The odd harmonious labeling of matting graph

K Muntaz, P John, D R Silaban*
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia

*denny@sci.ui.ac.id

Abstract. Let $G(p, q)$ be a graph that consists of p vertices and q edges, where V is the set of vertices and E is the set of edges of G. A graph $G(p, q)$ is odd harmonious if there exists an injective function f that labels the vertices of G by integer from 0 to $2q - 1$ that induced a bijective function f^* defined by $f^*(uv) = f(u) + f(v)$ such that the labels of edges are odd integer from 1 to $2q - 1$. A graph that admits harmonious labeling is called a harmonious graph.

A matting graph is a chain of C_4–snake graph. A matting graph can be viewed as a variation of the grid graph. In this paper, we prove that the matting graph is an odd harmonious graph.

1. Introduction
A graph $G(V, E)$ is an ordered pair of sets V and E where the elements of E are unordered pairs of distinct elements of V. An element of V and E is called vertex and edge, respectively. A graph $G(p, q)$ is a graph with order $p = |V|$ and size $q = |E|$. A labelling of G is an assignment of integers to element G (vertices and edges).

One of the graph labelling types is odd harmonious labeling. An odd harmonious labelling of graph $G(p, q)$ is an injective function $f: V \to \{0, 1, 2, \ldots, 2q - 1\}$ that induces a bijective function $f^*: E \to \{1, 3, 5, \ldots, 2q - 1\}$ defined by $f^*(uv) = f(u) + f(v)$, for each $uv \in E$ and $u, v \in V$. A graph $G(p, q)$ that admits odd harmonious labelling is called odd harmonious graph.

One type of graph which has many modifications and variations is a cycle C_n graph. Liang and Bai [1] proved that a cycle C_n is odd harmonious if and only if $n \equiv 0 \pmod{4}$. Alyani, Firmansyah, Giyarti, and Sugeng [2] proved that kC_n–snake graphs for specific values of n, that is, for $n = 4$ and $n = 8$ are odd harmonious. Abdel-Aal [3] proved that all subdivision of $2mΔ_k$ – snake, $k, m \geq 1$ and kC_4 – snake $\ominus mk_1$ for each $k, m \geq 1$ are odd harmonious. Jeyanti P, Philo S, and Youssef M [4] proved that path union of m copies of $P_m \times P_n$ is odd harmonious, where $m, n, t \geq 2$. Other researchers who also published their work in odd harmonious labeling are Febriana and Sugeng [5], Tanna [6], Saputri and Sugeng [7], and also Jeyanti and Philo [8, 9]. The compilation of results in graph labeling can be found in Gallian [10].

In this paper, we consider a chain of C_4–snake graph that we call matting graph. A matting graph is a graph obtained by arranging the m-row nC_4–snake graph. We show that the matting graph is odd harmonious.

*Corresponding Author
2. Result and Discussion

A \(nC_4 \)-snake is a graph obtained from a path \(u_0^n, u_1^n, \ldots, u_l^n \) by joining \(u_i^j \) and \(u_i^{j+1} \) to new vertices \(v_{i-1}^j \) and \(v_i^j \) for \(j = 1, 2, \ldots, n-1 \), where \(n \geq 2 \) is a positive integer. A matting graph \(M_{m,n} \) with \(m, n \geq 2 \) is obtained by arranging \(m \)-row of \(nC_4 \)-snake graph.

The vertex set and the edge set of matting graph \(M_{m,n} \) is as follows:

\[
V(M_{m,n}) = \{v_i^j | 1 \leq j \leq n, 1 \leq i \leq m\} \cup \{u_i^j | 1 \leq j \leq n, 1 \leq i \leq m\} \cup \{v_0^j | 1 \leq j \leq n\}
\]

The order and size of \(M_{m,n} \) is \(2mn + m + n \) and \(4mn \), respectively.

A matting graph \(M_{m,n} \) and its vertex notation is shown in Figure 1.

![Figure 1. Matting graph \(M_{m,n} \)](image)

Theorem 1

A matting graph is an odd harmonious graph.

Proof.

Define the vertex label \(f : V(M_{m,n}) \to \{0, 1, 2, \ldots, 8mn - 1\} \) as follows:

\[
f(v_i^j) = 4ni + 2j - 1, \quad \text{for } 1 \leq j \leq n, 0 \leq i \leq m, \quad (1)
\]

\[
f(u_i^j) = 4ni + 2j - 4n, \quad \text{for } 0 \leq j \leq n, 1 \leq i \leq m, \quad (2)
\]

We show that \(f \) is a one to one function from \(V(M_{m,n}) \) to \(\{0, 1, 2, \ldots, 8mn - 1\} \).

It is clear that the value of \(f \) in (1) is odd and the value of \(f \) in (2) is even, for any \(i \) and \(j \), where \(f \) has a different value for different \(i \) and \(j \). Because the values of \(f \) from (1) are odd numbers and the values of \(f \) from (2) are even numbers, then \(\{v_i^j\} \cap \{u_i^j\} = \emptyset \). The values of \(f \) in (1) are increasing from...
1 to $4mn + 2n - 1$, and values of f in (2) are increasing from 0 to $4mn + 2m - 4n$. Since $4mn + 2n - 1 < 8mn - 1$ and $4mn + 2m - 4n < 8mn - 1$, it is proven that f is an injective function from $V(M_{m,n})$ to $\{0, 1, 2, ..., 8mn - 1\}$.

The induced edge labels $f^*: E(M_{m,n}) \rightarrow \{1, 3, 5, ..., 8mn - 1\}$ which defined by $f^*(uv) = f(u) + f(v)$ where $uv \in E(G)$ and $u, v \in V(G)$, are:

\[
\begin{align*}
 f^*(u_i^{-1}v_{i-1}) &= 8ni - 8n + 4j - 3, \quad \text{for } 1 \leq j \leq n, 1 \leq i \leq m, \quad (3) \\
 f^*(u_i^jv_{i-1}) &= 8ni - 8n + 4j - 1, \quad \text{for } 1 \leq j \leq n, 1 \leq i \leq m, \quad (4) \\
 f^*(u_i^{-1}v_i^j) &= 8ni - 4n + 4j - 3, \quad \text{for } 1 \leq j \leq n, 1 \leq i \leq m, \quad (5) \\
 f^*(u_i^jv_i^j) &= 8ni - 4n + 4j - 1, \quad \text{for } 1 \leq j \leq n, 1 \leq i \leq m. \quad (6)
\end{align*}
\]

We show that f^* is a bijective function from $E(M_{m,n})$ to $\{1, 3, 5, ..., 8mn - 1\}$.

It is clear that the values of f^* in (3) and (5) are in the class of $1(mod 4)$ and the values of f^* in (4) and (6) are in the class of $3(mod 4)$, therefore all values of f^* are odd numbers. Since the values of f^* in (3) and (5) are in a different class with the values of f^* in (4) and (6), therefore there is no intersection between them. To prove that f^* is a one-to-one, we only need to show two cases: the set of values of f^* in (3) is disjoint with the set of values in (5), and the set of values of f^* in (4) is disjoint with the set of values in (6).

Case 1. Suppose that $f^*(u_i^{-1}v_{i-1}) = f^*(u_i^{-1}v_{i-1})$. It means $8ni - 8n + 4j - 3 = 8ni - 4n + 4j - 3$ or $n = 0$.

Case 2. Suppose that $f^*(u_i^jv_{i-1}) = f^*(u_i^jv_{i-1})$. It means $8ni - 8n + 4j - 1 = 8ni - 4n + 4j - 1$ or $n = 0$.

In both cases the values of the functions are different.

The values of f^* in (3) are increasing from 1 to $8mn - 4n - 3$. The values of f^* in (4) are increasing from 3 to $8mn - 4n - 1$. The values of f^* in (5) are increasing from $4n + 1$ to $8mn - 3$. And the values of f^* in (6) are increasing from $4n + 3$ to $8mn - 1$. It is clear that $8mn - 4n - 3 < 8mn - 1$, $8mn - 4n - 1 < 8mn - 1$, $8mn - 3 < 8mn - 1$, and $8mn - 1 = 8mn - 1$. The function f^* has 4 sub-functions with each sub-function having mn iterations, therefore f^* has $4mn$ different values, corresponding with the $4mn$ edges the matting graph has. Because the values of f^* are odd numbers with the minimum value is 1 and the maximum value is $8mn - 1$, and f^* has corresponding different values for every edge, it is proven that f^* is a bijective function from $E(M_{m,n})$ to $\{1, 3, 5, ..., 8mn - 1\}$.

The example of odd harmonious labeling of matting $M_{3,5}$ graph is shown in Figure 2. It shows the vertex and the edge labels of a matting graph which consists of 3 rows and 5 columns of C_4.

```plaintext


```
3. Conclusion
The matting graph $M_{m,n}$ is proven to be odd harmonious. Further investigation can be conducted to find the variations of the matting graphs and its odd harmonious labeling.

Acknowledgments
Part of this research is funded by PUTI-UI 2020 Research Grant No. NKB-942/UN2.RST/HKP.05.00/2020.

References
[1] Liang Z and Bai Z 2009 On the odd harmonious graphs with applications J. Appl. Math. Comput., 29 105-116
[2] Alyani F Firmanzah F Giyarti W and Sugeng K A 2013 The odd harmonious labeling of kC_n –snake graphs for specific values of n, that is, for $n = 4$ and $n = 8$ IICMA 225-230
[3] Abdel-Aal M E 2013 Odd harmonious labelings of cyclic snakes J. Graph-Hoc, 5 1–11
[4] Jeyanti P Philo S and Youssef M 2019 Odd harmonious labeling of grid graph Proyecciones, 38 411-428
[5] Febriana F and Sugeng K A 2020 Odd harmonious labeling on squid graph and double squid graph Journal of Physics: Conference Series 1538 012015
[6] Tanna D 2013 Harmonious labeling of certain graphs International Journal of Advanced Engineering Research and Studies, 46-48
[7] Saputri G A and Sugeng K A 2020 The odd harmonious labeling of dumbbell and generalized prism graphs AKCE International Journal of Graphs and Combinatorics, 10 221-228
[8] Jeyanti P and Philo S 2016 Odd harmonious labeling of some cycle related graphs Proyecciones, 35 85-98
[9] Jeyanti P and Philo S 2019 Odd harmonious labeling of some new graphs Southeast Asian Bulletin of Mathematics 43 509-523
[10] Gallian J A 2019 A dynamic survey of graph labelling The Electronic Journal of Combinatorics #DS6