Sex-specific risk of cardiovascular disease and cognitive decline: pregnancy and menopause

Virginia M Miller, Vesna D Garovic, Kejal Kantarci, Jill N Barnes, Muthuvel Jayachandran, Michelle M Mielke, Michael J Joyner, Lynne T Shuster and Walter A Rocca

Abstract
Understanding the biology of sex differences is integral to personalized medicine. Cardiovascular disease and cognitive decline are two related conditions, with distinct sex differences in morbidity and clinical manifestations, response to treatments, and mortality. Although mortality from all-cause cardiovascular diseases has declined in women over the past five years, due in part to increased educational campaigns regarding the recognition of symptoms and application of treatment guidelines, the mortality in women still exceeds that of men. The physiological basis for these differences requires further research, with particular attention to two physiological conditions which are unique to women and associated with hormonal changes: pregnancy and menopause. Both conditions have the potential to impact life-long cardiovascular risk, including cerebrovascular function and cognition in women. This review draws on epidemiological, translational, clinical, and basic science studies to assess the impact of hypertensive pregnancy disorders on cardiovascular disease and cognitive function later in life, and examines the effects of post-menopausal hormone treatments on cardiovascular risk and cognition in midlife women. We suggest that hypertensive pregnancy disorders and menopause activate vascular components, i.e., vascular endothelium and blood elements, including platelets and leukocytes, to release cell-membrane derived microvesicles that are potential mediators of changes in cerebral blood flow, and may ultimately affect cognition in women as they age. Research into specific sex differences for these disease processes with attention to an individual’s sex chromosomal complement and hormonal status is important and timely.

Keywords: Brain imaging, Cerebral blood flow, Cognition, Estrogen, Hormone, Hypertension, Microvesicles, Preeclampsia, White matter hyperintensities
fraction, HFpEF) and transient apical ballooning syndrome (Takotsubo cardiomyopathy) in women compared to men [8-10].

Cognitive health following a cerebrovascular event also shows sex differences. For example, post-stroke disability [11], stroke-associated cognitive impairment [12] and dementia [13] are greater in women than in men. By 2050, the prevalence of Alzheimer’s disease is estimated to reach 11-16 million in the United States [14,15]. The social and economic implications of this epidemic will be greatest in women because of their longer life expectancy and greater risk of dementia compared with men.

The physiological basis for these differences requires further research. Two conditions unique to women, pregnancy and menopause, which involve major hormonal changes, may contribute to distinct sex differences in morbidity, clinical manifestations, response to treatments, and mortality of cardiovascular disease and cognitive decline. This review examines the evidence suggesting that hypertensive pregnancy disorders, in particular, preeclampsia, affect cardiovascular risk in women as they age. In addition, it examines the evidence that menopausal hormone therapy (MHT) given close to the time of menopause reduces the risk for cardiovascular disease and cognitive decline. We will discuss the possible role of cell membrane-derived microvesicles in the blood that may affect endothelial function and sex-specific differences in the regulation of cerebral blood flow, as potential mechanisms mediating changes in cognition (Figure 1).

Sex differences in cardiovascular pathophysiology

Mechanisms involved in vascular and cardiac control and remodeling are regulated in part by sex steroid hormones. These mechanisms include the synthesis and degradation of norepinephrine [16,17], the expression of adrenergic receptors on vascular smooth muscle [18-22], the regulation of ion fluxes in cardiac and vascular smooth muscle [23-30], the production of endothelium-derived vasoactive factors [31,32] which affect total peripheral resistance (Figure 2, [33-37]), and cerebral blood flow [38-40]. Furthermore, regulation of extracellular collagen and elastin [41], and cellular apoptosis [42-46] may affect vascular and cardiac stiffness and remodeling processes that influence the development of vascular lesions and cardiac myopathies.

![Image](http://www.bsd-journal.com/content/4/1/6)
Thus, we suggest that two sex-specific conditions associated with major hormonal changes in women, specifically hypertensive pregnancy disorders and menopause, contribute to the development of cardiovascular disease, including hypertension and hypertension-related disorders, that impact brain structure and function.

Pregnancy-associated hypertension

Hypertensive pregnancy disorders cover a spectrum of conditions, including preeclampsia, gestational hypertension, chronic hypertension, and preeclampsia superimposed on chronic hypertension. Preeclampsia, unlike other hypertensive disorders of pregnancy, is associated with proteinuria (Figure 3) [47].

The National High Blood Pressure Education Program Working Group Report on High Blood Pressure in Pregnancy indicated that hypertensive disorders occur in 6% to 8% of pregnancies [47]. However, population-based studies evaluating the incidence of these disorders have not yet been conducted [48]. Consequently, available studies significantly differ in reporting their frequencies: 7% to 22% for hypertension in pregnancy, in general [49,50], and 1% to 8% for preeclampsia, in particular [49,51,52]. These differences result from lack of uniformity in defining the study populations and the clinical definitions of the disorders. In addition, the observed variations may have been further amplified by inaccuracies of diagnoses and differences in reporting chronic hypertension, which may predate pregnancy (chronic, prevalent hypertension), or occur for the first time during pregnancy and persist thereafter (chronic, incident hypertension) (Figure 3).

In addition to the short-term cardiovascular complications of preeclampsia (i.e., within three months postpartum), preeclampsia is associated with an increased risk of cardiovascular disease several years after the exposure. Two common study designs have been utilized to examine this long-term relationship. Case-control studies have examined women with cardiovascular events (e.g., myocardial

Figure 2 The association between sympathetic nerve activity and total peripheral resistance in young men (n = 63; left panel) compared to young women (n = 37; right panel). Data are combined from a series of studies investigating blood pressure regulation in healthy adults [33-36]. Each diamond represents an individual. Measurements of nerve activity were obtained using microneurography of the peroneal nerve under the same experimental conditions [37]. To control for fluctuations in sex hormones, women were studied only during the early follicular phase of the menstrual cycle.

Figure 3 Schematic of definitions, onsets, and consequences of hypertensive disorders of pregnancy. GW = gestational week; HTN = hypertension.
infarction, venous thromboembolism, and stroke) and compared their pregnancy histories with those of event-free women of similar age (controls). These studies have suggested that, compared with women without cardiovascular events, women with cardiovascular events were more likely to have experienced a preeclamptic or hypertensive pregnancy disorder [53-56]. Registry-based cohort studies also suggest that hypertensive pregnancy disorders are associated with an increased risk of cardiovascular events [57-63] and mortality [60,63-67]. It is important to note that these studies have not fully adjusted for traditional cardiovascular risk factors. Without adjustment for these factors, it is not possible to determine whether the association between hypertensive pregnancy disorders and vascular outcomes is or is not related to traditional vascular risk factors (e.g., hypertension, family history, hyperlipidemia, smoking, and diabetes mellitus). Other limitations of the published studies include that they are often registry based (selected clinical series), have reported a limited number of outcomes (such as cardiovascular deaths), and have not assessed the impact of a hypertensive pregnancy disorder on age of onset of the cardiovascular event. This information may be clinically useful when individualizing risk profiles and intervention strategies for women with a hypertensive pregnancy disorder. Further, the diagnoses of preeclampsia and other hypertensive pregnancy disorders typically have been ascertained using codes from administrative data sources or self-reported events, rather than using accepted diagnostic criteria [58,61-63,68]. The four major studies that did confirm the diagnosis of preeclampsia using accepted clinical criteria included only mortality outcomes, and not the incidence or prevalence of cardiovascular events (cardiovascular morbidity) [64-67].

Major differences in the clinical presentations of preeclampsia and other hypertensive pregnancy disorders probably result from differences in their underlying pathophysiological mechanisms, which might have varying implications for cardiovascular disease later in life. However, the mechanisms underlying these associations are poorly understood. Some risk factors, such as diabetes and obesity, may predispose women to hypertensive pregnancy disorders and preeclampsia at younger ages, and independently they may predispose women to cardiovascular complications and cognitive decline at different times in a woman’s life. In this situation, the pregnancy disorders have no causal relation to the later cardiovascular disease or cognitive decline. Alternatively, preeclampsia itself might induce irreversible vascular and metabolic changes that may increase the overall risk for cardiovascular disease (Figure 4). In this situation, the pregnancy disorders have a direct causal effect on vascular and cognitive outcomes. In support of a direct causal effect, some studies showed that, despite normalization of blood pressure postpartum, these seemingly healthy women may demonstrate unfavorable metabolic and vascular changes [69], such as an impaired brachial artery flow-mediated (endothelium-dependent) dilatation, a measure of endothelial dysfunction, three years after the diagnosis of preeclampsia [70]. Also, micro-albuminuria, which may be a marker of endothelial dysfunction and/or renal injury, has been reported to be more prevalent following a preeclamptic pregnancy [71]. Echocardiographic studies showed an increased risk of concentric remodeling, eccentric hypertrophy, and impaired left ventricular relaxation one year postpartum in women with preeclamptic pregnancy compared with women with normotensive pregnancy [72].

Clarification of the mechanisms that underlie the association between hypertensive pregnancy disorders and future cardiovascular disease is important to establish more specific clinical guidelines for screening and/or treatment of cardiovascular disease in women. Current clinical guidelines recommend referral of women with a history of hypertensive pregnancy to primary care or cardiology in order to facilitate monitoring and control of cardiovascular risk factors, but there are no specific guidelines for management of these women [3].

Menopause

The risk of developing hypertension, ischemic heart disease, myocardial infarction and stroke increases in women after the onset of menopause, whether natural or surgically induced [2,73]. Estrogen-based treatments reduced the development of vascular lesions in experimental animals after oophorectomy [74-76]. Human studies have confirmed a reduced incidence of cardiovascular events and mortality in women using MHT for relief of menopausal symptoms after undergoing either surgical or natural menopause [73,77-85]. However, the timing of the initiation of such treatments is critical. Initiation of the treatment close to the time of menopause (i.e., within about 3 years) is more effective than delays in treatment of up to 5 years. This time period may represent a “window of opportunity” within which estrogenic treatments might be effective in reducing cardiovascular disease and associated events [86-88]. However, the impact of MHT on the development of hypertension at menopause remains controversial [89-92].

Sex differences, hypertension, and cognitive aging

Compared with men, women are at increased risk for Alzheimer’s disease, the most common form of dementia [93-96], and their cognitive performance declines faster after the diagnosis of Alzheimer’s disease [97,98]. There also appears to be a sex-specific pharmacological effect of drugs targeting acetylcholinesterase activity [99]. Indeed, in experimental animals, sex differences have been found for nearly all cholinergic markers, including
acetylcholinesterase activity, acetylcholine and acetylcholine receptor distribution [100-102]. These differences are likely related to sex hormones. Testosterone may interfere with the effects of cholinesterase inhibitors by decreasing the amount of drug that reaches the brain or by modifying the interaction of the cholinesterase inhibitor with cholinesterase [103,104]. However, reasons for these sex differences in the risk, progression, and treatment of dementia are not well understood.

Starting with Alois Alzheimer’s initial findings in the brain of a woman, changes in the microvessels have been repeatedly reported in the brain of patients with Alzheimer’s disease. These changes are now known to include cerebral amyloid angiopathy [105], endothelial degeneration [106], and vascular basement membrane alterations [107]. The notion that vascular factors are independent risk factors for Alzheimer’s disease was initially controversial. Vascular factors are the primary cause of vascular dementia, and one hypothesis was that such factors would only be associated with mixed cases of Alzheimer’s disease and vascular dementia. Additionally, it had been suggested that cardiovascular factors may be a consequence of Alzheimer’s disease, rather than a cause. However, in the early 1990’s, two publications reported an increased prevalence of senile plaques in patients with coronary artery disease [108,109], thus linking cardiovascular disease to Alzheimer’s disease. Since then, a number of epidemiological studies have confirmed that vascular-related conditions, such as hypertension [109,110], atherosclerosis [111], atrial fibrillation [112], diabetes [113,114], obesity [115], and stroke [116] increase the risk of Alzheimer’s disease. Vascular factors also affect the rate of progression after a diagnosis of Alzheimer’s disease [117]. Thus, vascular dementia and Alzheimer’s disease are no longer thought of as distinct entities, but as overlapping diseases.

It is possible that women with a history of hypertensive pregnancy disorders also have an increased risk of dementia through their increased risk for cardiovascular disease and Alzheimer’s disease later in life. This association is supported by the presence of white matter lesions, which appear on magnetic resonance imaging (MRI) as white matter hyperintensities (Figure 1) in women with severe forms of preeclampsia [118,119]. White matter hyperintensities are a recognized risk factor for both vascular dementia and Alzheimer’s disease [120,121]. Much remains to be learned regarding the factors contributing to their development, or to their causal relationship to changes in cognitive function. However, no study has directly examined hypertensive pregnancy disorders as a risk factor for subsequent cognitive impairment. Two studies have suggested that preeclampsia and eclampsia are associated with self-reported worsening of cognitive function [122] and memory performance [123], but they did not systematically examine the association between hypertensive pregnancy disorders and domain-specific cognitive functioning later in life.
In women who develop eclampsia, a convulsive, severe form of hypertensive pregnancy disorder, the dilation of cerebral arteries is thought to result from a rapid increase in blood pressure, with resulting neurologic symptoms resembling those of a hypertensive encephalopathy [50]. With resolution of the hypertension, neurologic symptoms also resolve. However, the long-term consequences, for example, as women transition into menopause [49], on cerebral vascular function and residual effects on cognitive health remain unknown.

Cerebral blood flow and neuronal function

The brain does not have endogenous stores of energy. Therefore, brain metabolism depends on blood supplied by the cerebral circulation. In general, the dilatory capacity of the arterial vasculature, including that of the cerebral circulation, decreases with age [124-126]. This decrease is due, in part, to reduced production of endothelium-derived relaxing factors, such as nitric oxide, and increased production of endothelium-derived contracting factors, which may include cyclooxygenase products of arachidonic acid metabolism and superoxide radicals. These changes occur in the setting of decreased oxygen tension in the blood [38,124,127-129]. As sex-steroid hormones regulate many of these endothelium-derived relaxing and contracting factors [31,32], sex differences in the regulation of cerebral blood flow should be expected to manifest across the life span with changes in hormonal status.

One non-invasive method to measure vasodilator capacity of the cerebral arteries in humans is by transcranial Doppler during graded hypercapnia [130,131]. This technique has demonstrated that women have higher cerebral blood flow responses to hypercapnia compared with men of the same age, until the age of menopause [132]. However, this may be due, in part, to the higher baseline cerebral blood flow velocity in women of any age group. Although autoregulation should prevent changes in blood pressure from altering cerebral blood flow, emerging evidence suggests that sex differences in dynamic autoregulation exist [133]. Therefore, sex differences in “true” cerebral vasodilator capacity, when accounting for baseline flow velocity and acute changes in blood pressure, and their underlying mechanisms are unclear. Production of vasodilatory prostaglandins may be greater in women than in men, because the cyclooxygenase inhibitor indomethacin reduces the vasodilatory capacity to a greater extent in postmenopausal women than in age-matched men (Figure 5).

The vasodilatory capacity of the brachial artery decreases with preeclampsia [134] and menopause [135]. However, the effects of these conditions on the vasodilatory capacity of the cerebral circulation are unclear. For example, hypertensive pregnancy disorders, particularly preeclampsia, represent circumscribed events, and the future consequences of such events on cerebral vascular function have not been elucidated. In addition, although the risk of systemic hypertension increases at menopause, these effects of menopause on the cerebral circulation have not been defined. Furthermore, the effects of MHT on the cerebral circulation remain unclear [136-142].

Studies in experimental animals and cultured cells have consistently shown that estrogen enhances neurologic function and is neuroprotective, thus the maintenance of adequate estrogen levels could prevent or delay dementia in menopausal women. In observational studies comparing cognitive performance and dementia risk between a group of postmenopausal women who used MHT and a group of non-MHT users, MHT users performed better than non-users on the Modified Mini-Mental State Examination, and on tests of verbal fluency, verbal memory, and verbal and spatial working memory [143-148]. However, other observational studies did not identify a difference in cognitive function and dementia risk between the MHT users and non-users [148-151].

As with cardiovascular disease, controversy exists regarding whether MHT can preserve neurologic function and decrease the risk of dementia when administered early in menopause (onset of treatment within 3-5 years). In the Women’s Health Initiative Memory Study (WHIMS), dementia was not prevented in older women who initiated MHT later (after 5 years) into menopause [152,153]. However, several meta-analyses showed a 20% to 40% decrease in the risk of Alzheimer’s disease for women who use MHT early in menopause [154-157], in observational studies. Unfortunately, observational studies are subject to confounding effects. For example, better educated and healthy women are more likely to be MHT users and more likely to be compliant than are less-educated and less-healthy women (confounding by “healthy users” effect). Education and health are determinants of cognitive function by themselves, and these variables may not be fully adjusted during statistical analysis [152,158].

By contrast, randomized controlled clinical trials are not influenced by such confounding effects. Some randomized controlled trials have shown beneficial effects of MHT on cognition [159-161]. However, WHIMS, the largest randomized controlled trial designed to date to examine the effects of hormone therapy on cognitive function and incident dementia, found that conjugated estrogens, given to women at age 65 years and older (late into menopause), with or without medroxyprogesterone acetate, did not protect against dementia or cognitive decline. Rather, MHT substantially increased the risk of dementia and cognitive decline in these age groups [162-166].

It has been hypothesized that administration of estrogen during perimenopause, when endogenous estrogen concentrations are labile, protects against age-associated...
cognitive decline and dementia [167-173], but little is known about the mechanistic underpinnings of this hypothesis. In the rat hippocampus, aging leads to a loss of hippocampal estrogen receptor α, estradiol sensitivity, and loss of estradiol-mediated neuroprotection against global cerebral ischemia. However, estradiol administration to middle-aged rats was neuroprotective, supporting the hypothesis of a "window of opportunity" or a critical period for the initiation of MHT [174].

Other mechanisms by which estrogen might provide neuronal protection, as suggested from studies of animals and cultured cells include: 1) improving synapse formation on hippocampal dendritic spines [175-177]; 2) increasing the activity of choline acetyltransferase in the basal forebrain and hippocampus (choline acetyltransferase is a synthetic enzyme for acetylcholine, a neurotransmitter implicated in memory function, that is markedly reduced in Alzheimer's disease) [178-181]; 3) reducing β-amyloid deposition in the brain and preventing the toxic effects of β-amyloid 1-42 on the neuronal mitochondria [45,182,183]; and 4) facilitating cerebral blood flow and acting as an antioxidant [40,184-186].

Following publication of clinical trial results from the WHIMS, there is a need for a randomized controlled trial to determine the neuroprotective effects of MHT in recently (< 3 years) postmenopausal women. However, determining these effects of MHT initiated close to menopause on the risk of dementia requires decades of follow-up, and is thus not feasible. A possible remedy to this obstacle is to use noninvasive imaging markers and measures of cerebral blood flow as short-term surrogate outcomes.

Surrogate imaging markers for investigating cognitive health

Volumetric MRI can be used to assess longitudinal effects of MHT on brain structure. Whole-brain and hippocampal volumes on MRI decrease during physiologic aging, accelerating after the fourth decade [187,188], with an annual rate of 0.2% decline in whole-brain volumes after age 54 years [189]. This decline in brain volume is consistent with autopsy studies showing that brain weight decreases after age 40 years. This decrease is thought to result from the degenerative processes of senescence such as cell shrinkage [187,188]. A direct relationship has been identified between hippocampal volumes on MRI and hippocampal neuronal density at autopsy in cognitively normal older adults and patients with Alzheimer's disease [190]. Although, volumetric MRI is regarded as a surrogate for the structural integrity of the neurons in the elderly [191], similar studies of hippocampal volume in women close to menopause or with a history of hypertensive pregnancy disorders, and obtained in conjunction with assessments of cognition are needed.

A quantitative MRI marker of cerebrovascular health is white matter hyperintensities associated with small-vessel vascular disease in the brain [192]. Hypertensive renal disease is strongly associated with white matter hyperintensities [193], and better control of blood pressure slows their progression [194,195]. There is an association between white matter hyperintensity load and future risk of mild cognitive impairment [196-198]. On average, white matter hyperintensities are more common in patients with mild cognitive impairment and Alzheimer's disease [199,200], in agreement with autopsy studies in which vascular disease was more common in patients with Alzheimer's disease pathology [199,200]. Thus, quantitative analysis of the load of white matter hyperintensities may provide insight into the mechanisms by which menopause and hypertensive pregnancy disorders affect cognitive function in women.

Results of cross-sectional studies using MRI to assess the effects of MHT on brain morphology are mixed. One study found a decrease in gray matter volumes in MHT users compared to non-users [201], while another study found that MHT did not affect gray or white matter volumes.
Other studies found greater volumes of hippocampus [203-205], prefrontal cortex [206], cerebellum [203,207], temporal lobe gray matter [203,206], parietal lobe gray matter [203,206,207] and white matter [208] in cognitively normal MHT users compared to non-users. Some of these regions of brain morphology are involved in memory function.

Contrary to the findings from observational studies, data from WHIMS indicate greater hippocampal atrophy in postmenopausal women who are treated with hormones at age 65 years and older [209] and a slightly greater increase in white matter hyperintensities [210]. In WHIMS, women with low baseline cognitive function and high ischemic white matter hyperintensities were more prone to this MHT effect on the hippocampus, suggesting greater vulnerability of an already compromised brain to hormone treatment [209,210]. Furthermore, hippocampal volumes correlated with cognitive function in the treated group, suggesting MHT induces cognitive impairment through increased brain atrophy [163]. White matter hyperintensities in WHIMS were associated with baseline blood pressure, and a greater longitudinal increase in white matter hyperintensities occurred in those with higher blood pressure, demonstrating longitudinal blood pressure effects [211]. MRI findings in WHIMS are consistent with the previously reported decline in cognitive function and an increased risk of dementia with hormone treatment, and demonstrate that MRI-based measures of brain morphology are useful surrogates of cognitive function in postmenopausal women [210].

Diffusion tensor imaging is gaining acceptance as the preferred quantitative imaging technique for assessing white matter integrity in the aging brain. Data from experimental models suggest that the directionality of diffusion along the axonal projections measured with fractional anisotropy decreases with the loss of myelin and axons [212,213]. The reduction in fractional anisotropy in the white matter has been associated with the ischemic white matter hyperintensities in cognitively healthy elderly men and women. These fractional anisotropy reductions are not confined to hyperintense lesions but are also found in the normal appearing white matter [214,215]. One possible explanation for these diffusion abnormalities in the normal appearing white matter is that the decrease in fractional anisotropy may be antecedent to the white matter hyperintensities which are the end stage of ischemic vascular damage to the white matter [216]. The relationship between vascular risk factors and fractional anisotropy reduction in the white matter [215] further suggests that fractional anisotropy reduction in the aging brain may be a marker for subclinical cerebrovascular disease. Although the biological basis of diffusivity changes in the aging brain is yet unclear, the association between white matter fractional anisotropy and cognitive function underscores the potential of this new imaging technique [217-219].

Retention of the radio-labeled compound, Pittsburgh compound-B (PiB), monitored by positron emission tomography (PET) is a direct measure of the β-amyloid deposits in Alzheimer's disease. A positive PET scan indicating the presence of β-amyloid deposits in cognitively normal adults is proposed as one of the research criteria for preclinical Alzheimer's disease [220]. PiB binds to both β-amyloid 1-40 and β-amyloid 1-42 peptide species. Because β-amyloid 1-40 is the major β-amyloid peptide species within blood vessels, PiB is also sensitive to the β-amyloid associated vasculopathy or cerebral amyloid angiopathy [221]. Retention of PiB increases with age, and high PiB retention (at levels found in Alzheimer's disease) was observed in 5.7% of normal individuals between the ages of 50 to 59 years, and in 19.0% of individuals between the ages of 60 to 69 years [222]. In the population-based Mayo Clinic Study of Aging, high PiB retention was present in 33% of cognitively normal older adults (average age, 79 years) [223]. Although estrogen is thought to modify the risk of Alzheimer's disease, the effects of MHT on β-amyloid pathology need further investigation.

Mediators of altered cerebral blood flow

Changes in cerebral blood flow may affect brain function acutely, as might occur with stroke or a preeclamptic event, or chronically, as might occur during changes in hormonal status (pregnancy and menopause) or during sustained hypertension [211]. To link these blood flow events to altered cognition, we can hypothesize that activation of some components in the blood (i.e. soluble components such as hormones or cytokines and/or cellular blood elements, including cell membrane-derived microvesicles), may reduce cerebral circulation, ultimately causing structural changes to the brain followed by cognitive impairment (Figure 1). Although this hypothesis requires rigorous testing, several lines of evidence point to its plausibility.

Blood platelets alter arterial diameter through their interactions with the vascular endothelium and smooth muscle cells [224-226]. These interactions are modulated by sex-steroid hormones [227-229]. Indeed, the content of several classes of vasoactive and mitogenic agents in platelets—including nitric oxide, prostacyclin, thromboxane A₂, 5-hydroxytryptamine, tissue factor, tissue factor pathway inhibitor, transforming growth factor β, matrix metalloproteinases, and platelet-derived growth factors—varies with estrogen treatments [227,230-234].

Preeclampsia is characterized by a maternal hypercoagulable state, with increased intravascular coagulation and micro-thromboses that impair blood supply to several organs (Figure 4) [235-239]. Whether this hypercoagulable state or platelet activation contributes to overall
cardiovascular risk or cerebrovascular vasodilatory capacity in women as they age remains to be determined.

Platelet activation may contribute to the progression of mild cognitive impairment or dementia. Significantly higher basal expressions of the platelet activation markers glycoprotein Ib/IIa (PAC-1 binding) and P-selectin were observed in patients who developed cognitive decline at one year of follow-up (decrease of Mini-Mental State Examination score >4) compared with patients without decline (decrease in score ≤4) [240]. Furthermore, platelets from patients with Alzheimer’s disease and mild cognitive impairment contain higher concentrations of amyloid precursor protein and serotonin, and lesser amounts of epidermal growth factor and matrix metalloprotease-2 compared to healthy controls [241]. With ischemia, platelet aggregates accumulate both inside and outside of the blood-brain barrier and co-localize with toxic fragments of amyloid precursor protein. These observations suggest that progressive injury of brain parenchyma may be caused not only by degeneration of neurons destroyed during ischemia, but also by chronic damage to the blood-brain barrier, with the accumulation of amyloid precursor protein in the perivascular space, thereby leading to Alzheimer’s-disease pathology [242].

During cell-cell interactions, such as platelet interactions with other blood elements (i.e., leukocytes), cerebral vascular endothelium, or neurons, sealed membrane vesicles of <1 μm in diameter are shed into the circulation. Each microvesicle carries surface proteins/receptors characteristic of its cell of origin. Microvesicles are biochemically active and potentially important in several diseases, including cerebrovascular disease, preeclampsia, myeloproliferative disorders, and ischemic brain disease [243-247]. The composition of microvesicles and their numbers in the circulation depend on their cells of origin and the stimuli that trigger their production. Digital flow cytometry (FACSCanto™) and solid-phase fluorescence assays can be used to accurately identify and quantify the cellular origins of circulating microvesicles and their pathophysiological characteristics [246,248,249]. Thus, it is possible to evaluate populations of circulating microvesicles, in early as well as late disease processes (e.g., development of white matter hyperintensities, β-amyloid pathology of Alzheimer’s disease, structural MRI changes associated with neuronal degeneration), and to study their associations with the cognitive health of women who have experienced preeclampsia, menopause, or who have used MHT. For example, in a subgroup of the women enrolled in the Kronos Early Estrogen Prevention Study (KEEPS) [250], increases in white matter hyperintensities over a four year period correlated with the number of activated, platelet-derived microvesicles at baseline [251].

These results suggest that blood borne microvesicles are part of a cascade of events that lead to the development of white matter hyperintensities. The effects of MHT on 1) the number and cellular origins of microvesicles, 2) the development of white matter hyperintensities, and 3) on direct measures of cerebral vasodilatory capacity remain to be determined. These studies can be extended to men in order to evaluate the association of testosterone deficiency with overall cardiovascular risk and cognitive decline.

Conclusions

Viewing research and delivery of medical care through a “sex-based lens,” with attention to an individual’s sex chromosomal complement and hormonal status, is fundamental to individualized medicine. Changes in cerebrovascular function and cognitive health in women affected by female-specific conditions, such as preeclampsia and menopause, remain unexplored or controversial. Interdisciplinary research teams using population-based epidemiologic methods, structural imaging, and functional physiological and biochemical approaches are positioned to address these important and timely research questions. The ultimate goal is to improve preventive, diagnostic, and treatment strategies that could reduce sex disparities in disease and improve the health for women and men throughout their life spans.

Abbreviations

MHT: Menopausal hormone therapy; MRI: Magnetic resonance imaging; WHIMS: Women’s health initiative memory study.

Competing interests

None of the authors declare competing financial interests.

Authors’ contribution

VMM, VDG, KK, JNB, MJ, MMM, MJJ, LTS and WAR have contributed to the conception, drafting and editing of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by grants from the NIA, AG 44170 and the Mayo Foundation. Mayo Clinic is a NIH designated Specialized Center on Research of Sex Differences.

Author details

1Departments of Surgery and Physiology and Biomedical Engineering, 200 1st St SW, Rochester, MN 55905, USA. 2Division of Nephrology and Hypertension, 200 1st St SW, Rochester, MN 55905, USA. 3Department of Radiology, 200 1st St SW, Rochester, MN 55905, USA. 4Department of Anesthesiology, 200 1st St SW, Rochester, MN 55905, USA. 5Department of Physiology and Biomedical Engineering, 200 1st St SW, Rochester, MN 55905, USA. 6Department of Health Science Research, Division of Epidemiology, 200 1st St SW, Rochester, MN 55905, USA. 7Department of Internal Medicine, Women’s Health Clinic, 200 1st St SW, Rochester, MN 55905, USA. 8Department of Health Science Research, Division of Epidemiology, and Neurology, College of Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.

Received: 21 December 2012 Accepted: 5 March 2013

References

1. Sex CoUItBo, Differences G, Policy BdhS: Exploring the Biological Contributions to Human Health: Does Sex Matter?. Washington, DC: The National Academies Press; 2001.
2. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, et al: Heart disease and stroke statistics–2012 update: a report from the American heart association. Circulation 2012, 125(1):e2–e220.

3. Mosca L, Benjamin EJ, Berra K, Beazanson JL, Dolin RJ, Lloyd-Jones DM, Newby LK, Pina IL, Roger VL, Shav JI, et al: Effectiveness-based guidelines for the prevention of cardiovascular disease in women–2011 update: a guideline from the American heart association. Circulation 2011, 123(11):1243–1262.

4. Reckelhoff JF, Fortepiani LA: Novel mechanisms responsible for postmenopausal hypertension. Hypertension 2004, 43(5):918–923.

5. Narkiewicz K, Phillips BG, Kato M, Hering D, Bieniaszewski L, Somers VK: Novel mechanisms responsible for hypertension. Hypertension 2005, 45(4):522–525.

6. Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach JH, Joyner MJ: Sex differences in sympathetic-nemdyromorphic balance: implications for human blood pressure regulation. Hypertension 2009, 53:571–576.

7. Hart EC, Charkoudian N, Miller VM: Sex, hormones and neuroeffector mechanisms. Acta Physiologica 2010, 209:155–165.

8. Rezzit-Zagrosek V, Lehmkuhl E: Heart failure and its treatment in women. Heart failure and its treatment in women. J Neurol Neurophysiol 2011, 51:006.

9. Arain FA, Kuniyoshi FH, Abdalrhim AD, Miller VM: Intracerebral hypertension in women: mechanisms and implications. J Neurol Neurophysiol 2011, 51:006.

10. Petrea RE, Beiser AS, Seshadri S, Kelly-Hayes M, Kase CS, Wolf PA: Effects of estrogen plus progesterone on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 2003, 290(1):1712–1738.

11. Li P, Christian RC, Ruan M, Miller VM, Fitzpatrick LA: Correlating androgen and estrogen steroid receptor expression with coronary calcification and atherosclerosis in men without known coronary artery disease. J Clin Endocrinol Metab 2005, 90(2):1041–1046.

12. Vattikuti R, Towler DA: Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 2012, 306(1):E686–E696.

13. Prakash YS, Togalbayeva AA, Kannan MS, Miller VM, Fitzpatrick LA, Sieck GC: Estrogen increases Ca(2+)-efflux from female porcine coronary arterial smooth muscle. Am J Physiol Heart Circ Physiol 1999, 276:H932–H934.

14. White RE, Darkow DJ, Falvo LG, Jill: Estrogen relaxes coronary arteries by opening BK(Ca) channels through a cGMP-dependent mechanism. Circ Res 1995, 77:992–942.

15. Deenadayalu PV, White RE, Stallone JN, Gao X, Garcia AJ: Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am J Physiol Heart Circ Physiol 2001, 281: H1720–H1727.

16. Miller VM, Dukkes SP: Vascular actions of estrogens: functional implications. Pharmacol Rev 2008, 60(2):210–241.

17. Dukkes SP, Miller VM: Hormonal modulation of endothelial NO production. Pflugers Arch Eur J Physiol 2010, 459:841–851.

18. Charkoudian N, Joyner MJ, Barnes SA, Johnson CP, Eisenach JH, Dietz NM, Wallin BG: Relationship between muscle sympathetic nerve activity and systemic hemodynamics during nitric oxide synthesis inhibition in humans. Am J Physiol Heart Circ Physiol 2006, 291(3):H1378–H1383.

19. Charkoudian N, Joyner MJ, Sokolnicki LA, Johnson CP, Eisenach JH, Dietz NM, Wallin BG: Vascular adrenergic responsiveness is inversely related to tonic activity of sympathetic vasoconstrictor nerves in humans. J Physiol 2006, 572(Pt 1):821–827.

20. Hart EC, Joyner MJ, Wallin BG, Johnson CP, Curry TB, Eisenach JH, Charkoudian N: Age-related differences in the sympathetic-hemodynamic balance in men. Hypertension 2009, 54(1):127–133.

21. Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach J, Joyner MJ: Sex and aging differences in resting arterial pressure regulation: the role of the beta-adrenergic receptors. J Physiol 2011, 589(Pt 21):5285–5297.

22. Charkoudian N, Joyner MJ, Sokolnicki LA, Johnson CP, Eisenach JH, Dietz NM, Wallin BG: Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol 2005, 568:315–321.

23. Krause DN, Dukkes SP, Pelligrino DA: Influence of sex hormone receptors on cerebrovascular function. J Appl Physiol 2006, 101(4):1252–1261.

24. Li W, Zheng T, Altura BM, Altura BT: Estrogen relaxes coronary arteries by opening BK(Ca) channels through a cGMP-dependent mechanism. J Physiol 2001, 543:183–189.

25. Rezzit-Zagrosek V, Lehmkuhl E: Heart failure and its treatment in women.
ACOG Committee on Obstetric Practice: ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet 2002, 77(1):67–75.

Satlas AF, Olson DR, Franks AL, Atrash HK, Pokras R: Epidemiology of preeclampsia and eclampsia in the United States, 1979-1986. Am J Obstet Gynecol 1990, 163(2):460–465.

Levine RJ, Hauth JC, Curet LB, Sibai BM, Catalano PM, Morris CD, Desimmon R, Esterlitiz JR, Raymond EG, Bild DE, et al. Trial of Calcium to Prevent Preeclampsia. N Engl J Med 1997, 337(2):69–77.

Kulina EV, Ayala C, Callaghan WM: Hypertensive disorders and severe obstetric morbidity in the United States. Obstet Gynecol 2009, 113(6):1299–1306.

Sibai BM, Caritis SN, Thom E, Kotelchuck M, McCullough D, Lopera L, Paul RH, Romero R, Witter F, Rosen M, et al. Prevention of Preeclampsia with Low-Dose Aspirin in Healthy, Nulliparous Pregnant Women. N Engl J Med 1993, 329(7):1213–1218.

anonymous: Venous thromboembolic disease and combined oral contraceptives: results of international multicentre case-control study. World Health Organization Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception. [see comment]. Lancet 1995, 346(8990):1575–1582.

anonymous: Haemorrhagic stroke, overall stroke risk, and combined oral contraceptives: results of an international, multicentre, case-control study. WHO Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception. [see comment]. Lancet 1996, 348(9060):505–510.

Croft P, Hannaford PC: Risk factors for acute myocardial infarction in women: evidence from the Royal College of General Practitioners' oral contraception study. [see comment]. BMJ 1989, 298(6657):165–168.

Mann JI, Doll R, Thorogood M, Vessey MP, Waters WE: Risk factors for myocardial infarction in young women. Br J Prev Soc Med 1976, 30(2):94–100.

Garovic VD, Bailey KR, Boerwinkle E, Hunt SC, Weder AB, Curb D, Mosley TH, Wilson BJ, Watson MS, Prescott GJ, Sunderland S, Campbell DM, Hannaford P: Risk factors for acute myocardial infarction in young women. Br J Obstet Gynaecol 2009, 116(11):1486–1491.

Wilson BJ, Watson MS, Prescott GJ, Sunderland S, Campbell DM, Hannaford P, Smith WC: Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ 2003, 326(7394):845.

Amadottir GA, Geirsson RT, Agrimsson R, Jonsdottir LS, Arngrimsson R, Geirsson RT, Sigvaldason H, Sigfusson N: Death rates from ischemic heart disease in women who had hypertension in pregnancy: a case-control study. Br J Obstet Gynaecol 2005, 112(3):286–292.

Funai EF, Friedlander Y, Paltiel O, Tiram E, Xue X, Deutsch L, Harlap S: Mortality following preeclampsia. Aust N Z J Obstet Gynaecol 1996, 36(3):233–238.

Melchione K, Sutherland GR, Liberati M, Thilaganathan B: Preeclampsia is associated with persistent postpartum cardiovascular impairment. Hypertens Res 2011, 34(8):709–715.

Rocca WA, Grossardt BR, Miller VM, Shuster LT, Brown RD Jr: Premature menopause or early menopause and risk of ischemic stroke. Menopause 2012, 19(5):272–277.

Chambers JC, Fusi L, Malik IS, Harkard DO, De Swiet M, Kooner JS: Association of maternal endothelial dysfunction with preeclampsia. JAMA 2001, 285(12):1607–1612.

North RA, Simmons D, Bamfather D, Upjohn M: What happens to women with preeclampsia? Microalbuminuria and hypertension following preeclampsia. Aust N Z J Obstet Gynaecol 1996, 36(3):233–238.

Brown DW, Dueker N, Jamieson DJ, Cole JW, Wozniak MA, Stern BJ, Giles WH, Kitterl SJ: Preeclampsia and the Risk of Ischemic Stroke Among Young Women: Results From the Stroke Prevention in Young Women Study. Stroke 2006, 37(4):1055–1059.

Garovic VD, Hayman SR: Hypertension in pregnancy; an emerging risk factor for cardiovascular disease. Nat Clin Pract Nephrol 2007, 3(1):613–622.
vascular compliance in postmenopausal women with arterial hypertension. J Hum Hypertens 2002, 16(7):509–516.

93. Andersen K, Launer LJ, Dewey ME, Lentonur L, Ott A, Copeland JR, Dartigues JF, Kragh-Sorensen P, Baldreschi M, Brayne C, et al. Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. EURODEM Incidence Research Group. Neurology 1999, 53(9):1992–1997.

94. Fratiglioni L, Viitanen M, von Strauss E, Tontodonati V, Herlitz A, Winblad B; Very old women at highest risk of dementia and Alzheimer's disease: incidence data from the Kungsholmen Project, Stockholm. Neurology 1997, 48(1):132–138.

95. Miech RA, Breitner JC, Zandi PP, Lachterian AS, Anthony JC, Mayer L. Incidence of AD may decline in the early 90s for men, later for women: The Cache County study. Neurology 2002, 58(2):209–218.

96. Lobo A, Lopez-Antorn R, Santabarbara J, De-la-Camma C, Ventura T, Quintanilla MA, Roy TJ, Campayo AJ, Lobo E, Palombo T, et al. Incidence and lifetime risk of dementia and Alzheimer's disease in a Southern European population. Acta Psychiatri Scand 2011, 124(5):372–383.

97. Agüero-Torres H, Fratiglioni L, Guo Z, Viitanen M, Winblad B. Hortnagl H, Hansen L, Kindel G, Schneider B, El Tamer A, Hanin I. Progression of cognitive, functional, and neuropsychiatric symptom domains in a population cohort with Alzheimer dementia: the county dementia progressivity study. J Geriatr Psychiatry Neurol 2011, 19(6):532–542.

98. Mielke MM, Lewuskoski JM, Corcoran CD, Green RC, Norton MC, Welsh-Bohmer KA, Tisch JS, Lyketsos CG. Effects of Drug and Food Administration-approved medications for Alzheimer's disease on clinical progression. Alzheimers Dement 2012, 8(3):180–187.

99. Rhodes M, O'Toole S, Wright S, Czambel R, Rubin R. Sexual diergism in rat hypothalamic-pituitary-adrenal axis responses to cholinergic stimulation and antagonism. Brain Res Bull 2001, 54(1):111–123.

100. Luine V, Renner K, McEwen B. Sex-dependent differences in estrogen regulation of choline acetyltransferase are altered by neonatal treatments. Endocrinol Metab Clin North Am 1986, 15:751–787.

101. Hortnagl H, Hansen L, Kindel G, Schneider B, El Tamer A, Hanin I. Progression of cognitive, functional, and neuropsychiatric symptom domains in a population cohort with Alzheimer dementia: the county dementia progressivity study. J Geriatr Psychiatry Neurol 2011, 19(6):532–542.

102. Wang R, Schorer-Apelbaum D, Weinstock M. A Brief Review of the AF64A-Induced Cholinergic Deficit in the Rat Hippocampus. Brain Res Bull 1993, 31:129–34.

103. Wang R, Schorer-Apelbaum D, Weinstock M. Testosterone mediates sex difference in hypothermia and cholinesterase inhibition by rivastigmine. Eur J Pharmacol 2001, 433:73–79.

104. Wang RH, Bejar C, Weinstock M. Gender differences in the effect of rivastigmine on brain cholinesterase activity and cognitive function in rats. Neuropharmacology 2000, 39:497–506.

105. Winters HW. Cerebral amyloid angiopathy, a critical review. Stroke 1987, 18:311–318.

106. Kalaria RN, Hedera P. Differential degeneration of the cerebral microvasculature in Alzheimer's disease. Neuroreport 1995, 6:477–480.

107. Perlmutter LS, Chui HC. Microangiopathy, the vascular basement membrane and Alzheimer's disease: a review. Brain Res Bull 1990, 24:677–688.

108. Sparks DL, Hunsaker JC, 3rd, Schiff SW, Kryscio RJ, Henson JL, Markesbery WR. Cortical senile plaques in coronary artery disease, aging and Alzheimer's disease. Neurobiol Aging 1990, 11(6):601–607.

109. Skoog I, Lernberg B, Landahl S, Palmertz B, Andreasson LA, Nilsson L, Persson G, Oden A, Svahnberg A. 15-year longitudinal study of blood pressure and dementia. Lancet 1996, 347(9009):141–146.

110. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, Havlik RJ. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neuroepidemiology 2000, 21(1):49–55.

111. Hofman A, Ott A, Breteler MM, Bots ML, Slooter AJ, van Harskamp F. Risk factors and presence of dementia and Alzheimer's disease in the Rotterdam Study. Lancet 1997, 349(9048):151–154.

112. Ott A, Breteler MM, van Harskamp F, Grobbee DE, Hofman A. Atrial fibrillation and dementia in a population-based study, the Rotterdam study. Stroke 1997, 28(3):316–321.

113. Yoshikata T, Kiyohara Y, Kato I, Ohmura T, Iwamoto H, Nakayama K, Ohmori S, Nomiya K, Kawano H, Ueda K, et al. Incidence and risk factors of vascular dementia and Alzheimer's disease in a defined elderly Japanese population: the Hisayama Study. Neurology 1995, 45(6):1161–1168.

114. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999, 53(9):1937–1942.

115. Gustafson D, Rothenberg E, Bernnow K, Steen B, Skoog I. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 2003, 163(3):1524–1528.

116. Hong LS, Tang MX, Albert S, Costa R, Luchsinger J, Manly J, Stern Y, Mayeux R. Stroke and the risk of Alzheimer disease. Arch Neurol 2003, 60(12):1707–1712.

117. Mielke MM, Rosenberger P, Tisch JS, Cook L, Corcoran C, Hayden KM, Norton M, Rabins PVR, Green RC, Welsh-Bohmer K, et al. Vectoral factors predict rate of progression in Alzheimer's disease. Neurology 2007, 69:1850–1858.

118. Zeeman GG, Fleckstein JL, Twickler DM, Cunningham FG. Cerebral infarction in eclampsia. Am J Obstet Gynecol 2004, 190(3):714–720.

119. Wagner S, Acquah L, Lindell E, Craici I, Wingo M, Rose C, White W, August P, Garovic V. Posterior Reversible Encephalopathy Syndrome (PRES) and Eclampsia: Pressing the Case for More Aggressive Blood Pressure Control. Mayo Clin Proc 2011, 86(5):851–856.

120. van Straaten EC, Harvey D, Schelters M, Barkhof F, Petersen RC, Thal LJ, Jack CR Jr, DeCarli C. Periventricular white matter hyperintensities increase the likelihood of progression from amnestic mild cognitive impairment to dementia. J Neurol 2008, 255(5):1302–1308.

121. Smith EE, Egorova S, Blacker D, Killiany RJ, Muzikansky A, Dickerson BC, Tanzi RE, Albert MS, Greenberg SM, Guttmann CR. Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch Neurol 2008, 65(1):94–100.

122. Aukes AM, De Groot JC, Aarnoudse JG. Relevance of hypertension and cerebrovascular reactivity to carbon dioxide in humans. Anesthes Intensive Care 2010, 38(4):710–717.

123. Tataru ZS, Vanhoutte PM. Anionic contractions in isolated canine cerebral arteries: Contribution of endothelium-derived factors, metabolites of arachidonic acid and calcium entry. J Cardiovasc Pharmacol 1986, 9:597–601.

124. Tataru ZS, Vanhoutte PM. Superoxide anion is an endothelium-derived contracting factor. Am J Physiol Heart Circ Physiol 2006, 291(4):H1856–H1861.

125. Galvin SD, Celi LA, Thomas KN, Clendorn TR, Galvin JF, Bunton RW, Aindle PN. Effects of age and coronary artery disease on cerebrovascular reactivity to carbon dioxide in humans. Anesthes Intensive Care 2010, 38(4):710–717.
136. Kawanou H, Motoyama T, Kugiyama K, Hirashima O, Oshushi M, Fujii H, Ogawa H, Yasure H: Gender difference in improvement of endothelium-dependent vasodilation after estrogen supplementation. J Am Coll Cardiol 1997, 30:314–919.

137. Gerhard M, Walsh BW, Tawakol A, Hales EA, Creager SJ, Seely EW, Ganz P, Creager MA: Estradiol therapy combined with progesterone and endothelium-dependent vasodilation in postmenopausal women. Circulation 1998, 98(12):1158–1163.

138. Sorensen KE, Dorup I, Hermann AP, Moselidie L: Combined hormone replacement therapy does not protect women against the age-related decline in endothelium-dependent vasomotor function. Circulation 1998, 97(13):1294–1298.

139. Emre A, Sahin S, Ertzik C, Nurkalem Z, Ozt D, Cirakoglu B, Yesilcinmen K, Ersek B: Effect of hormone replacement therapy on plasma lipoproteins and apolipoproteins, endothelial function and myocardial perfusion in postmenopausal women with estrogen receptor-alpha IVS1-397 C/C genotype and established coronary artery disease. Cardiovasc 2006, 106(1):44–50.

140. Sudhir K, Chou TM, Messina LM, Hutchison SJ, Korach KS, Chatterjee K, Miller et al: Biology of Sex Differences.

141. Gerhard M, Walsh BW, Tawakol A, Haley EA, Creager SJ, Seely EW, Ganz P, Creager MA: Estradiol therapy combined with progesterone and endothelium-dependent vasodilation in postmenopausal women. Circulation 1998, 98(12):1158–1163.

142. Sokorski KE, Dorup I, Hermann AP, Moselidie L: Combined hormone replacement therapy does not protect women against the age-related decline in endothelium-dependent vasomotor function. Circulation 1998, 97(13):1294–1298.

143. Emre A, Sahin S, Ertzik C, Nurkalem Z, Ozt D, Cirakoglu B, Yesilcinmen K, Ersek B: Effect of hormone replacement therapy on plasma lipoproteins and apolipoproteins, endothelial function and myocardial perfusion in postmenopausal women with estrogen receptor-alpha IVS1-397 C/C genotype and established coronary artery disease. Cardiovasc 2006, 106(1):44–50.

144. Rice MW, Graves AB, McCurry SM, Gibbons LE, Bowen JD, McCormick WC, Larson EE: Postmenopausal estrogen and estrogen-progestin use and 2-year rate of cognitive change in a cohort of older Japanese American women: The Kame Project. Arch Intern Med 2000, 160(11):1641–1649.

145. Steffens DC, Norton MC, Plassman BL, Tschanz JT, Wyse BW, Welsh-Bohmer KA, Anthony JC, Breitner JC: Enhanced cognitive performance with estrogen use in nondepressed community-dwelling older women. J Am Geriatr Soc 1999, 47(10):1171–1175.

146. Grodstein F, Chen J, Polen DA, Albert MS, Wilson RF, Folsom AR, Evans DA, Stampfer MJ: Postmenopausal hormone therapy and cognitive function in healthy older women. J Am Geriatr Soc 2000, 48(7):746–752.

147. Matthews K, Cauley J, Yaffe K, Zmuda JW: Estrogen replacement therapy and longitudinal decline in visual memory. A possible protective effect? Neurology 1997, 49(6):1491–1497.

148. Ogawa H, Yasue H: Cardiovascular actions of estrogens in men. J Clin Endocrinol Metab 1997, 349:1146–1147.

149. Levy R, Komesaroff P, Williams M, Dawood T, Sudhir K: Endogenous estrogens influence endothelial function in young men. Circ Res 2003, 93(11):127–133.

150. Resnick SM, Mettler EJ, Zonderman AB: Estrogen replacement therapy and longitudinal decline in visual memory. A possible protective effect? Neurology 1997, 49(6):1491–1497.

151. Vinson CA, Anthony JC, Breitner JC: Enhanced cognitive performance with estrogen use in nondepressed community-dwelling older women. J Am Geriatr Soc 1999, 47(10):1171–1175.

152. Grodstein F, Chen J, Polen DA, Albert MS, Wilson RF, Folsom AR, Evans DA, Stampfer MJ: Postmenopausal hormone therapy and cognitive function in healthy older women. J Am Geriatr Soc 2000, 48(7):746–752.

153. de Moraes SA, Szklo M, Knopman D, Park E: Enhanced cognitive performance with estrogen use in nondemented community-dwelling older women. J Am Geriatr Soc 1999, 47(10):1171–1175.

154. de Moraes SA, Szklo M, Knopman D, Park E: Enhanced cognitive performance with estrogen use in nondemented community-dwelling older women. J Am Geriatr Soc 1999, 47(10):1171–1175.

155. Fite SE, Heide JR, Ryme J: Trough oestradiol levels associated with cognitive impairment in post-menopausal women after 10 years of oestriol implants. Psychopharmacology (Berl) 2002, 161(1):107–112.

156. Fillenbaum GG, Hanlon JT, Landerman LR, Schmader KE: Impact of estrogen use on decline in cognitive function in a representative sample of older community-resident women. J Am Geriatr Soc 1999, 135(2):137–144.

157. Craig MC, Maki PM, Murphy DG: The Women’s Health Initiative Memory Study: findings and implications for treatment. Lancet Neurol 2005, 4(3):190–194.

158. Shumaker SA, Rebeissin BA, Espeland MA, Rapp SR, Smukler SA, Brunner R, Manson JE, Sherwin BB, Hsaia J, Margolis KL, Hogan PE, Wallace R, et al: Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 2004, 291(24):2959–2968.

159. Espeland MA, Trinide HA, Bushnell CA, Jaramillo SA, Koller LH, Margolis KL, et al: Brain Volumes, Cognitive Impairment, and Conjugated Equine Estrogens. J Gerontol A Biol Sci Med Sci 2009, 64:1243–1250.

160. Rapp SR, Espeland MA, Smukler SA, Henderson VW, Brunner RL, Manson JE, Gass ML, Stefanic ML, Lane DS, Hays J, et al: Effect of estrogen plus progesterin on global cognitive function in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 2004, 291(24):2939–2949.

161. Sharov VZ, Nafzil E, Zellerne D, Marchione KE, Holahan JM, Pater SR, Sharov VZ: Better oral reading and short-term memory in midlife, postmenopausal women taking estrogen. Menopause 2003, 10(5):420–426.

162. Smukler SA, Legault C, Koller L, Rapp SR, Thal L, Lane DS, Fillit H, Stefanic ML, Hendrix SL, Lewis CE, et al: Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 2004, 291(24):2947–2958.

163. Morrison JH, Brinton RD, Schmidt PJ, Gore AC: Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women. J Neurosci 2006, 26(41):10332–10348.

164. Sherwin BB: Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology 1998, 13(4):343–357.

165. Asthana S, Brinton RD, Henderson VW, McEwen BS, Morrison JH, Schmidt PJ: Frontiers proposal. National Institute on Aging “bench to bedside: estrogen as a case study”. Age (Dordr) 2009, 31(3):199–210.

166. Sharov VZ, Nafzil E, Zellerne D, Marchione KE, Holahan JM, Pater SR, Sharov VZ: Better oral reading and short-term memory in midlife, postmenopausal women taking estrogen. Menopause 2003, 10(5):420–426.

167. Asthana S, Brinton RD, Henderson VW, McEwen BS, Morrison JH, Schmidt PJ: Frontiers proposal. National Institute on Aging “bench to bedside: estrogen as a case study”. Age (Dordr) 2009, 31(3):199–210.

168. Resnick SM, Zonderman AB, Henderson JW, Brinton RD, Schmidt PJ, Gore AC: Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women. J Neurosci 2006, 26(41):10332–10348.

169. Sherwin BB: Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology 1998, 13(4):343–357.

170. Asthana S, Brinton RD, Henderson VW, McEwen BS, Morrison JH, Schmidt PJ: Frontiers proposal. National Institute on Aging “bench to bedside: estrogen as a case study”. Age (Dordr) 2009, 31(3):199–210.

171. Resnick SM, Zonderman AB, Henderson JW, Brinton RD, Schmidt PJ, Gore AC: Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women. J Neurosci 2006, 26(41):10332–10348.
178. Gibbs RB: Estrogen and nerve growth factor-related systems in brain. Effects on basal forebrain cholinergic neurons and implications for learning and memory processes and aging. Ann N Y Acad Sci 1994, 743:165–196. discussion 197–169.

179. Gibbs RB, Aggarwal P: Estrogen and basal forebrain cholinergic neurons: implications for brain aging and Alzheimer’s disease-related cognitive decline. Alcohol Behav 1998, 34(2):98–111.

180. Luine VN: Estradiol increases cholecystokinin-tyrosine activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 1985, 89(2):484–490.

181. Markowska AL, Savonenko AV: Effectiveness of estrogen replacement in restoration of cognitive function after long-term estrogen withdrawal in aging rats. J Neurosci 2002, 22(24):10985–10995.

182. Chen VM, Ahamed J, Versteeg HH, Berndt MC, Ruf W, Hogg PJ: Evidence for activation of tissue factor by an allosteric disulfide bond. Biochim Biophys Acta 2006, 1760:1202–1208.

183. Jaffe AB, Toran-Allerand CD, Greengard P, Gandy SE: Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein. J Biol Chem 1994, 269(30):23065–23068.

184. Green PS, Simpkins JW: Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 2000, 18:347–358.

185. Green PS, Gridley KE, Simpkins JW: Nuclear estrogen receptor-independent neuroprotection by estradiol: a novel interaction with glutathione. Neuroscience 1998, 84:17–10.

186. Greene RA: Estrogen and cerebral blood flow: a mechanism to explain the impact of estrogen on the incidence and treatment of Alzheimer’s disease. Int J Fertil Womens Med 2000, 45(4):253–257.

187. Delkaban AS: Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 1978, 4(4):345–356.

188. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW: A longitudinal study of brain morphometrics using quantitative magnetic resonance imaging and difference image analysis. Neuroimage 2003, 20(1):22–33.

189. Bobinski M, Wiegieł J, Tamawski M, Reisberg B, Brown T: Normal-appearing white matter in ischemic leukoaraiosis: a diffusion tensor imaging study. Neuroimage 2006, 34(2):328–336.

190. Schmidt R, Ropele S, Enzinger C, Petrovic K, Smith S, Schmidt H, Matthews PM, Fazekas F: White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann Neurol 2005, 58(4):610–616.

191. Kantarci K, Jack CR: Quantitative magnetic resonance techniques as surrogate markers in Alzheimer’s disease. NeuroRx 2004, 1:196–205.

192. Jagust WJ, Zheng L, Hanvey DJ, Mack WJ, Vinters HV, Weiner MW, Ellis WG, Zarow C, Mungas D, Reed BR, et al: Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol 2008, 63(1):72–80.

193. Seliger SL, Longstreh WT Jr, Katz R, Manolio T, Fried LF, Shlipak M, Stehman-Breen CO, Newman A, Sarnak M, Gillen DL, et al: Cystatin C and subclinical brain infarction. J Am Soc Nephrol 2005, 16(12):3721–3727.

194. Schmidt R, Ropele S, Enzinger C, Petrovic K, Smith S, Schmidt H, Matthews PM, Fazekas F: White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann Neurol 2005, 58(4):610–616.

195. Vermeer SE, Prins ND, de Jonge J: Estrogen and hippocampal volume loss in nonmenopausal women using estrogen therapy compared to past users, never users and men: a possible window of opportunity effect. Neuroendocrinology 2008, 29(1):95–101.

196. Erickson KL, Colcombe SJ, Raz N, Korol DL, Scalf P, Webb A, Cohen NJ, McAuley E, Kramer AF: Selective sparing of brain tissue in postmenopausal women receiving hormone replacement therapy. Neurology 2005, 64(1):1205–1213.

197. Boccardi M, Boccardi R, Benussi L, Testa C, Aiva P, Pevaro M, Giga L, Sabatelli F, Barbiero L, Frisoni GB, et al: Effects of estrogens on cognition and brain morphology: involvement of the cerebellum. Mutat Res 2006, 549(4):222–228.

198. Eberling JL, Wu C, Haan MN, Mungas D, Buonocore M, Jargst WI: Preliminary evidence that estrogen protects against age-related hippocampal atrophy. Neurobiol Aging 2003, 24(5):725–732.

199. Lord C, Buss C, Lupien SJ, Prueittner JC: Hippocampal volumes are larger in nonmenopausal women using estrogen therapy compared to past users, never users and men: a possible window of opportunity effect. Neuroendocrinology 2008, 89(2):1095–1101.

200. Yoshita M, Callahan T, Mungas D, Reed BR, DeCarli C: Morphological brain changes in elderly female rats. Exp Neurol 2006, 208(2):647–654.

201. Ockene J, Davatzikos C: Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI study. Neurology 2009, 72(2):135–142.

202. Coker LH, Hogan PE, Bryan NR, Keller LH, Margolis KL, Bettermann K, Wallace RB, Lao, Freeman R, Stefanick ML, et al: Postmenopausal hormone therapy and subclinical cerebrovascular disease: the WHIMS-MRI Study. Neurology 2009, 72(2):125–134.

203. Boccardi M, Boccardi R, Benussi L, Testa C, Aiva P, Pevaro M, Giga L, Sabatelli F, Barbiero L, Frisoni GB, et al: Effects of estrogens on cognition and brain morphology: involvement of the cerebellum. Mutat Res 2006, 549(4):222–228.

204. Sandson TA, Felician O, Edelman RR, Warach S: Diffusion-weighted magnetic resonance imaging in Alzheimer’s disease. Dementia Geriatr Cogn Disord 1999, 10(3):166–171.

205. O’Sullivan M, Summers PE, Jones DK, Jarroz JM, Williams SC, Markus HS: Normal-ageing white matter in ischemic leukoaraiosis: a diffusion tensor MRI study. Neurology 2001, 57(12):2307–2310.

206. Lee DY, Fletcher E, Martinez O, Ortega M, Zuzulva N, Kim J, Tran J, Buonomore M, Carmichael O, DeCarli C: Regional pattern of white matter microstructural changes in normal aging, MCI, and AD. Neurology 2009, 72(11):1722–1728.

207. Kantarci K: Diffusion Tensor Imaging in Alzheimer’s Disease. Curr Med Imaging Rev 2011, 7(1):28–33.

208. Kantarci K, Senjem ML, Avula R, Zhang B, Mayeux R, Weigand SD, Przbylinski S, Edland SD, Toga AW, Kuller LH, Mungas D, Reed BR, DeCarli C: Cortical gray matter atrophy in Alzheimer’s disease: a magnetic resonance imaging study. Arch Neurol 2001, 58(4):643–647.

209. Kantarci K, Miller VM, Zai GS, Gunter JL, Jack CR: Brain Volume Changes in Recently Menopausal Women in a Hormone Replacement Trial. Climacteric 2008, 11(2):342–364.

210. Bartzokis G, Cummings JL, Sultzer D, Henderson WJ, Nechelescheidt K, Mintz J: White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study. Arch Neurol 2003, 60(5):393–398.
et al. Biology of Sex Differences 2013, 4:6
http://wwwbsdjournalcontent/4/1/6

220. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, et al. Toward defining the preclinical guidelines for Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011, 7(3):280–292.

221. Ikononovic MD, Kunk WE, Abrahamson EE, Mathis CA, Price JC, Toseland ND, Lopresti BJ, Zinko S, Bi W, Palljung WP, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain 2008, 131(Pt 6):1630–1645.

222. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, Mintun MA. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 2010, 67(1):122–131.

223. Kantarci K, Lowe V, Przybelski SA, Weigand SD, Senjem ML, Jrnkl RI, Preboske GM, Roberts R, Geda YE, Boeve BF, et al. APOE Modifies the Association Between A-Beta load and Cognition in Cognitively Normal Older Adults. Neurology 2012, 78(4):232–240.

224. Cohen RA, Shepherd JT, Vanhoutte PM. Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 1983, 221(4613):273–274.

225. Houston DS, Shepherd JT, Vanhoutte PM. Aggregating human platelets cause direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries. J Clin Invest 1986, 78(5):539–544.

226. Lorenz RR, Vanhoutte PM. Prejunctional adrenergic inhibition by aggregating platelets in canine blood vessels. Am J Physiol 1985, 249(4):H1685–H1688.

227. Bracamonte MP, Rud KS, Owen WG, Miller VM. Ovariectomy increases mitogens and platelet-induced proliferation of arterial smooth muscle. Am J Physiol Heart Circ Physiol 2002, 283(3):H583–H586.

228. Lewis DA, Avsar M, LaBreche P, Bracamonte MP, Jayachandran M, Miller VM. Treatment with rolaxifene and 17beta-estradiol differentially modulates nitric oxide and prostanooids in venous endothelium and platelets of ovariectomized pigs. J Cardiovasc Pharmacol 2006, 48(5):231–238.

229. Bracamonte MP, Miller VM. Vascular effects of estrogens: arterial protection versus venous thrombotic risk. Trends Endocrinol Metab 2001, 12:204–209.

230. Jayachandran M, Miller VM. Ovariectomy upregulates expression of estrogen receptors, NOS, and HSPs in porcine platelets. Am J Physiol Heart Circ Physiol 2002, 283(3):H220–H226.

231. Jayachandran M, Miller VM. Human platelets contain estrogen receptor α, caveolin-1 and estrogen receptor associated proteins. Platelets 2003, 14:75–81.

232. Jayachandran M, Miller VM. Effects of ovariectomy on aggregation, secretion, and metalloproteinases in porcine platelets. Am J Physiol Heart Circ Physiol 2003, 284(1):H1679–H1685.

233. Jayachandran M, Mukherjee R, Steinlamp T, LaBreche P, Bracamonte MP, Okano H, Owen WG, Miller VM. Differential effects of 17β-estradiol, conjugated equine estrogen and rolaxifene on mRNA expression, aggregation and secretion in platelets. Am J Physiol Heart Circ Physiol 2005, 288(2):H2355–H2362.

234. Lewis DA, Bracamonte MP, Rud KS, Miller VM. Genome and hormones: gender differences in physiology selected contribution: effects of sex and ovariectomy on responses to platelets in porcine femoral veins. J Appl Physiol 2001, 91:2823–2830.

235. Kobayashi T, Tokunaga N, Sugimura M, Suzuki K, Kanayama N, Nishiguchi T, Terao T. Coagulation/fibrinolysis disorder in patients with severe preeclampsia. Semin Thromb Hemost 1999, 25(5):451–454.

236. Bosio PM, Cannon S, McKenna PJ, O’Herlihy C, Conroy R, Brady H. Plasma F-selectin is elevated in the first trimester in women who subsequently develop pre-eclampsia. Placenta 2001, 23(10):795–811.

237. Mellembakken JR, Solum NO, Ueland T, Videm V, Aukrust P, et al. Pathologic changes of platelets in pregnancy. J Obstet Gynecol Res 1994, 20(1):119–24.

238. Vaïla MC, Parent O, Vayssiere C, Amal JF, Payrastre B. Physiologic and pathologic changes of platelets in pregnancy. Platelets 2010, 21(8):587–595.

239. Stellos K, Panagiota V, Kogel A, Leyhe T, Gawaz M, Laske C. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer’s disease patients. J Cereb Blood Flow Metab 2010, 30(11):1817–1820.

240. Hochstrasser T, Ehrlich D, Marksteiner J, Sperer-Uentenweber B, Humpel C. Matrix Metalloproteinase-2 and Epidermal Growth Factor are Decreased in Platelets of Alzheimer Patients. Curr Alzheimer Res 2011, 9:982–989. doi:10.2174/156720511790283351156.

241. Jablonski M, Maciejewski R, Januszewska S, Ulamek M, Pluta R: One year follow up in ischemic brain injury and the role of Alzheimer factors. Physiol Res 2011, 60(suppl):113–119.

242. Berckmans RJ, Nieuwland R, Boon AN, Romenijn FP, Hack CE, Sturk A. Cell-derived microcrystals circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 2001, 85(6):639–646.

243. Zwaal RF, Schroit AJ: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997, 89:1121–1132.

244. Morel O, Toti F, Hugel B, Camoin-Jau L, Dignat-George F, Freysniet JM: Procoagulant Microparticles: Disrupting the Vascular Homeostasis Equation? Arterioscler Thromb Vasc Biol 2006, 26:2594–2604.

245. Jayachandran M, Litwiller RD, Owen WG, Miller VM. Circulating microcrystals and endogenous estrogen in newly menopausal women. Climacteric 2009, 12:177–184.

246. VanWijk MJ, VanSavel E, Sturk A, Nieuwland R: Microcrystals in cardiovascular diseases. Cardiovasc Res 2003, 59(2):277–287.

247. Jayachandran M, Litwiller RD, Owen WG, Heit JA, Behenbecke TR, Mulvagh SL, Araoz PA, Rudoff MJ, Harmen SM, Miller VM. Characterization of blood borne microcrystals as markers of premature coronary calcification in newly menopausal women. Am J Physiol Heart Circ Physiol 2008, 299:R931–R938.

248. Jayachandran M, Litwiller RD, Laird BD, Bailey CR, Owen WG, Mulvagh SL, Heit JA, Hodis HN, Harmen SM, Miller VM. Alterations in Platelet Function and Cell-Derived Microcrystals in Recently Menopausal Women: Relationship to Metabolic Syndrome and Atherosogenic Risk. J Cardiovasc Transl Res 2011, 4(6):811–822.

249. Harman SM, Brinton EA, Cedars M, Lobo R, Manson JE, Merriam GR, Miller VM, Naftolin F, Santoro N. KEEPS: The Kronos Early Estrogen Prevention Study. Climacteric 2005, 8:3–12.

250. Raz L, Jayachandran M, Tosakulwong N, Lesnick TG, Willie SM, Murphy MC, Senjem ML, Vernuri P, Jack CRJ, Miller VM, et al. Thrombogenic microvesicles and white matter hyperintensities in postmenopausal women. Neurology 2012. doi:10.1212/WNL.0b013e31828404cf.

Submit your next manuscript to BioMed Central and take full advantage of: • Convenient online submission • Thorough peer review • No space constraints or color figure charges • Immediate publication on acceptance • Inclusion in PubMed, CAS, Scopus and Google Scholar • Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit

doi:10.1186/2042-6410-4-6
Cite this article as: Miller et al.: Sex-specific risk of cardiovascular disease and cognitive decline: pregnancy and menopause. Biology of Sex Differences 2013, 4:6.