Graphene oxide/mussel foot protein composites for high-strength and ultra-tough thin films

Eugene Kim¹, Xuyan Qin¹, James B. Qiao¹, Qingqing Zeng¹, John D. Fortner² & Fuzhong Zhang¹,3,4,*

Graphene oxide (GO)-based composite materials have become widely popular in many applications due to the attractive properties of GO, such as high strength and high electrical conductivity at the nanoscale. Most current GO composites use organic polymer as the matrix material and thus, their synthesis suffers from the use of organic solvents or surfactants, which raise environmental and energy-consumption concerns. Inspired by mussel foot proteins (Mfp) secreted by the saltwater mussel, Mytilus galloprovincialis and by recent advances in microbial protein production, we developed an aqueous-based green synthesis strategy for preparing GO/Mfp film composites. These GO/Mfp films display high tensile strength (134–158 MPa), stretchability (~ 26% elongation), and high toughness (20–24 MJ/m³), beyond the capabilities of many existing GO composites. Renewable production of Mfp proteins and the facile fabrication process described provides a new avenue for composite material synthesis, while the unique combination of mechanical properties of GO/Mfp films will be attractive for a range of applications.

Graphene has become a widely studied material that has the potential to be used in a wide variety of applications, including electronics, photovoltaics, semiconductors, water treatment, and multifunctional textiles, among others. The unique two-dimensional atomic arrangement of carbon in graphene gives rise to many of its attractive properties, such as electrical and thermal conductivities, flexibility, and high-strength. As a graphene derivative, graphene oxide (GO) shares many attractive properties with graphene and can be more easily synthesized. Furthermore, owing to an abundance in oxygen-containing groups on both its basal and edge planes, GO is more soluble in polar solvents and can be readily functionalized, underpinning broad applicability, particularly in nanocomposites with enhanced mechanical, electrical, and physicochemical properties.

GO has been shown to be an exceptional building block for the fabrication of new composite materials with enhanced mechanical properties. Chemical crosslinking with polymer matrices has been one commonly utilized method for achieving this goal. Most GO-based composites use organic polymer as the matrix material. However, due to material incompatibility between GO with most organic polymers, it is difficult to obtain a homogenous single phase mixture when preparing the composites. As a result, a large amount of organic solvents or surfactants are often needed in industrial-scale processes, which raises concerns in scalability, process safety, toxicity, and energy usage.

More recently, biological materials, such as proteins and protein-like materials, have been used as matrix materials in GO-based composites, due to their amphiphilic nature and ability to withstand high mechanical forces. Proteins can either be isolated directly from natural resources or recombinantly produced from renewable feedstock, and they can be degraded, thus offering a sustainable route for both material synthesis and end-of-life management. Unlike organic polymers, proteins are often monodisperse, have controllable sequences and structures, and have a wider range of chemistries. Previously, soy protein isolate and silk fibroin have both been used to form GO composites. These proteins contain secondary structures, such as α- and β- helices in corn zein or β-sheets in silk fibroin. The hydrophobic effect drives the formation of these secondary structures.

¹Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA. ²Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA. ³Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA. ⁴Division of Biological and Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO 63130, USA. *email: fzhang@seas.wustl.edu
however, when interacting with GO nanosheets, proteins tend to change conformation to redistribute amino acid residues, adopting a new set of entropically favored interactions, such as hydrogen bonding and electrostatic interactions. In some cases, such proteins undergo denaturation and aggregation in the presence of GO, which would lead to undesirable mechanical properties.

One unique class of proteins that has not been fully explored with regard to composite synthesis is the intrinsically disordered family of mussel foot proteins (Mfp). Naturally secreted by the marine mussel, Mfp utilize a wide range of molecular interactions to bond to hydrophilic surfaces such as rocks, metals, and glass, as well as hydrophobic surfaces, such as plastics. These strong interactions with surfaces are achieved largely in part due to the side chain of the non-canonical amino acid, 3,4-dihydroxyphenylalanine (DOPA). More interestingly, the tight interaction between Mfp and various surfaces take place underwater. If this aqueous-based molecular bonding can be used to prepare composite materials, it will provide a low-energy, environmentally-friendly process for composite fabrication, which would otherwise involve high temperature processes or organic solvents compatible with organic polymers.

Herein, we describe a facile approach for fabricating GO composite films using Mfp through an aqueous-based processing route. The Mfp were recombinantly synthesized by genetically engineered E. coli with a subsequent post-translational modification step for the generation of DOPA residues. We further developed an aqueous procedure to fabricate free-standing GO/Mfp films. These composite films consisted of up to 20 w/w% of Mfp and displayed high strength and toughness, comparable to or even stronger than previously reported GO composites.

Results

Synthesis of graphene oxide/mussel foot protein composite films. We hypothesize that the unique chemistry of Mfp allows the flexible protein chains to form extensive interactions with GO nanosheets through hydrophobic interactions, π–π stacking (via Mfp aromatic side chains), cation–π interactions, and hydrogen bonding via DOPA-alcohol, DOPA-carboxylate, and bi-DOPA pairs (Fig. 1a,b). To promote a robust network of interactions between GO and Mfp, we chose Mfp5 from Mytilus galloprovincialis due to its high DOPA residues.
content and overall positive charge, which can reduce Mfp–Mfp interactions in low ionic strength solvents while promoting electrostatic interactions with the negatively-charged GO nanosheets. Mfp can accomplish the formation of an interaction network in water-rich solvents, which eliminates the need to use harsh organic solvents. Although some Mfp3 peptides have been shown to form coacervates in aqueous solutions, Mfp5 precipitates at neutral pH and basic conditions, probably due to its higher molecular weight. However, at acidic pH levels, our Mfp5 remains soluble. We thus used pH 4.5 acetate buffer to prepare the Mfp5/GO mixtures. The acidic condition also helps prevent the catechol groups from oxidizing. Additionally, we hypothesized that a longer Mfp chain length will participate in extensive molecular interactions with GO, therefore strengthening the composite’s molecular network and resulting in better film mechanical properties.

Thus, Mfp5(3), a synthetic protein containing three consecutive repeats of Mfp5 was also used in this study. Both Mfp5 and Mfp5(3) were microbially synthesized by genetically engineered E. coli, purified, and enzymatically modified to convert tyrosine residues to DOPA using our previously developed method.

To facilitate composite formation, GO nanosheets are dispersed in aqueous solutions, and Mfp is added to promote electrostatic interactions with the negatively-charged GO nanosheets. Mfp can accomplish the formation of an interaction network in water-rich solvents, which eliminates the need to use harsh organic solvents. Although some Mfp3 peptides have been shown to form coacervates in aqueous solutions, Mfp5 precipitates at neutral pH and basic conditions, probably due to its higher molecular weight. However, at acidic pH levels, our Mfp5 remains soluble. We thus used pH 4.5 acetate buffer to prepare the Mfp5/GO mixtures. The acidic condition also helps prevent the catechol groups from oxidizing. Additionally, we hypothesized that a longer Mfp chain length will participate in extensive molecular interactions with GO, therefore strengthening the composite’s molecular network and resulting in better film mechanical properties.

Thus, Mfp5(3), a synthetic protein containing three consecutive repeats of Mfp5 was also used in this study. Both Mfp5 and Mfp5(3) were microbially synthesized by genetically engineered E. coli, purified, and enzymatically modified to convert tyrosine residues to DOPA using our previously developed method. To facilitate composite formation, GO nanosheets are dispersed in aqueous solutions, and Mfp is added to promote electrostatic interactions with the negatively-charged GO nanosheets. Mfp can accomplish the formation of an interaction network in water-rich solvents, which eliminates the need to use harsh organic solvents. Although some Mfp3 peptides have been shown to form coacervates in aqueous solutions, Mfp5 precipitates at neutral pH and basic conditions, probably due to its higher molecular weight. However, at acidic pH levels, our Mfp5 remains soluble. We thus used pH 4.5 acetate buffer to prepare the Mfp5/GO mixtures. The acidic condition also helps prevent the catechol groups from oxidizing. Additionally, we hypothesized that a longer Mfp chain length will participate in extensive molecular interactions with GO, therefore strengthening the composite’s molecular network and resulting in better film mechanical properties.

Thus, Mfp5(3), a synthetic protein containing three consecutive repeats of Mfp5 was also used in this study. Both Mfp5 and Mfp5(3) were microbially synthesized by genetically engineered E. coli, purified, and enzymatically modified to convert tyrosine residues to DOPA using our previously developed method. To facilitate composite formation, GO nanosheets are dispersed in aqueous solutions, and Mfp is added to promote electrostatic interactions with the negatively-charged GO nanosheets. Mfp can accomplish the formation of an interaction network in water-rich solvents, which eliminates the need to use harsh organic solvents. Although some Mfp3 peptides have been shown to form coacervates in aqueous solutions, Mfp5 precipitates at neutral pH and basic conditions, probably due to its higher molecular weight. However, at acidic pH levels, our Mfp5 remains soluble. We thus used pH 4.5 acetate buffer to prepare the Mfp5/GO mixtures. The acidic condition also helps prevent the catechol groups from oxidizing. Additionally, we hypothesized that a longer Mfp chain length will participate in extensive molecular interactions with GO, therefore strengthening the composite’s molecular network and resulting in better film mechanical properties.

Thus, Mfp5(3), a synthetic protein containing three consecutive repeats of Mfp5 was also used in this study. Both Mfp5 and Mfp5(3) were microbially synthesized by genetically engineered E. coli, purified, and enzymatically modified to convert tyrosine residues to DOPA using our previously developed method. To facilitate composite formation, GO nanosheets are dispersed in aqueous solutions, and Mfp is added to promote electrostatic interactions with the negatively-charged GO nanosheets. Mfp can accomplish the formation of an interaction network in water-rich solvents, which eliminates the need to use harsh organic solvents. Although some Mfp3 peptides have been shown to form coacervates in aqueous solutions, Mfp5 precipitates at neutral pH and basic conditions, probably due to its higher molecular weight. However, at acidic pH levels, our Mfp5 remains soluble. We thus used pH 4.5 acetate buffer to prepare the Mfp5/GO mixtures. The acidic condition also helps prevent the catechol groups from oxidizing. Additionally, we hypothesized that a longer Mfp chain length will participate in extensive molecular interactions with GO, therefore strengthening the composite’s molecular network and resulting in better film mechanical properties.

Thus, Mfp5(3), a synthetic protein containing three consecutive repeats of Mfp5 was also used in this study. Both Mfp5 and Mfp5(3) were microbially synthesized by genetically engineered E. coli, purified, and enzymatically modified to convert tyrosine residues to DOPA using our previously developed method. To facilitate composite formation, GO nanosheets are dispersed in aqueous solutions, and Mfp is added to promote electrostatic interactions with the negatively-charged GO nanosheets. Mfp can accomplish the formation of an interaction network in water-rich solvents, which eliminates the need to use harsh organic solvents. Although some Mfp3 peptides have been shown to form coacervates in aqueous solutions, Mfp5 precipitates at neutral pH and basic conditions, probably due to its higher molecular weight. However, at acidic pH levels, our Mfp5 remains soluble. We thus used pH 4.5 acetate buffer to prepare the Mfp5/GO mixtures. The acidic condition also helps prevent the catechol groups from oxidizing. Additionally, we hypothesized that a longer Mfp chain length will participate in extensive molecular interactions with GO, therefore strengthening the composite’s molecular network and resulting in better film mechanical properties.

Thus, Mfp5(3), a synthetic protein containing three consecutive repeats of Mfp5 was also used in this study. Both Mfp5 and Mfp5(3) were microbially synthesized by genetically engineered E. coli, purified, and enzymatically modified to convert tyrosine residues to DOPA using our previously developed method. To facilitate composite formation, GO nanosheets are dispersed in aqueous solutions, and Mfp is added to promote electrostatic interactions with the negatively-charged GO nanosheets. Mfp can accomplish the formation of an interaction network in water-rich solvents, which eliminates the need to use harsh organic solvents. Although some Mfp3 peptides have been shown to form coacervates in aqueous solutions, Mfp5 precipitates at neutral pH and basic conditions, probably due to its higher molecular weight. However, at acidic pH levels, our Mfp5 remains soluble. We thus used pH 4.5 acetate buffer to prepare the Mfp5/GO mixtures. The acidic condition also helps prevent the catechol groups from oxidizing. Additionally, we hypothesized that a longer Mfp chain length will participate in extensive molecular interactions with GO, therefore strengthening the composite’s molecular network and resulting in better film mechanical properties.

Thus, Mfp5(3), a synthetic protein containing three consecutive repeats of Mfp5 was also used in this study. Both Mfp5 and Mfp5(3) were microbially synthesized by genetically engineered E. coli, purified, and enzymatically modified to convert tyrosine residues to DOPA using our previously developed method. To facilitate composite formation, GO nanosheets are dispersed in aqueous solutions, and Mfp is added to promote electrostatic interactions with the negatively-charged GO nanosheets. Mfp can accomplish the formation of an interaction network in water-rich solvents, which eliminates the need to use harsh organic solvents. Although some Mfp3 peptides have been shown to form coacervates in aqueous solutions, Mfp5 precipitates at neutral pH and basic conditions, probably due to its higher molecular weight. However, at acidic pH levels, our Mfp5 remains soluble. We thus used pH 4.5 acetate buffer to prepare the Mfp5/GO mixtures. The acidic condition also helps prevent the catechol groups from oxidizing. Additionally, we hypothesized that a longer Mfp chain length will participate in extensive molecular interactions with GO, therefore strengthening the composite’s molecular network and resulting in better film mechanical properties.
Mechanical properties of composite films. Standard tensile testing was performed on rectangular-shaped strips of as-synthesized films. We obtained the ultimate tensile strength, toughness, and Young's modulus of each film from the measured stress–strain curves (Fig. 4a–e). Compared to pure GO film, GO/Mfp5 composite film displayed a 1.9- and 4.1-fold higher tensile strength and toughness, respectively, and 40% decrease in Young's modulus. Thus, Mfp is participating in the formation of an extensive interaction network, allowing the films to withstand higher stress before fracture and to absorb a higher amount of energy before deformation. We also observed that incorporating the higher molecular weight Mfp5(3) further enhanced ultimate tensile strength by 2.3-fold and decreased Young's modulus by 14% with respect to the pure GO film control, while maintaining toughness at a similar level to GO/Mfp5 films (Fig. 4b–d). Consistent with our design, the higher tensile strength of the GO/Mfp5(3) compared to the GO/Mfp5 film indicates the formation of a stronger protein-GO interaction network. Further, the observed higher strain of the GO/Mfp composite compared to that of GO film suggests that under tensile stress, the Mfp protein chains are straightened, sliding along the GO nanosheets, thereby absorbing energy and contributing to a higher film toughness. Additionally, we fabricated GO/Mfp5 films with
varied filtration times. We hypothesized that longer filtration times could potentially increase nanosheet alignment and promote tighter packing of the nanosheets. Indeed, films filtered for 4 days exhibited a 1.5-fold higher tensile strength and 1.9-fold higher toughness, than those of films filtered for 3 days. When films were filtered for 5 days, no further enhancement on film strength and toughness was observed, suggesting an optimal filtration time was reached (Fig. 4f–h).

Our approach for synthesizing our GO composites allowed us to create films that were significantly tougher than polymeric materials while comparable in tensile strength to many types of metals, metal alloys, and ceramics, as well as other GO composites synthesized with divalent ions or synthetic polymer crosslinkers (Fig. 5). The toughness of our films is 1–2 orders of magnitude higher than those of similar GO composites. The unique Mfp matrix endowed the GO/Mfp films with the ability to absorb a large amount of energy to deform without fracturing. This high material toughness may open new applications in protection and energy absorption (Fig. 5a). It is also important to note that that the GO/Mfp films also have lower Young's moduli, which make them less stiff and more flexible due to the use of soft protein matrices (Fig. 5b)10,37,38,48–50. Such a combination of toughness and flexibility is highly desired in environmental GO applications, for which there are many51–53. When subject to reducing conditions, our film was moderately conductive, exhibiting conductivities of 0.6–1.5 S/m. If further processed and optimized, our film, given its flexible nature could potentially be used in bioelectronic applications, for example, as a wearable device that can convert and transmit physical resistance into electrical signals54. Such property combinations underpin GO/Mfp films as a unique material, demonstrating properties that are not possible through existing GO composite strategies.

Conclusions
In summary, we report a new type of GO composite material using Mfp as a novel matrix. Mfp matrices were microbiologically synthesized from renewable feedstock, and the composite film was made through an environmentally-friendly, aqueous-based process route. As shown, GO/Mfp composites integrate the unique chemistry of Mfp, as well as the versatility of GO. These GO/Mfp films have low stiffness, high tensile strength, and ultra-high toughness, comparable to or exceeding previously reported GO-based materials55. The simple green synthesis process will also open new avenues for composite preparation, and when coupled with unique mechanical properties of the GO/Mfp, material adoption is thus attractive for a variety of applications.

Methods
Chemicals and reagents. Unless otherwise noted, all chemicals and reagents were obtained from Sigma Aldrich (Saint Louis, MO, USA). Plasmid purification and gel extraction kits were obtained from iNTRON Biotechnology (Seoul, South Korea). Restriction enzymes and DNA ligase were purchased from Thermo Fisher Scientific (Austin, TX, USA). Graphene oxide (GO) nanosheets were synthesized from graphite in solution using a modified Hummers’ method56–58. Previous studies using similar modified Hummers’ methods resulted in 54–59% oxygenated carbons out of total carbon, according to XPS12,57. Hydrogen peroxide was added drop-wise to reduce residual permanganate. The graphite oxide was thoroughly washed multiple times with pure DI water to eliminate residual strong organic acids and other Hummers’ reagents. The, graphite oxide was dried, resuspended in DI water, and exfoliated into GO nanosheets. Solutions of GO nanosheets were diluted to a concentration of 100 ppm, confirmed by dry weight.

Synthesis and Purification of Mfp. The two proteins used in this study (Mfp5 and Mfp5(3)) were designed and recombinantly expressed using the methods from our previous study (Supplementary Table S1–S4)27. Mfp5 was directly expressed in E. coli strain BL21 (DE3). Mfp5(3) was post-translationally spliced together in vitro from an Mfp5 protein with a C-terminal CfaN split intein domain and an Mfp5(2) protein with a N-terminal

Figure 5. Ashby plots showing the strength, Young's modulus, and toughness of different classes of materials and GO composite materials. (a) GO/Mfp films synthesized in this study are compared to the strength and toughness of other materials, such as polymers, metals, and ceramics, as well as other graphene oxide composites. (b) GO/Mfp films synthesized in this study are compared to the strength and Young's modulus of other classes of materials and composites10,37,38,48–50.
CfaC split intein domain. Both Mfp5 and Mfp533 proteins were purified using nickel affinity chromatography columns and were reacted with mushroom tyrosinase to convert tyrosine residues to DOPA residues. After purification and conversion of tyrosine residues, proteins were finally diazylated in 0.5% v/v acetic acid.

Synthesis of GO/Mfp film composites. Approximately 50 mL of GO solution (containing ~5 mg GO) was mixed with 1 mg of either Mfp5 or Mfp533 protein suspended in 0.5% acetic acid (or equal volume of 0.5% acetic acid for a pure GO control film). If necessary, pH was adjusted to 4.5 with additional acetic acid. The mixture is sonicated on ice for a total of ~2 h cycling between 6 s on and 4 s off. After sonication, the solution was poured on top of a PES support membrane (Sterlitech, Kent, WA) inside an Advantech glass microanalysis filter holder (Cole-Palmer, Vernon Hills, IL). The solution was passed through the membrane using vacuum filtration. After filtration, the GO film was soft-baked at 37 °C for at least one hour, then peeled off the PES membrane.

X-ray diffraction (XRD). XRD patterns were obtained with a Rigaku Geigerflex X-ray powder diffractometer (Rigaku, Tokyo, Japan) with incident X-ray wavelength of λ = 1.506 Å, operating at 1.5 kV. The spectra were recorded from 5° to 50° (2θ) using a Cu Ka X-ray source.

Thermogravimetric analysis (TGA). A 100 μL platinum-high temperature pan (TA Instruments, New Castle, DE) was tared and GO film and purified lyophilized protein crosslinker samples were weighed prior to heating using a Q5000 IR thermogravimetric analyzer (TA Instruments). All measurements were conducted in nitrogen (AirGas, Radnor, PA) at a purge flow rate of 25 mL/min over a temperature range of 30–750 °C with a ramp rate of 10 °C/min.

Scanning electron microscopy (SEM). Films were mounted on a stainless steel sample holder using black carbon tape as an adhesive backing. Samples were coated with 10 nm Au using a Leica EM ACE600 high-vacuum sputter coater (Leica Microsystems, Wetzlar, Germany). The films were imaged with the Nova NanoSEM 230 field emission scanning electron microscope (Field Electron and Ion Company, FEI, Hillsboro, Oregon).

Fourier transform infrared spectroscopy (FTIR). FTIR spectra of the samples were collected using a Thermo Nicolet Nexus 470 (Thermo Scientific, Waltham, MA) following previous methods59,60. Specifically, spectra were acquired between wavenumbers of 500 cm−1 and 4000 cm−1. Peaks were assigned and compared to specific bonds according to previous studies of similar materials12,24,55,61–63.

Mechanical testing. Mechanical properties, such as ultimate tensile strength and toughness, were measured using an MTS Criterion Model 41 universal test frame fitted with a 25 N load cell (MTS Systems Corporation, Eden Prairie, MN). Tests were conducted at a crosshead speed of 2.5 mm/min. The maximum force at fracture was divided by the cross-sectional area of the film strip to determine the ultimate tensile strength.

Received: 9 June 2020; Accepted: 23 October 2020
Published online: 05 November 2020

References

1. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).
2. Mahmoudi, T., Wang, Y. & Hahn, Y. Graphene and its derivatives for solar cells application. Nano Energy 47, 51–65 (2018).
3. Neumaier, D., Pindl, S. & Lemme, M. C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525–529 (2019).
4. Boretti, A. et al. Outlook for graphene-based desalination membranes. npg Clean Water 1, 1–11 (2018).
5. Karim, N. et al. Scalable production of graphene-based wearable E-textiles. ACS Nano 11, 12266–12275 (2017).
6. Wang, L., Mu, X. & Sun, M. The thermal, electrical and thermoelectric properties of graphene nanomaterials. Nanomaterials 9, 218 (2019).
7. Zhang, K., Zhang, Y. & Wang, S. Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 3, 3448 (2013).
8. Najafi, F. & Rajabi, M. Thermal gravity analysis for the study of stability of graphene oxide–glycine nanocomposites. Int. Nano Lett. 5, 187–190 (2015).
9. Gao, R. et al. Paper-like graphene–Ag composite films with enhanced mechanical and electrical properties. Nanoscale Res. Lett. 8, 32 (2013).
10. Zhu, W. et al. High performances of artificial nacre-like graphene oxide carrageenan bio-nanocomposite films. Materials (Basel) 10, 536 (2017).
11. Kim, C., An, S., Lee, I., Zeng, Q. & Fortner, J. D. Engineering graphene oxide laminate membranes for enhanced flux and boron treatment with polyethylenimine (PEI) polymers. ACS Appl. Mater. Interfaces 11, 924–929 (2018).
12. Park, S., Dikin, D. A., Nguyen, S. T. & Ruoff, R. S. Graphene oxide sheets chemically cross-linked by polyallylamine. J. Phys. Chem. C 113, 15801–15804 (2009).
13. Liu, X. et al. Thiol-branched graphene oxide and polydopamine-induced nanofibrillated cellulose to strengthen protein-based nanocomposite films. Cellulose 26, 7223–7236 (2019).
14. Crosby, A. J. & Lee, J.-Y. Polymer nanocomposites: The "nano" effect on mechanical properties. Polym. Rev. 47, 217–229 (2007).
15. Podsiadlo, P. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007).
16. Yoo, S. C., Lee, J. & Hong, S. H. Synergistic outstanding strengthening behavior of graphene copper nanocomposites. Compos. Part B 176, 107235 (2019).
Acknowledgements
This work was supported by the Office of Naval Research under the award numbers N000141512515 and
N000141912126 (to E.Z.) We would also like to thank Cameron Sargent for taking preliminary SEM images.
FTIR spectroscopy and XRD were performed in the Institute of Materials Science and Engineering (IMSE)
Facilities at Washington University in St. Louis. SEM imaging and TGA was performed in the Nano Research
Facility (NRF) at Washington University in St. Louis.

Author contributions
E.K. performed experiments and analyzed data. X.Q., J.B.Q., and Q.Z. assisted with experiments. J.D.F. assisted
with data analysis. E.K. and E.Z. wrote the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-76004-6.

Correspondence and requests for materials should be addressed to E.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020