Supporting Information

Ruthenium complexes bearing α-diimine ligands and their catalytic applications in N-alkylation of amines, α-alkylation of ketones and β-alkylation of secondary alcohols

Sekar Gayathri†, Periasamy Viswanathamurthi*. †

†Department of Chemistry, Periyar University, Salem 636 011, Tamil Nadu, India

Roberta Bertani‡ and Paolo Sgarbossa‡

‡Department of Industrial Engineering, University of Padova, via F. Marzoloa, Padova 35131, Italy
Table of Contents

1. Spectra for all the ligands and complexes..S3
 1.1 ESI-MASS spectra for ligands and complexes................................. S3 – S11
 1.2 FTIR spectra for ligands and complexes....................................... S12 – S20
 1.3 UV-Vis spectra for ligands and complexes.................................... S21 – S29
 1.4 1H NMR spectra for ligands and complexes............................... S30 – S38
 1.5 13C-NMR spectra for ligands and complexes............................. S39 – S44
 1.6 X-ray structures, Crystal data and refinement parameters S45 – S48

2. Catalysis.. S49

 2.1 General Information... S49
 2.2 General procedure for N-alkylation of aromatic amines with alcohol.. S49
 2.3 General procedure for α-alkylation of ketones with alcohols.... S49
 2.4 General procedure for β-alkylation of 2^o alcohols with 1^o alcohols S50
 2.5 Characterization data of compounds (6a-6k), (7a-7i), (8a-8f)..... S50 – S58
 2.6 NMR spectra of catalytic products (6a-6k), (7a-7i), (8a-8f).... S59 – S88
 2.7 Control Experiments.. S89 – S90
 2.8 References... S91– S94
1. Spectra for all the ligands and complexes

1.1 ESI - MASS spectra for ligands and complexes

Figure S1: ESI-MS spectrum of ligand 1 in CHCl₃ solvent
Figure S2: ESI-MS spectrum of ligand 2 in CHCl₃ solvent
Figure S3: ESI-MS spectrum of ligand 3 in CHCl₃ solvent
Figure S4: ESI-MS spectrum of complex 1 in CHCl₃ solvent and the isotopic distribution pattern
Figure S5: ESI-MS spectrum of complex 2 in CHCl₃ solvent and the isotopic distribution pattern
Figure S6: ESI-MS spectrum of complex 3 in CHCl₃ solvent and the isotopic distribution pattern
Figure S7: ESI-MS spectrum of complex 4 in CHCl₃ solvent and the isotopic distribution pattern
Figure S8: ESI-MS spectrum of complex 5 in CHCl₃ solvent and the isotopic distribution pattern
Figure S9: ESI-MS spectrum of complex 6 in CHCl₃ solvent and the isotopic distribution pattern
1.2 FT-IR spectra for ligands and complexes

![FT-IR spectrum of ligand 1](image)

Figure S10: FT-IR spectrum of ligand 1
Figure S11: FT-IR spectrum of ligand 2
Figure S12: FT-IR spectrum of ligand 3
Figure S13: FT-IR spectrum of complex 1
Figure S14: FT-IR spectrum of complex 2
Figure S15: FT-IR spectrum of complex 3
Figure S16: FT-IR spectrum of complex 4
Figure S17: FT-IR spectrum of complex 5
Figure S18: FT-IR spectrum of complex 6
1.3 UV-Vis spectra for ligands and complexes

Figure S19: UV-Vis spectrum of ligand 1
Figure S20: UV-Vis spectrum of ligand 2
Figure S21: UV-Vis spectrum of ligand 3
Figure S22: UV-Vis spectrum of complex 1
Figure S23: UV-Vis spectrum of complex 2
Figure S24: UV-Vis spectrum of complex 3
Figure S25: UV-Vis spectrum of complex 4
Figure S26: UV-Vis spectrum of complex 5
Figure S27: UV-Vis spectrum of complex 6
1.4 1H NMR spectra for ligands and complexes

Figure S28: 1H NMR (400 MHz, DMSO-d$_6$) spectrum of ligand 1
Figure S29: 1H NMR (400 MHz, DMSO-d_6) spectrum of ligand 2
Figure S30: 1H NMR (400 MHz, DMSO-d$_6$) spectrum of ligand 3
Figure S31: 1H NMR (400 MHz, CDCl$_3$) spectrum of complex 1
Figure S32: 1H NMR (400 MHz, CDCl$_3$) spectrum of complex 2
Figure S33: 1H NMR (400 MHz, CDCl$_3$) spectrum of complex 3
Figure S34: 1H NMR (400 MHz, CDCl$_3$) spectrum of complex 4
Figure S35: 1H NMR (400 MHz, CDCl$_3$) spectrum of complex 5
Figure S36: 1H NMR (400 MHz, CDCl$_3$) spectrum of complex 6
1.5 13C NMR spectra for ligands and complexes

Figure S37: 13C NMR (100 MHz, CDCl$_3$) spectrum of complex 1
Figure S38: 13C NMR (100 MHz, CDCl$_3$) spectrum of complex 2
Figure S39: 13C NMR (100 MHz, CDCl$_3$) spectrum of complex 3
Figure S40: 13C NMR (100 MHz, CDCl$_3$) spectrum of complex 4
Figure S41: 13C NMR (100 MHz, CDCl$_3$) spectrum of complex 5
Figure S42: 13C NMR (100 MHz, CDCl$_3$) spectrum of complex 6
1.6 X-ray structures, crystal data and refinement parameters

Figure 43. ORTEP view of ligand L_1 with 50% probability. Bond angles $\text{O}(1)-\text{C}(13) = 1.194(5)^\circ$, $\text{O}(2)-\text{C}(20) = 1.215(5)^\circ$, $\text{N}(1)-\text{C}(12) = 1.272(5)^\circ$, $\text{N}(3)-\text{C}(11) = 1.282(5)^\circ$, $\text{N}(3)-\text{N}(4) = 1.369(5)^\circ$, $\text{N}(1)-\text{N}(2) = 1.349(5)^\circ$, $\text{N}(2)-\text{H}2\text{A} = 0.860^\circ$, $\text{N}(4)-\text{H}4\text{A} = 0.860^\circ$. Bond lengths: $\text{N}(1)-\text{N}(2)-\text{C}(13) = 119.1 (3) \text{ Å}$, $\text{N}(1)-\text{N}(2)-\text{C}(12) = 116.7 (4) \text{ Å}$, $\text{N}(3)-\text{N}(4)-\text{C}(11) = 116.5 (3) \text{ Å}$, $\text{C}(20)-\text{N}(4)-\text{N}(3) = 117.7 (4) \text{ Å}$, $\text{O}(2)-\text{C}(20)-\text{N}(4) = 121.9 \text{ Å}$, $\text{H}2\text{A}-\text{N}(2)-\text{N}(1) = 120.5 \text{ Å}$, $\text{H}2\text{A}-\text{N}(2)-\text{C}(13) = 120.4 \text{ Å}$, $\text{N}(3)-\text{N}(4)-\text{H}4\text{A} = 121.2 \text{ Å}$, $\text{H}4\text{A}-\text{N}(4)-\text{C}(20) = 121.1\text{Å}$.
Table S1: Crystal data and structure refinement parameters for complexes L₁, 1, 3 & 4.

	L₁	1	3	4
CCDC Number	2086813	2103005	2086814	2086865
Chem. formula	C₂₆H₁₈N₄O₂	C₆₃H₄₈N₄O₃P₂Ru	C₅₉H₴₄N₄O₃P₂RuS₂	C₅₉H₴₂As₂N₄O₃RuS₂
Formula weight	418.44	1072.06	1084.11	1170.00
Temperature (K)	273(2) K	296(2) K	293(2) K	296(2) K
Wavelength (Å)	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	Cc	P2₁/c	P2₁/c	P-1
Unit cell dimensions				
a (Å)	26.13 (3) Å	17.0764(12) Å	16.9512(8) Å	11.7291(9) Å
b (Å)	4.761 (7) Å	16.0690(11) Å	19.1318(10) Å	22.1650(18) Å
c (Å)	19.97 (3) Å	19.1558(10) Å	9.0961(2)°	88.653(3)°
α (°)	90°	90°	90°	79.879(3)°
β (°)	128.26 (3)°	90.961(2)°	92.053 (2)°	88.653(3)°
γ (°)	90°	90°	90°	83.134(3)°
Volume (Å³)	1951(5) Å³	5255.6(6) Å³	5085.3(4) Å³	5513.4 (8) Å³
Z	4	4	4	4
Density (Calcd)	1.425 Mg/m³	1.355 Mg/m³	1.416 Mg/m³	1.410 Mg/m³
Absorption coefficient	0.093 mm⁻¹	0.410 mm⁻¹	0.504 mm⁻¹	1.598 mm⁻¹
F(000)	872	2208	2224	2360
Crystal Size (mm³)	0.20 x 0.10 x 0.10	0.19 x 0.13 x 0.08	0.53 x 0.37 x 0.36	0.22 x 0.19 x 0.11
Theta range for data collection	2.074 to 27.372°	2.386 to 30.958°	2.596 to 28.304°	0.933 to 27.268°
Index ranges	-33<=h<=33, -19<=h<=24, -19<=k<=23, -25<=l<=25	-20<=h<=22, -20<=k<=20, -27<=k<=27, -25 <=l<=25	-15<=h<=15, -20<=k<=20, -27<=k<=27, -28<=l<=28	
Reflections collected	26748	80189	69970	133072
Independent reflections	4427 [R(int) = 0.0836]	16366 [R(int) = 0.0683]	12579 [R(int) = 0.0424]	24755 [R(int) = 0.0415]
Data/restraints/parameters	4427 / 2 / 289	16366 / 107/ 636	12579 / 402 / 621	24593 / 0 / 1295
Goodness-of-fit on F²	1.041	1.017	1.079	0.899
Final R indices				
[I>2sigma(I)]	R1 = 0.0570, R1 = 0.0554, R1 = 0.0801, R1 = 0.0354,	wR² = 0.1076 wR² = 0.1187 wR² = 0.2022 wR² = 0.0916		
R indices (all data)	R1 = 0.1150, R1 = 0.1153, R1 = 0.1056, R1 = 0.0568,	wR² = 0.1237 wR² = 0.1433 wR² = 0.2200 wR² = 0.1075		
Table S2: Selected geometrical parameters for complexes $L_1, 1, 3 \& 4$

Bond lengths (Å)	L_1	1	3		
O(1)-C(13)	1.194 (5)	Ru(1)-C(63)	1.840 (4)	Ru(1)-C(1)	1.873(6)
O(2)-C(13)	1.215 (5)	Ru(1)-O(2)	2.1312 (18)	Ru(1)-O(2)	2.134(3)
N(1)-C(12)	1.272 (5)	Ru(1)-H	1.781 (19)	Ru(1)-H	1.76(3)
N(3)-C(11)	1.282 (5)	Ru(1)-N(3)	2.183 (2)	Ru(1)-N(1)	2.186(4)
N(3)-N(4)	1.369 (5)	Ru(1)-P(1)	2.3652 (8)	Ru(1)-P(1)	2.3634(12)
N(1)-N(2)	1.349 (5)	Ru(1)-P(2)	2.3770(8)	Ru(1)-P(2)	2.3658(12)
N(2)-H2A	0.860				
N(4)-H4A	0.860				

Bond angles(°)	L_1	1	3		
N(1)-N(2)-C(13)	119.1 (3)	C(63)-Ru(1)-O(2)	99.48 (11)	C(1)-Ru(1)-O(2)	99.49 (19)
N(1)-N(2)-C(12)	116.7 (4)	C(63)-Ru(1)-N(3)	174.31(11)	C(1)-Ru(1)-N(1)	174.41 (19)
C(20)-N(4)-N(3)	117.7 (4)	C(63)-Ru(1)-P(1)	89.28 (11)	C(1)-Ru(1)-P(1)	92.67 (17)
O(2)-C(20)-N(4)	121.9 (4)	C(63)-Ru(1)-H	82.6 (7)	C(1)-Ru(1)-H	84.9 (11)
O(2)-C(20)-C(21)	123.2 (4)	O(2)-Ru(1)-H	175.9(7)	O(2)-Ru(1)-H	170.3 (10)
N(4)-C(20)-C(21)	114.9 (4)	O(2)-Ru(1)-P(1)	91.71 (6)	O(2)-Ru(1)-P(2)	92.37 (9)
O(1)-C(13)-C(21)	121.9 (4)	O(2)-Ru(1)-P(2)	91.86 (6)	O(2)-Ru(1)-P(1)	91.41 (9)
O(1)-C(13)-C(14)	117.5 (4)	O(2)-Ru(1)-N(3)	74.84 (7)	O(2)-Ru(1)-N(1)	74.99 (12)
N(2)-C(13)-C(14)	115.6 (4)	N(3)-Ru(1)-P(1)	91.30 (6)	N(1)-Ru(1)-P(1)	88.42 (10)
H2A-N(2)-N(1)	120.5	N(3)-Ru(1)-P(2)	87.71 (6)	N(1)-Ru(1)-P(2)	91.26 (10)
H2A-N(2)-C(13)	120.4	N(3)-Ru(1)-H	103.1(6)	N(1)-Ru(1)-H	100.7 (10)
N(3)-N(4)-H4A	121.2	P(1)-Ru(1)-H	91.8 (7)	P(1)-Ru(1)-H	78.8 (10)
H4A-N(4)-C(20)	121.1	P(2)-Ru(1)-H	84.5(7)	P(2)-Ru(1)-H	97.3 (10)
		P(2)-Ru(1)-P(1)	175.91 (2)	P(2)-Ru(1)-P(1)	175.98 (4)
Bond lengths (Å)

Bond	Length (Å)
Ru(1)-C (59)	1.869 (3)
Ru(1)-O (2)	2.082 (19)
Ru(1)-N (2)	2.080 (2)
Ru(1)-N (3)	2.056 (2)
Ru(1)-As (1)	2.4730 (4)
Ru(1)-As (2)	2.4778 (4)

Bond angles (°)

Bond	Angle (°)
C(59)-Ru(1)-O(2)	95.69 (11)
C(59)-Ru(1)-N(2)	96.62 (12)
C(59)-Ru(1)-N(3)	172.09 (12)
C(59)-Ru(1)-As(1)	90.24 (9)
C(59)-Ru(1)-As(2)	91.41 (9)
O(2)-Ru(1)-As(1)	86.19 (6)
O(2)-Ru(1)-As(2)	88.84 (6)
N(3)-Ru(1)-N(2)	91.27 (10)
N(3)-Ru(1)-O(2)	76.44 (8)
N(3)-Ru(1)-As(1)	90.05 (7)
N(3)-Ru(1)-As(2)	87.65 (7)
N(2)-Ru(1)-O(2)	167.56 (9)
N(2)-Ru(1)-As(1)	91.71 (7)
N(2)-Ru(1)-As(2)	92.89 (7)
As(2)-Ru(1)-As(1)	174.904 (14)
2. Catalysis

2.1 General methods

Thin-layer chromatography (TLC) was carried out on Merck 1.05554 aluminum sheets precoated with silica gel 60 F254, and the spots were monitored by UV light at 254 nm. Column chromatography purifications were executed using Merck silica mesh (100-200). Infrared spectra of the ligands and the metal complexes were recorded in the range of 4000-400 cm\(^{-1}\) using a Bruker model FT-IR spectrophotometer. The \(^1\)H & \(^13\)C NMR spectra were measured on a Bruker AV400 instrument by using CDCl\(_3\) as a solvent. Tetramethylsilane was used as an internal standard for the measuring of chemical shifts (ppm).

2.2 General experimental procedure for \(N\)-alkylation of aromatic amines with alcohols

To a mixture of ruthenium(II) catalyst (0.5 mmol), 5 mmol of benzyl alcohol, 5 mmol of substituted amine, 5 mol% of KOH and 5 mL of toluene were taken in 25mL of RB flask and the reaction was carried out by 12 hrs at 110\(^\circ\)C. Upon completion (as monitored by TLC), the reaction mixture was cooled at ambient temperature, H\(_2\)O (3 ml) was added and the organic layer was extracted with ethyl acetate (3-10 mL). The combined organic layers were dried with sodium sulphate anhydrous and concentrated. The crude sample was purified by column chromatography (ethyl acetate/n-hexane). Conversions were monitored by NMR spectroscopy.

2.3 General experimental procedure for \(\alpha\)-alkylation of aromatic ketones with alcohols

To a solution of Ru(II) catalyst (0.5 mmol) and KOH (5 mol%) in toluene (3ml) was added the corresponding ketone (5mmol) followed by the corresponding alcohol (5mmol). The mixture was stirred and heated at 110\(^\circ\)C for a period of 12 hrs. After completion of the reaction, the reaction mixture was cooled and as tested by TLC. Then the mixture was diluted with 3 ml of H\(_2\)O and extracted with DCM (5 ml). The combined organic layers were dried over anhydrous Na\(_2\)SO\(_4\), filtered. The resulting residue was purified by column chromatography on silica gel using suitable mixtures of Pet ether/Ethyl acetate to get a pure product and analysed by NMR spectroscopy.
2.4 General experimental procedure for β-alkylation of secondary alcohols with primary alcohols

In a 25 mL RB flask were placed with secondary alcohol (2.5 mmol), primary alcohol (2.5 mmol), 5 mol% of ruthenium(II) catalyst, and base KOH (5 mol%) in Toluene (3 mL). The reaction mixture was heated at 110 °C for 12h. After completion of the reaction, the mixture was cooled to room temperature, diluted with dichloromethane and hexane mixture and filtered. The filtrate was concentrated and the crude sample was purified by column chromatography (hexane/ethyl acetate) to provide the desired product. The products were characterized by NMR spectroscopy.

2.5 Characterization data of compounds. (6a-6k), (7a-7i), (8a-8f).

N-Benzylaniline (6a):

\[
\text{The title compound (1a) was synthesized according to the general procedure, using aniline (5.0 mmol) and benzyl alcohol (5.0 mmol). 1a was isolated by column chromatography (hexane/EtOAc, 8:2) as a colorless liquid (93 %).} \]

\[\text{1H NMR (400MHz, CDCl}_3\text{):} \delta = 7.36 (t, J = 4 \text{ Hz}, 2\text{H}), 7.34 (d, J = 4 \text{ Hz}, 2\text{H}), 7.31 (t, J = 4 \text{ Hz}, 1\text{H}), 7.29 (d, J = 8 \text{ Hz}, 1\text{H}), 7.27 (t, J = 4 \text{ Hz}, 1\text{H}), 7.29 (d, J = 8 \text{ Hz}, 3\text{H}), 4.62 (s, NH, 1\text{H}), 2.59 (s, -\text{CH}_2, 2\text{H}). \text{ Data agrees with literature values.}^{1,2,3,4} \]

Dibenzylamine (6b):
The title compound (6b) was synthesized according to the general procedure, using benzylamine (5.0 mmol) and benzyl alcohol (5.0 mmol). 1a was isolated by column chromatography (hexane/EtOAc, 8:2) as a yellow liquid (95 %). 1H NMR (400MHz, CDCl$_3$): δ = 7.51 (t, J = 4 Hz, 4H), 7.16 (d, J = 8 Hz, 4H), 6.99 (t, J = 4 Hz, 2H), 5.12 (s, NH, 1H), 4.17 (s, -CH$_2$, 4H). Data agrees with literature values.5,6

N-benzyl-2,4,6-trimethylaniline (6c):

The title compound (6c) was synthesized according to the general procedure, using 2,4,6-trimethylamine (5.0 mmol) and benzyl alcohol (5.0 mmol). 6c was isolated by column chromatography (hexane/EtOAc, 8:2) as a colourless liquid (90 %). 1H NMR (400MHz, CDCl$_3$): δ = 7.51 (t, J = 4 Hz, 4H), 7.16 (d, J = 8 Hz, 4H), 6.99 (t, J = 4 Hz, 2H), 4.17 (s, -CH$_2$, 4H), 5.12 (s, NH, 1H). 13C NMR (100 MHz, CDCl3): δ = 141.85, 140.41, 131.92, 129.34, 128.72, 127.58, 127.30, 64.76, 20.85, 17.80. Data agrees with literature values.7

N-benzyl-2,6-diethylaniline (6e):

The title compound (6e) was synthesized according to the general procedure, using 2,6-dimethylamine (5.0 mmol) and benzyl alcohol (5.0 mmol). 6e was isolated by column chromatography (hexane/EtOAc, 8:2) as a colourless liquid (81 %). 1H NMR (400MHz, CDCl$_3$): δ = 7.55 (t, J = 4 Hz, 4H), 7.50 (d, J = 8 Hz, 2H), 7.41 (d, J = 4 Hz, 2H), 7.05 (t, J= 4 Hz, 1H), 6.75 (t, J = 4 Hz), 7.29 (t, J = 4 Hz, 2H), 5.35 (s, NH, 1H), 4.65 (s, -CH$_2$, 2H), 2.53 (q, -CH$_3$, 6H). 13C NMR (100 MHz, CDCl3): δ = 135.54, 127.73, 124.04, 122.39, 119.93, 118.06, 113.81, 55.01, 23.22, 17.74. Data agrees with literature values.8
N-benzyl-2,6-diisopropylaniline (6f):

![Chemical structure of 6f]

The title compound (6f) was synthesized according to the general procedure, using 2,6-diisopropylamine (5.0 mmol) and benzyl alcohol (5.0 mmol). 6f was isolated by column chromatography (hexane/EtOAc, 8:2) as a brownish liquid (79%). 1H NMR (400MHz, CDCl$_3$): δ = 7.66 (t, J = 4 Hz, 1H), 7.49 (d, J = 4 Hz, 2H), 7.39 (d, J = 8 Hz, 2H), 6.83 (t, J = 4 Hz, 3H), 5.35 (s, 1H, NH), 3.72 (s, -CH$_2$, 2H), 2.89 – 3.01 (m, -CH$_3$, 2H), 1.28 (d, J = 8 Hz, 6H), 1.18 (d, J = 8 Hz, 6H). 13C NMR (100 MHz, CDCl$_3$): δ = 140.53, 137.83, 130.25, 128.45, 127.65, 124.52, 123.04, 56.45, 28.21, 23.80. Data agrees with literature values.9

N-benzyl cyclohexanamine (6g):

![Chemical structure of 6g]

The title compound (6g) was synthesized according to the general procedure, using cyclohexylamine (5.0 mmol) and benzyl alcohol (5.0 mmol). 6g was isolated by column chromatography (hexane/EtOAc, 8:2) as a colourless liquid (75%). 1H NMR (400MHz, CDCl$_3$): δ = 8.08 (d, J = 8 Hz, 2H), 7.40 (t, J = 4 Hz, 2H), 7.29 (t, J = 4 Hz, 1H), 4.63 (s, 1H, NH), 4.63 (s, NH, 1H), 3.81 (s, -CH$_2$, 2H), 3.21 – 3.16 (q, 4H), 1.64 – 1.54 (m, cyclohexane, 4H), 1.36 – 1.27 (m, cyclohexane, 4H). 13C NMR (100 MHz, CDCl$_3$): δ = 140.53, 137.83, 130.25, 128.45, 127.65, 124.52, 123.04, 56.45, 28.21, 23.80. Data agrees with literature values.10

N-benzyl-1-(pyridine-3-yl)methanamine (6h):

![Chemical structure of 6h]
The title compound (6h) was synthesized according to the general procedure, using picolylamine (5.0 mmol) and benzyl alcohol (5.0 mmol). 6h was isolated by column chromatography (hexane/EtOAc, 8:2) as a colourless liquid (87 %). 1H NMR (400MHz, CDCl$_3$): $\delta = 8.10$ (d, J = 8 Hz, 2H), 7.92 (d, J = 8 Hz, 1H), 7.89 (t, J = 4 Hz, 1H), 7.86 (t, J = 4 Hz, 1H), 7.86 (t, J = 4 Hz, 1H), 7.58 (t, J = 4 Hz), 7.29 (d, J = 8 Hz, 1H), 7.06 (t, J = 4 Hz, 2H), 4.68 (s, NH, 1H), 3.23 (s, -CH$_2$, 4H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 150.91, 165.62, 141.50, 136.82, 130.47, 128.34, 127.19, 126.87, 118.26, 64.65$. Data agrees with literature values.11

N-butyl-N-butan-1-amine (6i)

The title compound (6i) was synthesized according to the general procedure, using dibutyl amine (5.0 mmol) and benzyl alcohol (5.0 mmol). 6i was isolated by column chromatography (hexane/EtOAc, 8:2) as a colourless liquid (82 %). 1H NMR (400MHz, CDCl$_3$): $\delta = 7.41 - 7.32$ (t, J = 4 Hz, 1H), 7.31 (d, J = 4 Hz, 2H), 7.29 (t, J = 4 Hz, 2H), 4.54 (s, -CH$_2$, 2H), 2.48 - 2.44 (t, J = 4 Hz, 2H), 1.43 – 1.35 (q, -CH$_2$, 4H), 1.26 – 1.21 (m, -CH$_2$, 4H), 0.88 – 0.84 (t, -CH$_3$, J = 4 Hz, 6H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 128.87, 124.52, 123.33, 77.50, 66.95, 28.27, 23.8, 22.7$. Data agrees with literature values.12

N-benzyl-2-methylpropan-2-amine (6j):

The title compound (6j) was synthesized according to the general procedure, using tert-butyl amine (5.0 mmol) and benzyl alcohol (5.0 mmol). 6j was isolated by column chromatography (hexane/EtOAc, 8:2) as a colourless liquid (78 %). 1H NMR (400MHz, CDCl$_3$): $\delta = 7.59$ (t, J = 4 Hz, 2H), 7.55 (d, J = 8 Hz, 2H), 7.35 (t, J = 4 Hz, 1H), 5.37 (s, NH, 1H), 3.70 (s, -CH$_2$, 2H), 1.13 (s, -CH$_3$, 9H). Data agrees with literature values.13
N- benzyl-ethane-1,2-diamine (6k):

The title compound (6k) was synthesized according to the general procedure, using Ethylene diamine (5.0 mmol) and benzyl alcohol (5.0 mmol). 6k was isolated by column chromatography (hexane/EtOAc, 8:2) as a colourless liquid (81 %). 1H NMR (400MHz, CDCl$_3$): δ = 7.72 (d, J = 8 Hz, 2H), 7.13 (t, J = 4 Hz, 1H), 6.75 (t, J = 4 Hz, 2H), 5.27 (s, NH, 1H), 3.66 (s, -CH$_2$, 2H), 2.40 (t, J = 4 Hz, 2H), 2.04 (t, J = 4 Hz, 2H), 1.26 (s, -NH$_2$, 2H). Data agrees with literature values.14,15

1,3 – diphenylpropan -1-one (7a):

Acetophenone (1 mmol), benzyl alcohol (1 mmol): yield of (7a): 97%. 1H NMR (400MHz, CDCl$_3$): δ = 7.62 (d, J = 5.44 Hz, 2H), 7.53 (d, J = 5.88 Hz, 2H), 7.30 – 7.27 (m, 6H), 3.09 (t, J = 6.36 Hz, -CH$_2$, 2H), 2.72 (t, J = 6.04 Hz, -CH$_2$, 2H). 13C NMR (100 MHz, CDCl$_3$): δ = 203.11, 136.92, 134.27, 130.89, 128.55, 123.89, 120.69, 118.73, 47.32, 29.95. Data agrees with literature values.16,17,18

3-(4- methoxyphenyl)-1-phenylpropan-1-one (7b):

Acetophenone (1 mmol), 4-methoxy benzyl alcohol (1 mmol): yield of (7b): 94%. 1H NMR (400MHz, CDCl$_3$): δ = 7.62 (d, J = 5.44 Hz, 2H), 7.53 (d, J = 5.88 Hz, 2H), 7.30 – 7.27 (m, 6H), 3.81 (s, -CH$_3$, 3H), 3.09 (t, J = 6.36 Hz, -CH$_2$, 2H), 2.72 (t, J = 6.04 Hz, -CH$_2$, 2H). 13C NMR
(100 MHz, CDCl3): δ = 202.78, 156.63, 144.60, 140.60, 138.57, 135.55, 133.40, 129.34, 128.34, 114.87, 54.32, 43.55, 31.30. Data agrees with literature values.19,20

1-Phenyl-3-(o-tolyl) propan-1-one (7c):

Acetophenone (1 mmol), 4-methyl benzyl alcohol (1 mmol): yield of (7c): 90%.

1H NMR (400MHz, CDCl\textsubscript{3}): δ = 7.84 (d, J = 4.50 Hz, 2H), 7.44 – 7.41 (t, J = 4 Hz, 1H), 7.36 - 7.33 (t, J = 4.01 Hz, 6H), 3.06 (t, J = 5.06 Hz, -CH\textsubscript{2}, 2H), 2.84 (t, J = 5.61 Hz, -CH\textsubscript{2}, 2H), 2.33 (s, -CH\textsubscript{3}, 3H).

13C NMR (100 MHz, CDCl3): δ = 199.77, 137.87, 137.05, 133.13, 129.22, 128.63, 127.79, 124.06, 122.65, 120.84, 43.38, 31.64, 19.87. Data agrees with literature values.21,22

1-(2- hydroxy phenyl) -3 - phenyl propan-1-one (7e):

o-hydroxy acetophenone (1 mmol), benzyl alcohol (1 mmol): yield of (7e): 91%.

1H NMR (400MHz, CDCl\textsubscript{3}): δ = 12.16 (s, OH, 1H), 7.81 (d, J = 6.52 Hz, 2H), 6.90 – 6.81 (m, 7H), 3.48 (t, J = 6.76 Hz, -CH\textsubscript{2}, 2H), 3.35 (t, J = 6.52 Hz, -CH\textsubscript{2}, 2H). Data agrees with literature values.23

1-(2- hydroxyl phenyl)-3- (4- methoxyphenyl) propan-1-one (7f):
o-hydroxy acetophenone (1 mmol), 4- methoxy benzyl alcohol (1 mmol): yield of (7f): 95%. \(^1H \) NMR (400MHz, CDCl\(_3\)): \(\delta = 10.74 \) (s, OH, 1H), 8.07 (d, J = 4 Hz, 2H), 7.96 (d, J = 4 Hz, 1H), 7.93 (d, J = 4 Hz, 1H), 7.89 (d, J = 8 Hz, 1H), 7.48 – 7.44 (t, J = 4 Hz, 6H), 2.92 - 2.89 (t, J = Hz, -CH\(_2\), 2H), 2.88 - 2.84 (t, J = Hz, -CH\(_2\), 2H), 3.06 (s, -CH\(_3\), 3H). Data agrees with literature values.\(^{24,25}\)

1-(2- hydroxyphenyl)-3-phenylpropan-1-one (7i):

4-methoxy 2- hydroxy acetophenone (1 mmol), benzyl alcohol (1 mmol): yield of (7i): 89%. \(^1H \) NMR (400MHz, CDCl\(_3\)): \(\delta = 7.83 \) (d, J = 5.6 Hz, 2H), 7.48 – 7.44 (m, 7H), 5.29 (s, OH, 1H), 3.78 (s, -CH\(_3\), 3H), 3.55 (t, J = 4.01 Hz, -CH\(_2\), 2H), 3.39 (t, J = 3.09 Hz, -CH\(_2\), 2H). Data agrees with literature values.\(^{28}\)
(1,3-Diphenylpropan-1-ol (8a):

![Structural formula](image)

1-Phenyl ethanol (2.5 mmol), benzyl alcohol (2.5 mmol): Yield: 98%; 1H NMR (400 MHz; CDCl$_3$; ppm): 7.94 (d, J = 7.6 Hz, 4H), 7.56 (t, J = 4.12 Hz, 4H), 7.45 (t, J = 3.46 Hz, 2H), 4.88 – 4.83 (q, -CH$_2$, 2H), 3.30 (t, J = 3.56 Hz, 1H), 3.08 (t, J = 4.36 Hz, 2H). 13C NMR (100 MHz; CDCl$_3$, ppm): 142.88, 139.52, 129.15, 128.63, 128.22, 127.18, 126.32, 125.49, 125.48, 74.20, 30.33, 25.31. Data agrees with literature values.29

3- (4-methoxyphenyl)-1-phenylpropan-1-ol (8b):

![Structural formula](image)

1-Phenyl ethanol (2.5 mmol), 4-Methoxy benzyl alcohol (2.5 mmol): Yield: 96%; 1H NMR (400 MHz; CDCl$_3$; ppm): 7.95 (d, J = 8.4 Hz, 4H), 7.57 (t, J = 7.88 Hz, 4H), 7.45 (t, J = 8.04 Hz, 1H), 4.93 – 4.80 (q, -CH$_2$, 2H), 4.13 (s, -CH$_3$, 3H), 3.32 (t, J = 7.08 Hz, 1H), 3.07 (t, J = 6.91 Hz, 2H), 1.46 (s,OH, 3H). 4.88 – 4.83 (q, -CH$_2$, 2H), 3.30 (t, J = 3.56 Hz, 1H), 3.08 (t, J = 4.36 Hz, 2H). Data agrees with literature values.30

1-Phenylpentan-3-ol (8e):

![Structural formula](image)
Butanol (2.5 mmol), benzyl alcohol (2.5 mmol): Yield: 89%; 1H NMR (400 MHz; CDCl$_3$; ppm): 7.19 – 7.12 (m, 4H), 4.73 – 4.68 (m, 4H), 1.90 (s, OH, 1H), 3.50 (m, 8H). Data agrees with literature values.31

1-(4-methoxyphenyl) pentan-3-ol (8f):

Butanol (2.5 mmol), 4-methoxy benzyl alcohol (2.5 mmol): Yield: 85%; 1H NMR (400 MHz; CDCl$_3$; ppm): 7.62 – 7.43 (m, 7 H), 4.91 (m, 1H), 4.39 – 4.34 (m, 6H), 1.49 (s, OH, 1H), 2.00 (s, -CH$_3$, 3H). Data agrees with literature values.32
2.6 NMR spectra of catalytic products (6a-6k), (7a-7m), (8a-8f).

Figure S44: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6a
Figure S45: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6b
Figure S46: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6c
Figure S47: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6e
Figure S48: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6f
Figure S49: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6g
Figure S50: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6h
Figure S51: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6i
Figure S52: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6j
Figure S53: 1H NMR (400 MHz, CDCl$_3$) spectrum of 6k
Figure S54: 1H NMR (400 MHz, CDCl$_3$) spectrum of 7a
Figure S55: 1H NMR (400 MHz, CDCl$_3$) spectrum of 7b
Figure S56: 1H NMR (400 MHz, CDCl$_3$) spectrum of 7c
Figure S57: 1H NMR (400 MHz, CDCl$_3$) spectrum of 7e
Figure S58: 1H NMR (400 MHz, CDCl$_3$) spectrum of 7f
Figure S59: 1H NMR (400 MHz, CDCl$_3$) spectrum of 7h
Figure S60: 1H NMR (400 MHz, CDCl$_3$) spectrum of 7i
Figure S61: 1H NMR (400 MHz, CDCl$_3$) spectrum of 8a
Figure S62: 1H NMR (400 MHz, CDCl$_3$) spectrum of 8b
Figure S63: 1H NMR (400 MHz, CDCl$_3$) spectrum of 8e
Figure S64: 1H NMR (400 MHz, CDCl$_3$) spectrum of 8f
Figure S65: 13C NMR (100 MHz, CDCl$_3$) spectrum of 6c
Figure S66: 13C NMR (100 MHz, CDCl$_3$) spectrum of 6e
Figure S67: 13C NMR (100 MHz, CDCl$_3$) spectrum of 6f
Figure S68: 13C NMR (100 MHz, CDCl$_3$) spectrum of 6i
Figure S69: 13C NMR (100 MHz, CDCl$_3$) spectrum of 6h
Figure S70: 13C NMR (100 MHz, CDCl$_3$) spectrum of 7a
Figure S71: 13C NMR (100 MHz, CDCl$_3$) spectrum of 7b
Figure S72: 13C NMR (100 MHz, CDCl$_3$) spectrum of 7c
Figure S73: 13C NMR (100 MHz, CDCl$_3$) spectrum of 8a
2.7 Control experiments

\textit{α-alkylation of acetophenone with benzyl alcohol in absence of catalyst}

Acetophenone (1 mmol), benzylalcohol (1 mmol), KOH (0.5 mmol) and toluene (2 mL) were charged into a round neck flask and heated at 110 °C. After 12 h, the crude reaction mixture was analysed by 13C-NMR (See Figure S37; 7a), there was no intermediate was observed.

\textit{α-alkylation of acetophenone with benzyl alcohol in presence of catalyst}

Acetophenone (1 mmol), benzylalcohol (1 mmol), catalyst 3 (0.5 mol%), KOH (0.5 mmol) and toluene (2 mL) were charged into a round neck flask and heated at 110 °C. After 12 h, the crude reaction mixture was analysed by 13C-NMR (See Figure S57) and the conversion of desired chalcone intermediate was found to be 71%.

\[
\begin{align*}
\text{Acetophenone} & \quad + \quad \text{Benzyl alcohol} \\
& \quad \xrightarrow{3 \text{ (0.5 mol %)}} \quad \text{Chalcone} \\
& \quad \text{KOH, toluene} \\
& \quad 110^\circ C, 12 \text{ hrs} \\
& \quad \text{Observed 71%}
\end{align*}
\]
Figure S74: 13C NMR (100 MHz, CDCl$_3$) spectrum of scheme 6.
REFERENCES

(1) Martinez-Asencio, A.; Yus, M.; Ramon, D. Palladium (II) acetate as catalyst for the N alkylation of aromatic amines, sulfonamides, and related nitrogenated compounds with alcohols by a hydrogen autotransfer process. Synthesis 2011, 22, 3730.

(2) Zhang, Y. Q. X.; Cui, X.; Shi, F.; Deng, Y. Palladium catalyzed N-alkylation of amines with alcohols. Tetrahedron Lett. 2011, 52, 1334.

(3) Yang, C. T.; Fu, Y.; Huang, Y. B.; Yi, J.; Guo, Q. X.; Liu, L. Room-temperature copper-catalyzed carbon-nitrogen coupling of aryl iodides and bromides promoted by organic ionic bases. Angew. Chem., Int. Ed. 2009, 48, 7398.

(4) Das, S.; Addis, D.; Junge, K.; Beller, M. Zinc-catalyzed chemoselective reduction of tertiary and secondary amides to amines. Chem. Eur. J. 2011, 17, 12186.

(5) Wetzel, A.; Wockel, S.; Schelwies, M.; Brinks, M. K.; Rominger, F.; Hofmann, P.; Limbach, M. Selective alkylation of amines with alcohols by Cp*-iridium(III) half-sandwich complexes. Org. Lett. 2013, 15, 266.

(6) Du, Y.; Oishi, S.; Saito, S. Selective N-Alkylation of Amines with Alcohols by Using Non-Metal-Based Acid–Base Cooperative Catalysis. Chem. Eur. J. 2011, 44, 12262.

(7) Otsuka, M.; Yokoyama, H.; Endo, K.; Shibata, T. Ru-catalyzed β-selective and enantioselective addition of amines to styrenes initiated by direct arene-exchange. Org. Biomol. Chem. 2012, 19, 3815.

(8) Fleury-Bregeot, N.; Raushel, J.; Sandrock, D. L.; Dreher, S. D.; Molander, G. A. Rapid and efficient access to secondary arylmethylamines. Chem. Eur. J. 2012, 18, 9564.

(9) Ascic, E.; Hansen, C. L.; Quement, S. T. L.; Nielsen, T. E. Synthesis of tetrahydro-β-carbolines via isomerization of N-allyltryptamines: a metal-catalyzed variation on the Pictet-Spengler theme. Chem. Commun. 2012, 48, 3345.

(10) Nguyen, Q. P. B.; Kim, T. H. Solvent-and catalyst-free direct reductive amination of aldehydes and ketones with Hantzsch ester: synthesis of secondary and tertiary amines. Tetrahedron 2013, 24, 4938.

(11) Weickmann, D.; Frey, W.; Plietker, B. Synchronizing steric and electronic effects in {Ru(II)(NNNN,P)} complexes: the catalytic dehydrative alkylation of anilines by using alcohols as a case study. Chem. Eur. J. 2013, 19, 2741.
(12) Dang, T. T.; Ramalingam, B.; Shan, S. P.; Seayad, A. M. An Efficient Palladium-Catalyzed N-Alkylation of Amines Using Primary and Secondary Alcohols. ACS Catal. 2013, 3, 2536−2540.

(13) Zhang, G.; Yin, Z.; Zheng, S. Cobalt-Catalyzed N-Alkylation of Amines with Alcohols. Org. Lett. 2016, 18, 300−303.

(14) Enyong, A. B.; Moasser, B. Ruthenium-catalyzed N-alkylation of amines with alcohols under mild conditions using the borrowing hydrogen methodology. J. Org. Chem. 2014, 79, 7553−7563.

(15) Shimizu, K.; Imaiida, N.; Kon, K.; Hakim Siddiki, S. M. A.; Satsuma, A. Heterogeneous Ni Catalysts for N-Alkylation of Amines with Alcohols. ACS Catal. 2013, 3, 998−1005.

(16) Das, U. K.; Ben-David, Y.; Diskin-Posner, Y.; Milstein, D. N-Substituted Hydrazones by manganese-Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angew. Chem., Int. Ed. 2018, 57, 2179.

(17) Huang, F.; Liu, Z.; Yu, Z. C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation. Angew. Chem., Int. Ed. 2016, 55, 862.

(18) Obora, Y. C-Alkylation by Hydrogen Autotransfer Reactions. Top. Curr. Chem. 2016, 374, 11.

(19) Obora, Y. α-Alkylation Reactions using Alcohols with Hydrogen Borrowing Methodologies. ACS Catal. 2014, 4, 3972.

(20) Dobereiner, G. E.; Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 2010, 110, 681.

(21) Reetz, M. T. Lewis Acid Induced α-Alkylation of Carbonyl Compounds. Angew. Chem., Int. Ed. 1982, 2, 96.

(22) Corma, A.; Navas, J.; Sabater, M. J. Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chem. Rev. 2018, 118, 1410.

(23) Faisca Phillips, A. M.; Pombeiro, A. J. L.; Kopylovich, M. N. Recent Advances in Cascade Reactions Initiated by Alcohol Oxidation. ChemCatChem. 2017, 9, 217.
(24) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Borrowing Hydrogen in the Activation of Alcohols. *Adv. Synth. Catal.* 2007, 349, 1555.

(25) Cao, X. N.; Wan, X. M.; Yang, F. L.; Li, K.; Hao, X. Q.; Shao, T.; Zhu, X.; Song, M. P. NNN Pincer Ru(II)-Complex-Catalyzed α-Alkylation of Ketones with Alcohols. *J. Org. Chem.* 2018, 83, 3657.

(26) Guo, L.; Liu, Y.; Yao, W.; Leng, X.; Huang, Z. Iridium-catalyzed selective α-alkylation of unactivated amides with primary alcohols. *Org. Lett.* 2013, 15, 5, 1144–1147.

(27) Zhang, G.; Wu, J.; Zeng, H.; Zhang, S.; Yin, Z.; Zheng, S. Cobalt-Catalyzed α-Alkylation of Ketones with Primary Alcohols. *Org. Lett.* 2017, 19, 1080–1083.

(28) Satyanarayana, P.; Reddy, G. M.; Maheswaran, H.; Kantama. M. L. Tris(acetylacetonato)rhodium(III)-Catalyzed α-Alkylation of Ketones, β-Alkylation of Secondary Alcohols and Alkylation of Amines with Primary Alcohols. *Adv. Synth. Catal.* 2013, 355, 1859.

(29) Wang, Q.; Wu, K.; Yu, Z. Ruthenium(III)-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols. *Organometallics* 2016, 35, 1251–1256.

(30) Liu, T.; Wang, L.; Wu, K.; Yu, Z. Manganese-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols under Phosphine-Free Conditions. *ACS Catal.* 2018, 8, 7201–7207.

(31) Zhang, C.; Zhao, J. P.; Hu, B.; Shi, J.; Chen, D. Ruthenium-Catalyzed β-Alkylation of Secondary Alcohols and α-Alkylation of Ketones via Borrowing Hydrogen: Dramatic Influence of the Pendant N-Heterocycle. *Organometallics* 2019, 38, 654–664.

(32) Schlepphorst, C.; Maji, B.; Glorius, F. Ruthenium-NHC Catalyzed α-Alkylation of Methyleneketones Provides Branched Products through Borrowing Hydrogen Strategy. *ACS Catal.* 2016, 6, 4184–4188.

(33) Murugan, K.; Vijayapritha, S.; Nirmala, M.; Viswanathamurthi, P.; Natarajan, K. Hydrazone complexes of ruthenium(II): Synthesis, crystal structures and catalytic applications in N-alkylation reactions. *J. Organomet. Chem.* 2020, 923, 121411.

(34) Ramachandran, R.; Prakash, G.; Viswanathamurthi, P.; Malecki, J. G. Ruthenium(II) complexes containing phosphino hydrazone/thiosemicarbazone ligand: An efficient catalyst for regioselective N-alkylation of amine via borrowing hydrogen methodology. *Inorg. Chim. Acta* 2018, 477, 122–129.
(35) Vinoth, G.; Indira, S.; Bharathi, M.; Archana, G.; Alves, L. G.; Martins, A. M.; Bharathi, K. S., Catalytic conversion of 2,4,5-trisubstituted imidazole and 5-substituted 1H-tetrazole derivatives using a new series of half-sandwich (η6-p-cymene)Ruthenium(II) complexes with thiophene-2-carboxylic acid hydrazone ligands. *Inorganica Chim. Acta*, 2021, 516, 120089.