On Higher Regularized Traces of a Differential Operator with Bounded Operator Coefficient Given in a Finite Interval

Yonca Sezer, Özlem Bakşi and Serpil Karayel

Abstract. In this work, we find a higher regularized trace formula for a regular Sturm–Liouville differential operator with operator coefficient.

Mathematics Subject Classification. 47A10, 34L20, 34L05.

Keywords. Hilbert space, Eigenvalue, spectrum, trace class operator, regularized trace.

1. Introduction and Preliminaries

The history of regularized trace formulas for ordinary differential operators goes back to the year 1953. In that year, Gelfand and Levitan [13] studied the boundary value problem

\[-y'' + q(x)y = \lambda y, \quad y'(0) = y'() = 0,\]

with \(q(x) \in C[0, \pi]\). They found the formula

\[\sum_{n=0}^{\infty} (\lambda_n - \mu_n) = \frac{1}{4}(q(0) + q()),\]

under the assumption \(\int_0^\pi q(x)dx = 0\), where the \(\mu_n\) are the eigenvalues of this problem. \(\lambda_n = n^2\) are the eigenvalues of the same problem with \(q(x) = 0\). After the pinioneeing work by Gelfand–Levitan, there was a growing interest and many scientists used the same method to obtain the regularized traces of ordinary differential operators. Later, Dikii [6] gave another proof of Gelfand–Levitan’s formula from a different point of view. Afterward, Dikii [7] and Gelfand [12] made significant progress in literature by computing regularized sums of powers of eigenvalues. Later on, Levitan [16] calculated the regularized traces of Sturm–Liouville Problem with a new method. This research led to Faddeev [9], who connected the trace theory with singular
differential operators. Gasimov [11] made the first study combining singular operators with discrete spectrum. In the sequel, in many other papers such as [8,10,17,19] regularized traces of various scalar differential operators were investigated. In the references [2,3,14,18] the regularized trace formulas of Sturm–Liouville operators with operator coefficient were found.

In this paper, we compute the higher-order regularized trace of Sturm–Liouville operator. Considering this study as a continuation of the chaining historical development studies that we gave above, the calculation of regularized trace of higher order will take its place in the literature as a generalization. We open the discussion by recalling some facts:

Let H be an infinite-dimensional separable Hilbert space. We will denote the inner product and norm by $(.,.)_H$ and $\|\cdot\|_H$ in H. Let $H_1 = L^2(0,\pi; H)$ be the set of all strongly measurable functions f defined on $[0,\pi]$ and taking values in the space H. The following conditions hold for all functions f in H_1:

1. The scalar function $(f(x),g)_H$ is Lebesgue measurable on the interval $[0,\pi]$, for every $g \in H$,
2. $\int_0^\pi \|f(x)\|_H^2 \, dx < \infty$.

H_1 is a normed linear space. We will denote the inner product and norm by $(.,.)$ and $\|\cdot\|$ in H_1. If the inner product is defined by

$$(f_1,f_2) = \int_0^\pi (f_1(x),f_2(x))_H \, dx,$$

for two arbitrary elements f_1 and f_2 of H_1, then the space H_1 becomes a separable Hilbert space, [15]. Consider Sturm–Liouville problems formed by

$L_0 y = -y''$, \hspace{1cm} y'(0) = y' (\pi) = 0 \hspace{1cm} (1.1)

$L y = -y'' + Q(x)y$, \hspace{1cm} y'(0) = y' (\pi) = 0 \hspace{1cm} (0 \leq x \leq \pi), \hspace{1cm} (1.2)$

in H_1. Assume that the operator function $Q(x)$ in (1.2) satisfies the conditions:

(Q1) $Q(x)$ has $(2k-2)^{th}$ order weak derivatives $(k \geq 2)$ and $Q^{(i)}(x) : H \to H$ $(i = 0,1,2,\ldots,2k-2)$ are self-adjoint kernel operators for every $x \in [0,\pi]$,

(Q2) $\|Q\| < \frac{1}{2}$,

(Q3) There is an orthonormal basis $\{\varphi_n\}_{n=1}^\infty$ of H such that $\sum_{n=1}^\infty \|Q(x)\varphi_n\| < \infty$,

(Q4) The functions $\|Q^{(i)}(x)\|_{\sigma_1(H)}$ $(i = 0,1,2,\ldots,2k-2)$ are both bounded and measurable in $[0,\pi]$.

Here, $\sigma_1(H)$ denotes the Banach space consisting of kernel operators from H to H. The spectrum of the operator L_0, denoted by $\sigma(L_0)$ is the set $\{m^2\}_{m=0}^\infty$. Every point of this set is an eigenvalue of L_0 with infinite multiplicity [14]. The eigenvectors corresponding to m^2 have the form:

$$\psi_{mn} = K_m \varphi_n \cos mx,$$
where \(m = 0, 1, 2, \ldots \); \(n = 1, 2, \ldots \) and
\[
K_m = \begin{cases}
\frac{1}{\sqrt{\pi}}, & m = 0 \\
\sqrt{\frac{2}{\pi}}, & m = 1, 2, \ldots
\end{cases}
\]
Let \(R_0^0 \) and \(R_\lambda \) be resolvents of the operator \(L_0 \) and \(L \), respectively. Since the operator \(Q(x) \) satisfies the condition (Q3), \(QR_\lambda^0 : H_1 \rightarrow H_1 \) is a kernel operator for every \(\lambda \notin \{ m^2 \}_{m=0}^\infty \) [5]. One can prove that the spectrum of the operator \(L \) is a subset of the union of pairs of disjoint intervals \([m^2 - \frac{1}{2}, m^2 + \frac{1}{2}]\) \((m = 0, 1, 2, \ldots)\). \(m^2 \) can be an eigenvalue of \(L \) with finite or infinite multiplicity and \(\lim_{n \to \infty} \lambda_{mn} = m^2 \), [14]. Here, \(\{ \lambda_{mn} \}_{n=1}^\infty \) are eigenvalues of \(L \) belonging to the interval \([m^2 - \frac{1}{2}, m^2 + \frac{1}{2}]\). Each point different from \(m^2 \) of the spectrum of \(L \) is an isolated eigenvalue with finite multiplicity, [4]. Since \(QR_\lambda^0 \) is a kernel operator and
\[
R_\lambda - R_0^0 = -R_\lambda QR_\lambda^0, \tag{1.4}
\]
we have \(R_\lambda - R_0^0 \in \sigma_1(H_1) \) for each \(\lambda \) which belongs to the resolvent set of \(L \). In this case, from [5] we obtain the formula
\[
\text{tr} \left(R_\lambda - R_0^0 \right) = \sum_{m=0}^\infty \sum_{n=1}^\infty \left(\frac{1}{\lambda_{mn} - \lambda} - \frac{1}{m^2 - \lambda} \right). \tag{1.5}
\]

2. Main Results

The main purpose of this note is to obtain the higher-order trace formula for Sturm–Liouville problem (1.2).

Theorem 2.1. If the operator function \(Q(x) \) satisfies the conditions (Q1)–(Q4), then the \(k \)th regularized trace formula of \(L \) is:
\[
\sum_{m=0}^\infty \left\{ \sum_{n=1}^\infty \left(\lambda_{mn}^k - m^{2k} \right) - k \sum_{j=2}^{2k+2} (-1)^j j^{-1} \text{Res}_{\lambda=m^2} \left[\lambda^{k-1} \text{tr}(QR_\lambda^0)^j \right] \right. \right.
\]
\[
- k \pi^{-1} m^{2k-2} \int_0^\pi \text{tr} Q(x) \, dx - 4k \pi^{-1} m^{2k} \sum_{i=2}^k m^{-2i} a_i \bigg\} = (-1)^{k-1} \frac{k}{4\pi} \left(\text{tr} Q^{(2k-2)}(\pi) + \text{tr} Q^{(2k-2)}(0) \right) + \frac{2}{\pi} k a_k. \tag{2.1}
\]
Here, \(a_i = (-1)^i 2^{-2i} \left(\text{tr} Q^{(2i-3)}(\pi) - \text{tr} Q^{(2i-3)}(0) \right) \) \((i = 2, 3, \ldots, k)\).

Theorem 2.2. Let \(Q(x) \) satisfy conditions
\[
\begin{align*}
(Q5) \quad & Q^{(2i-3)}(0) = Q^{(2i-3)}(\pi) = 0 \quad (2 \leq i \leq k), \\
(Q6) \quad & \int_0^\pi \text{tr} Q(x) \, dx = 0.
\end{align*}
\]
If \(Q(x) \) satisfies the conditions (Q1)–(Q6), then the formula (2.1) becomes:
\[
\sum_{m=0}^\infty \left\{ \sum_{n=1}^\infty \left(\lambda_{mn}^k - m^{2k} \right) - k \sum_{j=2}^{2k+2} (-1)^j j^{-1} \text{Res}_{\lambda=m^2} \left[\lambda^{k-1} \text{tr}(QR_\lambda^0)^j \right] \right\} \right. \right.
\]
\[
= (-1)^{k-1} k 2^{-2k} \left[\text{tr} Q^{(2k-2)}(0) + \text{tr} Q^{(2k-2)}(\pi) \right]. \tag{2.2}
\]
3. Proofs

If we multiply the equality (1.5) by $\frac{\lambda_k}{2\pi i}$, with $k \geq 2$, $k \in \mathbb{Z}$ and integrate on the circle $|\lambda| = b_p = p^2 + p$ (p ≥ 1), then we have

$$
\frac{1}{2\pi i} \int_{|\lambda|=b_p} \lambda^k \text{tr}(R_\lambda - R_\lambda^0) \, d\lambda = \sum_{m=0}^{p} \sum_{n=1}^{\infty} (m^{2k} - \lambda_{mn}^k).
$$

(3.1)

Using the formula (1.4), we obtain

$$
R_\lambda - R_\lambda^0 = \sum_{j=1}^{N} (-1)^j R_\lambda^0 (QR_\lambda^0)^j + (-1)^{N+1} R_\lambda (QR_\lambda^0)^{N+1},
$$

where $N \geq 1$ is any natural number. Using the last equality, we rewrite (3.1) as follows:

$$
\sum_{m=0}^{p} \sum_{n=1}^{\infty} (\lambda_{mn}^k - m^{2k}) = \sum_{j=1}^{N} M_{pj} + M_{p}^{(N)},
$$

(3.2)

here,

$$
M_{pj} = \frac{(-1)^j}{2\pi i} \int_{|\lambda|=b_p} \lambda^k \text{tr} \left[R_\lambda^0 (QR_\lambda^0)^j \right] d\lambda,
$$

(3.3)

$$
M_{p}^{(N)} = \frac{(-1)^N}{2\pi i} \int_{|\lambda|=b_p} \lambda^k \text{tr} \left[R_\lambda (QR_\lambda^0)^{N+1} \right] d\lambda.
$$

(3.4)

Lemma 3.1. If the operator function $Q(x)$ satisfies the condition $(Q3)$, then

$$
M_{pj} = \frac{(-1)^j k}{2\pi i j} \int_{|\lambda|=b_p} \lambda^{k-1} \text{tr} (QR_\lambda^0)^j d\lambda.
$$

(3.5)

Proof. Using QR_λ^0 as a kernel operator for every $\lambda \neq m^2$ in the space $\sigma_1(H_1)$, one can prove that QR_λ^0 is analytic with respect to the norm in the space $\sigma_1(H_1)$ in the domain $C \setminus \{m^2\}$ and

$$
\text{tr} \left\{ [(QR_\lambda^0)^j]' \right\} = j \text{tr} \left[(QR_\lambda^0)' (QR_\lambda^0)^{j-1} \right].
$$

(3.6)

If we consider the equation $(QR_\lambda^0)' = (QR_\lambda^0)^2$, then we state the formula (3.6):

$$
\text{tr} \left\{ [(QR_\lambda^0)^j]' \right\} = j \text{tr} \left[R_\lambda^0 (QR_\lambda^0)^j \right].
$$

(3.7)

If we substitute the formula (3.7) in (3.3), then we have

$$
M_{pj} = \frac{(-1)^j}{2\pi i j} \int_{|\lambda|=b_p} \lambda^k \text{tr} \left\{ [(QR_\lambda^0)^j]' \right\} d\lambda.
$$
From the last equality, we have

\[M_{pj} = \frac{(-1)^{j+1}}{2\pi i j} \int_{|\lambda|=b_p} \text{tr} \left\{ \lambda^{k}(QR^{0}_{\lambda})^{j} \right\} \, d\lambda \]

\[= \frac{(-1)^{j}}{2\pi i j} \int_{|\lambda|=b_p} k\lambda^{k-1}(QR^{0}_{\lambda})^{j} \, d\lambda \]

\[+ \frac{(-1)^{j+1}}{2\pi i j} \int_{|\lambda|=b_p} \text{tr} \left\{ \lambda^{k}(QR^{0}_{\lambda})^{j} \right\} \, d\lambda. \quad (3.8) \]

Moreover, we can show that

\[\text{tr} \left\{ \lambda^{k}(QR^{0}_{\lambda})^{j} \right\} = \left\{ \text{tr} \lambda^{k}(QR^{0}_{\lambda})^{j} \right\}'. \]

Therefore, we have

\[\int_{|\lambda|=b_p} \left\{ \text{tr} \left\{ \lambda^{k}(QR^{0}_{\lambda})^{j} \right\} \right\}' \, d\lambda = \int_{|\lambda|=b_p} \left\{ \text{tr} \lambda^{k}(QR^{0}_{\lambda})^{j} \right\}' \, d\lambda. \quad (3.9) \]

We write the integral on the right-hand side of the equality (3.9) as follows:

\[\int_{|\lambda|=b_p} \left\{ \text{tr} \lambda^{k}(QR^{0}_{\lambda})^{j} \right\} ' \, d\lambda = \int_{|\lambda|=b_p, \text{Im}\lambda \geq 0} \left\{ \text{tr} \lambda^{k}(QR^{0}_{\lambda})^{j} \right\} ' \, d\lambda \]

\[+ \int_{|\lambda|=b_p, \text{Im}\lambda \leq 0} \left\{ \text{tr} \lambda^{k}(QR^{0}_{\lambda})^{j} \right\} ' \, d\lambda. \quad (3.10) \]

Let \(\varepsilon_{0} \) be a constant which satisfies the inequality \(0 < \varepsilon_{0} < b_{p} - (p^{2} + p) \).

Knowing that the function \(\text{tr} \lambda^{k}(QR^{0}_{\lambda})^{j} \) is analytic on simply connected domains \(G_{1} \) and \(G_{2} \) defined by

\[G_{1} = \{ \lambda \in C : b_{p} - \varepsilon_{0} < |\lambda| < b_{p} + \varepsilon_{0}, \text{Im}\lambda > -\varepsilon_{0} \} \]

\[G_{2} = \{ \lambda \in C : b_{p} - \varepsilon_{0} < |\lambda| < b_{p} + \varepsilon_{0}, \text{Im}\lambda < -\varepsilon_{0} \} . \]

The sets \(\{ \lambda \in C : |\lambda| = b_{p}, \text{Im}\lambda \geq 0 \} \) and \(\{ \lambda \in C : |\lambda| = b_{p}, \text{Im}\lambda \leq 0 \} \) are subdomains of \(G_{1} \) and \(G_{2} \), respectively. After calculating the integrals on the right side in (3.10) on these subdomains, we rewrite equality (3.10):

\[\int_{|\lambda|=b_p} \left\{ \text{tr} \lambda^{k}(QR^{0}_{\lambda})^{j} \right\} ' \, d\lambda = \text{tr} \left[-b_{p}(QR^{0}_{b_{p}})^{j} \right] - \text{tr} \left[b_{p}(QR^{0}_{b_{p}})^{j} \right] \]

\[+ \text{tr} \left[b_{p}(QR^{0}_{b_{p}})^{j} \right] - \text{tr} \left[-b_{p}(QR^{0}_{b_{p}})^{j} \right] = 0. \quad (3.11) \]

From (3.8), (3.9) and (3.11), we find

\[M_{pj} = \frac{(-1)^{j}k}{2\pi i j} \int_{|\lambda|=b_p} \lambda^{k-1}(QR^{0}_{\lambda})^{j} \, d\lambda. \]
Now, we are at the position to prove the main results:

Proof of Theorem 2.1: According to Lemma 3.1

\[
M_{p1} = \frac{-k}{2\pi i} \int_{|\lambda|=b_p} \lambda^{k-1} \text{tr}(QR_0^0) d\lambda. \tag{3.12}
\]

Since \(\{\psi_{mn}\}_{m=0, n=1}^\infty \) is an orthonormal basis of the space \(H_1 \), we obtain

\[
M_{p1} = \frac{-k}{2\pi i} \int_{|\lambda|=b_p} \lambda^{k-1} \sum_{m=0}^\infty \sum_{n=1}^\infty (QR_0^0 \psi_{mn}, \psi_{mn}) d\lambda
\]

\[
= k \sum_{m=0}^\infty \sum_{n=1}^\infty m^{2k-2} (QR_0^0 \psi_{mn}, \psi_{mn})
\]

\[
= k \sum_{m=1}^p \sum_{n=1}^\infty m^{2k-2} \frac{\pi}{2} \int_0^\pi (Q(x)\varphi_n, \varphi_n)_{H} \cos^2 mx \, dx
\]

\[
= k \sum_{m=1}^p \sum_{n=1}^\infty m^{2k-2} \left[\frac{\pi}{2} \int_0^\pi (Q(x)\varphi_n, \varphi_n)_{H} \left(1 + \cos 2mx\right) dx \right]
\]

\[
= \frac{k}{\pi} \sum_{m=1}^p m^{2k-2} \int_0^\pi \text{tr}Q(x) dx + \frac{k}{\pi} \sum_{m=1}^p m^{2k-2} \int_0^\pi \text{tr}Q(x) \cos 2mx dx
\]

(3.13)

for \(k \geq 2 \). Now, we evaluate the second integral in (3.13):

\[
\int_0^\pi \text{tr}Q(x) \cos 2mx dx = \left[\frac{1}{2m} \sin 2mx \text{tr}Q(x) \right]_0^\pi - \frac{1}{2m} \int_0^\pi \text{tr}Q'(x) \sin 2mx dx
\]

\[
= -\frac{1}{2m} \int_0^\pi \text{tr}Q'(x) \sin 2mx dx
\]

\[
= \frac{1}{4m^2} \left(\text{tr}Q'(\pi) - \text{tr}Q'(0) \right) - \frac{1}{4m^2} \int_0^\pi \text{tr}Q''(x) \cos 2mx dx.
\]

If we continue the process in a similar way, then we obtain the result of the integration:

\[
\int_0^\pi \text{tr}Q(x) \cos 2mx dx = \sum_{i=2}^k \frac{(-1)^i}{(2m)^{2i-2}} \left(\text{tr}Q^{(2i-3)}(\pi) - \text{tr}Q^{(2i-3)}(0) \right)
\]

\[
+ \frac{(-1)^{k-1}}{(2m)^{2k-2}} \int_0^\pi \text{tr}Q^{(2k-2)}(x) \cos 2mx \, dx. \tag{3.14}
\]
Putting (3.14) into (3.13):

\[M_{p1} = \frac{k}{\pi} \sum_{m=1}^{p} m^{2k-2} \int_{0}^{\pi} \text{tr} Q(x) \, dx \]

\[+ \frac{k}{\pi} \sum_{m=1}^{p} \sum_{i=2}^{k} (-1)^{i} 2^{2-2i} m^{2k-2i} \left(\text{tr} Q^{(2i-3)}(\pi) - \text{tr} Q^{(2i-3)}(0) \right) \]

\[- \frac{k}{\pi} \sum_{m=1}^{p} (-1)^{k} 2^{2-2k} \int_{0}^{\pi} \text{tr} Q^{(2k-2)}(x) \cos 2mx \, dx. \] (3.15)

From (3.2) and (3.15), we have

\[\sum_{m=0}^{p} \left\{ \sum_{n=1}^{\infty} \left(\lambda_{mn}^{k} - m^{2k} \right) - \sum_{j=2}^{N} M_{pj} - k\pi^{-1} m^{2k-2} \int_{0}^{\pi} \text{tr} Q(x) \, dx \right. \]

\[\left. - k\pi^{-1} \sum_{i=2}^{k} (-1)^{i} 2^{2-2i} m^{2k-2i} \left(\text{tr} Q^{(2i-3)}(\pi) - \text{tr} Q^{(2i-3)}(0) \right) \right\} \]

\[= -k\pi^{-1} \sum_{m=1}^{p} (-1)^{k} 2^{2-2k} \int_{0}^{\pi} \text{tr} Q^{(2k-2)}(x) \cos 2mx \, dx + M_{p}^{(N)}. \] (3.16)

Similar to [4], one can show that

\[| M_{p}^{N} | \leq \text{const} \, p^{1+2k-N}. \] (3.17)

From (3.17), we obtain

\[\lim_{p \to \infty} M_{p}^{(2k+2)} = 0. \] (3.18)

On the other hand, from [1] we have

\[\frac{1}{\pi} \sum_{m=1}^{\infty} \int_{0}^{\pi} \text{tr} Q^{(2k-2)}(x) \cos 2mx \, dx \]

\[= \frac{1}{4} \left[\text{tr} Q^{(2k-2)}(0) + \text{tr} Q^{(2k-2)}(\pi) \right] - \frac{1}{2\pi} \left[\text{tr} Q^{(2k-3)}(\pi) - \text{tr} Q^{(2k-3)}(0) \right]. \] (3.19)

Furthermore, since the function \(\lambda^{k-1} \text{tr} (QR_{0})^{j} \) on right side of the equality (3.5) is analytic on the domain \(\lambda \neq m^{2} \quad (m = 0, 1, 2, \ldots) \), Residue Theorem is satisfied:

\[\int_{|\lambda|=b_{p}} \lambda^{k-1} \text{tr} (QR_{0})^{j} d\lambda = 2\pi i \sum_{m=0}^{p} \text{Res}_{\lambda=m^{2}} [\lambda^{k-1} \text{tr} (QR_{0})^{j}]. \]

Therefore, we get the formula (3.5) as follows:

\[M_{pj} = (-1)^{j} \frac{k}{j} \sum_{m=0}^{p} \text{Res}_{\lambda=m^{2}} [\lambda^{k-1} \text{tr} (QR_{0})^{j}]. \] (3.20)

If we consider the formulas (3.18), (3.19), (3.20) and take limit in (3.16) as \(p \to \infty \), then we obtain kth order regularized trace formula of the operator
\[L: \sum_{m=0}^{\infty} \left\{ \sum_{n=1}^{\infty} (\lambda_{mn}^k - m^{2k}) - k \sum_{j=2}^{2k+2} (-1)^j j^{-1} \text{Res}_{\lambda=m^2} [\lambda^{k-1} \text{tr}(QR_\lambda^0)^j] \right. \]
\[- k \pi^{-1} m^{2k-2} \int_0^\pi \text{tr}Q(x) \, dx - 4k \pi^{-1} m^{2k} \sum_{i=2}^{k} m^{-2i} a_i \right\} \]
\[= (-1)^{k-1} k \frac{\pi}{k} \left(\text{tr}Q(2k-2)(0) + \text{tr}Q(2k-2)(\pi) \right) + \frac{2}{\pi} k a_k, \quad (3.21) \]

here,
\[a_i = (-1)^i 2^{-2i} (\text{tr}Q(2i-3)(\pi) - \text{tr}Q(2i-3)(0)) \quad (i = 2, 3, \ldots, k). \quad (3.22) \]

This completes the proof. □

Proof of Theorem 2.2. If we consider the condition (Q5):
\[Q^{(2i-3)}(0) = Q^{(2i-3)}(\pi) = 0 \quad (2 \leq i \leq k), \]
on the equality (3.22), we get \[a_i = 0 \quad (i = 2, 3, \ldots, k). \]
If we use the condition (Q6):
\[\int_0^\pi \text{tr}Q(x) \, dx = 0 \]
for the integral on the left side of the formula (3.21), then we have
\[\sum_{m=0}^{\infty} \left\{ \sum_{n=1}^{\infty} (\lambda_{mn}^k - m^{2k}) - k \sum_{j=2}^{2k+2} (-1)^j j^{-1} \text{Res}_{\lambda=m^2} [\lambda^{k-1} \text{tr}(QR_\lambda^0)^j] \right\} \]
\[= (-1)^{k-1} k 2^{-2k} \left[\text{tr}Q^{(2k-2)}(0) + \text{tr}Q^{(2k-2)}(\pi) \right]. \]

This concludes the proof. □

Author contributions All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Adıgüzelov, E.E.: About the trace of the difference of two Sturm–Liouville operators with operator coefficient, iz. An Az SSR, seriya fiz-tekn. i mat.nauk, 5, 20–24 (1976)

[2] Adıgüzelov, E.E., Avci, H., Gül, E.: The trace formula for Sturm–Liouville operator with operator coefficient. J. Math. Phys. 42(6), 1611–1624 (2001)
[3] Adıgüzelov, E.E., Bakşi, O.: On the regularized traced of the differential operator equation given in a finite interval. J. Eng. Nat. Sci. Sigma 47–55 (2004/1)

[4] Adıgüzelov, E.E., Sezer, Y.: The second regularized trace of a Self adjoint differential operator given in a finite interval with bounded operator coefficient. Math. Comput. Model. 53, 553–565 (2011)

[5] Cohberg, C., Krein, M.G.: Introduction to the Theory Linear Non-self Adjoint Operators, Translation of Mathematical Monographs, vol. 18. AMS, Providence (1969)

[6] Dikiy, L.A.: About a formula of Gelfand–Levitan. Usp. Mat. Nauk. 8(2), 119–123 (1953)

[7] Dikiy, L.A.: The zeta function of an ordinary differential equation on a finite interval. Izv. Akad. Nauk. SSSR 19(4), 187–200 (1955)

[8] El Raheem, Z.F.A., Nassef, A.H.: The regularized trace formula of the spectrum of a Dirichlet boundary problem with turning point. Abstr. Appl. Anal. 2012, 492576 (2012)

[9] Faddeev, L.D.: On the expression for the trace of the difference of two singular differential operators of the Sturm Liouville type. Dokl. Akad. Nauk. SSSR 115(5), 878–881 (1957)

[10] Fulton, T.C., Pruess, S.A.: Eigenvalue and eigenfunction asymptotics for regular Sturm–Liouville problems. J. Math. Anal. Appl. 188, 297–340 (1994)

[11] Gasymov, M.G.: On the sum of differences of eigenvalues of two self adjoint operators. Dokl. Akad. Nauk. SSSR 150(6), 1202–1205 (1963)

[12] Gelfand, I.M.: On the identities for eigenvalues of differential operator of second order. Usp. Mat. Nauk. (N.S.) 11(1), 191–198 (1956)

[13] Gelfand, I.M., Levitan, B.M.: On a formula for eigenvalues of a differential operator of second order. Dokl. Akad. Nauk. SSSR 88(4), 593–596 (1953)

[14] Halilova, R.Z.: On regularization of the trace of the Sturm–Liouville operator equation. Funkts.analiz, teoriya funksi i ik pril.-Mahachkala 1(3), 154–161 (1976)

[15] Kirillov, A.A.: Elements of the theory of representations. Springer, New York (1976)

[16] Levitan, B.M.: Calculation of the regularized trace for the Sturm Liouville operator. Usp. Mat. Nauk. 19(1), 161–165 (1964)

[17] Levitan, B.M., Sargsyan, I.S.: Sturm–Liouville and Dirac Operators. Kluwer, Dordrecht (1991)

[18] Maksudov, F.G., Bayramoglu, M., Adıgüzelov, E.E.: On a regularized traces of the Sturm–Liouville operator on a finite interval with the unbounded operator coefficient. Dokl. Akad. Nauk. SSSR (English translation, Sov. Math. Dokl.) 30(1), 169–173 (1984)

[19] Yang, C.F.: New trace formula for the matrix Sturm–Liouville equation with Eigen parameter dependent boundary condition. Turk. J. Math. 37, 278–285 (2013)
Yonca Sezer, Özlem Bakşı and Serpil Karayel
Department of Mathematics, Faculty of Arts and Science
Yıldız Technical University
Istanbul
Turkey
e-mail: ysezer@yildiz.edu.tr

Özlem Bakşı
e-mail: baksi@yildiz.edu.tr

Serpil Karayel
e-mail: serpil@yildiz.edu.tr

Received: March 9, 2020.
Revised: August 3, 2020.
Accepted: February 9, 2021.