Case Report

Violet discoloration of urine: A case report and a literature review

Muthanna Saraireh *, Sahem Gharaibeh, Mohammad Araydah, Sarah Al Sharie, Fadi Haddad, Arqam Alrababah

Faculty of Medicine, Yarmouk University, Irbid, Jordan

ARTICLE INFO

Keywords:
Purple urine bag syndrome
Urinary catheters
Urinary tract infections
Proteus mirabilis

ABSTRACT

Background: Purple Urine Bag Syndrome (PUBS) is an uncommon event that can be described as purple discoloration of urine due to a series of chemical reactions induced by Urinary Tract Infections (UTIs). PUBS has been reported in the past but still remains unrecognized by healthcare givers leading to misdiagnosis and inappropriate management. We report our case alongside a literature review of previously published cases.

Case presentation: We present the first case report of Purple Urine Bag Syndrome in Jordan of a catheterized 80-year-old wheel-chaired female with a history of type 2 Diabetes Mellitus (DM), stage 5 Chronic Kidney Disease (CDK), Hypertension, and ischemic stroke. Her condition was initially misdiagnosed for hematuria but later on was correctly diagnosed with PUBS. She was treated with a course of appropriate antibiotic and by changing her urinary catheter and bag. The patient returned for a follow up visit and her problem resolved with the color of her urine in the urine bag returning back to normal.

Clinical discussion: PUBS is an uncommon event that occurs in association with UTIs. Such cases are mostly seen in elderly catheterized patients with other risk factors.

Conclusion: Purple Urine Bag Syndrome can be managed by changing urinary catheter, and by the administration of appropriate antibiotics. Such event can be easily misdiagnosed thus leading to unnecessary and consuming measures. Creating a better awareness of this condition among physicians and healthcare givers is essential for better patient outcomes.

1. Background

Purple Urine Bag Syndrome (PUBS) is considered uncommon and unrecognized by many healthcare givers. This may lead to misdiagnosis and inappropriate management [1]. It is characterized by a purple discoloration of urine associated with urinary tract infection (UTI) in patients with urinary catheter tubing connected to a bag caused by a series of chemical reactions leading to the formation of purple colored urine [2–4]. It has been described as a benign phenomenon in some cases [5] but it also has been seen in cases with serious clinical presentation [6]. Here we report a case of an unusual clinical course of PUBS and its diagnosis in the aim of creating a better awareness for healthcare givers, to prevent misdiagnosis or overmanagement and to improve the treatment of such events in the future. To the best of our knowledge, the presented case is the first case of PUBS reported in Jordan. This case report has been reported in line with the SCARE Criteria [7].

2. Case report

An 80-year-old female, known to have type 2 Diabetes Mellitus (DM), stage 5 Chronic Kidney Disease (CDK) on medical therapy, Hypertension (HTN), and history of an ischemic stroke. The patient is wheelchair dependent due to deconditioning and weakness in her lower limbs. As a result of incontinence, an indwelling urinary catheter was placed. The catheter was last replace one month before presentation. She has a history of recurrent urinary tract infections (UTIs). When the patient presented to our clinic for follow-up, it was noticed that the color of urine in the urine bag was purple (Fig. 1). On review of symptoms, she reported having constipation but denied having fever, chills, or abdominal pain. Rest of review of symptoms was insignificant. The patient returned for a follow up visit and her problem resolved with the color of her urine in the urine bag returning back to normal.

* Corresponding author. Yarmouk University, Irbid, Jordan.
E-mail address: msaraireh@yu.edu.jo (M. Saraireh).

https://doi.org/10.1016/j.amsu.2021.102570
Received 28 May 2021; Received in revised form 9 July 2021; Accepted 13 July 2021
Available online 16 July 2021
2049-0801/© 2021 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license
Clavulanic acid, Ceftriaxone, and Ciprofloxacin. Six weeks before presentation she had a urine culture that revealed a heavy growth of Proteus mirabilis sensitive to Amoxicillin/Clavulanic acid, Ceftriaxone, and Ciprofloxacin. Six weeks before presentation she had a urine culture that revealed *Escherichia coli*. Blood tests showed elevated levels of Creatinine 328 μmol/L (normal level 40-80), Urea 30.2 mmol/L (normal level 2.8-8.9), and Phosphate 1.68 mmol/L (normal level 0.84-1.45), other labs were within normal limits. The patient was started on Ciprofloxacin 500 mg one tablet orally every day for 5 days. After a week, she returned for a follow up visit and her problem resolved with the color of her urine in the urine bag returning back to normal. She was advised to change her urinary catheter regularly once a month to lower the risk of developing UTI in the future.

3. Discussion

Purple Urine Bag Syndrome (PUBS) is an uncommon event that occurs in association with Urinary Tract Infections (UTIs) and was first reported by Barlow et al., in 1978 [8]. Such cases are seen in catheterized patients with a prevalence ranging between 8.3% and 42.1% [2, 9].

A literature review of previously published case reports and case series was conducted by applying the keywords (Purple Urine Bag Syndrome) on PubMed. A total number of 160 records were obtained, 66 studies were included, 8 of which were case series. Irrelevant studies, studies that are not in English, and studies without full text available were excluded (Fig. 2). A summary of the literature review is presented in (Table 1). A total number of 87 patients were studied, 40.2% were men, 57.5% were women, and 2.3% their gender was not reported. Median age of patients was 73.8 years. Forty percent of the patients were bedridden.

PUBS occurs when the bacteria causing the UTI metabolizes tryptophan products. The source of these products is the gastrointestinal tract where the normal bacterial flora convert tryptophan to indole. Indole is then absorbed and reaches the liver through the portal circulation. In the liver it is conjugated to produce indoxyl sulfate which is secreted into the urine. In the urine, the phosphatases and sulfatases produced by certain bacteria convert it to indoxyl. Indoxyl is then oxidized to indigo (blue pigment) and indirubin (red pigment). These pigments react with the catheter tubing and the plastic urine bag to give us the purple color of the urine seen in PUBS [3,10,11].

Constipation is one of the risk factors of PUBS. It increases the gastrointestinal bacterial flora that metabolizes tryptophan. Other risk factors also include female gender, increased dietary tryptophan, increased urine alkalinity, severe constipation, chronic catheterization, high urinary bacterial load, and renal failure [12,13]. In our literature review, 32.2% of patients were constipated.

PUBS has been associated with several bacteria, namely: *Escherichia coli*, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus species, Pseudomonas aeruginosa, Providencia stuartii and Providencia rettgeri, Morganella morganii, Citrobacter species, and B streptococci [12,14]. The causative microorganisms of PUBS in our review were summarized in (Table 2). E. Coli was the most common microorganism associated with PUBS accounting for 35.6% of causative microorganisms, followed by mixed bacterial growth in 25.3% of cases.

PUBS can be managed by changing the urinary catheter, and administering appropriate antibiotics [15]. This approach was used in the vast majority of cases with PUBS in our review.

Alteration of urine color can be due to a variety of causes such as poisonous materials, food coloration substances, medications, UTIs, urinary stones, hematuria (blood in the urine), hemoglobinuria (hemoglobin in the urine), and porphyria [16-20]. None of the medications that our patient takes are reported to cause urine discoloration.

As in our case, misdiagnosis of PUBS can occur, leading to improper management. This can be prevented by excluding the previously mentioned causes of urine discoloration, and by using urine color tools such as the Oxford urine chart [1]. This chart illustrates the different urine colors that a healthcare staff might encounter with the potential causes for each color. Interestingly, PUBS is the only cause for purple urine shown on this chart. There were no significant limitations to our study.

4. Conclusion

PUBS remains an uncommon phenomenon that might be misdiagnosed. This can lead to inappropriate management and unnecessary workup. It is mostly seen in bedridden elderly with UTI associated with other risk factors most commonly constipation. The purple urine is the end result of the metabolism of tryptophan by bacteria to form the responsible pigments. Healthcare workers need to be aware of this phenomenon in order to provide the appropriate care for patients.
Ethical approval

Ethical approval for case reports and case series are waived from any institutional review board approval according to the ongoing regulations of Yarmouk University.

Source of funding

The authors received no specific funding for this work.

Author contribution

Case report design and patient medical care: M.S and S.G. Wrote the initial draft for the case report: M.S, S.A, and F.H. Data collection and data analysis: S.A, M.A, F.H, and A.A. Critically revised the manuscript: M.S and S.G. All authors read and approved the content of the submitted case report.

Research registration

This case report is not eligible for obtaining a research registry since it only contains a report of a known entity with no new surgical or medical interventions.

Guarantor

Muthanna Saraireh.

Consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal on request.
Study ID	Year of Publication	Country	Age	Sex	Comorbidities	Indication of Foley	Duration of Foley	Constipation	Urine PH	Type of Microorganism	Treatment	Bedridden
Ito WE et al., 2019 [21]	Brazil	49	F	Type 2 DM	Vesicovaginal fistula	60 days	N	9	Morganella morgagni	Meropenem	N	
Hokama et al., 2019 [22]	Japan	52	M	Crohn’s Disease	Ureteral stenosis by ileocolic Crohn’s disease	(–)	N	7.5	Providencia stuartii, Pseudomonas aeruginosa	Changed catheter and urine bag, Surgery for bowel obstruction was performed	Y	
Le Mouel et al., 2018 [23]	France	86	F	(–)		(–)	Several weeks	Y	10	Klebsiella pneumoniae	Anti-biotherapy and laxatives	Y
Carmo et al., 2020 [24]	Brazil	65	M	(–)	Pelvic trauma and hip fracture	60 days	N	6.5	Proteus mirabilis	Ciprofloxacin, Trimethoprim-sulfamethoxazole	Y	
Wattanapisit et al., 2018 [25]*	Thailand	89	F	HTN, Stroke	(–)	90 days	N	(–)		Changed catheter and bag	Y	
Rooney et al., 2018 [26]*	United Kingdom	51	M	MS	MS	Long Term	N	(–)	Enterococcus faecalis	Antibiotics, Endoscopic laser fragmentation, Changed catheter and bag	N	
		83	M	Type 2 DM, Lung Cancer	BPH	(–)	N	(–)				
Kumar et al., 2020 [27]	India	60	M	(–)	Paraplegia and urinary incontinence due to spinal cord injury	2 Years	N	7.6	Escherichia coli	Ciprofloxacin, Changed catheter and bag	Y	
Amoozgar et al., 2019 [28]	USA	61	M	Anoxic brain injury	Neurogenic bladder, Obstructive uropathy	(–)	N	(–)	Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa	Meropenem, Piperacillin-tazobactam, Vancomycin, Left nephrostomy tube replacement	Y	
Shin et al., 2018 [29]*	Korea	81	F	DM, HTN, PUD, HF	Uncontrolled leak of urine Severe skin impairment of the perineum and buttocks due to frequent leakage of urine	(–)	Y	8	(–)		Y	
		88	F	HTN		(–)	N	(–)				
Khalid et al., 2016 [30]	Pakistan	60	F	Type 2 DM, HTN, CKD	(–)	90 days	N	8		Meropenem, Vancomycin, calcium, vitamin D supplements	N	
Barman et al., 2016 [31]	India	65	F	Type 2 DM, dementia	Fracture of left femur	90 days	Y	(–)	Escherichia coli	Ceftriaxone	Y	
Worku et al., 2018 [32]	United Kingdom	94	F	(–)	Post-void residual volume of 750mL	14 days	Y	7.2	Escherichia coli	Laxatives	N	

(continued on next page)
Study ID	Year of Publication	Country	Age	Sex	Comorbidities	Indication of Foley	Duration of Foley	Constipation	Urine PH	Type of Microorganism	Treatment	Bedridden
Boentoro et al., 2019 [33]	2019	Indonesia	64	F	(−)	Neurogenic bladder due to spinal cord injury	90 days	Y	8.5	*Escherichia coli*	Ciprofloxacin, Changed catheter and urine bag	N
de Menezes Neves PDM et al., 2020	2020	Brazil	84	M	HTN, CKD, PD	Prostate Cancer	(−)	Y	9	*Proteus penneri, Enterococcus faecalis*	Ciprofloxacin, Laxatives	N
Karray et al., 2018 [35]	2018	Tunisia	78	M	DM, HTN	Prostatic adenocarcinoma	(−)	N	(−)	*Escherichia coli*	Ofloxacin, Gentamycin, Changed catheter and bag	Y
Ficher et al., 2016 [37]	2016	Brazil	83	F	HTN, CKD, HF, AF	Intubation	(−)	N	(−)	*Streptoccocus agalactiae*	Piperacillin-tazobactam, Meropenem, Vancomycin	N
Rodríguez et al., 2016 [38]	2016	Spain	83	M	DM, HTN, COPD	BPH	Long Term	N	9	*Klebsiella pneumoniae*	Ciprofloxacin, Changed catheter and bag	N
Vallejo-Manzur et al., 2005 [39]	2004	USA	72	M	HTN, PD, Renal failure	(−)	(−)	N	9	*Escherichia coli*	Piperacillin/ Tazobactam, Levofloxacin, Ciprofloxacin	Y
Traynor et al., 2017 [40]	2017	Ireland	90	F	Vascular Dementia	Acute urinary retention	(−)	Y	>9	Mixed organisms	Nitrofurantoin, Changed catheter and bag	N
Wong et al., 2018 [41]	2018	Malaysia	86	F	(−)	Acute urinary retention	(−)	N	8	Mixed organisms	Cefuroxime, Changed catheter and bag	N
Kumar et al., 2018 [42]	2018	India	56	F	Breast Carcinoma	Acute urinary retention	(−)	(−)	(−)	(−)	Nitrofurantoin	N
Pillai et al., 2009 [43]	2009	Brunei	68	F	Type 2 DM, HTN, dyslipidemia, peripheral neuropathy, retinopathy, nephrotic range nephropathy	chronic urine contamination	76 days	Y	(−)	Negative Culture	(−)	N
Çalışkan Tür et al., 2015 [44]	2015	Turkey	79	F	(−)	(−)	(−)	N	8.5	*Escherichia coli*	Ceftriazone, Gentamicin, Glycerol, Changed catheter and bag	Y
Al Montasir et al., 2013 [45]	2013	Bangladesh	86	M	Osteoporosis	Neurogenic bladder	12 months	Y	Alkaline	*Escherichia coli*	Ceftriazone	N
Fari et al., 2016 [46]	2016	India	76	M	(−)	(−)	(−)	N	7.6	*Escherichia coli*	Ceftriazone	N
Lin et al., 2008 [47]	2008	Taiwan	72	M	DM, BPH, ESRD, Alzheimer’s Dementia	(−)	26 months	N	(−)	(−)	(−)	Y
	72		M		DM, BPH, ESRD, Alzheimer’s Dementia	(−)	24 months	N	(−)	(−)	(−)	Y
83 M	DM, BPH, HTN, Alzheimer’s Dementia	26 months	N	8	*Escherichia coli, Proteus mirabilis*	Ofloxacin, Gentamicin, Glycerol, Changed catheter and bag	Y					
89 M	DM, BPH, HTN, Alzheimer’s Dementia	33 months	N	8.5	*Escherichia coli, Proteus mirabilis*	Ofloxacin, Gentamicin, Glycerol, Changed catheter and bag	Y					
80 M	HTN, BPH, Vascular Dementia	12 months	Y	9	Providencia rettgeri	Ofloxacin, Gentamicin, Glycerol, Changed catheter and bag	Y					
80 F	(−)	(−)	N	9	*Escherichia coli*	Ofloxacin, Gentamicin, Glycerol, Changed catheter and bag	Y					

(continued on next page)
Study ID	Year of Publication	Country	Age	Sex	Comorbidities	Indication of Foley	Duration of Foley	Constipation	Urine PH	Type of Microorganism	Treatment	Bedridden
Mondragon-Cardona et al., 2015 [46]	2015 Colombia	71 F			Alzheimer’s Dementia, Anemia, pulmonary fibrosis, hypercholesterolemia	Urinary incontinence	24 months	N	Y	8	Klebsiella pneumonia	
Chang et al., 2007 [47]	Taiwan	61 F			Vascular dementia, Anemia, pulmonary fibrosis, hypercholesterolemia	Intubation	71 months	Y	8	7.5	Negative Culture	
Keenan et al., 2011 [4]	USA	97 M			Urinary retention from prostate hyperplasia			Y	8	(-)	Klebsiella pneumonia	
Su et al., 2009 [48]	Taiwan	81 F			DM, subclinical hypothyroid	Bladder Cancer		Y	8.5	(-)	Escherichia coli, Proteus mirabilis, Enterococcus faecalis	
Yau Ong et al., 2020 [49]	Singapore	50 M			CKD, Dementia			Y	8	(-)	Klebsiella pneumonia	
Wu et al., 2009 [50]	Taiwan	95 F			Bladder Cancer			Y	8	(-)	Proteus mirabilis	
Iersel et al., 2009 [51]	Netherlands	72 M			Metastasized bladder cancer			Y	8	(-)	Escherichia coli	
Yaqub et al., 2013 [52]	Pakistan	83 F						Y	8	(-)	Proteus mirabilis	
Tan et al., 2008 [53]	Taiwan	58 M			Advanced gastric cancer			Y	7.8	(-)	Proteus mirabilis	
Ihamma et al., 2011 [54]	Japan	93 F						Y	9	(-)	Providencia stuartii, Alcaligenes spp	
Karim et al., 2015 [55]	USA	83 M			Alzheimer’s Dementia, myelodysplastic syndrome, bladder cancer, COPD, hypothyroidism, GERD, hiatus hernia, osteoarthritis			Y	7.5	(-)	Pseudomonas aeruginosa, Staphylococcus epidermidis (left NT and UB)	
Alex et al., 2015 [56]	India	83 M			Bladder Cancer			Y	7	(-)	Klebsiella pneumonia, Morganellamorganii, Enterococcus, Citrobacter diversus, Pseudomonas aeruginosa	
Delgado et al., 2014 [57]	Mexico	60 F			Type 2 DM, HTN, CKD, primary hypothyroidism	Fluid output monitoring	24 hours	N	8.5	(-)	Antibiotic, catheter changed to silicone tubing	
Wang et al., 2005 [58]	Taiwan	61 M			Type 2 DM, ESRD, retinopathy, neuropathy			Y	8	(-)	Klebsiella pneumonia	

(continued on next page)
Study ID	Year of Publication	Country	Age	Sex	Comorbidities	Indication of Foley	Duration of Foley	Constipation	Urine PH	Type of Microorganism	Treatment	Bedridden
Evans et al., 2014 [59]	2014 UK	75	F	Radiation enteritis	Chronic urinary tract obstruction	Long Term	N	(–)	Escherichia coli, Klebsiella pneumonia, Morganella morganii.	Antibiotics, Changed catheter and bag	N	
Harun et al., 2007 [60]*	2007 Brunei	45	F	Cervical carcinoma	Cervical carcinoma invading bladder	(–)	N	(–)	Negative Culture	Coadoxycilav	N	
Bocrie et al., 2012 [61]	2012 France	87	F	Acute urinary retention	Acute urinary retention	6 days	N	(–)	Escherichia coli	Antibiotics, Changed catheter and bag	N	
Sulaiman et al., 2016 [62]	2016 Malaysia	65	F	Stroke	Stroke	long term	N	7.5	Klebsiella pneumonia	(–)	N	
Chung et al., 2008 [63]	2008 Taiwan	85	M	HTN, CKD	Long term	N 7.5	Proteus mirabilis, Enterobacter cloacae	Ciprofloxacin	N			
Richardson-May et al., 2016 [64]	2016 UK	94	F	stroke, sinustitis, hemorrhoids, age-related macular degeneration, BPPV, polypoidal ileocecal valve tumor	Urinary retention	21 days	Y	8		Antibiotic, Changed catheter and bag	N	
Lin et al., 2009 [65]*	2009 Taiwan	50	(–)	DM, HF, Respiratory failure	(–)	90 days	N	8.5	Escherichia coli and Acinetobacter baumannii.	(–)	N	
Gautam et al., 2007 [66]	2007 India	78	M	DM, COPD	Cerebrovascular accident	Acute urinary retention	60 days	N	7.5	Proteus mirabilis	(–)	N
Kenzaka et al., 2015 [67]	2015 Japan	72	F	Bladder cancer	Bladder cancer	(–)	N	(–)	Escherichia coli	Cefaclor	N	
Ting et al., 2007 [68]	2007 Taiwan	72	F	DM, ESRD	Residual urine drainage	BPH	6 months	Y	8	Escherichia coli	Ciprofloxacin	Y
Pandey et al., 2018 [69]	2018 India	70	M	(–)	(–)	(–)	N	(–)	(–)		Antibiotics, Changed catheter and bag	N
Tuli Llh et al., 2016 [70]	2016 USA	58	M	Spastic partial quadriplegia	Neurogenic bladder	5 years	Y	8.5	Proteus vulgaris	Ceftriaxone, TMP/SMX	N	
Duff et al., 2012 [71]	2012 USA	57	F	Transverse myelitis	Transverse myelitis	21 days	N	7.5	Klebsiella pneumonia	Ciprofloxacin, Changed catheter and bag	N	
Redwood et al., 2015 [72]	2015 USA	90	M	(–)	BPH	(–)	N	(–)	Escherichia coli	(–)	N	
Mohamad et al., 2013 [73]	2013 Brunei	78	F	HTN, Dementia, Hyperlipidemia	(–)	Long Term	N	(–)	Proteus mirabilis	Ceftriaxone, Ciprofloxacin, Changed catheter and bag	Y	
Ribeiro et al., 2004 [74]	2004 Portugal	56	F	ALS	Mechanically ventilated	6 years	N	alkaline	Morganella morganii, Pseudomonas aeruginosa, Proteus mirabilis	(–)	Y	
Canavese et al., 2013 [75]*	2013 Italy	60	F	(–)	Cerebral infarction	Long Term	N	(–)		Changed catheter and bag	Y	
	2013 Italy	78	M	HTN, Hypercholesterolemia	Fluid output monitoring	Long Term	N	(–)		Antibiotic, Changed catheter and bag	N	
	2013 Italy	89	M	BPH, CKD	(–)	Long Term	N	(–)	Providencia rettgeri	(–)	N	
	2013 Italy	99	F	(–)	(–)	Long Term	N	9	Providencia stuartii, Enterococcus faecalis, Proteus mirabilis.	Mixed organisms	(–)	N
Pillai et al., 2007 [76]	2007 UK	76	F	DM, PD, Asthma, Depression	Urinary incontinence	(–)	Y	(–)		Changed catheter and bag	Y	

(continued on next page)
Table 1 (continued)

Study ID	Year of Publication	Country	Age	Sex	Comorbidities	Indication of Foley	Duration of Foley	Constipation	Urine PH	Type of Microorganism	Treatment	Bedridden
Ferrara et al., 2010	2010	Italy	81	F	COPD	Bilateral nephrostomy and chronic urinary tract infections	6 years	N	9 (left NT)	*Escherichia coli* (left NT)	Ciprofloxacin	N
Siu et al., 2010	2010	USA	48	M	Type 2 DM	Ischemic encephalopathy and chronic urinary tract infections	(−)	N	8	*Escherichia coli*	Changed catheter and bag	N
Bar-Or et al., 2007	2007	USA	68	M	DM, HF, COPD	Bladder neck stenosis and acute urinary retention	1 year	N	(−)	Mixed organisms	Linezolid, Levofloxacin Changed catheter and bag	N
Al-Sardar et al., 2009	2009	UK	82	M	HTN, Depression	Bladder cancer	3 days	N	7.6	*Providencia stuartii*	(−)	N
Achtergaal et al., 2006	2006	Belgium	77	M	(−)	Bladder cancer	1 year	N	(−)	Mixed organisms	Changed catheter and bag	N
Hoekstra et al., 2016	2016	USA	80	M	(−)	Bladder cancer	3 days	N	7.6	*Providencia stuartii*	(−)	N
Jubouri et al.	2009	UK	85	F	(−)	Long term	8.5	N	8.5	*Providencia rettgeri*	(−)	N
Ollapallil et al., 2002	2002	Australia	61	F	ESRD, diabetic neuropathy	Fluid output monitoring	5 months	Y	9	Mixed organisms	(−)	Y
			49	F	chronic paranoid schizophrinia		2 days	Y	5	Negative Culture	(−)	N
Current Case:	2021	Jordan	80	F	Type2 DM, HTN, CDK, history of a stroke	Urinary incontinence	1 month	Y	8	*Proteus mirabilis*	Ciprofloxacin, Changed catheter and bag	N

(*): Case Series, F: Female, M: Male, Y: Yes, N: No, (−): Not mentioned, DM: Diabetes Mellitus, HTN: Hypertension, MS: Multiple Sclerosis, PUD: Peptic Ulcer Disease, HF: Heart Failure, CKD: Chronic Kidney Disease, AF: Atrial Fibrillation, COPD: Chronic Obstructive Pulmonary Disease, BPH: Benign Prostatic Hyperplasia, NHL: Non-Hodgkin’s Lymphoma, ESRD: End-Stage Renal Disease, GERD: Gastroesophageal Reflux Disease, BPPV: Benign Paroxysmal Positional Vertigo, ALS: Amyotrophic Lateral Sclerosis.

NT: Nephrostomy Tube, TURP: Transurethral resection of the prostate, TMP/SMX: trimethoprim-sulfamethoxazole.
Table 2
Microorganisms causing PUS in reviewed cases.

Microorganism	Count
Escherichia coli	31
Mixed organism	22
Klebsiella pneumoniae	13
Proteus mirabilis	13
Pseudomonas aeruginosa	7
Enterococcus	6
Providencia stuartii	4
Providencia rettgeri	4
Morganella morgani	3
Proteus vulgaris	2
Proteus peregrinus	1
Streptococcus agalactiae	1
Acinetobacter baumannii	1
Enterobacter cloacae	1
Klebsiella oxytoca	1
Staphylococcus epidermidis	1
Citrobacter diversus	1
Gram-negative-cofactors	1

Declaration of competing interest

The authors report no conflict of interest.

References

[1] D.S. Kalsi, J. Ward, R. Lee, A. Handa, Purple urine bag syndrome: a rare spot diagnosis, Dia. Markers (2017) 9131872, 2017.
[2] F.H. Su, S.Y. Chung, M.H. Chen, M.L. Sheng, C.H. Chen, Y.J. Chen, et al., Case analysis of purple urine urine-bag syndrome at a long-term care service in a community hospital, Chang Gang Med. J. 28 (9) (2005) 636-642.
[3] S.F. Dealler, P.M. Hawkey, M.R. Millar, Enzymatic degradation of urinary indoxyl sulfate by Providencia stuartii and Klebsiella pneumoniae causes the purple urine bag syndrome, J. Clin. Microbiol. 26 (10) (1988) 2152-2156.
[4] C.R. Keenan, G.R. Thompson 3rd, Purple urine bag syndrome, J. Gen. Intern. Med. 26 (12) (2011) 1506.
[5] I. Hadano, T. Shimizu, S. Takada, T. Inoue, S. Sorano, An update on purple urine bag syndrome, Int. J. Gen. Med. 5 (2012) 707-716.
[6] M. Bhattarai, H. Bin Mukhtar, T.W. Davis, A. Silodia, H. Nepal, Purple urine bag syndrome may not be benign: a case report and brief review of the literature, Case report and literature review. SAGE open medical case reports 7 (2019), 20503131x18823105.
[7] S. Boentoro, N.B. Utomo, Case Report: purple urine bag syndrome in woman with neurogenic bladder, F1000Research. 8 (2019) 979.
[8] M. B. De Menezes Neves, B.M. Coelho Freire, S. Mohrbecher, R. Renato Chocair, A.L. Cavella-Neto, Purple urine bag syndrome: a colourful complication of urinary tract infection, Lancet Infect. Dis. 20 (2020) 1215.
[9] O. Karray, R. Batti, E. Taibi, H. Ayed, M. Chakroun, M.A. Ouarda, et al., Purple urine bag syndrome, a disturbing urine discoloration, Urology case reports 20 (2018) 57-59.
[10] K.N. Ficher, A.A. Araso, S.G. Houdy, P.R. Lins, M. Silva Jr., A.F. Góis, Purple urine bag syndrome: case report for Streptococcus agalactiae and literature review, Jornal brasileiro de nefrologia : órgão oficial de Sociedades Brasileiras e Latino-Americanas de Nefrologia 38 (4) (2016) 470-472.
[11] P. Demelo-Rodríguez, I. Galán-Carrillo, J. Del Toro-Cervera, Purple urine bag syndrome, Eur. J. Intern. Med. 35 (2016) e3-e4.
[12] F. Valles-Lezo-Manzur, E. Mires-Caboveda, J. Yaron, Purple urine bag syndrome, Am. J. Emerg. Med. 23 (4) (2005) 521-524.
[13] B.P. Traynor, E. Pomeroy, D. Niall, Purple urine bag syndrome: a case report and review of the literature, Oxford medical case reports 2017 (11) (2017) omx059.
[14] Y. Wong, N. Abdullah, Purple urine bag syndrome: a startling phenomenon of purple urine in a urine drainage bag. A primary care approach and literature review, Malays. Fam. Physician : the official journal of the Academy of Family Physicians of Malaysia 13 (2) (2018) 42-44.
[15] D. Kumar, N. Donga, R. Macwan, Purple urine bag syndrome: a scary but easily manageable condition in a patient with prolonged indwelling urinary catheter, Indian J. Palliat. Care 24 (4) (2018) 534-536.
[16] B.P. Pillai, V.H. Chong, A. M. Yong, Purple urine bag syndrome, Singapore. Med. J. 50 (5) (2009) e193-e194.
[17] F. Tür, N. Zafer, N. Hacoğlu, Purple urine bag syndrome, Emerg. Med. J. : EMJ. 32 (5) (2015) 347.
[18] A. Al Montassir, A. Al Mustaque, Purple urine bag syndrome, J. Fam. Prim. Care 2 (1) (2013) 104-105.
[19] M.S. Fairid, M.J. Rahman, N. Mibang, N. Shantajati, K. Somarendra, Purple urine bag syndrome: an alarming situation, J. Clin. Diagn. Res. : J. Clin. Diagn. Res. 10 (2) (2016) PD05-6.
[20] A. Mondragon-Cardona, C.E. Jimenez-Canziales, V. Alzate-Carvajal, F. Bastidas-Rivera, J.C. Sepúlveda-Arias, Purple urine bag syndrome in an elderly patient from Colombia, Journal of infection in developing countries 9 (7) (2015) 792-795.
[21] V.J. Su, Y.C. Lai, W.H. Chang, Purple urine bag syndrome in a dead-on-arrival patient: case report and articles reviews, Am. J. Emerg. Med. 25 (7) (2007) 861-865.
[22] H.K. Su, F.N. Lee, B.A. Chen, C.C. Chen, Purple urine bag syndrome, Emerg. Med. J. 27 (9) (2010) 714.
[23] C.Y. Ong, F.F. Vasamwala, Gentleman with the purple urine, Korean journal of family medicine 41 (2) (2020) 133-135.
[24] H.H. Wu, W.C. Yang, C.C. Lin, Purple urine bag syndrome, Am. J. Med. Sci. 337 (5) (2009) 360-368.
[25] M. van Iersel, V. Mattijssen, Purple urine bag syndrome, Neth. J. Med. 67 (8) (2009) 340-341.
[26] S. Yapp, S. Mohkam, K.N. Mukhtar, Purple urine bag syndrome: a case report and review of literature, Indian J. Nephrol. 23 (2) (2013) 140-142.
[27] C.K. Tan, Y.P. Wu, H.Y. Wu, C.C. Lai, Purple urine bag syndrome, CMAJ (Can. Med. Assoc. J.) : Canadian Medical Association journal — journal de l’Association médicale canadienne 179 (5) (2008) 491.
[28] Y. Ihamo, A. Hokama, Purple urine bag syndrome, Urology 65 (5) (2000) 910.
