Elevated serum Homocysteine as a potential marker for cardiovascular changes in Overt Hypothyroidism

Dileep Khubya, Nanda K*, Simant Baliarsingh, Pratibha K, V Vijayakumari
Department of Biochemistry, ESIC MC & PGIMSR, Rajajinagar, Bengaluru- 560010. Karnataka, India.

ABSTRACT

Overt hypothyroidism (HO) defined as high Thyroid Stimulating Hormone (TSH) levels with low levels of free thyroxine (FT4) and / or free triiodothyronine (FT3). Hypothyroidism is associated with an increased risk for atherosclerotic cardiovascular disease and cardiovascular morbidity, in particular with Total cholesterol. However, there are other pathogenic factors which may also be involved. Serum Homocysteine (Hcy) is an independent risk factor for atherosclerosis and cardiovascular diseases. Elevated plasma homocysteine levels have been reported in overt hypothyroidism. Aim: To study the levels of Hcy in relation to TSH, FT4 and FT3 levels in overt hypothyroid patients compared to control groups and correlation between Hcy and thyroid hormones. Materials and Methods: This study included 50 female overt hypothyroid cases with the age group between 18-50 years and 50 healthy females controls with the same age group. Serum homocysteine was estimated by Homocysteine Enzyme Assay in Cobas Integra 400 plus. TSH, FT4 & FT3 estimated by Chemiluminescence immunoassay method using Beckman coulter Access 2. The parameters of cases and controls are compared using unpaired ‘t’ test and the association between parameters is assessed by using Pearson’s correlation, p value < 0.05 is statistically significant. Results: There is a significant increase in Serum Hcy levels 19.24 ± 7.15 μmol/L and TSH levels 30.91 ± 10.21 µIU/ml respectively (p value <0.0001) and significant decrease in FT4 and FT3 levels (p <0.0001). Hcy was positively correlated with TSH and negatively correlated with FT4 and FT3. Conclusion: Thus, from our study we can conclude that serum Hcy levels can be used as a marker, which points towards the possible risk factor for atherosclerosis and cardiovascular diseases in Overt hypothyroid patients.

1. Introduction

Hypothyroidism is a clinical syndrome resulting from a deficiency of thyroid hormones, which in turn results in a generalized slowing down of metabolic process [1]. Overt hypothyroidism (HO) defined as high TSH levels with low levels of FT4 and / or FT3 [2]. Hypothyroidism is a common condition that is related to premature atherosclerosis and its clinical consequences such as myocardial infarction [3]. The increased cardiovascular morbidity in hypothyroid patients has been related to elevated levels of Total cholesterol and Low density lipoproteins cholesterol, which are normalized after thyroid hormones replacements [4]. Total Homocysteine (tHcy) in plasma is an independent risk factor for cardiovascular disease [5][6]. Homocysteine (Hcy) is a sulfhydryl-containing amino acid is synthesised during the conversion of methionine to cysteine [2]. Plasma Hcy levels is affected by several genetic, physiological and life style factors [7]. Hyperhomocysteinemia induces endothelial injury, oxidative stress, smooth muscle hypertrophy and oxidation of LDL-Cholesterol and the process of atherosclerosis...
and cardiovascular diseases. Increased tHcy levels might be the result of two mechanisms either increased tHcy formation or decreased renal tHcy clearance due to direct effect of the thyroid hormones on the tHcy metabolism in the liver and clearance in the kidney. It may be explained as thyroid hormone deficiency decreases hepatic levels of enzymes involved in the remethylation pathway of tHcy to methionine, methylene tetrahydrofolate reductase (MTHFR) leading to hyperhomocysteinemia [8]. The kidney most likely plays an important role in Hcy clearance and metabolism, as it does with other amino acids. In hypothyroidism systemic vascular resistance is increased and leads to reduced renal blood flow and low GFR (Glomerular filtration Rate). Thus it reduces its clearance and cause hyperhomocysteinemia [9].

Materials

Female patients of age group between 18-50 years clinically suspected and biochemically confirmed overt hypothyroid cases were selected from Medicine & Endocrinology OPDs and Inpatients wards at ESIC Model Hospital, Rajajinagar, Bengaluru. Age and gender matched blood donating volunteers in Blood Bank of ESIC Model Hospital, Rajajinagar, Bengaluru served as control group. A study was carried out for a period of 18 months from January 2018-June 2019.

Criteria for selection of hypothyroidism was based on laboratory biochemical investigations. TSH > 10 μIU/ml; decreased FT4 < 0.58 ng/dl & normal or decreased FT3 ≤ 2.45 pg/ml. From correlational study of previous literature, r = 0.228 we achieved 80% power of the study and 5% level of significance and we arrived to a sample size of 100 (50 cases and 50 controls). After taking informed consent, under aseptic precautions, about 5ml of venous blood was drawn from the selected subjects after overnight fasting of 10-12 hours.

Exclusion Criteria-
1) Cardiac diseases like Ischemic Heart diseases.
2) Renal diseases like Chronic Renal Failure.
3) Chronic diseases like Hypertension, Stroke, DVT.
4) Metabolic disorders like Homocysteinurias.
5) Treatment with drugs like Phenobarbitone, Phenytoin, Methotrexate, Propylthiouracil, Methimazole, lithium etc, were excluded from study

Methods

TSH, FT4, FT3 is estimated using Chemiluminescence immunoassay in automated Beckman Coulter Access 2 analyzer [10] [11][12]. Normal range of TSH is 0.34-5.60 μIU/ml, FT4 is 0.58-1.64 ng/dl & FT3 is 2.45-4.25 pg/ml. Homocysteine is estimated using Homocysteine enzymatic assay methodology from Cobas Integra 400 plus [13]. Normal range is 5-15 μmol/L.

Statistical Analysis

All statistical analysis was performed using the prism pad software to indicate the significance between the mean values of hypothyroid patients and control group. Data were given as Mean ± SD, p < 0.05 were considered significant. Correlation was done using Pearson Correlation.

Results:

In this study, the mean age in control group was found to be 27 ± 0.53 years and that of overt hypothyroid cases was 32.04 ± 0.82 years. As shown in Table 1, the mean TSH levels in control group was found to be 2.14 ± 0.39 μIU/ml and that of overt hypothyroid cases was 30.91 ± 10.21 μIU/ml (p <0.0001) {Figure 1}. As shown in Table 1, the mean FT4 in control group was found to be 0.89 ± 0.017 ng/dl and that of overt hypothyroid cases was 0.59 ± 0.23 ng/dl (p value <0.0001). As shown in Table 1, the mean FT3 in control group was found to be 3.16 ± 0.38 pg/ml and that of overt hypothyroid cases was 2.84 ± 0.39 pg/ml (p <0.0001). As shown in Table 2, the mean serum Homocysteine in control group was found to be 9.21 ± 2.27 μmol/L and that of overt hypothyroid cases was 19.24 ± 7.15 μmol/L (p <0.0001) {Figure 2}.As shown in Table 3, there is statistically significant strong positive correlation between Hcy and TSH levels as shown in Figure 3(a) and negative correlation between Hcy and FT4, FT3 levels as shown in Figure 3(b), 3(c).

Table (1) Thyroid Profile

TSH (μIU/ml)	Controls	Cases	P value
2.14±0.3909	30.91±10.21	<0.0001	

FT4 (ng/dl)	Controls	Cases	P value
0.8988±0.01783	0.5992±0.2299	<0.0001	

FT3 (pg/ml)	Controls	Cases	P value
3.164±0.3842	2.84±0.3914	<0.0001	
Table (2) Serum Homocysteine

Biochemical Parameters	Controls	Cases	P value
Mean ± SD	9.21±4.23	19.24±7.15	<0.0001
Homocysteine (μmol/L)	9.21±4.23	19.24±7.15	<0.0001

Figure 3(a) Correlation of serum homocysteine and TSH in hypothyroid cases

Figure 3(b) Correlation of serum homocysteine and FT4 in hypothyroid cases

Figure 3(c) Correlation of serum homocysteine and FT3 in hypothyroid cases

Table (3) CORRELATION OF SERUM HOMOCYSTEINE WITH THYROID PROFILE

	Controls(n=50)	Hypothyroidism(n=50)				
	TSH	FT4	FT3	TSH	FT4	FT3
Homocysteine						
r	-0.2018	-0.2462	0.7947	-0.7640	-0.5920	
p	0.0052	0.0846	0.1604	<0.0001	<0.0001	

*p<0.05, **p<0.01, ***p<0.0001 n=50
Discussion

In our study we found that serum Homocysteine is significantly increase in Overt Hypothyroid patients compared to Control groups 19.24 ±7.158μmol/L vs 9.214±2.276μmol/L.

In our study there is statistically significant strong positive correlation between Hcy and TSH and negative correlation between Hcy and FT4, FT3.

Our study is in accordance with Molham Ali Al-Habori et al [14], Aqsa Malik et al [15] Saileh A Bamashmoos et al [8], Yande Zhou et al [2], Rafael Luboshitzzy et al [16], Xuejie Dong et al [17], Manju Chandankhede et al [18]. Our study is not in accordance with Anjali R. Metgudmath et al [19].

High plasma homocysteine concentration induces pathologic changes in the arterial wall and thus is strongly associated with an increased risk of atherosclerosis, later manifested as cardiovascular, cerebrovascular and peripheral vascular events. There are consistent reports that patients with hypothyroidism have elevated total Homocysteine in plasma [20].

In hyperhomocysteinemia, homocysteine stimulates protease endothelial cell activator of factor V and directly activates coagulation in the absence of thrombin.

Mild hyperhomocysteinemia favors binding of lipoprotein(a) to fibrin thus reduces plasminogen activation and inhibits fibrinolysis. Homocysteine thiolactone causes LDL cholesterol to aggregate and then are phagocytosed by vascular macrophages to form foam cells. Homocysteine thiolactone released from foam cells produces free radicals and causes endothelial cell damage. [9]

Conclusion

In our study there is a significant increase in levels of Serum Homocysteine in cases as compared to controls (p = <0.0001). Also there is a positive correlation between Serum Homocysteine and TSH levels. Hence, increased Homocysteine levels may contribute to an increased cardiovascular risk in Overt Hypothyroidism. We can conclude from our study that patients suffering from Overt Hypothyroidism may be investigated for Serum homocysteine levels, which can be used as a possible marker for screening atherosclerosis and necessary treatment can be initiated at the earliest to prevent the progression of cardiovascular changes in these patients.

Acknowledgements

None. This research received no specific grants from any funding agency.

Results

1. Greenspan FS. The thyroid gland. In: Greenspan FS and Garden DG (eds). Basic and Clinical Endocrinology. 7th edn. New York: The McGraw Hill Companies, 2004: 215-294.

2. Zhou Y, Chen Y, Cao X, liu C, Xie Y. Association between plasma homocysteine status and hypothyroidism meta-analysis. Int J Clin Med 2014;7(11):4544-4553.

3. Cappola AR and Ladenson PW. Hyperhomocysteinemia and Atherosclerosis. J Clin Endocrinol Metab.2000;3:88:2438-2444.

4. Yazbeck R, Benoi P, Roche B, Boeglin MB, Tauer A, Thioblot I, Thieblot P. Primary hypothyroidism in the adult older than 60 years: characteristics and follow-up after initiation of replacement treatment in hospital. Presse-Med. 2001;30(24):1193-1198.

5. Sadeghian S, Fallahi F, Mahdomian M, Fallah N et al., Homocysteine, vitamin B12 and folate in premature coronary artery disease. BMC Cardiovasc Disord. 2006; 6:38;

6. Virdis A, Ghidioni L, Salvetti G, Versari D, Taddei S, Salvetti A. Hyperhomocyst(e)inemia: Is a novel risk factor in hypertension? J Nephrol. 2002; 15:414–421.

7. Bree AD, Visscher W N, Blom HJ and Kromhout D. Life style factors and plasma homocysteine concentration in a general population sample Am J Epidemiol 1992; 154:150-154.

8. Bamashmoos SA, Al-Nuzailay MA, Al-Meeri AM and Ali FH. Relationship between total homocysteine, total cholesterol and creatinine levels in overt hypothyroid patients. Springerplus. 2013; 2:423.

9. Renuka P, Amuthavalli V, Versari D, Taddei S, Salvetti A. Hyperhomocyst(e)inemia: Is a novel risk factor in hypertension? J Nephrol. 2002; 15:414–421.

10. Beckman Access Assay Manual. Access immunoassay system TSH. Beckman Coulter, Inc.2006.

11. Beckman Access Assay Manual. Access immunoassay system FT4. Beckman Coulter, Inc.2006.

12. Beckman Access Assay Manual. Access immunoassay system FT3. Beckman Coulter, Inc.2006.

13. Cappola AR and Ladenson PW. Hyperhomocysteinemia and Atherosclerosis. J Clin Endocrinol Metab.2000;3:88:2438-2444.

14. Al-Habori MA, Al-Meeri AM, Al-Nuzailay MA, Ali F. Homocysteine Level in Overt Hypothyroid Patients. Int J Biol Med Res.11(2):7009-7012.

15. Malik A, Zaman A, Izhar K, Y Iqbal. Correlation of Thyroid Stimulating Hormone with Homocysteine and Lipid Profile in Hypothyroidism. J Liaquat Un Med Health Sci. 2018;17(03):147-51

16. Kubya Dileep et al., Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovasc Disord. 2006; 6:38;

17. herself, Dileep Khubya et al. Int J Biol Med Res.11(2):7009-7012.

18. Chandankhede M, Gupta M, Chari S. The progression of cardiovascular changes in these patients. JKIMSU.2018;7:75-81.

19. Metgudmath AR, Vaishak UM. The correlation between serum homocysteine levels and hypothyroidism: A 1-year case control study. IJAMSCR.2017;5(2):611-615.

20. Rahmani-Nobar M, Bahrami A, Norazarian M, Dolatkhah H. Correlation Between Serum Levels of Cholesterol and Homocysteine with Oxidative Stress in Hypothyroid Patients International Journal of Endocrinology and Metabolism. 2004;2;103-109.

Copyright 2019 BioMedSciDirect Publications IJBMR - ISSN: 0976:6685. All rights reserved.