Test Map and Discreteness Criteria for Subgroups in $PU(1, n; C)$

Chang-Jun Li and Xiao-Yan Zhang

Abstract

In this paper, we study the discreteness for non-elementary subgroup G in $PU(1, n; C)$, under the assumption that G satisfies Condition A. Mainly, we present that one can use a test map, which need not to be in G, to examine the discreteness of G, and also show that G is discrete, if every two-loxodromic-generator subgroup of G is discrete.

1. Introduction

The discreteness of Möbius groups is a fundamental problem, which have been investigated by a number of authors. In 1976, Jørgensen [13] proved a necessary condition for a non-elementary two generator subgroup of $SL(2, C)$ to be discrete, which is called Jørgensen’s inequality. By using this inequality, Jørgensen established the following famous result[14]:

Theorem 1.1. A non-elementary subgroup G of $SL(2, C)$ is discrete if and only if all its two-generator subgroups are discrete.

This important result has become standard in literature and it indicates that the discreteness of a non-elementary Möbius group depends on the information of all its rank two subgroups. Furthermore, Gilman [15] and Isochenko [20] strengthened the above theorem, and showed that G is discrete if every subgroup generated by two loxodromic elements is discrete. There are many further discussions about discreteness criteria in this direction. For more details, see the references[9,21,22,23].

In [1,7,16,18], the authors have discussed the generalization of Theorem 1.1 to higher dimensional hyperbolic space. Moreover, Fang and Nai [7] also obtained the following result:

Theorem 1.2. Let a non-elementary subgroup G of $SL(2, \Gamma_n)$ satisfy condition A. Then G is discrete if and only if two arbitrary loxodromic elements f and g in G the group $\langle f, g \rangle$ is discrete.

In 2004, Chen min [19] showed that one can even use a fixed Möbius transformations as a test map to test the discreteness of a given Möbius group. More precisely,

Theorem 1.3. Let G be an n-dimensional subgroup of Isom(H^n), and f be a non-trivial Möbius transformation. If for each $g \in G$, the group $\langle f, g \rangle$ is discrete, then G is

*The Project-sponsored by SRF for ROCS, SEM and NSFC(No.10771200)
†Keywords: Complex hyperbolic space; Subgroups of $PU(1, n; C)$; Discreteness criteria.
The result suggests that the discreteness is not a totally interior affair of the involved group, and this provides a new point of view to the discreteness problem.

In complex hyperbolic space, Kamiya [17] established a similar version of theorem 1.1 for finitely generated subgroups of $PU(1,n;C)$ as follows:

Theorem 1.4. Let G be a non-elementary finitely generated subgroup of $PU(1,n;C)$, then G is discrete if and only if $\langle f, g \rangle$ is discrete for any f and g in G.

In 2001, Dai B, Fang and Nai [6] proved that:

Theorem 1.5. Let G be a non-elementary subgroup of $PU(1,n;C)$ with condition A, then G is discrete if and only if $\langle f, g \rangle$ is discrete for any f and g in G.

Here, G is said to satisfy **condition A** if it has no sequence $\{g_i\}$ of distinct elements of finite order such that $\text{Card}(\text{fix}(g_i)) = \infty$ and $g_i \to I$ as $i \to \infty$, where

$$\text{fix}(g_i) = \{x \in \partial H^n_C : g_i(x) = x\}.$$

In this paper, we continue to discuss the discreteness criteria for non-elementary subgroup G in $PU(1,n;C)$, and we will acquire three conclusions under the assumption that G satisfies Condition A. The first result is similar to Theorem 1.3, which primarily consider to use a parabolic or loxodromic element as a test map to examine the discreteness of G, but whether one can use a elliptic element remains a open problem. The next result is followed from the idea of Theorem 1.2, and it shows that G is discrete, if each two-loxodromic-generator subgroup of G is discrete. And the third conclusion strengthened the second result, for details, see the section 3.

2. Notations and Preliminary Results

Throughout this paper, we will adopt the same notations and definitions as in [4,10,12]. Now we start by giving some general facts about $PU(1,n;C)$.

Let C be the field of complex numbers, $V = V^{1,n}(C)(n \geq 1)$ denote the vector space C^{n+1}, together with the unitary structure defined by the Hermitian form

$$\Phi(z^*, w^*) = -\overline{z}_0^* w_0^* + \sum_{j=1}^{n} -\overline{z}_j^* w_j^*$$

for $z^* = (z_0^*, \ldots, z_n^*)$, $w^* = (w_0^*, \ldots, w_n^*) \in V$.

An automorphism g of V, that is a linear bijection such that

$$\Phi(z^*, w^*) = \Phi(g(z^*), g(w^*))$$

for $z^*, w^* \in V$, will be called a unitary transformation. We denote the group consisting of all unitary transformation by $U(1,n;C)$. Let

$$V_0 = \{z^* \in V : \Phi(z^*, z^*) = 0\}, \quad V_- = \{z^* \in V : \Phi(z^*, z^*) < 0\}.$$
Set

\[PU(1, n; C) = U(1, n; C)/(\text{center}). \]

It is obvious that \(V_0 \) and \(V_- \) are invariant under \(U(1, n; C) \). Set

\[V^s = V_- \cup V_0 \setminus \{0\}. \]

Let \(P : V^s \to P(V^s) \) be the projection map defined by

\[P(z_0^*, z_1^*, ..., z_n^*) = (z_1^*z_0^{-1}, ..., z_n^*z_0^{-1}). \]

We denote \(P(0, 1, ..., 0) \) by \(\infty \). We may identify \(P(V_-) \) with the Siegel domain

\[H^n_C = \{ w = (w_1, w_2, ..., w_n) \in \mathbb{C}^n : \text{Re}(w_1) > \frac{1}{2} \sum_{j=2}^{n} |w_j|^2 \}. \]

An element of \(PU(1, n; C) \) acts on \(H^n_C \) and its boundary \(\partial H^n_C \). Denote \(H^n_C \cup \partial H^n_C \) by \(\overline{H^n_C} \). As in [4,12], a non-trivial element \(g \) in \(PU(1, n; C) \) is called

1) elliptic if it has a fixed point in \(H^n_C \);
2) parabolic if it has exactly one fixed point and the point lies on \(\partial H^n_C \);
3) loxodromic if it has exactly two fixed points and the points lie on \(\partial H^n_C \).

For a subgroup \(G \subset PU(1, n; C) \), the limit set \(L(G) \) of \(G \) is defined as

\[L(G) = \overline{G(p)} \cap \partial H^n_C(p \in H^n_C). \]

The fixed point sets of \(f \in G \) and of \(G \) are

\[\text{fix}(f) = \{ x \in \overline{H^n_C} : f(x) = x \}, \quad \text{fix}(G) = \bigcap_{f \in G} \text{fix}(f). \]

Definition 2.1[12]. A subgroup \(G \subset PU(1, n; C) \) is said to be non-elementary, if \(G \) contains two non-elliptic elements of infinite order with distinct fixed points, or \(G \) is said to be elementary.

Definition 2.2[12]. \(G_L = \{ g \in G : g(x) = x, \text{for any } x \in L(G) \} \).

Definition 2.3[12]. A subgroup \(G \subset PU(1, n; C) \) is said to be bounded torsion if there exists an integer number \(m \) such that for each \(g \in G \) has \(\text{ord}(g) \leq m \) or \(\text{ord}(g) = \infty \).

Definition 2.4[12]. Let \(X \) be subgroup of the vector space \(V \). The span of \(X \) denoted as \(\langle X \rangle \) is the smallest \(C \)-subspace containing \(X \). If \(X \) is a subset of \(H^n_C \), the span \(\langle X \rangle \) is defined by \(\langle X \rangle = P((P^{-1}(X))) \cap V_- \).

Lemma 2.5 (Lemma 2.1 of [3]). Suppose that \(f \) and \(g \in PU(1, n; C) \) generate a discrete and non-elementary group. Then

i) if \(f \) is parabolic or loxodromic, we have

\[\max\{N(f), N(f, g)\} \geq 2 - \sqrt{3} \]
where \([f, g] = fgf^{-1}g^{-1}\) is the commutator of \(f\) and \(g\), \(N(f) = \|f - I\|\).

ii) if \(f\) is elliptic, we have

\[
\max\{N(f), N([f, g_i]): i = 1, 2, ..., n + 1\} \geq 2 - \sqrt{3}.
\]

Lemma 2.6. Let \(G\) be a non-elementary subgroup of \(PU(1, n; C)\) and let \(O_1\) and \(O_2\) be disjoint open sets both meeting \(L(G)\). Then there is a loxodromic \(g\) in \(G\) with a fixed point in \(O_1\) and a fixed point in \(O_2\).

Proof. First we recall that if \(f\) is loxodromic with an attractive fixed \(\alpha\) and a repulsive fixed point \(\beta\), then as \(n \to \infty\), \(f^n \to \alpha\) uniformly on each compact subgroup of \(\Pi^n_C - \{\beta\}\) and \(f^{-n} \to \beta\) uniformly on each compact subset of \(\Pi^n_C - \{\alpha\}\). The repulsive fixed point of \(f\) is the attractive fixed point of \(f^{-1}\).

Now consider \(G\), \(O_1\) and \(O_2\) as in the lemma. It follows that there is a loxodromic \(p\) with attractive fixed point in \(O_1\) and a loxodromic \(q\) with attractive fixed point in \(O_2\). Since \(G\) is non-elementary, there is a loxodromic \(f\) with attractive fixed point \(\alpha\) and repulsive fixed point \(\beta\), neither fixed by \(p\). Now choose and (then fix) some sufficiently large value of \(m\) so that

\[
g = p^mfp^{-m}
\]

has its attractive fixed point \(\alpha_1 = p^m\alpha\) and repulsive fixed point \(\beta_1 = p^m\beta\) in \(O_1\). Then choose (and fix) some sufficiently large value of \(r\) so that

\[
h = q^r
\]

maps \(\alpha_1\) into \(O_2\): put \(\alpha_2 = h(\alpha_1)\).

Next, construct open convex neighborhood \(E\) and \(K\) of \(\beta_1\) and \(\alpha_2\) with the properties

\[
\beta_1 \in E \subset \overline{E} \subset O_1
\]

\[
\alpha_2 \in K \subset \overline{K} \subset O_2.
\]

As \(\beta_1\) is not in \(\overline{K}\) we see that \(g^n \to \alpha_1\) uniformly on \(\overline{K}\) as \(n \to \infty\). As \(h^{-1}(K)\) is an open neighborhood of \(\alpha_1\) we see that for all sufficiently large \(n\),

\[
g^n(\overline{K}) \subset h^{-1}(K)
\]

and so

\[
 hg^n(\overline{K}) \subset K
\]

As \(h(\alpha_1)\) is not in \(\overline{E}\) so \(\alpha_1\) is not in \(h^{-1}(E)\) and so \(g^{-n} \to \beta_1\) uniformly on \(h^{-1}(E)\) as \(n \to \infty\). Thus for all sufficiently large \(n\),

\[
g^{-n}h^{-1}(E) \subset E
\]

Choose a value of \(n\) for which (2.1) and (2.2) hold. By Brouwer fixed point theorem, \(hg^n\) is loxodromic with a fixed point in \(K\): also, \(g^{-n}h^{-1}\), which is \((hg^n)^{-1}\), has a fixed point
in E, hence so does hg^n. By definition, hg^n is not parabolic. According to Lemma 3.3.2 of [5], hg^n is not elliptic either. So hg^n is a loxodromic element with one fixed point in O_1 and the other in O_2. \qed

Lemma 2.7. Let $\{f_m\}$ be a sequence in $PU(1, n; C)$ converging to a loxodromic element f. Then f_m is loxodromic for sufficiently large m.

Proof. Let x and y be the attractive and repulsive fixed point of f, respectively. We have
\[
\lim_{j \to \infty} \lim_{m \to \infty} (f_m)^j(p) = \lim_{j \to \infty} f^j(p) = x, \\
\lim_{j \to \infty} \lim_{m \to \infty} (f_m)^{-j}(p) = \lim_{j \to \infty} f^{-j}(p) = y,
\]
for all p in $\overline{H^n_C \setminus \{y\}}$ and $\overline{H^n_C \setminus \{x\}}$, respectively.

Let U, V be two open convex neighborhood of x and y in $\overline{H^n_C}$ such that $U \cap V = \emptyset$.

Then for all sufficiently large j, m,
\[
(f_m)^j(U) \subset U, \quad (f_m)^{-j}(V) \subset V.
\]

Brouwer fixed point theorem tells us that, for all sufficiently large j, m, $(f_m)^j$ has one fixed point in U and another in V. Hence $(f_m)^j$ is not parabolic. By lemma 3.3.2 in [5], $(f_m)^j$ is not elliptic either. Therefore all these $(f_m)^j$ are loxodromic. So f_m is loxodromic for sufficiently large m. In fact, for the purpose of a contradiction, suppose f_m is parabolic or elliptic. If f_m is parabolic, then f_m has exactly one fixed point in ∂H^n_C and has $(f_m)^j$, that is, $(f_m)^j$ is parabolic, this is a contradiction. If f_m is elliptic. Then f_m has a fixed point in H^n_C and has $(f_m)^j$, that is, $(f_m)^j$ is elliptic, also a contradiction. Consequently, f_m must be loxodromic for sufficiently large m. \qed

We know that if $G \subset PU(1, n; C)$ is non-elementary then there must exist infinitely many loxodromic elements in G. Let $h \in G$ be some loxodromic element and let x_0 and y_0 be its distinct fixed points. Set
\[
G(x_0, y_0) = \{ f \in G : \{x_0, y_0\} \subset \text{fix}(f) \}.
\]

We also need the following lemma, which is a direct consequence of Lemma 2.2 in [12].

Lemma 2.8. Suppose a non-elementary subgroup G of $PU(1, n; C)$ be discrete, then $G(x_0, y_0)$ is a bounded torsion.

3. Discreteness Criteria for Subgroups of $PU(1, n; C)$

In this section, we will state our principal results. Above all, we will introduce the first discreteness criterion for subgroups of $PU(1, n; C)$ by using a test map which need not to be in G.
Theorem 3.1. Let G be a non-elementary subgroup of $PU(1, n; C)$ with condition A, and h be a non-trivial element. If each $\langle h, g \rangle$ is discrete ($g \in G$), then G is discrete.

Proof. Let $U_i \subset \prod C(i = 1, 2, 3)$ be disjoint open sets both meeting $L(G)$, and h does not fix any point in U_1. By lemma 2.6, we can find loxodromic elements $f_i (i = 1, 2, 3)$ in G which have the following properties:

(i) f_1 has its both attractive and repelling fixed points in U_1.

(ii) f_i has its attractive fixed point in U_i and repelling fixed point in U_1 for $i = 2, 3$.

Then there is an integer k such that $f_i^k (fix(h)) \subset U_i (i = 1, 2, 3)$.

Suppose that G satisfies the conditions of the theorem, but G is not discrete. Then we can find a sequence $\{g_j\}$ of distinct element in G such that $g_j \rightarrow I$ as $j \rightarrow \infty$. Thus we have

$$\max\{N(g_j), N([g_j, (f_i^k h f_i^{-k})^p]) : p = 1, 2, ..., n + 1\} \rightarrow 0.$$

Since all groups $\langle g_j, f_i^k h f_i^{-k} \rangle = f_i^k (f_i^{-k} g_j f_i^k, h) f_i^{-k}$ are discrete by the assumption. In view of lemma 2.5, we get that each $\langle g_j, f_i^k h f_i^{-k} \rangle$ is elementary for large j. Because G satisfies Condition A and $\langle g_j, f_i^k h f_i^{-k} \rangle$ is discrete, we also have $Card(fix(g_j)) \leq 2$ for $j \rightarrow \infty$.

(a) h is parabolic. Let a be the fixed point of h. We have

$$L(g_j, f_i^k h f_i^{-k}) = fix(f_i^k h f_i^{-k}) = \{f_i^k(a)\} \quad (i = 1, 2, 3)$$

and each g_j fixes $f_i^k(a) \in U_i, \bigcap U_i = \emptyset \quad (i = 1, 2, 3)$, this implies that g_j has three distinct fixed points, but $Card(fix(g_j)) \leq 2$ for $j \rightarrow \infty$, this is a contradiction.

(b) h is loxodromic. Assume a and b are the fixed points of h. We have

$$L((g_j, f_i^k h f_i^{-k})) = fix(f_i^k h f_i^{-k}) = \{f_i^k(a), f_i^k(b)\} \quad (i = 1, 2, 3).$$

g_j either fixes both $f_i^k(a)$ and $f_i^k(b)$ or interchanges them for sufficiently large j. Without loss of generality, we may assume that for each j, g_j interchanges $f_i^k(a)$ and $f_i^k(b)$. So it follows that g_j certainly fix both $f_i^k(a)$ and $f_i^k(b) \quad (i = 2, 3)$. Since $f_i^k(a) \in U_i, f_i^k(b) \in U_1 \quad (i = 2, 3)$ and $U_1 \cap U_2 \cap U_3 = \emptyset$, it is clear that g_j have at least three distinct fixed points. But $Card(fix(g_j)) \leq 2$, as $j \rightarrow \infty$. This again leads to a contradiction. We complete the proof of the theorem.

Corollary 3.2. Let G be a non-elementary subgroup of $PU(1, n; C)$, and $h \in G$ be a parabolic or loxodromic element. Then G is discrete if and only if for every element $g(\neq h)$ in G the group $\langle h, g \rangle$ is discrete.

Theorem 3.3. Let a non-elementary subgroup G of $PU(1, n; C)$ satisfy condition A. Then G is discrete if and only if for two arbitrary loxodromic element f and g in G the group $\langle f, g \rangle$ is discrete.

Proof. The necessity is obvious, we only need to prove the sufficiency. Suppose that every two-loxodromic-generator subgroup of G is discrete and yet G is not discrete. Then
there is a distinct sequence \(\{g_j\} \subset G \) converging to the identity. Our aim is to reach a contradiction.

As \(G \) is non-elementary, there definitely exists a loxodromic element \(h \) in \(G \). Since \(g_jh \to h \) as \(j \to \infty \), it follows from Lemma 2.7 that \(g_jh \) is loxodromic for sufficiently large \(j \). We may assume that for each \(j \), \(g_jh \) is loxodromic. Since \(h \) and \(g_jh \) are loxodromic, by the assumption, we know that \(\langle h, g_jh \rangle = \langle h, g_j \rangle \) is discrete. Because \(G \) satisfies Condition \(A \) and \(\langle h, g_j \rangle \) is discrete, we obtain that \(\text{Card}(\text{fix}(g_j)) \leq 2 \) for sufficiently large \(j \).

According to Lemma 2.5 and the assumption \(g_j \to I \) as \(j \to \infty \), we have that \(\langle h, g_j \rangle \) is discrete and elementary for sufficiently large \(j \). Since \(h \) is loxodromic, we have \(g_j \) either fixes the fixed points of \(h \) or exchanges them as \(j \to \infty \). As \(G \) is non-elementary, there exist another two loxodromic elements \(f_1, f_2 \) such that \(h \cap f_1 \cap f_2 = \emptyset \). For the above mentioned reason, it is not difficult to deduce that \(\langle f_i, g_j \rangle (i = 1, 2) \) is discrete elementary and \(g_j \) either fixes the fixed points of \(f_i (i = 1, 2) \) or interchanges them for enough large \(j \).

Without loss of generality, we may assume that each \(g_j \) exchanges the fixed points of \(h \), so \(g_j \) necessarily fixes each fixed point of \(f_i (i = 1, 2) \). However, \(f_1 \) and \(f_2 \) have no common fixed points, thus \(\text{Card}(\text{fix}(g_j)) = 4 \). This is a contradiction with \(\text{Card}(\text{fix}(g_j)) \leq 2 \) as \(j \to \infty \). Up to now, we complete the proof of the theorem.

\[\square \]

Let \(h \in G \) be some loxodromic element and let \(x_0 \) and \(y_0 \) be its distinct fixed points. We now use \(G(x_0, y_0) \) to strengthen theorem 3.3 as follows.

Theorem 3.4. Suppose that \(G \) in \(PU(1, n; C) \) is a non-elementary subgroup, then \(G \) is discrete if and only if

1. \(G(x_0, y_0) \) satisfy condition A;
2. every two-loxodromic-generator subgroup is discrete.

Proof. In order to prove necessity, it suffices to show that \(G(x_0, y_0) \) has bounded torsion if \(G \) is discrete. By lemma 2.8, we know that \(G(x_0, y_0) \) has bounded torsion. Since a group with bounded torsion satisfies Condition \(A \), we directly deduce the conclusion.

Now we prove sufficiency. Suppose that \(G \) is not discrete although every subgroup generated by two loxodromic elements is discrete. Thus there is an infinite sequence \(\{g_j\} \) of distinct elements such that \(g_j \to I \) as \(j \to \infty \). We derive a contradiction as follows.

Let \(h \in G(x_0, y_0) \) be a loxodromic element. Since \(g_jh \to h \) as \(j \to \infty \), we get that \(\langle h, g_j \rangle = \langle h, g_jh \rangle \) is discrete for enough large \(j \), according to Lemma 2.7 and the assumption in Theorem. As the sequence \(\{g_j\} \) converges to the identity, we have

\[\max\{N(g_j), N([g_j, h^i]) : i = 1, 2, ..., n + 1\} \to 0. \]

Thus by Lemma 2.5, there exists \(J \) such that \(\langle g_j, h \rangle \) is discrete and elementary when \(j > J \). Since \(h \) is a loxodromic element, \(g_j \) fix or interchange the two fixed points of \(h \) when \(j > J \), namely \(g_j\{x_0, y_0\} = \{x_0, y_0\} \). Therefore \(g_j^2 \in G(x_0, y_0) \) as \(j > J \). Since \(G(x_0, y_0) \) satisfies Condition \(A \) and \(\langle h, g_j^2 \rangle \) is discrete, we gain that \(\text{Card}(\text{fix}(g_j^2)) \leq 2 \) for
sufficiently large \(j \). As \(G \) is non-elementary, there exists another two loxodromic elements \(f_1 \) and \(f_2 \) such that \(f_i \) \((i = 1, 2)\) and \(h \) have no common fixed points. We can also acquire that \(Card(fix(g_j)) = 4 \) as \(j \to \infty \), for reason see the proof of theorem 3.3. So \(g_j^2 \) have at least four fixed points as \(j \to \infty \), this is a contradiction. We complete its proof of the last theorem. \(\square \)

References

[1] Abikoffw and Hass A, Nondiscrete groups of hyperbolic motions. Bull.London Math.Soc, 22 (1990), 233-238.

[2] A.F.Beardon, The Geometry of Discrete Groups. Graduate Text in Mathematics, Vol.91, Springer, Berlin, 1983.

[3] Cao W S and Xang X T, discreteness criteria and algebraic convergence theorem for subgroups in \(PU(1, n; C) \). Proc. Japan Acad. 82, Sec. A (2006), No. 3, 49-52.

[4] Cao W S and Wang X T, Geometric characterizations for subgroups of \((PU(1, n; C)) \). Northeast.Math.J, 21(1)(2005), 45-53.

[5] Chen S and Greenberg L, Hyperbolic spaces. Contributions to analysis(New York: Academic Press)(1974)pp. 49-87.

[6] Dai B, Fang A and Nai B, Discreteness criteria for subgroups in complex hyperbolic space. Proc. Japan Acad, 77 (2001), 168-172.

[7] Fang A and Nai B, On the discreteness and convergence in \(n \)-dimensional Möbius groups. J.London Math.Soc, 61 (2000), 761-773.

[8] F.W.Gehring and G.J.Martin, Discrete quasiconformal groups I. Proc.London.Math.Soc, (3)55 (1987), 331-358.

[9] G.Rosenberger, Minimal generating systems of a subgroup of \(SL(2, C) \). Proc.Edinburgh Math.Soc, (2) 31 (1988), 261-265.

[10] Goldman W M, Complex hyperbolic geometry(Oxford: Oxford University Press), 1999.

[11] Gerhard Rosenberger, Some remarks on paper of C.Doyle and D.James on subgroups of \(SL(2, R) \). Illinois Journal of Mathematics, 28 (1984), 348-351.

[12] H.Wang and Y.P.Jiang, Discreteness criteria in \(PU(1, n; C) \). Indian Acad.Sci, 120 (2010), No.2, 243-248.

[13] Jørgensen T, On discrete groups of Möbius transformations. Am.J.Math. 98 (1976), 739-749.
[14] Jørgensen T, A note on subgroup of $SL(2, C)$. Quart.J.Math.Oxford. 33 (1982), 325-332.

[15] J.Gilman, Inequalities in discrete subgroups of $PSL(2, R)$. Canad.J.Math. 40 (1988), 115-130.

[16] Jiang Y P, On the discreteness of Möbius groups of high dimensions. Math.Proc.Cambridge Philos.Soc, 136 (2004), 547-555.

[17] Kamiya S, Chordal and matrix norms of unitary transformations. First Korean-Japanese Colloquium on finite or infinite dimensional complex analysis (eds) JKajiwara, H Kazama and K H Shon(1993)pp. 121-125.

[18] Martin G J, On discrete Möbius groups in all dimensions. Acta Math, 163 (1989), 253-289.

[19] M Chen, Discreteness and convergence of Möbius groups. Geom. Dedicata, 104 (2004), 61-69.

[20] N.A.Isokenko, Systems of generators of subgroups of $PSL(2, C)$. Siberian Math.J. 31 (1990), 162-165.

[21] P.Tukia and X.Wang, discreteness of subgroups of $SL(2, C)$ containing elliptic elements. Math.Scand, 91 (2002), 214-220.

[22] S.H.Yang, The test maps and discrete groups in $SL(2, C)$. Osaka J.Math, 46 (2009), 403-409.

[23] S.H.Yang, On the discreteness criterion in $SL(2, C)$. Math.Z, 255 (2007), 227-230.

[24] X.T.Wang, L.L.Li and W.S.Cao, Discreteness criteria for Möbius groups action on T^d. Israel Jouranal of Mathematics, 150 (2005), 357-368.

Department of Mathematics
Ocean University of China
Qingdao, Shandong 266071
P. R. China
E-Mail: xiaoyanbbbbb@163.com
E-Mail: Changjunli7921@hotmail.com