Greater than the parts: A review of the information decomposition approach to causal emergence

Pedro A.M. Mediano,1,2 Fernando E. Rosas,3,4,5 Andrea I. Luppi,6,7,8 Henrik J. Jensen,5,9,10 Anil K. Seth,11,12 Adam B. Barrett,11,13 Robin L. Carhart-Harris,3,14 and Daniel Bor1,2

1 Department of Psychology, University of Cambridge
2 Department of Psychology, Queen Mary University of London
3 Centre for Psychedelic Research, Imperial College London
4 Data Science Institute, Imperial College London
5 Centre for Complexity Science, Imperial College London
6 University Division of Anaesthesia, University of Cambridge
7 Department of Clinical Neurosciences, University of Cambridge
8 Leverhulme Centre for the Future of Intelligence, University of Cambridge
9 Department of Mathematics, Imperial College London
10 Institute of Innovative Research, Tokyo Institute of Technology
11 Sackler Centre for Consciousness Science, University of Sussex
12 CIFAR Program on Brain, Mind, and Consciousness, Toronto
13 The Data Intensive Science Centre, University of Sussex
14 Psychedelics Division, Neuroscape, Department of Neurology, University of California San Francisco

Emergence is a profound subject that straddles many scientific disciplines, including the formation of galaxies and how consciousness arises from the collective activity of neurons. Despite the broad interest that exists on this concept, the study of emergence has suffered from a lack of formalisms that could be used to guide discussions and advance theories. Here we summarise, elaborate on, and extend a recent formal theory of causal emergence based on information decomposition, which is quantifiable and amenable to empirical testing. This theory relates emergence with information about a system's temporal evolution that cannot be obtained from the parts of the system separately. This article provides an accessible but rigorous introduction to the framework, discussing the merits of the approach in various scenarios of interest. We also discuss several interpretation issues and potential misunderstandings, while highlighting the distinctive benefits of this formalism.

I. INTRODUCTION

Emergence is a key concept in several challenging open questions in science and philosophy, and a subject of long-standing debate. A distinctively controversial topic, research on emergence has been characterised by differing assumptions and positions — explicit and implicit — about its nature and role within science. At one extreme of the spectrum, reductionism claims that all that is ‘real’ can always be explained based on sufficient knowledge of a system’s smallest constituents, and that coarse-grained explanations are mere byproducts of our limited knowledge and/or computational ability. At the other extreme, strong forms of emergentism argue for a radical independence between layers of reality, such that some high-level phenomena are in principle irreducible to their low-level constituents.

Modern scientific practice is dominated by reductionist assumptions, at least in its overall theoretical and philosophical commitments. At the same time, the hierarchical organisation and in-practice relative independence of the domains of different scientific disciplines (e.g. physics, biology) suggests that some form of emergentism remains in play. There is therefore a need to formulate principled, rigorous, and consistent formalisms of emergence, a need that is especially pressing for those topics where strong emergentism retains intuitive appeal — such as the relationship between consciousness and the brain.

Riding on a wave of renewed philosophical investigations [1,2], recent work is opening a new space of discussion about emergence that is firmly within the realm of empirical scientific investigation [3–9]. This work is developing formal principles and analytical models, which promise to facilitate discussions among the community of interested researchers. Moreover, having a formal theory of emergence will allow scientists to formulate rigorous, falsifiable conjectures about emergence in different scenarios and test them on data.

This article presents an overview of a recently proposed formal theory of causal emergence [7] based on the framework of Partial Information Decomposition (PID) [10]. In contrast with other proposals, this approach is primarily mereological: emergence is considered to be a property of part-whole relationships within a system, which depends on the relationship between the dynamics of parts of the system and macroscopic features of interest. In what follows, we outline the necessary mathematical background, present the core principles of the theory, and review some of its key properties and applications.

* P.M. and F.R. contributed equally to this work.
E-mail: pam83@cam.ac.uk, f.rosas@imperial.ac.uk
II. TECHNICAL PRELIMINARIES

A. An information-centric perspective on complex systems

Information theory is deeply rooted in probability theory, to the extent that the axiomatic bases of both are formally equivalent \[1\]. Both approaches, in turn, are illuminated by the seminal work of E.T. Jaynes on the foundations of thermodynamics \[12\], which proposes that probability theory can be understood as an extension of Aristotelian logic that applies to scenarios of partial or incomplete knowledge. In this context, probability distributions are to be understood as epistemic statements used to represent states of limited knowledge, and Shannon’s entropy corresponds to a fundamental measure of uncertainty.

This perspective leads to principled and broadly applicable interpretations of information-theoretic quantities. In fact, while information theory was created to solve engineering problems in data transmission \[13\], modern approaches cast information quantities as measures of belief-updating in statistical inference \[14–16\]. In this view, measuring the mutual information between two parts of a complex system does not require assuming one is ‘sending bits’ to the other over some channel — instead, mutual information can be seen as the strength of the evidence supporting a statistical model in which the two parts are coupled. Furthermore, information-theoretic tools are widely applicable in practice, spanning categorical, discrete and continuous, as well as linear and non-linear scenarios. In fact, a wide variety of estimators and open-source software is available, whose diversity in terms of assumptions and requirements allows flexible and reliable calculations on a broad range of practical scenarios \[17–19\].

Together, these properties place information theory as a particularly well-suited framework to study interdependencies in complex systems, establishing information as a ‘common currency’ of interdependence that allows one to assess and compare diverse systems in a principled and substrate-independent manner \[20,22\].

B. The fine art of information decomposition

Shannon’s information is particularly useful for the study of complex systems due to its decomposability. For example, the information about a variable \(Y\) provided by two predictors \(X_1\) and \(X_2\), denoted by \(I(X_1, X_2; Y)\), can be decomposed via the information chain-rule \[23\] as

\[
I(X_1, X_2; Y) = I(X_1; Y) + I(X_2; Y|X_1),
\]

where \(I(X_1; Y)\) corresponds to the information provided by \(X_1\), and \(I(X_2; Y|X_1)\) refers to the information provided by \(X_2\) given \(X_1\) is already known. Taking this idea one step further, the Partial Information Decomposition (PID) framework \[10\] proposes to decompose each of these terms into information atoms as follows:

\[
I(X_1; Y) = \text{Red}(X_1, X_2; Y) + \text{Un}(X_1; Y|X_2),
\]

\[
I(X_2; Y|X_1) = \text{Un}(X_2; Y|X_1) + \text{Syn}(X_1, X_2; Y),
\]

where \(\text{Red}(X_1, X_2; Y)\) represents the redundant information about \(Y\) that is contained in both \(X_1\) and \(X_2\), \(\text{Un}(X_1; Y|X_2)\) and \(\text{Un}(X_2; Y|X_1)\) correspond to the unique information that is conveyed by \(X_1\) or \(X_2\) but not the other, and \(\text{Syn}(X_1, X_2; Y)\) refers to the synergistic information that is provided by \(X_1\) and \(X_2\) together but not by each of them separately.

To illustrate, consider our two eyes as sources of visual information about the environment. The information that we still have when we close either eye is redundant (for instance, information about colour), while the extra information we derive from combining them (e.g. stereoscopic information about depth) is synergistic. For further reading on PID, we refer the reader to Refs. \[10,24,25\].

C. Decomposing information dynamics: From PID to ΦID

As a final piece of mathematical background, we now show how information decomposition can be applied to the temporal evolution of a dynamical system. Let’s consider two interdependent processes sampled at times \(t\) and \(t’ > t\), and denote their corresponding values as \(X_1^t, X_2^t\) and \(X_1^{t’}, X_2^{t’}\), respectively. The information that these two processes carry together from \(t\) to \(t’\) is given by the time-delayed mutual information (TDMI), denoted by \(I(X_t; X_{t’})\) where \(X_t = (X_1^t, X_2^t)\). By regarding \(X_1^t\) and \(X_2^t\) as predictors and the joint future state \(X_{t’}\) as target, Eqs. (1) and (2) allow us to decompose the TDMI as follows:

\[
\text{TDMI} = \text{Red}(X_1^t, X_2^t; X_{t’}) + \text{Syn}(X_1^t, X_2^t; X_{t’}) + \text{Un}(X_1^t; X_{t’}|X_2^t) + \text{Un}(X_2^t; X_{t’}|X_1^t).
\]

However, this decomposition considers the future state as a single entity and, hence, cannot discriminate between the various ways in which the predictors affect different parts of the target.

This important limitation is overcome by a finer decomposition, called Integrated Information Decomposition (ΦID) \[26\], which establishes information atoms not only in terms of the relationship between the predictors, but also between the targets. For example, information can be carried redundantly by \(X_1^t, X_2^t\) but received synergistically by \(X_1^{t’}, X_2^{t’}\), which corresponds to a ΦID atom denoted (in simplified notation) by Red → Syn.

By considering these dynamical information atoms, ΦID establishes a way of decomposing PID atoms into a sum of finer ΦID atoms. In particular, each of the four PID atoms can be decomposed into four ΦID atoms, which brings a decomposition of the TDMI into \(4 \times 4 = 16\).
distinct atoms. For more details about the interpretation of each of the ΦID atoms, and their generalisation to more than two time series, we refer the reader to Refs. [28, 29].

III. FORMALISING MEREOLOGICAL CAUSAL EMERGENCE

The first step towards using ΦID to formalise causal emergence is to formalise the notion of supervenience — i.e. that one property ‘rests’ on another. For this purpose, one says that a variable \(V_t \) supervenient on the state of the system \(X_t \) if it is a (possibly noisy) function of \(X_t \). This definition implies that for \(t < t' \) there is nothing about \(V_t \) that can be predicted from the system’s previous states \(X_t \) that cannot also be predicted from the system’s current state \(X_{t'} \).

Building on this definition, a supervenient feature \(V_t \) is said to exhibit causal emergence of order \(k \) if it has predictive power about the future evolution of the underlying system \(X_t = (X_1, ..., X_t^n) \) that is \(k \)-th order unique with respect to the state of each part of the system, i.e. if

\[
Un^{(k)}(V_t; X_{t'} | X_t) > 0. \tag{3}
\]

The notion of \(k \)-th order unique information comes from a PID of \(n \) predictors, which generalises the case of two predictors discussed in the previous section. Intuitively, the \(k \)-th order unique information \(Un^{(k)}(V_t; X_{t'} | X_t) \) is the information about \(X_t \) that \(V_t \) has access to and no subset of \(k \) or fewer parts of \(X_t \) has access to on its own (although bigger groups may). Causal emergence is therefore defined as the capability of some supervenient feature to provide predictive power that cannot be reduced to underlying microscale phenomena — up to order \(k \). Put simply, emergent features have more predictive power than their constituent parts.

 Crucially, this framework accommodates the coexistence of supervenience and irreducible predictive power of emergence, which have been previously thought as paradoxical [28, 29]. It does so by leveraging the temporal dimension, such that supervenience is operationalised in terms of instantaneous relationships (between the system and its observables) and emergence in terms of predictive power across time. In this context, a feature could be supervenient without being causally emergent, but not vice versa.

One of the main consequences of this theory is that, under relatively general assumptions [7], a system’s capability to display causally emergent features depends directly on how synergistic the system’s dynamics are. Specifically, a system \(X_t \) possesses causally emergent features of order \(k \) if and only if \(Syn^{(k)}(X_t; X_{t'}) > 0 \) [7, Theorem 1]. Intuitively, \(Syn^{(k)}(X_t; X_{t'}) \) is the information about the future evolution that is provided by the whole system, but is not contained in any set of \(k \) or fewer predictors when considered separately from the rest.

This result has two important implications. First, the dependence of emergence on synergistic dynamics suggests one can interpret the term \(Syn^{(k)}(X_t; X_{t'}) > 0 \) as the emergence capacity of a system. Secondly, we can use the formal apparatus of ΦID to decompose \(Syn^{(k)} \) and distinguish two qualitatively different types of emergence:

(i) Downward causation, where an emergent feature has unique predictive power over specific parts of the system. Technically, a supervenient feature \(V_t \) exhibits downward causation of order \(k \) if \(Un^{(k)}(V_t; X_{t'} | X_t) > 0 \) for some subset of \(k \) time series denoted by \(X_{t'}^\alpha \).

(ii) Causal decoupling, in which an emergent feature \(V_t \) has unique predictive power not over any constituent of size \(k \) or less, but on the system as a whole. Technically, a supervenient feature \(V_t \) exhibits causal decoupling of order \(k \) if \(Un^{(k)}(V_t; V_{t'} | X_t, X_{t'}) > 0 \). This corresponds to ‘persistent synergies,’ involving macroscopic variables that have causal influence on other macroscopic variables, above and beyond the microscale effects.

Further derivations show that a system has features that exhibit \(k \)-th order downward causation if and only if \(D^{(k)}(X_t; X_{t'}) > 0 \), and has \(k \)-th order causally decoupled features if and only if \(G^{(k)}(X_t; X_{t'}) > 0 \). Moreover, the ΦID framework shows that this taxonomy of emergent phenomena is exhaustive, as emergence capacity of a system can be decomposed as

\[
Syn^{(k)}(X_t; X_{t'}) = D^{(k)}(X_t; X_{t'}) + G^{(k)}(X_t; X_{t'}) \tag{4}
\]

A final aspect of this theory worth highlighting is that it provides practical measures that are readily computable in large systems. In general, the value of the terms in Eqs. (3) and (4) depends on a choice of redundancy function [7] whose estimation often requires large

1 For scenarios with \(n \) predictors, PID establishes the following decomposition in terms of \(k \)-th order redundancy, synergy, and unique information [7, Lemma 2]:

\[
I(X^n; Y) = Red^{(k)}(X^n; Y) + Syn^{(k)}(X^n; Y) + \sum_{\beta \in B_k} Un^{(k)}(X^\beta; Y | X^{\alpha}) ,
\]

where \(X^n = (X_1, ..., X_n) \) is a shorthand notation for the vector of all predictors, \(X^\beta \) is the vector of all predictors with indices within the array \(\beta = (\beta_1, ..., \beta_k) \), \(X^{\alpha} \) is the vector of all predictors with indices not in \(\beta \), and \(B_k \) stands for the collection of subsets of \(\{1, ..., n\} \) of cardinality \(k \) or less.

2 Multiple redundancy functions exist, and ongoing work is exploring the strengths and weaknesses of different choices. For more information, see Ref. [28] and the extensive PID literature.
IV. INTERPRETATION AND REMARKS

Having considered the main technical elements of the formalism, this section discusses some key aspects of its interpretation while clarifying some potential misunderstandings.

A. Interventionist vs probabilistic causation

Some interpretations (e.g. Ref. [30]) of the presented framework place emphasis on its relation to Granger causality, as the definition of causal emergence is based on predictive ability — as opposed to, for example, interventionist approaches to causality based on counterfactuals, as proposed by Pearl [31]. However, it is important to note that the framework presented here belongs to neither the Granger nor Pearl schools of thought, and admits both kinds of causal interpretation depending on the underlying probability distribution from which the relevant quantities are computed. As a matter of fact, all the quantities described in Sec. III and Ref. [7] depend only on the joint probability distribution \(p(X_t, Y) \). If this distribution is built using a conditional distribution \(p(X'_t | Y) \) that is equivalent to a \(\text{do}(\cdot) \) distribution in Pearl’s sense [31], and the system satisfies a few other properties, then the results of \(\Phi \) can be interpreted in an interventionist causal sense. On the other hand, if the distribution is built on purely observational data, then the decomposition obtained from \(\Phi \) generally should be understood in the Granger-causal sense (i.e. as referring to predictive ability). In both cases, the formalism developed here applies directly, and it is only the interpretation of the findings that needs to be adapted.

It is also important to clarify that the reason why correlation between variables of a system of interest often does not imply causation is because of hidden (i.e. unobserved) variables. However, if all the relevant variables are measured, then Granger- and Pearl-type analyses coincide. Therefore, we emphasise that while some results might not have an intervention-type interpretation, this is not due to limitations of the formalism in principle but only due to limitations of measurement in practice.

B. Lack of invariance under change of coordinates

A possible objection to the framework outlined here is that it critically depends on the specific partition of

\[3 \] Technically known as faithfulness and causal Markov conditions — see Ref. [52] for a detailed description.
the underlying system, i.e. in how the parts are defined. Put differently, synergy and unique information are not invariant under changes in the way the micro-elements are construed — what is technically known as ‘change of coordinates’. It is important to remark that this lack of invariance is not a bug, but rather a feature of our framework. Recall that our theory is fundamentally a mereological one — i.e. about the relationship between the whole and its parts. Therefore, it is only natural that if the parts change, quantification of the part-whole relationships observed in the system should change too. Put differently, it is reasonable to expect that a mereological account of emergence should critically depend on how the parts are defined, and that any conclusions should be able to change if those parts change.

Following on from Sec. II we highlight that this property aligns well with the epistemic interpretation of probabilities spearheaded by Jaynes [12]. If one embraces the idea that probabilistic descriptions are representations of states of knowledge, then it follows that the coordinates used to describe the system determine how the joint distribution ought to be marginalised — which is also part of our state of knowledge. Then, it is to be expected that changing the system’s coordinates should change any conclusions drawn from the relationship between marginals — including causal emergence.

C. On the order and scale of emergence

Although most of the empirical results from \(\Phi ID \) presented in the literature so far (reviewed in the next section) correspond to emergence of order \(k = 1 \), it is important to highlight that the formalism allows us to tune the value of \(k \) to detect emergence at various spatial scales. In fact, being \(k \)th-order emergent implies that there is predictive ability related to interactions of order \(k + 1 \) or more. Therefore, while 1st-order emergence encompasses any pairwise information that could have predictive value, this can be refined by searching for the relevance of higher orders. In this regard, it is to be noted that a \(k \)th-order emergent feature is emergent for all orders \(j < k \), and hence increasing the order makes finding emergent features increasingly more challenging.

A related potential misunderstanding is to believe that the \(\Phi ID \) framework for causal emergence only concerns predictive ability at the microscale, without establishing a proper comparison with a macroscale [8]. It is important to clarify that this approach to emergence is established in terms of supervenient macroscopic variables, which may be considered emergent depending on their dynamics and predictive power over the evolution of the system — not too dissimilar from other approaches [5, 8]. The fact that dynamical synergy enables the existence of such emergent variables is not an assumption, but a consequence of the theory. Moreover, this result enables a powerful method to characterise emergence: unlike other theories, the \(\Phi ID \) approach to causal emergence can determine the overall capability of a system to host emergent properties without the need to specify any particular macroscopic variable. Further, the ‘scale’ of emergence is tuned by the emergence order \(k \), which sets the measures to focus on high-order interdependencies that do not play a role at scales smaller than \(k + 1 \) [20].

V. APPLICATIONS

Despite its recent inception, the presented framework has already proven capable of providing insights about a wide range of phenomena. In the following, we first present case studies that demonstrate how the framework aligns with paradigmatic examples of putative emergent behaviour, and then discuss recent results related to the human brain.

This framework provides two approaches to assess emergence in practice: one can (i) test if a given feature of interest has emergent behaviour either directly with the definition (Eq. 3) or via the practical criteria discussed at the end of Section II, or one can (ii) calculate the capacity of a system to host any emergent feature by computing its dynamical synergy. The latter approach is more encompassing, but requires one to use a redundancy function (see Section III) and usually scales poorly with number of parts — making its calculation in large systems very challenging. The former approach focuses on a particular feature, but circumvents those problems allowing one to deal with large systems. In the following, the case studies reviewed in Section V A use the practical criteria (i.e. not requiring a choice of redundancy function), while most in Section V B calculate dynamical synergy (i.e. requiring a specific redundancy function).

A. Confirming intuitions: Emergence in the Game of Life and bird flocks

The efficacy of the presented framework to detect emergence was demonstrated in a paradigmatic example of emergent behaviour: Conway’s celebrated Game of Life (GoL) [35]. In GoL, simple local rules determine whether a given cell of a 2D grid will be ON (alive) or OFF (dead) based on the number of ON cells in its immediate neighbourhood. The simple GoL rule nevertheless results in highly complex behaviour, with recognisable self-sustaining structures — known as “particles” — that have been shown to be responsible for information transfer and modification [21].
Applications of ΦID and causal emergence

To study emergence in GoL, a ‘particle collider’ was considered in which two particles are set in a colliding course \cite{7}. The emergent feature considered, V_t, was a symbolic, discrete-valued vector that encodes the type of particle(s) present in the board. The ΦID framework (in particular, practical criteria discussed in the previous section) provided a quantitative validation that particles have causally emergent properties, in line with widespread intuition, and further analyses suggested that they may be causally decoupled with respect to their substrate.

Another demonstration of the power of the framework and practical criteria was carried out in a computational model of flocking birds \cite{11,36}, another often-cited example of emergent behaviour whereby the flock as a whole arises from the interactions between individuals \cite{7}. Here, the framework showed that the centre of mass can predict its own dynamics better than what can be explained from the behaviour of individual birds.

B. Causal emergence in the brain

Moving from simulations to empirical data, the ΦID framework for causal emergence was also adopted to study how motor behaviour might be emergent from brain activity. Simultaneous electrocorticogram (ECoG) and motion capture (MoCap) data of macaques performing a reaching task were analysed, focusing on the portion of neural activity encoded in the ECoG signal that is relevant to predict the macaque’s hand position. Results indicated that the motion-related signal is an emergent feature of the macaque’s brain activity \cite{7}.

In the human brain, functional magnetic resonance imaging (fMRI) makes it possible to study non-invasively the patterns of coordinated activity that take place between brain regions. ΦID has been recently adopted to advance the study of brain dynamics, moving beyond simple measures of time-series similarity (e.g. Pearson’s correlation or Shannon’s mutual information) to ‘information-resolved’ patterns in terms of ΦID atoms. Remarkably, analyses of human fMRI data have identified a gradient with redundancy-dominated sensory and motor regions at one end, and synergy-dominated association cortices dedicated to multimodal integration and high-order cognition at the other end \cite{33}. Recapitulating the hierarchical organisation of the human brain, the synergy-rich regions of the human brain also coincide with regions that have undergone the greatest amounts of evolutionary expansion \cite{33}. Synergy is also more prevalent as a proportion of total information in the brains of humans than in the brains of macaques, corroborating the link between synergistic neural information, evolution, and higher cognitive capacities.

In this analysis the synergistic information is quantified in terms of $G^{(l)}(X_t; X_{t'})$ (see Eq. \cite{4}) with $k = 1$ cal-
culated over the joint dynamics of pairs of brain areas, which corresponds to the capacity of those dynamics for causal decoupling (see Section III). Therefore, the results reported in Ref. [25] indicate that causal emergence (decoupling) increases both along the cortical hierarchy of the human brain, and across the gap from non-human primates to humans — with evidence suggesting that it may support humans’ ability for complex, abstract reasoning.

Relatedly, there has been a long-standing debate on whether consciousness could be viewed as an emergent phenomenon enabled by the complex interactions between neurons. The framework presented here provides ideal tools to rigorously and empirically tackle this question. Moreover, causal decoupling is one of the information atoms of a putative measure of consciousness known as integrated information [26], which associates the ability to host consciousness with the extent to which a system’s information is ‘greater than the sum of its parts’ [27]. Interestingly, analysis of fMRI data showed that loss of consciousness due to brain injury corresponds to a reduction of integrated information and causal emergence in the brain [28]. In this way, the more nuanced view on neural information dynamics offered by ΦID offers the promise of further insights for our understanding of consciousness as an emergent phenomenon [27].

VI. CONCLUSION

This article presents a review on how recent developments on information decomposition naturally lead to a formal theory of causal emergence. Although this methodological approach to causal emergence is one of many within a rapidly growing field, it has already shown wide applicability across diverse scientific questions. Therefore, the present review sought to bring together the technicalities of the formalism, its interpretation, and results of its practical application, so that each may inform the understanding of the other.

One special feature of this framework is how it allows practical criteria that are applicable to relatively large systems, which opens a broad range of applications. However, these tools require an explicit feature of interest, whose definition may not be clear in some scenarios of interest (e.g. in resting-state fMRI data). This limitation can be avoided by calculating the capacity of emergence of the dynamics, but the calculation of this scales poorly with the system size — making the calculation of the emergence capacity of large systems (such as highly multivariate brain data) currently unfeasible. Developing procedures to either identify emergent features, or to efficiently calculate emergent capacity in large systems are important avenues for future work.

We hope that the theoretical and empirical advances reviewed in this article may stimulate the growing scientific interest on emergence, which may lead the way towards future breakthroughs on major questions about the role of emergence in the natural world.

ACKNOWLEDGEMENTS

We thank Joe Dewhurst, Erik Hoel, and Thomas Varley for useful discussions.

F.R. is supported by the Ad Astra Chandaria foundation. P.M. and D.B. are funded by the Wellcome Trust (grant no. 210920/Z/18/Z). A.L. is funded by the Gates Cambridge Trust.

[1] Cunningham B. 2001 The reemergence of ‘emergence’. Philosophy of Science 68, S62–S75.
[2] Bedau MA, Humphreys PE. 2008 Emergence: Contemporary readings in philosophy and science. MIT press.
[3] Graben PB, Barrett A, Atmanspacher H. 2009 Stability criteria for the contextual emergence of macrostates in neural networks. Network: Computation in Neural Systems 20, 178–196.
[4] Seth AK. 2010 Measuring autonomy and emergence via Granger causality. Artificial Life 16, 179–196.
[5] Hoel EP, Albantakis L, Tononi G. 2013 Quantifying causal emergence shows that macro can beat micro. Proceedings of the National Academy of Sciences 110, 19790–19795.
[6] Klein B, Hoel E. 2020 The emergence of informative higher scales in complex networks. Complexity 2020.
[7] Rosas FE, Mediano PA, Jensen HJ, Seth AK, Barrett AB, Carhart-Harris RL, Bor D. 2020 Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data. PLoS Computational Biology 16, e1008289.
[8] Varley T, Hoel E. 2021 Emergence as the conversion of information: A unifying theory. arXiv preprint arXiv:2104.13368.
[9] Barnett L, Seth AK. 2021 Dynamical independence: Discovering emergent macroscopic processes in complex dynamical systems. arXiv preprint arXiv:2106.06511.
[10] Williams PL, Beer RD. 2010 Nonnegative decomposition of multivariate information. arXiv preprint arXiv:1004.2515.
[11] Jizba P, Korbel J. 2020 When Shannon and Khinchin meet Shore and Johnson: Equivalence of information theory and statistical inference axiomatics. Physical Review E 101, 042126.
[12] Jaynes ET. 2003 Probability Theory: The Logic of Sci-
ence. Cambridge University Press.

[13] Shannon CE. 1948 A mathematical theory of communication. The Bell System Technical Journal 27, 379–423.

[14] Ince RA, Giordano BL, Kayser C, Rousselet GA, Gross J, Schyns PG. 2017 A statistical framework for neuroimaging data analysis based on mutual information estimated via a Gaussian copula. Human Brain Mapping 38, 1541–1573.

[15] Barnett L, Bossoi A. 2012 Transfer entropy as a log-likelihood ratio. Physical Review Letters 109, 138105.

[16] Cliff OM, Prikopenko M, Fitch R. 2016 An information criterion for inferring coupling of distributed dynamical systems. Frontiers in Robotics and AI 3, 71.

[17] Lizier JT. 2014 JIDT: An information-theoretic toolkit for studying the dynamics of complex systems. Frontiers in Robotics and AI 1, 11.

[18] James RG, Ellison CJ, Crutchfield JP. 2018 “dit”: A Python package for discrete information theory. Journal of Open Source Software 3, 738.

[19] Novelli L, Wollstadt P, Mediano P, Wibral M, Lizier JT. 2019 Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing. Network Neuroscience 3, 827–847.

[20] Crutchfield JP, Feldman DP. 2003 Regularities unseen, randomness observed: Levels of entropy convergence. Chaos: An Interdisciplinary Journal of Nonlinear Science 13, 25–54.

[21] Lizier JT. 2012 The Local Information Dynamics of Distributed Computation in Complex Systems. Springer Science & Business Media.

[22] Rosas F, Ntranos V, Ellison CJ, Pollin S, Verheest M. 2016 Understanding interdependency through complex information sharing. Entropy 18, 38.

[23] Cover TM, Thomas JA. 1999 Elements of Information Theory. John Wiley & Sons.

[24] Wibral M, Priesemann V, Kay JW, Lizier JT, Phillips WA. 2017 Partial information decomposition as a unified approach to the specification of neural goal functions. Brain and Cognition 112, 25–38.

[25] Timme NM, Lapiš C. 2018 A tutorial for information theory in neuroscience. eNeuro 5.

[26] Mediano PA, Rosas F, Carhart-Harris RL, Seth AK, Barrett AB. 2019 Beyond integrated information: A taxonomy of information dynamics phenomena. arXiv preprint arXiv:1909.02927.

[27] Luppi AI, Mediano PA, Rosas F, Harrison DJ, Carhart-Harris RL, Bor D, Stamatakis EA. 2021 What it is like to be a bit: An Integrated Information Decomposition account of emergent mental phenomena. Neuroscience of Consciousness.

[28] Bedau MA. 1997 Weak emergence. Philosophical Perspectives 11, 375–399.

[29] Bedau M. 2002 Downward causation and the autonomy of weak emergence. Principia: An International Journal of Epistemology 6, 5–50.

[30] Dewhurst J. 2021 Causal emergence from effective information: Neither causal nor emergent?. Thought: A Journal of Philosophy.

[31] Pearl J, Mackenzie D. 2018 The Book of Why: The New Science of Cause and Effect. Basic Books.

[32] Koller D, Friedman N. 2009 Probabilistic Graphical Models: Principles and Techniques. MIT Press.

[33] Luppi AI, Mediano PA, Rosas FE, Holland N, Fryer TD, O’Brien JT, Rowe JB, Menon DK, Bor D, Stamatakis EA. 2020a A synergistic core for human brain evolution and cognition. BioRxiv.

[34] Luppi AI, Mediano PA, Rosas FE, Allanson J, Pickard JD, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM et al.. 2020b A synergistic workspace for human consciousness revealed by integrated information decomposition. BioRxiv.

[35] Conway J. 1970 The Game of Life. Scientific American 223, 4.

[36] Reynolds CW. 1987 Flocks, Herds and Schools: A Distributed Behavioral Model vol. 21. ACM.

[37] Balduzzi D, Tononi G. 2008 Integrated information in discrete dynamical systems: Motivation and theoretical framework. PLoS Computational Biology 4, e1000091.