Hercules Against Data Series Similarity Search

Karima Echihabi
Mohammed VI Polytech. Univ.
karima.echihabi@um6p.ma

Panagiota Fatourou
Université Paris Cité & FORTH
faturu@csd.uoc.gr

Kostas Zoumpatianos
Snowflake Inc.
kostas.zoumpatianos@snowflake.com

Themis Palpanas
Université Paris Cité & IUf
themis@mi.parisdescartes.fr

Houda Benbrahim
IRDA, Rabat IT Center & ENSIAS
houda.benbrahim@um5.ac.ma

ABSTRACT
We propose Hercules, a parallel tree-based technique for exact similarity search on massive disk-based data series collections. We present novel index construction and query answering algorithms that leverage different summarization techniques, carefully scheduled costly operations, optimize memory and disk accesses, and exploit the multi-threading and SIMD capabilities of modern hardware to perform CPU-intensive calculations. We demonstrate the superiority of Hercules with an extensive experimental evaluation against state-of-the-art techniques, using many synthetic and real datasets, and query workloads of varying difficulty. The results show that Hercules performs up to one order of magnitude faster than the best competitor (which is not always the same). Moreover, Hercules is the only index that outperforms the optimized scan on all scenarios, including the hard query workloads on disk-based datasets. This paper was published in the Proceedings of the VLDB Endowment, Volume 15, Number 10, June 2022.

PVLDB Reference Format:
Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim. Hercules Against Data Series Similarity Search. PVLDB, 15(10): 2005 - 2018, 2022.
doi:10.14778/3547305.3547308

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at http://www.mi.parisdescartes.fr/~themisp/hercules.

1 INTRODUCTION
Data series are one of the most common data types, covering virtually every scientific and social domain [5, 8, 29, 32, 34, 39, 40, 42, 47, 48, 55, 57, 61]. A data series is a sequence of ordered real values. When the sequence is ordered on time, it is called a time series. However, the order can be defined by other measures, such as angle or mass [44].

Motivation. Similarity search lies at the core of many critical data science applications related to data series [6, 43, 46, 71], but also in other domains, where data are represented as (or transformed to) high-dimensional vectors [17, 19, 20]. The problem of efficient similarity search over large series collections has been studied heavily in the past 30 years [12, 13, 15, 23, 27, 33, 35, 38, 45, 51, 52, 59, 63–65], and will continue to attract attention as massive sequence collections are becoming omnipresent in various domains [6, 46].

Challenges. Designing highly-efficient disk-based data series indexes is thus crucial. ParIS+ [53] is a disk-based data series parallel index, which exploited the parallelism capabilities provided by multi-socket and multi-core architectures. ParIS+ builds an index based on the iSAX summaries of the data series in the collection, whose leaves are populated only at search time. This results in a highly reduced cost for constructing the index, but as we will demonstrate, it often incurs a high query answering cost, despite the superior pruning ratio offered by the iSAX summaries [21].

For this reason, other data series indexes, such as DSTree [64], have recently attracted attention. Extensive experimental evaluations [21, 22] have shown that sometimes DSTree exhibits better performance in query answering than iSAX-based indexes (like ParIS+). This is because DSTree spends a significant amount of time during indexing to adapt its splitting policy and node summarizations to the data distribution, leading to better data clustering (in the index leaf nodes), and thus more efficient exact query answering for workloads [21]. In contrast, ParIS+ uses pre-defined split points and a fixed maximum resolution for the iSAX summaries. This helps ParIS+ build the index faster, but hurts the quality of data clustering. Therefore, similar data series may end up in different leaves, making query answering slower, especially on hard workloads that are the most challenging. As a result, no single data series similarity search indexing approach among the existing techniques wins across all popular query workloads [21].

The Hercules Approach. In this paper, we present Hercules, the first data series index that answers queries faster than all recent state-of-the-art techniques across all popular workloads. Hercules achieves this by exploiting the following key ideas. First, it leverages two different data series summarization techniques, EAPCA and iSAX, utilized by DSTree and ParIS+, respectively, to get a well-clustered tree structure during index building, and at the same time a high leaf pruning ratio during query answering. Hercules enjoys the advantages of both approaches and employs new ideas to overcome their limitations. Second, it exploits a two-level buffer management technique to optimize memory accesses. This design utilizes (i) a large memory buffer (HBuffer) which contains the raw data of all leaves and is flushed to disk whenever it becomes full, and (ii) a small buffer (SBuffer) for each leaf containing pointers to the raw data of the leaf that are stored in HBuffer. This way, it reduces the number of system calls, guards against the occurrence of out-of-memory management issues, and improves the performance of index construction. It also performs scheduling of external storage requests more efficiently. While state-of-the-art techniques [53, 64] typically store the data of each leaf in a separate file, Hercules stores the raw data series in a single file, following the order of an inorder traversal of the tree leaves. This helps Hercules reduce the cost of random I/O operations, and efficiently support both easy and
hard queries. Moreover, Hercules schedules costly operations (e.g., statistics updates, calculating iSAX summaries, etc.) more efficiently than in previous works [53, 64].

Last but not least, Hercules uses parallelization to accelerate the execution of CPU-intensive calculations. It does so judiciously, adapting its access path selection decisions to each query in a workload during query answering (e.g., Hercules decides on when to parallelize a query based on the pruning ratio of the data series summaries, EAPCA and iSAX), and carefully scheduling index insertions and disk flushes while guaranteeing data integrity. This required novel designs for the following reasons. The parallelization ideas utilized for state-of-the-art data series indexes [49, 50, 53] are relevant to tree-based indexes with a very large root fanout (such as the iSAX-based indexes [45]). In such indexes, parallelization can be easily achieved by having different threads work in different root subtrees of the index tree. The Hercules index tree is an unbalanced binary tree, and thus it has a small fanout and uneven subtrees. In such index trees, heavier synchronization is necessary, as different threads may traverse similar paths and may need to process the same nodes. Moreover, working on trees of small fan-out may result in more severe load balancing problems.

Our experimental evaluation with synthetic and real datasets from diverse domains shows that, in terms of query efficiency, Hercules consistently outperforms both Paris+ (by 5.5x-63x) and our optimized implementation of DSTree (by 1.5x-10x). This is true for all synthetic and real query workloads of different hardness that we tried (note that all algorithms return the same, exact results).

Contributions. Our contributions are as follows:

- We propose a new parallel data series index that exhibits better query answering performance than all recent state-of-the-art approaches across all popular query workloads. The new index achieves better pruning than previous approaches by exploiting the benefits of two different summarization techniques, and a new query answering mechanism.

- We propose a new parallel data series index construction algorithm, which leverages a novel protocol for constructing the tree and flushing data to disk. This protocol achieves load balancing (among workers) on the binary index tree, due to a careful scheduling mechanism of costly operations.

- We realize an ablation study that explains the contribution of individual design choices to the final performance improvements for queries of different hardness, and could support further future advancements in the field.

- We demonstrate the superiority and robustness of Hercules with an extensive experimental evaluation against the state-of-the-art techniques, using a variety of synthetic and real datasets. The experiments, with query workloads of varying degrees of difficulty, show that Hercules is between 1.3x-9.4x faster than the best competitor, which is different for the different datasets and workloads. Hercules is also the only index that outperforms the optimized parallel scan on all scenarios, including the case of hard query workloads.

2 Preliminaries & Related Work

A **data series** $S(p_1, p_2, \ldots, p_n)$ is an ordered sequence of points, p_i, $1 \leq i \leq n$. The number of points, $|S| = n$, is the length of the series. We use \mathcal{S} to represent all the series in a collection (dataset). A data series of length n is typically represented as a single point in an n-dimensional space. Then the values and length of S are referred to as **dimensions** and **dimensionality**, respectively.

Data series similarity search is typically reduced to a k-Nearest Neighbor (k-NN) query. Given an integer k, a dataset \mathcal{S} and a query series S_Q, a k-NN query retrieves the set of k series $\mathcal{A} = \{(S_1, \ldots, S_k) \in \mathcal{S} | \forall S \in \mathcal{A} \text{ and } \forall S' \not\in \mathcal{A}, \, d(S_Q, S) \leq d(S_Q, S')\}$, where $d(S_Q, S_C)$ is the distance between S_Q and any data series $S_C \in \mathcal{S}$.

This work focuses on whole matching queries (i.e., compute similarity between an entire query series and an entire candidate series) using the Euclidean distance. Hercules can support any distance measure equipped with a lower-bounding distance, e.g. Dynamic Time Warping (DTW) [31] (similarly to how other indices support DTW [51]).

Summarization Techniques. The Symbolic Aggregate Approximation (SAX) [37] first transforms a data series using Piecewise Aggregate Approximation (PAA) [30]. It divides the series into equal-length segments and represents each segment with one floating-point value corresponding to the mean of all the points belonging to the segment (Fig. 1a). The iSAX summarization reduces the footprint of the PAA representation by applying a discretization technique that maps PAA values to a discrete set of symbols (alphabet) that can be succinctly represented in binary form (Fig. 1b).

Following previous work, we use 16 segments [21] and an alphabet size of 256 [58].

The Adaptive Piecewise Constant Approximation (APCA) [11] is a technique that approximates a series using variable-length segments. The approximation represents each segment with the mean (μ) and standard deviation (σ) of the points belonging to it (Fig. 1d).

Similarity Search Methods. Exact similarity search methods are either sequential or index-based. The former compare a query series to each candidate series in the dataset, whereas the latter limit the number of such comparisons using efficient data structures and algorithms. An index is built using a summarization technique that supports lower-bounding [23]. During search, a filtering step exploits the index to eliminate candidates in the summarized space with no false dismissals, and a refinement step verifies the remaining candidates against the query in the original high-dimensional space [7, 9, 14, 16, 18, 20, 24, 38, 56, 64, 66, 68]. We describe below the state-of-the-art exact similarity search techniques [21]. Note that the scope of this paper is single-node systems, thus, we do not cover distributed approaches such as TARDIS [67] and DPiSAX [66].

The UCR Suite [54] is an optimized sequential scan algorithm supporting the DTW and Euclidean distances for exact *subsequence* matching. We adapted the original algorithm to support exact whole matching, used the optimizations relevant to the Euclidean distance
(i.e., squared distances and early abandoning), and developed a parallel version, called PSCAN, that exploits SIMD, multithreading and double buffering.

The VA+file [24] is a skip-sequential index that exploits a filter file containing quantization-based approximations of the high dimensional data. We refer to the VA-file variant proposed in [21], which exploits DFT (instead of the Karhunen–Loève Transform) for efficiency purposes [41].

The DSTree [64] is a tree-based approach which uses the EAPCA segmentation. The DSTree intertwines segmentation and indexing, building an unbalanced binary tree. Internal nodes contain statistics about the data series belonging to the subtree rooted at it, and each leaf node is associated with a file on disk that stores the raw data series. The data series in a given node are all segmented using the same policy, but each node has its own segmentation policy, which may result in nodes having a different number of segments or segments of different lengths. During search, it exploits the lower-bounding distance LB_{EAPCA} to prune the search space. This distance is calculated using the EAPCA summarization of the query and the synopsis of the node, which refers to the EAPCA summaries of all series that belong to the node.

ParIS+ [53] is the first data series index for data series similarity search to exploit multi-core and multi-socket architectures. It is a tree-based index belonging to the iSAX family [45]. Its index tree is comprised of several root subtrees, where each subtree is built by a single thread and a single thread can build multiple subtrees. During search, ParIS+ implements a parallel version of the ADS+ SIMS algorithm [68], which prunes the search space using the iSAX summarizations and the lower-bounding distance LB_{iSAX}.

Hercules vs. Related Work. Hercules exploits the data-adaptive EAPCA segmentation proposed by DSTree [64] to cluster similar data series in the same leaf. This results in a binary tree which cannot be efficiently constructed and processed by utilizing the simple parallelization techniques of ParIS+ [53]. Specifically, the parallelization strategies of the index construction and query answering algorithms of ParIS+ exploit the large fanout of the root node, such that threads do not need to synchronize access to the different root subtrees. However, in Hercules, threads need to synchronize from the root level. Therefore, Hercules uses a novel parallel index construction algorithm to build the tree.

In addition, unlike previous work, Hercules stores the raw data series belonging to the leaves using a two-level buffer management architecture. This scheme plays a major role in achieving the good performance exhibited by Hercules, but results in the additional complication of having to cope with the periodic flushing of HBuffer to the disk. This flushing is performed by a single thread (the flush coordinator) to maintain I/O cost low. Additional synchronization is required to properly manage all threads that populate the tree, until flushing is complete. Note also that ParIS+ builds the index tree based on iSAX, thus, it only accesses the raw data once to calculate the iSAX summaries and insert the latter into the index tree. Node splits are also based on the summaries, which fit in-memory. However, Hercules builds the index tree using the disk-based raw data, making the index construction parallelization more challenging. Finally, ParIS+ treats all queries in the same way, whereas Hercules adapts its query answering strategy to each query.

Our experiments (Section 4) demonstrate that Hercules outperforms on query answering both DSTree and ParIS+ by up to 1-2 orders of magnitude across all query workloads.

3 THE HERCULES APPROACH

3.1 Overview

The Hercules pipeline consists of two main stages: an index construction stage, where the index tree is built and materialized to disk, and a query answering stage where the index is used to answer similarity search queries.

The index construction stage involves index building and index writing. During index building, the raw series are read from disk and inserted into the appropriate leaf of the Hercules EAPCA-based index tree. As their synopses are required only for query answering, to avoid contention at the internal nodes, we update only the synopses of the leaf nodes during this phase, while the synopses of the internal nodes are updated during the index writing phase. The raw series belonging to all the leaf nodes are stored in a pre-allocated memory buffer called HBuffer. Once all the data series are processed, index construction proceeds to index writing: the leaf nodes are post-processed to update their ancestors’ synopses, and the iSAX summaries are calculated. Moreover, the index is materialized to disk into three files: (i) HTree, containing the index tree; (ii) LRDFile, containing the raw data series; and (iii) LSDFile containing their iSAX summaries (in the same order as LRDFile’s raw data).

Hercules’s query answering stage consists of four main phases: (1) The index tree is searched heuristically to find initial approximate answers. (2) The index tree is pruned based on these initial answers and the EAPCA lower-bounding distances in order to build the list of candidate leaves (LCList). If the size of LCList is large (EAPCA-based pruning was not effective), a single-thread skip-sequential search on LRDFile is preferred (so phases 3 and 4 are skipped). (3) Additional pruning is performed by multiple threads based on the iSAX summarizations of the data series in the candidate leaves of LCList. The remaining data series are stored in SCList. If the size of SCList is large (SAX-based pruning was low), a skip-sequential search using one thread is performed directly on LRDFile and phase 4 is skipped. (4) Multiple threads calculate real distances between the query and the series in SCList, and the series with the lowest distances are returned as final answers. Thus, Hercules prunes the search space using both the lower-bounding distances LB_{EAPCA} [64] and LB_{iSAX} [37].

3.2 The Hercules Tree

Figure 2 depicts the Hercules tree. Each node N contains: (i) the size, $ρ$, of the set $S_N = \{s_1, ..., s_p\}$ of all series stored in the leaf descendants of N (or in N if it is a leaf); (ii) the segmentation $SG = \{r_1, ..., r_m\}$ of N, where r_i is the right endpoint of SG_i, the ith segment of SG, with $1 \leq i \leq m$, $1 \leq r_1 < ... < r_m = n$, $r_0 = 0$ and n is the length of the series; and (iii) a synopsis $Z = (z_1, z_2, ..., z_m)$, where $z_i = (μ_{min}^i, μ_{max}^i, σ_{min}^i, σ_{max}^i)$ is the synopsis of the segment SG_i, $μ_{min}^i = min(p_1^i, ..., p_{r_i}^i)$, $μ_{max}^i = max(p_1^i, ..., p_{r_i}^i)$, $σ_{min}^i = min(σ_1^i, ..., σ_{r_i}^i)$, and $σ_{max}^i = max(σ_1^i, ..., σ_{r_i}^i)$.

A leaf node is associated with a FilePosition which indicates the position of the leaf’s raw data in LRDFile and that of the leaf’s iSAX summaries in LSDFile. An internal node contains pointers to its
children nodes and a splitting policy. When a leaf node N exceeds its capacity r (leaf threshold), it is split into two children nodes N_I and N_r, which are leaf nodes, and N becomes an internal node.

Hercules exploits a splitting policy that (similarly to DSTree) allows the resolution of a node’s summarization to increase along two dimensions: horizontally (H-split) and vertically (V-split), unlike the other data series indexes [10, 56, 68], which allow either one or the other (for example, iSAX-based indexes only allow horizontal splitting). A node N is split by picking SG_l, one of the m segments of N, and using the mean (or the standard deviation) of the points belonging to SG_l to redistribute the series in S_N among N_I and N_r. In an H-split, both N_I and N_r have the same segmentation as N whereas in a V-split, the children nodes have one additional segment. In an H-split using the mean, the data series in S_N which have a mean value for segment SG_l in the range $[\mu_l^{\text{min}}, (\mu_l^{\text{max}} + \mu_l^{\text{min}})/2]$ will be stored in N_I and those whose range is in $[(\mu_l^{\text{min}} + \mu_l^{\text{max}})/2, \mu_l^{\text{max}}]$ will be stored in N_r. An H-split using the standard deviation proceeds in the same fashion we just described, except it uses the values of standard deviations instead of mean values. A V-split first splits SG_l into two new segments then applies an H-split on one of them. For example, in Figure 2, node I_2 has an additional segment compared to its parent I_1, because it was split vertically, while the latter has the same segmentation as Root, because it was split horizontally. If we suppose that I_1 was split using mean values, the data series that were originally stored in S_{I_1} are now stored in S_{I_2} if their mean value $\mu_1 < -0.075$ ($\frac{-0.25 + 0.10}{2} = -0.075$), and to its right child otherwise.

3.3 Index Construction

3.3.1 Overview. Figure 3 describes the index building workflow. Index building consists of three phases: (i) a read phase, (ii) an insert phase, and (iii) a flush phase. A thread acting as the coordinator and a number of InsertWorker threads operate on the raw data using a double buffer scheme, called DBuffer. Hercules leverages DBuffer to interleave the I/O cost of reading raw series from disk with CPU-intensive insertions into the index tree. The numbered circles in Figure 3 denote the tasks performed by the threads.

During the read phase, the coordinator loads the dataset into memory in batches, reading a batch of series from the original file into the first part of DBuffer (1). It gives up the first part of DBuffer when it is full and continues storing data into the second part (2).

During the insert phase, the InsertWorker threads read series from the part of the buffer that the coordinator does not work on (3) and insert them into the tree. Each InsertWorker traverses the index tree to find the appropriate leaf, routing left or right depending on the split policy of the visited node (4). Each tree leaf points to an SBuffer, an array of pointers to the raw data stored in HBuffer (5). We chose this architecture for performance reasons. Experiments showed that allocating a large memory buffer (HBuffer) at the start of the index creation and releasing it once all series have been inserted is more efficient than having each leaf pre-allocate its own memory buffer and release it when it is split, especially during the beginning of index construction where splits occur frequently. Our design results in a small number of system calls and reduces the occurrences of out-of-memory management issues (when a program issues a large number of memory cleanup operations, the memory can be retained by the process for later reuse).

Each InsertWorker has its own region in HBuffer and records the data series that it inserts there. When the number of full regions reaches a flush threshold, the flush phase starts (6), where the data in HBuffer is flushed to disk. This is achieved by identifying one of the InsertWorkers as the FlushCoordinator to undertake the task of flushing. The rest of the InsertWorkers wait until the FlushCoordinator is done (7). Careful synchronization is necessary between the FlushCoordinator and the rest of the InsertWorkers, which now play the role of the FlushWorkers. The FlushWorkers have to inform the FlushCoordinator when their region becomes full and synchronize with it to temporarily halt their execution (8) and resume it again after the flush phase completes (9).

Figure 4 describes the workflow of the index writing phase, which calculates in parallel the iSAX summaries and synopsis of the internal nodes (1-3), and materializes HTree, LRDFile and LSDFile (4-5). Hercules stores the raw data series in LRDFile, as they are traversed in the tree leaves during an inorder traversal. To improve the pruning degree, it also calculates iSAX summaries for the data series and stores them in an array in memory. At the end of every execution, it flushes this array into LSDFile, to avoid recalculating them during query answering. LSDFile follows the same order as LRDFile. If HBuffer can hold the full dataset, these operations do not require any disk access.

3.3.2 Index Building Algorithms. We start by providing the details of Algorithm 1 which is executed by the coordinator. After the coordinator fills in the first part of DBuffer (line 15), it spawns the InsertWorkers (line 18). While the InsertWorkers process the data in one part of DBuffer, the coordinator fills in the other part of the buffer, by reading data series from disk in chunks of size $DBSize$ (lines 19-24). A Toggle bit is used by the coordinator to alternate working on the two parts of DBuffer (line 23). Before starting to refill a part of DBuffer, the coordinator has to wait for all InsertWorkers to finish processing the data series in it. This is
Each InsertWorker executes Algorithm 2. The execution alternates between insertion phases, where all InsertWorkers insert data series in the tree, and flushing phases where the first of the InsertWorkers (that plays the role of FlushCoordinator) flushes all buffers to disk, while the other FlushWorkers block waiting for FlushCoordinator to complete the flushing phase. InsertWorkers keep track of the part of DBuffer they work on in the variable Toggle.

In Algorithm 2, each InsertWorker first checks if it has enough space in HBuffer to store at least DBSize series (lines 6-11). Next, the InsertWorker reads a data series from DBuffer[Toggle] (line 9) and calls InsertSeriesToNode to insert this data series in the index tree. To synchronize reads from DBuffer[Toggle], InsertWorkers use a FetchAdd variable DBCounter[Toggle]. DBCounter[Toggle] is
Algorithm 2: InsertWorker

Input: Index’ lId
1 Node Root ← Root of lId;
2 Bit Toggle ← 0;
3 Integer Pos ← 0;
4 Float Sraw;

while finished(Toggle) do
5 if InsertWorker’s buffer has at least DBSize[Toggle] empty slots then
6 Pos ← GetAdd(DBCounter[Toggle]), 1;
7 while Pos < DBSize[Toggle] do
8 Sraw ← DBuffer[Toggle][Pos];
9 DBarrier = InsertSeriesToNode(H, Root, Sraw);
10 Pos ← GetAdd(DBCounter[Toggle], 1);
11 InsertWorker blocks on DBarrier;
12 if InsertWorker is FlushCoordinator then
13 | FlushCoordinator(lId);
14 else
15 | Toggle ← 1 - Toggle;
16
Algorithm 3: FlushCoordinator

Input: Index’ lId
1 Integer Volatile Cnt;
2 Integer Tmp;
3 Worker[WorkerID].ContinueHandShake ← TRUE;
4 for each Worker in Workers do
5 | Workers.ContinueHandShake do
6 | for Tmp = 0; Tmp < BUSYWAIT; Tmp++ do
7 | Cnt++;
8 if (FlushCoordinator’s region in HBuffer is full) OR (FlushCounter > FLUSH_THRESHOLD) then
9 | FlushOrder ← TRUE;
10 else
11 FloatCounter ← 0;
12 FlushCoordinator blocks on ContinueBarrier;
13 FlushWorker’s ContinueHandShake ← FALSE;
14 if FlushOrder then
15 materialize to disk the data in lId’s leaves and reset soft and hard buffers;
16 FlushOrder ← FALSE;
17 FlushCoordinator blocks on FinishBarrier;

Algorithm 4: FlushWorker

1 N ← RouteToLeaf(N, Sraw);
2 acquire lock on N;
3 while not N.Idleaf do
4 | release lock on N;
5 N ← RouteToLeaf(N, Sraw);
6 acquire lock on N;
7 update the synopsis of N using Sraw;
8 add Sraw in this thread’s region of HBuffer and a pointer to it in N’s SBuffer;
9 if N is full then
10 Policy ← getBestSplitPolicy(N);
11 create two children nodes for N according to Policy;
12 get all data series in N from memory and disk (if flushed);
13 distribute data series among the two children nodes and update the node synopsis accordingly;
14 N.Idleaf ← FALSE;
15 release lock on N;

Algorithm 5: InsertSeriesToNode

Input: Index’ lId, Node’ N, Float* Sraw
1 N ← RouteToLeaf(N, Sraw);
2 acquire lock on N;
3 while not N.Idleaf do
4 | release lock on N;
5 N ← RouteToLeaf(N, Sraw);
6 acquire lock on N;
7 update the synopsis of N using Sraw;
8 add Sraw in this thread’s region of HBuffer and a pointer to it in N’s SBuffer;
9 if N is full then
10 Policy ← getBestSplitPolicy(N);
11 create two children nodes for N according to Policy;
12 get all data series in N from memory and disk (if flushed);
13 distribute data series among the two children nodes and update the node synopsis accordingly;
14 N.Idleaf ← FALSE;
15 release lock on N;

incremented on line 7 and it is reset to 0 by the coordinator (line 22 in Algorithm 1). To synchronize with the coordinator, InsertWorkers reach the DBarrier once they have finished processing the data in the current part of DBuffer, or have exhausted their capacity in HBuffer (line 12).

To execute the flushing protocol, the FlushCoordinator executes an instance of Algorithm 3, whereas FlushWorkers execute an instance of Algorithm 4. The FlushCoordinator and FlushWorkers synchronize using the ContinueHandShake bits, the ContinueBarrier and the FinishBarrier. The FlushCoordinator reads the FlushCounter to determine the number of FlushWorkers that have exceeded the capacity of their regions in HBuffer (for loop at line 4). Each InsertWorker uses the ContinueHandShake bit to notify the coordinator if its part in HBuffer is full, in which case it increments FlushCounter. The FlushCoordinator waits until it sees that all these bits are set (lines 4-7). If the FlushCounter reaches a threshold, or the FlushCoordinator itself is full, FlushOrder is set to TRUE (line 9). The FlushCoordinator waits at the ContinueBarrier to let FlushWorkers know that it has made its decision and resets its own ContinueHandShake bit to FALSE. If FlushOrder is TRUE, it flushes the raw data in HBuffer to disk, resets the SBuffer pointers in the leaves, and resets FlushCounter to zero and FlushOrder to FALSE. The FlushCoordinator informs FlushWorkers that it has finished the flushing by reaching the FinishBarrier.

In Algorithm 4, FlushWorkers increase the FetchAdd variable FlushCounter if their region in HBuffer is full (line 3) and flip the ContinueHandShake bit to TRUE (line 4). FlushWorkers need to wait until the FlushCoordinator has received all handshakes and issued the order to flush or continue insertions, before they reach the ContinueBarrier (lines 5). The ContinueHandShake is then set back to FALSE (line 6). If the FlushCoordinator has set FlushOrder to TRUE, FlushWorkers wait at the FinishBarrier (line 8).

Algorithm 5 describes the steps taken by each thread to insert one data series into the index. First, the thread traverses the current index tree to find the correct leaf to insert the new data series (line 1), then it attempts to acquire a lock on the leaf node (line 2). Another thread that has already acquired a lock on this same leaf might have split the node; therefore, it is important to verify that the node is still a leaf before appending data to it. Once a leaf is reached, its synopsis is updated with the data series statistics (line 7) and the latter is appended to it (line 8). The lock on the leaf is then released (line 15). In the special case when a leaf node reaches its maximum capacity (line 9), the best splitting policy is determined following the same heuristics as in the DSTree [64] (line 10) and the node is split by creating two new children nodes (line 11). The series in the split node are fetched from memory and disk (if they have been flushed to disk), then redistributed among the left and right children nodes according to the node’s splitting policy. Once all series have been stored in the correct leaf, the split node becomes an internal node (line 14).

3.3.3 Index Writing Algorithms. We now describe the algorithms used in the index writing phase which materializes the index tree and the raw data. This phase also updates the synopsis of the internal nodes and calculates the iSAX summaries of the raw data series (which are also materialized).
Algorithm 6: WriteHerculesIndex

Input: Index*, Ird, File* Integer NumThreads
1 Shared Integer LeafCounter ← 0;
2 write Ids. Settings to File;
3 for j ← 0 to NumThreads-1 do
4 create a thread to execute an instance of WriteIndexWorker(Ids, LeafCounter);
5 WriteLeafData(Ids);
6 for j ← 0 to NumThreads-1 do
7 wait until all WriteIndexWorker threads are done;
8 WriteIndexTree(Ids, Ird, Root, File);

Algorithm 7: WriteIndexWorker

Input: Index*, Ird, Shared Integer LeafCounter
1 Integer j ← 0;
2 Node L;
3 j ← FetchAdd(LeafCounter, 1);
4 L ← j-th leaf of the index tree (based on inorder traversal);
5 while j < Ids.NumLeaves do
6 ProcessLeaf(Ld, L);
7 L processed ← TRUE;
8 wait until L processed is equal to TRUE;
9 j ← FetchAdd(LeafCounter, 1);

Algorithm 8: VSplitSynopsis

Input: Node N, Segment SG
1 Segment SGp, Node P;
2 while P is not null do
3 for each non vertically split segment SG in P do
4 SGp ← the corresponding segment of SG in N;
5 acquire lock on SGp;
6 update the min/max mean and sd of SGp with SGp; Mean and SGp; SD;
7 release lock on SGp;
8 N ← P;
9 P ← N Parent;

Algorithm 9: HSplitSynopsis

Input: Node N
1 Segment SG, Node P;
2 while P is not null do
3 if N has a split vertical segment then
4 SG ← the split segment of N;
5 SGp ← the corresponding segment of SG in N;
6 acquire lock on SGp;
7 update the min/max mean and sd of SGp with SGp; Mean and SGp; SD;
8 release lock on SGp;
9 N ← N Parent;

Algorithm 6 which implements this phase is invoked by a thread called the WriteIndexCoordinator. The coordinator first saves the index settings used to build the index which include the data series length, the dataset size, and the leaf threshold (line 2). Recall that for performance reasons, the synopses of the internal nodes were not updated during index building (Algorithm 5). The WriteIndexCoordinator creates a number of workers (WriteIndexWorkers) to concurrently update these synopses and to calculate the iSAX summaries of the raw data series. At the same time, the WriteIndexCoordinator calls WriteLeafData to materialize the data contained in the leaves that have been fully processed by the WriteIndexWorkers. After all WriteIndexWorkers are done, the coordinator calls WriteIndexTree to materialize the data of the internal nodes.

Each WriteIndexWorker (Algorithm 7) processes one leaf at a time, calculating the iSAX summaries of the leaf’s raw data and updating the synopses of its ancestor nodes (line 6). Then, it notifies the WriteIndexCoordinator that it completed processing this leaf (line 7). Once all leaves have been processed, the worker terminates.

For each processed leaf of the index tree, WriteLeafData simply stores the leaf’s raw data and their iSAX summaries into two disk files, called LRDFile and LSDFile, respectively.

We next discuss the post-processing of each individual leaf L, which consists mainly of the calculation of the iSAX summaries of the data series belonging in L and the update of the synopses of the ancestors of L. Recall that the synopsis of a node N consists of the synopses of all segments in N’s segmentation, where each segment is represented using the minimum/maximum mean and standard deviation of all points within this segment among all series that traversed N. Therefore, updating the synopsis of an internal node N requires updating the synopses of all of its segments. The operations required to do so depend on the type of the split that the node N has undergone. If a node has been split vertically, the synopsis of the segment that was vertically split is calculated gradually by repeatedly calling VSsplitSynopsis (Algorithm 8) on each raw data series, whereas the synopsis of its other segments can be derived from those of its children nodes by calling HsplitSynopsis (Algorithm 9). So HsplitSynopsis is invoked only once for each leaf node.

In the case of a horizontal split, the synopsis of N can be derived entirely from those of its children (Algorithm 9).

Routine WriteIndexTree materializes the tree nodes. It applies a recursive (Postorder) tree traversal, updating the size of each node and writing the node’s data into File.

3.4 Query Answering

3.4.1 Overview. Figure 5 describes query answering in Hercules, which consists of four main steps. The first and second steps are run sequentially, whereas the others are run in parallel. The distance calculations in all steps are performed using SIMD.

In the first step, when a kNN query SQ arrives, the index tree is traversed to visit at most lmax leaves. When a leaf L is visited, the series that belong to it are read from LRDFile and the Euclidean distance (ED) between SQ and every series in L is calculated. The k best-so-far neighbors, i.e., the k series with the smallest Euclidean distances to SQ, are stored in array Results. The leaves are chosen based on a priority queue PQ, which initially contains just the index tree Root node. The algorithm iteratively removes a node N from the priority queue, and if the LBAPCA distance of SQ to N is larger than the current value of BSFk, the kth smallest ED distance in Results, the node is pruned. Otherwise, if N is a leaf, it is added to PQ, and if it is an internal node, its children are added to PQ if their LBAPCA distance to SQ is smaller than BSFk. Once lmax leaves are visited, the first step terminates returning the array Results with k initial answers. This step is called approximate search.

The second step takes place entirely in-memory with no ED distance calculations, thus, the current BSFk is not updated. This step resumes processing PQ as in step one, except when a leaf is visited: it is either pruned, based on BSFk, or added to a list of candidate leaves, called LCLlist, in increasing order of the leaves
3.4.2 Query Answering Algorithms. Algorithm 10 outlines the kNN exact nearest neighbor search with Hercules. It takes as arguments, the query series \(S_Q \), the index \(Idx \), a threshold which determines the maximum number of leaves, \(L_{\text{max}} \), that can be visited during the approximate search, the number \(k \) of neighbors to return, and two thresholds, \(\text{EAPCA_TH} \) and \(\text{SAX_TH} \), which determine whether multi-threading will be used (and will be discussed later).

The algorithm uses an array \(\text{Results} \) to store the current \(k \) best-so-far answers at each point in time, two array-lists, namely \(\text{LCList} \) and \(\text{SCLList} \), which hold the candidate leaves and series, respectively, and a priority queue \(PQ \) in which the priority is based on the \(\text{LB}_{\text{EAPCA}} \) distance of the query to a given node (lines 1-5).

First, an approximate \(k \)NN search is performed by calling the function \(\text{Approx-kNN} \), which stores in the array \(\text{Results} \), the \(k \) approximate neighbors for query \(S_Q \) by visiting at most \(L_{\text{max}} \) leaves. The variable \(\text{BSF}_k \) is initialized with the real distance of the \(k \)th neighbor to \(S_Q \) and is used by the \(\text{FindCandidateLeaves} \) function to prune the search space. The non-pruned leaves are stored in \(\text{LCLList} \) (line 8). If the size of \(\text{LCLList} \) is large enough (so that \(\text{eapca}_k \) is smaller than the \(\text{EAPCA_TH} \) threshold), then a skip-sequential scan on \(\text{LRDFile} \) is performed using one thread and \(\text{Results} \) is updated with the best answers (line 11).

Otherwise, \(\text{FindCandidateSeries} \) applies a second filter using the iSAX representation of the series belonging to the leaves in \(\text{LCLList} \) using the \(\text{LB}_{\text{SAX}} \) distance, and stores the non-pruned candidate series in \(\text{SCLList} \) (line 13). If the size of \(\text{SCLList} \) is large, i.e., that the pruning based on \(\text{LB}_{\text{SAX}} \) is low, then a skip-sequential scan on \(\text{LRDFile} \) is performed using one thread (line 16). Otherwise, \(\text{ComputeResults} \) (line 18) loads the series in \(\text{SCLList} \) from disk and calculates their real ED distance to the query returning the \(k \) series with the minimum ED distance to \(S_Q \) as the final answers. All real and lower-bounding distance calculations used exploit SIMD for efficiency (following [51, 53]).
Algorithm 11: Approx-\(k\)-NN

Input: Query \(S\) \(\times\) Index, \(PQ\), Integer \(L_{\text{max}}\), Integer \(i\), Result

1. \(PQ\)Element \(q\) \(\Rightarrow\) \(PQ\)Element has two fields, \(N\) and \(Dist\).
2. Float \(\text{Root}LB_{\text{APCA}}\) \(\leftarrow\) \(\text{CalculateLB}_{\text{APCA}}(\text{Root}, 0)\).
3. Integer \(\text{VisitedLeaves}\) \(\leftarrow\) 0.
4. add \(\text{Id}x.\text{Root}\) to \(PQ\) with priority \(\text{Root}LB_{\text{APCA}}\).
5. while \(\text{VisitedLeaves} < L_{\text{max}}\) AND NOT \(\text{isEmpty}(PQ)\) do
6. \(N\), \(\text{LB}_{\text{APCA}}\) \(\leftarrow\) \(\text{DeleteMin}(PQ)\).
7. if \(\text{LB}_{\text{APCA}} > \text{BSF}\) then break.
8. if \(N\) is a leaf then
9. for each \(S\) in \(N\) do
10. RealDist \(\leftarrow\) CalculateRealDist(S, \(S\).
11. if RealDist < \(\text{BSF}\) then
12. create new struct result of type Result;
13. \(\text{result}Dist\) \(\leftarrow\) RealDist;
14. \(\text{resultPos}\) \(\leftarrow\) Position of \(S\) in \(\text{LRDFile}\).
15. add result to Results;
16. \(\text{BSF}\) \(\leftarrow\) \(\text{Result}(k-1).\text{Dist}\);
17. \(\text{VisitedLeaves}\) \(\leftarrow\) \(\text{VisitedLeaves}\) + 1;
18. else
19. for each \(\text{Child}\) in \(N\) do
20. \(\text{LB}_{\text{APCA}}\) \(\leftarrow\) \(\text{CalculateLB}_{\text{APCA}}(\text{S}, \text{Child})\);
21. if \(\text{LB}_{\text{APCA}} < \text{BSF}\) then
22. add Child to \(PQ\) with priority \(\text{LB}_{\text{APCA}}\);
23. end.
24. end.
25. end.
26. \(\text{Result}\) terminate (line 4). Otherwise, it adds non-pruned leaves into \(\text{LCList}\) (line 6) and non-pruned internal nodes into the priority queue \(PQ\) (lines 8-11).

The algorithm terminates (line 4). Otherwise, it adds non-pruned leaves into \(\text{LCList}\) (line 6) and non-pruned internal nodes into the priority queue \(PQ\) (lines 8-11). Note that leaves are treated differently in Algorithms 11 and 12: in the former, the series of the leaves are loaded from disk and the real distances are calculated between the series and the query, updating \(\text{Results}\) as necessary, whereas in the latter, \(\text{Results}\) is not updated and pointers to the leaves are stored for further processing, so the disk is not accessed in this case.

Once all nodes in \(PQ\) have been processed, the candidate leaves in \(\text{LCList}\) are sorted in increasing order of their position in \(\text{Idx.\text{LRDFile}}\) (line 12). This is to reduce the overhead of disk random I/O by ensuring that data pages are visited in the order that they are laid out on disk.

Step 3: Finding Candidate Series. While the previous building blocks of exact search use SIMD to efficiently calculate the real and lower-bounding distances, they run using a single thread. \text{FindCandidateSeries} is a multi-threaded algorithm that processes the candidate leaves in \(\text{LCList}\) to populate \(\text{SCLList}\) with candidate data series. Each thread executes an instance of \text{CSWorker}. Once all threads have finished execution, the algorithm stores all candidate data series in \(\text{SCLList}\).

Algorithm 12: FindCandidateLeaves

Input: Query \(S\) \(\times\) Index, \(PQ\), Float \(\text{BSF}\), List \(\text{Idx.\text{LRDFile}}\), List \(\text{LCList}\)

1. while NOT \(\text{isEmpty}(PQ)\) do
2. \((N, \text{LB}_{\text{APCA}}) \leftarrow \text{DeleteMin}(PQ)\).
3. if \(\text{LB}_{\text{APCA}} > \text{BSF}\) then break.
4. if \(N\) is a leaf then
5. for each \(\text{Child}\) in \(N\) do
6. \(\text{LB}_{\text{APCA}}\) \(\leftarrow\) \(\text{CalculateLB}_{\text{APCA}}(\text{S}, \text{Child})\);
7. end.
8. \(\text{add Child to PQ with priority \(\text{LB}_{\text{APCA}}\)};
9. end.
10. \(\text{sort the leaves in LCList in increasing order of their position in the Idx.\text{LRDFile}}\);

Algorithm 13: \text{CSWorker}

Input: Query \(S\) \(\times\) Char ** \(\text{LSDFile}\), Float \(\text{BSF}\), Integer \(\text{Id}\), List \(\text{Idx.\text{LRDFile}}\), List \(\text{SCLList}\)

1. Shared Integer \(\text{LCL}_{\text{Id}}\) \(\leftarrow\) 0;
2. List \(\text{SCL}_{\text{Idlocal}}\);
3. Node \(\text{Id}\);
4. \((j) \leftarrow \text{FetchChild}(\text{LCList})\);
5. while \(j < \text{LCList}.\text{size}()\) do
6. \(L \leftarrow \text{LCList}.j();\)
7. for each \(\text{SAX}\) summary \(\text{Sax}\) in \(L\) do
8. \(\text{LB}_{\text{SAX}} \leftarrow \text{CalculateLB}_{\text{SAX}}(\text{S}, \text{Sax})\);
9. if \(\text{LB}_{\text{SAX}} < \text{BSF}\) then
10. \(\text{add \(\text{SaxPos, LB}_{\text{SAX}}\) to SCL_{local}};\)
11. \(j \leftarrow \text{FetchAdd}(\text{LCList})\);
12. store in \(\text{SCL}_{\text{Idlocal}}\) a pointer to \(\text{SCL}_{\text{local}}\);
We evaluate Hercules against the recent state-of-the-art data model financial time series [23] and have been widely used process with steps following a Gaussian distribution (0,1). Such processes are found [4].

Datasets. We use synthetic and real datasets. Synthetic datasets, called Synth, were generated as random-walks using a summing process with steps following a Gaussian distribution (0,1). Such data model financial time series [23] and have been widely used in the literature [10, 23, 70]. We also use the following three real datasets: (i) SALD [62] contains neuroscience MRI data and includes 200 million data series of size 128; (ii) Seismic [25], contains 100 million data series of size 256 representing earthquake recordings at seismic stations worldwide; and (iii) Deep [60] comprises 1 billion vectors of size 96 representing deep network embeddings of images, extracted from the last layers of a convolutional neural network. The Deep dataset is the largest publicly available real dataset of deep network embeddings. We use a 100GB subset which contains 267 million embeddings.

Queries. All our query workloads consist of 100 query series run asynchronously, representing an interactive analysis scenario, where the queries are not known in advance [27, 28, 46]. Synthetic queries were generated using the same random-walk generator as the Synth dataset (with a different seed, reported in [3]). For each dataset, we use five different query workloads of varying difficulty: 1%, 2%, 5%, 10% and ood. The first four query workloads are generated by randomly selecting series from the dataset and perturbing them using different levels of Gaussian noise ($\mu = 0, \sigma^2 = 0.01-0.1$), in order to produce queries having different levels of difficulty, following the ideas in [69]. The queries are labeled with the value of σ^2 expressed as a percentage 1%-10%. The ood (out-of-dataset) queries are a 100 queries randomly selected from the raw dataset and excluded from indexing. Since Deep includes a real workload, the ood queries for this dataset are selected from this workload.

Our experiments cover k-NN queries, where $k \in [1, 100]$.

Measures
We use two measures: (1) Wall clock time measures input, output and total execution times (CPU time is calculated by subtracting I/O time from the total time). (2) Pruning using the Percentage of accessed data.

Procedure
Experiments involve two steps: index building and query answering. Caches are fully cleared before each step, and stay warm between consecutive queries. For large datasets that do not fit in memory, the effect of caching is minimized for all methods. All experiments use workloads of 100 queries. Results reported for workloads of 10K queries are extrapolated: we discard the 5 best and 5 worst queries of the original 100 (in terms of total execution time), and multiply the average of the 90 remaining queries by 10K.

Our code and data are available online [4].

4 EXPERIMENTAL EVALUATION

4.1 Framework

Setup. We compiled all methods with GCC 6.2.0 under Ubuntu Linux 16.04.2 with their default compilation flags; optimization level was set to 2. Experiments were run on a server with 2 Intel Xeon E5-2650 v4 2.2GHz CPUs, (30MB cache, 12 cores, 24 hyperthreads), 75GB of RAM (forcing all methods to use the disk, since our datasets are larger), and 10.8TB (6 x 1.8TB) 10K RPM SAS hard drives in RAID0 with a throughput of 1290 MB/sec.

Algorithms. We evaluate Hercules against the recent state-of-the-art similarity search approaches for data series: DSTree* [1] as the best performing single-core single-socket method (note that this is an optimized C implementation that is 4x faster than the original DSTree [64]), ParIS+ [53] as the best performing multi-core multi-socket technique, VA+file [1] as the best skip-sequential algorithm, and PSCAN (our parallel implementation of UCR-Suite [54]) as the best optimized sequential scan. PSCAN exploits SIMD, multithreading and a double buffer in addition to all of UCR-Suite’s ED optimizations. Data series points are represented using single precision values and methods based on fixed summarizations use 16 dimensions.

Datasets. We use synthetic and real datasets. Synthetic datasets, called Synth, were generated as random-walks using a summing process with steps following a Gaussian distribution (0,1). Such data model financial time series [23] and have been widely used

4.2 Results

Parameterization
We initially tuned all methods (graphs omitted for brevity). The optional parameters for DSTree* and VA+file are set according to [21] and those for ParIS+ are chosen per [49]. For indexing, DSTree* uses a 60GB buffer and a 100K leaf size, VA+file uses a 20GB buffer and 16 DFT symbols, and ParIS+ uses a 20GB buffer, a 2K leaf size, and a 20K double buffer size.

For Hercules, we use a leaf size of 100K, a buffer of 60GB, a DBSize of 120K, 24 threads during index building with a flush threshold of 12, and 12 threads during index writing. During query answering, we use 24 threads, and set $L_{max} = 80$, $EAPCA_TH = 0.25$ and $SAX_TH = 0.50$. The above default settings were used across all experiments in this paper. The detailed tuning results can be found [4].

Scalability with Increasing Dataset Size
We now evaluate the performance of Hercules in-memory and out-of-core datasets.
We use four different dataset sizes such that two fit in-memory (25GB and 50GB) and two are out-of-core (100GB and 250GB). We report the combined index construction and query answering times for 100 and 10K exact 1NN queries. Figure 6 demonstrates the robustness of Hercules across all dataset sizes. Compared to DSTree*, Hercules is 3x-4x faster in index construction time, and 1.6x-10x faster in query answering. The only scenario where Hercules does not win is against ParIS+ on the 250GB dataset and the small query workload (Figure 6a). However, on the large query workload of 10K queries, Hercules outperforms ParIS+ by a factor of 3. This is because Hercules invests more on index construction (one-time cost), in order to significantly speed-up query answering (recurring cost). We run an additional scalability experiment with two very large datasets (1TB and 1.5TB), and measure the average runtime for one 1-NN query (over a workload of 100 queries). Figure 7 shows that Hercules outperforms all competitors including the optimized parallel scan PSCAN. The 1.5TB results for DSTree* and VA+file are missing because their index could not be built (out-of-memory issue for VA+file; indexing taking over 24 hours for DSTree*).

Scalability with Increasing Series Length. In this experiment, we study the performance of the algorithms as we vary the data series length. Figure 8 shows that Hercules (bottom curve) consistently performs 5-10x faster than the best other competitor, i.e., DSTree* for series of length 128-1024, and VA+file (followed very closely by ParIS+) for series of length 2048-16384. Hercules outperforms PSCAN by at least one order of magnitude on all lengths.

Scalability with Increasing Query Difficulty. We now evaluate the performance of Hercules in terms of index construction time, and query answering on 100 and 10K exact 1NN queries of varying difficulty over the real datasets. Figure 9 shows the superiority of Hercules against its competitors for all datasets and query workloads. Observe that Hercules is the only method that, across all experiments, builds an index and answers 100/10K exact queries before the sequential scan (red dotted line) finishes execution.

In Figure 10, we focus on the query answering performance for 1NN exact queries of varying difficulty. We report the query time and the percentage of data accessed, averaged per query. We observe that Hercules is superior to its competitors across the board. On the SALD dataset, Hercules is more than 2x faster than DSTree* on all queries, and 50x faster than ParIS+ on the easy (1%, 2%) to medium-hard queries (5%). Hercules maintains its good performance on the hard dataset ood, where it is 6x faster than ParIS+ despite the fact that it accesses double the amount of data on disk. We observe the same trend on the Seismic dataset: Hercules is the only index performing better than a sequential scan on the hard ood dataset although it accesses 96% of the data. This is achieved thanks to two key design choices: the pruning thresholds based on which Hercules can choose to use a single thread to perform a skip-sequential scan (rather than using multiple threads to perform a large number of random I/O operations), and the LRDFile storage layout that leads to sequential disk I/O. The Deep dataset is notoriously hard [2, 21, 26, 36], and we observe that indexes, except Hercules, start degenerating even on the easy queries (Figure 10e).

Overall, Hercules performs query answering 5.5x-63x faster than ParIS+, and 1.5x-10x faster than DSTree*. Once again, Hercules is the only index that wins across the board, performing 1.3x-9.4x faster than the second-best approach.

Scalability with Increasing k. In this scenario, we choose the medium-hard query workload 5% for synthetic and real datasets of size 100GB, and vary the number of neighbors k in the kNN exact query workloads. We then measure the query time and percent of data accessed, averaged over all queries. Figure 11 shows that Hercules wins across the board for all values of k. Note that finding the first neighbor is the most costly operation for DSTree* and Hercules, while the performance of ParIS+ deteriorates as the number of neighbors increases. This is due to ParIS+ employing
In this experiment, we study the individual (not cumulative) effect on performance when removing each of the main building blocks of Hercules. Figure 12 summarizes the results on the Deep dataset (the other datasets and query workloads show similar trends [4]). Figure 12a shows the total index building and writing times for DSTree*, our parallelization of DSTree* (DSTree*P), Hercules without parallelization of index writing (NoWPara), and Hercules. Note that although DSTree*P exploits parallelism, it still incurs a very large index building cost. This is because insert workers need to lock entire paths (from the root to a leaf) for updating node statistics, causing a large synchronization overhead. In NoWPara, threads only lock leaf nodes since statistics of internal nodes are updated at the index writing phase, leading to a faster index building phase. However, the index writing phase is slower because of the additional calculations. By parallelizing index writing bottom-up, Hercules avoids some of the synchronization overhead, and achieves a much better performance.

We evaluate query answering in Figure 12b, on three workloads of varying difficulty. We first remove the iSAX summarization and rely only on EAPCA for pruning (NoSAX), then we remove parallelization altogether from Hercules (NoPara), then we evaluate Hercules without the pruning thresholds (NoThresh), i.e., Hercules applies the same parallelization strategy to each query regardless of its difficulty. We observe that using only EAPCA pruning (NoSAX) always worsens performance, regardless of the query difficulty. Besides, the parallelization strategy used by Hercules is effective as it improves query efficiency (better than NoPara) for easy and medium-hard queries and has no negative effect on hard queries. Finally, we observe that the pruning thresholds contribute significantly to the efficiency of Hercules (better than NoThresh) on hard workloads (i.e., ood), and have no negative effect on the rest.

5 CONCLUSIONS AND FUTURE WORK
We proposed Hercules, a novel index for exact similarity search over large data series collections. We demonstrated the superiority of Hercules against the state-of-the-art using an extensive experimental evaluation: Hercules performs between 1.3x-9.4x faster than the best competitor (which is different for the various datasets and workloads), and is the first index that achieves better performance than the optimized serial-scan algorithm across all workloads. In our future work, we will study in detail the behavior of Hercules in approximate query answering (with/without deterministic/probabilistic quality guarantees [22]).

ACKNOWLEDGMENTS
We thank Botao Peng for sharing his ParIS+ code. Work partially supported by program Investir l’Avenir and Univ. of Paris IdEx Emergence en Recherche ANR-18-IDEX-0001 and EU project NESTOR (MSCA #748945).

REFERENCES
[1] 2018. Lernaean Hydra Archive. http://www.mi.parisdescartes.fr/~themisp/dseval/.
[2] 2019. Faiss. https://github.com/facebookresearch/faiss/.
[3] 2019. Return of Lernaean Hydra Archive. http://www.mi.parisdescartes.fr/~themisp/dseval2/.
[4] 2022. Hercules Archive. http://www.mi.parisdescartes.fr/~themisp/hercules/.
[5] Martin Bach-Andersen, Bo Romer-O�gaard, and Ole Winther. 2017. Flexible Non-Linear Predictive Models for Large-Scale Wind Turbine Diagnostics. Wind Energy 20, 5 (2017), 753–764.
dynamic time warping. In KDD.

[55] Usman Raza, Alessandro Camerra, Amy L. Murphy, Themis Palpanas, and Gian Pietro Picco. 2015. Practical Data Prediction for Real-World Wireless Sensor Networks. IEEE Trans. Knowl. Data Eng. 27, 8 (2015).

[56] Patrick Schäfer and Mikael Högvist. 2012. SFA: A Symbolic Fourier Approximation and Index for Similarity Search in High Dimensional Datasets. In Proceedings of the 15th International Conference on Extending Database Technology (Berlin, Germany) (EDBT ’12). ACM, New York, NY, USA, 316–327. https://doi.org/10.1145/2247596.2247656

[57] Dennis Shasha. 1999. Tuning Time Series Queries in Finance: Case Studies and Recommendations. IEEE Data Eng. Bull. 22, 2 (1999), 40–46.

[58] Jin Shieh and Eamonn Keogh. 2008. iSAX: Indexing and Mining Terabyte Sized Time Series. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Las Vegas, Nevada, USA) (KDD ’08). ACM, New York, NY, USA, 623–631. https://doi.org/10.1145/1401890.1401966

[59] Jin Shieh and Eamonn Keogh. 2009. iSAX: disk-aware mining and indexing of massive time series datasets. DMKD (2009).

[60] Skoltech Computer Vision. 2018. Deep billion-scale indexing.

[61] S Soldi, Volker Beckmann, WH Baumgartner, Gabriele Ponti, Chris R Shradler, P Lubiński, HA Krimm, F Mattana, and Jack Tueller. 2014. Long-term variability of AGN at hard X-rays. Astronomy & Astrophysics 563 (2014), A57.

[62] Southwest University. 2018. Southwest University Adult Lifespan Dataset (SALD) http://fcon_1000.projects.nitrc.org/indi/retro/sald.html?utm_source=newsletter&utm_medium=email&utm_content=See%20Data&utm_campaign=indi-1

[63] Qitong Wang and Themis Palpanas. 2021. Deep Learning Embeddings for Data Series Similarity Search. In SIGKDD.

[64] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A Data-adaptive and Dynamic Segmentation Index for Whole Matching on Time Series. PVLDB 6, 10 (2013), 793–804. http://dlp.uni-trier.de/db/journals/pvldb/pvldb6.html#WangWPWH13

[65] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas. 2017. DF2SAX: Massively Distributed Partitioned iSAX. In 2017 IEEE International Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, November 18-21, 2017. 1135–1140.

[66] Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas. 2020. Massively Distributed Time Series Indexing and Querying. TKDE 31(1) (2020).

[67] L. Zhang, N. Alghamdi, M. Y. Eltabakh, and E. A. Rundensteiner. 2019. TARDIS: Distributed Indexing Framework for Big Time Series Data. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). 1202–1213. https://doi.org/10.1109/ICDE.2019.00110

[68] Kostas Zoumpatianos, Stratos Ideos, and Themis Palpanas. 2016. ADS: the adaptive data series index. The VLDB Journal 25, 6 (2016), 843–866. https://doi.org/10.1007/s00778-016-0442-5

[69] Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis Palpanas, and Johannes Gehrke. 2018. Generating Data Series Query Workloads. The VLDB Journal 27, 6 (Dec. 2018), 823–846. https://doi.org/10.1007/s00778-018-0513-x

[70] Kostas Zoumpatianos, Yin Lou, Themis Palpanas, and Johannes Gehrke. 2015. Query Workloads for Data Series Indexes. In KDD.

[71] Kostas Zoumpatianos and Themis Palpanas. 2018. Data Series Management: Fulfilling the Need for Big Sequence Analytics. In ICDE.