The fuzzy Henstock–Kurzweil delta integral on time scales

Dafang Zhao, Guoju Ye, Wei Liu and Delfim F. M. Torres

Abstract We investigate properties of the fuzzy Henstock–Kurzweil delta integral (shortly, FHK Δ-integral) on time scales, and obtain two necessary and sufficient conditions for FHK Δ-integrability. The concept of uniformly FHK Δ-integrability is introduced. Under this concept, we obtain a uniformly integrability convergence theorem. Finally, we prove monotone and dominated convergence theorems for the FHK Δ-integral.

Key words: fuzzy Henstock–Kurzweil integral, convergence theorems, time scales.
Mathematics Subject Classification (2010): 26A42; 26E50; 26E70.

1 Introduction

The Lebesgue integral, with its convergence properties, is superior to the Riemann integral. However, a disadvantage with respect to Lebesgue’s integral, is
that it is hard to understand without substantial mathematical maturity. Also, the Lebesgue integral does not inherit the naturalness of the Riemann integral. Henstock \[23\] and Kurzweil \[26\] gave, independently, a slight, yet powerful, modification of the Riemann integral to get the now called Henstock–Kurzweil (HK) integral, which possesses all the convergence properties of the Lebesgue integral. For the fundamental results of HK integral, we refer to the papers \[7, 23, 38, 39, 43, 45\] and monographs \[20, 27, 34\]. As an important branch of the HK integration theory, the fuzzy Henstock–Kurzweil (FHK) integral has been extensively studied in \[8, 13, 18, 19, 22, 30, 35, 36, 41, 42\].

In 1988, Hilger introduced the theory of time scales in his Ph.D. thesis \[24\]. A time scale \(T \) is an arbitrary nonempty closed subset of \(\mathbb{R} \). The aim is to unify and generalize discrete and continuous dynamical systems, see, e.g., \[2–6, 9, 15, 21, 31\]. In \[32\], Peterson and Thompson introduced a more general concept of integral, i.e., the HK \(\Delta \)-integral, which gives a common generalization of the Riemann \(\Delta \) and Lebesgue \(\Delta \)-integral. The theory of HK integration for real-valued and vector-valued functions on time scales has been developed rather intensively, see, e.g., the papers \[1, 11, 16, 28, 29, 33, 37, 40, 44\] and references cited therein.

In 2015, Fard and Bidgoli introduced the FHK delta integral and presented some of its basic properties \[14\]. Nonetheless, to our best knowledge, there is no systematic theory for the FHK delta integral on time scales. In this work, in order to complete the FHK delta integration theory, we give two necessary and sufficient conditions of FHK delta integrability (see Theorems 3 and 7). Moreover, we obtain some convergence theorems for the FHK delta integral, in particular Theorem 9 of dominated convergence and Theorem 10 of monotone convergence.

After Section 2 of preliminaries, in Section 3 the definition of FHK delta integral is introduced, and our necessary and sufficient conditions of FHK delta integrability proved. We also obtain some convergence theorems. Finally, in Section 4 we give conclusions and point out some directions that deserve further study.

2 Preliminaries

A fuzzy subset of the real axis \(u : \mathbb{R} \rightarrow [0, 1] \) is called a fuzzy number provided that

1. \(u \) is normal: there exists \(x_0 \in \mathbb{R} \) with \(u(x_0) = 1 \);
2. \(u \) is fuzzy convex: \(u(\lambda x_1 + (1-\lambda)x_2) \geq \min\{u(x_1), u(x_2)\} \) for all \(x_1, x_2 \in \mathbb{R} \) and all \(\lambda \in (0, 1) \);
3. \(u \) is upper semi-continuous;
4. \([u]^0 = \{x \in \mathbb{R} : u(x) > 0\} \) is compact.

Denote by \(\mathbb{R}_\mathcal{F} \) the space of fuzzy numbers. We define the \(\alpha \)-level set \(|u|^\alpha \) by

\[
|u|^\alpha = \{x \in \mathbb{R} : u(x) \geq \alpha\}, \quad \alpha \in (0, 1].
\]

From conditions (1)-(4), \(|u|^\alpha \) is denoted by \(|u|^\alpha = [a^\alpha, b^\alpha] \). For \(u_1, u_2 \in \mathbb{R}_\mathcal{F} \) and \(\lambda \in \mathbb{R} \), we define
\[[u_1 + u_2]^\alpha = [u_1]^\alpha + [u_2]^\alpha \] and \[\lambda \odot u_1 = \lambda [u_1]^\alpha \]

for all \(\alpha \in [0, 1] \). The Hausdorff distance between \(u_1 \) and \(u_2 \) is defined by

\[
D(u_1, u_2) = \sup_{\alpha \in [0, 1]} \max \left\{ \frac{|u_1^\alpha - u_2^\alpha|}{|u_1^\alpha|}, \frac{|u_1^\alpha - u_2^\alpha|}{|u_2^\alpha|} \right\}.
\]

Then, the metric space \((\mathbb{R}, \varnothing, D)\) is complete. Let \(a, b \in T \). We define the half-open interval \([a, b]_T\) by

\[[a, b]_T = \{ x \in T : a \leq x < b \}. \]

The open and closed intervals are defined similarly. For \(x \in T \), we denote by \(\sigma(x) := \inf \{ y > x : y \in T \} \) and by \(\rho \) the backward jump operator, i.e., \(\rho \) is the forward jump operator, i.e., \(\sigma(\inf T) = \inf T \) and \(\rho \) is the backward jump operator, i.e., \(\rho \) is the forward jump operator, i.e., \(\sigma(\sup T) = \sup T \) and \(\rho(\inf T) = \inf T \) where \(\sup T \) and \(\inf T \) are finite. In this situation, \(T^\times := T \setminus \{ \sup T \} \) and \(T_\kappa := T \setminus \{ \inf T \} \), otherwise, \(T^\times := T \) and \(T_\kappa := T \). If \(\sigma(x) > x \), then we say that \(x \) is right-scattered, while if \(\rho(x) < x \), then we say that \(x \) is left-scattered. If \(\sigma(x) = x \) and \(\rho(x) = x \) or \(x > \sup T \), then \(x \) is called right-dense, and if \(\rho(x) = x \) and \(x < \inf T \), then \(x \) is left-dense. The graininess functions \(\mu \) and \(\eta \) are defined by \(\mu(x) := \sigma(x) - x \) and \(\eta(x) := x - \rho(x) \), respectively.

In what follows, all considered intervals are intervals in \(T \). A division \(D \) of \([a, b]_T\) is a finite set of interval-point pairs \(\{([x_{i-1}, x_i]_T, \xi_i)\}_{i=1}^n \) such that

\[
\bigcup_{i=1}^n [x_{i-1}, x_i]_T = [a, b]_T
\]

and \(\xi_i \in [a, b]_T \) for each \(i \). We write \(\Delta x_i = x_i - x_{i-1} \). We say that

\[
\delta(\xi) = (\delta_L(\xi), \delta_R(\xi))
\]

is a \(\Delta \)-gauge on \([a, b]_T\) if \(\delta_L(\xi) > 0 \) on \([a, b]_T\), \(\delta_R(\xi) > 0 \) on \([a, b]_T\), \(\delta_L(a) \geq 0 \), \(\delta_R(b) \geq 0 \) and \(\delta_R(\xi) \geq \mu(\xi) \) for any \(\xi \in [a, b]_T \). The symbol \(\Gamma(\Delta, [a, b]_T) \) stands for the set of \(\Delta \)-gauge on \([a, b]_T\). Let \(\delta^1(\xi) \) and \(\delta^2(\xi) \) be \(\Delta \)-gauges such that

\[
0 < \delta^1_L(\xi) < \delta^2_L(\xi)
\]

for any \(\xi \in [a, b]_T \) and \(0 < \delta^1_R(\xi) < \delta^2_R(\xi) \) for any \(\xi \in [a, b]_T \). Then we call \(\delta^1(\xi) \) finer than \(\delta^2(\xi) \) and write \(\delta^1(\xi) < \delta^2(\xi) \). We say that \(D = \{([x_{i-1}, x_i]_T, \xi_i)\}_{i=1}^n \) is a \(\delta \)-fine HK division of \([a, b]_T\) if \(\xi_i \in [x_{i-1}, x_i]_T \subset (\xi_i - \delta_L(\xi_i), \xi_i + \delta_R(\xi_i))_T \) for each \(i \). Let \(\mathcal{D}(\delta, [a, b]_T) \) be the set of all \(\delta \)-fine HK divisions of \([a, b]_T\). Given an arbitrary \(D \in \mathcal{D}(\delta, [a, b]_T) \), \(D = \{([x_{i-1}, x_i]_T, \xi_i)\}_{i=1}^n \), we write

\[
S(f, D, \delta) = \sum_{i=1}^n f(\xi_i) \Delta x_i
\]

for integral sums over \(D \), whenever \(f : [a, b]_T \to \mathbb{R} \).
Lemma 1 (See [25]). Suppose that \(u \in \mathbb{R}_\preceq \). Then,

1. the interval \([u]^{\alpha}\) is closed for \(\alpha \in [0, 1]\);
2. \([u]^{\alpha_1} \supset [u]^{\alpha_2}\) for \(0 \leq \alpha_1 \leq \alpha_2 \leq 1\);
3. for any sequence \(\{\alpha_n\} \) satisfying \(\alpha_n \leq \alpha_{n+1} \) and \(\alpha_n \rightarrow \alpha \in (0, 1]\), we have \(\bigcap_{n=1}^{\infty} [u]^{\alpha_n} = [u]^{\alpha} \).

Conversely, if a collection of subsets \(\{u^\alpha : \alpha \in [0, 1]\} \) verify (1)–(3), then there exists a unique \(u \in \mathbb{R}_\preceq \) such that \([u]^{\alpha} = u^\alpha\) for \(\alpha \in (0, 1]\) and \([u]^0 = \bigcup_{\alpha \in [0, 1]} u^\alpha \subset u^0\).

Lemma 2 (See [17]). Suppose that \(u \in \mathbb{R}_\preceq \). Then,

1. \(u^\alpha\) is bounded and nondecreasing;
2. \(\overline{u^\alpha}\) is bounded and nonincreasing;
3. \(u_1 \leq u_2\);
4. for \(e \in (0, 1]\), \(\lim_{\alpha \rightarrow -e} \overline{u^\alpha} = \overline{u}^e\) and \(\lim_{\alpha \rightarrow -e} \underline{u^\alpha} = \underline{u}^e\);
5. \(\lim_{\alpha \rightarrow 0^+} \overline{u^\alpha} = u^0\) and \(\lim_{\alpha \rightarrow 0} \underline{u^\alpha} = \overline{u}^0\).

Conversely, if \(\overline{u^\alpha}\) and \(\underline{u^\alpha}\) satisfy items (1)–(5), then there exists \(u \in \mathbb{R}_\preceq \) such that

\[
[u]^\alpha = \overline{u^\alpha, \underline{u^\alpha}} = \overline{[u^\alpha, u^\alpha]}.
\]

3 The fuzzy Henstock–Kurzweil delta integral

We introduce the concept of fuzzy Henstock–Kurzweil (FHK) delta integrability.

Definition 1. A function \(f : [a, b]_T \rightarrow \mathbb{R}_\preceq \) is called FHK \(\Delta\)-integrable on \([a, b]_T\) with the FHK \(\Delta\)-integral \(\tilde{A} = (\text{FHK}) \int_{[a, b]_T} f(x) \Delta x \), if for each \(\varepsilon > 0 \) there exists a \(\delta \in \Gamma(\Delta, [a, b]_T) \) such that \(D(S(f, D, \delta), \tilde{A}) < \varepsilon \) for each \(D \in D(\delta, [a, b]_T) \). The family of all FHK \(\Delta\)-integrable functions on \([a, b]_T\) is denoted by \(\mathcal{F}_\mathcal{H}_\mathcal{K}[a, b]_T\).

Remark 1. It is clear that Definition 1 is more general than the HK \(\Delta\)-integral introduced by Peterson and Thompson in [32] and more general than the FH integral introduced by Wu and Gong in [41, 42].

The proofs of Theorems 1 and 2 are straightforward and are left to the reader.

Theorem 1. The FHK \(\Delta\)-integral of \(f(x) \) is unique.

Theorem 2. If \(f(x), g(x) \in \mathcal{F}_\mathcal{H}_\mathcal{K}[a, b]_T \) and \(\alpha, \beta \in \mathbb{R} \), then

\[
\alpha f(x) + \beta g(x) \in \mathcal{F}_\mathcal{H}_\mathcal{K}[a, b]_T
\]

with

\[
(\text{FHK}) \int_{[a, b]_T} (\alpha f(x) + \beta g(x)) \Delta x = \alpha (\text{FHK}) \int_{[a, b]_T} f(x) \Delta x + \beta (\text{FHK}) \int_{[a, b]_T} g(x) \Delta x.
\]
Follows a Cauchy–Bolzano condition for the FHK \(\Delta \)-integral.

Theorem 3 (The Cauchy–Bolzano condition). Function \(f(x) \in \mathcal{H}(a,b) \) if and only if for each \(\varepsilon > 0 \) there exists a \(\delta \in \Gamma([a,b]) \) such that

\[
D(S(f,D_1,\delta),S(f,D_2,\delta)) < \varepsilon
\]

for any \(D_1, D_2 \in \mathcal{D}(\delta,[a,b]). \)

Proof. (Necessity) Let \(\varepsilon > 0 \). By hypothesis, there exists \(\delta \in \Gamma([a,b]) \) such that

\[
D\left(S(f,D,\delta),(FHK)\int_{[a,b]} f(x)dx\right) < \frac{\varepsilon}{2}
\]

for any \(D \in \mathcal{D}(\delta,[a,b]) \). Let \(D_1, D_2 \in \mathcal{D}(\delta,[a,b]) \). Then,

\[
D(S(f,D_1,\delta),S(f,D_2,\delta)) \\
\leq D\left(S(f,D_1,\delta),(FHK)\int_{[a,b]} f(x)dx\right) + D\left(S(f,D_2,\delta),(FHK)\int_{[a,b]} f(x)dx\right) \\
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

(Sufficiency) For each \(n \), choose a \(\delta_n \in \Gamma([a,b]) \) such that

\[
D(S(f,D_1,\delta_n),S(f,D_2,\delta)) < \frac{1}{n}
\]

for any \(D_1, D_2 \in \mathcal{D}(\delta_n,[a,b]) \). Replacing \(\delta_n \) by \(\bigcap_{j=1}^{n} \delta_j = \delta_n \), we may assume that \(\delta_{n+1} \subset \delta_n \). For each \(n \), fix a \(D_n \in \mathcal{D}(\delta_n,[a,b]) \). For \(j > n \), we have \(\delta_j \subset \delta_n \), so \(D_j \in \mathcal{D}(\delta_n,[a,b]) \). Thus, \(D(S(f,D_n,\delta_n),S(f,D_N,\delta_n)) < \frac{1}{N} \) and it follows that \(\{S(f,D_n,\delta_n)\} \) is a Cauchy sequence. We denote the limit of \(\{S(f,D_n,\delta_n)\} \) by \(\tilde{A} \) and let \(\varepsilon > 0 \). Choose \(N > \frac{\varepsilon}{2} \) and let \(D \in \mathcal{D}(\delta_N,[a,b]) \). Then,

\[
D\left(S(f,D,\delta_N),\tilde{A}\right) \leq D\left(S(f,D,\delta_N),S(f,D_N,\delta_N)\right) + D\left(S(f,D_N,\delta_N),\tilde{A}\right) \\
< \frac{1}{N} + \frac{1}{N} \\
< \varepsilon.
\]

Hence, \(f(x) \in \mathcal{H}(a,b) \).

Theorem 4. Let \(c \in (a,b) \). If \(f(x) \in \mathcal{H}(a,c) \) \(\cap \mathcal{H}(c,b) \), then

\[
f(x) \in \mathcal{H}(a,b)
\]

with

\[
(FHK)\int_{[a,b]} f(x)dx = (FHK)\int_{[a,c]} f(x)dx + (FHK)\int_{[c,b]} f(x)dx.
\]
Proof. Let $\varepsilon > 0$. By assumption, there exist Δ-gauges

$$\delta^i(\xi) = (\delta^i_1(\xi), \delta^i_2(\xi)), \quad i = 1, 2,$$

such that

$$D\left(S(f, D_1, \delta^1), (FHK) \int_{(a,c)_T} f(x) \Delta x \right) < \varepsilon,$$

$$D\left(S(f, D_2, \delta^2), (FHK) \int_{(c,b)_T} f(x) \Delta x \right) < \varepsilon,$$

respectively for any $D_1 \in D(\delta^1, [a,c]_T)$, $D_1 = \{(x_{k-1}, x_k, \xi_k)\}_{k=1}^n$ and for any $D_2 \in D(\delta^2, [c,b]_T)$, $D_2 = \{(x_{k-1}, x_k, \xi_k)\}_{k=1}^n$. We define $\delta(\xi) = (\delta_L(\xi), \delta_R(\xi))$ on $[a,b]_T$ by setting

$$\delta_L(\xi) = \begin{cases}
\delta^1_1(\xi), & \text{if } \xi \in [a,c]_T, \\
\delta^2_1(\xi), & \text{if } \xi = c = \rho(c), \\
\min \left\{ \delta^1_1(\xi), \frac{\eta(c)}{\rho(\xi)} \right\}, & \text{if } \xi = c > \rho(c), \\
\min \left\{ \delta^2_1(\xi), \frac{\xi - \rho(c)}{\rho(\xi)} \right\}, & \text{if } \xi \in (c,b]_T,
\end{cases}$$

and

$$\delta_R(\xi) = \begin{cases}
\min \left\{ \delta^1_2(\xi), \max \left\{ \mu(\xi), \frac{\xi - \rho(c)}{\rho(\xi)} \right\} \right\}, & \text{if } \xi \in [a,c]_T, \\
\min \{ \delta^2_2(\xi), \}, & \text{if } \xi \in [c,b]_T.
\end{cases}$$

Now, let $D \in D(\delta, [a,b]_T)$, $D = \{(x_{k-1}, x_k, \xi_k)\}_{k=1}^n$. It follows that

(i) either $c = \xi_q$ and $t_q > c$;

(ii) or $\xi_q = \rho(c) < c$ and $t_q = c$.

The case (ii) is straightforward. For (i), one has

$$D\left(S(f, D, \delta), (FHK) \int_{(a,c)_T} f(x) \Delta x + (FHK) \int_{(c,b)_T} f(x) \Delta x \right)$$

$$= D\left(\sum_{k=1}^p f(\xi_k) \Delta x_k, (FHK) \int_{(a,c)_T} f(x) \Delta x + (FHK) \int_{(c,b)_T} f(x) \Delta x \right)$$

$$\leq D\left(\sum_{k=1}^{q-1} f(\xi_k) \Delta x_k + f(c)(c - t_{q-1}), (FHK) \int_{(a,c)_T} f(x) \Delta x \right)$$

$$+ D\left(\sum_{k=q+1}^p f(\xi_k) \Delta x_k + f(c)(t_q - c), (FHK) \int_{(c,b)_T} f(x) \Delta x \right)$$

$$< \varepsilon + \varepsilon = 2\varepsilon.$$
Corollary 1. If \(f \in \mathcal{F} \mathcal{H} \mathcal{K}_{[a,b]} \), then \(f \in \mathcal{F} \mathcal{H} \mathcal{K}_{[r,s]} \) for any \([r,s] \subset [a,b] \).

Definition 2 (See [32]). Let \(T' \subset T \). We say \(T' \) has delta measure zero if it has Lebesgue measure zero and contains no right-scattered points. A property \(\mathcal{P} \) is said to hold \(\Delta \) a.e. on \(T \) if there exists \(T' \) of measure zero such that \(\mathcal{P} \) holds for every \(t \in T' \).

Theorem 5. Let \(f(x) = g(x) \) \(\Delta \) a.e. on \([a,b] \). If \(f(x) \in \mathcal{F} \mathcal{H} \mathcal{K}_{[a,b]} \), then so \(g(x) \).

Moreover,
\[
(\text{FHK}) \int_{[a,b]} f(x) \Delta x = (\text{FHK}) \int_{[a,b]} g(x) \Delta x.
\]

Proof. Let \(\varepsilon > 0 \). Then there exists a \(\delta \in \Gamma(\Delta, [a,b]) \) such that
\[
|D(S(f,D,\delta), (\text{FHK}) \int_{[a,b]} f(x) \Delta x) - (\text{FHK}) \int_{[a,b]} g(x) \Delta x| < \varepsilon
\]
for any \(D \in \mathcal{D}(\delta, [a,b]) \), \(D = \{([x_{i-1}, x_i], \xi_i)\} \). Set \(E = \sum_{j=1}^\infty E_j \), where
\[
E_j = \left\{ x : j - 1 < D(f(x), g(x)) \leq j, \quad t \in [a,b] \right\}_{j=1}^\infty.
\]

For each \(j \), there exists \(F_j \) consisting of a collection of open intervals with total length less than \(\varepsilon \cdot 2^{-j} \cdot j^{-1} \), such that \(E_j \subset F_j \). Define
\[
\delta(x) = \begin{cases}
\delta^0_1(\xi) + \delta^0_2(\xi), & \text{if } \xi \in [a,b] \setminus E, \\
\delta^1_1(\xi) + \delta^1_2(\xi), & \text{if } \xi \in E_j \text{ satisfies } (\xi - \delta^1_1(\xi), \xi + \delta^1_2(\xi)_{T} \subset F_j.
\end{cases}
\]

Then, for any \(D \in \mathcal{D}(\delta, [a,b]) \), \(D = \{([x_{i-1}, x_i], \xi_i)\} \), one has
\[
D(S(g,D,\delta), (\text{FHK}) \int_{[a,b]} f(x) \Delta x)
\]
\[
= D \left(\sum_{\xi_i \in [a,b]} g(\xi_i) \Delta x_i, (\text{FHK}) \int_{[a,b]} f(x) \Delta x \right)
\]
\[
= D \left(\sum_{\xi_i \in E} g(\xi_i) \Delta x_i + \sum_{\xi_i \in [a,b] \setminus E} g(\xi_i) \Delta x_i, (\text{FHK}) \int_{[a,b]} f(x) \Delta x \right)
\]
\[
= D \left(\sum_{\xi_i \in E} g(\xi_i) \Delta x_i + \sum_{\xi_i \in [a,b] \setminus E} f(\xi_i) \Delta x_i + \sum_{\xi_i \in E} f(\xi_i) \Delta x_i, (\text{FHK}) \int_{[a,b]} f(x) \Delta x \right)
\]
\[
= (\text{FHK}) \int_{[a,b]} f(x) \Delta x + \sum_{\xi_i \in E} f(\xi_i) \Delta x_i.
\]

Therefore,
\[D \left(S(g, D, \delta), (FHK) \int_{[a,b]} f(x) \Delta x \right) \]
\[\leq D \left(\sum_{\xi \in [a,b]} f(\xi) \Delta x_i, (FHK) \int_{[a,b]} f(x) \Delta x \right) \]
\[+ D \left(\sum_{\xi \in E} g(\xi) \Delta x_i, \sum_{\xi \in E} f(\xi) \Delta x_i \right) \]
\[\leq \varepsilon + \sum_{j=1}^{\infty} \sum_{i \in E_j} D(f(\xi_i), g(\xi_i)) \Delta x_i \]
\[\leq 2\varepsilon. \]

The proof is complete.

Theorem 6 (See [32]). Let \([a, b]_T\) be given. Assume

1. \(\lim_{n \to \infty} f_n(x) = f(x) \) holds \(\Delta \) a.e.;
2. \(G(x) \leq f_n(x) \leq H(x) \) holds \(\Delta \) a.e.;
3. \(f_n(x), G(x), H(x) \in \mathcal{H}_\mathcal{K}[a,b]_T \).

Then \(f(x) \in \mathcal{H}_\mathcal{K}[a,b]_T \). Moreover,

\[\lim_{n \to \infty} (HK) \int_{[a,b]} f_n(x) \Delta x = (HK) \int_{[a,b]} f(x) \Delta x. \]

Theorem 7. Function \(f(x) \in \mathcal{H}_\mathcal{K}[a,b]_T \) if and only if \(f(x)^\alpha, \overline{f(x)}^\alpha \in \mathcal{H}_\mathcal{K}[a,b]_T \) for all \(\alpha \in [0, 1] \) uniformly, i.e., the \(\Delta \)-gauge in Definition 1 is independent of \(\alpha \).

Proof. (Necessity) Let \(\overline{\Lambda} = (FHK) \int_{[a,b]} f(x) \Delta x \). Given \(\varepsilon > 0 \), there exists a \(\delta \in \Gamma(\Delta, [a,b]_T) \) such that \(D\left(S(f, D, \delta), \overline{\Lambda}\right) < \varepsilon \) for any \(D \in \mathcal{D}(\delta, [a,b]_T) \). Then,

\[\sup_{\alpha \in [0,1]} \max \left\{ |S(f, D, \delta) - \overline{\Lambda}^\alpha|, |S(f, D, \delta)|^\alpha - \overline{\Lambda}^\alpha \right\} \]
\[= \sup_{\alpha \in [0,1]} \max \left\{ |S(f^\alpha, D, \delta) - \overline{\Lambda}^\alpha|, |S(f^\alpha, D, \delta)| - \overline{\Lambda}^\alpha \right\} \]
\[< \varepsilon \]

and

\[|S(f^\alpha, D, \delta) - \overline{\Lambda}^\alpha| < \varepsilon, \quad |S(f^\alpha, D, \delta)| - \overline{\Lambda}^\alpha | < \varepsilon \]

for any \(\alpha \in [0,1] \) and for any \(D \in \mathcal{D}(\delta, [a,b]_T) \). Thus, \(f(x)^\alpha, \overline{f(x)}^\alpha \in \mathcal{H}_\mathcal{K}[a,b]_T \) uniformly for any \(\alpha \in [0,1] \).
(Sufficiency) Let \(\varepsilon > 0 \). By assumption, there exists a \(\delta \in \Gamma(\Delta, [a, b]_T) \) such that
\[
|S(f^\alpha, D, \delta) - \overline{A^\alpha}| < \varepsilon, \quad |\overline{S(f^\alpha, D, \delta)} - \overline{\overline{A^\alpha}}| < \varepsilon
\]
for any \(D \in \mathcal{D}(\delta, [a, b]_T) \) and for any \(\alpha \in [0, 1] \), where
\[
\overline{A^\alpha} = (FHK) \int_{[a, b]_T} f^\alpha \Delta x, \quad \overline{\overline{A^\alpha}} = (FHK) \int_{[a, b]_T} \overline{f^\alpha} \Delta x.
\]

To prove that \(\{\overline{A^\alpha}, \overline{\overline{A^\alpha}}\} \) represents a fuzzy number, it is enough to check that \(\overline{A^\alpha}, \overline{\overline{A^\alpha}} \) satisfies items (1)–(3) of Lemma 1:

1. For \(\alpha \in [0, 1] \), if \(f^\alpha \leq \overline{f^\alpha} \), then \(\overline{A^\alpha} \leq \overline{\overline{A^\alpha}} \), i.e., the interval \([\overline{A^\alpha}, \overline{\overline{A^\alpha}}] \) is closed.

2. \(f^\alpha \) and \(\overline{f^\alpha} \) are, respectively, nondecreasing and nonincreasing functions on \([0, 1] \).

 For any \(0 \leq \alpha_1 \leq \alpha_2 \leq 1 \) one has
\[
(FHK) \int_{[a, b]_T} f^{\alpha_1} \Delta x \leq (FHK) \int_{[a, b]_T} f^{\alpha_2} \Delta x \leq (FHK) \int_{[a, b]_T} \overline{f^{\alpha_2}} \Delta x \leq (FHK) \int_{[a, b]_T} \overline{f^{\alpha_1}} \Delta x.
\]

 This implies \([\overline{A^{\alpha_1}}, \overline{A^{\alpha_1}}] \supset [\overline{A^{\alpha_2}}, \overline{A^{\alpha_2}}] \).

3. For any \(\{\alpha_n\} \) satisfying \(\alpha_n \leq \alpha_{n+1} \) and \(\alpha_n \to \alpha \in (0, 1] \), we have
\[
\bigcap_{n=1}^{\infty} \overline{f^{\alpha_n}} = \overline{f^\alpha},
\]
that is,
\[
\bigcap_{n=1}^{\infty} \overline{f^{\alpha_n}, \overline{f^{\alpha_n}}} = \overline{f^\alpha, \overline{f^\alpha}},
\]
\[
\lim_{n \to \infty} \overline{f^{\alpha_n}} = \overline{f^\alpha} \quad \text{and} \quad \lim_{n \to \infty} \overline{\overline{f^{\alpha_n}}} = \overline{\overline{f^\alpha}}.
\]

Moreover,
\[
f^0 \leq \overline{f^{\alpha_n}} \leq f^1, \quad \overline{f^0} \leq \overline{f^{\alpha_n}} \leq \overline{f^1}.
\]

Thanks to Theorem 6 we have \(\overline{f^\alpha}, \overline{\overline{f^\alpha}} \in \mathcal{H}, \mathcal{H}^{[a,b]_T} \) and
\[
\lim_{n \to \infty} (HK) \int_{[a, b]_T} \overline{f^{\alpha_n}} \Delta x = (HK) \int_{[a, b]_T} f^\alpha \Delta x, \quad \lim_{n \to \infty} (HK) \int_{[a, b]_T} \overline{f^{\alpha_n}} \Delta x = (HK) \int_{[a, b]_T} \overline{f^\alpha} \Delta x.
\]
Consequently,
\[\bigcap_{n=1}^{\infty} [\overline{A_n}, \underline{A_n}] = [\overline{A}, \underline{A}]. \]

Define \(\tilde{A} \) by \(\{ [\overline{A^\alpha}, \underline{A^\alpha}], \alpha \in [0, 1] \} \). Thus,
\[D(S(f, D, \delta), \tilde{A}) < \varepsilon \]
for each \(D \in \mathcal{D}(\delta, [a, b]_T) \).

Definition 3. A sequence \(\{ f_n(x) \} \) of HK \(\Delta \)-integrable functions is called uniformly FHK \(\Delta \)-integrable on \([a, b]_T\) if for each \(\varepsilon > 0 \) there exists a \(\delta \in \Gamma(\Delta, [a, b]_T) \) such that
\[D(S(f_n, D, \delta), (FHK) \int_{[a, b]_T} f_n(x) \Delta x) < \varepsilon \]
for any \(D \in \mathcal{D}(\delta, [a, b]_T) \) and for any \(n \).

Theorem 8. Let \(f_n(x) \in \mathcal{F} \mathcal{H} \mathcal{K}_{[a, b]_T}, n = 1, 2, \ldots \) satisfy:
(1) \(\lim_{n \to \infty} f_n(x) = f(x) \) on \([a, b]_T\);
(2) \(f_n(x) \) are uniformly FHK \(\Delta \)-integrable on \([a, b]_T\).

Then \(f(x) \in \mathcal{F} \mathcal{H} \mathcal{K}_{[a, b]_T} \) and
\[\lim_{n \to \infty} (FHK) \int_{[a, b]_T} f_n(x) \Delta x = (FHK) \int_{[a, b]_T} f(x) \Delta x. \]

Proof. Let \(\varepsilon > 0 \). By assumption, there exists a \(\delta \in \Gamma(\Delta, [a, b]_T) \) such that
\[D(S(f_n, D, \delta), (FHK) \int_{[a, b]_T} f_n(x) \Delta x) < \varepsilon \]
for any \(D \in \mathcal{D}(\delta, [a, b]_T) \) and for every \(n \). Fix a \(D_0 \in \mathcal{D}(\delta, [a, b]_T) \). From (1) of Theorem \(8 \) there exists \(N \) such that
\[D(S(f_n, D_0, \delta), S(f_m, D_0, \delta)) < \varepsilon \]
for arbitrary \(n, m > N \). Then,
\[
D \left((FHK) \int_{[a, b]_T} f_n(x) \Delta x, (FHK) \int_{[a, b]_T} f_m(x) \Delta x \right) \\
\leq D \left(S(f_n, D_0, \delta), (FHK) \int_{[a, b]_T} f_n(x) \Delta x \right) + D \left(S(f_m, D_0, \delta), S(f_m, D_0, \delta) \right) \\
+ D \left(S(f_m, D_0, \delta), (FHK) \int_{[a, b]_T} f_m(x) \Delta x \right) \\
< 3\varepsilon
\]
for any $n, m > N$ and, hence, $\left\{ (FH \Delta) f_n(x) \Delta x \right\}$ is a Cauchy sequence. Let

$$\lim_{n \to \infty} (FH \Delta) \int_{[a,b]} f_n(x) \Delta x = \bar{A}.$$

We now prove that

$$\bar{A} = (FH \Delta) \int_{[a,b]} f(x) \Delta x.$$

Let $\varepsilon > 0$. By hypothesis, there exists a $\delta \in \Gamma(\Delta, [a,b])$ such that

$$D \left(S(f_n, D, \delta), (FH \Delta) \int_{[a,b]} f_n(x) \Delta x \right) < \varepsilon$$

for any $D \in \mathcal{D}(\delta, [a,b])$ and for all n. Choose N that satisfies

$$D \left((FH \Delta) \int_{[a,b]} f_n(x) \Delta x, \bar{A} \right) < \varepsilon$$

for all $n > N$. For the above D and N, there exists $N_0 > N$ satisfying

$$D \left((FH \Delta) \int_{[a,b]} f_{N_0}(x) \Delta x, \bar{A} \right) < 3\varepsilon$$

and the result follows.

Definition 4 (See [10]). A function $f : [a,b] \to \mathbb{R}$ is called absolutely continuous on $[a,b]$, if for each $\varepsilon > 0$ there exists $\gamma > 0$ such that

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| < \varepsilon$$

whenever $\bigcup_{i=1}^{n} [x_{i-1}, x_i] \subseteq [a,b]$ and $\sum_{i=1}^{n} \Delta x_i < \gamma$.

Theorem 9 (Dominated convergence theorem). Let the time scale interval $[a,b]$ be given. If $f_n(x) \in \mathcal{F}(\mathcal{K})[a,b]$, $n = 1, 2, \ldots$, satisfy

1. $\lim_{n \to \infty} f_n(x) = f(x)$ Δ a.e.;
2. $G(x) \leq f_n(t) \leq H(x)$ Δ a.e. and $G(x), H(x) \in \mathcal{F}(\mathcal{K})[a,b]$,
then sequence \(\{f_n(x)\} \) is uniformly FHK \(\Delta \)-integrable. Thus, \(f(x) \in \mathcal{FHK}_{[a,b]} \) and
\[
\lim_{n \to \infty} (FHK) \int_{[a,b]} f_n(x) \Delta x = (FHK) \int_{[a,b]} f(x) \Delta x.
\]

Proof. By hypothesis, one has
\[
D(f_p(x), f_q(x)) = \sup_{\alpha \in [0,1]} \max \left\{ \left| f_p(x)^\alpha - f_q(x)^\alpha \right|, \left| f_p(x) - f_q(x)^\alpha \right| \right\}
\leq \sup_{\alpha \in [0,1]} \max \left\{ \left| H(x)^\alpha - G(x)^\alpha \right|, \left| H(x) - G(x)^\alpha \right| \right\}
= D(H(x), G(x)).
\]

Then, \(D(H(x), G(x)) \) is Lebesgue \(\Delta \)-integrable. Let
\[
D(x) = \int_{[a,x]} D(H(s), G(s)) \Delta s.
\]
From [10], \(D(x) \) is absolutely continuous on \([a,b] \). Let \(\varepsilon > 0 \). Then there exists \(\gamma > 0 \) such that
\[
\sum_{i=1}^{n} |D(x_i) - D(x_{i-1})| < \frac{\varepsilon}{b-a}
\]
whenever \(\bigcup_{i=1}^{n} [x_{i-1}, x_i] \subset [a,b] \) and \(\sum_{i=1}^{n} \Delta x_i < \gamma \). The limit \(\lim_{n \to \infty} f_n(x) = f(x) \) holds \(\Delta \) a.e. on \([a,b] \) and \(\{D(f_n(x), f(x))\} \) is a sequence of \(\Delta \)-measurable functions. Thanks to the Egorov's theorem, there exists an open set \(\Omega \) with \(m(\Omega) < \delta \) such that \(\lim_{n \to \infty} f_n(x) = f(x) \) uniformly for \(x \in [a,b] \setminus \Omega \). Thus, there exists \(N \) such that \(D(f_p(x), f_q(x)) < \frac{\varepsilon}{m(\Omega)} \) for any \(p, q > N \) and for any \(x \in [a,b] \setminus \Omega \). Suppose that \(\delta_1 \in \Gamma(\Delta, [a,b]) \) such that
\[
\left| S(D(H(x), G(x)), D, \delta_1) - \int_{[a,b]} D(H(x), G(x)) \Delta x \right| < \varepsilon
\]
and
\[
D\left(S(f_n, D, \delta_1), (FHK) \int_{[a,b]} f_n(x) \Delta x \right) < \varepsilon
\]
for \(1 \leq n \leq N \) and for any \(D \in \mathcal{D}(\delta_1, [a,b]) \). Define \(\delta \in \Gamma(\Delta, [a,b]) \) by
\[
\delta(\xi) = \begin{cases}
\delta_1(\xi) & \text{if } \xi \in [a,b] \setminus \Omega, \\
\min\{\delta_1(\xi), \rho(\xi, \Omega)\} & \text{if } \xi \in \Omega,
\end{cases}
\]
where \(\rho(\xi, \Omega) = \inf\{|\xi - \xi'| : \xi' \in \Omega\} \). Fix \(n > N \). One has
\[
D\left(S(f_n, D, \delta), S(f_N, D, \delta) \right) = D\left(\sum_{\xi \in [a,b]} f_n(\xi) \Delta x_i, \sum_{\xi \in [a,b]} f_N(\xi) \Delta x_i \right)
\]
\[\sum_{\xi_i \in [a,b]_T \setminus \Omega} f_n(\xi_i) \Delta x_i, \sum_{\xi_i \in [a,b]_T \setminus \Omega} f_N(\xi_i) \Delta x_i \]

\[\leq \varepsilon + \sum_{\xi_i \in \Omega} D(f_n(\xi_i), f_n(\xi_i)) \Delta x_i \]

\[\sum_{\xi_i \in \Omega} D(H(\xi_i), G(\xi_i)) \Delta x_i \]

\[\leq 3\varepsilon \]

for any \(D \in \mathcal{D}(\delta, [a,b]_T) \). Hence,

\[\mathcal{D}\left(S(f_n, D, \delta), (FHK) \int_{[a,b]_T} f_n(x) \Delta x \right) \]

\[\leq \mathcal{D}(S(f_n, D, \delta), S(f_n, D, \delta)) + \mathcal{D}\left(S(f_N, D, \delta), (FHK) \int_{[a,b]_T} f_n(x) \Delta x \right) \]

\[+ \mathcal{D}\left((FHK) \int_{[a,b]_T^2} f_n(x) \Delta x, (FHK) \int_{[a,b]_T^2} f_n(x) \Delta x \right) \]

\[\leq 5\varepsilon. \]

Our dominated convergence theorem is proved.

As a consequence of Theorem 9, we get the following monotone convergence theorem.

Theorem 10 (Monotone convergence theorem). Let the time scale interval \([a,b]_T\) be given. If \(f_n(x) \in \mathcal{FHK}[a,b]_T \), \(n = 1, 2, \ldots \), satisfy

1. \(\lim_{n \to \infty} f_n(x) = f(x) \) a.e.;
2. \(\{f_n(x)\} \) is a monotone sequence and \(f_n(x) \in \mathcal{FHK}[a,b]_T \);

then \(\{f_n(x)\} \) is uniformly \(FHK \) \(\Delta \)-integrable. Consequently, \(f(x) \in \mathcal{FHK}[a,b]_T \).

Moreover,

\[\lim_{n \to \infty} (FHK) \int_{[a,b]_T} f_n(x) \Delta x = (FHK) \int_{[a,b]_T} f(x) \Delta x. \]

4 Conclusion

We investigated the fuzzy Henstock–Kurzweil (FHK) delta integral on time scales. Our results give a common generalization of the classical FHK and HK integrals. For future researches, we will investigate the characterization of FHK delta integrable functions. Another interesting line of research consists to study the concept of fuzzy Henstock–Stieltjes integral on time scales.
Acknowledgements

This research is supported by Chinese Fundamental Research Funds for the Central Universities, grant 2017B19714 (Ye, Liu and Zhao); by the Educational Commission of Hubei Province, grant B2016160 (Zhao); and by Portuguese funds through FCT and CIDMA, within project UID/MAT/04106/2013 (Torres).

References

1. S. Avsec, B. Bannish, B. Johnson, S. Meckler, The Henstock-Kurzweil delta integral on unbounded time scales, PanAmer. Math. J. 16 (2006), 77–98.
2. B. Bayour, D. F. M. Torres, Complex-valued fractional derivatives on time scales, Differential and difference equations with applications, 79–87, Springer Proc. Math. Stat., 164, Springer, [Cham], (2016). arXiv:1511.02153
3. N. Benkhettou, A. M. C. Brito da Cruz, D. F. M. Torres, A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration, Signal Processing 107 (2015), 230–237. arXiv:1405.2813
4. N. Benkhettou, A. M. C. Brito da Cruz, D. F. M. Torres, Nonsymmetric and symmetric fractional calculus on arbitrary nonempty closed sets, Math. Methods Appl. Sci. 39 (2016), 261–279. arXiv:1502.07277
5. M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser, Boston, MA (2001).
6. M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston, MA (2003).
7. B. Bongiorno, L. D. Piazza, K. Musiał, Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions, Math. Bohemica 131 (2006), 211–223.
8. B. Bongiorno, L. Di Piazza, K. Musiał, A decomposition theorem for the fuzzy Henstock integral, Fuzzy Sets and Systems 200 (2012), 36–47.
9. A. M. C. Brito da Cruz, N. Martins, D. F. M. Torres, The diamond integral on time scales, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 4, 1453–1462. arXiv:1306.0988
10. A. Cabada, D. R. Vivero, Criteria for absolute continuity on time scales, J. Difference Equ. Appl. 11 (2005), 1013–1028.
11. M. Cichoń, On integrals of vector-valued functions on time scales, Comm. Math. Anal. 11 (2011), 94–110.
12. L. Di Piazza, K. Musial, Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values, Monatsh Math. 173 (2014), 459–470.
13. K. F. Duan, The Henstock-Stephies integral for fuzzy-number-valued functions on a infinite interval, J. Comput. Anal. Appl. 20 (2016), 928–937.
14. O. S. Fard, T. A. Bidgoli, Calculus of fuzzy functions on time scales (I), Soft. Comput. 19 (2015), 293–305.
15. O. S. Fard, D. F. M. Torres, M. R. Zadeh, A Hukuhara approach to the study of hybrid fuzzy systems on time scales, Appl. Anal. Discrete Math. 10 (2016), 152–167. arXiv:1605.03737
16. M. Federson, J. G. Mesquita, A. Slavik, Measure functional differential equations and functional dynamic equations on time scales, J. Differential Equations 252 (2012), 3816–3847.
17. R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986), 31–43.
18. Z. T. Gong, The convergence theorems of the McShane integral of fuzzy-valued functions, Southeast Asian Bull. Math. 27 (2003), 55–62.
19. Z. T. Gong, Y. B. Shao, The controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions, Fuzzy Sets and Systems 160 (2009), 1528–1546.
20. R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, 4, American Mathematical Society, Providence, RI (1994).
The fuzzy Henstock–Kurzweil delta integral on time scales

21. G. Sh. Guseinov, *Integration on time scales*, J. Math. Anal. Appl. **285** (2003), 107–127.

22. M. E. Hamid, Z. T. Gong, *The characterizations of McShane integral and Henstock integrals for fuzzy-number-valued functions with a small Riemann sum on a small set*, J. Comput. Anal. Appl. **19** (2015), 830–836.

23. R. Henstock, *Definitions of Riemann Type of Variational Integral*, Proc. London Math. Soc. **11** (1961), 402–418.

24. S. Hilger, *Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten*, Ph.D. Thesis, Universität Würzburg (1988).

25. O. Kaleva, *Fuzzy differential equations*, Fuzzy Sets and Systems **24** (1987), 301–317.

26. J. Kurzweil, *Generalized ordinary differential equations and continuous dependence on a parameter*, Czech. Math. J. **7** (1957), 418–446.

27. T. Y. Lee, *Henstock-Kurzweil integration on Euclidean spaces*, Series in Real Analysis, **12**, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011).

28. G. A. Monteiro, A. Slavík, *Generalized elementary functions*, J. Math. Anal. Appl. **411** (2014), 838–852.

29. G. A. Monteiro, A. Slavík, *Extremal solutions of measure differential equations*, J. Math. Anal. Appl. **444** (2016), 568–597.

30. K. Musial, *A decomposition theorem for Banach space valued fuzzy Henstock integral*, Fuzzy Sets and Systems **259** (2015), 21–28.

31. M. D. Ortigueira, D. F. M. Torres, J. J. Trujillo, *Exponential and Laplace transforms on nonuniform time scales*, Commun. Nonlinear Sci. Numer. Simul. **39** (2016), 252–270.

32. A. Peterson, B. Thompson, *Henstock-Kurzweil delta and nabla integrals*, J. Math. Anal. Appl. **323** (2006), 162–178.

33. B. R. Satco, C. O. Turcu, *Henstock-Kurzweil-Pettis integral and weak topologies in nonlinear integral equations on time scales*, Math. Slovaca **63** (2013), 1347–1360.

34. S. Schwabik, G. J. Ye, *Topics in Banach space integration*, Series in Real Analysis, **10**, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2005).

35. Y. B. Shao, H. H. Zhang, *The strong fuzzy Henstock integrals and discontinuous fuzzy differential equations*, J. Appl. Math. 2013, Art. ID 419701, 8 pp.

36. Y. B. Shao, H. H. Zhang, *Existence of the solution for discontinuous fuzzy integro-differential equations and strong fuzzy Henstock integrals*, Nonlinear Dyn. Syst. Theory **14** (2014), 148–161.

37. A. Slavík, *Generalized differential equations: differentiability of solutions with respect to initial conditions and parameters*, J. Math. Anal. Appl. **402** (2013), 261–274.

38. A. Slavík, *Kurzweil and McShane product integration in Banach algebras*, J. Math. Anal. Appl. **424** (2015), 748–773.

39. A. Slavík, *Well-posedness results for abstract generalized differential equations and measure functional differential equations*, J. Differential Equations **259** (2015), 666–707.

40. B. S. Thompson, *Henstock-Kurzweil integrals on time scales*, Panamer. Math. J. **18** (2008), 1–19.

41. C. X. Wu, Z. T. Gong, *On Henstock integrals of interval-valued functions and fuzzy-valued functions*, Fuzzy Sets and Systems **115** (2000), 377–391.

42. C. X. Wu, Z. T. Gong, *On Henstock integral of fuzzy-number-valued functions(1)*, Fuzzy Sets and Systems **120** (2001), 523–532.

43. G. J. Ye, *On Henstock-Kurzweil and McShane integrals of Banach space-valued functions*, J. Math. Anal. Appl. **330** (2007), 753–765.

44. X. X. You, D. F. Zhao, D. F. M. Torres, *On the Henstock–Kurzweil integral for Riesz-space-valued functions on time scales*, J. Nonlinear Sci. Appl. **10** (2017), 2487–2500.

45. D. F. Zhao, G. J. Ye, *On ap-Henstock-Stieltjes integral*, J. Chungcheong Math. Soc. **19** (2006), 177–187.