Differential structure associated to axiomatic Sobolev spaces

Nicola Gigli∗ Enrico Pasqualetto†
July 17, 2018

Abstract

The aim of this note is to explain in which sense an axiomatic Sobolev space over a
general metric measure space (à la Gol’dshtein-Troyanov) induces – under suitable locality
assumptions – a first-order differential structure.

MSC2010: primary 46E35, secondary 51Fxx

Keywords: axiomatic Sobolev space, locality of differentials, cotangent module

Contents

Introduction 1

1 General notation 2

2 Axiomatic theory of Sobolev spaces 3

3 Cotangent module associated to a D-structure 10

Introduction

An axiomatic approach to the theory of Sobolev spaces over abstract metric measure spaces
has been proposed by V. Gol’dshtein and M. Troyanov in [6]. Their construction covers
many important notions: the weighted Sobolev space on a Riemannian manifold, the Hajlasz
Sobolev space [7] and the Sobolev space based on the concept of upper gradient [2,3,8,9].

A key concept in [6] is the so-called D-structure: given a metric measure space (X, d, m)
and an exponent p ∈ (1, ∞), we associate to any function u ∈ Lp loc(X) a family D[u] of non-
negative Borel functions called pseudo-gradients, which exert some control from above on the
variation of u. The pseudo-gradients are not explicitly specified, but they are rather supposed

∗SISSA, Via Bonomea 265, 34136 Trieste. E-mail address: ngigli@sissa.it
†SISSA, Via Bonomea 265, 34136 Trieste. E-mail address: epasqual@sissa.it
to fulfil a list of axioms. Then the space \(W^{1,p}(X, d, m, D)\) is defined as the set of all functions in \(L^p(m)\) admitting a pseudo-gradient in \(L^p(m)\). By means of standard functional analytic techniques, it is possible to associate to any Sobolev function \(u \in W^{1,p}(X, d, m, D)\) a uniquely determined minimal object \(Du \in D[u] \cap L^p(m)\), called minimal pseudo-gradient of \(u\).

More recently, the first author of the present paper introduced a differential structure on general metric measure spaces (cf. [4,5]). The purpose was to develop a second-order module theory for \(L^p\) to fulfil a list of axioms. Then the space \(Sf\) to fulfil a list of axioms. It is possible to associate to any Sobolev function \(u \in W^{1,p}(X, d, m, D)\) a uniquely determined minimal object \(Du \in D[u] \cap L^p(m)\), called minimal pseudo-gradient of \(u\).

The main result of this paper – namely Theorem 3.2 – says that any \(L^p\)-normed \(L^\infty\)-modules, among which a special role is played by the cotangent module, denoted by \(L^2(T^*X)\). Its elements can be thought of as ‘measurable 1-forms on \(X\).

Roughly speaking, the cotangent module allows us to represent minimal pseudo-gradients as pointwise norms of suitable linear objects. More precisely, this theory provides the existence of an abstract differential \(d : W^{1,p}(X, d, m, D) \rightarrow L^p(T^*X, D)\), which is a linear operator such that the pointwise norm \(|du| \in L^p(m)\) of \(du\) coincides with \(Du\) in the \(m\)-a.e. sense for any function \(u \in W^{1,p}(X, d, m, D)\).

1 General notation

For the purpose of the present paper, a metric measure space is a triple \((X, d, m)\), where

\[
\begin{align*}
(X, d) & \quad \text{is a complete and separable metric space,} \\
m & \neq 0 \quad \text{is a non-negative Borel measure on } X, \text{ finite on balls.}
\end{align*}
\]

Fix \(p \in [1, \infty)\). Several functional spaces over \(X\) will be used in the forthcoming discussion:

- \(L^0(m)\) : the Borel functions \(u : X \rightarrow \mathbb{R}\), considered up to \(m\)-a.e. equality.
- \(L^p(m)\) : the functions \(u \in L^0(m)\) for which \(|u|^p\) is integrable.
- \(L^p_{\text{loc}}(m)\) : the functions \(u \in L^0(m)\) with \(u|_B \in L^p(m|_B)\) for any \(B \subseteq X\) bounded Borel.
- \(L^\infty(m)\) : the functions \(u \in L^0(m)\) that are essentially bounded.
- \(L^0(m)^+\) : the Borel functions \(u : X \rightarrow [0, +\infty]\), considered up to \(m\)-a.e. equality.
- \(L^p(m)^+\) : the functions \(u \in L^0(m)^+\) for which \(|u|^p\) is integrable.
- \(L^p_{\text{loc}}(m)^+\) : the functions \(u \in L^0(m)^+\) with \(u|_B \in L^p(m|_B)^+\) for any \(B \subseteq X\) bounded Borel.
- \(\text{LIP}(X)\) : the Lipschitz functions \(u : X \rightarrow \mathbb{R}\), with Lipschitz constant denoted by \(\text{Lip}(u)\).
- \(Sf(X)\) : the functions \(u \in L^0(m)\) that are simple, i.e. with a finite essential image.

Observe that for any \(u \in L^p_{\text{loc}}(m)^+\) it holds that \(u(x) < +\infty\) for \(m\)-a.e. \(x \in X\). We also recall that the space \(Sf(X)\) is strongly dense in \(L^p(m)\) for every \(p \in [1, \infty)\).
Remark 1.1 In [6, Section 1.1] a more general notion of $L^p_{loc}(m)$ is considered, based upon the concept of K-set. We chose the present approach for simplicity, but the following discussion would remain unaltered if we replaced our definition of $L^p_{loc}(m)$ with the one of [6].

2 Axiomatic theory of Sobolev spaces

We begin by briefly recalling the axiomatic notion of Sobolev space that has been introduced by V. Gol’dshtein and M. Troyanov in [6, Section 1.2]:

Definition 2.1 (D-structure) Let (X,d,m) be a metric measure space. Let $p \in [1,\infty)$ be fixed. Then a D-structure on (X,d,m) is any map D associating to each function $u \in L^p_{loc}(m)$ a family $D[u] \subseteq \mathbb{L}^0(m)^+$ of pseudo-gradmrents of u, which satisfies the following axioms:

A1 (Non triviality) It holds that $\text{Lip}(u) \chi_{\{u>0\}} \in D[u]$ for every $u \in L^p_{loc}(m)^+ \cap \text{LIP}(X)$.

A2 (Upper linearity) Let $u_1, u_2 \in L^p_{loc}(m)$ be fixed. Consider $g_1 \in D[u_1]$ and $g_2 \in D[u_2]$. Suppose that the inequality $g \geq |\alpha_1|g_1 + |\alpha_2|g_2$ holds m-a.e. in X for some $g \in \mathbb{L}^0(m)^+$ and $\alpha_1, \alpha_2 \in \mathbb{R}$. Then $g \in D[\alpha_1 u_1 + \alpha_2 u_2]$.

A3 (Leibniz rule) Fix a function $u \in L^p_{loc}(m)$ and a pseudo-gradient $g \in D[u]$ of u. Then for every $\varphi \in \text{LIP}(X)$ bounded it holds that $g \sup_X |\varphi| + \text{Lip}(\varphi) |u| \in D[\varphi u]$.

A4 (Lattice property) Fix $u_1, u_2 \in L^p_{loc}(m)$. Given any $g_1 \in D[u_1]$ and $g_2 \in D[u_2]$, one has that $\max\{g_1, g_2\} \in D\left[\max\{u_1, u_2\}\right] \cap D\left[\min\{u_1, u_2\}\right]$.

A5 (Completeness) Consider two sequences $(u_n)_n \subseteq L^p_{loc}(m)$ and $(g_n)_n \subseteq L^p(m)$ that satisfy $g_n \in D[u_n]$ for every $n \in \mathbb{N}$. Suppose that there exist $u \in L^p_{loc}(m)$ and $g \in L^p(m)$ such that $u_n \rightarrow u$ in $L^p_{loc}(m)$ and $g_n \rightarrow g$ in $L^p(m)$. Then $g \in D[u]$.

Remark 2.2 It follows from axioms A1 and A2 that $0 \in D[c]$ for every constant map $c \in \mathbb{R}$. Moreover, axiom A2 grants that the set $D[u] \cap L^p(m)$ is convex and that $D[\alpha u] = |\alpha| D[u]$ for every $u \in L^p_{loc}(m)$ and $\alpha \in \mathbb{R} \setminus \{0\}$, while axiom A5 implies that each set $D[u] \cap L^p(m)$ is closed in the space $L^p(m)$.

Given any Borel set $B \subseteq X$, we define the p-Dirichlet energy of a map $u \in L^p(m)$ on B as

$$\mathcal{E}_p(u|B) := \inf \left\{ \int_B g^p \, dm \mid g \in D[u] \right\} \in [0, +\infty].$$

(2.1)

For the sake of brevity, we shall use the notation $\mathcal{E}_p(u)$ to indicate $\mathcal{E}_p(u|X)$.

Definition 2.3 (Sobolev space) Let (X,d,m) be a metric measure space. Let $p \in [1,\infty)$ be fixed. Given a D-structure on (X,d,m), we define the Sobolev class associated to D as

$$S^p(X) = S^p(X,d,m,D) := \left\{ u \in L^p_{loc}(m) : \mathcal{E}_p(u) < +\infty \right\}.$$

(2.2)

Moreover, the Sobolev space associated to D is defined as

$$W^{1,p}(X) = W^{1,p}(X,d,m,D) := L^p(m) \cap S^p(X,d,m,D).$$

(2.3)
Theorem 2.4 The space $W^{1,p}(X,d,m,D)$ is a Banach space if endowed with the norm
\[\|u\|_{W^{1,p}(X)} := \left(\|u\|_{L^p(m)}^p + E_p(u) \right)^{1/p} \]
for every $u \in W^{1,p}(X)$. \hfill (2.4)

For a proof of the previous result, we refer to [6, Theorem 1.5].

Proposition 2.5 (Minimal pseudo-gradient) Let (X,d,m) be a metric measure space and let $p \in (1,\infty)$. Consider any D-structure on (X,d,m). Let $u \in S^p(X)$ be given. Then there exists a unique element $Du \in D[u]$, which is called the minimal pseudo-gradient of u, such that $E_p(u) = \|Du\|_{L^p(m)}^p$.

Both existence and uniqueness of the minimal pseudo-gradient follow from the fact that the set $D[u] \cap L^p(m)$ is convex and closed by Remark 2.2 and that the space $L^p(m)$ is uniformly convex; see [6, Proposition 1.22] for the details.

In order to associate a differential structure to an axiomatic Sobolev space, we need to be sure that the pseudo-gradients of a function depend only on the local behaviour of the function itself, in a suitable sense. For this reason, we propose various notions of locality:

Definition 2.6 (Locality) Let (X,d,m) be a metric measure space. Fix $p \in (1,\infty)$. Then we define five notions of locality for D-structures on (X,d,m):

L1 If $B \subseteq X$ is Borel and $u \in S^p(X)$ is m-a.e. constant in B, then $E_p(u|B) = 0$.

L2 If $B \subseteq X$ is Borel and $u \in S^p(X)$ is m-a.e. constant in B, then $Du = 0$ m-a.e. in B.

L3 If $u \in S^p(X)$ and $g \in D[u]$, then $\chi_{\{u>0\}} g \in D[u^+]$.

L4 If $u \in S^p(X)$ and $g_1, g_2 \in D[u]$, then $\min\{g_1, g_2\} \in D[u]$.

L5 If $u \in S^p(X)$ then $Du \leq g$ holds m-a.e. in X for every $g \in D[u]$.

Remark 2.7 In the language of [6, Definition 1.11], the properties L1 and L3 correspond to locality and strict locality, respectively.

We now discuss the relations among the several notions of locality:

Proposition 2.8 Let (X,d,m) be a metric measure space. Let $p \in (1,\infty)$. Fix a D-structure on (X,d,m). Then the following implications hold:

\[
\begin{align*}
L3 & \implies L2 \implies L1, \\
L4 & \iff L5 \\
L1 + L5 & \implies L2 + L3.
\end{align*}
\]

Proof.

L2 \implies L1. Simply notice that $E_p(u|B) \leq \int_B (Du)^p \, dm = 0$.

\textbf{L3} \implies \textbf{L2}. Take a constant \(c \in \mathbb{R} \) such that the equality \(u = c \) holds \(m \)-a.e. in \(B \). Given that \(D u \in D[u - c] \cap D[c - u] \) by axiom \textbf{A2} and Remark 2.2, we deduce from \textbf{L3} that

\[
\chi_{\{u > c\}} D u \in D[(u - c)^+], \\
\chi_{\{u < c\}} D u \in D[(c - u)^+].
\]

Given that \(u - c = (u - c)^+ - (c - u)^+ \), by applying again axiom \textbf{A2} we see that

\[
\chi_{\{u \neq c\}} D u = \chi_{\{u > c\}} D u + \chi_{\{u < c\}} D u \in D[u - c] = D[u].
\]

Hence the minimality of \(D u \) grants that

\[
\int_X (D u)^p \, dm \leq \int_{\{u \neq c\}} (D u)^p \, dm,
\]

which implies that \(D u = 0 \) holds \(m \)-a.e. in \(\{u = c\} \), thus also \(m \)-a.e. in \(B \). This means that the \(D \)-structure satisfies the property \textbf{L2}, as required.

\textbf{L4} \implies \textbf{L5}. We argue by contradiction: suppose the existence of \(u \in S^p(X) \) and \(g \in D[u] \) such that \(m(\{D u > g\}) > 0 \), whence \(h := \min\{D u, g\} \in L^p(m) \) satisfies \(\int h^p \, dm < \int (D u)^p \, dm \). Since \(h \in D[u] \) by \textbf{L4}, we deduce that \(\epsilon_p(u) < \int (D u)^p \, dm \), getting a contradiction.

\textbf{L5} \implies \textbf{L4}. Since \(D u \leq g_1 \) and \(D u \leq g_2 \) hold \(m \)-a.e., we see that \(D u \leq \min\{g_1, g_2\} \) holds \(m \)-a.e. as well. Therefore \(\min\{g_1, g_2\} \in D[u] \) by \textbf{A2}.

\textbf{L1} + \textbf{L5} \implies \textbf{L2} + \textbf{L3}. Property \textbf{L1} grants the existence of \((g_n)_n \subseteq D[u] \) with \(\int_B (g_n)^p \, dm \to 0 \). Hence \textbf{L5} tells us that \(\int_B (D u)^p \, dm \leq \lim_n \int_B (g_n)^p \, dm = 0 \), which implies that \(D u = 0 \) holds \(m \)-a.e. in \(B \), yielding \textbf{L2}. We now prove the validity of \textbf{L3}: it holds that \(D[u] \subseteq D[u^+] \), because we know that \(h = \max\{h, 0\} \in D[\max\{u, 0\}] = D[u^+] \) for every \(h \in D[u] \) by \textbf{A4} and \(0 \in D[0] \), in particular \(u^+ \in S^p(X) \). Given that \(u^+ = 0 \) \(m \)-a.e. in the set \(\{u \leq 0\} \), one has that \(D u^+ = 0 \) holds \(m \)-a.e. in \(\{u \leq 0\} \) by \textbf{L2}. Hence for any \(g \in D[u] \) we have \(D u^+ \leq \chi_{\{u > 0\}} g \) by \textbf{L5}, which implies that \(\chi_{\{u > 0\}} g \in D[u^+] \) by \textbf{A2}. Therefore \textbf{L3} is proved.

\textbf{Definition 2.9 (Pointwise local)} Let \((X, d, m)\) be a metric measure space and \(p \in (1, \infty) \). Then a \(D \)-structure on \((X, d, m)\) is said to be pointwise local provided it satisfies \textbf{L1} and \textbf{L5} (thus also \textbf{L2}, \textbf{L3} and \textbf{L4} by Proposition 2.8).

We now recall other two notions of locality for \(D \)-structures that appeared in the literature:

\textbf{Definition 2.10 (Strong locality)} Let \((X, d, m)\) be a metric measure space and \(p \in (1, \infty) \). Consider a \(D \)-structure on \((X, d, m)\). Then we give the following definitions:

\begin{enumerate}
 \item[i)] We say that \(D \) is strongly local in the sense of Timoshin provided
 \[
 \chi_{\{u_1 < u_2\}} g_1 + \chi_{\{u_2 < u_1\}} g_2 + \chi_{\{u_1 = u_2\}} (g_1 \wedge g_2) \in D[u_1 \wedge u_2]
 \] \hspace{1cm} (2.6)
 whenever \(u_1, u_2 \in S^p(X), g_1 \in D[u_1] \) and \(g_2 \in D[u_2] \).
\end{enumerate}
ii) We say that D is strongly local in the sense of Shanmugalingam provided
\[
\chi_B g_1 + \chi_{X\setminus B} g_2 \in D[u_2] \quad \text{for every } g_1 \in D[u_1] \text{ and } g_2 \in D[u_2]
\] (2.7)
whenever $u_1, u_2 \in S^p(X)$ satisfy $u_1 = u_2$ m.a.e. on some Borel set $B \subseteq X$.

The above two notions of strong locality have been proposed in [11] and [10], respectively. We now prove that they are actually both equivalent to our pointwise locality property:

Lemma 2.11 Let (X, d, m) be a metric measure space and $p \in (1, \infty)$. Fix any D-structure on (X, d, m). Then the following are equivalent:

i) D is pointwise local.

ii) D is strongly local in the sense of Shanmugalingam.

iii) D is strongly local in the sense of Timoshin.

Proof.

i) \implies ii) Fix $u_1, u_2 \in S^p(X)$ such that $u_1 = u_2$ m.a.e. on some $E \subseteq X$ Borel. Pick $g_1 \in D[u_1]$ and $g_2 \in D[u_2]$. Observe that $D(u_2 - u_1) + g_1 \in D[(u_2 - u_1) + u_1] = D[u_2]$ by A2, so that we have $(D(u_2 - u_1) + g_1) \land g_2 \in D[u_2]$ by L4. Since $D(u_2 - u_1) = 0$ m.a.e. on B by L2, we see that $\chi_B g_1 + \chi_{X\setminus B} g_2 \geq (D(u_2 - u_1) + g_1) \land g_2$ holds m.a.e. in X, whence accordingly we conclude that $\chi_B g_1 + \chi_{X\setminus B} g_2 \in D[u_2]$ by A2. This shows the validity of ii).

ii) \implies i) First of all, let us prove L1. Let $u \in S^p(X)$ and $c \in \mathbb{R}$ satisfy $u = c$ m.a.e. on some Borel set $B \subseteq X$. Given any $g \in D[u]$, we deduce from ii) that $\chi_{X\setminus B} g \in D[u]$, thus accordingly $\mathcal{E}_p(u|B) \leq \int_B (\chi_{X\setminus B} g)^p \, dm = 0$. This proves the property L1.

To show property L4, fix $u \in S^p(X)$ and $g_1, g_2 \in D[u]$. Let us denote $B := \{g_1 \leq g_2\}$. Therefore ii) grants that $g_1 \land g_2 = \chi_B g_1 + \chi_{X\setminus B} g_2 \in D[u]$, thus obtaining L4. By recalling Proposition 2.8, we conclude that D is pointwise local.

i) + ii) \implies iii) Fix $u_1, u_2 \in S^p(X)$, $g_1 \in D[u_1]$ and $g_2 \in D[u_2]$. Recall that $g_1 \lor g_2 \in D[u_1 \land u_2]$ by axiom A4. Hence by using property ii) twice we obtain that
\[
\chi_{\{u_1 \leq u_2\}} g_1 + \chi_{\{u_1 > u_2\}} (g_1 \lor g_2) \in D[u_1 \land u_2],
\]
\[
\chi_{\{u_2 \leq u_1\}} g_2 + \chi_{\{u_2 > u_1\}} (g_1 \lor g_2) \in D[u_1 \land u_2].
\] (2.8)

The pointwise minimum between the two functions that are written in (2.8) – namely given by $\chi_{\{u_1 < u_2\}} g_1 + \chi_{\{u_2 < u_1\}} g_2 + \chi_{\{u_1 = u_2\}} (g_1 \land g_2)$ – belongs to the class $D[u_1 \land u_2]$ as well by property L4, thus showing iii).

iii) \implies i) First of all, let us prove L1. Fix a function $u \in S^p(X)$ that is m.a.e. equal to some constant $c \in \mathbb{R}$ on a Borel set $B \subseteq X$. By using iii) and the fact that $0 \in D[0]$, we have that
\[
\chi_{\{u < c\}} g \in D[(u - c) \land 0] = D[0] = D[(u - c)^+],
\]
\[
\chi_{\{u > c\}} g \in D[(c - u) \land 0] = D[0] = D[(c - u)^+].
\] (2.9)
Since \(u - c = (u - c)^+ - (c - u)^+ \), we know from A2 and (2.9) that
\[
\chi_{\{u\neq c\}} g = \chi_{\{u<c\}} g + \chi_{\{u>c\}} g \in D[u-c] = D[u],
\]
whence \(\mathcal{E}_p(u|B) \leq \int_B (\chi_{\{u\neq c\}} g)^p \, dm = 0 \). This proves the property L1.

To show property \(\text{L4} \), fix \(u \in S^p(X) \) and \(g_1, g_2 \in D[u] \). Hence (2.6) with \(u_1 = u_2 = u \) simply reads as \(g_1 \land g_2 \in D[u] \), which gives L4. This proves that \(D \) is pointwise local. \(\square \)

Remark 2.12 (L1 does not imply L2) In general, as we are going to show in the following example, it can happen that a \(D \)-structure satisfies L1 but not L2.

Let \(G = (V, E) \) be a locally finite connected graph. The distance \(d(x, y) \) between two vertices \(x, y \in V \) is defined as the minimum length of a path joining \(x \) to \(y \), while as a reference measure \(m \) on \(V \) we choose the counting measure. Notice that any function \(u : V \to \mathbb{R} \) is locally Lipschitz and that any bounded subset of \(V \) is finite. We define a \(D \)-structure on the metric measure space \((V, d, m) \) in the following way:
\[
D[u] := \left\{ g : V \to [0, +\infty) \mid |u(x) - u(y)| \leq g(x) + g(y) \text{ for any } x, y \in V \text{ with } x \sim y \right\} \tag{2.10}
\]
for every \(u : V \to \mathbb{R} \), where the notation \(x \sim y \) indicates that \(x \) and \(y \) are adjacent vertices, i.e. that there exists an edge in \(E \) joining \(x \) to \(y \).

We claim that \(D \) fulfills L1. To prove it, suppose that some function \(u : X \to \mathbb{R} \) is constant on some set \(B \subseteq V \), say \(u(x) = c \) for every \(x \in B \). Define the function \(g : V \to [0, +\infty) \) as
\[
g(x) := \begin{cases} 0 & \text{if } x \in B, \\ |c| + |u(x)| & \text{if } x \in V \setminus B. \end{cases}
\]
Hence \(g \in D[u] \) and \(\int_B g^p \, dm = 0 \), so that \(\mathcal{E}_p(u|B) = 0 \). This proves the validity of L1.

On the other hand, if \(V \) contains more than one vertex, then L2 is not satisfied. Indeed, consider any non-constant function \(u : V \to \mathbb{R} \). Clearly any pseudo-gradient \(g \in D[u] \) of \(u \) is not identically zero, thus there exists \(x \in V \) such that \(Du(x) > 0 \). Since \(u \) is trivially constant on the set \(\{x\} \), we then conclude that property L2 does not hold. \(\blacksquare \)

Hereafter, we shall focus our attention on the pointwise local \(D \)-structures. Under these locality assumptions, one can show the following calculus rules for minimal pseudo-gradients, whose proof is suitably adapted from analogous results that have been proved in [2].

Proposition 2.13 (Calculus rules for \(Du \)) Let \((X, d, m) \) be a metric measure space and let \(p \in (1, \infty) \). Consider a pointwise local \(D \)-structure on \((X, d, m) \). Then the following hold:

i) Let \(u \in S^p(X) \) and let \(N \subseteq \mathbb{R} \) be a Borel set with \(L^1(N) = 0 \). Then the equality \(Du = 0 \) holds m-a.e. in \(u^{-1}(N) \).

ii) Chain rule. Let \(u \in S^p(X) \) and \(\varphi \in \text{LIP}(\mathbb{R}) \). Then \(|\varphi'| \circ u Du \in D[\varphi \circ u] \). More precisely, \(\varphi \circ u \in S^p(X) \) and \(D(\varphi \circ u) = |\varphi'| \circ u Du \) holds m-a.e. in \(X \).
iii) **Leibniz rule.** Let \(u, v \in \mathcal{S}^p(X) \cap L^\infty(m) \). Then \(|u| \frac{Dv}{|v|} + |v| \frac{Du}{|u|} \in D[uv] \). In other words, \(uv \in \mathcal{S}^p(X) \cap L^\infty(m) \) and \(D(uv) \leq |u| \frac{Dv}{|v|} + |v| \frac{Du}{|u|} \) holds \(m \)-a.e. in \(X \).

Proof.

Step 1. First, consider \(\varphi \) affine, say \(\varphi(t) = \alpha t + \beta \). Then \(|\varphi'| \circ u Du = |\alpha| Du \in D[\varphi \circ u] \) by Remark 2.2 and A2. Now suppose that the function \(\varphi \) is piecewise affine, i.e. there exists a sequence \((a_k)_{k \in \mathbb{Z}} \subseteq \mathbb{R} \), with \(a_k < a_{k+1} \) for all \(k \in \mathbb{Z} \) and \(a_0 = 0 \), such that each \(\varphi|_{[a_k, a_{k+1}]} \) is an affine function. Let us denote \(A_k := u^{-1}([a_k, a_{k+1}]) \) and \(u_k := (u \vee a_k) \wedge a_{k+1} \) for every index \(k \in \mathbb{Z} \). By combining L3 with the axioms A2 and A5, we can see that \(\chi_{A_k} Du \in D[u_k] \) for every \(k \in \mathbb{Z} \). Called \(\varphi_k : \mathbb{R} \to \mathbb{R} \) that affine function coinciding with \(\varphi \) on \([a_k, a_{k+1}]\), we deduce from the previous case that \(|\varphi'_k| \circ u_k Du_k \in D[\varphi_k \circ u_k] = D[\varphi \circ u_k] \), whence we have that \(|\varphi'| \circ u_k \chi_{A_k} Du \in D[\varphi \circ u_k] \) by L5, A2 and L2. Let us define \((v_n)_n \subseteq \mathcal{S}^p(X)\) as

\[
v_n := \varphi(0) + \sum_{k=0}^{n} (\varphi \circ u_k - \varphi(k)) + \sum_{k=-n}^{-1} (\varphi \circ u_k - \varphi(k)) \quad \text{for every } n \in \mathbb{N}.
\]

Hence \(g_n := \sum_{k=-n}^{n} |\varphi'| \circ u_k \chi_{A_k} Du \in D[v_n] \) for all \(n \in \mathbb{N} \) by A2 and Remark 2.2. Given that there exists \(\psi \in \mathcal{S}^p(X) \cap L^p(m) \) and \(g_n \to |\varphi'| \circ u Du \) in \(L^p(m) \) as \(n \to \infty \), we finally conclude that \(|\varphi'| \circ u Du \in D[\varphi \circ u] \), as required.

Step 2. We aim to prove the chain rule for \(\varphi \in C^1(\mathbb{R}) \cap \text{LIP(} \mathbb{R}) \). For any \(n \in \mathbb{N} \), let us denote by \(\varphi_n \) the piecewise affine function interpolating the points \((k/2^n, \varphi(k/2^n))\) with \(k \in \mathbb{Z} \). We call \(D \subseteq \mathbb{R} \) the countable set \(\{k/2^n : k \in \mathbb{Z}, n \in \mathbb{N}\} \). Therefore \(\varphi_n \) uniformly converges to \(\varphi \) and \(\varphi_n(t) \to \varphi(t) \) for all \(t \in \mathbb{R} \setminus D \). In particular, the functions \(g_n := |\varphi'_n| \circ u Du \) converge \(m \)-a.e. to \(|\varphi'| \circ u Du \) by L2. Moreover, \(\text{Lip}(\varphi_n) \leq \text{Lip}(\varphi) \) for every \(n \in \mathbb{N} \) by construction, so that \((g_n)_n \) is a bounded sequence in \(L^p(m) \). This implies that (up to a not relabeled subsequence) \(g_n \to |\varphi'| \circ u Du \) weakly in \(L^p(m) \). Now apply Mazur lemma: for any \(n \in \mathbb{N} \), there exists \((\alpha_i^j)_{i,j} \subseteq [0,1] \) such that \(\sum_{i=1}^{N_n} \alpha_i^j = 1 \) and \(h_n := \sum_{i=1}^{N_n} \alpha_i^j g_n \to |\varphi'| \circ u Du \) strongly in \(L^p(m) \). Given that \(g_n \in D[\varphi_n \circ u] \) for every \(n \in \mathbb{N} \) by Step 1, we deduce from axiom A2 that \(h_n \in D[\psi_n \circ u] \) for every \(n \in \mathbb{N} \), where \(\psi_n := \sum_{i=1}^{N_n} \alpha_i^j \varphi_i \). Finally, it clearly holds that \(\psi_n \circ u \to \varphi \circ u \) in \(L^p(\mu) \), whence \(|\varphi'| \circ u Du \in D[\varphi \circ u] \) by A5.

Step 3. We claim that

\[
Du = 0 \quad m \text{-a.e. in } u^{-1}(K), \quad \text{for every } K \subseteq \mathbb{R} \text{ compact with } L^1(K) = 0. \tag{2.11}
\]

For any \(n \in \mathbb{N} \setminus \{0\} \), define \(\psi_n := n d(\cdot, K) \wedge 1 \) and denote by \(\varphi_n \) the primitive of \(\psi_n \) such that \(\varphi_n(0) = 0 \). Since each \(\psi_n \) is continuous and bounded, any function \(\varphi_n \) is of class \(C^1 \) and Lipschitz. By applying the dominated convergence theorem we see that the \(L^1 \)-measure of the \(\varepsilon \)-neighbourhood of \(K \) converges to 0 as \(\varepsilon \downarrow 0 \), thus accordingly \(\varphi_n \) uniformly converges to \(\text{id}_K \) as \(n \to \infty \). This implies that \(\varphi_n \circ u \to u \) in \(L^p(m) \). Moreover, we know from Step 2 that \(|\psi_n| \circ u Du \in D[\varphi_n \circ u] \), thus also \(\chi_{X \setminus u^{-1}(K)} Du \in D[\varphi_n \circ u] \). Hence \(\chi_{X \setminus u^{-1}(K)} Du \in D[u] \) by A5, which forces the equality \(Du = 0 \) to hold \(m \)-a.e. in \(u^{-1}(K) \), proving (2.11).

Step 4. We are in a position to prove i). Choose any \(m' \in \mathcal{S}(X) \) such that \(m \ll m' \ll m \) and call \(\mu := u_{\ast} m' \). Then \(\mu \) is a Radon measure on \(\mathbb{R} \), in particular it is inner regular. We can thus
find an increasing sequence of compact sets $K_n \subseteq N$ such that $\mu(N \setminus \bigcup_n K_n) = 0$. We already know from Step 3 that $Du = 0$ holds m-a.e. in $\bigcup_n u^{-1}(K_n)$. Since $u^{-1}(N) \setminus \bigcup_n u^{-1}(K_n)$ is m-negligible by definition of μ, we conclude that $Du = 0$ holds m-a.e. in $u^{-1}(N)$. This shows the validity of property i).

STEP 5. We now prove ii). Let us fix $\varphi \in \text{LIP}(\mathbb{R})$. Choose some convolution kernels $(\rho_n)_n$ and define $\varphi_n := \varphi * \rho_n$ for all $n \in \mathbb{N}$. Then $\varphi_n \to \varphi$ uniformly and $\varphi'_n \to \varphi'$ pointwise \mathcal{L}^1-a.e., whence accordingly $\varphi_n \circ u \to \varphi \circ u$ in $L^1_{\text{loc}}(m)$ and $|\varphi'_n| \circ u Du \to |\varphi'| \circ u Du$ pointwise m-a.e. in X. Since $|\varphi'_n| \circ u Du \leq \text{Lip}(\varphi) Du$ for all $n \in \mathbb{N}$, there exists a (not relabeled) subsequence such that $|\varphi'_n| \circ u Du \rightharpoonup |\varphi'| \circ u Du$ weakly in $L^p(m)$. We know that $|\varphi'_n| \circ u Du \in D[\varphi_n \circ u]$ for all $n \in \mathbb{N}$ because the chain rule holds for all $\varphi_n \in C^1(\mathbb{R}) \cap \text{LIP}(\mathbb{R})$, hence by combining Mazur lemma and A5 as in Step 2 we obtain that $|\varphi'| \circ u Du \in D[\varphi \circ u]$, so that $\varphi \circ u \in \mathcal{S}^p(X)$ and the inequality $Du(\varphi \circ u) \leq |\varphi'| \circ u Du$ holds m-a.e. in X.

STEP 6. We conclude the proof of ii) by showing that one actually has $Du(\varphi \circ u) = |\varphi'| \circ u Du$. We can suppose without loss of generality that $\text{Lip}(\varphi) = 1$. Let us define the functions $\psi_\pm(t) := \pm t - \varphi(t)$ for all $t \in \mathbb{R}$. Then it holds m-a.e. in $u^{-1}(\{\pm \varphi' \geq 0\})$ that

$$Du = D(\pm u) \leq D(\varphi \circ u) + D(\psi \circ u) \leq (|\varphi'| \circ u + |\psi| \circ u) Du = Du,$$

which forces the equality $Du(\varphi \circ u) = \pm \varphi' \circ u Du$ to hold m-a.e. in the set $u^{-1}(\{\pm \varphi' \geq 0\})$. This grants the validity of $Du(\varphi \circ u) = |\varphi'| \circ u Du$, thus completing the proof of item ii).

STEP 7. We consider the case in which $u, v \geq c$ is satisfied m-a.e. in X, for some $c > 0$. Call $\varepsilon := \min\{c, c^2\}$ and note that the function log is Lipschitz on the interval $[\varepsilon, +\infty)$, then choose any Lipschitz function $\varphi : \mathbb{R} \to \mathbb{R}$ that coincides with log on $[\varepsilon, +\infty)$. Now call C the constant $\|uv\|_{L^\infty(m)}$ and choose a Lipschitz function $\psi : \mathbb{R} \to \mathbb{R}$ such that $\psi = \exp$ on the interval $[\log \varepsilon, C]$. By applying twice the chain rule ii), we thus deduce that $uv \in \mathcal{S}^p(X)$ and the m-a.e. inequalities

$$Du(uv) \leq |\psi| \circ u Du(uv) \leq |uv| (Du du + Du log v) = |uv| (\frac{Dv}{|v|} + \frac{Du}{|u|}) = |u| Du + |v| Du.$$

Therefore the Leibniz rule iii) is verified under the additional assumption that $u, v \geq c > 0$.

STEP 8. We conclude by proving item iii) for general $u, v \in \mathcal{S}^p(X) \cap L^\infty(m)$. Given any $n \in \mathbb{N}$ and $k \in \mathbb{Z}$, let us denote $I_{n,k} := [k/n, (k + 1)/n)$. Call $\varphi_{n,k} : \mathbb{R} \to \mathbb{R}$ the continuous function that is the identity on $I_{n,k}$ and constant elsewhere. For any $n \in \mathbb{N}$, let us define

$$u_{n,k} := u - \frac{k - 1}{n}, \quad \tilde{u}_{n,k} := \varphi_{n,k} \circ u - \frac{k - 1}{n} \quad \text{for all } k \in \mathbb{Z},$$

$$v_{n,\ell} := v - \frac{\ell - 1}{n}, \quad \tilde{v}_{n,\ell} := \varphi_{n,\ell} \circ v - \frac{\ell - 1}{n} \quad \text{for all } \ell \in \mathbb{Z}.$$

Notice that the equalities $u_{n,k} = \tilde{u}_{n,k}$ and $v_{n,\ell} = \tilde{v}_{n,\ell}$ hold m-a.e. in $u^{-1}(I_{n,k})$ and $v^{-1}(I_{n,\ell})$, respectively. Hence $Du_{n,k} = D\tilde{u}_{n,k} = Du$ and $Dv_{n,\ell} = D\tilde{v}_{n,\ell} = Dv$ hold m-a.e. in $u^{-1}(I_{n,k})$ and $v^{-1}(I_{n,\ell})$, respectively, but we also have that

$$Du_{n,k}v_{n,\ell} = D(\tilde{u}_{n,k} \tilde{v}_{n,\ell}) \quad \text{is verified m-a.e. in } u^{-1}(I_{n,k}) \cap v^{-1}(I_{n,\ell}).$$
Moreover, we have the m-a.e. inequalities $1/n \leq \tilde{u}_{n,k}, \tilde{v}_{n,\ell} \leq 2/n$ by construction. Therefore for any $k, \ell \in \mathbb{Z}$ it holds m-a.e. in $u^{-1}(I_{n,k}) \cap v^{-1}(I_{n,\ell})$ that

$$D(uv) \leq D(\tilde{u}_{n,k} \tilde{v}_{n,\ell}) + \frac{|k-1|}{n} D\tilde{v}_{n,\ell} + \frac{|\ell-1|}{n} D\tilde{u}_{n,k}$$

$$\leq |\tilde{v}_{n,\ell}| D\tilde{u}_{n,k} + |\tilde{u}_{n,k}| D\tilde{v}_{n,\ell} + \frac{|k-1|}{n} Dv_{n,\ell} + \frac{|\ell-1|}{n} Du_{n,k}$$

$$\leq \left(|v| + \frac{4}{n}\right) Du + \left(|u| + \frac{4}{n}\right) Dv,$$

where the second inequality follows from the case $u, v \geq c > 0$, treated in STEP 7. This implies that the inequality $D(uv) \leq |u| Dv + |v| Du + 4(Du + Dv)/n$ holds m-a.e. in X. Given that $n \in \mathbb{N}$ is arbitrary, the Leibniz rule iii) follows.

\[\square\]

3 Cotangent module associated to a D-structure

It is shown in [4] that any metric measure space possesses a first-order differential structure, whose construction relies upon the notion of $L^p(m)$-normed $L^\infty(m)$-module. For completeness, we briefly recall its definition and we refer to [4,5] for a comprehensive exposition of this topic.

Definition 3.1 (Normed module) Let (X, d, m) be a metric measure space and $p \in [1, \infty)$. Then an $L^p(m)$-normed $L^\infty(m)$-module is any quadruplet $(\mathcal{M}, \| \cdot \|_\mathcal{M}, \cdot, | \cdot |)$ such that

i) $(\mathcal{M}, \| \cdot \|_\mathcal{M})$ is a Banach space,

ii) (\mathcal{M}, \cdot) is an algebraic module over the commutative ring $L^\infty(m)$,

iii) the pointwise norm operator $| \cdot | : \mathcal{M} \to L^p(m)^+$ satisfies

$$|f \cdot v| = |f| |v| \text{ m-a.e. for every } f \in L^\infty(m) \text{ and } v \in \mathcal{M},$$

$$\|v\|_\mathcal{M} = \|v\|_{L^p(m)} \text{ for every } v \in \mathcal{M}. \quad (3.1)$$

A key role in [4] is played by the cotangent module $L^2(T^*X)$, which has a structure of $L^2(m)$-normed $L^\infty(m)$-module; see [5] Theorem/Definition 1.8] for its characterisation. The following result shows that a generalised version of such object can be actually associated to any D-structure, provided the latter is assumed to be pointwise local.

Theorem 3.2 (Cotangent module associated to a D-structure) Let (X, d, m) be any metric measure space and let $p \in (1, \infty)$. Consider a pointwise local D-structure on (X, d, m). Then there exists a unique couple $(L^p(T^*X; D), d)$, where $L^p(T^*X; D)$ is an $L^p(m)$-normed $L^\infty(m)$-module and $d : S^p(X) \to L^p(T^*X; D)$ is a linear map, such that the following hold:

i) the equality $|du| = Du$ is satisfied m-a.e. in X for every $u \in S^p(X)$,

ii) the vector space \mathcal{V} of all elements of the form $\sum_{i=1}^n X_{B_i} du_i$, where $(B_i)_i$ is a Borel partition of X and $(u_i)_i \subseteq S^p(X)$, is dense in the space $L^p(T^*X; D)$.

Consider any element \(\varphi \), first of all, let us define the grants that \(\Phi \) is well-defined, in the sense that it does not depend on the particular way of representing \(\varphi \), and that \(\Phi : V \to M \) preserves the pointwise norm. In particular, one has that the map \(\Phi : V \to M \) is (linear and) continuous. Since \(V \) is dense in \(L^p(T^*X; D) \), we can uniquely extend \(\Phi \) to a linear and continuous map \(\Phi : L^p(T^*X; D) \to M \), which also preserves the pointwise norm. Moreover, we deduce from the very definition of \(\Phi \) that the identity \(\Phi(h \varphi) = h \Phi(\varphi) \) holds for every \(\varphi \in V \) and \(h \in S^f(X) \), whence the \(L^p(M) \)-linearity of \(\Phi \) follows by an approximation argument. Finally, the image \(\Phi(V) \) is dense in \(M \), which implies that \(\Phi \) is surjective. Therefore \(\Phi \) is the unique isomorphism satisfying \(\Phi \circ \mathcal{D} = \mathcal{D}' \).

Uniqueness. Consider any element \(\varphi \in V \) written as \(\varphi = \sum_{i=1}^n \chi_{B_i} \, du_i \), with \((B_i)_i \) Borel partition of \(X \) and \(u_1, \ldots, u_n \in S^p(X) \). Notice that the requirements that \(\Phi \) is \(L^\infty(M) \)-linear and \(\Phi \circ \mathcal{D} = \mathcal{D}' \) force the definition \(\Phi(\varphi) := \sum_{i=1}^n \chi_{B_i} \, d' u_i \). The \(M \)-a.e. equality

\[
|\Phi(\varphi)| = \sum_{i=1}^n \chi_{B_i} |d' u_i| = \sum_{i=1}^n \chi_{B_i} \mathcal{D} u_i = \sum_{i=1}^n \chi_{B_i} |du_i| = |\varphi|
\]

grants that \(\Phi(\varphi) \) is well-defined, in the sense that it does not depend on the particular way of representing \(\varphi \), and that \(\Phi : V \to M \) preserves the pointwise norm. In particular, one has that the map \(\Phi : V \to M \) is (linear and) continuous. Since \(V \) is dense in \(L^p(T^*X; D) \), we can uniquely extend \(\Phi \) to a linear and continuous map \(\Phi : L^p(T^*X; D) \to M \), which also preserves the pointwise norm. Moreover, we deduce from the very definition of \(\Phi \) that the identity \(\Phi(h \varphi) = h \Phi(\varphi) \) holds for every \(\varphi \in V \) and \(h \in S^f(X) \), whence the \(L^p(M) \)-linearity of \(\Phi \) follows by an approximation argument. Finally, the image \(\Phi(V) \) is dense in \(M \), which implies that \(\Phi \) is surjective. Therefore \(\Phi \) is the unique isomorphism satisfying \(\Phi \circ \mathcal{D} = \mathcal{D}' \).

Existence. First of all, let us define the pre-cotangent module as

\[
P_{cm} := \left\{ \left\{ (B_i, u_i) \right\}_{i=1}^n \left| n \in \mathbb{N}, u_1, \ldots, u_n \in S^p(X), (B_i)_{i=1}^n \text{ Borel partition of } X \right. \right\}.
\]

We define an equivalence relation on \(P_{cm} \) as follows: we declare that \(\left\{ (B_i, u_i) \right\}_i \sim \left\{ (C_j, v_j) \right\}_j \) provided \(\mathcal{D}(u_i - v_j) = 0 \) holds \(M \)-a.e. on \(B_i \cap C_j \) for every \(i, j \). The equivalence class of an element \(\left\{ (B_i, u_i) \right\}_i \) of \(P_{cm} \) will be denoted by \([B_i, u_i]_i \). We can endow the quotient \(P_{cm}/\sim \) with a vector space structure:

\[
[B_i, u_i] + [C_j, v_j] := [B_i \cap C_j, u_i + v_j], \quad \lambda [B_i, u_i] := [B_i, \lambda u_i],
\]

for every \([B_i, u_i], [C_j, v_j] \in P_{cm}/\sim \) and \(\lambda \in \mathbb{R} \). We only check that the sum operator is well-defined; the proof of the well-posedness of the multiplication by scalars follows along the same lines. Suppose that \(\left\{ (B_i, u_i) \right\}_i \sim \left\{ (B'_k, u'_k) \right\}_k \) and \(\left\{ (C_j, v_j) \right\}_j \sim \left\{ (C'_\ell, v'_\ell) \right\}_\ell \), in other words \(\mathcal{D}(u_i - u'_k) = 0 \) \(M \)-a.e. on \(B_i \cap B'_k \) and \(\mathcal{D}(v_j - v'_\ell) = 0 \) \(M \)-a.e. on \(C_j \cap C'_\ell \) for every \(i, j, k, \ell \), whence accordingly

\[
\mathcal{D}((u_i + v_j) - (u'_k + v'_\ell)) \leq \mathcal{D}(u_i - u'_k) + \mathcal{D}(v_j - v'_\ell) = 0 \quad \text{holds } M \text{-a.e. on } (B_i \cap C_j) \cap (B'_k \cap C'_\ell).
\]

This shows that \(\left\{ (B_i \cap C_j, u_i + v_j) \right\}_i \sim \left\{ (B'_k \cap C'_\ell, u'_k + v'_\ell) \right\}_k \), thus proving that the sum operator defined in (3.2) is well-posed. Now let us define

\[
\| [B_i, u_i] \|_{L^p(T^*X; D)} := \left(\sum_{i=1}^n \left(\int_{B_i} |\mathcal{D} u_i|^p \, dm \right) \right)^{1/p} \quad \text{for every } [B_i, u_i] \in P_{cm}/\sim.
\]
Such definition is well-posed: if \(\{(B_i, u_i)\}_i \sim \{(C_j, v_j)\}_j \) then for all \(i, j \) it holds that

\[
|D_{u_i} - D_{v_j}|_1^5 \leq D(u_i - v_j) = 0 \quad \text{m.a.e. on } B_i \cap C_j,
\]

i.e. that the equality \(D_{u_i} = D_{v_j} \) is satisfied m.a.e. on \(B_i \cap C_j \). Therefore one has that

\[
\sum_i \left(\int_{B_i} (D_{u_i})^p \, dm \right)^{1/p} = \sum_{i, j} \left(\int_{B_i \cap C_j} (D_{u_i})^p \, dm \right)^{1/p} = \sum_{i, j} \left(\int_{B_i \cap C_j} (D_{v_j})^p \, dm \right)^{1/p}
\]

which grants that \(\| \cdot \|_{L^p(T^*X; D)} \) in (3.3) is well-defined. The fact that it is a norm on \(Pcm/\sim \) easily follows from standard verifications. Hence let us define

\[
L^p(T^*X; D) := \text{completion of } (Pcm/\sim, \| \cdot \|_{L^p(T^*X; D)}),
\]

\[
d : S^p(X) \to L^p(T^*X; D), \quad du := [X, u] \text{ for every } u \in S^p(X).
\]

Observe that \(L^p(T^*X; D) \) is a Banach space and that \(d \) is a linear operator. Furthermore, given any \([B_i, u_i]_i \in Pcm/\sim \) and \(h = \sum_j \lambda_j x_{C_j} \in Sf(X) \), where \((\lambda_j)_j \subseteq \mathbb{R} \) and \((C_j)_j \) is a Borel partition of \(X \), we set

\[
[[B_i, u_i]]_i := \sum_i x_{B_i} D_{u_i},
\]

\[
h[B_i, u_i]_i := [B_i \cap C_j, \lambda_j u_i]_{i, j}.
\]

One can readily prove that such operations, which are well-posed again by the pointwise locality of \(D \), can be uniquely extended to a pointwise norm \(\| \cdot \| : L^p(T^*X; D) \to L^p(m)^+ \) and to a multiplication by \(L^\infty \)-functions \(L^\infty(m) \times L^p(T^*X; D) \to L^p(T^*X; D) \), respectively. Therefore the space \(L^p(T^*X; D) \) turns out to be an \(L^p(m) \)-normed \(L^\infty(m) \)-module when equipped with the operations described so far. In order to conclude, it suffices to notice that

\[
|du| = [[X, u]] = D_u \quad \text{holds m.a.e. for every } u \in S^p(X)
\]

and that \([B_i, u_i]_i = \sum_i x_{B_i} du_i \) for all \([B_i, u_i]_i \in Pcm/\sim \), giving i) and ii), respectively. \(\square \)

In full analogy with the properties of the cotangent module that is studied in [4], we can show that the differential \(d \) introduced in Theorem 3.2 is a closed operator, which satisfies both the chain rule and the Leibniz rule.

Theorem 3.3 (Closure of the differential) Let \((X, d, m) \) be a metric measure space and let \(p \in (1, \infty) \). Consider a pointwise local \(D \)-structure on \((X, d, m) \). Then the differential operator \(d \) is closed, i.e. if a sequence \((u_n)_n \subseteq S^p(X) \) converges in \(L^p_{loc}(m) \) to some \(u \in L^p_{loc}(m) \) and \(du_n \rightharpoonup \omega \) weakly in \(L^p(T^*X; D) \) for some \(\omega \in L^p(T^*X; D) \), then \(u \in S^p(X) \) and \(du = \omega \).
Proof. Since d is linear, we can assume with no loss of generality that $du_n \to \omega$ in $L^p(T^*X; D)$ by Mazur lemma, so that $d(u_n - u_m) \to \omega - du_m$ in $L^p(T^*X; D)$ for any $m \in \mathbb{N}$. In particular, one has $u_n - u_m \to u - u_m$ in $L^p_T(m)$ and $D(u_n - u_m) = \|d(u_n - u_m)\| \to |\omega - du_m|$ in $L^p(m)$ as $n \to \infty$ for all $m \in \mathbb{N}$, whence $u - u_m \in S^p(X)$ and $D(u - u_m) \leq |\omega - du_m|$ holds m-a.e. for all $m \in \mathbb{N}$ by A5 and L5. Therefore $u = (u - u_0) + u_0 \in S^p(X)$ and

$$\lim_{m \to \infty} \|du - du_m\|_{L^p(T^*X; D)} = \lim_{m \to \infty} \|D(u - u_m)\|_{L^p(m)} \leq \lim_{m \to \infty} \|\omega - du_m\|_{L^p(T^*X; D)}$$

which grants that $du_m \to du$ in $L^p(T^*X; D)$ as $m \to \infty$ and accordingly that $du = \omega$. \hfill \Box

Proposition 3.4 (Calculus rules for du) Let (X, d, m) be any metric measure space and let $p \in (1, \infty)$. Consider a pointwise local D-structure on (X, d, m). Then the following hold:

i) Let $u \in S^p(X)$ and let $N \subseteq \mathbb{R}$ be a Borel set with $\mathcal{L}^1(N) = 0$. Then $\chi_{u^{-1}(N)} du = 0$.

ii) Chain rule. Let $u \in S^p(X)$ and $\varphi \in \text{LIP}(\mathbb{R})$ be given. Recall that $\varphi \circ u \in S^p(X)$ by Proposition 2.13. Then $d(\varphi \circ u) = \varphi' \circ u du$.

iii) Leibniz rule. Let $u, v \in S^p(X) \cap L^\infty(m)$ be given. Recall that $uv \in S^p(X) \cap L^\infty(m)$ by Proposition 2.13. Then $d(uv) = u dv + v du$.

Proof.

i) We have that $|du| = Du = 0$ holds m-a.e. on $u^{-1}(N)$ by item i) of Proposition 2.13, thus accordingly $\chi_{u^{-1}(N)} du = 0$, as required.

ii) If φ is an affine function, say $\varphi(t) = \alpha t + \beta$, then $d(\varphi \circ u) = d(\alpha u + \beta) = \alpha du = \varphi' \circ u du$. Now suppose that φ is a piecewise affine function. Say that $(I_n)_n$ is a sequence of intervals whose union covers the whole real line \mathbb{R} and that $(\psi_n)_n$ is a sequence of affine functions such that $\varphi|_{I_n} = \psi_n$ holds for every $n \in \mathbb{N}$. Since φ' and ψ'_n coincide \mathcal{L}^1-a.e. in the interior of I_n, we have that $d(\varphi \circ f) = d(\psi_n \circ f) = \psi'_n \circ f df = \varphi' \circ f df$ holds m-a.e. on $f^{-1}(I_n)$ for all n, so that $d(\varphi \circ u) = \varphi' \circ u du$ is verified m-a.e. on $\bigcup_n u^{-1}(I_n) = X$.

To prove the case of a general Lipschitz function $\varphi : \mathbb{R} \to \mathbb{R}$, we want to approximate φ with a sequence of piecewise affine functions: for any $n \in \mathbb{N}$, let us denote by φ_n the function that coincides with φ at $\{k/2^n : k \in \mathbb{Z}\}$ and that is affine on the interval $\left[k/2^n, (k+1)/2^n\right]$ for every $k \in \mathbb{Z}$. It is clear that $\text{Lip}(\varphi_n) \leq \text{Lip}(\varphi)$ for all $n \in \mathbb{N}$. Moreover, one can readily check that, up to a not relabeled subsequence, $\varphi_n \to \varphi$ uniformly on \mathbb{R} and $\varphi'_n \to \varphi'$ pointwise \mathcal{L}^1-almost everywhere. The former grants that $\varphi_n \circ u \to \varphi \circ u$ in $L^p_{loc}(m)$. Given that $|\varphi'_n - \varphi'|^p \circ u (Du)^p \leq 2^p \text{Lip}(\varphi)^p (Du)^p \in L^1(m)$ for all $n \in \mathbb{N}$ and $|\varphi'_n - \varphi'|^p \circ u (Du)^p \to 0$ pointwise m-a.e. by the latter above together with i), we obtain $\int |\varphi'_n - \varphi'|^p \circ u (Du)^p dm \to 0$ as $n \to \infty$ by the dominated convergence theorem. In other words, $\varphi'_n \circ u du \to \varphi' \circ u du$ in the strong topology of $L^p(T^*X; D)$. Hence Theorem 3.3 ensures that $d(\varphi \circ u) = \varphi' \circ u du$, thus proving the chain rule ii) for any $\varphi \in \text{LIP}(\mathbb{R})$.

13
iii) In the case $u, v \geq 1$, we argue as in the proof of Proposition 2.13 to deduce from ii) that
\[
\frac{d(uv)}{uv} = d \log(uv) = d \left(\log(u) + \log(v) \right) = d \log(u) + d \log(v) = \frac{du}{u} + \frac{dv}{v},
\]
whence we get $d(uv) = u \, dv + v \, du$ by multiplying both sides by uv.

In the general case $u, v \in L^\infty(m)$, choose a constant $C > 0$ so big that $u + C, v + C \geq 1$.

By the case treated above, we know that
\[
d((u+C)(v+C)) = (u+C) \, d(v+C) + (v+C) \, d(u+C)
= (u+C) \, dv + (v+C) \, du
= u \, dv + v \, du + C \, d(u+v),
\] (3.4)
while a direct computation yields
\[
d((u+C)(v+C)) = d(\left(uv + C(u+v) + C^2\right) = d(uv) + C \, d(u+v).
\] (3.5)
By subtracting (3.5) from (3.4), we finally obtain that $d(uv) = u \, dv + v \, du$, as required. This completes the proof of the Lebniz rule iii). \(\square\)

Acknowledgements. This research has been supported by the MIUR SIR-grant ‘Nonsmooth Differential Geometry’ (RBSI147UG4).

References

[1] L. Ambrosio, Calculus, heat flow and curvature-dimension bounds in metric measure spaces. Proceedings of the ICM 2018, 2018.
[2] L. Ambrosio, N. Gigli, and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195 (2014), pp. 289–391.
[3] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), pp. 428–517.
[4] N. Gigli, Nonsmooth differential geometry - an approach tailored for spaces with Ricci curvature bounded from below. Accepted at Mem. Amer. Math. Soc. [arXiv:1407.0899] 2014.
[5] ———, Lecture notes on differential calculus on RCD spaces. Preprint, [arXiv:1703.06829] 2017.
[6] V. Gol’dshtein and M. Troyanov, Axiomatic theory of Sobolev spaces, Expositiones Mathematicae, 19 (2001), pp. 289–336.
[7] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Analysis, 5 (1996), pp. 403–415.
[8] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181 (1998), pp. 1–61.
[9] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), pp. 243–279.
[10] ———, A universality property of Sobolev spaces in metric measure spaces, Springer New York, New York, NY, 2009, pp. 345–359.
[11] S. Timoshin, Regularity in metric spaces, (2006). PhD thesis, Ècole polytechnique fédérale de Lausanne, available at: https://infoscience.epfl.ch/record/85799/files/EPFL-TH3571.pdf.
[12] C. Villani, Inégalités isopérimétriques dans les espaces métriques mesurés [d’après F. Cavalletti & A. Mondino]. Séminaire Bourbaki, available at: [http://www.bourbaki.ens.fr/TEXTES/1127.pdf]
[13] ———, Synthetic theory of Ricci curvature bounds, Japanese Journal of Mathematics, 11 (2016), pp. 219–263.