The ability of muscarinic cholinergic agonists to interact with muscarinic receptors in nerve ending preparations and elicit an increased labeling of phosphatidate and phosphatidylinositol from 32P, has been investigated. Two groups of brain muscarinic agonists are distinguished. Addition of acetylcholine, carbamylcholine, methacholine, or muscarine resulted in a 2-fold stimulation of phosphatidate and phosphatidylinositol labeling, while bethanechol, pilocarpine, arecoline, and oxotremorine were less effective. Simultaneous addition of two agonists from the more effective group did not result in any further increase in stimulated labeling, while the addition of agonists from the less effective group antagonized the stimulatory effect of carbamylcholine. All of the agonists could completely displace binding of $[^{3}H]$quinuclidinyl benzilate, a muscarinic antagonist. The displacement of the labeled antagonist by the more effective agonists was more complex than that predicted from a simple mass action isotherm and was compatible with the interaction of the agonists with high and low affinity forms of the receptor. Conversely, the displacement data from less effective agonists did not deviate markedly from those predicted for interaction of the agonists with a single affinity form of the receptor. Dose-response curves for stimulated phosphatidate labeling obtained in the presence of acetylcholine, carbamylcholine, and methacholine were predominantly correlated with occupation of the low affinity form of the muscarinic receptor. These results suggest that the enhancement of phosphatidate and phosphatidylinositol turnover in brain is caused by agonist-mediated conformational changes in the muscarinic receptor and that the ability of an agonist to induce this conversion may be predicted by its differential binding to the high and low affinity forms of the receptor.

Biochemical correlates of muscarinic receptor activation in a variety of tissues include an increased synthesis of CAMP (1), a decreased synthesis of cGMP (2), an increase in Ca^{2+} fluxes (3), a decreased K^{+} conductance (4), and an increased turnover of two quantitatively minor phospholipids, PhA1 and PhI (5-7). Of these correlates, only stimulated phospholipid turnover (usually determined as an increased incorporation of 32P, into PhA and PhI) consistently accompanies muscarinic receptor activation. While the precise physiological significance of enhanced phospholipid turnover remains unresolved (8), the biochemical mechanism appears to involve an initial phosphodiesteratic breakdown of PhI or its phosphorylated derivatives, phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate, to yield diacylglycerol, which in turn is phosphorylated in the presence of $[^{32}P]$ATP to yield labeled PhA and PhI (9-12). Known physiological consequences of muscarinic receptor activation, such as contraction or secretion, typically require only a partial receptor occupancy for maximal effect. In contrast, concentrations of agonists approaching those required for full receptor occupancy are necessary to evoke a maximal increase in the turnover of PhA and PhI (13). This observation has prompted the hypothesis that enhanced phospholipid turnover serves in a biochemical amplification step that follows receptor-ligand interaction. However, the relationship between binding of the agonist to the receptor and the initiation of the biochemical response is unclear. For example, while the occupancy hypothesis predicts that the concentration-dependence curves for enhanced phospholipid turnover should be displaced to the right (i.e. higher concentration range) of the physiological curve, this is not always the case (14, 15). Similarly, the addition of partial muscarinic agonists does not invariably result in the predicted smaller increase in phospholipid turnover (16, 17). In addition, while it has been proposed that muscarinic receptors exist in both high and low affinity forms (18), it has yet to be clearly established whether one or both forms of the receptor are coupled to stimulated phospholipid turnover.

In this study, we have examined the relationship between the binding of agonists to brain muscarinic receptors and the initiation of a metabolic response, enhanced PhA and PhI labeling from 32P, in a nerve ending fraction obtained from guinea pig cerebral cortex.

MATERIALS AND METHODS

Carbachol, acetylcholine chloride, muscarine, methacholine, bethanechol, arecoline, oxotremorine, pilocarpine, atropine, and eserine were purchased from Sigma. $[^{32}P]$Orthophosphoric acid (carrier-free) was obtained from Amersham Corp. L-$[^{3}H]$QNB (40.2 Ci/amol) was obtained from New England Nuclear.

NE1.1 was obtained from guinea pig or rat cerebral cortex as previously described (19). NE1.1 fractions were gently resuspended (4 mg protein/ml) in Buffer A, which contained 142 mM NaCl, 5.6 mM KCl, 2.2 mM CaCl$_2$, 3.6 mM NaHCO$_3$, 1 mM MgCl$_2$, 5.6 mM d-glucose, and 30 mM HEPES-N$^+$ buffer (pH 7.4). Bovine adrenal chromaffin cells were obtained from the adrenal medulla following enzymatic digestion and mechanical dispersion (20, 21). Cells suspensions were allowed to stand for 24 h, pelleted, and washed three times before resuspension in Buffer A at a concentration of 1 mg of protein/ml.

Phospholipid labeling from 32P, in the absence and presence of cholinergic agonists was carried out by incubating aliquots of NE1.1 fraction or chromaffin cells at 37 °C in Buffer A containing 20-50 μCi of 32P, in a total volume of 0.5 ml. Incubations were terminated after 30 min for NE1.1 fractions and 60 min for chromaffin cells, and...
the lipids were extracted, separated, and quantitated as previously described (22). Under these conditions, the amount of \(^{32}\text{P}\), incorporated into PhA and PhI was proportional to the amount of protein present, and the stimulation (per cent control) of both lipids was independent of protein concentration. Data for stimulated PhA or PhI labeling as a function of agonist concentration was evaluated for evidence of a one- or two-site interaction from the following equations.

\[
f = \frac{F_{\text{max}}[A]}{K + [A]} \quad (1)
\]

where \(f\) = fractional increase in labeling of PhA or PhI at a concentration \([A]\) of agonist, \(F_{\text{max}}\) = maximum increase in labeling, and \(K\) = affinity constant of the receptor for stimulated PhA or PhI turnover. For a two-site fit, Equation 1 is modified as follows.

\[
f = \frac{F_{H}[A] + F_{L}[A]}{K_{H} + [A] + K_{L} + [A]} \quad (2)
\]

where \(F_{H}\) and \(F_{L}\) are proportions of high and low affinity sites with affinities \(K_{H}\) and \(K_{L}\), respectively, assuming \(F_{\text{max}} = F_{H} + F_{L}\).

\[^{3}H\]QNB binding to NE\(_{1a}\) fractions was carried out as previously described (23). Briefly, approximately \(60 \mu\text{g}\) of NE\(_{1a}\) protein were incubated in \(2 \text{ ml}\) of Buffer A at \(25^\circ\text{C}\), in the presence of \(0.65 \text{ nmol} \cdot \text{mg}^{-1}\) of \[^{3}H\]QNB. Conditions assure minimal dissociation of the QNB receptor. Reactions were terminated after 60 min by addition of 3 ml of Buffer A and rapid filtration with a manifold filtration apparatus. Filters were washed twice with 6 ml of chilled Buffer A and radioactivity was determined after the addition of 10 ml of ACS and allowing the vials to stand overnight. Under these conditions \(>95\%\) of \[^{3}H\]QNB was free in solution. Nonspecific binding (<2\% of total) was that radioactivity bound to the filter in the presence of 1.0 \(\mu\text{M}\) atropine. For displacement studies, agonists were added in varying concentrations prior to the addition of \[^{3}H\]QNB. The counting efficiency for \(^{3}H\) was 40\%.

Analysis of \[^{3}H\]QNB binding to NE\(_{1a}\) fractions and its competition by muscarinic agonists was performed by the method of McKinney and Coyle (24), assuming a competitive agonist-antagonist interaction. The equation describing the binding of \[^{3}H\]QNB to a single site in the presence of a competing unlabeled agonist \([A]\) with an affinity \(K\) for the receptor may be written as Equation 3.

\[
[QR] = \frac{K_{R}[Q,B_{\text{tot}}]}{1 + K_{R}[Q] + K[A]} \quad (3)
\]

where \([QR]\) = \[^{3}H\]QNB specifically bound to the muscarinic receptor

![FIG. 1. Concentration-dependence of stimulated PhA and PhI labeling in NE\(_{1a}\) fractions (approximately 1 mg of protein) for oxotremorine, arecoline, pilocarpine, and bethanechol (Group B agonists). () agonist alone; (2) agonist plus carbachol (1 mM).](image)

Table 1

PhA	PhI	
NE\(_{1a}\)	NE\(_{1a}\)	
Carbachol	216 ± 4 (8)	199 ± 6 (8)
Muscarine	185 ± 8 (5)	190 ± 12 (6)
Acetylcholine	200 ± 11 (3)	182 ± 13 (3)
Methacholine	185 ± 8 (3)	187 ± 11 (3)
NE\(_{1b}\)	NE\(_{1b}\)	
Biotenechol	146 ± 5 (6)	159 ± 9 (6)
Pilocarpine	133 ± 9 (6)	141 ± 8 (6)
Arecoline	124 ± 5 (6)	126 ± 4 (6)
Oxotremorine	113 ± 3 (5)	113 ± 3 (5)

\(^{a}\) Guinea pig cerebral cortex NE\(_{1a}\).

\(^{b}\) Rat cerebral cortex NE\(_{1a}\).

\(^{c}\) Bovine adrenal chromaffin cells; ND, not determined.

\[^{[QR]} = \frac{K_{R}[Q,B_{\text{tot}}]}{1 + K_{R}[Q] + K[A]} + \frac{K_{R}[Q,B_{\text{tot}}]}{1 + K_{R}[Q] + K[A]} \quad (4)
\]

where \([B_{Hi}\) and \([B_{Lo}\) are the concentrations of the high and low affinity receptor sites with affinities \(K_{Hi}\) and \(K_{Lo}\) respectively, and \([B_{\text{tot}}]\) = \([B_{Hi}]+[B_{Lo}]\). A computer curve-fitting program was written for Equations 3 and 4 in which the data input consisted of 12-18 pairs of values of \([A]\) and \([QR]\). \([A]\) is known and \([QR]\) experimentally determined. \([Q]\), \(K_{R}\), and \([B_{\text{tot}}]\) are measured independently. The program generated values of \([B_{Hi}\) and \([B_{Lo}\), \(K_{Hi}\) and \(K_{Lo}\), the percentage of high affinity sites, and the ratio of \(K_{Hi}/K_{Lo}\). The experimental data were fitted to both a one- and two-site model and best fit determined by a minimum sum of the squared residuals and a Student's t test on the differences. The data were further examined for systematic deviations from a one- or two-site model by nearest neighbor residual.
analysis (18). In addition, plots of occupancy of the receptor by agonists as a function of [A] were visually examined for deviations from predicted one- or two-site models. In some experiments the data were fitted to a three-site model, incorporating the terms for displacement of $[^{3}H]$QNB from a "super high" affinity site by a muscarinic agonist (25). Only in a limited number of experiments was there a statistically significant improvement in fit, so that this data treatment was not routinely performed. Protein was determined by the method of Geiger and Bessman (26).

TABLE II
Nonadditivity in phosphatidate and phosphatidylinositol labeling following the simultaneous addition of two Group A agonists to nerve ending fractions

Fraction	PhA	PhI		
NE1,1	Experiment I	Experiment II	Experiment I	Experiment II
Carbamylcholine	191	194	191	188
Acetylcholine	241	257	212	190
Methacholine	197	187	188	181
Muscarine	189	185	197	187
Carbamylcholine + acetylcholine	227	207	209	195
Carbamylcholine + methacholine	192	188	194	184
Carbamylcholine + muscarine	186	192	184	181
Acetylcholine + methacholine	ND*	194	ND	184
Acetylcholine + muscarine	ND	198	ND	192
Muscarine + methacholine	ND	184	ND	182

* ND, not determined.

RESULTS
Stimulation by Muscarinic Agonists of PhA and PhI Labeling from ^{32}P in NE1,1 Fractions and Dissociated Adrenal Chromaffin Cells—Muscarinic agonists (1.0 mM) differed considerably in their ability to enhance PhA and PhI turnover in the NE1,1 fraction. Addition of carbamylcholine, acetylcholine, methacholine, or muscarine (Table I, Group A) resulted in a larger stimulation of PhA and PhI labeling than agonists in Group B, i.e. bethanechol, pilocarpine, arecoline, or oxotremorine. This pattern of agonist efficacy was also observed for NE1,1 fractions obtained from rat cerebral cortex and other areas of guinea pig brain (hippocampus, inferior and superior colliculi, and pons/medulla, not shown). However, in bovine adrenal chromaffin cells, oxotremorine and arecoline were relatively more efficacious, although still less effective than carbamylcholine in stimulation of PhI labeling, while in this tissue pilocarpine was the least efficacious agonist.

Group B Agonists: Dose-Response and Effect on Carbamylcholine-stimulated PhA and PhI Labeling—To establish that optimum concentrations of agonists in Group B had been employed, dose-response curves for stimulated PhA and PhI labeling were constructed (Fig. 1). Stimulated PhA and PhI labeling was optimum at approximately 1.0 mM concentrations of oxotremorine, arecoline, bethanechol, and pilocarpine. Agonists in Group B antagonized the stimulatory effect of carbamylcholine addition on phospholipid labeling. The rank order potency so obtained was oxotremorine > arecoline = pilocarpine > bethanechol. Conversely, the simultaneous addition of agonists in Group A did not elicit an increase in labeling of either PhA or PhI greater than that produced by each agonist alone (Table II).

$[^{3}H]$QNB Binding to NE1,1 Fractions: Displacement by Agonists—$[^{3}H]$Quinuclidinyl benzilate bound to freshly prepared and frozen NE1,1 fractions ($B_{	ext{max}} = 1.10 \pm 0.08$ pmol/mg of protein, $n = 8$) with an affinity constant K_{d} of 48.9 ± 7.0
Agonists in Group A—To determine whether the high, low, or to enhanced phospholipid turnover, dose-response curves of methacholine and least for muscarine. For Group A agonists the ratio high affinity form. For calculation of the mean affinity constant (K_I) fitted to a two-site model, although <20% of receptors were in the high affinity form. A one-site interaction was assumed for all experiments.

Results shown are the best fits (one- or two-site) for each muscarinic agonist, and the number of separate experiments (n) in which this pattern was observed. Values for the high and low affinity forms of the receptor (K_H and K_L) and percentage high affinity sites are expressed as mean ± S.E. For agonists in Group B, a single affinity constant has been calculated.

Table III

Muscarinic Agonist Binding and Phospholipid Turnover
Displacement of [3H]QNB binding to nerve ending fractions by muscarinic agonists
NE_1_1 fractions (50-60 μg of protein) were incubated in the presence of 68 μM (-) [3H]QNB in the presence of various concentrations of muscarinic agonists. The displacement of [3H]QNB binding was then analyzed for evidence of one-site or two-site interaction (see under “Materials and Methods”). The necessary criteria for an agonist to fit a two-site model included a statistical difference between the sum of the squared residuals for one- and two-site models, nearest neighbor residual analysis, and visual inspection of receptor occupancy curves. Agonists which did not meet these requirements were considered to interact with a single affinity form of the receptor. Results shown are the best fits (one- or two-site) for each muscarinic agonist, and the number of separate experiments (n) in which this pattern was observed. Values for the high and low affinity forms of the receptor (K_H and K_L) and percentage high affinity sites are expressed as mean ± S.E. For agonists in Group B, a single affinity constant has been calculated.

Group A	Best fit	n	K_H	K_L	Per cent of high affinity sites
Acetylcholine	2-site	5/5	0.04 ± 0.02	5.91 ± 1.60	148 ± 4.5
Carbamylcholine	2-site	5/5	1.41 ± 0.30	76.70 ± 7.37	54 ± 1.8
Methacholine	2-site	5/5	0.17 ± 0.08	20.02 ± 5.38	113 ± 6.6
Muscarine	2-site	5/5	1.46 ± 0.53	41.48 ± 9.01	28 ± 2.0

Group B	Best fit	n	K_H
Bethanechol	1-site	3/4	100 ± 20.0
Pilocarpine	1-site	5/5	2.88 ± 0.36
Arecoline	1-site	4/4	5.44 ± 0.88
Oxotremorine	1-site	4/5	0.33 ± 0.05

*In one experiment for each agonist, displacement data could be fitted to a two-site model, although <20% of receptors were in the high affinity form. For calculation of the mean affinity constant (K_1 site), a one-site interaction was assumed for all experiments.

pmol (n = 8). All agonists could completely displace [3H]QNB bound to the NE_1_1 fraction, the most potent being oxotremorine, while the least effective was bethanechol. Plots of receptor occupancy by the agonist as a function of agonist concentration revealed that Group A agonists showed a systematic deviation from the curve predicted for the interaction of an agonist with a single affinity site. The displacement data could, however, be readily fitted to a two-site model in which the muscarinic receptor was proposed to exist in both high and low affinity forms (Fig. 2). In contrast, the displacement data for agonists in Group B could be fitted to a one-site model, and there was no significant improvement in fit for a two-site model (Fig. 3). The affinity constants for methacholine and acetylcholine-stimulated PhA labeling. NE_1_1 fractions (approximately 1 mg of protein) were incubated in Buffer A containing 30-40 μCi of [32P], and terminated 30 min later. Results are expressed as a fraction of maximal response (obtained at 10 μM carbamylcholine) as a function of agonist concentration. In absolute terms, 10 μM carbamylcholine addition increased PhA labeling to 226 ± 4% of control (mean ± S.E.). Values are mean ± S.E. for eight determinations derived from three individual NE_1_1 preparations. Analysis revealed a two-site interaction with values for K_H and K_L of 0.31 μM and 108.8 μM, respectively. The fraction of the receptors in the low affinity form was 88%.

Approximately 30-40% of the sites present in guinea pig cerebral cortex NE_1_1 fractions are in the high affinity form. For Group A agonists the ratio K_L/K_H was greatest for acetylcholine and least for muscarine.

Dose-Response Curves for Stimulation of PhA Labeling by Agonists in Group A—To determine whether the high, low, or both affinity forms of the muscarinic receptor were coupled to enhanced phospholipid turnover, dose-response curves were constructed for stimulated PhA labeling. This parameter is shown in Table III. These values are in close agreement with published studies on rat brain (18, 27).

Approximately 30-40% of the sites present in guinea pig cerebral cortex NE_1_1 fractions are in the high affinity form. For Group A agonists the ratio K_L/K_H was greatest for acetylcholine and least for muscarine.

Dose-Response Curves for Stimulation of PhA Labeling by Agonists in Group A—To determine whether the high, low, or both affinity forms of the muscarinic receptor were coupled to enhanced phospholipid turnover, dose-response curves were constructed for stimulated PhA labeling. This parameter is shown in Table III. These values are in close agreement with published studies on rat brain (18, 27).

Approximately 30-40% of the sites present in guinea pig cerebral cortex NE_1_1 fractions are in the high affinity form. For Group A agonists the ratio K_L/K_H was greatest for acetylcholine and least for muscarine.

Dose-Response Curves for Stimulation of PhA Labeling by Agonists in Group A—To determine whether the high, low, or both affinity forms of the muscarinic receptor were coupled to enhanced phospholipid turnover, dose-response curves were constructed for stimulated PhA labeling. This parameter is shown in Table III. These values are in close agreement with published studies on rat brain (18, 27).

Approximately 30-40% of the sites present in guinea pig cerebral cortex NE_1_1 fractions are in the high affinity form. For Group A agonists the ratio K_L/K_H was greatest for acetylcholine and least for muscarine.

Dose-Response Curves for Stimulation of PhA Labeling by Agonists in Group A—To determine whether the high, low, or both affinity forms of the muscarinic receptor were coupled to enhanced phospholipid turnover, dose-response curves were constructed for stimulated PhA labeling. This parameter is shown in Table III. These values are in close agreement with published studies on rat brain (18, 27).

Approximately 30-40% of the sites present in guinea pig cerebral cortex NE_1_1 fractions are in the high affinity form. For Group A agonists the ratio K_L/K_H was greatest for acetylcholine and least for muscarine.

Dose-Response Curves for Stimulation of PhA Labeling by Agonists in Group A—To determine whether the high, low, or both affinity forms of the muscarinic receptor were coupled to enhanced phospholipid turnover, dose-response curves were constructed for stimulated PhA labeling. This parameter is shown in Table III. These values are in close agreement with published studies on rat brain (18, 27).

Approximately 30-40% of the sites present in guinea pig cerebral cortex NE_1_1 fractions are in the high affinity form. For Group A agonists the ratio K_L/K_H was greatest for acetylcholine and least for muscarine.
was selected as the preferred measure of receptor activation, since it represents an early plasma membrane event, unlike PhI resynthesis, which occurs subsequently at the endoplasmic reticulum (5). In addition, enhanced PhA labeling is of sufficient magnitude to permit accurate detection at low agonist concentrations, in contrast to stimulated inositol lipid breakdown which is often 25% or less for full agonists at optimum concentrations (14, 17, 28, 29). Carbamylcholine stimulation of PhA labeling was detectable at 1.0 μM and was maximal at 10 mM (Fig. 4). While this data could be dissociated into high and low affinity components using computer fits, only 12% of the inferred muscarinic receptors were in the high affinity state. The constant for the low affinity state of the muscarinic receptor (109 μM) as determined from enhanced PhA labeling was in the range of that obtained from the binding data (77 μM). Similarly, dose-response curves for PhA labeling obtained with methacholine and acetylcholine indicated that both of these agonists also interact predominately with a single low affinity form of the receptor (Fig. 5). The values for affinity constants so obtained were 30 μM and 20 μM, respectively, and are in the range of values obtained for the low affinity form of the muscarinic receptor derived from binding studies (20 μM and 6 μM, respectively).

DISCUSSION

The present study indicates that muscarinic receptors coupled to enhanced phospholipid turnover in nerve ending preparations from cerebral cortex possess a distinctive profile with regard to agonist efficacy. The ability of Group B agonists to antagonize the stimulatory effect of carbamylcholine indicates that while both groups of agonists bind to the same population of brain muscarinic receptors, Group B agonists are less efficacious and may thus be considered "partial" agonists. In contrast, when muscarinic receptors on dissociated adrenal chromaffin cells are examined, arecoline and oxotremorine are relatively more efficacious agonists than they are in the brain. The categorization of agonists, therefore, appears to be highly dependent on the source of receptors.

Evidence in favor of a tissue-specific profile of muscarinic agonist efficacy for stimulated phospholipid turnover and/or the attendant physiological response has been obtained from other sources. Thus, bethanechol addition to the superior cervical ganglion elicits increases in PhI turnover and membrane depolarization comparable to other full agonists in this preparation such as carbamylcholine or muscarine, while the physiological responses (depolarization) due to pinacoline and oxotremorine addition are characteristic of partial agonism (4, 30). In contrast, the stimulation of amylase release from pancreatic preparations and the accompanying PhI breakdown evoked by the addition of pinacoline are comparable in magnitude to those produced by acetylcholine or carbamylcholine (31, 32). While these tissue differences might be interpreted to reflect the presence of different receptor molecules, present evidence favors the existence of a single receptor protein in varying molecular environments (33).

The pattern of agonist efficacy in brain is related to the characteristics of agonist displacement of [3H]QNB binding in nerve ending preparations. Agonists that were most effective in enhancing PhA and PhI turnover displaced [3H]QNB in a complex manner, with binding curves deviating markedly from a simple mass action isotherm (Fig. 2). This binding behavior of the agonists can be explained by postulating the presence of two noninteracting forms of the muscarinic receptor with large (30- to 150-fold) differences in Ks and KH, as has been observed in rat brain preparations (18). In contrast, less effective agonists displaced [3H]QNB in a simpler manner, with minor deviation from a single mass action isotherm and relatively small differences in values of KL and KH. These results are consistent with a model for muscarinic receptor activation proposed by Birdsall and Hulme (34) in which agonists, unlike antagonists, are assumed to induce a conformational change in the receptor, and differences in agonist efficacy arise as a result of conformational restraints imposed by the coupling state of the receptor. From this, it can be predicted that the efficacy of an agonist is a function of Ks/KH. In the present study this prediction is met; full agonists with regard to phospholipid turnover also possess large values for Ks/KH while the partial agonists, bethanechol, pilocarpine, arecoline, and oxotremorine, display lower Ks/KH ratios. The fact that muscarine (Ks/KH = 28) was as effective as acetylcholine (Ks/KH = 148) indicates a requirement for a minimum value of Ks/KH for full agonist status, below which a reduced response is seen. While full agonists typically possess a high Ks/KH ratio, the low affinity form of the brain muscarinic receptor rather than the high affinity form appears in general to be coupled to phospholipid turnover. Although computer fits of carbamylcholine-stimulated PhA labeling could be dissociated into high and low affinity components, almost 90% of the receptors coupled were in the L-form. Similarly, dose-response curves for acetylcholine- and methacholine-stimulated PhA labeling also revealed the sole involvement of a low affinity form of the receptor. Other studies have also indicated the importance of the L-form of the receptor, e.g. cGMP stimulation in neuroblastoma cells (1), inhibition of adenylate cyclase in heart (2), smooth muscle contraction in the ileum (35), and stimulation of PhI turnover by methacholine in pancreas (17). In contrast, enhancement of PhI turnover in guinea pig ileum correlates with the occupancy of both L- and H-forms of the receptor (13), and stimulation of Ca2+ influx into smooth muscle reflects the activation of the H-form (36). While little information exists as to the molecular nature of these high and low affinity forms of the receptor, recent photoaffinity probe studies suggest that the muscarinic receptor exists in oligomeric forms, with the L-form being a dimer of molecular weight 86,000 Da, while the H-form of the receptor is a 160,000-Da tetramer (37).

The observation that the L-form of the muscarinic receptor is preferentially coupled to phospholipid turnover in brain is in complete accord with the model proposed by Birdsall and Hulme (34). The present results also indicate that stimulated phospholipid turnover in brain is tightly coupled to the occupancy of the muscarinic receptor, with little or no "receptor reserve," in agreement with observations made on enhanced PhI turnover in the ileum (13) and pancreas (17) but in contrast to recent results for methacholine stimulation of PhI turnover in rat parotid (14). Michell and Kirk (38) have suggested that this apparent discrepancy may arise from measurement of enhanced PhI turnover by means of labeling experiments, rather than by inositol lipid breakdown. However, results from the same laboratory have indicated a good correlation between the concentrations of agonists required to elicit a maximal increase in inositol phospholipid breakdown and increased PhI labeling (28).

In conclusion, the results from this study suggest that the profile of agonist efficacy for stimulated PhA and PhI turnover is a reflection of the relative abilities of muscarinic agonists to induce a conformational change in the brain receptor. The low affinity form of the receptor is that coupled to PhA and PhI turnover, and full receptor occupancy is required for a maximum effect.

Acknowledgment—We thank Dr. R. W. Holz for preparing the bovine adrenal chromaffin cells.
REFERENCES

1. Strange, P. G., Birdsall, N. J. M., and Burgen, A. S. V. (1977) Biochem. Soc. Trans. 5, 189-191
2. Birdsall, N. J. M., Berrie, C. P., Burgen, A. S. V., and Hulme, E. C. (1980) in Receptors for Neurotransmitters and Peptide Hormones (Pepeu, G., Kuhr, M. J., and Enna, S. J., eds), pp. 107-116, Raven Press, New York
3. Parod, R. J., Leslie, B. A., and Petney, J. W. (1980) Am. J. Physiol. 239, C99-105
4. Brown, D. A., Fatherazi, S., Garthwaite, J., and White, R. D. (1980) Br. J. Pharmacol. 70, 577-592
5. Michell, R. H. (1975) Biochim. Biophys. Acta 377, 468-475
6. Hawthorne, J. N., and Pickard, M. R. (1979) J. Neurochem. 32, 12705-12708
7. Berridge, M. J. (1981) Mol. Cell. Endocrinol. 24, 115-140
8. Fisher, S. K., and Agranoff, B. W. (1983) in Phospholipids in the Nervous System (Eichberg, J., ed), John Wiley and Sons, New York, in press
9. Agranoff, B. W., Murthy, P. P. N., and Seguin, E. B. (1983) J. Biol. Chem. 258, 21705-12708
10. Akhtar, R. A., and Abdel-Latif, A. A. (1980) Biochem. J. 192, 501-508
11. Weiss, S. J., McKinney, J. S., and Putney, J. W., Jr. (1982) Biochem. J. 194, 463-466
12. Jaffre, S., and Michell, R. H. (1976) FEBS Lett. 69, 1-5
13. Weiss, S. J., and Putney, J. W., Jr. (1981) Biochem. J. 194, 463-466
14. Birdsall, N. J. M., and Hulme, E. C. (1981) Mol. Pharmacol. 14, 723-736
15. Schacht, J., and Agranoff, B. W. (1972) J. Biol. Chem. 247, 771-777
16. Fisher, S. K., Holz, R. W., and Agranoff, B. W. (1980) J. Neurochem. 37, 491-497
17. Schacht, J., Neale, E. A., and Agranoff, B. W. (1974) J. Neurochem. 23, 211-218
18. Fisher, S. K., Boast, C. A., and Agranoff, B. W. (1980) Brain Res. 189, 284-288
19. Birdsall, N. J. M., and Hulme, E. C., and Burgen, A. (1980) Proc. R. Soc. Lond. B Biol. Sci. 207, 1-12
20. Geiger, P. J., and Bessman, S. P. (1972) Anal. Biochem. 49, 468-473
21. Ellis, J., and Hoss, W. (1980) Brain Res. 185, 189-198
22. Kirk, C. J., Michell, R. H., and Hems, D. A. (1981) Biochem. J. 194, 155-165
23. Jones, L. M., and Michell, R. H. (1976) Biochem. J. 158, 505-507
24. Lapetina, E. G., Brown, W. E., and Michell, R. H. (1976) J. Neurochem. 26, 649-651
25. Hokin, L. E. (1951) Biochem. J. 48, 320-326
26. Bannach, E. W. H., Geison, R. L., and Hokin-Neaverson, M. (1981) Biochim. Biophys. Acta 663, 34-45
27. Ehlert, F. J., Roeske, W. R., and Yamamura, H. I. (1981) Fed. Proc. 40, 153-159
28. Birdsall, N. J. M., and Hulme, E. C. (1976) J. Neurochem. 27, 1-16
29. Birdsall, N. J. M., and Hulme, E. C. (1977) in Cholinergic Mechanisms and Psychopharmacology (Jenden, D. J., ed), pp. 25-33, Plenum Press, New York
30. Birdsall, N. J. M., and Hulme, E. C. (1977) in Recent Advances in Receptor Chemistry (Gualtieri, P., Giannella, M., and Melchiorre, C., eds), pp. 127-146, Elsevier/North-Holland, New York
31. Avisar, S., Amitai, G., and Sokolovsky, M. (1983) Proc. Natl. Acad. Sci. U. S. A., in press
32. Michell, R. H., and Kirk, C. J. (1981) Biochim. J. 198, 247-248
Muscarinic agonist binding and phospholipid turnover in brain.
S K Fisher, P D Klinger and B W Agranoff

J. Biol. Chem. 1983, 258:7358-7363.

Access the most updated version of this article at http://www.jbc.org/content/258/12/7358

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/258/12/7358.full.html#ref-list-1