3''-Hydroxymethyl-butyrolactone II from Aspergillus sp.

Gang Chena,b#, Xiao Anb#, Haifeng Wangb, Yuehu Peia*

a College of Pharmacy, Harbin Medical University, Baojian Road 157, Nangang District, Harbin 150081, PR China.
b School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang 110016, China;

* Correspondence: peiyueh@vip.163.com
contribute equally to this paper

Abstract

In continuation of the search for new compounds from the terrestrial fungus Aspergillus sp., one new butyrolactone, 3''-hydroxymethyl-butyrolactone II (1) was isolated. The chemical structure of 1 was confirmed by extensive 1D and 2D NMR and HR-ESI mass data analysis, and by comparison with literature data. The absolute configuration was also determined by ECD calculations.

List of content

Table S1. 1H (400 MHz) and 13C NMR (100 MHz) data of MB2 and MB3 in DMSO-\textit{d}_{6}………………..4

Figure S1: The key HMBC correlations of 1………………………………………………………….5

Figure S2: Main conformers of (4S)- (left) and (4R)- (right), determined by DFT calculations (B3LYP/6-311G (d, p) of 1………………………………………………………………………….6

Figure S3: Experimental CD and calculated ECD curves of 1……………………………………….7

Figure S4: The 1H NMR spectrum of 1……………………………………………………….8

Figure S5: The 13C NMR spectrum of 1……………………………………………………….9

Figure S6 The HSQC spectrum of 1……………………………………………………………………10

Figure S7: The HMBC spectrum of 1………………………………………………………………..11
Experimental Section

1.1. General Experimental Procedure

UV spectra was measured on a Shimadzu UV-1601 (Shimadzu, Tokyo, Japan). IR spectra was measured on a Bruker IFS-55 infrared spectrophotometer (Bruker Co., Zurich, Switzerland). The optical rotation was measured on a PerkinElmer 241 polarimeter (PerkinElmer Co., Jena, Germany). The NMR spectral data were recorded on a Bruker AV spectrometer (400 MHz for 1H and 100 MHz for 13C) with TMS (tetramethylsilane) as the internal standard (Bruker Co.). The HR-ESI-MS data was obtained on the MicrosMass AutoSpec-UltimaE TOF mass spectrophotometer (Bruker Co.). Chromatography was carried out on silica gel (200-300 mesh; Qingdao Haiyang Chemical Factory, Qingdao, China), Sephadex LH-20 (Pharmacia, Piscataway, NJ, USA), and reversed phase HPLC (Shimadzu LC-8A vp, Kyoto, Japan).

1.2. Isolation and Taxonomy of the producing strain

Isolation and taxonomy of the terrestrial Aspergillus sp. was reported recently (An et al., 2016).

1.3. Fermentation, Extraction and Isolation

The fermentation and extraction was described previously (An et al., 2016). Briefly, the EtoAc extraction was subjected to silica column with CHCl$_3$: MeOH (100:1-1:100) as the eluent. An application of sub-fraction F delivered on Sephadex LH-20 (DCM/50% MeOH) and then RP-18 column (Water/Methanol [80:20]) afforded (4R)-3”-hydroxymethyl-butyrolactone II (5.2 mg) as yellow oil.

(4R)-3”-hydroxymethyl-butyrolactone II (1)

Yellow oil. $[\alpha]_D^{20} +11.6$ (c 0.60, MeOH), UV (MeOH) λ_{max}: 208 nm; IR (KBr) ν_{max} (cm$^{-1}$) 3345, 2988, 1685, and 1225; HR-ESI-MS m/z 409.0889; 1H-NMR (400 MHz, DMSO-d_6) and 13C-NMR (100 MHz, DMSO-d_6): see Table S1.

1.4. Antimicrobial, anti-inflammatory, and DHHP/ABTS assays
See An et al. 2016, An et al. 2017, and Gao et al. 2017

1.5. Quantum-mechanical calculations

The least-energy conformations of the investigated compounds were determined with systematic methods implemented in Discovery studio 2013 package. The possible conformers were optimized using DFT at the B3LYP/6-31G (d) level in the GAUSSIAN 09 program. The optimized isomer was calculated using DFT at the B3LYP/6-311G (d, p) in the GAUSSIAN 09 program to generate its ECD property.

References

An X, Feng BM, Chen G, Chen SF, Wang HF, Pei YH. 2016. Two new asterriquinols from Aspergillus sp. CBS-P-2 with anti-inflammatory activity. J Asian Nat Prod Res. 18: 737-743.

An X, Feng BM, Chen G, Chen SF, Bai J, Hua HM, Wang HF, Pei YH. 2017. Isolation and identification of phase I metabolites of butyrolactone I in rats. Xenobiotica. 47: 236-244.

Gao Y, Rao H, Mao LJ, Ma QL. 2017. Chemical composition, antioxidant, antibacterial and cytotoxic activities of essential oil of Leontopodium leontopodioides (Willd.) Beauverd. Nat Prod Res. 17:1-4.
Table S1. 1H (400 MHz) and 13C NMR (100 MHz) data of 1 in DMSO-d_6

position	δ_H (J in Hz)	δ_C
1	-	168.4
2	-	138.5
3	-	128.1
4	-	85.2
5	3.35 (d, 16.4); 3.42 (d, 16.4)	38.7
6	-	170.2
1'	-	121.4
2'	7.51 (d, 8.8)	129.3
3'	6.88 (d, 8.8)	116.3
4'	-	158.3
5'	6.88 (d, 8.8)	116.3
6'	7.51 (d, 8.8)	129.3
1''	-	123.4
2''	6.79 (d, 2.0)	130.1
3''	-	128.1
4''	-	153.6
5''	6.50 (d, 8.4)	114.3
6''	6.47 (dd, 8.4, 2.0)	129.5
7''	4.31 (2H, s)	58.6
6-OCH$_3$	3.74 (3H, s)	53.9
Figure S1: The key HMBC correlations of 1.
Figure S2: Main conformers of (4S)- (left) and (4R) (right), determined by DFT calculations (B3LYP/6-311G (d, p) of 1.
Figure S3: Experimental CD and calculated ECD curves of 1.
Figure S4: The 1H NMR spectrum of 1.
Figure S5: The 13C NMR spectrum of 1
Figure S6: The HSQC spectrum of 1.
Figure S7: The HMBC spectrum of 1.
Figure S8: The HR-ESI-MS spectrum of 1.