Phase diagram of the SmCo$_{1-x}$Fe$_x$AsO system

Y. K. Li1,2, J. Tong2, Z. G. Zhao2, G. H. Cao2, Z. A. Xu2

1 Condensed Matter Physics Group, Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
2 Department of Physics, Zhejiang University, Hangzhou 310027, China
E-mail: yklee@hznu.edu.cn

Abstract.

A series of SmCo$_{1-x}$Fe$_x$AsO ($x=0, 0.05, 0.1, 0.2, 0.3$) polycrystalline samples were synthesized, and their transport and magnetic properties were studied. Similar to the undoped SmCoAsO, these Fe-doped samples of SmCo$_{1-x}$Fe$_x$AsO also undergo successive magnetic phase transitions associated with the Co or Fe magnetic moments below 100 K, i.e., the system become ferromagnetic (FM) ordered first below the Curie temperature T_c, and then become antiferromagnetic (AFM) ordered with further decreasing temperature. With Fe doping on the Co site, both FM (T_c) and AFM (T_N^1) transition temperatures are rapidly suppressed and then both T_c and T_N^1 approaching zero temperature at $x = 0.3$, whereas the AFM order (T_N^2) of Sm$^{3+}$ moments below 5.1 K is still robust. Based on these results, the magnetic phase diagram in the Co-rich side of the SmCo$_{1-x}$Fe$_x$AsO system is established.

1. Introduction

Recently, it has been reported that superconductivity can be induced with partial Co substitution on the Fe site in iron-based pnictide superconductors[1, 2]. Similar results have been realized for the Co-doped CeFeAsO[3], PrFeAsO[4], and SmFeAsO systems [2]. However, at the other end, i.e., Fe is completely replaced by Co, the LnCoAsO (Ln: rare earth) compounds (Co-based 1111 phase) do not show superconductivity. Instead, they exhibit rich magnetic properties at low temperature. The parent compounds LaCoAsO shows an itinerant ferromagnetic (FM) behaviors below 63 K[5]. As La is replaced by other rare earth element with magnetism, LnCoAsO (Ln=Ca, Pr, Nd, Sm, Gd)[6] compound undergoes multiple magnetic phase transitions with decreasing temperature. Furthermore, the antiferromagnetic (AFM) order of Ln ions (Ce, Nd, and Pr etc.) in those compounds is still observed at a very low temperature. For example, SmCoAsO[7, 8] undergoes ferromagnetic (FM) transition around T_c of 80 K, and then becomes AFM order due to the magnetic coupling between the CoAs layers below 45 K, and finally shows a second AFM order of Sm moments at 5.6 K.

Up to now, there are few reports on the evolution of ground state in Co-based 1111 phase with Fe doping, and the phase diagram of magnetism versus Fe/Co ratio is unknown. In this paper, we investigated the magnetic properties of Fe-doped SmCo$_{1-x}$Fe$_x$AsO system ($0 \leq x \leq 0.3$) . Our studies reveal that both the FM and AFM transition temperatures associated with the Co/Fe layer are gradually suppressed with increasing Fe content, and then the magnetic orders in the Co/Fe layer disappear as $x \geq 0.3$, whereas the AFM order of Sm$^{3+}$ ions around 5.1 K is still robust. The AFM transition temperature (T_N^2) of Sm$^{3+}$ ions slightly varies with
the Fe content. Thus, a magnetic phase diagram of the SmCo$_{1-x}$Fe$_x$AsO system is established for the regime of $0 \leq x \leq 0.3$.

2. Experimental
The polycrystalline samples of SmCo$_{1-x}$Fe$_x$AsO were synthesized by two-step solid state reaction methods in vacuum, similar to our previous reports[2]. The pellets of SmCo$_{1-x}$Fe$_x$AsO were annealed in an evacuated quartz tube at 1423 K for 40 hours and furnace-cooled to room temperature.

The crystal structure and phase purity was checked by powder X-ray diffraction (XRD) at room temperature using a D/Max-rA diffractometer with Cu K$_\alpha$ radiation and a graphite monochromator. Lattice parameters were calculated by a least-squares fit using at least 20 XRD peaks. The electrical resistivity was measured by a standard four-probe method. The temperature dependence of d.c. magnetization was measured on a Quantum Design Magnetic Property Measurement System (MPMS-5) with an applied field of 10 Oe.

3. Results and Discussion

![Figure 1](image_url)

Figure 1. Temperature dependence of resistivity (ρ) for the SmCo$_{1-x}$Fe$_x$AsO ($x = 0, 0.05, 0.1, 0.2, 0.3$) samples.

Fig.1 shows the plots of temperature dependent electrical resistivity (ρ) of SmCo$_{1-x}$Fe$_x$AsO samples. For the undoped SmCoAsO, the resistivity monotonically decreases with decreasing temperature, followed a distinguishable upturn around 45 K which is associated with the FM-AFM transition temperature T_{N1}, as in our previous report [8]. As Fe content increases to $x = 0.1$, this kink becomes more pronounced and moves to lower temperatures, and no anomaly is observed below T_{N1}. For $x = 0.2$, the resistive anomaly related with T_{N1} is no longer observed. But another tiny kink is still distinguished at $T = 5.1$ K, which is due to the AFM transition (T_{N2}) of the magnetic sublattice of Sm$^{3+}$ ions. As x increases to 0.3, although the kink in resistivity related to T_{N1} is not observed, the change around T_{N2} becomes more remarkable. Those transitions can be clearly observed by the measurement of heat capacity in SmCoAsO[8]. On the other hand, the resistivity increases as x increases, which may be attributed to the increasing disorder in Fe-doped samples and also that the Fe 3d electron may not as itinerant as the Co 3d electrons.

Fig.2 shows the temperature dependence of magnetic susceptibility for the SmCo$_{1-x}$Fe$_x$AsO samples. With decreasing temperature, several magnetic transitions of undoped SmCoAsO...
Figure 2. Temperature dependence of magnetic susceptibility (χ) for the SmCo$_{1-x}$Fe$_x$AsO samples.

sample are revealed. Below T_c of 80 K, the magnetic susceptibility under $H = 1$ kOe strongly increases, suggesting that the Co sublattice forms ferromagnetic order. This magnetic behavior is similar to that reported for LnCoAsO[6]. As Co is replaced by Fe, FM transition temperature(T_c) is suppressed and shifts to low temperature. For $x=0.3$, FM transition in $\chi(T)$ is not observed.

The second magnetic transition in SmCoAsO (T_{N1}) associated with the FM-AFM order of cobalt sublattice is observed about 45 K. Such a transition has been investigated in previous reports for Ln = Nd, Sm, and Gd [6]. As x increases, T_{N1} gradually decreases to 6.5 K for $x = 0.2$. Corresponding to the resistivity data, a clear upturn is observed at this transition temperature. For $x = 0.3$, T_{N1} cannot be observed above 1.8 K. Instead, a sharp peak at 5.1 K is detected, which is attributed to the AFM ordering of Sm$^{3+}$ sublattice[8]. For other samples, it is notable that the AFM transition (T_{N2}) in their magnetization curves is distinguished or is absent. The reason is that the relative small moment of Sm$^{3+}$ is masked by the Co ions magnetization.

Based on above data, a magnetic phase diagram of the SmCo$_{1-x}$Fe$_x$AsO system is plotted in Fig.3. T_c associated with the FM transition of the Co/Fe layer is sharply suppressed and disappear as x increases to 0.3. Meanwhile, T_{N1} associated the FM to AFM transition of Co/Fe sublattice is also moved to a lower temperature and disappears for $x = 0.3$. Finally, the AFM ordering of Sm moments at T_{N2} varies slightly with Fe content, and is still robust at $x = 0.3$.

4. Conclusions

In summary, the Co-rich side of the SmCo$_{1-x}$Fe$_x$AsO system have been investigated and the magnetic phase diagram is established. The system undergoes successive magnetic phase transitions with cooling temperature. T_c is suppressed more rapidly than T_{N1} with increasing Fe content. Furthermore, both magnetic transitions disappear near the same Fe-doping critical point of $x = 0.3$. However, the AFM order of Sm moments at T_{N2} is robust for x as large as 0.3, indicating that the AFM order of Sm moment is hardly affected by Fe doping in the Co-rich side.

Acknowledgments

This work is supported by the National Basic Research Program of China under Grant No. 2007CB925001) and NSFC under Grant No. 10634030, and the National Science Foundation of Zhejiang Province (Grant No. Y6090564)
Figure 3. Magnetic phase diagram for the SmCo_{1-x}Fe_xAsO system. The T_{N2} (indicated by open symbols) is taken from Ref.[8]. Paramagnetic (PM), Ferromagnetic (FM), and Antiferromagnetic (AFM).

References
[1] Sefat A S, Huq A, McGuire M A, Jin R, Sales B C, and Mandrus D 2008 Phys. Rev. B 78 104505
[2] Wang C, Li Y K, Zhu Z W, Jiang S, Lin X, Luo Y K, Chi S, Li L J, Ren Z, He M, Chen H, Wang Y T, Tao Q, Cao G H, and Xu Z A 2009 Phys. Rev. B 79 054521
[3] J. Prakash, S. J. Singh, S. Patnaik, and A. K. Ganguli, 2009 Solid State Commun. 149, 181.
[4] Shirage P, Miyazawa K, Kito H, Eisaki H, and Iyo A, 2009 Physica C 469, 898.
[5] Yanagi H, Kawamura R, Kamiya T, Kamihara Y, Hirano M, Nakamura T, Osawa H, and Hosono H, 2008 Phys. Rev. B 77, 224431.
[6] Ohta H, Yoshimura K, 2009 Phys Rev B 80, 184409.
[7] Awana V P S, Nowik I, Anand P, Yamaura K, Takayama-Muromachi E, and Felner I. 2010 Phys Rev B 81, 212501.
[8] Li Y K, Tong J, Han H, Zang L, Tao Q, Cao G H, Xu Z A, 2010, SCIENCE CHINA 53, 1194.
[9] Li Y K, Lin X, Zhou T, shen J Q, Tao Q, Cao G H and Xu Z A, 2009 J. Phys.: Condens. Matter 21, 355702.