On size multipartite Ramsey numbers for stars

Anie Lusiani\(^a\), Edy Tri Baskoro\(^b\), Suhadi Wido Saputro\(^b\)

\(^a\)Politeknik Negeri Bandung, Indonesia
\(^b\)Institut Teknologi Bandung, Indonesia

anie.lusiani@polban.ac.id, {ebaskoro, suhadi}@math.itb.ac.id

Abstract

Burger and Vuuren defined the size multipartite Ramsey number for a pair of complete, balanced, multipartite graphs \(m_j(K_{a\times b}, K_{c\times d})\), for natural numbers \(a, b, c, d\) and \(j\), where \(a, c \geq 2\), in 2004. They have also determined the necessary and sufficient conditions for the existence of size multipartite Ramsey numbers \(m_j(K_{a\times b}, K_{c\times d})\). Syafrizal et. al. generalized this definition by removing the completeness requirement. For simple graphs \(G\) and \(H\), they defined the size multipartite Ramsey number \(m_j(G, H)\) as the smallest natural number \(t\) such that any red-blue coloring on the edges of \(K_{j\times t}\) contains a red \(G\) or a blue \(H\) as a subgraph. In this paper, we determine the necessary and sufficient conditions for the existence of multipartite Ramsey numbers \(m_j(G, H)\), where both \(G\) and \(H\) are non complete graphs. Furthermore, we determine the exact values of the size multipartite Ramsey numbers \(m_j(K_{1,m}, K_{1,n})\) for all integers \(m, n \geq 1\) and \(j = 2, 3\), where \(K_{1,m}\) is a star of order \(m + 1\). In addition, we also determine the lower bound of \(m_3(kK_{1,m}, C_3)\), where \(kK_{1,m}\) is a disjoint union of \(k\) copies of a star \(K_{1,m}\) and \(C_3\) is a cycle of order 3.

Keywords: cycle, existence, size multipartite Ramsey number, star.
Mathematics Subject Classification : 05C55
DOI: 10.19184/ijc.2019.3.2.4

1. Introduction

The classical Ramsey number \(r(a, c)\) is the smallest natural number \(j\) such that any red-blue coloring of the edges of \(K_j\), necessarily forces a red \(K_a\) or a blue \(K_c\) as subgraph. The size multipartite Ramsey number is one of generalizations of the classical Ramsey number. Burger and Vuuren [1] gave a definition of the size multipartite Ramsey numbers for a pair of complete, balanced, multipartite graphs, as follows. Let \(a, b, c, d\) and \(j\), be natural numbers with \(a, c \geq 2\), the
size multipartite Ramsey number \(m_j(K_{axb}, K_{cxd}) \) is the smallest natural number \(t \) such that any red-blue coloring of the edges of \(K_{jxt} \), necessarily forces a red \(K_{axb} \) or a blue \(K_{cxd} \) as subgraph. They also determined \(m_j(K_{2x2}, K_{3x1}) \), for \(j \geq 1 \) and have established the following existence of size multipartite Ramsey numbers.

Theorem 1.1. *(The existence of size numbers) [1]*

The size multipartite Ramsey numbers \(m_j(K_{axb}, K_{cxd}) \) exists for any \(a, c \geq 2 \) and \(b, d \geq 1 \) if and only if \(j \geq r(a, c) \).

Syafrizal et al. [10] generalized this definition by removing the completeness requirement. For simple graphs \(G \) and \(H \), they defined the size multipartite Ramsey number \(m_j(G, H) \) as the smallest natural number \(t \) such that any red-blue coloring on the edges of \(K_{jxt} \) contains a red \(G \) or a blue \(H \) as a subgraph. The size bipartite Ramsey numbers for stars versus paths \(m_2(K_{1,m}, P_n) \), for \(m, n \geq 2 \) given by Hattingh and Henning [3]. In 2007, Syafrizal et al. [11] determined the size multipartite Ramsey numbers for stars versus \(P_3 \). Then, Surahmat et al. [9] gave the size tripartite Ramsey numbers for stars versus \(P_n \), for \(3 \leq n \leq 6 \). Furthermore, we gave the size multipartite Ramsey numbers for stars versus cycles [5] and the size tripartite Ramsey numbers for a disjoint union of \(m \) copies of a star \(K_{1,n} \) versus \(P_3 \) [6]. In 2017, Jayawardene et al. [4] and Effendi et al. [2] determined the size multipartite Ramsey numbers for stars versus paths. Then, we also gave the size multipartite Ramsey numbers for stars versus paths and cycles [7], that complete the previous results given by Syafrizal and Surahmat. Recently, we determined \(m_j(mK_{1,n}, H) \), where \(H = P_3 \) or \(K_{1,3} \) for \(j \geq 3, m, n \geq 2 \) [8].

In this paper, we determine the necessary and sufficient conditions for the existence of the size multipartite Ramsey numbers \(m_j(G, H) \), where both \(G \) and \(H \) are non complete graphs. Furthermore, we determine the exact values of the size multipartite Ramsey numbers \(m_j(K_{1,m}, K_{1,n}) \) for all integers \(m, n \geq 1 \) and \(j = 2, 3 \). In addition, we also determine the lower bound of \(m_3(kK_{1,m}, C_3) \).

We call some basic definitions that will be used in this paper, as follows. Let \(G \) be a finite and simple graph. Let vertex and edge sets of graph \(G \) are denoted by \(V(G) \) and \(E(G) \), respectively. Vertex colorings in which adjacent vertices are colored differently are proper vertex colorings. A graph \(G \) is \(k \)-colorable if there exists a proper vertex coloring of \(G \) from a set of \(k \) colors. A matching of a graph \(G \) is defined as a set of edges without a common vertex. A matching of maximum size in \(G \) is a maximum matching in \(G \). The maximum degree of \(G \) is denoted by \(\Delta(G) \), where \(\Delta(G) = \max \{ d(v) | v \in V(G) \} \). The minimum degree of \(G \) is denoted by \(\delta(G) \), where \(\delta(G) = \min \{ d(v) | v \in V(G) \} \). A star \(K_{1,n} \) is the graph on \(n + 1 \) vertices with one vertex of degree \(n \), called the center of this star, and \(n \) vertices of degree 1, called the leaves. A disjoint union of \(k \) copies of a star \(K_{1,m} \), a cycle of order \(n \), and a path of order \(n \) are denoted by \(kK_{1,m}, C_n, \) and \(P_n \), respectively.

2. Results

For any non complete graphs \(G \) and \(H \), we will determine the necessary and sufficient conditions for the existence of the size multipartite Ramsey numbers \(m_j(G, H) \). In order to do so,
we recall the definition of the chromatic number of a graph \(G\), denoted by \(\chi(G)\), which is the minimum positive integer \(k\) for which \(G\) is \(k\)-colorable.

Lemma 2.1. In every proper vertex coloring of a simple graph \(G\), the maximum number of the vertices in \(G\) with the same color is \(|V(G)| - \chi(G) + 1\).

Proof. Let \(c\) be a proper vertex coloring of \(G\), with \(\chi(G)\) color, that is \(c : V(G) \to \{1, 2, ..., \chi(G)\}\). Let \(C_i = \{v \in V(G) | c(v) = i\}\). Without lost generality, let \(|C_1| \leq |C_2| \leq ... \leq |C_{\chi(G)}|\). Since for \(1 \leq i \leq \chi(G) - 1\), we have \(|C_i| \geq 1\), then \(|C_{\chi(G)}| \leq |V(G)| - \chi(G) + 1\).

Theorem 2.1. Let \(G\) and \(H\) be two non complete graph. The multipartite Ramsey numbers \(m_j(G, H)\) are finite if and only if \(j \geq \max\{\chi(G), \chi(H)\}\).

Proof. Let \(m_j(G, H) = t < \infty\), that is \(K_{jxt} \to (G, H)\). If \(K_{jxt} = F_1 \oplus F_2\), then \((F_1 \not\in G \Rightarrow F_2 \subseteq H)\) or \((F_2 \not\in H \Rightarrow F_1 \supseteq G)\). This implies that \(j \geq \chi(H)\) and \(j \geq \chi(G)\). Therefore, \(j \geq \max\{\chi(H), \chi(G)\}\).

Let \(j \geq \max\{\chi(G), \chi(H)\}\). We show that \(m_j(G, H)\) is finite. We construct an positive integer \(t\) such that \(K_{jxt} \to (G, H)\). Let \(p = |V(G)| - \chi(G) + 1\), \(q = |V(H)| - \chi(H) + 1\) and \(t = p + q\). Note that \(V(K_{jxt}) = V(K_{jxp}) \cup V(K_{jxq})\). Based on Lemma 2.1, \(p\) and \(q\) are the maximum number of the same colored vertices in \(G\) and \(H\), respectively, so \(K_{jxp} \supseteq G\) and \(K_{jxq} \supseteq H\). Therefore, \(K_{jxt} \to (G, H)\). Then, \(m_j(G, H) \leq t\). Since graph \(G\) and \(H\) are finite graph, so \(|V(G)|, |V(H)|, \chi(G)\) and \(\chi(H)\) are finite. So, \(m_j(G, H) \leq t < \infty\). Then, \(m_j(G, H)\) is finite.

Theorem 2.2. For positive integers \(m\) and \(n\), we have \(m_2(K_{1,m}, K_{1,n}) = m + n - 1\).

Proof. We will show that \(m_2(K_{1,m}, K_{1,n}) \geq m + n - 1\). We consider a red-blue coloring on the edges of graph \(K_{2 \times (m+n-2)} = F_R \oplus F_B\), such that \(F_R\) is a \((m-1)\)-regular graph. By Handshaking Lemma, it is possible since the sum of the degrees of the vertices of \(F_R\) is even. Then, \(F_R \not\in K_{1,m}\).

We have \(d(v) = m + n - 2 - (m - 1) = n - 1\), for any \(v \in F_B\). Hence, \(F_B \not\in K_{1,n}\).

Now, we will show that \(m_2(K_{1,m}, K_{1,n}) \leq m + n - 1\). We consider any red-blue coloring on the edges of graph \(K_{2 \times (m+n-1)} = G_R \oplus G_B\), such that \(G_R \not\in K_{1,m}\). This implies that \(\Delta(G_R) \leq m - 1\). Therefore, \(\delta(G_B) \geq m + n - 1 - (m - 1) = n\). Then, \(G_B \supseteq K_{1,n}\).

Theorem 2.3. For positive integers \(m\) and \(n\), we have

\[
m_3(K_{1,m}, K_{1,n}) = \begin{cases} \frac{m}{2}, & \text{for } m \equiv 2 \mod 4, n = 1, 2 \\ 2 \left\lfloor \frac{m+1}{4} \right\rfloor + 2 \left\lfloor \frac{n}{4} \right\rfloor, & \text{for } m \equiv 2 \mod 4, n \equiv 3 \mod 4 \\ 2 \left\lfloor \frac{m-1}{4} \right\rfloor + 2 \left\lfloor \frac{n}{4} \right\rfloor, & \text{for } m \equiv 4 \mod 4, n \equiv 1 \mod 4 \\ \frac{m-1}{2} + \left\lfloor \frac{n}{2} \right\rfloor, & \text{for } m \equiv 1 \mod 2, n \geq 1 \\ 2 \left\lfloor \frac{m+1}{4} \right\rfloor + 2 \left\lfloor \frac{n}{4} \right\rfloor + 1, & \text{for } m \equiv 2 \mod 4, n \neq 3 \mod 4, n \geq 4, \\ 2 \left\lfloor \frac{m-1}{4} \right\rfloor + 2 \left\lfloor \frac{n}{4} \right\rfloor + 1, & \text{for } m \equiv 4 \mod 4, n \neq 1 \mod 4. \end{cases}
\]

Proof. **Case 1.** \(m_3(K_{1,m}, K_{1,n}) = \frac{m}{2}\), for \(m \equiv 2 \mod 4, \text{and } n = 1, 2\).
For $n = 1$, we will use the property that $m_3(K_{1,m}, K_1) \leq m_3(K_{1,m}, K_{1,1})$. It is clear that $m_3(K_{1,m}, K_1) = \frac{m}{2}$. Therefore, $m_3(K_{1,m}, K_{1,1}) \geq \frac{m}{2}$. If $K_{3 \times \frac{m}{2}}$ contains no a blue $K_{1,1}$, then $K_{3 \times \frac{m}{2}}$ contains a red $K_{1,m}$, since $d(v) = m$, for any v in $K_{3 \times \frac{m}{2}}$. Hence, $m_3(K_{1,m}, K_{1,1}) \leq \frac{m}{2}$.

For $m = n = 2$, it is clear that $m_3(K_{1,m}, K_{1,n}) \geq \frac{m}{2}$. For $m \equiv 6 \mod 4$ and $n = 2$, we consider a red-blue coloring on the edges of graph $K_{3 \times (\frac{m}{2} - 1)}$, such that $K_{3 \times (\frac{m}{2} - 1)}$ contains a maximum blue matching graph. Since $\frac{m}{2} - 1$ is even, the blue graph is a $1-$regular graph. This implies that graph $K_{3 \times (\frac{m}{2} - 1)}$ contains red $(m - 3)$-regular graph. So $K_{3 \times (\frac{m}{2} - 1)}$ contains no a red $K_{1,m}$. Then, $m_3(K_{1,m}, K_{1,2}) \geq \frac{m}{2}$. Furthermore, we consider any red-blue coloring on the edges of graph $K_{3 \times \frac{m}{2}}$, such that graph $K_{3 \times \frac{m}{2}}$ contains no a blue $K_{1,2}$. This implies that the maximum degree of blue graph is 1. Since $\frac{m}{2}$ is odd, then there is at least one vertex v, where $d(v) = 0$ in blue graph and $d(v) = m$ in red graph. Then, $K_{3 \times \frac{m}{2}}$ contains a red $K_{1,m}$. Therefore, $m_3(K_{1,m}, K_{1,2}) \leq \frac{m}{2}$.

Case 2. For $(m \equiv 2 \mod 4$ and $n \equiv 3 \mod 4$), let $t = 2[\frac{m+1}{4}] + 2[\frac{n}{4}]$ and for $(m \equiv 4 \mod 4$ and $n \equiv 1 \mod 4$), let $t = 2[\frac{m+1}{4}] + 2[\frac{n}{4}]$.

We consider a red-blue coloring on the edges of graph $K_{3 \times (t-1)} = F_R \oplus F_B$, such that $d(v_1) = m - 2$, for a vertex $v_1 \in V(F_R)$ and $d(v) = m - 1$, for any $v \in V(F_R) - \{v_1\}$. By **Handshaking Lemma**, it is possible since the sum of the degrees of the vertices of F_R is even. Then, $F_R \not\supseteq K_{1,m}$. We distinguish the following two cases, to show that $m_3(K_{1,m}, K_{1,n}) \geq t$.

Case a. For $m \equiv 2 \mod 4$ and $n \equiv 3 \mod 4$.

We have $d(v_1) = 2t - m = 4[\frac{m+1}{4}] + 4[\frac{n}{4}] - m = m - 2 + n + 1 - m = n - 1$, for $v_1 \in V(F_B)$ and $d(v) = 2t - m - 1 = 4[\frac{m+1}{4}] + 4[\frac{n}{4}] - m - 1 = m - 2 + n + 1 - m - 1 = n - 2$, for any $v \in V(F_B) - \{v_1\}$. Then, $F_B \not\supseteq K_{1,n}$.

Case b. For $m \equiv 4 \mod 4$ and $n \equiv 1 \mod 4$.

We have $d(v_1) = 2t - m = 4[\frac{m+1}{4}] + 4[\frac{n}{4}] - m = m - 4 + n + 3 - m = n - 1$, for $v_1 \in V(F_B)$ and $d(v) = 2t - m - 1 = 4[\frac{m+1}{4}] + 4[\frac{n}{4}] - m - 1 = m - 4 + n + 3 - m - 1 = n - 2$, for any $v \in V(F_B) - \{v_1\}$. Then, $F_B \not\supseteq K_{1,n}$.

Now, we consider any red-blue coloring on the edges of graph $K_{3 \times t} = G_R \oplus G_B$, such that $G_R \not\supseteq K_{1,m}$. This implies that $\Delta(G_R) \leq m - 1$. We distinguish the following two cases, to show that $m_3(K_{1,m}, K_{1,n}) \leq t$.

Case a. For $m \equiv 2 \mod 4$ and $n \equiv 3 \mod 4$.

$\delta(G_B) \geq 2t - (m - 1) = 2t - m + 1 = m - 1 + 2[\frac{n}{2}] - m + 1 = n + 1$, since n is odd. Then, $G_B \supseteq K_{1,n}$.

Case b. For $m \equiv 4 \mod 4$ and $n \equiv 1 \mod 4$.

$\delta(G_B) \geq 2t - (m - 1) = 2t - m + 1 = 4[\frac{m-1}{4}] + 4[\frac{n}{4}] - m + 1 = m - 4 + n + 3 - m = n + 1$. Therefore, $G_B \supseteq K_{1,n}$.

Case 3. For $m \equiv 1 \mod 2$ and $n \geq 1$, let $t = \frac{m+1}{2} + \lceil \frac{n}{2} \rceil$, for $m \equiv 2 \mod 4$ and $n \not\equiv 3 \mod 4$, let $t = 2[\frac{m+1}{4}] + 2[\frac{n}{4}] + 1$, and for $m \equiv 4 \mod 4$ and $n \not\equiv 1 \mod 4$, let $t = 2[\frac{m-1}{4}] + 2[\frac{n}{4}] + 1$.

We consider a red-blue coloring on the edges of graph $K_{3 \times (t-1)} = F_R \oplus F_B$, such that F_R is a $(m - 1)$-regular graph. By **Handshaking Lemma**, it is possible since the sum of the degrees of the vertices of F_R is even. Then, $F_R \not\supseteq K_{1,m}$. We have $d(v) = 2(t - 1) - (m - 1)$. We distinguish the following three cases, to show that $m_3(K_{1,m}, K_{1,n}) \geq t$.

www.ijc.or.id
Case a. For \(m \equiv 1 \mod 2 \) dan \(n \geq 1 \).
\[
d(v) = 2t - m - 1 = m - 1 + 2 \left\lceil \frac{n}{2} \right\rceil - m - 1 = 2 \left\lceil \frac{n}{2} \right\rceil - 2 < n,
\]
for any \(v \) in \(F_B \). Then, \(F_B \not\supseteq K_{1,n} \).

Case b. For \(m \equiv 2 \mod 4 \) and \(n \not\equiv 3 \mod 4 \).
\[
d(v) = 2t - m - 1 = 4 \left\lceil \frac{m+1}{4} \right\rceil + 4 \left\lceil \frac{n}{4} \right\rceil + 2 - m - 1 = m - 2 + 4 \left\lceil \frac{n}{4} \right\rceil - m + 1 = 4 \left\lceil \frac{n}{4} \right\rceil - 1 \leq n - 1,
\]
for any \(v \) in \(F_B \). Then, \(F_B \not\supseteq K_{1,n} \).

Case c. For \(m \equiv 4 \mod 4 \) and \(n \not\equiv 1 \mod 4 \).
\[
d(v) = 2t - m - 1 = 4 \left\lfloor \frac{m-1}{4} \right\rfloor + 4 \left\lceil \frac{n}{4} \right\rceil + 2 - m - 1 = m - 4 + 4 \left\lceil \frac{n}{4} \right\rceil - m + 1 = 4 \left\lceil \frac{n}{4} \right\rceil - 3 < n,
\]
for any \(v \) in \(F_B \). Then, \(F_B \not\supseteq K_{1,n} \).

Now, we consider any red-blue coloring on the edges of graph \(K_{3 \times t} = G_R \oplus G_B \), such that \(G_R \not\supseteq K_{1,m} \). This implies that \(\Delta(G_R) \leq m - 1 \). We distinguish the following three cases, to show that \(m_3(K_{1,m}, K_{1,n}) \leq t \).

Case a. For \(m \equiv 1 \mod 2 \) dan \(n \geq 1 \).
\[
\delta(G_B) \geq 2t - (m - 1) = 2t - m + 1 = m - 1 + 2 \left\lceil \frac{n}{2} \right\rceil - m + 1 = 2 \left\lceil \frac{n}{2} \right\rceil \geq n.
\]
Then, \(G_B \supseteq K_{1,n} \).

![Figure 1. A coloring for \(m_3(K_{1,3}, K_{1,6}) = 4 \).](image)

For \(m \) and \(n \) are both even, suppose that \(d(v) = m - 1 \), for any \(v \) in \(G_R \). Then, the sum of the degrees of the vertices of \(G_R \) is odd. By Handshaking Lemma, it is a contradiction. Then, there is at least one vertex \(v_1 \) in \(G_R \) such that \(d(v_1) = m - 2 \). We consider \(v_1 \) in \(G_B \) for the following two cases.

Case b. For \(m \equiv 2 \mod 4 \) and \(n \not\equiv 3 \mod 4 \).
\[
d(v_1) = 2t - m + 2 = 4 \left\lceil \frac{m+1}{4} \right\rceil + 4 \left\lceil \frac{n}{4} \right\rceil + 2 - m + 2 = m - 2 + 4 \left\lceil \frac{n}{4} \right\rceil - m + 4 = 4 \left\lceil \frac{n}{4} \right\rceil + 2 \geq n.
\]

Case c. For \(m \equiv 4 \mod 4 \) and \(n \not\equiv 1 \mod 4 \).
\[
d(v_1) = 2t - m + 2 = 4 \left\lfloor \frac{m-1}{4} \right\rfloor + 4 \left\lceil \frac{n}{4} \right\rceil + 2 - m + 2 = m - 4 + 4 \left\lceil \frac{n}{4} \right\rceil - m + 4 = 4 \left\lceil \frac{n}{4} \right\rceil \geq n.
\]
Therefore, there is a star \(K_{1,n} \) in \(G_B \), where \(v_1 \) as the center.
Theorem 2.4. For positive integers m and n, we have

$$m_3(mK_{1,n}, C_3) \geq n \left\lceil \frac{m}{2} \right\rceil + \left\lfloor \frac{m}{2} \right\rfloor.$$

Proof. Let $t = n \left\lceil \frac{m}{2} \right\rceil + \left\lfloor \frac{m}{2} \right\rfloor$. We will show that $m_3(mK_{1,n}, C_3) \geq t$. Let A, B and C be three partite sets in graph $K_{3 \times (t-1)}$. We consider a red-blue coloring on the edges of graph $K_{3 \times (t-1)} = F_R \oplus F_B$ such that $F_B = K_{t-1,2(t-1)}$, where the first partite set is A and the second partite set is $B \cup C$. This implies that $F_R = K_{2 \times (t-1)}$, where the partite sets are B and C. If m is even, then $|V(F_R)| = 2(t-1) = 2(n \left\lceil \frac{m}{2} \right\rceil + \left\lfloor \frac{m}{2} \right\rfloor - 1) = m(n+1) - 2 < |V(mK_{1,n})|$. Therefore, $F_R \not\subseteq mK_{1,n}$. If $m = 1$, then $F_R = K_{2 \times (n-1)}$. It is clear that $F_R \not\subseteq K_{1,n}$. If $m \geq 3$ and m is odd, then $|B| = |C| = \frac{n(m+1)}{2} + \frac{m-3}{2} = \frac{m-1}{2}(n+1) + \frac{n-1}{2}$. Hence, F_R only contains $(m-1)K_{1,n}$. Then, $m_3(mK_{1,n}, C_3) \geq t$. \qed

Acknowledgement

This research was supported by Research Grant "Penelitian Mandiri" Surat Keputusan No. 438.68/PL1.R7/LT/2019, Politeknik Negeri Bandung, Indonesia.

References

[1] A. P. Burger and J. H. van Vuuren, Ramsey numbers in complete balanced multipartite graphs Part II: Size Numbers, *Discrete Math.* 283 (2004), 45–49.

[2] Effendi, A. I. Baqi, and Syafirizal Sy, On size multipartite Ramsey numbers for paths versus stars, *Int. J. Math. Analysis* 10 (2016), 1061–1065.

[3] J. H. Hattingh and M. A. Henning, Star-path bipartite Ramsey numbers, *Discrete Math.* 185 (1998), 255–258.

[4] C. Jayawardene and L. Samarasekara, A strict upper bound for size multipartite Ramsey numbers of paths versus stars, *Indones. J. Combin.* 1 (2) (2017), 55–63.

[5] A. Lusiani, Syafirizal Sy, E. T. Baskoro, and C. Jayawardene, On size multipartite Ramsey numbers for stars versus cycles, *Procedia Comput. Sci.* 74 (2015), 27–31.
[6] A. Lusiani, E. T. Baskoro, and S. W. Saputro, On size tripartite Ramsey numbers of P_3 versus $mK_{1,n}$, *AIP Conf. Proc.* 1707, 020010 (2016), doi:10.1063/1.4940811.

[7] A. Lusiani, E. T. Baskoro, and S. W. Saputro, On size multipartite Ramsey numbers for stars versus paths and cycles, *Electron. J. Graph Theory Appl.* 5 (1) (2017), 43–50.

[8] A. Lusiani, E. T. Baskoro, and S. W. Saputro, On size multipartite Ramsey numbers of $mK_{1,n}$ versus P_3 and $K_{1,3}$, *Proc. Jangjeon Math. Soc.* 22 (1) (2019), 59–65, doi:10.17777/pjms2019.22.1.59.

[9] Surahmat and Syafrizal Sy, Star-path size multipartite Ramsey numbers, *Appl. Math. Sci.* (Bulgaria) 8 (75) (2014), 3733–3736.

[10] Syafrizal Sy, E. T. Baskoro, and S. Uttunggadewa, The size multipartite Ramsey number for paths, *J. Combin. Math. Combin. Comput.* 55 (2005), 103–107.

[11] Syafrizal Sy, E. T. Baskoro, and S. Uttunggadewa, The size multipartite Ramsey numbers for small paths versus other graphs, *Far East J. Appl. Math.* 28 (1) (2007), 131–138.