POSTSYNAPTIC SPECIALIZATION OF SMOOTH
MUSCLE AT CLOSE NEUROMUSCULAR JUNCTIONS
IN THE GUINEA PIG SPHINCTER PUPILLAE

YASUO UEHARA and GEOFFREY BURNSTOCK. From the Department of Zoology, University of
Melbourne, Parkville, 3052, Victoria, Australia. Dr. Uehara’s present address is The Department of Fine
Morphology, Institute of Medical Science, Tokyo University, Takanawa, Tokyo, Japan.

While postsynaptic specialization of various kinds
has been described at the skeletal neuromuscular
junction (1, 2) and at nerve synapses (3), no well-
defined postsynaptic structures have been estab-
lished for smooth muscle at autonomic neuromus-
cular junctions (3, 4). Postsynaptic structures of
three kinds have been described, although these
have been reported to be inconsistent features not
present at all junctions: (a) Aggregations of micro-
pinocytotic vesicles opposed to the nerve varicosi-
ties in smooth muscle cells have been described in
arterioles of the pancreas (15) and in the muscle
coa of the intestine (4, 14). (b) Areas of increased
density of postsynaptic membrane (26, 17) or
desmosome-like structures (11) at the close-contact
area between axons and muscle cells have been
reported. However, these appear to be a rare fea-
ture and may represent mechanical attachment
points between axon and muscle cell rather than
structures related to the neurotransmission process
(11). (c) Subsurface cisternae have been observed
in the region of smooth muscle closely opposed
(less than 200 A) to some nerve terminals in the
vas deferens (20, 16, 4).

In the present study, postsynaptic regions at
neuromuscular junctions in the guinea pig sphin-
cter pupillae have been examined. This tissue was
chosen because it is relatively densely innervated
with close (about 200 A) neuromuscular junctions
(21), and because the need for rapid neuromus-
cular transmission seems likely to be greater in this
situation than in visceral or vascular systems.

Irisae from adult albino guinea pig were fixed
in 0.05 M phosphate-buffered (pH 7.4) 4% glu-
taraldehyde for 20 min, washed in phosphate buf-
er for 2 hr, and postfixed in osmium tetroxide for
1 hr. They were block-stained in 2% uranyl acetate
solution (27) before dehydration and embedding.
Figure 1. Two axons (A), partly enclosed by a Schwann cell sheath (Sw), are separated by a wide gap (500 Å) from the surface of the smooth muscle cell (m) in the guinea pig sphincter pupillae. Basement membrane material is interposed in the gap. Note that there is no structural specialization in the peripheral cytoplasm of the muscle cell opposing the axons, although some of the smooth endoplasmic reticulum (e) appears to be closely applied to the muscle membrane. G, Golgi complex. × 130,000.

In Araldite. Ultrathin sections were doubly stained in uranyl acetate in 90% methanol for 30 min and lead citrate for 5 min (28) and examined with an Hitachi HU 11B electron microscope.

Small bundles of axons in the sphincter pupillae partly invested by Schwann cell processes are usually separated from the underlying smooth muscle cells by a gap more than 500 Å, with basement membrane material interposed. Although these axons contain a significant number of synaptic

Figure 2. A subsurface cisterna (S) beneath the plasma membrane of the muscle cell (m) in the close-contact (within 200 Å) area between the naked axon (A) and the muscle cell (m). The cytoplasmic zone (area indicated by arrows), intercalated between the muscle cell membrane and the distal membrane of the cisterna, is consistent in width (150-170 Å) and contains a continuous electron-opaque intermediate layer (I). × 150,000.

Figure 3. High-power electron micrograph showing the organized cytoplasmic zone containing the intermediate layer (I) about 40 Å thick between the plasma membrane (p) of muscle cell (m) and the distal membrane (do) of the cisterna (S). The intermediate line is about 80 Å apart from the plasma membrane and about 40 Å from the distal cisternal membrane. Electron-opaque filamentous material (f) appears to traverse the cytoplasmic zone. The plasma membrane (p) of the terminal axon (A) is separated from the muscle surface by a narrow gap (about 200 Å), v, synaptic vesicle; pc, proximal membrane of the cisterna. × 450,000
vesicles, the region of smooth muscle cells that apposes the axons does not exhibit detectable postsynaptic specialization (Fig. 1). However, at the close neuromuscular junctions, where single terminal axons, usually free of Schwann cell investment, approach within 200 A of the muscle membrane without intervention of basement membrane, subsurface or subsynaptic cisternae are often encountered just beneath the muscle membrane opposed to the terminal axon. These cisternae are up to 1.5–2 μ long and from 50 to 150 A wide except at their bulbous lateral edges (Fig. 2).

A characteristic feature of the subsurface cisternae in the sphincter pupillae muscle is the occurrence of a continuous electron-opaque intermediate line interposed between the muscle membrane and the distal membrane of the cisternae (Fig. 2). The cytoplasmic zone containing the intermediate line is of consistent width (150–170 A), whereas the remaining part of the cytoplasmic zone between the cell membrane and the cisternae is less organized with an uneven width ranging from 50 to 200 A. Fig. 3 shows a high resolution micrograph of this highly organized cytoplasmic zone beneath the terminal axon. The electron-opaque layer, which is about 40–60 A thick, runs between the muscle membrane and the distal membrane of the subsurface cisternae. This layer is not centrally placed; it is closer to the distal membrane of the cisternae (about 40 A) and is separated by about 80 A from the muscle membrane. Filamentous elements appear to traverse the space between the muscle membrane and the distal membrane of the cisternae. In a few cases, subsurface cisternae with this kind of specialization were also seen in areas of muscle surface where no nerves were visibly related. However, it appears that they are mostly confined to neuromuscular junctions.

Subsurface cisternae have been described in a variety of other cell types: neurons in peripheral and central nervous systems (22, 9, 23), sensory cells in receptor organs (12, 24), Sertoli cells (6), cultured oral cells (13), and parotid acinar cells at the area of close apposition of nerve terminals (8). In a study of subsynaptic cisternae in the central nervous system, Rosenbluth (22) made a brief reference to a comparable structure, which he described as a faint intermediate line consisting of cementing substance, or minute cross-bridges in the space between the plasma membrane and subsurface cisternae. Siegesmund (23) has also demonstrated electron-opaque fine granular material in this space in the neurons in the central nervous system. However, no descriptions of highly organized structures of this kind have been reported in relation to subsurface cisternae of other systems. Comparable structural organization appears to be represented in triads or diads in skeletal muscle (25, 19). In this system, the cisternae (terminal cisternae of the sarcoplasmic reticulum) and the transverse tubules or plasma membrane are connected by organized electron-opaque structures, and it has been suggested that they are involved in impulse transmission during excitation-contraction coupling (18).

Further studies with high resolution electron microscopy are necessary to determine whether subsurface cisternae, in general, have the kind of organized substructure described in this report. The functional significance of the subsurface cisternae in the sphincter pupillae is not known. However, by analogy with subsurface cisternae described in other systems, whether or not these cisternae have structural specialization, they may be involved in the transmission process (7), possibly by regulating the physiological properties of the postsynaptic membrane (22, 10).

This work was supported by grants from the Australian Research Grants Committee and the National Heart Foundation of Australia.

Received for publication 21 December 1971, and in revised form 2 February 1972.

REFERENCES

1. Anderson-Cedercren, E. 1956. Ultrastructure of motor end plate and saroplastic components of mouse skeletal muscle fibre as revealed by three-dimensional reconstruction from serial sections. J. Ultrastruct. Res. Suppl. 1:1.

2. Birks, R., H. E. Huxley, and B. Katz. 1960. The fine structure of the neuromuscular junction of the frog. J. Physiol. (London). 150:134.

3. Burnstock, G. 1970. Structure of smooth muscle and its innervation. In Smooth Muscle. E. Bulbring, editor. Edward Arnold Publishers Ltd., London. 1.

4. Burnstock, G., and T. Iwayama. 1971. Fine structural identification of autonomic nerves and their relation to smooth muscle. Progr Brain Res. 34:389.

5. Charlton, B. T., and E. G. Gray. 1966. Comparative electron microscopy of synapses in the vertebrate spinal cord. J. Cell Sci. 1:67.
6. Flickinger, C., and D. W. Fawcett. 1967. The junctional specializations of Sertoli cells in the seminiferous epithelium. *Anat Rec.* 158:207
7. Hama, K. 1965. Some observations on the fine structure of the lateral line organ of the Japanese sea eel, *Lycosynema japonicum*. *J. Cell Biol.* 24:193.
8. Hand, A. 1970. Nerve-muscle cell relationships in the rat parotid gland. *J. Cell Biol.* 47:340.
9. Hartmann, J. F. 1966. Ultrastructural relationship of neuronal cytoplasmic membranes. *Mod. Biol. Biol.* 16:108.
10. Herndon, R. M. 1963. The fine structure of the Pekin's cell. *J. Cell Biol.* 18:167.
11. Ivanov, D. P. 1971. Connexions neuro-musculaires spécialisées dans le canal déferlent du rat *J. Neuro-Vision. Relax* 32:143.
12. Iurato, S. 1961. Submicroscopic structure of the membrane labyrinth. *Z. Zellforsch. Mikrosk.* 53:259.
13. Kumeiawa, M., M. Cattoni, and G. G. Ross. 1968. Electron microscopy of oral cells in vitro. 1. Subsurface and intracytoplasmic confronting cisternae in strain KII cells. *J. Cell Biol.* 36:443.
14. Lane, B. P., and T. A. G. Rhodin. 1964. Cellular interrelationships and electrical activity in two types of smooth muscle. *J. Ultrasound. Res.* 10:470.
15. Lever, J. D., J. D. P. Graham, G. Irvine, and W. J. Cheek. 1955. The vasculature axons in relation to arteriolar smooth muscle in the pancreas. A fine structural and quantitative study. *J. Anat.* 99:299.
16. Mennick, N. T. R., G. Brustein, and M. E. Holman. 1963. Correlation of fine structure and physiology of the innervation of smooth muscle in the guinea-pig vas deferens. *J. Cell Biol.* 19:329.
17. Nagawa, J., and S. Misu. 1967. Electron-microscopic observations on the innervation of smooth muscle. *Tokura J. Exp. Med.* 91:277.
18. Peachey, L. D., and K. R. Porter. 1959. Intracellular impulse conduction in muscle cells. *Science (Washington).* 129:721.
19. Revel, J. P. 1962. The synaptolemma reticulum of the bat cricothyroid muscle. *J. Cell Biol.* 12:571.
20. Richardson, K. C. 1962. The fine structure of autonomic nerve endings in smooth muscle of the rat vas deferens. *J. Anat.* 96:127.
21. Richardson, K. C. 1964. The fine structure of the albino rabbit iris with special reference to the identification of adrenergic and cholinergic nerves and nerve endings in its intrinsic muscles. *Anat. J. Anat.* 114:173.
22. Roelens, J. 1962. Subsurface cisterns and their relationship to the neuronal plasma membrane. *J. Cell Biol.* 13:405.
23. Segemund, K. A. 1968. The fine structure of subsurface cisterns. *Anat. Res.* 162:187.
24. Smith, C. A., and F. S. Stoner. 1961. Structure of the nerve endings on the external hair cells of guinea-pig cochlea as studied by serial sections. *J. Ultrastruct. Res.* 5:523.
25. Smith, D. S. 1961. The structure of insect fibrillar flight muscle. *J. Biophys. Biochem. Cytol.* 10 (Suppl):123.
26. Tassi, J. 1965. Contribution a l'étude des connexions des neurones moteur du système nerveux. *Anat. Soc. Naturelles Zool.* (12e Ser.):113.
27. Terzakis, J. A. 1968. Uranyl acetate, a stain and fixative. *J. Ultrastruct. Res.* 22:168.
28. Venables, J. M., and A. Coggeshall. 1965. Simplified lead citrate stain for use in electron microscopy. *J. Cell Biol.* 25:107.
Author/s:
Uehara, Y; Burnstock, G

Title:
Postsynaptic specialization of smooth muscle at close neuromuscular junctions in the guinea pig sphincter pupillae.

Date:
1972-06

Citation:
Uehara, Y. & Burnstock, G. (1972). Postsynaptic specialization of smooth muscle at close neuromuscular junctions in the guinea pig sphincter pupillae. J Cell Biol, 53 (3), pp.849-853. https://doi.org/10.1083/jcb.53.3.849.

Persistent Link:
http://hdl.handle.net/11343/259138

License:
CC BY-NC-SA