On the maximal energy tree with two maximum degree vertices

Jing Li, Xueliang Li, Yongtang Shi
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
E-mail: lj02013@163.com; lxl@nankai.edu.cn; shi@nankai.edu.cn

Abstract

For a simple graph G, the energy $E(G)$ is defined as the sum of the absolute values of all eigenvalues of its adjacent matrix. For $\Delta \geq 3$ and $t \geq 3$, denote by $T_a(\Delta, t)$ (or simply T_a) the tree formed from a path P_t on t vertices by attaching $\Delta - 1$ P_2’s on each end of the path P_t, and $T_b(\Delta, t)$ (or simply T_b) the tree formed from P_{t+2} by attaching $\Delta - 1$ P_2’s on an end of the P_{t+2} and $\Delta - 2$ P_2’s on the vertex next to the end. In [X. Li, X. Yao, J. Zhang and I. Gutman, Maximum energy trees with two maximum degree vertices, J. Math. Chem. 45(2009), 962–973], Li et al. proved that among trees of order n with two vertices of maximum degree Δ, the maximal energy tree is either the graph T_a or the graph T_b, where $t = n + 4 - 4\Delta \geq 3$. However, they could not determine which one of T_a and T_b is the maximal energy tree. This is because the quasi-order method is invalid for comparing their energies.

In this paper, we use a new method to determine the maximal energy tree. It turns out that things are more complicated. We prove that the maximal energy tree is T_b for $\Delta \geq 7$ and any $t \geq 3$, while the maximal energy tree is T_a for $\Delta = 3$ and any $t \geq 3$. Moreover, for $\Delta = 4$, the maximal energy tree is T_a for all $t \geq 3$ but $t = 4$, for which T_b is the maximal energy tree. For $\Delta = 5$, the maximal energy tree is T_b for all $t \geq 3$ but t is odd and $3 \leq t \leq 89$, for which T_a is the maximal energy tree. For $\Delta = 6$, the maximal energy tree is T_b for all $t \geq 3$ but $t = 3, 5, 7$, for which T_a is the maximal energy tree. One can see that for most Δ, T_b is the maximal energy tree, $\Delta = 5$ is a turning point, and $\Delta = 3$ and 4 are exceptional cases.

Keywords: graph energy, tree, Coulson integral formula.

AMS subject classification 2010: 05C50, 05C90, 15A18, 92E10.

Supported by NSFC and “the Fundamental Research Funds for the Central Universities”.
1 Introduction

Let G be a simple graph of order n, it is well known [4] that the characteristic polynomial of G has the form

$$\varphi(G, x) = \sum_{k=0}^{n} a_k x^{n-k}.$$

The match polynomial of G is defined as

$$m(G, x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k m(G, k) x^{n-2k},$$

where $m(G, k)$ denotes the number of k-matchings of G and $m(G, 0) = 1$. If $G = T$ is a tree of order n, then

$$\varphi(T, x) = m(T, x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k m(T, k) x^{n-2k}.$$

Let $\lambda_1, \lambda_2, \cdots, \lambda_n$ be the eigenvalues of G, then the energy of G is defined as

$$E(G) = \sum_{i=1}^{n} |\lambda_i|,$$

which was introduced by Gutman in [6]. If T is a tree of order n, then by Coulson integral formula [5, 8], we have

$$E(T) = \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^2} \log \left[\sum_{k=0}^{\lfloor n/2 \rfloor} m(T, k) x^{2k} \right] dx.$$

In order to avoid the signs in the matching polynomial, this immediately motivates us to introduce a new graph polynomial

$$m^+(G, x) = \sum_{k=0}^{\lfloor n/2 \rfloor} m(G, k) x^{2k}.$$

Then we have

$$E(T) = \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^2} \log m^+(T, x) dx. \quad (1)$$

Although $m^+(G, x)$ is nothing new but $m^+(G, x) = (ix)^nm(G, (ix)^{-1})$, we shall see later that this will bring us a lot of computational convenience. Some basic properties of $m^+(G, x)$ will be given in next section.

We refer to the survey [7] for more results on graph energy. For terminology and notation not defined here, we refer to the book of Bondy and Murty [1].
Graphs with extremal energies are interested in literature. Gutman [5] proved that the star and the path has the minimal and the maximal energy among all trees, respectively. Lin et al. [17] showed that among trees with a fixed number of vertices \(n \) and of maximum vertex degree \(\Delta \), the maximal energy tree has exactly one branching vertex (of degree \(\Delta \)) and as many as possible 2-branches. Li et al. [16] gave the following Theorem 1.1 about the maximal energy tree with two maximum degree vertices. In a similar way, Yao [19] studied the maximal energy tree with one maximum and one second maximum degree vertex. A branching vertex is a vertex whose degree is three or greater, and a pendent vertex attached to a vertex of degree two is called a 2-branch.

Theorem 1.1 ([16]) Among trees with a fixed number of vertices \(n \) and two vertices of maximum degree \(\Delta \), the maximal energy tree has as many as possible 2-branches.

1. If \(n \leq 4\Delta - 2 \), then the maximal energy tree is the graph \(T_c = T_c(\Delta, t) \) depicted in Figure 1.1, in which the numbers of pendent vertices attached to the two branching vertices \(u \) and \(v \) differ by at most 1.
2. If \(n \geq 4\Delta - 1 \), then the maximal energy tree is either the graph \(T_a = T_a(\Delta, t) \) or the graph \(T_b = T_b(\Delta, t) \), depicted in Figure 1.1.

![Figure 1.1](image)

Figure 1.1 The maximal energy trees with \(n \) vertices and two vertices \(u, v \) of maximum degree \(\Delta \).

From Theorem 1.1 one can see that for \(n \geq 4\Delta - 1 \), they could not determine which one of the graphs \(T_a \) and \(T_b \) has the maximal energy. They gave small examples showing that both cases could happen. In fact, the quasi-order method they used before is invalid for the special case. Recently, for these quasi-order incomparable problems, Huo et al. found an efficient way to determine which one attains the extremal value of the energy,
we refer to [9–15] for details. In this paper, we will use this newly developed method to determine which one of the graphs T_a and T_b has the maximal energy, solving this unsolved problem. It turns that this problem is more complicated than those in [9–15].

2 Preliminaries

In this section, we will give some properties of the new polynomial $m^+(G, x)$, which will be used in what follows. The proofs are omitted, since they are the same as those for matching polynomial.

Lemma 2.1 Let K_n be a complete graph with n vertices and $\overline{K_n}$ the complement of K_n, then

$$m^+(\overline{K_n}, x) = 1,$$

for any $n \geq 0$, defining $m^+(\overline{K_0}, x) = 1$, where both K_0 and $\overline{K_0}$ are the null graph.

Similar to the properties of matching polynomial, we have

Lemma 2.2 Let G_1 and G_2 be two vertex disjoint graphs. Then

$$m^+(G_1 \cup G_2, x) = m^+(G_1, x) \cdot m^+(G_2, x).$$

Lemma 2.3 Let $e = uv$ be an edge of graph G. Then we have

$$m^+(G, x) = m^+(G - e, x) + x^2 m^+(G - u - v, x).$$

Lemma 2.4 Let v be a vertex of G and $N(v) = \{v_1, v_2, \ldots, v_r\}$ the set of all neighbors of v in G. Then

$$m^+(G, x) = m^+(G - v, x) + x^2 \sum_{v_i \in N(v)} m^+(G - v - v_i, x).$$

The following recursive equations can be gotten from Lemma 2.3 immediately.

Lemma 2.5 Let P_t denote a path on t vertices. Then

(1) $m^+(P_t, x) = m^+(P_{t-1}, x) + x^2 m^+(P_{t-2}, x)$, for any $t \geq 1$,

(2) $m^+(P_t, x) = (1 + x^2)m^+(P_{t-2}, x) + x^2 m^+(P_{t-3}, x)$, for any $t \geq 2$.

The initials are $m^+(P_0, x) = m^+(P_1, x) = 1$, and we define $m^+(P_{-1}, x) = 0$.

From Lemma 2.5, one can easily obtain

Corollary 2.6 Let P_t be a path on t vertices. Then for any real number x,

$$m^+(P_{t-1}, x) \leq m^+(P_t, x) \leq (1 + x^2)m^+(P_{t-1}, x), \quad \text{for any } t \geq 1.$$

Although $m^+(G, x)$ has many other properties, the above ones are enough for our use.

3 Main results

Before giving our main results, we state some knowledge on real analysis, for which we refer to [20].

Lemma 3.1 For any real number $X > -1$, we have

$$\frac{X}{1+X} \leq \log(1 + X) \leq X.$$

To compare the energies of T_a and T_b, or more precisely, $T_a(\Delta, t)$ and $T_b(\Delta, t)$, means to compare the values of two functions with the parameters Δ and t, which are denoted by $E(T_a(\Delta, t))$ and $E(T_b(\Delta, t))$. Since $E(T_a(2, t)) = E(T_b(2, t))$ for any $t \geq 2$ and $E(T_a(\Delta, 2)) = E(T_b(\Delta, 2))$ for any $\Delta \geq 2$, we always assume that $\Delta \geq 3$ and $t \geq 3$.

For notational convenience, we introduce the following things:

$$A_1 = (1 + x^2)(1 + \Delta x^2)(2x^4 + (\Delta + 2)x^2 + 1),$$
$$A_2 = x^2(1 + x^2)(x^6 + (\Delta^2 + 2)x^4 + (2\Delta + 1)x^2 + 1),$$
$$B_1 = (\Delta + 2)x^8 + (2\Delta^2 + 6)x^6 + (\Delta^2 + 4\Delta + 4)x^4 + (2\Delta + 3)x^2 + 1,$$
$$B_2 = x^2(1 + x^2)(x^6 + (\Delta^2 + 2)x^4 + (2\Delta + 1)x^2 + 1).$$

Using Lemmas 2.4 and 2.5 repeatedly, we can easily get the following two recursive formulas:

$$m^+(T_a, x) = (1 + x^2)^{2\Delta-5}(A_1m^+(P_{t-3}, x) + A_2m^+(P_{t-4}, x)), \quad (2)$$

and

$$m^+(T_b, x) = (1 + x^2)^{2\Delta-5}(B_1m^+(P_{t-3}, x) + B_2m^+(P_{t-4}, x)), \quad (3)$$

From Eqs. (2) and (3), by some elementary calculations we can obtain

$$m^+(T_a, x) - m^+(T_b, x) = (1 + x^2)^{2\Delta-5}(\Delta - 2)x^6(x^2 - (\Delta - 2))m^+(P_{t-3}, x). \quad (4)$$

Now we give one of our main results.
Theorem 3.2 Among trees with \(n \) vertices and two vertices of maximum degree \(\Delta \), the maximal energy tree has as many as possible 2-branches. If \(\Delta \geq 8 \) and \(t \geq 3 \), then the maximal energy tree is the graph \(T_b \), where \(t = n + 4 - 4\Delta \).

Proof. From Eq. (1), we have

\[
E(T_a) - E(T_b) = \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \frac{m^+(T_a, x)}{m^+(T_b, x)} dx
= \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)}\right) dx.
\]

(5)

We express \(g(\Delta, t, x) \) as

\[
g(\Delta, t, x) = \frac{1}{x^2} \log \left(1 + \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)}\right).
\]

Since \(m^+(T_a, x) > 0 \) and \(m^+(T_b, x) > 0 \), we have

\[
\frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} = \frac{m^+(T_a, x)}{m^+(T_b, x)} - 1 > -1.
\]

Therefore, by Lemma 3.1 we have

\[
\frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_a, x)} \leq g(\Delta, t, x) \leq \frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)}.
\]

(6)

Substituting the recursive formulas (2), (3) and (4) to Eq. (6), we get that

\[
g(\Delta, t, x) \leq \frac{1}{x^2} \cdot \frac{(1 + x^2)^{2\Delta-5}(\Delta - 2)x^6(x^2 - (\Delta - 2))m^+(P_{t-3}, x)}{(1 + x^2)^{2\Delta-5}(B_1m^+(P_{t-3}, x) + B_2m^+(P_{t-4}, x))}
= \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))m^+(P_{t-3}, x)}{B_1m^+(P_{t-3}, x) + B_2m^+(P_{t-4}, x)},
\]

and

\[
g(\Delta, t, x) \geq \frac{1}{x^2} \cdot \frac{(1 + x^2)^{2\Delta-5}(\Delta - 2)x^6(x^2 - (\Delta - 2))m^+(P_{t-3}, x)}{(1 + x^2)^{2\Delta-5}(A_1m^+(P_{t-3}, x) + A_2m^+(P_{t-4}, x))}
= \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))m^+(P_{t-3}, x)}{A_1m^+(P_{t-3}, x) + A_2m^+(P_{t-4}, x)}.
\]

By Corollary 2.6 we have \(m^+(P_{t-4}, x) \leq m^+(P_{t-3}, x) \) and \(m^+(P_{t-4}, x) \geq \frac{m^+(P_{t-3}, x)}{1 + x^2} \) for \(\Delta \geq 3 \) and \(t \geq 4 \). Then if \(x \geq \sqrt{\Delta - 2} \),

\[
|g(\Delta, t, x)| \leq \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))}{B_1 + B_2/(1 + x^2)}
= \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))}{(\Delta + 3)x^8 + (3\Delta^2 + 8)x^6 + (\Delta^2 + 6\Delta + 5)x^4 + (2\Delta + 4)x^2 + 1}.
\]
and if $x \leq \sqrt{\Delta - 2}$,

$$|g(\Delta, t, x)| \leq \frac{(\Delta - 2)x^4(\Delta - 2 - x^2)}{A_1 + A_2/(1 + x^2)} = \frac{(\Delta - 2)x^4(\Delta - 2 - x^2)}{(2\Delta + 1)x^8 + (2\Delta^2 + 4\Delta + 4)x^6 + (\Delta^2 + 6\Delta + 5)x^4 + (2\Delta + 4)x^2 + 1}.$$

Since for $\Delta \geq 3$ and any $x \geq 0$, we always have

$$(\Delta - 2)x^4(x^2 - (\Delta - 2))(1 + x^2) \leq (\Delta + 3)x^8 + (3\Delta^2 + 8)x^6 + (\Delta^2 + 6\Delta + 5)x^4 + (2\Delta + 4)x^2 + 1,$$

and

$$(\Delta - 2)x^4(\Delta - 2 - x^2)(1 + x^2) \leq (2\Delta + 1)x^8 + (2\Delta^2 + 4\Delta + 4)x^6 + (\Delta^2 + 6\Delta + 5)x^4 + (2\Delta + 4)x^2 + 1,$$

we can get that for $\Delta \geq 3$ and any $x \geq 0$,

$$|g(\Delta, t, x)| \leq \frac{1}{1 + x^2},$$

while $\int_0^{+\infty} \frac{2}{1 + x^2} dx = \frac{\pi}{2}$ is convergent. From the well-known Weierstrass’s criterion (for example, see [20]), we can get that $E(T_a) - E(T_b) = \frac{2}{\pi} \int_0^{+\infty} g(\Delta, t, x)dx$ is uniformly convergent. Then

$$\frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_a, x)} dx \leq E(T_a) - E(T_b) \leq \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} dx.$$

Thus, for $t \geq 4$, we have

$$E(T_a) - E(T_b)\leq \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} dx = \frac{2}{\pi} \int_0^{+\infty} \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))}{B_1m^+(P, x) + B_2m^+(P, x)} dx = \frac{2}{\pi} \int_{\sqrt{\Delta - 2}}^{+\infty} \frac{(\Delta - 2)x^4(\Delta - 2 - x^2)}{B_1 + B_2} dx.$$

We calculate the two parts respectively. The first part is

$$\frac{2}{\pi} \int_{\sqrt{\Delta - 2}}^{+\infty} \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))}{B_1 + B_2(1 + x^2)} dx = \frac{2}{\pi} \int_{\sqrt{\Delta - 2}}^{+\infty} \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))}{(\Delta + 3)x^8 + (3\Delta^2 + 8)x^6 + (\Delta^2 + 6\Delta + 5)x^4 + (2\Delta + 4)x^2 + 1} dx < \frac{2}{\pi} \int_{\sqrt{\Delta - 2}}^{+\infty} \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))}{(\Delta + 3)x^8} dx = \frac{2}{\pi} \cdot \frac{2\sqrt{\Delta - 2}}{3(\Delta + 3)}.$$
The second part is
\[
\frac{2}{\pi} \int_0^{\sqrt{\Delta-2}} \frac{(\Delta - 2)x^4(\Delta - 2 - x^2)}{B_1 + B_2} \, dx
\]
\[
= \frac{2}{\pi} \int_0^{\sqrt{\Delta-2}} \frac{(\Delta - 2)x^4(\Delta - 2 - x^2)}{h(\Delta, x)} \, dx
\]
\[
> \frac{2}{\pi} \int_0^1 \frac{(\Delta - 2)x^4(\Delta - 2 - x^2)}{\frac{5\Delta^2 + 11\Delta + 26}{2}(x^2 + 1)} \, dx + \frac{2}{\pi} \int_1^{\sqrt{\Delta-2}} \frac{(\Delta - 2)x^4(\Delta - 2 - x^2)}{(5\Delta^2 + 11\Delta + 26)x^{10}} \, dx
\]
\[
= \frac{2}{\pi} \left(\frac{-45\pi \Delta - 34\Delta^2 + 74\Delta + 30\pi - 12 + 15\pi \Delta^2 + \frac{4}{\sqrt{\Delta-2}}}{30(26 + 11\Delta + 5\Delta^2)} \right),
\]
where \(h(\Delta, x) = x^{10} + (\Delta^2 + \Delta + 5)x^8 + (3\Delta^2 + 2\Delta + 9)x^6 + (\Delta^2 + 6\Delta + 6)x^4 + (2\Delta + 4)x^2 + 1 \).

Now, when \(\Delta \geq 65 \), we have that
\[
E(T_a) - E(T_b) < \frac{2}{\pi} \cdot f(\Delta, x) < 0.
\]
For \(t = 3 \), we have \(m^+(P_{t-4}, x) = m^+(P_{t-1}, x) = 0 \). By a similar method as above, we can get that \(E(T_a) - E(T_b) < 0 \) when \(\Delta \geq 24 \).

Therefore, for \(\Delta \geq 65 \) and \(t \geq 3 \), we have \(E(T_a) < E(T_b) \).

For \(8 \leq \Delta \leq 64 \), we can calculate
\[
E(T_a) - E(T_b) \leq \frac{2}{\pi} \cdot f(\Delta, x) < 0
\]
directly by computer programm, as shown in Table I

\[
E(T_a) - E(T_b) \leq \frac{2}{\pi} \cdot f(\Delta, x) < 0
\]
directly by computer programm, as shown in Table I

\[
E(T_a) - E(T_b) \leq \frac{2}{\pi} \cdot f(\Delta, x) < 0
\]
directly by computer programm, as shown in Table I

\[
E(T_a) - E(T_b) \leq \frac{2}{\pi} \cdot f(\Delta, x) < 0
\]
directly by computer programm, as shown in Table I

\[
E(T_a) - E(T_b) \leq \frac{2}{\pi} \cdot f(\Delta, x) < 0
\]

The proof is thus complete.

Now we are left with the cases \(3 \leq \Delta \leq 7 \). At first, we consider the case of \(\Delta = 3 \) and \(t \geq 3 \). In this case, we have \(n = 4\Delta - 4 + t \geq 11 \).

Theorem 3.3 Among trees with \(n \) vertices and two vertices of maximum degree \(\Delta = 3 \), the maximal energy tree has as many as possible 2-branches. If \(n \geq 11 \), then the maximal energy tree is the graph \(T_a \).
\[f(\Delta, x) \]

\(\Delta \)	\(f(\Delta, x) \)	\(\Delta \)	\(f(\Delta, x) \)	\(\Delta \)	\(f(\Delta, x) \)
8	-0.00377	23	-0.20792	38	-0.29961
9	-0.02418	24	-0.21611	39	-0.30403
10	-0.04352	25	-0.22390	40	-0.30830
11	-0.06168	26	-0.23132	41	-0.31244
12	-0.07866	27	-0.23841	42	-0.31644
13	-0.10933	28	-0.24518	43	-0.32032
14	-0.13613	29	-0.25165	44	-0.32409
15	-0.15972	30	-0.25786	45	-0.32774
16	-0.17048	31	-0.26381	46	-0.33129
17	-0.18063	32	-0.26953	47	-0.33473
18	-0.19022	33	-0.27502	48	-0.33808
19	-0.19931	34	-0.28031	49	-0.34134
20	-0.20792	35	-0.28540	50	-0.34451
21	-0.20957	36	-0.29031	51	-0.34759
22	-0.20317	37	-0.29504	52	-0.35060
23	-0.20475	38	-0.29839	53	-0.35353
24	-0.20792	39	-0.29961	54	-0.35638
25	-0.20894	40	-0.30163	55	-0.35917
26	-0.21095	41	-0.30364	56	-0.36188
27	-0.21296	42	-0.30566	57	-0.36454
28	-0.21497	43	-0.30768	58	-0.36713
29	-0.21698	44	-0.30970	59	-0.36965
30	-0.21899	45	-0.31172	60	-0.37213
31	-0.22099	46	-0.31374	61	-0.37454
32	-0.22290	47	-0.31576	62	-0.37791
33	-0.22491	48	-0.31778	63	-0.38022
34	-0.22692	49	-0.31980	64	-0.38255
35	-0.22893	50	-0.32182	65	-0.38488
36	-0.23094	51	-0.32384	66	-0.38721
37	-0.23295	52	-0.32586	67	-0.38954

Table 1 The values of \(f(\Delta, x) \) for \(8 \leq \Delta \leq 67 \).

Proof. For \(\Delta = 3 \) and \(t \geq 4 \), by Eqs. (1), (6) and Corollary 2.6, we have

\[
E(T_a) - E(T_b) \geq \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_a, x)} \, dx
\]

\[
= \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \cdot \frac{x^6(x^2 - 1)m^+(P_{t-3}, x)}{A_1 m^+(P_{t-3}, x) + A_2 m^+(P_{t-4}, x)} \, dx
\]

\[
\geq \frac{2}{\pi} \int_1^{+\infty} \frac{x^4(x^2 - 1)}{A_1 + A_2} \, dx - \frac{2}{\pi} \int_0^1 \frac{x^4(1 - x^2)}{A_1 + \frac{A_2}{1 + x^2}} \, dx
\]

\[
= \frac{2}{\pi} \int_1^{+\infty} \frac{x^4(x^2 - 1)}{x^{10} + 18x^8 + 41x^6 + 33x^4 + 10x^2 + 1} \, dx
\]

\[
- \frac{2}{\pi} \int_0^1 \frac{x^4(1 - x^2)}{7x^8 + 34x^6 + 32x^4 + 10x^2 + 1} \, dx
\]

\[
> \frac{2}{\pi} \cdot 0.00996 > 0.
\]

For \(\Delta = 3 \) and \(t = 3 \), we can compare the energies of the two graphs directly and get that \(E(T_a) > E(T_b) \).

Therefore, for \(\Delta = 3 \) and \(t \geq 3 \), we have \(E(T_a) > E(T_b) \).

Now we give two lemmas about the properties of the new polynomial \(m^+(P_t, x) \).
Lemma 3.4 For $t \geq -1$, the polynomial $m^+(P_t, x)$ has the following form

$$m^+(P_t, x) = \frac{1}{\sqrt{1+4x^2}}(\lambda_1^{t+1} - \lambda_2^{t+1}),$$

where $\lambda_1 = \frac{1+\sqrt{1+4x^2}}{2}$ and $\lambda_2 = \frac{1-\sqrt{1+4x^2}}{2}$.

Proof. By Lemma 2.5, $m^+(P_t, x) = m^+(P_{t-1}, x) + x^2m^+(P_{t-2}, x)$ for any $t \geq 1$. Thus, it satisfies the recursive formula $h(t, x) = h(t-1, x) + x^2h(t-2, x)$, and the general solution of this linear homogeneous recurrence relation is $h(t, x) = P(x)\lambda_1^t + Q(x)\lambda_2^t$, where $\lambda_1 = \frac{1+\sqrt{1+4x^2}}{2}$ and $\lambda_2 = \frac{1-\sqrt{1+4x^2}}{2}$. Considering the initial values $m^+(P_1, x) = 1$ and $m^+(P_2, x) = 1 + x^2$, by some elementary calculations, we can easily obtain that

$$P(x) = \frac{1+\sqrt{1+4x^2}}{2\sqrt{1+4x^2}}; \quad Q(x) = \frac{-1+\sqrt{1+4x^2}}{2\sqrt{1+4x^2}}.$$

Thus,

$$m^+(P_t, x) = P(x)\lambda_1^t + Q(x)\lambda_2^t = \frac{1}{\sqrt{1+4x^2}}(\lambda_1^{t+1} - \lambda_2^{t+1}).$$

As we have defined, the initials are $m^+(P_{-1}, x) = 0$ and $m^+(P_0, x) = 1$, from which we can get the result for all $t \geq -1$.

Lemma 3.5 Suppose $t \geq 4$. If t is even, then

$$\frac{2}{1 + \sqrt{1 + 4x^2}} < \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} \leq 1.$$

If t is odd, then

$$\frac{1}{1 + x^2} \leq \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} < \frac{2}{1 + \sqrt{1 + 4x^2}}.$$

Proof. From Corollary 2.6 we know that

$$\frac{1}{1 + x^2} \leq \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} \leq 1.$$

By the definitions of λ_1 and λ_2, we conclude that $\lambda_1 > 0$ and $\lambda_2 < 0$ for any x. By Lemma 3.4 if t is even, then

$$\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} - \frac{2}{1 + \sqrt{1 + 4x^2}} = \frac{\lambda_1^{t-3} - \lambda_2^{t-3}}{\lambda_1^{t-2} - \lambda_2^{t-2}} - \frac{1}{\lambda_1} = -\frac{\lambda_2^{t-3}(\lambda_1 - \lambda_2)}{\lambda_1(\lambda_1^{t-2} - \lambda_2^{t-2})} > 0.$$

Thus,

$$\frac{2}{1 + \sqrt{1 + 4x^2}} < \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} \leq 1.$$
If t is odd, then obviously
\[\frac{1}{1 + x^2} \leq \frac{m^+(P_{t-4},x)}{m^+(P_{t-3},x)} < \frac{2}{1 + \sqrt{1 + 4x^2}}. \]

Now we deal with the case $\Delta = 4$ and $t \geq 3$.

Theorem 3.6 Among trees with n vertices and two vertices of maximum degree $\Delta = 4$, the maximal energy tree has as many as possible 2-branches. The maximal energy tree is the graph T_b if $t = 4$, and the graph T_a otherwise, where $t = n + 4 - 4\Delta$.

Proof. By Eqs. (2), (3), (4) and (5), we have
\[
E(T_a) - E(T_b) = \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{m^+(T_a,x) - m^+(T_b,x)}{m^+(T_b,x)}\right) dx
\]
\[= \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{(\Delta - 2)x^6(x^2 - (\Delta - 2))}{B_1 + B_2 \frac{m^+(P_{t-4},x)}{m^+(P_{t-3},x)}}\right) dx. \tag{7}\]

We first consider the case that t is odd and $t \geq 5$. In the proof of Theorem 3.2, we know that the function $\frac{1}{x^2} \log \left(1 + \frac{m^+(T_a,x) - m^+(T_b,x)}{m^+(T_b,x)}\right)$ is uniformly convergent. Therefore, by Eq. (7) and Lemma 3.5, we have
\[
E(T_a) - E(T_b) > \frac{2}{\pi} \int_{\sqrt{2}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 2)}{B_1 + B_2 \frac{m^+(P_{t-4},x)}{1 + \sqrt{1 + 4x^2}}}
ight) dx
\]
\[> \frac{2}{\pi} \cdot 0.02088 > 0. \]

If t is even, we want to find t and x satisfying that
\[
\frac{m^+(P_{t-4},x)}{m^+(P_{t-3},x)} < \frac{2}{-1 + \sqrt{1 + 4x^2}}. \tag{8}\]

It is equivalent to solve
\[
\frac{\lambda_1^{t-3} - \lambda_2^{t-3}}{\lambda_1^{t-2} - \lambda_2^{t-2}} < -\frac{1}{\lambda_2},
\]
which means to solve
\[
\left(\frac{\lambda_1}{-\lambda_2}\right)^{t-3} > -2\lambda_2,
\]
that is
\[
\left(\frac{1 + \sqrt{1 + 4x^2}}{2x}\right)^{2t-6} > \sqrt{1 + 4x^2} - 1.
\]
Thus,
\[2t - 6 > \log_{1 + \sqrt{1 + 4x^2}}(\sqrt{1 + 4x^2} - 1). \]

Since for \(x \in (0, +\infty) \), \(\frac{1 + \sqrt{1 + 4x^2}}{2x} \) is decreasing and \(\sqrt{1 + 4x^2} - 1 \) is increasing, we have that \(\log_{1 + \sqrt{1 + 4x^2}}(\sqrt{1 + 4x^2} - 1) \) is increasing. Thus, if \(x \in [\sqrt{2}, 5] \), then
\[
\log_{1 + \sqrt{1 + 4x^2}}(\sqrt{1 + 4x^2} - 1) \leq \log_{10}(\sqrt{101} - 1) < 23.
\]

Therefore, when \(t \geq 15 \), i.e., \(2t - 6 > 23 \), we have that Ineq. (8) holds for \(x \in [\sqrt{2}, 5] \).

Now we calculate the difference of \(E(T_a) \) and \(E(T_b) \). When \(t \) is even and \(t \geq 15 \), from Eq. (7), we have
\[
E(T_a) - E(T_b) > \frac{2}{\pi} \int_{\sqrt{2}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 2)}{B_1 + B_2} \right) dx + \frac{2}{\pi} \int_{5}^{\sqrt{2}} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 2)}{B_1 + B_2 - \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx
\]
\[
+ \frac{2}{\pi} \int_{0}^{\sqrt{2}} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 2)}{B_1 + B_2 - 1 + \sqrt{1 + 4x^2}} \right) dx
\]
\[
> \frac{2}{\pi} \cdot 0.003099 > 0.
\]

For \(t = 3 \) and any even \(t \) satisfying \(4 \leq t \leq 14 \), by comparing the energies of the two graphs directly by computer program, we get that \(E(T_a) < E(T_b) \) for \(t = 4 \), and \(E(T_a) > E(T_b) \) for other cases.

The proof is thus complete.

The following theorem gives the result for the cases of \(\Delta = 5, 6, 7 \).

Theorem 3.7 For trees with \(n \) vertices and two vertices of maximum degree \(\Delta \), let \(t = n - 4\Delta + 4 \geq 3 \). Then

(i) for \(\Delta = 5 \), the maximal energy tree is the graph \(T_a \) if \(t \) is odd and \(3 \leq t \leq 89 \), and the graph \(T_b \) otherwise.

(ii) for \(\Delta = 6 \), the maximal energy tree is the graph \(T_a \) if \(t = 3, 5, 7 \), and the graph \(T_b \) otherwise.

(iii) for \(\Delta = 7 \), the maximal energy tree is the graph \(T_b \) for any \(t \geq 3 \).

Proof. In the proof of Theorem 3.2, we know that the function \(\frac{1}{x^2} \log \left(1 + \frac{m(T_a,x) - m(T_b,x)}{m(T_b,x)} \right) \) is uniformly convergent. We consider the following cases separately:

(i) \(\Delta = 5 \).
If t is even, we want to find t and x satisfying that

$$\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} < \frac{2.1}{1 + \sqrt{1 + 4x^2}}. \tag{9}$$

It is equivalent to solve

$$\frac{\lambda_1^{t-3} - \lambda_2^{t-3}}{\lambda_1^{t-2} - \lambda_2^{t-2}} < \frac{2.1}{2\lambda_1},$$

which means to solve

$$\left(\frac{\lambda_1}{-\lambda_2}\right)^{t-3} > -\frac{2.1\lambda_2 + 2\lambda_1}{0.1\lambda_1},$$

that is,

$$\left(\frac{1 + \sqrt{1 + 4x^2}}{2x}\right)^{2t-6} > 41 - \frac{42}{\sqrt{1 + 4x^2} + 1}.$$

Thus,

$$2t - 6 > \log_{\frac{1 + \sqrt{1 + 4x^2}}{2x}}\left(41 - \frac{42}{\sqrt{1 + 4x^2} + 1}\right).$$

Since for $x \in (0, +\infty)$, $\frac{1 + \sqrt{1 + 4x^2}}{2x}$ is decreasing and $-\frac{42}{\sqrt{1 + 4x^2} + 1}$ is increasing, we have that $\log_{\frac{1 + \sqrt{1 + 4x^2}}{2x}}\left(41 - \frac{42}{\sqrt{1 + 4x^2} + 1}\right)$ is increasing. Thus, if $x \in (0, \sqrt{3})$, we have

$$\log_{\frac{1 + \sqrt{1 + 4x^2}}{2x}}\left(41 - \frac{42}{\sqrt{1 + 4x^2} + 1}\right) \leq \log_{\frac{1 + \sqrt{1 + 4x^2}}{2x^2}}\left(41 - \frac{42}{1 + \sqrt{13}}\right) < 13.$$

Therefore, when $t \geq 10$, i.e., $2t - 6 > 13$, we have that Ineq. (9) holds for $x \in (0, \sqrt{3}]$. Thus, if t is even and $t \geq 10$, from Eq. (7) and Lemma 3.5, we have

$$E(T_a) - E(T_b) < \frac{2}{\pi} \int_{\sqrt{3}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}}\right) dx$$
$$+ \frac{2}{\pi} \int_{0}^{\sqrt{3}} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}}\right) dx$$
$$< \frac{2}{\pi} \cdot (-4.43 \times 10^{-4}) < 0.$$

If t is odd, we want to find t and x satisfying that

$$\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} > 1.99 \frac{1 + \sqrt{1 + 4x^2}}{1 + x^2}, \tag{10}$$

that is

$$2t - 6 > \log_{\frac{1 + \sqrt{1 + 4x^2}}{2x}}\left(399 - \frac{398}{\sqrt{1 + 4x^2} + 1}\right).$$

Since for $x \in (0, +\infty)$, $\log_{\frac{1 + \sqrt{1 + 4x^2}}{2x}}\left(399 - \frac{398}{\sqrt{1 + 4x^2} + 1}\right)$ is increasing, we have that if $x \in [\sqrt{3}, 390]$,

$$\log_{\frac{1 + \sqrt{1 + 4x^2}}{2x}}\left(399 - \frac{398}{\sqrt{1 + 4x^2} + 1}\right) < 4671.$$
Therefore, for $t \geq 2339$, i.e., $2t - 6 \geq 4671$, we have that Ineq. (10) holds for $x \in [\sqrt{3}, 390]$. Thus, if t is odd and $t \geq 2339$, from Eq. (7) and Lemma 3.5, we have

$$E(T_a) - E(T_b) < \frac{2}{\pi} \int_{\sqrt{3}}^{\infty} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{1.99}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$+ \frac{2}{\pi} \int_{0}^{\sqrt{3}} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$+ \frac{2}{\pi} \int_{0}^{390} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$< \frac{2}{\pi} \cdot (-6.66 \times 10^{-6}) < 0.$$

For any even t satisfying that $4 \leq t \leq 8$ and any odd t satisfying that $3 \leq t \leq 2337$, by comparing the energies of the two graphs directly by matlab program, we get that $E(T_a) > E(T_b)$ for any odd t satisfying $3 \leq t \leq 89$, and $E(T_a) < E(T_b)$ for the other cases.

(ii) $\Delta = 6.$

If t is even and $t \geq 4$, from Eq. (7) and Lemma 3.5, we have

$$E(T_a) - E(T_b) < \frac{2}{\pi} \int_{2}^{\infty} \frac{1}{x^2} \log \left(1 + \frac{4x^6(x^2 - 4)}{B_1 + B_2 \frac{1}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$+ \frac{2}{\pi} \int_{0}^{2} \frac{1}{x^2} \log \left(1 + \frac{4x^6(x^2 - 4)}{B_1 + B_2} \right) dx$$

$$< \frac{2}{\pi} \cdot (-0.02027) < 0.$$

If t is odd, similar to the proof in (i), we can show that when $t \geq 27$ and $x \in [2, 22]$, the following inequality holds:

$$\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} > \frac{1}{1 + \sqrt{1 + 4x^2}}.$$

Hence, if t is odd and $t \geq 27$, we have

$$E(T_a) - E(T_b) < \frac{2}{\pi} \int_{22}^{\infty} \frac{1}{x^2} \log \left(1 + \frac{4x^6(x^2 - 4)}{B_1 + B_2 \frac{1}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$+ \frac{2}{\pi} \int_{0}^{22} \frac{1}{x^2} \log \left(1 + \frac{4x^6(x^2 - 4)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$< \frac{2}{\pi} \cdot (-2.56 \times 10^{-4}) < 0.$$
For any odd \(t \) satisfying that \(3 \leq t \leq 25 \), by comparing the energies of the two graphs directly by matlab programm, we get that \(E(T_a) > E(T_b) \) for \(t = 3, 5, 7 \), and \(E(T_a) < E(T_b) \) for the other cases.

(iii) \(\Delta = 7 \).

If \(t \) is even and \(t \geq 4 \), by the same method as used in (ii), we get that \(E(T_a) - E(T_b) < \frac{2}{\pi} \cdot (-0.04445) < 0 \).

If \(t \) is odd and \(t \geq 5 \), we have that

\[
E(T_a) - E(T_b) < \frac{2}{\pi} \int_0^{\frac{5}{\sqrt{5}}} \frac{dx}{x^2} \log \left(1 + \frac{5x^6(x^2 - 5)}{B_1 + B_2 \frac{1}{1+x^2}} \right)
\]

\[
+ \frac{2}{\pi} \int_{\frac{5}{\sqrt{5}}}^{+\infty} \frac{dx}{x^2} \log \left(1 + \frac{5x^6(x^2 - 5)}{B_1 + B_2 \frac{2}{1+\sqrt{1+4x^2}}} \right)
\]

\[
< \frac{2}{\pi} \cdot (-0.01031) < 0.
\]

For \(t = 3 \), we can compare the energies of the two graphs directly by matlab programm and get that \(E(T_a) < E(T_b) \).

The proof is now complete.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008.

[2] C.A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, Proc, Cambridge Phil. Soc. 36 (1940), 201–203.

[3] C.A. Coulson and J. Jacobs, Conjugation across a single bond, J. Chem. Soc. (1949), 2805–2812.

[4] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs–Theory and Application, third ed., Johann Ambrosius Barth Verlag, Heidelberg, 1995.

[5] I. Gutman, Acyclic systems with extremal Hückel \(\pi \)-electron energy, Theoret. Chim. Acta (Berlin) 45 (1977), 79–87.

[6] I. Gutman, The energy of a graph, Ber. Math. -Statist. Sekt. Forschungszentrum Graz 103 (1978), 1–22.
[7] I. Gutman, X. Li, J. Zhang, Graph Energy, in: M. Dehmer, F. Emmert-Streib (Eds.), *Analysis of Complex Networks: From Biology to Linguistics*, Wiley-VCH Verlag, Weinheim (2009), 145–174.

[8] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, *Springer, Berlin*, 1986.

[9] B. Huo, J. Ji and X. Li, Note on unicyclic graphs with given number of pendent vertices and minimal energy, *Linear Algebra Appl.* **433** (2010), 1381–1387.

[10] B. Huo, J. Ji and X. Li, Solutions to unsolved problems on the minimal energies of two classes of graphs, *MATCH Commun. Math. Comput. Chem.* **66(3)** (2011), 943–958.

[11] B. Huo, J. Ji, X. Li and Y. Shi, Complete solution to a conjecture on the fourth maximal energy tree, *MATCH Commun. Math. Comput. Chem.* **66(3)** (2011), 903–912.

[12] B. Huo, J. Ji, X. Li and Y. Shi, Solution to a conjecture on the maximal energy of bipartite bicyclic graphs, *Linear Algebra Appl.*, doi:10.1016/j.laa.2011.02.001.

[13] B. Huo, X. Li and Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs, *Linear Algebra Appl.* **434** (2011), 1370–1377.

[14] B. Huo, X. Li and Y. Shi, Complete solution to a conjecture on the maximal energy of uncicyclic graphs, *European J. Combin.* **32** (2011), 662–673.

[15] B. Huo, X. Li, Y. Shi and L. Wang, Determining the conjugated trees with the third through the sixth minimal energies, *MATCH Commun. Math. Comput. Chem.* **65** (2011), 521–532.

[16] X. Li, X. Yao, J. Zhang and I. Gutman, Maximum energy trees with two maximum degree vertices, *J. Math. Chem.* **45** (2009), 962–973.

[17] W. Lin, X. Guo and H. Li, On the extremal energies of trees with a given maximum degree, *MATCH Commun. Math. Comput. Chem.* **54(2)** (2005), 363–378.

[18] B.J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies, *J. Chen. Phys.* **54** (1971), 640–643.

[19] X. Yao, Maximum energy trees with one maximum and one second maximum degree vertex, *MATCH Commun. Math. Comput. Chem.* **64(1)** (2010), 217–230.

[20] V.A. Zorich, Mathematical Analysis, *MCCME, Moscow*, 2002.