RadSigBench: a framework for benchmarking functional genomics signatures of cancer cell radiosensitivity

O'Connor, J. D., Overton, I. M., & McMahon, S. J. (2022). RadSigBench: a framework for benchmarking functional genomics signatures of cancer cell radiosensitivity. Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbab561

Published in:
Briefings in Bioinformatics

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2022 the authors. Published by Oxford University Press
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
RadSigBench: a framework for benchmarking functional genomics signatures of cancer cell radiosensitivity

John D. O’Connor, Ian M. Overton and Stephen J. McMahon

Corresponding authors: Ian M. Overton, Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast BT9 7AE, UK. Tel.: +44(0)2890972802, E-mail: i.overton@qub.ac.uk; Stephen J. McMahon, Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast BT9 7AE, UK. Tel.: +44(0)2890972620, E-mail: stephen.mcmahon@qub.ac.uk

Abstract

Multiple transcriptomic predictors of tumour cell radiosensitivity (RS) have been proposed, but they have not been benchmarked against one another or to control models. To address this, we present RadSigBench, a comprehensive benchmarking framework for RS signatures. The approach compares candidate models to those developed from randomly resampled control signatures and from cellular processes integral to the radiation response. Robust evaluation of signature accuracy, both overall and for individual tissues, is performed. The NCI60 and Cancer Cell Line Encyclopaedia datasets are integrated into our workflow. Prediction of two measures of RS is assessed: survival fraction after 2 Gy and mean inactivation dose. We apply the RadSigBench framework to seven tissues, is performed. The NCI60 and Cancer Cell Line Encyclopaedia datasets are integrated into our workflow. Prediction of two measures of RS is assessed: survival fraction after 2 Gy and mean inactivation dose. We apply the RadSigBench framework to seven prominent published signatures of radiation sensitivity and test for equivalence to control signatures. The mean out-of-sample R² for the published models on test data was very poor at 0.01 (range: −0.05 to 0.09) for Cancer Cell Line Encyclopedia and 0.00 (range: −0.19 to 0.19) in the NCI60 data. The accuracy of both published and cellular process signatures investigated was equivalent to the resampled controls, suggesting that these signatures contain limited radiation-specific information. Enhanced modelling strategies are needed for effective prediction of intrinsic RS to inform clinical treatment regimes. We make recommendations for methodological improvements, for example the inclusion of perturbation data, multomics, advanced machine learning and mechanistic modelling. Our validation framework provides for robust performance assessment of ongoing developments in intrinsic RS prediction.

Keywords: prediction modelling, cancer, transcriptomics, radiation therapy, radiosensitivity

INTRODUCTION

Radiation therapy (RT) has been used as a treatment for cancer for over 120 years [1, 2]. The vulnerability of human cells to ionising radiation was realised quickly after the discovery of X-rays and led to their use in the treatment of malignancies [3]. Today, around 50% of cancer patients receive RT at some point during their treatment, often combined with chemotherapy and surgery [4]. The development of RT has been multifaceted with improvements in dose delivery technology (for example, high-energy linear accelerators), three-dimensional imaging and treatment planning for improved precision in dose delivery to the tumour. This has enabled treatments to be delivered while reducing dose to normal tissue and associated side-effects [5]. However, despite this physical personalisation, biological personalisation in radiotherapy remains limited.

Genomic information offers great potential for optimisation of cancer treatment, partly due to rapidly decreasing sequencing costs [6]. Indeed, genetic analysis has revealed considerable diversity underpinning tumour biology [7, 8]. However, in contrast to targeted chemotherapy [9], attempts at genome-driven biological personalisation of radiotherapy have not yet translated to clinical practice. Although some transcriptome-based tumour radiosensitivity (RS) predictors have been tested in patient cohorts, they have performed poorly in independent in vitro validation leading to debate concerning their accuracy and specificity to radiation response [10, 11]. In this work, we review a selection of prominent RS prediction models and evaluate their performance in two different in vitro datasets [12, 13]. Response to radiation exposure is heterogeneous across cell lines and tumours [14–16]. It is believed that two of the key factors, which determine these responses, are intrinsic RS and proliferation status.

Intrinsic RS describes the sensitivity of individual cells to ionising radiation, typically determined through clonogenic assays, and is primarily governed by the cellular response to DNA damage. In particular, the quantity of a complex form of DNA damage, called double strand breaks (where both strands of the DNA
molecule are severed in close proximity), is a key factor determining cell survival [17]. The cell cycle distribution of irradiated cells is also important, affecting both the complexity of radiation-induced damage and the repair mechanisms available to the cell, conferring radioresistance in S-phase and sensitivity in late G2 and mitosis [17]. Alterations in DNA damage repair pathways are characteristic of cancer, driving differences in intrinsic RS across tissues, cancer types and individuals [18]. Mutations in key DNA damage repair genes are well-established risk factors for cancer development and influence clinical decision making (for example BRCA mutation in breast cancer), but equivalent applications in prediction of response to radiation treatment have not reached the clinic [9–11].

Within tumours, higher cell proliferation rates generally require increased radiation dose to achieve equivalent tumour control probability [19]. Proliferation may be measured using the mitotic index and by the number of cells in the S-phase of the cell cycle [20]. Active proliferation may also change repair and cell death pathways due to changing cell cycle distributions. Thus, while many gene expression signatures have been developed using in vitro measurements of radiation sensitivity, proliferation may be a confounding factor when these signatures are applied for patient stratification. Notably, Venet et al. [21] showed that a large portion of published breast cancer signatures were no longer associated with clinical outcomes when an indicator of proliferation was accounted for.

Measuring tumour cell RS

RS is commonly measured in vitro with the clonogenic assay, where a population of tumour cells is prepared and divided into two sets, and one is irradiated, while the other serves as a control [22]. After a defined period (usually 1–3 weeks), cells forming colonies of over 50 cells are deemed clonogenic. The surviving fraction is then calculated by the ratio of the plating efficiencies for the treated condition relative to untreated cells. Under normal exposure conditions, this is typically considered to reflect the intrinsic RS of the cell line.

Cell survival (S) after exposure to radiation dose (D) is typically characterised by a linear-quadratic model (Eq. 1) from which several parameters may be derived to characterise cellular responses

\[S = e^{-\alpha D - \beta D^2}. \] (1)

These include the fitting parameters from the linear quadratic model (\(\alpha, \beta\)), survival fraction at 2 Gy (SF2) and the integral of the dose–response curve (mean inactivation dose; MID). These values have shown utility in predicting clinical outcomes such as survival and recurrence [23]. SF2 was reported to be independent of T and N-category, age and sex, although the same study found negligible correlation between in vitro measurements of RS and in vivo loco-regional tumour control, which may reflect intratumoural heterogeneity [24, 25].

The clonogenic assay is time-consuming, making the large-scale assessment of a diverse range of cell lines difficult. However, a recently developed high-throughput RS assay based upon a luminescent readout of ATP levels was used to compare irradiated cells to controls and showed good agreement with clonogenic survival at doses greater than 2 Gy [26].

Matched RS and genomics datasets

Data characterising the genetic background of cancer cells is publicly available from a variety of well-maintained repositories; availability of matched RS measurements is the limiting factor in the development of RS predictors. Identification of genetic determinants of RS has focused on targeted investigations in individual cell lines, together with some interrogation of resources such as the NCI60 and the Cancer Cell Line Encyclopedia (CCLE) [12, 13]. Although both of these cell-line datasets were initially developed for anti-cancer drug screening, subsequent characterisation of their response to radiation has led to them becoming the largest and most frequently employed datasets in tumour RS modelling.

The NCI60 is a panel of 60 cell lines covering lung, skin, blood, colon, central nervous system (CNS), ovary, breast, prostate and kidneys cancers [13], with detailed genomic characterisation at the DNA, RNA and protein level available, including radiation-induced changes to the transcriptome [16, 27]. Clonogenic RS data have been available for the NCI60 for a number of years [14, 16], and consequently, the NCI60 forms the basis for most of the cell line RS studies described here; however, the relatively small sample size hinders validation on held-out, independent test data. The diversity in tissue-of-origin across the NCI60 may also have contributed to previously reported poor performance for some RS signatures [10, 11].

The CCLE also provides rich functional genomics data [mutations, copy number variations (CNVs), RNA microarray and RNAseq] for a significantly larger number of cell lines [12] and has recently [15] been complemented with RS measurements (n = 533). Although some cancers are underrepresented, CCLE represents the largest integration of radiogenomic data to date and offers opportunity for testing of previously developed signatures with an increased sample size.

RS gene signatures—models and validation

In vitro RS measures described in the previous sections are not amenable to direct clinical use given difficulties in culturing primary tumour cells [23]. Molecular studies have the advantage of both revealing mechanisms underpinning RS and acting as biomarkers for clinical applications. In this section, we discuss the development and validation of published RS gene signatures from in vitro RS data.
An early stage in the modelling workflow for signature development applies feature selection to determine differentially expressed genes between radiosensitive and radioresistant phenotypes. The majority of RS gene signatures to date have used microarray gene expression from the NCI60 dataset to identify differentially expressed genes according to RS (SF2) (Table 1). Many candidate RS prediction models have focused upon pan-cancer prediction (i.e. agnostic to anatomical site), which may result from necessity rather than design because each cancer site is represented by fewer than 10 samples. Significance analysis of microarrays is frequently employed with control for false positives by false discovery rate (FDR) and often a minimum fold-change requirement [11, 14, 28, 29]. Feature selection may be informed by functional annotation using Gene Set Enrichment Analysis, the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, Ingenuity pathway Analysis or Expression Analysis Systematic Explorer [16, 28, 29] to identify the overrepresentation of genes involved in functions related to radiation response and DNA damage (Table 1). Some studies fitted a predictive model [11, 14, 29], while others were limited to gene signature discovery [16, 28, 30] (Table 1). Models aimed at prediction ranged in complexity from a linear regression model of 10 'hub' genes [14] to more involved machine learning approaches such as a support vector machine (SVM) with 129 genes as features [29]. Importantly, among the studies considered here, only one reported parameters sufficient for direct replication of their prediction model [14].

Previous studies have taken two broad approaches for signature validation: assessment on held out in vitro data, or clinical outcome prediction. The Eschrich et al. model was tested on 12 held out cell lines from the NCI60; the initial publication reported a negative correlation between measured and predicted SF2 values [10, 14]. The Eschrich et al. model was further tested independently on cervix and HNSCC cell lines and showed no statistically significant predictive power [11]. Models trained using HNSCC and cervical cell lines also showed poor ability to separate high and low SF2 values when implemented in the NCI60 dataset [11]. Despite poor performance on held out in vitro data, several signatures have shown potential to predict outcome in clinical studies. However, attribution of potential clinical value to the signatures’ ability to predict intrinsic RS is difficult, given biological confounding factors and the clinical differences between treatment groups [21, 29, 31–37].

Summary and aims
RS prediction models have been developed based on small sample, heterogeneous datasets, with limited independent verification. While some published signatures can separate clinical trajectories [14, 29], in most studies, the potential confounding effects of other biological pathways governing tumour response, such as proliferation, have not been considered. Therefore, it is difficult to definitively attribute the models’ clinical capabilities to the prediction of the underlying RS. Additionally, performance differences across tissues have not been well characterised owing to small sample sizes.

Here, we present the RadSigBench framework to study the above considerations and demonstrate its use with two relatively large cancer cell line datasets. Specifically, we consider the following:

(i) Do published RS predictors outperform models generated by uniformly randomly resampling from all genes on the microarray?
How does RS prediction using published gene signatures compare to key cellular process signatures?

How do RS models perform across cells from different tissues or anatomical sites?

METHODS

Gene expression data for RS prediction

Microarray (Affymetrix; HG U133 Plus 2.0) data (RMA normalised) were downloaded from the CCLE (https://portals.broadinstitute.org/ccle) and cell line identifiers were used for matching with published RS measures (MID) [15]. Gene expression data from the HG U133 Plus 2.0 chip were also downloaded for NCI60 ([38]; GSE32474) and matched with published RS data (SF2) [49]. ProbeSets were annotated to gene symbols according to the Affymetrix specification for HG U133 Plus 2.0. For published models providing specific ProbeSet IDs, expression data were extracted for use in evaluation [11, 14]. For published models reporting only gene symbols, ProbeSets representing the same gene symbol were averaged using the `limma` package in R [16, 28–30]. Genes that could not be mapped were excluded; details are reported in Table S1 (see Supplementary Data available online at http://bib.oxfordjournals.org/).

Published signature implementation

We chose area under the dose–response curve (MID) for analysis with CCLE data, which was previously shown to have good agreement with clonogenic survival [26], while SF2 was used with NCI60 since it is the most common RS measure taken for the training of previously published models (Table 1). The list of genes for each signature is provided along with code in the GitHub repository (https://github.com/SJMcMahonLab/RadSigBench). The benchmarking workflow is outlined in Figure 1. Across all published signatures, only Eschrich et al. [14] provided both a model and all model parameters, enabling it to be used directly for benchmarking against SF2 in the NCI60 cell lines. Since model parameters were not reported in the Zhang et al. [29] model, we retrained using the original features and model classes [i.e. Partial Least Squares (PLS) followed by SVM] from the Zhang et al. model, we retrained the principal components regression method described in the Published signature implementation section.

Resampled signatures and intercept only models

Since previous work has shown that randomly resampled genes correlate with clinical outcome in cancer [21], we applied this approach in order to develop negative control signatures. The accuracy of the negative control signatures at different sizes (number of genes) thus provides a comparator for benchmarking potential RS signatures. Published signatures with similar accuracy to the resampled signatures are unlikely to contain significant biological information relevant to intrinsic RS response.

The CCLE data [12] were analysed as described above. Evaluation with CCLE data required retraining since all studies which reported predictive models were developed to predict SF2, while CCLE gave MID as the RS measure. The originally published model classes remained the same for the Eschrich et al. (i.e. linear regression on ranked expression) and Zhang et al. signatures (i.e. PLS and SVM) [14, 29].

Cellular process signatures

In order to provide context for the error values of published signatures, the RadSigBench framework incorporates signatures representative of biological pathways that have been previously identified as important in radiation response. While not exhaustive, this approach seeks to evaluate the predictive performance of genes from key pathways against signatures trained using RS data. Genes representing cellular processes known to be involved in radiation response were obtained from the Reactome database (release #77) [39]. The selected pathways were Apoptosis (R-HSA-109581.3), Autophagy (R-HSA-9612973.2), Cell Cycle Checkpoints (R-HSA-69620.2), Mitosis (R-HSA-69278.4), Chromosome Maintenance (R-HSA-73886.2), DNA repair (R-HSA-73894.3), DNA Replication (R-HSA-69306.5) and Translation (R-HSA-72766.4). In addition, in order to explore if there is any correlation between proliferation and in vitro RS, we took a proliferation signature from a previous study (https://doi.org/10.1371/journal.pcbi.1002240.s002) which selected the top 1% of genes most correlated (Pearson correlation) to PCNA [21]. This proliferation signature is an established confounder in associations between the transcriptome and breast cancer outcomes [21]. The predictive ability of the cellular process signatures was assessed using the principal components regression method described in Published signature implementation section.

Data available online at http://bib.oxfordjournals.org/.

Absolute difference between the measured and predicted values (absolute error; AE) was taken for performance evaluation and mean AE (MAE) calculated for overall model performance.

The CCLE data [12] were analysed as described above. Evaluation with CCLE data required retraining since all studies which reported predictive models were developed to predict SF2, while CCLE gave MID as the RS measure. The originally published model classes remained the same for the Eschrich et al. (i.e. linear regression on ranked expression) and Zhang et al. signatures (i.e. PLS and SVM) [14, 29].

Cellular process signatures

In order to provide context for the error values of published signatures, the RadSigBench framework incorporates signatures representative of biological pathways that have been previously identified as important in radiation response. While not exhaustive, this approach seeks to evaluate the predictive performance of genes from key pathways against signatures trained using RS data. Genes representing cellular processes known to be involved in radiation response were obtained from the Reactome database (release #77) [39]. The selected pathways were Apoptosis (R-HSA-109581.3), Autophagy (R-HSA-9612973.2), Cell Cycle Checkpoints (R-HSA-69620.2), Mitosis (R-HSA-69278.4), Chromosome Maintenance (R-HSA-73886.2), DNA repair (R-HSA-73894.3), DNA Replication (R-HSA-69306.5) and Translation (R-HSA-72766.4). In addition, in order to explore if there is any correlation between proliferation and in vitro RS, we took a proliferation signature from a previous study (https://doi.org/10.1371/journal.pcbi.1002240.s002) which selected the top 1% of genes most correlated (Pearson correlation) to PCNA [21]. This proliferation signature is an established confounder in associations between the transcriptome and breast cancer outcomes [21]. The predictive ability of the cellular process signatures was assessed using the principal components regression method described in Published signature implementation section.

Resampled signatures and intercept only models

Since previous work has shown that randomly resampled genes correlate with clinical outcome in cancer [21], we applied this approach in order to develop negative control signatures. The accuracy of the negative control signatures at different sizes (number of genes) thus provides a comparator for benchmarking potential RS signatures. Published signatures with similar accuracy to the resampled signatures are unlikely to contain significant biological information relevant to intrinsic RS response.

Control signatures were produced for both datasets by resampling from the ProbeSet-averaged data (n = 20 068 genes). For a given signature size, 500 different control signatures were resampled with replacement using the 'sample' function in R-base, and RS models were fitted...
Figure 1. Workflow for benchmarking published signatures on CCLE and NCI60 data. Model training was dependent on whether a predictive model was reported in the paper. If not (‘NO’ route above), a principal components regression method was used to build a predictive model on the training data. This model was then applied to the held-out test set to predict the RS measure using the number of principal components that was closest to 80% of variance covered in the training set. If a predictive model was reported (‘YES’ route above) and the RS measure was the same (for example, SF2 in NCI60), the model was implemented exactly as reported (for example, Eschrich et al. model) or trained using the same model classes where parameters were not available (for example, Zhang et al. model). When the RS measure was not the same as originally published (for example, MID in CCLE), models were retrained using the original model classes (for example, linear model with ranked expression for ten hub genes in Eschrich et al. model).

using the principal components regression method. Sixteen different sizes of control signature were generated, matching the seven published signatures (i.e. 10, 19, 31, 49, 97, 129 and 168 genes) and the nine cellular process signatures (i.e. 114, 127, 131, 146, 182, 272, 289, 306 and 546 genes). The median accuracy (by MAE) signature at each size was used for performance comparison. The 95% confidence interval for MAE was calculated from the performance of the median accuracy signature on each cell line. A further negative control model was also fitted using the intercept only, which is equivalent to taking the mean value of the training data as a fixed prediction for new data.

Statistical testing
All data analysis was performed using R 4.0.3 [40] with the limma [41] package from the Bioconductor repository [42], as well as the data.table [43], reshape2 [44], Rfast [45], caret [46] and e1071 [47] packages. Visualisations were produced using the ggplot2 [48], ggrepel [49], GGally [50] and ggpubr [51] packages. Published and cellular process signatures were compared (by MAE) to median accuracy control signatures of the same size using a two one-sided tests (TOST) procedure from the TOSTER package [52]. The smallest effect size of interest was set to ±0.1 for both SF2 and MID. A value of 0.1 was previously used in the development of the Eschrich et al. [14] model given that it is approximately equal to the reliability of the clonogenic assay. The same value was used for CCLE here because a change of 0.1 Gy in MAE is smaller than the inter-experimental variation in MID reported between different studies [53]. The TOST paired t-test function was used with an alpha value of 0.003 (0.05 divided by 16 to correct for multiple comparisons). Out-of-sample R^2 was calculated for the published models, which may be negative in cases where the mean of the data is closer to observations than the model predictions (i.e. sum of the squared residuals is greater than total sum of squares). The correlation between accuracy and the number of genes in control signatures and MAE was assessed using linear regression. The association between sample size and MAE variation across models was also assessed using linear regression (lung cell lines were excluded from the model as the sample size was an outlier).

RESULTS
Measures of RS from NCI60 and CCLE showed considerable differences in mean and standard deviation between tissues (Figure 2). The performance of seven published RS signatures was compared with resampled negative control signatures, cellular process signatures and an intercept-only model (Figure 3). The control signatures showed a modest improvement in predictive performance with increasing size and MAE significantly decreased from 10 to 546 genes ($P < 0.001$). Errors for
The mean of all cell lines is shown as a red dashed line. A wide range is seen within and across sites for both MID (top) and SF2 (bottom). Autonomic Ganglia, soft tissue, bone, endometrium, breast and biliary tract had the largest deviation from the mean in CCLE. Breast cell lines also deviated considerably from the overall mean in the NCI60, and blood cell lines had a very large difference compared to other sites.

cellular process signatures were equivalent to the negative control signatures, suggesting difficulty in accurate prediction of in vitro RS in the NCI60 and CCLE data using genes linked to processes known to be involved in radiation response of the cell. The accuracy of all signatures fell within the 95% CI of the control signatures (Figure 3). Additionally, all published and cellular process models were equivalent to the median control signature within the bounds of −0.1 and 0.1, i.e. −10 to 10% in SF2 for NCI60 and −0.1 to 0.1 Gy for MID in CCLE (Figure 4). The mean out-of-sample R^2 for the published models on test data was very low at 0.01 (range: −0.05 to 0.09) for CCLE and 0.00 (range: −0.19 to 0.19) in the NCI60 data (Table S2, see Supplementary Data available online at http://bib.oxfordjournals.org/).

The MAE for each published model over all tissues ranged from 0.849 to 0.921 Gy for MID in the CCLE dataset and from 0.155 to 0.188 for SF2 in the NCI60 dataset (Table 2). Averaging MAE for each tissue over all RS models in CCLE cells highlighted differences, with cells derived from the urinary tract being predicted the best (MAE = 0.66) and those from the salivary gland (MAE = 1.31) the worst on average (Table 2). The equivalent best and worst tissues in the NCI60 data were prostate (MAE = 0.08) and blood (MAE = 0.25) (Table 2). Prediction error was similar for individual tissues for all models in the CCLE (Figure 5), particularly in those with large samples (for example lung and large intestine). Sites with lower sample sizes in CCLE and NCI60 showed more variation between models (Figures 4, 5 and 6; NCI60: $P = 0.03$, CCLE: $P < 0.01$). In the CCLE, a greater difference between mean tissue RS and the mean RS across all tissues (Figure 2) was correlated with MAE in 4/7 published models ($P < 0.05$) (Figure S4, see Supplementary Data available online at http://bib.oxfordjournals.org/). The variation in RS for each tissue also correlated with MAE in 4/7 models.
for the CCLE (Figure S4, see Supplementary Data available online at http://bib.oxfordjournals.org/; P < 0.01). Although there were indications of similar trends in the NCI60 data, these were not significant, possibly due to the low sample size (Figure S5, see Supplementary Data available online at http://bib.oxfordjournals.org/).

DISCUSSION

We present the RadSigBench framework for assessing the accuracy of transcriptomic predictors of intrinsic RS in the frequently utilised CCLE and NCI60 datasets and apply it to seven published models. To help evaluate performance, signatures based on resampled genes and an intercept-only model were developed as negative controls. Cellular process signatures were also investigated to evaluate the predictive power of genes in processes believed to be associated with RS. Neither the published RS signatures nor the cellular processes evaluated had better performance than the resampled control signatures in both CCLE and NCI60 datasets. Assessment of predictions by tissue of origin showed substantial variation, suggesting potential for model improvements by incorporation of anatomical location.

Model comparison

Correlations between predictions from the studied models were weak to moderate in both the CCLE and NCI60 datasets. Better performing models showed greater correlation with each other than models with lower performance (Figures S2 and S3, see Supplementary Data available online at http://bib.oxfordjournals.org/). Inclusion of a greater number of genes within the control signatures was associated with decreased error. The published signatures had performance equivalent to the resampled control signatures in both datasets. The Eschrich et al. [14] model was trained on NCI60; therefore, the poor performance on this dataset is unexpected. However, we note that the error values reported here are in line with those given in the original publication [14] and in independent validation [11, 54]. High error rates for blood cell RS prediction have been previously reported and were reiterated here, which may be due to the known high rates of apoptosis following irradiation of haematological cell lines, coupled with underrepresentation in training data [14]. Errors for Zhang et al. (2014) were much larger than reported in the original work (RMSE = 0.01), suggesting overfitting in the original analysis. Interestingly, this signature has previously showed utility in separating clinical cohorts by outcome, aligning with previous work demonstrating that the expression of randomly resampled genes may predict cancer patient trajectories [29]. The use of appropriate control models in our framework provides context to previously reported error values that were considered acceptable (for example the Eschrich et al. signature [14]), while evaluation on the test data suggests that the error rate was underestimated in some models (for example the Zhang et al. model [29]).

In addition to modelling methods, measurement protocols for RS and gene expression may contribute to higher error on replication. Differences between measured in vitro RS values can result from experimental protocol divergence (for example cell culture conditions) and inter-observer error. Although the coefficient of variation for SF2 from clonogenic assay is below 30% for A549 cells, RS values had a large range across published articles and are associated with seeding time [53]. Disparity could also arise during microarray data processing (for example the use of different background correction and normalisation techniques).

Some relatively simple steps using existing data (for example incorporation of site-to-site differences and appropriate null hypotheses) may increase the performance of signatures aiming to predict in vitro cell line RS. The poor performance of the models evaluated, including cell process signatures, could reflect a limitation of steady-state gene expression data for...
Table 2. MAE for predicted RS across anatomical sites. Data are presented for the CCLE (MID) and NCI60 (SF2) databases and are sorted by the highest mean error over all models for each dataset. The three-colour scale represents error values from blue (minimum) though white (50th percentile) to yellow (maximum). Almost all of the models examined had worst performance on tissues with outlying RS values, including Autonomic Ganglia, Breast and Blood.

Site	Sample size	Eschrich	Hall	Zhang	Kim	Amund SD	Amund SF2	Tewari	All models
Salivary Gland	2	1.028	1.232	1.291	1.586	1.037	1.480	1.575	1.311
Auto Ganglia	8	1.396	1.261	1.597	1.248	1.377	0.921	1.292	1.299
Soft Tissue	15	1.173	0.882	1.277	1.002	1.095	0.912	1.155	1.071
Breast	28	0.969	1.008	1.082	1.116	1.040	1.078	1.116	1.059
L. Intestine	43	0.968	1.035	1.021	0.974	1.021	0.915	0.942	0.982
Ovary	39	0.997	0.976	0.950	1.027	0.899	0.984	0.961	0.961
Endometrium	23	0.961	0.912	1.050	0.937	0.978	0.721	1.056	0.945
Kidney	16	0.873	0.956	0.922	0.983	1.020	0.997	0.836	0.941
UADT	24	0.921	0.976	0.894	0.902	0.935	0.872	0.989	0.927
Biliary Tract	6	1.044	0.951	1.025	0.798	0.890	0.794	0.771	0.896
Prostate	4	0.848	0.933	0.873	0.871	0.836	0.825	0.894	0.894
Liver	20	0.828	0.860	0.870	0.792	1.043	0.844	0.818	0.865
Lung	102	0.906	0.935	0.857	0.812	0.824	0.821	0.856	0.859
CNS	37	0.852	0.775	0.870	0.902	0.823	0.831	0.849	0.843
Skin	36	0.875	0.881	0.805	0.831	0.772	0.844	0.840	0.835
Pancreas	31	0.790	0.923	0.739	0.777	0.781	0.753	0.842	0.801
Oesophagus	22	0.705	0.967	0.704	0.831	0.779	0.830	0.743	0.794
Bone	13	0.745	0.808	0.970	0.581	0.841	0.695	0.762	0.786
Thyroid	9	0.770	0.807	0.648	0.773	0.810	0.903	0.781	0.785
Stomach	19	0.755	0.788	0.769	0.801	0.668	0.795	0.854	0.775
Pleura	7	0.793	0.769	0.636	0.736	0.718	0.706	0.838	0.742
Urinary Tract	19	0.655	0.750	0.599	0.617	0.666	0.646	0.704	0.663
All sites	523	0.886	0.921	0.899	0.875	0.849	0.849	0.899	0.899

In vitro and clinical discrepancy

Tumour response is believed to depend on both intrinsic RS and cellular proliferation. We assessed the proliferation marker PCNAsig here in order to investigate any correlation between proliferation and intrinsic RS in vitro. No relationship between proliferation and RS was seen, which could reflect in vitro experimental conditions (e.g. the clonogenic assay is typically performed when all cells are cycling and does not depend on cells to undergo division). However, previous work shows that PCNAsig is indicative of clinical outcomes [21], suggesting that proliferation might act independently of intrinsic RS to determine tumour response. Since >50% of the transcriptome in breast cancer correlates with proliferation, it is likely that many genes identified as indicative of intrinsic RS in vitro might also reflect proliferation in vivo, which may act as a confounder in clinical validation [21]. Previous studies have provided evidence for predictive (as opposed to prognostic) capacity of radiation sensitivity signatures by showing their association in RT-treated groups and not in no RT groups (or interaction between signature and RT/noRT); although some covariates are adjusted for, clinical differences between RT/noRT patients may remain a confounder [32, 35]. Other physiological features present in clinical tumours, which are not found in vitro, may further impact on the relationship between intrinsic RS and tumour control—most notably hypoxia, which has been shown to impact prediction of the dynamic behaviour of cell populations. Indeed, perturbation time series data [55], as well as multiomics, protein abundance and post-translational modifications have proven valuable for cancer drug sensitivity models [56] and are likely to enable improved prediction of intrinsic RS. In contrast to the relatively straightforward modelling approaches employed in the signatures evaluated here, methods such as deep learning and executable modelling with multimodal data are also expected to result in better performance [57, 58].
Figure 5. Performance of published models in predicting MID in the CCLE dataset for 20 anatomical locations. Only those with more than five samples are shown. Differences between models within tissue were small, particularly where there were a large number of cell lines, for example in lung. Differences between tissues were larger; some sites were predicted relatively poorly across almost all models (for example, autonomic ganglia), in contrast to other tissues that had relatively low error rates (for example, urinary tract and pleura).

Figure 6. Performance of RS models across nine anatomical locations in the NCI60 dataset. The seven models evaluated are shown on the x-axis and MAE for SF2 prediction is shown on the y-axis. We found greater differences within the NCI60 anatomical sites than for CCLE (Figure 5), possibly due to smaller sample sizes for the NCI60 dataset. The models examined had generally poor performance on the blood cell lines compared with other sites.

significantly on tumour outcomes and gene expression profiles [59].

Future directions

While some models based on clinical data have incorporated multiomics, cell line derived models have typically utilised gene expression microarray data. One study [60] took CNV and gene expression data from NCI60 to build a model predictive of SF2, reporting modest improvement on previous work with expression only [29]. Inclusion of multiomics data may improve RS prediction but will require more computational resource and added complexity in validation both on independent in vitro data and patient cohorts.

There is scope for considerable improvement in RS prediction for cell lines using existing data (Figure S6, see Supplementary Data available online at http://bib.oxfordjournals.org/). Although the larger sample size in CCLE did not improve predictions here relative to NCI60, increased sample diversity is likely to be beneficial for more complex models incorporating tissue differences and perturbation data. Many existing models were
trained on NCI60 where differences in responses between tissues may hinder training and validation of predictive models, given the low sample sizes for many tissues. High-throughput measures of RS on CCLE cell lines could aid the development of predictive approaches [15]. Larger samples may also allow for the use of tissue site as variable for estimating RS, which might have a considerable impact upon performance; indeed, previous models have shown improved performance when some tissues were removed; for example the Eschrich et al. [14] model and leukaemia. Training of future signatures may also benefit from integration of genes identified across multiple platforms [28]. This approach may be extended to assays of in vitro RS (for example clonogenic or high throughput) and the parameters chosen to represent cell vulnerability to radiation (for example SF2, SF8 and MID). Time-lapse measurement of RS in cell culture is likely to provide more informative endpoints, as suggested for measurement of drug sensitivity [61]. In clinical validation, confidence in model specificity to RT could be improved using adjustment for proliferation and by taking resampled signatures as a comparator. Although many studies have shown signatures to be related to known pathways involved in radiation sensitivity (for example DNA repair), similarities between signatures are limited and may be dominated by differences between tissues.

Steady state transcriptome measurements used by all the signatures studied here may be augmented by incorporation of perturbation data (i.e. changes in expression after exposure to radiation, chemicals or other factors such as environmental stress). For example, Amundson et al. [16] make available radiation perturbation data for NCI60. Work on drug sensitivity has demonstrated the value of dynamic information in predicting cell responses [62]. Indeed, perturbations reveal dynamic response mechanisms that may help to pinpoint radiation-specific biochemical circuitry controlling key outcomes, such as cell death, and facilitate sophisticated modelling approaches [63]. For example, mechanistic models include detailed formulations of the physical, chemical and biological determinants of RS, offering a powerful framework to capture the molecular basis for cellular response to radiation [64, 65]. The framework and analysis described here provides a baseline for existing models and offers a systematic method for robust validation of future developments in the prediction of cellular RS from functional genomics data, including benchmarking against control signatures and key cellular processes.

- Published RS prediction signatures were evaluated in two datasets: the NCI60 and the Cancer Cell Line Encyclopaedia. The performance of the published signatures was equivalent to control signatures generated by uniformly randomly sampling from all genes measured by the microarray.
- Prediction of cancer cell RS may be improved by inclusion of perturbation data, using larger sample sizes, multimics, advanced analysis approaches and external validation.

Data and code availability

All data and code are accessible from: https://github.com/SJMcMahonLab/RadSigBench

Supplementary Data

Supplementary data are available online at https://academic.oup.com/bib.

Acknowledgements

We are grateful for the advice on data and models provided by Prof. Sally Amundson, Prof. Catharine West and Prof. Kai Song.

Funding

UKRI Future Leaders Fellowship (MR/T021721/1; SMcM, IO).

References

1. Lederman M. The early history of radiotherapy: 1895–1939. Int J Radiat Oncol Biol Phys 1981;7:639–48.
2. Holsti LR. Development of clinical radiotherapy since 1896. Acta Oncol (Mad) 1995;34:995–1003.
3. Grubbé EH. Priority in the therapeutic use of X-rays. Radiology 1933;21:156–62.
4. Joiner MC, van der Kogel A. Basic Clinical Radiobiology. Boca Raton, FL, USA: CRC press, Taylor and Francis Group, 2018.
5. Beaton L, Bandula S, Gaze MN, et al. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer 2019;120:779–90.
6. Wetterstrand K. National Human Genome Research Institute. Cost Seq a Hum Genome 2020.
7. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature 2013;502:333–9.
8. Mroz EA, Rocco JW. The challenges of tumor genetic diversity. Cancer 2017;123:917–27.
9. Baudino T. Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 2015;12:3–20.
10. Bratman SV, Milosevic MF, Liu FF, et al. Genomic biomarkers for precision radiation medicine. Lancet Oncol 2017;18:e238.
11. Hall JS, Iype R, Senra J, et al. Investigation of radiosensitivity gene signatures in cancer cell lines. PLoS One 2014;9.

Key Points

- Few transcriptomic signatures of intrinsic cancer radiosensitivity (RS) have been independently validated.
- We review current state-of-the-art intrinsic RS prediction approaches and present a framework for robust evaluation on multiple measures,

Key Points

- Few transcriptomic signatures of intrinsic cancer radiosensitivity (RS) have been independently validated.
- We review current state-of-the-art intrinsic RS prediction approaches and present a framework for robust evaluation on multiple measures,
55. Rampášek L, Hidru D, Smirnov P, et al. Dr.VAE: improving drug response prediction via modeling of drug perturbation effects. Bioinformatics 2019;35:3743–51.

56. Costello JC, Heiser LM, Georgii E, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 2014;32:1202–12.

57. Baptista D, Ferreira PG, Rocha M. Deep learning for drug response prediction in cancer. Brief Bioinform 2021;22:360–79.

58. Sharifi-Noghabi H, Jahangiri-Tazehkand S, Smirnov P, et al. Drug sensitivity prediction from cell line-based pharmacogenomics data: guidelines for developing machine learning models. Brief Bioinform 2021;00:1–14.

59. Yang L, Roberts D, Takhar M, et al. Development and validation of a 28-gene hypoxia-related prognostic signature for localized prostate cancer. EBioMedicine 2018;31:182–9.

60. He QF, Tong YF, Ye Z, et al. A multiple genomic data fused SF2 prediction model, signature identification, and gene regulatory network inference for personalized radiotherapy. Technol Cancer Res Treat 2020;19:153303820909112.

61. Niepel M, Hafner M, Chung M, et al. Measuring cancer drug sensitivity and resistance in cultured cells. Curr Protoc Chem Biol 2017;9:55–74.

62. Niepel M, Hafner M, Pace EA, et al. Profiles of basal and stimulated receptor signaling networks predict drug response in breast cancer lines. Sci Signal 2013;6(294):ra84.

63. Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017;171:1437–1452.e17.

64. McMahon SJ, Prise KM. A mechanistic DNA repair and survival model (Medras): applications to intrinsic radiosensitivity, relative biological effectiveness and dose-rate. Front Oncol 2021;11:1–18.

65. McMahon SJ, Prise KM. Mechanistic modelling of radiation responses. Cancers (Basel) 2019;11(2):205. https://doi.org/10.3390/cancers11020205.

66. Strom T, Torres-Roca JF, Parekh A, et al. Regional radiation therapy impacts outcome for node-positive. J Natl Compr Canc Netw 2017;15:473–82.

67. Meng J, Li P, Zhang Q, et al. A radiosensitivity gene signature in predicting glioma prognostic via EMT pathway. Oncotarget 2014;5:4683–93.

68. Jang BS, Kim IA. A radiosensitivity gene signature and PD-L1 status predict clinical outcome of patients with invasive breast carcinoma in the cancer genome atlas (TCGA) dataset. Radiother Oncol 2017;124:403–10.