Objectives: To identify studies that evaluated psychometric properties of functional capacity tests in children and adolescents, and to verify which of these have satisfactory properties of measurement.

Data sources: Searches on MEDical Literature Analysis and Retrieval System Online (MEDLINE), Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Scientific Electronic Library Online (SciELO) databases without limiting period or language. Two investigators independently selected articles based on the following inclusion criteria: children and/or adolescent population (healthy or with cardiorespiratory diseases); and assessment of psychometric properties of functional capacity tests. Studies with (I) adult samples, (II) sample with neurological diseases, and (III) on reference values or prediction equations only were excluded.

Data synthesis: From the total of 677 articles identified, 11 were selected. These evaluated the psychometric properties of the following tests: 6-minute walk test (6MWT) (n=7); 6MWT and the 3-minute step test (3MST) (n=1); and Incremental Shuttle Walk Test (ISWT) (n=3). Reproducibility and reliability were good for 6MWT and ISWT, and moderate for 3MST. The ISWT showed high validity measures for both healthy children and children with chronic respiratory disease. The validity of 6MWT varied across studies, and should be analyzed according to the health conditions of test takers. The validity of 3MST is unclear, and further studies in pediatric population are required.

Conclusions: Most studies investigated 6MWT measurement properties. Validity of 6MWT varied according to different pediatric populations. The use of 6MWT, ISWT and 3MST tests to measure
INTRODUÇÃO

A manutenção de um estilo de vida ativo, com a participação em jogos, esportes e brincadeiras, é essencial para o desenvolvimento normal de qualquer criança — e já está estabelecido que a atividade física regular propicia qualidade de vida e benefícios no estado geral de saúde a crianças tanto saudáveis quanto com doenças crônicas. Contudo, sujeitos com doenças pulmonares podem apresentar perda de suas capacidades de exercício e consequente limitação nas suas atividades funcionais.

A resposta individual ao exercício é considerada um importante instrumento de avaliação clínica, capaz de fornecer respostas integradas dos sistemas respiratório, cardíaco, metabólico e muscular. Diversos testes avaliam a resposta do ser humano ao exercício e, hoje, o teste de exercício cardiopulmonar incremental (TCP) é considerado padrão ouro para avaliar a capacidade máxima de exercício, embora demande equipamentos de alto custo e profissionais especializados.

Já os testes submáximos de exercício têm sido utilizados para avaliar a capacidade funcional e refletem a capacidade máxima do indivíduo para realizar suas atividades de vida diária (AVD), sendo estas, em sua maioria, atividades submáximas. Entre os testes de capacidade funcional, o teste de caminhada de 6 minutos (TC6) é o mais conhecido e mostra-se capaz de apontar a limitação dos indivíduos para desenvolver as AVDs inclusive na população pediátrica.

Na avaliação de crianças e adolescentes, indica-se um teste que, além de ter aplicabilidade clínica, seja capaz de avaliar aquilo a que se propõe e que promova resultados fidedignos. Para isso, o instrumento precisa ter propriedades psicométricas satisfatórias, importante condição para se detectar os menores efeitos de um tratamento.

Assim, por meio da presente revisão sistemática da literatura, a qual tem como objetivo identificar estudos que avaliaram as propriedades psicométricas dos principais testes de capacidade funcional aplicados em crianças e adolescentes, torna-se possível verificar os testes que apresentam propriedades de mensuração qualificadas, viabilizando a sua indicação e utilização na prática clínica.

MÉTODO

Para o desenvolvimento e a exposição desta revisão, foram consideradas as recomendações para apresentação de revisões sistemáticas Preferred Reporting Items for Systematic Reviews and Meta‑Analysis (PRISMA). Procedeu-se a uma busca sistemática da literatura, realizada em abril de 2017, nas bases de dados MEDical Literature Analysis and Retrieval System Online (MEDLINE), via OVID MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), via Elton B. Stephens Company (EBSCO), e Scientific Eletronic Library Online (SciELO). Para as duas primeiras, foram criadas estratégias de busca original, elencadas no Quadro 1. Para a base de dados SciELO, foi utilizada a seguinte combinação de descritores: “criança” e “teste de exercício” e seus equivalentes em inglês “children” e “exercise test”. A busca não se limitou por outros filtros, como idioma ou data da publicação.

Foram considerados os seguintes critérios de inclusão:

1. o objetivo do estudo foi avaliar alguma propriedade psicométrica (validade, confiabilidade, reprodutibilidade, responsividade, mínima diferença clinicamente importante) de testes de capacidade funcional;

2. os testes foram avaliados em crianças e/ou adolescentes (até 19 anos, segundo a classificação da Organização Mundial da Saúde – OMS) saudáveis ou com doenças cardiorrespiratórias.

Excluíram-se as pesquisas que envolviam em suas amostras indivíduos adultos ou, ainda, aquelas com participantes com doenças neurológicas associadas. Também não fizeram parte da revista os estudos que exclusivamente estabeleceram valores de referência ou equações de predição, porém esses termos foram incluídos na estratégia de busca pelo fato de alguns avaliarem de forma simultânea alguma propriedade psicométrica dos testes.

A triagem dos estudos foi realizada por dois investigadores independentes, os quais analisaram todos os trabalhos, respeitando os critérios de inclusão e de exclusão preestabelecidos. Inicialmente, foram verificados os títulos e, quando compatíveis, tais artigos foram selecionados para avaliação dos resumos. Após análise dos resumos elencados consensualmente, os diferentes populações pediátricas. A capacidade dos testes TC6, ISWT e TD3 de mensurar mudanças clinicamente importantes em crianças e adolescentes com doenças cardiorrespiratórias é desconhecida.

Palavras-chave: Criança; Tolerância ao exercício; Validade dos testes; Reprodutibilidade dos testes.

clinically important changes in children and adolescents with cardiorespiratory diseases is still unclear.

Keywords: Child; Exercise tolerance; Validity of tests; Reproducibility of results.
manuscritos foram adquiridos e lidos na íntegra para confirmar a compatibilidade do conteúdo com os critérios exigidos para a presente revisão. Os casos de divergência quanto à exclusão de um título, resumo ou texto completo foram discutidos pelos pesquisadores até que ambos entrassem em consenso. Para garantir a inclusão de todas as publicações relevantes, foram realizadas buscas manuais nas listas de referências de todos os estudos selecionados pelos avaliadores.

Adaptou-se a lista de verificação (check-list) *Strengthening the Reporting of Observational Studies in Epidemiology* (STROBE),

Quadro 1 Estratégia de busca.

CINAHL with Full Text (EBSCO)	
1. “Pediatr*”	9. “Exercise capacity”
2. “Child*”	10. “Activity of daily living”
3. “Adolescent”	11. (MH “Functional status”)
4. “School age”	12. “Physical capacity”
5. (MH “Child, Preschool”)	13. “Functional capacity”
6. (MH “Child”) AND (1 OR 2 OR 3 OR 4 OR 5)	14. “Everyday activities”
7. (MH “Exercise test”)	15. (“Every day activities”) AND (7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14)
8. “Exercise tolerance”	16. 15 AND 6

MEDLINE via OVID	
1. Randomized controlled trials as Topic/	25. School age.mp.
2. Randomized controlled trial/	26. Child, Preschool/
3. Random allocation/	27. 22 or 23 or 24 or 25 or 26
4. Double blind method/	28. Step test.mp.
5. Single blind method/	29. Shuttle walk test.mp.
6. Clinical trial/	30. Six minute walk test.mp.
7. exp Clinical Trials as Topic/	31. Cardiopulmonary test.mp.
8. (clinic$ adj trial$1).tw.	32. Ergoespirometry.mp.
9. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8	33. Free running test.mp.
10. (Follow up adj (study or studies).tw.	34. Exercise Test/
11. (observational adj (study or studies).tw.	35. Exercise capacity.mp.
12. Longitudinal.tw.	36. Functional capacity.mp.
13. Retrospective.tw.	37. Functional status.mp.
14. review.pt.	38. Physical capacity.mp.
15. 10 or 11 or 12 or 13 or 14	39. 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38
16. 9 or 15	40. lResponsiveness.mp.
17. Case report.tw.	41. Minimal clinically important difference.mp.
18. Letter/	42. Equation reference.mp.
19. Historical article/	43. Reference Values/
20. 17 or 18 or 19	44. Reliability.mp.
21. 16 not 20	45. Validity.mp.
22. Child*.mp.	46. Reproducibility.mp.
23. Pediatr*.mp.	47. 40 or 41 or 42 or 43 or 44 or 45 or 46
24. Adolescent*.mp.	48. 21 and 27 and 39 and 47

CINAHL: Cumulative Index to Nursing and Allied Health Literature; MEDLINE: MEDical Literature Analysis and Retrieval System Online; EBSCO: Elton B. Stephens Company.
a qual engloba recomendações para melhorar a qualidade metodológica de estudos observacionais, atribuindo-se a ela pontos para caracterizar os estudos. O check-list é composto de 14 itens, os quais são estratificados ou não em subitens, totalizando 22 itens. Cada um dos itens recebeu uma pontuação proporcional, com somatória máxima de 20 pontos.

As propriedades psicométricas de cada teste foram classificadas como “boa”, “moderada”, “ruim” e “desconhecida”. A validade e a confiabilidade/reprodutibilidade foram vistas como “boas” quando a maioria dos estudos apresentou correlação ≥0,75 ou p significativo, “moderadas” de 0,40 a 0,75 e “ruim” <0,40. Com relação ao tópico outras populações, os testes investigados em mais de duas populações foram considerados “bons”; em duas populações, “moderados”; e em apenas uma população, “ruins”. Observou-se que algumas propriedades psicométricas não foram avaliadas nos estudos incluídos, às quais se atribuiu o caráter “desconhecido”.

RESULTADOS

Foi identificado o total de 677 artigos por meio das bases de dados e busca manual. Após a remoção das duplicatas, 622 artigos foram encaminhados para a seleção de títulos em pares. Destes, 101 foram considerados elegíveis para a seleção de resumos e 45 para análise final, com a leitura do artigo na íntegra. Ao final, 11 artigos foram incluídos nesta revisão. As etapas de seleção e exclusão dos artigos estão expostas na Figura 1.

Figura 1 Diagrama de fluxo: seleção dos estudos.
A maior parte dos artigos selecionados (sete) avaliou as propriedades psicométricas do TC6; um artigo avaliou tanto o TC6 quanto o teste do degrau de 3 minutos (TD3); e três avaliaram o teste Incremental Shuttle Walk Test (ISWT), ou sua adaptação, o Modified Shuttle Walk Test (MSWT). Os estudos estão descritos nos Quadros 2 e 3.

Com base nos resultados apresentados pelos estudos selecionados, elaborou-se o Quadro 4, o qual classifica cada uma das propriedades psicométricas de cada teste. Observa-se que a confiabilidade e reprodutibilidade são consideradas boas tanto para o TC6 quanto para o ISWT. Ainda, mínima diferença clínicamente importante (MDCI) e responsividade são classificadas como “desconhecidas” para todos os testes.

DISCUSSÃO

A análise das respostas cardiotorácicas em testes de exercício é uma importante ferramenta na avaliação do impacto de doenças e na monitorização da eficácia de intervenções para indivíduos de todas as idades.13,14 Deve-se considerar, no entanto, que, além de diferenças antropométricas, existem numerosas variações fisiológicas entre adultos e crianças. Aspectos fisiológicos das crianças e adolescentes estão em constante mudança; seus sistemas estão em fase de desenvolvimento e maturação e podem sofrer influência de fatores genéticos, éticos, de gênero, nível de atividade física, composição corporal, estado nutricional, condição socioeconômica, cultura, clima e localização geográfica.15 Assim, essa população tem padrão individual de modificações sistêmicas (principalmente no decorrer do estirão do crescimento e puberdade) que parece interferir no desempenho dos testes e nas respostas durante exercícios físicos.16 Isso justifica a necessidade de estudos que avaliem e discutam as propriedades psicométricas dos testes de capacidade funcional, especificamente em populações pediátricas.

Observa-se que a validade e a reprodutibilidade são as propriedades psicométricas dos testes funcionais mais investigadas na população pediátrica. A validade de um instrumento refere-se à sua capacidade de analisar o fenômeno que pretende medir; também indica o grau em que as pontuações de um instrumento são um reflexo adequado do instrumento considerado padrão-ouro. Já a reprodutibilidade indica o grau de semelhança entre as medições repetidas; a confiabilidade; e os parâmetros de concordância.17,18

A presente revisão aponta para o fato de que, entre os testes de avaliação da capacidade funcional, o TC6 é o teste de escolha da maioria dos estudos de validação na área pediátrica (crianças e adolescentes saudáveis de diferentes etnias ou raças, com obesidade, diagnosticados com fibrose cística, hipertensão pulmonar e outros), contudo medidas importantes para sua utilização clínica, como a mínima diferença clínicamente importante, ainda não foram alvo de estudos na pediatria. Essa medida refere-se à menor alteração no desempenho dos pacientes considerada relevante,19 sendo representativa de melhora clínica induzida por protocolos de reabilitação pulmonar ou outras intervenções.20

Outra questão que ainda gera dúvidas nos estudos de validação é a possível relação da distância percorrida no TC6 (DP_{TC6}) com medidas representativas da capacidade máxima de exercício nas diferentes populações pediátricas. Algumas pesquisas apresentam relações altas31 ou moderadamente altas entre o TC6 e TCP,22 já outras mostram pequenas relações.8,23 Consta-se que o TC6 parece refletir a capacidade máxima de exercício de crianças com doenças cardiorrespiratórias moderadas a graves como a fibrose cística21 e hipertensão pulmonar;22 porém, em crianças obesas23 e saudáveis,8 tal teste reflete muito pouco a capacidade máxima de exercício. Os dados apresentados por Lammers et al.22 reforçam esses achados. Os pesquisadores ressaltam existir uma relação linear significativa entre o pico do consumo de oxigênio (VO_{2pico}) e a DP_{TC6} apenas em crianças com hipertensão pulmonar que caminharam menos de 300 metros no TC6. A DP_{TCP} representou 71% da variação no VO_{2pico}, mas não houve nenhuma associação quando a DP_{ TCP} foi superior a 300 metros. Assim como sugerido por Bartels et al.,24 a resposta no TC6 parece depender tanto da população como da gravidade da doença investigada. Desse modo, rotular o TC6 como uma medida máxima ou submáxima não é justificável antes de ser realizada uma avaliação adequada da sua validade na população-alvo, incluindo pacientes leve e gravemente afetados.

O uso difundido do TC6 tanto na área científica como na prática clínica deve-se ao fato de ser um teste simples, de baixo custo, de fácil administração,18,25 além de apresentar altos índices de reprodutibilidade e confiabilidade,8,21,23,26-28 e possuir equações de predição e valores de normalidade descritos para diferentes etnias.26,29,30 Trata-se de um teste de caminhada contínua, autocadenciado, no qual normalmente é mantida velocidade constante,25 o que pode gerar certa monotonia para as crianças quando estas o realizam. Tal falta de motivação das crianças pode interferir no desempenho do teste e dificultar sua interpretação. Assim como os outros testes discutidos nesta revisão, o TC6 foi desenvolvido para a população adulta, e sua aplicação acabou sendo difundida para a área pediátrica sem modificações no protocolo de administração. Suscita-se, então, o debate sobre a necessidade de desenvolvimento (ou adaptação) de testes com componentes lúdicos e motivacionais, com o intuito de gerar mais interesse e empenho das crianças ao executá-los.

Já os testes cadenciados externamente, como o TD3 e o ISWT, têm a vantagem de não dependerem exclusivamente da motivação do paciente.32,33 No TD3 as crianças sobem e
Quadro 2 Descrição dos estudos selecionados que avaliaram as propriedades psicométricas do teste de campo (TC6).

Autor/ano	Check-list STROBE	População e amostra	Método	Propriedade Psicométrica Avaliada
Gulmans et al., 1996	15,1	Crianças e adolescentes com FC de 8 a 18 anos (média 11,1±2,2 anos) (n=15 validade) (média 14,5±2,0 anos) (n=23 reproducibilidade)	V: 1 TC6 e um teste em cicloergômetro (incremento de 10W se altura for <160 cm, ou o VEF1 <60%, ou 15 W por minuto) realizado pelo menos dois dias antes ou dois dias depois do TC6. R: 2 TC6 (corredor de 8 m, encorajamento a cada 16 m) no mesmo dia e repetidos após uma semana.	Validade • Correlação entre DP e VO_{2max} (r=0,76). Reproducibilidade • r=0,90.
Li et al., 2005	16,1	Crianças saudáveis chinesas de 12 a 16 anos (média 14,2±1,2 anos) (n=74 validade) (n=52 confiabilidade)	V concorrente: TCP máximo em esteira e TC6 com intervalo de até 2 semanas entre eles. C: TC6 foi repetido com intervalo de 2 a 4 semanas.	Validade • Correlação entre a DP TC6 e o VO_{2max} (r=0,44). Confiabilidade • ICC=0,94.
Lammers et al., 2011	14,1	Crianças com hipertensão pulmonar de 6 a 18 anos (média 13,0±3,0 anos)	V: Todos realizaram TCP máximo em cicloergômetro e o TC6.	Validade • Correlação entre a DP TC6 e VO_{2max} e VO_{2pico} (r=0,49 e r=0,40, respectivamente)
Cunha et al., 2006	12,1	Crianças com FC de 8 a 14 anos (média 11,0±1,9 anos) (n=16)	Realizados dois TC6 (corredor de 28 m) no mesmo dia, com intervalo mínimo de 30 min entre eles.	Reproducibilidade • Não houve diferença entre as DP (p=0,31), indicando ser reproduzível.
Priesnitz et al., 2009	15,1	Crianças e adolescentes saudáveis de 6 a 12 anos (média 11,7 anos)	R: Realizados dois TC6 (corredor de 30 m), com intervalo de 30 min.	Confiabilidade • ICC: 0,74.
Morinder et al., 2009	14,1	Crianças e adolescentes obesos de 8 a 16 anos (média 13,2 anos) (n=49 reproducibilidade) (n=250 validade)	V: Realizados o TC6 e um teste de esforço submáximo em bicicleta ergométrica para comparação no mesmo dia. R: Realizados dois TC6 (corredor de 70 m), intervalo médio de quatro dias entre eles.	Validade • Correlação entre a DP no TC6 com o VO_{2max} (r=0,34). Reproducibilidade • ICC=0,84.
Mandrusiak et al., 2009*	13,9	Crianças e adolescentes com FC de 7 a 17 anos (média 13,1±2,7 anos) internados por exacerbação respiratória (n=18)	Após um ou dois dias da admissão hospitalar, foi realizado um TC6 por dia em dois dias consecutivos.	Confiabilidade • ICC=0,93

*Check-list STROBE: pontuação da característica metodológica dos estudos (somatória máxima de 20 pontos); FC: fibrose cística; n: número da amostra; V: validade; VEF1: volume expiratório forçado no primeiro segundo; R: reproduzibilidade; C: confiabilidade; TC6: teste de caminhada de 6 minutos; W: watt; TCP: teste cardiopulmonar; DP: distância percorrida; VO₂: consumo de oxigênio; máx: máximo; min: minutos; m: metros; ICC: coeficiente de correlação intraclass; VO_{2LV}: consumo de oxigênio no limiar ventilatório.
Quadro 3 Descrição dos estudos selecionados que avaliaram as propriedades psicométricas dos testes de campo (TC6, ISWT/MSWT, TD3).

Autor/Ano	Check- list STROBE	População e amostra	Método	Propriedade psicométrica avaliada
Balfour-Lynn et al., 1998	13,1	Crianças com FC sintomáticas. 6–18 anos (média 12,5 anos) (n=54 validade) 12 reprodutibilidade — TD3 (n=9 reprodutibilidade — TC6)	V: realizados dois TD3 e comparados com dois TC6 (corredor 17 m), com intervalo de 30 min entre eles, todos no mesmo dia. R: TD3 e TC6 realizados em dois dias consecutivos. Para todas as análises, utilizou-se a variação dos parâmetros de SpO2, fc, grau de dispneia.	Validade • TD3 produziu significativamente maior fc e Borg comparado ao TC6. A queda na SpO2 foi similar entre os dois testes. Relação entre diminuição da SpO2 e o VEF1 basal foi similar nos dois testes (TD3 r=40,52 e TC6 r=40,51).
Selvadurai et al., 2003*	15,3	Crianças com FC de 5–17 anos (média 6,8 anos) n=35 (crianças com 7 anos ou menos, ou ainda aquelas muito debilitadas para realizar um teste shuttle run 20-m).	Todas as crianças realizaram um TCP em esteira, dois testes ISWT com análise simultânea de gases e um teste ISWT sem máscara analisadora de gases em um intervalo máximo de uma semana.	Reprodutibilidade • Não houve diferença significativa entre os dois testes ISWT com máscara ou na comparação com e sem máscara em relação ao pico de frequência cardíaca, DP, SpO2, Borg e VO2pico.
Coelho et al., 2007*	12,1	Crianças e adolescentes com FC -GFC (n=14) e saudáveis -GC (n=14) 7–15 anos -GFC (11,57±2,50) - GCT (11,28±1,85)	Cada criança realizou pelo menos dois testes com intervalo de no mínimo 30 minutos entre eles.	Reprodutibilidade • GC: DP maior no segundo teste (p=0,036). • GFC: houve diferença significativa entre o primeiro e o segundo teste. Apenas a escala de dispneia em repouso que, assim como nas crianças saudáveis, aumentou no segundo teste (p = 0,042).
Lanza et al., 2015	16,0	Crianças e adolescentes brasileiros com prova de função pulmonar normal, sem doenças crônicas (n=108) 6–18 anos (média 12±2 anos)	Dois testes ISWT foram realizados com um intervalo de 30 min entre eles.	Confiabilidade • ICC = 0,98 excelente confiabilidade da distância percorrida entre o ISWT 1 e 2.

*Apenas parte do trabalho foi apresentada; check-list STROBE: composto de 14 itens, em que cada um recebeu pontuação com somatória máxima de 20 pontos; FC: fibrose cística; n: número da amostra; TD3: teste do degrau de 3 minutos; TC6: teste de caminhada de seis minutos; MSWT: Modified Shuttle Walk Test; m: metros; min: minutos; V: validade; R: reproducibilidade; C: confiabilidade; SpO2: saturação periférica de oxigênio; fc: frequência cardíaca; TCP: teste cardiopulmonar; ISWT: teste incremental shuttle walk test; DP: distância percorrida; VO2: consumo de oxigênio; ICC: coeficiente de correlação intraclasse; GFC: grupo fibrose cística; GC: grupo controle.
descem uma plataforma com um único degrau, sendo tempo e frequência fixos. Desse modo, o teste tem como vantagens ser rápido, simples, portátil, além de requerer pouco espaço para sua execução.39 Na comparação entre o TD3 e o TC6 em crianças com fibrose cística, o TD3 parece exigir mais adaptações fisiológicas para sua execução. Balfour-Lynn et al.32 observaram aumento mais importante na frequência cardíaca e na escala de Borg após o TD3, sem diferenças na desaturação periódica de oxigênio. Na comparação entre TD3 e TCP, ainda nessas crianças com doença pulmonar leve, o TD3 parece não detectar alterações importantes, como quedas consideráveis da saturação de oxigênio periódica durante o exercício.34 Ao avaliar a viabilidade do TD3 em crianças que desenvolveram bronquiolo obliterante após transplante de medula óssea, o TD3 mostrou-se ser um teste fácil, bem tolerado e executado com sucesso pela amostra; além disso, não desencadeou hipoxemia e levou apenas uma criança ao esforço máximo.35

Existem variados protocolos do teste do degrau, os quais possuem diferenças no tempo de execução (3, 4 e 6 minutos), na cadência de subidas por minutos (96/min, 30/min, 13/min, 15/min, 17/min), na quantidade de degraus da plataforma (1 ou 2 degraus) e na dimensão dos degraus.32,35-38 A literatura ainda não apresentou equações de predição quanto ao seu desempenho nem valores de normalidade para crianças e adolescentes, fato que pode dificultar a comparação entre os estudos e a identificação de limitações funcionais durante a avaliação clínica de pacientes pediátricos.

No teste de caminhada com carga incremental, conhecido como ISWT, o indivíduo caminha indo e vindo em uma pista de 10 metros com velocidade progressiva ditada por sinais sonoros (acréscimos de 0,17 m/s a cada minuto) até não ser mais capaz de manter a velocidade requerida.31 Esse protocolo foi modificado39 e houve o aumento do teto-limite de 12 para 15 níveis de velocidade (MSWT), com a finalidade de evitar o efeito teto que os 12 níveis de velocidade poderiam criar em indivíduos saudáveis ou com limitações leves, viabilizando o alcance à exaustão pelos avaliados.40,41 Na pediatria, o ISWT mostra-se válido para avaliar a capacidade funcional e de exercício em crianças e adolescentes fibrocísticos,42 tendo alta relação com o volume de oxigênio máximo (VO2MAX). Sua reprodutibilidade foi confirmada nessa doença42,43 e em crianças saudáveis,44 Quando aplicado em asmáticos37 e em ex-prematuros, o ISWT45,46 mostrou-se sensível para identificar limitações funcionais, em comparação a controles saudáveis. Recentemente, foram estabelecidas equações de predição para o desempenho (distância percorrida) no ISWT de crianças e adolescentes brasileiros,44 o que facilita sua aplicabilidade, pois a comparação com os valores de normalidade torna prática a identificação das limitações funcionais.

Constatou-se que os três testes aqui discutidos envolvem apenas a atividade de caminhada, o que pode restringir a avaliação da influência de atividades realizadas com os membros superiores sobre a limitação nas AVD.47 Atualmente, pesquisadores têm discutido formas mais abrangentes de avaliar o estado funcional de pacientes com doenças pulmonares. Nessa linha, os testes globais, que incluem mais do que uma tarefa em sua avaliação, parecem ser a melhor escolha.48 Nesse sentido, o teste de múltiplas tarefas AVD-Glittre foi desenvolvido. Além da caminhada, esse teste inclui atividades como o sentar e o levantar de uma cadeira, o subir e descer degraus e, ainda, o movimentar objetos com os membros superiores, considerado assim um teste mais completo para avaliar o estado funcional de pacientes pneumopatas.49 Sua adaptação com componentes lúdicos para aplicação na população pediátrica (TGlittre-P) é recente e demonstrou ser reprodutível e aceitável em crianças e adolescentes saudáveis.49

Na análise da qualidade metodológica nenhum dos artigos analisados atingiu pontuação máxima na classificação. Ou seja,

Quadro 4 Propriedades psicométricas dos testes de capacidade funcional utilizados na pediatria.

Teste	Validade	Reprodutibilidade/Confiabilidade	Viabilidade	MDCI	Outras populações
TC6	😞	😊	😞	😞	😊
ISWT	😊	😊	😊	😞	😞
TD3	😞	😊	😊	😞	😞

MDCI: mínima diferença clinicamente importante; TC6: teste de caminhada de seis minutos; TD3: teste do degrau de 3 minutos; ISWT: shuttle walk test; 😊: boa; 😞: moderada; 😞: ruim; 😞: desconhecida.
nenhuma pesquisa apresentou todos os itens recomendados para melhor qualidade metodológica de estudos observacionais indicados pelo STROBE. Em média, os estudos contemplaram 70% dos itens recomendados. Observa-se que grande parte dos artigos analisados por esta revisão não pontuou no item “determinação do cálculo amostral”; pontuaram apenas aqueles que, além de verificar as propriedades psicométricas, estipularam valores de referência para o determinado teste. Nota-se que o tamanho amostral da maioria das pesquisas com doentes crônicos foi pequeno, fato que, associado à falta de determinação amostral, dificulta a capacidade de generalizar os resultados para a população de referência. Outro item negligenciado por muitos estudos foi a “definição de hipóteses preexistentes”, o que diminuiu as pontuações no STROBE. Com relação à análise da medida “validade”, a ausência de hipóteses específicas sobre as correlações esperadas entre as variáveis dificulta a interpretação dos resultados e não deixa claro se estes refletem medida esperada, no entanto ressaltamos que todos os artigos aqui revisados consideraram no mínimo 60% das recomendações para a melhor qualidade metodológica.

Na análise dos artigos para o desenvolvimento desta revisão, verificou-se que as propriedades psicométricas do TC6, TD3 e ISWT também foram estudadas em grupos de crianças e adolescentes com paralisia cerebral, distúrbios cognitivos e síndrome de Down. Porém, como essas populações apresentam outras características intervenientes no desempenho dos testes, como o nível de funcionalidade motora, o nível cognitivo e o uso ou não de órteses, optou-se pela não discussão dessas pesquisas, e sugere-se a elaboração de revisões específicas para discutir a aplicabilidade desses testes em crianças com alterações motora. Bartels et al. apontaram uma análise recente das propriedades de medida do TC6 em crianças com diferentes condições crônicas (doenças pulmonares, cardíacas, neuromusculares, osteoarticulares e outras). Esta revisão difere ao analisar as propriedades psicométricas de distintos testes de capacidade funcional utilizados na avaliação de crianças e adolescentes com doenças cardiorrespiratórias, com a finalidade de auxiliar o profissional (clínico e/ou pesquisador) na escolha do teste que melhor se ajuste às suas possibilidades (espaço físico, materiais) e que apresente medidas psicométricas adequadas para avaliar a população de seu interesse. Além disso, indica lacunas na literatura que ainda devem ser alvo de investigações, como a ausência de MDCI para o desempenho na pediatria.

Resumindo, o TC6 tem sido o teste mais estudado na população pediátrica, contudo ainda existem divergências nos resultados dos estudos de sua validação e ausência de estudos que investiguem algumas propriedades, como a MDCI. O ISWT apresenta propriedades psicométricas satisfatórias e vem sendo mais estudado na área pediátrica. Já as pesquisas sobre o TD3 com crianças e adolescentes ainda são raras, o que dificulta sua utilização nesse grupo. Fica evidente a necessidade de pesquisas que avaliem as propriedades psicométricas dos testes funcionais, promovendo segurança e credibilidade para a utilização dos desfechos destes na avaliação do estado funcional e da evolução clínica do paciente pediátrico.

CONCLUSÃO
As evidências sobre as propriedades de reprodutibilidade e confiabilidade são boas para o TC6 e ISWT e moderadas para o TD3. O ISWT mostra medidas de validade altas tanto para crianças saudáveis quanto para aquelas com doenças respiratórias crônicas. As medidas de validade do TC6 variam muito entre as populações estudadas e devem ser consideradas de maneira particular para cada condição de doença. A validade do TD3 ainda precisa ser esclarecida, sendo necessários mais estudos dirigidos à população pediátrica. Futuras pesquisas devem explorar a capacidade desses testes de mensurar mudanças significativas e clinicamente importantes para os diferentes grupos de crianças com doenças cardiorrespiratórias.

Financiamento
O estudo não recebeu financiamento.

Conflito de interesses
Os autores declaram não haver conflito de interesses.

REFERÊNCIAS

1. Cooper DM, Radom-Aizik S, Shin H, Nemet D. Exercise and lung function in child health and disease. In: Wilmott R, Bush A, Boat A, Deterding R, Ratjen F, editors. Kendig and Chernick’s disorders of the respiratory tract in children. Philadelphia: Saunders; 2012.p. 234-50.
2. Basaran S, Guler-Uysal F, Ergen N, Seydaoglu G, Bingol-Karakoc G, Ufuk Altintas D. Effects of physical exercise on quality of life, exercise capacity and pulmonary function in children with asthma. J Rehabil Med. 2006; 38:130-5.
3. Morris PJ. Physical activity recommendations for children and adolescents with chronic disease. Curr Sports Med Rep. 2008;7:353-8.
4. Pereira FM, Ribeiro MA, Ribeiro AF, Toro AA, Hessel G, Ribeiro JD. Functional performance on the six-minute walk test in patients with cystic fibrosis. J Bras Pneumol. 2011;37:735-44.
5. American Thoracic Society; American College of Chest Physicians. Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167:211-77.

6. Solway S, Brooks D, Lacasse Y, Thomas S. A qualitative systemic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest. 2001;119:256-70.

7. Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:972-7.

8. Li AM, Yin J, Yu CC, Tsang T, So HK, Wong E, et al. The six-minute walk test in healthy children: reliability and validity. Eur Respir J. 2005;25:1057-60.

9. Pilatti LA, Pedrotto B, Gutierrez GL. Psychometric properties of measurement instruments: a necessary debate. RBECT. 2010;3:81-91.

10. Kocks JW, Asjee GM, Tsigiliani IG, Kerstjens HA, Molen T. Functional status measurement in COPD: a review of available methods and their feasibility in primary care. Prim Care Respir J. 2011;20:269-75.

11. World Health Organization. Physical status: use and interpretation of anthropometry. Geneva: WHO; 1995.

12. Malta M, Cardoso LO, Bastos FI, Bastos FI, Magnanini MM, Silva CM. STROBE initiative: guidelines on reporting observational. Rev Saúde Pública. 2010;44:559-65.

13. Conover WJ. Practical nonparametric statistics. New York: Wiley; 1999.

14. Hafstrom L, Tham CC, Wittenberg C. The six-minute walk test: a measure of exercise capacity in chronic heart failure. J Clin Epidemiol. 2002;55:839-45.

15. Oliveira AC. Equação de referência do teste de caminhada de 6 minutos em crianças e adolescentes saudáveis [master's thesis]. Belo Horizonte (MG): UFMG; 2007.

16. Okuro RT, Schivinski CI. Six-minute walk test in pediatrics: the relationship between performance and anthropometric parameters. Fisioter Mov. 2013;26:219-29.

17. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on the measurement properties of measurement instruments. BMC Med Res Methodol. 2010;10:21.

18. Vet HC, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59:1033-9.

19. Crosby RD, Kolotkin RL, Williams GR. Defining clinically meaningful change in health-related quality of life. J Clin Epidemiol. 2003;56:395-407.

20. Puhu MA, Mador MJ, Held U, Goldstein R, Guyatt GH, Schunemann HJ. Interpretation of treatment changes in 6-minute walk distance in patients with COPD. Eur Respir J. 2008;32:637-43.

21. Gulmans VA, Veldhoven NH, Meer K, Helders PJ. The six-minute walking test in children with cystic fibrosis: Reliability and validity. Pediatr Pulmonol. 1996;22:85-9.

22. Lammers AE, Diller GP, Odendaal D, Tailor S, Derrick G, Haworth SG. Comparison of 6-min walk test distance and cardiopulmonary exercise test performance in children with pulmonary hypertension. Arch Dis Child. 2011;96:141-7.

23. Morinder G, Mattsson E, Sollander C, Marcus C, Larsson UE. Six-minute walk test in obese children and adolescents: reproducibility and validity. Physiother Res Int. 2009;14:91-104.

24. Bartels B, Groot JF, Terwee CB. The six-minute walk test in chronic pediatric condition: A systematic review of measurement properties. Phys Ther. 2013;93:529-41.

25. Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. Phys Ther. 2000;80:782-807.

26. Priesnitz CV, Rodrigues GH, Stumpf CS, Viapiana G, Cabral CP, Stein RT, et al. Reference values for the 6-min walk test in healthy children aged 6-12 years. Pediatr Pulmonol. 2009;44:1174-9.

27. Cunha MT, Rozov T, Oliveira RC, Jardim JR. Six-minute walk test in children and adolescents with cystic fibrosis. Pediatr Pulmonol. 2006;41:618-22.

28. Mandrusiak A, Maurer C, MacDonald J, Wilson C, Watter P. Functional capacity tests in young people with cystic fibrosis. NZ J Physiother. 2009;37:13-6.

29. Saad HB, Prefaut C, Missaoui R, Mohamed IH, Tabka Z, Hayot M. Reference equation for 6-min walk distance in healthy North African children 6–16 years old. Pediatr Pulmonol. 2009;44:316-24.

30. D’silva C, Vaithali K, Venkatesan P. Six-minute walk test-normal values of school children aged 7–12 y in India: a cross-sectional study. Indian J Pediatr. 2012;79:597-601.

31. Holland AE, Spruit MA, Troosters T, Puhu MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1428-46.

32. Balfour-Lynn IM, Prasad SA, Laverty A, Whitehead BF, Dinwiddie R. A step in the right direction: assessing exercise tolerance in cystic fibrosis. Pediatr Pulmonol. 1998;25:278-84.

33. Radtke T, Stevens D, Benden C, Williams CA. Clinical exercise testing in children and adolescents with cystic fibrosis. Pediatr Phys Ther. 2009;21:275-81.

34. Narang I, Pike S, Rosenthal M, Balfour-Lynn IM, Bush A. Three-minute step test to assess exercise capacity in children with cystic fibrosis with mild lung disease. Pediatr Pulmonol. 2003;35:108-13.

35. Arlaud K, Stremler-Le Bel N, Michel G, Dubus JC. 3-min step test: feasibility study for children with bone marrow transplantation. Rev Mal Respir. 2008;25:27-32.

36. Pitetti KH, Fernhall B, Stubbs N, Stadler LV. A step test for evaluating the aerobic fitness of children and adolescents with mental retardation. Pediatr Exerc Sci. 1997;9:127-35.

37. Gomes EL, Sampaio LM, Costa IP, Dias FD, Ferneda VS, Silva GA, et al. The relationship between performance and anthropometric values of school children aged 7–12 y in Brazil: a cross-sectional study. Rev Paul Pediatr. 2018;36(4):500-510.
40. Conçalves CG, Mesquita R, Hayashi D, Merli MF, Vidotto LS, Fernandes KB, et al. Does the incremental shuttle walking test require maximal effort in healthy subjects of different ages? Physiotherapy. 2015;101:141-6.

41. Dourado VZ, Guerra RLF, Tanni SE, Antunes LC, Godoy I. Reference values for the incremental shuttle walk test in healthy subjects: from the walk distance to physiological responses. J Bras Pneumol. 2013;39:190-7.

42. Selvadurai HC, Cooper JP, Meyers N, Blimkie JC, Smith L, Mellis CM, et al. Validation of shuttle tests in children with cystic fibrosis. Pediatr Pulmonol. 2003;35:133-8.

43. Coelho CC, Aquino ES, Almeida DC, Oliveira GC, Pinto RC, Rezende IM, et al. Comparative analysis and reproducibility of the modified shuttle walk test in normal children and in children with cystic fibrosis. J Bras Pneumol. 2007;33:168-74.

44. Lanza FC, Zagotto EP, Silva JC, Selman JP, Imperatoni TB, Zanatta DJ, et al. Reference Equation for the Incremental Shuttle Walk Test in Children and Adolescents. J Pediatr. 2015;167:1057-61.

45. Smith LJ, van Asperen PP, McKay KO, Selvadurai H, Fitzgerald DA. Reduced exercise capacity in children born very preterm. Pediatrics 2008; 122: 287‑93.

46. Tsopanoglou SP, Davidson J, Goulart AL, Barros MC, Santos AM. Functional capacity during exercise in very-low-birth-weight premature children. Pediatr Pulmonol. 2014;49:91-8.

47. Skumlien S, Haglund T, Bjørtuft Ø, Ryg MS. A field test of functional status as performance of activities of daily living in COPD patients. Respir Med. 2006;100:316-23.

48. Janaudis-Ferreira T, Beauchamp MK, Robles PG, Goldstein RS, Brooks D. Measurement of activities of daily living in patients with COPD: a systematic review. Chest. 2014;145:253-7.

49. Martins R. Validade, confiabilidade e determinação de equações de referência para o teste de AVD-Glittre em crianças [master’s thesis]. Florianópolis (SC): UFSC; 2014.

50. Verschuren O, Takken T, Ketelaar M, Gorter JW, Holders PJ. Reliability and validity of data for 2 newly developed shuttle run tests in children with cerebral palsy. Phys Ther. 2006;86;1107-17.

51. Thompson R, Beath T, Bell J, Jacobson G, Phair T, Salbach NM, Wright F. Test–retest reliability of the 10 ‑ metre fast walk test and 6‑minute walk test in ambulatory school‑aged children with cerebral palsy. Dev Med Child Neurol. 2008;50:370‑6.

52. Groot JF, Takken T, Gooskens RH, Schoenmakers MA, Wubbels M, Vanhees L, et al. Reproducibility of maximal and submaximal exercise testing in “normal ambulatory” and “community ambulatory” children and adolescents with spina bifida: which is best for the evaluation and application of exercise training? Phys Ther. 2011;91:267‑76.

53. Verschuren O, Zwinkels M, Ketelaar M, Son FR, Takken T. Reproducibility and validity of the 10‑meter shuttle ride test in wheelchair‑using children and adolescents with cerebral palsy. Phys Ther. 2013;93:967-74.