Hyperpolarized 3He functional magnetic resonance imaging of bronchoscopic airway bypass in chronic obstructive pulmonary disease.

Lindsay Mathew
Miranda Kirby
Donald Farquhar
Christopher Licskai
Giles Santyr

See next page for additional authors

Follow this and additional works at: https://ir.lib.uwo.ca/biophysicspub

Part of the Medical Biophysics Commons

Citation of this paper:
Mathew, Lindsay; Kirby, Miranda; Farquhar, Donald; Licskai, Christopher; Santyr, Giles; Etemad-Rezai, Roya; Parraga, Grace; and McCormack, David G, "Hyperpolarized 3He functional magnetic resonance imaging of bronchoscopic airway bypass in chronic obstructive pulmonary disease." (2012). Medical Biophysics Publications. 96.
https://ir.lib.uwo.ca/biophysicspub/96
CASE REPORT

Hyperpolarized 3He functional magnetic resonance imaging of bronchoscopic airway bypass in chronic obstructive pulmonary disease

Lindsay Mathew PhD¹,², Miranda Kirby BSc¹,², Donald Farquhar MD³, Christopher Licskai MD³, Giles Santyr PhD¹,², Roya Etemad-Rezai MD⁴, Grace Parraga PhD¹,²,⁴, David G McCormack MD¹

A 73-year-old exsmoker with Global initiative for chronic Obstructive Lung Disease stage III chronic obstructive pulmonary disease underwent airway bypass (AB) as part of the Exhale Airway Stents for Emphysema (EASE) trial, and was the only EASE subject to undergo hyperpolarized 3He magnetic resonance imaging for evaluation of lung function pre- and post-AB. 3He magnetic resonance imaging was acquired twice previously (32 and eight months pre-AB) and twice post-AB (six and 12 months post-AB). Six months post-AB, his increase in forced vital capacity was <12% predicted, and he was classified as an AB nonresponder. However, post-AB, he also demonstrated improvements in quality of life scores, 6 min walk distance and improvements in 3He gas distribution in the regions of stent placement. Given the complex relationship between well-established pulmonary function and quality of life measurements, the present case provides evidence of the value-added information functional imaging may provide in chronic obstructive pulmonary disease interventional studies.

Key Words: Airway bypass; Chronic obstructive pulmonary disease; Hyperpolarized 3He magnetic resonance imaging

L’imagerie par résonance magnétique fonctionnelle par 3He hyperpolarisé de la dérivation des voies respiratoires par bronchoscopie en cas de maladie pulmonaire obstructive chronique

Un ex-fumeur de 73 ans atteint d’une maladie pulmonaire obstructive chronique de phase III d’après la Global Initiative for Chronic Obstructive Lung Disease a subi une dérivation des voies respiratoires (DVR) dans le cadre de l’essai EASE sur les endoprothèses des voies respiratoires par explosion et était le seul sujet de l’essai EASE à subir une imagerie par résonance magnétique (3IRM) par 3He hyperpolarisé pour évaluer la fonction pulmonaire avant et après la DVR. Il avait subi une IRM par 3He deux fois auparavant (32 mois et huit mois avant la DVR) et deux fois après la DVR (six et 12 mois après). Six mois après la DVR, l’augmentation de sa capacité vitale forcée était de 12 % inférieure aux valeurs prédites, et il avait été classé comme ne répondant pas à la DVR. Cependant, après la DVR, il a également présenté des améliorations aux indices de qualité de vie, au test de marche de 6 minutes et des améliorations de la distribution de gaz par 3He dans les foyers d’installation des endoprothèses. Étant donné le lien complexe entre la fonction pulmonaire bien établie et les mesures de qualité de vie, ce cas démontre l’information à valeur ajoutée que peut fournir l’imagerie fonctionnelle dans le cadre d’études d’intervention sur les maladies pulmonaires obstructives chroniques.

1Imaging Research Laboratories, Robarts Research Institute; 2Department of Medical Biophysics; 3Division of Respirology, Department of Medicine, 4Department of Medical Imaging, University of Western Ontario, London, Ontario

Correspondence and reprints: Dr Grace Parraga, Imaging Research Laboratories, Robarts Research Institute, PO Box 5015, 100 Perth Drive, London, Ontario N6A 5K8. Telephone 519-913-5265, fax 519-913-5260, e-mail gep@imaging.robarts.ca

Can Respir J Vol 19 No 1 January/February 2012 ©2012 Pulsus Group Inc. All rights reserved
and in the left upper lobe (Figure 1, lower left panel) with further improvements, specifically in the right lower lung observed 12 months post-AB (Figure 1, lower right panel). The visually apparent ventilation improvements in the right lower and left upper lobes were in the same regions where stents were originally placed. There were also other areas of regionally improved gas distribution (arrows), and all of these visually apparent changes in gas distribution corresponded to 3He MRI VV increases of 3.2 L at six months and 4.2 L at 12 months post-AB. At the same time, other surrogate measures of functional capacity including 6 min walk distance (6MWD), the St George’s Respiratory Questionnaire (SGRQ) score and cycle ergometry time showed improvements six months post-AB (6MWD increased by 78 m, SGRQ score decreased by 38 and cycle ergometry time improved by 334 s). Along with improvements in quality of life measures, the diffusing capacity of carbon monoxide (DLCO) nearly doubled between the pre-AB and 12-month post-AB time points (Table 1).

DISCUSSION

AB is an investigational procedure that involves the creation of extra-anatomical passages reinforced by a drug-eluting stent in the airway wall, with stents delivered using Doppler-guidance to avoid pulmonary vasculature in airway regions where the stents are inserted. The aim of AB is to artificially connect the segmental airways to adjacent lung tissue, thereby allowing trapped gas to be exhaled. Bronchoscopic lung volume reduction methods, such as AB, provide a minimally invasive alternative to lung volume reduction surgery with the goal of improving COPD quality of life, pulmonary function and survival (10-12). Unfortunately, for many of these approaches, significant improvements in intermediate end points such as FEV₁ and residual volume/total lung capacity have not been realized postintervention (13-15) and, occasionally, these results are discordant with symptomatic or other functional improvements.

Table 1	Pulmonary function and 3He magnetic resonance imaging measurements pre- and post-airway bypass							
	Pre-airway bypass	Months	Post-airway bypass					
FEV₁, L	1.2	0.8	0.9	1.1	1.2	1.2	1.1	1.2
FEV₁, % predicted	32	23	27	32	34	35	33	35
FVC, L	3.2	2.3	2.6	3.2	3.6	3.6	3.5	3.8
FVC, % predicted	66	49	57	68	77	78	76	81
FEV₁/FVC, %	37	34	35	35	32	33	32	31
RV, L	5.2	5.2	5.6	4.4	5.0	4.5	4.7	5.0
RV, % predicted	193	200	213	169	190	169	198	189
TLC, L	8.4	8.0	8.6	7.8	8.2	8.2	8.3	8.5
TLC, % predicted	111	107	115	104	114	110	108	114
RV/TLC	0.62	0.65	0.65	0.57	0.60	0.55	0.56	0.58
IC, L	1.8	1.6	1.6	2.1	2.3	2.3	1.8	2.8
DLCO, mL/min/mmHg	–	–	9.2	9.9	14.6	16.9	14.6	18.7
DLCO, % predicted	–	–	26	28	42	48	42	53
mMRQ	–	–	–	2	1	0	1	1
6MWD, m	–	–	–	288	315	330	366	330
SGRQ	–	–	–	65	27	27	27	31
CE, s	–	–	750	–	–	1084	–	–
WL TCV, L	7.3	6.3	–	–	–	8.5	8.1	
WL VV, L	5.4	1.6	–	–	–	4.8	5.8	
WL PVV, %	73	26	–	–	–	57	72	
WL VDV, L	2.0	4.7	–	–	–	3.6	2.4	
WL VDP, %	27	74	–	–	–	43	28	

6MWD 6 min walk distance; CE Cycle ergometry; DLCO Carbon monoxide diffusion capacity of the lung; FEV₁ Forced expiratory volume in 1 s; FVC Forced vital capacity; IC Inspiratory capacity; mMRQ Modified Medical Research Council; PVV Per cent ventilated volume; RV Residual volume; SGRQ St George’s Research Questionnaire; TCV Thoracic cavity volume; TLC Total lung capacity; VDP Ventilation defect per cent; VDV Ventilation defect volume; VV Ventilated volume; WL Whole lung.
We highlighted hyperpolarized 3He MRI in a single case of COPD in an exsmoker who underwent AB. Results of pulmonary function tests and 3He MRI suggest a decline in lung function over the pre-AB, two-year time period. Post-AB however, significant improvements in gas distribution were visually and quantitatively apparent after six months and 12 months, including increases in VV and PVV. Regional changes in ventilation were visualized throughout the lung, even in regions not associated with stent placement, perhaps due to redistribution of ventilation following the release of trapped gas. It is worth noting that the most visually prominent changes occurred in the right lower and left upper lobes – the same regions where stents were originally placed. The resultant changes in VV and PVV were much greater than the smallest detectable difference previously estimated for 3He MRI (5) based on a reproducibility study in COPD. Although 3He MRI was not available immediately preceding AB, which would have enabled identification of ventilation improvements that were due to stent placement alone, the imaging results obtained provided functional information that was in agreement with 6MWD, SGRQ and mMRC, as well as DLCO, but not with spirometry and plethysmography measurements. Perhaps unexpectedly, both DLCO and PVV continued to increase post-AB, evidenced by large changes between six- and 12-month post-AB time points. These relatively late changes post-AB suggest continued improvements in gas distribution post-AB that coincided with improved gas transfer. The intriguing coincidence of improved 3He gas distribution, DLCO and quality of life measures that endured 12 months post-AB in the only EASE trial subject for whom 3He MRI was performed certainly generates new hypotheses to test – especially with respect to the use of imaging to guide stent placement and track regional changes in lung function.

The high cost and limited availability of 3He MRI prohibits its prospective routine use in clinical research and its translation to clinical practice (16). However, its high short-term reproducibility (1) and sensitivity (5,6), coupled with the intriguing findings in longitudinal (6) and other acute COPD therapy studies (5), suggest that hyperpolarized noble gas imaging may be an ideal tool for visualization and quantitative evaluation of functional differences in COPD post-therapeutic intervention. The results of the present case study highlight the advantage of including functional MRI techniques such as hyperpolarized 129Xe MRI (17,18) or conventional 1H MRI (19) in COPD interventional studies, and suggest the application of these types of imaging in interventional studies may offer new insights into regional physiological changes in COPD following treatment.

ACKNOWLEDGEMENTS: The authors gratefully acknowledge the late Peter T Macklem MD BPCC CC, for his guidance and feedback on this study and case report. They also thank S Halko and S McKay for clinical coordination, and T Zeekers for MRI and A Wheatley for gas dispensing and administration.

FUNDING/SUPPORT: This work was supported by the Canadian Institutes of Health Research (CIHR) Operating Grant MOP #97748 and Team Grant FRN #97687. Dr Parraga also acknowledges salary support from a CIHR New Investigator Award.

FINANCIAL/NONFINANCIAL DISCLOSURES: No potential conflicts of interest exist with any companies/organizations whose products or services are discussed in this article. Three of the authors (McCormack, Farquhar and Liscakai) participated as investigators in the EASE trial and were reimbursed by Broncus for study-specific subject costs related to the AB procedures; MRI, however, was performed under a separate investigator-sponsored protocol for longitudinal 3He MRI (Parraga and McCormack) and there was no Broncus involvement or funding for the MRI performed for this case.

REFERENCES
1. Mathew L, Evans A, Ouriadov A, et al. Hyperpolarized (3He) magnetic resonance imaging of chronic obstructive pulmonary disease reproducibility at 3.0 tesla. Acad Radiol 2008;15:1296-311.
2. Parraga G, Ouriadov A, Evans A, et al. Hyperpolarized 3He ventilation defects and apparent diffusion coefficients in chronic obstructive pulmonary disease: Preliminary results at 3.0 Tesla. Invest Radiol 2007;42:384-91.
3. Parraga G, Mathew L, Etemad-Rezaei R, et al. Hyperpolarized 3He magnetic resonance imaging of ventilation defects in healthy elderly volunteers: Initial findings at 3.0 Tesla. Acad Radiol 2008;15:776-85.
4. Mathew L, Gaede S, Wheatley A, et al. Detection of longitudinal lung structural and functional changes after diagnosis of radiation-induced lung injury using hyperpolarized 3He magnetic resonance imaging. Med Phys 2010;37:22-31.
5. Kirby M, Mathew L, Heydarian M, Etemad-Rezaei R, McCormack DG, Parraga G. Chronic obstructive pulmonary disease: Quantification of bronchodilator effects by using hyperpolarized 3He MR imaging. Radiology 2011;261:283-92.
6. Kirby M, Mathew L, Wheatley A, et al. Chronic obstructive pulmonary disease: Longitudinal hyperpolarized (3He) MR imaging. Radiology 2010;256:280-9.
7. Due S, Casselbrant I, Fultulainen E, et al. Hyperpolarized 3He apparent diffusion coefficient MRI of the lung: Reproducibility and volume dependency in healthy volunteers and patients with emphysema. J Magn Reson Imaging 2008;27:763-70.
8. Morbach AE, Gast KK, Schmiedeskamp J, et al. Diffusion-weighted MRI of the lung with hyperpolarized helium-3: A study of reproducibility. J Magn Reson Imaging 2005;21:765-74.
9. Kirby M, Svenningsen S, Ahmed H, et al. Quantitative evaluation of hyperpolarized helium-3 magnetic resonance imaging of lung function variability in cystic fibrosis. Acad Radiol 2011;18:1026-13 (doi:10.1016/j.acra.2011.03.005).
10. Yim APC, Hwong TMT, Lee TW, et al. Early results of endoscopic lung volume reduction for emphysema. J Thorac Cardiovasc Surg 2004;127:1564-73.
11. Wood DE, McKenna J, Yusen RD, et al. A multicenter trial of an intrabronchial valve for treatment of severe emphysema. J Thorac Cardiovasc Surg 2007;133:65-73.
12. Choong CK, Macklem PT, Pierce JA, et al. Airway bypass improves the mechanical properties of explanted emphysematous lungs. Am J Respir Crit Care Med 2008;178:902-5.
13. Broncus Technologies Inc. Broncus Reports Early EASE Trial Results for Airway Bypass With Exhale(R) Drug-Eluting Stents <http://www.broncus.com/PDFS/Early%20EASE%20Trial%20results.pdf> 11-17-2009 (Accessed on September 30, 2010).
14. Sterman DH, Mehta AC, Wood DE, et al. A multicenter pilot study of a bronchial valve for the treatment of severe emphysema. Respiratory 2010;79:222-33.
15. Berger RL, Docamp MM, Criner GJ, et al. Lung volume reduction therapies for advanced emphysema: An update. Chest 2010;138:407-17.
16. Fain S, Schiebler ML, McCormack DG, et al. Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational methods and applications. J Magn Reson Imaging 2010;32:1398-408.
17. Muller JP, III, Altes TA, Ruset IC, et al. Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. Proc Natl Acad Sci USA 2010;107:707-12.
18. Cleveland ZI, Cofer GP, Metz G, et al. Hyperpolarized 3He MR imaging of alveolar gas uptake in humans. PLoS One 2010;5:12192.
19. Baumann G, Puderbach M, Deinling M, et al. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 2009;62:656-64.
