Binary Darboux Transformation for the Supersymmetric Principal Chiral Field Model

Bushra Haider, M. Hassan

To cite this article: Bushra Haider, M. Hassan (2011) Binary Darboux Transformation for the Supersymmetric Principal Chiral Field Model, Journal of Nonlinear Mathematical Physics 18:4, 557–581, DOI: https://doi.org/10.1142/S1402925111001738

To link to this article: https://doi.org/10.1142/S1402925111001738

Published online: 04 January 2021
The standard binary Darboux transformation is investigated and is used to obtain quasideterminant multisoliton solutions of the supersymmetric chiral field model in two dimensions.

Keywords: Supersymmetry; integrable systems; principal chiral model; Darboux transformation.

1. Introduction

The supersymmetric chiral field model is an important example of two dimensional integrable classical and quantum field theory [4, 7–9, 14, 15, 20, 23, 30, 36, 39]. The model belongs to a general class of supersymmetric sigma models with symmetric spaces as their target manifolds. The supersymmetric chiral field model exhibits various important features of four dimensional gauge theories and they are also useful in the sense that their exact analysis leads to the various applications of D-brane dynamics [1–3, 12, 13, 25]. We studied the elementary Darboux transformation of supersymmetric principal chiral field model in two dimensions in a recent work [23] and obtained the quasideterminant multisoliton solutions of the model. We also related these solutions with the solutions obtained by Mikhailov using the dressing method [30]. We also constructed the standard binary Darboux transformation of principal chiral model in two dimensions and expressed the grammian type multisoliton solutions in terms of quasideterminants in another work [24].

In this paper we use the method employed in [24] and construct the standard binary Darboux transformation to find the exact multisolitons of supersymmetric chiral field model in two dimensions. The binary Darboux transformation is one of the well known techniques used to construct grammian type multisolitons of integrable systems [31–34]. We study standard binary Darboux transformation by introducing superfield Darboux matrix for the supersymmetric chiral model for the direct and the adjoint spaces and then obtain superfield binary Darboux matrix by composing the two Darboux transformations. We obtain the...
superfield multisoliton solutions using the iterated binary Darboux transformations. We also show the relation between standard binary Darboux transformation and elementary binary Darboux transformation. The solutions are also obtained for the component fields.

The main results of the paper are as follows: the superfield generalization of the standard binary Darboux transformation, the construction of superfield multisolitons of grammian type and their expression in terms of quasideterminants.

The superspace Lagrangian of the supersymmetric chiral field with target space \mathcal{G} is given by

$$L_{SCF} = \frac{1}{2} \text{Tr}(D_\psi G^{-1} D\psi G),$$

(1.1)

and $G(x, \theta)G^{-1}(x, \theta) = 1 = G^{-1}(x, \theta)G(x, \theta)$. The superspace Lagrangian L_{SCF} is invariant under the global transformation $\hat{G}_L \times \hat{G}_R : G(x^\pm, \theta^\pm) = U_L G(x^\pm, \theta^\pm) U_R^\dagger$, where U_L and U_R are \hat{G}_L and \hat{G}_R valued Grassmann even matrix superfields, respectively. The superfield equation of motion of the supersymmetric chiral field is the superfield conservation equation and the superfield zero-curvature conditiona

$$D_{\lambda-} J_{\lambda+} - D_{\lambda+} J_{\lambda-} = 0,$$

(1.2)

$$D_{\lambda-} J_{\lambda+} + D_{\lambda+} J_{\lambda-} + [J_{\lambda-}, J_{\lambda-}] = 0.$$

(1.3)

The Noether conserved superfield currents associated with \hat{G}_R are $J_{\lambda-} = -iG^{-1} D_{\lambda-} G$ which are Grassmann odd superfields and are Lie algebra \mathfrak{g} valued, i.e., $J_{\lambda-} = J_{\lambda-}^{\mathfrak{g}} T_a$, where anti-hermitian generators $\{T^a, a = 1, 2, \ldots, \dim \mathfrak{g}\}$ of the Lie algebra \mathfrak{g} obey $[T^a, T^b] = i\epsilon^{abc} T^c$ and $\text{Tr}(T^a T^b) = \delta^{ab}$. For any $X \in \mathfrak{g}$, $X = X^a T^a$. The conserved superfield current corresponding to the \hat{G}_L transformation is $-GJ_{\lambda-} G^{-1}$ and $G(x^\pm, \theta^\pm)$ is the Grassmann even superfield with values in a Lie group \mathcal{G} and $G(x, \theta)G^{-1}(x, \theta) = 1 = G^{-1}(x, \theta)G(x, \theta)$. We can expand the matrix superfield $G(x^\pm, \theta^\pm)$ in terms of bosonic and fermionic component fields as

$$G(x, \theta) = g(x)(1 + i\theta^+ \psi_+(x) + i\theta^- \psi_-(x) + i\theta^+ \theta^- F(x)),$$

(1.4)

where ψ_{\pm} are the Majorana spinors such that $\psi_{\pm}^T g^{-1} \psi_{\pm} g$ and $F(x)$ is the auxiliary field, with an algebraic equation of motion.b The Majorana spinors $\psi_{\pm}(x)$ take values in the Lie

aIn our notation the superspace is defined with coordinates (x^\pm, θ^\pm), where x^\pm are the commuting light-cone coordinates of the two-dimensional Minkowski space $\mathbb{R}^{1,1}$ with metric $g_{\mu\nu} = \text{diag}(1, -1)$ and θ^\pm are anticommuting fermionic coordinates and are real Grassmann numbers. The light-cone coordinates x^\pm are related to the orthonormal coordinates by $x^\pm = \frac{1}{2}(t \pm x)$ with the derivatives $\partial_\pm = \partial_0 \pm \partial_1$.

The $N = 1$ supercharges are $Q_{\pm} = \frac{1}{2}(\partial_0 \mp i \partial_1)\gamma_\pm$, and the super-space covariant derivatives are $D_{\pm} = \frac{1}{2}(\partial_0 \pm i \partial_1)\gamma_\pm$, which obey $[Q_\pm, Q_\mp] = 2 \delta_\pm \partial_\mp$, $[D_{\pm}, D_\mp] = -2 \delta_\pm \partial_\mp$, with all other anti-commutators vanishing. Under the Lorentz transformation the coordinates of superspace and their derivatives transform as $x^\pm \to e^{\mp \eta x^\pm}, \partial_\pm \to e^{\mp \eta x^\pm} \partial_\pm, \gamma_\pm \to e^{\mp i \eta} \gamma_\pm$ and $D_{\pm} \to e^{\mp i \eta} D_{\pm}$, where η is the rapidity of the Lorentz boost.

bNote that our conventions are such that the γ-matrices $\gamma_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \gamma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ satisfy $[\gamma_\mu, \gamma_\nu] = 2g_{\mu\nu}$. The Dirac spinor is $\psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}$, where ψ_{\pm} are chiral spinors and our assumption is that ψ_{\pm} are real (Majorana) and the Lorentz behavior of these Majorana spinors is $\psi_{\pm} \to e^{\pm i \eta} \psi_{\pm}$.

algebra \mathfrak{g} of \mathcal{G}. The action of the symmetry $\mathcal{G}_L \times \mathcal{G}_R$ on component fields is given by
\[g \rightarrow U g V^{-1}, \quad \psi^L \rightarrow V \psi^L g V^{-1}, \quad \psi^R \rightarrow U \psi^R g V^{-1}, \]
where U_L and U_R are the leading bosonic components of the matrix superfields \mathcal{U}_L and \mathcal{U}_R, respectively, i.e. the fermions transform under \mathcal{G}_R or \mathcal{G}_L. The component expansion of the superfield current J_z is
\[J_z = \psi_{\pm} + \theta^z \partial_z \psi_{\pm} - \frac{i}{2} \theta^z \{ \psi_{\pm}, \psi_{\pm} \} - i \theta^z \partial_z \left(\partial_\theta \psi_{\pm} - [j_z, \psi_{\pm}] - \frac{i}{2} [\psi_{\pm}, \psi_{\pm}] \right), \]
where the component bosonic conserved current is $j_z = -(g^{-1} \partial_z g + i \psi^2_j)$. Substituting these into the superspace equations of motion, collecting terms and writing $h_\pm = \psi^2_\mp \leftrightarrow U_{\pm}^0 \psi^2_\pm \psi^2_\mp$, we get the equations of motion for fermionic fields ψ_{\pm} and bosonic fields j_z of the supersymmetric chiral field model,
\[\partial_\theta \psi_{\pm} - \frac{i}{2} [j_z, \psi_{\pm}] - \frac{i}{4} [h_\pm, \psi_{\pm}] = 0, \quad (1.6) \]
\[\partial_- j_+ + \partial_+ j_- = 0. \quad (1.7) \]
We use the fermion equations of motion to get the following equations
\[\partial_- j_+ - \partial_+ j_- + [j_+, j_-] = i (\partial_- h_+ - \partial_+ h_-), \quad (1.8) \]
\[\partial_\theta h_\pm + \frac{1}{2} \left(h_\pm, j_\pm + \frac{i}{2} h_\pm \right) = 0, \quad (1.9) \]
\[\partial_- h_+ + \partial_+ h_- = 0. \quad (1.10) \]
The Eqs. (1.7) and (1.10) show the conservation of bosonic currents j_\pm and h_{\pm}, respectively.

The supersymmetric chiral field Eqs. (1.2) and (1.3) can be written as the compatibility condition of the following superfield Lax pair
\[D_\lambda \mathcal{U}(\lambda) = \frac{1}{1 + \lambda} J_z \mathcal{U}(\lambda), \quad (1.11) \]
where λ is a real (or complex) parameter and \mathcal{U} is an $n \times n$ matrix superfield. The component expansion of the Lax pair (1.11) gives
\[\partial_\theta U(x^\pm; \lambda) = \frac{1}{1 + \lambda} J_z U(x^\pm; \lambda) + i \left(\frac{1}{1 + \lambda} \right)^2 h_\pm U(x^\pm; \lambda), \quad (1.12) \]
where $U(x^\pm, \lambda)$ is the leading purely bosonic component of the superfield $\mathcal{U}(x^\pm, \theta^\pm, \lambda)$. In this case, the compatibility condition of (1.12) gives Eqs. (1.6) and (1.7). Therefore, the partial differential Eqs. (1.2) and (1.3) have the Lax pair (1.11), while Eqs. (1.6) and (1.10) have the Lax pair (1.12).

2. Darboux Transformation on the Direct and Adjoint Lax Pairs

The one-fold Darboux transformation (see [5, 6, 10, 11, 26, 28, 29, 35, 38] for details) on the matrix solution of the Lax pair (1.11) is defined by
\[\mathcal{U}(\lambda) = D(x^+, x^-, \lambda) \mathcal{U}(\lambda), \quad (2.1) \]
where $D(x, t, \lambda)$ is the superfield Darboux matrix given as

$$D(x^+, x^-, \lambda) = \lambda I - S(x^+, x^-),$$
(2.2)

and $S(x^+, x^-)$ is the $n \times n$ matrix superfield and I is an $n \times n$ identity matrix. The superfield Darboux matrix transforms the matrix superfield solution U in space V to a new matrix superfield solution \tilde{U} in \tilde{V}, i.e.

$$D(\lambda) : V \rightarrow \tilde{V}.$$
(2.3)

The new superfield solution $\tilde{U}(x^+, x^-, \lambda)$ satisfies the following Lax pair,

$$D^\pm \tilde{U}(\lambda) = -\frac{1}{2} \pm \lambda J^\pm \tilde{U}(\lambda),$$
(2.4)

where J^\pm are the Lie algebra valued transformed superfield conserved currents that satisfy the equation of motion (1.2) and zero-curvature condition (1.3). Note that the Lax operators for supersymmetric chiral model are self-adjoint and under elementary Darboux transformation the transformed Lax operators are not self-adjoint. To solve this problem we use the binary Darboux transformation which preserves the self-adjointness of the Lax operators. We will define binary Darboux transformation in the next section. By substituting Eq. (2.1) in Eq. (2.4), we get

$$\tilde{J}^\pm = J^\pm \pm i D^\pm S,$$
and the matrix superfield S is subjected to satisfy the following equations:

$$D^\pm S(I \mp S) = -i[J^\pm, S].$$

The bosonic superfield conserved currents $D^\pm J^\pm$ and J^2_{\pm} transform as

$$D^\pm J^\pm = D^\pm J^\pm \pm \partial^\pm S, \quad J^2_{\pm} = (I \mp S)J^2_{\pm} (I \mp S)^{-1},$$

and the conditions on S are now written as

$$\partial^\pm S(I \mp S) = \pm D^\pm J^\pm S \pm SD^\pm J^\pm - iJ^2_{\pm} + i(I \mp S)J^2_{\pm} (I \mp S)^{-1}.$$
(2.5)

The matrix superfield S can be written in terms of the solutions of the linear system [23]

$$S = \mathcal{M} \Lambda \mathcal{M}^{-1},$$

where \mathcal{M} is the matrix superfield defined by

$$\mathcal{M} = (U(\lambda_1)|1), \ldots, U(\lambda_n)|n) = (|\Theta_1\rangle, \ldots, |\Theta_n\rangle),$$
(2.6)
each column $|\Theta_i\rangle = U(\lambda_i)|i\rangle$ in M is a column superfield solution of the superfield Lax pair (1.11) when $\lambda = \lambda_i$, i.e., it satisfies
\[D_\pm |\Theta_i\rangle = -\frac{1}{1 \mp \lambda_i} J_\pm |\Theta_i\rangle, \tag{2.7} \]
and $i = 1, 2, \ldots, n$. Assuming $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$, the Eq. (2.7) can be written in matrix form as
\[D_\pm M = -i J_\pm M(I \mp \Lambda)^{-1}. \tag{2.8} \]

The Darboux transformation of the chiral model in terms of particular matrix solution M with the particular eigenvalue matrix Λ is given as
\[\tilde{U} = (M - \lambda I)^{-1} U, \]
\[\tilde{J}_\pm = M(I \mp \Lambda)M^{-1}(I \mp \Lambda)^{-1} M^{-1}. \tag{2.8} \]
The Darboux transformation on the chiral field $G(x)$ is now defined by
\[\tilde{G} = \tilde{U}(0) = -SG = -(M\Lambda M^{-1}). \tag{2.9} \]

The result can be generalized to obtain K-fold Darboux transformation on matrix solution U. Note that M and U are $n \times n$ matrices (i.e. matrix superfields) and since matrix multiplication is noncommutative in general, therefore the transformed solution $U[K+1]$ can be written in terms of quasideterminant as4 (for more details see [23])
\[U[K+1] = \begin{vmatrix} M_1 & \ldots & M_K & U \\ M_1 \Lambda_1 & \ldots & M_K \Lambda_K & M \\ \vdots & \ddots & \vdots & \vdots \\ M_1 \Lambda^K_1 & \ldots & M_K \Lambda^K_K & X^K \end{vmatrix}. \]

The multisoliton superfield solution $G[K+1]$ of the supersymmetric chiral model can be readily obtained by taking $\lambda = 0$ in the expression of $U[K+1]$ i.e.,
\[G[K+1] = \begin{vmatrix} M_1 & \ldots & M_K & I \\ M_1 \Lambda_1 & \ldots & M_K \Lambda_K & O \\ \vdots & \ddots & \vdots & \vdots \\ M_1 \Lambda^K_1 & \ldots & M_K \Lambda^K_K & \tilde{U} \end{vmatrix}. \]

4The quasideterminant for an $N \times N$ matrix over a ring R is defined as
\[|X|_{i,j} = \frac{X^i_j}{X^i_i} \]
where for $1 \leq i, j \leq N$, x^i_j is the row matrix obtained by removing jth entry of X from the ith row. Similarly, c^j_i is the column matrix containing ith column of X without jth entry. There exist N^2 quasideterminants denoted by $|X|_{i,j}$ for $i, j = 1, \ldots, N$. For various properties and applications of quasideterminants in the theory of integrable systems, see e.g. [16–19, 27].
Similarly the expression for the superfield currents $J_k[K+1]$ is

$$
J_k[K+1] = \begin{vmatrix}
M_1 & M_2 & \cdots & M_N & I \\
M_1(I \mp \Lambda_1) & M_2(I \mp \Lambda_2) & \cdots & M_N(I \mp \Lambda_N) & 0 \\
& \vdots & & \vdots & \vdots \\
M_1(I \mp \Lambda_1)^K & M_2(I \mp \Lambda_2)^K & \cdots & M_N(I \mp \Lambda_N)^K & 0
\end{vmatrix}^{-1}
$$

$$
\times J_k \times \begin{vmatrix}
M_1 & \cdots & M_N & I \\
M_1(I \mp \Lambda_1) & \cdots & M_N(I \mp \Lambda_N) & 0 \\
& \vdots & & \vdots & \vdots \\
M_1(I \mp \Lambda_1)^K & \cdots & M_N(I \mp \Lambda_N)^K & 0
\end{vmatrix} \quad \text{(2.11)}
$$

The K-fold Darboux transformation on the matrix superfields U, G and J_k can also be expressed in terms of superfield hermitian projectors $P[K]$ i.e.,

$$
U[K+1] = \prod_{k=0}^{K} \left(I - \frac{\mu_k - \bar{\mu}_{k+1}}{1 - \bar{\mu}_k} P[K - k + 1] \right) U,
$$

$$
J_k[K+1] = \prod_{k=0}^{K} \left(I - \frac{\mu_k - \bar{\mu}_{k+1}}{1 - \bar{\mu}_k} P[K - k + 1] \right) J_k \prod_{\ell=1}^{K} \left(I + \frac{\bar{\mu}_{\ell} - \mu_\ell}{1 - \mu_\ell} P[\ell] \right),
$$

$$
G[K+1] = \prod_{k=1}^{K} \left(I + \frac{\mu_k - \bar{\mu}_{k+1}}{1 - \bar{\mu}_k} P[K - k + 1] \right) G,
$$

where the superfield Hermitian projection in this case is

$$
P[k] = \sum_{i \in \Omega[k]} \left[\Theta_{i, [k]} \right] \left(\Theta_{i, [k]} \right)^{\dagger}, \quad k = 1, 2, \ldots, K,
$$

with $P[1] = P[K]$ and $P[2] = P[K]$.

The equation of motion (1.2) and zero-curvature condition (1.3) can also be written as compatibility condition of the following linear system

$$
D_\xi W(\xi) = \frac{1}{1 + \xi} J_1 W(\xi),
$$

which is obtained by taking the formal adjoint of the system (1.11). Note that in Eq. (2.16) ξ is a real (or complex) parameter and W is an invertible $n \times n$ matrix superfield in the space $V^\dagger = \{ W \}$. The Darboux matrix $D(\xi)$ transforms the matrix superfield solution W in space V^\dagger to a new matrix solution \tilde{W} in \tilde{V}^\dagger i.e.,

$$
D(\xi) : V^\dagger \rightarrow \tilde{V}^\dagger.
$$

The one-fold Darboux transformation on the matrix solution W is defined as i.e.,

$$
\tilde{W} \equiv D(\xi) W = - (\xi I - H^2 H^{-1}) W,
$$
where $\Xi = \text{diag}(\xi_1, \ldots, \xi_n)$ is the eigenvalue matrix. The matrix function H is an invertible non-degenerate $n \times n$ matrix and is given by

$$H = (W(\xi_1)|1\rangle, \ldots, W(\xi_n)|n\rangle) = ([h_1], \ldots, [h_n]).$$

The K-fold Darboux transformation on matrix superfield solutions W, G^\dagger and J^\dagger_\pm can be expressed as

$$W[K + 1] = \begin{vmatrix} H_1 & \cdots & H_K & W \\ H_1 \Xi_1 & \cdots & H_N \Xi_K & \Xi W \\ \vdots & \ddots & \vdots & \vdots \\ H_1 \Xi_K & \cdots & H_K \Xi_K & H^K \end{vmatrix},$$

$$G^\dagger[K + 1] = \begin{vmatrix} H_1 & \cdots & H_K & I \\ H_1 \Xi_1 & \cdots & H_N \Xi_K & O \\ \vdots & \ddots & \vdots & \vdots \\ H_1 \Xi_K & \cdots & H_K \Xi_K & D \end{vmatrix},$$

$$J^\dagger_\pm[K + 1] = \begin{vmatrix} H_1 & \cdots & H_K \\ H_1(I \mp \Xi_1)^{K} & \cdots & H_K(I \mp \Xi_K)^{K} \\ \vdots & \ddots & \vdots \\ H_1(I \mp \Xi_K)^{K} & \cdots & H_K(I \mp \Xi_K)^{K} \end{vmatrix} \times J^\dagger_\mp \times \begin{vmatrix} H_1 & \cdots & H_K \\ H_1(I \mp \Xi_1)^{-1} & \cdots & H_K(I \mp \Xi_K)^{-1} \\ \vdots & \ddots & \vdots \\ H_1(I \mp \Xi_K)^{-1} & \cdots & H_K(I \mp \Xi_K)^{-1} \end{vmatrix}.$$

In terms of the Hermitian projector we write the above expressions as

$$W[K + 1] = \prod_{k=0}^{K} \left(I - \frac{\nu_{K-k+1} - \bar{\nu}_{K-k+1}}{\bar{\nu}_{K} - \nu_{K}} P[k] \right) W,$$

$$J^\dagger_\pm[K + 1] = \prod_{k=0}^{K} \left(I - \frac{\nu_{K-k+1} - \bar{\nu}_{K-k+1}}{\bar{\nu}_{K} - \nu_{K}} P[k] \right) J^\dagger_\mp \prod_{l=1}^{K} \left(I - \frac{\bar{\nu}_l - \nu_l}{\bar{\nu}_l - \nu_l} P[l] \right),$$

$$G^\dagger[K + 1] = \prod_{k=1}^{K} \left(I - \frac{\nu_{K-k+1} - \bar{\nu}_{K-k+1}}{\bar{\nu}_{K} - \nu_{K}} P[k] \right) G^\dagger,$$

and the superfield hermitian projector in this case is defined as

$$P[k] = \sum_{i=1}^{n} \frac{|h_i[k]\rangle\langle h_i[k]|}{|h_i[k]\rangle\langle h_i[k]|}, \quad k = 1, 2, \ldots, K.$$

$$\text{Binary Darboux Transformation} \quad 563$$

$$\text{December 13, 2011 15:57 WSPC/1402-9251 259-JNMP S1402925111001738}$$
By making use of Eqs. (1.11) and (2.16) for the column solutions $|\Theta_i\rangle$ and the row solutions $\langle h_i|$ of the direct and adjoint Lax pair, respectively, it can be easily shown that the expressions (2.15) and (2.25) are equivalent.

3. Standard Binary Darboux Transformation

To define the binary transformation we follow the approach of [31–34] and consider a space \hat{V}, which is a copy of the direct space V and the corresponding solutions are $\hat{U} \in \hat{V}$. Since it is a copy of the direct space, therefore the linear system, equation of motion and the zero-curvature condition will have the similar form as given for the direct space. The equation of motion (1.2) and zero-curvature condition (1.3) can also be written as the compatibility condition of the following linear system for the matrix solution \hat{U}

$$
D_{\pm}\hat{U}(\lambda) = -\frac{i}{1 + \lambda} J_\pm \hat{U}(\lambda).
$$

(3.1)

We have taken the specific solutions M, H for the direct space V and V^\dagger, respectively. The corresponding solutions for \hat{V} are $\hat{M} \in \hat{V}$ and $\hat{W} \in \hat{V}$. Also assuming that $i(\hat{M}) \in \hat{V}$, then from Eqs. (2.3) and (2.17), we write the transformation as $D^{-1}(\lambda) : V^\dagger \rightarrow \hat{V}$.

Since $W \in V^\dagger$, we have

$$
i(\hat{M}) = D^{-1}(\lambda)W.
$$

(3.2)

Also from $D(\lambda)(i(M)) = 0$, we obtain $i(M) = M^{-1}M^\dagger$ and similarly $i(\hat{M}) = \hat{M}^{-1}\hat{M}^\dagger$. Therefore we get from above equation

$$
\hat{M}^{-1}M^\dagger = D^{-1}(\lambda)W,
$$

$$
\hat{M} = (D^{-1}(\lambda)W)^{-1}.
$$

(3.3)

By using (2.2) and (2.5) in above equation

$$
\hat{M} = [(M - \Lambda M^{-1})M^{-1}W]^{-1},
$$

$$
= (M - \Lambda M^{-1})W^{-1},
$$

$$
= M(M - \Lambda)M^{-1}W^{-1},
$$

$$
= M(M - \Lambda)(W^\dagger M)^{-1},
$$

$$
= M\Delta^{-1},
$$

(3.4)

where the algebraic potential Δ is defined as

$$
\Delta(M, W) = (W^\dagger M)(\lambda I - \Lambda)^{-1}.
$$

(3.5)
Note that the binary Darboux transformation is a rule to transform the solutions of the
direct and adjoint Lax equations to the new direct and adjoint solutions of the transformed
Lax equations. It has been shown in [31–34] that the binary Darboux matrix involves the
formal integration \(\partial^{-1} \) which is replaced by the potential \(\Delta \) that plays an important role
in the construction of binary transformation. In the present case we represent the Darboux
and binary Darboux transformation in terms of matrices and by using the Lax pair, we
can replace the derivative \(\partial \) by the eigenvalue matrix \(\Lambda \) which makes the expression for
potential \(\Delta \) explicit and is given by Eq. (3.5). Similarly for adjoint space,
\[
\hat{\mathcal{H}} = \mathcal{H} \Delta^{-1},
\]
we obtain
\[
\Delta(\mathcal{U}, \mathcal{H}) = -(\lambda I - \Xi)\mathcal{H}^\dagger \mathcal{U}, \quad (3.6)
\]
By writing Eqs. (3.5) and (3.6) in matrix form for the solutions \(\mathcal{M} \) and \(\mathcal{H} \), we get the following condition on \(\Delta \),
\[
\Xi \Delta(\mathcal{M}, \mathcal{H}) - \Delta(\mathcal{M}, \mathcal{H}) \Lambda = \mathcal{H}^\dagger \mathcal{M}, \quad (3.7)
\]
where \(\Delta \) is a matrix. An entry \(\Delta_{ij} \) from Eqs. (3.5)–(3.7) is given as
\[
\Delta(\mathcal{M}, \mathcal{H})_{ij} = \frac{(\mathcal{H}^\dagger \mathcal{M})_{ij}}{\xi_i - \lambda_j}. \quad (3.8)
\]
Now we define the Darboux matrix in hat space as
\[
\hat{D}(\lambda) \equiv (\lambda I - \hat{\mathcal{S}}) = (\lambda I - \hat{\mathcal{M}} \Xi \mathcal{M} \Delta^{-1}), \quad (3.9)
\]
where
\[
\hat{D}(\lambda) \hat{U} = \tilde{U}, \quad (3.10)
\]
We may summarize the above formulation as
\[
\hat{D}(\lambda) : V \rightarrow \tilde{V}, \quad (3.11)
\]
\[
\hat{D}(\lambda) : \tilde{V} \rightarrow \tilde{V}, \quad (3.12)
\]
\[
\hat{D}(\xi) : V^\dagger \rightarrow \tilde{V}^\dagger, \quad (3.13)
\]
The effect of \(\hat{D}(\lambda) \) is such that it leaves the linear system (3.1) invariant, i.e.,
\[
D_\lambda \tilde{U}(\lambda) = -\frac{1}{1 + \lambda} \tilde{J}_\pm \tilde{U}(\lambda), \quad (3.14)
\]
which implies the following transformation on the fermionic superfield currents \(\hat{J}_\pm \)
\[
\tilde{J}_\pm = J_\pm \pm i D_\lambda \hat{S}, \quad (3.15)
\]
and the matrix superfield \(\hat{S} \) is subjected to satisfy the following equations
\[
D_\lambda \hat{S}(\tilde{I} \pm \hat{S}) = -i [\hat{J}_\pm, \hat{S}], \quad (3.16)
\]
Also for the bosonic superfield conserved currents $D_±J_±$ and $\hat{J}_±^2$, the transformation is as follows

$$
D_±\hat{J}_± = D_±J_± \pm \partial_± \hat{S}, \quad \hat{J}_±^2 = (\hat{S})^2(\hat{S})^{-1},
$$

with \hat{S} satisfying

$$
\partial_± \hat{S}(I \mp \hat{S}) = \mp D_±J_± \hat{S} \pm \hat{S} D_±J_± - i\hat{J}_±^2 \mp i(I \mp \hat{S}) \hat{J}_±^2(\hat{S})^{-1}.
$$

Again we make the following ansatz for the matrix superfield \hat{S}

$$
\hat{S} = \hat{M}\Xi^1\hat{M}^{-1}, \quad (3.17)
$$

and the Darboux transformation on the matrix superfields \hat{U} and $\hat{J}_±$ in hat space \hat{V} is

$$
\hat{\hat{U}} = (\lambda I - \hat{M}\Xi^1\hat{M}^{-1})\hat{U}, \quad \hat{\hat{J}}_± = \hat{M}(I \mp \hat{S})\hat{M}^{-1}\hat{J}_±(I \mp \hat{S})^{-1}\hat{M}^{-1}. \quad (3.18)
$$

From Eq. (3.12) we know that

$$
\hat{D}(\lambda)\hat{U} = D(\lambda)U,
$$

which implies

$$
\hat{\hat{U}} = \hat{D}^{-1}(\lambda)D(\lambda)U. \quad (3.20)
$$

The Eq. (3.20) relates the two solutions U and \hat{U}. This transformation is known as the standard binary Darboux transformation and we write it as $B(\lambda) = \hat{D}^{-1}(\lambda)D(\lambda)$ i.e.,

$$
\hat{\hat{U}} = \hat{D}^{-1}(\lambda)D(\lambda)U = B(\lambda)U. \quad (3.21)
$$

By substituting (3.9), (2.2) in Eq. (3.21), we obtain the explicit transformation on U as

$$
\hat{\hat{U}} = (\lambda I - \hat{M}\Xi^1\hat{M}^{-1})^{-1}(\lambda I - \hat{M}\lambda\hat{M}^{-1})\hat{U},
$$

$$
\hat{\hat{U}} = \hat{M}(\lambda I - \hat{S})\hat{M}^{-1}\hat{M}(\lambda I - \hat{S})^{-1}\hat{M}^{-1}U. \quad (3.22)
$$

By using (3.4) in Eq. (3.22), the expression of $\hat{\hat{U}}$ may be simplified as

$$
\hat{\hat{U}} = \hat{M}\Delta(M,H)^{-1}(\lambda I - \hat{S})^{-1}\Delta(M,H)\hat{M}^{-1}M(\lambda I - \lambda)\hat{M}^{-1}U
$$

$$
= \hat{M}\Delta(M,H)^{-1}(\lambda I - \hat{S})^{-1}\Delta(M,H)(\lambda I - \lambda)\hat{M}^{-1}U
$$

$$
= \hat{M}\Delta(M,H)^{-1}(\lambda I - \hat{S})^{-1}(\lambda\Delta(M,H) - \Delta(M,H)\lambda)\hat{M}^{-1}U.
$$
By substituting the value of $\Delta(M, \mathcal{H})\Lambda$ from (3.7), we get

$$\mathcal{U} = M \Delta(M, \mathcal{H})^{-1}(\lambda I - \Xi^{-1})(\lambda \Delta(M, \mathcal{H}) - \Xi^{-1}(\lambda M)M^{-1}\mathcal{U},$$

$$= (I - M \Delta(M, \mathcal{H})^{-1} \Delta(M, \mathcal{H}) \mathcal{U},$$

$$= (I - M \Delta(M, \mathcal{H})^{-1} \Delta(M, \mathcal{H}) \mathcal{U},$$

$$= U - M \Delta(M, \mathcal{H})^{-1} \Delta(U, \mathcal{H}),$$

(3.23)

where we have used Eq. (3.6) in obtaining the last step. Equation (3.23) may be written in terms of quasideterminant as

$$\mathcal{U} = \begin{vmatrix} \Delta(M, \mathcal{H})^{-1} & \Delta(U, \mathcal{H}) \end{vmatrix}.$$

(3.24)

The adjoint binary transformation for $\hat{W} \in \hat{V}$ is obtained in a similar way and gives

$$\hat{W} = W - \mathcal{H} \Delta(M, \mathcal{H})^{-1} \Delta(U, \mathcal{W}),$$

$$= \begin{vmatrix} \Delta^{-1}(M, \mathcal{H}) & \Delta^0(M, \mathcal{W}) \end{vmatrix} \mathcal{H}.$$

(3.25)

To find out how the conserved superfield currents \hat{J}_\pm transform under binary Darboux transformation, we start with the Eq. (3.21)

$$\hat{U} = B(\lambda)\mathcal{U}.$$

Taking derivative on both sides

$$D_{\pm} \hat{U} = D_{\pm} B(\lambda)\mathcal{U} = D_{\pm} B\mathcal{U} + B D_{\pm} \mathcal{U},$$

$$-\frac{i}{1 + \lambda} \hat{J}_- \hat{U} = D_{\pm} B\mathcal{U} - \frac{i}{1 + \lambda} B J_+ \mathcal{U}.$$

(3.26)
Now we use $B(\lambda) = \hat{D}^{-1}(\lambda)D(\lambda)$ to find $D_\pm B$.

$$D_\pm B = (\lambda - \hat{S})^{-1}(D_\pm \hat{S}B - D_\pm S).$$

(3.27)

By substituting the expression of $D_\pm B$ from (3.27) in (3.26) and simplifying, we get

$$\begin{align*}
(\lambda - \hat{S})J_\pm B &= (1 \mp \lambda)(iD_\mp \hat{S}B - iD_\pm S) + (\lambda - \hat{S})J_\pm ,
\end{align*}$$

(3.28)

Again by using $B = I + M\Delta(M, H)^{-1}(\lambda I - \Xi^\dagger)^{-1}H^\dagger$, and comparing the coefficients of λ^0 and λ in Eq. (3.28), we obtain the following equation:

$$\begin{align*}
\hat{J}_\pm + iD_\pm \hat{S} &= J_\pm + iD_\pm S ,
\end{align*}$$

(3.29)

$$\begin{align*}
D_\pm \hat{S}(I \mp \hat{S}) + ij[\hat{J}_\pm , \hat{S}] &= D_\pm S(I \mp S) + ij[J_\pm , S] .
\end{align*}$$

(3.30)

By using (3.19) on left-hand side and (2.8) on the right-hand side of the above Eq. (3.29), we get

$$\begin{align*}
(I \mp \hat{S})\hat{J}_\pm (I \mp \hat{S})^{-1} - (I \mp S)J_\pm (I \mp S)^{-1} = (I \mp S)J_\pm (I \mp S)^{-1} .
\end{align*}$$

(3.31)

By writing J_\pm in terms of a primitive field F_\pm, as $J_\pm = F_\pm F_\pm^{-1}$, we may write (3.31) as

$$\begin{align*}
\hat{J}_\pm = (I \mp \hat{S})^{-1}(I \mp S)J_\pm (I \mp S)^{-1} (I \mp \hat{S}) ,
\end{align*}$$

(3.32)

$$\begin{align*}
\hat{J}_\pm = F_\pm F_\pm^{-1} ,
\end{align*}$$

(3.33)

where

$$\begin{align*}
\hat{F}_\pm &= (I \mp \hat{S})^{-1}(I \mp S)F_\pm ,
\end{align*}$$

(3.34)

$$\begin{align*}
&= (I \mp \hat{M}\Xi \hat{M}^{-1})^{-1}(I \mp \hat{M}\Delta^{-1})F_\pm ,
&= (I \mp \hat{M}\Delta(M, H)^{-1}(I \mp \Xi^\dagger)^{-1}H^\dagger)F_\pm ,
&= \Delta(M, H)^{-1}(I \mp \Xi^\dagger)^{-1}H^\dagger | F_\pm .
\end{align*}$$

(3.35)

Note that from Eq. (3.31), we may write

$$\hat{J}_\pm = J_\pm ,$$

which is a direct consequence of Eqs. (2.4) and (3.14). For the next iteration of binary Darboux transformation, we take M_1, M_2 to be two particular solutions of the Lax pair (1.11) at $\Lambda = \Lambda_1$ and $\Lambda = \Lambda_2$, respectively. Similarly H_1, H_2 are two particular solutions of the Lax pair (2.16) at $\Xi = \Xi_1$ and $\Xi = \Xi_2$. Using the notation $U[1] = U, G[1] = G, J_1[1] = J_\pm, F_\pm[1] = F_\pm$ and $U[2] = \hat{U}, G[2] = \hat{G}, J_2[2] = \hat{J}_\pm, F_\pm[2] = \hat{F}_\pm$, we write two-fold binary
Darboux transformation on U as

$$U[3] = U[2] - \mathcal{M}[2] \Delta(M[2], \mathcal{H}[2])^{-1} \Delta(U[2], \mathcal{H}[2]),$$

(3.36)

where $\mathcal{M}[1] = \mathcal{M}_1, \mathcal{H}[1] = \mathcal{H}_1, \mathcal{M}[2] = U[2]|_{U\to M_2}, \mathcal{H}[2] = W[2]|_{U\to H_2}$. Also note that by using the definition of the potential Δ and Eq. (3.8), we have

$$\Delta(U[2], W[2]) = \Delta(U_1, W_1) - \Delta(M_1, W_1)\Delta(M_1, H_1)^{-1}\Delta(U_1, H_1).$$

(3.37)

The equation (3.37) implies that

$$\Delta(\mathcal{M}[2], \mathcal{H}[2]) = \Delta(M_2, H_2) - \Delta(M_1, H_2)\Delta(M_1, H_1)^{-1}\Delta(M_2, H_1),$$

(3.38)

By using Eqs. (3.37) and (3.38) and the notation defined above in Eq. (3.36), we get

$$U[3] = \frac{\Delta(M_1, H_1)}{M_1} \Delta(U_1, H_1) - \frac{\Delta(M_1, H_1)}{M_1} \Delta(M_2, H_1)$$

$$\times \frac{\Delta(M_1, H_1)}{M_1} \Delta(M_2, H_1)^{-1} \frac{\Delta(M_1, H_1)}{M_1} \Delta(U_1, H_1)$$

$$= \frac{\Delta(M_1, H_1)}{M_1} \Delta(M_2, H_1) \Delta(U_1, H_1),$$

(3.39)

where we have used the noncommutative Jacobi identity\(^d\) in obtaining (3.39). The Kth iteration of binary Darboux transformation leads to

$$U[K+1] = U[K] - \mathcal{M}[K] \Delta(M[K], \mathcal{H}[K])^{-1} \Delta(U[K], \mathcal{H}[K]),$$

\(^d\)For quasideterminants, the noncommutative Jacobi identity is given as

$$\begin{vmatrix} E & F & G \\ H & A & B \\ J & C & D \end{vmatrix} = \begin{vmatrix} E & F \\ H & A \end{vmatrix} \begin{vmatrix} G \\ B \end{vmatrix} - \begin{vmatrix} E & F \\ J & C \end{vmatrix} \begin{vmatrix} G \\ H \end{vmatrix} + \begin{vmatrix} E & F \\ J & C \end{vmatrix} \begin{vmatrix} G \\ H \end{vmatrix}.$$

For the definition and more properties of quasideterminants see e.g. [16–19, 27].
Above result can be proved by induction by using the properties of quasideterminants. The procedure is same as we did for the bosonic case. Similarly the \(K \)th iteration of adjoint binary Darboux transformation gives

\[
\mathcal{W}[K + 1] = \mathcal{W}[K] - \mathcal{H}[K] \Delta(\mathcal{M}[K], \mathcal{H}[K])^{-1} \Delta(\mathcal{M}[K], \mathcal{W}[K])^{-1},
\]

\[
\mathcal{U}[K + 1] = \mathcal{U}[K] - \mathcal{H}[K] \Delta(\mathcal{M}[K], \mathcal{H}[K])^{-1} \Delta(\mathcal{M}[K], \mathcal{U}[K])^{-1}.
\]

The superfield multisoliton \(G[K + 1] \) can be obtained by putting \(\lambda = 0 \) in the expression for \(\mathcal{U}[K + 1] \) (3.40) and using \(G = \mathcal{U}|_{\lambda = 0} \), which on simplification gives

\[
G[K + 1] = G \Delta(\mathcal{M}_1, H_1) \cdots \Delta(\mathcal{M}_K, H_1) \Delta(\mathcal{U}, H_1) - \mathcal{H}[K] \Delta(\mathcal{M}_1, \mathcal{H}_1)^{(-1)} \mathcal{H}[K]^{-1},
\]

\[
\Delta(\mathcal{M}_1, \mathcal{H}_1)^{(-1)} \mathcal{H}[K]^{-1} \mathcal{H}[K] \mathcal{U}|_{\lambda = 0}.
\]

The \(K \)th iteration of the conserved currents is

\[
J_{\pm}[K + 1] = \mathcal{F}_{\pm}[K + 1] \mathcal{F}_{\pm}[K + 1]^{-1},
\]

where

\[
\mathcal{F}_{\pm}[K + 1] = (I \pm \mathcal{M}[K] \Delta(\mathcal{M}[K], \mathcal{H}[K])^{-1} \mathcal{H}[K]) \mathcal{F}_{\pm}[K],
\]

\[
\Delta(\mathcal{M}_1, H_1) \cdots \Delta(\mathcal{M}_K, H_1) \pm (I \pm \mathcal{H}[K])^{-1} \mathcal{H}[K] \mathcal{F}_{\pm}[K].
\]

Similar expressions can be obtained for the \(K \)th iteration of \(G^\dagger \) and \(J_{\pm}[K] \).
4. Binary Darboux Transformation on Component Fields

To find the binary Darboux transformation on component fields, we expand all superfields and collect different coefficients of \(\theta \)'s. We first collect the results obtained in [23]. The Darboux transformation on the component fields of the supersymmetric chiral field model can be defined by a Darboux matrix \(D \)

\[
D(\lambda) = M - S,
\]

(4.1)

where \(D \) and \(S \) are the leading bosonic components of the matrix superfields \(D \) and \(S \), respectively. The matrix \(D \) is defined such that the solution \(U \) of the Lax pair (1.12) transforms as

\[
\tilde{U} = D(\lambda)U,
\]

(4.2)

Now following the arguments of the previous section, let

\[
M = (U(\lambda_1)|1\rangle, \ldots, U(\lambda_n)|n\rangle) = (|m_1\rangle, \ldots, |m_n\rangle),
\]

(4.3)

be an invertible \(n \times n \) matrix, representing the leading bosonic component of the matrix superfield \(M \) with each column \(|m_i\rangle = U(\lambda_i)|i\rangle \) in \(M \) representing a column solution of the Lax pair (1.12), when \(\lambda = \lambda_i \), i.e.,

\[
\partial_\pm M = j_\pm M(I \mp \Lambda)^{-1} + ih_\pm M((I \mp \Lambda)^{-1})^2.
\]

(4.4)

Note that the matrix \(S \) is now written in terms of \(\Lambda \) and \(M \) as

\[
S = MAM^{-1}.
\]

(4.5)

Thus, we have the Darboux transformation on the component fields \(j_\pm \equiv j_\pm[1] \) and \(\psi_\pm \equiv \psi_\pm[1] \) given by

\[
(j_\pm, \psi_\pm, V) \mapsto (\tilde{j}_\pm, \tilde{\psi}_\pm, \tilde{V}).
\]

Again substituting (4.2) into the Eq. (1.12), we have

\[
\tilde{j}_\pm = j_\pm \pm \partial_\pm S,
\]

(4.6)

\[
\tilde{\psi}_\pm = (I \mp S)\psi_\pm(I \mp S)^{-1},
\]

(4.7)

\[
\tilde{h}_\pm = (I \mp S)h_\pm(I \mp S)^{-1},
\]

(4.8)

with the conditions on \(S \) given by

\[
\partial_+ S(I - S) = j_+ S - Sj_+ - ih_+ + i(I - S)h_+ (I - S)^{-1},
\]

(4.9)

\[
\partial_- S(I + S) = -j_- S + Sj_- + ih_- - i(I + S)h_- (I + S)^{-1}.
\]

(4.10)

In fact \(j_\pm \) and \(h_\pm \) are the leading bosonic components of the matrix superfields \(D_\pm J_\pm \) and \(J_\pm^2 \), respectively. Note that \(\psi_\pm \) and \(h_\pm \) transform exactly in the same manner [23]. Therefore
once we write the expression for ψ_\pm, similar expression will hold for h_\pm. By using Eqs. (4.9) and (4.10) in Eq. (4.6), we get
\[\tilde{j}_\pm = (I \mp S) j_\pm (I \mp S)^{-1} - (I \mp S)[(I \mp S)^{-1}, h_\pm](I \mp S)^{-1}, \]
\[= Q_{\pm} [I] j_\pm + [I, Q_{\pm}][I] \tilde{j}_\pm - I h_\pm,
\]
\[= M \left[M(I \mp \Lambda) \begin{bmatrix} j_\pm & 1 & \cdots & 1 \end{bmatrix} \right] I M(I \mp \Lambda) \begin{bmatrix} 1 & I \end{bmatrix}, \]
where by analogy of superspace calculations, we write
\[Q_{\pm} = \prod_{i=1}^k (I \mp S[k]). \]
Since M and Λ are matrices, that do not commute, therefore we can write Eq. (4.2) in terms of quasideterminants as
\[\tilde{U} = (M - M \Lambda M^{-1}) U = \begin{vmatrix} M & I \\ M \Lambda & 0 \end{vmatrix} U, \]
and the chiral field \tilde{g} is expressed as
\[\tilde{g} = \tilde{U}(0) = -S g = -(M \Lambda M^{-1}) g = \begin{vmatrix} M & I \\ M \Lambda & 0 \end{vmatrix} g. \]
and
\[\tilde{\psi}_\pm = M(I \mp \Lambda) M^{-1} \psi_\pm M(I \mp \Lambda)^{-1} M^{-1}, \]
\[= M \left[M(I \mp \Lambda) \begin{bmatrix} \psi_\pm & 1 & \cdots & 1 \end{bmatrix} \right] I M(I \mp \Lambda) \begin{bmatrix} 1 & I \end{bmatrix}. \]
We can iterate the Darboux transformation K times and obtain the quasideterminant multisoliton solution of the supersymmetric model. For each $k = 1, 2, \ldots, K$, let M_k be an invertible $n \times n$ matrix solution of the Lax pair (1.12) at $\Lambda = \Lambda_k$, then the Kth solution $U[K+1]$ is expressed as
\[U[K+1] = \prod_{k=1}^K (M - S[K-k+1]) U = \begin{vmatrix} M_1 & \cdots & M_K & I \\ M_1 \Lambda_1 & \cdots & M_K \Lambda_K & M \\ \vdots & \cdots & \vdots & \vdots \\ M_1 \Lambda_1^K & \cdots & M_K \Lambda_K^K & \Lambda^K \end{vmatrix} U. \]
The multisoliton solution $g[K+1]$ of the supersymmetric model can be readily obtained by taking $\lambda = 0$ in the expression of $V[K+1]$ i.e.,

$$g[K+1] = \begin{vmatrix} M_1 & \cdots & M_K & I \\ M_1\Lambda_1 & \cdots & M_K\Lambda_K & O \\ \vdots & \cdots & \vdots & \vdots \\ M_1\Lambda_1^K & \cdots & M_K\Lambda_K^K & \mathcal{O} \end{vmatrix}.$$ \hspace{1cm} (4.15)

Similarly the K times iteration of Darboux transformation gives the following expression of the conserved currents

$$j_\pm[K+1] = \begin{vmatrix} M_1 & \cdots & M_K & I \\ M_1(I \mp \Lambda_1) & \cdots & M_K(I \mp \Lambda_K) & O \\ \vdots & \cdots & \vdots & \vdots \\ M_1(I \mp \Lambda_1)^K & \cdots & M_K(I \mp \Lambda_K)^K & \mathcal{O} \end{vmatrix} \times \begin{vmatrix} \psi_\pm \\
M_1(I \mp \Lambda_1) & \cdots & M_K(I \mp \Lambda_K) & O \\ \vdots & \cdots & \vdots & \vdots \\ M_1(I \mp \Lambda_1)^K & \cdots & M_K(I \mp \Lambda_K)^K & \mathcal{O} \end{vmatrix}^{-1}.$$ \hspace{1cm} (4.16)

For the spinor fields of the model the K-fold Darboux transformation gives

$$\psi_{\pm}[K+1] = \begin{vmatrix} M_1 & \cdots & M_K & I \\ M_1(I \mp \Lambda_1) & \cdots & M_K(I \mp \Lambda_K) & O \\ \vdots & \cdots & \vdots & \vdots \\ M_1(I \mp \Lambda_1)^K & \cdots & M_K(I \mp \Lambda_K)^K & \mathcal{O} \end{vmatrix}^{-1} \times \begin{vmatrix} \psi_\pm \\
M_1(I \mp \Lambda_1) & \cdots & M_K(I \mp \Lambda_K) & O \\ \vdots & \cdots & \vdots & \vdots \\ M_1(I \mp \Lambda_1)^K & \cdots & M_K(I \mp \Lambda_K)^K & \mathcal{O} \end{vmatrix}.$$ \hspace{1cm} (4.17)
Similar quasideterminant expressions can be obtained for the adjoint space. Now we consider the linear system for the component fields in hat space

\[\partial_\pm \hat{U}(x^\pm; \lambda) = \frac{1}{1 \mp \lambda} \hat{2} \hat{U}(x^\pm; \lambda) + i \left(\frac{1}{1 \mp \lambda} \right)^2 \hat{h}_\pm \hat{U}(x^\pm; \lambda), \] \hspace{1cm} (4.19)

and define the Darboux matrix as

\[\hat{D}(\lambda) \equiv (\lambda \hat{I} - \hat{S}) = (\lambda \hat{I} - \hat{M} \hat{\Xi} \hat{M}^{-1}). \] \hspace{1cm} (4.20)

We see that the Darboux matrix defined in Eq. (4.20) leaves the system (4.19) invariant and we obtain

\[\hat{J}_\pm = \hat{J}_\pm \pm \partial_\pm \hat{S}, \quad \hat{h}_\pm = (I \mp \hat{S}) h_\pm (I \mp \hat{S})^{-1}, \]

with

\[\partial_\pm \hat{S}(I \mp \hat{S}) = \pm j_\pm \hat{S} \mp \hat{S} j_\pm - i \hat{h}_\pm^2 + i (I \mp \hat{S}) \hat{h}_\pm (I \mp \hat{S})^{-1}. \]

The standard binary Darboux transformation for component fields is now given as

\[\hat{U} = \hat{D}^{-1}(\lambda) \hat{D}(\lambda) \hat{U} = \hat{B}(\lambda) \hat{U}. \] \hspace{1cm} (4.21)

Now we find the expressions for the \(K \)th iteration of the component fields. From Eq. (3.32) we obtain

\[j_\pm[2] = \hat{Q}_\pm \left(j_\pm - i h_\pm^2 \hat{Q}_\pm^{-1}(I - \hat{Q}_\pm) \right) \hat{Q}_\pm^{-1}, \]
\[\psi_\pm[2] = \hat{Q}_\pm \psi_\pm \hat{Q}_\pm^{-1}, \]
\[h_\pm[2] = \hat{Q}_\pm h_\pm \hat{Q}_\pm^{-1}, \] \hspace{1cm} (4.22)

where \(Q_\pm \) and \(\hat{Q}_\pm \) are defined by

\[Q_\pm = (I \mp S), \]
\[\hat{Q}_\pm = (I \mp \hat{S})^{-1}(I \mp S). \] \hspace{1cm} (4.23)

In terms of quasideterminants we write the expressions (4.23) as

\[j_\pm[2] = \begin{vmatrix} \Delta(M, H) & \mp (I \mp \Xi) H \end{vmatrix} \]
\[\begin{vmatrix} M \end{vmatrix}^{-1} \]
\[\times \left\{ j_\pm - i \begin{vmatrix} k_\pm^2 \Delta(M, H) \end{vmatrix} (I \mp \Xi)^{-1} H \begin{vmatrix} M(I \mp \Lambda)^{-1} \end{vmatrix} \right\}, \]
\[\psi_\pm[2] = \begin{vmatrix} \Delta(M, H) & \mp (I \mp \Xi) H \end{vmatrix} \]
\[\begin{vmatrix} M \end{vmatrix}^{-1} \]
\[\times \begin{vmatrix} \Delta(M, H) & \mp (I \mp \Xi) H \end{vmatrix}^{-1} \begin{vmatrix} M \end{vmatrix}^{-1}, \] \hspace{1cm} (4.24)

\[h_\pm[2] = \begin{vmatrix} \Delta(M, H) & \mp (I \mp \Xi) H \end{vmatrix} \]
\[\begin{vmatrix} M \end{vmatrix}^{-1} \]
\[\times \begin{vmatrix} \Delta(M, H) & \mp (I \mp \Xi) H \end{vmatrix}^{-1} \begin{vmatrix} M \end{vmatrix}^{-1}. \] \hspace{1cm} (4.25)
Now we consider the second equation of (4.27)
\[v_{\pm}(i\varepsilon_{K}+1) = K_{\pm}^{-1}v_{\pm}^{-1}[K]. \]
\[\psi_{\pm}(i\varepsilon_{K}+1) = K_{\pm}^{-1}\psi_{\pm}^{-1}[K], \]
(4.26)
where
\[K_{\pm}[K] = (I + S[K])^{-1}(I + S[1])^{-1}(I + S[K]), \]
\[A = \sum_{k=1}^{K} Q_{\pm}[k-1](I - (I + S[k])^{-1}(I + S[1]))Q_{\pm}[k-1]. \]
(4.27)

The quasideterminant expression of \(Q_{\pm}[K] \) is similar to that of \(F_{\pm}[K] \) (see [23]) i.e.
\[Q_{\pm}[K] = \begin{vmatrix} \Delta(M_{1}, H_{1}) & \cdots & \Delta(M_{K}, H_{1}) & (I + \Xi_{1}^{-1})^{-1}H_{k}^{1} \\ \vdots & \ddots & \vdots & \vdots \\ \Delta(M_{1}, H_{K}) & \cdots & \Delta(M_{K}, H_{K}) & (I + \Xi_{K}^{-1})^{-1}H_{K}^{1} \\
M_{1} & \cdots & M_{K} & C \end{vmatrix}. \]
(4.28)

Now we consider the second equation of (4.27) via
\[A = \sum_{k=1}^{K} Q_{\pm}[k-1](I - (I + S[k])^{-1}(I + S[1]))Q_{\pm}[k-1], \]
\[= Q_{\pm}^{-1}[0](I + S[1])^{-1}(I - (I + S[k])^{-1}(I + S[1]))Q_{\pm}[0] + \\
\cdots Q_{\pm}^{-1}[K-1](I + S[K])^{-1}(I - (I + S[k])^{-1}(I + S[K]))Q_{\pm}[K-1], \]
\[= \begin{vmatrix} \Delta(M_{1}, H_{1}) & \cdots & \Delta(M_{K}, H_{1}) & (I + \Xi_{1}^{-1})^{-1}H_{k}^{1} \\ \vdots & \ddots & \vdots & \vdots \\ \Delta(M_{1}, H_{K}) & \cdots & \Delta(M_{K}, H_{K}) & (I + \Xi_{K}^{-1})^{-1}H_{k}^{1} \\
M_{1}(I + \Lambda_{1})^{-1} & \cdots & M_{K}(I + \Lambda_{K})^{-1} & C \end{vmatrix}. \]

Therefore, we have
\[j_{\pm}[K+1] = \begin{vmatrix} \Delta(M_{1}, H_{1}) & \cdots & \Delta(M_{K}, H_{1}) & (I + \Xi_{1}^{-1})^{-1}H_{k}^{1} \\ \vdots & \ddots & \vdots & \vdots \\ \Delta(M_{1}, H_{K}) & \cdots & \Delta(M_{K}, H_{K}) & (I + \Xi_{K}^{-1})^{-1}H_{k}^{1} \\
M_{1} & \cdots & M_{K} & C \end{vmatrix} \]
\[\times \left(j_{\pm} + \begin{vmatrix} \Delta(M_{1}, H_{1}) & \cdots & \Delta(M_{K}, H_{1}) & (I + \Xi_{1}^{-1})^{-1}H_{k}^{1} \\ \vdots & \ddots & \vdots & \vdots \\ \Delta(M_{1}, H_{K}) & \cdots & \Delta(M_{K}, H_{K}) & (I + \Xi_{K}^{-1})^{-1}H_{k}^{1} \\
M_{1}(I + \Lambda_{1})^{-1} & \cdots & M_{K}(I + \Lambda_{K})^{-1} & C \end{vmatrix} \right). \]
where component currents j.

Equation (4.29) gives the quasideterminant expression for the Kth iteration of conserved component currents j_k and i_k. The proof of the expression for i_k is simple by induction. Now we consider the expression (4.29). We see from (4.24) that the expression is true for $K = 1$. Now we consider the case of $K = 2$.

$$j_{K+1} = j_1 [K+1] \times \left(j_2 + \left[\sum_{k=1}^{K} (\hat{Q}^{\pm 1}_k[I + S[k+1]]^{-1} \hat{Q}^{\pm 1}_k[I + S[k+1]]^{-1} (I - (I + S[k+1]))^{-1} Q_k [k] \right] \times (I - (I + S[k+1]))^{-1} Q_k [k] \right) \times (I - (I + S[k+1]))^{-1} Q_k [k].$$

where

$$\sum_{k=1}^{K} (\hat{Q}^{\pm 1}_k[I + S[k+1]]^{-1} (I - (I + S[k+1]))^{-1} (I - (I + S[k+1]))^{-1} Q_k [k]) =$$

$$= \sum_{k=1}^{K} (\hat{Q}^{\pm 1}_k[I + S[k+1]]^{-1} (I - (I + S[k+1]))^{-1} (I - (I + S[k+1]))^{-1} Q_k [k] + \hat{Q}^{\pm 1}_k[I + S[k+1]]^{-1} (I - (I + S[k+1]))^{-1} (I - (I + S[k+1]))^{-1} Q_k [k] \times (I - (I + S[k+1]))^{-1} Q_k [k].$$

$$\Delta(M_1, H_1) \cdots \Delta(M_K, H_1) \quad (I + S[I+1])^{-1} H_1 \quad \Delta(M_1, H_K) \cdots \Delta(M_K, H_K) \quad (I + S[I+1])^{-1} H_K \quad M_1 (I + \Lambda_1)^{-1} \cdots M_K (I + \Lambda_K)^{-1}$$

$$- \Delta(M_1, H_1) \cdots \Delta(M_K, H_1)$$

$$\Delta(M_1, H_{K+1}) \cdots \Delta(M_K, H_{K+1})$$

$$M_1 (I + \Lambda_1)^{-1} \cdots M_K (I + \Lambda_K)^{-1}$$

$$\Delta(M_1, H_1) \cdots \Delta(M_K, H_1)$$

$$\Delta(M_1, H_K) \cdots \Delta(M_K, H_K)$$

$$M_1 (I + \Lambda_1)^{-1} \cdots M_K (I + \Lambda_K)^{-1}$$
The expression for $\hat{Q}_±[K + 1]$ can be easily obtained by induction and the proof is similar as we did in [23]. Hence Eq. (4.29) is true for all values of K.

5. Elementary Binary Darboux Transformation

Now we relate the standard binary Darboux transformation obtained in the previous section to the elementary binary Darboux transformation. The elementary binary transformation is useful in the sense that we can present the solutions in the projector form which can further be related to the well known dressing method initially introduced by Mikhailov [30] to obtain the superfield multisoliton solutions of the supersymmetric chiral field model. Following discussion shows that the terms containing potential Δ in standard binary transformation reduce to the projector of elementary binary transformation when written in vector form.

Let $|\theta\rangle$ be a column solution and $\langle \rho |$ be a row solution of the direct and adjoint Lax pairs (1.11), (2.16) with spectral parameters μ and ν, respectively ($\mu \neq \nu$). Through a projection operator \mathcal{P}, the one-fold binary Darboux transformation can be constructed to obtain new matrix solutions \tilde{U} and \tilde{W} satisfying the direct and dual Lax pairs (1.11) and (2.16), respectively. The new solutions \tilde{U} and \tilde{W} are related to the old solutions U and W, respectively by the following transformation:

$$
\begin{align*}
\hat{U} &= \left(I - \frac{\mu - \nu}{\lambda - \nu} P \right) U, \\
\hat{W} &= \left(I - \frac{\mu - \nu}{\lambda - \xi} P \right) W,
\end{align*}
$$

(5.1)

where the superfield projector \mathcal{P} in this case is defined as ($\mathcal{P}^† = \mathcal{P} = \mathcal{P}^2$)

$$
\mathcal{P} = \frac{|\theta\rangle \langle \rho |}{\langle \rho | \theta\rangle},
$$

(5.2)

with

$$
\langle \rho | \theta\rangle = \sum_{i=1}^{n} \rho_i \theta_i.
$$

(5.3)

The projector \mathcal{P} has been expressed in terms of the solutions of Lax pairs (1.11) and (2.16). Substituting (5.1) into the linear system (2.4), we obtain the following equations for the
transformed conserved currents
\[iJ_\pm = iJ_\pm \pm (\mu - \nu) \partial_\pm \mathcal{P}, \]
and the condition on the projector is
\[(\mu - \nu) D_\pm \mathcal{P} \mp (1 \mp \nu) D_\pm \mathcal{P} = \pm i [\mathcal{P}, J_\pm]. \]
One can easily prove the above condition by using (5.2), with
\[D_\pm [\theta] = -\frac{1}{1 \mp \mu} J_\pm [\theta], \]
\[\partial_\pm [p] = \frac{1}{1 \mp \rho} J_\pm [p]. \]
Similar condition for the formal adjoint is obtained by using the second equation of (5.1)
in the system (2.16). The successive iterations of binary Darboux transformation produces
the transformed matrix solutions of direct and dual Lax pairs as
\[
\mathcal{U}[K + 1] = \left(I - \frac{\beta_{K+1} - \beta_{K} + 1}{\lambda - \beta_{K} + 1} \mathcal{P}[K + 1] \right) \cdots \left(I - \frac{\beta_{1} - \beta_{0} + 1}{\lambda - \beta_{0} + 1} \mathcal{P}[1] \right) \mathcal{U} \\
= \prod_{k=0}^{K} \left(I - \frac{\beta_{K+k+1} - \beta_{K+k} + 1}{\lambda - \beta_{K+k} + 1} \mathcal{P}[K + 1] \right) \mathcal{U},
\]
(5.4)
\[
\mathcal{W}[K + 1] = \left(I - \frac{\beta_{K+1} - \beta_{K} + 1}{\lambda - \beta_{K}} \mathcal{P}[K + 1] \right) \cdots \left(I - \frac{\beta_{1} - \beta_{0} + 1}{\lambda - \beta_{0}} \mathcal{P}[1] \right) \mathcal{W},
\]
(5.5)
where
\[\mathcal{P}[i] = [\theta_i | i - 1] / [\rho_i | i - 1], \]
(5.6)
and \(| \theta_i | i - 1 \rangle \) and \(\langle \rho_i | i - 1 \rangle \) defined as
\[
| \theta_i | i - 1 \rangle = \left(I - \frac{\mu_{i-1} - \nu_{i-1} + 1}{\mu_i - \nu_i} \mathcal{P}[i - 1] \right) \cdots \left(I - \frac{\mu_{0} - \nu_{0} + 1}{\mu_1 - \nu_1} \mathcal{P}[1] \right) | \theta_i \rangle,
\]
(5.7)
\[
\langle \rho_i | i - 1 \rangle = \langle \rho_i | \left(I - \frac{\mu_{i-1} - \nu_{i-1} + 1}{\mu_i - \nu_i} \mathcal{P}[i] \right) \cdots \left(I - \frac{\mu_{0} - \nu_{0} + 1}{\mu_1 - \nu_1} \mathcal{P}[1] \right) | i - 1 \rangle.
\]
are the matrix-column and matrix-row solutions of direct and dual Lax pairs, with spectral
parameters \(\mu_i \) and \(\nu_i \), respectively.

To find the relation between the standard binary Darboux transformation defined in
the previous section and the elementary binary Darboux transformation, we start from the
expression of standard binary Darboux transformation given in Eq. (3.23) i.e.,
\[\hat{\mathcal{U}} = \mathcal{U} - \mathcal{M} \Delta(M, \mathcal{N})^{-1} \Delta(\mathcal{U}, \mathcal{N}), \]
where M, H and Δ are the matrices. To obtain the elementary binary Darboux transformation from the above equation, we replace the matrices by vectors and get

$$\hat{U} = \left(I - \frac{\mu - \nu}{\lambda - \nu} | \theta \rangle \langle \rho | \right) U,$$

where we have used Eqs. (3.6) and (3.7) for the potential Δ and the fact that $| \theta \rangle$ and $\langle \rho |$ are the column and row solutions of the direct and adjoint Lax pairs with spectral parameters μ and ν, respectively. Note that we have obtained Eq. (5.8) from the expression of standard binary Darboux transformation. The right-hand side of the above equation is same as that of Eq. (5.1) which is obtained by using elementary binary Darboux transformation. We therefore conclude that by replacing the matrix solutions with the vector solutions we can reduce standard binary Darboux transformation to elementary binary Darboux transformation.

6. Conclusions

In this paper, we have composed the elementary Darboux transformations of the two dimensional supersymmetric principal chiral field model and obtained the standard binary Darboux transformation of the model. By iterating the standard binary Darboux transformation we have generated the superfield multisolitons of the model. We have also obtained the quasideterminant expression for the potential Δ. From the expression of standard binary Darboux transformation, the elementary binary Darboux transformation has been obtained in terms of the particular vector solutions of the direct and adjoint linear systems.

Acknowledgment

B. Haider would like to acknowledge the enabling role of the Higher Education Commission of Pakistan for the financial support for Ph.D. studies.

References

[1] L. F. Alday, G. Arutyunov and A. A. Tseytlin, On integrability of classical superstrings in $AdS_5 \times S^5$, J. High Energy Phys. 0507 (2005) 002, arXiv:hep-th/0502240.

[2] G. Arutyunov and S. Frolov, Integrable Hamiltonian for classical strings on $AdS_5 \times S^5$, J. High Energy Phys. 0502 (2005) 059, arXiv:hep-th/0411089.

[3] G. Arutyunov and M. Zamaklar, Linking Backlund and monodromy charges for strings on $AdS_5 \times S^5$, J. High Energy Phys. 0507 (2005) 026, arXiv:hep-th/0504144.

[4] L. L. Chau and H. C. Yen, Integrability of the superchiral model with a Wess-Zumino term, Phys. Lett. B 177 (1986) 368.

[5] J. Ciesielski, An algebraic method to construct the Darboux matrix, J. Math. Phys. 36 (1995) 5670.

[6] J. Ciesielski and W. Biernacki, A new approach to the Darboux-Backlund transformation versus the standard dressing method, J. Phys. 38 (2005) 9491.

[7] T. L. Curtright and C. K. Zachos, Nonlocal currents for supersymmetric nonlinear models, Phys. Rev. D 21 (1980) 411.

[8] T. Curtright and C. K. Zachos, Supersymmetry and the nonlocal Yangian deformation symmetry, Nucl. Phys. B 402 (1993) 694, arXiv:hep-th/9210060.

[9] T. Curtright and C. K. Zachos, Currents, charges, and canonical structure of pseudodual chiral models, Phys. Rev. D 49 (1994) 5488, arXiv:hep-th/9401006.
[10] G. Darboux, Sur une proposition relative aux équations linéaires (On a proposition relative to linear equations), C. R. Acad. Sci. Paris 94 (1882) 1456-1459.

[11] G. Darboux, Leçons Sur La Théorie Générale Des Surfaces, Vol. IV (Gauthier-Villars, Paris, 1886). Reprinted in 1972 by (Chelsea Publishing Company, New York).

[12] A. Das, J. Maharana, A. Melikyan and M. Sato, The algebra of transition matrices for the $\text{AdS}_5 \times S^5$ superstring, J. High Energy Phys. 0412 (2004) 055, arXiv:hep-th/0411200.

[13] N. Dorey and B. Vicedo, A symplectic structure for string theory on integrable backgrounds, J. High Energy Phys. 03 (2007) 045, arXiv:hep-th/0606287.

[14] J. M. Evans, M. Hassan, N. J. MacKay and A. J. Mountain, Conserved charges and supersymmetry in principal chiral and WZW models, Nucl. Phys. B 580 (2000) 605, arXiv:hep-th/0001222.

[15] J. M. Evans, N. J. MacKay and M. Hassan, Conserved charges and supersymmetry in principal chiral models, Nucl. Phys. B 561 (1999) 385, arXiv:hep-th/9711140.

[16] I. Gelfand, S. Gelfand, V. Retakh and R. L. Wilson, Quasideterminants, Adv. Math. 193 (2005) 56.

[17] I. Gelfand and V. Retakh, Determinants of matrices over noncommutative rings, Funct. Anal. Appl. 25(2) (1991) 91–102.

[18] I. Gelfand and V. Retakh, A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl. 26(4) (1992) 1–20.

[19] I. Gelfand, V. Retakh and R. L. Wilson, Quaternionic quasideterminants and determinants (preprint 2002), arXiv:math.QA/0206211.

[20] B. Haider and M. Hassan, On algebraic structures in supersymmetric principal chiral model, Eur. Phys. J. C 53 (2008) 627.

[21] B. Haider and M. Hassan, The $U(N)$ chiral model and exact multi-solitons, J. Phys. A 41 (2008) 255202.

[22] B. Haider and M. Hassan, Quasideterminant solutions of an integrable chiral model in two dimensions, J. Phys. A: Math. Theor. 42 (2009) 355211.

[23] B. Haider and M. Hassan, Quasideterminant multisoliton solutions of supersymmetric chiral field model in two dimensions, J. Phys. A: Math. Theor. 43 (2010) 035204.

[24] B. Haider, M. Hassan and U. Saleem, Binary Darboux transformation and quasideterminant solutions of the chiral field, J. Nonlinear Math. Phys. (to appear).

[25] M. Hatsuda and K. Yoshida, Classical integrability and super Yangian of superstring on $\text{AdS}_5 \times S^5$, Adv. Theor. Math. Phys. 9 (2005) 703, arXiv:hep-th/0407044.

[26] Q. Ji, Darboux transformation for MZM-I, II equations, Phys. Lett. A 311 (2003) 384.

[27] D. Krob and B. Leclerc, Minor identities for quasi determinants and quantum determinants, Commun. Math. Phys. 169 (1995) 1, arXiv:hep-th/9411194.

[28] M. Manas, Darboux transformations for the nonlinear Schrödinger equations, J. Phys. 29 (1996) 7721.

[29] V. B. Matveev and M. A. Salle, Darboux Transformations and Soliton (Springer-Verlag, 1991).

[30] A. V. Mikhailov, Integrability of supersymmetric generalization of classical chiral models in two-dimensional space-time, JETP Lett. 28 (1979) 512.

[31] J. J. C. Nimmo, Darboux transformation from reductions of KP hierarchy, eprint arXiv:solv-int/9410001.

[32] J. J. C. Nimmo, Darboux transformation for discrete systems, Chaos, Solitons Fractals 11 (2000) 115–120.

[33] J. J. C. Nimmo, C. R. Gilson and Y. Ohta, Applications of Darboux transformations to the selfdual Yang-Mills equations, Theor. Math. Phys. 122 (2000) 239.

[34] W. Oevel and W. Schief, Darboux theorems and the KP hierarchy, in Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, ed. P. A. Clarkson (Kluwer, 1994), pp. 193–206.

[35] Q. H. Park and H. J. Shin, Darboux transformation and Crum’s formula for multi-component integrable equations, Phys. D 157 (2001) 1.
[36] Z. Popowicz and L. L. Chau Wang, Backlund transformation, local and non-local conservation laws of super-chiral fields, Phys. Lett. B 98 (1981) 253.

[37] C. Rogers and W. K. Schief, Backlund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (Cambridge University Press, Cambridge, 2002).

[38] A. L. Sakhnovich, Dressing procedure for solutions of non-linear equations and the method of operator indentities, Inverse Problems 10 (1994) 699.

[39] U. Saleem and M. Hassan, Zero-curvature formalism of supersymmetric principal chiral model, Eur. Phys. J. C 38 (2005) 521, arXiv:hep-th/0501124.

[40] N. V. Ustinov, The reduced selfdual Yang–Mills equation, binary and infinitesimal Darboux transformations, J. Math. Phys. 39 (1998) 976.