Association between body composite indices and vertebral fractures in pre and postmenopausal women in Korea

HyunJin Kim\(^1\), Chung-woo Lee\(^1\), Myung Ji Nam\(^1\), Yeon Joo Choi\(^1\), Kyungdo Han\(^2\), Jin-Hyung Jung\(^3\), Do-Hoon Kim\(^1\)\(^\ast\)*, Joo-Hyun Park\(^1\)\(^\ast\)*

\(^1\) Department of Family Medicine, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan-si, Republic of Korea, \(^2\) Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea, \(^3\) Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

\(^\ast\) These authors contributed equally to this work.

\(*\) kmcfm@hanmail.net (DHK); joohyun_park@naver.com (JHP)

Abstract

The association between obesity and vertebral fracture remains controversial. This study aimed to investigate the association between obesity/abdominal obesity and vertebral fracture according to menopausal status. This nationwide population-based epidemiologic study collected data from the Korean National Health Insurance Services to investigate the association between obesity/abdominal obesity and vertebral fracture in pre and postmenopausal women who underwent national cancer screening in 2009. We used three body composite indices of obesity, body mass index, waist circumference and waist-to-height ratio, to classify participants into obesity and abdominal obesity groups. In both pre and postmenopausal groups, participants with obesity showed a higher risk of vertebral fracture and the association was stronger in those with abdominal obesity \((p < 0.001)\). Participants with obesity showed a high risk of vertebral fracture, and the association was stronger in participants with abdominal obesity \((p < 0.001)\). In both pre and postmenopausal groups, participants with obesity showed a higher risk of vertebral fracture and the association was stronger in those with abdominal obesity \((p < 0.001)\). Participants with obesity showed a high risk of vertebral fracture, and the association was stronger in participants with abdominal obesity \((p < 0.001)\). In both pre and postmenopausal groups, participants with obesity showed a higher risk of vertebral fracture and the association was stronger in those with abdominal obesity \((p < 0.001)\). Vertebral fracture risk is higher in pre and postmenopausal women with obesity and even higher in those with abdominal obesity. Therefore, weight management can prevent vertebral fractures.

Introduction

Menopause is a normal yet very crucial event in women’s life since it causes several changes that can influence women’s health. The average age at menopause is 49.3 years in Korean women; therefore, women spend 40% of their life in the postmenopausal state. It is well established that menopause is a known cause of bone loss and can deteriorate bone health [1]. The
criteria for access to confidential data, the data are available from the Korea National Health Insurance Sharing Service Institutional Data Access / Ethics Committee (https://nhiss.nhis.or.kr/bdaya001iv.do). Researchers can inquire about data access to the National Health Insurance data sharing service upon approval of the Institutional Review Board of their institution. After review of the Korea National Health Insurance Sharing Service Institutional Data Access / Ethics Committee, authors are required to pay a data access fee and confirm that other researchers will be able to access the data in the same manner as the authors. For this study, we paid a fee to access the data and there was no special access privileges.

Funding: This research was supported by Research Program To Solve Social Issues of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020R1A2C1099826). The funding body had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Study of Women’s Health Across the Nation (SWAN), which is a large, multi-ethnic cohort study of women across the United States, has shown that early bone loss in menopause is caused by the alteration in estradiol and follicle-stimulating hormone levels during menopause [2]. Fractures are a major health problem among older people, particularly in older women, and can result in significant morbidity and mortality [3]. Therefore, it is important to identify the determinants that affect bone health to prevent further bone loss and architectural damage caused by menopause in subsequent years.

Obesity is also a common public health problem. For many years, the association between obesity and bone health has been studied. Previous studies on the association between obesity and bone health have commonly examined body mass index (BMI) and bone mineral density (BMD). The Rancho Bernardo study enrolled 1 492 participants aged 55 to 84 and found a correlation between weight and BMD [4]. However, the effect of obesity on fracture risk remains controversial. Although high BMD cannot necessarily be equal to better bone health, numerous studies have shown that high BMI is associated with increased BMD. This is because the high mechanical load and endocrine effect of adipose tissue have a protective effect on bone density [5, 6]. However, recent studies have shown that obesity is negatively associated with bone mass [7, 8], and fractures in postmenopausal women with obesity contribute significantly to the overall fracture burden. The inconsistencies between these results were attributed to specific populations, backgrounds, and methodological differences.

Recent data have shown that the association between BMI and fracture risk varies according to the fracture site. For instance, the risk of hip fracture and wrist fracture was lower in postmenopausal women with obesity [9–11]. In contrast, the risk of ankle fracture and leg fracture was higher in postmenopausal women with obesity, and the results of such studies were consistent [12, 13]. However, studies on the relationship between obesity and vertebral fractures showed conflicting results. This discrepancy may have arisen from the different body compositions of different populations. Vertebral fractures are the most frequent fragility fractures and affect morbidity and mortality in older people [14]. In addition, vertebral fractures are associated with reduced quality of life and an increased risk of refracture at the same site and fractures in the future [3, 15].

BMI is the most widely used parameter for measuring obesity. However, BMI has limitations regarding the ability to discriminate lean mass from fat mass. Moreover, a study has shown a higher risk for osteoporosis in the low BMI category, which was thought to be related to sarcopenic obesity with low muscle mass [16] addition, BMI is influenced by both height and weight, and they independently contribute to the fracture risk. Therefore, in this study, we added additional indices to measure obesity such as waist circumference (WC) and waist-to-height ratio (WHtR). Recent studies have indicated that WHtR can be used as a substitute to measure the correlation matrix between BMI and WC owing to its ability to measure central obesity and predict health risk [17, 18].

Thus, we aimed to evaluate the association between obesity and the risk of vertebral fractures using three different body composite indices of obesity among pre and postmenopausal women using a nationwide population-based epidemiologic study.

Materials and methods

Study design and population

Data were collected from the Korean National Health Insurance Services (KNHIS) database in 2009, which is a nationwide database containing medical information that represents approximately 97% of the population in Korea. The KNHIS database includes data on age, sex, diagnosis, health check-up results, and drug prescriptions. From this database, we extracted
information on women aged 30 and older who have received national cancer screening program and answered a questionnaire on their medical history including their reproductive factors. Diagnoses were coded according to the International Classification of Diseases 10th Revision (ICD-10). The KNHIS database covers the data of 100% of the population, except for data on cosmetic surgeries and traffic or industrial accidents. Therefore, it has the advantage of focusing on non-traumatic fractures.

Among 3,280,834 women aged >30 years who underwent cancer screening in 2009, those who did not answer the questionnaire on reproductive factors and those who reached menopause after hysterectomy were excluded. Women who experienced menarche at <5 years and >30 years and women who experienced menopause at <30 years and >70 years were excluded. After excluding subjects with missing data and subjects with past fractures, 2,524,179 subjects were finally selected.

Access to these data was approved by the Korea University Ansan Hospital Institutional Review Board (IRB no. 2019AS0117), and the data were used after board review.

Definition of fracture group

We identified patients with new-onset fracture using the ICD-10 and used the S12.0 (fracture of first cervical vertebra), S12.1 (fracture of second cervical vertebra), S12.2 (fracture of other specified cervical vertebra), S22.0 (fracture of thoracic vertebra), S22.1 (Multiple fracture of thoracic spine), S32.0 (fracture of lumbar vertebra), M48.4 (fatigue fracture of vertebra), M48.5 (collapsed vertebra, not elsewhere specified) codes for identifying a diagnosis of fracture.

Anthropometric measurements

Anthropometric indices of obesity and abdominal obesity, including BMI, WC, and WHtR, were measured. Height and weight were measured, and BMI was calculated by dividing the weight (kg) by the square of the height (m). We identified obese group with BMI ≥ 25 kg/m² and participants were also categorized according to the World Health Organization criteria based on BMI: <18.5 kg/m² (underweight), 18.5–23 (normal weight), 23–25 (overweight), 25–30 (obese), and > 30 kg/m² (severely obese) [19].

WC was measured in the horizontal plane at the mid-point between the anterior iliac crest and the inferior margin of the rib. Women with a WC > 85 cm were diagnosed with abdominal obesity [20], and based on WC, women were categorized into five groups: < 65, 65–75, 75–85, 85–95, and ≥ 95 cm [20].

WHtR was calculated as the WC (cm) divided by the height (cm). Hsieh et al. proposed a cutoff value of 0.5, and a WHtR > 0.5 has been proven to be associated with a higher risk for cardiovascular risk in Japanese adults [21]. According to studies conducted in Asian countries, WHtR has been suggested as a useful measure of central obesity in Asian populations, and the proposed cutoff point of WHtR is approximately 0.5 [22–25]. Therefore, women with WHtR > 0.5 represented abdominal obesity group, and we also classified them into quartiles.

Assessment of covariates

A health questionnaire was used to obtain information on age, sex, comorbidities, blood test results, lifestyle habits, reproductive factors including current menstrual status and use of hormone replacement therapy and oral contraceptives. According to the answers to the question of ‘Do you still experience menstrual periods?’ in the questionnaire, we classified subjects into pre and postmenopausal groups.
Trained medical technicians performed standardized procedures to measure the body weight (kg) and height (cm) of all participants. We identified diseases such as hypertension, dyslipidemia, chronic kidney disease (CKD), cancer, and anemia. Hypertension, dyslipidemia, and cancer were identified by those who answered “yes” to the question of having been diagnosed with the same. CKD was defined as a glomerular filtration rate $< 60 \text{ ml/min/1.73m}^2$. Monthly household income and education were used as the main indicators of socioeconomic status. Participants were asked to state their highest educational degree, and we identified those who were educated up to high school level or above. Household income was evaluated based on equivalent income classified into quintiles, and we identified those who were included in the lowest quintile. The participants were also classified based on the frequency of alcohol intake (more or less than once every month), smoking status (whether currently smoking or not), and level of physical activity (identified as those who answered “yes” to the question of performing regular exercise).

Statistical analysis

The association between different obesity indices and vertebral fracture risk in the pre and postmenopausal groups was evaluated using a Cox proportional hazard model with covariate adjustment using propensity scores based on age, sex, smoking status, frequency of alcohol intake, household income, exercise, hypertension, dyslipidemia, and hormone replacement therapy. The confidence interval (CI) was set to 95%. All data were analyzed using the Statistical Analysis System, release 9.4 (SAS Inc., Cary, NC, USA).

Results

Baseline characteristics of the subjects

Table 1 shows the general characteristics in the premenopausal and postmenopausal groups. Among the 2,524,179 subjects, 1,156,174 were classified as premenopausal and 1,368,005 were classified as postmenopausal. Data for all subjects in both groups were analyzed. As expected, the postmenopausal group showed a higher proportion of subjects with comorbidities such as diabetes mellitus, hypertension, dyslipidemia, and depression. The average weight in the premenopausal group was 57.44 ± 8.18 kg, and the average weight in the postmenopausal group was 57.06 ± 8.29 kg; thus, the average weight was similar. However, in terms of BMI, the proportion of participants with obesity ($\text{BMI} \geq 25 \text{ kg/m}^2$) was higher in the postmenopausal group, and the postmenopausal group showed a higher proportion of participants with abdominal obesity ($p < 0.001$) (Table 1).

Association between body composite indices of obesity and prevalence of vertebral fracture in pre and postmenopausal women

We used the Cox proportional hazards model to estimate the incidence of vertebral fracture according to the presence of obesity and abdominal obesity.

Subjects were divided into two groups according to the presence of obesity based on BMI. In the premenopausal group, women with obesity ($\text{BMI} > 25 \text{ kg/m}^2$) showed a significantly high risk of vertebral fracture (adjusted hazard ratio [HR], 1.24; 95% CI, 1.19–1.30). In the postmenopausal group, women with obesity showed a high risk of vertebral fracture (adjusted HR, 1.04; 95% CI, 1.03–1.05) (Table 2).

We analyzed the relationship between vertebral fracture and abdominal obesity based on both WC and WHtR. Table 3 shows that in the premenopausal group, women with abdominal obesity ($\text{WC} > 85 \text{ cm}$) showed a high risk of vertebral fracture (adjusted HR, 1.35; 95% CI,
Table 1. Baseline characteristics according to menopausal status.

Age group, years	Premenopause	Postmenopause	p-value
	n		
30–39	115,617		<.0001
40–49	17,415		
50–59	136,800		
60–69	136,800		<.0001

Smoking status	Premenopause	Postmenopause	p-value
	n		
Non	1,092,180	1,316,461	<.0001
Ex-smoker	22,141	14,616	
Current	41,853	36,928	<.0001

Alcohol intake	Premenopause	Postmenopause	p-value
	n		
Non	813,761	1,199,137	<.0001
Mild	328,850	161,963	
Heavy	13,563	6,905	<.0001

Chronic obstructive pulmonary disease	Premenopause	Postmenopause	p-value
	n		
Chronic obstructive pulmonary disease	47,219	124,092	<.0001
Hypopituitarism	149,011	564,041	<.0001
Hyperparathyroidism	468,041	1,129,081	<.0001
Cushing syndrome	273,022	1,311,011	<.0001
Hyperprolactinemia	1,572,014	381,035	<.0001
Vitamin D deficiency	166,001	599,044	<.0001
Idiopathic hypercalciuria	3,008,026	9,753,071	<.0001
Diabetes Mellitus	38,721,035	180,364,13	<.0001
Hypertension	143,833,042	588,168,42,99	<.0001
Dyslipidemia	123,111,10,65	466,535,34,1	<.0001
Intestinal malabsorption	187,002	392,003	<.0001
Chronic liver disease	16,713,14,5	40,847,2,99	<.0001
Anorexia nervosa	1,310,001	542,004	<.0001
Systemic lupus erythematosus	1,378,012	1,833,013	0.001
Irritable bowel disease	1,473,013	2,730,02	<.0001
Secondary amenorrhoe	8,402,073	1,080,008	<.0001
Convulsions	1,422,012	3,426,025	<.0001
Depression	35,131,3,04	95,163,6,97	<.0001
Use of tricyclic and tetracyclic antidepressants	50,0	57,0	0.8477
Panic disorder	2,317,02	3,016,022	0.0005
Anxiety disorder	74,033,6,4	193,855,14,17	<.0001
Use of bisphosphonates	3,877,034	126,326,9,23	<.0001
Chronic kidney disease	48,028,4,15	163,806,11,97	<.0001
Obesity	271,440,23,48	511,616,37,4	<.0001
Body mass index, kg/m²			<.0001
<18.5	41,667,3,6	2963,2,17	
1.27–1.43), and in the postmenopausal group, women with abdominal obesity showed an increased risk of vertebral fracture (adjusted HR, 1.13; 95% CI, 1.11–1.14) (Table 3). Abdominal obesity defined by WHtR showed similar results. The risk of vertebral fracture was increased in premenopausal women (adjusted HR, 1.32; 95% CI, 1.26–1.38) and postmenopausal women (adjusted HR, 1.21; 95% CI, 1.19–1.23) with a WHtR > 0.5 (Table 4).

Association between different levels of each body composite indices of obesity and the prevalence of vertebral fracture in pre and postmenopausal women

Participants were categorized into five BMI levels and analyzed according to menopausal status. Premenopausal women showed a statistically significant association between BMI and risk

| Table 2. Cox proportional hazards regression analysis for the development of vertebral fracture according to obesity status based on body mass index in the premenopausal and postmenopausal groups. |
|---------------------------------|------|-------|---------|---------|---------|
| | Premenopause | | | | |
| **Obesity** | **N** | **Event** | **Duration** | **Rate** | **Without adjustment** | **With adjustment** |
| No | 884 734 | 5 875 | 8 101 053.16 | 0.73 | 1 (Ref.) | 1 (Ref.) |
| Yes | 271 440 | 2 726 | 2 470 695.1 | 1.10 | 1.52 (1.46,1.59) | 1.24 (1.19,1.3) |

Postmenopause						
Obesity	**N**	**Event**	**Duration**	**Rate**	**Without adjustment**	**With adjustment**
No	856 389	65 846	7 136 899.39	9.23	1 (Ref.)	1 (Ref.)
Yes	511 616	42 647	4 281 488.58	9.96	1.08 (1.07,1.09)	1.04 (1.03,1.05)

https://doi.org/10.1371/journal.pone.0254755.t002
of vertebral fracture, and this association remained significant even after adjustment for age, smoking, alcohol intake, exercise, medication, and comorbidities known to have an effect on bone health such as diabetes, hypertension, dyslipidemia, and chronic kidney disease. After adjustment, except in the underweight group with a BMI < 18.5 kg/m², BMI and vertebral fracture were positively associated. This association was also seen in postmenopausal women, but it was stronger in premenopausal women (Table 5).

Participants were also classified according to five WC levels. Both pre and postmenopausal groups showed a positive association between WC levels and the risk of vertebral fracture. However, the association was stronger in the premenopausal group, and postmenopausal women with WC < 65 cm showed a higher risk of vertebral fracture. (Table 6)

In WHtR, we classified the participants into quartiles. Similar to the results of BMI and WC, WHtR was positively associated with the risk of vertebral fractures in both pre and postmenopausal women, and the association was stronger in the premenopausal group. (Table 7)

Association between body composite indices and vertebral fractures

Participants were categorized into four composite groups based on two factors: obesity, defined as a BMI > 25 kg/m², and abdominal obesity, defined as a WC > 85 cm.

In premenopausal women, with a group without obesity and abdominal obesity as a reference, participants with obesity but without abdominal obesity showed an increased risk of vertebral fracture. Furthermore, participants who had abdominal obesity with or without obesity showed a higher risk of vertebral fracture. (Table 3)

Table 3. Cox proportional hazards regression analysis for the development of vertebral fracture according to abdominal obesity status based on waist circumference in the premenopausal and postmenopausal groups.

Premenopause	N	Event	Duration	Rate	Without adjustment	With adjustment
No	1 025 576	7 014	9 385 869.38	0.75	1 (Ref.)	1 (Ref.)
Yes	130 598	1 587	1 185 878.88	1.34	1.79 (1.7,1.89)	1.35 (1.27,1.43)

Postmenopause	N	Event	Duration	Rate	Without adjustment	With adjustment
No	984 507	70 487	8 272 308.85	8.52	1 (Ref.)	1 (Ref.)
Yes	383 498	38 006	3 146 079.11	12.08	1.42 (1.4,1.44)	1.13 (1.11,1.14)

Table 4. Cox proportional hazards regression analysis for the development of vertebral fracture according to abdominal obesity status based on waist-to-height ratio in the premenopausal and postmenopausal groups.

Premenopause	N	Event	Duration	Rate	Without adjustment	With adjustment
No	817 352	4 897	7 488 693.03	0.65	1 (Ref.)	1 (Ref.)
Yes	338 822	3 704	3 083 055.23	1.20	1.84 (1.76,1.92)	1.32 (1.26,1.38)

Postmenopause	N	Event	Duration	Rate	Without adjustment	With adjustment
No	484 720	26 061	4 135 973.59	6.30	1 (Ref.)	1 (Ref.)
Yes	883 285	82 432	7 282 414.37	11.32	1.8 (1.77,1.82)	1.21 (1.19,1.23)

*Adjustment for age, smoking status, alcohol intake, income, regular exercise, diabetes mellitus, hypertension, dyslipidemia, rheumatic arthritis, hyperthyroidism, chronic kidney disease, chronic obstructive pulmonary disease, hypopituitarism, hyperparathyroidism, Cushing’s syndrome, hyperprolactinemia, vitamin D deficiency, hypercalcemia, intestinal malabsorption, chronic liver disease, anorexia nervosa, systemic lupus erythematosus, irritable bowel disease, secondary amenorrhea, convulsions, depression, use of tricyclic and tetracyclic antidepressants, panic disorder, anxiety disorder, and use of bisphosphonates.

https://doi.org/10.1371/journal.pone.0254755.t003

https://doi.org/10.1371/journal.pone.0254755.t004
also showed an increased risk of vertebral fracture, which was higher than the risk of the group without abdominal obesity. In postmenopausal women, participants with obesity but no abdominal obesity showed a lower risk of vertebral fracture (adjusted HR, 0.98; 95% CI, 0.96–0.99). Two composite groups with abdominal obesity, irrespective of the presence of obesity, showed a higher risk of vertebral fracture (Table 8).

Discussion

In this nationwide study, we elucidated the association between obesity and vertebral fracture in premenopausal and postmenopausal women. We have found that participants with high BMI, WC, or WHtR had a higher risk of vertebral fracture. In obese women with a BMI over 25, the risk of vertebral fracture was approximately twice that of women with a BMI less than 18.5 (Table 7).

Table 5. Cox proportional hazards regression analysis for the development of vertebral fracture according to BMI in the premenopausal and postmenopausal groups.

BMI (kg/m²)	N	Event	Duration	Rate	Without adjustment	With adjustment
< 18.5	41 667	212	382481.41	0.55	0.83 (0.72,0.96)	1.03 (0.90,1.185)
18.5–23	584 780	3 575	535886.96	0.67	1 (Ref.)	1 (Ref.)
23–25	258 287	2 088	235888.4	0.89	1.32 (1.26,1.40)	1.12 (1.06,1.18)
25–30	236 565	2 334	215422.56	1.08	1.63 (1.54,1.71)	1.27 (1.21,1.34)
≥30	34 875	392	316474.54	1.24	1.86 (1.68,2.06)	1.5 (1.35,1.67)

BMI, body mass index

https://doi.org/10.1371/journal.pone.0254755.t005

Table 6. Cox proportional hazards regression analysis for the development of vertebral fracture according to WC in the premenopausal and the postmenopausal groups.

WC (cm)	N	Event	Duration	Rate	Without adjustment	With adjustment
< 65	78 401	364	720 700.24	0.51	0.79 (0.71,0.88)	0.95 (0.85,1.06)
65–75	529 325	3 092	4 852 182.83	0.64	1 (Ref.)	1 (Ref.)
75–85	417 850	3 558	3 812 986.32	0.93	1.47 (1.4,1.54)	1.21 (1.15,1.27)
85–95	110 679	1 287	1 006 167.97	1.28	2.01 (1.88,2.14)	1.44 (1.34,1.54)
≥95	19 919	300	179 710.91	1.67	2.63 (2.33,2.96)	1.78 (1.58,2.01)

WC, waist circumference

https://doi.org/10.1371/journal.pone.0254755.t006
25 kg/m\(^2\), abdominal obesity was strongly associated with vertebral fracture risk in the pre and postmenopausal groups. Furthermore, this association was stronger in premenopausal women.

These findings have important implications. First, obesity is not a protective factor against vertebral fracture. Obesity itself should not be regarded as a major risk factor for vertebral fracture. Rather, abdominal obesity should be regarded as a significant factor. Second, BMI and abdominal obesity should be used in combination in strategies for the prevention of vertebral fractures.

Table 7. Cox proportional hazards regression analysis for the development of vertebral fracture according to WHR\(_Q\) in the premenopausal and the postmenopausal groups.

WHR\(_Q\)	N	Event	Duration	Rate	Without adjustment	With adjustment*
Q1	290 029	1 342	2 664 177.19	0.50	1 (Ref.)	1 (Ref.)
Q2	289 546	1 740	2 652 118.5	0.66	1.3 (1.21,1.4)	1.09 (1.01,1.17)
Q3	287 290	2 266	2 624 025.67	0.86	1.71 (1.6,1.83)	1.26 (1.18,1.35)
Q4	289 309	3 253	2 631 426.9	1.24	2.46 (2.3,2.62)	1.49 (1.39,1.59)

Postmenopause

WHR\(_Q\)	N	Event	Duration	Rate	Without adjustment	With adjustment*
Q1	342 168	16 934	2 929 014.51	5.78	1 (Ref.)	1 (Ref.)
Q2	341 647	23 456	2 881 366.93	8.14	1.41 (1.38,1.44)	1.15 (1.12,1.17)
Q3	342 646	30 291	2 843 514.96	10.65	1.85 (1.81,1.88)	1.26 (1.23,1.28)
Q4	341 544	37 812	2 764 491.56	13.68	2.37 (2.33,2.42)	1.31 (1.28,1.33)

WHR\(_Q\), waist-to-height ratio quartiles; Q, quartile

*Adjustment for age, smoking status, alcohol intake, income, regular exercise, diabetes mellitus, hypertension, dyslipidemia, rheumatic arthritis, hyperthyroidism, chronic kidney disease, chronic obstructive pulmonary disease, hypopituitarism, hyperparathyroidism, Cushing's syndrome, hyperprolactinemia, vitamin D deficiency, hypercalcioria, intestinal malabsorption, chronic liver disease, anorexia nervosa, systemic lupus erythematosus, irritable bowel disease, secondary amenorrhea, convulsions, depression, use of tricyclic and tetracyclic antidepressants, panic disorder, anxiety disorder, and use of bisphosphonates.

https://doi.org/10.1371/journal.pone.0254755.t007

Table 8. Composite study on obesity and abdominal obesity according to BMI and WC using Cox proportional hazards regression analysis for the development of vertebral fracture in the premenopausal and postmenopausal groups.

BMI	WC	N	Event	Duration	Rate	Without adjustment	With adjustment*
<25	<85	865 236	5 634	7 923 970.41	0.71	1 (Ref.)	1 (Ref.)
≥25	≥85	19 498	241	177 082.75	1.36	1.92 (1.68,2.18)	1.3 (1.14,1.48)
<25	≥85	160 340	1 380	1 461 898.97	0.94	1.33 (1.25,1.41)	1.15 (1.08,1.22)
≥25	<85	111 100	1 346	1 008 796.13	1.33	1.88 (1.77,1.99)	1.41 (1.32,1.5)

BMI	WC	N	Event	Duration	Rate	Without adjustment	With adjustment*
<25	<85	776 963	56 344	6 506 233.24	8.66	1 (Ref.)	1 (Ref.)
≥25	≥85	79 426	9 502	630 666.15	15.07	1.75 (1.71,1.78)	1.17 (1.14,1.19)
<25	≥85	207 544	14 143	1 766 075.61	8.01	0.92 (0.91,0.94)	0.98 (0.96,0.999)
≥25	<85	304 072	28 504	25 15 412.96	11.33	1.31 (1.29,1.33)	1.11 (1.09,1.13)

BMI, body mass index; WC, waist circumference

*Adjustment for age, smoking status, alcohol intake, income, regular exercise, diabetes mellitus, hypertension, dyslipidemia, rheumatic arthritis, hyperthyroidism, chronic kidney disease, chronic obstructive pulmonary disease, hypopituitarism, hyperparathyroidism, Cushing's syndrome, hyperprolactinemia, vitamin D deficiency, hypercalcioria, intestinal malabsorption, chronic liver disease, anorexia nervosa, systemic lupus erythematosus, irritable bowel disease, secondary amenorrhea, convulsions, depression, use of tricyclic and tetracyclic antidepressants, panic disorder, anxiety disorder, and use of bisphosphonates.

https://doi.org/10.1371/journal.pone.0254755.t008
fracture. Lastly, although the results indicated that abdominal obesity could deteriorate bone health in postmenopausal women, premenopausal women showed a stronger association between abdominal obesity and vertebral fracture risk. Thus, advice or intervention concerning body weight and fracture should not be limited to postmenopausal women.

The association between weight fluctuation and fracture risk remains controversial. Two cross-sectional studies showed a positive association between BMI and vertebral fracture in postmenopausal women [26, 27], while a study on 3,683 women aged over 75 across the United States showed that participants who lost weight had higher fracture risk and participants who gained weight had lower fracture risk [28]. A large prospective study by Prieto-Alhambra et al. found no association between BMI and vertebral fracture [10]. However, such results cannot be applied to the Korean population, in which the average BMI is considerably lower.

Obesity has various effects on bone health. The increase in body weight stimulates bone formation, increasing BMD and tissue padding and lessening the impact of a fall and protecting against fractures. However, there are also some negative effects. According to the SWAN study, a higher BMI was associated with greater BMD. However, in a study on femoral neck strength in individuals with obesity, increased BMD with a high mechanical load could not compensate for the high impact force of the fall. After adjustment for BMD, greater BMI was associated with an increased risk of a femoral neck fracture [29].

This study has the strength of being based on nationwide, large-scale data. Furthermore, only a few studies have included both premenopausal and postmenopausal women to assess the menopause-based differences in the association between obesity and BMD; in contrast, we investigated these effects separately in premenopausal and postmenopausal women and obtained comprehensive data that can be readily applied in clinical practice.

Nevertheless, our study has a few limitations. First, due to the nature of retrospective design using self-reported questionnaires, data may be subjected to recall bias. This study was cross-sectional in nature; thus, the causal relationship between obesity and the risk of vertebral fracture could not be explained. Furthermore, a future prospective study would be able to clarify this causal relationship based the results of this study. Second, in previous studies, the association between BMI and fracture risk was established, and it was found to be site-specific. In this study, we have focused on vertebral fractures; however, further studies on different fracture sites are required to navigate additional associations. Last, there are few other characteristics known to be associated with the risk of vertebral fractures in menopausal women, which cannot be neglected. Low education was associated with a greater incidence of fracture in non-white women [30]. Low socioeconomic status is associated with obesity and increased prevalence of chronic diseases, and this has been linked to increased fracture risk [31]. Treatment rates in postmenopausal women are low, and women with obesity showed particularly low treatment rates. According to The Global Longitudinal Study of Osteoporosis in Women, in the 2-year follow-up period after incident fracture, only 27% of women with obesity received bone-protection treatment, compared with 41% of women without obesity and 57% of underweight women [32]. Overall, these findings reveal the pleiotropic effects of obesity on fracture risk regarding the socioeconomic status and bone health during menopause.

These findings can be used to encourage pre and postmenopausal women with obesity to reduce their WC and to highlight the importance of early intervention for obesity, especially abdominal obesity, to prevent vertebral fractures in subsequent years.

Conclusions

We examined the association between body composite indices of obesity and the risk of vertebral fracture among pre and postmenopausal women and found that obesity and abdominal
obesity were associated with a higher risk of vertebral fracture in both pre and postmenopausal women; however, the association was stronger in premenopausal women. Additionally, abdominal obesity significantly contributes to the development of vertebral fractures. We posit that weight control can prevent vertebral fractures, particularly in premenopausal women. Further studies are required to clarify whether the management of obesity and abdominal obesity can prevent vertebral fractures.

Author Contributions

Conceptualization: HyunJin Kim, Do-Hoon Kim, Joo-Hyun Park.

Data curation: Kyungdo Han, Jin-Hyung Jung.

Formal analysis: Kyungdo Han, Jin-Hyung Jung.

Funding acquisition: Do-Hoon Kim.

Investigation: HyunJin Kim, Chung-woo Lee, Myung Ji Nam, Yeon Joo Choi, Kyungdo Han, Jin-Hyung Jung, Do-Hoon Kim, Joo-Hyun Park.

Methodology: HyunJin Kim, Chung-woo Lee, Myung Ji Nam, Yeon Joo Choi, Kyungdo Han, Jin-Hyung Jung, Do-Hoon Kim, Joo-Hyun Park.

Project administration: Do-Hoon Kim, Joo-Hyun Park.

Resources: Kyungdo Han, Jin-Hyung Jung.

Software: Kyungdo Han, Jin-Hyung Jung.

Supervision: Do-Hoon Kim, Joo-Hyun Park.

Validation: Chung-woo Lee, Myung Ji Nam, Yeon Joo Choi, Kyungdo Han, Jin-Hyung Jung.

Visualization: HyunJin Kim, Kyungdo Han, Jin-Hyung Jung.

Writing – original draft: HyunJin Kim.

Writing – review & editing: Chung-woo Lee, Myung Ji Nam, Yeon Joo Choi, Do-Hoon Kim, Joo-Hyun Park.

References

1. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, et al. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. J Clin Endocrinol Metab. 2012; 97(4):1159–68. https://doi.org/10.1210/jc.2011-3362 PMID: 22344196

2. El Khoudary SR, Greendale G, Crawford SL, Avis NE, Brooks MM, Thurston RC, et al. The menopause transition and women’s health at midlife: a progress report from the Study of Women’s Health Across the Nation (SWAN). Menopause. 2019; 26(10):1213–27. https://doi.org/10.1097/GME.0000000000001424 PMID: 31568098

3. Briggs AM, Greig AM, Wark JD. The vertebral fracture cascade in osteoporosis: a review of aetopathogenesis. Osteoporos Int. 2007; 18(5):575–84. https://doi.org/10.1007/s00198-006-0304-x PMID: 17206492

4. Edelstein SL, Barrett-Connor E. Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol. 1993; 138(3):160–9. https://doi.org/10.1093/oxfordjournals.aje.a116842 PMID: 8356959

5. Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res. 2008; 23(1):17–29. https://doi.org/10.1359/jbmr.070813 PMID: 17784844

6. Barrera G, Bunout D, Gattas V, de la Maza MP, Leiva L, Hirsch S. A high body mass index protects against femoral neck osteoporosis in healthy elderly subjects. Nutrition. 2004; 20(9):769–71. https://doi.org/10.1016/j.nut.2004.05.014 PMID: 15325685
7. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab. 2007; 92(5):1640–6. https://doi.org/10.1210/jc.2006-0572 PMID: 17299077

8. Chang CS, Chang YF, Wang MW, Chen CY, Chao YJ, Chang HJ, et al. Inverse relationship between central obesity and osteoporosis in osteoporotic drug naive elderly females: The Tianliao Old People (TOP) Study. J Clin Densitom. 2013; 16(2):204–11. https://doi.org/10.1016/j.jocd.2012.03.008 PMID: 22717906

9. Armstrong ME, Spencer EA, Cairns BJ, Banks E, Pirie K, Green J, et al. Body mass index and physical activity in relation to the incidence of hip fracture in postmenopausal women. J Bone Miner Res. 2011; 26(6):1330–8. https://doi.org/10.1002/jbmr.315 PMID: 21611971

10. Pietro-Alhambra D, Premoar MO, Fina Avilés F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res. 2012; 27(2):294–300. https://doi.org/10.1002/jbmr.1466 PMID: 22095911

11. Compton JE, Flahive J, Hosmer DW, Watts NB, Siris ES, Silverman S, et al. Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). J Bone Miner Res. 2014; 29(2):487–93. https://doi.org/10.1002/jbmr.2051 PMID: 23873741

12. Bergkvist D, Hekmat K, Svensson T, Dahlberg L. Obesity in orthopedic patients. Surg Obes Relat Dis. 2009; 5(6):670–2. https://doi.org/10.1016/j.soard.2009.05.014 PMID: 19656741

13. King CM, Hamilton GA, Cobb M, Carpenter D, Ford LA. Association between ankle fractures and obesity. J Foot Ankle Surg. 2012; 51(5):543–7. https://doi.org/10.1053/j.jfas.2012.05.016 PMID: 22789485

14. Pietri M, Lucarini S. The orthopaedic treatment of fragility fractures. Clin Cases Miner Bone Metab. 2007; 4(2):108–16 PMID: 22461210

15. Mao Y-F, Zhang Y, Li K, Wang L, Ma Y-M, Xiao W-L, et al. Discrimination of vertebral fragility fracture with lumbar spine bone mineral density measured by quantitative computed tomography. J Orthop Translat. 2018; 16:33–9. https://doi.org/10.1016/j.jot.2018.08.007 PMID: 30723679

16. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008; 11(6):693–700. https://doi.org/10.1097/MCO.0b013e328312c37d PMID: 18827572

17. Roriz AK, Passos LC, de Oliveira CC, Eickemberg M, Moreira Pde A, Sampaio LR. Evaluation of the accuracy of anthropometric clinical indicators of visceral fat in adults and elderly. PLoS One. 2014; 9(7):e103499. https://doi.org/10.1371/journal.pone.0103499 PMID: 25078454

18. Ashwell M, Gibson S. Waist-to-height ratio as an indicator of ‘early health risk’: simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open. 2016; 6(3):e010159. https://doi.org/10.1136/bmjopen-2015-010159 PMID: 26975935

19. Organization WH. World Health Organization Global database on body mass index. In: 2010.

20. Sangyeoup L, Hye Soon P, Sun Mee K, Hyuk Sang K, Dae Young K, Dae Joong K, et al. Cut-off Points of Waist Circumference for Defining Abdominal Obesity in the Korean Population. JOMES. 2006; 15(1):1–9

21. Hsieh S, Yoshinaga H, Muto T. Waist-to-height ratio, a simple and practical index for assessing central fat distribution and metabolic risk in Japanese men and women. International journal of obesity. 2003; 27(5):610–6 https://doi.org/10.1038/sj.ijo.0802259 PMID: 12704405

22. Shao J, Yu L, Shen X, Li D, Wang K. Waist-to-height ratio, an optimal predictor for obesity and metabolic syndrome in Chinese adults. J Nutr Health Aging, 2010; 14(9):782–5. https://doi.org/10.1007/s12603-010-0106-x PMID: 21085910

23. Hsieh S, Yoshinaga H. Abdominal fat distribution and coronary heart disease risk factors in men-waist/height ratio as a simple and useful predictor. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity. 1995; 19(8):585–9 PMID: 7489031

24. Ho S-Y, Lam T-H, Janus ED. Waist to stature ratio is more strongly associated with cardiovascular risk factors than other simple anthropometric indices. Annals of epidemiology. 2003; 13(10):683–91 https://doi.org/10.1016/s1047-2797(03)00067-x PMID: 14599732

25. Park SH, Choi SJ, Lee KS, Park HY. Waist circumference and waist-to-height ratio as predictors of cardiovascular disease risk in Korean adults. Circ J. 2009; 73(9):1643–50. https://doi.org/10.1253/circj.cj-09-0161 PMID: 19638708

26. Laslett LL, Just Nee Foley SJ, Quinn SJ, Winzenberg TM, Jones G. Excess body fat is associated with higher risk of vertebral deformities in older women but not in men: a cross-sectional study. Osteoporos Int. 2012; 23(1):67–74. https://doi.org/10.1007/s00198-011-1741-8 PMID: 21850547
27. Pirro M, Fabbriciani G, Leli C, Callarelli L, Manfredelli MR, Fioroni C, et al. High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women. J Bone Miner Metab. 2010; 28(1):88–93. https://doi.org/10.1007/s00774-009-0108-0 PMID: 19578807

28. Langlois JA, Harris T, Looker AC, Madans J. Weight change between age 50 years and old age is associated with risk of hip fracture in white women aged 67 years and older. Arch Intern Med. 1996; 156(9):989–94 PMID: 8624179

29. Karlamangla AS, Burnett-Bowie SM, Crandall CJ. Bone Health During the Menopause Transition and Beyond. Obstet Gynecol Clin North Am. 2018; 45(4):695–708. https://doi.org/10.1016/j.ogc.2018.07.012 PMID: 30401551

30. Crandall CJ, Han W, Greendale GA, Seeman T, Tepper P, Thurston R, et al. Socioeconomic status in relation to incident fracture risk in the Study of Women’s Health Across the Nation. Osteoporos Int. 2014; 25(4):1379–88. https://doi.org/10.1007/s00198-013-2616-y PMID: 24504101

31. Mori T, Ishii S, Greendale GA, Cauley JA, Ruppert K, Crandall CJ, et al. Parity, lactation, bone strength, and 16-year fracture risk in adult women: findings from the Study of Women’s Health Across the Nation (SWAN). Bone. 2015; 73:160–6. https://doi.org/10.1016/j.bone.2014.12.013 PMID: 25528102

32. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011; 124(11):1043–50. https://doi.org/10.1016/j.amjmed.2011.06.013 PMID: 22017783