Case Control Study

Genetic polymorphisms of MAFK, encoding a small Maf protein, are associated with susceptibility to ulcerative colitis in Japan

Tomiyasu Arisawa, Masakatsu Nakamura, Toshimi Otsuka, Wu Jing, Naoko Sakurai, Hikaru Takano, Tasuku Hayashi, Masafumi Ota, Tomoe Nomura, Ranji Hayashi, Takeo Shimasaki, Tomomitsu Tahara, Tomoyuki Shibata

AIM

To investigate whether single nucleotide polymorphisms in maf protein K (MAFK), which encodes the MAFK, lead to increased susceptibility to ulcerative colitis in the Japanese population.

METHODS

This case control study examined the associations between MAFK single nucleotide polymorphisms (rs4268033 G>A, rs3735656 T>C and rs10226620 C>T) and ulcerative colitis susceptibility in 174 patients with ulcerative colitis (UC) cases, and 748 subjects without lower abdominal symptoms, diarrhea or hematochezia (controls). In addition, as the second
controls, we set 360 subjects, who have an irregular bowel movement without abnormal lower endoscopic findings (IBM controls).

RESULTS
The genotype frequency of rs4268033 AA and allelic frequency of the rs4268033A allele were significantly higher in the UC cases than in both controls (P = 0.0005 and < 0.0001, P = 0.015 and 0.0027 vs controls and IBM controls, respectively). Logistic regression analysis after adjustment for age and gender showed that the rs4268033 AA and rs3735656 CC genotypes were significantly associated with susceptibility to UC development (OR = 2.63, 95%CI: 1.61-4.30, P = 0.0001 and OR = 1.81; 95%CI: 1.12-2.94, P = 0.015, respectively). Similar findings were observed by the comparison with IBM controls. In addition, the rs4268033 AA genotype was significantly associated with all phenotypes of UC except early onset. There was no significant association between rs10226620 and ulcerative colitis.

CONCLUSION
Our results provide the first evidence that MAFK genetic polymorphisms are significantly associated with susceptibility to UC development. In particular, rs4268033 is closely associated with an increased risk for the development of UC.

Key words: Maf protein K; Genetic polymorphism; Reactive oxygen species; Ulcerative colitis; Nuclear factor-erythroid 2-related factor 2

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We investigated the association between maf protein K (MAFK), polymorphisms and ulcerative colitis in Japan. Both rs4268033 and rs3735656 minor allele homozygotes were significantly associated with the susceptibility to ulcerative colitis (UC) development. In addition, rs4268033 minor allele homozygote was significantly associated with all phenotypes of UC except the phenotype with younger age onset. Our results provided the first evidence that MAFK genetic polymorphisms were significantly associated with the susceptibility to UC development.

Arisawa T, Nakamura M, Otsuka T, Jing W, Sakurai N, Takano H, Hayashi T, Ota M, Nomura T, Hayashi R, Shimasaki T, Tahara T, Shibata T. Genetic polymorphisms of MAFK, encoding a small Maf protein, are associated with susceptibility to ulcerative colitis in Japan. World J Gastroenterol 2017; 23(29): 5364-5370 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/29/5364.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i29.5364

INTRODUCTION
The number of inflammatory bowel disease (IBD) patients in several Asian countries, including Japan and China, has recently rapidly increased with adaptation of a westernization life style and diet[1]. Ulcerative colitis (UC) is a representative IBD whose exact etiology is unclear, but environmental and genetic factors are implicated in its onset[2-3]. UC is a nonspecific inflammatory disease possibly involving the colonic mucosa spanning from the rectum to the cecum. It has been clarified that the degradation of inflammation and immune response related molecules prescribed genetically participate[4]. UC is a multifactorial, polygenic disease with probable genetic heterogeneity, and the associations between the polymorphisms of various genes and UC have been studied[5-8].

Reactive oxygen species (ROS) are involved in promoting inflammation in various diseases, including UC[7,8]. Nuclear factor-erythroid 2-related factor 2 (Nrf2) plays an important role in the removal of ROS[9-10]. Nrf2 cannot induce anti-oxidant enzymes such as heme oxygenase-1 (HO-1) and peroxiredoxin 1 alone, and shows transcriptional activity when hetero-dimerized with small musculoaponeurotic fibrosarcoma (Maf)[11]. Thus, it has been clarified that small Maf proteins are regulated transcription factors through heterodimer formation, with Nrf2 and BTB And CNC Homology 1 (Bach1)[12], although small Mafs do not contain an obvious transcriptional activation domain[13]. We previously reported a significant association between Nrf2 genetic polymorphisms and susceptibility to UC[14].

In the present study, we investigated the association between genetic polymorphisms of MAFK, one of the small Mafs, and UC susceptibility in a Japanese population.

MATERIALS AND METHODS
Clinical samples
The study was performed using a population comprising 226 patients with UC (UC cases) and 748 subjects without lower abdominal symptoms, diarrhea or hematochezia (controls). In addition, as the second controls, we prepared 360 subjects, who have an irregular bowel movement without abnormal lower endoscopic findings (IBM controls). UC was diagnosed according to standard clinical, endoscopic, radiological, and histological criteria[15]. Genomic DNA was isolated from peripheral blood using FlexiGene DNA Kit (QIAGEN GmbH, Hilden, Germany).

The Ethics Committees of Fujita Health University and Kanazawa Medical University approved the protocol, and written informed consent was obtained from all participating subjects.

Classification
According to their clinical courses, UC cases were classified into 2 types: continuous, or not continuous, disease (i.e., relapsing or only one episode)[16]. UC patients were also classified by endoscopic findings as total or not total colitis (left sided, distal colitis) according to the location and extension of the
Table 1 Condition of PCR and SSCP

Primer set	PCR condition	SSCP temperature
(rs4268033)		
5'-TAATCCCCAACCTCGCAGCA	96 °C 15 s, 60 °C	6 °C
TCTGTG'T-3'	30 s, 72 °C 30 s	
5'-GGTCTGACATAGCTGGGG	35 cycle	
AAAGTCG-3'	(rs3735656)	
5'-ATCTCAGCGGACACAGGG	96 °C 15 s, 54 °C	6 °C
CAGGA-3'	40 s, 72 °C 30 s	
5'-CTGGCATGACCACACTTGG	35 cycle	
GTGAGAA-3'	(rs10226620)	
5'-GTCCTCTCCTGTGACTGGG	96 °C 15 s, 60 °C	6 °C
GTCTCT-3'	30 s, 72 °C 30 s	
5'-AGGCACACCCTTGCGAGT	35 cycle	
CTATGT-3'		

Table 2 Characteristics of the subjects and allelic frequency

	Controls	IBM controls	UC cases
Number of sample	748	360	226
Mean age ± SD	57.1 ± 17.0	58.5 ± 14.5	40.7 ± 14.2
(age of onset			
Male:female	438:310	165:193	125:101
T allele freqency	GG	GA	AA
	366	324	58
	184	156	20
	101	89	36
	29.40%	27.20%	35.60%
	5'-AGGCACACCCTTGCGAGT	35 cycle	
	rs10226620 C>T		
	CC	CT	TT
	345	328	75
	171	159	30
	104	94	28
	32.90%	30.80%	32.00%

inflammatory lesions. In addition, the cases were classified into two groups according to the past highest UC disease activity index (UCDAI) during the course of the disease (≤ 8 or ≤ 9)[17]

Selection of single nucleotide polymorphisms of MAFK

There are two large linkage disequilibrium blocks within 20kb of MAFK with a Hardy-Weinberg equilibrium (HWE) \(P \) value of above 0.05 and a minor allele frequency of above 0.05. We selected rs4268033 G>A and rs3735656 T>C (*910 T>C) as a Tag single nucleotide polymorphism (SNP) in each block and another SNP, rs10226620 C>T (*1506 C>T), located in the 3'UTR where several microRNA bind, was also selected.

Genotyping of polymorphisms

Polymorphisms were genotyped using the PCR-SSCP method as reported previously[14,18]. The PCR and SSCP conditions are shown in Table 1. All PCR reactions were carried out in a volume of 20 \(\mu \)L containing 0.1 \(\mu \)g of genomic DNA using Takara HS Taq (TAKARA Bio Inc., Japan). SSCP was carried out using a GenePhor DNA separation system with GeneGel Excel 12.5/24 (GE Health Care Bio-Sciences AB, Sweden) at 6 °C temperature, and then the denatured single strand DNA bands were detected using a DNA Silver Staining Kit (GE Health Care Bio-Sciences AB).

Statistical analysis

HWE was assessed by \(\chi^2 \) statistics. The age data were expressed as mean ± SD. Mean ages between the cases and the controls was compared by Student's t-test, and the male/female ratio was compared by Fisher's exact test. The allele counts and the distribution of genotype were compared between the two groups by a 2 \(\times \) 2 table using Fisher's exact test. The odds ratios (OR) and 95%CI were calculated by logistic regression with adjustment for age and gender. A probability value of less than 0.05 was considered statistically significant in all analyses.

RESULTS

Characteristics of the study subjects and frequencies of the genotypes

The characteristics of the subjects in this study are summarized in Table 2. The mean ages of both controls and IBM controls were significantly higher than that of the UC cases. The male/female ratio of IBM controls was significantly lower than those of the controls and UC cases. Single strand DNAs of all genotypes were clearly separated by SSCP (Figure 1). The distribution of genotypes in the controls was in Hardy-Weinberg equilibrium (rs4268033, rs3735656 and rs10226620: \(P = 0.25 \), \(P = 0.21 \) and \(P = 0.87 \), respectively). The ratio of the mutant homozygote (AA genotype) of rs4268033 was significantly higher in the UC cases compared to the controls and IBM controls (\(P = 0.0005 \) and < 0.0001, respectively). However, no significant differences in the distributions of rs3735656 and rs10226620 genotypes were observed. There were no significant differences in the distribution of genotypes between the controls and IBM controls.

Association between MAFK polymorphisms and UC susceptibility

When the controls was compared with UC cases, logistic regression analysis after adjustment for age and gender showed that the rs4268033 mutant homozygote (AA genotype) was strongly associated with susceptibility to UC (OR = 2.63, 95%CI: 1.61-4.30, \(P = 0.0001 \); Table 3), and the rs3735656 mutant homozygote (CC genotype) was also significantly associated with UC susceptibility (OR = 1.81, 95%CI: 1.12-2.94, \(P = 0.015 \)). When IBM controls was compared with UC cases, similar findings were obtained (OR = 3.54,
DISCUSSION

Three small Maf proteins have been identified to date: MafG, MafK and MafF were identified[19]. These three Maf proteins have high homology and form homo­
dimers or heterodimers with each another and also
to a group of other b-Zip proteins[20].

Previous studies using knockout mice showed that
MafG/K mice are die by the peri­ or postnatal
stage, whereas both MafF/G and MafF/K mice
are viable and fertile[21-23]. We therefore selected the
two small Mafs, MafG and MafK, because of their
apparent importance in biology. In HapMap­JPT , there
are large linkage blocks of SNPs around
MAFK but not
MAFG. Furthermore, previous studies revealed
that MafK­Bach1 controls the expression of a subset
of oxidative stress­inducible genes, such as HO­1 and
ferritins[24], whereas MafK­Nrf2 heterodimer activates
their expression[25]. We therefore suspected that
MAFK genetic variations might affect the development and
process of inflammatory diseases, including UC.

Our results provide the first evidence that MAFK genetic polymorphisms might affect the development and process of inflammatory diseases, including UC.

Association between rs4268033 and UC phenotypes

The observed strong association between rs4268033
and UC susceptibility prompted us to investigate an
association between this SNP and UC phenotypes.
The rs4268033 genotype was only associated with
UC cases with onset after 21 years of age. Regarding
as clinical type, disease extension, the past history of
hospitalization and the past maximum UCDAI score,
rs4268033 was significantly associated with each

95%CI: 1.82-6.88, P = 0.0002 and OR = 2.14;
95%CI: 1.16-3.95, P = 0.015, for rs4268033 and
rs3735656, respectively). No significant association
between rs10226620 and UC was seen. The influence
of MAFK genotypes on the symptoms from irregular
bowel movement did not seem to be large.

Association between rs4268033 and UC phenotypes

The observed strong association between rs4268033
and UC susceptibility prompted us to investigate an
association between this SNP and UC phenotypes.
The rs4268033 genotype was only associated with
UC cases with onset after 21 years of age. Regarding
as clinical type, disease extension, the past history of
hospitalization and the past maximum UCDAI score,
rs4268033 was significantly associated with each

95%CI: 1.82-6.88, P = 0.0002 and OR = 2.14;
95%CI: 1.16-3.95, P = 0.015, for rs4268033 and
rs3735656, respectively). No significant association
between rs10226620 and UC was seen. The influence
of MAFK genotypes on the symptoms from irregular
bowel movement did not seem to be large.
and 0.39, respectively). However, the distribution of rs3735656 genotype in our controls was different from that in HapMap-JPT ($p = 0.011$). The distribution of rs3735656 in our controls is in HWE ($p = 0.21$) whereas it is not in HapMap-JPT ($p = 0.025$). The cause of this discrepancy is unknown, but we believe that rs3735656 is worthy of further examination.

There are few reports linking MAFK genetic variations and clinical disease susceptibility\[26,27\]. Nanashima et al\[26\] reported that the mutant allele of rs4720833, located in the same linkage block as rs4268033, is significantly associated with anti-tuberculosis drug induced hepatotoxicity susceptibility, whereas rs3808337, located in the same block as rs3735656, is not associated. This suggests that the rs4720833 mutant genotype might be associated with an increased risk of drug-induced injury via alteration of the toxicity of drug metabolites, although the detailed mechanisms remain unclear. Similarly, in our study, the rs4268033 mutant homozygote was strongly associated with UC susceptibility. In addition, this genotype was associated with all phenotypes of UC except age of onset. These findings suggest that rs4268033 may be associated with the development but not the progression of UC. The lack of association of early onset with UC may be due to the small number of cases and/or the younger controls.

It is not clear how rs4268033 participates in the development of UC. Small Maf proteins are transcription factors localized to the nucleus that dimerize with CNC family proteins, including Nrf2 and Bach1\[13\]. Small Maf-Bach1 heterodimers are removed from antioxidant-responsive element (ARE) by oxidative stress, and small Maf-Nrf2 heterodimers replace and bind to ARE, leading to the activation of antioxidant enzyme expression. Therefore, our data suggest that rs4268033 may act as a repressor for the expression of small Maf (dimerized with Nrf2) and/or as an activator for the expression of small Maf (dimerized with Bach1), resulting in association with UC susceptibility. Another possibility is that the mechanism involves the inflammatory response. Overexpression of MafK protein in T cells decreased T-cell proliferation and interleukin-2 (IL-2) secretion\[28\]. Therefore, IL-2 secretion, resulting in persistent inflammation, may be increased by the diminished expression of MafK protein in the rs4268033 mutant homozygote. However, the presence of enhancers or repressors in the genome region containing the linkage block with rs4268033 remains unknown. In addition, the downregulation of Nrf2 or upregulation of Bach1 in UC patients with the rs4268033 mutant homozygote should be verified by further studies.

There are some clinical limitations in our study. We recruited patients who visited our hospital for various reasons and therefore the mean age of the controls was relatively high. Age-matched subjects with no symptom are essential for the control group. In addition, the UC treatment regimens were not standardized, possibly affecting the clinical type and extent of inflammation observed. Furthermore, we had no data on the effects of MAFK gene polymorphisms on the expressions of MafK protein. Our study was a case-control study and therefore further examination is necessary regarding this point. The major problem in this study is the relatively small sample size, especially the number of UC cases. A larger cohort will be required to clearly assess the association of genetic

Table 4 Association between rs4268033 and phenotype of ulcerative colitis

Genotype (n)	Controls (748)	Age of onset	OR (95% CI)	p value
AA vs others	-			
GG	366	20 (31)	2.06 (0.499-8.52)	0.32
GA	324	21 (176)	2.51 (1.51-4.19)	0.0004
AA	58	21 (19)		

Clinical type	GG	GA	AA	OR (95% CI)	p value
Not continuous (124)	51	52	21	2.92 (1.63-5.25)	0.0003
Continuous (97)	46	36	15	2.32 (1.20-4.48)	0.012
Unknown (5)					

Extension	GG	GA	AA	OR (95% CI)	p value
Not total colitis (115)	50	46	19	2.72 (1.48-5.03)	0.0013
Total colitis (103)	49	41	15	2.18 (1.14-4.16)	0.019
Unknown (6)					

Hospitalization	GG	GA	AA	OR (95% CI)	p value
None (139)	59	59	21	2.34 (1.32-4.14)	0.0035
One time (£) (76)	36	27	13	2.91 (1.42-5.97)	0.0034
Unknown (11)					

Past max. UCDAI score	GG	GA	AA	OR (95% CI)	p value
8 (135)	56	58	21	2.41 (1.36-4.27)	0.0025
9 (81)	40	27	14	3.01 (1.49-6.06)	0.002
Unknown (10)					

UC: Ulcerative colitis.
variation with disease susceptibility. Finally, the design of this study used only samples stored at a single center and were analyzed retrospectively.

In conclusion, the present study demonstrated that MAFK polymorphisms are significantly associated with susceptibility to UC. In particular, the rs4268033 minor homozygote is strongly associated with increased risk for the development of UC.

COMMENTS

Background
Both environmental and genetic factors participate in the onset of ulcerative colitis (UC). Therefore, genetic alteration of inflammation related molecules may affect the susceptibility to UC.

Research frontiers
Reactive oxygen species (ROS) are involved in promoting inflammation in various diseases, including UC. Small Maf proteins are regulated transcription factors thorough heterodimer formation, such as nuclear factor-erythroid 2-related factor 2 which play an important role in a removal process of these ROS. Therefore, it is of interest whether genetic alteration of Maf protein K (MAFK), encoding small MAFK, may affect the susceptibility to UC.

Innovations and breakthroughs
The results provide the first evidence that MAFK genetic polymorphisms are significantly associated with the susceptibility to UC in the Japanese population.

Applications
MAFK single nucleotide polymorphisms should be added to the spectrum of genetic factors involved in UC in Japanese population.

Peer-review
This case control study investigated the association between genetic polymorphisms of MafK and UC susceptibility. The authors found that rs4268033 AA and rs3736856 GC genotypes were significantly associated with the susceptibility to UC.

REFERENCES

1 Sakamoto N, Kono S, Wakai K, Fukuda Y, Satoomi M, Shimoyma T, Inaba Y, Miyake Y, Sasaki S, Okamoto K, Kobashi G, Washio M, Yokoyama T, Date C, Tanaka H; Epidemiology Group of the Research Committee on Inflammatory Bowel Disease in Japan. Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm Bowel Dis 2005; 11: 154-163 [PMID: 15677999 DOI: 10.1097/00054725-200502000-00009]
2 Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347: 417-429 [PMID: 12167685 DOI: 10.1056/NEJMra020831]
3 Newman B, Siminovich KA. Recent advances in the genetics of inflammatory bowel disease. Curr Opin Gastroenterol 2005; 21: 401-407 [PMID: 15930978]
4 Head KA, Jurenka JS. Inflammatory bowel disease Part 1: ulcerative colitis--pathophysiology and conventional and alternative treatment options. Altern Med Rev 2003; 8: 247-283 [PMID: 12946238]
5 Uniken Venema WT, Voskuil MD, Dijkstra G, Weersma RK, Festen EA. The genetic background of inflammatory bowel disease: from correlation to causality. J Pathol 2017; 241: 146-158 [PMID: 27785786 DOI: 10.1002/path.4817]
6 Ye BD, McGovern DP. Genetic variation in IBD: progress, clues to pathogenesis and possible clinical utility. Expert Rev Clin Immunol 2016; 12: 1091-1107 [PMID: 27156530 DOI: 10.1080/174466X.2016.1184972]
7 Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J, Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104: 75-103 [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048]
8 Pravda J. Radical induction theory of ulcerative colitis. World J Gastroenterol 2005; 11: 2371-2384 [PMID: 15832404 DOI: 10.3748/wjg.v11.i16.2371]
9 Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 2000; 275: 16023-16029 [PMID: 10821856 DOI: 10.1074/jbc.275.21.16023]
10 Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dukal J. Role of Nrf2/ HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73: 3221-3247 [PMID: 27100828 DOI: 10.1007/s00018-016-2223-0]
11 Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Sato K, Hayatayana I, Yamamoto M, Nabheshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236: 313-322 [PMID: 9240432 DOI: 10.1006/bbrc.1997.6943]
12 Raval CM, Zhong JL, Mitchell SA, Tyrrell RM. The role of Bach1 in ultraviolet A-mediated human heme oxygenase 1 regulation in human skin fibroblasts. Free Radic Biol Med 2012; 52: 227-236 [PMID: 22207958 DOI: 10.1016/j.freeradbiomed.2011.10.494]
13 Fujisawa KT, Kataoka K, Nishizawa M. Two new members of the maf oncogene family, maft and mafE, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 1993; 8: 2371-2380 [PMID: 8361754]
14 Arisawa T, Tahara T, Shibata T, Nagasaki M, Nakamura M, Kamiya Y, Fujita H, Yoshioke D, Okubo M, Sakata M, Wang FY, Hirata I, Nakano H. Nrf2 gene promoter polymorphism is associated with ulcerative colitis in a Japanese population. Hepatogastroenterology 2008; 55: 394-397 [PMID: 18613373]
15 Podolsky DK. Inflammatory bowel disease (1). N Engl J Med 1991; 325: 928-937 [PMID: 19881418 DOI: 10.1056/NEJM19910926251306]
16 Langholz E, Munkholm P, Davidsen M, Binder V. Course of ulcerative colitis: analysis of changes in disease activity over years. Gastroenterology 1994; 107: 3-11 [PMID: 8020674 DOI: 10.1016/0016-5085(94)90054-X]
17 Rizzello F, Gionchetti P, Venturi A, Amadini C, Romagnoli R, Campieri M. Review article: monitoring activity in ulcerative colitis. Aliment Pharmacol Ther 2002; 16 Suppl 4: 3-6 [PMID: 12407252 DOI: 10.1046/j.1365-2036.16.s4.1.x]
18 Arisawa T, Tahara T, Ozaki K, Matsue Y, Minato T, Yamada H, Nomura T, Hayashi R, Matsunaga K, Fukumura A, Nakamura M, Toshikuni N, Shiozawa H, Shibata T. Association between common genetic variant of HRH2 and gastric cancer risk. Int J Oncol 2012; 41: 497-503 [PMID: 22615049 DOI: 10.3892/ijo.2012.1482]
19 Kataoka K, Igarashi K, Itoh K, Fujisawa K T, Noda M, Yamamoto H, Nishizawa M. Small Maf proteins heterodimerize with Fox and may act as competitive repressors of the NF-E2 transcription factor. Mol Cell Biol 1995; 15: 2180-2190 [PMID: 7891713 DOI: 10.1128/MCB.15.4.2180]
20 Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, Yamamoto M. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 1994; 367: 568-572 [PMID: 8107826 DOI: 10.1038/367568a0]
21 Onodera K, Yamanohara M, Muntz CM; Emagistomatic Rev. Mol Cell Biol 2000; 19: 1335-1345 [PMID: 10716933 DOI: 10.1093/emboj/19.6.1335]
22 Motohashi H, Katsukawa F, Engel JD, Yamamoto M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Kerap1-Nrf2 regulatory pathway. Proc Natl Acad Sci USA 2004; 101: 6379-6384 [PMID: 15087497 DOI: 10.1073/pnas.0305920101]
Arisawa T et al. MAFK polymorphisms and UC susceptibility

23 Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M. Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol 2005; 25: 8044-8051 [PMID: 16135796 DOI: 10.1128/MCB.25.18.8044-8051.2005]

24 Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H, Tashiro S, Takahashi S, Shibahara S, Alam J, Taketo MM, Yamamoto M, Igarashi K. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 2002; 21: 5216-5224 [PMID: 12356737 DOI: 10.1093/emboj/cdf516]

25 Zhang J, Ohta T, Maruyama A, Hosoya T, Nishikawa K, Maher JM, Shibahara S, Itoh K, Yamamoto M. BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress. Mol Cell Biol 2006; 26: 7942-7952 [PMID: 16923960 DOI: 10.1128/MCB.00700-06]

26 Nanashima K, Mawatari T, Tahara N, Higuchi N, Nakaura A, Inamine T, Kondo S, Yanagihara K, Fukushima K, Sayama N, Kohno S, Tsukamoto K. Genetic variants in antioxidant pathway: risk factors for hepatotoxicity in tuberculosis patients. Tuberculosis (Edinb) 2012; 92: 253-259 [PMID: 22341855 DOI: 10.1016/j.tube.2011.12.004]

27 Martínez-Hernández A, Gutierrez-Malacatt H, Carrillo-Sánchez K, Saldaña-Alvarez Y, Rojas-Ochoa A, Crespo-Solis E, Aguayo-González A, Rosas-López A, Ayala-Sanchez JM, Aquino-Ortega X, Orozco L, Cordova EJ. Small MAF genes variants and chronic myeloid leukemia. Eur J Haematol 2014; 92: 35-41 [PMID: 24118457 DOI: 10.1111/ejh.12211]

28 Yoh K, Sugawara T, Motohashi H, Takahama Y, Koyama A, Yamamoto M, Takahashi S. Transgenic over-expression of MafK suppresses T cell proliferation and function in vivo. Genes Cells 2001; 6: 1055-1066 [PMID: 11737266 DOI: 10.1046/j.1365-2443.2001.00489.x]
