In vitro anti-leishmanial and anti-fungal effects of new SbIII carboxylates

MI Khan1*, Saima Gul1, Iqbal Hussain1, Murad Ali Khan1, Muhammad Ashfaq2, Inayat-Ur-Rahman3, Farman Ullah4, Gulrez Fatima Durrani5, Imam Bakhsh Baloch5 and Rubina Naz5

Abstract
Ring opening of phthalic anhydride has been carried out in acetic acid with glycine, \(\beta\)-alanine, L-phenylalanine, and 4-aminobenzoic acid to yield, respectively, 2-[(carboxymethyl)amino]carbonyl]benzoic acid (I), 2-[(2-carboxyethyl)amino]carbonyl]benzoic acid (II), 2-[(1-carboxy-2-phenylethyl)amino]carbonyl]benzoic acid (III), and 2-[(4-carboxyanilino)carbonyl]benzoic acid (IV). Compounds I-IV have been employed as ligands for Sb(III) center (complexes V-VII) in aqueous medium. FTIR and \(\text{1H}\) NMR spectra proved the deprotonation of carboxylic protons and coordination of imine group and thereby tridentate behaviour of the ligands as chelates. Elemental, MS, and TGA analytic data confirmed the structural hypothesis based on spectroscopic results. All the compounds have been assayed in vitro for anti-leishmanial and anti-fungal activities against five leishmanial strains \(L.\ major\) (JISH118), \(L.\ major\) (MHOM/PK/88/DESTO), \(L.\ tropica\) (K27), \(L.\ infantum\) (LEM3437), \(L.\ mex mex\) (LV4), and \(L.\ donovani\) (H43); and \(A.\ Flavus\), \(A.\ Fumigants\), \(A.\ Niger\), and \(F.\ Solani\). Compound VII exhibited good anti-leishmanial as well as anti-fungal impacts comparable to reference drugs.

Keywords: antimony(III) carboxylates, anti-leishmanial, anti-fungal

Background
Trivalent antimony reagents are extensively consumed in industrial processes, e.g., in catalysis for the synthesis of polymers akin ethylenetere phthalate, with different brand names like Dacron® and Mylar®. Similarly, antimony alkoxides have also been employed as precursors for the deposition of thin films of \(\text{Sb}_2\text{O}_3\) and \(\text{Sb}_6\text{O}_{13}\) [1-4]. The literature also revealed use of trivalent antimony compounds in fluorine chemistry and their suitability as solid electrolytes, piezoelectrics, and ferroelectrics [5,6]. On the other hand, the use of trivalent antimony containing compounds as drugs for the treatment of leishmaniasis span more than 50 years; but little is known about the actual mechanisms of antimony toxicity and drug resistance [7,8]. Carboxylic group-containing compounds are versatile ligands to act as unidentate, bidentate, or bridging ligands; moreover, these also act as a spacer between Sb and other moieties [9-13]. All these facts prompted us to investigate the chemistry as well and biocidal effects of antimony(III) complexes formed with ligands containing two carboxylic groups.

Experimental
As received grade chemicals used during this study were procured from Sigma; the solvents were dried as reported [14]. C, H, and N analyses were carried out on a Yanaco high-speed CHN analyzer; antipyrene was used as a reference, while antimony was estimated according to the reported procedure [15]; melting points were recorded on Gallenkmp capillary melting point apparatus and are uncorrected. FTIR spectra of all the compounds were taken on Bruker FTIR spectrophotometer TENSOR27 using OPUS software in the range of 5000-400 cm\(^{-1}\) (ZnSe). \(\text{1}\text{H}\) and \(\text{13}\text{C}\) NMR spectra in DMSO were recorded on a multinuclear Avance 300 and 75 MHz FT NMR spectrometer operating at room temperature, i.e., 25 C. Thermoanalytical measurements were carried out using a Perkin Elmer Thermogravimetric/differential thermal analyzer (YRIS Diamond TG-DTA High Temp. Vacu.) consuming variable heating rates between 0.5°C/min and 50°C/min. HR FAB-MS
spectra were obtained from a double-focusing mass spectrometer Finnigan (MAT 112).

Synthesis of ligands

Phthalic anhydride (5 g, 33.77 mM) was dissolved in acetic acid (100 mL), and a cold solution of amino acid (33.77 mM), i.e. 2.53 g, 3 g, 5.58 g, and 4.63 g of glycine, β-alanine, L-phenylalanine, and 4-aminobenzoic acid, respectively) in acetic acid (75 mL) was added to it. This mixture was stirred at room temperature for 3 hours resultin...
Anti-leishmanial activity

Anti-leishmanial activity of the compound was carried out on the pre-established cultures of L. major (JISH118), L. major (MHOM/PK/88/DESTO), L. tropica (K27), L. infantum (LEM3437), L. mex mex (LV4) and L. donovani (H43). Parasites were cultured in medium M199 with 10% foetal bovine serum; 25 mM I-VIII compound (respectively at 24°C in an incubator. 1 mg of each test at 24°C. Results were analyzed through dose versus concentration linakge of imine with antimony center; all these facts proved the 1:1 ligand to metal stoichiometry in pseudotrigonal bipyramidal arrangement (Figure 1) [17]. Further, either of the carboxylic groups displayed different chemical shifts with carboxylic group attached to phenyl ring appeared slightly at high filed.

MS & TGA analysis

In the FAB MS spectra of complexes VI-VIII, base peak was observed at 245 m/z due to [O=C-O-(SbCl)-O-C=O]²⁻ fragment. Molecular ion peaks of very low intensity were observed with M + 2 peaks for isotopic ¹²³Sb were also seen. Based on the data obtained, fragmentation patterns for ligands I-IV (Figure 2a) and complexes V-VIII (Figure 2b) have been proposed [20]. During the TGA analyses, heating rates were suitably controlled at 10°C/min under a nitrogen atmosphere, and the weight loss was measured ranging from ambient temperature up to 700°C. The weight losses for all the complexes were calculated for the corresponding temperature ranges and are shown in Table 1. The metal percentages left as metal oxide residues were compared with those.

FTIR spectra

Solid-state FTIR spectra were recorded in the spectral range of 4000-400 cm⁻¹, and important vibrational frequencies were observed in this range. In the spectra of ligands (I-IV), characteristic broad band of carboxylic COOH functionality was observed in the range of 2800-3000 cm⁻¹; OC-NH bond vibrated at 2600 cm⁻¹; and aromatic C=C at 1500 cm⁻¹ [16]. Broad band observed for carboxylic group disappeared in the spectra of complexes indicating deprotonation of ligand. In the spectra of compounds V-VIII, appearance of new band of medium intensity around 430 cm⁻¹ indicated the coordination from N to antimony (O=C-NH → Sb) in pseudotrigonal bipyramidal arrangement (Figure 1) [17]. All the other bonds appeared at the same positions as in the spectra of the ligands ruling out coordination from carboxyl of phthalimido groups (Figure 1).

Solution-state multinuclear NMR spectra

In the solution-state ¹H and ¹³C NMR spectra of compounds (V-VIII), all the nuclei resonated at appropriate positions; in ¹H NMR spectra, the disappearance of carboxylic protons confirmed deprotonation as observed in the FTIR spectra of ligands (I-IV). In addition, downfield shift of imine proton proved the coordinate linkage of imine group toward antimony center (-NH → Sb) [18]. Similarly, in ¹³C NMR spectra, carbonyl (C=O) adjacent to imine group resonated at downfield position compared with that of the ligands confirming coordination linkage of imine with antimony center; all these facts proved the 1:1 ligand to metal stoichiometry in pseudotrigonal bipyramidal geometry (Figure 1) [19-21]. Further, either of the carboxylic groups displayed different chemical shifts with carboxylic group attached to phenyl ring appeared slightly at high filed.

Anti-fungal activity

Agar tube dilution method was used for screening antifungal activities against Aspergillus Flavus, Aspergillus Fumigants, Aspergillus Niger, and Fusarium Solani. A sample of Media supplemented with DMSO and reference antifungal drugs was used as negative and positive control, respectively. Tubes were then incubated at 27°C for 4-7 days and examined twice weekly during incubation. Standard drug, Miconazole, used for the above stated fungi, growth in media containing sample under test were determined by linear growth (mm) measuring, and percent inhibition of growth was calculated with reference to negative control using formula.

\[
\% \text{Inhibition} = 100 - \frac{\text{Linear growth in test}(\text{mm})}{\text{Linear growth in control}(\text{mm})} \times 100
\]

Results and discussion

Ligands 2-\{[(carboxymethyl)amino]carbonyl\}benzoic acid (I), 2-\{[(2-carboxyethyl)amino]carbonyl\}benzoic acid (II), 2-\{[(1-carboxy-2-phenylethyl)amino]carbonyl\}benzoic acid (III), and 2-\{[(4-carboxyaminolo)carbonyl\}benzoic acid (IV), and the complexes (V-VIII), all of which were synthesized using a general procedure as shown in Figure 1. Analytic data for the complexes confirmed the equimolar stoichiometries thereby tridentate ligation (ONO) of I-IV towards Sb³⁺ centre.
Figure 1 Synthesis (I-VIII) and pseudotrigonal bipyramidal geometry

Figure 2 MS fragmentation patterns
Table 1 Thermal analysis data of complexes V-VIII

Formula	Temp. range (°C)	Loss of Cl (%)	Oxide formation stage (°C)	% Residue	% Metal
C₁₀H₇ClNO₅Sb	180-214	9.6	296-530	35	32.2
C₁₁H₉ClNO₅Sb	178-207	9.2	300-485	66	31.0
C₁₇H₁₃ClNO₅Sb	171-211	8.4	280-500	72	26.0
C₁₅H₉ClNO₅Sb	182-220	8.9	308-550	70	27.6

Table 2 In vitro Anti-leishmanial effect (IC₅₀ in μg/mL) of I-VIII and standard drug (AmphotericinB)

Leishmanial strain	Compound	I	II	III	IV	V	VI	VII	VIII	AmphotericinB
L. major		0.26	0.28	0.38	0.24	0.24	0.25	0.29	0.17	0.19
L. major (Pak)		0.33	0.32	0.30	0.31	0.24	0.23	0.23	0.22	0.11
L. tropica		0.22	0.39	0.25	0.23	0.24	0.35	0.28	0.18	0.25
L. mex mex		0.29	0.32	0.27	0.40	0.24	0.31	0.28	0.13	0.18
L. donovani		0.39	0.31	0.32	0.20	0.24	0.29	0.33	0.10	0.20

Table 3 In vitro Anti-fungal Effect of I-VIII and Standard Drug (Miconazole)

Fungi	Compound	I	II	III	IV	V	VI	VII	VIII	Miconazole
Aspergillus flavus		+	++	++	++	+	++	++	+++	+++
Aspergillus Fumigants		++	++	+	+++	++	++	+++	+++	+++
Aspergillus Niger		++	+	++	++	+	++	+++	+++	+++
Fusarium Solani		+++	++	++	++	+	++	+++	+++	+++

Key: +: No activity, ++: Low activity, +++: moderate activity, ++++: significant activity

Figure 3 In vitro anti-leishmanial activity
determined by analytic metal content determination. Complexes V-VIII exhibited a three-stage decomposition pattern; as a first step, beginning of the weight loss occurred at 180, 178, 171, and 182 °C, respectively, because of the escape of one C1 atom; next step of decomposition started at 280°C and extended up to 545°C corresponding to the loss of rest of the ligand’s components and formation of metal oxide [22].

All attempts employing different sets of conditions to obtain single crystals of the synthesized complexes suitable for XRD failed.

Anti-leishmanial and anti-fungal activities

All the compounds I-VIII were tested in vitro for their bioavailabilities against five leishmanial strains, i.e., L. major (JISH118), L. major (MHOM/98/DESTO), L. tropica (K27), L. infantum (LEM3437), L. mex mex (LV4), and L. donovani (H43); and four fungi, viz., Aspergillus Flavus, Aspergillus Fumigatus, Aspergillus Niger, and Fusarium Solani with one reference drug Amphotericin B, and the results are given in Tables 2 and 3, respectively. In general all the complexes (V-VIII) showed weaker activity compared to ligands (I-IV) and the reference drugs, but the complex VIII showed significant activity comparable to reference drugs. The activities (IC50) of all the compounds I-VIII together with Amphotericin B have been pictorially presented in Figure 3, and it is evident from the plot that the compound VIII exhibited significant activity. In complex VIII, the presence of bulkier R group, i.e., one benzyl moiety may be responsible for enhancement in drug uptake, thereby resulting significant activity [23,24].

Conclusions

AntimonyIII center in all the synthesized complexes is pseudotrigonal bipyramidal. Complex containing benzyl group displays noteworthy anti-leishmanial and anti-fungal effects. Proper understanding of exact relationship between structure and activity needs further research.

Author details

1Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan 2Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan 3Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan 4Institute of Pharmaceutical Sciences, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan 5Department of Chemistry, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan

Competing interests

The authors declare that they have no competing interests.

Received: 9 April 2011 Accepted: 18 July 2011 Published: 18 July 2011

References

1. Castro JR, Mahon MF, Molloy KC (2006) Arosol-assisted CVD of antimony sulfide from antimony dithiocarbamates. Chem Vapor Depos 12:601–607
2. Chung JS (1990) Acid-base and catalytic properties of metal compounds in the preparation of polyethylene terephthalate. J Macromol Sci A 27:479–490
3. Bros SM, Brudewater BM, Estrada AV, Tanski JM, Parkin G Antimony ethylene glycolate and catecholate compounds: structural characterization of polystyrene catalysts. Inorg Chem 41:4051–4057
4. Tanski JM, Kelty BV, Parkin G (2005) Multidentate aryloxide and oxo-aryloxide complexes of antimony: synthesis and structural characterization of [η2-Ni-C6H4-O]2(Sb2O5Me2), [η2-Ni-C6H6(OH)(η-C6H4-O)2(Sb)(μ-μ-O)], and [η2-PhNi-C6H4(O)], Sb2(μ-μ-O)]. Dalton Trans 2424–2447
5. Kovalëva EV, Zemnukhova LA, Nikitin VM, Koryakov MD, Shpeshnev NV (2002) Biological properties of Antimony(III) fluoride complexes. Russ J Appl Chem 75:954–958
6. Dostál L, Jambor R, Ruzika A, Jarasko R, Cisarova I, Holeček J (2009) The synthesis of organoantimony(III) difluorides containing Y, Ca, Mg, and Al ligands using organotin(IV) fluorinating agents. J Fluor Chem 129:167–172
7. Gebel T (1997) Arsenic and antimony: comparative approach on mechanistic toxicity. Chem Biol Interact 107:131–144
8. Cantos G, Barbieri CL, Iacomini M, Gorin PAJ, Travassos LR (1993) Synthesis of antimony complexes of yeast mannin and mannin derivatives and their effect on Leishmania-infected macrophages. Biochem J 299:155–160
9. Shurutin W, Shurutin O, Kostina AP, Platonova TP, Fukin GK, Zakharov LN (2001) Synthesis and structure of triphenylantimony diiodoarene. Russ J Coord Chem 27:388–370
10. Barucci H, Coles SJ, Costello JF, Gelbrich T, Hursthouse MB (2000) Characterising secondary bonding interactions within triaryl organoantimony(III) and organobismuth(III) complexes. J Chem Soc Dalton Trans 2319–2325
11. Shurutin V, Shurutin O, Konsae EA, Kostina AP, Galilov YuV, Adonin NYu, Starichenko VF (2000) Tetra- and triaryltantimony fluorobenzoxates: synthesis and structures. Russ J Coord Chem 26:333–340
12. Kasuga NC, Onodera K, Nakano S, Hayashi K, Nomiya K (2006) Syntheses, crystal structures and antimicrobial activities of 6-coordinate antimony(III) complexes with tridentate 2-acetylpyridine thiosemicarbazone, bis(thiosemicarbazone) and semicarbazide ligands. J Inorg Biochem 100:1176–1186
13. Shurutin W, Shurutin O, Panova LP, Platonova TP, Kostina AP, Belkii VK (2002) Synthesis and structure of tri-p-tolylantimony dityrosylate. Russ J Gen Chem 72:229–231
14. Perrin DD, Aningo ELF (1988) Purification of laboratory chemicals. Pergamon, Oxford, UK
15. Mendham J, Denney RC, Barnes JD, Thomas M (eds) (2003) Vogel’s text book of quantitative chemical analysis. Pearson Education Pvt. Ltd., Singapore
16. Dianzhong F, Bo W (1993) Complexes of cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) complexes. J Coord Chem 63:115–123
17. Macha L, Dostal L, Jambor R, Handrill L, Jaraska R, Pabiosa A, Cisarova I, Holecek J (2007) Intramolecularly coordinated organoantimony(III) carboxylates. J Organom Chem 692:3969–3975
18. Liu Y, Tiekin RFT (2005) Supramolecular associations in binary antimony(III) dithiocarbamates: influence of ligand steric bulk, influence on coordination geometry, and competition with hydrogen-bonding. Cryst Eng Commun 7:20–27
19. Li JS, Ma YQ, Cui JR, Wang Q (2001) Synthesis and in vitro antitumor activity of some tetrathylenemiamine derivatives of exo-7-oxa-bicyclo[2,2,1]heptane (ene)-3-arylamide-2-acid. Appl Organom Chem 15:639–645
20. Mahajan K, Swami M, Singh RV (2009) Microwave synthesis, spectral studies, antimicrobial approach, and coordination behavior of antimony(III) and bismuth(III) compounds with benzothiazolone. Russ J Coord Chem 35:179–185
21. Stefan SL (1994) Thermal decomposition of some metal chelates of substituted hydrazopyrazolones. J Therm Anal 42:1299–1312
23. Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126
24. Kuryshev YA, Wang Lu, Wible BA, Wan X, Ficker E (2006) Antimony-based antileishmanial compounds prolong the cardiac action potential by an increase in cardiac calcium currents. Mol Pharmacol 69:1216–1225
doi:10.1186/2191-2858-1-2
Cite this article as: Khan et al. In vitro anti-leishmanial and anti-fungal effects of new SbIII carboxylates. Organic and Medicinal Chemistry Letters 2011, 1:2.