Crystal structure, Hirshfeld surface analysis and DFT calculations of (E)-3-[1-(2-hydroxyphenyl-anilino)ethylidene]-6-methylpyran-2,4-dione

Imane Faraj, a Ali Oubella, b,c Karim Chkirate, a Khalil Al Mamari, d* Tuncer Hökelek, e Joel T. Mague, f Lhoussaine El Ghayati, a Nada Kheira Sebbar a,b and El Mokhtar Essassi a

The asymmetric unit of the title compound, C14H13NO4, contains three independent molecules, which differ slightly in conformation. Each contains an intramolecular N—H⋯C1/C1/O hydrogen bond. In the crystal, O—H⋯C1/C1/O hydrogen bonds form chains of molecules, which are linked into corrugated sheets parallel to (103) plane by C—H⋯C1/C1/O hydrogen bonds together with H/C25 interactions between the carbonyl groups and the 2-hydroxyphenyl rings. The layers are linked by further C—H⋯C1/C1/O hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H/C1/C1/O (49.0%), H/C1/C1/O/C1/C1/H (28.3%) and H/C1/C1/C/C (10.9%) interactions. van der Waals interactions are the dominant interactions in the crystal packing. Moreover, density functional theory (DFT) optimized structures at the B3LYP/6–311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behavior was elucidated to determine the energy gap of 4.53 eV.

1. Chemical context

Heterocyclic molecules play a very important role in life processes and are of major interest in the industrial development of dyes, pharmaceuticals, pesticides, and natural products (Saber et al., 2020; El Ghayati et al., 2021; Patra & Saxena, 2010). Therefore, scientists have devoted considerable effort to finding efficient synthetic methods for a wide variety of heterocyclic compounds (Yeh et al., 2014; Liaw et al., 2015). Among these molecules, pyrone derivatives constitute an important class in the heterocycle family since the pyrone structural unit is found in a wide variety of natural bioactive compounds (McGlacken & Fairlamb, 2005; Beckert et al., 1997) and also in a wide range of synthetic products with demonstrated efficacy in various fields such as the pharmaceutical and therapeutic field as cytotoxic (Calderón-Montaño et al., 2013), antitumor (Suzuki et al., 1997; Kondoh et al., 1998) and antimicrobial agents (Fairlamb et al., 2004). Another representative example of the pyrone class of compounds, kavalactones, possess many biological activities such as antituberculosis, local anesthetic, anticonvulsant, analgesic, anti-
malarial, and sedative activities (Altomare et al., 1997; Scherer, 1998; Bilia et al., 2002; Ernst, 2007). In this work, we report the synthesis of (E)-3-[1-(2-hydroxyphenylanilino)-ethyldiene]-6-methylpyran-2,4-dione, (I) (Fig. 1) in good yield by the condensation of 2-aminophenol and dehydroacetic acid along with its crystal and molecular structures as well as the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311G(d,p) levels.

2. Structural commentary

The asymmetric unit of the title compound comprises three independent molecules, two of which (those containing O5 and O9) differ modestly in the orientations of the methyl groups while the third differs more in conformation from the other two (Fig. 1). In each molecule, the conformation is partially determined by an intramolecular N—H···O hydrogen bond (Fig. 1 and Table 1), which can be described as a resonance-assisted hydrogen bond (RAHB). With reference to the scheme below, in the three independent molecules the bonds designated a are the same within experimental error. The same is true for each of the bonds labeled b–f and the average values are a = 1.323 (3) Å, b = 1.431 (3) Å, c = 1.447 (3) Å, d = 1.433 (3) Å, e = 1.226 (3) Å and f = 1.254 (3) Å. These compare quite favorably with those found in molecules with R = Me (Gilli et al., 2000) and 4-XC6H4 (X = F, Cl, Br; Boulemche et al., 2019) and accompanied by in depth discussions of the RAHB.

3. Supramolecular features

In the crystal, chains containing all three independent molecules are formed by O1—H1B···O7, O5—H5B···O11 and O9—H9B···O3 hydrogen bonds repeating in that order (Table 1 and Fig. 2). The chains are linked into corrugated layers parallel to the (010) plane by C8—H8C···O8, C33—H33C···O3 and C36—H36B···O12 hydrogen bonds together.

Table 1

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1B···O7	0.87	1.79	2.662	2 (177)
N1—H1A···O2	0.91	1.72	2.538	(3) 148
C8—H8C···O8	0.98	2.48	3.441	(3) 167
C11—H11···O6	0.95	2.57	3.253	(3) 129
O5—H5B···O11	0.87	1.83	2.689	(2) 170
N2—H2A···O6	0.91	1.71	2.539	(3) 151
O9—H9B···O3	0.87	1.82	2.691	(2) 129
N3—H3A···O10	0.91	1.71	2.532	(3) 148
C33—H33···O3	0.95	2.53	3.225	(3) 130
C36—H36B···O12	0.98	2.56	3.531	(3) 173

Symmetry codes: (i) x, y, z; (ii) x + 1, y, z; (iii) x, y + 1, −z + 1; (iv) x, y + 1, z; (v) x, y, −z + 1.

Figure 1

The asymmetric unit with the atom-labeling scheme and 50% probability ellipsoids. The intramolecular hydrogen bonds are depicted by dashed lines.

Figure 2

A portion of one layer viewed along the b-axis direction (left) and along the c-axis direction (right) with O···H···O and C···H···O hydrogen bonds depicted, respectively, by red and black dashed lines. Non-interacting H atoms are omitted for clarity.
with π interactions (Fig. 3) between the carbonyl groups and the 2-hydroxyphenyl rings [O2 ··Cg2 = 3.4827 (18) Å, C10 ··Cg2 = 3.731 (2) Å, C10=O2 ··Cg2 = 91.41 (13)° (Cg2 is the centroid of the C1–C6 ring at x + 3/2, y + 1/2, z + 1/2); O6 ··Cg6 = 3.451 (2) Å, C24 ··Cg6 = 3.694 (2) Å, C24=O6 ··Cg6 = 91.12 (14)° (Cg6 is the centroid of the C29-C34 ring at x, y, z); O10 ··Cg4 = 3.4110 (18) Å, C38 ··Cg4 = 3.656 (2) Å, C38=O10 ··Cg4 = 91.00 (13)° (Cg4 is the centroid of the C15−C20 ring at x, y − 1, z)]. The layers are held together by C11−H11 ··O6 hydrogen bonds (Table 1 and Fig. 3).

4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over \(d_{\text{norm}}\) (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colors indicate distances shorter (in close contact) or longer (distinct contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016). The shape-index of the HS is a tool to visualize π−π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π−π interactions. Fig. 5 clearly suggests that there are π−π interactions in (I). The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H·-H, H··O/O··H,
H - C/C - H, C - C, C - O/O - O - C, O - O, N - O/O - N, H - N/N - H, N - N and C - N/N - C contacts (McKinnon et al., 2007) are illustrated in Fig. 6 b–k, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H - H contributing 49.0% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at $d_e = d_i = 1.09\,\text{Å}$. The pair of spikes in the fingerprint plot delineated into H - O/O - H contacts with a 28.3% contribution to the HS, Fig. 6c, has a symmetric distribution of points with the tips at $d_e + d_i = 1.69\,\text{Å}$. In the presence of C - H - π interactions, the pair of characteristic wings in the fingerprint plot delineated into H - C/C - C - H contacts, Fig. 6d, with a 10.9% contribution to the HS has the tips at $d_e + d_i = 2.67\,\text{Å}$. The C - C, C - H, Fig. 6e, with a 6.2% contribution to the HS have a bullet-shaped distribution of points and the tip at $d_e = d_i = 1.64\,\text{Å}$. The symmetric distribution of points for the C - O/O - O - C contacts, Fig. 6f, with 3.8% contribution to the HS has a pair of the scattered points of spikes with the tips at $d_e + d_i = 3.11\,\text{Å}$. Finally, the contributions of the remaining O - O, N - O/O - O - N, H - N/N - H, N - N and C - N/N - C contacts (Fig. 6g-k) are smaller than 1.0% with low densities of points.

The Hirshfeld surface representations with the function d_{norm} plotted onto the surface for the H - H, H - O/O - H and H - C/C - H interactions in Fig. 7a–c, respectively. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H - H, H - O/O - H and H - C/C - H interactions suggest that van der Waals interactions play the major role in the crystal packing (Hathwar et al., 2015).

5. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6-311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 2). The highest-occupied molecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied molecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. E_{HOMO} and E_{LUMO}, which clarify the inevitable charge-exchange collaboration inside the molecule, electronegativity (χ), hardness (η), potential (µ), electrophilicity (ω) and softness (σ) are recorded in Table 3. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending from the whole (E)-3-[1-(2-hydroxyphenylamino)ethylidene]-6-methyl-3H-pyran-2,4-dione ring. The energy band gap [$ΔE = E_{\text{LUMO}} - E_{\text{HOMO}}$] of the molecule is 4.54 eV, and the frontier molecular orbital energies, E_{HOMO} and E_{LUMO} are −6.12 and −1.58 eV, respectively.

6. Molecular electrostatic (MEP)

Molecular electrostatic potential (MEP) was used to broadly predict reactive sites for electrophilic and nucleophilic attack.
in the title compound by B3LYP/6-31G optimized geometries using Gaussview software (Frisch et al., 2009). The total electron density onto which the electrostatic potential surface has been mapped is shown in Fig. 9. This figure gives a visual representation of the chemically active sites and comparative reactivity of atoms where red regions denote the most negative electrostatic potential, blue represents regions of the most positive electrostatic potential, and green represents the region of zero potential. The distribution favors the existence of the intra and intermolecular C—H···O and N—H···O hydrogen bonding.

Molecular energy	Compound (I)
Total energy, TE (eV)	-24399.73
E_{HOMO} (eV)	-6.12
E_{LUMO} (eV)	-1.58
Gap, $\Delta E_{\text{HOMO-LUMO}}$ (eV)	4.53
Dipole moment, μ (Debye)	4.1895
Ionization potential, I (eV)	6.12
Electron affinity, A	1.58
Electronegativity, χ	3.85
Hardness, η	2.27
Electrophilicity index, ω	3.27
Softness, σ	0.44
Fraction of electron transferred, ΔN	0.69

7. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, updated to March 2022; Groom et al., 2016) for the fragment A (allowing R to be any substituent) yielded 66 hits of which 15 were deemed most similar to the title molecule. These include molecules with $R = \text{Me}$ (FOTQOW; Kwocz et al., 2015), p-anis (GOWYOG; Gilli et al., 2000), 4-ClC$_6$H$_4$ (GOXLOU, GOXLOU02; Boulemche et al., 2019), 4-BrC$_6$H$_4$ (VOPLOC01; Boulemche et al., 2019), Et (HABNED; Xiao et al., 1993), H (HIVTUD; Seijas et al. 2014), Ph (PAEXPY; Gilli et al., 2000), 4-H$_2$NC$_6$H$_4$ (QADRIY; Užarević et al. 2010), 4-EtOC$_6$H$_4$ (QEOQEL; Djedouani et al., 2018), 4-MeOC$_6$H$_4$CH$_2$ (XECGEV; Wang et al., 2022), PhCH(Me) (XECGOF; Wang et al., 2022) and 2-CH$_2$C$_5$H$_4$N (XECHEW; Wang et al., 2022). Although not all of these reports discuss the intramolecular N—H···O hydrogen bonds in detail, it is clear that all have very similar metrical parameters to one another and to those in the title molecule.

8. Synthesis and crystallization

To a solution of 2-aminophenol (2.5 mmol) in 30 mL of ethanol, 2.5 mmol of dehydroacetic acid were added. The mixture was refluxed for 1 h. After cooling, the precipitate that formed was recrystallized from ethanol solution to give yellow crystals in 88% yield.
9. Refinement

Crystal, data collection and refinement details are presented in Table 4. Hydrogen atoms were included as riding contributions in idealized positions (O—H = 0.87 Å, N—H = 0.91 Å, C—H = 0.95–0.98 Å) with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(O,C,methyl)$.

Funding information

JTM acknowledged the NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

Allomare, C., Perrone, G., Zonno, M. C., Polonelli, L. & Evidente, A. (1997). Cereal Res. Commun. 25, 349–351.
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
Beckert, C., Horn, C., Schnitzler, J. P., Lehning, A., Heller, W. & Veit, M. (1997). Physicochemistry, 44, 275–283.
Bilia, A. R., Gallori, S. & Vincieri, F. F. (2002). Life Sci. 70, 2581–2597.
Boulemche, H., Anak, B., Djedouani, A., Touzani, R., François, M., Fleutot, S. & Rabilloud, F. (2019). J. Mol. Struct. 1178, 606–616.
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.

Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
Calderón-Montaño, J. M., Burgos-Morón, E., Orta, M. L., Pastor, N., Austin, C. A., Mateos, S. & López-Lázaro, M. (2013). Toxicol. Lett. 222, 64–71.
Djedouani, A., Anak, B., Tabti, S., Cleymand, F., François, M. & Fleutot, S. (2018). Acta Cryst. E74, 172–175.
El Ghayati, L., Sert, Y., Sebbar, N. K., Ramli, Y., Ahabchane, N. H., Talbaoui, A., Mauge, J. T., El Ibrahimii, B., Taha, M. L., Essassi, E. M., Al-Zaqri, N. & Alsalme, A. (2021). J. Heterocycl. Chem. 58, 270–289.
Ernst, E. (2007). Br. J. Clin. Pharmacol. 64, 415–417.
Fairlamb, I. J. S., Harrison, L. R., Dickinson, J. M., Lu, F.-J. & Schmidt, J. P. (2004). Biotechnology. Med. Chem. 12, 4285–4299.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Yengov, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405–10417.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Hathwar, V. R., Sist, M., Jørgensen, M. R., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). Acta Cryst. B22, 563–574.
Hirshfeld, H. L. (1977). Theor. Chim. Acta 44, 129–138.
Kondoh, M., Usui, T., Kobayashi, S., Tsuchiya, K., Tsuchiya, K., Nishikiori, T., Mayumi, T. & Osada, H. (1998). Cancer Lett. 126, 29–32.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
Kworcz, A., Kochel, A., Chudoba, D. & Filarowski, A. (2015). J. Mol. Struct. 1080, 52–56.
Liaw, C.-N., Sheu, J.-H. & Wu, S.-H. (2015). Acta Cryst. C71, 17054–17059.
McGlacken, G. P. & Fairlamb, I. J. S. (2005). Nat. Prod. Rep. 22, 369–385.
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.
Patra, A. K. & Saxena, J. (2010). Physicochemistry, 71, 1198–1222.
Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mauge, J. T., Baba, Y. F., Urruquito, M. & Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174.
Scherer, J. (1998). Adv. Ther. 15, 261–269.
Seijas, J. A., Crecente-Campo, J., Feás, X. & Vázquez-Tato, M. P. (2014). RSC Adv. 4, 17054–17059.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Suzuki, K., Kuwahara, A., Yoshida, H., Fujita, S. I., Nishikiori, T. & Nakagawa, T. (1997). J. Antibiot. 50, 314–317.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.

Užarević, K., Rubčić, M., Stilinović, V., Kaitner, B. & Cindrič, M. (2010). J. Mol. Struct. 984, 232–239.

Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.

Wang, T.-Y., Su, Y.-C., Ko, B.-T., Hsu, Y., Zeng, Y.-F., Hu, C.-H., Datta, A. & Huang, J.-H. (2022). Molecules, 22, 164. https://doi.org/10.3390/molecules27010164

Xiao, G., van der Helm, D., Hider, R. C. & Dobbin, P. S. (1993). Acta Cryst. C49, 980–982.

Yeh, P.-P., Daniels, D. S. B., Cordes, D. B., Slawin, A. M. Z. & Smith, A. D. (2014). Org. Lett. 16, 964–967.
Crystal structure, Hirshfeld surface analysis and DFT calculations of (E)-3-[1-(2-hydroxyphenylanilino)ethylidene]-6-methylpyran-2,4-dione

Imane Faraj, Ali Oubella, Karim Chkirate, Khalil Al Mamari, Tuncer Hökelek, Joel T. Mague, Lhoussaine El Ghayati, Nada Kheira Sebbar and El Mokhtar Essassi

Computing details
Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-3-[1-(2-Hydroxyphenylanilino)ethylidene]-6-methylpyran-2,4-dione

Crystal data

\[C_{14}H_{13}NO_{4}\]

\(M_r = 259.25\)

Monoclinic, \(P2_1/n\)

\(a = 11.6407 (4) \text{ Å}\)

\(b = 7.4412 (2) \text{ Å}\)

\(c = 42.2828 (12) \text{ Å}\)

\(\beta = 93.038 (2) ^\circ\)

\(V = 3657.42 (19) \text{ Å}^3\)

\(Z = 12\)

\(F(000) = 1632\)

\(D_x = 1.412 \text{ Mg m}^{-3}\)

Cu \(K\alpha\) radiation, \(\lambda = 1.54178 \text{ Å}\)

Cell parameters from 9858 reflections

\(\theta = 4.0-72.3^\circ\)

\(\mu = 0.87 \text{ mm}^{-1}\)

\(T = 150 \text{ K}\)

Plate, colourless

\(0.27 \times 0.07 \times 0.07 \text{ mm}\)

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

Radiation source: INCOATEC \(\mu\)S micro-focus source

Mirror monochromator

Detector resolution: 10.4167 pixels mm\(^{-1}\)

\(\omega\) scans

Absorption correction: multi-scan

\(\text{(SADABS; Krause et al., 2015)}\)

7135 independent reflections

5024 reflections with \(I > 2\sigma(I)\)

\(R_{	ext{int}} = 0.070\)

\(\theta_{\text{max}} = 72.4^\circ, \theta_{\text{min}} = 3.9^\circ\)

\(h = -13\rightarrow14\)

\(k = -8\rightarrow9\)

\(l = -52\rightarrow51\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.056\)

\(wR(F^2) = 0.146\)

\(S = 1.04\)

7135 reflections

520 parameters

0 restraints

Primary atom site location: dual

Secondary atom site location: difference Fourier map

Hydrogen site location: mixed

H-atom parameters constrained
w = 1/\left[\sigma^2(F_o^2) + (0.0569P)^2 + 2.375P\right]

where \(P = (F_o^2 + 2F_c^2)/3 \)

\((\Delta\sigma)_{\text{max}} < 0.001 \)

\(\Delta \rho_{\text{max}} = 0.49 \ \text{e} \ \text{Å}^{-3} \)

\(\Delta \rho_{\text{min}} = -0.43 \ \text{e} \ \text{Å}^{-3} \)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of \(F^2 \) against ALL reflections. The weighted R-factor \(wR \) and goodness of fit \(S \) are based on \(F^2 \), conventional R-factors \(R \) are based on \(F \), with \(F \) set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on \(F \), and R-factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and to oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 and O—H = 0.87 Å. All were included as riding contributions with isotropic displacementparameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U(eq)
O	0.61999 (14)	0.3312 (2)	0.21067 (4)	0.0333 (4)
H1B	0.582256	0.290388	0.193862	0.050*
O2	0.58889 (14)	0.5447 (2)	0.29280 (4)	0.0341 (4)
O3	0.92249 (14)	0.2912 (2)	0.34495 (4)	0.0357 (4)
O4	0.77660 (15)	0.3859 (2)	0.37143 (4)	0.0383 (4)
N1	0.75437 (16)	0.4599 (3)	0.25901 (5)	0.0266 (4)
H1A	0.682525	0.495459	0.263795	0.032*
C1	0.7928 (2)	0.4732 (3)	0.22776 (6)	0.0265 (5)
C2	0.8949 (2)	0.5605 (3)	0.22159 (6)	0.0297 (5)
H2	0.941384	0.610471	0.238523	0.036*
C3	0.9286 (2)	0.5746 (3)	0.19105 (6)	0.0352 (6)
H3	0.998909	0.632341	0.186842	0.042*
C4	0.8590 (2)	0.5037 (4)	0.16627 (6)	0.0361 (6)
H4	0.883123	0.511350	0.145199	0.043*
C5	0.7553 (2)	0.4223 (3)	0.17201 (6)	0.0329 (6)
H5	0.707586	0.377192	0.154888	0.040*
C6	0.7211 (2)	0.4068 (3)	0.20290 (6)	0.0279 (5)
C7	0.81395 (19)	0.3983 (3)	0.28431 (6)	0.0254 (5)
C8	0.92598 (19)	0.3054 (3)	0.28010 (6)	0.0300 (5)
H8A	0.935580	0.284869	0.257501	0.045*
H8B	0.926635	0.189818	0.291232	0.045*
H8C	0.989161	0.380487	0.288817	0.045*
C9	0.76450 (19)	0.4190 (3)	0.31430 (6)	0.0269 (5)
C10	0.6510 (2)	0.4963 (3)	0.31640 (6)	0.0285 (5)
C11	0.6080 (2)	0.5161 (3)	0.34727 (6)	0.0291 (5)
H11	0.534842	0.570016	0.349396	0.035*
C12	0.6685 (2)	0.4605 (3)	0.37321 (6)	0.0334 (6)
C13	0.8268 (2)	0.3612 (3)	0.34269 (6)	0.0299 (5)
C14	0.6307 (3)	0.4684 (5)	0.40622 (7)	0.0560 (8)
Atom	x	y	z	Ueq
-------	-------	-------	-------	------
H14A	0.551287	0.512407	0.406083	0.084*
H14B	0.681053	0.550015	0.418746	0.084*
H14C	0.634724	0.347979	0.415605	0.084*
O5	0.38904 (14)	0.6512 (2)	0.45296 (4)	0.0318 (4)
H5B	0.442098	0.689109	0.466620	0.048*
O6	0.35346 (14)	0.4346 (3)	0.37210 (4)	0.0377 (4)
O7	−0.00724 (15)	0.6953 (2)	0.34030 (4)	0.0374 (4)
O8	0.12052 (17)	0.6280 (2)	0.30612 (4)	0.0418 (5)
N2	0.21857 (16)	0.5135 (3)	0.41527 (5)	0.0271 (4)
H2A	0.282524	0.476791	0.405602	0.033*
C15	0.21047 (19)	0.5018 (3)	0.44869 (6)	0.0264 (5)
C16	0.1203 (2)	0.4113 (3)	0.46191 (6)	0.0298 (5)
N16	0.061519	0.357723	0.448597	0.036*
C17	0.1160 (2)	0.3992 (3)	0.49450 (6)	0.0331 (6)
H17	0.054670	0.337409	0.503716	0.040*
C18	0.2028 (2)	0.4786 (3)	0.51356 (6)	0.0350 (6)
H18	0.198635	0.474495	0.535929	0.042*
C19	0.2955 (2)	0.5638 (3)	0.50054 (6)	0.0318 (5)
H19	0.355280	0.614281	0.513917	0.038*
C20	0.30016 (19)	0.5747 (3)	0.46783 (6)	0.0272 (5)
C21	0.14059 (19)	0.5724 (3)	0.39396 (6)	0.0261 (5)
C22	0.0313 (2)	0.6523 (3)	0.40471 (6)	0.0321 (5)
H22A	0.037677	0.669862	0.427702	0.048*
H22B	−0.032943	0.571023	0.399231	0.048*
H22C	0.017599	0.768387	0.394222	0.048*
C23	0.1680 (2)	0.5631 (3)	0.36137 (6)	0.0283 (5)
C24	0.2774 (2)	0.4919 (3)	0.35259 (6)	0.0320 (5)
C25	0.3014 (2)	0.4926 (3)	0.31974 (6)	0.0346 (6)
H25	0.371930	0.444072	0.313268	0.042*
C26	0.2256 (3)	0.5610 (3)	0.29800 (7)	0.0407 (6)
C27	0.0887 (2)	0.6317 (3)	0.33735 (6)	0.0321 (5)
C28	0.2375 (4)	0.5756 (5)	0.26316 (7)	0.0691 (11)
H28A	0.316636	0.546088	0.258193	0.104*
H28B	0.219602	0.698620	0.256236	0.104*
H28C	0.184278	0.491755	0.252138	0.104*
O9	0.06273 (13)	0.1503 (2)	0.39114 (4)	0.0304 (4)
H9B	0.017440	0.197100	0.376319	0.046*
O10	0.10567 (13)	−0.0837 (2)	0.47274 (4)	0.0321 (4)
O11	0.46131 (14)	0.1935 (2)	0.50481 (4)	0.0326 (4)
O12	0.33818 (15)	0.1056 (2)	0.53955 (4)	0.0347 (4)
N3	0.23507 (16)	0.0148 (3)	0.42968 (5)	0.0263 (4)
H3A	0.171281	−0.027001	0.438829	0.032*
C29	0.24495 (19)	0.0095 (3)	0.39632 (6)	0.0260 (5)
C30	0.3378 (2)	−0.0727 (3)	0.38300 (6)	0.0304 (5)
H30	0.396873	−0.125418	0.396305	0.036*
C31	0.3448 (2)	−0.0780 (3)	0.35050 (6)	0.0341 (6)
H31	0.408973	−0.132571	0.341388	0.041*
C32	0.2569 (2)	−0.0025 (3)	0.33125 (6)	0.0356 (6)
Atomic displacement parameters (Å²)

	\(U^{11}\)	\(U^{22}\)	\(U^{33}\)	\(U^{12}\)	\(U^{13}\)	\(U^{23}\)
O1	0.0348 (9)	0.0391 (10)	0.0249 (9)	-0.0058 (7)	-0.0089 (7)	-0.0014 (7)
O2	0.0313 (9)	0.0448 (10)	0.0255 (9)	0.0051 (7)	-0.0051 (7)	0.0043 (7)
O3	0.0324 (9)	0.0441 (10)	0.0293 (10)	0.0025 (8)	-0.0107 (7)	0.0057 (8)
O4	0.0406 (10)	0.0476 (11)	0.0258 (9)	-0.0066 (8)	-0.0063 (8)	0.0060 (8)
N1	0.0270 (10)	0.0296 (10)	0.0227 (10)	0.0011 (8)	-0.0041 (8)	-0.0006 (8)
C1	0.0312 (12)	0.0259 (12)	0.0218 (12)	0.0054 (9)	-0.0043 (9)	-0.0002 (9)
C2	0.0303 (12)	0.0316 (13)	0.0270 (13)	0.0023 (9)	-0.0004 (10)	-0.0009 (10)
C3	0.0352 (13)	0.0358 (14)	0.0349 (15)	0.0053 (10)	0.0039 (11)	0.0033 (11)
C4	0.0443 (14)	0.0404 (14)	0.0242 (13)	0.0105 (11)	0.0056 (11)	0.0008 (11)
C5	0.0425 (14)	0.0345 (13)	0.0210 (12)	0.0063 (10)	-0.0051 (11)	-0.0045 (10)
C6	0.0336 (12)	0.0263 (12)	0.0233 (12)	0.0025 (9)	-0.0039 (10)	0.0002 (9)
C7	0.0246 (11)	0.0260 (11)	0.0247 (12)	-0.0041 (9)	-0.0067 (9)	0.0025 (9)
C8	0.0283 (12)	0.0327 (13)	0.0280 (13)	0.0007 (9)	-0.0063 (10)	0.0017 (10)
C9	0.0266 (11)	0.0300 (12)	0.0232 (12)	-0.0029 (9)	-0.0068 (9)	0.0012 (9)
C10	0.0306 (12)	0.0284 (12)	0.0259 (13)	-0.0046 (9)	-0.0057 (10)	0.0024 (10)
C11	0.0266 (11)	0.0381 (13)	0.0224 (12)	-0.0026 (10)	0.0001 (9)	-0.0011 (10)
C12	0.0345 (13)	0.0413 (14)	0.0241 (13)	-0.0081 (11)	-0.0009 (10)	0.0002 (10)
C13	0.0341 (13)	0.0309 (12)	0.0238 (12)	-0.0073 (10)	-0.0056 (10)	0.0016 (10)
C14	0.066 (2)	0.073 (2)	0.0297 (16)	-0.0211 (17)	0.0054 (15)	-0.0052 (15)
O5	0.0311 (9)	0.0378 (9)	0.0255 (9)	-0.0043 (7)	-0.0069 (7)	0.0001 (7)
O6	0.0313 (9)	0.0514 (11)	0.0301 (10)	0.0049 (8)	-0.0010 (8)	0.0032 (8)
O7	0.0354 (10)	0.0425 (10)	0.0328 (10)	0.0009 (8)	-0.0125 (8)	0.0065 (8)
O8	0.0585 (12)	0.0394 (10)	0.0262 (10)	-0.0038 (9)	-0.0102 (9)	0.0012 (8)
N2	0.0243 (9)	0.0356 (11)	0.0206 (10)	-0.0007 (8)	-0.0055 (8)	0.0013 (8)
C15	0.0291 (12)	0.0282 (12)	0.0214 (12)	0.0063 (9)	-0.0036 (9)	0.0008 (9)

Acta Cryst. (2022). E78, 864-870
Geometric parameters (Å, °)

Bond/Angle	Distances (Å)	Angles (°)

Bond Distances

- O1—C6 1.361 (3)
- O1—H1B 0.8700
- O2—C10 1.253 (3)
- O3—C13 1.253 (3)
- O4—C12 1.381 (3)
- O4—C13 1.389 (3)
- N1—C7 1.326 (3)
- N1—C1 1.420 (3)
- N1—H1A 0.9101
- C1—C2 1.392 (3)
- C1—C6 1.397 (3)
- C2—C3 1.373 (4)
- C2—H2 0.9500

Angle Distances

- C19—C20 1.389 (3)
- C19—H19 0.9500
- C21—C22 1.497 (3)
- C22—H22A 0.9500
- C22—H22B 0.9500
- C22—H22C 0.9500
- C23—C24 1.432 (3)
- C23—C25 1.432 (4)
- C24—C25 1.432 (4)
- C25—H25 0.9500
- C26—C28 1.491 (4)
Supporting Information

Bond	Distance (Å)	Distance (Å)	Angle (°)	Angle (°)
C3—C4	1.393 (4)	C28—H28A	0.980	
C3—H3	0.9500	C28—H28B	0.980	
C4—C5	1.384 (4)	C28—H28C	0.980	
C4—H4	0.9500	O9—C34	1.360 (3)	
C5—C6	1.390 (3)	O9—H9B	0.8701	
C5—H5	0.9500	O10—C38	1.257 (3)	
C7—C9	1.428 (3)	O11—C41	1.225 (3)	
C7—C8	1.495 (3)	O12—C40	1.377 (3)	
C8—H8A	0.9800	O12—C41	1.400 (3)	
C8—H8B	0.9800	N3—C35	1.322 (3)	
C8—H8C	0.9800	N3—C29	1.422 (3)	
C9—C13	1.435 (3)	N3—H3A	0.9101	
C9—C10	1.448 (3)	C29—C30	1.390 (3)	
C10—C11	1.430 (3)	C29—C34	1.398 (3)	
C11—C12	1.337 (3)	C30—C31	1.382 (4)	
C11—H11	0.9500	C30—H30	0.9500	
C12—C14	1.487 (4)	C31—C32	1.392 (4)	
C14—H14A	0.9800	C31—H31	0.9500	
C14—H14B	0.9800	C32—C33	1.382 (4)	
C14—H14C	0.9800	C32—H32	0.9500	
O5—C20	1.363 (3)	C33—C34	1.389 (3)	
O5—H5B	0.8700	C33—H33	0.9500	
O6—C24	1.253 (3)	C35—C36	1.433 (3)	
O7—C27	1.225 (3)	C35—C37	1.500 (3)	
O8—C26	1.381 (4)	C36—H36A	0.9800	
O8—C27	1.391 (3)	C36—H36B	0.9800	
N2—C21	1.320 (3)	C36—H36C	0.9800	
N2—C15	1.424 (3)	C37—C41	1.434 (3)	
N2—H2A	0.9101	C37—C38	1.448 (3)	
C15—C16	1.390 (3)	C38—C39	1.422 (3)	
C15—C20	1.396 (3)	C39—C40	1.338 (4)	
C16—C17	1.384 (4)	C39—H39	0.9500	
C16—H16	0.9500	C40—C42	1.488 (4)	
C17—C18	1.390 (4)	C42—H42A	0.9800	
C17—H17	0.9500	C42—H42B	0.9800	
C18—C19	1.391 (4)	C42—H42C	0.9800	
C18—H18	0.9500			
C6—O1—H1B	110.7	C21—C22—H22B	109.5	
C12—O4—C13	121.9 (2)	H22A—C22—H22B	109.5	
C7—N1—C1	126.7 (2)	C21—C22—H22C	109.5	
C7—N1—H1A	111.6	H22A—C22—H22C	109.5	
C1—N1—H1A	121.7	H22B—C22—H22C	109.5	
C2—C1—C6	120.4 (2)	C27—C23—C21	119.8 (2)	
C2—C1—N1	121.4 (2)	C27—C23—C24	119.5 (2)	
C6—C1—N1	118.1 (2)	C21—C23—C24	120.6 (2)	
C3—C2—C1	120.1 (2)	O6—C24—C25	118.2 (2)	
C3—C2—H2	120.0	O6—C24—C23	123.9 (2)	

Acta Cryst. (2022). E78, 864-870
Bond	Angle (°)	Bond	Angle (°)
C1—C2—H2	120.0	C25—C24—C23	117.9 (2)
C2—C3—C4	119.7 (2)	C26—C25—C24	120.7 (3)
C2—C3—H3	120.2	C26—C25—H25	119.6
C4—C3—H3	120.2	C24—C25—H25	119.6
C5—C4—C3	120.8 (2)	C25—C26—O8	121.8 (2)
C5—C4—H4	119.6	C25—C26—C28	127.8 (3)
C3—C4—H4	119.6	O8—C26—C28	110.5 (3)
C4—C5—C6	119.8 (2)	O7—C27—O8	113.2 (2)
C4—C5—H5	120.1	O7—C27—C23	128.6 (2)
C6—C5—H5	120.1	O8—C27—C23	118.2 (2)
O1—C6—C5	123.7 (2)	C26—C28—H28A	109.5
O1—C6—C1	117.0 (2)	C26—C28—H28B	109.5
C5—C6—C1	119.3 (2)	H28A—C28—H28B	109.5
N1—C7—C9	117.5 (2)	C26—C28—H28C	109.5
N1—C7—C8	119.1 (2)	H28A—C28—H28C	109.5
C9—C7—C8	123.4 (2)	H28B—C28—H28C	109.5
C7—C8—H8A	109.5	C34—O9—H9B	107.2
C7—C8—H8B	109.5	C40—O12—C41	121.86 (19)
H8A—C8—H8B	109.5	C5—N3—C29	127.1 (2)
C7—C8—H8C	109.5	C35—N3—H3A	111.5
H8A—C8—H8C	109.5	C29—N3—H3A	121.4
H8B—C8—H8C	109.5	C31—C30—C34	120.2 (2)
C7—C9—C13	120.0 (2)	C30—C29—N3	121.2 (2)
C7—C9—C10	120.6 (2)	C34—C29—N3	118.5 (2)
C13—C9—C10	119.3 (2)	C31—C30—C29	120.3 (2)
O2—C10—C11	118.8 (2)	C31—C30—H30	119.9
O2—C10—C9	123.7 (2)	C29—C30—H30	119.9
C11—C10—C9	117.5 (2)	C30—C31—C32	119.4 (2)
C12—C11—C10	121.5 (2)	C30—C31—H31	120.3
C12—C11—H11	119.2	C32—C31—H31	120.3
C10—C11—H11	119.2	C33—C32—C31	120.8 (2)
C11—C12—O4	121.4 (2)	C33—C32—H32	119.6
C11—C12—C14	126.1 (3)	C31—C32—H32	119.6
O4—C12—C14	112.5 (2)	C32—C33—C34	120.1 (2)
O3—C13—O4	114.2 (2)	C32—C33—H33	120.0
O3—C13—C9	127.4 (2)	C34—C33—H33	120.0
O4—C13—C9	118.3 (2)	O9—C34—C33	123.0 (2)
C12—C14—H14A	109.5	O9—C34—C29	117.8 (2)
C12—C14—H14B	109.5	C33—C34—C29	119.2 (2)
H14A—C14—H14B	109.5	N3—C35—C37	117.7 (2)
C12—C14—H14C	109.5	N3—C35—C36	119.1 (2)
H14A—C14—H14C	109.5	C37—C35—C36	123.2 (2)
H14B—C14—H14C	109.5	C35—C36—H36A	109.5
C20—O5—H5B	111.0	C35—C36—H36B	109.5
C26—O8—C27	121.8 (2)	H36A—C36—H36B	109.5
C21—N2—C15	128.2 (2)	C35—C36—H36C	109.5
C21—N2—H2A	110.0	H36A—C36—H36C	109.5
C15—N2—H2A	121.7	H36B—C36—H36C	109.5
Bond Lengths (Å) and Angles (°)			

C16—C15—C20 120.8 (2)	C35—C37—C41 120.0 (2)		
C16—C15—N2 121.3 (2)	C35—C37—C38 120.2 (2)		
C20—C15—N2 117.7 (2)	C41—C37—C38 119.7 (2)		
C17—C16—C15 120.0 (2)	O10—C38—C39 118.8 (2)		
C17—C16—H16 120.0	O10—C38—C37 123.8 (2)		
C15—C16—H16 120.0	C39—C38—C37 117.4 (2)		
C16—C17—C18 119.1 (2)	C41—C37—C38 121.9 (2)		
C16—C17—H17 120.5	C40—C39—C38 119.1		
C18—C17—H17 120.5	C38—C39—H39 119.1		
C17—C18—C19 121.3 (2)	C39—C40—O12 121.3 (2)		
C17—C18—H18 119.3	C39—C40—C42 127.3 (3)		
C19—C18—H18 119.3	O12—C40—C42 111.4 (2)		
C20—C19—C18 119.5 (2)	O11—C41—C37 128.0 (2)		
C20—C19—H19 120.3	O12—C41—O12 117.8 (2)		
O5—C20—C19 123.6 (2)	C40—C42—H42A 109.5		
O5—C20—C15 117.2 (2)	C40—C42—H42B 109.5		
C19—C20—C15 119.2 (2)	H42A—C42—H42B 109.5		
N2—C21—C23 117.4 (2)	C40—C42—H42C 109.5		
N2—C21—C22 119.3 (2)	H42A—C42—H42C 109.5		
C23—C21—C22 123.2 (2)	H42B—C42—H42C 109.5		
C21—C22—H22A 109.5			
C7—N1—C1—C2 −52.8 (3)	C22—C21—C23—C24 177.1 (2)		
C7—N1—C1—C6 131.6 (2)	C27—C23—C24—O6 177.6 (2)		
C6—C1—C2—C3 −3.1 (4)	C21—C23—C24—O6 0.2 (4)		
N1—C1—C2—C3 −178.6 (2)	C27—C23—C24—C25 −0.3 (3)		
C1—C2—C3—C4 1.1 (4)	C21—C23—C24—C25 −177.6 (2)		
C2—C3—C4—C5 1.3 (4)	O6—C24—C25—C26 −176.5 (2)		
C3—C4—C5—C6 −1.6 (4)	C23—C24—C25—C26 1.5 (4)		
C4—C5—C6—O1 179.0 (2)	C24—C25—C26—O8 −2.0 (4)		
C4—C5—C6—C1 −0.3 (4)	C24—C25—C26—C28 178.8 (3)		
C2—C1—C6—O1 −176.7 (2)	C27—O8—C26—C25 1.4 (4)		
N1—C1—C6—O1 −1.1 (3)	C27—O8—C26—C28 −179.3 (2)		
C2—C1—C6—C5 2.7 (3)	C26—O8—C27—O7 −180.0 (2)		
N1—C1—C6—C5 178.3 (2)	C26—O8—C27—C23 −0.2 (3)		
C1—N1—C7—C9 171.8 (2)	C21—C23—C27—O7 −3.3 (4)		
C1—N1—C7—C8 −10.5 (3)	C24—C23—C27—O7 179.4 (2)		
N1—C7—C9—C13 −177.6 (2)	C21—C23—C27—O8 177.0 (2)		
C8—C7—C9—C13 4.8 (3)	C24—C23—C27—O8 −0.3 (3)		
N1—C7—C9—C10 3.0 (3)	C35—N3—C29—C30 53.3 (3)		
C8—C7—C9—C10 −174.5 (2)	C35—N3—C29—C34 −130.3 (2)		
C7—C9—C10—O2 1.9 (4)	C34—C29—C30—C31 3.0 (4)		
C13—C9—C10—O2 −177.5 (2)	N3—C29—C30—C31 179.4 (2)		
C7—C9—C10—C11 −178.8 (2)	C29—C30—C31—C32 −0.9 (4)		
C13—C9—C10—C11 1.9 (3)	C30—C31—C32—C33 −1.4 (4)		
O2—C10—C11—C12 177.4 (2)	C31—C32—C33—C34 1.5 (4)		
C9—C10—C11—C12 −2.0 (4)	C32—C33—C34—O9 −178.8 (2)		
C10—C11—C12—O4 1.9 (4) C32—C33—C34—C29 0.7 (4)
C10—C11—C12—C14 −177.7 (3) C30—C29—C34—O9 176.6 (2)
C13—O4—C12—C11 −1.5 (4) N3—C29—C34—O9 0.2 (3)
C13—O4—C12—C14 178.1 (2) C30—C29—C34—C33 −2.9 (3)
C12—O4—C13—C9 1.3 (3) C29—N3—C35—C37 −175.2 (2)
C12—O4—C13—O3 −179.1 (2) C30—C29—C34—O9 6.7 (3)
C7—C9—C13—O3 −0.4 (4) C30—C29—C34—C33 −177.8 (2)
C10—C9—C13—O3 178.9 (2) C36—C35—C37—C41 0.3 (3)
C7—C9—C13—O4 179.1 (2) C30—C29—C34—O9 0.3 (3)
C10—C9—C13—O4 −1.6 (3) N3—C35—C37—C41 −179.3 (2)
C21—N2—C15—C16 54.1 (3) C36—C35—C37—C38 −2.9 (3)
C21—N2—C15—C20 −129.8 (2) C35—C37—C38—O10 0.6 (3)
C20—C15—C16—C17 2.8 (3) C30—C29—C34—O9 177.4 (2)
N2—C15—C16—C17 178.7 (2) C29—N3—C35—C37 −179.2 (2)
C15—C16—C17—C18 0.1 (3) C36—C35—C37—C38 −1.3 (3)
C16—C17—C18—C19 −2.4 (4) O10—C38—C39—C40 −176.6 (2)
C17—C18—C19—C20 1.9 (4) C37—C38—C39—C40 −2.3 (4)
C18—C19—C20—C15 −178.1 (2) C35—C37—C38—O10 −179.6 (2)
C16—C15—C20—C19 175.9 (2) C30—C29—C34—O9 177.1 (2)
C15—C16—C17—C18 0.1 (3) C30—C29—C34—C33 −178.2 (2)
N2—C15—C16—C17 −0.2 (3) C35—C37—C38—O10 −1.3 (3)
C16—C17—C18—C19 −178.7 (2) C40—O12—C41—O11 −179.2 (2)
C17—C18—C19—C20 −3.2 (3) C30—C29—C34—O9 179.9 (2)
C18—C19—C20—O5 179.9 (2) C30—C29—C34—O9 179.9 (2)
C18—C19—C20—C15 179.3 (2) C40—O12—C41—O11 −179.9 (2)
C16—C15—C20—O5 0.3 (3) C35—C37—C38—O10 0.4 (3)
C15—C16—C17—C18 −2.3 (4) O10—C38—C39—C40 −177.1 (2)
N2—C15—C16—C17 −179.3 (2) C30—C29—C34—O9 177.30 (19)
C15—C16—C17—C18 −177.3 (2) C30—C29—C34—O9 177.30 (19)
C16—C15—C20—C19 5.3 (4) C35—C37—C38—O10 0.4 (3)
C15—C16—C17—C18 −3.1 (4) C30—C29—C34—O9 177.30 (19)
N2—C15—C20—C19 −0.2 (3) C30—C29—C34—C33 −178.2 (2)
C15—N2—C21—C23 5.3 (4) C35—C37—C38—O10 0.4 (3)
C15—N2—C21—C22 −177.5 (2) C40—O12—C41—O11 −179.9 (2)
N2—C21—C23—C27 −0.2 (3) C35—C37—C38—O10 0.4 (3)
C22—C21—C23—C27 −0.2 (3) C35—C37—C38—O10 0.4 (3)
N2—C21—C23—C24 −0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1B···O7i	0.87	1.79	2.662 (2)	177
N1—H1A···O2	0.91	1.72	2.538 (3)	148
C8—H8C···O8ii	0.98	2.48	3.441 (3)	167
C11—H11···O6	0.95	2.57	3.253 (3)	129
O5—H5B···O11iii	0.87	1.83	2.689 (2)	170
N2—H2A···O6	0.91	1.71	2.539 (3)	151
O9—H9B···O3iv	0.87	1.82	2.691 (2)	179
N3—H3A···O10	0.91	1.71	2.532 (3)	148
C33—H33···O3v	0.95	2.53	3.225 (3)	130
C36—H36B···O12vi	0.98	2.56	3.531 (3)	173

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) −x+1, −y, −z+1.