August	1st 95	2nd 94	3rd+ 97	1st 92	2nd 95	3rd+ 98
September	1st 100	2nd 106	3rd+ 102	1st 97	2nd 101	3rd+ 98
October	1st 92	2nd 93	3rd+ 96	1st 91	2nd 94	3rd+ 93
November	1st 87	2nd 91	3rd+ 90	1st 87	2nd 92	3rd+ 89
December	1st 89	2nd 92	3rd+ 89	1st 84	2nd 94	3rd+ 79

Adjusted for each month’s number of days and mother’s age, education, and country of birth.

Figure 4a. Seasonal variation in births by parity (1940-1959)

Figure 4b. Seasonal variation in births by parity (1960-1979)

Figure 4c. Seasonal variation in births by parity (1980-1999)

Figure 4d. Seasonal variation in births by parity (2000-2012)
Table V. Observed/expected probabilities of higher order birth by month, years, and repartnering.

Month of birth	1940-1959	1960-1979	1980-1999	2000-2012						
	Obs/Exp	Obs/Exp	Obs/Exp	Obs/Exp						
	Same father	New father								
January	93	92	96	97	98	100	95	99		
February	100	95	106	99	108	105	103	103		
Mars	110	105	117	106	115	107	107	102		
April	113	108	122	106	118	108	112	103		
May	110	103	112	102	109	105	109	102		
June	104	101	103	104	106	106	107	104		
July	100	102	96	99	101	105	107	110		
August	95	95	91	99	98	101	103	104		
September	99	105	96	104	98	99	101	101		
October	93	97	91	96	88	89	94	96		
November	91	96	87	95	81	89	84	90		
December	92	99	84	93	79	87	78	86		

Adjusted for each month’s number of days and mother’s age, education, country of birth, and parity (higher order birth).

![Figure 5a](image-url) Seasonal variation in higher order birth by re-partnering (1940-1959)

![Figure 5b](image-url) Seasonal variation in higher order birth by re-partnering (1960-1979)

![Figure 5c](image-url) Seasonal variation in higher order birth by re-partnering (1980-1999)

![Figure 5d](image-url) Seasonal variation in higher order birth by re-partnering (2000-2012)
Summary and Discussion

Our study showed that the seasonal variation in childbearing in Sweden has declined during the first decade of the twenty-first century, and also that it has changed in its sociodemographic structure during the course of the twentieth century. During the six decades of the twentieth century we study, Swedish birth rates showed the typical seasonal variation with high numbers of births during the spring and low numbers of births during the last quarter of the year. However, during the new century, the seasonal variation clearly declined to a situation where there was only minor variation in birth rates between February to September. The pattern of low birth rates at the end of the year still remained and even gained in magnitude. Additionally, the previously characteristic Christmas peak in September has vanished over the last three decades.

The role of mother's educational attainment begun to matter during the 1980s, when the seasonal variation among mothers with only compulsory education started to decrease drastically. In the twenty-first century, the effect of the mother’s education on the birth month primarily manifests itself as a decline in the birth rate during the last quarter of the year among mothers with high or medium-level education. In the early decades, the difference in the seasonal variation in births between Nordic-born mothers and mothers from other countries was very minor. During the last four decades of study, mothers from non-Nordic countries showed almost no seasonal variation in childbearing. From the 1960s onwards, second-time mothers exhibit the most pronounced seasonal variation. In the twenty-first century, second-order births spike in spring and decline sharply at the end of the year. The seasonal variation for first-time mothers have become less pronounced over time. Throughout the study period, mothers who re-partnered between subsequent births displayed less seasonal variation than mothers who resumed childbearing with the same partner. The differences between re-partnered and other mothers were strongest during the 1960s to 1970s.
All meaningful differences reported in the results section are statistically significant. Using data with approximately 180,000 births in each month, any confidence intervals in outcomes become very narrow. Dividing the calendar years in groups other than those presented here does not considerably affect the results. When single decades are used instead of twenty-year cohorts, some patterns are amplified, but overall, the results remain the same.

Much previous research on the causes of human birth seasonality has focused on the physical environment, such as temperatures and photoperiods (Jongbloet, 1983; Kallan and Udry, 1989; Roenneberg and Aschoff, 1990a; 1990b Lam and Miron, 1991; Lam and Miron, 1996; Smits et al., 1998). It has been argued that both social and biological factors account for seasonal variation in births, but that the latter matter the most (Roenneberg and Aschoff, 1990a). These factors may matter more in contexts located at extreme latitudes, such as the Nordic countries, with their much larger seasonal variation in temperatures and day-light exposure. However, in keeping with the findings of the present study, it is likely that the effect of biological factors has become weaker in contemporary advanced societies where childbearing is much more strongly determined by factors related to conscious planning and individual choice (Goldin and Katz, 2000).

Childbearing decisions today take place in a very different context than those of the agricultural and industrial societies of the past, where factors related to harvests and vacation times (James, 1971; Basso et al., 1995) had huge bearing. During the last half a century the labour market underwent two fundamental changes; women’s increased activity (Hoem, 2000; Stanfors and Goldscheider, 2017) and the transition from an industry- to a service-dominated occupational structure (Esping-Andersen, 1993). At the same time, family patterns in the Nordic countries have changed so that men have become increasingly engaged in issues related to childrearing (Goldscheider et al., 2015). Not only has women’s participation in the labour force increased (in Sweden; from 50% in 1960 to 80% in 1990), but their
occupational aspirations have increased as well. Women have come to dominate many fields of higher education and the gender wage-gap has decreased. In dual-earner dual-carer couples where both partners’ career developments might be affected by childbearing decisions it may be less optimal to follow traditional seasonality patterns and more rational instead to plan childbearing so that it suits both partners’ occupational careers. Another factor to consider is that Swedish fathers’ uptake of parental leave has increased steadily over time so that they now use about one quarter of all parental leave days (Swedish Social Insurance Agency, 2017). Couples that share their parental leave more equally may have incentives to plan their childbearing so that it suits both parents’ occupational trajectories. With about one and half year of parental leave to share it may in some cases be perceived fair to become a parent during a summer month, with the possibility to shift the leave from one parent to the other during the following summer.

Evidently, the transition to a services-dominated society has created a much more diverse labour force in terms of work schedules, working hours, and employment types (Kalleberg, 2000). In a society with less standardized employment structures, behavioural factors related to the frequency of intercourse and standardized vacation schedules may become less important for seasonal variations in childbearing. These changes have occurred in tandem with the observed decline in elevated birth rates during the spring season.

Still, some of the late 20th century patterns in seasonality remain intact. These are also the ones that appear most related to the conscious planning of the timing of births. Our main finding is that of distinct differences between the number of births that happen at the end of a calendar year and those that take place in the first few months of a year. The increasingly strong pattern of depressed birth rates in November and December is likely explained by the December-January cut-off threshold for Swedish pupils’ school entry and their parents increasing awareness of the negative effects on school outcomes for children.
who are juniors in the school-entry cohort they belong to (Bedard and Dhuey, 2006). In other countries, other cut-off rules may produce other patterns of seasonality. Well-educated parents tend to be more likely to invest in their children's education (Useem, 1992) and thus be more concerned over matters of this nature. The results show that mothers with higher education are significantly more likely to avoid births late in the year.

Previous research has shown that high educated Japanese parents make an effort to have their children born on the right side of the cut-off date for school entry in order to give their children an advantage within the education system. Based on data on 50 million births during 1974–2010 Shigeoka (2013) shows that more than 1,800 births per year are delayed about week to occur after the cut-off date, by means of postponed Caesarean sections, mostly by highly educated mothers.

Our study shows that patterns of seasonality varies by parents socio-demographic characteristics in ways that are related to their incentives for and possibilities to plan for the timing of their births. For example, women with previous births are equipped with a better understanding of their fecundity, and therefore better able to plan their next birth so that it does not occur at the end of a year. Also mothers with no re-partnering interruptions in their childbearing career should be better able to plan the timing of any next birth.

Our study supports the notion that cultural norms regarding childbearing decisions are relatively weak in contemporary societies, and that increased individual autonomy and self-realisation have contributed to more diversity in childbearing behaviour (Surkyn and Lesthaeghe, 2004; Billari et al., 2010). Sweden was among the first countries to enter what is often termed the second demographic transition, with declining marriage rates, increased childbearing outside marriage, increases in divorce and cohabitation, as well as a value shift towards more individualistic and expressive values (Lesthaeghe 2010; Sobotka and Toulemon 2008; van de Kaa 2002). In a society with below-replacement and highly
controlled fertility due to efficient contraception, active choices and behaviours associated with individual sociodemographic characteristics may matter more than the physiological ability to reproduce (Bobak and Gjonca, 2001). Increased individual autonomy and self-realisation might have overridden the role of factors that influence the physiological ability to reproduce and cultural behaviours that affect the likelihood of sexual intercourse.

Funding

This study was funded by the Swedish Research Council (Vetenskapsrådet) via the Swedish Initiative for Research on Microdata in the Social and Medical Sciences (SIMSAM): Stockholm University SIMSAM Node for Demographic Research, Grant Registration Number 340-2013-5164.
References

Azcorra H, Vázquez-Vázquez A, Méndez N, Salazar-Rendón JC, Munguía-Rosas MA, & Banik, SD. Birth Seasonality in Yucatan, Mexico. *Human Ecology*, 2017;45(3): 409-415.

Basso O, Olsen J, Bisanti L, Juul S, Boldsen J, The European Study Group on Infertility and Subfecundity. Are seasonal preferences in pregnancy planning a source of bias in studies of seasonal variation in reproductive outcomes? *Epidemiology*, 1995: 520-524.

Bedard K, Dhuuy E. The persistence of early childhood maturity: International evidence of long-run age effects. *The Quarterly Journal of Economics*, 121(4): 1437-1472.

Billari FC, Goisis A, Liefbroer AC, Settersten RA, Aassve A, Hagestad G, Spéder Z. (2010). Social age deadlines for the childbearing of women and men. *Human Reproduction*, 2006;26(3): 616-622.

Bobak M, Gjonca, A. The seasonality of live birth is strongly influenced by socio-demographic factors. *Human Reproduction*, 2001;16(7): 1512-1517.

Bronson FH. Seasonal variation in human reproduction: environmental factors. *The Quarterly Review of Biology*, 1995;70(2): 141-164.

Buckles KS, Hungerman DM. Season of birth and later outcomes: Old questions, new answers. *Review of Economics and Statistics*, 2013;95(3): 711-724.

Cassel PG. Changing seasonality of births in Sweden 1900-1999. *Nordic Demography: Trends and Differentials. Scandinavian Population Studies*. 2002;13: 97-110.

Chaudhury RH. Socioeconomic and seasonal variations in births: a replication. *Social Biology*, 1972;19(1): 65-68.

Ellison PT, Valeggia C, Sherry D. Human birth seasonality. In Brockman D and Schaik C (eds) *Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates*. 2005. Cambridge University Press, Cambridge, UK, pp.379-400.

Ellison PT, Ellison PT. *On fertile ground: A natural history of human reproduction*. 2009. Harvard University Press, Cambridge, MA.

Erhardt CL, Nelson FG, Pakter J. Seasonal patterns of conception in New York City. *American Journal of Public Health*, 1971;61(11): 2246-2258.

Esping-Andersen G. (1993) Post industrial class structures: an analytical framework. In Esping-Andersen G (ed) *Changing Classes: Stratification and Mobility in Post Industrial Societies*. 1993. Sage, London, UK, pp. 7–31.

Goldin C, Katz LF. Career and Marriage in the Age of the Pill. *The American Economic
Goldscheider F, Bernhardt E, Lappegård T. The gender revolution: A framework for understanding changing family and demographic behavior. *Population and Development Review*, 2015;41(2) : 207-239.

Haandriksen K, van Wissen L. Effects of the fertility transition on birth seasonality in the Netherlands. *Journal of Biosocial Science*, 2008;40: 655-672.

Hoem B. Entry into motherhood in Sweden: the influence of economic factors on the rise and fall in fertility, 1986-1997. *Demographic Research*, 2000;2(4).

James WH. Social class and season of birth. *Journal of Biosocial Science*, 1971;3(3): 309-320.

James WH. Seasonal variation in human births. *Journal of Biosocial Science*, 1990;22(1): 113-119.

Jongbloet PH. Menses and moon phases, ovulation and seasons, vitality and month of birth. *Developmental Medicine & Child Neurology*, 1983;25(4): 527-531.

Kallan JE, Udry JR. Demographic components of seasonality of pregnancy. *Journal of Biosocial Science*, 1989;21(1): 101-108.

Kalleberg AL. Nonstandard employment relations: Part-time, temporary and contract work. *Annual Review of Sociology*, 2000;26(1): 341-365.

Lam DA, Miron JA. Temperature and the seasonality of births. In Zorgniotti AW (ed) *Temperature and environmental effects on the testis*. 1991. Plenum Press, New York, NY, pp. 73-88.

Lam DA, Miron JA. Global patterns of seasonal variation in human fertility. *Annals of the New York Academy of Sciences*, 1994;709(1): 9-28.

Lam DA, Miron JA. The effects of temperature on human fertility. *Demography*, 1996;33(3): 291-305.

Lesthaeghe R. (2010). The unfolding story of the second demographic transition. *Population and Development Review*, 36(2): 211-251.

Pasamanick B, Dinitz S, Knobloch H. Socio-economic and seasonal variations in birth rates. *The Milbank Memorial Fund Quarterly*, 1960;38(3): 248-254.

Reffelmann T, Ittermann T, Empen K, Dörr M, Felix SB. Is Cardiovascular Mortality Related to the Season of Birth? *Journal of the American College of Cardiology*, 2011;57(7): 887-888.

Roenneberg T, Aschof J. Annual rhythm of human reproduction: I. Biology, sociology, or both? *Journal of Biological Rhythms*, 1990a;5(3), 195-216.
Roenneberg T, Aschoff J. Annual rhythm of human reproduction: II. Environmental correlations. *Journal of Biological Rhythms*, 1990b;5(3):217-239.

Shigeoka H. School Entry Cutoff Date and the Timing of Births (No. w21402). National Bureau of Economic Research, 2015.

Smits LJ, Zielhuis GA, Jongbloet PH, Straatman H. Seasonal variation in human fecundability. *Human Reproduction*, 1998;13(12): 3520-3524.

Sobotka T, Toulemon L. Overview Chapter 4: Changing family and partnership behaviour: Common trends and persistent diversity across Europe. *Demographic Research*, 2008;19(6): 85-138.

Stanfors M, Goldscheider F. The forest and the trees: Industrialization, demographic change, and the ongoing gender revolution in Sweden and the United States, 1870-2010. *Demographic Research*, 2017;36: 173.

Stolwijk AM, Straatman H, Zielhuis GA, Jongbloet PH. Seasonal variation in the time to pregnancy: avoiding bias by using the date of onset. *Epidemiology*, 1996;156-160.

Surkyn J, Lesthaeghe R. Value orientations and the second demographic transition (SDT) in Northern, Western and Southern Europe: An update. *Demographic Research*, 2004;3: 45-86.

Swedish Social Insurance Agency. Social Insurance in Figures 2017. 2017.

Udry JR, Morris NM. Seasonality of coitus and seasonality of birth. *Demography*, 1967;4(2): 673-679.

Ueda P, Bonamy AKE, Granath F, Cnattingius S. Month of birth and mortality in Sweden: a nation-wide population-based cohort study. *PLoS One*, 2013;8(2): e56425.

Useem EL. Middle schools and math groups: Parents' involvement in children's placement. *Sociology of Education*, 1992: 263-279.

van de Kaa DJ. The idea of a second demographic transition in industrialized countries. *Birth*, 2002;35: 45.

Warren CW, Tyler CW. Social status and season of birth: A study of a metropolitan area in the southeastern United States. *Social Biology*, 1979;26(4): 275-288.

Zelnik M. Socioeconomic and seasonal variations in births: a replication. *The Milbank Memorial Fund Quarterly*, 1969;47(2): 159-165.
