Research Article

An optimized method for counting dopaminergic neurons in zebrafish

Hideaki Matsui1,2*, Atsushi Sugie1,2

1 Department of Neuroscience of disease, Center for Transdisciplinary Research, Niigata University, Niigata-shi, Niigata, Japan, 2 Brain Research Institute, Niigata University, Niigata-shi, Niigata, Japan

* hide0729@bri.niigata-u.ac.jp

Abstract

In recent years, considerable effort has been devoted to the development of a fish model for Parkinson's disease (PD) to examine the pathological mechanisms of neurodegeneration. To effectively evaluate PD pathology, the ability to accurately and reliably count dopaminergic neurons is important. However, there is currently no such standardized method. Due to the relatively small number of dopaminergic neurons in fish, stereological estimation would not be suitable. In addition, serial sectioning requires proficiency to not lose any sections, and it permits double counting due to the large size of some of the dopaminergic neurons. In this study, we report an optimized protocol for staining dopaminergic neurons in zebrafish and provide a reliable counting method. Finally, using our optimized protocol, we confirmed that administration of 6-hydroxydopamine (a neurotoxin) or the deletion of the PINK1 gene (one of the causative genes of familial PD) in zebrafish caused significant reduction in the number of dopaminergic and noradrenergic neurons. In summary, this method will serve as an important tool for the appropriate evaluation and establishment of fish PD models.

Introduction

Parkinson's disease (PD) is characterized by movement disorders, degeneration of the dopaminergic neurons, and inclusion bodies called Lewy bodies [1]. Various animal models have been used to investigate the mechanisms of PD [2]; however, the pathophysiology of this disease remains largely unknown, limiting the development of therapeutic treatment strategies. Small fish, including zebrafish and medaka, have been used as animal models in basic science research because of their small body size, large egg production, rapid development, low husbandry costs, and transparency during embryogenesis [3,4]. Current advances in genetic engineering and in disease genetics have increased the utility of these fish to study neurological diseases such as PD [5–8].

We and others have previously identified networks of dopamine neurons in both zebrafish [9] and medaka [10] that possess structures and functions that are conserved among vertebrates [11]. For example, posterior tubercular/hypothalamic dopamine neurons in teleosts project to the spinal cord and require transcriptional factors similarly to the A11 neurons in mice [12–16]. In addition, similar to the mammalian A12 neurons, teleost dopaminergic neurons in the
anteroventral part of the preoptic area control the release of luteinizing hormone from the antero-
rior pituitary [17,18]. Dopaminergic neurons in the teleost prethalamic area appear to be homo-
logues of A13 dopaminergic neurons in mammals [19]. Importantly, the cluster of
dopaminergic neurons in the teleost posterior tuberculum may contain A9-like neurons found
in the substantia nigra pars compacta (SNC) of mammals. Although there are far fewer dopami-
nergic neurons in the zebrafish compared to mice, (mouse substantia nigra: 8,000–12,000 [20];
zebrafish DC2 and DC4: approximately 25), the teleost dopaminergic neurons in the posterior
tuberculum exhibit similar cellular vulnerability as the mammalian A9 neurons [21,22]; may
contribute to spontaneous swimming movements [23]; and some project axons to the striatum
[16,24]. Furthermore, two transcriptional factors used to identify midbrain dopaminergic neu-
rons in mammals, Pitx3 and Lmx1b, are also expressed in the fish diencephalon [25]. Similarly,
Nurr1, required for differentiation of midbrain dopaminergic neurons in mammals, is respon-
sible for the expression of tyrosine hydroxylase (TH) in the teleost dopaminergic neurons
within the posterior tuberculum [26]. Finally, noradrenergic neurons are found in the locus
coeruleus and the caudal medulla in both teleosts and mammals [27], and the noradrenergic
neurons in the locus coeruleus are vulnerable to cell death in PD patients and in various PD
models [11,28–30]. In summary, the many similarities between fish and mammalian dopami-
nergic neurons make fish a potentially useful model for elucidating PD pathogenesis.

To establish and evaluate PD models, it would be important to be able to accurately count
the dopaminergic neurons in the posterior tuberculum and/or noradrenergic neurons in the
locus coeruleus. There have been two methods reported for counting the dopaminergic neu-
rons in the posterior tuberculum. The first method is to obtain serial paraffin sections, perform
immunohistochemistry to label dopaminergic and noradrenergic neurons, and then to count
the total number of TH cells [5,6,8,10]. However, there are several technical difficulties associ-
ated with this protocol, restricting its application: 1) the total number of TH neurons in the
posterior tuberculum or the locus coeruleus is relatively small [10], precluding stereological
estimation; 2) the use of paraffin or frozen sections results in double counting due to the large
size of these neurons [10]; and 3) cutting perfect serial sections without losing any sections
requires a high level of technical skill. The second method involves whole mount staining of
the dopaminergic neurons [7,31], which works in larval fish but not in adult fish. Considering
that PD is an age-dependent disease, the ability to evaluate target neurons in adult fish would
be necessary.

Here, we propose a reliable and easy method for counting dopaminergic neurons in the
adult zebrafish posterior tuberculum by using thick microsliced sections, enhanced antigen
retrieval, and confocal microscopy. This method allows for the proper counting of dopaminer-
gic neurons without the issue of double counting, and would be useful in the development of
future PD fish models.

Materials and methods

Ethics statement

All the animal experiments were conducted in compliance with the protocol, which was
reviewed and approved by the Institutional Animal Care and Use Committee and by the Presi-
dent of Niigata University (Permit Number: #28 Niigata Univ. Res.367-1 and #28 Niigata
Univ. Res.483-1).

Zebrafish maintenance

Zebrafish (AB) were raised and maintained under a 14-h light/10-h dark cycle at 28°C accord-
ing to standard protocols [32,33]. From 5 days post-fertilization, fish were fed brine shrimp at
9:00 a.m. and powdered feed (Kyorin, Himeji, Japan) at 12:00 p.m. Only male fish were used for this study.

Microinjections

Glass capillaries (GD-1; Narishige, Tokyo, Japan) were pulled into microinjection needles by using a vertical needle puller (PC-10; Narishige). These needles were used in an IM-31 microinjector (Narishige) equipped with a YOU-1 micromanipulator (Narishige). To generate PINK1-deficient zebrafish, guide RNA (target sequence: CCGGCCGTCACCCGTTC TTCAGG, 25 ng/μl) and Cas9 protein (0.6 μg/μl; New England Biolabs, Ipswich, MA) were mixed with phenol red (2%) and co-injected into one-cell stage fish embryos according to previous reports [34,35]. The F1 generation and subsequent generations were genotyped using PCR (forward primer: GGTCCGTAAAAGCCTTCAGA, reverse primer: CTGGTTCTGTCCCTCTCCTG) and direct sequencing (sequencing primer: CTGGTTCTGTCCCTCTCCTG). Heterozygous mutant fish were crossed to obtain homozygous mutant (PINK1-KO) and control fish. For both genotypes, five fish per group were subjected to immunofluorescence studies at 4 months.

6-hydroxydopamine (6-OHDA) treatment

Cerebrospinal fluid (CSF) injections of 6-OHDA were performed as described previously [36]. Briefly, the micropipette for CSF injection was made from a 1-mm diameter glass capillary tube (GD-1; Narishige) using a needle puller (PC-10; Narishige). The tip of the micropipette was broken by gently pressing it against the bottom of a 1.5-ml tube. Twelve-month-old zebrafish were anesthetized with 0.02% Tricaine methanesulfonate (Sigma-Aldrich, St. Louis, MO) added to the circulating water of the breeding system. Immediately after confirming the lack of operculum movement, the fish were positioned dorsal side up on a piece of ice covered by a wiper (WYPALL X-60; Kimberly-Clark, Dallas, TX) for the procedure. The tip of the glass micropipette was positioned into the CSF between the hindbrain and the optic tectum. One microliter of a 10-mM 6-OHDA aqueous solution was then injected and the fish were brought back to an aquarium tank filled with water containing 0.1% NaCl. For the control group, vehicle solution was injected. Three days after the 6-OHDA injection, the brains were fixed and subjected to immunofluorescence. Five fish per group were used for the analysis.

Immunostaining of TH+ neurons

Adult fish were sacrificed using circulating water of the breeding system containing 0.1% Tricaine. Brains were removed, explanted, and fixed in 4% paraformaldehyde at 4°C overnight. Subsequently, specimens were embedded in 2% low-melting agarose and 200 μm sagittal or axial sections were collected using a PRO7 microslicer (Dosaka EM, Kyoto, Japan). Floating slices were incubated in 10 mM sodium citrate buffer, pH 8.5, at 80°C for 120 min. After washing in PBS with 1% TritonX-100, the sections were blocked in 2% BSA in PBS/1% TritonX-100 buffer for 30 min. These pretreated sections were incubated overnight at 4°C with a rabbit anti-TH antibody (1:500, AB152; EMD-Millipore, Billerica, MA). After washing with PBS/1% TritonX-100 buffer, the sections were incubated overnight at 4°C with anti-rabbit IgG conjugated to Alexa Fluor 594 (Life Technologies, Carlsbad, CA). The following day, sections were washed in PBS/1% TritonX-100 buffer and analyzed using the A1R+confocal microscope (Nikon, Tokyo, Japan). Ten fish were used for counting TH+ neurons in the posterior tuberculum and the locus coeruleus. Immunostaining of TH+ neurons using paraffin sections was performed according to a previously published method [10] and six fish were used for this protocol.
Statistical analysis

Data was expressed as mean ± standard error of the mean (SEM). Student’s t-test was used to test for statistical significance. Differences with p < 0.05 were considered statistically significant.

Results

Optimization of TH+ neuron staining

We used microsliced sections of agarose-embedded specimens and found that no signal could be detected when the tissue was immunostained without an antigen retrieval step. We then tested two methods for antigen retrieval using a microwave or hot water bath at 80˚C. For both protocols, the sections were immersed in 10 mM sodium citrate buffer, pH 8.5. Both methods enabled successful visualization of TH+ neurons, but the microwave method carried the risk of losing sections due to excessive heat and boiling. In contrast, the 80˚C incubation was safe, reliable, and produced transparent sections that were optimal for confocal microscopy. Thus, we decided to add the 80˚C incubation step in subsequent studies.

We identified TH+ neurons in the olfactory bulb, the telencephalon, the diencephalon, and the hindbrain of a zebrafish (Fig 1). The distribution of TH+ neurons identified by this method was similar to that reported previously in zebrafish and medaka [9,10,37]. Our data indicates that our method can successfully allow the visualization of TH+ neurons in the zebrafish brain.

![Fig 1. Identification of tyrosine hydroxylase (TH)+ neurons in sagittal sections of zebrafish brains.](https://doi.org/10.1371/journal.pone.0184363.g001)
Counting TH+ neurons in the posterior tuberculum and the locus coeruleus

Patients with PD display a reduction in the dopaminergic neurons of the SNc. We therefore counted the DC2 and DC4 dopaminergic neurons of the posterior tuberculum of zebrafish, which is thought to be equivalent in structure to the human SNc [11,38]. The antigen retrieval step increased the transparency of the sections, allowing us to obtain confocal images of 100–200-μm thick sections. Each section was analyzed from both the rostral and the caudal sides, and the same neuron was identified from both directions to prevent double counting. In this DC2 and DC4 we found 23.1 ± 0.407 neurons with large cell bodies (Fig 2, S1 Movie). We also counted 7.8 ± 0.249 TH+ noradrenergic neurons in the locus coeruleus (Fig 2). Counting TH+ neurons in the posterior tuberculum and the locus coeruleus yielded highly reproducible data.

Evaluation of dopaminergic and noradrenergic neurons in zebrafish PD models

6-OHDA is a neurotoxin for dopaminergic and noradrenergic neurons. It is taken up by the dopaminergic or noradrenergic neurons via their transporters, and has been used as a tool for producing PD-like lesions in various animal models [39,40]. We therefore administered 6-OHDA to zebrafish and examined whether our counting method was able to accurately evaluate the extent of damage in this model. We used a previously published method [36]—1 μl of 10 mM 6-OHDA or vehicle was injected into the CSF of 12-month-old zebrafish, and the fish were sacrificed 3 days later [36]. Vehicle-treated zebrafish showed no change in the numbers of dopaminergic neurons in the posterior tuberculum and noradrenergic neurons in the locus coeruleus. In contrast, there was a dramatic decline in the number of dopaminergic neurons in the posterior tuberculum and noradrenergic neurons in the locus coeruleus of 6-OHDA-treated zebrafish brains (Fig 3).

Using the CRISPR-Cas9 system, we next deleted PTEN-induced putative kinase 1 (PINK1); mutations in PINK1 have been found in patients with autosomal recessive forms of familiar PD [34,35]. We raised a mutant line having a 2-bp deletion (c.176_177del, PINK1Δ2/Δ2) in the PINK1 exon. We then compared the number of dopaminergic neurons in the posterior tuberculum and noradrenergic neurons in the locus coeruleus between homozygous mutant (PINK1-KO) and wild type zebrafish at 4 months. Both types of neurons were significantly reduced in the PINK-KO mutants, indicating that PINK1-deficiency caused PD-like neurodegeneration in zebrafish (Fig 4). Taken together, our counting method was applicable for the evaluation of both a toxin-induced PD model and a genetic PD model of zebrafish.

Discussion

In this study, we proposed a new method for counting TH+ neurons in zebrafish and demonstrated reliable counting of these neurons in the posterior tuberculum and the locus coeruleus.
Fig 2. Tyrosine hydroxylase (TH)+ neurons in the axial sections of zebrafish brains. (A) The illustration indicates the position of sectioning in panels B–E. (B–E) Immunostaining of TH using a microsliced section of 6-month-old zebrafish. Different rostro-caudal levels show the localization of TH+ dopaminergic neurons in the olfactory bulb and subpallium (B); pretectum, posterior periventricular preoptic nucleus, and suprachiasmatic nucleus (C); pretectum, posterior tuberculum, and paraventricular organ (D); and posterior recess of the diencephalic ventricle (E). TH+ noradrenergic neurons are distributed in the locus coeruleus (F). (G) The number of TH+ neurons in the posterior tuberculum (dopaminergic neurons) and the locus coeruleus (noradrenergic neurons). The bars represent SEM (n = 10). (D', F') TH immunoreactivity in a paraffin section of a 6-month-old zebrafish. (H) The counted number of TH+ neurons using paraffin sections in the posterior tuberculum (dopaminergic neurons) and the locus coeruleus (noradrenergic neurons). Bars represent the SEM (n = 6).

https://doi.org/10.1371/journal.pone.0184363.g002
Using this method, we showed a significant loss of TH⁺ neurons in these areas in both 6-OHDA-treated and PINK1-deficient (PINK1-KO) zebrafish.

In mouse models, counting dopaminergic neurons in serial sections of the SNc is laborious; therefore, stereological estimation of dopaminergic neurons has often been used [41,42]. Such estimation allows one to count only the sections at specific intervals, reducing the overall cost and labor time. *Drosophila melanogaster* has also been used as a model animal, but discrepancies in the number of TH⁺ neurons have been reported. This may be due to variability introduced by the methods used for TH⁺ staining and counting in the fly brains. Drobysheva et al., reported an optimized method for counting fly TH⁺ neurons using thick microsliced sections with agarose-embedded samples [43]. However, in zebrafish and in other fish models, there is currently no standardized method for counting TH⁺ neurons.
Recently, zebrafish and medaka have been used as animal models for PD, creating a need for a reliable method to evaluate the pathophysiology. One of the most prominent pathologies of PD is the degeneration of dopaminergic neurons in the SNc. In zebrafish and medaka, a portion of the dopaminergic neurons in the posterior tuberculum projects to the subpallium [16,24]. These dopaminergic neurons are markedly degenerated in fish that have gene mutations associated with PD [3–6] or that have been exposed to toxins reported to induce PD-like phenotypes in mammals [10,36,44]. Furthermore, ablation of these dopaminergic neurons by lasers reduces spontaneous swimming movements [23]. These findings suggest that the dopaminergic neurons in the posterior tuberculum have similar properties (i.e., target projection, vulnerability, and physiological functions) as mammalian SNc neurons.

Fig 4. Reduction of tyrosine hydroxylase (TH)+ neurons in PINK1-deficient (PINK1-KO) zebrafish. (A) Sequence information of PINK1-deficient zebrafish (c.176_177del, PINK1Δ2/Δ2). The red letter indicates the target sequence of the guide RNA, and the red square indicates the site of the 2-bp deletion. (B) Representative images of dopaminergic neurons in the posterior tuberculum and noradrenergic neurons in the locus coeruleus. Right panel: magnified pictures of the red square regions. (C) The numbers of dopaminergic neurons in the posterior tuberculum and noradrenergic neurons in the locus coeruleus were significantly decreased in PINK1-deficient zebrafish (PINK1Δ2/Δ2) (4-month-old zebrafish); n = 5 fish per group. Bars represent the SEM. *, p < 0.05, **, p < 0.01.

https://doi.org/10.1371/journal.pone.0184363.g004
PD is also characterized by movement disorders including resting tremor, muscle rigidity, and reduced movements. However, it is not easy to evaluate resting tremor or muscle rigidity in fish. One could monitor swimming behavior to assess reduction in spontaneous movement, but this assay may not be sensitive enough to detect changes. For example, the ATP13A2 mutant medaka shows degeneration of dopaminergic neurons, but does not exhibit reduced spontaneous swimming [5]. Furthermore, movement disorders of a PD patient may be detected only after the loss of 80% of the neurons in the substantia nigra [45,46]. Thus, it would be important to establish methods to analyze the degeneration of dopaminergic neurons and/or noradrenergic neurons to detect early stages of PD in fish.

Taken together, our method would be useful for the proper evaluation and establishment of zebrafish PD models, and may be applicable to other fish species such as the medaka.

Supporting information

S1 Movie. TH⁺ neurons in the serial sections of zebrafish. The movie shows serial axial sections of the TH⁺ neurons including DC2 and DC4. The movie goes from the rostral section to the caudal. (AVI)

Acknowledgments

We would like to thank Enago (www.enago.jp) for the English language review. We also thank Noriko Matsui for fish maintenance and assistance with laboratory works.

Author Contributions

Conceptualization: Hideaki Matsui.
Data curation: Hideaki Matsui.
Formal analysis: Hideaki Matsui.
Funding acquisition: Hideaki Matsui.
Investigation: Hideaki Matsui.
Methodology: Hideaki Matsui.
Project administration: Hideaki Matsui.
Resources: Hideaki Matsui.
Software: Hideaki Matsui.
Supervision: Hideaki Matsui, Atsushi Sugie.
Validation: Hideaki Matsui.
Visualization: Hideaki Matsui.
Writing – original draft: Hideaki Matsui.
Writing – review & editing: Hideaki Matsui, Atsushi Sugie.

References

1. Fahn S. Parkinsonism. Merritt’s Textbook of Neurology, ed 9. Edited by Rowland LP. 1995; pp 719–730, Baltimore, Williams & Wilkins
2. Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J. 2012; 279: 1156–1166. https://doi.org/10.1111/j.1742-4658.2012.08491.x PMID: 22251459

3. Wittbrodt J, Shima A, Schartl M. Medaka—a model organism from the far East. Nat Rev Genet. 2002; 3: 53–64. https://doi.org/10.1038/nrg704 PMID: 11823791

4. MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015; 14: 721–731. https://doi.org/10.1038/nrd4627 PMID: 26361349

5. Matsui H, Sato F, Sato S, Koike M, Taruno Y, Saiki S, et al. ATP13A2 deficiency induces a decrease in cathepsin D activity, fingerprint-like inclusion body formation, and selective degeneration of dopaminergic neurons. FEBS Lett. 2013; 587: 1316–1325. https://doi.org/10.1016/j.febslet.2013.02.046 PMID: 23499937

6. Matsui H, Gavinio R, Asano T, Uemura N, Ito H, Taniguchi Y, et al. PINK1 and Parkin complementarily protect dopaminergic neurons in vertebrates. Hum Mol Genet. 2013; 22: 2423–2434. https://doi.org/10.1093/hmg/ddt095 PMID: 23449626

7. Flinn LJ, Keating M, Bretaud S, Mortiboys H, Matsui H, De Felice E, et al. TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Ann Neurol. 2013; 74: 837–847. https://doi.org/10.1002/ana.23999 PMID: 24027110

8. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa-Fujisawa T, Matsui H, et al. Viable neuropathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015; 11: e1005065. https://doi.org/10.1371/journal.pgen.1005065 PMID: 25835295

9. Rink E, Wulliman MF. Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Brain Res Dev Brain Res. 2002; 137: 89–100. PMID: 12128258

10. Matsui H, Taniguchi Y, Inoue H, Uemura N, Yamauchi T, Takahashi R. A chemical neurotoxin, MPTP, induces Parkinson’s disease like phenotype, movement disorders and persistent loss of dopamine neurons in medaka fish. Neurosci Res. 2009; 65: 263–271. https://doi.org/10.1016/j.neures.2009.07.010 PMID: 19665499

11. Matsui H. Dopamine system, Cerebellum and Nucleus Ruber in fish and mammals. Dev Growth Differ. 15.

12. Becker T, Wulliman MF, Becker CG, Bernhardt RR, Schachner M. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol. 1997; 377: 577–595. PMID: 9007194

13. Kastenhuber E, Katochwil CF, Ryu S, Schweitzer J, Driever W. Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. J Comp Neurol. 2010; 518: 439–458. https://doi.org/10.1002/cne.22214 PMID: 20017210

14. Becker T, Wulliman MF, Becker CG, Bernhardt RR, Schachner M. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol. 1997; 377: 577–595. PMID: 9007194

15. Ray TF, Ronneberger O, Ryu S, Nitschke R, Driever W. Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat Commun. 2011; 2: 171. https://doi.org/10.1038/ncomms1171 PMID: 21266970

16. Dougherty D, Chambolle P, Thibault J, Geffard M. Existence of dopaminergic neurons in the preoptic region of the goldfish. Neurosci Lett. 1984; 48: 293–298. PMID: 6148727

17. Busby ER, Roch GJ, Sherwood NM. Endocrinology of zebrafish: a small fish with a large gene pool. In: Perry SF, Ekker M, Farrell AP, Brauner CJ, editors. Zebrafish. London: Academic; 2010. pp. 174–232.

18. Filippi A, Jainok C, Driever W. Analysis of transcriptional codes for zebrafish dopaminergic neurons reveals essential functions of Arx and Is1 in prethalamic dopaminergic neuron development. Dev Biol. 2012; 369: 133–149. https://doi.org/10.1016/j.ydbio.2012.06.010 PMID: 22728160

19. Nelson EL, Liang CL, Sinton CM, German DC. Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol. 1996; 369: 361–371. https://doi.org/10.1002/(SICI)1096-9861(19960603)369:3<361::AID-CNE3>3.0.CO;2-3 PMID: 8743418.

20. Matsui H, Gavinio R, Takahashi R, Medaka fish Parkinson’s disease model. Exp Neurobiol. 2012; 21: 94–100. https://doi.org/10.5607/en.2012.21.3.94 PMID: 23065787

21. Matsui H, Uemura N, Yamakado H, Takeda S, Takahashi R. Exploring the pathogenic mechanisms underlying Parkinson’s disease in medaka fish. J Parkinsons Dis. 2014; 4: 301–310. https://doi.org/10.3233/JPD-130289 PMID: 24366926

22. Jay M, De Faveri F, McDearmid JR. Firing dynamics and modulatory actions of supraspinal dopaminergic neurons during zebrafish locomotor behavior. Curr Biol. 2015; 25: 435–444. https://doi.org/10.1016/j.cub.2014.12.033 PMID: 26639243
24. Rink E, Wulliman MF. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. 2004; 1011: 206–220. https://doi.org/10.1016/j.brainres.2004.03.027 PMID: 15157807

25. Filippi A, Dürr K, Ryu S, Willaredt M, Holzschuh J, Driever W. Expression and function of nr4a2, imx1b, and pitx3 in zebrafish dopaminergic and noradrenergic neuronal development. BMC Dev Biol. 2007; 7: 135. https://doi.org/10.1186/1471-213X-7-135 PMID: 18053265

26. Blin M, Norton W, Bally-Cuif L, Vernier P. NR4A2 controls the differentiation of selective dopaminergic nuclei in the zebrafish brain. Mol Cell Neurosci. 2008; 39: 592–604. https://doi.org/10.1016/j.mcn.2008.08.006 PMID: 18822380

27. Meek J, Joosten HW, Hafmans TG. Distribution of noradrenaline-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol. 1993; 328: 145–160. https://doi.org/10.1002/cne.903280111 PMID: 8429126

28. Del Tredici K, Braak H. Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson's disease-related dementia. J Neurol Neurosurg Psychiatry. 2013; 84: 774–783. https://doi.org/10.1136/jnnp-2011-301817 PMID: 23064099

29. Sotiriou E, Vassilatis DK, Vila M, Stefanis L. Selective noradrenergic vulnerability in α-synuclein transgenic mice. Neurobiol Aging. 2010; 31: 2103–2114. https://doi.org/10.1016/j.neurobiolaging.2008.11.010 PMID: 19152986

30. Gupta M, Gupta BK, Thomas R, Bally-Cuif L, Vernier P. NR4A2 controls the differentiation of selective dopaminergic nuclei in the zebrafish brain. Mol Cell Neurosci. 2008; 39: 592–604. https://doi.org/10.1016/j.mcn.2008.08.006 PMID: 18822380

31. Keatinge M, Bui H, Menke A, Chen YC, Sokol AM, Bai Q, et al. Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Hum Mol Genet. 2015; 24:6640–6652. https://doi.org/10.1093/hmg/ddv369 PMID: 26376862

32. Westerfield M. The Zebrafish Book, 4th Edition. 2000. (Eugene: University of Oregon Press).

33. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995; 203: 253–310. https://doi.org/10.1002/aja.1002030302 PMID: 8589427

34. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013; 31:227–229. https://doi.org/10.1038/nbt.2501 PMID: 23360964

35. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337: 816–821. https://doi.org/10.1126/science.1225840 PMID: 22745249

36. Matsui H, Ito H, Taniguchi Y, Inoue H, Takeda S, Takahashi R. Proteasome inhibition in medaka brain induces the features of Parkinson’s disease. J Neurochem. 2010; 115: 178–187. https://doi.org/10.1111/j.1471-4159.2010.06918.x PMID: 20649841

37. Filippi A, Mahler J, Schweitzer J, Driever W. Expression of the paralogous tyrosine hydroxylase encoding genes th1 and th2 reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain. J Comp Neurol. 2010; 518: 423–438. https://doi.org/10.1002/cne.22213 PMID: 20017209

38. Matsui H. The Use of Fish Models to Study Human Neurological Disorders. Neuroscience Res. (in press)

39. Schober A. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res. 2004; 318: 215–224. https://doi.org/10.1007/s00441-004-0938-y PMID: 15503155

40. Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968; 5: 107–110. PMID: 5718510

41. West MJ, Slomianka L, Gundersen HJ. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec. 1991; 231: 482–497. https://doi.org/10.1002/ar.109231041 PMID: 1793176

42. Behrouz B, Drolet RE, Sayed ZA, Lookingland KJ, Goudreau JL. Unique responses to mitochondrial complex I inhibition in tuberoinfundibular dopamine neurons may impart resistance to toxic insult. Neuroscience. 2007; 147: 592–598. https://doi.org/10.1016/j.neuroscience.2007.05.007 PMID: 17583437

43. Drobysheva D, Ameel K, Welch B, Ellison E, Chaichana K, Hoang B, et al. An optimized method for histological detection of dopaminergic neurons in Drosophila melanogaster. J Histochem Cytochem. 2008; 56: 1049–1063. https://doi.org/10.1369/jhc.2008.951137 PMID: 18574253

44. Matsui H, Ito H, Taniguchi Y, Takeda S, Takahashi R. Ammonium chloride and tunicamycin are novel toxins for dopaminergic neurons and induce Parkinson’s disease-like phenotypes in medaka fish. J
45. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973; 20: 415–455. PMID: 4272516

46. Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol. 2010; 67:715–725. https://doi.org/10.1002/ana.21995 PMID: 20517933