Comparison of the corrosion behavior of the TiNi alloy in the coarse-grained and ultrafine-grained state

E M Kayumova1, A A Churakova2,3* and O R Latypov1

1Ufa State Petroleum Technological University, 1 Kosmonavtov st., Ufa, 450064, Russia
2Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, 151 pr. Oktyabrya, Ufa, 450075, Russia
3Ufa State Aviation Technical University, 12 K. Marx str., Ufa, 450008, Russia

E-mail: churakovaa_a@mail.ru

Abstract. This article studies the corrosion behavior of the TiNi alloy in the coarse-grained and ultrafine-grained states. The study of the influence of the initial microstructure on the corrosion behavior of the TiNi alloy was carried out by the gravimetric method in the NaCl and H2SO4 solution for a month. Studies was shown that as a result of the action of a corrosive medium from a sample in a coarse-grained state, it undergoes greater destruction, pitting corrosion was observed, at the same time, in an ultrafine-grained sample only traces of corrosion products are observed on the surface of the samples. Investigations with an inverted light microscope in a dark field made it possible to observe corrosion products and determine their volume fraction. Evaluation of the corrosion rate showed that in the coarse-grained state it is 126 times higher than the corrosion rate in the ultrafine-grained state. Analysis of X-ray phase analysis showed that in the coarse-grained state after corrosion tests, a significant proportion of the TiNiH1.4 phase is observed, while in the ultrafine-grained state all phases correspond only to the TiNi phases. The TiNi alloy contains an Ti2Ni phase enriched Ti both in the coarse-grained state and in the ultrafine-grained state. Moreover, in a coarse-grained state, its share is 2 times higher.

1. Introduction
The TiNi alloys belong to the class of functional materials with shape memory effects (SME), caused by thermoelastic martensitic transformations «B2-B19'» occurring in the temperature range close to room temperature [1-5]. Shape memory alloys have the unique ability to recover significant inelastic deformation. Corrosion resistance is largely determined by the degree of defectiveness of the material. Therefore, it is important to know the features of corrosion behavior that affect the operation of the material. The use of titanium nickelide-based alloys in medicine and technology has stimulated extensive studies of the electrochemical behavior and corrosion resistance of these materials in various corrosive environments.

In works [6-18], the corrosion and electrochemical properties of titanium-nickel alloys are considered. For example, in [9], the results of the corrosion-electrochemical behavior of TiNi alloys in acidic solutions (1 N HCl, 1 N H2SO4) are presented. With the aim of the possible use of titanium-nickel alloys as catalysts that reduce the overvoltage of hydrogen evolution at the titanium cathode, the results of the electrochemical and corrosion behavior of titanium-nickel alloys are presented in [19]. In [20-21], the corrosion-electrochemical behavior of titanium-nickel alloys in various acidic chloride solu-
tions at elevated temperatures was studied, bearing in mind their possible recommendation for use in seawater desalination units. In [22], the corrosion properties of TiNi in a coarse-grained state were described and it was shown that this alloy, in environments similar to human environment, is well passivated. It was also found that a passive oxide layer is formed on the alloy in the presence of a biological medium, on which coatings of calcium phosphate and TiO$_2$ are formed in the future. In this regard, it is interesting to study the corrosion properties of the alloy in various structural states, due to the unique physical and mechanical properties of the material in the coarse-grained and ultrafine-grained states.

2. Materials and methods
The stoichiometric Ti$_{49.0}$Ni$_{51.0}$ alloy was chosen as the research material. This alloy has a bcc lattice, ordered by the B2 type and a Ti$_2$Ni$_3$ phase enriched with nickel. The studies were carried out in two states: coarse-grained (CG), obtained by quenching in water, and ultrafine-grained (UFG), formed by the ECAP method at a temperature of 450 °C $n = 6$.

The study of corrosion behaviour was carried out by the gravimetric method, the samples were kept in an aqueous solution of NaCl and H$_2$SO$_4$ for a month. The main structural parameters were determined using scanning electron microscopy (SEM). For the qualitative and quantitative analysis of the macrostructure of the TiNi alloy, an OLYMPUS GX51 metallographic microscope with software and an AXIO OBSERVER Z1M inverted microscope in the dark field mode were used. The surface study was carried out using scanning probe microscope NT-MDT Integra Prima at the Joint Research Center, 'Nanotech', Ufa State Aviation Technical University. The phase composition was studied using a Rigaku Ultima IV X-ray diffractometer.

In this work, the assessment of the corrosion rate in various structural states was carried out according to the formula:

$$V = \frac{m_0 - m}{S \cdot t},$$

where m_0 - sample mass before corrosion tests, m - sample mass after corrosion tests, S - sample area, t - corrosion test time.

3. Results and discussions
The Figure 1 shows the structure of TiNi alloy samples after contact with a corrosive medium - a solution of NaCl and H$_2$SO$_4$ obtained with an optical microscope. A significant degree of corrosion of the samples in the coarse-grained state is observed (Figure 1, a).

![Figure 1. Photographs of the surface of Ti$_{49.0}$Ni$_{51.0}$ alloy samples after corrosion tests: (a) coarse-grained state (b) ultrafine-grained state.](image-url)
The survey of samples on an inverted microscope (Figure 2) made it possible to determine the nature of corrosion damage more clearly. In the case of the coarse-grained state, deep pits are observed, occupying more than 50% of the sample surface, while in the ultrafine-grained state, corrosion products are observed evenly distributed over the surface without damaging the sample.

![Figure 2](image1.png)

Figure 2. The structure of samples of the Ti$_{49.0}$Ni$_{51.0}$ alloy on an inverted microscope: (a) coarse-grained state (b) ultrafine-grained state; dark field.

Studies using scanning electron microscopy also made it possible to estimate the average size and depth of pitting corrosion pits in a coarse-grained state (Figure 3, a). The average size of the pits is about 400 µm, the depth is 500 µm on average. In the ultrafine-grained state, it is possible to estimate the average size and volume fraction of corrosion products on the sample surface ($d = 5\pm 2$ µm, $V = 60\pm 5\%$) (Figure 3, b).

![Figure 3](image2.png)

Figure 3. Surface structure of Ti$_{49.0}$Ni$_{51.0}$ alloy samples in coarse-grained (a) and ultrafine-grained (b) states after corrosion tests on the scanning electron microscopy.

Table 1 shows the results of evaluating the corrosion rate of alloy specimens in the coarse-grained and ultrafine-grained states, carried out according to eq. 1. According to the calculations, the corrosion rate of specimens in the coarse-grained state is more than 120 times higher than the corrosion rate of specimens in the ultrafine-grained state in NaCl + H$_2$SO$_4$ solution.
Table 1. Corrosion rate data for TiNi alloy in various structural states.

State	Corrosion rate, g/m²·h
CG	3.006
UFG	0.023

X-ray phase analysis made it possible to determine the presence of a high-volume fraction (more than 50%) of hydride of TiNi in the coarse-grained state after corrosion tests, while in the ultrafine-grained state only the TiNi phase. Figure 4 shows the data of X-ray phase analysis of samples after corrosion tests. The TiNi alloy contains an Ti₂Ni phase enriched Ti both in the coarse-grained state and in the ultrafine-grained state. Moreover, in a coarse-grained state, its share is 2 times higher (Table 2).

Figure 4. X-ray diffraction patterns of Ti_{49.0}Ni_{51.0} alloy samples after corrosion.

In the coarse-grained and ultrafine-grained state, the TiNi alloy was an austenitic and an insignificant proportion of the martensitic state (in the case of CG, of UFG), as well as the Ti₂Ni phase before corrosion tests. After corrosion tests in a coarse-grained state 3 phases are observed: austenitic, martensitic and R phase. In the ultrafine-grained state 3 phases are also observed, all of them correspond to the TiNi matrix, the volume fraction of the austenite phase increased, with a slight decrease in martensitic B19' phase, and the formation of R – martensite (Table 2). The formation of the hydride TiNi - TiNiH₁₋₄ is probably associated with a large fraction of the Ti₂Ni phase in the initial coarse-grained state, which is most inclined towards the formation of hydrides of TiNi. At that time, the lower content of this phase in the ultrafine-grained state promotes the formation of R - martensite and corrosion products on the base Ti.
Table 2. X-ray phase analysis data of the Ti_{49.0}Ni_{51.0} alloy before and after corrosion tests.

State	Phases	Volume fraction, %	Space group
CG before corrosion tests	TiNi B2 austenite 80.8	Pm-3m, BCC	
	TiNi B19’ martensite 10.03	P2/1/m, monoclinic	
	Ti₂Ni 9.15	Fd-3m, FCC	
CG after corrosion tests	TiNi B2 austenite 43.45	Pm-3m, BCC	
	TiNi B19’ martensite 1.74	P2/1/m, monoclinic	
	TiNiH_{1.4} 54.80	I₄/mmm, tetragonal	
UFG before corrosion tests	TiNi B2 austenite 89.16	Pm-3m, BCC	
	TiNi B19’ martensite 4.85	P2/1/m, monoclinic	
	Ti₂Ni 5.95	Fd-3m, FCC	
UFG after corrosion tests	TiNi B2 austenite 93.35	Pm-3m, BCC	
	TiNi B19’ martensite 1.19	P2/1/m, monoclinic	
	TiNi R martensite 5.45	P-3, trigonal	

Studies on a scanning atomic force microscope have shown that in the case of a coarse-grained state, the parameters of roughness and changes in height are significantly higher than in the case of an ultrafine-grained state. The results of examining samples after corrosion tests are presented in Figures 5-6. The height difference in the case of the coarse-grained state is from 0.1 to 9.4, while in the ultrafine-grained state from 2.0 to 5.0, which also confirms the deeper corrosion of the samples in the CG state. In addition, if in the coarse-grained state, a uniform distribution of heights over the surface is observed, while in the ultrafine-grained state, only single peaks are observed, probably corresponding to corrosion products on the surface of the samples.
Figure 5. Results of Ti$_{49.0}$Ni$_{51.0}$ alloy of scanning force microscopy in a coarse-grained state.

Figure 6. Results of Ti$_{49.0}$Ni$_{51.0}$ alloy of scanning force microscopy in ultrafine-grained state

4. Summary
Studies have shown that in the coarse-grained state, corrosion dissolution occurs much more intensively than in the ultrafine-grained state. According to the results obtained, the corrosion rate in the coarse-grained state is more than 120 times higher than the corrosion rate of the samples in the ultrafine-grained state. Analysis of X-ray phase analysis showed that in the coarse-grained state after corrosion tests, a significant proportion of the TiNiH$_{1.4}$ phase is observed, while in the ultrafine-grained state all phases correspond only to the TiNi phases. The traces of pitting corrosion are clearly visible on the surface of the sample, while in the ultrafine-grained state, only minor traces of corrosion products are observed.

5. References
[1] Otsuka K, Ren X, 2005 Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys Prog. Mater. Sci. 50 511–678
[2] Brailovski V, Prokoshkin S, Terriault P, Trochu F 2003 Shape Memory Alloys: Fundamental, Modeling and Applications (Ecole de Technologie Superieure, Quebec)
(150,254),(749,268)
[3] Kurdyumov G V, Khandros L G 1949 On the thermoelastic equilibrium on martensitic transformations Sov. Phys. Dokl. 66 211–214
[4] Christian J W 2002 The Theory of Transformations in Metals and Alloys (Elsevier Science, Oxford)
[5] Xie Z L, Sundqvist B, Hanninen H, Pietikainen J 1993 Isothermal martensitic transformation under hydrostatic pressure in an Fe,Ni–C alloy at low temperatures Acta Metall. Mater. 41 2283–2290
[6] Meisner L L 2006 Corrosion properties of TiNi-TiAu quasi-binary cut alloys in biochemical solutions Physics and chemistry of material processing 1 78-84
[7] Ustinskaya T N 1987 Composition, electrochemical and protective properties of anode films on the TiNi intermetallic Electrochemistry 23 254-259
[8] Stepanova T P 1978 Protection of metals 14(2) 169-171
[9] Deryagina O G 1980 Electrochemical behavior of anodically oxidized Ni-Ti alloys in sulfate solutions containing chlorine ions Electrochemistry 16(12) 1828-1833
[10] Tan L 2003 Corrosion and wear – corrosion behavior of NiTi modified by plasma source ion implantation Biomaterials 24 3931-3939
[11] Hofman A 1996 Classes of materials used in medicine Biomaterials Science Academic Press 37-50
[12] Liu Chenglong 2006 In vitro electrochemical corrosion behaviour of functionally graded diamond-like carbon coatings on biomedical Nitinol alloy Thin Solid Films 496 194-201
[13] Shevchenko N 2004 Studies of surface modified NiTi alloy Applied Surface Science 235 126-131
[14] Starosvetsky D 2001 Corrosion behaviour of titanium nitride coated Ni-Ti shape memory surgical alloy Biomaterials 22 1853-1859
[15] Ryhanen J 1999 Biocompatibility evolution of nickel-titanium shape memory metal alloy (Oulu: OULU UNIVERSITY PRESS)

Acknowledgments
This work was supported by the Council for Grants of the President of the Russian Federation for State Support of Young Russian Scientists - Candidates of Science (MK-6202.2021.1.2).