Healthy obesity and risk of accelerated functional decline and disability

JA Bell1,2, S Sabia1,3, A Singh-Manoux1,3, M Hamer4 and M Kivimäki1

BACKGROUND/OBJECTIVES: Some obese adults have a normal metabolic profile and are considered ‘healthy’, but whether they experience faster ageing than healthy normal-weight adults is unknown. We compared decline in physical function, worsening of bodily pain and likelihood of future mobility limitation and disability between these groups.

SUBJECTS/METHODS: This was a population-based observational study using repeated measures over 2 decades (Whitehall II cohort data). Normal-weight (body mass index (BMI) 18.5–24.9 kg m⁻²), overweight (25.0–29.9 kg m⁻²) and obese (≥ 30.0 kg m⁻²) adults were considered metabolically healthy if they had 0 or 1 of 5 risk factors (hypertension, low high-density lipoprotein cholesterol, high triacylglycerol, high blood glucose and insulin resistance) in 1991/1994. Decline in physical function and worsening of bodily pain based on change in Short Form Health Survey items using eight repeated measures over 18.8 years (1991/1994–2012/2013) were compared between metabolic-BMI groups using linear mixed models. Odds of mobility limitation based on objective walking speed (slowest tertile) and of disability based on limitations in ≥ 1 of 6 basic activities of daily living, each using three repeated measures over 8.3 years (2002/2004–2012/2013), were compared using logistic mixed models.

RESULTS: In multivariable-adjusted mixed models on up to 6635 adults (initial mean age 50 years; 70% male), healthy normal-weight adults experienced a decline in physical function of − 3.68 (95% CI = − 4.19, − 3.16) score units per decade; healthy obese adults showed an additional − 3.48 (~4.88, − 2.08) units decline. Healthy normal-weight adults experienced a − 0.49 (~1.11, 0.12) score unit worsening of bodily pain per decade; healthy obese adults had an additional − 2.23 (~3.78, − 0.69) units worsening. Healthy obesity versus healthy normal-weight conferred 3.39 (2.29, 5.02) times higher odds of mobility limitation and 3.75 (1.94, 7.24) times higher odds of disability.

CONCLUSIONS: Our results suggest that obesity, even if metabolically healthy, accelerates age-related declines in functional ability and poses a threat to independence in older age.

International Journal of Obesity (2017) 41, 866–872; doi:10.1038/ijo.2017.51

INTRODUCTION

Obesity is a considered a serious threat to public health.1 Health risks of obesity are largely mediated through disruptions to metabolism, which emerge in response to excess fat and which may subsequently lead to type 2 diabetes, cardiovascular diseases and premature mortality.2–5 As many as one-in-three obese adults at any given time, however, present without metabolic dysfunction in the form of metabolic risk factor clustering and are considered ‘healthy’.6,7 This healthy subset was initially assumed to be protected from the adverse health consequences typical of obesity, but have since demonstrated strong tendencies to become insulin resistant,8 to progress to unhealthy obesity9 and to develop type 2 diabetes,10 and cardiovascular disease11–13 all at greater rates than normal-weight adults who are similarly healthy.

To our knowledge, excess risk for outcomes related to ageing among healthy obese adults has not been examined, although such evidence would form an important basis from which to advise on weight loss. Obesity is strongly linked with musculoskeletal impairments,5,14 which often manifest clinically as osteoarthritis of the hip or knee,15,16 one of the greatest and most enduring sources of pain, disability and diminished quality of life at older ages.17,18 The presence of metabolic risk factors and high systemic inflammation may compound these adverse effects,19,20 but given that the primary mechanism is thought to be mechanical strain placed on joints by excess fat,14 obesity with or without metabolic dysfunction may be hypothesised to limit functional ability to a similar degree. One study found that both healthy and unhealthy obese adults showed a higher likelihood of developing difficulties with walking or climbing stairs over a 7-year period than healthy normal-weight adults, suggesting worsened physical function in response to obesity itself.21 This finding has not been replicated and risk of other important age-related outcomes such as bodily pain and disability have not been compared between healthy obese and healthy normal-weight adults.

Using repeated measures over 2 decades in a well-characterised British cohort, the Whitehall II study, we aimed to compare long-term changes in two key indicators of functional ability—physical function and bodily pain—between middle-aged adults who were initially healthy obese and healthy normal-weight. We also compared the long-term risk of having a mobility limitation and of being disabled between these groups in order to examine potential for loss of independence.

1 Department of Epidemiology and Public Health, University College London, London, UK; 2 MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; 3 INSERM, Centre for Research in Epidemiology and Population Health, Villejuif, France and 4 National Centre for Sport & Exercise Medicine, Loughborough University, Leicestershire, UK. Correspondence: Dr JA Bell, MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Bristol, BS8 2BN, UK. E-mail: j.bell@bristol.ac.uk

Received 5 September 2016; revised 13 January 2017; accepted 10 February 2017; accepted article preview online 21 February 2017; advance online publication, 14 March 2017.
Assessment of metabolic and obesity status

Data from a 1991/1994 clinical assessment were used to determine participants’ initial obesity and metabolic status. Height and weight were measured objectively by a nurse and used to calculate body mass index (BMI) using the formula: weight (kg)/height (m)^2. On the basis of World Health Organization BMI classifications, participants were considered either ‘normal-weight’ (18.5–24.9 kg m^−2), ‘overweight’ (25.0–29.9 kg m^−2), or ‘obese’ (≥30.0 kg m^−2). Participants considered ‘underweight’ (BMI < 18.5 kg m^−2) were excluded from analyses due to their rarity (n = 72, 0.87% of the sample). On the basis of independent criteria, participants were also considered ‘healthy’ if they had 0 or 1 of the following 5 metabolic risk factors: high-density lipoprotein (HDL) cholesterol < 1.03 mmol l^−1 for men and < 1.29 mmol l^−1 for women, or use of lipid lowering medication; blood pressure ≥ 130/85 mm Hg or use of anti-hypertension medication; fasting plasma glucose ≥ 5.6 mmol l^−1; or use of anti-diabetic medication; triacylglycerol ≥ 1.7 mmol l^−1; homeostatic model assessment (HOMA) of insulin-resistance (fasting glucose x fasting insulin/22.5) > 3.20 (90th-percentile value in 1991/1994).

Assessment of physical function and bodily pain

Participants were asked to answer a series of 36 question items covering several domains of general health from the Short Form Health Survey (SF-36) at the time of metabolic and obesity status assessment (1991/1994) and at seven subsequent occasions (in 1995/1996, 1997/1999, 2001, 2002/2004, 2006, 2007/2009 and 2012/2013). Domains assessed by the SF-36 have been shown to be valid measures of overall health status in the general population26 and of change in overall health status in the Whitehall II cohort.25

Assessment of physical function was based on a sub-domain comprised of 10 items from the SF-36, which pertained to physical function over the past 4 weeks. Participants reported whether they considered their health to be limited (versus not limited) a lot or a little, on each of 10 items covering various domains (that is, running), moderate activities (that is, housework), lifting or carrying groceries, climbing several flights of stairs, or movements, which involve bending, kneeling and stooping. Response options for each item ranged from ‘not limited at all’ to ‘limited a lot’.

The assessment of bodily pain was based on another sub-domain comprised of two items from the SF-36, which pertained to perceptions of bodily pain during the past 4 weeks, which asked participants to report how much bodily pain they experienced (response options ranging from ‘none’ to ‘very severe’) and how much this pain interfered with their normal work inside and outside of the home (response options ranging from ‘not at all’ to ‘extremely’).

Responses for each sub-domain were summed and scaled from 0 to 100 based on standard procedures for the SF-36,26 with higher scores representing better function/less bodily pain. Summary scores for each of physical function and bodily pain at all eight measurement occasions were used to estimate change over time, with decreasing scores indicating worsened physical function/bodily pain.

Assessment of mobility limitation and disability

Mobility limitation was assessed on three occasions after assessment of metabolic and obesity status (in 2002/2004, 2007/2009 and 2012/2013). On each occasion, participants undertook a test of walking speed based on standard protocol,27 for which they completed a timed walk at their usual walking pace over a distance of 8 feet while wearing low-heeled close-fitting footwear or while barefoot. Timing commenced once their foot hit the floor across the starting line, and stopped once their foot hit the floor after the end of the walking course. The test was repeated three times and the mean performance time of these three measurements was used for present analyses, measured in seconds (s). On the basis of established links with morbidity and mortality,27–30 participants were considered to have a mobility limitation on each occasion if they were in the slowest (versus the intermediate/fastest) tertile of walking speed.

Disability was also assessed on three occasions after assessment of metabolic and obesity status (in 2006, 2007/2008 and 2012/2013). On each occasion, participants reported via questionnaire whether they considered themselves to have difficulty with any of 6 basic activities of daily living31 (dressing, walking across a room, bathing/showering, eating, getting in/out of bed and using the toilet). Participants were considered ‘disabled’, if they reported ≥ 1 (versus 0) limitation in any activity.

Assessment of covariates

Covariates were assessed via questionnaire at the same time as metabolic and obesity status in 1991/1994. Participant age, sex and ethnicity (‘white’ or ‘non-white’) were recorded in addition to social status based on occupational position in the British government (‘administrative’, ‘professional/executive’, or ‘clerical/support’). Assessment of health behaviours included cigarette smoking status (‘never smoker’, ‘ex-smoker’ or ‘current smoker’), alcohol consumption in the previous week (‘abstainer’ based on 0 units per week, ‘moderate drinker’ based on 1–14 units per week for women and 1–21 units per week for men, or ‘high drinker’ based on > 14 units per week for women and > 21 units per week for men), frequency of fruit and vegetable consumption (‘less than daily or daily’, or ‘twice or more per day’), and physical activity that was assessed by self-reported duration (hours per week) in activities of a moderate or vigorous intensity.

Statistical analyses

Linear mixed models were used to compare mean change in physical function and bodily pain scores over eight measurement occasions, along with 95% confidence intervals (CI), by initial metabolic and obesity status in 1991/1994, each compared with the healthy normal-weight group. These models minimise selection bias from missing data by using data from all available follow-up occasions while accounting for differences in duration of follow-up and the correlated nature of repeated measures taken from the same individuals over time.32 Follow-up duration was used as the time variable, divided by 10 so that regression coefficients represent effects for change over 10 years. A random intercept and a random slope were fitted to allow individual differences in initial physical function/bodily pain score and change in these scores over time. Absolute change in each score was also calculated for each metabolic and obesity group based on individual scores taken at each of the seven occasions (for men; white ethnicity; administrative/highest occupational position; never smokers; moderate drinkers; at least twice-daily consumers of fruits and vegetables) and age centred on the sample mean (50 years). Predictors in the first model included metabolic and BMI status combination (6 groups), time, age, sex and ethnicity, each with time interactions fitted where significant. Predictors in the second model considered those of the first in addition to occupational position, smoking, alcohol, fruit and vegetable consumption, and moderate-to-vigorous physical activity, each with time interactions where significant.

Logistic mixed models were used to compare odds of having a mobility limitation and of having a disability between metabolic and BMI combination groups, each compared with healthy normal-weight. These models minimise selection bias due to missing data for the same reasons as mentioned for linear mixed models.32 Duration of follow-up was again used as the time variable with time expressed per 5 years instead of per 10 years due to shortened follow-up. The same 2-stage model adjustment strategy was otherwise applied as prior.

As some ethnic heterogeneity existed in the sample yet precise ethnic labels were not available for ascribing ethnic-specific BMI categories, analyses were repeated after excluding the 9% of participants who were of a non-white ethnicity. Analyses of change in physical function and bodily pain were also repeated after excluding those participants with only 1 available measure out of 8 on each outcome.

RESULTS

Selection and characteristics of the study population

The Whitehall II cohort originally consisted of 10 308 participants recruited in 1985/1988.32 Of this original sample, 6641 participants
(64.4%) had complete data on height and weight for the assessment of BMI and on each of five metabolic risk factors of interest as measured in the 1991/1994 clinical examination. Of these, six participants were excluded due to missing data on each of eight follow-up measures of physical function or bodily pain. All remaining participants had data on basic covariates for initial adjustments (age, sex and ethnicity). We excluded a further 392 participants from models adjusted for occupational position and health behaviours due to missing data on these covariates. Sample attenuation patterns were similar for outcomes of mobility limitation and disability, with the exception of a larger reduction (1306 participants) from the 6641 with BMI-metabolic data due to missing data on either outcome; data collection for these began later than for physical function and bodily pain.

Compared with participants who had metabolic-BMI data (the initial prerequisite for inclusion) and also had data on mobility (n = 5507), those who had metabolic-BMI data but had missing data on mobility (n = 1134) were older (51.1 vs 49.2 years, P < 0.001), more likely to be female (34.7 vs 28.2%, P < 0.001), more likely to be of non-white ethnicity (13.3 vs 8.5%, P = 0.001) and more likely to be of the lowest occupational position (27.1 vs 13.3%, P < 0.001). Those with missing mobility data also had a higher smoking prevalence (21.2 vs 11.8%, P < 0.001) and a higher likelihood of consuming fruits and vegetables less than daily (46.5 vs 37.4%, P < 0.001), but were no less likely to consume high amounts of alcohol (14.1 vs 15.7%, P = 0.168) or to be less physically active (3.4 vs 3.6 h/week, P = 0.104). Participants with missing mobility data showed a higher prevalence of obesity (12.6 vs 9.4%, P = 0.001) and of metabolic risk factor clustering (39.4 vs 32.6%, P < 0.001). These comparison estimates were nearly identical among participants with vs without missing data on disability (Supplementary Appendix).

In total, up to 6635 participants contributed data for analyses, with the working sample size varying due to the nature of mixed modelling. Age of participants ranged from 39 to 63 years at the baseline assessment (mean 49.5 years) and 70.1% were men. Of the 3339 adults who were normal-weight, 80.5% were considered metabolically healthy; this proportion decreased with increasing BMI group: 56.3% of 2634 overweight adults were healthy and 34.0% of 662 obese adults were healthy. Further characteristics of participants who had complete data on metabolic and obesity status in 1991/1994 and at least 1 measure of physical function and bodily pain are shown in Table 1. Of those who had physical function and bodily pain scores at baseline, those who were healthy obese had lower (more adverse) scores than healthy normal-weight adults, these differences being substantial at 83.3 vs 92.1 for physical function, and 77.2 vs 83.0 for pain (both P < 0.05).

Change in physical function and bodily pain
Nearly all participants (n = 6537; 98.5%) had data on at least two of eight measures for physical function, from which to base estimates of change (3707 participants, 55.9%, had data on all eight measures). The interaction term between sex, metabolic-BMI group and time in relation to physical function was not significant (P = 0.925), indicating similar changes in physical function by metabolic-BMI group in both men and women. Over a mean follow-up of 18.8 years, decline in physical function score was seen among all metabolic and BMI combination groups over the follow-up period (Table 2). When adjusting for basic demographic factors, the healthy obese showed an additional −3.42 (95% CI = −4.80, −2.03) units decline per 10 years in physical function score than healthy normal-weight adults; this difference remained after additional adjustment for occupational position and health behaviours (−3.48, 95% CI = −4.88, −2.08 units; Figure 1). This decline was nearly two-times greater than among healthy normal-weight adults (3.68±3.48/3.68±1.95). The greatest decline was seen among unhealthy obese adults (additional −5.02, 95% CI = −6.06, −3.98 units) compared with healthy normal-weight adults, but this was not significantly greater than for healthy obese adults (P = 0.068). Non-significant interaction terms of time with sex, alcohol consumption, physical activity, and fruit and vegetable consumption were removed from these models.

Again, nearly all participants (n = 6538; 98.5%) had data on at least two of eight measures for bodily pain, from which to base estimates of change (3699 participants, 55.8%, had data on all eight measures). No strong evidence for an interaction between sex, metabolic-BMI group and time in relation to bodily pain was observed (P = 0.054). A worsening of bodily pain score was also seen among all metabolic and obesity groups over follow-up

Table 1. Characteristics of participants in 1991/1994 by metabolic and obesity status in the Whitehall II cohort study (n = 6635)
Healthy normal-weight (n = 2688)

Female—n (%)
Age, years—mean (s.d.)
Non-white ethnicity—n (%)
Lowest occupational position—n (%)
Consumes fruit and vegetables < daily—n (%)
Current smoker—n (%)
High alcohol consumption in previous week—n (%)
Moderate-to-vigorous physical activity, h per week—mean (s.d.)
Systolic blood pressure, mm Hg—mean (s.d.)
Diastolic blood pressure, mm Hg—mean (s.d.)
Fasting glucose, mmol l−1—mean (s.d.)
HOMA insulin resistance—mean (s.d.)
Triglyceridemia, mmol l−1—mean (s.d.)
HDL cholesterol, mmol l−1—mean (s.d.)
Body mass index, kg m−2—mean (s.d.)
Initial physical function score—a—mean (s.d.)
Initial bodily pain score—a—mean (s.d.)

Participants described are those with the data on metabolic and obesity status and at least one measurement of physical function and bodily pain. *Different from healthy normal-weight (P < 0.05). aOn the basis of participants with a physical function and pain score in 1991/94.
of mobility limitation were highest among unhealthy obese adults (3.39 (95% CI = 2.29, 5.02) times higher when additionally adjusting for occupational position, moderate-to-vigorous physical activity, smoking, alcohol, and fruit and vegetable consumption in 1991/1994. Reference group for intercept is men in these analyses; interaction terms with sex were non-significant and findings were similar when analyses were repeated with women as the reference (Supplementary Appendix).

Lower scores indicate worsened function/pain.

Table 2. Decline in physical function and worsening of bodily pain per decade by initial metabolic and obesity status in the Whitehall II cohort study

	Model 1	Model 2
	B (95% CI)	B (95% CI)
Decline in physical function per 10 years*		
Healthy normal-weight	−4.27 (−4.68, −3.86)	−3.68 (−4.19, −3.16)
Healthy normal-weight (n = 2569)	0.00 (reference)	0.00 (reference)
Unhealthy normal-weight (n = 615)	0.74 (−1.60, 0.12)	0.61 (−1.47, 0.26)
Healthy overweight (n = 1420)	−0.68 (−1.30, −0.06)	−0.54 (−1.18, 0.09)
Unhealthy overweight (n = 1070)	1.48 (−2.17, −0.78)	1.22 (−1.92, 0.52)
Healthy obese (n = 205)	−3.42 (−4.80, −2.03)	−3.48 (−4.88, −2.08)
Unhealthy obese (n = 401)	−5.18 (−6.20, −4.17)	−5.02 (−6.06, −3.98)
Worsening of bodily pain per 10 years*		
Healthy normal-weight	−1.15 (−1.60, −0.71)	−0.49 (−1.11, 0.12)
Healthy normal-weight (n = 2569)	0.00 (reference)	0.00 (reference)
Unhealthy normal-weight (n = 616)	−0.54 (−1.48, 0.39)	0.36 (−1.31, 0.60)
Healthy overweight (n = 1412)	−1.23 (−1.91, −0.56)	−1.10 (−1.80, −0.41)
Unhealthy overweight (n = 1070)	−1.55 (−2.30, −0.79)	−1.31 (−2.09, −0.53)
Healthy obese (n = 208)	−2.15 (−3.66, −0.63)	−2.23 (−3.78, −0.69)
Unhealthy obese (n = 403)	−4.35 (−5.46, −3.24)	−4.10 (−5.24, −2.99)

Odds of mobility limitation and disability

Among 6641 participants whose metabolic and BMI status was assessed in 1991/1994, up to 5616 (84.6%) had at least one assessment of disability over a mean observation period of 5.6 years (4434 participants (66.8%) had all three assessments). The proportion of adults who had a disability over follow-up was lowest among healthy normal-weight adults at 9.1%, and progressively higher among healthy obese and unhealthy obese adults at 18.6 and 27.0%, respectively. Again, a non-significant interaction of metabolic and BMI combination with time (P = 0.34) provided no evidence that differences in odds of disability by metabolic and obesity group changed over follow-up, this time interaction was therefore removed; likewise for all other covariates except for age, which reached significance (P-value for interaction with time < 0.001). Compared with healthy normal-weight adults, healthy obese adults were 3.84 (95% CI = 2.01, 7.34) times more likely to be disabled when adjusting for demographic factors; these odds remaining elevated at 3.75 (95% CI = 1.94, 7.24) times higher when additionally adjusting for social and behavioural factors (Figure 2; Table 3). The highest raised odds were seen among unhealthy obese adults (OR = 8.37, 95% CI = 5.25, 13.35 vs healthy normal-weight), there was some evidence of this being higher than for healthy obese adults (P = 0.03).

Sensitivity analyses

Results of sensitivity analyses are provided in Supplementary Appendix. Results of analyses that excluded the 9% of participants who were of a non-white ethnicity were largely unchanged; as

Decline in healthy normal-weight (~2.15, 95% CI = ~3.66, ~0.63 units); this difference remained after additional adjustment for social and behavioural factors (~2.23, 95% CI = ~3.78, ~0.69, as well as occupational position, moderate-to-vigorous physical activity, smoking, alcohol, and fruit and vegetable consumption in 1991/1994. Reference group for intercept is men in these analyses; interaction terms with sex were non-significant and findings were similar when analyses were repeated with women as the reference (Supplementary Appendix).

Odds of mobility limitation were highest among unhealthy obese adults, at 60.1 and 56.7%, respectively. Differences in odds of mobility limitation by metabolic and BMI group did not differ over follow-up (P for interaction of metabolic and BMI combination with time = 0.36) and so this time interaction was removed; likewise for sex and ethnicity (P-values for interaction with time = 0.099 and 0.175, respectively). Compared with healthy normal-weight adults, healthy obese adults showed 3.92 (95% CI = 2.64, 5.80) times higher odds of having a mobility limitation over follow-up when adjusting for demographics; odds remained 3.39 (95% CI = 2.29, 5.02) times higher when additionally adjusting for social and behavioural factors (Figure 2; Table 3). Raised odds of mobility limitation were highest among unhealthy obese adults at 4.01 (95% CI = 2.98, 5.40) times higher than healthy normal-weight adults, however, this was not significantly higher than the healthy obese (P = 0.48).
Healthy obesity and functional decline

JA Bell et al

were results of analyses of change in physical function and bodily pain that excluded participants with only 1 measurement of each outcome. A larger participant drop-out was observed for mobility limitation and disability than for physical function and bodily pain; a comparison of characteristics between included versus excluded participants for these former outcomes is given in Supplementary Appendix.

DISCUSSION

This study of 6635 men and women examined whether obese adults who are metabolically healthy experience faster ageing than normal-weight adults who are similarly healthy by way of greater declines in physical function, greater worsening of bodily pain, and higher likelihoods of having a mobility limitation and disability in older age. Our results showed that over the course of 2 decades, decline in physical function and worsening of bodily pain among initially healthy obese adults was two- to six-times greater than among initially healthy normal-weight adults, respectively. These changes occurred at similar rates for both healthy and unhealthy obese adults. A comparably higher likelihood of having a mobility limitation and of being disabled was also observed. This suggests that obesity, even if metabolically healthy, accelerates age-related declines in functional ability and poses a threat to independence in older age.

Comparisons of walking speed between healthy obese and healthy normal-weight groups is novel; only 1 previous study of women found that the healthy obese performed better than the unhealthy obese on a timed test of walking distance, but comparisons were not made with the healthy normal-weight. That study was also limited by a small sample size (total n = 86) and a single measurement occasion; the present study considered three measurement occasions of walking speed spanning nearly a decade to provide a better estimate of usual walking capacity.

The likelihood of being disabled was somewhat lower among healthy obese than among unhealthy obese adults, but the difference between these two groups was small and not likely significant in terms of disability burden. Indeed, healthy obese adults are known to have a strong tendency to progress to an unhealthy obese state; this proportion is about one-half in the healthy obese than among unhealthy obese adults, but the

Table 3. Odds of mobility limitation and disability among adults over 8.3 years by initial metabolic and obesity status in the Whitehall II cohort study
Odds ratio (95% CI)
Odds of having a mobility limitation
Healthy normal-weight (n = 2023)
Unhealthy normal-weight (n = 448)
Healthy overweight (n = 1101)
Unhealthy overweight (n = 812)
Healthy obese (n = 1275)
Unhealthy obese (n = 275)
Odds of having a disability
Healthy normal-weight (n = 2250)
Unhealthy normal-weight (n = 502)
Healthy overweight (n = 1208)
Unhealthy overweight (n = 901)
Healthy obese (n = 161)
Unhealthy obese (n = 333)

Model 1 adjusted for age, sex and ethnicity in 1991/1994. Model 2 additionally adjusted for occupational position, moderate-to-vigorous physical activity, smoking, alcohol, and fruit and vegetable consumption in 1991/1994. Mobility limitation defined as being in the slowest third of the 20% of the population. Disability defined as having ≥1 out of 6 limitations in basic activities of daily living.
Healthy obesity and functional decline
JA Bell et al

AUTHOR CONTRIBUTIONS
JAB, SS, ASM, MH and MK each made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of the data. JAB drafted the work; SS, ASM, MH and MK revised it critically for important intellectual content. All the authors approved the final version to be published, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

REFERENCES
1. Davies SC. ‘Annual Report of the Chief Medical Officer, 2014, The Health of the 51%: Women’ London: Department of Health. 2015.
2. Frayn K. Metabolic Regulation: A Human Perspective. Wiley-Blackwell, 2010.
3. Collaboration PS. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. The Lancet 2009; 373: 1083–1096.
4. B errington de Gonzalez A, Hargete P, Cerhan JR, Flint AJ, Hannan L, Macinnes RJ et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med 2010; 363: 2211–2219.
5. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 2009; 9: 1.
6. Wildman RP, M untnier P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering – Prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med 2008; 168: 1617–1624.
7. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F. Prevalence of uncomplicated obesity in an Italian obese population. Obes Res 2005; 13: 1116–1122.
8. Bell JA, Hamer M, Battu GD, Singh-Manoux A, Sabia S, Kivimäki M. Incidence of metabolic risk factors among healthy obese adults: 20-year follow-up. J Am Coll Cardiol 2015; 66: 871–873.
9. Bell JA, Hamer M, Sabia S, Singh-Manoux A, Battu GD, Kivimäki M. The natural course of healthy obesity over 20 years. J Am Coll Cardiol 2015; 65: 101–102.
10. Bell J, Kivimäki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes Rev 2014; 15: 504–515.
11. Khan UI, Wang D, Thurston RC, Sowers M, Sutton-Tyrrell K, Matthews KA et al. Burden of subclinical cardiovascular disease in ‘metabolically benign’ and ‘at-risk’ overweight and obese women: The Study of Women’s Health Across the Nation (SWAN). Atherosclerosis 2011; 217: 179–186.
12. Chang Y, Kim B-K, Yun KE, Cho J, Zhang Y, Rampal S et al. Metabolically-healthy obesity and coronary artery calcification. J Am College Cardiol 2014; 63: 2679–2686.
13. Fan J, Song Y, Chen Y, Hui R, Zhang W. Combined effect of obesity and cardio-metabolic abnormality on the risk of cardiovascular disease: a meta-analysis of prospective cohort studies. Int J Cardiol 2013; 168: 4761–4768.
14. Anandacoomarasamy A, Caterson I, Sambrook P, Fransen M, March L. The impact of obesity on the musculoskeletal system. Int J Obes 2008; 32: 211–222.
15. Jiang L, Tian W, Wang Y, Rong J, Bao C, Liu Y et al. Body mass index and susceptibility to knee osteoarthritis: a systematic review and meta-analysis. Joint Bone Spine 2012; 79: 291–297.
16. Jiang L, Rong J, Wang Y, Hu F, Bao C, Li X et al. The relationship between body mass index and hip osteoarthritis: a systematic review and meta-analysis. Joint Bone Spine 2011; 78: 150–155.
17. Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology and burden of osteoarthritis. Br Med Bull 2013; 105: 185–199.
18. Clark P, Ellis B. A public health approach to musculoskeletal health. Best Pract Res Clin Rheumatol 2014; 28: 517–532.
19. Aspden RM. Obesity punches above its weight in osteoarthritis. Nat Rev Rheumatol 2011; 7: 65–68.
20. Berenbaum F, Eymard F, Houard X. Osteoarthritis, inflammation and obesity. Curr Opin Rheumatol 2013; 25: 114–118.
21. Stenhorn S, Koster A, Alley DE, Houston DK, Kanaya A, Lee J et al. Joint association of obesity and metabolic syndrome with incident mobility limitation in older men and women—results from the Health, Aging, and Body Composition Study. J Gerontol Series B Biol Sci Med Sci 2010; 65: 84–92.
22. Marmot MG, Stansfeld S, Patel C, North F, Head J, White I et al. Health inequalities among British civil servants: the Whitehall II study. Lancet 1991; 337: 1387–1393.
Healthy obesity and functional decline
JA Bell et al

872

23 Würtz P, Wang Q, Kangas AJ, Richmond RC, Skarp J, Tiainen M et al. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med 2014; 11: e1001765.

24 Brazier J-H, Harper R, Jones N, O’cathain A, Thomas K, Usherwood T et al. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 1992; 305: 160–164.

25 Hemingway H, Stafford M, Sainsbury P, Shipley M, Marmot M. Is the SF-36 a valid measure of change in population health? Results from the Whitehall II study. BMJ 1997; 315: 1273–1279.

26 Ware JE, Kosinski M, Dewey JE, Gandek B. SF-36 Health Survey: Manual and Interpretation Guide. Quality Metric Inc, 2000.

27 Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 1994; 49: M85–M94.

28 Elbaz A, Sabin S, Brunner E, Shipley M, Marmot M, Kivimaki M et al. Association of walking speed in late midlife with mortality: results from the Whitehall II cohort study. Age 2013; 35: 943–952.

29 Hamer M, Kivimaki M, Lahiri A, Yerramasu A, Deanfield JE, Marmot MG et al. Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study. Heart 2010; 96: 380–384.

30 Rydwik E, Bergland A, Forsen L, Frändin K. Investigation into the reliability and validity of the measurement of elderly people’s clinical walking speed: A systematic review. Physiother Theory Pract 2012; 28: 238–256.

31 Katz S, Downs TD, Cash HR, Grotz RC. Progress in development of the index of ADL. Gerontol 1970; 10(1 Part 1): 20–30.

32 Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963–974.

33 Bouchard DR, Langlois M-F, Brochu M, Dionne U, Baillargeon J-P. Metabolically healthy obese women and functional capacity. Metab Syndrome Relat Disord 2011; 9: 225–229.

34 Holmes MV, Lange LA, Palmer T, Lanktree MB, North KE, Almoguera B et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am J Hum Genet 2014; 94: 198–208.

35 Richmond RC, Smith GD, Ness AR, den Hoed M, McMahon G, Timpson NJ. Assessing causality in the association between child adiposity and physical activity levels: a Mendelian randomization analysis. PLoS Med 2014; 11: e1001618.

36 Chang Y, Ryu S, Choi Y, Zhang Y, Cho J, Kwon M-J et al. Metabolically healthy obesity and development of chronic kidney disease: a cohort study. Ann Internal Med 2016; 164: 305–312.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017

Supplementary Information accompanies this paper on International Journal of Obesity website (http://www.nature.com/ijo)