Special Section – New Models in Drug Metabolism and Transport—Minireview

Emerging Kidney Models to Investigate Metabolism, Transport, and Toxicity of Drugs and Xenobiotics

Piyush Bajaj, Swapan K. Chowdhury, Robert Yucha, Edward J. Kelly, and Guangqing Xiao

Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)

Received June 7, 2018; accepted August 1, 2018

ABSTRACT

The kidney is a major clearance organ of the body and is responsible for the elimination of many xenobiotics and prescription drugs. With its multitude of uptake and efflux transporters and metabolizing enzymes, the proximal tubule cell (PTC) in the nephron plays a key role in the disposition of xenobiotics and is also a primary site for toxicity. In this minireview, we first provide an overview of the major transporters and metabolizing enzymes in the PTCs responsible for biotransformation and disposition of drugs. Next, we discuss different cell sources that have been used to model PTCs in vitro, their pros and cons, and their characterization. As current technology is inadequate to evaluate reliably drug disposition and toxicity in the kidney, we then discuss recent advancements in kidney microphysiological systems (MPS) and the need to develop robust in vitro platforms that could be routinely used by pharmaceutical companies to screen compounds. Finally, we discuss the new and exciting field of stem cell–derived kidney models as potential cell sources for future kidney MPS. Given the push from both regulatory agencies and pharmaceutical companies to use more predictive “human-like” in vitro systems in the early stages of drug development to reduce attrition, these emerging models have the potential to be a game changer and may revolutionize how renal disposition and kidney toxicity in drug discovery are evaluated in the future.

Introduction

The kidneys perform essential functions in humans by maintaining the composition of blood and its pH; preventing the buildup of waste products; and keeping levels of electrolytes, such as sodium, potassium, and phosphate, stable. In normal adults, the two kidneys daily filter about 150–180 liters of blood to produce 1 to 2 liters of urine, which is comprised of wastes and extra fluid. The kidneys are also responsible for the elimination of numerous drugs, endogenous metabolites important to maintain physiologic homeostasis, exogenous and endogenous toxins, nutrients, and so forth. The elimination of exogenous and endogenous compounds through the kidney occurs as a net result of glomerular filtration, tubular secretion, kidney metabolism, and reabsorption. Evaluation of the mechanisms involved in the elimination of drugs and other exogenous and endogenous molecules can provide valuable understanding of their clearance, the potential for drug-drug interactions (DDIs), the potential for development of kidney and other organ toxicity, and thus on the effect of the elimination of an investigational drug on its pharmacokinetics (PK) in patients with compromised kidney functions.

In the past several decades, considerable progress has been made in our understanding of the mechanisms by which drugs and xenobiotics are eliminated.
eliminated by kidneys. The discovery and identification of several important tubular apical and basolateral transporters and their role in the elimination and reabsorption of xenobiotics and endogenous substrates have spearheaded this renaissance (Morrissey et al., 2013; Nigam et al., 2015; Miners et al., 2017). Furthermore, metabolizing enzymes in the kidneys also play an important role in the clearance of xenobiotics and endogenous compounds (Lash, 1994; Lock and Reed, 1998; Lohr et al., 1998; Knights et al., 2013). Therefore, it is important to evaluate early in development the following: 1) the mechanism of clearance of new chemical entities (NCEs), 2) DDI as a victim if the metabolism and transport are modulated by coadministered drugs, 3) DDI as a perpetrator, and 4) potentials for toxicity. In a recent DDI guidance, the Food and Drug Administration has recommended performing clinical DDI studies to understand whether the NCE could be a victim of kidney transporter inhibition if it undergoes active renal secretion or there are concerns about renal toxicity. The guidance further recommends DDI studies as a perpetrator if in vitro studies demonstrate that the NCE has the potential for inhibition of cytochrome P450 (P450) enzymes and transporters, including kidney transporters, regardless of the investigational drug’s route of elimination [Food and Drug Administration (FDA) 2017a,b].

Besides the liver, the kidney is one of the most frequent targets for drug-induced toxicity. Of the top 200 prescribed drugs, 32% undergo renal elimination (Morrissey et al., 2013). About 20%–30% of intensive care unit patients and ~5% of hospitalized patients develop acute kidney toxicity, and nearly 20% of these toxicities are attributed to nephotoxic drugs (Li et al., 2014), possibly because the kidney is an organ that is exposed to a lot of drugs, metabolites, and endogenous compounds by being the recipient of the 25% of cardiac output and an organ of elimination of many of these compounds (Tiong et al., 2014). Unfortunately, nephrotoxicity is identified late in the development programs, with only 2% of drug attritions happening in preclinical studies but 19% during phase 3 studies (Redfern et al., 2010). This inability to successfully remove nephrotoxic compounds from development early in the program could be attributable to a lack of appropriate preclinical models to investigate kidney toxicity (Li et al., 2014; Tiong et al., 2014).

Accumulating evidence indicates an important role of the kidney in the metabolism, transport, and clearance of xenobiotics, proteins, hormones, and endogenous compounds; consequently, there has been accelerated growth in the past decade in the development of technologies to investigate the disposition of NCEs targeted to treat human diseases and potential for toxicities. This article highlights the evolution of novel technologies developed to investigate the mechanism of disposition of drugs by the kidneys and the potential for toxicities, together with an overview of the role of kidney metabolism and transport and their involvement in kidney toxicity.

Overview of Metabolism and Transport of Drugs in Kidney and their Role in Kidney Toxicity

The metabolism of drugs in the kidney has been described extensively (Lash, 1994; Lock and Reed, 1998; Lohr et al., 1998; Knights et al., 2013; Gundert-Remy et al., 2014; Miners et al., 2017). Numerous enzymes play a role in the metabolism and clearance of endogenous and exogenous compounds, including P450 enzymes, non-P450 enzymes, such as uridine-diphosphate-glucuronosyltransferases (UGTs), esterases, glutathione-s-transferases, sulfotransferases, and some other enzymes highlighted in Table 1. Therefore, kidneys can execute a diverse array of metabolic reactions, such as oxidation, reduction, hydrolysis, and conjugation. Many of these reactions facilitate the elimination of drugs. Although these reactions are considered a detoxification mechanism, certain metabolism reactions lead to the formation of reactive species, resulting in kidney toxicities. For example, glutathione S-conjugates can undergo further metabolism to cysteine S-conjugates that can be eliminated as nontoxic mercapturic acids or catalyzed by β-lyase to unstable thiois. These thiois are highly reactive and can covalently bind to cellular macromolecules, causing cytotoxicity and carcinogenicity. In addition to β-lyase, cysteine conjugate S-oxidase and other enzymes can bioactivate chemicals to produce nephrotoxic species (Lash, 1994).

Nephrotoxicity owing to biotransformation in the kidney has been well documented. Chloroanilines are commonly used as chemical intermediates to manufacture dyes, agricultural chemicals, drugs, and industrial compounds. Among trichloroanilines (TCAs), 3,4,5-trichloroaniline is the most potent nephrotoxicant. Using isolated renal cortical cells from rats, Racine et al. (2005). In vitro studies using cultured human proximal tubular cells (PTCs) suggested that the acyclovir-induced toxicity was associated with the formation of acyclovir aldehyde in the kidney by alcohol dehydrogenase (Gunders et al., 2011). Cisplatin causes dose-limiting nephrotoxicity in rodents and humans (Wainford et al., 2008). Inhibition of γ glutamyltransferase (GGT) prevented cisplatin induced nephrotoxicity in vivo in rats and C57BL6 mice, indicating that this enzyme plays a critical role in cisplatin nephrotoxicity. In vitro studies using isolated rat and human renal PTCs demonstrated that amino peptide-N, renal dipetidase, and C-S lyase were not involved in cisplatin-induced toxicity.

Table 1

Phase 1 Enzymes	Conjugating Enzymes	Hydrolytic and Other Metabolizing Enzymes
Cytochrome P450*	UDP-Glucuronosyltransferases*	Epoxide hydrolase
CYP2B6, CYP3A5, CYP4A11, CYP4F2, CYP4F8, CYP4F11, CYP4F12	UGT1A5, UGT1A6, UGT1A7, UGT1A9, UGT2B7	Catalase
Microsomal flavin adenine dinucleotide-containing monoxygenase	N-acetyl transferase	NADPH-quinone oxidoreductase
Alcohol and aldehyde dehydrogenase	N-methyl transferase	Superoxide dismutase
Prostaglandin synthetase	Glutathione S-transferase	Glutathione disulfide reductase
Monoamine oxidase		Esterase, carboxyesterase
Steroid 21 hydroxylase	Sulfotransferases	Cysteine conjugate β-lyase
Thiol S-methyl transferase		Glutathione peroxidase
		Glutamyl transferase, cysteine glycinase

*Major P450 enzymes identified in the kidney.
*UGT enzymes expressed in human kidney.
Renal transporters also play an important role in the disposition of drugs and the development of kidney toxicity; the latter by accumulation of compounds and/or their metabolites. These transporters are part of two superfamilies of carrier proteins, ATP-binding cassette (ABC) and solute carrier (SLC) (Morrissey et al., 2013; Nigam et al., 2015; Miners et al., 2017). The SLCs generally transport substances either down their concentration gradient or against their concentration gradient, coupled with movement of a second substance down its concentration gradient.

In the kidney, the most multispecific SLC transporters appear to be organic anion transporters (OATs): OAT1 (SLC22A6) and OAT3 (SLC22A8) and organic cation transporter (OCT2, SLC22A2). A recent publication suggests that another less commonly cited transporter, OAT2, expressed in both the liver and kidney, is involved in the elimination of several drugs, including creatinine and cGMP in the kidney (Shen et al., 2017). Accumulating evidence further indicates the importance of several other SLC families of transporters, such as multidrug and toxin extrusion proteins (MATEs, SLC37), peptide transporters (PEPT, SLC15), and organic anion exchangers (URAT1, SLC47A1). ABC transporters use energy generated by the hydrolysis of ATP to transport molecules across cell membranes. The most commonly linked ABC transporters of significance for pharmacological transport are P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCC2), and multidrug resistance proteins (MRP, ABCC). Table 2 shows the nomenclature, common names, and localization of key transporters in the PTCs. OAT1, OAT3, and OCT2 on the basolateral membrane and P-gp, MATEs, MRP2, and MRP4 on the apical membrane are the major PTC transporters known to interact with many renally secreted drugs (Morrissey et al., 2013). Renal transporter-mediated elimination of drugs or metabolites has been extensively investigated, and the results indicate that, in general, drugs with molecular weight less than 400 Da are substrates of several renal transporters (Varma et al., 2017).

Whereas renal transporters generally enhance renal elimination, certain transporters, such as OAT4, PEPT2, and sodium-glucose cotransporter-2 (SGLT2), located on the apical side of the PTCs, facilitate reabsorption of their substrates (Burckhardt, 2012; DeFronzo et al., 2017; Tchernitchko et al., 2017). As renal elimination of endogenous and xenobiotic compounds is determined by its net vectorial transport, the PK parameters will be affected when an NCE and/or its metabolites inhibit any of the transporters responsible for the elimination of these molecules. The subsequent imbalance can result in adverse effects on the kidney or any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regulating drug clearance, regulatory authorities that govern the approval of pharmaceuticals for humans require evaluation of any other organ. Because of the significance of the several kidney transporters in regula...
cytoplasmic tail (209 amino acids). It is predominantly expressed in the apical membranes of the PTCs. The cytoplasmic domain of megalin regulates receptor trafficking and endocytosis. Cubulin is a 460-kDa glycosylated extracellular protein that interacts with other membrane proteins for membrane localization and endocytosis. In PTCs, cubulin interacts with megalin, forming a multireceptor complex with megalin, driving internalization of the complex and bound ligand. This has been supported by in vitro uptake studies of the cubulin ligands transferrin and apolipoprotein A-I showing that the uptake was inhibited by anti-megalin antibodies and megalin antisense nucleotides (Kozyraki et al., 2001; Nielsen et al., 2016). It has been further shown that cubulin also depends on a single transmembrane protein, aminonless, for membrane localization and endocytosis. Nielsen et al. (2016) extensively reviewed the role of megalin and cubulin in the reabsorption of proteins in the kidney and provided an extensive list of ligands of these receptors. Once the proteins are reabsorbed, they are subsequently degraded in lysosomes. The free amino acids are transported across the basolateral membrane by amino acid transporters.

Since reabsorption of the filtered proteins in the proximal tubule is an important physiologic and pathophysiologic function by regulating biologically important substances like vitamins, hormones, enzymes, and others, the importance of the proper functioning of megalin and cubulin cannot be overstated. If not duly reabsorbed, the excess proteins in the tubular fluid, irrespective of their discrete biologic activities, are sufficient to initiate a cascade of events leading to tubular injury, interstitial inflammation, fibrosis, and eventual renal scarring (Kozyraki et al., 2001; Christensen and Gburek, 2004).

Whereas all kidney transporters have their own importance and can play a vital role in the disposition of drugs, an ideal PTC model should demonstrate at least functionality of OAT1, OAT3, and OCT2 on the basolateral side and MATEs, P-gp, BCRP, MRPs, and MRP4 on the apical side to be used in assessing the nephrotoxic liabilities of NCEs. In addition, especially if biologics or large molecules are being assessed, it should demonstrate megalin- and cubulin-mediated uptake potential of the large molecule. GGT enzyme, one of PTCs’ antioxidant defense mechanisms, should also be present at physiological levels in the model. Finally, many of the metabolic enzymes listed in Table 1 should also be a part of an ideal in vitro PTC model.

Common Sources of Kidney Cells

In the context of drug development, regulatory agencies have specified prominent transport proteins of which assessment of a drug’s inhibitory and substrate potentials is required (EMA, 2012; FDA, 2017a,b). Often, in vitro transporter-involved DDI studies are performed using single-transporter transfected cell lines, such as human embryonic kidney cell line 293 (HEK293) or Madin-Darby canine kidney (MDCK). Singly transfected cells allow for specific interactions to be elucidated, but correlation to in vivo interactions is not always straightforward. Primary renal cell cultures provide a more realistic model but are limited by donor availability and variability. Recently, the abundance of renal transporters, with the exceptions of BCRP and MATE-2K, within the human kidney cortex has been quantified (Prasad et al., 2016). Although large donor-to-donor and site-specific variabilities were seen, this information helps fill a large gap in the understanding of renal transporters and may be used to characterize in vitro cell lines and inform more accurate in vitro to in vivo extrapolation (IVIVE) models. The use of kidney cell lines to evaluate transporter interactions in the context of nephrotoxicity have been previously reviewed (Fisel et al., 2014; George et al., 2017). This section highlights common sources of renal models with respect to drug transporters, nephrotoxicity, and drug disposition.
transfected with a single transporter for use in in vitro testing. These cell lines have been transfected with all relevant drug transporters to determine uptake and inhibition parameters of NCEs. Transfected cell lines are easily obtained, simple to maintain, and provide relatively reproducible data. These cell lines could be used to characterize substrate selectivity and species differences explaining renal toxicity (Zou et al., 2018). Hence, transfected cell lines are the most common tools used to evaluate transporter interactions in vitro in the kidney; however, lack of physiology limits their utility in toxicity testing or for predictive screens.

Epithelial Cell Lines from Normal Adult Human Kidney. In 1994, human renal cortex–derived cells were transfected with the human papilloma virus 16 E6/E7 genes to create the immortalized human kidney (HK-2) cell line (Ryan et al., 1994). HK-2 cells have since been used to show that P-gp is suppressed by vancomycin (Im et al., 2017), to elucidate the biotransformation and toxicity of acyclovir (Gunness et al., 2011), to assess in vitro biomarkers of cisplatin nephrotoxicity (Sohn et al., 2013), and to evaluate general nephrotoxicity of compounds (Wu et al., 2009; Li et al., 2017). P-gp (Tramonti et al., 2001) and monocarboxylate transporter (MCT) (Wang et al., 2006) have been fully characterized in HK-2 cells; however, an extensive genetic analysis of HK-2 cells revealed that OAT1, OAT2, OAT3, OCT2, MRP2, and BCRP were not expressed by HK-2 cells, bringing into question their overall utility in assessing renal transporter function or transporter-related toxicities (Jenkinson et al., 2012). Thus, HK-2 cells may be limited in future nephrotoxicity assessments as they were shown to be inferior to primary RPTECs/PTCs for in vitro nephrotoxic biomarker (Kim-1, neutrophil gelatinase-associated lipocalin, and macrophage colony-stimulating factor) production (Huang et al., 2015). Additionally, we are unaware of any reports regarding expression or function of MATEs in HK-2 cells.

RPTECs. RPTECs or PTCs, whether cryopreserved or freshly isolated, are often thought of as the “gold standard” for in vitro kidney work. Freshly isolated RPTECs express mRNA for all the major renal transporters, predominantly in the proximal tubule. The function of P-gp, BCRP, MRP2, OCT2, and OAT1/3 was also established (Brown et al., 2008). It should be noted that determination of specific transporter effects is challenging. For instance, functional studies confirm contributions of both OAT1- and OAT3-mediated transport of substrates such as PAH and statins (Burckhardt and Burckhardt, 2003; Windass et al., 2010). Commercial entities, such as Solvo Biotechnology, ATCC, and others, offer a wide range of cryopreserved and freshly isolated proximal tubule cells. As large donor-to-donor and site-specific variations of renal transporters were shown in isolated healthy kidneys (Prasad et al., 2016) and large differences in native tissue versus cell lines (Hilgendorf et al., 2007), it can be assumed that large variability in transporter expression and function exists within available RPTECs. This may be further exacerbated by disease states (Motohashi et al., 2002; Habu et al., 2003; Feng et al., 2010). Cryopreserved and freshly isolated RPTECs each come with their own challenges. The availability of primary tissue is limited, and many protocols exist for purifying proximal tubules from other renal cells (Gozalpour and Fenner, 2018). Cryopreservation can assist with availability issues, and cryopreserved RPTECs have been shown to express kidney tubule specific markers (Adler et al., 2016) and are more differentiated than cell lines like HK-2 (David et al., 2004); however, cryopreserved RPTECs lack strong transporter mRNA expression compared with freshly isolated renal tissue (Van der Hauwaert et al., 2014). RPTECs have been used extensively in nephrotoxicity investigations and were reviewed recently (Gozalpour and Fenner, 2018). RPTECs were used to describe biotransformation-related nephrotoxicity of cisplatin (Wainford et al., 2008) and TCA (Racine et al., 2014). In Fig. 1, phase-contrast images of a few different cell types show minor variations in their morphology. Although both fresh and cryopreserved PTCs show greater physiologic relevance to the native kidney compared with cell lines in terms of the transporters, their expression can quickly downregulate in conventional static culture models. Hence, advanced dynamic models are needed.

In general, the limitations associated with these in vitro models to predict kidney toxicity are associated with the cell types because not all necessary transporters, metabolizing enzymes, or biomarkers are expressed at physiologic levels. Therefore, selecting the right endpoints becomes essential for a particular in vitro model. Many of the available PTC cell types discussed herein have also been used for nephrotoxicity prediction in both 2D and 3D systems. Tiong et al. (2014) reviewed the applicability of PTC cell types and culture systems for nephrotoxicity testing. One striking limitation is that few studies include more than 10 compounds. Thus, it becomes extremely difficult to generate any reasonable statistics related to the predictive performance of the assay and for researchers to assess properly the utility of the model. To our knowledge, only two groups have looked at a compound set large enough to generate the different parameters related to the predictive performance of the assay, such as sensitivity, specificity, area under the receiver operating characteristic curve (AUC-ROC), and meaningful positive predictive and negative predictive values. Few different reports have been published that evaluate the nephrotoxic potential of more than 40 compounds (Li et al., 2013, 2014; Kandasamy et al., 2015). The researchers compared the predictive performance of HK-2 cells, LLC-PK1 cells, primary PTCs (HPTCs), and stem cell–derived PTCs (HPTC-like). They showed that the primary PTCs cells, which retain multiple characteristics of the in vivo counterpart, showed the highest accuracy (AUC-ROC: 0.85), whereas HK-2 cells, which have limited transporter expression (Jenkinson et al., 2012), showed the lowest accuracy (AUC-ROC: 0.71). Another report recently compared the nephrotoxic potential of 39 mechanically distinct nephrotoxicants using primary PTCs and showed that heme oxidase 1 combined with cell count yielded the highest predictive performance in their assay (AUC-ROC: 0.92) (Adler et al., 2016); however, tenofovir could not be detected as being nephrotoxic in their model, likely because of the lack of apical-to-basolateral polarity, which was seen when primary PTCs are grown on a flat surface.

Another limitation, particularly of 2D cultures, is the lack of appropriate toxicity biomarkers. Commonly nonspecific cell health markers, such as ATP, apoptosis/necrosis, mitochondrial function, and transepithelial electrical resistance, are used. The 2D cultures of stem cell–derived PTCs (HPTC-like) showed that more specific endpoints, such as inflammatory cytokines (interleukin-6) or chemokines (interleukin-8), derived PTCs (HPTC-like) showed that more specific endpoints, such as mitochondrial function, and for researchers to assess properly the utility of the model. To our knowledge, only two groups have looked at a compound set large enough to generate the different parameters related to the predictive performance of the assay, such as sensitivity, specificity, area under the receiver operating characteristic curve (AUC-ROC), and meaningful positive predictive and negative predictive values. Few different reports have been published that evaluate the nephrotoxic potential of more than 40 compounds (Li et al., 2013, 2014; Kandasamy et al., 2015). The researchers compared the predictive performance of HK-2 cells, LLC-PK1 cells, primary PTCs (HPTCs), and stem cell–derived PTCs (HPTC-like). They showed that the primary PTCs cells, which retain multiple characteristics of the in vivo counterpart, showed the highest accuracy (AUC-ROC: 0.85), whereas HK-2 cells, which have limited transporter expression (Jenkinson et al., 2012), showed the lowest accuracy (AUC-ROC: 0.71). Another report recently compared the nephrotoxic potential of 39 mechanically distinct nephrotoxicants using primary PTCs and showed that heme oxidase 1 combined with cell count yielded the highest predictive performance in their assay (AUC-ROC: 0.92) (Adler et al., 2016); however, tenofovir could not be detected as being nephrotoxic in their model, likely because of the lack of apical-to-basolateral polarity, which was seen when primary PTCs are grown on a flat surface.

Importance of Fluid Shear Stress for KPT Cells

In vivo, there is a constant flow of glomerular filtrate over the PTCs. In addition to providing several different growth factors and hormones to the PTCs, the filtrate subjects the PTCs to shear stress, which is detected by the mechanosensory cilia located on the apical side of the cells. Although the exact mechanism of this mechanotransduction phenomenon is somewhat controversial (Delling et al., 2016), it has been convincingly shown in numerous studies that fluid-induced shear stress leads to enhanced endocytosis in renal cells (Raghavan et al., 2014; Long et al., 2017), cytoskeletal reorganization (Duan et al., 2008), and the presence of continuous tight junction (ZO-1) and adherens junction proteins (E-cadherin) (Duan et al., 2007), characteristics that suggest improved cellular maturity. Hence, over the past decade, there has been a
were seeded inside a collagen IV microfiber (Fig. 2B1 and 2) (Weber et al., 2016). Primary human PTCs developed a novel kidney-on-a-chip platform where a single straight nephrotoxicity by improved expression of both uptake and efflux P-gp was also noted in the dynamic models compared with the static protection was offered in the static model. Increased functionality of cisplatin-mediated toxicity in the microfluidic chip, but only partial in inhibitor of OCT2, offered significant protection to the PTCs from dehydrogenase release and apoptosis. Additionally, cimetidine, a known showed increased fidelity to cisplatin by showing reduced lactate metabolism; however, when AA was first added to the liver MPS, which was coupled to the kidney MPS, increased cell death and KIM-1 expression occurred. Metabolites of AA were actively secreted out of the liver MPS via the action of MRPs and taken up by the PTCs via the action of OAT4 located on the apical side of the kidney MPS to cause nephropathy of a commonly used Chinese herb, aristolochic acid (AA) (Chang et al., 2017). AA is a potent nephrotoxin; however, it often requires bioactivation and formation of reactive metabolites, a process that happens in the liver. AA showed modest cell death and KIM-1 expression when directly added to the kidney MPS before hepatic metabolism; however, when AA was first added to the liver MPS, which was coupled to the kidney MPS, increased cell death and KIM-1 expression occurred. Metabolites of AA were actively secreted out of the liver MPS via the action of MRPs and taken up by the PTCs via the action of OAT4 located on the apical side of the kidney MPS to cause nephrotoxicity. This and similar MPS systems could be used to model the toxicity of drugs in the future, develop pharmacokinetic/pharmacodynamic relationships, and be used to investigate organ-organ interactions.

Although the above-mentioned kidney MPS platforms show increased maturation of kidney cells compared with their static counterparts, most are currently being fabricated from PDMS, a polymer notorious in the absorption of small, lipid-soluble hydrophobic compounds. Hence, for the widespread use of these kidney MPS platforms, alternative materials need to be used for their fabrication to prevent, or at least minimize, drug absorption. van Midwoud et al. (2012) demonstrated that UV-ozone–treated polycarbonate and cyclic olefin copolymer showed excellent biocompatibility, ease of device fabrication, and transparency, characteristics required for microfluidic devices; moreover, these thermoplastics significantly minimized adsorption of compounds and thus could be used as alternatives for PDMS in the next generation of kidney MPS. Furthermore, most of these kidney MPS platforms currently lack kidney microvasculature, which plays an extremely important role in vivo by delivering nutrients to the tubular cells and maintenance of a healthy kidney epithelium (Jen et al., 2011). As they also participate in tubular secretion and reabsorption of drugs and xenobiotics, they are prone to their insults as well (Basile, 2007). Thus, to model drug clearance and toxicity to the kidney cells accurately, it is vital that the next generation of kidney MPS incorporate kidney vasculature. Some other challenges such as laboratory-to-laboratory variability in the fabrication of the device, its robustness, and the need for experienced

Kidney MPS Technologies for Drug Discovery

Microfluidic Kidney MPS. One of the first kidney-on-a-chip models with PTCs was developed by Ingber’s group. A polyester membrane coated with collagen IV was sandwiched between two polydimethylsiloxane (PDMS) slabs as shown in Fig. 2A (Jang et al., 2013). The bottom surface served as a medium or drug reservoir, and human primary PTCs were seeded on the top surface. After reaching confluence, a fluidic shear stress of 0.2 dyn/cm² was applied to the cells on the top surface, which led to their maturation as demonstrated by increased expression of aquaporin 1 and Na+/K+ ATPase and an increased number of primary cilia compared with the static Transwell model. Furthermore, there was a marked increase in the expression of SGLT2, which led to increased glucose transport. Enhanced uptake of albumin was also reported, possibly owing to enhanced megalin-cubulin functionality. These researchers were also able to model cisplatin toxicity, which is transported to the PTCs via OCT2. PTCs seeded in the microfluidic chips showed increased fidelity to cisplatin by showing reduced lactate dehydrogenase release and apoptosis. Additionally, cimetidine, a known inhibitor of OCT2, offered significant protection to the PTCs from cisplatin-mediated toxicity in the microfluidic chip, but only partial protection was offered in the static model. Increased functionality of P-gp was also noted in the dynamic models compared with the static model. Thus, this work showed that shear stress helped the PTCs achieve a more mature phenotype, and a kidney-on-a-chip could better model nephrotoxicity by improved expression of both uptake and efflux transporters. Recently, development of a glomerulus-on-a-chip from human induced pluripotent stem cell was also reported by the same group (Musah et al., 2017).

University of Washington researchers collaborated with Nortis Inc. to develop a novel kidney-on-a-chip platform where a single straight microfluidic channel was molded inside a collagen I matrix using a microfiber (Fig. 2B1 and 2) (Weber et al., 2016). Primary human PTCs were seeded inside a collagen IV–coated channel, allowed to adhere for 24 hours, and then perfusion of media was initiated inside the lumen. Cells inside the lumen displayed characteristic features of mature PTCs with ZO-1 staining localized to the apical surface and basolateral expression of Na+/K+ ATPase, suggesting polarized epithelia. KIM-1, an important kidney injury biomarker, was present at low levels on the kidney-on-a-chip device but is often expressed at high levels in a 2D static model, suggesting that the architecture of the device, coupled with flow, helped with a quiescent phenotype of the cells and prevented epithelial mesenchymal transition. Other characteristics, such as strong GGT activity and strong functionality of SGLT2, were also noted in the kidney microphysiological system (MPS). The researchers also demonstrated metabolism potential of the MPS by showing bioactivation of vitamin D. Calcifediol, a vitamin D prehormone produced in the liver, was converted to the active form of vitamin D, calcitriol, through the action of CYP27B1 and to its inactive metabolites via CYP24A1. Finally, the researchers demonstrated that in the MPS device, probencid, a competitive inhibitor of OAT1/3 and MRP2/4, decreased the apparent permeability of PAH, whereas no change in the apparent permeability was seen in the static 2D Transwell model. The researchers then coupled the kidney MPS with a liver MPS to elucidate the nephropathy of a commonly used Chinese herb, aristolochic acid (AA) (Chang et al., 2017). AA is a potent nephrotoxin; however, it often requires bioactivation and formation of reactive metabolites, a process that happens in the liver. AA showed modest cell death and KIM-1 expression when directly added to the kidney MPS before hepatic metabolism; however, when AA was first added to the liver MPS, which was coupled to the kidney MPS, increased cell death and KIM-1 expression occurred. Metabolites of AA were actively secreted out of the liver MPS via the action of MRPs and taken up by the PTCs via the action of OAT4 located on the apical side of the kidney MPS to cause nephrotoxicity. This and similar MPS systems could be used to model the toxicity of drugs in the future, develop pharmacokinetic/pharmacodynamic relationships, and be used to investigate organ-organ interactions.

Although the above-mentioned kidney MPS platforms show increased maturation of kidney cells compared with their static counterparts, most are currently being fabricated from PDMS, a polymer notorious in the absorption of small, lipid-soluble hydrophobic compounds. Hence, for the widespread use of these kidney MPS platforms, alternative materials need to be used for their fabrication to prevent, or at least minimize, drug absorption. van Midwoud et al. (2012) demonstrated that UV-ozone–treated polycarbonate and cyclic olefin copolymer showed excellent biocompatibility, ease of device fabrication, and transparency, characteristics required for microfluidic devices; moreover, these thermoplastics significantly minimized adsorption of compounds and thus could be used as alternatives for PDMS in the next generation of kidney MPS. Furthermore, most of these kidney MPS platforms currently lack kidney microvasculature, which plays an extremely important role in vivo by delivering nutrients to the tubular cells and maintenance of a healthy kidney epithelium (Jen et al., 2011). As they also participate in tubular secretion and reabsorption of drugs and xenobiotics, they are prone to their insults as well (Basile, 2007). Thus, to model drug clearance and toxicity to the kidney cells accurately, it is vital that the next generation of kidney MPS incorporate kidney vasculature. Some other challenges such as laboratory-to-laboratory variability in the fabrication of the device, its robustness, and the need for experienced
personnel to assemble the device should also be addressed for the MPS technology to gain a strong foothold in research in industry. Finally, the current throughput of these devices prevents its widespread use, especially in a pharma setting where hundreds of compounds are routinely screened.

To increase the throughput of these devices while still allowing flow-based studies for kidney, Mimetas, a Dutch startup company, recently launched Society for Biomolecular Screening SBS-compatible, PDMS-free microtiter 384-well plate MPS called OrganoPlates.

Fig. 2. Examples of kidney microfluidic devices (A–C) and bioprinted device (D). (A) Bilayer PDMS device with a sandwiched porous ECM-coated polyester membrane creating two compartments: top compartment for cell seeding with physiologic flow and bottom compartment serves as a reservoir. Reproduced with permission from the Royal Society of Chemistry and Jang et al. (2013). (B-1) Single-channel 3D MPS platform showing phase contrast and live/dead image of PTCs at day 28 within the microfluidic channel. Reproduced with permission from Elsevier and Weber et al. (2016) (B-2) Three-channel device of the 3D MPS platform shown in (B-1). Image provided by Nortis Bio (C-1) Overview of the platform for epithelium and endothelial tubule coculture. The three-lane OrganoPlate contains 40 microfluidic chips in a 384-well plate. Photos show top and bottom of the three-lane plate with zoom of a single chip. An ECM is patterned by two PhaseGuides. (C-2) A 3D reconstruction of a confocal stack shows the tubular morphology of the RPTEC and human umbilical cord endothelial cell cultures (HUVEC) alongside the ECM gel. The HUVEC cells express RFP (purple), and the tubes are stained for ZO-1 (green), ezrin (red), and DNA (blue). Scale bar, 100 μm. Image provided by Mimetas (D-1). Schematics and images showing the different steps of fabricating a 3D convoluted PTC channel. (D-2) A confocal 3D rendering of PTCs in the channel: actin (red) and nuclei (blue). Reproduced with permission from Homan et al. (2016). The work was published under a CC BY license (Creative Commons Attribution 4.0 International License; https://creativecommons.org/licenses/by/4.0/). No changes were made to the original figure.
use phase-guide technology, which enables the patterning of liquids and gels (Vulto et al., 2011). Four wells of the plate together form one microfluidic chip, thus leading to 96-microfluidic chips (two-channel) on a single plate. An extracellular matrix (ECM) is first pipetted in the gel channel, which gets patterned because of the phase-guide. This matrix serves as the support layer for the cells in the liquid channel, where they can adhere and proliferate to form a tube-like structure. The liquid channel can be perfused using a gravity driven flow eliminating the need for costly pumps. The resulting tubule of cells can be used for several functions, such as investigating barrier integrity after a chemical insult, transporter-based drug clearance and toxicity, and others, making it an extremely versatile platform. Based on this unique platform, Mimetas, along with several collaborators from the European Union were part of a Crack-iT NephroTube challenge to develop new models for assessing nephrotoxicity in vitro. Furthermore, by reducing the number of devices in the plate, a third channel could be added to grow the kidney endothelial cells, thereby mimicking the vasculature of the kidney (Fig. 2C-1 and 2). Although this new platform could offer much potential and will be useful for testing the nephrotoxic liability of compound, its validation is critical to show its strength over current existing 2D static models. Most of the preceding models have focused on characterizing few uptake and efflux transporters; however, a better characterization of the functionality of transporters is needed for each of these models so that the end user knows the strengths and shortcomings of these models in relation to xenobiotic handling and thus can use these platforms accordingly. A large data set of mechanistically distinct nephrotoxins also needs to be validated in these models. In general, MPS technologies exhibit more physiologically relevant phenotypes for many kidney makers compared with their static 2D counterparts; however, currently limited information exists involving the use of kidney specific biomarkers to assess nephrotoxic liabilities of drugs in MPS to allow for IVIVE. Also, as most of these MPS are fabricated using some form of lithography or other types of cleanroom-based manufacturing processes, inclusion of sensors/biosensors which can allow different readouts in real-time per user needs would also be a great addition to the next generation of devices to obtain an efficient in vitro kidney model.

Bioprinted Kidney MPS. A new emerging technology of bioprinting is now being increasingly used to develop complex 3D in vitro models (Bajaj et al., 2014; Murphy and Atala, 2014). Homan et al. (2016) demonstrated the biofabrication of a 3D human renal PTC model with complex geometry and an open lumen lined by PTCs, which allowed active perfusion and their maintenance in the construct for over 2 months (Fig. 2D-1 and 2). The PTCs in the 3D chip showed enhanced cell height, microvilli length and density, improved albumin uptake, and megalin expression compared with their 2D controls with and without perfusion. Additionally, the researchers showed dose-dependent toxicity of a common nephrotoxin, cyclosporine A, in their 3D PTC model. As this model was bioprinted, it can be batch produced and can also incorporate user-defined size and geometry. Other relevant cell types of the kidney, such as endothelial cells, can be cultured in conjunction with the PTCs to accurately model the kidney barrier. Thus, this platform has the potential to be developed into a truly unique in vitro system for nephrotoxicity screening and xenobiotic handling. Another example of a 3D bioprinted kidney model was demonstrated by Organovo, a San Diego–based company that specializes in the development of 3D printed tissues (King et al., 2017). The unique aspect of their model was the incorporation of kidney interstitial cells, such as renal fibroblasts and endothelial cells in addition to PTCs, thus allowing the development of a diseased model when challenged with tumor growth factor-β, a master regulator of fibrosis. In addition, the researchers also demonstrated improved kidney phenotype, which could be maintained for up to a month in culture, and strong expression of important kidney markers, including renal transporters. Importantly, expression of the four transporters most relevant for xenobiotic handling in the kidney, OAT1/3 (low), OCT2, and P-gp, was maintained over the course of a month and verified to be similar compared with that in the kidney cortex by liquid chromatography-tandem mass spectroscopy. The ability of this model to be used for nephrotoxicity screening would require its validation with a large library of compounds to demonstrate its potential.

Currently, we believe that there is no “perfect” in vitro kidney model available for investigating nephrotoxicity; however, continued development of these advanced novel in vitro platforms offers a great promise for assessment of nephrotoxicity and understanding drug clearance for new molecular entities, especially now, when more research groups in academia and industry have started to work with both small and large molecules, many of which cannot be accurately modeled using current in vitro kidney platforms.

Current Challenges and Future Perspectives

Compared with other tissue and cell types, the use of human renal cells by the pharmaceutical industry is rather limited. In contrast, the use of cryopreserved and/or fresh human hepatocytes is quite common, and multiple companies are involved in sourcing and providing hepatocytes. The reasons for this are numerous, but one driving force has been the search for alternatives to whole-organ liver transplants. The first successful cadaveric organ transplant occurred in 1950 and the first living-twin organ transplant was in 1954, but these both involved the kidney (Lawler et al., 1950; Watson and Dark, 2012). In the case of the liver, the first attempted transplant was in 1963 by Dr. Thomas Starzl, but it was unsuccessful and resulted in the patient’s death (Starzl et al., 1964). Thus, greater efforts were expended on isolation and propagation of functional (and transplantable) hepatocytes versus kidney cell types. Using rats, Berry and Friend (1969) developed methods that resulted in high-yield isolates of liver parenchymal cells using a collagenase perfusion method. Thus, with decades of experience, robust protocols now exist for isolating human parenchymal (and nonparenchymal) liver cells. The availability of highly characterized hepatocytes from multiple vendors (e.g., Sekisui Xenotech, TRL/Lonza, and Thermo Fisher) has created an industry for supplying these cells to pharmaceutical companies for studying disposition and safety testing of NCEs. The demand of these cells is driven in part by the FDA (and other regulatory agencies) guidance, including the 2016 Safety Testing of Drug Metabolites Guidance for Industry, which states, “In vitro studies can use liver microsomes, liver slices, or hepatocytes from animals and humans and generally should be conducted before initiation of clinical trials” (FDA, 2016).

The early successes of kidney transplantation likely hindered research on isolation and propagation of cells in vitro; however, it is worth noting that, in comparison with the liver, a relatively simple organ containing only four basic cell types (parenchyma, endothelial, stellate, and Kupffer cells), the kidney is a very complex organ composed of dozens of specialized cell types (Kriz and Bankir, 1988; Baer et al., 1997). Because of this complexity, attempts to restore organ function in vivo using in vitro isolation techniques for purified cell types are simply not feasible.

In the field of preclinical toxicity, the pharmaceutical industry has historically relied on various proximal tubule cell lines, such as LLC-PK1, MDCK, and HK2 (Rezzani et al., 2002; Gunness et al., 2010). As discussed already, however, these cell lines are not adequate for use as predictive models. Thus, to address these issues, investigators have turned to isolating primary PTCs (Pizzonia et al., 1991; Baer et al., 1997; Qi et al., 2007). Now, several commercial entities sell human proximal tubule epithelial cells (e.g., ATCC, Lonza, and Biopredic); but use of
these cells is not as widespread or as common as hepatocytes, likely for many reasons, including the lack of specific regulatory guidance on their use, limited characterization, as well as limited availability of human tissue. In the academic sector, their use is more commonly associated with access to tissue from a linked medical center, given the high costs charged by cell vendors.

To overcome or bypass the hurdle of access to primary kidney cell types, the field has turned to directed differentiation of human induced pluripotent stem cells (iPSCs); however, in comparison with other cell types (e.g., cardiomyocytes, neuronal/oligodendrocytes, and hepatocytes), research on the kidney has lagged. This situation changed in 2012 with the establishment of a differentiation protocol resulting in the derivation of renal podocyte-like cells (Song et al., 2012) and a series of other publications in quick succession (Araoka et al., 2014; Lam et al., 2014; Takasato et al., 2014). Recent research has described generation of kidney “organoids” from iPSCs (Morizane et al., 2015; Takasato et al., 2016; Takasato and Little, 2017) and using organoids to model kidney disease (Freedman et al., 2015; Cruz et al., 2017; Kim et al., 2017). More recently, standardized protocols have been published that detail the sequential steps and proportions of growth factors and timing for creating kidney organoids. In one protocol, a high-efficiency (80–90%) system is described that generates nephron progenitor cells within 9 days of differentiation (Morizane and Bonventre, 2015), and a further 12 days is required to generate kidney organoids with “high reproducibility.” This protocol does make use of a 96-well format, lending it to potential utility in high-throughput screening systems, but the authors note that “careful attention to morphological changes indicative of differentiation” is necessary. Another, slightly more recent protocol describes first inducing pluripotent stem cells into a cell type akin to the posterior primitive streak, followed by subsequent programming into cells representing posterior and anterior intermediate mesoderm (Takasato and Little, 2017). These two cell types are then aggregated and undergo self-organization into kidney organoids. The resultant organoids are composed of all the cell types of the nephron, including the glomerulus, proximal/distal tubules, and endothelial network. A very recent publication has described a system that incorporates a robust differentiation protocol with little user input (Czerniecki et al., 2018). This system takes human pluripotent stem cells in 96- or 384-well format plates and completes the entire differentiation process using a robotic platform. This system yields kidney organoids composed of glomerular tissue, as well as proximal and distal tubule cells; its potential is tremendous given the relative ease of use, the high degree of throughput, and the efficiency of the differentiation protocol. Potential applications include preclinical toxicity screening of lead compounds on the resultant organoids, as well as applications in developmental toxicity screening. For the latter, one could envision perturbing the differentiation process with drugs or chemicals at any point in the protocol. Developmental and reproductive chemical screening is a critical component of the Tox21 Initiative, and this technology could refine the animal testing approaches that are currently used. As the authors also note, this technology has application in the drug discovery world when applied to kidney disease, for example, polycystic kidney disease. Given that there is only one FDA-approved drug for polycystic disease (with ill-defined mechanism of action), this is clearly an unmet need for a highly prevalent genetic disorder. With recent advances in single-cell transcriptomics, it might also be possible to characterize more clearly these kidney organoids, similar to the work done by Park et al. (2018) on healthy mouse kidneys, to discover new cellular targets for kidney disease and to learn more about kidney development. Although great strides are being made in the generation of kidney organoids, this technology and expertise are still quite limited and currently are seen in only a handful of academic research laboratories. Before kidney organoids are adopted as part of the preclinical repertoire on NCE screening, several issues need to be addressed. First, kidney organoids are not a structure amenable to facilitated transport studies. Given that the primary reason an NCE induces nephrotoxicity is accumulation in the proximal tubule (Weber et al., 2017), protocols need to be established for isolation of pure tubule epithelial cells from organoids. Then these cell isolates could be used to populate 3D MPS as previously described. Second, the differentiation potential toward formation of a kidney organoid will vary depending on the cell source used to generate the iPSCs and thus would require some optimization.

The International Consortium for Innovation and Quality in Pharmaceutical development-Pharma consortium, in collaboration with the National Center for Advancing Translational Services, has pushed for generation of preclinical species as a cell source for generating MPS for toxicity testing. The reason is the existence of extensive data sets on unanticipated toxicity of lead compounds, with species disparities. This leaves open the question, in the case of “killed” compounds, of which species is predictive of clinical trial outcomes. Having available human MPS, in conjunction with appropriate preclinical species MPS, allows one to address this question. The availability of iPSC-derived kidney cells will be a big advance in their adoption in the pharmaceutical industry, as they represent an unlimited cell supply and, with gene editing, will facilitate disease modeling, as well as the potential role(s) of polymorphic variants using isogenic control iPSC lines. For drug transport/toxicity, this latter application is particularly useful when applied to the transporters facilitating active uptake and secretion in the proximal tubule. The current caveat is that these cells, much like iPSC-derived cell types for other organs, are immature in phenotype, resembling fetal cells at best.

In the end, what will drive adoption of MPS technologies, including kidney MPS, will be the regulatory agencies worldwide. Given the widespread agreement that animals are not always reliable predictors of clinical trial outcomes, this paradigm shift will occur; it is simply a matter of time. In the United States, the FDA has recognized the potential of this technology and signed an agreement with Emulate in 2017 to evaluate this company’s MPS technologies at the agency’s Center for Food Safety and Applied Nutrition. So, depending on the outcomes of these efforts, we could see adoption of this new technology as standard practice as part of future investigational new drug filings.

Acknowledgments
The views expressed in this document are solely those of the authors and do not necessarily reflect those of the agency or the company. Takeda and EPA do not endorse any products or commercial services mentioned in this article.

Authorship Contributions
Wrote or contributed to the writing of the manuscript: Bajaj, Chowdhury, Yucha, Kelly, Xiao.

References
Adler M, Ramm S, Hafner M, Muhlch J, Gotwald EM, Weber E, Jaklic A, Ajay AK, Svoboda D, Auerbach S, et al. (2016) A quantitative approach to screen for nephrotoxic compounds in vitro. J Am Soc Nephrol 27:1015–1028.
Araoka T, Ma S, Kurose Y, Uesugi M, Ohta A, Yamakawa S, and Osafune K (2014) Efficient and rapid induction of human iPS/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS One 9:e84881.
Aschauer L, Carta G, Vogelsang N, Schlatter E, and Jennings P (2015a) Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1. Toxicol In Vitro 30 (1 Pt A):95–105.
Aschauer L, Limouicel A, Wittges A, Stanzel S, Kopp-Schneider A, Hewitt P, Lukas A, Leonard MO, Pfaller W, and Jennings P (2015b) Application of RPTEC/TERT1 cells for investigation of repeat dose nephrotoxicity: a transcriptomic study. Toxicol In Vitro 30 (1 Pt A):106–116.
American Type Culture Collection (ATCC) (2016) RPTEC/TERT1 OAT1 (ATCC® CRL-4031-OAT1™). 2016. https://www.atcc.org/Products/AllCRL-4031-OAT1.aspx.
Baer PC, Nockher WA, Haase W, and Scherberich JE (1997) Isolation of proximal and distal tubule cells from human kidney by immunomagnetic separation. Technical note. Kidney Int 52:1321–1331.
Emerging Kidney Models for Investigating Transport and Metabolism

Bajaj P, Schwermer RM, Khademhosseini A, West JL, and Bashir R (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. *Ann Rev Biomed Eng* 16:247–276.

Basel DP (2007) Therapeutic cellular in chronic acidotic kidney injury: implications for acute and chronic function. *Kidney Int* 72:151–165.

Berry MN and Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical study. *Lab Cell Physiol 13:95–105.

Brown CDA, Sayer R, Windas AS, Haslam ES, De Broe ME, D’haese PC, and Verhulst A (2008) Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling. *Toxicol Appl Pharmacol* 235:428–435.

Burchardt-G, Wirtz K, and Trum G (2003) Transport of organic anions across the basolateral membrane of proximal tubule cells, in *Reviews of Physiology, Biochemistry and Pharmacology*, pp 95–158. Springer, Berlin.

Burchardt-G (2012) Drug transport by organic anion transporters (OATs). *Pharmaco Ther 136*:106–130.

Chang SY, Weber EI, Siderovskis V, Chapron A, Yeung CK, Gao M, Cao Q, Shen D, Wang J, Rosemarius TA, et al. (2017) Human liver-kidney modeled mechanism of the aromatic bovine hepatic membrane. *Cell 171*:957987.

Christensen EI and Gburek J (2004) Protein reabsorption in renal proximal tubule-function and transport, metabolism, and the impact of kidney disease on drug clearance. *Exp Toxicol Pathol 55*(Suppl 11):75–7.

Feng B, LaPerle JL, Chang G, and Varma MV (2010) Renal clearance in drug discovery and development. *Kidney Int 77*:714.

George B, You D, Joy MS, and Aleksunes LM (2017) Xenobiotic transporters and kidney injury. *Expert Opin Drug Metab Toxicol 13*:467–488.

Habu Y, Yano I, Takeuchi A, Saito H, Okuda M, Fukatsu A, and Inui K (2003) Decreased activity of organic anion transporters, rOAT1, rOAT3 and rOCT2. *Kidney Int* 63:1119–1129.

Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell A-L, and Karlsson J (2007) Expression of the human organic cation transporter hOCT1 and hOCT2 in human cell lines. *Toxicol Appl Pharmacol* 221:168–176.

Huang JX, Kaeslin G, Ranall MV, Blaskovich MA, Becker B, Butler MS, Little LH, Lash LJ, and Cooper MA (2015) Evaluation of biomarkers for in vitro prediction of drug-induced nephrotoxicity: comparison of HK-2, human epithelial cell line vs primary human proximal tubular cells. *Pharmacol Res Pract 80*:61–4.

Huhn D, Matthews BD, Mammoto A, Montoya-Zavaleta M, Han HY, and Inger DE (2010) Reconstituting organ-level lung functions on a chip. *Science* 328:1662–1668.

In MS, Shin HJ, Yang KJ, Jung SY, Song HY, Hwang HS, and Gil HW (2017) Cilastatin attenuates vancomycin-induced nephropathy via P-glycoprotein. *Toxicol Lett 277*:99–17.

Izraeliene H, Lanata-Vacher V, and Dergy G (2005) Antiviral drug-induced nephrotoxicity. *Am J Kidney Dis 45*:804–817.

Jang KJ, Mehr AP, Hamilton LA, McGarlin LA, Chun S, Sub KY, and Inger DE (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. *Integr Biol 5*:103–119.

Jen KY, Haragus M, and Laszik ZG (2011) Kidney microvasculature in health and disease. *Conrib Nephrol 169*:51–72.

Jeffek BD, Czerniecki SM, Chang GW, van Loon E, Bakar NS, Dalzell AM, and Brown CD (2012) The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. *Pflugers Arch 464*:611–61.

Kandasamy C, Chukh JC, Ru P, Huang P, Eng KG, Xiong S, Li Y, Chia CS, Loo L-H, and Zink D (2014) A validated panel of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. *Sci Rep 5*:13237.

Kim YK, Rafaeli J, Brooks CJ, Jung P, Gulieva RE, Hughes MR, Cruz NM, Liu Y, Churchill AJ, Tanoue T, et al. (2015) An in vitro human kidney organoids reveals mechanisms of disease in podocyte development. *Stem Cells 33*:2366–2378.

King SM, Higgins JW, Nino CR, Smith TR, Paffermuth EH, Fairbairn CE, Doyun A, Shah VD, Chun AE, Prensell SC, et al. (2017) 3D proximal tubule tissue recapitulates key aspects of renal epithelial cells to enable nephrotoxicity testing in vitro. *Toxicol Appl Pharmacol 331*:220–232.

Kozeraki R, Fyfe J, Verroust PJ, Jacobson C, Dautry-Varsat A, Gburek J, Willnow TE, Christensen EI, and Moestrup SK (2001) Megalin-dependent cubilin mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. *Proc Natl Acad Sci USA 98*:397–402.

Kozeraki R, Gotoh N, Yan Y, de Vos R, and Sargent RL (2008) Site-directed reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. *Proc Natl Acad Sci USA 105*:11418–11423.

Lam AQ, Freedman BS, Mortazie R, Leraux PH, Valerius MT, and Bonventre JV (2014) Rapid and efficient maturation of human kidney stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. *Am J Nephrol 35*:1221–1225.

Lash LJ (1994) Role of renal metabolism in risk to toxic chemicals. *Environ Health Perspect 102*:75–79.

Lawler RH, West JW, McNULTY PH, Clancy E, and Murphy RP (1955) Homotransplantation of the kidney in the human. *Am J Med 14*:844–845.

Li S, Zhao J, Huang R, Steiner T, Bournier M, Mitchell CD, Zhao B, and Xia M (2017) Development and application of a 3D model of proximal tubule epithelial cells for assessment of compound toxicity. *Curr Genet Cytotoxic Genomics Transl Med 10*:19–30.

Li Y, Kandasamy C, Chukh JC, Lam YN, Teh WS, Oo ZY, and Zink D (2014) Identification of nephrotoxic compounds with embryonic stem-cell-derived human renal tubulocell-like cells. *Mol Pharmacol 81*:1982–1990.

Li Y, Oo ZY, Chang SY, Huang P, Eng KG, Zeng JL, Kaeslin AJ, Gopalani B, Kandasamy K, Tsumori A, and Verbeek JT (2015) An in vitro method for the prediction of renal proximal tubular toxicity in humans. *Toxicol Rev 35*:352–365.

Lock EA and Reid CJ (1998) Xenobiotic metabolizing enzymes of the kidney. *Toxicol Pathol 26*:18–25.

Moriyasu KM, Stoller WK, Wettwer MB, Xu L, and Giacomini KM (2013) Renal transporters in drug development. *Annu Rev Pharmacol Toxicol 53*:503–529.

Moss DM, Neary M, and Owen A (2014) The role of drug transporters in the kidney: lessons from transport. *Front Pharmacol 5*:249.

Moriyasu KM, Stoller WK, Wettwer MB, Xu L, and Giacomini KM (2013) Renal transporters in drug development. *Annu Rev Pharmacol Toxicol 53*:503–529.

Moss DM, Neary M, and Owen A (2014) The role of drug transporters in the kidney: lessons from transport. *Front Pharmacol 5*:249.

Moriyasu KM, Stoller WK, Wettwer MB, Xu L, and Giacomini KM (2013) Renal transporters in drug development. *Annu Rev Pharmacol Toxicol 53*:503–529.

Moss DM, Neary M, and Owen A (2014) The role of drug transporters in the kidney: lessons from transport. *Front Pharmacol 5*:249.

Moriyasu KM, Stoller WK, Wettwer MB, Xu L, and Giacomini KM (2013) Renal transporters in drug development. *Annu Rev Pharmacol Toxicol 53*:503–529.

Moss DM, Neary M, and Owen A (2014) The role of drug transporters in the kidney: lessons from transport. *Front Pharmacol 5*:249.

Moriyasu KM, Stoller WK, Wettwer MB, Xu L, and Giacomini KM (2013) Renal transporters in drug development. *Annu Rev Pharmacol Toxicol 53*:503–529.

Moss DM, Neary M, and Owen A (2014) The role of drug transporters in the kidney: lessons from transport. *Front Pharmacol 5*:249.

Moriyasu KM, Stoller WK, Wettwer MB, Xu L, and Giacomini KM (2013) Renal transporters in drug development. *Annu Rev Pharmacol Toxicol 53*:503–529.
