Average photon energy assessment based on modelled spectra from the National Solar Radiation Database for Lima, Peru

M A Sevillano-Bendezú 1, L A Conde 1, J de la Casa 2 and J A Töfflinger 1*

1 Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Peru
2 IDEA Research Group, Electronics and Automation Engineering Department, University of Jaén, Las Lagunillas Campus, Jaén 23071 Spain

* Correspondence: japalominot@pucp.edu.pe

Abstract. The photovoltaic performance under operating outdoor conditions is affected by the variability of the solar spectrum. The spectral distribution is quantifiable using the average photon energy (APE). In the present study, we characterize the spectral distribution in a low-latitude location such as Lima - Peru through a decade of simulated solar spectra obtained on demand from the National Solar Radiation Database and taking as a reference one year of ground-based experimental data following the decade of theoretical spectra. This characterization utilizes annual and monthly averages of irradiance-weighted APEs. The results indicate a difference of only 0.2% between the average annual APE for the decade and the annual ground-based experimental APE. Additionally, the theoretical monthly APEs for the decade show a seasonality consistent with our experimental data for the summer months but not for the winter months.

1. Introduction
The spectral distribution under operating outdoor conditions generally differs from the AM1.5G spectrum under standard test conditions (STC) at which the photovoltaic (PV) modules are rated by the manufacturers. Consequently, considering the spectral distribution of the solar resource can positively impact the estimation of the power of operating PV generators [1]. In contrast, its disregard can be a source of uncertainty in the economic models of PV projects. The temporal changes and fluctuations of the spectral distribution are subject to the air mass and local weather conditions, respectively. Weather atmospheric components, such as clouds, aerosols, precipitable water, ozone, are responsible for selectively altering the spectrum. The magnitude of the spectral impact on PV performance depends on the spectral response of the photovoltaic technology; it has been reported that wide-bandgap technologies are more significantly impacted in their performance by spectral fluctuations than smaller bandgap technologies [2]. Thus, there is a need to characterize the spectral distribution quantitatively. Various indices have been proposed for this purpose [3]; among them, the solar spectrum’s average photon energy (APE) is a device-independent index that reduces the wavelength-dependent spectrum distribution to a scalar value [3–5]. The APE bijectivity with the spectral shape is still a topic of discussion in the photovoltaic community [6–8]. However, the APE shows the blueness or redness of a solar spectrum concerning the AM1.5G spectrum. The scarcity of ground-based measurements makes evident the need for alternatives to evaluate the spectral distribution in a location of interest [1,9]. In this...
sense, atmospheric models allow obtaining information on the spectral distribution based on the atmospheric components commonly derived from satellites. However, the precision of many of these models has a compromise with their computational efficiency. The National Renewable Energy Laboratory (NREL) has recently released spectral data on-demand integrated into the National Solar Radiation Database (NSRDB) Data viewer [10]. The spectral on-demand data currently available is for longitudes from -25 °E to -175 °W and latitudes from -20 °S to 60 °N. The spectral data provided by the NSRDB is computed based on a novel radiative transfer model called Fast All-sky Radiation Model for Solar applications with Narrowband Irradiances on Tilted surfaces (FARMS-NIT). FARMS-NIT obtains the optical properties of the atmosphere using SMARTS; from these parameters, it solves the radiative transfer equation based on a pre-computed look-up table, giving a theoretical solar spectrum for an all-sky condition. In this way, this model integrates the existing advantages in models used in meteorology and solar energy. However, as every theoretical model is subject to validation and comparison with ground-based data, this is still an open research topic [11–14].

Thus, the present work reports the characterization of the spectral distribution for a low latitude location such as Lima-Peru for a decade based on the theoretical spectral data of the NSRDB, having as the comparative reference one year of experimental data following the decade of theoretical data.

2. Methodology

2.1. Spectral datasets

This study was carried out for Lima-Peru, taking as location the Outdoor PV-performance laboratory at the Pontificia Universidad Católica del Perú (latitude: -12.07168°, longitude: -77.08038°) given the availability of experimental spectral data (see Figure 1). The theoretical spectral on-demand data was obtained from the NSRDB Data viewer for the available decade 2009-2018 and the coordinates mentioned above. This theoretical data based on FARMS-NIT compute efficiently the radiative transfer equation producing a spectral irradiance in all-sky condition transposed to a tilted surface in an hourly resolution in wavelength steps from 0.5 to 5 nm and in the wavelength range from 280 to 4000 nm.

As a reference, the experimental spectral data in Conde et al. [15] is considered. This campaign includes one year of solar spectra with a temporal resolution of less than 1 minute and broadband irradiances, measured in the location mentioned above between 03.2019 and 02.2020. The spectra were recorded by an EKO MS-711 spectroradiometer tilted at 20°, north-oriented, in a wavelength range between 300 and 1100nm in steps of 0.4nm. An EKO MS-80 pyranometer measured the broadband irradiance at the same tilted angle and orientation. The experimental spectral data was used as a comparative reference. Additionally, both spectral data sets are filtered by the angle of incidence (AoI) to minimize the influence of larger air mass with predominant diffuse radiation on the global spectral irradiance. Here, we discarded data for AoI > 50°, as seen in [15].

Figure 1. The outdoor PV-performance laboratory at the Pontificia Universidad Católica del Perú. The inset shows the meteorological instruments: The EKO MS-711 spectroradiometer and the EKO MS-80 pyranometer.
2.2. Spectral distribution assessment
The spectral distribution can be represented in a one-dimensional way by the APE index (in eV). It is defined as the integrated spectral distribution of the solar spectrum divided by the integrated photon flux density of that spectrum, as shown in Equation 1,

$$APE = \frac{\int_{\lambda_a}^{\lambda_b} E(\lambda) d\lambda}{q \int_{\lambda_a}^{\lambda_b} \varphi(\lambda) d\lambda}$$

(1)

Where $E(\lambda)$ (in Wm$^{-2}$nm$^{-1}$) is the spectral distribution, $\varphi(\lambda)$ is the photon flux density (in m$^{-2}$nm$^{-1}$s$^{-1}$) and q is the elementary electric charge (1.602×10^{-19} C) which serves as a conversion factor. Additionally, λ_a and λ_b represent the range of integration, in this case, 350 and 1050 nm, respectively. The APE of the AM1.5G standard spectrum is 1.876 eV, considering the mentioned wavelength range. For the experimental data, the calculated instantaneous APEs and measured broadband irradiances were resampled to 5-min averages.

In addition, we use the average irradiance-weighted APE on a monthly and annual basis to obtain a representative value during those periods. The latter is defined in Equation 2.

$$<APE>_T = \frac{\sum_{i=1}^{N_T} APE_i \times GTI_i}{\sum_{i=1}^{N_T} GTI_i}$$

(2)

Where GTI (in Wm$^{-2}$) is the global tilted irradiance. For the theoretical data, the irradiance corresponds to the integrated spectrum, whereas for the experimental data, we use the global tilted irradiance measured by the pyranometer. T represents the period (annual or monthly) and N_T is the total number of spectra in the respective period.

3. Results and discussions
To characterize the spectral distribution in Lima, we use the annual irradiance-weighted APE $<APE>_{annual}$, shown in Figure 2. Note that the periods of theoretical (2009-2018) and experimental (03.2019 to 02.2020) data do not coincide. We observe that the mean of the theoretical $<APE>_{annual}$ with 1.925 eV differs only slightly from the experimental one for one year with 1.921 eV.

![Figure 2](image-url)

Figure 2. Theoretical (from 2009 to 2018) and the experimental (single year) annual average irradiance-weighted APE's.
Furthermore, the $<\text{APE}_{\text{annual}}>$ in the theoretical data indicates a blue shift of the spectral distribution in Lima for the entire decade, varying from 1.923 eV (2009) to 1.933 eV (2018) with respect to the APE for the AM1.5G spectrum, which is in accordance with the experimental observation for the following year.

![Boxplots of the theoretical (NSRDB) average monthly irradiance-weighted APE along with the experimental one superposed in the light blue line.](image)

Figure 3. Boxplots of the theoretical (NSRDB) average monthly irradiance-weighted APE along with the experimental one superposed in the light blue line.

Next, we analyze the monthly behaviour of the spectral distribution for the decade of theoretical data. In Figure 3, a monthly boxplot, consisting of ten data points each, represents the theoretical $<\text{APE}_{\text{monthly}}>$ distribution for the decade. The experimental $<\text{APE}_{\text{monthly}}>$ of the single year is represented by the light blue line. The theoretical results indicate a slight seasonality, with the lowest mean $<\text{APE}_{\text{monthly}}>$ during the autumn months around April and the highest mean $<\text{APE}_{\text{monthly}}>$ during the winter months around July. To explain such seasonality in the spectral distribution would require knowledge about various factors, such as air mass, cloud cover, diffuse irradiance fraction, albedo and the atmospheric parameters that define the spectral distribution in a clear and cloudy sky condition. That analysis is outside the scope of this work. However, the experimental $<\text{APE}_{\text{monthly}}>$ shows a similar seasonality trend and similar values as the theoretical during the first half of the year, including December, but a different behaviour and distinct values from July to November. The former corresponds to the summer months (December, January, February and March), consisting of predominantly clear-sky days with high irradiance values. We can assume that the APE values corresponding to clear sky conditions and high irradiance contribute more significantly to the $<\text{APE}_{\text{monthly}}>$ during these months. As stated before, FARMS-NIT obtains the optical properties of the atmosphere from SMARTS, which has demonstrated a high spectrum prediction accuracy for clear-sky [9]. The latter may explain the observed accordance between theoretical and experimental $<\text{APE}_{\text{monthly}}>$. When low irradiance values are predominant for the other months, the necessity to include atmospheric constituents for cloudy-sky conditions may enhance their spectrum simulation uncertainty.

4. Conclusions
We evaluate the spectral distribution in Lima, Peru, based on theoretical spectral data obtained from NSRDB Data viewer for a decade (2009 - 2018), taking as reference experimental spectra for a single year (03.2019 - 02.2020). This evaluation was made based on the average photon energy (APE) index, which simplifies the spectrally resolved irradiance to a single value. We used the monthly and annual
average irradiance-weighted APE, where the broadband irradiance was the integrated spectrum in the theoretical case. For the experimental data, the irradiance measured by the pyranometer was used. The experimental APEs and irradiances were resampled to 5-min averages. We found that the average theoretical annual irradiance-weighted APEs for the decade show a small relative error of only 0.2% with respect to the experimental annual irradiance-weighted APE for a single year. Additionally, we observe a seasonality when calculating the monthly values for the theoretical data during the decade. The experimental monthly irradiance-weighted APEs coincide with the theoretical ones during the summer months, suggesting that this good agreement could be due to the predominant contribution of clear-sky conditions to the monthly APE.

To better evaluate the precision of the theoretical data, we propose as a future study a comparative analysis between experimental and theoretical data for the same year, once the latter is available. Furthermore, experimental spectral data from other locations should be contrasted with available theoretical data from the NSRDB.

Acknowledgments

The authors thank Heinrich Berg (in memoriam) for his input during fruitful discussions. This work received financial support from the Peruvian National Council for Science, Technology and Innovation (CONCYTEC) – World Bank project “Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica” 8682-PE, through its executing unit Fondecyt, contract N°013-2020-FONDECYT-BM. Miguel Sevillano acknowledges the doctoral scholarship of CONCYTEC through the National Fund for Scientific, Technological Development and Technological Innovation (FONDECYT), contract N°236-2015-FONDECYT.

References

[1] Lindsay N, Libois Q, Badosa J, Migan-Dubois A and Bourdin V 2020 Errors in PV power modelling due to the lack of spectral and angular details of solar irradiance inputs *Sol. Energy* **197** 266–78

[2] Pooltananan N, Sripadungtham P, Limmanee A and Hattha E 2010 Effect of spectral irradiance distribution on the outdoor performance of photovoltaic modules *ECTI International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology* pp 71–3

[3] Rodrigo P M, Varona J, Soria-Moya A, Almonacid-Cruz B and Fernández E F 2019 Comparative assessment of simplified indexes for the spectral characterisation of photovoltaic systems *Meas. J. Int. Meas. Confed.* **133** 1–8

[4] Jardine C, Betts T, Gottschig R, Infield D G and Lane K 2002 Influence of spectral effects on the performance of multijunction amorphous silicon cells *17th Eur. Photovolt. Sol. Energy Conf.* **44** 2–5

[5] Norton M, Amillo A M G and Galleano R 2015 Comparison of solar spectral irradiance measurements using the average photon energy parameter *Sol. Energy* **120** 337–44

[6] Nofuentes G, Gueymard C A, Aguilera J, Pérez-godoy M D and Chartre F 2017 Is the average photon energy a unique characteristic of the spectral distribution of global irradiance? *149* 32–43

[7] Minemoto T, Nakada Y, Takahashi H and Takakura H 2009 Uniqueness verification of solar spectrum index of average photon energy for evaluating outdoor performance of photovoltaic modules *Sol. Energy* **83** 1294–9

[8] Dirnberger D, Blackburn G, Müller B and Reise C 2015 On the impact of solar spectral irradiance on the yield of different PV technologies *Sol. Energy Mater. Sol. Cells* **132** 431–42

[9] Gueymard C A 2019 The SMARTS spectral irradiance model after 25 years: New developments and validation of reference spectra *Sol. Energy* **187** 233–53

[10] Sengupta M, Xie Y, Lopez A, Habte A, Maclaurin G and Shelby J 2018 The National Solar
[11] Xie Y, Sengupta M and Deline C 2018 Recent advancements in the numerical simulation of surface irradiance for solar energy applications 116–9

[12] Xie Y, Sengupta M and Wang C 2019 A Fast All-sky Radiation Model for Solar applications with Narrowband Irradiances on Tilted surfaces (FARMS-NIT): Part II. The cloudy-sky model Sol. Energy 188 799–812

[13] Xie Y and Sengupta M 2018 A Fast All-sky Radiation Model for Solar applications with Narrowband Irradiances on Tilted surfaces (FARMS-NIT): Part I. The clear-sky model Sol. Energy 174 691–702

[14] Xie Y, Sengupta M, Dooraghi M R and Habte A M 2019 Reducing PV Performance Uncertainty by Accurately Quantifying the PV Resource

[15] Conde L A, Angulo J R, Sevillano-Bendezú M Á, Nofuentes G, Töfflinger J A and de la Casa J 2021 Spectral effects on the energy yield of various photovoltaic technologies in Lima (Peru) Energy 223 120034