I. INTRODUCTION

The structure of neutron-rich nuclei has recently become a focus of much theoretical and experimental effort. Central to the on-going investigation is the expectation that substantial modifications can occur to the intrinsic shell structure of nuclei with a sizable neutron excess.

Interactions between protons and neutrons have been also invoked to account for the presence of a sub-shell gap at N=32 in neutron-rich nuclei located in the vicinity of the doubly-magic nucleus 48Ca.

Full \(pf \)-shell model study of A=48 nuclei were performed by Caunt and Zuker by modifying Kuo-Brown (KB) to KB1 and KB3. The isobaric chains \(A=50, A=51 \) and \(A=52 \) studied by Poves et al. using KB3 and FPD6 and their new released version KB3G.

Reduced transition probabilities to the first \(2^+ \) state in 52,54,56Ti and the development of shell closure at N=32, 34 were studied by Dinca et al. both experimentally and theoretically using the most recently modified interaction labeled GXPF1A done by Honma et al. They confirm the presence of a sub-shell closure at neutron number \(N=32 \) in neutron-rich Ti nuclei above 48Ca and this observation are in agreement with the shell model calculations using the most recent effective interaction, also they conclude that the data do not provide any direct indication of the presence of additional N=34 sub-shell gap in the Ti isotopes and that the measured \(B(E2; 0^+_g \rightarrow 2^+_1) \) probabilities highlight the limitations of the present large-scale calculations as they are unable to reproduce in detail the magnitude of the transition rates in semi-magic nuclei and their strong variation across the neutron-rich Ti isotopes.

The purpose of this letter is to study the reduced transition probabilities and level schemes of even-even \(48-56 \)Ti isotopes using the new version of OXBASH for windows. The level schemes of selected states of 54Ti and 56Ti calculated in this work compared with the most recently available experimental data and with the previous theoretical work in Ref.[9] using GXPF1A, GXPF1 and KB3G interactions.

II. SHELL MODEL CALCULATIONS

The calculations were carried out in the D3F7 model space with the FPD6 Hamiltonian using the code OXBASH for 48Ti, while F7P3 model space employed with effective interaction FPD6 for 50Ti.

For 48Ti the core is considered as 32S with 16 nucleons outside core, while for 50Ti the core was taken as 40Ca and 10 nucleons outside the core.

The core was taken as 48Ca for the three nuclei 52Ti, 54Ti and 56Ti and the model space is (HO) with FPD6 effective interaction. The effective interaction GXPF1 was used also to calculate the level spectra for 54Ti and 56Ti for the purpose of comparison with Ref.[9].

III. RESULTS AND DISCUSSION

The test of success of large-scale shell model calculations is the prediction of the first \(2^+ \) level and the transition rates \(B(E2; 0^+_g \rightarrow 2^+_1) \) using the optimized effective interactions for the description of \(fp \)-shell nuclei.

Figure 1 presents the comparison of the calculated \(E_x(2^+_1) \) energies with FPD6 from the present work with the experiment, the work of Dinca et al. and with the most recent calculations using the new effective interaction labeled GXPF1A. The comparison shows that FPD6 effective interaction is better than GXPF1 except for 54Ti at N=32 shell closure, GXPF1 is better in reproducing the \(E_x(2^+_1) \) level. The modified effective interaction GXPF1A is more successful in description of all the mass region \(A=48-56 \), but only at \(N=32 \) shell...
gap GXPF1 is more successful in reproducing $E_x(2^+_1)$ for even-even Ti isotopes. Experimental data (closed circles) are compared with present work (solid line), the previous work using GXPF1 (dashed-dot-line) and GXPF1A (dashed line). Experimental data are taken from Refs. [12, 13].

The new effective interaction GXPF1A which is the improved type of GXPF1 are the most convenient one for the whole chain of Ti isotopes for the mass region $A=48-56$, but still can not reproduce the shell gap at $N=32$ like GXPF1. Our work is also fail to reproduce the shell gap at $N=32$.

Figure 2 shows the large-scale shell model calculations of the reduced transition strengths $B(E2; 0^+ \rightarrow 2^+_1)$ that have been performed by adopting the effective charges for proton $e_p=1.15e$ and for neutron $e_n=0.8e$ as suggested in Ref. [14] and also these values were used in the calculations of the previous work using GXPF1 and GXPF1A in Ref. [14].

The solid line in Fig.2 is the present calculations using the effective interaction FPD6 compared with the most recently measured experimental data and with the previous work using GXPF1 and the new modified interaction GXPF1A. Our calculations produced staggering in the calculation of $B(E2)$ and it is in better agreement with experimental data as compared with the previous theoretical work [7] even when they choose the modified interaction GXPF1A, but our work compared with the recent theoretical work of Poves et al. [8] their calculations using KB3G effective interaction are in better agreement with the experiment for the nuclei 48,50,54,56Ti, but not 52Ti at $N=30$ our results are in better agreement with experiment. Although that GXPF1A effective interaction is in better agreement in reproducing the first 2^+ level in all even-even Ti isotopes for the mass region $A=48-56$ but still not able in reproducing the experimental data for the $B(E2; 0^+_g \rightarrow 2^+_1)$ transition strengths. The difference between our calculations and the previous theoretical work from Ref. [14] is mainly attributed to the difference of the location of the single-particle energies $j_{7/2}, p_{3/2}$, $j_{5/2}$ and $p_{1/2}$ for the effective interactions FPD6, GXPF1 and the modified one GXPF1A which effect significantly the prediction of level excitations and transition strengths $B(E2)$.

The calculated FPD6 and GXPF1 energy levels are compared with the experimental data and the previous work using GXPF1A, GXPF1 and KB3G as shown in Fig. 3. The agreement is excellent for $J^\pi =0^+, 2^+$, 4^+ and 6^+ sequence with FPD6 effective interaction. In order to improve the description of $E_x(2^+_1)$ for 56Ti, one possible choice is to lower the single particle energy of the $f_{5/2}$ orbit by 0.8 MeV, as suggested in Ref. [18].

The reduction of $f_{5/2}$ orbit by 0.8 MeV improve the prediction of $E_x(2^+_1)$ as shown in Fig. 4 for 56Ti and it remedies this discrepancy by about 0.2 MeV. However, such a modification improve the prediction of $E_x(2^+_1)$ in 54Ti also, but it is fail completely in description of high spin states.

It can be seen in Fig.4 that GXPF1 predicts $E_x(2^+_1)$ better than FPD6 and almost its prediction as compared with previous work using GXPF1A is excellent, but it is not good in description of high spin states of 56Ti and still FPD6 is in better agreement in describing the high spin states. Besides FPD6 predicts the level sequence $J^\pi =8^+, 7^+, 9^+$, while GXPF1 predicts $J^\pi =9^+, 8^+, 7^+$.

FIG. 1: Systematics of $E_x(2^+_1)$ for eve-even Ti isotopes. Experimental data (closed circles) are compared with present work (solid line), the previous work using GXPF1 (dashed-dot-line) and GXPF1A (dashed line). Experimental data are taken from Refs. [12, 13].

FIG. 2: Comparison of the large-scale shell model calculations using FPD6 (squares) with the experimental $B(E2; 0^+_g \rightarrow 2^+_1)$ transition strengths (closed circles) for the chain of even-even Ti isotopes and with the previous work using the effective interactions GXPF1 (diamonds) and GXPF1A (stars) and with the work from Ref. [8] using KB3G effective interaction. Experimental data are taken from Refs. [14, 15].
IV. SUMMARY

Large-scale shell model calculations by adopting FPD6 and GXPF1 effective interactions were used to calculate the level excitation and transition strengths $B(E2; \text{g.s.} \rightarrow \text{2}^+_1)$ for the mass region $A=48-56$ for the even-even Ti isotopes. The comparison of the calculated $B(E2; \text{g.s.} \rightarrow \text{2}^+_1)$ with the measured experimental data even with the small staggering prove the conclusions made by Refs. [7, 8] that there is limitations of the present large-scale calculations to reproduce in detail the magnitude of the transition rates in the semi-magic nuclei and their strong variation across the neutron-rich Ti isotopes.

V. ACKNOWLEDGMENTS

The first author F. A. M. would like to acknowledge the The Abdus Salam International Centre for Theoretical Physics (ICTP) for the financial support and warm hospitality.
1] B. A. Brown, Prog. Part. Nucl. Phys. 47, 517 (2001).
2] J. I. Prisciandaro et al., Phys. Lett. B 510, 17 (2001).
3] E. Caurier and A. P. Zuker, Phys. Rev. C 50, 225 (1994).
4] T. T. S. Kuo and G. E. Brown, Nucl. Phys. A 114, 241 (1968).
5] A. Poves, et al., Nucl. Phys. A 694, 157 (2001).
6] W. A. Richter et al., Nucl. Phys. A 532, 325 (1991).
7] D. -C. Dinca, PhD Thesis, Michigan State University, (2005).
8] A. Poves, F. Nowacki and E. Caurier, Phys. Rev. C 72, 047302 (2005).
9] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Eur. Phys. A 25, s01, 499-502 (2005).
10] Oxbash for Windows, B. A. Brown, et al., MSU-NSCL report number 1289 (2004).
11] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys., Rev. C 65, 061301(R) (2002).
12] B. Fornal et al., Phys. Rev. C 70, 064304(R) (2004).
13] R. Ernst et al., Phys. Rev. C 62, 024305 (2000).
14] D. -C. Dinca et al., Phys. Rev. C 71, 041302(R) (2005).
15] J. Weise, Z. Phys. A, Atoms and Nuclei, 300, 329-338 (1981).
16] R. du Ritz et al., Phys. Rev. Lett. 93, 222501 (2004).
17] R. V. F. Janssens et al., Phys. Rev. Lett. B 546, 55 (2002).
18] S. N. Liddick et al., Phys. Rev. Lett. 92, 072502 (2004).