RESEARCH ARTICLE

In Vitro Antagonistic Activity of Diverse Bacillus Species Against Fusarium culmorum and F. solani Pathogens

M. Harba1,*, M. Jawhar1 and M.I.E. Arabi1

1Department of Molecular Biology and Biotechnology, Atomic Energy Commission Syria, Damascus, Syria

Abstract:
Background: Fusarium culmorum and Fusarium solani are economically important fungal pathogens of many plant species causing significant yield losses worldwide. Frequent uses of fungicides are hazardous to humans and the environment. Therefore, in vitro antagonistic activity of diverse Bacillus species isolates with biological potential activity to control these both pathogens should be investigated.

Objective: The objectives were to isolate and identify the Bacillus spp., which are potential controls of F. culmorum and F. solani, and to characterize molecularly, at the species level, those isolates that have potential as biocontroller of the pathogens.

Methods: The in vitro antagonistic potential of 40 Bacillus isolates against F. culmorum and F. solani was evaluated on the basis of fungal growth inhibition on nutrient broth culture. The colony morphology and the 16S rRNA gene sequencing of Bacillus spp. were used to identify the isolates.

Results: Bacillus sp. isolates were identified as B. atrophaeus, B. subtilis, Paenibacillus polymxa, B. amyloliquefaciens, B. simplex and B. tequilensis. They had significant (P<0.05) antagonistic activities against F. culmorum and F. solani isolates as compared to the untreated control. The antagonistic effects varied depending on the Fusarium sp. The bacterial B. subtilis isolates SY116C and SY SY118C provided the most noteworthy result as both strongly inhibited mycelial growth of F. solani by 97.2%, while the B. tequilensis isolate SY145D was the most effective in the formation of inhibition zones against F. culmorum by 75%.

Conclusion: It is apparent that Bacillus sp. isolates play an important role in the inhibition of growth of F. culmorum and F. solani, and that the B. subtilis isolates SY116C and SY118C had the highest biological potential activity against these fungi. These antagonistic effects may be important contributors as a biocontrol approach that could be employed as a part of integrated soil pathogen management system.

Keywords: Antagonistic effect, Bacillus species, Fusarium species, In vitro, Fungal pathogens , Biocontrol approach.

1. INTRODUCTION

Fusarium culmorum and Fusarium solani are important species that cause significant yield losses in many plant species [1, 2]. Fusarium culmorum is a soil-borne fungus distributed in cooler temperate regions, and the causal agent of many important diseases in cereals [3, 4]. F. solani is known to infect many plant species, causing plant decline, wilting, and large necrotic spots on tap roots [5, 6]. Fungicides are commonly used to control these diseases, but frequent uses of these chemicals are hazardous to humans and the environment. Therefore, the management of the soil-borne pathogens has become one of the major concerns in agriculture and focused on searching and selecting antagonist microorganisms on diverse soil pathogens [7, 8]. However, difficulties in controlling Fusarium sp. have stimulated renewed interest in the application of biological control agents, which has provided an effective and environmentally friendly means to control plant diseases. Among the most widely used microbes for biocontrol agents are members of the genus...
Morphology

2.1. Isolates of Bacillus sp.

The soil samples were collected from different regions distributed widely from south to the north-west between 33.40°N and 37.17°N and 35.40°E and 42.30°E in Syria. They were taken from 2-3 cm depth of field and were carried to the laboratory in sterile polythene bags. They were shaken in 9 ml sterile water for 3 min at 160 rpm. Serial dilution was made to 10⁻³ to 10⁻⁷ [16] and then 0.2 ml of each dilution was spread onto Nutrient Agar (NA) medium and incubated overnight, the colonies of prospective Bacillus sp. were identified according to Wulff et al. [17], and 40 isolates were selected for this study (Table 1). Six Bacillus species, namely, B. atrophaeus, B. subtilis, P. polymyxa, B. amyloliquefaciens, B. simplex and B. tequilensis, were selected for the further in vitro study. A pure culture of each Bacillus sp. isolate was first grown on NA and incubated for 24 h at 30°C.

2.2. Fungal Isolates

Fusarium culmorum and F. solani were isolated from infected wheat plants growing in different locations of Syria. The infected wheat stems were cut into small pieces of 1-1.5 cm, surfaces were sterilized with 5% sodium hypochlorite for 5 min, washed in sterile distilled water twice and cultured on PDA (PDA, DIFCO, Detroit, MI. USA) medium amended with 13 mg/l kanamycin sulphate added after autoclaving and incubated for 10 days, at 23 ±1°C in the dark to allow mycelial growth and sporulation. Species identification was based on the morphological characteristics of single spored isolates as described by Nelson et al. [18, 19]. According to a study [20], the two virulent monosporic isolates of F. culmorum and F. solani were selected for this study. The cultures were maintained on silica gel at 4°C until needed.

Table 1. Bacillus species used in the study.

Bacillus species	Number of isolates	Morphology
B. atrophaeus	3	Brown-black, opaque, smooth,
		circular
B. amyloliquefaciens	10	Creamy white with irregular
		margins
P. polymyxa	2	Milky white, thin often with
		amoeboid spreading
B. subtilis	20	Fuzzy white, opaque, rough,
		with jagged edges
B. simplex	1	Cream, gloss, with irregular
		margins slightly raised
B. tequilensis	4	Yellowish, opaque, smooth,
		circular

2.3. In vitro Activity of Bacillus spp. Isolates against Fusarium spp.

Bacterial colonies of different size, color and morphology were streaked individually a few times until single colonies of a single type were observed on the NA plates. Then 5 mm diameter disc of each F. culmorum and F. solani was cut from an actively growing culture by a sterile cork borer and placed onto the center of above NA plates. Where mycelia disc on Nutrient Agar (NA) medium without bacteria was maintained as control. Every elementary treatment was repeated five times. The mean diameter of pathogen colonies was measured after 4 days of incubation at 25°C and any morphological alteration of colonies, in comparison to the untreated control, was also noted. Damage caused by the bacterium to the fungal mycelium, removed from the confrontation zone of both microorganisms (pathogen and antagonist), was observed under a light microscope, in comparison to untreated controls. The percentage of inhibition of fungal growth was calculated by the following formula proposed by Rabindran and Vidyasekaran [21].

\[I = \frac{(C-T)}{C} \times 100 \]

Where; I = Percent inhibition, C = Radial growth of the pathogen in control, and T = Radial growth of the pathogen in treatment.

2.4. 16S rRNA Gene Sequencing

Selected bacterial 16S rRNA was amplified in full length by PCR using two pairs of primers, BacF (5'-GTGCGCTAATACATGCAAGTC-3') and BacR (5'-GCTTTACGCCCAATATTCCC-3') [12]. The PCR reaction mix (50 μl) contained 2 μl (50-100 ng) of extracted genomic DNA, 1x reaction buffer (TrisKCI-MgCl2), 2 mM MgCl2, 0.2 mM dNTP, 1 μM of each primer, and Taq polymerase (5U/μl, Fermentas). PCR amplification condition was achieved using
the following parameters: An initial denaturation step at 95°C for 5min followed by a second denaturation step at 95°C for 1min, annealing for 1min at 54°C, an extension at 72°C for 90s, and a final extension step of 72°C for 10min. A total of 30 serial cycles of amplification reaction were performed. PCR products were separated on a 1.5% agarose gel and visualized using UV light (302 nm) after staining with ethidium bromide. Prior to sequencing, PCR products were purified with QIAgen gel extraction kit (28704) according to the manufacturer’s recommendations. Sequencing was carried out on a Genetic Analyzer (ABI 310, Perkin-elmer, Applied Biosystems, USA). The 16S rRNA sequences were compared with the known sequences using the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov).

2.5. Statistical Analyses

All experiments were performed in triplicate with ten Petri dishes per replicate, for each bacterium-fungus *in vitro* evaluation, using a completely randomized design. An F-test was used to determine if the two runs of each experiment were homogeneous and if the data could be pooled. The homogeneity of variance test indicated that the data from both runs of each experiment could be pooled, and thus all further analyses were conducted on pooled data. Data were analyzed using analysis of variance (ANOVA) and means were separated by Tukey’s test ($P \leq 0.05$).

3. RESULTS AND DISCUSSION

In this present work, the antagonistic potential of the *Bacillus* sp. isolates was concluded and validated by restriction of the *F. culmorum* and *F. solani* pathogens growth and showed zone of inhibition towards the antagonist as shown in photo-plate of NA culture plate assay compared with the control (Fig. 1).

On the other hand, PCR amplification with specific primers Bac yielded single DNA fragments of ~ 545 bp, present in all *Bacillus* sp. isolates (Fig. 2). On the basis of 16S rRNA gene sequencing, *Bacillus* sp. isolates are identified as *B. atropheus, B. subtilis, P. polymyx*, *B. amyloliquefaciens, B. simplex* and *B. tequilensis* as their 16S rRNA gene sequences displayed similarities ≤ 98% to their closely related type strains (Table 2). Species belonging to the *Paenibacillus* genus were previously re-classified under the genus *Bacillus*, based on morphological characteristics. However, the PCR probe tests suggested that a group of eleven species should be considered a new genus, *Paenibacillus*, of which *P. polymyx* is the type strain [22]. The nucleotide sequences were deposited in GenBank under accession numbers MT159352 to MT159391 (Table 3).

![Fig. (1). Bacillus subtilis SY15B showing the zone of inhibition in the NA culture plate assay.](image1)

![Fig. (2). Agarose gel electrophoresis of 16S rRNA of some Bacillus sp. isolates used in the study. M represents the 100-bp DNA marker (HinfI; MBI Fermentas, York, UK).](image2)
Table 2. 16S rRNA gene sequence similarity between *Bacillus* sp. used in this study and the microorganisms strains at NCBI.

Bacillus species	Microorganisms (NCBI)	16S rRNA gene sequence similarity (%)
B. atrophaeus	B. atrophaeus, ATCC 49337	96%
B. simplex	B. simplex JP44SK12 (JX144702)	97%
B. subtilis	B. subtilis subsp. Spizizenit JP44SK23 (JX144713)	99%
P. polymxa	B. paenibacillus macquariensis subsp. Defensor (AB360546)	98%
B. amyloliquefaciens	B. amyloliquefaciens (AF478077)	99%
B. tequilensis	R. Bacillus tequilensis (KT760402)	98%

Table 3. *Bacillus* isolates showing antagonistic activity against *Fusarium culmorum*.

No.	Isolates	Zone of Inhibition (%)*	Antifungal activity	GeneBank accession number
1	SY15B	45h*	+	MT159352
2	SY199A	46h	+	MT159353
3	SY63E	56.7e	+	MT159354
4	SY35A	55ef	+	MT159355
5	SY41B	53f	+	MT159356
6	SY44A	50g	+	MT159357
7	SY60A	47gh	+	MT159358
8	SY73B	38i	+	MT159359
9	SY113C	60d	++	MT159360
10	SY116C	58.3d	+	MT159361
11	SY118C	53.3f	+	MT159362
12	SY124B	45h	+	MT159363
13	SY130D	46h	+	MT159364
14	SY132E	60d	++	MT159365
15	SY133	63c	++	MT159366
16	SY132C	63.3c	++	MT159367
17	SY134D	61d	++	MT159368
18	SY135D	57.7e	+	MT159369
19	SY139D	36.7i	+	MT159370
20	SY151C	48.3g	+	MT159371
21	SY160C	66.7cd	++	MT159372
22	SY168C	66.7cd	++	MT159373
23	SY190E	43.3ha	+	MT159374
24	SY53C	60d	++	MT159375
25	SY55B	70b	++	MT159376
26	SY82C	46h	+	MT159377
27	SY96C	66.7cd	++	MT159378
28	SY96E	61.7d	++	MT159379
29	SY123A	53.3f	+	MT159380
30	SY128B	63c	++	MT159381
31	SY134C	56.7e	+	MT159382
32	SY159D	61.7c	++	MT159383
33	SY177C	53.3f	+	MT159384
34	SY190D	51.7fg	+	MT159385
35	SY200D	57.7e	+	MT159386
36	SY69A	46h	+	MT159387
The data showed that *Bacillus* sp. isolates had a significant (P<0.05) antagonistic activity against both *F. culmorum* and *F. solani* where the percentage of radial growth inhibition of the fungi colonies significantly decreased on NA medium as compared to the untreated controls (Tables 3 and 4). In addition, the mean colony diameter of *Fusarium* sp., noted after 4 days of incubation at 25°C, depends upon pathogens tested and treatments realized, which is in agreement with a previous study [23]. However, the antagonistic effects of the bacterial isolates varied depending on the *Fusarium* spp. *B. subtilis* isolates SY116C and SY SY118C inhibited the growth of *F. solani* by 97.2% while the *B. tequilensis* isolate SY145D was the most effective in the formation of inhibition zones against of *F. culmorum* by 75% (Tables 3 and 4). *Bacillus subtilis* isolates showed similar antagonism against *Rhizoctonia solani*, *Helminthosporium* spp., *Alternaria* spp. and *Fusarium oxysporum* [24], and *B. tequilensis* isolate SY145D showed similar antagonism with *B. tequilensis* GYLH001 that had a potential antagonism towards *Magnaporthe oryzae* of rice [25]

Table 4. *Bacillus* isolates showing antagonistic activity against *Fusarium solani*.

No.	Isolates	Zone of Inhibition (%)*	Antifungal activity
1	SY15B	76.8d*	+++
2	SY199A	73.9de	++
3	SY63E	57.8gh	+
4	SY35A	75.4de	+++
5	SY41B	87c	+++
6	SY44A	76.8d	+++
7	SY60A	100a	+++
8	SY73B	65.2fg	+
9	SY113C	87.1c	+++
10	SY116C	97.2a	+++
11	SY118C	97.2a	+++
12	SY124B	100a	+++
13	SY130D	81.2cd	+++
14	SY132E	78d	+++
15	SY133	76.9d	+++
16	SY132C	76.4d	+++
17	SY134D	68f	+
18	SY135D	77d	+
19	SY139D	76.2d	+++
20	SY151C	50h	+
21	SY160C	71.2e	++
22	SY168C	88.4e	+++
23	SY190E	71.5e	++
24	SY53C	27i	+
25	SY55B	33.6i	+
26	SY82C	87c	+++
27	SY96C	88.4e	+++
28	SY96E	94.5b	+++
It is well known that *B. subtilis* strains produce a broad spectrum of antimicrobial compounds, including predominantly peptides as well as a couple of non-peptidic compounds such as polypeptides, an aminosugar, and a phospholipid [26], and their highly antifungal effects (97.2%) on both *F. culmorum* and *F. solani* in this study, which might be attributed to one or more antifungal compounds produced by this biocontrol agent. However, the observed mycelial growth inhibition and lysis formation among the colonies of the both *Fusarium* pathogens might be due to the effect of the bacterial diffusible inhibitory antibiosis substances, which could have suppressed and restricted the growth of the pathogen, which can be confirmed by the fact that most *Bacillus* spp. have an ability to produce several antibiotics such as bacillomycin, fengycin, mycosubtilin and zwittermicin, which effectively suppress the growth of pathogens under *in vitro* and/or *in situ* conditions [27 - 29]. This might explain the formation of inhibition zones between the bacterial and the *F. culmorum* and *F. solani* isolates shown in this study. Our results are similar to those reported in a previous study [29, 30], which showed high capacity of some strains of *Bacillus sp.* of the same species to inhibit the growth of several phytopathogenic fungi; this effect was attributed to the production and secretion of antifungal compounds and antibiotics belonging to the family of iturins and subtilins, that act on the fungi’s cell wall [30]. Hence the most likely explanation for the growth reduction of *F. culmorum* and *F. solani* by *Bacillus sp.* is that antifungal activity is increased by co-culturing of different bacterial species.

CONCLUSION

Collectively, this work illustrates that two *B. subtilis* isolates (SY116C and SY SY118C) provided the most noteworthy result as both strongly inhibited mycelial growth of *F. solani* by 97.2%, and that one *B. tequilensis* isolate (SY145D) had a potent antagonistic activity of *F. culmorum* by 75%. These *B. subtilis* and *B. tequilensis* isolates, as potential biocontrol agents, may provide an effective strategy to combat plant pathogens. Field studies should be undertaken to confirm the effectiveness of the isolates under natural field conditions as a component of integrated disease management.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No animals/humans were used for studies that are the basis of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

FUNDING

This work was supported by the Atomic Energy Commission of Syria.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

The authors wish to thank the Director General of AECS and the Head of the Molecular Biology and Biotechnology Department for their continuous support throughout this work. Thanks are also extended to Dr. H. Ammouneh for his assistance in achieving the experiments. We also thank Dr. A. Al-Daoude for critical reading of the manuscript.

REFERENCES

[1] Spanic V, Marcek T, Abicic I, Sarkanj B. Effects of Fusarium head blight on wheat grain and malt infected by *Fusarium culmorum*.
In vitro Antagonistic Activity of Diverse

The Open Agriculture Journal, 2020, Volume 14

Turk J Agric For 2011; 35: 421-31.

Wulff EG, Mguni CM, Mansfield-Giese K, Fels J, Lübbeck M, Hockenheim J. Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol 2002; 51: 574-82.

[17] Nelson PE, Toussoun TA, Marasas WFO. Fusarium Species: An Illustrated Manual for Identification. University Park: The Pennsylvania State Univ. Press 1983; 5: 53-61.83.

[18] Kiprop EK, Baudoin JP, Mwangiome AW, Kimani PM, Mergeai G, Maquet A. Characterization of Kenyan isolates of Fusarium udum from Pigeonpea [Cajanus cajan (L.) Millsp.] by cultural characteristics, aggressiveness and AFLP analysis. J Phytopathol 2002; 150: 517-27.

[19] Alazem M. Characterization of Syrian Fusarium species by cultural characteristics and aggressiveness. Thesis, University of Damascus, Faculty of Agriculture. 2007; 72.

[20] Rabinrud R, Vidyasekaran P. Development of a formulation of Pseudomonas fluorescens P1ALB2 for management of rice sheath blight. Crop Prot 1996; 15: 715-21.

[21] Ash C, Priest FG, Collins MD. Molecular identification of rDNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenbacillus. Antonie van Leeuwenhoek 1993-1994; 64(3-4): 253-60.

[22] Balouiri M, Sadiki M, Imsouss SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016; 6(2): 71-9.

[23] Li H, Guan Y, Dong Y, et al. Isolation and evaluation of endophytic Bacillus tequilensis GY119811 with potential application for biological control of Magnaporthe oryzae. PLoS One 2018; 13(10)e203565.

[24] Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005; 56(4): 845-57.

[25] Balgobin J, Bajaj P, de Barbadillo H. A review of the antimicrobial activity of Bacillus species. Front Microbiol 2019; 10: 533.

[26] Basha S, Umaharan K, Antagonism of Bacillus species (strain 121) towards Curvularia lunata. Can Sci Rev 2002; 82: 1457-63.

[27] Shi J, Tian H, J M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 2017; 31(3): 446-59.

[28] Kühl J, Kolnarr R, Ravensburg JW. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front Plant Sci 2019; 10: 845.

[29] Kudo K, Omura T, Hara Y, Sadai Y. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 2000; 46(1): 1-8.

[30] Kurokawa K, Nakata M, Nakamura N, et al. High-throughput amplicon sequencing of the full-length 16S rDNA gene with single-nucleotide resolution. Nucleic Acids Res 2019; 47(16)e103.

[31] Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005; 56(4): 845-57.

[32] Balgobin J, Bajaj P, de Barbadillo H. A review of the antimicrobial activity of Bacillus species. Front Microbiol 2019; 10: 533.

[33] Basha S, Umaharan K, Antagonism of Bacillus species (strain 121) towards Curvularia lunata. Can Sci Rev 2002; 82: 1457-63.

[34] Kudo K, Omura T, Hara Y, Sadai Y. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 2000; 46(1): 1-8.

[35] Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005; 56(4): 845-57.

[36] Balgobin J, Bajaj P, de Barbadillo H. A review of the antimicrobial activity of Bacillus species. Front Microbiol 2019; 10: 533.

[37] Kudo K, Omura T, Hara Y, Sadai Y. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 2000; 46(1): 1-8.

[38] Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005; 56(4): 845-57.

[39] Balgobin J, Bajaj P, de Barbadillo H. A review of the antimicrobial activity of Bacillus species. Front Microbiol 2019; 10: 533.

[40] Kudo K, Omura T, Hara Y, Sadai Y. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 2000; 46(1): 1-8.

[41] Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005; 56(4): 845-57.

[42] Balgobin J, Bajaj P, de Barbadillo H. A review of the antimicrobial activity of Bacillus species. Front Microbiol 2019; 10: 533.