Netrin-1 receptor DCC is required for the contralateral topography of lamina I anterolateral system neurons

Farin B. Bourojenia,b, Hanns Ulrich Zeilhoferc,d, Artur Kaniaa,b,e,\ast

Abstract
Anterolateral system (AS) neurons relay nociceptive information from the spinal cord to the brain, protecting the body from harm by evoking a variety of behaviours and autonomic responses. The developmental programs that guide the connectivity of AS neurons remain poorly understood. Spinofugal axons cross the spinal midline in response to Netrin-1 signalling through its receptor deleted in colorectal carcinoma (DCC); however, the relevance of this canonical pathway to AS neuron development has only been demonstrated recently. Here, we disrupted Netrin-1:DCC signalling developmentally in AS neurons and assessed the consequences on the path finding of the different classes of spinofugal neurons. Many lamina I AS neurons normally innervate the lateral parabrachial nucleus and periaqueductal gray on the contralateral side. The loss of DCC in the developing spinal cord resulted in increased frequency of ipsilateral projection of spinoparabrachial and spinoperiaqueductal gray neurons. Given that contralateral spinofugal projections are largely associated with somatotopic representation of the body, changes in the laterality of AS spinofugal projections may contribute to reduced precision in pain localization observed in mice and humans carrying Dcc mutations.

Keywords: nociception, anterolateral, spinofugal, spinoparabrachial, spinothalamic, commissural, Hoxb8, DCC, Netrin-1, lamina I, projection neurons

1. Introduction

Nociception involves spinal neural circuit processing of noxious stimuli and their relay to nociceptive brain centres such as the thalamus, the lateral parabrachial nucleus (LPbN), and the periaqueductal gray (PAG).1 This is accomplished by anterolateral system (AS) spinofugal neurons, whose axons ascend in the anterolateral tract of the spinal cord. The ventral posterolateral (VPL) thalamus relays somatotopically organized nociceptive inputs to the somatosensory cortex,5 a pathway associated with the sensory-discriminatory aspects of pain. The LPbN has been associated with the affective-emotional components of nociception,38 whereas the PAG is involved in escape/defense responses.27,67 Despite extensive anatomical studies of AS neurons, how their connectivity is specified is largely unknown.

Anterolateral system neuronal function has been inferred from their anatomy and physiology. In rodents, these are primarily confined to lamina I of the superficial dorsal horn (SDH), the deep dorsal horn (DDH; lateral lamina V), and the lateral spinal nucleus (LSN).46 Lamina I AS neurons in the SDH have small receptive fields80 and respond to discrete nociceptive stimuli that, for example, induce thermal or mechanical pain sensation.2,16,25 By contrast, lamina V/LSN AS neurons have broad receptive fields and wide dynamic range receptivity, such as activation by a variety of noxious and innocuous stimuli.17 Because of their extensive projections to the dorsal LPbN29 and the medial thalamus,33 lamina V/LSN AS neurons are likely to transmit the affective-motivational aspects of nociception. Most lamina I AS neurons innervate their brain targets on the contralateral side,72 whereas the proportions of lamina V/LSN AS neurons that project ipsilaterally and contralaterally are more similar.19,46 One possibility is that the laterality of lamina I AS neurons is an essential part of their somatotopic organization, allowing localization or topognosis, of noxious stimuli.

During development, axons of spinal projection neuron either cross the midline at the floor plate or remain on the ipsilateral side, and then grow rostrally to their target, in specific white matter tracts.34 The molecular mechanisms that control midline crossing are mostly elucidated,11 although their perturbation has provided few insights into adult neural circuit function. Netrin-1 signalling through its receptor deleted in colorectal carcinoma (DCC) is a principal determinant of commissural crossing.23,45,52,78 Developmental perturbations of Netrin-1:DCC signalling result in abnormal motor behaviour in mice and humans, presumably caused by decreased midline crossing by spinal interneurons and...
corticospinal axons. However, the role of Netrin-1:DCC signalling in AS neuron development and function is only beginning to emerge. Loss of embryonic DCC expression in the caudal spinal cord (Dcc spinal knockout; DccSpKO) results in increased ipsilateral innervation of the thalamus by spinothalamic (ST) neurons and inability to accurately localize noxious stimuli. Humans with mirror movement disorder caused by DCC mutations also display a similar phenotype. Despite this, the impact of spinal Dcc mutation on the laterality of most AS spinofugal pathways remains unknown, hindering accurate interpretations of their specific roles in nociception. Here, we describe the temporal and spatial aspects of Hoxb8::Cre expression and present evidence of AS neuron connectivity changes as a result of DccSpKO mutation (Hoxb8::Cre; DccSpKO).

2. Materials and methods

2.1. Mouse lines and animal care

All mice were housed at the Animal Housing core facility of Institut de recherches cliniques de Montréal, kept on a 12:12-hour light/dark cycle, and provided food and water ad libitum. All experimental procedures were approved by the Animal Care and Use Committee at the Institut de recherches cliniques de Montréal, in accordance with the regulations of the Canadian Council on Animal Care. The generation of Hoxb8::Cre mice has been described previously. Cre-dependent reporter lines R26:LS-tdTomato and Tau:LS-mGFP-nLacZ were obtained from the Jackson Laboratory (#007914 and #021162). Dccflox/flox were generated from crossing of Dccflox/flox mice and were each completed at a rate of 100 nL/minute followed by backfilled with mineral oil was mounted in a syringe and then placed in a stereotaxic syringe pump with Micro4 controller (Kopf Instruments). The virus was then forward-pulled in the electrode. A dorsal dermal incision of approximately 1.5 cm was made to expose the underlying vertebral column at the lumbar region. To access the L3 to L5 spinal region, the connective and muscle tissues overlaying the intervertebral space between T13 and L1 vertebral segments were removed. The vertebral column was then immobilized in the stereotaxic frame to minimize respiration-induced mobility of the spinal column. A pulled glass needle backfilled with mineral oil was mounted in a syringe and then placed in a stereotaxic syringe pump with Micro4 controller (Kopf Instruments). The virus was then forward-pulled in the electrode. Three unilateral injections of 250 nL were made (ML 0.45 mm; AP 0 ± 0.5 mm; DV 0.35 mm dorsal spinal midline). The injections were each completed at a rate of 100 nL/minute followed by equal time for resting the needle to minimize leakage. Surrounding muscles were then sutured over the injection site and the skin stapled. The mouse was then placed in a heated recovery chamber and allowed back into its cage once fully mobile. Spinal and brain tissues were harvested for analysis 4 weeks after the injection.

2.4. Intraspinal virus injections

2.5. Microscopy and image processing

2.6. Statistics

Quantification and statistical analyses were completed using Prism 8 (GraphPad, Inc). Nonparametric 2-tailed Mann–Whitney test was used for the quantifications in the 2 last figures.

3. Results

3.1. Hoxb8::Cre labels commissural neurons that express DCC during development

Hoxb8::Cre-driven excision of Dcc results in impaired nociceptive topognosis. To uncover the extent to which AS neuron connectivity contributes to this phenotype, we first assessed the expression of Hoxb8::Cre. The AS consists of neurons that...
extend axons rostrally and innervate supraspinal targets in the brainstem and thalamus before birth. To assess the expression of Hoxb8::Cre in spinal neurons, we first examined the temporal and spatial domains of Cre recombination by determining the onset of recombination in the developing caudal neural tube. Hoxb8::Cre mice were crossed to homozygous R26:LS-tdTomato (Ai14) reporter mice to generate Hoxb8::Cre/–; R26:LS-tdTomato/– (Hoxb8-tdTomato) embryos that express the fluorescent protein tdTomato in Cre-expressing tissues. In 9.5-day-old embryos (E9.5), at a time when first spinal postmitotic neurons are generated in the cervical spinal cord, tdTomato expression occurred predominantly in the caudal neural tube at spinal levels caudal to forelimbs (Fig. 1A). In sections of hind limb-level spinal cord, tdTomato expression was present throughout the mediolateral extent and dorsoventral extent of the neural tube without any apparent bias (Figs. 1B and C). At this stage, postmitotic neurons are yet to be generated in the caudal neural tube and all cells therein are neural progenitors expressing the stem cell marker Sox2. Sox2+ cells colocalized with tdTomato demonstrate that Hoxb8::Cre-driven recombination readily occurs in spinal neuron progenitors.

At E11.5, after the generation of postmitotic neurons, tdTomato expression was also observed throughout the dorsoventral extent of the spinal cord (Figs. 1D and E). The majority of commissural axons, thought to contribute to the AS, cross the spinal midline between E10 and E12, soon after the birth of commissural neurons. We therefore asked whether Hoxb8-tdTomato expression overlaps with DCC, required for commissure crossing of many axons, including those of spinothalamic (ST) neurons (Fig. 1E). Virtually all DCC-expressing E11.5 neurons throughout the dorsoventral extent of the neural tube coexpressed tdTomato (DsRed1; Fig. 1F; 5 sections/animal). Spinal commissural neurons arise from multiple postmitotic cardinal groups. In particular, the dI1,37 dI5,74 and V3 83 clusters give rise to populations of commissural neurons, many of which project supraspinally (Fig. 1G). We observed expression of tdTomato within all 3 populations, identified through their respective transcription factor markers Lhx2, Lmx1b, and Nkx2.2 (Figs. 1H–J). Collectively, our results show that Hoxb8::Cre is expressed in classes of transcriptionally distinct commissural neurons that express DCC during development.

Table 1

Reagents	Resource	Identifier (RRID)
Mice (MGI notation)		
Dcc1/– (Dcc−/−)	Frédéric Charren	MGI:3665466
Dcclox/lox	Frédéric Charren	MGI:5308804
Hoxb8::Cre (Tg(Hoxb8-cre)1403Uze)	Hanns Ulrich Zeilhofer	MGI:4881836
R26:LS-tdTomato (B6.Cg-Gt(R26S)1403Uze/J)	JAX	IMR_ JAX:007914
Tau:LS-mGFP-nLacZ (B6;129P2-TauHsgtm1Arbr/J)	Abcam	IMR_ JAX:021162
Antibodies (dilution)		
Chicken anti-β-galactosidase (1:2000)	Abcam	AB_307210
Goat anti-DCC (1:500)	R&D Systems	AB_2089765
Guinea pig anti-vGlut2 (1:1000)	Synaptic Systems	AB_887884
Mouse anti-Lhx2 (1:500)	DSHB	AB_2618817
Mouse anti-Lmx1b (1:10,000)	Thomas Müller & Carmen Birchmeier	AB_2314752
Mouse anti-NeuN (1:500)	Abcam	AB_2298772
Mouse anti-Nkx2.2 (1:500)	DSHB	AB_531794
Rabbit anti-DsRed (1:1000)	Clonotech	AB_10013483
Rabbit anti-GFP (1:1000)	Life Technologies	AB_221569
Rabbit anti-Iba1 (1:1000)	Wako	AB_839504
Rabbit anti-Sox2 (1:1000)	Abcam	AB_2341193
Rat anti-RFP (1:1000)	ChomoTek	AB_2336064
Donkey anti-chicken Cy5 (1:500)	Jackson Immunoresearch	AB_2340365
Donkey anti-goat AF488 (1:500)	Jackson Immunoresearch	AB_2336933
Donkey anti-guinea Pig AF488 (1:500)	Jackson Immunoresearch	AB_2340472
Donkey anti-mouse AF488 (1:500)	Jackson Immunoresearch	AB_2340846
Donkey anti-mouse Cy5 (1:500)	Jackson Immunoresearch	AB_2340819
Donkey anti-rabbit AF488 (1:500)	Jackson Immunoresearch	AB_2313584
Donkey anti-rabbit Cy3 (1:500)	Jackson Immunoresearch	AB_2307443
Donkey anti-rat Cy3 (1:500)	Jackson Immunoresearch	AB_2340683
Chemicals (dilution/concentration)		
DAPI (4,6-diamidino-2-phenylindole) (1:500)	Life Technologies	AB_2629482
Neurotrace 450 (1:500)	Life Technologies	N/A; Cat# N21479
AlexaFluor488 cholera toxin B (1% weight/volume)	Life Technologies	N/A; Cat# C22841
Viruses (titre)		
AAV2.8-hSyn-SYP1-miniSOG-citrine (2.2E13 GC/mL)	Neurophotonics Centre, Université Laval	Addgene #50971

AAV, adeno-associated virus.
3.2. Somatic Hoxb8::Cre expression is essentially absent from the brain

To determine the extent to which brain or peripheral sensory neuron Hoxb8::Cre expression may contribute to the phenotypes previously characterized in DccSpKO mice,61,62 we examined neuronal expression of Hoxb8::Cre outside of the spinal cord in adult tissue. In line with expression in caudal DRG at E12.5, Hoxb8-tdTomato expression was detected in all neurons in adult DRG caudal to the third cervical DRG (Fig. 2A). In addition to the spinal cord and DRG, sparse expression of neuronal tdTomato (NeuN1/DkRed2+) was detectable in the anteroventral nucleus of the thalamus (Figs. 2B and C). We also observed numerous cells in the forebrain (in particular the cortex) and to a lesser extent in brainstem regions. These cells were commonly in close proximity to one another and interspersed in clusters of 20 to 30 units (Fig. 2D), and displayed a radial morphology characteristic of microglia. In agreement with a previous report of Hoxb8-driven cortical microglia expression,10 virtually all the tdTomato-expressing cells in Hoxb8-tdTomato cortical sections were not labelled by the neuronal marker NeuN but expressed the microglial marker Iba1 (Fig. 2D). In addition, we observed occasional single tdTomato+ pyramidal neurons in the cortex and hippocampus (data not shown). These results complement the previous observations that Hoxb8::Cre recombination is highly present in DRG neurons but essentially absent from neurons located rostral to the spinal cord.11

To quantify the proportion of spinal neurons expressing the Hoxb8::Cre transgene, we generated Hoxb8::Cre1/2;Tau:LS-mGFP-nuclearLacZ1/2 (Hoxb8-nLacZ) adult mice. The expression of nuclear LacZ allowed us to label individual spinal neuron cell bodies, without confounding axonal labelling, allowing their quantification. This is particularly important in the dorsal horn of the spinal cord where most AS neurons are located. In whole-mounted adult Hoxb8-nLacZ spinal tissue, mGFP expression was visible throughout the cord at all levels caudal to midcervical segments (Fig. 3A). To visualize the location of neuronal cell bodies expressing Hoxb8::Cre, cross-sections from all levels of Hoxb8-nLacZ spinal cord tissue were stained with X-gal. Consistent with mGFP expression, LacZ+ nuclei were visible throughout the gray matter and white matter (Fig. 3B). In the cervical enlargement, nuclear LacZ expression attenuates approximately at the C4 level with most LacZ+ cells sparsely distributed in the dorsal horn (data

Figure 1. Hoxb8::Cre expression during the development of spinal commissural neurons. Fluorescent images of Hoxb8-tdTomato expression (magenta) in whole-mount embryos at embryonic day 9.5 (A) and 11.5 (D). White arrowheads in A and D designate the relative position of the cross-sections in C and E, respectively. (B) The neural tube at E9.5 largely comprises neural progenitors in the VZ. (C) Cre-driven reporter expression (RFP; magenta) highly colocalizes with progenitor cells marked by Sox2 expression (green) (n = 7; 3 sections/animal). (E) Top row) Cross-sections of E11.5 caudal neural tube show extensive tdTomato expression in the postmitotic cells in the (1) spinal marginal zone (1) and (2) DRG cells. (Bottom row) Numerous commissural neurons express DCC in dorsal, medial, and ventral regions of the neural tube (in boxes and magnified in F) (F) tdTomato expression (RFP+) is detectable in dorsal, intermediate, and ventral spinal cord cells (arrowheads) that also express DCC (green) on their membranes (n = 4; 3 sections/animal). (G) Major populations of commissural neurons arise from the postmitotic cardinal groups d11, d15, and V3. (H–J) Extensive intersection of DsRed immunoreactivity (magenta) is detectable with transcriptional markers (green) of d11 (Lhx21), d15 (Lmx1b1), and V3 (Nkx2.2+)(n = 4; 3 sections/animal). Scale bar: (C and F) 50 μm (E) 100 μm (H–J) 25 μm. D, dorsal; DRG, dorsal root ganglion; d11, dorsal interneuron class 1; d15, dorsal interneuron class 5; FL, forelimb; FP, floorplate; HL, hind limb; RP, roofplate; SpC, spinal cord; T, tail; V, ventral; VZ, ventricular zone; V3, ventral interneuron class 3.
axon terminals in the brain of Hoxb8-tdTomato expression illustrated in C and D (bregma −2.57, 3 sections/animal). Scale bar: (A) 50 μm; (B) 100 μm; (inset) 25 μm; (C) 100 μm; (inset) 25 μm. AD, anterodorsal nucleus; AV, anteroventral nucleus; IAD, interanterodorsal nucleus; LD, lateral dorsal nucleus; MD, mediodorsal nucleus; sm, stria medullaris.

Figure 2. Hoxb8::Cre expression is detectable in selective nonspinal nuclei. (A) Nearly all DRG neurons (NeuN; blue) caudal to cervical segment 3 (C3) including thoracic and lumbar express tdTomato (DsRed+; red) (n = 5; 3 sections/animal). (B) Schematic of the relative position of detected supraspinal tdTomato expression illustrated in C and D (bregma −0.88). In the brain, sparse neuronal expression of tdTomato (DsRed+/NeuN+) is detectable in (C) anteroventral nucleus of the thalamus. (D) In the cortex, RFP immunoreactivity (tdTomato+; magenta) is detectable in microglia (Iba1+; green) but not in neurons (NeuN; blue) (n = 7, 3 sections/animal). Scale bar: (A) 50 μm; (C) 100 μm; (inset) 25 μm; (C) 100 μm; (inset) 25 μm. AD, anterodorsal nucleus; AV, anteroventral nucleus; IAD, interanterodorsal nucleus; LD, lateral dorsal nucleus; MD, mediodorsal nucleus; sm, stria medullaris.

3.3. Major motor and sensory spinofugal tracts are defined by Hoxb8::Cre expression

Given that supraspinal areas of the nervous system are spared from Hoxb8::Cre recombination, we reasoned that tdTomato+ axon terminals in the brain of Hoxb8-tdTomato mice must originate from spinofugal neurons. Most of these projections act as conduits of excitatory sensory inputs from the spinal cord to various brain regions involved in processing of sensory and motor information. To assess the innervation of supraspinal targets from the Hoxb8::Cre-expressing spinal domain, the brains from Hoxb8-tdTomato mice were transversely sectioned and immunostained for the neuronal marker NeuN and the glutamatergic presynaptic protein vGluT2 (vesicular Glutamate Transporter 2), to discriminate between passing and innervating axons. To enhance the detection of tdTomato, we used the anti-red fluorescent protein antibody (anti-DsRed). In Hoxb8-tdTomato mice, DsRed+ axon terminals were detected throughout the brain, although more frequently in the hindbrain (Fig. 4A). We also detected substantial innervation of both sensory- and motor-related brain targets. In particular, in the hindbrain, the DsRed+vGluT2+ appositions were present in the dorsal column nucleus (Fig. 4B left), nucleus of the solitary tract (Fig. 4B right), intermediate and lateral reticular nucleus (Fig. 4C left), and inferior olivary complex (Fig. 4C right). The densely labelled tdTomato axon termini in the dorsal column nucleus represent the accumulation of both spinal68 and primary afferents57 that carry signals related to innocuous touch. Spinocerebellar axonal terminals were visible in the granular layer of the central lobule of the cerebellum and were organized in columns (Figs. 4D and E). In the midbrain, the LPbN (Fig. 4F) and the PAG that are the principal targets of AS neurons had dense Hoxb8-tdTomato terminals (Fig. 4G). In addition, the motor-related pontine gray nucleus received many spinal inputs (Fig. 4H). Other sparsely innervated areas in the midbrain included the inferior colliculus and superior colliculus (data not shown). In the forebrain, all major somatosensory-related nuclei of the thalamus were also heavily innervated (Fig. 4I), including medial thalamic nuclei (Fig. 4J). Not surprisingly, the lateral spinothalamic pathway that primarily innervates the VPL (Fig. 4K) was well defined by Hoxb8-tdTomato axonal expression. Although evidence for a monosynaptic spinohypothalamic tract has been described in rats and cats,9,64 no innervation of the medial hypothalamus by Hoxb8-tdTomato spinofugal neurons was detectable (data not shown). Instead, we only observed innervating...
appositions in the parasubthalamic nucleus in the lateral hypothalamus (Fig. 4L). These appositions were located adjacent to axon tracts that eventually innervate the globus pallidus (Fig. 4M).13,33,58 Collectively, our results demonstrate that Hoxb8::Cre spinal neurons innervate all the major brain regions receiving somatosensoy and motor inputs.

3.4. Spinal deletion of Dcc alters spinofugal innervation

We subsequently examined the effect of spinal cord deletion of Dcc on the supraspinal connectivity of AS neurons in Hoxb8::Cre; DccSpKO mice. We have previously demonstrated that through this genetic approach, DCC expression is completely lost in the caudal neural tube by E11.5, the time at which many axons cross the ventral spinal commissure. By E14.5, when essentially all commissural axons have crossed the midline, the size of the ventral commissure in DccSpKO embryos was reduced by approximately 42%, similar to that in mice with constitutive Dcc deletion.28,82 To uncover the changes in the innervation of AS supraspinal targets VPL, PAG, and LPbN, in the absence of DCC, we first labelled these projections anterogradely. We made unilateral lumbar injections of an adeno-associated virus driving the expression of the yellow fluorescent protein citrine (YFP) in presynaptic terminals (AAV2/8-SYP1-miniSOG-citrine) of transduced neurons, in DccSpKO mice and their control littermates (Dccflox/- or Dcc flox/flox) (Fig. 5A). In all cases, the transduction was confined to one side of the lumbar spinal cord and generally biased to the SDH where lamina I AS neurons are located but
Figure 4. Hoxb8::Cre defines genetic access to sensory and motor-related spinofugal neurons. (A) Transverse sections from the medulla in Hoxb8-tdTomato mice show extensive axonal innervation (DsRed+) in numerous nuclei associated with both sensory- and motor-related integration. Neurons (NeuN+; blue) of DCN and NTS in the dorsal medulla (B) and IRN/LRN and IOC in the ventral medulla (C) are highly innervated by DsRed+/vGlut2+ (red/green) appositions. (D) Representative transverse sections from rostral hind brain (bregma −6.055 mm) and midbrain (bregma −5.055 mm). Dense innervation of the motor-related regions: cerebellum (E) and pontine gray (H) and sensory-related regions: lateral parabrachial nucleus (F) and periaqueductal gray (G). Hoxb8-tdTomato innervation of multiple nuclei in caudal (bregma −2.88) and rostral (bregma −1.55) thalamus (I). Dense innervation of primary targets of spinothalamic neurons: medial thalamus (J) and VPL (K). Lateral hypothalamic nuclei PSTN and ZI (L) and reticulated internal segment of GP (M). (n = 5, 3 sections/animal). Scale bar: (A) 250 μm; (D and J) 500 μm; all others 100 μm. Medulla: CU, cuneate nucleus; DCN, dorsal column nucleus; ECU, external cuneate nucleus; GR, gracile nucleus; GRN, gigantocellular reticular nucleus; IOC, inferior olivary complex; IRN, internal reticular nucleus; LRN, lateral reticular nucleus; MDRNv, medullary reticular nucleus, ventral part; MV, medial vestibular nucleus; NTSm, nucleus of solitary tract, medial part; PARN, parvocellular reticular nucleus; PRP, nucleus prepositus. Pons: PG, pontine gray; PCG, pontine central gray; PRN, pontine reticular nucleus. Cerebellum: CB, cerebellum; CENT2/3, central lobule II/III; CUL4, culmen lobule IV; gr, granular layer; mt, medial layer. Midbrain: APN, anterior pretectal nucleus; AQ, cerebral aqueduct; IC, inferior colliculus; KF, Kölliker–Fuse subnucleus; IC, PBN central lateral part; le, PBN external lateral part; MRN, midbrain reticular nucleus; PAG, periaqueductal gray; PBm, PBN medial part; PBN, parabrachial nucleus; SC, superior colliculus. Thalamus: MD, mediodorsal nucleus; MDC, mediodorsal nucleus, central part; MDm, mediodorsal nucleus, medial part; MG, medial geniculate complex; PO, posterior complex; PVT, paraventricular nucleus; RT, reticular nucleus of the thalamus; SPFp, subparafascicular nucleus, paracellular part; VAL, ventral anterior–lateral complex; VM, ventral medial nucleus; VPL, ventral posteromedial nucleus; VPM, ventral posteromedial nucleus. Hypothalamus: PTSN, parasubthalamic nucleus; ZI, zona incerta. Cerebral cortex: AMY, amygdala; GP, globus pallidus, internal segment. Fibre tracts: cpd, cerebral peduncle; fr, fasciculus retroflexus; ip, inferior cerebellar peduncle; int, internal capsule; mcp, middle cerebellar peduncle; ml, medial lemniscus; mlf, medial longitudinal fasciculus; py, pyramidal tract; scp, superior cerebellar peduncle.
excluding those in lamina V or LSN (Figs. 5B and C). We detected some YFP+ synaptic terminals in the LSN in agreement with propriospinal peptidergic inputs to this region.\(^{14,35}\) Citrine-expressing (YFP\(^1\)) appositions were detectable in both ipsilateral and contralateral ventral horn neurons (Fig. 5D) in Dcc\(^{Spko}\) mice. YFP+ spinofugal neuron axon terminals are primarily contralateral in the VPL thalamus (E) and PAG (F) in control mice. In Dcc\(^{Spko}\) mice, spinofugal projections appear bilateral in VPL and PAG (E and F). Spinoparabrachial neuron axon terminals seem to innervate the LPbN bilaterally in both control and Dcc\(^{Spko}\) mice (G). (n = 3/genotype, 3 sections/animal). Scale bar: (C and D) 25 \(\mu m\), \(\mu m\); (E–G inset) 25 \(\mu m\), AQ, cerebral aqueduct; AS, anterolateral system; AAV, adeno-associated virus; CBX, cerebellar cortex; IC, inferior colliculus; LPbN, lateral parabrachial nucleus; PAG, periaqueductal gray; PBN, parabrachial nucleus; PCG, pontine central gray; PRN, pontine reticular nucleus; PSV, principal sensory trigeminal nucleus; VPL, ventral posterolateral.

Figure 5. Viral anterograde labelling of AS axons reveals a shift in laterality in Dcc\(^{Spko}\). (A) Schematic of the unilateral injections of AAV2/8-hSyn-SYP1-mSOG-Citrine in the lumbar enlargement. (B) Representative transverse images showing YFP expression restricted to one side of the lumbar spinal cord in control and Dcc\(^{Spko}\) mice. YFP+ synaptic terminals are largely enriched in the superficial dorsal horn (C) and more sparsely in the ipsilateral and contralateral ventral horn (D) of control and Dcc\(^{Spko}\) mice. YFP+ spinofugal neuron axon terminals are primarily contralateral in the VPL thalamus (E) and PAG (F) in control mice. In Dcc\(^{Spko}\) mice, spinofugal projections appear bilateral in VPL and PAG (E and F). Spinoparabrachial neuron axon terminals seem to innervate the LPbN bilaterally in both control and Dcc\(^{Spko}\) mice (G). (n = 3/genotype, 3 sections/animal). Scale bar: (C and D) 25 \(\mu m\), \(\mu m\); (E–G inset) 25 \(\mu m\), AQ, cerebral aqueduct; AS, anterolateral system; AAV, adeno-associated virus; CBX, cerebellar cortex; IC, inferior colliculus; LPbN, lateral parabrachial nucleus; PAG, periaqueductal gray; PBN, parabrachial nucleus; PCG, pontine central gray; PRN, pontine reticular nucleus; PSV, principal sensory trigeminal nucleus; VPL, ventral posterolateral.
3.5. Laterality changes in lamina I but not lamina V or lateral spinal nucleus anterolateral system neurons

Despite this apparent shift in laterality of anterogradely labelled spinofugal axons in DccSpKO mutants, a bias in viral transduction favouring the SDH impeded a thorough assessment of the impact of Dcc in the major AS clusters in lateral lamina V and LSN (Fig. 5B, insets). To accurately assess the changes in laterality of most AS neuronal projections caused by the loss of DCC, we made a unilateral injection of the retrograde fluorescent tracer CTB conjugated to Alexa Fluor 488 in the LPbN of DccSpKO and their control littermates, and examined the distribution of SPb (spinoparabigral) neurons in the lumbar enlargement (Fig. 6A). In all experimental animals, the injected CTB was largely restricted to the LPbN (Fig. 6B). In agreement with previous studies,41,46,56 CTB-labelled neurons were largely found in lamina I, lateral lamina V, and the LSN of the dorsal horn in both control and DccSpKO mice (Figs. 6C and D). We quantified 156 ± 56.6 SPb neurons from 10 transverse sections per animal (both ipsilateral and contralateral in 25-μm sections). These neurons were subdivided into 3 main clusters: SDH (lamina I), DDH (lamina II-V), and the LSN. We plotted the relative position of both ipsilateral and contralateral neurons (Figs. 6E and F) using the central canal as the reference point.76 SPb neurons in the SDH were predominantly found in the contralateral lumbar cord in control mice. By contrast, in the DccSpKO many SDH neurons were visible in the ipsilateral spinal cord. SPb neurons in the LSN and DDH seemed to be present bilaterally in both groups. In the DDH of DccSpKO mice, however, SPb neurons seemed to be more broadly distributed throughout the gray matter (Fig. 6F). We examined the ratio of contralateral to ipsilateral neurons (C/I ratio) in each group to determine whether the impact of Dcc deletion affects the connectivity of SPb clusters differentially (Fig. 6G and Table 2). In control mice, most SDH SPb neurons projected contralaterally (contra 85.9% vs ipsi 14.1% ± 3.4%; C/I ratio of 10.53 ± 5.19). There were no apparent laterality biases in DDH (contra 46.64% vs ipsi 53.37% ± 4.1%; C/I ratio of 0.92 ± 0.15) or LSN neurons (contra 56.20% vs ipsi 43.8% ± 2.4%; C/I ratio of 1.31 ± 0.13), suggesting that SPb neurons are bilaterally distributed in the DDH and the LSN. By contrast, in DccSpKO mice, SPb neurons in the SDH were equally distributed between the ipsilateral and contralateral spinal cord (contra 50.11% vs ipsi 49.89% ± 1.9%; C/I ratio of 1.01 ± 0.07). When comparing the contralateral % of SPb neurons in SDH between mutant and control groups, we found it significantly different (Mann–Whitney test, P = 0.0159). However, such analyses indicated no changes in the apparent percent laterality of DDH-SPb neurons (P = 0.7302) or LSN-SPb projections (P = 0.2857). Previous work has demonstrated that DCC expression is essential for the appropriate migration of spinal neurons.22 We therefore assessed potential changes to the mediolateral distribution of labelled SPb neurons using density plots representing multiple sections (Fig. 6H). We compared the mean mediolateral distance of labelled neurons between control and DccSpKO mice on both the contralateral and ipsilateral spinal cord. The mediolateral distribution of all clusters remained unchanged in DccSpKO mice (Mann–Whitney test, control vs DccSpKO: SDH: 576.8 ± 16.4 vs 614.5 ± 22.9 μm, P = 0.3154; LSN: 838.1 ± 13.8 vs 862.4 ± 13.4 μm, P = 0.2115; DDH: 562.7 ± 41.7 vs 488.5 ± 47.9, P = 0.1365). We subsequently examined the distribution of AS neurons innervating the PAG (spinoperaque ductal gray; SPAG) through a similar retrograde labeling approach (Fig. 7A). The injection of CTB-488 was entirely restricted to one side of the PAG (Fig. 7B). We then quantified 144.9 ± 20.3 labelled neurons from 10 transverse sections per animal (both ipsilateral and contralateral in 25-μm sections). Similar to SPb neuron distribution, SPAG neurons were primarily confined to the SDH, LSN, and DDH regions5,51,55 in both control and DccSpKO mice (Figs. 7C–F). Through our cluster analysis (Fig. 7G and Table 3), we observed that the contralaterally biased SDH neurons in control mice (contra 79.6% vs ipsi 20.4% ± 6.0%; C/I ratio of 3.91 ± 2.99) demonstrated a shift toward projecting ipsilaterally in DccSpKO mice (contra 46.2% vs ipsi 53.8% ± 4.7%; C/I ratio of 0.86 ± 0.19) (Mann–Whitney test comparing contra % in controls vs mutants; P = 0.0286). The SPb and SPAG neurons in the SDH were entirely confined to lamina I of Rexed46,71. The broad distribution of these cells in Figures 6E and 7E, however, seems due to changes in the general shape of the dorsal horn from the examined cross-section. However, the laterality of LSN (Control: contra 52.1% vs ipsi 47.9% ± 1.9%; C/I ratio of 1.09 ± 0.08; DccSpKO: contra 52.9% vs 47.1% ± 4.0%; C/I ratio of 1.12 ± 0.21) and DDH (Control: contra 53.2% vs ipsi 46.8% ± 4.9%; C/I ratio of 1.1 ± 0.21; DccSpKO: contra 52.1% vs 47.2% ± 1.6%; C/I ratio of 1.09 ± 0.07) neurons, already projecting evenly to both sides, did not change (Mann–Whitney, P = 0.8857 and 0.4857, respectively). Comparing the distribution of the labelled neurons, no significant mediolateral differences were evident between control DccSpKO mice (Fig. 7H). Together, these results suggest that lamina I AS neurons profoundly rely on DCC for targeting to their respective supraspinal targets during development; however, the mediolateral position of AS neurons seems unaffected in the absence of DCC.

4. Discussion

Together, our experiments provide a detailed overview of Hoxb8::Cre expression in spinofugal neurons, and further demonstrate their dependence on DCC during development. Here, we discuss our findings in terms of AS ontogeny, anatomy of ascending sensory and motor pathways, and the potential role of AS connection topography in nociception.

Hoxb8::Cre is expressed in all spinal progenitors as early as E9.5, apparently preceding the birth time of many AS neurons.59 It is expressed in cardinal commissural spinal neuron populations (d1, d5, or V3) that likely give rise to excitatory spinofugal neurons, including those of the AS. However, more generally, the Hoxb8::Cre characterization study by Witschi et al.81 reported a slightly higher fraction of spinal neurons that express Hoxb8::Cre (96.0% ± 0.8 vs our 88.9% ± 1.35). This may be explained by the nuclear LacZ reporter allowing us to resolve Hoxb8::Cre expression at the level of individual cells, without the confound of cellular Cre reporter signal in dense neurites in the spinal dorsal horn. In addition, using 2 separate Cre-dependent reporters, we were unable to detect any Hoxb8::Cre recombinase expression in the neurons of the spinal trigeminal nucleus or their axon terminals in the ventral posteromedial thalamus, previously shown by Witschi et al.81 Because we detected microglial Hoxb8::Cre expression in the rostral nervous system, including the brainstem, the previously identified Hoxb8::Cre expression in the trigeminal nucleus may have been nonneuronal. Given these observations, we conclude that Hoxb8::Cre drives recombination in the spinal cord while essentially sparing the brain.

We also demonstrate that Hoxb8::Cre is expressed in sensory and motor spinovalgl neurons that innervate the brainstem and the forebrain. One limitation of the Hoxb8::Cre line is that it spares all spinofugal neurons positioned in the upper cervical spinal cord. Because this region contains numerous neurons that contribute
Figure 6. Retrograde labelling reveals a shift in the laterality of multiple spinoparabrachial neuron populations in DccSpkO. (A) Schematic of unilateral retrograde labelling of SPb neurons in control and DccSpkO mice. (B) Representative confocal image of CTB-488 (green) injection restricted to the LPbN (tissue counterstained with blue fluorescent Nissl stain). Images from the ipsilaterally and contralaterally labelled SPb neurons (top row: CTB + neurons in black) in the spinal lumbar enlargement in (C) control mice and (D) DccSpkO. Bottom row: Micrographs of CTB + (green) projection neurons in lamina I, V, and LSN. Relative position of identified SPb neurons in SDH (black), LSN (white), and DDH (gray) in the lumbar spinal cord in (E) control and (F) DccSpkO mice. (G) The relative ratio of all (SDH, LSN, and DDH) identified ipsilateral (white) and contralateral (black) labelled SPb neurons in control and DccSpkO mice. (H) Density of plots of the relative mediolateral position of labelled SPb neurons in the spinal cord of control (solid) and DccSpkO (dashed) mice. (n = 5 for control and n = 4 for DccSpkO). 10 sections/side/animal; **P < 0.001, *P < 0.01; Mann–Whitney test). Scale bar: (B) 500 μm, (C and D) 100 μm; (C and D inset) 25 μm. AQ, cerebral aqueduct; CBX, cerebellar cortex; DDH, deep dorsal horn; IC, inferior colliculus; LPbN, lateral parabrachial nucleus; LSN, lateral spinal nucleus; PAG, periaqueductal gray; PBN, parabrachial nucleus; POR, periolivary region (superior olivary complex); PRN, pontine reticular nucleus; PSV, principal sensory trigeminal; SC, superior colliculus; SDH, superficial dorsal horn.
to ascending sensory tracts in rodents,5 our axonal reporter characterization in the brain is therefore an underrepresentation of all spinofugal axons terminals. Nevertheless, our analysis provides the first large-scale description of all caudal spinofugal inputs in the mouse brain. A previous low-resolution study showed that Cdx1::Cre, expressed in the caudal spinal cord, labels spinofugal axons tracts in the prenatal mouse brain.46 Our analysis, however, provides a more comprehensive analysis of all spinofugal connections and is combined with the visualization of presynaptic markers in the adult mouse brain, which distinguishes passing axons from axonal termini. In contrast to other mammalian spinofugal projection mapping using classic anterograde labels,9,13,44,58 we found no spinofugal axon terminals in mammalian spinofugal projection mapping using classic anterograde markers in the adult mouse brain, which distinguishes passing axons from axonal termini.46 Our analysis, however, provides a more comprehensive analysis of all spinofugal connections and is combined with the visualization of presynaptic markers in the adult mouse brain, which distinguishes passing axons from axonal termini. In contrast to other mammalian spinofugal projection mapping using classic anterograde labels,9,13,44,58 we found no spinofugal axon terminals in the medial hypothalamus. Because spinohypothalamic neurons are present throughout the rostrocaudal extent of the spinal cord, including in the lumbar region, the presence of Hoxb8::Cre-expressing axons in the medial hypothalamus should have been apparent. The lack of such axon terminals in the mouse suggests that the innervation pattern of ascending tracts may not necessarily be phylogenetically conserved.

Our quantitative experiments also allow some insights into the lateralization of AS projections in the absence of Netrin-1:DCC signalling during spinal cord development. The laterality of AS axons in the LSN and DDH is largely unaffected by the DccSpKO mutation. This is in line with apparently similar proportions of contralateral and ipsilateral axon terminals in the LPbN and PAG, as revealed by single tracer injections in the lamina V/LSN lumbar region.7 In addition, ipsilateral DDH SPb neurons are also present throughout the spinal cord, although in smaller numbers than contralateral neurons.46 Thus, because many LSN and DDH axons do not cross the spinal midline, this aspect of their connectivity is likely to be DCC-independent and may involve other midline crossing mechanisms. Another technical caveat to consider is that the LPbN is adjacent to the ventral spinocerebellar tract that originates from a large population of ipsilateral spinocerebellar neurons found throughout the lumbar DDH.53,54 Given the proximity of the LPbN injection site to the cerebellum, it is likely that the CTA-labelled neurons found in the DDH of both control and DccSpKO mice may include some spinocerebellar neurons.

The most pronounced AS connectivity change in DccSpKO mice was in the laterality of SDH AS neurons where significantly more of them were innervating their targets on the ipsilateral side. Previous work in rats demonstrates that lumbar lamina I SPb neurons are mostly contralateral, whereas a third project bilaterally.72 The increase in the proportion of ipsilateral projections in DccSpKO is consistent with the bilaterally projecting SPb neurons either losing their midline crossing (ie, contralateral) axon such that only the ipsilateral projection remains, or with the contralateral axes ascending alongside their ipsilateral collateral. However, due to the variability in the absolute numbers of labelled SPb neurons, we are unable to resolve between these 2 possibilities. Consistent with previous reports that virtually all lamina I SPAG also innervate the LPbN,72 we observed this laterality change when assessing SDH AS neuronal projections to the PAG and LPbN. This is reminiscent of observations made in Krox20::Cre; Robo3flox/flox (Robo3flox/flox-SKO) mice in which trigeminothalamic neurons lack Robo3, another important commissural

Table 2
Quantitative assessment of laterality changes in the innervation of lateral parabrachial nucleus by the AS neurons represented as percent ratios of retrogradely labelled AS neurons.

Mouse	SPb CONTROL (N = 5)		DCCSpKO (N = 4)					
	No. of cells	Percentage (%)	Ratio (C/I)	No. of cells	Percentage (%)	Ratio (C/I)		
Control (n = 5)								
SDH	1 2 3 4 5	30,9 51,6 29,6 31,1 35,7	76,92 89,47 82,86 96,88 83,33	28,27 19,23 19,16 35,35	50,91 45,24 54,29 50,00 50,00	49,09 54,76 45,71 50,00 1,04		
SEM	3,39	5,19	4,09	5,67	63,24	54,93	58,33	
LSN	1 2 3 4 5	15,16 39,32 43,25 27,19 34,27	48,39 54,93 63,24 58,7 55,74	18,8 20,15 21,13 28,20	69,23 57,14 61,76 58,33	30,77 42,86 38,24 41,67		
SEM	2,44	0,13	0,12	0,14	0,11	0,11		
DDH	1 2 3 4 5	17,12 31,53 35,57 23,24 38,37	58,62 36,9 38,04 48,94 50,67	8,9 11,15 17,24 43,56	47,06 42,31 41,46 43,43	52,94 57,69 58,54 56,57		
SEM	4,09	0,15	0,11	0,07	0,04	0,04		

AS, anterolateral system; DDH, deep dorsal horn; LSN, lateral spinal nucleus; SDH, superficial dorsal horn.
Figure 7. Retrograde labelling reveals an increase in ipsilateral projections of lamina I spinoperiaqueductal gray (SPAG) neurons in Dcc^SpkO mice. (A) Schematic of unilateral retrograde labelling of SPAG neurons in control and Dcc^SpkO mice. (B) Representative confocal image of CTB-488 (green) injection restricted to the PAG (tissue counterstained with blue fluorescent Nissl stain). Images from the ipsilaterally and contralaterally labelled SPAG neurons (top row: CTB^+ neurons in black) in the spinal lumbar enlargement in (C) control mice and (D) Dcc^SpkO mice. Bottom row: Micrographs of CTB^+ (green) projection neurons in lamina I, V, and LSN. Relative position of identified SPAG neurons in SDH (black), LSN (white), and DDH (gray) in the lumbar spinal cord in (E) control and (F) Dcc^SpkO mice. (G) The relative ratio of all (SDH, LSN, and DDH)-identified ipsilateral (white) and contralateral (black) labelled SPb neurons in control and Dcc^SpkO mice. (H) Density of plots of the relative mediolateral position of labelled SPb neurons in the spinal cord of control (solid) and Dcc^SpkO (dashed) mice. (n = 4 for each group; 10 sections/side/animal; ***P < 0.001, **P < 0.01; Mann–Whitney test). Scale bar: (B) 500 μm, (C and D) 100 μm; (C and D inset) 25 μm; (G) 100 μm, (inset) 25 μm. AQ, cerebral aqueduct; CBX, cerebellar cortex; CTB, cholera toxin B; DDH, deep dorsal horn; IC, inferior colliculus; LSN, lateral spinal nucleus; PAG, periaqueductal gray; PBN, parabrachial nucleus; POR, periolivary region (superior olivary complex); PRN, pontine reticular nucleus; PSV, principal sensory trigeminal; SC, superior colliculus; SDH, superficial dorsal horn.
crossing receptor. In these mice, the number of contralateral trigeminototalamic connections was decreased, with a concomitant increase in ipsilateral ones, suggesting that a ventral posteromedial thalamic lobe on one side of the thalamus receives whisker inputs from trigeminal neurons on both sides of the body.65 We thus envisage that a similar input convergence may occur in SDH AS neuron innervation of their targets in \textit{DccSpKO} mice. Although \textit{Dcc} loss increased the number of ipsilateral SDH AS neurons, a considerable number of them formed contralateral connections suggesting that Nerin1:DCC signalling may be dispensable for their commissural crossing. Complete loss of Netrin-1 or DCC is associated with a reduction of somatosensory function, inferred from aberrant whisker-dependent behaviors observed in \textit{Robo3R3-5cKO} mice. Antero-lateral system neurons are also somatotopically organized, where, for example, spinothalamic AS neurons from the caudal spinal cord innervate the lateral edge of the VPL, whereas those in the cervical spinal cord terminate more medially.30 To determine whether SDH neuron targeting in \textit{DccSpKO} mice results in trigeminototalamic axons innervated separate thalamic neurons within a thalamic lobe.36 Similar observations were made in monkey ocular dominance columns40 or retinotectal input segregation in three-eyed frogs.19 Such aberrant trigeminototalamic maps are the likely cause of the decreased accuracy of somatosensory function, inferred from aberrant whisker-dependent behaviors observed in \textit{Robo3R3-5cKO} mice. Antero-lateral system neurons are also somatotopically organized, where, for example, spinothalamic AS neurons from the caudal spinal cord innervate the lateral edge of the VPL, whereas those in the cervical spinal cord terminate more medially.30 To determine whether SDH neuron targeting in \textit{DccSpKO} mice results in somatotopic shifts similar to those in \textit{Robo3R3-5cKO} mutants, it is imperative to label projections from each side of the superficial spinal cord and examine the somatotopic organization of axon terminals in each of the primary targets (ie,: VPL, PAG, and LPbN) in the brain. However, such an experiment is limited by the small number of spinothalamic neurons in the caudal spinal cord. Despite this limitation, given the somatotopic organization of nociceptive DDH neurons, and a similar arrangement of their VPL thalamus targets, we propose that the decreased laterality of DDH-VPL connections may contribute to the inaccurate localization (topognosis) of painful stimuli in \textit{DccSpKO} mice.

Could other AS targets be contributing to nociceptive topognosis? A major component of nociception is the rapid generation of a defense vs escape response, facilitated primarily by neurons in the PAG.20,27 In the case of escape, for example, accurate localization of the stimulus may dictate the direction of escape. The contralateral lamina I spinofugal inputs to the PAG (in addition to VPL thalamus) may contribute to such responses. Direct activation of lateral PAG in cats and rats elicits both a somatotopically organized and asymmetrical defense response.

Table 3

Mouse	SPAG									
Control (n = 5)	**DccSpKO (n = 4)**									
	No. of cells	Percentage (%)	Ratio (C/I)	No. of cells	Percentage (%)	Ratio (C/I)				
	Contra	Ipsi	Contra	Ipsi	Contra	Ipsi	Contra	Ipsi		
SDH										
1	30	10	75.00	25.00	3.00	19	13	59.38	40.63	1.46
2	44	23	65.67	34.33	1.91	23	30	43.40	56.60	0.77
3	59	11	84.06	15.94	5.27	25	31	44.64	55.36	0.81
4	15	1	93.75	6.25	15.00	16	27	37.21	62.79	0.59
Mean	79.62	20.38	3.91							
SEM	6.02	2.99								
LSN										
1	26	22	54.17	45.83	1.18	13	15	46.43	53.57	0.87
2	44	38	53.66	46.34	1.16	17	15	52.13	46.86	1.13
3	33	28	54.10	45.90	1.18	23	25	47.92	52.08	0.92
4	19	22	46.34	53.66	0.86	18	10	64.29	35.71	1.80
Mean	52.07	47.93	1.09							
SEM	1.91	0.08								
DDH										
1	29	23	55.77	44.23	1.26	18	15	54.55	45.45	1.20
2	37	57	39.36	60.64	0.65	20	20	50.00	50.00	1.00
3	38	31	55.07	44.93	1.23	20	21	48.78	51.22	0.95
4	20	12	62.50	37.50	1.67	16	13	55.17	44.83	1.23
Mean	53.18	46.82	1.14							
SEM	4.90	0.21								

AS, anterolateral system; DDH, deep dorsal horn; LSN, lateral spinal nucleus; SDH, superficial dorsal horn; SPAG, spinoperiaqueductal gray.
Microinjection of excitatory amino acids or direct electrical stimulation in the PAG in conjunction with facial tactile stimulation elicits fight responses with the head moving to the contralateral side. Although the activation of the pretential PAG evokes threat displays towards the contralateral facial and forelimbs regions, the activation of the subtentorial PAG results in flight reactions associated with hind limb movement. Recent findings also illustrate that direct inputs from the LPbN to LPAG are associated with driving escape behaviours in mice, raising the possibility that lateralized lamina I inputs in the LPbN may be necessary to drive appropriate cross-talk between LPbN and LPAG. Consequently, an increase in lamina I AS neuron ipsilateral to the PAG may also contribute to the aberrant nocifensive response to noxious stimuli found in DccSpKO mice.

Conflict of interest statement
The authors have no conflicts of interest to declare.

Acknowledgements
The authors thank Isobel Orfi and Wren Boehlen for assistance in tissue processing and image acquisition; Mei ions Liang and Julie Chang for comments and feedback on the manuscript. This work was supported by Canadian Institutes of Health Research (grants PJT-153053, PJT-159839, and PJT-162225), Brain Canada, Canadian Foundation for Innovation, and the W. Garfield Weston Foundation.

Article history:
Received 27 March 2020
Received in revised form 8 July 2020
Accepted 13 July 2020
Available online 21 July 2020

References
[1] Al-Khatier KM, Kerr R, Todd AJ. A quantitative study of spinohypothalamic neurons in laminae I, II, and IV in lumbar and cervical segments of the rat spinal cord. J Comp Neurol 2008;511:1–18.
[2] Andrew D, Craig AD. Spinohypothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nature Neuroscience 2001;4:72–7.
[3] Arber S. Motor circuits in action: specification, connectivity, and function. Neuron 2012;74:975–89.
[4] Bandier R, Carriere P. Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Brain Res 1988;439:95–106.
[5] Basbaum Al, Bushnell MC. Science of pain. Academic Press, 2008.
[6] Beitz AJ. The organization of afferent projections to the midbrain periaqueductal gray: a central neural pathway for itch. J Comp Neurol 1995;353:506–28.
[7] Bernard JF, Dallel R, Raboisson P, Villanueva L, Le Bars D.
[8] Bin JM, Han D, Sun KLW, Croteau LP, Dumontier E, Cloutier JF, Kania C, Lüthi A. Midbrain circuits for defensive behaviour. Nature 2016;534:606–12.
[9] Bin JM, Han D, Sun KLW, Croteau LP, Dumontier E, Cloutier JF, Kania C, Lüthi A. Midbrain circuits for defensive behaviour. Nature 2016;534:606–12.
[10] Chen SK, Tvdrk P, Peden E, Cho S, Wu S, Spangrude G, Capecci MR. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010;141:775–85.

[11] Chédiak A. Roles of axon guidance molecules in neuronal wiring in the developing spinal cord. Nat Rev Neurosci 2019;20:1–17.
[12] Chiang MC, Nguyen Ek, Canto-Bustos M, Papale AE, Oswald AMM, Ross SE. Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response. Neuron 2020;106:3927–39.e5.
[13] Cliffer KD, Burstein R, Giesler GJ. Distributions of spinohypothalamic, spinopontine, and spinotruncapine fibers revealed by anterograde transport of PHA-L in rats. J Neurosci 1991;11:852–68.
[14] Cliffer KD, Urcg A, Eide RP, Giesler GJ. Studies of peptidergic input to the lateral spinal nucleus. Brain Res 1988;460:356–60.
[15] Constantine-Paton M, Law MJ. Eye-specific termination bands in tecta of three-eyed frogs. Science 1978;202:639–41.
[16] Craig AD, Serrano LP. Effects of systemic morphine on lamina I spinohypothalamic tract neurons in the cat. Brain Res 1994;636:233–44.
[17] Craig ADB. Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 2003;26:1–30.
[18] da Silva RV, J営kennsve HC, Wyss MT, Roome RB, Bouroujini FB, Stifani N, Marsh APil, Ryan MM, Lockhart PJ, Leventer RJ, Richards L, Rosenblatt B, Srour M, Weber B, Zellhofer HU, Kania A. DCC is required for the development of nociceptive topognois in mice and humans. Cell Rep 2018;22:1105–14.
[19] Davidson S, Truong H, Giesler GJ Jr. Quantitative analysis of spinohypothalamic tract neurons in adult and developing mouse. J Comp Neurol 2010;518:1993–204.
[20] Depaulis A, Bandier R. The midbrain periaqueductal gray matter: functional, anatomical, and neurochemical organisation. Springer US, 2012.
[21] Deppauls A, Bandier R, Vergnes M. Characterization of pretentorial periaqueductal gray matter neurons mediating intraspecific defensive behaviors in the rat by microinjections of kainic acid. Brains Res 1989;486:121–29.
[22] Ding YQ. Ventral migration of early-born neurons requires DCC and is essential for the projections of primary afferents in the spinal cord. Development 2005;132:2047–56.
[23] Dominici C, Moreno-Bravo JA, Puigros SR, Rappeneau O, Rama N, Veuque P, Bernet A, Mehien P, Chédiak A. Floor-plate-derived netrin-1 is dispensable for commissural axon guidance. Nature 2017;545:390–4.
[24] Dong HW. The Allen reference atlas: a digital color brain atlas of the C57Bl/6J male mouse. Psychiatr. John Wiley & Sons Inc.,2008.
[25] Dostrovský JO, Craig AD. Cooling-specific spinohypothalamic neurons in the monkey. J Neurophysiol 1996;76:3656–65.
[26] Dutton RC, Carstens ML, Antognini JF, Carstens E. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat. Brain Res 2006;1019:76–85.
[27] Esposito MS, Botta P, Chaudun F, Fadok JP, Markovic M, Wolff SBE, Ramakrishnan C, Fetto J, Deisseroth K, Herry C, Arber S, Toptoe P, Lüthi A. Midbrain circuits for defensive behaviour. Nature 2016;534:206–12.
[28] Fazeli A, Dickinson SL, Hermiston ML, Tighne RV, Stoen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Suorns J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 1997;386:796–804.
[29] Feil K, Herbert H. Topographic organization of spinal and spinal trigeminal somatosensory pathways to the rat parabrachial and Kölliker--fuse nuclei. J Comp Neurol 1995;355:506–28.
[30] Francis JU, Xu S, Chapin JK. Propriceptive and cutaneous representations in the rat ventral posterolateral thalamus. J Neurophysiol 2008;99:2291–304.
[31] Friocourt F, Kozulin P, Bellen M, Suarez R, DiPari N, Richards LJ, Giacobini P, Chetnati A. Shared and differential features of Robo3 expression pattern in amniotes. J Comp Neurol 2019;527:2009–29.
[32] Gatto G, Goulding M. Locomotion control: brainstem circuits satisfy the need for speed. Curr Biol 2018;28:R256–9.
[33] Gauriau C, Bernard JF. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 2004;468:24–56.
[34] Giesler GJ, Spiel HP, Willis WD. Organization of spinohypothalamic tract axons within the rat spinal cord. J Comp Neurol 1981;195:243–52.
[35] Gutierrez-Mecinas M, Polgár E, Bell AM, Herau M, Todd AJ. Substance P-expressing excitatory interneurons in the mouse superficial dorsal horn provide a propriospinal input to the lateral spinal nucleus. Brain Struct Function 2018;223:597–70.
[36] Hans B, Solomon MT, Soden ME, Zweifel LS, Palmeter RD. Elucidating an affective pain circuit that creates a threat memory. Cell 2015;162:362–74.
[37] Helms AW, Johnson JE. Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development 1998;125:919–28.
[38] Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, Arber S. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 2005;3:e159–13.

[39] Hua ZL, Leon S, Caterina MJ, Nathans J. Frizzled3 is required for the sensation of thermal pain. Nature 1999;399:276–9.

[40] Kuiper R, Hui J, de Goes F, Gezelius H, Thiebes AL, Vlaskovskas A, Mullen K, DCC-mediated axon guidance of spinal interneurons is essential for normal locomotor central pattern generator function. Dev Biol 2012;366:279–89.

[41] Kater JT, Burstein R, Giesler GJ. The cells of origin of the spinohypothalamic tract in the rat: collateral innervation of parabrachial area and thalamus. Neurosci 1989;28:27–37.

[42] Jaworski A, Tom I, Tong RK, Gildea HK, Koch AW, Gonzalez LC, Tessier-Lavigne M. Entry of neuronal precursors, not floor plate cells, is required for axon guidance in the spinal cord. Development 2002;129:49–61.

[43] Khtenshno MA, Colodner KJ. Gial Tau pathology in tauopathies: functional consequences. J Exp Neurosci 2016;9:226–36.

[44] Kohro Y, Sakaguchi E, Tashima R, Tozaki-Saitoh H, Okano H, Inoue K. Microarray expression analysis of brain gene expression following focal brain stimulation. Science 2010;328:294–9.

[45] Kabri N, Mandel J-L, Amour D, Rozé E, Piton A, Baldassarre M, de Menoit G, Mando D. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science 2014;344:1275–9.

[46] Kamada T, Irie K, Kikuchi K, Kuroda K, Yoshida K, Hiejima Y, et al. A new minimally-invasive method for microinjection into the spinal cord. Brain Res 2009;1273:16–21.

[47] Kater JT, Burstein R, Giesler GJ. The cells of origin of the spinohypothalamic tract in the rat. J Comp Neurol 1991;303:101–12.

[48] Kennedy TE, Serafini T, La Torre CE, De la Torre CE, Tessier-Lavigne M. Netrins are diffusible chemotactic factors for commissural axons in the embryonic spinal cord. Cell 1994;78:425–35.

[49] Katsanis C, Yamada J, Shatz CJ. Development of the spinomotor system in the cat, as studied by retrograde transport of horseradish peroxidase. Brain Res 1979;173:185–200.

[50] Katter JT, Burstein R, Giesler GJ. The cells of origin of the spinohypothalamic tract in the rat. J Comp Neurol 1991;303:101–12.

[51] Kohro Y, Sakaguchi E, Tashima R, Tozaki-Saitoh H, Okano H, Inoue K. A new minimally-invasive method for microinjection into the mouse spinal dorsal horn. Sci Rep 2015;5:14306.

[52] Kimmel CB. A quantitative and molecular profiling using a novel Robo3Cre mouse. J Comp Neurol 2019;527:2948–72.

[53] Kienlen JL, Anton F, Nahin RL. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neurosci 1989;28:27–37.

[54] Knappe W, Puská R, Andrew D, Todd AJ. A quantitative and autoradiographic analysis. Brain Res 1978;159:1–6.

[55] Knappe W, Puská R, Andrew D, Todd AJ. A quantitative and autoradiographic analysis. Brain Res 1978;159:1–6.