Purine Phosphoribosyltransferases*

Sydney P. Craig III† and Ann E. Eakin
From the Laboratory of Molecular Parasitology and Drug Design, University of North Carolina School of Pharmacy, Chapel Hill, North Carolina 27599-7360.

Published, JBC Papers in Press, May 17, 2000, DOI 10.1074/jbc.R000002200

Purine phosphoribosyltransferases (PRTs) of microbes and mammals are enzymes that catalyze the recovery of preformed bases for use in cellular metabolism. In free living organisms, purine nucleotides can be generated via de novo synthesis, as well as by the salvage of preformed bases. In contrast, many parasitic organisms are unable to synthesize purines via de novo pathways and therefore must rely on the enzymes in salvage pathways, including PRTs, for the synthesis of purine nucleotides (1). For this reason, enzymes in salvage pathways were proposed more than 30 years ago as potential targets of therapeutic agents for the treatment of diseases caused by parasites (2).

Purine PRTs catalyze the reversible transfer of a phosphoribosyl group from phosphoribosylpyrophosphate (PRPP) to a purine base (adenine, guanine, hypoxanthine, or xanthine). For those enzymes that have been studied, the forward reaction appears to be ordered and sequential with PRPP binding first followed by the purine base (3–5). After catalysis, pyrophosphate (PPi) is released before the formation of a tight turn and an unusual non-proline cis-peptide in the human HPRT, resulting in Lesch-Nyhan syndrome, whereas a D134G mutation partially inactivates the enzyme, resulting in HPRT-catalyzed reaction.

Crystal Structures of Purine PRTs

For this review, residue numbers refer to the positions of amino acids in the human HPRT, the bacterial XRPT, or the leishmanial APRT, as these enzymes were the first of their class for which crystal structures were reported (14–16). Fig. 2 illustrates ribbon diagrams of monomers from these representative structures, although the enzymes may be functional as dimers or tetramers. All three of these enzymes possess a core domain and a 11-residue hood domain (Fig. 3). The presence of the hood domains of purine PRTs form the floor of the active sites of these enzymes. A poorly conserved hood domain contributes residues that complete the active site and participate in binding purine substrates. For HPRTs and XRPTs the amino acids that flank the active site are contributed by the hood domain, whereas for APRT activity is 1500-fold below that of HPRT (13).

Functional Roles for Conserved Amino Acids

Data reported to GenBank™ indicate that the HPRTs of distant related organisms share extensive primary sequence homology. For example, there is 41% identity for amino acids in the human and a bacterial HPRT (11). However, among well over 20 HPRT sequences reported there are only 9 invariant amino acids and all but the HPRT of Giardia lamblia also are invariant at Glu-133 and Asp-134 (Table I). In general, conserved residues of HPRTs and bacterial XRPTs differ at positions homologous with human Leu-67 and Glu-133 (Ser-36 and Aep-88 in the XPRT of Escherichia coli). Solutions for the crystal structures of HPRTs reveal that the 11 conserved residues immediately flank or are very near the active site of HPRTs (Fig. 3).

Among the amino acid sequences deduced from 39 APRT genes reported to GenBank™, 11 residues are invariant. As shown in Fig. 3, these residues either flank the active site or are located within active site loop II, which is predicted to participate in forming the active site of APRTs during catalysis (16).

If the crystal structures of all purine PRTs are analyzed together with the amino acid sequences reported to GenBank™, there are only 2 residues (corresponding with human Gly-69 and Asp-134) that are clearly invariant. A G69E mutation virtually inactivates the human HPRT, resulting in Lesch-Nyhan syndrome, whereas a D134G mutation partially inactivates the enzyme, resulting in gouty arthiritis (17). The invariant glycine may be essential for the formation of a tight turn and an unusual non-proline cis-peptide in active site loop I of purine PRTs (15, 16, 18–23).

In nearly all purine PRTs, there is a lysine or arginine residue located immediately upstream from the invariant glycine. There have been several suggestions for the functional role of the cis-peptide and the lysine (Lys-68) in active site loop I of HPRTs (20, 23, 24). The presence of the cis-peptide enables the carbonyl oxygen and amide nitrogen, adjacent to the peptide bond, to interact with pyrophosphate atoms and a metal-associated water molecule when they are present in the active sites of HPRTs (21–23, 25). Closed active site structures of HPRTs show that the side chain of Lys-68 forms multiple hydrogen bonds with residues in the opposing sub-
The enzyme from *Trypanosoma cruzi* is shown (numbered according to residues in the human HPRT) in ternary complex with a purine analog and PRPP (25). The bacterial XPRP is with guanine and a PRPP analog (19), and APRT has bound AMP (16). The main chain atoms of invariant glycines and side chains of other invariant amino acids are shown with thick bonds. Substrates, substrate analogs, and conserved aromatic side chains that form π-π stacking interactions with purine rings are illustrated with relatively thin bonds.

![Fig. 1. *S*_{n1} versus *S*_{2,1}-type reaction mechanisms catalyzed by hypoxanthine PRTs. The riboxocarbenium intermediate created in a two-step *S*_{n1} mechanism is compared with the predicted transition state for an *S*_{2,1}-type mechanism.](image)

![Fig. 2. Ribbon diagrams of the human HPRT (14), the XPRP of *E. coli* (15), and the APRT of *Leishmania donovani* (16). The similar orientations for the enzymes illustrate the conserved α/β structures of core domains below the non-conserved structures of hood domains. Roman numerals refer to active site loops I, II, and III.](image)

![Fig. 3. Conserved residues in the active sites of purine PRTs. The highly conserved residues of HPRTs, XPRTs, and APRTs. Residues that may have analogous functions in all purine PRTs are printed in bold type. Although located at opposite ends of the protein sequence, Asp-193 of HPRTs, Asp-140 of bacterial XPRPs, and Asp-44 of APRTs are located at analogous positions in enzyme crystal structures and thus could possibly have similar functional roles (see text).](image)

Human HPRT	Bacterial XPRP	Leishmanial APRT
Leu-67	Ser-36	Arg-82
Gly-69	Gly-38	Gly-83
Ser-103	Ser-62	Arg-102
Tyr-104	Tyr-83	Lys-106
Glu-133	Asp-88	Asp-146
Asp-134	Asp-89	Asp-147
Asp-137	Asp-92	Ala-150
Lys-165	Lys-115	Thr-151
Gly-189		Gly-153
Asp-193		Asp-140
Arg-199		

TABLE I

The highly conserved residues of HPRTs, XPRTs, and APRTs.

A **Catalytic Base**

Among HPRTs, the aspartate at position 137 was proposed to play a role in catalysis by interacting with the N-7 position of 6-oxopurine substrates (21, 22, 25). Mutagenesis of the human HPRT indicated that this aspartate likely functions as a catalytic base by facilitating removal of a proton in forward reactions catalyzed by HPRTs (28). Also, hydrogen bonding between this aspartate and the purine N-7 position of a nucleotide analog may contribute to the very tight binding of this inhibitor to HPRTs (21, 22).

The residue at the analogous location in the crystal structure of the leishmanial APRT is a conserved alanine (Ala-150), suggesting that either the catalytic mechanism differs between HPRTs and APRTs or that the catalytic base of APRT is contributed by an amino acid that moves to participate in the formation of the active site during the transition state. In HPRTs, active site loop II has been shown to close over the active site when both substrate ligands are bound and presumably during the transition state of the reaction (21, 22, 25). Similarly, the x-ray crystal structure of the leishmanial APRT with bound AMP hints that residues within active site loop II of this enzyme may contribute to forming the active site during the transition state (16). Thus, a catalytic base might be contributed by a residue of active site loop II of APRTs.

A Site for Binding a Second Metal Ion

An aspartate at position 193 of HPRTs has been shown to participate indirectly in binding pyrophosphate and purines via the formation of a direct protein metal bond with a magnesium ion (21–23, 25) designated M2 (Fig. 4). Asp-193 also forms hydrogen bonds with two water molecules coordinated by the metal, and the metal forms coordinated interactions with two oxygens of PRPP or PP. A third coordinated water molecule forms another hydrogen bond with the N-3 atom of purine substrates. An invariant arginine at position 199 of HPRTs participates directly in binding pyrophosphate (29) and may contribute to positioning both substrates by being close enough to the carboxyl group of Asp-193 to affect its position (21–23, 25). Together, these interactions help position both substrates for in-line nucleophilic attack at the C1' carbon of PRPP or a nucleotide. A D193N mutation virtually inactivates the human enzyme resulting in Lesch-Nyhan’s syndrome (17). An explanation for the devastating effects of this mutation is revealed by the existence of a hydrogen bond between the Asp-193 side chain and the main chain nitrogen of Asp-196 together with a preference of magnesium for interacting with oxygen over nitrogen. Thus, the substitution of asparagine for aspartate at position 193 would disfavor interactions with both Asp-196 and a magnesium ion.
APRTs possess an invariant aspartate (Asp-44) that flanks the putative PP, binding domain in the active site of the enzyme (Fig. 3). This suggests that a mechanism comparable with that of HPRTs and XPRTs, for binding a second metal and positioning substrates, could possibly exist for APRTs.

As of this writing, the only clear example in eucaryotes of multiple enzymes for the salvage of 6-oxopurines is in Leishmania donovani (30). In this protozoan parasite there is a gene encoding an "XPRT" as well as an HPRT. The two enzymes appear to be the product of a duplication of the hpt locus with both genes being expressed in extant parasites. The leishmanial XPRT is novel in its preference for catalyzing the salvage of xanthine over hypoxanthine and guanine. This enzyme differs from all other 6-oxopurine PRTs in possessing glutamate rather than aspartate at a position homologous with Asp-193 in the human HPRT. This substitution would be predicted to affect the positioning of the octahedrally coordinated second metal ion that participates in positioning purine substrates in the active site. Possibly, the D193E substitution in the L. donovani XPRT is responsible for the altered substrate specificity of this enzyme.

Roles for Residues in Active Site Loop II of HPRTs

As indicated in Table I, Ser-103 and Tyr-104 are invariant in HPRTs and XPRTs. Both are located in loop II, which closes over the active site during the transition state (Fig. 4). A S103R mutation has been shown to impair the human HPRT, resulting in gouty arthritis (17). The main chain carbonyl of Ser-103 forms a hydrogen bond with a pyrophosphate oxygen atom of PRPP, whereas the side chain hydroxyl interacts with a water molecule (Fig. 4, C). This water forms an additional hydrogen bond with a conserved serine (Ser-109), as well as to a 5′-phosphate oxygen of either PRPP or a nucleotide analog in the active site (21, 22, 25). These interactions secure the base of the closed loop II and stabilizes its position over the active site. Like the S103R mutation, a S109L mutation results in partial inactivation of the human HPRT (17). Steady-state kinetic studies of these mutations in the human HPRT (31, 32), together with contemporary structural data, indicate that loop II also contributes to the stable binding of purine substrates. Possibly this is achieved indirectly through van der Waals interactions of loop II residues with conserved aromatic residues (homologous with human Phe-186) that stack above purine substrates.

Analysis of the HPRT from L. donovani revealed that mutations of the residue homologous with the tyrosine at position 104 of the human HPRT severely reduce the turnover number (kcat) for the forward reaction catalyzed by the enzyme (33). The main chain nitrogen of Tyr-104 forms a hydrogen bond with a pyrophosphate oxygen (Fig. 4), and the side chain hydroxyl forms a hydrogen bond with a 5′-phosphate oxygen atom of either PRPP or a nucleotide analog in the active site (21, 22, 25). These interactions position the aromatic ring of Tyr-104 directly above the location of the glycosidic bond that would be formed or broken during catalysis and nearly perpendicular to the ribose ring. Thus, the aromatic ring of tyrosine helps to isolate the reaction center from bulk solvent and could possibly provide partial electrostatic stabilization for a positively charged intermediate in an S1,1-type reaction.

Specificity for 6-Oxo- and 6-Aminopurine Substrates

An invariant lysine residue at position 165 in the human HPRT forms a hydrogen bond with the exocyclic oxygen of 6-oxopurine bases (14). The homologous residue in the HPRT of T. fetus has been demonstrated by site-directed mutagenesis to be the determinant for 6-oxopurine substrate specificity (12). In the only available structure for an APRT, specificity for 6-aminopurines appears to be determined by the formation of a hydrogen bond with a main chain carbonyl atom of an arginine residue at position 41 (16).

The Catalytic Mechanism of HPRTs

The discovery of two metal ions in the active sites of HPRTs has important implications for the chemistry of the reaction catalyzed by this enzyme. The electron withdrawing potential of the metal ions may contribute to activation of PP, as a leaving group in HPRT-catalyzed reactions. The metal designated M1 forms no direct interactions with active site residues (Fig. 4). However, 4 oxygen atoms belonging to either PRPP or PP, and the ribose moiety of nucleotide substrates (atoms designated O-1, O-2′, O-3′, O-3B) are within the coordination sphere of this metal (21, 22, 25).

In the structure of the trypanosomal HPRT, with PRPP and a purine analog as ligands, the length of the coordinated interaction of M1 with the O-1 atom of PRPP is too long (at 2.6 Å) to satisfy optimally the metal coordination sphere (25). Thus, the electron-withdrawing potential of M1, along with formation of the sixth metal bond to O-1 as the reaction approaches the transition state, may contribute to lowering the activation energy for catalysis.

Previous kinetic studies (6, 7) suggest that HPRTs catalyze an S1,1-type chemical reaction (Fig. 1) where an unstable riboxocarbenium intermediate would need to be protected from bulk solvent. The deletion of 7 residues from active site loop II of the trypanosomatid HPRT does not prevent the enzyme from catalyzing either forward or reverse reactions, albeit at extremely reduced catalytic efficiencies (34). This indicates that total isolation from bulk solvent is not required for the protection of a highly unstable intermediate in the reaction. Furthermore, x-ray crystal structures of the closed active sites of the human, malarial, and trypanosomal HPRTs reveal that the only residue near enough to provide stabilization of a positively charged intermediate is an invariant tyrosine (human Tyr-104), which is located above the ribose ring of bound substrates (21, 22, 25). This suggests that these enzymes could provide only minimal electrostatic stabilization for a riboxocarbenium intermediate formed during an S1,1-type reaction.

An obvious question that arises from the structure of trypanosomal and human HPRTs with PRPP bound (24, 25) is why wasn’t the PRPP cleaved. In these structures, PRPP is present in the closed active sites and the metal (M1) is poised to move closer to the O-1 atom to assist further in pulling electrons away from the covalent bond that is to be broken. If S1,1 chemistry were involved, the first half of the reaction might be expected to occur, resulting in dissolution of the covalent bond between PP and the ribose monophosphate. However, the reaction seems to be awaiting nucleophilic attack by the purine base, which cannot occur in the reported structures because of the non-reactive purine analog in the active site. Thus, these crystal structures provide evidence for the reaction being associative (S2,2) rather than dissociative (S1,1).

The Design or Discovery of HPRT Inhibitors

Prior to 1999, few HPRT inhibitors had been identified and most yielded KI values above 10 μM. An exception was a nucleotide analog, carbocyclic GMP, with an IC50 of 0.87 μM versus a mammalian HPRT (35). Recent progress in enzyme structure-based inhibitor design/discovery shows promise that HPRT inhibitors...
eventually might be developed into drugs for the treatment of diseases caused by parasites. In this regard, the de novo design of mechanistic inhibitors, including transition state analogs and multisubstrate inhibitors, provides an approach to the discovery of potent inhibitors of HPRT activity (36).

Success in the de novo design of a mechanistic type of inhibitor was achieved recently in a series of non-hydrolyzable nucleotide analogs (immucillin S-5'-phosphates). As inhibitors of reverse reactions catalyzed by the human HPRT, these compounds yield K_i values in the range of 56–250 nM (37). However, because of “slow onset inhibition,” secondary K_i values, determined from the rates of product formation after 2 h in the presence of substrates and inhibitor, were between 1.0 and 14 nM. Although structurally similar to carboxylic GMP (35), the immucillins differ in that they mimic chemical requirements predicted to exist in the transition state of HPRT-catalyzed reactions (37).

Mechanistic studies and enzyme structures have been used in the design and analysis of inhibitors of HPRTs, showing promise that the chemical knock-out of HPRT activity may be achieved within the next few years. Such inhibitors would represent novel leads for the development of drugs for the treatment of diseases caused by protozoan parasites.

Acknowledgments—We thank Dr. Richard Wolfenden for advice about S_1 and S_2 reactions and Dr. Francisco-Javier Medrano for editorial suggestions, providing alignments for amino acid sequences reported to GenBankTM, and preparing Figs. 2 and 3 for this article.

REFERENCES

1. Berens, R. L., Krug, E. C., and Marr, J. J. (1995) in Biochemistry and Molecular Biology of Parasites (Marr, J. J., and Muller, M., eds) pp. 89–117, Academic Press Ltd., London.

2. Walsh, C. J., and Sherman, I. W. (1968) J. Protozool. 15, 763–770

3. Yuan, L., Craig, S. P., III, McKerrow, J. H., and Wang, C. C. (1992) Biochemistry 31, 806–810

4. Xu, Y., Eads, J., Sacchettini, J. C., and Grubmeyer, C. (1997) Biochemistry 36, 3700–3712

5. Munagala, N. R., Chin, M. S., and Wang, C. C. (1998) Biochemistry 37, 4045–4051

6. Goitein, R. K., Chelsky, D., and Parsons, S. M. (1976) J. Biol. Chem. 251, 2963–2971

7. Bhataw, M. B., Vinitsky, A., and Grubmeyer, C. (1998) Biochemistry 29, 10480–10487

8. Smith, J. L. (1999) Nat. Struct. Biol. 6, 502–504

9. Hartwick, R. A., Krstulovic, A. M., and Brown, P. R. (1979) J. Chromatogr. 166, 659–676

10. Kremskity, T. A., Papaoanmonic, R., and Elsan, G. B. (1969) J. Biol. Chem. 244, 1263–1270

11. Lee, C. C., Craig, S. P., III, and Eakin, A. E. (1998) Biochemistry 37, 3491–3498

12. Munagala, N. R., and Wang, C. C. (1998) Biochemistry 37, 16612–16619

13. Reyes, P., Rathod, P. K., Sanchez, D. J., Mrema, J. E. K., Rieckmann, K. H., and Heinrich, H. G. (1982) Mol. Biochem. Parasitol. 5, 275–280

14. Eads, J. C., Scoppin, G., Xu, Y., Grubmeyer, C., and Sacchettini, J. C. (1994) Cell 78, 325–334

15. Vos, S., de Jersey, J., and Martín, J. L. (1997) Biochemistry 36, 4125–4134

16. Phillips, C. L., Ullman, B., Brennan, R. G., and Hill, C. P. (1999) EMBO J. 18, 3533–3545

17. Sculley, D. G., Dawson, P. A., Emmerton, B. T., and Gordon, R. B. (1992) Hum. Genet. 90, 195–207

18. Schumacher, M. A., Carter, D., Ross, D. S., Ullman, B., and Brennan, R. G. (1996) Nat. Struct. Biol. 3, 881–887

19. Vos, S., Parry, R. J., Burns, M. R., de Jersey, J., and Martín, J. L. (1998) J. Mol. Biol. 282, 875–889

20. Focia, P. J., Craig, S. P., III, Nieves-Alicea, R., Fletterick, R. J., and Eakin, A. E. (1998) Biochemistry 37, 15066–15075

21. Shi, W., Li, C. M., Tyler, P. C., Furenaues, R. H., Grubmeyer, C., Schramm, V. L., and Almo, S. C. (1999) Nat. Struct. Biol. 6, 588–593

22. Shi, W., Li, C. M., Tyler, P. C., Furenaues, R. H., Cahlil, S. M., Girvin, M. E., Grubmeyer, C., Schramm, V. L., and Almo, S. C. (1999) Biochemistry 38, 9972–9980

23. Hereux, A., White, L., Ross, L. J., Davis, R. L., and Borhani, D. W. (1999) Biochemistry 38, 14485–14494

24. Schumacher, M. A., Carter, D., Ross, D. S., Ullman, B., and Brennan, R. G. (1996) Biochemistry 35, 588–593

25. Focia, P. J., Craig, S. P., III, Nieves-Alicea, R., Fletterick, R. J., and Eakin, A. E. (1998) Biochemistry 37, 1023–1031

26. Balandrin, G. K., Molina, J. A., Xu, Y., Torres-Martinez, J., Stevens, R., Focia, P. J., Craig, S. P., III, Eads, J., Sacchettini, J. C., and Eakin, S. P. (1999) Protein Sci. 8, 1023–1031

27. Focia, P. J., Craig, S. P., III, and Eakin, A. E. (1998) Biochemistry 37, 17120–17127

28. Somoza, R. J., Chin, M. S., Focia, P. J., Wang, C. C., and Fletterick, R. J. (1996) Biochemistry 35, 7032–7040

29. Hereux, A., White, E. L., Ross, L. J., and Borhani, D. W. (1999) Biochemistry 38, 14495–14506

30. Xu, Y., and Grubmeyer, C. (1998) Biochemistry 37, 4114–4124

31. Craig, S. P., and Focia, P. J., Fletterick, R. J. (1997) Biochim. Biophys. Acta 1339, 1–3

32. Jardim, A., Bergson, S. E., Shih, S., Carter, N., Lucas, R. W., Merlin, G., Myller, P. J., Stuart, K., and Ullman, B. (1999) J. Biol. Chem. 274, 34403–34410

33. Wilson, J. M., Kobayashi, R., Fox, I. H., and Kelley, W. V. (1983) J. Biol. Chem. 258, 6458–6460

34. Wilson, J. M., and Kelley, W. V. (1984) J. Biol. Chem. 259, 27–30

35. Jardim, A., and Ullman, B. (1997) J. Biol. Chem. 272, 8967–8973

36. Lee, C. C. (1999) Structure-Function Studies of Hypoxantine Phosphoribosyltransferases. Ph.D. thesis, University of North Carolina

37. Bennett, L. L. J., Brockman, R. W., Rose, L. M., Allan, P. W., Shaddix, S. C., Shealy, Y. P., and Clayton, J. D. (1985) Mol. Pharmacol. 27, 666–675

38. Craig, S. P., III, and Eakin, A. E. (1997) Parasitol. Today 13, 238–241

39. Liu, C. M., Tyler, P. C., Furenaues, R. H., Kicska, G., Xu, Y., Grubmeyer, C., Girvin, M. E., and Schramm, V. L. (1999) Nat. Struct. Biol. 6, 582–587

40. Somoza, J. R., Skillman, A. G., Jr., Munagala, N. R., Oshiro, C. M., Knetgel, R. M., Mopke, S., Fletterick, R. J., and Kunz, I. D., and Wang, C. C. (1998) Biochemistry 37, 5344–5348

41. Arenas, A. M., Munagala, N. R., Ortiz de Montellano, P. R., Kunz, I. D., and Wang, C. C. (2000) Biochemistry 39, 4684–4691