We present a new version of the hadron interaction event generator Sibyll. While the core ideas of the model have been preserved, the new version handles the production of baryon pairs and leading particles in a new way. In addition, production of charmed hadrons is included. Updates to the model are informed by high-precision measurements of the total and inelastic cross sections with the forward detectors at the LHC that constrain the extrapolation to ultra-high energy. Minimum-bias measurements of particle spectra and multiplicities support the tuning of fragmentation parameters. This paper demonstrates the impact of these changes on air shower observables such as X_{max} and N_μ, drawing comparisons with other contemporary cosmic ray interaction models.
by recent developments in cosmic ray (CR) / astroparticle physics and new measurements at accelerators. At the high energy frontier, the LHC provides for the first time constraints on extrapolation of the model to energies corresponding to cosmic rays beyond the knee. In addition, dedicated forward physics experiments (for example LHCf and CASTOR) and recent fixed target experiments (NA61) studied a larger part of the phase space that is particularly important for EAS.

There are several challenges for the present cosmic ray interaction models. One example arises in the interpretation of EAS data in terms of CR mass composition where simulations predict a lower muon content than required to interpret the observations [17–18]. A possible interpretation is an underestimation of the number of muons in EAS by current hadronic interaction models [19].

Another example is the need to include production of charmed hadrons in event generators for EAS. The observation of high-energy astrophysical neutrinos above 100 TeV by IceCube [20] extends to the energy range where prompt muons and neutrinos from decays of charmed hadrons become larger than the conventional (light meson) channels. Eventually prompt muons and neutrinos become the main leptonic backgrounds for the astrophysical neutrino flux. Production of charm was first introduced as a modification of Sibyll 2.1 [22]. Its implementation in Sibyll 2.3c is based on comparison with recent accelerator data on production of charmed hadrons and fully supports the production of charm [23–25]. The model of the production of charm and the application of Sibyll 2.3c to the calculation of inclusive lepton fluxes is the subject of a separate paper [26].

This paper on Sibyll 2.3c[1] and EAS has two main topics: § II introduces the changes to the microscopic interaction model; § III shows the impact of these changes on EAS observables and benchmarks the new models against other contemporary post-LHC models [28–29] and the previous Sibyll 2.1. We conclude with a discussion in § IV.

II. MODEL UPDATES

A. Basic model

The aim of the event generator Sibyll is to account for the main features of strong interactions and hadronic particle production as needed for understanding air shower cascades and inclusive secondary particle fluxes due to the interaction of cosmic rays in the Earth’s atmosphere. Therefore, the focus is on the description of particle production at small angles and on the flow of energy in the projectile direction. Rare processes, such as the production of particles or jets at large p_T or electroweak processes, are either included approximately or neglected.

The model supports interactions between hadrons (mostly nucleons, pions or kaons) and light nuclei (h–A), since the targets in EAS mainly are nitrogen and oxygen. The CR flux at the top of the atmosphere contains elements up to iron, requiring a model for interactions of nuclei (A–A). Nuclear binding energies have negligible impact for high-energy interactions, allowing for the approximate construction of interactions of cosmic ray nuclei from individual hadron-nucleon (h–N) collisions. On the target side, nucleons are combined to light nuclei on amplitude level using the Glauber model [14] together with the semi-superposition [15] approach. This means that the interaction of an iron nucleus (A = 56), for example, with a nitrogen nucleus in air is treated as 56 separate nucleon–nitrogen interactions. With the exception of inelastic screening (Sect. IV), the model extensions discussed in the following are introduced at the level of hadron-nucleon interactions.

1. Parton level

The total scattering amplitude that determines the interaction cross sections is defined in impact parameter space by using the eikonal approximation, see Refs. [6] and, for a pedagogical introduction, also Ref. [33],

$$a(s, \vec{b}) = \frac{i}{2} [1 - \exp(-\chi(s, \vec{b}))],$$

(1)

where i is the unit imaginary number, \vec{b} is the impact parameter of the collision and s is the Mandelstam variable, which for the interaction between hadrons k and l is defined as $s = (p_r + p_l)^2$. The eikonal function χ is given by the sum of two terms representing soft and hard interactions $\chi(s, \vec{b}) = \chi_{\text{soft}}(s, \vec{b}) + \chi_{\text{hard}}(s, \vec{b})$, and then unitarized as in Eq. 1 ($|a| < 0.5$). The soft and hard eikonal functions take the form

$$\chi_{\text{int}}(s, \vec{b}) = \sigma_{\text{int}}(s) A_{\text{int}}(s, \vec{b}),$$

(2)

with $\int A_{\text{int}}(s, \vec{b}) \, d^2\vec{b} = 1$ and $\text{int} = \text{soft, hard}$.

Within the parton model, there is a straightforward interpretation of Eq. 2 for hard interactions of asymptotically free partons. Then χ_{hard} is the inclusive hard scattering cross section of partons in the interaction of hadron k with hadron l. The spatial distribution of partons available for hard interaction is encoded in the overlap function $A_{\text{hard}}(s, \vec{b})$. This overlap function between hadrons k and l is given by the individual transverse profile functions of partons in the scattering hadrons, $A_{k,l}(s, \vec{b})$, and the transverse profile of the individual hadrons.

1 A preliminary version of this model was released as Sibyll 2.3 [26]. It exhibited a violation of Feynman scaling in the fragmentation region in tension with data. We discussed the importance of Feynman scaling in Sibyll and its restoration in [25–27]. The final version of the model is called Sibyll 2.3c.
The effective width parameter \(2B_p + B_0 \) is determined from a fit to cross section data and the slope of the energy dependence \(\alpha'(0) \) is given by the slope of the Pomeron (Reggeon) trajectory known from soft interactions \(\text{[22]} \).

The interaction cross sections are calculated by integration of the above amplitude in impact parameter space, e.g. for the inelastic cross section

\[
\sigma_{\text{inel}} = \int d\vec{b} \left[1 - e^{-2x_{\text{soft}}(s, \vec{b})} - 2x_{\text{hard}}(s, \vec{b}) \right].
\]

The obtained values are given in Tab. \(\text{[VIII]} \) A two-channel Good-Walker formalism is used for low-mass diffractive interactions, where the two channels correspond to the hadron’s ground state and a generic excited state. For simplicity, high-mass diffraction is assumed to account for 10% of the non-diffractive interactions and contributes with only a single cut. A more in depth discussion of the basic principles of the model can be found in Ref. \([10]\).

The partial cross sections for multiple pomeron scattering are calculated from the elastic amplitude using unitarity cuts (AGK cutting rules) \([14]\). The multiple cuts (or parton interactions) are assumed to be uncorrelated and Poisson-distributed at tree level, but at later steps of the event generation correlations can arise from e.g. energy and momentum conservation. The cross sections for multiple cuts are calculated (neglecting diffractive channels) from

\[
\sigma_{N_{\text{soft}}, N_{\text{hard}}} = \int d\vec{b} \frac{n_{\text{soft}}(s, \vec{b})}{N_{\text{soft}}!} \frac{n_{\text{hard}}(s, \vec{b})}{N_{\text{hard}}!} \times \exp \left(-n_{\text{soft}}(s, \vec{b}) - n_{\text{hard}}(s, \vec{b}) \right),
\]

where \(N_{\text{soft, hard}} \) is the number of soft or hard parton scatterings in the interaction. \(n_{\text{soft}}(s, \vec{b}) = 2\chi_{\text{soft}}(s, \vec{b}) \) is the average number of soft or hard interactions.

For runtime optimization the momenta of the partons in an event are sampled from approximate parameterizations instead of the full amplitude. The hard component \((\sigma_{\text{QCD}}) \) is calculated at leading order assuming collinear factorization, in which the full PDFs that resolve individual quark flavors and gluons are replaced by an effective PDF for all partons of the form

\[
f(x) = g(x) + \frac{2}{x} \left[q(x) + \bar{q}(x) \right],
\]

where \(g(x) \) represents the combined distribution of all quark flavors \([15]\). Neglecting initial transverse momentum, the transverse momentum of the partons is determined by the scattering process given by \(\hat{t}^{-2} \), where \(\hat{t} \) is the four momentum transfer after Mandelstam.

For the soft interaction, which are assumed to include the valence quarks, the momentum fractions are taken from the distribution

\[
f_q(x) = (1 - x)^d (x^2 + m_q^2/s)^{-1/4}.
\]

In case of the valence quarks, \(d \) which leads to the suppression of large momentum fractions, is set to 3 \((2)\) for baryons (mesons). The pole at small momentum fractions is controlled by the choice of an effective quark mass \(m_q^2 = 0.3 \text{GeV}^2 \). For soft sea quarks and gluons, \(d = 1.5 \) and \(m_q^2 = 0.01 \text{GeV}^2 \). The conservation of energy is enforced by assigning one (the last) parton the remaining fraction. Since these distributions favor small momentum fractions, the remainder usually constitutes the largest fraction and thus emerges as leading particle. For baryons this fraction is always assigned to pairs of
interactions are modeled as gluon–gluon scattering. Furthermore, the color flow of the gluon scattering is approximated by a closed color loop between two gluons resulting in two strings (see Fig. 2). In general, a single hadron–hadron interaction will be a complex combination of such two string configurations, where the probability density for the multiple cut (or string) topology is determined by \(\sigma_{N_{soft}, N_{hard}} \) (Eq. (5)).

The fraction of the string energy \(z \) assigned to the quarks in each step in the fragmentation is taken from the symmetric Lund function [49]

\[
f(z) = (1 - z)^a z^{-1} \exp(-\kappa_{string} m_T^2 z^{-1}),
\]

where \(a = 0.5 \) and \(\kappa_{string} = 0.8 \text{ GeV}^2 \) and \(m_T^2 \) is the transverse mass \(p_T^2 + m^2 \). The transverse momentum of a quark-antiquark pair of flavor \(i \) is sampled from a Gaussian distribution with the mean

\[
\langle p_T^i(s) \rangle = p_0^i + A \log_{10} \left(\frac{\sqrt{s}}{30 \text{ GeV}} \right).
\]

The parameters \(A = 0.08 \text{ GeV}/c \) and \(p_0^i \) are determined from comparisons with fixed target experiments. The \(p_0^i \) take individual values for quarks, diquarks and the different quark flavors \((u:d:s:qq = 0.3:0.45:0.6 \text{ (GeV}/c))\).

Hadronic interactions with zero net quantum number exchange, and in particular no color exchange between the scattering partners, may leave one or both of the hadrons in an excited state and are referred to as low-mass diffraction. The de-excitation of this state is separated into the resonance region at the lowest masses \(M_D < 2\text{ GeV} \), modeled with isotropic phase space decay (thermal fireball), and the continuum region where string fragmentation is used to produce the multiparticle final state. The hadron-Pomeron scattering in high-mass diffraction is approximated by \(\pi^0 \)-hadron scattering in the rest frame of the diffractive system.

3. Basic model characteristics

SIYLL gives a remarkably good description of the general features of hadronic interactions. Particularly encouraging is the comparison of predictions of SIYLL 2.1 with the results from LHC Run I as demonstrated, for example, in Fig. 3 by the yield of charged particles at large scattering angles (pseudorapidity \(\eta \sim \tan \theta/2 \)). The widening of the distributions is a phase space effect and arises from the available interaction energy. At central rapidities particle production increases with energy as in Fig. 3 according to the growth of the multiple parton scattering probability. The energy dependence of the average number of soft and hard interactions in Fig. 4 shows that below 1 TeV mostly one soft scattering occurs. At higher energies, hard scatterings dominate due to the steep rise of the parton-parton cross section (see \(\sigma_{QCD} \) in Fig. 6). In combination, these figures demonstrate the energy scaling of interaction cross sections, multiple interactions and particle production.
For the high energy data in Fig. 3, the new model is underestimating the width of the pseudorapidity distribution, indicating a problem with the transition from hard (central) to soft (forward) processes. This problem is becoming more evident with the shift to post-HERA PDFs in Sibyll 2.3c, which include a steeper rise of the sea quark and gluon distributions toward small x values. The scale of the hard scatterings is integrated out for the event generation and the PDFs are evaluated at an effective scale. In nature, the separation between soft and hard scatterings is not well defined and can be thought of as a gradual transition. In principle there should be mixed processes, usually referred to as semi-hard, which are currently not included in Sibyll leading to a faster drop of multiplicity for rapidities around the hard-soft scale transition. The comparison to TOTEM measurements in this region ($5 < \eta < 6$) reveal a underestimation of the particle density of 30 – 40% [50]. However, the more important quantity for EAS than the particle density is the energy flow. Measurements are available in the very forward region by LHCf [51] and at the edge of the central region by CMS/CASTOR [52 53]. The former is described reasonably well by the new model (see Fig. 14), whereas the CASTOR measurement indicates a deficit [52]. The largest part of the energy is carried by particles produced in-between these regions and hence remains unobserved. Therefore it is not evident from these data that the omission of semi-hard processes in the model has an impact on the EAS predictions.

TABLE I. Total cross section measurements at the TeVatron and LHC compared to predictions by Sibyll.

Exp.	\sqrt{s} (GeV)	σ_{tot} (mb)	Sibyll 2.1	Sibyll 2.3c	Ref.
CDF	1.8 TeV	80.03 ± 2.24	78.8	75.9	[58]
E-710	72.8 ± 3.1	78.8	75.9	59	
E-811	71.71 ± 2.02	98.3 ± 2.9	108.6	61	
TOTEM 7 TeV	95.35 ± 1.36	98.8	111.1	[62]	

B. Interaction cross section

The parameters of the amplitude are determined by fitting the interaction cross section to measurements. When the cross section fit was performed for Sibyll 2.1, the highest energy data points that were available were the ones obtained at the TeVatron [55 60] (see Tab. I). These data suffered from an unresolved ambiguity between the measurement by CDF and the other measurements (Fig. 5). The higher data point was supported by the cosmic ray measurements (see σ_{air}) in Fig. 25. Recent measurements at the LHC [61] agree well with each other and suggest a lower cross section. These higher-energy data impose stronger constraints on the extrapolation to UHECR energies constitute an important input in Sibyll 2.3c.

Despite an overestimation of the interaction cross section, Sibyll 2.1 gives a remarkably good description of the general features of minimum-bias data. Therefore, we aim for an evolutionary extension of the previous model.
in which the hard interaction cross section is smaller. This change yields smaller total and inelastic cross sections in the TeV range and above, while at lower energies remain mostly unaffected according to Fig. 5. Hard parton scattering is calculated in perturbative QCD, generally leaving little room for alterations. The hard cross section can be reduced by increasing the transverse momentum cutoff $p_T^{\text{min}}(s)$ that defines the transition between soft and hard interactions. However, in Sibyll the energy dependence is derived from a geometrical saturation condition (see Eq. (5)) and is, therefore, fixed.

A different possibility is the modification of the opacity profile $A_{\text{hard}}(b)$. The overlap integral for two protons, the formal definition is given in Eq. (4), in the model

FIG. 5. Total and elastic proton–proton cross section. Sibyll 2.1 is tuned to the 1.8 TeV CDF value at the Tevatron [69, 70]. The narrower hard interaction profile reduces the inelastic cross section (see Fig. 6) in Sibyll 2.3c such that total and elastic cross sections coincide with the TOTEM measurements at the LHC [65, 66].

FIG. 6. Inelastic proton–proton cross section. The data points are compiled from [62, 65–70]. The smaller rise of the cross section in Sibyll 2.3c agrees well with the LHC and the 57 TeV measurement by the Pierre Auger Observatory [71]. This comes mainly from the reduction of hard minijet cross section σ_{QCD}. At the intersection of σ_{QCD} and σ_{inel} the probability for multiple hard interactions becomes larger than one and marks the energy range at which multiple parton-parton interactions become increasingly important.

FIG. 7. The elastic slope parameter in proton–proton interactions. The slope parameter is related to the width of the impact parameter profile. The decrease in the width of the hard profile between Sibyll 2.1 and Sibyll 2.3c, means the slope parameter decreases. takes the explicit form given by

$$A(\nu_h, \bar{b}) = \frac{\nu_h^2}{12\pi} \frac{1}{8} (\nu_h b)^3 K_3(\nu_h b),$$

where $K_3(x)$ is a modified Bessel function of the second kind. The parameter ν_h determines the width of the profile that controls the share between more peripheral and central collisions, i.e. narrow profiles lead to a reduction of peripheral collisions. Since most collisions are peripheral, a narrower profile reduces the interaction cross section. Fig. 7 shows the new and old fits of the total and the elastic cross section after narrowing the profile function and adjusting the soft interaction parameters. The result gives a good description of the measurements at high energy [62, 65, 66, 68, 69]. As shown in Fig. 6, the inelastic cross section in the new model is compatible with that derived from an UHECR measurement [71], whereas the cross section in Sibyll 2.1 was too high. At the time of the fit the LHC Run I data reached only up to 7 TeV CM, but nonetheless the previous parameters are compatible with LHC Run II data at 13 TeV [63, 67, 70] (see also Tab. 1). In the scattering of waves a refraction pattern is determined by the form of the scattering object. For hadrons, the shape of the refraction pattern in first approximation is described by the elastic slope parameter, B_{elas}, the slope of the forward peak of the differential elastic cross section,

$$\frac{d\sigma_{\text{elas}}}{dt} \sim e^{-B_{\text{elas}}t}.$$
More recent, LHC-constrained parameterizations of the PDFs (e.g. CT14 [72]) instead of the older GRV98-LO [57, 58] typically show a less steep rise of the gluon distribution towards small-x and hence result in a smaller hard scattering cross section. This would lead to a smaller rise of σ_{QCD} and hence a wider profile can be chosen to reduce the tension with data in B_{ela}. As the integration of the new PDFs in the complete event generator requires the re-adjustment of almost all model parameters this endeavour is left to a future update.

These modifications to the proton–proton cross sections also affect the cross sections for hadron-nucleus and nucleus–nucleus collisions. The extension to meson-nucleus interactions is discussed in Sect. III, $\sigma_{p-\text{air}}$ is presented in Fig. 25 and the interaction lengths of iron nuclei, protons, pions and kaons in air are given in Tab. VI and discussed in Sect. III.

C. Leading particles

Secondary particles that carry a very large momentum fraction of the initial projectile are called leading particles. They are of utmost importance for the longitudinal development of EAS since they transport energy more efficiently into the deeper atmosphere requiring at the same time fewer interactions. The origin of leading particles is not clearly related to one hadronic or partonic process and can be thought of as a superposition of all processes contributing to the forward phase space, often involving valence quark interactions.

1. Leading protons & hadron remnants

In the parton model the leading hadron is related to the partons with the largest momentum fractions, which in most cases are the valence quarks. Fig. 8 and Fig. 9 demonstrate the characteristic “flatness” and a diffractive peak of the longitudinal momentum distribution (in $x_F = p^C_m/p^C_{m,\text{max}}$). The latter naturally fits into the leading particle definition since in diffraction no quan-
SIBYLL, most of these interactions happen between the valence quarks (see Fig. 11). The conservation of energy and baryon number for such systems introduces a strong correlation between the production of leading protons and central \((x_F \sim 0) \) antiprotons, as both come from the hadronization of the same valence quark system. In the leading proton scenario, where a large momentum fraction is assigned to the leading string break, an antiproton produced in a later break is necessarily slow. Often its production will be energetically forbidden because the antiproton has to be produced alongside a second baryon. The opposite case, in which the leading proton is slow \((f_{\text{lead}}(z) \sim \exp(-1/z) \ll f_{\text{lead}}(z) \sim z\) as \(z \to 0\)), is more problematic since the antiproton can carry a large momentum fraction. Measurements of \(x_F\) spectra of protons and antiprotons in Fig. 10 do not confirm the presence of antiprotons with large momenta (an additional discussion of baryon-pair production can be found in Sect. 2.1). By changing the momentum fraction of the leading protons the production of antiprotons with large momentum fraction can not be avoided since the protons demonstrate a flat spectrum down to the central region.

In SIBYLL 2.3c the issues with leading baryon production are addressed with the so-called remnant formation. In this mechanism, the leading protons are produced from the remnant, while antiprotons and central protons are produced from strings that are attached to soft sea quarks (Fig. 11b,c). The momentum fraction of the sea quarks is sampled from \(f_{\text{soft}}(x) = (1-x)^{1.5} (x^2 - m_q^2/s)^{-1/4}\) with \(m_q = 0.6\) GeV. The momentum fraction for the remnant (system of valence quarks) is distributed like \(x^{1.5}\).

The energy and the momentum transferred in the remnant interaction are modeled similarly to diffractive interactions. The squared mass spectrum follows \(dN/dM_F^2 = 1/M_F^{2\alpha}\) with \(\alpha_r = 1.5\). The slope of the \(p_T\) spectrum is

\[
B_r(M_t^2) = \max(B_{0,r}, a_r + b_r \ln (M_t^2c^4/\text{GeV}^2)),
\]

with the parameters \(B_{0,r} = 0.2\) GeV\(^2/c^4\), \(a_r = 7.0\) GeV\(^2/c^4\) and \(b_r = -2.5\) GeV\(^2/c^4\). In addition to the continuous spectrum, discrete excitations of resonances are included. Due to their isospin structure, the decay channels may be weighted differently than for isotropic phase space decay. For each projectile two resonances are included (e.g. see Tab. 1).

When parton densities become large at high energies and the number of parton interactions increases, it is less likely that partons remain to form a remnant. In this case the situation is more similar to the two string approach in SIBYLL 2.1. This transition effect is taken into account by imposing a dependence on the sum of soft and hard parton interactions \((n_s + n_h)\) to the remnant survival probability

\[
P_r = P_{r,0} \exp\left(-[N_W + \epsilon(n_h + n_s)]\right). \quad (15)
\]
In nuclear interactions (even at low energies) parton densities can be large. Correspondingly, the remnant probability depends on the number of nucleon interactions \(N_w \). The relative importance of nucleon and parton multiplicity is determined by \(r \) and is set to 0.2. The remnant survival probability at low energies \(P_{r,0} \) is 60%.

The spectrum of the remnant excitation masses for proton interactions in Fig. 12 demonstrates how different hadronization mechanisms apply for different regions of the mass spectrum. For large masses \((\Delta M = m_{\text{remnant}} - m_{\text{projectile}} > 1 \text{ GeV}) \), where \(m_{\text{projectile}} \) is the mass of the projectile), indicating the presence of a fast valence quark, the de-excitation is very anisotropic and particles are emitted mostly in the direction of the leading quark. In this case, the hadronization of high mass remnants is implemented as the fragmentation of a single string. At intermediate masses \((0.4 \text{ GeV} < \Delta M < 1 \text{ GeV}) \), a continuum of isotropic particles is produced by phase space decay. The number of particles produced is selected from a truncated Gaussian distribution with the mean \(n_{\text{thermal}} = 2\sqrt{\Delta M/\text{GeV}} \), \(n_{\text{thermal}} > 2 \). Below the threshold for the production of particles and resonances \((\Delta M < 0.2 \text{ GeV}) \), the remnant is recombined to the initial beam particle. This recombination region directly determines the proton distribution at intermediate and large Feynman-\(x \) (see Fig. 9).

Another drawback of the model for leading particle production in SIBYLL 2.1 is the insufficient attenuation of the leading particles in the transition from proton to nuclear targets (see secondary proton spectrum in Fig. 13). While the proton spectrum is clearly affected by the number of target nucleons, this effect is much smaller for mesons (pions). The model for the reduced remnant formation probability in the presence of multiple target nucleons (Eq. 15) in SIBYLL 2.3c reproduces this effect correctly.

The model parameters are adjusted according to low-energy data from the NA49 experiment that provides a large \(x_p \) coverage. However, the remnant model affects also high energies as well, resulting in a significant improvement of leading neutrons at LHCf [76] (7 TeV), as shown in Fig. 14. The remaining discrepancy in this very small angular bin is likely to originate from a mismatch of the transverse momentum of the leading particles.

2. Leading mesons & \(\rho^0 \) production

A second important role of leading particles in EAS is their impact on the redistribution of energy between the hadronic and the electromagnetic (EM) shower component. Any charged pion of the hadronic cascade can transform into a neutral pion in a charge exchange interaction. Through the prompt decay of the neutral pion into two photons, all the energy is then transferred to the EM component

\[
\pi^\pm + p \to \pi^0 + X \\
\pi^0 \to \gamma \gamma .
\]

The influence of this reaction is largest for the leading particles and usually results in a decrease of the muon production that occurs at late stages of the EAS development [80]. A suppression of the pion charge exchange process has the opposite effect.

An example for such a competing reaction is the production of neutral vector mesons \((\rho^0 : I(J^{CP}) = 1(1^-)) \) from a pion beam

\[
\pi^\pm + p \to \rho^0 + X \\
\rho^0 \to \pi^+ \pi^- .
\]

Whereas a neutral pion decays into two photons, the conservation of spin requires a \(\rho^0 \) to decay into two charged pions.

In the Heitler-Matthews model [81] the average number of muons in an EAS initiated by a primary cosmic ray with energy \(E_0 \) is given by

\[
N_\mu = \left(\frac{E_0}{E_c} \right)^\alpha \text{ with } \alpha = \frac{\ln(n_{ch})}{\ln(n_{tot})} ,
\]

TABLE II. Table of the resonances used for remnant excitations of the most common projectiles in SIBYLL 2.3c (also visible in Fig. 12).

Projectile	Resonance	Mass (GeV)
p, n	\(N(1440)^{+0} \)	1.44
	\(N(1770)^{+0} \)	1.77
	\(\rho^{0,\pm} \)	0.76
	\(\pi_1^{0,\pm} \)	1.30
	\(K^{0,\pm} \)	0.89
	\(K^{+0}_0 \)	1.43

![FIG. 12. Mass distribution of the proton remnant in the model. The overall shape is of the form \(M_{\text{remnant}}^{-\alpha} \). The resonances at low excitation masses are taken into account according to Table II](image-url)
and critical energy E_c. The change of the number of muons per decade of energy (α) thus depends on the total and charged multiplicities. It is evident that the ratio between ρ^0- and π^0-production directly affects the exponent α.

In charged pion–proton interactions the NA22 fixed target experiment found that at large momentum fractions vector mesons are more abundantly produced than neutral pions (Fig. 15) [82, 83]. In the dual parton approach with standard string fragmentation, as it is used in SIBYLL and several other models, this result is unexpected and probably can not be reproduced without invoking an additional reaction mechanism. Recent measurements by the NA61 collaboration have confirmed the leading ρ^0 enhancement in case of pion nuclear interactions [84].

The leading ρ enhancement and π^0 suppression can be reproduced in SIBYLL by adjusting the hadronization for the remnant and for diffraction dissociation. The result is shown in Fig. 15. The transition from proton to nuclear targets is entirely described by the dependence of the remnant survival probability on N_w in Eq. (18). As demonstrated in Fig. 16 the softening of the leading ρ^0 spectrum in pion–carbon interactions is well reproduced by the current model. The intersection between the ρ^0 and π^0 spectra is predicted to occur at the same x_F in pion–proton and pion–carbon collisions ($x_F \approx 0.5$). The position of this intersection is important for EAS since it determines the fraction of the energy that goes either into the EM or hadronic shower component. Until the spectrum of π^0 is measured for meson-nucleus interactions, this intersection is experimentally not fully determined. Thus the total effect of the leading ρ^0 on the number of muons in EAS remains unconstrained (this topic is further discussed in Sect. III C).

\section*{D. Hadronization}

\subsection*{1. Baryon-pair production}

While the importance of leading particles for the development of EAS is clear, it is not directly evident how a relatively rare process as baryon-pair production affects muon production [80, 88, 89]. The role the baryons play is similar to a catalyst in a chemical reaction. Any baryon produced in an air shower will undergo interactions and produce new particles, in particular it will regenerate at least itself due to the conservation of baryon number. The interactions continue until the kinetic energy falls below the particle production threshold. Through this mechanism any additional baryon yields more pions and kaons and hence ultimately more muons. In terms of the Heitler-Matthews model, where the number of muons is given by Eq. (18), additional baryons represent an increase of the exponent α.

In SIBYLL’s string model, baryonic pairs are generated through the occurrence of diquark pairs in the string splitting with a certain probability, which in SIBYLL 2.1 is the global diquark rate $P_{\text{diquark}}/P_q = 0.04$. This model works well at low energies where mostly a single gluon exchange occurs. It fails, however, in the multi minijet
FIG. 15. Feynman-x spectrum of neutral pions and their spin−1 resonance state ρ^0 in π^+−proton collisions at $p_{\text{lab}} = 250\text{ GeV}/c$. The expectation from standard quark splitting ($\pi^+ : u\bar{d}d$) and fragmentation is that a fixed fraction of the leading π^+ transforms into neutral pions ($\pi^0 : (u\bar{u} − d\bar{d})/\sqrt{2}$) and a smaller fraction into the resonance state ρ^0 (upper figure). Data, on the other hand, show an enhancement of the production of the resonant state and a suppression of the ground state in the region of the leading particle. The effect is reproduced in Sibyll 2.3c (lower figure) by increasing the rate at which resonances occur in the fragmentation of diffractive processes and by including the ρ^0 as a resonance state in the remnant formation of the pion.

FIG. 16. Feynman-x spectrum of neutral ρ-mesons in pion−carbon interactions as measured in the NA61 experiment. This measurement confirms the enhancement of leading ρ^0 for nuclear targets. Compared to the data obtained with a proton target (gray triangles), the carbon data (blue squares) reveals a softening of the spectrum, indicating the relevance of interactions with multiple target nucleons. The new remnant model (bottom) correctly reproduces the softening of the leading ρ^0 and predicts a suppression of the production of leading neutral pions (red curve).

FIG. 17. Average multiplicity of antiprotons as a function of center-of-mass energy in proton−proton collisions. The full phase space measurements (filled circles) are obtained at fixed target or early collider experiments (ISR) and measurements at central rapidities (diamonds) from CMS. The enhanced anti-baryon production as implemented in Sibyll 2.3c agrees well with the data at all energies.
found that baryon-pair production in the fragmentation of quarks or gluons can be different [92].

2. Transverse momentum

The transverse momentum in the string fragmentation model (string-p_T) is usually derived from the tunneling of the quark pairs in the string splitting, which results in a Gaussian distribution [94]. However, the observed distribution of transverse momenta in hadron collisions [95, 96] more closely resembles an exponential distribution as predicted by models of 'thermal' particle production [97], motivating us to distribute the string-p_T in Sibyll 2.3c according to

$$f(m_{T,i}) \sim \exp\left[-(m_{T,i} - m_i)/(m_{T,i})\right],$$

where i denotes different flavors of quarks and diquarks. The energy dependence of the average transverse mass $\langle m_{T,i} \rangle$ is parameterized as

$$\langle m_{T,i}(s) \rangle = m_{0,i} + A_{T,i} \log_{10} \left(\sqrt{s}/30 \text{GeV} \right)^2,$$

with the parameters $A_{T,i}$ and $m_{0,i}$. The values are given in Tab. [III].
TABLE III. Parameters of the average transverse mass for the different quark flavors in string fragmentation. The diquark masses are computed from the sum of the quark masses.

parton m_i (GeV)	$m_{0,i}$ (GeV)	$A_{T,i}$ (GeV)
u,d	0.325	0.18
s	0.5	0.28
c	1.5	0.308
diq	--	0.3
c-diq	--	0.5
		0.165

These values are derived from the measured p_T spectra of pions, kaons and protons at low (NA49) and high energies (CMS, see Fig. 19). In addition to the string-p_T, the hadrons acquire their transverse momentum from the initial partonic interaction. As previously mentioned, the parton kinematics in SIBYLL 2.3c are determined from post-HERA PDFs (GRV98-LO \[57\] \[38\]), which predict a steeper rise of the gluon density at small-x, when compared to the old parameterization in SIBYLL 2.1. With the new parameterizations the transition between the regions dominated by soft scattering ($p_T < 3$ GeV) and hard scattering is described better (see Fig. 20).

While the new PDFs help in describing the transition region, the rise of the average transverse momentum with energy is not described well (not shown). To account for the rapid rise with energy seen in the data (see Fig. 21), the energy dependence of the average transverse mass in Eq. (19) is set to be quadratic in log (\sqrt{s}). The integration of post-LHC PDFs, in which the small-x gluon densities tend to be smaller than in the GRV98 parameterizations, is not expected to help with this.

E. Nuclear diffraction & inelastic screening

Nuclear cross sections in SIBYLL 2.1 are calculated with the Glauber model \[14\] \[39\] neglecting screening effects due to inelastic intermediate states \[100\] in which an excited nucleon may reinteract and return to its ground state. Also, diffraction dissociation in hadron–nucleus interactions is restricted to the incoherent component. SIBYLL 2.3c includes screening and the diffractive excitation of the beam hadron in a coherent interaction \[101\] \[102\].

In analogy to diffraction dissociation in hadron nucleon interactions \[10\] \[43\], the coherent diffraction is implemented using a two-channel formalism with a single effective diffractive intermediate state, where the shape of the transition amplitude to the excited state is equal to the elastic amplitude. The remaining free parameter of the model is the coupling between the states ($\lambda(s)$). With

$$|p\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } |p^*\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

where $|p\rangle$ represents the proton and $|p^*\rangle$ is the effective intermediate state or diffractive final state, the generalized amplitude for the described model of hadron nucleon interactions is

$$\hat{\Gamma}_{hN} = \begin{pmatrix} 1 & \lambda \\ \lambda & 1 \end{pmatrix} \Gamma_{hN}^{ela}.$$ \hspace{1cm} (21)

The hadron–nucleus cross sections σ_{hA} are calculated with the standard Glauber expressions using the hadron–nucleon amplitude $\hat{\Gamma}_{hN}$, projected onto the desired transition $|p\rangle \cdots |p\rangle$. The diffractive cross sections are correspondingly calculated by taking the projection $|p^*\rangle \cdots |p\rangle$.

The assumed equivalence of the elastic and diffractive amplitude ($\Gamma_{pp+p} = \lambda \Gamma_{pp+p}^D$) implies for the energy dependence of the coupling λ

$$\lambda^2(s) = \frac{\sigma_{SD}^{SD}(s, M_{D,max}^2)}{\sigma_{pp}^{ela}(s)},$$

where $|p\rangle$ represents the proton and $|p^*\rangle$ is the effective intermediate state or diffractive final state, the generalized amplitude for the described model of hadron nucleon interactions is

$$\hat{\Gamma}_{hN} = \begin{pmatrix} 1 & \lambda \\ \lambda & 1 \end{pmatrix} \Gamma_{hN}^{ela}.$$ \hspace{1cm} (21)
where $M^2_{D,max}$ is the upper mass limit for coherent scattering. In the model the mass limit for inelastic screening is set to $\xi_{max} = M^2_{D,max}/s = 0.02$. The elastic and diffractive cross sections in Eq. (22) are taken from the parameterizations by Goulianos [11]. The diffractive cross section for proton–proton interactions in the parameterizations is shown in Fig. 22. In Sibyll 2.1 (black dashed line) the same parameterization is used but with a higher mass limit of $\xi_{max} = 0.2$. The new cross section fit in Sibyll 2.3c (Sect. [11B]) slightly reduces the diffractive cross section. As nuclei are more extended than individual hadrons the coherence limit requires the mass limit to be smaller for hadron–nucleus interactions.

The cross section for the diffractive dissociation of the proton in proton–carbon interactions is plotted together with the predictions from commonly used interaction models in Fig. 23. While in Sibyll 2.1 the diffractive cross section drops towards high energies the contribution from coherent diffraction in Sibyll 2.3c compensates this trend. QGSJetII-04 [28] and EPOS-LHC [29] predict constant diffractive cross sections. Since the diffractive cross section is small relative to the production cross section of $O(400 \text{mb})$, the differences among the models are unlikely to be important in EAS.

F. Meson-nucleus interactions

The extension of the model from proton-nucleon collisions (as discussed Sec. [11B]) to pion– and kaon–nucleon collisions is straightforward, since at the microscopic level the interactions are treated universally as scatterings of quarks and gluons. Differences, in particular at low energies, arise from the different profile functions [105], momentum distributions (PDFs) [106] and Regge couplings in the soft interaction cross section (ν, χ in Tab. [VIII]).

Since the measurements [103, 104] from Fig. 24 were not yet available during the development of the model, the distributions obtained with Sibyll 2.3c and Sibyll 2.1 are predictions. The newer version clearly describes the data better but some deviations remain, in particular for more central pions, forward kaons and forward anti-protons.

III. AIR SHOWER PREDICTIONS

Some relations between air shower observables and specific properties of hadronic interactions have been studied in the past [115]. Here we focus on the depth of shower maximum (X_{max}) and the number of muons N_μ. The calculations are obtained with CONEX [116], using FLUKA [117, 118] to simulate interactions at $E_{kin} < 80 \text{GeV}$. The employed scheme is hybrid, meaning that all sub-showers with less than 1% of the primary energy are treated semi-analytically using numerical solutions of the average sub-shower. We compare the predictions from Sibyll 2.3c with the previous Sibyll 2.1 and two other post-LHC models, EPOS-LHC [29] and QGSJetII-04 [28]. In addition, we calculate some of the observables with modified versions of Sibyll 2.3c to show the impact of individual extensions introduced in Sect. [II]. The extensions are labeled in Tab. [IV] and will be used throughout the next sections.
TABLE IV. Summary of the modified versions of Sibyll 2.3c. The modifications correspond to switching off one of the extensions discussed in Sect. II.

Label	Description: Sibyll 2.3c with ...
no coherent diffraction	no coherent diffraction in h-nucleus collisions (Sect. II E).
$\lambda_{\text{int},p}$	proton interaction length as in Sibyll 2.1 (Sect. II B).
no ρ^0 enhancement	no enhanced leading ρ^0 in π-nucleus interactions (Sect. II C 2).
no \bar{p} enhancement	no enhanced production of baryons (Sect. II D 1).

FIG. 25. Energy dependence of the proton–air production cross section. The measurements are based on cosmic-ray detections [71,107–114]. The reduction between the versions of Sibyll comes mainly from the updated proton–proton cross section, whereas the correction due to inelastic screening is small. The most precise measurement at the highest energies by the Pierre Auger Observatory also favors a lower cross section, whereas the correction due to inelastic screening (Sect. II E). The updated proton–air cross sections [71,114] in agreement with the extrapolations of the LHC measurements.

A. Interaction length & σ_{air}

The simplest and most direct connection between the development of an air shower and hadronic interactions is conveyed by the interaction length $\lambda_{\text{int}}(E) = \langle m_{\text{air}} \rangle / \sigma_{\text{prod}}(E)$. It determines the position of the first interaction in the atmosphere and thus directly influences the position of the shower maximum (X_{max}). In the Glauber model [30], the inelastic cross section in proton–air interactions, σ_{prod} is derived from the proton–proton cross section σ_{pp}. A smaller σ_{pp}, as in Sibyll 2.3c (Sect. II B), translates into a smaller proton–air cross section. The effect on σ_{prod} is less then proportional since σ_{pp} is only a small contribution to the overall value that is mostly defined by the nuclear geometry. An additional small reduction of the cross section originates from inelastic screening (Sect. II E). The updated proton–air cross section results in a better compatibility with observations as can be seen in Fig. 25. The impact of the updated interaction length on $\langle X_{\text{max}} \rangle$ is demonstrated in Fig. 26. The reduction of the cross section at high energy leads to a shift of 5-10 g/cm². Tab. VI contains interaction lengths for different primary nuclei and secondary mesons in air.

B. $\langle X_{\text{max}} \rangle$ and $\sigma(X_{\text{max}})$

The depth at which an individual shower reaches the maximum number of particles is determined by the depth of the first interaction and the subsequent development of the particle cascade. In very general terms, the development of the cascade is influenced by how the energy of the interacting particle is distributed among the secondaries, in particular by how energy is shared among electromagnetic and hadronic particles. The average shower maximum for proton initiated showers in Sibyll 2.3c is almost 20 g/cm² deeper than that in Sibyll 2.1 (see Fig. 26 and Fig. 27) and on average 10 to 20 g/cm² deeper compared to other contemporary models. A large part of this difference comes from the shift in the depth of the first interaction due to the larger interaction length of protons in air. Another contribution to the difference
in \(\langle X_{\text{max}} \rangle \) is the decreased inelasticity of the interactions (see Fig. 28).

Fig. 29 illustrates the effect of the individual modifications on the shift in \(\langle X_{\text{max}} \rangle \). This comparison is produced by individually switching off the model extensions introduced in Sect. III and summarized in Tab. IV. The change in the interaction length (cyan) is responsible for 10 g/cm\(^2\) out of the 20 g/cm\(^2\) difference between Sibyll 2.1 and Sibyll 2.3c at high energy. Coherent diffraction on the nuclei in the air (purple) contributes another 5 g/cm\(^2\). The remaining 7 g/cm\(^2\) can not be attributed to a single feature but emerge from the combination of the model modification.

The enhanced \(\rho^0 \) production (green) and the improved baryon-pair production (not shown) have a small effect on \(\langle X_{\text{max}} \rangle \). These processes mostly affect the later stages of EAS that are more important for muon production (see next section for more details).

The overall effect of the changes in the multiparticle production between the 2.1 and 2.3c versions result in a decreased inelasticity in Fig. 28 for proton and pion interactions. Compared to Sibyll 2.1, the inelasticity increases less steeply with energy and should have impacted the elongation rate for protons. This effect seems to have been compensated by the change in the energy dependence of the interaction length/cross section (cyan line in Fig. 29).

The separation between proton and iron showers in \(\langle X_{\text{max}} \rangle \) at lower energies is larger in Sibyll 2.3c (see Fig. 30), since coherent diffraction only deepens the proton showers and has no effect for nuclear projectiles. This effect is expected to have a higher impact on the measurements of the cosmic ray composition that were previously interpreted using predictions from Sibyll 2.1.

The width of the distribution of shower maxima
The width of the X_{max} distribution expected from models using a pure composition compared to data from the Pierre Auger Observatory [119, 120]. The $\sigma(X_{\text{max}})$ plays an important role in the determination of the mixture of different mass groups at a particular energy.

In the recent years it became evident that the muon content observed in air showers diverges from the predictions of the interaction models [122]. Recently the Pierre Auger Observatory quantified this “muon excess” at ground to be at the order of 30-60% [19]. This result is in agreement with the numbers obtained by the Telescope Array [123]. In contrast to the $\langle X_{\text{max}} \rangle$, the production of muons is very sensitive to hadronic particle production at all stages of the shower. It is therefore legitimate to attribute the muon excess to a combination of flaws in the modeling of hadronic interactions. Alternatively, the excess could also be seen as the signature of a new physical phenomena beyond the scales probed by current colliders [124, 125].

Most muons in EAS originate from decays of hadrons, most abundantly of pions and kaons. Due to their rel-

FIG. 31. The width of the X_{max} distribution expected from models using a pure composition compared to data from the Pierre Auger Observatory [119, 120]. The $\sigma(X_{\text{max}})$ plays an important role in the determination of the mixture of different mass groups at a particular energy.

FIG. 32. Effect of model modifications in Sibyll 2.3c on the fluctuations of X_{max}. The labels for the modifications are explained in Tab. IV. The fluctuations are most strongly affected by the change in the interaction length. Since the nuclear cross sections are not very sensitive to changes of σ_{pp}, the impact is highest for proton primaries. This is clearly seen for the iron predictions in Fig. 31.

FIG. 33. Average number of muons at ground in proton and iron showers in air for $E_\mu > 1$ GeV. It is remarkable that at 10^{17} eV, the expectation from Sibyll 2.3c for protons overtakes iron in Sibyll 2.1.

FIG. 34. Ratio of the average number of muons between post-LHC models and Sibyll 2.1. The energy dependence of the muon number is similar between the post-LHC models.

C. Muons in EAS

1. Number of muons

$\sigma(X_{\text{max}})$ in Fig. 31 increased by 10 g/cm2 between the versions, becoming the largest of all CR models. This change is dominated by the increased interaction length, as is shown Fig. 32. Note, that the $\sigma(X_{\text{max}})$ increases only for protons, widening the distance between the pure protons and other masses. This behavior has an important impact on the theoretical interpretation of the measurements in terms of cosmic ray sources and it has been shown that Sibyll 2.3c produces distinctly different results compared to other contemporary interaction models [121].
The energy spectra of muons for the post-LHC interaction models relative to SIBYLL 2.1 are shown in Fig. 36. The clear rise in the number of low energy muons predominantly originates from the increased number of cascading hadrons due to the modified baryon-pair and ρ-production. At energies close to that of the primary proton, where the total number of muons is low, SIBYLL yields additional muons from decays of charm that the other models do not include. In left panel of Fig. 36 the energy and incident angle of the primary CR resemble the typical experimental conditions of IceTop/IceCube [126, 127], whereas the right panel resembles typical conditions at the Pierre Auger Observatory [18]. It is remarkable that the model specific features of the spectrum are present across very different primary energies.

Another observation is that the current models predict different shapes of the muon spectrum. With a combination of the surface air shower array IceTop and the main instrumented IceCube volume deep in the Antarctic ice, the IceCube Observatory has the potential to discriminate among the interaction models by measuring the muon content of a single air shower at two different energy regimes simultaneously. IceTop is sensitive to the low energy muons while only the muons with $E_\mu \sim \text{TeV}$ can penetrate the ice deep enough to generate the "in-ice" muon signal. The preliminary results clearly indicate that SIBYLL 2.1 has too many high- and too few low-energy muons [128]. The discrepancy is expected from the discussion of Fig. 36 above, since SIBYLL 2.1 neither describes the baryon-pair production nor the ρ production very well. The same analysis shows that SIBYLL 2.3c accurately reproduces both low- and high-energy muons. The result is, however, difficult to translate into constraints on the hadronic parameters since the (unknown) mass composition has to be simultaneously taken into account. The impact of each modification on the muon spectrum is illustrated in Fig. 37. According to the figure baryon-pair production contributes dominantly at low energies, while the contribution from ρ affects all energies.

The spectra for the individual mass groups of cosmic rays nuclei are not well known across the entire energy range of the indirect air shower measurements [129]. The main source of this systematic uncertainty stems from ambiguities among the interpretations of EAS observables with different hadronic interaction models. At present, at ultra-high energies the most robust method to estimate the composition relies on the electromagnetic component only. Recent attempts to use the surface detector and exploit the muon content as a sensitive variable, often result in incompatible results [130].
FIG. 36. Ratio of the muon energy spectrum between the post-LHC interaction models and Sibyll 2.1. Primary particles are protons. Left: Vertical showers with primary energy 10 PeV, corresponding to the showers studied in IceTop/IceCube [126]. Right: Showers at 10 EeV are simulated with a zenith angle of 67° as they are observed at the Pierre Auger Observatory [18]. The increased number of PeV muons in Sibyll 2.3c is due to the prompt decay of charmed hadrons not present in any of the other models [23, 91].

FIG. 37. Ratio of the muon energy spectrum between the versions of Sibyll 2.3c and Sibyll 2.1 for 10 EeV proton showers. The models labeled ‘off’ refer to modified versions of Sibyll 2.3c where the extensions for enhanced $\bar{\rho}$ and baryon production have been switched off (see Tab. IV). Baryon pair production enhances mostly the number of low energy muons, while ρ^0 production also affects high energy muons.

We study the ratio of the muon energy spectra for the two extreme composition assumptions, pure protons and pure iron. The ratios in Fig. 39 demonstrate that the difference in the number of GeV muons is small between UHE protons and iron nuclei ($\sim 20 \sim 40\%$). As discussed in the previous section, similar variations are expected just from swapping the interaction model. At higher muon energies ($E_{\mu} > 100$ GeV) protons and iron are well separated. The shape comes from two effects; the earlier development of iron showers due to the shorter interaction length of the primary nucleus, and, the lower energy carried by the individual nucleons in the iron nucleus. If one would take the muon energy spectrum from iron primaries with $E_{\mu} = 56 E_p$ and compare with the spectrum in proton showers at the shower maximum they would have identical shapes.

The superposition Ansatz ($E_0 \rightarrow E_0/A$ and $N_{\mu}^A = A N_{\mu}^1$) in the Heitler-Matthews model of Eq. (18) yields for the composition dependence of the total muon number an additional multiplicative term $(1 - \alpha) \ln(A)$. If α approaches unity, as is the case for the current model extensions, the difference between protons and nuclei decreases. This expectation is confirmed by full model calculations in Fig. 38 in which the muon number varies by only 35% between proton and iron for post-LHC models, while for Sibyll 2.1 the difference is almost 50%. However, the ratio of iron to proton spectra from different interaction models agree remarkably well (see Fig. 39).

The influence of individual model processes on the separation between proton and iron are demonstrated in Fig. 39. Both baryon-pair production and ρ production enhance low energy muons and essentially reduce this
separation through a more elongated hadronic cascade (or in other terms, a larger α in the Heitler-Matthews model).

IV. DISCUSSION & CONCLUSION

This paper documents the latest extensions to the hadronic interaction model Sibyll and discusses their impact on extensive air showers. The model update is motivated through the availability of recent particle accelerator measurements, where measurements from experiments at the LHC and those from fixed-target experiments are equally important. The goal is to improve the consistency in the description of extensive air showers, in particular related to the muon content that impacts the interpretation of the mass composition of the primary cosmic rays. A tabulated overview of the changes between the Sibyll 2.1 and Sibyll 2.3c is available in Tab. VII.

The interaction cross sections from measurements at the LHC point towards lower total and inelastic proton–proton cross sections that favor the low data points from measurements at the TeVatron. Our new fits take the measurements up to $\sqrt{s} = 13$ TeV into account, reducing the extrapolation uncertainties up to ultra-high cosmic ray energies. The effect on the proton–air cross section is a reduction of the tension between Sibyll and the cross section measurement derived from UHECR observations at Auger. The spectra of identified particles, measured in central phase space at the LHC, allow us to adjust the hadronization to account for a higher baryon-pair production compared to the previous version. Together with the updated PDFs, the high energy data constrains the shape and energy dependence of transverse momentum distributions.

On the other hand, the fixed-target measurements in p–p, p–C, π–p and π–C beam configurations yield enough information to identify the shortcomings of the previous model version and entirely revise the leading particle production. We implement a model that makes use of the remaining hadron content in the beam remnants that can undergo further excitation and hadronization processes. This mechanism adds necessary degrees of freedom to decouple very forward particle production from central.
None of the new features requires drastic changes in the underlying principles and assumptions that were defining Sibyll during the last decades. Microscopically, the main picture is still a combination of the Dual Parton and the minijet model, a fusion of perturbative QCD (hard component) and elements of the Gribov-Regge field theory (soft component).

We identified, however, a number of problems that indicate a necessity to depart from these well explored principles in future versions. One of these problems is related to the growth of the multiplicity distribution that rises faster in the model than in data. A second problem is the narrow width of the pseudorapidity distributions that most likely is an effect of the missing contribution from semi-hard processes. Both aspects are related to the underlying partonic picture, and a permanent solution will require an overhaul of several old principles in the code base.

On the nuclear side, the previous Glauber-based model is extended to include screening corrections on the production cross section due to inelastic intermediate states. The updated model for diffraction dissociation now incorporates the process of coherent diffraction, in which the beam hadron transitions to an excited state without the target side nucleus losing its coherence.

Charm hadron production is added explicitly for particle astrophysics applications. In particular this affects calculations of atmospheric neutrinos at very high energies, where the flux of atmospheric leptons competes with that of astrophysical origin. The details of this topic are discussed in a separate publication [25].

Regarding air showers, several of the changes to the hadronic interaction model impact the simulations. The showers reach their maximum deeper by 20 g/cm2 with respect to Sibyll 2.1, mainly due to the modifications to nuclear diffraction and the updated interaction cross sections for protons and pions. The fluctuations of the $\langle X_{\text{max}} \rangle$ in proton showers are almost 10 g/cm2 higher as an effect of the increased interaction length and elasticity. Both modification are likely to yield a notably heavier composition in the interpretation of the flux of UHECR.

The muon number in Sibyll 2.3c drastically increases by $30 - 60\%$ relative to Sibyll 2.1, which was previously known to yield too few muons. Compared to the other interaction models the new version has the highest number of muons exceeding the numbers from EPOS-LHC and QGSJet-II-04 by $\sim 10 - 15\%$. This change will certainly reduce the muon excess seen by the Pierre Auger Observatory and the Telescope array, but will most likely not be sufficient to remove entirely the tension between simulation and data. We demonstrated that the forward spectrum of π^0 and leading ρ mesons in π-nucleus interactions effectively modulates the total muon number and that a constraining measurement of the π^0 is one of the leading uncertainties.

We expect that the combined measurements with the IceCube and IceTop detectors at two energy regimes, and, the event-by-event composition sensitivity of the upgrade of the Pierre Auger Observatory (Auger-Prime) [31], will help to resolve the mysteries around the muon component in EAS.

ACKNOWLEDGMENTS

We thank F. Penha, H. P. Dembinski, T. Pierog, S. Ostapchenko and our many colleagues from the IceCube, KASCADE-Grande, LHCf, and Pierre Auger Collaborations for their feedback and discussions. This work is supported in part by the KIT graduate school KSETA, in part by the German Ministry of Education and Research (BMBF), grant No. 05A14VK1, and the Helmholtz Alliance for Astroparticle Physics (HAP), which is funded by the Initiative and Networking Fund of the Helmholtz Association and in part by the U.S. National Science Foundation (PHY-1505990). The authors are grateful to the Mainz Institute for Theoretical Physics (MITP) of the DFG Cluster of Excellence PRISMA+ (Project ID 39083149), for its hospitality and its support during the completion of this work. This project received funding through the contribution of A. Fedynitch from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant No. 646623). The work of T. Gaisser and T. Stanev is supported in part by grants from the U.S. Department of Energy (de-sc0013880) and the U.S. National Science Foundation (PHY 1505990). The work of F. Riehn is supported in part by OE - Portugal, FCT, I. P., under project CERN/FISPAR/0023/2017 and OE - Portugal, FCT, I. P., under project IF/00820/2014/CP1248/CT0001. A.F. completed parts of this work as JSPS International Fellow.

[1] R. S. Fletcher, T. K. Gaissar, Paolo Lipari, and Todor Stanev. “Sibyll: An event generator for simulation of high-energy cosmic ray cascades,” Phys. Rev. D 50, 5710–5731 (1994).
[2] A. Capella, U. Sukhatme, C. I. Tan, and J. Tran Thanh Van, “Dual parton model,” Phys. Rept. 236, 225–329 (1994).
[3] T. K. Gaissar and F. Halzen, “Soft Hard Scattering in the TeV Range,” Phys. Rev. Lett. 54, 1754 (1985).
[4] G. Pancheri and Y. N. Srivastava, “Jets in minimum bias physics,” Phys. Lett. B 159, 69 (1985).
[5] G. Pancheri and Y. N. Srivastava, “Low $p(t)$ jets and the rise with energy of the inelastic cross-section,” Phys. Lett. B 182, 199–207 (1986).
[6] Loyal Durand and Pi Hong, “QCD and Rising Total Cross-Sections,” Phys. Rev. Lett. 58, 303 (1987).
[7] H. U. Bengtsson and T. Sjöstrand, Comp. Phys. Commun. 46, 43 (1987).
[8] Torbjorn Sjostrand, “Status of Fragmentation Models,” Int. J. Mod. Phys. A 3, 751 (1988).
[9] Torbjorn Sjostrand, Stephen Mrenna, and Peter Skands, “Pythia 6.4 physics and manual,” JHEP 05, 026 (2006).
[10] Ralph Engel, Felix Riehn, Anatoli Fedynitch, Thomas K. Gaisser, and Todor Stanev, “The hadronic interaction model SIBYLL – past, present and future,” Proceedings, 19th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2016): Moscow, Russia, August 22-27, 2016, EPJ Web Conf. 145, 08001 (2017).
[11] F. Abe et al. (CDF), “Transverse momentum distributions of charged particles produced in \(pp \) interactions at \(\sqrt{s} = 630 \) GeV and 1800 GeV,” Phys. Rev. Lett. 61, 1819 (1988).
[12] G. Arnison et al. (UA1), “Transverse Momentum Spectra for Charged Particles at the CERN Proton anti-Proton Collider,” Phys. Lett. B 118, 167–172 (1982).
[13] P. Capiluppi, G. Giacomelli, A. M. Rossi, G. Vannini, and A. Bussiere, “Transverse momentum dependence in proton proton inclusive reactions at very high-energies,” Nucl. Phys. B 70, 1 (1974).
[14] R. J. Glauber and G. Matthiae, “High-energy scattering of protons by nuclei,” Nucl. Phys. B 21, 135–157 (1970).
[15] J. Engel, T. K. Gaisser, T. Stanev, and Paolo Lipari, “Nucleus-nucleus collisions and interpretation of cosmic ray cascades,” Phys. Rev. D 46, 5013–5025 (1992).
[16] Eun-Joo Ahn, Ralph Engel, Thomas K. Gaisser, Paolo Lipari, and Todor Stanev, “Cosmic ray interaction event generator SIBYLL 2.1,” Phys. Rev. D 80, 094003 (2009).
[17] T. Abu-Zayyad et al. (HiRes-MLA Collaboration), “Evidence for changing of cosmic ray composition between \(10^{17}\) and \(10^{18}\) eV from multicomponent measurements,” Phys. Rev. Lett. 84, 4276 (2000).
[18] Alexander Aab et al. (Pierre Auger Collaboration), “Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events,” Phys. Rev. D 91, 032003 (2015) [Erratum: Phys. Rev.D91,no.5,059901(2015)], arXiv:1408.1421 [astro-ph.HE].
[19] Alexander Aab et al. (Pierre Auger Collaboration), “Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory,” Phys. Rev. Lett. 117, 192001 (2016), arXiv:1610.08509 [hep-ex].
[20] M. G. Aartsen et al. (IceCube Collaboration), “Evidence for High-Energy Extratropical Neutrinos at the IceCube Detector,” Science 342, 1242856 (2013), arXiv:1311.5238 [astro-ph.HE].
[21] M. G. Aartsen et al. (IceCube Collaboration), “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data,” Phys. Rev. Lett. 113, 101101 (2014), arXiv:1405.5303 [astro-ph.HE].
[22] Eun-Joo Ahn, Ralph Engel, Thomas K. Gaisser, Paolo Lipari, and Todor Stanev, “Sibyll with charm,” (2011), arXiv:1102.5705 [astro-ph.HE].
[23] Anatoli Fedynitch, Ralph Engel, Thomas K. Gaisser, Felix Riehn, and Todor Stanev, “Calculation of conventional and prompt lepton fluxes at very high energy,” Proceedings, 18th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2014): Geneva, Switzerland, August 18-22, 2014, EPJ Web Conf. 145, 08001 (2017).
[24] Anatoli Fedynitch, Hans P. Dembinski, Ralph Engel, Thomas K. Gaisser, Felix Riehn, and Todor Stanev, “A state-of-the-art calculation of atmospheric lepton fluxes,” Proceedings, 35th International Cosmic Ray Conference (ICRC 2017): Bexco, Busan, Korea, July 12-20, 2017, PoS ICRC2017, 1019 (2017).
[25] Anatoli Fedynitch, Felix Riehn, Ralph Engel, Thomas K. Gaisser, and Todor Stanev, “The hadronic interaction model Sibyll-2.3c and inclusive lepton fluxes,” Phys. Rev. D 100, 103018 (2019), arXiv:1806.04140 [hep-ph].
[26] Felix Riehn, Ralph Engel, Anatoli Fedynitch, Thomas K. Gaisser, and Todor Stanev, “A new version of the event generator Sibyll,” PoS ICRC2015, 558 (2015), arXiv:1510.00568 [hep-ph].
[27] Felix Riehn, Hans P. Dembinski, Ralph Engel, Anatoli Fedynitch, Thomas K. Gaisser, and Todor Stanev, “The hadronic interaction model SIBYLL 2.3c and Feynman scaling,” Proceedings, 35th International Cosmic Ray Conference (ICRC 2017): Bexco, Busan, Korea, July 12-20, 2017, PoS ICRC2017, 301 (2017), arXiv:1709.07227 [hep-ph].
[28] Sergey Ostapchenko, “Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QCDJET-II model,” Phys. Rev. D 83, 014018 (2011), arXiv:1010.1869 [hep-ph].
[29] T. Pierog, In. Karpenchko, J. M. Katzy, E. Yatsenko, and K. Werner, “EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider,” Phys. Rev. C 92, 034906 (2015), arXiv:1306.0121 [hep-ph].
[30] R. J. Glauber, “Cross-sections in deuterium at high-energies,” Phys. Rev. 100, 242–248 (1955).
[31] M. M. Block and R. N. Cahn, “High-energy p anti-p and p p forward elastic scattering and total cross-sections,” Rev. Mod. Phys. 57, 563 (1985).
[32] Martin M. Block, “Hadronic forward scattering: Predictions for the large hadron collider and cosmic rays,” Phys. Rept. 436, 71–215 (2006).
[33] Thomas K. Gaisser, Ralph Engel, and Elisa Resconi, Cosmic Rays and Particle Physics (Cambridge University Press, 2016).
[34] E. M. Levin, “Evolution equations for high parton density QCD,” (1998), (hep-ph/9806434).
[35] E. M. Levin and M. G. Ryskin, “High energy hadron collisions in QCD,” Phys. Rep. 189, 268 (1990).
[36] L. Durand and H. Pi, “High-energy nucleon-nucleus scattering and cosmic-ray cross sections,” Phys. Rev. D 38, 78–84 (1988).
[37] M. Gluck, E. Reya, and A. Vogt, “Dynamical parton distributions revisited,” Eur. Phys. J. C 5, 461–470 (1998), arXiv:hep-ph/9806404 [hep-ph].
[38] M. Gluck, E. Reya, and A. Vogt, “Dynamical parton distributions of the proton and small x physics,” Z. Phys. C 67, 433–448 (1995).
[39] A. Donnachie and P. V. Landshoff, “Total cross-sections,” Phys. Lett. B 296, 227–232 (1992).
[40] P. D. B. Collins, An Introduction to Regge Theory and High-Energy Physics Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, UK, 2009).
[41] Konstantin Goulianos, “Diffractive interactions of hadrons at high-energies,” Phys. Rept. 101, 169 (1983).
pions in p + C collisions at 158 GeV/c beam momentum," Eur. Phys. J. C 49, 897–917 (2007).

[78] C. Alt et al. (NA49), “Inclusive production of charged pions in p p collisions at 158 GeV/c beam momentum,” Eur. Phys. J. C 45, 343–381 (2006).

[79] B. Baatar et al. (NA49), “Inclusive production of protons, anti-protons, neutrons, deuterons and tritons in p+C collisions at 158 GeV/c beam momentum,” Eur. Phys. J. C 73, 2364 (2013) [arXiv:1207.6520 [hep-ex]].

[80] Hans-Joachim Drescher, “Remnant break-up and muon production in cosmic ray air showers,” Phys. Rev. D 77, 056003 (2008).

[81] J. Matthews, “A Heitler model of extensive air showers,” Phys. Lett. B 222, 232–236 (1989).

[82] N. M. Agababyan et al. (E710), “Identification of charged hadron production in p + p collisions at √s = 200 and 62.4 GeV,” Phys. Rev. C 83, 064903 (2011) [arXiv:1102.0753 [nucl-ex]].

[83] M. Antinucci et al. (E247), “Measurements of the inclusive production of charged pions, kaons, and protons in pp collisions at √s = 13 TeV,” Phys. Rev. D 92, 012003 (2015) [arXiv:1503.08689 [hep-ex]].

[84] A. Adare et al. (PHENIX Collaboration), “Identified charged hadron production in p + p collisions at √s = 200 and 62.4 GeV,” Phys. Rev. C 83, 064903 (2011) [arXiv:1102.0753 [nucl-ex]].

[85] A. Bialas, “Fluctuations of string tension and transverse mass distribution,” Phys. Lett. B 466, 301–304 (1999).
[113] R. U. Abbasi et al. (Telescope Array), “Measurement of the proton-air cross section with Telescope Arrays Middle Drum detector and surface array in hybrid mode,” Phys. Rev. D 92, 032007 (2015) [arXiv:1505.01860 [astro-ph.HE]].

[114] Ralf Matthias Ulrich (Pierre Auger Collaboration), “Extension of the measurement of the proton-air cross section with the Pierre Auger Observatory,” Proceedings, 34th International Cosmic Ray Conference (ICRC 2015): The Hague, The Netherlands, July 30-August 6, 2015, PoS ICRC2015, 401 (2016).

[115] Ralf Ulrich, Ralph Engel, and Michael Unger, “Hadronic multiparticle production at ultra-high energies and extensive air showers,” Phys. Rev. D 83, 054026 (2011).

[116] T. Bergmann et al., “One-dimensional hybrid approach to extensive air shower simulation,” Astropart. Phys. 26, 420–432 (2007).

[117] A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, “Fluka: A multi-particle transport code (program version 2005),” CERN-2005-010.

[118] T. T. Böhlen, F. Cerutti, M. P. W. Chin, A. Fassò, A. Ferrari, P. G. Ortega, A. Mairani, P. R. Sala, G. Smirnov, and V. Vlachoudis, “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications,” Nuclear Data Sheets 120, 211–214 (2014).

[119] Alexander Aab et al. (Pierre Auger Collaboration), “Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $10^{17.8}$ eV,” Phys. Rev. D 90, 122005 (2014) [arXiv:1409.4809 [astro-ph.HE]].

[120] Alexey Yushkov (Pierre Auger Collaboration), “Mass composition of cosmic rays with energies above $10^{17.2}$ eV from the hybrid data of the Pierre Auger Observatory,” The Pierre Auger Observatory: Contributions to the 36th International Cosmic Ray Conference (ICRC 2019), PoS ICRC2019, 482 (2019).

[121] Jonas Heine, Anatoli Fedynitch, Denise Boncioli, and Walter Winter, “A new view on Auger data and cosmogenic neutrinos in light of different nuclear disintegration and air-shower models,” Astrophys. J. 873, 88 (2019) [arXiv:1901.03338 [astro-ph.HE]].

[122] Thomas Gaissier, “Cosmic-Ray Showers Reveal Muon Mystery,” Physics 9, 125 (2016).

[123] R. U. Abbasi et al. (Telescope Array), “Study of muons from ultrahigh energy cosmic ray air showers measured with the Telescope Array experiment,” Phys. Rev. D 98, 022002 (2018) [arXiv:1804.03877 [astro-ph.HE]].

[124] J. Alvarez-Muniz, L. Cazon, R. Conceição, J. Dias de Deus, C. Pajares, and M. Pimenta, “Muon production and string percolation effects in cosmic rays at the highest energies,” (2012) [arXiv:1209.6474 [hep-ph]].

[125] Glennys R. Farrar and Jeffrey D. Allen, “A new physical phenomenon in ultra-high energy collisions,” Proceedings, International Symposium on Future Directions in UHECR Physics (UHECR2012): CERN, Geneva, Switzerland, February 13-16, 2012, EPJ Web Conf. 53, 07007 (2013) [arXiv:1307.2322 [hep-ph]].

[126] M. G. Aartsen et al. (IceCube Collaboration), “The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part III: Cosmic Rays,” (2017) [arXiv:1710.01194 [astro-ph.HE]].

[127] R. Abbasi et al. (IceCube), “IceTop: The surface component of IceCube,” Nucl. Instrum. Meth. A 700, 188–220 (2013) [arXiv:1207.6326 [astro-ph.IM]].

[128] Sam De Ridder, Emily Dvorak, and Thomas K. Gaisser, “Sensitivity of IceCube Cosmic-Ray measurements to the hadronic interaction models,” Proceedings, 35th International Cosmic Ray Conference (ICRC 2017), 2017, PoS ICRC2017, 319 (2017) [arXiv:1710.01194 [astro-ph.HE]].

[129] Karl-Heinz Kampert and Michael Unger, “Measurements of the Cosmic Ray Composition with Air Shower Experiments,” Astropart. Phys. 35, 660–678 (2012) [arXiv:1201.0018 [astro-ph.HE]].

[130] Patricia Sanchez-Lucas (Pierre Auger Collaboration), “X_{max} measurements and tests of hadronic models using the surface detector of the Pierre Auger Observatory,” The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017), PoS ICRC2017, 495 (2017).

[131] Alexander Aab et al. (Pierre Auger Collaboration), “The Pierre Auger Observatory Upgrade - Preliminary Design Report,” (2016) [arXiv:1604.03637 [astro-ph.IM]].

[132] E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579 (1985).
Appendix A: Tables of typical air-shower observables

TABLE V. Predictions for the depth of shower maximum, the fluctuations thereof and the number of muons in SIBYLL 2.3c for proton and iron induced showers. X_{max} is calculated by fitting a parabola to the profile of energy deposit in the atmosphere. The number of muons is taken at a depth of 2030 g/cm2, counting all muons with an energy exceeding 1 GeV. Showers were simulated with an inclination of 67° using CONEX hybrid simulations [116]. The Monte Carlo to cascade threshold was set to $E_{\text{thr}}/E_0 = 10^{-2}$.

$\log_{10}(E_0/\text{eV})$	$\langle X_{\text{max}} \rangle$ (g/cm2)	$\sigma(X_{\text{max}})$ (g/cm2)	$\ln N_\mu(E_\mu > 1 \text{ GeV})$			
	p	Fe	p	Fe	p	Fe
14.3	530.52	370.01	104.09	32.45	6.92	7.32
15.3	596.72	457.36	89.84	29.53	9.04	9.35
16.3	655.97	538.14	77.49	27.06	11.18	11.47
17.3	715.34	607.59	72.12	25.18	13.32	13.6
18.3	775.18	671.34	63.41	23.42	15.45	15.73
19.3	833.58	732.12	62.09	21.83	17.6	17.87
20.3	892.46	791.7	61.26	20.6	19.79	20.01

TABLE VI. Prediction of the interaction length of various particles in the atmosphere in SIBYLL. The relative increase with respect to SIBYLL 2.1 in percent is given in parentheses.

$\log_{10}(E_{\text{Lab}}/\text{TeV})$	$\lambda_{\text{int}}(E_{\text{Lab}})$ (g/cm2)				
	Fe	N	p	π	K
0.0	13.02	24.57	84.62	110.94	121.93
1.0	12.67	23.63	78.69	101.39	110.02
2.0	12.10	22.36	72.17	87.13	94.75
3.0	11.56	21.00	65.27	72.91	76.54
4.0	11.03	19.62	58.89	63.61	66.35
5.0	10.48	18.25	53.34	56.23	58.35
6.0	9.93	16.96	48.61	50.32	52.01
7.0	9.42	15.93	44.57	45.47	46.87
8.0	8.94	15.10	41.07	41.40	42.60
Appendix B: Tables of interaction model parameters

TABLE VII. Summary of the differences between Sibyll 2.1 and Sibyll 2.3c.

Parameter	Sibyll 2.1	Sibyll 2.3c
Valence quarks & leading particles	'valence string' model & remnant model	
Leading fragmentation		
Lund string parameters	$a = 0.3, b = 0.8 \text{c/GeV}^{-2}$ (leading qq, $a = a + 3$: s quarks)	$a = 0.8, b = 0.8 \text{c/GeV}^{-2}$ (universal)
String-p_T	Gaussian	exponential
Flavors in hadronization	u, d, s	u, d, s, c
Beam particles	p, n, π, K	$p, n, \pi, K + \Sigma^\pm, \Lambda^0, \rho^0(\gamma)$, charm
Interaction cross sections	p, π, K	p, π, K
Target nuclei	Air	Air, $A = 2$-18
Nuclear diffraction	incoherent	coherent + incoherent

TABLE VIII. Summary of the amplitude parameters in Sibyll 2.1 and Sibyll 2.3c. Wherever the parameters remain unchanged only Sibyll 2.1 is reported.

Parameter	Sibyll 2.1	Sibyll 2.3c
Hard minijets	leading order QCD with energy dependent p_T-threshold	
PDF: cross section	GRV-98LO [37, 38]	GRV-98LO
PDF: sampling	Eichten et al. [132]	GRV-98LO
Higher order correction (K-factor)	2.0	
p_T-cut (p_T^0, Λ_{QCD}, c in Eq. (5))	1.0 GeV/c, 0.065 GeV/c, 0.9	
Profile width (ν_h in Eq. (13))	$0.77 \text{GeV}^2/c^2$	$1.0 \text{GeV}^2/c^2$
Soft minijets	Gribov-Regge parameterization: $\mathcal{X} (s/s_0)^\Delta + \mathcal{Y} (s/s_0)^{-\epsilon}$	
Pomeron parameters (Δ, \mathcal{X})	0.025, 49.9 mb	0.051, 39.2 mb
Reggeon parameters (ϵ, \mathcal{Y})	0.4, $8.2 \cdot 10^{-5}$ mb	0.4, 42.1 mb
Profile width, Pomeron: $B_{\text{eff}} + \alpha'_P(0) \ln(s)$	3.2GeV^{-2}, 0.25 GeV^{-2}	
Profile width, Reggeon: $B_{\text{eff}} + \alpha'_R(0) \ln(s)$	0.5GeV^{-2}, 0.9 GeV^{-2}	
Soft PDF (d, m_q^2 in Eq. (9))	$0, 1.0 \text{GeV}^2$	$3, 1.0 \text{GeV}^2$