Case Report

Spinal intradural solitary fibrous tumor/hemangiopericytoma with intramedullary invasion mimicking a hemangioblastoma

Shanta Thapa, Hitoshi Yamahata, Tomohisa Okada, Masanori Yonenaga, Madan Bajagain, Ryutaro Makino, Ryosuke Hanaya

Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.

E-mail: *Shanta Thapa - tsanta19@gmail.com; Hitoshi Yamahata - yamahatad3@gmail.com; Tomohisa Okada - okatomo3722@gmail.com; Masanori Yonenaga - h04m107935@gmail.com; Madan Bajagain - madan.bajagain3@gmail.com; Ryutaro Makino - 775sen2014@gmail.com; Ryosuke Hanaya - hanaya@m2.kufm.kagoshima-u.ac.jp

*Corresponding author:
Shanta Thapa,
Department of Neurosurgery,
Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.

Received : 20 July 2022
Accepted : 29 August 2022
Published : 30 September 2022

DOI
10.25259/SNI_655_2022

Quick Response Code:

ABSTRACT

Background: Solitary fibrous tumor/hemangiopericytomas (SFT/HPCs) are rare mesenchymal tumors of nonmeningothelial origin that comprises <1% of all central nervous system tumors.

Case Description: A 45-year-old male presented with sleep apnea (apnea-hypopnea index was 17.1 events/hour) and dysesthesias of the right upper and lower extremities. The magnetic resonance demonstrated a heterogeneous intradural extra-axial C1 mass with syringobulbia and syringomyelia. The right vertebral angiography revealed a hypervascular mass (i.e., intense tumor staining). With the preoperative diagnosis of a spinal hemangioblastoma, the patient underwent tumor removal. However, intraoperative findings demonstrated that the ventral component of the tumor was intramedullary without a dural attachment. Further, the histological diagnosis was consistent with SFT/HPC (HPC phenotype). The postoperative course was uneventful, and the patient's symptoms and the syrinxes spontaneously regressed.

Conclusion: A 45-year-old male presented a rare spinal intradural lesion at C1 appeared to be a spinal hemangioblastoma, but proved to be SFT/HPC (HPC phenotype) with intramedullary invasion.

Keywords: Hemangioblastoma, Hemangiopericytoma, Intramedullary invasion, Solitary fibrous tumor

INTRODUCTION

Hemangiopericytoma (HPC) and solitary fibrous tumor (SFT) are rare intradural mesenchymal tumors that are difficult to differentiate from meningiomas, schwannomas, ependymomas, astrocytomas, and hemangioblastomas, and constitute <1% of all central nervous system (CNS) tumors. Although SFTs are generally considered benign and HPCs are more malignant, in 2016, the World Health Organization (WHO) combined these two as they share common "inversions" at the genetic site 12q13 (i.e., leading to STAT6 nuclear expression). Here, a 45-year-old male presented with a C1 intradural lesion documented on magnetic resonance (MR) with accompanying syringobulbia/syringomyelia that proved to be intramedullary in location and histologically consistent with a SFT/HPC (HPC phenotype).
CASE REPORT

Clinical presentation

A 45-year-old male presented with numbness in his right forearm, hand, and leg of 2 months’ duration. He was found to have sleep apnea (i.e., polysomnography [PSG] showed apnea-hypopnea index [AHI] of 17.1 events/hour [normal range: <5/h]) and a history of hypertension, hypercholesterolemia, asthma, and a lumbar disc herniation. On examination, he had dysesthesias in the right occipital region, the right C5–C7 distributions, the medial right lower leg, and the medial sole of the foot.

MR evaluation

The cervical MR imaging (MRI) revealed a heterogeneously enhancing right-sided dorsal intradural/extradural mass with pial/subpial invasion most consistent with a spinal hemangioblastoma at the C1 level. It was isointense on T1 MR and moderately hyperintense on T2 MR studies; flow voids surrounded the tumor [Figure 1]. There was accompanying syringomyelia and syringobulbia, and there was no enhancement of the cyst/syrinx walls [Figure 1]. The right vertebral angiography documented a hypervascular C1 lesion fed by the C1/C2 radicular arteries [Figure 2].

Surgery

A suboccipital craniotomy, with laminectomy of the atlas, and cephalad laminotomy of C2 (C0-C2) were performed utilizing neurophysiological monitoring. Once the dura was opened, a bright red vascular lesion was identified on the dorsal aspect of the cord. However, the tumor's ventral component was intramedullary in location. Once the pial feeding vessels were coagulated, the tumor was circumferentially separated and resected en bloc [Figure 3].

Histopathology

Histopathology confirmed that the tumor was a WHO Grade II SFT/HPC (HPC phenotype). It demonstrated round/spindle cell proliferation and compact chromatin-stained nuclei that were relatively uniform without mitotic figures (i.e., consistent with a benign lesion). Immunohistochemistry was positive for CD34 and CD31 and negative for Bcl-2; the Ki-67 index was 2%. In addition, many small and large blood vessels with characteristic Staghorn vasculature were evident throughout [Figure 4].

Postoperative course

Postoperatively, the numbness of the right upper and lower extremities improved. The postoperative PSG showed...
improvement as his AHI decreased to 0.4 events/h, and his dysphagia disappeared. No further radiation was scheduled due to the complete tumor excision. Eight years later, he has exhibited no tumor recurrence [Figure 5].

DISCUSSION

Case summary

SFT/HPC, nonmeningothelial mesenchymal tumors that are rarely intradural/extramedullary account for <1% of all CNS tumors [Table 1].[^1] Here, the MRI revealed a well-demarcated and intensely enhancing mass on the dorsal surface of the

Table 1: Summary of spinal intradural SFT/HPC with subpial invasion in the literature.

Characteristics	n
Total patients[^1-8]	34
Age (years)	
Mean	48.1
Range	15–83
Sex	
Male	21
Female	13
Original diagnosis[^1-8]	
SFT	23
HPC	11
Location[^1-8]	
Cervical	12
Cervicothoracic	2
Thoracic	18
Lumbar	2
Preoperative diagnosis[^1-8]	
Meningioma	7
Schwannoma	6
Hemangioblastoma	5
Ependymoma	3
Neurofibroma	3
Astrocytoma	2
Others	7

HPC: Hemangiopericytoma, N: Total number of patients, SFT: Solitary fibrous tumor

[^1]: [3]
cord surrounded by vascular flow voids (i.e., hypervascular on vertebral angiogram) with accompanying syringobulbia/ syringomyelia prompting the preoperative diagnosis of a hemangioblastoma.[4] However, at surgery, this 45-year-old male's C1 lesion was both intradural and intramedullary (i.e., subpial invasion), and pathologically proved to be a SFT/HPC (HPC phenotype).

Literature summary

We found 34 cases of SFT/HPC cases (i.e., including this case) in our review of case studies from the literature [Supplemental Table 1].[1-8] Patients averaged 48.1 years of age, and there was a 1.6:1 male-to-female ratio [Table 1].[1-8] Tumors were typically located in the lower cervical region followed by the upper and midthoracic regions, but were only rarely encountered in the lumbar spine [Figure 6]. T1 HPC: Hemangiopericytoma, MRI: Magnetic resonance imaging, SFT: Solitary fibrous tumor, WI: Weighted image

MR findings for SFT/HPC were nonspecific. However, the hypointensity on T2 MR best correlated with the collagen-rich content, hypocellularity, and calcification of the SFT [Table 2].[2] The additional findings of syrinx/edema in the spinal cord were also common with intradural SFT/HPC and subpial invasion [Table 2].

Treatment and long-term prognosis

Following WHO 2016 guidelines, gross total resection (GTR) with radiotherapy is the mainstay for the treatment of the CNS SFT/HPC that typically result in good outcomes [Table 3].[3] In contrast subtotal resections usually have high recurrence and metastasis rate and are fatal.[7,8] Due to paucity of strong evidence, the role of postoperative radiotherapy in recurrence-

Table 2: Radiological characteristics of the spinal intradural SFT/HPC with subpial invasion reported in the literature.

MRI	SFT	HPC	SFT/HPC			
	T1WI	T2WI	T1WI	T2WI	T1WI	T2WI
Isointense (%)	69.6	0	100	18.2	79.4	5.9
Hypointense (%)	26.1	82.6	0	9.1	17.7	58.8
Hyperintense (%)	4.3	13	0	72.7	2.9	32.4
Syrinx/edema (%)	8.7/69.6	27.3/36.4	14.7/58.8			
Homogeneous enhancement (%)	87	63	79.4			

0 2 4 6 8

Figure 5: The postoperative T2-weighted magnetic resonance imaging 6 years after the operation shows complete tumor resection with a resolution of syringobulbia and syringomyelia.

Figure 6: Anatomic location of the tumor. The tumor was most commonly located in the thoracic region followed by the cervical and lumbar levels.

Figure 7: Anatomic location of the tumor. The tumor was most commonly located in the thoracic region followed by the cervical and lumbar levels.
free survival is yet to be established.[2,5,6] Our patient, GTR was made possible by a clear plane between the tumor and cord, allowing for the 8-year follow-up without tumor recurrence.

CONCLUSION

Here, we reported a 45-year-old male with a C1 spinal intradural SFT/HPC (HPC phenotype) with an intramedullary invasion that resulted in MR-documented syringomyelia and syringobulbia. Following GTR, the patient remained asymptomatic 8 years later.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Bisceglia M, Galliani C, Giannatempo G, Lauriola W, Bianco M, D’Angelo V, et al. Solitary fibrous tumor of the central nervous system: A 15-year literature survey of 220 cases (August 1996-July 2011). Adv Anat Pathol 2011;18:356-92.
2. Bruder M, Tews D, Mittelbronn M, Capper D, Seifert V, Marquardt G. Intramedullary solitary fibrous tumor—a benign form of hemangiopericytoma? Case report and review of the literature. World Neurosurg 2015;84:e7-12.
3. Giannini C, Rushing E, Hainfellner J, Bouvier C, Figarella-Branger D, von Deimling A, et al. Solitary fibrous tumor/hemangiopericytoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. WHO Classification of Tumours of the Central Nervous System. 4th ed. Lyon, France: IARC; 2016. p. 249-54.
4. Jankovic D, Hanissian A, Rotim K, Splavski B, Arnaudovic KL. Novel clinical insights into spinal hemangioblastoma in adults: A systematic review. World Neurosurg 2021;158:1-10.
5. Liu HG, Yang AC, Chen N, Yang J, Qiu XG, Zhang JG. Hemangiopericytomas in the spine: Clinical features, classification, treatment, and long-term follow-up in 26 patients. Neurosurgery 2013;72:16-24; discussion 24.
6. Türk CÇ, Kara NN, Suren D, Özdöl Ç, Gediz T, Yıldız S. Distinctive characteristic features of intramedullary hemangiopericytomas. Asian Spine J 2015;9:522-8.
7. Wang J, Zhao K, Han L, Jiao L, Liu W, Xu Y, et al. Solitary fibrous tumor/hemangiopericytoma of the spinal cord: A retrospective single-center study of 16 cases. World Neurosurg 2019;123:e629-38.
8. Yi X, Xiao D, He Y, Yin H, Gong G, Long X, et al. Spinal solitary fibrous tumor/hemangiopericytoma: A clinicopathologic and radiologic analysis of eleven cases. World Neurosurg 2017;104:318-29.
| No | Author | Year | Age | Sex | Phenotype | Location | Treatment | Recurrence | FU month | Preoperative diagnosis | Angio-gram | MRI T1WI | MRI T2WI | MRI Gd-DTPA | MRI remark |
|----|--------|------|-----|-----|-----------|----------|-----------|------------|----------|------------------------|-------------|----------|----------|------------|------------|
| 1 | Kanahara | 1999 | 62 | M | SFT | C6-C7 | NA | NA | NA | NA | NA | Hypo | Hypo | Marginally enhanced Edema |
| 2 | Mordani | 2000 | 33 | M | SFT | C5 | GTR | No | 18 | Schwannoma, neurofibroma, meningioma, astrocytoma, ependymoma | NA | Hypo | Iso | Heterogeneous Edema |
| 3 | Kawamura | 2004 | 64 | M | SFT | T2-T3 | STR | No | 6 | Schwannoma, neurofibroma, meningioma, astrocytoma, ependymoma | NA | Hypo | Hypo | Homogeneous Edema |
| 4 | Bohinski | 2004 | 49 | F | SFT | C4 | GTR | No | 10 | Schwannoma, neurofibroma, meningioma, astrocytoma, ependymoma | NA | Iso | Hypo | Homogeneous Edema |
| 5 | Jallo | 2005 | 59 | M | SFT | T5 | GTR | No | 56 | Intradural tumor | NA | Iso | Hypo | Homogeneous NA |
| 6 | Jallo | 2005 | 37 | F | SFT | T2-3 | GTR | No | 60 | Intradural tumor | NA | Iso | Hypo | Homogeneous NA |
| 7 | Jallo | 2005 | 41 | M | SFT | C6-C7 | GTR | No | 41 | Intradural tumor | NA | Iso | Hypo | Homogeneous Edema |
| 8 | Jallo | 2005 | 17 | M | SFT | T5-T6 | GTR | No | 18 | Intradural tumor | NA | Iso | Hypo | Homogeneous Edema |
| 9 | Ogawa | 2005 | 63 | F | SFT | T11 | GTR | No | 18 | NA | NA | Iso | Hypo | Homogeneous Edema |
| 10 | Ogunbbo | 2005 | 53 | M | SFT | C3-C4 | GTR | NA | NA | Hemangioblastoma | NA | Iso | Hypo | Homogeneous Syrinx |
| 11 | Kashiwazaki | 2007 | 31 | M | HPC | T4-T6 | GTR | No | 36 | Hemangioblastoma, subpial schwannoma | NA | Iso | Hyper | Heterogeneous Edema flow void |
| 12 | Endo | 2008 | 62 | M | HPC | L1 | GTR | NA | 48 days | Primary neurogenic tumor, meningioma Schwannoma, neurofibroma, meningioma, astrocytoma, ependymoma | NA | Iso | Hyper | Homogeneous Edema |
| 13 | Chou | 2009 | 80 | M | HPC | T10 | GTR | No | 36 | Primary neurogenic tumor, meningioma Schwannoma, neurofibroma, meningioma, astrocytoma, ependymoma | NA | Iso | Hyper | Homogeneous Edema |
| 14 | Ishii | 2009 | 63 | F | SFT | C5 | GTR | No | 14 | Schwannoma, neurofibroma, meningioma, astrocytoma, ependymoma | NA | Iso | Hyper | Homogeneous Edema |
Supplemental Table 1 (Continued)

No.	Author	Year/Year	Age	Sex	Phenotype	Location	Treatment	Recurrence	FU	Preoperative diagnosis	Angio-gram	MRI T1WI	MRI T2WI	GAD-TPA	MRI remark	Remark
15	Ciappetta	2010	75	F	SFT	T6-T7	GTR	No	24	NA	15	Hypo	Iso	Hypo	Homogenous	Edema
16	Ackerman	2011	58	M	HPC	T10	GTR	No	24	NA	16	Hypo	Iso	Hypo	Homogenous	Edema
17	Moscovici	2011	20	F	SFT	C4-C7	GTR	No	12	NA	17	Hypo	Iso	Hypo	Homogenous	Edema
18	Mariniello	2012	67	M	SFT	C7-T1	GTR	No	12	NA	18	Hypo	Iso	Hypo	Homogenous	Edema
19	Ackerman	2011	67	M	HPC	T5-T6	GTR	No	24	NA	19	Hypo	Iso	Hypo	Homogenous	Edema
20	Liu/2013	2013	58	M	Meningioma, schwannoma, neurofibroma, ependymoma	No	20	Iso	Hypo	Homogeneous, Edema						
21	Liu/2013	2013	32	F	HPC	T5-T6	GTR+RT	No	6	NA	21	Hypo	Iso	Hypo	Homogenous	Edema
22	Moscovici	2011	67	M	SFT	C4-C7	GTR	No	12	NA	22	Hypo	Iso	Hypo	Homogenous	Edema
23	Robert	2014	49	F	HPC	T9-T10	GTR	No	6	NA	23	Hypo	Iso	Hypo	Homogenous	Edema
24	Tur/2015	2015	19	F	HPC	C2	GTR	No	6	NA	24	Hypo	Iso	Hypo	Homogenous	Edema
25	Tur/2015	2015	15	F	HPC	C7-T1	GTR	No	6	NA	25	Hypo	Iso	Hypo	Homogenous	Edema
26	Bruder	2015	83	M	SFT	T8-T9	GTR	No	8	Meningioma	26	Hypo	Iso	Hypo	Homogenous	Edema
27	Walker	2015	47	F	SFT	L1	GTR	No	12	Ependyma, cavernoma	27	Hypo	Iso	Hyper	Heterogeneous	Edema
28	Wang/2016	2015	31	M	HPC	T9-T10	GTR	No	6	Meningioma	28	Hypo	Iso	Hyper	Heterogeneous	Edema
29	Y 2019	2019	35	F	HPC	C4-C7	GTR	No	6	Meningioma	29	Hypo	Iso	Hyper	Heterogeneous	Edema
30	Chungyang	2016	80	F	HPC	T4-T5	GTR	No	10	NA	30	Hypo	Iso	Hyper	Homogeneous	Edema
31	Rodriguez-Mena	2016	30	M	SFT	C2-C3	GTR	No	24	NA	31	Hypo	Iso	Hyper	Homogeneous	Edema
32	Rodriguez-Mena	2016	41	M	SFT	C5-C7	GTR	No	36	NA	32	Hypo	Iso	Hyper	Homogeneous	Edema
33	Yokoyama	2020	47	F	SFT	T1-T2	GTR	No	6	Meningioma	33	Hypo	Iso	Hyper	Homogeneous	Edema
34	Present case	2021	31	F	SFT	C6-C7	GTR	No	6	Meningioma	34	Hypo	Iso	Hyper	Homogeneous	Edema

HPC, hemangiopericytoma; GTR, gross total resection; MRI, magnetic resonance imaging; NA, not available; OP, operative; SFT, solitary fibrous tumor; WI, weighted imaging; CT, computed tomography; Angio-gram, angiogram.