Dots represent patients and boxes denote median and IQR.
The signature score of patients meeting a severe outcome on or after the day of blood draw is significantly (p < 0.001) higher than the signature score of non-severe patients.

Conclusion. The derived signature combined with a rapid measurement platform has potential to serve as an accurate predictive tool for early detection of COVID-19 patients at risk for severe outcome, facilitating timely care escalation and de-escalation and appropriate resource allocation.

Disclosures. Alon Angel, n/a; MeMed (Employee, Shareholder) Niv Samuel Mastboim, BSc, MeMed (Employee, Shareholder) Oded Shaham, PhD, MeMed (Employee, Shareholder) Roy Navon, MSc, MeMed (Employee, Shareholder) Einav Simon, PhD, MeMed (Employee, Shareholder) Michal Rosenberg, PhD, MeMed (Employee) Yaël Israel, PhD, MeMed (Employee) Mary Hainrichsion, PhD, MeMed (Employee, Shareholder) Noa Arvi, PhD, MeMed (Employee) Eran Reiner, MD, MeMed (Employee) Xif Oved, MD, PhD, MeMed (Board Member, Employee, Shareholder) Ilya Kagan, MD, MeMed (Scientific Research Study Investigator) Shaul Lev, M.D., MeMed (Scientific Research Study Investigator) Dror Diker, MD, MeMed (Scientific Research Study Investigator) Amir Jarjou’i, MD, MeMed (Scientific Research Study Investigator) Ramzi Kurd, MD, MeMed (Scientific Research Study Investigator) Guy Danziger, MD, MeMed (Scientific Research Study Investigator) Cihan Papan, MD, MeMed (Scientific Research Study Investigator) Sergey Motov, MD, MeMed (Scientific Research Study Investigator) Maanit Shapira, Ph.D, MeMed (Scientific Research Study Investigator) Tanya Gottlieb, PhD, MeMed (Employee, Shareholder) Eran Eden, PhD, MeMed (Board Member, Employee, Shareholder)

33. Evaluation of Rural-Urban Differences in Hospitalization and Mortality Rates for US COVID-19 Patients in the United States
Alfred (Jerrold) Anzalone, MS1; Ronald Horwitz, PhD2; San Chu, MS, M.Ap.Stat.1; Brian Hendricks, PhD1; Jeremy Harper, MS2; William Beasley, PhD1; Lucio Miele, MD, PhD1; Clifford James Rosen, MD3; James McClay, MD, M.D.; Jeremy Harper, MS; William Beasley, PhD; Elliot Winer, MD, PhD; Clifford James Rosen, MD; James McClay, MD, M.D.; Sally L. Hodder, M.D.1; University of Nebraska Medical Center, Omaha, NE;

Pennington Biomedical Research Centre, Baton Rouge, Louisiana; Pennington Biomedical Research Center, Baton Rouge, Louisiana; West Virginia University, Morgantown, West Virginia; Owl Health Works, Indianapolis, Indiana; University of Oklahoma, Norman, Oklahoma; LSUHSC School of Medicine, New Orleans, New Orleans, Louisiana; Maine Medical Center Research Institute, Scarborough, Maine; West Virginia University School of Medicine, Morgantown, West Virginia

Session: O-07. COVID-19 Complications, Co-infections and Clinical Outcomes 2

Background. Rural communities are among the most vulnerable and resource-scarce populations in the United States. Rural data is rarely centralized, precluding comparability across regions, and no significant studies have studied this population at scale. The purpose of this study is to present findings from the National COVID Cohort Collaborative (N3C) to provide insight into future research and highlight the urgent need to address health disparities in rural populations.

N3C Patient Distribution
A. All Patient Distribution
B. Urban Patient Distribution
C. Urban-Adjacent Rural Patient Distribution
D. Nonurban-Adjacent Rural Patient Distribution

This figure shows the geospatial distribution of the N3C COVID-19 positive population. N3C contains data from 55 data contributors from across the United States, 40 of whom include sufficient location information to map by ZIP Code centroid spatially. Of those sites, we selected 27 whose data met our minimum robustness qualifications for inclusion in our study. This bubble map is to scale with larger bubbles representing more patients. A. shows all N3C patients. B. shows only urban N3C distribution. C. shows the urban-adjacent rural patient distribution. D. shows the nonurban-adjacent rural patient distribution, representing the most isolated patients in N3C.

Methods. This retrospective cohort of 573,018 patients from 27 hospital systems presenting with COVID-19 between January 2020 and March 2021, of whom 117,897 were admitted (see Data Analysis Plan diagram for inclusion/exclusion criteria), analyzes outcomes and 30-day survival for the hospitalized population by the degree of rurality. Multivariate Cox regression analysis and mixed-effects models were used to estimate the association between rurality, hospitalization, and all-cause mortality, controlling for major risk factors associated with rural-urban health discrepancies and differences in health system outcomes. The difference in distribution by rurality is described as well as supplemented by population-level statistics to confirm representativeness.

Data Analysis Plan

This data analysis plan includes an overview of study inclusion and exclusion criteria, the matrix for data robustness to determine potential sites to include, and our covariate selection, model building, and residual testing strategy.

Results. This study demonstrates a significant difference between hospital admissions and outcomes in urban versus urban-adjacent rural (UAR) and
nonurban-adjacent rural (NAR) lines. Hospital admissions for UAR (OR 1.41, p< 0.001, 95% CI: 1.37 – 1.45) and NAR (OR 1.38, p< 0.001, 95% CI: 1.32 – 1.55) were significantly higher than their urban counterparts. Similar distributions were present for all-cause mortality for UAR (OR 1.39, p< 0.001, 95% CI: 1.30 – 1.49) and NAR (OR 1.38, p< 0.001, 95% CI: 1.22 – 1.55) compared to urban populations. These associations persisted despite adjustments for significant differences in BMI, Charlson Comorbidity Index score, gender, age, and the quarter of diagnosis for COVID-19.

baseline Characteristics Hospitalized COVID-19 Positive Population by Rurality Category, January 2020 – March 2021

This figure shows the adjusted and unadjusted odds ratios for being hospitalized or dying after hospitalization for the COVID-19 positive population in N3C. Risk is similar between adjusted and unadjusted models, suggesting a real impact of rurality on all-cause mortality. A shows the unadjusted odds ratios for admission to the hospital after a positive COVID-19 diagnosis for all N3C patients. B shows the unadjusted odds ratios for all-cause mortality at any point after hospitalization for COVID-19 positive patients. C shows the adjusted odds ratios for being admitted to the hospital after a positive COVID-19 diagnosis for all N3C patients. D shows the adjusted odds ratios for all-cause mortality for all-cause mortality at any point after hospitalization for COVID-19 positive patients. Adjusted models include adjustments for gender, race, ethnicity, BMI, age, Charlson Comorbidity Index (CCI) composite score, rurality, and quarter of diagnosis. The data provider is included as a random effect in all models.

Conclusion: In N3C, we found that hospitalizations and all-cause mortality were greater among rural populations when compared to urban populations after adjustment for several factors, including age and co-morbidities. This study identified key demographic and clinical disparities among rural patients that require further investigation.

Disclosures: Sally L. Hodder, M.D., Gilead (Advisor or Review Panel member); Merc (Grant/Research Support, Advisor or Review Panel member); ViV HealthCare (Grant/Research Support, Advisor or Review Panel member)

34. Long-term clinical outcomes following SARS-CoV-2 infection include persistent symptoms and cardiovascular disease beyond 3 months post-infection

Stephanie A. Richard, PhD, MHS; Simon Pollet, MBBS; Nusrat I. Epsi, n/a; Ryan C. Maves, MD; Ryan C. Maves, MD; Gregory Utz, MD; Tahaniyat Lalani, MBBS; Rupal Mody, MD; Anuradha Gaines, MBBS, MPH; Rhonda E. Colombo, MD, MHS; Chris Colombo, MD; David A. Lindholm, MD; David A. Lindholm, MD; Cristian Madar, MD, MD; Sharon Chi, PhD; Nikhil Huprikar, MD; Derek Larson, MD; Samantha Bazan, DNP, MS; Celia Byrne, PhD; Caroline E. English, BA; Edward Parmentelle, MS; Katrin Mende, PhD; Mark Simons, PhD; Timothy Burgess, MD, MPH; David Tribble, MD, DrPH; Brian Agan, MD; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD and Henry M. Jackson Foundation, Bethesda, MD, Bethesda, Maryland; 6Uniformed Services University of the Health Sciences, Bethesda, Maryland; 7Heal, Bethesda, Maryland; 8Naval Medical Center San Diego, San Diego, CA and Infectious Disease Clinical Research Program, Bethesda, MD, San Diego, California; 9Naval Medical Center San Diego, Infectious Disease Clinical Research Program, Bethesda, MD, and Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, San Diego, California; 10Infectious Disease Clinical Research Program, Bethesda, MD, The Henry M. Jackson Foundation, Bethesda, MD, and Naval Medical Center Portsmouth, VA; Portsmouth, Virginia; 11Tripler Army Medical Center, Alaska; 12Tripler Army Medical Center, Hawaii; 13TAMC, Honolulu, Hawaii; 14Walter Reed National Military Medical Center (WRNMMC), Bethesda, Maryland; 15Fort Belvoir Community Hospital Infectious Disease, Fort Belvoir, Virginia; 16Carl R. Darnall Army Medical Center, Fort Hood, Texas; 17USUHS, Bethesda, Maryland; 18Infectious Disease