A genome-wide association study of intra-ocular pressure suggests a novel association in the gene FAM125B in the TwinsUK cohort

Abhishek Nag1, Cristina Venturini2, Kerrin S. Small1, International Glaucoma Genetics Consortium3, Terri L. Young3, Ananth C. Viswanathan4, David A. Mackey5, Pirro G. Hysi1 and Christopher Hammond1‚*

1Department of Twin Research and Genetic Epidemiology, King’s College London, St. Thomas’ Hospital, London, UK, 2UCL Institute of Ophthalmology, London, UK, 3Center for Human Genetics, Duke University Medical Center, Durham, NC, USA, 4NIHR Biomedical Research Centre at Moorfields Eye Hospital NHSFT and UCL Institute of Ophthalmology, London, UK and 5Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia

Received August 9, 2013; Revised January 10, 2014; Accepted January 27, 2014

Glaucoma is a major cause of blindness in the world. To date, common genetic variants associated with glaucoma only explain a small proportion of its heritability. We performed a genome-wide association study of intra-ocular pressure (IOP), an underlying endophenotype for glaucoma. The discovery phase of the study was carried out in the TwinsUK cohort (N = 2774) analyzing association between IOP and single nucleotide polymorphisms (SNPs) imputed to HapMap2. The results were validated in 12 independent replication cohorts of European ancestry (combined N = 22 789) that were a part of the International Glaucoma Genetics Consortium. Expression quantitative trait locus (eQTL) analyses of the significantly associated SNPs were performed using data from the Multiple Tissue Human Expression Resource (MuTHER) Study. In the TwinsUK cohort, IOP was significantly associated with a number of SNPs at 9q33.3 (P = 3.48 × 10⁻8 for rs2286885, the most significantly associated SNP at this locus), within the genomic sequence of the FAM125B gene. Independent replication in a composite panel of 12 cohorts revealed consistent direction of effect and significant association (P = 0.003, for fixed-effect meta-analysis). Suggestive evidence for an eQTL effect of rs2286885 was observed for one of the probes targeting the coding region of the FAM125B gene. This gene codes for a component of a membrane complex involved in vesicular trafficking process, a function similar to that of the Caveolin genes (CAV1 and CAV2) which have previously been associated with primary open-angle glaucoma. This study suggests a novel association between SNPs in FAM125B and IOP in the TwinsUK cohort, though further studies to elucidate the functional role of this gene in glaucoma are necessary.

INTRODUCTION

Glaucoma represents a group of optic neuropathies characterized by a typical pattern of optic nerve damage resulting from loss of retinal ganglion cells and axons. Glaucoma accounts for a significant portion of the global burden of visual impairment, being the third leading cause of visual impairment and the second leading cause of blindness in the world (1).

Raised intra-ocular pressure (IOP) is a major modifiable risk factor for glaucoma (2,3) and treatment directed at lowering IOP remains the mainstay of current glaucoma treatment (3,4). IOP is a heritable trait, with heritability estimates ranging from 0.35 to 0.74 in different studies (5–7). Investigating genetic variation influencing IOP might help better understand IOP regulation and its role in glaucoma pathophysiology. So far, in the

* To whom correspondence should be addressed at: Department of Twin Research and Genetic Epidemiology, St Thomas’ Hospital, London SE1 7EH, UK. Tel: +44 2071889055; Email: chris.hammond@kcl.ac.uk

†See Appendix for the list of International Glaucoma Genetics Consortium members.
case of glaucoma, case–control studies and quantitative trait-based approaches have jointly identified a number of genes that influence the risk of developing clinical glaucoma as well as cause incremental changes in population-wide risk of the underlying quantitative traits. These include the association of \(\text{TMCO1} \) with open-angle glaucoma (OAG) (8) and IOP (9), and the association of \(\text{CDKN2B} \) with OAG (8,10) and vertical cup-to-disc ratio (11). This convergence of evidence between variants associated with glaucoma and those associated with ‘healthy’ variation in quantitative traits underlying the disease, justifies the use of quantitative traits (endophenotypes) to dissect the genetic basis of glaucoma.

Here, we describe a genome-wide association study (GWAS) investigating the healthy variation of IOP in general populations of European ancestry and report findings about genetic variants that we found consistently associated with IOP in the participating cohorts.

RESULTS

Association testing in the TwinsUK cohort was performed for \(~1.87\) million SNPs that passed our quality control (QC) criteria. Both the genomic inflation factor (1.036) and the quantile plot (Supplementary material, Fig. S1) of the results indicate no significant inflation of test statistics due to population stratification.

The region most significantly associated with IOP was 9q33.3, where three SNPs crossed the conventional threshold for genome-wide significance (Figs 1 and 2). In no other region SNPs crossed this significance threshold. Of the two previously reported IOP loci by van Koolwijk et al. (9), in which TwinsUK was one of the participating studies, rs11656696 on the \(\text{GAS7} \) locus showed statistically significant replication (\(P = 1.36 \times 10^{-2} \)), although not at a GWAS level; while the association for rs7555523 on the \(\text{TMCO1} \) locus was not statistically significant (\(P = 2.4 \times 10^{-1} \)) (9).

The most significantly associated SNP at 9q33.3 was rs2286885 (\(P = 3.48 \times 10^{-8} \)). Each copy of the A allele of this SNP increased IOP on average by 0.56 mmHg (95% CI: 0.36–0.75 mmHg). Two other SNPs at this locus that were significantly associated with IOP (rs2286886 and rs10819169) were in perfect linkage disequilibrium (LD) with rs2286885. This association remained the same (\(\beta = 0.56, SE = 0.103, P = 6.5 \times 10^{-8} \) for rs2286885) after inclusion of the genotyping batch as a covariate in the analysis. For rs2286885, adjustment for central corneal thickness (CCT) improved the evidence for its association (\(\beta \) on adjustment for CCT = 0.59 mmHg; \(P = 1.16 \times 10^{-9} \)); adjustment for SBP, on the other hand, decreased the significance of association (\(\beta \) on adjustment for SBP = 0.50 mmHg; \(P = 6.46 \times 10^{-7} \)). The direction and magnitude of effect for rs2286885 remained unchanged on stratifying by sex and after selecting one twin from each pair.

The rs2286885 polymorphism is located within intron 8 of the \(\text{FAM125B} \) gene (\(\text{Homo sapiens} \) family with sequence

![Figure 1. Results of the GWAS in the TwinsUK cohort (The upper line in the plot demarcates SNPs that are genome-wide significant (\(P < 5 \times 10^{-8} \)) and the lower line demarcates SNPs that show suggestive significance (\(P < 5 \times 10^{-6} \)).](image1)

![Figure 2. Regional association plot of the region 9q33.3 in the Twins UK cohort.](image2)
similarity 125, member B). FAM125B codes for two different isoforms (isoform 1 and isoform 2) that contain 10 and 6 exons, respectively. The protein encoded by this gene (multivesicular body subunit 12B, also known as MVB12B) is a component of the ESCRT-I (endosomal sorting complex required for transport I) complex, a heterotetramer, which mediates the sorting of ubiquitinated cargo proteins from the plasma membrane to the endosomal vesicle.

We attempted to replicate the most significantly associated SNP at 9q33.3, rs2286885, in European cohorts participating in the International Glaucoma Genetics Consortium (IGGC). With the exception of one cohort, the direction of effect for rs2286885 was consistent with the one observed in the TwinsUK in all the other replication cohorts (Table 1). In a combined fixed-effect inverse variance meta-analysis of all the replication cohorts, rs2286885 was associated with IOP (P = 0.003) (Fig. 3). The magnitude of the effect was noticeably less in the replication panel, with each copy of the risk allele (A) of rs2286885 increasing IOP by 0.09 mmHg (95% CI: 0.03–0.14 mmHg). A joint meta-analysis of the discovery and replication samples thus reduced the strength of association (P = 5.67 × 10^{-6}), with each copy of the risk allele (A) of rs2286885 increasing IOP by 0.12 mmHg (95% CI: 0.07–0.18 mmHg).

We checked for associations between rs2286885 and the three probes of the HumanHT-12 array covering FAM125B coding regions. There was some evidence for an eQTL association, with the best observed SNP-expression association being between rs2286885 (which was the top IOP-associated SNP at the locus) and the probe (ILMN_1652525) targeting the isoform 1 of FAM125B in fat tissue (P = 0.02). The observed eQTL association however does not survive multiple testing corrections for number of probes and number of tissues tested.

DISCUSSION

Here we report a novel association between variants located on the long arm of chromosome 9 and IOP levels. Our conclusions were based on GWAS results of one population of European descent, and replication of the variants in a compound panel of 12 independent populations of the same ancestry. The SNPs at 9q33.3 associated with IOP are within the LD block that contains the gene FAM125B. The protein product of FAM125B forms a component of ESCRT-I, a highly conserved complex (12), that is involved in vesicular trafficking process (also known as transcytosis). It is thought that vesicular transport/cell membrane remodelling pathways in the endothelial cells of the eye regulate IOP through active modulation of the formation of giant vacuoles and endothelial pores (13), which controls the drainage rather than the production of aqueous humour in the eye. Further support for the importance of this metabolic pathway in the determination of IOP is the recent discovery of the formation of intracellular vesicles in cultured human trabeculocytes in response to treatment with latanoprost, a drug which is a well known first line drop treatment to lower IOP (14). Incidentally,
a recent study has identified association for IOP with variants in another gene (ICA1) that is also involved in vesicular transport/cell membrane remodelling (15). In the absence of a case–control panel to test the role of the associated SNPs in FAM125B in glaucoma, we hypothesize that FAM125B could potentially mediate susceptibility to glaucoma through the vesicular transport/cell membrane remodelling pathways, which have previously been implicated in glaucoma through the reported association of the CAV1–CAV2 genes (16).

FAM125B mRNA is highly expressed in the human retina (http://biogps.org/). The result of our eQTL analysis was constrained by tissue availability. We observed only modest eQTL association for rs2286885 and FAM125B in one of the three non-ocular tissues we studied; however the possibility of existence of such an effect cannot be ruled out as gene expression is known to be a tissue-specific phenomenon (17).

Our results are important for a number of reasons. First they are illustrative of the fact that the path towards elucidating the genetic architecture of the complex traits such as IOP is still long and that there is still place for GWAS to identify genes and genetically controlled mechanisms that had previously eluded us. The effect size of the variants identified in FAM125B is small, as is the portion of the phenotypic variance that can be attributed to them. The findings are consistent with GWAS findings for most complex diseases to date (18), which has changed the way we look at complex disease genetics from an oligogenic to a plurigenic model, with hundreds and potentially thousands of individual variants contributing to phenotypic variation (19).

Second, our results offer an interesting insight on the phenomenon of ‘winner’s curse’. Selection of SNP associations, robust to conservative Bonferroni correction, to be taken forward to the non-ocular tissues we studied; however the possibility of existence of such an effect cannot be ruled out as gene expression is known to be a tissue-specific phenomenon (17).

MATERIALS AND METHODS

We analysed 2774 participants (95% female and all of Caucasian ancestry) within the TwinsUK adult twin registry based at St. Thomas’ Hospital in London (26) for whom both genotype and IOP information was available (Supplementary Material, Table S1). Of the 2774 subjects, 681 were monozygotic twin pairs, 627 were dizygotic twin pairs and 158 were unrelated individuals. Twins largely volunteered unaware of the eye studies interests at the time of enrolment and gave fully informed consent under a protocol reviewed by the St. Thomas’ Hospital Local Research Ethics Committee. Exclusion criteria included any form of glaucoma surgery such as trabeculectomy or laser surgery that could alter IOP.

We measured IOP with a non-contact air-puff tonometer. The Ocular Response Analyser (ORA; Reichert®, Buffalo, NY, USA) ejects an air impulse in order to flatten the cornea, which is detected by an electro-optical collimation system. The mean IOP was calculated from four readings (two from each eye) for each participant. IOP for subjects receiving IOP-lowering medications (26 out of 2774) was imputed by increasing the
measured value by 30%, based on efficacy data from commonly
prescribed therapies (27). As CCT and systolic blood pressure
(SBP) are known to influence IOP measurements (23), they
were included as covariates in the analysis. CCT was measured
using an ultrasound pachymetry device provided with the ORA
instrument. Three SBP measurements were made for each
subject using automated calibrated instrument, of which the
average of the second and the third readings were considered
for the analysis.

Subjects were genotyped in two different batches of approxi-
mately the same size, using two genotyping platforms from Illu-
mina: 300 K Duo and HumanHap610-Quad arrays. Whole
genome imputation of the genotypes was performed using
HapMap2 (www.hapmap.org) haplotypes.

Stringent QC measures were implemented, including
minimum genotyping success rate (>95%), Hardy–Weinberg
equilibrium ($P > 10^{-6}$), minimum MAF (>1%) and imputation
quality score (>0.7). Subjects of non-Caucasian ancestry were
excluded from the analysis.

A linear regression model, adjusted for age and sex, was fitted
to test for association between genome-wide SNPs as independ-
ent and IOP as the dependent variable. An additive model of
effect for the risk allele of an SNP was implemented. Additional
analyses were performed with CCT and SBP as covariates in the
analysis. A score test statistic as implemented in MERLIN (28),
that takes into account the pedigree structure and the zygosity of
the twins, was used to adjust for the non-independence of the
observations.

Loci conventionally considered genome-wide significant
($P < 5 \times 10^{-8}$) in the discovery cohort were taken forward
and meta-analysed using the summary statistics data obtained
from 12 independent cohorts of European ancestry that were
a part of the IGGC. Individual cohorts performed the replication
association analyses for rs2286885 based on a protocol decided
by the consortium in order to ensure consistency in the analyses.
The replication cohorts had a combined sample size of 22 789;
complete descriptions of the study populations, phenotyping
and genotyping methods for the replication studies are provided
in the Supplementary Material. Since differences in LD patterns
between populations are known to affect the portability of
phenotypic associations when the replication effort is attempted
in populations that are distinct from the original population in
which the genome-wide study is performed (25), four cohorts
of Asian ancestry that were also a part of the IGGC were not
included in our replication analysis. Where more than one SNP
at a locus was genome-wide significant, i.e. in presence of LD,
only the single most associated SNP was chosen for replication.
A fixed-effect inverse variance meta-analysis of all the cohorts
was performed using the module ‘metan’ on Stata Statistical
Software, 11 (College Station, TX, USA).

Gene expression data for a subset of the TwinsUK cohort was
obtained from the MuTHER study (29). As a part of the
MuTHER study, 855 subjects from the TwinsUK cohort had their
transcript expression quantified in three different tissue
types (skin, fat and LCLs). This was done for 18 170 genes
across the genome using 27 499 probes on Illumina’s whole
genome expression array (HumanHT-12 version 3) further
details of the study methods are available in Nica et al. (29).
For the genome-wide significant SNPs in the TwinsUK cohort,
we tested for a possible eQTL effect on the overlapping gene.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS
We gratefully thank the invaluable contributions of all study par-
ticipants, their relatives and staff at the recruitment centres.
Complete funding information and acknowledgments by study
can be found in the Supplementary Material.

Conflict of Interest statement. None declared.

FUNDING
The study was funded by the Wellcome Trust (grant
WT081878MA), Guide Dogs for the Blind, and the European
Community’s Seventh Framework Programme (FP7/2007–
2013). SNP Genotyping was performed by National Eye Institute
via NIH/CIDR (grant R01EY018246-01-1, PI Young TL) and the
Wellcome Trust Sanger Institute. The study also receives support
from the National Institute for Health Research (NIHR)-funded
BioResource, Clinical Research Facility and Biomedical Re-
search Centre based at Guy’s and St Thomas’ NHS Foundation
Trust in partnership with King’s College London. A.N. received
funding from Fight for Sight and The Worshipful Company of
Spectacle Makers. P.G.H. is the recipient of a Fight for Sight
ECI award. Funding to pay the Open Access publication
charges for this article was provided by the Wellcome Trust.

REFERENCES
1. Pascolini, D. and Mariotti, S.P. (2012) Global estimates of visual
impairment: 2010. Br. J. Ophthalmol., 96, 614–618.
2. Sommer, A. (1996) Glaucoma risk factors observed in the Baltimore Eye
Survey. Curr. Opin. Ophthalmol., 7, 93–98.
3. Leske, M.C., Wu, S.Y., Honkanen, R., Nemesure, B., Schachat, A., Hyman,
L. and Hennis, P. (2007) Nine-year incidence of open-angle glaucoma in the
Barbados Eye Studies. Ophthalmology, 114, 1058–1064.
4. Heijl, A., Leske, M.C., Bengtsson, B., Hyman, L., Bengtsson, B. and
Husein, M. and Early Manifest Glaucoma Trial Group, (2002) Reduction of
intraocular pressure and glaucoma progression: results from the Early
Manifest Glaucoma Trial. Arch. Ophthalmol., 120, 1268–1279.
5. Charlesworth, J., Kramer, P.L., Dyer, T., Diego, V., Samples, J.R., Craig,
J.E., Mackey, D.A., Hewitt, A.W., Blangero, J. and Wirtz, M.K. (2010) The
path to open-angle glaucoma gene discovery: endophenotypic status of
intraocular pressure, cup-to-disc ratio, and central corneal thickness. Invest.
Ophthalm. Vis. Sci., 51, 3509–3518.
6. van Koolwijk, L.M., Despriet, D.D., van Duijn, C.M., Pardo Cortes, L.M.,
Vingerling, J.R., Aulchenko, Y.S., Osstra, B.A., Klaver, C.C. and Lemij,
H.G. (2007) Genetic contributions to glaucoma: heritability of intraocular
pressure, retinal nerve fiber layer thickness, and optic disc morphology.
Invest. Ophthalm. Vis. Sci., 48, 3669–3676.
7. Carbonaro, F., Andrew, T., Mackey, D.A., Spector, T.D. and Hammond, C.J.
(2008) Heritability of intraocular pressure: a classical twin study.
Br. J. Ophthalmol., 92, 1125–1128.
8. Burdon, K.P., Macgregor, S., Hewitt, A.W., Sharma, S., Chidlow, G., Mills,
R.A., Danoy, P., Casson, R., Viswanathan, A.C., Liu, J.Z. et al. (2011)
Genome-wide association study identifies susceptibility loci for open angle
glaucoma at TMCO1 and CDKN2B-AS1.
9. van Koolwijk, L.M., Ramdas, W.D., Ikram, M.K., Jansonius, N.M., Pasutto,
F., Hysi, P.G., Macgregor, S., Jannsen, S.F., Hewitt, A.W., Viswanathan,
A.C. et al. (2012) Common genetic determinants of intraocular pressure and
primary open-angle glaucoma. PLoS Genet., 8, e1002611.
Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. *PloS Genet.*, 8, e1002654.

11. Ramdas, W.D., van Koolwijk, L.M., Iram, M.K., Jansonius, N.M., de Jong, P.T., Bergen, A.A., Issacs, A., Amin, N., Aulchenko, Y.S., Wolfs, R.C. et al. (2010) A genome-wide association study of optic disc parameters. *PloS Genet.*, 6, e1000978.

12. Hurley, J.H. and Emr, S.D. (2006) The Escrt complexes: structure and mechanism of a membrane-trafficking network. *Annu. Rev. Biophys. Biomol. Struct.*, 35, 277–298.

13. Pedgris, R.M., Simon, D., Reed, A., Stamer, W.D. and Overby, D.R. (2011) A model of giant vacuole dynamics in human Schlemm’s canal endothelial cells. *Exp. Eye Res.*, 92, 57–66.

14. Lei, T.C., Masihzadeh, O., Kahook, M.Y. and Ammar, D.A. (2013) Imaging the effects of prostaglandin analogues on cultured trabecular meshwork cells by coherent anti-stokes Raman scattering. *Invest. Ophthalmol. Vis. Sci.*, 54, 5972–5980.

15. Strange, A., Bellenguez, C., Sim, X., Luben, R., Hysi, P.G., Ramdas, W.D., van Koolwijk, L.M., Freeman, C., Pirinen, M., Zhan, S. et al. (2013) Genome-wide association study of intraocular pressure identifies the GLCCI1/ICA1 region as a glaucoma susceptibility locus. *Hum. Mol. Genet.*, 22, 4653–4660.

16. Thorleifsson, G., Walters, G.B., Hewitt, A.W., Masson, G., Helgason, A., DeWan, A., Sigurdsson, A., Jonassotdottir, A., Gudjonsson, S.A., Magnusson, K.P. et al. (2010) Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. *Nat. Genet.*, 42, 906–909.

17. Grundberg, E., Small, K.S., Hedman, A.K., Nica, A.C., Buil, A., Keildson, S., Bell, J.T., Yang, T.P., Meduri, E., Barrett, A. et al. (2012) Mapping cis- and trans-regularity effects across multiple tissues in twins. *Nat. Genet.*, 44, 1084–1089.

18. Hindorff, L.A., MacArthur, J., Morales, J., Junkins, H.A., Hall, P.N., Klemm, A.K. and Manolio, T.A. A catalog of published genome-wide association studies. Human Genome Project GWAS studies (Accessed 18 April 2013).

19. Wray, N.R. and Visscher, P.M. (2010) Narrowing the boundaries of the genetic architecture of schizophrenia. *Schizophr. Bull.*, 36, 14–23.

20. Zhong, H. and Prentice, R.L. (2008) Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. *Biostatistics*, 9, 621–634.

21. Zhong, H. and Prentice, R.L. (2010) Correcting “winner’s curse” in odds ratios from genome-wide association findings for major complex human diseases. *Genet. Epidemiol.*, 34, 78–91.

22. Foster, P.J., Baasalmu, J., Asbirk, P.H., Mukhkhayar, D., Uranchimeg, D. and Johnson, G.J. (1998) Central corneal thickness and intraocular pressure in a Mongolian population. *Ophthalmology*, 105, 969–973.

23. Carbonaro, F., Andrew, T., Mackey, D.A., Spector, T.D. and Hammond, C.J. (2010) Comparison of three methods of intraocular pressure measurement and their relation to central corneal thickness. *Eye (London)*, 24, 1165–1170.

24. Zhong, Y., Ge, J., Huang, G., Zhang, J., Liu, B., Hu, Y.M. and He, M. (2008) Heritability of central corneal thickness in Chinese: the Guangzhou Twin Eye Study. *Invest. Ophthalmol. Vis. Sci.*, 49, 4303–4307.

25. Teo, Y.Y., Fry, A.E., Bhattacharya, K., Small, K.S., Kwiatkowski, D.P. and Clark, T.G. (2009) Genome-wide comparisons of variation in linkage disequilibrium. *Genome Res.*, 19, 1849–1860.

26. Moayyeri, A., Hammond, C.J., Hart, D.J. and Spector, T.D. (2013) The UK Adult Twin Registry (TwinsUK Resource). *Twin Res. Hum. Genet.*, 16, 144–149.

27. Cheng, J.W., Cheng, S.W., Gao, I.D., Lu, G.C. and Wei, R.L. (2012) Intraocular pressure-lowering effects of commonly used fixed-combination drugs with timolol: a systematic review and meta-analysis. *PloS ONE*, 7, e5079.

28. Abecasis, G.R., Cherny, S.S., Cookson, W.O. and Cardon, L.R. (2002) Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. *Nat. Genet.*, 30, 97–101.

29. Nica, A.C., Parts, L., Glass, D., Nisbet, J., Barrett, A., Sekowska, M., Travers, M., Potter, S., Grundberg, E., Small, K. et al. (2011) The architecture of genome regulatory variation across multiple human tissues: the MuTHER study. *PloS Genet.*, 7, e1002003.

APPENDIX

Tin Aung,1,2, Ching-Yu Cheng,1,2,3, Brian W Fleck,4, Jane Gibson,5, Alex W Hewitt,6, Albert Hofman,7,8, René Höhn,9, Jost B Jonas,9,10, Chiea-Chuen Khor,11, Caroline CW Klaver,12, Hans G Lemij,13, Jiemin Liao,14, Andrew J Lotery,14, Yi Lu,15, Stuart Macgregor,15, Paul Mitchell,16,17, Wishal D Ramdas,12, Henriët Springelkamp,12, E-Shyong Tai,11,18, Yik-Ying Teo,19, André G Uitterlinden,8,19, Cornelia M van Duijn,20, Leonieke ME van Koolwijk,2, Johannes R Vingerling,12, Veronique Vitart,20, Eranga Vithana,1, Jie Jin Wang,6,16, Katie M Williams,21, Robert Wojciechowski,22,23,24, Tien-Yin Wong,1,2, WTCC2, Liang Xu25, Ekaterina Yonova-Doing,21, Tanja Zeller,26

1Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; 2Department of Ophthalmology, National University of Singapore and National University Health System, Singapore; 3Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; 4Princess Alexandra Eye Pavilion, Edinburgh, UK; 5Genetic Epidemiology and Genomic Informatics Group, Human Genetics, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK; 6Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; 7Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; 8Netherlands Consortium for Healthy Ageing, The Netherlands Genomics Initiative, Hague, The Netherlands; 9Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany; 10Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of Heidelberg, Mannheim, Germany; 11Division of Human Genetics, Genome Institute of Singapore, Singapore; 12Department of Epidemiology and Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; 13Glaucoma Service, The Rotterdam Eye Hospital, Rotterdam, The Netherlands; 14Clinical Neurosciences Research Grouping, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK; 15Statistical Genetics, Queensland Institute of Medical Research, Brisbane 4029, Australia; 16Department of Ophthalmology, University of Sydney Centre for Vision Research, Sydney, NSW, Australia; 17Department of Ophthalmology, University of Sydney, Sydney, NSW, Australia; 18Department of Medicine, University of Singapore and National University Health System, Singapore; 19Department of Epidemiology and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands; 20MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK; 21Department of Twin Research and Genetic Epidemiology, King’s College London, St. Thomas’ Hospital, London, UK; 22Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; 23Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA; 24National Human Genome Research Institute (NHG), Baltimore, MD, USA; 25Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital University of Medical Science, Beijing, China; 26Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany.
Author/s:
Nag, A; Venturini, C; Small, KS; Young, TL; Viswanathan, AC; Mackey, DA; Hysi, PG; Hammond, C

Title:
A genome-wide association study of intra-ocular pressure suggests a novel association in the gene FAM125B in the TwinsUK cohort

Date:
2014-06-15

Citation:
Nag, A., Venturini, C., Small, K. S., Young, T. L., Viswanathan, A. C., Mackey, D. A., Hysi, P. G. & Hammond, C. (2014). A genome-wide association study of intra-ocular pressure suggests a novel association in the gene FAM125B in the TwinsUK cohort. HUMAN MOLECULAR GENETICS, 23 (12), pp.3343-3348. https://doi.org/10.1093/hmg/ddu050.

Persistent Link:
http://hdl.handle.net/11343/256473

File Description:
published version

License:
CC BY