AMBARZUMYAN TYPE THEOREMS ON A TIME SCALE

A. SINAN OZKAN

Abstract. In this paper, we consider a Sturm–Liouville dynamic equation with Robin boundary conditions on time scale and investigate the conditions which guarantee that the potential function is specified.

1. Introduction

Time scale theory was introduced by Hilger in order to unify continuous and discrete analysis [16]. From then on this approach has received a lot of attention and has applied quickly to various area in mathematics. Sturm–Liouville theory on time scales was studied first by Erbe and Hilger [11] in 1993. Some important results on the properties of eigenvalues and eigenfunctions of a Sturm–Liouville problem on time scales were given in various publications (see e.g. [2], [3], [4], [8]-[10], [12], [14]-[22] and the references therein).

Inverse spectral problems consist in recovering the coefficients of an operator from their spectral characteristics. Although there are vast literature for inverse Sturm–Liouville problems on a continuous interval, there are no study on the general time scales. For Sturm-Liouville operator on a continuous interval, the study which starts inverse spectral theory, was published by Ambarzumyan [1] in 1929. He prove that: if \(q \) is continuous function on \((0, 1)\) and the eigenvalues of the problem

\[-y'' + q(t)y = \lambda y, \ t \in (0, 1)\]

\[y'(0) = y'(1) = 0\]

are given as \(\lambda_n = n^2\pi^2, \ n \geq 0 \) then \(q \equiv 0 \).

Freiling and Yurko [13] generalized this result as \(\lambda_0 = \int_0^1 q(t)dt \) implies \(q \equiv \lambda_0 \).

The goal of this paper to prove an Ambarzumyan type theorem on a general time scale and to apply it on the a special time scale. In our main result, Theorem 1, we generalize the results of Freiling and Yurko for Sturm-Liouville operator with more general boundary conditions on a time scale.

2. Preliminaries and Main Results

If \(T \) is a closed subset of \(\mathbb{R} \) it called as a time scale. The jump operators \(\sigma, \rho \) and graininess operator on \(T \) are defined as follow:

\[\sigma : T \to T, \ \sigma (t) = \inf \{ s \in T : s > t \} \text{ if } t \neq \sup T,\]

\[\rho : T \to T, \ \rho (t) = \sup \{ s \in T : s < t \} \text{ if } t \neq \inf T,\]

\[\sigma (\sup T) = \sup T, \ \rho (\inf T) = \inf T,\]

\[\mu : T \to [0, \infty) \ \mu (t) = \sigma (t) - t.\]

2000 Mathematics Subject Classification. 31B20, 39A12, 34B24.

Key words and phrases. Ambarzumyan Theorem, Time scale, Sturm-Liouville equation; inverse problem; dynamic equations.
A point of \mathbb{T} is called as left-dense, left-scattered, right-dense, right-scattered and isolated if $\rho(t) = t$, $\rho(t) < t$, $\sigma(t) = t$, $\sigma(t) > t$ and $\rho(t) < t < \sigma(t)$, respectively.

A function $f : \mathbb{T} \rightarrow \mathbb{R}$ is called rd-continuous on \mathbb{T} if it is continuous at all right-dense points and has left-sided limits at all left-dense points in \mathbb{T}. The set of rd-continuous functions on \mathbb{T} is denoted by $C_{rd}(\mathbb{T})$ or C_{rd}.

Put $\mathbb{T}^k := \left\{ \mathbb{T} - \{ \sup \mathbb{T} \} \right\}$, $\sup \mathbb{T}$ is left-scattered, the other cases, $\mathbb{T}^{k^2} := (\mathbb{T}^k)^k$.

Let $t \in \mathbb{T}^k$. Suppose that for given any $\varepsilon > 0$, there exist a neighborhood $U = (t - \delta, t + \delta) \cap \mathbb{T}$ such that

$$|f(\sigma(t) - f(s)) - f^\Delta(t)| \leq \varepsilon |\sigma(t) - s|$$

for all $s \in U$ then, f is called differentiable at $t \in \mathbb{T}^k$. We call $f^\Delta(t)$ the delta derivative of f at t. A function $F : \mathbb{T} \rightarrow \mathbb{R}$ defined as $F^\Delta(t) = f(t)$ for all $t \in \mathbb{T}^k$ is called an antiderivative of f on \mathbb{T}. In this case the Cauchy integral of f is defined by

$$\int_a^b f(t) \Delta t = F(b) - F(a), \text{ for } a, b \in \mathbb{T}.$$

Some important relations whose proofs appear in [6], chapter1 will be needed. We collect them in the following lemma.

Lemma 1. Let $f : \mathbb{T} \rightarrow \mathbb{R}$, $g : \mathbb{T} \rightarrow \mathbb{R}$ be two functions and $t \in \mathbb{T}^k$.

1. If $f^\Delta(t)$ exists, then f is continuous at t;
2. If t is right-scattered and f is continuous at t, then f is differentiable at t and $f^\Delta(t) = \frac{f^\sigma(t) - f(t)}{\sigma(t) - t}$, where $f^\sigma(t) = f(\sigma(t))$;
3. If $f^\Delta(t)$ exists, then $f^\sigma(t) = f(t) + \mu(t)f^\Delta(t)$;
4. If $f^\Delta(t), g^\Delta(t)$ exist and $(fg)(t)$ is defined, then $(fg)^\Delta(t) = (f^\Delta g + f g^\Delta)(t)$
5. If $f \in C_{rd}(\mathbb{T})$, then it has an antiderivative on \mathbb{T};
6. If \mathbb{T} consists of only isolated points and $a, b \in \mathbb{T}$ with $a < b$, then $\int_a^b f(t) \Delta t = \sum_{t \in [a, b] \cap \tau} \mu(t)f(t)$;
7. If $f(t) \geq 0$ for all $t \in [a, b] \cap \mathbb{T}$ and $\int_a^b f(t) \Delta t = 0$, then $f(t) \equiv 0$.

Throughout this paper we assume that \mathbb{T} is a bounded time scale, $a = \inf \mathbb{T}$ and $b = \sup \mathbb{T}$. Consider the boundary value problem $L = L(q, h_a, h_b)$ generated by the Sturm–Liouville dynamic equation

$$\ell y := -y^\Delta(t) + q(t)g^\sigma(t) = \lambda y^\sigma(t), \quad t \in \mathbb{T}^k$$

subject to the boundary conditions

1. $y^\Delta(a) - h_a y(a) = 0$
2. $y^\Delta(b) - h_b y(b) = 0$
3. $y^\Delta(\rho(b)) - h_b y(\rho(b)) = 0$

where $q(t)$ is real valued continuous function on \mathbb{T}, $h_a, h_b \in \mathbb{R}$ and λ is the spectral parameter. Additionally, we assume that $a \neq \rho(b), 1 + h_a \mu(\alpha) \neq 0$ and $1 + h_b \mu(\rho(b)) \neq 0$.

Definition 1. The values of the parameter for which the equation (1) has nonzero solutions satisfy (2) and (3), are called eigenvalues and the corresponding nontrivial solutions are called eigenfunctions.
It is proven in [6] that all eigenvalues of the problem (1)-(3) are real numbers.

Definition 2. A solution \(y \) of (1) is said to have a zero at \(t \in \mathbb{T} \) if \(y(t) = 0 \), and it has a node between \(t \) and \(\sigma(t) \) if \(y(t)y(\sigma(t)) < 0 \). A generalized zero of \(y \) is then defined as a zero or a node.

Lemma 2 ([2]). The eigenvalues of (1)-(3) may be arranged as \(-\infty < \lambda_1 < \lambda_2 < \lambda_3 < ...\) and an eigenfunction corresponding to \(\lambda_{k+1} \) has exactly \(k \) generalized zeros in the open interval \((a,b)\).

Lemma 3. If \(y(t) \) is an eigenfunction of the problem (1)-(3) then \(y''(a) \neq 0 \) and \(y''(b) \neq 0 \).

Proof. It is clear from Lemma 1 that \(y''(a) = y(a) + \mu(a)y'(a) = y(a)[1 + h_a\mu(a)] \) and \(y''(b) = y(b) + \mu(b)y'(b) = y(b)[1 + h_b\mu(b)] \). We claim that \(y(a) \neq 0 \) and \(y(b) \neq 0 \). Otherwise, from (2) and (3) \(y''(a) = 0 \) or \(y''(b) = 0 \) hold, then by the uniqueness theorem of the solution of initial value problems \(y(t) \) is identically vanish which contradicts that it is the eigenfunction. Therefore the proof is completed from the assumption \(1 + h_a\mu(a) \neq 0, 1 + h_b\mu(b) \neq 0 \). \(\square \)

Theorem 1. Let \(\lambda_1 \) be the first eigenvalue of (1)-(3). If

\[
\lambda_1 \geq \frac{1}{\rho(b) - a}\{h_a - h_b + \int_a^{\rho(b)} q(t)\Delta t\},
\]

then \(q(t) \equiv \lambda_1 \).

Proof. Let \(y_1(t) \) be the corresponding eigenfunction to \(\lambda_1 \). From eq(1) and Lemma 2 we can write on \(\mathbb{T}^\mathbb{Z} \)

\[
\frac{y_1''(t)}{y_1'(t)} = q(t) - \lambda_1.
\]

It is from the relation

\[
\frac{y_1''(t)}{y_1'(t)} = \left[\frac{y_1''(t)}{y_1'(t)}\right]^2 + \left[\frac{y_1''(t)}{y_1'(t)}\right] \Delta
\]

that

\[
\left[\frac{y_1''(t)}{y_1'(t)}\right] \Delta = q(t) - \lambda_1 - \frac{\left[\frac{y_1''(t)}{y_1'(t)}\right]^2}{y_1'(t)y_1(t)}.
\]

FromLemma 3 we can integration of both sides from \(a \) to \(\rho(b) \). Therefore the following equality is obtained

\[
\int_a^{\rho(b)} \left[\frac{y_1''(t)}{y_1'(t)}\right]^2 \Delta t = \frac{y_1''(a)}{y_1'(a)} - \frac{y_1''(b)}{y_1'(b)} + \int_a^{\rho(b)} [q(t) - \lambda_1] \Delta t
\]

\[
= h_a - h_b + \int_a^{\rho(b)} q(t)\Delta t - \lambda_1(\rho(b) - a).
\]

It can be seen from Lemma 2 and our hypothesis that the right side of the last equality is negative and the left side is non-negative. Thus \(y_1''(t) \equiv 0 \) and so \(y_1(t) \) is constant. Substituting \(y_1(t) \) is constant into equation (1), it is concluded that \(q(t) \equiv \lambda_1 \). \(\square \)
Corollary 1. The first eigenvalue of the problem \(-y^\Delta\Delta + q(t)y^\sigma = \lambda y^\sigma, \ y^\Delta(a) = y^\Delta(\rho(b)) = 0\) is \(\lambda_1 = \frac{\rho(b)}{\rho(b) - a} \int_a^\rho(b) q(t)\Delta t\) then, \(q(t) \equiv \lambda_1\).

This corollary is a generalization of the results of Freiling and Yurko [13] onto the time scale.

Corollary 2. Under the hypothesis \(\int_a^\rho(b) q(t)\Delta t = 0\); if \(q(t) \neq 0\), then the problem
\[-y^\Delta\Delta + q(t)y^\sigma = \lambda y^\sigma, \ y^\Delta(a) = y^\Delta(\rho(b)) = 0\]
has at least one negative eigenvalue.

We conclude this paper with specializing our first result for a particular time scale which consists of only isolated points.

Remark 1. Consider the time scale
\[T = \{x_k \in \mathbb{R} : a = x_0 < x_1 < x_2 < \ldots < x_n = b\}\]
and the following problem
\[-y^\Delta\Delta + q(t)y^\sigma = \lambda y^\sigma, \ y^\Delta(a) = y^\Delta(\rho(b)) = 0\]
If the first eigenvalue of the problem satisfy \(\lambda_1 \geq \max\{q(t) : t \in T\}\), then \(q(t) \equiv \lambda_1\).

References

[1] V.A. Ambarzumyan, Über eine Frage der Eigenwerttheorie, Z. Phys. 53 (1929), pp. 690–695.
[2] R.P. Agarwal, M. Bohner, and P.J.Y. Wong, Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput. 99 (1999), pp. 153–166.
[3] P. Amster, P. De Na’, poli, and J.P. Pinasco, Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals, J. Math. Anal. Appl. 343 (2008), pp. 573–584.
[4] P. Amster, P. De Na’poli, and J.P. Pinasco, Detailed asymptotic of eigenvalues on time scales, J. Differ. Equ. Appl. 15 (2009), pp. 225–231.
[5] F. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York, 1964.
[6] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhäuser, Boston, MA, 2001.
[7] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, MA, 2003.
[8] F.A. Davidson and B.P. Rynne, Global bifurcation on time scales, J. Math. Anal. Appl. 267 (2002), pp. 345–360.
[9] F.A. Davidson and B.P. Rynne, Self-adjoint boundary value problems on time scales, Electron. J. Differ. Equ. 2007(175) (2007), pp. 1–10.
[10] F.A. Davidson and B.P. Rynne, Eigenfunction expansions in L2 spaces for boundary value problems on time-scales, J. Math. Anal. Appl. 335 (2007), pp. 1038–1051.
[11] L. Erbe and S. Hilger, Sturmian theory on measure chains, Differ. Equ. Dyn. Syst. 1 (1993), pp. 223–244.
[12] L. Erbe and A. Peterson, Eigenvalue conditions and positive solutions, J. Differ. Equ. Appl. 6 (2000), pp. 165–191.
[13] G. Freiling and V.A. Yurko, Inverse Sturm–Liouville Problems and Their Applications, Nova Science, Huntington, NY, 2001.
[14] G.S. Guseinov, Eigenfunction expansions for a Sturm-Liouville problem on time scales, Int. J. Differ. Equ. 2 (2007), pp. 93–104.
[15] G.S. Guseinov, An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales, Adv. Dyn. Syst. Appl. 3 (2008), pp. 147–160.
[16] S. Hilger, Analysis on measure chains – a unified approach to continuous and discrete calculus, Results in Math. 18 (1990), 18–56.
[17] A. Huseynov, Limit point and limit circle cases for dynamic equations on time scales, Hacet. J. Math. Stat. 39 (2010), pp. 379–392.
[18] A. Huseynov and E. Bairamov, On expansions in eigenfunctions for second order dynamic equations on time scales, Nonlinear Dyn. Syst. Theory 9 (2009), pp. 7–88.
[19] Q. Kong, Sturm-Liouville problems on time scales with separated boundary conditions, Results Math. 52 (2008), pp. 111–121.
[20] B.P. Rynne, L2 spaces and boundary value problems on time-scales, J. Math. Anal. Appl. 328 (2007), pp. 1217–1236.
[21] R. Simon Hilscher and P. Zemanek, Weyl-Titchmarsh theory for time scale symplectic systems on half line, Abstr. Appl. Anal. (2011), Art. ID 738520, 41 pp.
[22] S. Sun, M. Bohner, and S. Chen, Weyl-Titchmarsh theory for Hamiltonian dynamic systems, Abstr. Appl. Anal. (2010), Art. ID 514760, 18 pp.

Current address: Department of Mathematics, Faculty of Science, Cumhuriyet University 58140, Sivas, TURKEY

E-mail address: sozkan@cumhuriyet.edu.tr