INTRODUCTION

It has become a new challenge for the new generation of medical science to prepare the most effective drug for the proper treatment of different types of cancers1-7. To make the treatment, more effective medical scientists have tried to increase the use of nanoparticles so that drug delivery into the exact location becomes possible. Apart from this, the introduction of exosomes is also taking place for recognizing and treatment of various cancers. Similarly, DNA methylation and histone modification have importance in the treatment of tumors. Therefore, the introduction of nanotechnology for drug delivery at the exact location of the human body has seen tremendous success in the passing years. Some specific methods of delivering different chemotherapeutic drugs at the correct place have been discovered to get the most positive impact8-18.

Cancer mainly spread through the human body because of excessive cell growth and some nano-sized chemotherapeutic drugs has been invented specially for repressing those excessive cell growth. Sometimes, those drugs help to suppress the propagation of cancer-causing genes in the human body. On the other hand, Doxorubicin (DOC) is widely used in these days to control the excessive spread of malignant tumor in the human body. Hence, the introduction of nanoparticles is the only way out in this regard to control numerous cancer-causing cells and genes in human19-29. That not only delivers multiple drugs into the exact location but also sometimes helps to diagnose the disease early.

In this process, a methyl group gets added with DNA that retains the DNA structure intact but changes its functionality. Therefore, it helps to destroy the cancerous cells. Exosomes are mostly used in this kind of early detection of cancerous cells in the human body. Being extracellular organelles, it becomes easier for the exosomes to get both proteomic and genetic information from extended distant intracellular areas. This helps to identify the affected area more easily and early30,34. Apart from that, AntimiR-21 is a kind of oligonucleotide that gets combined with nanoparticles to improve its impact on the diseased area. It is a combination of tertiary amine cationic lipid with a quaternary amine, which is distinctively designed with the characteristics of proper pH value.

In these days, the use of exosomes has been increased as an early detector of cancerous genes and cells growth in the human body. Similarly, the use of microRNA has been started to control the excessive gene expression as the microRNAs are capable of doing this by RNA interference into the affected body part. Incorporation of oligonucleotides into the nanoparticle of lipids helps the address the problems of nucleic sensitivity of anti-MiRs. Unless this incorporation, the anti-MiRs will fail to penetrate the cellular membrane. Apart from this, to control the impact of Bcl-2 and Akt-1 carcinogens in the human body the use of lipid nanoparticles with T7 peptide conjugation are increasing. It is mainly helping to cure cervical and lung carcinomas35-40. Not only anti-MiRs or nanoparticles are used in cancer treatment, but also the use of DNA methylation has been increased to understand the cases of somatic cell reprogramming and tumorigenesis41-51.
Figure 1: Bimodal DNA Methylation.
Shu et al

19. Walker, A.P., et al. GLUT12 functions as a basal and insulin-independent glucose transporter in the heart. *Biochimica et Biophysica Acta (BBA)*-Molecular Basis of Disease 2013; **1832**:121-127.

20. Li, Q., et al. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors. *Peefl* 2018; 6:e206.

21. Chen, Y., et al. Identification of 4-aminoquinoline core for the design of new cholinesterase inhibitors. *Peefl* 2016; 4:e2140.

22. Kang, C. & Hu, K. Impact of hypoxia in the expression and regulation of the TASK-1 potassium channel in cardiac myocytes. *The FASEB Journal* 2016; **30**:589-599.

23. Fan, S., et al. Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers. *NPJ genomic medicine* 2019; **4**:2.

24. Kang, C. Ion channels, protein kinase C and caveolae in cardioprotection. (The Ohio State University, 2015).

25. HE, L.-y., et al. Isolation and Characterization of Cadmium-Resistant Endophytic and Rhizobacteria From Solanum nigrum in Orefield [J]. *Journal of Ecology and Rural Environment* 2011; 6.

26. Yung, B.C., et al. Lipid nanoparticles composed of quaternary amine-tertiary amine cationic lipid combination (QTsome) for therapeutic delivery of Antimik-2 for lung cancer. *Molecular pharmaceutics* 2016; **13**:653-662.

27. Cheng, X., et al. Lipid Nanoparticles Loaded with an Antisense Oligonucleotide Gampen Against Bcl-2 for Treatment of Lung Cancer. *Pharmaceutical research* 2017; **34**:310-320.

28. Fan, S. & Chi, W. Methods for genome-wide DNA methylation analysis in human cancer. *Brief Funct Genomics* 2016; **15**:432-442.

29. Kang, C. & Hu, K. Modulation of the two-pore domain potassium channel TASK-1 by caveolin-3. *The FASEB Journal* 2015; **29**:845.814.

30. Ngo, V., Wang, M. & Wang, W. Finding de novo methylated DNA motifs. *bioRxiv*, 2018; 043810.

31. Peng, J., et al. Enhanced Liver Regeneration After Partial Hepatectomy in Sterol Regulatory Element-Binding Protein (SREBP)-1c-Null Mice is Associated with Increased Hepatocellular Cholesterol Availability. *Cellular Physiology and Biochemistry* 2018; **47**:794-799.

32. Ngo, V., et al. Epigenomic analysis reveals DNA motifs regulating histone modifications in human and mouse. *Proceedings of the National Academy of Sciences* 2019; 106:3565.

33. Yang, Z., et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. *Journal of Controlled Release* 2016; **243**:160-171.

34. Kang, C., Hernandez, V.A. & Hu, K. Functional interaction of the two-pore domain potassium channel TASK-1 and caveolin-3. *Biochimica et Biophysica Acta (BBA)*-Molecular Cell Research 2017; **1864**:1537-1544.

35. Sun, Y., Kang, C., Liu, F. & Song, L. Delivery of antipsychotics with nanoparticles. *Drug Development Research* 2016; **77**:393-399.

36. Kang, C., et al. Delivery of nanoparticles for treatment of brain tumor. *Current Drug Metabolism* 2016; **17**:745-754.

37. Xue, X., et al. Discovery of novel inhibitors disrupting HIF-1α/von Hippel-Lindau interaction through shape-based screening and cascade docking. *Peefl* 2016; 4:e2757.

38. Hersch, S.J., et al. Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. *MBio* 2013; 4:e00180-00115.

39. Hersch, S.J., et al. Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. *MBio* 2013; 4:e00180-00115.

40. Shuhong, X., et al. Dynamic expression of AQ14 in early stage of ischemia/reperfusion rats and cerebral edema. *Chinese Pharmaceutical Bulletin* 2016; **32**:1433-1441.

41. Kang, C., Qin, J., Osei, W. & Hu, K. Age-dependent Mitochondrial Targeting Of Protein Kinase C Epsilon In Cardioprotection. *The FASEB Journal* 2017.

42. Han, R., Sun, Y., Kang, C., Sun, H. & Wei, W. Amphilphilic dendritic nanomicelle-mediated co-delivery of 5-fluorouracil and doxorubicin for enhanced therapeutic efficacy. *Journal of Drug Targeting* 2017; **25**:140-148.

43. Yan, G., et al. Application of Real-Time Cell Electronic Analysis System in Modern Pharmaceutical Evaluation and Analysis. *Molecules* 2018; **23**:3280.

44. Duan, Y., et al. Bioactivity evaluation-based ultra high-performance liquid chromatography coupled with electrospray ionization tandem quadrupole-time-of-flight mass spectrometry and novel distinction of multi-subchromosome compatibility recognition strategy with Astragali Radix-Fluctus Corn herb-pair as a case study. *J Pharm Biomed Anal* 2016; **129**:514-534.

45. Sun, Y., et al. Co-delivery of dual-drugs with nanoparticle to overcome multidrug resistance. *European Journal of BioMedical Research* 2016; **2**:1-2-18.

46. AI, R., et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. *Nature communications* 2016; **9**:1921.

47. AI, R., et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. *Nat Commun* 2018; **9**:1921.

48. Fan, S., et al. Computationally expanding infinium HumanMethylation450 BeadChip array data to reveal distinct DNA methylation patterns of rheumatoid arthritis. *Bioinformatics* 2016; **32**:1773-1778.

49. Zhu, Y., et al. Constructing 3D interaction maps from 1D epigenomes. *Nature communications* 2016; **7**:10812.

50. Liu, F., Sun, Y. & Kang, C. Controlling Amphiphilic Functional Block Copolymers' Self-Assembly: From Structure to Size. 2016.

51. Song, L., et al. Crocetin inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells. *Cellular Physiology and Biochemistry* 2016; **40**:443-452.