Early detection and tracking of bulbar changes in ALS via frequent and remote speech analysis

Gabriela M. Stegmann1,2,5✉, Shira Hahn1,2, Julie Liss1,2, Jeremy Shefner3, Seward Rutkove4, Kerisa Shelton3, Cayla Jessica Duncan5 and Visar Berisha1,2

Bulbar deterioration in amyotrophic lateral sclerosis (ALS) is a devastating characteristic that impairs patients’ ability to communicate, and is linked to shorter survival. The existing clinical instruments for assessing bulbar function lack sensitivity to early changes. In this paper, using a cohort of \(N=65\) ALS patients who provided regular speech samples for 3–9 months, we demonstrated that it is possible to remotely detect early speech changes and track speech progression in ALS via automated algorithmic assessment of speech collected digitally.

npj Digital Medicine (2020) 3:132; https://doi.org/10.1038/s41746-020-00335-x

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is characterized by a progressive loss of motor function due to central nervous system damage and loss of spinal and bulbar motor neurons. ALS causes individuals to become progressively weaker and lose motor function, eventually resulting in death. Social and economic consequences of ALS include cost of care for the patients, loss of employment, and cost of treatment, medications, and orthopedic devices1–3. Bulbar deterioration is particularly devastating, impairing the ability to communicate, leading to faster decline, shorter survival (less than 2 years from diagnosis), and reduced quality of life4–6. Studies have found that while 30% of individuals in the population present with bulbar symptoms at the onset of ALS, most ALS patients eventually develop them and lose their ability to speak and swallow safely7.

The standard ways of assessing bulbar dysfunction are the ALS functional rating scale-revised (ALSFRS-R) and, less commonly, the Center for Neurologic Study Bulbar Function Scale (CNS-BFS)8. Both instruments, however, lack sensitivity to early bulbar changes9. Several studies have found that speech features, such as jitter, shimmer, articulatory rate, speaking rate, and pause rate, are affected in ALS10,11, and that these can be measured from remotely-collected speech samples12,13. However, no study has assessed the sensitivity of remote speech analysis in detecting and tracking bulbar change. In this study, we assessed speech features digitally and evaluated their sensitivity to detecting early changes and tracking progression.

We defined early changes as speech changes that occurred before any changes in the ALSFRS-R bulbar subscales. We defined sensitive tracking as the ability to detect longitudinal within-person changes in speech. We used a cohort of healthy and ALS patients from ALS at Home14, a longitudinal, observational study that was conducted entirely remotely. Participants were recruited, screened, enrolled, and assessed daily from home. Speech was collected via a mobile application and assessed through automated speech analysis. Although it is possible to analyze a large number of speech features, we focused on articulatory precision (AP) and speaking rate (SR) as they relate to articulation and rate, both of which are known to decline in dysarthria15 secondary to ALS. We evaluated whether the automatic analysis of remotely-collected speech could (1) detect early speech changes and (2) sensitively track speech changes longitudinally.

The ALS sample was divided according to the following categories:

- **Impairment category**: We identified participants who had normal function according to ALSFRS-R bulbar subscales (speech, salivation, and swallowing subscales with score = 4) at the beginning of the study. Twelve participants had normal bulbar function and the other participants had impaired bulbar function. This sample was used to test whether AP and SR significantly differed between the normal bulbar function group and the healthy controls, thus evaluating their ability to detect early changes.
- **Onset category**: Type of onset was collected from participants. Twelve ALS participants initially presented with bulbar onset, while the other 52 participants presented with other types of onset (nonbulbar onset). The non-bulbar onset group included participants with axial, limb, and generalized onset. This sample was used to compare the SR and AP longitudinal trajectories of individuals according to their type of onset (bulbar and nonbulbar onset). We expected that bulbar-onset participants would exhibit faster speech decline, and thus used onset type to evaluate whether AP and SR were sensitive to these differences in speech decline.

RESULTS

Description of sample

Tables 1 and 2 show the descriptive statistics of the sample, including their demographics and ALS severity. The ALSFRS-R speech, ALSFRS-R bulbar, SR, and AP scores all indicate that the most severe group in terms of bulbar symptoms were the ALS participants with bulbar onset, followed by ALS participants with bulbar impairment. Overall, lower scores in AP and SR were associated with greater impairment in speech (mixed-effects correlations between the ALSFRS-R speech subscale and AP, SR were \(r = 0.73\), \(r = 0.64\), respectively; Lorah16). Figure 1 shows the

1Arizona State University, Phoenix, AZ, USA. 2Aural Analytics, Scottsdale, AZ, USA. 3Barrow Neurological Institute, Phoenix, AZ, USA. 4Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. 5email: gabriela.stegmann@auralanalytics.com
distributions of the AP and SR scores for healthy, ALS with normal bulbar function, impaired bulbar function, bulbar onset, and nonbulbar onset participants.

Analyses
Three sets of analyses were conducted. First, to evaluate whether declines in AP and SR occurred earlier than declines on the ALSFRS-R bulbar subscale, we compared the healthy individuals to ALS individuals with normal bulbar function. If participants started the study with normal bulbar function but their ALSFRS-R bulbar scores declined throughout the study due to ALS progression, we only used their data before the decline began. Both AP and SR were significantly higher in the healthy individuals than in the ALS individuals with normal bulbar function (see top section of Table 3), indicating that AP and SR decline was detected earlier than declines on the ALSFRS-R bulbar subscale.

Second, we further evaluated the validity of AP and SR as a measure of speech decline in ALS by comparing the scores in healthy controls and all ALS participants regardless of bulbar impairment or onset. AP and SR were significantly higher in healthy participants than all ALS participants regardless of onset or impairment (middle section of Table 3), strengthening the evidence that these two measures can detect ALS speech impairment.

Third, we evaluated the sensitivity of AP and SR to detect longitudinal within-person changes in speech. We used a growth curve model\(^\text{17}\) (GCM), which is a mixed-effects model that estimates the longitudinal trajectory of an outcome for a sample of the participants with multiple observations over time. We compared the rates of decline between the bulbar-onset and nonbulbar-onset participants expecting that bulbar-onset participants would have steeper speech decline than nonbulbar onset participants. The time variable was the number of days since the onset of the first symptom. For both features, the final GCM\(^\text{17}\) followed a linear trajectory, had a random intercept and random slope, and had distinct mean slopes for bulbar-onset and nonbulbar-onset participants. For AP, both groups had significantly negative mean slopes, such that AP decreased as ALS progressed. However, bulbar-onset participants declined more rapidly as their mean slope was significantly more negative than the mean slope for nonbulbar-onset. For SR, the decline over time in nonbulbar-onset participants was nonsignificant (mean slope not significantly different from 0), whereas the bulbar-onset group showed significant decline (the mean slope was negative and significantly lower than nonbulbar-onset group). The longitudinal plots are shown in Fig. 2, and the GCM parameters are in the bottom section of Table 3.

Table 1. Sample description (enrollment).

Total number of participants	86
Total number of observations	8416
Number of healthy; ALS	21; 65
ALS participants: number of participants with normal bulbar function	11
ALS participants: number of participants with bulbar onset	12
Average length of enrollment	203.9 days
Average frequency of data collection	Every 2.9 days
Gender for ALS and healthy participants (% females)	ALS 35%; healthy 71%
Mean (standard deviation) years since first symptom onset	2.9 (2.0)
Average (standard deviation) age for ALS and healthy participants	ALS 61 (10.2); healthy 55 (12.5)

Table 2. Sample Description (by group).

Sample description	Healthy	All ALS	ALS with Bulbar Onset	ALS with Non-Bulbar Onset	ALS with Bulbar Impairment	ALS with No Bulbar Impairment
ALSFRS-R speech mean (standard deviation); scale 0–5, higher is better	–	3.1 (1.0)	1.9 (0.89)	3.5 (0.70)	2.7 (1.0)	4 (0)
ALSFRS-R bulbar mean (standard deviation); 0–12, higher is better	–	9.7 (2.6)	6.2 (2.6)	10.7 (1.5)	8.4 (2.5)	12 (0)
ALSFRS-R total mean (standard deviation); scale 0–48, higher is better	–	37.1 (5.7)	38.0 (4.9)	36.9 (5.8)	35.9 (5.5)	41.6 (3.1)
Speaking rate mean (standard deviation); syllables/second, higher is better	5.1 (0.6)	3.9 (1.3)	2.7 (1.4)	4.2 (1.2)	3.6 (1.4)	4.6 (0.7)
Articulatory precision mean (standard deviation); scale 0–10, higher is better	9.4 (0.3)	8.2 (1.8)	6.3 (2.7)	8.6 (1.4)	7.8 (2.1)	9.0 (0.6)
individuals who would otherwise not be able to participate, such as those with transportation or ambulation challenges.

One limitation of the study was that participant information such as cognitive function, drinking, smoking, vision problems, medications, ability to read, or other health problems was not available, and therefore we were not able to explore these as potential confounders. However, given the consistency of the results, we do not expect that controlling for these additional variables would lead to a different conclusion, although a prospective study is needed to confirm this. Other limitations of remote assessment include misperformance of tasks, for example, reading a sentence incorrectly. We screened for this by automatic QA on all samples and random manual QA on a subset of samples.

METHODS

Sample

The study was approved by the institutional review board at Barrow Neurological Institute. All participants provided written informed consent to participate in the study. Participants from ALS at Home provided daily speech samples for 3 months, twice weekly for an additional 6 months, and ALSFRS-R scores on a weekly basis. Participants were allowed to receive assistance from their caregivers if needed. In the current analysis, we included participants who were enrolled for at least 45 days to use participants that were engaged in the study and avoid those who dropped out too early. This resulted in 21 healthy participants and 65 participants with ALS.

Speech collection and analysis

Speech samples were collected remotely via a mobile application, where participants were requested to complete a series of speech elicitation tasks, including readings of five sentences. The instructions, including the sentences, were provided in the application, and participants read the text from the application. The same text was shown each day to all participants. Figure 3 shows a screenshot of the app. Speech was recorded locally on the participants’ phones, uploaded to a separate cloud-based repository, saved as a.wav file, and algorithmically analyzed on the cloud. Participants were requested to make the recordings from a quiet room, and ambient noise was recorded for 5 s and used in the speech analysis.

The speech obtained from the five sentences was used to extract SR and AP. SR is a measure of how fast participants read the sentences. The SR is determined by automatically estimating the total speech time from the total number of syllables in the target sentences by the total speech time. To determine the speech onset and

| Table 3. Results from all analyses. |
Analysis	Estimate (standard error)	p-value			
Mixed-effects models for comparisons between healthy controls and ALS with normal bulbar function	Articulatory precision	-0.62 (0.29)	0.0236		
	Speaking rate	-0.77 (0.28)	0.009		
Mixed-effects models for comparisons between healthy controls and all ALS	Articulatory precision	-0.82 (0.28)	0.005		
	Speaking rate	-1.01 (0.25)	<0.001		
Growth curve model for articulatory precision	Random effects parameters	Intercept	9.94 (0.37)	0.005	
	Slope standard deviation	2.54			
	Slope standard deviation	0.10			
	Correlation between intercepts and slopes	-0.67			
	Residual standard deviation	0.33			
	Growth curve model for speaking rate	Random effects parameters	Intercept	4.21 (0.25)	0.960
	Slope standard deviation	0.04			
	Correlation between intercepts and slopes	-0.70			
	Residual standard deviation	0.25			

*For group comparison analyses, the metrics were standardized to have mean 0 and standard deviation 1 for easier interpretation of the coefficients. *¹⁵

*For growth curve models, the slopes are scaled to the amount of change per month, p-values are provided for slopes; no p-values are available for intercepts or random effects parameters.

*p-values calculated using χ² likelihood ratio tests.
offset times, we use a statistical model-based voice activity detector similar to the one described in Sohn et al.21. This model uses spectral and energy features extracted from the collected background noise sample to identify an optimal speech detection threshold. The total speech time is then found by subtracting the time elapsed from speech onset to speech offset.

The number of syllables is known as the participant is asked to read specific sentences. The speaking rate is the total number of syllables divided by the total speech time. AP is a measure of the match between the expected and observed acoustic features for each phoneme. The algorithm, an extension of existing work22, takes as input connected speech, elicited from the speaker via the mobile app, and the corresponding transcript. The algorithm assesses how well the acoustics of each phoneme correspond to the acoustics of the expected phoneme in spoken English. This assessment is made by creating a distribution of acoustic features for every English phoneme from a large corpus of read speech (~1000 h) in American English. We then calculate a likelihood ratio from a comparison between the acoustic features extracted from each phoneme in the speech collected by the app and the normative distribution for the expected phoneme. For ease of interpretation, articulatory precision was projected onto a 0–10 scale (higher scores are indicative of more precise articulation).

Statistical analyses
Given that each participant had repeated observations, the analysis necessitated mixed-effects models, where fixed-effects parameters were used for estimating the mean difference between the two groups and the mean trajectories. All analyses were performed in R. The packages lme423 and nlme24 were used, since these two are widely used R packages to estimate mixed-effects models.

Fig. 2 Articulatory precision (AP) and speaking rate (SR) scores as a function of number of days since date of ALS onset. AP was extracted from data collected for the participants’ full duration of enrollment, whereas for SR, the initial 45 days were excluded to avoid rate increases which were observed in healthy controls, possibly due to familiarization with the sentences. Note: The thin lines and points show the observed data of a random sample of 35 participants. The dark red thick line represents the expected trajectory for all nonbulbar participants. The dark blue thick line represents the expected trajectory for all bulbar participants. The expected trajectories were obtained from the fixed-effects estimates from the growth curve models. The shaded areas indicate the bootstrap 95% confidence bands for the expected trajectories. In the equations: 1 month = 30 days.

Fig. 3 Screenshot of the mobile application. This figure illustrates a sentence from the mobile application used for collecting speech samples.

Reporting summary
Further information on experimental design is available in the Nature Research Reporting Summary linked to this paper.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding author upon request.

CODE AVAILABILITY
All analyses were conducted in R language. The code is available from the corresponding author upon request.

Received: 19 May 2020; Accepted: 17 September 2020; Published online: 13 October 2020

REFERENCES
1. López-Bastida, J., Perestelo-Pérez, L., Montón-Álvarez, F., Serrano-Aguilar, P. & Alfonso-Sanchez, J. L. Social economic costs and health-related quality of life in patients with amyotrophic lateral sclerosis in Spain. Amyotroph. Lateral Scler. 10, 237–243 (2009).
2. Jennum, P., Biven, R., Pedersen, S. W. & Kjellberg, J. Mortality, health, social and economic consequences of amyotrophic lateral sclerosis: a controlled national study. J. Neurol. 260, 785–793 (2013).
ACKNOWLEDGEMENTS
This work was supported by NIH SBIR (1R43DC017625-01), NSF SBIR (1853247), NIH R01 (5R01DC006859-13), and ALS Finding a Cure Grant.

AUTHOR CONTRIBUTIONS
G.S.: statistical analyses; led the writing of the paper. S.H.: provided expertise in which speech features to measure, helped with writing and editing, provided input in statistical analyses. J.L. and V.B.: speech study design, helped with writing and editing, provided input in statistical analyses. J.S. and S.R.: ALS study conception and supervision of the study. K.S. and C.J.D.: study execution, data management, and preliminary analysis.

COMPETING INTERESTS
V.B. and J.L. are co-founders of Aural Analytics. J.S. is a scientific advisor to Aural Analytics. G.S. and S.H. are employed by Aural Analytics. This work was supported by NIH SBIR (1R43DC017625-01), NSF SBIR (1853247), and NIH R01 (5R01DC006859-13).

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/s41746-020-00335-x.

Correspondence and requests for materials should be addressed to G.M.S.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.