Research Article

Bioinformatics exploration of olive oil: molecular targets and properties of major bioactive constituents

Toluwase Hezekiah Fatoki¹,*; Cecilia O. Akintayo² and Omodele Ibraheem¹

¹ Department of Biochemistry, Federal University Oye-Ekiti, PMB 373 Oye-Ekiti, Ekiti State, Nigeria
² Department of Industrial Chemistry, Federal University Oye-Ekiti, PMB 373 Oye-Ekiti, Ekiti State, Nigeria

Received 18 March 2021 – Accepted 19 May 2021

Abstract – Olive oil possesses medicinal properties which include antimicrobial, antioxidant and anti-inflammatory, anti-diabetes, and anti-cardiovascular diseases. Oleic acid is the most abundant (95%) constituent of olive oil and others include linoleic acid, oleuropein, oleanolic acid, maslinic acid, melatonin, and others. The objective of this study is to predict the molecular targets and properties of key bioactive components of olive oil in human. Bioinformatics methods, which involved pharmacokinetics prediction, target prediction and gene network analyses, were used. The results showed that oleic acid has similar targets with linoleic acid, and showed significant probability of binding to several targets such as fatty acid-binding proteins in the adipose, epidermal, liver and muscle as well as alpha, delta and gamma peroxisome proliferator-activated receptors (PPARs). Carbonic anhydrase showed to be the only significant target of tyrosol, while protein-tyrosine phosphatase 1B, and CD81 antigen were targeted by maslinic acid and oleanolic acid. This study has applauded oleic acid, linoleic acid and tyrosol as olive oil bioactive constituents that have several potential pharmacological effects in humans that modulate several enzymes, receptors and transcription factors. The future work will be to investigate the effects of oleic acid on fatty acid-binding proteins and telomerase reverse transcriptase; melatonin on quinone reductase 2; tyrosol on carbonic anhydrase II; maslinic acid and oleanolic acid on protein-tyrosine phosphatase 1B.

Keywords: olive oil / bioinformatics / phytochemical / pharmacokinetics / molecular targets / gene network

Résumé – Exploration bio-informatique de l’huile d’olive : cibles moléculaires et propriétés des principaux constituants bioactifs. L’huile d’olive possède des propriétés médicinales, notamment antimicrobiennes, anti-oxydantes et des effets bénéfiques sur le diabète, l’inflammation et les maladies cardiovasculaires. L’acide oléique est le constituant le plus abondant (95 %) de l’huile d’olive et les autres comprennent l’acide linoléique, l’oleuropeine, l’acide oléanolique, l’acide maslinique, la mélatonine, et d’autres. L’objectif de cette étude est de prédire les cibles moléculaires et les propriétés des composants bioactifs clés de l’huile d’olive chez l’homme. Des méthodes bioinformatiques impliquant la prédiction de la pharmacocinétique, la prédiction des cibles et l’analyse des réseaux de gènes ont été utilisées. Les résultats ont montré que l’acide oléique possède des cibles similaires à celles de l’acide linoléique, et ont montré une probabilité significative de se lier à plusieurs cibles telles que la protéine de liaison des acides gras dans les tissus adipeux, épidermiques, hépatiques et musculaires ainsi que les récepteurs alpha, delta et gamma activés par les proliférateurs de peroxyomes (PPARs). L’anhydrase carbonique s’est révélée être la seule cible significative du tyrosol, tandis que la protéine-tyrosine phosphatase 1B et l’antigène CD81 étaient ciblés par l’acide maslinique et l’acide oléanolique. Cette étude a mis en avant l’acide oléique, l’acide linoléique et le tyrosol en tant que constituants bioactifs de l’huile d’olive qui posséderaient plusieurs effets pharmacologiques potentiels chez l’homme, qui modulerait plusieurs enzymes, récepteurs et facteurs de transcription. Les travaux futurs consisteront à étudier les effets de l’acide oléique sur les protéines de liaison aux acides gras et la transcriptase inverse de la télomérase ; la mélatonine sur la quinone réductase 2 ; le tyrosol sur l’anhydrase carbonique II ; l’acide maslinique et l’acide oléanolique sur la protéine-tyrosine phosphatase 1B.

Mots clés : huile d’olive / bioinformatique / phytochimie / pharmacocinétique / cibles moléculaires / réseau de gènes

*Correspondences: hezekiahfatoki@gmail.com; toluwase.fatoki@fuoye.edu.ng

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1 Introduction

Olive (Olea europaea L.) is an ancient plant that belongs to the family Oleaceae, which contain about 600 species within 30 genera (Iaria et al., 2016). The genus Olea L. consists of more than 30 species, which are distributed in Africa, Asia, Europe and Oceania, with only Olea europaea subsp. europea var. europea being the cultivated olive (Fogher et al., 2010). Olive oil is produced from the olive plant mainly in the Mediterranean basin which produces 90% of the olive oil consumed worldwide, and it is the principal source of healthy fatty acids, as well as polyphenols and vitamins in minutes (Barbaro et al., 2014; Vasto et al., 2014; Gerber and Hofiman, 2015; Martinez-Gonzalez et al., 2015; Rigacci and Stefani, 2016). Extra virgin olive oil is categorized as a medicinal food because of its nutraceutical benefits and wide range of therapeutic effects such as anti-inflammatory, antioxidant and antimicrobial effect (Cicerale et al., 2012), anti-cardiovascular effects (Estruch et al., 2006, 2018), diabetes (Salas-Salvado et al., 2011, 2014), neuronal and geriatrics diseases (Khalatbary, 2013; Rodriguez-Morato et al., 2015).

Olive oil contains about 98% fatty acids, principally oleic acid, and 2% minor components of over 230 compounds such as squalene, tocopherols, sterols, and polyphenols (Perez-Jimenez, 2005; Bulotta et al., 2014; Tresserra-Rimbau and Lamuela-Raventos, 2017). Bioactive components of olive oil include oleic acid, tyrosol, hydroxytyrosol, linoleic acid, oleanoic acid, maslinic acid, and melatonin (Segura-Carretero et al., 2010; Fernández-Montesinos et al., 2010; Liu et al., 2010; Bulotta et al., 2014; Tresserra-Rimbau and Lamuela-Raventos, 2017). Extra virgin olive oil contains about 55–83% oleic acid, and 3.5–21% linoleic acid (Cocchi et al., 2009), while virgin olive oil contains about 34.5 mg.L\(^{-1}\) tyrosol, 231 mg.kg\(^{-1}\) oleanolic acid, and 172 mg.kg\(^{-1}\) maslinic acid (Perez-Camino and Cert, 1999; Miró-Casas et al., 2001). Oleic acid is the main constituent of olive oil, which is produced by dehydrogenation from stearic acid by stearoyl-ACP desaturase (SACPD) and then desaturated into linoleic acid by FAD2 (Estruch et al., 2018). Melatonin has been found present in olive oil, specifically in the extra virgin types (Fernández-Montesinos et al., 2010; De la Puerta et al., 2007).

The difference between extra virgin olive oil (EVOO) and virgin olive oil (VOO) is that EVOO has a maximum acidity of 0.8% and may have no defects. VOO can have an acidity up to 2.0% and has a slight change in taste. Pure olive oils are usually refined olive oils, they are obtained from VOO by refined methods and its free acidity is expressed as less than 0.3% of oleic acid. For example, the concentration of bioactive compounds in EVOO and VOO has been studied by Zhang et al. (2019), where RNA-sequencing technology and comprehensive bioinformatics analyses were used to elucidate the molecular processes regulated by dietary fat. Differentially expressed genes (DEGs) were identified and were functionally analyzed by gene ontology (GO), kyoto enrichment of genes and genomes (KEGG). Then, protein–protein interaction (PPI) network and sub-PPI network analyses were conducted using the STRING database and Cytoscape software. The study suggests that a high olive oil diet aggravates cervical cancer progression in vivo and in vitro (Zhang et al., 2019). Diet-gene interactions are studied by the concept of nutrigenetics and nutrigenomics, which identify gene variants associated with different responses to nutrients and the effect of nutrients on the metabolic pathways and homeostatic regulation, respectively (Muller and Kersten, 2003; Ordovas and Mooser, 2004). The objective of this study is to predict the molecular targets and properties of key bioactive components of olive oil in human. This work corroborates the targets which have been experimentally discovered, and it also predicts the novel targets which have not been clinically explored, which may be of medical importance in treatment of certain diseases such as cancer, atherosclerosis, nephrotoxicity, inflammation and skin disorder.

2 Materials and methods

2.1 In Silico target prediction

The structure of several bioactive compounds of olive oil as listed in literature (Fernández-Montesinos et al., 2010; Liu et al., 2010; Segura-Carretero et al., 2010; Bulotta et al., 2014; Tresserra-Rimbau and Lamuela-Raventos 2017), were obtained from the PubChem compound database in canonical SMILES (simplified molecular input line entry specification) format. The SMILES of each of these compounds were used for in silico prediction of target on the SwissTargetPrediction server, where Homo sapiens was selected as target organism (Diana et al., 2019).
2.2 In Silico pharmacokinetics

Six active ligands (oleic acid, tyrosol, linoleic acid, oleanolic acid, maslinic acid, and melatonin) were selected based on availability of predicted targets in human with a probability of at least 40% and the SMILES of each of these compounds were used for in silico ADME (absorption, distribution, metabolism, and excretion) screening on SwissADME server (Diana et al., 2017). ADME screening was performed at default parameters.

2.3 Target gene expression analyses

Twenty-nine genes were obtained from target prediction results for the six bioactive compounds studied which are MTRNR1A, MTRNR1B, NQO2, HTR2B, FABP5, FABP4, FABP1, FABP3, FAAH, PPARG, PPARA, PPARD, FFAR1, TERT, SCD, PTGS1, PTPN1, POLB, AKR1B10, RORC, PTPRF, PTPN2, HSD11B1, ACP1, CDC25B, PDE4D, CD81, PLA2G1B, CA2 (full name of these genes are listed in the Tab. 1). These genes ID were compiled and used for expression network analyses (transcription factor enrichment analysis and protein-protein interaction network expansion and kinase enrichment analysis), using eXpression2Kinases (X2K) Web server (Clarke et al., 2018), where human was selected as the background organism.

3 Results and discussion

The predicted targets and pharmacokinetics of six active constituents of olive oil (oleic acid, tyrosol, linoleic acid, oleanolic acid, maslinic acid, and melatonin) are shown in Tables 1 and 2. The choice was based on the fact that these six compounds have predicted targets genes in human with a probability of at least 40% as shown in Table 1 as well as the amount present in the olive oil. Oleic acid which is the main active constituent of olive oil, has six similar targets with linoleic acid, and showed significant probability of binding to several targets such as fatty acid-binding protein in the adipose, epidermal, liver and muscles as well as peroxisome proliferator-activated receptors (alpha, delta and gamma). It has been reported that PPAR-gamma ligands could inhibit

Table 1. Predicted human protein targets of selected bioactive compounds of olive oil.

S.No	Target Name	Gene ID	UniProt ID	Linoleic acid	Maslinic acid	Melatonin	Oleandric acid	Oleic acid	Tyrosol
1	Melatonin receptor 1A	MTNR1A	P48039	100					
2	Melatonin receptor 1B	MTNR1B	P49286	100					
3	Quinone reductase 2	NQO2	P16083	100					
4	Serotonin 2b (5-HT2b) receptor	HTR2B	P41595	40					
5	Fatty acid binding protein adipocyte	FABP4	P15090	65	100				
6	Anandamide amidohydrolase	FAAH	O00519	100					
7	Peroxisome proliferator-activated receptor gamma	PPARG	P37321	75	100				
8	Peroxisome proliferator-activated receptor alpha	PPARA	Q07869	75	100				
9	Telomerase reverse transcriptase	TERT	O14746	100					
10	Fatty acid binding protein epidermal	FABP5	P01469	100					
11	Peroxisome proliferator-activated receptor delta	PPARD	Q03181	75	100				
12	Free fatty acid receptor 1	FFAR1	O14842	75					
13	Fatty acid-binding protein, liver	FABP1	P07148	100					
14	Fatty acid binding protein muscle	FABP3	P05413	60	60				
15	Acyl-CoA desaturase	SCD	O00767	30	50				
16	Cyclooxygenase-1	PTGS1	P23219	50					
17	Carbonic anhydrase II	CA2	P00918	100					
18	Protein-tyrosine phosphatase 1B	PTPN1	P18031	70	95				
19	DNA polymerase beta	POLB	P06746	45	70				
20	Aldo-keto reductase family 1 member B10	AKR1B10	O60218	55	70				
21	Nuclear receptor ROR-gamma	RORC	P51449	40	60				
22	Receptor-type tyrosine-protein phosphatase F (LAR)	PTPRF	P10586	40	60				
23	T-cell protein-tyrosine phosphatase	PTPN2	P17706	40	60				
24	11-beta-hydroxysteroid dehydrogenase 1	HSD11B1	P28845	60	60				
25	Low molecular weight phosphotyrosine protein phosphatase	ACP1	P24666	40	60				
26	Dual specificity phosphatase Cdc25B	CDC25B	P30305	40	55				
27	Phosphodiesterase 4D	PDE4D	Q08499	35	50				
28	CD81 antigen	CD81	P60033	45	50				
29	Phospholipase A2 group 1B	PLA2G1B	P04054	40	50				
Table 2. Predicted pharmacokinetics parameters of the selected bioactive compounds of olive oil.

Parameters	Linoleic acid	Maslinic acid	Melatonin	Oleancolic acid	Oleic acid	Tyrosol
Molecular weight (g/mol)	280.45	472.7	232.28	456.7	282.46	138.16
Heavy atoms (HA)	20	34	17	33	20	10
Molar refractivity	89.46	137.82	67.18	136.65	68.94	39.4
Total polar surface area (Å³)	37.30	77.76	54.12	57.53	37.3	40.46
Consensus logP	5.45	5.24	1.83	6.06	5.71	1.1
ESOL class	Moderately soluble	Poorly soluble	Soluble	Poorly soluble	Moderately soluble	Very soluble
Gastrointestinal absorption	High	High	High	Low	High	High
Blood brain barrier (BBB) permeant	Yes	No	Yes	No	No	Yes
P-glycoprotein substrate	No	Yes	No	No	No	No
Cytochrome P450 inhibitor	CYP1A2, CYP2C9	–	CYP1A2	–	CYP1A2, CYP2C9	–
Skin permeation log Kp (cm/s)	–3.05	–4.56	–6.59	–3.77	–2.6	–6.84
Lipinski violation	1	1	0	1	1	0
Bioavailability score	0.85	0.56	0.55	0.85	0.85	0.55
Synthetic accessibility	3.10	6.22	1.73	6.08	3.07	1.00

Linoleic acid, 3-hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase activity, and protein level and the activity of cholesterologenesis of various kind of FAs, where it had the indispensable involvement in the neurotrophic effect of oleic acid (STDP). Dietary omega-3 polyunsaturated fatty acids (PUFAs) downregulate fatty acid-binding protein-4 in the adipocytes in a sex-dependent fashion and also modulate steroyl-CoA desaturase activity in an age and sex-specific manner (Balogun and Cheema, 2016; Feltham et al., 2019).

In this study, carboxic anhydrase showed to be the only significant targets of tyrosol, while protein-tyrosine phosphatase 1B, and CD81 antigen were targeted by maslinic acid and oleancolic acid. Carboxic anhydrase 6, CD209 antigen, and CD44 antigen, have been reported as part of HDL-associated proteins based on the effects of olive oil phenolic compounds (Pedret et al., 2015). Tyrosol is able to inhibit the activation of transcription factors, including NF-kB and STAT-1a, and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes, in cultures of activated macrophages and rat colitis (Moreno, 2003), as well inhibit TNF-α release by LPS-stimulated peripheral blood mononuclear cells isolated from healthy volunteers (Giovannini et al., 2002). Tyrosol also inhibits 5-lipoxygenase, reducing leukotriene B4 and reactive oxygen species (ROS) generation in calcium ionophore-stimulated rat peritoneal leukocytes (De la Puerta et al., 1999). It has been reported that hydroxytyrosol could inhibit human LDL oxidation and platelet aggregation (Morales and Lucas, 2010). Both linoleic and docosahexaenoic acids could cause modulation of gene expression in rat cardiomyocytes (Cheema et al., 2019). Melatonin receptors are expressed in the tissues of brain (cerebellum and hippocampus), intestine, kidney, and testis. Natural killer (NK) cells, T-lymphocytes, eosinophils, and mast cells possess melatonin receptors (Fatoki et al., 2021). Melatonin could modulate the biological activity and toxicity of tumor necrosis factor-α (TNF-α), increase of interferon-γ production (Fernández-Montesinos et al., 2010). Melatonin administration increases the proliferative response of rat lymphocytes, increases the number of NK cells, stimulates the release of pro-inflammatory cytokines interleukin (IL)-1, enhances phagocytosis and modulates apoptosis (Fatoki et al., 2021).

Maslinic acid (2α, 3β-dihydroxyolean-12-en-28-oic acid) is a pentacyclic triterpene abundant in the cuticular lipid layer of olive fruits. Maslinic acid has therapeutic properties related to health and disease, including anti-inflammatory, antioxidant, antiviral, anti-hypertensive, and antitumor activities (Fernández-Navarro et al., 2010). Oleancolic acid has been recognized as an PPAR-α agonist (Huang et al., 2005). Oleancolic acid and maslinic acid could modulate the activity of DNA polymerase beta (POLB) and protein-tyrosine phosphatase 1B (PTPN1), aldo-keto reductase family 1 member B10 (AKR1B10), nuclear receptor ROR-gamma—(RORC), receptor-type tyrosine-protein phosphatase F (LAR) (PTPRF), 11-beta-hydroxysteroid dehydrogenase 1 (HSD11B1) and others as shown in Table 1.

POLB is involved in the homoeostasis of the number of cells, DNA repair, inflammatory response and aging process.
PTPN1 is a non-receptor type tyrosine-specific phosphatase that dephosphorylates the receptor protein tyrosine kinases (such as INSR, EGFR, CSF1R, PDGFR) and dephosphorylates the non-receptor protein tyrosine kinases (such as JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3 and STAT6) either in the nucleus or the cytoplasm. It negatively regulates numerous signaling pathways and biological processes like hematopoiesis, inflammatory response, cell proliferation and differentiation, and glucose homeostasis. PTPN1 plays a multifaceted and important role in the development of the immune system. AKR1B10 is highly expressed in the small intestine, colon and adrenal gland, and plays a critical role in detoxifying dietary and lipid-derived unsaturated carbonyls, and their glutathione-conjugates carbonyls. This protein is involved in the retinol metabolism pathway. Thus, maslinic acid and Oleanolic acid could interfere with retinoid metabolic process. Study has shown that maslinic acid and oleanolic acid significantly reduce hyperlipidemia induced by a high-cholesterol diet and lower the expression of the acyl-CoA cholesterol acyltransferase (ACAT) gene (Liu et al., 2010).

As shown in Table 2, oleic acid is moderately soluble, with a high gastrointestinal absorption, serves as an inhibitor for CYP1A2 and CYP2C9, and has a high bioavailability score. This could justify why oleic acid possesses striking therapeutic effects in the intestine, liver and adipose tissues. Although tyrosol has features closely similar ADME properties to oleic acid, it could permeate the blood-brain barrier (BBB) with no action of the cytochromes and not affected by P-glycoprotein. Tyrosol is bioavailable in humans, even from moderate doses of olive oil consumption with substantial variance among women and men (Covás et al., 2003). The half-life of tyrosol is estimated to be 2–4 h in humans (Covás et al., 2003). Among the six compounds investigated in this study, tyrosol has the highest skin permeability rate, followed by melatonin. Linoleic acid and melatonin could permeate the BBB and have a high gastrointestinal absorption.

This study shows that peroxisome proliferator-activated receptor gamma (PPARG) has the best hypergeometric score as its transcription factor is influenced by the olive oil, followed by AR, STAT3, PPARD, SPI1, EGR1, VDR, and others (Figs. 1 and 2). The kinases that were impacted by the action of olive oil active constituents include CSNK2A1, MAPks, CDks, GSKs, ERks and HIPK2 (Fig. 3). Moreover, major intermediate proteins include HDAC2, HDAC3,
SMAD2, SMAD3, NCOA3, PML, RELA, JUN, NCOR1 and others (Fig. 4).

Histone deacetylase 3 (HDAC3), HDAC5, LSD1 (a histone demethylase), Atrophin1, and BCL11A have been reported to interact with TLX to regulate the expression of target genes, and has been validated in human Y79 retinoblastoma cells (Wang and Xiong, 2016). Study has shown that oleic acid triggers hippocampal neurogenesis by binding to TLX/NR2E1 and changes it to a transcriptional activator from a transcriptional repressor of cell cycle and neurogenesis genes (Kandel et al., 2020). Thus, through TLX (orphan nuclear hormone receptor), oleic acid could indirectly activate Wnt7a expression, suppresses the expression of p21 via a p53-dependent mechanism, promotes EGFR signaling in brain cells, and modulates the mitogen-activated protein kinase (MAPK) pathways (Wang and Xiong, 2016) and enhances STAT1 function (Beiting et al., 2015). A bioinformatics study conducted to predict peroxisome proliferator-activated receptors (PPARs) gene targets on a genome-wide basis, has shown that PPARs could directly regulate some genes such as chromatin remodeling, DNA damage response, Wnt, and mitogen-activated protein kinase (MAPK) (Lemay and Hwang, 2006). FAs and eicosanoids can regulate gene transcription through PPARs (Kliewer et al., 1997; Kersten et al., 2000).

4 Conclusion

Knowledge of bioinformatics as it is being applied in lipidomics of a given organism, has not been fully applied to the study of lipids as therapeutics, in order to predict the...
acclaimed medicinal properties. This study has appaulled oleic acid, linoleic acid and tyrosol as olive oil bioactive constituents that have several potential pharmacological effects in human by modulating several enzymes, receptors and transcription factors. Moreover, these molecular effects of olive oil indicate its medicinal importance in the treatment of oxidative stress, inflammation, cardiovascular diseases, obesity, diabetes, and age-related diseases. Furthermore, chemical biology and in silico simulation of pharmacological potential of oleic acid (such as molecular docking and dynamics, drug-drug interaction) will yield significant insights to the presently unexplored molecular mechanisms of action to explain the therapeutic effect of olive oil. The future work will be to investigate the effects of oleic acid on fatty acid-binding proteins and telomerase reverse transcriptase; melatonin on quinone reductase 2; tyrosol on carbonic anhydrase II; maslinic acid and oleanolic acid on protein-tyrosine phosphatase 1B.

Conflicts of interest. The authors declare no conflicts of interest.

References

Ayed RB, Rebai A. 2019. Tunisian table olive oil traceability and quality using SNP genotyping and bioinformatics Tools. BioMed Res Int 2019: 1–9, Article ID 8291341. https://doi.org/10.1155/2019/8291341.

Baldoni L, Tosti N, Ricciolini C, et al. 2006. Genetic structure of wild and cultivated olives in the central Mediterranean basin. Ann Bot 98: 935–942.

Balogun KA, Cheema SK. 2016. Dietary omega-3 polysaturated fatty acids reduced adipocyte hypertrophy by downregulating acyl-CoA:diacylglycerol acyltransferase-2 and fatty acids binding protein-4 in a sex dependent fashion. Lipids 51(1): 25–38.

Barbaro BG, Toietta G, Maggio R, et al. 2014. Effects of the olive-derived polyphenol oleuropein on human health. Int J Mol Sci 15 (10): 18508–18524.

Beiting DP, Hidano S, Baggs JE, et al. 2015. The orphan nuclear receptor TLX is an enhancer of STAT1 derived polyphenol oleuropein on human health. Int J Mol Sci 15 (10): 18508–18524.

Brunelleschi S, Bardelli C, Amoruso A, et al. 2007. Minor polar compounds extra-virgin olive oil extract (MPC-OOE) inhibits NF-kappa B translocation in human monocyte/macrophages. Pharmacol Res 56: 542–549.

Bulotta S, Celano M, Lepore SM, Montalcini T, Puija A, Russo D. 2014. Beneficial effects of the olive oil phenolics components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases. J Transl Med 219: 2–9.

Busconi M, Foroni C, Corradi M, Bongiorni C, Cattapan F, Fogher C. 2003. DNA extraction from olive oil and its use in the identification of the production cultivar. Food Chem 83: 127–134.

Cheema SK, Tappia PS, Dhalla NS. 2019. Modification of gene expression in rat cardiomyocytes by linoleic and docosahexaenoic acids. Can J Phys Pharmacol 97(4): 320–327.

Choi S-G, Won S-R, Rhee H-I. 2010. Oleic acid and inhibition of glycosyltransferase. In: Preedy VR, Watson RR, eds. Olives and olive oil in health and disease prevention. Elsevier Inc., pp. 1375–1383.

Cicerale S, Lucas LJ, Keast RS. 2012. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol 23(2): 129–135.

Clarke DJB, Kuleshov MV, Schilder BM, et al. 2018. eXpression2-Kinas (X2K) Web: linking expression signatures to upstream cell signaling networks. Nucleic Acids Res 46(W1): 171–179.

Cocchi M, Tonello L, Martínez AJ, Lercker G, Caramia GM. 2009. Extra virgin olive oil and oleic acid. Nutr Clin Diet Hosp 29(3): 12–24.

Covás MI, Miró-Casas E, Fito M, et al. 2003. Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans. Drugs Exp Clin Res 29: 203–206.

Cruz F, Julca I, Gómez-Garrido J, et al. 2016. Genome sequence of the olive tree, Olea europaea. GigaScience 5: 29. https://doi.org/10.1186/s13742-016-0134-5.

De la Puerta R, Ruiz-Gutierrez V, Hoult JRS. 1999. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem Pharmacol 57: 445–449.

De la Puerta C, Carrascosa-Salmoral MP, Garcia-Luna PP, et al. 2007. Melatonin is a phytochemical in olive oil. Food Chem 104: 609–612.

Diana A, Michielen O, Zoete V. 2017. SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci Rep 7: 42717.

Diana A, Michielen O, Zoete V. 2019. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 1–8. https://doi.org/10.1093/nar/gkz382.

Dubuquoy L, Rousseaux C, Thuru X, et al. 2006. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut 55: 1341–1349.

Esteves A, Knoll-Gellida A, Cancolini L, Silverrey MC, André M, Babin PJ. 2016. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei. J Lipid Res 57: 219–232.

Estruch R, Martinez-Gonzalez MA, Corella D, et al. 2006. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann Intern Med 145(1): 1–11.

Estruch R, Ros E, Salas-Salvadó J, et al. 2018. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378(25): e34.

Fatoki TH, Ibraheem O, Adeseko CJ, et al. 2021. Melanogenesis, its regulatory process, and insights on biomedical, biotechnological, and pharmacological potentials of melatonin as antiviral biochemical. Bioinertif Res Appl Chem 11(4): 11969–11984.

Felltham BA, Balogun KA, Cheema SK. 2019. Omega-3 polysaturated fatty acids have an age and sex specific effect to regulate stearoyl-CoA desaturase-1 and myelin basic protein in the cerebellum of C57BL/6 mice. Pros Leuk Essent Fatty Acids 148: 16–24.

Fernández-Montesinos R, De la Puerta C, García-Luna PP, Reiter RJ, Pozo D. 2010. The occurrence of the biogenic amine melatonin in olive oil: Implications in health and disease prevention. In: Preedy VR, Watson RR, eds. Olives and olive oil in health and disease prevention. Elsevier Inc., pp. 275–282.

Fernández-Navarro M, Peragón J, Esteban FJ, Amores V, de la Higuera M, Lupiáñez JA. 2010. Maslinic acid: A component of olive oil on growth and protein-turnover rates. In: Preedy VR, Watson RR, eds. Olives and olive oil in health and disease prevention. Elsevier Inc., pp. 1415–1421.
Foghier C, Busconi M, Sebastiani L, Bracci T. 2010. Olive genomics. In: Olives and olive oil in health and disease prevention. Elsevier Inc., pp. 17–24.

Gerber M, Hoffman R. 2015. The Mediterranean diet: Health, science and society. Br J Nutr 113(Suppl 2): S4–10.

Giovannini L, Migliori M, Filippi C, et al. 2002. Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells. Int J Tissue React 24: 53–56.

Gnoni GV, Natali F, Geelen MJH, Siculella L. 2010. Oleic acid as an inhibitor of fatty acid and cholesterol synthesis. In: Preedy VR, Watson RR, eds. Olives and olive oil in health and disease prevention. Elsevier Inc., pp. 1365–1373.

Huang TH, Peng G, Kota BP, et al. 2005. Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: role of lowering circulating lipids. Br J Pharmacol 145: 767–774.

Iaria DL, Chiappetta A, Muzzalupo I. 2016. A de novo transcriptomic approach to identify flavonoids and anthocyanins “switch-off” in olive (Olea europaea L.) drupes at different stages of maturation. Front Plant Sci 6: 1246.

Kandel P, Semerci F, Bajic A, et al. 2020. Oleic acid triggers hippocampal neurogenesis by binding to TLX/NR2E1. bioRxiv preprint 1–18.

Kersten S, Desvergne B, Wahli W. 2000. Roles of PPARs in health and disease. Nature 405: 421–424.

Khalatbari AR. 2013. Olive oil phenols and neuroprotection. Nutr Neurosci 16(6): 243–249.

Kliwer SA, Sundseth SS, Jones SA, et al. 1997. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptor alpha and gamma. Proc Natl Acad Sci USA 94: 4318–4323.

Krey G, Braissant O, L’Horset F, et al. 1997. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11: 779–791.

Lemay DG, Hwang DH. 2006. Genome-wide identification of peroxisome proliferator response elements using integrated computational genomics. J Lipid Res 47: 1583–7.

Liu J, Rajendram R, Zhang L. 2010. Effects of oleic acid and maslinic acid on glucose and lipid metabolism: Implications for the beneficial effects of olive oil on health. In: Preedy VR, Watson RR, eds. Olives and olive oil in health and disease prevention. Elsevier Inc., pp. 1423–1429.

Martinez-Gonzalez MA, Salas-Salvador J, Estruch R, et al. 2015. Benefits of the Mediterranean diet: insights from the PREDIMED Study. Progr Cardiovasc Diseases 58: 50–60.

Miró-Casas E, Farré-Albaladejo M, Covás Ml, et al. 2001. Capillary gas chromatography-mass spectrometry quantitative determination of hydroxytyrosol and tyrosol in human urine after olive oil intake. Anal Biochem 294: 63–72.

Morales JC, Lucas R. 2010. Structure–activity relationship of phenolic antioxidants and olive components. In: Preedy VR, Watson RR, eds. Olives and olive oil in health and disease prevention. Elsevier Inc., pp. 905–914.

Moreno JJ. 2003. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Radic Biol Med 35: 1073–1081.

Muller M, Kersten S. 2003. Nutrigenomics: Goals and strategies. Nat Rev Genet 4: 315–322.

Ordovas JM, Mooser V. 2004. Nutrigenomics and nutrigenetics. Curr Opin Lipidol 15: 101–108.

Pedret A, Cateuán Ú, Fernández-Castillejo S, et al. 2015. Impact of virgin olive oil and phenol-enriched virgin olive oils on the HDL proteome in hypercholesterolemic subjects: A double blind, randomized, controlled, cross-over clinical trial (VOHF Study). PLoS ONE 10(6): e0129160.

Perez-Camino MC, Cert A. 1999. Quantitative determination of hydroxyl pentacyclic triterpene acids in vegetable oils. J Agric Food Chem 47: 1558–1562.

Perez-Jimenez F. 2005. International conference on the healthy effect of virgin olive oil. Eur J Clin Invest 35: 421–424.

Rigacci S, Stefani M. 2016. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int J Mol Sci 17(6): 843.

Rodriguez-Morato J, Xicoténcatl L, Fito M, et al. 2015. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 20(3): 4655–4680.

Salas-Salvador J, Bulló M, Babio N, et al. 2011. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 34(1): 14–19.

Salas-Salvador J, Bulló N, Estruch R, et al. 2014. Prevention of diabetes with Mediterranean diets: A subgroup analysis of a randomized trial. Ann Intern Med 160(1): 1–10.

Segura-Carretero A, Menéndez-Menéndez J, Fernández-Gutiérrez A. 2010. Polyphenols in olive oil: the importance of phenolic compounds in the chemical composition of olive oil. In: Preedy VR, Watson RR, eds. Olives and olive oil in health and disease prevention. Elsevier Inc., pp. 167–175.

Tresserra-Rimbau A, Lamuela-Raventos RM. 2017. Olives and olive oil: A Mediterranean source of polyphenols. In: Kiritsakis A, Shahidi F, eds. Olives and olive oil as functional foods: Bioactivity, chemistry and processing, 1st ed. John Wiley & Sons Ltd, pp. 417–428.

Unver T, Wu Z, Sterck L, et al. 2017. Genome of wild olive and the evolution of oil biosynthesis. PNAS E9413–E9422. https://doi.org/10.1073/pnas.1708621114.

Vasto S, Barera A, Rizzo C, et al. 2014. Mediterranean diet and longevity: An example of nutraceuticals? Curr Vasc Pharmacol 12(5): 735–738.

Wang T, Xiong J-Q. 2016. The orphan nuclear receptor TLX/NR2E1 in neural stem cells and diseases. Neurosci Bull 32(1): 108–114.

Xu HE, Lambert MH, Montana VG, et al. 1999. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3: 397–403.

Xiang Z, Yang P, Luo X, et al. 2019. High olive oil diets enhance cervical tumour growth in mice: transcriptome analysis for potential candidate genes and pathways. Lipids in Health and Disease 18: 76.

Cite this article as: Fatoki TH, Akintayo CO, Ibrahim O. 2021. Bioinformatics exploration of olive oil: molecular targets and properties of major bioactive constituents. OCL 28: 36.