INFRARED SPACE OBSERVATORY POLARIMETRIC IMAGING OF THE EGG NEBULA (RAFGL 2688)1

Joel H. Kastner,2 Jingqiang Li,2 Ralf Siebenmorgen,3 and David A. Weintraub4

Received 2001 December 3; accepted 2002 January 30

ABSTRACT

We present polarimetric imaging of the protoplanetary nebula RAFGL 2688 obtained at 4.5 μm with the Infrared Space Observatory (ISO). We have deconvolved the images to remove the signature of the point spread function of the ISO telescope, to the extent possible. The deconvolved 4.5 μm image and polarimetric map reveal a bright point source with faint, surrounding reflection nebulosity. The reflection nebula is brightest to the north-northeast, in agreement with previous ground- and space-based infrared imaging. Comparison with previous near-infrared polarimetric imaging suggests that the polarization of starlight induced by the dust grains in RAFGL 2688 is more or less independent of wavelength between 2 and 4.5 μm. This, in turn, indicates that scattering dominates over thermal emission at wavelengths as long as $\sim 5 \mu$m, and that the dust grains have characteristic radii less than 1 μm.

Key words: dust, extinction — planetary nebulae: individual (AFGL 2688) — polarization — stars: mass loss

1. INTRODUCTION

Stellar mass loss during post–main-sequence stellar evolution is more often than not an axisymmetric, rather than spherically symmetric, process. However, a coherent explanation for the transformation from quasi-spherical red giant to bipolar planetary nebula remains elusive. During pre–main-sequence evolution bipolar outflow is evidently an inevitable consequence of the presence of a circumstellar protoplanetary disk. But—neglecting the possibility that some evolved stars may retain massive, long-lived, “fossil” protoplanetary disks (Kastner & Weintraub 1995)—there is no obvious natural “collimating agent” during post–main-sequence stellar evolution. Hence the shaping of bipolar planetary nebulae (PNe), the endpoints of stellar evolution for intermediate-mass (1–8 M_\odot) stars, is a topic of considerable contemporary interest in astronomy (see reviews in Kastner, Soker, & Rappaport 2000).

The object RAFGL 2688 (the Egg Nebula) has long been regarded as prototypical of the class of evolved bipolar nebulae. The nebula was first identified as a bright far-IR source associated with axisymmetric optical nebulosity by Ney et al. (1975). Based on its radio molecular emission-line profiles, Zuckerman et al. (1976) proposed that the object was representative of the rapid transition from red giant to planetary nebula. Immediately following its discovery, RAFGL 2688 was established as a source of highly polarized optical and near-IR emission (e.g., Jones & Dyck 1978). The large net polarization in these early, large aperture measurements was thought to originate with the scattering of starlight by circumstellar dust, where the dust grain population is distributed in axisymmetric fashion about the central star. The latitudinal dependence of the dust density results in large opacities along the equatorial plane but relatively small opacities toward higher latitudes. Assuming the polar axis is nearly in the plane of the sky, the star itself would then be obscured along our line of sight, whereas starlight can still escape along polar (but not equatorial) directions and be scattered toward Earth.

This qualitative model of the structure of RAFGL 2688 has since been confirmed, first by Monte Carlo scattering models (Yusef-Zadeh et al. 1984) and most recently by high spatial resolution Hubble Space Telescope (HST) near-infrared polarimetric imaging observations (Sahai et al. 1998a; Fig. 1). The HST imaging demonstrates conclusively that the nebula displays the centrosymmetric patterns and large degree of linear polarization expected for an axisymmetric distribution of dust grains illuminated by a central source. Furthermore, the HST observations have established the position of the central illuminator, relative to the extended nebulosity, to within ~ 100 AU (Weintraub et al. 2000). In addition to the unseen illuminator, RAFGL 2688 contains a prominent, central source of direct (unpolarized) emission that is only detectable at wavelengths greater than 1.5 μm (Sahai et al. 1998a; Weintraub et al. 2000). The relationship of this source to the illuminator is uncertain, although the simplest explanation would be that the pair constitutes a widely separated binary.

Although HST has well established the optical and near-infrared morphology of RAFGL 2688 (Sahai et al. 1998a, 1998b), a detailed understanding of the nebula remains elusive. The kinematics of its molecular emission are particularly puzzling (see Cox et al. 2000; Kastner et al. 2001, and references therein). This emission seems to trace multipolar, radially directed outflows, some with no counterparts at optical or infrared wavelengths; alternatively, the emission may be interpreted in terms of a combination of radial and azimuthal velocity fields. Deepening the mystery of the structure of RAFGL 2688 are recent mid-infrared and radio imaging observations of dust emission that appear to trace highly collimated (and perhaps precessing) outflows (Morris & Sahai 2000; Jura et al. 2000).

Polarimetric imaging observations remain central to an understanding of the structure and evolution of RAFGL

1 Based on observations with ISO (Kessler et al. 1996), an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, Netherlands, and the UK) with the participation of ISAS and NASA.
2 Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623.
3 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany.
4 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235.
2688. While the nebula is well characterized polarimetrically in the optical and near-infrared, little or no spatially resolved polarimetric imaging data exist for wavelengths greater than 2 \(\mu m \). Here, we report on infrared polarimetric imaging of RAFGL 2688 at 4.5 \(\mu m \) with the Infrared Space Observatory (ISO, Kessler et al. 1996). In conjunction with previous HST near-infrared polarimetric imaging and ground-based direct mid-infrared imaging, the ISO polarimetric imaging yields insights into the relative contributions of direct and unpolarized starlight and of the grain size distribution in RAFGL 2688.

2. OBSERVATIONS

Data presented here were obtained with the ISO direct imaging instrument, ISOCAM (Cesarsky et al. 1996), using its long wavelength (LW) camera and passband filter LW1. The detector format was 32 \(\times \) 32 pixels. The response of LW1 is centered at 4.5 \(\mu m \) and is relatively flat, extending from 4 to 5 \(\mu m \).

ISOCAM was equipped with polarizers oriented at 0\(^\circ \), 120\(^\circ \), and 240\(^\circ \). Polarimetric imaging was set up according to the standard observing template CAM05 (Siebenmorgen 1996).\(^5\) The corresponding ISO observation numbers (TDT) are 76800602, 76800703, 76800804, 76800905, 76801006, 76801107, 76801208, 76801309, 76801410, and 76801511. We used a 4 \(\times \) 4 raster with a raster step size of 6\(\arcsec \), the 1\(\arcsec 5 \) lens, a readout time for each exposure of 2.1 s, and a gain of 1. Initially, we took 155 exposures on the source to stabilize the detector and then a raster through the free "hole" of the entrance wheel. At each raster position 26 exposures were read out. This procedure was carried out for each of the three polarizers. The polarizer rasters were repeated in three observing cycles.

3. RESULTS

3.1. Processed ISOCAM LW1 Images

The data were reduced with the ISOCAM interactive analysis system (CIA version 4.0, Ott et al. 1997). Only basic reduction steps, such as dark-current subtraction, removal of cosmic-ray hits, and transient correction, are applied to the data. These steps are described together with calibration uncertainties in Blommaert et al. (2001).\(^6\) The co-added images at each raster position were projected on the sky to derive the final mosaics. The mosaics have a 66\(\arcsec \) \(\times \) 68\(\arcsec \) total field of view and a pixel scale of 1\(\arcsec 5 \). The polarized signal is found to be consistent between the individual observing cycles. The average of all cycles gives the final mosaic image for each polarizer. The output of this image processing procedure therefore consisted of four images, each of total integration time of 1124 s: three polarized images (one for each of the three polarization filters) and one "unpolarized" or total intensity image (obtained through the hole position).

As part of the ISO calibration program, the zodiacal light and a set of (unpolarized) photometric standard stars was observed by repeating CAM05 observing templates. From those calibration measurements an instrumental polarization of less than 1.5\% is derived (Siebenmorgen 1999).\(^7\) This instrumental polarization is small enough to have negligible effect on the results described in this paper.

The total intensity image of RAFGL 2688 is displayed in Figure 2, alongside a 3420 s ISOCAM LW1 image of the infrared-bright standard star HIC 85317 (spectral type A4V, \(V = 6.5 \) mag, TDT = 35600401). The comparison emphasizes the rather complex, asymmetric point-spread function (PSF) of ISOCAM at 4.5 \(\mu m \). The six-pointed structure of the PSF is due to the support structure for the secondary mirror of the telescope. Although this point-spread function dominates the structure of both the RAFGL 2688 and standard star images, it is also apparent that RAFGL 2688 is extended relative to the standard. This is seen most clearly in the comparisons of nonlinear grayscale images (Fig. 2, bottom) and plots of intensity versus radius for RAFGL 2688 and the standard star (Fig. 3), the latter of which reveals twice as much or more light in the RAFGL 2688 images as in the PSF at distances \(\sim 10 \arcsec \) from the bright central PSF core.

3.2. ISOCAM 4.5 \(\mu m \) Polarimetric Map

The polarimetric image set obtained with the three polarizing filters in the LW camera is sufficient to uniquely determine the Stokes parameters for each image pixel \((x, y)\). Specifically, we find \(I(x, y) \), \(Q(x, y) \), \(U(x, y) \) from the image set \(P_0(x, y) \), \(P_{120}(x, y) \), \(P_{240}(x, y) \) as follows:

\[
I(x, y) = 2/3[P_0(x, y) + P_{120}(x, y) + P_{240}(x, y)],
\]

\[
Q(x, y) = 2/3[2P_0(x, y) - P_{120}(x, y) - P_{240}(x, y)],
\]

\[
U(x, y) = -2/\sqrt{3}P_{120}(x, y) + 2\sqrt{3}P_{240}(x, y).
\]

\(^5\) Available at http://www.iso.vilspa.esa.es.

\(^6\) Available at http://www.iso.vilspa.esa.es.

\(^7\) Available at http://www.iso.vilspa.esa.es.
The degree p and position angle θ of linear polarization may then be derived from the Stokes parameters in the usual manner, i.e.,

$$p(x, y) = \frac{Q^2(x, y) + U^2(x, y)}{I(x, y)^{1/2}}$$

and

$$\theta(x, y) = \frac{1}{2} \tan^{-1} \frac{U(x, y)}{Q(x, y)}.$$

Polarization maps so obtained from ISOCAM polarimetric imaging have been presented for the Crab Nebula (Tuffs, Siebenmorgen, & Gallant 1999), the protostellar system HH 108MMS (Siebenmorgen & Krügel 2000), the starburst NGC 1808 galaxy (Siebenmorgen et al. 2001), and a sample of ultraluminous galaxies (Siebenmorgen & Efstathiou 2001).

The ISO polarization map obtained for RAFGL 2688 (Fig. 4) shows hints of centrosymmetry, particularly in its northern regions. The center of symmetry of this portion of the polarimetric map appears to lie near the bright central region of the image. This spatial polarization structure suggests that much of the northern region of the ISO 4.5 μm image of RAFGL 2688 is in fact scattered light and that the source of illumination lies in the vicinity of the image intensity peak. However, the structure of the ISO polarimetric map is overall much less well organized than that of the HST/NICMOS polarization map (Fig. 1). In particular, the relative contributions from nebulosity and PSF are not clear from Figure 1; nor is it obvious whether any extended 4.5 μm emission is dominated by scattering (as is undoubtedly the case at 2 μm) or by direct, thermal emission. Evidently, either the ISO polarimetric map suffers from systematic distortions, or there are significant differences in the spatial distribution and degree of polarization in RAFGL 2688 between 2 and 4.5 μm.
4. RECONSTRUCTION OF DIRECT AND POLARIMETRIC IMAGES

To investigate the extent to which the prominent signature of the PSF in the individual polarimetric images affects the ISO 4.5 μm polarimetric map, we attempted to remove the PSF signature from these images and that of the total intensity image. To this end we have employed two popular deconvolution methods, maximum likelihood (ML, Richardson 1972; Lucy 1974) and maximum entropy (ME, e.g., Hollis, Dorband, & Yusef-Zadeh 1992), using programs that are part of the standard IDL Astronomy Library.9

Both ML and ME techniques require a deconvolution “kernel” consisting of the best-known representation of the instrumental PSF. One then makes an initial estimate of the “true” source intensity distribution, i.e., the source intensity distribution that would be detected in the absence of instrumental broadening. This image is convolved with the PSF and is then compared with the observed image intensity distribution. The resulting difference image (or “residual image”) is stored for reference. The “true” image intensity distribution is then modified accordingly (following either the ML or ME algorithm prescription), and the process is repeated. The change in residual image statistics (e.g., residual image maximum and standard deviation) over successive iterations of either the ML or ME schemes can be used to assess the progress of image deconvolution.

4.1. Reconstructed ISOCAM 4.5 micron Total Intensity Image

The results of iterative deconvolutions of the ISOCAM LW1 total intensity image using ML and ME methods are

9 Available at http://idlastro.gsfc.nasa.gov.
displayed in Figures 5 and 6. For these deconvolutions, we adopted as the instrumental PSF the ISOCAM LW1 image of HIC 85317. It is apparent from both figures that the ML and ME methods produce very similar results and, furthermore, that the two methods asymptotically approach their “best guesses” for the “true” image at similar rates. Specifically, after \(\sim 15 \) iterations the net changes in both the maximum and the standard deviation of the residual image (from their original values) approach \(\sim 90\% \) of the differences between their original and asymptotic values (Fig. 5). We find that, for either the ML or ME methods, iterating more than about 20 times introduces image artifacts, such as negative values and spurious off-source features.

Notably, both the ML and ME deconvolution methods produce the same fundamental result for the reconstructed total intensity image (Fig. 6). This reconstructed image consists of a compact, bright central source, representing \(\sim 90\% \) of the total source intensity, surrounded by fainter nebulosity. Most of the nebulosity lies to the north-northeast of the bright, compact source. This source structure is consistent with the morphology of the polarimetric map (§3.2); i.e., the bright, central source appears to illuminate a region of reflection nebulosity to its north-northeast.

4.2. Reconstructed ISOCAM Polarization Map

We applied the ML method to the individual LW1 polarimetric images to obtain a deconvolved polarization image set \(P_0(x, y), P_{120}(x, y), P_{240}(x, y) \). For these deconvolutions, we again adopted the ISOCAM LW1 image of HIC 85317 as representative of the instrumental PSF, under the assumption that the polarizing filters produce negligible additional point-source distortions. To obtain each polarimetric image, we performed 16 iterations of the ML algorithm. The resulting deconvolved LW1 polarimetric images of RAFGL 2688 (not shown) are qualitatively similar to the deconvolved total intensity image described in the preceding section, i.e., a compact central source with nebulosity extending to the north-northeast.

The polarization map constructed from the images \(P_0(x, y), P_{120}(x, y), P_{240}(x, y) \) (hereafter referred to as the reconstructed polarization map) is presented in Figure 7. The centrosymmetry evident in the northern regions of the “raw” polarimetric map (Fig. 4) is more pronounced in this reconstructed polarization map. Like the raw map, the reconstructed map also displays a minimum of polarization near the intensity peak in the total intensity image and a somewhat disorganized polarization pattern to the south of the intensity peak.
degree of polarization, especially in regions of low source surface brightness.

We conclude that the reconstructed ISOCAM 4.5 μm total intensity image and polarization map of RAFGL 2688 are trustworthy.

5.2. The Nature of the 4.5 μm Emission from RAFGL 2688

The ISOCAM polarimetric map of RAFGL 2688 reveals that the extended nebulosity to the north-northeast is highly polarized, indicative of reflection nebulosity. The centrosymmetry of this polarization pattern about the 4.5 μm intensity peak indicates that the intensity peak is the likely source of illumination of the nebulosity. This source is very likely a combination of direct photospheric emission from the central F-type supergiant (e.g., Cohen & Kuhi 1977) and photospheric emission reprocessed by dust grains at characteristic temperatures of $\gtrsim 140$ K (Persi et al. 1999).

The apparent "emergence" of the central source at longer infrared wavelengths is seen in Figure 8. The source is only seen via reflection at 2 μm (Fig. 8, left; see also Weintraub et al. 2000), whereas, evidently, it makes a substantial contribution to the nebular morphology (in the form of a strong pointlike source and diluted polarization) near the center of the nebula at 4.5 and 8.8 μm (Fig. 8, middle and right). Similar behavior is observed in infrared reflection nebulosity surrounding young stellar objects and is usually interpreted as a decrease in scattering opacity with increasing wavelength (e.g., Fischer 1995). We caution, however, that the registration of the three images in Figure 8 is not certain to better than $\sim 1''$, the ISOCAM polarization imaging suffers from relatively low spatial resolution, and there is no polarization information in the 8.8 μm image. Furthermore, there are multiple sources of 2 μm photons in RAFGL 2688 (Weintraub et al. 2000). Hence it may be somewhat premature to conclude that the same source that illuminates the nebula at 2 μm also illuminates reflection nebulosity at 4.5 and 8.8 μm.

While it appears we have detected the central illuminating source at 4.5 μm, this source evidently is highly obscured along our line of sight. This conclusion follows from the ratio of nebular surface brightness to point-source intensity; specifically, at an angular displacement of 6′ along the polar axis of the nebula from the central point source, we find that the surface brightness of scattered light is $\sim 1\%$ of the integrated intensity of the central source. For a reflection nebula whose dust density is inversely proportional to the square of the angle from the source of illumination (θ), the scattering optical depth (τ_s) is related to the ratio of scattered to incident starlight, $I_s(\theta)/I_0$, via

$$\tau_s(\theta) = 8\pi \frac{I_s(\theta)}{I_0} \frac{\theta^2}{\Delta \phi},$$

where $\Delta \phi$ is the solid angle subtended by a pixel (Jura & Jacoby 1976; Kastner 1990). Assuming the integrated intensity of the central source as measured in our images accurately represents the available illuminating flux I_0, then the measured ratio $I_s(6')/I_0 \approx 0.01$ would suggest a scattering optical depth $\tau_s(6') \approx 4$. This result is seemingly at odds with our detection of very high levels of polarization ($\sim 60\%$) in this region, however; such a high degree of polarization requires that single scattering is dominant over multiple scattering. We conclude that, along our line of sight,
the central object is highly attenuated at 4.5 μm, such that the measured value of $I_s(600)/I_0$ is an overestimate. A conservative lower limit to the degree of 4.5 μm extinction toward the central source is provided by the requirement that $I_s/C28 < 1$, suggesting $A_{4.5} > 1.5$.

Figure 9 shows a comparison of percent polarization versus radius from the central star for the 2 μm (HST/NICMOS) and 4.5 μm (ISOCAM) polarimetric imaging observations. The figure demonstrates that percent polarization is more or less independent of wavelength within the nebula, between ~2 and 5 μm, at radial offsets well displaced from the star. This behavior is similar to that observed in the evolved bipolar reflection nebula OH 231.8+4.2 (Shure et al. 1995), although the OH 231.8+4.2 observations only extended to 3.6 μm. From the large values of polarization in RAFGL 2688 at both 2 and 4.5 μm, we may safely conclude that scattering dominates the nebular emission at these wavelengths; i.e., there is little or no contribution from thermal emission from the dust grains in RAFGL 2688, even at wavelengths as long as ~5 μm. As no polarization data have been obtained for this nebula at longer wavelengths, we are as yet unable to ascertain the nature of the lobe emission seen at 8.8 μm (Fig. 8).

5.3. Dust Grain Size Distribution

Most detailed modeling of reflection nebulae at ~5 μm performed thus far has been geared toward interpreting large-aperture polarization measurements (e.g., Heckert & Smith 1988; Pendleton, Tielens, & Werner 1990; Fischer 1995; Shure et al. 1995) rather than spatially resolved polarization imaging. Nevertheless, based on the wavelength independence of polarization of RAFGL 2688 and the typical polarization values of ~60% at large offsets from the central star, we conclude that the bulk of the dust grains in the RAFGL 2688 reflection nebula are significantly smaller than the wavelengths employed in the HST/NICMOS and ISOCAM imaging studies. That is, the grains have typical radii less than 1 μm. This result, which is similar to that obtained by Shure et al. (1995) for OH 231.8+4.2, follows from the straightforward analytical treatment of light scattering by small particles (van de Hulst 1957), as well as from the more detailed, but limited, modeling of dust grain populations in infrared reflection nebulae performed to date (Pendleton et al. 1990; Fischer 1995).

6. SUMMARY

We have obtained 4.5 μm polarimetric images of the evolved bipolar reflection nebula RAFGL 2688 with the CAM mid-infrared camera aboard the Infrared Space Observatory. The observations are strongly affected by the complex CAM point-spread function. The source structure in reconstructed (deconvolved) images is that of a bright central object with faint nebulosity extending to the north-northeast. The position angle of extended nebulosity is the
same as that seen in ground-based near-infrared images obtained at other wavelengths. A polarization map constructed from deconvolved, polarized images displays a large degree of polarization and a centrosymmetric pattern of position angle within the faint, extended nebulosity, while the bright central source displays much lower levels of polarization and disorganized patterns of polarization position angle.

The pattern and degree of polarization within the extended nebulosity, as revealed in the reconstructed image and polarization map, confirms that scattering is the dominant source of nebular light. Comparison with previous space-based (HST/NICMOS) polarimetric imaging indicates that the degree of polarization within the extended RAFGL 2688 nebula is independent of wavelength, suggesting that small (<1 μm) grains do most of the scattering of starlight.

Further, detailed modeling is required to provide additional insight into the circumstellar structure and grain properties of evolved, bipolar nebulae, such as RAFGL 2688. It would also be of great value to obtain mid-infrared imaging polarimetry of RAFGL 2688 at higher resolution to ascertain the precise location of the illuminating source at ~5 μm, as well as at longer wavelengths, to determine whether scattering is still important or even dominant beyond 5 μm.

The authors thank Mark Morris and Raghvendra Sahai for the use of their 8.8 μm Keck image of RAFGL 2688. CIA is a joint development by the ESA Astrophysics Division and the ISOCAM Consortium. The ISOCAM Consortium is led by the ISOCAM PI, C. Cesarsky. ISO research by J. H. K. and J. L. was supported by JPL grants 1230950 and 1211136 to the Rochester Institute of Technology.

REFERENCES

Blommaert J., et al. 2001, ISO Handbook Volume III (CAM) (SAI-99-057/De), Version 1.2
Cesarsky C., et al. 1996, A&A, 315, L32
Cohen, M., & Kuhi, L. V. 1977, ApJ, 213, 79
Cox, P., Lucas, R., Huggins, P. J., Forveille, T., Bachiller, R., Guilloteau, S., Mallard, J. P., & Omont, A. 2000, A&A, 353, L25
Fischer, O. 1995, Rev. Mod. Astron., 8, 103
Heckert, P. A., & Smith, P. S. 1988,AJ, 95, 873
Holm, J. M., Dorband, J. E., & Yusuf-Zadeh, F. 1992, ApJ, 386, 293
Jones, T. J., & Dyck, H. M. 1978, ApJ, 220, 159
Jura, M., & Jacoby, G. 1976, Astrophys. Lett., 18, 5
Jura, M., Turner, J. L., Van Dyk, S., & Knapp, G. 2000, ApJ, 528, L105
Kastner, J. H. 1990, Ph.D. thesis, UCLA
Kastner, J. H., Soker, N., & Rappaport, S. 2000, ASP Conf. Ser. 199, Asymmetrical Planetary Nebulae II: From Origins to Microstructures (San Francisco: ASP)
Kastner, J. H., & Weintraub, D. A. 1995, AJ, 109, 1211
Kastner, J. H., & Weintraub, D. A., Gatley, I., & Hen, L. 2001, ApJ, 546, 279
Kessler M. F., et al. 1996, A&A, 315, L27
Lucy, L. B. 1974, AJ, 79, 745
Morris, M., & Sahai, R. 2000, in ASP Conf. Ser. 199, Asymmetrical Planetary Nebulae II: From Origins to Microstructures, ed. J. H. Kastner, N. Soker, & S. Rappaport (San Francisco: ASP), 143
Ney, E. P., Merrill, K. M., Becklin, E. E., Neugebauer, G., & Wynn-Williams, C. G. 1975, ApJ, 198, L129
Ott S., et al. 1997, ASP Conf. Ser. 125, Astronomical Data Analysis Software and Systems, VI, ed. G. Hunt, & H. E. Payne (San Francisco: ASP), 34
Pendleton, Y., Tielens, A. G. G. M., & Werner, M. 1990, ApJ, 349, 107
Persi, P., Cesarsky, D., Marenzi, A. R., Preite-Martinez, A., Rouan, D., Siebenmorgen, R., Lacombe, F., & Tiphene, D. 1999, A&A, 351, 201
Richardson, W. H. 1972, J. Opt. Soc. Am., 62, 55
Sahai, R., Hines, D., Kastner, J. H., Weintraub, D. A., Trauger, J. T., Rieke, M. J., Thompson, R. I., & Schneider, G. 1998a, ApJ, 492, L163
Sahai, R. et al. 1998b, ApJ, 493, 301
Shure, M., Sellgren, K., Jones, T. J., & Klebe, D. 1995, AJ, 109, 721
Siebenmorgen R. 1996, Polarimetric Imaging with ISOCAM: C05, Observer’s Manual (ESA/SPC)
———. 1999, ISO Polarisation Observations, ed. R. J. Laureijs & R. Siebenmorgen (ESA-SP435)
Siebenmorgen, R., & Krügel, E. 2000, A&A, 364, 625
Siebenmorgen, R., & Elstathiou, A. 2001, A&A, 376, L35
Siebenmorgen, R., & Laureijs, R. J. 2001, A&A, 377, 735
Tuffs, R. J., Siebenmorgen, R., & Gallant, Y. A. 1999, in Observing Polarisation with the Infrared Space Observatory, ed. R. J. Laureijs & R. Siebenmorgen (ESA-SPC)
van de Hulst, H. C. 1957, Light Scattering by Small Particles (New York: Wiley), 63
Weintraub, D. A., Kastner, J. H., Sahai, R., & Hines, D. 2000, ApJ, 531, 401
Yusuf-Zadeh, F., Morris, M., & Chance, D. 1984, Nature, 310, 557
Zuckerman, B., Gilra, D. P., Turner, B. E., Morris, M., & Palmer, P. 1976, ApJ, 205, L15