Extracorporeal carbon dioxide removal in acute hypoxaemic respiratory failure: a systematic review, Bayesian meta-analysis, and trial sequential analysis.

JE Millar, AJ Boyle, TM Drake, CE Adams, AW Glass, B Blackwood, JJ McNamee, DF McAuley

Supplementary Material

Supplementary File 1. A summary of clinical studies published between 1946 and 1st January 1994
Supplementary File 2. Search strategy
Supplementary Table 1. Technical details of ECCO2R, management strategies, and anticoagulation protocols for randomised controlled trials.
Supplementary Table 2. Risk of bias rationale for randomised controlled trials
Supplementary Table 3. Baseline characteristics of included observational studies
Supplementary Table 4. Clinical outcome measures for ECCO2R reported by observational studies
Supplementary Table 5. ROBINS-I rationale for risk of bias in observational studies
Supplementary Table 6. Primary outcome (mortality up to day 30 (or latest)) sensitivity analysis
Supplementary Table 7. Safety and adverse events summary
Supplementary Table 8. Summary of physiological changes reported by included studies
Supplementary Table 9. Ongoing clinical trials of ECCO2R in acute hypoxaemic respiratory failure
Supplementary Figure 1. Inclusion diagram
Supplementary Figure 2. Risk of bias assessment for observational studies
Supplementary Figure 3. Forest plots for secondary outcomes
Supplementary Figure 4. Trial sequential analysis assuming ARR ≥ 5%
Supplementary File 1. A summary of clinical studies published between 1946 and 1st January 1994

Authors	Year	Title	Journal	Notes
Gattinoni L, Kolobow T, Agostini A, et al.	1979	Clinical application of low frequency positive pressure ventilation with extracorporeal CO₂ removal (LFPPV-ECCO₂R) in treatment of adult respiratory distress syndrome (ARDS).	Int J Artif Organs	Case report. Earliest article identified.
Gattinoni L, Pesenti A, Pelizzola A, et al.	1981	Reversal of terminal acute respiratory failure by low frequency positive pressure ventilation with extracorporeal removal of CO₂ (LFPPV-ECCO₂R).	Trans Am Soc Artif Intern Organs	
Pesenti A, Pelizzola A, Mascheroni D, et al.	1981	Low frequency positive pressure ventilation with extracorporeal CO₂ removal (LEPPV-ECCO₂R) in acute respiratory failure (ARF): technique.	Trans Am Soc Artif Intern Organs	
Gattinoni L, Pesenti A, Pelizzola A.	1982	Extracorporeal carbon dioxide removal in acute respiratory failure.		
Agostini A, Cicardi M, Bergamashcini L, et al.	1983	Complement activation in adult respiratory distress syndrome treated with long-term extracorporeal CO₂ removal.	Trans Am Soc Artif Intern Organs	
Gattinoni L, Pesenti A, Caspani ML, et al.	1984	The role of total static lung compliance in the management of severe ARDS unresponsive to conventional treatment.	Intensive Care Med	Nineteen patients supported with ECCO₂R. The basis for the technique employed by Morris, et al.
Gardinale M, Cicardi M, Frangi D, et al.	1985	Studies of complement activation in ARDS patients treated by long-term extracorporeal CO₂ removal.	Int J Artif Organs	
Peters J, Radermacher P, Pesenti A, et al.	1985	Tracheal and alveolar gas composition during low-frequency positive pressure ventilation with extracorporeal CO₂-removal (LFPPV-ECCO₂R).	Intensive Care Med	
Solca M, Pesenti A, Iapichino G, et al.	1985	Multidisciplinary approach to extracorporeal respiratory assist for acute pulmonary failure.	Int Surg	
Thies WR, Breulmann M, Lehnusen U.	1985	Lung function during successful 10-day extracorporeal CO₂ removal in acute lung injury: Case report.	Anaesthetist	
Gattinoni L, Pesenti A, Mascheroni D, et al.	1986	Low-frequency positive-pressure ventilation with extracorporeal CO₂ removal in severe acute respiratory failure	JAMA	Forty-three patient un-controlled trial.
Hickling KG, Downward G, Davis F, et al.	1986	Management of severe ARDS with low frequency positive pressure ventilation and extracorporeal CO₂ removal.	Anaesth Intensive Care	
Marcolin R, Mascheroni D, Pesenti A, et al.	1986	Ventilatory impact of partial extracorporeal CO₂ removal (PECOR) in ARF patients.	ASAIO Trans	
Krajewski S, Seltz RJ, Schober R.	1987	Prolonged extracorporeal CO₂ - Removal in severe adult respiratory distress syndrome. Neurorpathological observations in two cases.	Intensive Care Med	
Peters J, Radermacher P, Kuntz ME, et al.	1988	Extracorporeal CO₂-removal with a heparin coated artificial lung.	Intensive Care Med	
Abrams JH, Gilmour JI, Krrett JM, et al.	1990	Low-frequency positive-pressure ventilation with extracorporeal carbon dioxide removal	Crit Care Med	
Pesenti A, Rossi GP, Pelosi P, et al.	1990	Percutaneous extracorporeal CO₂ removal in a patient with bullous emphysema with recurrent bilateral pneumothoraces and respiratory failure.	Anesthesiology	
Rossant R, Slama K, Bauer R, et al.	1990	Extracorporeal CO₂-removal with a heparin coated extracorporeal system.	Intensive Care Med	
Author(s)	Year	Title	Journal	
---	------	--	----------------------------------	
Wagner PK, Knoch M, Sangmeister C, et al.	1990	Extracorporeal gas exchange in adult respiratory distress syndrome: associated morbidity and its surgical treatment.	Br J Surg	
Bindslev L, Bohm C, Jolin A, et al.	1991	Extracorporeal carbon dioxide removal performed with surface-heparinized equipment in patients with ARDS.	Acta Anaesthesiol Scand Suppl	
Hoffmann BH, Bohm SH, Morris AH, et al.	1991	In vivo demonstration of the Haldane effect during extracorporeal gas exchange.	Int J Artif Organs	
Kee SS, Sedgwick J, Bristow A.	1991	Interhospital transfer of a patient undergoing extracorporeal carbon dioxide removal.	Br J Anaesth	
Kropf J, Grohe E, Knoch M, et al.	1991	The prognostic value of extracellular matrix component concentrations in serum during treatment of adult respiratory distress syndrome with extracorporeal CO₂ removal.	Eur J Clin Chem Clin Biochem	
Brunet F, Mira JP, Belghith M, et al.	1992	Effects of aprotinin on hemorrhagic complications in ARDS patients during prolonged extracorporeal CO₂ removal.	Intensive Care Med	
Knoch M, Kollen B, Dietrich G, et al.	1992	Progress in veno-venous long-term bypass techniques for the treatment of ARDS. Controlled clinical trial with the heparin-coated bypass circuit.	Int J Artif Organs	
Ryan DP, Doody SP.	1992	Treatment of acute pulmonary failure with extracorporeal support: 100% survival in a pediatric population.	J Pediatr Surg	
Brunet F, Belghith M, Mira JP, et al.	1993	Extracorporeal carbon dioxide removal and low-frequency positive-pressure ventilation. Improvement in arterial oxygenation with reduction of risk of pulmonary barotrauma in patients with adult respiratory distress syndrome.	Chest	
Supplementary File 2. Search strategy

Ovid MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations

1946 – November 30th, 2021.

AND

Embase Classic + Embase

1947 – December 31st, 2021

1 “interventional lung assist*”.mp.
2 (extracorporeal adj (CO2 or “carbon dioxide”) adj removal).mp.
3 ILA*.mp.
4 novalung*.mp.
5 PECLA*.mp.
6 "percutaneous extracorporeal lung assist*”.mp.
7 "partial extracorporeal support*”.mp.
8 (("carbon dioxide” or CO2) adj dialysis*).mp.
9 ECCO2R*.mp.
10 “low flow ECCO2R*”.mp
11 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10
12 Exp Respiratory Distress Syndrome, Adult/
13 “respiratory failure” .mp
14 “acute lung injury” .mp.
15 12 or 13 or 14
16 11 and 15
17 limit 16 to humans
Supplementary Table 1. Technical details of ECCO$_2$R, management strategies, and anticoagulation protocols

Mode of ECCO$_2$R	Morris, et al., 1994$^{[[1]]}$	Bein, et al., 2013$^{[[1]]}$	McNamee, et al., 2021$^{[[1]]}$
Model and manufacturer of ECCO$_2$R	Veno-venous	Arterio-venous	Veno-venous
	Roller pump and two Sci Med 3.5 m2 membrane lungs (ML) in seriesa	ilA, Novalung, Heilbronn, Germany	Hemolung-RAS, ALang, Pittsburgh, USA
Cannulate(e) type	NRb	Arterial cannula (≤ 15 Fr)	Dual-lumen cannula (15.5 Fr)
Cannulate(e) site	NRb	Venous cannula (typically 2 sizes larger than arterial)	Right internal jugular vein or any femoral vein.
Flow settings	~2.4 L/min	~1 – 2 L/min	350 – 500 mL/min
Sweep gas settings	15 L/min per ML3	Stepwise increase to 10 L/min3	Started at 1 L/min. Increased in 1-2 L/min increments until:
	When:	When:	• pH ≥ 7.2
	• On CPAP ventilation	• FIO$_2$ < 0.5	• V$_T$ ≤ 3 mL/kg PBW
	• FIO$_2$ 0.4	• PEEP ≤ 12 cmH$_2$O	• Pplat ≤ 25 cmH$_2$O
	• PEEP 10 – 15 cmH$_2$O	• On an assisted spontaneous breathing ventilator mode	Maximum 10 L/min.
	Or.	Then, reduce sweep gas to 1 L/min.	Then, reduce sweep gas in 1 L/min increments until at 1L/min.
	• On low-frequency IMV for ≥ 6 hours with no sweep gas flow	If stable for 2 hours, may decannulate.	If stable at 1L/min for 12 hours, may decannulate.
Weaning strategy	Then, may decannulate.b	When:	When:
		• Signs of clinical improvement	• Signs of clinical improvement
		• PaO$_2$/FIO$_2$ ≥ 225 mmHg	• PaO$_2$/FIO$_2$ ≥ 225 mmHg
		• Pplat ≤ 25 cmH$_2$O during trial of	• Pplat ≤ 25 cmH$_2$O during trial of
		V$_T$ 6 mL/kg PBW	V$_T$ 6 mL/kg PBW
		Then, reduce sweep gas in 1 L/min increments until at 1L/min.	Then, reduce sweep gas in 1 L/min increments until at 1L/min.
Anticoagulant	Unfractionated heparin	Unfractionated heparin	Unfractionated heparin
Anticoagulation target	ACT 180 – 210 s; APTTr 1.8 – 2.5	PTT 40 – 50 s	APTTr 1.5-2.0
Duration of ECCO$_2$R, days	9 ± 2	7 ± 4	4 ± 2

for randomised controlled trials.
Adjunctive therapies, % ECCO₂R vs. standard care

Therapy	ECCO₂R	Standard Care	Stat.
Prone position	NR	NR	8 vs. 8^
Neuromuscular blockade	NR	NR	52 vs. 33^
Inhaled nitric oxide	NR	NR	3 vs. 2^

^ Device was investigator-designed. The pump type was not described in the trial manuscript but was referenced as being as Gattinoni, et al, 1984.

^ These details were not reported in the trial manuscript. However, Gattinoni, et al., 1986, describes cannulation of the IVC via the femoral vein for venous access and cannulation of the SVC via the right internal jugular vein for venous return, or dual-lumen cannulation of the IVC via the femoral vein, or saphenous-saphenous venous cannulation.

^ Sweep gas settings were not reported in the trial manuscript but were obtained from a published pilot trial.

^ Mean ± sd.

^ Day 3.

ACT – activated clotting time; APTTr – activated partial thromboplastin time ratio; CPAP – continuous positive airway pressure; ECCO₂R – extracorporeal membrane oxygenation; F_{I_O₂} – inspired fraction of oxygen; IMV – intermittent mandatory ventilation; NR – not reported; PaO_{2}/F_{I_O₂} – arterial partial pressure of oxygen to inspired fraction of oxygen ratio; PEEP – positive end expiratory pressure; Pplat – plateau airway pressure; VT – tidal volume.
Supplementary Table 2. Risk of bias rationale for randomised controlled trials.

Study	Randomisation process	Assignment to intervention	Missing outcome data	Outcome measurement	Selective outcome reporting	Other
Morris, et al. [17]	Randomisation method not described. No good evidence that baseline imbalances suggest an issue with the randomisation process. However, ECCO2R patients had a significantly longer duration of illness at randomisation	Non-blinded. Two patients assigned to ECCO2R did not receive it (one died prior to initialisation and one recovered). Analysis was conducted on an intention-to-treat basis. Supportive care was highly protocolised with no evidence to suggest significant deviations from protocol.	No loss to follow-up.	Non-blinded but binary outcome.	Mortality, length of stay, and adverse events reported.	Trial stopped early due to futility.
Bein, et al. [18]	Telephone randomisation via a random number table generated by the trial statistician. Well balanced at randomisation.	Non-blinded. All patients assigned to ECCO2R received it. The study did not protocolise supportive care. There were significant differences in the cumulative doses of sedatives between groups, which is known to mediate duration of mechanical ventilation.	No loss to follow-up.	Non-blinded but binary outcome.	Limited reporting of mortality outcomes and adverse events.	Trial stopped early due to futility.
McNamee, et al. [8]	Online or telephone randomisation using a computer-generated schedule of variable block sizes. Well balanced at randomisation.	Non-blinded. Seventeen (8%) patients assigned to ECCO2R did not receive it (8 improved, 6 had technical issues with ECCO2R, 2 deteriorated, 1 withdrew consent). One patient in the control group received ECCO2R. Analysis was conducted on an intention-to-treat basis. The study did not protocolise supportive care. There was a significantly higher use of neuromuscular blocking drugs and a lower rate of proning in the ECCO2R group, both of which are known to mediate outcome in AHRF.	A small number of patients were not included in the primary analysis. There is no evidence to suggest this biased the result.	Non-blinded but binary outcome.	Pre-published study protocol.	Trial stopped early due to futility.

AHRF – acute hypoxaemic respiratory failure; ECCO2R – extracorporeal carbon dioxide removal.
Supplementary Table 3. Baseline characteristics of included observational studies.

Year	Design	Mode of ECCO₂R	Co-intervention	Comparator	n	Age, years	Sex	PaO₂/FiO₂ ratio, mmHg	Aetiology, %	Notes
1997	Controlled trial	VV	MV	36	8	35 ± 13	NR	74 ± 28	Pneumonia (44)	
2006	Retrospective cohort	AV	VV	90	90	44 (26 – 59)	21 F/69 M	58 (47 – 78)	Pneumonia (33)	
2009	Controlled trial	VV	MV	32	10	64 ± 14	3 F/10 M	136 ± 30	Pneumonia (34)	
2009	Prospective cohort	AV	VV	51	51	52 (40 – 59)	8 F/43 M	75 (62 – 130)	NR	Pilot study
2010	Retrospective cohort	AV	HFOV	21	21	51 (42 – 61)	5 F/16 M	61 (47 – 86)	Pneumonia (81)	
2011	Matched cohort	AV	Aspirin ECCO₂R	30	30	47 ± 7	4 F/26 M	127 ± 56	Trauma (43)	
2011	Retrospective cohort	AV	VV	13	13	52 ± 19	5 F/8 M	100 ± 29	Pneumonia (54)	
2012	Prospective cohort	AV	VV	11	11	58 ± 14	3 F/8 M	110 ± 37	Pneumonia (64)	
2014	Retrospective cohort	VV	CRRT	16	16	59 ± 17	9 F/7 M	133 ± 71	Pneumonia (56)	Novel device
2015	Retrospective cohort	VV	VV-ECMO	255	63	50 ± 16	12 F/51 M	93 (66 – 153)	Pulmonary-ARDS (67)	
2016	Prospective cohort	VV	VV	15	15	55 ± 19	4 F/11 M	159 ± 34	Pneumonia (80%)	Feasibility study
2018	Matched cohort	VV	CRRT CRRT	54	14	60 ± 20	NR	NR	NR	
2019	Prospective cohort	VV	CRRT	95	95	60 ± 14	31 F/64 M	173 ± 61	Pneumonia (82)	Pilot study
2019	Prospective cohort	VV	CRRT	20	20	64 (43 – 82)	8 F/12 M	159 ± 36	Pneumonia (85)	Pilot study
2019	Prospective cohort	VV	CRRT	14	11	61 ± 11	4 F/7 M	211 ± 60	Multiple²	
2020	Retrospective cohort	AV	VV	73	73	51 ± 17	28 F/45 M	126 ± 59	Pneumonia (60)	
2021	Quasi-experimental	VV	VV	18	18	64 (57 – 76)	5 F/13 M	117 (100 – 136)	Pneumonia (83)	Pilot study
2021	Prospective cohort	VV	CRRT	12	12	68 (62 – 71)	6 F/6 M	NR	Covid-19 ARDS (100)	

– number of patients who received ECCO₂R and were analysed.

¹ – mean ± SD or median (IQR).

² – commonest reported aetiology of respiratory failure.

³ – Two patients with ARDS, two with pneumonia, two with endocarditis, two with sepsis.

AHFR – acute hypoxaemic respiratory failure; ARDS – acute respiratory distress syndrome; AV – arterio-venous; Covid-19 – Coronavirus disease – 19; CRRT – continuous renal replacement therapy; ECCO₂R – extracorporeal carbon dioxide removal; ECMO – extracorporeal membrane oxygenation; MV – mechanical ventilation; VV – veno-venous.
Supplementary Table 4. Clinical outcome measures for ECCO$_2$R reported by observational studies.

Study (Year)	n (%)	28/30-day mortality	ICU mortality	Hospital mortality	ICU length of stay, days
Guinard, et al. [19]	NR	NR	6/8 (75)	NR	
Bein, et al., 2006 [20]	NR	NR	53/90 (58.9)	NR	
Terragni, et al. [21]	NR	NR	NR	NR	
Zimmermann, et al. [22]	NR	NR	25/51 (49)	NR	
Lubnow, et al. [23]	9/21 (42.9)a	NR	12/21 (57.1)	NR	
Bein, et al., 2011 [24]	NR	NR	1/15 (6.7)	NR	
Neirhaus, et al. [25]	NR	7/13 (53.8)	NR	34.5 ± 65.3	
Cho, et al. [26]	NR	NR	NR	NR	
Quintard, et al. [27]	NR	7/16 (43.8)	NR	20.3 ± 10.7	
Weingart, et al. [28]	30/63 (47.6)b	NR	35/63 (55.6)	NR	
Fanelli, et al., 2016 [29]	7/15 (46.7)c	NR	NR	NR	
Fanelli, et al., 2018 [30]	NR	NR	NR	NR	
Combes, et al. [31]	26/95 (27.4)a	NR	36/95 (37.9)	NR	
Nentwich, et al. [32]	NR	NR	NR	NR	
Moerer, et al. [33]	NR	NR	NR	NR	
Petren, et al. [34]	NR	NR	36/73 (49.3)	NR	
Goursand, et al. [35]	NR	NR	NR	NR	
Ding, et al. [36]	8/12	NR	NR	21 (16 – 36)	

a – 30-day mortality
b – 28-day mortality

ICU – intensive care unit; NR – not reported.
Supplementary Table 5. ROBINS-I rationale for risk of bias in observational studies.

	Confounding	Selection of participants	Classification of interventions	Deviation from intervention	Missing data	Outcome measurement	Selection of reported results
Guinard, et al. [19]	Serious	Low	Low	Critical	No information	Low	Serious
	Only a small number of potential confounders accounted for in regression analysis.			Nine patients meeting criteria for ECCO2R did not receive it.			
	Terragni, et al. [21]	Serious	Low	No information	No information	Moderate	Serious
	Multiple confounding variables not controlled for.						

Primary outcome was binary.

Secondary outcomes were not pre-specified.

Outcome measures only minimally influenced by knowledge of the intervention and any error in measurement is unlikely to be related to intervention status.

In recording multiple clinical, imaging, and biochemical results there is a high risk of selective reporting.
Supplementary Table 6. Primary outcome (mortality up to day 30 (or latest)) sensitivity analysis.

	Informative priora	Non-informative prior		
	Mean posterior relative effectb (95% CrI)	Heterogeneity (I^2)	Mean posterior relative effectb (95% CrI)	Heterogeneity (I^2)
Estimates	1.19 (0.70–2.29)	41.5%	1.10 (0.60–2.05)	68.8%

a Derived from the results of Guinard, et al.

b Relative risk.

Crl – credible interval.
Supplementary Table 7. Safety and adverse events summary.

Randomised controlled trials	ECCO₂R mode	Major haemorrhage\(^a\)	Intracerebral haemorrhage	Cannulation complications\(^b\)	Limb ischaemia \[^{10}\]	Circuit complications\(^c\)
Morris, et al. \[^{17}\]	VV	100 [0]	NR	NR	NR	NR
Bein, et al. 2013 \[^{18}\]	AV	NR	NR	5	2.5	NR
McNamee, et al. \[^{19}\]	VV	8 [1]	10 [1]	4	NR	4

Observational studies						
Guinand, et al. \[^{19}\]	VV	25 [12.5]	12.5 [0]	NR	NR	NR
Bein, et al. 2006 \[^{20}\]	AV	1	1	7	10	NR
Terragni, et al. \[^{21}\]	VV	0 [0]	0 [0]	40	0 [0]	40
Zimmermann, et al. \[^{22}\]	AV	6	NR	6	NR	NR
Lubnow, et al. \[^{23}\]	AV	10	5	NR	14	14
Bein, et al. 2011 \[^{24}\]	AV	NR	NR	NR	NR	NR
Neirhaus, et al. \[^{25}\]	AV	NR	NR	15	NR	NR
Cho, et al. \[^{26}\]	AV	9	NR	18	NR	72
Quintard, et al. \[^{27}\]	VV	NR	NR	NR	NR	NR
Wengart, et al. \[^{28}\]	AV	NR	NR	NR	NR	21
Fanelli, et al. 2016 \[^{29}\]	VV	NR	NR	NR	NR	NR
Fanelli, et al. 2018 \[^{30}\]	VV	NR	NR	NR	NR	NR
Combes, et al. \[^{31}\]	VV	6	1	2	NR	17
Nentwich, et al. \[^{32}\]	VV	NR	NR	NR	NR	NR
Moerter, et al. \[^{33}\]	VV	NR	NR	NR	NR	NR
Petren, et al. \[^{34}\]	AV	NR	NR	1	NR	NR
Goursand, et al. \[^{35}\]	VV	6	NR	NR	NR	28
Ding, et al. \[^{36}\]	VV	NR	NR	NR	NR	NR

\(^{a}\) There were disparate definitions of major haemorrhage, and each study was classified as such if the authors report bleeding to be significant or serious.

\(^{b}\) Cannulation complications include; cannula-site haematoma or bleeding, false-aneurysm formation or vascular injury, and catheter displacement.

\(^{c}\) Circuit complications include; clotting, device failure, and infection.

\(^{d}\) Bein, et al., did not report complications under a classification but did report a low rate of ECCO₂R-related adverse events (n = 3). These are included under the appropriate headings.

\(^{e}\) McNamee, et al., reported adverse events using an adverse and serious adverse event nomenclature. The rates above are for adverse events, which by definition include serious adverse events.

AV – arterio-venous; NR – not reported; VV – veno-venous.
Supplementary Table 8. Summary of physiological changes reported by included studies.

Randomised controlled trials	Timepoint	PaCO₂, mmHg	pH	V̇e, ml/kg	V̇e, L/min	Pplat, cmH₂O	PaO₂/FiO₂, mmHg
Morris, et al. [79]	Randomisation	NR	7.36 ± 0.02	8.9 ± 0.6	15.0 ± 1.1	55 ± 35	63 ± 4
	3 – 6 hours	NR	NR	3.0 ± 0.3	NR	45 ± 21	NR
Bein, et al., 2013 [78]	Randomisation	57 ± 12	7.34 ± 0.07	5.9 ± 0.2	9.9 ± 1.6	29 ± 5	152 ± 37
	Day 3	NR	NR	NR	NR†	NR	NR
McNamee, et al. [80]	Randomisation	54 (47 – 63)	7.30 (7.25 – 7.37)	6.3 (5.8 – 7.0)	NR	26 (26 – 30)	118 (96 – 13)
	Day 3	61 ± 14	7.32 ± 0.09	4.4 ± 1.7	7.6 ± 2.5	23 ± 5	148 ± 49

Observational studies

Guinard, et al. [81]	Physiological variables not reported on an ECCO-R vs. non-ECCO-R basis						
Bein, et al., 2006 [79]	Pre-ECCO-R	60 (48 – 80)	7.27 (7.18 – 7.36)	430 (360 – 540)	13.0 (10.0 – 16.4)	38 (35 – 40)	58 (47 – 78)
	24 hours	34 (30 – 39)	7.45 (7.41 – 7.50)	380 (320 – 470)	9.9 (8.0 – 14.8)	35 (31 – 39)	101 (74 – 142)
Terragni, et al. [82]	Baseline	74 (71)	7.20 (71)	4.2 (71)	NR	24 (71)	122 (71)
	Day 3	49 (71)	7.39 (71)	4.5 (71)	NR	23 (71)	217 (71)
Zimmermann, et al. [83]	Pre-ECCO-R	73 (61 – 86)	7.23 (7.16 – 7.30)	6.6 (5.5 – 7.2)	11.5 (9.3 – 12.5)	35 (31 – 38)	75 (62 – 130)
	24 hours	41 (34 – 48)	7.44 (7.37 – 7.49)	4.4 (3.4 – 5.4)	6.6 (5.5 – 8.3)	30 (26 – 34)	110 (86 – 160)
Labnow, et al. [84]	Pre-ECCO-R	58 (50 – 70)	7.28 (7.16 – 7.36)	NR	NR	28 (24 – 31)	61 (47 – 86)
	24 hours	36 (32 – 42)	7.45 (7.36 – 7.54)	HFOV	33 (29 – 34)	102 (71 – 135)	
Bein, et al., 2011 [85]	Physiological variables not reported for the overall cohort						
Neirhaus, et al. [86]	Pre-ECCO-R	80 ± 23	7.18 ± 0.22	293 ± 94	10.2 ± 3.4	34 ± 35	100 ± 29
	Day 3	50 ± 8	7.41 ± 0.10	178 ± 90	3.3 ± 2.4	27 ± 4	152 ± 55
Cho, et al. [87]	Pre-ECCO-R	84 ± 23	7.18 ± 0.13	331 ± 87	9.4 ± 2.5	30 ± 7	110 ± 37
	Day 5	49 ± 14	7.41 ± 0.05	324 ± 94	6.7 ± 1.9	25 ± 11	89 ± 18
Quintard, et al. [88]	Pre-ECCO-R	78 ± 14	7.17 ± 0.09	5.7	NR	26 ± 3	13 ± 43
	12 hours	48 ± 10	7.40 ± 0.07	5.6	NR	26 ± 3	13 ± 43
Wengart, et al. [89]	Physiological variables only reported at baseline						
Fanelli, et al., 2016 [90]	Pre-ECCO-R	51 ± 15	7.36 ± 0.1	6.2 ± 0.7	NR	28 ± 2	159 ± 34
	Day 3	49 ± 11	7.40 ± 0.1	4.8 ± 0.7	NR	23 ± 3	176 ± 80
Fanelli, et al., 2018 [91]	Pre-ECCO-R	NR	7.0 ± 0.5	NR	NR	NR	NR
	Day 3	NR	4.8 ± 0.4	NR	NR	NR	NR
Combes, et al. [92]	Pre-ECCO-R	48 ± 9	7.34 ± 0.08	6.0 ± 0.2	10.2 ± 2.3	27 ± 3	175 ± 61
	24 hours	47 ± 6	7.39 ± 0.04	4.1 ± 0.3	6.0 ± 1.1	23 ± 3	167 ± 34
Neuntwich, et al. [93]	Pre-ECCO-R	66 ± 9	7.20 ± 0.08	6.0 ± 0.7	9.6 ± 1.7	30 ± 4	159 ± 36
	Day 3	54 ± 14	7.27 ± 0.14	5.4 ± 1.1	8.5 ± 2.1	28 ± 4	151 ± 35
Moerer, et al. [94]	Pre-ECCO-R	34 ± 6	NR	425 ± 51	10.1 ± 1.9	15.4	211 ± 60
	6 hours	32 ± 3	395 ± 66	9.6 ± 2.6	15 ± 5	NR	
Petren, et al. [95]	Pre-ECCO-R	79 ± 34	7.23 ± 0.14	4.8 ± 1.6	NR	33 ± 6	126 ± 59
	24 hours	39 ± 13	7.40 ± 0.1	4.8 ± 1.5	NR	29 ± 4	136 ± 34
Goursand, et al. [96]	Day 0 ECCO-R	43 (38 – 58)	7.38 (7.34 – 7.42)	6.1 (6.0 – 6.4)	10.7 (10.1 – 12.2)	26 (24 – 28)	109 (97 – 136)
	Day 1 ECCO-R	50 (45 – 59)	7.31 (7.26 – 7.35)	4.0 (4.0 – 4.2)	7.0 (6.4 – 8.4)	22 (20 – 26)	116 (83 – 161)
Ding, et al. [97]	Pre-ECCO-R	72 ± 17	NR	5.9 ± 0.2	NR	34 ± 7	NR
	24 hours	65 ± 17	NR	5.1 ± 0.4	NR	26 ± 3	NR
* – Reported as peak inspiratory pressure.

b – Data presented as a figure, but inappropriate scaling prevented digital retrieval.

c – Reported as average tidal volume in mL.

d – Reported as mean airway pressure.

e – Digitally retrieved.

f – No metric of dispersion reported.

g – Reported as inspiratory pressure.

h – Values at 1 hour.

ECCO2R – extracorporeal membrane oxygenation; HFOV – high frequency oscillatory ventilation; NR – not reported; PaCO2 – arterial partial pressure of carbon dioxide; PaO2/FiO2 – arterial partial pressure of oxygen to inspired fraction of oxygen ratio; Pplat – plateau airway pressure; V_e – minute volume; V_t – tidal volume.

Data are presented as mean ± SD or median (IQR).
Ongoing clinical trials of ECCO2R in acute hypoxaemic respiratory failure.

Study	Design	Start date	Completion date	Status	n total	Country	Record identifier
Low-flow extracorporeal carbon dioxide removal in covid-19 associated acute respiratory distress syndrome	Observational	May, 2020	June, 2020	Recruiting	20	Germany	NCT04351906
Post-market study of low-flow ECCO2R using Prisma-Lung+	Observational	April, 2021	June, 2022	Recruiting	50	France	NCT04617093
Registry of the experience of extracorporeal CO₂ removal in intensive care units (REXECOR)	Registry	January, 2016	June, 2022	Recruiting	200	France	NCT02965079
ECCO2R – mechanical power study	Observational	March, 2019	March, 2023*	Recruiting	15	Italy	NCT03939260
Use of extracorporeal CO₂ Removal in case of moderate to severe ARDS to apply ultraprotective mechanical ventilation strategy	Observational	February, 2021	November, 2021	Recruiting	20	France	NCT04556578
Ultra-protective lung ventilation with extracorporeal CO₂ removal for moderate ARDS (SUPERNOVA)	Randomised trial	December, 2023*	Not yet recruiting	230	France	NCT04903262	
Enhanced lung protective ventilation with ECCO2R during ARDS (PROVE)	Randomised trial	May, 2018	December, 2022	Recruiting	14	France	NCT03525691

* – estimated completion date.

ECCO2R – extracorporeal carbon dioxide removal.
Supplementary Figure 1. Inclusion diagram. ECCO$_2$R – extracorporeal carbon dioxide removal; ECMO – extracorporeal membrane oxygenation
Supplementary Figure 2. Risk of bias assessments for observational studies. Performed using the Cochrane ROBINS-I. A detailed rationale for each assessment is provided in supplementary table 5.
Supplementary Figure 3. Forest plots for secondary outcomes. Non-informative prior distributions were used for pooling secondary outcomes. Estimates are presented as relative risk or mean difference (95% credible intervals). Both mean and shrinkage estimates are shown. ECCO₂R – extracorporeal carbon dioxide removal.
Supplementary Figure 4. Trial sequential analysis assuming ARR ≥ 5%. The Z-value is the test statistic where $|Z| = 1.96$ is equivalent to $P = 0.05$ (green line). The Z-score horizontal bounds are set with O'Brien-Fleming alpha monitoring and beta futility boundaries (red lines). The required information size (RIS) is diversity adjusted and set to detect a 5% absolute difference in mortality (from 35% to 25%) at 80% power. Two tailed alpha = 0.05 and beta = 0.2.