New particles from Belle

Stephen L. Olsen
Department of Physics & Astronomy, University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
E-mail: solsen@phys.hawaii.edu

Abstract. I report recent results on hidden charm spectroscopy from Belle. These include:
observation of a near-threshold enhancement in the \(\omega J/\psi \) invariant mass distribution for
exclusive \(B \to K \omega J/\psi \) decays; evidence for the decay \(X(3872) \to \pi^+\pi^-\pi^0 J/\psi \), where the
\(\pi^+\pi^-\pi^0 \) invariant mass distribution has a strong peak between 750 MeV and the kinematic limit
of 775 MeV, suggesting that the process is dominated by the sub-threshold decay \(X \to \omega J/\psi \);
and the observation of a peak near 3940 MeV in the \(J/\psi \) recoil mass spectrum for the inclusive
continuum process \(e^+e^- \to J/\psi X \). The results are based on a study of a 287 fb\(^{-1} \) sample
\(e^+e^- \) annihilation data collected at center-of-mass energies around the \(\Upsilon(4S) \) in the Belle detector at
the KEKB collider.

1. Introduction
The recent surge in activity in hadron spectroscopy and, I suppose, the main motivation for the
formation of the Topical Group on Hadron Physics, is the result of renewed interest in a
rather old question: are there hadronic states with a more complex structure than the simple \(q\bar{q} \)
mesons and \(qqq \) baryons of the original quark model? This revival of interest has been driven
by experimental reports of pentaquarks [1], the narrow \(D_{sJ} \) states [2, 3], and the \(X(3872) \) [4].

In spite of considerable theoretical and experimental effort, the existence of non-\(q\bar{q} \) mesons
and/or non-\(qqq \) baryons remains an open question. While the identification of a strangeness=+1
(or charm=-1) baryon would be definitive evidence for a non-\(qqq \) baryon, the experimental
situation regarding the existence of such states remains unsettled (and a major topic of discussion
at this meeting [5]). On the other hand, while the \(D_{sJ} \) and \(X(3872) \) are experimentally
well established, the theoretical interpretation is not so clear. The \(D_{sJ} \) states could be standard
\(P \)-wave \(c\bar{s} \) states and their narrowness is only surprising because the relativistic potential model
calculations that predicted them to be heavier (and above \(DK \) threshold) are wrong [6]. Some
theorists, including our opening speaker [7], remain hopeful that a \(c\bar{c} \) charmonium assignment
can be found for the \(X(3872) \).

To sort this all out, I think that the so-called hidden charm mesons can and will play a
decisive role for reasons that include:

- the theory for these systems is well founded (and recently blessed by this year’s Nobel Prize
 Committee) and has fewest ambiguities;
- the experimental signatures tend to be clean;
- \(c\bar{c} \) meson states below open-charm threshold are narrow and do not overlap; and
• lots of non-$c\bar{c}$-type mesons have been conjectured, including $D\bar{D}^*$ molecules [8] and $c\bar{c}$-gluon hybrids [9].

Although the Belle detector [10] is specialized to studies of CP violation in B meson decays, it has proven to be a useful device for studying particles containing $c\bar{c}$ pairs. Belle detects $c\bar{c}$ systems produced via weak decays of b quarks — the $b \to c\bar{c}s$ process is a dominant b-quark decay mode — and the continuum production process $e^+e^- \to c\bar{c}c\bar{c}$, which has been found to be surprisingly large. The KEKB asymmetric energy collider [11] operates at a center-of-mass (cms) energy corresponding to the $\Upsilon(4S)$ resonance and routinely delivers luminosities that are in excess of 10^{34} cm$^{-2}$s$^{-1}$, thereby providing Belle with a huge data sample that contains about 300 million BB meson pair events and over one billion $e^+e^- \to q\bar{q}$ continuum annihilation events.

Belle results in the hidden charm meson sector include first observations of:

• the η_c' via the sequence $B \to K\eta_c', \eta_c' \to K_S K\pi$ [12];
• anomalously large cross sections for the exclusive process $e^+e^- \to J/\psi\eta_c$ and the inclusive process $e^+e^- \to J/\psi(c\bar{c})$ [13];
• the $X(3872)$ meson [4];
• a near-threshold $\omega J/\psi$ mass enhancement in exclusive $B \to K\omega J/\psi$ decays [14]; and
• a peak at 3940 MeV in the J/ψ recoil mass spectrum in the inclusive $e^+e^- \to J/\psi X$ process [15].

In this talk I will discuss the last two items as well as recent results on properties of the $X(3872)$. I will not have time to cover any of the many other Belle results on hadron spectroscopy, such as our many interesting results on charmed baryon spectroscopy [16], D^{**} [17] and D_{sJ} mesons [3] and two-photon physics [18]. In addition, I will not have time to report on Belle’s lack of observation of pentaquarks [19] or the $D_{sJ}(2632)$ [20]. All unpublished numbers reported here are preliminary.

2. A near-threshold $\omega J/\psi$ mass enhancement in $B \to K\omega J/\psi$ decays
At the $\Upsilon(4S)$, BB meson pairs are produced with no accompanying particles. As a result, each B meson has a total cms energy that is equal to E_{beam}, the cms beam energy. We identify B mesons using the beam-constrained B-meson mass $M_{bc} = \sqrt{E_{\text{beam}}^2 - \vec{p}_B^2}$ and the energy difference $\Delta E = E_{\text{beam}} - E_B$, where \vec{p}_B is the vector sum of the cms momenta of the B meson decay products and E_B is their cms energy sum. For the final states discussed here, the experimental resolutions for M_{bc} and ΔE are approximately 3 MeV and 13 MeV, respectively.

We select $B \to K\pi^+\pi^-\pi^0 J/\psi$ candidate events ($J/\psi \to \ell^+\ell^-$) track combinations with M_{bc} and ΔE values that are within 2.5σ of their nominal values. Figure 1 shows a scatterplot of $M(\pi^+\pi^-\pi^0 J/\psi)$ (vertical) versus $M(\pi^+\pi^-\pi^0)$ for selected events in the ΔE-M_{bc} signal region. Here a distinct vertical band corresponding to $\omega \to \pi^+\pi^-\pi^0$ decays is evident near $M(\pi^+\pi^-\pi^0) = 0.782$ GeV.

We identify three-pion combinations with $M(\pi^+\pi^-\pi^0)$ within 25 MeV of m_{ω} as ω candidates and form the Dalitz plot of $M^2(\omega J/\psi)$ (vertical) versus $M^2(\omega K)$ (horizontal) shown in Fig. 2. The clustering of events near the left side of the plot corresponds to $B \to K_X J/\psi$; $K_X \to K\omega$ events, where K_X denotes strange meson resonances such as $K_1(1270)$, $K_1(1400)$, and $K_2^*(1430)$ that are known to decay to $K\omega$. There is also a clustering of events with low $\omega J/\psi$ invariant masses near the bottom of the Dalitz plot. To study these, we suppress $K_X \to K\omega$ events by only looking at events in the region $M(K\omega) > 1.6$ GeV, to the right of the dashed line in Fig. 2.

The M_{bc} and ΔE distributions of the selected events indicate that about half of the entries in the $M(\omega K) > 1.6$ GeV Dalitz plot region are due to background. To perform a background
Figure 1. A scatterplot of $M(\pi^+\pi^-\pi^0\ell^+\ell^-)$ (vertical) versus $M(\pi^+\pi^-\pi^0)$ for events in the $\Delta E-M_{bc}$ signal region. The vertical band indicated by the arrows corresponds to $\omega \rightarrow \pi^+\pi^-\pi^0$ decays.

Figure 2. The Dalitz-plot distribution for $B \rightarrow K\omega J/\psi$ candidate events.

Figure 3. M_{bc} distributions for events in the ΔE signal region for 40 MeV-wide bins in $M(\omega J/\psi)$.

Figure 4. $B \rightarrow K\omega J/\psi$ signal yields vs $M(\omega J/\psi)$. The curve in (a) indicates the result of a fit that uses an S-wave Breit-Wigner resonance term and a phase-space-like threshold function for the background.
subtraction and determine the level of $B \to K \omega J/\psi$ signal events, we separate the data into 40 MeV-wide bins of $M(\omega J/\psi)$ and measure the B meson signal levels in the M_{bc} and ΔE distributions. The histograms in Fig. 3 show the M_{bc} distributions for the twelve lowest $M(\omega J/\psi)$ mass bins, where strong peaks at $M_{bc} = m_B$ are evident at low $\omega J/\psi$ masses, especially for the mass regions covered by Figs. 3(b) and (c). The corresponding ΔE distributions (not shown) show similar structure. We establish the $B \to K \omega J/\psi$ signal level for each $M(\omega J/\psi)$ mass bin by performing binned fits simultaneously to the M_{bc} and ΔE distributions with Gaussian functions for the signal and smooth background functions. The smooth curves in Fig. 3 indicate the fitted M_{bc} curves for each $\omega J/\psi$ mass bin.

The bin-by-bin signal yields are plotted vs $M(\omega J/\psi)$ in Fig. 4. An enhancement is evident around $M(\omega J/\psi) = 3940$ MeV. The curve in Fig. 4 is the result of a fit with a S-wave Breit-Wigner function threshold function of the form $f(M) = A_0 q^2(M)$, where $q^2(M)$ is the momentum of the daughter particles in the $\omega J/\psi$ rest frame. This functional form accurately reproduces the threshold behavior of Monte Carlo simulated $B \to K \omega J/\psi$ events that are generated uniformly distributed over phase-space.

The fit gives a Breit-Wigner signal yield of 58 \pm 11 events with a peak mass and total width of

$$M = 3943 \pm 11({\text{stat}}) \pm 13({\text{syst}}) \text{ MeV}$$
$$\Gamma = 87 \pm 22({\text{stat}}) \pm 26({\text{syst}}) \text{ MeV},$$

where the systematic errors are determined from variations in the values when different bin sizes, fitting shapes and selection criteria are used. The event yield translates into a product branching fraction (here we denote the enhancement as $Y(3940)$):

$$B(B \to KY(3940))B(Y(3940) \to \omega J/\psi) = (7.1 \pm 1.3({\text{stat}}) \pm 3.1({\text{syst}})) \times 10^{-5},$$

The statistical significance of the signal, determined from $\sqrt{-2 \ln(\mathcal{L}_0/\mathcal{L}_{\max})}$, where \mathcal{L}_{\max} and \mathcal{L}_0 are the likelihood values for the best-fit and for zero-signal-yield, respectively, is 8.1.σ.

A $c\bar{c}$ charmonium meson a mass of 3943 MeV would dominantly decay to $D\bar{D}$ and/or $D\bar{D}^*$; hadronic charmonium transitions should have minuscule branching fractions. On the other hand, decays of cc-gluon hybrid charmonium to $D^{(*)}D^{(*)}$ meson pairs are forbidden or suppressed, and the relevant “open charm” threshold is $m_{D^{(*)}} \approx 4285$ MeV [21, 22], where $D^{(*)}$ refers to the $J^{P} = (0, 1, 2)^+$ charmed mesons. Thus, a hybrid state with a mass equal to that of the peak we observe would have large branching fractions for decays to J/ψ or ψ' plus light hadrons [23]. Moreover, lattice QCD calculations have indicated that partial widths for such decays can be comparable to the width that we measure [24]. However, these calculations predict masses for these states that are between 4300 and 4500 MeV [25], substantially higher than our measured value.

3. The $X(3872)$ with 253 fb$^{-1}$

The $X(3872)$ was discovered by Belle as a narrow $\pi^+\pi^-J/\psi$ mass peak in exclusive $B^- \to K^-\pi^+\pi^-J/\psi$ decays [4, 26]. Figure 5 shows the $X(3872)$ signal from a 253 fb$^{-1}$ data sample containing 275 million $B\bar{B}$ pairs. The observed mass and the narrow width are not compatible with expectations for any of the as-yet unobserved charmonium states [27]. Moreover, the $\pi^+\pi^-$ invariant mass distribution, shown in Fig. 6, peaks near the upper kinematic limit of $M(\pi^+\pi^-) = 775$ MeV, and has a shape that is consistent with $\rho \to \pi^+\pi^-$ decays. Charmonium decays to $\rho J/\psi$ final states violate isospin and are expected to be suppressed. The $X(3872)$ and its above-listed properties were confirmed by the BaBar [28], CDF [29] and D0 [30] experiments.

The $X(3872)$ mass (3871.9 ± 0.5 MeV [31]) is within errors of the $D^{0}\bar{D}^{0*}$ threshold (3871.3 ± 1.0 MeV [32]); the difference is 0.6 ± 1.1 MeV. This has led to speculation that the X
might be a $D^0\bar{D}^{0*}$ bound state [33, 34, 8]. According to ref. [33], the preferred quantum numbers for such a bound state would be either $J^{PC} = 0^{--}$ or 1^{++}. The decay of an $C = +1$ state to $\pi^+\pi^-J/\psi$ would proceed via an $I = 1$ $\rho J/\psi$ intermediate state and produce the $\pi^+\pi^-$ mass spectrum like that we see. In this meson-meson bound state interpretation, the close proximity of the X mass to $D^0\bar{D}^{0*}$ threshold compared to the $D^+D^-D^0\bar{D}^{0*}$ mass splitting of 8.1 MeV produces a strong isospin violation.

Swanson made a dynamical model for the $X(3872)$ as a $D^0\bar{D}^{0*}$ hadronic resonance [34]. In this model, $J^{PC} = 1^{++}$ is strongly favored and the wave function has, in addition to $D^0\bar{D}^{0*}$, an appreciable admixture of $\omega J/\psi$ plus a small $\rho J/\psi$ component. The latter produces the $\pi^+\pi^-J/\psi$ decays that have been observed; the former gives rise to $\pi^+\pi^-\pi^0 J/\psi$ decays via a virtual ω that are enhanced because of the large $\omega J/\psi$ component to the wavefunction. Swanson’s model predicts that $X(3872) \rightarrow \pi^+\pi^-\pi^0 J/\psi$ decays should occur at about half the rate for $\pi^+\pi^-J/\psi$ and with a $\pi^+\pi^-\pi^0$ invariant mass spectrum that peaks near the upper kinematic boundary of 775 MeV (7.5 MeV below the ω peak).

$X(3872) \rightarrow \pi^+\pi^-\pi^0 J/\psi$ decays would populate the horizontal band indicated by the horizontal lines in the scatterplot of Fig. 1. This corresponds to the $\pm 3\sigma$ band $|M(\pi^+\pi^-\pi^0 J/\psi) - m_{X(3872)}| < 16.5$ MeV.

Figure 7 shows the M_{bc} distributions for events that are in the ΔE and $X \rightarrow \pi^+\pi^-\pi^0 J/\psi$ signal regions for 25 MeV-wide $\pi^+\pi^-\pi^0$ invariant mass bins; Fig. 8 shows the corresponding ΔE distributions for events in the M_{bc} and X signal regions. There are distinct B meson signals in both the M_{bc} and ΔE distributions for the $M(\pi^+\pi^-\pi^0) > 750$ MeV bin and no evident signals for any of the other 3π mass bins. The curves in the figures are the results of binned likelihood fits that are applied simultaneously to the M_{bc} and ΔE distributions.

Figure 9 shows the fitted B-meson signal yields vs $M(\pi^+\pi^-\pi^0)$. All of the fitted yields are consistent with zero except for the $M(\pi^+\pi^-\pi^0) > 750$ MeV bin, where the fit gives

\[M(\pi^+\pi^-) \] for events in the $X(3872)$ signal peak. The shaded histogram is the sideband-determined background; the curve is the result of a fit with a $\rho \rightarrow \pi^+\pi^-$ lineshape.

\[M(\pi^+\pi^-\pi^0) \] for events in the $X(3872)$ signal peak. The shaded histogram is the sideband-determined background; the curve is the result of a fit with a $\rho \rightarrow \pi^+\pi^-$ lineshape.

\[M(\pi^+\pi^-) \] for events in the $X(3872)$ signal peak. The shaded histogram is the sideband-determined background; the curve is the result of a fit with a $\rho \rightarrow \pi^+\pi^-$ lineshape.
12.4 ± 4.1 events. The statistical significance of the signal in this one bin, determined from
\(\sqrt{-2 \ln(L_0/L_{\text{max}})} \), where \(L_{\text{max}} \) and \(L_0 \) are the likelihood values for the best-fit and for zero-
signal-yield, respectively, is 6.6σ.

Figure 10 shows the \(M(K\pi^+\pi^-\pi^0) \) distribution for for the \(X \to \pi^+\pi^-\pi^0J/\psi \) signal events. The distribution is spread across the limited allowed kinematic region and there is no evident
structure that might be producing the high mass peak in Fig. 9 by some sort of a kinematic
reflection.

A possible background to the observed signal would be feed-across from the near-threshold
\(\omega J/\psi \) enhancement in \(B \to K\omega J/\psi \) decays described above. Since the \(\omega \to \pi^+\pi^-\pi^0 \) resonance
peak is at \(m_\omega = 782.5 \) MeV, which is 7.5 MeV above the maximum possible \(3\pi \) invariant mass
value for \(X \to \pi^+\pi^-\pi^0J/\psi \) decays, there is no overlap between the centroids of the \(\omega J/\psi \) and \(X \to \pi^+\pi^-\pi^0J/\psi \) signal bands in Fig. 1. However, there is some overlap in the tails of the
kinematically allowed regions for the two processes that might result in some events from one
signal feeding into the other.

We determine the level of signal cross-talk to be 0.75 ± 0.14 events from the integral of
the fitted function in Fig. 4 over the region of overlap with the \(X(3872) \) signal band. As
an independent check, we refitted for the $X(3872) \rightarrow \pi^+\pi^-\pi^0 J/\psi$ signal yield with a tighter restriction on $M(\pi^+\pi^-\pi^0 J/\psi)$, namely $m_X - 3\sigma < M(\pi^+\pi^-\pi^0 J/\psi) < m_X + 1\sigma$, that has no overlap with the ω band. The $X \rightarrow \pi^+\pi^-\pi^0 J/\psi$ signal yield in the truncated region is 10.6 ± 3.6 events. For a Gaussian signal distribution with no feed-across background, we expect the truncation of the signal region to reduce the signal by 2.1 events (16%); the observed reduction of 1.8 events is consistent with a feed-across level that is less than one event.

Another possible source of background to the $X(3872) \rightarrow \pi^+\pi^-\pi^0 J/\psi$ signal are non-resonant $B^- \rightarrow K^-\pi^+\pi^-\pi^0 J/\psi$ decays. To determine the level of these, we looked for B-meson signals in the $M_{bc}\Delta E$ distributions for events in $M(\pi^+\pi^-\pi^0 J/\psi)$ sidebands above and below the $X(3872)$ mass region. There is no evidence for significant signal yields in the $M_{bc}\Delta E$ distributions of either sideband. Fits gives an estimate of the non-resonant background in the $X \rightarrow \pi^+\pi^-\pi^0 J/\psi$ signal bin of 1.3 ± 1.0 events.

To determine the branching fraction, we attribute all of the signal events with $M(\pi^+\pi^-\pi^0 J/\psi) > 750$ MeV to $X \rightarrow \pi^+\pi^-\pi^0 J/\psi$ decay. We compute the ratio of $\pi^+\pi^-\pi^0 J/\psi$ and $\pi^+\pi^- J/\psi$ branching fractions by comparing this to the number of $X \rightarrow \pi^+\pi^- J/\psi$ in the same data sample, corrected by MC-determined relative detection efficiencies. The ratio of branching fractions is

$$\frac{B(X \rightarrow \pi^+\pi^-\pi^0 J/\psi)}{B(X \rightarrow \pi^+\pi^- J/\psi)} = \frac{N_{ev}(\pi^+\pi^-\pi^0 J/\psi)_{\ell\ell\pi^+\pi^- J/\psi}}{N_{ev}(\pi^+\pi^- J/\psi)_{\ell\ell\pi^+\pi^- J/\psi}} = 1.1 \pm 0.4(\text{stat}) \pm 0.3(\text{syst}), \quad (1)$$

where the systematic error reflects the uncertainty in the relative acceptance, the level of possible feed-across and nonresonant background, and possible event loss due to the $M(3\pi) > 750$ MeV requirement, all added in quadrature. If we allow for cross-talk and non-resonant contributions at their maximum ($+1\sigma$) values, the statistical significance of the $X(3872) \rightarrow \pi^+\pi^-\pi^0 J/\psi$ signal is reduced to $\simeq 4\sigma$.

4. A new charmonium state in inclusive $e^+e^- \rightarrow J/\psi X$ annihilations.

Some of the biggest surprises from Belle have nothing to do with B-meson physics at all and have come, instead, from the inclusive $e^+e^- \rightarrow J/\psi X$ annihilation process. This is demonstrated in Fig. 11, which shows the distribution of masses for systems with more than two charged tracks that recoil against J/ψ mesons produced in the e^+e^- continuum at or near the $\Upsilon(4S)$ resonance. In this figure, which is based on a 280 fb$^{-1}$ data sample, the histogram indicates the background level derived from the $J/\psi \rightarrow \ell^+\ell^-$ mass sidebands.

The prominent peak at $M_{\text{recoil}} \simeq 2.98$ GeV in Fig. 11 corresponds to the η_c. From the yield of events we determine a cross-section branching-fraction product [15]

$$\sigma_{\text{Born}}(e^+e^- \rightarrow J/\psi\eta_c)B(\eta_c \rightarrow 2\text{tracks}) = 25.6 \pm 4.4 \text{ fb}.$$

This is more than an order of magnitude higher than non-relativistic QCD (NRQCD) calculations of ~ 2 fb$^{-1}$[35]. There is no evident signal for any recoils with mass below M_{η_c}, which is also the cc mass threshold. Also contrary to NRQCD expectations, the four-charmed-quark process $e^+e^- \rightarrow ccc\bar{c}$ dominates inclusive J/ψ production. From the total number of charmonium states and charmed particles found in the recoil system, we determine the cross section ratio [36]

$$\frac{\sigma(e^+e^- \rightarrow J/\psi cc)}{\sigma(e^+e^- \rightarrow J/\psi X)} = 0.82 \pm 0.21;$$

NRQCD predicts this ratio to be ~ 0.1 [37].

The second and third prominent peaks in Fig. 11 are at the masses of the χ_{c0} and η_c', respectively. The fourth peak is well fitted by a Gaussian function with a peak mass of 3940 ± 12 MeV and a signal significance of 4.5σ. The width of this state is consistent with
experimental M_{recoil} resolution. Since this is rather poor, we can only derive an upper limit on the total width of $\Gamma < 96 \text{ MeV}$ (90% CL).

We investigated this peak further by studying events where a D meson is identified in the J/ψ recoiling system, e.g. in events of the type $e^+e^- \rightarrow J/\psiDX$. Figure 12 shows the distribution of masses recoiling against the J/ψ for $e^+e^- \rightarrow J/\psiDX$ events where $M_X = m_D^*$ (top) and $M_X = m_D$ (bottom). There is an evident $9.9 \pm 3.3 \text{ event signal}$ for the 3940 MeV state in the $D\bar{D}^*$ mass spectrum, with a statistical significance of 4.5σ. The signal level is the $D\bar{D}$ mass spectrum is $4.1 \pm 2.2 \text{ events with a significance of only 2.1}\sigma$.

This peak cannot be identified with any known charmonium state. An obvious guess is that it is either the χ'_c or the η''_c. However, $\chi'_c \rightarrow D\bar{D}^*$ is forbidden and, thus, ruled out. Likewise $\eta''_c \rightarrow D\bar{D}$ decays are also forbidden, but, since the $D\bar{D}$ “signal” is ambiguous, we can’t use this to rule out this assignment. On the other hand, an η''_c assignment to the observed peak would imply a $m_{\psi(3S)} - m_{\psi(3S)}$ mass splitting of $\sim 100 \text{ MeV}$, about twice as large as the measured splitting for the $2S$ states. This seems unlikely.

The mass of this fourth peak is very similar to that of the $\omega J/\psi$ peak seen in $B \rightarrow K\omega J/\psi$ and described above, and a search for it in the $\omega J/\psi$ decay channel is in progress. In addition, we are examining $B \rightarrow KDD^*$ decays for a DD^* component of the $\omega J/\psi$ enhancement.

5. Summary

We observe peaks near 3940 MeV in the $\omega J/\psi$ mass distribution from $B \rightarrow K\omega J/\psi$ decays and in the recoil mass spectrum in the inclusive annihilation process $e^+e^- \rightarrow J/\psi X$. The latter peak is also seen in the exclusive process $e^+e^- \rightarrow J/\psi DD^*$ and, thus, cannot be assigned to the χ_0 charmonium state. At this stage, we cannot tell whether or not the state seen in B decays and the one seen in inclusive J/ψ production are one and the same. Further investigation is in progress.

We observe a $\sim 4\sigma$ signal for $X(3872) \rightarrow \pi^+\pi^-\pi^0J/\psi$. This is the first measurement of an X decay mode other than $\pi^+\pi^-J/\psi$. The $\pi^+\pi^-\pi^0$ invariant masses are strongly clustered above 750 MeV, near the upper kinematic boundary; this is suggestive of a sub-threshold decay via a virtual $\omega J/\psi$ intermediate state. Such a decay, at near the measured branching fraction,
was predicted by Swanson based on a model where the $X(3872)$ is considered to be primarily a $D^0 \bar{D}^0$ hadronic resonance [34].

The presence of the $X(3872) \rightarrow \omega J/\psi$ decay process would establish the Charge-Conjugation quantum number of the $X(3872)$ as $C = +1$. This, in turn, would mean that the $\pi^+ \pi^- J/\psi$ system in $X \rightarrow \pi^+ \pi^- J/\psi$ decay comes from the decay of a ρ meson. The large isospin violation implied by the near equality of the $\rho J/\psi$ and $\omega J/\psi$ decay widths is difficult to accommodate in a charmed interpretation of the X, but a natural consequence of the meson-meson bound state model point of view.

6. Acknowledgements

I thank the organizers of the APS Topical Group on Hadron Physics for inviting me to give this talk. My Belle colleagues and I thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the NII for valuable computing and Super-SINET network support.

We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (contract No. 10175071, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC program of KOSEF (Korea); KBN (contract No. 2P03B 01324, Poland); MIST (Russia); MESS (Slovenia); Swiss NSF; NSC and MOE (Taiwan); and DOE (USA).

References

[1] T. Nakano et al. (LEPS Collaboration), Phys. Rev. Lett. 91, 012002 (2003). See also K. Hicks, these proceedings.
[2] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 90, 242001 (2003) and D. Besson et al. (CLEO Collaboration), Phys. Rev. D 68, 032002 (2003).
[3] Y. Mikami et al. (Belle Collaboration), Phys. Rev. Lett. 92, 012002 (2003) and P. Krokovny et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262002 (2003). For recent Belle results see A. Drutskoy, these proceedings.
[4] S.K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).
[5] A. Dzierba, these proceedings; see also A.R. Dzierba et al. Phys. Rev. D 69, 054008 (2004) and E.J. Eichten, K. Lane and C. Quigg, Phys. Lett. B 339, 17 (1993).
[6] C. Quigg, these proceedings; see also T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004) and E.J. Eichten, K. Lane and C. Quigg, Phys. Rev. D 69, 094019 (2004).
[7] See, for example, M.B. Voloshin and L.B. Okun, JETP Lett. 23, 333 (1977); M. Bander, G.L. Shaw and P. Thomas, Phys. Rev. Lett. 36, 695 (1977); A. De Rujula, H. Georgi and S.L. Glashow, Phys. Rev. Lett. 38, 317 (1977); N.A. Törnqvist, Z. Phys. C 61, 525 (1994); and A.V. Manohar and M.B. Wise, Nucl. Phys. B 339, 17 (1993).
[8] D. Horn and J. Mandula, Phys. Rev. D 17, 898 (1978).
[9] A. Abashian et al. (Belle Collab.), Nucl. Instr. and Meth. A 499, 1 (2003), and other papers included in this volume.
[10] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 89, 102001 (2002).
[11] A. Abriss et al. (Belle Collaboration), Phys. Rev. Lett. 89, 142001 (2002).
[12] S.K. Choi et al. (Belle Collaboration), hep-ex/0408126.
[13] P. Pakhlov, hep-ex/0412041; see also T. Ziegler, these proceedings.
[14] T. Lesiak et al. (Belle Collaboration), hep-ex/0409065, R. Misuk et al. (Belle Collaboration), hep-ex/0412069, and K. Abe et al. (Belle Collaboration), Phys. Lett. B 524, 33 (2002).
[15] K. Abe et al. (Belle Collaboration), hep-ex/0410091 and K. Abe et al. (Belle Collaboration), Phys. Rev. D 69, 112002 (2004).
[16] H. Nakazawa et al. (Belle Collaboration), hep-ex/0412058; K. Abe et al. (Belle Collaboration), Eur. Phys. J. C 32, 323 (2003); and K. Abe et al. (Belle Collaboration), Phys. Rev. B 540, 33 (2002).
[17] R. Mizuk, talk at PENTA04, Kobe Japan, July 2004, hep-ex/0411005.
[18] K. Abe, talk at PENTA04, Kobe Japan, July 2004.
[19] N. Isgur, R. Kokoski and J. Paton Phys. Rev. Lett. 54, 869 (1985).
[22] F.E. Close and P.R. Page, Nucl.Phys B443, 233 (1995); F.E. Close and P.R. Page, Phys.Lett. B366, 323 (1996).
[23] F.E. Close, Phys. Lett. B 342, 369 (1995).
[24] C. McNeile, C. Michael and P. Pennanen (UKQCD Collaboration), Phys. Rev. D 65, 094505 (2002).
[25] C. Banner et al., Phys. Rev. D 56, 7039 (1997); Z.-H. Mei and X.-Q. Luo, Int. J. Mod. Phys. A 18, 5713 (2003); and X. Liao and T. Manke, hep-lat/0210030.
[26] The inclusion of charge-conjugate modes is always implied.
[27] S.L. Olsen, hep-ex/0407033 and K. Abe et al. (Belle Collaboration), hep-ex/0408116.
[28] B. Aubert et al. (BaBar Collaboration), hep-ex/0406022.
[29] D. Acosta et al. (CDF-II Collaboration), Phys. Rev. Lett. 93, 072001 (2004).
[30] V.M. Abazov et al., (D0 Collaboration), hep-ex/0405004.
[31] This is the weighted average of all of the reported $X(3872)$ mass measurements.
[32] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).
[33] N.A. Törnqvist, Phys. Lett. B 590, 209 (2004); F.E. Close and P.R. Page, Phys. Lett. B 578, 119 (2003); S. Pakvasa and M. Suzuki, Phys. Lett. B 579, 67 (2004); C.-Y. Wong, Phys. Rev. C 69, 055202 (2004); and E. Braaten and M. Kusunoki, Phys. Rev. D 69, 114012 (2004).
[34] E.S. Swanson, Phys. Lett. B 588, 189 (2004).
[35] G.T. Bodwin, J. Lee and E. Braaten, hep-ph/0212181.
[36] K. Abe et al. (Belle Collaboration), BELLE-CONF-0331 (2003).
[37] P. Cho and A.K. Leibovich, Phys. Rev. D 54, 6690 (1996); E. Braaten and Yu-Qi Chen, Phys. Rev. Lett. 76, 730 (1996); V.V. Kiselev, A.K. Likhoded and M.V. Shevlyagin Phys. Lett. B 332, 411 (1994).