A HOMOTOPY THEORY FOR GRAPHS

E. BABSON, H. BARCELO, M. DE LONGUEVILLE, AND R. LAUBENBACHER

1. Introduction

In the recent article [3] a new homotopy theory for graphs and simplicial complexes was defined. The motivation for the definition came initially from a desire to find invariants for dynamic processes that could be encoded via (combinatorial) simplicial complexes. The invariants should be topological in nature, but should at the same time be sensitive to the combinatorics encoded in the complex, in particular the level of connectivity of simplices (see [3]). The construction is based on an approach proposed by R. Atkin [1, 2]; hence the letter “A.” Namely, let $\Delta$ be a simplicial complex of dimension $d$, let $0 \leq q \leq d$ be an integer, and let $\sigma_0 \in \Delta$ be a simplex of dimension greater than or equal to $q$. One obtains a family of groups

$$A_q^n(\Delta, \sigma_0), \quad n \geq 1,$$

the $A$-groups of $\Delta$, based at $\sigma_0$. These groups differ from the classical homotopy groups of $\Delta$ in a significant way. For instance, the group $A_1^1(\Delta, \sigma_0)$, for the 2-dimensional complex $\Delta$ in Figure 1, is isomorphic to $\mathbb{Z}$, measuring the presence of a “connectivity” hole in its center. (See the example on p. 101 of [3].)

The computation of these groups proceeds via the construction of a graph, $\Gamma_q(\Delta)$, whose vertices represent simplices in $\Delta$. There is an edge between two simplices if they share a face of dimension greater than or equal to $q$. This construction suggested a natural definition of the $A$-theory of graphs, which was also developed in [3]. Proposition 5.12 in that paper shows that $A_1$ of the complex can be obtained as the fundamental group of the space obtained by attaching 2-cells into all 3- and 4-cycles of $\Gamma_q(\Delta)$.

The goal of the present paper is to generalize this result. Let $\Gamma$ be a simple, undirected graph, with distinguished base vertex $v_0$. We will construct an infinite cell complex $X_{\Gamma}$ together with a homomorphism

$$A_n(\Gamma, v_0) \rightarrow \pi_n(X_{\Gamma}, v_0).$$

![Figure 1. A 2-dimensional complex $\Delta$ with nontrivial $A_1^1$.](image)
Moreover, we can show this homomorphism to be an isomorphism if a (plausible) cubical analog of the simplicial approximation theorem holds.

There are several reasons for this generalization. One reason is the desire for a homology theory associated to the $A$-theory of a graph. A natural candidate is the singular homology of the space $X_\Gamma$. This will be explored in a future paper.

Another reason is a connection to the homotopy of the complements of certain subspace arrangements. While computing $A^{-3}_{n-3}$ of the order complex of the Boolean lattice $B_n$, it became clear that this computation was equivalent to computing the fundamental group of the complement of the 3-equal arrangement \cite{5}. (This result for the $k$-equal arrangement was proved independently by A. Björner \cite{4}.) To generalize this connection to a wider class of subspace arrangements a topological characterization of $A$-theory is needed.

The content of the paper is as follows. After a brief review of the definition of $A$-theory, we construct the model space $X_\Gamma$, followed by a proof of the main result (Theorem 5.1). The main result refers to a yet unknown analog of a simplicial approximation theorem in the cubical world (Property 6.1), which we briefly discuss in Section 6. The last section introduces the loop graph of a graph, and we prove that the $(n+1)$-st $A$-group of the graph is isomorphic to the $n$-th $A$-group of the loop graph, in analogy to a standard result about classical homotopy.

2. $A$-THEORY OF GRAPHS

We first recall the definition given in Sect. 5 of \cite{3}.

**Definition 2.1.** Let $\Gamma_1 = (V_1, E_1), \Gamma_2 = (V_2, E_2)$ be simple graphs, that is, graphs without loops and multiple edges.

1. The **Cartesian product** $\Gamma_1 \times \Gamma_2$ is the graph with vertex set $V_1 \times V_2$. There is an edge between $(u_1, u_2)$ and $(v_1, v_2)$ if either $u_1 = v_1$ and $u_2v_2 \in E_2$ or $u_2 = v_2$ and $u_1v_1 \in E_1$.

2. A **graph homomorphism** $f : \Gamma_1 \rightarrow \Gamma_2$ is a set map $V_1 \rightarrow V_2$ such that, if $uv \in E_1$, then either $f(u) = f(v)$ or $f(u)f(v) \in E_2$.

3. Let $I_n$ be the graph with $n+1$ vertices labeled 0, 1, \ldots, $n$, and edges $(i-1)i$ for $i = 1, \ldots, n$.

4. Let $v_1 \in \Gamma_1, v_2 \in \Gamma_2$ be distinguished base vertices. A **based** graph homomorphism $f : \Gamma_1 \rightarrow \Gamma_2$ is a graph homomorphism such that $f(v_1) = v_2$.

Next we define homotopy of graph maps and homotopy equivalence of graphs.

**Definition 2.2.**

1. Let $f, g : (\Gamma_1, v_1) \rightarrow (\Gamma_2, v_2)$ be based graph homomorphisms. We call $f$ and $g$ $A$-homotopic, denoted by $f \simeq_A g$, if there is an integer $n$ and a graph homomorphism $\phi : \Gamma_1 \times I_n \rightarrow \Gamma_2$ such that $\phi(-, 0) = f$, and $\phi(-, n) = g$, and such that $\phi(v_1, i) = v_2$ for all $i$.

**Definition 2.3.**

1. Let

$$I^n_m = I_m \times \cdots \times I_m$$

be the $n$-fold Cartesian product of $I_m$ for some $m$. We will call $I^n_m$ an $n$-cube of height $m$. Its distinguished base point is $O = (0, \ldots, 0)$. 
(2) Define the boundary $\partial I^n_m$ of a cube $I^n_m$ of height $m$ to be the subgraph of $I^n_m$ containing all vertices with at least one coordinate equal to 0 or $m$.

It is easy to show (Lemma 5.4 of [3]) that any graph homomorphism from $I^n_m$ to $\Gamma$ can be extended to a graph homomorphism from $I^n_p$ to $\Gamma$ for any $p \geq m$. Thus, by abuse of notation we will sometimes omit the subscript $m$.

**Definition 2.4.** Let $A_n(\Gamma, v_0), \ n \geq 1,$ be the set of homotopy classes of graph homomorphisms

$$f : (I^n_m, \partial I^n_m) \rightarrow (\Gamma, v_0).$$

For $n = 0$, we define $A_0(\Gamma, v_0)$ to be the pointed set of connected components of $\Gamma$, with distinguished element the component containing $v_0$. We will denote the equivalence class of a homomorphism $f$ in $A_n(\Gamma, v_0)$ by $[f]$.

We can define a multiplication on the set $A_n(\Gamma, v_0), \ n \geq 1,$ as follows. Given elements $[f], [g] \in A_n(\Gamma, v_0)$, represented by

$$f, g : (I^n_m, \partial I^n_m) \rightarrow (\Gamma, v_0),$$

defined on a cube of height $m$, we define $[f] * [g] \in A_n(\Gamma, v_0)$ as the homotopy class of the map

$$h : (I^n_{2m}, \partial I^n_{2m}) \rightarrow (\Gamma, v_0),$$

defined on a cube of height $2m$ as follows.

$$h(i_1, \ldots, i_n) = \begin{cases} f(i_1, \ldots, i_n) & \text{if } i_j \leq m \text{ for all } j, \\ g(i_1 - m, \ldots, i_n) & \text{if } i_1 > m \text{ and } i_j \leq m \text{ for } j > 1, \\ v_0 & \text{otherwise}. \end{cases}$$

Alternatively, using Theorem 5.16 in [3], one can describe the $A$-theory of graphs using multidimensional “grids” of vertices as follows. Let $\Gamma$ be a graph with distinguished vertex $v_0$. Let $A_n(\Gamma, v_0)$ be the set of functions

$$\mathbb{Z}^n \rightarrow V(\Gamma),$$

from the lattice $\mathbb{Z}^n$ into the set of vertices of $\Gamma$ which take on the value $v_0$ almost everywhere, and for which any two adjacent lattice points get mapped into either the same or adjacent vertices of $\Gamma$. We define an equivalence relation on this set as follows. Two functions $f$ and $g$ are equivalent, if there exists

$$h : \mathbb{Z}^{n+1} \rightarrow V(\Gamma),$$

in $A_{n+1}(\Gamma, v_0)$ and integers $k$ and $l$, such that

$$h(i_1, \ldots, i_n, k) = f(i_1, \ldots, i_n),$$

$$h(i_1, \ldots, i_n, l) = g(i_1, \ldots, i_n)$$

for all $i_1, \ldots, i_n \in \mathbb{Z}$. For a definition of a group operation on the set of equivalence classes see Prop. 3.5 of [3]. Then it is straightforward to see that $A_n(\Gamma, v_0)$ is isomorphic to the group of equivalence classes of elements in $A_n(\Gamma, v_0)$. It will be useful to think of $A_n(\Gamma, v_0)$ in those terms.
3. A cubical set setting for the $A$-theory of graphs

We now define a cubical set $K_\ast(\Gamma)$ associated to the graph $\Gamma$ (see [7]). This gives the right setup in order to obtain a close connection to the space $X_\Gamma$ which we define in the next section. Let $I_\infty^n$ be the “infinite” discrete $n$-cube, that is, the infinite lattice labeled by $\mathbb{Z}^n$.

**Definition 3.1.** A graph homomorphism $f : I_\infty^n \to \Gamma$ stabilizes in direction $(i, \epsilon)$, $i = 1, \ldots, n$, $\epsilon \in \{\pm 1\}$ if there exists an $m_0$, s.t. for all $m \geq m_0$

\[ f(a_1, \ldots, a_{i-1}, \epsilon m_0, a_{i+1}, \ldots, a_n) = f(a_1, \ldots, a_{i-1}, \epsilon m, a_{i+1}, \ldots, a_n). \]

Let

\[ K_n(\Gamma) = \text{Hom}_\ast(I_\infty^n, \Gamma), \]

the set of graph homomorphisms from the infinite $n$-cube to $\Gamma$ that eventually stabilize in each direction $(i, \epsilon)$.

For each “face” of $I_\infty^n$, i.e., for each choice of $(i, \epsilon)$, $i = 1, \ldots, n$, $\epsilon \in \{\pm 1\}$, we define **face maps**

\[ \alpha'_{i, \epsilon} : K_n(\Gamma) \to K_{n-1}(\Gamma), \]

by

\[ \alpha'_{i, \epsilon}(f)(a_1, \ldots, a_{n-1}) = f(a_1, \ldots, a_{i-1}, \epsilon m_0, a_i, \ldots, a_{n-1}), \]

where $m_0$ is chosen large enough. In other words $\alpha'_{i, \epsilon}(f)$ is the map in $K_{n-1}(\Gamma)$ whose values are equal to the stable values of $f$ in direction $(i, \epsilon)$.

**Degeneracy maps**

\[ \beta'_i : K_{n-1}(\Gamma) \to K_n(\Gamma), \]

$i = 1, \ldots, n$, are defined as follows. Given a map $f \in K_{n-1}(\Gamma)$, extend it to a map on $I_\infty^n$ by

\[ \beta'_i(f)(a_1, \ldots, a_n) = f(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n), \]

for each $(a_1, \ldots, a_n) \in I_\infty^n$. It is straightforward to check that in this way $K_\ast(\Gamma)$ is a cubical set.

We now imitate the definition of combinatorial homotopy of Kan complexes; see, e.g., [7] Ch. 1.3.

**Definition 3.2.** We define a relation on $K_n(\Gamma)$, $n \geq 0$. Let $f, g \in K_n(\Gamma)$. Then $f \sim g$ if there exists $h \in K_{n+1}(\Gamma)$ such that for all $i = 1, \ldots, n$, $\epsilon \in \{\pm 1\}$:

1. $\alpha'_{i, \epsilon}(f) = \alpha'_{i, \epsilon}(g)$,
2. $\alpha'_{i, \epsilon}(h) = \beta'_n \alpha'_{i, \epsilon}(f) = \beta'_n \alpha'_{i, \epsilon}(g)$,
3. $\alpha'_{n+1, -1}(h) = f$ and $\alpha'_{n+1, 1}(h) = g$.

For an illustration see Figure 2.

**Proposition 3.3.** The relation defined above is an equivalence relation. \hfill $\square$

**Definition 3.4.** Let $v_0 \in \Gamma$ be a distinguished vertex. Let $B_\ast(\Gamma, v_0) \subset K_\ast(\Gamma)$ be the subset of all maps that are equal to $v_0$ outside of a finite region of $I_\infty^n$.

Observe that the equivalence relation $\sim$ restricts to an equivalence relation on $B_\ast(\Gamma, v_0)$, also denoted by $\sim$.

**Proposition 3.5.** There is a group structure on the set $B_n(\Gamma, v_0)/\sim$ for all $n \geq 1$, and, furthermore,

\[ (B_n(\Gamma, v_0)/\sim) \cong A_n(\Gamma, v_0). \]
A HOMOTOPY THEORY FOR GRAPHS

\[ \alpha'_{i+1}(h) = f \quad \alpha'_{i-1}(h) = g \]

Figure 2. An illustration of a map \( h \) in the definition of \( \sim \).

The proof is tedious, but straightforward. For a definition of the group structure see Prop. 3.5 of [3].

4. Definition of \( X_\Gamma \)

Let \( \Gamma \) be a finite, simple (undirected) graph. In this section we define a cell complex \( X_\Gamma \) associated to \( \Gamma \). This complex will be defined as the geometric realization of a certain cubical set \( M_\ast(\Gamma) \). Let \( I^n_1 \) be the discrete \( n \)-cube. Let

\[ M_n(\Gamma) = \text{Hom}(I^n_1, \Gamma), \]

the set of all graph morphisms from \( I^n_1 \) to \( \Gamma \). We define face and degeneracy maps as follows.

First note that \( I^n_1 \) has 2\( n \) faces \( F_{i,\varepsilon} \), with \( i = 1, \ldots, n \), and \( \varepsilon \in \{\pm 1\} \), corresponding to the two faces for each coordinate. For \( i = 1, \ldots, n \), \( \varepsilon \in \{\pm 1\} \), let

\[ a_{i,\varepsilon} : I^{n-1}_1 \rightarrow I^n_1 \]

\[ (x_1, \ldots, x_{n-1}) \mapsto (x_1, \ldots, x_{i-1}, \frac{1 + \varepsilon}{2}, x_i, \ldots, x_{n-1}) \]

be the graph map given by inclusion of \( I^{n-1}_1 \) as the \((i, \varepsilon)\)-face of \( I^n_1 \). For \( i = 1, \ldots, n \) define

\[ b_i : I^n_1 \rightarrow I^{n-1}_1 \]

\[ (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \]

to be the projection in direction \( i \).

Now let

\[ \alpha_{i,\varepsilon} : M_n(\Gamma) \rightarrow M_{n-1}(\Gamma) \]

be the map induced by \( a_{i,\varepsilon} \). Likewise, define

\[ \beta_i : M_{n-1}(\Gamma) \rightarrow M_n(\Gamma) \]

to be the map induced by \( b_i \). In this way we obtain a cubical set \( M_\ast(\Gamma) \).
To each cubical set is associated a cell complex, namely its geometric realization. We recall the construction for $M^\ast(\Gamma)$. Let $C^n$ be the geometric $n$-dimensional cube. We can define functions $a_{i,\varepsilon}$ and $b_i$ on $C^n$ in a fashion similar to above. Define the space

$$|M^\ast(\Gamma)| = \bigsqcup_{n \geq 0} M_n(\Gamma) \times C^n / \sim,$$

where $\sim$ is the equivalence relation generated by the following two types of equivalences:

$$\begin{align*}
(4.1) & \quad (\alpha_{i,\varepsilon}(f), x_{n-1}) \sim (f, \alpha_{i,\varepsilon}(x_{n-1})), f \in M_n(\Gamma), x_{n-1} \in C^{n-1} \\
(4.2) & \quad (\beta_j(g), x_n) \sim (g, \beta_j(x_n)), g \in M_{n-1}(\Gamma), x_n \in C^n.
\end{align*}$$

We will denote the cell complex $|M^\ast(\Gamma)|$ by $X_\Gamma$.

5. The main result

We can now state the main result of the paper.

**Theorem 5.1.** There is a group homomorphism

$$\phi : A_n(\Gamma, v_0) \rightarrow \pi_n(X_\Gamma, v_0),$$

for all $n \geq 1$. If a cubical analog of the simplicial approximation theorem such as (4.1) holds, then $\phi$ is an isomorphism.

**Proof.** First we define $\phi$. Let $[f] \in A_n(\Gamma, v_0) \cong B_n(\Gamma, v_0)/\sim$. Then a representative $f$ is a graph homomorphism

$$f : I^n_\infty \rightarrow \Gamma,$$

whose value on vertices outside a finite region is equal to $v_0$, say for vertices outside of a cube with side length $r$. Our goal is to define a continuous map

$$\tilde{f} : C^n \rightarrow X_\Gamma,$$

such that $\tilde{f}$ sends the boundary of $C^n$ to $v_0$.

Let $D^n$ be a cubical subdivision of $C^n$ into cubes of side length $1/r$. The 1-skeleton of $D^n$ can be identified with $I^n_1$, which is contained in $I^n_\infty$. And each subcube of $I^n_1$ can be identified with $I^n_1$. Hence, $f$ restricts to a graph homomorphism on each cube in the 1-skeleton of $D^n$, that is, a graph homomorphism

$$\hat{f} : I^n_1 \rightarrow \Gamma.$$ 

Thus, $\hat{f} \in \text{Hom}(I^n_1, \Gamma)$. Now define $\tilde{f}$ on each subcube of $D^n$ by

$$\tilde{f}(x) = [(\hat{f}, x)] \in X_\Gamma = (\bigsqcup_n \text{Hom}(I^n_1, \Gamma) \times C^n)/\sim.$$

The equivalence relation $\sim$ guarantees that $\tilde{f}$ is well-defined on overlapping faces. Therefore, our definition extends to give a map

$$\tilde{f} : D^n \rightarrow X_\Gamma.$$

So define

$$\phi([f]) = [\tilde{f}].$$

We need to show that $\phi$ is well-defined. Let $f \sim g$ be two maps in $B_n(\Gamma, v_0)$. Then there exists a homotopy $h \in B_{n+1}(\Gamma, v_0)$ such that $\alpha'_{n+1,-1}(h) = f$ and
\( \alpha'_{n+1,1}(h) = g \). We claim that \( \phi(h) \) gives a homotopy between \( \phi(f) \) and \( \phi(g) \). From the definition of \( \phi \) it is easy to see that

\[
\phi((\alpha'_i, \varepsilon)(h))(y) = (\alpha_i, \varepsilon)(\tilde{h}), y],
\]

for all \( i, \varepsilon \). Therefore, the restriction of

\[
\phi(h) : D^{n+1} \rightarrow X_\Gamma
\]

to the \((n+1, -1)\)-face is equal to the map from \( D^n \) to \( X_\Gamma \), sending \( x \) to 

\([\alpha_{n+1,1}(h), x] \), which is equal to \( \phi(f) \); similarly for \( \phi(g) \). It now follows that \( \phi(h) \) is a homotopy between \( \phi(f) \) and \( \phi(g) \). This shows that \( \phi \) is well-defined.

Now we show that \( \phi \) is a group homomorphism. Recall [3, p. 111] that the multiplication in \( A_n(\Gamma, v_0) \) is given by juxtaposing “grids.” This carries over directly to \( B_n(\Gamma, v_0)/\sim \). On the other hand, the multiplication in \( \pi_n(X_\Gamma, v_0) \) is given by using the comultiplication on \((C^n, \partial C^n)\). It is then straightforward to check that \( \phi \) preserves multiplication.

From here on we assume that Property [5,1] holds. Under this assumption we show that \( \phi \) is onto. We first show that every element in \( \pi_n(X_\Gamma, v_0) \) contains a cubical representative. Let \([f] \in \pi_n(X_\Gamma, v_0)\). Then \( f : C^n \rightarrow X_\Gamma \) sends the boundary of \( C^n \) to the base point \( v_0 \). Trivially then, the restriction of \( f \) to the boundary is a cubical map. By Property [5,1] \( f \) is homotopic to a cubical map on a cubical subdivision \( D^n \) of \( C^n \), and agrees with \( f \) on the boundary. That is, \([f] \)

contains a cubical representative. So we may assume that \( f \) is cubical on \( D^n \).

Consider the restriction of \( f \) to the 1-skeleton of \( D^n \). It induces in the obvious way a graph map \( g : I^*_{\infty} \rightarrow \Gamma \), that is, an element \([g] \in B_n(\Gamma, v_0)/\sim \). We claim that \( \phi(g) = [f] \), that is, \( \tilde{g} \sim f \). We use induction on \( n \). If \( n = 1 \), then we are done, since any two maps on the unit interval that agree on the end points are homotopic. Changing \( f \) up to homotopy we may assume that \( f \) and \( \tilde{g} \) are equal on the 1-skeleton.

Now let \( n > 1 \). Note that

\[
f : D^n \rightarrow X_\Gamma = \left( \bigcup_{n \geq 0} \text{Hom}(I^n_1, \Gamma) \right) \times C^n / \sim
\]

is cubical, so each \( n \)-cube \( C^n \) in the cubical subdivision \( D^n \) is sent to an \( n \)-cube in \( X_\Gamma \). The particular \( n \)-cube it is mapped to is determined by the image of the map on the 1-skeleton, since the map is cubical. This in turn determines an element in \( \text{Hom}(I^n_1, \Gamma) \), serving as the label of the image cube. Hence, \( f \) and \( \tilde{g} \) map each \( n \)-cube of the subdivision \( D^n \) to the same \( n \)-cube in \( X_\Gamma \). By induction we may assume that \( f \) and \( \tilde{g} \) are equal on the boundary of each \( n \)-cube. But observe that any two maps into \( C^n \) that agree on the boundary are homotopic, via a homotopy that leaves the boundary fixed. This shows \( f \) and \( \tilde{g} \) are homotopic on each \( n \)-cube of the cubical subdivision \( D^n \). Pasting these homotopies together along the boundaries, we obtain a homotopy between \( f \) and \( \tilde{g} \), so that \([f] = [\tilde{g}] \).

To show that \( \phi \) is one-to-one under the assumption of Property [5,1] suppose that \( f, g \in B_n(\Gamma, v_0)/\sim \) such that \( \phi(f) = \phi(g) \in \pi_n(\Gamma, v_0) \). Then there exists a homotopy \( h : C^{n+1} \rightarrow X_\Gamma \) such that the restrictions of \( h \) to the \((n+1)\)-directional faces are \( \phi(f) \) and \( \phi(g) \), respectively. As above, we may assume that \( h \) is cubical on a subdivision \( D^{n+1} \) of \( C^{n+1} \), providing a homotopy between cubical approximations of \( \phi(f) \) and \( \phi(g) \) on a subdivision \( D^n \) of \( C^n \). Now observe that the restriction of \( h \) to the 1-skeleton of \( D^{n+1} \) induces a graph homomorphism \( h' : I^n_{1+1} \rightarrow \Gamma \) in
$B_{n+1}(Γ, v_0)$, whose restrictions to the $(n + 1)$-directional faces are refinements of $f$ and $g$, respectively. But these refinements are equivalent to $f$ and $g$, respectively. Thus, $[f] = [g] ∈ B_n(Γ, v_0)/\sim$.

6. Cubical Complexes

The following plausible property is a special case of a general cubical approximation theorem. We have not found it in the literature and have not been able to prove it yet.

**Property 6.1.** Let $X$ be a cubical set, and let $f : C^n → |X|$ be a continuous map from the $n$-cube to the geometric realization of $X$, such that the restriction of $f$ to the boundary of $C^n$ is cubical. Then there exists a cubical subdivision $D^n$ of $C^n$ and a cubical map $f' : D^n → |X|$ which is homotopic to $f$ and the restrictions of $f$ and $f'$ to the boundary of $D^n$ are equal.

7. Path- and Loop Graph of a Graph

In topology the computation of the homotopy group $π_{n+1}(X)$ of a space $X$ can be reduced to the computation of $π_n(ΩX)$, the $n$-th homotopy group of the loop space $ΩX$ of $X$. Here we want to introduce the path graph $PG$ and the loop graph $ΩG$ of a graph $G$ such that naturally $A_n(ΩG) ≅ A_{n+1}(G)$.

**Definition 7.1.** Let $G$ be a graph with base vertex $*$. Define the **path graph** $PG = (V_{PG}, E_{PG})$ to be the graph on the vertex set

\[ V_{PG} = \{ ϕ : I_m → G : m ∈ \mathbb{N}, \varphi \text{ a graph map with } ϕ(0) = * \}. \]

The edge set $E_{PG}$ is given as follows. Consider two vertices $ϕ_0 : I_m → G$ and $ϕ_1 : I_{m'} → G$. Assuming $m ≤ m'$ extend $ϕ_0$ to a map $ϕ'_0 : I_{m'} → G$ by repeating the last vertex $ϕ_0(m)$ at the end:

\[ ϕ'_0(y) = \begin{cases} ϕ_0(y), & \text{if } y ≤ m, \\ ϕ_0(m), & \text{otherwise.} \end{cases} \]

Define $\{ ϕ_0, ϕ_1 \}$ to be an edge if there exists a graph map $Φ : I_{m'} × I_1 → G$ such that $Φ(\bullet, 0) = ϕ'_0$ and $Φ(\bullet, 1) = ϕ_1$.

There is graph map $p : PG → G$ given by $p(ϕ) = ϕ(m)$ for a vertex $ϕ : I_m → G$ of $PG$.

**Definition 7.2.** For a graph $G$ define the **loop graph** $ΩG$ of $G$ to be the induced subgraph of $PG$ on the vertex set $p^{-1}(*)$. We define the base vertex of $ΩG$ to be the vertex $ϕ_0 : I_0 → G$, i.e., the map that sends the single vertex of $I_0$ to * in $G$.

To avoid too much notation we will denote this map by * as well.

Note that for a graph map $ψ : (G, *) → (H, *)$ there is an induced map $Ωψ : (ΩG, *) → (ΩH, *)$ defined by $Ωψ(ϕ)(y) = ψ(ϕ(y))$ where $ϕ : I_m → G$ and $y$ is a vertex of $I_m$.

**Remark 7.3.** Consider the constant loop $ϕ_m : I_m → G$ in $ΩG$, i.e., $ϕ_m(x) = * ∈ G$ for all vertices $x$ of $I_m$. If a loop $ϕ : I_m → G$ is connected to $ϕ_m$ via an edge, then it is also connected to $ϕ_0 = *$ via an edge.

Analogously to classical topology we have the following.
**Proposition 7.4.** There is a natural isomorphism $A_n(\Omega(G)) \cong A_{n+1}(G)$ for $n \geq 1$. Furthermore, there is a bijection $A_0(\Omega(G)) \cong A_1(G)$.

*Proof. The case* $n \geq 1$. Let $[f] \in A_n(\Omega(G))$, i.e., $f$ is a graph map $f : (I_m, \partial I_m) \to (\Omega(G), \ast)$. For $x$ a vertex of $I_m^n$ there is an $m_f(x)$ such that $f(x)$ is a graph map $f(x) : (I_{m_f(x)}, \partial I_{m_f(x)}) \to (G, \ast)$. Let $m' = \max x \{m_f(x), m\}$. We want to define a graph map $\alpha(f) : (I_{m'}^{n+1}, \partial I_{m'}^{n+1}) \to (G, \ast)$. For that reason write $I_{m'}^{n+1} = I_m^n \times I_{m'}$. Now let

$$\alpha(f)(x, y) = \begin{cases} f(x)(y), & \text{if } x \text{ is a vertex of } I_m^n \text{ and } y \leq m_f(x), \\ \ast, & \text{otherwise.} \end{cases}$$

The construction is shown in Figure 3 where $n = 1$, $m = 10$, and $m' = 12$. The vertical line is $I_m^n$, the horizontal lines indicate the paths $f(x)$, the whole square indicates $\alpha(f)$.

**Figure 3.** The maps $f$ and $\alpha(f)$.

We claim that the map $[f] \mapsto [\alpha(f)]$ is well defined and the desired natural isomorphism.

**Well definedness:** First of all it is easy to check that $\alpha(f)$ is a graph map $\alpha(f) : (I_{m'}^{n+1}, \partial I_{m'}^{n+1}) \to (G, \ast)$. Now let $[f] = [g] \in A_n(\Omega(G))$, i.e., there exists an $A$–homotopy $H : I_m^n \times I_t \to \Omega G$ between $f$ and $g$. Now let $m' = \max x,x' \{m_f(x), m_g(x'), m\}$ and define $\overline{H} : I_m^{n+1} \times I_{m'} \times I_t \to G$ by

$$\overline{H}(x, y, t) = \begin{cases} H(x, t)(y), & \text{if } x \text{ is a vertex of } I_m^n \text{ and } y \leq m_H(x, t), \\ \ast, & \text{otherwise.} \end{cases}$$

Then $\overline{H}$ is a graph map and an $A$–homotopy between (possibly extended to a larger cube) $\alpha(f)$ and $\alpha(g)$.

**Homomorphism:** Is straightforward; similar techniques play a role that are needed to show that $A_n(G)$ is a group for $n \geq 1$.

**Surjectivity:** For $[h] \in A_{n+1}(G)$, say $h : (I_{m'}^{n+1}, \partial I_{m'}^{n+1}) \to (G, \ast)$, consider the map $f$ defined by $f(x)(y) = h(x, y)$ for $x$ a vertex of $I_m^n$, $y$ a vertex of $I_m^n$. This map is not quite what we want since it is a map $f : (I_{m'}^{n+1}, \partial I_{m'}^{n+1}) \to (\Omega G, \varphi_m)$, where $\varphi_m$ is the constant loop $I_m^n \to G$ as in Remark 7.3. Now define $f' : (I_{m'}^{n+1}, \partial I_{m'}^{n+1}) \to (\Omega G, \ast)$ by $f'(x) = \ast \in \Omega G$ for $x$ a vertex of $\partial I_{m'}^{n+1}$ and $f'(x) = f(x)$ for $x$ a vertex of $I_{m'}^{n+1} \setminus \partial I_{m'}^{n+1}$. Thanks to Remark 7.3 $f'$ is a well defined graph map and clearly $\alpha(f') = h$. 


Injectivity: Consider \( f : (\partial I^n_m, I^n_m) \to (\Omega G, \ast) \) and \( g : (\partial I^n_m, I^n_m) \to (\Omega G, \ast) \) such that \([\alpha(f)] = [\alpha(g)]\), i.e., there is an \( A \)-homotopy \( H : \partial I^n_m \times I \to G \) between (possibly extended to a larger cube) \( \alpha(f) \) and \( \alpha(g) \), where \( m'' = \max_{x,x'} \{ m_f(x), m_g(x'), m, m' \} \). Define \( \bar{H} : I^n_{m''} \times I \to \Omega G \) by \( \bar{H}(x,t) = H(x,y,t) \). Then \( \bar{H}(x,t) : I^n_{m''} \to \Omega G \) for all \( x \) and \( t \). Furthermore \( \bar{H}(x,t) = \varphi_m \) for \( x \) a vertex of \( \partial I^n_{m''} \). As before we replace \( \bar{H} \) by \( \bar{H}' \) by changing it only on the boundary and by replacing \( \alpha(f) \) by \( f \) and \( \alpha(g) \) by \( g \).

\[
\bar{H}'(x,t) = \begin{cases} 
\bar{H}(x,t), & \text{if } x \text{ a vertex of } I^n_{m''} \setminus \partial I^n_{m''} \text{ and } t \neq 0, m, \\
 f(x), & \text{if } t = 0 \text{ and } x \text{ a vertex of } I^n_m \subset I^n_{m''}, \\
g(x), & \text{if } t = m \text{ and } x \text{ a vertex of } I^n_{m'} \subset I^n_{m''}, \\
 \varphi_0, & \text{otherwise}.
\end{cases}
\]

Then by Remark 7.3 \( \bar{H}' \) is a graph map and it yields an \( A \)-homotopy between (possibly extended to a larger cube) \( f \) and \( g \).

Naturality: Let \( \psi : (G, \ast_G) \to (H, \ast_H) \) be a graph map and \( f : (I^n_m, \partial I^n_m) \to (\Omega G, \ast) \). Then for a vertex \( x \) of \( I^n_m \) we obtain

\[
\psi_\#(\alpha_G(f))(x,y) = \begin{cases} 
\psi(f(x)(y)), & \text{if } y \leq m_f(x), \\
\psi(\ast_G), & \text{otherwise},
\end{cases}
\]

\[
= \begin{cases} 
\Omega \psi(f)(y), & \text{if } y \leq m_{\Omega \psi(f)}(x), \\
\ast_H, & \text{otherwise}.
\end{cases}
\]

\[
= \alpha_H((\Omega \psi)_\#(f)).
\]

The remaining case \( n = 0 \): Consider an element \([\varphi]\) of \( A_0(\Omega G) \), i.e., a connected component of \( \Omega G \) represented by a loop \( \varphi : I \to G \). This loop defines an element \([\varphi]\) (this time a homotopy class) of \( A_1(G) \). Well definedness and bijectivity of this assignment is immediate. \( \square \)

Acknowledgements. The authors thank Rick Jardine and Vic Reiner for several helpful conversations.

References

[1] R. Atkin, An Algebra for Patterns on a Complex, I, Internat. J. Man-Machine Stud. 6, 285-307, 1974.
[2] R. Atkin, An Algebra for Patterns on a Complex, II, Internat. J. Man-Machine Stud. 6, 483–448, 1976.
[3] H. Barcelo, X. Kramer, R. Laubenbacher, and C. Weaver, Foundations of a Connectivity Theory for Simplicial Complexes, Adv. Appl. Math. 26, 97–128, 2001.
[4] A. Björner, private communication.
[5] A. Björner and V. Welker, The Homology of “k-Equal” Manifolds and Related Partition Lattices, Adv. in Math. 110, 277–313, 1995.
[6] X. Kramer and R. Laubenbacher, Combinatorial Homotopy of Simplicial Complexes and Complex Information Networks, in “Applications of Computational Algebraic Geometry,” (D. Cox and B. Sturmfels, eds.), Proc. Sympos. in Appl. Math., vol. 53, Amer. Math. Soc., Providence, 1998.
[7] P. May, Simplicial Objects in Algebraic Topology, The University of Chicago Press, Chicago, 1967.
A HOMOTOPY THEORY FOR GRAPHS

Department of Mathematics, University of Washington, Seattle, WA
E-mail address: babson@math.washington.edu

Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287–1804
E-mail address: barcelo@asu.edu

Fachbereich Mathematik, Freie Universität Berlin, Arnimallee 3–5, D-14195 Berlin, Germany
E-mail address: delong@math.fu-berlin.de

Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
E-mail address: reinhard@vbi.vt.edu