GAMMA FACTORS FOR THE ASAI CUBE REPRESENTATION

SHIH-YU CHEN

Abstract. We prove an equality between the gamma factors for the Asai cube representation of \(R_{E/F} \text{GL}_2 \) defined by the Weil–Deligne representations and the local zeta integrals of Ikeda and Piatetski-Shapiro–Rallis, where \(E \) is an \(\acute{e}tale \) cubic algebra over a local field \(F \) of characteristic zero. As an application we obtain the analytic properties of the automorphic \(L \)-functions for the Asai cube representation.

Contents

1. Introduction
2. Holomorphic family of Whittaker functions
3. Asai cube factors via the Weil–Deligne representations
4. Asai cube factors via the local zeta integrals
5. Proof of Main Results
References

1. INTRODUCTION

1.1. Main results. Let \(F \) be a local field of characteristic zero and \(E \) an \(\acute{e}tale \) cubic algebra over \(F \). Denote by \(\mathbb{K} \) the quadratic discriminant algebra of \(E \). Let \(\alpha \) be a basis of \(E \) over \(F \) and \(\psi \) a non-trivial additive character of \(F \). Let \(\Pi \) be an irreducible generic admissible representation of \(\text{GL}_2(E) \). Denote by \(\phi_\Pi : W'_E \to L(R_{E/F} \text{GL}_2) \) the \(L \)-parameter associated to \(\Pi \) via the local Langlands correspondence. Here \(W'_E \) is the Weil–Deligne group of \(F \) and \(L(R_{E/F} \text{GL}_2) \) is the Langlands dual group of \(R_{E/F} \text{GL}_2 \). We have the Asai cube representation (see §3 for the precise definition)

\[
\text{As} : L(R_{E/F} \text{GL}_2) \rightarrow \text{GL}(\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2).
\]

Let \(L(s, \Pi, \varepsilon) \), \(\varepsilon(s, \Pi, \psi) \), and \(\gamma(s, \Pi, \psi) \) be the \(L \)-factor, \(\varepsilon \)-factor, and \(\gamma \)-factor, respectively, associated to the admissible representation \(\text{As} \circ \phi_\Pi \) of \(W'_E \). On the other hand, associated to \(\Pi \) we can define the local factors \(L_{\text{PSR}}(s, \Pi, \varepsilon) \), \(L_{\text{PSR}}(s, \Pi, \psi, \alpha) \), and \(L_{\text{PSR}}(s, \Pi, \psi, \alpha) \) via the local zeta integrals of Ikeda and Piatetski-Shapiro–Rallis introduced in [Ike89] and [PSR87]. The local zeta integrals are of the form

\[
Z_{\tilde{\alpha}}(f_s, W) = \int_{F \times U_0(F) \backslash G(F)} f_s(t_{\tilde{\alpha}}(\eta g))W(g) \, dg.
\]

Here, \(\tilde{\alpha} \) is a symplectic basis of the symplectic space \(V(F) = E \oplus E \) equipped with the trace form, \(t_{\tilde{\alpha}} \) is the isomorphism between \(\text{GSp}(V)(F) \) and \(\text{GSp}_6(F) \) induced by \(\tilde{\alpha} \), \(G(F) = \{ g \in \text{GL}_2(E) \mid \det(g) \in F^\times \} \subseteq \text{GSp}(V)(F) \), \(U_0(F) \) is a unipotent subgroup of \(G(F) \), \(\eta \in \text{GSp}(V)(F) \) satisfies certain conditions, \(f_s \) is a section in certain degenerate principal series representation of \(\text{GSp}_6(F) \), and \(W \) is a Whittaker function of \(\Pi \) with respect to \(\psi_E = \psi \circ \text{tr}_{E/F} \). We refer to §4 for more detail.

The main results of this paper are as follows:

Theorem 1.1. We have

\[
\gamma_{\text{PSR}}(s, \Pi, \psi, \alpha) = \omega_\Pi(\Delta_{E/F}(\alpha)|\Delta_{E/F}(\alpha)|^{s-1}\omega_{\mathbb{K}/F}(-1)\gamma(s, \Pi, \psi).
\]

Here \(\omega_\Pi \) is the central character of \(\Pi \), \(\Delta_{E/F}(\alpha) \) is the relative discriminant of \(\alpha \) for \(E/F \), and \(\omega_{\mathbb{K}/F} \) is the quadratic character associated to \(\mathbb{K}/F \) by local class field theory.
Remark 1.2. When E is unramified over F and Π is unramified, the identity follows from the explicit calculation due to Piatetski-Shapiro and Rallis in [PSR87]. When $E = F \times F \times F$, the identity was established by Ikeda and Ramakrishnan in [Ike89] and [Ram00], respectively. When $E = F' \times F$ for some quadratic extension F' of F, the assertion was partially proved by Chen–Cheng–Ishikawa in [CCI18].

Corollary 1.3. Assume $\max \{ |L(\Pi)|, |L(\Pi')| \} < 1/2$. Then

$$L_{PSR}(s, As \Pi) = L(s, As \Pi),$$

$$\varepsilon_{PSR}(s, As \Pi, \psi, \alpha) = \omega_\Pi(\Delta_{E/F}(\alpha))|\Delta_{E/F}(\alpha)|^{\frac{2s}{P}}\omega_{K/F}(-1)\varepsilon(s, As \Pi, \psi).$$

Here $L(\Pi)$ and $L(\Pi')$ are defined in (2.3).

Now we switch to a global setting. Let F be a number field and E an étale cubic algebra over F. Denote by \mathcal{A}_E and \mathcal{A}_F the rings of adeles of E and F, respectively. Let ψ be a non-trivial additive character of $\mathcal{A}_F/\mathcal{A}_F$.

Let Π be an irreducible unitary cuspidal automorphic representation of $\mathrm{GL}_2(\mathcal{A}_E)$ with central character ω_Π. Write $\omega = \omega_\Pi|_{\mathcal{A}_F}$. Let

$$L(s, As \Pi) = \prod_v L(s, As \Pi_v), \quad \varepsilon(s, As \Pi) = \prod_v \varepsilon(s, As \Pi_v, \psi_v)$$

be the automorphic L-function and ε-factor associated to Π and the Asai cube representation. We have the following three cases:

$$\begin{cases} E = F \times F \times F & \text{Case 1}, \\ E = F' \times F & \text{Case 2}, \\ E \text{ is a field} & \text{Case 3}. \end{cases}$$

Combining Corollary 1.3 and the results in [Ike92], [Ram00], and [KS02], we have the following description of the analytic properties of $L(s, As \Pi)$.

Theorem 1.4. The L-function $L(s, As \Pi)$ is absolutely convergent for $\Re(s) \geq 3/2$, admits meromorphic continuation to $s \in \mathbb{C}$, bounded in vertical strips of finite width, and satisfies the functional equation

$$L(s, As \Pi) = \varepsilon(s, As \Pi)L(1 - s, As \Pi').$$

If either ω^2 is not principal or ω is principal, then $L(s, As \Pi)$ is entire. If ω^2 is principal and ω is not principal, we may assume $\omega^2 = 1$ and $\omega \neq 1$ and let K be the quadratic extension of F associated to ω by class field theory. Then $L(s, As \Pi)$ is not entire if and only if $K \neq F'$ in Case 2 and there exists a unitary Hecke character χ of $\mathcal{A}_E/\mathcal{A}_K$ with $\chi|_{\mathcal{A}_F} = 1$ such that $\Pi = \text{Ind}_{\mathcal{A}_E/\mathcal{A}_K}^E(\chi)$. In this case, we have

$$L(s, As \Pi) = \zeta_K(s) \begin{cases} L(s, \chi_1^1 \chi_2^1 \chi_3^1 \chi_3^1) & \text{in Case 1 and } \chi = (\chi_1, \chi_2, \chi_3), \\ L(s, \chi_1^1 \chi_2^1 \chi_3^2) & \text{in Case 2 and } \chi = (\chi_1, \chi_2), \\ L(s, \chi_1^{-1} \chi_3^{-1}) & \text{in Case 3}. \end{cases}$$

Here $\text{Ind}_{\mathcal{A}_E/\mathcal{A}_K}^E(\chi)$ is the automorphic induction of χ from $\mathcal{A}_E/\mathcal{A}_K$ to $\mathrm{GL}_2(\mathcal{A}_E)$, $\zeta_K(s)$ is the completed Dedekind zeta function of K, and σ is the generator of

$$\begin{cases} \text{Gal}(K/F) & \text{in Case 1}, \\ \text{Gal}(F'/F') & \text{in Case 2}, \\ \text{Gal}(E/K/E) & \text{in Case 3}. \end{cases}$$

1.2. An outline of the proof. We sketch the proof of Theorem 1.1. Since the assertion is known when F is archimedean, we assume F is non-archimedean. Let f_s be a good section of $I(\omega, s)$ and W a Whittaker function of Π with respect to ψ_E. By the functional equation of the local zeta integrals, it suffices to prove

$$(1.1) \quad Z_\lambda(M'_w f_s, W') = \omega_\Pi(\Delta_{E/F}(\alpha))|\Delta_{E/F}(\alpha)|^{2s-1}\omega_{K/F}(-1)\gamma(s, As \Pi, \psi)Z_\lambda(f_s, W).$$

We extend Π to a family of irreducible generic admissible representations Π_λ of $\mathrm{GL}_2(E)$ defined in (2.2). Here M'_w is the normalized intertwining operator (4.5), $W'(g) = \omega_\Pi(\det(g)^{-1}W(g)$, and λ varies in the domain
\(\mathcal{D}(\Pi) \) defined in \((2.4)\). Write \(\omega_\lambda = \omega_{\Pi_\lambda, s} \). Let \(f_{s, \lambda} \) be a good section of \(I(\omega_\lambda, s) \) and \(W_\lambda \) a holomorphic family of Whittaker functions of \(\Pi_\lambda \) with respect to \(\psi_E \) extending \(f_s \) and \(W_t \), respectively (cf. \S 2). Let

\[
Z_1(s, \lambda) = \frac{Z_0(M_t^s f_{s+1/2, \lambda}, W_\lambda^\gamma)}{L(s+1/2, \text{As} \Pi_\lambda^\gamma)}
\]

and

\[
Z_2(s, \lambda) = \omega_{\Pi_\lambda}(\Delta_{E/F}(\alpha)) |\Delta_{E/F}(\alpha)|^{2s} \omega_{E/F}(-1) \varepsilon(s+1/2, \text{As} \Pi_\lambda, \psi, \alpha) \frac{Z_0(f_{s+1/2, \lambda}, W_\lambda)}{L(s+1/2, \text{As} \Pi_\lambda)}
\]

be meromorphic functions on \(\mathbb{C} \times \mathcal{D}(\Pi) \). By the uniform asymptotic estimate for \(W_\lambda \) proved in Lemma 2.2 we show in Lemma 4.2 below that \(Z_1 \) and \(Z_2 \) define holomorphic functions on the domain

\[
\{(s, \lambda) \in \mathbb{C} \times \mathcal{D}(\Pi) \mid \Re(s) > |\lambda|_\Pi - 1/2\}.
\]

Here \(|\lambda|_\Pi \in \mathbb{R}_{\geq 0} \) is the absolute value of \(\lambda \) with respect to \(\Pi \) defined in \((2.3)\). Now we use the limit multiplicity method, which is a global-to-local argument (for example, see [BP18 \S 3.8] and [CH19 \S 5.3]). More precisely, based on the following ingredients:

- the limit multiplicity property for the principal congruence subgroup subgroups of \(\text{GL}_2 \) proved in [FLM15],
- the known cases for \((1.1)\) recalled in Lemma 4.3 and Corollary 4.5,
- the equality between the Asai cube \(\gamma \)-factors defined by the Weil–Deligne representation and the Langlands–Shahidi method proved in [HL18],

we prove that the functional equation

\[
(1.2) \quad Z_1(-s, \lambda) = Z_2(s, \lambda)
\]

holds for \(s \in \mathbb{C} \) and \(\lambda \) in a dense subset of

\[
\{\lambda \in \mathcal{D}(\Pi) \mid \Pi_\lambda \text{ is tempered}\}.
\]

Note that \(\Pi_\lambda \) is tempered if and only if \(|\lambda|_\Pi = 0 \). It then follows from the continuity and holomorphicity that \(Z_1 \) and \(Z_2 \) define holomorphic functions on the domain

\[
\mathbb{C} \times \{\lambda \in \mathcal{D}(\Pi) \mid |\lambda|_\Pi < 1/2\}
\]

and satisfy the functional equation \((1.2)\). Finally, we are in the position to apply [BP18 Proposition 2.8.1], which together with Lemma 4.2 imply that \(Z_1 \) and \(Z_2 \) admit holomorphic continuation to \(\mathbb{C} \times \mathcal{D}(\Pi) \) and satisfy the functional equation \((1.2)\). In particular, \((1.1)\) follows.

1.3. Notation. Let \(F \) be a local field of characteristic zero. When \(F \) is non-archimedean, let \(\mathfrak{o}_F \) be the ring of integers of \(F \), \(\varpi_F \) a uniformizer of \(\mathfrak{o}_F \), \(q_F \) the cardinality of \(\mathfrak{o}_F/\varpi_F \mathfrak{o}_F \), \(|\cdot|_F \) the absolute value on \(F \) normalized so that \(|\varpi_F|_F = q_F^{-1} \), and \(\text{ord}_F \) the valuation on \(F \) normalized so that \(\text{ord}_F(\varpi_F) = 1 \). When \(F \) is archimedean, let \(|\cdot|_\mathbb{R} = \sqrt{\cdot} \) be the usual absolute value on \(\mathbb{R} \) and \(|\cdot|_\mathbb{C} = \sqrt{\cdot} \) on \(\mathbb{C} \).

An additive character \(\psi \) of \(F \) is a continuous homomorphism \(\psi : F \to \mathbb{C}^\times \). For \(a \in F^\times \), let \(\psi^a \) be the additive character defined by \(\psi^a(x) = \psi(ax) \).

A character \(\chi \) of \(F^\times \) is a continuous homomorphism \(\chi : F^\times \to \mathbb{C}^\times \). For a character \(\chi \) of \(F^\times \), let \(\text{wt}(\chi) \in \mathbb{R} \) defined so that \(|\chi| = |\chi|_{\text{wt}(\chi)} \) and denote by \(L(s, \chi) \), \(\varepsilon(s, \chi, \psi) \), and \(\gamma(s, \chi, \psi) \) the \(L \)-factor, \(\varepsilon \)-factor, and \(\gamma \)-factor of \(\chi \), respectively, with respect to an additive character \(\psi \) of \(F \) defined in [Tat79].

Let \(B \) be the standard Borel subgroup of \(\text{GL}_2 \) consisting of upper triangular matrices and \(N \) its unipotent radical. We put

\[
a(\nu) = \begin{pmatrix} \nu & 0 \\ 0 & 1 \end{pmatrix}, \quad d(\nu) = \begin{pmatrix} 1 & 0 \\ 0 & \nu \end{pmatrix}, \quad m(t) = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, \quad n(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \quad w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\]

for \(\nu, t \in \mathbb{G}_m \) and \(x \in \mathbb{G}_a \).
2. Holomorphic family of Whittaker functions

Let F be a local field of characteristic zero and ψ a non-trivial additive character of F. Let

$$K = \begin{cases}
\text{GL}_2(\mathcal{O}_F) & \text{if } F \text{ is non-archimedean}, \\
\text{O}(2) & \text{if } F = \mathbb{R}, \\
\text{U}(2) & \text{if } F = \mathbb{C},
\end{cases}$$

be a maximal compact subgroup of $\text{GL}_2(F)$. Denote by $C_0^\infty(N(F) \backslash \text{GL}_2(F), \psi)$ the space of smooth functions $W : \text{GL}_2(F) \to \mathbb{C}$ such that

- For $x \in F$ and $g \in \text{GL}_2(F)$,
 $$W(n(x)g) = \psi(x)W(g).$$

- W is right K-finite.

Let π be an irreducible generic admissible representation of $\text{GL}_2(F)$ with central character ω_π. We denote by π^\vee the contragredient representation of π and by $W(\pi, \psi)$ the Whittaker model of π with respect to ψ. Recall that $W(\pi, \psi)$ is the image of a non-zero intertwining map $\pi \to C_0^\infty(N(F) \backslash \text{GL}_2(F), \psi)$. For $W \in W(\pi, \psi)$, we define $W^\vee \in W(\pi^\vee, \psi)$ by

$$W^\vee(g) = \omega_\pi(\det(g))^{-1}W(g).$$

We define $l(\pi) \in \mathbb{R}$ by

$$l(\pi) = \begin{cases}
\frac{\text{wt}(\omega_\pi)}{2} & \text{if } \pi \text{ is essentially square-integrable}, \\
\min\{\text{wt}(\chi_1), \text{wt}(\chi_2)\} & \text{if } \pi = \text{Ind}_{B(F)}^{\text{GL}_2(F)}(\chi_1 \otimes \chi_2).
\end{cases}$$

If π is essentially square-integrable and $\lambda \in \mathbb{C}$, we define $\pi_\lambda = \pi \otimes |\lambda|^{-1}_F$. If $\pi = \text{Ind}_{B(F)}^{\text{GL}_2(F)}(\chi_1 \otimes \chi_2)$ and $\lambda = (\lambda_1, \lambda_2) \in \mathbb{C}^2$, we define

$$\pi_\lambda = \text{Ind}_{B(F)}^{\text{GL}_2(F)}(\chi_1 |\lambda_1|^{-1}_F \otimes \chi_2 |\lambda_2|^{-1}_F).$$

Let $\mathcal{D}(\pi)$ be the domain associated to π defined by

$$\mathcal{D}(\pi) = \begin{cases}
\mathbb{C} & \text{if } \pi \text{ is essentially square-integrable}, \\
\{\lambda \in \mathbb{C}^2 | \pi_\lambda \text{ is irreducible} \} & \text{if } \pi \text{ is a principal series representation}.
\end{cases}$$

For $\lambda \in \mathcal{D}(\pi)$, define $|\lambda|_\pi \in \mathbb{R}_{\geq 0}$ by

$$|\lambda|_\pi = \begin{cases}
\frac{\text{wt}(\omega_\pi)}{2} + \text{Re}(\lambda) & \text{if } \pi \text{ is essentially square-integrable}, \\
\max\{\text{wt}(\chi_1) + \text{Re}(\lambda_1), \text{wt}(\chi_2) + \text{Re}(\lambda_2)\} & \text{if } \pi = \text{Ind}_{B(F)}^{\text{GL}_2(F)}(\chi_1 \otimes \chi_2).
\end{cases}$$

We call a map

$$\mathcal{D}(\pi) \to C_0^\infty(N(F) \backslash \text{GL}_2(F), \psi), \quad \lambda \mapsto W_\lambda$$

a holomorphic family of Whittaker functions of π_λ with respect to ψ if it satisfies the following conditions:

- The map $(\lambda, g) \mapsto W_\lambda(g)$ is continuous.
- For each $g \in \text{GL}_2(F)$, the map $\lambda \mapsto W_\lambda(g)$ is holomorphic on $\mathcal{D}(\pi)$.
- For each $\lambda \in \mathcal{D}(\pi)$, the function $g \mapsto W_\lambda(g)$ belongs to $W(\pi_\lambda, \psi)$.
- W_λ is right K-finite.

We recall a construction of holomorphic family of Whittaker functions. Let ω_ψ be the Weil representation of $\text{GL}_2(F)$ on $\mathcal{S}(F^2)$, the space of Schwartz functions on F^2, with respect to ψ defined by the following rules:

- For $t \in F^\times$,
 $$\omega_\psi(m(t)) \varphi(x, y) = |t|_F \varphi(tx, ty).$$

- For $b \in F$,
 $$\omega_\psi(n(b)) \varphi(x, y) = \psi(bxy) \varphi(x, y).$$

- For $\nu \in F^\times$,
 $$\omega_\psi(a(\nu)) \varphi(x, y) = \varphi(\nu x, y).$$

where du and dv are self-dual with respect to ψ.
Lemma 2.1. Assume ω is non-archimedean. Let π_λ be a holomorphic family of Whittaker functions of π_λ with respect to ψ. If $\pi = \text{Ind}_{B(F)}^{GL_2(F)}(\chi_1 \otimes \chi_2)$ and $\varphi \in \mathcal{S}_\psi(F^2)$, then the map

$$
\lambda \mapsto W(\varphi, \lambda),
$$

(2.1)

is a holomorphic family of Whittaker functions of π_λ with respect to ψ. If $\psi \in \mathcal{W}(\pi, \psi)$, then the map

$$
\lambda \mapsto W(\varphi, \lambda),
$$

(2.2)

is a holomorphic family of Whittaker functions of π_λ with respect to ψ. Note that for any fixed $\lambda_0 \in \mathcal{D}(\pi)$, any holomorphic family of Whittaker functions can be written as a linear combination, with holomorphic functions of λ as coefficients, of holomorphic families of the form (2.1) or (2.2) in a neighborhood of λ_0.

We have the following uniform asymptotic estimate for holomorphic families of Whittaker functions.

Lemma 2.1. Assume F is non-archimedean. Let W_λ be a holomorphic family of Whittaker functions of π_λ with respect to ψ. Let $\epsilon > 0$. There exist an integer n independent of ϵ, λ and a constant $C_{\lambda, \epsilon} > 0$ bounded uniformly as λ varies in a compact set such that

$$
|W(\varphi, \lambda)| \leq C_{\lambda, \epsilon} \cdot \|\varphi\|^{|(\pi_\lambda)|+1/2-\epsilon}
$$

for $\nu \in F^\times$ and $k \in GL_2(\mathfrak{o}_F)$.

Proof. Since we only consider the convergence for λ varying in a compact set, it suffices to consider holomorphic families of the form (2.1) or (2.2). We assume $\pi = \text{Ind}_{B(F)}^{GL_2(F)}(\chi_1 \otimes \chi_2)$ is a principal series representation. The other case follows from the asymptotic estimate for a single Whittaker function in [Jac72, Lemma 14.3]. By the formulae defining ω_ψ, there exist an integer n and a constant $C > 0$ such that

$$
|\omega_\psi(\varphi(\nu)k)(x, y)| \leq C \cdot \|\omega_\psi(\varphi(\nu)k)(x, y)|
$$

for $(x, y) \in F^2, \nu \in F^\times$, and $k \in GL_2(\mathfrak{o}_F)$. Let

$$
s_1 = \text{wt}(\chi_1), \quad s_2 = \text{wt}(\chi_2).
$$

Then we have

$$
|W(\varphi, \lambda)| \leq C \cdot |\nu|^{s_1 + \text{Re}(\lambda_1) + 1/2} \int_{F^\times} \|\omega_\psi(\varphi(\nu)k)(x, y)|
$$

$$
= C \cdot \sum_{m = -n}^{n} q_F^{-s_1 + s_2 - \text{Re}(\lambda_1 - \lambda_2)}
$$

$$
= C \cdot \left[C^{(1)}_{\lambda} \cdot |\nu|^{s_1 + \text{Re}(\lambda_1) + 1/2} + C^{(2)}_{\lambda} \cdot |\nu|^{s_2 + \text{Re}(\lambda_2) + 1/2} \right].
$$

for $\nu \in F^\times$ and $k \in GL_2(\mathfrak{o}_F)$. Here

$$
C^{(1)}_{\lambda} = \sum_{m = -n}^{n} q_F^{-s_1 + s_2 - \text{Re}(\lambda_1 - \lambda_2)},
$$

$$
C^{(2)}_{\lambda}(\nu) = \begin{cases}
 q_F^{s_1 + s_2 - \text{Re}(\lambda_1 - \lambda_2)} \left(\frac{1}{1 - \nu^{s_1 + s_2 - \text{Re}(\lambda_1 - \lambda_2)}} \right) & \text{if } s_1 + \text{Re}(\lambda_1) \neq s_2 + \text{Re}(\lambda_2), \\
 \text{ord}_F(\nu) & \text{if } s_1 + \text{Re}(\lambda_1) = s_2 + \text{Re}(\lambda_2).
\end{cases}
$$
It is clear that $C^{(1)}_\lambda$ is bounded uniformly as λ varies in a compact set and there exists a constant $C^{(2)}_{\lambda, \epsilon} > 0$ bounded uniformly as λ varies in a compact set such that

$$|C^{(2)}_{\lambda, \epsilon}(\nu)| \leq C^{(2)}_{\lambda, \epsilon} \cdot |\nu|_{F}^{-\epsilon}$$

for $\nu \in \varpi^{-2n} a_F$. This completes the proof. \hfill \Box

Let E be a finite étale algebra of degree d over F. Let ψ_E the additive character of E defined by $\psi_E = \psi \circ \text{tr}_{E/F}$. We denote by $W(\Pi, \psi_E)$ the Whittaker model of Π with respect to ψ_E. Let Π be an irreducible generic admissible representation of $GL_2(E)$ with central character ω_{Π}. Assume $\Pi = F_1 \times \cdots \times F_r$ for some finite extension F_i of degree d_i over F. Then

$$\Pi = \pi_1 \times \cdots \times \pi_r$$

for some irreducible generic admissible representation π_i of $GL_2(F_i)$. Define $L(\Pi) \in \mathbb{R}$ by

$$L(\Pi) = \sum_{i=1}^{r} d_i \cdot l(\pi_i).$$

Let $D(\Pi)$ be the domain associated to Π defined by

$$D(\Pi) = D(\pi_1) \times \cdots \times D(\pi_r).$$

For $\lambda = (\lambda_1, \cdots, \lambda_r) \in D(\Pi)$, define

$$|\lambda|_\Pi = \sum_{i=1}^{r} d_i \cdot |\lambda_i|_{\pi_i}, \quad \Pi_\lambda = (\pi_1)^{\lambda_1} \times \cdots \times (\pi_r)^{\lambda_r}.$$

Note that by definition we have

$$|\lambda|_\Pi \geq \max\{|L(\Pi_\lambda)|, |L(\Pi_\lambda')|\}$$

and Π_λ is tempered if and only if $|\lambda|_\Pi = 0$. Let

$$D(\Pi)^0 = \{ \lambda \in D(\Pi) \mid |\lambda|_\Pi = 0 \}.$$

Similar to the case $E = F$, we have the notion of holomorphic families of Whittaker functions of Π_λ with respect to ψ_E.

Lemma 2.2. Assume F is non-archimedean. Let W_λ be a holomorphic family of Whittaker functions of Π_λ with respect to ψ_E. Let $\epsilon > 0$. There exist an integer n independent of ϵ, λ and a constant $C_{\lambda, \epsilon} > 0$ bounded uniformly as λ varies in a compact set such that

$$|W_\lambda(a(\nu)m(t))| \leq C_{\lambda, \epsilon} \cdot \prod_{\varpi a_F \subset \cdots \subset \varpi^n a_F} \left((\nu_1, \cdots, \nu_r) \right) \prod_{i=1}^{r} |\nu_i|_{F}^{-d_i \cdot l((\pi_i)_{\lambda_i}) + d_i/2 - \epsilon}$$

for $\nu = (\nu_1, \cdots, \nu_r) \in (F^\times)^r$, $t \in C$, and $k \in GL_2(a_F)$. Here C is a complete set of coset representatives for $(F_1^\times \times \cdots \times F_r^\times) / (F^\times)^r$.

Proof. The assertion follows directly from Lemma 2.1 and the fact that $(F_1^\times \times \cdots \times F_r^\times) / (F^\times)^r$ is compact. \hfill \Box

3. **Asai cube factors via the Weil–Deligne representations**

Let F be a local field of characteristic zero and ψ a non-trivial additive character of F. Let W'_F be the Weil–Deligne group of F. We identify characters of F^\times with one-dimensional admissible representations of W'_F by local class field theory.

Let F' be a finite extension of degree d over F. We identify the Langlands dual group $L(R_{F'/F}GL_2)$ of $R_{F'/F}GL_2$ with $GL_2(\mathbb{C})^d \rtimes \text{Gal}(F'/F)$ (cf. [Bor79, §5]), where the action of $\text{Gal}(F'/F)$ on $GL_2(\mathbb{C})^d$ is the permutation of components induced by the natural homomorphism $\text{Gal}(F'/F) \rightarrow \text{Gal}(F'/F)$. Let K be the Asai representation of $L(R_{F'/F}GL_2)$ on $(\mathbb{C}^2)^{\otimes d} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$ so that the restriction of K to $GL_2(\mathbb{C})^d$ is defined by

$$K(g_1, \cdots, g_d) \cdot (v_1 \otimes \cdots \otimes v_d) = (g_1 \cdot v_1, \cdots, g_d \cdot v_d)$$

and the action of $\text{Gal}(F'/F)$ on $(\mathbb{C}^2)^{\otimes d}$ is the permutation of components induced by the natural homomorphism $\text{Gal}(F'/F) \rightarrow \text{Gal}(F'/F)$. Let π be an irreducible admissible representation of $(R_{F'/F}GL_2)(F) = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$. Let $\psi : \text{Gal}(F'/F) \rightarrow \{0, 1\}$ be the trivial character. Then $\text{Gal}(F'/F) / \ker(\pi) \cong \mathbb{Z}/d$. Let $e : \mathbb{Z}/d \rightarrow \text{Gal}(F'/F)$ be the natural map. Then $K = e(\psi)(\pi)$ is the restriction of K to $R_{F'/F}GL_2$ and $\text{Gal}(F'/F)$. Let $\text{Gal}(F'/F) \rightarrow \text{Gal}(F'/F)$ be the natural map. Then $K = e(\psi)(\pi)$ is the restriction of K to $R_{F'/F}GL_2$ and $\text{Gal}(F'/F)$. Let $\text{Gal}(F'/F) / \ker(\pi) \cong \mathbb{Z}/d$. Let $e : \mathbb{Z}/d \rightarrow \text{Gal}(F'/F)$ be the natural map. Then $K = e(\psi)(\pi)$ is the restriction of K to $R_{F'/F}GL_2$ and $\text{Gal}(F'/F)$. Let $\text{Gal}(F'/F) / \ker(\pi) \cong \mathbb{Z}/d$. Let $e : \mathbb{Z}/d \rightarrow \text{Gal}(F'/F)$ be the natural map. Then $K = e(\psi)(\pi)$ is the restriction of K to $R_{F'/F}GL_2$ and $\text{Gal}(F'/F)$. Let $\text{Gal}(F'/F) / \ker(\pi) \cong \mathbb{Z}/d$. Let $e : \mathbb{Z}/d \rightarrow \text{Gal}(F'/F)$ be the natural map. Then $K = e(\psi)(\pi)$ is the restriction of K to $R_{F'/F}GL_2$ and $\text{Gal}(F'/F)$. Let $\text{Gal}(F'/F) / \ker(\pi) \cong \mathbb{Z}/d$. Let $e : \mathbb{Z}/d \rightarrow \text{Gal}(F'/F)$ be the natural map. Then $K = e(\psi)(\pi)$ is the restriction of K to $R_{F'/F}GL_2$ and $\text{Gal}(F'/F)$.
GL₂(F′) with central character ωₚ. Denote by φₚ : W′ F → L(RF′/F GL₂) the L-parameter associated to π via the local Langlands correspondence. Then we have a 2ᵈ-dimensional admissible representation

\[\text{As} \circ \phiₚ : W′ F \longrightarrow \text{GL}((\mathbb{C}²)^{⊗ d}). \]

Assume \(d = 2 \) and \(\pi = \text{Ind}_{B(F')}^{GL(2,F')}((χ₁ \otimes χ₂) \otimes (F')^×) \) for some characters \(χ₁ \) and \(χ₂ \) of \((F')^× \). Then

\[(3.1) \]

\[\text{As} \circ \phiₚ = χ₁|_{F×} \oplus χ₂|_{F×} \oplus \text{Ind}_{W′_F}^{W_F}(χ₁χ₂^2), \]

where \(σ \) is the generator of \(\text{Gal}(F'/F) \) and \(χ₂^σ(a) = χ₂(σ(a)) \).

Assume \(d = 3 \) and \(\pi = \text{Ind}_{B(F')}^{GL(3,F')}((χ₁ \otimes χ₂) \otimes (F')^×) \) for some characters \(χ₁ \) and \(χ₂ \) of \((F')^× \). When \(F' \) is Galois over \(F \), we have

\[(3.2) \]

\[\text{As} \circ \phiₚ = χ₁|_{F×} \oplus χ₂|_{F×} \oplus \text{Ind}_{W′_F}^{W_F}(χ₁χ₂^σ_2 \oplus χ₂χ₀\chi₂^σ^2), \]

where \(σ \) is the generator of \(\text{Gal}(F'/F) \) and \(χ₂^σ_0(a) = χ₂(σ_0(a)) \). When \(F' \) is not Galois over \(F \), we have

\[(3.3) \]

\[\text{As} \circ \phiₚ = χ₁|_{F×} \oplus χ₂|_{F×} \oplus \text{Ind}_{W′_F}^{W_F}(χ₁χ₂\chi_2^{-1}(χ₂ \circ N_{F'/F}) \oplus χ₂χ₀\chi_2^{-1}(χ₁ \circ N_{F'/F})). \]

Let \(E \) be a finite étale algebra of degree \(d \) over \(F \). Let \(ψ_E \) be the additive character of \(E \) defined by \(ψ_E = ψ \circ \text{tr}_{E/F} \). Let \(Π \) be an irreducible admissible representation of \(GL₂(E) \) with central character \(ω₁ \). Assume \(E = F₁ \times \cdots \times F_r \) for some finite extension \(F_i \) of degree \(d_i \) over \(F \). Then

\[Π = π₁ \times \cdots \times π_r \]

for some irreducible generic admissible representation \(π_i \) of \(GL₂(F_i) \). Let

\((\text{As} \circ \phi_{π₁}) \otimes \cdots \otimes (\text{As} \circ \phi_{π_r}) \)

be the admissible representation of \(W′_F \) obtained by composing \((\text{As} \circ \phi_{π₁}) \times \cdots \times (\text{As} \circ \phi_{π_r}) \) with the tensor representation

\[GL((\mathbb{C}²)^{⊗ d_1}) \times \cdots \times GL((\mathbb{C}²)^{⊗ d_r}) \longrightarrow GL((\mathbb{C}²)^{⊗ d}). \]

We denote by

\[L(s, AsΠ), \quad ε(s, AsΠ, ψ) \]

the L-factor and ε-factor associated to the admissible representation \((As \circ φ_{π₁}) \otimes \cdots \otimes (As \circ φ_{π_r}) \) defined as in [Lat79 § 3]. Let

\[γ(s, AsΠ, ψ) = ε(s, AsΠ, ψ)L(s, AsΠ)L(1 − s, AsΠ^−) \]

be the associated γ-factor. Since \((As \circ φ_{π₁}) \otimes \cdots \otimes (As \circ φ_{π_r}) \) has determinant \((ω₁|_{F×})^{2d−1} \) and dimension \(2^d \), we have

\[ε(s, AsΠ, ψ^a) = ω₁(α)^{2d−1}|a|_{F}^{2d(s−1)/2}ε(s, AsΠ, ψ) \]

for all \(a \in F× \).

Lemma 3.1. Let \(E \) be an étale cubic algebra over \(F \) and \(Π \) an irreducible generic admissible representation of \(GL₂(E) \). Then the L-factor \(L(s, AsΠ) \) has no poles for

\[\text{Re}(s) > −L(Π). \]

Proof. We assume \(F \) is non-archimedean and \(E \) is a field. The other cases can be proved in a similar way and we omit it. When \(Π \) is essentially square-integrable, the representation \(Π \otimes |E|^{wt(ω₁)/2} \) is square-integrable. Thus the L-factor \(L(s, AsΠ \otimes |E|^{−wt(ω₁)/2}) \) has no poles for \(\text{Re}(s) > 0 \). Since \(As \circ (φΠ \otimes |E|^{−wt(ω₁)/2}) = (As \circ φΠ) \otimes |E|^{−3wt(ω₁)/2} \), we deduce that \(L(s, AsΠ) \) has no poles for

\[\text{Re}(s) > −3wt(ω₁)/2 = −L(Π). \]

When \(Π = \text{Ind}_{B(E)}^{GL₂(E)}(χ₁ \otimes χ₂) \), the L-factor \(L(s, AsΠ) \) is equal to

\[L(s, χ₁|_{F×})L(s, χ₂|_{F×})L(s, χ₁χ₁^σ₁χ₂^σ) \]

or

\[L(s, χ₁|_{F×})L(s, χ₂|_{F×})L(s, χ₁^−1(χ₂ \circ N_{F'/F}))L(s, χ₁^−1(χ₁ \circ N_{F'/F})), \]

7
depending on whether E/F is Galois or not. In any case, we see that $L(s, \text{As II})$ has no poles for
\[
\text{Re}(s) > - \min \{3\text{wt}(\chi_1), 3\text{wt}(\chi_2), \text{wt}(\chi_1) + 2\text{wt}(\chi_2), 2\text{wt}(\chi_1) + \text{wt}(\chi_2)\}
\]
\[
= - \min \{3\text{wt}(\chi_1), 3\text{wt}(\chi_2)\}
\]
\[
= -L(\Pi).
\]
This completes the proof.

4. Asai cube factors via the local zeta integrals

4.1. Preliminaries. Recall the similitude symplectic group
\[
\text{GSp}_6 = \left\{ g \in \text{GL}_6 \mid g \begin{pmatrix} 0 & 1_3 \\ -1_3 & 0 \end{pmatrix} A g = \nu(g) \begin{pmatrix} 0 & 1_3 \\ -1_3 & 0 \end{pmatrix}, \nu(g) \in \mathbb{G}_m \right\}
\]
and its standard Siegel parabolic subgroup
\[
P = \left\{ \begin{pmatrix} \nu^t A^{-1} & * \\ 0 & A \end{pmatrix} \in \text{GSp}_6 \mid A \in \text{GL}_3, \nu \in \mathbb{G}_m \right\}.
\]
Denote by U the unipotent radical of P.

Let F be a field of characteristic zero and E an étale cubic algebra over F. Let K be the quadratic discriminant algebra of E. Let
\[
\mathcal{G} = \{ g \in R_{E/F} \text{GL}_2 \mid \det(g) \in \mathbb{G}_m \}
\]
be a linear algebraic group over F. Let (V, \langle , \rangle) be the nondegenerate symplectic form over F defined by
\[
V = (R_{E/F} \mathbb{G}_a)^2, \quad \langle x, y \rangle = \text{tr}_{E/F}(x_1 y_2 - x_2 y_1)
\]
for $x = (x_1, x_2), y = (y_1, y_2) \in V$. Let
\[
\text{GSp}(V) = \{ g \in R_{E/F} \text{GL}_2 \mid \langle xg, yg \rangle = \nu(g) \langle x, y \rangle \text{ for all } x, y \in V, \nu(g) \in \mathbb{G}_m \}
\]
be the similitude symplectic group associated to $(,)$. Then it is easy to verify that \mathcal{G} is a subgroup of $\text{GSp}(V)$ and $\det(g) = \nu(g)$ for $g \in \mathcal{G}$.

Let X and X_0 be two maximal isotropic subspaces of V defined by
\[
X = \{ (0, y) \in V \mid y \in R_{E/F} \mathbb{G}_a \}, \quad X_0 = \{ (x, y) \in V \mid x \in \mathbb{G}_a, \text{tr}_{E/F}(y) = 0 \}.
\]
Define an isomorphism between $X(F)$ and $X_0(F)$ by
\[
X(F) \longrightarrow X_0(F), \quad (0, x) \longmapsto (3x, 0), \quad (0, y) \longmapsto (0, y)
\]
for $x \in F$ and $y \in E$ with $\text{tr}_{E/F}(y) = 0$. Fix $\eta \in \text{GSp}(V)(F)$ such that
\[
X(F) \cdot \eta = X_0(F), \quad \nu(\eta) = 1 \text{ and } \det(\eta|_{X(F)}) = 1 \text{ with respect to the isomorphism (4.1)}.
\]
We denote by P_0 and R_0 the stabilizers of X_0 in $\text{GSp}(V)$ and \mathcal{G}, respectively. Let U_0 be the unipotent radical of R_0. Note that
\[
R_0 = \{ a(t_1) d(t_2) n(x) \mid t_1, t_2 \in \mathbb{G}_m, x \in R_{E/F} \mathbb{G}_a, \text{tr}_{E/F}(x) = 0 \},
\]
\[
U_0 = \{ n(x) \mid x \in R_{E/F} \mathbb{G}_a, \text{tr}_{E/F}(x) = 0 \}.
\]
A symplectic basis of $V(F)$ is an ordered basis $\alpha = \{ e_1^*, e_2^*, e_3^*, e_1, e_2, e_3 \}$ of $V(F)$ such that
\[
\langle e_i^*, e_j \rangle = \delta_{ij}
\]
and $\{ e_1, e_2, e_3 \}$ is an ordered basis of $X(F)$. We write $\alpha_X = \{ e_1, e_2, e_3 \}$. With respect to a symplectic basis α of $V(F)$, we identify $V(F)$ with the space of row vectors F^6. The identification induces an isomorphism
\[
\tau_\alpha : \text{GSp}(V)(F) \longrightarrow \text{GSp}_6(F).
\]
Let β be another symplectic basis of $V(F)$ and $A_{\alpha,\beta} \in \text{GL}_3(F)$ be the transition matrix from α_X to β_X. We recall that the transition matrix $A_{\alpha,\beta} = (a_{ij})_{1 \leq i, j \leq 3}$ is defined so that
\[
e_i' = a_{i1} \cdot e_1 + a_{i2} \cdot e_2 + a_{i3} \cdot e_3,
\]
where $\beta_X = \{e_1', e_2', e_3'\}$. Then we have
\begin{equation}
(4.4) \quad \iota_{\beta}(g) = p_{\alpha, \beta} \cdot \iota_{\alpha}(g) \cdot p_{\alpha, \beta}^{-1}
\end{equation}
for $g \in \text{GSp}(V)(F)$, where $p_{\alpha, \beta} \in P$ is of the form
\[p_{\alpha, \beta} = \begin{pmatrix} tA_{\alpha, \beta}^{-1} & * \\ 0 & A_{\alpha, \beta} \end{pmatrix}. \]

4.2. Local zeta integrals and local factors. Let F be a local field of characteristic zero and ψ be a non-trivial additive character of F. Let
\[K = \begin{cases}
\text{GSp}_6(F) \cap \text{GL}_6(\mathfrak{g}_F) & \text{if } F \text{ is non-archimedean,} \\
\text{GSp}_6(\mathbb{R}) \cap \text{O}(6) & \text{if } F = \mathbb{R}, \\
\text{GSp}_6(\mathbb{C}) \cap \text{U}(6) & \text{if } F = \mathbb{C},
\end{cases} \]
be a maximal compact subgroup of $\text{GSp}_6(F)$.

Let ω be a character of F^\times. For $s \in \mathbb{C}$, let $\chi_{\omega, s}$ be the character of $P(F)$ defined by
\[\chi_{\omega, s}(p) = \omega(\nu \cdot \det(A)^{-1}) \cdot \delta_P(p)^{s/2 - 1/4} \]
for $p = \begin{pmatrix} \nu^t A^{-1} & * \\ 0 & A \end{pmatrix}$, where δ_P is the modulus character of P. Recall that $\delta_P(p) = |\nu^t \det(A)^{-1}|_F$. Denote by $I(\omega, s)$ the degenerate principal series representation
\[\text{Ind}_{P(F)}^{\text{GSp}_6(F)}(\chi_{\omega, s}) \]
and by ρ the right translation action of $\text{GSp}_6(F)$ on $I(\omega, s)$. Recall that $I(\omega, s)$ consisting of smooth functions $f : \text{GSp}_6(F) \to \mathbb{C}$ such that
- For $p \in P(F)$ and $g \in \text{GSp}_6(F)$,
\[f(pg) = \chi_{\omega, s}(p)\delta_P(p)^{1/2} f(g). \]
- f is right K-finite.

Let $w \in \text{GSp}_6(F)$ be the Weyl element defined by
\[w = \begin{pmatrix} 0 & -J \\ J & 0 \end{pmatrix}, \]
where $J \in \text{GL}_3$ is the anti-diagonal matrix with non-zero entries all equal to 1. We define the intertwining operator
\[M_w(\omega) : I(\omega, s) \to I(\omega^\prime, 1 - s), \]
\[M_w(\omega)f(g) = \omega(\nu(g)) \int_{U(F)} f(w^{-1}ug) \, du. \]

The integral is absolutely convergent for $\text{Re}(s)$ sufficiently large and can be meromorphically continued to $s \in \mathbb{C}$. Let $M_{w, \psi}^*(\omega) : I(\omega, s) \to I(\omega^\prime, 1 - s)$ be the normalized intertwining operator defined by
\begin{equation}
(4.5) \quad M_{w, \psi}^*(\omega) = \gamma(2s - 2, \omega, \psi)\gamma(4s - 3, \omega^2, \psi)M_w(\omega).
\end{equation}

Then $M_{w, \psi}^*(\omega^{-1}) \circ M_{w, \psi}^*(\omega)$ is a scalar multiple of the identity map on $I(\omega, s)$. We normalize the Haar measure on $U(F)$ so that
\[M_{w, \psi}^*(\omega^{-1}) \circ M_{w, \psi}^*(\omega) = \text{id}. \]

We write $M_{w, \psi}^*(\omega) = M_w^*$ if there is no cause of confusion. A map
\[\mathbb{C} \times \text{GSp}_6(F) \to \mathbb{C}, \quad (s, g) \mapsto f_s(g) \]
is a holomorphic section of $I(\omega, s)$ if it satisfies the following conditions:
- For each $s \in \mathbb{C}$, the function $g \mapsto f_s(g)$ belongs to $I(\omega, s)$.
- For each $g \in \text{GSp}_6(F)$, the function $s \mapsto f_s(g)$ is holomorphic.
- f_s is right K-finite.

A map
\[\mathbb{C} \times \text{GSp}_6(F) \to \mathbb{C}, \quad (s, g) \mapsto f_s(g) \]
is a good section of $I(\omega, s)$ if it satisfies the following conditions:
• The map \((s, g) \mapsto L(2s + 1, \omega)^{-1}L(4s, \omega^2)^{-1}f_s(g)\) is a holomorphic section of \(I(\omega, s)\).
• The map \((s, g) \mapsto L(3 - 2s, \omega^{-1})^{-1}L(4 - 4s, \omega^{-2})^{-1}M_\alpha f_s(g)\) is a holomorphic section of \(I(\omega^{-1}, 1 - s)\).

By [Ke97, Lemma 1.3], every holomorphic section is a good section.

Let \(\Pi\) be an irreducible generic admissible representation of \(GL_2(E)\) with central character \(\omega_\Pi\). Write \(\omega = \omega_{\Pi|E} \cdot \chi\). Recall \(W(\Pi, \psi_E)\) is the space of Whittaker functions of \(\Pi\) with respect to \(\psi_E = \psi \circ \text{tr}_{E/F}\). Let \(f_s\) be a good section of \(I(\omega, s)\) and \(W \in W(\Pi, \psi_E)\). Define the local zeta integral

\[
Z_\alpha(f_s, W) = \int_{F^\times U_0(F) \backslash G(F)} f_s(\iota_\alpha(\eta g))W(g) \, dg,
\]

where \(\alpha\) is a symplectic basis of \(V(F)\), \(\iota_\alpha\) is the isomorphism \(A\), and \(\eta \in \text{GSp}(V)(F)\) satisfies \((4.2)\).

Note that the integral is independent of the choice of \(\eta\). Indeed, if \(\eta' \in \text{GSp}(V)(F)\) also satisfies \((4.2)\), then \(\iota_\alpha(\eta'\eta^{-1}) \in P(F)\) and \(\nu(\eta'\eta^{-1}) = \det(\eta'|_{X(F)}\eta_\alpha^{-1}_{X(F)}) = 1\).

By the results in [PSR87b] and [Ke89], the integral is absolutely convergent for \(\Re(s)\) sufficiently large and admits meromorphic continuation to \(s \in \mathbb{C}\).

Moreover, by [PSR87b, Proposition 3.1] and [Ke89, Proposition 4.2], there exists a unique meromorphic function \(\gamma_{PSR}(s, As\Pi, \psi, \alpha)\), called the \(\gamma\)-factor, such that we have the functional equation

\[
(4.6) \quad Z_\alpha(M_\alpha f_s, W^\vee) = \gamma_{PSR}(s, As\Pi, \psi, \alpha)Z_\alpha(f_s, W).
\]

Recall that \(W^\vee \in W(\Pi^\vee, \psi_E)\) is defined by

\[
W^\vee(g) = \omega_{\Pi}(\det(g))^{-1}W(g).
\]

By Lemma \(4.1(1)\) below, we see that \(\gamma_{PSR}(s, As\Pi, \psi, \alpha) = \gamma_{PSR}(s, As\Pi, \psi, \beta)\) if \(\alpha_X = \beta_X\). Therefore we also write \(\gamma_{PSR}(s, As\Pi, \psi, \alpha_X) = \gamma_{PSR}(s, As\Pi, \psi, \alpha)\). In particular, identifying \(E\) with \(X(F)\) via the isomorphism

\[
E \longrightarrow X(F), \quad x \mapsto (0, x),
\]

the notion \(\gamma_{PSR}(s, As\Pi, \psi, \alpha)\) is defined for any basis \(\alpha\) of \(E\) over \(F\).

Lemma 4.1. (1) Let \(\alpha, \beta\) be symplectic bases of \(V(F)\). We have

\[
\gamma_{PSR}(s, As\Pi, \psi, \beta) = \omega(\det(A_{\alpha, \beta})^2)^{-1} \gamma_{PSR}(s, As\Pi, \psi, \alpha).
\]

Here \(A_{\alpha, \beta} \in \text{GL}_3(F)\) is the transition matrix from \(\alpha_X\) to \(\beta_X\).

(2) Let \(a \in F^\times\) and \(\alpha\) be a symplectic basis of \(V(F)\). We have

\[
\gamma_{PSR}(s, As\Pi, \psi^a, \alpha) = \omega(a)^4|\det F_{\alpha, \beta}|^{-1} \gamma_{PSR}(s, As\Pi, \psi, \alpha).
\]

Proof. Let \(f_s\) be a good section of \(I(\omega, s)\) and \(W \in W(\Pi, \psi_E)\). First we prove assertion (1). By \(4.4\),

\[
(4.7) \quad Z_\beta(f_s, W) = \int_{F^\times U_0(F) \backslash G(F)} f_s(p_{\alpha, \beta} \cdot \iota_\alpha(\eta g) \cdot p_{\alpha, \beta}^{-1})W(g) \, dg
\]

\[
\quad = \omega(\det(A_{\alpha, \beta}))^{-1} \det(A_{\alpha, \beta})|F_{\alpha, \beta}|^{-1}Z_\alpha(p_{\alpha, \beta}^{-1}f_s, W).
\]

Similarly, we have

\[
Z_\beta(M_\alpha f_s, W^\vee) = \omega(\det(A_{\alpha, \beta})) \det(A_{\alpha, \beta})|F_{\alpha, \beta}|^{-1}Z_\alpha(p_{\alpha, \beta}^{-1}M_\alpha f_s, W^\vee).
\]

Assertion (1) then follows from the functional equation \((4.6)\).

To prove assertion (2), it follows from assertion (1) that we may assume

\[
\alpha = \{(1, 0), (\delta_1^+, 0), (\delta_2^+, 0), (0, 1/3), (0, \delta_1), (0, \delta_2)\}
\]

for some \(\delta_1, \delta_1^+, \delta_2, \delta_2^+ \in E\) with \(\text{tr}_{E/F}(\delta_1) = \text{tr}_{E/F}(\delta_2) = \text{tr}_{E/F}(\delta_1^+) = \text{tr}_{E/F}(\delta_2^+) = 0\) and \(\eta \in \text{GSp}(V)(F)\) satisfying \((4.2)\) is defined by

\[
(0, 1/3) \cdot \eta = (1, 0), \quad (\delta_1^+ \cdot 0) \cdot \eta = (\delta_1^+, 0), \quad (0, \delta_1) \cdot \eta = (0, \delta_1).
\]

Then it is easy to verify that \(\iota_\alpha(\eta a(\alpha^{-1})\eta^{-1}) = \text{diag}(1, a^{-1}, \alpha^{-1}, a^{-1}$, $1, 1)\). Let \(W' \in W(\Pi, \psi_E^\vee)\) defined by \(W'(g) = W(\alpha(a)g)\). We write \(Z_{\alpha, \nu}(f_s, W) = Z_{\alpha}(f_s, W)\) and \(M_{\alpha, \nu} = M_{\alpha}\) to emphasis the dependence on \(\nu\).
We have
\[
Z_{\alpha, \psi^s}(f_s, W') = \int_{F \times U_0(F) \backslash G(F)} f_s(\iota_\alpha(\eta g)) W(a(a)g) \, dg
= |a|_F \int_{F \times U_0(F) \backslash G(F)} f_s(\iota_\alpha(\eta a(a^{-1}) g)) W(g) \, dg
= |a|_F^{-s+1/2} Z_{\alpha, \psi}(f_s, W).
\]

Note that
\[
\gamma(2s - 2, \omega, \psi^s) \gamma(4s - 3, \omega^2, \psi^s) = \omega(a)^3 |a|_F^{6s - 6} \gamma(2s - 2, \omega, \psi) \gamma(4s - 3, \omega^2, \psi),
\]
\[
M_{\psi, \psi^s} = |a|_F^3 M_{\psi, \psi},
\]
\[
(W')^\vee(g) = \omega(a) W^\vee(a(a)g).
\]
Similarly, we have
\[
Z_{\alpha, \psi^s}(M_{\psi, \psi}^*, f_s, (W')^\vee) = \omega(a)^4 |a|_F^{7s - 7} \int_{F \times U_0(F) \backslash G(F)} M_{\psi, \psi}^* f_s(\iota_\alpha(\eta g)) W^\vee(a(a)g) \, dg
= \omega(a)^4 |a|_F^{7s - 7/2} Z_{\alpha, \psi}(M_{\psi, \psi}^*, f_s, W^\vee).
\]

Assertion (2) then follows from the functional equation (4.6). □

Assume F is non-archimedean. By [PSR87b, Appendix 3 to §3], the $C[\mathfrak{q}_F^*, \mathfrak{q}_E^*]$-module generated by $Z_\alpha(f_s, W)$ for good sections f_s of $I(\omega, s)$ and $W \in \mathcal{W}(\Pi, \psi_E)$ is a fractional ideal of $C[\mathfrak{q}_F^*, \mathfrak{q}_E^*]$ containing 1. Therefore, there is a unique generator of the form $(q_F^*)^\alpha$ with $P(X) \in \mathbb{C}[X]$ and $P(0) = 1$. Define the L-factor and ε-factor as follows:
\[
L_{PSR}(s, As \Pi) = P(q^{-s})^{-1},
\]
\[
\varepsilon_{PSR}(s, As \Pi, \psi, \alpha) = \gamma_{PSR}(s, As \Pi, \psi, \alpha) L_{PSR}(s, As \Pi) L_{PSR}(1 - s, As \Pi^\vee)^{-1}.
\]

Note that ε-factor is a unit in $C[\mathfrak{q}_F^*, \mathfrak{q}_E^*]$ by the functional equation (4.6).

Assume F is archimedean. Up to holomorphic functions without zeros, there exists a unique meromorphic function $L_{PR}(s, As \Pi)$ without zeros, called the L-factor, satisfying the following conditions:

- $L_{PR}(s, As \Pi)^{-1} Z(f_s, W)$ is holomorphic for any good section f_s of $I(\omega, s)$ and $W \in \mathcal{W}(\Pi, \psi_E)$.
- For each $s_0 \in \mathbb{C}$, there exist a good section f_s and $W \in \mathcal{W}(\Pi, \psi_E)$ such that $L_{PR}(s, As \Pi)^{-1} Z(f_s, W)$ is non-zero at $s = s_0$.

Define the ε-factor
\[
\varepsilon_{PR}(s, As \Pi, \psi, \alpha) = \gamma_{PR}(s, As \Pi, \psi, \alpha) L_{PR}(s, As \Pi) L_{PR}(1 - s, As \Pi^\vee)^{-1},
\]
which is well-defined up to holomorphic function without zeros. By the properties characterizing the L-factor above and the functional equation (4.6), the ε-factor is a holomorphic function without zeros.

Recall the domain $D(\Pi)$ associated to Π defined in (2.4). Let W_λ be a holomorphic family of Whittaker functions of Π_λ with respect to ψ_E. Write $\omega_\lambda = \omega_{\Pi_\lambda}|_{F^\times}$. Similar to the case for $I(\omega, s)$, we define the notion of holomorphic sections and good sections of $I(\omega_\lambda, s)$ for (s, λ) varying in $\mathbb{C} \times D(\Pi)$.

The following lemma is a variant of the estimation in [PSR87b, Proposition 3.2] and [Ike89, §3.1] by replacing a single Whittaker function with a holomorphic family of Whittaker functions.

Lemma 4.2. Assume F is non-archimedean. Let W_λ be a holomorphic family of Whittaker functions of Π_λ with respect to ψ_E. Write $\omega_\lambda = \omega_{\Pi_\lambda}|_{F^\times}$. Let $f_{s, \lambda}$ be a good section of $I(\omega_\lambda, s)$. Then the integral $Z_\alpha(f_{s, \lambda}, W_\lambda)$ is absolutely convergent for
\[
\text{Re}(s) > -L(\Pi_\lambda),
\]
uniformly for s and λ varying in compact sets. In particular, the integral $Z_\alpha(f_{s, \lambda}, W_\lambda)$ defines a holomorphic function on the domain
\[
\{(s, \lambda) \in \mathbb{C} \times D(\Pi) \mid \text{Re}(s) > -L(\Pi_\lambda)\}.
\]
Here $L(\Pi_\lambda) \in \mathbb{R}$ is defined as in (2.3).
Proof. We have the following three cases:

\[\begin{align*}
E &= F \times F \times F & \text{Case 1,} \\
E &= F' \times F & \text{Case 2,} \\
E &\text{ is a field} & \text{Case 3.}
\end{align*}\]

Then \(\Pi = \pi_1 \times \pi_2 \times \pi_3 \) for some irreducible generic admissible representations \(\pi_i \) of \(\text{GL}_2(F) \) in Case 1, and \(\Pi = \pi_1 \times \pi_2 \) for some irreducible generic admissible representations \(\pi_1 \) and \(\pi_2 \) of \(\text{GL}_2(F') \) and \(\text{GL}_2(F) \), respectively, in Case 2. In Case 3, we write \(\Pi = \pi_1 \). Let

\[\begin{align*}
r &= \begin{cases}
3 & \text{Case 1,} \\
2 & \text{Case 2,} \\
1 & \text{Case 3.}
\end{cases}
\end{align*}\]

Define \((d_1, \cdots, d_r) \in \mathbb{Z}^r\) by

\[\begin{align*}
(d_1, \cdots, d_r) &= \begin{cases}
(1, 1, 1) & \text{Case 1,} \\
(2, 1) & \text{Case 2,} \\
3 & \text{Case 3.}
\end{cases}
\end{align*}\]

We write \(\lambda = (\lambda_1, \cdots, \lambda_r) \in D(\pi_1) \times \cdots \times D(\pi_r) = D(\Pi) \). Let \(\mathcal{C} \) be a complete set of coset representatives for \(E^\times / (F^\times)^r \). Let \(s_\lambda = \text{wt}(\omega_\lambda) \) and \(s_{i, \lambda} = \text{wt}(\omega(\pi_{i, \lambda})) \) for \(1 \leq i \leq r \). Then \(s_\lambda = \sum_{i=1}^r s_{i, \lambda} \). Note that

\[L(\Pi_\lambda) \leq s_\lambda/2\]

by definition.

Let \(K = \text{G}(F) \cap \text{GL}_2(\mathfrak{o}_E) \). Let \(f_{s, \lambda}^0 \) be the \(K \)-invariant good section of \(I(\vert \omega_\lambda \vert, s) \) normalized so that \(f_{s, \lambda}^0(1) = 1 \). Since \(E^\times / (F^\times)^r \) is compact, by the \(K \)-finiteness of \(f_{s, \lambda} \), there exists a constant \(C_{s, \lambda} > 0 \) bounded uniformly as \(s \) and \(\lambda \) vary in a compact set such that

\[|f_{s, \lambda}(g \cdot t_\alpha (\mathbf{m}(t)k))| \leq C_{s, \lambda} \cdot |f_{s, \lambda}(g)|\]

for \(g \in \text{GSp}_6(F), t \in \mathcal{C}, \) and \(k \in K \). Let \(\epsilon > 0 \). By Lemma 22 there exist an integer \(n \) independent of \(\epsilon, \lambda \) and a constant \(C_{\lambda, \epsilon} > 0 \) bounded uniformly as \(\lambda \) varies in a compact set such that

\[|W_{\lambda}(a(\nu)\mathbf{m}(t)k)| \leq C_{\lambda, \epsilon} \cdot \varphi(\nu) \prod_{i=1}^r |\mathbf{m}_i(\pi_{i, \lambda})|^{d_i + d_{i-1}/2 - \epsilon/r} \]

for \(\nu = (\nu_1, \cdots, \nu_r) \in (F^\times)^r, t \in \mathcal{C}, \) and \(k \in K \), where \(\varphi \in \mathcal{S}(F^\times) \) is given by

\[\varphi((\nu_1, \cdots, \nu_r)) = \prod_{i=1}^r \|\mathbf{s}_{F, \alpha}(\nu_i)\|.
\]

We have

\[Z_\alpha(f_{s, \lambda}, W_\lambda) = Z_\alpha^{(0)}(f_{s, \lambda}, W_\lambda) + g_F^2 \cdot Z_\alpha^{(1)}(f_{s, \lambda}, W_\lambda),\]

where

\[Z_\alpha^{(0)}(f_{s, \lambda}, W_\lambda) = \int_F \int_{F^\times} \int_K f_{s, \lambda}(t_\alpha(\eta \mathbf{u}(x)\mathbf{m}(t)k))W_\lambda(\mathbf{u}(x)\mathbf{m}(t)k)|t|_E^{-2} dk dt dx,\]

\[Z_\alpha^{(1)}(f_{s, \lambda}, W_\lambda) = \int_F \int_{F^\times} \int_K f_{s, \lambda}(t_\alpha(\eta \mathbf{a}(\mathbf{w}_F)\mathbf{u}(x)\mathbf{m}(t)k))W_\lambda(\mathbf{a}(\mathbf{w}_F)\mathbf{u}(x)\mathbf{m}(t)k)|t|_E^{-2} dk dt dx.\]

Here \(\mathbf{u}(x) \in \text{G}(F) \) is defined by

\[\mathbf{u}(x) = \begin{cases}
(1, 1, \mathbf{n}(x)) & \text{Case 1,} \\
(1, \mathbf{n}(x)) & \text{Case 2,} \\
\mathbf{n}(x)/3 & \text{Case 3.}
\end{cases}\]

By (4.7), without lose of generality, we assume \(\alpha = \{e_1^*, e_2^*, e_3^*, e_1, e_2, e_3\} \) is given as follows:

- In Case 1,
 \[e_1^* = ((1, 0, 0), (0, 0, 0)), \quad e_2^* = ((0, 1, 0), (0, 0, 0)), \quad e_3^* = ((0, 0, 1), (0, 0, 0)), \quad e_1 = ((0, 0, 0), (1, 0, 0)), \quad e_2 = ((0, 0, 0), (0, 1, 0)), \quad e_3 = ((0, 0, 0), (0, 0, 1)).\]
In Case 2,
\[e_1^* = ((1, 0), (0, 0)), \quad e_2^* = ((\delta^*, 0), (0, 0)), \quad e_3^* = ((0, 1), (0, 0)), \]
\[e_1 = ((0, 0), (1/2, 0)), \quad e_2 = ((0, 0), (\delta, 0)), \quad e_3 = ((0, 0), (0, 1)) \]
for some \(\delta, \delta^* \in F' \) with \(\text{tr}_{F'/F}(\delta) = \text{tr}_{F'/F}(\delta^*) = 0 \).

In Case 3,
\[e_1^* = (1, 0), \quad e_2^* = (\delta^*, 0), \quad e_3^* = (\delta^*, 0), \quad e_1 = (0, 1/3), \quad e_2 = (0, \delta_1), \quad e_3 = (0, \delta_2) \]
for some \(\delta_1, \delta_1^*, \delta_2, \delta_2^* \in E \) with \(\text{tr}_{E/F}(\delta_1) = \text{tr}_{E/F}(\delta_2) = \text{tr}_{E/F}(\delta_1^*) = \text{tr}_{E/F}(\delta_2^*) = 0 \).

We define \(\eta \in \text{GSp}(V)(F) \) as follows:

- We have
 \[e_1^* \cdot \eta = -e_1, \quad e_2^* \cdot \eta = e_2^*, \quad e_3^* \cdot \eta = e_3^*. \]

- In Case 1,
 \[e_1 \cdot \eta = e_1^* + e_2^* + e_3^*, \quad e_2 \cdot \eta = -e_1 + e_2, \quad e_3 \cdot \eta = -e_1 + e_3. \]

- In Case 2,
 \[e_1 \cdot \eta = e_1^* + e_3^*, \quad e_2 \cdot \eta = e_2, \quad e_3 \cdot \eta = -e_1 + e_3. \]

- In Case 3,
 \[e_1 \cdot \eta = e_1^*, \quad e_2 \cdot \eta = e_2, \quad e_3 \cdot \eta = e_3. \]

It is easy to verify that \(\eta \) satisfies \((12)\). Then

\[
\iota_0(\eta u(x)m(t)) = \begin{cases}
\begin{pmatrix} * & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
t_1 & t_2 & t_3 & t_1^{-1}x & t_2^{-1}x \\
0 & 0 & -t_1^{-1} & t_2 & 0 \\
0 & 0 & -t_1^{-1} & 0 & t_3^{-1}
\end{pmatrix} \quad & \text{Case 1,} \\
\begin{pmatrix} * & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
t_1 & 0 & t_2 & 0 & 0 \\
0 & 0 & 0 & t_1^{-1} & 0 \\
0 & 0 & -t_1^{-1} & 0 & t_2^{-1}
\end{pmatrix} \quad & \text{Case 2,} \\
\begin{pmatrix} * & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
t_1 & 0 & t_1^{-1}x & 0 & 0 \\
0 & 0 & 0 & t_1^{-1} & 0 \\
0 & 0 & 0 & 0 & t_1^{-1}
\end{pmatrix} \quad & \text{Case 3,}
\end{cases}
\]

for \(x \in F \) and \(t = (t_1, \ldots, t_r) \in (F^\times)^r \). Therefore,

\[(4.10) \quad f_{s, \lambda}^0(\iota_0(\eta u(x)m(t))) = \max \{|x|_F, |t_1|_F^2, \ldots, |t_r|_F^2\} \prod_{i=1}^r |t_i|_{d_i}^{-2s-s_\lambda-1} \]

for \(x \in F \) and \(t = (t_1, \ldots, t_r) \in (F^\times)^r \). We deduce from \((13)\) and \((14)\) that the integral \(Z_{\alpha}(f_{s, \lambda}, W_\lambda) \) is majorized by

\[
C_{s, \lambda} \int_F \max \{|x|_F, 1\}^{-2\text{Re}(s)-s_\lambda-1} dx \\
\times \int_{(F^\times)^r} \varphi(t^2) \prod_{i=1}^r |t_i|_{d_i}^{2d_i \cdot \text{Re}(s)+2d_i \cdot l((t_i)_{s_i})+d_i \cdot s_\lambda-s_i-\lambda-2\epsilon/r} \max \{|t_1|_F^2, \ldots, |t_r|_F^2\}^{-2\text{Re}(s)-s_\lambda} dx.
\]

The above integral is absolutely convergent for

\[
\text{Re}(s) > \max \{-s_\lambda/2, -L(\Pi_\lambda) + \epsilon\} = -L(\Pi_\lambda) + \epsilon.
\]
Moreover, it is clear that the above integral is uniformly convergent as s and λ vary in compact sets. Therefore we obtain a uniform estimate for $Z^{(0)}_\alpha(f_{s,\lambda}, W_\lambda)$. We have a similar estimate for $Z^{(1)}_\alpha(f_{s,\lambda}, W_\lambda)$. This completes the proof.

In the following lemma, we recall the known cases of Theorem 4.1 in the literature.

Lemma 4.3. Assume one of the following assumptions is satisfied:

- F is archimedean.
- $E = F \times F \times F$.
- F is non-archimedean, E is unramified over F, and Π is unramified.
- E is not a field and Π is unramified.

We have

$$\gamma_{\text{PSR}}(s, \alpha, \Pi, \psi, \alpha) = \omega_{\Pi}(\Delta_{E/F}(\alpha))\Delta_{E/F}(\alpha)|_{E/F}^{2s-1}\omega_{K/F}(-1)\gamma(s, \alpha, \Pi, \psi)$$

for any basis α of E and non-trivial additive character ψ of F. Here $\Delta_{E/F}(\alpha)$ is the relative discriminant of α for E/F and $\omega_{K/F}$ is the quadratic character associated to K/F by local class field theory.

Proof. We assume that F is non-archimedean, E is unramified over F, and Π is unramified. The rest of the cases follow from [Ke89 Theorem 3.1], [Ram00 Theorem 4.4.1], and [CC18 Theorem B]. By [3.3] and Lemma 4.1, we may further assume that $\alpha = \{x_1, x_2, x_3\}$ is an integral basis of σ_F over σ_F and ψ is of conductor σ_F. Note that in this case $\omega_{\Pi}(\Delta_{E/F}(\alpha))|_{E/F}^{2s-1}\omega_{K/F}(-1) = 1$ by assumption. Let f^o_s be the K-invariant good section of $I(\omega, s)$ and $W^o \in \mathcal{W}(\Pi, \psi)$ the $GL_2(\mathfrak{o}_E)$-invariant Whittaker function normalized so that $f^o_s(1) = 1$ and $W^o(1) = 1$. Let $\alpha^* = \{x_1^*, x_2^*, x_3^*\}$ be the dual basis of α and $\tilde{\alpha}$ the symplectic basis of $V(F)$ defined by

$$\tilde{\alpha} = \{(x_1^*, 0), (x_2^*, 0), (x_3^*, 0), (0, x_1), (0, x_2), (0, x_3)\}.$$

By [PSR76 Theorem 3.1], we have

$$Z_{\alpha}(f^o_s, W^o) = L(2s + 1, \omega)^{-1}L(4s, \omega^2)^{-1}L(s, \alpha, \Pi),$$

$$Z_{\alpha}(M^o_s f^o_s, (W^o)^\gamma) = L(2s + 1, \omega)^{-1}L(4s, \omega^2)^{-1}L(1 - s, \alpha, \Pi^\gamma).$$

Here the measure on $F^x U_0(F) \backslash G(F)$ is normalized so that $vol(\sigma^o_F U_0(\sigma_F) \backslash G(\sigma_F)) = 1$. It follows from the functional equation (3.6) that

$$\gamma_{\text{PSR}}(s, \alpha, \Pi, \psi, \alpha) = \varepsilon(s, \alpha, \Pi, \psi)^{-1}\gamma(s, \alpha, \Pi, \psi).$$

Since Π is unramified and ψ is of order σ_F, we have $\varepsilon(s, \alpha, \Pi, \psi) = 1$. This completes the proof. \hfill \Box

4.3. Unramified calculation.

In this section, we prove a case of Theorem 4.1 in Corollary 4.5. This case will be needed in the proof of general case in §5.2 below. Assume F is non-archimedean, E is a field, and there is a uniformizer ϖ_E of E such that $\varpi_E^2 = \varpi_F$ is a uniformizer of σ_F. In particular, the last assumption is satisfied if E is totally tamely ramified over F. Note that $3\varpi_E^2$ is the relative different ideal for E/F.

Let α^o be the symplectic basis of $V(F)$ defined by

$$\alpha^o = \{(1, 0), (\varpi_E, 0), (\varpi_E^2, 0), (0, 1/3), (0, \varpi_E^{-1}/3), (0, \varpi_E^{-2}/3)\}.$$

Lemma 4.4. Let Π be an irreducible generic admissible representation of $GL_2(E)$ with central character ω_{Π}. Write $\omega = \omega_{\Pi}|_{F^x}$. Assume Π is unramified and ψ is of conductor σ_F. Let f^o_s be the K-invariant good section of $I(\omega, s)$ and $W^o \in \mathcal{W}(\Pi, \psi_E)$ the $\mathfrak{a}(3^{-1}\varpi_E^2)\mathfrak{GL}_2(\mathfrak{o}_E)\mathfrak{a}(3\varpi_E^2)$-invariant Whittaker function normalized so that $f^o_s(1) = 1$ and $W^o(1) = 1$. We have

$$Z_{\alpha^o}(f^o_s, W^o) = L(2s + 1, \omega)^{-1}L(4s, \omega^2)^{-1}L(s, \alpha, \Pi).$$

Here the measure on $F^x U_0(F) \backslash G(F)$ is normalized so that

$$vol(\sigma^o_F U_0(\sigma_F) \cap N(\mathfrak{o}_E)) \backslash (G(F) \cap \mathfrak{a}(\varpi_E^2)GL_2(\mathfrak{o}_E)\mathfrak{a}(\varpi_E^2)) = 1.$$

Proof. Write $\varpi = \varpi_F$ and $q = q_F$ for brevity. Assume $\Pi = \text{Ind}_{E(E)}^{GL_2(E)}(\chi_1 \otimes \chi_2)$ for some unramified characters χ_1 and χ_2 of E^\times. Let $\alpha = \chi_1(\varpi_E), \beta = \chi_2(\varpi_E),$ and $\chi_1\chi_2 = |\chi_0|_{E^s}^s$ for some $s_0 \in \mathbb{C}$. We have

$$W^o(\alpha(\varpi_E^n)) = \begin{cases} q^{-n/2} \cdot \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} & \text{if } n \geq 0, \\
 \frac{\alpha - \beta}{\alpha} & \text{if } n < 0.
\end{cases}$$

(4.11)
Also note that (cf. [PSR87b, p. 54])

\[
\int_F \max\{|x|_F, q^{-m}\}^{-s\psi(\varpi^n x)} \, dx
\]

(4.12)

\[
= \begin{cases}
q^{m(s-1)}(1 - q^{-(m+n+1)(s-1)})\zeta_F(s-1)\zeta_F(s)^{-1} & \text{if } m + n \geq 0, \\
0 & \text{if } m + n < 0.
\end{cases}
\]

Since \{1, \varpi_E, \varpi_E^2\} is an integral basis of \(\mathfrak{o}_E\) over \(\mathfrak{o}_F\), one can easily verify that

\[\iota_{\alpha^o}(a(3^{-1}\varpi_E^{-2})) \text{GL}_2(\mathfrak{o}_E) a(3\varpi_E^2)) \subseteq K.\]

Therefore, by the invariance of \(f_s^o\) and \(W^o\), we have

\[Z_\alpha(f_s^o, W^o) = Z^{(0)}(s) + q^2 \cdot Z^{(1)}(s),\]

where

\[
Z^{(0)}(s) = \int_F \int_{E^\times} f_s^o(\iota_{\alpha^o}(\eta n(x/3) m(t))) W^o(\eta n(x/3) m(t)) |t|_{E}^{-2} d^x t \, dx,
\]

\[
Z^{(1)}(s) = \int_F \int_{E^\times} f_s^o(\iota_{\alpha^o}(\eta a(\varpi) n(x/3) m(t))) W^o(a(\varpi) n(x/3) m(t)) |t|_{E}^{-2} d^x t \, dx.
\]

Here the measures are normalized so that \(\text{vol}(\mathfrak{o}_F) = \text{vol}(\mathfrak{o}_E^\times) = 1\). We assume \(\eta \in \text{GSp}(V)(F)\) satisfying (4.2) is defined by

\[(0, 1/3) \cdot \eta = (1, 0), \quad (\varpi_E^i, 0) \cdot \eta = (\varpi_E^i, 0), \quad (0, \varpi_E^{-i}) \cdot \eta = (0, \varpi_E^{-i})\]

for \(i = 1, 2\). For \(x \in F, n \in \mathbb{Z}_{\geq 0}, \) and \(0 \leq i \leq 2\), we have

\[
\iota_{\alpha^o}(\eta n(x/3) m(\varpi^n \varpi_E^i)) = \begin{cases}
\begin{pmatrix}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
\varpi^n & 0 & 0 & \varpi^{-n} x & 0 & 0 \\
0 & 0 & 0 & 0 & \varpi^{-n} & 0 \\
0 & 0 & 0 & 0 & \varpi^{-n} & 0
\end{pmatrix} & \text{if } i = 0, \\
\begin{pmatrix}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
0 & \varpi^n & 0 & 0 & \varpi^{-n} x & 0 \\
0 & 0 & 0 & 0 & \varpi^{-n} & 0 \\
0 & 0 & 0 & 0 & \varpi^{-n} & 0
\end{pmatrix} & \text{if } i = 1, \\
\begin{pmatrix}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
0 & \varpi^n & 0 & 0 & \varpi^{-n} x & 0 \\
0 & 0 & 0 & 0 & \varpi^{-n} & 0 \\
0 & 0 & 0 & 0 & \varpi^{-n} & 0
\end{pmatrix} & \text{if } i = 2.
\end{cases}
\]

Therefore,

\[
f_s^o(\iota_{\alpha^o}(\eta n(x/3) m(\varpi^n \varpi_E))) = (\alpha^3 \beta^3 q^{-2s-1})^{3m+1} \max\{|x|_F, q^{-2n}\}^{-3s_0-2s-1}.
\]
It follows from \(\text{(1.1)}\) and \(\text{(1.3)}\) that
\[
Z^{(0)}(s) = L(2s, \omega)L(2s + 1, \omega)^{-1}(\alpha - \beta)^{-1}
\times \sum_{i=0}^{2} \frac{\alpha^{2i} \beta^{2i}q^{-2i}}{1 - \alpha^2 \beta^2 q^{-2s}} \sum_{n=0}^{\infty} q^{-2ns}(\alpha^{6n+2i+1} - \beta^{6n+2i+1})(1 - (\alpha^3 \beta^3 q^{-2s})^{2n+1})
\]
\[
= L(2s, \omega)L(2s + 1, \omega)^{-1}(\alpha - \beta)^{-1}
\times \left[\frac{1 - \alpha^{12} \beta^6 q^{-6s}}{1 - \alpha^2 \beta^2 q^{-2s}} \left(\frac{\alpha}{1 - \alpha^6 q^{-2s}} - \frac{\alpha^4 \beta^3 q^{-2s}}{1 - \alpha^{12} \beta^6 q^{-6s}} \right)
- \frac{1 - \alpha^{6} \beta^{12} q^{-6s}}{1 - \alpha^2 \beta^4 q^{-2s}} \left(\frac{\beta}{1 - \beta^6 q^{-2s}} - \frac{\alpha^3 \beta q^{-2s}}{1 - \alpha^{6} \beta^{12} q^{-6s}} \right) \right].
\]

Note that \(f_s^{(\nu_s)}(\chi((\varpi))q) = q^{-s-1/2}f_s^{(\nu)}(g)\). Similarly,
\[
Z^{(1)}(s) = q^{-s-2}L(2s, \omega)L(2s + 1, \omega)^{-1}(\alpha - \beta)^{-1}
\times \sum_{i=0}^{2} \frac{\alpha^{2i} \beta^{2i}q^{-2i}}{1 - \alpha^2 \beta^2 q^{-2s}} \sum_{n=0}^{\infty} q^{-2ns}(\alpha^{6n+2i+4} - \beta^{6n+2i+4})(1 - (\alpha^3 \beta^3 q^{-2s})^{2n+2})
\]
\[
= q^{-s-2}L(2s, \omega)L(2s + 1, \omega)^{-1}(\alpha - \beta)^{-1}
\times \left[\frac{1 - \alpha^{12} \beta^6 q^{-6s}}{1 - \alpha^2 \beta^2 q^{-2s}} \left(\frac{\alpha^4}{1 - \alpha^6 q^{-2s}} - \frac{\alpha^{10} \beta^6 q^{-4s}}{1 - \alpha^{12} \beta^6 q^{-6s}} \right)
- \frac{1 - \alpha^{6} \beta^{12} q^{-6s}}{1 - \alpha^2 \beta^4 q^{-2s}} \left(\frac{\beta^4}{1 - \beta^6 q^{-2s}} - \frac{\alpha^{3} \beta q^{-2s}}{1 - \alpha^{6} \beta^{12} q^{-6s}} \right) \right].
\]

By a direct calculation, we have
\[
\left(\frac{\alpha}{1 - \alpha^6 q^{-2s}} - \frac{\alpha^4 \beta^3 q^{-2s}}{1 - \alpha^{12} \beta^6 q^{-6s}} \right) + \left(\frac{\alpha^4 q^{-s}}{1 - \alpha^6 q^{-2s}} - \frac{\alpha^{10} \beta^6 q^{-4s}}{1 - \alpha^{12} \beta^6 q^{-6s}} \right)
= L(2s, \omega)^{-1}(1 - \alpha^3 q^{-s})^{-1}(1 - \alpha^6 \beta^3 q^{-3s})^{-1},
\]
\[
\left(\frac{\beta}{1 - \beta^6 q^{-2s}} - \frac{\alpha^3 \beta q^{-2s}}{1 - \alpha^{6} \beta^{12} q^{-6s}} \right) + \left(\frac{\beta^4 q^{-s}}{1 - \beta^6 q^{-2s}} - \frac{\alpha^{3} \beta q^{-2s}}{1 - \alpha^{6} \beta^{12} q^{-6s}} \right)
= L(2s, \omega)^{-1}(1 - \beta^3 q^{-s})^{-1}(1 - \alpha^3 \beta^6 q^{-3s})^{-1}.
\]

Therefore,
\[
Z^{(0)}(s) + q^2 \cdot Z^{(1)}(s) = L(2s + 1, \omega)^{-1}(\alpha - \beta)^{-1}
\times \left[\frac{\alpha(1 - \alpha^2 \beta q^{-s} + \alpha^4 \beta^2 q^{-2s})}{(1 - \alpha^3 q^{-s})(1 - \beta^3 q^{-s})} - \frac{\beta(1 - \alpha \beta^2 q^{-s} + \alpha^2 \beta^4 q^{-2s})}{(1 - \beta^3 q^{-s})(1 - \alpha^2 \beta^2 q^{-s})} \right]
\]
\[
= L(2s + 1, \omega)^{-1}(\alpha - \beta)^{-1}
\times \left[\frac{(\alpha - \beta)(1 - \alpha^6 \beta^6 q^{-4s})}{(1 - \alpha^3 q^{-s})(1 - \beta^3 q^{-s})(1 - \alpha^2 \beta^2 q^{-s})(1 - \alpha \beta^2 q^{-s})} \right]
\]
\[
= L(2s + 1, \omega)^{-1}L(4s, \omega^2)^{-1}L(s, As \Pi).
\]

This completes the proof.

\textbf{Corollary 4.5.} Let \(\Pi\) be an irreducible generic admissible representation of \(\text{GL}_2(E)\) with central character \(\omega_{\Pi}\). Assume \(\Pi\) is unramified. We have
\[
\gamma_{\text{PSR}}(s, As \Pi, \psi, \alpha) = \omega_{\Pi}(\Delta_{E/F}(\alpha))|\Delta_{E/F}(\alpha)|_{F}^{2s-1}\omega_{K/F}(-1)^{s} \gamma(s, As \Pi, \psi)
\]
for any basis \(\alpha\) of \(E\) over \(F\) and non-trivial additive character \(\psi\) of \(F\).

\textbf{Proof.} We write \(\omega = \omega_{\Pi}|_{F^\times}\). Assume \(\Pi = \text{Ind}_{B(E)}^{\text{GL}_2(E)}(\chi_1 \otimes \chi_2)\) for some unramified characters \(\chi_1\) and \(\chi_2\) of \(E^\times\). We first prove the assertion for \(\alpha = \alpha_X = \{0, 1/3, 0, \omega_{E}^{-1}/3, 0, \omega_{E}^{-2}/3\}\) and \(\psi\) is of conductor
Let f_{ω}° be the K-invariant good section of $I(\omega, s)$ normalized so that $f_{\omega}^\circ(1) = 1$ and $W^\omega \in W(\Pi, \psi_E)$ the $a(3^{-1} \omega_E^{2}) GL_2(\sigma_E) a(3\omega_E^{2})$-invariant Whittaker function normalized so that $W^\omega(1) = 1$. By the Gindikin-Karpelevich formula (cf. [PSR87a Proposition 5.3]), we have

$$M_{\omega}^\circ f_{\omega}^\circ(1) = \frac{L(3-2s, \omega^{-1})L(4-4s, \omega^{-2})}{L(2s+1, \omega)L(4s, \omega^2)}.$$

Note that $(W^\omega)^\vee \in W(\Pi, \psi_E)$ is the $a(3^{-1} \omega_E^{2}) GL_2(\sigma_E) a(3\omega_E^{2})$-invariant Whittaker function with $(W^\omega)^\vee(1) = 1$. By Lemma 4.3, we have

$$Z_{\omega}^\circ(f_{\omega}^\circ, W^\omega) = L(2s+1, \omega)^{-1}L(4s, \omega^2)^{-1}L(s, \Pi),$$

$$Z_{\omega}^\circ(M_{\omega}^\circ f_{\omega}^\circ, (W^\omega)^\vee) = L(2s+1, \omega)^{-1}L(4s, \omega^2)^{-1}L(1-s, \Pi).$$

It follows from the functional equation that

$$\gamma_{\psi SR}(s, \Pi, \psi, \alpha) = \varepsilon(s, \Pi, \psi)^{-1} \gamma(s, \Pi, \psi).$$

Since χ_1 and χ_2 are unramified, by (3.2) and (3.3), we have

$$\varepsilon(s, \Pi, \psi) = \varepsilon(s, \chi_1|F^s, \psi)\varepsilon(s, \chi_2|F^s, \psi)\varepsilon(s, \text{Ind}_W^{E}(\chi_1^2 \chi_2), \psi)\varepsilon(s, \text{Ind}_W^{E}(\chi_1^2 \chi_2), \psi).$$

Also note that $\varepsilon(s, \chi_1|F^s, \psi) = \varepsilon(s, \chi_2|F^s, \psi) = 1$ since ψ is of conductor σ_F. On the other hand,

$$\varepsilon(s, \text{Ind}_W^{E}(\chi_1^2 \chi_2), \psi) = \lambda_{E/F}(\psi)\varepsilon(s, \chi_1^2 \chi_2, \psi_E),$$

$$\varepsilon(s, \text{Ind}_W^{E}(\chi_1^2 \chi_2), \psi) = \lambda_{E/F}(\psi)\varepsilon(s, \chi_1^2 \chi_2, \psi_E),$$

where $\lambda_{E/F}(\psi)$ is the Langlands constant for E/F with respect to ψ (cf. [BH06 §30]). Since χ_1 and χ_2 are unramified and $\psi_E^{3-1} \omega_E^2$ is of conductor σ_E, we have

$$\varepsilon(s, \chi_1^2 \chi_2, \psi_E) = \chi_1 \chi_2 (3\omega_E^2) 3\omega_E^2 |_{E}^{s-1/2},$$

$$\varepsilon(s, \chi_1^2 \chi_2, \psi_E) = \chi_1 \chi_2 (3\omega_E^2) 3\omega_E^2 |_{E}^{s-1/2}.$$

Note that $\Delta_{E/F}(\alpha) = 3^{-3} \omega_E^2$ and $\lambda_{E/F}(\psi)^2 = \omega_{K/F}(-1)$. Indeed, since $\omega_{K/F} = \det(\text{Ind}_W^{E}(1))$, we have $\lambda_{E/F}(\psi)^2 = \omega_{K/F}(-1)$ by [BH06 (30.4.3)]. We conclude that

$$\varepsilon(s, \Pi, \psi) = \omega_{\Pi}(\Delta_{E/F}(\alpha))^{-1} |\Delta_{E/F}(\alpha)|_{E}^{2s-1} \omega_{K/F}(-1).$$

The assertion for the special case is proved. It then follows from (5.1) and Lemma 4.1(2) that the assertion holds for any non-trivial additive character ψ of F and $\alpha = a_{\alpha}^\psi$. Let β be any basis of E over F and $A_{\alpha, \beta} \in GL_2(F)$ the transition matrix from α to β. Then $\Delta_{E/F}(\beta) = \det(A_{\alpha, \beta})^2 \Delta_{E/F}(\alpha)$. The assertion for β then follows from Lemma 4.1(1). This completes the proof.

5. **Proof of Main Results**

5.1. **Automorphic L-functions.** In §5.2 below, a key ingredient in the proof of Theorem 1.1 is a global-to-local argument. We recall in this section the automorphic L-functions for the Asai cube representation. Let F be a number field and E an étale cubic algebra over F. Let \mathbb{K} be the quadratic discriminant algebra of E and $\omega_{K/F}$ the quadratic Hecke character associated to \mathbb{K}/F by class field theory. Denote by \mathcal{A}_E and \mathcal{A}_F the rings of adeles of E and F, respectively. Let ψ be a non-trivial additive character of \mathcal{A}_F. Let Π be an irreducible cuspidal automorphic representation of $GL_2(\mathcal{A}_E)$ with central character ω_{Π}. Write $\omega = \omega_{\Pi}|_{F^s}$. For each place v of F, let

$$L(s, \Pi_v), \quad \varepsilon(s, \Pi_v, \psi_v), \quad \gamma(s, \Pi_v, \psi_v)$$

be the Asai cube factors associated to Π_v defined in §4 and

$$\gamma_{LS}(s, \Pi_v, \psi_v)$$

the Asai cube γ-factor defined by the Langlands-Shahidi method [Sha90 (cf. [HL18 §5]). By [Sha90 Theorem 3.5-(1)] for v archimedean and [HL18 Theorem 1.1] for v non-archimedean (see also [Ram00 Theorem 4.4.1], [Kim03 §5], and [Kr03 §6]), we have

$$\gamma(s, \Pi_v, \psi_v) = \gamma_{LS}(s, \Pi_v, \psi_v).$$

(5.1)
The automorphic L-function and ε-factor associated to Π and the Asai cube representation are defined by
\[L(s, \text{As}\Pi) = \prod_v L(s, \text{As}\Pi_v), \quad \varepsilon(s, \text{As}\Pi) = \prod_v \varepsilon(s, \text{As}\Pi_v, \psi_v). \]

Note that the product defining the L-function is absolutely convergent for $\text{Re}(s)$ sufficiently large. For a set S of places of F, we define the partial L-function
\[L^S(s, \text{As}\Pi) = \prod_{v \in S} L(s, \text{As}\Pi_v). \]

We recall the integral representation of $L(s, \text{As}\Pi)$ due to Garrett [Gar87] (see also [PSR87b, §4.3] and [Ike89]). Let α be a symplectic basis of $V(F)$ and the isomorphism defined by $\iota_{\alpha, F} : \text{GSp}(V)(\mathbb{A}_F) \rightarrow \text{GSp}_6(\mathbb{A}_F)$
\[\iota_{\alpha, v} : \text{GSp}(V)(F_v) \rightarrow \text{GSp}_6(F_v) \]
is the isomorphism (4.3) by regarding α as a symplectic basis of $V(F_v)$. Let f_s be a good section of $I(\omega, s)$ and $\phi \in \Pi$ a cusp form. Let $E(f_s)$ be the Eisenstein series on $\text{GSp}_6(\mathbb{A}_F)$ defined by
\[E(g; f_s) = \sum_{\gamma \in P(F) \setminus \text{GSp}_6(F)} f_s(\gamma g) \]
for $\text{Re}(s)$ sufficiently large, and by meromorphic continuation otherwise. Let W_ϕ be the Whittaker function of ϕ with respect to ψ_F defined by
\[W_\phi(g) = \int_{E(\mathbb{A}_F)} \phi(n(x)g)\overline{\psi_F(x)} \, dx. \]

By a standard unfolding argument (cf. [PSR87b, §2]), the integral
\[\int_{\mathbb{A}_F G(F) \setminus G(\mathbb{A}_F)} E(t_{\alpha, F}(g); f_s)\phi(g) \, dg \]
is equal to
\[Z_\alpha(f_s, W_\phi) = \int_{\mathbb{A}_F U(\mathbb{A}_F) \setminus G(\mathbb{A}_F)} f_s(t_{\alpha, F}(\eta g))W_\phi(g) \, dg \]
for $\text{Re}(s)$ sufficiently large, where $\eta \in \text{GSp}(V)(F)$ satisfies (4.2). By the functional equation of the Eisenstein series $E(f_s)$ and the properties of the local zeta integrals in §4.2, the integral $Z_\alpha(f_s, W_\phi)$ admits meromorphic continuation to $s \in \mathbb{C}$ and satisfies the functional equation
\[(5.2) \quad Z_\alpha(f_s, W_\phi) = Z_\alpha(M^*_w f_s, W_\phi). \]

Lemma 5.1. Let S be a finite set of places of F containing all archimedean places such that for $v \notin S$, we have E_v is unramified over F_v and Π_v is unramified. Then
\[\prod_{v \in S} \gamma_{\text{PSR}}(s, \text{As}\Pi_v, \psi_v, \alpha) = \prod_{v \in S} \omega_{\Pi_v}(\Delta_{E_v/F_v}(\alpha))|\Delta_{E_v/F_v}(\alpha)|^{2s-1}\omega_{\mathbb{K}_v/F_v}(-1)\gamma(s, \text{As}\Pi_v, \psi_v) \]
for any basis α of E over F.

Proof. Let α be a basis of E over F. Let T be a set of places containing S such that for $v \notin T$, we have
- α is an integral basis of \mathfrak{o}_{E_v} over \mathfrak{o}_{F_v},
- ψ_v is of conductor \mathfrak{o}_{F_v},
- E_v is unramified over F_v,
- Π_v is unramified.

Write $\alpha = \{x_1, x_2, x_3\}$ and let $\alpha^* = \{x_1^*, x_2^*, x_3^*\}$ be the dual basis of α. Let $\tilde{\alpha}$ be the symplectic basis of $V(F)$ defined by
\[\tilde{\alpha} = \{(x_1^*, 0), (x_2^*, 0), (x_3^*, 0), (0, x_1), (0, x_2), (0, x_3)\}. \]

For each place v of F, let $f_{s,v}$ be a good section of $I(\omega_v, s)$ and $W_v \in W(\Pi_v, \psi_{E_v})$ satisfying the following conditions:
For \(\nu \notin T \), \(f_{s, \nu} \) is the \(\text{GSp}_6(\mathfrak{O}_F) \)-invariant good section normalized so that \(f_{s, \nu}(1) = 1 \) and \(W_{\nu} \) the \(\text{GL}_2(\mathfrak{O}_{E_{\nu}}) \)-invariant Whittaker function normalized so that \(W_{\nu}(1) = 1 \).

For \(\nu \in T \), we have \(Z_{\alpha}(f_{s, \nu}, W_{\nu}) \neq 0 \).

By [PSR87b] Theorem 3.1], for \(\nu \notin T \) we have
\[
Z_{\alpha}(f_{s, \nu}, W_{\nu}) = L(2s + 1, \omega_{\nu})^{-1}L(4s, \omega_{\nu}^2)^{-1}L(s, \text{As}_{\Pi_{\nu}}),
\]
\[
Z_{\alpha}(M_{s, \nu}f_{s, \nu}, W_{\nu}) = L(2s + 1, \omega_{\nu})^{-1}L(4s, \omega_{\nu}^2)^{-1}L(1 - s, \text{As}_{\Pi_{\nu}^\vee}).
\]

We conclude from the functional equations \((5.3)\) and \((5.2)\) that the partial \(L \)-function \(L^T(s, \text{As}_{\Pi}) \) admits meromorphic continuation to \(s \in \mathbb{C} \) and satisfies the functional equation
\[
L^T(s, \text{As}_{\Pi}) = \prod_{\nu \in T} \gamma_{\text{PSR}}(s, \text{As}_{\Pi_{\nu}}, \psi_{\nu}, \alpha)L^T(1 - s, \text{As}_{\Pi_{\nu}^\vee}).
\]

On the other hand, by [Sha90] Theorem 3.5-[4]) and \((5.1)\), we have the functional equation
\[
L^T(s, \text{As}_{\Pi}) = \prod_{\nu \in T} \gamma(s, \text{As}_{\Pi_{\nu}}, \psi_{\nu})L^T(1 - s, \text{As}_{\Pi_{\nu}^\vee}).
\]

We deduce that
\[
\prod_{\nu \in T} \gamma_{\text{PSR}}(s, \text{As}_{\Pi_{\nu}}, \psi_{\nu}, \alpha) = \prod_{\nu \in T} \gamma(s, \text{As}_{\Pi_{\nu}}, \psi_{\nu}).
\]

By Lemma 4.3, for \(\nu \in T \setminus S \), we have
\[
\gamma_{\text{PSR}}(s, \text{As}_{\Pi_{\nu}}, \psi_{\nu}, \alpha) = \omega_{\Pi_{\nu}}(\Delta_{E_{\nu}/F_{\nu}}(\alpha)|\Delta_{E_{\nu}/F_{\nu}}(\alpha)|^{2s-1}\omega_{K_{\nu}/F_{\nu}}(-1)^{-1})\gamma(s, \text{As}_{\Pi_{\nu}}, \psi_{\nu}).
\]

By assumption, for \(\nu \notin T \), we have
\[
\omega_{\Pi_{\nu}}(\Delta_{E_{\nu}/F_{\nu}}(\alpha)|\Delta_{E_{\nu}/F_{\nu}}(\alpha)|^{2s-1}\omega_{K_{\nu}/F_{\nu}}(-1)^{-1} = 1.
\]

The assertion then follows from \((5.3)\) and the product formula
\[
\prod_{\nu} \omega_{\Pi_{\nu}}(\Delta_{E_{\nu}/F_{\nu}}(\alpha)|\Delta_{E_{\nu}/F_{\nu}}(\alpha)|^{2s-1}\omega_{K_{\nu}/F_{\nu}}(-1) = 1.
\]

This completes the proof.

5.2. Proof of Theorem 1.1.] Let \(F \) be a non-archimedean local field of characteristic zero and \(E \) an étale cubic algebra over \(F \). Let \(\mathbb{K} \) be the quadratic discriminant algebra of \(F \). Let \(\Pi \) be an irreducible generic admissible representation of \(\text{GL}_2(E) \) with central character \(\omega_\Pi \). Let \(\psi \) be a non-trivial additive character of \(F \) and \(\alpha \) a basis of \(E \) over \(F \). Recall the domains \(D(\Pi) \) and \(D(\Pi)^\circ \) defined in \((2.4)\) and \((2.6)\), respectively. Consider the family of irreducible generic admissible representations \(\Pi_\lambda \) of \(\text{GL}_2(E) \) for \(\lambda \) varying in \(D(\Pi) \).

We are going to prove that the identity
\[
\gamma_{\text{PSR}}(s, \text{As}_{\Pi_{\lambda}}, \psi, \alpha) = \omega_{\Pi_\lambda}(\Delta_{E/F}(\alpha)|\Delta_{E/F}(\alpha)|^{2s-1}\omega_{K/F}(-1)^{-1})\gamma(s, \text{As}_{\Pi_{\lambda}}, \psi)
\]
holds for all \(\lambda \in D(\Pi) \). In particular, \((5.3)\) holds for \(\Pi_{\lambda} = \Pi \). We divide the proof into three steps as follows:

Step 1. Establish \((5.4)\) for a dense subset \(\mathcal{U} \) of \(D(\Pi)^\circ \).

Step 2. Establish \((5.4)\) for all \(\lambda \in D(\Pi) \) with \(|\lambda|_\Pi < 1/2 \).

Step 3. Establish \((5.4)\) for all \(\lambda \in D(\Pi) \).

Fix a symplectic basis \(\tilde{\alpha} \) of \(V(F) \) such that \(\tilde{\alpha}_\lambda = \alpha \). Write \(\omega_\lambda = \omega_{\Pi_\lambda}|_{F^\times} \).

Step 1. By Kranser’s lemma, there exist an étale cubic algebra \(E \) over a number field \(F \) and a place \(\nu_1 \) of \(F \) such that
- \(E_{\nu_1} = E \) and \(F_{\nu_1} = F \),
- for any non-archimedean place \(\nu \neq \nu_1 \) and \(\nu \) divides 3, \(E_{\nu} \) is unramified over \(F_{\nu} \).

Let \(\alpha \) be a basis of \(E \) over \(F \), \(K \) the quadratic discriminant algebra of \(E \), and \(\psi \) a non-trivial additive character of \(K/F \). By \((3.4)\) and Lemma 4.11 we may assume \(\alpha = \alpha \) regarding as a basis of \(E \) over \(F \) and \(\psi = \psi_{\nu} \). Fix a non-archimedean place \(\nu_2 \) of \(F \) such that \(E_{\nu_2} = F_{\nu_2} \times F_{\nu_2} \times F_{\nu_2} \). Let \(U \) be an open subset of \(D(\Pi)^\circ \). By the limit multiplicity property for the principal congruence subgroups of \(\text{GL}_2 \) proved in [FLM13] Theorem 1.3], there exists an irreducible cuspidal automorphic representation \(\Pi \) of \(\text{GL}_2(\mathbb{A}_E) \) (see [BPT18] Theorem 3.7.1] for the deduction) such that
- \(\Pi_{\nu_1} = \Pi_\lambda \) for some \(\lambda \in U \),
By Lemma 4.2, we can take C for all $\lambda \in U$. Let S be the finite set of places v of F such that v is archimedean or $v \in \{v_1, v_2\}$ or v is non-archimedean and E_v is ramified over F_v. By Lemma 5.1, we have

$$
\prod_{v \in S} \gamma_{\text{PSR}}(s, \Lambda v, \psi_v, \alpha) = \prod_{v \in S} \omega_{\text{I}}(\Delta_{E_v/F_v}(\alpha))|\Delta_{E_v/F_v}(\alpha)|_{F_v}^{\frac{2s}{v} - 1} \omega_{K_v/F_v}(-1)^{\gamma}(s, \Lambda v, \psi_v).
$$

On the other hand, by Lemma 4.3 and Corollary 4.5 for $v \in S$ with $v \neq v_1$, we have

$$
\gamma_{\text{PSR}}(s, \Lambda v, \psi_v, \alpha) = \omega_{\text{I}}(\Delta_{E_v/F_v}(\alpha))|\Delta_{E_v/F_v}(\alpha)|_{F_v}^{\frac{2s}{v} - 1} \omega_{K_v/F_v}(-1)^{\gamma}(s, \Lambda v, \psi_v).
$$

It follows that (5.4) holds for some $\lambda \in U$.

Step 2. Let $\lambda_0 \in D(\Pi)$ with $|\lambda_0|_\Pi < 1/2$. Let $0 < \epsilon < 1/2 - |\lambda_0|_\Pi$. Let f_s be a good section of $I(\omega_{\lambda_0}, s)$ and $W \in \mathcal{W}(\Pi_{\lambda_0}, \psi)$. We extend f_s to a good section f_s,λ of $I(\omega_{\lambda}, s)$ and W to a holomorphic family of Whittaker functions W_λ of Π_λ with respect to ψ_λ. By **Step 1,**

$$
Z(\lambda, s + 1, \lambda, W_\lambda) = \omega_{\Pi_\lambda}(\Delta_{E/F}(\alpha))|\Delta_{E/F}(\alpha)|_{E/F}^{\frac{2s}{2} - 1} \omega_{E/F}(-1)^{\epsilon}(s + 1/2, \Lambda_\lambda, \psi_\lambda, \alpha)\frac{Z(f_s, \Psi_\lambda, W_\lambda)}{(s + 1/2, \Lambda_{\lambda})}
$$

holds for $s \in \mathbb{C}$ and $\lambda \in \mathcal{U}$. On the other hand, by Lemma 4.2 the right-hand side and the left-hand side of (5.5) define holomorphic functions on

$$
\{s \in \mathbb{C} \mid \Re(s) > 1/2 - \epsilon\} \times \{\lambda \in D(\Pi) \mid |\lambda|_\Pi < 1/2 - \epsilon\}
$$

and

$$
\{s \in \mathbb{C} \mid \Re(s) < 1/2 + \epsilon\} \times \{\lambda \in D(\Pi) \mid |\lambda|_\Pi < 1/2 - \epsilon\},
$$

respectively. Since the set \mathcal{U} is dense in $D(\Pi)^0$, it follows that (5.5) holds for (s, λ) in the domain

$$
\{s \in \mathbb{C} \mid 1/2 - \epsilon < \Re(s) < 1/2 + \epsilon\} \times \{\lambda \in D(\Pi) \mid |\lambda|_\Pi < 1/2 - \epsilon\}.
$$

We then deduce form the holomorphicity that (5.5) holds for all $s \in \mathbb{C}$ and $|\lambda|_\Pi < 1/2 - \epsilon$. In particular, it holds for $\lambda = \lambda_0$. Since f_s and W are arbitrary chosen, we see that (5.4) holds for $\lambda = \lambda_0$.

Step 3. Let f_s,λ be a good section of $I(\omega_{\lambda}, s)$ and W_λ a holomorphic family of Whittaker functions of Π_λ with respect to ψ_λ. Let

$$
Z_1(s, \lambda) = \frac{Z(\lambda, s + 1, \lambda, W_\lambda)}{(s + 1/2, \Lambda_\lambda)}
$$

and

$$
Z_2(s, \lambda) = \omega_{\Pi_\lambda}(\Delta_{E/F}(\alpha))|\Delta_{E/F}(\alpha)|_{E/F}^{\frac{2s}{2} - 1} \omega_{E/F}(-1)^{\epsilon}(s + 1/2, \Lambda_\lambda, \psi_\lambda, \alpha)\frac{Z(f_s + 1/2, \lambda, W_\lambda)}{(s + 1/2, \Lambda_{\lambda})}
$$

be partially defined functions on $\mathbb{C} \times D(\Pi)$. By Lemma 4.2 and **Step 2,** Z_1 and Z_2 are holomorphic functions on the domain

$$
\mathbb{C} \times \{\lambda \in D(\Pi) \mid |\lambda|_\Pi < 1/2\}
$$

and satisfy the functional equation

$$
Z_1(-s, \lambda) = Z_2(s, \lambda).
$$

Note that it is clear that Z_1 and Z_2 are periodic of period $\log(q_F)^{-1}2\pi\sqrt{-1}$ in the variable s. We claim that Z_1 and Z_2 admit holomorphic continuation to $\mathbb{C} \times D(\Pi)$ and satisfy the above functional equation. To prove the claim, by [BP18 Proposition 2.8.1] with $M = D(\Pi)$ and $U = \{\lambda \in D(\Pi) \mid |\lambda|_\Pi < 1/2\}$, it suffices to show that for every $C' > 1/2$, there exists $C > 0$ such that Z_1 and Z_2 admit holomorphic continuation to the domain

$$
\{s \in \mathbb{C} \mid \Re(s) > C\} \times \{\lambda \in D(\Pi) \mid |\lambda|_\Pi < C'\}.
$$

By Lemma 4.2, we can take $C = C' - 1/2$. As f_s,λ and W_λ are arbitrary chosen, we conclude that (5.4) holds for all $\lambda \in D(\Pi)$. This completes the proof of Theorem 1.1.

Remark 5.2. In [BP18 Proposition 2.8.1], U and U' are connected relatively compact open subsets of M. It is clear that any connected relatively compact open subset of $D(\Pi)$ is contained in $\{\lambda \in D(\Pi) \mid |\lambda|_\Pi < C\}$ for some $C > 0$.

20
5.3. Proof of Corollary 1.3. By [Ike92] Lemma 2.1 and Lemma 3.1, \(L(s, \text{As} \Pi) \) and \(L_{PSR}(s, \text{As} \Pi) \) have no poles for \(\text{Re}(s) \geq 1/2 \). Similarly, \(L(1 - s, \text{As} \Pi^\vee) \) and \(L_{PSR}(1 - s, \text{As} \Pi^\vee) \) have no poles for \(\text{Re}(s) \leq 1/2 \). Also note that the \(L \)-functions have no zeros. We deduce that the poles of \(L(s, \text{As} \Pi) \), count with multiplicities, are equal to the poles of the meromorphic function \(L(s, \text{As} \Pi) L(1 - s, \text{As} \Pi^\vee)^{-1} \). We have a similar conclusion for \(L_{PSR}(s, \text{As} \Pi) \). Since the \(\varepsilon \)-factors have neither poles nor zeros, the assertion then follows from Theorem 1.1.

5.4. Proof of Theorem 1.4. By [KS02] Theorem C, we have \(\max\{|L(\Pi_v)|, |L(\Pi_v^\vee)|\} < 1/2 \) for all places \(v \) of \(F \). Therefore, by Corollary 1.3, we have \(L_{PSR}(s, \text{As} \Pi_v) = L(s, \text{As} \Pi_v) \) for all places \(v \) of \(F \). It follows from [Ike92] Propositions 2.3-2.5 and the integral representation recalled in [Ike92] that \(L(s, \text{As} \Pi) \) is absolutely convergent for \(\text{Re}(s) \geq 3/2 \), admits meromorphic continuation to \(s \in \mathbb{C} \), entire if either \(\omega^2 \neq 1 \) or \(\omega = 1 \), and satisfies the functional equation

\[
L(s, \text{As} \Pi) = \varepsilon(s, \text{As} \Pi)L(1 - s, \text{As} \Pi^\vee).
\]

Proceeding as in the proof of [Ram00] Theorem 3.4.1, we can prove that \(L(s, \text{As} \Pi) \) is bounded in vertical strips of finite width. Note that in our case the assumption that \(F \) is totally complex in [Ram00] Theorem 3.4.1 is not necessary. Finally, the description of the poles at \(s = 0, 1 \) were established in [Ike92] Theorems 2.6-2.8.

REFERENCES

[BH06] C. J. Bushnell and G. Henniart. The local Langlands conjecture for GL(2), volume 335 of A Series of Comprehensive Studies in Mathematics. Springer, 2006.

[Bor79] A. Borel. Automorphic \(L \)-functions. In Automorphic forms, representations, and \(L \)-functions. In [Tat79], pages 1–52. Springer-Verlag, 1987.

[BP18] R. Beuzart-Plessis. Archimedean theory and \(\varepsilon \)-factors for the Asai Rankin-Selberg integrals. 2018. arXiv:1812.00053.

[CCI18] S.-Y. Chen, Y. Cheng, and I. Ishikawa. Gamma factors for Asai representations of \(GL_2 \). 2018. Submitted. arXiv:1810.12561.

[CI19] S.-Y. Chen and A. Ichino. On Petersson norms of generic cusp forms and special values of adjoint \(L \)-functions. J. Amer. Math. Soc., 32(2):1051–1107, 2019. Submitted. arXiv:1902.06429.

[FLM15] T. Finis, E. Lapid, and W. Müller. Limit multiplicities for principal congruence subgroups of \(GL(n) \) and \(SL(n) \). J. Inst. Math. Jussieu, 14(3):589–638, 2015.

[Gar77] P. Garrett. Decomposition of Eisenstein series: Rankin Triple Products. Ann. of Math., 125(2):209–235, 1987.

[HL18] G. Henniart and L. Lomelí. Asai cube \(L \)-functions and the local Langlands correspondence. 2018. arXiv:1701.01516v3.

[Ike92] T. Ikeda. On the location of poles of the triple \(L \)-functions. Kyot. J. Math., 29:175–219, 1989.

[IK92] T. Ikeda. On the location of poles of the triple \(L \)-functions. Compos. Math., 83:187–237, 1992.

[Jac72] H. Jacquet. Automorphic Forms on GL(2) II, volume 278 of Lecture Notes in Mathematics. Springer-Verlag, Berlin and New York, 1972.

[Kim03] H. H. Kim. Functoriality for the exterior square of \(GL_4 \) and the symmetric fourth of \(GL_2 \) (with appendixes by D. Ramakrishnan and P. Sarnak). J. Amer. Math. Soc., 16(1):139–183, 2003.

[Kri03] M. Krishnamurthy. The Asai Transfer to \(GL_4 \) via the Langlands-Shahidi Method. Int. Math. Res. Not., 41(2003):2221–2254, 2003.

[KS02] H. H. Kim and F. Shahidi. Functorial products for \(GL_2 \times GL_3 \) and the symmetric cube for \(GL_2 \). Ann. of Math., 155(2):837–893, 2002.

[PSR87a] I. I. Piatetskii-Shapiro and S. Rallis. \(L \)-functions for the classical groups. In Explicit construction of automorphic \(L \)-functions, volume 1254 of Lecture Notes in Mathematics, pages 1–52. Springer-Verlag, 1987.

[PSR87b] I. I. Piatetskii-Shapiro and S. Rallis. Rankin triple \(L \) functions. Compos. Math., 64:31–115, 1987.

[Ram00] D. Ramakrishnan. Modularity of the Rankin-Selberg \(L \)-series, and multiplicity one for \(SL(2) \). Ann. of Math., 152:45–111, 2000.

[Sha90] F. Shahidi. A proof of Langlands’ conjecture on Plancherel measures; complementary series for \(p \)-adic groups. Ann. of Math., 132(2):273–330, 1990.

[Tat79] J. Tate. Number theoretic background. In Automorphic forms, representations, and \(L \)-functions, volume 33, pages 3–26. Proceedings of Symposia in Pure Mathematics, 1979. Part 2.