Chemotherapeutic Propensity of Africa Locust Bean
(Parkia biglobosa) Seed on Lipid Profile against
Potassium Bromate-induced Cardiotoxicity

C. N. Ugwu a, C. E. Iwuoha b, N. M. Chika-Igwenyi c, C. A. Onyeaghala d, S. F. Orji c, C. Igwenyi c, C. L. Uche e, O. I. N. Onyekachi f, g, M. U. Nwobodo c, I. O. Abali h and A. I. Airaodion i*

 a Department of Internal Medicine, Ebonyi State University, Abakaliki, Nigeria.
 b Department of Community Medicine, Abia State University, Uturu, Nigeria.
 c Department of Internal Medicine, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State, Nigeria.
 d Department of Internal Medicine, University of Port-Harcourt Teaching Hospital, Rivers State, Nigeria.
 e Department of Haematology, Abia State University, Uturu, Nigeria.
 f Department of Medical Microbiology, Ebonyi State University, Abakaliki, Nigeria.
 g Department of Medical Microbiology, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State, Nigeria.
 h Department of Surgery, Abia State University, Uturu, Nigeria.
 i Department of Biochemistry, Federal University of Technology, Owerri, Imo State, Nigeria.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

Background: Cardiovascular disease cases are on the increase despite many standard medical practices. Some disorders have been successfully treated by medicinal plants.
Aim: The current study was designed to assess the chemotherapeutic propensity of Parkia biglobosa against potassium bromate-induced cardiotoxicity.
Methodology: Using a soxhlet extractor with ethanol as the solvent, P. biglobosa was extracted.

Twenty-four mature male Wistar rats were randomly divided into groups A, B, C, and D after being...
Keywords: African locust bean; cardiotoxicity; lipid profile; potassium bromate.

1. INTRODUCTION

African locust bean (Parkia biglobosa) is a member of the Fabaceae family, which includes the peas. The Hausa call it "Dorawa", Ibo call it "Ogili," while the Yoruba call it "iru," [1]. The fermented seeds of the African locust bean are used to season traditional soups throughout Nigeria and the west coast of Africa. The yellow pulp, which contains 60% sugar, is a food that provides a lot of energy [2]. The trees are frequently cultivated as shade trees. Traditional uses for Parkia species include food and medicine. The bark is used to treat bronchitis, pneumonia, skin infections, gores, ulcers, bilharziasis, malaria, diarrhea, and hypertension in addition to healing wounds. In the Gambia, a lotion for itchy eyes is made from the leaves and roots. Infusion of P. biglobosa stembark is also applied to the mouth to treat toothaches and as a hot bath for fever. Lemon and the pulped bark are applied topically to wounds and ulcers. Pod and root fibers are used to make sponges and musical instrument strings [2]. In northern Nigeria, the traditional Hausa structures are painted with the powdered pods. It has been determined that Parkia plants provide a source of tannin, saponins, gum, fuel, and wood. Attempts have also been made to determine the protein and mineral content of seeds from different Parkia species [3].

For many years, especially in the last stages of baking, potassium bromate (KBrO3) has been used as food additives and to improve bread dough [4,5]. It also develops as a byproduct when bromide is used to ozonize water. In animal studies, the biotransformation of KBrO3 generates free radicals that cause oxidative damage to essential macromolecules and promote carcinogenesis and nephrotoxicity [6]. Some countries, including the United Kingdom, Canada, and Nigeria, have outlawed the industrial use of KBrO3 in manufacturing and food processing businesses since 1990, 1994, and 1993, respectively [5]. However, in certain nations, compliance has not been thoroughly and efficiently monitored, which has had a negative impact on consumers [7,8].

Small molecules that are hydrophobic or amphiphilic can be widely referred to as lipids. Some lipids can form vesicles, liposomes, or membranes in an aqueous environment due to their amphiphilic nature [9]. The group of naturally occurring organic chemicals known as lipids is wide and diverse, but they are linked by their solubility in nonpolar organic solvents (such as ether, chloroform, acetone, and benzene) and their general insolubility in water [10]. Fats, waxes, sterols, fat-soluble vitamins (including vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, phospholipids, and other naturally occurring molecules make up this group of compounds [11]. Although the word "lipid" is occasionally used interchangeably with "fats," fats really belong to a subset of lipids called "triglycerides" [12]. Lipids also include sterol-containing metabolites like cholesterol as well as other fatty acid and their derivatives (such
2.2 Collection and Extraction of *Parkia biglobosa*

A botanist identified the *P. biglobosa* (African locust bean) seeds after they were purchased from a local market in Ibadan, Nigeria. After being sun-dried, they were ground into powder using a mechanical blender (Moulinex). Using a soxhlet apparatus and ethanol as the solvent, the extraction was completed in accordance with the steps described by Airaodion et al. [20,21]. About 25 g of the sample powder and a round bottom flask with a capacity of 250 mL of ethanol were added to the soxhlet extractor and condenser on a heating mantle. The solvent was heated by the heating mantle and began to evaporate as it passed through the apparatus to the condenser. The condensate dropped into a reservoir that housed the sample-containing thimble. When the solvent level reached the siphon and was poured back into the flask with a flat bottom, the cycle was resumed. The operation was given a total of 18 hours. With a yield of 2.55 g and a percentage yield of 10.20 percent, the ethanol was evaporated in a rotary evaporator at 35°C at the end of the process. Until it was needed, the extract was kept in the refrigerator.

2.3 Animal Treatment

Twenty-four (24) mature male Wistar rats (*Rattus norvegicus*) weighing between 140 and 160 g were used in the experiment. They were acclimated in a laboratory setting for seven (7) days prior to the trial. The rats were housed in wire-mesh cages with free access to commercial rat food and water. The animals were kept in standard temperature and humidity conditions with 12-hour cycles of light and dark. This inquiry was carried out in accordance with the Declaration of Helsinki and the guidelines established by the Committee for the Purpose of Control and Supervision of Experiments on Animals. Additionally, NIH policy was followed when doing animal experiments [22]. At random, they were put into groups A, B, C, and D. Group A received oral distilled water as the control while groups B, C, and D received 100 mg/kg body weight of potassium bromate. Animals in groups C and D further received 100 and 200 mg/kg body weight of *P. biglobosa*, respectively. Fresh potassium bromate and *P. biglobosa* were administered to rats every day by oral gavage. The animals had 28 days of successive treatments before being killed. The animals were sacrificed while being gently sedated with diethyl ether twenty-four hours following the last treatment. Through a heart puncture, blood was taken. The animals' hearts were also taken from them.

2.4 Preparation of Organ Homogenate

The organs (heart) were swiftly removed from the animals after being hastily dissected. Then, using a Teflon homogenizer, 10% of each organ homogenate was produced in 6.7mM potassium phosphate buffer (pH 7.4). To create a clear supernatant that could be stored in the freezer for additional analysis, the homogenate was centrifuged at 10,000 rpm for 10 minutes at 40°C.

2.5 Determination of Lipids

Lipids were extracted and determined according to previously described methods [23,24].

2.6 Statistical Analysis

Graph Pad Prism was used to conduct a variance analysis on the data. The findings were
shown as Mean Standard deviation (SD). For the purpose of comparing the means, one-way analysis of variance (ANOVA) was used, then Tukey’s post hoc analysis. At \(P \leq 0.05 \), differences between means were deemed significant.

3. RESULTS

When compared to the untreated group, the plasma levels of total cholesterol, triglycerides, LDL, VLDL, and the CHD risk ratio were significantly higher in the study's animals treated with KBrO\(_3\), while HDL and the HDL/LDL ratio were significantly lower (Table 1). According to Table 2, compared to the control group, administration of KBrO\(_3\) significantly decreased cardiac levels of total cholesterol, HDL, and HDL/LDL ratio, while increasing levels of triglycerides, LDL, and VLDL, as well as the CHD risk ratio. *P. biglobosa* ameliorated these perturbations in a dose-dependent manner.

4. DISCUSSION

Lipid profile is a key indicator of a number of pathological diseases [25]. A change in lipid profile is a sign of pathological abnormalities associated with a heart illness in clinical settings. Atherosclerosis was brought on by the sedimentation of artery wall plaques, which was characterized by an increase in LDL and a decrease in HDL levels [16]. Numerous studies have shown that elevated levels of HDL are linked to lower incidences of cardiovascular illnesses while elevated levels of LDL are linked to higher risk of atherosclerosis [26–28].

Table 1. Effect of *P. biglobosa* on the plasma lipid profile of potassium bromate-induced cardiac toxicity

Lipid Profile	Control	KBrO\(_3\) Only	KBrO\(_3\) + 100 mg/kg *P. biglobosa*	KBrO\(_3\) + 200 mg/kg *P. biglobosa*	p-value
TC (mg/dL)	148.32±8.25	232.42±12.35	204.82±6.81	166.27±4.25	0.00
TG (mg/dL)	96.46±6.22	171.37±8.26	144.44±8.16	127.65±4.38	0.01
HDL-C (mg/dL)	49.46±3.26	32.28±5.36	38.35±2.56	44.44±3.67	0.02
LDL-C (mg/dL)	47.24±1.48	74.26±3.17	62.39±2.40	55.03±3.25	0.02
VLDL-C (mg/dL)	19.24±1.92	34.27±2.64	28.88±2.78	25.56±2.64	0.01
HDL:LDL ratio	1.06±0.09	0.41±0.04	0.64±0.06	0.80±0.07	0.00
CHD risk ratio	2.96±0.18	7.23±0.12	5.34±0.23	3.71±0.19	0.00

Values are presented as Mean±SD, where \(n = 6 \).

Legend: TC = Total Cholesterol, TG = Triglyceride, HDL-C = High Density Lipoprotein Cholesterol, LDL-C = Low Density Lipoprotein Cholesterol, VLDL-C = Very Low Density Lipoprotein Cholesterol, CHD = Coronary Heart Disease

Table 2. Effect of *P. biglobosa* on the Heart Lipid Profile of Potassium Bromate-induced Cardiac Toxicity

Lipid Profile	Control	KBrO\(_3\) Only	KBrO\(_3\) + 100 mg/kg *P. biglobosa*	KBrO\(_3\) + 200 mg/kg *P. biglobosa*	p-value
TC (mg/dL)	116.46±3.38	81.20±7.82	88.63±5.26	108.22±6.87	0.01
TG (mg/dL)	136.28±3.01	159.77±9.32	161.26±4.25	140.00±6.78	0.01
HDL-C (mg/dL)	58.29±2.15	38.31±2.94	46.44±2.82	53.89±2.94	0.00
LDL-C (mg/dL)	46.86±2.02	59.20±3.22	53.72±1.93	49.00±3.01	0.04
VLDL-C (mg/dL)	27.23±3.76	31.97±1.84	32.22±2.22	28.08±4.11	0.05
HDL:LDL ratio	1.24±0.01	0.67±0.06	0.840.03	1.09±0.09	0.03
CHD risk ratio	1.99±0.12	2.10±0.09	1.93±0.04	2.00±0.11	0.61

Values are presented as Mean±SD, where \(n = 6 \).

Legend: TC = Total Cholesterol, TG = Triglyceride, HDL-C = High Density Lipoprotein Cholesterol, LDL-C = Low Density Lipoprotein Cholesterol, VLDL-C = Very Low Density Lipoprotein Cholesterol, CHD risk ratio = Coronary Heart Disease Risk Ratio
Insulin is known to play a significant role in the metabolism of lipids in addition to controlling blood sugar levels [29–31]. Relative molecular ordering of the remaining phospholipids due to hypercholesterolemia has been linked to a reduction in membrane fluidity [32]. One of the main risk factors for coronary heart disease is triglyceride buildup (CHD). A number of disease disorders’ development and progression are significantly influenced by changes in lipid and lipoproteins [33].

According to the findings of this study, plasma levels of total cholesterol, triglycerides, LDL, VLDL, and CHD risk ratio were significantly elevated in animals treated with KBrO3 compared to the untreated group, while HDL and HDL/LDL ratio were significantly decreased (table 1). This caused an increase in atherogenic index, which is a reliable indicator of the development of atherosclerotic disorders in KBrO3-treated animals. The induced dyslipidemia was lessened in rats treated with 100 and 200 mg/kg of P. biglobosa seed extract with KBrO3 exposure. This may be an indication that P. biglobosa has the ability to stop coronary heart disease (CHD) from getting worse. Its significant phytochemical content and antioxidant capabilities, which were documented by Ajaiyeoba [34], may have contributed to this potential. Despite the availability of well-known CHD drugs, herbal therapies are being utilized more and more successfully to treat this condition and better control its complications [35,36]. Additionally, it has been asserted that medicinal plants and herbal formulations are less toxic and have less adverse effects than synthetic treatments, which is why more people are turning to herbal cures rather than synthetic ones [37–41]. The World Health Organization (WHO)'s interest in hypolipidemic drugs of plant origin employed in the conventional treatment of cardiovascular illnesses may have been influenced by increased results of therapeutic effectiveness of herbal medications [42].

CHD has been linked to hypertriglyceridaemia [35,43]. This was found to be caused by increased endogenous production of triglyceride-enriched hepatic VLDL cholesterol and decreased triglyceride uptake in peripheral tissues, as well as increased absorption and formation of triglycerides in the form of chylomicrons as a result of exogenous consumption of a diet high in fat [44]. The P. biglobosa’s impact seen in this study would indicate that the seed has the ability to lessen absorption and chyomicron production of triglycerides. CHD has also been linked to hypercholesterolemia [45]. This was linked to the increased absorption of dietary cholesterol from the small intestine as a result of eating a high-fat diet [44].

In contrast, when compared to rats exposed to KBrO3 but left untreated in the current investigation, the concentrations of serum triglycerides, VLDL-cholesterol, and total cholesterol were considerably lower in animals treated with different dosages of P. biglobosa. Furthermore, it is conceivable that P. biglobosa's effects on lipid levels result from its phenolic components inhibiting the synthesis of hepatic cholesterol, triglycerides, and perhaps fatty acids [44].

High blood pressure is predicted by hypertriglyceridaemia [46]. Endothelial cells in the peripheral vascular system depend on lipoproteins at this location for the transport of neutral sterols. Lecithin cholesterol acyl transferase (LCAT) maintains the concentration toward the HDL core and maintains the hydrophobic nature that facilitates the transfer, even though free cholesterol is transferred to HDL-cholesterol particles through the activity of a designated HDL-cholesterol receptor [47]. The product of cholesterol esterification is cholesterol ester (CE), which is concentrated in HDL core and can be transported to apo-B-containing lipoproteins via cholesterol ester transfer protein (CETP) in the plasma compartment in place of triglyceride. Increased CETP activity has traditionally been regarded as pro-atherogenic [45,48] since it would imply an enrichment of apo-B lipoproteins in plasma while concurrently lowering HDL cholesterol. Given that a high HDL-cholesterol/LDL-cholesterol ratio has been demonstrated to be advantageous and to be a sign of a lower risk of cardiovascular diseases, this likely explains why P. biglobosa may reduce the chance of developing heart ailments [49].

Two of the four major subgroups of plasma lipoproteins, HDL and LDL, are involved in lipid metabolism and the transfer of triglycerides, cholesterol, and cholesterol esters between tissues [50,51]. According to numerous studies, there is a negative correlation between plasma HDL cholesterol levels and the risk of cardiovascular disease, suggesting that HDL cholesterol has some protective effects against atherosclerosis [19,44]. Some of these factors seem to have anti-inflammatory and antioxidant
properties that could prevent the processes that lead to atherogenesis [52,53].

Increased blood levels of total cholesterol and/or LDL cholesterol are significant risk factors for coronary heart disease, according to epidemiological studies [54,55]. A higher tendency for atherosclerosis to develop may be implied by an increased CHD risk ratio brought on by KBrO₃. Despite having a need for cholesterol, the majority of extra-hepatic tissues have a low activity of the cholesterol biosynthetic pathway. LDL, which is internalized by receptor-mediated endocytosis, meets their need for cholesterol [44]. By removing extra cholesterol from peripheral tissues, esterifying it with lecithin: cholesterolacyltransferase, and then delivering it to the liver and steroidogenic organs for subsequent synthesis of bile acids and lipoproteins and ultimate removal from the body, HDL-cholesterol plays a key role in enhancing reverse cholesterol transport [56,57]. According to reports, HDL cholesterol plays this role and is the reason for its atheroprotective qualities [45,54]. Additionally, HDL-cholesterol controls how different lipoproteins exchange lipids and proteins [35,44].

The protein elements needed to activate lipoprotein lipase, which releases fatty acids that can be oxidized by the β-oxidation pathway to produce energy, are also provided by HDL-cholesterol [50,51]. Most notably, because of its antioxidant property, HDL cholesterol can lessen the oxidation of LDL cholesterol and the atherogenic consequences of oxidized LDL cholesterol [57]. LDL is a lipoprotein that moves triglycerides and cholesterol from the liver to nearby tissues. It makes it possible for fat and cholesterol to go through the blood stream's water-blood solution [54]. Since LDL is sometimes referred to as bad cholesterol, low levels are advantageous [35].

Intriguingly, when compared to the negative control animals (induced but untreated animals), the administration of *P. biglobosa* extract in varied dosages in this investigation resulted in a significant rise in the plasma level of HDL-cholesterol at P ≤ 0.05. The term "good cholesterol" refers to HDL cholesterol [23]. When compared to the negative control group (induced but untreated animals), *P. biglobosa* administration again significantly decreased the levels of LDL-cholesterol (bad cholesterol) at P ≤ 0.05. This outcome is consistent with the research by Airaodion et al. [19] who examined how oral consumption of African locust bean affected albino rats' fasting blood sugar levels and lipid profiles. When animals treated with varied doses of *P. biglobosa* extract were compared to the negative control group, the combined effects of higher HDL-cholesterol (good cholesterol) and lower LDL-cholesterol (bad cholesterol) increased HDL-cholesterol/LDL-cholesterol ratio. Because a high HDL-cholesterol/LDL-cholesterol ratio has been demonstrated to be advantageous and is suggestive of a lower risk of CHD, this strongly supports the idea that dietary supplementation with *P. biglobosa* may reduce the chance of developing heart disorders [44].

Although a number of antioxidants showed a potential ability to reduce KBrO₃-induced toxicity, few have yet been demonstrated to work specifically at the toxicity of the heart. Since this has not been well studied, the main goal of this work was to evaluate the potential protective impact of *P. biglobosa* against KBrO₃-induced cardiotoxicity. According to a recent study by Ugwu et al. [58], 100 mg/kg body weight of KBrO₃ increased lipid peroxidation and lowered GSH, CAT, SOD, and GPx in the heart of Wistar rats as compared to control animals, inducing cardiotoxicity. Evidence also points to the creation of oxygen free radicals, which can harm cells by oxidizing lipids [59]. Increased production of free radicals may also result in the creation of protein-protein cross-links and protein oxidation, which fragment proteins and change the side chains of amino acids [60]. For example, Saad et al. [61]'s study found that KBrO₃-treated rats' cardiac homogenates had much higher levels of advanced oxidation protein product (AOPP) than the controls, indicating a higher degree of protein oxidation. Oxygen-derived free radical reactions, according to Pham-Huy et al. [62], have been linked to the etiology of numerous human diseases, including cardiovascular diseases such as atherosclerosis, ischemic heart disease, cardiac hypertrophy, hypertension, shock, and trauma. *P. biglobosa* was able to counteract these effects. There have been claims that *P. biglobosa* extract has antihypertensive properties [63]. Additionally, hepatoprotective effects of *P. biglobosa* against ethanol-induced oxidative stress have been reported [64].

Despite the fact that the activities of enzymes were not examined in this study, it is possible that KBrO₃ lowered the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA)
reductase, the rate-limiting enzyme in cholesterol synthesis [24]. This could be what caused the animals exposed to KBrO₃ to have significantly lower levels of total cholesterol in their hearts than the animals in the control group (Table 2). Since sex hormones depend on cholesterol as a precursor, a considerable decrease in the production of cholesterol could have a negative impact on that process. It is interesting to know that this impact was alleviated by *P. biglobosa* extract. The action of the extract could be attributed to its phytochemical content and antioxidant potential.

5. CONCLUSION

The results from this study showed that potassium bromate caused increase in the levels of plasma triglycerides, LDL, VLDL and reduction in the HDL/LDL ratio and this effect was found to be attenuated by intake of *P. biglobosa*. This effect will result in the reduction of cardiovascular disease risk factors; this strongly supports the idea that dietary supplementation with *P. biglobosa* may reduce the chance of developing heart disease; thus, we encourage its regular consumption.

ETHICAL APPROVAL

Animal Ethic committee approval has been taken to carry out this study.

Animal Ethic committee approval has been collected and preserved by the author(s).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Ezirim EO, Uche CL, Abali IO, Iwuoha CE, Chika-Igwenyi NM, Onyeaghala CA, Orji SF, Ugwu CN, Ugwu NI, Igwenyi C, Airaodion AI. Therapeutic potential of *Parkia biglobosa* seed against potassium bromate-induced testicular toxicity. International Journal of Research and Reports in Gynaecology. 2022;5(3):78-89.
2. Builders MI, Isiche CO, Aqiyi, JC. Toxicity studies of the extracts of *Parkia biglobosa* stem bark in rats. British Journal of Pharmaceutical Research. 2012;2(1): 1-16.
3. Emmanuel OA, David AA, Olayinka AA, Mobolaji FA, Matthew OO, Anthony IO. Preliminary phytochemical screening and antibacterial properties of crude stem bark extracts and fractions of *Parkia biglobosa* (Jacq.) Molecules. 2013;18(7):8485-8499.
4. Lewis GR. Resveratrol In: 1001 Chemicals in Everyday Products. pp. 226. Van Nostrand Reinhold, New York; 1994.
5. Sterubo V, Vang O, Bonnesen C. A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chemistry. 2007;101: 449–457.
6. Yu C, Shin YG, Chow A, Li Y, Kosmeder JW, Lee YS. Hirschelman WH, Pezzuto JM, Mehta RG, Van Breeemen RB. Human, rat, and mouse metabolism of resveratrol. Pharmaceutical. Research. 2002;19: 1907–1914.
7. Airaodion AI, Ewa O, Ogbuagu EO, Ogbuagu U, Agunbiade AP, Oloruntoba AP. Evaluation of potassium bromate in bread in Ibadan metropolis: Fifteen years after ban in Nigeria. Asian Food Science Journal. 2019;7(4):1–7.
8. Airaodion AI, Awosanya OO, Ogbuagu EO, Ogbuagu U, Njoku OC, Esonu C, Airaodion EO. Assessment of Bread in Ogomoso Metropolis for the Presence of Potassium Bromate. Asian Journal of Research in Biochemistry. 2019;4(2):1-6.
9. Subramaniam S, Fahy E, Gupta S, Sud M, Byrnes RW, Cotter D, Dinasarapu AR, Maurya MR. Chemical Reviews. 2011; 111(10):6452–6490.
10. Fahy E, Subramaniam S, Murphy R, Nishijima M, Raetz C, Shimizu T, Spener F, Van Meer G, Wakelam M, Dennis EA. Journal of Lipid Research. 2009; 50(Supplement):S9–S14.
11. Page RA, Okada S, Harwood JL. Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. Biochim. Biophys. Acta. 1994:1210:369-372.
12. Small DM. The physical chemistry of lipids. Handbook of Lipid Research. Vol. 4. D. J. Hanahan, editor. Plenum Press, New York; 1986.
13. Michelle A, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, LaHart D, Wright JD. Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall; 1993.
14. Airaodion AI, Adejumo PR, Njoku CO, Ogbuagu EO, Ogbuagu U. Implication of sugar intake in haemorrhoid and
menstruation. International Journal of Research and Reports in Hematology. 2019;2(2):1-9.
15. Airaodion AI, Ogbuagu U, Ogbuagu EO, Oloruntoba AP, Agunbiade AP, Airaodion EO, Mokelu IP, Ekeh SC. Mechanisms for controlling the synthesis of lipids. International Journal of Research. 2019; 6(2):123-135.
16. Cavanagh JE, Weinberg HS, Gold A, Sangalah R, Marbury D, Glase WH, Collette TW, Richardson SD, Thruston AD. Ozonation byproducts: Identification of bromohydrins from the ozonation of natural waters with enhanced bromide levels. Environmental Science & Technology. 1992;26:1658–1662.
17. Krasner SW, Mcguire MJ, Jacagnelo JG, Patania NL, Reagan KM, Aieta EM. The occurrence of disinfection by-products in U.S. drinking water. Journal American Water Works Association, 1989;81:41–43.
18. Jorgenson TA, Meierhenry EF, Rushbrook CJ, Bull RJ, Robinson M. Carcinogenicity of chloroform in drinking water to male Osborne Mendel rats and female B6C3F1 mice. Fundamental and Applied Toxicology. 1985;5:760–769.
19. Airaodion AI, Airaodion EO, Ogbuagu EO, Ogbuagu U, Osemwowa EU. Effect of oral intake of african locust bean on fasting blood sugar and lipid profile of albino rats. Asian Journal of Research in Biochemistry. 2019;4(4):1-9.
20. Airaodion AI, Ngwogu AC, Ekenjoku JA, Ngwogu KO. Hepatoprotective potency of ethanolic extract of Garcinia kola (Heckel) seed against acute ethanol-induced oxidative stress in Wistar rats. International Research Journal of Gastroenterology and Hepatology. 2020;3(2): 1-10.
21. Airaodion AI, Ogbuagu EO, Ekenjoku JA, Ogbuagu U, Airaodion EO. Therapeutic effect of methanolic extract of Telfaira occidentalis leaves against acute ethanol-induced oxidative stress in Wistar rats. International Journal of Bio-Science and Bio-Technology. 2019;11(7):179-189.
22. National Research Council. Guide for the care and use of laboratory animals, 8th ed.: The national academies press: Washington, DC, USA; 2011.
23. Owoade AO, Adetutu A, Airaodion AI, Ogundipe OO. Toxicological assessment of the methanolic leaf extract of Bridelia ferrugelia. The Journal of Phytopharmacology. 2018;7(5):419-424.
24. Owoade AO, Airaodion AI, Adetutu A, Akinyomi OD. Levofloxacin-induced dyslipidemia in male albino rats. Asian Journal of Pharmacy and Pharmacology. 2018;4(5):620-629.
25. Altoom NG, Ajarem J, Allam AA, Maodaa SN, Abdel-Maksoud MA. Deleterious effects of potassium bromate administration on renal and hepatic tissues of Swiss mice. Saudi Journal of Biological Sciences, 2017; 25(2018):278–284.
26. Airaodion AI, Adeniji AR, Ogbuagu EO, Ogbuagu U, Agunbiade AP. Hypoglycemic and hypolipidaemic activities of methanolic extract of Talinum triangulare leaves in Wistar rats. International Journal of Bio-Science and Bio-Technology. 2019; 11(5):1-13.
27. Grover-Paez F, Zavalza-omez, AB. Endothelial dysfunction and cardiovascular risk factors. Diab. Res. Clin. Prac. 2009; 84:1–10.
28. Olukanni OD, Akande OT, Alagbe YO, Adegbesi OS, Olukanni AT, Daramola GG. Lemon juice elevated level of reduced glutathione and improved lipid profile in Wistar rats. American-Eurasian Journal of Agriculture and Environmental Science. 2013;12:1246–1251.
29. Loci AS, Shabha M, Khazraji AL, Husain A, Twaija A. Hypoglycemic effect of a valuable extract on some blood parameters in diabetic animals. Journal of Ethnopharmacology. 1994;43:167–171.
30. Ahardh CD, Bjorgell P, Nilson EP. The effect of tolnetamide in lipoproteins and lipoprotein lipase and hormone sensitive lipase. Diabetes Res. Clin. Pract. 1999;46:99–108.
31. Ogbuagu EO, Airaodion AI, Ogbuagu U, Airaodion EO. Effect of methanolic extract of Vernonia amygdalina leaves on glycemic and lipidaemic indexes of Wistar rats. Asian Journal of Research in Medical and Pharmaceutical Sciences. 2019; 7(3):1-14.
32. Bopanna KN, Kannan J, Suchma G, Balaraman R, Ranthod SP. Antidiabetic and antihyperlipidemic effect of neem seed. kernel powder on alloxan diabetic rabbits. Ind. J. Pharmacol. 1997;29:162–167.
33. Rotimi OS, David AO, Olusola AT, Regina NU, Elizabeth AB, Oladipo A. Amoxicillin and pefloxacin-induced cholesterogenesis and phospholipidosis in rat tissues. Lipids in Health and Disease. 2015; 14:13-30.
34. Ajaiyeoba EO. Phytochemical and antibacterial properties of *Parkia biglobosa* and *Parkia biolor* leaf extract. Aghil J. Biomed. Res. 2000;5:125–129.

35. Airaodion AI, Akinmolayan JD, Ogbugu EO, Airaodion EO, Ogbugu U, Awosanya OO. Effect of methanolic extract of *Corchorus olitorius* leaves on hypoglycemic and hypolipidaemic activities in albino rats. Asian Plant Research Journal. 2019;2(7):1-13.

36. Bhattaram VA, Cercente M, Cohleste C, Vest M, Deundo FH. Pharmacokinetics bioavailability herbal medicinal products. Phytomedicine. 2002;9:1–36.

37. Airaodion AI, Ogbugu U, Ogbugu EO, Airaodion EO, Agunbiade AP, Oluronntoba AP, Mokelu IP, Ekeh SC. Investigation of aqueous extract of *Zingiber officinale* root potential in the prevention of peptic ulcer in albino rats. International Journal of Research and Innovation in Applied Science. 2019;4(2):64-67.

38. Airaodion AI, Obaajimi OO, Ezebuiero CN, Ogbugu U, Agunbiade AP, Oluronntoba AP, Akinmolayan JD, Adeniji AR, Airaodion EO. Prophylactic efficacy of aqueous extract of *Curcuma longa* against indomethacin-induced ulcer. International Journal of Research. 2019;6(1):87-91.

39. Airaodion AI, Olayeri IM, Ewa AO, Ogbugu EO, Ogbugu U, Akinmolayan JD, Agunbiade AP, Oluronntoba AP, Airaodion EO, Adeniji AR, Obaajimi OO, Awosanya OO. Evaluation of *Moringa oleifera* leaves potential in the prevention of peptic ulcer in Wistar rats. International Journal of Research. 2019;6(2):579-584.

40. Saravanar R, Parli L. Antihyperlipidemic and antiperoxidative effect of diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats. BMC Complement. Alternative Med. 2005;5:14–34.

41. Airaodion AI, Adekale OA, Airaodion EO, Ogbugu EO, Ogbugu U, Osemwowa EU. Efficacy of combined crude extract of *Curcuma longa* and *Moringa oleifera* in the prevention of peptic ulcer in albino rats. Asian Journal of Research in Medical and Pharmaceutical Sciences. 2019;7(2):1-8.

42. Shoback DG, Gardner D. “Chapter 17”. Greenspan’s Basic & Clinical Endocrinology (9th Ed.). New York: McGraw-Hill Medical; 2011. ISBN: 978-0-07-162243-1.

43. Saliiu JA, Oboh G, Schetinger MR, Stefanello N, Rocha JBT. Antidiabetic potentials of jute bulb on type-2 diabetic rats. Journal of Emerging Trends in Engineering and Applied Sciences. 2015;6(7):223-230.

44. Airaodion AI, Ogbugu EO, Ekenjoku JA, Ogbugu U, Okoroukwu VN. Antidiabetic effect of ethanolic extract of *Carica papaya* leaves in alloxan-induced diabetic rats. American Journal of Biomedical Science & Research. 2019;5(3):227-234.

45. Ogbugu EO, Airaodion AI, Okoroukwu VN, Ogbugu U. Hyperglycemic and hypolipidermemic effect of monosodium glutamate in Wistar rats. International Journal of Research and Reports in Hematology. 2019;2(3):1-7.

46. Allen RR, Carson LA, Kwik-Uribe C, Evans E, Erdman JW. Daily consumption of a dark chocolate containing flavonols and added sterol esters affects cardiovascular risk factors in normotensive population with elevated cholesterol. Journal of Nutrition. 2008;138:725-731.

47. Airaodion AI, Ogbugu EO. Effect of consumption of garri processed by traditional and instant mechanical methods on lipid profile of Wistar rats. Asian Journal of Research and Reports in Gastroenterology. 2020;3(1):26-33.

48. Greene CM, Zern TL, Wood RJ, Shrestha S, Fernandez ML. Maintenance of the LDL-cholesterol/ HDL-cholesterol ratio in an elderly population given a dietary cholesterol challenge. Journal of Nutrition. 2005;135:2793-2798.

49. Perona JS, Covas MI, Fito M, Cabello-Murono R, Aros F, Corella D, Ros E, Garcia M, Estruch R, Martinez-Gonzalez MA, Ruiz-Gutierrez V. Reduction in systemic and VLDL triacylglycerol concentration after a 3-month Mediterraneanstyle diet in high-cardiovascular-risk subjects. Journal Nutrition Biochemistry. 2010;9:892-898.

50. Airaodion AI, Akaninyene IU, Ngwogu KO, Ekenjoku JA, Ngwogu AC. Hypolipidaemic and antidiabetic potency of *Allium cepa* (onions) bulb in alloxan-induced diabetic rats. *Acta Scientific Nutritional Health*. 2020;4(3):1-8.

51. Svireid D. Intracellular cholesterol trafficking. Histology and Histopathology. 1999;14:305-319.

52. Ogbugu EO, Unekwe PC, Airaodion AI, Nweke IN, Ogbugu U. Hypolipidemic propensity of ethanolic extract of *Xylopia aethiopica* fruit in Wistar rats. Asian
Journal of Research in Cardiovascular Diseases. 2020;3(5):1-11.

53. Oram JF, Lawn RM. ABCA1: The gatekeeper for eliminating excess tissue cholesterol. Journal Lipid Research. 2001;42:1173-1179.

54. Airaodion AI, Ogbuagu EO, Ekenjoku JA, Okoroukwu VN, Ogbuagu U. Bigi soft drinks might induce hyperglycemia and hyperlipidemia in Wistar rats. International Journal of Research and Reports in Hematology. 2019;2(4):1-10.

55. Airaodion AI, Ogbuagu U, Ekenjoku JA, Ogbuagu EO, Airaodion EO. Hyperglycemic and hyperlipidemic effect of some coca-cola soft drinks in Wistar rats. Acta Scientific Nutritional Health. 2019;3(12):114-120.

56. Njoku OC, Airaodion AI, Ekenjoku JA, Okoroukwu VN, Ogbuagu EO, Nwachukwu N, Igwe CU. Antidiabetic potential of alkaloid extracts from Vitex doniana and Ficus thonningii leaves on alloxan-induced diabetic rats. International Research Journal of Gastroenterology and Hepatology. 2019;2(2):1-12

57. Airaodion AI, Ogbuagu EO, Airaodion EO, Ekenjoku JA, Ogbuagu U. Pharmacotherapeutic effect of methanolic extract of Telfairia occidentalis leaves on glycemic and lipidemic indexes of alloxan-induced diabetic rats. International Journal of Bio-Science and Bio-Technology. 2019;11(8):1-17.

58. Ugwu CN, Abali IO, Iwuoha CE, Chika-Igwenyi NM, Onyeaghala CA, Orji SF, Igwenyi C, Uche CL, Onyekachi OIN, Nwobodo MU, Airaodion Al. Ameliorative Effect of Parkia biglobosa (African Locust Bean) Seed against Potassium Bromate-induced Oxidative Stress. Merit Research Journal of Medicine and Medical Science. 2022;10(8):12-21.

59. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;40:183-97.

60. Griffith HR. The influence of diet on protein oxidation. Nutr Res Rev. 2002;5:3-17.

61. Saad HB, Boudawara O, Hakim A, Amara Bl. Modulating effects of the red alga Alsidium corallinum against potassium bromate-induced cardiotoxicity in adult mice. Journal of Pharmacognosy and Phytochemistry. 2017;6(6):554-558.

62. Pham-Huy LA, He H, Pham-Huy C, Free radicals, antioxidants in disease and health. International Journal of Biomedical Science. 2008;4:89-96.

63. Airaodion AI, Ogbuagu EO. Ameliorative effect of Parkia biglobosa (African locust bean) against egg-yolk induced hypertension. International Journal of Bio-Science and Bio-Technology. 2020;12(5):17-25.

64. Airaodion AI, Ogbuagu EO, Ogbuagu U, Adeniji AR, Agunbiade AP, and Airaodion EO. Hepatoprotective effect of Parkia biglobosa on acute ethanol-induced oxidative stress in Wistar rats. International Research Journal of Gastroenterology and Hepatology. 2019;2(1):1-11.

© 2022 Ugwu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/90852