Taxonomic investigations on *Malva cretica* s.l. (Malvaceae)

Emanuele DEL GUACCHIO¹, Roberta VALLARIELLO², Duilio IAMONICO*¹

¹Botanical Garden of Naples, University of Naples “Federico II”, via Foria 223, I-80139, Naples, Italy.
²Department of Biology, University of Naples “Federico II”, via Foria 223, I-80139, Naples, Italy.

*Correspondence: d.iamonico@yahoo.it
http://orcid.org/0000-0001-5491-7568
http://orcid.org/0000-0001-9349-1328
http://orcid.org/0000-0001-7703-3554

How to cite this article: Del Guacchio E., Vallariello R. & Iamonico D. 2020. Taxonomic investigations on *Malva cretica* s.l. (Malvaceae). *Anales del Jardín Botánico de Madrid* 77: e095. https://doi.org/10.3989/ajbm.2539

Title in Spanish: Investiguemos taxonómicos en *Malva cretica* s.l. (Malvaceae).

Associate Editor: Javier Fuertes Aguilar. Received: 10 September 2019; accepted: 14 May 2020; published online: 31 August 2020.

INTRODUCTION

Molecular studies by Ray (1995) and Escobar García & al. (2009) showed that the traditional separation of *Malva* L. and *Lavatera* L., based mainly on the degree of fusion of the epicalyx bracts, is artificial and cannot be maintained, while the taxonomic significance of the fruit morphology was emphasized. The overall evolution within the complex appears to be reticulate and the genus *Malva* in a broad sense (including *Lavatera*) is presumed to be monophyletic (Tate & al. 2005). Waiting for a comprehensive taxonomic study of Malvaceae J.Presl, several authors accept *Malva* in a broad sense (e.g., Ray 1998; Molero & Montserrat 2005, 2006; Banfi & al. 2005; Iamonico 2010, 2017, 2018; Valdés 2011; Conti & Bartolucci 2012). However, some taxa (the "Lavateroid clade" sensu Ray, 1995) are still doubtfully placed and other authors (e.g., Bayer & Kubitzki 2003; Molero & Montserrat 2007) keep them in the genus *Lavatera*.

According to molecular data and morphological features of the fruit, *Malva cretica* Cav. is certainly referable to the “Malvoid clade” (sensu Ray 1995). Although it is well distinct as a species, its taxonomic placement in the genus *Malva* is controversial (see below). Moreover, the infraspecific variability of this species is remarkable and at least two geographical subspecies are currently recognized: *M. cretica* subsp. *althaeoides* and *subsp. cretica* [Tunisia, Spain, France (Corse), Italy (including Sicily and Sardinia), Greece, East Egean islands, Crete, Cyprus and Turkey; naturalized in France] and *M. cretica* subsp. *montana* [s.d. in *Malvaceae*].

Resumen. Se ha realizado, por primera vez, un análisis morfométrico con el fin de investigar la variación morfológica de los táxones infraespecíficos actualmente reconocidos en *Malva cretica* s.l., i.e. subsp. *cretica* y subsp. *althaeoides*, incluyendo la poco conocida var. *montana* del sur de Italia. Según nuestros resultados, la subsp. *althaeoides* y la subsp. *cretica* merecen el rango de subespecie y ocupan respectivamente los sectores occidentales y centro-orientales del área de distribución de la especie. Respecto a *M. cretica* var. *montana*, caracterizada por algunos rasgos intermedios, debe ser incluida en *M. cretica* subsp. *cretica*.

Keywords. Biometry, Europe, *Malva*, Malvaceae, new synonymy, Spain, subspecies.
and infra-specific ranks, Paoletti (1901) reported M. altheoides as a variety of M. cretica, but Dalby (1967) and Valdés (2011) accepted the subspecies rank.

The two taxa have been often confused and their current distribution should be verified (see e.g., Serra Laiga 2005). Moreover, the rarely cited Malva cretica var. montana Lacaita, described from southern Italy (Lacaita 1925), has also to be considered. Gavioli (1929), in a comparative study between the floras of Spain and Basilicata region (southern Italy) recognized M. cretica var. althaeoides, M. cretica var. cretica, and M. cretica var. montana. He regarded var. montana as endemic to southern Italy. Finally, according to Dalby (1968), intermediate plants between subsp. cretica and althaeoides would occur in southern Italy and Malta, while he excluded subsp. cretica from Spain. Later, Krebs (1994) indicated the occurrence of both Dinacrusa cretica (Cav.) G.Krebs subsp. cretica and D. cretica subsp. althaeoides (Cav.) G.Krebs in southern Italy. Interestingly, Gavioli (1929) identified as M. cretica var. althaeoides several specimens collected by himself in southern Italy, i.e. out of the currently accepted range of the taxon.

With the aim to clarify the taxonomy of the various taxa described under Malva cretica, here we present a biometric study as part of an ongoing research works on Malvaceae (see e.g. Iamonico 2010, 2014, 2016; Iamonico & Peruzzi 2014) and the endemic flora of southern Italy (e.g., Vallariello & al. 2016; Iamonico & al. 2017; Santangelo & al. 2017; Erben & al. 2018).

MATERIAL AND METHODS

Specimens of Malva cretica subsp. althaeoides (below as ALTH), M. cretica subsp. cretica (CRET) and M. cretica var. montana (MONT) from herbaria B, BM, CAT, E, FI, G, ISTO, L, MA, NAP, P, RO, U, and VAL (acronyms according to Thiers 2020 [continuously updated]) and from the personal herbarium of E. Del Guacchio (below as Herb. EDG, available at NAP) were examined for a preliminary screening.

Specimens from FI, NAP, VAL and Herb. EDG, preliminary re-identified following keys and descriptions in Lacaita (1925), Dalby (1968), Krebs (1994), and Nogueira & Paiva (2005), were employed for the analyses. A morphological analysis, based on 17 characters (14 quantitative and 3 qualitative, see Table 2) was performed. Nogueira & Paiva (2005) pointed out a presumed difference in corolla colour among the studied taxa. We decided not to include this character in the analyses, because it cannot be easily observed in sicco. However, according to Lacaita (1925), and our observations in the field (Italian material) and from photographs (whole range of variation), such character would seem not to be diagnostic. The data matrix so obtained was processed using software packages NCSS 2007 (NCSS LLC, Kaysville, UT) and SPSS v. 11.5 (SPSS Inc., Chicago, IL, USA). The variability of the characters has been examined by Discriminant Analysis (DA), bi- and univariate (box and scatter plots) analyses. Whenever correlation was

| Table 1. Morphological comparison between Malva cretica subsp. cretica and M. cretica subsp. althaeoides according to literature. [1]: Nogueira & Paiva (2005); [2]: Lacaita (1925); [a]: According to Lacaita (1925), corolla colour is not diagnostic. |
|-----------------|-----------------|-----------------|-----------------|
| Character       | M. cretica subsp. cretica var. cretica [1] | M. cretica subsp. cretica var. montana [2] | M. cretica subsp. althaeoides [1] |
| Stem length (cm)| Up to 40        | Up to 40–50     | Up to 80        |
| Stellate hairs on pedicels | Present       | Not recorded   | Absent          |
| Pedicels length (mm) | Up to 40–50   | Not recorded   | Absent          |
| Petals length (mm)    | 10–14          | 15–20          | 20–35           |
| Petals/Sepals ratio  | 1 or a little more | 1½             | 2 or more       |
| Sepals length (mm)    | 7–10           | Not recorded   | 10–18           |
| Corolla colour (in vivo) | Bluish–lilac | [a]            | Light pink (lilac) |

Table 2. Morphological characters used in this study. Character states for the qualitative characters are listed in parentheses.

| Character | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|-----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
| Habit     | Habit (erect or ascending)    |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Plant height (cm) | Plant height (cm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Hair types (simple or stellate) | Hair types (simple or stellate) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Basal leaves length (mm) | Basal leaves length (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Basal leaves width (mm) | Basal leaves width (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Cauleine leaves length (mm) | Cauleine leaves length (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Cauleine leaves width (mm) | Cauleine leaves width (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Ratio between characters 6 and 7 | Ratio between characters 6 and 7 |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Pedicule length (mm) | Pedicule length (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Epicalyx segments length (mm) | Epicalyx segments length (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Calyx segments length (mm) | Calyx segments length (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Calyx segments width (mm) | Calyx segments width (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Ratio between characters 11 and 12 | Ratio between characters 11 and 12 |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Petal segments length (mm) | Petal segments length (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Petal segments width (mm) | Petal segments width (mm) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Ratio between characters 14 and 15 | Ratio between characters 14 and 15 |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| Mericarps surface (glabrous or pubescent) | Mericarps surface (glabrous or pubescent) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
Taxonomy of *Malva cretica* s.l.

> [0.7], only one per group of correlate variables was employed in the further analyses; the selected character in these cases was that with the highest sum of loads (in absolute value) on all axes. Of the surviving characters, only those loading at least [0.7] on at least one axis were kept for DA. In the practice of excluding collinear variables and choosing the most explanatory variable for each group of correlates we followed previous literature (see Del Guacchio & al. 2016 for further details), as when highly correlated variables are present, the discriminant function may not reliably predict grouping (Naes & Mevik 2001). A Discriminant Analysis (DA) was carried out, in order to clarify the relationships between the individuals, projecting Operational Taxonomic Units (OTUs) with population centroids in a two-dimensional space generated by canonical functions.

**RESULTS AND DISCUSSION**

The DA graph (Fig. 1) shows a rather compact ellipse, which apparently would suggest a Gaussian distribution. However, the OTUs on the right part of this cloud of points mainly represent specimens referable to ALTH and collected in Spain; while OTUs on the left can be mostly ascribed to CRET and to MONT, gathered in central and eastern Mediterranean. Therefore, a smooth West-East cline emerges. A percentage of 77.4% of cases resulted correctly classified in origin: 97.2% for CRET, 69.8 for ALTH, but only 50% for MONT. This is mainly due to specimens with some intermediate features typical of *Malva cretica* var. *montana* collected in Spain, but classified as *M. cretica* subsp. *althaeoides* on account of the absence of stellate hairs. In every case, the variability of MONT is mostly included in that of CRET, only showing sometimes a higher sepal/petal length ratio (Fig. 2).

The ALTH group includes plants with longer and wider petals and higher sepals/petals ratio [petals (12)19–34 mm long, ratio petals / sepals (1.3)1.5–2.5(2.9) in ALTH vs. petals (9–)11–20(–22) mm long, 0.8–1.4(–1.9) as long as the sepals in CRET + MONT; Fig. 3]. In addition, in the ALTH group, hairs are mostly simple, while the other group (CRET + MONT) corresponds to plants with mixed hairs, both simple and stellate (Fig. 4). On the basis of the results obtained [partial overlapping of the characters and geographic cline (Fig. 5) between western and central-eastern Mediterranean], two taxa can be recognized as partly distinct. The subspecific rank is therefore the most appropriate rank for them in our opinion, according to the treatment below: *Malva cretica* subsp. *cretica*, and *M. cretica* subsp. *althaeoides*. In addition, *M. cretica* var. *montana* should be regarded as a synonym of subsp. *cretica*. As said above, apparently intermediate populations between *M. cretica* subsp. *cretica* and *M. cretica* subsp. *althaeoides* occur in southern Italy (and we identified them with "*M. cretica* var. *montana"), but possibly also in eastern Spain. Nevertheless, it is to be noted that some Spanish records of subsp. *cretica* could be due to introduction from eastern countries, as well as those known in France (Valdés 2011). Besides, no significant ecological difference can be highlighted from the information we have recorded.

The recognition of the subspecific rank for *Malva althaeoides* implies its common origin with...
M. cretica subsp. cretica. These two taxa likely originated by an ongoing splitting of a single South-Mediterranean species into two groups of populations, after the rise of the sea level in the central part of its area (Fig. 5). Obviously, verifying our hypothesis would require a separate study on population dynamics on the whole. Finally, the inclusion of Malva cretica s.l. in the genus Dinacrusa (including annual taxa now located both in Malva and Althaea) by Krebs (1994) is a very interesting issue, but worth of further study with a larger sampling.

**Fig. 3.** Box plots illustrating the variability of several characters: a, length of petals; b, width of petals; c, ratio length sepals/petals per origin of specimens (GRE = Greece; ITA = Italy; MAL = Malta Archipelago; SAR = Sardinia; SIC = Sicily; SPA = Spain). Measurements are in mm.

**Fig. 4.** Hairs type in Malva cretica s.l.: a, stem with stellate mixed with simple hairs in subsp. cretica; b, stem with only simple hairs in subsp. althaeoides. [a, photo by R. Vallariello from a specimen collected in southern Italy: NAP (“Gussone Generale”), Monte Caruso in Basilicata, 1841, (G. Gussone); b, photo by R. Vallariello from a specimen collected in Spain: NAP (“Gussone Generale”), “Valdigna”, s.d.; with permission of the Director of NAP].

**Fig. 5.** Distribution map of Malva cretica subsp. cretica (red areas and black squares), and M. cretica subsp. althaeoides (blue areas and grey circles). Stars (light grey) indicate localities of specimens labelled as M. cretica var. montana (modified from Krebs, 1994).
Malva cretica Cav., Diss. 5: 280 (1788); Dinacrusa cretica (Cav.) G. Krebs, Feddes Repert. 105(5-6): 309 (1994). Type: [France] Jardin du Roi, s.d., Isnardi s.n. (holotype see Iamonico & Del Guacchio, 2017: 282: P 00662859!).

Annual scapose herb, hairy. Stem 5–80 cm tall, up to 2.5 mm in diameter, erect or prostrate-ascending, hairy by pubstulate simple hairs up to 2 mm and often with shorter stellate hairs. Basal leaves 5–40 × 5–41 mm, rotundate-lobose, crenate, with a peduncle up to 4 cm, hispid, pubescent or softly villous. Upper leaves similar to the basal ones but more divided, serrate, with 3–5 acute lobes, with a shorter peduncle. Stipels 5–6 mm long, linear-lanceolate. Flowers solitary, with peduncle longer than the axillary leaf. Epicalyx with 3 linear segments, 3–9 mm long, hispid to villose. Sepals 5, linear-lanceolate, up to 8–19 × 1–4 mm in fruit, hispid to villose. Petals 5, with a glabrous limb from obtuse to slightly retuse, 9–34 × 4–21 mm, and a ciliate awn. Mericarps glabrous and smooth or slightly rugose, 1.5–2.5 mm in diameter.

Malva cretica subsp. cretica
= Malva hirsuta Ten., Prodr. Fl. Nap. 1(3): LX (1812), nom. illegit. (Art. 53.1 of ICN, Turland & al. 2018).
= Malva althaeoides Cav. var. hirsuta DC., Prodr. 1: 432 (1824).
Type: [Italy] Sicilia, prope Agrigentum [= Agrigento], Schouw s.n. (lectotype designated by Iamonico & Del Guacchio, 2017: 282: G 00218376!).
= Malva cretica var. montana Lacaita, N. Giorn. Bot. Ital., n.s. 32(2): 209 (1925), syn. nov.
Type: [Italy] Basilicata, vale del Basiento [= Basento], sopra la stazione di Salandra, inter segetes, 150–200 m, 20 May 1920, Lacaita 22429 (lectotype designated by Iamonico & Del Guacchio, 2017: 285: BM 000751626!).
= “Althaea hirsuta Sieber” in Steudel (1840: 66), nom. inval. pro syn. (Art. 36.1b of ICN, Turland & al. 2018).
= “Malva cretica var. typica” Paoletti (1901: 265), nom. inval. (Art. 24.3 of ICN, Turland & al. 2018).
Diagnostic features.—Petals (9–)11–20(–22) mm long; ratio petals/sepals (1.3)1.5–2.5(2.9); stellate hairs usually absent, or scarce.
Preferential habitat.—Fallow lands, dry places, open habitats; from sea level to 1000 m elevation.
Distribution.—Spain (also northwestern Africa, according to Nogueira & Paiva 2005; also Corse, according to Valdés 2011, see also Jeannodon 2002).

Malva cretica subsp. althaeoides (Cav.) Béguinot, N. Giorn. Bot. Ital., n.s. 16: 111 (1909); Malva althaeoides Cav., Icon. [Cavanilles] 2: 30 (1793); Axolophia althaeoides (Cav.) Alef., Oesterr. Bot. Z. 12: 259 (1862); Dinacrusa cretica subsp. althaeoides (Cav.) G. Krebs, Feddes Repert. 105(5–6): 311 (1994).
= Malva anodaeformis Lagasca, Periód. Soc. Méd.-Quir. Cádiz 4(1): 2.
Type: Spain, San Juan de Alfarache, s.d., Rojas Clement s.n. (neotype designated by Iamonico & Del Guacchio, 2017: 285, Figure 1: MA 73338!).
= “Malva cretica subsp. althaeoides” Dalby (1967: 26), isonym (Art. 6, Note 2 of ICN, Turland & al. 2018).
Diagnostic features.—Petals (12)19–34 mm long; ratio petals/sepals (1.3)1.5–2.5(2.9); stellate hairs usually absent, or scarce.
Preferential habitat.—Fallow lands, dry places, open habitats; from sea level to 1100 m elevation.
Distribution.—Central and eastern Mediterranean Basin (from Corse and Sardinia to Cyprus and Turkey, including Tunisia; some populations in Spain maybe introduced (cf. Valdés 2011). We confirm its presence in Malta.

Acknowledgements

Thanks are due to directors and curators of all quoted herbaria for the loans of relevant specimens. We also thank L. J. García-Morales (Museo de Historia Natural de Tamaulipas, Ciudad Victoria, Mexico) for his help with the Spanish translation, and P. Caputo (University of Naples “Federico II”) for his precious suggestions and the permission to publish the photographs from NAP.

References

Alefeld F. 1862. Ueber die Malven. Oesterreichische Botanische Zeitschrift 12: 246–261.
Banfi E., Galasso G. & Soldano A. 2005. Notes on systematics and taxonomy for the Italian vascular flora 1. Atti della Società Italiana di Scienze Naturali del Museo Civico di Storia Naturale di Milano 146: 219–244.
Bayer C. & Kubitzki K. 2003. Malvaeae Juss. In Kubitzki K. & Bayer, C. (eds.), Families and genera of vascular plants 5: 225–311. Heidelberg and Springer-Verlag, Berlin.
Candolle A.P. de. 1824. Prodromus Systematis Regni Vegetabilis 1. Suntipibus Societorium Treuttel et Würtz, Paris.
Conti F. & Bartolucci F. 2012. Two new combinations in Malva (Malvaceae). Annales Botanici Fennici 49: 123–124.
Dalby D.H. 1967. Malva cretica subsp. althaeoides. In Heywood V.H. (ed.), Flora Europaea Notulae Systematicae ad Floram Europaeam spectantes. Feddes Repertorium 74 (1–2): 26.
Dalby D.H. 1968. Malva L. In Tutin T.G., Heywood V.H., Burges N.A., Moore D.H., Valentine D.H., Walters S.M. & Webb D.A. (eds.), Flora Europaea 2: 249–250. Cambridge University Press, Cambridge.
Del Guacchio E., Gargiulo R. & Caputo P. 2016. Axolophia calabra (Rubiaeae) and allied taxa in southern Appennines, Italy. Plant Biosystems 151: 352–360. http://dx.doi.org/10.1080/11263504.2016.1174175
Escobar García P., Schönswetter P., Fuertes Aguilar J., Nieto Feliner G. & Schneeweiss G.M. 2009. Five molecular markers reveal
extensive morphological homoplasy and reticulate evolution in the 
Malva alliance (Malvaceae). Molecular Phylogenetics and Evolution 50: 226–239.

Erben M., Del Guacchio E., & Caputo P. 2018. A nomenclatural study on 
Statice densiflora (Plumbaginaceae) and its linked names. Phyto taxa 369: 
185–199. https://doi.org/10.11646/phytotaxa.369.3.2

Gavioli O. 1929. Flora hispanicae et lucanae affinitates aliquae. 
Cavanillesia 2: 83–86.

Iamonico D. 2010. Malva subovata subsp. bicolor, comb. & stat. nov. 
(Malvaceae). Annales Botanici Fennici 47: 312–314.

Iamonico D. 2014. Lavatera stenopetala subsp. plazae comb. et stat. nov. 
Plant Ecology and Evolution 147: 293–298. http://dx.doi.org/10.5091/ 
plicevo.2014.920

Iamonico D. 2016. Nomenclatural notes and morphological observations on 
Malva subovata s.l. (Malvaceae). Phytotaxa 275: 23–34. http://dx.doi. 
or/10.11646/phytotaxa.275.1.3

Iamonico D., 2017. Malva L. In Pignatti S. (ed.), Flora d’Italia 2: 
1068–1074. Edagricole, Milano.

Iamonico D. 2018. Nomenclatural notes on some annual mallows 
(Malvaceae). Acta Botanica Croatica 77: 28–35. https://doi.org/10.1515/ 
botcro-2017-0018

Iamonico D. & Del Guacchio E. 2017. Typification of the names in 
Malva cretica s.l. (Malvaceae). Phytotaxa 295: 280–286. https://doi. 
or/10.11646/phytotaxa.295.3.9

Iamonico D. & Peruzzi L. 2014. Typification of Linnaean names in 
Mallows (Malvaceae). Acta Botanica Croatica 77: 28–35. https://doi.org/10.1515/ 
botcro-2017-0018

Iamonico D. & Del Guacchio E. 2017. Typification of Linnaean names in 
Malvaceae for the Italian Flora. Phytotaxa 298: 119–133. https://doi. 
or/10.11646/phytotaxa.298.2.2

Serra Laiga L. 2005. Estudio critico de la flora vascular de la provincia de 
Alicante: aspectos nomenclaturales, biogeograficos y de conservacion. 
Ratiz 19: 262.

Santangelo A., Del Guacchio E., Cennamo P. & Caputo P. 2017. 
Reassembling the Centaurea tenorei group (Asteraceae) puzzle: 
typification of the names. Phytotaxa 298: 119–133. https://doi. 
or/10.11646/phytotaxa.298.2.2

Thiers B. 2020 [continuously updated]. Index Herbariorum: A global 
directory of public herbaria and associated staff. New York Botanical 
Garden’s Virtual Herbarium. Website: http://sweetgum.nybg.org/ih/ 
[accessed: 18 Apr. 2019].
APPENDIX 1. SELECTED SPECIMENS STUDIED.

**Malva cretica** subsp. **altheoides**: SPAIN.— Alicante: Tabena, Castell de Castells, 7 May 1990 (L). Barcelona: Catalonia, “plaine du Besos”, 1914 (P). Cádiz: Algodonales: Sierra de Lijar, 500–1000 m, 31 May 1979 (SIV); Grazalema, 2 Jun. 1982 (SIV). Ciudad Real: 19 June 1946 (SIV); Sierra morena, Despeñaperros, 11 Jun. 1962 (U). Córdoba: Sierra de Rute, 19 May 1974 (SIV); Priego de Córdoba, 27 May 1978 (SIV); Adamuz: Arroyo de San Anton, 26 May 1979 (SIV); Zagrilla, 7 May 1983 (SIV). Granada: 1250–1300 m, s.d. (SIV). Jaén: Sierra Morena, Jun. 1923 (SIV). Málaga: Betica, Tajo de Ronda, 900 m, 30 Jun. 1922 (SIV); Sierra de Aguas, 800 m, 14 Jun. 1973 (SIV); Serrania de Ronda, 1849 (NAP). Sevilla: Algeciras, 22 May 1981 (SIV). Valencia: “In regno Valentino [...] Sierra de Chieva”, 750–1000 m, 2 Jun. 1844 (P); Cape S. Antonio, 20 m, 10 May 1923 (SIV); Serra de la Murta May 1946 (SIV); Albufera, 31 May 1962 (U).

**Malva cretica** subsp. **cretica** (* = specimens with features of M. cretica var. montana): FRANCE.— Bouches-du-Rhône: Marseille, 3 May 1914 (P), (casual alien). Corse-du-Sud: Bonifacio, May 1917 (P). Italy. Basilicata: Potenza, 3 Jun. 1928 (FL) *; Potenza, Monte Caruso, 1841 (NAP). Calabria: Catanzaro, Tiriolo, 15 Jun. 1899 (FL); Reggio Calabria, Capo d’Armi, 3 May 1824 (NAP); Vibo Valentia, 25 May 2009 (W). Campania: Avellino, Villamaina, 20 May 1832 (NAP)*; tra Sacco e Teggiano (* locus classicus of var. montana*), 1000 m, 23 June 2001 (*Herb.EDG)*; Felitto, 250 m, 30 May 2002 (*Herb.EDG)*; Lazio: Circeo, 1832 (P); Sperlonga, 21 Apr. 1968 (FL). Puglia: Taranto, Manduria, 10 May 1924 (FL); Foggia, S. Nicandro, 12 May 1893 (FL). Sardegna: Cagliari, 3 May, 1829 (FL); Oristano, Monte Pinu, 2 May 18?? (FL); Nuoro, Baunei, 19 May 1980 (FL). Sicily: Palermo, Boccadifalco-Baida, s.d. (NAP); Palermo, Villabate, s.d. (P); Sicily: Palermo, Sclafani, May XIX century (date illegible) (P); Agrigento, 26 Apr. 1840 (P); Siracusa, Jul. 1845 (NAP); Trapani, 25 Apr. 1974 (P). Toscana: Porto San Stefano, 9 May 1890 (FL). TUNISIA. Djebel Boukornine: 25 Apr. 1909 (P). Nabeul: Kourba, 14 May 1883. GREECE. Attica: Athens, M. Lycabetti, 21 Apr. 1848 (P); Pikermi, 9 May 1856 (P); Hydra island, Apr. 1876 (P); Salamis island, Apr. 1892 (FL). Corfu island: 7 May 1878 (W). Crete: Khania, 400–600 m, 1845 (P); Kissamos, 16 May 1884 (P); Arnahes, 7 May 1982 (P); Hagia Roumelis, 27 Apr. 1976 (P). Rhodos island: 70 m, 25 Mar. 2009 (B). Zakynthos island: 200–220 m, 6 May 2014 (W). MALTA. Gozo: Insula Gauolos, 24 Apr. 1907 (FL). Malta: San Paolo a Mare, 3 May 1907 (FL). CYPRUS (including the Turkish administration): Bellapais: 27 May 1880 (FL); M. Pentadaktylos, Jun. 1880 (P). Turkey. Aydın: Dydima, 10 m, 9 Apr. 1965 (E). Izmir: Çeşme, 10–50 m, 24 Apr. 1965 (E); Kuşadası, 8 May 1965 (ISTO). Muğla: Bodrum to Müsgebi, 50–100 m, 12 Apr. 1965 (E).