Discovery and Complete Genome Sequence of a Bacteriophage from an Obligate Intracellular Symbiont of a Cellulolytic Protist in the Termite Gut

AJENG K. PRAMONO1, HIROKAZU KUWAHARA1, TAKEHIKO ITOH2, ATSUSHI TOYODA2, AKINORI YAMADA1,4, and YUICHI HONGO1*

1Department of Biological Sciences, Tokyo Institute of Technology, Tokyo 152–8550, Japan; 2Department of Biological Information, Tokyo Institute of Technology, Tokyo 152–8550, Japan; 3National Institute of Genetics, Shizuoka 411–8540, Japan; and 4Division of Marine Biomaterial Science, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852–8521, Japan

(Received November 18, 2016—Accepted February 4, 2017—Published online March 17, 2017)

Termites depend nutritionally on their gut microbes, and protistan, bacterial, and archaeal gut communities have been extensively studied. However, limited information is available on viruses in the termite gut. We herein report the complete genome sequence (99,517 bp) of a phage obtained during a genome analysis of “Candidatus Azobacteroides pseudotrichonymphae” phylotype ProJPt-1, which is an obligate intracellular symbiont of the cellulolytic protist Pseudotrichonympha sp. in the gut of the termite Prothorinotermes japonicus. The genome of the phage, designated ProJPt-Bp1, was circular or circularly permuted, and was not integrated into the two circular chromosomes or five circular plasmids composing the host ProJPt-1 genome. The phage was putatively affiliated with the order Caudovirales based on sequence similarities with several phage-related genes; however, most of the 52 protein-coding sequences had no significant homology to sequences in the databases. The phage genome contained a tRNA-Gln (CAG) gene, which showed the highest sequence similarity to the tRNA-Gln (CAA) gene of the host “Ca. A. pseudotrichonymphae” phylotype ProJPt-1. Since the host genome lacked a tRNA-Gln (CAG) gene, the phage tRNA gene may compensate for differences in codon usage bias between the phage and host genomes. The phage genome also contained a non-coding region with high nucleotide sequence similarity to a region in one of the host plasmids. No other phage-related sequences were found in the host ProJPt-1 genome. To the best of our knowledge, this is the first report of a phage from an obligate, mutualistic endosymbiont permanently associated with eukaryotic cells.

Key words: symbiosis, gut bacteria, virus, virome, insect

Bacteriophages are the most abundant biological entities on Earth (30), and are even found in the intracellular bacterial symbionts of eukaryotes (23). The genomes of many commensal Wolbachia strains contain WO prophages (18), and a facultative endosymbiont of aphids, “Candidatus Hamiltonella defensa”, is often infected with lysogenic phage APSE (29). However, Wolbachia strains that have evolved into mutualistic endosymbionts that are permanently associated with filarial nematodes or bed bugs have no or only relics of prophages in their genomes (9, 24). Similarly, phages that infect the primary (ancient, mutualistic) endosymbionts of insects, such as Buchnera aphidicola, have yet to be reported (6, 22). Thus, obligate intracellular symbionts that are essential for host survival are apparently free from phage infection.

Termites feed exclusively on dead plant matter, and nutritionally depend on gut microbes, which play crucial roles in the digestion of lignocellulose and provision of nitrogenous compounds (7, 13, 19, 28, 45, 46). This symbiosis is multilayered, with cellulolytic gut protists harboring both endo- and ectosymbiotic bacteria (7, 13). For example, the cellulolytic protist genus Trichonympha is always associated with the cytoplasmic symbiont “Candidatus Endomicrobium trichonymphae” (27, 38). “Ca. E. trichonymphae” are vertically transmitted and have co-diversified with their Trichonympha host over more than 40 million years (14, 47). A previous genome analysis suggested that “Ca. trichonymphae” provides essential nitrogenous compounds to the protist and termite host (12). “Ca. E. trichonymphae” and other Endomicrobium endosymbionts possess clustered regularly interspersed short palindromic repeats (CRISPR) and associated genes (cas) (12, 16, 48), which comprise an adaptive and heritable defense system against foreign DNA (17). At least one CRISPR/Cas system in “Ca. E. trichonymphae” phylotype Rs-D17 is functional (16). Thus, Endomicrobium endosymbionts may still be subjected to infection by phages despite their long-standing, obligately intracellular lifestyle within a specific host.

Tadmor et al. (2011) identified viral marker genes in metagenomic sequences from the gut content of the termite Nasutitermes sp., and also in single bacterial cells, sorted using a microfluidic device, from the gut of the termite Reticulitermes hesperus (39). The first complete phage genome sequence from a termite gut was recently reported. The phage, CVT22 (family Podoviridae), infects Citrobacter sp. (43), which is a minor resident of the gut of Coptotermes termites (1, 37). No other studies on viruses in the termite gut have been published, and no phages that infect bacterial symbionts of gut protists have been identified.

In the present study, we report the complete genome sequence of a phage obtained during a genome analysis of “Ca. Azobacteroides pseudotrichonymphae” (order Bacteroidales) that resides within the cells of the cellulolytic protist Pseudotrichonympha sp. (phylum Parabasalia) in the gut of the termite Prothorinotermes japonicus. “Ca. A. pseudotrichonymphae”
is an obligate intracellular symbiont of *Pseudotrichonympha* species, which are present in the gut of most termite genera in the family Rhinotermitidae. A previous study showed that “Ca. *A. pseudotrichonymphae*”, *Pseudotrichonympha* protists, and rhinotermitid termites have co-diversified (26). “Ca. *A. pseudotrichonymphae*” phylotype CPt1-2 is the predominant bacterial species in the gut of the rhinotermitid termite *Coptotermes formosanus* (25), in which the bacterium fixes dinitrogen and provides amino acids and co-factors (11, 15). Our discovery of a phage that most probably infects the obligate endosymbiont of the *Pseudotrichonympha* protist provides new insights into the multilayered symbiotic relationship in termites.

Materials and Methods

Termite collection, DNA extraction, and a 16S rRNA gene cloning analysis

A colony of *P. japonicus* (family Rhinotermitidae) termites was collected from Lanyu Island, Taiwan, in 2012. DNA was extracted from the entire guts of 10 worker termites, as described previously (41), and subjected to PCR amplification of the 16S rRNA gene using the *Bacteria*-specific primers 27F-mix (5ʹ-AGRGTTTGATYMTGCGCTCAG-3ʹ) and 1390R (5ʹ-ACGGGGGTGTGTACAA-3ʹ), as described previously (10, 42). The resulting amplicons were purified and cloned using a TOPO TA Cloning Kit for Sequencing (Invitrogen, Carlsbad, CA, USA) and Competent Quick DH5α purified and cloned using a TOPO TA Cloning Kit for Sequencing MTGGCTCAG-3ʹ) and 1390R (5ʹ-ACGGGCGGTGTGTACAA-3ʹ), which were subjected to PCR amplification of the 16S rRNA gene. DNA PCR-Free Sample Prep Kit (Illumina, San Diego, CA, USA), respectively. The generated reads were quality-filtered using Prinseq (36), and then assembled into contigs and scaffolds using SPAdes 3.9.0 (5). Gaps within and between scaffolds were closed by PCR amplification and sequenced into contigs and scaffolds using SPAdes 3.9.0.

Gene prediction and annotation

Gene predictions and homology-based predictions of gene functions were conducted using the RAST (3) and METAVIR servers (33). tRNA sequences were predicted using tRNAscan (35) and the tRNA Gene DataBase Curated by Experts (2). Codon usage was calculated from protein-coding nucleotide sequences (CDSSs) using EMBOSS ver. 6.4.0 (32). The annotation was manually curated using BLASTp searches against the NCBI non-redundant (nr) protein sequence database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) and reseq viral database (ftp://ftp.ncbi.nlm.nih.gov/reseq/release/viral/) with a cut-off e-value <10⁻⁵. We identified contigs derived from DNA viruses using a keyword (*virus, virion, prophage, terminase, capsid, head, tail, fiber, baseplate, portal, lysis, structural, T4, lambda, mu, lambdoid, podo*, myovir*, siphovir*, integrase, transposase) search of BLASTp results (20). CDSSs that were predicted to code for hypothetical proteins were subjected to further BLASTp searches against the NCBI conserved domain database (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Phylogenetic analyses were conducted using MEGA 6.0 (40).

Database accession numbers

The sequence data obtained in this study were submitted to the DDBJ under the following accession numbers: AP017903 (ProJPt-Bp1-PJA1 genome), BDLOX1000001–19 (ProJPt-Bp1-PJA2 draft genome), BDLY01000001-28 (ProJPt-Bp1-PJB1 draft genome), BDLOZ01000001-28 (ProJPt-Bp1-PJB2 draft genome), AP017913–9 (ProJPt-1 chromosomes and plasmids), and LC198325–68 (16S rRNA genes).

Results and Discussion

Reconstruction of the genome of the host “Ca. *A. pseudotrichonymphae*” phylotype ProJPt-1

Four WGA samples, each prepared from bacterial cells contained in a single *Pseudotrichonympha* cell, were subjected to genome sequencing. These WGA samples were designated PJA1, PJA2, PJB1, and PJB2, with PJA1 and PJA2 being derived from one termite and PJB1 and PJB2 from another. Sample PJA1 was deeply sequenced, yielding 1,256,368 paired-end reads and 1,557,412 (3–5 kb insert length) and 1,576,369 (5–7.5 kb insert length) mate-pair reads. By using the PJA1 sample, we reconstructed the complete genome sequence of “Ca. *A. pseudotrichonymphae*” phylotype ProJPt-1, comprising two circular chromosomes and five circular plasmids (Table 1, Fig. S1 and S2). This is the second published complete genome of “Ca. *A. pseudotrichonymphae*”, following that of phylotype CPt1-2 (genomovar CFP2) from the gut of *C. formosanus* (11). The phylogenetic relationship between phylotypes CPt1-2 and ProJPt-1 was inferred based on the 16S rRNA gene sequences (Fig. S3). The results of the 16S rRNA gene cloning analysis showed that 36 out of 90 clones (40%) from the bacterial gut microbiota of *P. japonicus* workers were phylotype ProJPt-1 (data not shown). This result suggested that phylotype ProJPt-1 is a dominant species in the *P. japonicus* gut, and appears to play a critical role in the symbiotic relationship, as observed for phylotype CPt1-2 (11, 25).

Each of the two ProJPt-1 chromosomes contained an rRNA gene set. The rRNA genes in chromosome 2 formed a canonical rRNA operon, whereas the operon was separated into two parts in chromosome 1 (Fig. S4). A separated rRNA gene set was also found on the single chromosome of phylotype CPt1-2 (11). Massive rearrangements were observed between the chromosomes of phylotypes CPt1-2 and ProJPt-1 (Fig. S5), whereas no mobile elements or restriction-modification systems were found in either genome, unlike in *Endomicrobium*.
endosymbionts (16, 48). The total size of the two chromosomes (908,378 bp) of ProJPt-1 was markedly smaller than the chromosome of CIPt-1 (1,114,206 bp). The five plasmids of ProJPt-1 (designated pAPPJ1–5) contained regions with high sequence similarities to certain regions of three out of the four plasmids of CIPt-1 (pCFPG1, 2, and 3; data not shown). In addition, we identified two contigs (2,275 bp and 1,871 bp) with only one- or two-fold MiSeq-read coverage that contained regions sharing 68–73% nucleotide sequence identities with plasmid pCFPG4 of CIPt-1. These two contigs may represent a plasmid that is only rarely contained in the ProJPt-1 genome (data not shown). Other detailed information on the ProJPt-1 genome will be published elsewhere.

Discovery and reconstruction of the phage genome

We recovered one large scaffold (99,643 bp) from the reconstruction of the ProJPt-Bp1 genome, which showed almost no sequence similarity to the genome of phylotype CIPt-Bp1. The GC content of the scaffold was 42.3%, which differed greatly from that of the chromosomes and plasmids of ProJPt-1 (21.3–28.1%). The only region that shared a high nucleotide sequence identity with the CfPt1-2 genome was a 472-bp non-coding region of the scaffold shared 90% nucleotide sequence identity with a region of plasmid pCFPG4 of CIPt-1. The circularly assembled genome of the ProJPt-Bp1 phage appeared to be common to the ProJPt-Bp1 phage.

Table 1. Genome features of “Ca. Azobacteroides pseudotrichonymphae” phylotype ProJPt-1 and the ProJPt-Bp1 phage.
ProJPt-1

pAPPJ1 [plasmid 1]
pAPPJ2 [plasmid 2]
pAPPJ3 [plasmid 3]
pAPPJ4 [plasmid 4]
pAPPJ5 [plasmid 5]

Table 2. List of genes with predicted functions or domains in the genome of the ProJPt-Bp1 phage.

Gene_id	**Predicted domains or functions**
PJPJ_tRNA1	tRNA-Gln (CAG)
PJPJ_011	ND2 superfamily protein
PJPJ_015	Cadherin-like beta sandwich domain protein
PJPJ_016	Major outer envelope glycoprotein
PJPJ_018	DUF4417-containing protein
PJPJ_026	VIF2: Actin-ADP-ribosylating toxin family protein
PJPJ_027*	Structural protein
PJPJ_032*	Structural protein
PJPJ_036	Epstein-Barr virus nuclear antigen 3B domain protein
PJPJ_041*	Structural protein
PJPJ_046*	Deoxyuridine 5′-triphosphatase nucleotidohydrolase
PJPJ_048	Solute carrier families 5 and 6-like protein
PJPJ_049*	Phage protein inside capsid D
PJPJ_051	Exonuclease VIII

* k-mer coverage for the largest k-value (127 bp).
** Draft genomes, assembled after retrieving reads mapped to the ProJPt-Bp1 genome of sample PJA1 using Bowtie 2 (21).
Phage from an obligate endosymbiont

The PJPA_051 gene, coding for a putative exonuclease VIII, showed the highest amino acid sequence similarity (31%) to a hypothetical protein (CFPG_P2-6) from plasmid pCFPG2 of CfPt1-2. No homologous gene was identified in the genome of the host, ProJPt-1. A gene coding for a conserved hypothetical protein (PJPA_020), along with three genes for putative structural proteins (PJPA_027, 032, and 041), shared low amino acid sequence identities (24–27%) with the genes of Cellulophaga phage phi14:2 (NC_021806) (Podoviridae). A gene coding for a protein inside capsid D (PJPA_049) showed 39% amino acid sequence identity to a gene from Cronobacter phage Dev2 (NC_023558) (Table 2) and was also phylogenetically related to genes from other Podoviridae phages (Fig. S7A).

The ProJPt-Bp1 genome encoded deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase: Dut) (PJPA_046), which is present in a wide range of viral genomes (31). ProJPt-Bp1 dut showed moderate amino acid sequence similarity (46%) to the dut gene of Mollivirus sibericum (NC_027867), which belongs to an unclassified dsDNA virus group (Fig. S7B). The Dut enzyme hydrolyzes dUTP to dUMP and pyrophosphate, thereby preventing uracil incorporation into DNA by decreasing the dUTP/dTTP ratio during phage genome replication (31). In addition, it has recently been demonstrated that Dut acts as a regulatory protein that controls various host functions, including the immune system (31).

The tRNA-Gln (CAG) gene from the ProJPt-Bp1 genome was consistently found in the three other draft genomes (from samples PJA2, PJB1, and PJB2) with no sequence variation (Fig. S6). The presence of a tRNA gene is not rare in phage genomes (30); it has been hypothesized that viral tRNA compensates for differences in codon usage bias between a phage and its bacterial host (4). The frequency of CAG codon usage for glutamine was 52.6% in the ProJPt-Bp1 phage genome, whereas it was only 15.1% and 22.1% in the ProJPt-1 and CfPt1-2 chromosomes, respectively (Table S2). Interestingly, the ProJPt-1 genome had no tRNA-Gln (CAG) gene, and reads that did not map to the ProJPt-1 genome also did not contain any tRNA genes with high similarity to the tRNA-Gln (CAG) gene (CFPG_tRNA9) on the CfPt1-2 chromosome. Thus, the presence of the tRNA-Gln (CAG) gene in the phage genome may be advantageous for phage propagation. Alternatively, the tRNA gene may be the attachment site required for the phage to integrate into the host genome. However, such lysogenic phages generally have only a small fragment that corresponds to a part of the host tRNA gene that functions as the attachment site, not a full-length tRNA gene (4). In addition, we did not find any contigs that showed homology between the host and phage genomes, and no integrase gene was identified in the phage genome.

The ProJPt-1 and CfPt1-2 tRNA-Gln (CAA) genes were the most similar to the phage tRNA-Gln (CAG) gene, as described above, indicating that a single nucleotide substitution changed the codon for tRNA-Gln from CAA to CAG in the phage genome (Fig. 2). It is tempting to hypothesize that the ProJPt-Bp1 phage contributes to the host, ProJPt-1, by providing the missing tRNA, although it is difficult to experimentally prove this hypothesis in these uncultured microorganisms. However, based on the predicted secondary structure, the tRNA of the phage appeared to be functional (Fig. 2).
In general, it is difficult for a phage to infect an obligate intracellular bacterium with no free-living phase because the phage must penetrate multiple barriers, i.e., the eukaryotic cell membrane as well as the bacterial cell wall and membranes. Although obligate intracellular symbionts tend to lack a cell wall, as predicted from the bacterial cell wall or outer membrane that are recognized by phages for specific infection (44). This appears to be the first report of a phage that infects an obligate, mutualistic, intracellular symbiont permanently associated with its eukaryotic host. It is conceivable that phages are ingested with wood particles by the cellulolytic protist, thereby coming into contact with *Azobacteroides* endosymbionts, as discussed previously for *Ca. E. trichonymphae* hosted by *Trichonympha* protists (16, 48). Nevertheless, unlike the *Endomicrobium* endosymbionts, no CRISPR/Cas systems or restriction-modification systems were found in the genomes of *Ca. A. pseudotrichonymphae* phylotypes ProJPt-1 and CIPt-2. Other known defense mechanisms such as abortive-infection systems were also not identified. The apparent absence of defense systems against phages is enigmatic, considering the importance of *Ca. A. pseudotrichonymphae* in the termite gut ecosystem. This ProJPt-BpI phage may be temperate, perhaps maintained as a plasmid-like entity, and only cause mild damage to the host *Azobacteroides* population. In any case, we need to consider a more complex, multilayered symbiotic system, including phages, in addition to protists, bacteria, and archaea.

Acknowledgements

We thank Tomonori Kume, National Taiwan University, for assisting with our termite collection. We also thank Kaito Sugaya, Takako Mabuchi, Rie Ryuusi, and Miho Kiyooka for assisting with experiments. Sanger sequencing was performed at the Biomaterial Analysis Center at the Tokyo Institute of Technology. This work was financially supported by a MEXT scholarship to AP, and a NEXT program and KAKENHI grants from JSPS to YH (26650158, 18H05085, and 25249026).

Supplemental Materials

Supplemental figures and tables are available online.

References

1. Abdul Rahman, N., D.H. Parks, D.L. Willner, A.L. Engelbrektson, S.K. Goffredi, F. Warnecke, R.H. Scheffrah, and P. Hugenholtz. 2015. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:
2. Abe, T., T. Ikemura, J. Sugahara, et al. 2011. tRNA gene database curated manually by experts. Nucl. Acids Res. 39:D210–D213.
3. Aziz, R.K., D. Bartels, A.A. Best, M. DeJongh, T. Disz, R.A. Edwards, K. Fossmas, S. Gerdes, E.M. Glass, and M. Kubal. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:e75.
4. Bailly-Bechet, M., V. Vergassola, and E. Rocha. 2007. Causes for the intriguing presence of tRNAs in phages. Genome Res. 17:1486–1495.
5. Bankevich, A., S. Nurk, D. Antipov, et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455–477.
6. Bordenstein, S.R., and W.S. Reznikoff. 2005. Mobile DNA in obligate intracellular bacteria. Nat. Rev. Microbiol. 3:688–699.
7. Brune, A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12:168–180.
8. Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T.L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:S12.
9. Foster, J., M. Ganatra, I. Kamal, et al. 2005. The Wolbachia genome of *Brugia malayi*: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 3:e121.
10. Hongoh, Y., T. Sato, M.F. Dolan, S. Noda, S. Ui, T. Kudo, and M. Ohkuma. 2007. The motility symbiont of the termite gut flagellate *Caenobium versatilis* is a member of the “Synergistes” group. Appl. Environ. Microbiol. 73:6270–6276.
11. Hongoh, Y., V.K. Sharma, T. Prakash, et al. 2008. Genome of an endosymbiiont coupling N₂ fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109.
12. Hongoh, Y., V.K. Sharma, T. Prakash, S. Noda, T.D. Taylor, T. Kudo, Y. Sakaki, A. Toyoda, M. Hattori, and M. Ohkuma. 2008. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc. Natl. Acad. Sci. U.S.A. 105:5555–5560.
13. Hongoh, Y. 2011. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell. Mol. Life. Sci. 68:1311–1325.
14. Icda-Ohtsubo, W., and A. Brune. 2009. Cospeciation of termite gut flagellates and their bacterial endosymbionts: *Trichonympha* species and ‘Candidatus Endomicrobium trichonymphae*. Mol. Ecol. 18:332–342.
15. Inoue, J., K. Oshima, W. Suda, M. Sakamoto, T. Iino, S. Noda, Y. Hongoh, M. Hattori, and M. Ohkuma. 2015. Distribution and evolution of nitrogen fixation genes in the phylum *Bacteroidetes*. Microbes Environ. 30:44–50.
16. Izawa, K., H. Kuwahara, K. Kihara, M. Yuki, N. Lo, T. Itoh, M. Ohkuma, and Y. Hongoh. 2016. Comparison of intracellular “Ca. Endomicrobium trichonymphae” genomovars illuminates the requirement and decay of defense systems against foreign DNA. Genome Biol. Evol. 8:3099–3107.
17. Karginov, F.V., and G.J. Hannon. 2010. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell. 37:7–19.
18. Kent, B.N., L.J. Funkhouser, S. Setia, and S.R. Bordenstein. 2011. Evolutionary genomics of a temperate bacteriophage in an obligate intracellular bacterium (*Wolbachia*). PLoS One 6:e24984.
19. Kuwahara, H., M. Yuki, K. Izawa, M. Ohkuma, and Y. Hongoh. 2017. Genome of *Ca. Desulfovibrio trichonymphae* in a tripartite symbiotic system within a protist cell in the termite gut. ISME J. 11:766–776.
20. Labonté, J.M., B.K. Swan, B. Poulos, H. Luo, S. Koren, S.J. Hallam, M.B. Sullivan, T. Woyke, K.E. Wommack, and R. Stenawanus. 2015. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 9:2386–2399.
21. Langmead, B., and S.L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357–359.
22. McCutcheon, J.P., and N.A. Moran NA. 2011. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10:13–26.
23. Metcalf, J.A., and S.R. Bordenstein. 2012. The complexity of virus system: the case of endosymbionts. Curr. Opin. Microbiol. 15:546–552.
24. Mikola, N., T. Hosokawa, M. Moriyama, K. Oshima, M. Hattori, and T. Fukatsu. 2014. Evolutionary origin of insect- *Wolbachia* nutritional mutualism. Proc. Natl. Acad. Sci. U.S.A. 111:10257–10262.
25. Noda, S., T. Iida, O. Kitade, H. Nakajima, T. Kudo, and M. Ohkuma. 2005. Endosymbiotic *Bacteroidales* bacteria of the flagellated protist *Pseudotrichonympha grassii* in the gut of the termite *Coptotermes formosanus*. Appl. Environ. Microbiol. 71:8811–8817.
26. Noda, S., O. Kitade, T. Inoue, et al. 2007. Cospeciation in the triplex symbiosis of termite gut protists (*Pseudotrichonympha spp.*), their hosts, and their bacterial endosymbionts. Mol. Ecol. 16:1257–1266.
27. Ohkuma, M., T. Sato, S. Noda, S. Ui, T. Kudo, and Y. Hongoh. 2007. The candidate phylum ‘Termite Group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEBS Microbiol. Ecol. 60:467–476.
28. Ohkuma, M., S. Noda, T. Iida, M. Yuki, T. Stams, J. Inoue, A.C. Darby, and Y. Hongoh. 2015. Acetogenisis from *H*₂ plus CO₂ and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolysis protist. Proc. Natl. Acad. Sci. U.S.A. 112:10224–10230.
29. Oliver, K.M., P.H. Degnan, M.S Hunter, and N.A. Moran. 2009. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994.

30. Paez-Espino, D., E.A. Eloe-Fadrosh, G.A. Pavlopoulos, A.D. Thomas, M. Hunttemann, N. Mikhailova, E. Rubin, N.N. Ivanova, and N.C. Kyrpides. 2016. Uncovering Earth’s virome. Nature 536:425–430.

31. Penadés, J.R., J. Donderis, M. García-Caballer, M.A. Tormo-Más, and A. Marina. 2013. dUTPases, the unexplored family of signalling molecules. Curr. Opin. Microbiol. 16:163–170.

32. Rice, P., I. Longden, and A. Bleasby. 2000. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16:276–277.

33. Roux, S., M. Faubladier, A. Mahul, N. Poulhe, A. Bernard, D. Debroas, and F. Enault. 2011. Metavir: a web server dedicated to virome analysis. Bioinformatics 27:3074–3075.

34. Sato, T., H. Kuwahara, K. Fujita, S. Noda, K. Kihara, A. Yamada, M. Ohkuma, and Y. Hongoh. 2014. Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut. ISME J. 8:1008–1019.

35. Schattner, P., A.N. Brooks, and T.M. Lowe. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucl. Acids Res. 33:W686–689.

36. Schmieder, R., and R. Edwards. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864.

37. Shinzato, N., M. Muramatsu, T. Matsui, and Y. Watanabe. 2005. Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus Shiraki. Biosci. Biotechnol. Biochem. 69:1145–1155.

38. Stingl, U., R. Radek, H. Yang, and A. Brune. 2005. “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl. Environ. Microbiol. 71:1473–1479.

39. Tadmor, A.D., E.A. Ottesen, J.R. Leadbetter, and R. Phillips. 2011. Probing individual environmental bacteria for viruses by using micro-fluidic digital PCR. Science 333:58–62.

40. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725–2729.

41. Thongaram, T., S. Kosono, M. Ohkuma, Y. Hongoh, M. Kitada, T. Yoshinaka, S. Trakulhaleamsai, N. Noparatnaraporn, and T. Kudo. 2003. Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microbes Environ. 18:152–159.

42. Thongaram, T., Y. Hongoh, S. Kosono, M. Ohkuma, S. Trakulhaleamsai, N. Noparatnaraporn, and T. Kudo. 2005. Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238.

43. Tikhe, C.V., T.M. Martin, C.R. Gissendanner, and C. Husseneder. 2015. Complete genome sequence of Citrobacter phage CVT22 isolated from the gut of the Formosan subterranean termite, Coptotermes formosanus Shiraki. Genome Announc. 3:e00408–e00415.

44. Vinga, I., C. Sáo-José, P. Tavares, and M.A. Santos. 2006. Bacteriophage entry in the host cell, p. 165–203. In G. Wegrzyn (ed.), Modern Bacteriophage Biology and Biotechnology. Research Signpost, Kerala.

45. Yuki, M., H. Kuwahara, M. Shintani, K. Izawa, T. Sato, D. Starns, Y. Hongoh, and M. Ohkuma. 2015. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environ. Microbiol. 17:4942–4953.

46. Zheng, H., D. Bodington, C. Zhang, K. Miyanaga, Y. Tanji, Y. Hongoh, and X.H. Xing. 2013. Comprehensive phylogenetic diversity of [FeFe]-hydrogenase genes in termite gut microbiota. Microbes Environ. 28:491–494.

47. Zheng, H., C. Dietrich, C.L. Thompson, K. Meuser, and A. Brune. 2015. Population structure of Endomicrobia in single host cells of termite gut flagellates (Trichonympha spp.). Microbes Environ. 30:92–98.

48. Zheng, H., C. Dietrich, Y. Hongoh, and A. Brune. 2016. Restriction-modification systems as mobile genetic elements in the evolution of an intracellular symbiont. Mol. Biol. Evol. 33:721–725.